# 北京二中教育集团 2016--2017 学年度第二学期

# 初一数学期中检测试卷

# 第 [卷(选择题 共30分)

一、选择题(以下每题只有一个正确的选项,每小题 3 分,共 30 分)

- 1. 在 3.14 , $\sqrt[3]{3}$  , $\sqrt{2}$  , $0.\dot{12}$  , $\frac{22}{7}$  , $\frac{\pi-3.14}{5}$  , $0.2020020002\cdots$  , $-\sqrt[3]{216}$  , $\sqrt{\frac{4}{9}}$  中,无理数有( ).
  - A. 1个

B. 2个

C. 3个

- D. 4个
- 2. 如图, $\triangle ABC$  沿着由点 B 到点 E 的方向,平移到  $\triangle DEF$  ,已知 BC=5 , EC=3 ,那么平移的距离为 ( ).
  - A. 2

B. 3

C. 5

D. 7



- 3. 下列语句写成数学式子正确的是(
  - A. 9 是 81 的算术平方根:  $\pm \sqrt{81} = 9$
- B. 5是 $(-5)^2$ 的算术平方根:  $\sqrt{(1-5)^2} = 5$
- C.  $\pm 6$  是 36 的平方根:  $\sqrt{36} = \pm 6$
- D. -2 是 4 的负的平方根:  $\sqrt{-4} = -2$
- 4. 如图所示,已知数轴上的点 A 、 B 、 C 、 D 分别表示数 -2 、 1 、 2 、 3 ,则表示  $3-\sqrt{5}$  的点 P 落在线段 ( ).
  - A. *OB* 上
- B. AO 1
- C. *BC* 上
- D. CD上

- 5. 如果 P(m+3,2m+4) 在 y 轴上,那么点 P 的坐标是 ( ).
  - A. (-2,0)
- B. (0,-2)
- C. (1,0)
- D. (0,1)
- 6. 把点  $P_1(2,-3)$  向右平移 3 个单位长度再向下平移 2 个单位长度到达点  $P_2$  处,则  $P_2$  的坐标是 ( ).
  - A. (5,1)
- B. (-1,-5)
- C. (5,-5)
- D. (-1,1)
- 7. 方程 5x + 2y = -9 与下列方程构成的方程组的解为  $\begin{cases} x = -2 \\ y = \frac{1}{2} \end{cases}$  的是 ( ).

A. 
$$x + 2y = 1$$

B. 
$$3x + 2y = -8$$

C. 
$$5x + 4y = -3$$

D. 
$$3x - 4y = -8$$

8. 小明在某商店购买商品  $A \times B$  共两次,这两次购买商品  $A \times B$  的数量和费用如表:

|       | 购买商品 A 的数量(个) | 购买商品 B 的数量(个) | 购买总费用 (元) |
|-------|---------------|---------------|-----------|
| 第一次购物 | 4             | 3             | 93        |
| 第二次购物 | 6             | 6             | 162       |

若小丽需要购买3个商品A和2个商品B,则她要花费().

9. 如图, AB // EF,  $\angle C = 90^{\circ}$ , 则 $\alpha$ 、 $\beta$ 、 $\gamma$  的关系为 ( ).

A. 
$$\beta = \alpha + \gamma$$

B. 
$$\alpha + \beta + \gamma = 180^{\circ}$$

C. 
$$\beta + \gamma - \alpha = 90^{\circ}$$

D. 
$$\alpha + \beta - \gamma = 90^{\circ}$$



10. 如图是由线段  $AB \setminus CD \setminus DF \setminus BF \setminus CA$  组成的平面图形,  $\angle D = 28^\circ$ ,则  $\angle A + \angle B + \angle C + \angle F$  的度数为 ( ).



第Ⅱ卷(非选择题 共70分)

二、填空题(每小题3分,共30分).

12. 如图, 若在中国象棋盘上建立平面直角坐标系, 使"帅"位于点(-1,-2), "马"位于点(2,-2),则"兵"位于点\_\_\_\_\_.



13. 如图,把一块含有 45° 角的直角三角板的两个顶点放在直尺的对边上,如果  $\angle 1 = 20^\circ$ ,那么  $\angle 2$  的 度数是\_\_\_\_\_\_.



14. 如图所示,DE // BC,DE 分别交 AB、AC 于 D、E 两点,CF 是 BC 的延长线. 若  $\angle ADE = 50^\circ$ ,  $\angle ACF = 110^\circ$  ,则  $\angle A = \_$ 



15. 如图, 在 $\triangle ABC$ 中,  $\angle BAC = 40^{\circ}$ ,  $\angle B = 75^{\circ}$ , AD 是 $\triangle ABC$  的角平分线,则 $\angle ADC =$ \_\_\_\_\_.



