Empirical Representation of AKRD

Al Cooper

RAF Presentation 14 November 2016

OVERVIEW

The topic addressed here:

AKRD is calculated using a standard empirical representation.

That representation seems to be project-dependent.

- It is hard to understand why it should vary.
- It is often difficult to find a generally valid representation, even for a single project.

This seems to point to a need for a different empirical approach.

OVERVIEW

The topic addressed here:

AKRD is calculated using a standard empirical representation.

That representation seems to be project-dependent.

- It is hard to understand why it should vary.
- It is often difficult to find a generally valid representation, even for a single project.

This seems to point to a need for a different empirical approach.

The standard representation:

$$lpha = c_0 + rac{\Delta p_lpha}{q} \left(c_1 + c_2 M
ight)$$

Fit to a reference that assumes zero vertical wind:

$$\alpha^* = \theta - \frac{w_p}{V}$$

SOME WORRIES

Adjustment of the mean value:

$$\langle lpha
angle = c_0 + c_1 \left\langle rac{\Delta p_lpha}{q}
ight
angle + c_2 \left\langle rac{\Delta p_lpha}{q} M
ight
angle$$

- ullet For given lpha, expect Δp_lpha and q to be approx. proportional
- ullet c_2 term provides some zero adjustment that is M-dependent.

SOME WORRIES

Adjustment of the mean value:

$$\langle lpha
angle = c_0 + c_1 \left\langle rac{\Delta p_lpha}{q}
ight
angle + c_2 \left\langle rac{\Delta p_lpha}{q} M
ight
angle$$

- ullet For given lpha, expect Δp_{lpha} and q to be approx. proportional
- c_2 term provides some zero adjustment that is M-dependent.

This affects sensitivity to $\Delta p_{\alpha}/q$

The sensitivity to radome-pressure fluctuations is now:

$$lpha' = (c_1 + c_2 M) \left(\frac{\Delta p_{lpha}}{q} \right)'$$

- Response to radome fluctuations is then altitude dependence.
- There does not appear to be support for this.
- c₂ is project-dependent, depending on flight patterns.

0	Our problems with	project-dependent	variations arise f	rom
	trying to represent	two effects with or	ne formula:	

- Our problems with project-dependent variations arise from trying to represent two effects with one formula:
 - (a) The response to fluctuations;

- Our problems with project-dependent variations arise from trying to represent two effects with one formula:
 - (a) The response to fluctuations;
 - (b) The zero offset.

- Our problems with project-dependent variations arise from trying to represent two effects with one formula:
 - (a) The response to fluctuations;
 - (b) The zero offset.
- Variations in the zero offset arise from various airflow effects that change the flow at the radome:

- Our problems with project-dependent variations arise from trying to represent two effects with one formula:
 - (a) The response to fluctuations;
 - (b) The zero offset.
- Variations in the zero offset arise from various airflow effects that change the flow at the radome:
 - (a) Variations in aircraft configuration

- Our problems with project-dependent variations arise from trying to represent two effects with one formula:
 - (a) The response to fluctuations;
 - (b) The zero offset.
- Variations in the zero offset arise from various airflow effects that change the flow at the radome:
 - (a) Variations in aircraft configuration
 - (b) Variations in aerodynamic controls (speed brakes, flaps, transient effects of power changes).

- Our problems with project-dependent variations arise from trying to represent two effects with one formula:
 - (a) The response to fluctuations;
 - (b) The zero offset.
- Variations in the zero offset arise from various airflow effects that change the flow at the radome:
 - (a) Variations in aircraft configuration
 - (b) Variations in aerodynamic controls (speed brakes, flaps, transient effects of power changes).
- A better representation could be obtained by separating representation of these two effects into two components:

- Our problems with project-dependent variations arise from trying to represent two effects with one formula:
 - (a) The response to fluctuations;
 - (b) The zero offset.
- 2 Variations in the zero offset arise from various airflow effects that change the flow at the radome:
 - (a) Variations in aircraft configuration
 - (b) Variations in aerodynamic controls (speed brakes, flaps, transient effects of power changes).
- A better representation could be obtained by separating representation of these two effects into two components:
 - (a) The fluctuating component (e.g., 10-min period or less);

