NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

Lyndon B. Johnson Space Center

Houston Texas 77058

CATALOG OF LUNAR MARE BASALTS GREATER THAN 40 GRAMS

PART 1. MAJOR AND TRACE CHEMISTRY

WITH MEGASCOPIC DESCRIPTIONS and

ROCK AND THIN SECTION PHOTOGRAPHS

(NASA-TM-84065) CATALOG CF LUNAR MARE BASALTS GREATER THAN 40 GRAMS. PART 1: MAJOR AND TRACE CHEMISTRY, WITH MEGASCOPIC DESCRIPTIONS AND ROCK AND THIN SECTION PHOTOGRAPHS (NASA) 420 P HC A18/MF A01

N82-14040

Unclas G3/91 08509

by

Gary E. Lofgren
Geology Branch/SN-6
NASA Johnson Space Center

Ellen M. Lofgren

Lunar and Planetary Institute

August, 1981

Lunar and Planetary Contribution 438

TABLE OF CONTENTS

Page		Page		Page	
1	Introduction		Apollo 12 (con't)	262	Apollo 16
1 3	Apollo 11 10003 10017 10020 10022 10024 10044 10045 10047 10049 10050 10057 10058 10062 10069 10071 19072 10092 Apollo 12 12002 12004 12005 12006 12007 12008 12009 12011 12012 12014 12015 12016 12017 12018 12019 12020 12021 12022 12031 12022 12031 12035 12036 12038 12039 12040 12043 12044 12045	182	Apollo 12 (con't) 12046 12047 12051 12052 12053 12054 12055 12056 12062 12063 12064 12065 12072 12075 12076 Apollo 14 14053 14072 14310 Apollo 15 15016 15058 15065 15075 15076 15085 15475 15476 15485 15486 15495 15499 15529 15535 15536 15555 15556 15557 15595 15597 15598	262	Apollo 16 62295 68415 68416 Apollo 17 70017 70035 70135 70135 70215 70255 70275 70315 71036 71055 71175 71546 71557 71569 71567 71569 71577 71588 71599 71577 71588 71595 74235 74245 74255 74275 75015 75035 75075 76136 77536 77536 78597 78598 78599
					79155

INTRODUCTION

The information in this catalog has been assembled from many sources in an attempt to bring together in one place a comprehensive description of the ballic rocks returned from the moon which weigh in excess of 40 grams. Three kinds of information are contained in this preliminary edition, megascopic descriptions of the rocks, photographs of each rock and its thin section, if available, and a summary of the major and trace element chemistry, if available.

The megascopic descriptions were drawn from ones completed during the preliminary examination of each sample which are contained in the lunar sample catalogs and from the personal experience of one of the authors (GEL). The individuals who did the descriptions are noted.

The photographs of the rocks were chosen from documentation photographs taken during the preliminary examination. In most cases they show the whole rock, but in some instances photographs were chosen which show broken surfaces because of the increased information content. The thin section photographs were all taken by one of the authors (GEL) at a magnification suitable to show the overall texture of the basalt.

The chemistry was compiled from the published literature and those references used are listed in the bibliography; indivudal analyses or numbers are not referenced. Major element analyses are averages of all the available, high quality, analyses on each rock. A CIPW calculation of normative minerals is also given. The trace element chemistry was compiled differently. The values for each element are not averages and the technique by which each number was obtained is shown. Isctope diluation (ID) numbers were used where avilable, then neutron activation analysis (NAA) or X-ray fluorescence (XRF) numbers, and optical emission spectroscopy numbers (OES) were used in that order. This order

varies somewhat from clement to element depending on which techniques are most accurate. Unfortunately not all elements have been analyzed for in all rocks, but the coverage is, in general, quite good.

APOLLO 11

WEIGHT: 213 g

DIMENSIONS: 7 x 4.5 x 3 cm

BINOCULAR DESCRIPTION

COLOR: Medium gray (salt and pepper) with a brownish cast

SHAPE: Subangular, tabular

FABRIC: Equigranular, medium-grained

COHERENCE: Coherent

Fracturing: Few-nonpenetrative VARIABILITY: Homogeneous

SURFACE: Granulated, pitted to a chalky white in places - the white haloes without the glass linings. One large glass splash, 4 x 5 mm, clear to black. Tightly adhering dust.

ZAP PITS: Many glass-lined pits (up to 1 mm diameter glass lining)

with white haloes on one surface, other surfaces have few.

CAVITIES: Few vugs (5% by volume) up to 3 mm, many are lined with

plagioclase

SPECIAL FEATURES: Large glass splash

BY: Lofgren

.5mm

				OHE HE					
MAJOR ELEI	1EN	ITS			TRACE A	AND M	INO	R ELEMENTS	5
SiO ₂	=	39.76				Li	=	9	(OES)
TiO2	=	10.50				Rb	=	0.5	(ID)
A1203	=	10.43				K	=	440	(ID)
Fe0	=	19.80				Ba	=	106	(ID)
Mn0	=	0.3				Sr	=	152.7	(ID)
Mg0	=	6.69				Cr	=	-	(10)
CaO	=	11.13				٧	=	63	(NAA)
Na ₂ O	=	0.4				Sc	=	74	(NAA)
K ₂ 0	=	0.06				Ni	=	2.6717	(OES)
F2 05	=	0.12				Co	=	14.1	(NAA)
S	=	0.18				Cu	=	6.7	(OES)
C1 2 03	=	0.26				Zn	=	-	()
						Th	=	0.971	(ID)
TOTAL		99.63				U	=	0.2535	(ID)
						Zr	=	309	(XRF)
CIDU NODU						Hf	=	11.6	(NAA)
C1PW NORM						Nb	=	21	(OES)
Qtz	=	0.93							
0r	=	0.35			RARE EA	ARTH	ELE	MENTS (ID)
Ab	=	3.38							
An	=	26.49				La	=	14.7	
Di	=	23.31				Ce	=	45.5	
Hy	=	24.41				Pr	=	-	
Ne	=	-				Nd	=	38.3	
01	=	-				Sm	=	14	
Chr	=	0.38				Eu	=	1.76	
Ilm	=	19.94				Gd	=	19	
Apa	=	0.26				Tb	=	-	
•	-	0.20				Dy	=	21.6	
TOTAL		99.45				Ho	=	-	
TOTAL		55.40				Er	=	13.4	
100 M	.,,	Mg+Fe) =	27 6			Tm	=		
An/Ab/						Yb	=	13	
All/Ab/	UI	= 88/11/				Lu	=	. 1	
						V	_	112	(XRF)

WEIGHT: 973 g

DIMENSIONS: 12 x 10 x 8 cm

BINOCULAR DESCRIPTION

COLOR: Medium gray

SHAPE: Subrounded, hemispherical with a flat surface

FABRIC: Fine-grained, granular to subophitic

COHERENCE: Tough

Fracturing: Few, nonpenetrative, subparallel to surface, one

penetrative

VARIABILITY: Homogeneous

SURFACE: Chalky white halo material dominates irregular surface ZAP PITS: Pits with glass linings are sparse, the glass is easily

flaked off. The white haloes are common, 1-3 mm diameter

CAVITIES: Vugs and vesicles 1-3 mm, vesicles smooth-walled and glasslined, 15-20% by volume. Vugs are irregular in shape, some elongate. SPECIAL FEATURES: One large olivine crystal, rectangular (5 mm long) and not resorbed occurs on freshly (in LRL) fractured surface. Two

other olivine phenocrysts were observed.

BY: Lofgren, Morrison

.5 mm

MAJOR ELEMENTS (4)	TRACE AND MINOR ELEMENTS
$SiO_2 = 40.64$	Li = 18.1 (ID)
TiO ₂ = 11.78	Rb = 5.63 (ID)
$A1_20_3 = 7.98$	K = 2092 (ID)
FeO = 19.65	Ba = 309 (ID)
Mn0 = 0.24	Sr = 174.8 (ID)
Mg0 = 7.68	Cr = -
CaO = 10.65	V = 46 (NAA)
$Na_2O = 0.51$	Sc = 86 (NAA)
$K_2 0 = 0.29$	Ni = 60.034 (AA)
$P_2 O_5 = 0.16$	Co = 31 (RNAA)
S = 0.22	Cu = 7.7 (NAA)
$Cr_2O_3 = 0.36$	Zn = 18 (NAA)
	Th = 2.961 (ID)
TOTAL 100.16	U = 0.7840 (ID)
	Zr = 476 (XRF)
61611 116611	Hf = 17.9 (NAA)
C1PW NORM	Nb = 27.4 (XRF)
0.05	
Qtz = 2.25	DADE CARTH ELEMENTS ()
0r = 1.71	RARE EARTH ELEMENTS (ID)
Ab = 4.32	1 00 0
An = 18.63	La = 26.6
Di = 27.40	Ce = 77.3
Hy = 22.38	Pr = -
Ne = -	Nd = 59.5
01 = -	Sm = 20.9
Chr = 0.53	Eu = 2.14
Ilm = 22.37	Gd = 27.4
Apa = 0.35	Tb = -
	Dy = 31.7
TOTAL 99.94	Ho = -
	Er = 20.0
100 Mg/(Mg+Fe) = 41.1	Tm = -
An/Ab/Or = 75/18/7	Yb = 19.2
	Lu = 2.66
	$Y = 159 \qquad (XRF)$

WEIGHT: 425 g

DIMENSIONS: 9 x 8 x 4 cm

BINOCULAR DESCRIPTION

COLOR: Medium gray

SHAPE: Subangular, hemispherical with one flat side

FABRIC: Porphyritic (few olivine phenocrysts), matrix equigranular

COHERENCE: Tough

Fracturing: Very few - nonpenetrative VARIABILITY: Homogeneous

SURFACE: Speckled white shatter crust on rounded surfaces. Flat

surface hackly

ZAP PITS: Many on rounded surface, none on flat side; many pits are glass lined, white haloes without glass centers also common. Pits are shallow with glass center <1 mm, haloes <3 mm.

CAVITIES: Vesicles are spherical and smooth walled and <1 mm, vugs are irregular up to 3 mm with euhedral plagicalase and pyroxene up to 0.5 mm

SPECIAL FEATURES: Large olivine crystals present up to 2-3 mm. One relatively unpitted side.

BY: Lofgren, Wilcox

.5 mm

MAJOR	ELE	MEN	TS (3)		TRACE AND	M	INO	R ELEMENTS	<u>S</u>
S:	i 02	=	39.79			.i	=	12.0	(OES)
T:	i 02	=	10.62			βb	=	0.63	(ID)
A ¹	1203	=	9.93			(=:	486	(ID)
Fe	e0	=	19.21			Ba	=	77.1	(ID)
Mr	n0	=	0.26			ir	=	149.8	(ID)
Mg	g0	=	7.93			r	=	-	
Ca	an	=	11.32			1	=	81	(XRF)
Na	a 2 0	=	0.39			SC.	=	85	(NAA)
Ka	20	=	0.04			li	=	<2	(XRF)
Pa	205	=	0.09			ò	=	5.65	(NAA)
S		=	0.17			ù	=	<2	(XRF)
Cı	r203	=	0.39			'n	=	2	(XRF)
						h	=	0.678	(ID)
TO	DTAL		100.14			J	=	0.192	(ID)
						2r	=	224	(XRF)
CIPW N	MODM				ŀ	łf	=		
CITI	TONT				1	۱Ь	=	17.6	(XRF)
Qt	tz	=	_						
Òr		=	0.26		RARE EART	Ή	ELE	MENTS (ID)	
At	6	=	3.30			-			
Ar	ı	=	25.21		L	.a	=	8.11	
D:	i	=	25.08			e.	=	25.8	
Ну	y	=	24.97			r	=	-	
Ne		=	-			M	=	23.9	
01	l	=	0.20		S	Sm	=	9.47	
Cl	hr	=	0.57		E	u	=	1.6	
I	m	=	20.17			bi	=	12.8	
Ar	oa	=	0.20		T	Ъ	=	-	
		-				у	=	15.8	
Τ/	DTAL		00 00			ło	=	-	
10	JIAL		99.98			r	=	10	
1/	OO M	-11	Mg+Fe) =	12 1		Γm	=	-	
			= 88/11			/b	=	9.87	
Al	I/ AD	/ Ur	- 00/11	<i>,</i> (.u	=	1.43	
					Y	1	=	84	(XRF)

WEIGHT: 95.6 q

DIMENSIONS: 6 x 4 x 3 cm

BINOCULAR DESCRIPTION

COLOR: Dark gray

Subrounded with irregular angular protrusions, elongate SHAPE:

FABRIC: Equigranular, fine-grained

COHERENCE: Tough

Fracturing: Few-nonpenetrative, microcracks with many orientations

VARIABILITY: Homogeneous

SURFACE: Smooth, dust free, with white shatter crust ZAP PITS: Many shallow, glass-lined pits with white haloes randomly distributed; haloes have concentric exfoliation. Small crusts of glass also randomly distributed, glass varicolored with

botryoidal surface

CAVITIES: Vesicles spherical to ovate, 2-3 cm², glittering submetallic

lining of very small crystals, most are 1-3 mm

SPECIAL FEATURES: Most vesicular of Apollo 11 collection

BY: Smith, Lofgren

TRACE AND MINOR ELEMENTS MAJOR ELEMENTS $Si0_2 = 40.1$ Li 11.5 (OES) $Ti0_2 = 12.2$ Rb = 5.57 (ID) K = $A1_20_3 = 8.6$ 2289 (ID) Ba Fe0 = 18.9277 (ID) Sr = Mn0 = 0.25163 (ID) Cr = Mg0 = 7.74 2254 (NAA) Ca₀ = 10.770 (NAA) Sc $Na_2 0 = 0.46$ 76 (NAA) Ni = 9.98 K₂ 0 = 0.3(MAA) Co $P_2 O_5 =$ 0.2 = 29 (NAA) Cu 5.1 (NAA) Zn 2.9 $Cr_2O_3 = 0.37$ = (NAA) Th = TOTAL 99.82 U Zr 130 (NAA) Hf 21.5 (NAA) C1PW NORM Nb = 2.40 Qtz = 1.77 0r RARE EARTH ELEMENTS (NAA) = 3.89 Ab = 20.52An La 26.4 = 25.74Di Ce = 68.5 = 21.34Ну Pr = -Ne 65 Nd = 01 21.2 Sm = 0.54 Chr 2.01 Eu = 23.17Ilm Gd = 23.9 0.44 Apa 4.5 ТЬ 30.1 Dy = 7.1 Ho 99.82 TOTAL 15.8 Er = Tm := 100 Mg/(Mg+Fe) = 42.217.5 Yb = An/Ab/0r = 78/15/72.47 Lu

WEIGHT: 68.1 g

DIMENSIONS: 5 x 4 x 3 cm

BINOCULAR DESCRIPTION

COLOR: Medium light gray

SHAPE: Subangular, dome-shaped, flat fracture on one side FABRIC: Equigranular, medium-grained

COHERENCE: Friable

Fracturing: Few - nonpenetrative

VARIABILITY: Homogeneous

SURFACE: Granulated, glass patches ZAP PITS: Few glass-lined pits 2 surfaces, none on others

CAVITIES: Vugs irregularly shaped, up to 2 mm, lined by euhedral

crystals, vesicles <1 mm

SPECIAL FEATURES: Euhedral crystals in vugs, unpitted surfaces

BY: Twedell, Chao, Lofgren

MAJOR ELEMENTS	TRACE AND MINOR ELEMENTS
SiO ₂ = 40.25 TiO ₂ = 11.9 Al ₂ O ₃ = 8.09 FeO = 19.46 MnO = 0.24 MgO = 7.53 CaO = 10.66 Na ₂ O = 0.52 K ₂ O = 0.3 P ₂ O ₅ = 0.2 S = 0.22 Cr ₂ O ₃ = 0.38 TOTAL 99.75	Li = - Rb = 5.64 (ID) K = 2430 (ID) Ba = 285 (ID) Sr = 167 (ID) Cr = - V = 37 (XRF) Sc = 76.2 (NAA) Ni = 20.037 (XRF) Co = 28.4 (NAA) Cu = 16 (XRF) Zn = 14 (XRF) Th = 4.1 (XRF) U = 0.67 (NAA)
C1PW NORM	Zr = 375 (XRF) Hf = 20 (NAA) Nb = 25 (XRF)
Qtz = 2.24 Or = 1.77 Ab = 4.4	RARE EARTH ELEMENTS (ID)
An = 18.86 Di = 27.05 Hy = 21.62 Ne = -	La = _ Ce = 76.6 Pr = _ Nd = 66.1
01 = - Chr = 0.56 Ilm = 22.6 Apa = 0.44	Sm = 23.4 Eu = 2.21 Gd = 28.6 Tb = -
TOTAL 99.53	Dy = 33.6 Ho = - Er = 19.3 Tm = -
100 Mg/(Mg+Fe) = 40.8 An/Ab/Or = 75/18/7	Yb = 16.6 Lu = - Y = 168 (XRF)

WEIGHT: 247.5 g

DIMENSIONS: 7 x 4 x 3 cm

BINOCULAR DESCRIPTION

COLOR: Light gray (salt and pepper)

SHAPE: Subangular, irregularly rounded with flat sides and

angular protuberances

FABRIC: Medium-grained, equigranular, isotropic

COHERENCE: Friable

Fracturing: Many - penetrative, irregular, non-planar, nonparallel

cracks, many minor fractures

VARIABILITY: Homogeneous

SURFACE: Granulated, very dust covered, crumbly, dust adheres

(welded on?)

ZAP PITS: Pits present evidenced by haloes, very few glass centers

present, they spall off easily

CAVITIES: Vugs - irregularily shaped up to 2 mm

SPECIAL FEATURES: One of the more friable of the Apollo 11 basalts

BY: Lofgren, Wilcox

ORIGINAL PAGE IS OF POOR QUALITY.

1 mm

MAJOR ELEMENTS	TRACE AND MINOR ELEMENTS
$\begin{array}{rcl} SiO_2 &=& 42.23 \\ TiO_2 &=& 9.0 \\ Al_2O_3 &=& 10.94 \\ FeO &=& 18.37 \\ MnO &=& 0.26 \\ MgO &=& 6.11 \\ CaO &=& 12.22 \\ Na_2O &=& 0.48 \\ K_2O &=& 0.11 \\ P_2O_5 &=& 0.06 \\ S &=& 0.18 \\ Cr_2O_3 &=& 0.21 \\ \end{array}$ $TOTAL \qquad 100.17$	Li = 11.8 (ID) Rb = 1.15 (ID) K = 781 (ID) Ba = 95 (ID) Sr = 224 (ID) Cr = - V = 38.5 (NAA) Sc = 92 (NAA) Ni = 4.0075 (XRF) Co = 11 (NAA) Cu = 4.2 (NAA) Cu = 4.2 (NAA) Th = 0.98 (NAA) U = 0.28 (NAA)
C1PW NORM	Zr = 366 (XRF) Hf = 12 (NAA) Nb = 21 (XRF)
Qtz = 2.25 Or = 0.65 Ab = 4.06 An = 27.37 Di = 27.44 Hy = 20.69 Ne = - Ol = - Chr = 0.31 Ilm = 17.09 Apa = 0.13 TOTAL 99.99 100 Mg/(Mg+Fe) = 37.2 An/Ab/Or = 85/13/2	RARE EARTH ELEMENTS (NAA) La = 12 Ce = 44 Pr = - Nd = 50 Sm = 17.9 Ev = 2.69 Gd = 24 Tb = 4.5 Dy = - Ho = - Er = - Tm = - Yb = 15 Lu = 1.96
	$\Upsilon = 147$ (XRF)

WEIGHT: 185 q

DIMENSIONS: 4 x 3 x 2.5 cm

BINOCULAR DESCRIPTION

COLOR: Dark to medium gray

SHAPE: Subrounded with subangular protuberances FABRIC: Fine to medium grained, equigranular

COHERENCE: Tough

Fracturing: Many - penetrative, some open into cavities

VARIABILITY: Some preferred orientation of vesicles along fractures

SURFACE: Smooth, dust coated; fresh surfaces hackly

ZAP PITS: Glass-lined pits with haloes on rounded surfaces CAVITIES: Vugs, 1-3 mm, irregularily shaped, lined with subhedral to euhedral pyroxene and feldspar, 10-20% by volume. Some vugs

are nearly vesicles.

SPECIAL FEATURES: Similar to 10024

BY: Greenwood, Heiken, Lofgren

MAJOR ELEMENTS (2)	TRACE AND MINOR ELEMENTS
$$10_2 = 39.32$	Li = 15 OES)
$TiO_2 = 11.21$	Rb = 0.62 (ID)
$A1_2O_3 = 9.51$	$K = 424 \qquad (ID)$
Fe0 = 19.41	Ba = 10 (XRF) Sr = 137.7 (ID)
MnO = 0.28 MgO = 7.91	Sr = 137.7 (ID) Cr = -
MgO = 7.91 CaO = 11.17	V = 98 (XRF)
$Na_{2}0 = 0.36$	Sc = 78 (NAA)
$K_2O = 0.05$	Ni = 20.337 (XRF)
$P_2 O_5 = 0.07$	Co = 16.1 (NAA)
S = 0.14	Cu = 6.2 (NAA)
$Cr_2O_3 = 0.41$	Zn = 14 (XRF)
-	Th = 0.765 (ID)
TOTAL 99.84	U = 0.17 (NAA)
	Zr = 194 (XRF)
C1PW NORM	
	$Nb = 14 \qquad (XRF)$
	ND
Qtz = 0.26	ND ()
0r = 0.30	DADE SADTU SUSUSUS
0r = 0.30 Ab = 3.05	RARE EARTH ELEMENTS (NAA)
Or = 0.30 Ab = 3.05 An = 24.19	RARE EARTH ELEMENTS (NAA) La = 6.7
Or = 0.30 Ab = 3.05 An = 24.19 Di = 25.39	RARE EARTH ELEMENTS (NAA) La = 6.7 Ce = 22.5
Or = 0.30 Ab = 3.05 An = 24.19 Di = 25.39 Hy = 24.47	RARE EARTH ELEMENTS (NAA) La = 6.7 Ce = 22.5 Pr = -
Or = 0.30 Ab = 3.05 An = 24.19 Di = 25.39 Hy = 24.47 Ne = -	RARE EARTH ELEMENTS (NAA) La = 6.7 Ce = 22.5 Pr = - Nd = 21.1
Or = 0.30 Ab = 3.05 An = 24.19 Di = 25.39 Hy = 24.47 Ne = - Ol = -	RARE EARTH ELEMENTS (NAA) La = 6.7 Ce = 22.5 Pr = - Nd = 21.1 Sm = 8.42
Or = 0.30 Ab = 3.05 An = 24.19 Di = 25.39 Hy = 24.47 Ne = - Ol = - Chr = 0.60	RARE EARTH ELEMENTS (NAA) La = 6.7 Ce = 22.5 Pr = - Nd = 21.1 Sm = 8.42 Eu = 1.54
Or = 0.30 Ab = 3.05 An = 24.19 Di = 25.39 Hy = 24.47 Ne = - Ol = - Chr = 0.60 Ilm = 21.29	RARE EARTH ELEMENTS (NAA) La = 6.7 Ce = 22.5 Pr = - Nd = 21.1 Sm = 8.42 Eu = 1.54 Gd = 13.2
Or = 0.30 Ab = 3.05 An = 24.19 Di = 25.39 Hy = 24.47 Ne = - Ol = - Chr = 0.60 Ilm = 21.29	RARE EARTH ELEMENTS (NAA) La = 6.7 Ce = 22.5 Pr = - Nd = 21.1 Sm = 8.42 Eu = 1.54 Gd = 13.2 Tb = 2.13
Or = 0.30 Ab = 3.05 An = 24.19 Di = 25.39 Hy = 24.47 Ne = - Ol = - Chr = 0.60 Ilm = 21.29 Apa = 0.15	RARE EARTH ELEMENTS (NAA) La = 6.7 Ce = 22.5 Pr = - Nd = 21.1 Sm = 8.42 Eu = 1.54 Gd = 13.2 Tb = 2.13 Dy = 14.5
Or = 0.30 Ab = 3.05 An = 24.19 Di = 25.39 Hy = 24.47 Ne = - Ol = - Chr = 0.60 Ilm = 21.29	RARE EARTH ELEMENTS (NAA) La = 6.7 Ce = 22.5 Pr = - Nd = 21.1 Sm = 8.42 Eu = 1.54 Gd = 13.2 Tb = 2.13 Dy = 14.5 Ho = 2.8
Or = 0.30 Ab = 3.05 An = 24.19 Di = 25.39 Hy = 24.47 Ne = - Ol = - Chr = 0.60 Ilm = 21.29 Apa = 0.15	RARE EARTH ELEMENTS (NAA) La = 6.7 Ce = 22.5 Pr = - Nd = 21.1 Sm = 8.42 Eu = 1.54 Gd = 13.2 Tb = 2.13 Dy = 14.5 Ho = 2.8
Or = 0.30 Ab = 3.05 An = 24.19 Di = 25.39 Hy = 24.47 Ne = - Ol = - Chr = 0.60 Ilm = 21.29 Apa = 0.15 TOTAL 99.70 100 Mg/(Mg+Fe) = 42.1	RARE EARTH ELEMENTS (NAA) La = 6.7 Ce = 22.5 Pr = - Nd = 21.1 Sm = 8.42 Eu = 1.54 Gd = 13.2 Tb = 2.13 Dy = 14.5 Ho = 2.8 Er = 9.7 Tm = - Yb = 8.53
Or = 0.30 Ab = 3.05 An = 24.19 Di = 25.39 Hy = 24.47 Ne = - Ol = - Chr = 0.60 Ilm = 21.29 Apa = 0.15	RARE EARTH ELEMENTS (NAA) La = 6.7 Ce = 22.5 Pr = - Nd = 21.1 Sm = 8.42 Eu = 1.54 Gd = 13.2 Tb = 2.13 Dy = 14.5 Ho = 2.8 Er = 9.7 Tm = -

WEIGHT: 138 q

DIMENSIONS: 7 x 4 x 3 cm

BINOCULAR DESCRIPTION

COLOR: Light gray (salt and pepper) SHAPE: Subangular, one rounded side FABRIC: Coarse-grained, equigranular

COHERENCE: Moderately friable Fracturing: Many - few penetrative

VARIABILITY: Homogeneous

SURFACE: Granulated, dust has adhered (welded?) in irregular pattern ZAP PITS: Pits not readily visible, usually only white halo visible CAVITIES: Irregular vugs up to 6 mm appear to be concentrated near surface of rock, fewer vugs on fresh surfaces. Well formed crystals

project from walls.

SPECIAL FEATURES: Very similar to 10044

BY: Wilcox, Lofgren

10047

1 mm

MAJOR ELEMENTS $SiO_2 = 42.16$ $TiO_2 = 9.43$ $A1_20_3 = 9.89$ Fe0 = 19.11 MnO 0.28 Mg0 5.67 CaO = 12.15Na₂0 0.45 0.11 K₂ 0 P2 05 0.11 0.18 0.18 $Cr_2O_3 =$ TOTAL 99.72 C1PW NORM

Qtz	=	3.41
0r	=	0.65
Ab	=	3.81
An		24.64
Di	=	29.29
Hy	=	19.33
Ne	=	-
01	=	-
Chr	=	0.27
Ilm	=	17.91
Apa	=	0.24
	-	
TOTAL		99.54
100 M	a/((Mg+Fe) = 34.
An/Ab	/Ox	= 85/13/2

11.3 La 46 Сe = Pr = Nd = 18.9 Sm = 2.71 Eu = Gd 4.1 Tb Dу Ho = 7.9 Er Tm 18.2 Yb 2.88 Lu = 134 (XRF)

WEIGHT: 193 g DIMENSIONS: 10 x 5 x 3.5 cm

BINOCULAR DESCRIPTION

COLOR: Dark gray

SHAPE: Angular, tabular

FABRIC: Very fine grained, crystals barely visible

COHERENCE: Tough

Fracturing: Few, nonpenetrative

VARIABILITY: Homogeneous

SURFACE: Hackly, fracture sculptured surface

ZAP PITS: Few, glass-lined pits with white halo, appropriately placed fracture exposes third dimension of pit and reveals that the halo

extends beneath glass lining.

CAVITIES: Vesicles and vugs, vesicles abundant, .2 to 1.5 mm, smooth walled; few vugs, irregular in shape and generally larger than vesicles

SPECIAL FEATURES: Concentration of pits very localized. One of toughest rocks (is now the "touch-rock" on display in the Smithsonian)

returned from the moon. Also one of the more angular rocks

BY: Lofgren, Frondel

.1 mm

MAJOR ELEMENTS

S10 ₂	=	41.00
TiO ₂	=	11.30
A1203	=	9.5
Fe0	=	18.7
MnO	=	0.25
Mg0	=	7.03
CaO	=	11.0
Na ₂ O	=	0.51
K ₂ O	=	0.36
P ₂ 0 ₅	=	0.20
S	=	-
Cr2 03	=	0.32
TOTAL		100.17

CIPW NORM

TOTAL 100.17

100 Mg/(Mg+Fe) = 40.1 An/Ab/Or = 78/15/7

TRACE AND MINOR ELEMENTS

Li Rb K Ba Sr Cr V Sc Ni Co Cu Th U Zr		6.2 290 330 160.8 - 80.9 - 24 - 4.03 0.814	(ID) (ID) (ID) (ID) (NAA) (NAA) (NAA)
Zr Hf Nb	=	17.3	(NAA)

RARE EARTH ELEMENTS (ID)

La	=	28.8
Ce	=	82.8
Pr	=	-
Nd	=	62.8
Sm	=	22.3
Eu	=	2.29
Gc	=	29.3
Tb	=	-
Dy	=	33.4
Ho	=	-
Er	=	30.9
Tm	=	-
Yb	=	20.2
Lu	=	-
Y	=	

WEIGHT: 114.5 g

DIMENSIONS: 5 x 4 x 3.5 cm

BINOCULAR DESCRIPTION

COLOR: Medium gray (salt and pepper)
SHAPE: Subrounded to rounded with subangular protuberences

FABRIC: Coarse grained, equigranular

COHERENCE: Coherent

Fracturing: Few, nonpenetrative VARIABILITY: Homogeneous

SURFACE: Irregular, dust covered (welded?), shatter crust

ZAP PITS: Pits not readily visible, only haloes present without

glass centers; dust probably hides many pits

CAVITIES: Vugs irregular up to 5 mm, like miarolitic cavities

with crystals of pyroxene and plagioclase protruding into cavities,

20% by volume.

SPECIAL FEATURES: Very similar to 10044, but more vugs

BY: Lofgren, Frondel

MAJOR ELEME	NTS (3)		TRACE AND M	INO	R ELEMENT	S
SiO ₂ = TiO ₂ = Al ₂ O ₃ = FeO = MnO = MgO = CaO =	40.41 11.12 9.99 17.46 0.26 7.93 11.95		Li Rb K Ba Sr Cr	: : : : : : : : : : : : : : : : : : : :	11 0.75 664 92 171.3	(ID) (ID) (ID) (ID) (ID) (ID)
Na ₂ 0 = K ₂ 0 =	0 05		Sc Ni	=	92.5 2	(NAA) (XRF)
P ₂ O ₅ =	0.08		Co	=	14	(XRF)
S =			Cu	=	2	(XRF)
$Cr_2O_3 =$	0.36		Zn Th	=	2 0.531	(XRF) (ID)
TOTAL	100.22	-	U	=	0.156	(ID)
			Žr	=	265	(XRF)
C1PW NORM			Hf	=	13.5 21	(NAA) (XRF)
			Nh	=	/	(XKF)
			Nb			,
Qtz = Or = Ab =	1.2 0.3 4.06		RARE EARTH			,
Or = Ab = An =	0.3 4.06 24.96		RARE EARTH		MENTS (NA 8.2	,
Or = Ab = An = Di =	0.3 4.06 24.96 27.69		RARE FARTH La Ce	ELE	MENTS (NA 8.2 37	,
Or = Ab = An = Di = Hy =	0.3 4.06 24.96		RARE EARTH La Ce Pr	ELE = =	8.2 37 6.2	,
Or = Ab = An = Di = Hy =	0.3 4.06 24.96 27.69		RARE FARTH La Ce	ELE	MENTS (NA 8.2 37	,
Or = Ab = An = Di = Hy = Ne = O1 = Chr =	0.3 4.06 24.96 27.69 20.06		RARE EARTH La Ce Pr Nd Sm Eu	ELE	8.2 37 6.2 36 15.1 2.15	,
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm =	0.3 4.06 24.96 27.69 20.06 - 0.53 21.12		RARE EARTH La Ce Pr Nd Sm Eu Gd	= = = = = = = = =	8.2 37 6.2 36 15.1 2.15 19.9	,
Or = Ab = An = Di = Hy = Ne = O1 = Chr =	0.3 4.06 24.96 27.69 20.06	_	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb	ELE	8.2 37 6.2 36 15.1 2.15 19.9 4.3	,
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm =	0.3 4.06 24.96 27.69 20.06 - 0.53 21.12	_	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er	= = = = = = = = =	8.2 37 6.2 36 15.1 2.15 19.9 4.3 28 4.9	,
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa = TOTAL	0.3 4.06 24.96 27.69 20.06 - 0.53 21.12 0.17 100.09 (Mg+Fe)	- = 44.7	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm	ELE	8.2 37 6.2 36 15.1 2.15 19.9 4.3 28 4.9	,
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa = TOTAL	0.3 4.06 24.96 27.69 20.06 - 0.53 21.12 0.17	- = 44.7 /1	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er	ELE	8.2 37 6.2 36 15.1 2.15 19.9 4.3 28 4.9	,

WEIGHT: 919 g

DIMENSIONS: 11 x 10 x 6 cm

BINOCULAR DESCRIPTION

COLOR: Medium to dark gray

SHAPE: Subrounded, potato shape FABRIC: Fine-grained, equigranular

COHERENCE: Tough

Fracturing: Few, nonpenetrative, two sets of fine fractures, one

coarse fracture subparallel to rounded surface

VARIABILITY: Homogeneous - except grain size coarser near vugs SURFACE: Irregular, dust adheres very well (welded?). Some small patches (<2 cm square) of black glassy splatter noted on several exterior surfaces

ZAP PITS: Many - mostly just the white haloes in evidence, sparse yellow-brown glass in some pits. One pit, 15 mm diameter depression,

5 mm speckled white center.

CAVITIES: Vugs and vesicles: vugs irregular up to 4 mm diameter plagioclase and pyroxene protrude into them; vesicles are smooth walled, 0.5 - 1.5 mm diameter, 15 - 20% by volume

SPECIAL FEATURES: Inclusion of 5 mm x 2.5 mm (rounded) lighter colored rock fragment that is nonvesicular

BY: Chao, Lofgren

.25 mm

MAJOR ELEMENTS (2)	TRACE AND MINOR ELEMENTS
SiO ₂ = 40.23 TiO ₂ = 11.4 Al ₂ O ₃ = 9.42 FeO = 19.38 MnO = 0.22 MgO = 7.65 CaO = 10.42 Na ₂ O = 0.56 K ₂ O = 0.3 P ₂ O ₅ = 0.18 S = 0.26 Cr ₂ O ₃ = 0.35	Li = 14 (NAA) Rb = 5.9 (ID) K = 274 (ID) Ba = 319 (XRF) Sr = 173.3 (ID) Cr = - V = 47 (XRF) Sc = 87 (NAA) Ni = 2 (XRF) Co = 25.4 (NAA) Cu = 2 (XRF) Zn = 2 (XRF) Th = 3.41 (ID)
TOTAL 100.36	U = 0.865 (ID)
C1PW NORM	Zr = 517 (XRF) Hf = 16.9 (NAA) Nb = 28.7 (XRF)
Qtz = 1.01 Or = 1.77 Ab = 4.70	RARE EARTH ELEMENTS (NAA)
An = 22.33 Di = 23.33 Hy = 24.41	La = 28.2 Ce = 75 Pr = _
Ne = -	
01 = -	Nd = 69 Sm = 20.8
Chr = 0.51	Sm = 20.8 Eu = 2.18
	Sm = 20.8 Eu = 2.18 Gd = 26 Tb = 5
Chr = 0.51 Ilm = 21.65	Sm = 20.8 Eu = 2.18 Gd = 26 Tb = 5 Dy = 34.7 Ho = 6.4
Chr = 0.51 Ilm = 21.65 Apa = 0.39	Sm = 20.8 Eu = 2.18 Gd = 26 Tb = 5 Dy = 34.7

WEIGHT: 282 g

DIMENSIONS: 5.5 x 5.5 x 5 cm

BINOCULAR DESCRIPTION

COLOR: Light gray (salt and pepper) - brownish cast

SHAPE: Subangular, rounded on three sides, one flat fractured

surface, generally blocky

FABRIC: Coarse grained, equigranular

COHERENCE: Friable

Fracturing: Many - nonpenetrative, randomly oriented

VARIABILITY: Homogeneous

SURFACE: Granulated, small patches of glass with globular surfaces;

adherent dust (welded?)

ZAP PITS: Few distinct pits, just haloes and chalky to milky white

feldspar

CAVITIES: Vugs with irregular shapes up to 3 mm, all crystal types

protrude into vugs

SPECIAL FEATURES: Coarsest grained of Apollo 11 basalts

BY: Chao, Lofgren

MAJOR ELEMENTS (3)	TRACE AND MINOR ELEMENTS
$SiO_2 = 41.63$	Li = 11.4 (ID)
$TiO_2 = 9.91$	Rb = 0.98 (ID)
$A1_20_3 = 10.98$	K = 877 (ID)
Fe0 = 18.06	Ba = 117 (ID)
Mn0 = 0.27	Sr = 218.3 (ID)
MgO = 6.17	Cr = 1960.0 (NAA)
CaO = 11.81	V = 46 (XRF)
$Na_2O = 0.65$	Sc = 80.8 (NAA)
$K_2 0 = 0.08$	$Ni = 2 \qquad (XRF)$
$P_2O_5 = 0.13$	Co = 14.4 (NAA)
S = 0.19	Cu = 2 (XRF)
$Cr_2O_3 = C.22$	$Zn = 2 \qquad (XRF)$
TOTAL 100.10	Th = 1.1 (MS)
TOTAL 100.10	U = 0.2 (NAA)
	Zr = 376 (XRF) Hf = 11.2 (NAA)
C1PW NORM	
	Nb = 28.4 (XRF)
Qtz = 2.28	
$\hat{O}r = 0.47$	RARE EARTH ELEMENTS (ID)
/b = 5.5	
An = 26.81	La = 11.5
Di = 25.76	Ce = 40.2
Hy = 19.67	Pr = -
Ne = -	Nd = 41.2
01 = -	Sm = 17.2
$C_{IC} = 0.32$ $I_{Im} = 18.82$	Eu = 2.64
	Gd = 23.6
$A_{pa} = 0.28$	Tb = -
	Dy = 27
TOTAL 99.91	Ho = -
	Er = 16.3
100 Mg/(Mg+Fe) = 37.8	Tm = -
An/Ab/Or = 82/17/1	Yb = 15.5 Lu = 2.14
SE(177)	
	$Y = 147 \qquad (XRF)$

WEIGHT: 78.5 g

DIMENSIONS: 4 x 2.5 x 1.7 cm

BINOCULAR DESCRIPTION

COLOR: Medium to dark gray SHAPE Subrounded, blocky

FABRI : Medium grained, equigranular

COHERENCE: Coherent

Fracturing: Few, nonpenetrative, spall-like

VARIABILITY: Homogeneous

SURFACE: Granular, irregular; hackly on fresh surfaces ZAP PITS: Few on one surface, none on others; glass-lined pits up to

1 mm in diameter

CAVITIES: Vugs and vesicles; vugs irregular shape, lined with same

crystals as in the rock

SPECIAL FEATURES: Several unpitted surfaces

BY: Kramer

.5 mm

MAJOR ELEME	NTS		TRACE AND N	11NO	R ELEMENT	<u>S</u>
SiO ₂ =	39.8		Li	=	_	
TiO ₂ =			Rb	=	0.81	(ID)
A1203 =			K	=	660	(ID)
Fe0 =			Ba	=	140	(ID)
Mn0 =			Sr	=	196.4	(ID)
Mg0 =			Cr	=	-	(10)
Ca0 =			. v	=	75	(NAA)
Na ₂ 0 =			Sc	=	74.7	(NAA)
$K_20 =$			Ni	=	15.008	(NAA)
P ₂ O ₅ =			Co	=	13.8	(NAA)
S =			Cu	=	4	(NAA)
Cr ₂ O ₃ =			Zn	=	-	(NAA)
Cr2 U3 -	_		Th	_	0.9	(XRF)
TOTAL	99.60		Ü	=	0.27	(NAA)
IOIAL	99.00		Zr	=	319	(XRF)
			Hf	_	11.8	(NAA)
C1PW NORM			Nb	=	-	(MAA)
			ND	_	-	
Qtz =	0.59					
Qtz = 0r =	0.59 0.47			ELE	MENTS (ID)
	0.47 3.47		RARE EARTH	ELE	MENTS (ID)
0r =	0.47 3.47 25.81			ELE =	MENTS (ID))
Or = Ab =	0.47 3.47 25.81 25.17		RARE EARTH)
Or = Ab = An =	0.47 3.47 25.81		RARE EARTH	=	14.5 44.8)
Or = Ab = An = Di =	0.47 3.47 25.81 25.17		RARE EARTH La Ce	=	14.5 44.8 - 37.5)
Or = Ab = An = Di = Hy =	0.47 3.47 25.81 25.17		RARE EARTH La Ce Pr	=	14.5 44.8 - 37.5 13.7)
Or = Ab = An = Di = Hy = Ne =	0.47 3.47 25.81 25.17 23.27		RARE EARTH La Ce Pr Nd Sm	= =	14.5 44.8 - 37.5)
Or = Ab = An = Di = Hy = Ne = 01 =	0.47 3.47 25.81 25.17 23.27 - - 20.40		RARE EARTH La Ce Pr Nd Sm Eu	= = =	14.5 44.8 - 37.5 13.7)
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm =	0.47 3.47 25.81 25.17 23.27		RARE EARTH La Ce Pr Nd Sm Eu Gd	= = = =	14.5 44.8 - 37.5 13.7 2.06)
Or = Ab = An = Di = Hy = Ne = Ol = Ilm =	0.47 3.47 25.81 25.17 23.27 - - 20.40		RARE EARTH La Ce Pr Nd Sm Eu Gd Tb	= = = = = =	14.5 44.8 - 37.5 13.7 2.06 18.2)
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa =	0.47 3.47 25.81 25.17 23.27 - - 20.40 0.26	_	RARE EARTH La Ce Pr Nd Sm Eu Gd	= = = = = =	14.5 44.8 - 37.5 13.7 2.06 18.2)
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm =	0.47 3.47 25.81 25.17 23.27 - - 20.40		RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho	= = = = = =	14.5 44.8 - 37.5 13.7 2.06 18.2 - 20.4)
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa =	0.47 3.47 25.81 25.17 23.27 - - 20.40 0.26		RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er	= = = = = =	14.5 44.8 - 37.5 13.7 2.06 18.2 - 20.4	
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa = TOTAL	0.47 3.47 25.81 25.17 23.27 - 20.40 0.26 99.44 (Mg+Fe)		RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm		14.5 44.8 - 37.5 13.7 2.06 18.2 - 20.4	
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa =	0.47 3.47 25.81 25.17 23.27 - 20.40 0.26 99.44 (Mg+Fe)	= 39.6 12/2	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb		14.5 44.8 37.5 13.7 2.06 18.2 20.4 -	
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa = TOTAL	0.47 3.47 25.81 25.17 23.27 - 20.40 0.26 99.44 (Mg+Fe)		RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm		14.5 44.8 - 37.5 13.7 2.06 18.2 - 20.4	(XRF)

WEIGHT: 119.5 g

DIMENSIONS: 7 x 5 x 5 cm

BINOCULAR DESCRIPTION

COLOR: Dark to medium gray

SHAPE: Subangular to angular, irregular FABRIC: Fine grained, equigranular

COHERENCE: Friable

Fracturing: Few, nonpenetrative, mainly rehealed VARIABILITY: Homogeneous

SURFACE: Hackly, locally smooth, dust adhering on all surfaces

ZAP PITS: Few glass-lined pits up to 1 mm with white haloes on one

surface - none on others

CAVITIES: Vesicles and vugs in equal quantities; vesicles are spherical, smooth, and glass lined. Vugs are very irregular in shape and

crystal lined.

SPECIAL FEATURES: Several unpitted surfaces

BY: Twedell, Wilcox, Lofgren

.5 mm

CHEFITSTRI	
MAJOR ELEMENTS	TRACE AND MINOR ELEMENTS
$SiO_2 = 40.32$	Li = 17.2 (ID)
TiO ₂ = 11.59	Rb = 5.7 (ID)
	1 1
$A1_20_3 = 7.90$,,
Fe0 = 19.61	Ba = 288 (ID)
Mn0 = 0.24	Sr = 155.6 (ID)
Mg0 = 7.77	Cr = 2270 (NAA)
Ca0 = 10.7	V = 52 (XRF)
$Na_2O = 0.59$	$S_C = 72.4 $ (NAA)
$K_2 0 = 0.29$	Ni = 3 (XRF)
$P_2 O_5 = 0.2$	Co = 26 (NAA)
S = 0.26	Cu = 12 (NAA)
$Cr_2O_3 = 0.36$	Zn = 2 (XRF)
01203	Th = -
TOTAL 99.83	U = 0.78 (NAA)
101AE 33.03	Zr = 522 (XRF)
C1PW NORM	
	$Nb = 29 \qquad (XRF)$
Qtz = 1.36	
$\hat{O}r = 1.69$	
	RARE EARTH ELEMENTS (NAA)
▼ *	RARE EARTH ELEMENTS (NAA)
Ab = 4.99	Wilderson and the second decision for the second decision of the second decision.
Ab = 4.99 An = 18.06	La = 23.7
Ab = 4.99 An = 18.06 Di = 27.88	La = 23.7 Ce = 65
Ab = 4.99 An = 18.06 Di = 27.88 Hy = 22.59	La = 23.7 Ce = 65 Pr = -
Ab = 4.99 An = 18.06 Di = 27.88 Hy = 22.59 Ne = -	La = 23.7 Ce = 65 Pr = - Nd = -
Ab = 4.99 An = 18.06 Di = 27.88 Hy = 22.59 Ne = - Ol = -	La = 23.7 Ce = 65 Pr = - Nd = - Sm = 18
Ab = 4.99 An = 18.06 Di = 27.88 Hy = 22.59 Ne = - Ol = - Chr = 0.54	La = 23.7 Ce = 65 Pr = - Nd = - Sm = 18 Eu = 2.04
Ab = 4.99 An = 18.06 Di = 27.88 Hy = 22.59 Ne = - Ol = - Chr = 0.54 Ilm = 22.01	La = 23.7 Ce = 65 Pr = - Nd = - Sm = 18 Eu = 2.04 Gd = -
Ab = 4.99 An = 18.06 Di = 27.88 Hy = 22.59 Ne = - Ol = - Chr = 0.54	La = 23.7 Ce = 65 Pr = - Nd = - Sm = 18 Eu = 2.04 Gd = - Tb = 4.8
Ab = 4.99 An = 18.06 Di = 27.88 Hy = 22.59 Ne = - Ol = - Chr = 0.54 Ilm = 22.01	La = 23.7 Ce = 65 Pr = - Nd = - Sm = 18 Eu = 2.04 Gd = - Tb = 4.8 Dy = -
Ab = 4.99 An = 18.06 Di = 27.88 Hy = 22.59 Ne = - Ol = - Chr = 0.54 Ilm = 22.01 Apa = 0.44	La = 23.7 Ce = 65 Pr = - Nd = - Sm = 18 Eu = 2.04 Gd = - Tb = 4.8
Ab = 4.99 An = 18.06 Di = 27.88 Hy = 22.59 Ne = - Ol = - Chr = 0.54 Ilm = 22.01	La = 23.7 Ce = 65 Pr = - Nd = - Sm = 18 Eu = 2.04 Gd = - Tb = 4.8 Dy = -
Ab = 4.99 An = 18.06 Di = 27.88 Hy = 22.59 Ne = - Ol = - Chr = 0.54 Ilm = 22.01 Apa = 0.44	La = 23.7 Ce = 65 Pr = - Nd = - Sm = 18 Eu = 2.04 Gd = - Tb = 4.8 Dy = - Ho = 6.9
Ab = 4.99 An = 18.06 Di = 27.88 Hy = 22.59 Ne = - Ol = - Chr = 0.54 Ilm = 22.01 Apa = 0.44 TOTAL 99.57 100 Mg/(Mg+Fe) = 41.4	La = 23.7 Ce = 65 Pr = - Nd = - Sm = 18 Eu = 2.04 Gd = - Tb = 4.8 Dy = - Ho = 6.9 Er = - Tm = -
Ab = 4.99 An = 18.06 Di = 27.88 Hy = 22.59 Ne = - Ol = - Chr = 0.54 Ilm = 22.01 Apa = 0.44	La = 23.7 Ce = 65 Pr = - Nd = - Sm = 18 Eu = 2.04 Gd = - Tb = 4.8 Dy = - Ho = 6.9 Er = - Tm = - Yb = 20.8
Ab = 4.99 An = 18.06 Di = 27.88 Hy = 22.59 Ne = - Ol = - Chr = 0.54 Ilm = 22.01 Apa = 0.44 TOTAL 99.57 100 Mg/(Mg+Fe) = 41.4	La = 23.7 Ce = 65 Pr = - Nd = - Sm = 18 Eu = 2.04 Gd = - Tb = 4.8 Dy = - Ho = 6.9 Er = - Tm = - Yb = 20.8

ROCK NUMBER: 10071 WEIGHT: 189.5 g

DIMENSIONS: 10 x 5 x 3 cm

BINOCULAR DESCRIPTION

COLOR: Medium light gray

SHAPE: Subangular, knobby, irregular, elongate

FABRIC: Fine-grained, equigranular except for few large olivine

crystals

COHERENCE: Friable

Fracturing: Few - nonpenetrative

VARIABILITY: Grain size variable, olivine up to 1 mm and rare

SURFACE: Irregular, dust adhering

ZAP PITS: Many glass-lined pits on nearly all surfaces, some

are raised above rock surface and have white haloes

CAVITIES: Large vesicles more or less spherical with variable

crystal lining

SPECIAL FEATURES: Largest vesicles of Apollo 11 basalts

BY: Smith, Twedell, Warner

10071

.25 mm

MAJOR ELEMENTS	TRACE AND MINOR ELEMENTS
SiO ₂ = 40.51	Li = 17 (OES)
$TiO_2 = 11.87$	Rb = 5.93 (ID)
$A1_20_3 = 7.91$	K = 2740.0 (ID)
Fe0 = 19.65	$Ba = 327 \qquad (ID)$
Mn0 = 0.25	Sr = 160.9 (ID)
Mg0 = 7.51	Cr = 2290 (NAA)
cao = 10.48	V = 92 (NAA)
$Na_2O = 0.53$	Sc = 77 (NAA)
$K_2 0 = 0.30$	Ni = 6.9 (OES)
$P_2 O_5 = 0.22$	Co = 28 (NAA)
S = -	Cu = 11 (NAA)
$Cr_2O_3 = 0.35$	Zn =
	Th = 3.36 (ID)
TOTAL 99.58	U = .859 (ID)
	Zr = 562 (NAA)
C1PW NORM	Hf = 16.6 (NAA)
CIPW NORM	Nb = 24 (OES)
Qtz = 2.60	
	RARE EARTH ELEMENTS (ID)
Or = 1.77	RARE EARTH ELEMENTS (ID)
Or = 1.77 Ab = 4.48	(/
Or = 1.77 Ab = 4.48 An = 18.32	La = 28.8
Or = 1.77 Ab = 4.48 An = 18.32 Di = 26.69	La = 28.8
Or = 1.77 Ab = 4.48 An = 18.32 Di = 26.69 Hy = 22.18	La = 28.8 Ce = 83.5 Pr =
Or = 1.77 Ab = 4.48 An = 18.32 Di = 26.69 Hy = 22.18	La = 28.8 Ce = 83.5 Pr =
Or = 1.77 Ab = 4.48 An = 18.32 Di = 26.69 Hy = 22.18 Ne = -	La = 28.8 Ce = 83.5 Pr = Nd = 64.5
Or = 1.77 Ab = 4.48 An = 18.32 Di = 26.69 Hy = 22.18 Ne = - Ol = - Chr = 0.52 Ilm = 22.54	La = 28.8 Ce = 83.5 Pr = Nd = 64.5 Sm = 22.7
Or = 1.77 Ab = 4.48 An = 18.32 Di = 26.69 Hy = 22.18 Ne = - Ol = - Chr = 0.52	La = 28.8 Ce = 83.5 Pr = Nd = 64.5 Sm = 22.7 Eu = 2.32
Or = 1.77 Ab = 4.48 An = 18.32 Di = 26.69 Hy = 22.18 Ne = - Ol = - Chr = 0.52 Ilm = 22.54	La = 28.8 Ce = 83.5 Pr = Nd = 64.5 Sm = 22.7 Eu = 2.32 Gd = 29.3
Or = 1.77 Ab = 4.48 An = 18.32 Di = 26.69 Hy = 22.18 Ne = - Ol = - Chr = 0.52 Ilm = 22.54 Apa = 0.58	La = 28.8 Ce = 83.5 Pr = Nd = 64.5 Sm = 22.7 Eu = 2.32 Gd = 29.3 Tb = Dy = 33.5 Ho =
Or = 1.77 Ab = 4.48 An = 18.32 Di = 26.69 Hy = 22.18 Ne = - Ol = - Chr = 0.52 Ilm = 22.54	La = 28.8 Ce = 83.5 Pr = Nd = 64.5 Sm = 22.7 Eu = 2.32 Gd = 29.3 Tb = Dy = 33.5 Ho = Er = 21.3
Or = 1.77 Ab = 4.48 An = 18.32 Di = 26.69 Hy = 22.18 Ne = - Ol = - Chr = 0.52 Ilm = 22.54 Apa = 0.58 TOTAL 99.58	La = 28.8 Ce = 83.5 Pr = Nd = 64.5 Sm = 22.7 Eu = 2.32 Gd = 29.3 Tb = Dy = 33.5 Ho = Er = 21.3 Tm =
Or = 1.77 Ab = 4.48 An = 18.32 Di = 26.69 Hy = 22.18 Ne = - Ol = - Chr = 0.52 Ilm = 22.54 Apa = 0.58 TOTAL 99.58	La = 28.8 Ce = 83.5 Pr = Nd = 64.5 Sm = 22.7 Eu = 2.32 Gd = 29.3 Tb = Dy = 33.5 Ho = Er = 21.3 Tm = Yb = 20.5
Or = 1.77 Ab = 4.48 An = 18.32 Di = 26.69 Hy = 22.18 Ne = - Ol = - Chr = 0.52 Ilm = 22.54 Apa = 0.58 TOTAL 99.58	La = 28.8 Ce = 83.5 Pr = Nd = 64.5 Sm = 22.7 Eu = 2.32 Gd = 29.3 Tb = Dy = 33.5 Ho = Er = 21.3 Tm =

WEIGHT: 447 g

DIMENSIONS: 8 x 8 x 5 cm

BINOCULAR DESCRIPTION

COLOR: Medium to dark gray

SHAPE: Angular, blocky, equidimensional FABRIC: Fine grained, equigranular

COHERENCE: Coherent

Fracturing: Few, nonpenetrative VARIABILITY: Homogeneous

SURFACE: Hackly

ZAP PITS: Few white haloes and chalky white material on one surface,

others have no pits

CAVITIES: Vugs are very large (up to 10 x 11 mm) and often intricately

lined with a boxwork of needle-like plagioclase and ilmenite,

vesicles are present but not plentiful

SPECIAL FEATURES: Largest, most spectacular vugs with largest euhedral

crystals.

