BỘ CÔNG THƯƠNG TRƯỜNG ĐẠI HỌC CÔNG NGHIỆP TP. HỒ CHÍ MINH KHOA: THƯƠNG MẠI DU LỊCH

TIỂU LUẬN MÔN: CƠ SỞ DỮ LIỆU

CHỦ ĐỀ:XÂY DỰNG VÀ QUẢN LÝ LỊCH DẠY-HỌC

Giảng viên hướng dẫn: Nguyễn Thị Hoài + Lê Hữu Hùng

Nhóm thực hiện: Nhóm 5

Lóp: DHTMDT19B - 420300391602

Năm học: 2025 - 2026

TP.HCM, ngày 06 tháng 05 năm 2025

DANH SÁCH THÀNH VIÊN

STT	HQ VÀ TÊN	MSSV	CÔNG VIỆC	ĐÁNH GIÁ
1	NGUYỄN LÊ NGUYÊN	23653361	 Phần A: Mục 3: Cài đặt lược đồ quan hệ vào sql Mục 4: 2 câu truy vấn GROUP BY Phần B: Mục 2: Câu 4 + 5 + 6 + 7 	100%
2	HÔ THỊ CẨM HƯỜNG	23657431	 Phần A: Mục 3: Cài đặt lược đồ quan hệ vào sql Mục 4: 2 câu truy vấn UPDATE + 1 câu truy vấn bất kì Phần B: Mục 1: Câu 4 + 5 + 6 	100%
3	HUỲNH TRẦN THANH ĐẠM	23652811	 - Phần A: Mục 1: Xây dựng mô hình ER Mục 4: 2 câu truy vấn SUBQUERY ++ 1 câu truy vấn bất kì - Phần B: Mục 2: Câu 1 + 2 + 3 	100%
4	LÊ THỊ HOÀNG NGÂN	23666081	 - Phần A: Mục 2: Chuyển sang lược đồ quan hệ Mục 4: 2 câu truy vấn DELETE - Phần B: Mục 1: Câu 7 + 8 + 9 + 11 	100%
5	TRẦN DƯƠNG BẢO TRÂN	23658171	 - Phần A: Mục 1: Xây dựng mô hình ER Mục 4: 2 câu truy vấn JOIN Phần B: Mục 1: Câu 1 + 2 + 3 	100%

LÒI CẨM ƠN

Lời đầu tiên, nhóm 5 xin trân trọng cảm ơn giảng viên Nguyễn Thị Hoài – giảng viên bộ môn Cơ Sở Dữ Liệu (lí thuyết) và giảng viên Lê Hữu Hùng – giảng viên bộ môn Cơ Sở Dữ Liệu (thực hành) của lớp DHTMDT19B, đã hướng dẫn nhóm 5 chúng em trong quá trình học tập và rèn luyện.

Nhóm 5 chúng em cũng xin được gửi lời cảm ơn đến quý thầy, cô giáo trường Đại học Công Nghiệp thành phố Hồ Chí Minh, đặc biệt là các thầy, cô khoa Thương mại Du lịch – những người đã truyền lửa và giảng dạy kiến thức cho em suốt thời gian qua.

Tuy nhiên do kinh nghiệm của bản thân còn hạn chế, vì vậy chúng em không thể tránh được các sai sót trong quá trình thực hiện, chúng em kính mong nhận được ý kiến đóng góp của quý thầy cô để bài tiểu luận được hoàn thiện hơn.

Nhóm 5 xin chân thành cảm ơn.

MỤC LỤC

LỜI MỞ ĐẦU	. 1
LÝ DO CHỌN ĐỀ TÀI	.2
A - Phần 1 – Mô hình ERD và lược đồ quan hệ - SQL	.3
1. Xây dựng mô hình ER	.4
2. Chuyển sang lược đồ quan hệ	.4
3. Cài đặt CSDL - Tạo database trên SSMS, nhập dữ liệu (tự nghĩ ra mỗi bảng ít nh 5 dòng): toàn bộ dùng lệnh SQL và nộp file database (file backup)	
4. Tự cho câu hỏi và trả lời: 12 câu (2 truy vấn kết nối nhiều bảng, 2 update, 2 delet 2 group by, 2 sub query, 2 câu bất kì) – xem ví dụ tại bài tập 1	
B - Phần 2 : Chuẩn hóa dữ liệu1	14
1. Bài tập1	14
2. Bài tập tổng hợp3	30
C – Phần cá nhân4	14
1. Trần Dương Bảo Trân4	14
2. Huỳnh Trần Thanh Đạm4	15
3. Lê Thị Hoàng Ngân4	16
4. Nguyễn Lê Nguyên4	17
5. Hồ Thị Cẩm Hường4	18
KÉT LUÂN5	50

LỜI MỞ ĐẦU

Trong kỷ nguyên số hóa hiện nay, dữ liệu không chỉ là tài sản mà còn là nền tảng cho mọi hoạt động của hệ thống thông tin. Việc lưu trữ, quản lý và khai thác dữ liệu một cách khoa học đóng vai trò thiết yếu trong việc hỗ trợ quá trình ra quyết định và điều hành hoạt động của tổ chức, doanh nghiệp. Môn học "Cơ sở dữ liệu" trang bị cho sinh viên những nguyên lý nền tảng để thiết kế, xây dựng và thao tác với hệ quản trị cơ sở dữ liệu nhằm đáp ứng yêu cầu đó.

Đề tài tiểu luận này được nhóm chúng em thực hiện với mục tiêu vận dụng tổng hợp các kiến thức đã học để xây dựng một mô hình cơ sở dữ liệu cho bài toán quản lý bán hàng. Quá trình thực hiện bao gồm từ việc phân tích bài toán thực tế, mô hình hóa dữ liệu bằng ERD, thiết kế lược đồ quan hệ, chuẩn hóa dữ liệu đến việc viết câu lệnh SOL để thao tác dữ liêu.

Thông qua tiểu luận, nhóm mong muốn không chỉ củng cố kiến thức lý thuyết mà còn rèn luyện khả năng tư duy phân tích hệ thống, giải quyết vấn đề thực tiễn trong lĩnh vực công nghệ thông tin.

LÝ DO CHỌN ĐỀ TÀI

Trong môi trường kinh doanh hiện đại, quản lý bán hàng là một nghiệp vụ thiết yếu và phổ biến ở mọi loại hình doanh nghiệp. Bài toán này đòi hỏi sự quản lý hiệu quả các thông tin liên quan đến khách hàng, sản phẩm, hóa đơn và quy trình thanh toán. Nếu không có một hệ thống cơ sở dữ liệu bài bản, việc lưu trữ và xử lý thông tin sẽ dễ dẫn đến sai sót, dư thừa, thậm chí thất thoát dữ liệu quan trọng.

Nhận thấy bài toán quản lý bán hàng vừa gần gũi với thực tế vừa có cấu trúc dữ liệu đa dạng, nhóm chúng em chọn đề tài này để có thể áp dụng toàn diện các kỹ năng đã học như xây dựng mô hình ER, thiết kế khóa, chuẩn hóa dữ liệu và thao tác SQL. Đây cũng là cơ hội để nhóm tiếp cận sâu hơn với các kỹ thuật quản trị dữ liệu, từ lý thuyết đến ứng dụng thực tiễn.

Bên cạnh đó, đề tài này giúp nhóm làm quen với những vấn đề thường gặp trong quản trị hệ thống thông tin doanh nghiệp, chuẩn bị hành trang tốt hơn cho công việc sau này trong lĩnh vực công nghệ thông tin.

A - Phần 1 – Mô hình ERD và lược đồ quan hệ - SQL

Bài tập 5: QUẨN LÝ LỊCH DẠY - HỌC

Để quản lý lịch dạy của các giáo viên và lịch học của các lớp, một trường tổ chức như sau: Mỗi giáo viên có một mã số giáo viên (MAGV) duy nhất, mỗi MAGV xác định các thông tin như: họ và tên giáo viên (HOTEN), số điện thoại (DTGV). Mỗi giáo viên có thể dạy nhiều môn cho nhiều khoa nhưng chỉ thuộc sự quản lý hành chánh của một khoa nào đó. Mỗi môn học có một mã số môn học (MAMH) duy nhất, mỗi môn học xác định tên môn học (TENMH). Ung với mỗi lớp thì mỗi môn học chỉ được phân cho một giáo viên.

Mỗi phòng học có một số phòng học (**SOPHONG**) duy nhất, mỗi phòng có một chức năng (**CHUCNANG**); chẳng hạn như phòng lý thuyết, phòng thực hành máy tính, phòng nghe nhìn, xưởng thực tập cơ khí,...

Mỗi khoa có một mã khoa (**MAKHOA**) duy nhất, mỗi khoa xác định các thông tin như: tên khoa (**TENKHOA**), điên thoai khoa(**DTKHOA**).

Mỗi lớp có một mã lớp (**MALOP**) duy nhất, mỗi lớp có một tên lớp (**TENLOP**), sĩ số lớp (**SISO**). Mỗi lớp có thể học nhiều môn của nhiều khoa nhưng chỉ thuộc sự quản lý hành chính của một khoa nào đó.

Hàng tuần, mỗi giáo viên phải lập lịch báo giảng cho biết giáo viên đó sẽ dạy những lớp nào, ngày nào (NGAYDAY), môn gì?, tại phòng nào, từ tiết nào (TUTIET) đến tiết nào (DENTIET), tựa đề bài dạy (BAIDAY), ghi chú (GHICHU) về các tiết dạy này, đây là giờ dạy lý thuyết (LYTHUYET) hay thực hành - giả sử nếu LYTHUYET=1 thì đó là giờ dạy thực hành và nếu LYTHUYET=2 thì đó là giờ lý thuyết, một ngày có 16 tiết, sáng từ tiết 1 đến tiết 6, chiều từ tiết 7 đến tiết 12, tối từ tiết 13 đến 16.

