

Integrity Monitoring for Detection of Interference

Professor Washington Ochieng

Department of Civil and Environmental Engineering

Navigation Performance Measures

- Navigation performance measures
 - accuracy, integrity, continuity & availability
- Integrity
 - ability to inform users in the event of a failure
 - most directly related to mission criticality (e.g. Safety)
 - need for consensus on methods for performance spec.
 - need for appropriate test schemes (vital for certification)

Why is GNSS a challenge?

- Complexity
 - control segment, comms, satellites, modelling, signal generation
 - signal path effects, receiver hardware/electronics/algorithms
 - anomalies or failures can occur at any stage
- Positioning/Navigation performance varies with:
 - position of users and satellites in space and time
- Multiple users globally (including mission critical applications)
- Institutional control (some systems)

Failure Modes (1/5)

- System failure examples:
 - -SVN23; SVN27 atomic frequency std failure (01/04; 08/04)
 - -SVN54 orbit modelling error → URE=350m (04/07)
 - -SVN49 inter-freq. phase bias due to integration of L5 (04/09)

SVN23 failure - 1.1.04

SVN27 failure - 29.8.04

Failure Modes (2/5)

- Signal path failure mode examples:
 - solar flares / ionospheric scintillation
 - tropospheric effects
 - multipath
 - interference
 - **>**jamming
 - ➤ disturbance
 - >spoofing/meaconing

Failure Modes (3/5)

- Jamming
 - Receiver front-end saturated by unwanted strong signals

Example: San Diego, CA, on January 22, 2007 [1]

- ➤ US Navy ships on communications jamming tests
- ➤ Navy receivers stopped working
- >jammed the whole San Diego harbour region
- raffected all GPS users within a range of about 15 kilometres
- Disturbance
 - wanted signals distorted by unwanted signals

Example: Flamborough [2]

- ➤ maritime controlled-Jamming experiments
- receiver suffered large position errors without warning
- 1. Phillip W. Ward, P.E., GNSS Robustness: The interference challenge, ION GNSS proceedings 2010
- 2. National PNT Advisory Board, A National Security Threat: Recent Events and Potential Cures. 2010

Failure Modes (4/5)

- Spoofing
 - receiver acquires and tracks fake satellite signals
 Example : GPS simulator attack [1]
 Misleading information sent to HQ

1. Warner, J S. A Simple Demonstration that the Global Positioning System (GPS) is Vulnerable to Spoofing, The Journal of Security Administration

Failure Modes (5/5)

Summary

Type	Effects	Impact
Jamming	Receiver stops working (loss of service)	Continuity/Availability
Disturbance	Degraded performance	Accuracy/Integrity
Spoofing	Degraded performance/MI	Integrity

Interference sources and coverage

- Sources (examples)
 - increasing number of wireless systems and users
 - —new communication systems (e.g. LightSquared 4G?)
 - new navigation systems
 - new technologies make intentional interference easier
 - -terrorists

Coverage

- —wide area (e.g. LightSquared 4G?)
- —local (Radio/TV stations, kilometres)
- -small (car anti tracker jammer, 1-2 meters)

ebay.com

Imperial College

Integrity Monitoring Techniques

- Currently two main approaches
 - system/ground level (GIC/SBAS/GBAS)
 - sensor/user (R)AIM
- Future
 - SAIM
 - Ground/Space/User level integrity monitoring (apportionment of integrity risk?)

State-of-the-art (Ground Network level): SBAS/GBAS

SBAS/GBAS designed for:

- improved accuracy through differential corrections
- improved integrity (dedicated infrastructure)
- improved availability by additional ranging (SBAS)

Integrity

- failures detected using ref. station location(s) alerts for 'major' failures
- -quality data sent to users for computation of Protection Level (PL)
- PL is compared to Alert Limit (AL) to determine compliance

State-of-the-art (User Level): RAIM

- Baseline FDE RAIM steps
 - PL computation
 - failure detection
 - failure exclusion
- Detection function
 - measurement consistency
- Exclusion function
 - improves continuity
- Main RAIM strengths
 - autonomy
 - local failure/error detection

RAIM Issues of relevance to detection of interference

Issues	Current attempts at resolution	
Critical geometry (max slope)	Integration	
RAIM availability	Integration, better PL	
Multiple failures	Separation (Group/Solution)	
Failure models	FMEA	
Residual error characterisation	Dist. drivers, EVT / other models	
Failure probability	FMEA	
Failure rate (small/brief errors)	FMEA	
Exclusion	Separation (Group/Solution)	
Time -To-Alert	Early detection techniques (e.g. difference test for SGEs)	

Integrity Monitoring for Detection of Interference (1/4)

- Potential options
- 1. Combine data from integrity monitoring stns within GIC, SBAS & GBAS
 - Pro: systems already available
 - Con: low density of the monitoring stations
- 2. Exploit networks of opportunity (e.g. OS, Leica, IGS, etc.)
 - Pro: networks already available
 - Cons: medium density of stations; dedicated processing facility; new investment
- 3. Deploy <u>dedicated systems/probes</u> either at locations of interest or a network
 - Pro: flexible; UK lead in R&D (GAARDIAN)
 - Con: new investment
- 4. Combination of 1, 2 and 3
 - Pro: better performance
 - Con: complexity and new investment

Integrity Monitoring for Detection of Interference (2/4)

Imperial College

Integrity Monitoring for Detection of Interference (3/4)

Adaptation of the GAARDIAN System

Integrity Monitoring for Interference Detection (4/4)

- Potential options (ctd)
- 5. <u>User receiver level integrity monitoring [e. (R)AIM]</u>
 - > Pro: Self contained; detection of <u>local interference</u> missed by a network
 - BUT: requires resolution of issues identified earlier (e.g. residual error distribution); characteristics of the effects of interference; need for appropriate test statistics
- 6. Combination of 1, 2, 3 and 5
 - Pro: Best protection?
 - Con: Complexity

Conclusions

- Network level detection of interference
- feasible with networks of opportunity & dedicated systems (GAARDIAN)
- BUT: need for better understanding of characteristics of interference, network density a limitation; responsibility
- User level detection (with AIM)
- very good performance especially when integrated with other systems/sensors; <u>local to the user</u>
- BUT need to address issues with (R)AIM and characteristics of interference; local to the user
- Combined network level and user level detection (with AIM)
- potential to offer maximum protection