La logique du premier ordre.

1 Les termes.

On commence par définir les *termes*, qui correspondent à des objets mathématiques. Tandis que les formules relient des termes et correspondent plus à des énoncés mathématiques.

Définition 1. Le langage \mathcal{L} (du premier ordre) est la donnée d'une famille (pas nécessairement finie) de symboles de trois sortes :

- \triangleright les symboles de *constantes*, notées c;
- \triangleright les symboles de *fonctions*, avec un entier associé, leur *arité*, notées $f(x_1, \ldots, x_n)$ où n est l'arité;
- \triangleright les symboles de relations, avec leur arité, notées $\mathcal{R},$ appelés pr'edicats.

Les trois ensembles sont disjoints.

Remarque 1. \triangleright Les constantes peuvent être vues comme des fonctions d'arité 0.

- \triangleright On aura toujours dans les relations : « = » d'arité 2, et « \bot » d'arité 0.
- \triangleright On a toujours un ensemble de variables \mathcal{V} .

Exemple 1. Le langage \mathcal{L}_g de la théorie des groupes est défini par :

 \triangleright une constante : c,

- \triangleright deux fonctions : f_1 d'arité 2 et f_2 d'arité 1;
- \triangleright la relation =.

Ces symboles sont notés usuellement $e, *, \square^{-1}$ ou bien 0, +, -.

Exemple 2. Le langage \mathcal{L}_{co} des corps ordonnés est défini par :

- ▷ deux constantes 0 et 1,
- \triangleright quatre fonctions $+, \times, -$ et \square^{-1} ,
- \triangleright deux relations = et \leq .

Exemple 3. Le langage \mathcal{L}_{ens} de la théorie des ensembles est défini par :

- \triangleright une constante \emptyset ,
- $\,\,\,\,\,\,$ trois fonctions \cap , \cup et \square^c ,
- \triangleright trois relations =, \in et \subseteq .

Définition 2. Par le haut. L'ensemble $\mathcal T$ des termes sur le langage $\mathcal L$ est le plus petit ensemble de mots sur $\mathcal L \cup \mathcal V \cup \{(,),,\}$ tel

- \triangleright qu'il contienne \mathscr{V} et les constantes;
- \triangleright qui est stable par application des fonctions, c'est-àdire que pour des termes t_1, \ldots, t_n et un symbole de fonction f d'arité n, alors $f(t_1, \ldots, t_n)$ est un terme. ¹

Par le bas. On pose

$$\mathcal{T}_0 = \mathcal{V} \cup \{c \mid c \text{ est un symbole de constante de } \mathcal{L}\},$$

puis

$$\mathfrak{T}_{k+1} = \mathfrak{T}_k \cup \left\{ f(t_1, \dots t_n) \middle| \begin{array}{c} f \text{ fonction d'arité } n \\ t_1, \dots, t_n \in \mathfrak{T}_k \end{array} \right\},$$

et enfin

$$\mathcal{T} = \bigcup_{n \in \mathbb{N}} \mathcal{T}_n.$$

Remarque 2. Dans la définition des termes, un n'utilise les relations.

- **Exemple 4.** \triangleright Dans \mathcal{L}_g , $*(*(x, \square^{-1}(y)), e)$ est un terme, qu'on écrira plus simplement en $(x * y^{-1}) * e$.
 - \triangleright Dans \mathcal{L}_{co} , $(x+x)+(-0)^{-1}$ est un terme.
 - \triangleright Dans \mathcal{L}_{ens} , $(\emptyset^{\mathsf{c}} \cup \emptyset) \cap (x \cup y)^{\mathsf{c}}$ est un terme.

Définition 3. Si t et u sont des termes et x est une variable, alors t[x:u] est le mot dans lequel les lettres de x ont été remplacées par le mot u. Le mot t[x:u] est un terme (preuve en exercice).