16. 如图,AD、AF 分别是 $\triangle ABC$  的高和角平分线,已知 $\angle B=36^{\circ}$ , $\angle C=76^{\circ}$ ,则  $\angle DAF=$ \_\_\_\_\_\_.



17. 如图, $\angle A=65^\circ$ , $\angle B=75^\circ$ ,将纸片的一角折叠,使点 C 落在  $\triangle ABC$  内,若  $\angle 1=20^\circ$ ,则  $\angle 2$  的 度数为\_\_\_\_\_\_.



18. 如图, $Rt\triangle ABC$  中, $\angle ACB$  = 90°, $\angle A$  = 50°,将其折叠,使点 A 落在边 CB 上 A' 处,折痕为 CD,则  $\angle A'DB$  为\_\_\_\_\_\_.



19. 如图所示,AD // BC,BO,CO 分别平分  $\angle ABC$ ,  $\angle DCB$ ,若  $\angle A + \angle D = n^{\circ}$ ,则  $\angle BOC =$ \_\_\_\_\_\_.



20. 规定:在平面直角坐标系xOy中,"把某一图形先沿x轴翻折,再沿y轴翻折"为一次变化。如图,已知正方形ABCD,顶点A(1,3),C(3,1)。若正方形ABCD经过一次上述变化,则点A变化后的坐标为\_\_\_\_\_\_,如此这样,对正方形ABCD连续做 2015 次这样的变化,则点D变化后的坐标为\_\_\_\_\_\_。



三、解答题(21—24 题,每小题 4 分,25—26 题,每小题 5 分,27 题,每小题 6 分,共 40 分) 21. 计算:

$$(1)$$
  $-\sqrt[3]{27} + \sqrt{(-3)^2} - 2\sqrt[3]{1}$ .

$$(2) -\sqrt{\frac{1}{4}} + \sqrt[3]{0.125} + \sqrt[3]{1 - \frac{63}{64}}$$
.

22. 解方程组:

$$(1)$$
  $\begin{cases} x + 2y = 10 \\ y = 2x \end{cases}$ .

$$(2)$$
 
$$\begin{cases} x+3y=-1 \\ 3x-2y=8 \end{cases}$$
.

23. 如图,在Rt $\triangle ABC$ 中, $\angle ACB = 90^{\circ}$ ,D是AB上一点,且 $\angle ACD = \angle B$ . 求证:  $CD \perp AB$ .



24. 已知坐标平面内的三个点 A(1,3) , B(3,1) , O(0,0) , 求  $\triangle ABO$  的面积.



25. 某校举行全体学生"汉字听写"比赛,每位学生听写汉字39个. 随机抽取了部分学生的听写结果, 绘制成如下的图表:

| 组别 | 正确字数x             | 人数 |
|----|-------------------|----|
| A  | $0 \leq x < 8$    | 10 |
| В  | 8 ≤ <i>x</i> < 16 | 15 |

| С | $16 \leqslant x < 24$ | 25 |
|---|-----------------------|----|
| D | $24 \leqslant x < 32$ | m  |
| E | $32 \leqslant x < 40$ | n  |

根据以上信息完成下列问题:

- (1) 统计表中的 *m* = \_\_\_\_\_\_, *n* = \_\_\_\_\_, 并补全直方图.
- (2)扇形统计图中"C组"所对应的圆心角的度数是\_\_\_
- (3) 已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本 次听写比赛不合格的学生人数.

各组别人数分布比例

D

30%

E

20%

人数 В 15% 30 C20

 $\boldsymbol{E}$ 

组别

26. 某校食堂的中餐与晚餐的资费标准如下:

C

D

15

В

10

 $\boldsymbol{A}$ 

10

|   | 种类    | 单价      |
|---|-------|---------|
|   | 米饭    | 0.5 元/份 |
|   | A类套餐菜 | 3.5 元/份 |
| J | B类套餐菜 | 2.5 元/份 |

小杰同学某星期从周一到周五每天的中餐与晚餐均在学校选用 A 类或 B 类中的一份套餐菜与一份米 饭用餐,这五天共消费36元,请问小杰在这五天内, A, B 类套餐菜各选用了多少次?

