import numpy as np
import pandas as pd
import matplotlib
from matplotlib import

from matplotlib import pyplot as plt

%matplotlib inline

df=pd.read_csv("D:\\moj_projekat\\all_phones.csv")
df

	phone_name	brand	os	inches	resolution	battery	battery_type	ram(GB)	announcement_date	weight(g)	• • •	video_1080p vi
0	Y6II Compact	Huawei	Android 5.1	5.00	720x1280	2200	Li-Po	2	2016-09-01	140.0		False
1	K20 plus	LG	Android 7.0	5.30	720x1280	2700	Li-lon	2	2016-12-01	140.0		True
2	P8 Lite (2017)	Huawei	Android 7.0	5.20	1080x1920	3000	Li-lon	4	2017-01-01	147.0		True
3	Redmi Note 4	Xiaomi	Android 6.0	5.50	1080x1920	4100	Li-Po	4	2017-01-01	165.0		True
4	P10	Huawei	Android 7.0	5.10	1080x1920	3200	Li-lon	4	2017-02-01	145.0		True
1507	vivo Y77t	Vivo	Android 13	6.64	1080x2388	5000	Li-Po	8	2023-08-18	190.0		True
1508	11x	Realme	Android 13	6.72	1080x2400	5000	Li-Po	8	2023-08-23	190.0		True
1509	GT5	Realme	Android 13	6.74	1240x2772	5240	Li-Po	16	2023-08-28	205.0		True
1510	GT5 240W	Realme	Android 13	6.74	1240x2772	4600	Li-Po	24	2023-08-28	205.0		True
1511	vivo iQOO Z7 Pro	Vivo	Android 13	6.78	1080x2400	4600	Li-Po	8	2023-08-31	175.0		True
1512 r	ows × 22 colum	ins										
4												•

df.head(10)

	phone_name	brand	os	inches	resolution	battery	battery_type	ram(GB)	announcement_date	weight(g)	 video_1080p	video_
0	Y6II Compact	Huawei	Android 5.1	5.0	720x1280	2200	Li-Po	2	2016-09-01	140.0	 False	Fa
1	K20 plus	LG	Android 7.0	5.3	720x1280	2700	Li-lon	2	2016-12-01	140.0	 True	Fa
2	P8 Lite (2017)	Huawei	Android 7.0	5.2	1080x1920	3000	Li-lon	4	2017-01-01	147.0	 True	Fa
3	Redmi Note 4	Xiaomi	Android 6.0	5.5	1080x1920	4100	Li-Po	4	2017-01-01	165.0	 True	Fa
4	P10	Huawei	Android 7.0	5.1	1080x1920	3200	Li-lon	4	2017-02-01	145.0	 True	Tı
5	Xperia XA1	Sony	Android 7.0	5.0	720x1280	2300	Li-lon	3	2017-02-01	143.0	 True	Fa
6	P10 Lite	Huawei	Android 7.0	5.2	1080x1920	3000	Li-Po	4	2017-02-01	146.0	 True	Fa
7	P10 Plus	Huawei	Android 7.0	5.5	1440x2560	3750	Li-lon	6	2017-02-01	165.0	 True	Tı
8	Xperia XA1 Ultra	Sony	Android 7.0	6.0	1080x1920	2700	Li-lon	4	2017-02-01	188.0	 True	Fa
9	X power2	LG	Android 7.0	5.5	720x1280	4500	Li-lon	2	2017-02-01	164.0	 True	Fa
10	rows × 22 colu	mns										
4												•

df.info() #Informacije o kolonama i tipu podataka u njima

<<class 'pandas.core.frame.DataFrame'> RangeIndex: 1512 entries, 0 to 1511 Data columns (total 22 columns): # Column Non-Null Count Dtype --phone_name 1512 non-null object 1512 non-null 1 brand object 2 os 1512 non-null object inches 1512 non-null float64 resolution 1512 non-null object 1512 non-null battery int64 battery_type 1512 non-null object 1512 non-null ram(GB) int64 announcement_date 1512 non-null object weight(g) 1512 non-null float64 10 storage(GB) 1512 non-null int64 11 video_720p 1512 non-null bool 12 video_1080p 1512 non-null bool 13 video_4K 1512 non-null bool 14 video_8K 1512 non-null bool 15 video_30fps 1512 non-null bool 16 video_60fps 1512 non-null bool 17 video_120fps 1512 non-null bool 18 video_240fps 1512 non-null bool 19 video_480fps 1512 non-null bool 20 video_960fps 1512 non-null bool 1512 non-null 21 price(USD) float64

df.isna().sum() #Provera ima li null vrednosti

memory usage: 156.6+ KB

dtypes: bool(10), float64(3), int64(3), object(6)