1. Xây dựng mô hình ER

Hình 1. Mô hình ER

2. Chuyển sang lược đồ quan hệ

KHOA(MAKHOA, TENKHOA, DTKHOA)
GIÁO_VIÊN(MAGV, HOTEN, DTGV, MAKHOA)
MÔN_HỌC(MAMH, TENMH)
LỚP(MALOP, TENLOP, SISO, MAKHOA)
PHÒNG(SOPHONG, CHUCNANG)
LỊCH_BÁO_GIẢNG(MAGV, MALOP, MAMH, SOPHONG, NGAYDAY, TUTIET, DENTIET, BAIGIANG, GHICHU, LYTHUYET)

3. Cài đặt CSDL - Tạo database trên SSMS, nhập dữ liệu (tự nghĩ ra mỗi bảng ít nhất 5 dòng): toàn bộ dùng lệnh SQL và nộp file database (file backup)

- Bước 1: Tao CSDL

CREATE DATABASE QL_LICH_DAY_GIAO_VIEN

GO

USE QL_LICH_DAY_GIAO_VIEN

GO

```
- Bước 2: Tạo bảng dữ liệu (dựa theo lược đồ quan hệ)
-- Tạo bảng KHOA
CREATE TABLE KHOA (
 MAKHOA CHAR(5) PRIMARY KEY,
 TENKHOA NVARCHAR(100),
 DTKHOA VARCHAR(15)
)
-- Tạo bảng GIÁO VIÊN
CREATE TABLE GIAO_VIEN (
 MAGV CHAR(5) PRIMARY KEY,
 HOTEN NVARCHAR(100),
 DTGV VARCHAR(15),
 MAKHOA CHAR(5),
 FOREIGN KEY (MAKHOA) REFERENCES KHOA(MAKHOA)
)
-- Tạo bảng MÔN HỌC
CREATE TABLE MON_HOC (
 MAMH CHAR(5) PRIMARY KEY,
 TENMH NVARCHAR(100),
 MAGV CHAR(5),
 FOREIGN KEY (MAGV) REFERENCES GIAO_VIEN(MAGV)
)
-- Tạo bảng PHÒNG HỌC
CREATE TABLE PHONG_HOC (
 SOPHONG CHAR(5) PRIMARY KEY,
 CHUCNANG NVARCHAR(100)
)
```

```
-- Tạo bảng LỚP HỌC
CREATE TABLE LOP_HOC (
 MALOP CHAR(5) PRIMARY KEY,
 TENLOP NVARCHAR(100),
 SISO INT.
 MAKHOA CHAR(5),
 FOREIGN KEY (MAKHOA) REFERENCES KHOA(MAKHOA)
)
-- Tạo bảng LỊCH DẠY
CREATE TABLE LICH_DAY (
 MAGV CHAR(5),
 MALOP CHAR(5),
 MAMH CHAR(5),
 NGAYDAY DATE,
 SOPHONG CHAR(5),
 TUTIET INT,
 DENTIET INT,
 BAIDAY NVARCHAR(100),
 GHICHU NVARCHAR(255),
 LYTHUYET INT.
 PRIMARY KEY (MAGV, MALOP, MAMH, NGAYDAY, TUTIET),
 FOREIGN KEY (MAGV) REFERENCES GIAO_VIEN(MAGV),
 FOREIGN KEY (MALOP) REFERENCES LOP_HOC(MALOP),
 FOREIGN KEY (MAMH) REFERENCES MON_HOC(MAMH),
 FOREIGN KEY (SOPHONG) REFERENCES PHONG_HOC(SOPHONG)
)
```

- Bước 3: Thêm 5 dòng dữ liệu mẫu mỗi bảng

-KHOA

INSERT INTO KHOA VALUES

('KH01', N'Công nghệ thông tin', '0123456789'),

('KH02', N'Co khí', '0223456789'),

('KH03', N'Điện tử', '0323456789'),

('KH04', N'Kinh tế', '0423456789'),

('KH05', N'Ngữ văn', '0523456789')

-GIÁO VIÊN

INSERT INTO GIAO_VIEN VALUES

('GV01', N'Nguyễn Văn A', '0912345678', 'KH01'),

('GV02', N'Trần Thị B', '0922345678', 'KH01'),

('GV03', N'Lê Văn C', '0932345678', 'KH02'),

('GV04', N'Pham Thị D', '0942345678', 'KH03'),

('GV05', N'Hoàng Văn E', '0952345678', 'KH04')

-MÔN HỌC

INSERT INTO MON_HOC VALUES

('MH01', N'Lập trình C', 'GV01'),

('MH02', N'Cơ lý thuyết', 'GV03'),

('MH03', N'Kinh tế vĩ mô', 'GV05'),

('MH04', N'Ngữ pháp tiếng Việt', 'GV05'),

('MH05', N'Điện tử công suất', 'GV04')

-PHÒNG HỌC

INSERT INTO PHONG_HOC VALUES

('PH01', N'Phòng lý thuyết'),

('PH02', N'Phòng thực hành máy tính'),

('PH03', N'Phòng nghe nhìn'),

('PH04', N'Xưởng cơ khí'),

('PH05', N'Phòng thí nghiệm')

-LÓP HỌC

INSERT INTO LOP_HOC VALUES

('LP01', N'CNTT - K14', 40, 'KH01'),

('LP02', N'Co khí - K12', 35, 'KH02'),

('LP03', N'Điện tử - K13', 38, 'KH03'),

('LP04', N'Kinh tế - K15', 50, 'KH04'),

('LP05', N'Ngữ văn - K14', 45, 'KH05')

-LICH DAY

INSERT INTO LICH_DAY (MAGV, MALOP, MAMH, NGAYDAY, SOPHONG, TUTIET, DENTIET, BAIDAY, GHICHU, LYTHUYET)

VALUES

('GV01', 'LP01', 'MH01', '2025-05-05', 'PH02', 1, 2, N'Cấu trúc rẽ nhánh', N", 1),

('GV03', 'LP02', 'MH02', '2025-05-06', 'PH03', 1, 2, N'Chương 1 - Cơ học', N'Mang tài liệu', 2),

('GV05', 'LP04', 'MH03', '2025-05-06', 'PH05', 1, 2, N'Tổng quan kinh tế', N", 2),

('GV05', 'LP05', 'MH04', '2025-05-07', 'PH04', 2, 3, N'Ngữ pháp căn bản', N", 2),

('GV03', 'LP03', 'MH05', '2025-05-08', 'PH05', 10, 11, N'Điện áp 3 pha', N'Mang đồng hồ đo', 1)

ALTER TABLE LICH_DAY ADD HOCKY INT, NAMHOC VARCHAR(9)

UPDATE LICH_DAY SET HOCKY = 2, NAMHOC = '2024-2025'

- Bước 4: Kiểm tra kết quả

• Bång khoa: SELECT * FROM KHOA;

• Bảng Giáo viên : SELECT * FROM GIAO VIEN;

• Bảng Môn Học: SELECT * FROM MON HOC;

• Bång Phòng Học : SELECT * FROM PHONG_HOC;

• Bảng Lớp Học: SELECT * FROM LOP HOC;

Bång Lich Day: SELECT * FROM LICH_DAY;

Hình 2. DATABASE DIAGRAMS

4. Tự cho câu hỏi và trả lời: 12 câu (2 truy vấn kết nối nhiều bảng, 2 update, 2 delete, 2 group by, 2 sub query, 2 câu bất kì) – xem ví dụ tại bài tập 1

- Truy vấn JOIN:

• Câu 1: Liệt kê mã giáo viên, họ tên, và tổng số tiết giảng dạy thực tế, chỉ hiển thị những giáo viên đã dạy từ 6 tiết trở lên trong tất cả các lịch dạy.

SELECT GV.MAGV,

GV.HOTEN,

SUM(LD.DENTIET - LD.TUTIET + 1) AS TONG_SOTIET_DAY

FROM LICH DAY LD

JOIN GIAO_VIEN GV ON LD.MAGV = GV.MAGV

GROUP BY GV.MAGV, GV.HOTEN

HAVING SUM(LD.DENTIET - LD.TUTIET + 1) >= 6

• Câu 2: Tìm tên các giáo viên thuộc khoa "Công nghệ thông tin" và môn học mà họ đang giảng dạy.

SELECT GV.HOTEN, MH.TENMH

FROM GIAO_VIEN GV

JOIN MON_HOC MH ON GV.MAGV = MH.MAGV

JOIN KHOA K ON GV.MAKHOA = K.MAKHOA

WHERE K.TENKHOA = N'Công nghệ thông tin'

- Truy vấn UPDATE:
 - Câu 1: Cập nhật nội dung ghi chú (GHICHU) trong bảng LICH_DAY thành 'Mang giáo án' cho các buổi học bắt đầu từ tiết 1 và kết thúc ở tiết 2.

UPDATE LICH DAY

SET GHICHU = N'Mang giáo án'

WHERE TUTIET = 1 AND DENTIET = 2;

• Câu 2: Cập nhật số điện thoại cho giáo viên có tên là "Trần Văn An".

UPDATE GIAOVIEN

SET SODIENTHOAI = '0912345678'

WHERE HOTEN = 'TRÂN VĂN AN'

- Truy vấn DELETE:

• Câu 1: Xóa tất cả các lịch dạy diễn ra vào ngày '2025-05-05'.

DELETE FROM LICH DAY

WHERE NGAY_DAY = '2025-05-05'

• Câu 2: Xóa tất cả các giáo viên thuộc khoa 'Cơ khí' ('KH02') và không có bất kỳ môn học nào được gán cho họ trong bảng MON HOC.

DELETE FROM GIAO_VIEN

WHERE MAKHOA = 'KH02'

AND MAGV NOT IN (SELECT MAGV FROM MON_HOC)

- Truy vấn GROUP BY:
 - Câu 1: Thống kê số lượng lớp của từng khoa.

SELECT MAKHOA, COUNT(*) AS SoLuongLop

FROM LOP_HOC

GROUP BY MAKHOA

• Câu 2: Thống kê số môn học do từng giáo viên giảng dạy.

SELECT MAGV, COUNT(*) AS SoLuongMonHoc

FROM MON HOC

GROUP BY MAGV

- Truy vấn SUBQUERY (Truy vấn con):
 - Câu 1: Tìm tên các lớp học có số tiết lý thuyết trong lịch dạy cao hơn số tiết lý thuyết trung bình của tất cả các lớp.

SELECT DISTINCT TENLOP

FROM LOP_HOC

WHERE MALOP IN (SELECT MALOP

FROM LICH_DAY

GROUP BY MALOP

HAVING SUM(LYTHUYET) > (SELECT AVG(TongLT)

FROM (SELECT SUM(LYTHUYET) AS TongLT

FROM LICH DAY

GROUP BY MALOP) AS LTTB))

• Câu 2: Tìm tên các giáo viên có dạy ít nhất một lớp thuộc khoa "Kinh tế".

SELECT HOTEN

FROM GIAO_VIEN

WHERE MAGV IN (SELECT DISTINCT LD.MAGV

FROM LICH_DAY LD

JOIN LOP_HOC LH ON LD.MALOP = LH.MALOP

JOIN KHOA K ON LH.MAKHOA = K.MAKHOA

WHERE K.TENKHOA = N'Kinh tế')

- Truy vấn bất kỳ:

• Câu 1: Liệt kê giáo viên có tên bắt đầu bằng "Nguyễn".

SELECT MAGV, HOTEN

FROM GIAOVIEN

WHERE HOTEN LIKE 'NGUYỄN%'

• Câu 2: Liệt kê tên các giáo viên có dạy ít nhất 2 buổi, kèm theo số buổi dạy, và sắp xếp theo số buổi dạy giảm dần.

