

Research Article

Three new species of the genus *Clavulina* (Hydnaceae, Cantharellales) from North China based on morphological and phylogenetic analysis

Yue Gao^{1*®}, Xin Tong^{2*®}, Hao Zhou^{1*®}, Hai-Qi Wang^{1®}, Cheng Li^{1®}, Cheng-Lin Hou^{1®}

- 1 College of Life Science, Capital Normal University, Haidian, 100048, Beijing, China
- 2 Department of Life Sciences, National Natural History Museum of China, Tianqiaonandajie 126, Dongcheng, 100050, Beijing, China Corresponding author: Cheng-Lin Hou (chenglin-hou@cnu.edu.cn)

Abstract

Clavulina possesses important ecological and economic value and has attracted extensive attention from mycologists. Macrofungal diversity is high in China, but Clavulina species have not been thoroughly studied. In this study, based on morphological evidence and phylogenetic analyses of the nucleotide sequences of three loci (nrITS, nrLSU, and rpb2), three new species of Clavulina from North China were identified. Morphologically, Clavulina chengdeensis is characterized by its white to dirty white basidiomata with somewhat pale orange tips and somewhat wrinkled hymenium. Clavulina griseoviolacea is characterized by its gray to dark grayish violet basidiomata, with a sometimes-white stipe base, monopodial or irregularly polychotomous toward branch apices. Clavulina pallida is characterized by its white to pale cream white basidiomata with somewhat orange tips. Phylogenetically, the three new species form three independent branches with high support values in the phylogenetic tree.

Key words: Clavarioid fungi, systematics, taxonomy, three new taxa

Academic editor: Zai-Wei Ge Received: 26 March 2024 Accepted: 23 July 2024 Published: 22 August 2024

Citation: Gao Y, Tong X, Zhou H, Wang H-Q, Li C, Hou C-L (2024) Three new species of the genus *Clavulina* (Hydnaceae, Cantharellales) from North China based on morphological and phylogenetic analysis. MycoKeys 108: 75–94. https://doi.org/10.3897/ mycokeys.108.124004

Copyright: © Yue Gao et al.

This is an open access article distributed under terms of the Creative Commons Attribution

License (Attribution 4.0 International – CC BY 4.0).

Introduction

Clavulina J. Schröt. (Hydnaceae, Cantharellales), with Clavulina cristata (Holmsk.) J. Schröt. as a type species, was established in 1888 (Schröter 1888; He et al. 2019). Clavulina is a clavarioid fungi, characterized by clavarioid to coralloid, simple or branched basidiomata with amphigenous hymenia, cylindrical to subclavate basidia with two or more cornuted sterigmata, often with postpartal septa after the release of the basidiospores, and smooth, globose to subglobose basidiospores (Corner 1950, 1970; Petersen 1988a; Thacker and Henkel 2004; Henkel et al. 2005; Olariaga et al. 2009; Henkel et al. 2011; Uehling et al. 2012a). Most Clavulina species are ectomycorrhizal fungi associated with diverse trees (Tedersoo et al. 2003; Tedersoo et al. 2010; Smith et al. 2011; Wazny 2014). Some species are edible or have medicinal value (Dai and Yang 2008; Dai et al. 2010).

The delimitation of *Clavulina* species is a challenge because they appear to be "simple" in morphology (Donk 1933, 1964; Corner 1950, 1970; Petersen 1988a,

^{*} These authors contributed equally to this work.

1988b). Molecular phylogenetic analysis based on DNA sequences has improved the identification of species, especially those that cannot be distinguished by morphology alone (Hibbett et al. 1997; Pine and Donoghue 1999; Larsson et al. 2004; Thacker and Henkel 2004; Binder et al. 2005; Moncalvo et al. 2006). Currently, approximately 99 species of *Clavulina* have been described from temperate and tropical forests worldwide, with nearly half of these species found in the tropics (Wu et al. 2019; Yuan et al. 2020; de Meiras-Ottoni and Gibertoni 2023; Huang et al. 2023; Salas-Lizana et al. 2023). In China, 11 *Clavulina* species have been reported on the basis of morphological and molecular analyses, most of which are found in subtropical regions, viz. *C. bessonii* (Pat.) Corner, *C. castaneipes* (G.F. Atk.) Corner (= *C. ornatipes* (Peck) Corner), *C. coralloides* (= *C. cristata*), *C. cinerea*, *C. rugosa* (Teng 1963; Zang et al. 1996; Li et al. 2015), *C. livida* (He et al. 2016), *C. flava*, *C. purpurascens* P. Zhang (Wu et al. 2019), *C. baiyunensis* X.X. Huang & L.H. Qiu, *C. minor* X.X. Huang & L.H. Qiu, and *C. lilaceorosea* X.X. Huang & L.H. Qiu (Huang et al. 2023).

Recently, a number of *Clavulina*-like samples were collected during an investigation of the Yanshan Mountains in North China, a warm temperate region. Three new species were recognized on the basis of morphological and molecular data. In this paper these new species are described and illustrated. The nuclear ribosomal internal transcribed spacer (nrITS), the large subunit of the nuclear ribosomal RNA (nrLSU), and the RNA polymerase II second largest subunit (*rpb2*) were sequenced from dried basidiomata.

Materials and methods

Collecting and site description

The specimens were collected from 2017 to 2023 in Beijing, Hebei Province, and Tianjin, North China. These areas have a warm temperate continental monsoon climate and a diverse assortment of plants. The dominant forest types are deciduous broad-leaved forest and mixed coniferous and broad-leaved forest. The dominant trees include *Quercus mongolica* Fisch. ex Ledeb., *Betula platyphylla* Suk., *Abies nephrolepis* (Trautv.) Maxim., *Populus tomentosa* Carrière, and *Pinus tabuliformis* Carr. (Wang et al. 2021; Zhou et al. 2022). The annual precipitation is approximately 700 mm. The altitude ranges from 200 to 2200 m. The collected specimens were dehydrated using an electric dryer (Dorrex) at 50 °C and kept in the Herbarium of the College of Life Science, Capital Normal University, Beijing, China (BJTC).

Morphological observation

Macroscopic characteristics were documented from dried specimens and photographs, while thin sections of specimens mounted in 3% potassium hydroxide (KOH) or sterilized water were analyzed for microscopic features. The morphology and dimensions of their microscopic structures were observed and recorded using a light microscope [Olympus DP71, Tokyo, Japan]. In the description of basidiospores, the abbreviation n/m/p means that n basidiospores were measured from m basidomata of p collections. The measurements and p values were presented in the form of (a)b-c (d), in which "b-c" contained a minimum of 90% of the measured values, and extreme values (a and d) were given in parentheses. p represents

the ratio of the length to width of basidiospores, and Q_m represents the average Q value of all basidiospores measured \pm the sample standard deviation (Huang et al. 2023). The nomenclatural details were submitted to MycoBank. Color designation was referred to the website colorhexa (https://www.colorhexa.com).

DNA extraction, PCR amplification and sequencing

DNA was extracted with an M5 Plant Genomic DNA Kit [Mei5 Biotechnology, Co., Ltd., China]. The obtained DNA was dissolved in 1 × TE buffer and stored at $-20\,^{\circ}\text{C}$ for later use. PCRs were performed in a Bio-Rad S1000TM Thermal Cycler [Bio-Rad Laboratories, Inc., USA]. The primer set ITS1f/ITS4 (White et al. 1990) was used to amplify the nrITS region. The primer set LR5/LR0R (Vilgalys and Hester 1990) was used to amplify the nrLSU region. The primer sets 96F/938R (Uehling et al. 2012a) and RPB2-6F/fRPB2-7cR (Liu et al. 1999) were used to amplify the rpb2 region. PCRs were conducted in a 25 μ L reaction volume containing 2 μ L of DNA template, 1 μ L of each primer (10 μ M), 8.5 μ L of deionized water and 12.5 μ L of 2 × Master Mix [Mei5 Biotechnology, Co., Ltd., China]. The PCR amplification conditions for nrITS and nrLSU refer to Li et al. (2020) and Sui et al. (2023). The PCR amplification conditions for rpb2 refers to Salas-Lizana et al. (2023) and Huang et al. (2023). All the DNA sequences were sequenced by Sangon Biotech Co., Ltd. (Shanghai).