_ phone_name 0 0 brand os 0 inches resolution batterv battery_type ram(GB) announcement_date weight(g) storage(GB) 0 video_720p 0 video_1080p 0 video_4K

2020

2021

294

288

```
0
                  video_8K
                  video_30fps
                                                                                            0
                  video_60fps
                  video_120fps
                                                                                             0
                  video_240fps
                                                                                             0
                  video_480fps
                                                                                              0
                  video 960fps
                                                                                             0
                  price(USD)
                                                                                              0
                  dtype: int64
df.duplicated().sum() #Provera ima li duplikata
  → 0
df['phone_name'].value_counts() #Uvid u kategorijske vrednosti (model telefona)
                  phone_name
                  V30
                                                                                                                      3
                  Κ5
                  7 Pro
                  9
                  6
                                                                                                                      2
                  Galaxy A11
                                                                                                                      1
                  Redmi Note 9 Pro (India)
                  Redmi Note 9 Pro Max
                                                                                                                      1
                  Find X2
                  vivo iQOO Z7 Pro
                                                                                                                      1
                  Name: count, Length: 1496, dtype: int64
df[df['phone_name']=='7 Pro'] #Vidimo da postoje telefoni od različitih brendova sa istim nazivom modela
  ₹
                                       phone_name
                                                                                        brand
                                                                                                                                os inches resolution battery battery_type ram(GB) announcement_date weight(g) ... video_1080p vid
                                                                                                                 Android
                      332
                                                           7 Pro OnePlus
                                                                                                                                                      6.67
                                                                                                                                                                             1440x3120
                                                                                                                                                                                                                               4000
                                                                                                                                                                                                                                                                                Li-Po
                                                                                                                                                                                                                                                                                                                          6
                                                                                                                                                                                                                                                                                                                                                                2019-05-14
                                                                                                                                                                                                                                                                                                                                                                                                                        206.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          True
                                                                                                                 Android
                     651
                                                                                  Realme
                                                                                                                                                                                                                                                                                Li-Po
                                                                                                                                                                                                                                                                                                                          8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          True
                                                           7 Pro
                                                                                                                                                      6.40
                                                                                                                                                                             1080x2400
                                                                                                                                                                                                                               4500
                                                                                                                                                                                                                                                                                                                                                                2020-09-03
                                                                                                                                                                                                                                                                                                                                                                                                                        182.0
                  2 rows × 22 columns
df['os'].str.contains('Android',regex=False).value_counts() #1481/1512 telefona koriste Android OS
   ₹
                 os
                  True
                                                  1481
                  False
                                                         31
                  Name: count, dtype: int64
\label{eq:df('width') = df('resolution').apply(lambda x: x.split('x')[0]).astype('int64')} \\
 df['height'] = df['resolution']. apply(lambda x: x.split('x')[1]). astype('int64') \ \#Izdvajanje sirine i visine iz rezolucije lambda x: x.split('x')[1]). astype('int64') \ \#Izdvajanje sirine i visine iz rezolucije lambda x: x.split('x')[1]). astype('int64') \ \#Izdvajanje sirine i visine iz rezolucije lambda x: x.split('x')[1]). astype('int64') \ \#Izdvajanje sirine i visine iz rezolucije lambda x: x.split('x')[1]). astype('int64') \ \#Izdvajanje sirine i visine iz rezolucije lambda x: x.split('x')[1]). astype('int64') \ \#Izdvajanje sirine i visine iz rezolucije lambda x: x.split('x')[1]). astype('int64') \ \#Izdvajanje sirine i visine iz rezolucije lambda x: x.split('x')[1]). astype('int64') \ \#Izdvajanje sirine i visine iz rezolucije lambda x: x.split('x')[1]). astype('int64') \ \#Izdvajanje sirine i visine iz rezolucije lambda x: x.split('x')[1]). astype('int64') \ \#Izdvajanje sirine i visine iz rezolucije lambda x: x.split('x')[1]). astype('int64') \ \#Izdvajanje sirine i visine iz rezolucije lambda x: x.split('x')[1]). astype('int64') \ \#Izdvajanje sirine i visine iz rezolucije lambda x: x.split('x')[1]). astype('int64') \ \#Izdvajanje sirine i visine i
 df['height']
  ₹
                  0
                                               1280
                  2
                                               1920
                  3
                                               1920
                                               1920
                  1507
                                               2388
                  1508
                                               2400
                  1509
                                               2772
                  1510
                                               2772
                  1511
                                               2400
                  Name: height, Length: 1512, dtype: int64
 df['announcement\_year'] = df['announcement\_date']. apply(lambda x: x.split('-')[0]). astype('int32') \\ \#Izdvajamo godinu objavljivanja telefona 
 df['announcement_year'].value_counts() #Najvise telefona ce izaci 2022. godine
   ₹
                  announcement_year
                  2022
                                               319
```

