Machine Learning In Python

Subject: Feature Selection

Lecturer: Reza Akbari Movahed

Hamedan University of Technology

Spring 2020

- The data features that you use to train your machine learning models have a huge influence on the performance you can achieve.
- In machine learning applications, we may face different issues such as overfitting, identifying the related features from a set of data and removing the irrelevant or less important features.
- Irrelevant features and partially relevant can negatively impact model performance.
- Feature Selection is one of the core concepts in machine learning which hugely impacts the performance of your model.
- Feature Selection is the process of selecting the best subset of features for use in model construction.

Supervised Learning Framework by Considering Feature Selection

Different Types of Feature Selection Methods

Filter methods	Wrapper methods	Embedded methods
Generic set of methods which do	Evaluates on a specific machine	Embeds (fix) features during
not incorporate a specific	learning algorithm to find	model building process. Feature
machine learning algorithm.	optimal features.	selection is done by observing
		each iteration of model training
		phase.
Much faster compared to	High computation time for a	Sits between Filter methods and
Wrapper methods in terms of	dataset with many features	Wrapper methods in terms of
time complexity		time complexity
Examples – Correlation, Chi-	Examples - Forward Selection,	Examples - LASSO, Elastic Net,
Square test, ANOVA,	Backward elimination, Stepwise	Ridge Regression etc.
Information gain etc.	selection etc.	

Wrapper Methods

Wrapper Methods

Sequential Forward Feature Selection (SFFS)

Sequential Backward Feature Selection (SFBS)

Sequential Forward Feature Selection (SFFS)

SFS is the simplest greedy search algorithm

- Starting from the empty set, sequentially add the feature x^+ that maximizes $J(Y_k + x^+)$ when combined with the features Y_k that have already been selected
 - 1. Start with the empty set $Y_0 = \{\emptyset\}$
 - 2. Select the next best feature $x^+ = \underset{x \notin Y_k}{\operatorname{arg max}} J(Y_k + x)$
 - 3. Update $Y_{k+1} = Y_k + x^+$; k = k + 1
 - 4. Go to 2

Notes

SFS performs best when the optimal subset is small

Sequential Forward Feature Selection (SFFS)

Sequential Backward Feature Selection (SBFS)

SBS works in the opposite direction of SFS

- Starting from the full set, sequentially remove the feature x^- that least reduces the value of the objective function $J(Y-x^-)$
 - Removing a feature may actually increase the objective function $J(Y_k x^-) > J(Y_k)$; such functions are said to be non-monotonic (more on this when we cover Branch and Bound)
 - 1. Start with the full set $Y_0 = X$
 - 2. Remove the worst feature $x^- = \underset{x \in Y_k}{\operatorname{arg max}} J(Y_k x)$
 - 3. Update $Y_{k+1} = Y_k x^-$; k = k + 1
 - 4. Go to 2

Notes

 SBS works best when the optimal feature subset is large, since SBS spends most of its time visiting large subsets