BY: Lofgren

.5 mm

MAJOR ELEMENTS (4)	TRACE AND MINOR ELEMENTS
$\begin{array}{rcl} SiO_2 &=& 40.26 \\ TiO_2 &=& 12.07 \\ Al_2O_3 &=& 7.93 \\ FeO &=& 19.58 \\ MnO &=& 0.23 \\ MgO &=& 7.8 \\ CaO &=& 10.41 \\ Na_2O &=& 0.53 \\ K_2O &=& 0.28 \\ P_2O_5 &=& 0.18 \\ S &=& 0.24 \\ Cr_2O_3 &=& 0.36 \end{array}$ $TOTAL \qquad 99.87$	Li = 14 (OES) Rb = 5.72 (ID) K =2539 (ID) Ba = 294 (XRF) Sr = 168.2 (ID) Cr = - V = 62 (XRF) Sc = 77 (OES) Ni = 3 (XRF) Co = 27.2 (NAA) Cu = 2 (XRF) Zn = 2 (XRF) Th = 3.156 (ID) U = 0.857 (ID)
	$Zr = 504 \qquad (XRF)$
C1PW NORM	Hf = 12 (OES) Nb = 27.8 (XRF)
Qtz = 2.22 Or = 1.65 Ab = 4.48 An = 18.43 Di = 26.44 Hy = 22.55 Ne = - Ol = - Chr = 0.53 Ilm = 22.92 Apa = 0.39	RARE EARTH ELEMENTS (NAA) La = 22.7 Ce = 69 Pr = - Nd = 51 Sm = 17.9 Eu = 2.07 Gd = 26 Tb = 4.3 Dy = 31.2 Ho = 6.8
100 Mg/(Mg+Fe) = 41.5 An/Ab/Or = 75/18/7	Er = 16 Tm = - Yb = 16.6 Lu = 2.24

WEIGHT: 46 g

DIMENSIONS: 4.2 x 3 x 2.6 cm

BINOCULAR DESCRIPTION

COLOR: Medium light gray

SHAPE: Angular

FABRIC: Fine grained, equigranular

COHERENCE: Tough

Fracturing: Few - nonpenetrative, one penetrative VARIABILITY: Homogeneous

SURFACE: Irregular, coated with patina (shatter crust); one fresh

surrace

ZAP PITS: Many glass-lined pits up to 0.8 mm diameter on 2 faces,

few on one other, and none on the rest

CAVITIES: Vugs up to 30% by volume, crystal lined and up to 5 mm

diameter

SPECIAL FEATURES: Originally part of sample 12002 and designated 12002,22, only recently given separate sample number

BY: Twedell

1 Cm

.5 mm

MAJOR ELEME	NTS			TRACE AN	D M	INO	R ELEMENT	<u>'S</u>
SiO ₂ = TiO ₂ =	10.87				Li Rb	=		
$A1_20_3 =$					K	=		
Fe0 =					Ba	=		
Mn0 =					Sr	=	2020	/NAA \
Mg0 =					Cr V	_	2930	(NAA)
Ca0 = Na ₂ 0 =					Sc	_	82	(NAA)
Na ₂ 0 = K ₂ 0 =					Ni	=	02	(IIAA)
P ₂ O ₅ =					Co	=	19.3	(NAA)
S =					Cu	=	13.0	()
Cr ₂ O ₃ =					Zn	=		
01203					Th	=		
TOTAL	99.22				U	=		
					Zr	=		
C1PW NORM					Hf	=	6.8	(NAA)
CIPW NORM					Nb	=		
Qtz =	-							/1100\
0r =	0.00			RARE EAR	TH	ELE	MENTS	(NAA)
Ab =	2.88							
An =	24.06				La	=	7.3	
Di =	24.72				Ce	=	25	
Hy =	22.95				Pr	=		
Ne =	2.02				Nd	=		
01 =	2.83				Sm	=	8.9	
Chr =	0.63 20.64				Eu	=	1.48	
.	0.15				Gd Tb	=	2.1	
Apa =	0.13					_	2.1	
					Dy Ho	=		
TOTAL	99.22				Er	_		
	1				Tm	=		
	(Mg+Fe) =				Υb	=	8.1	
An/Ab/0	r = 88/11	/1			Lu	=	1.22	
					Ϋ́	=		
					7.522			

Ref: Rhodes, J. M. and Blanchard, D. P. (1980) Proc. Lunar Sci. Conf. 11th, 49-66.

APOLLO 12

WEIGHT: 1529.5 g

DIMENSIONS: 11 x 9 x 6 cm

BINOCULAR DESCRIPTION

COLOR: Speckled medium brownish gray

SHAPE: Subrounded

FABRIC: Holocrystalline granular

COHERENCE: Tough

Fracturing: One prominent fracture - nonpenetrative

VARIABILITY: Homogeneous

SURFACE: Smooth

ZAP PITS: Few 3-4 mm diameter glass lined pits CAVITIES: Vugs are rare, evenly distributed

SPECIAL FEATURES: Dust adheres strongly to surface

BY: Morrison, Warner, Anderson

.5 mm

MAJOR ELEMENTS	 TRACE AND M	INOR ELEMENTS	
	Li	= <u>-</u>	
	Rb	= 1.04	(ID)
Ti02 = 2.6 $A1203 = 7.87$	K	= 467	(ID)
Fe0 = 21.66	Ba	= 67.2	(ID)
Mn0 = 0.28	Sr	= 101	(ID)
Mg0 = 14.38	Cr	= 5620	(NAA)
Ca0 = 8.26	v.	= 175	(OES)
$Na_20 = 0.23$	Sc	= 38.3	(NAA)
$K_2 0 = 0.05$	Ni	= 63.9	(XRF)
$P_2 O_5 = 0.11$	Co	= 65.8	(NAA)
S = 0.06	Cu	= 4.6	(XRF)
$Cr_2O_3 = 0.96$	Zn	= 1.5	(XRF)
	Th	= 0.7470	(ID)
TOTAL 100.52	U	= 0.2190	(ID)
	Zr	= 106	(XRF)
C1PW NORM	Hf	= 2.49	(NAA)
CTPW NORM	Nb	= 8.5	(XRF)
Qtz = -			
0r = 0.3	RARE EARTH	ELEMENTS (ID)	
Ab = 1.95			
An = 20.29	La	= 6.020	
Di = 16.55	Ce	= 17	
Hy = 29.01	Pr	= _	
Ne = -	Nd	= 12.30	
01 = 25.77	Sm	= 4.24	
Chr = 1.41	Eu	= 0.8530	
Ilm = 4.94	Gd	= 5.65	
Apa = 0.24	ТЬ	= -	
Broken Broken State Control St	Dy	= 6.34	
TOTAL 100.47	Но	= -	
TOTAL TELEPOOR	Er	= 3.89	
100 Mg/(Mg+Fe) = 55.0	Tm	= -	
An/Ab/Or = 90/9/1	ΥЬ	= 3.78	
An/Ab/Or = 90/9/1	Yb Lu Y	= 3.78 = - = 39	(XRF)

WEIGHT: 585 g DIMENSIONS: 9 x 8 x 4 cm

BINOCULAR DESCRIPTION

COLOR:

SHAPE: Subrounded, a flat-topped dome FABRIC: Holocrystalline granular

COHERENCE:

Fracturing: Few, nonpenetrative, parallel to top and bottom

VARIABILITY: Homogeneous SURFACE: Granular to smooth

ZAP PITS: Few glass lined pits
CAVITIES: Irregularly shaped vugs ~3/cm³
SPECIAL FEATURES: Sample broke in two pieces in can, must have

had at least one penetrative fracture.

BY: Warner

MAJOR ELEMEN	TS (2)		TRACE AND M	INOR ELEMEN	ITS
SiO ₂ =	44.91		Li	= 11	(NAA)
TiO ₂ =	2.84		RЬ	= 1.123	
A1203 =	8.26		K	= _	
Fe0 =	21.34		Ba	= 55	(XRF)
Mn0 =	0.29		Sr	= 94.3	(ID)
Mg0 =	12.60		Cr	= 4200	(NAA)
Ca0 =	9.02		V	= 145	(XRF)
Na ₂ 0 =	0.21		Sc	= 43.8	(NAA)
K ₂ 0 =	0.07		Ni	= 52	(XRF)
P ₂ O ₅ =	0.07		Co Cu	= 47.9 = 9	(NAA)
S =	0.07 0.61		Zn	= 9 = 3	(XRF) (XRF)
Cr ₂ O ₃ =	0.01		Th	= 0.92	(ID)
TOTAL	100.29		ΰ"	= 0.303	
TOTAL	100.23		Zr	= 110	(XRF)
			Hf	= 5.1	(NAA)
C1PW NORM			Nb	= 7	(XRF)
04					
Qtz =	- 0.41		DADE EADTH	ELEMENTS (N	100)
0r =	- 0.41 1.78		RARE EARTH	ELEMENTS (N	IAA)
Or = Ab =	1.78				IAA)
Or = Ab = An =	1.78 21.39		L.a	= 5.43	IAA)
Or = Ab = An = Di =	1.78 21.39 19.05		La Ce	= 5.43 = 15	IAA)
Or = Ab = An = Di = Hy =	1.78 21.39		La Ce Pr	= 5.43 = 15 = 1.9	IAA)
Or = Ab = An = Di = Hy = Ne =	1.78 21.39 19.05 36.29		La Ce Pr Nd	= 5.43 = 15 = 1.9 = 12.9	IAA)
Or = Ab = An = Di = Hy = Ne = 01 =	1.78 21.39 19.05 36.29 - 14.86 0.90		La Ce Pr Nd Sm	= 5.43 = 15 = 1.9 = 12.9 = 3.2	IAA)
Or = Ab = An = Di = Hy = Ne = O1 =	1.78 21.39 19.05 36.29 - 14.86 0.90 5.39		La Ce Pr Nd	= 5.43 = 15 = 1.9 = 12.9 = 3.2	IAA)
Or = Ab = An = Di = Hy = Ne = O1 = Chr =	1.78 21.39 19.05 36.29 - 14.86 0.90		La Ce Pr Nd Sm Eu	= 5.43 = 15 = 1.9 = 12.9 = 3.2 = 0.82 = 4.7 = 0.97	IAA)
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm =	1.78 21.39 19.05 36.29 - 14.86 0.90 5.39		La Ce Pr Nd Sm Eu Gd	= 5.43 = 15 = 1.9 = 12.9 = 3.2 = 0.82 = 4.7 = 0.97 = 5.5	IAA)
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa =	1.78 21.39 19.05 36.29 - 14.86 0.90 5.39 0.15		La Ce Pr Nd Sm Eu Gd Tb Dy Ho	= 5.43 = 15 = 1.9 = 12.9 = 3.2 = 0.82 = 4.7 = 0.97 = 5.5 = 1.4	IAA)
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm =	1.78 21.39 19.05 36.29 - 14.86 0.90 5.39		La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er	= 5.43 = 1.9 = 12.9 = 3.2 = 0.82 = 4.7 = 0.97 = 5.5 = 1.4 = 3.84	IAA)
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa = TOTAL	1.78 21.39 19.05 36.29 	51 3	La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm	= 5.43 = 1.9 = 12.9 = 3.2 = 0.82 = 4.7 = 0.97 = 5.5 = 1.4 = 3.84 = -	IAA)
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa = TOTAL	1.78 21.39 19.05 36.29 - 14.86 0.90 5.39 0.15 - 100.22 Mg+Fe) =	51.3	La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb	= 5.43 = 1.9 = 12.9 = 3.2 = 0.82 = 4.7 = 0.97 = 5.5 = 1.4 = 3.84 = 3.17	IAA)
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa = TOTAL	1.78 21.39 19.05 36.29 - 14.86 0.90 5.39 0.15 - 100.22 Mg+Fe) =		La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm	= 5.43 = 1.9 = 12.9 = 3.2 = 0.82 = 4.7 = 0.97 = 5.5 = 1.4 = 3.84 = -	(XRF)

WEIGHT: 482 g DIMENSIONS: 10 x 5 x 5 cm

BINOCULAR DESCRIPTION

COLOR: Charcoal gray surface with white patches and streaks

SHAPE: Subrounded to rounded FABRIC: Holocrystalline granular

COHERENCE: Coherent

Fracturing: Few, one penetrative, most nonpenetrative

VARIABILITY: Grain size variations, some areas of coarser pyroxene

and olivine especially near major fracture

SURFACE: Granulated, pulverized appearance, initially dust covered ZAP PITS: Many black glass-lined pits ranging up to 1 mm in diameter.

CAVITIES: Vugs have irregular distribution; average density 1/cm².

Shape irregular but roughly equidimensional, 1-2 mm diameter.

Olivine and ilmenite on yug walls.

SPECIAL FEATURES: Black glass is set up on a white pulverized mound that is extremely fragile and easily destroyed by handling.

BY: Butler, Warner

.5 mm

MAJOR ELEMENTS		TRACE AND N	11 NO	R ELEM	ENTS
$SiO_2 = 4$	1.56	Li	=		
	2.76	Rb	=		
	5.30	K	=		
Fe0 = 2	2.27	Ba	=	35	(ID)
Mn0 =	0.30	Sr	=	83	(XRF)
	9.97	Cr	=	5200	(NAA)
•	6.31	V	=		
	0.16	Sc	=	37.1	(NAA)
	0.04	Ni	=	90	(NAA)
	0.04	Co	=	71	(NAA)
•	0.04 0.75	Cu	=		
Cr ₂ O ₃ =	0.75	Zn Th	-		
TOTAL 9	9.50	Ü	-		
TOTAL	3.30	Zr	=	66	(XRF)
		Hf	=	2.4	(NAA)
C1PW NORM		Nb	=	4.3	(XRF)
Qtz =	0.24				, ,
U17 =					
		DADE EADTH	E1 E	MENTS	(AAA)
0r =	-	RARE EARTH	ELE	MENTS	(NAA)
Or = Ab =	- 1.35			MENTS	(NAA)
Or = Ab = An = 1	-	La	ELE =		(NAA)
Or = Ab = An = 1 Di = 1	1.35 3.63	La Ce	=	10.2	(NAA)
Or = Ab = An = 1. Di = 1. Hy = 2	1.35 3.63 4.28 1.57	La	=		(NAA)
Or = Ab = An = 1. Di = 1. Hy = 2 Ne = O1 = 4	1.35 3.63 4.28 1.57 -	La Ce Pr	= =		(NAA)
Or = Ab = An = 1. Di = 1. Hy = 2 Ne = O1 = 4 Chr =	1.35 3.63 4.28 1.57 - 1.96	La Ce Pr Nd	= = =	10.2	(NAA)
Or = Ab = An = 1. Di = 14 Hy = 2 Ne = O1 = 4 Chr = Ilm =	1.35 3.63 4.28 1.57 - 1.96 1.1	La Ce Pr Nd Sm Eu Gd	= = = = =	10.2 2.99 0.62	(NAA)
Or = Ab = An = 1. Di = 14 Hy = 2 Ne = O1 = 4 Chr = Ilm =	1.35 3.63 4.28 1.57 - 1.96	La Ce Pr Nd Sm Eu Gd Tb	: : : : :	10.2	(NAA)
Or = Ab = An = 1. Di = 1. Hy = 2 Ne = O1 = 4 Chr = Ilm =	1.35 3.63 4.28 1.57 - 1.96 1.1	La Ce Pr Nd Sm Eu Gd Tb	= = = = = =	10.2 2.99 0.62	(NAA)
Or = Ab = An = 1. Di = 1. Hy = 2 Ne = O1 = 4 Chr = Ilm = Apa =	1.35 3.63 4.28 1.57 - 1.96 1.1 5.24	La Ce Pr Nd Sm Eu Gd Tb Dy Ho	= = = = = = = = = = = = = = = = = = = =	10.2 2.99 0.62	(NAA)
Or = Ab = An = 1. Di = 1. Hy = 2 Ne = O1 = 4 Chr = Ilm = Apa =	1.35 3.63 4.28 1.57 - 1.96 1.1	La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er	= = = = = = = = = = = = = = = = = = = =	10.2 2.99 0.62	(NAA)
Or = Ab = An = 1. Di = 1. Hy = 2 Ne = O1 = 4 Chr = Ilm = Apa = TOTAL 99	1.35 3.63 4.28 1.57 	La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er		10.2 2.99 0.62 0.77	(NAA)
Or = Ab = An = 1. Di = 1. Hy = 2 Ne = O1 = 4 Chr = Ilm = Apa = TOTAL 99	1.35 3.63 4.28 1.57 - 1.96 1.1 5.24 0.09 	La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb		10.2 2.99 0.62 0.77	(NAA)
Or = Ab = An = 1. Di = 1. Hy = 2 Ne = O1 = 4. Chr = Ilm = 5. Apa = TOTAL 99	1.35 3.63 4.28 1.57 	La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er		10.2 2.99 0.62 0.77	(NAA)

206.4 g WEIGHT:

DIMENSIONS: 6 x 6 x 4 cm

BINOCULAR DESCRIPTION

COLOR: Medium gray

SHAPE: Subrounded, flat bottom has angular edges FABRIC: Trachytic

COHERENCE: Coherent

Fracturing: Few, nonpenetrative VARIABILITY: Crystals coarser near vugs and grow out into vugs

SURFACE: Granulated, dust covered
ZAP PITS: Few pits, glass lined and on raised mounds
CAVITIES: Vugs are irregular, crystal bounded, up to 10 mm in

diameter. Vugs are arranged in planes.

SPECIAL FEATURES: Pyroxene laths up to 3 mm long and radiate in

three dimensions

BY: Greenwood, Heiken

MAJOR ELEMEN	ITS		1	RACE AND N	1110	OR ELEME	NTS
SiO ₂ =	44.23			Li	=		
T102 =	2.59			Rb	=		
A1203 =	7.67			K	(2		
Fe0 =	20.94			Ba	=	5 6	(ID)
Mn0 =	0.29			Sr	=	89	(XRF)
Mg0 =	14.67			Cr	=	6250	(NAA)
Ca 0 =	8.13			V	=		
Na ₂ O =	0.20			Sc	=	40.1	(NAA)
K ₂ 0 =	0.05			Ni	=	110	(NAA)
P2 O5 =	0.05			Co	=	60	(NAA)
§ =	0.06			Cu	=		
Cr203 =	0.91	_		Zn Th	=		
TOTAL	99.79	_		Ü	-		
TOTAL	33.73			Zr	-	97	(XRF)
*****				Hf	_	3.0	(NAA)
CIPW NORM				Nb	=	6.4	(XRF)
Qtz =	_						,,
0r =	0.30			ARE EARTH	C1 C	MENTS	(NAA)
Ab =	1.69		<u>r</u>	WAKE EARTH	CLI	PIENTS	(1001)
An =	19.88			La	=		
Di =	16.64			Ce	=	15.7	
Hy =	34.36			Pr	=		
Ne =	-			hid	=		
01 =	20.49			Sm	=	3.77	
Chr =	1.34			Eu	=	0.72	2
Ilm =	4.92			Gci	=		
Apa =	0.11			Tb	=	1.02	2
-		-		Dy	=		
TOTAL	99.73			Но	=		
TOTAL				Er	=		
100 Mg/(Ma+Fe) :	= 55.5		Tm	=		
An/Ab/Or	-	91/7.74/1.35		ΥЬ	=	3.3	
,,	50.5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Lu	=	0.47	
				Y	=	31	(XRF)

WEIGHT: 65.2 g DIMENSIONS: 5.5 x 3.2 x 4.0 cm

BINOCULAR DESCRIPTION

COLOR: Reddish brown SHAPE: Angular

FABRIC: Holocrystalline, porphyritic

COHERENCE: Coherent

Fracturing: Few, one penetrative (length of long axis of rock);

most nonpenetrative VARIABILITY: Homogeneous

SURFACE: Granulated, dust adherent

ZAP PITS: None

CAVITIES: Vugs between elongate crystals, diameter greater than 0.2 mm

SPECIAL FEATURES: Pyroxene and plagioclase form radiate clusters.

Fractures are subparailel to long axis of rock.

BY: Heiken

1 mm

MAJOR ELEMENTS	TRACE AND MINO	R ELEMENTS
$Si0_2 = 46.42$ $Ti0_2 = 3.90$ $A1_2O_3 = 11.28$	Li = Rb = K =	
Fe0 = 19.05	Ba =	91 (ID)
Mn0 = 0.28	Sr =	142 (XRF)
Mg0 = 5.86	Cr = '	1980 (NAA)
CaO = 11.52	Sc =	52.3 (NAA)
$Na_2O = 0.32$ $K_2O = 0.08$	Ni =	32.3 (NAA)
$P_2 O_5 = 0.10$	Co =	26 (NAA)
S = 0.10	Cu =	20 (11/11)
$Cr_2O_3 = 0.28$	Zn =	
	Th =	
TOTAL 99.19	U =	
	Zr =	156 (XRF)
C1PW NORM	Hf =	6.4 (NAA)
CIT R HOILE	Nb =	10.0 (XRF)
Qtz = 3.89		
0r = .47	RARE EARTH ELE	MENTS (NAA)
Ab = 2.71		
An = 29.11	La =	
Di = 23.24	Ce =	23.6
Hy = 31.64		
Ne = -	Pr =	
	Nd =	6.4
01 = -	Nd = Sm =	6.4
01 = - Chr = 0.41	Nd = Sm = Eu =	6.4 1.20
01 = - Chr = 0.41 Ilm = 7.41	Nd = Sm = Eu = Gd =	1.20
01 = - Chr = 0.41	Nd = Sm = Eu = Gd = Tb =	
O1 = - Chr = 0.41 I1m = 7.41 Apa = 0.22	Nd = Sm = Eu = Gd = Tb = Dy =	1.20
01 = - Chr = 0.41 Ilm = 7.41	Nd = Sm = Eu = Gd = Tb = Dy = Ho =	1.20
O1 = - Chr = 0.41 I1m = 7.41 Apa = 0.22 TOTAL 99.09	Nd = Sm = Eu = Gd = Tb = Dy = Ho =	1.20
O1 = - Chr = 0.41 I1m = 7.41 Apa = 0.22 TOTAL 99.09	Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er =	1.20
O1 = - Chr = 0.41 I1m = 7.41 Apa = 0.22 TOTAL 99.09	Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er = Tm =	1.20

DIMENSIONS: 2 x 3.5 x 5 cm WEIGHT: 58.4 g

BINOCULAR DESCRIPTION

COLOR: Dark gray to black

SHAPE: Subangular, lens-shaped

FABRIC: Vitrophyric COHERENCE: Coherent

Fracturing: Few, non penetrative

VARIABILITY: Homogeneous

SURFACE: Smooth with bright adamantine cleavage planes ZAP PITS: Few on B and T, one glass lined pit (2 mm); most pits

001 to 0.4 mm lined with both smooth and bubbly glass

CAVITIES: None

SPECIAL FEATURES: Finest matrix, closely resembles 12009 and 12015

BY: Greenwood, Heiken

MAJOR ELEMENTS	TRACE AND MINOR ELEMENTS	
$S10_2 = 42.75$ $T10_2 = 4.45$ $A1_20_3 = 7.98$	Li = Rb = K =	
Fe0 = 21.94 Mn0 = 0.30	Ba = 51 (ID)	
Mn0 = 0.30 Mg0 = 12.33	Sr = 130 (XRF) Cr = 4200 (NAA)	
Ca0 = 8.97	V =	,
$Na_2O = 0.25$	Sc = 52.4 (NAA))
$K_2 0 = 0.05$	Ni =	
$P_2 O_5 = 0.07$	Co = 51 (NAA))
$S = 0.08$ $Cr_2O_3 = 0.61$	Cu = Zn =	
$Cr_2O_3 = 0.61$	2n - Th =	
TOTAL 99.78	V =	
	Zr = 117 (XRF)	
CIPW NORM	Hf = 3.8 (NAA)	
	Nb = 5.9 (XRF))
27 . 77	110	
Qtz = 0.3	400-01	
0r = -	RARE EARTH ELEMENTS (NAA)	
Or = - Ab = 2.12	RARE EARTH ELEMENTS (NAA)	
Or = - Ab = 2.12 An = 20.51	RARE EARTH ELEMENTS (NAA)	
Or = - Ab = 2.12 An = 20.51	RARE EARTH ELEMENTS (NAA) La = Ce = 16.9	
Or = - Ab = 2.12 An = 20.51 Di = 19.56 Hy = 30.17 Ne = -	RARE EARTH ELEMENTS (NAA) La = Ce = 16.9 Pr = Nd =	
Or = - Ab = 2.12 An = 20.51 Di = 19.56 Hy = 30.17 Ne = - O1 = 17.55	RARE EARTH ELEMENTS (NAA) La = Ce = 16.9 Pr = Nd = Sm = 5.35	
Or = - Ab = 2.12 An = 20.51 Di = 19.56 Hy = 30.17 Ne = - O1 = 17.55 Chr = 0.90	RARE EARTH ELEMENTS (NAA) La = Ce = 16.9 Pr = Nd = Sm = 5.35 Eu = 1.06	
Or = - Ab = 2.12 An = 20.51 Di = 19.56 Hy = 30.17 Ne = - O1 = 17.55 Chr = 0.90 Ilm = 8.45	RARE EARTH ELEMENTS (NAA) La = Ce = 16.9 Pr = Nd = Sm = 5.35 Eu = 1.06 Gd =	
Or = - Ab = 2.12 An = 20.51 Di = 19.56 Hy = 30.17 Ne = - O1 = 17.55 Chr = 0.90	RARE EARTH ELEMENTS (NAA) La = Ce = 16.9 Pr = Nd = Sm = 5.35 Eu = 1.06 Gd = Tb = 1.39	
Or = - Ab = 2.12 An = 20.51 Di = 19.56 Hy = 30.17 Ne = - O1 = 17.55 Chr = 0.90 Ilm = 8.45 Apa = 0.15	RARE EARTH ELEMENTS (NAA) La = Ce = 16.9 Pr = Nd = Sm = 5.35 Eu = 1.06 Gd =	
Or = - Ab = 2.12 An = 20.51 Di = 19.56 Hy = 30.17 Ne = - O1 = 17.55 Chr = 0.90 Ilm = 8.45	RARE EARTH ELEMENTS (NAA) La = Ce = 16.9 Pr = Nd = Sm = 5.35 Eu = 1.06 Gd = Tb = 1.39 Dy =	
Or = - Ab = 2.12 An = 20.51 Di = 19.56 Hy = 30.17 Ne = - O1 = 17.55 Chr = 0.90 Ilm = 8.45 Apa = 0.15 TOTAL 99.70	RARE EARTH ELEMENTS (NAA) La = Ce = 16.9 Pr = Nd = Sm = 5.35 Eu = 1.06 Gd = Tb = 1.39 Dy = Ho = Er = Tm =	
Or = - Ab = 2.12 An = 20.51 Di = 19.56 Hy = 30.17 Ne = - Ol = 17.55 Chr = 0.90 Ilm = 8.45 Apa = 0.15 	RARE EARTH ELEMENTS (NAA) La = Ce = 16.9 Pr = Nd = Sm = 5.35 Eu = 1.06 Gd = Tb = 1.39 Dy = Ho = Er = Tm = Yb = 4.9	
Or = - Ab = 2.12 An = 20.51 Di = 19.56 Hy = 30.17 Ne = - O1 = 17.55 Chr = 0.90 Ilm = 8.45 Apa = 0.15 TOTAL 99.70	RARE EARTH ELEMENTS (NAA) La = Ce = 16.9 Pr = Nd = Sm = 5.35 Eu = 1.06 Gd = Tb = 1.39 Dy = Ho = Er = Tm =)

WEIGHT: 468.2 g DIMENSIONS: 10 x 7 x 5 cm

BINOCULAR DESCRIPTION

COLOR: Dark gray (N6 to N7)

SHAPE: Subangular FABRIC: Vitrophyre COHERENCE: Coherent

Fracturing: Many nonpenetrative subparallel to surfaces,

1 to 0.5 cm apart VARIABILITY: Homogeneous

SURFACE: Irregular dust adheres strongly, a few small white

powdered areas. All but one surface are fresh

ZAP PITS: None

CAVITIES: Three large egg-shaped cavities with smooth walls (1.5 x 3 cm), (5 x 3 cm), (2 x 2 cm). Few vugs $^{-1}$ mm diameter SPECIAL FEATURES: Olivine phenocrysts, olivine laths in matrix

BY: Butler, Warner, Wones

.5 mm

		CHEHISTKI				
MAJOR ELEMEN	ITS		TRACE AND M	11 NO	R ELEMENTS	
SiO ₂ = TiO ₂ = Al ₂ O ₃ = FeO = MnO =	45.03 2.90 8.59 21.03 0.28 11.55		Li Rb K Ba Sr		1.0463 531 60 95.6	(ID) (XRF) (XRF) (XRF)
Mg0 = Ca0 = Na20 = K20 = P205 = Cr203 =	9.42 0.23 0.06 0.07 0.06 0.55		Cr V Sc Ni Co Cu Zn Th		153 46 51.9 49 41 30 0.881	(XRF) (NAA) (XRF) (XRF) (XRF) (XRF) (ID)
TOTAL C1PW NORM	99.77		U Zr Hf Nb	= = =	0.243 107 4 6	(ID) (XRF) (NAA) (XRF)
Qtz = Or = Ab = Ah = Di = Hy = Ne = Ol = Chr = Ilm = Apa = TOTAL 100 Mg/(An/Ab/Or	0.38 1.95 22.22 20.05 37.31 				MENTS (NAA) 6.1 16.8 - 16 4.53 0.94 5.2 1.11 7.13 - 3.6 - 3.74 0.5510	(ANI)

WEIGHT: 193 g DIMENSIONS: 5 x 5 x 4 cm

BINOCULAR DESCRIPTION

COLOR: Surface brownish to charcoal gray, fresh surface medium to

light gray

SHAPE: Rounded FABRIC: Holocrystalline granular, radiating tabular crystals

COHERENCE: Tough Fracturing: None

VARIABILITY: Homogeneous

SURFACE: Smooth, dust strongly adheres ZAP PITS: Few glass lined pits, 2-3 mm diameter

CAVITIES: Few smooth-walled vesicles ~3 mm diameter. Lined with

clear glass

SPECIAL FEATURES: Dust difficult to brush off

BY: Warner, Gibson

MAJOR ELEMENTS	TRACE AND M	INOR ELEMEN	TS
$SiO_2 = 46.63$	Li	=	
$TiO_2 = 3.29$	Rb	=	
$A1_20_3 = 9.77$	K	=	
Fe0 = 19.53	Ba	= 71	(ID)
Mn0 = 0.29	Sr	= 113	(XRF)
Mg0 = 8.26	Cr	= 4050	(NAA)
CaO = 10.63	٧	=	
$Na_20 = 0.25$	Sc	= 52.2	(NAA)
$K_2 0 = 0.06$	Ni	=	
$P_{2}O_{5} = 0.07$	Co	= 39	(NAA)
S = 0.06	Cu	=	
$Cr_2O_3 = 0.59$	Zn	=	
	Th	=	
TOTAL 99.43	U	=	(455)
	Zr	= 128	(XRF)
CIPW NORM	Hf	= 3.7	(NAA)
CIT A HONT	Nb	= 7.4	(XRF)
Qtz = 1.99			
0r = 0.35	RARE EARTH	FLEMENTS	(NAA)
Ab = 2.12			(HAA)
An = 25.36	La	=	
Di = 22.61	Ce	= 19.9	
Hy = 39.68	Pr	E	
Ne = -	Ná	=	
01 = -	Sm	= 5.0	
Chr = 0.87	Eu	= 0.95	
Ilm = 6.25	Gd	=	
Apa = 0.15	Tb	= 1.06	
	Dy	=	
TOTAL 99.37	Ho	=	
TOTAL	Er	=	
100 Mg/(Mg+Fe) = 43.0	Tin	=	
An/Ab/Or = 91.12/7.60/1.27	Yb	= 4.2	
71.12/7.00/1.2/	Lu	= 0.62	
	Y	= 39	(XRE)

ROCK NUMBER: 12012 WEIGHT: 176.2 g

DIMENSIONS: 6 x 5 x 4 cm

BINOCULAR DESCRIPTION

COLOR: Medium gray SHAPE: Subangular, blocky FABRIC: Holocrystalline COHERENCE: Coherent

Fracturing: Many, nonpenetrative, irregular orientation VARIABILITY: Irregular distribution of vugs

SURFACE: Smooth to granular ZAP PITS: None observed

CAVITIES: Many vugs of variable size containing elongate crystals SPECIAL FEATURES: Pyroxene and olivine crystals pronounced and

structure is open making crystals easy to pick out

BY: Anderson, Gibson

MAJOR ELEMENTS	TPACE AND N	IINO	R ELEMEN	<u>TS</u>
$SiO_2 = 44.17$	Li	=		
$TiO_2 = 2.64$	Rb	=		
$A1_20_3 = 7.71$	K	=		
Fe0 = 20.69	Ba	=	56	(ID)
Mn0 = 0.30	Sr	=	89	(XRF)
Mg0 = 14.37	Cr	=	4780	(NAA)
Ca0 = 8.47	V	=		()
$Na_2O = 0.21$	Sc	=	41.9	(NAA)
$K_2 0 = 0.06$	Ni	=	60	(NAA)
$P_2O_5 = 0.09$	Co	=	56	(NAA)
S = 0.07	Cu	=		
$Cr_2O_3 = 0.69$	Zn	=		
TOTAL 99.47	Th U	=		
101AL 33.47	Zr	=	99	(XRF)
	Hf	=	3.4	(NAA)
C1PW NORM	Nb	=	6.6	(XRF)
**				
Qtz = -				(NAA)
0r = 0.35	RARE EARTH	ELE	MENTS	(NAA)
Or = 0.35 Ab = 1.78	RARE EARTH		MENTS	(NAA)
Or = 0.35 Ab = 1.78 An = 19.92	RARE EARTH	::		(NAA)
Or = C.35 Ab = 1.78 An = 19.92 D1 = 17.81	RARE EARTH La Ce	=	MENTS 13.8	(NAA)
Or = C.35 Ab = 1.78 An = 19.92 D1 = 17.81 Hy = 33.14	RARE EARTH La Ce Pr	=======================================		(NAA)
Or = C.35 Ab = 1.78 An = 19.92 D1 = 17.81 Hy = 33.14 Ne = -	RARE EARTH La Ce Pr Nd	= =	13.8	(NAA)
Or = C.35 Ab = 1.78 An = 19.92 D1 = 17.81 Hy = 33.14 Ne = - O1 = 20.18	RARE EARTH La Ce Pr Nd Sm	= = = =	13.8	(NAA)
Or = C.35 Ab = 1.78 An = 19.92 D1 = 17.81 Hy = 33.14 Ne = - O1 = 20.18 Chr = 1.02	RARE EARTH La Ce Pr Nd Sm Eu	= = =	13.8	(NAA)
Or = C.35 Ab = 1.78 An = 19.92 D1 = 17.81 Hy = 33.14 Ne = - O1 = 20.18 Chr = 1.02 Ilin = 5.01	RARE EARTH La Ce Pr Nd Sm Eu Gd	: : : : : : : : : : : : : : : : : : : :	13.8	(NAA)
Or = C.35 Ab = 1.78 An = 19.92 D1 = 17.81 Hy = 33.14 Ne = - O1 = 20.18 Chr = 1.02 Ilin = 5.01	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb	= = = = =	13.8 4.02 0.76	(NAA)
Or = C.35 Ab = 1.78 An = 19.92 D1 = 17.81 Hy = 33.14 Ne = - O1 = 20.18 Chr = 1.02 Ilin = 5.01 Apa = 0.2	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy	: : : : : : : : : : : : : : : : : : : :	13.8 4.02 0.76	(NAA)
Or = C.35 Ab = 1.78 An = 19.92 D1 = 17.81 Hy = 33.14 Ne = - O1 = 20.18 Chr = 1.02 Ilin = 5.01	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho	: : : : : : : : : : : : : : : : : : :	13.8 4.02 0.76	(NAA)
Or = C.35 Ab = 1.78 An = 19.92 D1 = 17.81 Hy = 33.14 Ne = - O1 = 20.18 Chr = 1.02 Ilin = 5.01 Apa = 0.2 TOTAL 99.4	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy		13.8 4.02 0.76	(NAA)
Or = C.35 Ab = 1.78 An = 19.92 D1 = 17.81 Hy = 33.14 Ne = - O1 = 20.18 Chr = 1.02 Ilin = 5.01 Apa = 0.2 TOTAL 99.4 100 Mg/(Mg+Fe) = 55.3	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er		13.8 4.02 0.76 1.17	(NAA)
Or = C.35 Ab = 1.78 An = 19.92 D1 = 17.81 Hy = 33.14 Ne = - O1 = 20.18 Chr = 1.02 Ilin = 5.01 Apa = 0.2 TOTAL 99.4	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er fm		13.8 4.02 0.76 1.17	(NAA)

WEIGHT: 159.4 g DIMENSIONS: $5 \times 5 \times 4$ cm

BINOCULAR DESCRIPTION

COLOR: Medium gray

SHAPE: Subangular, rectangular FABRIC: Holocrystalline, porphyritic

COHERENCE: Coherent

Fracturing: Few, nonpenetrative

VARIABILITY: Homogeneous

SURFACE: Granulated to smooth

ZAP PITS: Only one glass lined pit cbserved CAVITIES: Vugs vary greatly in size up to 1.5 cm

SPECIAL FEATURES: Euhedral pyroxene crystals up to 1 cm long in vugs

BY: Gibson

MAJOR ELEMENTS	TRACE AND M	INOF	RELEMEN	<u>ITS</u>
$SiO_2 = 45.34$ $TiO_2 = 2.68$ $Al_2O_3 = 8.00$	Li Rb K	=		
Fe0 = 20.33	Ba	=	53	(ID)
Mn0 = 0.26	Sr	= /	93	(XRF)
Mg0 = 13.85	Cr V	= 4	1450	(NAA)
$CaO = 8.63$ $Na_2O = 0.21$	Sc	_	42.8	(NAA)
$K_2 0 = 0.06$	Ni	=	40	(NAA)
$P_2 O_5 = 0.05$	Co	=	54	(NAA)
S = 0.07	Cu	=		
$Cr_2O_3 = 0.64$	Zn	=		
100.10	Th	=		
TOTAL 100.12	U Zr	=	101	(XRF)
	2r Hf	=	3.3	(NAA)
C1PW NORM	Nb	=	6.8	(XRF)
0+7				
Qtz = - Or = 0.35		FI FI	4FNTS	(AAII)
0r = 0.35 Ab = 1.78	RARE EARTH	ELE	MENTS	(NAA)
Or = 0.35 Ab = 1.78 An = 20.71		ELEI	MENTS	(AAN)
Or = 0.35 Ab = 1.78 An = 20.71 Di = 18.02	RARE EARTH La Ce		<u>4ENTS</u>	(AAII)
Or = 0.35 Ab = 1.78 An = 20.71 Di = 18.02 Hy = 38.13	RARE EARTH La Ce Pr	=		(AAA)
Or = 0.35 Ab = 1.78 An = 20.71 Di = 18.02 Hy = 38.13 Ne = -	RARE EARTH La Ce Pr Nd	= = =	14.7	(AAA)
Or = 0.35 Ab = 1.78 An = 20.71 Di = 18.02 Hy = 38.13 Ne = - Ol = 14.92	RARE EARTH La Ce Pr Nd Sm	= = = =	14.7	(AAN)
Or = 0.35 Ab = 1.78 An = 20.71 Di = 18.02 Hy = 38.13 Ne = - O1 = 14.92 Chr = 0.94	RARE EARTH La Ce Pr Nd Sm Eu	= = = = =	14.7	(AAN)
Or = 0.35 Ab = 1.78 An = 20.71 Di = 18.02 Hy = 38.13 Ne = - Ol = 14.92 Chr = 0.94 Ilm = 5.09	RARE EARTH La Ce Pr Nd Sm Eu Gd	= = = = = = = = = = = = = = = = = = = =	14.7 4.14 0.75	(AAN)
Or = 0.35 Ab = 1.78 An = 20.71 Di = 18.02 Hy = 38.13 Ne = - Ol = 14.92 Chr = 0.94 Ilm = 5.09	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb	= = = = =	14.7	(AAN)
Or = 0.35 Ab = 1.78 An = 20.71 Di = 18.02 Hy = 38.13 Ne = - Ol = 14.92 Chr = 0.94 Ilm = 5.09 Apa = 0.11	RARE EARTH La Ce Pr Nd Sm Eu Gd	= = = = = = = = = = = = = = = = = = = =	14.7 4.14 0.75	(AAN)
Or = 0.35 Ab = 1.78 An = 20.71 Di = 18.02 Hy = 38.13 Ne = - Ol = 14.92 Chr = 0.94 Ilm = 5.09	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy	= = = = = = = = = = = = = = = = = = = =	14.7 4.14 0.75	(AAN)
Or = 0.35 Ab = 1.78 An = 20.71 Di = 18.02 Hy = 38.13 Ne = - Ol = 14.92 Chr = 0.94 Ilm = 5.09 Apa = 0.11 TOTAL 100.05	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm	= = = = = = = = = = = = = = = = = = = =	14.7 4.14 0.75 1.01	(AAN)
Or = 0.35 Ab = 1.78 An = 20.71 Di = 18.02 Hy = 38.13 Ne = - Ol = 14.92 Chr = 0.94 Ilm = 5.09 Apa = 0.11 TOTAL 100.05	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb	= = = = = = = = = = = = = = = = = = = =	14.7 4.14 0.75 1.01	(AAII)
Or = 0.35 Ab = 1.78 An = 20.71 Di = 18.02 Hy = 38.13 Ne = - Ol = 14.92 Chr = 0.94 Ilm = 5.09 Apa = 0.11 TOTAL 100.05	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm	= = = = = = = = = = = = = = = = = = = =	14.7 4.14 0.75 1.01	(NAA)

WEIGHT: 191.2 g DIMENSIONS: 4 x 4 x 2 cm

BINOCULAR DESCRIPTION

COLOR: Medium to dark gray, brownish tint

SHAPE: Angular FABRI. Vitrophyre COHERENCE: Coherent

Fracturing: Many, few penetrative VARIABILITY: Homogeneous

SURFACE: Irregular, dust adheres strongly

ZAP PITS: Few pits on one slightly rounded surface CAVITIES: Vugs, irregularly-shaped, 0.2 to 2 mm. One large (4 x 2.5 cm)

smooth-walled, crystal-lined vesicle.

SPECIAL FEATURES: Grain size increases near vugs. Suggestions of shock

BY: Brett, Harmon, Gibson

MAJOR ELEME	NTS	TRACE AND MINOR ELEMENTS
$SiO_2 = TiO_2 = Al_2O_3 =$	44.98 2.86	Li = Rb = K =
A1203 = Fe0 =	0.01	Ba = 61 (ID)
Mn0 =	0.29	Sr = 94 (XRF)
Mg0 = Ca0 =	11.88 9.21	Cr = 4600 (NAA) V =
Na ₂ 0 =		Sc = 46.1 (NAA)
K ₂ 0 =		Ni = 50 (NAA)
P ₂ O ₅ =	0.06 0.07	Co = 51 (NAA)
S = Cr ₂ 3 =	0.68	Cu = Zn =
	-	Th =
TOTAL	99.07	U =
		Zr = 110 (XRF) Hf = 3.5 (NAA)
C1PW NORM		Nb = 6.6 (XRF)
Qtz =	_	
0r =	0.35	RARE EARTH ELEMENTS (NAA)
Ab =	1.95	The state of the s
An = Di =	22.18 19.22	La =
B1 = Hy =	38.66	Ce = 16.3 Pr =
Ne =	_	Nd =
01 =	10.08	Sm = 4.31
Chr = Ilm =	1.00 5.43	Eu = 0.81
Apa =	0.13	Gd = Tb = 1.05
		Dy =
TOTAL	99.00	Ho =
		Er =
100 Mg/	(Mg+Fe) = 51.2	Tm = Yb = 3.7
An/Ab/01	r = 90.6/7.95/1.45	2 - 2
		Lu = 0.53 V = 35 (YRE)

WEIGHT: 2028.3 g

DIMENSIONS: 17.5 x 12.5 x 10 cm

BINOCULAR DESCRIPTION

COLOR: Medium to light gray

SHAPE: Subangular, one concave surface

FABRIC: Holocrystalline

COHERENCE: Coherent to friable Fracturing: Many, nonpenetrative

VARIABILITY: Fracturing irregularly distributed causing variable

coherence. Cavities irregularly distributed SURFACE: Irregular, dust adheres strongly. ZAP PITS: Few 2-3 mm glass lined pits

CAVITIES: Few yesicles, some have coalesced and appear vuggy -

some crystal face visible

SPECIAL FEATURES: Chalky-white surface material or crust is probably feldspar shocked by particles that caused glass lined pits

BY: Smith, Harmon

MAJOR ELEMENTS	TRACE AND MINOR ELEMENTS
$SiO_2 = 42.78$ $TiO_2 = 4.02$ $Al_2O_3 = 7.23$	Li = Rb = K =
Fe0 = 22.64 Mn0 = 0.30 Mg0 = 12.65 Ca0 = 8.42	Ba = 59 (ID) Sr = 126 (XRF) Cr = 3950 (NAA) V =
$Na_2 0 = 0.22$ $K_2 0 = 0.06$ $P_2 0_5 = 0.08$	Sc = 49.4 (NAA) Ni = 25 (NAA) Co = 54 (NAA)
$S = 0.08$ $Cr_2O_3 = 0.57$ TOTAL 99.05	Cu = Zn = Th =
TOTAL 99.05	U = Zr = 117 (XRF) Hf = 6.3 (NAA) Nb = 6.1 (XRF)
Qtz = - Or = 0.35 Ab = 1.86	RARE EARTH ELEMENTS (NAA)
An = 18.56 Di = 18.88 Hy = 32.45	La = Ce = 16.2 Pr =
Ne = - 01 = 13.21 Chr = 0.84 Ilm = 7.63	Nd = Sm = 5.5 Eu = 1.06 Gd =
Apa = 0.17	Tb = 1.42 Dy = Ho =
TOTAL 98.97	Er =
100 Mg/(Mg+Fe) = 49.9 An/Ab/Or = 89.33/8.96/1.71	Tm = Yb = 5.0 Lu = 0.67

WEIGHT: 53 g DIMENSIONS: 5 x 3 x 2.5 cm

BINOCULAR DESCRIPTION

COLCR: Medium gray, salt and pepper

SHAPE: Subrounded pyramid

FABRIC: Holocrystalline granular

COHERENCE: Coherent

Fracturing: Very few, nonpenetrative VARIABILITY: Homogeneous rock with glass covering part of surface

SURFACE: Granulated

ZAP PITS: Many on rounded surfaces, most with glass lining CAVITIES: None

SPECIAL FEATURES: The glass covering part of surface has no impact pits and a variable thickness. It is modestly fractured and has a few vesicles. Surface under glass resembles remaining surface of rock

BY: Anderson, Gibson

1 cm

.5 mm

	CITETIZ	,,,,,			
MAJOR ELEMENTS		TRACE AND I	1IN	OR ELEME	NTS
$SiO_2 = 47.27$		Li	=		
		51		1 00	(NAA)
$TiO_2 = 3.37$		Rb	=	1.06	(NAA)
$A1_20_3 = 10.02$		K	=		
Fe0 = 19.72		Ba	=	150	(NAA)
Mn0 = 0.29		Sr	=	118	(XRF)
Mg0 = 7.63		Cr	=	3460	(NAA)
CaO = 10.97		٧	=		
$Na_2O = 0.27$		Sc	=	47.4	(NAA)
$K_20 = 0.09$		Ni	=		,,
$P_2O_5 = 0.09$		Co	=	45	(NAA)
1100		Cu	_	40	(
				1.02	(NAA)
$Cr_2O_3 = 0.52$		Zn	=		
100.07	_	Th	=	2.19	(NAA)
TOTAL 100.27		U	=		/waa 1
		Zr	=	180	(NAA)
C1PW WORM		Hf	=	6.7	(NAA)
CIPW NORM		Nb	=		
Qtz = 2.76					
0r = 0.53		DADE EADTH	e1 t	MENTS	(NAA)
		RARE EARTH	LLI	LHEN 13	(11111)
An = 25.86		La	=	17.1	
Di = 23.57		Ce	=	49	
Hy = 37.87		Pr	=		
Ne = -		Nd	=	40	
01 = -		Sm	=	9.65	
Chr = 0.77		Eu	=	1.36	
I1m = 6.4		Gd	=		
Apa = 0.2		Tb	=		
	_	Dy	=		
		Ho	=		
TOTAL 100.24			-		
		Er			
100 Mg/(Mg+Fe)	= 40.8	Tm	=	0.00	
An/Ab/Or =	90/8/2	Yb	=	8.08	
,,,	20/ 0/ E	Lu	=	1.26	
		v	_		

WEIGHT: 787 g DIMENSIONS: 8 x 6 x 6 cm

PINOCULAR DESCRIPTION

COLOR: Neutral gray N7 to N6

SHAPE: Subangular FABRIC: Holocrystalline, granular

COHERENCE: Coherent Fracturing: None

VARIABILITY: Homogeneous SURFACE: Granular to smooth

ZAP PITS: Few glass lined pits about 1 mm diameter CAVITIES: Few irregularly-shaped vugs containing randomly oriented

crystals

SPECIAL FEATURES: Crushed plagioclase on surface of rock shows

chalky white. Pyroxene more elongate near vugs.

BY: Butler, Wones, Anderson

MAJOR ELEMENTS	TRACE AND MINOR ELEMENTS
SiO ₂ = 43.9 TiO ₂ = 2.59 Al ₂ O ₃ = 7.97 FeO = 20.96 MnO = 0.27 MgO = 15.23 CaO = 8.33 Na ₂ O = 0.22 K ₂ O = 0.05 P ₂ O ₅ = 0.07 S = 0.05 Cr ₂ O ₃ = 0.62	Li = 7.51 (ID) Rb = 1.04 (ID) K = 429 (ID) Ba = 60.3 (ID) Sr = 89.3 (ID) Cr = 3690 (NAA) V = 140 (XRF) Sc = 38.9 (NAA) Ni = 55 (XRF) Co = 58 (NAA) Cu = 8 (XRF) Zn = 2 (XRF) Th = 0.879 (ID) U = 0.248 (ID) Zr = 89 (XRF)
C1PW NORM	Hf = 2.48 (NAA) Nb = 5 (XRF)
Qtz = - Or = 0.30 Ab = 1.86 An = 20.61 Di = 16.74 Hy = 29.46 Ne = - O1 = 25.26 Chr = 0.91 Ilm = 4.92 Apa = 0.15 TOTAL 100.21 100 Mg/(Mg+Fe) = 56.4 An/Ab/Or = 91/8/1	RARE EARTH ELEMENTS (ID) La = - Ce = 15.9 Pr = - Nd = 11.8 Sm = 3.91 Eu = 0.834 Gd = 5.55 Tb = - Dy = 6.54 Ho = - Er = 3.8 Tm = - Yb = 3.42 Lu = 0.52 Y = 30 (XRF)

ROCK NUMBER: 12019 WEIGHT: 462.4 g

DIMENSIONS: 9 x 7 x 6 cm

BINOCULAR DESCRIPTION

COLOR: Light to medium charcoal gray

SHAPE: Subrounded, hemispherical with flat bottom

FABRIC: Holocrystalline COHERENCE: Coherent

Fracturing: Few, nonpenetrative; two perpendicular fractures

VARIABILITY: Homogeneous

SURFACE: Smooth

ZAP PITS: Few glass lined pits (0.5-2 mm), more pits on rounded side than flat side. Lined with black glass ranging in thickness from 0.02 to 0.2 mm. The pits are 0.2 to 0.5 mm deep.

CAVITIES: Few vugs, many are filled with dust

SPECIAL FEATURES: Flat side was probably the bottom for significant period of time on lunar surface

BY: Gibson

.5 mm

NOT ALLOCATED

MAJOR ELEMENTS	TRACE AND MINOR ELEMENTS
S10 ₂ =	Li =
TiO ₂ =	Rb =
A1203 =	K =
Fe0 =	Ba =
Mn0 =	Sr =
Mg0 =	Cr =
Ca0 =	V =
Na ₂ 0 =	Sc =
K ₂ 0 =	∘ Ni =
P ₂ O ₅ =	Co =
S =	Cu =
$Cr_2O_3 =$	Zn ≔
	Th =
TOTAL	U =
	Zr =
C1PW NORM	Hf =
OTT NOW	Nb =
Qtz =	
0r =	RARE EARTH ELEMENTS
Or = Ab =	
Or = Ab = An =	La =
Or = Ab = An = Di =	La = Ce =
Or = Ab = An = Di = Hy =	La = Ce = Pr =
Or = Ab = An = Di = Hy = Ne =	La = Ce = Pr = Nd =
Or = Ab = An = Di = Hy = Ne = Ol =	La = Ce = Pr = Nd = Sm =
Or = Ab = An = Di = Hy = Ne = O1 = Chr =	La = Ce = Pr = Nd = Sm = Eu =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm =	La = Ce = Pr = Nd = Sm = Eu = Gd =
Or = Ab = An = Di = Hy = Ne = O1 = Chr =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa = TOTAL	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er = Tm =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er = Tm = Yb =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa = TOTAL	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er = Tm =

WEIGHT: 312 g DIMENSIONS: 8 x 6 x 6 cm

60.80

BINOCULAR DESCRIPTION

COLOR: Speckled brownish charcoal gray SHAPE: Subangular, trigional dipyramid FABRIC: Holocrystalline granular

COHERENCE: Friable to coherent

Fracturing: Many, one penetrative planar fracture

VARIABILITY: Homogeneous

SURFACE: Hackly, appear to be mostly freshly broken

ZAP PITS: Few glass-lined pits CAVITIES: Many vugs irregular shape and variable size up to 4 cm.

