On the Lumpability of tree-valued Markov Chains

Rodrigo Barreto Alves (IME - UERJ)

Joint work with Luiz M. Carvalho (FGV EMAp) and Yuri F. Saporito (FGV EMAp)

September 19, 2025

Outline

- Introduction
- 2 Lumpability for the tree space
- $\ \ \ \ \varepsilon$ -Lumpability for the tree space
- 4 Experimental results
- 6 Open Problems

Phylogenetic trees

Figure 1: A tree $x \in T_6$ and one of its clades. The clade c as a subtree with leaves $\{1, 2, 5\}$ is shown in the dashed rectangle.

Figure 2: Labelled and unlabelled rooted trees.

Figure 3: A balanced (left) and a ladder (right) trees. These represent the trees with the largest and smallest neighbourhoods in the rSPR graph, respectively.

Tree space and Subtree prune-and-regraft (SPR)

Figure 4: Figure from Whidden and Matsen IV (2017). For simplicity $d_{r-SPR}(x,y) := d(x,y)$.

Properties of the rSPR-graph

- **Diameter:** The diameter of the rSPR-graph is O(n) (Song, 2003).
- Connectivity: From the proof of the diameter, it can be inferred that the rSPR-graph is connected.
- Neighbourhood size: Each tree has $O(n^2)$ neighbours.
 - Maximum neighbours: balanced tree, $4(n-2)^2 - 2\sum_{j=1}^{n-2} |\log_2(j+1)|$
 - Minimum neighbours: ladder tree. $3n^2 13n + 14$.
- Complexity: Computing the distance between two trees is NP-hard (Bordewich and Semple, 2005).

Motivation

If one has a Markov process $(X_k)_{k\geq 0}$ on the space of trees, is the induced process $(Y_k(c))_{k\geq 0}\in\{0,1\}$ for each clade c also Markov?

Figure 5: Autocorrelation spectra of clade indicators for the LMH. We show the empirical autocorrelation spectra up to lag k = 50 for indicators of clades when sampling from a LMH with $\rho = 0.9$ on a single realisation.

SPR Metropolis-Hastings random walk

We define a Metropolis Hastings random walk on a SPR graph

$$p_{\mathrm{MH}}(x,y) = \begin{cases} \frac{1}{|N(x)|} \min\left\{1, \frac{|N(x)|}{|N(y)|}\right\}, y \in N(x), \\ 1 - \sum_{z \in N(x)} \frac{1}{|N(x)|} \min\left\{1, \frac{|N(x)|}{|N(z)|}\right\}, y = x \\ 0, y \notin N(x). \end{cases}$$

Where $N(x) := \{ y \in T_n : d(x, y) = 1 \}.$

This leads to a uniform distribution, i.e., $\pi_{\mathrm{MH}}(t) = 1/|T_n|$ for all $t \in T_n$.

Lumpability

Let $(X_k)_{k\geq 0}$ be Markov chain on $S = \{f_1, f_2, \ldots, f_r\}$, $\bar{S} = \{E_1, E_2, \ldots, E_v\}$ a partition of S and $(Y_k)_{k\geq 0}$ is the projected process on \bar{S} .

Definition

Let $(X_k)_{k\geq 0}$ be Markov chain on a finite state-space $S = \{f_1, f_2, \ldots, f_r\}$ with initial distribution μ_0 and transition probabilities matrix P. We say $(X_k)_{k\geq 0}$ is **lumpable** with respect to a partition of $\bar{S} = \{E_1, E_2, \ldots, E_v\}$ of the state space if the projected process $(Y_k)_{k\geq 0}$ on \bar{S} is also a Markov chain for any μ_0 .

If $(X_k)_{k\geq 0}$ is lumpable with respect to the partition \bar{S} for any $x,y\in E_i$ we have

$$\sum_{z \in E_j} p(x, z) = \sum_{z \in E_j} p(y, z).$$

Shape-lumpability of tree-valued Markov chains

- Let $\bar{F} := \{F_1, F_2, \dots, F_v\}$ be a tree shape partition of T_n .
- It is important to notice that if $x, y \in F_i$, we have |N(x)| = |N(y)|.
- For a $x \in T_n$, we define

$$F_j^x := \{ y \in T_n : d(x, y) = 1 \text{ and } y \in F_j \} = N(x) \cap F_j.$$

Lemma

Let x and y be trees in T_n , such that they have the same shape, i.e. $x, y \in F_i$. Then for all $j \in \{1, 2, ..., v\}$ we have $|F_j^x| = |F_j^y|$.

