Third ECE Conference Aberystwyth, Wales July 2013

Stephen C. Bannister
Department of Economics
University of Utah
Salt Lake City, Utah 84112
USA
steve.bannister@econ.utah.edu

- Econonomics general, micro/macro unification
- Welsh economics history
- Podolinski, Fredrick Soddy
- Importance of energy
 - diss2_beamer
 - motion charts

What do economists do?

- Attempt to model complex social systems Macroeconomics – lots of equilibrium-based models
- Attempt to explain individual (consumer/firm) behaviour Microeconomics
- Attempt to link them microfoundations of macroeconomics, network systems with emergent behaviours, stochastic agent-based models

Similarities/dissimilarities with physics

- Use maths in several ways (physics envy?)
 - Theory so use mostly the same algebras you do (especially linear), although so far no tensor algebra
 - Applied since difficult to repeat experiments, have evolved a wide set of statistical methods
 - Simulation
- Use scientific methods, processes (publish, etc.)
- Share people Fredrick Soddy, Wall Streen "quants"
- Narrow vein of thermodynamicists (Sergei Podolinski, Georgescu-Roegen) to whom economics is a thermodynamic system
- Must incorporate institutions and history
- Again, very little repeatability difficult to "rewind" a macroeconomy since people are involved

English Industrial Revolution, 1590 - 1876

- Modern economic growth
- Unconstrained quantity of fossil carbon energy an energy revolution led by a demand revolution
- Little statistical space for institutional or cultural events except to explain structural breaks
- Framework applicable across time series, space, and time

Taxonomy of EIR explanations

Label	Examples
English exceptionalists	Landes (1969), McCloskey (2010), Mokyr (1992,2010)
Partial culturalists	Cipolla (1966), Pomeranz (2001), Allen (2009)
Primarily energetic	Cottrell (1955), Wrigley (1988,2010), Malanima (2010)
Thermodynamicists	Georgescu-Roegen (1975), Ayres (2003), Garrett (2009)

Author/time-span series of energy consumption, GDP, and population

English real gross domestic product, levels and per-capita

English real gross domestic product, log levels and log per-capita

Structural break comparison

Coal and wood energy sources Source: Pearson & Fouquet

Energy consumption vs. standarized GDP

Scatterplot of energy consumption vs. GDP

No "Solow" residual

Granger tests of energy/GDP dynamics

Era	Energy ~ GDP Pr(>F)	GDP ~ Energy Pr(>F)	AS/AD regime
1300 – 1500	0.0106	0.0003	EMP ¹ , Black Death:
			increasing wages,
			family income
1500 – 1600	0.1939	0.6126	Positive demand shock
1600 – 1750	0.3529	0.5185	Energy supply constraint
1750 – 1873	0.0024	0.1100	Positive supply shock:
			"virtuous" macro
			feedback cycle
1300 – 1873	0.0002	0.0361	Total study period

¹European marriage pattern (Hajnal)

Energy/GDP era two AD - AS, 1500 - 1600

Aggregate Supply - Aggregate Demand Four energy/GDP regimes

Energy/GDP era one AD - AS 1300 - 1500

Desagulier manuscript

rection P p, and a Quantity of the property of the property of the point at P. This may be done 15 or 16 times in a be lifted up, and run out at P. This may be done 15 or 16 times in a Minute, because each Man would pull down but 30 Pounds at a time, after the manner that People ring Bells. But as no Time is to be lost, lest the Mine be overshowd by the Springs below, there must be 100 more the Mine be overshowd by the Springs below, there must be 100 more the Mine to relieve these when they are weary. Now as it must be a rich Mine indeed whose Profit can afford to keep 200 Men at this Work; Mine indeed whose Profit can afford to keep 200 Men at this Work;

468

FIRE-ENGINE.

Left XII that Thought must be laid aside. We'll consider therefore what can be done by Horses. As an Horse is equal to five Men, we must work 20. Horses at a time to raise the Water required; and as Horses must be reliev'd even more than Men, about 50 Horses must be kept to carry on this Work constantly, and bring down the End of the Beam b, 16 times in a Minute, and make the number of Strokes required in the Pump, the Weight of whose Rod after every Stroke will bring down the End b 2, by drawing along the Tangent i H. It is plain to any body, that tho' the Horses may be had cheaper than Men, yet that will be a very expensive way. For the next Contrivance, we'll suppose a Philosopher to come, and find a means to bring down the End of the Beam, without Men or Horses, in this manner. To the Chain H L he fixes a

Real wage to energy ratios Source: Robert Allen (2009)

Microeconomic theory

$$\frac{\text{Marginal Revenue Product}_{\text{organic energy joule}}}{\text{Price}_{\text{organic energy joule}}} = \frac{\text{Marginal Revenue Product}_{\text{fossil energy joule}}}{\text{Price}_{\text{fossil energy joule}}}$$

English Industrial Revolution, 1590 - 1876

- Modern economic growth
- Unconstrained quantity of fossil carbon energy an energy revolution led by a demand revolution
- Little statistical space for institutional or cultural events except to explain structural breaks
- Macro and micro explain a great deal
- Framework applicable across time series, space, and time

Thank you

English wood enegy supply constraint

Figure: Standardized English energy intensity of GDP

Figure: Log of GDP, with structural breaks

Figure: Log of population, with structural breaks

Data Sources

Year range	Geography	Source
1300 – 1873	England/Wales	Roger Fouquet (2008)
1300 – 1700	England	Graeme Snooks (1994)
1741 – 1873	England/Wales	Lawrence Officer (2009)
1300 – 1540	England	Graeme Snooks (1994)
1541 – 1800	England	B. R. Mitchell (1988)
1801 – 1873	England/Wales	B. R. Mitchell (1988)
	1300 - 1700 1741 - 1873 1300 - 1540 1541 - 1800	1300 – 1873 England/Wales 1300 – 1700 England 1741 – 1873 England/Wales 1300 – 1540 England 1541 – 1800 England

Table: growth rates by century

Year	1300	1400	1500	1600	1700	1801	1873	Total
GDP Million								
2005 GBP	3114.7541	815.1288	994.4571	6031.953	8361.5911	18110	102811	
Century-over-century								
rate of growth		-0.738	0.220	5.066	0.386	1.166	4.677	32.008
Compounded annual								
rate of growth		-0.013	0.002	0.018	0.003	0.008	0.024	0.006
Energy consumption	1.7	1	1.3	2.2	3.6	11.6	66.1	
Century-over-century								
rate of growth		-0.412	0.300	0.692	0.636	2.222	4.698	37.882
Compounded annual								
rate of growth		-0.005	0.0026	0.005	0.005	0.012	0.024	0.006
Per-capita GDP								
2005 GBP	542	329	421	1,484	1,663	1,999	4,392	
Century-over-century								
rate of growth		-0.393	0.282	2.521	0.121	0.202	1.198	7.108
Compounded annual								
rate of growth		-0.005	0.002	0.013	0.001	0.002	0.011	0.004

Table: Energy and GDP fit tests

Test	Statistic	p-value
Pearson's correlation	0.998	
Paired t-test	5.592	4.991e-07
Chi-square	2864	0.0004998