Exemple 5. Avec $t = (x * y^{-1}) * e$ et u = x * e, alors on a

$$t[x:u] = ((x*e)*y^{-1})*e.$$

- **Définition 4.** \triangleright Un terme *clos* est un terme sans variable (par exemple $(0+0)^{-1}$).
 - \triangleright La hauteur d'un terme est le plis petit k tel que $t \in \mathcal{T}_k$.
- **Exercice 1.** \triangleright Énoncer et prouver le lemme de lecture unique pour les termes.
 - ▶ Énoncer et prouver un lemme de bijection entre les termes et un ensemble d'arbres étiquetés.

^{1.} Attention : le « ... » n'est pas un terme mais juste une manière d'écrire qu'on place les termes à côté des autres.

2 Les formules.

Définition 5. ▷ Les formules sont des mots sur l'alphabet

$$\mathcal{L} \cup \mathcal{V} \cup \{(,),,,\exists,\forall,\wedge,\vee,\neg,\rightarrow\}.$$

- \triangleright Une formule atomique est une formule de la forme $\Re(t_1,\ldots,t_n)$ où \Re est un symbole de relation d'arité n et t_1,\ldots,t_n des termes.
- ightharpoonup L'ensemble des formules ${\mathcal F}$ du langage ${\mathcal L}$ est défini par
 - on pose \mathcal{F}_0 l'ensemble des formules atomiques;

- on pose
$$\mathcal{F}_{k+1} = \mathcal{F}_k \cup \left\{ \begin{array}{c} (\neg F) \\ (F \to G) \\ (F \lor G) \\ (F \land G) \\ \exists x \ F \\ \exists x \ G \end{array} \right| \left. \begin{array}{c} F, G \in \mathcal{F}_k \\ x \in \mathcal{V} \end{array} \right\};$$

– et on pose enfin $\mathcal{F} = \bigcup_{n \in \mathbb{N}} \mathcal{F}_n$.

Exercice 2. La définition ci-dessus est « par le bas ». Donner une définition par le haut de l'ensemble \mathcal{F} .

Exemple 6. \triangleright Dans \mathcal{L}_g , un des axiomes de la théorie des groupes s'écrit

$$\forall x \,\exists x \, (x * y = e \wedge y * x = e).$$

 \triangleright Dans \mathcal{L}_{co} , l'énoncé « le corps est de caractéristique 3 » s'écrit

$$\forall x (x + (x + x) = 0).$$

 $\,\,\vartriangleright\,$ Dans $\mathcal{L}_{\mathrm{ens}},$ la loi de De Morgan s'écrit

$$\forall x \,\forall y \,(x^{\mathsf{c}} \cup y^{\mathsf{c}} = (x \cap y)^{\mathsf{c}}).$$

- **Exercice 3.** Donner et montrer le lemme de lecture unique.
 - ▶ Énoncer et donner un lemme d'écriture en arbre.

Remarque 3 (Conventions d'écriture.). On note :

- $\triangleright x \leq y$ au lieu de $\leq (x, y)$;
- $\Rightarrow \exists x \geq 0 \ (F) \text{ au lieu de } \exists x \ (x \geq 0 \land F);$
- $\forall x \geq 0 \ (F) \text{ au lieu de } \forall x \ (x \geq 0 \rightarrow F);$
- $\triangleright A \leftrightarrow B$ au lieu de $(A \to B) \land (B \to A)$;
- $\triangleright t \neq u$ au lieu de $\neg (t = u)$.

On enlèves les parenthèses avec les conventions de priorité

- 0. les symboles de relations (le plus prioritaire);
- 1. les symboles \neg , \exists , \forall ;
- 2. les symboles \land et \lor ;
- 3. le symbole \rightarrow (le moins prioritaire).