SELECT GV.HOTEN AS TenGiaoVien, COUNT(*) AS SoBuoiDay

FROM LICH_DAY LD

JOIN GIAO_VIEN GV ON LD.MAGV = GV.MAGV

GROUP BY GV.HOTEN

HAVING COUNT(*) >= 2

ORDER BY SoBuoiDay DESC

B - Phần 2: Chuẩn hóa dữ liệu

1. Bài tập

1/ Cho lược đồ CSDL

Q(TENTAU,LOAITAU,MACHUYEN,LUONGHANG,BENCANG,NGAY)

 $F=\{TENTAU \rightarrow LOAITAU\}$

MACHUYEN → TENTAU, LUONGHANG

 $TENTAU,NGAY \rightarrow BENCANG, MACHUYEN$

a) Hãy tìm tập phủ tối thiểu của F

- Đặt:

TENTAU: A

LOAITAU: B

MACHUYEN: C

LUONGHANG: **D**

BENCANG: E

NGAY: G

 \rightarrow Q(A,B,C,D,E,G)

$$\rightarrow$$
 F = { A \rightarrow B ; C \rightarrow AD ; AG \rightarrow EC }

- Bước 1: Phân tích vế phải của phụ thuộc hàm:

$$F = \{ A \rightarrow B ; C \rightarrow A ; C \rightarrow D ; AG \rightarrow E ; AG \rightarrow C \}$$

- Bước 2: Loại bỏ thuộc tính vế trái dư thừa:
 - Xét AG→E :
 - + Loại A, G+ = G, không chứa E => không loại được A
 - + Loại G, A+ = AB, không chứa E => không loại được G
 - + Phụ thuộc hàm không dư thừa
 - Xét AG→C:
 - + Loại A, G+ = G, không chứa C => không loại được A
 - + Loại G, A+ = AB, không chứa C => không loại được G
 - + Phu thuôc hàm không dư thừa

$$\rightarrow$$
 F = { AG \rightarrow E ; AG \rightarrow C ; A \rightarrow B ; C \rightarrow A ; C \rightarrow D }

- Bước 3: Loại bỏ dư thừa phụ thuộc hàm:

• $X \text{\'et } A \rightarrow B : A + = A$, không chứa B = không loại

• Xét C→A : C+ = CD, không chứa A => không loại

• Xét C→D: C+ = CAB, không chứa D => không loại

$$\rightarrow$$
 F = { AG \rightarrow E; AG \rightarrow C; A \rightarrow B; C \rightarrow A; C \rightarrow D}

Vậy phủ tối thiểu của F = {TENTAU,NGAY → BENCANG

TENTAU,NGAY → MACHUYEN

 $TENTAU \rightarrow LOAITAU$

 $MACHUYEN \rightarrow TENTAU$

MACHUYEN → LUONGHANG}

b) Tìm tất cả các khóa của Q

 $TN = \{NGAY\}$

TG = {TENTAU, MACHUYEN}

Xi	(TN ∪ Xi)	(TN ∪ Xi)+	Siêu khóa	Khóa
Ø	NGAY	NGAY		
TENTAU	TENTAU, NGAY	TENTAU, NGAY, LOAITAU, BENCANG, MACHUYEN, LUONGHANG	TENTAU, NGAY	TENTAU, NGAY
MACHUYEN	MACHUYE N, NGAY	TENTAU, LUONGHANG, BENCANG, MACHUYEN, NGAY, LOAITAU	MACHUYE N, NGAY	MACHUYEN, NGAY

Vậy khóa của Q là {TENTAU, NGAY} và {MACHUYEN, NGAY}

2/Q(A,B,C,D,E,G)

Cho $F = \{AB \rightarrow C; C \rightarrow A; BC \rightarrow D; ACD \rightarrow B; D \rightarrow EG; BE \rightarrow C; CG \rightarrow BD; CE \rightarrow AG\}$

a) $X=\{B,D\}, X^{+}=?$

 $X_0 = BD$

- Xét f5 vì $D \subseteq X_0 \Rightarrow X_1 = BD \cup EG = BDEG$, loại f5
- Xét f6 vì BE $\subseteq X_1 \Rightarrow X_2 = BDEG \cup C = BCDEG$, loai f6
- Xét f7 vì $CG \subseteq X_2 \Rightarrow X_3 = BCDEG \cup BD = BCDEG$, loại f7
- Xét f8 vì CE \subseteq X₃ \Rightarrow X₄ = BCDEG \cup AG = ABCDEG
- \rightarrow X⁺ = X₄ = {A, B, C, D, E, G} là bao đóng của X
- b) $Y=\{C,G\}, Y^{+}=?$

 $X_0 = CG$

- Xét f7 vì $CG \subseteq Y_0 \Rightarrow Y_1 = CG \cup BD = BCDG$, loại f7
- Xét f8 vì $CE \subseteq Y_1 \Rightarrow Y_2 = BCDG \cup AG = ABCDEG$
- \rightarrow Y⁺ = Y₂ = {A, B, C, D, E, G} là bao đóng của Y

3/ Cho lược đồ quan hệ Q và tập phụ thuộc hàm F

a) $F = \{AB \rightarrow E; AG \rightarrow I; BE \rightarrow I; E \rightarrow G; GI \rightarrow H\}$ chứng minh rằng $AB \rightarrow GH$

- 1. AB \rightarrow E (giả thiết)
- 2. $E \rightarrow G$ (giả thiết)
- 3. AB → G (Bắc cầu 1 và 2)
- 4. $AB \rightarrow AG$ (Tăng trưởng 3)
- 5. AG → I (giả thiết)
- 6. AB \rightarrow I (Bắc cầu 4 và 5)
- 7. AB → GI (Hợp 3 và 6)
- 8. GI →H (giả thiết)
- 9. AB → H (Bắc cầu 7 và 8)
- \rightarrow 10. AB \rightarrow GH (Hợp 3 và 9)

b) $F = \{AB \rightarrow C; B \rightarrow D; CD \rightarrow E; CE \rightarrow GH; G \rightarrow A\}$ chứng minh rằng $AB \rightarrow E; AB \rightarrow G$

- $1.AB \rightarrow C$ (giả thiết)
- $2.AB \rightarrow BC$ (Tăng trưởng 1)

- 3. B \rightarrow D (giả thiết)
- 4. BC \rightarrow CD (Tăng trưởng 3)
- 5. CD \rightarrow E (giả thiết)
- 6. BC \rightarrow E (Bắc cầu 4 và 5)
- \rightarrow 7. AB \rightarrow E (Bắc cầu 2 và 6)
- 8. AB →CE (Hợp 1 và 7)
- 9. EC \rightarrow GH (giả thiết)
- 10. AB → GH (Bắc cầu 8 và 9)
- \rightarrow 11. AB \rightarrow G (Tách 10)

4/ Cho quan hệ r

Α	В	С	D
х	u	х	Υ
у	х	z	x
z	У	У	У
У	z	w	z

Trong các phụ thuộc hàm sau đây, PTH nào không thỏa

$$A \rightarrow B$$
; $A \rightarrow C$; $B \rightarrow A$; $C \rightarrow D$; $D \rightarrow C$; $D \rightarrow A$

- $-A \rightarrow B$
 - $\bullet \quad A = x \rightarrow B = u$
 - $\bullet \quad A = y \rightarrow B = x,z$
 - $\bullet \quad A=z \to B=y$
- \rightarrow Không thỏa vì A = Y có hai giá trị B khác nhau (x,y)
- \rightarrow Phụ thuộc A \rightarrow B không thỏa
- $-A \rightarrow C$
 - $\bullet \quad A = y \to C = y, w$
- \rightarrow Không thỏa vì A = y có hai giá trị C khác nhau (y,w)
- \rightarrow Phụ thuộc A \rightarrow C không thỏa

- $\mathbf{B} \to \mathbf{A}$

- $\bullet \quad B = x \longrightarrow A = y$
- $\bullet \quad B = y \longrightarrow A = z$
- $\bullet \quad B = z \longrightarrow A = y$
- $B = u \rightarrow A = x$
- → Không có giá trị B nào
- → Thỏa mãn
- $C \rightarrow D$
 - $\bullet \quad C = x \to D = y$
 - $\bullet \quad C = y \to D = z$
 - $\bullet \quad C = z \longrightarrow D = y$
 - $C = w \rightarrow D = z$
- → Mỗi giá trị C xuất hiện duy nhất
- → Thỏa mãn
- $\mathbf{D} \to \mathbf{C}$
 - $D = y \rightarrow C = x,z$
- \rightarrow Không thỏa vì D = y có hai giá trị C khác nhau (x,z)
- $\mathbf{D} \rightarrow \mathbf{A}$
 - $D = z \rightarrow A = y$
 - $D = y \rightarrow A = x,z$
- \rightarrow Không thỏa vì D = y có hai giá A khác nhau (x,z)
- 5/ Hãy tìm tất cả các khóa cho lược đồ quan hệ sau:

Q(BROKER,OFFICE,STOCK,QUANTITY,INVESTOR,DIVIDENT)

 $F=\{STOCK \rightarrow DIVIDENT$

 $INVESTOR \rightarrow BROKER$

 $INVESTOR,STOCK \rightarrow QUANTITY$

 $BROKER \rightarrow OFFICE$ }

- Xét các thuộc tính không bị suy ra từ phụ thuộc hàm:

INVESTOR

STOCK

- Tính bao đóng của {INVESTOR, STOCK}
 - Từ INVESTOR → BROKER
- → thêm BROKER
 - Từ BROKER → OFFICE
- → thêm OFFICE
 - Từ STOCK → DIVIDENT
- → thêm DIVIDENT
 - Từ INVESTOR, STOCK → QUANTITY
- → thêm QUANTITY
- ☐ Bao đóng = {INVESTOR, STOCK, BROKER, DIVIDENT, QUANTITY, OFFICE} = toàn bộ thuộc tính
- Kết luận: {INVESTOR, STOCK} là khóa duy nhất
- 6/ Xét lược đồ quan hệ và tập phụ thuộc dữ liệu:

$$f=\{f_1: C \rightarrow T; f_2: HR \rightarrow C; f_3: HT \rightarrow R; f_4: CS \rightarrow G; f_5: HS \rightarrow R\}$$

Tìm phủ tối thiểu của F

- Kiểm tra khả năng rút gọn vế trái
 - $f2: HR \rightarrow C$
 - + H → C? Không suy ra được
 - + $R \rightarrow C$? Không suy ra được
 - → Giữ nguyên
 - $f3: HT \rightarrow R$
 - + $H \rightarrow R$? Không suy ra được
 - + $T \rightarrow R$? Không suy ra được
 - → Giữ nguyên
 - $f4: CS \rightarrow G$
 - + $C \rightarrow G$? Không suy ra được

- + S \rightarrow G? Không suy ra được
- → Giữ nguyên
- $f5: HS \rightarrow R$
 - + $H \rightarrow R$? Không suy ra được
 - + $S \rightarrow R$? Không suy ra được
 - → Giữ nguyên
- Giả sử loại f5: HS → R
- → Không có cách nào suy ra R từ HS nếu thiếu f5
- → f5 cần thiết
- Kết luận: Không có phụ thuộc nào dư thừa

$$F=\{A \rightarrow E; C \rightarrow D; E \rightarrow DH\}$$

Chứng minh K={A,B,C} là khóa duy nhất của Q

- Kiểm tra bao đóng của $K = \{A, B, C\}$. Ta tính $K^+ = (A, B, C)^+$ theo F:
 - $A \rightarrow E \Rightarrow \text{thêm } E \rightarrow \{A, B, C, E\}$
 - $C \rightarrow D \Rightarrow \text{thêm } D \rightarrow \{A, B, C, E, D\}$
 - $E \rightarrow DH \Rightarrow \text{thêm H } (D \text{ dã có rồi}) \rightarrow \{A, B, C, D, E, H\}$
 - \rightarrow K⁺ = {A, B, C, D, E, H}
 - \rightarrow Vì K+ = tập thuộc tính của Q \Rightarrow {A, B, C} là siêu khóa
- Kiểm tra tối thiểu:
 - Bỏ A khỏi K: {B, C}+

