前言

今天讲一下 NE555 芯片的用法。我这里简称为 555。

这款芯片 1971 年就开始生产了,当时是作为电子定时器来代替笨重的机械定时器。然而它一直到今天都没有被淘汰,还衍生出了很多应用电路。

555 芯片由于内部电路串联了 3 个 5K 的电阻作为电压取样, 所以叫 555。

在接触单片机以前,555 就时常出现在各种 DIY 电路中,是电子爱好者怎么也迈不过去的一道坎。单纯的模仿 DIY 已经提不起任何兴趣,想要自己设计电路,就必须理解这颗芯片的使用方法。

在讲解之前,总要说点什么,发点感慨。大概在 20 年前,我初中的时候接触到了无线电路,但是当时没有任何人会给我讲解电路,哪怕是各种科普杂志《无线电》、《电子爱好者》等等,上面的电路说明都是寥寥几句,还 TMD 特爱用术语,弄的当时的我非常的迷茫, DIY 就是照着书上的电路画瓢,东西做出来了,但是只是锻炼了焊接技术,还是什么都不懂。

幸好这是一个互联网的年代,资讯的搜索变的非常方便,开源也逐步成为潮流,敞开心扉,相互交流更加能感受到快乐,敝帚自珍的做法也已被大多数人抛弃。

年少时怎么也不明白的东西,现在总算有个地方能让我慢慢的查找资料,慢慢的理出头绪,写下一点东西,算是缅怀年少的遗憾。

认识芯片

常用的 555 一般是 8 脚芯片, 引脚图如下: 第一个是英文的, 第二个是中文。

我虽然非常想发一张 555 的内部电路图,想想看还是算了,我也不是很懂,免得以讹传讹。

555 参数功能特性

- •供应电压 4.5-18V
- •供应电流 3-6 mA
- •输出电流 225mA (max)
- •上升/下降时间 100 ns

555 电压的范围是+4.5 伏特(最小值)至+16 伏特(最大值),如果电压再高,就要降压了,否则烧芯片没商量。

管脚功能

首先,我用人话讲一下各个管脚的功能。很多资料里面不讲人话,让人半懂不懂的。

NE555 各脚功能

Pin 1 (接地) -1 脚接地线,也就是接电源的负极。

Pin 2 (触发点)-当 2 脚接入一个比电源电压的三分之一还小的电压的时候, 3 脚的就输出一个高电压,这个高电压大概等于 VCC-1V, VCC 表示电源电压。

举例,555 接入12V 电压,当 2 脚的电压小于4V,那么3 脚就输出12-1=11V 的电压。

有人要说了,如果 2 脚的接入电压比 4V 高怎么办?凉拌呗,3 脚电压不变化(不变化的意思就是 3 脚原来是高电压还是高电压,是低电压还是低电压,不会变)。那么我想让 3 脚的电压变成低电压 0V 怎么办?这个是 6 脚控制的,下面 6 脚再讲。

Pin 3 (输出) −3 脚输出高电压或者低电压,高电压=Vcc−1V。低电压=0V。3 脚输出高电压 还是低电压,是由 2 脚和 6 脚联合控制的。

当输出电压为高电压的时候,最大输出电流为 200mA 左右,也就是说,你让 3 脚带几个发光二极管,带个小喇叭没问题,你让它直接带个电动机就不行了,电流不够大。

有人要问?我要控制大功率的电机怎么办?加驱动电路呗,比如最简单的加个三极管,加个继电器,或者加个MOS管驱动。驱动怎么加?有空再讲,信息量比555还多,这里不说了。

Pin 4 (重置) -简单说,如果 4 脚接一个地电平,也就是接到电源负极上,3 脚就被强制为输出低电平,不管 2 脚和 6 脚的电压如何,相当于重启。它通常被接到正电源或忽略不用。

Pin 5 (控制) -5 脚基本也很少用,它的作用是能控制 3 脚输出高低电平的频率。这个脚用的很少,基本悬空,就是什么都不接。5 脚在 555 芯片内部的电压为 2/3 VCC,有时候会用这个脚来影响 6 脚。

Pin 6 (重置锁定) - 2 脚可以让 3 脚输出高电压, 6 脚就负责让 3 脚变成低电压, 也就是 0V。6 脚让 3 脚变成低电压的条件有两个, 需要同时满足:

条件 1: 6 脚电压从 1/3 VCC 电压以下升高到 2/3 VCC 以上。

条件 2: 2 脚的电压要大于 1/3 VCC。

Pin 7 (放电) -7 脚的名字顾名思义,放电用的。给谁放电?? 给电容放电。

7 脚的电压和 3 脚电压保持一致。当 3 脚高电压,7 脚也是高电压。当 3 脚为低电压,7 脚也是低电压。但是 7 脚无电流输出能力。也就是当 7 脚高电压的时候,他不能输出电流,也就是电流非常非常小。但是当 7 脚低电压的时候,他相当于负极,能给电容放电。

这个管脚有啥用啊?还真有用,下面讲电路图的时候,你就明白了。

Pin 8 (V +) −8 脚接电源正极。555 电压的范围是+4.5 伏特(最小值)至+16 伏特(最大值)。 我总结一下: 1 负 8 正,接电源。

26 控制 3 输出。4 脚重置 7 放电。

当 2 脚电压低于 1/3 VCC, 3 脚输出高电平。当 2 脚接地的时候, 3 脚一定高电平输出,除非 4 脚也接地。

这个时候,只要 2 脚电压升高到 1/3 VCC 以上,6 脚的电压升高到 2/3 VCC 以上,那么 3 脚电压变成低电平,也就是 0V。

感觉这里有点复杂,实际应用的时候,2脚和6脚一般都是焊到一起,一起作为触发点。所以我们只要处理一种情况,触发点电压为低,输出为高;触发点电压为高,输出为低。

电路讲解一(振荡电路1)

上面的管脚功能要背下来,要不电路讲解就很难听懂了。

下面我从网上找了几个经典的电路,根据管脚功能,一一分析。

以前看电路,最愁的就是看不懂高手的讲解,基本不说人话,开始以为是自己智商问题,后来看过一些优秀的讲解,才有恍然大悟的感觉。

先从中等的难度的振荡电路入手,来挑战一下,为了方便,我把各个管脚都标上了功能。

这个电路的功能就是让两个发光二极管, LED1 和 LED2 轮流闪烁。

电路分析:

8 脚接正极, 1 脚接负极, 电源电压是 6V, 在 555 的工作电压之间(4.5~16V), 所以 555 可以正常工作,没问题。妄想用两块干电池供电的,可以省省了, 3V 电压不够。

3 脚输出高电平时, 3 脚电压为 6V-1V=5V。555 的输出电压,一般比电源电压低 1V,原因是

555 的内部电阻分担了一部分的电压。当 3 脚输出低电平的时候,电压为 0V。

当 555 的 3 脚输出高电平(6V-1V=5V)的时候, LED1 两端的电压差是 5V, R4 是 1k 的限流电阻, LED1 发光。

此时 LED2 的两端电压是 6V-5V=1V, 因为发光二极管的点亮电压一般在 2V~3V, 所以 LED2 两端的电压不够, LED2 不发光。

当 3 脚输出低电平(0V)的时候,LED1 两端的电压差是 0-0=0V,所以 LED1 此时不发光。 LED2 的两端电压是 6V-0V=6V,R3 是 1k 的限流电阻,此时 LED2 发光。

以上可见,只要3脚轮流输出高低电平,就可以实现两个发光二极管的轮流闪烁。

下面再分析一下其他引脚的作用。

首先 4 脚是复位脚,这个电路我们并不需要 4 脚的功能,所以 4 脚可以直接电源正极或者干脆悬空,都是可以的。

7 脚的电压和 3 脚的电压是一致的, 当 3 脚为高电压, 7 脚也是高电压; 3 脚为低电压, 7 脚也是低电压, 相当于电源负极。

2 脚和 6 脚并到一根线上, 共同作为触发脚, 我简称它们为 26 脚。

电路开始接到 6V 电源的瞬间,6V 电源通过电阻 R1 和 R2,对电容 C 进行充电。因为 26 脚和电容正极相连,当电容刚开始充电的时候,26 脚的电压近似为 0,小于 1/3 VCC(2V)。 2 脚电压小于 1/3 VCC(2V),3 脚则输出高电平。此时,7 脚也跟着输出高电平,但是对电容 C 的充电电路无任何影响。