- 27. △ABC中, AD平分∠BAC交BC于点D, AE⊥BC, 垂足为E, CF // AD.
  - (1) 如图①, ∠B=30°, ∠ACB=70°, 则∠CFE=\_\_\_\_\_.
  - (2) 若 (1) 中的  $\angle B = \alpha$  ,  $\angle ACB = \beta$  , 则  $\angle CFE =$ \_\_\_\_\_\_. (用  $\alpha$  、  $\beta$  表示)
  - (3) 如图②, 点E 在线段BC 的延长线上, (2) 中的结论还成立么? 请说明理由.



# 北京二中教育集团 2016--2017 学年度第二学期 初一数学期中检测试卷参考答案

# 第 [ 卷 (选择题 共 30 分)

- 一、选择题(以下每题只有一个正确的选项,每小题 3 分,共 30 分)
- 1. 在 3.14,  $\sqrt[3]{3}$ ,  $\sqrt{2}$  ,  $0.\dot{1}\dot{2}$  ,  $\frac{22}{7}$  ,  $\frac{\pi-3.14}{5}$  ,  $0.2020020002\cdots$  ,  $-\sqrt[3]{216}$  ,  $\sqrt{\frac{4}{9}}$  中,无理数有( ).

A. 1个

B. 2个

C. 3个

D. 4个

#### 【答案】D

【解析】解:无限不循环的小数是无理数,

整数和分数统称为有理数,

$$\therefore \sqrt[3]{3}$$
,  $\sqrt{2}$ ,  $\frac{\pi - 3.14}{5}$ , 0.2020020002…是无理数.

2. 如图, $\triangle ABC$  沿着由点 B 到点 E 的方向,平移到  $\triangle DEF$  ,已知 BC=5 , EC=3 ,那么平移的距离为 ( ).

A. 2

B. 3

C. 5

D. 7



#### 【答案】A

【解析】解: 因为 $\triangle DEF$  是由 $\triangle ABC$  沿着由点 B 到点 E 的方向平移得到,故 BE 的长度即为平移的 距离,由于 BE = BC - EC = 5 - 3 = 2,因此平移的距离为 2.

故本题正确答案为: A.

- 3. 下列语句写成数学式子正确的是().

  - A. 9 是 81 的算术平方根:  $\pm \sqrt{81} = 9$  B. 5 是  $(-5)^2$  的算术平方根:  $\sqrt{(1-5)^2} = 5$

  - C.  $\pm 6$  是 36 的平方根:  $\sqrt{36} = \pm 6$  D. -2 是 4 的负的平方根:  $\sqrt{-4} = -2$

#### 【答案】B

【解析】解: A 应该是  $\sqrt{81} = 9$ .

- B 选项正确.
- C 应该是  $\pm \sqrt{36} = \pm 6$ .
- D 应该是  $-\sqrt{4} = -2$ .
- 4. 如图所示,已知数轴上的点A、B、C 、D分别表示数-2 、1 、2 、3 ,则表示3  $-\sqrt{5}$  的点P 落 在线段().
  - A. *OB* 上
- B. AO 上.
- C. BC 上
- D. *CD*上

#### 【答案】A

【解析】解:  $\sqrt{4} < \sqrt{5} < \sqrt{9}$ ,

- $\therefore 2 < \sqrt{5} < 3,$
- $\therefore 0 < 3 \sqrt{5} < 1,$
- $∴ 3-\sqrt{5}$  表示的点落在线段 OB 上.
- 5. 如果 P(m+3,2m+4) 在 y 轴上,那么点 P 的坐标是 ( ).
  - A. (-2,0)
- B. (0,-2)
- C. (1,0)
- D. (0,1)

#### 【答案】B

【解析】解:  $: P \times P \times P$  轴上, 横坐标为0,

- m+3=0, m=-3.
- $\therefore 2m+4=2x(-3)+4=-2$ ,
- ∴ P 点坐标为(0,-2).
- 6. 把点  $P_1(2,-3)$  向右平移 3 个单位长度再向下平移 2 个单位长度到达点  $P_2$  处,则  $P_3$  的坐标是 ( ).
  - A. (5,1)
- B. (-1,-5)
- C. (5,-5)
- D. (-1,1)

#### 【答案】C

【解析】解:点坐标平移规律,向右平移横坐标加,向下平移纵坐标减,

∴ P, 坐标为(5,-5).

7. 方程 
$$5x + 2y = -9$$
 与下列方程构成的方程组的解为  $\begin{cases} x = -2 \\ y = \frac{1}{2} \end{cases}$  的是 ( ).

A. 
$$x + 2y = 1$$

B. 
$$3x + 2y = -8$$

C. 
$$5x + 4y = -3$$

D. 
$$3x - 4y = -8$$

#### 【答案】D

【解析】解: A 项, 
$$\begin{cases} x = -2 \\ y = \frac{1}{2} \end{cases}$$
 代入原式 =  $-2 + 2 \times \frac{1}{2} = -1 \neq 1$ ,故 A 项不符合题意.