Pyroxene, olivine, and plagioclase in vugs 0.1 to 2 mm

SPECIAL FEATURES: Crystals in vugs would be good for single crystal

studies

BY: Warner

.5 mm

			•				
MAJOR ELE	MEN	ITS (3)		TRACE AND M	INC	R ELEMENTS	
S10 ₂	=	44.57		Li	=	5.7	(OES)
Ti02	=	2.76		Rb	=	0.997	(ID)
A1203		7.77		K	=	468	(ID)
Fe0	=	20.98		Ba	=	64.4	(ID)
		0.27		Sr		93.6	(ID)
Mn0	=	14.40			=		(10)
Mg0	=	8.60		Cr	=	146	(XRF)
CaO	=	0.22		V		45.4	
Na ₂ O	=			Sc	=		(NAA)
K2 0	=	0.06		Ni	=	50	(XRF)
P2 05	=	0.08		Co	=	61	(NAA)
S	=	0.06		Cu	=	13	(XRF)
Cr2 03	=	0.61		Zn	=	4	(XRF)
		100.00		Th	=	0.71	(NAA)
TOTAL		100.38		U	=	-	···>
				Zr	=	97	(XRF)
C1PW NORM				Hf	=	3.8	(NAA)
CITH HORN				Nb	=	5	(XRF)
Qtz	=	_					
0r	=	0.35		RARE EARTH	C1 C	MENTS (ID	`
Ab	=	1.86		MAKE EARTH	LLL	PILITIS (10	,
An	=	20.04		1.5	_		
Di	=	18.30		La	=	16.1	
	=	33.15		Ce	=	16.1	
Hy				Pr	=	-	
Ne	=	20.30		Nd	=	12	
0)	=			Sm	=	4.5	
Chr	=	0.90		Eu	=	0.839	
Ilm	=	5.24		Gd	=	5.43	
Apa	=	0.17		ТЬ	=		
	-			Dy	=	6.13	
TOTAL		100.32		Но	=	-	
TOTAL				Er	=	3.75	
100 M	n/(Mg+Fe) =	55.0	Tm	=	-	
An/Ab	//\ 3/ \	90/8		Yb	=	3.69	
All/ AU	/ 01	_ 20/0/	_	Lu	=	-	
				V	-	32	(XRF)

ROCK NUMBER: 12021 WEIGHT: 1876.6 g

DIMENSIONS: 14 x 12 x 8 cm

BINOCULAR DESCRIPTION

COLOR: Neutral gray with a greenish cast

SHAPE: Deformed triangular prism with a concave base. Appears

to be a spalled block

FABRIC: Coarse ophitic texture, pegmatitic, bladed pyroxene

COHERENCE: Coherent

Fracturing: Few, non-penetrative, occur near edges and

concentrated on concave side

VARIABILITY: Chip off most protruding corner is finer grained

and more olivine rich than rest of sample

SURFACE: Dust covered, displays texture well on convex side

ZAP PITS: Concave side pitted - small pits with halves - could

study pits on individual grains

CAVITIES: Vugs at intersection of plagioclase grains. Concentration of ilmenite near vugs. No vesicles

SPECIAL FEATURES: Pyroxenes are zoned with honey yellow cores and

brown rims.

BY: Wones

MAJOR ELEMENTS (4)	TRACE AND I	MINO	R ELEMENTS	
(1)	Li	=	0.27	/ TD)
	Rb		8.37	(ID)
$Ti0_2 = 3.53$ $Al_2O_3 = 10.78$	X	_	1.14	(ID)
Fe0 = 19.31	Ba	=	529 71.1	(ID)
Mn0 = 0.26	Sr		128.5	(ID)
	Cr	-	1870	(NAA)
MgO = 7.39 CaO = 11.38	v	=	160	(ID)
$Na_2O = 0.31$	Sc	=	49.8	(NAA)
$K_20 = 0.07$	Ni.	=	16	(OES)
$P_2O_5 = 0.09$	Co		27.7	(NAA)
S = -	Cu		8.1	(NAA)
$Cr_2O_3 = 0.40$	Zn		4.15	(OES)
CF203 - 0.40	Th		0.932	(ID)
TOTAL 100.20	ί"	=	0.2610	(ID)
100.20	Žr		123.0	(OES)
	Hf		4.09	(NAA)
C1PW NORM	Nb		14	(OES)
	ND.		• •	(020)
Qtz = 1.95			/	
0r = 0.41	RARE EARTH	ELE	MENTS (ID)	
Ab = 2.62				
An = 27.82	La		-	
Di = 23.64	Ce		19.8	
Hy = 36.27	Pr		-	
Ne = -	Nd		14.4	
01 = -	Sm		4.84	
Chr = 0.59	Eu		1.116	
I1m = 6.70	Gd		6.59	
Apa = 0.20	ТЬ		-	
	Dy		7.86	
TOTAL 100.20	Но		.	
TOTAL 100.20	<u>E</u> r		4.53	
100 Mg/(Mg+Fe) = 40	.5 Tm			
	VL.	=	4.12	
An/Ab/Ur = 9n/9/1	10			
An/Ab/Or = 90/9/1	Lu Y		0.64	(OES)

ROCK NUMBER: 12022 WEIGHT: 1864.3 g

DIMENSIONS: 14 x 9.5 x 7 cm

BINOCU'AR DESCRIPTION

COLOR: Medium to dark gray on fresh surfaces, medium gray to

white on surface

SHAPE: Subangular, blocky, irregular pyramid FABRIC: Crystalline, porphyritic

COHERENCE: Tough Fracturing: None

VARIABILITY: Homogeneous

SURFACE: Granulated - is generally whiter than interior of rock,

dust covered.

ZAP PITS: Many glass-lined pits (2 mm to 0.1 mm) on all surfaces. One surface appears less pitted as if it were exposed more

recently than rest of surface.

CAVITIES: Vugs - many, up to 1 cm in diameter, often coalesced. SPECIAL FEATURES: Distinct shatter crust enclosed entire rock

BY: Anderson, Hormon

.5 mm

MAJOR ELEMENTS (2)	TRACE AND MINOR ELEMENTS
$SiO_2 = 42.77$	Li = 9.51 (ID)
$TiO_2 = 4.85$	Rb = 0.738 (ID)
$A1_20_3 = 9.08$	$K = 536 \qquad (ID)$
Fe0 = 21.75	$Ba = 55 \qquad (ID)$
Mn0 = 0.25	Sr = 143 (ID) Cr = 3300 (OES)
Mg0 = 11.01 $Ca0 = 9.47$	(00)
0.00	- F2 O() (NAA)
$Na_2 0 = 0.38$ $K_2 0 = 0.07$	Sc = 53.80 (NAA) Ni = 41.9 (GRV)
$P_2O_5 = 0.13$	$c_0 = 42.5 (NAA)$
S = -	Cu = 8 (GRV)
$Cr_2O_3 = 0.56$	
	$Th = 0.71 (ID)^{r}$
TOTAL 100.32	U = 0.198 (ID)
	Zr = 180 (GRV) Hf = 3.4 (NAA)
C1PW NORM	Hf = 3.4 (NAA) Nb = 6 (MS)
	ND - 0 (113)
•	
Qtz = -	****
0r = 0.41	RARE EARTH ELEMENTS (ID)
$ \begin{array}{rcl} \text{Or} & = & 0.41 \\ \text{Ab} & = & 3.22 \end{array} $	RARE EARTH ELEMENTS (ID)
Or = 0.41 Ab = 3.22 An = 22.86	RARE EARTH ELEMENTS (ID) La = -
Or = 0.41 Ab = 3.22 An = 22.86	RARE EARTH ELEMENTS (ID) La = _
Or = 0.41 Ab = 3.22 An = 22.86 Di = 19.42 Hy = 28.30 Ne = -	RARE EARTH ELEMENTS (ID) La = - Ce = 17.4 Pr = - Nd = 14.4
Or = 0.41 Ab = 3.22 An = 22.86 Di = 19.42 Hy = 28.30 Ne = - Ol = 15.79	RARE EARTH ELEMENTS (ID) La = _ Ce = 17.4 Pr = _ Nd = 14.4 Sm = 5.38
Or = 0.41 Ab = 3.22 An = 22.86 Di = 19.42 Hy = 28.30 Ne = - O1 = 15.79 Chr = 0.82	RARE EARTH ELEMENTS (ID) La = _ Ce = 17.4 Pr = _ Nd = 14.4 Sm = 5.38 Eu = 1.26
Or = 0.41 Ab = 3.22 An = 22.86 Di = 19.42 Hy = 28.30 Ne = - Ol = 15.79 Chr = 0.82 Ilm = 9.21	RARE EARTH ELEMENTS (ID) La = _ Ce = 17.4 Pr = _ Nd = 14.4 Sm = 5.38 Eu = 1.26 Gd = 7.71
Or = 0.41 Ab = 3.22 An = 22.86 Di = 19.42 Hy = 28.30 Ne = - O1 = 15.79 Chr = 0.82	RARE EARTH ELEMENTS (ID) La = - Ce = 17.4 Pr = - Nd = 14.4 Sm = 5.38 Eu = 1.26 Gd = 7.71 Tb = -
Or = 0.41 Ab = 3.22 An = 22.86 Di = 19.42 Hy = 28.30 Ne = - Ol = 15.79 Chr = 0.82 Ilm = 9.21 Apa = 0.28	RARE EARTH ELEMENTS (ID) La = - Ce = 17.4 Pr = - Nd = 14.4 Sm = 5.38 Eu = 1.26 Gd = 7.71 Tb = - Dy = 9.37
Or = 0.41 Ab = 3.22 An = 22.86 Di = 19.42 Hy = 28.30 Ne = - Ol = 15.79 Chr = 0.82 Ilm = 9.21	RARE EARTH ELEMENTS (ID) La = - Ce = 17.4 Pr = - Nd = 14.4 Sm = 5.38 Eu = 1.26 Gd = 7.71 Tb = - Dy = 9.37
Or = 0.41 Ab = 3.22 An = 22.86 Di = 19.42 Hy = 28.30 Ne = - Ol = 15.79 Chr = 0.82 Ilm = 9.21 Apa = 0.28	RARE EARTH ELEMENTS (ID) La = _ Ce = 17.4 Pr = _ Nd = 14.4 Sm = 5.38 Eu = 1.26 Gd = 7.71 Tb = _ Dy = 9.37 Ho = _ Er = 5.42 Tm = _
Or = 0.41 Ab = 3.22 An = 22.86 Di = 19.42 Hy = 28.30 Ne = - 01 = 15.79 Chr = 0.82 Ilm = 9.21 Apa = 0.28 TOTAL 100.32 100 Mg/(Mg+Fe) = 47.4	RARE EARTH ELEMENTS (ID) La = - Ce = 17.4 Pr = - Nd = 14.4 Sm = 5.38 Eu = 1.26 Gd = 7.71 Tb = - Dy = 9.37 Ho = - Er = 5.42 Tm = - Yb = 5.69
Or = 0.41 Ab = 3.22 An = 22.86 Di = 19.42 Hy = 28.30 Ne = - Ol = 15.79 Chr = 0.82 Ilm = 9.21 Apa = 0.28	RARE EARTH ELEMENTS (ID) La = _ Ce = 17.4 Pr = _ Nd = 14.4 Sm = 5.38 Eu = 1.26 Gd = 7.71 Tb = _ Dy = 9.37 Ho = _ Er = 5.42 Tm = _

WEIGHT: 185 g

DIMENSIONS: 5.5 x 5 x 5 cm

BINOCULAR DESCRIPTION

COLOR: Brownish gray

SHAPE: Subangular, blocky, equant

FABRIC: Coarse-grained, holocrystalline, large radiating crystals

COHERENCE: Coherent to friable

Fracturing: Many - some penetrative VARIABILITY: Grain size and texture varies slightly

SURFACE: Granular

ZAP PITS: Few (<0.5 mm) glass-lined pits

CAVITIES: Few vugs, widely scattered (∿1 mm). Feldspars intersect

to form vugs.

SPECIAL FEATURES: Pyroxene visibly zoned with greenish cores and

brown rims.

BY: Heiken, Chao

1 mm

MAJOR ELEMENTS	TRACE AND M	INO	R ELEME	NTS
$SiO_2 = 46.97$	Li	=		
$TiO_2 = 2.88$	Rb	=		
$A1_20_3 = 12.63$	K	=		
Fe0 = 16.78	Ba	=	60	(ID)
Mn0 = 0.26	Sr	=	136	(XRF)
Mg0 = 7.13	Cr		2460	(NAA)
CaO = 12.25	V	=	48.9	(NAA)
$Na_2O = 0.33$ $K_2O = 0.05$	Sc Ni	=	40.9	(NAA)
	Co	=	2€	(AAN)
$P_2O_5 = 0.05$ S = 0.05	Cu	_	20	(1001)
$Cr_2O_3 = 0.35$	Zn	=		
	Th	=		
TOTAL 99.73	Ü	=		
	Zr	=	100	(XRF)
C1PW NORM	Hf	=	3.3	(NAA)
CIPW NORM	Nb	=	7.0	(XRF)
	110			
0tz = 2.13				
0r = 0.3		ELE	MENTS	(NAA)
0r = 0.3 Ab = 2.79	RARE EARTH	ELE	MENTS	(NAA)
Or = 0.3 Ab = 2.79 An = 32.83	RARE EARTH	ELE =		(NAA)
Or = 0.3 Ab = 2.79 An = 32.83 Di = 23.18	RARE EARTH La Ce		MENTS 15.6	(NAA)
Or = 0.3 Ab = 2.79 An = 32.33 Di = 23.18 Hy = 32.36	RARE EARTH La Ce Pr	= =		(NAA)
Or = 0.3 Ab = 2.79 An = 32.33 Di = 23.18 Hy = 32.36 Ne = -	RARE EARTH La Ce Pr Nd	= = =	15.6	(NAA)
Or = 0.3 Ab = 2.79 An = 32.33 Di = 23.18 Hy = 32.36 Ne = - Cl = -	RARE EARTH La Ce Pr Nd Sm	= = = =	15.6	(NAA)
Or = 0.3 Ab = 2.79 An = 32.83 Di = 23.18 Hy = 32.36 Ne = - Cl = - Chr = 0.52	RARE EARTH La Ce Pr Nd Sm Eu	= = = =	15.6	(NAA)
Or = 0.3 Ab = 2.79 An = 32.83 Di = 23.18 Hy = 32.36 Ne = - Cl = - Chr = 0.52 Ilm = 5.47	RARE EARTH La Ce Pr Nd Sm Eu Gd	= = = =	15.6 4.23 1.00	(NAA)
Or = 0.3 Ab = 2.79 An = 32.83 Di = 23.18 Hy = 32.36 Ne = - Cl = - Chr = 0.52	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb	= = = = =	15.6	(NAA)
Or = 0.3 Ab = 2.79 An = 32.83 Di = 23.18 Hy = 32.36 Ne = - Cl = - Chr = 0.52 Ilm = 5.47 Apa = 0.11	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy	= = = =	15.6 4.23 1.00	(NAA)
Or = 0.3 Ab = 2.79 An = 32.83 Di = 23.18 Hy = 32.36 Ne = - Cl = - Chr = 0.52 Ilm = 5.47	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho	= = = = = =	15.6 4.23 1.00	(NAA)
Or = 0.3 Ab = 2.79 An = 32.83 Di = 23.18 Hy = 32.36 Ne = - Cl = - Chr = 0.52 Ilm = 5.47 Apa = 0.11 TOTAL 99.68	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er	= = = = = = = = = = = = = = = = = = = =	15.6 4.23 1.00 1.19	(NAA)
Or = 0.3 Ab = 2.79 An = 32.83 Di = 23.18 Hy = 32.36 Ne = - Cl = - Chr = 0.52 Ilm = 5.47 Apa = 0.11 TOTAL 99.68	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho		15.6 4.23 1.00 1.19	
Or = 0.3 Ab = 2.79 An = 32.83 Di = 23.18 Hy = 32.36 Ne = - Cl = - Chr = 0.52 Ilm = 5.47 Apa = 0.11 TOTAL 99.68	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm	= = = = = = = = = = = = = = = = = = = =	15.6 4.23 1.00 1.19	

ROCK NUMBER: 12035 WEIGHT: 71 g

DIMENSIONS: 5 x 4 x 1.5 cm

BINOCULAR DESCRIPTION

COLOR: Light olive gray

SHAPE: Subrounded, triaxial ellipsoid FABRIC: Coarse grained, granular

COHERENCE: Friable

Fracturing: Many, penetrative, no orientation VARIABILITY: Homogeneous

SURFACE: Granulated - fresh ZAP PITS: None

CAVITIES: Many - irregular up to 4 mm, not clustered. Olivine

in vugs

SPECIAL FEATURES: Now fragmented into 5 pieces and fines

BY: Wones

MAJOR ELEMENTS	TRACE AND MIN	OR ELEMENTS	
$SiO_2 = 43.17$	Li =	_	
$Ti0_2 = 2.28$	Rb =	_	(ID)
$A1_20_3 = 8.03$	K =		(ID)
Fe0 = 22.20	Ba =		(ID)
Mn0 = 0.29	Sr =		(ID)
Mg0 = 15.49	Cr =		(10)
Ca0 = 8.08	V =		(XRF)
$Na_2 0 = 0.21$	Sc =		(NAA)
$K_2 0 = 0.05$	Ni =		(XRF)
$P_2 O_5 = 0.06$	Co =		(NAA)
S = 0.05	Cu =	_	(XRF)
$Cr_2O_3 = 0.49$	Zn =	_	(XRF)
	Th =	0.682	(ID)
TOTAL 100.40	U =	0.199	(ID)
	Zr =	81	(XRF)
C1PW NORM	Hf =	•	(NAA)
CITY NON!	Nb =	4	(XRF)
Qtz = -			
0r = 0.32	RARE EARTH EL	EMENTS (ID)	
Ab = 1.78	WILL EMILITY EL	LITERITO (15)	
An = 20.81	La =		
Di = 15.64		_	
Hy = 25.09	(.e =	11.5	
	Ce = Pr =	11.5	
•	Pr =	-	
Ne = -	Pr = Nd =	8.91	
Ne = - 01 = 31.54	Pr = Nd = Sm =	8.91 3.22	
Ne = - 01 = 31.54 Chr = 0.72	Pr = Nd = Sm = Eu =	8.91 3.22 0.751	
Ne = - O1 = 31.54 Chr = 0.72 Ilm = 4.33	Pr = Nd = Sm = Eu = Gd =	8.91 3.22 0.751 4.32	
Ne = - O1 = 31.54 Chr = 0.72 Ilm = 4.33	Pr = Nd = Sm = Eu = Gd = Tb =	8.91 3.22 0.751 4.32	
Ne = - 01 = 31.54 Chr = 0.72 Ilm = 4.33 Apa = 0.13	Pr = Nd = Sm = Eu = Gd = Tb =	8.91 3.22 0.751 4.32	
Ne = - O1 = 31.54 Chr = 0.72 Ilm = 4.33	Pr = Nd = Sm = Eu = Gd = Tb = Dy =	8.91 3.22 0.751 4.32 - 5.07	
Ne = - 01 = 31.54 Chr = 0.72 Ilm = 4.33 Apa = 0.13 TOTAL 100.36	Pr = Nd = Sm = Eu = Gd = Tb = Ho =	8.91 3.22 0.751 4.32 - 5.07	
Ne = - 01 = 31.54 Chr = 0.72 Ilm = 4.33 Apa = 0.13 TOTAL 100.36 100 Mg/(Mg+Fe) = 55.4	Pr = Nd = Sm = Eu = Gd = Dy = Ho = Er =	8.91 3.22 0.751 4.32 5.07	
Ne = - 01 = 31.54 Chr = 0.72 Ilm = 4.33 Apa = 0.13 TOTAL 100.36	Pr = Nd = Sm = Eu = Gd = Dy = Ho = Tm = Tm =	8.91 3.22 0.751 4.32 - 5.07 - 3.09	

WEIGHT: 75 g

DIMENSIONS: 6 x 3.5 x 3.5 cm

BINOCULAR DESCRIPTION

COLOR: Medium gray SHAPE: Subangular, elongate, one flat surface

FABRIC: Medium grained, holocrystalline; crude orientation of

vugs parallel to long dimension of rock

COHERENCE: Coherent

Fracturing: Few - some penetrative, extend out from vugs VARIABILITY: Homogeneous

SURFACE: Very irregular, granulated, dusty

ZAP PITS: None

CAVITIES: Very vuggy (15 volume %) up to 4 mm

SPECIAL FEATURES: Crystals in vugs have good crystal faces

BY: Heiken

MAJOR ELEMENTS	TRACE AND MINOR ELE	MENTS
$SiO_2 = 43.11$ $TiO_2 = 3.20$	Li = Rb =	
$TiO_2 = 3.20$ $Al_2O_3 = 6.16$	KD - K =	
Fe0 = 21.82	Ba = 56	(ID)
MnO = 0.30	Sr = 91	(XRF)
Mg0 = 16.71	Cr = 4880	(NAA)
CaO = 7.46	V =	
$Na_20 = 0.18$	Sc = 42.	
$K_2 0 = 0.06$	Ni = 60	(NAA)
$P_2 O_5 = 0.02$	Co = 63	(NAA)
$S = 0.07$ $Cr_2O_3 = 0.72$	Cu =	
$Cr_2O_3 = 0.72$	Zn = Th =	
TOTAL 99.81	U =	
TOTAL SSTOT	Zr = 97	(XRF)
CIDU NODA	Hf = 4.	
C1PW NORM	Nb = 6.	
	ווט - כ.	(//////////////////////////////////////
Otz = -	ND - 01	(/////
Qtz = - Or = 0.35		
0r = 0.35 Ab = 1.52	RARE EARTH ELEMENTS	
Or = 0.35 Ab = 1.52 An = 15.82		
Or = 0.35 Ab = 1.52 An = 15.82 Di = 17.33	RARE EARTH ELEMENTS La = Ce = 14.	(NAA)
Or = 0.35 Ab = 1.52 An = 15.82 Di = 17.33 Hy = 29.3	RARE EARTH ELEMENTS La = Ce = 14. Pr =	(NAA)
Or = 0.35 Ab = 1.52 An = 15.82 Di = 17.33 Hy = 29.3 Ne = -	RARE EARTH ELEMENTS La = Ce = 14. Pr = Nd =	(NAA)
Or = 0.35 Ab = 1.52 An = 15.82 Di = 17.33 Hy = 29.3 Ne = - Ol = 28.23	RARE EARTH ELEMENTS La = Ce = 14. Pr = Nd = Sm = 4.	(NAA) 0
Or = 0.35 Ab = 1.52 An = 15.82 Di = 17.33 Hy = 29.3 Ne = - O1 = 28.23 Chr = 1.06	RARE EARTH ELEMENTS La = Ce = 14. Pr = Nd = Sm = 4. Eu = 0.	(NAA) 0
Or = 0.35 Ab = 1.52 An = 15.82 Di = 17.33 Hy = 29.3 Ne = - Ol = 28.23 Chr = 1.06 Ilm = 6.08	RARE EARTH ELEMENTS La = Ce = 14. Pr = Nd = Sm = 4. Eu = 0. Gd =	(NAA) 0 03 75
Or = 0.35 Ab = 1.52 An = 15.82 Di = 17.33 Hy = 29.3 Ne = - O1 = 28.23 Chr = 1.06	RARE EARTH ELEMENTS La = Ce = 14. Pr = Nd = Sm = 4. Eu = 0. Gd = Tb = 0.	(NAA) 0 03 75
Or = 0.35 Ab = 1.52 An = 15.82 Di = 17.33 Hy = 29.3 Ne = - Ol = 28.23 Chr = 1.06 Ilm = 6.08 Apa = 0.04	RARE EARTH ELEMENTS La = Ce = 14. Pr = Nd = Sm = 4. Eu = 0. Gd = Tb = 0. Dy =	(NAA) 0 03 75
Or = 0.35 Ab = 1.52 An = 15.82 Di = 17.33 Hy = 29.3 Ne = - Ol = 28.23 Chr = 1.06 Ilm = 6.08	RARE EARTH ELEMENTS La = Ce = 14. Pr = Nd = Sm = 4. Eu = 0. Gd = Tb = 0. Dy = Ho =	(NAA) 0 03 75
Or = 0.35 Ab = 1.52 An = 15.82 Di = 17.33 Hy = 29.3 Ne = - O1 = 28.23 Chr = 1.06 Ilm = 6.08 Apa = 0.04 TOTAL 99.74	RARE EARTH ELEMENTS La = Ce = 14. Pr = Nd = Sm = 4. Eu = 0. Gd = Tb = 0. Dy = Ho =	(NAA) 0 03 75
Or = 0.35 Ab = 1.52 An = 15.82 Di = 17.33 Hy = 29.3 Ne = - 01 = 28.23 Chr = 1.06 Ilm = 6.08 Apa = 0.04 TOTAL 99.74 100 Mg/(Mg+Fe) = 57.7	RARE EARTH ELEMENTS La = Ce = 14. Pr = Nd = Sm = 4. Eu = 0. Gd = Tb = 0. Dy = Ho = Er = Tm = Yb = 3.	(NAA) 0 03 75 95
Or = 0.35 Ab = 1.52 An = 15.82 Di = 17.33 Hy = 29.3 Ne = - O1 = 28.23 Chr = 1.06 Ilm = 6.08 Apa = 0.04 TOTAL 99.74	RARE EARTH ELEMENTS La = Ce = 14. Pr = Nd = Sm = 4. Eu = 0. Gd = Tb = 0. Dy = Ho = Er = Tm =	(NAA) 0 03 75 95

WEIGHT: 746 g

DIMENSIONS: 12.5 x 7.5 x 5.5 cm

BINOCULAR DESCRIPTION

COLOR: Interior medium gray (N5), surface medium dark gary (N4)

SHAPE: Subangular, roughly triangular and flat FABRIC: Fine to medium-grained, equigranular

COHERENCE: Coherent

Fracturing: Few-nonpenetrative, slab-like

VARIABILITY: Slightly more rounded surface is more weathered -

opposing surface more angular

SURFACE: Smooth - covered modestly with dust

ZAP PITS: Many, some glass-lined with white halves - more

numerous on rounded surface

CAVITIES: Crystal lined vugs, more numerous on one half of rock,

no vesicles

SPECIAL FEATURES: Pyroxene equant in rock but acicular in vugs.

BY: Lindsay

MAJOR ELEMENTS (5)	TRACE AND M	INO	R ELEMENTS	
SiO ₂ = 46.83	Li	=	10.8	(TD)
TiO ₂ = 3.24	Rb	=	0.604	(ID) (ID)
A1 ₂ 0 ₃ = 12.48	K	=	634	(ID)
Fe0 = 17.76	Ba	=	130	(ID)
Mn0 = 0.25	Sr	=	190	(iD)
Mg0 = 6.86	Cr	=	2100	(OES)
CaO = 11.49	v.	=	104	(XRF)
$Na_2O = 0.65$	Sc	=	44.6	(NAA)
$K_2 0 = 0.07$	Ni	=	2	(XRF)
$P_2O_5 = 0.14$	Cc	=	28.4	(NAA)
S = 0.07	Cu	=	8	(XRF)
$Cr_2O_3 = 0.31$	Zn	=	3	(XRF)
	Th	=	0.615	(ID)
TOTAL 100.15	U	=	0.157	(ID)
	Zr	=	160	(XRF)
C1PW NORM	Hf	=	5	(NAA)
CITA NOMI	Nb	20	7	(XRF)
Qtz = 1.24				
0r = 0.41	RARE EARTH	FLE	MENTS (ID)	
Ab = 5.50	WINE ENITH		TILITIS (10)	
An = 30.93	La	=	-	
Di = 21.23	Ce	=	35	
Hy = 33.86	Pr	=	-	
Ne = -	Nd	=	26.3	
01 = -	Sm	=	80.2	
Chr = 0.46	Eu	=	2.19	
I1m = 6.15	Gd	=	10.6	
Apa = 0.31	Tb	=	-	
	Dy	=	11.1	
TOTAL 100.08	Ho	=	-	
TOTAL TOO. OO	Er	=	6.12	
100 Mg/(Mg+Ff:) = 40.8	Tm	=	-	
A /A! /A	Yb	=	5.26	
An/AD/Or = 84/15/1	Lu	=	0.814	
	Y	=	46	(XRF)

WEIGHT: 255 g

DIMENSIONS: 7 x 6 x 4 cm

BINOCULAR DESCRIPTION

COLOR: Medium gray - speckled SHAPE: Subrounded, pyramidal FABRIC: Equigranular

COHERENCE: Coherent

Fracturing: One welded fracture VARIABILITY: Homogeneous

SURFACE: Granulated, dust covered ZAP PITS: Few glass-lined pits

CAVITIES: Few vugs, widely scattered, no vesicles SPECIAL FEATURES: No olivine, visibly zoned pyroxene

BY: Morrison

1cm

1 mm

MAJOR ELEMENTS	TRACE AND M	INC	R ELEMEN	TS
$SiO_2 = 46.09$	Li	=		
$TiO_2 = 4.46$	Rb	=		
$A1_20_3 = 10.52$	K	=		
Fe0 = 20.32	Ba	=	88	(ID)
Mn0 = 0.29	Sr	=	122	(XRF)
Mg0 = 5.75	Cr	=	2500	(NAA)
CaO = 11.67	٧	=		
$Na_20 = 0.29$	Sc	=	56.0	(NAA)
$K_2 0 = 0.10$	Ni	=		
$P_2O_5 = 0.09$	Co	=	28	(NAA)
S = 0.11	Cu	=		
$Cr_2O_3 = 0.38$	Zn	=		
	Th	=		
TOTAL 100.07	U	=	155	(vn=)
	Zr	=	156	(XRF)
C1PW NORM	Hf	=	4.7	(NAA)
CIT W HORA	Nb	=	10.7	(XRF)
Qtz = 3.47				
0r = 0.59	RARE EARTH	FI F	MENTS	(NAA)
Ab = 2.45	101112 27111111			(NAA)
An = 27.11	La	=		
	La Ce	==	25.7	
Di = 25.67	Ce		25.7	
Di = 25.67 Hy = 31.45	Ce Pr	=	25.7	
Di = 25.67 Hy = 31.45 Ne = - 01 = -	Ce Pr Nd	=	25.7 6.55	
Di = 25.67 Hy = 31.45 Ne = - 01 = - Chr = 0.56	Ce Pr Nd Sm	=		
Di = 25.67 Hy = 31.45 Ne = - 01 = - Chr = 0.56 Ilm = 8.47	Ce Pr Nd Sm Eu	= = =	6.55 1.18	
Di = 25.67 Hy = 31.45 Ne = - Ol = - Chr = 0.56 Ilm = 8.47	Ce Pr Nd Sm Eu Gd	= = = =	6.55	
Di = 25.67 Hy = 31.45 Ne = - 01 = - Chr = 0.56 Ilm = 8.47	Ce Pr Nd Sm Eu Gd Tb	= = = = =	6.55 1.18	
Di = 25.67 Hy = 31.45 Ne = - Ol = - Chr = 0.56 Ilm = 8.47 Apa = 0.2	Ce Pr Nd Sm Eu Gd	= = = = =	6.55 1.18	
Di = 25.67 Hy = 31.45 Ne = - Ol = - Chr = 0.56 Ilm = 8.47	Ce Pr Nd Sm Eu Gd Tb Dy		6.55 1.18	
Di = 25.67 Hy = 31.45 Ne = - Ol = - Chr = 0.56 Ilm = 8.47 Apa = 0.2 TOTAL 99.96	Ce Pr Nd Sm Eu Gd Tb Dy Ho		6.55 1.18	
Di = 25.67 Hy = 31.45 Ne = - O1 = - Chr = 0.56 Ilm = 8.47 Apa = 0.2 TOTAL 99.96 100 Mg/(Mg+Fe) = 33.5	Ce Pr Nd Sm Eu Gd Tb Dy Ho Er		6.55 1.18	
Di = 25.67 Hy = 31.45 Ne = - Ol = - Chr = 0.56 Ilm = 8.47 Apa = 0.2 TOTAL 99.96	Ce Pr Nd Sm Eu Gd Tb Dy Ho Er		6.55 1.18 1. 6 6	

WEIGHT: 319 g

DIMENSIONS: 7 x 6 x 5.5 cm

BINOCULAR DESCRIPTION

COLOR: Medium gray N4

SHAPE: Subrounded, equant, one flat side FABRIC: Medium grained, equigranular

COHERENCE: Friable to coherent

Fracturing: Few-nonpenetrative, some radiate from a point

VARIABILITY: Homogeneous

SURFACE: Granulated, irregular ZAP PITS: None observed

CAVITIES: Vugs up to 5 mm x 15 mm, weakly oriented, lined with

euhedral crystals.

SPECIAL FEATURES: No zap pits and weakly oriented vugs.

BY: Lindsay, Sutton

1 cm

1 mm

MAJOR ELEMENTS (3)	TRACE AND MINOR ELEMENTS	
$SiO_2 = 43.88$	Li = 6.67 (ID)	
$TiO_2 = 2.45$	Rb = 1.0 (ID)	
$A1_20_3 = 7.27$	K = 411 (ID)	
Fe0 = 21.09	Ba = 57.2 (ID)	
Mn0 = 0.27	Sr = 85.5 (ID)	
Mq0 = 16.45	Cr = 3826.67 (NAA	
Ca0 = 8.01	V = 153 (XRF	
$Na_20 = 0.17$	Sc = 37.53 (NAA	
$K_2 0 = 0.05$	Ni = 40 (XRF	
$P_2 O_5 = 0.06$	Co = 61.1 (NAA	
S = 0.04	Cu = 13 (XRF	
$Cr_2O_3 = 0.63$	Zn = 8 (XRF)	-
TOTAL 100 07	Th = 0.47 (GAM)	
TOTAL 100.37	U = 0.16 (GAM	
	Zr = 57 (XRF	
C1PW NORM	Hf = 2.39 (NAA	
	Nb = 2 (XRF))
Qtz = -		
0r = 0.30	RARE EARTH ELEMENTS (ID)	
Ab = 1.44		
An = 18.93	La = -	
Di = 16.83	Ce = 15.3	
Hy = 29.09	Pr = -	
Ne = - 01 = 28.04	Nd = 12	
2 22	Sm = 4.03	
0111	Eu = 0.796	
0.12	Gd = 5.6	
Apa = 0.13	Tb = -	
	Dy = 6.36	
TOTAL 100.33	Ho = - Er = 3.71	
100 Mg/(Mg+Fe) = 58.2	Tm = - Yb = 3.38	
An/Ab/Or = 91/7/2	Lu = 0.521	
	V = 22 (XRF)

WEIGHT: 60g

DIMENSIONS: 4.5 x 3.5 x 2.5 cm

BINOCULAR DESCRIPTION

COLOR: Medium gray, dark gray on fresh surface

SHAPE: Subrounded, ovoid rock with broken angular surface

FABRIC: Medium-grained, holocrystalline

COHERENCE: Coherent

Fracturing: Few-nonpenetrative on fractured side parallel to

surface

VARIABILITY: Irregularly distributed glass splashes on surface,

interior appears homogeneous

SURFACE: Granulated, shock crust, dusty; glass splash (2.5 x 2 cm)

less than 0.1 mm thick - glass is highly vesicular.

ZAP PITS: Pits lined with thin bubbly glass, old surface densely pitted, broken surface pitted but not as numerous. Pit linings raised above surface of rock.

CAVITIES: Spherical vesicles (10 volume %) no orientation (up to 2 mm); surface broken in lab shows crystal lined vugs and

spherical vesicles - vugs aligned in zones.

SPECIAL FEATURES: Inclusion of breccia in glass splash on surface - contact with basalt sharp and smooth.

BY: Heiken, Greenwood

MAJO	R ELE	MEN	<u>TS</u>		TRACE AND N	IN	OR ELEMEN	<u>ITS</u>
	SiO2	=	46.77		Li	=		
	TiO2	=	3.38		Rb	=		
	A1203	=	10.09		K	=		
	Fe0	=	19.50		Ba	=	73	(ID)
	Mn0	=	0.29		Sr	=	117	(XRF)
	Mg0	=	7.68		Cr	=	3300	(NAA)
	CaO	=	10.96		V	=	E0 4	/ N/A A \
	Na ₂ 0	=	0.27		Sc	=	52.4	(NAA)
	K2 0	=	0.06		Ni	=	27	/ NIA A \
	P2 05	=	0.06		Co	=	37	(NAA)
	S	=	0.07		Cu	=		
(Cr2 03	=	0.50		Zn	=		
	TOTAL	•	00 63	-	Th	=		
	TOTAL		99.63		ŭ	=	123	(XRF)
					Zr	=	4.0	(NAA)
CIPW	NORM				Hf	=	7.5	(XRF)
					Nb	=	7.5	(AINI)
(Qtz	=	2.40					
(0r	=	0.35		RARE EARTH	ELI	EMENTS	(NAA)
- 1	AЬ	=	2.28					(,
	An	=	26.14		La	=		
	Di	=	23.43		Ce	=	17.7	
	Hy	=	37.67		Pr	=		
	Ne	=	-		Nd	=		
(01	=	-		Sm	=	5.25	
(Chr	=	0.74		Eu	=	1.00	
	Ilm	=	6.42		Gd	=		
	Apa	=	0.13		ТЬ	=	1.25	
		_		-	Dy	=		
	TOTAL		99.56		Ho	=		
	IUIAL				Er	=		
	100 M	1/1	Mg+Fe) =	. 41 3	Tm	=		
				3/7.94/1.23	Yb	=	4.4	
,	AII/ AD	, OI.	- 50.03	7/1.34/1.23	Lu	=	0.63	(VD=)
					Y	=	40	(XRF)

WEIGHT: 92g

DIMENSIONS: 3.5 x 2 x 1.5 cm

BINOCULAR DESCRIPTION

COLOR: Medium gray on fresh surface SHAPE: Subrounded, elongate

FABRIC: Holocrystalline, medium grained

COHERENCE: Friable

Fracturing: Many-several penetrative, irregular orientation VARIABILITY: Homogeneous

SURFACE: Granulated, irregular ZAP PITS: Pits not obvious, some glass splashes and chalky white

feldspar indicate pits have been eroded away

CAVITIES: Crystal-lined vugs aligned with fractures, no vesicles

SPECIAL FEATURES: Broken in several pieces

BY: Heiken, Greenwood

MAJOR ELEMENTS	TRACE AND M	IINO	R ELEMENTS	
S10 ₂ =	Li	=	-	
Ti02 =	Rb	=	-	
A1203 =	K	=	2110	(ID)
Fe0 =	Ba	=	380	(ID)
MnO =	Sr	=	-	
MgO =	Cr	=	2590	(NAA)
CaO =	٧	=	-	
Na ₂ 0 =	Sc	=	37.9	(NAA)
K ₂ O =	Ni	=		
P ₂ O ₅ =	Co	=	45.5	(NAA)
S =	Cu	=	-	
$Cr_2O_3 =$	Zn	=	-	
	Th	=	-	
TOTAL	U	=		
	Zr	=	350	(NAA)
C1PW NORM	Hf	=	12.9	(NAA)
OTTA HOLLI	Nb	=	-	
Qtz =				
Or =	RARE EARTH	ELE	MENTS (ID)	
Ab =				
An =	La	=	33.1	
Di =	Ce	=	91.6	
Hy =	Pr	=		
Ne =	Nd	=	54.8	
01 =	Sm	=	16.7	
Chr =	Eu	=	1.72	
Ilm =	Gd	=	19.8	
Apa =	ТЬ	=	-	
	Dy	=	21.20	
TOTAL	Ho	=	. . .	
TOTAL	Er	=	13.3	
100 Mg/(Mg+Fe) =	Tm	=		
An/Ab/Or =	Yb	=	12.9	
1111/110/01	Lu Y	=	1.76	
		**		

WEIGHT: 63 g

DIMENSIONS: 5 x 3.5 x 2 cm

BINOCULAR DESCRIPTION

COLOR: Medium to dark gray

SHAPE: Subrounded, one side flat the other convex

FABRIC: Fine-grained granular with olivine phenocrysts

COHERENCE: Coherent

Fracturing: Few penetrative fractures most nonpenetrative

VARIABILITY: Homogeneous

SURFACE: Hackly ZAP PITS: Many glass-lined pits, linings are fractured CAVITIES: Vugs and vesicles (√5 volume %), vugs tend to cluster SPECIAL FEATURES: Pyroxene-brownish, olivine-apple green up to

3 x 1 mm

BY: Dahlem, Wones

MAJOR ELEMEN	ITS		TRACE AND M	IINC	R ELEMEN	NTS
S10 ₂ =	42.30		Li	=		
TiO2 =	4.78		Rb	=		
A1203 =	8.06		K	=		
Fe0 =	22.09		Ba	=	52	(ID)
Mn0 =	0.29		Sr	=	136	(XRF)
Mg0 =	11.63		Cr	=	4060	(NAA)
Ca0 =	9.09		٧	=		
Na ₂ 0 =	0.26		Sc	=	54.0	(NAA)
K ₂ 0 =	0.07		Ni	=	40	(NAA)
P ₂ O ₅ =	0.09		Co	-	52	(NAA)
S =	0.09		<u>C</u> u	=		
$Cr_2O_3 =$	0.59		Zn	=		
70741		-	Th	=		
TOTAL	99.34		Ų	=	112	(XRF)
			Zr	=	4.5	(NAA)
C1PW NORM			Hf	=	5.3	(XRF)
			Nb	-	3.3	(VIV.)
Qtz =						(1100)
0r =	0.41		RARE EARTH	ELE	MENTS	(NAA)
Or = Ab =	2.20			ELE	EMENTS	(NAA)
Or = Ab = An =	2.20 20.62		La	=		(NAA)
Or = Ab = An = Di =	2.20 20.62 19.9		La Ce	=	17.4	(NAA)
Or = Ab = An = Di = Hy =	2.20 20.62		La Ce Pr	= =		(NAA)
Or = Ab = An = Di = Hy = Ne =	2.20 20.62 19.9 29.63		La Ce Pr Nd	= = =	17.4	(AAA)
Or = Ab = An = Di = Hy = Ne = 01	2.20 20.62 19.9 29.63		La Ce Pr Nd Sm	= = = =	17.4	(NAA)
Or = Ab = An = Di = Hy = Ne = O1 - Chr =	2.20 20.62 19.9 29.63 - 16.35 0.87		La Ce Pr Nd Sm Eu	= = = =	17.4	(NAA)
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm =	2.20 20.62 19.9 29.63 		La Ce Pr Nd Sm Eu Gd		17.4 5.6 1.19	(NAA)
Or = Ab = An = Di = Hy = Ne = O1 - Chr =	2.20 20.62 19.9 29.63 - 16.35 0.87		La Ce Pr Nd Sm Eu Gd Tb		17.4	(NAA)
Or = Ab = An = Di = ily = Ne = Ol - Chr = Ilm = Apa =	2.20 20.62 19.9 29.63 - 16.35 0.87 9.08 0.2		La Ce Pr Nd Sm Eu Gd Tb Dy		17.4 5.6 1.19	(AAA)
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm =	2.20 20.62 19.9 29.63 		La Ce Pr Nd Sm Eu Gd Tb Dy Ho		17.4 5.6 1.19	(NAA)
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa = TOTAL	2.20 20.62 19.9 29.63 - 16.35 0.87 9.08 0.2	_	La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er		17.4 5.6 1.19	(NAA)
Or = Ab = An = Di = Hy = Ne = Ol - Chr = Ilm = Apa = TOTAL	2.20 20.62 19.9 29.63 - 16.35 0.87 9.08 0.2 99.25 (Mg+Fe)	= 48.4	La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm		17.4 5.6 1.19	(NAA)
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa = TOTAL	2.20 20.62 19.9 29.63 - 16.35 0.87 9.08 0.2 99.25 (Mg+Fe)	- = 48.4 75/9.47/1.78	La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb		17.4 5.6 1.19 1.51	(AAA)
Or = Ab = An = Di = Hy = Ne = Ol - Chr = Ilm = Apa = TOTAL	2.20 20.62 19.9 29.63 - 16.35 0.87 9.08 0.2 99.25 (Mg+Fe)	- = 48.4 75/9.47/1.78	La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm		17.4 5.6 1.19 1.51	(NAA)

WEIGHT: 166 g

DIMENSIONS: 7 x 4 x 3 cm

BINOCULAR DESCRIPTION

COLOR Medium gray, brownish cast

SHAPE: Subrounded, rectangular prism, 2 sides more rounded than

the others

FABRIC: Fine-grained, ophitic COHERENCE: Coherent to tough

Fracturing: Few - nonpenetrative, concentrated near surface -

spalling features? VARIABILITY: Homogeneous

SURFACE: Granulated, well pitted

ZAP PITS: Glass-lined pits on all surfaces

CAVITIES: Vugs and vesicles, 2 mm maximum size, make up less than

1% by volume

SPECIAL FEATURES: Opaque mineral may be concentrated near vugs,

plagioclase laths show twinning.

BY: Wones

c m

.5 mm

NOT ALLOCATED

MAJOR ELEMENTS	TRACE AND MINOR ELEMENTS
SiO ₂ =	Li =
TiO ₂ =	Rb =
A1203 =	K =
Fe0 =	Ba =
Mn0 =	Sr =
Mg0 =	Cr =
CaO =	V =
Na ₂ 0 =	Sc =
K ₂ 0 =	Ni =
P ₂ O ₅ =	Co =
S =	Cu =
$Cr_2O_3 =$	Zn =
T0.T41	Th =
TOTAL	U =
	Zr =
C1PW NORM	Hf =
	Nb =
Qtz =	
0r =	RARE EARTH ELEMENTS
Ab =	
An =	La =
Di =	Ce =
Hy =	Pr =
Ne =	Nd =
01 =	Sm =
Chr =	Eu =
Ilm =	Gd =
Apa =	Tb =
	Dy =
TOTAL	Ho =
	<u>E</u> r =
100 Mg/(Mg+Fe) =	Tm =
An/Ab/Or =	Yb =
,,	Lu =
	Υ =

WEIGHT: 193 g DIMENSIONS: 9 x 6 x 2.5 cm

BINOCULAR DESCRIPTION

COLOR: Medium gray

SHAPE: Subrounded, tabular

FABRIC: Medium-grained, holocrystalline, hypidiomorphic granular

COHERENCE: Coherent

Fracturing: Few - nonpenetrative, parallel to long dimension

and concentric to rounded and

VARIABILITY: Irregularly distributed vugs and fractures

SURFACE: Dust adheres well, glass patches up to 2 mm in diameter ZAP PITS: Glass-lined pits with white haloes .5 to 3 mm, the concentration of pits varies from one surface to another.

CAVITIES: Few vesicles and vugs up to 8 mm in diameter, some have

coalesced, lined with euhedral crystals

SPECIAL FEATURES: Feldspar in radial clusters

BY: Heiken

1cm

MAJOR ELEMENTS	TRACE AND M	INOR	ELEMEN	<u>TS</u>
$SiO_2 = 45.13$	1.2	=		
	Li			
$TiO_2 = 5.20$	Rb	=		
$A1_20_3 = 10.10$	K	=		
Fe0 = 20.50	Ba	=	69	(ID)
Mn0 = 0.29	Sr	=	171	(XRF)
Mg0 = 6.59	Cr	=	2190	(NAA)
CaO = 11.32	Ÿ.	=		(,
	Sc	=	61.0	(NAA)
			01.0	(NAA)
$K_2 0 = 0.08$	Ni	=		/ a . \
$P_2O_5 = 0.08$	Co	=	32	(NAA)
S = 0.12	Cu	=		
$Cr_2O_3 = 0.31$	Zn	=		
	Th	=		
TOTAL 100.03	Ü	=		
	Žr	=	141	(XRF)
	Hf	=	5.1	(NAA)
C1PW NORM			7.0	(XRF)
	Nh	=	7.0	LAKEL
	Nb	_	,	(/ /
0tz = 2.21	ND	_	7.0	(/ /
Qtz = 2.21 $Qtz = 0.47$				
0r = 0.47	RARE EARTH			(AAA)
0r = 0.47 Ab = 2.62	RARE EARTH	ELEM		
Or = 0.47 Ab = 2.62 An = 25.93	RARE EARTH		ENTS	
Or = 0.47 Ab = 2.62 An = 25.93 Di = 25.11	RARE EARTH La Ce	ELEM		
Or = 0.47 Ab = 2.62 An = 25.93	RARE EARTH	ELEM =	ENTS	
Or = 0.47 Ab = 2.62 An = 25.93 Di = 25.11	RARE EARTH La Ce	<u>ELEM</u> = =	ENTS	
Or = 0.47 Ab = 2.62 An = 25.93 Di = 25.11 Hy = 33.06 Ne = -	RARE EARTH La Ce Pr Nd	<u>ELEM</u> = = =	<u>ENTS</u> 20.1	
Or = 0.47 Ab = 2.62 An = 25.93 Di = 25.11 Hy = 33.06 Ne = - Ol = -	RARE EARTH La Ce Pr Nd Sm	<u>ELEM</u> = = = = =	20.1 6.5	
Or = 0.47 Ab = 2.62 An = 25.93 Di = 25.11 Hy = 33.06 Ne = - Ol = - Chr = 0.46	RARE EARTH La Ce Pr Nd Sm Eu	= = = = = =	<u>ENTS</u> 20.1	
Or = 0.47 Ab = 2.62 An = 25.93 Di = 25.11 Hy = 33.06 Ne = - Ol = - Chr = 0.46 Ilm = 9.88	RARE EARTH La Ce Pr Nd Sm Eu Gd	<u>ELEM</u> = = = = = = =	20.1 6.5 1.36	
Or = 0.47 Ab = 2.62 An = 25.93 Di = 25.11 Hy = 33.06 Ne = - Ol = - Chr = 0.46	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb	= = = = = = = =	20.1 6.5	
Or = 0.47 Ab = 2.62 An = 25.93 Di = 25.11 Hy = 33.06 Ne = - Ol = - Chr = 0.46 Ilm = 9.88 Apa = 0.17	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy	ELEM = = = = = = = =	20.1 6.5 1.36	
Or = 0.47 Ab = 2.62 An = 25.93 Di = 25.11 Hy = 33.06 Ne = - Ol = - Chr = 0.46 Ilm = 9.88 Apa = 0.17	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho	= = = = = = = =	20.1 6.5 1.36	
Or = 0.47 Ab = 2.62 An = 25.93 Di = 25.11 Hy = 33.06 Ne = - Ol = - Chr = 0.46 Ilm = 9.88 Apa = 0.17	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy	ELEM = = = = = = = =	20.1 6.5 1.36	
Or = 0.47 Ab = 2.62 An = 25.93 Di = 25.11 Hy = 33.06 Ne = - Ol = - Chr = 0.46 Ilm = 9.88 Apa = 0.17	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er	ELEM = = = = = = = = =	20.1 6.5 1.36 1.80	
Or = 0.47 Ab = 2.62 An = 25.93 Di = 25.11 Hy = 33.06 Ne = - Ol = - Chr = 0.46 Ilm = 9.88 Apa = 0.17 TOTAL 99.91 100 Mg/(Mg+Fe) = 36.4	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm	ELEM = = = = = = = = = =	20.1 6.5 1.36	
Or = 0.47 Ab = 2.62 An = 25.93 Di = 25.11 Hy = 33.06 Ne = - Ol = - Chr = 0.46 Ilm = 9.88 Apa = 0.17	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb	<u>ELEM</u> = = = = = = = = = = = = =	20.1 6.5 1.36 1.80	
Or = 0.47 Ab = 2.62 An = 25.93 Di = 25.11 Hy = 33.06 Ne = - Ol = - Chr = 0.46 Ilm = 9.88 Apa = 0.17 TOTAL 99.91 100 Mg/(Mg+Fe) = 36.4	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm	EL EM = = = = = = = = = = =	20.1 6.5 1.36 1.80	

WEIGHT: 1660 g

DIMENSIONS: 16 x 11.5 x 7 cm

BINOCULAR DESCRIPTION

COLOR: Medium gray with brownish gray, bottom darker gray

SHAPE: Subrounded, assymetric dome with flat bottom, or relatively

fresh fracture surface

FABRIC: Holocrystalline, radiate to ophitic to dictytaxitic

COHERENCE: Coherent

Fracturing: Few - nonpenetrative, spallation fractures parallel

to bottom; one penetrative fracture VARIABILITY: Fabric varies modestly

SURFACE: Pitted on rounded side, flat side has no pits ZAP PITS: Glass-lined pits 0.1 to 2 mm, glass variable in color,

white haloes 1/2 crater diameter

CAVITIES: Vesicles up to 4 mm, few vugs SPECIAL FEATURES: No pits on flat side

BY: Heiken

1 cm

.5 mm

MAJOR ELEMEN	NTS (2)	TRACE AND MINOR ELEMENTS	
SiO ₂ = TiO ₂ = Al ₂ O ₃ = FeO = MnO = CaO = K ₂ O = P ₂ O ₅ =	45.31 4.68 9.95 20.22 0.28 7.01 11.39 0.29 0.06 0.08	Li = 7.4 Rb = 0.909 K = 530 Ba = 73.6 Sr = 148 Cr = - V = 102 Sc = 58 Ni = 5.9 Co = 35.1	(MS) (ID) (ID) (ID) (ID) (XRF) (NAA) (XRF) (NAA)
S = Cr ₂ O ₃ =	0.09 0.31	Cu = 6 Zn = 2	(XRF)
TOTAL	99.67	Th = 1 U = 0.26 Zr = 128	(GAM) (GAM) (XRF)
C1PW NORM		Hf = 3.1 Nb = 7	(NAA) (XRF)
Qtz = Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa = TOTAL	1.79 0.35 2.45 25.67 25.58 34.21 - 0.46 8.89 0.17 99.58 (Mg+Fe) = 38. = 90/9/1	RARE EARTH ELEMENTS (ID) La = 6.53 Ce = 19.2 Pr = - Nd = 15.4 Sm = 5.68 Eu = 1.23 Gd = 7.89 Tb = - Dy = 9.05 Ho = - Er = 5.57 Tm = - Yb = 5.46 Lu = -	(XRF)

WEIGHT: 1866 g DIMENSIONS: 12 x 8.5 x 6 cm

COLOR: Dark gray, pitted surfaces medium gray

SHAPE: Subrounded to rounded with one subangular, freshly fractured

BINOCULAR DESCRIPTION

side

FABRIC: Porphyritic

COHERENCE: Coherent to tough

Fracturing: Few - nonpenetrative, spallation cracks

VARIABILITY: Homogeneous

SURFACE: Fresh surface hackly, other surfaces pitted and granulated ZAP PITS: Many glass-lined pits (0.1 to 2 mm) with white haloes,

no impact pits on freshly fractured surface

CAVITIES: Vugs and vesicles up to 5% by volume and 3 mm diameter

SPECIAL FEATURES: Radiate matrix texture, pyroxene in vugs

BY: Heiken, Anderson

MAJOR ELEMENTS (3)	TRACE AND MINOR ELEMENTS
$SiO_2 = 46.40$	Li = 8.04 (ID)
	0.01 (10)
0.20	1.20 (10)
	334 (10)
	, 5
V	110 (10)
	(020)
	113 (1111)
	0010 (11111)
	, , , ,
	· · · · · /
$Cr_2O_3 = 0.52$	
TOTAL 100.29	
101AL 100.29	(/
C1PW NORM	
	ND - / (ARF)
Qtz = 0.75	
0r = 0.41	RARE EARTH ELEMENTS (ID)
Ab = 2.28	
An = 26.31	La = _
Di = 22.51	Ce = 18.8
Hy = 40.79	Pr = _
Ne = -	Ná = 14.7
01 = -	Sm = 4.91
Chr = 0.77	Eu = 1.04
Ilm = 6.23	Gd = 6.87
Apa = 0.17	Tb = -
	Dy = 7.74
TOTAL 100.22	Ho = -
TOTAL TOUTE	Er = 4.55
100 Mg/(Mg+Fe) = 42.1	Tm = -
An/Ab/Or = 91/8/1	Yb = 4.32
NII/ NO/ 01 - 21/ 2/ 1	Lu = 0.651
	Y = -

WEIGHT: 879 g

DIMENSIONS: 12 x 8.5 x 5 cm

BINOCULAR DESCRIPTION

COLOR: Medium gray, fresh and weathered surfaces have same color SHAPE: Flat bottom with angular edges and subrounded peaked top

FABRIC: Holocrystallire fine grained

COHERENCE: Coherent to tough

Fracturing: Few - nonpenetrative, one fracture set subparallel

to flat bottom and one lesser set intersects at 40°

VARIABILITY: Homogeneous

SURFACE: Rounded surface pitted, fresh flat surface hackly with

0.3 cm square patch of glass

ZAP PITS: Many glass-lined pits on rounded surface have white haloes - flat bottom free of pits CAVITIES: Vesicles (5% by volume) crystal lined (pyroxene and

olivine), 2-3 mm.

