Introduction to Real Analysis

Derek Li

Contents

1	Rea	d Numbers	2
	1.1	Preliminaries	2
	1.2	The Axiom of Completeness	3
	1.3	Consequences of Completeness	3
	1 4	Cantor's Theorem	4

1 Real Numbers

We define

$$\mathbb{N} = \{1, 2, \cdots\}.$$

If we take the closure of \mathbb{N} under subtraction, we obtain

$$\mathbb{Z} = \{\cdots, -1, 0, 1, \cdots\}.$$

If we take the closure of $\mathbb Z$ under division by non-zero numbers, we obtain

$$\mathbb{Q} = \{ \frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N}, (m, n) = 1 \},$$

where (m, n) = 1 means if $d \in \mathbb{N}$ divides both m, n, then d = 1.

Theorem 1.1. There is no $r \in \mathbb{Q}$ s.t. $r^2 = 2$.

Proof. Assume for a contradiction that there are $m \in \mathbb{Z}$, $n \in \mathbb{N}$ s.t. $\frac{m}{n} = \sqrt{2}$ and (m, n) = 1. Hence, $m^2 = 2n^2$, then m^2 is an even complete square. So $4|m^2$. But then $4|2n^2$ and thus $2|n^2$. So n has to be even. Hence both m, n are even, i.e., 2|m, 2|n. This contradicts the fact that (m, n) = 1.

1.1 Preliminaries

Definition 1.1. A *function* from A to B $(f : A \to B)$ is the set of pairs $(x, y) \in A \times B$ s.t. (1) if $(x, y_1) \in f$ and $(x, y_2) \in f$, then $y_1 = y_2$; (2) $\forall x \in A, \exists y \in B$ s.t. f(x) = y.

Note that A is said to be the domain of f, but the range of f does not have to be B, and it is a subset of B.

Definition 1.2. Assume $f: A \to B$ is a function, f is said to be *injective* if

$$\forall x_1, x_2 \in A, f(x_1) \neq f(x_2) \Rightarrow x_1 \neq x_2.$$

Definition 1.3. f is said to be *surjective* if

$$\forall y \in B, \exists x \in A \text{ s.t. } f(x) = y.$$

Definition 1.4. f is said to be **bijective** if f is injective and surjective.

Definition 1.5. $\forall x$,

$$|x| = \begin{cases} x, & x \geqslant 0 \\ -x, & x < 0 \end{cases}.$$

Theorem 1.2 (Triangle Inequality). $|x + y| \le |x| + |y|$.

Proof. We have $(x+y)^2 = x^2 + y^2 + 2xy \le |x|^2 + |y|^2 + 2|x||y| = (|x| + |y|)^2$. Thus,

$$|x+y| = \sqrt{(x+y)^2} \le \sqrt{(|x|+|y|)^2} = |x|+|y|.$$

Definition 1.6. Assume $X \subseteq \mathbb{R}$, the *maximum* (*minimum*) of X is an element $a \in X$ s.t. $\forall x \in X, x \leq a \ (x \geq a)$.

Definition 1.7. The *least upper bound* of X, denoted by $\sup(X)$, is $a \in \mathbb{R}$ s.t. (1) $\forall x \in X, x \leqslant a$ (a is an upper bound for X); (2) if b is an upper bound for X, then $a \leqslant b$.

Example 1.1. $\max((0,1))$ does not exist. $\sup((0,1)) = 1. \sup(\mathbb{R})$ and $\sup(\mathbb{N})$ do not exist.

2

1.2 The Axiom of Completeness

Definition 1.8. $X \subseteq \mathbb{Q}$ is said to be an *initial segment* if (1) $X \neq \emptyset$; (2) $\forall x, y \in \mathbb{Q}$, if x < y and $y \in X$, then $x \in X$; (3) $X \neq \mathbb{Q}$.

Definition 1.9. $\mathbb{R} = \{ \sup(X) : X \text{ is an initial segment of } \mathbb{Q} \}.$

Property 1.1. \mathbb{R} is an ordered field.

Lemma 1. If $A \subseteq \mathbb{R}$ and $s \in \mathbb{R}$ is an upper bound for A, then $s = \sup(A)$ iff

$$\forall \varepsilon > 0, \exists a \in A \text{ s.t. } a + \varepsilon > s.$$

Proof. (\Leftarrow) Assume for a contradiction that $t \in \mathbb{R}$ is an upper bound for A and t < s. Let $\varepsilon = \frac{s-t}{2} > 0$, then

$$\forall a \in A, a + \varepsilon \leqslant t + \varepsilon = \frac{s+t}{2} < s,$$

which is a contradiction.

