ALGEBRA 1B, Lista 5

Niech G i H będą grupami i $n \in \mathbb{N}_{>1}$.

- 1. Udowodnić, że $T_n(\mathbb{R})$ nie jest dzielnikiem normalnym w $\mathrm{GL}_n(\mathbb{R})$.
- Korzystając z zasadniczego twierdzenia o homomorfizmach grup, udowodnić, że:
 - (a) $(\mathbb{R}^*, \cdot)/\{1, -1\} \cong (\mathbb{R}_{>0}, \cdot),$
 - (b) $(\mathbb{C}, +)/\mathbb{Z} \cong (\mathbb{C}^*, \cdot),$
 - (c) $(\mathbb{C}^*,\cdot)/\langle e^{\frac{2\pi i}{n}}\rangle \cong (\mathbb{C}^*,\cdot).$
- 3. Podać przykład G i $N \leq H \leq G$, takich że $N \not\leq G$.
- 4. Niech p będzie liczbą pierwszą i załóżmy, że $|G|=p^2$. Udowodnić, że $G\cong \mathbb{Z}_{p^2}$ lub $G\cong \mathbb{Z}_p\times \mathbb{Z}_p$.
- 5. Udowodnić, że $\operatorname{Aut}(\mathbb{Z}_2 \times \mathbb{Z}_2) \cong S_3$.
- 6. Udowodnić, że A_4 nie zawiera podgrupy rzędu 6.
- 7. Niech $\varphi: \mathbb{Z}_2 \to \operatorname{Aut}(\mathbb{Z}_n)$ będzie działaniem z zad. 3 listy 4. Udowodnić, że $D_n \cong \mathbb{Z}_n \rtimes_{\varphi} \mathbb{Z}_2$.
- 8. Udowodnić, że $A_4 \cong (\mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_3$.
- 9. Niech G będzie podgrupą $S_{\mathbb{R}}$ składającą się z bijekcji afinicznych, tzn. postaci $x \mapsto ax + b$. Udowodnić, że $G \cong (\mathbb{R}, +) \rtimes (\mathbb{R}^*, \cdot)$.
- 10. Niech $H_1 \leq H, G_1 \leq G$. Udowodnić, że $H_1 \times G_1 \leq H \times G$ oraz (korzystając z zasadniczego twierdzenia o homomorfizmach grup), że

$$(H \times G)/(H_1 \times G_1) \cong (H/H_1) \times (G/G_1).$$

- 11. Niech $\varphi:G\to \operatorname{Aut}(H)$ będzie działaniem. Udowodnić, że następujące warunki są równoważne:
 - (a) Grupa $H \rtimes_{\varphi} G$ jest przemienna.
 - (b) Grupy H i G są przemienne oraz działanie φ jest trywialne.
- 12. Niech $\Psi: G \to H$ będzie epimorfizmem. Załóżmy, że istnieje *cięcie* Ψ , tzn. homomorfizm $s: H \to G$ taki, że $\Psi \circ s = \mathrm{id}_H$. Udowodnić, że:

$$G \cong \ker(\Psi) \rtimes H$$
.