Vorlesung Analysis II

June 20, 2025

Teil 1: Differentialrechnung im \mathbb{R}^n

an9: Extrema mit Nebenbedingungen, implizierte Funktionen

Stichworte: Extrma mit NBen, Lagrange-Multiplikationen, implizierter Funktionensatz

Literatur [Hoff], Kapitel 9.8, [Forster], Kapitel 8,9

9.1. Einleitung: Sla Anwendung des Satzes von der lokalen Umkehrbarkeit zeigen wir den impliziten Funktionensatz und untersuchen Extrema mit Nebenbedingungen.

9.2 Motivation: Sei $a \in U \subset \mathbb{R}^n$, $f: U \to \mathbb{R}$. Diskutieren im Fall $\underline{\mathbf{n}}=2$:

1. Ziel: Wollen die Glg. f(x,y)=0 "nach y auflösen", also eine Fkt. I finden mit $f(x,y)=0 \Leftrightarrow y=l(x)$. Wir sagen dann, die Glg. f(x,y)=0 definiert implizit eine FUnktion l. Wie und unter welcher Vor. das geht, beschreibt der Satz über implizite Funktionen. Wir erwarten, das dies nur "lokal" geht, also auf Umgebungen einer Stelle a und einem Wert b mit f(a,b)=0.

Konkretes Bsp.: Glg. $x^2 + 4y^2 = 1 \rightarrow f(x, y) = x^2 + 4y^2 - 1$, und $y = \pm \frac{1}{2}\sqrt{1 - x^2}$.

 $\overline{2}$. Ziel: Bsp. n=2

In Anwendungen er Extremwertbestimmung wird oft nach Extrema von Funktionen g(x,y) auf einer NullstellenmengeN:= $\{(x,y) \in \mathbb{R}^2; f(x,y) = 0\}$ gefragt, d.h. unter der Bedingung f(x,y)=0. Gegeben

ist dann eine "Nebenbedingung".

Konkretes Bsp.: $\overline{f}(x,y) = \frac{xy}{1+x^4+y^4}$, ist stetig, nimmt Extrema auf $N = \{(x,y); f(x,y) = 0\}$ an. Ist $\binom{x_0}{y_0} \in N$ so eine Stelle, und ist $\binom{-1}{0} \neq \binom{x_0}{y_0} \neq \binom{1}{0}$, dann gilt nahe $\binom{x_0}{y_0} : D_2 f(x,y) \neq 0$.

9.3. <u>Allgemeine Situation:</u> Sei $D \subset \mathbb{R}^n, 2 \leq l \leq n, (f_1, ..., f_l) = f \in l^1(D, \mathbb{R}^l).$

Setze $N := \bigcap_{1=2}^{l} f_i^{-1}(0)$, ist offen in \mathbb{R}^n , Sprechweise: f_1 hat ein lokales Etremum in $a \in N$ mit Nebenbedingung N, falls $f_{1/N}$ in a ein lokales Extremum hat.

1

9.4. Satz: Geg. die Situation 9.3, Vor.: $f_{1/N}$ hat in $a \in N$ ein lokales Extremum.

Beh.: $\operatorname{rg}\begin{pmatrix} D_1 f_1 & \cdots & D_n f_1 \\ \vdots & & \vdots \\ D_1 f_l & \cdots & D_n f_l \end{pmatrix}$ (a) < l. "Lagrangesche Multiplikatorenregel"

9.5. <u>Bem.:</u> • Im Fall l=n ist die Beh. äquivalent zu $\begin{pmatrix} D_1 f_1 & \cdots & D_n f_1 \\ \vdots & & \vdots \\ D_1 f_n & \cdots & D_n f_n \end{pmatrix} (a) = 0.$

• Es gilt: Beh. rg(...) < l

 $\Leftrightarrow f'_1(a), ..., f'_l(a)$ sind Lin. abh.

