Recherche exacte d'un ensemble de motifs Algorithme de Aho-Corasick

Sèverine Bérard

décembre 2018

ISE-M – FDS, Université de Montpellier

Sommaire

- Introduction
- ② Dictionnaire
- Recherche de motifs
- 4 Aho-Corasick complet
- Séférences

Plan du cours

- Introduction
- 2 Dictionnaire
- Recherche de motifs
- 4 Aho-Corasick complet
- 5 Références

 Généralisation du problème de recherche exacte d'un motif dans un texte

- Généralisation du problème de recherche exacte d'un motif dans un texte
- Soient $\mathcal{P} = \{P_1, P_2, \dots, P_k\}$ un ensemble de k motifs avec $\Sigma |P_i| = m$ et T un texte de longueur n

- Généralisation du problème de recherche exacte d'un motif dans un texte
- Soient $\mathcal{P} = \{P_1, P_2, \dots, P_k\}$ un ensemble de k motifs avec $\Sigma |P_i| = m$ et T un texte de longueur n

- Généralisation du problème de recherche exacte d'un motif dans un texte
- Soient $\mathcal{P} = \{P_1, P_2, \dots, P_k\}$ un ensemble de k motifs avec $\Sigma |P_i| = m$ et T un texte de longueur n

Recherche exacte d'un ensemble de motifs

Trouver toutes les occurrences des motifs de ${\mathcal P}$ dans T

- Généralisation du problème de recherche exacte d'un motif dans un texte
- Soient $\mathcal{P} = \{P_1, P_2, \dots, P_k\}$ un ensemble de k motifs avec $\Sigma |P_i| = m$ et T un texte de longueur n

Recherche exacte d'un ensemble de motifs

Trouver toutes les occurrences des motifs de ${\mathcal P}$ dans T

• De manière naïve, on pourrait utiliser pour chaque motif, une méthode de recherche en temps linéaire en la taille du texte (+ pré-traitement) des motifs), ce qui donnerait une complexité en O(kn+m)

- Généralisation du problème de recherche exacte d'un motif dans un texte
- Soient $\mathcal{P} = \{P_1, P_2, \dots, P_k\}$ un ensemble de k motifs avec $\Sigma |P_i| = m$ et T un texte de longueur n

Recherche exacte d'un ensemble de motifs

Trouver toutes les occurrences des motifs de ${\mathcal P}$ dans T

- De manière naïve, on pourrait utiliser pour chaque motif, une méthode de recherche en temps linéaire en la taille du texte (+ pré-traitement des motifs), ce qui donnerait une complexité en O(kn+m)
- Mais on peut mieux faire! But : O(m+n+q) où q est le nombre d'occurrences des motifs dans le texte

Plan du cours

- Introduction
- 2 Dictionnaire
- 3 Recherche de motifs
- 4 Aho-Corasick complet
- 6 Références

Définition

Le *dictionnaire* pour un ensemble de motifs $\mathcal P$ est une arborescence $\mathcal K$ (c.-à-d. un arbre orienté enraciné) satisfaisant 3 conditions :

Définition

Le *dictionnaire* pour un ensemble de motifs \mathcal{P} est une arborescence \mathcal{K} (c.-à-d. un arbre orienté enraciné) satisfaisant 3 conditions :

chaque arc est étiqueté avec exactement un caractère

Définition

Le *dictionnaire* pour un ensemble de motifs $\mathcal P$ est une arborescence $\mathcal K$ (c.-à-d. un arbre orienté enraciné) satisfaisant 3 conditions :

- chaque arc est étiqueté avec exactement un caractère
- 2 arcs sortants d'un même nœud ont des étiquettes différentes

Définition

Le dictionnaire pour un ensemble de motifs \mathcal{P} est une arborescence \mathcal{K} (c.-à-d. un arbre orienté enraciné) satisfaisant 3 conditions :

- chaque arc est étiqueté avec exactement un caractère
- 2 arcs sortants d'un même nœud ont des étiquettes différentes
- lacktriangled chaque motif P_i de $\mathcal P$ correspond à un nœud v de $\mathcal K$, tel que l'étiquette-chemin de v soit exactement P_i , et chaque feuille de $\mathcal K$ correspond à un motif de $\mathcal P$

Définition

Le dictionnaire pour un ensemble de motifs \mathcal{P} est une arborescence \mathcal{K} (c.-à-d. un arbre orienté enraciné) satisfaisant 3 conditions :