SPECIAL FEATURES: Radiate feldspar

BY: Greenwood

MAJOR ELEMENTS	TRACE AND M	INOR	ELEMENTS	
SiO ₂ = 46.21	Li	=	4.8	(NAA)
$\Gamma i O_2 = 3.32$	Rb	=	1.24	(ID)
$A1_20_3 = 10.14$	K	=	582	(ID)
Fe0 = 19.77	Ba	=	84.4	(ID)
Mn0 = 0.28	Sr	=	138	(ID)
Mg0 = 8.17	Cr	=	_	
CaO = 11.01	٧	=	148	(OES)
$Na_20 = 0.26$	Sc	=	56.4	(NAA)
$K_2 0 = 0.06$	Ni	=	9.9	(XRF)
$P_2O_5 = 0.14$	Co	=	30	(OES)
S = 0.08	Cu	=	26	(XRF)
$Cr_2O_3 = 0.49$	Zn	=	1.2	(XRF)
	Th	=	1.34	(ID)
TOTAL 99.94	U	=	0.322	(ID)
	Zr	=	138	(XRF)
C1PW NORM	Hf	=	4	(NAA)
	Nb	=	10	(XRF)
Qtz = 0.89				
Qtz = 0.89 Or = 0.38	RARE EARTH	ELEM	ENTS (ID)	
		ELEM	ENTS (ID)	
0r = 0.38		ELEM =		
Or = 0.38 Ab = 2.20 An = 26.31 Di = 23.07	RARE EARTH		7.32	
Or = 0.38 Ab = 2.20 An = 26.31 Di = 23.07 Hy = 39.67	RARE EARTH La Ce Pr	=		
Or = 0.38 Ab = 2.20 An = 26.31 Di = 23.07 Hy = 39.67 Ne = -	RARE EARTH La Ce Pr Nd	=	7.32 20.9	
Or = 0.38 Ab = 2.20 An = 26.31 Di = 23.07 Hy = 39.67 Ne = - Ol = -	RARE EARTH La Ce Pr Nd Sm	=	7.32 20.9 - 15.3 5.25	
Or = 0.38 Ab = 2.20 An = 26.31 Di = 23.07 Hy = 39.67 Ne = - Ol = - Chr = 0.72	RARE EARTH La Ce Pr Nd Sm Eu	= = =	7.32 20.9 -	
Or = 0.38 Ab = 2.20 An = 26.31 Di = 23.07 Hy = 39.67 Ne = - Ol = - Chr = 0.72 Ilm = 6.31	RARE EARTH La Ce Pr Nd Sm Eu Gd	= = = =	7.32 20.9 - 15.3 5.25	
Or = 0.38 Ab = 2.20 An = 26.31 Di = 23.07 Hy = 39.67 Ne = - Ol = - Chr = 0.72	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb	= = = =	7.32 20.9 - 15.3 5.25 1.1	
Or = 0.38 Ab = 2.20 An = 26.31 Di = 23.07 Hy = 39.67 Ne = - Ol = - Chr = 0.72 Ilm = 6.31	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy		7.32 20.9 - 15.3 5.25 1.1	
Or = 0.38 Ab = 2.20 An = 26.31 Di = 23.07 Hy = 39.67 Ne = - Ol = - Chr = 0.72 Ilm = 6.31 Apa = 0.31	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho		7.32 20.9 - 15.3 5.25 1.1 - 8.01	
Or = 0.38 Ab = 2.20 An = 26.31 Di = 23.07 Hy = 39.67 Ne = - Ol = - Chr = 0.72 Ilm = 6.31	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er		7.32 20.9 - 15.3 5.25 1.1 - 8.01	
Or = 0.38 Ab = 2.20 An = 26.31 Di = 23.07 Hy = 39.67 Ne = - Ol = - Chr = 0.72 Ilm = 6.31 Apa = 0.31 TOTAL 99.86	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm		7.32 20.9 15.3 5.25 1.1 - 8.01 - 4.88	
Or = 0.38 Ab = 2.20 An = 26.31 Di = 23.07 Hy = 39.67 Ne = - Ol = - Chr = 0.72 Ilm = 6.31 Apa = 0.31 TOTAL 99.86 100 Mg/(Mg+Fe) = 42.4	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb		7.32 20.9 - 15.3 5.25 1.1 - 8.01 - 4.88 - 4.71	
Or = 0.38 Ab = 2.20 An = 26.31 Di = 23.07 Hy = 39.67 Ne = - Ol = - Chr = 0.72 Ilm = 6.31 Apa = 0.31 TOTAL 99.86	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm		7.32 20.9 15.3 5.25 1.1 - 8.01 - 4.88	(XRF)

WEIGHT: 687 g

DIMENSIONS: 9 x 7 x 7 cm

BINOCULAR DESCRIPTION

COLOR: Light gray

SHAPE: Angular, pyramidal

FABRIC: Holocrystalline, coarse grained, subophitic

COHERENCE: Friable

Fracturing: Many - penetrative, many are open, others filled with glass-rock appears expanded like a breadcrust bomb. Top of pyramid has fracture filled with reddish yellow glass.

VARIABILITY: Irregular distribution of fractures

SURFACE: Base of pyramid covered with thin (.2 mm) coating of glass approximately half way up pyramid. Much of rest of rock covered with a brownish-black dull coating that goes into fractures. Remainder of surface has shatter crust

ZAP PITS: Many glass-lined pits, some have penetrated glass coating (>1 mm), smaller ones do not penetrate the glass.

CAVITIES: Few irregular vugs

SPECIAL FEATURES: Rock is shocked - one of the very few that is visibly shocked

BY: Greenwood

1 mm

MAJOR ELEMENTS	TRACE AND M	INO	R ELEMEN	TS
$$10_2 = 45.86$	Li	=		
$TiO_2 = 4.63$	Rb	=		
$A1_2O_3 = 10.47$	K	=		
Fe0 = 19.51	Ba	=	64	(ID)
Mn0 = 0.29	Sr	=	162	(XRF)
Mg0 = 6.76	Cr	=	2300	(NAA)
CaO = 11.93	٧	=		
$Na_2O = 0.31$	Sc	=	64.0	(NAA)
$K_20 = 0.07$	Ni	=		
$P_2 O_5 = 0.06$	Co	=	31	(AAN)
S = 0.09	Cu	=		
$Cr_2O_3 = 0.33$	Zn	=		
	Th	=		
TOTAL 100.31	U	=		/w==\
	Zr	=	128	(XRF)
C1PW NORM	Hf	=	4.8	(NAA)
- T. H. 110101	Nb	=	6.3	(XRF)
	No		0.0	(/
Otz = 2.23	No		0.0	()
$\hat{0}r = 0.41$				
$ \begin{array}{rcl} 0 & = & 0.41 \\ Ab & = & 2.62 \end{array} $	RARE EARTH			(NAA)
Or = 0.41 Ab = 2.62 An = 26.97			MENTS	
Or = 0.41 Ab = 2.62 An = 26.97 Di = 26.83	RARE EARTH	ELE		
Or = 0.41 Ab = 2.62 An = 26.97	RARE EARTH	ELEI	MENTS	
Or = 0.41 Ab = 2.62 An = 26.97 Di = 26.83	RARE EARTH La Ce	ELE! = =	MENTS 18.8	
Or = 0.41 Ab = 2.62 An = 26.97 Di = 26.83 Hy = 31.74 Ne = - Ol = -	RARE EARTH La Ce Pr	ELEI = = = =	18.8 6.0	
Or = 0.41 Ab = 2.62 An = 26.97 Di = 26.83 Hy = 31.74 Ne = - Ol = - Chr = 0.49	RARE EARTH La Ce Pr Nd	= = = = =	MENTS 18.8	
Or = 0.41 Ab = 2.62 An = 26.97 Di = 26.83 Hy = 31.74 Ne = - Ol = - Chr = 0.49 Ilm = 8.79	RARE EARTH La Ce Pr Nd Sm Eu Gd	= = = = = =	18.8 6.0 1.27	
Or = 0.41 Ab = 2.62 An = 26.97 Di = 26.83 Hy = 31.74 Ne = - Ol = - Chr = 0.49	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb	= = = = = = =	18.8 6.0	
Or = 0.41 Ab = 2.62 An = 26.97 Di = 26.83 Hy = 31.74 Ne = - Ol = - Chr = 0.49 Ilm = 8.79	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy	ELEI = = = = = =	18.8 6.0 1.27	
Or = 0.41 Ab = 2.62 An = 26.97 Di = 26.83 Hy = 31.74 Ne = - Ol = - Chr = 0.49 Ilm = 8.79 Apa = 0.13	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho	= = = = = = = = =	18.8 6.0 1.27	
Or = 0.41 Ab = 2.62 An = 26.97 Di = 26.83 Hy = 31.74 Ne = - Ol = - Chr = 0.49 Ilm = 8.79 Apa = 0.13	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er	= = = = = = = = = = = = = = = = = = =	18.8 6.0 1.27	
Or = 0.41 Ab = 2.62 An = 26.97 Di = 26.83 Hy = 31.74 Ne = - Ol = - Chr = 0.49 Ilm = 8.79 Apa = 0.13 TOTAL 100.22	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm	= = = = = = = = = = = = = = = = = = =	18.8 6.0 1.27 1.85	
Or = 0.41 Ab = 2.62 An = 26.97 Di = 26.83 Hy = 31.74 Ne = - Ol = - Chr = 0.49 Ilm = 8.79 Apa = 0.13 TOTAL 100.22	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb	ELEI	18.8 6.0 1.27 1.85	
Or = 0.41 Ab = 2.62 An = 26.97 Di = 26.83 Hy = 31.74 Ne = - Ol = - Chr = 0.49 Ilm = 8.79 Apa = 0.13 TOTAL 100.22	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm	EL EI	18.8 6.0 1.27 1.85	

WEIGHT: 912 g

DIMENSIONS: 12.5 x 10 x 5 cm

BINOCULAR DESCRIPTION

COLOR: Light gray, neutral N7

Subangular, blocky, shape controlled by fractures

FABRIC: Medium-grained holocrystalline, subophitic, no lineations

COHERENCE: Coherent to friable

Fracturing: Many - some penetrative, parallel to long dimension

and subparallel to each other

VARIABILITY: Homogeneous

SURFACE: Granulated, pitted; glass splashes up to 4 mm may be

large zap pits

ZAP PITS: Many glass-lined pits on all surfaces (0.5 to 3 mm)

glass is dark brown and bubbly

CAVITIES: Vugs are lined with euhedral crystals, few vesicles present, some have coalesced.

SPECIAL FEATURES: Feldspar radiate, pyroxene equant; vug mineral is pyroxene

BY: Heiken

MAJOR ELEMEN	TS	TRÂCE AND MINOR ELEME	NTS
SiO ₂ =	47.00	Li =	
TiO ₂ =	3.52	Rb =	
A1203 =	10.15	K =	
Fe0 =	19.54	Ba = 69	(ID)
Mn0 =	0.29	Sr = 121	(XRF)
Mg0 =	7.46	Cr = 3200	(AAA)
Ca0 =	11.10	V =	
$Na_2O =$	0.27	Sc = 54.0	(NAA)
$K_2 0 =$	0.07	Ni =	
$P_2 O_5 =$	0.07	Co = 38	(NAA)
S =	0.07	Cu =	
$Cr_2O_3 =$	0.47	Zn =	
TOTAL	100.01	Th =	
TOTAL	100.01	U = Zr = 131	(XRF)
			(NAA)
C1PW NORM			(XRF)
		Nb = 8.5	(/////)
Qtz =	2.81		
0r =	0.41	RARE EARTH ELEMENTS	(NAA)
	2.20	RAKE EARTH EEEHENTS	(11/41)
Ab =	2.28		(mar)
An =	2.28 26.28	La =	(may
An = Di =	2.28 26.28 23.87	La = Ce = 18.2	(may
An = Di = Hy =	2.28 26.28	La = Ce = 18.2 Pr =	(MA)
An = Di = Hy = Ne =	2.28 26.28 23.87	La = Ce = 18.2 Pr = Nd =	
An = Di = Hy = Ne = Ol =	2.28 26.28 23.87 36.76	La = Ce = 18.2 Pr = Nd = Sm = 5.29	j
An = Di = Hy = Ne = Chr =	2.28 26.28 23.87 36.76 - 0.69	La = Ce = 18.2 Pr = Nd = Sm = 5.29 Eu = 0.99	j
An = Di = Hy = Ne = Ol = Chr = Ilm =	2.28 26.28 23.87 36.76 - 0.69 6.69	La = Ce = 18.2 Pr = Nd = Sm = 5.25 Eu = 0.95 Gd =	i i
An = Di = Hy = Ne = Chr =	2.28 26.28 23.87 36.76 - 0.69	La = Ce = 18.2 Pr = Nd = Sm = 5.25 Eu = 0.95 Gd = Tb = 1.02	i i
An = Di = Hy = Ne = Ol = Chr = Ilm =	2.28 26.28 23.87 36.76 - 0.69 6.69	La = Ce = 18.2 Pr = Nd = Sm = 5.29 Eu = 0.99 Gd = Tb = 1.02 Dy =	i i
An = Di = Hy = Ne = Ol = Chr = Ilm =	2.28 26.28 23.87 36.76 - 0.69 6.69	La = Ce = 18.2 Pr = Nd = Sm = 5.25 Eu = 0.95 Gd = Tb = 1.02 Dy = Ho =	5
An = Di = Hy = Ne = Ol = Chr = Ilm = Apa = TOTAL	2.28 26.28 23.87 36.76 - 0.69 6.69 0.15	La = Ce = 18.2 Pr = Nd = Sm = 5.25 Eu = 0.95 Gd = Tb = 1.02 Dy = Ho = Er =	5
An = Di = Hy = Ne = Ol = Chr = Ilm = Apa = TOTAL	2.28 26.28 23.87 36.76 - 0.69 6.69 0.15 - 99.94 Mg+Fe) =	La = Ce = 18.2 Pr = Nd = Sm = 5.29 Eu = 0.99 Gd = Tb = 1.02 Dy = Ho = Er = Tm =	5
An = Di = Hy = Ne = Ol = Chr = Ilm = Apa = TOTAL	2.28 26.28 23.87 36.76 - 0.69 6.69 0.15 - 99.94 Mg+Fe) =	La = Ce = 18.2 Pr = Nd = Sm = 5.25 Eu = 0.95 Gd = Tb = 1.02 Dy = Ho = Er = Tm = Yb = 4.4	
An = Di = Hy = Ne = Ol = Chr = Ilm = Apa = TOTAL	2.28 26.28 23.87 36.76 - 0.69 6.69 0.15 - 99.94 Mg+Fe) =	La = Ce = 18.2 Pr = Nd = Sm = 5.29 Eu = 0.99 Gd = Tb = 1.02 Dy = Ho = Er = Tm =	

WEIGHT: 121 g

DIMENSIONS: 8 x 5 x 2.5 cm

BINOCULAR DESCRIPTION

COLOR: Brownish gray 5 YR 6/1

SHAPE: Subangular to subrounded, one subrounded side opposed by subangular fresh fracture surfaces - overall an asymmetric triangular pyramid

FABRIC: Holocrystalline, fine-grained, subophitic; tendency for vugs to be aligned along planes.

COHERENCE: Coherent

Fracturing: Few - nonpenetrative, subparallel to rounded edges and fresh fracture surface

VARIABILITY: Homogeneous

SURFACE: Hackly to pitted, some glass adhering that may not be from zap pits

ZAP PITS: Many glass-lined pits (0.1 to 2 mm) with raised edges with white haloes, glass is bubbly and dark brown. No pits on freshly fractured surfaces.

CAVITIES: Elongate chains of vesicles on bottom side; vugs abundant and irregular in shape with euhedral pyroxene and olivine SPECIAL FEATURES: Feldspar radiate, pyroxene elongate up to 1.5 mm. Two freshly fractured surfaces have no pits

BY: Heiken, Wones

MAJOR ELEMENTS	TRACE AND MINOR ELEMENTS	
$Si0_2 = 43.44$ $Ti0_2 = 5.07$ $A1_2O_3 = 8.82$	Li = Rb = K =	
Fe0 = 21.60	Ba = 62 (I	D)
Mn0 = 0.29	,	RF)
Mg0 = 9.30		AA)
Ca0 = 10.21	V =	
$Na_2O = 0.29$		AA)
$K_20 = 0.07$	Ni =	
$P_2O_5 = 0.07$		AA)
s = 0.10	Cu =	
$Cr_2O_3 = 0.48$	Zn =	
TOTAL 99.74	Th =	
TOTAL 99.74	U = Zr = 135 (X	RF)
		AA)
C1PW NORM		RF)
Qtz = -		ΔΔ١
0r = 0.41		AA)
0r = 0.41 Ab = 2.45	RARE EARTH ELEMENTS (N.	AA)
0r = 0.41 Ab = 2.45 An = 22.56	RARE EARTH ELEMENTS (N.	AA)
Or = 0.41 Ab = 2.45 An = 22.56 Di = 23.14	RARE EARTH ELEMENTS (N. La = Ce = 20.2	AA)
Or = 0.41 Ab = 2.45 An = 22.56 Di = 23.14 Hy = 33.67	RARE EARTH ELEMENTS (III. La = Ce = 20.2 Pr =	AA)
Or = 0.41 Ab = 2.45 An = 22.56 Di = 23.14 Hy = 33.67 Ne = - Ol = 6.92	RARE EARTH ELEMENTS (N. La = Ce = 20.2 Pr =	AA)
Or = 0.41 Ab = 2.45 An = 22.56 Di = 23.14 Hy = 33.67 Ne = - Ol = 6.92 Chr = 0.71	RARE EARTH ELEMENTS (N. La = Ce = 20.2 Pr = Nd =	AA)
Or = 0.41 Ab = 2.45 An = 22.56 Di = 23.14 Hy = 33.67 Ne = - Ol = 6.92 Chr = 0.71 Ilm = 9.63	RARE EARTH ELEMENTS (N. La = Ce = 20.2 Pr = Nd = Sm = 6.4 Eu = 1.31 Gd =	AA)
Or = 0.41 Ab = 2.45 An = 22.56 Di = 23.14 Hy = 33.67 Ne = - Ol = 6.92 Chr = 0.71	RARE EARTH ELEMENTS La = Ce = 20.2 Pr = Nd = Sm = 6.4 Eu = 1.31 Gd = Tb = 1.73	AA)
Or = 0.41 Ab = 2.45 An = 22.56 Di = 23.14 Hy = 33.67 Ne = - Ol = 6.92 Chr = 0.71 Ilm = 9.63	RARE EARTH ELEMENTS La = Ce = 20.2 Pr = Nd = Sm = 6.4 Eu = 1.31 Gd = Tb = 1.73 Dy =	AA)
Or = 0.41 Ab = 2.45 An = 22.56 Di = 23.14 Hy = 33.67 Ne = - Ol = 6.92 Chr = 0.71 Ilm = 9.63 Apa = 0.15	RARE EARTH ELEMENTS La = Ce = 20.2 Pr = Nd = Sm = 6.4 Eu = 1.31 Gd = Tb = 1.73 Dy = Ho =	AA)
Or = 0.41 Ab = 2.45 An = 22.56 Di = 23.14 Hy = 33.67 Ne = - Ol = 6.92 Chr = 0.71 Ilm = 9.63	RARE EARTH ELEMENTS (N. La = Ce = 20.2 Pr = Nd = Sm = 6.4 Eu = 1.31 Gd = Tb = 1.73 Dy = Ho = Er =	AA)
Or = 0.41 Ab = 2.45 An = 22.56 Di = 23.14 Hy = 33.67 Ne = - Ol = 6.92 Chr = 0.71 Ilm = 9.63 Apa = 0.15 TOTAL 99.64	RARE EARTH ELEMENTS (N. La = Ce = 20.2 Pr = Nd = Sm = 6.4 Eu = 1.31 Gd = Tb = 1.73 Dy = Ho = Er = Tm =	AA)
Or = 0.41 Ab = 2.45 An = 22.56 Di = 23.14 Hy = 33.67 Ne = - Ol = 6.92 Chr = 0.71 Ilm = 9.63 Apa = 0.15 TOTAL 99.64 100 Mg/(Mg+Fe) = 43.4	RARE EARTH ELEMENTS La = Ce = 20.2 Pr = Nd = Sm = 6.4 Eu = 1.31 Gd = Tb = 1.73 Dy = Ho = Er = Tm = Yb = 6.0	AA)
Or = 0.41 Ab = 2.45 An = 22.56 Di = 23.14 Hy = 33.67 Ne = - Ol = 6.92 Chr = 0.71 Ilm = 9.63 Apa = 0.15 	RARE EARTH ELEMENTS La = Ce = 20.2 Pr = Nd = Sm = 6.4 Eu = 1.31 Gd = Tb = 1.73 Dy = Ho = Er = Tm = Yb = 6.0 Lu = 0.82	AA)

WEIGHT: 738.7 g

DIMENSIONS: 12 x 8 x 4 cm

BINOCULAR DESCRIPTION

COLOR: Medium to light gray with whitish mottling (surface pitting).

Freshly broken surface darker gray

SHAPE: Subangular; irregular flattened half dome rounded top with partly concave bottom and an angular broken side.

FABRIC: Holocrystalline, ophitic to subophitic, no lineations present

COHERENCE: Coherent to tough

Fracturing: Few - rarely penetrative; subparallel to surface

like exfoliation

VARIABILITY: Interior appears homogeneous; irregularly distributed surface features

SURFACE: Hackly to granulated, strongly adhering dust, glass splash on concave bottom

ZAP PITS: Few, glass-lined pits on domical side, absent on concave bottom

CAVITIES: Few small vesicles and vugs, larger crystals in vuggy

areas of rock. Vesicles crystal lined SPECIAL FEATURES: There is a subdued flat cone or mound about 1.2 cm in diameter and several mm high in the center of the concave surface that forms the focus for a subtle radial fracture set. Concave surface may be impact crater

BY: Smith

.5 mm

NOT ALLOCATED

MAJOR ELEMENTS	TRACE AND MINOR ELEMENTS
S10 ₂ =	Li =
TiO ₂ =	Rb =
A1203 =	K =
Fe0 =	Ba =
MnO =	Sr =
Mg0 =	Cr =
CaO =	V =
Na ₂ O =	Sc =
K ₂ 0 =	Ni =
P ₂ O ₅ =	Co =
S =	Cu =
$Cr_2O_3 =$	Zn =
	Th =
TOTAL	<u>U</u> =
	Zr =
C1PW NORM	Hf =
Martin Control	Nb =
Qtz =	
Or =	RARE EARTH ELEMENTS
Ab =	
An =	La =
	La = Ce =
An =	La =
An = Di = Hy = Ne =	La = Ce = Pr = Nd =
An = Di = Hy = Ne = Ol =	La = Ce = Pr = Nd = Sm =
An = Di = Hy = Ne = Ol = Chr =	La = Ce = Pr = Nd = Sm = Eu =
An = Di = Hy = Ne = Ol = Chr = Ilm =	La = Ce = Pr = Nd = Sm = Eu = Gd =
An = Di = Hy = Ne = Ol = Chr =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb =
An = Di = Hy = Ne = Ol = Chr = Ilm =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy =
An = Di = Hy = Ne = Ol = Chr = Ilm = Apa =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho =
An = Di = Hy = Ne = Ol = Chr = Ilm =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er =
An = Di = Hy = Ne = Ol = Chr = Ilm = Apa =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er = Tm =
An = Di = Hy = Ne = Ol = Chr = Ilm = Apa = TOTAL 100 Mg/(Mg+Fe) =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er = Tm = Yb =
An = Di = Hy = Ne = Ol = Chr = Ilm = Apa =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er = Tm =

WEIGHT: 2426 g

DIMENSIONS: 18 x 12 x 8 cm

BINOCULAR DESCRIPTION

COLOR: Light to medium gray

SHAPE: Subangular, elongate with triangular cross section, one

flat side

FABRIC: Fine-grained holocrystalline, ophitic to subophitic

COHERENCE: Coherent to tough

Fracturing: Few - nonpenetrative, one cavity. Bounded by fracture planes, one major fracture coincides with plane of

VARIABILITY: A plane of vesicles extends through central part

of rock, concentrated on flat side

SURFACE: Pitted shatter crust over most of rock, granulated surface. One large patch of glass (6 x 10 mm) - may be remnant from large impact pit

ZAP PITS: Few glass-lined pits with white haloes on rounded sides

(.1 to 1 mm) - very few on flatter surfaces

CAVITIES: Vesicles and vugs (~0.5 cm) elongate in plane, form funnels indicating a joint surface along which gases may have escaped. Smaller vesicles throughout rock

SPECIAL FEATURES: Plane of vesicles

BY: Foss, Chao

TRACE AND MINOR ELEMENTS MAJOR ELEMENTS Li SiO2 = 43.48 5.9 (NAA) RЬ = TiO₂ = 5.00 0.93 (ID) K A1203 =9.27 522 (ID) Fe0 21.26 Ba = 64 (ID) Sr = MnO 0.28 150 (ID) Cr = Mg0 9.56 2500 (0ES) ٧ = = 10.49CaO 135 (0ES) Sc = Na₂0 0.31 60.8 (NAA) Ni K₂ 0 0.06 = 20 (XRF) 0.14 Co = 43.4 (NAA) P2 05 Cu = 'XRF) 0.09 8 0.44 Zn = 4.5 (XRF) $Cr_2O_3 =$ Th 0.679 (ID) = TOTAL 100.38 U 0.191 (ID) = (XRF) Zr = 133 Hf = 4.6 (NAA) C1PW NORM 7.9 (XRF) Nb Qtz Or RARE EARTH ELEMENTS (NAA) 0.36 Αb = 2.62 An 23.72 La 6.24 Di 22.95 Ce 17.8 Ну 31.38 Pr Ne = Nd = 16 8.80 01 Sm 6.48 0.65 Chr Eu = 1.36 9.50 Ilm Gd 9.4 0.31 Apa Tb = 1.66 Dy 11.3 Ho = 2 100.29 TOTAL 5.3 Er Tm = 100 Mg/(Mg+Fe) = 44.55.4 Yb An/Ab/Or = 89/10/1= 0.79 Lu (XRF) 65

ROCK NUMBER: 12064 WEIGHT: 1214.3 g

DIMENSIONS: 11 x 8 x 6 cm

BINOCULAR DESCRIPTION

COLOR: Light gray, rounded surface (shatter crust) has lighter

cast. Brownish cast imparted by pyroxene

SHAPE: Subangular to angular, blocky, fracture controlled

FABRIC: Holocrystalline, coarse grained, equigranular to subophitic

COHERENCE: Friable

Fracturing: Many - several penetrative

VARIABILITY: Homogeneous SURFACE: Granulated, crumbly

ZAP PITS: Few pits or white haloes on slightly rounded surface, on 2 glass-lined pits, other surfaces have no pits but do have a shatter crust

CAVITIES: Few vugs, irregular shape, crystals in vicinity are

coarser grained

SPECIAL FEATURES: Ilmenite in vugs (up to 5 mm in rock), plagioclase up to 3 mm

BY: Lofgren, Chao

MAJOR ELEMENTS (2)	TRACE AND MINOR ELEMENTS	
$SiO_2 = 46.30$ $TiO_2 = 3.99$ $Al_2O_3 = 10.73$	Li = 6.7 (OES) Rb = 1.046 (ID) K = -	
Fe0 = 19.89	Ba = 70 (XRF)	
Mn0 = 0.27	Sr = 134.8 (XRF)	
Mg0 = 6.49	Cr = -	
CaO = 11.77	V = 119 (XRF)	
$Na_2 0 = 0.28$	Sc = 63.1 (NAA)	
$K_2 0 = 0.07$ $P_2 0_5 = 0.04$	Ni = 6.9 (XRF) Co = 27.2 (NAA)	
P ₂ O ₅ = 0.04 S = 0.07	Co = 27.2 (NAA) Cu = 7 (XRF)	
$Cr_2O_3 = 0.37$	$Z_n = 2 (XRF)$	
0.37	Th = 0.842 (ID)'	
TOTAL 100.28	U = 0.221 (ID)	
100120	Zr = 114 (XRF)	
C'PW NORM	Hf = 3.9 (NAA)	
C PW NORM	Nb = 7 (XRF)	
Qtz = 2.42		
0r = 0.41	RARE EARTH ELEMENTS (NAA)	
Ab = 2.41	TOTAL EPHANIC COMMAND	
An = 27.79	La = 6.76	
Di = 25.66	Ce = 17.5	
Hy = 33.30	Pr = -	
Ne = -	Nd = 16	
01 = -	Sm = 5.51	
Chr = 0.54	Eu = 1.161	
Ilm = 7.58	Gd = 7.2	
Apa = 0.09	Tb = 1.27	
	Dy = 9.03	
TOTAL 100.21	Ho = 1.72	
	Er = 6	
100 Mg/(Mg+Fe) = 36.8	Tm = - Yb = 4.59	
An/Ab/0r = 91/8/1		
- 1, -, .	Lu = 0.67 Y = 41 (XRF)	

WEIGHT: 2109 g

DIMENSIONS: 12 x 12 x 8 cm

BINOCULAR DESCRIPTION

COLOR: Neutral gray (N6 to N8) with a cast of 10 YR 6/2

Color varies with amount of glaze

SHAPE: Subrounded, rectangular prism with an asymmetric termination

(pyramidal)

FABRIC: Porphyritic, radiate matrix, no linear fabric

COHERENCE: Coherent to tough

Fracturing: Few - nonpenetrative-generally parallel to present

surfaces

VARIABILITY: Homogeneous interior

SURFACE: Granulated, white shatter crust covers rock, locally

hackly. Glass patches present

ZAP PITS: Few glass-lined pits on all surfaces, 1.3 mm average

diameter

CAVITIES: Few vugs and rarer vesicles

SPECIAL FEATURES: Slightly finer-grained version of 12021

BY: Wones, Chao

.5 mm

MAJOR ELEMENTS (3)	TRACE AND MI	INOR ELEMENTS	
$SiO_2 = 46.54$	Li	= 6	(0ES)
$TiO_2 = 3.28$	RЬ	= 1.185	(ID)
$A1_20_3 = 10.45$	K	= 523	(ID)
Fe0 = 19.66	Ba	= 67	(ID)
Mn0 = 0.26	Sr	= 113.2	(ID)
Mg0 = 7.97	Cr	= 3090	(NAÁ)
CaO = 10.94	٧	= 150	(OES)
$Na_20 = 0.29$	Sc	= 56.5	(NAA)
$K_2 0 = 0.07$	Ni	= 20	(OES)
$P_2 O_5 = 0.13$	Co	= 38.8	(NAA)
S = -	Cu	= 7.8	(NAA)
$Cr_2O_3 = 0.48$	Zn	= 0.93	(NAA)
	Th	= 1.06	(GAM)
TOTAL 100.07	U	= 0.27	(GAM)
	Zr	= 140	(0ES)
C1PW NORM	Hf	= 3.9	(NAA)
CIT W HORT	Nb	= 16	(MS)
Qtz = 1.31			
0r = 0.41	RARE EARTH E	ELEMENTS (NAA))
Ab = 2.45			
An = 27.01	La	= 6.68	
Di = 22.26	Ce	= 24	
Hy = 39.41	Pr	= -	
Ne = -	Nd	= 24	
01 = -	Sm	= 4.5	
Chr = 0.71	Eu	= 1.06	
I1m = 6.23	Gd	= -	
Apa = 0.28	ТЬ	= 1.58	
	Dy	= 7.64	
TOTAL 100.07	Ho	= 1.11	
TOTAL TOTAL	Er	= -	
100 Mg/(Mg+Fe) = 41.9	Tm	= -	
An/Ab/Or = 00 4/0 0/1 4	Yb	= 3.78	
An/Ab/Or = 90.4/8.2/1.4	Lu	= 0.59	
	Y	= 40	(XRF)

ROCK NUMBER: 12072 WEIGHT: 103.6 g

DIMENSIONS: 5 x 3 x 2.7 cm

BINOCULAR DESCRIPTION

COLOR: Medium gray

SHAPE: Rounded, egg shaped FABRIC: Holocrystalline, equigranular

COHERENCE: Coherent

Fracturing: Few - nonpenetrative, generally parallel to surface VARIABILITY: Homogeneous

SURFACE: Pitted, chalky waite shatter crust

ZAP PITS: Few, glass-lined pits (0.5 to 1.5 mm) with white haloes. Some glass linings are raised some are still in pits

CAVITIES: Vugs are large, up to 6 mm, subrounded and lined with crystals of pyroxene and olivine (rare), irregularly distributed

throughout rock

SPECIAL FEATURES: Olivine-green (5-10%), pyroxene is honey brown

BY: Lofgren

.5 mm

NOT ALLOCATED

MAJOR ELEMENTS	TRACE AND MINOR ELEMENTS
SiO ₂ =	Li =
TiO ₂ =	Rb =
A1203 =	K =
FeO =	Ba =
MnO =	Sr =
Mg0 =	Cr =
CaO =	V =
Na ₂ 0 =	Sc =
K ₂ 0 =	Ni =
P ₂ O ₅ =	Co =
S =	Cu =
$Cr_2O_3 =$	Zn =
	Th =
TOTAL	U =
	Zr =
C1PW NORM	Hf =
CTFW NORM	Nb =
Qtz =	
0r =	RARE EARTH ELEMENTS
	RARE EARTH ELEMENTS
Or = Ab = An =	RARE EARTH ELEMENTS La =
Or = Ab =	
Or = Ab = An =	La =
Or = Ab = An = Di = Hy = Ne =	La = Ce =
Or = Ab = An = Di = Hy =	La = Ce = Pr =
Or = Ab = An = Di = Hy = Ne = O1 = Chr =	La = Ce = Pr = Nd =
Or = Ab = An = Di = Hy = Ne = O1 =	La = Ce = Pr = Nd = Sm =
Or = Ab = An = Di = Hy = Ne = O1 = Chr =	La = Ce = Pr = Nd = Sm = Eu =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa = TOTAL 100 Mg/(Mg+Fe) =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er = Tm =

ROCK NUMBER: 12075 WEIGHT: 232.5 g

DIMENSIONS: 8.5 x 5 x 5 cm

BINOCULAR DESCRIPTION

COLOR: Neutral to medium gray (N5 to N6)

SHAPE: Subrounded, triangular prism with projection at one end FABRIC: Holocrystalline, fine-grained porphyritic, vugs tend to

occur in planes

COHERENCE: Coherent to tough

Fracturing: Few, one penetrative, generally parallel to present

surfaces; one corner about to break off

VARIABILITY: Homogeneous interior, distribution of vugs irregular SURFACE: One fresh hackly surface, rest covered with shatter crust ZAP PITS: Glass-lined pits with haloes on rounded side of rock,

fresh surface has no pits CAVITIES: Vugs are clustered, 2 to 7 mm diameter, 5-10% by volume,

irregular shape and crystal lined

SPECIAL FEATURES: Vugs contain good crystals for single crystal studies. Small opaque octahedra should be identified, could be magnetite

BY: Wones

.5 mm

MAJOR ELEMENTS (2)	TRACE AND MINOR EL	EMENTS
$SiO_2 = 44.93$	Li = 6	(GRV)
$TiO_2 = 2.69$	Rb = 0	.993 (ID)
$A1_20_3 = 8.39$	K = 457	
Fe0 = 20.47	Ba = 63	
MnO = 0.27	Sr = 94	
Mg0 = 13.86	Cr = -	(10)
CaO = 8.59	V = 180	(GRV)
$Na_2O = 0.27$	Sc = 43	
$K_2O = 0.06$.99 (GRV)
$P_2O_5 = 0.12$	Co = 61	(NAA)
S = -	Cu = 6	
	Zn = 4	(OES)
$Cr_2O_3 = 0.60$.62 (GAM)
TOTAL 100.25		.19 (GAM)
TOTAL 100.25		
C1PW NORM		.7 (NAA)
	Nb = 16	(OES)
Qtz = -		
0r = 0.35	RARE EARTH ELEMENT	S (ID)
Ab = 2.28		_ (/
An = 21.50	La = 6	.34
Di = 16.86	Ce = 16	
Hy = 35.42	Pr = -	• •
Ne = -	Nd = 11	6
01 = 17.58		.94
Chr = 0.88		.828
11m = 5.11		.3
2.00		
Apa = 0.26	Tb = -	.22
	-,	
TOTAL 100.25	Ho = -	
· · · -		.73
100 Mg/(Mg+Fe) = 54.7	Tm = -	
	10	.71
An/Ab/0r = 33/9/1		.508
	v = 50	(GRV)

WEIGHT: 54.6 g

DIMENSIONS: 5 x 4.3 x 2.6 cm

BINOCULAR DESCRIPTION

COLOR: Neutral gray, N7, speckled white SHAPE: Subangular, very irregular shape

FABRIC: Fine grained subophitic

COHERENCE: Friable

Fracturing: Many - some penetrative, random orientation

VARIABILITY: Homogeneous

SURFACE: Most surfaces are fresh, hackly; one old surface has

shatter crust; vug coated with glass splash

ZAP PITS: Few glass-lined pits on old surface, no pits on fresh

surfaces

CAVITIES: One large vug which is comprised of a fretwork of crystals

SPECIAL FEATURES: Pyroxene and piagioclase appear radiate

BY: Wones

	TICHOL THE I	TINU	R ELEMENT	<u>S</u>
$SiO_2 = 44.87$ $TiO_2 = 2.76$ $Al_2O_3 = 8.10$ $FeO = 20.66$ $MnO = 0.30$ $MgO = 12.26$ $CaO = 9.03$ $Na_2O = 0.21$ $K_2O = 0.06$ $P_2O_5 = 0.03$ $S = Cr_2O_3 = 0.68$ TOTAL 98.96	Li Rb K Ba Sr Cr V Sc Ni Co Cu Zn Th U		7.4 1.022 467 59.4 93.6 4640 46.4 54	(ID) (ID) (ID) (ID) (NAA) (NAA) (NAA) (IJAA)
C1PW NORM	Zr Hf	=	108	(ID)
	Nb	=		
Qtz = - Or = 0.35 Ab = 1.78	RARE EARTH	ELE	MENTS	(ID)
An = 20.98 Di = 19.62 Hy = 38.06	La Ce Pr	= = =	5.68 15.9	
Ne = -	Nd	=	12.0	
Chr = 1.00 Ilm = 5.24	Eu Gd	=	0.825 5.67	
Apa = 0.07	Tb Dy	=	6.52	
TOTAL 98.96	Ho	=	3.85	
100 Mg/(Mg+Fe) = 51.4	Tm Yb	=	3.39	
An/Ab/Or = 90.78/7.69/1.53	Lu Y	=	0.492	
Ne = - 01 = 11.87 Chr = 1.00 Ilm = 5.24 Apa = 0.07 TOTAL 98.96	Nd Sm Eu Gd Tb Dy Ho Er		4.03 0.825 5.67 6.52 3.85	

APOLLO 14

WEIGHT: 251.3 g

DIMENSIONS: 8 x 6 x 3 cm

BINOCULAR DESCRIPTION

COLOR: Salt and pepper

SHAPE: A slabby, flat rock with rectangular shape and rounded

FASRIC: Holocrystalline, fine grained equigranular

COHERENCE: Rock is friable and fragile due to fractures

Fractures: There are 3 planar and 4 non-planar fractures appearing in two sets. Fractures have an irregular orientation. There are numerous hair-like cracks a few millimeters long.

The entire fracture pattern is somewhat irregular.

VARIABILITY: Inhomogeneous, some areas display relative concentrations of olivine and pyroxene on a 1-2 cm scale.

SURFACE:

ZAP PITS: The flat, relatively fresh, surface is unpitted. The convex surface has gentle relief with elevated prominences approximately 1-3 mm. These features are not abrupt but rounded. Pits appear on the convex surface but not on the flat surface. Pits are glass lined and have a size range from 0.5 to 3 mm. Average pit size is 1 to 2 mm. Density of pits is approximately 10 pits per cm².

CAVITIES: Cavities are both vesicular and vuggy. Irregular vugs range in size from 1-2 mm. Rounded vesicles range from 1-2 mm in size. Small vugs (0.5 mm diameter) and vesicles (1 mm in diameter) contain feldspar and orthopyroxene crystals.

SPECIAL FEATURES: Pits are good top and bottom indicator as is the presence of a dusty soil line. The two surfaces are distinct. Flat face is apparently a fracture surface and is without zap pits.

BY: Hörz, Wilshire, Jackson

1 mm

MAJOR ELEMENTS	TRACE AND MINOR ELEMENTS
$SiO_2 = 46.4$ $TiO_2 = 2.64$ $Al_2O_3 = 13.6$ $FeO = 16.8$ $MnO = 0.26$ $MgO = 8.48$ $CaO = 11.2$ $Na_2O = K_2O = 0.10$ $P_2O_5 = 0.09$ $S = 0.14$ $Cr_2O_3 = TOTAL 99.71$	Li =
C1PW NORM	Hf = 9.8 (NAA) Nb = 15.7 (XRF)
Qtz = 1.26 Or = 0.59 Ab = - An = 36.83 Di = 15.2	RARE EARTH ELEMENTS (ID) La = 13 Ce = 34.5
Hy = 40.5 Ne = -	Pr = - Nd = 21.9 Sm = 6.56
01 = - Chr = - Ilm = 5.01 Apa = 0.2	Sm = 6.56 Eu = 1.21 Gd = 8.59 Tb = - Dy = 10.5
TOTAL 99.51 100 Mg/(Mg+Fe) = 47.7	Ho = - Er = 6.51 Tm = -
An/Ab/Or = 98.42/ - /1.58	Yb = 6 Lu = - Y = 54.7 (XRF)

DIMENSIONS: 4.1 x 3.4 x 2.1 cm WEIGHT: 45.06 g

BINOCULAR DESCRIPTION

COLOR: Dust covered

SHAPE: A blocky, subrounded rock with one relatively smooth surface FABRIC: Microporphyritic

COHERENCE: Tough

Fracturing: One planar fracture transects the rock at 30° to the

long axis.

VARIABILITY: The texture and mineralogy are homogeneous ZAP PITS: No pits were observed

CAVITIES: Flatinged elliptical vugs 3 to 11 mm occur in zones

and appear to be arranged in an imbricate fashion.

BY: Lindsay, Trask

1 cm

MAJOR ELEMENTS	TRACE AND N	IINO	R ELEMENTS	
$SiO_2 = 45.15$	Li	=	_	
$TiO_2 = 2.57$	Rb	=	1.4	(MS)
$A1_20_3 = 11.07$	K	=	660	(XRF)
Fe0 = 17.82	Ba	=	128	(MS)
Mn0 = 0.27	Sr	=	108	(XRF)
Mg0 = 12.16	Cr	=	3880	(NAA)
CaO = 9.84	٧	=	-	(
$Na_20 = 0.32$	Sc	=	47.1	(NAA)
$K_2 0 = 0.08$	Ni	=	31	(NAA)
$P_2 O_5 = 0.08$	Co	=	32	(NAA)
S = 0.12	Cu	=	-	(,
$Cr_2O_3 = 0.51$	Zn	=	8	(NAA)
	Th	=	_	(
TOTAL 99.99	Ü	=	_	
	Zr	=	166	(XRF)
CIPIL NORM	Hf	=	6.9	(NAA)
C1PW NORM	Nb	=	11.45	(MS)
Qtz = -				,
0r = 0.47	DADE CARTU	C1 C1	ATNITO /NAA	١
Ab = 2.71	RARE EARTH	ELLI	TENTS (NAA)
An = 28.53	1.5	_	. 7.	
Di = 16.36	La	=	6.76	
Hy = 32.81	Ce	=	17.9	
Ne = -	Pr	=	-	
01 = 13.19	Nd	=	13	
Chr = 0.75	Sm	=	3.93	
Ilm = 4.88	Eu	=	0.88	
	Gd	=	4.2	
Apa = 0.17	ТЬ	=	0.98	
	Dy	=	6	
TOTAL 99.87	Но	=	1.5	
	Er	=	3.5	
100 Mg/(Mg+Fe) = 54.9	Tm	=	4 05	
An/Ab/Or = 90/9/1	Yb	=	4.05	
30/3/1	Lu	=	0.61 38	(XRF)
	Y	=	30	(ART)

WEIGHT: 3439 g

DIMENSIONS: 19 x 14 x 11 cm

BINOCULAR DESCRIPTION

COLOR: Medium gray

SHAPE: Blocky and very angular, subrounded on the pitted sides.

FABRIC: Equigranular, massive, inhomogeneous

COHERENCE: Tough

Fracturing: There are two exfoliation fractures one of which is parallel to the fresh surface. The prominent fracture is about 0.5 cm away from the fresh surface and measures approximately 2 cm long.

VARIABILITY: Homogeneous in mineralogy

ZAP PITS: Pits from 0.1 mm to 4.0 mm in size appear on two surfaces of the rock. About 90% of the pits are glass-lined and 10% are unlined. There are 20 to 50 pits per square centimeter.

CAVITIES: Irregular shaped vugs 0.5 to 2 mm in size appear in clusters and have irregular distribution. Vugs are 1% of the volume and are spaced 0.5 to 1 cm apart. Projecting 0.25 mm feldspar crystals line the vugs. Feldspar crystal lining varies from clear to gray in color. In larger cavities feldspar has honeycomb texture.

BY: Anderson, Lindsay, Ridley

MAJOR ELEMENTS	TRACE AND M	INOF	R ELEMENTS	
SiO ₂ = 47.20 TiO ₂ = 1.24 Al ₂ O ₃ = 20.10 FeO = 8.38 MnO = 0.11 MgO = 7.87 CaO = 12.30 Na ₂ O = 0.63 K ₂ O = 0.49 P ₂ O ₅ = 0.34 S = 0.02 Cr ₂ O ₃ = 0.18	Li Rb K Ba Sr Cr V Sc Ni Co Cu Zn Th U		22 12.8 4250 617 193 - 36 16.6 63.9 16.0 5 2.3 11.5 3.11	(OES) (ID) (ID) (ID) (ID) (OES) (NAA) (XRF) (NAA) (OES) (NAA) (MS) (MS)
30.00	Žr	=	842	(XRF)
C1PW NORM	Hf	=	15.1	(NAA)
CIFW NORT	Nb	=	52	(XRF)
Qtz = 0.16 Or = 2.90 Ab = 5.33 An = 50.57	RARE EARTH	ELEM		
Di = 6.91	Ce	_	56.4 144	
Hy = 29.61	Pr	=	-	
Ne = -	Nd	=	87	
01 = -	Sm	=	24	
Chr = 0.27	Eu	=	2.15	
Ilm = 2.36	Gd	=	28.1	
Apa = 0.74	ТЬ	=		
	Dy	=	32.7	
TOTAL 98.84	Но	=	10.7	
	Er	=	19.7	
100 Mg/(Mg+Fe) = 62.6	Tm	=	18.4	
An/Ab/Or = 86/9/5	YЬ	=		
	Lu	-	174	(YRE)

APOLLO 15

WEIGHT: 923.7 g DIMENSIONS: 13.5 x 10.5 x 6 cm

BINOCULAR DESCRIPTION

COLOR: Light brownish gray (5YR 6/1)

SHAPE: Blocky, subrounded

FABRIC: Isotropic, porphyritic COHERENCE: Intergranular: Tough Fracturing: Few, nonpenetrative

VARIABILITY: Vesicles are slightly larger on B (4 mm) than on T

(3 mm).

SURFACE: The E half of the rock shows vesicles with soil coatings and therefore was probably buried.

ZAP PITS: None on all.

CAVITIES: 60%, most are vesicles, a few are vugs.

SPECIAL FEATURES: Vesicles are rounded, spheroidal, and most intersect other vesicles. Their walls are rough on a 0.05 mm scale, and show the lath shapes of the underlying plagioclase. The vesicle walls have very thin black glassy linings, which in some places is either not present or is so thin that the colors of underlying minerals are visible. Vugs compose about 2% of the cavities and show projecting brown pyroxene crystals.

BY: Butler

C - 3

MAJOR ELEMENTS (4)	TRACE AND MINOR ELEMENTS
$SiO_2 = 44.08$	Li = 4.6 (ID)
$TiO_2 = 2.28$	Rb = 0.81 (ID)
$A1_20_3 = 8.38$	K = 249 (XRF)
Fe0 = 22.74	Ba = 61.0 (MS)
$Mr_1O = 0.32$	Sr = 91.4 (ID)
Mg0 = 11.30	Cr = 6400 (NAA)
Ca0 = 9.27	V = 200 (OES)
$Na_2O = 0.27$	Sc = 39.1 (NAA)
$K_2 0 = 0.04$	Ni = 85.9 (OES)
$P_2 O_5 = 0.07$	Co = 54 (NAA)
S = 0.10	<u>Cu</u> = 11 (OES)
$Cr_2 O_3 = 0.85$	Zn = 4 (NAA)
TOTAL	Th = 0.50 (MS)
TOTAL 99.70	U = 0.12 (MS)
	Zr = 86 (XRF)
C1PW NORM	Hf = 2.6 (NAA)
	Nb = 10 (OES)
Qtz = -	
0r = 0.24	RARE EARTH ELEMENTS (NAA)
Ab = 2.28	,
An = 21.54	La = 5.58
Di = 20.09	Ce = 15.6
Hy = 31.85	Pr = -
Ne = -	Nd = 11.4
01 = 17.86	Sm = 4.05
Chr = 1.25	Eu = 0.97
11m = 4.33	Gd = 5.4
Apa = 0.15	Tb = 0.9
And the same of th	Dy = 5.74
TOTAL 99.60	Ho = 1.1
	Er = 3.1
100 Mg/(Mg+Fe) = 47.0	Tm = -
An/Ab/Or = 89.5/9.5/1	Yb = 2.62
,	Lu = 0.321
	Y = 21 (OES)

2672.5 q DIMENSIONS: 10 x 12 x 16 cm WEIGHT:

BINOCULAR DESCRIPTION

COLOR: Olive gray (near 5Y 4/1)

SHAPE: Blocky, angular

FABRIC: Diabasic, porphyritic COHERENCE: Intergranular: Tough

Fracturing: Numerous, nonpenetrative on S; few, nonpenetrative

on E, absent on others

VARIABILITY: Abundance of vugs and phenocrysts

SURFACE: Granulated, irregular in vuggy areas, generally 80% soil covered (90% on N, 40% on B). Shocked plagioclase (white)

over much of E, N, B.

ZAP PITS: Few on E, W, B; none on N, S, T.

CAVITIES: Vugs average 5% of rock, locally 10% on S, 50% on E,

<5% on others.

SPECIAL FEATURES: Crystals in vugs are mainly plagioclase and brown pyroxene, and uncommonly a yellow-green mafic silicate. Where the vugs are abundant, the rock is locally diktytaxitic.

Plagioclase: Random orientation; phenocrysts are uncommon and

are present only on faces with few vugs (e.g., B).

Mafic silicate: Often too large relative to plagioclase to the intergranular; brown rims uncommon, very thin; probably pyroxene.

Pyroxene phenocrysts: Most abundant near vuggy areas; 5% on

vuggy faces, 1% on others.

Intergranular pyroxene: Medium to dark brown

BY: Bass

MAJOR ELEME	NTS (2)		TRACE AND M	1110	RELEMENTS	
SiO ₂ =	40.14		Li	=		
TiO ₂ =	48.14		Rb	=		
	1.69				2.0	(XRF)
A1203 =	8.89		K	=	249	(XRF)
Fe0 =	19.86		Ba	=	62	(NAA)
Mn0 =	0.27		Sr	=	99.2	(XRF)
Mg0 =	9.28		Cr	=	2840	(NAA)
Ca0 =	10.27		٧	=	-	
$Na_2O =$	0.28		Sc	=	42	(NAA)
K ₂ 0 =	0.03		Ni	=	31	(NAA)
P ₂ O ₅ =	0.07		Co	=	42	(NAA)
S =	0.07		Cu	=	-	(1001)
Cr ₂ O ₃ =	0.66		Zn	=		
01203		-	Th	=	0.52	(GAM)
TOTAL	99.51		ΰ"	=	0.32	(GAM)
101712	33.31		Zr	=	98.0	
			Hf	_		(XRF)
C1PW NORM					2.16	(NAA)
			Nb	=	4.9	(XRF)
Qtz =	1.40					
0r =	0.18		RARE EARTH	ELEN	MENTS (NA	A)
Or = Ab =			RARE EARTH	ELEN	MENTS (NA	A)
	0.18		RARE EARTH	ELEN	MENTS (NA	A)
Ab =	0.18 2.37		La		_	A)
Ab = An = Di =	0.18 2.37 22.91 23.15		La Ce	=	14.5	A)
Ab = An = Di = Hy =	0.18 2.37 22.91		La Ce Pr	=	14.5	A)
Ab = An = Di = Hy = Ne =	0.18 2.37 22.91 23.15 45.10		La Ce Pr Nd	= = =	14.5	Α)
Ab = An = Di = Hy = Ne = 01 =	0.18 2.37 22.91 23.15 45.10		La Ce Pr Nd Sm	= = = =	14.5 - 10.9 3.9	A)
Ab = An = Di = Hy = Ne = Ol = Chr =	0.18 2.37 22.91 23.15 45.10		La Ce Pr Nd Sm Eu	= = = = =	14.5 - 10.9 3.9 0.908	A)
Ab = An = Di = Hy = Ne = Chr = Iim =	0.18 2.37 22.91 23.15 45.10 - 0.97 3.21		La Ce Pr Nd Sm Eu Gd	= = = = =	14.5 - 10.9 3.9 0.908 5.0	A)
Ab = An = Di = Hy = Ne = Ol = Chr =	0.18 2.37 22.91 23.15 45.10		La Ce Pr Nd Sm Eu Gd Tb	= = = = =	14.5 10.9 3.9 0.908 5.0 8.7	A)
Ab = An = Di = Hy = Ne = Chr = Iim =	0.18 2.37 22.91 23.15 45.10 - 0.97 3.21	-	La Ce Pr Nd Sm Eu Gd Tb Dy	= = = = = =	14.5 - 10.9 3.9 0.908 5.0 8.7 5.9	A)
Ab = An = Di = Hy = Ne = Chr = Iim =	0.18 2.37 22.91 23.15 45.10 - 0.97 3.21		La Ce Pr Nd Sm Eu Gd Tb Dy Ho	= = = = = = = = = = = = = = = = = = = =	14.5 10.9 3.9 0.908 5.0 8.7 5.9	A)
Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa =	0.18 2.37 22.91 23.15 45.10 - 0.97 3.21 0.15	-	La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er	= = = = = = = = = = = = = = = = = = = =	14.5 - 10.9 3.9 0.908 5.0 8.7 5.9	A)
Ab = An = Di = Hy = Ne = Chr = Iim = Apa = TOTAL	0.18 2.37 22.91 23.15 45.10 - 0.97 3.21 0.15	- 45.4	La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er	= = = = = = = = = = = = = = = = = = = =	14.5 10.9 3.9 0.908 5.0 8.7 5.9 1.1 3.2	A)
Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa = TOTAL	0.18 2.37 22.91 23.15 45.10 - 0.97 3.21 0.15 99.44 (Mg+Fe) =		La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb	= = = = = = = = = = = = = = = = = = = =	14.5 - 10.9 3.9 0.908 5.0 8.7 5.9 1.1 3.2 - 2.54	A)
Ab = An = Di = Hy = Ne = Chr = Iim = Apa = TOTAL	0.18 2.37 22.91 23.15 45.10 - 0.97 3.21 0.15 99.44 (Mg+Fe) =		La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu	= = = = = = = = = = = = = = = = = = = =	14.5 10.9 3.9 0.908 5.0 8.7 5.9 1.1 3.2	A)
Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa = TOTAL	0.18 2.37 22.91 23.15 45.10 - 0.97 3.21 0.15 99.44 (Mg+Fe) =		La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb	= = = = = = = = = = = = = = = = = = = =	14.5 - 10.9 3.9 0.908 5.0 8.7 5.9 1.1 3.2 - 2.54	A)

WEIGHT: 1475.5 g DIMENSIONS: 8 x 10 x 15 cm

BINOCULAR DESCRIPTION

COLOR: Brownish gray (5YR 4/1)

SHAPE: Blocky, subrounded FABRIC: Inequigranular

COHERENCE: Intergranular: Tough on fresh surfaces, friable on

rounded surface.