Molecular phylogenetic analyses

The newly obtained sequences from this study were submitted to NCBI (https://www.ncbi.nlm.nih.gov). The nrITS, nrLSU, and *rpb2* sequences of the concatenated nrITS-nrLSU-*rpb2* datasets were aligned with selected sequences from GenBank and previous studies. All sequences are listed in Table 1. The generated raw reads of the DNA sequences were used to obtain consensus sequences using SeqMan v.7.1.0 in the DNASTAR Lasergene Core Suite software (DNASTAR Inc., Madison, WI, USA). All sequences were aligned using MAFFT v.6 (Katoh and Toh 2010) and trimmed manually with MEGA 6 (Tamura et al. 2013). For phylogenetic analyses, newly obtained sequences and additional reference sequences of *Clavulina* species were included in the dataset of the combined nrITS-nrLSU-*rpb2* fragment (Table 1), with *Hydnum repandum* L. and *Hydnum rufescens* Pers. as the outgroups following He et al. (2016).

To estimate Maximum Likelihood (ML) phylogenetic trees, we utilized RAx-ML 7.4.2 Black Box software (Stamatakis 2006; Stamatakis et al. 2008; Zhou and Hou 2019; Zhou et al. 2021) with a GTRGAMMAI site substitution model (Guindon et al. 2010). Branch support was calculated with a bootstrapping (BS) method of 1000 replicates (Hillis and Bull 1993). Bayesian Inference (BI) analysis was conducted using MrBayes 3.1.2 (Ronquist and Huelsenbeck 2003) with a Markov chain Monte Carlo (MCMC) algorithm (Rannala and Yang 1996). The best model was estimated using MrModeltest 2.3 (Zhou and Hou 2019; Zhou et al. 2021, 2022). The models employed for each marker of the nrITS-nrLSU-rpb2 dataset were HKY + G for nrITS, GTR + I + G for nrLSU, and HKY + I + G for rpb2. We ran two MCMC chains for 100,000,000 generations, stopping when the average standard deviation of split frequencies dropped below 0.01. Trees were saved every 1000 generations, and the initial 25% of trees were discarded as the burn-in phase for each analysis. Significant Bayesian posterior probabilities were

calculated for branches in the remaining trees, as the analysis yielded relatively stable topologies, and clades with high Bayesian posterior probability (pp) values reflected the relative relationships between species (Posada and Crandall 1998).

Table 1. Specimens used in phylogenetic analysis and their GenBank accession numbers. The newly generated sequences are shown in bold.

Taxonomy	Location	Voucher	GenBank Number		
	25041511		nrITS	nrLSU	rpb2
Clavulina alba	Brazil	AM0869	ON502612	-	_
C. alba	Brazil	AMO868	ON502611	MZ484637	_
C. alba	Brazil	AM0867	ON502610	MZ484636	OQ305446
C. alpina	Italy	AMB n. 17156 (T)	MH456956	MH457104	_
C. alpina	Italy	AMB n. 17157	MH456957	MH457105	_
C. amazonensis	Guyana	TH8742	_	HQ680361	JN228249
C. amazonensis	Colombia	AMV1847	KT724111	KT724124	_
C. amazonensis	Brazil	AMO1143	ON502605	_	_
C. amethystina	Germany	MTH2	MN959776	_	_
C. arboreiparva	Mexico	FCME27282 (T)	NR_185406	MT903233	MK519629
C. arboreiparva	Mexico	MEXU 28239	MK547192	MT903234	_
C. baiyunensis	China	B21062720	OP738992	OP737358	_
C. baiyunensis	China	B21051526	OP738990	OP737357	OP745528
C. baiyunensis	China	B21062712 (T)	OP738991	OP737359	OP745529
C. brunneocinerea	New Zealand	TN42667	_	JN228220	_
C. caespitosa	Guyana	BRG:TH8709 (T)	NR_119560	DQ056370	JN228234
C. castaneipes	USA	OSC 116725	EU669210	EU669262	_
C. castaneipes	Costa Rica	TENN056432	JX287357	_	_
C. castaneipes	USA	OSC 108705	EU669209	EU669261	_
C. cerebriformis	Guyana	BRG:MCA4022 (T)	NR_121504	JN228222	JN228233
C. cf. amethystina	Norway	PRM 896664	EU862203	-	_
C. cf. amethystina	Norway	0 62152	EU862204	<u> </u>	_
C. cf. amethystina	USA	SE-2015	KT275670	_	_
C. cf. cinerea	China	MES427	_	JN228226	JN228239
C. cf. cinerea	Canada	UBC:F29630	MZ868607	_	_
C. cf. cinerea	Canada	UBC:F29600	MZ868605	_	_
C. cf. cinerea	Spain	BIO 10304	EU862226	_	_
C. cf. cinerea	Spain	BIO 10294	EU862225	_	_
C. cf. connata	Guyana	TH 9586	JN247429	_	JN228247
C. cf. cristata	China	MES426	JN228225	JN228225	JN228240
C. cf. rugosa	China	MHHNU 9234	MK564142	MK564132	MK564152
C. chengdeensis	China	BJTC TX646 (T)	PP835331	PP835344	PP889517
C. chengdeensis	China	BJTC 0249	PP835325	PP835339	PP889513
C. chengdeensis	China	BJTC ZH1205	PP835335	PP835348	PP889521
C. chengdeensis	China	BJTC ZH1225	PP835336	PP835349	PP889522
C. cinerea	USA	iNat62500762	ON479751	_	_
C. cinerea	USA	ECV4030	MG663298	MF797670	_
C. cinerea	USA	JKU9	JN228228	_	JN228242
C. cinerea	Denmark	JV01-158	AJ889937	AJ889937	_
C. cinerea	Finland	KHL 11694 (GB)	EU118616	_	_
C. cinerea	USA	RAS494	OR471189	OR470998	OR474029
C. cinereoglebosa	Guyana	TH8561 (T)	NR_119975	JN228232	JN228246

