Connettere più LAN in modo sicuro con IPsec

Prof. Francesco Bergadano

Dipartimento di Informatica Università di Torino

Sicurezza Rete Locale (LAN)

Sicurezza Reti Locali (LANs)

Sicurezza Reti Locali (LANs)

Obiettivi

- Avere la stessa sicurezza che avremmo con un un'unica rete locale
- Permettere anche traffico da e verso reti esterne, se necessario attraverso un Firewall
- Non introdurre ritardi significativi
- Non richiedere operazioni di riconfigurazione agli utenti (trasparenza)

Una buona soluzione:

VPN (Virtual Private Network)

Esempio: IPsec (IP level security)

Schema generale descritto in RFC 1825 - "Security Architecture for the Internet Protocol"

IPsec - idea fondamentale

La PDU (Protocol Data Unit) trasportata dal pacchetto IP è cifrata e/o autenticata, e all'header IP vengono aggiunte informazioni che permettono al ricevente autorizzato di decifrare e/o di verificare l'autenticità e l'integrità del messaggio

header Link	header IP	header IPsec	PDU cifrata
header Link	header IP	header IPsec	PDU autenticata

Conseguenze

- I router vedono indirizzo mittente e destinatario così come appaiono nell'header IP
- I router non vedono la PDU se cifrata
- I router non possono modificare i messaggi senza che ciò sia visibile per il ricevente se la PDU è autenticata

Altre conseguenze

- Le reti aziendali sono protette da intercettazioni e modifiche su Internet
- Cifratura e autenticazione vengono gestite solo sulle LAN sorgente e destinazione
- IPsec non protegge da attacchi all'interno delle LAN private e dai rischi di sicurezza legati a servizi offerti verso l'esterno (per i quali non vi è cifratura/autenticazione a livello IP).

Problemi

- Come mascherare anche il traffico (nascondere indirizzi mittente e destinatario)?
- Come proteggersi da sniffing/spoofing all'interno delle LAN private?

- Trasport mode (cifratura e autenticazione su computer mittente e destinatario)
- Tunnel mode (cifratura e autenticazione su firewall o su router)

Transport/Tunnel mode

Transport mode

Tunnel mode

Transport mode

- Protegge da sniffing/spoofing su rete locale
- Rende visibile su Internet gli indirizzi mittente e destinatario
- Richiede una speciale configurazione del computer utente (non trasparente)
- Necessario per traffico da postazione mobile

Soluzione mista per postazione mobile

Tunnel mode

- Non protegge da sniffing/spoofing su rete locale
- Nasconde gli indirizzi dei singoli computer mittente e destinatario, non nasconde gli indirizzi della rete mittente e destinazione
- E' trasparente all'utente singolo
- Veloce, prodotti affidabili per rouuter/firewall

Tunnel mode

- Non protegge da sniffing/spoofing su rete locale
- Nasconde gli indirizzi dei singoli computer mittente e destinatario, non nasconde gli indirizzi della rete mittente e destinazione
- E' trasparente all'utente singolo
- Veloce, prodotti affidabili per rouuter/firewall

Servizi IPsec

- Autenticazione
 (AH -Authentication Header RFC 1826)
- Cifratura (ESP Encapsulating Security Payload RFC 1827)

Cifratura e autenticazione sono simmetriche

 Serve per autenticare il traffico IP, normalmente tra due LAN private, per evitare modifiche e falsificazioni

header Link	header IP	AH	PDU autenticata

 Serve per autenticare il traffico IP, normalmente tra due LAN private, per evitare modifiche e falsificazioni

• L'authentication header non serve per evitare intercettazioni e non permette di nascondere gli specifici indirizzi IP di mittente e destinatario.

Next header	Data length	Reserved		
Security parameters index (SPI)				
Sequence number				
Data/ICV: Integrity Check Value (MAC)				

 Serve per cifrare il traffico IP, normalmente tra due LAN private, per evitare intercettazioni

header Link header IP ESP (con PDU cifrata)

Transport mode

Tunnel mode

AH + ESP

E' possibile cifrare <u>e</u> autenticare

header Link header IP AH ESP	header Link	header IP	AH	ESP
------------------------------	-------------	-----------	----	-----

IPsec anti-replay

IPsec "annidate"

Domanda: Come si determinano chiavi e algoritmo crittografico?

Risposta: Usando le SPI, l'indirizzo IP mittente e destinatario, e una tabella di associazione presente sulle macchine di mittente e ricevente

Domanda: Come si installa la tabella di associazione e come si inizializzano le chiavi?

Risposta: A mano, durante l'installazione del prodotto Ipsec selezionato. Alcuni prodotti prevedono scambio di chiavi con tecniche asimmetriche, raramente usato.

Domanda: Che algoritmi di cifratura e autenticazione vengono usati?

Risposta: Algoritmi convenzionali (simmetrici) perché il procedimento deve essere efficiente

IPsec: una buona soluzione

Conclusione - IPsec permette di:

- Avere la stessa sicurezza che avremmo con un un'unica rete locale
- Permettere anche traffico da e verso reti esterne, se necessario attraverso un Firewall
- Non introdurre ritardi significativi
- Non richiedere operazioni di riconfigurazione agli utenti (trasparenza) se intallato in tunnel mode