MARTENSITIC HEAT RESISTANT STEEL EXCELLENT IN HAZ SOFTENINING RESISTANCE AND ITS PRODUCTION

Patent Number:

JP7242935

Publication date:--

1995-09-19

Inventor(s):

HASEGAWA HIROSHI; others: 04

Applicant(s):

NIPPON STEEL CORP; others: 01

Requested Patent:

Application Number: JP19940337923 19941227

Priority Number(s):

IPC Classification:

C21D6/00; C21D8/00; C22C38/00; C22C38/28

EC Classification:

Equivalents:

Abstract

PURPOSE:To produce a martensitic heat resistant steel excellent in HAZ softening resistance and showing high creep strength at a high temp. of >=550 deg.C. CONSTITUTION: This martensitic heat resistant steel excellent in HAZ softening resistance is one having a compsn. contg., by mass, 0.01 to 0.30% C, 0.02 to 0.80% Si, 0.20 to 1.00% Mn, 5.00 to 18.00% <u>Cr</u>, 0.005 to 1.00% <u>Mo</u>, 0.20 to 3.50% <u>W</u>, 0.02 to 1.00% V, 0.01 to 0.50% Nb and 0.01 to 0.25% N, furthermore contg., independently or compositely, one or >=two kinds among 0.005 to 2.0% Ti, 0.005 to 2.0%, Zr, 0.005 to 2.0% Ta and 0.005 to 2.0% Hf, and in which the value of (Ti%+Zr%+Ta%+Hf%) occupied in the metallic components M of M23C6 type carbides is regulated to 5 to 65%, and the method for producing the same in which Ti. Zr. Ta and Hf are added during 10min immediately before the discharge of the steel, moreover, cooling after solution heating treatment is temporarily stopped at 950 to 1000 deg.C, and it is held at the same temp. for 5 to 60min.

Data supplied from the esp@cenet database - I2

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-242935

(43)公開日 平成7年(1995)9月19日

最終頁に続く

(51) Int.Cl. ⁶	微別配号	庁内整理番号	FΙ	技術表示箇所
C21D 6/00	101 K	9269-4K		
8/00	D	7217 – 4K		
C 2 2 C 38/00	302 Z			
38/28				
			審査請求	未請求 請求項の数4 FD (全 84 頁)
(21) 出願番号	特願平6-337923		(71)出顧人	000006655
				新日本製鐵株式会社
(22)出願日	平成6年(1994)12月	27日		東京都千代田区大手町2丁目6番3号
			(71)出顧人	594066442
(31)優先権主張番号	特顯平 5-353145			藤田 利夫
(32)優先日	平5 (1993)12月28日			東京都文京区向丘1丁目14の4
(33)優先權主張国	日本(JP)		(72)発明者	長谷川 泰士
				千葉県富津市新富20-1 新日本製鐵株式
				会社技術開発本部内
			(72)発明者	大神 正浩
				千葉県富津市新富20-1 新日本製鏃株式
				会社技術開発本部内
			(74)代理人	弁理士 田村 弘明 (外1名)

(54) 【発明の名称】 耐HAZ軟化特性に優れたマルテンサイト系耐熱網およびその製造方法

(57)【要約】

【目的】 本発明は耐HAZ軟化特性に優れ、 550℃以上の高温で高クリープ強度を発揮するマルテンサイト系耐熱鋼を提供する。

【構成】 質量%で、C:0.01~0.30%、Si:0.02~0.80%、Mn:0.20~1.00%、Cr:5.00~18.00%、Mo:0.005~1.00%、W:0.20~3.50%、V:0.02~1.00%、Nb:0.01~0.50%、N:0.01~0.25%を含有し、加えて、Ti:0.005~2.0%、Zr:0.005~2.0%、Ta:0.005~2.0%、Hf:0.005~2.0%の1種又は2種以上を単独で或は複合して含有し、かつM₂, C。型炭化物の金属成分M中に占める(Ti%+Zr%+Ta%+Hf%)の値が5~65%であることを特徴とする耐HAZ軟化特性に優れたマルテンサイト系耐熱鋼、及びTi、Zr、Ta、Hfを出鋼直前の10分間に添加し、かつ固溶化熱処理後の冷却を950~1000℃にて一時停止して同温度で5~60分保持する、該耐熱鋼の製造方法。

【特許請求の範囲】

【請求項1】 質量%で、

 $C : 0.01 \sim 0.30\%$

 $S~i~:~0~.~0~2~\sim 0~.~8~0~\%.$

 $Mn: 0.20 \sim 1.00\%$

 $Cr:5.00\sim18.00\%$

 $Mo: 0.005 \sim 1.00\%$

 $W : 0.20 \sim 3.50\%$

V : 0. 02~1. 00%.

 $Nb:0.01\sim0.50\%$

 $N : 0.01 \sim 0.25\%$

P:0.030%以下、

S:0.010%以下.

〇 : 0. 020%以下

を含有し残部が F e および不可避の不純物よりなる溶鋼 ω

 $Ti:0.005\sim2.0\%$

 $Zr:0.005\sim2.0\%$

 $Ta:0.005\sim2.0\%$

 $Hf: 0.005 \sim 2.0\%$

の1種または2種以上を、鋳造直前の10分間に添加し、かつ固溶化熱処理後の冷却を950~1000℃にて一時停止して同温度で5~60分保持することを特徴とする耐HAZ軟化特性に優れたマルテンサイト系耐熱鋼の製造方法。

【請求項2】 請求項1の成分を含有する溶鋼に更に、 質量%で、

Co: 0. 1~5. 0%,

 $Ni:0.1\sim5.0\%$

Cu: 0. 1~2. 0%

の1種または2種以上を含有することを特徴とする耐H AZ軟化特性に優れたマルテンサイト系耐熱鋼の製造方 法。

【請求項3】 質量%で、

 $C : 0.01 \sim 0.30\%$

 $Si:0.02\sim0.80\%$

 $Mn: 0.20 \sim 1.00\%$

 $Cr:5.00\sim18.00\%$

Mo: 0. $005\sim1$. 00%, W: 0. $20\sim3$. 50%,

 $V : 0.02 \sim 1.00\%$

 $Nb: 0.01 \sim 0.50\%$

N : 0. 01~0. 25%

を含有し、加えて、

 $Ti:0.005\sim2.0\%$

 $Zr:0.005\sim2.0\%$

 $Ta:0.005\sim2.0\%$

 $Hf: 0.005 \sim 2.0\%$

の1種または2種以上を単独であるいは複合して含有 1. P:0.030%以下、

S : 0. 010%以下、

〇 : 0. 020%以下

に制限し、残部がF e および不可避の不純物よりなり、かつ、 M_1 , C 。型炭化物の金属成分M中に占める(T i %+Z r %+T a %+H f %)の値が $5\sim6$ 5%であることを特徴とする耐H A Z 軟化特性に優れたマルテンサイト系耐熱鋼。

【請求項4】 請求項3の成分、組成を有する鋼に更10 に、質量%で、

 $Co: 0. 1\sim 5. 0\%$

 $Ni: 0. 1\sim 5.0\%$

Cu: 0. 1~2. 0%

の1種または2種以上を含有することを特徴とする耐H A Z軟化特性に優れたマルテンサイト系耐熱鋼。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、マルテンサイト系耐熱 鋼に関するものであり、更に詳しくは高温・高圧環境下 20 で使用する耐HAZ軟化特性に優れたマルテンサイト系 耐熱鋼に関するものである。

[0002]

【従来の技術】近年、火力発電ボイラの操業条件は高温、高圧化が着しく、一部では566℃、316barでの操業が計画されている。将来的には649℃、352barまでの条件が想定されており、使用する材料には極めて苛酷な条件となっている。操業温度が550℃を超える場合において、使用材料の選択にあたり、耐酸化性、高温強度の点から例えば、フェライト系の2・1/304Cr-1Mo鋼から、18-8ステンレス鋼のごとくオーステナイト系の高級鋼へと、材料特性においてもまたコストの面からも過度に高い材料を使用しているのが現状である。

【0003】2・1/4Cr-1Mo鋼とオーステナイト系ステンレス鋼の中間を埋めるための鋼材は過去数十年間模索されている。Cr量が中間の9Cr.12Cr等のボイラ鋼管は以上の背景をもとに開発された耐熱鋼であり、母材成分として各種合金元素を添加して析出強化、あるいは固溶強化によってオーステナイト鋼並の高40温強度、クリープ強度を達成している鋼もある。

【0004】耐熱鋼のクリーブ強度は、短かい時効時間においては固溶強化に、長い時効時間においては析出強化にそれぞれ支配される。これは、最初鋼中に固溶している固溶強化元素が、時効によって多くの場合M.,C. 等の安定な炭化物として析出するためであり、更に長時間の時効ではこれら析出物が凝集粗大化するために、クリーブ強度は低下する。従って耐熱鋼のクリーブ強度を高く保つために、固溶強化元素を如何に長時間に亘って析出させずに鋼中に固溶状態でとどめておくかについて

50 多くの研究がなされてきた。

【0005】例えば特開昭63-89644号公報、特開昭61-231139号公報、特開昭62-297435号公報等に、Wを固溶強化元素として使用することで、従来のMo添加型フェライト系耐熱網に比較して飛躍的に高いクリーブ強度を達成できるフェライト系耐熱網に関する開示がある。これらは多くの場合、組織が焼き戻しマルテンサイト単相であり、耐水蒸気酸化特性に優れたフェライト網の優位性と、高強度の特性が相俟って、次世代の高温・高圧環境下で使用される材料として期待されている。

【0006】一方、フェライト系の耐熱材料は、オース テナイト単相領域からフェライト+炭化物析出相へと、 熱処理の際の冷却に伴って発生する相変態が過冷却現象 を呈し、その結果として生ずる大量の転移を内包したマ ルテンサイト組織もしくはその焼き戻し組織の高い強度 を利用している。従って、この組織が再びオーステナイ ト単相領域まで再加熱されるような熱履歴を受ける場 合、例えば溶接熱影響を受ける場合においては、高密度 の転移が再び解放されてしまい、溶接熱影響部におい て、局部的な強度の低下が起きる場合がある。特にフェ ライトーオーステナイト変態点以上に再加熱された部位 の中で、変態点近傍の温度、例えば9%Cr鋼において は900~1000℃程度まで加熱されて、短時間のう ちに再び冷却された部位は、オーステナイト結晶粒が十 分に成長しないうちに再度マルテンサイト変態を起こし て細粒組織となり、しかも材料強度を析出強化によって 向上させる主要な因子であるM、、C。型炭化物が再固溶 せずに、その構成成分を変質したり、あるいは粗大化す る等の、高温強度低下を招く機構が複合して作用し、局 部的な軟化域となる場合がある。この軟化域生成現象を 30 以降便宜的に「HAZ軟化」と称する。

【0007】本発明者らは、当該軟化域について詳細な研究を重ね、その強度低下は、主にM₁,C。型炭化物の構成元素の変化にあることを見いだし、更なる検討の結果、高強度マルテンサイト系耐熱鋼の特に固溶強化に不可欠の元素であるMoあるいはWが、該溶接熱影響を受ける最中に、M₁,C。中の構成金属元素M中に大量に固溶し、細粒化した組織の粒界上に析出し、その結果オーステナイト粒界近傍にMoあるいはW欠乏相が生成して、クリープ強度の局部低下につながることを見いだした。

【0008】従って、溶接熱影響によるクリーブ強度の低下は、耐熱材料にとって致命的であり、熱処理、溶接施工法の最適化等の従来技術では、問題点を根本的に解決するととが不可能であることが明らかである。しかも、唯一の解決策と考えられる溶接部を再び完全オーステナイト化する対策の適用は、発電ブラントの建設施工プロセスを考慮すれば不可能であることは自明であり、従来の耐熱マルテンサイト倒あるいはフェライト倒では「HAZ軟化」現象が不可避であることが明らかであ

る。

[0009]

【発明が解決しようとする課題】本発明は上記のような従来鋼の欠点、すなわちM., C. 型炭化物の変質、粗大化に起因する溶接熱影響部の局部軟化域生成を回避するべく、M., C. 型炭化物の組成制御および析出サイズの制御を可能ならしめるものであって、Ti, Ta, Zr, Hfを含有し、そして、専用の製造工程を組み合わせることで「HAZ軟化」域の生成しない、耐HAZ軟10 化特性に優れたマルテンサイト系耐熱鋼を提供することを目的とする。

[0010]

【課題を解決するための手段】本発明は上記目的を達成 するためになされたものであり、その要旨とするところ は、質量%で、C : 0. 01~0. 30%、 Si: 0. 02~0. 80%, Mn: 0. 20~1. 00%, Cr: 5. 00~18. 00%, Mo: 0. 005~ 1. 00%, \mathbf{W} : 0. 20~3. 50%, \mathbf{V} : 0. 02~1.00%, Nb:0.01~0.50%, N : 0. 01~0. 25%を含有し、加えて、Ti: $0.005\sim2.0\%$, $Zr:0.005\sim2.0$ %, Ta: 0. 005~2. 0%, Hf: 0. 005 ~2.0%の1種または2種以上を単独であるいは複合 して含有し、P : 0.030%以下。 0.010%以下、O:0.020%以下に制限し、 あるいは更にCo:0.1~5.0%、 Ni: 0.1~5.0%、Cu:0.1~2.0%の1種また は2種以上を含有し、かつ、M.,C。型炭化物の金属成 **分M中に占める(Ti%+Zr%+Ta%+Hf%)の** 値が5~65%であり、残部がFeおよび不可避の不純 物よりなることを特徴とする耐HAZ軟化特性に優れた マルテンサイト系耐熱鋼、および、M,,C。型炭化物の 金属成分M中に占める (Ti%+Zn%+Ta%+Hf %) の値が5~65%となるように、Ti, Zr, T a, Hfを鋳造直前の10分間に添加し、かつ固溶化熱 処理後の冷却を950~1000℃にて一時停止して同 温度で5~60分保持することを特徴とする、耐HAZ 軟化特性に優れたマルテンサイト系耐熱鋼の製造方法で ある。

0 [0011]

【作用】以下本発明を詳細に説明する。最初に、本発明において各成分範囲を前記のごとく限定した理由を以下に述べる。Cは強度の保持に必要であるが、0.01%未満では強度確保に不十分であり、0.30%超の場合には溶接熱影響部が着しく硬化し、溶接時低温割れの原因となるため、範囲を0.01~0.30%とした。Siは耐酸化性確保に重要で、かつ脱酸剤として必要な元素であるが、0.02%未満では不十分であって、0.80%超ではクリーブ強度を低下させるので0.02~500.80%の範囲とした。

【0012】Mnは脱酸のためのみでなく強度保持上も必要な成分である。効果を十分に得るためには0.20%以上の添加が必要であり、1.00%を超すと、クリーブ強度が低下する場合があるので、0.20~1.00%の範囲とした。Crは耐酸化性に不可欠の元素であって、同時にCと結合してCr.,C.,C.,C,等の形態で母材マトリックス中に微細析出することでクリーブ強度の上昇に寄与している。耐酸化性の観点から、下限は5.0%とし、上限は高温強度を確保すべく、マルテンサイト一相の組織を連成する限度を考慮し18.0%とした。

【0013】Wは固溶強化によりクリーブ強度を顕著に高める元素であり、特に550℃以上の高温において長時間のクリーブ強度を著しく高める。3.5%を超えて添加すると金属間化合物として粒界を中心に大量に折出し母材靭性、クリーブ強度を著しく低下させるため、上限を3.5%とした。また、0.20%未満では固溶強化の効果が不十分であるので下限を0.20%とした。Moも固溶強化により、高温強度を高める元素であるが、0.005%未満では効果が不十分であり、1.00%超ではMo、C型の炭化物の大量析出、あるいはMo、Fe型の金属間化合物析出によってWと同時に添加した場合に母材靭性を著しく低下させる場合があるので上限を1.00%とした。

【0014】Vは析出物として析出しても、Wと同様に マトリックスに固溶しても、鋼の高温クリーブ破断強度 を著しく高める元素である。本発明においては0.02 %未満ではV析出物による析出強化が不十分であり、逆 に1.00%を超えるとV系炭化物あるいは炭窒化物の クラスターが生成して靱性低下をきたすために添加の範 30 囲を0.02~1.00%とした。NbはMX型の炭化 物、もしくは炭窒化物としての析出によって高温強度を 高め、また固溶強化にも寄与する。0.01%未満では 添加効果が認められず、0.50%を超えて添加する と、粗大析出し、靭性を低下させるので添加範囲を0. 01~0.50%に限った。Nはマトリックスに固溶あ るいは窒化物、炭窒化物として析出し、主にVN、Nb N、あるいはそれぞれの炭窒化物の形態をとって固溶強 化にも析出強化にも寄与する。0.01%未満の添加で は強化への寄与はほとんどなく、また最大18%までの 40 Cr添加量に応じて溶鋼中に添加できる上限値を考慮し て添加限度を0.25%とした。

【0015】Ti、Zr、Ta、Hfの添加は本発明の根幹をなす部分であり、まさにこれらの元素の添加が、本発明の製造工程と相俟って「HAZ軟化」の回避を実現する。Ti、Zr、Ta、Hfは本発明鋼の成分系においてことの親和力が極めて強く、M₁,C。の構成金属元素としてM中に固溶し、M₂,C。の分解温度を上昇させる。従って、「HAZ軟化」域におけるM₂,C。の粗大化阻止に有効である。しかも、W、MoのM、C。中

への固溶を妨げ、従って析出物周囲のW、Moの欠乏相を生成しない。これらの元素は単独であるいは2種以上を複合して添加してもよく、各々最低0.005%から既に効果があり、単体で2.0%以上の添加は租大なMX型炭化物を生成して製性を劣化させるため、その添加範囲を各々0.005~2.0%とした。

【0016】P、S、Oは本発明鋼においては不純物として混入してくるが、本発明の効果を発揮する上で、P、Sは強度を低下させ、Oは酸化物として析出して制性を低下させるのでそれぞれ上限値を0.03%、0.01%、0.02%とした。

【0017】以上が本発明の基本成分であるが、本発明においてはこの他に用途に応じて、Ni、Co、Cuのうち1種または2種以上をそれぞれNiは $0.1\sim5.0\%$ 、Coは $0.1\sim5.0\%$ 、Coは $0.1\sim2.0\%$ 含有させることができる。Ni、Co、Cuはいずれも強力なオーステナイト安定化元素であり、特に大量のフェライト安定化元素、すなわちCr、W. Mo、Ti、Zr, Ta, Hf, Si 等を添加する場合において、完全マルテンサイトもしくはその焼き戻し組織を得

て、完全マルテンサイトもしくはその焼き戻し組織を得るために必要であり、かつ有用である。同時にNiは靱性の向上、Coは強度の向上、Cuは強度と耐食性の向上にそれぞれ効果がある。各々0.1%未満では効果が不十分であり、5.0%を超えて添加する場合には粗大な金属間化合物の析出あるいはCuの場合には粒界に沿ってフィルム状に析出することが避けられない。これらの各元素は0.2%以上含有することにより顕著な効果があらわれる。従って、それぞれの添加範囲を0.1~5.0%、望ましくは0.2~5.0%とする。

【0018】上記Ti、Zr、Ta、Hfの添加効果を 適切に発現させるためには、溶接熱影響部に存在するM "C。型炭化物の金属成分M中に占める(Ti%+Zr %+Ta%+Hf%)の値が5~65%となる必要があ って、そのためにTi, Zr, Ta, Hfを鋼中で適切 な炭化物の形で析出させるべく、Ti, Zr, Ta, H fを鋳造直前の10分間に添加し、かつ固溶化熱処理後 の冷却を950~1000℃にて一時停止して同温度で 5~60分保持することで析出形態を制御しなければな ちない。以上の製造プロセスによって、後の焼き戻し処 理時に析出する、Crを主体とするM.,C。の析出核と して利用することができる。また、以上の製造プロセス を適用することによって、初めてTi, Zr, Ta, H fの添加効果が適切に発現し、本発明の目的が達成され るのであって、本発明の化学成分を調整した材料を単純 に従来の製造工程をもって製造しても本発明の意図する 効果は得られない。すなわち溶接熱影響部に存在するM "C.型炭化物の金属成分M中に占める(Ti%+Zr %+Ta%+Hf%)の値を5~65%に制御すること はできない。

大化阻止に有効である。しかも、W、MoのM2,C。中 50 【0019】以上の製造工程および炭化物の組成範囲は

以下に記述する実験によって決定した。Ti,Zr,T a、Hfを除いて、請求項に示す範囲の組成を有する鋼 をVIM(真空誘導加熱炉),EF(電気炉)で溶製 し、AOD (Ar酸素吹き脱炭精錬装置), VOD (真 空排気酸素吹き脱炭装置),LF(溶鋼取鍋精錬装置) を選んで使用し、連続鋳造装置にて鋳造し、210×1 600mmの断面を有するスラブとした。Ti, Zr, T a、HfはそれぞれVIMまたはEFでの溶解開始時、 溶解中、溶解終了前5分、AOD, VOD, LFの精錬 工程開始時、精錬工程終了10分前の各々の時期に添加 10 して、添加時期の鋳造後の析出物組成および形状に与え る影響を調査した。鋳造したスラブは2~5m長さに切 断し、厚さ25. 4 mmの厚板とし、最高加熱温度110 0℃、保持時間1時間の条件で固溶化熱処理を施し、そ の後の冷却過程で、1050℃, 1000℃, 950 ℃, 900℃, 850℃, 800℃の各温度において最 長24時間の冷却停止、同温度の炉内保持を行い、空冷 後に析出物の残渣抽出分析とともに、X線微小部分析装 置付き透過型電子顕微鏡を用いて炭化物の析出形態を調 査した。

【0020】更に、得られた厚板は780℃で1時間焼き戻し処理を行い、図1に示す、開角度45度のV型突き合わせ溶接開先加工を施して溶接実験に供した。溶接はTIG溶接にて実施し、入熱条件はマルテンサイト系耐熱材料に一般的な15000J/cmを選択した。溶接した椎手試料は740℃で6時間の溶接後熱処理を施し、そのHAZ部分から図2に示す要領で、透過電子顕微鏡用試料および抽出残渣分析用試験片を採取した。

【0021】図3はTi, Zr, Ta, Hfの添加時期と、鋼中Ti, Zr, Ta, Hfの析出物としての存在 30 形態の関係を示す図である。Ti, Zr, Ta, Hfの析出物がM,,C。の析出核となり、M,,C。の構成金属元素M中に固溶するためにはTi, Zr, Ta, Hfは予め微細な炭化物として存在していなければならず、そのためには酸素濃度の低い状態、すなわちVODもしくはLF精錬中で、かつ連続鋳造10分前に添加しなければならないことがわかる。電子顕微鏡観察によってこの時の炭化物の平均サイズは約0.15μmであることが判明した。

【0022】図4は固溶化熱処理後の冷却停止温度およびその保持時間と析出炭化物の大きさの関係を示す図である。この場合の製造工程はEF-LF-CCに限定した。析出炭化物の平均サイズは、冷却停止および保持温度950℃と1000℃において最も小さく、保持時間5~60分において再析出が確認できて、なおかつ平均サイズを最も小さくすることができた。

【0023】なお、これらの炭化物の組成はTi. Z 最高1000℃まで加熱可能な炉を必要とする。それ r、Ta、Hfを主体とするMX型炭化物であること 外の製造工程、具体的には圧延、熱処理、製管、溶接、 が、X線微小部分装置による分析で明らかとなった。種 切断、検査等の本発明によって鋼または鋼製品を製造 々の温度で固溶化熱処理後の冷却を停止し、30分保持 50 る上で必要または有用と考えられるあらゆる製造工程

した後更に空冷した試料についての780℃焼き戻し、 更には溶接および溶接後熱処理を施した後の溶接熱影響 部の主要折出物の形態、組成を冷却停止温度との関係に 整理したのが図5である。焼き戻し処理前で最も微細な 析出形態をとった炭化物(一時冷却停止温度が950℃ および1000℃であった鋼の炭化物)は、M., C。の 析出核となり、焼き戻し処理中に析出したM., C。と相 互に固溶して最終的にM., C。型炭化物となり、構成金 属元素M中にはTi、Zr、Ta、Hfが5~65%の 割合で固溶していることがわかる。

【0024】図6は溶接熱影響部に存在するM.,C.型

炭化物中に占めるTi%+Zr%+Ta%+Hf%の値 M%と、溶接熱影響部のクリーブ破断強度と母材部のク リーブ破断強度の差D-CRS (MPa) の関係を示す図で ある。M%が5~65の間にあれば、溶接熱影響部のク リープ破断強度は母材部の破断強度に比較して最大7MP a しか低下せず、この差異は母材のクリープ破断強度の データの偏差10MPa以内であるので、溶接熱影響部は もはやHAZ軟化現象を示さないことがわかる。Ti, Zr, Ta, Hfを構成金属元素M中に5~65%含有 するM、、C。型炭化物は通常のCrを主体とするM、、C 。に比較して分解温度が高く、溶接熱影響を受けた場合 でも凝集粗大化しにくく、しかも、化学親和力および状 態図からW、MoがTi、Zr、Ta、Hfに代わっ て、あるいは更に加わって固溶することが極めて困難で あることが、上記の実験結果をもたらしたものと結論で きる。

【0025】以上の結果をもって、本発明の製造工程を請求項に述べたごとく決定した。本発明の製造工程を適用しなければ、請求項に示す化学成分の鋼を通常工程で製造しても、溶接熱影響部の炭化物M₁,C₂の組成を請求項に述べたものとすることは不可能である。

【0026】本発明鋼の溶解方法は全く制限がなく、転 炉、誘導加熱炉、アーク溶解炉、電気炉等、鋼の化学成 分とコストを勘案して使用プロセスを決定すればよい。 ただし、精錬工程はTi、Zr、Ta、Hfを添加でき るホッパーを備え、しかも溶鋼中の酸素濃度をこれら添 加元素の90%以上が炭化物として析出できる程度に十 分低く制御できる能力がなければならない。従ってAr 気泡吹き込み装置やアーク加熱もしくはブラズマ加熱機 を装備したLFあるいは真空脱ガス処理装置を適用する ことが有益であって、本発明の効果を高めるものであ る。また、後続する圧延工程、あるいは鋼管を製造する に当たっては製管圧延工程においては、析出物の均一再 固溶の目的とする固溶化熱処理が必須であって、その冷 却過程において冷却停止保持が可能な設備、具体的には 最高1000℃まで加熱可能な炉を必要とする。それ以 外の製造工程、具体的には圧延、熱処理、製管、溶接、 切断、検査等の本発明によって鋼または鋼製品を製造す

は、これを適用することができて、本発明の効果をなん ら妨げるものではない。

【0027】特に、鋼管の製造工程としては、本発明の製造工程を必ず含む条件の下に、丸ピレットあるいは角ピレットへ加工した後に、熱間押し出し、あるいは種々のシームレス圧延法によってフェーブに加工する方法、薄板に熱間圧延、冷間圧延した後に電気抵抗溶接によって電機鋼管とする方法、およびTIG、MIG、SAW、LASER、EB溶接を単独で、あるいは併用して溶接鋼管とする方法が適用できて、更には以上の各方法の後に熱間あるいは温間でSR(絞り圧延)ないしは定形圧延、更には各種矯正工程を追加実施することも可能であり、本発明鋼の適用寸法範囲を拡大することが可能である。

【0028】本発明鋼は更に、厚板および薄板の形で提供することも可能であり、必要とされる熱処理を施した板を用いて種々の耐熱材料の形状で使用することが可能であって、本発明の効果に何ら影響を与えない。加えて更に、HIP(熱間等方静水圧加圧焼結装置)、CIP(冷間等方静水圧加圧成形装置)、焼結等の粉末冶金法 20を適用することも可能であって、成形処理後に必須の熱処理を加えて各種形状の製品とすることができる。