Shape-lumpability of tree-valued Markov chains

Theorem

Consider the SPR Metropolis-Hastings random walk. Let $\bar{F} := \{F_1, F_2, \dots, F_v\}$ be a tree shape partition of \mathbf{T}_n . Then we have that the SPR Metropolis-Hastings random walk is lumpable with respect to the partition $\bar{F} := \{F_1, F_2, \dots, F_v\}$.

Idea of the proof of the Theorem (MH)

Fix a $j \in \{1, 2, ..., v\}$ and $i \in \{1, 2, ..., v\}$. For all $x, y \in F_i$, we have

$$\begin{split} & \sum_{z \in F_j} p(x,z) - \sum_{z \in F_j} p(y,z) = \\ & \sum_{z \in F_j^x} \frac{1}{|N(x)|} \min \left\{ 1, \frac{|N(x)|}{|N(z)|} \right\} - \sum_{z \in F_j^y} \frac{1}{|N(y)|} \min \left\{ 1, \frac{|N(y)|}{|N(z)|} \right\} \;. \end{split}$$

For $z' \in F_j^x$. We have two possible situations $|N(x)| \ge |N(z')|$ or |N(x)| < |N(z')|.

Lumping error and ϵ -lumpability

Definition

Consider again a partition $\bar{S} = \{E_1, \dots, E_v\}$ of S. For $x, y \in E_i$, define the **lumping error** as

$$R_{i,j}(x,y) = \sum_{z \in E_j} p(x,z) - \sum_{z \in E_j} p(y,z).$$

When $|R_{i,j}(x,y)| \leq \epsilon$ for every pair x,y, we say the Markov chain is ϵ -almost lumpable with respect to \bar{S} .

Clade partition of tree-space

Let C_n be the space of all partitions of the leaf set (i.e. C_n is the space of all clades). Denote C(x) as the set of clades that compose $x \in T_n$.

Definition

Let $\bar{S}_n(c) = \{S_0(c), S_1(c)\}$ be the partition of \mathbf{T}_n induced by clade $c \in \mathbf{C}_n$, for which we will write $S_0(c) := \{y \in \mathbf{T}_n : c \notin C(y)\}$ and $S_1(c) := \{y \in \mathbf{T}_n : c \in C(y)\} = \mathbf{T}_n \setminus S_0(c)$.

- For $x \in S_1(c)$ we set $A_1^{x,c} := S_1(c) \cap N(x)$ and $A_0^{x,c} := S_0(c) \cap N(x)$.
- For $x \in S_0(c)$, we denote $B_1^{x,c} := N(x) \cap S_1(c)$ and $B_0^{x,c} := N(x) \cap S_0(c)$.

Theorem

Consider the SPR Metropolis-Hastings random walk $(X_k)_{k\geq 0}$ and the partition $\bar{S} := \{S_0(c), S_1(c)\}$ of T_n . Then the lumping error for $(X_k)_{k\geq 0}$ with respect to the partition \bar{S} is evaluated, for |c|=2,

$$\varepsilon = \begin{cases} \varepsilon(S_0(c), S_1(c)), & \text{for } 4 \le n \le 8, \\ \varepsilon(S_1(c), S_0(c)), & \text{for } n > 9, \end{cases}$$

Now for $3 \le |c| \le |n^{1/2}|$ and $n \ge 9$, $\varepsilon = \varepsilon(S_0(c), S_1(c))$.

For simplicity $S_0(c) := S_0$ and $S_1(c) := S_1$.