Exemple 7. Ainsi, $\forall x \ A \land B \rightarrow \neg C \lor D$ s'écrit

$$(((\forall x \ A) \land B) \to ((\neg C) \lor D)).$$

Remarque 4. Le calcul propositionnel est un cas particulier de la logique du premier ordre où l'on ne manipule que des relations d'arité 0 (pas besoin des fonctions et des variables) : les « variables » du calcul propositionnel sont des formules atomiques ; et on n'a pas de relation « = ».

Remarque 5. On ne peut pas exprimer *a priori*:

- ▶ des quantifications sur en ensemble ²;
- $\triangleright \, \, \langle \, \exists n \, \exists x_1 \, \dots \, \exists x_n \, \rangle \,$ une formule qui dépend d'un paramètre ;
- ▷ le principe de récurrence : si on a $\mathcal{P}(0)$ pour une propriété \mathcal{P} et que si $\mathcal{P}(n) \to \mathcal{P}(n+1)$ alors on a $\mathcal{P}(n)$ pour tout n.

Quelques définitions techniques qui permettent de manipuler les formules.

Définition 6. L'ensemble des sous-formules de F, noté $\mathrm{S}(F)$ est défini par induction :

- \triangleright si F est atomique, alors on définit $S(F) = \{F\}$;
- \triangleright si $F = F_1 \oplus F_2$ (avec \oplus qui est \vee , \rightarrow ou \wedge) alors on définit $S(F) = S(F_1) \cup S(F_2) \cup \{F\}$;
- \triangleright si $F = \neg F_1$, ou $F = \mathbf{Q}x F_1$ avec $\mathbf{Q} \in \{\forall, \exists\}$, alors on définit $S(F) = S(F_1) \cup \{F\}$.

C'est l'ensemble des formules que l'on voit comme des sous-arbres de l'arbre équivalent à la formule F.

- **Définition 7.** \triangleright La *taille* d'une formule, est le nombre de connecteurs $(\neg, \lor, \land, \rightarrow)$, et de quantificateurs (\forall, \exists) .
 - ▷ La racine de l'arbre est
 - rien su la formule est atomique;
 - \oplus si $F = F_1 \oplus F_2$ avec \oplus un connecteur (binaire ou unaire);
 - $\ll \mathbf{Q} \gg \sin F = \mathbf{Q}x F_1 \text{ avec } \mathbf{Q} \text{ un quantificateur.}$
- **Définition 8.** \triangleright Une occurrence d'une variable est un endroit où la variable apparait dans la formule (*i.e.* une feuille étiquetée par cette variable).
 - \triangleright Une occurrence d'une variable est *liée* si elle se trouve dans une sous-formule dont l'opérateur principal est un quantificateur appelé à cette variable (*i.e.* un $\forall x \, F'$ ou un $\exists x \, F'$).
 - ightharpoonup Une occurrence d'une variable est libre quand elle n'est pas liée.
 - ▶ Une variable est libre si elle a au moins une occurrence libre, sinon elle est liée.

^{2.} En dehors de \mathcal{L}_{ens} , en tout cas.

Remarque 6. On note $F(x_1, \ldots, x_n)$ pour dire que les variables libres sont F sont parmi $\{x_1, \ldots, x_n\}$.

Définition 9. Une formule est *close* si elle n'a pas de variables libres.

Définition 10 (Substitution). On note F[x := t] la formule obtenue en remplaçant toutes les occurrences libres de x par t, après renommage éventuel des occurrences des variables liées de F qui apparaissent dans t.

Définition 11 (Renommage). On donne une définition informelle et incomplète ici. On dit que les formules F et G sont α -équivalentes si elle sont syntaxiquement identiques à un renommage près des occurrences liées des variables.

Exemple 8. On pose

$$F(x,z) := \forall y (x * y = y * z) \land \forall x (x * x = 1),$$

et alors

- $\begin{array}{l} \rhd \ F(z,z) = F[x:=z] = \forall y \ (z*y=y*z) \land \forall x \ (x*x=1) \ ; \\ \rhd \ F(y^{-1},x) = F[x:=y^{-1}] = \forall {\color{blue} u}(y^{-1}*{\color{blue} u} = {\color{blue} u}*z) \land \forall x (x*x=1). \end{array}$

On a procédé à un renommage de y à u.