【0029】以上の鋼管、板、各種形状の耐熱部材にはそれぞれ目的、用途に応じて各種熱処理を施すことが可能であって、また本発明の効果を十分に発揮する上で重要である。通常は焼準(固溶化熱処理)+焼き戻し工程を経て製品とする場合が多いが、これに加えて再焼き戻し、焼準工程を単独で、あるいは併用して施すととが可能であり、また有用である。ただし、固溶化熱処理後の冷却停止および保持は必須である。窒素あるいは炭素含有量が比較的高い場合およびCo,Ni,Cu等のオーステナイト安定化元素を多く含有する場合、Cr当量値が低くなる場合には残留オーステナイト相を回避するべく0℃以下に冷却する、いわゆる深冷処理を適用することができて、本発明鋼の機械的特性の十分な発現に有効である。

【0030】材料特性の十分な発現に必要な範囲で、以上の工程は各々の工程を複数回繰り返して適用することもまた可能であって、本発明の効果に何ら影響を与えるものではない。以上の工程を適宜選択して、本発明鋼の 40 製造プロセスに適用すればよい。

[0031]

【実施例】表1~表25に示すTi、Zr、Ta、Hfを除く、請求項の何れかの組成を有する鋼それぞれ300ton、120ton、60tonを通常の高炉鉄・転炉吹錬法、VIMあるいはEFを用いて溶製し、アーク再加熱設備を付帯するAr吹き込み可能なLF設備によって精錬し、連続鋳造開始10分前にTi、Zr、Ta、Hfの1種または2種以上を表1~表25に示す量だけ添加して、連続線造でスラブトした。得られたスラブ村は

熱間圧延にて板厚50mmの厚板、および12mmの薄板とするか、もしくは丸ビレットに加工して熱間押出にて外径74mm、肉厚10mmのチューブを、シームレス圧延にて外径380mm、肉厚50mmのパイプをそれぞれ製造した。更に薄板は成形加工して電縫溶接して外径280mm、肉厚12mmの電撻鋼管とした。

【0032】全ての板および管は固溶化熱処理を施し、 950~1000℃の温度範囲で一時冷却を停止して炉中5~60分の間保持した後に空冷し、更に780℃で 1時間焼き戻し処理を実施した。

【0033】板は図1と全く同様の開先加工の後に、管は図1と同様の開先を管端に、円周方向に加工して、管同士の円周継手溶接をTIGあるいはSAW溶接にて実施した。溶接部はいずれも740℃で6時間、局部的に軟化焼鈍(PWHT)を実施した。

【0034】母材のクリープ特性は図7(a), (b) に示すように鋼管1の軸方向2と平行にあるいは板材3 の圧延方向4と平行に、溶接部あるいは溶接熱影響部以 外の部位から直径6mmのクリープ試験片5を切り出し、 600°Cにてクリープ破断強度を測定し、得られたデー タを直線外挿して10万時間のクリーブ破断強度とし た。溶接部のクリープ特性は、図8(a),(b)に示 すように、溶接線6と直角方向7から直径6mmのクリー ブ破断試験片5を切り出し、600℃における破断強度 測定結果を10万時間まで直線外挿して母材のクリーブ 特性と比較評価した。以降、「クリーブ破断強度」と は、本発明の記述上の便宜を図るため、600℃におけ る10万時間の直線外挿推定破断強度を意味するものと する。母材と溶接部のクリーブ直線外挿破断強度推定値 の差D-CRS (MPa) をもって、溶接部の「HAZ軟 化」抵抗の指標とした。D-CRSの値は試験片の圧延 方向に対するクリーブ破断試験片採取方法に若干影響さ れるものの、予備実験にてその影響が5MPa 以内である ことが経験的に判明している。従って、D-CRSが1 0 MPa 以下である場合には材料の耐HA2軟化特性が極 めて良好であることを意味する。

【0035】HAZ部の析出物は図2に示した要領で試験片を採取し、酸溶解法で抽出残渣分析し、Mi,C。を同定した後にそのM中の組成を走査型X線微小分析装置によって決定した。この時のTi%+Zr%+Ta%+Hf%の値をM%と表し、評価した。標準基準は実験結果に基づいて、5~65%の範囲にあることである。【0036】HAZ部の析出物の挙動を間接的に評価するために、靱性試験を実施した。図9に示すごとく、溶接部から溶接線と直角方向からJIS4号2mmVノッチシャルビー衝撃試験片8を切り出し、ノッチ位置を溶接ボンド9とし、最高硬化部で代表して、その評価基準値を、耐熱材料の組立条件を想定して0℃において50Jとした。

加して、連続鋳造でスラブとした。得られたスラブ材は 50 【0037】比較のために、化学成分において本発明の

範囲外の鋼を同様の方法で評価した。化学成分と評価結果のうちD-CRS、HAZCRS、M%について表76、表77に示した。D-CRSとM%の関係は図6で既に示した通りである。

11

【0038】図10は母材のクリーブ破断強度と母材中のTi%+Zr%+Ta%+Hf%の関係を示す図である。過剰のTi, Zr, Ta, Hfの添加は析出物の粗大化を招き、結果として母材そのもののクリーブ破断強度が低下する。図11は溶接熱影響部中のM₂,C。に含まれるTi%+Zr%+Ta%+Hf%の値M%と溶接 10熱影響部の靭性の関係を示した図である。M%の値が65%を超える場合には析出物が粗大化して靭性の低下が起こり、評価基準値50Jを下回ることがわかる。D-CRS, HAZCRS, M%については測定値を数値データの形で表1~表75に一例を示した。

【0039】表76,77に示した比較網のうち、74 1,742鋼は化学成分が請求項と同一であったにもか* *かわらず、TiとZrを溶解時から添加してしまい、結果としてM%の値が5%以下となって耐HAZ軟化特性が劣化した例、743、744鋼はTi、Zr、Ta、Hfのいずれも十分に添加しなかったためにM%が低下し、耐HAZ軟化特性が劣化した例、745鋼はTiの添加量が、746鋼はZrの添加量が、747鋼はTaの添加量が、748鋼はHfの添加量がそれぞれ過多であったために租大なMX型炭化物が多数析出し、溶接熱影響部中のM。」C。の組成制御に失敗し、耐HAZ軟化特性が劣化した例、749鋼は固溶化熱処理後の一時冷却停止を実施しなかったためにM。」、C。の組成制御に失敗し、耐HAZ軟化特性が劣化した例、750鋼は固溶化熱処理後の一時冷却停止後の保持時間が240分と長すぎたために析出物が租大化し、M。」、C。の組成制御に失敗し、耐HAZ軟化特性が劣化した例である。

[0040]

【表1】

表1	-1 2	卜 発明的	П					(武)	<u>t%)</u>
Na	С	Si	Мn	L U	Мо	W	٧	Νb	N
(I)	0. 02	0. 50	0. 97	17. 64	0. 393	3.00	0.86	0. 40	0. 23
2	0.05	0. 11	0. 25	12. 88	0. 255	1.46	0. 27	0. 25	0. 04
3	0.13	0.39	0. 36	10.91	0.016	3. 48	0. 43	0. 09	0. 24
4	0.07	0.05	0. 77	9. 84	9. 028	2.00	0.70	0.06	0. 20
5	0. 26	0.11	0. 95	7.34	0. 114	3.02	0. 92	0.35	0. 11
6	0. 20	0.46	0. 37	7. 93	0. 121	1.06	0.44	0. 13	0. 18
7	0. 01	0. 20	0. 90	9. 42	0.379	2. 23	0.08	0. 30	0. 25
8	0. 21	0.74	0.41	9.74	0. 233	2.64	0. 66	0.30	0. 03
9	0.04	0.40	0. 76	6. 64	0. 506	1.75	0. 54	0. 05	0. 09
10	0.16	0. 23	0. 64	17.60	0. 541	2.33	0.08	0. 43	0. 03
_11	0.09	0.09	0. 29	14. 38	0. 179	2.20	0. 04	0. 15	0.06
12	0.08	0. 25	0.40	14.40	0. 244	0.77	0. 79	0. 11	0. 23
13	0. 23	0. 58	0. 82	15. 53	0. 576	2. 51	0. 70	0. 47	0. 18
14	0.05	0.57	0. 64	9. 23	0. 523	1. 92	0. 59	0. 42	0.08
15	0.07	0.08	0. 92	12. 68	0.402	3. 35	0. 77	0. 12	0.14
16	0. 25	0. 58	0. 72	17. 33	0. 553	3. 01	0. 12	0. 46	0. 21
17	0.11	0.27	0. 32	14.61	0. 828	0.36	0. 43	0.40	0. 12
18	0.03	0.31	0. 78	8. 73	0. 045	1. 43	0. 55	0.34	0. 08
19	0. 25	0.14	0. 39	10. 76	0. 050	0.76	0. 83	0. 44	0. 16
20	0.30	0.42	0. 99	11. 97	0. 174	2. 73	0. 60	0. 38	0. 20
21	0. 26	0. 24	0. 46	16. 73	0. 753	1.88	0. 69	0. 33	0. 17
22	0. 24	0. 63	0.68	16.40	0.126	0.92	0. 44	0. 44	0. 03
23	0.05	0.30	0. 69	15. 19	0. 120	2.65	0. 68	0. 40	0. 21
24	0.06	0. 29	0. 79	11. 23	0. 082	1.57	0. 26	0. 11	0. 20
25	0.10	0.48	0.84	8. 84	0. 841	2.08	0. 50	0. 49	0. 08
26	0. 25	0. 74	0. 70	12.33	0. 250	0.38	0. 26	0. 48	0. 05
27	0.18	0.16	0. 25	13. 11	0.128	2.48	0. 35	0. 47	0. 07
28	0.14	0. 56	0. 55	15. 41	0. 301	2.87	0.60	0. 15	0.10
29	0.06	0. 24	0. 67	17. 20	0. 625	2.72	0. 87	0. 41	0. 10
30	0.20	0. 27	0.47	9. 83	0. 427	1.44	0. 50	0. 44	0. 15

[0041]

			\- /				
13							
表1.	- 2 本発	明鋼			\mathcal{A}	∕(∰i	(84)
No.	Тi	Zr	Ta	H f	a P/	Νi	/Çu
1	_	-	-	_			<i>V</i> -
2	-	-	-				-
3	_	-	-	-	_	-	-
4	_	_	-			_	_
5	-	_	-	_		_	
6	-	-	-	_			
7	-			_		_	_
8			_	_			
9	-	-	-	_	_	<u> </u>] -]
10						_	_
11	_	_	_	_			
12	-	_	_	-	-	_	-
13		-	-		-	_	
14			-				_
15				_	_	<u></u>	
16	-	_					
17	_	_	-				_
18				_	_		<u> </u>
19		_	_				_
20					L <u>-</u>	<u> </u>	
21	1.790			_		-	
22	1.816				-	_	
23	0. 952						
24	0.843	-					
25	1.168						
26	1.617	_	_		L	_	
27	-	1. 597			_	\perp	
28		1.940	-				
29	-	0.310	-	-	-	-	-
30	-	1 352	-	_	-	_	

【0042】 【表3】

1.5

麦1	-3 本9	等等			(質量9	6)
No.	P	S	0	D-CRS	HAZCRS	мж
1	0.0005	0.006	0.009	4	161	14
2	0.0288	0.003	0.008	3	156	5
3	0.0088	0.009	9. 012	1	135	9
4	0.0245	0.009	0.018	1	150	10
5	0.0118	0.007	0.003	5	154	15
6	0.0103	0.006	0.011	1	176	8
7	0.0300	0.004	0.002	3	187	15
8	0.0212	. 0. 004	0.010	5	130	12
9	0.0094	0.004	0.014	0	144	9
10	0.0040	0.004	0.020	0	161	7
11	0.0002	0, 005	0.014	2	158	7
12	0.0084	0. 008	0.004	2	164	9
13	0.0085	0.005	0.005	5_	131	8
14	0. 0253	0.009	0.015	5	137	10
15	0. 0242	0.009	0.010	1	134	11
16	0.0007	0.004	0. 018	7	151	10
17	0.0240	0.006	0.004	2	164	15
18	0.0294	0.004	0.016	1	178	15
19	0.0273	0.006	0.010	2	169	5
20	0.0279	0. 001	0.003	4	140	12
21	0. 0259	0.002	0.012	2	170	19
22	0.0013	0. 002	0.003	2	135	. 26
23	0.0239	0. 005	0.003	3	164	18
24	0.0151	0.004	0.018	4	133	15
25_	0.0287	0.003	0.007	0	172	19
26	0.0155	0. 008	9. 015	1	158	24
27	0.0003	0. 002	0. 019	2	168	20
28	0.0229	0.003	0.006	1	180	20
29	0.0190	0.003	0.012	1	171	16
30	0.0000	0.004	0.014	9	171	່າກ

| 30 | 0.0280 | 0.004 | 0.014 | 2 | 171 | D-CRS : 600 ℃、10万時間直線外類クリープ推定被断強度

の母材部と溶接部の差(MPa)

HA2CRS:溶接部の 600℃、10万時間直線外挿クリープ

推定破断強度(IPa)

M% : 溶接熱影響部中のMzs C。型炭化物中Mに占める

(Ti%+Zr%+Ta%+Hi%) の値

[0043]

【表4】

17

安2	-1 2	本発明 額	H					(質)	2%)
No	С	Si	Мn	Сr	Мо	W	V	NЪ	N
31	0. 22	0.49	0. 64	17. 23	0.050	3. 46	0.30	0. 41	0. 21
32	0. 22	0.41	0. 63	17.66	0.814	3.30	0. 13	0. 48	0. 24
33	0. 15	0.28	0. 32	15 . 59	0. 078	2. 05	0.79	0. 07	0.09
34	0.10	0.75	0. 78	8. 84	0. 157	0.82	0.17	0.09	0.19
35	0.17	0.52	0. 67	14. 68	0. 395	2. 36	0. 55	0.47	0.15
36	0. 18	0.26	0. 26	5. 12	0. 130	1. 20	0. 31	0. 37	0.04
37	0.07	0.21	0. 22	10. 58	0. 199	1. 75	0. 27	0.46	0.19
38	0. 22	0.64	0. 42	9. 12	0. 924	3. 43	0. 74	0.17	0.19
39	0.17	0.64	0. 73	11. 97	0. 565	0.80	0.11	0. 15	0. 13
40	0.15	0.10	0. 63	16.90	0. 246	3. 19	0. 18	0. 32	0. 09
41	0. 25	0. 03	0. 36	15.00	0. 487	1. 78	0. 76	0. 35	0. 15
42	0.15	0.32	0. 21	17.52	0. 755	2. 72	0.26	0, 18	0.02
43	0.07	0.46	0. 84	15. 56	0. 858	0. 42	0.45	0. 44	0.04
44	0.13	0.31	0. 93	7. 19	0. 653	2. 65	0. 21	0. 33	0. 15
45	0.13	0.53	0.34	16.17	0. 961	0. 58	0.34	0. 24	0.09
46	0.15	0.57	0. 92	14. 13	0. 114	0. 25	0.18	0. 35	0. 16
47	0. 02	0.74	0. 98	12. 43	0. 972	1.21	0.10	0. 35	0. 22
48	0.13	0.50	0. 76	8. 64	0. 358	2.86	0.41	0.38	0. 22
49	0. 12	0.51	0. 94	7. 18	0. 102	1.35	0.44	0. 36	0. 25
50	0.10	0.24	0. 59	12. 46	0. 044	2.76	0.54	0. 23	0. 02
51	0. 03	0.73	0. 37	15. 70	0. 017	1.57	0.54	0.13	0.09
52	0. 28	0.31	0. 95	8. 42	0. 864	2. 23	0.29	0. 25	0. 19
53	0. 24	0.40	0. 20	7. 98	0. 920	2. 52	0.60	0. 24	0. 15
54	0.14	0.09	0. 79	5. 65	0. 518	1.92	0. 34	0. 04	0. 18
55	0. 23	0.43	1.00	12. 41	0. 496	3.17	0.80	0. 04	0. 12
56	0.17	0.50	0.68	13. 01	0. 682	2. 41	0.85	0.17	0.17
57	0.05	0.57	0. 50	11. 87	0. 915	2. 43	0.81	0. 36	0. 16
58	0. 27	0.13	0. 34	13. 42	0. 051	2. 69	0. 55	0. 02	0.06
59	0.05	0.21	0. 87	8. 96	0. 896	2. 65	0.86	0.08	0. 07
60	0. 21	0.29	0. 75	9. 27	0. 298	3. 37	0. 10	0. 16	0.04

[0044]

麦2-	-2 本発明	月期				(質)	2 %)
No.	Τi	Ζr	Ta	Ηf	Co	Νi	Сu
31	-	L 738	-	1	-	ľ	
32	-	L 155	-	-	_	1	
33	0.139	1. 257	1	-		_	
34	1.612	1. 716	_	1		-	
35	1. 252	0. 233		+	_	-	
36	1.732	0. 455	-	1	_	-	_
37	1.697	0. 052	-			-	-]
38	0.825	1. 705	_	_	_	_	_
39	_	_	0. 095	-			_
40	_	-	0.340	-	- T	-	_
41		_	0. 989	_		_	- 1
42			0. 779	-	-	-	-
43			1. 339	_		-	1
44	-	-	0. 354	_	-	_	_
45	0.981	-	0. 498				_
46	1.649	-	1. 420	-	_	_	_
47	0.561	_	1. 818	-		-	
48	1. 351	-	1. 373	-	_	_	-
49	1.702	_	1. 729	-	<u> </u>	-	_
50	1. 288	_	1. 569	_		-	_
51	_	0. 689	0. 535	-	-	-	
52	–	1. 635	1. 354	_		_	
53	_	0.709	0.668	-	-	_	
54	-	1. 582	1. 156		-	1	
55	-	1. 931	0. 482		_	į	_
56	-	1.429	0. 321	-	_	ı	_
57	1. 355	1. 736	1. 335		-		
58	1.996	1.543	0. 220	-	-	ŀ	-
59	0.922	0. 512	0. 831	-	_	ı	-
60	1 786	1 310	0.23R	_	_	1	

[0045]

21

表2.	-3 本多	色明何			(質)	₹%)
No.	P	S	0	D-CRS	HAZCRS	M%
31	0. 0156	0.009	0.009	1	156	25
32	0.0214	0.008	0. 014	5	154	16
33	0.0105	0.008	0. 015	5	143	22
34	0. 0232	0.003	0. 019	4	. 175	34
35	0. 0246	0.001	0. 013	1	179	18
36	0. 0248	0. 005	0. 004	2	156	31
37	0. 0037	0.004	0. 016	5	135	20
38	0. 0163	0.001	0.010	5	144	26
39	0.0278	0. 005	0. 020	2	135	8
40	0.0183	0.003	0. 004	5	136	8
41	0.0129	0.009	0. 007	6	150	14
42	0.0218	0.007	0.007	4	154	12
43	0. 0247	0. 010	0. 001	4	177	20
44	0. 0023	0.002	0. 014	2	170	10
45	0.0090	0.004	0.006	0	162	17
46	0. 0251	0.007	0. 010	4	155	37
47	0.0161	0.004	0. 015	3	152	26
48	0.0067	0.006	0.007	. 6	131	35
49	0. 0219	0.009	0. 013	0	145	38
50	0. 0264	0.001	0.009	7	146	30
51	0. 0163	0.004	0.012	6	162	17
52	0. 0160	0.003	0. 019	2	146	28
53	0. 0207	0.009	0.008	2	175	24
54	0. 0255	0.008	0. 014	3	178	26
5 5	0. 0107	0.007	0.004	0	131	27
56	0. 0157	O. DOS	0.004	2	164	21
57	0.0061	0. 009	0.012	4	177	41
58	0. 0221	0.008	0.014	2	150	34
59	0. 0284	0.002	0.008	1	135	29
60	0.0056	0.003	0.019	5	150	32

 60
 0.0056
 0.003
 0.019
 5
 159
 32

 D-CRS
 : 600 ℃、10万時間直線外挿クリープ機定破断強度 の母材部と解接部の差(IIPa)

HAZCRS:溶接部の 600℃、10万時間直線外挿クリープ 機定破断強度 (IPa)

: 海接機影響部中のM₂₃C₆ 型炭化物中Mに占める (Ti%+Zェ%+Ta%+Hf%)の値 М%

[0046]

【表7】

表3-	-1 2	外明	.					(質:	2%)
No.	С	Si	МΩ	Сr	Мo	W	٧	NЪ	N
61	0. 27	0.25	0. 24	12.41	0.100	1.06	0. 10	0. 22	0.03
62	0. 05	0.35	0. 43	16.05	0. 123	1.77	0. 19	0.18	0.01
63	0.06	0.46	0.38	11. 75	0.713	1.63	0. 70	0. 44	0.07
64	0. 26	0.45	0.74	10.09	0.699	1. 78	0. 50	0. 19	0.15
65	0.18	0.20	0. 21	15. 83	0.436	1.69	0.40	0.08	0.12
56	0.05	0.36	0.65	13. 54	0. 736	2.41	0. 24	0. 26	0.15
67	0. 26	0.40	0.31	7. 68	0. 945	1.81	0.84	0. 20	0.10
68	0.04	0.60	0.69	15. 73	0.411	0.98	0. 58	0. 27	0.17
69	0. 21	0.05	0. 43	9. 45	0.950	1.03	0. 26	0. 41	0.19
70	0.15	0.17	0. 21	12.60	0.411	3.05	0. 23	0. 30	0. 25
71	0.09	0.45	0.71	16. 81	0. 629	3. 25	0.81	0.08	0.06
72	0.13	0.37	0.58	13. 24	0. 932	1.02	0.35	0. 43	0.08
73	0.09	0.19	0.50	6.30	9. 161	2. 45	0.68	0. 02	0. 24
74	0.19	0.17	0.72	13. 28	0. 645	0. 39	0.15	0. 01	0. 17
75	0. 26	0.59	0.34	6.17	0. 724	0.89	0.07	0. 08	0.06
76	0. 23	0.12	0.41	8. 81	0.740	1. 79	0.78	0.13	0. 23
77	0. 22	0.21	0.39	12, 55	0. 029	2.54	0.64	0.10	0. 16
78	0.17	0.74	0.97	15. 27	0. 420	0.94	0.48	0. 15	0.17
79	0.18	0.79	0.41	8. 33	0. 251	1.40	0.61	0. 19	0. 22
80	0.20	0.64	0.57	9. 10	0. 855	3.36	0.89	0. 39	0.04
81	0.19	0.52	0. 93	8.94	D. 576	1.37	0.17	0.18	0.06
82	0.09	0.72	0. 55	5. 73	0. 246	1.46	0.74	0. 22	0. 12
83	0.01	0.32	0.91	10. 33	0.696	3. 09	0. 96	0. 42	0.07
84	0.04	0.37	0. 28	7. 70	0.776	2. 45	0. 69	0. 22	0.10
85	0.14	0.73	0. 52	8. 57	0.808	2. 26	0. 24	0. 26	0.06
86	0.11	0.50	0. 29	10.88	0.136	1. 99	0.94	D. 23	0.03
87	0. 04	0.33	0. 68	5. 87	0. 583	2. 73	0.64	0.04	0. 20
88	0.19	0.49	0.74	17. 63	0. 505	0.69	0.67	0.34	0.18
89	0.07	0.06	0. 75	17. 85	0. 223	1.86	0.86	0.08	0.05
90	0. 20	0.46	0. 56	17. 30	0. 563	2. 43	0.56	0.16	0. 24

[0047]

【表8】

25

表3-	- 2 本発明	用鋼				(賞)	1%)
Ma.	T i	Z r	Ta	H t	Co	Νi	Сu
61	1.270	0. 627	0. 732	-	-	-	-
62	1.055	0. 131	0.780	-	-	-	_
63	-	_	_	1. 282	_	-	
64	_	-	-	1.087	-	-	-
85			-	1.833	_	-	-
66	-	-	_	1.168	-	-	-
67	-	-	-	1.763	_	_	–
68		_		0.323	-	-	-
69	0. 239		-	0.471	_	-	_
70	0. 589	_	-	0.930	_	-	-
71	0.276	_	_	0.342	-	_	-
72	1.979	_		1.398	_	-	-
73	0.346	-		1.758	-	-	_
74	0.098	-	-	0.098	-	-	
75	-	1. 453	_	1.079	-	-	-
76	-	1. 997	-	0.375	-		=
77	-	1.774	-	0. 651	· -		-
78	-	0. 499		0.599	_	-	-
79		1. 816	1	1.869	-	-	ı
80	-	1. 395	1	1. 144	ı	-	-
81		1	1. 682	1.102	1	-	-
82	_	_	1. 723	0. 420	•	-	١.
83	_	_	1. 419	1. 755	+	_	_
84	_	_	1. 434	0.781	4	1	_
85	ı	-	0. 457	0.180	-	-	-
86	_	_	1. 131	1. 596	-	ľ	_
87		1, 565	0. 174	0.751	-	_	-
88	-	0. 516	1. 211	0. 262	-	-	ı
89		1. 779	1. 935	1.829	_	-	ı
90		0.041	1, 021	0,130	-	-	-

[0048]

【表9】

21						
我3	- 3 本 3	明何				1 %)
No.	P	S	0	D-CRS	HAZCRS	М%
61	0.0084	0.008	0.005	4	175	26
62	0. 0168	0.003	0.002	2	163	23
63	0. 0111	0.010	0.006	4	173	24
64	0.0161	0.002	0.006	1	133	19
65	0. 0272	0.003	0.006	1	172	23
66	0.0091	0.002	0.005	0	142	22
67	0.0023	0.010	0.008	7	170	27
68	0. 0015	0.007	0.003	1	160	10
69	0.0170	0.003	0.006	6	140	15
70	0.0142	0.003	0.004	4	136	17
71	0.0175	0.003	0.003	0	177	15
72	0.0076	0.005	0. 011	0	165	35
73	0.0093	0.007	0.004	0	179	25
74	0.0026	0.004	0.009	2	171	7
75	0. 0275	0.007	0.012	1	168	26
76	0.0193	0.003	0.011	3	149	29
77	0.0179	0.002	0.002	1 _	141	26
78	0.0034	0.003	0.020	2	171	16
79	0. 0158	0.005	0.005	3	169	33
80	0.0205	0.002	0.001	6	160	32
81	0.0272	0.005	0.016	7	174	31
82	0.0167	0.005	0.,017	4	162	-28
83	0.0132	0.005	0.020	6	178	34
84	0.0122	0. 002	0.003	6	149	31
85	0.0088	0.009	0.019	2	178	15
86	0.0128	0.002	0.020	7	168	30
87	0.0196	0.008	0.019	6	147	25
88	0.0090	0.003	0.005	5	142	26
89	0.0085	0.008	0.003	6	130	52
O:O	0.0916	0.002	0.000	1	1./1	23

90 0.0216 0.002 0.009 1 141
D-CRS: 600 C、10万時間直線外籍クリープ推定破断強度
の母対部と溶接部の差 (IPa)
HAZCRS: 溶接部の 600 C、10万時間直線外籍クリープ
推定破断強度 (IPa)

М% :溶接熱影響部中のM₂₃C。型炭化物中Mに占める

(Ti%+Zr%+Ta%+Hf%) の値

[0049]