Fracturing: Numerous and penetrative fractures. Two sets orthogonal, set parallel to B is dominant. One set is oblique to others.

VARIABILITY: Two distinct domains; predominant one is felsic with mafic: felsic ratio approximately 1:1; less abundant one has mafics 3:1 to 5:1 over plagioclase. Boundaries are generally diffuse between two domains.

SURFACE: Others smooth and rounded, S and W smooth, rounded. N irregular recessive; B hackly fresh.

ZAP PITS: B none, others few

CAVITIES: 3% scattered, 3-4 mm, with prismatic crystals, localized

with pyroxene concentrations.

SPECIAL FEATURES: Fractures appear to be associated with possible pyroxene concentrations and vug development. On N an older fracture has crystals to 3.3. cm long which may have developed on the surface rather than under T.

Plagioclase: Some well defined plates, other anhedral.

Opaques: Occasionally in plagioclase and pyroxene; also ilmenite

plates in some vugs.

Zoned pyroxenes: Generally green core is about 1/3 of total pyroxene. One crystal has 50% radius yellow-green core with pale brown 10% inner core. Boundaries between zones are moderately sharp. Several crystal cross sections have a colorless inner zone suggesting a distinct inner core phase.

BY: Morrison, Silver

1 mm

MAJOR ELEMENTS (2)	TRACE AND MI	NOR ELEMEN	<u>TS</u>
$$10_2 = 48.34$	Li		
Tio: = 1.46	Rb	= 0.7	(NAA)
$A1_20_3 = 9.79$	K	= -	(100,017)
Fe0 = 18.82	Ba	= 96	(NAA)
Mn0 = 0.25	Sr	= 134	(NAA)
Mg0 = 10.47	Cr	= 3610	(NAA)
CaO = 9.75	٧	= 158	(XRF)
$Na_2O = 0.34$	Sc	= 38	(XRF)
$K_2 0 = 0.05$	Ni	= 75.9	(XRF)
$P_2 O_5 = 0.07$	Co	= 52	(XRF)
S = -	<u>C</u> u	= 64	(XRF)
$Cr_2O_3 = 0.50$	Zn	= 5	(XRF)
TOTAL	Th		14 (MS)
TOTAL 99.84	ū		8(MS)
	Zr	= 68	(XRF)
C1PW NORM	Hf	= 3.36	(NAA)
	Nb	= 12	(XRF)
Qtz = 0.14			
0r = 0.3	RARE EARTH E	LEMENTS	(NAA)
Ab = 2.88			
An = 25.04	La	= 7.73	
Di = 19.1	Ce	= 20.6	
Hy = 48.72	Pr	= 3.15	
Ne = -	Nd	= 14.6	
01 = -	Sm	= 4.72	
Chr = 0.74	Eu	= 1.14	
Ilm = 2.77	Gd	= 5.3	
Apa = .15	Tb	= 0.96	
	Dy	= 6.66	
TOTAL 99.84	Но	= 1.2	
TOTAL STATE OF THE	Er	= 3.7	
100 Mg/(Mg+Fe) = 49.8	Tm	= -	
100 Mg/(Mg+Fe) = 49 8 An/Ab/Or = 88.75/10.2/1.05	YЬ	= 2.98	
,,	Lu	= 0.43 = 23	(XRF)
	v	= 73	(XKF)

WEIGHT: 809.3 q DIMENSIONS: 8 x 7 x 6 cm

BINOCULAR DESCRIPTION

COLOR: Light olive gray (5Y 6/1)

SHAPE: Blocky, subrounded (corners rounded)

FABRIC: Inequigranular, possible weak orientation of plagioclase.

COHERENCE: Intergranular: Tough

Fracturing: One penetrative fracture perpendicular to S.

VARIABILITY: None

SURFACE: S smooth and irregular, E has some splash glass (<1%). ZAP PITS: None on N and W (dusty); few on T, S, E and B (dusty)

CAVITIES: Vugs - 5%, projecting plagioclase and pyroxene

SPECIAL FEATURES: May be boundary between zapped and unzapped surfaces across T, unzapped on right. Plagioclase is ground up and white on N, possibly a sheared surface.

Plagioclase: Possibly two size groups

Mafic silicate: Probably olivine although some may be pigeonite. Possibly some mantling by pyroxene. There appears to be rare pyroxene laths to 8 mm.

BY: Morrison

1 mm

MAJOR ELEM	1EN	TS	TRACE	AND M	INOR	ELEMENTS
S10 ₂	=	48.07		Li	=	
T102	•	1.81		RЬ	=	
A1203		9.45		K	=	
Fe0	=	19.53		Ba	=	
MnC	=	0.29		Sr	=	
MgO	=	8.11		Cr	=	
CaO	=	10.83		٧	=	
Na ₂ O	=	n.d.		Sc	=	
K ₂ 0	=	0.04		Ni	=	
P ₂ O ₅	=	0.05		Co	=	
S	=	0.05		Cu	=	
Cr2 03	=	0.45		Zn	=	
0.200				Th	=	
TOTAL		98.68		U	=	
				Zr	=	
CIPU NODA				Hf	=	
CIPW NORM				ND	=	
Qtz	=					
0r	=		RARE I	EARTH	ELEM	ENTS
Ab	=					
An	=			La	=	
Di	=			Ce	=	
Hy	=			Pr	=	
Ne	=			Nd	=	
01	=			Sm	=	
Chr	=			Eu	=	
Ilm	=			Gd	=	
Apa	=			ТЬ	=	
•	-			Dy	=	
TOTAL				Ho	=	
TOTAL				Er	=	
100 M	-//	(Mg+Fe) = 42.5		Tm	=	
An/Ab	9 / \	1191767 - 42.5		ΥЬ	=	
All/ AU	, 01	-		Lu	=	
Dhadas M 1	,.	nnuhlished data		Y	=	
Knodes, M. J.,	, u	npublished data				

DIMENSIONS: 9 x 6 x 5 cm WEIGHT 400.5 g

BINOCULAR DESCRIPTION

COLOR: Light olive gray (5Y 6/1)

SHAPE: Blocky, angular

FABRIC: Possibly subophitic microporphyritic inequigranular

local flow alignment of plagioclase COHERENCE: Intergranular: Tough

Fracturing: Penetrative and nonpenetrative, planar VARIABILITY: Vugs are irregularly distributed

SURFACE: Slickensides, W, angular, irregular; T is dusty and not rounded.

ZAP PITS: None on T, N and W; few on S, B; none on E, but it

is dusty.

CAVITIES: Vugs (5%) with projecting plagioclase crystals. SPECIAL FEATURES: Some of long plagioclase crossing vuggy areas are bent and broken; brown mafic silicate (pyroxene) rimming green mafic silicate (olivine). No soil line found on S face.

Mafic silicate: Olivine? Good parting parallel to long dimension. Pyroxene rims around olivine. One olivine is 7 x 11 mm, second is 12 mm long. Prismatic olivine may be pigeonite.

Plagioclase: Has small equant black inclusions. A closer look says seriate size distribution of plagioclase.

Opaques: Some from these plates (ilmenite?) penetrating pyroxene.

BY: Wilshire

1 mm

MAJOR ELEMENTS	TRACE AND M	INOR	ELEMENTS	
$SiO_2 = 48.44$ $TiO_2 = 1.92$ $Al_2O_3 = 8.97$ FeO = 20.33	Li Rb K Ba Sr	= = =	5.6 0.917 411 62.7	(OES) (ID) (ID) (ID)
MnO = 0.29 MgO = 8.61	Cr	=	112	(ID)
CaO = 10.52	v.	=	135	(OES)
$Na_2O = 0.34$	Sc	=	47	(NAA)
$K_2 0 = 0.07$	Ni	=	11	(XRF)
$P_2 O_5 = 0.07$	Co	=	41	(NAA)
S = 0.08	<u>C</u> u	=	9.1	(OES)
$Cr_2O_3 = 0.31$	Zn	=	<u> </u>	
TOTAL	Ţh	=	0.5901	(MS)
TOTAL 99.95	U	=	0.1532	(MS)
	Zr Hf	=	97 2.1	(XRF) (NAA)
C1PW NORM	Nb	_	6.2	(XRF)
	ND	_	0.2	(\ \ \ \ \)
Qtz = 1.59				
0r = 0.41	RARE EARTH	ELEM	ENTS (ID)	
Ab = 2.88				
An = 22.74	La	=	7.38	
Di = 24.41	Ce	=	15.1	
Hy = 43.59 Ne = -	Pr Nd	=	10.6	
ne = - 01 = -	Sm	=	10.6 3.52	
Chr = 0.46	Eu	=	0.978	
Ilm = 3.65	Gd	=	4.95	
Apa = 0.15	Tb	=	-	
	Dy	=	5.6	
TOTAL 99.87	Ho	=	-	
TOTAL 99.87	Er	=	3.4	
100 Mg/(Mg+Fe) = 43.0	Tm	=	-	
An/Ab/Or = 87/11/2	Yb	=	2.77	
AII/ NO/ 01 - 3// 11/ 2	Lu	=	0.326	
	Y	=	29	(XRF)

WEIGHT: 471.3 g DIMENSIONS: 8.5 x 8 x 5 cm

BINOCULAR DESCRIPTION

COLOR: Light brownish gray (less brown than 5YR 6/1)

SHAPE: Blocky, subrounded

FABRIC: Intergranular, diabasic

COHERENCE: Intergranular: Tough, coherent

Fracturing: Few penetrative. One major irregular joint branching

into irregular fractures.

VARIABILITY: N surface is much coarser and lighter colored

SURFACE: Granular

ZAP PITS: None, glass coating on one pyroxene grain not clearly

a zap pit.

CAVITIES: 2% equant vugs. Pyroxene and plagioclase project

into vugs.

SPECIAL FEATURES: In coarse patches local average grain size approaches 1 cm. Pale green pyroxene is commonly mantled by brown pyroxene.

Pyroxene: Intergranular, dominant size is 5 mm on N face
Olivine or possibly green pyroxene: Contacts with plagioclase
are common on N, and includes rare opaque grains.
Plagioclass: Pandom opiontation On N face comists and size

Plagioclase: Random orientation. On N face seriate grain size, the dominant size is 5 mm.

BY: Ridley, Bass

Coarse grained rock, different splits have significantly different chemistry, probably because splits were too small relative to grain size, analyses for both splits listed.

CHEMISTRY

		•					
MAJOR ELEMEN	NTS		TRACE AND M	INC	R ELEME	NTS	
SiO ₂ =	46.61	47.73	Li	=			
TiO ₂ =	2.63	1.96	Rb	=	1.8	<11,5	(XRF)
$A1_20_3 =$	7.13	9.92	K	=	110	60	(XRF)
Fe0 = Mn0 =	24.38 0.30	19.69 0.26	Ba Sr	=	120	112	(XRF)
Mg0 =	7.90	8.84	Cr	=	120		(///////
Ca0 =	9.68	10.63	٧	=	172	165	(XRF)
$Na_20 =$	0.26	0.33	Sc	=	20	22	/vn=\
K ₂ 0 =	0.06 0.11	0.04 0.06	Ni Co	=	20 43	23 41	(XRF) (XRF)
P ₂ O ₅ = S =	0.14	0.52	Cu	=	9	29	(XRF)
Cr ₂ O ₃ =	0.61	0.52	Zn	=	<1.5	17	(XRF)
			Th	=			
TOTAL	99.73	100.01	Ų	=	156	92	(XRF)
			Zr Hf	=	130	32	(/ / /
C1PW NORM	Not ca	alculated	Nb	=	10.0	6.6	(XRF)
Qtz =							
0r =			RARE EARTH	ELE	MENTS		
Ab =							
An =			La	=			
Di = Hy =			Ce Pr	=			
Ne =			Nd	_			
01 =			Sm	=			
Chr =			Eu	=			
Ilm =			Gd	=			
Apa = _		_	Tb Dy	=			
TOTAL			Ho	=			
TOTAL			Er	=			
100 Ma/	(Mg+Fe) =		Tm	=			
An/Ab/Or			Yb	=			
			Lu Y	=	44.0	28.6	(XRF)
				100000			(,,,,,

Ref: Duncan et al. (1975) Proc. Lunar Sci. Conf. 6th, 2309-2320.

WEIGHT: 298.2 g

DIMENSIONS: 6 x 6 x 5 cm (largest

piece of 3)

BINOCULAR DESCRIPTION

COLOR: Light brown (5YR 6/4)

SHAPE: Blocky, subangular corners

FABRIC: Inequigranular

COHERENCE: Intergranular: Tough

Fracturing: One penetrative fracture, two pieces have broken

off the largest one

VARIABILITY: Mafic-felsic concentration varies from 60-40 to nearly

50-50.

SURFACE: All surfaces are hackly to irregular. Certain areas of rock have coating of light gray soil distinctly lighter than brown "regolith" soil.

ZAP PITS: Few on T, S, W; none on E (fresh surface), SE (dull),

B (dull).

CAVITIES: 2% vugs, irregular shape and formed around crystals. SPECIAL FEATURES: The white euhedral vug mineral (on N) can be removed easily for study.

Pigeonite cores: Moderate yellow-green (10Y 7/4), are surrounded by thick augite(?) rims, reddish brown (10R 3/4 to 10R 4/6), which form 40-60% of radius of crystals. The boundary between core and rim is sharp but irregular. In one grain the yellow-green core appears to be cored itself by colorless translucent mineral. Fine-grained brown pyroxene(?) may also be present.

Olivine(?): Interstitial grains, does not have the green cast of pigeonite.

Plagioclase: Occurs both as laths and plates, which grow across vugs, and as milky granulated interstitial masses.

Opaques: Rare plates in vugs and as rare black inclusions in other phases.

BY: Morrison

MAJOR ELEMENTS (3)	TRACE AND MINOR ELEMENTS
$SiO_2 = 48.15$ $TiO_2 = 1.77$	Li = 15.3 (ID) Rb = 0.696 (ID)
$A1_20_3 = 9.44$	K = 347 (ID)
Fe0 = 19.98	Ba = 45.2 (ID)
Mn0 = 0.30	Sr = 111.0 (ID)
Mg0 = 8.85	Cr = 3875.0 (XRF) V = 130 (OES)
CaO = 10.58	100 (020)
$Na_20 = 0.27$	Sc = 47.7 (NAA) Ni = 8.9 (XRF)
$K_2 0 = 0.06$ $P_2 0_5 = 0.06$	\
S = 0.05	
$Cr_2O_3 = 0.63$	()
CF2 03 - 0.05	Zn = 10.0 (OES) Th = 0.4 (GAM)
TOTAL 100.14	U = 0.12 (GAM)
101/12 100:14	Zr = 89.0 (XRF)
	Hf = 2.37 (NAA)
C1PW NORM	Nb = 5.9 (XRF)
3.05	ND 0.5 (AM.)
Qtz = 1.25	(75)
0r = 0.35	RARE EARTH ELEMENTS (ID)
Ab = 2.28	
An = 24.37	La = 4.01
Di = 23.31	Ce = 13.1
Hy = 44.10	Pr = _
Ne = -	Nd = 8.87
01 -	Sm = 2.93
•	Eu = 0.431
0.10	Gd = _
Apa = 0.13	Tb = _
	Dy = 4.59
TOTAL 100.09	Ho = _
	Er = 2.7
100 Mg/(Mg+Fe) = 44.1	Tm = _
An/Ab/0r = 90.3/8.4/1.3	Yb = 2.35
	Lu = 0.35 Y = -
	1

WEIGHT: 266.3 g DIMENSIONS: 8.5 x 7 x 3 cm

BINOCULAR DESCRIPTION

COLOR: Light brown (5YR 6/4), green gray (5GY 6/1)

SHAPE: Slabby

FABRIC: Porphyritic spherulitic COHERENCE: Intergranular: Coherent

Fracturing: Few, one major fracture parallels N.

VARIABILITY: Foliated and porphyritic

SURFACE: Granulated

ZAP PITS: Few on all faces CAVITIES: 3-2% vugs, matrix phases project into cavity. SPECIAL FEATURES: The orientation of lath-shaped plagioclase produces a crude foliation parallel to E and W planes. A lineation is produced in this plane by the orientation of elongate pyroxene parallel to the T and B planes. Similar to 14086 in structure and gross appearance.

Plagioclase: Lath-shaped, generally oriented with a girdle of lath poles N, E, S, W, slightly sheaf-like pattern.

Phenocrysts: Zoned pigeonite to augite. Augite: Columnar crystals parallel to B.

BY: Warner

1 mm

511211351111				
MAJOR ELEMENTS (2)	TRACE AND M	INOR	ELEMENTS	
$SiO_2 = 48.15$	- Li	=	8.0	(OES)
	Rb	=		
	K	_	1.5	(XRF)
$A1_20_3 = 9.78$			357	(XRF)
Fe0 = 20.27	Ba	=	74	(XRF)
Mn0 = 0.27	Sr	=	115	(XRF)
MgO = 8.52	Cr	=	-	
CaO = 10.62	٧	=	160	(XRF)
$Na_2O = 0.31$	Sc	=	40.6	(NAA)
$K_2 0 = 0.06$	Ni	=	15	(XRF)
$P_2 O_5 = 0.06$	Co	=	38	(XRF)
S = 0.01	Cu	=	4.0	(XRF)
$Cr_2O_3 = 0.45$	Zn	=	1.5	(XRF)
0.45	Th	=	0.7334	(MS)
TOTAL 100.30	Ü	_		
101AL 100.30			0.1919	(MS)
	Zr	=	110	(XRF)
C1PW NORM	Hf	=	3.6	(NAA)
	Nb	=	5.6	(XRF)
Qtz = 1.03				
0r = 0.33	RARE EARTH	FI FM	ENTS (NAA	١
Ab = 2.67	IVANL LANTII	LLLII	LITTS (IIAA	,
An = 25.11	1.5	=		
Di = 22.88	La		5.9	
	Ce	=	-	
	Pr	=		
Ne = -	Nd	=	-	
01 = -	Sm	=	4.3	
Chr = 0.66	Eu	=	1.13	
Ilm = 3.40	Gd	=	-	
Apa = 0.14	ТЬ	=	0.88	
	Dy	=	3.5	
TOTAL 100.29	Ho	=	-	
TOTAL 100.29	Er	=	_	
	Tm	=		
100 Mg/(Mg+Fe) = 42.8	Yb	=	3.4	
An/Ab/Or = 89/10/1	Lu	=	5.4	
	Y	_	31.4	(VDE)
	1	-	31.4	(XRF)

WEIGHT: 104.9 q DIMENSIONS: 7 x 3 x 3.5 cm

BINOCULAR DESCRIPTION

COLOR: Medium gray (N5)

SHAPE: Angular FABRIC: Isotropic

COHERENCE: Intergranular: Tough

Fracturing: None (single fracture on B created during collection

of sample by harmer)

VARIABILITY: Surfaces vary from fresh to weathered; diktytaxitic to subophitic one side of rock to the other.

SURFACE: N fresh broken surface; S is half exterior surface, half interior fracture surface with yellowish material on the surface; B is exterior surface.

ZAP PITS: Few on B; none on others CAVITIES: 20-60% rounded to angular; rounded are often glass

lined; angular are formed by large crystals.

SPECIAL FEATURES: Yellowish white powder (sublimate?) along fracture between chip 15485,1 and main rock for about 5 mm as seen in S face photo.

Plagiociase: Forms some spherulite clusters

Pyroxene - pigeonite: Striations parallel to prismatic axis.

Spinel(?): Evenly distributed through rock.

BY: Lofgren

.5 mm

MAJOR ELEMENTS	TRACE AND MI	NOR ELEMENTS	
$SiO_2 = 47.39$	Li		
$TiO_2 = 1.77$		= 1.4	(XRF)
$A1_20_3 = 9.14$	K	= 257	(XRF)
Fe0 = 19.82	Ba	= 71	(XRF)
Mn0 = 0.27	Sr	= 104	(XRF)
Mg0 = 9.48	Cr	= -	
Ca0 = 10.21		= 177	(XRF)
$Na_20 = 0.28$		= -	/···
$K_2 0 = 0.03$		= 22	(XRF)
$P_2 O_5 = 0.03$	-	= 42	(XRF)
s = 0.06	Cu	= 4	(XRF)
$Cr_2O_3 = 0.57$	Zn	= 2	(XRF)
20.11	Th	-	
TOTAL 99.11	•	112	(VDE)
		= 113	(XRF)
C1PW NORM	"""	<u> </u>	(XRF)
And the second second second second	Nb	= 5.5	(XKF)
Qtz = 0.34			
0r = 0.18	RARE EARTH E	LEMENTS	
Or = 0.18		LEMENTS	
Or = 0.18 Ab = 2.37 An = 23.59		LEMENTS	
Or = 0.18 Ab = 2.37 An = 23.59 Di = 22.24	La		
Or = 0.18 Ab = 2.37 An = 23.59 Di = 22.24 Hy = 45.93	La Ce Pr		
Or = 0.18 Ab = 2.37 An = 23.59 Di = 22.24 Hy = 45.93 Ne = -	La Ce Pr	=	
Or = 0.18 Ab = 2.37 An = 23.59 Di = 22.24 Hy = 46.93 Ne = - Ol = -	La Ce Pr Nd	=	
Or = 0.18 Ab = 2.37 An = 23.59 Di = 22.24 Hy = 45.93 Ne = - Ol = - Chr = 0.85	La Ce Pr Nd Sm Eu	=	
Or = 0.18 Ab = 2.37 An = 23.59 Di = 22.24 Hy = 45.93 Ne = - Ol = - Chr = 0.85 Ilm = 3.36	La Ce Pr Nd Sm Eu Gd	= = = = = = = = = = = = = = = = = = = =	
Or = 0.18 Ab = 2.37 An = 23.59 Di = 22.24 Hy = 45.93 Ne = - O1 = - Chr = 0.85	La Ce Pr Nd Sm Eu Gd Tb	= = = = = = = = = = = = = = = = = = = =	
Or = 0.18 Ab = 2.37 An = 23.59 Di = 22.24 Hy = 45.93 Ne = - Ol = - Chr = 0.85 Ilm = 3.36	La Ce Pr Nd Sm Eu Gd Tb Dy	= = = = = = = = = = = = = = = = = = = =	
Or = 0.18 Ab = 2.37 An = 23.59 Di = 22.24 Hy = 45.93 Ne = - Ol = - Chr = 0.85 Ilm = 3.36 Apa = 0.13	La Ce Pr Nd Sm Eu Gd Tb Dy Ho	= = = = = = = = = = = = = = = = = = = =	
Or = 0.18 Ab = 2.37 An = 23.59 Di = 22.24 Hy = 45.93 Ne = - Ol = - Chr = 0.85 Ilm = 3.36	La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er	= = = = = = = = = = = = = = = = = = = =	
Or = 0.18 Ab = 2.37 An = 23.59 Di = 22.24 Hy = 45.93 Ne = - Ol = - Chr = 0.85 Ilm = 3.36 Apa = 0.13 TOTAL 99.05	La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tin	= = = = = = = = = = = = = = = = = = = =	
Or = 0.18 Ab = 2.37 An = 23.59 Di = 22.24 Hy = 45.93 Ne = - Ol = - Chr = 0.85 Ilm = 3.36 Apa = 0.13 TOTAL 99.05 100 Mg/(Mg+Fe) = 46.0	La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tin Yb	= = = = = = = = = = = = = = = = = = = =	
Or = 0.18 Ab = 2.37 An = 23.59 Di = 22.24 Hy = 45.93 Ne = - Ol = - Chr = 0.85 Ilm = 3.36 Apa = 0.13 TOTAL 99.05	La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu	= = = = = = = = = = = = = = = = = = = =	(XRF)

WEIGHT: 46.8 g DIMENSIONS: 5.6 x 3 x 2.5 cm

BINOCULAR DESCRIPTION

COLOR: Olive black (5Y 2/1), grayish black (N2), color of coating:

fresh-medium dark gray (N4)

SHAPE: Blocky, angular

FABRIC: Porphyritic, inequigranular COHERENCE: Intergranular: Tough

Fracturing: Few penetrative and few nonpenetrative

VARIABILITY: Differences in coating on several surfaces and in

the densities of vugs.

SURFACE: T is a break along veins of preexisting vugs with coalescing walls. B is smoother with a darker coating. N has glassy vugs, a light olive gray coating, and faint straitions with preferred orientation.

ZAP PITS: Few to many on B; few on T; none on N, W.

CAVITIES: 5% vugs. T has one 1 cm vug with crystals 5-7 mm.

B locally has a high density of vugs with 1-10 mm pyroxene prisms.

These prisms have a few greenish spots.

SPECIAL FEATURES: Coating of light olive gray on N is clearly related to a fracture, which can be followed into the rock.

Metallic surface grains on T are probably part of the alteration or coating. Alteration or coatings are on the surfaces of pyroxene prisms. On old penetrative fractures the mineralogy is obscured by coating. Compare to 15485 which is a nearly identical rock.

Pyroxene: Pale brown with thin dark rims and some with darker

cores, randomly oriented with interlocking grains.

Matrix: Pyroxene(?) intergrownths, pyroxene to feldspar proportion

is 3.2.

Olivine: Trace amounts, maybe.

BY: Silver, Jakes

MAJOR ELEMENTS (2)	TRACE AND MINOR ELEMENTS
$SiO_2 = 48.06$ $TiO_2 = 1.79$ $Al_2O_3 = 9.60$ FeO = 19.90 MnO = 0.29	Li = 8.8 (0ES) Rb = 1.3 (0ES) K = 664 (XRF) Ba = 74 (0ES) Sr = 135 (0ES)
$\begin{array}{rcl} Mg0 & = & 8.97 \\ Ca0 & = & 10.27 \\ Na_20 & = & 0.37 \end{array}$	Cr = - V = - Sc = 44.2 (NAA)
$K_2 0 = 0.06$ $P_2 0_5 = 0.10$ S = 0.06	Ni = 61.9 (OES) Co = 47 (NAA) Cu = 10 (OES)
$Cr_2O_3 = 0.50$ TOTAL 99.98	Zn = - Th = 0.64 (GAM) U = 0.15 (GAM)
C1PW NORM	Zr = 127 (OES) Hf = 3 (NAA) Nb = 10 (OES)
Qtz = 0.83 Or = 0.38 Ab = 3.13	RARE EARTH ELEMENTS (NAA)
An = 24.36 Di = 21.77 Hy = 45.08	La = 7.09 Ce = 18 Pr = -
Ne = - 01 = -	Nd = 1.4 Sm = 4.57
Chr = 0.74 Ilm = 3.40 Apa = 0.23	Eu = 0.977 Gd = 5.5 Tb = 0.92
TOTAL 99.92	Dy = 5.96 Ho = 1.2 Er = 3
i00 Mg/(Mg+Fe) = 44.5 An/Ab/Or = 87.4/11.2/1.4	Tm = - Yb = 2.79 Lu = 0.44
	Y = 36 (OES)

WEIGHT: 908.9 g DIMENSIONS: 12 x 10 x 6.5 cm

BINOCULAR DESCRIPTION

COLOR: Brownish gray near (5YR 4/1)

SHAPE: Blocky, subangular

FABRIC: Porphyritic; parallel to subradial feldspar-pyroxene intergrowths in groundmass, with preferential orientation E-W on S.

COHERENCE: Intergranular: Tough

Fracturing: Few nonpenetrative (S); second set, three members, one of them exposed on B.

VARIABILITY: Moderate variability in abundance of vugs.

SURFACE: Granulated

ZAP PITS: None on N, W; few on S, T, E, and B. Shattered feldspar suggests S may be saturated with zap pits from which glassy central areas were lost.

CAVITIES: 5-10% vugs with abundant pyroxene and minor plagioclase

and ilmenite crystals.

SPECIAL FEATURES: Euhedral pyroxene prisms up to 15 x 2 mm (dark brownish green exterior, green cores) exposed in vugs, otherwise similar to phenocrysts. The rock is gabbro by grain size and porphyritic variolitic basalt by texture (compare 12021).

Pyroxene phenocrysts: More abundant on S than on N, hollow cores in some, discontinuous color zoning, green cores are possibly pigeonite.

Pyroxene: Intergrown with feldspar

Plagioclase: White, opaque where shocked. Intergrown with pyroxene. No definite phenocrysts.

Glass?: Round vitreous surfaces exposed in a few vugs on N.

BY: Reid, Bass

MAJOR ELEMENTS (3)	TRACE AND MI	NOR ELEMENTS	
$SiO_2 = 47.22$	Li	= 6.4	(0ES)
$TiO_2 = 1.92$	Rb	= 1.032	(ID)
$A1_20_3 = 9.80$	K	= 515	(XRF)
Fe0 = 20.36	Ba	= 92	(OES)
Mn0 = 0.28	Sr	= 108.42	(ID)
MgO = 8.47	Cr	= 3830	(NAA)
Ca0 = 10.50	٧	= 152	(OES)
$Na_20 = 0.34$	Sc	= 46	(NAA)
$K_2 0 = 0.06$	Ni	= 26	(XRF)
$P_2 O_5 = 0.09$	Co	= 46	(NAA)
S = -	Cu	= 12	(0ES)
$Cr_2O_3 = 0.40$	Zn	= 1.3	(NAA)
	Th	= 0.6331	(MS)
TOTAL 99.44	U	= 0.172	(MS)
	Zr	= 126	(XRF)
C1PW NORM	***	= 3.2	(NAA)
OTT A ROLL	Nb	= 7.7	(XRF)
Qtz = 0.16			
$\hat{0}r = 0.35$	RARE EARTH E	LEMENTS (NAA)
Ab = 2.92			
An = 25.02	La	= 8.1	
Di = 22.33	Ce	= 22	
Hy = 44.24	Pr	= -	
Ne = -	Nd	= -	
01 = -	Sm	= 5.4	
Chr = 0.59	Eu	= 1.1	
Ilm = 3.65		= -	
Apa = 0.20		= 0.9	
		= 5.8	
TOTAL 99.45		= -	
TOTAL			
	Er	= -	
100 Mg//Mg+Eq) - +0 6	_	= -	
100 Mg/(Mg+Fe) = 42.6	Tm	= - = 3.3	
100 Mg/(Mg+Fe) = 42.6 An/Ab/Or = 88.4/10.3/1.2	Tm Yb	= -	(XRF)

2024.0 g WEIGHT:

DIMENSIONS: 17 x 15 x 8 cm

BINOCULAR DESCRIPTION

COLOR: Medium dark gray (N4)

SHAPE: Blocky, angular, subangular

FABRIC: Microporphyritic, diktytaxitic texture.

COHERENCE: Intergranular: Tough

Fracturing: Few irregular, nonpenetrative

VARIABILITY: Homogeneous, E has more matrix material.

SURFACE: S irregular, vesicular, homogeneous, granulated; N deep,

irregular, penetrative fracture.

ZAP PITS: Many on S $(0.2 \text{ mm}, 40-50/\text{cm}^2)$; few on W; none on N, E. CAVITIES: Vesicles 30% (variable) subrounded, ovoid, empty. SPECIAL FEATURES: On a microscopic scale some areas of N are

exclusively dark brown pyroxene and minor olivine. Another area is fine-grained, dark gray, homogeneous, with 10% cavities irregularly distributed. Microphenocrysts (0.4 mm) of plagioclase(?), greenish pyroxene. Medium brown-gray, equigranular, submicroscopic. Sharpish contact with coarse, diktytaxitic basalt.

Zoned pyroxene: Yellow cores and dark brown rims, some very thin.

BY: Ridley, Jakes

15499

1 mm

MAJOR ELEMENTS (TRACE AND	MINOF	RELEMENTS	
SiO ₂ = 47.8 TiO ₂ = 1.7 Al ₂ O ₃ = 9.7 FeO = 20.7 MnO = 0.7 MgO = 9.7 CaO = 10.7 Na ₂ O = 0.7 K ₂ O = 0.7 P ₂ O ₅ = 0.7 Cr ₂ O ₃ = 0.8	81 Li 78 Rb 11 K 19 Ba 28 Sr 33 Cr 34 V 32 Sc 05 Ni 08 Co 07 Cu 57 Zn		0.995 232 69 108.4 - 189 - 19 44 3	(ID) (XRF) (XRF) (ID) (XRF) (XRF) (XRF) (XRF) (XRF)
TOTAL 99.9		=	0.59 0.16	(GAM) (GAM)
	Zr Hf		109	(XRF)
C1PW NORM	Nb		5.4	(XRF)
Qtz = 0.2 Or = 0.3 Ab = 2.7 An = 23.2 Di = 23.1 Hy = 45.8 Ne = - Ol = - Chr = 0.8 Ilm = 3.3 Apa = 0.1 TOTAL 99.8	30 RARE EARTH 71 27 La 10 Ce 80 Pr Nd Sm 84 Eu 38 Gd 17 Tb Dy 86 Er		MENTS	

WEIGHT: 1531.0 g DIMENSIONS: 14 x 10 x 10 cm

BINOCULAR DESCRIPTION

COLOR: Light olive gray (5Y 5/2) SHAPE: Rounded, in part subangular

FABRIC: Equigranular

COHERENCE: Intergranular: Coherent to tough

Fracturing: A few parallel fractures, nonpenetrative, although soil and weathering partly obscures (see special features)
VARIABILITY: Grain size appears to approach aphanitic in places.
SURFACE: Very irregular due to vesicles, smoother where soil adheres and is weathered. Intervesicular areas range from smooth to hackly depending on abundance of vesicles and coincidence of walls. Vesicles are glass lined with some crystals parallel to linings of vesicles.

ZAP PITS: None

CAVITIES: Vesicles at 2 30% of rock, average 4 mm and reach 7 mm.

Some vugs are present.

SPECIAL FEATURES: Vesicles are generally glass-lined and show no apparent preferred orientation. Vesicles on bottom and sides of rock are generally filled with soil. I appears most soil free. There appears to be a series of parallel fractures which cut through vesicles and range from 1-4 cm apart. These are best shown on W face. Vesicles have minute laths (pyroxene?). Vug has plagioclase plates protruding into it. Glass-lined cavities and intervesicle areas appear to be worn smooth, rather than just soil filled. White plagioclase 0.2 x 1 mm laths have no preferred orientation. Plagioclase content is very variable over whole rock.

BY: Head

NOT ALLOCATED

MAJOR ELEMENTS	TRACE AND MINOR ELEMENTS
SiO ₂ =	Li =
TiO ₂ =	Rb =
A1203 =	K =
Fe0 =	Ba =
MnO =	Sr =
MgO =	Cr =
CaO =	V =
Na ₂ 0 =	Sc =
K ₂ 0 =	Ni =
D ₂ O ₅ =	Co =
S =	Cu =
Cr ₂ O ₃ =	Zn =
	Th =
TOTAL	U =
	Zr =
CIPU NODY	Hf =
C1PW NORM	Nb =
Ot	
Qtz = 0r =	DADE FARTH FLEMENTS
0r =	RARE EARTH ELEMENTS
Or = Ab =	
Or = Ab = An =	La =
Or = Ab = An = Di =	La = Ce =
Or = Ab = An = Di = Hy =	La = Ce = Pr =
Or = Ab = An = Di = Hy = Ne =	La = Ce = Pr = Nd =
Or = Ab = An = Di = Hy = Ne = 01 =	La = Ce = Pr = Nd = Sm =
Or = Ab = An = Di = Hy = Ne = Ol = Chr =	La = Ce = Pr = Nd = Sm = Eu =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm =	La = Ce = Pr = Nd = Sm = Eu = Gd =
Or = Ab = An = Di = Hy = Ne = Ol = Chr =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa = TOTAL 100 Mg/(Mg+Fe) =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er = Tm =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er = Tm = Yb =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa = TOTAL 100 Mg/(Mg+Fe) =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er = Tm =

WEIGHT: 404.5 q

DIMENSIONS: 12.5 x 7 x 3.5 cm

BINOCULAR DESCRIPTION

COLOR: Medium dark gray (N4) to brownish gray (5YR 4/1) to olive

gray (5Y 4/1)

SHAPE: Slabby, subangular to angular

FABRIC: Porphyritic, granular COHERENCE: Intergranular: Tough

Fracturing: Several penetrative subparallel to principal surfaces

VARIABILITY: None

SURFACE: Irregular, somewhat hackly, T is mostly fresh surfaces

where chipped from boulder

ZAP PITS: Few on N, S (more than on N), T (upper edge only), B, E,

W.

CAVITIES: 3-5% vugs, crystals project into cavities.

SPECIAL FEATURES:

Mafic silicate: Greenish yellow equant crystals, probably olivine

phenocrysts.

Mafic silicate: Pale brown to cinnamon brown, darkest around

vugs, euhedral in vugs, probably pyroxene.

Opaques: Occur as inclusions in all other phases.

Plagioclase: Granular crystals range 0.1-0.5 mm in size; large

platy ones reach 0.5 x 4 mm.

BY: Silver, Phinney

MAJOR ELEMENTS (3)	TRACE AND MINOR ELEMENTS
Si0 ₂ = 44.90 Ti0 ₂ = 2.51 Al ₂ O ₃ = 9.31 FeO = 22.55 MnO - 0.30 MgO = 10.65	Li = 7.1 (NAA) Rb = 5.0 (OES) K = 365 (NAA) Ba = 45 (NAA) Sr = 83.0 (OES) Cr = -
$Ca0 = 9.14$ $Na_20 = 0.22$ $K_20 = 0.04$ $P_2O_5 = 0.06$	V = 140 (0ES) Sc = - Ni = 69.9 (0ES) Co = 52 (0ES)
$S = Cr_2O_3 = 0.58$ TOTAL 100.26	Cu = 8.0 (OES) Zn = 10 (OES) Th = 0.45 (GAM) U = 0.104 (GAM) Zr = 85.0 (OES)
C1PW NORM	Hf = - Nb = -
Qtz = - Or = 0.24 Ab = 1.86 An = 24.30 Di = 17.32 Hy = 38.20 Ne = - Ol = 12.60 Chr = 0.85 Ilm = 4.77 Apa = 0.13 TOTAL 100.26 100 Mg/(Mg+Fe) = 45.7 An/Ab/Or = 92/7/1	RARE EARTH ELEMENTS (NAA) La = 3.49 Ce = 9.7 Pr = - Nd = 6.7 Sm = 2.6 Eu = 0.69 Gd = 3.6 Tb = 0.59 Dy = 4.07 Ho = 0.73 Er = - Tm = - Yb = 1.69 Lu = 9.236 Y = 42 (OES)

WEIGHT: 317.2 g DIMENSIONS: 11 x 8 x 3.5 cm

BINOCULAR DESCRIPTION

COLOR: Light olivine gray (5Y 5/2) SHAPE: Blocky, angular to subangular

FABRIC: Equigranular

COHERENCE: Intergranular: Tough

Fracturing: Irregular, nonpenetrative, few. Penetrative on B. VARIABILITY: Microscopic banding with pyroxene-rich and plagioclase-rich bands.

SURFACE: N, S granulated. Light patchy soil cover on S.

ZAP PITS: N none, S few

CAVITIES: Vugs are 5%, average 2 mm, and contain pyroxene crystlas.

SPECIAL FEATURES: B face shows cataclastic texture and 3 mm accumulations of olivine. Mode varies inversely with mafic silicates from 20% to 60% in plagioclase-rich bands.

Pyroxene: Together with olivine and much less plagioclase, forms clusters and bands.

BY: Jakes, Ridley

.5 mm

ALLOCATED, BUT NOTHING EVER PUBLISHED

MAJOR ELEMENTS	TRACE AND MINOR ELEMENTS
SiO ₂ =	Li =
TiO ₂ =	Rb =
A1203 =	K =
Fe0 =	Ba =
MnO =	Sr =
Mg0 =	Cr =
CaO =	V =
$Na_2O =$	Sc =
K ₂ 0 =	Ni =
$P_2 O_5 =$	Co =
S =	Cu =
Cr ₂ O ₃ =	.'n =
***	1'h =
TOTAL	U =
	Zr =
C1PW NORM	Hf =
CIFW NORT	Nb =
Qtz =	
0r =	RARE EARTH ELEMENTS
Ab =	
An =	La =
Di =	Ce =
Hy =	Pr =
Ne =	Nd =
01 =	Sm =
Chr =	Eu =
Ilm =	Gd =
Apa =	Tb =
	Dy =
TOTAL	Ho =
TOTAL	Er =
100 Mg/(Mg+Fe) =	Tm =
An/Ab/Or =	Yb =
All/Ab/OI =	Lu =
	Υ =

WEIGHT: 746.6 g DIMENSIONS: 13 x 6 x 5 cm

BINOCULAR DESCRIPTION

COLOR: Light brownish gray (5YR 6/1)

SHAPE: Blocky

FABRIC: Intergranular

COHERENCE: Intergranular: Coherent Fracturing: Few, nonpenetrative VARIABILITY: None

SURFACE: Granulated. All faces are dust covered but B, which

may be the lunar upper surface.

ZAP PITS: Few on all faces

CAVITIES: 2% vugs with all matrix phases projecting into them.

SPECIAL FEATURES: Nonporphyritic

BY: Warner

MAJOR ELEMENTS (3)	TRACE AND MINOR ELEMENTS	
SiO ₂ = 45.21	Li = _	
$TiO_2 = 2.41$	Rb = 0.75 (ID)	
$A1_20_3 = 8.59$	K = 387 (ID)	
FeO = 22.15	Ba = 46.7 (ID)	
MnO = 0.30	Sr = 104 (ID)	
MgO = 10.28	Cr = -	
CaO = 9.82	V = 168 (OES)	
$Na_20 = 0.31$	Sc = 42.0 (OES)	
$K_2 0 = 0.04$	Ni = 68.9 (OES)	
$P_2 O_5 = 0.08$	Co = 21 (OES)	
S = 0.06	Cu = 370 (OES)	
$Cr_2O_3 = 0.68$	Zn = 23 (AAS)	
	Th = 0.43 (GAM)	
TOTAL 99.93	U = 0.13 (GAM)	
	Zr = 190 (NAA)	
C1PW NORM	Hf = 2.2 (NAA)	
	Nb = -	
Qtz = -		
0r = 0.24	RARE EARTH ELEMENTS (ID)	
Ab = 2.62		
An = 21.93	La = 4.93	
Di = 22.04	Ce = 13.9	
Hy = 35.96	Pr = -	
Ne = -	Nd = 9.82	
01 = 11.33	Sm = 3.29	
Chr = 1.00	Eu = 0.895	
11m = 4.58	Gd = 4.48	
Apa = 0.17	Tb = - Dv = 4.68	
the state of the s	23	
TOTAL 99.87	Ho = - Fr = 2.67	
	L.	
100 Mg/(Mg+Fe) = 45.3	IIII - 0.16	
An/Ab/0r = 88/11/1	0 200	
	Lu = 0.308 v = 33 (OES)

9613.7 g WEIGHT:

DIMENSIONS: 30 x 15 x 15 cm

BINOCULAR DESCRIPTION

COLOR: Brownish-gray (5YR 4/1)

SHAPE: Blocky, subrounded

FABRIC: Equigranular; possibly subophitic

COHERENCE: Intergranular: Tough

Fracturing: Set of fractures generally E-W dipping 45° N. VARIABILITY: None

SURFACE: Unequally smooth surface

ZAP PITS: Few on B, many on all others

CAVITIES: Vugs are irregular up to 1 mm, contain euhedral crystals,

and make up 10% of rock.

SPECIAL FEATURES: Face S has a large pit with central glass area of 8 mm diameter and 2.2 mm spall zone. Crystal surfaces in some areas have glassy films. B is less rounded than other faces and may have been shielded.

Olivine: Contains minute opaque inclusions.

Pyroxene: Prismatic in vugs.

BY: Morrison, Lofgren

				CHEMISTRI					
MAJOR ELEM	EN	TS (7)			TRACE	AND N	INO	R ELEMENTS	
SiO ₂	=	44.57				Li	=	6.36	(ID)
	=	2.10				RЬ	=	0.445	(ID)
	=	8.69				K	=	232	(ID)
	=	22.53				Ba	=	32.2	(ID)
	=					Sr	=		
		0.29				Cr	=	84.4	(ID)
	=	11.36				٧	_	-	
• • • •	=	9.40						-	
maz c	=	0.27				Sc	=	-	
112. 0	=	0.09				Ni	=	41.9	(XRF)
P2 05	=	0.06				Co	=	-	
S	=	0.06				Cu	=	-	
Cr2 03	=	0.61				Zn	=	10	(OES)
			-			Th	=	0.4596	(MS)
TOTAL		100.03				U	=	0.1264	(MS)
		100.03				Žr	=	76	(XRF)
						Hf	=		(AINI)
C1PW NORM						Nb	=	4.3	(XRF)
						ND	-	4.3	(XKF)
Qtz	=	-							
~	=	0.53			RARE	EARTH	ELE	MENTS (ID)	
	=	2.28						(10)	
	=	22.23				La	=		
	=	20.10				Ce	=	8.06	
	=	31.60				Pr	=	- 06	
110	=	10 01				Nd	=	6.26	
	=	18.21				Sm	=	2.09	
OIII	=	0.90				Eu	=	0.688	
Ilm	=	3.99				Gd	=	2.9	
Apa	=	0.13				Tb	=	-	
	-					Dy	=	3.27	
		00 07				Ho	=	-	
TOTAL		99.97				Er	=	1.7	
						Tm	=	-	
100 Mg	11	Mg+Fe)	= 47.3					1.45	
An/Ab/	Or	= 89	1/9/2			Yb	=		
						Lu	=	23	(XRF)
						v	-	()	(XKF)

WEIGHT: 1542.3 g DIMENSIONS: 13 x 10 x 11 cm

BINOCULAR DESCRIPTION

COLOR: Medium gray (N5)

SHAPE: Subrounded

FABRIC: Inequigranular, isotropic COHERENCE: Intergranular: Tough

Fracturing: Few fractures

VARIABILITY: There are continuous changes from T to B manifested by an increase in vesicle size and abundance, concurrent with a decrease in grain size. On T, vesicles are 50% of the rock volume and range <1 mm to 3 mm. On B the vesicles reach 80% and range 2-10 mm in size. The coarsest grains are on T, approaching 1 mm, and decrease by a factor of two on B.

SURFACE:

ZAP PITS: Few on all faces, T has more than others.

CAVITIES: Vesicles (see Variability) appear to be glass lined with some crystals showing through. A vug is totally lined with crystals

like a miarolitic cavity.

SPECIAL FEATURES: The rapid changes in vesicularity and grain size across the rock indicates if formed at or near the top of a lava flow, with the B face closest to the surface. A 1 cm zenolith (face W) has about the same mineralogic composition as the rest of the rock, with perhaps slightly more plagioclase, but is distinguished by coarser grain size than elsewhere, some crystals reaching 2 mm.

Olivine: phenocrysts.

Pyroxene: Color variable from light brown to medium cinnamon brown and may indicate more than one type of pyroxene.

BY: Lofgren

MAJOR ELEMENTS (4)	TRACE AND MI	NOR ELEMENTS	
SiO ₂ = 45.73	Li	9.0	(OES)
TiO ₂ = 2.68		= 0.84	(NAA)
$A1_20_3 = 9.62$		= 249	(XRF)
FeO = 21.92	_	= 59	(NAA)
MnO = 0.29	_	= 88.0	(NAA)
MgO = 7.95	_	= -	(,
CaO = 10.77		= 266	(NAA)
$Na_2O = 0.27$	_	= 43.1	(Nr.m)
$K_2 O = 0.05$		= 64.9	(053)
$P_2 O_5 = 0.08$	_	= 50.3	(NAA)
S = 0.08	Cu	= 10	(OES)
$Cr_2O_3 = 0.70$	_	= 5	(XRF)
	Th :	- 0.560	(GAM)
TOTAL 100.14	U	= 0.15	(GAM)
		= 91	(XRF)
C1PW NORM	Hf :	= 3.1	(NAA)
CIFW NON!	Nb :	= 7	(XRF)
Qtz = -			
0r = 0.30	RARE FARTH E	LEMENTS (NAA	()
Ab = 2.28	WINE PRINTIFE	LEMENTS	,
An = 24.89	La	= 4.8	
Di = 23.69	_	= 18	
Hy = 39.71	_	-	
Ne = -	** *	-	
01 = 2.89	_	= 4	
Chr = 1.03		= 1	
11m = 5.09		-	
Apa = 0.17		= 0.77	
-	_	= 4.4	
TOTAL 100.06		= 0.91	
TOTAL 100.06		= 3.3	
100 Mg/(Mg+Fe) = 39.3	_		
	Yb	1.59	
An/Ab/Or = 91/8/1	Lu	_ 0.39	
		- 50	(OES)

WEIGHT: 2518.0 q

DIMENSIONS: 18.1 x 10.5 x 7.2 cm

BINOCULAR DESCRIPTION

COLOR: Light gray to medium light gray (N7, N6), corners and

edges very light gray (N8) SHAPE: Blocky, subangular

FABRIC: Microporphyritic, intergranular groundmass

COHERENCE: Intergranular: Tough Fracturing: Nonpenetrative

VARIABILITY: Cavities irregularly distributed in generally uniform

rock.

SURFACE: All are smooth to finely irregular

ZAP PITS: None on B; few on N (dusty); S (dusty); E and W.

CAVITIES: One irregular to angular vug. No lining.

SPECIAL FEATURES: Weak alignment of plagioclase laths parallel to

concave surface of rock.

Olivine: Isolated crystals

Pyroxene: Color varies from light to dark.

Plagioclase: Small percentage of microphenocrysts about 1 mm.

BY: Wilshire, Silver

MAJOR ELEMENTS (3)	TRACE AND MINOR ELEM	ENTS
$SiO_2 = 45.09$ $TiO_2 = 2.50$ $AI_2O_3 = 9.33$ $FeO = 22.51$ $MnO = 0.28$ $MgO = 9.44$ $CaO = 10.11$ $Na_2O = 0.29$ $K_2O = 0.05$ $P_2O_5 = 0.07$ $S = 0.08$ $Cr_2O_3 = 0.57$	Li = 5. Rb = 2. K = 415 Ba = 55 Sr = 96. Cr = 4700 V = 185 Sc = 43. Ni = 55. Co = 50 Cu = 14 Zn = 4 Th = 0.	0 (XRF) (XRF) (XRF) 4 (XRF) (NAA) (OES) 5 (NAA)
TOTAL 100.32	U = 0.	14 (GAM)
	Zr = 88. Hf = 2.	
C1PW NORM	Hf = 2. Nb = 6.	3 (NAA) 1 (XRF)
Qtz = - Or = 0.30 Ab = 2.45 An = 24.01 Di = 21.63 Hy = 35.20 Ne = - Ol = 10.92 Chr = 0.84 Ilm = 4.75 Apa = 0.15	Ce = 16. Pr = - Nd = 12.	1 36 1
	$ \begin{array}{rcl} \text{Tb} & = & 0. \\ \text{Dy} & = & 6. \end{array} $	98 43
TOTAL 100.24	$Tb \; = \; 0.$	43 3
	Tb = 0. Dy = 6. Ho = 1. Er = 3.	43 3 6 64 39

WEIGHT: 237.6 g DIMENSIONS: 10 x 5 x 4.5 cm

BINOCULAR DESCRIPTION

COLOR: Between olive gray (5Y 4/1) and olive black (5Y 2/1)

SHAPE: Angular

FABRIC: Porphyritic, inequigranular COHERENCE: Intergranular: Tough

Fracturing: None penetrative, part of E face, may be on old fracture.

VARIABILITY: Vugs are irregularly distributed in clusters

SURFACE: N hackly, others irregular to smoothed

ZAP PITS: May on T, B, S and top area of W; none on E, N.

CAVITIES: Vuggy over 30% of fresh surface, brown pyroxene prisms

projecting into and through vugs.

SPECIAL FEATURES: Gray black stain on face E is deserving of special study. Top from lunar surface photos shown on B view.

Pyroxene: Occur as phenocrysts. Matrix contains prisms. The linear elements oblique to prisms are probably pyroxene. Some plagioclase interleaved with pyroxene.

BY: Phinney

5 mm

MAJOR ELEMENTS	TRACE AND M	INOR ELEMENT	<u>'S</u>
$SiO_2 = 48.07$	Li	= -	
$TiO_2 = 1.77$	Rb	= 0.90	(ID)
$A1_20_3 = 9.06$	K	= -	
Fe0 = 20.23	Ba		
Mn0 = 0.30	Sr	= 99.4	(ID)
Mg0 = 9.21	Cr	= -	
Ca0 = 10.52	V	45.0	/NAA \
$Na_2O = 0.35$	Sc	= 45.0	(NAA)
$K_2 0 = 0.05$	Ni Co	= -	/NAA \
$P_2 O_5 = 0.07$ S = 0.05	Cu	- 42	(NAA)
$Cr_2O_3 = 0.52$	Zn		
Cr203 - 0.32	Th		
TOTAL 100.20	ΰ	= -	
100.20	Žr	= -	
CIDIL NODM	Hf	= 2	(NAA)
C1PW NORM	Nb	= -	
Qtz = 0.33			
0r = 0.30	DADE EVDIN	ELEMENTS (N	•• \
Ab = 2.96	KAKE EAKIN	CLEMENTS (N	AA)
An = 23.00	La	= 5.4	
Di = 24.14	Ce	= 5.4	
Hy = 45.15	Pr	= -	
Ne = -	Nd	= -	
01 = -	Sm	= 3.9	
Chr = 0.77	Eu	= 0.81	
Ilm = 3.36	Gd	= -	
Apa = 0.15	Tb	= 0.7	
	Dy	= -	
TOTAL 100.15	Ho	= -	
TOTAL	Er	= -	
100 Mg/(Mg+Fe) = 44.8	Tm	= -	
An/Ab/0r = 88/11/1	ΥЬ	= 2.3	
00/11/1	Lu	= 0.4	
	Y	= -	

WEIGHT: 224.8 g DIMENSIONS: 8.5 x 7 x 4 cm

BINOCULAR DESCRIPTION

COLOR: Medium olive gray (5Y 5/2 to 5Y 3/2)

SHAPE: Blocky, angular FABRIC: Porphyritic

COHERENCE: Intergranular: Tough

Fracturing: Nonpenetrative, irregular, few VARIABILITY: Irregular distribution of vugs

SURFACE: S granulated and rough; N irregular, granular, rough

ZAP PITS: Many on N; none on S. CAVITIES: 15% yugs

SPECIAL FEATURES: The prismatic euhedral pyroxenes have two zones, dark-brown rims and yellow green cores, and some have a thin core of dark brown color as a third zone.

