Модель гармонических колебаний дисциплина: Математическое моделирование

Сорокин Андрей Константинович НФИбд-03-18

Цель работы

Ознакомиться с уравнением гармонического осциллятора и построить фазовые портреты.

Построить фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора на интервале $t\in[0;51]$ (шаг 0.05) с начальными условиями $x_0=0.4,y_0=2.1$ для следующих случаев: 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы $\ddot{x}+0.6x=0$

- 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы $\ddot{x}+0.4\dot{x}+0.4x=0$
- 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы $\ddot{x}+0.2\dot{x}+10x=0.5cos(2t)$

Ход выполнения лабораторной работы

Подключаю все необходимые библиотеки import numpy as np import matplotlib.pyplot as plt from scipy.integrate import odeint

Значения

x0 = 0.4

Ввод значений из своего варианта Значения для 21 варианта:

$$y0 = 2.1$$

 $t0 = 0$
 $tmax = 51$
 $dt = 0.05$
 $t = np.arange(t0,tmax+dt,dt)$
 $v0 = [x0,y0]$

Первый случай

Ввожу параметры осциллятора для первого случая:

$$w = 0.6$$

$$g = 0$$

Первый случай

```
Система для первого случая:  def \ y(v,t) \text{:} \\ x, \ y = v \\ return \ [y, -1 * np.power(w,2) * x - g * y]   eq1 = odeint(y,v0,t)
```

Графики первого случая

Вывод фазового портрета гармонических колебаний для первого случая (рис. 1).

Графики первого случая

Вывод решения уравнения гармонического осциллятора первого случая (рис. 2).

Второй случай

Ввожу параметры осциллятора для второго случая:

$$w = 0.4$$

g = 0.4

Графики второго случая

Вывод фазового портрета гармонических колебаний для второго случая (рис. 3).

Графики второго случая

Вывод решения уравнения гармонического осциллятора для задания №2 (рис. 4).

Третий случай

Ввожу параметры осциллятора третьего случая:

$$w = 10$$

$$g=0.2$$

Третий случай

```
Зададим дополнительную функцию f: def f(t):  {\rm return} \ 0.5 \ * \cos(2^*t)
```

Третий случай

```
Система для третьего случая:
```

```
def y2(v,t):  \begin{array}{l} x,\ y=v \\ \text{return}\ [y,\text{-1 * np.power}(w,2)\ *\ x\ -\ g\ *\ y\ -\ f(t)] \end{array}
```

Графики третьего случая

Вывод фазового портрета гармонических колебаний для третьего случая(рис. 5).

Графики третьего случая

Вывод решения уравнения гармонического осциллятора для третьего слкчая (рис. 6).

Вывод

В результате проделаной работы я ознакомился с моделью гармонических колебаний и построил фазовые портреты гармонических колебаний.