Тема: Прогнозирование погоды с использованием методов машинного обучения

Команда: МФТИшные котики)

Состав:

Самаковский Вячеслав Ильиных Александр Гриднев Константин Зайцев Дмитрий Алиева Наталья

Бизнес-цель

Прогноз погодных условий на основании детекции изображений погоды

ML - задача

- Предметная область: CV
- Тип задачи: классификация погоды (по фото)
- Таргет: предсказание погоды (снег, дождь, солнечно и т.д.)
- Технология: Tensorflow, Roboflow, Yolo

Принцип работы

Наша модель

Модели для сравнения

Tenzorflow

Датасет: Kaggle

Roboflow classification

Датасет: Kaggle

+ аугментация

Yolo (на Roboflow)

Датасет: дефолтный

Сравнение моделей

Датасет

- Датасет: Weather Image Recognition*
- 6 862 фото 8 категорий: туман, мороз, молния, дождь, радуга, песчаная буря, снег, солнечно

Preprocessing (для Roboflow)

Preprocessing (для Roboflow)

Preprocessing Auto-Orient: Applied

Resize: Stretch to 640x640

Augmentations Outputs per training example: 3

Flip: Horizontal

Crop: 0% Minimum Zoom, 20% Maximum Zoom

Grayscale: Apply to 25% of images

Brightness: Between -25% and +25%

Noise: Up to 5% of pixels

13868 Total Images

View All Images →

Обучение модели Roboflow

Dataset Split

wheather-classification/1

Model Type: Roboflow 2.0 Multi-label Classification

Validation Accuracy ③ 98.7%

Производительность модели Tensorflow

Оценка модели Tensorflow

Test Accuracy: 0.9589552283287048

Матрица ошибок Tensorflow

	precision	recall	f1-	score	support	
fogsmog	0.93	0.97		0.95	71	
frost	0.96	1.00		0.98	91	
lightning	1.00	1.00		1.00	33	
rain	0.97	0.85		0.91	34	
rainbow	1.00	1.00		1.00	19	
sandstorm	0.93	0.93		0.93	15	
snow	1.00	0.33		0.50	3	
sunrise	1.00	0.50		0.67	2	
					•	
accuracy				0.96	268	
macro avg	0.97	0.82		0.87	268	
weighted avg	0.96	0.96		0.96	268	

Сравнение моделей

Roboflow собственная модель vs дефолтная модель

```
from roboflow import Roboflow

# Hawa Modess

rf_cats = Roboflow(api_key="yAV8c8VxFzT7RXVpeS3a")
project_cats = rf_cats.workspace().project("wheather-classification")
model_cats = project_cats.version(1).model

# Modess us uhmephema

rf = Roboflow(api_key="yAV8c8VxFzT7RXVpeS3a")
project = rf.workspace().project("weather-classification-w5xug")
model = project.version(8).model
```

Сравнение моделей: предсказание

```
# Наша модель

print(model_cats.predict("test_data/11.jpg").json())

print(model_cats.predict("test_data/1688761400_kartin-papik-pro-p-kartinki-vechernii-dozhd-52.jpg").json())

print(model_cats.predict("test_data/1830.jpg").json())
```

```
# Модель из интернета

print(model.predict("test_data/11.jpg").json())

print(model.predict("test_data/1688761400_kartin-papik-pro-p-kartinki-vechernii-dozhd-52.jpg").json())

print(model.predict("test_data/1830.jpg").json())
```

Результаты: сравнение моделей по трем фото

Изобра жение/ призна к	Дождь weito.com/anchanglo		Дождь с радугой			Молния			
	Tensorflow	Roboflow	Yolo	Tensorflow	Roboflow	Yolo	Tensorflow	Roboflow	Yolo
Наличие признака в модели	+	+	?	+	+	?	+	+	?
Результат	rain: -	rain: confidence 0.94	rain: confidence 0.99	rain: -	rain: confidence 0.42 rainbow: confidence 0.47	rain: confidence 0.99	lightning: -	lightning: confidence 0.92	shine: confidence 0.98

Validation Accuracy: tensorflow = 0.97, roboflow = 0.98

Вывод

- Модель Roboflow, обученная на аугментированном датасете, показала более высокие результаты: она правильно предсказывает класс, но при этом уступает по confidence.
- Модель Tensorflow, обученная на неаугментированном датасете, показывает более низкую предсказательную способность, т.к. в одно случае угадала только один из признаков.
- Модель Yolo обучена на другом датасете, в котором содержится меньше классов, поэтому модель ошибается, но демонстрирует самый высокий confidence.

Перспективы развития модели

- В зависимости от детекции реальных погодных условий, записанных с камер видеонаблюдения города, определять вероятность аварий (на сколько опасно сегодня садиться за руль)
- Пользователь пишет город проживания, система находит онлайн камеры видеонаблюдения, считывает серию скринов погоды, и пользователь получает ответ какая погода

Для вас старалась команда МФТИшных котиков) Спасибо за внимание!

