

#### MTH8302

## Modèles de régression et d'analyse de la variance

#### Devoir 2

distribution: 31 mai 2018

remise: 12 juin 2018 - 23h59 (au plus tard)

Ce travail est réalisé individuellement par chaque étudiant inscrit au cours.

Chaque étudiant le fait SEUL sans demander de l'aide à d'autres.

En apposant sa signature ci-dessous, l'étudiant (e) certifie sur son honneur avoir fait ce travail SEUL. L'obtention des résultats présentés et la rédaction de ce travail ne fait l'objet d'aucun plagiat, partiel ou total.

Information concernant le plagiat à Polytechnique : <a href="http://www.polymtl.ca/etudes/ppp/index.php">http://www.polymtl.ca/etudes/ppp/index.php</a>

**Exigences pour la rédaction du rapport** consulter la page 4 du plan de cours

http://www.groupes.polymtl.ca/mth6301/mth8302/Autres/2018-MTH8302-PlanCours.pdf

Compléter l'information suivante et transmettez cette page comme la page 1 de votre rapport de devoir.

MTH8302 Modèles de régression et d'analyse de variance
NOM \_\_BETTACHE\_\_\_\_\_ PRÉNOM \_\_Lyes Heythem\_\_\_
MATRICULE \_1923715\_\_ SIGNATURE

► Transmettre votre rapport par courriel à bernard.clement@polymtl.ca

valour

Nom suggéré pour le fichier à transmettre : NomFamille-matricule-MTH8302-Devoir2.pdf

Obtonu

#### **TABLEAU CORRECTION**

|                    | vaicui | Obleiiu |
|--------------------|--------|---------|
| No 5-BostonHousing | 30     |         |
| No 6-BodyFat-Femme | 30     |         |
| No 7-Penta         | 30     |         |
| Qualité            | 10     |         |
| TOTAL              | 100    |         |

Les données pour la réalisation du devoir sont disponibles sur le site WEB du cours

http://www.groupes.polymtl.ca/mth6301/MTH8302.htm/

Remarque: dans la 1<sup>er</sup> partie excersice 1, quand on a utilisé statistica pour développer la méthode *Forward Stepwise* (ou Backward Stepwise), il y a 2 chemain:

1-Advanced Models->General regression->Multiple regression->Option/Forward(Backward)

2- Multiple regression->Advanced option-> Forward(Backward)

J'ai utilisé les 2 et j'ai trouvé des résultats différent (dans ce rapport j'ai utilisé chemain 2)

#### No 5 Étude de modélisation avec plusieurs méthodes

Données = BostonHousing.sta

#### Réponse

5a) Modèle de Régression Ordinaire (MRO) (RÉGRESSION LINÉAIRE MULTIPLE)

Y= b0+ b1\*x1+ b2\*x2+ ... + b11\*x11 + e

| Var | Nom                | coefficient                     | MRO<br>ordinaire |
|-----|--------------------|---------------------------------|------------------|
| X0  | GENÉRAL intercepte | b0                              | 41,4087          |
| X1  | CRIM               | b1                              | -0,1251          |
| X2  | NOX                | b2                              | -21,1251         |
| Х3  | AGE                | b3                              | 0,0040           |
| Х4  | DIS                | b4                              | -1,2916          |
| X5  | RM                 | b5                              | 3,9002           |
| Х6  | LSTAT              | b6                              | -0,5639          |
| Х7  | RAD                | b7                              | 0,268            |
| X8  | CHAS               | b8                              | 2,7103           |
| Х9  | INDUS              | b9                              | -0,0022          |
| X10 | TAX                | b10                             | -0,0102          |
| X11 | PT                 | b11                             | -0,9708          |
|     |                    | SS<br>resid<br>résiduelle       | 9826,13          |
|     |                    | MSE                             | 25,003           |
|     |                    | = sigma <sup>2</sup><br>(ANOVA) |                  |
|     |                    | R <sup>2</sup>                  | 0,71963493       |
|     |                    | R²ajusté                        | 0,71178756       |

Ce tableau contient les coefficients de notre modèle Y basé sur les 11 variables X1,..., X11

|           | Regression Summary for Dependent Variable: Y_MV (BostonHousing sta in 2018-MTH8302-Devoirs-Dat<br>R= 84831299 R²= ,71963493 Adjusted R²= ,71178756<br>F[11,332]=91,704 p<0,0000 Std Error of estimate: 5,0003<br>Include condition: GROUP=IM |                   |          |                  |          |          |  |  |  |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|------------------|----------|----------|--|--|--|--|
| N=405     | b*                                                                                                                                                                                                                                           | Std.Err.<br>of b* | b        | Std.Err.<br>of b | t(393)   | p-value  |  |  |  |  |
| Intercept |                                                                                                                                                                                                                                              |                   | 41,4087  | 5,811334         | 7,12551  | 0,000000 |  |  |  |  |
| X1_CRIM   | -0,123260                                                                                                                                                                                                                                    | 0.034611          | -0,1251  | 0.035134         | -3,56129 | 0,000414 |  |  |  |  |
| X2 NOX    | -0,266628                                                                                                                                                                                                                                    | 0.056691          | -21,1251 | 4,491677         | -4,70317 | 0,000004 |  |  |  |  |
| X3 AGE    | 0,012167                                                                                                                                                                                                                                     | 0.044953          | 0,0040   | 0.014906         | 0,27067  | 0,786790 |  |  |  |  |
| X4 DIS    | -0,294117                                                                                                                                                                                                                                    | 0.047968          | -1,2916  | 0.210649         | -6,13146 | 0.000000 |  |  |  |  |
| X5 RM     | 0,295059                                                                                                                                                                                                                                     | 0.036317          | 3,9002   | 0.480050         | 8,12453  | 0.000000 |  |  |  |  |
| X6 LSTAT  | -0,432853                                                                                                                                                                                                                                    | 0.044747          | -0.5639  | 0.058293         | -9.67325 | 0.000000 |  |  |  |  |
| X7 RAD    | 0,249104                                                                                                                                                                                                                                     | 0.072119          | 0.2685   | 0.077723         | 3,45408  | 0.000612 |  |  |  |  |
| X8 CHAS   | 0.073912                                                                                                                                                                                                                                     | 0.027634          | 2 7103   | 1.013346         | 2,67462  | 0.007794 |  |  |  |  |
| X9 NDUS   | -0.001657                                                                                                                                                                                                                                    | 0.051909          | -0.0022  | 0.070207         | -0.03192 | 0.974552 |  |  |  |  |
| X10 TAX   | -0,183696                                                                                                                                                                                                                                    | 0.076450          | -0.0102  | 0,004236         | -2,40284 | 0,016731 |  |  |  |  |
| X11 PT    | -0.223687                                                                                                                                                                                                                                    | 0.034786          | -0.9708  | 0.150978         | -6.43035 | 0.000000 |  |  |  |  |

D'après les P-value on remarque que tous les variables Xi sont significatives sauf les variables X3\_AGE et X9 INDUS qui ne sont pas Significatives. (Variables Significatives p-level≤ 0,05)



