Introduction To Linear Algebra

Ferdous Bin Ali

&

Nurul Akter Towhid

Objective And Rationale

- The objective of this module is to provide a refresher on the mathematical background necessary to progress more advanced Machine Learning topics
- This module includes
 - Linear Algebra
 - Multivariate Calculus
 - Statistics
 - Probability

The Machine Learning Pipeline

1. Data Preprocessing

- Collection
- Formatting
- Cleaning
- Labeling

2. Feature Extraction

- Vector
- Matics

3. Modeling

- Geometry
- Probability
- Matrices Operation

4. Optimization

- Training Phase
- Data Evaluation Phase
- Prediction

Image Construction

Dataset As a Matrix

39	State-gov	77516	Bachelors	13	Never-married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United-States	<=50
50	Self-emp-not-inc	83311	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	13	United-States	<=50
38	Private	215646	HS-grad	9	Divorced	Handlers-cleaners	Not-in-family	White	Male	0	0	40	United-States	<=50
53	Private	234721	11th	7	Married-civ-spouse	Handlers-cleaners	Husband	Black	Male	0	0	40	United-States	<=50
28	Private	338409	Bachelors	13	Married-civ-spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<=50
37	Private	284582	Masters	14	Married-civ-spouse	Exec-managerial	Wife	White	Female	0	0	40	United-States	<=50
49	Private	160187	9th	5	Married-spouse-absent	Other-service	Not-in-family	Black	Female	0	0	16	Jamaica	<=50
52	Self-emp-not-inc	209642	HS-grad	9	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	45	United-States	>50
31	Private	45781	Masters	14	Never-married	Prof-specialty	Not-in-family	White	Female	14084	0	50	United-States	>50
42	Private	159449	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	5178	0	40	United-States	>50
37	Private	280464	Some-college	10	Married-civ-spouse	Exec-managerial	Husband	Black	Male	0	0	80	United-States	>50
30	State-gov	141297	Bachelors	13	Married-civ-spouse	Prof-specialty	Husband	Asian-Pac-Islander	Male	0	0	40	India	>50
23	Private	122272	Bachelors	13	Never-married	Adm-clerical	Own-child	White	Female	0	0	30	United-States	<=50
32	Private	205019	Assoc-acdm	12	Never-married	Sales	Not-in-family	Black	Male	0	0	50	United-States	<=50
40	Private	121772	Assoc-voc	11	Married-civ-spouse	Craft-repair	Husband	Asian-Pac-Islander	Male	0	0	40	?	>50
34	Private	245487	7th-8th	4	Married-civ-spouse	Transport-moving	Husband	Amer-Indian-Eskimo	Male	0	0	45	Mexico	<=50
25	Self-emp-not-inc	176756	HS-grad	9	Never-married	Farming-fishing	Own-child	White	Male	0	0	35	United-States	<=50
32	Private	186824	HS-grad	9	Never-married	Machine-op-inspct	Unmarried	White	Male	0	0	40	United-States	<=50
38	Private	28887	11th	7	Married-civ-spouse	Sales	Husband	White	Male	0	0	50	United-States	<=50
43	Self-emp-not-inc	292175	Masters	14	Divorced	Exec-managerial	Unmarried	White	Female	0	0	45	United-States	>50
40	Private	193524	Doctorate	16	Married-civ-spouse	Prof-specialty	Husband	White	Male	0	0	60	United-States	>50
54	Private	302146	HS-grad	9	Separated	Other-service	Unmarried	Black	Female	0	0	20	United-States	<=50
35	Federal-gov	76845	9th	5	Married-civ-spouse	Farming-fishing	Husband	Black	Male	0	0	40	United-States	<=50
43	Private	117037	11th	7	Married-civ-spouse	Transport-moving	Husband	White	Male	0	2042	40	United-States	<=50
59	Private	109015	HS-grad	9	Divorced	Tech-support	Unmarried	White	Female	0	0	40	United-States	<=50

Mathematics in Context

Data is Always Represented as either:

Basic Structures in Linear Algebra

Scalar

Scalars are **single numbers** and are an example of a 0th-order tensor. The notation $x \in \mathbb{R}$ states that x is a scalar belonging to a set of real-values numbers, \mathbb{R} .

Few built-in scalar types are **int**, **float**, **complex**, **bytes**, **Unicode** in Python. In In NumPy a python library, there are 24 new fundamental data types to describe different types of scalars. For information regarding datatypes refer documentation here.

Vector

Vectors are ordered arrays of single numbers and are an example of 1st-order tensor. Vectors are fragments of objects known as vector spaces.

$$x = [x_1 x_2 x_3 x_4 ... x_n]$$

To identify the necessary component of a vector explicitly, the ith scalar element of a vector is written as x[i].

Matrix

Matrices are rectangular arrays consisting of numbers and are an example of 2nd-order tensors. If m and n are positive integers, that is m, $n \in \mathbb{N}$ then the m×n matrix contains m*n numbers, with m rows and n columns.

The full m×n matrix can be written as:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$$

It is often useful to abbreviate the full matrix component display into the following

$$A=[a_{ij}]_{m\times n}$$

Tensor

Multidimensional Matrix is called Tensor

Matrix Scalar Operation: Multiplication

Matrix Multiplication

A of shape (m x n) and B of shape (n x p) multiplied gives C of shape (m x p)

Matric Multiplication

Matrix Transpose

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^T = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

Identity Matrix

For any whole number n, there is a corresponding n×n identity matrix. These matrices are said to be square since there is always the same number of rows and columns.

To prevent confusion, a subscript is often used. So in the figure above, the 2×2 identity could be referred to as I_2 and the 3×3 identity could be

referred to as I_3 .

Different Size Identity Matrices

Eigen Vector and Eigen Value

A simple example is that an eigenvector **does not change direction** in a transformation:

Importance of Eigen Vector

The reason why eigenvalues are so important in mathematics are too many. Here is a short list of the applications that are coming now in mind to me:

- Principal Components Analysis (PCA) in dimensionality reduction and object/image recognition. (See <u>PCA</u>)
- Face recognition by computing eigenvectors of images (See <u>Eigenfaces</u>).
- Physics stability analysis, the physics of rotating bodies (See <u>Stability Theory</u>).
- Google uses it to rank pages for your search results (See PageRank).

Recap

- Scalar
- Matrix
- Tensor
- Matrix Operations: Sum, Abstraction, Multiplication, Transpose
- Matrix Decomposition
- Identity Matrix
- Eigen Value and Eigen Matrix
- Resource: Video, Book
- Online Course