电容和电池一样,充电不是瞬间完成的,有个时间过程。特别是隔着电阻进行充电,电阻和电容越大,充电时间越慢,电阻和电容越小,充电时间越短。

当经过一段时间,随着电容 C 的充电,电容 C 的正极电压不断升高。当电容 C 的正极电压超过 2/3 VCC,也就是超过 4V 的时候,6 脚的电压大于 2/3 VCC(4V),2 脚的电压也大于 1/3 VCC(2V),从而 3 脚电压由高(5V)变低(0V)。此时,7 脚也跟着输出低电压(0V),7 脚此时可以视为电源负极,也就是地极。电容 C 通过电阻 R2,对 7 脚放电。而从 VCC 通过 R1 过来的电流,直接流到 7 脚(地极),无法继续给电容 C 充电。(所以 7 脚被称为放电脚,它的作用就是给电容放电的。这里 R1 的阻值不应过小,否则当 7 脚接地时,通过 R1 的电流会比较大,有可能烧坏 555 芯片)

觉得难理解的人,可以看下面这张图,我画了根红线,7脚电压为0V时,相当于接地,也就是在R2和C之间,短路了一根导线。

电容通过电阻放电也不是瞬间完成,需要一个时间过程。电阻和电容越大,放电时间越长, 电阻和电容越小,放电时间越短。

随着电容 C 的放电,26 脚的电压从 2/3 VCC (4V) 逐渐降低,当电压降低到小于 1/3 VCC (2V) 的时候,2 脚的电压满足小于 1/3 VCC (2V) 的条件,3 脚又重新输出高电平。此时 7 脚也从 0V 变成高电压,电容 C 的放电停止,重新进入充电状态。

当 C 的电压超过 2/3 VCC, 3 脚的电压又被变成低电压, 然后电容 C 又通过 R2 对 7 脚放电…… 重复以上的充电和放电过程, 3 脚的电压就有规律的高低循环。

以上可以得出一个结论。电容 C 充电的时间,就是 3 脚输出高电压的时间;电容 C 放电的时间,就是 3 脚输出低电压的时间。有人问,这个结论有什么用呢?用在 NE555 的直流电机调速电路上。高低电压的时间比,就是调速电路 PWM 的占空比。下面有个电路图,我会详细的讲。

3 脚高低电压切换的时间其实就是电容 C 的充放电的时间。电容 C 充电的时候,是通过 R1 和 R2, 放电是通过 R2。

所以电容 C 充电的速度和电容 C 的电容值和电阻 R1、R2 的电阻值有关系。

放电的速度和电容 C 的电容值和电阻 R2 的电阻值有关系。

基本来说, C 和 R2 越大, 充电放电的速度越慢, 3 脚电压切换的速度就越慢, 反之切换速度就越快。

如果把 R2 换成一个可变电位器,就可以通过变换 R2 的阻值来控制两个 LED 灯的闪烁频率。

555 振荡频率计算

当电容 C 的电容值非常小的时候, 3 脚的高低电平切换频率就会非常高, 555 就变成了一个高频振荡器。

如果电容 C 电容比较大, 3 脚的切换频率就会比较低。

那么怎么计算这个振荡频率呢?

有个公式的,如下:

当 555 的基本电路如下的时候,振荡周期 T 计算公式如下:

T=0.7* (R1+2*R2) *C

频率 f 等于周期的倒数, 所以 f=1/T=1.43/[(R1+2R2)C]

多说一句, 电容 C 的电容值的单位是 F (法拉), 1uf 是百万分之一 F, 不要搞错了。

另外说一句, 5 脚接个 0.01uF 电容到地, 是常见的做法。不接也可以, 接上有助于稳定振荡频率??? (大概吧, 哈哈)

比较通用的说法如下:

5 脚为控制端,平时输入 2/3Upp

作为比较器的参考电平,当5脚外接一个输入电压,即改变了比较器的参考电平, 从而实现对输出的另一种控制。如果不在5脚外加电压通常接0.01μF电容到地, 起滤波作用,以消除外来的干扰,确保参考电平的稳定。

电路讲解二(振荡电路 2)

电路一中,555 振荡的产生是通过 2 个电阻和一个电容,通过 7 脚放电实现的。 其实还有一种振荡电路,如下图:

图 9-11 直流升压电路 www.Ndiy.cn

这个电路,它只用了1个电阻R1和1个电容C1就实现了高频振荡。

0.01uf 的电容是滤波用的,可以忽视。

10uf 的电容和 D1、D2, 20uf 的电路是自举升压电路,这个以后再讲,我们只分析其中的高频振荡电路。

初始状态: 电路上电瞬间,3 脚最初的状态是低电平(0V),电容C1的电压也为0,那么26 脚的电压等于C1的电压,为0V,小于1/3 VCC,3 脚低电平输出变为高电平输出。

