# ML-ResNet: A novel network to detect and locate myocardial infarction using 12 leads ECG

Chuang Han, Li Shi

October 2019 Published by Elsevier Ltd

# **Objective:-**

The paper presents a novel method to detect and locate MI combining a multi-lead residual neural network (ML-ResNet) structure with three residual blocks and feature fusion via 12 leads ECG records.

| Table 1 |        |         |         |    |     |        |
|---------|--------|---------|---------|----|-----|--------|
| Summary | of PTB | dataset | samples | in | the | paper. |

| Class | No. of subjects | No. of records | No. of 12-lead records |
|-------|-----------------|----------------|------------------------|
| HC    | 52              | 80             | 6945                   |
| MI    | 113             | 312            | 17,212                 |
| AMI   | 17              | 47             | 2287                   |
| ASMI  | 27              | 77             | 4312                   |
| ALMI  | 16              | 43             | 2575                   |
| IMI   | 30              | 89             | 4452                   |
| ILMI  | 23              | 56             | 3586                   |
| Total | 165             | 392            | 24,157                 |

HC: healthy control, MI: myocardial infarction, AMI: anterior myocardial infarction, ASMI: anteroseptal myocardial infarction recordings, ALMI: anterolateral myocardial infarction recordings, IMI: inferior myocardial infarction recordings.

This paper used PTB database. There are 17,212 MI recordings and 6945 HC recordings.

## **Preprocessing:-**

The pre-processing steps include denoising, down-sampling, QRS detection and data augmentation.

- Wavelet denoising method is presented to eliminate different noise in the first step. Then, the denoised signal is down sampled to 200 Hz.
- Further, the Pan-Tompkins algorithm is employed to detect the QRS wave and perform beat segmentation.
- 800 sample points are chosen along with 99 points before QRS detection point and 700 points after QRS detection point.

#### **Neural network architecture:-**

- The proposed ML-ResNet network is employed to detect MI and localize MI, which has 13 layers including one lead feature branch.
- In detail, the single feature branch consists of 3 residual blocks with three convolutional layers per block.



Fig. 2. The architecture of the proposed ML-ResNet.

• Here, single lead feature branch network for every lead is used, which consists of residual blocks, including convolutional layer (C), batch normalization layer (BN), rectified linear unit layer (Relu), and pooling layer (P).

Table 2
Architecture of three residual blocks of the model.

| Type             | Kernel/Pool size | Number of kernel |
|------------------|------------------|------------------|
| input            | -                | -                |
| Convolutional 1D | 17×1             | 2/4/8            |
| BN+Relu          | -                | -                |
| Convolutional 1D | 11×1             | 2/4/8            |
| BN+Relu          | -                | -                |
| Convolutional 1D | 5 × 1            | 2/4/8            |
| BN               | -                | -                |
| Expand input (C) | 1 × 1            | 2/4/8            |
| Skip connection  | -                | _                |
| Pooling          | 5                | -                |

Table 3
Detailed information of ML-ResNet.

| Layers | Type            | Number of kernel | Output shape  |
|--------|-----------------|------------------|---------------|
| 0      | Input           | -                | 800 × 1       |
| 1-4    | Residual block  | 2                | 160 × 2       |
| 5-8    | Residual block  | 4                | $32 \times 4$ |
| 9-12   | Residual block  | 8                | 6 × 8         |
| -      | GAP             | -                | 1 × 8         |
| -      | Dropout         | -                | 1 × 8         |
| -      | Flatten         |                  | 12 × 8        |
| 13     | Fully-connected |                  | 2 or 6        |

- Every residual block network includes 3 convolutional layers (Conv1D), whose layer are followed by batch normalization layer (BN) and a Relu operation, and in the end an average pooling layer.
- An additional convolutional layer (Conv1D) with a 1 × 1 filter and batch normalization layer (BN) are developed to increase the dimension to be used for addition in the residual block.
- As each residual block is designed to learn fused ECG features at multiple spatial resolution, the filter shape with N filters is M × 1 in the convolutional layer.
- In first residual block, we use 2 kernels (filters), in second block, 4 kernels and in final block, we use 8 kernels.
- Meanwhile, zero padding is used in the blocks to ensure input and output vector are of same length. After this we perform pooling operation with size 5.
- After this, GAP and dropout with a probability of 0.5 is also applied to extract core features and promote generalization ability.

- Thus, we will get 12 leads feature (of dimension 16x1) from each single lead feature branch network.
- We will get a matrix with dimensionality is  $16 \times 12$ . We use Flatten layer to reshape it to  $192 \times 1$ .
- After tflattening, the data is fed to the fully connected softmax layer with 2 output classes or 6 classes for MI detection and MI location, respectively.