【表10】

表4-	-1 2	木発明						(質)	1 %)
No.	С	Si	Mп	Сr	Мо	W.	V	Νb	N
91	0.12	0.04	0.47	14. 15	0. 389	1.88	0. 59	0. 25	0. 25
92	0.06	0.58	0.71	12.41	0. 506	1.27	0. 79	0. 02	0.02
93	0.26	0.03	0.80	16.86	0. 283	1.78	0.03	0. 14	0.13
94	0.10	0. 21	0. 56	12.06	0. 531	2.80	0. 59	0. 03	0. 05
95	0.25	0.60	0. 29	9.07	0. 105	0.55	0: 35	0.34	0. 22
96	0.09	0. 29	0. 25	12.17	0.327	2.70	0. 62	0. 26	0.24
97	0. 29	0.70	0.30	12.77	0.044	0.48	0. 26	0. 45	0.08
98	.D. 08	0.55	0.72	15. 14	0. 576	1.57	0. 57	0.08	0.05
99	0.29	0.10	0.58	10.74	0. 275	0.50	0. 91	0. 31	0.24
100	0.28	0.77	0. 53	16.79	0. 957	1.65	0. 13	0. 31	0.12
101	0.30	0.10	0.45	11.82	0.476	1.20	0.04	0. 01	0.13
102	0.15	0.69	0. 62	6. 58	0. 663	0. 27	0. 47	0. 31	0. 12
103	0.08	0.46	0. 89	11.99	0. 845	1. 58	0.77	0. 38	0.05
104	0.19	0.45	0.74	12.88	0. 373	1.33	0. 29	0. 41	0. 24
105	0.28	0.15	0. 43	7, 25	0. 577	0.62	0.35	0. 30	0.04
106	0.16	0. 22	0. 65	12.39	0. 792	2. 21	0. 29	0. 22	0. 15
107	0.08	0.12	0.84	13.14	0. 855	2. 25	0. 93	0.34	0.15
108	0.12	0.13	0. 90	13.94	0.605	1.85	0. 15	0. 32	0.02
109	0. 25	0.11	0 . 6 6	12.44	0.861	0.44	0. 72	0. 10	0.18
110	0.12	0.34	0. 43	13. 31	0. 983	2.49	0. 05	0. 31	0.12
111	0.26	0.27	0. 44	7.63	0. 289	2. 44	0.40	0. 16	0.17
112	0.21	0. 19	0. 59	13. 01	0.819	3.10	0.68	0. 29	0.04
113	0.04	0.74	0. 33	14. 16	9. 316	0.61	0. 16	0. 37	0. 05
114	0.01	0. 53	0. 33	15. 50	0. 214	2.69	0. 70	0.34	0. 05
115	0.21	0.11	0. 47	8. 31	0.632	0.49	0.16	0. 09	0.11
116	0.16	0. 61	0.60	16.59	0.924	1.80	0.34	0. 06	0.08
117	0.25	0.07	0. 21	5. 61	0. 424	1.06	0.59	0.14	0. 03
118	0.28	0.30	0. 36	5.85	0.466	2. 76	0. 28	0. 03	0. 05
119	0.21	0.80	0. 53	8. 72	0. 893	1.38	0.69	0.38	0. 21
120	0.27	0.64	0. 97	11.99	0.537	2. 95	0.20	0.37	0. 12

【0050】 【表11】

51 <u>.</u>	- 2 本発明	R 43				/854	1%)
No.	Ti	Zr	T a	Hf	Co	Ni	Cu
91		0.959	0. 136	0.829			-
92		0. 207	1. 931	0.576	_	_	_
93	1. 590	-	0. 124	1.077	-		_
94	1.669	_	1. 346	1.982	-	-	
95	1, 132		0. 292	0.976			_
96	0. 733		1. 636	0.741		_	_
97	1.144	_	1.047	0.932			_
98	1.047	_	0. 175	1. 207		_	_
99	1.103	1.77?	-	0. 273	_	-	_
100 (1.962	1.910		1. 785		_	_
101	1. 337	1.417		0.404		-	
102	0.868	0. 962		0.806	_		_
103	1. 253	0. 256		0.676	_	_	-
104	1. 139	0. 928		1.675	_	_	_
105	0. 236	0.671	0. 100	0.467	_		_
106	1. 171	0. 156	0. 291	0. 738	_		_
107	0.654	0.051	0. 247	1. 156	_		
108	1. 329	1. 029	0. 669	0. 395	-	-	_
109	0.872	1. 763	0, 209	0. 132	_	_	_
110	1.956	1. 935	1.548	1.028	_	_	_
111	1. 262	_	_	-	0.63	_	_
112	1. 455	_		_	4.01	_	_
113	1. 218		_	-	3.88	_	
114	0.200	_	-	-	1.89	_	_
115	0.077	_	_		2.04	_	-
116	1.534		-	_	L. 15	_	Ξ
117	-	1. 537	-	_	3. 24	_	_
118	_	0. 293	_		2. 57	_	_
119		0. 537	_	-	3. 35	_	_
120	_	0.912	-	-	2. 34		

【0051】 【表12】

33

表4	-3 本	明網			(質)	1 %)
No.	P	S	0	D-CRS	HAZCRS	М%
91	0.0049	0.001	0.012	7	150	23
92	0. 0109	0.005	0.008	0	137	33
93	0.0202	0.006	0.013	6	179	35
94	0.0126	0. 005	0.004	4	154	49
95	0.0286	0.003	0.008	4	138	30
96	0.0031	0.003	0.002	6	136	38
97	0.0058	0. 010	0.002	1	149	29
98	0.0171	0.002	0.015	5	156	24
99	0.0022	0.002	0.017	?	160	35
100	0.0009	0.003	0.017	2	163	49
101	0.0081	0.004	0.019	2	142	30
102	0. 0195	0.007	0.003	4	176	33
103	0.0295	0. 008	0.002	3	142	28
104	0. 0188	0. 004	0.013	4	168	41
105	0. 0119	0.007	0.006	3	131	22
106	0. 0194	0.002	0.005	2	160	31
107	0. 0208	0.002	0.017	3	157	30
103	0. 0118	0. 010	0.011	3	175	35
109	0.0024	0. 005	0.001	2	167	37
110	0.0171	0. 010	0.005	1	135	59
111	0.0213	0.008	0.018	5	157	17
112	0.0254	0.008	0.009	5	161	17
113	0.0089	0.008	0.004	4	175	16
114	0.0272	0.006	0.019	5	151	7
115	0.0007	0. 007	0.002	7	167	8
116	0.0140	0. 007	0.009	0	176	19
117	0.0172	0.002	0.015	2	155	24
118	0.0202	0.007	0.019	1	133	10
119	0.0036	0.007	0.009	2	161	12
120	0 0079	0.003	0.000	-	169	18

120 0.0073 0.003 0.008 5 168
D-CRS : 600 ℃、10万時間直線外押クリープ推定破断強度
の母材部と溶接部の差(MPa)

HAZCRS:溶接部の 600°C、10万時間直線外罪クリープ 推定破断強度 (IPa)

: 格接熱影響部中のM₂₈C₆ 型炭化物中Mに占める (Ti%+2r%+Ta%+Hf%)の値 м%

[0052]

【表13】

表 5 -	-1 2	×発明	4					(質)	£%)
No.	С	Si	Мn	Ст	Мо	W	V	NЪ	N
121	0.14	0.08	0.75	6. 87	0. 220	1.96	0. 61	0. 40	0.11
122	9. 20	0.19	0.95	11. 03	0. 298	2.89	0. 29	0. 41	0. 12
123	0. 11	0.04	0.64	9. 24	0. 601	1.85	0. 55	0.06	0. 24
124	0. 26	0.67	0.88	5. 76	0. 456	1.61	0. 25	0. 01	0.19
125	0.17	0.39	0.34	11. 41	0. 206	3. 27	0. 20	0. 18	0.17
126	0.07	0.27	0.49	17. 82	0. 686	1. 33	0. 24	0.48	0.14
127	0. 21	0. 53	0.40	16.09	0. 733	0. 25	0. 71	0. 11	0. 19
128	0. 26	0.30	0.73	17. 14	0. 675	1.06	0.46	0. 19	0.14
129	0. 16	0.59	0.56	12. 45	0. 852	1.59	0.80	0. 43	0. 21
130	0. 17	0.12	0.55	6. 22	0. 109	1. 35	0.11	0. 23	0. 12
131	0. 22	0.72	0.58	16.08	0. 273	1. 42	0. 66	0. 01	0.17
132	0. 27	0. 29	0.51	7. 19	0. 686	2. 91	0. 35	0. 43	0. 23
133	0. 29	0.68	0. 22	10.02	0.682	1. 98	0.48	0. 43	0. 24
134	0. 21	0.18	0.37	9. 45	0. 098	1. 38	0. 89	0. 41	0.16
135	0. 28	0. 22	0.82	9. 57	0.754	0. 54	0. 91	0. 04	0. 21
136	0.16	0.68	0.64	14. 96	0. 993	0. 59	0.41	0. 23	0. 20
137	0. 24	0. 26	0.92	10.54	0. 173	1. 03	0. 20	0. 17	0. 24
138	0.04	0.79	0.31	7. 23	0. 613	2. 93	0.60	0. 26	0.04
139	0. 09	0.57	0.28	15. 69	0. 146	0.81	0.96	0. 18	0.04
140	0.06	0.27	0.71	8. 04	0. 121	0. 75	0.16	0.09	0. 20
141	0. 03	0.13	0. 65	14. 25	0.842	0.46	0. 45	0. 40	0. 23
142	0. 25	0.02	0. 78	6. 38	0. 170	2.77	0. 71	0. 29	0. 23
143	0.10	0. 22	0. 56	14.90	0. 439	2. 21	0.30	0. 18	0. 15
144	0. 25	0. 22	0. 69	5. 34	0. 500	3. 21	0.05	0. 24	0. 19
145	0.08	0. 66	0. 62	14. 29	0. 666	0. 21	0.74	0. 13	0. 20
146	0.11	0. 23	0. 20	7. 25	0. 295	2.62	0. 28	0. 26	0. 13
147	0.02	0.77	0. 52	14. 51	0. 203	3. 28	0.46	0.07	0. 19
148	0.03	0. 58	0, 25	7. 90	0. 724	3. 29	0.63	0. 21	0. 21
149	0. 26	0.71	0. 84	17.89	0. 210	0.46	0.14	0. 36	0. 03
150	0. 21	0.64	0. 58	9. 84	0. 986	2, 52	0. 78	0. 18	0. 11

【0053】 【表14】

35

			()				
37							
麦5-	- 2 本発	月網				(費)	k%)
No.	Ti	Ζr	Тa	H f	Со	Νi	Сu
121	-	0. 140	-	-	1. 17	-	
122	-	1. 860	-	_	3. 80		
123	1. 404	1. 731	-	-	4. 68	_	<u> </u>
124	1. 667	1. 445			3. 01	_	
125	0. 575	1. 664	-	-	0.40	_	_
126	1. 760	0. 058		_	3. 27	_	-
127	1.915	0. 313	-	-	3. 63	_	-
128	1.701	1. 081	-	-	0.65		-
129	-	_	1. 638	-	0.80	-	-
130	_	-	1. 980	_	0.86	-	_
131	_	_	0. 209	_	4. 82	-	_
132		-	1. 015	_	4. 72	-	_
133	-	-	1.072	_	2. 21	-	
134	-	-	0.075	-	1.31	ı	_
135	1. 592	ı	0.651	-	3. 56	-	_
136	0. 673		0. 501	_	3. 42	-	
137	1. 451	-	0. 278	-	2.48		-
138	0. 584	_	1. 652	-	2. 31	-	_
139	1. 764	1	1. 303	_	2. 20	-	_
140	1. 626	ı	1. 925	1	1.37	1	
141	. 1	1. 168	0. 162	-	3.77	1	-
142	1	0. 784	1. 701		3.87		-
143	1	0. 018	0. 215	-	0.84	1	1
144		1. 470	0. 326		1.03	_	
145		0. 880	0. 754	_	1.34	_	_
146		0. 911	0. 183	-	3. 44	_	_
147	1. 756	1. 252	0. 281	+	1. 69		
148	0. 436	1. 545	0. 696		4.86		-
149	0.861	1. 463	1. 103	_	4. 96	-	

【0054】 【表15】

				•		
39						
<u> 表5-</u>	- 3 本列	明銅			(K i	
No.	P	S	0	D-CRS	HAZCRS	М%
121	0.0264	0.004	0.006	5	157	8
122	0.0258	0.001	0.007	5	155	21
123	0.0011	0.002	0.010	6	164	39
124	0.0216	0.004	0.019	Ö	164	22
125	0.0080	0.002	0.005	5	155	22
126	0.0298	0.008	0.010	0	167	23
127	0.0228	0.007	0.014	3	177	30
128	0.0264	0.006	0.003	6	162	33
129	0.0060	0.004	0.012	6	151	25
130	0.0016	0.004	0.019	1	146	24
131	0. 0229	0. 010	0.002	5	174	10
132	0.0058	0.009	0.015	0	139	17
133	0.0199	0.006	0.007	0	143	22
134	0. 0155	0.009	0.005	5	164	12
135	0.0024	0.001	0.013	4	155	31
136	0.0209	0.009	0.010	6	158	15
137	0.0208	0.004	0.012	7	132	26
138	0.0271	0.003	0.005	3	149	28
139	0. 0205	0.004	0.017	3	146	29
140	0.0107	0.010	0. 015	0	152	39
141	0. 0227	0.001	0.014	6	168	21
142	0.0219	0.009	0.003	1	174	27
143	0.0029	0.008	0.006	4	171	16
144	0. 0205	0.002	0.001	1	137	27
145	0. 0256	0.003	0.015	7	151	26
146	0. 0134	0.005	0.005	5	164	16
147	0.0234	0.006	0.016	5	155	38
148	0.0210	0.005	0.018	6	151	26
149	0. 0158	0.005	0.005	0	131	35
150	0. 0185	0.009	0.004	7	146	37

150 0.0185 0.009 0.004 7 146 3 3 D-CRS : 800 ℃、10万時間直線外押クリーブ推定破断強度 の母材部と溶接部の差(IPa) HAZCRS:溶接部の 600℃、10万時間直線外押クリープ 推定破断強度(IPa) : 溶接熱影響部中のM22Cs 型炭化物中Mに占める (Ti%+Zr%+Ta%+Hf%) の値

【表16】

[0055]

· 41

表6-	-1 2	本	R					(質:	R%)
Na.	C	Si	Мn	Cr	Мо	W	V	ИР	N
151	0.14	0.64	0.53	7. 51	0.891	2. 28	0. 93	0.09	0.03
152	0.13	0.55	0. 55	15. 34	0.760	0.90	0. 91	0.49	0.12
153	0. 28	0.28	0. 92	11. 68	0. 928	2.74	0.07	0.09	0. 21
154	0. 26	0.06	0.70	7. 24	0. 721	0.67	0.70	0.02	0.04
155	0.16	0.18	0.56	6. 61	0.491	2.41	0. 19	0. 20	0. 03
156	0. 22	0. 10	0.77	14.08	0.059	2. 49	0. 35	0.08	0.03
157	0.12	0. 10	0.81	14. 55	0. 288	0.33	0. 52	0.05	0. 25
158	0. 23	0.04	0.54	12. 41	0. 988	0.38	0. 05	0.03	0.03
159	0. 23	0. 20	0. 63	5. 54	0.016	2.09	0.74	0. 20	0.07
160	0. 05	0.04	0.94	11. 20	0.684	3. 25	0.95	0.46	0. 20
161	0.24	0. 61	0. 95	14. 26	0. 833	1.64	9. 54	0.25	0.15
162	0.01	0. 61	0. 52	6. 09	0.811	3. 37	0, 79	0. 22	0. 22
163	0.06	0.30	0. 33	17. 26	0. 956	1.30	0.10	0.30	0.04
164	0.18	0.35	0.64	12. 88	0. 093	1.45	0. 25	0. 15	0.02
165	0.04	0.62	0.93	10. 57	0.068	1.69	0. 12	0. 20	0.15
166	0. 03	0.20	0. 26	8. 05	0. 211	1.43	0.50	0.11	0. 25
167	0.09	0. 12	0.89	9. 42	0. 336	1. 72	0. 26	0. 03	0.04
168	0.18	0.65	0. 29	8. 32	0.302	0.45	0.70	0.15	0.10
169	0.11	0. 12	0.34	9. 76	0. 454	0.40	0.71	0.38	0.13
170	0. 12	0.34	0. 92	17.51	0.620	1.00	0. 11	0.16	0.10
171	0. 02	0. 79	0.27	14.38	0.136	1.70	0.70	9. 37	0.09
172	0. 19	0. 56	0.68	11. 14	0.818	0. 27	0.35	0. 21	0.18
173	0. 16	0.31	0.81	5. 80	0.037	1. 20	0.39	0. 33	0. 10
174	0.01	0. 68	0. 93	15. 75	0. 107	0.60	0.16	0. 15	0. 03
175	0. 15	0. 39	0.51	12. 78	0. 363	1. 23	0. 95	0. 34	0. 18
176	0.08	0. 07	0. 21	7. 67	0. 645	0.90	0.67	0. 32	0.16
177	0.04	0. 78	0. 32	17.99	0. 293	0. 72	0.61	0.26	0.16
178	0. 29	0.04	0.68	15. 40	0. 139	3. 45	0.62	0.08	0. 15
179	0.18	0. 07	0. 38	10. 97	0. 022	0.30	0.04	0. 18	0. 20
180	0.27	0. 35	0.89	8, 87	0, 266	0.63	0. 67	0. 24	0. 15

[0056]

【表17】

43

安6-	- 2 本発明	用鋼				(質:	₹%)
No.	Тi	2 r	Ta	H f	Co	Νi	Cu
151	0.647	1. 902	1. 623	-	4.99	_	-
152	1.348	1. 760	0. 077	-	3. 27	_	-
153	_	-	_	0.962	4. 97	_	- 1
154	_	-	+	1.168	4. 50	-	
155	_	_	_	1. 762	1. 05	_	_
156		-	-	0.437	3. 44	-	_
157	_	-	-	1.831	1. 30	_	
158	_	_	-	0.643	1.01	_	-
159	0. 032	_	-	0.561	4. 23	-	-
160	0. 020	_		1. 225	0. 56	-	_
161	0.800	-	-	0.314	3. 59	1	
162	0. 091	-	-	1. 513	0. 57	-	1
163	0.542	-	1	1.455	2. 60	-	_
164	1. 809	-	-	1.849	1. 78	-	-
165	_	1. 395	-	1.367	4. 55	_	
166	-	0. 851	_	0.674	0. 52	-	-
167	-	1. 029	1	0.440	0.85	-	-
168		1. 604	1	0. 336	4. 77	-	-
169	-	1. 249	-	0.028	4. 27	-	_
170		1. 610	ļ	1.176	0. 97	_	
171		1	1. 896	0.475	1. 32	_	_
172			0. 524	1.620	4. 58		
173		-	0. 473	0. 262	0. 29		-
174	_		1. 208	1.053	2.06	-	
175	-	-	1. 419	0.689	1. 93	ı	
176			1. 769	0.830	1.48	1	-
177		1. 492	0. 925	1.141	2. 35		
178		0. 991	1. 568	0.313	1.35		
179		1. 284	1. 367	0.995	4.86		-
180	_	0. 032	1. 984	1.878	4. 93	-	-

[0057]

【表18】

表6-	- 3 本 3	的明網			(質)	£%)
No.	P	S	0	D-CRS	HAZCRS	М%
151	0.0237	0.006	0.003	0	174	41
152	0.0286	0.004	0.006	0	143	36
153	0.0078	0. 006	0.013	3	132	16
154	0.0215	0. 907	0.018	а	167	14
155	0.0033	0.004	0.001	7	177	25
156	0.0231	0.004	0.015	5	139	17
157	0.0011	0.008	0.019	5	131	26
158	0.0072	0.004	0.010	ŝ	180	17
159	0.0217	0.003	0.004	7	164	19
160	0.0246	0.006	0.006	3	137	15
161	0.0111	0.009	0.015	6	176	22
162	0.0061	0.004	0.017	4	157	24
163	0.0191	0.010	0.009	4	161	29
164	0.0161	0.008	0.017	0	138	39
165	0.0220	0.006	0.009	ô	167	36
166	0.0020	0.003	0.010	6	175	21
167	0.0254	0.009	0.018	2	167	16
168	0.0131	0. 007	0.010	1	168	28
169	0.0196	0.007	0.001	1	131	19
170	0.0102	0. 005	0.009	5	135	35
171	0.0251	0.008	0.020	5	157	28
172	0.0296	0.002	0.012	8	150	26
173	0.0184	0. 008	0.011	6	142	13
174	0.0168	0. 005	0.014	7	135	28
175	0.0048	0.006	0.007	1	132	26
176	0.0223	0.003	0.017	6	16 1	31
177	0.0196	0.009	0.001	4	174	36
178	0.0088	0.010	0.015	3	175	27
179	0.0233	0.007	0.016	5	141	42
180	0.0201	0.009	0.003	4	174	42

[0058]

【表19】

	表7-	-1 2	炸発明	9					(質)	£%)	
	Ha	С	Si	Мn	Cr	Мо	₩	v	ИР	N	
	181	0.19	0.75	0.45	13.56	0. 218	2. 24	0.39	0. 43	0.09	
	182	0. 21	0.37	0.97	16.56	0. 721	2.96	0.02	0. 43	0.10	
	183	0. 27	0.24	0.30	15. 55	0. 602	2. 24	0.39	0. 38	0.02	
	184	0.18	0.63	0. 70	8. 38	0. 691	2. 83	0.35	0.47	0.04	
	185	0.18	0.24	0.45	12. 52	0.337	2.54	0.23	0. 12	0.25	
	186	0. 23	0.10	0. 21	6. 25	0. 857	0.80	0.83	0. 46	0. 25	
	187	0.26	0.49	0. 65	13.37	0.602	2.04	0.05	0.45	0.11	
	188	0. 25	0.49	0.85	12.46	0. 906	2. 46	0.19	0. 26	0.05	
	189	0. 29	0.77	0. 27	7.78	0.110	1. 49	0.58	0. 03	0.02	
	190	0. 18	0.40	0.78	16. 70	0. 537	0. 22	0.58	0. 43	0.10	
	191	0. 19	0.44	0. 64	11.08	0. 034	1. 42	0. 51	0. 16	0.13	
	192	0. 20	0.75	0. 54	8. 30	0. 926	2. 89	0.21	0. 10	0. 20	
	193	0. 08	0.41	0. 32	12. 57	0.052	2. 43	0.49	0. 18	0.01	
	194	0. 07	0.49	0. 27	15. 46	0. 749	1.19	0. 73	0. 08	0.15	
	195	0. 25	0. 07	0. 27	14. 93	0.869	1. 93	0. 75	0. 21	0.07	
	196	0.30	0. 59	0. 56	8. 71	0. 735	0.79	0.39	0. 24	0.11	
	197	0. 15	0.34	0. 23	7. 61	0.679	0. 51	0.96	0. 33	0. 23	
	198	0. 05	0.78	0.73	16.09	0. 947	2. 23	0.83	0. 41	0. 03	
	199	0.11	0. 59	0. 75	12. 48	0.661	0.42	0. 33	0.39	0.06	
\	200	0.12	0. 05	0.54	14.09	0. 366	2.83	0.76	0. 44	0.17	
M	201	0.05	0.18	0. 78	X12. 39	0.497	0.64	0.99	0. 23	0. 20	
18	202	0.13	0. 48	0. 93	5. 14	0.880	1.55	0.36	0. 42	0. 10	
1	203	X 0. 16	0. 42	0. 87	16. 27	0.869	3.40	0. 20	0. 19	0. 21	
J.×	204	X0.11	0.66	0. 86	11. 14	0.788	2. 33	0.81	0. 45	0. 11	
\perp	205	x0.07	0. 29	0. 36	7. 11	0. 974	1.09	0. 08	0. 12	0. 02	
X	206	×0.14	0. 74	0. 86	15, 01	0. 764	2.46	0. 80	0. 12	0. 12	
X	207	0.12	0.33	0. 62	13. 30	0. 498	0.95	0.84	0, 11	0.03	
	208	0.26	0.09	0.30	12.80	0. 503	0. 93	0.04	0. 27	0.07	
IX	209	0. 21	0.29	0.58	11. 32	0. 128	0. 28.	069_	_0. 25	0.06	_
H	210	0.09	0.80	0. 93	13.34	0. 694	1. 68	0. 18	0. 49	0. 22	
-		×X	\	~	\checkmark	✓	✓			-/	
								_			
·							₹2-0-				

[0059]

S٨

表7-	- 2 本発明	月銅				(質)	₹%)
No.	T i	Z r	Ta	H f	Co	Νi	Сu
181	-	0. 907	0. 105	0. 625	0.75	-	-
182	-	0. 587	0. 391	1. 902	1. 12	_	-
183	1. 594		0. 512	0. 388	0.49	-	+
184	0. 508	_	1. 154	0. 759	0.46	-	_
185	1.338	-	1. 981	1.673	2. 62	-	
186	1. 761	-	0. 663	1. 823	3.82	-	-
187	0.476	-	1. 885	0. 880	3. 27	_	_
188	. 1. 154	_	0.315	1. 493	2. 53	_	_
189	1. 447	0. 255	-	0. 337	0.84	-	-
190	0. 041	1. 529		0. 098	2. 23	_	_
191	0. 597	0.681	_	0. 450	1. 13	_	_
192	1. 775	0. 354	-	1.066	1.51		_
193	0. 262	1. 210	_	0.612	2. 65	_	_
194	1. 757	1. 947	_	1. 753	3.71	-	-
195	1. 909	0. 205	1. 307	1. 158	3.80	-	_
196	0. 377	1. 649	1. 502	0. 482	2. 23		-
197	9. 853	0. 995	0. 970	0. 450	0.70		_
198	1. 998	1. 905	1.364	0. 722	3. 17	-	_
199	0. 493	0.040	1. 344	1. 935	1.58		1
200	0. 988	0. 083	0. 597	1. 782	4. 79	1	1
201	0. 188	-	-	•	ı	3. 17	_
202	0. 712	_	_	-	X	0. 69	_
203	0. 283	- "	_	-		1. 48	_
204	0. 562	_		-	_	2. 43	_
205	1. 198	- 1	_	_	-V	0. 30	_
206	1. 887	_		-	7	1. 56	_
207	_	0. 798				2. 98	
208		1. 187				3. 75	
209	\ - _	1. 520				3, 12	
210	<u> </u>	1.477		-		2, 74	
					•	$\int_{-\infty}^{\infty}$	

[0060]

【表21】

表7-	- 3 本 3	è明 卿			(質)	2%)
No.	P	S	0	D-CRS	HAZCRS	М%
181	0. 0220	0.006	0.009	3	154	18
182	0. 9238	0.004	0.003	4	156	34
183	0.0208	0.002	0.010	3	159	29
184	0. 0230	0.003	0.009	4	142	33
185	0.0107	0. 006	0.015	2	155	47
186	0.0088	0.010	0.005	3	178	44
187	0.0123	0.008	0.007	22	162	32
188	0.0162	0.007	0.006	5	137	33
189	0. 0157	0.007	0.009	3	178	24
190	0.0062	0.006	0.005	0	165	27
191	0.0273	0.002	0.017	5	175	19
192	0.0294	0.008	0.014	2	135	37
193	0.0078	0. 903	0.013	4	173	26
194	0.0170	0. 010	0.019	6	143	50
195	0. 0218	0. 903	0. 011	5	171	4C
196	0.0029	0. 004	0.013	2	161	44
197	0.0156	0. 003	0.005	3	140	36
198	0.0098	0.003	0.010	3	137	57
199	0.0103	0.002	0.018	2	177	35
200	0.0120	0.002	0. 013	2	165	37
201	0. 0255	0.008	0.014	5	154	7
202	0. 0009	0.009	0. 017	2	145	12
203	0. 0223	0.002	0. 009	1	142	10
204	0. 0260	0. 001	0. 015	2	173	12
205	0.0067	0.008	0.004	2	165	18
206	0.0192	0.004	0.010	8	145	23
207	0. 0289	0.010	0. 013	3	142	18
208	0.0008	0.006	0.017	6	134	23
209	0.0196	0.004	0.011	2	147	22
210	0.0209	0.008	0.019	2	135	19

| 210 | 0.0209 | 0.008 | 0.019 | Z | 1.03 | D - CRS : 600 ℃、10万時間直線外押クリープ推定破断強度 の母材部と溶接部の差(IFPa)

HAZCRS: 溶接部の 600℃、10万時間直線外押クリープ 推定破断強度 (IPPa)

' м%

: 溶接熱影響部中のM₂₃C₄ 型炭化物中Mに占める (Ti%+Zr%+Ta%+Hf%)の値

[0061]