2019 210 2023 159 2018 155 2017 85 2016 2

Name: count, dtype: int64

df

	phone_name	brand	os	inches	resolution	battery	battery_type	ram(GB)	announcement_date	weight(g)	•••	video_30fps
0	Y6II Compact	Huawei	Android 5.1	5.00	720x1280	2200	Li-Po	2	2016-09-01	140.0		True
1	K20 plus	LG	Android 7.0	5.30	720x1280	2700	Li-lon	2	2016-12-01	140.0		True
2	P8 Lite (2017)	Huawei	Android 7.0	5.20	1080x1920	3000	Li-lon	4	2017-01-01	147.0		True
3	Redmi Note 4	Xiaomi	Android 6.0	5.50	1080x1920	4100	Li-Po	4	2017-01-01	165.0		True
4	P10	Huawei	Android 7.0	5.10	1080x1920	3200	Li-lon	4	2017-02-01	145.0		True
1507	vivo Y77t	Vivo	Android 13	6.64	1080x2388	5000	Li-Po	8	2023-08-18	190.0		True
1508	11x	Realme	Android 13	6.72	1080x2400	5000	Li-Po	8	2023-08-23	190.0		True
1509	GT5	Realme	Android 13	6.74	1240x2772	5240	Li-Po	16	2023-08-28	205.0		False
1510	GT5 240W	Realme	Android 13	6.74	1240x2772	4600	Li-Po	24	2023-08-28	205.0		False
1511	vivo iQOO Z7 Pro	Vivo	Android 13	6.78	1080x2400	4600	Li-Po	8	2023-08-31	175.0		True

df.drop(columns=['resolution'],inplace=True)
df.shape

→ (1512, 24)

df.describe()

7	inches	battery	ram(GB)	weight(g)	storage(GB)	price(USD)	width	height	announcement_year
count	1512.000000	1512.000000	1512.000000	1512.000000	1512.000000	1512.000000	1512.000000	1512.000000	1512.000000
mean	6.422460	4389.798942	6.683862	187.636243	109.164683	337.847036	1035.212963	2207.190476	2020.410053
std	0.477043	784.607022	2.701433	26.200115	74.436484	266.740821	253.488940	469.734578	1.700190
min	3.800000	1821.000000	1.000000	130.000000	1.000000	40.000000	480.000000	800.000000	2016.000000
25%	6.300000	4000.000000	4.000000	175.000000	64.000000	179.997500	720.000000	1647.500000	2019.000000
50%	6.500000	4500.000000	8.000000	187.000000	128.000000	260.000000	1080.000000	2400.000000	2021.000000
75%	6.670000	5000.000000	8.000000	197.250000	128.000000	400.000000	1080.000000	2400.000000	2022.000000
max	10.400000	7250.000000	24.000000	500.000000	512.000000	2300.000000	3840.000000	3840.000000	2023.000000

 $gornja_granica=df['weight(g)'].mean()+3*df['weight(g)'].std()\\ donja_granica=df['weight(g)'].mean()-3*df['weight(g)'].std()$