BY: Reid, Jakes

.5 mm

NOT ALLOCATED

MÄJOR ELEMENTS	TRACE AND MINOR ELEMENTS
SiO ₂ =	Li =
TiO ₂ =	Rb =
A1203 =	K =
Fe0 =	Ba =
Mn0 =	Sr =
Mg0 =	Cr =
Ca0 =	V =
Na ₂ 0 =	Sc =
K ₂ 0 =	Ni =
P ₂ O ₅ =	Co =
S =	Cu =
Cr ₂ O ₃ =	Zn =
	Th =
TOTAL	U =
	Zr =
C1PW NORM	Hf =
CTTW HOIGH	Nb =
Qtz =	
Qtz = Or =	RARE EARTH ELEMENTS
	RARE EARTH ELEMENTS
Or =	RARE EARTH ELEMENTS La =
Or = Ab =	
Or = Ab = An =	La =
Or = Ab = An = Di = Hy = Ne =	La = Ce =
Or = Ab = An = Di = Hy =	La = Ce = Pr =:
Or = Ab = An = Di = Hy = Ne = Ol = Chr =	La = Ce = Pr = Nd =
Or = Ab = An = Di = Hy = Ne = Ol =	La = Ce = Pr = Nd = Sm = Eu = Gd =
Or = Ab = An = Di = Hy = Ne = Ol = Chr =	La = Ce = Pr = Nd = Sm = Eu =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm =	La = Ce = Pr = Nd = Sm = Eu = Gd =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er = Tm =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa = TOTAL 100 Mg/(Mg+Fe) =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er = Tm =

WEIGHT: 145.7 g DIMENSIONS: 8 x 5 x 2.5 cm

BINOCULAR DESCRIPTION

COLOR: Medium dark gray (N4)

SHAPE: Slabby, two flat faces, subangular

FABRIC: Lineate lamination of phenocrysts. Diabasic

COHERENCE: Intergranular: Tough

Fracturing: Few nonpenetrative fractures especially on E end.

VARIABILITY: Homogeneous

SURFACE: On S planar lamination of phenocrysts (2 grains) goes from top left to bottom right. On N, planar lamination of phenocrysts top left to bottom right, one grain plunges E. On T, broken dusty surface. Planar lamination strike E. One grain has steep plunge to E (50-60°). Some cross sections of phenocrysts on this face. E, vugs concentrated on this face. Lamination of phenocrysts continued. This face shows two directions of elongation of phenocrysts. B, phenocrysts five cross sections on this face.

ZAP PITS: Few on S (more than others), N, E, B, T (W end only)

CAVITIES: Small (1 mm) vugs, 1%.

SPECIAL FEATURES: Definite lineate lamination of pyroxene phenocrysts. Rock should be cut with that in mind. Plane of lamination shown on N and S photos. May have two generations of pyroxene, or may be seriate. Different from Apollo 15 basalts we have seen in texture, structure, and abundance of pyroxene.

Phenocrysts: Yellow green oriented in rock. Contains some glass, random to roseate.

Pyroxene: Some is prismatic in vugs, a late mineral, brownish red.

BY: Reid, Jackson

.5 mm

		011211201111				
MAJOR ELEMEN	ITS		TRACE AND M	INOF	ELEMENTS	
SiO ₂ =	47.98		Li	=		
TiO ₂ =	1.80		Rb	=	1.13	(ID)
A1203 =	9.44		K	=	465	(ID)
Fe0 =	20.23		Ba	=	52	(NAA)
Mn0 =	0.30		Sr	=	111	(ID)
MgO =	8.74		Cr	=	111	(10)
CaO =	10.43		Ÿ.	=	_	
Na ₂ 0 =	0.32		Sc	=	-	
$K_2 O =$	0.06		Ni	=	30.0	(NAA)
P ₂ O ₅ =	0.00		Co	=	39.6	(NAA)
S =			Cu	=		(III/I/A)
	0.06		Zn	=	1.2	(NAA)
$C_{12}O_3 =$	0.48		Th	=	0.53	(GAM)
TOTAL	99.91		Ü	=	0.33	(GAM)
TOTAL	99.91		Zr	=	0.14	(GAN)
			Hf	=	-	
C1PW NORM			Nb	_	-	
			ND	-	-	
Qtz =	0.93					
0r =	0.35		RARE EARTH	ELEN	MENTS (NAA	()
Ab =	2.71					,
An =	24.15		La	=	4.86	
Di =	22.84		Ce	=	13	
Hy =	44.59		Pr	=	-	
Ne =	-		Nd	=	9.3	
01 =	-		Sm	=	3.09	
Chr =	0.71		Eu	=	0.84	
Ilm =	3.42		Gd	=	4.4	
Apa =	0.15		Tb	=	0.69	
			Dy	=	4.51	
7074	00 05		Ho	=	0.86	
TOTAL	99.85		Er	=	1.9	
100 11 11		12 5	Tm	=	-	
	(Mg+Fe) = 4	13.3	Yb	=	2.13	
An/Ab/Or	89/10	J/ (l u	=	0.301	

WEIGHT: 135.7 g DIMENSIONS: 6 x 5.5 x 3 cm

BINOCULAR DESCRIPTION

COLOR: Light brownish gray (5YR 6/1)

SHAPE: Blocky, subrounded FABRIC: Inequigranular, nearly microporphyritic

COHERENCE: Intergranular: Tough Fracturing: None penetrative

VARIABILITY: May be minor variations in mode and texture.

SURFACE: S hackly, others irregular ZAP PITS: Many on N, E, W, B; few on S; T is pitted but also has

fresh areas; note number of small fresh surfaces.

CAVITIES: 1% vugs, 1 mm; crystals project into but not through

cavities.

SPECIAL FEATURES:

Pyroxene: No indication of zoning

Olivine: Microphenocrysts

Ilmenite(?): As minute inclusions in olivine, rare plates, and small black anhedral crystals.

BY: Morrison

NOT ALLOCATED

MAJOR ELEMENTS	TRACE AND MINOR ELEMENTS
SiO ₂ =	Li =
TiO ₂ =	Rb =
A1203 =	K =
Fe0 =	Ba =
Mn0 =	Sr =
Mg0 =	Cr =
Ca0 =	V =
Na ₂ O =	Sc =
K ₂ 0 =	Ni =
P ₂ 0 ₅ =	Co =
S =	Cu =
Cr ₂ O ₃ =	Zn =
TOTAL	Th ≞
TOTAL	U =
	Zr = Hf =
C1PW NORM	Nb =
	NO -
Qtz =	
0r =	RARE EARTH ELEMENTS
Ab =	
An =	La =
Di =	Ce =
Hy =	Pr =
Ne =	
	Nd =
01 =	Nd = Sm =
01 = Chr =	Nd = Sm = Eu =
01 = Chr = Ilm =	Nd = Sm = Eu = Gd =
01 = Chr =	Nd = Sm = Eu = Gd = Tb =
C1 = Chr = Ilm = Apa =	Nd = Sm = Eu = Gd = Tb = Dy =
01 = Chr = Ilm =	Nd = Sm = Eu = Gd = Tb = Dy = Ho =
C1 = Chr = Ilm = Apa = TOTAL	Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er =
O1 = Chr = Ilm = Apa = TOTAL 100 Mg/(Mg+Fe) =	Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er = Tm =
C1 = Chr = Ilm = Apa = TOTAL	Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er =

APOLLO 16

WEIGHT: 251 g

DIMENSIONS: $8.5 \times 6.5 \times 4 \text{ cm}$

BINOCULAR DESCRIPTION

COLOR: Medium gray (N5) to dark greenish gray (5GY/4/1)

SHAPE: Angular, blocky

FABRIC: Isotropic

COHERENCE: Intergranular: Tough

Fracturing: Few nonpenetrative, one eroded out on zapped surface VARIABILITY: Plagioclase to mafic ratio varies from place to place.

Clots of fine sugary-textured material.

SURFACE: T is hackly; E is subangular; B, E, N, and S are subrounded

ZAP PITS: Very many on B; many on N, E, S; few on W; none on T.

Most pits are lined with botryoidal glass.

CAVITIES: Two percent irregular miarolitic cavities, 0.5-2 mm, with dominant size 3/4 mm. Spectacular crystal projections into cavities, mostly plagioclase, and a small amount of brown mafic silicate.

SPECIAL FEATURES: Clots of sugary material, 1-2 mm, with grain size 0.1 mm and the color of the bulk of the rock.

Feldspar: Sizes are not seriate; a few large grains but most are small. Local development of 12 mm plagioclase laths.

Mafic silicate I: Pale transluscent grains; orthopyroxene or olivine.

Mafic silicate II: Very fine-grained.

Lithic or mineral: Fine, cryptocrystalline material.

BY: Simonds and Wilshire

.5 mm

MA JOD ELEMENTS	TRACE AND M	ITNOD	FIEMENTS	
MAJOR ELEMENTS			CELITERIS	
$SiO_2 = 45.16$	Li	=	8.2	(OES)
$TiO_2 = 0.70$	Rb	=	4.59	(ID)
$A1_20_3 = 20.05$	K	=	605	(ID)
Fe0 = 6.40	Ba	=	187	(ID)
Mn0 = 0.09	Sr	=	139	(ID)
Mg0 = 14.85	Cr	=		/ \
CaO = 11.85	V	=	23	(OES)
$Na_2O = 0.48$	Sc Ni	=	9.2	(0ES)
$K_2 0 = 0.11$	Co	_	312.9	(0ES)
$P_2 O_5 = 0.15$ S = -	Cu	_	34	(0ES)
	Zn	=	10 18	(0ES) (0ES)
$Cr_2O_3 = 0.19$	Th	=	3.2	(GAM)
TOTAL 100.03	Ü	=	0.882	(MS)
100.03	Žr	=	210	(0ES)
CIRL NORM	Hf	=	-	(023)
C1PW NORM	Nb	=	12	(0ES)
Qtz = _				,
0r = 0.65	RARE EARTH	EL EM	ENTS (ID)	
Ab = 4.06	NAIL LAKITI	LLLIN	ILNIS (10)	
An = 52.23	La	=	18.6	
Di = 4.53	Ce	=	45.9	
Hy = 14.36	Pr	=	-	
Ne = -	Nd	=	29	
01 = 22.26	Sm	=	8.3	
Chr = 0.28	Eu	=	1.18	
Ilm = 1.33	Gd	=	10.10	
Apa = 0.33	ТЬ	=	-	
	Dy	=	10.8	
TOTAL 100.03	Но	=	-	
TOTAL	Er	=	6.85	
100 Mg/(Mg+Fe) = 80.5	Tm	=	- 06	
An/Ab/Or = 92/7/1	YЬ	=	6.06	
	Lu	=	0.879	(OEC)
	Υ	=	58	(OES)

ROCK NUMBER: 68415,1

WEIGHT: 203 g

DIMENSIONS: 6 x 8 x 10 cm Larger of

2 pieces (Original rock is 371 g and 4 x 6 x 15 cm)

BINOCULAR DESCRIPTION

COLOR: Greenish-gray (5GY)

SHAPE: Top: rounded

FABRIC: Isotropic, equigranular COHERENCE: Intergranular: Tough

Fracturing: Penetrative (few and small)
VARIABILITY: Patchy on a 10-20 mm scale

SURFACE: Fresh fractures are smooth on 10 mm scale and irregular,

hackly on 1 mm scale; cratered areas are rounded off.

ZAP PITS: Many on T, N, S, and E; none on B. W.

CAVITIES: Vugs, 0-5%, 0.1 to 2 mm in size, occur in clusters and trains.

SPECIAL FEATURES:

1. Crystalline rock; no clear cut inclusions and clasts observed; however, patchy distribution of light and dark colored parts is suggestive of almost completely resorbed clasts; thus it is probably not of genuine igneous origin.

Beautiful, water-clear, tabular and/or stubby plagioclase crystals in vugs; no pyroxenes were observed in vugs.

3. Occasionally exceptionally large feldspars (1-3 mm, total 2-5%) of irregular outlines, resembling fractured detritus.

BY: Horz

ROCK NUMBER: 68415,2

WEIGHT: 168 g

DIMENSIONS: 10 x 5 x 3.5 cm

BINOCULAR DESCRIPTION

COLOR: Light gray (N7) SHAPE: Subround, broken

FABRIC: Isotropic, finely crystalline COHERENCE: Intergranular: Tough

Fracturing: Minor nonpenetrative, 3 penetrative fractures on

fresh face. IABILITY: 15 x 20 mm patch of

VARIABILITY: 15 x 20 mm patch of coarser grain size SURFACE: T, W, N, S are fine hackly; B, E, are fresh

ZAP PITS: Many on N, S, W, T; none on E, B.

CAVITIES: Miarolitic cavities, <0.5%, unevenly distributed, 1/2 mm

diameter projecting white plagioclase

SPECIAL FEATURES: Coarse patch has 10% voids. The large drusy cavity area is just the same as the small miarolitic cavities except for the yellowish pyroxene (?).

Coarse Patch: 55% glassy gray-white, 35% yellowish gray, and 10% voids. The glassy gray-white is mainly 1-3 mm translucent plates and some 1-2 mm needles with crystal terminations. A few stubby 1-2 mm prisms have conchoidal fractures (quartz?). The yellowish gray is mostly yellow translucent interstitial pyroxene(?), some reddish brown interstitial pyroxene(?), opaque black inclusions in the yellow pyroxene, and black plates (ilmenite?) associated with the brown pyroxene.

.5 mm

MAJOR ELEMENTS	TRACE AND MINOR ELEMENTS	
SiO ₂ = 45.40 TiO ₂ = 0.32 Al ₂ O ₃ = 28.63 FeO = 4.25 MnO = 0.06 MgO = 4.38 CaO = 16.39 Na ₂ O = 0.41 K ₂ O = 0.06 P ₂ O ₅ = 0.07 S = 0.04 Cr ₂ O ₃ = 0.10	Li = 5.1 (ID) Rb = 1.704 (ID) K = 56.5 (ID) Ba = 76.2 (ID) Sr = 182.4 (ID) Cr = 599 (ID) V = 20 (OES Sc = 8.2 (OES Ni = 48.9 (XRF Co = 11 (OES Zn = 4 (OES))))))))))))))))
TOTAL 100.11	Th = 1.3 (MS) U = 0.347 (MS)	
100.11	Zr = 98 (XRF	
CIPH NORM	Hf = 2.4 (ID)	,
C1PW NORM	Nb = 5.6 (XRF	
Qtz = - Or = 0.35 Ab = 3.47 An = 76.11 Di = 3.92 Hy = 12.68 Ne = - Ol = 2.63 Chr = 0.15 Ilm = 0.61 Apa = 0.15	RARE EARTH ELEMENTS (ID) La = 6.81 Ce = 18.3 Pr = - Nd = 10.9 Sm = 3.09 Eu = 1.11 Gd = 3.78 Tb = - Dy = 4.18	
TOTAL 100.07	Ho = - Er = 2.57	
100 M-1/M-1F-1	Tm = -	
100 Mg/(Mg+Fe) = 64.7	Yb = 2.29	
An/Ab/Or = 95.2/4.3/.4	Lu = 0.34	
	Y = 23 (XRF)

DIMENSIONS: 6 x 4.5 x 3 cm WEIGHT: 179 q

BINOCULAR DESCRIPTION

COLOR: Pale gray (N7)

SHAPE: Roughly tabular with some external surfaces rounded

FABRIC: Equigranular

COHERENCE: Intergranular: Tough

Fracturing: Few, non-penetrative VARIABILITY: Generally homogeneous except for several plagioclase megacrysts and a somewhat patchy distribution of the yellowish green mineral.

SURFACE: N, W and B are granulated. E is 1/2 granulated and 1/2 knobby and pitted. T and S are knobby and pitted.

ZAP PITS: Few on T, S, and E (1/2 of face); none on others

CAVITIES: Five percent bounded by crystal faces. Some plagioclase crystals project into cavities.

SPECIAL FEATURES: A chip of this rock has an exterior surface with one glass lined zap pit. This chip represents the average mineralogy and texture of the parent sample. It is $1 \times 1.5 \times 1$ cm.

Plagioclase: One megacryst is 7 mm x 7 mm. Another is 4 mm and circular in section.

BY: Williams

MAJOR	ELE	MEN	<u>TS</u>		TRACE AND N	INO	R ELEMENTS	
T A F	i02 i02 l203 e0 ln0		45.04 0.33 28.75 4.27 0.07		Li Rb K Ba Sr	:	4.4 1.705 559 78.2	(ID) (ID) (ID)
	g0	=	4.49		Čr	=	683	(ID)
	a0	=	16.31		v.	=	21	(OES)
	a ₂ 0	=	0.34		Sc	=	9.2	(OES)
	20	=	0.08		Ni	=	205	(OES)
	205	=	0.08		Co	=	10	(OES)
S		=	-		Cu	=	14	(OES)
С	r ₂ 0 ₃	=	-		Zn	=	30	(COL)
	OTAL			•	Th	=	1.24	(GAM)
- 1	OTAL		99.76		U 7	=	0.34	(GAM)
					Zr Hf	=	80	(0ES)
CIPW	NORM				Nb	_	10	(0ES)
_					No	-	10	(023)
	tz	=					(10)	
	r	=	0.47		RARE EARTH	ELEI	MENTS (ID)	
	ь	=	2.88		1.			
	n i	=	76.69 3.07		La	=	7.24	
	У	=	12.47		Ce	=	18.4	
	y e	_	12.47		Pr Nd	=	, , ,	
Ö		_	3.38		Sm	=	11.5	
	hr	=	-		Eu	_	3.28	
	1 m	=	0.63		Gd	=	1.11 4.07	
	pa	=	0.17		Tb	=	4.07	
		_			Dy	=	4.29	
т.	OTAL		99.76		Ho	=	-	
	UTAL		33.70		Er	=	2.86	
1	00 M	1/1	Mg+Fe) =	65.2	Tm	=	-	
Å	n/Ab	/0r	= 95	5.8/3.6/.6	Yb	=	2.42	
^	,,	0.			Lu	=	-	
					Y	=	21	(OES)

APOLLO 17

WEIGHT: 2957 g

DIMENSIONS: 18 x 14 x 10 cm

BINOCULAR DESCRIPTION

COLOR: Brownish gray (5YR 4/1)

SHÄPE: Block subangular

FABRIC: Holocrystalline, equigranular, some poikilitic plagioclase

COHERENCE: Intergranular - Tough Fracturing: None penetrative

VARIABILITY: Homogeneous, but plagioclase decreases somewhat near

vugs.

SURFACE: All hackly, few small glass patches on surface

ZAP PITS: Some on B and the adjacent parts of N, E, S, W; none

on T, which was buried

CAVITIES: Vugs: 10-15%; contain pyroxene and plagioclase; pyroxene is more abundant in vugs than plagioclase; ilmenite is minor SPECIAL FEATURES: On the fresh surface (B), there are occasional crushed places suggesting possible exposure for a short time.

Plagioclase: Some laths up to 5 mm long and 1 mm wide

Pyroxene: May be zoned - yellow core to tan brown to dark brown outside.

Ilmenite: Platy, generally grainy in the pyroxene

Olivine: Typically has opaque inclusions.

BY: R. Gooley

MAJOR ELEMENTS (5)	TRÂCE AND MINOR ELEMENTS
$SiO_2 = 38.54$	Li = 8.57 (ID)
$TiO_2 = 12.99$	Rb = 0.28 (ID)
$A1_20_3 = 8.65$	K = -
Fe0 = 18.25	$Ba = 43 \qquad (ID)$
Mn0 = 0.25	Sr = 168 (ID)
MgO = 9.98	$Cr = 3490 \qquad (ID)$
CaO = 10.28	V = 146 (XRF)
$Na_20 = 0.39$	Sc = 80 (XRF)
$K_2 0 = 0.05$	Ni = <3 (XRF)
$P_2O_5 = 0.05$	$Co = 32 \qquad (XRF)$
S = 0.16	Cu = 28 (XRF) $Zn = <2 (XRF)$
Cr ₂ O ₃ = 0.50	Zn = <2 (XRF) Th = 0.198 (ID)
TOTAL 100.09	U = 0.060 (ID)
101AL 100.03	Zr = 218 (XRF)
	Hf = 6.4 (NAA)
C1PW NORM	Nb = 18.5 (XRF)
0.06	
Qtz = 0.06 Or = 0.30	DADE CARTH ELEMENTS (ID)
Ab = 3.30	RARE EARTH ELEMENTS (ID)
Ar ₁ = 21.71	La = -
Di = 23.46	Ce = 10.7
Hy = 25.59	Pr = -
Ne = -	Nd = 12.1
01 = -	Sm = 5.13
Chr = 0.74	Eu = 1.62
11m = 24.67	Gd = -
Apa = 0.11	Tb = -
	Dy = 10.2
TOTAL 99.93	Ho = -
TOTAL	Er = 6.31
100 Mg/(Mg+Fe) = 49.4	Tm = -
An/Ab/0r = 86/13/1	Yb = 6.25
,,	Lu = 0.954
	Y = 71.2 (XRF)

WEIGHT: 5765 g

DIMENSIONS: 15 x 23 x 10 cm

BINOCULAR DESCRIPTION

COLOR: Moderate brown

SHAPE: Subround top, angular bottom

FABRIC: Microporphyritic

COHERENCE: Intergranular - Tough

Fracturing - 1 set parallel to bottom, 1 cm spacing, penetrative

VARIABILITY: Slight coarsening of grain size near vugs

SURFACE: All but B, which is lunar bottom as well, are moderately

smooth, B has glassy patches (noted on B photo).

ZAP PITS: All but B are rounded and zapped, B is not zapped.

CAVITIES: 5 - 10% vugs with projecting crystals, average 3 mm, up

to 1 cm diameter.

SPECIAL FEATURES: B is flat fracture surface parallel to fracture set in rock, B is unpitted and is lunar bottom. Patches of dull glass appear to be relicts of an injected glass. Patches of brownish debris in these islands may be powdered glass or soil retained on surface. Brown debris is distinctly lighter in color than typical regolith.

Pyroxene: Larger near vugs; intergrown with ilmenite. Microphenocrysts (2-3 mm) consisting of pyroxene which is intergrown, equant, and euhedral make up <1% of the pyroxenes.

Plagioclase: Forms both laths and interstitial anhedral grains. Olivine: Tends to be enriched in some area but absent in most of rock. Areas enriched in olivine are depleted in pyroxene.

Silica: Observed in vugs.

BY: Morrison and Wilshire

MAJOR ELEMENTS	TRACE AND MINOR ELEMENTS	
$SiO_2 = 37.84$ $TiO_2 = 12.97$ $AI_2O_3 = 8.85$ FeO = 18.46 MnO = 0.28 MgO = 9.89	Li = 8.7 Rb = 0.461 K = 452 Ba = 62.1 Sr = 174 Cr = 3890 V = -	(ID) (ID) (ID) (ID) (ID) (ID)
$Ca0 = 10.07$ $Na_20 = 0.35$ $K_20 = 0.06$ $P_20_5 = 0.05$ $S = 0.15$ $Cr_20_3 = 0.61$	Sc = 82.5 Ni = 2 Co = 20.7 Cu = - Zn = 4	(NAA) (XRF) (NAA) (XRF)
TOTAL 99.58 C1PW NORM	Th = - U = 0.091 Zr = 217 Hf = - Nb = 20	(ID) (ID) (XRF)
Qtz = - Or = 0.35 Ab = 2.96 An = 22.40 Di = 22.08 Hy = 24.91 Ne = - Ol = 1.08 Chr = 0.90 Ilm = 24.63 Apa = 0.11 TOTAL 99.43 100 Mg/(Mg+Fe) = 48.8 An/Ab/Or = 87/12/1	RARE EARTH ELEMENTS (ID) La = 4.79 Ce = 16.4 Pr = - Nd = 18.2 Sm = 7.63 Eu = 1.82 Gd = 11.0 Tb = - Dy = 14.1 Ho = - Er = 8.4 Tm = - Yb = 7.79 Lu = 1.17 Y = 75	(XRF)

WEIGHT: 446.3 g DIMENSIONS: 10.5 x 6 x 3.5 cm

BINOCULAR DESCRIPTION

COLOR: Slightly brownish gray (N7-5YR 6/1)

SMAPE: Blocky, angular, wedge shaped FABRIC: Foliated locally; inequigranular

COHERENCE: Intergranular - Tough

Fracturing: 2 parallel, irregular penetrative fractures, 1 cm

apart.

VARIABILITY: Local foliation - see special features

SURFACE: T, N, and E are patina covered; S, W, and B are hackly.

All surfaces but W have some patina.

ZAP PITS: None on N, E, W, B; few on S, T.

CAVITIES: Irregular vugs 1-6 mm diameter, average about 3 mm.

Vugs in band about 1 cm thick, about normal to S; vugs are lined

with same size crystals as rest of rock.

SPECIAL FEATURES: Plagioclase and ilmenite foliation (see W view) strong but local - contrasted by diabasic texture - zone about 3 cm wide across west face approximately perpendicular to west face. Eleven small chips returned in the documented bag (70136-39, 70145-49, 70155-57) with this sample, are from the same boulder and some or all may have broken from 70135 after collection, but none could be remated to it.

BY: Jackson, Wilshire and Lofgren

MAJOR ELEMENTS (3)	TRACE AND MINOR ELEMENTS
SiO ₂ = 38.04 TiO ₂ = 13.50 Al ₂ O ₃ = 7.92 FeO = 19.46 MnO = 0.28	Li = 11.4 (ID) Rb = 0.819 (ID) K = 735 (ID) Ba = 105 (ID) Sr = 186 (ID)
$\begin{array}{rcl} Mg0 & = & 9.58 \\ Ca0 & = & 9.93 \\ Na_20 & = & 0.37 \\ K_20 & = & 0.07 \\ P_20_5 & = & 0.06 \\ \vdots & = & 0.17 \end{array}$	Cr = - V = 127 (XRF) Sc = 81.7 (INAA) Ni = 2 (XRF) Co = 15.6 (INAA) Cu = 2 (XRF)
$Cr_2O_3 = 0.56$ TOTAL 99.94	Zn = 2.0 (XRF) Th = 0.31 (GAM) U = 0.12 (GAM) Zr = 299 (XRF)
C1PW NORM	Hf = 14.0 (INAA) Nb = 26.3 (XRF)
Qtz = 0.39 Gr = 0.40 Ab = 3.13	RARE EARTH ELEMENTS (ID)
An = 19.75 Di = 23.68 Hy = 25.81	La = 8.49 Ce = 29.4 Pr = -
Ne = - 01 = - Chr = 0.83 Ilm = 25.64	Nd = 31.6 Sm = 13 Eu = 2.3
Apa = 0.14	Gd = 19.6 Tb = - Dy = 22.6
TOTAL 99.77 100 Mg/(Mg-re) = 46.7	Ho = - Er = 13.2 Tm = -
An/Ab/0r = 85/13/2	Yb = 11.9 Lu = - Y = 103 (XRF)

WEIGHT: 466.6 g DIMENSIONS: $9 \times 7.5 \times 5.5 \text{ cm}$

3.2 x 2.3 x 1.5 cm

BINOCULAR DESCRIPTION

COLOR: Medium gray (N5)

SHAPE: Irregular

FABRIC: Isotropic, diabasic COHERENCE: Intergranular - Tough

Fracturing: Few, mostly penetrative

VARIABILITY: Mineralogy remains constant, but grain size and number

of cavities vary.

SURFACE: Soil line along E, S, and W; T, N, S, E, and W are rounded;

B is subangular.

ZAP PITS: Many on T, N, 3, E and W; few on B. On the smaller piece; few on T, none on B.

SPECIAL FEATURES: Plagiculase lath average 1 mm on T, 0.7 mm on W, and 0.6 mm on B. On the smaller piece of rock, the grain size is coarser than on the larger piece; the plagioclase laths reach 2.5 mm in length. The smaller piece (70185,1) broke from the E face of the larger piece before unpacking in the LRL.

BY: Simonds, Marvin

MAJOR ELEMENTS	TRACE AND MINOR ELEMEN	NTS
SiO ₂ = 40.18 TiO ₂ = - Al ₂ O ₃ = 9.04 FeO = 17.64 MnO = 0.26 MgO = 8.11 CaO = 11.95 Na ₂ O = 0.39 K ₂ O = 0.04 P ₂ O ₅ = 0.02 S = 0.17 Cr ₂ O ₃ = 0.40	Li = 9.6 Rb = 0.49 K = 459 Ba = 66.3 Sr = 173 Cr = 3580 V = - Sc = 84 Ni = - Co = 19.7 Cu = - Zn = -	(ID) (ID) (ID) (ID) (ID) (NAA) (NAA)
	Th = 0.3	(GAM)
TOTAL 99.72	U = 0.1 Zr = -	(GAM)
CIPH NORM	Hf = 8.2	(NAA)
C1PW NORM	Nb = -	
Qtz = 1.82 Or = 0.24 Ab = 3.30 An = 22.80 Di = 29.70 Hy = 19.19 Ne = - Ol = - Chr = 0.59 Ilm = 21.88 Apa = 0.04	RARE EARTH ELEMENTS (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	k .
TOTAL	Er = 9.52 Tm = -	
100 Mg/(Mg+Fe) = 45.0	Yb = 8.67	
An/Ab/0r = 80/12/8	Lu = 1.21	(NAA)
	Υ =	

WEIGHT: 8110 g DIMENSIONS: 23 x 13 x 10.5 cm

BINOCULAR DESCRIPTION

COLOR: Medium dark gray with faint brownish tint (N4)

SHAPE: Blocky, subangular; one flat surface

FABRIC: Intersertal-intergranular COHERENCE: Intergranular - Tough Fracturing: Several penetrative

VARIABILITY: Possibly, in grain size from aphanitic to very fine-

grained

SURFACE: T has thin 5 x 3 mm crusts with slickensides, whole surface of B lighter colored than body of rock due to zaps.

All surfaces finely hackly.

ZAP PITS: Many on all faces except a patch on N (see photo) which

has few.

CAVITIES: Trace of 0.5 - 3 mm diameter vugs with projecting pyroxene and ilmenite prisms and plates.

SPECIAL FEATURES: Olivine phenocrysts, possible also in groundmass

BY: Wilshire, Ridley

.5 mm

			•				
MAJOR ELEMEN	TS (4)			TRACE AND M	INO	R ELEMENTS	
SiO ₂ =	37.79			Li	=	7.1	/NAA \
TiO ₂ =				Rb	=		(NAA)
A1203 =	12.97			K	=	0.356	(ID)
	8.85			Ba	=	361	(ID)
Fe0 =	19.66			Sr	_	56.9	(ID)
Mn0 =	0.27					121.0	(ID)
Mg0 ≔	8.44			Cr	=	3030	(ID)
Ca0 =	10.74			V	=	50	(XRF)
Na ₂ O =	0.36			Sc	=	85.9	(INAA)
K ₂ 0 =	0.05			Ni	=	3	(XRF)
P ₂ O ₅ =	0.09			Co	=	21.3	(INAA)
s =	0.18			Cu	=	6.39	(NAA)
$Cr_2O_3 =$	0.41			Zn	=	-	
		-		Th	=	0.34	(NAA)
TOTAL	99.81			U	=	0.13	(ID)
				Zr	=	192	(XRF)
CARU NORM				Hf	=	6.33	(NAA)
CIPW NORM				Nb	=	20.8	(XRF)
04							,,,,,
Qtz =	- 20			DADE FARTU		MENTS (TO)	
0r =	0.30			KAKE EARTH	ELL	MENTS (ID)	
Ab =	3.05						
An =	22.39			La	=	5.22	
Di =	24.84			Ce	=	16.5	
Hy =	23.48			Pr	=	-	
Ne =	-			Nd	=	16.7	
01 =	0.15			Sm	=	6.69	
Chr =	0.60			Eu	=	1.37	
Ilm =	24.63			Gd	=	10.4	
Apa =	0.20			ТЬ	=	-	
				Dy	=	12.2	
	00 63			Ho	=	-	
TOTAL	99.63			Er	=	7.4	
		42.2		Tm	=	-	
100 Mg/(= 43.3		Yb	-	7.04	
An/Ab/Or		87/12/1		Lu	-	1.03	
				Y	-	-	
				1	_	_	

WEIGHT: 277.2 g DIMENSIONS: Two mated pieces:

5.5 x 3.5 x 3 cm 7.5 x 5.5 x 4.5 cm

BINOCULAR DESCRIPTION

COLOR: Medium dark gray (N4) SHAPE: Blocky, subangular

FABRIC: Intergranular, possible vitrophyric

COHERENCE: Intergranular - Tough Fracturing: One penetrative VARIABILITY: Homogeneous

SURFACE: Finely hackly

ZAP PITS: Few on B and E; many on T, S, W, and N. CAVITIES: 1-2%, up to 9 mm, vugs. Lined by irregular mattes of ilmenite needles (to 1 mm), plagioclase (scarce), pale yellowish

mineral, and brown pyroxene.

BY: Stuart-Alexander

1cm

MAJOR ELEMENTS TRACE AND MINOR ELEMENTS Si02 = Li 40.11 10.4 (ID) TiO₂ = Rb 11.41 0.65 (ID) K = $A1_20_3 =$ 9.02 593 (ID) Ba Fe0 18.73 85.3 (ID) Sr = Mn0 0.29199 (ID) Mg0 Cr 2860 7.63 (NAA) ٧ = Ca0 11.30 Sc Na₂0 == 0.39 80 (NAA) Ni K2 0 0.05 Co (NAA) $P_2 O_5 =$ 0.04 17.5 Cu = 0.19 $Cr_2O_3 =$ 0.34 Zn Th = TOTAL 99.50 U Zr = Hf 9.7 (NAA) C1PW NORM Nb Qtz 2.12 0r RARE EARTH ELEMENTS (ID) 0.30 AЬ 3.30 An 22.71 La 7.05 Di 27.23 Ce = 24.7 21.39 Hy Pr Ne Nd = 27.3 01 Sm = 11.4 Chr 0.50 Eu 2.23 = 21.67 Ilm Gd = 17.6 0.09 Apa Tb Dy 20.2 Но = TOTAL 99.31 Er 12.1 = Tm = 100 Mg/(Mg+Fe) = 42.111.8 Yb = An/Ab/Or = 86/13/11.48 Lu =

Υ

RUCK NUMBER: 70275 WEIGHT:

171.4 g DIMENSIONS: 6.5 x 5.0 x 3.5 cm

BINOCULAR DESCRIPTION

COLOR: Between medium gray (N5) and light brownish gray (5YR 6/1)

SHAPE: Blocky, subrounded

FABRIC: Intergranular to plumose; olivine microphenocrysts and

glomeroporphyritic clots.

COHERENCE: Intergranular - Tough Fracturing: One, penetrative VARIABILITY: Texture variable

SURFACE: All surfaces weathered and finely lumpy ZAP PITS: All faces have many

CAVITIES: 2-3%, vugs up to 2-3 mm, most <1 mm.

BY: Stuart-Alexander

		CHEMIZIKI				
MAJOR ELEMEN	TS		TRACE AND M	INOF	ELEMENTS	<u>S</u>
SiO ₂ = TiO ₂ = Al ₂ O ₃ = FeO = MnO = MgO = CaO =	39.37 11.90 10.23 18.61 0.28 6.09		Li Rb K Ba Sr Cr V	= = = = = =	0.454 459 73.5 153	(ID) (ID) (ID)
Na ₂ 0 = K ₂ 0 = P ₂ 0 ₅ = S = Cr ₂ 0 ₃ =	0.38 0.06 0.08 0.15 0.26		Sc Ni Co Cu Zn Th		85 15.7	(NAA)
TOTAL	99.06		U Zr Hf	= =	0.43 0.12 -	(GAM) (GAM)
C1PW NORM			Nb	=	-	
Qtz = Or = Ab =	3.10 0.35 3.22		RARE EARTH	ELEN	MENIS (ID)
An = Di = Hy = Ne =	26.03 25.87 17.18		La Ce Pr Nd	= = =	6.32 20.8 - 21.8	
01 = Chr = Ilm =	0.38 22.60 0.17		Sm Eu Gd Tb	= = =	8.75 1.73 14.0	
Apa = _ TOTAL	98.91		Dy Ho Er	=	15.2 9.14	
	Mg+Fe) = 36.8 ` = 88/11/1		Tm Yb Lu	=	8.3	

WEIGHT: 148.6 g

DIMENSIONS: 5 x 4.5 x 4.5 cm

BINOCULAR DESCRIPTION

COLOR: White, black, and brown, average color 5YR 4/1

SHAPE: Subrounded, irregularly surfaced cube

FABRIC: Primarily intergranular

COHERENCE: Intergranular - Weakly coherent

Fracturing: One penetrative

VARIABILITY: Vugs inhomogeneously distributed

SURFACE: All equally weathered, no obvious soil line

ZAP PITS: Few on all except none on N. However, density may be low

due to friable nature of rock surface

CAVITIES: Vugs, 5-10%, a few vesicles, maximum size 1 cm. Where vugs are almost filled, there is a high proportion of ilmenite and pyroxene euhedral crystals; where only lined, there is a normal rock distribution of minerals.

SPECIAL FEATURES: Local glomeroporphyritic clots of pyroxene and

ilmenite, largest is 3 mm.

Plagioclase: Largest grain, located on W face, is an oikocryst, but laths predominate and largest is 3 mm - local plumose texture. A small percentage of these show conchoidal fracturing, and thus may be silica mineral.

Pyroxene: A few percent of grains appear zoned with darker brown

interiors, lighter exteriors.

BY: Stuart-Alexander, Ridley

MAJOR ELEMENTS	TRACE AND M	INOR ELEME	NTS
SiO ₂ =	Li	=	
TiO ₂ =	Rb	=	
A1203 =	K	=	
Fe0 =	Ba	=	
Mn0 =	Sr	=	
Mg0 =	Cr	=	
CaO =	V	= 148	(NAA)
Na ₂ O =	Sc	= 81	(NAA)
$K_2 0 =$	Ni	=	,
$P_2 O_5 =$	Co	= 20	(NAA)
S =	Cu	=	
$Cr_2O_3 =$	Zn	=	
TOTAL	Th	=	
TOTAL	ŭ	=	
	Zr	= = 5.7	(NAA)
C1PW NORM	Hf		(NAA)
	Nb	=	
Qtz =			,
0r =	RARE EARTH	ELEMENTS	(NAA)
Ab =			
An =	La	= 3.2	
Di =	Ce	= 13	
Hy =	Pr	=	
Ne =	Nd	= 14	
01 =	Sm	= 5.8	
Chr =	Eu	= 1.40	
Ilm =	Gd	= 1.4	
Apa =	ТЬ	1.0	
	Dy		
TOTAL	Но	=	
	Er	=	
100 Mg/(Mg+Fe) =	Tm	= 5.6	
An/Ab/Or =	Yb	= 0.81	
	Lu Y	= 0.01	

ROCK NUMBER: 71035 WEIGHT: 144.8 q

DIMENSIONS: 8 x 5 x 2.5 cm

BINOCULAR DESCRIPTION

COLOR: Medium dark gray (N4) SHAPE: One-half of a hemisphere FABRIC: Medium grained porphyritic COHERENCE: Intergranular - Coherent

Fracturing: Non-penetrative

VARIABILITY: Homogeneous

SURFACE: B and S are fresh; T, N, E and W are rounded and dusty. ZAP PITS: Very sparse pits on T and N and E and W. CAVITIES: 40% are subround to irregular vugs; concentrated on T

and S faces. Their size ranges from 0.2 mm up to 1 cm but averages 3 mm. Lined with euhedral crystals that are larger than groundmass.

SPECIAL FEATURES: Crystals in yugs are ilmenite (predominant). pyroxene cinnamon and plagioclase. Vugs coarser toward SW corner. Sparse yellow crystals (olivine or pyroxene) are also present in vugs. Pyroferroite(?) present in some vugs.

Plagioclase: In some areas up to 4-5 mm.

BY: Williams, Marvin

MAJOR ELEMENTS					TRACE AND MINOR ELEMENTS					
T.	i 02 i 02 l 2 03	= =	38.25 13.06 8.77				Li Rb K		7.6 0.41 430	(ID) (ID) (ID)
Fe	0	=	19.74				Ba		66.3	(22)
Mr		=	0.29				Sr		130	(01)
Mg		=	7.98				Cr		3310	(NAA)
	0	=	10.87				V	=	-	
	120	=	0.38				Sc		87	(NAA)
	20	=	0.03				Ni			
	205	=	0.10				Co		19	(NAA)
S		=	0.15				Cu		-	
Ci	^2 0 3	=	0.39	_			Zn Th		0.44	(004)
TO	TAL		100.01				Ü	_	0.44 0.11	(GAM)
,,	, I, N.L.		100.01				Zr			(GAM)
							Hf		7	(NAA)
CIPW N	NORM						Nb		<u>'</u>	(IIAA)
		_	0.05							
Q1 Or		=	0.95				DADE FARTU		MENTS /I	٥,١
At		=	0.18 3.22				RARE EARTH	ELE	MENIS (1	U)
Ar		_	22.14				1.5	_		
Di		=	25.57				La Ce		5.77	
Н	-	=	22.21				Pr		18. 7	
Ne		=	-				Nd		18.8	
01		=	-				Sm		7.5	
CH		=	0.57				Eu		1.5	
	m	=	24.80				Gd		12.1	
Ap		=	0.22				Tb		-	
•		-		_			Dy		13.6	
Τ/	TAL		99.86				Ho		-	
10	TAL		33.00				Er		8.27	
10	nn m/	1/1	Mg+Fe)	=			Tm	=	-	
	n/Ab/		_	71.3			Yb		7.71	
Ai	ולא ליו	U	86.	7/12.6/	. /		Lu	=	1.14	(NAA)
							٧	=		

WEIGHT: 118.4 g

DIMENSIONS: 8.5 x 3 x 4 cm

BINOCULAR DESCRIPTION

COLOR: Medium dark gray (N4) SHAPE: Half of a hemisphere

FABRIC: Medium grained porphyritic COHERENCE: Intergranular - Coherent

VARIABILITY: Homogeneous

SURFACE: S, T, and E are fresh fractures, W is partly exposed surface

and partly chipped; B is exposed.

ZAP PITS: Few on all surfaces

CAVITIES: 30% vugs with a marked concentration on B. They are irregular 0.5 - 5 mm long and average 2 mm. They contain euhedral crystals of ilmenite pyroxene, plagioclase, and rare olivine up

to 1 mm long.

SPECIAL FEATURES: Sample 71036 was probably located on the same boulder near 71035, which has the same components. None of the fresh surfaces of 71035 and 71036 fit together, but B of 71035 and T of 71036 are about the same dimensions. The nature of the vugs on these two surfaces are distinctly different (compare photos).

Plagioclase: Occurs in some areas as ophitic 4-5 mm laths.

BY: Williams, Marvin

NOT ALLOCATED

MAJOR ELEMENTS	TRACE AND MINOR ELEMENTS
SiO ₂ =	Li =
Ti0 ₂ =	Rb =
Al ₂ O ₃ =	K =
Fe0 =	Ba =
MnO =	Sr =
Mg0 =	Cr =
CaO =	V =
Na ₂ 0 =	Sc =
K ₂ 0 =	Ni =
P ₂ O ₅ =	Co =
S =	Cu =
$Cr_2O_3 =$	Zn =
	Th =
TOTAL	U =
	Zr =
C1PW NORM	Hf =
CTT W HORN	Nb =
Qtz =	
Or =	RARE EARTH ELEMENTS
Or = Ab =	
Or = Ab = An =	La =
Or = Ab = An = Di =	La = Ce =
Or = Ab = An = Di = Hy =	La = Ce = Pr =
Or = Ab = An = Di = Hy = Ne =	La = Ce = Pr = Nd =
Or = Ab = An = Di = Hy = Ne = Ol =	La = Ce = Pr = Nd = Sm =
Or = Ab = An = Di = Hy = Ne = Ol = Chr =	La = Ce = Pr = Nd = Sm = Eu =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm =	La = Ce = Pr = Nd = Sm = Eu = Gd =
Or = Ab = An = Di = Hy = Ne = Ol = Chr =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er = Tm =
Or = Ab = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa = TOTAL 100 Mg/(Mg+Fe) =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er = Tm = Yb =
Or = Ab = An = Di = Hy = Ne = Ol = Chr = Ilm = Apa =	La = Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er = Tm =

WEIGHT: 669.6 g DIMENSIONS: 19.5 x 9.5 x 2.5 cm

BINOCULAR DESCRIPTION

COLOR: Light brownish gray (N4-IR5 Y/R 4/1)

SHAPE: Angular broken rock, natural surface rounded

FABRIC: Intergranular

COHERENCE: Tough and no fractures

VARIABILITY: Homogeneous mineralogy, heterogeneous vug distribution SURFACE: Finely hackly on both sides. B-S has thin dark gray film and is rounded.

ZAP PITS: B is rounded but has few zap pits. S - few to many. CAVITIES: Vugs 20-25% (<1-12 mm), 1% smooth-walled vesicles (1 mm), vugs lined with euhedral crystals of ilmenite, pyroxene, plagioclase and yellow-green mineral. Vugs do not appear to be layered in distribution. Pyroxene projecting into cavities are thin and needlelike.

BY: Wilshire, Meyer

1 mm

MAJOR ELEMENTS	TRACE AND M	INO	R ELEMENTS	
$Si0_2 = 38.14$ $Ti0_2 = 13.41$ $Al_2O_3 = 8.62$ Fe0 = 19.20	Li Rb K Ba	= = = =	9.32 0.362 342 62.4	(ID) (ID) (ID)
Mn0 = 0.26	Sr	=	121	(ID)
Mg0 = 9.04 $Ca0 = 10.77$	Cr V	=	2800 88	(NAA) (XRF)
$Na_2 0 = 0.31$ $K_2 0 = 0.06$	Sc Ni	=	86 43	(NAA) (XRF)
$P_2 O_5 = 0.08$	Co	=	26	(NAA)
$S = Cr_2O_3 = 0.41$	Cu Zn	=	31 4	(XRF) (XRF)
	Th U	=	0.65	(NAA)
TOTAL 100.30	Zr	=	223	(XRF)
C1PW NORM	Hf Nb	=	7.0 27	(NAA) (XRF)
Qtz = 0.42 0r = 0.35 Ab = 2.62	RARE EARTH	ELE	MENTS (ID)
An = 21.95	La	=	-	
Di =25.22 Hy =23.48	Ce Pr	=	15.6	
Ne = _	Nd Sm	=	17.0	
01 = _ Chr = 0.60	Eu	=	6.72 1.36	
Ilm =25.47	Gd Tb	=	-	
Apa = 0.17	Dy	=	13.0	
TOTAL 100.30	Ho Er	=	- 7.74	
100 Mg/(Mg+Fe) = 45.6	Tm	=	-	
An/Ab/0r = 88/11/1	Yb Lu	=	7.75	
	V	=	60	(VDE)

WEIGHT: 207.8 g

DIMENSIONS: 8 x 5 x 4 cm

BINOCULAR DESCRIPTION

COLOR: Medium gray (N5)

SHAPE: Subangular

FABRIC: Isotropic equigranular

COHERENCE: Intergranular - Coherent

Fracturing: Few, penetrative and non-penetrative

VARIABILITY: Variable proportions of olivine from one area to another. SURFACE: Irregular to granular all faces. All surfaces dusty which obscures 60% of the rock surface, except on B and T faces where a fragment broke off.

ZAP PITS: None on B, E, S, W and N; few on T.

CAVITIES: 5-10%, 1-8 mm diameter miarolitic cavities with irregular distribution and shapes. They rarely contain euhedral minerals. The surfaces of cavities are like the surface of rock. Some cavities are tabular.

SPECIAL FEATURES: Suggestion of some crystal growth along fractures emanating from pipe-like cavities. Two small fragments can be remated to the largest piece and have typical outer and fresh surfaces and mineral percentages.

Olivine: Conchoidal fractures.

BY: Lofgren, Argrell

1 mm

MAJOR ELEMEN	ITS	TRA	CE AND M	INO	R ELEMENT	S
SiO ₂ = TiO ₂ = Al ₂ O ₃ = FeO = MnO =	37.93 13.08 8.47 19.37		Li Rb K Ba Sr	= = = =	10.0 0.59 552.0 78.5	(ID) (ID) (ID)
Mg0 =	0.28 9.63		Cr	=	4400	(NAA)
Ca0 = Na ₂ 0 = K ₂ 0 =	9.79 0.38 0.04		V Sc Ni	=	77	(NAA)
P ₂ O ₅ = S =	0.04 0.16		Co Cu	=	17.6	(NAA)
Cr ₂ O ₃ =	0.54		Zn Th	=	0.39	(GAM)
TOTAL	99.71		U Zr	=	0.11	(GAM)
C1PW NORM			Hf Nb	=	8.9	(NAA)
Qtz = Or = Ab =	- 0.24 3.22	RAR	RE EARTH	ELE	MENTS (I	D)
An = Di =	21.29 22.00		La Ce	=	6.43 22.3	
Hy = Ne =	26.53		Pr Nd	=	24.7	
01 = Chr =	0.56 0.80		Sm Eu	=	10.3 2.08	
Ilm = Apa =	24.84 0.09		Gd Tb	=	15.7	
TOTAL	99.55		Dy Ho	=	18.0	
100 Mg/(Mg+Fe) = 47.0		Er Tm	=	11.0 - 9.69	
An/Ab/0r	= 86/13/1		Yb Lu Y	=	1.52	

WEIGHT:

150.7 g DIMENSIONS: 6.0 x 4.4 x 3.3 cm

BINOCULAR DESCRIPTION

COLOR: Dark gray SHAPE: Subangular FABRIC: Isotropic

COHERENCE: Intergranular - Coherent Fracturing: Few, non-penetrative

VARIABILITY: None SURFACE: Granulated

ZAP PITS: None
CAVITIES: 5% vugs, 2% vesicles
SPECIAL FEATURES: Vesicles are lined with plates of ilmenite

BY: Keil, Dowty, Prinz

5 mm

MAJOR	LLt	MEN	12	
Si	02	=	39	. 14
Ti	in.	=	12	22

TiO₂ = 12.33 Al₂O₃ = 8.91 FeO = 19.11 MnO = 0.28

Mg0 = 8.34 Ca0 = 10.79 $Na_20 = 0.40$

 $K_2 0 = 0.05$ $P_2 0_5 = 0.05$ S = 0.19

TOTAL 100.00

0.41

 $Cr_2 O_3 =$

C1PW NORM

Qtz = 1.08 Or 0.30 AЬ = 3.38 An = 22.37 Di = 25.26 23.29 Ну Ne 01 0.60 Chr 23.42 Ilm 0.11 Apa

TOTAL 99.81

100 Mg/(Mg+Fe) = 43.8 An/Ab/Or = 86/13/1

TRACE AND MINOR ELEMENTS

Li	=	10.2	(ID)
RЬ	=	0.63	(ID)
K	=	580	(ID)
Ba	=	83.2	(ID)
Sr	=	191	(ID)
Cr	=	3450	(NAA)
٧	=	120	(NAA)
Sc	=	80	(NAA)
Ni	=	-	(
Co	=	18.4	(NAA)
Cu	=	-	(
Zn	=	_	
Th	=	0.40	(GAM)
U	=	0.15	(GAM)
Zr	=	-	(,
Hf	=	9.4	(NAA)
Nb	=	-	, ,

RARE EARTH ELEMENTS (ID)

La 6.69 Ce = 23.8 Pr Nd = 25.9 Sm 10.7 Eu 2.14 Gd 16.7 ТЬ = Dy 19.1 Ho Er 11.2 Tm YЬ 10.3 Lu 1.47 (NAA) Υ

WEIGHT: 40.35 g DIMENSIONS: 3.2 x 2.7 x 2.5 cm

BINOCULAR DESCRIPTION

COLOR: Medium dark gray (N4)

SHAPE: Subrounded FABRIC: Isotropic

COHERENCE: Intergranular - Coherent Fracturing: Few, non-penetrative VARIABILITY: None

VARIABILITY: None SURFACE: Granulated ZAP PITS: None CAVITIES: 2% vugs

BY: Keil, Dowty, Prinz

MAJOR ELEMENTS

SiO₂ 38.39 TiO₂ 13.00 A1203 = 9.30 Fe0 19.10 MnO 0.24 Mg0 8.50 CaO 10.50 $Na_20 =$ 0.41 K2 0 0.06 P2 05 S Cr2 03 = 0.51 TOTAL 100.01

C1PW NORM

Qtz 0.61 0r 0.35 Ab 3.47 An 23.36 Di 23.44 Ну 23.34 Ne 01 0.75 Chr 24.69 Ilm Apa

TOTAL 100.01

100 Mg/(Mg+Fe) = 44.2 An/Ab/Or = 36/13/1

TRACE AND MINOR ELEMENTS

Li RЬ K (NAA) 473 Ba Sr Cr ٧ 120 (NAA) Sc (NAA) 80 Ni (NAA) Co 19.3 Cu Zn Th U Zr (NAA) Hf 6.8 Nb

RARE EARTH ELEMENTS (NAA)

La 4.8 Ce 24 Pr Nd Sm 7.5 Eu 1.72 GdТЬ 1.8 Dy 13 Ho Er Tm Yb 7.2 1.1 Lu Y

WEIGHT: 82.16 g

DIMENSIONS: 6.3 x 3.5 x 3.4 cm

BINOCULAR DESCRIPTION

COLOR: Dark gray (N3)
SHAPE: Blocky - subangular
FABRIC: Isotropic

COHERENCE: Intergranular - Friable
Fracturing: Few, nearly penetrative
VARIABILITY: None

SURFACE: Granulated ZAP PITS: None CAVITIES: 1% yugs SPECIAL FEATURES:

BY: Keil, Dowty, Prinz

.5 mm

MAJOR ELEMENTS

SiO₂ = 44.10 TiO₂ □ 8.30 A1203 =10.30 Fe0 17.80 Mn0 0.23 Mg0 6.30 Ca0 12.20 $Na_20 =$ 0.48 K2 0 0.07 P2 05 0.23 $Cr_2 O_3 =$ TOTAL 100.00

C1PW NORM

4.28 Qtz 0r 0.40 4.06 AЬ 25.75 An 28.97 Di Ну 20.44 Ne 01 0.34 Chr 15.76 Ilm Apa

TOTAL 100.00

100 Mg/(Mg+Fe) = 38.7 An/Ab/Or = 85.2/13.4/1.3

TRACE AND MINOR ELEMENTS

Li Rb K 565 (NAA) Ba Sr = Cr = (NAA) 30 Sc = 72 (NAA) Νi = Co = 14.4 (NAA) Cu = Zn = Th = U Zr = Hf 8.8 (NAA) Nb

RARE EARTH ELEMENTS (NAA)

La = 6.6 Ce 26 Pr = Nd = 24 Sm = 10.4 Eu = 2.2 Gd = Tb 2.6 Dy = 17 Ho Er = Tm 9.2 YЬ = Lu = 1.4

ROCK NUMPER: 71566 WEIGHT: 415.4 g

DIMENSIONS: 10.6 x 6.3 x 4.7 cm

BINOCULAR DESCRIPTION

COLOR: Medium dark gray (N4)

SHAPE: Subrounded FABRIC: Isotropic

COHERENCE: Intergranular - Coherent Fracturing: Few nearly penetrative VARIABILITY: None

SURFACE: Granulated ZAP PITS: None

CAVITIES: 2% vugs, 1%vesicles SPECIAL FEATURES: Vesicles lined with ilmenite.