- chaque arc est étiqueté avec exactement un caractère
- 2 arcs sortants d'un même nœud ont des étiquettes différentes
- lacktriangled chaque motif P_i de $\mathcal P$ correspond à un nœud v de $\mathcal K$, tel que l'étiquette-chemin de v soit exactement P_i , et chaque feuille de $\mathcal K$ correspond à un motif de $\mathcal P$

Remarque : certains nœuds de $\mathcal K$ sont donc numérotés pour les mettre en correspondance avec les motifs de $\mathcal P$ qu'ils représentent

Définition

Le dictionnaire pour un ensemble de motifs \mathcal{P} est une arborescence \mathcal{K} (c.-à-d. un arbre orienté enraciné) satisfaisant 3 conditions :

- chaque arc est étiqueté avec exactement un caractère
- 2 arcs sortants d'un même nœud ont des étiquettes différentes
- lacktriangled chaque motif P_i de $\mathcal P$ correspond à un nœud v de $\mathcal K$, tel que l'étiquette-chemin de v soit exactement P_i , et chaque feuille de $\mathcal K$ correspond à un motif de $\mathcal P$

Remarque : certains nœuds de $\mathcal K$ sont donc numérotés pour les mettre en correspondance avec les motifs de $\mathcal P$ qu'ils représentent

Toutes les feuilles sont numérotées, ainsi que des nœuds internes si des motifs de ${\mathcal P}$ sont préfixes d'autres motifs de ${\mathcal P}$

 $\mathcal{P} = \{ \mathsf{JE}, \, \mathsf{PRÉVOIRAI}, \, \mathsf{PLUS}, \, \mathsf{DE}, \, \mathsf{TEMPS}, \, \mathsf{POUR}, \, \mathsf{PRÉPARER}, \, \mathsf{CES}, \, \mathsf{COURS} \}$

Plan du cours

- Introduction
- 2 Dictionnaire
- 3 Recherche de motifs
- 4 Aho-Corasick complet
- 5 Références

Recherche de motifs en O(nm)

• Supposons que l'on dispose du dictionnaire $\mathcal K$ de l'ensemble $\mathcal P$, notons r sa racine et num l'application qui à tout nœud associe son éventuel numéro

Recherche de motifs en O(nm)

• Supposons que l'on dispose du dictionnaire \mathcal{K} de l'ensemble \mathcal{P} , notons r sa racine et num l'application qui à tout nœud associe son éventuel numéro

Algorithme: Recherche naïve

Données : Le texte $\mathcal T$ de longueur n et le dictionnaire $\mathcal K$ de l'ensemble des mots $\mathcal P$ de longueur totale m

 \bullet Dans l'algorithme précédent, on cherche tous les mots de ${\cal P}$ à partir de chaque position de début possible dans ${\cal T}$

- \bullet Dans l'algorithme précédent, on cherche tous les mots de ${\cal P}$ à partir de chaque position de début possible dans ${\cal T}$
- Quand on ne peut plus avancer (situation d'échec ou feuille), on reprend la recherche à partir de la position suivante dans T

- \bullet Dans l'algorithme précédent, on cherche tous les mots de ${\cal P}$ à partir de chaque position de début possible dans ${\cal T}$
- Quand on ne peut plus avancer (situation d'échec ou feuille), on reprend la recherche à partir de la position suivante dans T
- L'idée ici est de reprendre la comparaison à partir de ce qu'on a déjà reconnu, de la même manière que dans les algorithmes MP et KMP

- \bullet Dans l'algorithme précédent, on cherche tous les mots de ${\cal P}$ à partir de chaque position de début possible dans ${\cal T}$
- Quand on ne peut plus avancer (situation d'échec ou feuille), on reprend la recherche à partir de la position suivante dans T
- L'idée ici est de reprendre la comparaison à partir de ce qu'on a déjà reconnu, de la même manière que dans les algorithmes MP et KMP
- → Liens échecs

- \bullet Dans l'algorithme précédent, on cherche tous les mots de ${\cal P}$ à partir de chaque position de début possible dans ${\cal T}$
- Quand on ne peut plus avancer (situation d'échec ou feuille), on reprend la recherche à partir de la position suivante dans T
- L'idée ici est de reprendre la comparaison à partir de ce qu'on a déjà reconnu, de la même manière que dans les algorithmes MP et KMP
- → Liens échecs

Hypothèse simplificatrice (que l'on contournera à la fin)

Pas de motif de $\mathcal P$ sous-chaîne d'un autre motif de $\mathcal P$. Donc pas de nœud interne de $\mathcal K$ numéroté

• Chaque nœud v de \mathcal{K} est étiqueté avec la chaîne obtenue en concaténant dans l'ordre tous les caractères sur le chemin de la racine jusqu'à v, on note cette chaîne $\mathcal{L}(v)$

