Journal of General Virology (1991)

The nucleotide sequence of the infectious cloned DNA components of potato yellow mosaic virus

R. H. A. Coutts, R. S. Coffin, E. J. F. Roberts and W. D. O. Hamilton

Presented by : Sankalya Ambagaspitiye

The nucleotide sequence of the infectious cloned DNA components of potato yellow mosaic virus

 Goal: The complete genome sequencing of a Venezuelan isolate of potato yellow mosaic virus (PYMV)

 Approach: Nucleotide sequencing using dideoxynucleotide chain termination procedure

Introduction

Life cycle of the PYMV (Potato Yellow Mosaic Virus)

Infects new dicotyledonous plants

Bemisia tabaci

Nature Reviews | Microbiology

Potato Yellow Mosaic Virus

Taxonomy

Domain: Virus

Group: "ssDNA viruses"

Family: Geminiviridae

Genus: Begomovirus

Circular bipartite ssDNA genome with DNA components A and B

Objective

 Complete sequencing of PYMV DNAs A and B

Applications

 To determine the phylogenetic relationship of PYMV with other subgroup I geminivirus

http://www.plantpath.wisc.edu/GeminivirusResistantTomatoes

Methods

Viral DNA is extracted from *Nicotiana* plants

Purified DNA cloned into plasmid and bacteriophage vectors

Infectious clones of A and B DNAs recloned to make 2 vectors (pMAH2 and pMBBI)

Sequence determined by Sanger's dideoxynucleotide chain termination procedure

Sanger Dideoxy chain termination method

Components for the chain termination method:

- DNA fragment for sequencing
- Primers
- dNTPs
- ddNTPs

Sanger Dideoxy chain termination method

Results and Discussion

The sequence of PYMV DNA was determined completely

Important features

- 268 nt common region in A and B
- Similarity in amino acid sequences (41%) in ORFs AR1 and BL1
- Highly conserved inverted repeat TAATATTAC in CR, a candidate for origin of replication

Both DNAs contained ORFs in the viral as well as the complementary strands

- Six ORFs found4 in DNA A2 in DNA B
- Polyadenylation signals present

Comparison of PYMV DNA ORFs with other subgroup I geminiviruses

Table 1. Amino acid sequence similarity between the most closely related subgroup I geminiviruses

ORF					
ARI	ALI	AL2	AL3	BR1	BLI
93†	81	83‡	87	78	91
94	86	81	85	75	89
97	83	90	88	77	77
95	80	81‡	86	80	91
93	84	80‡	89	75	77
94	79	84	88	72	78
	93† 94 97 95 93	93† 81 94 86 97 83 95 80 93 84	AR1 AL1 AL2 93† 81 83‡ 94 86 81 97 83 90 95 80 81‡ 93 84 80‡	AR1 AL1 AL2 AL3 93† 81 83‡ 87 94 86 81 85 97 83 90 88 95 80 81‡ 86 93 84 80‡ 89	AR1 AL1 AL2 AL3 BR1 93† 81 83‡ 87 78 94 86 81 85 75 97 83 90 88 77 95 80 81‡ 86 80 93 84 80‡ 89 75

- PYMV groups with subgroup I geminivirus from New world
- More closely related to Abutilon mosaic virus (AbMV)

Sequence similarities and evolution

- 1) ORF BL1 of AbMV 75% similar to TGMV, BGMV, PYMV
- Few changes in nucleotides raise the similarity to 90%
 Explains how viruses evolved based on the environment

- 2) G to A transition in 360 nucleotide extends the ORF AR1 protein by 10 aa in BGMV and AbMV, similar to the length of PYMV
- Suggestion: This region of coat protein became unnecessary in the infectious cycle

Coat proteins are conserved in the subgroup

Indicates similar geographical origins of these viruses

The common region of DNA A and DNA B

Similarities between PYMV and other class 1 geminivirus

- Possible stem-loop structure containing TAATATTAC
- Presence of inverted repeats between 3' end of the common regions and the start of ORF AR1

Differences

Other geminiviruses	PYMV common region
Common region range from 170-210 nt	Common region 268 nt
Extends only <15 nt into an ORF	Extends 100 nt into N-terminal in ORF AL1

Conclusions

 PYMV has a circular bipartite ssDNA genome and possesses bidirectionally oriented 6 ORFs