→ (1493, 24)

df1[df1['storage(GB)']==1]

df1[df1['price(USD)']==40]


```
for kolona in ['storage(GB)','price(USD)']:
   gornja_granica=df[kolona].mean()+3*df[kolona].std()
   donja_granica=df[kolona].mean()-3*df[kolona].std()
   df1=df1[(df1[kolona]>donja_granica) & (df1[kolona]<gornja_granica)]</pre>
```

df1.shape #Finalno otklanjanje autlajera

→ (1454, 24)

import seaborn as sns
sns.set()
df1['brand'].value_counts().plot(kind = 'bar',xlabel='naziv brenda',ylabel='broj modela')

os_stats=df1.groupby('os')['os'].agg('count').sort_values(ascending=False).head(15) os_stats.plot(kind='bar')


```
fig, ax = plt.subplots(2, 3, figsize=(15, 10))
features=['inches', 'battery', 'ram(GB)', 'weight(g)', 'storage(GB)', 'price(USD)']
colors = ['#0b3c68', '#175618', '#8b0000']
colors = (colors * (len(features) // len(colors) + 1))[:len(features)]
ax=ax.flatten()

for idx, (feature, color) in enumerate(zip(features, colors)):
    sns.histplot(df1, x=feature,color=color, ax=ax[idx], kde=True)

plt.show()
```



```
df1.columns
```


brand_price=df1.pivot_table(index='brand',values='price(USD)',aggfunc='mean')
brand_price

_		price(USD)
	brand	
	Apple	572.038421
	Google	375.753889
	Honor	306.736552
	Huawei	290.165410
	LG	264.000000
	Lenovo	244.358974
	OnePlus	421.010723
	Орро	332.510603
	Realme	242.407732
	Samsung	315.821533
	Sony	412.027429
	Vivo	322.151640
	Xiaomi	287.294286

```
sns.barplot(brand_price,x=brand_price.index,y=brand_price['price(USD)'],color='#175618')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
plt.show()
```


brand_battery_type=df1.pivot_table(index='brand',columns='battery_type',aggfunc='size')
brand_battery_type

⇒ battery_type	Li-Ion	Li-Po
----------------	--------	-------

brand		
Apple	19.0	NaN
Google	6.0	12.0
Honor	3.0	113.0
Huawei	30.0	92.0
LG	27.0	48.0
Lenovo	13.0	26.0
OnePlus	NaN	47.0
Орро	22.0	187.0
Realme	6.0	151.0
Samsung	94.0	103.0
Sony	24.0	11.0
Vivo	NaN	161.0
Xiaomi	17.0	242.0

```
import matplotlib.colors as mcolors
plt.figure(figsize=(12, 8))
blue_cmap = mcolors.LinearSegmentedColormap.from_list('blue_cmap', ['lightblue', 'darkblue'])
ax = brand_battery_type.plot(kind='barh', figsize=(12, 8),colormap=blue_cmap)
ax.invert_yaxis()

plt.title('Broj telefona svakog brenda po tipu baterije')
plt.xlabel('Brend')
plt.ylabel('Broj')
plt.yticks(rotation=45, ha='right')
ax.legend(title='Tip baterije')

plt.tight_layout()
plt.show()
```

→ <Figure size 1200x800 with 0 Axes>


```
plt.figure(figsize=(10, 8))
ax=sns.heatmap(brand_battery_type, annot=True, fmt='g',cmap='YlGnBu', cbar=True)
colorbar = ax.collections[0].colorbar
colorbar.set_label('Broj telefona po tipu baterije')
plt.xlabel('Tip baterije')
plt.ylabel('Brend')
```


 $\label{lem:price} year_price=df1.groupby(['announcement_year', 'brand'])['price(USD)'].mean().unstack()\\ year_price$