 $\Leftrightarrow \in (\overline{\lambda_1}, ..., \lambda_l)^T \in \mathbb{R}^l \setminus \{0\}. D_j(\sum_{i=1}^l \overline{\lambda_i} f_i)(a) = 0 \text{ für alle } j \in \{1, ..., n\}.$

Esei $\lambda_1 = 1$ (sonst unnumerieren und normieren). Also $\exists (\lambda_2, ..., \lambda_l)^T \in \mathbb{R}^{l-1}$ mit $D_j f_1(a) = \sum_{i=2}^l \lambda_i D_j f_i(a)$, alle $j \in \{1, ..., n\}$. $\Rightarrow f_1(a) = \sum_{i=2}^l \lambda_i grad f_i(a)$. EOhne Minus vor den λ_i ...

Bsp. für $l = 2 : \exists \lambda \in \mathbb{R} : grad f_1(a) = \lambda grad f_2(a)$, für $f'_2(a) \neq 0$.

- **9.6.** Def.: Man nennt die $\lambda_2, ..., \lambda_l$ Lagrargemultiplikatoren.
- **9.7.** Bew.: Sei $\times a = 0$. Ferner betr. zunächst den Fall $\underline{l}=\underline{n}$.

Angenommen, es wäre sonst rg A=n, wo $\begin{pmatrix} D_1 f_1 & \cdots & D_n f_1 \\ \vdots & & \vdots \\ D_1 f_n & \cdots & D_n f_n \end{pmatrix} (0) \in \mathbb{R}^{nxm}.$

Dann ist A eine invertierbare Matrix.

Der Satz über lokale Umkehrbarkeit 8.8 liefert dann:

 $\exists U \subset \mathbb{R}^n \exists V \subset \mathbb{R}^n, o \in U, f(o) \in V, U \xrightarrow{fru} V \text{ invertierbar und bijektiv.}$

Betr. I:=
$$\begin{bmatrix} [f_1(o) - \epsilon, f_1(o) + \epsilon] \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
 für $\epsilon > 0$ klein so, dass I ganz im Bild V liegt.

Dann ist $J := f^{-1}(I) \subseteq N$, aber f_{1tN} hat in o ein lokales Extrema $\Rightarrow \xi$.

• Im allgemeinen Fall: Betr. $g: \mathbb{R}^l \to \mathbb{R}^l$, $g(y) := f\begin{pmatrix} y \\ o \end{pmatrix}$, wo $\begin{pmatrix} y \\ o \end{pmatrix} \in \mathbb{R}^n$, $y \in \mathbb{R}^l$ für hinreichend kleine ||y|| so, dass $\begin{pmatrix} y \\ o \end{pmatrix} \in U$.

$$rg\begin{pmatrix} D_1f_1 & \cdots & D_nf_1 \\ \vdots & & \vdots \\ D_1f_l & \cdots & D_nf_l \end{pmatrix} = rg\begin{pmatrix} D_1g_1 & \cdots & D_ng_1 \\ \vdots & & \vdots \\ D_1g_l & \cdots & D_ng_l \end{pmatrix} < l$$

Es ist
$$\mathbb{N}\supseteq\bigcap_{1=2}^{l}g_{i}^{-1}(o)$$
, und g_{1} hat in o ein lokales Extremum unter NBN. Nach spezialfall n=l ist dann
$$rg\begin{pmatrix}D_{1}f_{1}&\cdots&D_{n}f_{1}\\\vdots&&\vdots\\D_{1}f_{l}&\cdots&D_{n}f_{l}\end{pmatrix}=rg\begin{pmatrix}D_{1}g_{1}&\cdots&D_{n}g_{1}\\\vdots&&\vdots\\D_{1}g_{l}&\cdots&D_{n}g_{l}\end{pmatrix}< l$$
 Betr. $g_{(r)}:=\mathbb{R}^{l}\to\mathbb{R}^{l},\ g_{(r)}(y):=f\begin{pmatrix}y_{1}\\\vdots\\y_{l-1}\\0\\\vdots\\0\\y_{l}\\0\\\vdots\\0\end{pmatrix}$ an Stellen $l+r\leq n$ für $r\in\mathbb{N}_{0}$.