D'après ce graphe on a confirmé la remarque de tableau précédant

On remarque que R2 élevé (0.7196) et R2adj légèrement inférieur à R2

#### 5b)

Les données ne présentent pas un problème de multi colinéarité La preuve :

Pour trouver si nous avons la multicolinéarité on a utilisé les critéres de Détection multicolinéarité

|          | Correlations (BostonHousing.sta in 2018-MTH8302-Devoirs-Data) Marked correlations are significant at p < .05000 N=405 (Casewise deletion of missing data) Include condition: GROUP=M' |           |           |           |           |           |           |           |           |           |           |           |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Variable | X1_CRIM                                                                                                                                                                               | X2_NOX    | X3_AGE    | X4_DIS    | X5_RM     | X6_LSTAT  | X7_RAD    | X8_ CHAS  | X9_NDUS   | X10_TAX   | X11_PT    | Y_MV      |
| X1 CRIM  | 1,000000                                                                                                                                                                              | 0.405092  | 0.341859  | -0.371778 | -0.183302 | 0.424085  | 0.608001  | -0.049381 | 0.394384  | 0.566047  | 0.289547  | -0,377012 |
| X2 NOX   | 0.405092                                                                                                                                                                              | 1.000000  | 0,721333  | -0,770838 | -0.289010 | 0.590483  | 0.610317  | 0,117650  | 0.761074  | 0.666941  | 0,164000  | -0.421667 |
| X3_AGE   | 0.341859                                                                                                                                                                              | 0.721333  | 1.000000  | -0.728034 | -0.231930 | 0.596188  | 0.458214  | 0.111474  | 0.633658  | 0.501316  | 0.243265  | -0.359839 |
| X4 DIS   | -0,371778                                                                                                                                                                             | -0,770838 | -0,728034 | 1,000000  | 0,192688  | -0,484251 | -0,502597 | -0,117004 | -0,705015 | -0,540198 | -0,220393 | 0,230695  |
| X5_RM    | -0,183302                                                                                                                                                                             | -0,289010 | -0,231930 | 0,192688  | 1,000000  | -0,605808 | -0,174608 | 0,077613  | -0,386300 | -0,265062 | -0,341690 | 0,685445  |
| X6_LSTAT | 0,424085                                                                                                                                                                              | 0,590483  | 0,596188  | -0,484251 | -0,605808 | 1,000000  | 0,469223  | -0,042379 | 0,596729  | 0,528165  | 0,377576  | -0,740351 |
| X7_RAD   | 0,608001                                                                                                                                                                              | 0,610317  | 0,458214  | -0,502597 | -0,174608 | 0,469223  | 1,000000  | 0,006493  | 0,595796  | 0,909233  | 0,480713  | -0,364852 |
| X8_ CHAS | -0,049381                                                                                                                                                                             | 0,117650  | 0,111474  | -0,117004 | 0,077613  | -0,042379 | 0,006493  | 1,000000  | 0,081321  | -0,013160 | -0,109490 | 0,154035  |
| X9_NDUS  | 0,394384                                                                                                                                                                              | 0,761074  | 0,633658  | -0,705015 | -0,386300 | 0,596729  | 0,595796  | 0,081321  | 1,000000  | 0,715589  | 0,364074  | -0,468867 |
| X10_TAX  | 0,566047                                                                                                                                                                              | 0,666941  | 0,501316  | -0,540198 | -0,265062 | 0,528165  | 0,909233  | -0,013160 | 0,715589  | 1,000000  | 0,462376  | -0,452231 |
| X11_PT   | 0,289547                                                                                                                                                                              | 0,164000  | 0,243265  | -0,220393 | -0,341690 | 0,377576  | 0,480713  | -0,109490 | 0,364074  | 0,462376  | 1,000000  | -0,473461 |
| Y_MV     | -0,377012                                                                                                                                                                             | -0,421667 | -0,359839 | 0,230695  | 0,685445  | -0,740351 | -0,364852 | 0,154035  | -0,468867 | -0,452231 | -0,473461 | 1,000000  |

D'après le matrice de corrilation les données ne présentent pas le problème de multi colinéarité, si on prendre rij≥ 0.95. Puisque le critére 1 pour la détection de multicolonéarité n'est pas presente (rij<0.95)

(R = (rij)matrice de corrélation des variables X critère1 ri j≥ 0.95 nécessaire mais non suffisant) Mais on remarque pour rij≥ 0.70 il y a une corrélation entre quelque variable donc, on vérifie les deux autres critères

Critère 2 : Variance inflation factors



D'après le tableau on a max VIF =9,1925<10 donc les données ne présentent pas un problème de multicolinéarité (max VIF j≥ 10 c-à-d R2j≥ 0,90)

**Critère 3 : Indice Conditionnement** 

|              | Eigenvalue | % Total  | Cumulative | Cumulative | IC         |
|--------------|------------|----------|------------|------------|------------|
| Value number |            | variance | Eigenvalue | %          |            |
| 1            | 5,462799   | 49,66181 | 5,46280    | 49,6618    | 1          |
| 2            | 1,372640   | 12,47854 | 6,83544    | 62,1404    | 3,97977587 |
| 3            | 1,129551   | 10,26864 | 7,96499    | 72,4090    | 4,83625771 |
| 4            | 0,845876   | 7,68978  | 8,81087    | 80,0988    | 6,45815553 |
| 5            | 0,655850   | 5,96228  | 9,46672    | 86,0611    | 8,32933748 |
| 6            | 0,500154   | 4,54685  | 9,96687    | 90,6079    | 10,9222384 |
| 7            | 0,348620   | 3,16927  | 10,31549   | 93,7772    | 15,669793  |
| 8            | 0,240779   | 2,18890  | 10,55627   | 95,9661    | 22,6880139 |
| 9            | 0,211233   | 1,92030  | 10,76750   | 97,8864    | 25,8615174 |
| 10           | 0,163825   | 1,48932  | 10,93133   |            | 33,3452692 |
| 11           | 0.068673   | 0.62430  | 11,00000   | 100.0000   | 79,5475137 |

On a vérifié aussi le Critère 3 ou on a trouvé que les données ne présentent pas un problème de multicolinéarité (IC =  $\lambda 1/\lambda k < 100 k = 2, 3, ...$ )

D'après les 3 critéres les données ne présentent pas le problème de multi colinéarité.

