Homework #8

Section 4.4

- 6. Find an inverse of a modulo m for each of these pairs of relatively prime integers using the method followed in Example 2.
 a) a = 2, m = 17
 b) a = 34, m = 89

a)
$$a = 2, m = 17$$

$$u = 34, m = 69$$

c)
$$a = 144, m = 233$$

d) $a = 200, m = 1001$

d)
$$a = 200, m = 1001$$

- 12. Solve each of these congruences using the modular inverses found in parts (b), (c), and (d) of Exercise 6.

 - **a)** $34x \equiv 77 \pmod{89}$ **b)** $144x \equiv 4 \pmod{233}$ **c)** $200x \equiv 13 \pmod{1001}$

34. Use Fermat's little theorem to find 23^{1002} mod 41.

Section 5.1

4. Let
$$P(n)$$
 be the statement that $1^3 + 2^3 + \cdots + n^3 = (n(n+1)/2)^2$ for the positive integer n .

a) What is the statement
$$P(1)$$
?

Let
$$P(n) = 1^2 + 2^2 + ... + \frac{3}{n^2} = \left(\frac{n(n+1)}{2}\right)^2$$

a) What is the statement
$$P(1)$$
?

b) Show that P(1) is true, completing the basis step of

$$P(1) = (1)^3 = (\frac{1(1+1)}{2})^2 = 1 = (\frac{2}{2})^2 = 1 = (1)^2 = 1 = 1 \checkmark P(1)$$
 is True

Statement for P(1)

$$P(K) = P(K+1)$$

Inductive Hyperhams:
$$1^3 + 2^3 + ... + K^3 = \left(\frac{K(K+2)}{2}\right)^2$$

What we want?

We Must Show: $1^3 + 2^3 + ... + (K+1)^3 = \left(\frac{(K+1)(K+2)}{2}\right)^2$

- Extre Step

$$1^{3} + 2^{3} + ... + (K+1)^{3} = \left(\frac{K(K+2)}{2}\right)^{2} + (K+1)^{3}$$
 - Add (K+1) to both Sides

$$= \frac{(k^4 + 2k^3 + k^2 + (4(k+0^2)))}{4}$$

 $=\frac{k^{2}(K+1)^{2}}{2^{2}}+\frac{4(K+2)^{2}}{4}$

e) Complete the inductive step, identifying where you use the inductive hypothesis.

$$= \frac{K^{1} + 6K^{2} + 17K^{2} + 12K + 4}{4}$$

$$= \left(\frac{(K^{2} + 3k + 2)}{2}\right)^{2}$$

b) Show that P(1) is true, completing the basis step of the proof.

$$= \left(\frac{(K+1)(K+2)}{2}\right)^{2}$$

$$= \left(\frac{(K+1)((K+1)+1)}{2}\right)^{2}$$

$$= \left(\frac{(K+1)((K+1)+1)}{2}\right)^{2} = \left(\frac{(K+1)(K+2)}{2}\right)^{2}$$

$$= \left(\frac{(K+1)(K+1)}{2}\right)^{2}$$

$$= \left(\frac{(K+1)(K+2)}{2}\right)^{2}$$

f) Explain why these steps show that this formula is true whenever *n* is a positive integer.

If IH P(K) is True, then P(K+1) is also true

6. Prove that $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n+1)! - 1$ whenever n is a positive integer.

1 Basis: Prove P(1) is true

$$P(1) = (1) \cdot (1!) = (1+1)! - 1$$

$$1 \cdot 1! = (2)! - 1$$

$$1 = 1 \checkmark$$

$$2! = 2 \cdot 1 = 2$$

2 Inductive step: P(K) - P(K+2)

Inductive Hypothess: 1.1! + 2.2! + ... + K.K! = ((R+1)+1)!-1

10. a) Find a formula for

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)}$$

a. a) Find a formula for $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)}$ by examining the values of this expression for small values of n. **b)** Prove the formula you conjectured in part (a).

Summation Prollem

16. Prove that for every positive integer n,

$$1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + n(n+1)(n+2)$$

= $n(n+1)(n+2)(n+3)/4$.

Let
$$P(n) = 1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \cdots + n(n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$

1 Basis: Prove P(1) is true

For
$$P(1) \cdot 1(1+1)(1+2) = \frac{1(1+1)(1+2)(2+3)}{4}$$

1 Inductive step: P(K) - P(K+1)

Inductive Hypothess:
$$1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \cdots + k(k+1)(k+2) = k(k+1)(k+2)(k+3)$$

Must Show:
$$(K+1)((K+1)+1)((K+1)+2) = \frac{(K+1)((K+1)+1)((K+1)+2)((K+1)+3)}{4}$$

18.	Le	t $P(n)$ be the statement that $n! < n^n$, where n is an	
	int	eger greater than 1.	
	a)	What is the statement $P(2)$?	
	b)	Show that $P(2)$ is true, completing the basis step of	
		the proof.	
	c)	What is the inductive hypothesis?	
	d)	What do you need to prove in the inductive step?	
	e)	Complete the inductive step.	
	f)	Explain why these steps show that this inequality is	
		true whenever n is an integer greater than 1.	

a) What is the statement P(2)?

 $n! < n^n$

b) Show that P(2) is true, completing the basis step of the proof.

c) What is the inductive hypothesis?

* Inequity Problem *

Section 5.2

- 4. Let P(n) be the statement that a postage of n cents can be formed using just 4-cent stamps and 7-cent stamps. The parts of this exercise outline a strong induction proof that P(n) is true for n ≥ 18.
- a) Show statements P(18), P(19), P(20), and P(21) are true, completing the basis step of the proof.
- **b)** What is the inductive hypothesis of the proof?
- c) What do you need to prove in the inductive step?
- **d)** Complete the inductive step for $k \ge 21$.
- e) Explain why these steps show that this statement is true whenever $n \ge 18$.

12. Use strong induction to show that every positive integer n can be written as a sum of distinct powers of two, that is, as a sum of a subset of the integers $2^0 = 1$, $2^1 = 2$, $2^2 = 4$, and so on. [Hint: For the inductive step, separately consider the case where k + 1 is even and where it is odd. When it is even, note that (k + 1)/2 is an integer.]

Section 5.3

- **3.** Find f(2), f(3), f(4), and f(5) if f is defined recursively by f(0) = -1, f(1) = 2, and for $n = 1, 2, \ldots$ **a)** f(n+1) = f(n) + 3f(n-1). **b)** $f(n+1) = f(n)^2 f(n-1)$. **c)** $f(n+1) = 3f(n)^2 4f(n-1)^2$. **d)** f(n+1) = f(n-1)/f(n).

8. Give a recursive definition of the sequence $\{a_n\}$, n = 1, 2, 3, ... if **a)** $a_n = 4n - 2$. **b)** $a_n = 1 + (-1)^n$. **c)** $a_n = n(n + 1)$. **d)** $a_n = n^2$.

a)
$$a_n = 4n - 2$$

b)
$$a_n = 1 + (-1)^n$$

c)
$$a_n = n(n+1)$$
.

d)
$$a_n = n^2$$
.

- **24.** Give a recursive definition of
 - a) the set of odd positive integers.

 - b) the set of positive integer powers of 3.c) the set of polynomials with integer coefficients.

37. Give a recursive definition of w^i , where w is a string and i is a nonnegative integer. (Here w^i represents the concatenation of i copies of the string w.)