状态 1: 当 3 脚为高电平输出的时候,3 脚高电平通过 R1 对 C1 充电,当 C1 电压超过 2/3 VCC 的时候,因为 26 脚的电压和 C1 的电压相等,所以 3 脚又重新变为低电平。

状态 2: 此时,C1 有电压,它通过 R1,对低电平的 3 脚放电,当 C1 电压降到 1/3 VCC 以下,即 2 脚的电压降到了 1/3 VCC 以下,3 脚变为高电平。

状态1和状态2不断的循环,则555进入高频振荡状态。

这个振荡频率的计算公式大概是 f=0.7/RC, 具体对不对我也懒得去找了。呵呵。

如果上面2个振荡电路能够明白和理解,那么全部的555电路对你来说基本已经没有难度了。

直流自举升压电路

这个电路暂时可以跳过不看,如果有兴趣再来看。先把555电路弄明白。呵呵。

这里顺便我也讲一下直流自举升压电路。

这个电路曾经让我迷惑了很长时间。交流倍压电路我能看懂,但是直流的就有点难懂。我的印象中,没有电感,如何升压??

这个在做双向直流电调和无刷电调电路中都很重要,不能不掌握。

电路图 2 本质是一个直流自举升压电路,如果 3 脚输出的方波频率够高,它就可以输出 2 倍的输入电压。但是这个电压不能带负载,因为自举升压的电流非常的小,用来驱动电压敏感的 MOS 管还可以,用来带负载那是妄想,电压直接下降一半,相当于没升压,哈哈。

直流自举升压原理图:

上图是我网上找的一个原理图。比较简单,我们先从简单的开始理解。图中,12V的 Vcc,经过脉冲方波的升压,变成了 15V 的方波电压。

Vout=Vcc+Vin

其中 Vin 是方波电压,如果 Vin 的频率足够高,那么上面的公式成立。

原理很简单啊,上面的二极管的单向导电性,防止 Vout 对 Vcc 放电,避免电压的降低。Vin 是脉冲电流,可以通过电容,给 Vcc 增压。电容的一个特性就是隔直流,通交流,所以如果 Vin 是直流电,是无法自举升压的,必须是脉冲电流。

这个图是自举升压的基础,理解这个图,那么电路图 2 的自举升压电路也明白了。

我上一个直流自举升压电路,取自冷血电调的自举升压电路。其实和振荡电路 2 的自举升压电路是一样的,不过多了一个稳压电容 C10。

PH_C 是一个高频脉冲方波,最高电压和 Vcc 是一样的。通过升压电路,可以得到 2 倍的 Vcc 电压。

原理也是利用二极管的单向导电性,还有电容的通交流,隔直流的特性,脉冲方波电流这里认为是交流电,因为它的电压有高有低。

说实在的,我也不是很懂这个电路图的原理,这里大概说说,大家姑且听听。

电容 C10 的作用是存储电荷,顺便对 Vcc 进行稳压, Vcc 和 C10 一起,通过 D1 和 D2 给 C12 充电。此时 C12 的电压为 Vcc。 振荡电路 2 中, C10 就被取消了,在上图中,因为电调的放电电流非常大,所以加一个 1000uf 的大电容进行稳压。

脉冲方波电流通过电容 C11 和 D2,叠加电压到 C12 上,使 C12 的电压等于 Vcc+Vcc=2Vcc。 因为 D2 和 D1 的单向导电性,C12 无法反向通过 D2 和 D1 对 Vcc 放电,也无法通过 D2 对 C11 充电,所以 C12 的电压可以一直保持高电压,升压的目的达到了。

同时,因为 Vcc 是直流电,Vcc 的电流虽然可以通过 D1,但是 Vcc 的电流无法通过电容 C11,所以 PH_C 和 Vcc 可以认为是断路的,Vcc 不会影响 PH_C 的方波波形,也就是脉冲方波可以一直为 C12 升压,不会受到 Vcc 的影响。

好了,不管你看不看的懂,直流自举升压电路讲完了。有兴趣的可以去看看用二极管和电容组成的交流自举升压电路,那个很容易理解。

不过我对高压电比较害怕,这里就不讲交流自举升压了。我们继续555电路。

电路讲解三(直流电机调速电路)