# 5c) Modèle de Régression avec Sélection pas à pas Avant (Forward Stepwise) (MRF)

#### Y= b0+ b1\*x1+ b2\*x2+b4\*x4 ... +b8\*x8+b10\*x10+ b11\*x11 + e



# d) Modèle de Régression avec Sélection pas à pas Arrière (Backward Stepwise) (MRB)



Tableau 5d : synthèse des modèles

|     |                    |                                        | MDO           | MRF       | MRB        |
|-----|--------------------|----------------------------------------|---------------|-----------|------------|
| Var | Nom                | coefficient                            | MRO ordinaire | sélection | sélection  |
|     |                    |                                        | ordinaire     | avant     | arrière    |
| X0  | GENÉRAL intercepte | b0                                     | 41,4087       | 41,3312   | 36,8479    |
| X1  | CRIM               | b1                                     | -0,1251       | -0,1252   |            |
| X2  | NOX                | b2                                     | -21,1251      | -20,8566  | -19,5103   |
| Х3  | AGE                | b3                                     | 0,0040        |           |            |
| X4  | DIS                | b4                                     | -1,2916       | -1,3098   | -1,2817    |
| X5  | RM                 | b5                                     | 3,9002        | 3,9241    | 4,1822     |
| X6  | LSTAT              | b6                                     | -0,5639       | -0,5589   | -0,6041    |
| Х7  | RAD                | b7                                     | 0,2685        | 0,2680    |            |
| X8  | CHAS               | b8                                     | 2,7103        | 2,7263    |            |
| Х9  | INDUS              | b9                                     | -0,0022       |           |            |
| X10 | TAX                | b10                                    | -0,0102       | -0,0102   |            |
| X11 | PT                 | b11                                    | -0,9708       | -0,9673   | -0,9297    |
|     |                    | SS<br>resid<br>résiduelle              | 9826,13       | 9827,976  | 10580,48   |
|     |                    | MSE<br>= sigma <sup>2</sup><br>(ANOVA) | 25,003        | 24,88095  | 26,517     |
|     |                    | R <sup>2</sup>                         | 0,71963493    | 0,719582  | 0,69811140 |
|     |                    | R²ajusté                               | ,71178756     | 0,713193  | 0,69432833 |

5e)
Comparez les prédictions des 3 modèles sur l'ensemble test T constitué des 101 observations.
Choisir le meilleur modèle selon des critères; préciser la nature de ces critères.

| .,  |                    |                                        | MRO       | MRF                | MRB                  |
|-----|--------------------|----------------------------------------|-----------|--------------------|----------------------|
| Var | Nom                | coefficient                            | ordinaire | sélection<br>avant | sélection<br>arrière |
| X0  | GENÉRAL intercepte | b0                                     | 37,30622  | 33,70878           | 27,50599             |
| X1  | CRIM               | b1                                     | 0,15954   | 0,12549            |                      |
| X2  | NOX                | b2                                     | -4,99851  |                    |                      |
| Х3  | AGE                | b3                                     | -0,03647  | 0,028814           |                      |
| X4  | DIS                | b4                                     | -0,92637  | 0,393779           |                      |
| X5  | RM                 | b5                                     | 4,16260   | 4,23967            | 4,35412              |
| X6  | LSTAT              | b6                                     | -0,50708  | -0,49156           | -0,45228             |
| Х7  | RAD                | b7                                     | 0,05491   |                    |                      |
| Х8  | CHAS               | b8                                     | 3,83516   | 4,09416            |                      |
| Х9  | INDUS              | b9                                     | -0,04094  | 0,100942           |                      |
| X10 | TAX                | b10                                    | -0,00483  |                    |                      |
| X11 | PT                 | b11                                    | -1,35093  | -1,32519           | -1,45293             |
|     |                    | SS<br>resid<br>résiduelle              | 1508,168  | 1522,431           | 1769,708             |
|     |                    | MSE<br>= sigma <sup>2</sup><br>(ANOVA) | 16,94570  | 1654,82            | 18,244               |
|     |                    | R <sup>2</sup>                         | 0,802669  | 0, 80080241        | 0,76844831           |
|     |                    | R²ajusté                               | 0,778279  | 0, 78348088        | 0, 76128691          |
|     |                    | F                                      | 32,910728 | 46,232             | 107,30               |





D'après le graphe et p-valeu on remarque qu'il y a des variables qui sont non significatifs, et on a aussi max VIF=11,05 donc on a le probléme de multicolinéarité. Le modèle ne satisfaisant pas



D'après les tableaux on remarque que la méthode de Régression avec Forward Stepwise a éliminé (négligé) quelques variables qui ne sont pas significatives mais il n'a pas éliminé toutes les variables puisque la méthode de Forward Stepwise ne vérifie pas l'états de toutes les variables après la sélection chaque step.



D'après les tableaux on remarque que la méthode de Régression avec Backward Stepwise a éliminé les variables qui ne sont pas significatives et résoudre le probléme de multicolinéarité.

Backward Stepwise vérifie l'états de toutes les variables après la sélection pour chaque step

D'après les résultats precedantes on remarque que la méthode de Régression avec Backward Stepwise plus rapide et éfficase et contien moins des étapes par rapport Régression avec Forward Stepwisea et Régression Ordinaire.

Et on remarque que avec la méthode Backward Stepwise on a éliminé le probléme des variables non significatifs qui aparaitre dans le modèle de Régression Ordinaire et Régression avec Forward Stepwisea, et aussi on remarque qu'il a éliminé le probléme de multicolinéarité, Et aussi R2adj légèrement inférieur à R2.

#### No 6 Étude d'un modèle de régression multiple problématique Données = BodyFat-F.sta

#### Réponse



D'après la matrice de corrélation et le scattergramme on remarque que La corrélation est positive entre les variables et est valide on remarque qu'il y a une forte corrélation entre (X2 et X1 ,...) ce qui implique qu'il y a un

6b) Modèle de régression multiple ordinaire (MRO) entre Y et X1, X2, X3.