【表22】

	表8.	-1 2	本発明						(質)	1 %)
	Nc.	С	Si	Mп	Ст	Мо	W	V	Nь	N
	211	0.27	0.33	0. 81	10. 22	0. 553	1.33	0. 31	0. 39	0.14
	212	0.13	0.68	0.49	12.62	0. 520	1.98	0. 42	0.14	0.03
	213	0.05	0.18	0. 64	12.12	0. 945	1.44	0. 36	0. 13	0.09
	214	0.13	0. 27	0. 34	13. 18	0.177	2.50	0. 96	0.05	0.03
_	215	0.04	0.41	0. 65	13.48	0. 033	1.27	0.56	0.05	0.18
`	216	0.16	0.49	0. 63	10.87	0. 351	0.56	0. 50	0. 07	0.13
	217	0.30	0.37	0. 56	16.37	0.473	3.09	0.60	0. 01	0.10
	218	0.12	0.32	0.71	8. 10	0. 222	1.67	0. 69	0. 28	0. 15
	219	0.15	0.58	0. 92	16. 48	0. 429	2.40	0. 13	0. 32	0. 01
	220	0. 20	0.67	0. 70	7.17	0. 464	3. 16	0. 73	0. 30	0. 24
	221	0. 23	0.44	0.70	16.85	0. 149	3. 36	0. 86	0. 37	0. 09
	222	0. 18	0.15	0. 39	10.83	0. 303	0.78	0. 34	0.45	0. 22
	223	0.16	0.45	0.44	13.07	0.771	1.49	0. 98	0.47	0. 13
	224	0.26	0.07	0. 72	14.80	0. 395	1.65	9. 6 6	0. 34	0. 25
	££.5	0.29	0. 90	0. 69	7. 58	0.508	0.75	0. 69	0. 23	0.18
\subseteq	226	20.05	0.18	0. 63	15. 23	0. 445	1.50	0.90	0.06	0. 13
	227	0.08	0.42	0.40	9. 31	0.031	1.73	0. 65	0. 23	0. 05
	228	0.05	0.23	0. 67	7. 59	0.616	0. 90	0. 76	0. 19	0. 02
	229	0.04	0.66	0. 52	14.30	0. 038	1.78	0. 57	0. 33	0. 02
	230	0.30	0.78	0. 20	14.34	0. 625	0.53	0. 42	0.34	0. 22
-	231	0.20	0.08	0. 80	11.98	0.714	1.52	0. 12	0. 36	0.13
- 1	232	0.13	0.39	0. 56	11.60	0. 535	0.93	0. 53	0. 09	0. 17
	233	0.20	0.41	0. 98	17.71	0. 248	1.56	0. 99	0. 18	0. 07
	234	0.19	0. 78	0. 32	15.07	0. 366	1.18	0.83	0.06	0. 15
	235	0.08	0. 22	0.84	7. 95	0. 323	2. 51	0. 39	0. 12	0. 01
-	236	0.09	0. 15	0.80	7.38	0. 467	1.76	0.48	0.30	0.09
ı	237	0. 05	0.44	0. 49	11. 21	0. 633	1.71	0. 48	0.27	0. 11
	238	0.18	0.19	0. 57	17. 16	0. 145	3. 39	0. 19	0.44	0.03
	239	0.15	0.05	0. 91	10.31	0.857	1.41	0. 95	0. 24	0. 18
- 1	240	0.07	0.29	0. 98	14.37	0.096	3. 39	0. 12	0.08	0. 15

[0062] [表23]

53

-

波8-	- 2 本発明	芬蘇阿				(質)	1 %)
No.	Тi	Zτ	Ta	H f	Co	Νi	Сu
211	_	0. 724	-	_		4. 15	_
212	_	0. 919		_	_	4. 15	
213	1.414	1. 737	-	_	-	1. 99	-
 214	1.662	1.868	_	_	_	4. 10	
215	X1. 995	0.968	_	_	=	4. 86	
216	0.112	0.729	-	-		1. 15	
217	0.652	1.798	_	-	-	4. 10	
218	0. 270	1.867	_		_	0. 94	_
219	-	-	1. 997	_	_	0.51	$\overline{}$
220	-	-	1. 618	_	_	4. 42	
221		-	0. 590			2. 15	
222		-	0. 612	_	_	0. 32	
223	_	· -	0. 376		-	2. 88	_
224	_		0. 521	-	-	1.81	_
225	1. 236	_	1. 723		—	3. 54	_
226	0.913		1. 670	_		2. 48	-
227	1. 757	_	0. 032	-		0. 25	
228	0. 433	_	1. 456	_	_	3. 23	
229	0.603	_	0. 634	-	_	1.05	-
230	0. 952	_	1. 214	-	_	2. 47	
231	-	1. 529	0. 895			4. 41]
232		0. 011	0. 342	-		1. 20	_
233		0. 565	0. 231	-	_	1.71	-
234	-	0.844	1. 209	_	-	2.64	_
235	_	0. 545	1. 976	_	_	0. 98	_
236	_	0. 338	1.198	_	_	2.99	_
237	0.551	0.877	1.540	-		3. 18	-
238	1. 440	0.847	0.689	_	_	0. 69	
239	0. 559	1. 905	1. 286	-	-	2.00	_
240	1. 563	0. 765	0. 050	-	_	1.47	_

[0063] [表24]

表8-	- 3 本子	神明 編			(質量%)		
No.	P	S	0	D-CRS	HAZCRS	M%	
211	0.0145	0.002	0.001	7	151	16	
212	0.0106	0.002	0.011	2	172	12	
213	0.0041	0.009	0.016	1	176	30	
214	0.0202	0.010	0.014	6	166	32	
215	0.0238	0.009	0.002	1	144	29	
216	0.0256	0.009	0.005	6	139	18	
217	0.0051	0.008	0.011	3	177	24	
218	0.0023	0.006	0.016	4	137	26	
219	0.0126	0. 005	0.007	2	147	24	
220	0.0009	0.003	0. 010	6	134	25	
221	0.0218	0.003	0.004	7	175	14	
222	0.0264	0. 005	0.013	1	149	11	
223	0.0097	0.003	0. D15	4	159	15	
224	0.0259	0.002	0. 016	5	156	19	
225	0.0108	0.008	0.015	3	170	33	
226	0.0045	0.004	0. 016	3	176	26	
227	0.0165	0.007	0.007	0	180	25	
228	0.0273	0.003	0.014	5	132	25	
229	0.0019	0.003	0.015	5	161	16	
230	0.0249	0. 001	0. 015	3	145	30	
231	0.0022	0.005	0.012	4	181	25	
232	0.0035	0.009	0.013	1	136	15	
233	0.0086	0.002	0.004	3	150	12	
234	0.0129	0. 001	0.010	5	179	24	
235	0.0118	0. 010	0.011	2	176	33	
236	0.0295	0.007	0.003	4	169	26	
237	0.0022	0.006	0.010	3	160	37	
238	0.0138	0.005	0.002	1	178	33	
239	0.0153	0.007	0.013	0	150	35	
240	0.0012	0.002	0.012	7	154	29	

240 0.0012 0.002 0.012 7 154 2
D-CRS : 600 ℃、10万時間直線外操クリープ推定破断強度
の母村部と溶接部の差(IPa)
HAZCRS: 溶接部の 600℃、10万時間直線外繰クリープ
推定破断強度(IPa)
M% :溶接無影響部中のM₂₃C。型炭化物中Mに占める
(Ti%+Zr%+Ta%+Hf%)の値

[0064]

【表25】

	表9-	-1 4	発明 師					(質量	<u>1%)</u>	
	No.	C	Si	Мn	Сr	Мо	W	V	NЪ	N
	241	0.02	0.87	0. 64	14. 25	0. 193	0.58	0. 99	0. 11	0.01
	242	0.25	0.18	0. 97	14. 38	0. 985	2.32	0.46	0. 27	9. 23
_	243	0.28	0. 75	0. 24	12.56	0. 823	3.16	0. 82	0. 23	0. 15
	244)	0.06	0.03	0.70	13. 02	0. 518	2.47	0. 41	0. 14	0. 21
-	245	0.26	058	0. 62	7. 33	0. 417	1.44	0.08	0. 43	0. 02
	246	0.26	0. 35	0.30	12.90	0. 374	2.84	0. 16	0.03	0.01
	247	0.16	0. 28	0.39	7. 95	0. 202	2. 75	0.48	0. 33	0.04
	248	0.06	0.14	0.34	16. 35	0. 737	2. 34	0.38	0. 27	0. 04
	249	0.19	0.68	0.85	10. 11	0. 334	1.07	0.70	0. 02	0. 24
	250	0.22	0.32	0.98	6. 50	0. 315	3. 32	0. 29	0. 22	0. 23
	251	0.24	0. 48	0. 99	9. 89	0. 019	0.32	0.46	0. 07	0. 21
	252	0. 22	0.65	0.35	11.64	0.776	3. 05	0. 55	0. 22	0.14
	253	0.10	0.30	0. 93	9. 52	0. 421	2. 71	9. 39	0.33	0.21
	254	0. 26	0.48	1.00	14. 56	0.306	0.47	0. 34	0.10	0.16
	255	0.09	0. 28	0.83	5.06	0. 252	2.34	0. 22	0.41	0.06
	256	0. 25	0.36	0.69	11. 45	0. 104	1.20	0. 86	0. 21	0.12
	257	0.13	0. 19	0.84	11. 98	0. 189	1.44	0. 62,	0.39	0.16
	258	0. 25	0.04	0.76	11. 14	0. 848	0.89	0.81	0.40	0.05
	259	0.13	0.17	0.31	13. 18	0. 418	0.63	0. 78	0.38	0.08
	260	0.15	0.06	0. 97	9. 52	0. 730	1. 79	0. 38	0.01	0. 23
	261	0.14	0.37	0. 59	11. 08	0. 132	0.52	0.40	0.20	0. 22
	262	0.17	0.56	0.66	9. 08	0. 438	1.24	0. 23	0.13	0.12
	263	0. 22	0.15	0.64	8. 14	0. 510	1.77	0. 17	0. 22	0.02
	264	0. 22	0.54	0. 79	5. 96	0. 571	1.54	0. 56	0.12	0.24
	265	0.27	0.44	0. 99	6.88	0. 754	1.67	0. 25	0. 26	0.01
	266	0.05	0.51	0.31	8.74	0. 595	1.62	0.07	0.06	0.03
	267	0. 21	0.61	0.60	15, 93	0. 528	2. 46	0.34	0.17	0.12
	268	0.15	0.23	0. 96	13. 52	0. 402	2.07	0. 42	0. 28	0.14
	269	0.10	0.79	0. 43	5. 61	0. 046	3.16	0. 14	0.06	0.03
	270	0.15	0.24	0.89	16, 22	0. 789	0.26	0. 81	0.40	0. 13

【表26】 [0065]

59

	数9-	- 2 本発明	月銅					(質量%)		
	No.	Ţi	Z r	Ta	H f	Co	Νi	Ü		
	241	0.118	1. 041	0. 597	_	<u> </u>	0. 72			
	242	0. 915	0. 451	1. 641	-	-	1. 38			
	243			-	0.338	—	2. 68-	. –		
	244	-	-	_	0.103	- ((3. 76	7.		
_	245	-	_	-	0.754	_	1.52	7-		
	246		-	_	0. 945	_	2. 34			
	247	_	_	_	0.339	_	0. 58	_		
	248	-	_	-	1.617	-	2. 73			
	249	0.410	-	_	0. 455	-	3. 20	-		
	250	0. 260	_	-	0. 507	-	1. 13			
	251	0.398		_	1.461	_	0. 59	-		
	252	1.468	-	_	1.955	-	3. 11	-		
	253	0. 153	-	-	1.729	_	3. 26			
	254	0.148	-	-	0.403	-	4. 91	_		
	255	-	0. 893	-	0.643		4. 92			
	256		1. 458	-	0.163	_	2. 55	_		
	257		1. 227	-	1.607		1. 75			
	258	-	0. 846	-	0. 642	-	4. 15			
	259	-	1. 017	_	1. 958		4. 18]		
	260		0. 399		0. 226	_	1. 03			
	261			1. 741	0. 097	_	3. 51	_		
	262	_	_	1. 531	0. 248	-	1. 25			
	263	-		1. 912	1. 371	-	0. 65	-		
	264	-	-	0. 554	0.116	1	3. 33	_		
	265		-	0. 145	0.176	ı	1. 31	-		
	266	_	_	0. 350	0. 219	-	3. 42			
	267	-	0. 335	1. 823	0.900	ı	1.63	-		
	268	-	0. 570	0. 249	1.891	1	4.74	_		
	269		1. 069	1. 298	0.885	_	4.80	_		
	270		0. 499	0.648	0.540	_	1.04	-		

[0066]

【表27】

安9-	−3 本事	も明備			(質量%)		
No.	P	S	0	D-CRS	HAZCRS	М%	
241	0.0120	0.010	0.006	2	168	20	
242	0.0271	0.003	0.018	6	143	32	
243	0.0277	0.007	0.009	3	159	- 9	
244	0. 0230	0.006	0.014	3	168	13	
245	0.0086	0, 004	0.019	4	147	18	
246	0.0089	0.009	0.002	2	174	19	
247	0.0194	0, 004	0.009	3	177	10	
248	0.0204	0.008	0.016	2	134	26	
249	0.0067	0.004	0.002	2	173	18	
250	0.0034	0.009	0.011	0	170	17	
251	0.0054	0.008	0.012	4	180	28	
252	0.0227	0.010	0.020	1	179	36	
253	0.0212	0.002	0.013	1	170	29	
254	0.0099	0.003	0.016	7	132	18	
255	0.0147	0.005	0.018	6	142	24	
256	0.0153	0.008	0.014	4	177	19	
257	0.0220	0.006	0.012	0	165	33	
258	0.0147	0.009	0.017	4	160	25	
259	0.0184	0.005	0.018	4	138	29	
260	0.0283	0.004	0.020	3	153	13	
261	0.0096	0.004	0.010	2	157	26	
262	0.0171	0.001	0.015	0	178	19	
253	0.0012	0.006	0.011	1	169	37	
264	0.0164	0.004	0.007	5	157	15_	
265	0.0286	0.003	0.016	6	170	9	
256	0.0176	0.010	0.009	5	136	14	
267	0.0082	0.010	0.018	1	133	33	
268	0.0253	0.002	0.004	1	139	31	
269	0. 0195	0.002	0.012	2	15δ	34	
270	0.0158	0.008	0.018	4	161	25	

 270
 0.0158
 0.008
 0.018
 4
 161

 D-CRS
 : 600 ℃、10万時間直線外挿クリープ推定破断強度の母材部と溶接部の差(IPa)

 HAZCRS
 : 落接部の 600℃、10万時間直線外挿クリープ

推定破断強度 (IPa) : 溶接熱影響部中のM₂₃C₆ 型炭化物中Mに占める (Ti %+Zr %+Ta %+Hf%) の値 м%

[0067]

【表28】

。 安10·	表10-1 本発明網								
No.	C	Si	Mn	Сг	Мо	W	V	Nъ	N
271	0.12	0.76	0. 21	17. 18	0. 976	1.07	0. 81	0.49	0.03
272	0.10	0.30	0. 26	12. 84	0.941	3.40	0.46	0.01	0.05
273	0.04	0. 26	0.90	13. 98	0. 512	3. 38	0. 57	0.34	0.15
274	0. 05	0.54	0.82	5.66	0. 537	0.52	1.00	0.19	0.06
275	0. 21	0.61	0. 25	11.51	0. 332	2.45	0.09	0. 19	0.09
276	0. 20	0.73	0.69	16.68	0.764	0.51	0.65	0.04	0. 21
277	0. 25	0.40	0.41	12. 40	0.647	2. 29	0.54	0.12	0. 25
278	0.18	0.63	0.46	15. 82	0.315	2. 32	0. 10	0.39	0.18
279	0.07	0. 15	0.33	12. 23	0. 620	1.77	0. 15	0.49	0.07
280	0.17	0.77	0.67	12. 23	0.886	1.68	0. 52	0.11	0.02
281	0. 30	0. 03	0. 95	13. 70	0. 948	1. 55	0. 57	0.39	0.09
282	0. 25	0.13	0.66	14. 65	0. 159	0.84	0. 13	0. 03	0.01
283	0. 12	0. 57	0.85	6. 34	0. 834	0. 64	0. 02	0.42	0. 22
284	0. 02	0. 03	0. 99	12.60	0. 319	0.38	0.09	0. 25	0. 20
285	0.18	0.73	0. 95	11. 85	0. 441	2.87	0.65	0.17	0.03
286	0.12	0. 21	1.00	8. 44	0. 550	0. 95	0.08	0. 35	0.04
287	0. 23	0. 67	0.21	6. 70	0. 468	0. 67	0. 19	0. 22	0.05
288	0.02	0. 05	0.84	11. 14	0. 047	1. 52	0.31	0. 19	0.04
289	0. 04	0. 55	0.78	6. 58	0. 613	2. 94	0.30	0. 19	0.08
290	0. 08	0.09	0. 29	10.30	0. 502	2, 72	0.47	0. 36	0.14
291	0. 09	0.10	0. 82	7. 14	0. 545	0. 32	0.66	0. 15	0.17
292	0.04	0. 46	0. 65	8. 10	0. 588	1.81	0. 23	G. 44	0.01
293	0.02	0. 26	0.86	10. 97	0. 960	3. 38	0. 98	0. 20	0.11
294	0. 27	0.16	0.92	13. 67	0.010	1. 15	0. 78	9. 30	0.19
295	0.16	0. 79	0.67	13. 99	0. 551	1.18	0. 94	0. 19	0.09
296	0.08	0. 48	0.41	9. 82	0. 933	2.93	0. 82	0. 28	0.12
297	0. 13	0. 27	0. 39	5. 54	0. 494	0. 92	0. 73	0. 21	0.13
298	0.11	0. 41	0.89	5. 52	0. 563	2.83	0. 52	0.18	0.08
299	0. 27	0. 79	0.97	7. 62	0. 973	3. 21	0. 53	0.34	0.05
300	0. 27	0. 10	0.50	16. 16	0.574	1. 50	0. 09	0.13	0.11

【0068】 【表29】

\

Ŕ۶

			(,									
67												
发10-	10-2 本発明網 (質量%)											
Na	Τi	Zτ	Ta	H f	Co	Ni	Cu					
271	_	1. 532	1.968	1. 534	_	2. 25	_					
272	-	1. 831	0. 924	1. 529	_	0. 42	_					
273	0.803	_	1. 189	1. 203		(1. 98						
274	1.794		0.446	1. 234	_	3. 76						
275	1.178	-	1.347	0. 282		4. 92	_					
276	0.669	_	1. 568	0.006	_	2.30	_					
277	1.865		1. 787	0.110	_	2. 35	_					
278	1.510	_	1.686	1. 249	_	4. 24	_					
279	0. 248	0. 985	-	1. 109	_	2. 42	_					
280	0.747	1. 654	-	0. 344	_	3. 25						
281	0.690	1. 627	-	0. 621	-	3. 56	_					
282	0.733	0. 594	-	0.632	-	2, 61						
283	1.562	1. 228	_	0.042	-	4. 34						
284	1.829	0. 192	-	1. 507		0. 81	_					
285	0. 239	0. 167	0.176	1. 724		0. 82	-					
286	0.432	0.819	0.623	0. 357	<u> </u>	1. 19	_					
287	1.083	1. 821	0. 789	1.070		1. 12	1					
288	1.896	1. 854	0. 352	0. 550		2. 25						
289	0.526	1. 566	0.959	1. 438	_	1. 33	1					
290	1.625	0. 646	0. 293	0. 424	_	4. 80	ı					
291	0.875	1	-	1	4. 92	4. 72	•					
292	1.948	-		-	1.30	2. 58	-					
293	0.540	-	-	_	1. 21	0. 25	_					
294	0.300		_	-	3.89	1. 47	_					
295	1.883	-	· -	-	1. 33	0. 73	_					
296	0. 993	_			4. 81	2. 10	1					
297	-	1. 883	-	-	1. 49	2.39	_					
298		1. 083	-		2.60	3. 16						
299	_	1. 692	_		4. 94	1. 25	_					
300	-	0.390	-	_	0. 53	3. 06	_					

[830]

(36)

69

U 3								
表10-	- 3 本 3		£%)					
No.	P	ø	0	D-CRS	HAZCRS	м%		
271	0.0093	0.002	0.019	8	158	51		
272	0.0095	0.004	0.003	6	174	45		
273	0.0271	0. 009	0.015	4	137	31		
274	0.0121	0.005	0.004	2	176	33		
275	0.0193	0.006	0.004	1	166	28		
276	0.0288	0.008	0.013	2	162	31		
277	0.0210	0. 007	0.017	5	141	36		
278	0.0208	0.006	0. 015	1	156	47		
279	0.0233	0.007	0.002	4	134	30		
280	0.0086	0.004	0.004	4	154	31		
281	0.0164	0.006	0.018	6	142	29		
282	0.0124	0.005	0.012	2	177	23		
283	0.0212	0.006	0.012	1	137	36		
284	0. 0232	0.006	0. 0 0 5	6	148	38		
285	0.0132	0.004	0.008	5	140	27		
286	0.0018	0.007	0.006	4	139	22		
287	0.0133	0.002	0.017	2	173	44		
288	0.0283	0.003	0.008	4	146	48		
289	0.0116	0.002	0.015	3	134	42		
290	0.0186	0.004	0.015	5	141	37		
291	0.0142	0.009	0.006	0	144	19		
292	0.0086	0.002	0.012	6	172	29		
293	0.0114	0.004	0.002	4	151	12		
294	0.0184	0.009	0.011	3	159	9		
295	0. 0239	0.005	0.016	6	150	22		
296	0.0087	0.007	0.006	4	150	14		
297	0.0127	0.002	0.006	4	164	21		
298	0.0157	0.003	0.003	0	168	15		
299	0. 0279	0.008	0.002	3	140	23		
300	0. 0296	0.003	0.002	3	157	11		

300 0.0296 0.003 0.002 3 157 1
D-CRS : 600 ℃、10万時間直線外秤クリーブ推定破断強度
の母材部と溶接部の差(IPa)
HAZCRS:溶接部の 600℃、10万時間直線外秤クリーブ

権定破断強度 (PB) : 溶接影影響部中のM23Cs 型炭化物中Mに占める (Ti%+2r%+Ta%+Hf%)の値 М%

[0070]

【表31】

	表11-	-1 2		(質量%)						
	No.	С	Si	Мп	Cr	Мо	W	V	NЬ	N
	301	0. 21	0.16	0. 55	9.60	0.692	0.45	0.04	0.45	0. 24
	302	0.04	0.07	1.00	11.83	0.171	1.18	0. 69	0.47	0. 03
	303	0. L5	0.09	0.50	14.04	0. 827	1.50	0.42	0.37	0. 05
	304	0.05	0.48	9. 93	7. 76	0. 514	0.83	0.03	0.05	0.24
	305	0. 13	0.33	0. 95	16. 75	0.069	0.36	0.37	0. 20	0. 10
	3-0-6.	0. 20	0.30	0.84	13.00	0. 319	1.12	0. 28	0.46	0.06
\mathcal{L}	307	0.07	0.65	0. 86	13.75	0. 599	2.61	0. 10	0. 27	0. 21
	308	.0.13	0.07	0.49	10.48	0. 256	2.63	0.64	0. 29	0. 02
	309	0.03	0.40	0.39	7. 51	0. 118	2. 29	0. 27	0. 19	0.06
ĺ	310	0.17	0. 72	0. 43	15. 69	0.023	1.04	0.79	0.38	0.04
	311	0.20	0.13	0. 48	6. 91	0.801	1.64	0.08	0. 29	0.18
بر	JY Y	0.08	0.05	0. 80	17.97	0. 794	0. 25	0. 43	0. 32	0. 17
	373	0.05	0.36	0.87	X 7.79	0. 338	2. 92	0. 21	0. 41	0. 24
≥ 1	3-1-43	0.67	0.15	0. 95	13. 30	0. 768	2. 54	0. 73	0.47	0. 10
	315	0.22	0.08	0. 52	6.30	0. 424	1.85	0. 35	0.41	0.06
	316	0.18	0.40	0. 65	17. 17	0. 531	0.29	0. 39	0. 17	0. 22
- 1	317	0.19	0.21	0. 79	17. 72	0. 737	2.30	0. 20	0.39	0. 16
	318	0.20	0.55	0. 42	12. 37	0. 565	2.34	0.59	0. 25	0. 10
1	319	0.15	0.51	0. 61	11. 99	0. 964	3. 24	0. 42	0. 41	0.11
	320	0.16	0.74	0. 43	14. 49	0. 270	2. 76	0. 04	0. 31	0. 03
	321	0.02	0.34	0. 54	17.69	0.808	2.03	0. 73	0. 35	0. 19
	322	0.13	0.74	0. 43	6. 51	0. 925	0.51	0. 88	0. 21	0.18
- 1	323	0.29	0.64	0. 34	11.22	0. 948	2. 58	0.81	0. 05	0. D8
	324	0.15	0.30	0. 56	16. 62	0. 212	1.09	0. 84	0. 27	0. 22
	325	0.27	0.76	0.55	7. 85	0.066	2. 15	0. 82	0. 32	0. 08
- 1	326	0.15	0.73	0. 98	8. 57	0.328	0. 23	0. 59	0.10	0. 08
ı	327	0.17	0.07	0. 90	16.38	0. 324	1.35	0. 49	0.02	0. 09
ı	328	0.15	0.21	L. 00	18.52	0. 413	3. 37	0.79	0.02	0. 17
ı	329	0. 19	0.26	0. 36	7.00	0.945	0.84	0. 92	0.50	0. 17
l	330	0.09	0.10	0. 43	11. 53	0. 243	3. 12	0. 70	0.40	0.06

(37)

[0071] [表32]

	表11-	- 2 本発明	月午			(質量%)		
	No	Τi	Ζr	Ta	H f	Со	Ni	Çu
	301	-	1. 822	-	_	0. 53	0. 58	
	302	_	0. 712	_	-	4. 25	2.69	
	303	0. 574	0. 683	-		1. 21	3. 71	
	304	1. 971	1. 393	-	-	2. 54	0.50	-
	305	0. 951	0. 559	-	_	0. 57	4. 25	
,	306	0.147	1. 851	_	_	1. 46	2.29	<u></u>
$\rightarrow \swarrow$	307	X 1: 251	L. 941	_	-	2. 12	0.94	7-
	308	1. 925	0. 495	-		1.71	1.80	-
	309	_	-	0. 602	-	4. 25	1, 71	_
	310		_	0. 709	-	4. 21	4. 71	
	311	_	-	0. 651		3. 13	0. 35	
	312	-	-	1. 113		0. 25	4. 68	-
	313	-	-	1. 738	-	1. 96	2. 45	
	314	1	-	0. 233	_	0. 29	2. 57	-
	3 1 5	1. 277	1	1. 252	1	4.05	4. 16	
	316	1. 752	1	1. 482	-	0.48	1. 73	
	317	1.867	1	1. 586	-	0. 75	1, 61	_
	318	0. 258	1	1. 229	_	4. 10	3.06	_
	319	1.616	1	0. 091	-	4. 93	0.46	
	320	1.633	1	1. 842	1	2. 47	2. 65	
İ	321	ŀ	0. 207	0. 156	-	0.70	4. 02	
	322	1	0. 750	0. 712	-	3. 68	1. 40	
	323	-	0. 823	1. 165		0. 99	1. 22	٠.
	324		1. 106	1. 196		1.43	0. 25	-
	325		0. 272	1. 475	_	1. 84	4. 92	
	326	-	0. 980	1. 667		1.38	4. 80	
	327	0. 959	1. 913	1. 452	_	4. 15	3. 97	_
	328	0. 239	1. 730	1. 484		2.05	1. 60	
	329	0. 234	0. 142	0.479		1.62	4. 15	
	3 3 0	0. 586	0. 789	1. 078	_	4.41	1. 21	

[0072]

