Notebook Swag

Sam Grayson

April 20, 2015

2.1 **Proof:**

ma = b for some m Definition of 'divides' na = c for some n Definition of 'divides' na + ma = b + c Algebra (n + m)a = b + c Algebra a|(b + c) Definition of 'divides' \blacksquare

2.2 **Proof:**

Let d = -c a|(b+d) Theorem 1.1 a|(b-c) substitution

2.3 **Proof:**

ma = b for some m Definition of 'divides' na = c for some n Definition of 'divides' mana = bc Algebra a|bc Definition of 'divides' \blacksquare

2.4 **Proof:**

mana = bc see last proof $a^2|bc$ Definition of 'divides' \blacksquare

2.5 If a|b then $a|b^n$

Proof:

b=ka for some k Definition of 'divides' $b^n=(ka)^n=kk^{(n-1)}a^n \qquad \text{Algebra}$ $k|b^n \qquad \text{Definition of 'divides'} \quad \blacksquare$

2.6 **Proof:**

ka = b for some k Definition of 'divides' ack = bc Algebra a|bc Definition of 'divides' \blacksquare

2.7 1.
$$45 - 9 = 36 = 9 \cdot 4$$
. True

2.
$$37 - 2 = 35 = 7 \cdot 5$$
. True

3.
$$37 - 3 = 34$$
. False

4.
$$37 - (-3) = 40 = 8 \cdot 5$$
. True

2.8 **Proof:**

let k be all the numbers

where
$$k \equiv b \pmod{3}$$

$$3|(k-b)$$

Definition of 'mod'

3n = k - b for some n

Definition of 'divides'

3n + k = n

Algebra ■

- 1. 3n
- 2. 3n + 1
- 3. 3n + 2
- 4. 3n
- 5. 3n + 1

2.9 **Proof:**

$$a - a = 0 = 0n$$
 Arithmetic

$$n|(a-a)$$

Definition of 'divides'

 $a \equiv 0 \pmod{n}$

Definition of 'mod'

2.10 **Proof:**

$$n|(a-b)$$

Definition of 'mod'

kn = a - b for some k Definition of 'divides'

$$-kn = b - a$$

Algebra

$$n|(b-a)$$

Definition of 'divides'

$$b \equiv a \pmod{n}$$

2.11 **Proof:**

$$n|(a-b)$$
 Definition of 'mod'

$$n|(b-c)$$
 Definition of 'mod'

$$n|(a-b+b-c)$$
 Theorem 1.1

$$n|(a-c)$$
 Algebra

$$a \equiv c \pmod{n}$$
 Definition of 'mod' •

2.12 **Proof:**

$$n|(a-b)$$
 Definition of 'mod' $n|(c-d)$ Definition of 'mod'

$$n(a+c-b-d)$$
 Theorem 1.1

$$n|((a+c)-(b+d))$$
 Algebra

$$a + c \equiv b + d \pmod{n}$$
 definion 'mod' \blacksquare

2.13 **Proof:**

$$\begin{array}{ll} \text{let } e = -c \text{ and } f = -d \\ a + e \equiv b + f & \text{Theorem 1.12} \\ a - c \equiv b - d & \text{substitution} & \blacksquare \end{array}$$

2.14 **Proof:**

$$n|(a-b)$$
 Definition of 'mod' $n|(c-d)$ Definition of 'mod' $n|(a-b)(c-d)$ Theorem 1.3

2.15 **Proof:**

$$a \equiv b \pmod{n}$$
 Premise $a^2 \equiv b^2 \pmod{n}$ Theorem 1.14

2.16 **Proof:**

$$a \equiv b \pmod{n}$$
 Premise $a^2 \equiv b^2 \pmod{n}$ Theorem 1.15 $a^2 a \equiv b^2 b \pmod{n}$ Theorem 1.14 $a^3 \equiv b^3 \pmod{n}$ Algebra \blacksquare

2.17 **Proof:**

$$a \equiv b \pmod{n}$$
 Premise
 $a^{k-1} \equiv b^{k-1} \pmod{n}$ Premise
 $a^{k-1}a \equiv b^{k-1}b \pmod{n}$ Theorem 1.14
 $a^k \equiv b^k \pmod{n}$ Algebra

