MARKING KEY - TEST 2 2017 MATHEMATICS SPECIALIST CALCULATOR FREE

1. (13 marks)

(a)
$$(3\sqrt{3} + \sqrt{2}i)(2\sqrt{3} - 2\sqrt{2}i)$$
.

$$= 18 + 2i\sqrt{6} - 6i\sqrt{6} - 4i^{2} \qquad \checkmark \checkmark$$

$$= 22 - 4i \cdot 16$$

ල

$$=22-4i\sqrt{6}$$

<u>@</u>

$$)^{10} = \left(\sqrt{2} cis\left(-\frac{\pi}{4}\right)\right)^{10}$$

<u>ပ</u>

$$= \left(\sqrt{2}\right)^{10} cis\left(-\frac{10\pi}{4}\right)$$

$$=2^{5}cis\left(-\frac{5\pi}{2}\right)$$

$$= 32cis\left(-\frac{\pi}{2}\right)$$
$$= 32\left(0-i\right)$$

$$= 32(0-i)$$

$$= -32i$$

$$(1-i)^{10} = \left(\sqrt{2} \operatorname{cis}\left(-\frac{\pi}{4}\right)\right)^{10}$$
$$= \left(\sqrt{2}\right)^{10} \operatorname{cis}\left(-\frac{10\pi}{4}\right)$$
$$= 2^{5} \operatorname{cis}\left(-\frac{5\pi}{2}\right) \checkmark$$
$$= 32 \operatorname{cis}\left(-\frac{\pi}{2}\right)$$
$$= 32 \operatorname{cis}\left(-\frac{\pi}{2}\right)$$
$$= 32 \left(0 - i\right)$$
$$(1-i)^{10} = -32i \checkmark$$

<u>(7</u>

(d)
$$Re\left(\frac{3-4i}{1+2i}\right) = Re\left(-1-2i\right) = -1$$

<u>(e</u>

8

 Ξ

 Ξ

(i)
$$z = cis(\frac{2\pi}{3}) = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \implies \overline{z} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

(ii) $z^2 = cis(\frac{2\pi}{3})^2 = cis(\frac{4\pi}{3}) = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$

(ii)
$$\frac{1}{z^2} = \frac{1}{\left(cis\left(\frac{2\pi}{3}\right)\right)^2} = \frac{1}{cis\left(\frac{4\pi}{3}\right)} = cis\left(-\frac{4\pi}{3}\right) = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

 Ξ

Question 2

(9 marks)

(a) If $(a-3i)^2 = -5 - bi$ find the values of a and b, where a and b are real constants.

(3 marks)

Solution

$$(a-3i)^2 = a^2 - 9 - 6ai$$

Equating the real parts: $a^2 - 9 = -5 \Rightarrow a = \pm 2$

Equating the imaginary parts: -6a = -b. So, for a = 2, b = 12 and for a = -2, b = -12

3

Specific behaviours

 \checkmark correctly expands $(a-3i)^2$

equates real and imaginary parts

 \checkmark correctly states corresponding values of a and b

(2 marks)

The complex number $z = 1 - \sqrt{3}i$ is transformed to its reciprocal $\frac{1}{1 - \sqrt{3}i}$. <u>a</u>

What is the reciprocal of z in the form a+bi?

Solution

$$\frac{1}{-\sqrt{3}i} = \frac{1}{1-\sqrt{3}i} \cdot \frac{1+\sqrt{3}i}{1+\sqrt{3}i} = \frac{1+\sqrt{3}i}{4} = \frac{1}{4}(1+\sqrt{3}i)$$

Specific behaviours

simplifies to arrive at the correct result

State the reciprocal of $z=1-\sqrt{3}i$ in polar form.

(2 marks)

$$mod\left(\frac{1}{1-\sqrt{3}i}\right) = \frac{1}{2} \text{ and } arg\left(\frac{1}{1-\sqrt{3}i}\right) = arg\left(\frac{1+\sqrt{3}i}{4}\right) = arctan\left(\sqrt{3}\right) = \frac{\pi}{3}$$

$$\therefore \frac{1}{1 - \sqrt{3}i} = \frac{1}{2}cis\left(\frac{\pi}{3}\right) \text{ in polar form.}$$

$$\checkmark$$
 determines $arg\left(\frac{1}{1-\sqrt{3}i}\right) = \frac{\pi}{3}$

$$\checkmark$$
 correctly states $\frac{1}{z}$ in polar form

(c) Given z is a complex number, express the modulus and argument of $\frac{1}{z}$ in terms of mod z and

arg z. (2 marks)

$$mod\left(\frac{1}{z}\right) = \frac{1}{mod z} \text{ or } \left|\frac{1}{z}\right| = \frac{1}{|z|}$$

