Bayesian Networks

 Conditional Independence
 Assumption: features are independent of each other given the class:

$$P(X_1,...,X_5 \mid C) = P(X_1 \mid C) \bullet P(X_2 \mid C) \bullet \cdots \bullet P(X_5 \mid C)$$

Bayesian Network

- Independence assumptions
 - Seems to be necessary for probabilistic inference to be practical.
- Naïve Bayes Method
 - Makes independence assumptions that are often not true
 - Also called Idiot Bayes Method for this reason.
- Bayesian Network
 - Explicitly models the independence relationships in the data.
 - Use these independence relationships to make probabilistic inferences.
 - Also known as: Belief Net, Bayes Net, Causal Net, ...

Bayesian Networks: Definition

- Bayesian networks are directed acyclic graphs (DAGs).
- Nodes in Bayesian networks represent random variables, which are normally assumed to take on discrete values.
- The links of the network represent direct probabilistic influence.
- The structure of the network represents the probabilistic dependence/independence relationships between the random variables represented by the nodes.

Example

Bayesian Network: Probabilities

- The nodes and links are quantified with probability distributions.
- The root nodes (those with no ancestors) are assigned prior probability distributions.
- The other nodes are assigned with the conditional probability distribution of the node given its parents.

Example

Probabilistic Inference

Network represents the joint probability over all the variables


```
P(hb,do,lo,fo,bp) = P(hb|do,lo,fo,bp)*P(do,lo,fo,bp)
= P(hb|do,lo,fo,bp)*P(do|lo,fo,bp)*P(lo,fo,bp)
= P(hb|do,lo,fo,bp)*P(do|lo,fo,bp)*P(lo|fo,bp)P(fo,bp)
= P(hb|do,lo,fo,bp)*P(do|lo,fo,bp)*P(lo|fo,bp)P(fo|bp)P(bp)
```

Compactness

- How many numbers are required to build a Bayes Net?
 - For a Boolean variable X_i with k Boolean parents, how many rows in the CPT?
 - If each variable has no more than k parents and there are n nodes in the network, how many numbers required?
- How many numbers required to specify the full joint distribution?

Another Example

Constructing Bayesian networks

- 1. Choose an ordering of variables X_1, \ldots, X_n
- 2. For i = 1 to n
 - add X_i to the network
 - select parents from X_1, \ldots, X_{i-1} such that $\mathbf{P}(X_i \mid Parents(X_i)) = \mathbf{P}(X_i \mid X_1, \ldots, X_{i-1})$

This choice of parents guarantees:

$$P(X_1, ..., X_n) = \pi_{i=1}^n P(X_i | X_1, ..., X_{i-1}) \text{ (chain rule)}$$
$$= \pi_{i=1}^n P(X_i | Parents(X_i)) \text{ (by construction)}$$

Example

• Suppose we choose the ordering M, J, A, B, E

Example contd.

- Deciding conditional independence is hard in noncausal directions
- (Causal models and conditional independence seem hardwired for humans!)
- Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed

Example: Car Diagnosis

MammoNet

ARCO1: Forecasting Oil Prices

ARCO1: Forecasting Oil Prices

Construct a Bayes Net...

- ...to reason about why a student's homework was late
- Choose your variables. Consider things like:
 - Why was the homework late?
 - What kind of a student is this person?
 - What other behaviors might you observe?
- Then build the network

Topological Semantics

Ancestor

Topological Semantics

Ancestor

Local Markov Assumption:

A variable X is independent of its non-descendents given its parents

Three Types of Connections

Connection Pattern and Independence

- Linear connection: The two end variables are dependent on each other. The middle variable renders them independent.
- Converging connection: The two end variables are independent of each other. The middle variable renders them dependent.
- Divergent connection: The two end variables are dependent on each other. The middle variable renders them independent.

Bayes nets represent joint probabilities

Inference in Bayesian Networks

 The inputs to a Bayesian Network evaluation algorithm is a set of evidences: e.g.,

```
E = { hear-bark=true, lights-on=true }
```

- The outputs of Bayesian Network evaluation algorithm are
 - Simple queries

where Xi is a variable in the network.