2.18 **Proof:**

Base case:
$$a \equiv b \pmod{n}$$
 Premise Inductive Hypothesis: $a^{k-1} \equiv b^{k-1} \pmod{n}$ (assumption) Inductive step: $a^{k-1}a \equiv b^{k-1}b \pmod{n}$ Theorem 1.14 $a^k \equiv b^k \pmod{n}$ Algebra Conclusion: $a^k \equiv b^k \pmod{n}$ inductively \blacksquare

$$2.19 \ 12. \ 6 \equiv 2 \pmod{4}$$

$$5 \equiv 1 \pmod{4}$$
$$6 + 5 \equiv 2 + 1 \pmod{4}$$

13.
$$6-5 \equiv 2-1 \pmod{4}$$

14.
$$6 \cdot 5 \equiv 2 \cdot 1$$

15.
$$6^2 \equiv 2^2 \pmod{4}$$

16.
$$6^3 \equiv 2^3 \pmod{4}$$

17.
$$6^4 \equiv 2^4 \pmod{4}$$

18.
$$6^k \equiv 2^k \pmod{4}$$

2.20 No

Consider the case wehre $n=4,\,c=0,\,a=1,$ and b=2. $ac\equiv bc\pmod n$ $a\neq b$

2.21 See 1.22 and 1.23

2.22 **Proof**:

$$3|a$$
 Premise (Base Case)
 $3|b$ Let b be an integer . . . (Inductive Hypothesis)
 $3|9$ Arithmetic
 $3|(9b_k10^{k-1})$ Theorem 1.3
 $3|(b-9b_k10^{k-1})$ Theorem 1.2
 $3|(b_{k-1}+b_k)b_{k-2}\dots b_0$ Algebra* (Inductive Step)
 $3|(a_k+a_{k-1}+a_{k-2}+\dots a_1+a_0)$ Inductive axiom \blacksquare

Here is the algebra I used in the step labeled 'Algebra*':

$$\begin{array}{rcl} b - b_k 910^{k-1} & = \\ b - b_k (10 - 1)10^{k-1} & = \\ b + (-b_k 10 \cdot 10^{k-1} + b_k 110^{k-1}) & = \\ b + (-b_k 10^k + b_k 10^{k-1}) & = \\ b_k & b_{k-1} & b_{k-2} \dots b_0 \\ + & (-b_k) & b_k & 0 \dots 0 & = \\ \hline & (b_k + b_{k-1}) & b_{k-2} \dots b_0 \end{array}$$

2.23 **Proof:**

$$3|a$$
 Premise (Base Case)
 $3|(b_k+b_{k-1}+\ldots+b_0)$ Assumption (Inductive Hypothesis)
 $3|9$ Arithmetic
 $3|(b_k9c)$ where c is k ones in a row Theorem 1.3
 $3|(b_k+b_{k-1}+\ldots+b_0+b_k9c)$ Theorem 1.2
 $3|(b_k10^k+b_{k-1}+\ldots+b_0)$ Algebra*
 $3|(a_k10^k+a_{k-1}10^{k-1}+\ldots+a_010^0)$ Inductive Axiom
 $3|(a_ka_{k-1}\ldots a_0)$ Definition of digits

Here is the algebra I used in the step labeled 'Algebra*':

$$\begin{array}{rcl} b_k + b_{k-1} + \ldots + b_0 + b_k 9c & = \\ b_k + b_{k-1} + \ldots + b_0 + b_k d & = & \text{where d is a number with } k \text{ nines} \\ b_k + b_{k-1} + \ldots + b_0 + b_k (10^k - 1) & = \\ b_k + b_{k-1} + \ldots + b_0 + b_k 10^k - b_k & = \\ b_{k-1} + \ldots + b_0 + b_k 10^k & \end{array}$$

2.24 4|a if and only if
$$4|(a_1 + a_3 + \ldots)(a_0 + a_2 + a_4 + \ldots)$$

2.25 1.
$$m = nq + r$$
 where $m = 25$, $n = 7$, $q = 3$, and $r = 4$
2. $m = 277$, $n = 4$, $q = 66$, and $r = 1$

3.
$$m = 33$$
, $n = 11$, $q = 3$, $r = 0$

$$4. \ m=33,\, n=45,\, q=0,\, r=33$$

2.26 Setup:

Make a list of multiples of n that are greater than m and choose the smallest one to define n(q + 1).

