Missouri University of Science & Technology **Spring 2025**

Department of Computer Science CS 5480: Deep Learning

Homework 1: Multi-Layer Perceptrons and Training

Instructor: Sid Nadendla **Due:** Mar 9, 2025

Goals and Directions:

- The main goal of this assignment is to implement a multi-layer perceptron from scratch, and train it on a given dataset
- Comprehend the impact of hyperparameters and learn to tune them effectively.
- You are **not** allowed to use neural network libraries like PyTorch, Tensorflow and Keras.
- You are also **not** allowed to add, or remove any functions or classes, or even modify their names.
- You are also **not** allowed to change the signature (list of input attributes) of each function.
- Please note that this code may take several hours to run on one CPU. You will not find any gain by requesting GPUs on Mill.
- Finally, make sure that the gradients are structured according to their respective dimensions. Perform error handling if a dimensionality mismatch is observed.

Problem 1 Primitives

5 points

- 1. **LINEAR BASIS:** Implement a linear function in LINEAR() and its gradient in LINEAR_GRAD() (1 point)
 - X is a $K \times 1$ vector, and W is a $M \times K$ marix (Note that M is a hyperparameter).
 - Linear function: $Y = W \cdot X$ is a $M \times 1$ vector.
 - Gradient of Linear function: Return one of the following two gradients as needed:

$$\nabla_X Y = W(\text{dimension} = M \times K), \qquad \text{and} \qquad \nabla_W Y = \left[\begin{array}{ccc} X & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & X \end{array} \right]_{M \times M \times K}$$

2. **ACTIVATION FUNCTIONS:** Implement four activation functions, namely ReLU in RELU(), its gradient in RELU_GRAD(), logistic function in LOGISTIC() and its gradient in LOGISTIC_GRAD() (2 points)

Note: Let x_i be one of the entries in X. Then, activation functions are typically defined on each entry in X, i.e. $y_i = \sigma(x_i)$ for all $i = 1, \dots, M$

ReLU Activation:

• ReLU function:
$$y_i = \begin{cases} x_i, & \text{if } x_i \ge 0, \\ 0, & \text{otherwise.} \end{cases}$$

• ReLU function:
$$y_i = \begin{cases} x_i, & \text{if } x_i \geq 0, \\ 0, & \text{otherwise.} \end{cases}$$
• Gradient of ReLU function: $\nabla_{x_j} y_i = \begin{cases} 1, & \text{if } i = j \text{ and } y_i \geq 0, \\ 0, & \text{otherwise.} \end{cases}$

Note: The above definition includes the subgradient of ReLU at x=0. Also, $\nabla_x y$ is $M\times M$ dimensional, and does not equate to identity matrix for every y.

Logistic Function:

• Logistic function: $y_i = \frac{1}{1 + \exp(x_i)}$ for all $i = 1, \dots, M$.

• Gradient of Logistic Function:
$$\nabla_x y = \begin{bmatrix} -y_1(1-y_1) & 0 & \cdots & 0 \\ 0 & -y_2(1-y_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -y_M(1-y_M) \end{bmatrix}_{M \times M}$$

- 3. LOSS FUNCTIONS: In this primitive alone, assume that the true label Y, and therefore, the neural network output Y are binary variables (i.e. M=1). Return an error message if this condition does not hold true. Implement the binary cross-entropy loss in CROSSENTROPY(), and its gradient in CROSSENTROPY_GRAD(). (2 points)
 - Binary Cross Entropy: $z = l(y, \hat{y}) = -y \log \hat{y} (1 y) \log(1 \hat{y})$
 - Gradient of Binary Cross Entropy: $\nabla_{\hat{y}}z = \frac{1-y}{1-\hat{y}} \frac{y}{\hat{y}}$ (a scalar quantity)

Note: Be aware of the $\frac{0}{0}$ case. A typical solution is to add a very small number $\delta=10^{-6}$ to both numerator and denominator.

NN-2 Model Problem 2

5 points

Using primitive functions defined in Problem 1, implement a two-layer NN in NN2 class, with the following definitions:

- 1. **Forward pass:** Implement in NN2.FORWARD() definition. (1 point)
 - Function: $\hat{y} = \sigma_2 \Big(\boldsymbol{w}_2^T \cdot \sigma_1 (W_1 \cdot \boldsymbol{x}) \Big)$
 - Assume $\sigma_2(\cdot)$ is a logistic function, and $\sigma_1(\cdot)$ a ReLU function.
 - Assume W_1 is a $M \times K$ matrix, and w_2 is a $M \times 1$ vector.