_ →	brand	Apple	Google	Honor	Huawei	LG	Lenovo	OnePlus	Орро	Realme	Samsung	
	announcement_year											
	2016	NaN	NaN	NaN	120.000000	100.000000	NaN	NaN	NaN	NaN	NaN	
	2017	245.000000	565.000000	190.000000	247.222222	160.000000	195.000000	NaN	279.166667	NaN	278.750000	2
	2018	420.000000	355.000000	248.333333	271.250000	225.263158	186.153846	513.333333	318.352941	126.000000	255.416667	32
	2019	440.556667	282.500000	268.235294	284.300000	255.263158	238.888889	646.416667	352.400000	223.285714	328.235294	41
	2020	558.150000	316.000000	239.523810	333.168235	351.200000	186.000000	468.171111	305.195182	220.471415	366.268140	5€
	2021	743.206667	344.523333	337.619048	361.113333	170.000000	408.000000	382.512857	322.390667	238.710368	272.962895	5ŧ
	2022	833.710000	472.666667	351.394400	257.963333	NaN	403.333333	308.992923	334.267404	277.243611	308.192462	64
	2023	NaN	394.000000	365.609474	249.666667	NaN	NaN	384.551778	435.577895	270.040087	395.732375	72 •

```
fig, ax = plt.subplots(nrows=4, ncols=4, figsize=(25, 20))
ax = ax.flatten()
kolone=year_price.columns
brojac=0

for idx, brand in enumerate(year_price.columns):
    sns.lineplot(data=year_price[brand], ax=ax[idx], marker='o')
    ax[idx].set_ylabel(kolone[brojac])
    ax[idx].set_xlabel('')
    brojac=brojac+1

for i in range(len(year_price.columns), len(ax)):
    fig.delaxes(ax[i])
```



```
plt.plot(year_price.index,year_price['Huawei'],color='#175618')
plt.title('Huawei')
plt.xlabel('Godina')
plt.ylabel('Prosecna cena')
```


df1=df1.reset_index()

df1['resolution']=df1['width']*df1['height']
df1.iloc[:,-4:]

→		width	height	announcement_year	resolution
	0	720	1280	2016	921600
	1	720	1280	2016	921600
	2	1080	1920	2017	2073600
	3	1080	1920	2017	2073600
	4	1080	1920	2017	2073600
	1449	1080	2388	2023	2579040
	1450	1080	2400	2023	2592000
	1451	1240	2772	2023	3437280
	1452	1240	2772	2023	3437280
	1453	1080	2400	2023	2592000
	1454 rd	ows × 4 d	columns		

 $brand_specs = df1.pivot_table(index = 'brand', values = ['ram(GB)', 'weight(g)', 'storage(GB)', 'resolution'] \) \\ brand_specs$


```
fig, axs = plt.subplots(4, 1, figsize=(20, 15))
axs = axs.flatten()

features = brand_specs.columns

for idx, feature in enumerate(features):
    sns.barplot(x=brand_specs.index, y=brand_specs[feature], ax=axs[idx])
    axs[idx].set_xlabel('Brand')
    axs[idx].set_ylabel(feature)
```


df1.info()

<

Data #	columns (total 25 Column	<pre>columns): Non-Null Count</pre>	Dtype
"	COTAMIT	Non Nail Counc	Бсурс
0	index	1454 non-null	int64
1	phone_name	1454 non-null	object
2	brand	1454 non-null	object
3	os	1454 non-null	object
4	inches	1454 non-null	float64
5	battery	1454 non-null	int64
6	battery_type	1454 non-null	object
7	ram(GB)	1454 non-null	int64
8	weight(g)	1454 non-null	float64
9	storage(GB)	1454 non-null	int64
10	video_720p	1454 non-null	bool
11	video_1080p	1454 non-null	bool
12	video_4K	1454 non-null	bool
13	video_8K	1454 non-null	bool

```
14 video_30fps
                      1454 non-null
                                      bool
15 video_60fps
                      1454 non-null
                                      bool
16 video_120fps
                     1454 non-null
                                       bool
17 video_240fps
18 video_480fps
                       1454 non-null
                                      bool
                      1454 non-null
                                      bool
19 video_960fps
                      1454 non-null
                                       bool
20 price(USD)
                       1454 non-null
                                      float64
                                      int64
21 width
                       1454 non-null
22 height
                       1454 non-null
                                      int64
23 announcement_year 1454 non-null
                                      int32
24 resolution
                       1454 non-null int64
dtypes: bool(10), float64(3), int32(1), int64(7), object(4)
```

memory usage: 179.0+ KB

df1.drop('index',axis=1,inplace=True)

df2=df1.drop(['phone_name','os','battery_type','weight(g)'],axis=1)

