Spatio-temporal PV Forecast

Le Xie, Associate Professor Electric Power and Power Electronics Group Texas A&M University

(le.xie@tamu.edu)

Presentation Outline

Motivation

- Spatio-temporal Correlations among Data Sets
- Case Study: PV (Photovoltaic) Forecast
- Other Ongoing Activities
- Concluding Remarks

Growth of Renewable Generation

Renewable Growth in US

- ♦ In 2014, renewable energy sources account for 16.28% of total installed U.S. operating generating capacity.
- ◆ Solar, wind, biomass, geothermal, and hydropower provided 55.7% of new installed U.S. electrical generating capacity during the first half of 2014 (1,965 MW of the 3,529 MW total installed).

Electric Reliability Council of Texas (ERCOT) 2016

- Peak demand: 71,197 MW (August 15, 2016)
- Wind capacity: > 16,000 MW (highest of any state in the U.S.)
- Wind generation record: 14,023 MW, ~49% of load at that time

Spatio-temporal Correlations at Multi Scales

Case Study

 Spatio-temporal Solar Forecast in **Transmission System**

 Spatio-temporal Solar Forecast in **Distribution System**

Spatio-temporal Solar Forecast in Transmission System^[2]

Sites Map

Spatio-temporal Solar Forecast in Transmission System^[2]

ARX Model

$$y[t] = f(y[t-1], \dots, y[t-n],$$
 Target Site
$$u_1[t-d_1], \dots, u_1[t-d_1-m_1+1],$$

$$\vdots$$
 Neighboring
$$u_i[t-d_i], \dots, u_i[t-d_i-m_i+1])$$
 Sites

We compared our model (STARX) to persistence (PSS), auto regression (AR), and back-propagation neural network (BPNN) forecast models.

Spatio-temporal Solar Forecast in Transmission System^[2]

Simulation Results

Case Number	Training Period	Validation Period
1	January, March	February, April
2	May, July	April, June
3	September	June, August
4	November	August, October

2-hour-ahead Prediction Performance									
	Case 1				Case 2				
Index	ST	AR	BPNN	PSS	ST	AR	BPNN	PSS	
MAE	100.0	107.9	148.1	160.3	83.4	90.5	145.9	173.5	
RMSE	136.3	143.7	198.7	200.3	122.9	132.2	200.0	207.3	
_	Case 4								
Index	ST	AR	BPNN	PSS	ST	AR	BPNN	PSS	
MAE	34.7	39.7	103.9	163.6	41.3	44.0	93.7	153.8	
RMSE	49.9	58.7	138.1	182.0	58.3	63.4	118.2	175.1	

Shorter time-scale: Spatio-temporal is worse than PSS

Prediction Performance of Colorado Data									
	5 min 15 min 1 h 2 h								
Index	ST	PSS	ST	PSS	ST	PSS	ST	PSS	
MAE	63.05	54.6	103.6	81.9	118.3	130.9	145.6	172.2	
RMSE	106.9	104.7	154.8	148.6	163.2	182.1	187.6	221.8	

Spatio-temporal Solar Forecast in Distribution System^[3]

Spatio-temporal Solar Forecast in Distribution System^[3]

ARX Model

We compared our model (ST ARX) to auto-regression (AR) for multi-time-scale prediction.

Spatio-temporal Solar Forecast in Distribution System^[3]

Simulation Results

Including the spatial neighboring inputs helps to improve the accuracy of prediction.

AR	ST ARX Model							
	Included Neighboring Input Distance (km)							
	<5 km <10 km <15 km <20 km <25 km <30 km							
20.15	19.52	19.53	19.21	19.16	19.27	19.09		
Improve	3.1%	3.1%	4.7%	4.9%	4.4%	5.3%		

ST ARX Performance Improvement									
Time	Neighboring Input Distance (km)								
Scale	<5 km <10 km <15 km <20 km <25 km <30 km								
0.5h	1.3%	0.9%	2.1%	2.0%	1.6%	1.8%			
1h	3.1%	3.1%	4.7%	4.9%	4.4%	5.3%			
2h	0.4%	1.7%	2.3%	2.2%	2.6%	3.0%			

The optimal distance of spatial neighboring input is relatively long corresponding to the long time-scale prediction.

Summary

 Spatio-temporal correlation among renewable generation sites (wind and photovoltaic) could be leveraged for improved near-term forecast.

 The economic benefit from spatio-temporal forecast vary at different time scales.

- Possible extensions:
 - Distribution-level Real-time OPF [4]
 - Large ramp events prediction

A Clean Slate Design of Dynamically Secure **Distribution Grid**

Enabling Technologies

Phasor network: μ PMUs

Voltage source inverter: Fast control of PCC voltage.

Clusters of Microgrids as Intelligent Periphery: Where innovations are likely to start and

be tested

DSO: Distribution System Operator

PCC: Point of Common Coupling (interface between microgrid and main grid)

PMU & Power Electronics-enabled Control

Angle Droop Method at Point of Common Coupling (Proposed)

- Power balance indicator: angle deviation from PMU ref.
 - > Local frequency: load independent (quasistatic).
- > Stability study result: A.S. in the large can be established.