PYMV is closely related to subgroup I geminiviruses isolated from the New World

Current knowledge on begomovirus genome

Nature Reviews | Microbiology

CP - Coat proteins

AV2 -anti-defence proteins

Rep - Replication initiator protein

TrAP- Transcriptional activator protein

Ren- Replication enhancer protein

NSP and MP: Movement proteins

Other references

• Linda Hanley-Bowdoin, Eduardo R. Bejarano, Dominique Robertson, Shahid Mansoor, 2013, Geminiviruses: masters at redirecting and reprogramming plant processes, *Nature Rev. Microbiol.*, 11:777-788

http://www.plantpath.wisc.edu/GeminivirusResistantTomatoes

http://education.expasy.org/images/Begomovirus_genome.jpg

Thank You

Nucleotide sequence of DNA A

(a) TTTCGTGGCXTTTTTGTAAATATGAATGTYCTCCCAATATGTTCCCCCTATTGCTCTCAAAACTCTTATGAATTGGGGGGAACTGGGGGAACTTATATAGTAGAAGTTCCTAAAG CCTCAAAGGTTAGCCGCAACGCTAATTACTCTCCTCGTTCAGGAATTGGGCCAAGAATAAACAAGGCCGCTGAATGGGTTAATAGGCCCAYGTACCGGAAGCCCAGGATCTATCGGACGC TGAGGACGCCTGATGTTCCTAGAGGCTGTGAAGGGCCTTGTAAGGTCCAGTCTTTCGAGCAGCGACACGATATCTTACACACTGGCAAGGTAATGTGCATATCTGACGTTACTCGCGGTA TGGTCAGAGACCGAAGACCGTATGGAACGCCTATGGATTTCGGACAAGTGTTCAACATGTTCGACAATGAGCCTAGCACCGCCACTGTTAAGAACGATCTTCGTGATCGTTATCAGCTCA ACGAGAATCATACTGAGAACGCCCTATTATTG7ACATGGCATGTACTCATGCCTCAAATCCTGTATATGCAACACTTAAGATTCGGATCTATTTTTATGATTCGATCTTAAATTAATAAA 1201 GAACTAATIGTCTAAATCTAGCTAAATAATTCGACCCAGAAGCTGTCATCGATCCCCAGACCTTGGAAGCTATGCTTTCTGGAGATCCAATGCTCTCTGAGGTTGTGGTTGA 1321 ACCGGATTTGGACGCTGTATATCCTGGTCCTGGTGTATTGCATGTCCTCTACTTGGTTTATCTTGAAATAGAGGGGATTTTCTCCCAGATAAACACGCCATTCTCTGCCTGACGTG 1441 CAGTGATGAGCTCCCCCTGTGCGTGAATCCATGTCCTGCGCAGTCTATGTGGAAGTATATGGAGCAACCGCAGTCTAAGTCAATGCGTCTCCTCCTGATTGCCCTCTTTTTTTCCTTGCCTG 1561 TGTGCCTTCTTGATAGAGGGGGGCTGTGATGGTGATGGAGGACCCCATTCTTTAGAGTCCAGTTTTTGAGAGAGCCCATTTTTCGTCTTTTGTCGAGGAAACCTTTATAGCTGGAACCCTCACC 1681 AGGATTGCAGAGCACGATTGATGGGATACCGCCTTTAATTTGAACAGGCTTTCCCGTACTTACAATTTGATTGCCAATCCCTTTTGGGCCCCAAGCAGTTCTTTCCAGTGCTTTAGCTTTAG 1801 ATATTGCGGTCGCGACGTCATCAATGACGTTATACTCCACTTCATTCGAATAGACCCTGGGATTGAAATCAAGATGACCGCTCAAGTAATTATGTGGGCCTAAGACTCGCGCCCACATCGT 1921 CTTGCCTCTTCGAGAATCACCTTCAATTATAATACTAATAGGGCGTTTTCTGGGCGCGCCGCACTACTCTTTCCGAAATAACCATCTGCCCACTCTTGCATCTCGGGAACGTTAGTGAA 2041 AGAGGAGAGTGGAAACGGAGGCCCATGTCTCTGGAGCCTTCATGAAAATCCTATCGAGGTTACAGGATAGGTTATGATACTGAAAAAGAAACTTTTCCGGCAACTTCTCTTTAATGAT 2161 TTTCATGGCTGCTTCCTTTGTTCCAGAGTTTAGTGCCTCGGCAGCTGGTTAACTGTTCTCCGCCCCCTCGAGCACCATCTGGAACAACCCCCATTCGATGGTGTC 2281 TCCGTCTTCTCGACA7ACGACTTGACATCGGAGCTCGATTTAGCTCCCTGAATGTTCGGAAATGTCTTTGACACTGGTTGGGGACACCAGATCGAACAGTCTGTTATTTGTGCAGTT 2401 GTAPTTGCCTFCGAACTGGAFAAGAACGFGGAGTGAGGTTCCCCATTCTCGTGAAGTTCTCGAAATCTTGATGAATTTCTTGTTGAACTGGGATAGTTAGGTTTTGAAGTTGGGAAAA

