TITLE PAGE

Class	:	BE - 8
Roll. No		42428
Assignment No.		B. 1f
Assignment Name		Half Adder Using TG
Date Of Performance	:	21-11-2020

Theory:

F = 90 nm.

Symbol.

Gate Level Schematic

Truth Table-

A;	8;	SUM	CARRY
0	0	0	0
0	1	1	0
1	0	l	0
1	1	0	i

Approach-

- · Half adder is made up of Ex-OR & AND gates for sum & carry resp.
- Ex-OR & AND gates will be implemented using a 2:1 MUX each
- · A 2:1 MUX is implemented using 2 TG's.
- · For Schematic of 2:1 Mux using TG, review assign?

MUX-2 (AND Gate)

Combined Schematic

Conclusion:	
Thus w	ve have :
1)	Drawn the LAYOUT for Half Adder using Transmission Gates and 90 nm Foundry.
	Simulated the LAYOUT to observe waveforms & verified its functionality as per TRUTH-TABLE.