

New Zealand Mathematical Olympiad Committee

2010 Squad Assignment Two

Algebra

Due: Wednesday, 3rd March 2010

1. Let x and y be non-negative real numbers. Prove that

$$(x+y^3)(x^3+y) \ge 4x^2y^2.$$

When does equality hold?

- 2. Find all functions $f: \mathbb{N} \to \mathbb{N}$ that satisfy the following two conditions:
 - (a) f(n) is a perfect square for all $n \in \mathbb{N}$;
 - (b) f(m+n) = f(m) + f(n) + 2mn for all $m, n \in \mathbb{N}$.

(For the purposes of this problem we will consider \mathbb{N} to be the set $\{1,2,3,\ldots\}$, i.e., 0 is not considered to be a natural number.)

3. Consider two ordered sequences of real numbers $a_1 < a_2 < \cdots < a_n$ and $b_1 < b_2 < \cdots < b_m$, where $n, m \in \mathbb{N}$, $n, m \geq 2$. Prove that the set

$${a_i + b_j | 1 \le i \le n, 1 \le j \le m}$$

contains exactly n + m - 1 elements if and only if both sequences are arithmetic, with the same increment.

4. Determine the largest subset $M \subseteq \mathbb{R}^+$ such that the inequality

$$\sqrt{ab} + \sqrt{cd} \ge \sqrt{a+b} + \sqrt{c+d}$$

holds for all $a, b, c, d \in M$.

Determine whether the inequality

$$\sqrt{ab} + \sqrt{cd} \ge \sqrt{a+c} + \sqrt{b+d}$$

also holds for all $a, b, c, d \in M$. (Note that \mathbb{R}^+ denotes the set of all positive real numbers.)

5. Let a, b, c be positive real numbers such that $a + b + c \ge abc$. Prove that

$$a^2 + b^2 + c^2 \ge \sqrt{3}abc.$$

6. Find all functions $f: \mathbb{Z} \to \mathbb{Z}$ satisfying

$$f(m+n) + f(mn-1) = f(m)f(n) + 2$$

for all $m, n \in \mathbb{Z}$.

- 7. Let $(a_n)_{n=1}^{\infty}$ be a sequence of positive integers such that $a_n < a_{n+1}$ for all $n \ge 1$. Suppose that for all 4-tuples of indices (i, j, k, l) such that $1 \le i < j \le k < l$ and i + l = j + k, the inequality $a_i + a_l > a_j + a_k$ is satisfied. Determined the least possible value of a_{2010} .
- 8. Find the least positive number x with the following property: if a, b, c, d are arbitrary positive numbers whose product is 1, then

$$a^{x} + b^{x} + c^{x} + d^{x} \ge \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}.$$

17th February 2010

www.mathsolympiad.org.nz