Bruno Petrus - GBajkBa

6. Exrémny smrad

Program sme riešili veľmi jednoducho. Použili sme bruteforce algoritmus. Sedadlá sme uložili do dvoj-dimenzionálneho pola. Postupne sme prechádzali cez každé sedadlo a hľadali jeho najsmradľavejšieho suseda.

Hľadanie najsmradľavejšieho suseda pre vstup k funguje následovne. Ak dostaneme, že sedadlo ma index (i, j) a k=3:

i - 1, j-1	i - 1, j	i - 1, j+1
i, j-1	i, j	i, j+1
i + 1, j-1	i + 1, j	i + 1, j+1

Indexy pre okolité sedadlá

Ak *k*=5:

i - 2, j - 2	i - 2, j - 1	i - 2, j	i - 2, j + 1	i - 2, j + 2
i - 1, j - 2	i - 1, j - 1	i - 1, j	i - 1, j + 1	i - 1, j + 2
i, j - 2	i, j - 1	i, j	i, j + 1	i, j + 2
i + 1, j - 2	i + 1, j - 1	i + 1, j	i + 1, j + 1	i + 1, j + 2
i + 2, j - 2	i + 2, j - 1	i + 2, j	i + 2, j + 1	i + 2, j + 2

Ak *k*=7:

Indexy budú od i-3 po i+3 Všeobecne môžeme teda odvodiť, že maximálny index bude i+q, kde q=(k-1)/2 a minimálny i-q. Môžeme teda for-cyklom prejsť všetky potrebné indexy, až nájdeme najväčší. Treba si dať však pozor, aby sme sa omylom nepokúsili dostať na neexistujúci index (-1, -1 napr.).

Toto urobíme pre všetky sedadlá a máme výsledok.

Priestorová zložitosť je kvadratická od vstupu. Čo sa týka časovej zložitosti, musíme prejsť cez každé sedadlo a pri skorom každom vykonať k^2 porovnaní.