- Chaque nœud v de \mathcal{K} est étiqueté avec la chaîne obtenue en concaténant dans l'ordre tous les caractères sur le chemin de la racine jusqu'à v, on note cette chaîne $\mathcal{L}(v)$
- Pour chaque nœud v de \mathcal{K} , on définit Ip(v) la longueur du plus long suffixe propre de $\mathcal{L}(v)$ qui est préfixe d'un mot de \mathcal{P}

- Chaque nœud v de \mathcal{K} est étiqueté avec la chaîne obtenue en concaténant dans l'ordre tous les caractères sur le chemin de la racine jusqu'à v, on note cette chaîne $\mathcal{L}(v)$
- Pour chaque nœud v de \mathcal{K} , on définit Ip(v) la longueur du plus long suffixe propre de $\mathcal{L}(v)$ qui est préfixe d'un mot de \mathcal{P}

- Chaque nœud v de \mathcal{K} est étiqueté avec la chaîne obtenue en concaténant dans l'ordre tous les caractères sur le chemin de la racine jusqu'à v, on note cette chaîne $\mathcal{L}(v)$
- Pour chaque nœud v de \mathcal{K} , on définit Ip(v) la longueur du plus long suffixe propre de $\mathcal{L}(v)$ qui est préfixe d'un mot de \mathcal{P}

Lemme

Soit α le suffixe de $\mathcal{L}(v)$ de longueur Ip(v). Alors, il y a un unique nœud dans \mathcal{K} d'étiquette α

- Chaque nœud v de \mathcal{K} est étiqueté avec la chaîne obtenue en concaténant dans l'ordre tous les caractères sur le chemin de la racine jusqu'à v, on note cette chaîne $\mathcal{L}(v)$
- Pour chaque nœud v de \mathcal{K} , on définit Ip(v) la longueur du plus long suffixe propre de $\mathcal{L}(v)$ qui est préfixe d'un mot de \mathcal{P}

Lemme

Soit α le suffixe de $\mathcal{L}(v)$ de longueur $\mathit{Ip}(v)$. Alors, il y a un unique nœud dans \mathcal{K} d'étiquette α

• Pour un nœud v de \mathcal{K} , soit n_v l'unique nœud de \mathcal{K} étiqueté avec α (le suffixe de $\mathcal{L}(v)$ de longueur lp(v)). Quand lp(v)=0, alors n_v est la racine de \mathcal{K}

- Chaque nœud v de \mathcal{K} est étiqueté avec la chaîne obtenue en concaténant dans l'ordre tous les caractères sur le chemin de la racine jusqu'à v, on note cette chaîne $\mathcal{L}(v)$
- Pour chaque nœud v de \mathcal{K} , on définit Ip(v) la longueur du plus long suffixe propre de $\mathcal{L}(v)$ qui est préfixe d'un mot de \mathcal{P}

Lemme

Soit α le suffixe de $\mathcal{L}(v)$ de longueur $\mathit{Ip}(v)$. Alors, il y a un unique nœud dans \mathcal{K} d'étiquette α

- Pour un nœud v de \mathcal{K} , soit n_v l'unique nœud de \mathcal{K} étiqueté avec α (le suffixe de $\mathcal{L}(v)$ de longueur lp(v)). Quand lp(v) = 0, alors n_v est la racine de \mathcal{K}
- On appelle lien échec l'arc (n, n_v)

$$lp(v)=1$$

$$lp(v)=1$$

$$\alpha = P$$

$$lp(v)=1$$

$$\alpha = P$$

$$n_v = w$$

Exemple

Seulement 2 liens échecs qui ne remontent pas vers la racine

Recherche de motifs en O(n) (version Gusfield)

Algorithme : AC search

Données : Le texte T de longueur n et le dictionnaire K avec ses liens échec de l'ensemble des mots P de longueur totale m

```
pos := 1; j := 1; v := racine de \mathcal{K};
répéter
    tant que (\exists un arc (v, v') \text{ étiqueté par } T[i]) faire
        si (num(v') = i) alors
            Écrire("P_i apparaît à la position", pos);
      v := v';
j := j + 1;
    v := n_v:
    pos := i - lp(v);
jusqu'à (i > n);
```

Recherche de motifs en O(n) (version modifiée)

On avait remarqué en cours que dans certains cas, l'algorithme précédent ne pouvait plus avancer. Voici une version qui n'a pas ce problème :