B 项, 
$$\begin{cases} x = -2 \\ y = \frac{1}{2} \end{cases}$$
 代入原式 = -6+1=-5 \neq -8, 此 B 项不符合题意.

C 项, 
$$\begin{cases} x = -2 \\ y = \frac{1}{2} \end{cases}$$
 代入原式 =  $-10 + 2 = 8 \neq -3$ ,故 C 项不符合题意.
$$D \, \overline{\phi}, \begin{cases} x = -2 \\ y = \frac{1}{2} \end{cases}$$
 代入原式 =  $-6 - 2 = -8$ .故 D 项符合题意.

D 项, 
$$\begin{cases} x = -2 \\ y = \frac{1}{2} \end{cases}$$
 代入原式 = -6 - 2 = -8. 故 D 项符合题意

故本题正确答案为: D.

8. 小明在某商店购买商品A、B共两次,这两次购买商品A、B的数量和费用如表:

|       | 购买商品 A 的数量(个) | 购买商品 B 的数量(个) | 购买总费用 (元) |
|-------|---------------|---------------|-----------|
| 第一次购物 | 4             | 3             | 93        |
| 第二次购物 | 6             | 6             | 162       |

若小丽需要购买3个商品A和2个商品B,则她要花费().

#### 【答案】C

【解析】解:本题主要考查二元一次方程组的应用.

根据题意,设商品A的单价为x元,商品B的价格为y元.由题意列出方程组:

$$\begin{cases} 4x + 3y = 93 \text{ } \\ 6x + 6y = 162 \text{ } \end{cases}$$
 解得 
$$\begin{cases} x = 12 \\ y = 15 \end{cases}$$

所以商品 A 的标价为 12 元, 商品 B 的标价为 15 元,

所以购买3个商品A和2个商品B共需要 $3\times12+2\times15=66$  (元). 故本题正确答案为: C.

- 9. 如图, AB // EF,  $\angle C = 90^{\circ}$ , 则 $\alpha$ 、 $\beta$ 、 $\gamma$  的关系为 ( ).
  - A.  $\beta = \alpha + \gamma$

B. 
$$\alpha + \beta + \gamma = 180^{\circ}$$

C. 
$$\beta + \gamma - \alpha = 90^{\circ}$$

D. 
$$\alpha + \beta - \gamma = 90^{\circ}$$



# 【答案】D

【解析】解:如图,过点C作 $l_1$ //AB,

过点D作 $l_2$ //EF,

$$\therefore \angle \alpha = \angle 1$$
,  $\angle \gamma = \angle 4$ ,

又: l1 // l2,

$$\therefore \angle 2 = \angle 3$$
,

$$\nabla : \angle P = \angle 3 + \angle 4$$
,

$$\therefore \angle P = \angle 2 + \angle P,$$

$$\mathbf{Z} : \angle C = 90^{\circ} = \angle 1 + \angle 2 = \angle 2 + \angle \alpha,$$

$$\therefore \angle 2 = 90^{\circ} - \angle \alpha ,$$

$$\therefore \angle P = 90^{\circ} - \angle \alpha + \angle \gamma$$
,

$$\therefore \alpha + \beta + \gamma = 90^{\circ}.$$



10. 如图是由线段 AB 、CD 、DF 、BF 、CA 组成的平面图形, $\angle D=28^\circ$ ,则  $\angle A+\angle B+\angle C+\angle F$  的度数为 ( ).

A. 62°

B. 152°

C. 208°

D. 236°



## 【答案】C

【解析】解: : 如图可知  $\angle BED = \angle F + \angle B$ ,  $\angle CGE = \angle C + \angle A$ ,

 $\mathbb{Z}$ :  $\angle BED = \angle D + \angle EGD$ ,

 $\therefore \angle F + \angle B = \angle D + \angle EGD$ ,

 $\mathbb{Z}$ :  $\angle CGE + \angle EGD = 180^{\circ}$ ,

 $\therefore \angle C + \angle A + \angle F + \angle B - \angle D = 180^{\circ}$ ,

又: $\angle D = 28^{\circ}$ ,

 $\therefore \angle A + \angle B + \angle C + \angle F = 180^{\circ} + 28^{\circ} = 208^{\circ}$ ,

故选: C.

## 第Ⅱ卷(非选择题 共70分)

二、填空题(每小题3分,共30分).