Es ist $N \supseteq \bigcap_{1=2}^{l} g^{-1}(o)$, und g_1 hat in o ein lokales Extremum unter NBN.

Nach Spezialfall ist dann $rg \begin{pmatrix} D_1 f_1 & \cdots & D_n f_1 & D_{l+r} f_1 \\ \vdots & & \vdots & \vdots \\ D_1 f_l & \cdots & D_n f_l & D_{l+r} f_l \end{pmatrix} < l.$

$$\begin{pmatrix}
D_1 f_l & \cdots & D_n f_l & D_{l+r} f_l
\end{pmatrix}$$
Sei $h_i := \begin{pmatrix}
D_1 f_1 \\
\vdots \\
D_i f_l
\end{pmatrix}$, $1 \le i \le n$.

Dann ist $rg(h_1, ..., h_{l-1}, h_{l+r}) < l$ für alle $r \in \{0, ..., n-l\}$.

Daher ist $rg(h_1, ..., h_n) < l$, die Beh.

9.8. Bsp.: l = 2, $f_2(x) = \langle x, x \rangle$, $f_1(x) = \langle Qx, x \rangle$, insb. $f_1, f_2 : \mathbb{R}^n \to \mathbb{R}$, mit $Q \in \mathbb{R}^{nxn}$ symmetrisch, d.h. $Q^T = Q$.

Sei $N := f_2^{-1}(0) = S^{n-1} = \{x \in \mathbb{R}^n; ||x||_2^2 = 1\}$ die Einheitssphäre. Es gilt:

$$f_1(a+h) = \langle Q(a+h), a+h \rangle$$
 (1)

$$= \langle Qa, a \rangle + \langle Qh, a \rangle + \langle Qa, h \rangle + \langle Qh, h \rangle \tag{2}$$

$$= \langle h, Q^T a \rangle = \langle \dot{h}, Q a \rangle = \langle Q a, h \rangle$$

$$f_{1}(a+h) = \langle Q(a+h), a+h \rangle$$

$$= \langle Qa, a \rangle + \underbrace{\langle Qh, a \rangle}_{=\langle h, Q^{T}a \rangle = \langle h, Qa \rangle = \langle Qa, h \rangle} + \langle Qa, h \rangle + \langle Qh, h \rangle$$

$$= f_{1}(a) + \underbrace{2\langle Qa, h \rangle}_{f'_{1}(a) = 2Qa} + \underbrace{TextlessQh, h \rangle}_{=o(||h||)}$$
(3)

Also sind $f_1, f_2 \in l^1$. Setze $M := \max f_{1rS^{n-1}}$. (haben $N = S^{n-1}$).

3

Es folgt: $|\exists a : f_1(a) = M, mita \neq o(\text{da } a \in S^{n-1}).$

Es gilt: $grad F_2(A) \neq o$ (haben ja $f'_2(a) = 2a^T \neq o$).

Also ex. $\lambda \in \mathbb{R}$ mit $gradf_1(a = \lambda gradf_2(a))$

 $\Leftrightarrow 2Qa = 2\lambda a \Leftrightarrow Qa = \lambda a,$

d.h. a ist Eigenvektor mit Eigenwert λ von Q.

Für $Qa = \lambda a$ gilt $f_1(a) = \langle \lambda a, a \rangle = \lambda \langle a, a \rangle = \lambda$ mit $a \in N = S^{n-1}$

und $\lambda = f_1(a) = M \ge f_1(x)$ für alle $x \in S^{n-1}$.

Also gilt: M ist maximaler Eigenwert von Q.