Taxonomy	Location	Voucher		GenBank Number	
тахопошу	Location	Voucilei	nrITS	nrLSU	rpb2
C. cirrhata	Guyana	TH8940	JQ677059	JQ677045	J0677046
C. cirrhata	Guyana	TH8754	JQ677050	JQ677050	_
C. cirrhata	Guyana	TH9266	JQ677061	_	_
C. cirrhata	Guyana	TH9207	JQ677062	_	_
C. coralloides	USA	iNat61787378	ON479748	_	_
C. coralloides	_	HBAU15770	MW850398	_	-
C. coralloides	China	110116MFBPL0405	MW554410	_	_
C. coralloides	China	HKAS122411	ON794279	_	_
C. craterelloides	Colombia	AMV1401	_	KT724127	_
C. craterelloides	Guyana	TH8234 (T)	JQ911749	AY391718	_
 C. cristata	USA	JKU8	JN228227	JN228227	JN228241
C. cristata	Spain	BIO 9641	EU862228	_	_
C. cristata	Spain	BIO 10291	EU862223	_	_
C. cristata	Finland	EL 6/00 (GB)	KF218965	KF218965	_
C. cristata	Sweden	GB/EL95-97	AY463398	AY586648	
C. cristata	USA	DUKE9312	-	JN228215	JN228250
C. cristata C. cristata	USA	RAS323 SV1	OR464379	OR460871	
C. cristata C. cristata	USA	RAS323 SV1	OR464380	OR460871 OR460872	
	1		UR404360		
C. crystallifera	Brazil	AM0825		MZ484638	00205455
C. crystallifera	Brazil	URM 95027 (T)	-	MZ484639	OQ305455
C. crystallifera	Brazil	URM 95029	- ND 105705	MZ484641	OQ305456
C. cystidiata	Brazil	URM 95030	NR_185725	MZ484642	OQ305449
C. dicymbetorum	Guyana	TH8730 (T)	DQ056364	DQ056369	
C. effusa	Guyana	TH9193 (T)	<u>-</u>	JN228230	JN228245
C. effusa	Colombia	AMV1837	KT724116	KT724129	
C. effusa	Guyana	TH8511	JN228231	_	
C. etruriae	Italy	AMB n.17158	MH456958	-	_
C. flava	China	MHHNU 9811	MK564138	MK564128	MK564148
C. flava	China	MHHNU9825 (T)	NR_185562	MK564129	MK564149
C. floridana	Mexico	MEXU:28240	MK547187	MT903230	MK519625
C. floridana	Mexico	UNAM:FCME27277	MK547188	MT903229	MK519626
C. floridana	USA	Franck 4420 (T)	MT894294	MT894296	_
C. griseoviolacea	China	BJTC ZH0998 (T)	PP835334	PP835347	PP889520
C. griseoviolacea	China	BJTC ZH1653	PP835338	PP835352	PP889524
C. grisea	Brazil	URM 89966	KX811198	KX811193	_
C. grisea	Brazil	URM 89967 (T)	KX811199	KX811194	_
C. grisea	Brazil	URM 89968	KX811200	KX811195	_
C. guyanensis	Guyana	TH9257	JQ677057	_	_
C. guyanensis	Guyana	TH9245 (T)	NR_120085	-	JQ677049
C. humicola	Guyana	TH8737 (T)	DQ056368	DQ056367	JN228244
 C. incrustata	Brazil	AM01300	ON502606	MZ484631	OQ305439
C. incrustata	Brazil	AMO800B	_	MZ484626	OQ305440
C. incrustata	Brazil	AM0802	_	MZ484628	OQ305441
C. iris var. iris	Cyprus	ML5135C1	MN028412	MN028396	-
C. iris var. iris	China	QHU20388	OM970954	-	_
C. iris var. iris C. iris var. occidentalis	France	PAM11112702	MN028408	_	
C. iris var. occidentalis	France	PAM11112702 PAM12112740	MN028409	_	
				_	
C. junduensis	Brazil	ANMF 766	MZ092866	H0600360	
C. kunmudlutsa	Guyana	MCA3117	-	HQ680362	- -
C. lilaceorosea	China	B22052918	OP738996	OP737363	OP745532
C. lilaceorosea	China	B21082106	OP738995	OP737362	OP745533

Taxonomy	Location	Voucher		GenBank Number	
Taxonomy	Location	Vouchei	nrITS	nrLSU	rpb2
C. livida	China	MCCNNU00959	KU219603	-	-
C. livida	China	MCCNNU00960 (T)	KU219605	KU219602	_
C. mahiscolorata	Mexico	FCME 27660	MH542551	MN049493	_
C. mahiscolorata	Mexico	FCME 27665	MH542553	_	_
C. mahiscolorata	Mexico	FCME 27662 (T)	MH542554	MN049496	MN053719
C. minor	China	B21081646 (T)	OP738993	OP737360	OP745530
C. minor	China	B22082717	OR149156	OR145333	OR166807
C. monodiminutiva	Guyana	TH8738 (T)	NR_119559	DQ056372	JN228237
C. nigricans	Guyana	TH8284 (T)	JN228224	AY391719	JN228238
C. nigricans	Guyana	G200	KJ786649	KJ786553	_
C. ornatipes	USA	iNAT:57799374	MW031157	-	_
C. ornatipes	USA	TH9598	_	JN228229	JN228243
C. ossea	Brazil	AMO1110	_	MZ484634	OQ305444
C. ossea	Brazil	AMO1108	ON502607	MZ484633	OQ305443
C. pakaraimensis	Guyana	TH9194 (T)	NR_121533	JQ677051	JQ677047
C. pakaraimensis	Guyana	TH9212	JQ677053	_	_
 C. pallida	China	BJTC C669 (T)	PP835329	PP835342	PP889515
C. pallida	China	BJTC C229	PP835327	PP835341	PP889514
C. pallida	China	BJTC S062	PP835330	PP835343	PP889516
C. pallida	China	BJTC ZH0056	PP835332	PP835345	PP889518
C. pallida	China	BJTC ZH0810	PP835333	PP835346	PP889519
C. pallida	China	BJTC ZH1055	PP835337	PP835350	PP889523
C. paraincrustata	Brazil	URM 89969 (T)	_	KX811196	
C. paraincrustata	Brazil	AMO419	KX811201	_	_
C. parvispora	Mexico	FCME 27650 (T)	MH542550	MN049492	MN053718
C. parvispora	Mexico	FCME 27657	MH542549	MN049491	_
C. perplexa	Italy	AMB 19286	OR094916	OR095022	
C. perplexa	Italy	AMB 19287	OR094915	OR095021	
C. purpurascens	China	MHHNU 9846	MK564136	MK564126	MK564146
C. purpurascens	China	MHHNU 9848 (T)	MK564137	MK564127	MK564147
C. reae	Mexico	FCME 27623	MH542526	MN049487	MN053717
C. reae C. reae	Italy	AMB n. 17159	MH456959	MH457106	-
C. reae C. reae	Mexico	FCME 27629	MH542525	MN049488	
				JQ677044	JQ677048
C. rugana	Guyana Tunisia	TH8954 (T) H21587	JQ677064 KU973837	30077044	JQ077048
C. rugosa				_	
C. rugosa	Spain	BIO 10293	EU862220	_	
C. rugosa	Spain	BIO 10300	EU862217	-	
C. rugosa	Spain	BIO 11162	EU862229	ODC 410.45	
C. rugosa	Italy	AMB 19288	OR641046	OR641045	-
C. rugosa	USA	RAS487 SV1	OR464375	OR460869	OR473737
C. rugosa	USA	RAS327 SV2	OR464364	OR460870	-
C. rugosa	USA	RAS327 SV1	OR464365	-	OR473740
C. samuelsii	USA	TENN065723	JQ638712	-	
C. samuelsii	New Zealand	PDD:89881	GU222317	-	_
C. simplex	Brazil	URM 95031 (T)	NR_185726	MZ484643	OQ305452
C. simplex	Brazil	URM 95032	_	MZ484644	-
C. sphaeropedunculata	Mexico	FCME 27661	MH542560	MK253716	_
C. sphaeropedunculata	Mexico	MEXU 28222 (T)	MH542557	MK253717	_
C. sprucei	Guyana	TH9122	HQ680355	JN228223	JN228236
C. sprucei	Guyana	TH9120	HQ680353	_	_

Taxonomy	Laastian	Voucher	GenBank Number		
	Location		nrITS	nrLSU	rpb2
C. sprucei	Guyana	MCA3989	HQ680352	_	JN228235
C. studerae	Brazil	URM 95036	_	MZ484648	OQ305454
C. studerae	Brazil	URM 95033 (T)	NR_185727	MZ484645	OQ305453
C. subrugosa	USA	TENN043395	JQ638711	_	_
C. subrugosa	New Zealand	TN43395	JN228221	_	_
C. tepurumenga	Guyana	MCA3116	-	HQ680363	JN228248
C. terminalis	Brazil	AMO1109	_	MZ484649	OQ305450
C. terminalis	Brazil	AM01122	-	MZ484651	OQ305451
C. thindii	China	dcy2288	MZ157027	_	_
C. thindii	India	US_1428	MG892054	_	_
C. tropica	China	ZP3327	ON898016	_	_
C. tropica	China	MHHNU 9827	ON954848	_	_
C. tuxtlasana	Mexico	MEXU 28242	MK547194	MT903236	MK519631
C. tuxtlasana	Mexico	MEXU 28243	MK547195	MT903237	MK519632
C. tuxtlasana	Mexico	UNAM:FCME27279 (T)	NR_185407	MT903238	MK519633
Hydnum repandum	Slovenia	031209A	KU612574	KU612655	_
H. rufescens	Slovenia	LJU GIS 1332	AJ547868	_	_
H. rufescens	China	HKAS82529	-	KU612657	_

Results

Molecular phylogeny

A total of 36 sequences, including 12 for nrITS, 12 for nrLSU and 12 for *rpb2*, were generated in this study. The nrITS-nrLSU-*rpb2* dataset included 320 sequences (140 for nrITS, 109 for nrLSU, and 71 for *rpb2*), with 161 samples. The concatenated alignment contained 2188 characters, including gaps. ML and Bayesian analyses resulted in highly similar estimates of tree topologies; thus, only the tree inferred from the ML analysis is shown (Fig. 1).