df2

	brand	inches	battery	ram(GB)	storage(GB)	video_720p	video_1080p	video_4K	video_8K	video_30fps	video_60fps	video_120fps
0	Huawei	5.00	2200	2	16	True	False	False	False	True	False	False
1	LG	5.30	2700	2	16	False	True	False	False	True	False	False
2	Huawei	5.20	3000	4	16	False	True	False	False	True	False	False
3	Xiaomi	5.50	4100	4	32	True	True	False	False	True	False	True
4	Huawei	5.10	3200	4	32	True	True	True	False	True	True	False
1449	Vivo	6.64	5000	8	256	False	True	False	False	True	False	False
1450	Realme	6.72	5000	8	128	False	True	False	False	True	False	False
1451	Realme	6.74	5240	16	256	True	True	True	False	False	True	False
1452	Realme	6.74	4600	24	1	True	True	True	False	False	True	False
1453	Vivo	6.78	4600	8	128	True	True	True	False	True	False	False
1454 rd	ows × 20 c	olumns										
4												+

for kolona in ['video_720p','video_1080p','video_4K', 'video_8K', 'video_30fps' ,'video_60fps', 'video_120fps','video_240fps', 'video_4 df2[kolona]=df2[kolona].astype(int)

df2 ₹

	brand	inches	battery	ram(GB)	storage(GB)	video 720n	video 1080n	video 4K	video 8K	video 30fns	video_60fps	video 120fns
						V14CO_72Op				1		
0	Huawei	5.00	2200	2	16	1	0	0	0	1	0	0
1	LG	5.30	2700	2	16	0	1	0	0	1	0	0
2	Huawei	5.20	3000	4	16	0	1	0	0	1	0	0
3	Xiaomi	5.50	4100	4	32	1	1	0	0	1	0	1
4	Huawei	5.10	3200	4	32	1	1	1	0	1	1	0
1449	Vivo	6.64	5000	8	256	0	1	0	0	1	0	0
1450	Realme	6.72	5000	8	128	0	1	0	0	1	0	0
1451	Realme	6.74	5240	16	256	1	1	1	0	0	1	0
1452	Realme	6.74	4600	24	1	1	1	1	0	0	1	0
1453	Vivo	6.78	4600	8	128	1	1	1	0	1	0	0
1454 rc	ws × 20 c	olumns										
4												+

dummies=pd.get_dummies(df2.brand)
dummies=dummies.astype(int)
dummies.head(3)

→		Apple	Google	Honor	Huawei	LG	Lenovo	OnePlus	Орро	Realme	Samsung	Sony	Vivo	Xiaomi
	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	1	0	0	0	0	0	0	0	0
	2	0	0	0	1	0	0	0	0	0	0	0	0	0

df3=pd.concat([df2,dummies],axis='columns')
df3

	brand	inches	battery	ram(GB)	storage(GB)	video_720p	video_1080p	video_4K	video_8K	video_30fps	 Huawei	LG	Lenovo
0	Huawei	5.00	2200	2	16	1	0	0	0	1	 1	0	0
1	LG	5.30	2700	2	16	0	1	0	0	1	 0	1	0
2	Huawei	5.20	3000	4	16	0	1	0	0	1	 1	0	0
3	Xiaomi	5.50	4100	4	32	1	1	0	0	1	 0	0	0
4	Huawei	5.10	3200	4	32	1	1	1	0	1	 1	0	0
1449	Vivo	6.64	5000	8	256	0	1	0	0	1	 0	0	0
1450	Realme	6.72	5000	8	128	0	1	0	0	1	 0	0	0
1451	Realme	6.74	5240	16	256	1	1	1	0	0	 0	0	0
1452	Realme	6.74	4600	24	1	1	1	1	0	0	 0	0	0
1453	Vivo	6.78	4600	8	128	1	1	1	0	1	 0	0	0
1454 rc	ws × 33 c	olumns											
4													