- Our problems with project-dependent variations arise from trying to represent two effects with one formula:
 - (a) The response to fluctuations;
 - (b) The zero offset.
- Variations in the zero offset arise from various airflow effects that change the flow at the radome:
 - (a) Variations in aircraft configuration
 - (b) Variations in aerodynamic controls (speed brakes, flaps, transient effects of power changes).
- A better representation could be obtained by separating representation of these two effects into two components:
 - (a) The fluctuating component (e.g., 10-min period or less);
 - (b) The varying mean component (period >10 min).

- Our problems with project-dependent variations arise from trying to represent two effects with one formula:
 - (a) The response to fluctuations;
 - (b) The zero offset.
- 2 Variations in the zero offset arise from various airflow effects that change the flow at the radome:
 - (a) Variations in aircraft configuration
 - (b) Variations in aerodynamic controls (speed brakes, flaps, transient effects of power changes).
- A better representation could be obtained by separating representation of these two effects into two components:
 - (a) The fluctuating component (e.g., 10-min period or less);
 - (b) The varying mean component (period >10 min).

The fluctuating component may be universal, while the slowly varying component is likely project-dependent.

EXAMPLE TO USE: ORCAS Flight 6

EXAMPLE TO USE: ORCAS Flight 6

Reason: The errors often correlate with changes in flight like starts of descents or climbs.

Reason: The errors often correlate with changes in flight like starts of descents or climbs.

Consider the lift generated by the wings:

$$L = \frac{1}{2}\rho_a V^2 c_L S = q c_L S \approx W(t)$$

where S is the area of the wings and W(t) is the weight of the aircraft.

Reason: The errors often correlate with changes in flight like starts of descents or climbs.

Consider the lift generated by the wings:

$$L = \frac{1}{2}\rho_a V^2 c_L S = q c_L S \approx W(t)$$

where S is the area of the wings and W(t) is the weight of the aircraft.

If $c_L \approx c_0 \alpha$, this suggests that

$$c_0S=\frac{W(t)}{\alpha q}=F$$

should remain constant during normal flight conditions.

Reason: The errors often correlate with changes in flight like starts of descents or climbs.

Consider the lift generated by the wings:

$$L = \frac{1}{2}\rho_a V^2 c_L S = q c_L S \approx W(t)$$

where S is the area of the wings and W(t) is the weight of the aircraft.

If $c_L \approx c_0 \alpha$, this suggests that

$$c_0S=\frac{W(t)}{\alpha q}=F$$

should remain constant during normal flight conditions.

Variations in F then can be used to identify unusual flight conditions like use of flaps, etc.

PLOT F FOR A REPRESENTATIVE FLIGHT:

FLAG ERRORS USING F < 1.45:

OPTIONS FOR A NEW CALCULATION:

HIGH-PASS FILTER:

Use a high-pass filter, perhaps au=10-min, to remove the mean.

OPTIONS FOR A NEW CALCULATION:

HIGH-PASS FILTER:

Use a high-pass filter, perhaps au = 10-min, to remove the mean.

ADDITIONAL EMPIRICAL TERMS:

Observed aerodynamic effect suggests adding terms like QCF and GGALT to the formula to represent this variation better.

OPTIONS FOR A NEW CALCULATION:

HIGH-PASS FILTER:

Use a high-pass filter, perhaps $\tau = 10$ -min, to remove the mean.

ADDITIONAL EMPIRICAL TERMS:

Observed aerodynamic effect suggests adding terms like QCF and GGALT to the formula to represent this variation better.

COMPLEMENTARY FILTER:

- Split variables representing α (like $\Delta p_{\alpha}/q$) into two components:
 - (a) high-frequency component, 10-min cutoff
 - (b) low-frequency component, variable minus high-frequency component
- ② Fit these components separately so as to avoid mixing primary sensitivity and representation of the long-term mean. Fit to similarly filtered reference values.
- 3 Add the two contributions to obtain a final α .

