Computer Science BSc Analysis-2 Practices

Semester 2 (Spring) in the academic year 2020/2021. Edited by Csörgő István.

The abbreviation "AN-2" denotes the following reference:

Analysis 2 lecture schemes, written by István Csörgő

The abbreviation "AN-3" denotes the following reference:

Analysis 3 lecture schemes, written by István Csörgő

They can be found in the Digital Library of the Faculty of Informatics or they can be opened from CANVAS

Remember that $\mathbb{N} = \{1, 2, 3, \ldots\}.$

8-12 of February, 2021:

1. (to Lesson 1 in "AN-2")

Discuss the continuity of the following functions (at which points of the domain it is continuous, at which points is it not, the type of the discontinuities, e.t.c.):

a)

$$f(x) := \begin{cases} \frac{x^2 - 5x + 6}{x^2 - 7x + 10} & \text{if } x \in \mathbb{R}, \ x \neq 2, \ x \neq 5 \\ 0 & \text{if } x \in \{2, 5\} \end{cases}$$

b)

$$f(x) := \begin{cases} \frac{3 - \sqrt{x}}{9 - x} & \text{if } x \ge 0, \ x \ne 9 \\ 0 & \text{if } x = 9 \end{cases}$$

c)

$$f(x) := \begin{cases} \frac{x-7}{|x-7|} & \text{if } x \neq 7 \\ 5 & \text{if } x = 7 \end{cases}$$

d)

$$f(x) := \begin{cases} 2x + 1 & \text{if } x \le -1 \\ 3x & \text{if } -1 < x < 1 \\ 2x - 1 & \text{if } x \ge 1 \end{cases}$$

e)

$$f(x) := \begin{cases} \frac{1}{x+1} & \text{if } x < -1 \\ x & \text{if } -1 \le x < 0 \\ \ln(x+1) & \text{if } x \ge 0 \end{cases}$$

2. Determine f(0), such that the extended function $f: \mathbb{R} \to \mathbb{R}$ will be continuous:

a)
$$f(x) = \frac{(1+x)^n - 1}{x}$$
 $(x \neq 0, n \in \mathbb{N})$ b) $f(x) = \frac{1 - \cos x}{x^2}$ $(x \neq 0)$

$$b) \quad f(x) = \frac{1 - \cos x}{x^2} \quad (x \neq 0)$$

Homework to this topic: "AN-2" p. 8, ex. 1., 2., 3.

3. (to Lesson 2 in "AN-2")

Prove that the given equations have roots in the given intervals.

- a) $x^3 3x + 1 = 0$ in the interval (0, 1). Compute the first 3 terms of the sequence that approximates the root. Estimate the error of approximation with this 3-rd term.
- b) $x^2 = \sqrt{x+1}$ in the interval (1, 2)
- c) $\cos x = x$ in the interval $(0, \frac{\pi}{2})$
- d) $e^x = 2 x$ in the interval \mathbb{R}
- e) $x^5 x^2 + 2x + 3 = 0$ in the interval \mathbb{R}

 $Homework\ to\ this\ topic:$ "AN-2" p. 15, ex. 2

15-19 of February, 2021:

4. (to Lesson 3 in "AN-2")

Determine f'(a) by definition:

a)
$$f(x) = \sqrt{x}$$
, $a = 3$

a)
$$f(x) = \sqrt{x}$$
, $a = 3$ b) $f(x) = x^2 + 2x - 1$, $a = 1$

c)
$$f(x) = \frac{x+2}{x^2-9}$$
, $a = -1$

5. (to Lesson 3 in "AN-2")

Discuss the differentiability of the following functions (in c) α is a real parameter):

2

a)
$$f(x) = x \cdot |x|, (x \in \mathbb{R})$$

a)
$$f(x) = x \cdot |x|, (x \in \mathbb{R})$$
 b) $f(x) := \begin{cases} 1 - x & \text{if } x < 0 \\ e^{-x} & \text{if } x \ge 0 \end{cases}$

c)
$$f(x) := \begin{cases} \alpha x + x^2 & \text{if } x < 0 \\ x - x^2 & \text{if } x \ge 0 \end{cases}$$

6. (to Lesson 3 in "AN-2")

