The University of Western Australia
Dept. of Electrical & Electronic Engineering
Prof. Thomas Bräunl

Mobile Robots

Lab Assignment 6 – *Group* – A-Star

EXPERIMENT 1 (5 points)

Read the (x, y) coordinates in mm for up to 20 nodes from file: nodes.txt

Following each set of coordinates is the connectivity list to other nodes, as not every node is reachable from every other node (e.g. blocked by obstacles).

Start node is the first node, **goal node** is the last node in the file. Coordinate origin [0,0] is bottom left.

Points: 10

Example file matching the drawing above:

100 10	00 23	// Node 1 (Start):	x = 100, $y = 100$, has links to nodes 2 and 3
200 40	00 1 4	// Node 2:	x = 200, $y = 400$, has links to nodes 1 and 4
700 10	00 1 4	// Node 3:	x = 700, $y = 100$, has links to nodes 1 and 4
700 50	00 23	// Node 4 (Goal):	x = 700, $y = 500$, has links to nodes 2 and 3

For debugging purposes print the connection matrix after reading the input file. If two nodes are not connected, print "-1".

<u>Distance output for example (no connection = -1):</u>

0.0	316.2	600.0	-1.0
316.2	0.0	-1.0	509.9
600.0	-1.0	0.0	400.0
-1.0	509.9	400.0	0.0

EXPERIMENT 2 (3 points)

Calculate the A* algorithm from **starting node 1** to **goal node** (4 in this example)

- Use the Euclidian distance as lower bound to goal as well as the actual driving distance (if reachable)
- Print the **shortest path and distance** from start to goal.

EXPERIMENT 3 (2 points)

Drive the robot in the given environment along the shortest calculated path.