#### V- h0+ h1\*Y1+ h2\*Y2+h3\*Y3

problème de multicolinéarité

| Regression Summary fi                                                                             | or Dependent Va                                                       | riable: Y Bodul                                                                | Fat (BodyFat-F                                                              | emme sta in 20                                                     | 18-MTH8302-                                                         | Devoirs-Data)                                                 | Analysis of Vari      | ance; DV: Y_Bod                                |                 | ,                                        |                                                                   |                             |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|-----------------------|------------------------------------------------|-----------------|------------------------------------------|-------------------------------------------------------------------|-----------------------------|
| R= ,89518632 R2= ,801                                                                             | 35855 Adjusted                                                        | R2= .76411328                                                                  |                                                                             | diffine.ota in 20                                                  | 710 1111110002                                                      | Detoils Date)                                                 | 11                    | Sums of                                        | df              | Mean                                     | F                                                                 | p-value                     |
| F(3,16)=21,516 p<,000                                                                             |                                                                       |                                                                                |                                                                             | 045-                                                               | MACI                                                                |                                                               | Effect                | Squares                                        |                 | Squares                                  |                                                                   |                             |
| N=20                                                                                              | b*                                                                    | Std.Err.<br>of b*                                                              | ь                                                                           | Std.Err.                                                           | t(16)                                                               | p-value                                                       | Regress.              | 396,9846                                       | 3               | 132,3282                                 | 21,51571                                                          | 0,000007                    |
| ntercept                                                                                          |                                                                       |                                                                                | 117,0847                                                                    | 99,78240                                                           | 1,17340                                                             | 0,257808                                                      | Residual              | 98,4049                                        | 16              | 6,1503                                   |                                                                   |                             |
| (1_epTricep                                                                                       | 4,26370                                                               | 2,966538                                                                       | 4,3341                                                                      | 3,01551                                                            | 1,43727                                                             | 0,169911                                                      | Total                 | 495,3895                                       |                 | ,                                        |                                                                   |                             |
| 2_circHanches                                                                                     | -2,92870                                                              | 2,646956                                                                       | -2,8568                                                                     | 2,58202                                                            | -1,10644                                                            |                                                               | Total                 | 400,0000                                       |                 |                                          |                                                                   |                             |
| _circBras                                                                                         | -1,56142                                                              | 1,139602                                                                       | -2,1861                                                                     | 1,59550                                                            | -1,37014                                                            | 0.189563                                                      |                       | ollinearity statistics for terr                | ns in the eq    | uation (BodyFat-Femme                    | sta in 2018-MTH8302-D                                             | Devoirs-Data)               |
|                                                                                                   |                                                                       | _                                                                              | _                                                                           | _                                                                  |                                                                     | _                                                             |                       | gma-restricted parameteri:<br>Tolemce Variance | R square        | Y BodyFat Y Bo                           | dvFat Y BodvFat                                                   | Y BodyFat   Y Bod           |
| n remar                                                                                           | que qu                                                                | ıe le s                                                                        | igne d                                                                      | le coe                                                             | fficier                                                             | nt de                                                         | Effect<br>X1 epTricep | Infl fac<br>0.0014107 708.84291                | 0.998589        | Beta in Par                              |                                                                   | t p                         |
|                                                                                                   |                                                                       |                                                                                |                                                                             |                                                                    |                                                                     |                                                               |                       |                                                | 0,998228        |                                          |                                                                   |                             |
|                                                                                                   |                                                                       | rican                                                                          | act no                                                                      | neitiva.                                                           | cola                                                                | impliana                                                      |                       | 0,0017720 564,34339                            |                 |                                          | 665991 -0,1232830                                                 |                             |
|                                                                                                   |                                                                       | •                                                                              | •                                                                           |                                                                    |                                                                     | implique                                                      | X3_circBras           | 0,0095597 104,60601                            | 0,990440        | 3 -1,561417 -0,3                         | 240520 -0,1526654                                                 |                             |
|                                                                                                   |                                                                       | •                                                                              | •                                                                           |                                                                    |                                                                     |                                                               | X3_circBras           | 0,0095597 104,60601                            | 0,990440        | 3 -1,561417 -0,3                         | 240520 -0,1526654                                                 |                             |
