Pattern and Speech Recognition Tutorial Exercise 10

Exercise 1 (3 points)

To start with hidden Markov models (HMM), you will implement a simulation algorithm. Later you can use this as a reference to compare results with.

- 1. Chose a suitable data structure for (finite) HMMs. Justify your choice.
- 2. Implement a function random_select($[p_1, \ldots, p_n]$) which takes a sequence $\mathbf{p} \in \mathbb{R}^{n+1}_{\geq 0}$, selects randomly an element $p_i \in \mathbf{p}$, and return its index i.

Assume that **p** represents a probability, that is, $\sum_{p_i \in \mathbf{p}} p_i = 1$ and $\forall i \ p_i > 0$. Construct the function such that the probability of selecting p_i (resp. returning i) is equal to p_i .

For instance, for $\mathbf{p} = [\frac{1}{2}, \frac{1}{4}, \frac{1}{4}]$ your function should return 0 with probability $\frac{1}{2}$ and 1,2 with probability $\frac{1}{4}$ (assuming you start indexing with 0). You can use this function to randomly select successor states, emissions, and an initial state in your simulation.

3. Implement a function simulate(hmm, max_t) which simulates a HMM hmm for max_t (max_t $\in \mathbb{Z}_{\geq 0}$) transitions.

This includes, randomly selecting an initial state (once), a successor state and an emission symbol (for each step), follow slide 29. Return a sequence of pairs $[(\pi_0, o_0), (\pi_1, o_1), \ldots]$ where $\pi_i \in Q$ is the *i*-th hidden state and $o_i \in \Sigma$ is the *i*-th emitted symbol.

4. Apply simulate to simulate the HMM from figure 1 for max_t = 100. Include some example outputs to your report file.

Figure 1: hidden states (l) and emission matrix (r); $Q = \{1, 2, 3\}$, $\Sigma = \{a, b, c\}$, initial distribution: $1: \frac{1}{3}, 2: \frac{1}{3}, 3: \frac{1}{3}$.

Exercise 2 (7 points)

- 1. Implement the Viterbi-algorithm (slide 27 ff.). That is, write a function viterbi (hmm, $[o_0, \ldots, o_n]$) which determines the likeliest sequence of hidden states $\pi_0, \ldots, \pi_n \in Q^{n+1}$ for a given sequence of observed symbols $o_0, \ldots, o_n \in \Sigma^{n+1}$, and for a given HMM. viterbi should return the likeliest sequence and its corresponding probability.
 - You can assume that your HMM (and the observation sequence) is small enough to not produce underflows (i.e. there is no need to use logarithms to store numbers).
- 2. Apply viterbi to the HMM in figure 1 and o = abbabcc
- 3. Consider the sequence **s** which contains the likeliest state at each position for a given observation sequence **o**, i.e. $s_i = \underset{k \in Q}{\operatorname{argmax}} P(\pi_i = k | \mathbf{o})$. Find a HMM and an observation sequence such that **s** and the likeliest sequence **v** (i.e. the results of the Viterbi–algorithm) are completely disjoint. That is, $\forall i, j \ s_i \neq v_i$. Justify your answer.
- 4. How (why, and to which extent) can one use simulate to approximate the result of viterbi? Implement a function which tries to find the likeliest sequence of hidden states using a large number of simulation runs. Can you do something similar to estimate s? Explain.

Exercise 3 (2 bonus points)

Implement a function backward(hmm, o) which computes the backward-probabilities (denoted by $b_k(i)$ in the slides) for each state k and position i and apply it to the HMM from figure 1 with $\mathbf{o} = \mathrm{cbacba}$.

Submission architecture

You have to generate a single ZIP file respecting the following architecture:

where

- source contains the source code of your project,
- rapport.pdf is the report where you present your solution with the explanations (!) and the plots,
- **README** which contains group member informations (name, matriculation numbers and emails) and a **clear** explanation about how to compile and run your source code

The ZIP filename has to be:

```
tutorial10_<matriculation_nb1>_<matriculation_nb2>_<matriculation_nb3>.zip
```

You have to choose between the following languages **python** or **matlab**. Other languages won't be accepted.

Some hints

We advice you to follow the following guidelines in order to avoid problems:

- Avoid building complex systems. The exercises are simple enough.
- Do not include any executables in your submission, as this will cause the e-mail server to reject it.

Grading

Send your assignment to the tutor who is responsible of your group:

- Gerrit Gromann gerritgr@gmail.com
- Sbastien Le Maguer slemaguer@coli.uni-saarland.de
- Kata Naszdi b.naszadi@gmail.com

The email subject should start with [PSR TUTORIAL 10]