Lista 2

Para correção serão considerados os exercícios computacionais 1 e 2 e algum escolhido da parte "exercício (papel e lápis)" entre os itens 1,9 ou 10.

1 Verificação de conceitos

- 1. Calcule o cosseno do ângulo entre os vetores u = (3,4) e v = (12,9)
- 2. Se ||u|| = 5, ||v|| = 8 e o ângulo entre os vetores u e v é $\theta = \pi/3$, calcule ||u v||
- 3. Verifique que os vetores pertencentes à reta y = x são ortogonais ao vetor v = (1, -1)
- 4. O que é uma base ortonormal β de um espaço E? Qual é a relação entre as matrizez de passagem P_e^{β} ?
- 5. Construa uma base ortonormal de \mathbb{R}^2 que contenha o vetor $u=\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)$
- 6. O conjunto F é o subespaço de \mathbb{R}^3 gerado pelo vetor u=(1,-1,2). Determine F^{\perp} .
- 7. O conjuto F é o subespaço de \mathbb{R}^3 que contém apenas o vetor nulo, $F = \{0\}$. Determine F^{\perp} .
- 8. Se uma transformação linear $T: \mathbb{R}^n \to \mathbb{R}^m$ é injetiva o que podemos dizer com relação ao sistema linear $[T] \cdot x = 0$?

2 Exercícios papel e lápis

- 1. Seja $E = C(\mathbb{R})$ o espaço das funções contínuas $f : \mathbb{R} \to \mathbb{R}$. Defina o operador linear $A : E \to E$ pondo para cada $f \in E$, $A(f) = \phi$, onde $\phi(x) = \int_0^x f(t) dt$. Determine o núcleo e a imagem do operador A.
- 2. Assinale verdadeiro ou falso, justificando as afirmativas
 - () Uma transformação linear $A:E\to F$ é sobrejetiva se, e somente se, $\dim(N(A))=\dim(E)-\dim(F)$
 - () Dada a transformação linear $A: E \to F$, para todo b fixado em F, o conjunto $G = \{x \in E/Ax = b\}$ é um subespaço vetorial de E.
 - () Para todo operador linear $A: E \to E$, se $u \in N(A)$ e $v \in Im(A)$ então $\langle u, v \rangle = 0$
 - () Todo operador linear injetivo no espaço $C^0(\mathbb{R})$ das funções contínuas na reta é também sobrejetivo.
 - () O núcleo de toda transformação linear $A: \mathbb{R}^5 \to \mathbb{R}^3$ tem dimensão ≥ 3
 - () Se a transformação linear $A: \mathbb{R}^m \to \mathbb{R}^n$ é injetiva então dim(Im(A)) = m.
- 3. Determine uma base para a imagem e para o núcleo, quando possível, de cada uma das transformações lineares abaixo e indique quais são sobrejetivas.
 - (a) $A: \mathbb{R}^2 \to \mathbb{R}^2$, A(x,y) = (x y, x y)
 - (b) $B: \mathbb{R}^3 \to \mathbb{R}^3$, B(x, y, z) = (x + y/2, y + z/2, z + x/2)
 - (c) $C: M_{2\times 2} \to M_{2\times 2}, C(X) = A \cdot X$, onde $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ $(M_{2\times 2} \notin \text{o espaço das matrizes } 2\times 2)$
 - (d) $D: P_n \to P_{n+1}, D(p(x)) = x \cdot p(x)$ (P_n é o espaço dos polinômios de grau até n)
- 4. (Elon) Dadas as transformações lineares $A:E\to F,\ B:F\to G,$ assinale Verdadeiro ou Falso nas seguintes implicações
 - (a) se BA é sobrejetiva então B é sobrejetiva
 - (b) se BA é sobrejetiva então A é sobrejetiva
 - (c) se BA é sobrejetiva então B é injetiva

(d) se BA é sobrejetiva então A é injetiva

Mostre ainda que se E = F = G então as quatro implicações são verdadeiras.

- 5. Seja $D=\{(x,y,z)\in\mathbb{R}^3/z=0\ e\ x^2+y^2\leq 1\}.$ Ou seja, D é o disco unitário contido no plano z=0. Determine D^\perp e $(D^\perp)^\perp$
- 6. Mostre que F e G são subespaços ortogonais de E então $F \cap G = \{0\}$
- 7. Seja F um subespaço de E de dimensão finita. Mostre que
 - (a) Todo vetor w de E pode ser escrito como w=u+v, onde $u\in F$ e $v\in F^{\perp}$
 - (b) $(F^{\perp})^{\perp} = F$
- 8. Assinale verdadeiro ou falso, justificando as afirmativas
 - () Se $u \neq 0$ e < u, v > = < u, u > então v = u
 - () Uma transformação linear $A:E\to F$ é sobrejetiva se, e somente se, $\dim(N(A))=\dim(E)-\dim(F)$
 - () Para todo operador linear $A: E \to E$, tem-se $N(A) = Im(A)^{\perp}$
 - () O posto de uma matriz A é igual ao posto de A^TA
 - () Se u e v são ortogonais e P é uma projeção ortogonal então Pu e Pv são ortogonais
 - () O complemento ortogonal de um vetor não nulo $u \in \mathbb{R}^3$ é uma reta
 - () Se F é um subespaço de E então $(F^{\perp})^{\perp} = F$
- 9. O espaço F é o plano gerado pelos vetores u = (2, -2, 0) e v = (1, 1, 2).
 - (a) Exiba uma base ortonormal de \mathbb{R}^3 que contenha $u \in v$.
 - (b) Calcule a projeção ortogonal de w = (-1, -1, 1) sobre u e sobre v
 - (c) Escreva a matriz da projeção ortogonal de z=(x,y,z) sobre F na base obtida na letra (a) e também na base canônica.
- 10. Aplique o processo de Gram-Schimidt nos vetores $u_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, $u_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ e $u_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, ou seja, encontre uma decomposição QR da matriz $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

3 Computacionais

- 1. Seja \mathcal{P}^2 o espaço vetorial dos polinômios de grau até dois. Considere operação < p,q> entre dois polinômios definida por $< p,q> = \int_{-1}^1 p(x)q(x)dx$.
 - (a) Mostre que esta operação é um produto interno em \mathcal{P}^2
 - (b) Encontre uma base ortonormal (segundo este produto interno) de \mathcal{P}^2 (que tal usar Gram-Schmidt? Talvez você prefira usar o computador para lhe auxiliar nas contas...)
- 2. O arquivo Matriz Incidencia.csv que acompanha esta lista contém a matriz de incidência de uma rede direcionada (grafo), onde cada linha representa uma aresta e cada coluna um vértice. Se $B_{ij} = 1$ então a aresta i se inicia no vértice j. Se $B_{ij} = -1$ então a aresta i termina no vértice j. Deste modo em cada linha i há apenas uma entrada igual a 1 e uma entrada igual a -1 e todos demais elementos desta linha são iguais a zero.
 - (a) Encontre uma base para o núcleo da matriz de incidência. Você pode usar um pacote computacional, claro!
 - Funções úteis Matlab: $\operatorname{null}(M)$ ou $\operatorname{null}(M, \operatorname{'rational'})$. R: $\operatorname{nullspace}(M)$ ou $\operatorname{null}(M)$. Python: $\operatorname{scipy.linalg.nullspace}(M)$.

(b)	Descreva quantas componentes cada componente.	conexas esta re	ede possui e	quais são os	vértices que	pertencem a