Backward Pass: Implement in NN2.BACKWARD() definition. (3 points)

• Let
$$z_1 = W_1 \cdot x$$
, $\tilde{z}_1 = \sigma_1(z_1)$, and $z_2 = w_2^T \cdot \tilde{z}_1$. Then, $\hat{y} = \sigma_2(z_2)$.

• Gradient Computation (Backpropagation):

$$* \quad \nabla_{W_1} \ell = \nabla_{\hat{y}} \ell \cdot \nabla_{\boldsymbol{z}_2} \hat{y} \cdot \nabla_{\tilde{\boldsymbol{z}}_1} \boldsymbol{z}_2 \cdot \nabla_{\boldsymbol{z}_1} \tilde{\boldsymbol{z}}_1 \cdot \nabla_{W_1} \boldsymbol{z}_1 \qquad = \quad \left[\frac{\partial \ell}{\partial W_1(i,j)} \right] \quad \in \quad \mathbb{R}^{1 \times M \times K}$$

• Hint: You may use NUMPY.DOT() to compute the product of gradients.

Empirical loss gradient: Implement in NN2.EMP_LOSS_GRAD() definition. (1 point)

• Given a training data $(x_1, y_1), \dots, (x_N, y_N)$, the empirical risk is given by

$$L_N = \frac{1}{N} \sum_{i=1}^{N} \ell(y_i, \hat{y}_i).$$

• The gradient of empirical risk is given by

$$\nabla_{\boldsymbol{w}} L_N = \frac{1}{N} \sum_{i=1}^N \nabla_{\boldsymbol{w}} \ell(y_i, \hat{y}_i).$$

• Note: Everytime the optimization algorithm updates w, the gradient of loss function needs to be computed since \hat{y} changes accordingly.

Problem 3 Optimization Algorithms

5 points

- **GD:** Implement in GRADIENT_DESCENT() function.
 - Hyperparameter: Learning rate ϵ , Number of iterations R
 - Initialize $\mathbf{W}^0 \sim \mathcal{N}(\mathbf{0}, \sigma^2 I)$.
 - In the r^{th} iteration, compute the gradient of empirical loss with respect to W^{r-1} using emp_loss_grad function in the model class.
 - Compute the update step: $\mathbb{W}^{(r)} = \mathbb{W}^{(r-1)} \epsilon \cdot \nabla L_N(\mathbb{W}^{(r-1)})$
 - Bonus Points: You will receive one extra point for each one of the following optimization algorithms: SGD, AdaM

Problem 4 Classification on MNIST¹ Data

5 points

1. Data Preprocessing on MNIST:

(2 points)

¹Original Source: http://yann.lecun.com/exdb/mnist/

- MNIST data comprises of 70,000 images of handwritten digits from 0 to 9 (10 label classes), where each image has 28×28 pixels of gray-scale values ranging from 0 (black) to 1 (white). Flatten each image (28×28 matrix) into one 784×1 vector. Append a '-1' to the end of this array to get the 785×1 input, i.e. K = 785.
- Convert these 10-ary labels into a binary label, where the outcome is '1' if the original image label is an **even** number, and '0' otherwise.
- Partition the entire dataset into T=10,000 test samples and the remaining as training samples.
- 2. Training on MNIST: Train NN-2 model on the training portion of the pre-processed MNIST dataset by choosing appropriate hyperparameters M, ϵ , R and the initial weights for W_1 and w_2 . (1 point)

Note: Your model performance depends on how well you choose your hyperparameters.

3. **Testing on MNIST:** Validate the performance of the trained NN-2 model using the testing portion of the pre-processed MNIST dataset. Report your performance in terms of accuracy, which is defined as

$$Acc = \frac{1}{|\text{Test Samples}|} \sum_{i \in \text{Test Samples}} \mathbb{1} (y_i = \hat{y}_i),$$

where $\mathbb{1}(A)$ is a indicator function that returns a value '1', when A is true. (2 points)

Note: An acceptable model produces at least 75% accuracy.