Dot products and cross products

Xin Fu

Western University

xfu82@uwo.ca

Other notations

Recall

$$c\vec{v} = \begin{cases} (cv_1, cv_2) & \text{if } \vec{v} = (v_1, v_2) \text{ in } \mathbb{R}^2 \\ (cv_1, cv_2, cv_3) & \text{if } \vec{v} = (v_1, v_2, v_3) \text{ in } \mathbb{R}^3. \end{cases}$$

$$\vec{u} + \vec{v} = \begin{cases} (u_1 + v_1, u_2 + v_2) & \text{if } \vec{u} = (u_1, u_2) \text{ and } \vec{v} = (v_1, v_2) \text{ in } \mathbb{R}^2 \\ (u_1 + v_1, u_2 + v_2, u_3 + v_3) & \text{if } \vec{u} = (u_1, u_2, u_3) \text{ and } \vec{v} = (v_1, v_2, v_3) \text{ in } \mathbb{R}^3. \end{cases}$$

Other notations

Recall

$$c\vec{v} = \begin{cases} (cv_1, cv_2) & \text{if } \vec{v} = (v_1, v_2) \text{ in } \mathbb{R}^2 \\ (cv_1, cv_2, cv_3) & \text{if } \vec{v} = (v_1, v_2, v_3) \text{ in } \mathbb{R}^3. \end{cases}$$

$$\vec{u} + \vec{v} = \begin{cases} (u_1 + v_1, u_2 + v_2) & \text{if } \vec{u} = (u_1, u_2) \text{ and } \vec{v} = (v_1, v_2) \text{ in } \mathbb{R}^2 \\ (u_1 + v_1, u_2 + v_2, u_3 + v_3) & \text{if } \vec{u} = (u_1, u_2, u_3) \text{ and } \vec{v} = (v_1, v_2, v_3) \text{ in } \mathbb{R}^3. \end{cases}$$

By this way, we can write

$$(v_1, v_2) = v_1(1, 0) + v_2(0, 1)$$

$$(v_1, v_2, v_3) = v_1(1, 0, 0) + v_2(0, 1, 0) + v_3(0, 0, 1).$$

Other notations

Recall

$$c\vec{v} = \begin{cases} (cv_1, cv_2) & \text{if } \vec{v} = (v_1, v_2) \text{ in } \mathbb{R}^2 \\ (cv_1, cv_2, cv_3) & \text{if } \vec{v} = (v_1, v_2, v_3) \text{ in } \mathbb{R}^3. \end{cases}$$

$$\vec{u} + \vec{v} = \begin{cases} (u_1 + v_1, u_2 + v_2) & \text{if } \vec{u} = (u_1, u_2) \text{ and } \vec{v} = (v_1, v_2) \text{ in } \mathbb{R}^2 \\ (u_1 + v_1, u_2 + v_2, u_3 + v_3) & \text{if } \vec{u} = (u_1, u_2, u_3) \text{ and } \vec{v} = (v_1, v_2, v_3) \text{ in } \mathbb{R}^3. \end{cases}$$

By this way, we can write

$$(v_1, v_2) = v_1(1,0) + v_2(0,1)$$

$$(v_1, v_2, v_3) = v_1(1,0,0) + v_2(0,1,0) + v_3(0,0,1).$$

Moreover, let $\vec{i}=(1,0)$ and $\vec{j}=(0,1)$ in \mathbb{R}^2 or let $\vec{i}=(1,0,0)$, $\vec{j}=(0,1,0)$ and $\vec{k}=(0,0,1)$ in \mathbb{R}^3 . Then we can rewrite vectors in \mathbb{R}^2 or \mathbb{R}^3 as

$$(v_1, v_2) = v_1 \vec{i} + v_2 \vec{j}$$
 in R^2
 $(v_1, v_2, v_3) = v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k}$ in R^3 .

The vectors in \mathbb{R}^2 or \mathbb{R}^3 are written as

$$(v_1, v_2) = v_1 \vec{i} + v_2 \vec{j}$$
 in R^2
 $(v_1, v_2, v_3) = v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k}$ in R^3 .

Examples

- 1. Express (1,2,3) in terms of \vec{i},\vec{j},\vec{k} .
- 2. Express $2\vec{i} \vec{j} + 4\vec{k}$ as an ordered triple.
- 3. Find the length of $\vec{i} \vec{j} + 2\vec{k}$.
- 4. Simplify $2(3\vec{i}+2\vec{k})-2(-\vec{i}+4\vec{j}-2\vec{k})$.