Nucleotide sequence of DNA B

(b) GGTAATTCTCGACCAAGTTACAGTGTTAAGTCGAAATTGATTTTAACGTCTCTCCATTTATGAGCTCCTATTAAAGCATTACACTATTACACGTGTACCATTTAAATTGATCGTGTGG AGTCAATTTAATTTAATTGTATAACCTGATATGTCTATATATTCCCTGACTAGGAATGAGCTCATTATTACGTGGTACAAAGACATTACATGATAATGTATCCTAATAGGCACAGGCGTGC TTCTTTTTGTAGCCAGGCACGTACTTACCCACGTAATAGTTTGATTAGACAGCAGTCATTATTCAAGCGTAATGTTAGCAAACGACGACCATTTCAAACCGTGAAGATGGTTGATGACTC CATGATGAAGGCACAACGTATTCATGAGAATCAATACGGTCCAGATTTTTCACTGGCCCCATAATACAGCCCGTCTCTACATTTATAAGTTACCCTGAGATATTCCTAAGTCTCTGCCCAATAG AACCAGGTCATATATTAAGCTAAAACGACTTCGGTTCAAGGGTATTGTGAAGGTGGAACGTGTACATGTAGAGGGTTAACATGGACTGTACTCTGTGCCTAAGACCGAAGGACGTTTTCTCTTT GGTTATTGTAGTGGATCGTAAACCTCACCTTGGACCCTCTGGGGGGACTGCCTACATTTGACGAGCTATTTTGGCGCTAGGATCCACAGTCATGGTAACTTGGCAATAGTTCCATCTCTGAA 1081_GGATCGGTTCTACATACGCCATGTACTGAAGCGTGTGATATCAGTCGAGAAGGACACCATGATGGTGGACATAGAAGGTGTTGTAGCCCTTTCTAGCAGACGTTTTAATTGTTGGGGCTGG 1201 TTTTAAGGACCTTGACATAGAGTCCCGAAAGGGTGTTTATGATAACATTAATAAGAACGCCCTGTTAGTTTATTATTGTTGGATGTCGGATACAGTATCCAAAGCATCCACATTTGTATC 1441 CATTTAACTGGGCTACGGACATGGTTATGGTTCGATTGGGCCCATGTTAGCACCAACTATAGATGCTGACTCTCGGGATCTAGGACGCTGCCTAGTCTTTGCAAATCTCGATACGTAT 1561 GTAGCTCGTTCTCTATCTCTGACTCGCCCTCTGAFTGACCCACTCCTAFTGTACTCCTGGAAGCCCATGAFTCACCAGGCCTTAFTTCAATTGGGCCTCTGAGCCCAACTCTGGACATTG 1801 CGGAATGTTTCGCCGTCGACAGTTTCAGCTTCCCTTTGAACTTGGCAAAGTGTCCCGTTGATGAACGTTCGTGTCGGAAACTCTGTAATAGAGTTTCCATGGGATAGGATCTTTTAGGG 2041 CGGTGGCGTTGATGGGTACCTGTTGCCTGTACTCAAT7ACGCAGTGGTCTATCTTCATACAGCTGCGACTGAGCCTCGCCGCCGTCGACGGCAAATTGCAGTATTATCT 2281 TTCCMGAATATGAACAGGAAAAGAGGATGATAGGGTFFCTCGAACAGGCAAGACGATGATCFTGAAGAGAGACAGAGAAAATATAATAGTGCTATGGAAGACTCTGAATATGTTAATGTT 2401 CAAGGATTAGGTAGTTATATAAAGAAGTTGTTACTGCTGAGGTACCAATTAAGAAATTTGAAGTATGGGAAAGTGCATCTTCTTTGCTAAGATAGTATTGAGGATTCCTAAGGAAATAAT 2521 TTTTGGCTTAAATAGAGAACGAGCCTT

Conserved regions of PYMV DNA A and B

Fig. 2. Comparison of the conserved region of PYMV A DNA and B DNA. Arrows indicate inverted repeat sequences.