73

【表33】

表11-	- 3 本 9	的明氣			(質量%)			
No.	P	S	0	D-CRS	HAZCRS	М%		
301	0.0006	0.008	0.018	3	149	19		
302	0.0259	0.009	0.019	6	142	19		
303	0.0106	0.004	0.010	7	139	17		
304	0.0248	0.009	0.018	4	167	39		
305	0.0186	0.006	0.010	4	131	19		
306	0.0028	0.010	0.012	6	156	28		
307	0.0166	0.006	0.012	1	172	36		
308	0.0106	0.008	0.015	5	156	29		
309	0.0243	0.008	0.010	1	134	17		
310	0.0235	0.009	0.012	1	137	10		
311	0.0029	0.007	0.017	3	140	13		
312	0.0171	0.007	0.004	7	172	15		
313	0.0018	0.009	0.009	1	160	20		
314	0.0268	0. 0 0 3	0.017	4	133	16		
315	0.0125	0.004	0.016	3	167	34		
316	0.0286	0.007	0.014	1	141	38		
317	0.0256	0.002	0.015	6	133	31		
318	0.0133	0.009	0.009	6	169	18		
319	0.0016	0.009	0.019	6	179	21		
320	0.0008	0.009	0.005	6	139	41		
321	0.0209	0.008	0.002	4	177	15		
322	0.0271	0.009	0.016	2	171	17		
323	0.0147	0.006	0.015	0	174	22		
324	0. 0232	0.003	0.007	0	164	28		
325	0.0032	0. 005	0.015	4	143	26		
326	0.0239	0.004	0.009	1	139	33		
327	0.0065	0.006	0.005	2	180	40		
328	0.0204	0.006	0.018	1	143	33		
329	0.0012	0.006	0.008	7	131	14		
330	0. 0183	0.002	0.018	Ö	172	31		

[330 | 0.0183 | 0.002 | 0.018 | 0 | 172 | D-CRS : 600 ℃、10万時間直線外挿クリープ推定破断強度 の母材部と搭接部の差(IPa) HAZCRS: 溶接部の 600℃、10万時間直線外押クリープ

| 検定部が強度 (IPa)
| : 溶接影影響部中のM₂₉C₆ 型炭化物中Mに占める
| (Ti%+Zr%+Ta%+H1%) の値

[0073]

【表34】

丧12-	-1 *	米発明4	1				(質5	2%)	
Na	С	Si	Mn	Сг	Ма	W	V	NЬ	N
331	0.10	0.74	0. 29	14.89	0. 132	1. 34	0.43	0. 12	0.14
332	0.03	0.13	0. 20	λ 8.54	0. 953	3, 26	0. 95	0. 33	0.14
333	0.10	0.47	0.84	16. 34	0. 552	1. 73	0.14	0. 45	0. 03
334	0. 29	0.07	0.46	10.07	0.749	2.80	0.77	0. 41	0. 23
335	0.24	0.76	0.95	7. 19	0.887	2. 62	0. 23	0. 11	0. 24
336	0. 21	0.05	0.56	5. 37	0.799	2. 30	0. 31	0. 45	0. 25
337	0.14	0. 18	0.76	15. 68	0. 326	2. 95	0. 87	0. 40	0. 22
338	0. 28	0.62	0. 53	16. 48	0.800	0.76	0. 26	0. 34	0. 24
339	0.14	0.06	0.44	12.09	0.065	3. 41	0.30	0. 44	0.02
340	0. 26	0. 35	0.84	6. 87	0. 444	2. 10	0. 81	0. 14	0.12
341	9. 15	0. 56	0. 52	11.65	0. 278	2. 91	0.67	0.09	0.16
342	0.21	0. 56	0. 54	17, 85	0.403	0. 32	0.67	0. 45	0.19
343	0. 23	0. 24	0.36	10. 32	0.656	0.43	0. 67	0. 16	0.08
344	0.17	0.63	0. 57	6. 44	0. 375	1.02	0. 50	0. 37	0.13
3.45	0.29	0.05	0. 52	17. 17	0. 401	1.58	0. 51	0. 27	0.07
346	0.08	0. 31	0.99	14. 24	0.060	1.53	0.03	0.50	0. 10
347	0.23	0.12	0.74	15. 10	0.691	2.00	0.37	0.50	0.06
348	0.26	0. 52	0.84	11. 02	0.629	0.79	0.88	0. 18	0. 03
3 4 9	0.26	0. 22	0.77	12. 93	0. 212	0.64	0.41	0.44	0.21
350	0.19	0. 25	0.38	5, 69	0. 273	1.06	0.29	0.48	0. 21
351	0.28	0.09	0.35	13.06	0.640	1.43	0.84	0. 45	0.09
352	0.21	0.40	0. 95	13. 62	0.668	2.94	0. 91	0. 28	0.07
353	0.21	0. 67	0.85	11. 63	0. 684	3. 36	0.85	0. 36	0.09
354	0. 23	0. 36	0.31	11.46	0. 026	0.51	0.97	0. 39	0.14
355	0.09	0. 54	0.81	17. 53	0. 522	0.44	0.13	0.03	0.04
356	0.03	0.66	0. 61	8.04	0.019	2,60	0. 15	0. 43	0. 23
357	0.28	0. 62	0.37	6.98	0. 339	1.51	0.85	0.03	0. 20
358	0.22	0. 67	0.78	12.20	0. 327	1.57	0, 10	0. 24	0.14
359	0.10	0. 29	0.90	8. 67	0. 824	2. 27	0. 71	0. 47	0.03
360	0.15	0. 53	0.60	7. 17	0.663	3.05	0.54	0.40	0.17

【0074】 【表35】

77

表12-	- 2 本発		(質:	£%)			
No.	Ti	Zr	Ta	H f	Co	Ni	C
331	1.965	0.352	1. 955	-	2. 43	3. 98	1
332	0.054	0.505	1. 795	-	4.50	2.06	-
333	-	-	_	1. 693	0.23	4.31	-
334	_	_	_	1.243	0.81	0. 29	-
335	_	-	_	0.129	3.07	3. 63	-
336	-			0.034	1.47	3. 98	-
337			-	0. 516	4.78	0. 50	-
338		-		1.532	2.57	2. 03	-
339	1. 707	_	-	0. 482	1. 32	2. 97	-
340	1. 592	-	-	1. 121	2. 61	2. 54	-
341	1. 218	-	_	1. 121	3. 24	4. 73	_
3 4 2	0. 266	-	-	0. 167	2. 46	3. 99	ł
3 4 3	1. 393	-	-	1. 917	1.86	4. 32	ı
3 4 4	0. 313	-	-	1. 054	3.06	2. 51	ı
3 4 5	-	0. 257	•	0. 237	0.45	4. 98	-
346	-	1. 130	1	1. 148	2.86	3. 76	-
347	-	0. 65 2	1	0. 444	4. 71	2.88	-
3 4 8		1. 522		0. 823	2.82	1.52	-
3 4 9	-	1.408		1. 947	3.61	1. 32	-
350	-	0. 96 5	i	0. 483	3.85	3.85	_
351	-	_	1, 949	1.098	2. 78	1. 15	-
352		-	1. 906	1. 463	1. 98	1. 98	_
353	-	_	0.919	0. 267	3. 09	0. 85	
354			1. 638	0.168	0. 56	1.74	_=
355		_	1.800	0.808	3.05	3. 71	
356	_	_	0. 987	1. 875	0. 29	1. 33	
357	_	0. 199	0.960	1. 110	1.18	1.10	
358		1. 373	1. 368	1. 138	4.86	2. 12	
359		0. 261	0.847	1. 601	0.87	3. 55	
240		0.544	1 000	0.907	50.0	4 20	

[0075] [表36]

				(14)		
81						
表12-	-3 本列	色明鋼			(質)	₹%)
No.	P	S	0	D-CRS	HAZCRS	М%
331	0.0076	0.003	0.018	5	169	47
332	0.0083	0.006	0.003	2	149	26
333	0.0161	0.003	0.009	5	141	18
334	0. 0256	0.003	0.014	2	171	24
335	0.0026	0.003	0.015	1	168	14
336	0.0016	0.003	0.008	7	159	10
337	0.0027	0.004	0.019	В	172	12
338	0.0012	0.003	0.006	1	135	21
339	0.0218	0.005	0.005	2	151	24
340	0. 0299	0.009	0.013	1	172	27
341	0.0206	0.001	0.007	6	175	30
342	0.0189	0.006	0.004	2	140	14
3 4 3	0.0199	0.009	0.009	4	168	33
3 4 4	0.0036	0.008	0.020	1	162	23
3 4 5	0.0100	0.002	0.014	1	151	16
346	0.0193	0.003	0.007	5	151	23
347	0.0266	0.010	0.016	6	170	18
348	0. 0273	0. 003	0.017	2	156	32
349	0.0012	0.003	0.019	3	148	40
350	0.0180	0.008	0.007	6	147	23
351	0.0281	0.009	0.007	6	156	35
352	0. 0254	0.003	0.016	5	153	36
353	0.0086	0.008	0.013	6	166	16
354	0. 0139	0.003	0.002	2	148	21
355	0. 8224	0.006	0.011	8	151	31
356	0.0149	0.005	0.006	3	153	28
357	0.0166	0.008	0.005	8	132	24
358	0. 0220	0.006	0.003	6	166	38
359	0. 0262	0.004	0.018	0	131	33
360	0. 0095	0.007	0.018	7	157	27

D-CRS : 600°C、10万時間直線外揮クリープ推定破断強度

の母材部と溶接部の差(MPa) HAZCRS:溶接部の 600℃、10万時間底線外鎖クリープ

推定破斷強度 (IPa)

м% : 溶接無影響部中のM₂₃ C₆ 型炭化物中Mに占める (Ti N+Zr N+Ta N+H f N). の値

[0076]

【表37】

				•	- •				
83									
表13-	-1 2	光明	1					(質	2%)
No.	C	SI	Mn	Cr	Мо	W	V	Νb	N
361	0. 04	0.08	0. 54	X 5.41	0. 168	3. 33	0.89	0. 19	0.17
362	0. 30	0.77	0. 60	8.00	0. 184	2. 60	0. 64	0.02	0. 22
363	0.16	0.13	0. 23	12.67	0. 053	2.00	0.10	0. 28	0.18
364	0.14	0.37	0. 92	17. 37	0. 596	0.93	0.11	0.41	0.24
365	0. 21	0.59	0. 94	6. 88	0. 665	2. 20	0. 49	0.34	0.11
366	0. 03	0.66	0. 54	√ 5. 17	0.092	0.30	0.11	9. 22	0.01
367	0. 26	0.44	0.40	10.05	0. 206	2. 93	0. 28	0.46	0.01
368	0.30	0.60	0. 39	6. 34	0. 342	2.94	0.34	D. 49	0. 20
369	0.07	0.22	0.38	18.00	0. 346	3. 10	0.63	0.48	0.16
370	0.13	0.34	0. 63	16. 75	0. 539	2.88	0. 98	0. 10	0.11
371	0.13	0.06	0. 61	7. 17	0. 277	3. 38	0. 26	0.01	0. 25
372	0. 03	0.04	0. 20	6. 57	0.387	2. 43	0. 76	0. 13	0.17
373	0. 20	0.53	0.46	6. 21	0. 201	1.10	0.83	0. 13	0. 20
374	0. 18	0.62	0. 86	17. 01	0.057	2. 16	0. 81	0. 42	0.17
375	0. 05	0.18	0. 47	10. 84	0.782	3. 42	0. 54	0.42	0. 05
376	0. 06	0.64	0. 35	11. 51	0.730	2.69	0.85	0. 97	0. 03
377	0.17	0.33	0. 79	10.50	0. 230	2. 75	0.58	0. 01	0.09
3 7 8	0.02	0.28	0. 43	5. 52	0.600	2. 99	0.05	0. 16	0.05
379	0.02	0.35	0.34	7. 34	0. 681	2. 89	0.10	0. 44	0. 12
380	0.11	0.43	0. 42	14. 27	0.844	2.01	0. 59	0. 30	0. 02
381	0. 25	0.40	0.53	11.04	0.407	3. 04	0.36	0. 13	0. 20
382	0.09	0.12	0. 52	14, 75	0.187	2.10	0. 21	0. 09	0.12
383	0. 18	0.62	0. 27	10. 49	0. 036	2.00	0. 97	0.10	0.12
384	0.03	0.23	0. 85	9. 05	0. 284	2. 18	0.04	0.10	0.15
385	0.16	0.38	0. 53	8. 42	0.777	2. 12	0. 20	0. 49	0.06
386	0.11	0.54	0. 37	12.80	0.344	2.88	0. 79	0. 44	0.03
387	0. 25	0.60	0.64	7. 02	0. 311	0.65	0.66	0.37	0.04
388	0. 25	0.02	0. 42	15. 15	0. 529	1.50	0. 16	0. 21	0.17
389	0. 21	0. 25	0, 77	15. 44	0. 331	3. 23	0. 10	0. 11	0. 13
390	0. 07	0.77	0. 76	12. 22	0. 544	0. 32	0. 31	0. 23	0. 13

[0077] [表38]

1. 31

0. 76

85 表13-2 本発明網 (黄量%) Ti Ta Co Ni Cu Hf No. Zτ 361 0.887 1. 780 1.610 0. 52 2. 29 362 1.507 2.62 0.45 0. 994 0. 592 3 6 3 0.348 0. 174 1. 543 1. 10 0. 69 364 1.622 0. 191 0. 385 | 4. 84 | 2. 25 1. 781 1. 336 1.719 1.03 1.95 365 3 5 6 1.478 0. 290 0.230 0. 91 | 3. 83 367 0.402 1.705 1.569 1.28 2.27 368 0. 205 1. 264 1. 418 1. 34 1. 28 1. 445 0. 31 4. 89 1. 322 2. 21 2. 70 1. 712 1. 41 1. 11 3 6 9 1.568 1.846 370 0. 168 0.064 3 7 1 1.679 1. 062 _ _ 0. 775 372 0. 508 1. 290 4. 35 1. 72 373 1.108 1.097 1.754 0.70 3.83 374 0.365 0. 493 1. 750 1. 60 4. 18 3 7 5 0. 197 0.371 0.494 1. 962 | 3. 91 | 4. 41 376 0.307 1. 385 0.355 1. 051 4. 39 1. 30 1. 689 2. 27. 3. 65 377 0.404 0. 354 0.230 3 7 8 1.966 1. 537 1. 288 0. 549 | 1. 58 | 1. 13 379 0.872 1. 011 1.703 1. 293 1.49 4.89 380 0. 768 1. 341 1.345 0. 632 3. 70 4. 63 381 1.274 0.78 382 0.074 1.77 383 1.825 1. 57 1. 239 384 0. 80 385 0.962 _ _ -_ 0. 95 386 0.660 -1. 73 387 1. 386 1. 95 388 0. 581 1. 32 0. 640 389

[0078]

390

0. 253

【表39】

安13-	- 3 本学	的明朝			(實量%)			
No	P	S	0	D-CRS	HAZCRS	М%		
361	0. 0268	0.009	0.015	4	170	44		
362	0. 0284	0.003	0.020	2	149	37		
363	0.0094	0. 005	0.019	6	146	30		
364	0.0242	0.006	0.008	7	138	26		
365	0. 0236	0.005	0.014	5	180	51		
366	0. 0928	0.007	0.014	6	148	20		
367	0.0184	0.004	0.004	1	169	40		
368	0.0144	0.002	0.002	4	173	27		
369	0.0075	0. 005	0.002	5	161	43		
370	0.0200	0.002	0.013	1	161	26		
371	0.0026	0.009	.0.003	5	177	4C		
372	0.0098	0.003	0.005	4	136	26		
373	0. 0222	0.005	0.008	5	164	42		
374	0.0199	0.004	0.019	2	166	26		
375	0. 0128	0.008	0.004	2	170	30		
376	0.0109	0.006	0.010	4	176	32		
377	0. 0239	0. 005	0.003	6	165	26		
378	0.0029	0.005	0.011	4	162	46		
379	0.0019	0.004	0.009	0	146	50		
380	0.0018	0.004	0.006	0	146	45		
381	0. 0121	0.010	0.016	3	137	24		
382	0.0282	0. 005	0.008	5	173	9		
383	0.0151	0.002	0.008	6	133	26		
384	0. 0279	0.004	0.012	4	168	20		
385	0.0018	0.010	0.008	3	156	18		
386	0. 0213	0.008	0.002	3	175	13		
387	0.0223	0.002	0.020	6	153	22		
388	0.0293	0.005	0.020	0	168	17		
389	0.0077	0.009	0. 018	6	146	16		
3 9 0	0 0122	0.005	0.011	3	167	11		

390 0.0122 0.005 0.011 3 167 11
D-CRS : 600 ℃、10万時間直線外挿クリープ推定破断強度
の母材部と落接部の差(MPa)
HAZCRS: 溶接部の 600℃、10万時間直線外挿クリープ

М%

[0079]

【表40】

0.7

表14.	-1 2	×発明	Ŗ <u> </u>				(質量%)		
No.	U	Si	Мn	C	Мо	W	V	Nъ	N
391	0.08	0. 27	0. 26	16. 45	0.018	2.17	0. 65	0. 02	0.01
392	0. 20	0.20	0. 73	6. 46	0. 575	3. 27	0.94	0. 12	0.09
393	0.08	0.02	0.45	6. 10	0.063	3.07	0. 05	0. 46	0.08
394	0.12	0.79	0.49	6. 75	0.806	2.70	0. 26	0. 21	0. 07
395	0.11	0. 43	0.71	12.68	0. 144	3. 22	0. 92	0. 03	0.02
396	0. 02	0.75	0.58	8. 94	0. 916	0.85	0. 91	0. 34	0. 25
397	0. 23	0.07	0.78	12. 81	0. 463	3. 28	0. 53	0. 31	0.12
398	0. 25	0. 22	0.37	9. 20	0.114	1.71	0. 13	0. 12	0. 20
399	0.19	0. 28	0.41	8. 84	0. 204	0.54	0. 03	0. 41	0.07
400	0.15	0. 13	0.38	16. 29	0.071	0.58	0. 07	0. 36	0. 07
401	0. 21	0.80	0.54	16. 16	0.047	2. 22	0.09	0. 41	0.03
402	0.19	0. 22	0.77	12. 97	0. 962	0.66	0.42	0.44	0.15
403	0. 03	0. 21	0. 94	17. 69	0. 675	0.67	0.40	0. 16	0. 16
404	0. 28	0.65	0. 50	8. 60	0.509	3.34	0. 38	0. 20	0.14
405	0. 02	0.63	0. 55	16. 04	0. 796	3.15	0. 18	0. 25	0.04
406	0, 20	0.41	0. 53	5. 40	0.872	2. 90	0. 63	0. 46	0.06
407	0.07	0. 24	0.31	6. 94	0.081	2. 01	0. 58	0. 03	0.18
408	0. 15	0.40	0.57	5. 67	0.747	1. 62	0. 86	0.34	0.10
409	0.24	0.75	0.79	5. 97	0. 219	2.81	0. 81	0. 33	0.14
410	0.02	0. 39	0.81	5. 60	0. 327	3. 43	0. 28	0. 16	0. 04
411	0.15	0.74	0. 92	15. 52	0.905	1. 25	0.08	0.01	0. 23
412	0.02	0. 52	0. 58	7. 52	0. 787	2. 33	0.04	0. 28	0. 19
413	0.15	0. 75	0.87	5. 49	0.322	1.19	1.00	0.40	0. 11
414	0.21	0.15	0. 83	13. 7 6	0.326	0.60	0.34	0. 04	0. 10
415	0.29	0. 55	0. 77	10.90	0. 159	3. 33	0. 84	0.11	0. 09
416	0. 20	0.23	0. 53	7.47	0. 628	2.16	0.37	0. 03	0. 05
417	0.04	0. 27	0. 79	8. 05	0.094	1.60	0.75	0. 22	0. 19
418	0.20	0.12	0. 21	16. 99	0.876	1.04	0.82	0. 35	0. 22
419	0.19	0.05	0. 66	12. 52	0.822	3. 27	0.91	0. 33	0. 22
420	0. 11	0.73	0.82	5. 70	0.768	2.80	0.88	0. 33	0. 05

(46)

【0080】 【表41】

表14.	<u> </u>								
Na	Ti	2 r	Ta	H f	Со	Ni	Cu		
391	_	0.091	_	_	<u> </u>		0. 28		
392	_	0.838				_	1. 35		
393	1. 534	1.141	-	_	_	_	0. 98		
394	1. 298	0.693	T	-	_		0. 69		
395	1. 068	0.158	-			_	1.96		
396	1. 546	0. 191		_	_	-	0.91		
397	0. 417	1. 485			_	_	1.75		
398	1. 320	1.709	_		_	-	0.58		
399	_	-	1. 218		_		0.70		
400	_	-	0.977			-	0.92		
401	-	_	0.050	-	_		0.94		
402	-		1. 100	-	-		0.46		
403	1	-	0. 792	. ~			0. 99		
404	_ :	-	1. 824	-	-	-	1. 34		
405	0. 337	•	1.856	-	-	_	0. 31		
406	0. 783	ı	0. 562	,		-	1. 20		
407	0. 325	•	1. 566	1	-	-	1. 01		
408	0. 636	-	0. 619	1	1	-	0.37		
409	1. 374	1	1. 370	1	1	1	1.68		
410	1. 231		0. 468	•	-	1	1. 01		
411	-	1. 846	0.600	1	-	1	1. 71		
412	-	0. 615	0. 427	-	<u> </u>		0.75		
413	-	0. 388	0. 627	_	-	_	0. 56		
414	_	0. 845	1. 877	_	-		1. 72		
415	-	1.652	0.850	_	-	_	0. 36		
416		0. 485	1. 208	_	_	-	1. 57		
417	1. 632	1. 997	0. 622	_	-	-	1. 45		
418	1. 522	1.895	1. 780			-	1. 51		
419	1. 575	0.817	1. 332	-		-	1. 47		
420	0.458	0.455	1 965		_		1 02		

[0081]

			Ć.	10)		
93						
表14-	<u>-3 本列</u>	明年				2%)
No.	P	S	0	D-CRS	HAZCRS	M%
391	0.0084	0.009	0.016	3	158	12
392	0. 0210	0.002	0.019	7	146	20
393	0.0002	0.004	0.017	3	159	31
394	0.0011	0.006	0.017	5	175	24
395	0.0184	0.009	0.005	1	172	23
396	0.0028	0. 005	0.009	3	177	28
397	0. 0239	0.004	0.005	0	143	23
398	0.0024	0.005	0.009	5	149	29
399	0. 0226	0.007	0.008	3	148	21
400	0. 0200	0.009	0.010	6	162	19
401	0.0048	0.003	0.020	3	175	11
402	0.0167	0.003	0.006	3	163	19
403	0. 0058	0.003	0.014	2	153	12
404	0.0274	0.009	0.002	6	149	21
405	0.0167	0.003	0.005	5	178	28
406	0. 0132	0.009	0.009	3	167	22
407	0. 0125	0.009	0.014	2	145	25_
408	0. 0247	0. 001	0.004	5	165	23
409	0. 0299	0.002	0.017	2 5 3 5	153	31
410	0. 0227	0.009	0.019	5	138	19
411	0. 0138	0.004	0.017	7	147	31
412	0. 0276	0.008	0.008	1	158	13
413	0. 0149	9. 005	0.008	6	150	21
414	0. 0152	0.008	0.014	1	173	34
415	0.0091	9. 006	0.014	2	158	30
416	0. 0210	0.007	0.003	7	180	24
417	0.0016	0.009	0.008	5	168	42
418	0.0056	0.001	0.006	6	175	47
419	0. 0133	0. 001	0.014	4	178	38
420	0.0046	0.002	0.018	2	155	29

| 420 | 0.0046 | 0.002 | 0.016 | 2 | 133 | 148 | D-CRS : 600 ℃、10万時間直線外秤クリーブ推定破断強度 の母材部と溶接部の差(IPa) | HAZCRS:溶接部の 600℃、10万時間直線外押クリープ

м%

[0082]

【表43】

表15-	-1 2	本発明 針	Ę					(質質	2%)
No.	С	Si	Мп	Cr	Мо	W	V	NЬ	N
421	0. 20	9.06	0. 54	13. 75	0. 541	2.37	0. 55	0. 28	0. 24
422	0.13	0.27	0. 52	8. 69	0. 489	1.47	0. 25	0.10	0.06
423	0. 28	0.43	1.00	14. 23	0. 934	2.83	0.32	0. 42	0.17
424	0.17	0.44	0.65	15. 29	0. 219	0.94	0.09	0.20	0.18
425	0. 19	0.54	0. 56	16. 25	0. 678	0.26	0.89	0.34	0. 16
426	0.15	0. 21	0. 57	8. 35	0. 646	1.85	0.10	0. 27	0. 21
427	0.14	0.51	0.57	9.18	0. 465	0. 25	D. 99	0.14	0. 03
428	0.11	0. 52	0.82	16.50	0.964	3.17	0.46	0.13	0.08
429	0.02	0.12	0.80	15. 18	0. 984	3. 45	0. 30	0.39	0. 18
430	0. 25	0.73	0.75	9. 38	0.845	2.16	0. 85	0.37	0. 07
431	0.19	0.67	0.98	16. 87	0. 910	0.50	0.48	0.46	0.06
432	0. 20	0.59	0. 53	15. 88	0.010	2. 85	0. 99	0.10	0. 23
433	0. 26	0.76	0.48	17. 11	0. 459	2.03	0. 74	0.19	0. 19
434	0. 01	0. 56	0. 29	12. 13	0.611	0.83	0. 07	0. 16	0. 25
435	0.14	0.53	0. 24	5. 06	0. 293	0.33	0. 76	0.17	0.13
436	0.02	0. 27	0. 98	13. 47	0. 848	1.67	0. 22	0. 38	0.16
437	0.18	0. 52	0. 80	15.67	0.112	2.64	0. 24	0. 47	0. 17
438	0. 29	0.37	0. 36	16.09	0.914	2.72	0.67	0.37	0. 01
439	0. 15	0.09	0. 73	12. 59	0. 107	1. 37	0.36	0.48	0. 12
440	0. 29	0.33	0. 98	15.88	0.997	1. 30	0.61	0. 23	0. 09
441	0. 24	0.57	0. 57	17. 53	0. 946	2. 01	0. 29	0.02	0. 02
442	0.08	0.67	0. 58	15. 17	0. 280	1.30	0. 23	0.03	0. 21
443	0. 21	0.13	0. 47	13. 45	0. 340	1.95	0. 25	0.18	0. 15
444	0.14	0.38	0. 51	16. 45	0. 446	3. 35	0. 19	0.37	0.04
445	0.12	0.50	0. 57	9. 23	0. 450	1. 73	0.88	0.05	0. 09
446	0.10	0.76	0. 53	L5. 66	0. 189	3.11	0. 69	0.11	0. 12
447	0.17	0.25	0. 64	14. 01	0. 981	0.37	0.42	0.47	0.10
448	0. 15	0.41	0.38	15. 19	0. 190	1. 23	0.92	0.32	0. 24
449	0. 27	0.32	0. 42	10. 62	0. 630	1.82	0. 53	0.31	0.13
450	0.06	0.65	0. 22	11. 12	0. 646	3. 26	0.58	0. 12	0.10

【0083】 【表44】

95

表15-2 本発明鋼 (量%)										
No	T i	Ζr	Тa	Нf	Co	Ni	Cu			
421	1. 848	1. 455	1. 334	-	-	-	0.74			
422	1. 406	0. 521	1. 130			_	0. 37			
423		_	-	0.547	_		1.41			
424		-	_	1.144	_	-	1. 76			
425			_	0.462	-	-	0. 23			
426		-		0. 253	_	<u> </u>	1.01			
427		-		1. 189	-	_	1.12			
428		-		1. 944	_	_	0. 25			
429	0. 479			0.181	-	-	0. 82			
430	0. 577			1. 580	=	-	0. 72			
431	1.898	_	_	0. 818	—	-	1. 47			
432	1. 113	-	_	1. 575		-	1. 88			
433	1. 885	_	-	1.512	_		0. 73			
434	1.884	_	_	0. 287	1	_	0. 43			
435	-	0. 946	-	0. 587	_		1. 60			
436		1.300		1.065	-		1. 22			
437		0. 795	-	0.427		_	0. 82			
438		1.07 5	-	0. 310	_		1. 90			
439		0.840		1. 414		`	1. 46			
440		1. 756	-	0. 398	_	_	1. 89			
441	_	-	1. 768	1. 928	-		0. 22			
442	_	-	1.086	1. 688	_		0.64			
443	_		1. 890	1. 344	-	_	1. 95			
444			1. 902	0. 556	_		0. 27			
445	_		0. 821	1. 035	_	<u> </u>	0.71			
446			0. 277	1. 420	-	L <u> </u>	0. 25			
447		1. 683	1. 936	1. 383			1. 31			
448		0. 951	0. 485	1. 593		-	0. 90			
449		1. 417	0. 591	1. 732	_	_	1.40			
450	_	0. 760	1.950	0.497	-	l –	1.66			