The vectors in \mathbb{R}^2 or \mathbb{R}^3 are written as

$$(v_1, v_2) = v_1 \vec{i} + v_2 \vec{j} \text{ in } R^2$$

 $(v_1, v_2, v_3) = v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k} \text{ in } R^3.$

Examples

- 1. Express (1,2,3) in terms of $\vec{i}, \vec{j}, \vec{k}$. $\vec{i} + 2\vec{j} + 3\vec{k}$
- 2. Express $2\vec{i} \vec{j} + 4\vec{k}$ as an ordered triple. (2, -1, 4)
- 3. Find the length of $\vec{i} \vec{j} + 2\vec{k}$.

$$\|\vec{i} - \vec{j} + 2\vec{k}\| = \sqrt{1^2 + (-1)^2 + 2^2} = \sqrt{6}$$

4. Simplify $2(3\vec{i} + 2\vec{k}) - 2(-\vec{i} + 4\vec{j} - 2\vec{k})$.

$$2(3\vec{i} + 2\vec{k}) - 2(-\vec{i} + 4\vec{j} - 2\vec{k}) = 6\vec{i} + 4\vec{k} + 2\vec{i} - 8\vec{j} + 4\vec{k} = 8\vec{i} - 8\vec{j} + 8\vec{k}$$

Dot products

Definition

Definition The *dot product* of \vec{u} and \vec{v} is denoted by $\vec{u} \cdot \vec{v}$ and is defined by

$$\vec{u} \cdot \vec{v} = \begin{cases} u_1 v_1 + u_2 v_2 & \text{if } \vec{u}, \vec{v} \text{ in } \mathbb{R}^2 \\ u_1 v_1 + u_2 v_2 + u_3 v_3 & \text{if } \vec{u}, \vec{v} \text{ in } \mathbb{R}^3. \end{cases}$$

Definition

Definition The *dot product* of \vec{u} and \vec{v} is denoted by $\vec{u} \cdot \vec{v}$ and is defined by

$$\vec{u} \cdot \vec{v} = \begin{cases} u_1 v_1 + u_2 v_2 & \text{if } \vec{u}, \vec{v} \text{ in } \mathbb{R}^2 \\ u_1 v_1 + u_2 v_2 + u_3 v_3 & \text{if } \vec{u}, \vec{v} \text{ in } \mathbb{R}^3. \end{cases}$$

Note that the dot product of vectors is a number!

Definition

Definition The *dot product* of \vec{u} and \vec{v} is denoted by $\vec{u} \cdot \vec{v}$ and is defined by

$$\vec{u} \cdot \vec{v} = \begin{cases} u_1 v_1 + u_2 v_2 & \text{if } \vec{u}, \vec{v} \text{ in } \mathbb{R}^2 \\ u_1 v_1 + u_2 v_2 + u_3 v_3 & \text{if } \vec{u}, \vec{v} \text{ in } \mathbb{R}^3. \end{cases}$$

Note that the dot product of vectors is a number!

Examples

Compute the dot product $\vec{u} \cdot \vec{v}$.

- 1. $\vec{u} = (2, -1)$ and $\vec{v} = (5, 3)$.
- 2. $\vec{u} = (1, -1, 4)$ and $\vec{v} = (-2, 3, 1)$.
- 3. $\vec{u} = (2, 1, -3)$ and $\vec{v} = (1, 1, 1)$.
- 4. $\vec{u} \cdot \vec{u}$.

Definition The *dot product* of \vec{u} and \vec{v} is denoted by $\vec{u} \cdot \vec{v}$ and is defined by

$$\vec{u} \cdot \vec{v} = \begin{cases} u_1 v_1 + u_2 v_2 & \text{if } \vec{u}, \vec{v} \text{ in } \mathbb{R}^2 \\ u_1 v_1 + u_2 v_2 + u_3 v_3 & \text{if } \vec{u}, \vec{v} \text{ in } \mathbb{R}^3. \end{cases}$$

Note that the dot product of vectors is a number!

Examples

Compute the dot product $\vec{u} \cdot \vec{v}$.

1.
$$\vec{u} = (2, -1)$$
 and $\vec{v} = (5, 3)$. $\vec{u} \cdot \vec{v} = 2 \times 5 + (-1) \times 3 = 7$

2.
$$\vec{u} = (1, -1, 4)$$
 and $\vec{v} = (-2, 3, 1)$.

$$\vec{u} \cdot \vec{v} = 1 \times (-2) + (-1) \times 3 + 4 \times 1 = -1$$

3.
$$\vec{u} = (2, 1, -3)$$
 and $\vec{v} = (1, 1, 1)$. $\vec{u} \cdot \vec{v} = 2 \times 1 + 1 \times 1 + (-3) \times 1 = 0$

4.
$$\vec{u} \cdot \vec{u}$$
. $||\vec{u}||^2$

Theorem Let \vec{u} , \vec{v} and \vec{w} be vectors in \mathbb{R}^2 or \mathbb{R}^3 and let c be a scalar. Then