$$\begin{aligned} A &:= \{k | k \in \mathbb{N} \ \land kn > m\} \\ \exists a \ni (a \in A \land an > m \land \forall k \in A (a \le k)) \\ q &:= a - 1 \end{aligned}$$

Well-ordering Principle

Proving r satisfies upper bound:

r := m - nq

If it didn't, then a wouldn't be an element of A, but we know that a is in A.

$$r > n - 1$$

 $r \ge n$
 $\exists j \ni (r - n = j \land j \ge 0)$
 $nq + r = m$
 $nq + (n + j) = m$
 $n(q + 1) + j = m$
 $n(q + 1) \le m$
 $n(q + 1) > m$
 $\therefore r \le n - 1$

Assume for contradiction Property of inequalities (over \mathbb{Z}) Property of inequalities Algebra (from definition of r) Algebra (from definition of j) Algebra Property of inequalities Algebra (from definition of a) Contradiction

Proving r satisfies lower bound:

If it didn't, then there would be another element smaller than a in A, but a is the least element in A.

$$\begin{aligned} r &< 0 \\ nq + r &= m \\ nq &> m \\ q &\in A \\ \forall k(k \in A \rightarrow q + 1 \leq k) \\ q + 1 &\leq q \\ \therefore r &\geq 0 \end{aligned}$$

Assume for contradiction Algebra (from definition of r) Property of inequalities $q \in \mathbb{N} \wedge nq > m$ is the condition for A Definition of a (smallest element in A) Universal instantiation Contradiction

Proving q and r are integers:

They all came from sets that only contain integers.

$A \subset \mathbb{N} \subset \mathbb{Z}$		
$a \in A$		
$a \in \mathbb{Z}$		
$q \in \mathbb{Z}$		
$r \in \mathbb{Z}$		

Stuff I learned
Definition of a
Property of sets
Closure (Definition of q)
Closure (definition of r)

2.27
$$\exists q',r' \in \mathbb{Z} (m=q'n+r' \land r' \neq r \land q' \neq q \land 0 \leq r \leq Assume for contradiction q'-1)$$
 $r' < n$
 $q'n+n>m$
Assumption (restriction on r')
 $q'n+n>m$
Property of inequalities (because $q'n+r=m$)
 $n(q'+1)>m$
 $q'+1 \in A$
Definition of A
 $q'+1 \neq q+1$
Property of inequalities
 $q'+1>q+1$
Definition of a (smallest element in A)
 $q' \geq q+1$
Definition of r
Property of inequalities (over \mathbb{Z})
Definition of r
Property of inequalities (replace r with something greater-than r)
 $(q+1)n>m$
Property of inequalities (replace $q+1$ with something greater-than-or-equal to it)
 $q'n+r'>m$
Property of inequalities (add a positive number to the bigger side and it is still bigger)
 $\neg \exists q',r' \in \mathbb{Z} (m=q'n+r' \land r' \neq r \land q' \neq q \land 0 \leq C$
Contradiction

Contradiction

2.28 **Proof:**

r < q' - 1

n|(a-b)Definition of modulo Definition of divides a - b = cn for some c $b = dn + e \wedge 0 \le e \le n - 1$ Division algorithm a - dn - e = cnAlgebra $a = (c+d)n + e \land 0 \le e \le n-1$ Algebra This satisfies the division algorithm (c+d)n + e - b = cnAlgebra $b = dn + e \wedge 0 \le e \le n - 1$ Algebra Therefore, same remainder (namely e)

Proof:

a = cn + rLet rb = dn + rLet ra - b = cn - dn = (c - d)n Algebra n|(a-b)Definition of divides

2.29 Yes. 1

2.30 No. There are a finite number of integer factors.

- 2.31 1. No
 - 2. No
 - 3. No
 - 4. Yes
 - 5. Yes
 - 6. Yes
- 2.32 **Proof:**

$$a-nb=r$$
 Algebra (from premise)
 $k|nb$ Theorem 1.3
 $k|(a-nb)$ Theorem 1.2
 $k|r$ Substitution

2.33 Lemma: Let a = nb + r. k|b and k|r imply k|a.

Proof:

$$k|nb$$
 Theorem 1.3
 $k|(nb+r)$ Theorem 1.1
 $k|a$ Substitution \blacksquare

$$\begin{array}{ll} (a,b)=k & \text{Let} \\ k|a & \text{Definition of } k \text{ (GCD)} \\ k|b & \text{Definition of } k \text{ (GCD)} \\ k|r_1 & \text{Theorem 1.32} \\ \end{array}$$