Differentiate the following functions (determine the derivatives):

a)
$$f(x) = 4x^5 - 3x^4 + 2x^3 - 7x^2 + 6x + 7$$
 b) $f(x) = x^2 \cdot \sqrt[3]{x}$

$$b) \ f(x) = x^2 \cdot \sqrt[3]{x}$$

c)
$$f(x) = \sqrt{x \cdot \sqrt[3]{x}}$$

$$d) \ f(x) = e^x \cdot \sin x$$

d)
$$f(x) = e^x \cdot \sin x$$
 e) $f(x) = (x^3 + \ln x) \cdot \cos x$

$$f(x) = \frac{2x^2 + 3x + 1}{x^3 + x^2 + x + 1}$$
 $g(x) = \sin(x^3 + \ln x)$ $g(x) = e^{\sin^3 x}$

$$g) f(x) = \sin(x^3 + \ln x)$$

$$h) f(x) = e^{\sin^3 x}$$

$$i) \ f(x) = \frac{1}{\sqrt[3]{x + \sqrt{x}}} \qquad \qquad j) \ f(x) = x^x \qquad \qquad k) \ f(x) = (\sin x)^{\cos \sqrt{x}}$$

$$j) \ f(x) = x^a$$

$$k) \ f(x) = (\sin x)^{\cos \sqrt{x}}$$

Homework to this topic: "AN-2" p. 21, ex. 1., 2.

22-26 of February, 2021:

7. (to Lesson 3 in "AN-2")

Differentiate the following functions (determine the derivatives):

a)
$$f(x) = \arcsin(2x^2 - \sqrt{x})$$
 b) $f(x) = \frac{\arcsin x}{\arctan x}$

$$b) f(x) = \frac{\arcsin x}{\arctan x}$$

8. (to Lesson 3 in "AN-2")

Determine the equation of tangent line to the following curves at the given points (in a) and in b) only the first coordinates are given):

a)
$$y = \frac{x}{x^2 - 2}$$
, $x_0 = 2$ b) $y = e^x + e^{2x}$, $x_0 = 0$

$$b) \ y = e^x + e^{2x}, \qquad x_0 = 0$$

c)
$$x^2y = 2y + x^{x+1}$$
, $P_0 = (1, -1)$

Homework to this topic: "AN-2" p. 21, ex. 3.

9. (to Lesson 4 in "AN-2")

Discuss the monotonicity, the local extreme values and the global (=absolute) extreme values of the following $\mathbb{R} \to \mathbb{R}$ type functions:

3

a)
$$f(x) = 1 - 4x - x^2$$

a)
$$f(x) = 1 - 4x - x^2$$
 b) $f(x) = \frac{x}{x^2 - 6x - 16}$

$$c) \quad f(x) = e^{x^2 - 4x}$$

c)
$$f(x) = e^{x^2 - 4x}$$
 d) $f(x) = x \cdot \ln x$

e)
$$f(x) = x^3 - 3x^2 + 3x + 2$$
 f) $f(x) = x^2 \cdot e^{-x}$

$$f(x) = x^2 \cdot e^{-x}$$

$$g) \quad f(x) = x - \ln(1+x)$$

Homework to this topic: "AN-2" p. 27, ex. 1.

10. (to Lesson 4 in "AN-2")

Determine the global extreme values of the following functions:

a)
$$f(x) = \frac{x}{1+x^2}$$
 $(x \in \mathbb{R})$

b)
$$f(x) = \sin^4 x + \cos^4 x \quad (-2\pi/3 \le x \le \pi/3)$$

c)
$$f(x) = x - \ln(1+x)$$
 $(x > -1)$

d)
$$f(x) = 2x^3 + 3x^2 - 12x + 1 \quad (-10 \le x \le 12)$$

Homework to this topic: "AN-2" p. 27, ex. 3.

11. (to Lesson 4 in "AN-2")

- (a) Find the rectangle of largest area having a given perimeter p > 0.
- (b) Find the point on the line 6x + y = 9 that is closest to the point (-3; 1).
- (c) Determine the equation of the line trough the point (3,5) which cuts off the smallest area from the first quadrant of the coordinate system.
- (d) We divide a 10 m long rope into two parts. We form a square from the one part and we form an equilateral triangle from the other part. When will the sum of the areas of the two plane figures be the smallest?
- (e) The hypotenuse of a right triangle is 1 unit. Denote by x and y the legs of the triangle. When will x + 2y be the largest?
- (f) Find the dimensions of the cone of maximum volume that can be inscribed in a sphere of radius R > 0.

Homework to this topic: "AN-2" p. 27, ex. 2.

8-12 of March, 2021:

12. (to Lesson 5.1 in "AN-2")

Use L'Hospital's Rule for determination of the following limits:

a)
$$\lim_{x \to 0} \frac{a^x - a^{\sin x}}{x^2}$$
 $(a > 0)$ b) $\lim_{x \to 0} \frac{\tan x - x}{x - \sin x}$

$$b) \lim_{x \to 0} \frac{\tan x - x}{x - \sin x}$$

c)
$$\lim_{x \to 1} \ln x \cdot \ln(1-x)$$

$$d) \lim_{x \to 1} \frac{x^2 - 1}{2x^2 - x - 1}$$

e)
$$\lim_{x \to +\infty} (x \cdot e^{1/x} - x)$$
 f) $\lim_{x \to -\infty} x^2 \cdot e^{-x}$

$$f) \lim_{x \to -\infty} x^2 \cdot e^{-x}$$

$$g) \lim_{x \to 0} e^{-x} \cdot \ln x$$

$$h) \lim_{x \to +\infty} \left(\frac{2x-3}{2x+5}\right)^{2x+1}$$

4

Homework to this topic: "AN-2" p. 31, ex. 1.

