

Instituto Politécnico Nacional

Escuela Superior de Cómputo

Algoritmia y programación estructurada

Ejercicios 02: Soluciones algorítmicas

M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com edfrancom@ipn.mx

Ejercicios 02: Soluciones algorítmicas

- Para cada uno de los siguientes problemas planteados diseñe un algoritmos valido en PSeInt que lo resuelva.
- Enviar en un documento que incluya portada con fotografía los pantallazos de la ejecución de sus algoritmos para cada problema y adjunte cada uno de sus archivos ".psc" correspondientes en un solo archivo comprimido.

Se recomienda utilizar los conceptos de subprocesos o subalgoritmos i.e., puede pensar la solución como un conjunto de instrucciones que pueden agruparse para verse como una solución menos compleja.

Considere respetar la entrada (input) y la salida (output)
planteados y compruebe cada una de sus soluciones
simulando su funcionamiento en PSeInt.

Ejercicios 02: Soluciones algorítmicas

 Convertir una número binario en su correspondiente valor decimal.

Input	Output	Explicación
0000	0	El número binario "0000" corresponde a "0" decimal
101010	42	El número binario "101010" corresponde a "42" decimal

2. Dado n números mostrarlos de manera inversa a la salida.

Input	Output	Explicación
3 1 2 3	3 2 1	Dados 3 números {1,2,3} el orden inverso es 3,2 y 1
2 45 6	6 45	Dados 2 números {45,6} el orden inverso es 6 y 45

ESCOM Books Supplier de Compute

3. Dado un conjunto de n estrellas en el espacio 2D encuentre la mínima distancia que hay entre dos de ellas diferentes:

Input	Output	Explicación
5 0 0 1 1 2 3 4 5 6 7	1.41	Para 5 estrellas en el espacio con coordenadas (0,0), (1,1), (2,3), (4,5) y (6,7) la mínima distancia entre ellas es: 1.41 la cuál es la distancia entre (0,0) y (1,1).
3 1 1 5 5 6 3	2.23	Para 3 estrellas en el espacio con coordenadas (1,1), (5,5) y (6,3) la mínima distancia entre ellas es: 2.23 la cuál es la distancia entre (5,5) y (6,3).

4. Dada una cadena de números enteros positivos realice el cifrado Cesar numérico de esta según una n dada. *n llave menor a 9

Input	Output	Explicación
553434 3	886767	Los números de la cadena cifrada serán 5+3=8, 5+3=8, 3+3=6, 4+3=7, 3+3=6 y 4+3=7, si unimos los números desplazados en una cadena nos da 886767
99812 4	13131256	Los números de la cadena cifrada serán 9+4=13, 9+4=13, 8+4=12, 1+4=5 y 2+4=6, si unimos los números desplazados en una cadena nos da 13131256

^{*}El cifrado cesar corresponde a tomar cada número de la cadena de entrada (0-9) y convertirlo en un nuevo valor desplazado en n más.

Dada una cadena cifrada según el ejercicio 4, regresar a su valor original (descifrar). *n llave menor a 9

Input	Output	Explicación
886767 3	553434	Los números de la cadena a descifrar son 8-3=5, 8-3=5, 6-3=3, 7-3=4, 6-3=3 y 7-3=4, si unimos los números en una cadena nos da 553434
13131256 4	99812	Los números de la cadena a descifrar serán 13- 4=9, 13-4=9, 12-4=8, 5-4=1 y 6-4=2, si unimos los números desplazados en una cadena nos da 99812

6. Dada una n generar la lista de **números binarios posibles** en **orden ascendente** con esos posibles bits.

Input	Output	Explicación
4	0000	Si se dan 4 bits, los 15 números posibles en
	0001	orden ascendente son: 0000, 0001, 0010, 0011,
	0010	0100, 0101, 0110, 0111, 1000, 1001, 1010,
	0011	1011, 1100, 1101, 1110 y 1111.
	0100	
	0101	
	0110	
	0111	
	1000	
	1001	
	1010	
	1011	
	1100	
	1101	
	1110	
	1111	

 Dada una n generar la lista de números binarios posibles en orden descendente con esos posibles bits.

Input	Output	Explicación
3	111 110 101 100 011 010	Si se dan 3 bits, los 8 números posibles en orden descendente son: 111, 110, 101, 100, 011, 110, 001, y 000.
	001	
	001 000	

8. Dada una n generar la lista de números binarios posibles en orden ascendente que no contengan dos unos juntos.

Input	Output	Explicación
4	0000 0001 0010 0100 0101 1000 1001 1010	Si se dan 4 bits, los números 0000, 0001, 0010, 0100, 0101, 1000, 1001 y 1010 formados de 4 bits no tienen dos unos juntos.

9. Calcular **el mínimo numero de monedas** de un cambio a devolver; si se saben n valores de denominación posibles. *Considerar que las monedas de cada denominación son infinitas.

Input	Output	Explicación
3 1 3 5 12	4	Con n=3 denominaciones de monedas {1, 3, 5} el cambio utilizando el mínimo número de monedas es el conjunto de 4 monedas [5, 5, 2, 2}
5 1 3 6 9 10 12	2	Con n=5 denominaciones de monedas {1, 3, 6, 9, 10} el cambio utilizando el mínimo número de monedas es el conjunto de 2 monedas [6, 6}

10. Dado un arreglo de n números (positivos y negativos) cual es el valor máximo de suma posible de un conjunto de números contiguos en el arreglo.

Input	Output	Explicación
5 4 1 3 5 -12	9	Para el arreglo de tamaño 5 {4,1,3,5,-12} la suma máxima de números contiguos es de {4, 1, 3, 5} la cuál da 9
10 -1 3 -6 9 10 11 -20 13 4	22	Para el arreglo de tamaño 10 {-1,3,-6,9,10, 11, -20, 13, 4, 5} la suma máxima de números contiguos es de {13, 4, 5} la cuál da 22

Observaciones

- Incluir de cada ejercicio sus archivos PSC.
- Explicar cada solución con sus propias palabras y una captura de pantalla de su funcionamiento (Pruebe los suficientes casos para validar su respuesta)
- Plantee casos que podrían ser inválidos para cada ejercicio o que llegaron a causar error.
- Portada con fotografía y encabezados de pagina.

Lista cotejo de la evaluación del ejercicio

Indicador	SI	NO
Redacción del Problema (El reporte cuenta con encabezados y los datos están redactados completamente)		
Desarrollo del Problema (Se explica fácilmente los pasos con lo que llego al resultado)		
Secuencia Lógica (Hay una correcta interpretación de los conceptos, cálculos, algoritmos y formulas)		
Resultado (El resultado esta claro y correctamente identificado en el problema.)		

60

Fecha máxima de entrega en el sitio Web

La entrega se realizará a través de la página:

http://www.eafranco.com

Entregar a más tardar el día viernes 29 de Marzo de 2019

Grupo y contraseña

Grupo	Contraseña
1CM12	algoritmia1cm12

• Escribir y almacenar las claves de confirmación, para aclaraciones a con respecto a la evaluación.

