Anfängerpraktikum der Fakultät für Physik, Universität Göttingen

Dampfdruck von Wasser Protokoll:

Praktikant: Felix Kurtz

Michael Lohmann

E-Mail: felix.kurtz@stud.uni-goettingen.de

m.lohmann@stud.uni-goettingen.de

Betreuer: Martin Ochmann

Versuchsdatum: 23.06.2014

Testat:		

Inhaltsverzeichnis

Inhaltsverzeichnis

1	1 Einleitung2 Theorie	
2		
3	Durchführung 3.1 Sicherheitshinweise	3
4	Auswertung4.1 Druckkurven4.2 Siedetemperatur auf der Zugspitze	4 4 6
5	Diskussion	6
6	6 Anhang	
Lit	teratur	6

1 Einleitung

[Cra75, S. ∞]

2 Theorie

3 Durchführung

Abbildung 1: Versuchsaufbau Quelle:LP

Nachdem die Sicherheitshinweise sorgfältig durchgelesen wurden, schaltet man das Gerät ein. Der Heizstrahler erwärmt dann den mit Wasser gefüllten Kolben, welches dadurch verdampft. Am angeschlossenen Manometer liest man den Druck ab. Zeitgleich notiert man den Wert des Widerstandsthermometers und somit indirekt die Temperatur. Dies geschieht in 1 Bar-Schritten. Das Heizen wird beendet, wenn 1900 Ω oder 45bar überschritten werden, damit das Gerät keinen Schaden nimmt. Nun wird die Messung während des Abkühlens wiederholt.

R_0	1000Ω	
A	$3.9083 \cdot 10^{-3} ^{\circ}\text{C}^{-1}$	
В	$-5.775 \cdot 10^{-7} ^{\circ}\mathrm{C}^{-2}$	

Tabelle 1: Kennwerte des Widerstandsthermometers

3.1 Sicherheitshinweise

4 Auswertung

4.1 Druckkurven

$$R(\vartheta) = R_0 \cdot \left(1 + A\vartheta + B\vartheta^2\right) \tag{1}$$

$$\Rightarrow \vartheta = -\frac{A}{2B} - \sqrt{\frac{A^2}{4B^2} - \frac{1}{B} + \frac{R}{R_0 B}} \tag{2}$$

$$\Delta \vartheta = \pm (0.3 \text{ }^{\circ}\text{C} + 0.005\vartheta) \tag{3}$$

Nun muss ϑ noch in Kelvin umgerechnet werden. Außerdem wird für p_0 der gemessene Umgebungsdruck von 1017 hPa verwendet.

Größe	Erwärmen	Abkühlen
m	$(-4326 \pm 13) \text{ K}$	$(-4618 \pm 21) \text{ K}$
b	12.0672 ± 0.02819	12.5427 ± 0.04496

Gewichtete Mittelwerte

$$m = (-4407 \pm 11) \text{ K}$$
 $b = 12.201 \pm 0.024$

$$\begin{split} & \Lambda_V = -m \cdot R \\ & \sigma_{\Lambda_V} = \sigma_m \cdot R \\ & \Lambda_V = (36640 \pm 100) \text{ J/mol} \end{split}$$

$$T_{0} = -\frac{m}{b}$$

$$\sigma_{T_{0}} = \sqrt{\left(\frac{\sigma_{m}}{b}\right)^{2} + \left(\frac{m \cdot \sigma_{b}}{b^{2}}\right)^{2}}$$

$$T_{0} = (361.2 \pm 1.3) \text{K} = (88.0 \pm 1.3)^{\circ}\text{C}$$

Abbildung 2: Arrheniusplot für das Erwärmen

Abbildung 3: Arrheniusplot für das Abkühlen

Dampfdruck vun Wasser bei $T=0^{\circ}\mathrm{C}=273.15\mathrm{K}$

$$p = p_0 \exp\left(m\frac{1}{T} + b\right)$$
$$\sigma_p = p \sqrt{\frac{\sigma_m^2}{T^2} + \sigma_b^2}$$
$$p = (1990 \pm 100) \text{Pa}$$

4.2 Siedetemperatur auf der Zugspitze

barometrische Höhenformel

$$p(h) = p_0 \exp\left(\frac{-\rho g h}{p_0}\right)$$

$$\frac{\Lambda_V}{R} \left(\frac{1}{T_0} - \frac{1}{T}\right)$$
(4)

Größe	Wert
T_0	373.15 K
ρ	$1.29 \mathrm{\ kg/m^3}$
g	9.81 m/s^2
R	$8.31 \mathrm{J/(molK)}$
p_0	1013.25 hPa
Λ_V	40642 J/mol

Tabelle 2: Literaturwerte

Höhe der Zugspitze h = 2962 m

$$T = \left(\frac{1}{T_0} + \frac{\rho g h R}{p_0 \Lambda_V}\right)^{-1}$$
$$T = 362.9 \text{ K} = 89.8^{\circ}\text{C}$$

5 Diskussion

6 Anhang

Literatur

[Cra75] Crank, J.: Mathematics of Diffusion. Clarendon Press, Oxford, 1. Auflage, 1975.