Ist Q = ux, folgt $f_1(x) = u$ für $x \in S^{n-1}$

9.9. Konkretes Bsp.:
$$f_1, f_2 : \mathbb{R}^2 \to \mathbb{R}, f_2 \begin{pmatrix} x \\ y \end{pmatrix} = x^2 + y^2 - 1, grad f_2 \begin{pmatrix} x \\ y \end{pmatrix} = (2x, 2y)^t.$$

$$f_1\begin{pmatrix} x \\ y \end{pmatrix} = \langle \underbrace{\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}}_{=Q} \cdot \begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} \rangle = \langle \begin{pmatrix} x + 2y \\ 2x + 3y \end{pmatrix} \rangle = x^2 + 2xy + 2xy + 3y^2 = x^2 + 4xy + 3y^2,$$

$$gradf_1 \begin{pmatrix} x \\ y \end{pmatrix} = (2x + 4y, 4x + 6y)^T.$$

$$\mathcal{X}_Q(T) = 0 \Leftrightarrow \det \begin{pmatrix} 1 - T & 2 \\ 2 & 3 - T \end{pmatrix} = 0$$

$$\Leftrightarrow (1-T)(3-T) - 4 = 0 \Leftrightarrow T^2 - 4T - 1 = 0$$

 $\Leftrightarrow T_{1,2} = -2 \pm \sqrt{4+1} = 2 \pm \sqrt{5}.$

$$\Leftrightarrow T_{1,2} = -2 \pm \sqrt{4+1} = 2 \pm \sqrt{5}.$$

Der größte EQ von Q (und somit das Maximum von f_1 auf der Einheitskreislinie) ist $2+\sqrt{5}$.

Bestimmung von
$$a = \begin{pmatrix} x \\ y \end{pmatrix}$$
 als zugeh. $EV: (q - I_2 \lambda)a = \begin{pmatrix} 1 - \lambda & 2 \\ 2 & 3 - \lambda \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = 0 \Leftrightarrow \overline{(1 - \lambda)x + 2y} = 0 \Rightarrow \overline{(1 -$

mit
$$a \in S^1$$
 muss $x^2 + y^2 = 1$ gekten, also $(\frac{1-\sqrt{5}}{2}) + 1 = \frac{1}{y^2} \Leftrightarrow \frac{1}{y^2} = \frac{1}{2}(5-\sqrt{5}) \Leftrightarrow y^2 = \frac{2(5+\sqrt{5})}{(5-\sqrt{5})(5+\sqrt{5})} = \frac{1}{2} + \frac{\sqrt{5}}{10}$, dazu x...

9.10. Bsp.: Sei n>2, man bestimme das maximum von $f(x)=\sin x_1+...+\sin x_n$ unter der NB $g(x) := x_1 + ... + n_n = 2\pi$, wobei $f : [0, \pi]^n \to \mathbb{R}$.

Anschaulich: f(x) ist der doppelte Flächeninhalt des im Einheitskreis einbeschriebenen n-Ecks mit den Zentriwinkel $x_1, ..., x_n$ unter der NB $x_1 + ... + x_n = 2\pi$

Vorgehen: Die Menge $\triangle := \{x \in [0,\pi]^n; g(x) = 2\pi\}$ ist beschränkt und abgeschlossen und weil f stetig ist, nimmt f dort ihr Maximum an (Klar: nicht auf den Randpunkten).

Lagrange-Ansatz: nur Stellen $x = (x_1, ..., x_n)$ kommen für dieses Extremum in Frage, für die es einen $\overline{\text{Multiplikator }\lambda \in \mathbb{R}}$ gibt mit $0 = gradf(x) + \lambda gradf(x) = (\cos x_1, ..., \cos x_n) + \lambda \cdot (1, ..., 1)$ was nur für $\cos x_1 = \dots = \cos x_n = 0$ geht. Mit $0 \le x_j \le \pi$ folgt $x_1 = \dots = x_n$, und aus der NB $g(x) = 2\pi$ folgt $x_j = \frac{2\pi}{n}$ für $1 \le j \le n$.