At this point, we know that k is a common divisor. Assume for the sake of contradiction that k is not the greatest common divisor.

$$\begin{array}{ll} (b,r_1)=m\wedge m>k & \text{Assume for contradiction} \\ m|a & \text{Lemma} \\ m|b & \text{Definition of GCD} \\ (b,r_1)>m\wedge m>k & \text{Definition of GCD} \\ (b,r_1)=k & \text{Contradiction} \end{array}$$

- 2.35 The Euclidean Algorithm:
 - 1. Let a and b be arguments of GCD where (WLOG) a > b > 0.
 - 2. Find q_0 and r_0 such that $a = b \cdot q_0 + r_0$
 - 3. Observe $(a, b) = (b, r_1)$ by 1.33

- 4. Find q_1 and r_1 such that $b = r_0 \cdot q_1 + r_1$
- 5. Observe $(b, r_1) = (r_1, r_2)$ by 1.33
- 6. Starting wtih i = 2, until $r_i = 0$:
 - A. Find q_i and r_i such that $r_{i-2} = r_{i-1} \cdot q_i + r_i$
 - B. Observe $(r_{i-1}, r_i) = (r_i, r_{i+1})$ by 1.33
 - C. Let i := i + 1
- 7. $r_i = 0$, therefore $(a, b) = (r_i 1, 0) = r_{i-1}$
- 2.36 1. 16
 - 2. 1
 - 3. 256
 - 4. 2
 - 5. 1
- $2.37 \ x = 9, \ y = -47$
- 2.38 The Linear Diophantine Algorithm:
 - 1. Complete the EA
 - 2. Recall the result: $r_i = 0$ and $r_{i-1} = 1$
 - 3. Recall the second-to-last step: $r_{i-3} = r_{i-2} \cdot q_{i-1} + r_i$
 - 4. Let Equation A represent: $r_{j-2} r_{j-1} \cdot q_j = 1$
 - 5. Starting with i := i 1, until i = 0:
 - A. Justification: $r_{i-2} = r_{i-1} \cdot q_i + r_i$ $r_{i-2} - r_{i-1} \cdot q_i = r_i$ r_i is a linear combination of r_{i-1} and r_{i-2}
 - B. Substitute r_i for $r_{i-2} r_{i-1} \cdot q_i$ in Equation A
 - C. i := i 1
 - 6. Observe that the left hand side is a linear combination of r_0 and r_1
 - 7. Observere that the right hand side of Equation A is 1
 - 8. Substitute $r_1 = b r_0 \cdot q_0$, and substitue $r_0 = a b \cdot q_0$
 - 9. Now a linear combination of a and b sums to 1
- 2.39 **Proof:**

$$(a,b) = c$$

 $c|a \wedge c|b$
 $a = dc$ for some $d \wedge b = ec$ for some e
 $ax + by = 1$
 $dcx + ecy = (dx + ey)c = 1$
 $c = 1$

Let

Definition of GCD
Definition of divides

Premise

Algebra

Multiplication over integers •

2.40 **Proof:**

$$\begin{array}{ll} (a,b)=c & \text{Let} \\ c|a\wedge c|b & \text{Definition of GCD} \\ a=dc \text{ for some } d\wedge b=ec \text{ for some } e\wedge (d,e)=1 & \text{Definition of divides} \\ \exists x,y\ni (dx+ey=1) & \text{Theorem 1.38} \\ ax+by=dcx+ecy=(dx+ey)c=1c=c & \text{Algebra} \\ ax+by=(a,b) & \text{Substitution} & \blacksquare \end{array}$$

2.41 **Proof:**

$$bc = ka$$
 for some k Definition of divides $ax + by = 1$ 1.38 $axc + byc = c = axc + kay = c = a(xc + ky) = c$ Algebra Definition of divides \blacksquare

2.42 **Proof:**

$$n=ia$$
 for some $i\wedge n=jb$ for some j Definition of divides $ax+by=1$ 1.38 $axn+byn=n=axjb+byia=n=ab(xj+ui)=n$ Algebra Definitin of divides \blacksquare