【0084】 【表45】

100

安15-	-3 本 3	电明網			(質量%)			
No.	P	S	0	D-CRS	HAZCRS	М%		
421	0.0047	0.003	0.006	7	134	45		
422	0.0234	0.007	0.014	5	142	38		
423	0.0112	0. 903	0.008	4	132	16		
424	0.0230	0. 003	0.015	1	133	17		
425	0.0238	0.002	0.013	4	146	18		
426	0.0240	0.002	0.007	3	149	11		
427	0.0035	0. 002	0.005	1	171	16		
428	0.0169	0.009	0.003	4	139	20		
429	0.0151	0.005	0.008	4	130	18		
430	0.0074	0.009	0.007	2	173	22		
431	0. 0195	0.008	0.016	2	145	26		
432	0. 0163	0.003	0.012	6	173	27		
433	0.0078	0.008	0.003	2	136	40		
434	0.0039	0.007	0.012	7	162	22		
435	0. 0149	0.002	0.010	1	177	26		
436	0. 0208	0.007	0.002	2	160	30		
437	0.0018	0.002	0.005	0	139	14		
438	0. 0127	0.002	0.004	2	166	18		
439	0. 0190	0.003	0.018	4	169	22		
440	0. 0153	0.008	0.003	0	151	25		
441	0.0121	0.004	0.015	4	139	42		
442	0.0043	0. 006	0.011	3	161	27		
443	0.0018	0.002	0.009	4	146	_36		
444	0. 0149	0. 004	0.005	2	169	24_		
445	0. 0240	0. 003	0.014	3	161	26		
446	0. 0085	0.004	0.005	6	172	26		
447	0.0089	0.003	0.004	2	131	52		
448	0. 0201	0.002	0.007	4	141	34		
449	0. 0222	0. 005	0.002	5	179	37		
450	0.0257	0.005	0.014	6	173	32		

450 0.0257 0.005 0.014 8 173 32 D-CRS:600 ℃、10万時間直線外押クリーブ推定破断強度の母材部と溶接部の差(IPa) HAZCRS:溶接部の600℃、10万時間直線外押クリープ

M%

[0085]

【表46】

はNi,Mo,Wを添加すれば高温あるいは高口「イオン濃度の 湿潤炭酸ガス環境での腐食速度を一段と減少できること も見出した。

本発明は上記の知見に基づいてなされたものであり、第1発明の要旨とするところは、重量%で、C0.03~0.12%,Si1%以下,Mn2%以下,Cr14%超18%以下,Cu1.2~5%,A10.005~0.2%,N0.005~0.15%を含有し、残部Feおよび不可避不純物からなることを特徴とする高強度かつ耐食性の優れたマルテンサイト系ステンレス鋼であった。

第2 発明の要旨とするところは、第1 発明の鋼において不可避不純物のうち、重量%で、Pを0.025%以下,5を0.010%以下に低減したことを特徴とする高強度かつ耐食性の優れたマルテンサイト系ステンレス鋼にあり、

第3発明の要旨とするところは、第1発明あるいは第 2発明の鋼において不可避不純物のうち、重量%で、O を0.004%以下に低減したことを特徴とする高強度かつ 耐食性の優れたマルテンサイト系ステンレス鋼にあり、

第4発明の要旨とするところは、第1発明、第2発明 あるいは第3発明の各鋼において、重量%で、Ni4%以下、Mo2%以下、W4%以下のうち1種または2種以上を含 有することを特徴とする高強度かつ耐食性の優れたマル テンサイト系ステンレス鋼にあり、

第5 発明の要旨とするところは、第1 発明,第2 発明,第3 発明あるいは第4 発明の各綱において、重量%で、V0.5%以下,Ti0.2%以下,Nb0.5%以下,Ta0.2%以下,Zr0.2%以下,Hf0.2%以下のうち1 種または2 種以上を含有することを特徴とする高強度かつ耐食性の優れたマルテンサイト系ステンレス綱にあり、

第6発明の要旨とするところは、第1発明、第2発明、第3発明、第4発明あるいは第5発明の各鋼において、重量%で、Ca0.008%以下、希土類元素0.02%以下のうち1種または2種を含有することを特徴とする高強度かつ耐食性の優れたマルテンサイト系ステンレス鋼にあり、

第7発明の要旨とするところは、第1発明、第2発明、第3発明、第4発明、第5発明あるいは第6発明の各鋼において、900~1100℃でオーステナイト化した後、空冷以上の冷却速度で冷却し、次いで580℃以上A1温度以下の温度で焼戻し処理を施した後、空冷以上の冷却速度で冷却することを特徴とする高強度かつ耐食性の優れたマルテンサイト系ステンレス鋼の製造方法にある。

(作用)

以下に本発明で成分および熱処理条件を限定した理由 を述べる。

C:Cはマルテンサイト系ステンレス鋼の強度を上昇させる元素として最も安定的かつ低コストであるから、必要な強度を確保するために0.03%以上の添加が必要であるが、0.23%を超まて添加すると配合性を差しく低下させ

ることから、上限含有量は0.12%とすべきである。 Si:Siは脱酸のために必要な元素であるが、1%を超え て添加すると耐食性を著しく低下させることから、上限 含有量は1%とすべきである。

Mn:Mnは脱酸および強度確保のために有効な元素であるが、2%を超えて添加するとその効果は飽和するので、 上昇含有量は2%とする。

Cr:Crはマルテンサイト系ステンレス鋼を構成する最も基本的かつ必須の元素であって耐食性を付与するために必要な元素であるが、含有量が14%以下では耐食性が充分ではなく、一方18%を超えて添加すると他の合金元素をいかに調整してもマルテンサイト組織を得るのが困難であって強度確保が困難になるので上限含有量は18%とすべきである。

Cu:Cuは混潤炭酸ガス環境におけるマルテンサイト系ステンレス鋼の腐食速度を著しく減少させ、CおよびNの含有量を調整することによって硫化水素を含む環境における割れ感受性を顕著に低下させる極めて有用な元素であるが、含有量が1.2%未満ではこれらの効果が不十分であり、5%を超えて添加してもその効果は飽和するばかりか熱間加工性を著しく低下させるようになるので、1.2~5%の範囲に限定する。

A1:A1は脱酸のために必要な元素であって含有量が0.005%未満ではその効果は十分ではなく、0.2%を超えて添加すると粗大な酸化物系介在物が鋼中に残留して硫化水素中での割れ抵抗を低下させるので、含有量範囲は0.005~0.2%とした。

N:NはCと同様にマルテンサイト系ステンレス鋼の強度を上昇させる元素として有効であるが、0.005%未満で30 はその効果が充分ではなく、0.15%を超えるとCr窒化物を生成して耐食性を低下させ、また、割れ抵抗をも低下させるので、含有量範囲は0.005~0.15%とした。

以上が本発明における基本的成分であるが、本発明に おいては必要に応じてさらに以下の元素を添加して特性 を一段と向上させることができる。

P:Pは応力腐食割れ感受性を増加させる元素であるので少ないほうが好ましいが、あまりに少ないレベルにまで低減させることは、いたずらにコストを上昇させるのみで特性の改善効果は飽和するものであるから、本発明の目的とする耐食性、耐応力腐食割れ性を確保するのに必要十分なほど少ない含有量として0.025%以下に低減すると耐応力腐食割れ性が一段と改善される。

S:SはPと同様に応力腐食割れ感受性を増加させる元素であるので少ないほうが好ましいが、あまりに少ないレベルにまで低減させることはいたずらにコストを上昇させるのみで特性の改善効果は飽和するものであるから、本発明の目的とする耐食性、耐応力腐食割れ性を確保するのに必要十分なほど少ない含有量として0.010%以上に低減すると耐応力腐食割れ性が一段と改善される。

が、0.12%を超えて添加すると耐食性を著しく低下させ 50 0:0は多量に存在すると粗大な酸化物系非金属介在物ク

103

表16-	- 2 本発明	月銅			(賞)	2%)	
No	Τi	Z r	Ta	H f	Со	Ni	Cu
451	_	0. 639	1. 211	0. 524	1	1	1.34
452	-	0.726	0. 049	0.494	-	ı	1.06
453	0.765	-	1. 131	1.079	_	ı	0.54
454	1. 520	-	1. 120	0.937	_	ı	1. 25
455	1.628	-	1. 707	0.763	-	1	0. 21
456	1.741	-	0. 571	0. 229	-	ı	0.75
457	0. 521		0. 369	0.994	-	1	1.65
458	0.678	_	1. 778	0.745	-	Ŀ	1. 73
459	1. 855	1. 633	1	0.136		-	1.57
450	1.728	1. 576	1	0.842	_	1	1. 78
451	0.993	1. 759	ı	0. 519	-	-	1.17
4 6 2	0. 294	1. 893	•	1.869	_	-	1. 25
463	0. 312	1. 821	ı	0. 568	_	-	1.72
464	0.709	0.615	ı	0. 247	_	-	1.40
465	0.170	1. 548	1.008	1. 616	<u> </u>	<u> </u>	0.86
466	1. 375	1. 100	0.448	1. 332	_		0.75
467	1. 970	1. 952	0.558	0. 087			1.64
468	0.671	1. 758	1.983	1. 521			1.45
469	0. 094	0. 199	1. 411	1. 326			0.77
470	0. 950	1. 927	0.503	0. 154			0. 22
471	0. 901	_		_	4. 33		0.42
472	0. 608	_	-		2.63		1.03
473	0. 758	-	-		1.95		0.89
474	0. 010				3.93	<u> </u>	1.50
475	1. 046	_	-		0.49		0.74
476	1. 534	_			0. 53	-	1.06
477		0. 082	_		0.83		0. 33
478	· -	1. 419	-		3.00	_	1.85
479		1. 131			3.86	-	0.85
480	-	1. 846	_		4.98	ı	1. 52

[0087]

【表48】

105

麦16:	- 3 本乳	初編	_		(費)	1%)
No.	P	5	0	D-CRS	HAZCRS	М%
451	0.0101	0.006	0.012	0	176	32
452	0.0157	0.006	0.001	3	165	22
453	0. 0226	0.003	0.008	2	144	32
454	0.0108	0.005	0.020	2	140	37
455	0.0053	0.002	0.014	3	131	40
456	0.0165	0.006	0.006	4	144	33
457	0.0242	0.010	0.013	6	132	23
458	0.0088	0.009	0.012	2	172	38
459	0.0099	0.005	0.009	3	169	33
460	0.0078	0.002	0.002	6	149	36
461	0.0124	0.003	0.007	5	141	31_
462	0.0190	0.006	0.010	1	171	36
463	0.0226	0.001	0.017	3	167	28
464	0.0036	0.009	0.009	1	159	23
465	0.0015	0.010	0.008	6	172	41
466	0.0268	0.002	0.013	4	135	37
467	0.0145	0.004	0.010	1	150	47
468	0.0197	0.007	0.006	6	170	52
469	D. 0074	0.007	0.017	8	174	31
470	0.0176	0.006	0.003	6	138	33
471	0.0007	0.008	0.006	3	141	15
472	0.0114	0.002	0.005	0	135	18
473	0. 0149	0.009	0.016	3	173	13
474	0. 0214	0.009	0.017	3	133	11
475	0.0107	0.002	0.005	3	142	18
476	0.0084	0.007	0. 005	5	178	26
477	0.0091	0.002	0.004	5	144	11
478	0. 0229	0.002	0.010	Б	143	24
479	0. 0152	0.002	0.008	7	152	15
480	0. 0107	0.004	0.006	3	149	25

480 0.0107 0.004 0.006 3 149 25 D-CRS : 600 ℃、10万時間直線外操クリープ権定破断強度 の母材部と溶接部の差(IPPa) HAZCRS: 済接部の 800℃、10万時間直線外揮クリープ

相定破断強度 (PRa) : 溶接熱影響部中のM29Cs 型炭化物中Mに占める (Ti %+Zr %+Ta %+Hf %) の値 м% -

[8800]

【表49】

表17-	-1 2	本発明的						(質)	L%)
No.	С	Si	Мп	Cr	Мо	W	>	NЬ	N
481	0. 27	0.54	0. 21	15. 79	0. 868	2.70	0.03	0. 01	0. 01
482	0. 13	0. 55	0. 80	7. 85	0. 113	1.18	0.06	0. 24	0. 15
483	0. 25	0. 26	0. 41	6. 09	0.014	0.77	0.11	0.07	0. 03
484	0.30	0.30	0. 93	14. 73	0. 397	2. 59	0.51	0.18	0. 19
485	0. 23	0.57	0. 62	12.45	0. 620	2.82	0.12	0.47	0. 14
486	0.14	0.54	0. 55	9. 95	0.021	2.57	0. 27	0.13	0. 18
487	0. 28	0.09	0. 59	11. 56	0. 409	2. 93	0. 28	0.31	0. 16
488	0.01	0.24	0.60	15. 14	0. 641	3. 35	0. 99	0.43	0. 03
489	0.02	0.49	0. 46	5. 65	0. 550	1.67	0. 27	0.18	0. 25
490	0. 25	0.72	0.44	13. 48	0. 473	0.64	0. 90	0. 20	0. 04
491	0.08	0.78	0. 80	16. 87	0. 738	1. 34	0. 26	0.17	0. 21
492	0.18	0.56	0.61	13. 71	0. 186	3. 25	0.66	0. 26	0. 24
493	0.22	0.70	0. 94	14. 90	0. 146	0.85	0. 45	0.37	0.10
494	0.29	0.68	0.86	5. 26	0. 960	1.91	0. 95	0.44	0. 21
495	0.06	0.38	0. 23	15. 27	0. 969	2. 54	0.04	0.39	0. 19
496	0.21	0.47	0. 55	10. 34	0.013	0. 58	0.98	0.13	0. 11
497	0. 25	0.40	0.86	14. 23	0.918	0.44	0.89	0.07	0. 05
498	0.13	0. 05	0. 62	11, 72	0. 517	3.18	0.94	0.14	0. 10
499	0.11	0.48	0. 53	7. 37	0. 157	1.72	0.13	0.49	0. 21
500	0.26	0.38	0. 84	5. 44	C. 166	0.43	0. 52	0.07	0. 11
501	0.12	0.79	0. 22	10, 31	0. 878	0.43	0.50	0. 26	0. 11
502	0.07	0.41	0. 55	13. 34	0. 637	2.82	0. 39	0. 26	0. 18
503	0.20	0. 28	0. 47	5. 80	0. 764	2.09	0.51	0. 22	0. 03
504	0.04	0. 29	0. 28	11. 76	0. 117	1.05	0. 72	0.06	0. 24
505	0.12	0. 28	0. 63	15. 93	0.014	2. 40	0.84	0. 20	0. 15
506	0.09	0. 55	0. 50	9. 73	0. 294	0.71	0. 23	0.31	0.09
507	0.06	0.55	0. 85	10. 58	0. 799	0.36	0. 21	0.06	0.14
508	0. 27	0.57	0. 85	9. 79	0. 363	0. 78	0.58	0. 10	0.02
509	0. 23	0.06	0. 87	11.59	0. 812	1.47	0.74	0. 12	0.17
I 5 1 0 i	1 0. 05	0.09	0.39	7.64	0.499	0. 22	0.49	0.04	10.07

[0089] [表50]

表17-	- 2 本発	月期			(質量%)		
No.	Τi	Ζr	Ta	H f	Co	Νi	Сu
481	-	0. 284			0. 84	-	0.86
482	-	0. 053	_	_	2. 56	-	0.37
483	1. 029	0. 881	-	_	2. 28	-	1. 59
484	0. 305	0.413	_	_	3. 94	-	1.50
485	0. 086	1. 331	-	-	1. 93	-	0. 68
486	1. 035	0. 284	-		0.30	1	1.57
487	1. 834	1. 978	-	-	0. 66	_	0. 27
488	1. 127	0. 071	-	-	2. 23	-	1. 89
489	_	-	1. 350	-	1. 78		1. 60
490		-	1. 931	-	0. 92	1	1. 83
491	1	-	0. 305	1	3. 74	ı	0. 51
492	-	-	1. 140	ı	2. 19	1	0. 89
493	_	. –	1. 093	ı	2. 73	1	L. 83
494	1	-	0.834	-	4. 53	1	1.19
495	1.094	_	0. 052	-	1. 99	-	0. 49
496	1.700	-	1. 388		3. 94	-	0. 33
497	0. 871	_	1. 545		2. 39	_	0. 43
498	0. 274	-	1. 194	-	3. 81		0.50
499	0. 595	-	1.995	-	4. 95		0. 23
500	0. 478	-	0. 636	-	2. 62	1	0. 21
501	-	1. 988	1. 762	-	0. 9 0	-	1.08
502	-	1. 189	0. 072	_	3, 74	_	1. 62
503	_	0. 864	0. 220	-	0. 76	-	0. 65
504		1. 683	0. 881	_	3. 17	_	1. 45
505		0. 327	0. 723	-	2.97		1.04
506		0. 457	1. 435	-	1.82		1.83
507	0. 262	1. 739	1. 663	_	3.70	_	1. 72
508	0. 936	0.868	0. 105		3. 02		0. 41
509	1. 241	0. 503	0. 415		1.41	_	0. 31
510	0.844	1, 313	1. 270		0.44		0. 22

【0090】 【表51】

111

	- 3 本	明集			(質)	2 %)
No.	P	S	0	D-CRS	HAZCRS	М%
481	0.0195	0.003	0.019	3	162	9
482	0.0220	0.002	0.007	1	144	13
483	0.0282	0.004	0.014	4	147	26
484	0.0182	0. 007	0.017	1	149	12
485	0. 0155	0. 005	0.004	6	177	23
486	0.0189	0. 001	0.001	3	161	19
487	0.0202	0.004	0.014	3	176	41
488	0.0008	0. 001	0.010	5	151	17
489	0.0150	0.006	0.016	6	165	22
490	0.0282	0.004	0.019	6	143	28
491	0.0061	0.005	0.007	2 3	139	16
492	0.0182	0.006	0.014	3	132	23
493	0.0148	0.003	0.008	4	173	23
494	0.0206	0.009	0.006	4	141	17
495	0.0160	0.009	0.013	2	162	16
496	0.0260	0.002	0.018	4	166	34
497	0.0157	0.009	0.007	1	154	24
498	0.0105	0.009	0.016	3	154	21
499	0.0050	0.002	0.004	6	170	26
500	0.0243	0.009	0. 014	4	178	20
501	0.0040	0.005	0. 015	1	157	40
502	0.0286	0.008	0.005	5	158	21
503	0. 0185	0.002	0.008	4	161	15
504	0. 0136	0.003	0.011	2	168	32
505	0.0089	0.006	0.012	3	156	14
506	0. 0147	0. 005	0.008	4	153	25
507	0.0110	0.008	0.015	7	137	41
508	0. 0228	0.003	0.009	3	136	23
509	0. 0152	0. 003	0.008	11	177	30

| 5 0 9 | 0.0152 | 0.003 | 0.008 | 1 | 177 | 30 | |
| 5 1 0 | 0.0283 | 0.002 | 0.008 | 5 | 164 | 38 |
| D - C R S : 600 ℃、10万時間直線外類クリープ推定破断強度 の母材部と溶接部の差(IPa) | 推定破断強度(IPa)

: 存扱熱影響部中のM₂₃C₆ 型炭化物中Mに占める (Ti%+Zr%+Ta%+Hf%)の値 М%

[0091]

【表52】

1113									
表18-	-1 2	×発明		_				(賞i	主%)
No.	С	Si	Мп	Сг	Мо	W	V	И	N
511	0.11	0.52	0. 86	8.60	0. 255	3. 11	0.18	0. 28	0.04
512	0. 22	0.44	0.96	12.39	0.406	1.30	0. 62	0. 45	0.05
513	0.18	0.12	0. 55	10. 29	0. 285	2. 52	0.68	0. 29	0. 05
514	0. 10	0.59	0. 71	6.80	0.746	2.96	0.68	0. 19	0. 24
515	0.06	0.18	0. 91	12.91	0. 623	2.06	0.46	0. 32	0. 23
516	0.03	0.70	0. 61	6.71	0.744	0.94	0.84	0. 38	0.09
517	0.11	0.46	0. 87	12.13	0.441	0.67	0.19	0. 45	0.03
518	0. 23	0.12	0.39	14.14	0. 553	0.73	0. 30	0. 04	0.13
519	0. 21	0.32	0. 99	16.95	0. 917	0.58	0. 53	0. 26	0.10
520	0. 15	0.16	0. 59	12.09	0. 371	1.32	0, 72	0. 07	0.15
521	0.15	0.30	0. 63	16. 91	0. 259	0.80	0. 22	0. 36	0. 24
522	0.16	0.21	0. 58	16. 24	0. 900	3. 39	0. 34	0.06	0.08
523	0.12	0.18	0. 33	14.50	0. 145	0. 29	0.41	0. 32	0. 25
524	0.29	0.79	0. 51	9. 34	0.813	2, 54	0. 78	0.09	0. 21
525	0.18	0.03	0. 63	5. 44	0. 262	2.99	0. 32	0. 02	0.06
526	0.18	0.10	0. 94	13. 51	0.811	2. 75	0. 80	0. 02	0.11
527	0.09	0.48	0. 90	11.93	0.804	2. 91	0.60	0. 01	0. 21
528	0.01	0.64	0. 39	17. 95	0. 568	1. 27	0. 05	0.17	0.18
529	0.05	0.45	0. 88	16.71	0.448	2. 28	0.46	0.40	0.12
530	0.14	0.58	0. 23	5, 75	0. 275	0. 41	0. 70	0. 15	0. 22
531	0.11	0.50	0. 72	15. 75	0. 393	1. 77	0.11	0. 07	0.08
532	0.04	0.48	0. 22	11.89	0. 129	2.46	0.97	0.30	0. 15
533	0.18	0.77	0.98	11.56	0.319	0.32	0.19	0.06	0.03
534	0.19	0.08	0.88	6. 15	0. 302	3.04	0.05	0.47	0.03
535	0.03	0.62	0. 98	12.92	0. 405	1. 82	0.88	0. 23	0. 24
536	0.08	0.70	0. 38	10.44	0.978	1.11	0. 09	0. 25	0.14
537	0. 29	0.58	0. 91	9.47	0. 854	0. 35	0. 43	0. 44	0.17
538	0.04	0.58	0. 45	7. 77	0. 857	2. 25	0, 29	0. 23	0.04
539	0. 29	0.42	0.48	16.33	0. 833	3. 04	0.97	0. 02	0.08

[0092] [表53]

115

表18-	- 2 本発明	牙刷				(賞)	2 %)
No.	Τi	2 r	Ta	H f	Co	Νi	Сп
511	1. 420	0.968	1. 336		1. 78	-	0.74
512	1.612	0.148	0. 286	_	4. 58	-	1. 59
513			-	1.815	0. 92	-	0.66
514			-	0.475	1.99	_	0.36
515	-	-		1.386	2. 13	_	1. 29
516	-	_	_	0.238	3. 04	_	1.37
517	-	-	-	0.718	1. 53	_	0. 29
518	-	_	-	1.476	1. 57	-	1.37
519	1.378			1. 204	4. 81	=	0.69
520	1. 877	-	-	1.555	0. 83		0.68
521	1.073	_	-	0.228	0.89	-	1.03
522	0. 634	-	-	0.848	1.70	-	1. 45
523	1. 207	_	_	1. 123	2. 60	-	0.74
524	0. 492	ı	-	0.742	2, 77	1	0.42
525	1	0.599	1	0.337	1.40	1	1.09
526	ı	1.634	,	0.592	4. 87	-	0.64
527	ı	1. 272	ı	1.196	2.87	-	0.58
528	+	1. 182	-	0.802	4. 15	-	1. 53
529	-	1.043	-	0.094	0.75	,	1.38
530	_	1.511	1	1. 722	3. 86	_	1.63
531			1.968	0.357	0. 65		1.08
532		_	1.807	0.712	4. 83	_	1. 25
533	_	-	0. 631	0. 404	1. 12	_	1. 83
534	_	_	1. 130	1. 153	0.84		1.65
535		_	1.970	0.608	3. 14	-	0.41
536	-		0.844	0. 450	2.44	-	0.48
537		1. 406	1. 361	1. 320	0.29		1. 80
538	_	1. 987	0. 280	1. 939	3. 22		0. 77
539		1. 217	1. 199	1. 948	0.76	_	1. 29
5.40		0.707	1 920	1 020	A 15	_	1 04

[0093]

【表54】

			•	,		
117						
表18-	- 3 本5	e明網			(質)	1%)
No.	P	S	0	D-CRS	HAZCRS	М%
511	0.0123	0.002	0.006	3	173	39
512	0.0071	0.003	0.008	7	157	21
513	0.0079	0.003	0.012	2	146	24
514	0.0245	0.006	0.004	5	165	15
515	0. 0223	0. 003	0.010	3	143	16
516	0. 0113	0. 005	0.008	0	157	8
517	0.0017	0. 009	0.014	5	136	16
518	0.0032	0. 008	0.005	2	156	25
519	0.0261	0. 302	0.008	1	147	30
520	0.0208	0. 003	0.009	4	135	38
521	0.0119	0. 009	0.005	7	148	25
522	0.0095	0. 009	0.003	4	164	19
523	0.0092	0.003	0.018	6	160	25
524	0.0205	0.002	0. 020	4	165	18
525	0.0240	0.005	0.014	4	131	15
526	0.0143	0.010	0.016	5	136	26
527	0.0018	0.007	0.014	6	133	24
528	0.0262	0. 007	0.013	1	149	25
529	0.0082	0.010	0.002	1	162	23
530	0.0021	0.004	0.006	1	150	38
531	0.0033	0.003	0.012	6	140	32
532	0.0220	0.004	0.017	1	136	30
533	0.0080	0.006	0.018	4	164	17
534	0.0020	0.002	0.002	5	153	23
535	0. 0135	0.001	0.014	7	131	34
536	0.0224	0.001	0. 003	1	175	22
537	0.0097	0.006	0.013	5	163	39
538	0.0295	0.003	0.013	3	148	41
539	0.0026	0.002	0.019	1	157	39
540	0. 0285	0.005	0.008	1	143	41

| 540 | 0.0285 | 0.005 | 0.008 | 1 | 143 | 41 | D-CRS : 600 ℃、10万時間直線外挿クリーブ推定破断強度の母材部と接接部の差(IPa)
| HAZCRS: 溶接部の 600℃、10万時間直線外挿クリーブ推定破断強度(IPa) | 推定破断強度(IPa) | M% : 溶接熱影響部中のM₂₃C₆ 型炭化物中Mに占める (TiS+2rS+TaS+HfS) の値

[0094]

