Data 301 Data Analytics Name of Lecture

Dr. Irene Vrbik

University of British Columbia Okanagan irene vrbik@ubc.ca

Term 1, 2018

Things in a Bulleted List

Things in a Bulleted List

► Bullets that

Things in a Bulleted List

- ► Bullets that
- Come up

Things in a Bulleted List

- ► Bullets that
- Come up
- One by one

There are infinitely many primes.

This has many ramifications:

There are infinitely many primes.

This has many ramifications:

Corollary

Corollary 1

There are infinitely many primes.

This has many ramifications:

Corollary

Corollary 2

There are infinitely many primes.

This has many ramifications:

Corollary 3

Keybarod

This is how we will refer to cells by index A4

Left Part

Right Part

valign=t

Align images at the top with \includegraphics[height=.45\textheight,valign=t]{Linear1}

Whatever

Whatever

items

Whatever

▶ items

Whatever

► items

Whatever

- ► items
- go here

Whatever

- ► items
- ▶ go here

Whatever

- ► items
- go here

Whatever

- ► items
- go here

Scores

► CRPS et MAE

Whatever

- items
- go here

- ► CRPS et MAE
- Diagramme de Talagrand

Whatever

- ▶ items
- ▶ go here

- CRPS et MAE
- ▶ Diagramme de Talagrand

Whatever

- items
- go here

- ► CRPS et MAE
- Diagramme de Talagrand
- Diagramme de fiabilit

- . a
- . b
- . c

- . d
- . e
- . f

Hints:

A James Madison

Hints:

James Madison ate broccoli.

- A James Madison
- B Harry Truman

Hints:

James Madison ate broccoli.

Harry Truman drank milk.

- A James Madison
- **B** Harry Truman
- C Abraham Lincoln

Hints:

James Madison ate broccoli. Harry Truman drank milk. Abe Lincoln raised bees.

- A James Madison
- B Harry Truman
- C Abraham Lincoln
- D Calvin Coolidge

Hints:

James Madison ate broccoli. Harry Truman drank milk.

Abe Lincoln raised bees.

And Cal Coolidge grew silk.

C Abraham Lincoln

You can three different ways you can specify an absolute address

- ▶ By row eg. =B\$1
- By column eg. =\$B1
- ▶ By cell (row and column) eg. =\$B\$1

Question: How would the formula =\$A2+B\$3 in cell **D3** be changed when copied to **E5**?

You can three different ways you can specify an absolute address

uncover

- ▶ By row eg. =B\$1
- ▶ By column eg. =\$B1
- ▶ By cell (row and column) eg. =\$B\$1

Question: How would the formula =\$A2+B\$3 in cell **D3** be changed when copied to **E5**?

D3 to E5: \rightarrow one column, \downarrow two rows

You can three different ways you can specify an absolute address

- ▶ By row eg. =B\$1
- By column eg. =\$B1
- By cell (row and column) eg. =\$B\$1

Question: How would the formula =\$A2+B\$3 in cell D3 be changed when copied to E5?

D3 to **E5**: \rightarrow one column, \downarrow two rows

▶ \$A2: $+ \rightarrow$ one column, \downarrow two rows = \$A4

You can three different ways you can specify an absolute address

- ▶ By row eg. =B\$1
- By column eg. =\$B1
- By cell (row and column) eg. =\$B\$1

Question: How would the formula =\$A2+B\$3 in cell D3 be changed when copied to E5?

D3 to **E5**: \rightarrow one column, \downarrow two rows

- ▶ \$A2: $+ \rightarrow$ one column, \downarrow two rows = \$A4
- ▶ B\$3: $+ \rightarrow$ one column, $+ \downarrow$ two rows = C\$3

You can three different ways you can specify an absolute address

- ▶ By row eg. =B\$1
- By column eg. =\$B1
- By cell (row and column) eg. =\$B\$1

Question: How would the formula =\$A2+B\$3 in cell D3 be changed when copied to E5?

D3 to **E5**: \rightarrow one column, \downarrow two rows

- ▶ \$A2: $+ \rightarrow$ one column, \downarrow two rows = \$A4
- ▶ B\$3: $+ \rightarrow$ one column, $+ \downarrow$ two rows = C\$3

Answer: The copied formula would appear as =\$A4+C\$3 in cell **E**5

$$y = \frac{(x^2 + 1)\sqrt{x + 3}}{x - 1}$$

$$\ln y = \ln(x^2 + 1) + \frac{1}{2}\ln(x + 3) - \ln(x - 1)$$

$$\frac{1}{y}\frac{dy}{dx} = \frac{2x}{x^2 + 1} + \frac{1}{2(x + 3)} - \frac{1}{x - 1}$$

So

$$\frac{dy}{dx} = \left(\frac{2x}{x^2 + 1} + \frac{1}{2(x+3)} - \frac{1}{x-1}\right)y$$

$$y = \frac{(x^2 + 1)\sqrt{x + 3}}{x - 1}$$

$$\ln y = \ln(x^2 + 1) + \frac{1}{2}\ln(x + 3) - \ln(x - 1)$$

$$\frac{1}{y}\frac{dy}{dx} = \frac{2x}{x^2 + 1} + \frac{1}{2(x + 3)} - \frac{1}{x - 1}$$