Algorithme: AC search

Données : Le texte T de longueur n et le dictionnaire $\mathcal K$ avec ses liens échec de l'ensemble des mots $\mathcal P$ de longueur totale m

```
pos := 1; j := 1; v := racine de \mathcal{K};
répéter
    tant que (\exists un arc (v, v') étiqueté par T[j]) faire
        si (num(v') = i) alors
        Écrire("P_i apparaît à la position ", pos);
       v:=v';
     j := j+1;
    si (v = racine de K) alors j := j + 1; pos := j;
    sinon v := n_v; pos := j - lp(v);
jusqu'à (i > n);
```

Calcul des liens échec en O(m)

L'algorithme suivant calcule pour un nœud v son lien échec

```
Algorithme : n_v
```

Il faut utiliser cet algorithme pour tous les nœuds de \mathcal{K} dans un parcours en largeur, après avoir initialisé le lien échec de la racine : $n_r = r$ \Rightarrow Complexité totale : O(m)

Plan du cours

- Introduction
- 2 Dictionnaire
- Recherche de motifs
- 4 Aho-Corasick complet
- 6 Références

• Jusqu'à présent, on supposait que l'ensemble $\mathcal P$ ne contenait pas de motif sous-chaîne d'un autre motif de $\mathcal P$

- Jusqu'à présent, on supposait que l'ensemble $\mathcal P$ ne contenait pas de motif sous-chaîne d'un autre motif de $\mathcal P$
- \bullet Nœud interne de ${\cal K}$ étiqueté avec un numéro non pris en compte dans l'algorithme de recherche AC-search

- Jusqu'à présent, on supposait que l'ensemble $\mathcal P$ ne contenait pas de motif sous-chaîne d'un autre motif de $\mathcal P$
- \bullet Nœud interne de ${\cal K}$ étiqueté avec un numéro non pris en compte dans l'algorithme de recherche AC-search

- Jusqu'à présent, on supposait que l'ensemble $\mathcal P$ ne contenait pas de motif sous-chaîne d'un autre motif de $\mathcal P$
- \bullet Nœud interne de ${\cal K}$ étiqueté avec un numéro non pris en compte dans l'algorithme de recherche AC-search

Lemme

Supposons que dans un dictionnaire \mathcal{K} il existe une suite (possiblement vide) de liens échec depuis un nœud v vers un nœud numéroté i. Alors le motif P_i apparaît dans T et se termine à la position courante j à chaque fois que le nœud v est atteint durant la phase de recherche

- Jusqu'à présent, on supposait que l'ensemble ${\cal P}$ ne contenait pas de motif sous-chaîne d'un autre motif de ${\cal P}$
- \bullet Nœud interne de ${\cal K}$ étiqueté avec un numéro non pris en compte dans l'algorithme de recherche AC-search

Lemme

Supposons que dans un dictionnaire \mathcal{K} il existe une suite (possiblement vide) de liens échec depuis un nœud v vers un nœud numéroté i. Alors le motif P_i apparaît dans T et se termine à la position courante j à chaque fois que le nœud v est atteint durant la phase de recherche

Corollaire

Supposons qu'un nœud v a été atteint pendant la phase de recherche.

- Alors le motif P_i apparaı̂t dans T (terminant en j) :
 - 1 si v est numéroté par i
 - $oldsymbol{2}$ ou s'il existe une suite de liens échec de v vers un nœud numéroté i

Algorithme de Aho-Corasick complet

Algorithme : AC search complet

Données : Le texte T de longueur n et le dictionnaire $\mathcal K$ avec ses liens échec de l'ensemble des mots $\mathcal P$ de longueur totale m

```
pos := 1; j := 1; v := racine de \mathcal{K};
répéter
    tant que (\exists un arc (v, v') étiqueté par T[j]) faire
        si (num(v') = i) OU (\exists une suite de liens échec de v vers un nœud
         numéroté i) alors
            Écrire("P_i apparaît à la position", pos);
     j := j + 1;
    si (v = racine de K) alors j := j + 1; pos := j;
    sinon v := n_v; pos := j - lp(v);
jusqu'à (i > n);
```

Détails d'implémentation

• Les énoncés précédents sont "haut niveau", il faut préciser quelques détails d'implémentation pour atteindre la complexité annoncée : O(m+n+q)

Pas au programme de l'examen 2018-19

Plan du cours

- Introduction
- 2 Dictionnaire
- 3 Recherche de motifs
- 4 Aho-Corasick complet
- 6 Références

Références

Toute cette présentation est basée sur la section 3.4 du livre suivant :

[Gusfield, 97] Dan Gusfield, Algorithms on Strings, Trees and Sequences - Computer Science and Computational Biology, University of California, Davis. ISBN :9780521585194. Août 1997. *En anglais*