Our tree topology is similar to that of Meiras-Ottoni and Gibertoni (2023). On the basis of our analyses, three highly supported monophyletic lineages were identified in our Clavulina samples (Fig. 1). Morphological examinations revealed that these species are morphologically different from other known species of this genus. The three clades therefore can be recognized as three new species and described in this paper, i.e., Clavulina chengdeensis sp. nov., Clavulina griseoviolacea sp. nov., and Clavulina pallida sp. nov. Moreover, Clavulina griseoviolacea (BJTC ZH0998 and BJTC ZH1653) further clustered a clade with Clavulina iris var. iris Loizides, Bellanger & P.-A. Moreau, Clavulina iris var. occidentalis Bellanger, P.-A. Moreau & Loizides, and Clavulina cinerea (MLB = 100%, BPP = 1.00). Clavulina pallida (BJTC C669, BJTC C229, BJTC S062, BJTC ZH0056, BJTC ZH0810, and BJTC ZH1055) formed one clade (MLB = 100%, BPP = 1.00) closely related to Clavulina rugosa, Clavulina mahiscolorata E. Pérez-Pazos & Villegas, and Clavulina etruriae Franchi & M. Marchetti (MLB = 100%, BPP = 1.00) (Fig. 1). The sequences of Clavulina chengdeensis (BJTC TX646, BJTC 0249, BJTC ZH1205, and BJTC 1225) formed a branch with a high support value (MLB = 100%, BPP = 1.00) and further clustered into a clade with Clavulina rugosa and Clavulina cf. cinerea (Bull.) J. Schröt.), which was well supported (MLB = 93%, BPP = 1.00).

Figure 1. Phylogenetic tree generated from a ML analysis based on combined nrITS-nrLSU-rpb2 sequences. Numbers representing Maximum Likelihood bootstrap support (MLBS \geq 75%, right) and significant Bayesian posterior probability (BPP \geq 0.95, left) are indicated above the nodes. Novel sequences are printed in bold. Voucher specimens and localities where the specimens were collected are provided behind the species names.

Taxonomy

Clavulina chengdeensis Yue Gao, Hao Zhou, & C.L. Hou, sp. nov.

MycoBank No: 853047 Figs 2A-C, 3A-C, 4

Diagnosis. Clavulina chengdeensis differs from known Clavulina species in its white to dirty white basidiomata with somewhat pale orange tips, somewhat wrinkled hymenium, basidiospores $6.1-9.6 \times 5.6-7.9 \mu m$, basidia $40.1-58.7 \times 4.5-7.0 \mu m$, postpartal septa present, and clamp connections present.

Etymology. The epithet "chengdeensis" refers to the specimens collected from Chengde city.

Type. CHINA • Hebei Province, Chengde city, Xiaolabagou; 40°57'24"N, 116°27'12"E, alt. 1240 m; 13 Sep. 2023; H. Zhou, Y. Gao & X. Tong (BJTC TX646); GenBank nrITS: PP835331, nrLSU: PP835344, *rpb2*: PP889517.

Description. Basidiomata coralloid, solitary or gregarious in cespitose clusters; clusters 12–24 mm tall, 10–26 mm wide across branches and forming 3–5 ranks in multiple planes; individual basidiomata 14–40 mm tall, 4–11 mm wide, simple or sparsely branched one time, branching pattern polychotomous to dichotomous ascending, branches subterete or subclavate and somewhat flattened with age, rough, branch tips rounded when young, gradually become pointed with age; white (#ffffff) to dirty white (#fff9eb) when fresh and somewhat pale orange (#ffeab8), cream white (#fff2d2) to light grayish orange (#f6e4d0) when dry. Stipes generally distinct, 5–15 mm long, 1.5–4 mm wide, subcylindrical or flattened, concolor with branches. Hymenium amphigenous, somewhat wrinkled.

Basidiospores [87/9/4] (5.7–) 6.1–9.6 (–11.0) × 5.6–7.9 (–8.5) μ m, Q = 1.00–1.25 (–1.31), Q_m = 1.04 ± 0.02, globose to subglobose, smooth, hyaline in H₂O and KOH, thin-walled, inamyloid, with a 0.6–1.0 μ m irregular hilar appendix, and one large oleiferous guttule. Basidia (34.7–) 40.1–58.7 (–62.3) × 4.5–7.0 (–8.3) μ m, clavate to subcylindrical, tapering from apex to base; postpartal septa present in most basidia, occurring 11–30 μ m below basidia tips; two sterigmata occur per basidium, 5.1–7.5 μ m long, and cornute. Basidioles abundant, subclavate to subcylindrical. Tramal hyphae in stipe smooth, with slightly thickened walls, hyaline in KOH, 4.0–7.7 μ m wide, sometimes inflated to 9.3 μ m wide; tramal hyphae in branches hyaline, thin-walled, sometimes inflated tramal hyphae 3.7–8.5 (–10.4) μ m wide; clamp connections abundant. Hyphal system monomitic. Cystidia absent.

Habit, habitat, and distribution. Solitary or gregarious caespitose in humus layers on soils in broad-leaved deciduous forests associated with *Castanea* Mill., *Betula* L., and *Platanus* L. Basidiomata generally occur from July to September; currently known from Hebei Province and Beijing, China.

Additional specimens examined. China • Beijing, Yanqing District, Songshan National Nature Reserve; 40°30′N, 115°48′E, alt. 652 m; 16 Sep. 2017; C.L. Hou, H. Zhou, J.Q. Li (BJTC 0249); China• Beijing, Huairou District, Labagoumen Nature Reserve; 40°39′24″N, 116°27′14″E, alt. 1225 m; 25 Aug. 2021; H. Zhou, X.Y. Shen, X.B. Huang (BJTC ZH1205); same location• 40°57′17″N, 116°27′3″E, alt. 1308 m; 25 Aug. 2021; H. Zhou, X.Y. Shen, X.B. Huang (BJTC ZH1225).

Note. Phylogenetically, *C. chengdeensis* was related to *C. rugosa* in our analyses (Fig. 1). However, *C. rugosa* has longitudinally rugulose basidiomata, relatively large basidiospores (9–14 × 8–12 μ m), basidia (40–85 × 6.9–5 μ m), and sterig-

Figure 2. Morphology of Basidiomata A-C Clavulina chengdeensis (A BJTC TX646 holotype B BJTC ZH1205 C BJTC ZH1225) D-E Clavulina griseoviolacea (D BJTC ZH0998 holotype E BJTC ZH1653) F-I Clavulina pallida (F BJTC C669 holotype G BJTC S062 H BJTC ZH1055 I BJTC C229). Scale bars: 1 cm.

Figure 3. Morphology of Basidiomata **A–C** *Clavulina chengdeensis* (**A** BJTC TX646 holotype **B** BJTC ZH1205 **C** BJTC 0249) **D** *Clavulina griseoviolacea* (**D** BJTC ZH0998 holotype) **E–G** *Clavulina pallida* (**E** BJTC C669 holotype **F** BJTC S062 **G** BJTC ZH0056). Scale bars: 1 cm.