df3.drop('brand',axis=1,inplace=True)
df3

			>											
	inches	battery	ram(GB)	storage(GB)	video_720p	video_1080p	video_4K	video_8K	video_30+ps	video_60fps	•••	Huawei	LG	Leno
0	5.00	2200	2	16	1	0	0	0	1	0		1	0	
1	5.30	2700	2	16	0	1	0	0	1	0		0	1	
2	5.20	3000	4	16	0	1	0	0	1	0		1	0	
3	5.50	4100	4	32	1	1	0	0	1	0		0	0	
4	5.10	3200	4	32	1	1	1	0	1	1		1	0	
1449	6.64	5000	8	256	0	1	0	0	1	0		0	0	
1450	6.72	5000	8	128	0	1	0	0	1	0		0	0	
1451	6.74	5240	16	256	1	1	1	0	0	1		0	0	
1452	6.74	4600	24	1	1	1	1	0	0	1		0	0	
1453	6.78	4600	8	128	1	1	1	0	1	0		0	0	
1454 rc	ows × 32 c	columns												
4														>

modeli=df3.iloc[:,19:31]
modeli

_		Apple	Google	Honor	Huawei	LG	Lenovo	OnePlus	Орро	Realme	Samsung	Sony	Vivo
	0	0	0	0	1	0	0	0	0	0	0	0	0
	1	0	0	0	0	1	0	0	0	0	0	0	0
	2	0	0	0	1	0	0	0	0	0	0	0	0
	3	0	0	0	0	0	0	0	0	0	0	0	0
	4	0	0	0	1	0	0	0	0	0	0	0	0
	1449	0	0	0	0	0	0	0	0	0	0	0	1
	1450	0	0	0	0	0	0	0	0	1	0	0	0
	1451	0	0	0	0	0	0	0	0	1	0	0	0
	1452	0	0	0	0	0	0	0	0	1	0	0	0
	1453	0	0	0	0	0	0	0	0	0	0	0	1
	1454 rc	ws × 12	columns										

df4=df3.drop(modeli,axis='columns')
df4

•	inches	battery	ram(GB)	storage(GB)	video_720p	video_1080p	video_4K	video_8K	video_30fps	video_60fps	video_120fps	video_2
0	5.00	2200	2	16	1	0	0	0	1	0	0	
1	5.30	2700	2	16	0	1	0	0	1	0	0	
2	5.20	3000	4	16	0	1	0	0	1	0	0	
3	5.50	4100	4	32	1	1	0	0	1	0	1	
4	5.10	3200	4	32	1	1	1	0	1	1	0	
			•••									
1449	6.64	5000	8	256	0	1	0	0	1	0	0	
1450	6.72	5000	8	128	0	1	0	0	1	0	0	
1451	6.74	5240	16	256	1	1	1	0	0	1	0	
1452	6.74	4600	24	1	1	1	1	0	0	1	0	
1453	6.78	4600	8	128	1	1	1	0	1	0	0	
1454 rd	ows × 20 c	columns										
4												•