THE COMPLEMENTARY FILTER

Advantages:

- This provides separate representation of the fast and slow components.
 - \rightarrow This avoids having to use a single formula for both.
 - ightarrow The most important fast component will not be distorted.
- The result can be a reference to which to compare other approaches that might be easier to implement.
- The slow component is not removed, so valid larger regions of updraft can be measured.

Disadvantage:

- This implementation requires a second-pass calculation.
- It will require further exploration to see if this can be implemented in nimbus instead.

Combined ORCAS and CSET flights

Combined ORCAS and CSET flights

Speed runs are best:

- ullet Usually, little vertical wind, so no error in $lpha^*$
- DEEPWAVE value of c_1 was 20.986. Result for many projects is similar when speed runs are used.
- This seems to match the extremes in the preceding plot better than the ORCAS+CSET fit.

Speed runs are best:

- ullet Usually, little vertical wind, so no error in $lpha^*$
- DEEPWAVE value of c_1 was 20.986. Result for many projects is similar when speed runs are used.
- This seems to match the extremes in the preceding plot better than the ORCAS+CSET fit.

Regression fitting: A problem can arise from measurement errors.

- With spread-out scatterplots, there is often an apparent bias toward a more level result.
- Because there is a limited range represented in these composite fluctuations, the correlation coefficient is small even though the residual error is $<0.1^{\circ}$.
- If we are to assume a universal value for all projects, it should be based on speed runs. The DEEPWAVE value is perhaps best.

Representing the slowly varying component				

Representing the slowly varying component

Representing the slowly varying component

- ① $\alpha_s^* = \alpha^* \alpha_f^*$ so this can be used when fitting.
- To avoid bias, would like to omit regions with real updraft from this fit. (Return to this.)

Representing the slowly varying component

- ① $\alpha_s^* = \alpha^* \alpha_f^*$ so this can be used when fitting.
- To avoid bias, would like to omit regions with real updraft from this fit. (Return to this.)
- lacksquare It appears to work best to smooth the variables used in the fit as for $lpha^*$.

THE LOW-FREQUENCY COMPONENT

Representing the slowly varying component

- ① $\alpha_s^* = \alpha^* \alpha_f^*$ so this can be used when fitting.
- ② To avoid bias, would like to omit regions with real updraft from this fit. (Return to this.)
- ullet It appears to work best to smooth the variables used in the fit as for $lpha^*$.
- Fit can still use ADIFR/QCF, maybe also MACH, QCF, GGALT, etc.

THE LOW-FREQUENCY COMPONENT

Representing the slowly varying component

- ① $\alpha_s^* = \alpha^* \alpha_f^*$ so this can be used when fitting.
- ② To avoid bias, would like to omit regions with real updraft from this fit. (Return to this.)
- ullet It appears to work best to smooth the variables used in the fit as for $lpha^*$.
- Fit can still use ADIFR/QCF, maybe also MACH, QCF, GGALT, etc.

A simple fit works well:

$$\alpha_s^* \sim d_0 + d_1 \left(\frac{\{AKRD\}}{\{QCF\}}\right)_s + d_2 \{QCF\}_s$$

Two-project residual: 0.061° , $R^2 = 0.99$

THE LOW-FREQUENCY COMPONENT - ORCAS FLIGHT

THE LOW-FREQUENCY COMPONENT - CSET FLIGHT

Calculating the new vertical wind, using fit coef. c_1 , d_0 , d_1 , d_2

• high-pass filter AKRD/QCF to get A_f

- $oldsymbol{0}$ high-pass filter AKRD/QCF to get A_f
- $\alpha_f = c_1 A_f$

- \bullet high-pass filter AKRD/QCF to get A_f
- $\alpha_f = c_1 A_f$
- 3 subtract A_f from AKRD/QCF to get A_s

- \bullet high-pass filter AKRD/QCF to get A_f
- $\alpha_f = c_1 A_f$
- 3 subtract A_f from AKRD/QCF to get A_s
- similarly find q_s =QCF minus high-pass-filtered QCF