## **Results:-**

The performance of MI detection along with MI location is analyzed based upon 5-fold cross validation. The results are as follows.

(1) For intra patient scheme:-

**Table 5**Confusion matrix and performance for MI detection across 5-fold cross validation based on intrapatient scheme.

|          |          | Predicted    |           | Acc(%) | Se(%) | Sp(%) | PPV (%) | F1(%) |
|----------|----------|--------------|-----------|--------|-------|-------|---------|-------|
|          |          | MI           | HC        | . , ,  | , ,   | .,,   | , ,     | , ,   |
| Original | MI<br>HC | 17,208<br>16 | 4<br>6929 | 99.92  | 99.98 | 99.77 | 99.91   | 99.94 |

**Table 7**Confusion matrix and performance for MI location across 5-fold cross validation based on intra-patient scheme.

|      | Predict | ed   |      |      |      | Acc(%) | Se(%) | Sp(%) | PPV(%) | F1(%) |       |
|------|---------|------|------|------|------|--------|-------|-------|--------|-------|-------|
|      | AMI     | ASMI | ALMI | IMI  | ILMI | HC     |       | (-/   | ,      | ,     | (/    |
| AMI  | 2262    | 17   | 3    | 0    | 0    | 0      | 99.72 | 99.12 | 99.78  | 99.87 | 99.49 |
| ASMI | 2       | 4323 | 8    | 1    | 2    | 0      | 99.72 | 99.70 | 99.72  | 99.27 | 99.48 |
| ALMI | 1       | 14   | 2560 | 0    | 1    | 0      | 99.72 | 99.38 | 99.76  | 99.57 | 99.48 |
| IMI  | 0       | 1    | 0    | 4441 | 12   | 1      | 99.72 | 99.69 | 99.73  | 99.89 | 99.79 |
| ILMI | 0       | 0    | 0    | 4    | 3578 | 0      | 99.72 | 99.89 | 99.69  | 99.56 | 99.72 |
| HC   | 0       | 0    | 0    | 0    | 1    | 6926   | 99.72 | 99.99 | 99.61  | 99.99 | 99.99 |
| AVE  | 1       | 1    | 1    | 1    | 1    | 1      | 99.72 | 99.63 | 99.72  | 99.69 | 99.67 |

#### (2) For Inter-patient scheme:-

Table 8
Confusion matrix for MI detection based on inter-patient scheme.

|          |          | Predict    | Predicted   |        | 2022020 |       | 2000000 |       |
|----------|----------|------------|-------------|--------|---------|-------|---------|-------|
|          |          | MI         | HC          | Acc(%) | Se(%)   | Sp(%) | PPV(%)  | F1(%) |
| Original | MI<br>HC | 6157<br>58 | 334<br>2147 | 95.49  | 94.85   | 97.37 | 99.07   | 96.92 |

**Table 9**Confusion matrix for MI location based on inter-patient scheme.

|      | Predic | ted  |      |     |      | Acc(%) | Se(%) | Sp(%) | PPV(%) | F1(%) |       |
|------|--------|------|------|-----|------|--------|-------|-------|--------|-------|-------|
|      | AMI    | ASMI | ALMI | IMI | ILMI | HC     | ,     | , ,   | ,      | ,,,,  | ()    |
| AMI  | 251    | 93   | 23   | 0   | 5    | 401    | 55.74 | 32.47 | 58.01  | 54.45 | 40.68 |
| ASMI | 57     | 1295 | 29   | 166 | 124  | 153    | 55.74 | 71.00 | 51.688 | 70.92 | 70.96 |
| ALMI | 90     | 357  | 235  | 37  | 180  | 52     | 55.74 | 24.71 | 59.55  | 78.60 | 37.60 |
| IMI  | 0      | 78   | 12   | 607 | 480  | 495    | 55.74 | 36.30 | 60.36  | 48.44 | 41.50 |
| ILMI | 63     | 2    | 0    | 414 | 284  | 508    | 55.74 | 22.35 | 61.46  | 26.47 | 24.23 |
| HC   | 0      | 1    | 0    | 29  | 0    | 2175   | 55.74 | 98.64 | 41.17  | 57.48 | 72.63 |
| AVE  | 1      | 1    | 1    | 1   | 1    | 1      | 55.74 | 47.58 | 55.37  | 56.06 | 47.94 |

## **Conclusions:-**

- The proposed method for MI detection and localization has achieved superior results for inter-patient scheme.
- However, the performance based on MI localization for the inter-patient scheme is not up to the mark. The improvement depends significantly on the mass data and the novel model which reflects spatial location information of different leads subtly.