

UNIVERSIDADE FEDERAL DO MARANHÃO DEPARTAMENTO DE ENGENHARIA DA COMPUTAÇÃO

ATIVIDADE

Curso: Engenharia da Computação	Ano / Semestre: 2024 / 2	
Disciplina: Inteligência Artificial	Professor: Thales Levi Azevedo Valente	
Tema: Engenharia do Conhecimento		
Aluno:		Código:

OBS: AS RESPOSTAS DEVERÃO SER ENTREGUES NA PRÓXIMA AULA PARA A DISCUSSÃO EM SALA.

1. Enunciado Geral

Imagine que você trabalha em uma equipe de desenvolvimento de software para veículos autônomos. Um dos módulos desse sistema precisa diagnosticar problemas mecânicos e elétricos no veículo com base em leituras de sensores e estados internos. Você deve propor um protótipo em Prolog que:

- 1. Reconheça sinais de falhas no motor (falha de ignição, superaquecimento etc.).
- 2. Identifique possíveis problemas elétricos (bateria fraca, falhas no alternador etc.).
- 3. Sugira ações corretivas (por exemplo, verificar níveis de óleo ou substituir algum componente).

Seu sistema deve consultar uma base de conhecimento de sintomas e regras para identificar possíveis causas dos problemas. Em seguida, deve exibir um diagnóstico indicando quais componentes podem estar com defeito.

2. Itens do Exercício

Exercício 1: Estrutura Básica de Diagnóstico

- 1. **Descreva os sintomas básicos** que o veículo pode apresentar, como:
 - o Falha de ignição ao dar a partida
 - o Luz de "Check Engine" acesa
 - o Luz de bateria acesa no painel
 - o Barulho incomum no motor
- 2. **Enumere as possíveis causas** de cada sintoma. Por exemplo:
 - o Falha de ignição pode ser causada por bateria fraca, vela de ignição defeituosa ou sensor de posição do virabrequim com problema.
 - o Luz de "Check Engine" acesa pode indicar falha no sensor de oxigênio, problema no sistema de injeção etc.
 - o Luz de bateria acesa pode significar problema no alternador ou correia de acessórios rompida.
- 3. **Organize as causas em níveis de probabilidade**, usando argumentos como:
 - o "Se falha de ignição ocorre sistematicamente com bateria recém-carregada, menor chance de ser a bateria e maior chance de ser a vela de ignição."

Objetivo: Demonstrar como montar a base de fatos e regras. Cada sintoma deve estar claramente associado a uma ou mais causas.

Exercício 2: Interação com Leitura de Sensores

- 1. **Liste os sensores** disponíveis no veículo inteligente:
 - o Sensor de temperatura do motor
 - Sensor de tensão da bateria
 - o Sensor de nível de óleo
 - o Sensor de rotação do motor
- 2. **Defina limites críticos** para cada sensor:
 - o Temperatura acima de 100°C no motor pode indicar superaquecimento.
 - o Tensão da bateria abaixo de 12V pode indicar bateria fraca.
 - o Nível de óleo abaixo do mínimo pode indicar necessidade de troca ou vazamento.
 - o Rotação anormal do motor pode indicar problemas na injeção ou no sensor de rotação.
- 3. **Explique como** usar esses valores de sensores para inferir possíveis problemas. Por exemplo, se a temperatura do motor estiver muito alta e o nível de óleo estiver baixo, pode ser um problema de vazamento ou falta de manutenção no sistema de arrefecimento.

Objetivo: Entender como traduzir as leituras numéricas dos sensores para regras lógicas que acusam falhas ou status de alerta.

Exercício 3: Regras de Decisão e Priorização

- 1. Crie cenários de conflito onde múltiplos sintomas podem apontar para diferentes causas. Explique como decidir qual regra tem maior prioridade.
- 2. **Discuta uso de corte** (!) em Prolog ou de estratégias de backtracking para gerenciar múltiplas possibilidades de diagnóstico.
- 3. **Demonstre como** o sistema escolhe a causa mais provável quando há mais de um sintoma.

Objetivo: Praticar a manipulação de prioridades e conflitos de regras em um sistema de inferência.

Exercício 4: Ações Corretivas

- 1. **Liste ações corretivas** possíveis, como:
 - o "Verificar e recarregar a bateria"
 - o "Checar nível de óleo"
 - o "Substituir correia do alternador"
 - o "Limpar ou trocar velas de ignição"
- 2. **Associe cada ação corretiva** a um conjunto de falhas. Por exemplo, se o diagnóstico do sistema for "bateria fraca", a ação recomendada é "Recarregar a bateria" ou "Substituir a bateria".
- 3. Descreva a lógica que relaciona falhas e ações recomendadas. Como o sistema sabe qual ação sugerir?

Objetivo: Demonstrar como as conclusões do diagnóstico podem levar a recomendações práticas de manutenção ou reparo.