【答案】
$$-\frac{2}{3}$$
;  $\sqrt{6}$ ; >

【解析】解: 
$$-1\frac{1}{2} = -\frac{3}{2}$$
,

- ∴倒数为 $-\frac{2}{3}$ ,  $\sqrt{36}=6$ , 6的算术平方根为 $\sqrt{6}$ ,
- $\because \sqrt{3} > \sqrt{2} ,$
- $\therefore -\sqrt{2} > -\sqrt{3}$ .

12. 如图, 若在中国象棋盘上建立平面直角坐标系, 使"帅"位于点(-1,-2), "马"位于点(2,-2), 则"兵"位于点\_\_\_\_\_.



# 【答案】(-3,1)

【解析】解:"帅"和"马"的纵坐标为-2,

- ∴兵的纵坐标为1,
- ∵"帅"的横坐标为-1,
- ∴兵的横坐标为-3,
- ∴"兵"的坐标为(-3,1).

13. 如图, 把一块含有 45° 角的直角三角板的两个顶点放在直尺的对边上, 如果 ∠1 = 20°, 那么 ∠2 的 度数是\_\_\_\_\_\_.



【答案】25°

【解析】解:如图,因为直尺的对边平行,

所以 $\angle 1$ 的内错角= $\angle 1$ = $20^{\circ}$ ,

所以  $\angle 2 = 45^{\circ} - 20^{\circ} = 25^{\circ}$ .

14. 如图所示,DE // BC,DE 分别交 AB、AC 于 D、E 两点,CF 是 BC 的延长线. 若  $\angle ADE$  = 50°,  $\angle ACF$  = 110°,则  $\angle A$  = \_\_\_\_\_\_.



#### 【答案】60°

【解析】解: : DE //BC,  $\angle ADE = 50^{\circ}$ ,

 $\therefore \angle B = \angle ADE = 50^{\circ}$ ,

 $\mathbb{Z}$ :  $\angle ACF = 110^{\circ}$ ,

 $\therefore \angle A + \angle B = 110^{\circ}$ ,

 $\therefore \angle A = 110^{\circ} - \angle B = 110^{\circ} - 50^{\circ} = 60^{\circ}$ .

15. 如图, 在  $\triangle ABC$  中,  $\angle BAC = 40^{\circ}$ ,  $\angle B = 75^{\circ}$ , AD 是  $\triangle ABC$  的角平分线,则  $\angle ADC =$  \_\_\_\_\_\_.



# 【答案】95°

【解析】解:  $:: AD \in \angle CAB$  角分线,  $\angle BAC = 40^{\circ}$ ,

 $\therefore$   $\angle CAD = \angle BAD = 20^{\circ}$ .

方法一:又 $: \angle ADC$  是 $\triangle ABD$  的外角,

 $\therefore$   $\angle ADC = \angle B + \angle DAB$ 

 $=75^{\circ}+20^{\circ}$ 

 $=95^{\circ}$ .

方法二: 在 $\triangle ABC$ 中,  $\angle ACB + \angle B + \angle CAB = 180^{\circ}$ ,

- $\therefore \angle ACB = 180^{\circ} 75^{\circ} 40^{\circ} = 65^{\circ}$ ,
- ∴在 $\triangle ACD$ 中, $\angle ADC$ =180°- $\angle C$ - $\angle CAD$
- $=180^{\circ}-65^{\circ}-20^{\circ}$
- $=95^{\circ}$ .

16. 如图,AD、AF 分别是 $\triangle ABC$  的高和角平分线,已知 $\angle B=36^\circ$ , $\angle C=76^\circ$ ,则  $\angle DAF=$ \_\_\_\_\_\_.



## 【答案】20°

【解析】 $: AD \perp BC$ ,  $\angle B = 36^{\circ}$ ,

- $\therefore \angle ADB = 90^{\circ}$ ,
- ∴  $\triangle ABD$  中,  $\angle BAD = 180^{\circ} \angle ADB \angle B$
- $=180^{\circ}-90^{\circ}-36^{\circ}$
- $=54^{\circ}$ .

在 $\triangle ABC$ 中, $\angle BAC = 180^{\circ} - \angle B - \angle C$ 

- $=180^{\circ} 36^{\circ} 76^{\circ}$
- $=68^{\circ}$ .
- ∵ AF 平分 ∠BAC,
- $\therefore \angle BAF = \frac{1}{2} \angle BAC = \frac{1}{2} \times 68^{\circ} = 34^{\circ},$
- $\therefore$   $\angle DAF = \angle BAD \angle BAF = 54^{\circ} 34^{\circ} = 20^{\circ}$ .
- 17. 如图,  $\angle A = 65^{\circ}$ ,  $\angle B = 75^{\circ}$ , 将纸片的一角折叠, 使点 C 落在  $\triangle ABC$  内, 若  $\angle 1 = 20^{\circ}$ , 则  $\angle 2$  的

度数为\_\_\_\_\_.