Alsi ist der Flächeninhalt des einem Kreis einbeschrieben n-ecks genau für das regelmäßige n-Ecks max-

9.11. Motivation: $l, k \in \mathbb{N}, n = l + k, D \subset \mathbb{R}^n, f \in l^1(D, \mathbb{R}^k)$.

Umkehrung? Ging für $\frac{\delta f}{\delta y}(a) \neq 0$ bei $f: \mathbb{R}^1 x \mathbb{R}^1 \to \mathbb{R}^1$: dann findet sich eine Umgebung von a, in der f eine Umkehrfunktion besitzt.

9.12. Allgemeine Situation: Stelle $w = (a, b), (x, y) \in \mathbb{R}^l x \mathbb{R}^k = \mathbb{R}^{l+k}$. Dann: $f'(w) = (\frac{\delta f}{\delta y}(w), \frac{\delta f}{\delta y}(w)) \in \mathbb{R}^{kx(l+k)}$

9.13Satz über implizite Funktionen: $l, k \in \mathbb{R}^{j+k}, f \in l^1(D, \mathbb{R}^k)$

 $\underline{\text{Vor.:}}\ w \in D, F(w) = 0, \det(\frac{\delta f}{\delta y}(w)) \neq 0 (w = (a, b) \in \mathbb{R}^l x \mathbb{R}^k).$

Beh.: $\exists U, V \quad w \in UxVc\mathbb{R}^l x\mathbb{R}^k$ mit: $l: U \to V, x \to y \in V$ mit f(x,y)=0 ist eine Abbildung und zwar $l \in l^1(U, \mathbb{R}^k)$.

Die Abbildung von l ist
$$\underline{l'(x)} = * - (\frac{\delta f}{\delta y} \begin{pmatrix} x \\ l(x) \end{pmatrix})^{-1} \frac{\delta f}{\delta x} \begin{pmatrix} x \\ l(x) \end{pmatrix} \in \mathbb{R}^{kxl}$$
.

1. $\underline{\text{Bem.:}} \ \underline{f \in l^r} \xrightarrow{vollst.Ind} \underline{l \in l^r}$

2.Bem.: Bemerkenswert ist an diesem Satz, dass u.U. l nur schwierig berechnet werden kann, sehr wohl aber die Ableitung l'(x) nach der Formel (ohne die explizite Fkt. l ableiten zu müssen).

9.14.Bew.: • Falls I existiert und diffbar, so gilt:

$$0 = f(x, l(x)) \Rightarrow (f(x, l(x)))' = 0 \xrightarrow{\underline{K.R}} \frac{\delta}{\delta x} f(x, l(x)) \cdot \frac{\delta x}{\delta x} + \underbrace{\frac{\delta}{\delta y} f(x, l(x))}_{} \cdot l'(x) = 0 \text{invbar, falls x nahe a, d.h. falls}_{}$$

$$(4)$$

•Betr.

$$F: D \to \mathbb{R}^{l} x \mathbb{R}^{k}, F \in l^{1}, (x, y) \rightarrowtail (x, f(x, y)). \text{Es gilt} F'(x, y) = \begin{pmatrix} I_{l} & 0 \\ \delta f & \delta f \\ \delta x & \delta y \end{pmatrix} \in \mathbb{R}^{(l+k)x(l+k)}, \det F' = \det \frac{\delta f}{\delta y} \neq 0 \text{nate} f'(x, y)$$
(5)

Der Satz über lokale Umkehrbarkeit 8.8 liefert nun:

 $\exists W. w \in W c \mathbb{R}^l x \mathbb{R}^k$:

$$\mathbb{R}^{l} x \mathbb{R}^{k} \qquad \mathbb{R}^{l} x \mathbb{R}^{k}
(x, y) \mapsto (x, f(x, y)) \mapsto (x, g(x, f(x, y))) \tag{6}$$

$$W \to f(w) \xrightarrow{G=F^{-1}} W \xrightarrow{F} F(W)$$
 (7)

$$(u,v) \mapsto (u, \underbrace{g(u,v)}_{\in l^1}) \mapsto (u, \underbrace{f(u,g(u,v))}_{=v}),$$

$$(8)$$

d.h. (1) g(x,f(x,y))=y

(2) f(x,g(x,y))=y.

