CSDS 440: Machine Learning

Soumya Ray (he/him, sray@case.edu)
Olin 516
Office hours T, Th 11:15-11:45 or by appointment
Zoom Link

Recap

- In an ensemble, if we assume all classifiers are u_____, the distribution of wrong classifiers is b_____.
- Many algorithms can get stuck in l___ o___. One reason ensembles do well is because they a___ these l__ o__ classifiers.
- An ensemble has a simpler/ more complex decision boundary than its constituents.
- The optimal way to classify a new example given some training data is given by B____ m__ a___. An ensemble is an a____ of this procedure.
- What are some downsides of using an ensemble?
- We can construct an ensemble by m_____ the t____ s___.

Today

• Part 2: Ensemble Methods

Modifying the Training Set

- General idea:
 - Create multiple training sets, each different from the others in some way
 - Apply learning algorithm to each set
 - Resulting classifiers vote on new examples
- Works best for "unstable" algorithms
 - Small change to data can lead to large change in solution
- Two important methods
 - Bagging
 - Boosting

Bagging (BREIMAN 96)

- "Bootstrap Aggregation"
- Each training sample is a bootstrap replicate of the initial set
 - If the set has size m, sample m examples uniformly with replacement from it
- To classify a new example, use majority voting

Bagging

- In practice, Bagging:
 - Rarely or never hurts accuracy
 - But improvements in accuracy are likewise small
- Voting classifiers constructed with bootstrap replicates can result in "averaging out" the effect of noise

Boosting (FREUND and SCHAPIRE 1996)

- Technique arose from theoretical question: "Is it possible to "boost" a weak learner into a strong learner?"
 - WL: accuracy better than chance
 - SL: accuracy arbitrarily close to best possible
- Theoretically shown to be possible
- Resulted in a practical algorithm of enormous utility
 - Probably the best known ensemble approach

Adaboost ("Adaptive Boosting")

- Adaboost is an iterative algorithm
- Maintains a "weight" for each training example (initially all equal)
- In each iteration, it constructs a classifier with the weighted data
 - The learner must be able to work with weighted data, usually easy to do this (later)
- Evaluate the resulting classifier on the weighted training data, suppose its error rate is ϵ
 - If ε =0 or $\varepsilon \geq \frac{1}{2}$, stop

Adaboost

- In the next iteration,
 - Each correctly classified training example has its weight multiplied by a factor proportional to ϵ
 - Each incorrectly classified training example has its weight divided by a factor proportional to ϵ

Adaboost

- After completion, the resulting classifiers are combined by a weighted vote
 - The weight of each classifier is inversely proportional to its error rate
 - (This weight is different from the example weights above)

Adaboost Pseudocode (Training)

- Initialize weights w_n to 1/N, n=1...N (N examples)
- Each iteration t
 - Train weak/base learner h_t with weighted sample
 - Calculate weighted training error of this classifier:

$$\varepsilon_t = \sum_{n=1}^N w_n^t I(y_n \neq h_t(x_n))$$

– Break if ε_t =0 or ε_t ≥ 0.5

Adaboost Pseudocode (Training)

- Each iteration (continued)
 - Set weight of this classifier for new examples:

$$\alpha_t = \frac{1}{2} \log \frac{1 - \varepsilon_t}{\varepsilon_t}$$

– Update example weights:

$$w_n^{t+1} = \frac{1}{Z_t} w_n^t e^{-\alpha_t y_n h_t(x_n)}$$

- (Z is a normalization constant so all weights sum to 1, and we assume y is +1 and -1)

Adaboost Pseudocode (Classification)

For new example x, output

$$f(x) = \sum_{t=1}^{T} \frac{\alpha_t}{\sum_{r} \alpha_r} h_t(x)$$

$$\left(\alpha = \frac{1}{2}\log\frac{1-\varepsilon}{\varepsilon}\right)$$

What is this doing?

What is Adaboost doing?

- In general, Adaboost:
 - Often helps accuracy significantly
 - In some cases hurts accuracy significantly
 - But, helps much more often than it hurts

 Key result: Adaboost exponentially decreases the loss on the training set as a function of the number of iterations it runs

Why Adaboost works (1)

- Still an active research area
- One explanation: boosting works by reducing "bias error"
 - Bias error is the error on a dataset due to choice of concept class
 - The ensemble classifier produced by boosting has lower bias error compared to any single member
 - Theoretically, this could increase the chance of overfitting
 - Rarely observed in practice, unless very noisy samples

Why Adaboost works (2)

- Adaboost can be viewed as a margin maximization algorithm (ask for paper)
- Increasing weights on the misclassified examples may force the learner to produce a classifier that has larger margins on all of the training data
- Observation: The generalization error of the voted classifier improves even after its training set error goes to zero

Why Adaboost works (3)

- Sometimes, using a simple base classifier can prevent overfitting when there is noise
 - Rui Liu's thesis (MS 2016) on boosted linear classifiers (also in ICDM 2017)
 - (ask for copy)

Handling Weighted Data

Naïve Bayes: Use weighted statistics

$$\Pr(X_i = 1 \mid Y = 1) = \frac{\sum_{j} w_j I(X_{ij} = 1 \land Y_j = 1)}{\sum_{k} w_k I(Y_k = 1)}$$

Decision Trees: Use weighted entropy

$$p_{w}(X=v) = \sum_{\{i:X_{i}=v\}} w_{i} / \sum_{i} w_{i}$$

Handling Weighted Data

SVMs: Use weighted objective function

$$\min_{\mathbf{w},\mathbf{b},\xi} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} \left(weight_i \, \xi_i \right)$$

 Neural Nets, Logistic Regression: similar updates

Another view of Adaboost

Consider a function that minimizes the objective:

$$F(\mathbf{\alpha}, \mathbf{h}) = \sum_{i=1}^{m} e^{-y_i \sum_{t} \alpha_t h_t(x_i)}$$
Ensemble prediction for x_i

- In a *stagewise* manner: Given $\alpha_1 \dots \alpha_{t-1}, h_1 \dots h_{t-1}$, what is α_t and h_t ?
- Here h_t is the new "direction" and α_t the new "stepsize"
- Minimize using gradient descent

Another view of Adaboost

• It turns out that h_t =argmin $_h \varepsilon_t$ and

$$\alpha_t = \frac{1}{2} \log \frac{1 - \varepsilon_t}{\varepsilon_t}$$

Exactly as done by Adaboost

Another view of Adaboost

• The function:
$$F(\mathbf{\alpha}, \mathbf{h}) = \sum_{i=1}^{m} e^{-y_i \sum_{t} \alpha_t h_t(x_i)}$$
 Ensemble prediction for x_i

Is an exponential loss function

Connections to other algorithms

 What if we replace the exponential loss with other functions?

$$G(\boldsymbol{\alpha}, \mathbf{h}) = \sum_{i=1}^{m} \log \left(1 + e^{-y_i \sum_{t} \alpha_t h_t(x_i)} \right)$$

Gradient Boosting (FRIEDMAN 99)

- Like boosting, but optimize a different loss each iteration
- In each iteration find a new classifier that minimizes the residual of the previous iteration's loss on the training sample

Cascade Correlation for ANNs Implements Gradient Boosting specifically for the perceptron

Learning the Structure

Cascade Correlation

Other approaches

- Many other approaches to combining classifiers in the literature
 - Stacking, arcing, random forests, etc.
- Each has advantages and disadvantages
 - Generally empirical and not as well understood as boosting/bagging