Cvičení č. 1

a)

Nechť je M spočetná množina. Pokud je M konečná a |M| = n, mějme bijekci $h : \mathbb{Z}_n \to M$, jinak mějme bijekci $h : \mathbb{Z} \to M$. Operaci \oplus zadefinujeme tak, že

$$\forall a, b \in M : h(a) \oplus h(b) = h(a+b).$$

Snadno ověříme, že $(M, \oplus, h(0))$ je monoid:

- $(h(a) \oplus h(b)) \oplus h(c) = h(a+b+c) = h(a) \oplus (h(b) \oplus h(c))$
- h(a) + h(0) = h(a+0) = h(a) = h(0) + h(a),

kde využíváme toho, že $(\mathbb{Z}, +, 0)$ a $(\mathbb{Z}_n, +, 0)$ jsou monoidy a h je bijekce. (Stejný argument se dá použít i pro množiny s kardinalitou rovnou \mathbb{R} .)

b)

Podgrupa je normální, pokud přežije konjugaci s prvky grupy. Konjugace permutace nezmění její strukturu, pouze přejmenuje prvky. Množina $\{id, (123), (132)\}$ je tedy příklad netriviální normální podgrupy \mathbb{S}_3 .

c)

Z Lagrangeovy věty pro H < G platí $p = |G| = [G:H] \cdot |H|$. Když je p prvočíslo, musí platit |H| = 1 nebo |H| = p. Jediné podgrupy jsou tedy ty triviální.

d)

$$2015 = 5 \cdot 13 \cdot 31 \qquad 2035 = 5 \cdot 11 \cdot 37$$

$$\varphi(2015) = 4 \cdot 12 \cdot 30 = 1440 \qquad \varphi(2035) = 4 \cdot 10 \cdot 36 = 1440$$

Protože víme, že Eulerova funkce odpovídá počtu generátorů cyklické grupy, vidíme, že cyklická grupa řádu 2035 má $\varphi(2015)$ generátorů.

e)

Uvažujme h isomorfismus ($|\mathbb{Z}_6| = |\mathbb{S}_3|$). Nechť h(m) = (12) a h(n) = (13).

$$h(m+m) = (12)(12) = id \implies m+m = 0 \implies m = 3$$

 $h(n+n) = (13)(13) = id \implies n+n = 0 \implies n = 3,$

čímž dostáváme spor s tím, že h je zobrazení.

f)

Z přednášky víme, že velikost tělesa musí být mocninou prvočísla. $10 = 2 \cdot 5$. Spor.

Cvičení č. 2

Nechť je c počet použitých barev a X množina všech obarvení odznáčku. $|X|=c^{12}$. Grupa G všech pootočení odznáčku má 12 prvků. Uvažujme přirozenou akci G na X. Pro každý $g \in G$ určíme počet jím nezměněných prvků X.

- **0** Všech c^{12} obarvení je nezměněno.
- 1,5,7,11 Nezměněné prvky jsou ty obarvené celé jednou barvou. Těch je c.
- **2,10** Sudé a liché prvky musí být každé stejnou barvou. Takových obarvení je c^2 .
- **3,9** Obdobně jako v předchozím případě je nezměněných c^3 obarvení.
- **4,8** Stejně jako výše je nezměněných c^4 obarvení.
- $\mathbf{6}$ Protější díly musí mít stejnou barvu. Najdeme c^6 nezměněných obarvení.

Počet rozlišitelných obarvení je roven $|X/G|=1/|G|\cdot\sum_{g\in G}|X^g|$, kde X^g je množina prvků z x nezměněných akcí g.

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g| = \frac{1}{12} (c^{12} + c^6 + 2c^4 + 2c^3 + 2c^2 + 4c) \ge 506$$

$$c \ge 3$$

Anička bude potřebovat alespoň 3 barvy.

Cvičení č. 3

a)

Z cvičení víme, že obrazem homomorfismu je podgrupa, jejíž řád je dělitelný NSD(p,q). Pokud $p \neq q$, existuje tedy jediný homomorfismus zobrazující celé \mathbb{Z}_p na nulu.

Pokud p=q, existuje navíc ještě p-1 dalších homomorfismů určených obrazem 1 (každý nenulový prvek \mathbb{Z}_p je generátor a homomorfismus je určen zobrazením 1 na generátor).

b)

Grupa $\mathbb{Z}_2 \times \mathbb{Z}_3$ je cyklická řádu 6 a generovaná (1,1). Opět víme, že obrazem bude podgrupa řádu dělícím NSD(42,6), tedy 1, 2, 3 nebo 6. Homomorfismus je jednoznačně určen obrazem (1,1). Jelikož (1,1) se musí zobrazit na generátor podgrupy, dostáváme následující homomorfismy:

řád 1: $(1,1) \to 0$

řád 2: $(1,1) \rightarrow 21$

řád 3: $(1,1) \rightarrow 14, (1,1) \rightarrow 28$

řád 6: $(1,1) \rightarrow 7, (1,1) \rightarrow 35$

Cvičení č. 4

Obraz homomorfismu z \mathbb{S}_3 musí mít velikost 1, 2, 3, nebo 6. Triviálně může být obrazem homomorfismu $\{0\}$ a \mathbb{S}_3 .

Jediná grupa velikosti 2 je \mathbb{Z}_2 . Na \mathbb{Z}_2 se můžeme zobrazit například jako

$$h((12)) = h((13)) = h((23)) = h(id) = 0$$
 $h((123)) = h((132)) = 1$

Jediná grupa velikosti 3 je \mathbb{Z}_3 . Na \mathbb{Z}_3 homomorfismus nemůže existovat, protože všechny prvky řádu 2 by musely být zobrazeny na nulu, čímž bychom ovšem dostali spor např.

$$0 = h((12)) \circ h((13)) = h((132)) \neq 0,$$

kde poslední nerovnost musí platit, aby obraz byl řádu 3.

Grupy velikosti 6 jsou \mathbb{Z}_6 a \mathbb{S}_3 . Neexistenci isomorfismu mezi \mathbb{S}_3 a \mathbb{Z}_6 jsme ukázali v první úloze. Množiny, které můžou být obrazem \mathbb{S}_3 , jsou tedy $\{0\}$, \mathbb{Z}_2 a \mathbb{S}_3 .