□ 计算机的工作原理与硬件体系结构

算数逻辑单元-ALU

□ 计算机的工作原理与硬件体系结构

CPU=ALU(算数逻辑单元)

+寄存器(临时存储数据)

■ 算数逻辑单元ALU的抽象表示

算数逻辑单元ALU的抽象表示如下图:

■ 算数逻辑单元ALU的原理

■ 与门与非门可表达的运算:真值表

与门和非门如何实现ALU单元

与门和非门可以表示任意一个真值表

A	В	С	Υ
0	0	0	Y0
0	0	1	Y1
0	1	0	Y2
0	1	1	Y3
1	0	0	Y4
1	0	1	Y5
1	1	0	Y6
1	1	1	Y7

例1:2输入加法的真值表表示,如何利用与、非门实现此真值表

第一步:找出Y=1的所有行

第二步:写出每一行的逻辑表达式,

并用"或"运算连接,写为

 $(\bar{A} \wedge B) \vee (A \wedge \bar{B})$

第三步:利用逻辑运算法则将"或"运

算去掉,写为

$$X \vee Y = \overline{\overline{X}} \wedge \overline{\overline{Y}}$$
$$(\overline{A} \wedge B) \vee (A \wedge \overline{B}) = \overline{\overline{A} \wedge B} \wedge \overline{A} \wedge \overline{\overline{B}}$$

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

■ 利用与门和非门实现真值表的方法:例1续

第四步:画出实现图

 $\overline{\overline{A} \wedge B} \wedge \overline{A \wedge \overline{B}}$

将△**用与门表示 将**ℤ用非门表示

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

■ 利用与门和非门实现真值表的方法:例1续

两输入的加法器

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

例2:带有进位的3输入加法,真值表如下图所示

Α	В	С	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$X \vee Y = \overline{\overline{X} \wedge \overline{Y}}$$

 $\overline{((\overline{A} \wedge \overline{B} \wedge C) \wedge (\overline{A} \wedge B \wedge \overline{C}))} \wedge ((\overline{A} \wedge \overline{B} \wedge \overline{C}) \wedge (\overline{A} \wedge B \wedge C)) \\
(\overline{A} \wedge \overline{B} \wedge C) \vee (\overline{A} \wedge B \wedge \overline{C}) \vee (\overline{A} \wedge \overline{B} \wedge \overline{C}) \vee (\overline{A} \wedge B \wedge C)$

 $\overline{(\bar{A} \wedge \bar{B} \wedge C) \vee (\bar{A} \wedge B \wedge \bar{C})} \wedge \overline{(A \wedge \bar{B} \wedge \bar{C}) \vee (A \wedge B \wedge C)}$

■ 利用与门和非门实现真值表的方法:例2续

 $\overline{((\overline{A} \wedge \overline{B} \wedge C) \wedge (\overline{A} \wedge B \wedge \overline{C})) \wedge ((\overline{A} \wedge \overline{B} \wedge \overline{C}) \wedge (\overline{A} \wedge B \wedge C))}$

3输入加法器与、非门实现

例3:2输入进位,真值表如图

使用与门即可

Α	В	Z
0	0	0
0	1	0
1	0	0
1	1	1

例4: 带有进位的3输入进位。真值表如图

Α	В	C	Z
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

3输入进位的重点: **3**个数的和是否 大于等于**2**,需要进位

■ 利用与门和非门实现真值表的方法:例4续

 $(\overline{(\bar{A} \land B \land C)} \land \overline{(\bar{A} \land \bar{B} \land C)}) \land (\overline{(\bar{A} \land B \land \bar{C})} \land \overline{(\bar{A} \land B \land C)})$

3输入进位逻辑单元的实现

■多位二进制数加法实现原理

输入: 011(X2X1X0), 100(Y2Y1Y0)

输出:111(Z2Z1Z0,两输入的和)

■ 算数逻辑单元ALU的原理

Control=0:上三线输出

Control=1:下三线输出

■ 小结

- 算数逻辑单元的抽象图表示
- 与门和非门可表达的运算:真值表
- 利用与门和非门实现真值表的方法
- 多位二进制数的加法实现原理