#### 【答案】60°

【解析】解:如图, $\triangle ABC$  和 $\triangle CDE$  内角和均为180°,

 $\therefore$   $\angle A + \angle B = \angle CDE + \angle CED = 65^{\circ} + 75^{\circ} = 140^{\circ}$ ,

又:四边形 ABDE 的内角和为360°,

 $\therefore$   $\angle A + \angle B + \angle 2 + \angle CDE + \angle CED + \angle 1 = 360^{\circ}$ 

 $140^{\circ} + 22 + 140^{\circ} + 20^{\circ} = 360^{\circ}$ 

 $\angle 2 = 60^{\circ}$ .



18. 如图,Rt $\triangle ABC$ 中, $\angle ACB$ =90°, $\angle A$ =50°,将其折叠,使点 A 落在边 CB 上  $_{A'}$  处,折痕为 CD,

则 ∠A'DB 为\_\_\_\_\_\_



# 【答案】10°

【解析】解: 在Rt $\triangle ABC$ 中,  $\angle ACB = 90^{\circ}$ ,  $\angle A = 50^{\circ}$ ,

 $\therefore \angle CBA = 45^{\circ}$ ,

:折叠,点A落在CB上的A'点,

 $\therefore \angle CA'D = \angle A = 50^{\circ}, \ \angle CA'D$  是  $\triangle BA'D$  的外角,

$$\therefore \angle A'DB = \angle CA'D - \angle B$$

$$=50^{\circ}-40^{\circ}$$

$$=10^{\circ}$$
.

19. 如图所示,AD // BC,BO,CO分别平分 $\angle ABC$ , $\angle DCB$ ,若 $\angle A + \angle D = n^{\circ}$ ,则  $\angle BOC = \_$ \_\_\_\_\_.



# 【答案】 $\frac{n^{\circ}}{2}$

【解析】解: :: AD // BC,

$$\therefore \angle A + \angle ABC = 180^{\circ}, \quad \angle D + \angle BCD = 180^{\circ},$$

$$\mathbb{Z} : \angle A + \angle D = n^{\circ},$$

$$\therefore \angle A + \angle ABC + \angle D + \angle BCD = 360^{\circ}$$
,

$$\therefore \angle ABC + \angle DCB = 360^{\circ} - n^{\circ}$$
,

又∵BO, CO平分∠ABC和∠DCB,

$$\therefore \angle OBC + \angle OCB = \frac{1}{2}(\angle ABC + \angle DCB) = 180^{\circ} - \frac{n^{\circ}}{2},$$

$$=180^{\circ} - \left(180^{\circ} - \frac{n^{\circ}}{2}\right)$$

$$=\frac{n^{\circ}}{2}$$
.

20. 规定:在平面直角坐标系xOy中,"把某一图形先沿x轴翻折,再沿y轴翻折"为一次变化.如

图,已知正方形 ABCD,顶点 A(1,3), C(3,1). 若正方形 ABCD 经过一次上述变化,则点 A 变化后的坐标为\_\_\_\_\_,如此这样,对正方形 ABCD 连续做 2015 次这样的变化,则点 D 变化后的坐标为\_\_\_\_\_.



【答案】(-1,-3); (-3,-3)

【解析】解: A(1,3) 沿x 轴翻折后为(1,-3), 在沿y 轴翻折为(-1,-3),

- ∵ ABCD 是正方形, A(1,3), C(3,1),
- $\therefore D(3,3)$ .

第一次变化后D点坐标为 $D_1(-3,-3)$ ,

第二次变化后为 $D_2(3,3)$ ,

第三次变化后为 $D_3(-3,-3)$ ,

∴ 2 次变化一循环,

第2015次变化后为: 2015÷2=1007…1

∴为(-3,-3).

三、解答题(21—24 题,每小题 4 分,25—26 题,每小题 5 分,27 题,每小题 6 分,共 40 分) 21. 计算:

$$(1)$$
  $-\sqrt[3]{27} + \sqrt{(-3)^2} - 2\sqrt[3]{1}$ 

$$(2) -\sqrt{\frac{1}{4}} + \sqrt[3]{0.125} + \sqrt[3]{1 - \frac{63}{64}}$$

【答案】见解析

【解析】解: (1) 原式=-3+3+2=2.