Figure 4. Microscopic characteristics of Clavulina chengdeensis A basidiospores B basidia C tramal hyphae. Scale bars: 10 µm.

mata 6–9 µm long (Corner 1950; Olariaga et al. 2009). Morphologically, *C. cheng-deensis* is close to *C. mahiscolorata*. *Clavulina mahiscolorata* generally shares similar colors with basidiomata, but its basidiomata turn maize yellow to mandarin orange when dry and the branch surface is smooth (Pérez-Pazos et al. 2019).

Clavulina griseoviolacea Yue Gao, Hao Zhou, & C.L. Hou, sp. nov.

MycoBank No: 853050 Figs 2D-E, 3D, 5

Diagnosis. Clavulina griseoviolacea differs from known Clavulina species in its gray to dark grayish violet basidiomata, with a white stipe, monopodial or irregularly polychotomous branches toward branch apices, basidiospores $6.5-8.0 \times 6.2-7.2 \mu m$, basidia $31.3-49.8 \times 4.5-7.2 \mu m$, postpartal septa present, and clamp connections present.

Etymology. The epithet "griseoviolacea" refers to the basidiomata being gray to dark grayish violet.

Type. CHINA • Tianjin, Jizhou District, Jiulongshan; 40°8'51"N, 117°30'36"E, alt. 170 m; 21 Aug. 2022; H. Zhou, X.Y. Shen & X.B. Huang (BJTC ZH0998); Gen-Bank nrITS: PP835334, nrLSU: PP835347, *rpb2*: PP889520.

Description. Basidiomata coralloid, solitary or scattered; individual basidiomata 25–45 mm tall, 12–20 mm wide across branches, basidiomata sparsely branched two to three times, monopodial or irregularly polychotomous toward branch apices and dichotomous at the base, branches subclavated to fattened and somewhat flattened with age, rough, with rounded tips; gray (#a5a5a5) to

dark grayish violet (#9b92a6) when fresh and tips somewhat very dark brown (#1f1605), dark brown (#4c350b) when dry. Stipes generally distinct, 10–20 mm long, 2–5 mm wide, subcylindrical or flattened, dark gray (#777777) to dark grayish purple (#7a747f) and sometimes with a white base (#ffffff). Hymenium amphigenous, generally nodulosus and farinaceous.

Basidiospores [65/2/1] 6.5–8.0 (–8.6) × (5.9–) 6.2–7.2 (–7.9) µm, Q = 1.00–1.23 (–1.27), Q_m = 1.12 ± 0.06, globose to subglobose, smooth, hyaline in H₂O and KOH, thin-walled, inamyloid, with a 0.6–0.9 µm irregular hilar appendix, and one large oleiferous guttule. Basidia (29.3–) 31.3–49.8 (–65.3) × 4.5–7.2 (–8.3) µm, clavate to subcylindrical, tapering from apex to base; postpartal septa present in most basidia, occurring 12–24 µm below basidia tips; two sterigmata occur per basidium, 3.8–6.7 µm long, and cornute. Basidioles abundant, subclavate to subcylindrical. Tramal hyphae in stipe smooth, with slightly thickened walls, hyaline in KOH, 2.6–5.5 µm wide, some tramal hyphae inflated; tramal hyphae in branch hyaline, thin-walled, 3.7–6.1 (–8.9) µm wide; clamp connections abundant. Hyphal system monomitic. Cystidia absent.

Habit, habitat, and distribution. Solitary or scattered humus layers on soils under Theropencedrymion, associated with *Pinus* L. Basidiomata generally occurring from July to August; currently known from Tianjin and Beijing, China.

Additional specimens examined. CHINA • Beijing, Mentougou District, Baihua Mountain; 39°47′50″N, 115°33′35″E, alt. 1,223 m; 16 Aug. 2023; H. Zhou, Y. Gao & X. Tong (BJTC ZH1653).

Notes. *C. griseoviolacea* is phylogenetically closely related to *Clavulina cine*rea, *Clavulina iris* var. occidentalis and *Clavulina iris* var. iris according to phylogenetic analyses (Fig. 1.), but *Clavulina cinerea* has lilac-gray to gray basidioma-

Figure 5. Microscopic characteristics of Clavulina griseoviolacea A basidiospores B basidia C tramal hyphae. Scale bars: 10 μm.

ta, larger basidiospores (7–10 × 6–8 µm) and basidia (38–65 µm long up to 7 µm wide) (Burt 1922); Clavulina iris Loizides, Bellanger & P.-A. Moreau can be distinguished by its white-pruinose basidiomata, branches sometimes partially or extensively fused, larger basidiospores (9.2–10.4 × 6.5–8.5 µm) and basidia (45–80 × 6–9 µm), and 7–9 µm wide hyphal ends (pseudocystidia) (Crous et al. 2019). C. griseoviolacea is morphologically similar to Clavulina tuxtlasana M. Villegas, Garibay-Orijel & Pérez-Pazos in the color of basidiomata, but C. tuxtlasana basidiomata are simple, rarely branching dichotomously, branches with slight longitudinal wrinkles, smaller basidiospores (6–7.5 × 5.5–7 µm), and lacking clamp connections (Salas-Lizana et al. 2023). Clavulina crystallifera Meiras-Ottoni also has similar branching, but acerose crystals are present in the medullary hyphae of its branches (de Meiras-Ottoni and Gibertoni 2023).

Clavulina pallida Yue Gao, Hao Zhou, & C.L. Hou, sp. nov.

MycoBank No: 853052 Figs 2F-I, 3E-G, 6

Diagnosis. Clavulina pallida differs from known Clavulina species in its white to pale cream white basidiomata, with somewhat orange tips, basidiospores $7.0-9.7 \times 6.4-8.6 \, \mu m$, basidia $34.2-48.5 \times 4.8-6.3 \, \mu m$, postpartal septa present, and clamp connections present.

Etymology. The epithet "pallida" refers to the basidiomata being pale white. **Type.** CHINA • Beijing, Miyun District, Heilongtan; 40°35'30"N, 116°46'20"E, alt. 397 m; 27 Aug. 2021; C.L. Hou, G.Q. Cheng, R.T. Zhang (BJTC C669); Gen-Bank nrITS: PP835329, nrLSU: PP835342, *rpb2*: PP889515.

Description. Basidiomata coralloid, solitary or scattered; individual basidiomata 17–38 mm tall, 1.8–10 mm wide across branches, simple or sparsely branched one to two times, monopodial or irregularly dichotomous toward branch apices and monopodial or dichotomous at the base, branches subterete or subclavate to fattened and somewhat flattened with age, smooth or rough, branch tips are rounded when young, gradually become pointed with age; white (#ffffff) to pale cream white (#fffaef) when fresh and tips somewhat orange (#ff9000), brownish orange (#cd8400) when dry. Stipes generally distinct, 7–14 mm long, 1.5–4 mm wide, subcylindrical or flattened, white (#ffffff) to pale cream white (#fffaef). Hymenium amphigenous, somewhat wrinkled.

Basidiospores [131/10/6] (6.6–) 7.0-9.7 (-10.1) × (6.0–) 6.4-8.6 (-10.1) μ m, Q = 1.00-1.24 (-1.29), $Q_m = 1.10 \pm 0.06$, globose to subglobose, smooth, hyaline in H_2O and KOH, thin-walled, inamyloid, with a 0.6-1.1 μ m irregular hilar appendix, and one large oleiferous guttule. Basidia (31.8–) 34.2-48.5 (-55.3) × 4.8-6.3 (-7.6) μ m, clavate to subcylindrical, tapering from apex to base; postpartal septa present in most basidia, which occurred 10-22 μ m below basidia tips; two sterigmata occur per basidium, 3.7-6.2 μ m long, and cornute. Basidioles abundant, subclavate to subcylindrical. Tramal hyphae in stipe smooth, thin walled, hyaline in KOH, 3.3-6.2 μ m wide, not inflated; tramal hyphae in branch hyaline and thin-walled, 2.8-6.7 (-9.0) μ m wide; clamp connections abundant. Hyphal system monomitic. Cystidia absent.