这个直流电机调速电路应该是一个非常实用的电路,商品的电机调速器,基本都是这个电路。 我们玩航模、车模(别想歪了)、船模,经常用到直流电调。直流电调是利用单片机,输出 PWM 调速信号,利用 PWM 信号的占空比,控制 MOS 管的开关的时间长短,来对电机进行 无级调速。单片机价格比较贵,要写程序,还要烧录,比较麻烦。

如果单纯的手工拧拧电位器来调速的话,555 调速电路所以还是有优点的,一时半会不会被淘汰。

不知道 PWM 的同学,去百度一下,这个篇幅比较长,这里不讲了。

讲这个电路以前,先简单说一下 MOS 管的作用。

上图用的是 N 沟道 MOS 管,它有 GDS 三个引脚。给 G 一个正电压,D 和 S 之间的电阻就会非常小,相当于导通,电机 MOT1 就被接到 12V 电的正负两端上,就能转了。

再说一下二极管 D3 的作用,它这里叫续流二极管,也叫肖特基二极管。它的作用是反向并 联在电机的两端,从来短路掉电机断电的时候产生的反向感应电动势,防止累计的反相电压 过高,烧掉昂贵的 MOS 管。

电容 C3 是一个容量较大的电容,作用是稳压+滤波。

上面都是常识,下面对 555 电路进行分析。

这个图,如果把 D1 和 D2 换成导线,可调电阻 P1 换成固定电阻,这个电路,就是一个典型的振荡电路,和最上面的振荡电路一是一样的。我们可以知道,这个电路最基本的功能就是产生一个高频的方波信号。这个方波信号,其实就是一个 PWM 信号,如下图:

脉宽调制(PWM)

PWM 信号每个周期,包括一个高电平和一个低电平。
PWM 信号高电平时间和整个周期的时间比值,就是 PWM 信号的占空比。
如果占空比为 50%,那么说明高电平时间和低电平时间各占周期时间的 1/2。

如果占空比为 75%, 那么说明高电平时间占 3/4, 低电平时间占 1/4。 如果占空比为 25%, 那么说明说明高电平时间占 1/4, 低电平时间占 3/4。

电机的当前转速和最高转速的比值,和 PWM 信号的占空比是相等的。 当 PWM 信号的占空比为 50%,电机的转速就是最高转速的 50%。 当 PWM 信号的占空比为 10%,电机的转速就是最高转速的 10%。

这样我们就清楚了,要调节电机的转速,只要调节 PWM 信号的占空比就而已了。

要调节占空比,就是要调节555芯片的3脚输出的高低电压的时间比值。

我在上面也总结过了:

- 3 脚输出高电压的时间=电容 C1 充电的时间。
- 3 脚输出低电压的时间=电容 C1 放电的时间。

在电容 C1 的容值固定的情况下,电容 C1 的充电时间和放电时间和什么有关呢?看下图,我把可调电阻 P1 分成了左边的 Ra 和右边的 Rb 两个电阻。

二极管 D1 和 D2,利用二极管单向导电的特性,很巧妙的把 P1 分成了左右两个电阻,分别控制充电和放电,互不干扰。

当 C1 要充电的时候,电源+12V,通过电阻 R1,D1,Ra,来对 C1 进行充电。 所以充电时间和 R1、Ra 有关。因为 R1 的阻值是固定不变的,所以实际上,充电时间,只和 Ra 的大小有关。

换言之, Ra 越小, 充电时间越短, 3 脚输出高电压的时间就越短。 Ra 越大, 充电时间越长, 3 脚输出高电压的时间就越长。

那么我们再来看 C1 的放电时间和谁有关系。

当 3 脚输出低电压的时候, C1 通过 Rb, D2, 对 7 脚放电。放电时间和 Rb 有直接关系。

换言之, Rb 越大, 放电时间越长, 3 脚输出低电压的时间就越长。 Ra 越小, 放电时间越短, 3 脚输出低电压的时间就越短。

通过分析,我们看出,当 Ra 变大, Rb 自然变小,3 脚 PWM 信号占空比变大,电机转速变快。反之,电机转速变慢。

很奇妙的设计吧,通过可调电阻 P1 的阻值变动,3 脚输出 PWM 信号的占空比跟着变化,电机转速的调整就完成了。

顺便再说一下其他几个元件的作用。

R1 是限流的,对 555 的 7 脚限流,同时也控制 PWM 信号的最低占空比,当 Ra=0 的时候,PWM 的占空比最低,但是因为 R1 的存在,C1 充电始终要一点时间,所以最低占空比不会为 0,电机此时应该不会转动,或者以非常缓慢的速度在转动。