2.43 **Proof:**

$$ax + ny = 1$$
 for some x, y
 $bw + nz = 1$ for some w, z Theorem 1.38
 $(ax + ny)(bw + nz) = 1$ Algebra
 $abxw + n(axz + ybw + yzn) = 1$ Algebra
 $(ab, n) = 1$ Theorem 1.38 (converse)

2.44 **Proof:**

$$(n,c)=1$$
 Missing hypothesis $n|(ac-bc)=n|c(a-b)$ Definition of mod $n|(a-b)$ 1.41 $a\equiv b\pmod{n}$ Definition of mod \blacksquare

2.45 See 1.44

$$2.46 \ c = k(a, b)$$
 for some k

2.47 Given integers a, b, and c, there exist integers x and y that satisfy the equation if and only if c = k(a, b) for some k

2.48 **Proof:**

Show:
$$ax + by = c \rightarrow (a, b)|c$$

$$(a,b)|a \wedge (a,b)|b$$
 Definition of GCD $(a,b)|ax \wedge (a,b)|by$ Theorem 1.3 $(a,b)|(ax+by)$ Theorem 1.1 $(a,b)|c$ Show: $(a,b)|c \leftarrow \exists x,y\{ax+by=c\}$ $au+bv=(a,b)$ Theorem 1.40 Definition of divides $kau+kbv=k(a,b)=c$ Algebra Putting the two halves together $ax+by=c \leftrightarrow (a,b)|c$

2.49 The linear diophantine equation can be represented as a line on a grid.

$$ax + by = c$$
$$y = -\frac{a}{b}x + \frac{c}{b}$$

The slope of this line is -a/b.

First we must simplify the fraction: $-\frac{a}{b} = -\frac{a/(a,b)}{b/(a,b)}$

Given one point, moving $\frac{b}{(a,b)}$ on the x-coordinate to the right moves $\frac{a}{(a,b)}$ down on the y-coordinate by the properties of slope.

$$(y - \frac{a}{(a,b)}) = -\frac{a}{(a,b)} / \frac{b}{(a,b)} (x + \frac{b}{(a,b)}) + \frac{c}{b}$$

$$\frac{6}{(6,15)} = 2 \wedge \frac{15}{(6,15)} = 5$$

$$6 \cdot (-3+5) + 15 \cdot (5-2) = 12 = 6 \cdot 2 = 12$$

$$\forall c, d \in \mathbb{Z} \{ 6 \cdot (-3+5c) + 15 \cdot (5-2d) = 12 \}$$

$$2.50 \ \forall a, b \{ 31 \cdot (30 - 21a) + 21 \cdot (40 + 31b) = 1770 \}$$

2.51 **Proof:**

$$ax_0 + by_0 = c$$
 Premise
$$a(x_0 + \frac{b}{(a,b)}) + b(y_0 - \frac{a}{(a,b)}) = ax_0 + \frac{ab}{(a,b)} + by_0 - \frac{ab}{(a,b)}$$
 Distributive property
$$ax_0 + \frac{ab}{(a,b)} + by_0 - \frac{ab}{(a,b)} = ax_0 + by_0$$
 Commutative property
$$a(x_0 + \frac{b}{(a,b)}) + y(y_0 - \frac{a}{(a,b)}) = c$$
 Substitution \blacksquare

- 2.52 See 1.51 and 1.53
- 2.53 **Proof:**

$$\begin{array}{ll} ax+by=c\\ (a,b)|a\wedge(a,b)|b\\ (a,b)|c\\ p(a,b)=c\wedge m(a,b)=a\wedge n(a,b)=b\\ m=\frac{a}{(a,b)}\wedge n=\frac{b}{(a,b)}\\ (m,n)=1\\ mx+ny=p \end{array} \qquad \begin{array}{ll} \text{Definition of GCD}\\ \text{Theorem 1.40}\\ \text{Definition of divides}\\ \text{Algebra}^*\\ \text{Lemma}\\ \text{Algebra} \end{array}$$

```
m(x+h) + n(y-k) = p for some h, k \in \mathbb{Z}
                                                  Let
mx + mh + ny - nk = mx + ny
                                                   Distributive
mh = nk
                                                   Algebra
m|mh \wedge m|nk
                                                   Definition of divides
m|k
                                                   Theorem 1.41 (recall (m, n) = 1)
k = mj for some j \in \mathbb{Z}
                                                   Definition of divides*
                                                   Substitution
mh = nmi
h = nj
                                                   Algebra*
k = \frac{aj}{(a,b)} \wedge h = \frac{jb}{(a,b)}
                                                   Substitution (steps with asterisks in them)
```

$$2.54 (24,9) = 3$$

$$24 \cdot 1 + 9 \cdot 1 = 33$$

$$\forall x, y \in \mathbb{Z} \{ 24 \cdot (1+3n) + 9 \cdot (1-8m) = 33 \}$$

2.55 First without Diophantine equations:

Proof:

Show that $k \cdot \gcd(a, b)$ is a common divisor $\gcd(a,b)|a \wedge \gcd(a,b)|b$ Definition of GCD $m \cdot \gcd(a, b) = a$ for some m $n \cdot \gcd(a, b) = b$ for some nDefinition of divides Algebra $km \cdot \gcd(a,b) = ka \wedge kn \cdot \gcd(a,b) = b$ Definition of divides $k \cdot \gcd(a,b)|a \wedge k \cdot \gcd(a,b)|b|$ Show that $k \cdot \gcd(a, b)$ is the **greatest** common divisor by contradiction $h > k \cdot \gcd(a, b) \wedge h | ka \wedge h | kb$ Assume (for contradiction) $h = k \cdot \gcd(a, b) \cdot j$ for some j Unjustified Step $(k \cdot \gcd(a, b) \cdot j) | ka \wedge (k \cdot \gcd(a, b) \cdot j) | kb$ Substitution $mjk \cdot \gcd(a,b) = ka$ for some m $njk \cdot \gcd(a,b) = kb$ for some n Definition of divides $mj \cdot \gcd(a,b) = a \wedge nj \cdot \gcd(a,b) = b$ Algebra $j \cdot \gcd(a,b)|a \wedge j \cdot \gcd(a,b)|b$ Definition of divides (contradicts GCD) $\neg \exists h \{ h > k \cdot \gcd(a, b) \land h | ka \land h | kb \}$ Contradiction •

The book doesn't give a very good definition of GCD. Let gcd(a, b) = c if and only if a = mc for some $m \in \mathbb{Z}$ and, b = nc for some $n \in \mathbb{Z}$, and (crucially) gcd(m, n) = 1

Proof:

 $\gcd(a,b) = c \qquad \qquad \text{Let} \\ a = cj \land b = ci \text{ for some } j,i \in \mathbb{Z} \qquad \text{Revised definition of GCD} \\ \gcd(i,j) = 1 \qquad \qquad \text{Revised definition of GCD} \\ ka = kcj \land kb = kci \qquad \qquad \text{Substitution} \\ \gcd(ka,kb) = kc \qquad \qquad \text{Reivsed definition of GCD} \\ \text{(referencing previous two steps)}$

$$\gcd(ka, kb) = kc = k \cdot \gcd(a, b)$$
 Substitution

2.56 Here is my definition of LCM. Let $a = \gcd(a, b) \cdot h$ for some $h \in \mathbb{Z}$ and $b = \gcd(a, b) \cdot k$ for some $k \in \mathbb{Z}$. I define the LCM such that $\operatorname{lcm}(a, b) = hk \cdot \gcd(a, b)$

2.57 **Proof:**

$$\begin{array}{ll} a = h \cdot \gcd(a,b) \text{ for some } h \in \mathbb{Z} \\ b = k \cdot \gcd(a,b) \text{ for some } k \in \mathbb{Z} \\ \text{lcm}(a,b) = hk \cdot \gcd(a,b) & \text{Definition of LCM} \\ \gcd(a,b) \cdot \text{lcm}(a,b) = hk \cdot \gcd(a,b) \cdot \gcd(a,b) = ab & \text{Substitution} \end{array}$$

2.58 **Proof:**

$$\begin{array}{ll} \operatorname{lcm}(a,b) = ab & \operatorname{Premise} \\ \operatorname{lcm}(a,b) = ab \cdot \operatorname{gcd}(a,b) & \operatorname{Previous \ theorem} \\ ab \cdot \operatorname{gcd}(a,b) = ab & \operatorname{Substitution} \\ \operatorname{gcd}(a,b) = 1 & \operatorname{Identity \ property} & \blacksquare \end{array}$$