Habit, habitat, and distribution. Solitary or scattered in humus layers on soils in broad-leaved deciduous forests associated with *Carpinus L.* and *Castanea*

Figure 6. Microscopic characteristics of Clavulina pallida A basidiospores B basidia C tramal hyphae. Scale bars: 10 μm.

Mill. Basidiomata generally occur from July to August and are currently known from Beijing and Hebei Province, China.

Additional specimens examined. China • Beijing, Pinggu District, Zhenluo Mountain Villa; 40°20′24″N, 117°8′57″E, alt. 294 m; 20 Aug. 2021; C.L. Hou, G.Q. Cheng, R.T. Zhang (BJTC C229); China • Beijing, Yanqing District, Heibei village; 40°25′48″N, 116°14′44″E, alt. 456 m; 11 Aug. 2018; X.Y. Shen, B.D. He, K.B. Huang (BJTC S062); China • Beijing, Changping District, Yanshou Temple; 40°22′24″N, 116°19′22″E, alt. 276 m; 14 Aug. 2019; C.L. Hou, H. Zhou, G.Q. Cheng (BJTC ZH0056); same location • 40°22′6″N, 116°19′19″E, alt. 215 m; 17 Aug. 2021; H. Zhou, X.Y. Shen, X.B. Huang (BJTC ZH0810); China • Hebei Province, Zunhua City, Wanfo Garden; 40°11′34″N, 116°37′1″E, alt. 144 m; 22 Aug. 2021; H. Zhou, X.Y. Shen, X.B. Huang (BJTC ZH1055).

Notes. In the phylogenetic analyses (Fig. 1.), *C. pallida* is phylogenetically close to *Clavulina mahiscolorata*. *C. mahiscolorata* also has white basidiomata, but turns orange when dried, larger basidia $(56-74\times6-8~\mu m)$ are present (Pérez-Pazos et al. 2019). As described in the current record of the genus *Clavulina*, in terms of macroscopic features, *Clavulina rugosa* is closely related to *C. pallida*, with simple or sparsely branched basidiomata. However, *C. rugosa* differs from *C. pallida* in that it has longitudinally wrinkled surfaces of basidiomata and relatively large basidiospores $(9-14\times8-12~\mu m)$ (Corner 1950; Olariaga et al. 2009). *Clavulina livida* generally shares similar simple basidiomata with *C. pallida*, but the former has grayish olive to dark grayish olive basidiomata, branch tips becoming pale pinkish cinnamon to chestnut with age, larger basidiospores $(11.6-12.9\times10.7-12.5~\mu m)$

and basidia ($51.5-76.7 \times 7.0-12.3 \, \mu m$) (He et al. 2016). Clavulina caespitosa T.W. Henkel, Meszaros & Aime differs from *C. pallida* in its simple basidomata in cespitose clusters, free or slightly fused basally, apex sharply acuminate, larger basidiospores ($8.5-10.5 \times 7-9.5 \, \mu m$) and basidia ($81-98 \, \mu m$ long, apex $6.3-7.5 \, \mu m$, at base $3.5-5 \, \mu m$), and postpartal septa not observed (Henkel 2005).

Discussion

In early studies on *Clavulina*, only brief records of the macroscopic and microscopic features of the species were made. This resulted in difficulties in distinguishing between similar genera or species and led to the occurrence of many synonymous names (Hibbett et al. 1997; Binder et al. 2005; Moncalvo et al. 2006; Larsson 2007; Uehling et al. 2012b). For example, *Clavulina paraincrustata* Meiras-Ottoni & Gibertoni, described only by morphology from the Brazilian Atlantic rainforest (Tibpromma et al. 2017), is treated as a synonym of *C. incrustata*. Wartchow found the same region (Wartchow 2012) on the basis of molecular evidence (de Meiras-Ottoni and Gibertoni 2023).

Previous studies have indicated that Clavarioid fungi, including *Clavulina*, are highly diverse and distributed worldwide (Corner 1950). However, to date, only 11 species of *Clavulina* have been described in China. China has a vast territory, complex climate, habitat types, and abundant species resources, with extremely high fungal diversity (Mcneely et al. 1990). The lack of records in this case may be due to the limited number of collections and collection areas. In this study, three new species of *Clavulina* were described on the basis of samples collected from North China, by means of both nrITS-nrLSU-*rpb2* three-locus phylogenetic analyses (Fig. 1) and macrofungal morphological examinations, which increase understanding of the species diversity of this genus. The natural growth of *Clavulina* may be related to precipitation. However, the investigations and specimen collection in this study were carried out in the rainy season from August to September, with no collection in other periods. Therefore, more *Clavulina* species were likely to be present in the study area.

Acknowledgments

Special thanks are due to Dr. Li Fan and Dr. Qian Chen for their suggestions on the manuscript.

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding

This study was financed by the National Natural Science Foundation of China (No. 32270012) and the Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment, China (2019HJ2096001006) and BJAST Budding Talent Program (23CE-BGS-06).

Author contributions

All authors have contributed equally.

Author ORCIDs

Yue Gao https://orcid.org/0009-0001-0831-3656
Xin Tong https://orcid.org/0000-0002-2091-6636
Hao Zhou https://orcid.org/0000-0002-4869-2187
Hai-Qi Wang https://orcid.org/0009-0004-3388-6263
Cheng Li https://orcid.org/0009-0005-0958-0456
Cheng-Lin Hou https://orcid.org/0000-0001-8162-5560

Data availability

All of the data that support the findings of this study are available in the main text.

References

Binder M, Hibbett DS, Larsson KH, Larsson E, Langer E, Langer G (2005) The phylogenetic distribution of resupinate forms across the major clades of mushroom-forming fungi (Homobasidiomycetes). Systematics and Biodiversity 3(2): 113–157. https://doi.org/10.1017/S1477200005001623

Burt EA (1922) The North American species of *Clavaria* with illustrations of the type specimens. Annals of the Missouri Botanical Garden 9(1): 1–78. https://doi.org/10.2307/2989963

Corner EJH (1950) A monograph of *Clavaria* and allied genera. Oxford University press, London, 740 pp.

Corner EJH (1970) Supplement to "A monograph of *Clavaria* and allied genera". Beihefte zur Nova Hedwigia 33: 1–299.

Crous PW, Wingfield MJ, Lombard L, Roets F, Swart WJ, Alvarado P, Carnegie AJ, Moreno G, Luangsa-ard J, Thangavel R, Alexandrova AV, Baseia IG, Bellanger JM, Bessette AE, Bessette AR, De la Peña-Lastra S, García D, Gené J, Pham THG, Heykoop M, Malysheva E, Malysheva V, Martín MP, Morozova OV, Noisripoom W, Overton BE, Rea AE, Sewall BJ, Smith ME, Smyth CW, Tasanathai K, Visagie CM, Adamčík S, Alves A, Andrade JP, Aninat MJ, Araújo RVB, Bordallo JJ, Boufleur T, Baroncelli R, Barreto RW, Bolin J, Cabero J, Caboň M, Cafà G, Caffot MLH, Cai L, Carlavilla JR, Chávez R, de Castro RRL, Delgat L, Deschuyteneer D, Dios MM, Domínguez LS, Evans HC, Eyssartier G, Ferreira BW, Figueiredo CN, Liu F, Fournier J, Galli-Terasawa LV, Gil-Durán C, Glienke C, Gonçalves MFM, Gryta H, Guarro J, Himaman M, Hywel-Jones N, Iturrieta-González I, Ivanushkina NE, Jargeat P, Khalid AN, Khan J, Kiran M, Kiss L, Kochkina GA, Kolařík M, Kubátová A, Lodge DJ, Loizides M, Luque D, Manjón JL, Marbach PAS, Massola Jr NS, Mata M, Miller AN, Mongkolsamrit S, Moreau PA, Morte A, Mujic A, Navarro-Ródenas A, Németh MZ, Nóbrega TF, Nováková A, Olariaga I, Ozerskaya SM, Palma MA, Petters-Vandresen DAL, Piontelli E, Popov ES, Rodríguez A, Requejo Ó, Rodrigues ACM, Rong IH, Roux J, Seifert KA, Silva BDB, Sklenář F, Smith JA, Sousa JO, Souza HG, De Souza JT, Švec K, Tanchaud P, Tanney JB, Terasawa F, Thanakitpipattana D, Torres-Garcia D, Vaca I, Vaghefi N, van Iperen AL, Vasilenko OV, Verbeken A, Yilmaz N, Zamora JC, Zapata M, Jurjević Ž, Groenewald JZ (2019) Fungal Planet description sheets: 951-1041. Persoonia 43(1): 223-425. https://doi.org/10.3767/persoonia.2019.43.06

Dai YC, Yang ZL (2008) A revised checklist of medicinal fungi in China. Junwu Xuebao 27(6): 801–824.