(2) 原式=
$$-\frac{1}{2}$$
+0.5+ $\sqrt[3]{\frac{1}{64}}$ 

$$= -\frac{1}{2} + \frac{1}{2} + \frac{1}{4}$$

$$=\frac{1}{4}$$
.

22. 解方程组:

$$(1) \begin{cases} x+2y=10 \\ y=2x \end{cases}.$$

$$(2)$$
 
$$\begin{cases} x+3y=-1 \\ 3x-2y=8 \end{cases}$$
.

【答案】见解析

【解析】解: (1)  $\begin{cases} x + 2y = 10 \text{①} \\ y = 2x \text{②} \end{cases}$ , 解: 将②代入①得 x + 4x = 10, 解得 x = 2.

将 x = 2 代入②得 y = 4,

∴方程组的解为
$$\begin{cases} x=2\\ y=4 \end{cases}$$
.

③ 
$$-$$
 ②得 $11y = -11$ ,  $y = -1$ .

将 
$$y = -1$$
代入①得  $x - 3 = -1$ ,  $x = 2$ ,

∴方程组的解为
$$\begin{cases} x=2\\ y=-1 \end{cases}$$
.

23. 如图,在Rt $\triangle ABC$ 中, $\angle ACB = 90^{\circ}$ ,D是AB上一点,且 $\angle ACD = \angle B$ .求证: $CD \perp AB$ .



【答案】见解析

【解析】在 $Rt\triangle ABC$ 中, $\angle ACB = 90^{\circ}$ ,

$$\therefore \angle B + \angle A = 90^{\circ} ,$$

$$\mathbb{Z}$$
:  $\angle ACD = \angle B$ ,

$$\therefore \angle ACD + \angle A = 90^{\circ}$$
,

$$\therefore \angle ADC = 90^{\circ}$$
,

$$\therefore CD \perp AB$$
.

24. 已知坐标平面内的三个点 A(1,3) , B(3,1) , O(0,0) , 求  $\triangle ABO$  的面积.



## 【答案】见解析

【解析】如图,过A作 $DE \perp y$ 轴,过B作 $BE \perp x$ 轴,

两直线交于点E,

A(1,3), B(3,1),

$$\therefore DA = 1$$
,  $AE = 2$ ,  $BE = 2$ ,  $OD = 3$ ,  $OC = 3$ ,

$$:: S_{\triangle OAB} = S_{\text{正方形DECO}} - S_{\triangle DAO} - S_{\triangle OBC} - S_{\triangle AEB} = 3 \times 3 - \frac{1}{2} \times 3 \times 1 - \frac{1}{2} \times 3 \times 1 - \frac{1}{2} \times 2 \times 2$$

$$=9-\frac{3}{2}-\frac{3}{2}-2$$

=4.



25. 某校举行全体学生"汉字听写"比赛,每位学生听写汉字39个. 随机抽取了部分学生的听写结果,绘制成如下的图表:

| 组别 | 正确字数x                 | 人数 |
|----|-----------------------|----|
| A  | $0 \leq x < 8$        | 10 |
| В  | 8≤ <i>x</i> <16       | 15 |
| C  | $16 \le x < 24$       | 25 |
| D  | $24 \leqslant x < 32$ | m  |
| Е  | $32 \leqslant x < 40$ | n  |

根据以上信息完成下列问题:

- (1) 统计表中的*m*=\_\_\_\_\_, *n*=\_\_\_\_\_, 并补全直方图.
- (2) 扇形统计图中"C组"所对应的圆心角的度数是\_\_\_\_\_.

(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.

各组别人数分布比例





## 【答案】见解析

【解析】解:(1) : B 组占比为15%, 人数为15人,

- ∴随机抽取的学生总数为15÷15% =100人,
- ∴ E组占比为20%, D组占比为30%,
- $\therefore n = 100 \times 20\% = 20$ ,

 $m = 100 \times 30\% = 30$ ,

补全直方图如下:



- (2) C组占比为 $\frac{25}{100} \times 100 = 25\%$ ,
- $\therefore C$  组所对应的圆心角为  $360 \times 25\% = 90^{\circ}$ .
- (3) 抽查人数中不合格占比为 $\frac{25+15+10}{100}$ ×100% = 50%,
- ∴该校本次不合格的学生人数为900×50% = 450 人.
- 26. 某校食堂的中餐与晚餐的资费标准如下:

| 种类    | 单价      |
|-------|---------|
| 米饭    | 0.5 元/份 |
| A类套餐菜 | 3.5 元/份 |

# B 类套餐菜 2.5 元/份

小杰同学某星期从周一到周五每天的中餐与晚餐均在学校选用A类或B类中的一份套餐菜与一份米饭用餐,这五天共消费36元,请问小杰在这五天内,A,B类套餐菜各选用了多少次?

