07-26-2022-shift-2-16-30

AI24BTECH11011 - Himani Gourishetty

- 1) If $0 < x < \frac{1}{\sqrt{2}}$ and $\frac{\sin^{-1} x}{\alpha} = \frac{\cos^{-1} x}{\beta}$, then a value of $\sin\left(\frac{2\pi\alpha}{\alpha+\beta}\right)$ is
 - a) $4\sqrt{(1-x^2)}(1-2x^2)$

 - b) $4x\sqrt{(1-x^2)}(1-2x^2)$ c) $2x\sqrt{(1-x^2)}(1-4x^2)$ d) $4\sqrt{(1-x^2)}(1-4x^2)$
- 2) Negation of the Boolean expression $p \Leftrightarrow (q \Rightarrow p)$ is
 - a) $(\neg p) \land q$
 - b) $p \wedge (\neg q)$
 - c) $(\neg p) \lor (\neg q)$
 - d) $(\neg p) \land (\neg q)$
- 3) Let X be a binomially distributed random variable with mean 4 and variance $\frac{4}{3}$. Then $54P(X \le 2)$ is equal to

 - a) $\frac{73}{27}$ b) $\frac{146}{27}$ c) $\frac{146}{81}$ d) $\frac{126}{81}$
- 4) The integral $\int \frac{\left(1-\frac{1}{\sqrt{3}}\right)(\cos x \sin x)}{\left(1+\frac{2}{\sqrt{3}}\sin 2x\right)} dx$ is equal to
 - a) $\frac{1}{2} \log_e \left| \frac{\tan(\frac{x}{2} + \frac{\pi}{12})}{\frac{x}{2} + \frac{\pi}{6}} \right| + C$
 - b) $\frac{1}{2} \log_e \left| \frac{\tan(\frac{x}{2} + \frac{\pi}{6})}{\frac{x}{2} + \frac{\pi}{3}} \right|^1 + C$

 - c) $\log_e \left| \frac{\tan(\frac{x}{2} + \frac{\pi}{6})}{\frac{x}{2} + \frac{\pi}{12}} \right| + C$ d) $\frac{1}{2} \log_e \left| \frac{\tan(\frac{x}{2} \frac{\pi}{12})}{\frac{x}{2} \frac{\pi}{6}} \right| + C$
- 5) The area bounded by the curves $y = |x^2 1|$ and y = 1 is

 - a) $\frac{2}{3} \left(\sqrt{2} + 1 \right)$ b) $\frac{4}{3} \left(\sqrt{2} 1 \right)$ c) $2 \left(\sqrt{2} 1 \right)$ d) $\frac{8}{3} \left(\sqrt{2} 1 \right)$

I. SECTION-B

- $C \cap B \neq \emptyset$ is
- 2) The largest value of a, for which the perpendicular distance of the plane containing the lines r = $(\hat{i} + \hat{j}) + \lambda (\hat{i} + a\hat{j} - \hat{k})$ and $r = (\hat{i} + \hat{j}) + \mu (-\hat{i} + \hat{j} - a\hat{k})$ from the point (2, 1, 4) is $\sqrt{3}$, is
- 3) Numbers are to be formed between 1000 and 3000, which are divisible by 4, using the digits 1,2,3,4,5 and 6 without repetition of digits. Then the total number of such numbers is

- 4) If $\sum_{k=1}^{10} \frac{k}{k^4 + k^2 + 1} = \frac{m}{n}$, where *m* and *n* are co-prime, then m + n is equal to 5) If the sum of solutions of the system of equations $2\sin^2\theta \cos\theta = 0$ and $2\cos^2\theta + 3\sin\theta = 0$ in the interval $[0, 2\pi]$ is $k\pi$, then k is equal to
- 6) The mean and standard deviation of 40 observations are 30 and 5 respectively. It was noticed that two of these observations 12 and 10 were wrongly recorded. If σ is the standard deviation of the data after omitting the two wrong observations from the data, then $38\sigma^2$ is equal to
- 7) The plane passing through the line : L: lx-y+3(1-l)z=1, x+2y-z=2 and perpendicular to the plane 3x + 2y + z = 6 is 3x - 8y + 7z = 4. If θ is the acute angle between the line L and the y-axis, then $415\cos^2\theta$ is equal to
- then 415 cos² θ is equal to _____.

 8) Suppose y = y(x) be the solution curve to the differential equation $\frac{dy}{dx} y = 2 e^{-x}$ such that $\lim_{x \to \infty} y(x)$ is finite. If a and b are respectively the x and y-intercept of the tangent to the curve at x = 0, then the value of a - 4b is equal to
- 9) Different A.P.'s are constructed with the first term 100, the last term 199, And integral common differences. The sum of the common differences of all such, A.P's having at least 3 terms and at most 33 terms is.
- 10) The number of matrices $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where $a, b, c, d \in \{-1, 0, 1, 2, 3, 4, \dots, 10\}$, such that $\mathbf{A} = \mathbf{A}^{-1}$,