【表55】

119

表19-	表19-1 本発明網 (
No.	С	Si	Мп	Сr	Мо	W	V	Nъ	N		
541	0.09	0.67	0. 26	16.70	0.548	2.34	0.72	0. 07	0.04		
542	0.11	0.77	0.96	17. 31	0.483	3.08	D. 45	0. 16	0. 24		
543	0.17	0.31	0.41	13, 03	0.187	2.15	0.85	0.42	0.09		
544	0.05	0.31	0.89	8. 43	0.069	0.70	0. 29	0. 29	0. 15		
545	0.15	0. 26	0. 27	14.18	0.923	3.06	0.07	0. 18	0. 02		
546	0. 28	0.42	0.41	15. 26	0.613	0.54	0. 05	0.02	0. 03		
547	0. 24	0.67	0.78	16.12	0.456	2.46	0.05	0. 44	0. 25		
548	0.13	0.49	0.86	14.48	0.808	3. 32	0.90	0. 16	0.17		
549	0. 20	0.53	0.92	14.76	0. 484	0.91	0.47	0.30	0. 22		
550	0.10	0. 27	0.41	14.93	0. 335	1.34	0.08	0.06	0. 01		
551	0. 22	0.75	0.81	12.70	0.682	0.72	0. 05	0.10	0. 10		
552	0.08	0. 68	0.39	12.54	0.873	3. 49	0.72	0.33	0.09		
553	0.08	0. 31	0. 22	5. 73	0. 240	0.83	0.44	0. 17	0.17		
554	0. 29	0. 69	0. 55	16.06	0.103	0.43	0.53	0. 29	0. 07		
555	0. 25	0. 13	0.87	9. 12	0. 824	1.81	0.83	0. 12	0.11		
556	0, 20	0.46	0. 25	15. 12	0. 223	2. 73	0. 20	0.30	0.13		
557	0.08	0.36	0.94	12. 48	0.146	1.04	0. 93	0.03	0. 21		
558	0.28	0. 12	0.83	12.08	3. 418	1. 13	0.41	0. 45	0. 20		
559	0.04	0.77	0.98	11.84	0.884	2. 45	0.43	0. 25	0.16		
560	0.03	0. 22	0.84	15. 87	0.871	1.14	0.84	0.09	0. 19		
561	0.06	0.31	0.71	15. 93	0. 728	1.65	0. 98	0. 13	0. 24		
562	0.22	0.52	0.84	16, 03	0. 282	1. 77	0.70	0.05	0. 16		
563	0.18	0.32	0.31	7. 84	0.873	0.98	0.33	0. 25	0.14		
564	0.03	0.37	0.58	14.93	0. 328	0.32	0. 18	0. 41	0.14		
565	0.01	0.15	0.32	9. 32	0.984	2.62	0.10	0. 22	0.01		
566	0.09	0.71	0. 60	15. 01	0. 200	0.74	0. 93	0. 31	0. 19		
567	0.07	0.74	0.49	16.69	0. 784	0.70	0.02	0. 37	0. 15		
568	0.04	0.52	0. 26	12. 21	0. 582	1.96	0.18	0. 31	0. 22		
569	0.24	0.67	0. 57	12.50	0. 928	0. 69	0. 75	0.06	0. 12		
570	0.20	0.70	0.90	8. 91	0. 161	2. 94	0.09	0.02	0.17		

[0095] [表56]

121								L
去	19-	- 2 本発明	男鋼	-			(費)	2%)
	ła	Ti	Z r	Ta	Hf	Со	N	Cu
5	41	1	1. 365	0.836	0. 848	2.98		0. 67
5	42	-	1. 611	0.870	0.068	3.68	-	0. 75
5	43	1.828	_	0. 653	1. 394	3. 12	ı	1. 91
5	44	0. 234	-	1. 815	1. 474	0.44	_	1. 14
5	45	1. 435	-	0. 036	1. 973	4.44	_	1.74
5	46	0.149	_	0. 984	1. 575	4.77	_	1.64
5	47	0. 015	-	1. 338	0.941	0.62	-	0. 50
5	48	0. 706	-	1. 753	0. 75 0	0.81	-	1. 65
5	49	0. 888	1. 824	_	1.679	4. 58	=	0. 31
5	50	1. 249	0.694	_	0.401	1.52		0. 67
5	51	0. 462	1. 294	ļ	0.588	2.86	_	1. 52
5	52	0. 187	L 268	-	1.879	2. 94	-	1. 69
5	53	0.075	1. 335	1	1.002	3.49		0.89
5	54	0. 827	0. 153	•	0.607	1. 28	_	0.60
5	55	0.120	0. 372	1. 380	1. 348	2. 68	7	1. 44
5	56	0. 595	0. 675	0. 614	0.903	2.09	_	1. 29
	57	0. 96D	1. 725	0. 976	0. 955	3. 62		0. 79
	58	1.869	0. 194	0. 113	1.146	1. 54		0.51
5.	59	1. 982	1. 779	0. 737	0.198	2. 41		1. 98
5	60	2. 000	0. 144	1. 500	1. 749	2. 97	-	1. 31
	61	0. 566	-	-			2. 44	0. 88
_	62	0. 388	_	-	_		4. 35	1. 31
5	63	1. 093	-	-	-	_	2. 05	0. 50
5	64	1. 369	_	_		_	2.00	0. 86
_	65	1. 909				_	3. 39	1. 19
_	66	1. 372		-	-	ł	3. 02	1. 18
	67		0.694				4. 87	1. 45
	68	-	1. 400	-			3. 45	0. 82
151	69	_	0.936	_	_	- 1	0.29	0. 76

【0096】 【表57】

123

表19-	- 3 本 5	明何				E%)
No.	P	S	0	D-CRS	HAZCRS	М%
541	0.0127	0.001	0.016	3	134	34
542	0.0249	0.008	0.001	4	157	26
543	0.0009	0.009	0.008	0	142	38
544	0.0100	0.009	0.015	1	163	36
545	0.0025	0.005	0.018	6	151	39
546	0.0036	0.006	0.005	2	158	31
547	0.0229	0.005	0.010	4	161	25
548	0.0112	0.005	0.013	1	138	35
549	0.0084	0.005	0.018	1	166	46
550	0.0243	0.003	0.014	3	175	30
551	0.0091	0.003	0.016	^ 1	165	31
552	0.0029	0.002	0.002	11	165	37
553	0.0011	0.005	0.017	3	178	26
554	0.0282	0.004	0.010	1	131	19
555	0.0048	0.008	8. 00 6	2	153	34
558	0.0004	0. 005	0.012	4	170	34
557	0.0252	0.004	0.005	7	162	45
558	0.0297	0.004	0.002	1	154	38
559	0.0090	0.006	0.009	4	175	43
560	0.0178	0. 005	0.003	4	154	54
561	0.0063	0.004	0.001	3	167	11
562	0.0146	0. 006	0.009	3	142	16
563	0. 0225	0. 001	0.015	4	157	20
564	0.0106	0. 005	0.014	3	140	20
565	0.0037	0.003	0.015	5	169	26
566	0.0266	0.003	0.013	6	146	25
567	0. 0297	0.008	0.015	4	148	17
568	0.0233	0.002	0.017	6	180	21
569	0.0022	0.007	0.008	2	168	13
670	0.0067	กกกล	U 0U3	1 4	165	21

670 0.0067 0.008 0.003 4 165 21
D-CRS : 600 ℃、10万時間直線外挿クリープ推定破断強度
の母村部と溶接部の差(IPa)
HAZCRS:溶接部の 600℃、10万時間直線外挿クリープ

権定破断強度 (IPa) : 溶接機影響部中のM23C6 環炭化物中Mに占める (Ti%+2r%+Ta%+Hf%) の値 M%

[0097]

【表58】

125

丧20-	-1 2	本発明			(質)	k%)			
Na	С	Si	Мn	Сr	Мо	W	V	И	N
571	0.16	0.47	0.70	5. 73	0. 6 09	1.57	0.50	0.36	0. 21
572	0.06	0. 25	0.67	14.06	0. 626	1. 03	0. 35	0. 26	0.08
573	0.01	0.68	0. 65	12.02	0. 032	0. 72	0.45	0.13	0. 21
574	0.25	0.48	0. 93	10.68	0. 669	3. 45	0.65	0.14	0. 22
575	0.15	0.67	0. 56	7. 65	0. 862	2.01	0. 29	0.46	0. 07
576	0.10	0.36	0. 22	7. 62	0. 968	0.89	0.68	0. 26	0. 18
577	0.19	0.59	0. 98	8. 28	0. 317	2. 81	0. 21	0. 45	0. 05
578	0. 24	0.06	0. 71	14. 01	0. 235	2. 28	0.16	0.46	0. 23
579	0.05	0.58	0. 86	16.07	0. 052	2.00	0.37	0. 43	0. 21
580	0.15	0.08	0. 92	5. 99	0. 622	1.56	0. 22	0.32	O. D6
581	0.21	0.39	0. 35	14.08	0. 772	0.31	0.99	0.03	0. 11
582	0.17	0. 21	0. 62	12. 26	0.843	2. 71	0. 58	0. 21	0. 07
583	0.15	0.18	0.40	11.34	0.171	1.60	0. 28	0. 29	0.03
584	0. 22	0.58	0. 76	15. 69	0.086	1. 39	0. 43	0. 44	0.07
585	0.06	0.10	0. 77	16.78	0.427	3.20	0.87	0.34	0. 15
586	0.06	0.56	0. 29	12. 23	0.028	3. 16	0.45	0. 39	0. 23
587	0.30	0.28	0.40	6. 64	0. 228	2. 42	0.48	0. 02	0.14
588	0.16	0.68	0. 95	17. 20	0.850	2.03	0.81	0. 13	0. 10
589	0.04	0.48	0. 63	15. 87	0.745	1.48	0. 29	0. 15	0.17
590	0.16	0.69	0. 49	6.96	0.736	0. 20	0. 22	0.49	0.09
591	0.06	0.05	0.41	14.39	0.179	2.68	0. 47	0. 10	0. 17
592	0. 26	0. 75	0.66	16. 58	0. 888	3. 35	0. 36	0. 35	0. 13
593	0. 13	0. 73	0.71	11. 34	0. 224	1.72	0.73	0. 20	0. 18
594	0. 21	0.62	0. 42	16. 10	0.006	0.53	0.42	0.04	0.03
595	0. 16	0.31	0.48	15. 72	0. 075	0.90	0. 27	0.08	0.12
596	0. 23	0.05	0.72	7. 87	0. 252	2. 23	0.10	0. 39	0.08
597	0.06	0.10	0. 24	16. 61	0. 389	0.74	0.74	0. 24	0.04
598	0.06	0.35	0. 91	7. 32	0. 818	2.47	0. 55	0. 26	0.16
599	0. 03	0.65	0.57	10. 25	0. 876	1. 92	0. 85	0. 37	0. 23
600	0. 21	0.11	0.72	10.38	0.409	1.88	0.99	0.48	0. 12

[0098] [表59]

127

表20-	表20-2 本発明領 (質量)											
No.	Ti	Zr	Ta	H f	Co	Νi	Сu					
571	-	1. 163	-	-		2. 58	1. 27					
572	_	0. 203		-	-	4. 02	0. 33					
573	0. 758	1. 720	-	_	_	0. 52	0. 57					
574	1.744	1. 419		_	_	1.01	1. 73					
575	0.717	1. 982	-	-	_	2. 27	0.83					
576	1. 334	0. 065			-	1.11	0. 23					
577	0. 274	1. 342	_		_	3. 95	1.47					
578	0. 186	1. 479	-			2.80	0. 65					
579	_	-	0. 968	-	-	1.65	1. 95					
580	-	-	0.609	-	-	4, 54	1.50					
581	-	-	0.498	-	ı	3.47	0. 78					
582	-	-	1. 290		_	4. 81	0. 42					
583	1	1	1.690	-	1	3.06	1.92					
584	-	1	1.357		ı	4. 57	1. 37					
585	1. 501	1	1.926	-	_	1. 35	1. 18					
586	1. 464		0.140			4. 65	1.97					
587	1. 448		1.617	-	_	4.04	1. 62					
588	0. 145	_	0.046	-	_	1. 21	1. 67					
589	0. 196	_	1.116	-	-	4. 89	0.89					
590	0. 293	-	1. 467			4. 74	0. 80					
591		1. 772	0. 787			4. 76	0. 21					
592		0. 587	1. 743	_	_	1. 72	1. 49					
593		0. 327	1.014			4. 49	1.70					
594		1. 695	1. 273			0. 28	1.41					
595		0. 357	0. 190		_	0. 28	0. 34					
596		1. 963	0. 423			3. 72	1. 78					
597	0. 748	0. 217	1. 659			4. 99	1.84					
598	1. 401	0. 776	1. 577		-	3, 29	1. 12					
599	0. 159	1. 287	1. 805			2.67	0. 22					
600	0.669	1.461	1, 073	- 1	_	4, 73	0.67					

[0099] [表60]

129

表20-	- 3 本引	き明何			(質)	£%)
No.	P	S	0	D-CRS	HAZCRS	м%
571	0.0015	0.008	0.008	5	148	17
572	0. 0267	0.004	0.002	6	172	8
573	0.0026	0.006	0.019	6	163	32
574	0.0141	0.007	0.008	4	174	29
575	0.0117	0.005	0.015	3	133	27
576	0.0051	0.003	0.016	1	143	23
577	0. 0043	0.010	0.009	5	131	18
578	0.0048	0.009	0. 020	2	175	22
579	0. 0162	0.009	0.015	6	177	18
580	0.0189	0.003	0.003	4	167	19
581	0.0078	0.004	0.008	7	145	9
582	0.0080	0.006	0.018	2	141	16
583	0. 0296	0.005	0.010	2	131	23
584	0. 0226	0.009	0.019	7	144	20
585	0.0272	0.003	0.014	4	131	35
586	0.0237	0.005	0.002	3	147	17
587	0.0087	0.005	0.017	8	144	35
588	0.0019	0.006	0.017	2	174	8
589	0.0037	0.006	0.020	3	165	22
590	0.0074	0.004	0.002	2	144	25
591	0.0084	0.002	0.018	1	141	29
592	0.0012	0.005	0.007	1	132	25
593	0. 0253	0. 005	0.014	6	145	24
594	0.0189	0.001	0.017	7	157	28
595	0. 0038	0. 006	0.012	6	148	18
596	0.0061	0.009	0.016	3	168	31
597	0. 0210	0.008	0.007	4	171	29
598	0.0134	0.005	0.019	6	136	36
599	0.0085	0.003	0.010	6	138	39
600	0. 0162	0.009	0.008	2	157	33

| 800 | 0.0162 | 0.009 | 0.008 | 2 | 157 | 33 | 157

М%

[0100]

【表61】

特開平7-242935

-

表21-	安21-1 本発明鋼 (質量%)										
No.	С	Si	Μп	Сr	Мо	W	V	NЬ	N		
601	0.26	0.15	0. 42	5. 47	0. 232	1.78	0.31	0.04	0. 01		
602	0.29	0. 27	0. 73	13.00	0.693	1.08	0.61	0.17	0. 24		
603	0.09	0.31	0. 32	17.77	0.126	0. B9	0.75	0. 31	0. 15		
604	0.06	D. 56	0. 27	11.16	0.864	2. 33	0.09	0. 39	0. 19		
605	0. 29	0.49	0.83	10. 43	0. 250	3.19	0.90	0. 07	0.08		
606	0.02	0.37	0. 69	7. 15	0.614	1.28	0.10	0. 25	0. 15		
607	0.06	0.06	0. 51	12.08	0.794	1.05	0. 95	0.13	0. 22		
608	0.07	0.60	0. 94	16. 45	0. 616	0. 23	0. 82	0.34	0. 15		
609	0.16	0.71	0. 68	11. 92	0. 437	3. 29	0. 07	0.34	0. 02		
610	0.13	0.26	0. 78	15. 66	0. 573	3.08	0. 49	0. 02	0. 01		
511	0.22	0.66	0. 32	6.08	0. 875	2.37	0. 45	0.05	0. 10		
512	0.10	0.64	0. 77	7. 16	0. 181	2.24	0. 76	0.11	0. 25		
513	0.29	0.44	0. 38	16. 55	0. 306	0.50	0. 23	0.36	0.17		
514	0.18	0. 73	0. 63	6. 24	0. 100	3. 23	0. 82	0.48	0. 07		
615	6. 29	0. 20	0. 59	6. 57	0. 893	1.61	0. 74	0. 10	0.14		
616	0. 28	0. 56	0. 92	8. 93	0. 029	1.71	0.86	0. 43	0.24		
817	0. 26	0.45	0. 31	11. 18	0.341	1. 35	0. 53	0. 37	0.07		
518	0.17	0. 21	0. 20	17.68	0. 164	3. 28	0. 08	0. 10	0.08		
619	0. 26	0.19	0.49	13. 31	0. 331	2.03	0. 34	0. 27	0. 23		
620	0.19	0. 29	0. 22	15. 47	0. 884	1.99	0. 18	0.06	0. 24		
621	0.06	0.75	0.48	9.00	0. 559	2.61	0. 35	0.38	0. 07		
622	0.25	0. 27	0. 73	11. 25	0. 289	1.71	0. 27	0. 41	0.04		
623	0.14	0.69	0. 84	13. 59	0. 208	0.40	0. 25	0. 31	0. 23		
624	0.26	0. 69	0. 67	7. 38	0. 652	3.06	0.12	0. 24	0. 13		
825	0. 27	0.55	0. 90	10.01	0. 958	0.96	0. 71	0. 39	0.17		
626	0.13	0.52	1.00	12. 72	0. 456	3.36	0. 86	0.15	0. 07		
627	0.07	0.48	0.42	13.60	0. 998	1.58	0. 93	0. 22	0.16		
628	0.20	0.69	0. 66	16. 91	0. 910	1.62	0. 25	0. 23	0.04		
629	0.03	0.63	0.76	14.01	0. 526	1.29	0. 13	0.14	0.02		
630	0.24	0.57	0. 20	9. 22	0. 685	3.35	0. 90	0.33	0.18		

【0101】 【表62】

131

133

安21-	- 2 本発	月銅				_(変)	1%)
No.	Ti	Z r	Ta	H f	Co	Νi	Сu
601	1.622	1.938	0.020	-	-	1.45	0.35
602	0. 687	1. 423	1, 327	-	-	1.73	1.69
603	-	-	-	1. 260		4.65	1.65
604		-	-	1. 256	_	2, 37	0.89
605			-	1. 984	- 1	1. 20	1.78
606	_		-	0.122	-	2. 79	0.43
607		-	_	1. 345	-	3. 91	1.94
608		_	_	1.320	-	1.47	0.65
609	0.546		-	0. 716		4. 16	1.60
610	0.644	-	_	0. 228	-	1.69	1.86
511	1.916	-	-	1. 515	_	2.86	0. 20
512	. 1.005	-	_	0. 252	-	2. 05	0.83
613	1.589	-	_	0.094	_	3. 25	0.77
314	0. 356	_	_	1. 712	-	3. 31	0. 59
615		1.529		1. 801	1	3.84	0.92
816	-	1. 422	-	0. 017	1	4. 03	1. 45
817	-	1.391	-	0. 041	1	3. 13	1. 90
618	ı	1.101	-	1. 535	ı	0. 31	1.97
819	-	1. 223		1. 181	1	2. 05	1. 38
820	-	1. 421	-	0. 639	1	2. 56	0.69
621	-	1	1. 739	1, 583	1	1. 42	1.44
622	1	-	0. 303	1. 700	ı	2. 36	1. 54
623	-	_	1. 329	0. 655	_	2. 26	0.67
624	_	_	0.498	0. 114	-	2. 76	0.37
625	-	-	1. 481	0. 756	_	3. 05	1. 21
626	_		0. 943	1. 241	_	2, 30	1.10
627	_	0.662	0. 552	1. 241	-	4. 57	1.55
628	-	0.723	0. 986	0. 437	-	4. 28	1. 36
629	-	0. 908	1. 908	1. 479	-	2.98	1.14
63D	_	1. 901	0.016	1. 085	-	2.39	1.50

【0102】 【表63】

丧21-	~ 3 本 3	明鋼			(質)	1 %)
No.	P	S	0	D-CRS	HAZCRS	М%
801	0.0168	0.002	0.017	0	170	35
502	0.0054	0.001	0.016	3	154	38
603	0.0068	0.002	0.002	6	138	15
604	0.0015	0.006	0.019	4	149	19
605	0. 0291	0.009	0.017	7	164	26
606	0.0103	0.004	0.001	2	163	9
607	0.0143	0.003	0.017	0	172	18
608	0.0221	0.004	0.013	3	169	16
609	0.0280	0.007	0.005	5	156	22
610	0.0276	0. 005	0.019	7	138	19
611	0.0161	0.001	0.006	6	141	33
312	0.0032	0.008	0.017	5	142	21
613	0. 0289	0.010	0.012	6	171	25
614	0. 0283	0.010	0.007	6	154	30
815	0. 0268	0.007	0.017	2	169	32
616	0. 0193	0.003	0.003	7	144	19
817	0. 0009	0.008	0.017	3	157	17
618	0. 0265	0.009	0.018	6	160	28
619	0.0167	0.010	0.013	5	157	27
820	0.0257	0.009	0.018	2	149	29
521	0.0193	0.005	0.010	6	140	34
200	0 0004	0 000	0.000		150	25

629 0.0159 0.010 0.003 630 0.0075 0.007 0.010 D-CRS :600 ℃、10万時間直線外挿クリーブ捷定破断強度 の母材部と溶扱部の差(EPa)

HAZCRS:溶接部の 600℃、10万時間直線外舞クリープ

推定破断強度(Wa)

 6 2 2
 0.0224
 0.006
 0.006

 6 2 3
 0.0152
 0.001
 0.012

 5 2 4
 0.0076
 0.007
 0.015

 6 2 5
 0.0247
 0.008
 0.003

 6 2 6
 0.0015
 0.003
 0.020

 6 2 7
 0.0229
 0.009
 0.015

628 0.0095 0.010 0.014

M % : 溶接熱影響部中のM25 C6 型炭化物中Mに占める

(Ti%+Zr%+Ta%+Hf%) の値

[0103]

【表64】

137

麦22-	-1 2	本発明	ji .					(質)	2 %)
No.	С	Si	Mn	Cr	Мо	₩	V	ИÞ	N
631	0.06	0. 75	0.85	6. 96	0. 221	0.67	0.93	0. 24	0. 13
632	0.16	0.68	0.97	5. 05	0. 465	0.93	0.06	0, 28	0.07
633	0. 20	0.61	0. 85	14. 50	0. 765	0.34	0. 09	0. 13	0. 20
634	0.15	0.40	0.74	13. 63	0. 956	3. 29	0.87	0. 43	0. 24
635	0. 24	0.73	0. 92	6. 76	0.871	0.98	0. 26	0. 38	0.03
636	0. 27	0.28	0.85	11. 21	0.341	1.10	0.06	0. 14	0.12
637	0.07	0.10	0.80	11. 88	0.697	1.47	0.61	0. 36	0.01
638	0. 15	0.43	0. 23	6. 61	0. 290	3. 21	0. 27	0. 23	0.13
639	0.18	0.40	0. 63	12. 80	0.940	2. 46	0.84	0. 15	0. 20
640	0.11	0.25	0. 26	15. 43	0. 505	0.37	0. 22	0. 30	0.18
641	0. 19	0.25	0. 58	5. 71	0. 799	1.30	0. 18	0. 10	0.04
642	0.08	0.26	0. 26	7. 56	0. 172	1.43	0. 09	0. 20	0.09
643	0.17	0.16	0. 78	5. 84	0. 449	0. 22	0.76	0. 29	0.08
644	0.11	0.61	0.41	11. 42	0. 473	0.43	0, 06	0. 27	0.14
645	0.16	0.69	0.60	9. 18	0.081	1. 51	0.79	0.07	0.06
646	0. 25	0.27	0. 43	9. 97	0.104	2. 91	0. 33	0.11	0.13
647	0. 21	0.79	0. 58	11. 66	0. 378	0. 82	0. 96	0. 29	0. 20
848	0. 13	0.57	0. 50	12. 18	0. 247	1. 29	0. 58	0.30	0. 23
649	0. 10	0.63	0.47	15. 79	0. 038	2.10	0. 96	0.05	0.17
650	0. 22	0.08	0.34	7. 35	0. 583	2. 72	0. 98	0.44	0.24
851	0. 02	0.34	0.81	17. 28	0. 726	0.96	0.48	0.17	0.14
652	0.30	0. 50	0.92	10. 90	0. 297	2.86	0. 26	0. 13	0.08
653	0.01	0. 45	0.95	5. 68	0.645	1.34	0.67	0. 50	0.15
854	0. 27	0.06	0.38	5. 9 9	0. 101	2. 42	0. 08	0. 45	0.17
655	0.16	0.75	0.27	9, 63	0. 992	0. 62	0. 77	0. 15	0.12
656	0.05	0.43	0.88	7. 89	0.657	0.30	0. 12	0. 26	0. 19
657	0.05	0.56	0.89	11. 77	0. 438	0.98	0.44	0. 20	0. 22
658	0.12	0. 23	0. 96	6. 15	0.172	2.10	0.58	0. 15	0. 18
659	0.20	0. 07	0.97	8. 23	0.674	3.08	0.36	0. 25	0.02
660	0.10	0.74	0.38	9. 49	0.309	3. 44	0. 15	0. 20	0.07

[0104] [表65]

1.39

				(質量%)			
No.	TI	Z r	Τa	H f	Co	Νi	Cu
631	1	1. 381	0.967	0.900		1.64	0.34
632	1	0.010	0. 436	1. 594		2.40	1.87
633	1.738	-	1.064	0. 821	_	3. 80	1. 28
634	0.015		0. 569	1. 286	-	2, 72	1.88
635	0.557	-	0.610	1. 656		0.78	0. 70
636	0.062		1.833	1. 572	_	1.89	1.89
637	1. 170	-	0. 944	0. 755	_	0.64	0. 72
638	1.575	-	0. 590	1. 822	_	3. 24	1. 33
639	1. 956	0.861		1. 500	-	1. 90	0. 79
640	0. 979	0. 857	_	1. 441	-	0. 52	0. 56
641	0. 312	1. 024	-	1. 287	_	3. 11	0. 36
6 4 2	1. 631	1.064	-	0. 743	_	4. 11	0. 79
543	0.603	0.650	-	1. 475	_	2.74	0. 66
844	0.890	1.443	•	1. 153	_	2.98	1. 46
645	0.186	0. 115	0. 895	0. 440	-	1.67	0. 21
646	0.151	0. 336	0. 101	1. 003		2. 78	1. 11
647	0. 464	1. 771	0. 887	0. 537	-	0.78	1.17
648	1. 782	0. 127	1. 952	0, 700		4. 45	0. 98
649	1, 789	0. 039	0. 951	0. 176	-	1. 03	0. 27
650	0. 150	0. 207	1. 569	1. 629		1.74	1.42
651	0. 528	_	-	-	2. 19	0. 92	1. 45
652	1, 613	-		_	1.89	0. 24	1. 85
653	0.079				2. 42	3. 69	0. 54
654	0.592		-		3. 05	0. 91	0. 81
855	0. 808				2. 98	3. 10	0. 59
856	1. 428				1. 37	4. 66	1. 36
657		1.490	-		2. 29	4. 81	1.02
658		1. 763			2. 49	0. 83	1. 98
669		1. 309			3. 66	2. 50	1. 27
16601	-	1.828	_	_	2.54	3. 24	0.35

【0105】 【表66】

141

(質量%) 表22-3 本発明網

20,22	<u>-ა 4-9</u>	971			CRE	E70/
No.	P	S	٥	D-CRS	HAZCRS	M%
631	0.0243	0.004	0.011	6	176	35
632	0.0015	0.009	0.013	7	132	27
633	0.0087	0.007	0.012	4	170	37
634	0.0263	0.010	0.006	4	142	24
635	0.0050	0.007	0. 020	6	176	28
636	0.0134	0. 005	0.013	1	175	34
637	0.0031	0.009	0.019	6	166	29
638	0. 0129	0.002	0.017	2	152	41
639	0.0240	0.007	0.013	3	161	37
640	0.0158	0.007	0.013	6	145	39
641	0.0137	0.006	0.015	4	133	34
642	0.0127	0.003	0.015	2	152	31
643	0.0077	0.009	0.010	4	179	29
844	0.0089	0.010	0.006	4	144	31
545	0.0112	0.008	0.019	1	172	27
646	0.0099	0.007	0.009	1	143	24
847	0.0003	0.005	0.010	2	133	42
648	0.0069	0.009	0.018	5	171	40
649	0.0251	Q. 010	0.013	0	133	35
850	0.0202	0.009	0.009	1	174	38
651	0.0020	0.002	0.013	5	170	10
652	0. 0104	0.005	0.013	6	175	19
553	0.0109	0. 007	0.005	2	166	12
654	0. 0281	0. 006	0.005	6	171	12
855	0. 0127.	0.002	0.001	2	142	19
656	0.0043	0.006	0. 018	4	158	24
657	0. 0130	0.008	0. 005	6	171	24
658	0. 0188	0. 006	0.007	5	158	25
659	0.0025	0.008	0.011	6	149	17
660	0.0030	0.004	0. 005	1	144	23
					a market of the last 1	

D-CRS : 600 ℃、10万時間直線外挿クリープ推定破断強度

の母材部と溶接部の差 (IIPa)