所以 R1 的阻值越小越好,但是不能太小,太小的话,555 的 7 脚电流会很大,容易过热。 这里取 1K 正合适。如果希望电机在最低转速时能转的快一点,可以适当提高 R1 的阻值, 也就是提高了最低占空比的大小。

R2 也是限流电阻,但是用来保护 MOS 管的 G 极的,有没有皆可。现在 MOS 管也不是什么昂贵的东西。

最后说一下,个人制作这个电路的时候,如果供电电压超过 16V,请为 555 单独加上降压电

路,降压到 12V。电机的电压不用降低,和 555 共地即可。

如果电压低于 8V,请使用超低电压导通的 MOS 管,否则电机运转的时候,MOS 管会很烫。因为大部分的 MOS 管,它的完全导通电压都超过 7V,除非是超低电压导通的 MOS 管。总之,根据你使用电机的电压和功率,选择不同型号的 MOS 管。

电路讲解四(按键延时电路)

最难理解的东西都已经讲了,剩下的几个电路都是很容易理解的。555 的施密特电路因为 DIY 应用几乎用不到,所以就不讲了。自己看也能理解,就是把杂波过滤成清爽的方波而已。

延时关闭电路

555 最早被发明出来,就是做电子定时器用的。比如做个定时炸弹啥的???别笑,它真的可以做的。

上图比我们熟悉的振荡电路,少了一个电阻,也少了 7 脚的使用。多加了一个轻触开关 SB,名字好有个性。

我们先分析一下这个电路的静态状态:

VCC 通过 RT 对 CT 充电完成后,此时 26 脚的电压等于 VCC,所以 3 脚总是输出 0V 电压。 当 SB 按下,CT 的电压被 SB 开关短路,瞬间放电到 0V,2 脚电压为 0V,小于 1/3VCC,故 3 脚输出高电压,即 VCC。

当 SB 松开, VCC 又通过 RT 对 CT 进行充电, 当充电电压达到 2/3VCC 后, 26 脚电压满足条件, 3 脚又输出 0V 电压。随后, CT 的电压继续被充电到 VCC。此时, 26 脚电压为 VCC。

这个就是一个典型的 555 的按键延时开关电路。

当增加RT的阻值和CT的容量,可以延长3脚保存高电压的时间。

这个电路常配合光敏电阻用在走廊灯的延时关闭上面。当开关被按下,走廊灯被点亮几分钟后自动关闭。白天的时候,光敏电阻接到4脚和地极,对555进行复位,使3脚始终输出0V,即时按键被按下,也不会点亮灯泡。

延时开启电路

延时关闭电路的作用是按下按键,打开一段时间后自动关闭。那么延时开启电路的作用就是按下按钮,关闭一段时间后自动打开。

上图的静态状态:

26 脚通过 RT 接地, CT 电容隔断了直流电 VCC, 所以此时 26 脚电压为 0V, 3 脚电压为高电压。

当 SB 按下, CT 被 SB 开关短路, CT 的电压瞬间放电到 0V。同时 26 脚的电压被 SB 开关直连到 VCC, 26 脚的电压为 VCC, 3 脚输出低电压 0V。

当 SB 松开,VCC 通过 RT 对 CT 开始充电(虽然 RT 连在负极,但是道理是一样的,电流一样 要经过 RT)。在 CT 充电过程中,会有电流从 RT 上流过,所以 RT 上方会有一个电压 URT。 随着 CT 电压的上升,充电电流也慢慢变小,URT 随之从大变小。26 的电压和 URT 是一样的,当 URT 降低到 1/3VCC 以下,3 脚输出高电压。随后,CT 的电压继续被充电到 VCC。此时,26 脚的电压为 0。

这个电路和上面的电路功能正好相反。掌握上面的那个就可以了。

延时时间

上面两个电路的延时时间 T, 也有公式: T=1.1RT*RC, 单位是秒。

电路讲解五(延时触摸电路)