VS.

Frequency Droop Method (Conventional)

- > Power balance indicator: frequency deviation from nominal.
 - > Local frequency: load dependent (quasistatic).
 - > Stability study result: regional asymptotic stability.

Proposed:

15

Y. Zhang and L. Xie, "Online dynamic security assessment of microgrids interconnections for future smart distribution," *IEEE Transactions on Power Systems*, 2015 (in press)
© 2017 Le Xie, All Rights Reserved.

Underlying Physical Model

Single SG Infinite Bus

$$\begin{bmatrix} \dot{\delta} \\ \dot{\omega} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -\frac{D}{J} \end{bmatrix} \begin{bmatrix} \delta \\ \omega \end{bmatrix} - \begin{bmatrix} 0 \\ \frac{1}{J} \end{bmatrix} \text{ Frequency Droop}$$

$$P_{I} = V_{1}^{2}G_{11} + V_{1}V_{2}Y_{12} \sin\left(\delta + \frac{\pi}{2} - \theta_{12}\right),$$

$$P_{I}^{*} = V_{1}^{2}G_{11} + V_{1}V_{2}Y_{12} \sin\left(\delta^{*} + \frac{\pi}{2} - \theta_{12}\right),$$

$$\dot{x} = Ax + B\phi(\delta),$$

$$x = \begin{bmatrix} \delta & \omega \end{bmatrix}^{T}.$$

$$A = \begin{bmatrix} 0 & 1 \\ 0 & -\frac{D}{J} \end{bmatrix}, B = \begin{bmatrix} 0 \\ \frac{1}{J} \end{bmatrix} V_{1}V_{2}Y_{12},$$

$$\phi(\delta) = \sin\left(\delta + \frac{\pi}{2} - \theta_{12}\right) - \sin\left(\delta^{*} + \frac{\pi}{2} - \theta_{12}\right).$$

Multiple equilibriums!

$$\delta_e = C$$

$$\phi(\delta) = \phi(\delta + 2k\pi)$$

$$= \phi(\pi - \delta + 2k\pi)$$

Single Microgrid Infinite Bus

$$\dot{\delta} = -\frac{1}{\tau} (\delta - \delta^*) - \frac{\sigma}{\tau} (P_I - P_I^*), \text{ Angle Droop PE-enabled}$$

$$P_I = V_1^2 G_{11} + V_1 V_2 Y_{12} \sin \left(\delta + \frac{\pi}{2} - \theta_{12} \right),$$

$$P_I^* = V_1^2 G_{11} + V_1 V_2 Y_{12} \sin \left(\delta^* + \frac{\pi}{2} - \theta_{12} \right).$$

$$\dot{x} = Ax + B\phi(y),$$

$$y = Cx.$$

$$x = \delta - \delta^*, y^* = \delta^* + \frac{\pi}{2} - \theta_{12}.$$

$$A = -\frac{1}{\tau}, B = -\frac{\sigma}{\tau} V_1 V_2 Y_{12}, C = 1.$$

$$\phi(y) = \sin(y + y^*) - \sin y^*$$

A.S. in the large can be achieved if σ sufficiently small! $x_e = 0 \Rightarrow \delta_e = \delta^*$

Standards for Transient Dynamics

Smart Distribution Grid with Provable Transient Performance

1)
$$V_i \approx 1$$
 p. u.; 2) $\tau_{V_i} \gg \tau_{\delta_i}$.

> Theorem: asymptotical stability (A.S.) in the large can be guaranteed if σ_{δ_i} of each interface is designed small.

50% angle droop, sector [0,1].

Control and Communication Architecture for Plugn-Play Microgrids

DSO: Distribution System Operator. VSI: Voltage Source Inverter

PINE: Power Electronics Intelligence at the Network edge

H. Chou, L. Xie, P. Enjeti, and P. R. Kumar, "Power Electronics Intelligence at the Network Edge," ECCE 2017

PINE Converter to Power Every Load in the Distribution System

H. Chou, L. Xie, P. Enjeti, and P. R. Kumar, "Power Electronics Intelligence at the Network Edge," ECCE 2017

References

- [1] L. Xie, Y. Gu, X. Zhu, and M. G. Genton, "Short-Term Spatio-Temporal Wind Power Forecast in Robust Look-ahead Power System Dispatch," IEEE Tran. Smart Grid, 2014.
- [2] C. Yang, A. Thatte, and L. Xie, "Multi Time-Scale Data-Driven Spatio-Temporal Forecast of Photovoltaic Generation," IEEE Tran. Sustainable Energy, 2015.
- [3] Y. Li, A. Thatte, L. Xie, "Spatio-temporal Prediction of Solar Irradiance for Distribution Grid Operation," TAMU Working Paper 2017-01.
- [4] V. Seshadri Kumar, L. Xie, and P. R. Kumar, "An analytical approach for loss minimization and voltage profile improvement in distribution systems with renewable energy sources," *IREP Symposium* 2017.

Thank You!

Le Xie
Associate Professor
Texas A&M University
Le.xie@tamu.edu
Gridx.tamu.edu