Función cuadrática

Las funciones en cuya fórmula aparece x² son funciones cuadráticas y su gráfica se denomina parábola.

$$y = x^2$$

X	у
- 3	$(-3)^2 = 9$
-2	$(-2)^2 = 4$
-1	$(-1)^2 = 1$
0	$0^2 = 0$
1	$1^2 = 1$
2	$2^2 = 4$
3	$3^2 = 9$

Completar las tablas y graficar con distintos colores las siguientes parábolas

a)
$$y = x^2 + 3$$
 c) $y = -x^2 + 10$

X	у	X	у
- 3		-4	
- 2		- 3	
-1		-2	
0		-1	
1		0	
2		1	
3		2	
		3	
		4	

b)
$$y = x^2 - 4$$

d)
$$y = 2x^2 - 5$$

X	у	X	у
-4		-4	
-3 -2		-3	
-2		-2	
-1		- 1	
0		0	
1		1	
2		2	
3		3	
4		4	

			1									
X	у											
-4												
- 3						`						
- 2											×	
- 1											a î	-
0		-										
1												
2												
2										-		BASES CONTRACTOR

Para pensar y resolver

En un estanque se coloca una cierta cantidad de peces. La fórmula $y = -x^2 + 6x + 16$ permite calcular la cantidad "y" de peces que hay en el estanque después de "x" años.

Calcular y responder.

- a) ¿Cuántos peces se colocaron en el estanque?
- b) ¿Después de cuántos años se obtiene la mayor cantidad de peces?
- c) ¿Cuál fue la mayor cantidad de peces del estanque?
- d) ¿Después de cuántos años no quedan peces en el estanque?
- e) ¿Durante cuántos años la cantidad de peces aumentó?
- f) ¿Durante cuántos años la cantidad de peces disminuyó?

ANÁLISIS DE UNA FUNCIÓN CUADRÁTICA

Una función cuya fórmula es $y = ax^2 + bx + c$ es una función cuadrática, y su gráfica es una **parábola**. Para realizar el gráfico de una parábola, se deben calcular: sus raíces, su eje de simetría, su vértice y su ordenada al origen.

- Raíces: $\frac{-b \pm \sqrt{b^2 4ac}}{2a} \gtrsim \frac{x_1}{x_2}$
- Vértice: $(x_v; y_v) \le \frac{x_v = \frac{x_1 + x_2}{2} = -\frac{b}{2a}}{y_v = ax_v^2 + bx_v + c}$
- Eje de simetría: x = x
- Ordenada al origen: en $x = 0 \Rightarrow y = c$

Ejemplo: $y = x^2 - 4x -$

Raices:
$$\frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot (-5)}}{2 \cdot 1} = \frac{4 \pm 6}{2} \left\langle \begin{array}{c} x_1 = 5 \\ x_2 = -1 \end{array} \right.$$

Vértice: $\left\langle \begin{array}{c} x_v = \frac{5-1}{2} = 2 \\ y_v = 2^2 - 4 \cdot 2 - 5 = -9 \end{array} \right. \Rightarrow V = (2; -9)$

Vértice:
$$\begin{cases} x_v = \frac{5-1}{2} = 2 \\ y_v = 2^2 - 4 \cdot 2 - 5 = -9 \end{cases} \Rightarrow V = (2; -9)$$

Ordenada al origen: y = -5

Análisis del gráfico de la parábola:

- Conjunto de ceros: $C^0 = \{-1; 5\}$
- Conjuntos de positividad: $C^+ = (-\infty; -1) \cup (5; +\infty)$
- Conjunto de negatividad: $C^- = (-1; 5)$
- Intervalo de crecimiento: $(2; +\infty)$
- Intervalo de decrecimiento: $(-\infty; 2)$
- Mínimo: (2; -9)

CONSTRUCCIÓN DE LA GRÁFICA DE UNA FUNCIÓN CUADRÁTICA

DISCRIMINANTE: Se denomina Discriminante a la parte de la fórmula resolvente que está dentro de la raíz, y analizar su resultado me sirve para saber la cantidad de resultados posibles que tendrá una ecuación cuadrática.

Cuando el discriminante me da un resultado positivo: la ecuación tiene 2 soluciones

Cuando el discriminante me da un resultado negativo: la ecuación no tiene solución dentro de los números reales Cuando el discriminante me da cero: la ecuación tiene 1 sola solución

2) Sin calcular las raíces, indiquen el número de soluciones de cada una de las siguientes ecuaciones cuadráticas (DISCRIMINANTE $\rightarrow b^2 - 4$. a. c)

$a) x^2 + 2x - 1 = 0$	$b) 8x^2 - 3x + 1 = 0$
$c)4 - 4x + x^2 = 0$	$d) x^2 - 2x + 1 = 0$

3) Graficar las siguientes parábolas a partir de las fórmulas e indicar en cada una: raíces (si las tiene), ordenada al origen, coordenadas del vértice, eje de simetría.

_			
	$a = a^2 - 2a + 1$	$h = u^2 + c$	$a = 10^{-2}$
	a) $y = x^2 - 2x + 1$	b) $y = x^2 - x - 6$	c) $y = x^2 - 2x + 9$
	, ,		
L			