For all $x, y \in S_1$, by Lemma 5.5 in Whidden and Matsen IV (2017) we have

$$\begin{split} R_{S_1,S_0}(x,y) &= \sum_{z \in A_0^{x,c}} p(x,z) - \sum_{z \in A_0^{y,c}} p(y,z) \\ &= \sum_{z \in A_0^{x,c}} \frac{1}{|N(x)|} \min \left\{ 1, \frac{|N(x)|}{|N(z)|} \right\} - \sum_{z \in A_0^{y,c}} \frac{1}{|N(y)|} \min \left\{ 1, \frac{|N(y)|}{|N(z)|} \right\} \\ &\leq \frac{|A_0^{x,c}|}{|N(x)|} - \frac{5|A_0^{y,c}|}{6|N(y)|} = \varepsilon(S_1,S_0) \,. \end{split}$$

For all $x, y \in S_0$, by Lemma 5.5 in Whidden and Matsen IV (2017) we have

$$\begin{split} R_{S_0(c),S_1(c)}(x,y) &= \sum_{z \in B_1^{x,c}} p(x,z) - \sum_{z \in B_1^{y,c}} p(y,z) \\ &\leq \sum_{z \in B_1^{x,c}} \frac{1}{|N(x)|} \min \left\{ 1, \frac{|N(x)|}{|N(z)|} \right\} - \sum_{z \in B_1^{y,c}} \frac{1}{|N(y)|} \min \left\{ 1, \frac{|N(y)|}{|N(z)|} \right\} \\ &\leq \frac{|B_1^{x,c}|}{3n^2 - 13n + 14} - \frac{5|B_1^{y,c}|}{6|N(y)|} = \varepsilon(S_0, S_1) \,. \end{split}$$

Lumpability Experiment

• We consider for the original process $(X_k)_{k\geq 0}$ on T_n ,

$$P_{MH}^{\rho} = \rho I + (1 - \rho) P_{MH} ,$$

for $\rho \in \{0, 0.1, 0.5, 0.9\}$.

• We generate the Lumped transition probability matrix, Q, for the projected process $(Y_k)_{k\geq 0}$ on $\bar{F} = \{F_1, F_2, \dots, F_v\}$.

$$q(F_i, F_j) = p(x, F_j),$$

where $x \in F_i$ and $i, j \in \{1, 2, ..., v\}$.

• We ran 500 independent replicates of each chain with 10000 iterations each. Define $\hat{\mu}_k^j$ and $\hat{\nu}_k^j$ as the empirical measures of $(X_k^j)_{k\geq 0}$ and $(Y_k^j)_{k\geq 0}$.

Lumpability Experiment

- We generate a new empirical measure from $\hat{\nu}_k^j$, assigning it the domain T_n and denoting it as $\hat{\eta}_k^j$. we compute $p_k^{F_i} := \hat{\nu}_k^j(F_i) \times |F_i|^{-1}$ and for each tree $x \in F_i$, we assign $\hat{\eta}_k^j(x) = p_k^{F_i}$.
- Measuring the distance to the stationary distribution

$$\begin{split} m_k &:= \min_{j \in \{1,2,\dots,500\}} || \hat{\mu}_k^j - \pi_X || \\ M_k &:= \max_{j \in \{1,2,\dots,500\}} || \hat{\mu}_k^j - \pi_X || \\ E_k &:= \frac{1}{500} \sum_{j=1}^{500} || \hat{\mu}_k^j - \pi_X || \,. \end{split}$$

The same metrics will be calculated for $\hat{\eta}_k^j$ at each iteration.

Results for n=6

ε -Lumpability Experiment for |c|=2

- We define $\eta_X := (\pi_X(S_0(c)), \pi_X(S_1(c)))$ where $(X_k)_{k \geq 0}$ is a MH on T_n . Define $(Y_k)_{k \geq 0}$ as the projected process on the partition $\bar{S} = \{S_0(c), S_1(c)\}.$
- Define $(\tilde{Y}_k)_{k\geq 0}$ as the auxiliary process on $\{\tilde{S}^c_0, \tilde{S}^c_1\}$ and $\hat{\mu}_{\tilde{Y}_k}$ the empirical measure.

$$||\hat{\mu}_{\tilde{Y}_k} - \eta_X|| \le ||\hat{\mu}_{\tilde{Y}_k} - \hat{\mu}_{Y_k}|| + ||\hat{\mu}_{Y_k} - \eta_X||.$$

• The auxiliary Markov Chain

$$\begin{split} \tilde{p}(S_0^c, S_1^c) &= \tilde{p}(S_1^c, S_1^c) = \\ &\frac{1}{2} \left(\frac{2n-5}{3n^2-13n+14} + \frac{5}{6(4(n-2)^2-2\sum_{i=1}^{n-2} \lfloor \log_2(j+1) \rfloor)} \right). \end{split}$$