Không có E

 \rightarrow Không dùng được A \rightarrow E, E \rightarrow DH

Có $C \rightarrow D$

- \rightarrow {B, C, D}
- → Không đủ ⇒ không là khóa
- Bỏ B khỏi K: {A, C}+

$$A \rightarrow E \Rightarrow \{A, C, E\}$$

$$C \rightarrow D \Rightarrow \{A, C, E, D\}$$

$$E \rightarrow DH \Rightarrow \{A, C, E, D, H\}$$

- → Không có B
- ⇒ Không sinh ra tất cả thuộc tính trong Q
- ⇒ Không là khóa
- Bỏ C khỏi K: {A, B}+

$$A \rightarrow E \Rightarrow \{A, B, E\}$$

Không có C ⇒ không có D

Không có $D \Rightarrow không dùng E \rightarrow DH$

- → Không đủ ⇒ không là khóa
- Kết luận: {A, B, C} là khóa tối thiểu duy nhất của Q

$$F=\{AB \rightarrow C; D \rightarrow B; C \rightarrow ABD\}$$

Hãy tìm tất cả các khóa của Q

- Ta có:
 - $TN = \emptyset$
 - Vi TN = Q RightF
- Q: Tập tất cả thuộc tính của quan hệ Q, tức là $Q = \{A, B, C, D\}$.
- Tập $F = \{AB \rightarrow C, D \rightarrow B, C \rightarrow ABD\}$. Phân tích phần phải của từng phụ thuộc hàm:
 - $AB \rightarrow C$: Phần phải = {C}.
 - $D \rightarrow B$: Phần phải = {B}.
 - $C \rightarrow ABD$: Phần phải = {A, B, D}.
- Hợp các phần phải : RightF = $\{C\} \cup \{B\} \cup \{A, B, D\} = \{A, B, C, D\}$

$$\rightarrow TN = Q - RightF = \{A, B, C, D\} - \{A, B, C, D\} = \emptyset$$

$$TG = \{A, B, C, D\}$$

Vì

- Xác định LeftF: Tập các thuộc tính ở phần trái của F:
 - $AB \rightarrow C$: Phần trái = $\{A, B\}$.
 - $D \rightarrow B$: Phần trái = $\{D\}$.
 - $C \rightarrow ABD$: Phần trái = {C}.

• Hop: LeftF = $\{A, B\} \cup \{D\} \cup \{C\} = \{A, B, C, D\}$

 \rightarrow TG = LeftF \cap RightF = {A, B, C, D} \cap {A, B, C, D} = {A, B, C, D}

Xi	$(TN \cup X_i)$	$(TN \cup X_i)^+$	Siêu khóa	Khóa
Ø	Ø	Ø		
A	A	A		
В	В	В		
С	С	ABCD	С	С
D	D	BD		
AB	AB	ABCD	AB	AB
AC	AC	ABCD	AC	
AD	AD	ABCD	AD	AD
ВС	ВС	ABCD	BC	
BD	BD	BD		
CD	CD	ABCD	CD	
ABC	ABC	ABCD	ABC	
ABD	ABD	ABCD	ABD	
ACD	ACD	ABCD	ACD	
BCD	BCD	ABCD	BCD	
ABCD	ABCD	ABCD	ABCD	

⁻ Kết luận: Vậy khóa của Q(A, B, C, D) = {C, AB, AD}

9/Q(A,B,C,D,E,G)

 $F = \{AB \rightarrow C; C \rightarrow A; BC \rightarrow D; ACD \rightarrow B; D \rightarrow EG; BE \rightarrow C; CG \rightarrow BD; CE \rightarrow G\}$

Hãy tìm tất cả các khóa của Q.

- TN = Q - Right_F = {A, B, C, D, E, G} - {A, B, C, D, E, G} =
$$\emptyset$$

- Vì:

- $Q = \{A, B, C, D, E, G\}$
- RightF là tập hợp tất cả các thuộc tính xuất hiện ở phần phải của các phụ thuộc hàm trong F. Phân tích từng phụ thuộc hàm:

```
+ AB \rightarrow C: Phần phải = {C}.
```

+
$$C \rightarrow A$$
: Phần phải = $\{A\}$.

+ BC
$$\rightarrow$$
 D: Phần phải = {D}.

+
$$ACD \rightarrow B$$
: Phần phải = {B}.

+
$$D \rightarrow EG$$
: Phần phải = {E, G}.

+ BE
$$\rightarrow$$
 C: Phần phải = {C}.

+
$$CG \rightarrow BD$$
: Phần phải = {B, D}.

+
$$CE \rightarrow G$$
: Phần phải = $\{G\}$.

 \rightarrow RightF = {C} \cup {A} \cup {D} \cup {B} \cup {E, G} \cup {C} \cup {B, D} \cup {G} = {A, B, C, D, E, G}

$$\Rightarrow$$
 TG = Left_F \cap Right_F = {A, B, C, D, E, G} \cap {A, B, C, D, E, G} = {A, B, C, D, E, G}

- Vì: LeftF là tập hợp tất cả các thuộc tính xuất hiện ở phần trái của các phụ thuộc hàm trong F.
- Phân tích từng phụ thuộc hàm:

```
+ AB \rightarrow C: Phần trái = \{A, B\}.
```

+
$$C \rightarrow A$$
: Phần trái = $\{C\}$.

+ BC
$$\rightarrow$$
 D: Phần trái = {B, C}.

+
$$ACD \rightarrow B$$
: Phần trái = {A, C, D}.

+
$$D \rightarrow EG$$
: Phần trái = $\{D\}$.

+ BE
$$\rightarrow$$
 C: Phần trái = {B, E}.

+
$$CG \rightarrow BD$$
: Phần trái = $\{C, G\}$.

+
$$CE \rightarrow G$$
: Phần trái = {C, E}.

 \rightarrow LeftF = {A, B} \cup {C} \cup {B, C} \cup {A, C, D} \cup {D} \cup {B, E} \cup {C, G} \cup {C, E} = {A, B, C, D, E, G}

 \rightarrow TG = LeftF \cap RightF = {A, B, C, D, E, G} \cap {A, B, C, D, E, G} = {A, B, C, D, E, G}

Xi	TN ∪ Xi	(TN ∪ Xi) ⁺	Siêu khóa	Khóa
Ø	Ø	Ø		
A	A	A		
В	В	В		
С	С	С		
D	D	D, E, G		
Е	Е	Е		
G	G	G		
AB	AB	A, B, C, D, E, G	AB	AB
AC	AC	A, C		
AD	AD	A, D, E, G		
AE	AE	A, E		
AG	AG	A, G		
BC	BC	A, B, C, D, E, G	BC	BC
BD	BD	A, B, C, D, E, G	BD	BD
BE	BE	A, B, C, D, E, G	BE	BE
BG	BG	B, G		
CD	CD	A, B, C, D, E, G	CD	CD
CE	СЕ	A, B, C, D, E, G	СЕ	СЕ
CG	CG	A, B, C, D, E, G	CG	CG
DE	DE	D, E, G		
DG	DG	D, E, G		
EG	EG	E, G		

ABC	ABC	A, B, C, D, E, G	ABC	
ABD	ABD	A, B, C, D, E, G	ABD	
ABE	ABE	A, B, C, D, E, G	ABE	
BCD	BCD	A, B, C, D, E, G	BCD	
CDE	CDE	A, B, C, D, E, G	CDE	
CEG	CEG	A, B, C, D, E, G	CEG	
DEG	DEG	D, E, G		
ABCD	ABCD	A, B, C, D, E, G	ABCD	
ABCE	ABCE	A, B, C, D, E, G	ABCE	
ABCDE	ABCDE	A, B, C, D, E, G	ABCDE	
ABCDG	ABCDG	A, B, C, D, E, G	ABCDG	
ABCDEG	ABCDEG	A, B, C, D, E, G	ABCDEG	

- Kết luận: Vậy các khóa của Q(A, B, C, D, E, G) là {AB, BC, BD, BE, CD, CE, CG} 10/ Xác định phủ tối thiểu của tập phụ thuộc hàm sau:

a) Q(A,B,C,D,E,G),

$$F = \{AB \rightarrow C; C \rightarrow A; BC \rightarrow D; ACD \rightarrow B; D \rightarrow EG; BE \rightarrow C; CG \rightarrow BD; CE \rightarrow AG\}$$

- Tách các phụ thuộc nhiều thuộc tính bên phải:
 - $D \rightarrow EG \rightarrow D \rightarrow E, D \rightarrow G$
 - $CG \rightarrow BD \rightarrow CG \rightarrow B, CG \rightarrow D$
 - $CE \rightarrow AG \rightarrow CE \rightarrow A, CE \rightarrow G$

$$\rightarrow F = \{AB \rightarrow C, C \rightarrow A, BC \rightarrow D, ACD \rightarrow B, D \rightarrow E, D \rightarrow G, BE \rightarrow C, CG \rightarrow B, CG \rightarrow D, CE \rightarrow A, CE \rightarrow G\}$$

- Vế trái: Kiểm tra từng phụ thuộc hàm để xem có thể loại bỏ mà vẫn giữ nguyên bao đóng của F.
 - AB → C, C → A, BC → D, D → E, D → G, BE → C, CG → B, CE → G:
 Không dư thừa (loại bỏ bất kỳ cái nào đều làm mất thuộc tính trong bao đóng).

- ACD → B: Dư thừa vì CG → B và các phụ thuộc khác suy ra B (CG⁺ = {A, B, C, D, E, G}).
- CG → D: Dư thừa vì BC → D và các phụ thuộc khác suy ra D.

$$\rightarrow$$
 F = {AB \rightarrow C, C \rightarrow A, BC \rightarrow D, D \rightarrow E, D \rightarrow G, BE \rightarrow C, CG \rightarrow B, CE \rightarrow G}

- Kết luận: Phủ tối thiểu của F là: F = {AB \rightarrow C, C \rightarrow A, BC \rightarrow D, D \rightarrow E, D \rightarrow G, BE \rightarrow C, CG \rightarrow B, CE \rightarrow G}

b) Q(A,B,C)

$$F = \{A \rightarrow B, A \rightarrow C, B \rightarrow A, C \rightarrow A, B \rightarrow C\}$$

- Tất cả phụ thuộc hàm đều có phần phải chứa một thuộc tính:

$$F = \{A \rightarrow B, A \rightarrow C, B \rightarrow A, C \rightarrow A, B \rightarrow C\}$$

- Mỗi phụ thuộc hàm có phần trái chỉ chứa một thuộc tính, nên không thể loại bỏ. Giữ nguyên F.
- Loại bỏ phụ thuộc hàm dư thừa
- Kiểm tra từng phụ thuộc hàm:
 - $A \rightarrow B$: Không dư thừa (loại bỏ làm mất B trong bao đóng của A).
 - $A \rightarrow C$: Du thừa vì $A \rightarrow B$, $B \rightarrow C$ suy ra C ($A^+ = \{A, B, C\}$).
 - $B \rightarrow A$: Du thừa vì $B \rightarrow C$, $C \rightarrow A$ suy ra $A (B^+ = \{A, B, C\})$.
 - $C \rightarrow A$, $B \rightarrow C$: Không dư thừa (loại bỏ làm mất A hoặc C trong bao đóng).
- Kết luận: Phủ tối thiểu của F là: $\{A \to B, C \to A, B \to C\}$

11/Xác định phủ tối thiểu của các tập phụ thuộc hàm sau:

a) Q1(ABCDEGH)

$$F_1 = \{A \rightarrow H, AB \rightarrow C, BC \rightarrow D; G \rightarrow B\}$$

- Bước 1: Đơn trị hóa phần phải:
 - Tất cả phụ thuộc hàm trong F₁ đều có phần phải chứa một thuộc tính.
 - $\bullet \quad F_1 = \{A \to H, AB \to C, BC \to D, G \to B\}$
- Bước 2: Loại bỏ thuộc tính dư thừa ở phần trái:
 - $AB \rightarrow C$:
 - + Kiểm tra loại A: $\{B\}^+ = \{B\}$ (không suy ra C).
 - + Kiểm tra loại B: $\{A\}^+ = \{A, H\}$ (không suy ra C).
 - + Không thể loại A hoặc B. Giữ nguyên: $AB \rightarrow C$.