| ue X1_e                                                                                           | pTrice                                                                | p éval                                                                         | ué da                                                                       | ns le n                                                            | nême                                                                | sens que                                                      | On rema               | o,0095597 <b>=104.60501</b><br>arque au        | 0,990440<br>SSİ | <sup>3</sup> -1,561417 -0,3<br>qu'il y a | aucun                                                             | -1,370142 0,18              |
| que X1_e<br>′_bodyFa                                                                              | pTrice<br>at (si X                                                    | p éval<br>1 aug                                                                | ué da<br>mente                                                              | ns le n<br>donc                                                    | nême<br>Y auç                                                       | sens que<br>gmente).                                          | On rema               | 0,0095597 104,60601                            | 0,990440<br>SSİ | <sup>3</sup> -1,561417 -0,3<br>qu'il y a | aucun                                                             | -1,370142 0,18              |
| que X1_e<br>Y_bodyFa                                                                              | pTrice<br>at (si X                                                    | p éval<br>1 aug                                                                | ué da<br>mente                                                              | ns le n<br>donc                                                    | nême<br>Y auç                                                       | sens que<br>gmente).                                          | On rema               | o,0095597 <b>=104.60501</b><br>arque au        | 0,990440<br>SSİ | <sup>3</sup> -1,561417 -0,3<br>qu'il y a | aucun                                                             | -1,370142 0,18              |
| que X1_e<br>Y_bodyFa<br>Et le sign                                                                | pTrice<br>at (si X<br>e des (                                         | p éval<br>1 aug<br>coeffic                                                     | ué dai<br>mente<br>cients                                                   | ns le n<br>donc<br>des va                                          | nême<br>Y auç<br>ariabl                                             | sens que<br>gmente).<br>es                                    | On rema               | o,0095597 <b>=104.60501</b><br>arque au        | ssi (<br>ficat  | <sup>3</sup> -1,561417 -0,3<br>qu'il y a | aucun<br> ue >0,052                                               | -1,370142 0,18<br><b>5)</b> |
| que X1_e<br>/_bodyFa<br>Et le sign<br>(2_circHa                                                   | pTrice<br>at (si X<br>e des e<br>anches                               | p éval<br>1 aug<br>coeffic<br>s, X3_c                                          | ué dai<br>mente<br>cients<br>circBr                                         | ns le n<br>donc<br>des va<br>as est                                | nême<br>Y auç<br>ariabl<br>néga                                     | sens que<br>gmente).<br>es<br>tive,                           | On rema               | o,0095597 <b>=104.60501</b><br>arque au        | 0,990440<br>SSİ | <sup>3</sup> -1,561417 -0,3<br>qu'il y a | aucun                                                             | -1,370142 0,18<br><b>5)</b> |
| que X1_e<br>/_bodyFa<br>Et le sign<br>(2_circHa                                                   | pTrice<br>at (si X<br>e des e<br>anches                               | p éval<br>1 aug<br>coeffic<br>s, X3_c                                          | ué dai<br>mente<br>cients<br>circBr                                         | ns le n<br>donc<br>des va<br>as est                                | nême<br>Y auç<br>ariabl<br>néga                                     | sens que<br>gmente).<br>es                                    | On rema               | o,0095597 <b>=104.60501</b><br>arque au        | ssi (<br>ficat  | <sup>3</sup> -1,561417 -0,3<br>qu'il y a | aucun<br> ue >0,05                                                | -1,370142 0,18<br>5)<br>847 |
| que X1_e<br>/_bodyFa<br>Et le sign<br>(2_circHa<br>mplique                                        | pTrice<br>at (si X<br>e des c<br>anches<br>que les                    | p éval<br>1 aug<br>coeffic<br>s, X3_c<br>s varia                               | ué dai<br>mente<br>cients<br>circBra<br>ables é                             | ns le n<br>donc<br>des va<br>as est<br>évalué                      | nême<br>Y auç<br>ariabl<br>néga<br>s dan                            | sens que<br>gmente).<br>es<br>tive,<br>ss le sens             | On rema               | o,0095597 <b>=104.60501</b><br>arque au        | ssi (ficat      | <sup>3</sup> -1,561417 -0,3<br>qu'il y a | aucun<br> ue >0,052                                               | -1,370142 0,18<br>5)<br>847 |
| que X1_e<br>Y_bodyFa<br>Et le sign<br>X2_circHa<br>mplique<br>nverse d                            | pTrice<br>at (si X<br>e des c<br>anches<br>que les<br>e Y_bc          | p éval<br>1 aug<br>coeffic<br>s, X3_c<br>s varia                               | ué dai<br>mente<br>cients<br>circBra<br>ables é                             | ns le n<br>donc<br>des va<br>as est<br>évalué                      | nême<br>Y auç<br>ariabl<br>néga<br>s dan                            | sens que<br>gmente).<br>es<br>tive,<br>ss le sens             | On rema               | o,0095597 <b>=104.60501</b><br>arque au        | ssi (<br>ficat  | <sup>3</sup> -1,561417 -0,3<br>qu'il y a | aucun<br> ue >0,05                                                | -1,370142 0,18<br>5)<br>847 |
| que X1_e<br>Y_bodyFa<br>Et le sign<br>X2_circHa<br>implique<br>inverse d                          | pTrice<br>at (si X<br>e des c<br>anches<br>que les<br>e Y_bc          | p éval<br>1 aug<br>coeffic<br>s, X3_c<br>s varia                               | ué dai<br>mente<br>cients<br>circBra<br>ables é                             | ns le n<br>donc<br>des va<br>as est<br>évalué                      | nême<br>Y auç<br>ariabl<br>néga<br>s dan                            | sens que<br>gmente).<br>es<br>tive,<br>ss le sens             | On rema               | o,0095597 <b>=104.60501</b><br>arque au        | ssi (ficat      | <sup>3</sup> -1,561417 -0,3<br>qu'il y a | aucun<br> ue >0,05<br>  117,08<br>  4,33                          | 5)<br>347<br>341            |
| que X1_e<br>Y_bodyFa<br>Et le sign<br>K2_circHa<br>mplique<br>nverse d<br>diminué).               | pTrice<br>at (si X<br>e des c<br>anches<br>que les<br>e Y_bo          | p éval<br>1 aug<br>coeffic<br>s, X3_c<br>s varia                               | ué dai<br>mente<br>cients<br>circBr<br>ables é<br>(si X                     | ns le n<br>donc<br>des va<br>as est<br>évalué<br>2 augr            | nême<br>Y auç<br>ariabl<br>néga<br>s dan<br>mente                   | sens que<br>gmente).<br>es<br>tive,<br>ss le sens             | On rema               | o,0095597 <b>=104.60501</b><br>arque au        | b0              | <sup>3</sup> -1,561417 -0,3<br>qu'il y a | aucun<br> ue >0,05                                                | 5)<br>347<br>341            |
| que X1_e<br>/_bodyFa<br>Et le sign<br>K2_circHa<br>mplique<br>nverse d<br>diminué).<br>Et aussi ( | pTrice at (si X e des ( anches que les e Y_bo                         | p éval<br>1 aug<br>coeffic<br>s, X3_c<br>s varia<br>odyFat                     | ué dan<br>mente<br>cients<br>circBra<br>ables é<br>: (si X                  | ns le n<br>donc<br>des va<br>as est<br>évalué<br>2 augr            | nême<br>Y auç<br>ariabl<br>néga<br>s dan<br>mente                   | sens que<br>gmente).<br>es<br>tive,<br>es le sens<br>e donc Y | On rema               | o,0095597 <b>=104.60501</b><br>arque au        | ssi (ficat      | <sup>3</sup> -1,561417 -0,3<br>qu'il y a | aucun<br> ue >0,05<br>  117,08<br>  4,33                          | 5)<br>347<br>341            |
| que X1_e<br>/_bodyFa<br>t le sign<br>(2_circHa<br>mplique<br>nverse d<br>diminué).<br>Et aussi (  | pTrice at (si X e des ( anches que les e Y_bo                         | p éval<br>1 aug<br>coeffic<br>s, X3_c<br>s varia<br>odyFat                     | ué dan<br>mente<br>cients<br>circBra<br>bles é<br>ci (si X                  | ns le n<br>donc<br>des va<br>as est<br>évalué<br>2 augr            | nême<br>Y auç<br>ariabl<br>néga<br>s dan<br>mente                   | sens que<br>gmente).<br>es<br>tive,<br>es le sens<br>e donc Y | On rema               | o,0095597 <b>=104.60501</b><br>arque au        | b0              | <sup>3</sup> -1,561417 -0,3<br>qu'il y a | 249520 0 1526551<br>aucun<br>lue >0,05<br>117,08<br>4,33<br>-2,85 | 5)<br>347<br>341<br>568     |
| ue X1_e '_bodyFa '_bodyFa t le sign (2_circHa mplique nverse d liminué). t aussi c (1_epTric      | pTrice at (si X e des c anches que les e Y_bc on rem cep a u          | p éval<br>1 aug<br>coeffic<br>s, X3_c<br>s varia<br>odyFat<br>arque<br>in plus | ué dan<br>mente<br>cients<br>circBra<br>bles é<br>(si X<br>que la<br>s gran | ns le n<br>donc<br>des va<br>as est<br>évalué<br>2 augr<br>a varia | nême<br>Y auç<br>ariabl<br>néga<br>s dan<br>mente<br>able<br>act su | sens que<br>gmente).<br>es<br>tive,<br>es le sens<br>e donc Y | On rema               | o,0095597 <b>=104.60501</b><br>arque au        | b0<br>b1        | <sup>3</sup> -1,561417 -0,3<br>qu'il y a | 249520 0 1526551<br>aucun<br>lue >0,05<br>117,08<br>4,33<br>-2,85 | 5)<br>347<br>341<br>568     |
| que X1_e<br>Y_bodyFa<br>Et le sign<br>X2_circHa                                                   | pTrice pt (si X e des c anches que les e Y_bc on rem cep a u at par u | p éval<br>1 aug<br>coeffic<br>s, X3_c<br>s varia<br>odyFat<br>arque<br>in plus | ué dan<br>mente<br>cients<br>circBra<br>bles é<br>(si X<br>que la<br>s gran | ns le n<br>donc<br>des va<br>as est<br>évalué<br>2 augr<br>a varia | nême<br>Y auç<br>ariabl<br>néga<br>s dan<br>mente<br>able<br>act su | sens que<br>gmente).<br>es<br>tive,<br>es le sens<br>e donc Y | On rema               | o,0095597 <b>=104.60501</b><br>arque au        | b0              | <sup>3</sup> -1,561417 -0,3<br>qu'il y a | aucun<br> ue >0,05<br>  117,08<br>  4,33                          | 5)<br>347<br>341<br>568     |