Exercício 5: Explicabilidade (Justificativas)

- 1. **Solicite que o sistema explique** como chegou a determinada conclusão. Por exemplo, se a resposta foi "Bateria fraça", o sistema deve dizer que a tensão lida estava abaixo do mínimo e que não foi detectada falha de ignição em outros componentes.
- 2. **Crie cenários** para "por que não" ou seja, explique por que o sistema descartou determinada causa.

Objetivo: Praticar a transparência do raciocínio lógico, cada vez mais necessária em sistemas de Inteligência Artificial.

3. Casos de Teste (Somente Cenários, Sem Código)

Abaixo estão quatro cenários de teste para verificar se suas regras de diagnóstico estão corretas. **Para cada cenário**, o aluno deve descrever, em texto, quais sintomas são coletados, quais regras são disparadas e qual o diagnóstico final.

Caso de Teste 1: Partida Inconsistente

- Sintomas:
 - Veículo às vezes não dá partida.
 - o Luz de bateria piscando no painel de forma intermitente.
 - o Tensão da bateria registrada em 11,8V.
- Expectativa de Diagnóstico:
 - 1. Primeira suspeita: Bateria fraca.
 - 2. Ao recarregar a bateria, se o problema persistir, suspeitar do alternador.

Resposta Esperada: O sistema prioriza "bateria fraca" porque a tensão está abaixo de 12V. Em seguida, "possível falha no alternador" se a recarga não resolver.

Caso de Teste 2: Superaquecimento no Motor

- Sintomas:
 - o Temperatura do motor alcançando 105°C.
 - o Luz de "Check Engine" acesa constantemente.
 - o Nível de óleo próximo ao mínimo.
- Expectativa de Diagnóstico:
 - 1. Falha ou vazamento no sistema de arrefecimento.
 - 2. Consumo de óleo excessivo ou falta de troca recente.

Resposta Esperada: O sistema acusa superaquecimento; se o nível de óleo está baixo, deve indicar a possibilidade de vazamento ou manutenção atrasada no sistema de óleo.

Caso de Teste 3: Motor Engasgado em Altas Rotações

• Sintomas:

- Barulhos intermitentes acima de 3000 RPM.
- o Luz de "Check Engine" piscando apenas em alta rotação.
- o Sensor de oxigênio registrando valor fora da faixa normal.

• Expectativa de Diagnóstico:

- 1. Falha no sensor de oxigênio.
- 2. Possível problema de mistura ar-combustível (sistema de injeção).

Resposta Esperada: Primeiro, alerta para sensor de oxigênio defeituoso. Caso o sensor esteja funcionando mas com leituras fora do esperado, investigar injeção eletrônica.

Caso de Teste 4: Ruídos no Motor ao Acelerar

• Sintomas:

- o Ruído metálico ao pressionar o pedal do acelerador.
- o Rotação do motor sobe, mas o veículo apresenta perda de potência.
- o Luz de "Check Engine" não acende, mas sensor de vibração indica valores anormais.

• Expectativa de Diagnóstico:

- 1. Problema de junta de cabeçote ou biela danificada (ruído metálico).
- 2. Possível problema de transmissão, caso o ruído venha de tração.

Resposta Esperada: Dependendo da localização do ruído, pode ser algo relacionado ao motor (bielas, pistões) ou sistema de transmissão (caixa de câmbio). O sistema deve apontar a necessidade de verificar esses componentes.

4. Respostas Esperadas: Nível de Detalhamento

Para cada teste, o aluno deve:

- 1. **Indicar quais regras** do sistema de diagnóstico foram ativadas.
- 2. Explicar por que essas regras levaram a certos diagnósticos (ou foram descartadas).
- 3. Descrever ações corretivas propostas (como verificar cabos, sensores, fluido de arrefecimento etc.).

Por exemplo, no Caso de Teste 1 (Partida Inconsistente):

• Justificativa: "O sistema comparou 11,8V com o limite mínimo de 12V e concluiu que a bateria não está fornecendo voltagem adequada. Em paralelo, detectou-se que a luz de bateria piscava, indicando suspeita no alternador. Portanto, prioriza-se bateria fraca, mas, se recarregada e o problema continuar, passa-se a investigar alternador."

Conclusão

Este conjunto de exercícios visa **familiarizar** os alunos com os princípios de **base de conhecimento**, **regras lógicas** e **inferência de diagnóstico** usando Prolog em um contexto de veículo inteligente. As etapas envolvem:

- 1. Definição de sintomas e causas.
- 2. Uso de leituras de sensores para inferir estados de falha.
- 3. Tratamento de prioridades e conflitos.
- 4. Geração de ações corretivas.
- 5. Explicabilidade do sistema (por que algo foi diagnosticado ou descartado).

Ao final, espera-se que os alunos **desenvolvam** (por conta própria) **um protótipo** em Prolog, organizando as regras e fatos de forma que cubra esses cenários de teste e seja capaz de explicar o raciocínio por trás de cada diagnóstico.

Obs, email para dúvidas: thales.l.a.valente@gmail.com