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u} \qquad \text{(Commutativity)}$$

$$c(\vec{u} \cdot \vec{v}) = (c\vec{u}) \cdot \vec{v} = \vec{u} \cdot (c\vec{v}) \qquad \text{(Scarlars factor out)}$$

$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{u} + \vec{u} \cdot \vec{w} \qquad \text{(Distributive law)}$$

$$\vec{u} \cdot \vec{0} = 0$$

$$\vec{u} \cdot \vec{u} = ||\vec{u}||^2$$

Theorem Let \vec{u} , \vec{v} and \vec{w} be vectors in \mathbb{R}^2 or \mathbb{R}^3 and let c be a scalar. Then

$$\begin{aligned} \vec{u} \cdot \vec{v} &= \vec{v} \cdot \vec{u} & \text{(Commutativity)} \\ c(\vec{u} \cdot \vec{v}) &= (c\vec{u}) \cdot \vec{v} = \vec{u} \cdot (c\vec{v}) & \text{(Scarlars factor out)} \\ \vec{u} \cdot (\vec{v} + \vec{w}) &= \vec{u} \cdot \vec{u} + \vec{u} \cdot \vec{w} & \text{(Distributive law)} \\ \vec{u} \cdot \vec{0} &= 0 & \\ \vec{u} \cdot \vec{u} &= \|\vec{u}\|^2 & \end{aligned}$$

Examples Compute the dot product of each pair of vectors.

- 1. $2\vec{i} \vec{j}$ and $\vec{i} + \vec{k}$.
- 2. If $\vec{v} = -\frac{2}{3}\vec{u}$ and $\vec{u} \cdot \vec{v} = -6$. Find $||\vec{v}||$.

Geometrical interpretation

Given two nonzero vectors, the dot product can be used to find the angle formed by these two nonzero vectors.

Theorem 1 Let \vec{u} and \vec{v} be two vectors in \mathbb{R}^2 or \mathbb{R}^3 . Let θ be the angle between them. Then

$$\vec{u} \cdot \vec{v} = ||u|| \, ||v|| \cos \theta.$$

Alternatively, for nonzero \vec{u} and \vec{v}

$$cos\theta = \frac{\vec{u} \cdot \vec{v}}{\|u\| \|v\|}.$$

Theorem 1 Let \vec{u} and \vec{v} be two vectors in \mathbb{R}^2 or \mathbb{R}^3 . Let θ be the angle between them. Then

$$\vec{u} \cdot \vec{v} = ||u|| \, ||v|| \cos \theta.$$

Alternatively, for nonzero \vec{u} and \vec{v}

$$\cos\theta = \frac{\vec{u} \cdot \vec{v}}{\|u\| \|v\|}.$$

Examples Find the cosine of the angle between each pair of vectors.

- 1. $\vec{u} = (2, -1)$ and $\vec{v} = (5, 3)$.
- 2. $\vec{u} = (2, 1, -3)$ and $\vec{v} = (1, 1, 1)$.
- 3. $\vec{u} = (1, -1, 4)$ and $\vec{v} = (-2, 3, 1)$.

Definition Vectors \vec{u} and \vec{v} are *orthogonal* if $\vec{u} \cdot \vec{v} = 0$.

Theorem 2 Let \vec{u} and \vec{v} be two vectors in \mathbb{R}^2 or \mathbb{R}^3 . Let θ be the angle between them. Then θ is

- 1. an acute angle if $\vec{u} \cdot \vec{v} > 0$;
- 2. a right angle if $\vec{u} \cdot \vec{u} = 0$;
- 3. an obtuse angle if $\vec{u} \cdot \vec{v} < 0$.

Cross product

Definition Let $\vec{u} = (u_1, u_2, u_3)$ and $v_1, \vec{v_2}, v_3$ in \mathbb{R}^3 . The *cross product* of \vec{u} and \vec{v} is the vector

$$\vec{u} \times \vec{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).$$

Definition Let $\vec{u}=(u_1,u_2,u_3)$ and $v_1,\vec{v_2},v_3$ in \mathbb{R}^3 . The *cross product* of \vec{u} and \vec{v} is the vector

$$\vec{u} \times \vec{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).$$

Example Find a vector that is both orthogonal to $\vec{u}=(1,2,1)$ and $\vec{v}=(2,0,-3)$.

Definition Let $\vec{u} = (u_1, u_2, u_3)$ and $v_1, \vec{v_2}, v_3$ in \mathbb{R}^3 . The *cross product* of \vec{u} and \vec{v} is the vector

$$\vec{u} \times \vec{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).$$

Example Find a vector that is both orthogonal to $\vec{u}=(1,2,1)$ and $\vec{v}=(2,0,-3)$.

$$\vec{u} \times \vec{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1)$$

= $(2 \times (-3) - 1 \times 0, 1 \times 2 - 1 \times (-3), 1 \times 0 - 2 \times 2)$
= $(-6, 5, -4)$.