13. (to Lesson 5.2 in "AN-2") Use Taylor-polynomials for writing the polynomial $f(x) = (1+2x)^3$ by the powers of

a)
$$x + 1$$
 b) $x - \frac{1}{2}$ c) $x + \frac{1}{2}$

- 14. Let $f(x) = \ln(1+x)$ (x > -1).
 - (a) Find the second Taylor-polynomial $T_2(x)$ centered at 0.
 - (b) Estimate the error of approximation $f(x) \approx T_2(x)$ for x > 0 and for -1 < x < 0.
 - (c) Approximate $\ln 2$ by means of $T_2(1)$, and estimate the error.
- 15. Estimate the error of the approximation

$$\tan x \approx x + \frac{x^3}{3}$$
 $(|x| \le 10^{-1})$

Homework to this topic: "AN-2" p. 32, ex. 3.

16. (to Lessons 4. and 5. in "AN-2")

Discuss and sketch the graph of f if

a)
$$f(x) = 2 - 2x^2 - x^3$$
 $(x \in \mathbb{R})$

a)
$$f(x) = 2 - 2x^2 - x^3$$
 $(x \in \mathbb{R})$ b) $f(x) = \frac{1}{x(x-3)^2}$ $(x \in \mathbb{R} \setminus \{0, 3\})$

c)
$$f(x) = \frac{5x}{(x+2)^2}$$
 $(-2 \neq x \in \mathbb{R})$ d) $f(x) = 5x^3 - 4x^4$ $(x \in \mathbb{R})$

$$d) f(x) = 5x^3 - 4x^4 \quad (x \in \mathbb{R})$$

e)
$$f(x) = \frac{x^2 - 1}{x^2 - 5x + 6}$$
 $(x \in \mathbb{R} \setminus \{2, 3\})$

Homework to this topic: "AN-2" p. 32, ex. 2.

17. (to Lessons 6.1, 6.2 in "AN-2")

Find the integrals

a)
$$\int 6x^2 - 8x + 3 \ dx$$

a)
$$\int 6x^2 - 8x + 3 \ dx$$
 b) $\int 2x + \frac{5}{\sqrt{1 - x^2}} \ dx$ c) $\int \frac{x^2}{x^2 + 1} \ dx$

$$c) \int \frac{x^2}{x^2 + 1} \ dx$$

$$d) \int \frac{\cos^2 x - 5}{1 + \cos(2x)} dx \qquad e) \int \frac{1}{\sqrt{x}} dx$$

$$e) \int \frac{1}{\sqrt{x}} \ dx$$

$$f) \int x \cdot \sqrt{x} \ dx$$

$$g) \int \frac{(x+1)^2}{\sqrt{x}} \ dx$$

$$h) \int \sin^2 x \ dx$$

$$i) \int (3x+2)^4 dx$$

$$j) \int \frac{2}{3+2x^2} \ dx$$

$$k) \int \frac{1}{\sqrt{1-2x^2}} dx$$
 $l) \int 5^{2-3x} dx$

$$l) \int 5^{2-3x} dx$$

$$m) \int \sin x \cdot \cos x \ dx$$

n)
$$\int x^2 \cdot (2x^3 + 4) \ dx$$

$$m) \int \sin x \cdot \cos x \ dx$$
 $n) \int x^2 \cdot (2x^3 + 4) \ dx$ $o) \int x^2 \cdot \sqrt{6x^3 + 4} \ dx$

$$p) \int e^x \cdot (1 - e^x)^3 dx$$
 $q) \int \frac{x}{x^2 + 3} dx$

$$q) \int \frac{x}{x^2 + 3} \ dx$$

$$r) \int \sin^3 x \ dx$$

s)
$$\int \sin^2 x \cdot \cos^3 x \ dx$$
 t) $\int \frac{1}{x \cdot \ln x} \ dx$

$$t) \int \frac{1}{x \cdot \ln x} dx$$

$$u) \int \sin^2 x \cdot \cos^4 x \ dx$$

Homework to this topic: "AN-2" p. 37, ex. 1a, 1b

18. (to Lesson 6.3 in "AN-2")

Find the integrals of the following rational functions

$$a) \int \frac{1}{(x-2)(x+4)} \ dx$$

a)
$$\int \frac{1}{(x-2)(x+4)} dx$$
 b) $\int \frac{4x^2 + 13x - 9}{x^3 + 2x^2 - 3x} dx$ c) $\int \frac{1}{x^3 + 2x^2 + x} dx$

$$c) \int \frac{1}{x^3 + 2x^2 + x} \ dx$$

Homework to this topic: "AN-2" p. 37, ex. 1c, 1e

12-16 of April, 2021:

19. (to Lesson 7 in "AN-2")

Find the integrals

$$a) \int x \cdot e^{2x} \ dx$$

a)
$$\int x \cdot e^{2x} dx$$
 b) $\int x^2 \cdot e^{2x} dx$

c)
$$\int x^2 \cdot \sin 5x \ dx$$

$$d$$
) $\int \ln x \ dx$

d)
$$\int \ln x \, dx$$
 e) $\int (x^3 + 2x + 2) \cdot \ln x \, dx$

Homework to this topic: "AN-2" p. 39, ex. 1., 2.

20. (to Lesson 10 in "AN-2")

Find the integrals

a)
$$\int_{0}^{\pi/3} \sin(8x) dx$$
 b) $\int_{0}^{1} \frac{1}{3x - 5} dx$ c) $\int_{1}^{e} \frac{\ln^{2}(x)}{x} dx$

21. (to Lesson 10. in "AN-2")

Find the integrals

a)
$$\int_{0}^{1} x \cdot e^{-x^{2}} dx$$
 b) $\int_{1/2}^{1} \frac{\sqrt{1-x^{2}}}{x^{2}} dx$ c) $\int_{e}^{e^{2}} x \cdot \ln x dx$ d) $\int_{0}^{\pi} x \cdot \cos x dx$

Homework to this topic: "AN-2" p. 54, ex. 1., 2., 3.

22. (to Lesson 11 in "AN-2")

Find the improper integrals

a)
$$\int_{0}^{+\infty} \frac{1}{1+x^2} dx$$
 b) $\int_{1}^{2} \frac{1}{\sqrt{x-1}} dx$ c) $\int_{0}^{+\infty} x \cdot e^{-2x} dx$

Homework to this topic: "AN-2" p. 57, ex. 1., 2.

23. (to Lesson 12 in "AN-2")

Application of the integrals

- (a) Determine the area bounded by the curves $y = x^2$ and $y = 1 x^2$.
- (b) Compute the arc length of the graph of the function $f(x) = \sqrt{4-x^2}$ bounded by the points (0,2) and (2,0).
- (c) Revolve the curve

$$y = e^{2x}, \qquad 0 \le x \le 2$$

about the x-axis. Determine the volume of this solid of revolution.

Homework to this topic: "AN-2" p. 59, ex. 1., 2., 3.

Partial derivatives (to Lesson 6.1 in "AN-3")

- 24. Find the partial derivatives of f, if
 - a) $f(x,y) = \ln(xy^2) x^3y^2\cos(x^2 + y^2)$ $((x,y) \in \mathbb{R}^2)$
 - b) $f(x,y) = \operatorname{arctg}\left(\frac{y}{x}\right) \quad ((x,y) \in \mathbb{R}^2)$

Homework to this topic: "AN-3" p. 33, ex. 2.

Local extreme values (to Lessons 7.1, 8.1, 8.2, 9.1 in "AN-3"):

- 25. Find the local extreme values and their places of f, if
 - a) $f(x,y) = x^2 4xy + y^3 + 4y$ $((x,y) \in \mathbb{R}^2)$
 - b) $f(x,y) = x^4 4xy + y^4$ $((x,y) \in \mathbb{R}^2)$

Homework to this topic: "AN-3" p. 47, ex. 1.

Absolute extreme values on compact sets:

Find the absolute extreme values and their places of f on the set H, if

$$f(x,y) = 2xy - 3y$$
, $H = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 2, \ 0 \le y \le y^2\}$

Homework to this topic: "AN-3" p. 44, ex. 1.

3-7 of May, 2021:

Double and triple integral over intervals and over normal regions (to Lessons 10 and 11 in "AN-3")

26. Integrate the function $f(x,y) = xy^2 + 3x^2y$ over the interval (rectangle) whose vertices are:

$$A(1;-1), \quad B(4;-1)), \quad C(4;2), \quad D(1;2)$$

27. Integrate the function f(x, y, z) = xy + xz over the interval (cuboid):

$$[0;2]\times[1;2]\times[1;3]$$

Homework to this topic: "AN-3" p. 54, ex. 1., 2., 3., 4.

28. Integrate the function f(x,y)=xy over the triangle whose vertices are:

29. Integrate the function f(x, y, z) = 2xy over the region determined by

$$(x, y, z) \in \mathbb{R}^3, \quad x \ge 0, \ y \ge 0, \ z \ge 0, \ x + y + z \le 1$$

Homework to this topic: "AN-3" p. 58, ex. 1., 2., 3., 4., 5.

Consultations