Le modèle ne satisfaisant pas à cause de présentent un problème de multicolinéarité entre les **variable Xi (max VIF=708,84 >10)** 

Pour obtenir un modèle plus satisfaisant on utilise des méthodes pour remédier aux problèmes de multicolinéarité comme la régression en composantes principales (ACP), la régression PLS (« Partial Least Square »), la régression RIDGE, la méthode de sélection de variables...

Et pour cet exercice on utilise les 2 méthodes suivant pour résoudre le problème de multicolinéarité : Mod1 : régression RIDGE et Mod2 : régression en composantes principales

#### ெ) Mod1 : régression RIDGE



| k   | X1      | X2      | Х3       |
|-----|---------|---------|----------|
| 0,0 | 4,3341  | -2,8568 | -2,1861  |
| 0,1 | 4,3341  | -2,8568 | -2,1861  |
| 0,2 | 0,39789 | 0,42405 | -0,08581 |
| 0,3 | 0,37644 | 0,40521 | -0,06704 |
| 0,4 | 0,35877 | 0,38685 | -0,05270 |
| 0,5 | 0,34330 | 0,36976 | -0,04130 |
| 0,6 | 0,32939 | 0,35401 | -0,03205 |
| 0,7 | 0,31673 | 0,33953 | -0,02443 |



#### D'après le graphe on a prend K=0,24





6c)

#### Mod2: régression en composantes principales

Au début on utilise la méthode ACP pour exprime les données initiales X dans l'espace des facteurs (F1, F2,..), on exprime les variables initiales X sous forme centrées-réduites Xcr On criée un fichier initial qui contient les données dans

-l'espace initial (X) -l'espace des facteurs (F) -l'espace des variables centrés-réduites (Xcr)

| CSPU                     | oc iiiit                    | · (/\)                   | . 000              | 400 ac              | o iaot                 | cars (i | <u>,</u> | pace aco variabi                        | 00 00116100               | <del>o roaantoo</del>    | (710.)                   |
|--------------------------|-----------------------------|--------------------------|--------------------|---------------------|------------------------|---------|----------|-----------------------------------------|---------------------------|--------------------------|--------------------------|
| 12<br>K1_epTricep_<br>cr | 13<br>X2_circHanch<br>es_cr | 14<br>X3_circBras_<br>cr | 15<br>Facteur1     | 16<br>Facteur2      | 17<br>Facteur3         |         |          |                                         |                           |                          |                          |
| -1,2                     | -1,5                        | 0,4                      | -1,63189           | 1,10075             | 0,046262               |         |          |                                         |                           |                          |                          |
| -0,1                     | -0,3                        | 0,2                      | -0,19303           | 0,26387             | 0,037463               |         |          | Factor coordinates of the variables, ba | acad on correlations /Do  | h-Eat Easses ata in 2010 | MTU0202 Davaira Data     |
| 1,1                      | 0,1                         | 2,6                      | 1,72932            | 2,19005             | -0,024545              |         |          | Active and Supplementary variables      | ased on correlations (Doc | ayrat-remme.sta in 2010- | WITHOUGH - Devoits-Data) |
| 0,9                      | 0,6                         | 1,0                      | 1,33021            | 0,54703             | -0,002570              |         |          | *Supplementary variable                 |                           |                          |                          |
| -1,2                     | -1,7                        | 0,9                      | -1,62359           | 1,62286             | -0,036284              |         |          |                                         | F 4 4                     | E . 0                    | E . 2                    |
| 0,1                      | 0,5                         | -1,1                     | -0,00515           | -1,19609            | 0,003308               |         |          | Variable                                | Factor 1                  | Factor 2                 | Factor 3                 |
| 1,2                      | 1,4                         | -0,0                     | 1,72239            | -0,68255            | -0,024221              |         |          | V4 onTrioon                             | 0.000044                  | -0.048393                | 0,019342                 |
| 0,5                      | 0,2                         | 0,8                      | 0,75518            | 0,62824             | 0,032686               |         |          | X1_epTricep                             | 0,998641                  | -0,040393                | 0,019342                 |
| -0,6                     | -0,2                        | -1,2                     | -1,01789           | -0,94745            | 0,030129               |         |          | X2 circHanches                          | 0.904817                  | -0,425451                | -0.017255                |
| 1,2                      | 1,0                         | -0,8                     | 0,03793<br>1,68155 | -0,89109<br>0,07017 | -0,044847<br>-0,015348 |         |          | _                                       | ,                         |                          |                          |
| 1,0                      | 1,1                         | 0,7                      | 1,43448            | -0.34907            | 0.000371               |         |          | X3 circBras                             | 0.500494                  | 0.865708                 | -0.007399                |
| -1,3                     | -0,9                        | -1,3                     | -1,91602           | -0,67657            | -0.024716              |         |          |                                         |                           |                          |                          |
| -1,1                     | -1,3                        | 0,3                      | -1,51969           | 0.88331             | -0.022057              |         |          | *Y_BodyFat                              | 0,826492                  | -0,312046                | 0,144559                 |
| -2,1                     | -1,6                        | -1,7                     | -3,10224           | -0,73369            | -0,017750              |         |          |                                         |                           |                          |                          |
| 0,8                      | 0,6                         | 0,7                      | 1,20528            | 0,29584             | 0,017606               |         |          |                                         |                           |                          |                          |
| 0,5                      | 8,0                         | -0,5                     | 0,64454            | -0,84331            | -0,018437              |         |          |                                         |                           |                          |                          |
| 1,0                      | 1,4                         | -0,8                     | 1,28207            | -1,41630            | 0,017912               |         |          |                                         |                           |                          |                          |
| -0,5                     | -0,6                        | -0,1                     | -0,76702           | 0,14812             | 0,030217               |         |          |                                         |                           |                          |                          |
| -0,0                     | -0,0                        | -0,0                     | -0,04642           | -0,01414            | 0,014821               |         |          |                                         |                           |                          |                          |

Ensuite on régresse Y sur les facteurs F avec la méthode progressive Régresser Y sur F1, régresser Y sur F1 et F2,..., etc Arrêter lorsqu'un nouveau F devient non significatif.







Et après on fait la Comparaissant entre Yprédit et Yobservé et on modifie l'étape de régression et prend le meilleur choix.

Et a la fin nous avons trouvé que Y = b0 + b1\*F1 + b2\*F2 c'est le meilleur choix

|    | s avons trouvé<br>00 + b1*F1 + b2*     | :F2                |
|----|----------------------------------------|--------------------|
|    | Coefficient                            | MR                 |
| F0 | b0                                     | 20,19500           |
| F1 | b1                                     | 2,93576            |
| F2 | b2                                     | -1,64976           |
|    | SS<br>resid<br>résiduelle              | 108,7572<br>28,12% |
|    | MSE<br>= sigma <sup>2</sup><br>(ANOVA) | 6,397480           |
|    | R <sup>2</sup>                         | 0,780461           |
|    | R²ajusté                               | 0,754633           |

Pour régresser Y sur F1 et F2



D'après le graphe et le tableau on reamrque que on a une bonne corrélation entre les facteurs et Y\_pred (R²ajusté=0,75). Et aussi qu'il y a 28% de variabilité de variable qui n'est pas expliqué par notre modèle

| Variable       | Factor 1 | Factor 2  | Factor 3  |
|----------------|----------|-----------|-----------|
| X1_epTricep    | 0,998641 | -0,048393 | 0,019342  |
| X2_circHanches | 0,904817 | -0,425451 | -0,017255 |
| X3 circBras    | 0,500494 | 0,865708  | -0,007399 |
| *Y_BodyFat     | 0,826492 | -0,312046 | 0,144559  |

Y\_BodyFat\_pred = b0 + b1\*F1 + b2\*F2=b0+(b1\*0,998-b2\*0,048)\*X1\_epTricep\_cr + (b1\*0,904-b2\*0,425)\*X2\_cirHanches + (b1\*0,5-b2\*0,312)\*X3\_circBras

#### 6d)

|                       | Mod1     | Mod2     |
|-----------------------|----------|----------|
| R <sup>2</sup>        | 0,686220 | 0,780461 |
| R <sup>2</sup> ajusté | 0,627386 | 0,754633 |
| SSresid(%)            | 45,72    | 28,12    |

D'après la valeure de R<sup>2</sup>ajusté et SSresid(%) on remarque que le Mod2 (régression en composantes principales) le meilleur choix

Et on remarque aussi qu'il y a des variables non significatives dans le Mod1 (régression RIDGE) par contre le Mod2 qui toutes ces variables sont significatives.