(\Rightarrow) Assume for a contradiction that $\varepsilon_0 > 0$ and $\forall a \in A, a + \varepsilon_0 \leq s$. Thus $\forall a \in A, a \leq s - \varepsilon_0$, and $s - \varepsilon_0 < s$ is an upper bound for A, which is a contradiction.

Theorem 1.3 (Axiom of Completeness). If $X \subseteq \mathbb{R}$ is bounded above, then X has a least upper bound.

Proof. For $x \in X$, let A_x be the initial segment of \mathbb{Q} corresponding to x. Since X is bounded above, pick $b \in \mathbb{R}$ s.t. $\forall x \in X, x < b$. Then $b \notin \bigcup_{x \in X} A_x$. Note that $\bigcup_{x \in X} A_x$ is an initial segment of \mathbb{Q} and thus $\sup(\bigcup_{x \in X} A_x)$ is $\sup(X)$.

1.3 Consequences of Completeness

Definition 1.10. Assume $\{A_n : n \in \mathbb{N}\}$ is a sequence of sets, $\{A_n : n \in \mathbb{N}\}$ is said to be **nested** if $A_n \supseteq A_{n+1}$.

Theorem 1.4 (Nested Interval Property). Assume $\{I_n : n \in \mathbb{N}\}$ is a nested sequence of closed intervals of \mathbb{R} , then $\bigcap_{n \in \mathbb{N}} I_n \neq \emptyset$.

Proof. Let $[a_n, b_n] = I_n$. Since $\{I_n : n \in \mathbb{N}\}$ is nested,

$$a_n \leqslant a_{n+1} \leqslant b_{n+1} \leqslant b_n, \forall n \in \mathbb{N}.$$

Let $A = \{a_n : n \in \mathbb{N}\}.$

Note that b_1 is an upper bound for A so A has supremum in \mathbb{R} . We have $\forall n \in \mathbb{N}, \sup(A) \leq b_n$ and $\sup(A) \geq a_n$. Thus, $\forall n \in \mathbb{N}, \sup(A) \in [a_n, b_n]$, i.e., $\bigcap_{n \in \mathbb{N}} I_n \neq \emptyset$.

Theorem 1.5 (Archimedean Property). (1) $\forall y \in \mathbb{R}, \exists n \in \mathbb{N} \text{ s.t. } y \leq n;$ (2) $\forall y > 0, \exists n \in \mathbb{N} \text{ s.t. } \frac{1}{n} < y.$

Proof. (1) Assume for a contradiction that \mathbb{N} is bounded in \mathbb{R} . Let $\alpha = \sup(\mathbb{N})$, then by lemma, $\exists n \in \mathbb{N} \text{ s.t. } n+1 > \alpha$, which is a contradiction.

(2) From (1), we have
$$\forall y > 0, \exists n \in \mathbb{N} \text{ s.t. } \frac{1}{y} < n \Rightarrow \frac{1}{n} < y.$$

Theorem 1.6. \mathbb{Q} is dense in \mathbb{R} , i.e., if $a < b, a, b \in \mathbb{R}$, then $\exists r \in \mathbb{Q}$ s.t. a < r < b.

Proof. Suppose $a < b, a, b \in \mathbb{R}$. By Archimedean Property, we can find $n \in \mathbb{N}$ s.t. $\frac{1}{n} < b - a$, i.e., 1 < nb - na. Hence we can find $m \in \mathbb{Z}$ s.t. na < m < nb. Therefore,

$$a < \frac{m}{n} < b,$$

and let $r = \frac{m}{n}$.

1.4 Cantor's Theorem

Definition 1.11. If there is a bijection $f: A \to B$, we say A, B are in **one-to-one correspondence**, denoted $A \sim B$.

Definition 1.12. Card(A) \leq Card(B) if there is a injective map $f: A \to B$.

Example 1.2. $\mathbb{N} \sim \mathbb{Z}, \mathbb{N} \sim \mathbb{N}^2, \mathbb{N} \sim \mathbb{Q}, \mathbb{N} \not\sim \mathbb{R} \ (\mathrm{Card}(\mathbb{N}) < \mathrm{Card}(\mathbb{R})), (-\frac{\pi}{2}, \frac{\pi}{2}) \sim \mathbb{R}.$

Theorem 1.7 (Schroeder-Bernstein Theorem). Assume there are injective maps from A to B and from B to A, then there is a bijection from A to B.