HA2CRS:海接部の 600℃、10万時間直線外押クリーブ

権定数所強度 (Pa) : 溶接熱影響部中のM₂₃C₆ 型炭化物中Mに占める (Ti%+Zr%+Ta%+Hf%) の値 М%

[0106]

【表67】

143

表23-	-1 2	以発明 制	П					(質)	2%)
No.	C	Si	Мn	Сr	Мо	W	V	Νb	N
8 6 1	0.07	0.17	0. 56	14.30	0. 390	0.93	0. 23	0.14	0.04
562	0. 20	0. 18	0.47	14. 07	0.774	3. 34	0.50	0. 26	0. 02
663	0.30	0.65	0.91	13. 22	0. 294	3. 48	0. 75	0.47	0. 09
664	0.17	0.65	0.61	15. 86	0.761	0.77	0.84	0. 19	0. 20
665	0.06	0.06	0.27	7.07	0. 039	1. 33	0.60	0.09	0.08
866	0. 22	0.33	0.54	10.71	0. 948	1. 29	0.85	0.32	0.17
667	0.01	0.15	0.50	5. 10	0. 336	1. 78	0.46	0.07	0.08
668	0.11	0.17	0.40	7.60	0. 529	0. 58	0.73	0.49	0. 22
669	0.19	0.25	0.93	9. 53	0. 359	0.44	0.51	0.02	0.11
570	0.19	0.28	0.35	15. 27	0. 173	0.85	0. 15	0.06	0.04
671	0.21	0.13	0.52	16. 32	0. 798	2. 91	0.46	0. 28	0. 22
572	0.21	0.05	0.92	16. 90	0.086	1. 14	0. 29	0. 35	0. 02
673	0.29	0.71	0. 63	15. 04	0. 360	3. 24	0. 97	0. 44	0.11
574	0.10	0.41	0.69	8. 44	0. 952	0.41	D. 88	0. 23	0. 22
675	0.17	0.59	0.60	8. 03	0. 211	2.00	0. 27	0. 12	0. 18
676	0.18	0.33	0. 99	11.57	0. 949	0.86	0.04	0.03	0. 19
677	0. 22	0. 29	0. 57	17. 19	0. 536	3. 10	0.99.	0.37	0. 22
678	0.09	0.34	0.38	9. 48	0. 282	1. 54	0. 99	0. 09	0. 23
679	0. 19	0.36	0. 70	12.49	0. 532	2, 26	0.87	0. 07	0.05
680	0.02	0. 21	0. 20	11.01	9. 622	1. 39	0.45	0. 25	0.01
681	0.28	0.16	0. 75	9. 37	0. 385	3. 3 3	0.07	0. 29	0. 19
682	0.17	0.46	0. 21	11. 99	9. 656	2. 64	0.07	0. 36	0. 19
683	0.11	0. 22	0. 85	16. 73	0. 273	0.38	0.76	0.38	0.09
684	0.16	0.07	0.94	8. 41	0. 574	0. 99	0. 04	0. 28	0.09
685	0.02	0.30	0. 76	17. 55	D. 400	0. 62	0. 67	0. 20	0. 15
686	0. 20	0.36	0, 97	9. 41	0. 081	2. 04	0. 98	0. 33	0.11
687	0.07	0. 55	0. 24	14. 37	0.947	3. 03	0. 96	0. 33	0. 17
688	0.03	0. 32	0. 83	17. 23	0. 339	1.41	0. 30	0. 36	0.17
689	0.03	0.72	0. 62	15. 87	0. 096	1. 59	0. 34	0.11	0.08
690	0.16	0.07	0. 67	14.75	0. 548	3. 03	0. 94	0. 47	0.09

[0107] [表68]

145							
表23-	- 2 本発明	明鋼				(實i	2%)
Nb.	Тi	2 г	Ta	H f	Co	Νi	Cu
661	-	0.967	-	_	0.82	4. 30	0. 78
662	-	0.431	-	-	2.47	4. 79	1. 33
663	1. 039	0.860	-	-	1. 92	1. 56	0.81
334	1. 958	1.934	-	-	0.75	0. 99	1.63
665	0.320	1.331	_		0.57	4. 70	0.76
666	0.776	1.709		_	3. 01	2.31	0. 66
667	1.028	0.752	-		2.48	2.63	1.00
658	1.708	1.127	-	_	3. 02	2. 50	1.49
659		_	1. 216		1. 42	1. 11	0. 95
670		_	0.082		4. 09	4. 87	1.77
671	_		0. 652		0.62	0.97	1. 84
672	-	-	0. 621	-	4.67	3. 08	0. 90
673	· -	·	1.640	-	1. 01	0. 75	0. 43
674	-		1. 396	-	3. 27	0. 43	1. 93
675	1.643		1. 563	_	1. 07	1. 32	1. 53
676	1. 141	-	1. 798	-	3. 23	0. 26	0.72
677	0. 131	_	0. 798	-	4. 13.	1. 22	1.01
678	0.304	-	0. 200		0.60	3. 44	1.19
679	0. 304	_	0. 704		3.87	1. 33	1.88
680	1. 823	-	1. 946		3. 48	3. 63	1. 85
681	ı	0. 176	1.644	-	1. 16	2. 52	0.88
682	1	0. 786	1. 458	1	3. 26	1.88	0.41
683	-	0.819	1. 059	+	4. 22	3. 38	1.07
684	-	1. 909	0. 090	ı	3. 16	1.36	0.75
685		0. 777	0. 258	-	4. 20	2.31	0.97
586	_	0. 072	0. 221	-	4.11	3.01	0. 53
687	1. 272	1. 462	1.647	+	4. 49	2.64	0. 92
688	0.081	1. 588	0. 181	_	4. 48	2.79	1.83
689	1, 461	1, 159	1, 159	_	0.97	2.71	1. 19

【0108】 【表69】

147

_表23	- 3 本	色明纖			(質:	全%)
No.	P	S	0	D-CRS	HAZCRS	М%
661	0.0015	0.005	0.013	6	172	20
862	0.0224	0.005	0.015	3	161	17
663	0.0162	0.008	0.006	1	139	22
664	0. 0226	0.007	0.002	2	133	39
865	0.0067	0.006	0.011	2	171	19
666	0.0088	0.007	0.009	6	180	31
667	0.0089	0.009	0.003	7	139	22
668	0.0021	0.002	0.010	6	174	32
669	0.0132	0.002	0.006	0	165	18
670	0.0228	0.008	0.009	1	139	10
671	0.0107	0.004	0.014	7	173	11
672	0.0018	0.008	0.019	4	170	11
673	0. 0213	0.008	0.020	4	158	18
674	0.0045	0. 003	0.005	7	164	19
675	0.0212	0. 001	0.009	4	167	35
676	0.0058	0.005	0.009	4	143	30
677	0.0010	0.004	0.013	0	. 147	13
678	0. 0288	0. 001	0.016	1	155	14
679	0. 0259	0.009	0.017	5	170	13
680	0. 0165	0.003	0.010	5	170	37
681	0. 0118	0.009	0.004	5	133	28
682	0.0061	0.008	0.014	0	161	26
683	0. 0245	0.001	0.009	0	132	21
684	0.0173	0.007	0.003	2	149	30
685	0. 0243	0. 005	0.014	4	140	20
686	0. 0261	0.008	0.009	1	132	8
687	0. 0022	0.009	0.013	7	154	48
688	0. 0222	0.007	0.015	5	132	20
689	0.0074	0.010	0.002	4	145	45
690	0.0275	0. 007	0.008	7	170	47

[0109]

【表70】

				Ç	-,				
149									
安24-	-12	大発明	J					(質)	!%)
No.	С	Si	Mn	Сг	Мо	W	V	NЬ	N
891	0.09	0.57	0.88	5. 19	0. 536	1.89	0.96	0.38	0. 17
692	0.06	0.16	0. 25	17. 61	0.897	2. 60	0. 23	0.50	0. 15
693	0. 16	0. 65	0. 72	17. 33	0. 464	1. 27	0. 55	0. 25	0. 12
694	0.07	0.73	0. 52	8. 61	0. 571	0.70	0. 29	D. 05	0. 15
695	0.02	0.30	0. 33	15. 51	0.063	1.98	0. 28	0.06	0. 21
696	0. 25	0.38	0. 82	16. 27	0. 759	1. 27	0.34	0.20	0. 02
697	0.13	0.07	0. 65	8. 78	0.012	1. 33	0.81	0.39	0. 01
698	0.06	0.03	0. 50	16. 98	0. 150	1.52	0. 55	0.06	0.04
699	0. 28	0.12	0.64	12. 62	0.008	1.61	0.87	0.11	0. 05
700	0.16	0.60	0. 53	13. 18	0. 919	0. 73	0.62	0. 45	0.14
701	0. 08	0.57	0. 43	16. 48	0. 239	3. 42	0.14	0. 28	0. 13
702	0.15	0.29	0. 63	13. 87	0. 277	0.88	0. 25	0. 25	0. 24
703	0. D2	0.41	0. 59	16.07	0. 377	2. 42	0. 27	0. 02	0.06
704	0.08	0.02	0. 97	8. 22	0. 880	2. 63	0. 58	0. 02	0. 15
705	0.15	0.56	0.85	14, 11	0. 131	2. 58	0. 99	0. 16	0. 24
706	0.17	0.35	0. 50	5. 62	0. 952	1. 74	0. 85	0. 12	0.04
707	0.24	0.40	0.97	12. 92	0. 675	1. 16	0.48	0.06	0. 23
708	0.17	0. 23	0. 96	8. 12	0. 651	0.38	0. 23	0. 38	0. 18
709	0. 20	0.07	0. 31	14. 99	0. 707	2. 13	0. 91	0.04	0.08
710	0. 28	0.20	0. 51	5. 39	0. 677	0.89	0.39	0, 41	0. 02
711	0.22	0.48	0. 99	15. 95	0.884	2.69	0.96	0.44	0. 07
712	0.12	0.78	0.46	5. 78	0. 681	2.08	0.50	0.04	0. 09
713	0.07	0. 21	0. 38	11. 85	0. 914	0. 24	0. 35	0. 13	0.14
714	0.03	0.20	0. 22	6. 02	0. 414	3. 17	0.81	0.14	0. 07
715	0.10	0.23	0. 64	12. 12	0.513	2.09	0. 75	0. 45	0. 20
716	0.08	0.17	0. 72	14. 91	0.043	3. 03	0. 98	0.03	0.14
717	0.08	0.28	0. 72	5. 86	0. 342	0.53	0.86	0.49	0. 19
718	0.18	0.43	0. 91	8. 83	0. 252	0. 64	0. 22	0.30	0.08
719	0.05	0.50	0. 36	8. 64	0. 098	1.13	0.86	0.10	0. 02
720	0. 22	0.73	0.53	9. 51	0. 714	1.50	0.17	0.08	0.08

【0110】 【表71】

数24-2 本発明網				(,,,					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	151								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	安24-	- 2 本発	月網				(質)	2%)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	No.	T i	Z r	Ta	H f	Co	Ni	Cu	ı
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	691	0. 585	0. 375	1. 370	-	2. 11	3. 79	1. 36	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	692	1.672	1. 328	1. 207	_	2. 69	3. 25	1. 53	ı
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	593		_	-	1.975	1. 41	4.13	0.77	ı
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	694	-	-	_	1.491	2. 36	0. 92	0.61	ı
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	695	_	_	_	0.211	2. 28	4.76	1. 62	ı
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	696	_	_	_	0.808	0. 37	0.46	1. 70	ı
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	697		_	-	0.951	3. 09	4 04	0. 58	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	698		-	-	0.321	2. 40	0.32	0. 64	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	699	0. 907	_	_	0.578	4. 75	2.92	1.60	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	700	1. 795	-	-	1.402	2. 14	3. 85	1. 38	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 D 1	0. 320	-	•	0.487	3. 42	4.74	1. 46	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	702	1. 134	-	-	1.480	2. 97			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	703	0. 388	-	-		2. 37			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	704	1. 317	_	_	1.871				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	705	-	0.402	1	1.643	4. 94	3. 92	1. 67	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	706	_	0. 344	_			_		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_		-					
712 - - 1.278 1.395 3.65 1.26 1.24 713 - - 0.685 1.771 4.21 2.40 1.79 714 - - 1.689 1.116 3.20 2.85 1.50 715 - - 0.985 0.118 2.21 4.22 0.99 716 - - 1.222 1.416 0.44 0.87 1.75 717 - 1.047 0.086 1.724 4.36 4.11 0.80 718 - 1.789 1.247 1.695 1.16 1.09 0.54 719 - 1.128 1.370 1.991 4.41 3.02 0.67			0. 232	_		0. 98			
713 - - 0.685 1.771 4.21 2.40 1.79 714 - - 1.689 1.116 3.20 2.85 1.50 715 - - 0.985 0.118 2.21 4.22 0.99 716 - - 1.222 1.416 0.44 0.87 1.75 717 - 1.047 0.086 1.724 4.36 4.11 0.80 718 - 1.789 1.247 1.695 1.16 1.09 0.54 719 - 1.128 1.370 1.991 4.41 3.02 0.67		÷	-						
714 - - 1.689 1.116 3.20 2.35 1.50 715 - - 0.985 0.118 2.21 4.22 0.99 716 - - 1.222 1.416 0.44 0.87 1.75 717 - 1.047 0.086 1.724 4.36 4.11 0.80 718 - 1.789 1.247 1.695 1.16 1.09 0.54 719 - 1.128 1.370 1.991 4.41 3.02 0.67		_							
7 1 5 - - 0.985 0.118 2.21 4.22 0.99 7 1 6 - - 1.222 1.416 0.44 0.87 1.75 7 1 7 - 1.047 0.086 1.724 4.36 4.11 0.80 7 1 8 - 1.789 1.247 1.695 1.16 1.09 0.54 7 1 9 - 1.128 1.370 1.991 4.41 3.02 0.67		-							
7 1 6 - - 1. 222 1. 416 0. 44 0. 87 1. 75 7 1 7 - 1. 047 0. 086 1. 724 4. 36 4. 11 0. 80 7 1 8 - 1. 789 1. 247 1. 695 1. 16 1. 09 0. 54 7 1 9 - 1. 128 1. 370 1. 991 4. 41 3. 02 0. 67									
717 - 1.047 0.086 1.724 4.36 4.11 0.80 718 - 1.789 1.247 1.695 1.16 1.09 0.54 719 - 1.128 1.370 1.991 4.41 3.02 0.67		-		-					
718 - 1.789 1.247 1.695 1.16 1.09 0.54 719 - 1.128 1.370 1.991 4.41 3.02 0.67									
7 1 9 - 1. 128 1. 370 1. 991 4. 41 3. 02 0. 57									
720 - 1.750 0.152 1.312 3.81 1.97 0.90									
	720		L. 750	0. 152	1. 312	3.81	L 97	0. 90	

[0111] 【表72】

			•			
153						
表24		色明網				₹%)
.No.	P	S	0	D-CRS	HAZCRS	М%
691	0.0028	0.005	0.011	3	135	31
692	0.0178	0.008	0.009	6	168	43
593	0.0078	0.001	0.017	6	146	29
694	0.0281	0.005	0.013	0	173	17
595	0.0285	0.004	0. 013	4	175	15
696	0.0042	0.006	0.014	2	156	19
697	0.0250	0.001	0. 013	1	144	15
698	0.0261	0.001	0. 015	6	141	7
699	0.0179	0.004	0. 019	6	175	21
700	0.0253	0.010	0. 010	6	148	32
70 1	0.0135	0.006	0. 016	5	139	11
702	0. 0221	0. 001	0.004	3	150	26
703	0. 0017	0.003	0.018	5	158	22
704	0. 0220	0.005	0.008	6	168	33
705	0.0186	0.006	0.009	5	156	22
706	0.0158	0.009	0.007	5	150	23
707	0. 0245	0.008	0.001	1	152	38
708	0. 0244	0.002	0.008	2	141	31
709	0. 0252	0.006	0.009	4	169	16
710	0. 0077	0.002	0.017	5	165	21
711	0. 0262	0.006	0.007	5	155	28
712	0. 0165	0.008	0.015	6	157	26
713	0.0184	0.001	0.008	6	155	29
714	0.0120	0.007	0.013	1	170	27
715	0.0221	0.002	0.007	7	167	16
716	0.0291	0.002	0.006	2	146	27
717	0.0281	0. 010	0.016	6	137	35
718	0.0141	0.002	0.015	4	167	48
719	0.0269	0.004	0.010	6	163	39
720	0.0172	0, 006	0.017	5	154	37

720 0.0172 0.006 0.017 5 154 37 D-CRS:600 ℃、10万時間直線外舞クリープ推定破断強度の母材部と搭接部の差(MPa) HAZCRS:溶接部の600℃、10万時間直線外舞クリープ

推定破断強度(UPa)

: 溶接熱影響部中のM₂₅C₆ 型炭化物中Mに占める (Ti%+Zr%+Ta%+Hf%) の値 М%

[0112]

* *【表73】

						.,	•		
表25-	-1 2	本発明的	F					(費:	1%)
No.	С	Si	Mn	Cr	Мо	W	٧	Nb	N
721	0. 21	0.24	0. 91	9.56	0.450	2.84	0.43	0.35	0.10
722	0.11	0.45	0. 54	6.45	0.127	2.97	0. 52	0. 39	0.17
723	0.04	0.06	0. 91	17.65	0.088	2.98	0. 27	0.11	0.12
724	0.07	0.50	0.68	15. 12	0. 175	2.36	0.99	0.40	0.15
725	0.02	0.09	0. 92	9. 65	0. 220	0.56	0.55	0.45	0.11
726	0. 28	0.26	0. 70	5. 48	0. 547	1.95	0.26	0. 42	0.08
727	0.08	0.10	0. 29	13.64	0.508	2.73	0.47	0. 23	0.13
728	0.08	0.26	0. 36	6.01	0. 935	2.36	1.00	0. 30	0. 24
729	0. 25	0.61	0.78	6. 28	0. 160	0. 27	0. 21	0. 29	0. 23
730	0. 25	0. 25	0. 61	6.03	0. 523	0.90	0.42	0. 13	0. 19
731	0.02	0. 23	0.93	9. 59	0. 862	2.06	0.48	0. 23	0.08
732	0. 26	0.79	0. 39	8. 10	0.500	1.49	0.20	0.50	0.09
733	0.03	0.64	0.88	12.65	0. 286	2.04	0.92	0. 38	0.08
784	0.01	0.05	0. 66	8. 10	0. 055	3. 13	0.02	0. 27	0.13
735	0.02	0.05	0. 39	5. 22	0. 632	0.88	0.28	0.10	0.18
736	0.30	0.53	0. 76	8.47	0. 369	3.08	0.07	0.02	0.08
787	0.07	0.17	0. 42	9. 12	0, 586	0.88	0.70	0, 21	0.16
738	0.30	0.03	0. 45	11.69	0. 139	2.02	0.04	0. 34	0.02
739	0. 22	0.37	0.31	13.79	0. 332	0.94	0.87	0.08	0.20
740	0.07	0.65	0. 66	13.50	0. 034	2.15	0.11	0.09	0.09

[0113]

155

* *【表74】

表25	-2 本発明	月網				(質)	2%)_
No.	Ti	Z T	Ta	H f	Co	Νi	Cu
721		1.320	1. 239	1. 310	3. 31	1.89	1.83
722		1.487	0. 298	1. 641	2.09	2.01	0.47
723	1. 220	-	0.025	1.004	4. 23	3. 95	1.02
724	1.510	-	0. 055	0.054	1.70	4. 49	1.37
725	1. 549		1. 089	1. 455	0.90	0.46	0. 35
726	1.018	-	0.804	0. 923	1.13	9. 73	1. 26
727	1. 560	-	1. 858	0.093	1.51	2. 03	1.99
728	0. 886	-	1.929	0.641	3.71	3. 61	0.46
729	0. 631	1, 371	-	1. 234	2. 11	2.30	1. 77
730	1. 504	0.654	-	0.556	0.72	4. 48	1. 13
731	1. 160	0. 598	1	0.273	3. 54	4.56	0. 92
732	1. 235	1.864		1.048	0. 22	1.76	1.77
733	1. 45?	1.158	•	1.581	4. 39	4. 95	1.59
734	0.470	0. 131	-	1. 527	0. 82	1. 28	0.97
735	0. 946	0.427	0. 199	0. 537	0.68	4. 31	1.40
736	0.571	0.776	0. 577	1.322	0.90	1.37	0. 81
737	1.005	1.793	1.990	0. 532	3. 01	3. 62	0.71
738	0. 923	1. 196	1. 157	1.843	1. 45	0. 69	1. 69
739	0. 972	1.619	0.713	1. 907	2.57	3. 69	0. 72
740	1.877	1. 728	0.321	1.400	0.80	4. 72	0. 25

[0114]

※ ※【表75】

表25-	-3 本乳	神明網			(質)	1%)
No.	P	S	0	D-CRS	HAZCRS	М%
721	0.0096	0. 010	0.003	6	166	39
722	0. 0291	0.010	0.004	3	179	32
723	0. 0261	0.009	0.007	2	169	31
724	0. 0253	0.006	0.009	5	164	21
725	0.0221	0. 005	0.007	5	167	40
726	0. 0117	0.002	0.017	3	131	34
727	0.0040	0.007	0.007	6	134	41
728	0.0088	0.008	0.003	5	152	35
729	0.0064	0.004	0.010	6	165	38
730	0. 0220	0. 007	0.008	4	149	32
731	0. 0205	0. 002	0.001	3	133	26
732	0. 0270	0.001	0.016	4	144	36
733	0. 0220	0.003	0.012	8	159	42
734	0.0151	0.002	0.013	4	158	29
735	0.0162	0. 004	0.017	5	166	29
736	0. 0208	0.009	0.002	7	138	30
737	0. 0240	0. 907	0.002	2	176	52
738	0. 0208	0.008	0.008	2	157	46
739	0. 0206	0.004	0.018	Ð	159	46
740	0.0044	0.009	0.017	2	181	52

D-CRS : 500 ℃、10万時間直線外揮クリープ推定破断強度

の母材部と溶接部の差 (MPa)

HAZCRS:溶接部の 600℃、10万時間直線外挿クリープ

推定破断強度 (IPa)

: 溶接無影響部中のM₂₅C₆ 型炭化物中Mに占める (Ti%+Žr%+Ta%+Hf%)の値

[0115]

【表76】

表26-1 比較網

(實量%)

	С	S I	Мπ	Ст	Мο	W	v	Νb	N	Ti	Z r	Ta	H f	Co
741	0. 096	0. 637	0. 307	13.8	0. 32	2. 21	0. 540	0.144	0. 026	L 974	1	0. 797		-
742	0. 063	0. 070	0. 862	17. 3	0.04	0. 52	0. 205	0. 011	0.022	-	1. 546	-	-	0. 67
743	0.025	0. 520	0. 599	10.8	0. 95	1. 57	0. 684	0. 150	0. 217	_	0. 002	-	-	-
744	0. 072	0. 339	0. 461	8.0	0. 94	2.50	0. 538	0. 211	0. 194	1	-	-	-	4. 29
745	0.077	0. 187	0. 497	12.4	0. 27	3. 22	0. 913	0. 286	0. 222	2. 243	0. 252	-	0. 001	2. 95
746	0. 012	0. 016	0. 994	14.6	0. 60	2. 15	0. 099	0. 061	0. 170	1	3. 105	_	_	1.85
747	0. 117	0. 032	0. 495	6. 2	0. 39	0. 33	0. 372	0. 035	0. 175	-	-	2.007	_	-
748	0. 109	0. 195	0. 328	16. 2	0. 74	0. 69	0. 534	0.060	0. 090	1	1	1. 559	3.511	4. 15
749	0. 276	0. 777	0. 640	13. 3	0. 01	2.61	0. 811	0. 253	0. 016	1.938	_	1. 287	_	_
750	0. 066	0. 013	0. 265	5. 0	0.16	3.00	0. 480	0. 229	0. 131	-	1. 535	_	0. 170	1.56

[0116]

* * 【表77】

表26-2 比較鋼

(質量%)

	Νi	Cu	Р	S	0	D-CRS	HAZCRS	M%	Ti, Zr, Ta, Hfの添加時期
741	4. 76	_	0. 015	0.004	0.006	42	84	0	溶解工程中
742	_	-	0. 014	0.009	0.006	77	105	1	海解工程中
743	-	1. 24	0.009	0.001	0.010	81	77	2	精鍊工程中、出觸10分前
744	-	1. 57	0. 008	0.008	0.013	42	80	0	特餘工程中、出銅10分前
745	-	_	0. 022	0.004	0.014	54	91	71	精鍊工程中、出銅10分前
746	1	1. 52	0. 024	0. 003	9.011	25	85	84	精鍊工程中、出網10分前
747	0. 90	1. 97	0. 023	0.001	0.008	40	93	90	精鍊工程中、出銅10分前
748	2. 23	-	0. 017	0.002	0. 016	39	106	68	精飾工程中、出欄10分前
749	1	-	0. 016	0.003	0. 001	29	100	2	精練工程中、出網10分前
750	3. 56	1. 65	0.012	0.003	0.008	36	98	2	精鍊工程中、出網10分前

D-CRS : 800°C, 10万時間直線外挿クリーブ推定破断強度の母材部と熔接部の差(NPa)

HAZCRS: 潜接部の 800℃、10万時間直線外揮クリーブ推定破断強度(MPa)

М % :溶接魚影響部中のMasCo 型炭化物中Mに占める(Ti%+Zr%+Ta%+Hf%)の値(%)

[0117]

【発明の効果】本発明は耐HAZ軟化特性に優れ、55 40 【図4】固溶化熱処理後の冷却一時停止温度およびその 0℃以上の高温で高クリーブ強度を発揮するマルテンサ イト系耐熱鋼の提供を可能ならしめるものであって、産 業の発展に寄与するところ極めて大なるものがある。

【図面の簡単な説明】

【図1】溶接継手の突き合わせ開先形状を示す図であ

【図2】溶接熱影響部の折出物分析試験片採取要領を示 す図である。

【図3】Ti、Zr, Ta, Hfの添加時期と、Ti,

態の関係を示す図である。

保持時間と析出炭化物の大きさの関係を示す図である。

【図5】固溶化熱処理後の冷却一時停止温度と溶接熱影 響部の析出物の形態と組織の関係を示す図である。

【図6】600°C、10万時間直線外挿クリープ推定破 断強度の母材部と溶接部の差D-CRSと溶接熱影響部 中のM₂, C₆型炭化物中Mに占める(Ti%+Zr%+ Ta%+Hf%)の値M%の関係を示す図である。

【図7】鋼管(a) および板材(b) からのクリープ破 断強度試験片採取要領を示す図である。

Zr. Ta. Hfの鋼中における析出物としての存在形 50 【図8】鋼管(a)および板材(b)の溶接部からのク

159

リーブ破断試験片採取要領を示す図である。

【図9】鋼管(a) および板材(b) の溶接部からのシャルピー衝撃試験片採取要領を示す図である。

【図10】母材の600℃、10万時間直線外挿クリープ推定破断強度の母材中のTi%+Zr%+Ta%+Hf%の値の関係を示す図である。

【図11】溶接熱影響部中の M_1 , C_6 型炭化物中Mに占める(T_1 %+ Z_1 %+ T_0 8%+ T_0 9の値M%と溶接部の靭性の関係を示す図である。

【符号の説明】

* 1 鋼管

2 鋼管の軸方向

3 板状鋼材

4 板状鋼材の圧延方向

5 クリープ破断試験片採取位置と採取方向

6 溶接方向

7 溶接方向と直角な方向

8 シャルピー襲撃試験片採取位置と採取方向

9 溶接ボンド

*10 10 溶接熱影響部

[図1]

[図2]

電子顕微鏡用試料および分析用試料採取要領

[図3]

[図4]

熱処理後の冷却条件と析出炭化物の平均粒子径の関係

フロントページの続き

(72)発明者 水橋 伸雄

千葉県富津市新富20-1 新日本製鐵株式 会社技術開発本部内 (72)発明者 直井 久

千葉県富津市新富20-1 新日本製鐵株式

会社技術開発本部内

(72)発明者 藤田 利夫

東京都文京区向丘一丁目14番4号