df5=df4[df4['Xiaomi']==1]
df5

	inches	battery	ram(GB)	storage(GB)	video_720p	video_1080p	video_4K	video_8K	video_30fps	video_60fps	video_120fps	video_2
3	5.50	4100	4	32	1	1	0	0	1	0	1	
10	5.50	4100	4	16	1	1	0	0	1	0	1	
22	5.15	3350	6	64	1	1	1	0	1	0	1	
29	6.44	5300	4	32	1	1	1	0	1	0	1	
30	5.00	4100	4	16	0	1	0	0	1	0	0	
1417	6.67	5000	12	256	0	1	0	0	0	1	0	
1419	6.79	5000	8	128	0	1	0	0	1	0	0	
1444	6.79	5000	8	128	0	1	0	0	1	0	0	
1445	6.79	5000	6	64	0	1	0	0	1	0	0	
1447	6.67	5000	24	256	1	1	1	1	0	1	0	
259 rov	ws × 20 co	olumns										
4												•

```
X=df5.drop(['price(USD)','resolution','video_480fps','announcement_year'],axis=1)
y=df5['price(USD)']
X.info()
    <class 'pandas.core.frame.DataFrame'>
     Index: 259 entries, 3 to 1447
     Data columns (total 16 columns):
      # Column
                      Non-Null Count Dtype
                        259 non-null
         inches
                                         float64
      9
      1
          battery
                       259 non-null
                                         int64
                        259 non-null
          ram(GB)
                                         int64
         storage(GB) 259 non-null
                                         int64
                        259 non-null
      4
         video_720p
                                         int32
          video_1080p
                       259 non-null
                                         int32
         video_4K
                        259 non-null
                                         int32
                        259 non-null
          video_8K
                                         int32
         video_30fps 259 non-null
      8
                                         int32
         video_60fps 259 non-null
      10 video_120fps 259 non-null
                                         int32
      11 video_240fps 259 non-null
                                         int32
      12 video_960fps 259 non-null
                                         int32
                        259 non-null
      13 width
                                         int64
                        259 non-null
      14 height
                                         int64
      15 Xiaomi
                       259 non-null
                                         int32
     dtypes: float64(1), int32(10), int64(5)
     memory usage: 24.3 KB
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
X.columns
Index(['inches', 'battery', 'ram(GB)', 'storage(GB)', 'video_720p',
             'video_1080p', 'video_4K', 'video_8K', 'video_30fps', 'video_60fps',
            'video_120fps', 'video_240fps', 'video_960fps', 'width', 'height',
            'Xiaomi'],
           dtype='object')
from sklearn.linear_model import Ridge
from sklearn.linear_model import LinearRegression
\label{lem:control_control_control} X\_train, X\_test, y\_train, y\_test=train\_test\_split(X, y, test\_size=0.2, random\_state=0)
X_train_scaled=scaler.fit_transform(X_train)
X_test_scaled=scaler.fit_transform(X_test)
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import Lasso
from sklearn.model_selection import ShuffleSplit
from sklearn.model_selection import cross_val_score
def find_best_model(X,y):
    algos={
        'linear_regression':{
          'model':LinearRegression(),
          'params':{
              'fit_intercept':[True,False]
         'lasso':{
            'model':Lasso(),
            'params':{
                'alpha':[1,2],
                'selection':['random','cyclic']
            }
         'ridge': {
            'model':Ridge(),
            'params':{
                'alpha':[0.01,0.1,1,10,100],
                'max_iter':[100,1000,10000]
            }
```

```
scores=[]
    cv=ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
    for algo_name,config in algos.items():
        gs=GridSearchCV(config['model'],config['params'],cv=cv,return_train_score=False)
        gs.fit(X,y)
        scores.append({
            'model':algo_name,
            'best_score':gs.best_score_,
            'best_params':gs.best_params_
        })
    return pd.DataFrame(scores,columns=['model','best_score','best_params'])
find_best_model(X,y)
₹
                  model best_score
                                                     best_params
      0 linear_regression
                            0.627059
                                              {'fit_intercept': False}
      1
                   lasso
                            0.645257 {'alpha': 2, 'selection': 'random'}
                   ridae
                            0.648051
                                         {'alpha': 10. 'max iter': 100}
def predict_price(model, scaler, inches, battery, ram, storage, video_720p, video_1080p, video_4K, video_8K,
                  video_30fps, video_60fps, video_120fps, video_240fps, video_960fps, width, height, Xiaomi):
    \ensuremath{\text{\#}} Create a dictionary for the input data
    input_data = {
        'inches': inches,
        'battery': battery,
        'ram(GB)': ram,
        'storage(GB)': storage,
        'video_720p': video_720p,
        'video_1080p': video_1080p,
        'video_4K': video_4K,
        'video_8K': video_8K,
        'video_30fps': video_30fps,
        'video 60fps': video 60fps,
        'video_120fps': video_120fps,
        'video_240fps': video_240fps,
        'video_960fps': video_960fps,
        'width': width,
        'height': height,
        'Xiaomi': Xiaomi
    input_df = pd.DataFrame([input_data])
    input_scaled = scaler.transform(input_df)
    predicted_price = model.predict(input_scaled)
    return predicted_price[0]
ridge_best_model = Ridge(alpha=10, max_iter=100)
ridge_best_model.fit(X_train_scaled, y_train)
predicted_price = predict_price(
    ridge_best_model, scaler,
    inches=6.5, battery=4000, ram=8, storage=128,
    video_720p=1, video_1080p=1, video_4K=1, video_8K=0,
    video_30fps=1, video_60fps=1, video_120fps=0, video_240fps=0, video_960fps=0,
    width=75, height=150, Xiaomi=1
print(f"Predicted price: {predicted_price:.2f} USD")
→ Predicted price: 142.20 USD
```