图21 触摸开关电路

我给出了两个电路, 其实都是一样的。

上图 2 脚有 2 个 10M 的电阻提供上拉电压,手指必须碰到触摸板才让 3 脚输出高电压。

下图 2 脚直接串了个 0.1uf 的瓷片电容,这个手指基本只要靠近触摸板就可以了,碰不碰到都可以,灵敏度很高,但是容易误触发。

网上对 **555** 的触摸电路讲解也有,我看过,讲的人自己也不明白,说什么感应电压,人体杂波,我也是无语了。

我截个图,大家可以看看,但是下面的是不对的,别强迫自己理解:

集成电路IC1是一片555定时电路,在这里接成单稳态电路。平时由于触摸片P端无感应电压,电容C1通过555第7脚放电完毕,第3脚输出为低电平,继电器KS释放,电灯不亮。

当需要开灯时,用手触碰一下金属片P,人体感应的杂波信号电压由C2加至555的触发端,使555的输出由低变成高电平,继电器KS吸合,电灯点亮。同时,555第7脚内部截止,电源便通过R1给C1充电,这就是定时的开始。

当电容C1上电压上升至电源电压的2/3时,555第7脚道通使C1放电,使第3脚输出由高电平变回到低电平,继电器释放,电灯熄灭,定时结束。

定时长短由R1、C1决定: T1=1.1R1*C1。按图中所标数值,定时时间约为4分钟。D1可选用1N4148或1N4001。

我先说三点常识吧:

- 1、当电子元件接入电源时,如果它的某一个脚悬空的时候,这个脚的电压通常都认为是高电压,而不是 0V 低电压。
- 2、人体站在建筑物上,建筑物又站在地球上,所以任何时候,人体都等同于地极,人体的电压可以看做 0V。我们有时候不小心碰到交流电的火线,虽然没碰到零线或者地线,还是会被电的发黑,就是因为人体本身就可以看做地线。
- 有人和我说,我身上有静电,碰到别人就放电。你静电总有放完的时候吧,你不可能永远带电吧??
- 3、空气的电阻非常大,要击穿空气,需要非常高的电压,例如闪电。但是潮湿的空气,电阻就相对小很多。所以很多感应开关,在南方雨季潮湿的空气中,就很容易误触发。

下面分别说说两个电路的电路分析:

触摸电路一

图21 触摸开关电路

先分析一下此电路的静态状态:

触摸板和 2 脚相连,然后接在 2 个串联在一起的 10M 的电阻的中间。2 个 10M 电阻油串联在 VCC 和地极之间,所以电阻中间的电压应该是 VCC 的一半。那么 2 脚的电压是 1/2VCC,大于 1/3VCC。

此时 3 脚的电压为低电压, LED 不发光。原因如下:

如果 3 脚是高电压,那么 7 脚电压也是高电压,电容 C 就会被 VCC 经过电阻 R 充电,当电容 C 电压高到 2/3VCC 的时候,3 脚就会变成低电压。

因为 7 脚的电压和 3 脚电压一致,所以也是 0V。因为 6 脚和 7 脚相连,所以 6 脚电压也是 0V。同时,电容 C 正负极都接到了地线上,所以电容 C 被短路, C 被放电,电压也变为 0V。

当人体任何一部分触摸到触摸板的时候,人体可以视为地极,所以触摸板的电压被人体拉低到了 0V,2 脚电压也为 0V,小于 1/3VCC,3 脚高电压输出,LED 开始发光。

这里注意一点,虽然 2 脚通过电阻和 VCC 相连,但是电阻的阻值 10M 非常大,所以无法有效的拉高电压。这两个 10M 电阻的作用就是静态电压上拉电阻,没有电流的输出能力。而当人体离开了触摸板,触摸板的电压又被 2 个 10M 电阻拉高到了 1/2VCC。

当 3 脚输出高电压, 7 脚也变成高电压, 电容 C 的短路状态被解除。VCC 通过电阻 R 给电容 C 充电。随着 C 电压的升高, 当 C 电压超过 2/3VCC, 也就是 6 脚电压超过 2/3VCC, 此时 2 脚电压也超过 1/3VCC, 所以 3 脚又重新变为低电压, LED 没有电压, 熄灭。

这个电路就是一个典型的触摸延时开关。和上面的按键延时开关其实功能差不多,但是把按键改成了触摸板,感觉高大上一点。但是缺点就是容易误动作,所以加了 2 个 10M 的电阻

