Universitatea Tehnică a Moldovei

Facultatea Calculatoare, Informatică și Microelectronică Specialitatea Tehnologii Informaționale

Raport

la lucrarea de laborator nr. 2

Tema: "Grafica în sistemul MATLAB"

Disciplina: "Mecanică teoretică"

Varianta 3

A efectuat: A verificat: Student grupa TI-231 FR
Asistent universitar

Apareci Aurica Andronic Silvia

Cuprins

1. Cadru teoretic	3
2. Repere terotice	3
3. Mersul lucrării	4
3.1 Exercitiul 1	4
3.2 Exercitiul 2	6
4. Concluzii	7

1. Cadru teoretic

Scopul lucrării: Însușirea și dezvoltarea elementelor de bază a graficelor în sistemul MATLAB.

Sarcina I: De construit graficele funcțiilor de o variabilă pe segmentul indicat. De indicat titlurile, de introdus înscrierile la axe, legenda, de folosit diferite culori, stiluri ale liniilor și tipuri de marcheri. De construit graficele prin diferite metode:

- a) în ferestre diferite;
- b) într-o fereastră pe aceleași axe;
- c) folosind comanda subplot:
 - c1) într-o fereastră pe axe diferite :

c2) într-o fereastră – fiecare aparte pe axe diferite și ambele pe aceleași axe.

Funcția 1	Funcția 2	Segmentul
$f(x) = x^3 + 2x^2 + 1$	$g(x) = (x-1)^4$	$x \in [-1,1]$

Sarcina II: De construit graficul funcției de două variabile pe un sector dreptunghiular. Utilizați funcțiile grafice - *mesh*, *surf*, *meshc*, *surfc*, *contour*, *contourf*, *contour3*. Cotele la graficele de contur se aleg de sinestătător.

Funcția	Segmentul 1	Segmentul 2
$z(x,y) = \sin^2(x-2y) \cdot e^{- y }$	$x \in [0,\pi]$	$y \in [-1,1]$

2. Repere terotice

Există o serie de funcții grafice pentru a vizualiza funcțiile de două variabile:

mesh - carcasa suprafeței plină de culoare;

surf – suprafa plina de culoare;

contour – grafic cu liniile de nivel;

meshc, surfc – suprafata cu liniile de nivel in planul x,y; contourf – grafic cu liniile de nivel colorat;

contour3 – suprafata compusa din liniile de nivel;

surfl - suprafata luminata;

3. Mersul lucrării

3.1 Exercitiul 1

a) afisarea graficelor în ferestre diferite;

b) afisarea graficelor într-o fereastră pe aceleași axe;

c) folosind comanda subplot:

c1) într-o fereastră pe axe diferite :

```
subplot(3,1,1);
x=[-1:0.1:1];
f=x.^3+2*x.^2+1;
plot(x,f,'k*-');
g=(x-4).^4;
title('Graficul f(x)');
xlabel('Axa X');
ylabel('Axa Y');
legend('f(x)');
subplot(3,1,2);
g=(x-4).^4;
plot(x,g,'r+-');
title('Graficul g(x)');
xlabel('Axa X');
ylabel('Axa Y');
legend('g(x)');
subplot(3,1,3);
f=x.^3+2*x.^2+1;
q=(x-4).^4;
plot(x,f,'k*-',x,g,'r+-');
title('Graficul f(x), g(x)');
xlabel('Axa X');
ylabel('Axa Y');
legend('f(x)', 'g(x)');
```

```
title('Graficul f(x)');
xlabel('Axa X');
ylabel('Axa Y');
legend('f(x)');
subplot(1,3,2);
q=(x-4).^4;
plot(x,g,'r+-');
title('Graficul g(x)');
xlabel('Axa X');
ylabel('Axa Y');
legend('g(x)');
subplot(1,3,3)
f=x.^3+2*x.^2+1;
g=(x-4).^4;
plot(x,f,'k*-',x,g,'r+-');
title('Graficul f(x), g(x)');
xlabel('Axa X');
ylabel('Axa Y');
legend('f(x)', 'g(x)');
  Graficul f(x)
              Graficul g(x)
```

subplot(1,3,1);

 $f=x.^3+2*x.^2+1;$

plot(x,f,'k*-');

x=[-1:0.1:1];