BY: Keil, Dowty, Prinz

		•				
MAJOR ELEMEN	ITS		TRACE AND M	INO	R ELEMENT	<u>S</u>
SiO ₂ =	39.27		Li	=	_	
TiO ₂ =	12.01		Rb	=	_	
A1203 =	9.22		K	=	382	(NAA)
Fe0 =	18.73		Ba	=	-	(,
Mn0 =	0.27		Sr	=	-	
Mg0 =	8.40		Cr	=	3430	(NAA)
Ca0 =	10.89		V	=	90	(NAA)
Na ₂ 0 =	0.40		Sc	=	78	(NAA)
K ₂ 0 =	0.03		Ni	=	_	,
P ₂ O ₅ =	0.03		Co	=	18.1	(NAA)
S =	0.16		Cu	=	-	, ,
$Cr_2O_3 =$	0.38		Zn	=	_	
			Th	=	-	
TOTAL	99.79		U	=	-	
			Zr	=	-	
CIE: LUODH			Hf	=	7.8	(NAA)
C1PW NORM			Nb	=	-	
0+	0.04					
Qtz =	0.94		DADE EADTH	C1 C	MENTS /N	۸۸۱
0r =	0.18		RARE EARTH	CLC	MENTS (N	AA)
Ab =	3.38		1.	_		
An =	23.27		La	=	4.29	
Di =	25.01		Ce	=	17.2	
Hy =	23.41		Pr	=	-	
Ne =	-		Nd	=	-	
01 =			Sm	=	7.62	
Chr =	0.56		Eu	=	1.75	
Ilm =	22.81		Gd	=	-	
Apa =	0.07		ТЬ	=	-	
-			Dy	=	-	
TOTAL	99.63		Но	=	-	
			Er	=	-	
100 Mg/((Mg+Fe) = 44.4		Tm	=	-	
An/Ab/Or	86.7/12.6/.7	•	YЬ	=	7.9	
/m/ mb/ 01			Lu	=	1.16	

WEIGHT: 146.0 g

DIMEMSIONS: 5.8 x 5.0 x 4.2 cm

BINOCULAR DESCRIPTION

COLOR: Medium dark gray (N4) SHAPE: Subrounded FABRIC: Isotropic

COHERENCE: Intergranular - Coherent Fracturing: Few, non-penetrative VARIABILITY: None

SURFACE: Granulated ZAP PITS: None CAVITIES: 5% yugs SPECIAL FEATURES:

MAJOR E	LEMEN	TS		TR	ACE AND M	ONI	R ELEMENTS	<u> </u>
Si0 Ti0 Al ₂ Fe0 Mn0 Mg0 Ca0 Na ₂ K ₂ 0 P ₂ 0	03 = = = = = 0 = = = = = = = = = = = = =	38.06 12.98 8.59 19.40 0.28 8.83 10.57 0.38 0.03 0.02			Li Rb K Ba Sr Cr V Sc Ni Co		9.2 0.39 386 54.4 161 3690 100 79	(ID) (ID) (ID) (ID) (ID) (NAA) (NAA) (NAA)
S Cr2	03 =	0.16 0.43			Cu Zn	=	-	
		0.43			Th	=	-	
TOT	AL	99.73			U	=	-	
					Zr	=		/NAA \
CIPW NO	RM				Hf Nb	=	7.6	(NAA)
•					ND	_	-	
Qtz		0.07			DC		MENTO /ID	
Or Ab	=	0.18 3.22		KA	RE EARTH	ELE	MENTS (ID))
An	=	21.65			La	=	4 15	
Di	=	25.03			Ce	=	4.15 14.4	
Hy	=	24.10			Pr	=	-	
Ne	=	-			Nd	=	16.3	
01	=	-			Sm	=	6.91	
Chr		0.63			Eu	=	1.66	
Ilm		24.65			Gd	=	11.4	
Apa	=	0.04			ТЬ	=	-	
	-				Dy	=	12.7	
TOT	AL	99.57			Но	=	-	
					Er T	=	8.28	
100	Mg/(Mg+Fe) =4	4.8		Tm	=	7 25	
An/	Ab/Or	= 86/13/	1		Yb Lu	=	7.35 1.08	(NAA)
		,,			Lu	_	1.00	(MAA)

ROCK NUMBER: 71569 WEIGHT: 289.6 g

DIMENSIONS: 8.3 x 7.5 x 4.1 cm

BINOCULAR DESCRIPTION

COLOR: Dark gray (N3) SHAPE: Subangular FABRIC: Isotropic

COHERENCE: Intergranular - Coherent

Fracturing: None VARIABILITY: None SURFACE: Granulated ZAP PITS: Few

CAVITIES: 1% vugs, 1% vesicles SPECIAL FEATURES: Vesicles lined with ilmenite

MAJOR ELEMENTS	TRACE AND MINOR ELEMENTS
SiO ₂ = 39.97 TiO ₂ = 11.57 Al ₂ O ₃ = 9.08 FeO = 18.85 MnO = 0.28 MgO = 7.66 CaO = 11.27 Na ₂ O = 0.41 K ₂ O = 0.06 P ₂ O ₅ = 0.06	Li = 10.1 (ID) Rb = 0.64 (ID) K = 585 (ID) Ba = 84.4 (ID) Sr = 195 (ID) Cr = 3020 (NAA) V = - Sc = 81 (NAA) Ni = - Co = 18 (NAA)
S = 0.19 $Cr_2O_2 = 0.36$	Cu = - Zn = -
$Cr_2 O_2 = 0.36$	∠n = - Th = -
TOTAL 99.76	U = -
	Zr = -
C1PW NORM	Hf = 9.7 (NAA)
	Nb = -
Qtz = 1.87 Or = 0.35 Ab = 3.47	RARE EARTH ELEMENTS (ID)
An = 22.76	La = 6.74
Di = 26.97 Hy = 21.52	Ce = 23.8
Hy = 21.52 Ne = -	Pr = _ Nd = 26.3
01 = -	20.0
Chr = 0.53	Sm = 10.9 Eu = 2.19
Ilm = 21.97	Gd = 17.1
Apa = 0.13	Tb = -
-	Dy = 19.0
TOTAL 99.57	Ho = _
TOTAL	Er = 11.6
100 Mg/(Mg+Fe) = 42.0	Tm = -
An/Ab/Or = 86/13/1	Yb = 10.5
	Lu = 1.5 (NAA)
	Y = _

ROCK NUMBER: 71577 WEIGHT: 234.7 g

DIMENSIONS: 4.9 x 4.8 x 4.7 cm

BINOCULAR DESCRIPTION

COLOR: Dark gray (N3)

SHAPE:

FABRIC: Isotropic

COHERENCE: Intergranular - Coherent Fracturing: None

VARIABILITY: None SURFACE: Granulated

ZAP PITS: Few
CAVITIES: 8% vugs (up to 2 cm long)
SPECIAL FEATURES: Vugs lined with ilmenite

.5 mm

	***************************************	•			
MAJOR ELEMENT	15	TRACE AND M	INO	R ELEMENTS	5
SiO ₂ =	39.18	Li	=	10.4	(10)
	12.04	Rb	=	0.64	(ID)
A1203 =	8.92	K	=	583	(ID)
	18.90	Ba	=	83.9	(ID)
Mn0 =	0.28	Sr	=	-	(/
Mg0 =	8.15	Cr	=	3610	(NAA)
CaO =	10.95	٧	=	110	(NAA)
$Na_20 =$	0.39	Sc	=	81	(NAA)
K ₂ 0 =	0.06	Ni	=	-	
P ₂ O ₅ =	0.05	Co	=	18.4	(NAA)
S =	0.17	Cu	=	-	
$Cr_2O_3 =$	0.41	Zn	=	-	
		Ţh	=	-	
TOTAL	99.50	ŭ	=	-	
		Zr	=		/NIAA \
C1PW NORM		Hf	=	9.7	(NAA)
		Nb	=	-	
Qtz =	1.20				
0r =	0.35	RARE EARTH	ELE	MENTS (ID)
Ab =	3.30				
	22.41	La	=	6.9	
	25.90	Ce	=	23.8	
Hy =	22.59	Pr	=	-	
Ne =	-	Nd	=	26.5	
01 -	-	Sm	=	11.0	
Chr =	0.60	Eu	=	2.17	
• • • • • • • • • • • • • • • • • • • •	22.87	Gd	=	16.8	
Apa =	0.11	ТЬ	=		
		Dy	=	19.5	
TOTAL	99.33	Но	=		
		Er		11.4	
100 Mg/(M	1g+Fe) = 43.5	Tm	=	10.4	
An/Ab/Or	86/13/1	Yb	=	10.4	/ NA A \
	,, .	Lu	=	1.43	(NAA)

ROCK NUMBER: 71578 WEIGHT: 353.9 g

DIMENSIONS: 8.9 x 6.8 x 4.7 cm

BINOCULAR DESCRIPTION

COLCR: Medium dark gray (N4)

SH/ Subrounded FABRIC: Isotropic

COHERENCE: Intergranular - Coherent Fracturing: Few, non-penetrative VARIABILITY: None

SURFACE: Granulated

ZAP PITS: Few, many in places CAVITIES: 5% vesicles lined with ilmenite, 1% vugs

SPECIAL FEATURES:

MAJOR ELEME	NTS	TRACE AND M	INOR ELEMEN	ITS
SiO ₂ = TiO ₂ = Al ₂ O ₃ = FeO = MnO = MgO =	11.70 8.40 18.60 0.24	Li Rb K Ba Sr Cr	= - = 581 = - = -	(NAA)
Mg0 = Ca0 = Na ₂ 0 = K ₂ 0 =	9.50 0.42	V Sc Ni	= 100 = 74 = -	(NAA) (NAA)
P ₂ O ₅ = S = Cr ₂ O ₃ =	-	Co Cu Zn	= 18.5 = - = -	(NAA)
TOTAL	100.00	Th U Zr	= -	(NAA)
C1PW NORM		Hf Nb	= 8.9	(NAA)
Qtz = Or = Ab =	6.30 0.41 3.55	RARE EARTH	ELEMENTS (NAA)
An = Di = Hy =	20.83 21.55 24.52	La Ce Pr	= 6 = 25 = -	
Ne = 01 = Chr =	- 0.62	Nd Sm Eu	= 28 = 9.8 = 1.96	
Ilm = Apa =	22.22	Gd Tb Dy	= _ = 2.5 = 17	
TOTAL	100.00 $(Mg+Fe) = 43.7$	Ho Er Tm	= -	
An/Ab/0	r = 84/14/2	Yb Lu	= 8.5 = 1.3	

WEIGHT: 41.27 g

DIMENSIONS: 5.0 x 2.9 x 1.6 cm

BINOCULAR DESCRIPTION

COLOR: Dark gray (N3) SHAPE: Subrounded FABRIC: Isotropic

COHERENCE: Intergranular - Coherent

Fracturing: None
VARIABILITY: Fine-grained, but coarser near vugs

SURFACE: Granulated

ZAP PITS: Few, to many CAVITIES: 1-2% vugs, ilmenite commonly project into vugs SPECIAL FEATURES: Possibly different from other basalts

Ilmenite: Gets large and abundant near vugs.

		CHEMIS	IKI				
MAJOR ELEME	NTS		TRACE	AND N	MINO	R ELEME	NTS
SiO ₂ = TiO ₂ = Al ₂ O ₃ = FeO = MnO =	40.42 12.70 8.70 19.20 0.24		<i>3</i> .	Li Rb K Ba Sr		415	(NAA)
Mg0 = Ca0 = Na ₂ 0 = K ₂ 0 =	7.60 10.30 0.39 0.05			Cr V Sc Ni	= = =	100	(NAA)
$P_2 O_5 = S = Cr_2 O_3 = TOTAL$	0.41			Co Cu Zn Th U	= = = = =	20.8 - - -	(NAA)
C1PW NORM	100.00			Zr Hf Nb	=	6.2	(NAA)
Qtz = Or = Ab = An =	4.33 0.30 3.30 21.84		RARE	EARTH			(NAA)
Di	23.99			La Ce Pr Nd	= = =	5.7 22 - -	
01 = Chr = Ilm = Apa =	0.60 24.12			Sm Eu Gd Tb	= =	7.6 1.4 - 1.9	
TOTAL	100.01			Dy Ho Er	=	12	
100 Mg/(A n/Ab/0	(Mg+Fe) = = 86/1	41.4 3/1		Tm Yb	=	6.9	

WEIGHT: 48.98 g

DIMENSIONS: $3.8 \times 3.0 \times 2.5 \text{ cm}$

BINOCULAR DESCRIPTION

COLOR: Dark gray (N3) SHAPE: Subangular FABRIC: Isotropic

COHERENCE: Intergranular - Coherent Fracturing: Few, near-penetrative VARIABILITY: None

SURFACE: Granulated

ZAP PITS: Few, one large one (3 mm) CAVITIES: 2% vugs

SPECIAL FEATURES:

MAJOR ELEMENTS	TRACE AND M	INOR	ELEMENT	<u>S</u>
$Si0_2 = 40.55$	Li	=	_	
$TiO_2 = 12.00$	Rb	=	-	
$A1_2O_3 = 8.40$	K	=	332	(NAA)
Fe0 = 19.90	Ba	=	-	(11/1/1/
Mn0 = 0.24	Sr	=	_	
Mg0 = 8.00	Cr	=	-	
CaO = 10.10	٧	=	110	(NAA)
$Na_2O = 0.35$	Sc	=	79	(NAA)
$K_2 0 = 0.04$	Ni	=	-	
$P_2 O_5 = -$	Co	=	23.1	(NAA)
S = -	Cu	=	-	
$Cr_2O_3 = 0.42$	Zn	=	-	
•	Th	=	-	
TOTAL 100.00	U	=	-	
	Zr	=	-	
C1PW NORM	Hf	=	6.0	(NAA)
CITA HOINT	Nb	=	-	
Otz = 3.37				
402	RARE EARTH	ELEM	MENTS (NA	Α)
Or = 0.24	RARE EARTH	ELEM	MENTS (NA	Α)
Or = 0.24 Ab = 2.96		ELEM		A)
Or = 0.24 Ab = 2.96	La		4.9	A)
Or = 0.24 Ab = 2.96 An = 21.23 Di = 23.76		=	4.9 18	A)
Or = 0.24 Ab = 2.96 An = 21.23 Di = 23.76	La Ce	=	4.9 18	A)
Or = 0.24 Ab = 2.96 An = 21.23 Di = 23.76 Hy = 25.04 Ne = - Ol = -	La Ce Pr	= =	4.9 18 -	Α)
Or = 0.24 Ab = 2.96 An = 21.23 Di = 23.76 Hy = 25.04 Ne = - Ol = - Chr = 0.62	La Ce Pr Nd	= = =	4.9 18 - - 6.1	Α)
Or = 0.24 Ab = 2.96 An = 21.23 Di = 23.76 Hy = 25.04 Ne = - Ol = -	La Ce Pr Nd Sm	= = = =	4.9 18 - - 6.1 1.3	Α)
Or = 0.24 Ab = 2.96 An = 21.23 Di = 23.76 Hy = 25.04 Ne = - Ol = - Chr = 0.62 Ilm = 22.79	La Ce Pr Nd Sm Eu	= = = = =	4.9 18 - - 6.1 1.3	Α)
Or = 0.24 Ab = 2.96 An = 21.23 Di = 23.76 Hy = 25.04 Ne = - Ol = - Chr = 0.62 Ilm = 22.79	La Ce Pr Nd Sm Eu Gd Tb	= = = = = = = = = = = = = = = = = = = =	4.9 18 - 6.1 1.3 -	Α)
Or = 0.24 Ab = 2.96 An = 21.23 Di = 23.76 Hy = 25.04 Ne = - Ol = - Chr = 0.62 Ilm = 22.79 Apa = -	La Ce Pr Nd Sm Eu Gd	= = = = = = = = = = = = = = = = = = = =	4.9 18 - - 6.1 1.3	Α)
Or = 0.24 Ab = 2.96 An = 21.23 Di = 23.76 Hy = 25.04 Ne = - Ol = - Chr = 0.62 Ilm = 22.79	La Ce Pr Nd Sm Eu Gd Tb Dy	= = = = = = = = = = = = = = = = = = = =	4.9 18 - 6.1 1.3 -	Α)
Or = 0.24 Ab = 2.96 An = 21.23 Di = 23.76 Hy = 25.04 Ne = - Ol = - Chr = 0.62 Ilm = 22.79 Apa = - TOTAL 100.01	La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er	= = = = = = = = = = = = = = = = = = = =	4.9 18 - 6.1 1.3 - 1.7	Α)
Or = 0.24 Ab = 2.96 An = 21.23 Di = 23.76 Hy = 25.04 Ne = - Ol = - Chr = 0.62 Ilm = 22.79 Apa = - TOTAL 100.01 100 Mg/(Mg+Fe) = 41.7	La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb	= = = = = = = = = = = = = = = = = = = =	4.9 18 - 6.1 1.3 - 1.7 11 - 6.2	Α)
Or = 0.24 Ab = 2.96 An = 21.23 Di = 23.76 Hy = 25.04 Ne = - Ol = - Chr = 0.62 Ilm = 22.79 Apa = - TOTAL 100.01	La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er	= = = = = = = = = = = = = = = = = = = =	4.9 18 - 6.1 1.3 - 1.7	Α)

ROCK NUMBER: 71596 WEIGHT: 61.05 g

DIMENSIONS: 4.1 x 3.6 c 2.3 cm

BINOCULAR DESCRIPTION

COLOR: Dark gray (N3) SHAPE: Subrounded FABRIC: Isotropic

COHERENCE: Intergranular - Coherent Fracturing: Few, non-penetrative VARIABILITY: None

VARIABILITY: None
SURFACE: Granulated
ZAP PITS: Few to many
CAVITIES: 1% yugs
SPECIAL FEATURES:

TRACE AND MINOR ELEMENTS MAJOR ELEMENTS $Si0_2 = 41.83$ Li RЬ $Ti0_2 = 11.00$ $A1_20_3 = 9.20$ K (NAA) 365 = Ba ! e0 = 18.80 Sr = Mn0 0.25 = Cr Mg0 7.80 = 120 (NAA) Ca₀ = 10.30Sc = (NAA) Na₂O 0.38 75 Ni K₂ 0 = 0.04 Co = 20.2 (NAA) P2 05 Cu = Zn $Cr_2O_3 = 0.40$ Th = TOTAL U = 100.00 Zr = Ηf 6.3 (NAA) C1PW NORM NЬ Qtz = 4.26 RARE EARTH ELEMENTS (NAA) 0.26 0r 3.22 Аb An = 23.27La = 5.5 Di = 22.90Сe = 21 = 24.61Pr Ну Ne Nd = 20 01 Sm = 7.2 0.59 Chr Eu = 1.5 = 20.89Gd = Ilm TЬ 1.8 Apa Dy = 11 Ho = 100.00 TOTAL Er = Tm 100 Mg/(Mg+Fe) = 42.56.5 YЬ = An/Ab/Or = 87/12/1Lu = 0.96

WEIGHT: 238.5 g

DIMENSIONS: 7 x 5 x 4

BINOCULAR DESCRIPTION

COLOR: Brownish gray (5YR 4/1)

SHAPE: Blocky-angular

FABRIC: Porphyritic, scarce olivine phenocrysts

COHERENCE: Intergranular - Tough Fracturing: No penetrative

VARIABILITY: Homogeneous SURFACE: Hackly

ZAP PITS: Few on E, W, B. Many on S, T.

CAVITIES: 10%, as 1 x 2 cm to <1 mm vugs and vesicles. Vesicles have projecting crystals and linings of pyroxene and ilmenite. SPECIAL FEATURES: Extremely well developed flat black and gold hexagonal plates occur in larger cavities. Some are up to 1 mm in diameter and have grown parallel to wall.

BY: Morrison, Wilshire

.5 mm

MAJOR ELEMENTS	TRACE AND MINOR ELEMENTS	
SiO ₂ = 38.67 TiO ₂ = 12.32 Al ₂ O ₃ = 8.64 FeO = 18.77 MnO = - MgO = 8.47 CaO = 10.69 Na ₂ O = 0.40 K ₂ O = 0.07 P ₂ O ₅ = 0.05 S = 0.15 Cr ₂ O ₃ = - TOTAL 98.08	Li = 9.4 (ID) Rb = 0.609 (ID) K = 560 (ID) Ba = 78.1 (ID) Sr = 180 (ID) Cr = 3220 (NAA V = 100 (NAA Sc = 80 (NAA Ni = 1.5 (NAA Co = 18.8 (NAA Cu = - Zn = 2.2 (NAA Th = 0.3879 (MS) U = 0.1182 (MS) Zr = 271 (NAA) () () () () () () () () () () () () ()
C1PW NORM	Hf = 8.7 (NA/ Nb = 22 (NA/	()
Qtz = 0.97 Or = 0.41 Ab = 3.38 An = 21.57 Di = 25.45 Hy = 22.78 Ne = - Ol = - Chr = - Ilm = 23.40 Apa = 0.11 TOTAL 98.08 100 Mg/(Mg+Fe) = 44.6 An/Ab/Or = 85/13/2	RARE EARTH ELEMENTS (ID) La = 6.38 Ce = 22.1 Pr = - Nd = 24.4 Sm = 10.2 Eu = 2.02 Cd = 15.6 Tb = - Dy = 18.3 Ho = - Er = 10.8 Tm = - Yb = 9.7 Lu = - Y = -	

WEIGHT: 59.04 g

DIMENSIONS: 4.3 x 3.4 x 3.3 cm

BINOCULAR DESCRIPTION

COLOR: Grayish black (N2) with metallic luster

SHAPE: Angular, blocky

FABRIC: Aphanitic

COHERENCE: Intergranular - Tough Fracturing: Few, penetrative

VARIABILITY: Homogeneous

SURFACE: Smooth to gently lumpy inside vesicles; hackly on rest of rock.

ZAP PITS: None

CAVITIES: Vesicles and minor small vugs. Vesicles 0.5 mm to 3 cm,

dominantly 1 cm range.

SPECIAL FEATURES: Large vesicles (see photo) lined with felted mats of thin ilmenite needles up to 2 mm long.

Ilmenite: Thin needles line vesicles and also some in groundmass near vesicles.

Groundmass: Aphanitic. Probably crystalline because no vitreous luster and no conchoidal fractures. Appears slightly grainy under highest power.

BY: Stuart-Alexander, Hörz

.2 mm

MAJOR ELEMEN	NTS (2)	TRACE AND M	INOF	RELEMENTS	
Si0 ₂ = Ti0 ₂ = A1 ₂ O ₃ = FeO = MnO = CaO = Na ₂ O = K ₂ O = P ₂ O ₅ = Cr ₂ O ₃ =	39.02 12.28 8.91 18.93 0.27 8.90 10.78 0.38 0.08 0.05 0.15	Li Rb K Ba Sr Cr V Sc Ni Co Cu Zn Th		13.3 0.612 560 82.2 186 - 61 81.4 1.0 19.1 29 3.7 0.4004	(ID) (ID) (ID) (ID) (ID) (XRF) (NAA) (XRF) (NAA) (XRF) (XRF) (XRF) (MS)
TOTAL	100.22	U Zr	=	0.12 263	(MS) (ID)
CIPH NORM		Hf	=	-	(10)
C1PW NORM		Nb	=	10	(XRF)
Qtz = 01° = Ab = An = Di = Hy = Ne = Chr = Ilm = Apa = TOTAL	0.27 0.44 3.26 22.36 25.16 24.45 - 0.69 23.32 0.11 100.07 (Mg+Fe) = 45.6 = 86/12/2	RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu V	= = = = = = = = = = = = = = = = = = = =	11.4 22.8 - 25.3 10.5 2.10 16.6 - 18.8 - 11.1	
		Υ	=	160	(XRF)

ROCK NUMBER: 74245 WEIGHT: 64.34 g

DIMENSIONS: 5.5 x 3.5 x 2 cm

BINOCULAR DESCRIPTION

COLOR: Dark gray (N3); grayish black (N2) with a semi-metallic luster on surfaces of former cavities

SHAPE: Angular, wedge-shaped

FABRIC: Very fine-grained to aphanitic COHERENCE: Intergranular - Very tough

Fracturing: Minor fractures could yield thin chips near large cavities.

VARIABILITY: Homogeneous

SURFACE: Both of the broadest surfaces are fresh fractures. The thicker edge of the wedge and the blunt end are remnants of former interior cavity walls. They are irregular and somewhat intricately patterned but smoothed over with a black surface layer having semimetallic luster and numerous felty ilmenite needles.

ZAP PITS: None observed

CAVITIES: About 20% of fractured surfaces; 0.3 mm to 1 cm; rounded to somewhat irregular; lined with felty intergrowths of lustrous ilmenite needles.

SPECIAL FEATURES: The rock is too fine-grained to estimate a mode. It is a dense, ilmenite-rich basalt with a grain size of <0.1 mm. The groundmass includes fine needles visible only in reflected light. Yellow grains of a mafic silicate (olivine?), averaging 0.7, and totaling <5%, are sparsely disseminated through the groundmass.

BY: Marvin

.2 mm

MAJOR ELEMENTS	TRACE AND MINOR ELEMENTS	
$SiO_2 = 38.59$ $TiO_2 = 11.92$ $Al_2O_3 = 8.72$ $FeO = 18.06$ $MnO = 0.27$ $MgO = 9.65$ $CaO = 10.59$ $Na_2O = 0.36$ $K_2O = 0.06$ $P_2O_5 = 0.04$ $S = 0.14$ $Cr_2O_3 = 0.54$	Li = 8.5 Rb = 1.17 K = 655 Ba = 67.4 Sr = 159 Cr = 4630 V = - Sc = 77 Ni = - Co = 23.6 Cu = - Zn = -	(ID) (ID) (ID) (ID) (ID) (NAA) (NAA)
TOTAL 98.94	Th = 0.4 U = 0.13	(GAM) (GAM)
101AL 90.94	Zr = -	(uAn)
C1PW NORM	Hf = 8.7	(NAA)
-	Nb = -	
Qtz = - Or = 0.35 Ab = 3.05 An = 22.00 Di = 24.62 Hy = 24.42 Ne = - Ol = 0.85	RARE EARTH ELEMENTS (ID) La = 6.24 Ce = 22.2 Pr = - Nd = 24.9	
	Sm = 9.8	
Chr = 0.80 Ilm = 22.64	Sm = 9.8 Eu = 1.77 Gd = -	
Chr = 0.80	Sm = 9.8 Eu = 1.77 Gd = _ Tb = _	
Chr = 0.80 Ilm = 22.64 Apa = 0.09	Sm = 9.8 Eu = 1.77 Gd = _ Tb = _ Dy = 17.5	
Chr = 0.80 Ilm = 22.64	Sm = 9.8 Eu = 1.77 Gd = - Tb = - Dy = 17.5 Ho = - Er = 9.68	
Chr = 0.80 Ilm = 22.64 Apa = 0.09 TOTAL 98.80 100 Mg/(Mg+Fe) = 48.8	Sm = 9.8 Eu = 1.77 Gd = - Tb = - Dy = 17.5 Ho = - Er = 9.68 Tm = -	
Chr = 0.80 Ilm = 22.64 Apa = 0.09 TOTAL 98.80	Sm = 9.8 Eu = 1.77 Gd = - Tb = - Dy = 17.5 Ho = - Er = 9.68	(NAA)

WEIGHT: 737.3 g

DIMENSIONS: 13 x 7 x 6 cm

BINOCULAR DESCRIPTION

COLOR: Medium dark gray (N5 to N4)

SHAPE: Angular, irregular

FABRIC: Equigranular

COHERENCE: Intergranular - Coherent

Fracturing: One major penetrative parallel to N, with many smaller

fractures parallel to it. VARIABILITY: Homogeneous

SURFACE: T, N, S, E, and W are hackly; B is rounded.

ZAP PITS: None on T, N, S, E, and W; many on B.

CAVITIES: 10% vugs; average size 2-3 mm; lined with crystals of

pyroxene, plagioclase, ilmenite, and very rare olivine (one observed).

SPECIAL FEATURES: Large number of vugs. Possibly more plagioclase than average.

Olivine: Usually single crystals but occasional clots of 3 or 4 crystals.

Pyroxene: More yellow brown when they occur as small crystals in plagioclase.

Plagioclase: Habit variable, some blocky crystals among lathy ones.

Ilmenite: Two generations: blocky where large, but small laths in plagioclase.

BY: Agrell, Lofgren

.5 mm

MAJOR ELEMEN	<u>TS</u> (2)	TRACE AND N	INOR	ELEMENTS	
SiO ₂ = TiO ₂ = Al ₂ O ₃ = FeO = MnO = MgO =	38.18 12.47 8.69 18.05 0.28 10.61	Li Rb K Ba Sr Cr	= = = = = =	8.3 1.22 672 71.1 163	(ID) (ID) (ID) (ID)
CaO = Na2O = K2O = P2O5 = S = Cr2O3 =	10.27 0.37 0.09 0.06 0.11 0.60	V Sc Ni Co Cu Zn	= = = = = = = = = = = = = = = = = = = =	65 74.2 17 22.3 36 5.4	(XRF) (NAA) (XRF) (NAA) (XRF) (XRF)
TOTAL	99.78	Th U Zr Hf Nb	= = =	0.4451 0.1323 238 - <10	(MS) (MS) (ID) (XRF)
Qtz = Or = Ab = An =	- 0.53 3.13 21.79	RARE EARTH		ENTS (ID)	
Di = Hy = Ne = 01 =	23.30 22.35 - 3.88	La Ce Pr Nd	= =	6.5 22.5 - 24.7	
Chr = Ilm = Apa =	0.88 23.68 0.13	Sm Eu Gd Tb Dy	= = =	10.1 1.85 15.3	
TOTAL	99.67	Ho Er	=	17.3 - 10	
100 Mg/(N An/Ab/Or	Mg+Fe) = 51.2 = 86/12/2	Tm Yb Lu Y	= = =	8.93 160.0	(XRF)

WEIGHT: 1493 g

DIMENSIONS: 17 x 12 x 4 cm

BINOCULAR DESCRIPTION

COLOR: Medium dark gray (N4) SHAPE: Slabby subangular

FABRIC: Porphyritic

COHERENCE: Intergranular - Tough Fracturing: Several penetrative

VARIABILITY: Irregular distribution of cavities

SURFACE: B is fluted, from fracturing most likely, and is a very

fresh surface

ZAP PITS: Many on T, E, N, and W; few on S; none on B.

CAVITIES: 5% vugs and vesicles. Vesicles are smooth-walled, crystal lined (with ilmenite), 2 mm; vugs up to 2 cm, projecting plagioclase, pyroxene, and opaque mineral.

BY: Lofgren, Wilshire

.2 mm

MAJOR ELEMENTS (2)	TRACE AND M	INOR ELEMENTS	
$Si0_2 = 38.43$ $Ti0_2 = 12.70$ $A1_20_3 = 8.72$ Fe0 = 18.14 Mn0 = 0.26	Li Rb K Ba Sr	= 9.6 = 1.2 = 623 = 67.3 = 153	(ID) (ID) (ID)
$Mg0 = 10.36$ $Ca0 = 10.32$ $Na_20 = 0.35$ $K_20 = 0.07$ $P_20_5 = 0.06$	Cr V Sc Ni Co	= 79 = 75.1 = 3 = 23.5	(XRF) (NAA) (XRF) (NAA)
$S = 0.14$ $Cr_2O_3 = 0.65$ TOTAL 100.20	Cu Zn Th U Zr Hf	= 3 = <2 = 0.4654 = 0.1360 = 248 = 8.55	(XRF) (XRF) (MS) (MS) (XRF) (NAA)
C1PW NORM Qtz = -	Nb	= 22.1	(XRF)
Or = 0.41 Ab = 2.96 An = 22.02	RARE EARTH I	ELEMENTS (ID) = 6.33	
Di = 23.31 Hy = 24.49	Ce Pr	= 21.4	
Ne = - 01 = 1.66 Chr = 0.96	Nd Sm Eu	= 22.8 = 9.19 = 1.8	
Ilm = 24.12 Apa = 0.13	Gd Tb Dy	= 14.8 = - = 16.3	
TOTAL 100.06 100 Mg/(Mg+Fe) = 50.4	Ho Er Tm	= - = 9.66 = -	
An/Ab/Or = 86.7/11.7/1.6	Yb Lu Y	= 8.47 = - = 81.5	(XRF)

WEIGHT: 1006 g DIMENSIONS: 10 x 9 x 6 cm

BINOCULAR DESCRIPTION

COLOR: Brownish gray (a little lighter than 5YR 4/1)

SHAPE: Blocky, angular

FABRIC: Ophitic-intergranular COHERENCE: Intergranular - Tough Fracturing: Few, penetrative VARIABILITY: Irregular vug distribution

SURFACE: Moderately hackly ZAP PITS: Few on T, W, and S; none on others. CAVITIES: 10% vugs (<1-3 mm) in clusters which reach 4 x 6 cm.

The vugs are lined by projecting plagioclase, opaque, and pyroxene.

BY: Wilshire

1 mm

WEIGHT: 1235 g

DIMENSIONS: 16 x 14 x 7 cm

BINOCULAR DESCRIPTION

COLOR: Between medium gray (N5) and brownish gray (5YR 4/1)

SHAPE: Subangular, triangular

FABRIC: Plumose texture within planar fabric; minor oikocrysts

COHERENCE: Intergranular - Tough

Fracturing: None

VARIABILITY: Planar fabric apparent on some faces only

SURFACE: Hackly on fresh surfaces

ZAP PITS: None on fresh surfaces (T and N); few on S, E, and W;

many on B.

CAVITIES: 2-3%, vugs up to 5 mm. Euhedral crystals of average rock mineralogy project into vugs.

SPECIAL FEATURES:

Pyroxene: Some are zoned with darker cores and lighter yellowish

brown rims.

Plagioclase: Scattered oikocrysts to 1-2 mm.

BY: Stuart-Alexander

MAJOR ELEMEN	ITS	TRACE AND MINOR ELEMENTS	
SiO ₂ = TiO ₂ = Al ₂ O ₃ = FeO = MnO = MgO = CaO = Na ₂ O = K ₂ O = P ₂ O ₅ = Cr ₂ O ₃ = TOTAL	42.31 8.95 10.30 18.57 0.26 6.28 12.15 0.53 0.06 0.08 0.22 0.21	Li = 11.0 Rb = 0.679 K = 549 Ba = 92.9 Sr = 192 Cr = - V = 19 Sc = 79.3 Ni = <2 Co = 16.6 Cu = 2 Zn = 2 Th = 0.488 U = 0.151 Zr = 319	(ID) (ID) (ID) (ID) (XRF) (NAA) (XRF) (XRF) (XRF) (MS) (MS) (XRF)
C1PW NORM		Hf = 11.4 Nb = 29.1	(NAA) (XRF)
Qtz = Or = Ab = An = Di = Hy = Ol = Chr = Ilm = Apa =	2.26 0.36 4.48 25.55 28.55 21.02 - 0.30 17.00 0.18	RARE EARTH ELEMENTS (ID) La = _ Ce = 23.6 Pr = _ Nd = 27.3 Sm = 11.2 Eu = 2.52 Gd = 17.1 Tb = _ Dy = 19.7	
TOTAL	99.71	Ho = - Er = 11.1	
100 Mg/(An/Ab/Or	Mg+Fe) = 37.6 = 84/15/1	Tm = - Yb = 11.4 Lu = 1.7	(vp=)
		Y = 118	(XRF)

WEIGHT: 949.4 g DIMENSIONS: 21 x 14 x 1.8 cm

BINOCULAR DESCRIPTION

COLOR: White and medium brownish gray

SHAPE: Flat slab FABRIC: Equigranular

COHERENCE: Intergranular - Coherent Fracturing: Few, penetrative planar

VARIABILITY: Homogeneous except vugs unevenly distributed SURFACE: Fresh surface is platy; exposed surface gently lumpy

ZAP PITS: Few on all exposed surfaces

CAVITIES: 5% yugs, maximum size is 8 mm; filled with euhedral

crystals of plagioclase, pyroxene and ilmenite.

SPECIAL FEATURES:

Plagioclase: On fresh surface most crystals appear equant; on exposed surfaces most appear to be laths. No discernible preferred orientation.

Pyroxene: Seems zoned. Yellowish brown is <1% of pyroxene.

Ilmenite: Irregular to equant grains dominant.

BY: Stuart-Alexander, Marvin

		Control of the Contro				
MAJOR ELEMEN	ITS (2)		TRACE AND M	INOR	ELEMENTS	
SiO ₂ =	40.60		Li	=	9.35	(ID)
TiO ₂ =	10.79		Rb	=	0.584	(ID)
A1203 =	9.67		K	=	545	(ID)
Fe0 =	18.01		Ba	=	76.2	(ID)
Mn0 =	0.29		Sr	=	190.5	(ID)
Mg0 =	7.05		Cr	=	-	, ,
Ca0 =	12.35		٧	=	-	
$Na_2O =$	0.43		Sc	=	82.7	(ID)
$K_2 0 =$	0.08		Ni	=	2	(XRF)
$P_2 O_5 =$	0.06		Co	=	14.5	(ID)
S =	0.17		Cu	=	Ξ	·
Cr ₂ O ₃ =	0.27		Zn	=	7	(XRF)
TOTAL	^^ 77		Th	=	0.447	(MS)
TOTAL	99.77		U Zr	=	0.136	(MS)
			Zr Hf	=	272 7.2	(XRF)
C1PW NORM			Nb	_	25	(NAA) (XRF)
			ND	_	25	(XKF)
Qtz =	1.81					
0r =	0.47		RARE EARTH	ELEM	ENTS (ID)	
Ab =	3.64					
An ≂	24.22		La	=	6.265	
Di ≃	30.24		Ce	=	21.5	
Hy =	18.20		Pr	=	-	
Ne =	-		Nd	=	23.9	
01 = Chr =	0.40		Sm Eu	=	10.05	
Chr = Ilm =	20.49		Gd	=	2.09	
	0.13		Tb	=	15.7	
Apa =	0.10		Dy	=	18.1	
			Ho	=		
TOTAL	99.60		Er	=	10.72	
	\		Tm	=	-	
100 Mg/(Mg+Fe) = 41.1		Yb	=	9.79	
An/Ab/Or	= 85/13/2		Lu	=	-	
			Ÿ	=	112	(XRF)

WEIGHT: 1008 g

DIMENSIONS: 15 x 12 x 5 cm

BINOCULAR DESCRIPTION

COLOR: Medium dark gray with a hint of burnt sienna (N3-N4)

SHAPE: Slabby, irregular
FABRIC: Equigranular, vuggy
COHERENCE: Intergranular - Tough

Fracturing: Several fractures - one large penetrative N-S across

T and B.

VARIABILITY: Homogeneous

SURFACE: T is coated by dark gray (N2) fine-grained, cohesive patina. This in turn is partially coated by thin red brown material (10R 4/6) which has collected in shallow depressions. One large patch visible in orthogonals of T and S surfaces. Parallel microgrooves (~10 grooves/mm) run N-S over much of the T surface. B surface is fresh except for small patches of gray patina. Top and bottom may both be "mylonitized" fractures; bottom fresher with only small patches of patina.

ZAP PITS: None found

CAVITIES: Vugs occupy about 20% of the fresh surfaces; on top surface they are masked by gray coating. Most vugs 2-5 mm in size; a few are elongate, and up to 2 cm. They are irregularly distributed with no preferred orientation. Many vugs are lined with terminations of matrix crystals. Others are filled with beautiful euhedral crystals of the same minerals as in groundmass but larger in size. Crystals in vugs are: pyroxenes - elongate along their c-axes; equant on a and b, up to 3 mm long. Ilmenite - tabular with growth lines, up to 2 mm across. Troilite - up to 1 mm across. Plagioclase - tabular, up to 2 mm across. There are a few smaller vesicles(?) with smooth interiors.

SPECIAL FEATURES:

Plagioclase: Two generations(?) or all gradations

Pyroxene: Two generations: subhedral are large, anhedral are small

and intergrown with plagioclase

Olivine: Some grains isolated, most in clots up to 5 mm across

Ilmenite: Early and late generations

BY: Marvin, Reid

MAJOR ELEMENTS (2)	TRACE AND MINO	RELEMENTS	<u>.</u>
$SiO_2 = 38.07$	Li =	8.5	(ID)
$TiO_2 = 13.39$	Rb =	0.46	(ID)
$A1_20_3 = 8.25$	K =	435	(ID)
Fe0 = 18.81	Ba =	64.4	(ID)
Mn0 = 0.26	Sr =	164.6	(ID)
Mg0 = 9.59	Cr =	-	
CaO = 10.23	V =	108	(XRF)
$Na_20 = 0.39$	Sc =	78.3	(NAA)
$K_2 O = 0.05$	Ni =	1	(XRF)
$P_2 O_5 = 0.05$	Co =	20.5	(NAA)
s = 0.16	Cu =	34	(XRF)
$Cr_2O_3 = 0.56$	Zn =	5	(XRF)
	Th =	0.32	(ID)
TOTAL 99.81	U =	0.096	(ID)
	Zr =	208	(XRF)
C1PW NORM	Hf =	-	
CIT W HORN	Nb =	21	(XRF)
Qtz = 0.31			
0r = = 0.30	RARE EARTH ELE	MENTS (ID)	
Ab = 3.30	IVANE EARTH LEE	12113 (10)	
An = 20.61	La =	F 01	
Di = 24.19	Ce =	5.01	
Hy = 24.58	Pr =	17.6	
Ne = -	Nd =	10.0	
01 = -	Sm =	19.8	
Chr = 0.82	Eu =	8.29 1.77	
Ilm = 25.43	Gd =	12.9	
Apa = 0.11	Tb =		
	Dy =	15.1	
00 65	Ho =	-	
TOTAL 99.65	Er =	8.89	
17.6	Tm =	-	
100 Mg/(Mg+Fe) = 47.6	Yb =	8.31	
An/Ab/Or = 85/14/1	Lu =	-	
	Υ =	-	

WEIGHT: 86.60 g DIMENSIONS: 6 x 4 x 3 cm

BINOCULAR DESCRIPTION

COLOR: Medium gray (N5)

SHAPE: Subrounded

FABRIC: Subophitic to intergranular, fine-grained

COHERENCE: Intergranular - Coherent, tough

Fracturing: None, non-penetrative spalls on T

VARIABILITY: Homogeneous except for few scattered cavities

SURFACE: B is dusty and 3/4 coated with one 5 x 3 mm very thin transparent glass coating. E end of N has miarolitic cavities up to 6 mm long which contain pyroxene, plagioclase, olivine with a glazed surface appearance

ZAP PITS: None on B; many 0.5 mm diameter lined by gray glass on

T; many on S; few on E, W, and N.

CAVITIES: B has one 3 mm diameter miarolitic cavity. T has <1% small (<1 mm) miarolitic cavities. N, E, several larger (4-6 mm) miarolitic cavities.

SPECIAL FEATURES:

Olivine: Abundance apparently higher at E end of N near cavities,

and grain size coarser

Pyroxene: Tends to occur in clots. Larger pyroxenes are darker brown, lighter brown pyroxenes are smaller and intergrown with feldspar.

Ilmenite: Long thin plates up to 1 mm long

BY: Agrell, Reid

		•				
MAJOR ELEMEN	TS		TRACE AND M	CMI	R ELEMENTS	
SiO ₂ =	38.6		Li	=	8.9	(ID)
TiO ₂ =	12.64		Rb	=	0.67	(ID)
A1203 =	8.65		K	=	610	(ID)
Fe0 =	19.12		Ba	=	83.7	(ID)
Mn0 =	0.28		Sr	=	190	(ID)
Mg0 =	8.61		Cr	=	3790	(NAA)
CaO =	10.53		V	=	-	(,
Na ₂ 0 =	0.38		Sc	=	82	(NAA)
K ₂ 0 =	0.06		Ni	=	-	
P ₂ O ₅ =	0.06		Co	=	18.7	(NAA)
S =	0.18		Cu	=	-	, ,
Cr ₂ O ₃ =	0.44		Zn	=	~	
			Th	=	-	
TOTAL	99.55		U	=	-	
			Zr	=	-	
C1PW NORM			Hf	=	9.4	(NAA)
CIPW NORM			NЬ	=	-	
Qtz =	0.88					
0r =	0.35		RARE EARTH	EI E	MENTS (ID)	
Ab =	3.22		MAKE EARTH	LILL	MENTS (10)	
An =	21.72		La	=	6.91	
Di =	24.64		Ce	=	23.8	
Hy =	23.78		Pr	_	-	
Ne =	-		Nd	=	26.2	
01 =	-		Sm	=	10.9	
Chr =	0.65		Eu	=	2.14	
Ilm =	24.01		Gd	=	16.4	
Apa =	0.3		Tb	=	-	
			Dy	=	19.3	
	00 27		Ho	=	-	
TOTAL	99.37		Er	=	11.4	
100 11 1			Tm	=	-	
			Yb	=	10.2	
An/Ab/Or	= 86/13/1	I	Lu	=	1.42	(NAA)
			Ÿ	=	-	

WEIGHT: 103.7 g

DIMENSIONS: 5.5 x 4 x 3

BINOCULAR DESCRIPTION

COLOR: Gray (N4 to N5) with brownish tint

SHAPE: Subrounded to subangular, somewhat slabby FABRIC: Variolitic, locally trachytic COHERENCE: Intergranular - Tough

Fracturing: One penetrative parallel to slabby direction

VARIABILITY: Inhomogeneous distribution of vugs

SURFACE: Uneven, finely hackly ZAP PITS: Zapped on all sides

CAVITIES: 1-2%; up to 8 mm; contain projecting ilmenite, pyroxene,

and plagioclase crystals

SPECIAL FEATURES:

Plagioclase: lath-shaped, commonly has pyroxene(?) prisms growing

down center of laths

Olivine: Appears to be concentrated in one part of rock

BY: Keil, Dowty, Prinz

-6 0.91

CHEMISTRY

MAJ	OR ELE	MEN	ITS		TRACE AND M	INOF	ELEMENTS	
	SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO		38.40 13.70 7.80 20.20 0.25		Li Rb K Ba Sr Cr	= = = = =	- 332 -	(NAA)
	CaO Na ₂ O	==	9.40 9.40 0.33		V Sc	=	120 80	(NAA) (NAA)
	K ₂ 0 P ₂ 0 ₅ S	=	0.04 - -		Ni Co Cu	=======================================	24.6	(NAA)
	Cr ₂ O ₃	=	0.48	-	Zn Th U	=	-	
CID			100.00		Zr Hf	=	- 6.2	(NAA)
CIP	W NORM				Nb	=	-	(,
	Qtz Or Ab	= =	1.39 0.24 2.79		RARE EARTH	ELEM	<u>IENTS</u> (NAA)
	An Di Hy	= =	19.68 21.96 27.21		La Ce Pr	= =	4.7 18	
	Ne 01	=	-		Nd Sm	=	18 6	
	Chr Ilm Apa	=	0.71 26.02		Eu Gd Tb	==	1.25 - 1.6	
	TOTAL	-	100.00	-	Dy Ho	=	10	
	· OITIL				Γ	_		

160 Mg/(Mg+Fe) = 45.3An/Ab/Or = 87/12/1

WEIGHT: 577.8 g DIMENSIONS: 10.5 x 8.5 x 3.5 cm

BINOCULAR DESCRIPTION

COLOR: Gray with brownish cast (N5)

SHAPE: Slabby subrounded

FABRIC: Large poikilitic plagioclases COHERENCE: Intergranular - Tough

Fracturing: None VARIABILITY: None

SURFACE: Hackly. Partial glass coating one surface

ZAP PITS: Zapped on all sides CAVITIES: 1%, from <1 cm to 6 mm vugs with projecting pyroxene and

opaque crystals

SPECIAL FEATURES: Plagioclase in poikilitic grains. Intergrowths of pyroxene and ilmenite, about 1 x 2 mm, form 5% of the rock.

BY: Keil, Dowty, Prinz

MAJOR ELEMENTS	TRACE AND M	INO	R ELEMENT	S
$SiO_2 = 38.57$ $TiO_2 = 12.39$ $Al_2O_3 = 8.95$ FeO = 18.53 MnO = 0.27 MgO = 8.85 CaO = 10.66 $Na_2O = 0.39$ $K_2O = 0.05$ $P_2O_5 = 0.04$ S = 0.16	Li Rb K Ba Sr Cr V Sc Ni Co Cu		9.7 0.55 526 70.7 184 3810 - 80 - 20.4	(ID) (ID) (ID) (ID) (ID) (NAA) (NAA)
S = 0.16 $Cr_2O_3 = 0.43$	Zn	=	-	
	Th	=	-	
TOTAL 99.29	U Zr	=	-	
C1PW NORM	Hf	=	8.6	(NAA)
CIT W HORN	Nb	=	-	
Qtz = 0.45 Or = 0.30 Ab = 3.30	RARE EARTH	ELE	MENTS (IC))
An = 22.52	La	=	5.24	
Di = 24.55 Hy = 23.77	Ce Pr	=	18.3	
Ne = -	Nd	=	20.7	
01 = -	Sm	=	8.7	
Chr = 0.63	Eu	=	1.98	
I1m = 23.53	Gd	=	13.6	
Apa = 0.09	ТЬ	=	-	
	Dy Ho	=	15.8	
TOTAL 99.13	Er	=	9.84	
100 N=4/N=4F=1 = 46 0	Tm	=	-	
100 Mg/(Mg+Fe) = 46.0	Yb	=	8.91	
An/Ab/0r = 86/13/1	Lu	=	1.29	(NAA)

WEIGHT: 355.3 g DIMENSIONS: 11 x 7.0 x 3.5 cm

BINOCULAR DESCRIPTION

COLOR: Brownish gray (5 YR 4/1) SHAPE: Tabular, subrounded

FABRIC: Subophitic

COHERENCE: Intergranular - Tough

Fracturing: Penetrative normal to major and intermediate axes VARIABILITY: Some textural variation

SURFACE: Hackly; one side has partial glass coating

ZAP PITS: All zapped except glass-coated side

CAVITIES; 1% yugs with projecting pyroxenes, and ilmenite to 2 mm SPECIAL FEATURES: Glass on unpitted side, also one 1 cm square area on this surface looks slickensided. Plagioclase laths may have weak preferred orientation. Brown mafic clots of 80% pyroxene and 20% opaques average 3 x 4 mm and reach 10 x 15 mm. One plagioclase crystal is 10 x 3 cm and is poikilitic.

BY: Keil, Dowty, Prinz

TRACE AND MINOR ELEMENTS MAJOR ELEMENTS Li $SiO_2 =$ 38.11 $TiO_2 = 14.50$ Rb K $A1_20_3 =$ 8.0 581 (NAA) Ba Fe0 = 18.80 Sr Mn00.23 Cr Mg0 = 9.20 ٧ CaO = 10.20 140 (NAA) Sc $Na_20 =$ 0.33 78 (NAA) Ni = K2 0 0.07 Co $P_2 O_5 =$ 17.8 (NAA) Cu = Zn 0.56 $Cr_2O_3 =$ Th = TOTAL U 100.00 = Zr = Hf = 8.8 (NAA) C1PW NORM Nb 2.14 Qtz 0r = 0.41 RARE EARTH ELEMENTS (NAA) 2.79 Ab = = 20.14 An La 6.1 Di = 24.61Ce 20 = 21.55 Ну Pr = Ne Nd 25 01 Sm = 8.5 Chr 0.82 Eu 1.94 = 27.54Ilm Gd = 2 Apa TЬ Dy = 14 Ho 100.01 TOTAL Er = Tm = 100 Mg/(Mg+Fe) = 46.6Yb 8.5 An/Ab/0r = 86/12/2= 1.3 Lu = Y

WEIGHT: 133.9 g DIMENSIONS: 5 x 4 x 3 cm

BINOCULAR DESCRIPTION

COLOR: Medium gray (N4)

SHAPE: Irregular FABRIC: Equigranular

COHERENCE: Intergranular - Coherent Fracturing: Several non-penetrative

VARIABILITY: Homogeneous

SURFACE: T is hackly, part original and part broken surface, B is 50% covered by a 0.2 mm thick film of dark glass with a patch of fine adherent dust concentrated at south end. S face has a thin glass veneer which covers 50% of surface and thins toward N.

ZAP PITS: Few on T (S half), B, S; none on W and N.

CAVITIES: 5%, small vugs (<2 mm diameter) are common. These may be aligned, interconnected, and control the direction of some nonpenetrative fractures; idiomorphic pyroxene and plagioclase are visible on the walls of the vugs.

SPECIAL FEATURES: Pyroxene in plagioclase is cinnamon brown in color, but polycrystalline groups possibly associated with ilmenite are darker, duller brown.

Plagioclase: Also interstitial, orientation random Opaques: Tabular - associated with pyroxene.

BY: Meyer, Agrell

MAJOR ELEMEN	NTS		TRACE AND M	INC	R ELEMENT	<u>S</u>
SiO ₂ =	37.98		Li	=	9.2	(ID)
TiO ₂ =	12.89		Rb	=	0.58	(ID)
A1203 =	8.38		K	=	545	(ID)
Fe0 =	19.05		Ba	=	74.1	(ID)
MnO =	0.27		Sr	=	174	(ID)
Mg0 =	8.69		Cr	=	4010	(NAA)
Ca0 =	10.71		٧	=	-	
$Na_2O =$	0.36		Sc	=	84	(NAA)
K ₂ 0 =	0.05		Ni	=	-	
P ₂ O ₅ =	0.04		Co	=	18.4	(NAA)
S =	0.18		Cu	=	-	
$Cr_2O_3 =$	0.45		Zn	=	-	
			Th	===	0.35	(GAM)
TOTAL	99.05		U	=	0.11	(GAM)
			Zr	=	-	
CIPU NODM			Hf	=	9.3	(NAA)
C1PW NORM			Nb	=	-	
Qtz =	0.47					
Or =	0.30		RARE EARTH	ELE	MENTS (II))
Ab =	3.05					
An =	21.10		La	=	5.80	
Di =	25.93		Ce	=	20.2	
Hy =	22.8		Pr	=		
Ne =	-		Nd	=	22.4	
01 =	-		Sm	=	9.43	
Chr =	0.66		Eu	=	1.93	
Ilm =	24.48		Gd	=	14.9	
Apa =	0.09		Tb	=		
			Dy	=	17.0	
	00 07		Ho	=		
TOTAL	98.87		Er	=	10.5	
	(Tm	=		
100 Mg/		44.8	Yb	=	9.21	
An/Ab/Or	86/13	3/1	Lu	=	1.33	(NAA)
			Y	=		(MAA)
				_	-	

ROCK NUMBER: 78505 WEIGHT: 506.3 g

DIMENSIONS: $6.5 \times 7.5 \times 8.0 \text{ cm}$

BINOCULAR DESCRIPTION

COLOR: Medium dark brownish gray (between 5YR 4/1 and N4)

SHAPE: Blocky, irregular

FABRIC: Not oriented; diabasic - intergranular COHERENCE: Intergranular - Massive, coherent

Fracturing: Several penetrative fractures; few approximately

parallel to S face, otherwise irregular

√ARIABILITY: Homogeneous

SURFACE: All hackly except S and parts of T and B, which have a smooth 0.5-1 mm thick adhering soil cover which smooths the surface.

ZAP PITS: Fresh hackly faces have no pits. Of the soil covered faces: none on W, and few on S. Pits are difficult to identify

because of hackly surfaces.

CAVITIES: 5% vugs, with a size range 1-5 mm, half brown pyroxene and half glassy plagioclase, average 2.0 mm and irregular shapes. No orientation. Contain euhedral mineral projecting from the body of the rock into vugs. Ilmenite is present in a few vugs but decidely rare.

SPECIAL FEATURES:

Olivine: Clear, appear to be microphenocrysts. No apparent zoning. Irregularly scattered.

Pyroxene: Only one type of pyroxene. Occasionally changes

color to deep reddish-brown.

Plagioclase: The poikilitic feldspar includes well shaped crystals of pyroxene and ilmenite and tends to form larger crystals than the other feldspar.

Silica: Concentrated near vugs; clear, glassy luster.