- BC \rightarrow D:
 - + Kiểm tra loại B: $\{C\}^+ = \{C\}$ (không suy ra D).
 - + Kiểm tra loại C: $\{B\}^+ = \{B\}$ (không suy ra D).
 - + Không thể loại B hoặc C. Giữ nguyên: $BC \rightarrow D$.
- A → H, G → B: Phần trái chỉ có một thuộc tính, không thể loại.
- Tập F_1 giữ nguyên: $F_1 = \{A \rightarrow H, AB \rightarrow C, BC \rightarrow D, G \rightarrow B\}$
- Bước 3: Loại bỏ phụ thuộc hàm dư thừa
 - A \rightarrow H: Loại A \rightarrow H, tính {A}⁺ với F' = {AB \rightarrow C, BC \rightarrow D, G \rightarrow B}: A⁺ = {A} (không suy ra H). Không dư thừa.
 - AB \rightarrow C: Loại AB \rightarrow C, tính {AB}+ với F' = {A \rightarrow H, BC \rightarrow D, G \rightarrow B}: AB+ = {A, B, H} (không suy ra C). Không dư thừa.
 - BC \rightarrow D, G \rightarrow B: Tương tự, không dư thừa.
 - Tập F_1 không thay đổi: $F_1 = \{A \rightarrow H, AB \rightarrow C, BC \rightarrow D, G \rightarrow B\}$
- Kết luận: Phủ tối thiểu của $F_1 = \{A \rightarrow H, AB \rightarrow C, BC \rightarrow D, G \rightarrow B\}$

b) Q2(ABCSXYZ)

$$F_2 = \{S \rightarrow A; AX \rightarrow B; S \rightarrow B; BY \rightarrow C; CZ \rightarrow X\}$$

- Bước 1: Đơn trị hóa phần phải
 - Tất cả phụ thuộc hàm đều có phần phải đơn trị:
 - $F_2 = \{S \rightarrow A, AX \rightarrow B, S \rightarrow B, BY \rightarrow C, CZ \rightarrow X\}$
- Bước 2: Loại bỏ thuộc tính dư thừa ở phần trái
 - $AX \rightarrow B$:
 - + Kiểm tra loại A: $\{X\}^+ = \{X\}$ (không suy ra B).
 - + Kiểm tra loại X: $\{A\}^+ = \{A\}$ (không suy ra B).
 - + Không thể loại A hoặc X. Giữ nguyên: $AX \rightarrow B$.
 - BY \rightarrow C:
 - + Kiểm tra loại B: $\{Y\}^+ = \{Y\}$ (không suy ra C).
 - + Kiểm tra loại Y: $\{B\}^+ = \{B\}$ (không suy ra C).
 - + Không thể loại B hoặc Y. Giữ nguyên: $BY \rightarrow C$.
 - $CZ \rightarrow X$:
 - + Kiểm tra loại C: $\{Z\}^+ = \{Z\}$ (không suy ra X).

- + Kiểm tra loại Z: $\{C\}^+ = \{C\}$ (không suy ra X).
- + Không thể loại C hoặc Z. Giữ nguyên: $CZ \rightarrow X$.
- $S \rightarrow A$, $S \rightarrow B$: Phần trái chỉ có một thuộc tính, không thể loại.
- Tập F_2 giữ nguyên: $F_2 = \{S \rightarrow A, AX \rightarrow B, S \rightarrow B, BY \rightarrow C, CZ \rightarrow X\}$
- Bước 3: Loại bỏ phụ thuộc hàm dư thừa
 - $S \rightarrow A$: Loại $S \rightarrow A$, tính $\{S\}^+$ với $F' = \{AX \rightarrow B, S \rightarrow B, BY \rightarrow C, CZ \rightarrow X\}$: $S^+ = \{S, B\}$ (không suy ra A). Không dư thừa.
 - AX → B, S → B, BY → C, CZ → X: Tương tự, không dư thừa (loại bỏ bất kỳ phụ thuộc nào đều làm mất thuộc tính trong bao đóng).
 - Tập F_2 không thay đổi: $F_2 = \{S \rightarrow A, AX \rightarrow B, S \rightarrow B, BY \rightarrow C, CZ \rightarrow X\}$
- Kết luận: Phủ tối thiểu của F_2 ={S \rightarrow A, AX \rightarrow B, S \rightarrow B, BY \rightarrow C, CZ \rightarrow X}

c) Q3(ABCDEGHIJ)

$$F_3 = \{BG \rightarrow D; G \rightarrow J; AI \rightarrow C; CE \rightarrow H; BD \rightarrow G; JH \rightarrow A; D \rightarrow I\}$$

- Bước 1: Đơn trị hóa phần phải: Tất cả phụ thuộc hàm đều đơn trị:

$$F_3 = \{BG \rightarrow D, G \rightarrow J, AI \rightarrow C, CE \rightarrow H, BD \rightarrow G, JH \rightarrow A, D \rightarrow I\}$$

- Bước 2: Loại bỏ thuộc tính dư thừa ở phần trái: Kiểm tra các phụ thuộc hàm có phần trái nhiều hơn một thuộc tính:
 - $BG \rightarrow D$:
 - + Kiểm tra loại B: $\{G\}^+ = \{G, J\}$ (không suy ra D).
 - + Kiểm tra loại G: $\{B\}^+ = \{B\}$ (không suy ra D).
 - + Không thể loại B hoặc G. Giữ nguyên: $BG \rightarrow D$.
 - AI \rightarrow C:
 - + Kiểm tra loại A: $\{I\}^+ = \{I\}$ (không suy ra C).
 - + Kiểm tra loại I: $\{A\}^+ = \{A\}$ (không suy ra C).
 - + Không thể loại A hoặc I. Giữ nguyên: AI \rightarrow C.
 - $CE \rightarrow H$:
 - + Kiểm tra loại C: $\{E\}^+ = \{E\}$ (không suy ra H).
 - + Kiểm tra loại E: $\{C\}^+ = \{C\}$ (không suy ra H).
 - + Không thể loại C hoặc E. Giữ nguyên: $CE \rightarrow H$.

- BD \rightarrow G:
 - + Kiểm tra loại B: $\{D\}^+ = \{D, I\}$ (không suy ra G).
 - + Kiểm tra loại D: $\{B\}^+ = \{B\}$ (không suy ra G).
 - + Không thể loại B hoặc D. Giữ nguyên: $BD \rightarrow G$.
- JH \rightarrow A:
 - + Kiểm tra loại J: $\{H\}^+ = \{H\}$ (không suy ra A).
 - + Kiểm tra loại H: $\{J\}^+ = \{J\}$ (không suy ra A).
 - + Không thể loại J hoặc H. Giữ nguyên: JH \rightarrow A.
- G → J, D → I: Phần trái chỉ có một thuộc tính, không thể loại.
- Tập F₃ giữ nguyên:

$$F_3 = \{BG \rightarrow D, G \rightarrow J, AI \rightarrow C, CE \rightarrow H, BD \rightarrow G, JH \rightarrow A, D \rightarrow I\}$$

- Bước 3: Loại bỏ phụ thuộc hàm dư thừa
 - BG \rightarrow D: Loại BG \rightarrow D, tính {BG}+ với F' = {G \rightarrow J, AI \rightarrow C, CE \rightarrow H, BD \rightarrow G, JH \rightarrow A, D \rightarrow I}: BG+ = {B, G, J} (không suy ra D). Không dư thừa.
 - $G \rightarrow J$, $AI \rightarrow C$, $CE \rightarrow H$, $BD \rightarrow G$, $JH \rightarrow A$, $D \rightarrow I$: Tương tự, không dư thừa.
 - Tập F₃ không thay đổi:

$$F_3 = \{BG \rightarrow D, G \rightarrow J, AI \rightarrow C, CE \rightarrow H, BD \rightarrow G, JH \rightarrow A, D \rightarrow I\}$$

- Kết luận: Phủ tối thiểu của F3 = {BG \rightarrow D, G \rightarrow J, AI \rightarrow C, CE \rightarrow H, BD \rightarrow G, JH \rightarrow A, D \rightarrow I}

d) Q4(ABCDEGHIJ)

$$F_4 = \{BH \rightarrow I; GC \rightarrow A; I \rightarrow J; AE \rightarrow G; D \rightarrow B; I \rightarrow H\}$$

- Bước 1: Đơn trị hóa phần phải: Tất cả phụ thuộc hàm đều đơn trị:

$$F_4 = \{BH \rightarrow I, GC \rightarrow A, I \rightarrow J, AE \rightarrow G, D \rightarrow B, I \rightarrow H\}$$

- Bước 2: Loại bỏ thuộc tính dư thừa ở phần trái: Kiểm tra các phụ thuộc hàm có phần trái nhiều hơn một thuộc tính:
 - BH \rightarrow I:
 - + Kiểm tra loại B: $\{H\}^+ = \{H\}$ (không suy ra I).
 - + Kiểm tra loại H: $\{B\}^+ = \{B\}$ (không suy ra I).
 - + Không thể loại B hoặc H. Giữ nguyên: $BH \rightarrow I$.
 - $GC \rightarrow A$:

- + Kiểm tra loại G: $\{C\}^+ = \{C\}$ (không suy ra A).
- + Kiểm tra loại C: $\{G\}^+ = \{G\}$ (không suy ra A).
- + Không thể loại G hoặc C. Giữ nguyên: $GC \rightarrow A$.
- $AE \rightarrow G$:
 - + Kiểm tra loại A: $\{E\}^+ = \{E\}$ (không suy ra G).
 - + Kiểm tra loại E: $\{A\}^+ = \{A\}$ (không suy ra G).
 - + Không thể loại A hoặc E. Giữ nguyên: $AE \rightarrow G$.
- $I \rightarrow J$, $D \rightarrow B$, $I \rightarrow H$: Phần trái chỉ có một thuộc tính, không thể loại.
- Tập F₄ giữ nguyên:

$$F_4 = \{BH \rightarrow I, GC \rightarrow A, I \rightarrow J, AE \rightarrow G, D \rightarrow B, I \rightarrow H\}$$