3 Les démonstrations en déduction naturelle.

Définition 12. Un séquent est un coupe noté $\Gamma \vdash F$ (où \vdash se lit « montre » ou « thèse ») tel que Γ est un ensemble de formules appelé contexte (i.e. l'ensemble des hypothèses), la formule F est la conséquence du séquent.

Remarque 7. Les formules ne sont pas nécessairement closes. Et on note souvent Γ comme une liste.

Définition 13. On dit que $\Gamma \vdash F$ est *prouvable*, *démontrable* ou *dérivable*, s'il peut être obtenu par une suite finie de règles (*c.f.* ci-après). On dit qu'une formule F est *prouvable* si $\emptyset \vdash F$ l'est.

Définition 14 (Règles de la démonstration). Une règle s'écrit

 $\frac{pr\acute{e}misses: des s\'{e}quents}{conclusion: un s\'{e}quent} \ nom \ de \ la \ r\`{e}gle$

Axiome.

$$\overline{\Gamma, A \vdash A}$$
 ax

Affaiblissement.

$$\frac{\Gamma \vdash A}{\Gamma, B \vdash A} \text{ aff }$$

Implication.

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \to_{\mathsf{i}} \qquad \frac{\Gamma \vdash A \to B}{\Gamma \vdash B} \to_{\mathsf{e}} {}^{3}$$

Conjonction.

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \ \land_{\mathsf{i}} \quad \frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \ \lor^{\mathsf{g}}_{\mathsf{e}} \quad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \ \lor^{\mathsf{d}}_{\mathsf{e}}$$

Disjonction.

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \vee B} \, \vee_{\mathsf{i}}^{\mathsf{g}} \quad \frac{\Gamma \vdash B}{\Gamma \vdash A \vee B} \, \vee_{\mathsf{i}}^{\mathsf{d}}$$

$$\frac{\Gamma \vdash A \lor B \qquad \Gamma, A \vdash C \qquad \Gamma, B \vdash C}{\Gamma \vdash C} \,\, \vee_{\mathsf{e}}^{\,\, 4}$$

Négation.

$$\frac{\Gamma, A \vdash \bot}{\Gamma \vdash \neg A} \neg_{\mathsf{i}} \qquad \frac{\Gamma \vdash A \qquad \Gamma \vdash \neg A}{\Gamma \vdash \bot} \neg_{\mathsf{e}}$$

Absurdité classique.

$$\frac{\Gamma, \neg A \vdash \bot}{\Gamma \vdash A} \perp_{\mathsf{e}}$$

(En logique intuitionniste, on retire l'hypothèse $\neg A$ dans la prémisse.)

Quantificateur universel.

$$\begin{array}{cc}
\text{si } x \text{ n'est pas libre} \\
\text{dans les formules de } \Gamma & \frac{\Gamma \vdash A}{\Gamma \vdash \forall x A} \ \forall_{\mathbf{i}}
\end{array}$$

$$\begin{array}{c} \text{quitte à renommer les} \\ \text{variables liées de } A \text{ qui} \\ \text{apparaissent dans } t \end{array} \quad \frac{\Gamma \vdash \forall x \ A}{\Gamma \vdash A[x := t]} \ \forall_{\mathbf{e}}$$

Quantificateur existentiel.

$$\frac{\Gamma \vdash A[x := t]}{\Gamma \vdash \exists x \ A} \ \exists_{\mathsf{i}}$$

avec x ni libre dans C ou dans les formules de Γ

$$\frac{\Gamma \vdash \exists x \, A \quad \Gamma, A \vdash C}{\Gamma \vdash C} \, \exists_{\mathsf{e}}$$

^{3.} Aussi appelée modus ponens

^{4.} C'est un raisonnement par cas