Assignment -4

Student Name	Harikrishnan S
Student Roll Number	720319106010

Write code and connections in wokwi for the ultrasonic sensor. Whenever the distance is less than 100 cms send an "alert" to the IBM cloud and display in the device recent events. Upload document with wokwi share link and images of IBM cloud

Link: https://wokwi.com/projects/new/esp32

```
#include <WiFi.h>
#include <PubSubClient.h>
WiFiClient wifiClient;
#define trigpin
                   18
#define echopin
                   5
String data3;
#define ORG "nn9be5"//IBM ORGANITION ID
#define DEVICE_TYPE"harikrishnan"//Device type mentioned in ibm watson IOT
#define DEVICE_ID "Hari123"//Device ID mentioned in ibm watson IOT Platform
#define TOKEN "harikrishnan123@"
#define speed 0.034
char server[] = ORG ".messaging.internetofthings.ibmcloud.com";
char publishTopic[] = "iot-2/evt/Data/fmt/json";
char topic[] = "iot-2/cmd/home/fmt/String";
char authMethod[] = "use-token-auth";
char token[] = TOKEN;
char clientId[] = "d:" ORG ":" DEVICE_TYPE ":" DEVICE_ID;
PubSubClient client(server, 1883, wifiClient);
void publishData();
String command;
String data="";
long duration;
float dist;
void setup()
```

```
{
  Serial.begin(115200);
 wifiConnect();
  pinMode(trigpin, OUTPUT);
  pinMode(echopin, INPUT);
mqttConnect();
}
void wifiConnect() {
  Serial.print("Connecting to "); Serial.print("Wifi");
 WiFi.begin("Wokwi-GUEST", "", 6);
 while (WiFi.status() != WL_CONNECTED) {
    delay(500);
    Serial.print(".");
  }
  Serial.print("WiFi connected, IP address: ");
 Serial.println(WiFi.localIP());
}
void loop()
{
    int pulseWidth = 0;
    digitalWrite(trigpin, HIGH);
    delayMicroseconds(100);
    digitalWrite(trigpin, LOW);
    pulseWidth = pulseIn(echopin, HIGH);
    Serial.print("AlertDistance: ");
    Serial.println(pulseWidth/58);
  publishData();
  if (!client.loop()) {
    mqttConnect();
  }
}
void mqttConnect() {
  if (!client.connected()) {
    Serial.print("Reconnecting MQTT client to "); Serial.println(server);
    while (!client.connect(clientId, authMethod, token)) {
      Serial.print(".");
      delay(500);
    }
    initManagedDevice();
    Serial.println();
```

```
}
}
void initManagedDevice() {
  if (client.subscribe(topic)) {
    // Serial.println(client.subscribe(topic));
    Serial.println("IBM subscribe to cmd OK");
  } else {
    Serial.println("subscribe to cmd FAILED");
  }
}
void publishData()
  digitalWrite(trigpin, LOW);
  digitalWrite(trigpin,HIGH);
  delayMicroseconds(10);
  digitalWrite(trigpin,LOW);
  duration=pulseIn(echopin,HIGH);
  dist=duration*speed/2;
  if(dist<100){</pre>
    String payload = "{\"Normal Distance\":";
    payload += dist;
    payload += "}";
    Serial.print("\n");
    Serial.print("Sending payload: ");
    Serial.println(payload);
    if (client.publish(publishTopic, (char*) payload.c_str())) {
      Serial.println("Publish OK");
    }
  }
    if(dist>101 && dist<111){</pre>
    String payload = "{\"Alert distance\":";
    payload += dist;
    payload += "}";
    Serial.print("\n");
    Serial.print("Sending payload: ");
    Serial.println(payload);
     if(client.publish(publishTopic, (char*) payload.c_str())) {
      Serial.println("Warning crosses 110cm -- it automaticaly of the loop");
    }else {
      Serial.println("Publish FAILED");
```

```
}

}

void callback(char* subscribeTopic, byte* payload, unsigned int payloadLength){
Serial.print("callback invoked for topic:");
Serial.println(subscribeTopic);
for(int i=0; i<payloadLength; i++){
    dist += (char)payload[i];
}
Serial.println("data:"+ data3);
if(data3=="lighton"){
    Serial.println(data3);
}
data3="";
}</pre>
```


Output

Link: https://v9y7gx.internetofthings.ibmcloud.com/dashboard/devices/browse

