Hace	ttepe	Univ.	MAT	124-0	02-05	Midte	erm Exan	n 02.0	4.2018		
Surname	:				Instructe	or	:		Signature	;	
Name	:				Time		•				
ID	:				Duration	n	$:90 \ min.$				
5 questions, 2 pages								1	100 points		
1 2	3	4	5								

Q1 Let $f(x,y) = xy^2$, P = (1,3) and u = 3i + 2j.

(a)(10 p.) Find the direction in which f increases most rapidly at P.

(b)(5 p.) Find the maximum rate of increase in f at P.

(c)(5 p.) Find the derivative of f at P in the direction of u.

Q2 (a)(10 p.) Using the Implicit Function Theorem show that $\cos(xz) = \sin(y+z)$ can be solved for z as a function of x and y near $P = (1, 0, \pi/4)$.

(b)(10 p.) Using the item (a) and chain rule, find $\left(\frac{\partial z}{\partial x}\right)_y$.

Q3 (20 p.) Let the curve C be the intersection of the cylinder $x^2 + y^2 = 4$ and paraboloid $z = x^2 + y^2$. Find parametric equations for the tangent line of C at $P = (\sqrt{2}, \sqrt{2}, 4)$.