 $g=(x-4).^4;$

orizontal f(x), g(x), f(x) si g(x)

vertical f(x), g(x), f(x) si g(x)

```
c2) într-o fereastră – fiecare aparte pe axe diferite și ambele pe aceleași axe.
```

```
subplot(2,2,1);
x=[-1:0.1:1];
f=x.^3+2*x.^2+1;
plot(x,f,'k*-');
g=(x-4).^4;
title('Graficul f(x)');
xlabel('Axa X');
ylabel('Axa Y');
legend('f(x)');
subplot(2,2,3);
q=(x-4).^4;
plot(x,g,'r+-');
title('Graficul g(x)');
xlabel('Axa X');
ylabel('Axa Y');
legend('g(x)');
subplot(1,2,2);
f=x.^3+2*x.^2+1;
g=(x-4).^4;
plot(x,f,'k*-',x,g,'r+-');
title('Graficul f(x), g(x)');
xlabel('Axa X');
ylabel('Axa Y');
legend('f(x)', 'g(x)');
  Graficul f(x)
                      Graficul f(x), g(x)
                700
```


3.2 Exercitiul 2

```
[x,y]= meshgrid(0:0.1:pi,-1:0.1:1);
z = sin(x - 2*y).^2 .* exp(-abs(y));
figure(1);
mesh(x,y,z);
title('Mesh');
```



```
subplot(2,1,1);
x=[-1:0.1:1];
f=x.^3+2*x.^2+1;
plot(x,f,'k*-');
g=(x-4).^4;
title('Graficul f(x)');
xlabel('Axa X');
ylabel('Axa Y');
legend('f(x)');
subplot(2,2,3);
q=(x-4).^4;
plot(x,g,'r+-');
title('Graficul g(x)');
xlabel('Axa X');
ylabel('Axa Y');
legend('g(x)');
subplot(2,2,4);
f=x.^3+2*x.^2+1;
g=(x-4).^4;
plot(x,f,'k*-',x,g,'r+-');
title('Graficul f(x), g(x)');
xlabel('Axa X');
ylabel('Axa Y');
legend('f(x)','g(x)');
```


Graficul f(x)

ambele pe axele de sus

```
[x,y]= meshgrid(0:0.1:pi,-1:0.1:1);
z = sin(x - 2*y).^2 .* exp(-abs(y));
figure(1);
surf(x,y,z);
title('surf');
```



```
[x,y] = meshgrid(0:0.1:pi,-1:0.1:1);
                                               [x,y] = meshgrid(0:0.1:pi,-1:0.1:1);
                                              z = \sin(x - 2*y).^2 .* \exp(-abs(y));
 z = \sin(x - 2*y).^2 .* \exp(-abs(y));
 figure(1);
                                              figure(1);
mesh(x,y,z);
                                              surf(x,y,z);
                                              title('surf');
 title('Mesh');
                                                                  surfo
                                                 0.8
  0.8
                                                 0.6
                                                 0.2
 [x,y] = meshgrid(0:0.1:pi,-1:0.1:1);
                                                [x,y] = meshgrid(0:0.1:pi,-1:0.1:1);
 z = \sin(x - 2*y).^2 .* \exp(-abs(y));
                                                z = \sin(x - 2*y).^2 .* \exp(-abs(y));
 figure(1);
                                                figure(1);
 contour(x,y,z);
                                                contourf(x,y,z);
 title('contour');
                                                title('contourf');
     0.8
     0.6
     0.:
     -0.2
     -0.6
                                                   -0.6
[x,y] = meshgrid(0:0.1:pi,-1:0.1:1);
z = \sin(x - 2*y).^2 .* \exp(-abs(y));
figure(1);
contour3(x,y,z);
title('contour3');
```

4. Concluzii

În cadrul acestei lucrări de laborator, am însușit și dezvoltat elementele de bază ale graficelor în MATLAB, abordând reprezentarea funcțiilor de o variabilă și de două variabile prin diverse metode. În Sarcina I, am construit graficele funcțiilor de o variabilă utilizând diferite stiluri de linii, culori, marcheri și am învățat să gestionăm prezentarea acestora în ferestre multiple, pe aceleași axe și folosind comanda *subplot* pentru a afișa graficele pe axe separate. Aceste tehnici permit o mai bună personalizare și vizualizare a datelor.

În Sarcina II, am reprezentat grafic funcțiile de două variabile pe sectoare dreptunghiulare utilizând diverse comenzi grafice precum *mesh, surf, contour* etc., explorând diferitele modalități de afișare a suprafețelor și contururilor. Prin intermediul acestei lucrări, am dobândit o înțelegere mai profundă a utilizării funcțiilor grafice în MATLAB și am reușit să aplicăm concepte esențiale pentru o vizualizare eficientă și clară a datelor matematice.