- \bullet high-pass filter AKRD/QCF to get A_f
- $\alpha_f = c_1 A_f$
- \odot subtract A_f from AKRD/QCF to get A_s
- \bullet similarly find q_s =QCF minus high-pass-filtered QCF
- **5** Find $\alpha_s = d_0 + d_1 A_s + d_2 q_s$

- \bullet high-pass filter AKRD/QCF to get A_f
- $\alpha_f = c_1 A_f$
- \odot subtract A_f from AKRD/QCF to get A_s

- $\bullet \ \alpha = \alpha_f + \alpha_s = c_1 A_f + d_0 + d_1 A_s + d_2 q_s$

- \bullet high-pass filter AKRD/QCF to get A_f
- $\alpha_f = c_1 A_f$
- \odot subtract A_f from AKRD/QCF to get A_s
- **5** Find $\alpha_s = d_0 + d_1 A_s + d_2 q_s$
- $w_{new} = w_{old} + (\alpha_{new} \alpha_{old}) V_{\frac{\pi}{180}}$

Calculating the new vertical wind, using fit coef. c_1 , d_0 , d_1 , d_2

- high-pass filter AKRD/QCF to get A_f
- $\alpha_f = c_1 A_f$
- \odot subtract A_f from AKRD/QCF to get A_s
- **5** Find $\alpha_s = d_0 + d_1 A_s + d_2 q_s$
- $w_{new} = w_{old} + (\alpha_{new} \alpha_{old}) V_{\frac{\pi}{180}}$

Also calculate a high-pass-filtered wind:

Calculating the new vertical wind, using fit coef. c_1 , d_0 , d_1 , d_2

- \bullet high-pass filter AKRD/QCF to get A_f
- $\alpha_f = c_1 A_f$
- \odot subtract A_f from AKRD/QCF to get A_s
- **5** Find $\alpha_s = d_0 + d_1 A_s + d_2 q_s$

Also calculate a high-pass-filtered wind:

• high-pass-filter w_{new} to get w_f

ALL VERTICAL WIND VARIABLES

(SHORTER PERIOD)

A FLIGHT WITH DOWNDRAFT PERIODS

EXPANSION OF BOX ON PREVIOUS SLIDE

EXPANSION OF BOX ON PREVIOUS SLIDE

RETURN TO QUESTION OF BIAS IN DATA FOR FIT

RECOMMENDATIONS (BASED ON CSET/ORCAS)

Consider the complementary-filter solution:

- Best representation of component with periods <10 min.
- 2 "Fast" representation is consistent, all projects.
- "Slow" representation is consistent for these two projects, maybe others.
- The combination continues to show suggestions of aerodynamic effects
 - (a) lasting a few minutes at start and end of climbs
 - (b) more serious at takeoff and landing
- Subsequent high-pass filtering doesn't seem necessary and may introduce distortion. It can always be done later.

RECOMMENDATIONS (BASED ON CSET/ORCAS)

Consider the complementary-filter solution:

- Best representation of component with periods <10 min.
- 2 "Fast" representation is consistent, all projects.
- Slow" representation is consistent for these two projects, maybe others.
- The combination continues to show suggestions of aerodynamic effects
 - (a) lasting a few minutes at start and end of climbs
 - (b) more serious at takeoff and landing
- Subsequent high-pass filtering doesn't seem necessary and may introduce distortion. It can always be done later.

Alternatives:

- Conventional all-two-project fit works fairly well.
- 2 Even better if QCF dependence is added.
- 3 Disadvantage: Leads to variable high-frequency sensitivity.

IMPLEMENTATION STRATEGIES:

Second-pass processor:

Advantages: * Can do forward/backward filtering to avoid transient effects;

* Could be combined with other second-pass tasks like height-above-terrain and pitch/heading corrections, maybe someday Kalman filtering.

Disadvantages: Requires extra processing and attention.

Incorporate in nimbus:

Feasibility? Not sure, but probably reasonably straightforward.

Single-pass filtering: Will have a disadvantage; probably very little difference vs forward/backward. Need to test this.