进行静态电压上拉。

触摸电路二

这个电路的2脚没有静态电压上拉电阻,但是因为2脚悬空(悬空的意思就是没接入回路), 2脚的静态电压可以看做高电压。所以静态的时候,因为2脚高电压,6脚也高电压,3脚 肯定输出低电压。

3 脚输出低电压, 电容 C1 就相当于被 7 脚对地短路, 电压为 0。

当手指或者其他人体部分,靠近触摸板 P 的时候, 2 脚的电压就被人体拉低到了 0V,小于 1/3VCC,3 脚就输出高电压,带动继电器打开了灯泡的开关。

人体离开触摸板一段距离,2脚又被悬空,又处于高电压的状态。

3 脚输出高电压,7 脚就不在对电容 C1 短路了,所以电容 C1 就可以通过 R1 充电。当充电电压增高到 2/3VCC 以上时,26 脚都满足了条件,3 脚输出低电压,继电器关闭,灯泡的开关也被关闭。

这里多了个二极管 D1,原理也是续流二极管,但是用来短路继电器 Ks 的反相感应电压,保护 555 的 3 脚的。

大家知道,继电器就是一个线圈绕的电磁铁,当继电器断电的时候,根据楞次定律,线圈内会产出一个方向相反的感应电压。这个电压刚好被二极管 **D1** 给短路掉。

这个电路,因为 2 脚悬空,比触摸电路一灵敏很多,误触发也很容易,而且 2 脚引出的导线不能过长,等等吧,需要大家自己去实验。

类似于这种触摸电路,还有用三级管的 b 极来做触摸板的,其实都是一个道理。就不一一来讲了。我觉得我已经说的很细了,能看懂前面的电路,那么其他的 555 电路都是应该没有问题的。

其它有趣的 555 电路

还有一些有趣的 555 电路给大家分享一下。 大家可以自己分析一下电路,再练习一下 555 电路分析。

黑暗检测报警电路

Dark Detector

这个电路当天黑的时候, 他就会报警。

其中 LDR 是光敏电阻,有光的时候电阻很小,没光的时候电阻很大。

LS 是个无源蜂鸣器,你可以当个普通的小喇叭来看, 那个 1Meg 是个 1M 阻值的电阻。eg=example,就是举例的意思。1Meg 就是举例一个 1M 的电阻。简单说一下吧,电路本身就是一个普通的振荡电路,应该是我们讲的振荡电路二。

4 脚是复位脚,它把 4 脚通过光敏电阻接到了地极。

当有光的时候,光敏电阻阻值很小,4 脚相当于接地,所以555 一直处于复位状态,3 脚电压一直是 0V。

当天黑的时候,光敏电阻阻值变大,4 脚被 R1 上拉到高电平,复位状态解除。此时,555 电路就开始了振荡,3 脚不停的在高低电压之间变化,喇叭就跟着发出声音。

下面也是一个黑暗检测电路,只不过它采用了的振荡电路一的方式。

这个电路留给大家自己分析练手。

闪光灯电路

这个电路的触摸板用的是三极管的 b 极。

其实不要看 Q1 是个三极管,实际上,他根本没用到三极管的任何功能。

他只是把三极管的 PN 结电容,作为了一个滤波的小容量电容。一个三极管能当 2 个电容使用。

你把 bc 和 be 都看成 2 个容量很小的瓷片电容就可以了。电路理解参照上面的触摸电路二。

三极管驱动的闪光灯电路

振荡电路一,但是他用了1个三极管驱动更大的电流,来带动12V21W的小灯泡。

施密特触发器

杂波进,方波出。原理很简单。杂波电压峰值是正压,峰谷是负压。

- 26 脚的电压=杂波电压+ 1/2VCC。
- 26 脚电压低于 1/3VCC, 3 脚输出高压方波, 26 脚电压高于 2/3VCC, 3 脚输出 0V 方波。
- 26 脚电压在 1/3~2/3VCC 之间,方波波形保持不变。

结束语

暂时就讲这么多了,肯定有错,毕竟我也是初学,也是一边学习一边写的。估计耐心看完的也不多。

我大概还好再写几篇类似的,介绍一些常用的硬件,如 TL341, LM358, 还有一些光耦隔离的应用等等。单片机不是一个孤立的东西,它虽然可以做很多事情,但是外围的硬件知识也大约要了解一下。笑~。

浅雪 2015年11月3日