Wähle nun $U \subseteq \mathbb{R}^l$ mit $Ux\{0\} \subseteq F(W)$, mit $0 \in \mathbb{R}^k$.

(U existiert, da f(w)=0, also 0 als 2. Komponente in F(W) vorkommt.)

Für $x \in U$ setze l(x) := q(x, 0).

Denn: f(x, l(x)) = f(x, g(x, 0)) = 0.

Ferner: 1 ist eindeutig: $x \in U, f(x, y = 0)$,

(1) $\Rightarrow y = g(x, f(x, y)) = g(x, 0) = l(x).$

9.15. Bsp.: Betr. $f(x,y) = x^2 + y^2 - 1$. Für y > 0 ist $y = \sqrt{1 - x^2}$ die Fkt. y = l(x) "lokal", die durch f(x,y) = 0 "implizit" gegeben ist.

Laut Satz ist ihre Ableitung gleich $l'(x) = -\frac{2x}{2y} = -\frac{x}{\sqrt{1-x^2}}$ (wo y>0 ist),

wir erhalten das Ergebnis direkt durch partielle Ableiten von f, ohne die explizite Funktion l(x) ableiten zu müssen. Was hier ginge.

9.16. Bsp.: Ist die Glg. $x^y = y^x$ in der Nähe von a=(e,e) bzw. $\overline{a}=(2,4)$ nach einer der beiden Variablen auflösbar?

Setze $f: \mathbb{R}^2_{>0} \to \mathbb{R}, f(x,y) = x^y - y^x$, f ist für x,y>0 bel. oft diff'bar, f(e,e) = f(2,4) = 0. Die partiellen Ableitungen sind $D_1 f(x, y) = yx^{y-1} - y^x ln(y), D_2 f(x, y) = x^y ln(x) - xy^{x-1}$.

• In (2,4) sind diese beiden partiellen Abl. $\neq 0$, also ist die Glg. dort lokal nach x oder y auflösbar (nur

explizit nicht aber eben implizit!). Es gilt $l'(2,4) = -\frac{D_1 f(2,4)}{2,4} = -\frac{2^5 - 2^5 ln(2)}{2^4 ln(s) - 8}$ für die Ableitung der Auflösung nach y an der Stelle $\overline{a} = (2,4)$.

- In (e,e) gilt f'(e,e) = gradf(e,e) = (0,0), der implizite Funktionensatz ist deswegen dort nicht anwendbar (und f dort nicht auflösbar nach x oder y).
- 9.17. Bem.: Gegeben sei die Situation wie in 9.3, nähmlich:

Sei $D \subset \mathbb{R}^n, 2 \leq l \leq n, (f_1, ..., f_l) = f \in l^1(D, \mathbb{R}^l)$. Im gegebnsatz zu <u>9.4.</u> sei jetzt aber

$$rg\begin{pmatrix} D_1f_1 & \cdots & D_nf_1 \\ \vdots & & & \vdots \\ D_1f_l & \cdots & D_nf_l \end{pmatrix}$$
 (a) =1. Wegen 9.4 kann f_{1rN} kein Extremum in $a \in N$ haben, analog auch

nicht für $f_2, ..., f_l$. Dann liegt eine besondere Situation vor, die in der mehrdimensionalen Analysis die folgende Beziehung hat.

9.18. Def.: $M \subseteq \mathbb{R}^n$ heißt (n-l)-dimensionale Untermannigfaltigkeit ("UMF").

(1) $M \cap U = U \cap f^{-1}(o) (= f^{-1}(o)), (2) rgDf(a) = l.$

9.19. Bem.: Jede (n-l)-dim. UMF ist diffeomorph zu $\{x \in \mathbb{R}^n; x_{n-l+1} = \dots = x_n = 0\}$ der Dimension n-l (n-l)-dimensionale Ebeneim \mathbb{R}^n