- Dai YC, Zhou LW, Yang ZL, Wen AH, Tu LGE, Li TH (2010) A revised checklist of edible fungi in China. Junwu Xuebao (1): 1–21.
- de Meiras-Ottoni A, Gibertoni TB (2023) Clavarioid fungi from Brazil: Novelties in *Clavulina* (Cantharellales). Mycological Progress 22(4): 25. https://doi.org/10.1007/s11557-023-01873-w
- Donk MA (1933) Revision der niederländischen Homobasidiomycetae-Aphyllophoraceae. Mededelingen van het Botanisch Museum en Herbarium van de Rijksuniversiteit te Utrecht 9(1): 1–278.
- Donk MA (1964) A conspectus of the families of Aphyllophorales. Persoonia 3: 199–324. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology 59(3): 307–321. https://doi.org/10.1093/sysbio/syq010
- He G, Chen SL, Yan SZ (2016) Morphological and molecular evidence for a new species in *Clavulina* from southwestern China. Mycoscience 57(4): 255–263. https://doi.org/10.1016/j.myc.2016.03.002
- He MQ, Zhao RL, Hyde KD, Begerow D, Kemler M, Yurkov A, McKenzie EHC, Raspé O, Kakishima M, Sánchez-Ramírez S, Vellinga EC, Halling R, Papp V, Zmitrovich IV, Buyck B, Ertz D, Wijayawardene NN, Cui BK, Schoutteten N, Liu XZ, Li TH, Yao YJ, Zhu XY, Liu AQ, Li GJ, Zhang MZ, Ling ZL, Cao B, Antonín V, Boekhout T, Silva BDB, Crop ED, Decock C, Dima B, Dutta AK, Fell JW, Geml J, Ghobad-Nejhad M, Giachini AJ, Gibertoni TB, Gorjón SP, Haelewaters D, He SH, Hodkinson BP, Horak E, Hoshino T, Justo A, Lim YW, Menolli N, Mešić A, Moncalvo JM, Mueller GM, Nagy LG, Nilsson RH, Noordeloos M, Nuytinck J, Orihara T, Ratchadawan C, Rajchenberg M, Silva-Filho AGS, Sulzbacher MA, Tkalčec Z, Valenzuela R, Verbeken A, Vizzini A, Wartchow F, Wei TZ, Weiß M, Zhao CL, Kirk PM (2019) Notes, outline and divergence times of Basidiomycota. Fungal Diversity 99(1): 105–367. https://doi.org/10.1007/s13225-019-00435-4
- Henkel TW, Meszaros R, Aime MC, Kennedy A (2005) New *Clavulina* species from the Pakaraima Mountains of Guyana. Mycological Progress 4(4): 343–350. https://doi.org/10.1007/s11557-006-0140-6
- Henkel TW, Aime MC, Uehling JK, Smith ME (2011) New species and distribution records of *Clavulina* (Cantharellales, Basidiomycota) from the Guiana Shield. Mycologia 103(4): 883–894. https://doi.org/10.3852/10-355
- Hibbett DS, Pine EM, Langer E, Langer G, Donoghue MJ (1997) Evolution of gilled mush-rooms and puffballs inferred from ribosomal DNA sequences. Proceedings of the National Academy of Sciences of the United States of America 94(22): 12002–12006. https://doi.org/10.1073/pnas.94.22.12002
- Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42(2): 182–192. https://doi.org/10.1093/sysbio/42.2.182
- Huang XX, Chen YX, Lin ZJ, Liang YS, Qiu LH (2023) Three new *Clavulina* species from Baiyun Mountain, Guangzhou, China. Mycological Progress 22(12): 85. https://doi.org/10.1007/s11557-023-01929-x
- Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26(15): 1899–1900. https://doi.org/10.1093/bioinformatics/btq224
- Larsson KH (2007) Rethinking the classification of corticioid fungi. Mycological Research 111(9): 1040–1063. https://doi.org/10.1016/j.mycres.2007.08.001

- Larsson KH, Larsson E, Kõljalg U (2004) High phylogenetic diversity among corticioid homobasidiomycetes. Mycological Research 108(9): 983–1002. https://doi.org/10.1017/S0953756204000851
- Li Y, Li TH, Yang ZL, Bau T, Dai YC (2015) Atlas of Chinese macrofungal resources. Central China Publish, Zhengzhou.
- Li GJ, Deng CY, Shi LY, Wang J, Meng QF, Li SM (2020) Three new species of *Russula* subsect. *Lactarioideae* from China. Junwu Xuebao 39: 618–636. https://doi.org/10.13346/j.mycosystema.190414
- Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerse II subunit. Molecular Biology and Evolution 16(12): 1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
- Mcneely JA, Kenton RM, Walter VR, Russell AM, Timothy BW (1990) Conserving the world's biological diversity. IUCN, Gland, Switzerland; WRI, CI, WWF-US, and the World Bank, Washington, D.C. https://portals.iucn.org/library/sites/library/files/documents/1990-017.pdf
- Moncalvo JM, Nilsson RH, Koster B, Dunham SM, Bernauer T, Matheny PB, Porter TM, Margaritescu S, Weiss M, Garnica S, Danell E, Langer G, Langer E, Larsson E, Larsson KH, Vilgalys R (2006) The cantharelloid clade: Dealing with incongruent gene trees and phylogenetic reconstruction methods. Mycologia 98(6): 937–948. https://doi.org/10.1080/15572536.2006.11832623
- Olariaga I, Jugo BM, Garcia-Etxebarria K, Salcedo I (2009) Species delimitation in the European species of *Clavulina* (Cantharellales, Basidiomycota) inferred from phylogenetic analyses of ITS region and morphological data. Mycological Research 113(11): 1261–1270. https://doi.org/10.1016/j.mycres.2009.08.008
- Pérez-Pazos E, Villegas-Ríos M, Garibay-Orijel R, Salas-Lizana R (2019) Two new species of *Clavulina* and the first record of *Clavulina reae* from temperate *Abies religiosa* forests in central Mexico. Mycological Progress 18(9): 1187–1200. https://doi.org/10.1007/s11557-019-01516-z
- Petersen RH (1988a) The clavarioid fungi of New Zealand. DSIR Science Information Publishing, Wellington, New Zealand, 170 pp.
- Petersen RH, Three Interesting South American Collections (1988b) Notes on clavarioid fungi XXII. Three interesting South American collections. Mycologia 80(4): 571–576. https://doi.org/10.1080/00275514.1988.12025581
- Pine EM, Donoghue HMJ (1999) Phylogenetic Relationships of Cantharelloid and Clavarioid Homobasidiomycetes Based on Mitochondrial and Nuclear rDNA Sequences. Mycologia 91(6): 944–963. https://doi.org/10.1080/00275514.1999.12 061105
- Posada D, Crandall KA (1998) Modeltest: Testing the model of DNA substitution. Bioinformatics 14(9): 817–818. https://doi.org/10.1093/bioinformatics/14.9.817
- Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. Journal of Molecular Evolution 43(3): 304–311. https://doi.org/10.1007/BF02338839
- Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12): 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
- Salas-Lizana R, Villegas Ríos M, Alvarez-Manjarrez J, Pérez-Pazos E, Farid A, Franck A, Smith ME, Garibay-Orijel R (2023) Neotropical *Clavulina*: Two new species from Mexico and a re-evaluation of *Clavulina floridana*. Mycologia 115(1): 135–152. https://doi.org/10.1080/00275514.2022.2148191