Solution

$$arg\left(\frac{1}{z}\right) = -arg\left(z\right)$$

\sqrt{states} the correct relationship for the modulus and the argument
\[
\sqrt{states} the correct relationship for the modulus and the argument
\]

Specific behaviours

Question 3

Since P(x) is monic it can be factorised as $P(x) = x(x^2 - 1)(x^2 + bx + c)$

Then, by expanding and comparing coefficients:

$$P(x) = x^5 + bx^4 + (c-1)x^3 - bx^2 - cx = x^5 + x^3 - 2x$$

$$b=0$$
 and $c=2$

>

 $\therefore P(x) = x\left(x^2 - 1\right)\left(x^2 + 2\right)$

(Long division of polynomials is also an alternative)

Also,
$$x^5 - x = x - x^3$$
 becomes $x^5 + x^3 - 2x = 0 = P(x)$ and therefore the

solutions are:
$$x = 0$$
, ±1 and ± $\sqrt{2}i$

[2]

<u>(a</u>

(b)
$$z_o = 2 \operatorname{cis} \left(\frac{\pi}{5} \right)$$
, hence $z_o = \left(2 \operatorname{cis} \left(\frac{\pi}{5} \right) \right)^5 = 32 \operatorname{cis}(\pi) = -32$

$$a = -32$$
 and $b = 0$

(c) Other solutions can be obtained using $Z_n = 2 \operatorname{cis} \left[2m + \frac{\pi}{5} \right]$ with n = 0, 1, 2, 3, 4

or graphically. Therefore, the solutions are:

$$2 \operatorname{cis} \left(\pm \frac{\pi}{5} \right)$$
 , $2 \operatorname{cis} \left(\pm \frac{3\pi}{5} \right)$ and $2 \operatorname{cis} \left(\pi \right)$

///

MARKING KEY - TEST 2 2017 MATHEMATICS SPECIALIST CALCULATOR ASSUMED

5. (a)
$$z = 2 \operatorname{cis}\left(\frac{2\pi}{3}\right)$$

$$wz = 4 \operatorname{cis} \left(\frac{2\pi}{3} + \frac{\pi}{2} \right) = 4 \operatorname{cis} \left(\frac{5\pi}{3} \right)$$

$$wz = 4\operatorname{cis}\left(\frac{2\pi}{3} + \frac{\pi}{6}\right) = 4\operatorname{cis}\left(\frac{5\pi}{6}\right)$$

Q

>

✓ correct magnitudes ✓ correct arguments

Question6

(7 marks)

Solution	Evaluate $r = z^n $ and $\theta = arg(z^n)$ for each value of n within the given domain.	∞	16	$\frac{4\pi}{3}$
		7	8 √2	$\frac{7\pi}{6}$
		9	8	π
		5	4√2	$\frac{5\pi}{6}$
		4	4	$\frac{2\pi}{3}$
		3	2√2	κ 2
		2	7	κ ω
		1	√2	π 6
		0	1	0
		и	<u> </u>	arg(z")
	щ			

(4 marks) On the polar grid below, graph the sequence z^n for integers, $0 \le n \le 8$. A complex number z , is defined by $|z| = \sqrt{2}$ and $argz = \frac{\pi}{6}$. Specific behaviours \checkmark Calculates correct values θ of zⁿ for 0 ≤ n ≤ 8 \checkmark Calculates correct values r of z'' for $0 \le n \le 8$ 370/2 일 ✓ Plots points correctly : mod ✓ Plots points correctly : arg Plotting the points gives ... SE/6 (a)

Hence or otherwise find the value(s) of k, where k is an integer $-6 \le k \le 6$,

such that
$$-\frac{2\pi}{3} < Arg(z^k) < \frac{2\pi}{3}$$
 and $\left|z^k\right| < 4$.

(3 marks)

3

For $0 \le k \le 3$, $|z^k| < 4$ and $0 < Arg(z) < \frac{2\pi}{3}$

Solution: $-3 \le k \le 3$

Specific behaviours

 \checkmark Recognises that $|z^k| < 4$ for $-3 \le k \le -1$

✓ Recognises that $|z^k| < 4$ for $0 \le k \le 3$

 \checkmark Recognises that $-\frac{2\pi}{3} < Arg(z^k) < \frac{2\pi}{3}$ and |z| < 4 for $-3 \le k \le 3$

Question 7

$$\left(\cos(x)+i\sin(x)\right)^3 = \cos^3x + 3\cos^2x i sinx - 3\cos x sin^2x - i sin^3x \checkmark$$

$$(\cos(x)+i\sin(x))^3=\cos 3x+i\sin 3x \checkmark$$

Equating real parts

$$cos3x = cos^3x - 3cosxsin^2x$$

= $cos^3x - 3cosx(1 - cos^2x)$
= $cos^3x - 3cosx + 3cos^3x$
= $4cos^3x - 3cosx$
 \checkmark