Implementing EDF Scheduler

Task	Periodicity(ms)	Deadline(ms)	Execution Time
Button_1_Monitor	50	50	13.5us
Button_2_Monitor	50	50	14us
Periodic_Transmitter	100	100	18.4us
Uart_Receiver	20	20	57us
Load_1_Simulation	10	10	5ms
Load_2_Simulation	100	100	12ms

• Calculate the system hyperperiod

Hyper Period = Least Common Multiple (100 ms)

• Calculate the CPU load

• Check system schedulability using URM and time demand analysis techniques

using URM

URM = *Rate Monotonic Utilization*

$$URM = n (2^{(1/n)} - 1)$$

 $URM = 6* (2^{(1/6)} - 1) = 0.73477$

U = Total Utilization,
n = number of Tasks,
C = Execution time,
P = hyper Period

Since Total Utilization (U) <= Rate-Monotonic utilization bound (URM),

 $(0.623) \le (0.734)$, Therefore the system is schedulable

using time demand analysis

1st deadline (p = 10): Load_1_Simulation

w(10) = 5, w(10) <10 Load_1_Simulation Task is schedulable

2nd deadline (p = 20): Uart_Receiver

w(20) = 0.057 + (20/10)5 = 10.057, w(20) < 20, Uart_Receiver Task is schedulable

3rd deadline (p = 50): Button_1_Monitor

w(50) = 0.0135 + (50/20)0.057 + (50/10)5 = 25.156.w(50) < 50, Button_1_Monitor Task is schedulable

3th deadline (p = 50): Button_2_Monitor

w(50) = 0.014 + 0.0135 + (50/20)0.057 + (50/10)5 = 25.17, w(50) < 50, Button_2_Monitor Task is schedulable

4th deadline (p = 100): Periodic_Transmitter

w(100) = 0.0184 + (100/50)0.014 + (100/50)0.0135 + (100/20)0.057 + (100/10)5 = 50.3584

w(100) <100, Periodic_Transmitter Task is schedulable

4th deadline (p = 100): Load_2_Simulation

w(100) = 12 + 0.0184 + (100/50)0.014 + (100/50)0.0135 + (100/20)0.057 + (100/10) = 62.3584

w(100) <100, Load_2_Simulation Task is schedulable

Based on time Demand Analysis the System is Schedulable.

Using Simso offline simulator

Using Keil simulator in run-time

CPU usage time

Name	Value	Type
task_1_TotalTime	1336	int
task_2_TotalTime	1351	int
task_3_TotalTime	1243	int
task_4_TotalTime	3882	int
task_5_TotalTime	565845	int
task_6_TotalTime	136998	int
system_Time	1135061	int
✓ CPU_Load	62,6094093	float
<enter expression=""></enter>		

PIN2(18)	Tick Hook
PIN4(20)	Button 1 Task
PIN5(21)	Button 2 Task
PIN6(22)	Periodic Transmitter Task
PIN7(23)	UART Receiver Task
PIN8(24)	Load 1 Simulation Task
PIN9(25)	Load 2 Simulation Task
PIN3(19)	Idle Task