- Schröter J (1888) Kryptogamen-Flora von Schlesien. 3.1(4): 385-512.
- Smith ME, Henkel TW, Aime MC, Fremier AK, Vilgalys R (2011) Ectomycorrhizal fungal diversity and community structure on three co-occurring leguminous canopy tree species in a Neotropical rainforest. The New Phytologist 192(3): 699–712. https://doi.org/10.1111/j.1469-8137.2011.03844.x
- Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics (Oxford, England) 22(21): 2688–2690. https://doi.org/10.1093/bioinformatics/btl446
- Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57(5): 758–771. https://doi.org/10.1080/10635150802429642
- Sui XN, Guo MJ, Zhou H, Hou CL (2023) Four new species of *Phyllosticta* from China based on morphological and phylogenetic characterization. Mycology 14(3): 190–203. https://doi.org/10.1080/21501203.2023.2225552
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30(12): 2725–2729. https://doi.org/10.1093/molbev/mst197
- Tedersoo L, Koljalg U, Hallenberg N, Larsson KH (2003) Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. The New Phytologist 159(1): 153–165. https://doi.org/10.1046/j.1469-8137.2003.00792.x
- Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: Global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20(4): 217–263. https://doi.org/10.1007/s00572-009-0274-x
- Teng SC (1963) Fungi of China. Science Press, Beijing.
- Thacker JR, Henkel TW (2004) New species of *Clavulina* from Guyana. Mycologia 96(3): 650–657. https://doi.org/10.1080/15572536.2005.11832961
- Tibpromma S, Hyde KD, Jeewon R, Maharachchikumbura SSN, Liu JK, Bhat DJ, Jones EBG, McKenzie EHC, Camporesi E, Bulgakov TS, Doilom M, de Azevedo Santiago ALCM, Das K, Manimohan P, Gibertoni TB, Lim YW, Ekanayaka AH, Thongbai B, Lee HB, Yang JB, Kirk PM, Sysouphanthong P, Singh SK, Boonmee S, Dong W, Anil Raj KN, Deepna Latha KP, Phookamsak R, Phukhamsakda C, Konta S, Jayasiri SC, Norphanphoun C, Tennakoon DS, Li J, Dayarathne MC, Perera RH, Xiao Y, Wanasinghe DN, Senanayake IC, Goonasekara ID, de Silva NI, Mapook A, Jayawardena RS, Dissanayake AJ, Manawasinghe IS, Thilini Chethana KW, Luo ZL, Hapuarachchi KK, Baghela A, Mayra Soares A, Vizzini A, Meiras-Ottoni A, Mešić A, Kumar Dutta A, de Souza CAF, Richter C, Lin CG, Chakrabarty D, Daranagama DA, Lima DX (2017) Fungal diversity notes 491–602: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 83(1): 1–261. https://doi.org/10.1007/s13225-017-0378-0
- Uehling JK, Henkel TW, Aime MC, Vilgalys R, Smith ME (2012a) New species and distribution records for *Clavulina* (Cantharellales, Basidiomycota) from the Guiana Shield, with a key to the lowland neotropical taxa. Fungal Biology 116(12): 1263–1274. https://doi.org/10.1016/j.funbio.2012.09.004
- Uehling JK, Henkel TW, Vilgalys R, Smith ME (2012b) *Membranomyces* species are common ectomycorrhizal symbionts in Northern Hemisphere forests. Mycorrhiza 22(7): 577–581. https://doi.org/10.1007/s00572-012-0457-8
- Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. Journal of Bacteriology 172(8): 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990

- Wang YT, Huang ZH, Wang J, Tong Z, Cui GF (2021) The population structure and dynamic characteristics of *Phellodendron amurense* in Yanshan Mountains. Acta Ecologica Sinica 47(7): 2826–2834. https://doi.org/10.5846/stxb202003300743
- Wartchow F (2012) *Clavulina incrustata*, a new species from Pernambuco, Brazil. Cryptogamie. Mycologie 33(1): 105–113. https://doi.org/10.7872/crym.v33.iss1.2012.105
- Wazny R (2014) Ectomycorrhizal communities associated with silver fir seedlings (*Abies alba* Mill.) differ largely in mature silver fir stands and in Scots pine forecrops. Annals of Forest Science 71(7): 801–810. https://doi.org/10.1007/s13595-014-0378-0
- White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomes RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR Protocols: a guide to methods and applications. Academic Press, San Diego, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
- Wu CL, He Y, Yan J, Zhang P (2019) Two new species of *Clavulina* (Cantharellales) from southwestern China based on morphological and molecular evidence. Mycological Progress 18(8): 1071–1078. https://doi.org/10.1007/s11557-019-01506-1
- Yuan HS, Lu X, Dai YC, Hyde KVD, Kan YH, Kusan I, He SH, Liu NG, Sarma VV, Zhao CL, Cui BK, Yousaf N, Sun GY, Liu SY, Wu F, Lin CG, Dayarathne MC, Gibertoni TB, Conceicao LB, Garibay-Orijel R, Villegas-Rios M, Salas-Lizana R, Wei TZ, Qiu JZ, Yu ZF, Phookamsak RT, Zeng M, Paloi S, Bao DF, Abeywickrama PD, Wei DP, Yang J, Manawasinghe IS, Harishchandra D, Brahmanage RS, de Silva NI, Tennakoon DS, Karunarathna A, Gaforov Y, Pem D, Zhang SN, Santiago ALCMD, Bezerra JDP, Dima B, Acharya K, Alvarez-Manjarrez J, Bahkali AH, Bhatt VK, Brandrud TE, Bulgakov TS, Camporesi E, Cao T, Chen YX, Chen YY, Devadatha B, Elgorban AM, Fan LF, Du X, Gao L, Goncalves CM, Gusmao LFP, Huanraluek N, Jadan M, Jayawardena RS, Khalid AN, Langer E, Lima DX, de Lima-Junior NC, de Lira CRS, Liu JK, Liu S, Lumyong S, Luo ZL, Matocec N, Niranjan M, Oliveira JRC, Papp V, Perez-Pazos E, Phillips AJL, Qiu PL, Ren YH, Ruiz RFC, Semwal KC, Soop K, de Souza CAF (2020) Fungal diversity notes 1277–1386: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 104(1): 1–266. https://doi.org/10.1007/s13225-020-00461-7
- Zang M, Li B, Xi JX (1996) Fungi of the Hengduan Mountains. Science Press, Beijing.
- Zhou H, Hou CL (2019) Three new species of *Diaporthe* from China based on morphological characters and DNA sequence data analyses. Phytotaxa 422(2): 157–174. https://doi.org/10.11646/phytotaxa.422.2.3
- Zhou H, Wang QT, Tong X, Hou CL (2021) Phylogenetic analysis of *Engleromyces sinensis* and identification of cytochalasin D from culture. Mycological Progress 20(10): 1343–1352. https://doi.org/10.1007/s11557-021-01739-z
- Zhou H, Cheng GQ, Sun XM, Cheng RY, Zhang HL, Dong YM, Hou CL (2022) Three new species of *Candolleomyces* (Agaricomycetes, Agaricales, Psathyrellaceae) from the Yanshan Mountains in China. MycoKeys 88: 109–121. https://doi.org/10.3897/mycokeys.88.81437