${\bf 1.}$ (10 pts. altogether) (a) (7 pts) What is the rank of the matrix

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 2 & 1 & 1 & 1 \end{bmatrix}$$

(b) (3 points) Using part (a) find the nullity of A.

$$S = \{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad , \quad \begin{bmatrix} -5 \\ -10 \end{bmatrix} \},$$

determine whether the set \mathcal{S} is linearly independent or linearly dependent. In case it is linearly dependent, write the zero vector $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ explicitly as a non-trivial linear combination of the vectors in \mathcal{S} .

3. (10 pts altogether) Let

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad , \quad B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \quad , \quad C = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

Calculate the following matrix products, if they are defined, or expained why they don't make sense.

(a) (5 points) AB

(b) (3 points) AB^T

(c) (2 points) C^2

4. (10 pts.) For the matrix

$$A = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}$$

compute the matrix A^8 .

5. (10 pts.) For the following matrix A finds its **reduced-row-echelon form**, R, and find an invertible matrix P such that PA = R.

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

6. (10 pts. altogether) In each case below, give an $m \times n$ matrix R in reduced row echelon form satisfying the given condition, or explain why it is impossible to do so.

(a)(4 pts) m=2, n=3 and the equation $R\mathbf{x}=\mathbf{c}$ has a solution for all \mathbf{c} .

(b) (4 pts) m=2, n=2 and the equation $R\mathbf{x}=\mathbf{c}$ has a unique solution for all \mathbf{c} .

(c) (2 pts) $m=3,\,n=3$ and the equation $R\mathbf{x}=\mathbf{0}$ has no solution.

7. (10 pts.) Without first computing A^{-1} , find $A^{-1}B$, if

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \quad , \quad B = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \end{bmatrix}$$

8. ((10 pts.	altogether	, 2 each)	True or	False?	Give a	a short	explanation!
------	----------	------------	-----------	---------	--------	--------	---------	--------------

- (a) For any $n \times n$ matrices A and B, if $AB = I_n$, then $BA = I_n$.
- (b) If A and B are invertible 2×2 matrices, then so is A + B.
- (c) The sum of any two $m \times n$ matrices is always defined.
- (d) The product of any two 4×9 matrices is never well-defined.
- (e) The equation $A\mathbf{x} = \mathbf{b}$ is consistent if and only of \mathbf{b} is a linear combination of the rows of A.

9. (10 pts.) Let **u** be a solution of A**x** = **b** and **v** be a solution of A**x** = **0**, where A is an $m \times n$ matrix and **b** is a vector in R^m . Show that **u** + **v** is a solution of A**x** = **b**.

10. (10 pts. altogether, 5 each) What does it mean to say that the vectors $\mathbf{u}_1, \dots, \mathbf{u}_k$ in \mathbb{R}^n are linearly independent? Give the precise definition in one or more sentences.

(b) What is meant by the *span* of a set of vectors $S = \{\mathbf{u}_1, \dots, \mathbf{u}_k\}$? Give the precise definition in one or more sentences.