So

$$\frac{dy}{dx} = \left(\frac{2x}{x^2 + 1} + \frac{1}{2(x+3)} - \frac{1}{x-1}\right) \frac{(x^2 + 1)\sqrt{x+3}}{x-1}$$

Example

PlaceQuestionHere

- 1. Option1
- 2. Option2
- 3. Option3
- 4. Option4

A) 0

B) 1

C) 2

D) 3

PlaceQuestionHere

- 1. Option1
- 2. Option2
- 3. Option3
- 4. Option4
- **A)** 0

B) 1

C) 2

D) 3

PlaceQuestionHere

- 1. Option1
- 2. Option2
- 3. Option3
- 4. Option4
- **A)** 0

B) 1

C) 2

D) 3

PlaceQuestionHere

- 1. Option1
- 2. Option2
- **3.** Option3
- 4. Option4
- **A)** 0

B) 1

C) 2

D) 3

PlaceQuestionHere

- 1. Option1
- 2. Option2
- **3.** Option3
- 4. Option4
- **A)** 0

B) 1

C) 2

D) 3

PlaceQuestionHere

- 1. Option1
- 2. Option2
- **3.** Option3
- 4. Option4
- **A)** 0

B) 1

C) 2

D) 3

Answer:

Assume the cells in the range A1:C4 each contain a number that is equal to their row number (e.g. B3 contains 3). How many of the following statements are TRUE?

- 1. The number of cells in the range is 12.
- 2. The value of SUM(A1:C4) is 20.
- 3. The value of COUNTIF(A1:B4,">2") is 4.
- 4. AVERAGE(A1:C4) > MAX(C2:C3)
- **A)** 0

B) 1

C) 2

D) 3

E) 4

Answer:

Assume the cells in the range A1:C4 each contain a number that is equal to their row number (e.g. B3 contains 3). How many of the following statements are TRUE?

- **1.** The number of cells in the range is 12.
- 2. The value of SUM(A1:C4) is 20.
- 3. The value of COUNTIF(A1:B4,">2") is 4.
- 4. AVERAGE(A1:C4) > MAX(C2:C3)
- **A)** 0

B) 1

C) 2

D) 3

E) 4

Answer:

Assume the cells in the range A1:C4 each contain a number that is equal to their row number (e.g. B3 contains 3). How many of the following statements are TRUE?

- **1.** The number of cells in the range is 12.
- 2. The value of SUM(A1:C4) is 20.
- 3. The value of COUNTIF(A1:B4,">2") is 4.
- 4. AVERAGE(A1:C4) > MAX(C2:C3)
- **A)** 0

B) 1

C) 2

D) 3

E) 4

Answer:

Assume the cells in the range A1:C4 each contain a number that is equal to their row number (e.g. B3 contains 3). How many of the following statements are TRUE?

- **1.** The number of cells in the range is 12.
- 2. The value of SUM(A1:C4) is 20.
- **3.** The value of COUNTIF(A1:B4,">2") is 4.
- 4. AVERAGE(A1:C4) > MAX(C2:C3)
- **A)** 0

B) 1

C) 2

D) 3

E) 4

Answer:

Assume the cells in the range A1:C4 each contain a number that is equal to their row number (e.g. B3 contains 3). How many of the following statements are TRUE?

- **1.** The number of cells in the range is 12.
- 2. The value of SUM(A1:C4) is 20.
- **3.** The value of COUNTIF(A1:B4,">2") is 4.
- 4. AVERAGE(A1:C4) > MAX(C2:C3)
- **A)** 0

B) 1

C) 2

D) 3

Answer:

Assume the cells in the range A1:C4 each contain a number that is equal to their row number (e.g. B3 contains 3). How many of the following statements are TRUE?

- **1.** The number of cells in the range is 12.
- 2. The value of SUM(A1:C4) is 20.
- **3.** The value of COUNTIF(A1:B4,">2") is 4.
- 4. AVERAGE(A1:C4) > MAX(C2:C3)
- **A)** 0

B) 1

C) 2

D) 3

E) 4

question

Is the answer yes or no? yes B) no

Question:

Is the answer yes or no? yes B) no

question

Question:

Is the answer yes or no? yes B) no

This answer (which appears in the form of coloured text) will only appear on beamer slides but NOT the handout. Put a double pause in order to get a slide with JUST the colour change

Equations

Equations are easy

► Just copy/paste equations

Equations

Equations are easy

- ► Just copy/paste equations
- ► From the paper!

$$p^* = \underset{p}{\mathsf{argmin}} \ \sum_{x} \left[\textit{I}(W(x;p)) - \textit{T}(x) \right]^2$$

A Movie

question

Some block

- Movies only seem to work in Adobe Reader
- Movie file is not embedded, it must be on the computer

Some more block

Movies only seem to work in Adobe Reader Movie file is not embedded, it must be on the computer

Some text in here.

- ► Movies only seem to work in Adobe Reader
- Movie file is not embedded, it must be on the computer

question

This frame won't be included in the handout mode

We need "fragile" frame to use verbatim see()# This is how we do lettered lists:

- **A)** 0
- B) 1
- **C)** 2
- D) 3
- E) 4
 - no space
 - between bullets
 - be sure
 - to set back
 - ▶ to 5pt sep

Credits

- ▶ Brought to you by Cédric Mauclair
- Please let me know about improvements!
- ▶ inspiration: http://www.shawnlankton.com... (in code)

Questions

