Math 542 HW9

Hongtao Zhang

1

1.1 14.11

Suppose $f(x) \in \mathbb{Z}[x]$ is an irreducible quartic whose splitting field has Galois group S_4 over \mathbb{Q} (there are many such quartics, cf. Section 6). Let θ be a root of f(x) and set $K = \mathbb{Q}(\theta)$. Prove that K is an extension of \mathbb{Q} of degree 4 which has no proper subfields. Are there any Galois extensions of \mathbb{Q} of degree 4 with no proper subfields?

1.2 14.13

Prove that if the Galois group of the splitting field of a cubic over \mathbb{Q} is the cyclic group of order 3 then all the roots of the cubic are real.