– conjunctive queries:

$$P(X_i, X_i \mid E)$$

Inference Overview

- Exact Inference: Today
 - Enumeration
 - Variable Elimination
 - Belief Propagation
- Approximate Inference: Tuesday

Reminder: Burglary network

Inference by Enumeration

Bayes Nets represent a joint probability

Simple query on the burglary network:

$$P(B|j,m)$$
= P(B,j,m) / P(j,m)
= \alpha P(B,j,m)
= \alpha \sum_{e} \sum_{a} P(B,e,a,j,m)

Evaluation Tree

Inference By Variable Elimination

 Carry out sums from right to left, storing intermediate results to avoid recomputation

$$\begin{split} \mathbf{P}(B|j,m) &= \alpha \underbrace{\mathbf{P}(B) \sum_{e} \underbrace{P(e) \sum_{a} \mathbf{P}(a|B,e)}_{\bar{E}} \underbrace{P(j|a)}_{\bar{A}} \underbrace{P(m|a)}_{\bar{J}}}_{\bar{M}} \\ &= \alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a|B,e) P(j|a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a|B,e) f_{J}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} f_{A}(a,b,e) f_{J}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \sum_{e} P(e) f_{\bar{A}JM}(b,e) \text{ (sum out } A) \\ &= \alpha \mathbf{P}(B) f_{\bar{E}\bar{A}JM}(b) \text{ (sum out } E) \\ &= \alpha f_{B}(b) \times f_{\bar{E}\bar{A}JM}(b) \end{split}$$

Variable Elimination: Details

- To sum out a variable from a product of factors:
 - Move any constant factors outside the sum
 - Add up submatrices in pointwise product of remaining factors

 $\sum_{x} f_{1} \times \cdots \times f_{k} = f_{1} \times \cdots \times f_{i} \sum_{x} f_{i+1} \times \cdots \times f_{k} = f_{1} \times \cdots \times f_{i} \times f_{\bar{X}}$ $f_{1} \dots f_{i} \text{ do not depend on } \mathbf{x}$

Pointwise product of factors f_1 and f_2 :

$$f_1(x_1, \dots, x_j, y_1, \dots, y_k) \times f_2(y_1, \dots, y_k, z_1, \dots, z_l)$$
= $f(x_1, \dots, x_j, y_1, \dots, y_k, z_1, \dots, z_l)$
E.g., $f_1(a, b) \times f_2(b, c) = f(a, b, c)$

Pointwise Product

Pointwise product of factors f_1 and f_2 :

$$f_1(x_1, \dots, x_j, y_1, \dots, y_k) \times f_2(y_1, \dots, y_k, z_1, \dots, z_l)$$
= $f(x_1, \dots, x_j, y_1, \dots, y_k, z_1, \dots, z_l)$
E.g., $f_1(a, b) \times f_2(b, c) = f(a, b, c)$

Α	В	$f_1(A,B)$	В	С	f ₂ (B,C)	Α	В	С	f ₃ (A,B,C)
Т	Τ	.3	Τ	Т	.2	Т	Т	Т	
T	F	.7	Т	F	.8	Т	Т	F	
F	Т	.9	F	Т	.6	Т	F	Т	
F	F	.1	F	F	.4	Т	F	F	
						F	Т	Т	
						F	Т	F	
						F	F	Т	
						F	F	F	

Irrelevant variables

 What if you want to know P(J|b)?

$$P(J \mid b) = \alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(J \mid a) \sum_{m} P(m \mid a)$$

So is VE any better than Enumeration?

- Yes and No...
 - For singly-connected networks (poly-trees),
 YES
 - In general, NO...

Bayesian Network Inference

- But...inference is still tractable in some cases.
- Special case: trees (each node has one parent)
- VE is LINEAR in this case

Another Algorithm: Belief Propagation

Conjunctive queries

- What if we want, e.g., P(A, B | C) instead of just marginal distributions P(A | C) and P(B | C)?
- Just use chain rule (successive applications of the product rule):
 - -P(A, B | C) = P(A | B,C) P(B | C)
 - Each of the latter probabilities can be computed using the technique just discussed.

Summary

- Bayesian networks encode independence assumptions
- Inference in Bayes Nets is inherently difficult, unless the network has special structure
- Variable Elimination and Belief Propagation save time by:
 - Exploiting independence
 - Storing intermediate results