BY: Jackson, Ridley

ALLOCATED, BUT NOTHING PUBLISHED

CHEMISTRY

MAJOR ELEMENTS	TRACE AND MINOR ELEMENTS
SiO ₂ =	Li =
$TiO_2 =$	Rb =
A1203 =	K =
Fe0 =	Ba =
Mn0 =	Sr =
Mg0 =	Cr = V =
CaO =	
Na ₂ 0 =	Sc =
K ₂ 0 =	Ni =
P ₂ O ₅ =	Co =
S =	Cu =
Cr ₂ O ₃ =	Zn =
TOTAL	Th =
TOTAL	<u>u</u> =
	Zr =
C1PW NORM	Hf =
	Nb =
Qtz =	
0r =	RARE EARTH ELEMENTS
Ab =	
An =	La =
An = Di =	La = Ce =
Di =	
Di =	Ce =
Di	Ce = Pr = Nd =
Di = Hy = Ne =	Ce = Pr = Nd =
Di = Hy = Ne = Ol =	Ce = Pr = Nd = Sm =
Di = Hy = Ne = Ol = Chr = Ilm =	Ce = Pr = Nd = Sm = Eu =
Di = Hy = Ne = Ol = Chr = Ilm =	Ce = Pr = Nd = Sm = Eu = Gd = Tb =
Di	Ce = Pr = Nd = Sm = Eu = Gd = Tb =
Di = Hy = Ne = Ol = Chr = Ilm =	Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy =
Di	Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho =
Di	Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er =
Di	Ce = Pr = Nd = Sm = Eu = Gd = Tb = Dy = Ho = Er = Tm =

C-5-

WEIGHT: 55.97 g

DIMENSIONS: 4 x 4.5 x 3 cm

BINOCULAR DESCRIPTION

COLOR: Medium gray with brownish tint (N4-5YR 4/1)

SHAPE: Irregular, subangular

FABRIC: Intergranular

COHERENCE: Intergranular - Tough

Fracturing: Irregular penetrative fractures VARIABILITY: Vugs inhomogeneously distributed

SURFACE: Hackly

ZAP PITS: None on W, E, N; few on B, T, and S.

CAVITIES: 5-10%, irregular, elongate vugs with an average size 2 mm to 5 mm occur in clusters. Normal rock texture at vug walls, but coarser in vugs. Projecting feldspar in vugs on E face. SPECIAL FEATURES:

Plagioclase: Pyroxene and opaque inclusions. 3 x 4 mm blocky, clots of ilmenite and pyroxene compose about 10% of the rock. Pyroxenes: Appear to be lighter colored than in several other basalts.

Olivine: Occurs in clusters; more seen on W than elsewhere.

Silica: Lines cavities.

BY: Wilshire, Ridley

MAJOR ELEMENTS	TRACE AND M	INOR	ELEMENTS	<u> </u>
$SiO_2 = 38.55$ $TiO_2 = 12.93$	Li Rb	-	9.4	(ID)
A1203 = 8.99	K	=	429	(ID)
Fe0 = 19.36	Ba	=	65.9	(ID)
Mn0 = 0.27	Sr	=	175	(ID)
Mg0 = 9.59	Cr	= (4200	(NAA)
Ca0 = 9.94	V	=	-	
$Na_20 = 0.39$	Sc	=	73	(NAA)
$K_2 0 = 0.46$	Ni	=	-	
$P_2 O_5 = 0.02$	Co	=	17.6	(NAA)
S = 0.16	Cu	=	-	
$Cr_2O_3 = 0.51$	Zn	=	-	
Process Contraction Contractio	Th	=	-	
TOTAL 100.76	U	=	-	
	Zr	=	-	
CIPW NORM	Hf	=	8.2	(NAA)
CIPW NORM	Nb	2	-	, ,
Qtz = -				
0r = 0.30	RARE EARTH	FLEM	ENTS (ID	1)
Ab = 3.30	TOTAL CONTRACTOR		() 2	, ,
An = 22.63	La	=	5.10	
Di = 21.62	Ce	=	17.8	
Hy = 26.84	Pr	=		
Ne = -	Nd	=	19.6	
01 = 0.56	Sin	=	8.19	
Chr = 0.75	Eu	=	1.85	
Ilm = 24.56	Gd	=	12.9	
Apa = 0.04	Tb	=	12.9	
- 0.04	Dy	=	14.9	
	Ho	=	14.9	
TOTAL 100.60	Er	_		
	Tm	=	-	
100 Mg/(Mg+Fe) = 46.9	Yb	=	7.99	
An/Ab/Or = 86/13/1	Lu	=	1.11	(NAA)
	Y	_	-	(IIAA)

ROCK NUMBER: 78575 WEIGHT: 140.0 g

DIMENSIONS: 5.8 x 4.8 x 3.4 cm

BINOCULAR DESCRIPTION

COLOR: Medium gray (N5)

SHAPE: Subrounded FABRIC: Isotropic

COHERENCE: Intergranular - Coherent

Fracturing: None VARIABILITY: None SURFACE: Granulated

ZAP PITS: Few CAVITIES: 2% yugs SPECIAL FEATURES:

BY: Keil, Dowty, Prinz

MAJOR ELEMENTS	TRACE AND MINO	R ELEMENTS	
$SiO_2 = 42.62$	Li =	_	
$TiO_2 = 11.80$	Rb =	-	
$A1_20_3 = 9.00$	K =	332 (NAA))
Fe0 = 17.0	Ba =	-	
Mn0 = 0.22	Sr =	-	
MgO = 7.50	Cr =	· · · · · · · · · · · · · · · · · · ·	
CaO = 11.00	V =	100 (NAA)	
$Na_2 O = 0.36$	Sc =	75 (NAA))
$K_2 0 = 0.04$	Ni =	76.7 (NAA)	
P ₂ O ₅ = -	Co =	16.1 (NAA))
$S = Cr_2 O_3 = 0.46$	Cu = Zn =	-	
$Cr_2 O_3 = 0.46$	Zn = Th =	-	
TOTAL 100.00	U =	-	
TOTAL TOOLOG	Zr =	-	
early worse	Hf =	5.4 (NAA))
C1PW NORM	Nb =	-	,
0+ 7.12			
Qtz = 7.13 Or = 0.24	RARE EARTH ELE	MENTS (NAA)	
Ab = 3.05	KAKE LAKTH ELE	HENTS (NAA)	
An = 22.82	La =	2.6	
Di = 25.88	Ce =	3.6 15	
Hy = 17.79	Pr =	-	
Ne = -	Nd =	-	
01 = -	Sm =	6.7	
Chr = 0.68	Eu =	1.47	
I1m = 22.41	Gd =	-	
Apa = -	Tb =	1.8	
	Dy =	11	
TOTAL 100.00	Ho =	-	
TOTAL	Er =	-	
100 Mg/(Mg+Fe) = 44.0	Tm =	. .	
An/Ab/Or = 87/12/1	Yb =	6.6	
	Lu = Y =	0.95	

ROCK NUMBER: 78585 WEIGHT: 44.56 g

DIMENSIONS: 4 x 3 x 2.5 cm

BINOCULAR DESCRIPTION

COLOR: Medium dark gray (N-4)

SHAPE: Subangular

FABRIC: Fine-grained, holocrystalline(?)

COHEREMCE: Intergranular, tough

Fracturing: Very few, non-penetrative, concentrated near freshly

broken surface

VARIABILITY: Concentration of vugs variable

SURFACE: Fresh surface hackly with some dust, other surfaces

smooth and dust covered

ZAP PITS: Few, less than 1/2 mm diameter, possible glass linings,

no obvious pits

CAVITIES: Irregularly distributed, less than 1 mm vugs, less than

2% vugs usually, locally up to 10% SPECIAL FEATURES: No obvious pits on rock

BY: Lofgren

.5 mm

	OHEHIZOH	• •		
MAJOR ELE	MENTS	TRACE AND M	INOR ELEM	ENTS
S10 ₂	=	Li	=	
Ti02	=	Rb	=	
A1203	=	K	=	
Fe0	=	Ba	=	
Mn0	=	Sr	E	
Mg0	=	Cr	=	
CaO	=	V	= 79	(NAA)
Na ₂ O	=	Sc	= 86	(NAA)
K ₂ 0	2	Ni	=	,
P2 05	=	Co	= 21	(NAA)
S	=	Cu	=	
Cr2 03	=	Zn	=	
		Th	=	
TOTAL		U	=	
		Zr	=	
C1PW NORM		Hf	= 6.4	(NAA)
CITH HORT	•	Nb	=	
Qtz	=			
0r	=	RARE EARTH	ELEMENTS	(NAA)
Ab	=			
An	=	La	= 5.6	
Di	=	Ce	= 20	
Ну	=	Pr	=	
Ne	=	Nd	= 21	
01	=	Sm	= 7.5	
Chr	=	Eu	= 1.42	
Ilm	=	Gd	=	
Apa	=	Tb	= 1.8	
		Dy	= 12	
TOTAL		Но	=	
		Er	=	
100 M	g/(Mg+Fe) =	Tm	- 60	
An/Ab	/0r =	Yb	= 6.9	
		Ļu	= 0.97	
		Y	=	

ROCK NUMBER: 78597 WEIGHT: 319.1 g

DIMENSIONS: 6.7 x 5.7 x 5.0 cm

BINOCULAR DESCRIPTION

COLOR: Medium dark gray (N4)

SHAPE: Subangular FABRIC: Isotropic

COHERENCE: Intergranular - Coherent Fracturing: None VARIABILITY: None SURFACE: Granulated ZAP PITS: None

CAVITIES: 5% vesicles. Large crystals of olivine and pyroxene in vesicles. SPECIAL FEATURES:

BY: Keil, Dowty, Prinz

.5 mm

MAJOR ELEM	NTS		TRACE AND M	INO	R ELEMENT	<u>s</u>
Ti02 :	38. 12.	39	Lí Rb K	=	9.9 0.37	(ID)
	8.		Ba	=	396	(ID)
	19.		Sr	_	60.6	(TD)
Mg0 =	0.		Cr	=	130 2800	(ID) (NAA)
	10.		V	=	100	(NAA)
	0.		Sc	=	85	(NAA)
14.0	0.		Ni	=	-	(,
	0.		Co	=	20.7	(NAA)
•	0.		Cu	=	-	
Cr203 :	0.	32	Zn Th	=	-	(0)
TOTAL	99.	F.6	ΰ	-	0.38	(GAM)
101712	99.	56	Zr	=	0.11	(GAM)
CIPU NORM			Hf	=	6.8	(NAA)
C1PW NORM			Nb	=	-	(MAA)
Qtz =	0.	80				
0r =			RARE EARTH	ELE	MENTS (II))
Ab =	3.				(1)	- /
An =	22.	28	La	=	5.67	
Di :			Ce	=	17.9	
	22.	75	Pr	=		
	-		Nd	=	18.8	
01 = Chr =		4.7	Sm	=	7.17	
	23.		Eu Gd	=	1.48 11.2	
	: 0.		Tb	=	-	
при	· ·		Dy	=	13.0	
TOTAL	00	27	Ho	=	-	
TOTAL	99.	3/	Er	=	7.94	
100 Mg	(Ma+F	e) = 41.5	Tm	=	-	
An/Ab/0			Yb	=	7.37	(
,,		-,, .	Lu	=	1.07	(NAA)
			v	-	_	

ROCK NUMBER: 78598 WEIGHT: 224.1 g

DIMENSIONS: 8.6 x 4.5 x 4.5 cm

BINOCULAR DESCRIPTION

COLOR: Medium gray (N5)

SHAPE: Angular to subangular FABRIC: Isotropic

COHERENCE: Intergranular - Coherent

Fracturing: None VARIABILITY: None SURFACE: Granulated ZAP PITS: Few

CAVITIES: 2% vugs

SPECIAL FEATURES: Covered with dust making description difficult.

Too fine-grained to see minerals clearly.

BY: Keil, Dowty, Prinz

.5 mm

MAJOR ELEMENTS	TRACE AND MINOR ELEMENTS
SiO ₂ = 44.94	Li = _
$Ti0_2 = 8.90$	Rb = _
A1203 = 10.00	K = 623 (NAA)
Fe0 = 18.50	Ba = -
MnO = 0.25	Sr = -
Mg0 = 5.20	Cr = -
CaO = 11.50	V = 20 (NAA)
$Na_20 = 0.44$	Sc = 72 (NAA)
$K_2 0 = 0.08$	Ni = -
P ₂ O ₅ = -	Co = 15 (NAA)
S = -	Cu = -
$Cr_2O_3 = 0.20$	Zn = -
	Th = -
TOTAL 100.00	y = -
	2r = -
CIDH NORM	Hf = 9.7 (NAA)
C1PW NORM	Nb = -
Qtz = 7.69	
0r = 0.44	RARE EARTH ELEMENTS (NAA)
Ab = 3.72	MAKE EARTH ELEMENTS (MAA)
An = 25.09	La = 7.8
Di = 26.82	Ce = 30
Hy = 19.04	Pr = -
Ne = -	Nd = 30
01 = -	Sm = 11.6
Chr = 0.29	Eu = 2.4
Ilm = 16.90	Gd = -
Apa = -	Tb = 3
лра -	Dy = 19
	Ho = -
TOTAL 100.00	Er = -
	Tm = -
100 Mg/(Mg+Fe) = 33.4	$Y_b = 10.3$
An/Ab/Or =85.8/12.7/1.5	Lu = 1.5
	Y = -

ROCK NUMBER: 78599 WEIGHT: 198.6 g

DIMENSIONS: $7.2 \times 4.7 \times 3.0 \text{ cm}$

BINOCULAR DESCRIPTION

COLOR: Medium gray (N5)
SHAPE: Subrounded
FABRIC: Isotropic
COHERENCE: Intergranular Fracturing: None
VARIABILITY: None
SUBFACE Granulated SURFACE Granulated ZAP PITS: Many CAVITIES: 2% vugs SPECIAL FEATURES:

BY: Keil, Dowty, Prinz

MAJOR ELEMENTS	TRACE AND M	INO	RELEMENT	<u>S</u>
SiO ₂ = 38.44 TiO ₂ = 12.52 Al ₂ O ₃ = 8.67 FeO = 19.14 MnO = 0.28 MgO = 8.47 CaO = 10.48 Na ₂ O = 0.38 K ₂ O = 0.06 P ₂ O ₅ = 0.04 S = 0.18 Cr ₂ O ₃ = 0.43 TOTAL 99.09	Li Rb K Ba Sr Cr V Sc Ni Co Cu Zn Th U Zr		10.4 0.71 699 83.2 190 3600 - 79 - 18.4	(ID) (ID) (ID) (ID) (ID) (NAA) (NAA)
C1PW NORM	Hf Nb	=	10.1	(NAA)
Qtz = 0.84 Or = 0.35 Ab = 3.22 An = 21.77 Di = 24.51 Hy = 23.72 Ne = - Ol = - Chr = 0.63 Ilm = 23.78 Apa = 0.09 TOTAL 98.91 100 Mg/(Mg+Fe) An/Ab/Or = 85	 RARE EARTH La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y	<u>ELEN</u>	6,45 23.7 25.8 11.0 2.12 16.6 18.8 11.2 10.2 1.46	(NAA)

ROCK NUMBER: 79155

WEIGHT: 318.8 g DIMENSIONS: 8 x 6 x 5 cm

BINOCULAR DESCRIPTION

COLOR: Rock - brownish gray to light brownish gray (5YR 4/1 - 5YR 6/1)

SHAPE: Subrounded

FABRIC: Coarse grained subdiabasic COHERENCE: Intergranular - Tough

Fracturing: None in rock; array of thin, tension fractures in glass

VARIABILITY: Homogeneous

SURFACE: Dark glass approximately 1 mm thick, covers all of B face and greater than 1/3 of W and S faces; the glass dwindles to

discontinuous smears on E face.

ZAP PITS: Common on all exposures of gabbro. The rock is coarse-grained enough so that glass lining in zaps ranges from white to pale yellow or green to dark gray. Zaps absent from the glass coat on B face, but abundant on the glass coating of S face. Zaps in the dark glass have fractured haloes that are conspicuously orange.

CAVITIES: Very minor (<1%), 4 or 5 irregular cavities, each about 4-5 mm across, occur in center of N face. A few rounded cavities

occur in the glass.

SPECIAL FEATURES: The rock is a homogeneous gabbro with minor variations in grain size. It is about 1/2 covered with an exceptionally smooth coating of glass having relatively few minute gas vents and vesicles. To the naked eye, the glass is dark gray with a dull submetallic luster; where vesicles are broken open their walls are smooth, bright, and vitreous. The glass also has a very few, small (≤1 mm), rounded blebs. Under the binoculars, the glass is seen to be dark molasses brown, which, in fine particles (zap haloes) is orange. Thin veinlets of glass penetrate the gabbroic rock (evident on T and W). Similar glass also partially fills the cavities on the N face where zaps are made conspicuous by orange haloes. On E face, the glass thins out and exposes the underlying rock in subangular patches. However, some triangular patches of finer grained basalt are also present. These may be a marginal phase of main rock or adhering clasts or another composition. In this area there are one or two 1-2 mm patches of green material - probably green glass, but possibly olivine grains.

Plagioclase: Shows tendency to occur in randomly oriented laths. Percentage also includes a small amount of colorless and vitreous plagioclase(?) or cristobalite(?).

Pyroxene: Rather coarse - sometimes clearly interstitial. Others

not so clearly.

Olivine: Occurs in and around plagioclase grains

Opaque: Occurs in and with the pyroxene.

BY: Marvin

MAJOR ELEMENTS (2)	TRACE AND MINOR ELEMENT	<u>s</u>
$SiO_2 = 38.31$	Li = 9	(ID)
$TiO_2 = 12.77$		(ID)
$A1_20_3 = 8.99$		(ID)
Fe0 = 18.62		(ID)
Mn0 = 0.27		(ID)
Mg0 = 9.36		(NAA)
Ca0 = 10.24		(XRF)
$Na_20 = 0.37$		(NAA)
$K_20 = 0.07$		(NAA)
$P_2 O_5 = 0.05$		(NAA)
S = 0.17		(NAA)
$Cr_2O_3 = 0.50$		(NAA)
C1203 - 0.30	- Th = 0.793	(MS)
TOTAL 99.72		
101AL 33.72	Zr = 222	(ID)
	Hf = 8.77	(NAA)
C1PW NORM	Nb = 17.4	(NAA)
		(NAA)
Qtz = 0.14		
QLZ - 0.14		
0r = 0.41	RARE EARTH ELEMENTS (I	D)
	RARE EARTH ELEMENTS (I	D)
0r = 0.41	RARE EARTH ELEMENTS (I	D)
$ \begin{array}{rcl} 0r & = & 0.41 \\ Ab & = & 3.13 \end{array} $	RARE EARTH ELEMENTS (I	D)
Or = 0.41 Ab = 3.13 An = 22.66 Di = 22.62	RARE EARTH ELEMENTS (I La = 5.2 Ce = 17.9	0)
Or = 0.41 Ab = 3.13 An = 22.66 Di = 22.62 Hy = 25.48	RARE EARTH ELEMENTS (I La = 5.2 Ce = 17.9 Pr = -	D)
Or = 0.41 Ab = 3.13 An = 22.66 Di = 22.62 Hy = 25.48 Ne = -	RARE EARTH ELEMENTS (I La = 5.2 Ce = 17.9 Pr = - Nd = 20.1	0)
Or = 0.41 Ab = 3.13 An = 22.66 Di = 22.62 Hy = 25.48 Ne = - O1 = -	RARE EARTH ELEMENTS (I La = 5.2 Ce = 17.9 Pr = Nd = 20.1 Sm = 8.5	0)
Or = 0.41 Ab = 3.13 An = 22.66 Di = 22.62 Hy = 25.48 Ne = - O1 = - Chr = 0.74	RARE EARTH ELEMENTS (I La = 5.2 Ce = 17.9 Pr = - Nd = 20.1 Sm = 8.5 Eu = 1.88	0)
Or = 0.41 Ab = 3.13 An = 22.66 Di = 22.62 Hy = 25.48 Ne = - Ol = - Chr = 0.74 Ilm = 24.25	RARE EARTH ELEMENTS (I La = 5.2 Ce = 17.9 Pr = - Nd = 20.1 Sm = 8.5 Eu = 1.88 Gd = 13.2	0)
Or = 0.41 Ab = 3.13 An = 22.66 Di = 22.62 Hy = 25.48 Ne = - Ol = - Chr = 0.74 Ilm = 24.25	RARE EARTH ELEMENTS (I La = 5.2 Ce = 17.9 Pr = - Nd = 20.1 Sm = 8.5 Eu = 1.88 Gd = 13.2 Tb = -	0)
Or = 0.41 Ab = 3.13 An = 22.66 Di = 22.62 Hy = 25.48 Ne = - Ol = - Chr = 0.74 Ilm = 24.25 Apa = 0.11	RARE EARTH ELEMENTS (I La = 5.2 Ce = 17.9 Pr = - Nd = 20.1 Sm = 8.5 Eu = 1.88 Gd = 13.2 Tb = - Dy = 15.6	0)
Or = 0.41 Ab = 3.13 An = 22.66 Di = 22.62 Hy = 25.48 Ne = - Ol = - Chr = 0.74 Ilm = 24.25	RARE EARTH ELEMENTS (I La = 5.2 Ce = 17.9 Pr = - Nd = 20.1 Sm = 8.5 Eu = 1.88 Gd = 13.2 Tb = - Dy = 15.6 Ho = -	0)
Or = 0.41 Ab = 3.13 An = 22.66 Di = 22.62 Hy = 25.48 Ne = - O1 = - Chr = 0.74 Ilm = 24.25 Apa = 0.11 TOTAL 99.55	RARE EARTH ELEMENTS (I La = 5.2 Ce = 17.9 Pr = - Nd = 20.1 Sm = 8.5 Eu = 1.88 Gd = 13.2 Tb = - Dy = 15.6 Ho = - Er = 9.22	0)
Or = 0.41 Ab = 3.13 An = 22.66 Di = 22.62 Hy = 25.48 Ne = - O1 = - Chr = 0.74 Ilm = 24.25 Apa = 0.11 TOTAL 99.55	RARE EARTH ELEMENTS (I La = 5.2 Ce = 17.9 Pr = Nd = 20.1 Sm = 8.5 Eu = 1.88 Gd = 13.2 Tb = Dy = 15.6 Ho = Er = 9.22 Tm =	0)
Or = 0.41 Ab = 3.13 An = 22.66 Di = 22.62 Hy = 25.48 Ne = - O1 = - Chr = 0.74 Ilm = 24.25 Apa = 0.11 TOTAL 99.55	RARE EARTH ELEMENTS (I La = 5.2 Ce = 17.9 Pr = Nd = 20.1 Sm = 8.5 Eu = 1.88 Gd = 13.2 Tb = Dy = 15.6 Ho = Er = 9.22 Tm = Yb = 8.51	0)
Or = 0.41 Ab = 3.13 An = 22.66 Di = 22.62 Hy = 25.48 Ne = - O1 = - Chr = 0.74 Ilm = 24.25 Apa = 0.11 TOTAL 99.55	RARE EARTH ELEMENTS (I La = 5.2 Ce = 17.9 Pr = Nd = 20.1 Sm = 8.5 Eu = 1.88 Gd = 13.2 Tb = Dy = 15.6 Ho = Er = 9.22 Tm =	0)

BIBLIOGRAPHY

- Anders, E., Ganapathy, R., Keays, R. R., Laul, J. C. and Morgan, J. W. (1971)

 Volatile and Siderophile Elements in Lunar Rocks Comparison with

 Terrestrial and Meteoritic Basalts. Proc. Lunar Sci. Conf. 2nd, 1021-1036.
- Annell, C. S. and Helz, A. W. (1970) Emission Spectrographic Determination of Trace Elements in Lunar Samples from Apollo 11. Proc. Apollo 11 Lunar Sci. Conf. 991-994.
- Baedecker, P. A., Schaudy, R., Elzie, J. L., Kimberlin, J. and Wasson, J. T. (1971) Trace Element Studies of Rocks and Soils from Oceanus Procellarum and Mare Tranquillitatis. Proc. Lunar Sci. Conf. 2nd, 1037-1062.
- Baedecker, P. A., Chou, C.-L., Grudewicz, E. G. and Wasson, J. T. (1973)

 Volatile and Siderophilic Trace Elements in Apollo 15 Samples Geochemical Implications and Characterization of the Long-Lived and Short-Lived Extralunar Materials. Proc. Lunar Sci. Conf. 4th, 1177-1196.
- Baedecker, P. A., Chou, C. -L., Sundberg, L. L. and Wasson, J. T. (1974)
 Volatile and Siderophilic Trace Elements in the Soils and Rocks of
 Taurus-Littrow. Proc. Lunar Sci. Cond. 5th, 1625-1644.
- Bansal, B. M., Gast, P. W., Hubbard, N., J., Nyquist, L. E., Rhodes, J. M., Shih, C. -Y. and Wiesmann, H. (1973) Lunar Rock Types. Lunar Sci. Iv, Lunar Sci. Inst., Houston, 48-50.
- Barnes, I. L., Garner, E. L., Gramlich, J. W., Machlan, L. A., Moody, J. R., Moore, L. J., Murphy, T. J. and Shields, W. R. (1973) The Pb-U-Th and Rb-Sr Systematics of Some Apollo 15 and Apollo 16 Samples. Lunar Sci. IV, Lunar Sci. Inst., Houston, 51-53.
- Barnes, I. L., Garner, E. L., Gramlich, J. W., Machlan, L. A., Moody, J. R., Moore, L. J., Murphy, T. J. and Shields, W. R. (1973) Isotopic Abundance Ratios and Concentrations of Selected Elements in Some Apollo 15 and Apollo 16 Samples. Proc. Lunar Sci. Conf. 4th, 1197-1208.
- Bouchet, M., Kaplan, G., Voudon, A. and Bertoletti, M. -J. (1971) Spark Mass Spectrometric Analysis of Major and Minor Elements in Six Lunar Samples. Proc. Lunar Sci. Conf. 2nd, 1247-1252.
- Brown, G. M., Emeleus, C. H., Holland, J. G. and Phillips, R. J. (1970)

 Mineralogical, Chemical and Petrological Features of Apollo 11 Rocks and
 Their Relationship to Igneous Process. Proc. Apollo 11 Lunar Sci. Conf.,
 195-220.
- Brunfelt, A. O., Heier, K. S., Nilssen, B., Steinnes, E. and Sundvoll, B. (1972) Elemental Composition of Apollo 15 Samples. Apollo 15 Lunar Samples. Lunar Sci. Inst., Houston, 195-197.
- Chappell, B. W. and Green, D.H. (1973) Chemical Compositions and Petrogenetic Relationships in Apollo-15 Mare Basalts. Earth Planet. Sci. Lett. 18, 237-246.

- Christian, R. P., Annell, C. S., Carron, M. K., Cuttitta, F., Dwornik, E. J., Ligon, D. T., Jr. and Rose, H. J., Jr. (1972) Chemical Composition of Some Apollo 15 Igneous Rocks. Apollo 15 Lunar Samples, Lunar Sci. Inst., Houston, 206-209.
- Cliff, R. A., Lee-Hu, C. and Wetherill, G. W. (1971) Rb-Sr and U. Th-Pb Measurements on Apollo 12 Materials. Proc. Lunar Sci. Conf. 2nd, 1493-1502.
- Compston, W., Chappel, B. W., Arriens, P. A. and Vernon, M. J. (1970) The Chemistry and Age of Apollo 11 Lunar Material. Proc. Apollo 11 Lunar Sci. Conf. 1007-1027.
- Compston, W., Berry, H., Vernon, M. J., Chappell, B. W. and Kaye, M. (1971) Rubidium-Strontium Chronology and Chemistry of Lunar Material from the Ocean of Storms. Proc. Lunar Sci. Conf. 2nd, 1471-1486.
- Compston, W., Delater, J. R. and Vernon, M. J. (1972) Strontium Isotope Geochemistry of Apollo 15 Basalts. Apollo 15 Lunar Samples, Lunar Sci. Inst., Houston, 347-351.
- Cuttitta, F., Rose, H. J., Jr., Annell, C. S., Carron, M. K., Christian, R. P., Dwornik, E.J., Greenland, L. P., Helz, A. W. and Ligon, D. T., Jr. (1971) Elemental Composition of Some Apollo 12 Lunar Rocks and Soils. Proc. Lunar Sci. Conf. 2nd, 1217-1230.
- Cuttitta, F., Rose, H. J., Jr., Annell, C. S., Carron, M. K., Christian, R.P., Ligon, D. T., Jr., Dwornik, E. J., Wright, T. L. and Greenland, L. P. (1973) Chemistry of Twenty-One Igneous Rocks and Soils Returned by the Apollo 15 Mission. Proc. Lunar Sci. Conf. 4th, 1081-1096.
- Dran, J. C., Durrieu, L., Jouret, C. and Maurette, M. (1970) Habit and Texture Studies of Lunar and Meteoritic Materials with a 1 MeV Electron Microscope. Earth, Planet. Sci. Lett. 9, 391-400.
- Duncan, A. R., Sher, M. K., Abraham, Y. C., Erlank, A. J., Willis, J. P. and Ahrens, L. H. (1973) Compositional Variability of the Apollo 15 Regolith. Lunar Sci. VI, Lunar Sci. Inst., Houston, 220-222.
- Duncan, A. R., Erlank, A. J., Willis, J. P., Sher, M. K. and Ahrens, L. H. (1974) Trave Element Evidence for a Two-Stage Origin of Some Titaniferous Mare Basalts. Proc. Lunar Sci. Conf. 5th, 1147-1158.
- Duncan, A. R., Sher, M. K., Abraham, Y. C., Erlank, A. J., Willis, J. P. and Ahrens, L. H. (1976) Source Region Constraints for Lunar Basalt Types Inferred from Trave Element Cheemistry. Lunar Sci. VII, Lunar Sci. Inst., Houston, 218-220.
- Eberhardt, P., Geiss, J., Graf, H., Grogler, N., Krahenbuhl, U., Schnaller, H. and Stettler, A. (1974) Noble-Gas Investigations of Lunar Rocks 10017 and 10071. Geochim. Cosmochim. Acta, 38, 97-120.

- Ehmann, W. D., Gillum, D. E. and Morgan, J. W. (1972) Oxygen and Bulk Element Composition Studies of Apollo 14 and other Lunar Rocks and Soils. Proc. Lunar Sci. Conf. 3td, 1149-1161.
- Ehmann, W. D., Janghorbani, M. and Gillum, D. E. (1972) Elemental Abundance Studies of Apollo 15 and some Fra Mauro Formation Lunar Samples. Apollo 15 Lunar Samples, Lunar Sci. Inst., Houston, 214-216.
- Ehmann, W. D., Chyi, L. L., Garg, A. N., Hawke, B. R., Ma, M. -S., Miller, M. D., James, W. D., Jr. and Pacer, R. A. (1975) Chemical Studies of the Lunar Regolith with Emphasis on Zirconium and Hafnium. Proc. Lunar Sci. Conf. 6th, 1351-1362.
- Eldridge, J. S., O'Kelly, G. D. and Northcutt, K. J. (1974) Primordial Radioelement Concentrations in Rocks and Soils from Taurus-Littrow. Lunar Sci. V, Lunar Sci. Inst., Houston, 206-208.
- Engel, A. E. J., Engel, C. G., Sutton, A.L. and Myers, A. T.(1971) Composition of Five Apollo 11 and Apollo 12 Rocks and One Apollo 11 Soil and Some Petrogenic Considerations. Proc. Lunar Sci. Conf. 2nd, 439-448.
- Fruchter, J. S., Stoeser, J. W., Lindstrom, M. M. and Goles, G. G. (1973) Apollo 15 Clastic Materials and Their Relationship to Local Geologic Features. Proc. Lunar Sci. Conf. 4th, 1227-1238.
- Ganapathy, R., Keays, R. R., Laul, J. C. and Anders, E. (1970) Trace Elements in Apollo 11 Lunar Rocks. Implications for Meteorite Influx and Origin of Moon. Proc. Apollo 11 Lunar Sci. Conf., 1117-1142.
- Garg, A. N. and Ehmann, W. D. (1976) Chemical Fractionation in the Lunar Crust with Emphasis on Zirconium and Hafnium. Lunar Sci. VII, Lunar Sci. Inst., Houston, 281-283.
- Gibson, E. K., Jr. and Johnson, S. M. (1971) Thermal Analysis-Inorganic Gas Release Studies of Lunar Samples. Proc. Lunar Sci. Conf. 2nd, 1351-1366.
- Goles, G. G., Randle, K., Osawa, M., Lindstrom, D. J., Jerome, D. Y. Steinborn, T. L., Beyer, R. L., Martin, M. R. and McKay, S. M. (1970) Interpretations and Speculations on Elemental Abundances in Lunar Samples. Proc. Apollo 11 Lunar Sci. Conf., 1177-1194.
- Goles, G. G., Randle, K., Osawa, M., Schmitt, R. A., Wakita, H., Ehmann, W. D. and Morgan, J. W. (1970) Elemental Abundanced by Instrumental Activation Analyses in Chips from 27 Lunar Rocks. Proc. Apollo 11 Lunar Sci. Conf., 1165-1176.
- Goles, G. G., Duncan, A. R., Lindstrom, D. J., Martin, M. R., Beyer, R. L., Osawa, M., Randle, K., Meek, L. T., Steinborn, T. L. and McKay, S. N. (1971) Analyses of Apollo 12 Specimens Compositional Variations, Differentiation Processes, and Lunar Soil Mixing Models. Proc. Lunar Sci. Conf. 2nd, 1063-1082.

- Gopalan, K., Kaushal, S., Lee-Hu, C. and Wetherill, G. W. (1970) Rb-Sr and U, Th-Pb Ages of Lunar Materials. Proc. Apollo 11 Lunar Sci. Conf., 1195-1206.
- Haggerty, S. E. (1974) Apollo 17 Orange Glass: Textural and Morphological Characteristics of Devitrification. Proc. Lunar Sci. Conf. 5th, 193-206.
- Haskin, L. A., Allen, R. O., Jr., Halmke, P. A., Paster, T. P., Anderson, M. R., Korotov, R. L. and Zweifel, K. A. (1970) Rare-Earths and Other Trave Elements in Apollo 11 Lunar Samples. Proc. Apollo 11 Lunar Sci. Conf., 1213-1232.
- Haskin, L. A., Halmke, P. A., Allen, R. O., Jr., Anderson, M. R., Korotev, R. L. and Zweifel, K. A. (1971) Rare-Earth Elements in Apollo 12 Lunar Materials. Proc. Lunar Sci. Conf. 2nd. 1307-1318.
- Heiken, G.H. and McKay, D. S. (1974) Lunar Deposits of Possible Pyroclastic Origin. Geochim. Cosmochim. Acta, 58, 1703-1718.
- Helmke, P. A., Haskin, L. A., Korotev, R. L. and Ziege, K. E. (1972) Rare Earths and Other trace elements in Apollo 14 Samples. Proc. Lunar Sci. Conf. 3rd, 1275-1293.
- Helmke, P. A., Blanchard, D. P., Haskin, L. A., Telander, K. M., Weiss, C.K. and Jacobs, J. W. (1973) Major and Trace Elements in Igneous Rocks from Apollo 15. The Moon, 8, 129-148.
- Hubbard, N. J. and Gast, P. W. (1971) Chemical Composition and Origin of Nonmare Lunar Basalts. Proc. Lunar Sci. Conf. 2nd, 999-1020.
- Hubbard, N. J., Meyer, C. E., Gast, P. W. and Wiesmann, H. (1971) Composition and Dirivation of Apollo 12 Sois. Earth Planet. Sci. Lett. 10, 341-350.
- Hubbard, N. J., Gast, P. W., Rhodes, J. M., Bansal, B. M., Wiesmann, H. and Church, S. E. (1972) Nonmare Basalts Part II. Proc. Lunar Sci. Conf. 3rd, 1161-1181.
- Hubbard, N. J., Rhodes, J. M., Cast, P. W., Bansal, B. M., Shih, C. -Y., Wiesmann, H. and Nyquist, L. E. (1973) Lunar Rock Types - The Role of Plagioclase in Mon-Mare and Highland Rock Types. Proc. Lunar Sci. Conf. 4th, 1297-1312.
- Hubbard, N. J., Rhodes, J. M., Wiesmann, H., Shih, C. -Y. and Bansal, B. M. (1974) The Chemical Definition and Interpretation of Rock Types Returned from the Non-Mare Regions of the Moon. Proc. Lunar Sci. Conf. 5th, 1227-1246.
- Hurley, P. M. and Pinson, W. H., Jr. (1970) Whole-Rock Rb-Sr Isotopic Age Relationships in Apollo 11 Lunar Samples. Proc. Apollo 11 Lunar Sci. Conf., 1311-1316.
- Juan, V. C., Chen, J. C., Huang, C. K., Chen, P. Y. and Wang-Lee, C. M. (1973) Petrology and Chemistry of Apollo 16 Gabbroic Anorthosite 68416. Lunar Sci. IV, Lunar Sci. Inst., Houston, 421-423.

- Keith, J. E., Clark, R. S. and Bennett, L. J. (1974) Determination of Natural and Cosmic Ray Induced Radionuclides in Apollo 17 Lunar Samples. Lunar Sci. V. Lunar Sci. Inst., Houston, 402-404.
- Kharkar, D. P. and Turekian, K. K. (1971) Analyses of Apollo 11 and Apollo 12 Rocks and Soils by Neutron Activation. Proc. Lunar Sci. Conf. 2nd, 1301-1306.
- Laul, J. C. and Schmitt, R. A. (1973) Chemical Composition of Apollo 15, 15, and 17 Samples. Proc. Lunar Sci. Conf. 4th, 1349-1368.
- Laul, J. C., Hill, D. W. and Schmitt, R. A. (1974) Chemical Studies of Apollo 16 and 17 Samples. Proc. Lunar Sci. Conf. 5th, 1047-1066.
- Lipschutz, M. E., Balsiger, H. and Pelly, I. Z. (1971) Vanadium Isotopic Composition and Contents in Lunar Rocks and Dust from the Ocean of Storms. Proc. Lunar Sci. Conf. 2nd, 1443-1450.
- LSPET (1969) Preliminary Examination of Lunar Samples from Apollo 11. Science, 165, 1211-1227.
- LSPET (1971) Preliminary Examination of Lunar Samples from Apollo 14. Science, 173, 681-693.
- LSPET (1972) Apollo 15 Lunar Samples Preliminary Description. Science, 175, 363-378.
- LSPET (1973) The Apollo 16 Lunar Samples Petrographic and Chemical Description. Science, 179, 23-34.
- LSPET (1973) The Apollo 17 Lunar Samples Fetrographic and Chemical Description. Science, 182, 659-672.
- Mason, B., Jarosewich, E. and Nelson, W. G. (1972) Mineralogy, Petrology, and Chemical Composition of Lunar Samples 15085, 15256, 15271, 15471, 15475, 15476, 15535, 15555, and 15556. Proc. Lunar Sci. Conf. 3rd, 785-797.
- Maxwell, J. A., Peck, L. C. and Wiik, H. B. (1970) Chemical Composition of Apollo 11 Lunar Samples 10017, 10020, 10072 and 10084. Proc. Apollo 11 Lunar Sci. Conf., 1369-1374.
- Maxwell J. A., Vouvier, J. L. and Wiik, H. B. (1972) Chemical Composition of Some Apollo 15 Lunar Samples. Apollo 15 Lunar Sci. Inst., Houston, 233-238.
- Morgan, J. W., Krahenbuhl, U., Ganapathy, R. and Anders, E. (1972) Trace Elements in Apollo 15 Samples: Implications for Meteorite Influx and Volatile Depletion on the Moon. Proc. Lunar Sci. Conf. 3rd, 1361-1377.
- Morgan, J. W., Laul, J. C., Krahenbuhl, R., Ganapathy, R. and Anders, E. (1972)
 Major Impacts in the Moon: Characterization from Trace Elements in Apollo
 12 and 14 Samples. Proc. Lunar Sci. Conf. 3rd, 1377-1397.
- Morrison, G. H., Gerard, J. T., Kashuba, A. T., Gangadharam, E. V. Rothenberg,

- A. M., Potter, N. M. and Miller, G. B. (1970) Elemental Abundances of Lunar Soil and Rocks. Proc. Apollo 11 Lunar Sci. Conf., 1383-1392.
- Morrison, G. H., Gerard, J. T., Potter, N. M., Gangadharam, E. V., Rothenberg, A. M. and Burdo, R. A. (1971) Elemental Abundances of Lunar Soil and Rocks from Apollo 12. Proc. Lunar Sci. Conf. 2nd, 1169-1186.
- Muller, O. (1972) Alkali and Alkaline Earth Elements, La and U in Apollo 14 and Apollo 14 Samples. Apollo 15 Lunar Samples, Lunar Sci. Inst.. Houston, 240-243.
- Murthy, V. R., Evensen, N. M. and Coscio, M. R., Jr. (1970) Distribution of K, Rb, Sr and Ba and Rb-Sr Isotopic Relations in Apollo 11 Lunar Samples. Proc. Apollo 11 Lunar Sci. Conf., 1393-1406.
- Nava, D. F. (1974) Chemical Compositions of Some Soils and Rock Types from Apollo 15, 16, and 17 Lunar Sites. Proc. Lunar Sci. Conf. 5th, 1087-1096.
- Nunes, P. D., Tatsumoto, M. and Unruh, D. M. (1974) U-Th-Pb Systematics of Some Apollo 176 Samples. Lunar Sci. V, Lunar Sci. Inst., Houston, 562-564.
- Nunes, P. D., Tatsumoto, M. and Unruh, D. M. (1974) U-Tb-Pb Systematics of Some Apollo 17 Lunar Samples and Implications for a Lunar Basin Excavation Chronology. Proc. Lunar Sci. Conf. 5th, 1487-1514.
- Nyquist, L. ER., Bansal, B. M., Wiesmann, H. and Jahn, B. M. (1974) Taurus-Littrow Chronology: Some Constraints on Early Lunar Crustal Development. Proc. Lunar Sci. Conf. 5th, 1515-1540.
- Nyquist, L₃₆E., Bansal, B. M. and Wiesmann, H. (1975) Rb-Sr Ages and Initial Sr/Sr/Sr for Apollo 17 Basalts and KREEP Basalt 15386. Proc. Lunar Sci. Conf. 6th, 1445-1466.
- O'Kelly, G. D., Eldridge, J. S., Schonfeld, E. and Bell, P. R. (1971) Abundances of the Primordial Radionuclides K, Th, and U in Apollo 12 Lunar Samples by Nondestructive Gamma-Ray Spectrometry Implications for Origin of Lunar Soils. Proc. Lunar Sci. Conf. 2nd, 1159-1168.
- O'Kelly, G. D., Eldridge, J. S., Northcutt, K. J. and Schonfeld, E. (1972) Primordial Radioelements and Cosmogenic Radionuclides in Lunar Samples from Apollo 15. Proc. Lunar Sci. Conf. 3rd, 1659-1671.
- Papanastassiou, D. A. and Wasserburg, G. J. (1971) Lunar Chronology and Evolution from Rb-Sr Studies of Apollo 11 and 12 Samples. Earth Planet. Sci. Lett., 11, 37-62.
- Papanastassiou, D. A. and Wasserburg, G. J. (1971) Rb-Sr Ages of Igneous Rocks from Apollo 14 Mission and Age of Fra Mauro Formation. Earth Planet. Sci. Lett., 12, 36-48.
- Philpotts, J. A. and Schnetzler, C. C. (1970) Apollo 11 Lunar Samples, K, Rb, Sr, Ba and Rare-Earth Concentrations in Some Rocks and Separated Phases. Proc. Apollo 11 Lunar Sci. Conf., 1471-1486.

- Philpotts, J. A., Schuhmann, S., Kouns, C. W., Lum-Staab, R. K. L. and Winzer, S. R. (1974) Origin of Apollo 17 Rocks and Soils. Proc. Lunar Sci. Conf. 5th, 1255-1268.
- Rancitelli, L. A., Perkins, R. W., Felix, W. D. and Wogman, N. A. (1971) Erosion and Mixing of the Lunar Surface from Cosmogenic and Primordial Radionuclide Measurements in Apollo 12 Lunar Samples. Proc. Lunar Sci. Conf. 2nd, 1757-1772.
- Rancitelli, L. A., Perkins, R. W., Felix, W. D. and Wogman, N. A. (1972) Lunar Surface Processes and Cosmic Ray Characterization from Apollo 12-15 Lunar Sample Analyses. Proc. Lunar Sci. Conf. 3rd, 1681-1693.
- Rancitelli, L. A., Perkins, R. W., Felix, W. D. and Wogman, N. A. (1973)
 Primordial Radionuclides in Soils and Rocks from the Apollo 16 Site. Lunar
 Sci. IV, Lunar Sci. Inst., Houston, 615-617.
- Reed, G. W., Jr. and Jovanovic, S. (1970) Halogens, Mercury, Lithium and Osmium in Apollo 11 Samples. Proc. Apollo 11 Lunar Sci. Conf., 1487-1492.
- Reed, G. W., Jr. and Jovanovic, S. (1972) Trace Element Comparisons Between Mare and Apennine-Front Nonmare Samples. Apollo 15 Lunar Samples, Lunar Sci. Inst., Houston, 247-249.
- Rhodes, J. M., Ridley, W. I. and Brett, R. (1973) Classification and Petrogenesis of Apollo 15 Mare Basalts. Lunar Sci. V, Lunar Sci. Inst., Houston, 622-624.
- Rhodes, J. M., Rodgers, K. V., Shih, C. -Y., Bansal, B. M., Nyquist, L. E., Wiesmann, H. and Hubbard, N. J. (1974) The Relationships Between Geology and Soil Chemistry at Apollo 17 Landing Site. Proc. Lunar Sci. Conf. 5th, 1097-1118.
- Rhodes, J. M., Hubbard, N. J., Wiesmann, H., Rodgers, K. V., Brannon, J. C. and Bansal, B. M. (1976) Chemistry, Classification, and Petrogenesis of Apollo 17 Mare Basalts. Proc. Lunar Sci. Conf. 7tj. ;478=;490/
- Rhodes, J. M., Blanchard, D. P., Dungan, M. A., Brannon, J. C. and Rodgers, K. V. (1977) Chemistry of Apollo 12 Mare Basalts: Magma Types and Fractionation Processes. Proc. Lunar Sci. Conf. 8th, 1305-1338.
- Rose, H. J., Jr., Cuttitta, F., Berman, S., Carron, M. K., Christian, R. P., Dwornik, E. J., Greenland, L. P. and Ligon, D. T., Jr. (1973) Compositional Data for Twenty-Two Apollo 16 Samples. Proc. Lunar Sci. Conf. 4th, 1149-1158.

- Rose, H. J., Jr., Cuttitta, F., Berman, S., Brown, F. W., Carron, M. K., Christian, R. P., Dwornik, E. J. and Greenland, L. P. (1974) Chemical Composition of Rocks and Soils at Taurus-Littrow. Proc. Lunar Sci. Conf. 5th.
- Rose, H. J., Jr., Baedecker, P. A./, Berman, S., Christian, R. P., Dwornik, E. J., Finkelman, R. B. and Schnipfe, M. M. (1975) Chemical Composition of Rocks and Soils Returned by the Apollo 15, 16, and 17 Missions. Proc. Lunar Sci. Conf. 6th, 1363-1374.
- Schnetzler, C. C., Philpotts, J. A., Nava, D. F., Schuhmnann, S. and Thomas, H. (1972) Geochemistry of Apollo 15 Basalt 15555 and Soil 15531. Science, 175, 426-427.
- Schneitzler, C. C. and Philpotts, J. A. (1971) Alkali, Alkaline Earth and Rare-Earth Element Concentrations in Some Apollo 12 Soils, Rocks, and Separated Phases. Proc. Lunar Sci. Conf. 2nd, 1101-1122.
- Schedlovsky, J.P., Honda, M., Reedy, R. C., Evans, J. C., Lal, D., Lindstrom, R. M., Delany, A. C., Arnold, J. R., Loosli, H.H., Fruchter, J. S. and Finkel, R. C. (1970) Pattern of Bombardment-Produced Radionuclides in Rock 10017 and in Lunar Soil. Proc. Apollo 11 Lunar Sci. Conf., 1503-1532.
- Shih, C. -Y, Haskin, L. A., Wiesmann, H., Bansal, B. M. and Brannon, J. C. (1975) On the Origin of High-Ti Mare Basalts. Proc. Lunar Sci. Conf. 6th, 1255-1286.
- Silver, L. T. (1970) Uranium-Thorium-Led Isotopes in Some Tranquillity Base Samples and Their Implications for Lunar History. Proc. Apollo 11 Lunar Sci. Conf., 1533-1574.
- Smales, A. A., Mapper, D., Webb, M. S. W., Webster, R. K., Wilson, J. D. and Hilsop, J. S. (1971) Elemental Composition of Lunar Surface Material (Part 2). Proc. Lunar Sci. Conf. 2nd, 1253-1258.
- Strasheim, A., Coetzee, J. H. J., Jackson, P. F. S., Strelow, F. W. E., Wybenga, F. T., Gricius, A. J. and Kokot, M. L.(1972) Analysis of Lunar Samples 15065, 15301, and 15556, with Isotopic Data for Li/Li. Apollo 15 Lunar Samples, Lunar Sci. Inst., Houston, 257-259.
- Tatsumoto, M. (1970) Age of the Moon. An Isotopic Study of U-Th-Pb Systematics of Apollo 11 Lunar Samples--II. Proc. Apollo 11 Lunar Sci. Conf., 1595-1612.
- Tatsumoto, M., Knight, R. J. and Doe, B. R. (1971) U-T--Pb Systematics of Apollo 12 Lunar Samples. Proc. Lunar Sci. Conf. 2nd, 1521-1546.
- Tatsumoto, M., Hedge, C. E., Doe, B. R. and Unruh, D. M. (1972) U-Th-Pb and Rb-Sr Measurements on Some Apollo 14 Lunar Samples. Proc. Lunar Sci. Conf. 3rd, 1531-1557.
- Taylor, S. R., Rudowski, R., Muir, P., Graham, A. L. and Kaye, M. (1971) Trace Element Chemistry of Lunar Samples from the Ocean of Storms. Proc. Lunar Sci. Conf. 2nd, 1083-1100.

- Taylor, S. R., Kaye, M., Muir, P., Nance, W., Rudowski, R., and Ware, N. G. (1972) Composition of the Lunar Uplands: Chemistry of Apollo 14 Samples from Fra Mauro. Proc. Lunar Sci. Conf. 3rd, 1231-1251.
- Taylor, S. R., Gorton, M. P., Muir, P., Nance, W., Rudowski, W. and Ware, N. G. (1973) Lunar Highlands Composition - Apennine Front. Proc. Lunar Sci. Conf. 4th, 1445-1460.
- Tera, F., Eugster, O., Burnett, D. S. and Wasserburg, G. J.(1970) Comparative Study of Li, Na, K, Rb, Cs, Ca, Sr and Ba Abundances in Achondrites and in Apollo 11 Lunar Samples. Proc. Apollo 11 Lunar Sci. Conf., 1637-1658.
- Tera, F. and Wasserburg, G. J. (1972) U-Th-Pb Systematics in 3 Apollo 14 Basalts and Problem of Initial Pb in Lunar Rocks. Earth Planet. Sci. Lett., 14, 281-304.
- Tera, F., Papanastassiou, D. A. and Wasserburg, G. J. (1973) A Lunar Cataclysm at Approximately 3.95 AE and the Structure of the Lunar Crust. Lunar Sci. IV, Lunar Sci. Inst., Houston, 723-725.
- Turekian, K.K. and Kharkar, D. P. (1970) Neutron Activation Analysis of Milligram Quantities of Apollo 11 Lunar Rocks and Soil. Proc. Apollo 11 Lunar Sci. Conf., 1659-1664.
- Turkevich, A. L.(1971) Comparison of the Analytical Results from the Surveyor, Apollo, and Luna Missions. Proc. Lunar Sci. Conf. 2nd, 1209-1216.
- Wakita, H., Schmitt, R. A. and Rey, P. (1970) Elemental Abundances of Major, Minor and Trace Elements in Apollo 11 Lunar Rocks, Soil and Core Samples. Proc. Apollo 11 Lunar Sci. Conf., 1685-1718.
- Wakita, H., Rey, P. and Schmitt, R. A. (1971) Abundances of the 14 Rare-Earth Elements and 12 Other Trace Elements in Apollo 12 Samples - Five Igneous and One Breccia Rocks and Four Soils. Proc. Lunar Sci. Conf. 2nd, 1319-1330.
- Wanke, H., Rieder, R., Baddenhausen, H., Spettel, B., Teschke, F., Quijano-Rico, M. and Balacescu, A. (1970) Major and Trace Elements in Lunar Material. Proc. Apollo 11 Lunar Sci. Conf., 1719-1728.
- Wanke, H., Wlotzka, F., Baddenhausen, H., Balacescu, A., Spettel, B., Teschke, F., Jagoutz, E., Kruse, H., Quijano-Rico, M. and Rieder, R. (1971) Apollo 12 Samples Chemical Composition and Its Relation to Sample Locations and Exposure Ages, the Two-Component Origin of the Various Soil Samples and Studies on Lunar Metallic Particles. Proc. Lunar Sci. Conf. 2nd, 1187-1208.
- Wanke, H., Palme, H., Baddenhausen, H., Dreibus, G., Jagoutz, E., Kruse, H., Spettel, B., Teschke, F. and Thacker, R. (1973) New Data on the Chemistry of Lunar Samples and About the Major Element Composition of KREEP. Lunar Sci. VI, Lunar Sci. Inst., Houston, 844-846.
- Wanke, H., Palme, H., Baddenhausen, H., Dreibus, G., Jagoutz, E., Kruse, H.,

- Palme, C., Spettel, B., Teschke, F. and Thacker, R. (1975) New Data on the Chemistry of Lunar Samples: Primary Matter in the Lunar Highlands and the Bulk Composition of the Moon. Proc. Lunar Sci. Conf. 6th, 1313-1340.
- Wanless, R. K., Loveridge, W. D. and Stevens, R. D.(1970) Age Determinations and Isotopic Abundance Measurements of Lunar Samples (Apollo 11). Proc. Apollo 11 Lunar Sci. Conf., 1729-1740.
- Warner, R. D., Keil, K., Prinz, M., Laul, J. C., Murali, A. V. and Schmitt, R. A. (1975) Mineralogy, Petrology, and Chemistry of Mare Basalts from Apollo 17 Rake Samples. Proc. Lunar Sci. Conf. 6th, 193-220.
- Willis, J.P., Ahrens, L. H., Danchin, R. V., Erlank, A. J., Gurney, J. J., Hofmeyer, P. K., McCarthy, T. S. and Orren, M. J. (1971) Some Interelement Relationships Between Lunar Rocks and Fines, and Stony Meteroites. Proc. Lunar Sci. Conf. 2nd, 1123-1138.
- Willis, J. P., Erlank, A. J., Gurney, J. J., Theil, R.H. and Ahrens, L. H. (1972) Major, Minor, and Trace Element Data from Some Apollo 11, 12, 14, and 15 Samples. Proc. Lunar Sci. Conf. 3rd, 1269-1275.
- Willis, J. P., Erlank, A. J., Gurney, J. J. and Ahrens, L. H. (1972)
 Geochemmical Features of Apollo 15 Materials. Apollo 15 Lunar Samples,
 Lunar Sci. Inst., Houston, 268-271.
- Wrigley, R. C. (1971) Some Cosmogenic and Primordial Radionuclides in Apollo 12 Lunar Surface Materials, Proc. Lunar Sci. Conf. 2nd, 1791-1796.