#### 【答案】见解析

【解析】解:设小杰在这五天内,A类套餐用了x次,B类用了y次,

$$\begin{cases} x + y = 10 \text{①} \\ 3.5x + 2.5y + 0.5 \times 10 = 36 \text{②} \end{cases}, \text{②整理得 } 7x + 5y = 62 \text{③},$$

- ① $\times 5$  得 5x + 5y = 50 ④,
- 3 4 4 = 12, x = 6,

将 x = 6 代入①得 y = 4,

 $\therefore$ 方程组的解为 $\begin{cases} x=6\\ y=4 \end{cases}$ .

答:小杰在这五天内,共选了A类套餐6次,B类4次.

- 27.  $\triangle ABC$ 中,AD 平分 $\angle BAC$  交BC 于点D, $AE \perp BC$ ,垂足为E,CF // AD.
- (1) 如图①,  $\angle B = 30^{\circ}$ ,  $\angle ACB = 70^{\circ}$ , 则 $\angle CFE =$ \_\_\_\_\_.
- (2) 若(1) 中的 $\angle B = \alpha$ ,  $\angle ACB = \beta$ , 则 $\angle CFE =$ \_\_\_\_\_\_. (用 $\alpha$ 、 $\beta$ 表示)
- (3) 如图②,点E在线段BC的延长线上,(2)中的结论还成立么?请说明理由.



## 【答案】见解析

【解析】(1) 在 $\triangle ABC$ 中,  $\angle B = 30^{\circ}$ ,  $\angle ACB = 70^{\circ}$ ,

- $\therefore \angle BAC = 180^{\circ} 30^{\circ} 70^{\circ} = 80^{\circ}$ ,
- ∵ AD 平分 ∠BAC,

$$\therefore \angle BAD = \frac{1}{2} \angle BAC = 40^{\circ} ,$$

 $\mathbb{Z}$ :  $AE \perp BC$ ,

- $\therefore \angle AEC = 90^{\circ}$ ,
- $\angle BAE = 90^{\circ} \angle B = 90^{\circ} 30^{\circ} = 60^{\circ}$ ,

$$\therefore \angle DAE = \angle BAE - \angle BAD$$

$$=60^{\circ}-40^{\circ}$$

$$=20^{\circ}$$
.

又:
$$CF // AD$$
,

$$\therefore$$
  $\angle CFE = \angle DAE = 20^{\circ}$ ,

$$\angle BAD = (180^{\circ} - \angle B - \angle ACB) \div 2$$

$$=\frac{180^{\circ}-\alpha-\beta}{2}\;,$$

$$\angle BAE = 90^{\circ} - \angle B$$

$$=90^{\circ}-\alpha$$
 ,

$$\therefore$$
  $\angle DAE = \angle BAE - \angle BAD$ 

$$=90^{\circ}-\alpha-\left(90^{\circ}-\frac{\alpha}{2}-\frac{\beta}{2}\right)$$

$$=90^{\circ} - \alpha - 90^{\circ} + \frac{\alpha}{2} + \frac{\beta}{2}$$

$$=\frac{\beta}{2}-\frac{\alpha}{2}$$

$$=\frac{1}{2}(\beta-\alpha).$$

$$\therefore$$
  $\angle CFE = \angle DAE$ ,

$$\therefore \angle CFE = \frac{1}{2}(\beta - \alpha).$$

## (3)不变,

$$\therefore \angle B = \alpha , \quad \angle ACB = \beta$$

$$\therefore \angle BAC = 180^{\circ} - \alpha - \beta ,$$

$$\therefore \angle BAD = \angle DAC = \frac{1}{2} \angle BAC = 90^{\circ} - \frac{\alpha}{2} - \frac{\beta}{2},$$

$$\nabla : AE \perp BE$$
,

$$\therefore \angle BAE = 90^{\circ} - \angle B = 90^{\circ} - \alpha$$
,

$$\therefore$$
  $\angle DAF = \angle BAE - \angle BAD$ 

$$=90^{\circ}-\alpha-\left(90^{\circ}-\frac{\alpha}{2}-\frac{\beta}{2}\right)$$

$$=\frac{1}{2}(\beta-\alpha),$$

又
$$: CF // AD$$
,

 $\therefore \angle CFE = \angle DAF = \frac{1}{2}(\beta - \alpha) .$ 