#### No 7 Étude de prédiction d'activité biologique : modélisation PLS Données = Penta.sta

#### Réponse

7a)

#### M1 : Modèle PLS (modèle avec toutes les composantes)



Summary of PLS (Penta.sta in 2018-MTH8302-Devoirs-Data)
Responses: Y\_logRAI
Options: NO-INTERCEPT AUTOSCALE
Include condition: CLASSE='entraiment'

|      |    | Increase            | Average             | Increase            | Average             |
|------|----|---------------------|---------------------|---------------------|---------------------|
|      |    | R <sup>2</sup> of Y | R <sup>2</sup> of Y | R <sup>2</sup> of X | R <sup>2</sup> of X |
| Comp | 1  | 0,896399            | 0,896399            | 0,169014            | 0,169014            |
| Comp | 2  | 0,078368            | 0,974767            | 0,127721            | 0,296735            |
| Comp | 3  | 0,004636            | 0,979403            | 0,146554            | 0,443289            |
| Comp | 4  | 0,002485            | 0,981889            | 0,118421            | 0,561710            |
| Comp | 5  | 0,001494            | 0,983383            | 0,105894            | 0,667605            |
| Comp | 6  | 0,002617            | 0,986001            | 0,051876            | 0,719481            |
| Comp | 7  | 0,002428            | 0,988428            | 0,061873            | 0,781354            |
| Comp | 8  | 0,001926            | 0,990354            | 0,072252            | 0,853606            |
| Comp | 9  | 0,000725            | 0,991080            | 0,067285            | 0,920891            |
| Comp | 10 | 0,000000            | 0,991080            | 0,079076            | 0,999967            |
| Comp | 11 | 0,000099            | 0,991179            | 0,000033            | 1,000000            |

D'après les R2 de de Y(cumul) on remarque que nous avons une bonne corrélation entres les composantes et Y

| Y_logRAI-<br>OBSV | Y_logRAI-pred-<br>com11 | écart    |
|-------------------|-------------------------|----------|
| 0,00              | 0,10001                 | -0,10001 |
| 0,28              | 0,32348                 | -0,04348 |
| 0,20              | 0,09999                 | 0,10001  |
| 0,51              | 0,32345                 | 0,18655  |
| 0,11              | 0,11000                 | 0,00000  |
| 2,73              | 2,60227                 | 0,12773  |
| 0,18              | 0,18000                 | 0,00000  |
| 1,53              | 1,58613                 | -0,05613 |
| -0,10             | -0,10000                | 0,00000  |
| -0,52             | -0,52000                | 0,00000  |
| 0,40              | 0,40000                 | 0,00000  |
| 0,30              | 0,30000                 | 0,00000  |
| -1,00             | -1,00000                | 0,00000  |
| 1,57              | 1,71053                 | -0,14053 |
| 0,59              | 0,66413                 | -0,07413 |



On remarque que le modèle prédit a bien suivi notre modèle réel

7b) modèle à 2 composantes semble un bon choix R2 de Y = 0,9747

Summary of PLS (Penta.sta in 2018-MTH8302-Devoirs-Data)

Responses: Y\_logRAI

V 1---- DAI

Options: NO-INTERCEPT AUTOSCALE Include condition: CLASSE='entraiment'

| I    |    | Increase            | Average             | Increase            | Average             |
|------|----|---------------------|---------------------|---------------------|---------------------|
|      |    | R <sup>2</sup> of Y | R <sup>2</sup> of Y | R <sup>2</sup> of X | R <sup>2</sup> of X |
| Comp | 1  | 0,896399            | 0,896399            | 0,169014            | 0,169014            |
| Comp | 2  | 0,078368            | 0,974767            | 0,127721            | 0,296735            |
| Comp | 3  | 0,004636            | 0,979403            | 0,146554            | 0,443289            |
| Comp | 4  | 0,002485            | 0,981889            | 0,118421            | 0,561710            |
| Comp | 5  | 0,001494            | 0,983383            | 0,105894            | 0,667605            |
| Comp | 6  | 0,002617            | 0,986001            | 0,051876            | 0,719481            |
| Comp | 7  | 0,002428            | 0,988428            | 0,061873            | 0,781354            |
| Comp | 8  | 0,001926            | 0,990354            | 0,072252            | 0,853606            |
| Comp | 9  | 0,000725            | 0,991080            | 0,067285            | 0,920891            |
| Comp | 10 | 0,000000            | 0,991080            | 0,079076            | 0,999967            |
| Comp | 11 | 0,000099            | 0,991179            | 0,000033            | 1,000000            |

On a basé sur le choix des composantes sur les deux critères suivants :

Nombre de composante petit et R2 de Y (cumul) max Et comme vous voyez dans le tableau nous remarquons que R2 de Y(cumul) de la composante2 augmente de 0,07 par rapport R2 de Y(cumul) de composante1, et après la composante2 on remarque que les autres composantes augmentent de facon presque constante.

avec R2 de Y (cumul)=0,97 qui montre que notre modèle presque prédit tous les variables

#### M2 : Modèle PLS (modèle avec les 2 premières composantes)



V Is a DAL and I desail

Summary of PLS (Penta.sta in 2018-MTH8302-Devoirs-Data) Responses: Y logRAI Options: NO-INTERCEPT AUTOSCALE Include condition: CLASSE='entraiment' Increase Average Increase R<sup>2</sup> of Y R<sup>2</sup> of Y R<sup>2</sup> of X R<sup>2</sup> of X 0,896399 0,896399 0.169014 0.169014 Comp 1 0,078368 0,974767 0,127721 Comp 2 0,296735

D'après les R2 de de Y(cumul) on remarque que nous avons une bonne corrélation entres les composantes et Y

| Y_logRAI- | Y_logRAI-pred- | écart    |
|-----------|----------------|----------|
| OBSV      | com2           |          |
| 0,00      | 0,21319        | -0,21319 |
| 0,28      | 0,51533        | -0,23533 |
| 0,20      | 0,14380        | 0,05620  |
| 0,51      | 0,44595        | 0,06405  |
| 0,11      | 0,17156        | -0,06156 |
| 2,73      | 2,48083        | 0,24917  |
| 0,18      | 0,09637        | 0,08363  |
| 1,53      | 1,44762        | 0,08238  |
| -0,10     | -0,15456       | 0,05456  |
| -0,52     | -0,54923       | 0,02923  |