- Bước 3: Loại bỏ phụ thuộc hàm dư thừa
 - BH \rightarrow I: Loại BH \rightarrow I, tính {BH}+ với F' = {GC \rightarrow A, I \rightarrow J, AE \rightarrow G, D \rightarrow B, I \rightarrow H}: BH+ = {B, H} (không suy ra I). Không dư thừa.
 - GC \rightarrow A, I \rightarrow J, AE \rightarrow G, D \rightarrow B, I \rightarrow H: Turong tự, không dư thừa.
 - Tập F₄ không thay đổi:

$$F_4 = \{BH \rightarrow I, GC \rightarrow A, I \rightarrow J, AE \rightarrow G, D \rightarrow B, I \rightarrow H\}$$

- Kết luận: Phủ tối thiểu của $F_4 = \{BH \rightarrow I, GC \rightarrow A, I \rightarrow J, AE \rightarrow G, D \rightarrow B, I \rightarrow H\}$

2. Bài tập tổng hợp

- 1/ Cho biết dạng chuẩn của các lược đồ quan hệ sau:
- a) Q(ABCDEG); $F = \{A \rightarrow BC, C \rightarrow DE, E \rightarrow G\}$

$$TN=\{A\}$$

$$TG=\{CE\}$$

Xi	(TN U Xi)	(TN U Xi)+	Siêu khóa	Khóa
Ø	A	ABCDEG	A	A
С	AC	ABCDEG	AC	
Е	AE	ABCDEG	AE	
CE	ACE	ABCDEG	ACE	

- E→G có vế trái không phải siêu khóa → Không đạt chuẩn BCNF
- E \rightarrow G có vế trái không là khóa và vế phải không là tập con của khóa \rightarrow Không đạt chuẩn 3
- Lược đồ chỉ có 1 khóa và khóa có duy nhất 1 thuộc tính
- → Đạt chuẩn 2

b)
$$Q(ABCDEGH)$$
; $F = \{C \rightarrow AB, D \rightarrow E, B \rightarrow G\}$

 $TN = \{CDH\}$

 $TG=\{B\}$

Xi	(TN U Xi)	(TN U Xi)⁺	Siêu khóa	Khóa
Ø	CDH	ABCDEGH	CDH	CDH
В	BCDH	ABCDEGH	BCDH	

- B→G có vế trái không phải siêu khóa → Không đạt chuẩn BCNF
- B \rightarrow G có vế trái không là khóa và vế phải không là tập con của khóa \rightarrow Không đạt chuẩn 3
- C^+ ={ABC} chứa phần tử không phải khóa \rightarrow Không đạt chuẩn 2
- → Đạt chuẩn 1.

c)
$$Q(ABCDEGH)$$
; $F = \{A \rightarrow BC, D \rightarrow E, H \rightarrow G\}$

 $TN = \{ADH\}$

 $TG = \{\emptyset\}$

Xi	(TN U Xi)	(TN U Xi)⁺	Siêu khóa	Khóa
Ø	ADH	ABCDEGH	ADH	ADH

- A→BC có vế trái không phải siêu khóa → Không đạt chuẩn BCNF
- Phân rã vế phải của F: Ta có $A \rightarrow B$ có vế trái không là khóa và vế phải không là tập con của khóa \rightarrow Không đạt chuẩn 3
- D+={DE} chứa phần tử không phải khóa \rightarrow Không đạt chuẩn 2
- → Đạt chuẩn 1.

d)
$$Q(ABCDEG)$$
; $F = \{AB \rightarrow C, C \rightarrow B, ABD \rightarrow E, G \rightarrow A\}$
 $TN = \{DG\}$
 $TG = \{ABC\}$

Xi	(TN U Xi)	(TN U Xi) ⁺	Siêu khóa	Khóa
Ø	DG	ADG		
A	ADG	ADG		
В	BDG	ABCDEG	BDG	BDG
С	CDG	ABCDEG	CDG	CDG
AB	ABDG	ABCDEG	ABDG	
AC	ACDG	ABCDEG	ACDG	
ВС	BCDG	ABCDG	BCDG	
ABC	ABCDG	ABCDEG	ABCDG	

- ABD \rightarrow E có vế trái không phải siêu khóa \rightarrow Không đạt chuẩn BCNF
- ABD \to E có vế trái không là khóa và vế phải không là tập con của khóa \to Không đạt chuẩn 3
- ABD+={ABCDEG} chứa phần tử không phải khóa \rightarrow Không đạt chuẩn 2
- → Đạt chuẩn 1.

e)
$$Q(ABCDEGHI)$$
; $F = \{AC \rightarrow B, BI \rightarrow ACD, ABC \rightarrow D, H \rightarrow I, ACE \rightarrow BCG, CG \rightarrow AE\}$

 $TN=\{H\}$

 $TG = \{ABCEGI\}$

Xi	(TN U Xi)	(TN U Xi)+	Siêu khóa	Khóa
Ø	Н	НІ		
A	АН	AHI		
В	ВН	BHIACD		
С	СН	СНІ		
E	ЕН	ЕНІ		
G	GH	GHI		
I	IH	IH		
AB	АВН	ABHICD		
AC	ACH	ACHBDI		
AE	AEH	AEHI		
AG	AHG	AHGI		
AI	AHI	AHI		
ВС	ВСН	BCHIAD		
BE	ВЕН	BEHIACDG	BEH	BEH
BG	BGH	BGHIACDE	BGH	BGH
BI	ВНІ	BHIACD		

CE	СЕН	СЕНІ		
CG	CGH	CGHIAEBD	CGH	CGH
CI	СНІ	СНІ		
EG	EGH	EGHI		
EI	ЕНІ	EI		
GI	GHI	GHI		
ABC	ABCH	ABCHDI		
ABE	ABEH	ABEHICD	ABEH	
ABG	ABGH	ABGHICD		
ABI	ABHI	ABHICD		
ACE	ACEH	ACEHBDIGE	ACEH	ACEH
ACG	ACGH	ABCDEGHI	ACGH	
ACI	ACHI	ACHIBD		
AEG	AEGH	AEGHI		
AEI	AEHI	AEHI		
AGI	AGHI	AGHI		
ВСЕ	ВСЕН	BCEHIADG	ВСЕН	ВСЕН

BCG	BCGH	BCGHIADE	BCGH	ВССН
BCI	ВСНІ	BCHIAD		
BEG	BEGH	ABCDEGHI	BEGH	
BEI	ВЕНІ	ABCDEGHI	ВЕНІ	
BGI	BGHI	BGHIACDE	BGHI	BGHI
CEG	CEGH	ABCDEGHI	CEGH	
CEI	СЕНІ	СЕНІ		
CGI	CGHI	ABCDEGHI	CGHI	
EGI	EGHI	EGHI		
ABCE	ABCEH	ABCDEGHI	ABCEH	
ABCG	ABCGH	ABCDEGHI	ABCGH	
ABCI	АВСНІ	ABCHID		
BCEG	BCEGH	ABCDEGHI	BCEGH	
BCEI	ВСЕНІ	ABCDEGHI	ВСЕНІ	
CEGI	CEGHI	ABCDEGHI	CEGHI	
ABCEG	ABCEGH	ABCDEGHI	ABCEGH	
ABCEI	ABCEHI	ABCDEGHI	ABCEHI	

BCEGI	BCEGHI	ABCDEGHI	BCEGHI	
ABCEGI	ABCEGHI	ABCDEGHI	ABCEGHI	

- AC →B có vế trái không phải siêu khóa → Không đạt chuẩn BCNF
- Phân rã F: Ta có BI \to D có vế trái không phải là khóa và vế phải không là tập con của khóa \to Không đạt chuẩn 3
- AC+={ABCD} chứa phần tử không phải khóa → Không đạt chuẩn 2
- → Đat chuẩn 1.

2/ Kiểm tra dạng chuẩn Q(C,S,Z) $F=\{CS\rightarrow Z, Z\rightarrow C\}$

 $TN=\{S\}$

 $TG=\{CZ\}$

Xi	(TN U Xi)	(TN U Xi) ⁺	Siêu khóa	Khóa
Ø	S	S		
С	CS	CSZ	CS	CS
Z	SZ	CSZ	SZ	ZS
CZ	CSZ	CSZ	CSZ	

- Z \rightarrow C có vế trái không phải siêu khóa \rightarrow Không đạt chuẩn BCNF
- $Z \rightarrow C$ có vế phải là tập con của khóa
- CS \rightarrow Z có vế trái là khóa và vế phải là tập con của khóa
- → Đat chuẩn 3

3/ Cho lược đồ CSDL Kehoach(NGAY,GIO,PHONG,MONHOC,GIAOVIEN)

 $F = \{NGAY,GIO,PHONG \rightarrow MONHOC, MONHOC,NGAY \rightarrow GIAOVIEN, NGAY,GIO,PHONG \rightarrow GIAOVIEN, MONHOC \rightarrow GIAOVIEN\}$

Xác định dạng chuẩn cao nhất của Kehoach

- Gọi NGAY, GIO, PHONG, MONHOC, GIAOVIEN tương ứng với A,B,C,D,E
- Ta có $F = \{ABC \rightarrow D, A \rightarrow E, ABC \rightarrow E, D \rightarrow E\}$

$$TN=\{ABC\}$$

 $TG=\{D\}$

Xi	(TN U Xi)	(TN U Xi) ⁺	Siêu khóa	Khóa
Ø	ABC	ABCDE	ABC	ABC
D	ABCD	ABCDE	ABC	

- A → E có vế trái không phải siêu khóa → Không đạt chuẩn BCNF
- A \rightarrow E có vế trái không là khóa và vế phải không là tập con của khóa \rightarrow Không đạt chuẩn 3
- $A^+ = \{AE\}$ chứa phần tử không phải khóa \rightarrow Không đạt chuẩn 2
- → Đạt chuẩn 1.
- Kết luận: Vậy dạng chuẩn cao nhất của Kehoach là 1NF
- 4/ Cho lược đồ quan hệ Q(A,B,C,D) và tập phụ thuộc hàm F

$$F = \{A \rightarrow B; B \rightarrow C; D \rightarrow B\} C = \{Q_1(A,C,D); Q_2(B,D)\}$$

- a) Xác định các F_i (những phụ thuộc hàm F được bao trong Q_i)
- Xét từng phụ thuộc trong F:
 - 1. A→B
 - $\{A,B\}\subseteq Q1(A,C,D)? \rightarrow \text{Không có B trong } Q1$
 - $\{A,B\}\subseteq Q2(B,D)$? \rightarrow Không có A trong Q2
 - ⇒ Không thuộc F1 hoặc F2
 - 2. B→C
 - $\{B,C\}\subseteq Q1(A,C,D)$? \rightarrow Không có B
 - $\{B,C\}\subseteq Q2(B,D)$? \rightarrow Không có C
 - ⇒ Không thuộc F1 hoặc F2
 - 3. D→B
 - $\{D,B\}\subseteq Q1(A,C,D)$? \rightarrow Không có B
 - {D,B}⊆Q2(B,D)? → Cố
 - ⇒ Thuôc F2