ε -Lumpability Experiment for |c|=2

- We ran 500 independent replicates of $(\tilde{Y}_k^j)_{k\geq 0}$, the auxiliary one, with 10.000 iterations each. Denote $\hat{\mu}_{\tilde{Y}_k^j}$ as the empirical measure.
- Measuring the distance to the stationary distribution

$$\begin{split} m_k &:= \min_{j \in \{1, 2, \dots, 500\}} || \hat{\mu}_{\tilde{Y}_k^j} - \pi_X || \\ M_k &:= \max_{j \in \{1, 2, \dots, 500\}} || \hat{\mu}_{\tilde{Y}_k^j} - \pi_X || \\ E_k &:= \frac{1}{500} \sum_{i=1}^{500} || \hat{\mu}_{\tilde{Y}_k^j} - \pi_X || \,. \end{split}$$

Results for |c| = 2 and n = 100

Open problems

- Develop methods to construct auxiliary processes on smaller spaces to improve Monte Carlo estimation.
- Find partitions that minimize lumping error while retaining interpretability.
- Explore the relationship between lumping error and convergence speed in projected processes.
- Investigate how to generalize the findings to more realistic posterior distributions and target processes.

Idea of the proof that of the Lemma

Figure 6: Same SPR operation on different trees, however with the same shape.

Some results about clade partition of tree-space

- For a tree $x \in S_1(c)$ we set $A_1^{x,c} := S_1(c) \cap N(x)$ and $A_0^{x,c} := S_0(c) \cap N(x)$.
- We define $f_c: S_1(c) \to T_k$, where k:=n-|c|+1.

Lemma

If
$$x \in S_1(c)$$
 then $|A_1^{x,c}| = |N(x')| + |N(\phi_c^x)|$, where $x' = f_c(x)$.

Idea of the proof that $|A_1^{x,c}| = |N(x')| + |N(\phi_c^x)|$.

Some results about clade partition

Lemma

Let $x \in S_1(c)$ be such in Figure above. Then for all $w \in S_1(c)$ we have $|A_0^{x,c}|/|N(x)| \ge |A_0^{w,c}|/|N(w)|$ and

$$\begin{split} \frac{|A_0^{x,c}|}{|N(x)|} &= \frac{-8|c|^2 + 8|c|n + 6|c| - 8n - 2}{3n^2 - 2|c|^2 + 2|c|n - 15n + 16} \quad for \ |c| \geq 3 \ , and \\ \frac{|A_0^{x,c}|}{|N(x)|} &= \frac{8n - 22}{3n^2 - 11n + 8} \quad for \ |c| = 2 \, . \end{split}$$

Some results about Clade partition of tree-space

Let $x \in S_0(c)$, we denote $B_1^{x,c} := N(x) \cap S_1(c)$. Let $y \in S_0(c)$, we define I as a set of leaves such that we have a subtree ϕ_I and $c \cup I$ generates a subtree.

Figure 7: We have c_1 and c_2 clades such that $c_1 \cap c_2 = \emptyset$ and $c_1 \cup c_2 = c$.

Some results about Clade partition of tree-space

Lemma

Let $x \in S_0(c)$ and $3 \le |c| \le n-3$ then

$$|B_1^{x,c}| = \begin{cases} 2(|c|-1), & (I) \\ 2(n-|I|)-3, & (II) \\ 0 & (III). \end{cases}$$

Some results about Clade partition of tree-space

Lemma

Let $x \in S_0(c)$ be such in Figure above and $c := \{c_1, c_2\}$. Then for all $w \in S_0(c)$ we have $|B_1^{x,c}|/|N(x)| \ge |B_1^{w,c}|/|N(w)|$ and

$$\frac{|B_1^{x,c}|}{|N(x)|} = \frac{2n-5}{3n^2-13n+14} \,.$$

Remembering the notation

Consider a Markov process on a state space S with a partition $\bar{S} = \{E_1, \dots, E_h\}$. Then for any $x, y \in E_i$ we have

$$|R_{E_i,E_j}(x,y)| = \Big|\sum_{z \in E_i} p(x,z) - p(y,z)\Big| \le \varepsilon(E_i,E_j).$$

The lumping error ε will be such that $\varepsilon(E_i, E_j) \leq \varepsilon$ for all $i, j \in \{1, 2, ..., h\}$.