On remarque que le modèle prédit a bien suivi notre modèle réel (il y a une linéarisation entre Y et sa valeur prédit)

| 0,40  | 0,53927  | -0,13927 |
|-------|----------|----------|
| 0,30  | 0,26851  | 0,03149  |
| -1,00 | -1,13327 | 0,13327  |
| 1,57  | 1,79743  | -0,22743 |
| 0,59  | 0,49719  | 0,09281  |
|       | ·        | ·<br>    |



On remarque que les deux modèles prédits sont bien suivi le modèle réel pour les deux cas de composantes (2 et 11) Pour les deux composantes on a presque la même résultat

7c)
Avec les variables S1 P1 S3 P3 L3 S4 L4 P4 on a trouvé R2 de Y pour composant2 égale 0,947 est ca signifie que avec c'est variable on a exprimé 95% de valeur prédit de Y et a cause de ca on peut éliminé les autres variables qui ne contribué pas avec les valeurs prédites

M3 : Modèle PLS (modèle avec les 2 premières composantes et les variables S1 P1 S3 P3 L3 S4 L4 P4)

|         | Summary of          | Summary of PLS (Penta.sta in Workbook1_(Recovered)) |                     |                     |        |  |  |  |
|---------|---------------------|-----------------------------------------------------|---------------------|---------------------|--------|--|--|--|
|         | Responses: Y_logRAI |                                                     |                     |                     |        |  |  |  |
|         | Options: NO         | -INTERCEPT                                          | AUTOSCAL            | E                   |        |  |  |  |
|         | Include cond        | ition: CLASS                                        | E='entraimer        | nt'                 |        |  |  |  |
|         | Increase            | Average                                             | Increase            | Average             | NewVar |  |  |  |
|         | R <sup>2</sup> of Y | R <sup>2</sup> of Y                                 | R <sup>2</sup> of X | R <sup>2</sup> of X |        |  |  |  |
| Comp 1  | 0,852271            | 0,852271                                            | 0,322533            | 0,322533            |        |  |  |  |
| Comp 2  |                     |                                                     |                     |                     |        |  |  |  |
| D'anròs | le D2               | do do                                               | V(cumu              | Il on re            | marau  |  |  |  |

D'après les R2 de de Y(cumul) on remarque que nous avons une bonne corrélation entres les composantes et Y

|          | Predictor weights (Penta sta in Workbook1_(Recovered)) Responses: V JogRAI Options: NO-INTERCEPT AUTOSCALE Include condition: CLASSE=*entraiment* |                                       |                           |              |             |                 |           |                  |                   |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------|--------------|-------------|-----------------|-----------|------------------|-------------------|
|          | "S1"                                                                                                                                              | "P1"                                  | "S3"                      | "P3          |             | 3"              | "S4"      | "L4"             | "P4"              |
| Compo 1  | -0,16098                                                                                                                                          | -0,1729                               | 06 -0,433                 | 825 0,29     | 1095 0,6    | 67575           | -0,299635 | 0,304618         | -0,207405         |
| Compo 2  | -0,29848                                                                                                                                          | -0,3019                               | 13 -0,153                 | 813 0.46     | 6094 0,3    | 393983          | 0.441079  | -0,281950        | 0,386761          |
|          | IPI S regressin                                                                                                                                   | n coefficients                        | (Ponta sta in )           | Wasishaak1 ( | (Recovered) |                 |           |                  |                   |
|          | PLS regression<br>Responses: Y<br>Options: NO-I<br>Include condit                                                                                 | _logRAI<br>NTERCEPT A<br>ion: CLASSE: | UTOSCALE<br>e'entraiment' | -            |             | 20              |           |                  |                   |
| Y logRAI | Responses: Y<br>Options: NO-II                                                                                                                    | _logRAI<br>NTERCEPT A                 | UTOSCALE                  | Workbook1_(  | (Recovered) | "L3"<br>0.22001 | "\$4"     | "L4"<br>0 107457 | "P4"<br>-0.144669 |

Y\_logRAI-pred=0,24-0,1\*S1-0,27\*P1-0,11\*S3+0,56\*P3+0,22\*L3-0,07\*S4+0,1\*L4-0,14\*P4

| Y_logRAI- | Y_logRAI-pred- | écart    |
|-----------|----------------|----------|
| OBSV      | com2           |          |
| 0,00      | 0,21108        | -0,21108 |
| 0,28      | 0,41472        | -0,13472 |
| 0,20      | 0,12791        | 0,07209  |
| 0,51      | 0,33154        | 0,17846  |
| 0,11      | 0,33154        | -0,22154 |
| 2,73      | 2,48272        | 0,24728  |
| 0,18      | 0,33154        | -0,15154 |
| 1,53      | 1,40562        | 0,12438  |



On remarque que le modèle prédit n'a pas bien suivi notre modèle réel (il y a une quelque erreur entre Y et sa valeur prédit)

| -0,10 | 0,33154  | -0,43154 |
|-------|----------|----------|
| -0,52 | -0,61608 | 0,09608  |
| 0,40  | 0,40105  | -0,00105 |
| 0,30  | 0,08113  | 0,21887  |
| -1,00 | -1,17345 | 0,17345  |
| 1,57  | 1,75619  | -0,18619 |
| 0,59  | 0,36295  | 0,22705  |

7d) Y\_logRAI-pred=0,24-0,1\*S1-0,27\*P1-0,11\*S3+0,56\*P3+0,22\*L3-0,07\*S4+0,1\*L4-0,14\*P4

| <br>_logival-preu= | 0,24-0,1 31-0,27 P | 1-0,11 33+0,3 |
|--------------------|--------------------|---------------|
| Y_logRAI-          | Y_logRAI-pred-     | écart         |
| OBSV               | com2               |               |
| -0,10              | -0,327235642       | 0,23          |
| 0,46               | 0,686589345        | -0,23         |
| 0,75               | 1,82393778         | -1,07         |
| 1,43               | 2,20               | -0,78         |
| 1,45               | 2,20               | -0,76         |
| 1,71               | 2,20               | -0,50         |
| 0,04               | 0,05               | -0,01         |
| 0,23               | 0,89               | -0,66         |
| 1,30               | 1,86               | -0,57         |
| 2,35               | 2,20               | 0,14          |
| 1,98               | 2,80               | -0,82         |
| 1,71               | 2,53               | -0,82         |
| 0,90               | 0,30               | 0,60          |
| 0,64               | 2,14               | -1,51         |
| 0,40               | 0,75               | -0,35         |
|                    | -1,89              | 1,89          |
|                    |                    |               |



On remarque que le modèle prédit n'a pas bien suivi notre modèle réel (il y a une grand erreur entre Y et sa valeur prédit)

Pour que la régéssion soit plus rapide et éfficase on élimine les variables qui ne contribué pas avec les valeurs prédites et on prend le nombre de composante petit et R2 de Y (cumul) max, avec cela nous obtenons le même résultat

### Conclusion générale

Dans cet devoir nous avons tretié des données réels ou on a utilisé la régression multiple ordinaire et Régression avec Forward Stepwise et Régression avec Backward Stepwise. Et on a tretié le probléme de multicolinéarité ou on a utilisé les méthodes (RIDGE, ACP) pour résoudre le probléme. Et on a bien étudié la régression PLS