- Vậy:
 - F1=Ø
 - $F2=\{D\rightarrow B\}$

5/ Giả sử ta có lược đồ quan hệ Q(C, D, E, G, H K) và tập phụ thuộc hàm F như sau:

 $F = \{CK \square H; C \square D; E \square C; E \square G; CK \square E\}$

- a) Từ tập F, hãy chứng minh EK □ DH
- Tính (EK)+
 - Bắt đầu: EK
 - Áp dụng $E \rightarrow C \Rightarrow \text{thêm } C$
 - \Rightarrow EK+={E,K,C}
 - Áp dụng $C \rightarrow D \Rightarrow \text{thêm } D$
 - \Rightarrow EK+={E,K,C,D
 - Áp dụng $E \rightarrow G \Rightarrow$ thêm G
 - \Rightarrow EK+={E,K,C,D,G}
 - Từ C và K: $CK \rightarrow H \Rightarrow \text{thêm } H$
 - \Rightarrow EK+={E,K,C,D,G,H}
- Kết luận: Đã chứng minh EK→DH đúng theo F+
- b) Tìm tất cả các khóa của Q
- Tập thuộc tính của Q là $\{C, D, E, G, H, K\}$
- Xét EK:
 - $E \rightarrow C \Rightarrow coc C$
 - $C \rightarrow D \Rightarrow cor D$
 - $E \rightarrow G \Rightarrow co' G$
 - CK → H (CK có vì đã có C và K) ⇒ có H
 - $EK^+ = \{E, K, C, D, G, H\} = d\hat{a}y \, du \, thuộc tính$
 - ⇒ EK là khóa
- Xét CK:
 - $CK \rightarrow E \Rightarrow cor E$
 - $E \rightarrow C, G \Rightarrow c \circ G$

- $C \rightarrow D \Rightarrow cor D$
- $CK \rightarrow H \Rightarrow co' H$
- $CK^+ = \{C, K, E, D, G, H\} = d\hat{a}y d\hat{u}$
- ⇒ CK cũng là khóa
- → Không có tập con nào của EK hoặc CK có bao đóng chứa đủ toàn bộ thuộc tính ⇒ không có khóa nào nhỏ hơn
- → Kết luận: Vậy tập khóa của Q là {CK, EK}
- c) Xác định dạng chuẩn của Q
- Giả sử Q đang ở 1NF (mọi giá trị nguyên tố)
- Xét 2NF:
 - Điều kiện để vi phạm 2NF: tồn tại phụ thuộc không tầm thường từ một phần của khóa chính → thuộc tính không khóa.
 - $C \rightarrow D$: C là một phần của CK, mà D không thuộc khóa \Rightarrow vi phạm 2NF
 - $E \rightarrow C$: E là một phần của EK, C không thuộc khóa \Rightarrow vi phạm 2NF
 - $E \rightarrow G$: tương tự \rightarrow vi phạm 2NF
- → Q không đạt 2NF

Bài 6: Cho lược đồ quan hệ Q(S,I,D,M)

$$F = \{f_1:SI \rightarrow DM; f_2:SD \rightarrow M; f_3:D \rightarrow M\}$$

- a) Tính bao đóng D+, SD+, SI+
- Bao đóng của D: D+
 - $f_3: D \to M$

 $D \subseteq X_0 \Rightarrow \text{áp dụng được}$

$$\rightarrow$$
 X1=X0 \cup {M}={D,M}

- $f_1: SI \rightarrow DM \rightarrow không áp dụng (vì không có S, I)$
- $f_2: SD \rightarrow M \rightarrow không áp dụng (không có S)$
- Không còn phụ thuộc áp dụng được

$$\rightarrow$$
 D⁺ = {D, M}

- Bao đóng của SD: SD+
 - $f_2: SD \rightarrow M$

 $SD \subseteq X_0 \Rightarrow \text{áp dụng được}$

$$\rightarrow$$
 X1=X0U{M}={S,D,M}

• $f_3: D \to M$

 $D \subseteq X_1 \Rightarrow M$ đã có, không đổi

• $f_1: SI \rightarrow DM$

thiếu I → không áp dụng

• Không còn phụ thuộc áp dụng được

$$\rightarrow$$
 SD⁺ = {S, D, M}

- Bao đóng của SI: SI+
 - $f_1: SI \rightarrow DM$

 $SI \subseteq X_0 \Rightarrow \text{áp dụng được}$

$$\rightarrow$$
 X1=X0 \cup {D,M}={S,I,D,M}

- $f_2: SD \rightarrow M$
 - $S, D \in X_1 \Rightarrow SD \subseteq X_1$
 - → M đã có rồi ⇒ không đổi
- $f_3: D \to M$

 $D \in X_1 \Rightarrow M \text{ dã có} \Rightarrow \text{không đổi}$

• Không còn phụ thuộc áp dụng được

$$\rightarrow$$
 SI⁺ = {S, I, D, M}

b) Tìm tất cả các khóa của Q

- Bước 1: Xác định tập thuộc tính của quan hệ Q:
- \rightarrow U={S,I,D,M}
- Bước 2: Tìm tập bao đóng của từng nhóm thuộc tính để tìm khóa:
- \rightarrow SI+={S,I,D,M}=U \rightarrow SI là khóa
- Bước 3: Kiểm tra xem có thể loại bớt thuộc tính khỏi SI không
 - Thử loại S: $I^+ = \{I\} \rightarrow \text{không đủ}$
 - Thử loại I: $S^+ = \{S\}$
 - \rightarrow SD⁺ = {S, D, M} (không có I) \rightarrow không đủ
 - → Không thể loại bỏ S hoặc I
- Kết luận: Khóa duy nhất là SI

c) Tìm phủ tối thiểu của F

- Bước 1: Chuẩn hóa vế phải tách từng phụ thuộc có nhiều thuộc tính ở vế phải
 - $f_1: SI \rightarrow DM \rightarrow tách thành$:

+
$$f_1.1: SI \rightarrow D$$

+
$$f_1.2: SI \rightarrow M$$

• Giờ F trở thành:

$$f_1.1: SI \rightarrow D$$

$$f_1.2: SI \rightarrow M$$

$$f_2: SD \rightarrow M$$

$$f_3: D \rightarrow M$$

- Bước 2: Kiểm tra phụ thuộc dư thừa

Xét
$$f_2: SD \rightarrow M$$

$$D \rightarrow M$$
 đã có trong f₃

$$\square$$
 SD \rightarrow M là dư thừa, có thể loại bỏ

- Bước 3: Phủ tối thiểu sau khi loại bỏ phụ thuộc dư thừa:

Fmin =
$$\{ SI \rightarrow D; SI \rightarrow M; D \rightarrow M \}$$

d) Xác định dạng chuẩn cao nhất của Q

- Bước 1: Kiểm tra 1NF: Lược đồ này có các thuộc tính S,I,D,M các giá trị đều là nguyên tử, nên ở 1NF.
- Bước 2: Kiểm tra 2NF: Tất cả các phụ thuộc đều không có thuộc tính nào phụ thuộc vào một phần của khóa, do đó lược đồ này ở 2NF.
- Bước 3: Kiểm tra 3NF:
 - Tất cả các thuộc tính không phải khóa đều phụ thuộc vào một khóa chính và không có phụ thuộc chuyển tiếp (chẳng hạn D→M không chuyển tiếp qua khóa).
 - Do đó, lược đồ này ở 3NF.
- Kết luận: Lược đồ này ở 3NF.

Bài 7: Kiểm Tra Dạng Chuẩn

a) Q(A,B,C,D) $F=\{CA \rightarrow D; A \rightarrow B\}$

- Bước 1: Tìm khóa
 - $\bullet \quad A \to B \Rightarrow A^+ = \{A, B\}$
 - $CA \rightarrow D \Rightarrow v\acute{o}i C$, A có thể suy ra D
 - Kiểm tra CA+:

$$CA \rightarrow D, A \rightarrow B \Rightarrow CA^{+} = \{C, A, D, B\} = toàn bộ$$

- ⇒ Khóa là CA
- Bước 2: Xét 1NF: Giả sử các thuộc tính là nguyên tố \Rightarrow Q đạt 1NF
- Bước 3: Xét 2NF
 - Khóa: CA
 - A → B: A là một phần của CA và B không thuộc khóa ⇒ vi phạm 2NF
- Kết luận: Q chỉ đạt 1NF

b)
$$Q(S, D, I, M), F = \{SI \rightarrow D; SD \rightarrow M\}$$

- Bước 1: Tìm khóa

$$SI \rightarrow D$$

$$SD \rightarrow M$$

- Kiểm tra SI⁺: SI \rightarrow D \Rightarrow SI⁺ = {S, I, D} Nhưng thiếu M \Rightarrow không đủ
- Kiểm tra SDI+:

$$SD \rightarrow M \Rightarrow com M, SI \rightarrow D \Rightarrow com D$$

$$\Rightarrow$$
 SDI⁺ = {S, D, I, M} = đầy đủ

- ⇒ Khóa là SDI
- Bước 2: Xét 1NF: Giả sử đúng
- Bước 3: Xét 2NF
 - SI \rightarrow D: SI là một phần của SDI \Rightarrow vi phạm 2NF
 - $SD \rightarrow M$: SD cũng là một phần \Rightarrow vi phạm 2NF
- Kết luận: Q chỉ đạt 1NF

NHÓM 5

c) Q(N, G, P, M, GV), $F = \{N, G, P \rightarrow M; M \rightarrow GV\}$

- Bước 1: Tìm khóa
 - $NGP \rightarrow M \Rightarrow com M$
 - $M \rightarrow GV \Rightarrow co' GV$
 - \Rightarrow NGP⁺ = {N, G, P, M, GV} = đầy đủ
 - ⇒ Khóa là NGP
- Bước 2: Xét 1NF: Giả sử đúng
- Bước 3: Xét 2NF
 - NGP là khóa
 - M → GV: M không là khóa và không phải là một phần của khóa, nên không vi phạm 2NF
 - ⇒ Q đạt 2NF
- Bước 4: Xét 3NF
 - M → GV: M không là siêu khóa
 - ⇒ GV phải là thuộc tính prime mới không vi phạm 3NF
 - Nhưng GV không nằm trong khóa ⇒ vi phạm 3NF
 - ⇒ Q đạt 2NF, không đạt 3NF

d) $Q(S, N, D, T, X), F = \{S \to N, S \to D, S \to T, S \to X\}$

- Bước 1: Tìm khóa: S \rightarrow {N, D, T, X} \Rightarrow S+ = {S, N, D, T, X} = đầy đủ \Rightarrow Khóa là S
- Bước 2: Xét 1NF: Giả sử đúng
- Bước 3: Xét 2NF: Tất cả phụ thuộc đều là từ khóa đầy đủ S ⇒ không vi phạm 2NF
- Bước 4: Xét 3NF và BCNF: S là khóa ⇒ tất cả phụ thuộc có vế trái là khóa ⇒ đều thỏa 3NF và BCNF
- Kết luận: Q đạt BCNF

C – Phần cá nhân

1. Trần Dương Bảo Trân

• Câu 1: Cập nhật ghi chú thành "Mang laptop" cho lịch dạy ngày 2025-05-05 của giáo viên "GV01".

