COMPARISON OF PRACTICAL DIFFIE-HELLMAN-BASED PAKE PROTOCOLS PROVEN SECURE IN THE BPR MODEL [5]

Complexity

Time^c

Communication^b

Assumptions^a

AAM

ICM

J-PAKE with Schnorr [24]	2 / 4 or 3 / 3	×	X	DSDH or (CSDH + DDH)	$12 \times G + 6 \times \mathbb{Z}_p$	28 exp (12 exp + 8 mexp)
EKE [5], [7]	1 / 2		Х	CDH	$2 \times G$	4 exp + 2 memb + 2 enc
SPEKE [29], [35]	1 / 2	X		$\mathrm{DIDH^d}$	$2 \times G$	$4 \exp + 2 \text{ memb}$
PPK [10]	2 / 2	X		DDH	$2 \times G$	$6 \exp + 2 \text{ memb}$
SPAKE2 [3]	1 / 2	×		CDH	2 imes G	4 exp + 2 memb
GK-SPOKE [1], [21], [30]	2 / 2	Х		DDH + PRG ^e	$6 \times G$	17 exp (4 exp + 7 mexp) + 6 memb
GL-SPOKE [1], [18], [32]	2/2	X		DDH	$7 \times G$	$21 \exp (4 \exp + 7 \exp) + 7 \operatorname{memb}$
KV-SPOKE [1] [33]	1/2	×		DDH	$10 \times C$	30 evn (2 evn + 12 mevn) + 10 memb

KV-SPOKE [1], [33] 1/2DDH ^

CRS

Rounds / Flows

^e PRG: pseudo-random generator.

ROM

 $30 \exp (2 \exp + 12 \exp) + 10 \text{ memb}$ ^a CRS: common reference string, ROM: random-oracle model, ICM: ideal-cipher model, AAM: algebraic-adversary model; ^b G: group elements, \mathbb{Z}_p : scalars; c exp: number of exponentiations; mexp: number of multi-exponentiations; memb: verification of the membership of a group element to the cyclic group G. For elliptic curve

 $^{10 \}times G$

with small co-factor, this only costs a small number of additions on the curve, but for subgroups of \mathbb{Z}_q (q being a prime larger than p, the order of the group G), this costs an exponentiation (with exponent p-1); enc: encryption with the ideal cipher; multiplications, hash evaluations, and PRG evaluations are omitted; d DIDH: decision inverted-additive Diffie-Hellman assumption [35] (see Fig. 2 and the Appendix);