作业3 凸规划

指导教师: Santosh Vempala

1、一肉产品加工厂每天生产 480 根火腿, 400 五花肉和 230 根野餐火腿。每种产品都可以新鲜或熏制后卖出。一个正常的工作日可以熏制的火腿、五花肉和野餐火腿的总数为 420。此外, 加班可以熏制 250 个, 只是成本稍高。各自的利润如下:

	新鲜	熏制 (正常)	熏制 (加班)	
火腿	\$8	\$ 14	\$11	
五花肉	\$4	\$ 12	\$7	
野餐	\$4	\$13	\$9	

制定产品的生产计划使总利润最大化,并证明它是最优解。

- 2、给出导致单纯形算法产生循环的一个转轴规则,并举例说明。
- 3、证明 Gordon 引理:对任意的 $n \times n$ 矩阵 A,下列必有其一成立
 - Ax = 0 , $\forall x \neq 0, x \geq 0$
 - $y^T A < 0$, 对某个 y

这里x和y是 R^n 中的向量。并给出这个引理的一个几何解释。

- 4、设K是一个凸体(一个闭的有界凸集),x是一个点。证明存在唯一的点 $y \in K$,使x到 K中点(假设存在这样的点)的欧氏距离最短。
- 5、体积计算:
 - (a) 设 $S \not\in R^n$ 中的一个凸体, $A \not\in R^n$ 中的一个凸体, $A \not\in R^n$ 的非奇异矩阵(即 $\det(A) \neq 0$)。证明集合 $\{Ax \mid x \in S\}$ 也是凸的且它的体积为 $|\det(A)| \cdot vol(S)$.
 - (b) R^n 中的椭球指点的集合 $\{x \mid (Ax)^T (Ax) \leq r^2\}$,其中 A 是一个 $n \times n$ 的非奇异矩阵。 证明椭球的体积为 $vol(B_{n,r})/|\det(A)|$,这里 $B_{n,r}$ 指半径为 r 的 n-维球。
- 6、给定一个完全图G=(V,E),任意两个顶点 $i,j\in V$ 间有正的长度 w_{ij} ,旅行售货员问题是寻找图G的长度最短的哈密顿圈。
 - (a) 给出求解旅行售货员问题的整数规划。

(b)	放松整数约束得到一	一个线性规划。	证明这个线性规划可以利用分离谕示在多项式时
	间内完成。		