UPDATE LICH_DAY

SET GHICHU = N'Mang laptop'

WHERE MAGV = 'GV01' AND NGAYDAY = '2025-05-05'

• Câu 2: Xóa tất cả các môn học mà không có giáo viên giảng dạy.

DELETE FROM MON HOC

WHERE MAGV NOT IN (

SELECT MAGV

FROM GIAO VIEN)

• Câu 3: Tính số lượng lớp học cho mỗi khoa và liệt kê tên khoa cùng số lớp học.

SELECT K.TENKHOA, COUNT(L.MALOP) AS SoLopHoc

FROM KHOA K

JOIN LOP HOC L ON K.MAKHOA = L.MAKHOA

GROUP BY K.TENKHOA

• Câu 4: Tìm tên các lớp học thuộc khoa có tên là "Kinh tế".

SELECT TENLOP

FROM LOP_HOC

WHERE MAKHOA in (

SELECT MAKHOA FROM KHOA WHERE TENKHOA = N'Kinh tế')

• Câu 5: Liệt kê danh sách giáo viên, số môn học mà họ phụ trách, sắp xếp giảm dần theo số lượng môn. Chỉ hiển thị những giáo viên phụ trách từ 1 môn trở lên.

SELECT

GV.HOTEN AS TenGiaoVien,

COUNT(MH.MAMH) AS SoMonPhuTrach

FROM GIAO_VIEN GV

JOIN MON_HOC MH ON GV.MAGV = MH.MAGV

GROUP BY GV.HOTEN

HAVING COUNT(MH.MAMH) >= 1

ORDER BY SoMonPhuTrach DESC

2. Huỳnh Trần Thanh Đạm

• Câu 1: Liệt kê danh sách lịch dạy bao gồm: Họ tên giáo viên, tên lớp, tên môn học, ngày dạy, số phòng.

SELECT GV.HOTEN AS HoTenGiaoVien, LH.TENLOP AS TenLop, MH.TENMH AS TenMonHoc, LD.NGAYDAY, PH.SOPHONG

FROM LICH_DAY LD

JOIN GIAO_VIEN GV ON LD.MAGV = GV.MAGV

JOIN LOP_HOC LH ON LD.MALOP = LH.MALOP

JOIN MON_HOC MH ON LD.MAMH = MH.MAMH

JOIN PHONG HOC PH ON LD.SOPHONG = PH.SOPHONG

• Câu 2: Cập nhật tất cả các lớp thuộc khoa "Kinh tế" có sĩ số dưới 30 thành 30.

UPDATE LOP HOC

SET SISO = 30

WHERE MAKHOA IN (SELECT MAKHOA FROM KHOA WHERE TENKHOA = N'Kinh tế')

AND SISO < 30

• Câu 3: Xóa tất cả các bản ghi lịch dạy có giáo viên thuộc khoa "Vật lý" và dạy môn học lý thuyết (LYTHUYET > 0) trong năm 2024.

DELETE FROM LICH_DAY

WHERE MAGV IN (SELECT MAGV FROM GIAO_VIEN

WHERE MAKHOA IN (SELECT MAKHOA FROM KHOA

WHERE TENKHOA = N'Vật lý')) AND LYTHUYET > 0 AND YEAR(NGAYDAY) = 2024

 Câu 4: Đếm số buổi dạy lý thuyết (LYTHUYET > 0) của mỗi giáo viên trong năm 2024, chỉ lấy những giáo viên có tổng buổi dạy > 5.

SELECT MAGV, COUNT(*) AS SoBuoiDay

FROM LICH_DAY

WHERE LYTHUYET > 0 AND YEAR(NGAYDAY) = 2024

GROUP BY MAGV

HAVING COUNT(*) > 5

• Câu 5: Liệt kê các giáo viên dạy nhiều môn học hơn mức trung bình số môn mỗi giáo viên đảm nhận.

SELECT MAGV

```
FROM MON_HOC
GROUP BY MAGV
HAVING COUNT(*) > ( SELECT AVG(SoMon)
FROM (SELECT COUNT(*) AS SoMon
FROM MON_HOC
GROUP BY MAGV) AS TB)
```

3. Lê Thị Hoàng Ngân

• Câu 1: Liệt kê tên giáo viên, tên môn học, ngày dạy, tên lớp và phòng học của tất cả các buổi dạy từ ngày 06/05/2025 trở đi.

SELECT

GV.HOTEN.

MH.TENMH,

LD.NGAYDAY,

LH.TENLOP.

PH.CHUCNANG

FROM LICH DAY LD

JOIN GIAO VIEN GV ON LD.MAGV = GV.MAGV

JOIN MON HOC MH ON LD.MAMH = MH.MAMH

JOIN LOP_HOC LH ON LD.MALOP = LH.MALOP

JOIN PHONG_HOC PH ON LD.SOPHONG = PH.SOPHONG

WHERE LD.NGAYDAY >= '2025-05-06'

• Câu 2: Tìm ra giáo viên có thời gian dạy trùng nhau (đụng tiết) với người khác.

SELECT A.MAGV AS GV1, B.MAGV AS GV2, A.NGAYDAY, A.TUTIET, A.DENTIET

FROM LICH_DAY A

JOIN LICH_DAY B

ON A.NGAYDAY = B.NGAYDAY

AND A.SOPHONG = B.SOPHONG

AND A.MAGV <> B.MAGV

AND (

(A.TUTIET BETWEEN B.TUTIET AND B.DENTIET)

OR (B.TUTIET BETWEEN A.TUTIET AND A.DENTIET))

• Câu 3: Tính tổng số tiết lý thuyết đã giảng dạy của từng giáo viên.

SELECT GV.MAGV, GV.HOTEN, SUM(LD.LYTHUYET) AS TongTietLyThuyet FROM GIAO_VIEN GV

JOIN LICH DAY LD ON GV.MAGV = LD.MAGV

GROUP BY GV.MAGV, GV.HOTEN

• Câu 4: Truy vấn tìm lớp học có số lượng sinh viên lớn nhất trong khoa có số lượng môn học được giảng dạy nhiều nhất.

```
WITH KhoaMonHoc AS (
 SELECT K.MAKHOA, COUNT(DISTINCT M.MAMH) AS SoMonHoc
 FROM KHOA K
 JOIN GIAO VIEN G ON K.MAKHOA = G.MAKHOA
 JOIN MON HOC M ON G.MAGV = M.MAGV
 GROUP BY K.MAKHOA
).
MaxMonHocKhoa AS (
 SELECT TOP 1 MAKHOA
 FROM KhoaMonHoc
 ORDER BY SoMonHoc DESC
)
SELECT L.TENLOP, L.SISO
FROM LOP_HOC L
JOIN MaxMonHocKhoa K ON L.MAKHOA = K.MAKHOA
ORDER BY L.SISO DESC
```

4. Nguyễn Lê Nguyên

• Câu 1: Liệt kê giáo viên và số môn học họ đang phụ trách.

SELECT GV.MAGV, GV.HOTEN, COUNT(MH.MAMH) AS SoMonPhuTrach FROM GIAO_VIEN GV

LEFT JOIN MON_HOC MH ON GV.MAGV = MH.MAGV

GROUP BY GV.MAGV, GV.HOTEN

• Câu 2: Lớp thuộc khoa CNTT và có sĩ số > 40.

SELECT LH.MALOP, LH.TENLOP, LH.SISO

FROM LOP_HOC LH

JOIN KHOA K ON LH.MAKHOA = K.MAKHOA

WHERE K.TENKHOA = N'Công nghệ thông tin'

AND LH.SISO > 40

• Câu 3: Số lần môn học được giảng dạy.

SELECT MH.MAMH, MH.TENMH, COUNT(*) AS SoLanDay

FROM MON_HOC MH

JOIN LICH DAY LD ON MH.MAMH = LD.MAMH

GROUP BY MH.MAMH, MH.TENMH

• Câu 4: Giáo viên dạy từ 2 lớp trở lên.

SELECT MAGV, COUNT(DISTINCT MALOP) AS SoLopDay

FROM LICH_DAY

GROUP BY MAGV

HAVING COUNT(DISTINCT MALOP) >= 2

• Câu 5: Phòng học được dùng hơn 1 buổi.

SELECT PH.SOPHONG, PH.CHUCNANG, COUNT(*) AS SoBuoiDay

FROM PHONG HOC PH

JOIN LICH_DAY LD ON PH.SOPHONG = LD.SOPHONG

GROUP BY PH.SOPHONG, PH.CHUCNANG

HAVING COUNT(*) > 1

5. Hồ Thị Cẩm Hường

Câu 1: Đếm số sinh viên trong mỗi lớp.

SELECT TenLop, COUNT (Masv) AS SoSinhVien

FROM Lop 1

JOIN SinhVien s ON 1.LopID = s.LopID

GROUP BY TenLop

• Câu 2: Kết nối bảng Giáo viên, Giảng Dạy và Môn học.

SELECT gV.MaGV, gV. Hoten, mh. TENMH FROM GIAO_VIEN gv

JOIN LICH_DAY gd ON gv.MaGV = gd.MaGV

JOIN

MON_HOC mh ON gd.MAMH = mh. MAMH

KÉT LUẬN

Quá trình thực hiện tiểu luận đã giúp nhóm có dịp áp dụng đồng bộ những kiến thức nền tảng của môn học vào một bài toán thực tế. Từ việc mô hình hóa hệ thống bằng sơ đồ ERD đến thiết kế lược đồ quan hệ và chuẩn hóa dữ liệu, nhóm đã hiểu rõ hơn cách tổ chức dữ liệu chặt chẽ, đảm bảo tính nhất quán và tối ưu hóa lưu trữ.

Việc chuẩn hóa dữ liệu đến dạng 3NF và BCNF cũng giúp nhóm nhận thức sâu sắc về vai trò của chuẩn hóa trong việc loại bỏ dư thừa, duy trì tính toàn vẹn dữ liệu. Các thao tác thực hành trên SQL Server như tạo bảng, nhập liệu, truy vấn cũng giúp nhóm thành thạo hơn trong vận hành một hệ quản trị cơ sở dữ liệu thực tế.

Không chỉ dừng lại ở mặt chuyên môn, tiểu luận còn tạo điều kiện cho nhóm rèn luyện kỹ năng làm việc nhóm, phân công công việc hợp lý và giải quyết vấn đề hiệu quả. Đây là những kỹ năng quan trọng giúp ích cho nhóm trong học tập cũng như nghề nghiệp sau này, đặc biệt trong lĩnh vực quản trị và phát triển hệ thống thông tin.

DANH MỤC HÌNH ẢNH

Hình 1. Mô hình ER	
Hình 2. DATABASE DIAGRAMS	10

MINH CHÚNG LÀM VIỆC NHÓM

