Summer-2019 UM-SJTU JI Ve311 Homework #5

Instructor: Dr. Chang-Ching Tu

Due: 10:00 am, July 04, 2019 (Thursday) in class

Note:

(1) Please use A4 size papers.

(2) Please use the SPICE model on page 3 for simulation and calculation.

1. [MOSFET DC Biasing, 60%] Assuming $\gamma = \lambda = 0$ and $W_{drawn} / L_{drawn} = 30$ $\mu m / 5 \mu m$, sketch I_X and the transconductance (gm) of M_1 as a function of V_X increasing from 0 V to $V_{DD} = 5$ V.

2. [MOSFET Small-Signal Model] Assume W_{drawn} / L_{drawn} = 10 μm / 2 μm . (a) [20%] Use Pspice to plot the drain current of a NMOS as a function of V_{DS} increasing from 0 V to 5 V, at V_{GS} = 1 V, 1.5 V and 2 V. Label the off, triode and saturation regions for each curve. Derive r_o from each curve in the saturation region and compare it with hand-calculation result. (b) [20%] Use Pspice to plot the drain current of a NMOS as a function of V_{GS} increasing from 0 V to 3 V, at V_{DS} = 5 V. Derive gm from the curve when V_{GS} = 2 V and compare it with hand-calculation result.

NMOS Model				
	LEVEL = 1	VTO = 0.7	GAMMA = 0.45	PHI = 0.9
	NSUB = 9e+14	LD = 0.08e-6	UO = 350	LAMBDA = 0.1
	TOX = 9e-9	PB = 0.9	CJ = 0.56e-3	CJSW = 0.35e-11
	MJ = 0.45	MJSW = 0.2	CGDO = 0.4e-9	JS = 1.0e-8
PMOS Model				
	LEVEL = 1	VTO = -0.8	GAMMA = 0.4	PHI = 0.8
	NSUB = 5e+14	LD = 0.09e-6	UO = 100	LAMBDA = 0.2
	TOX = 9e-9	PB = 0.9	CJ = 0.94e-3	CJSW = 0.32e-11
	MJ = 0.5	MJSW = 0.3	CGDO = 0.3e-9	JS = 0.5e-8

VTO: threshold voltage with zero V_{SB} (unit: V)

GAMMA: body effect coefficient (unit: V1/2)

PHI: $2\Phi_F$ (unit: V)

TOX: gate oxide thickness (unit: m)

NSUB: substrate doping (unit: cm⁻³)

LD: source/drain side diffusion (unit: m)

UO: channel mobility (unit: cm²/V/s)

LAMBDA: channel-length modulation coefficient (unit: V-1)

CJ: source/drain bottom-plate junction capacitance per unit area (unit: F/m²) CJSW: source/drain sidewall junction capacitance per unit length (unit: F/m)

PB: source/drain junction built-in potential (unit: V)

MJ: exponent in CJ equation (unitless)

MJSW: exponent in CJSW equation (unitless)

CGDO: gate-drain overlap capacitance per unit width (unit: F/m)

CGSO: gate-source overlap capacitance per unit width (unit: F/m)

JS: source/drain leakage current per unit area (unit: A/m²)

Vacuum permittivity (ϵ_0) = 8.85 × 10⁻¹² (F / m) Silicon oxide dielectric constant (ϵ_r) = 3.9