Math 205 Theorems.

- 1. **Schwarz Lemma.** Let $f: \{z \in \mathbb{C}: |z| < 1\} \to \mathbb{C}$ be holomorphic and $|f(z)| \le 1$ for all z, and f(0) = 0. Then, $|f(z)| \le |z|$ and $f'(0) \le 1$. If for some $z_0 \ne 0$, $|f(z_0)| = |z_0|$ or if |f'(0)| = 1, then f(z) = cz for some $c \in \mathbb{C}$ with |c| = 1.
- 2. **Theorem.** Let $K \subseteq \mathbb{C}$ compact (write: $K \in \mathbb{C}$), $f: K \to \mathbb{C}$ continuous, f holomorphic on K. Then, $\sup_{z \in K} |f(z)| = \sup_{z \in \partial K} |f(z)|$.
- 3. **Theorem.** Let $f: \Omega \to \mathbb{C}$ holomorphic (Ω open & connected), $z_0 \in \Omega$, $|f(z_0)| = \sup_{z \in \Omega} |f(z)|$. Then, f is constant.
- 4. **Theorem (Horwitz).** Let $\Omega \subseteq \mathbb{C}$ be open & connected, $f : \Omega \to \mathbb{C}$, $f_n : \Omega \to \mathbb{C}$, f_n holomorphic, $f_n(\Omega) \subset \mathbb{C} \setminus \{0\}$, $n \in \mathbb{N}$, $||f_n f||_k \to 0$ for all $K \subseteq \Omega$. Then, either f = 0 identically or $f(\Omega) \subset \mathbb{C} \setminus \{0\}$.
- 5. **Theorem.** Let $\Omega \subseteq \mathbb{C}$ be open, \mathscr{F} be a set of holomorphic function $\Omega \to \mathbb{C}$. Then, TFAE:
 - (a) For every $K \subseteq \Omega$, $\sup_{f \in \mathscr{F}} ||f||_K < \infty$.
 - (b) For every sequence $(f_n)_{n\in\mathbb{N}}\subset\mathscr{F}$, there exists a subsequence $(f_{n_j})_{j\in\mathbb{N}}$, $n_1< n_2<\ldots$, such that $(f_{n_j})_{j\in\mathbb{N}}$ is uniformly convergent on compact subsets of Ω .
- 6. **Lemma.** Let $K \subseteq \Omega$, \mathscr{F} family of holomorphic functions $\Omega \to \mathbb{C}$ so that for every $K \subseteq \Omega$, $\sup_{f \in \mathscr{F}} ||f||_K < \infty$. Given $\varepsilon > 0$, there is a $\delta > 0$ such that $z, z' \in K$ and $|z z'| < \delta$ imply $|f(z) f(z')| < \varepsilon$ for every $f \in \mathscr{F}$.
- 7. **Riemman Mapping Theorem.** Let $\Omega \subset \mathbb{C}$ be open, connected, simply connected, and $\emptyset \neq \Omega \neq \mathbb{C}$. Then, Ω and $\mathbb{D} = \{|z| < 1\}$ are holomorphic and isomorphic (i.e. there exists a holomorphic $f : \Omega \to \mathbb{D}$ with holomorphic inverse).
- 8. **Prop.** Let $g \in SL_2(\mathbb{C})$. Then, $T_g \in Aut(\mathbb{D})$ iff $g \in S \cap (1,1)$.
- 9. **Prop.** Aut{Imz > 0} = { $T_h \mid h \in SL_2(\mathbb{R})$ }.
- 10. **Theorem.** Let T_g be a fractional linear transformation and z_1, z_2, z_3, z_4 be distinct points in $\mathbb{C} \cup \{\infty\}$. Then, $(z_1, z_2, z_3, z_4) = (T_g z_1, T_g z_2, T_g z_3, T_g z_4)$.

- 11. **Lemma.** Let $g \in GL_2(\mathbb{C})$. Then, $\{w \in \mathbb{C} \cup \{\infty\} \mid T_{gw} \in \mathbb{R} \cup \{\infty\}\}$ is a circle on a (straight line) $\cup \{\infty\}$.
- 12. **Theorem.** Let Ω be an open, connected set so that there is $f: \Omega \to \mathbb{D}$ that is a holomorphic isomorphism. Then, $\operatorname{iso}(\Omega, \mathbb{D}) \ni g \to \left(g(z_0), \frac{g'(z_0)}{|g'(z_0)|}\right) \in \mathbb{D} \times \{|z| = 1\}$ is a bijection.
- 13. **Definition of Jordan Curve.** A Jordan Curve is given by a map $[0,1] \ni t \to C(t) \in \mathbb{C}$ which is continuous, 1-1 on [0,1) and C(0) = C(1) (no self-intersection otherwise).
- 14. **Jordan Curve Theorem.** If $C:[0,1]\to\mathbb{C}$ is a Jordan curve, then $\mathbb{C}\setminus C([0,1])$ has 2 connected components. One of these is bounded and the other, unbounded. (The bounded component is called the "interior") We shall denote by |C| the set C([0,1]) when $C:[0,1]\to\mathbb{C}$.
- 15. **Caratheodory's Theorem.** Let Γ be a Jordan curve and Ω be the interior region (then $\partial\Omega=|\Gamma|$). Then, if $f:\mathbb{D}\to\Omega$ is a holomorphic isomorphism, then f extends to a homeomorphism $\overline{\mathbb{D}}\to\overline{\Omega}$, where $\partial\mathbb{D}$ is mapped to $\partial\Omega=|\Gamma|$.
- 16. **Rectifiable def.** An arc ϕ : $[a,b] \to \mathbb{C}$ (the map ϕ is 1-1 and continuous) is rectifiable if it has 'length' (bounded variation), that is, if:

$$\sup_{a=t_0 < t_1 < \dots < t_k = b} \sum_{j=0}^{k-1} (|\phi(t_{j+1}) - \phi(t_j)|) < \infty$$

where $k \in \mathbb{N}$.

- 17. **Theorem.** Let Ω, ω be disjoint open regions and Γ a rectifiable arc so that $|\Gamma| \subset \partial\Omega \cap \partial\omega$ and $|\Gamma| \cup \Omega \cup \omega$ open (Γ has no endpoints). Assume also $f: |\Gamma| \cup \Omega \to \mathbb{C}, g: |\Gamma| \cup \omega \to \mathbb{C}$ are continuous and $f|_{\Omega}, g|_{\Omega}$ holomorphic and $f|_{|\Gamma|} = g|_{|\Gamma|}$. Then, $F: \Omega \cup |\Gamma| \cup \omega \to \mathbb{C}$ is holomorphic.
- 18. **Theorem (Schwarz Reflection Principle).** Let $\Omega = \Omega^*$ (= $\{\overline{z} \mid z \in \Omega\}$) open region, $\Omega \cap \mathbb{R} \supset (a,b)$ and $\Omega_{\pm} = \Omega \cap \{\pm \operatorname{Im} z > 0\}$. If $f: \Omega_+ \cup (a,b) \to \mathbb{C}$ continuous, $f|_{(a,b)} \subset \mathbb{R}$, $f|_{\underline{\Omega_+}}$ holomorphic, then, F(z), with F(z) = f(z) if $z \in \Omega_+ \cup (a,b)$ and $F(z) = \overline{f(\overline{z})}$ if $z \in \Omega_-$ is holomorphic in $\Omega_+ \cup (a,b) \cup \Omega_-$.