Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>
23/05/2022	10 - Représentation des nombres	Résumé

Informatique

10 Représentation des nombres

Résumé

Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>
23/05/2022	10 - Représentation des nombres	Résumé

Représentation des nombres

				E	Binair	es entie	ers												
	Un nomb																		
Définition	On a	appelle	mot	m l'en	semb	le des b			ntan	t le no	ombr	e en	bina	aire :					
	m=000110110 On trouve parfois l'écriture $m=0b000110110$ pour spécifier que c'est un binaire											nairo							
	Un entier codé sur n bits peut prendre 2^n valeurs différentes (2 possibilités																		
	On Cita	par bit), 0 inclus											ites						
Propriétés		Le pl	us gr	and er	ntier	-	•		bits '	vaut	dono	2^n -	- 1						
	Le plus grand entier représenté sur n bits vaut donc $2^n - 1$ Exemple sur 8 bits : $255_{(10)} = 111111111_{(2)} = 2^8 - 1$																		
			e 10	Base		Base 10		se 2		ase 1		Base 2	2						
		(0		6		110		11		110							
Définition On tro Un er Propriétés Les premiers entiers Base 10 Binaire Transcodage Binaire Binaire				1		7	_	111		13		110							
			<u>2</u> 3	10		<u>8</u> 9	_	1000 1001	-	14 15		111 111							
Citicis				10		10	_	1010		16		1000							
		Į.		10	-	11		1011		17		1000							
			-			t diviseı	-			-	-		-		t nul.				
	Base 10	Remo	onter			e chaqu	e divis	sion p	our (réer	le mo	ot bir	aire). I I					
				1000	2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \													
		•	n_0		500	250	2												
				n_1	n_2		125	2											
					112	n_3	1	62	2										
											113	n_4	0	31	2				
	-						774	n_5	1	15	2								
	Billanc							105	n_6	1	7	2							
Transcodage									100	n_7	1	3	2						
										107	n_8	1	1	2					
											1.0	n_9	1(0)				
			0h111	11101000						1			> hi	n (10	100)				
		1000		11101000	,	1000(1	$_{0)} = 1$	11111	1010	000(2))				.000 '				
			II su	ıffit de s	somn	ner les p				assoc	iées a	à cha	que	bit					
	Binaire		1 29	. 1 28	1		1111			24 .	1 23	8 . 0	22		a 1				
	-	=	1. Z	+ 1.2°	+ 1.	$2^7 + 1$	Z° +	1. Z ³	+ 0.	Z · +	1. Z°	′ + 0.	. Z ²	+ 0.	2-				
	Base 10	= 1	2 ⁹ +	$2^{8} + 2$		$\frac{16}{100} + 2^{5}$	$+ 2^3 =$	= 512	2 + 2	256 +	- 128	8 + 64	4 +	32 -	- 8				
						11111													
			•			passen	•	_											
		ils sc				i-précis nes (<i>N</i>		•						•	une				
Entiers multi-	précision	algo				nes (<i>n</i> ues réal			_		•				ase				
		_		-		ion, mu		-											
				alor	s la t	aille mé	moire	utilis	ée p	our le	s sto	cker.							

Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>
23/05/2022	10 - Représentation des nombres	Résumé

		Binaires réels						
	En base :	10, lorsque nous manipulons des nombres à	virgule :					
Princine		es chiffres avant la virgule sont des puissand						
Timespe		es chiffres après la virgule sont des puissanc						
	C'est la n	nême chose en base 2, en puissances de 2 o						
		Décomposer le réel en sa partie entière et	•					
		5,375 = 5 + 0,375						
Principe		Transcoder la partie entière comme vu pré	cedemment: $5_{(10)} = 101_{(2)}$					
		Transcoder la partie décimale de la sorte :						
Principe		- La multiplier par 2. Séparer l'entie	r avant la virgule (0 ou 1) de la					
	Base 10	nouvelle partir décimale - Recommencer jusqu'à obtenir une	nartio décimale nulle (si eviste)					
		- Récupérer la partie décimale binai	•					
		Principe	Présentation améliorée					
		0,375 * 2 = 0,750	Tresentation amenoree					
		Bit 0						
	\rightarrow	$\left \right \xrightarrow{\rightarrow} \left\{ Nouvelle partie décimale 0,75 \right\}$						
	Binaire	0.750 * 2 = 1.5	0,375 * 2 = 0, 750					
Transcodage		$\left \right \rightarrow \left\{ \begin{array}{c} Bit \ 1 \\ \end{array} \right.$	$\begin{vmatrix} 0.750 & *2 & 1 & 5 \\ 0.50 & *2 & 1 & 0 \end{vmatrix}$					
Transcodage		→ {Nouvelle partie décimale 0,5	0,50 * 2 = 1, 0					
		$ \begin{array}{c c} 0,50 * 2 = 1 \\ Bit 1 \end{array} $						
		→ {Nouvelle partie décimale 0						
		$(0,375)_{10} = (0,0)$	011).					
		1 - 1 - 2	711)2					
		Finalement: $(5,375)_{10} = (101,011)_2$	daga on notation scientifique					
		Remarque: on peut réaliser ce transco	•					
		binaire: $(0,011)_2 = (11)_2$. $2^{-3} = \frac{3}{8} = 0,375$						
		Il suffit de sommer les puissances de	•					
	Binaire	$101,011_{(2)}$	1					
Principe C	→ Date 10	$= 1.2^{2} + 0.2^{1} + 1.2^{0} + 0.2^{-1}$						
	Base 10	$= 4 + 1 + \frac{1}{4} + \frac{1}{8} = 5 + 0,25 + 0,12$	25 = 5 + 0,375 = 5,375					

Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>
23/05/2022	10 - Représentation des nombres	Résumé

Entiers relatifs

Principe

Associer à 2^n entiers naturels N codés de manière classique sur n bits 2^n entiers relatifs Z selon une formule N = f(Z) ou $N = f^{-1}(Z)$.

Complément à 2

Le principe consiste à utiliser un entier naturel N (pour n=3 bits, $N\in[0,7]$), et de lui associer un entier relatif Z tel que :

$$N = \begin{cases} Z \sin Z \ge 0 \\ 2^{n} - |Z| = 2^{n} + Z \sin Z < 0 \end{cases} \Leftrightarrow Z = \begin{cases} N \sin N \le 2^{n-1} - 1 \\ N - 2^{n} \sin N > 2^{n-1} - 1 \end{cases}$$
$$N \in [0, 2^{n}] \quad ; \quad Z \in [-2^{n-1}, 2^{n-1} - 1]$$

$(Z)_{10}$	-4	-3	-2	-1	0	1	2	3
$(N)_{10}$	4	5	6	7	0	1	2	3
$(N)_2$	$(100)_2$	$(101)_2$	$(110)_2$	$(111)_2$	$(000)_2$	$(001)_2$	$(010)_2$	$(011)_2$

Remarque: On voit que le premier bit est un bit de signe

Avantage : La somme binaire de deux entiers relatif Z fonctionne \bigcirc

$$(-3)_{10} + (1)_{10} \leftrightarrow (101)_2 + (001)_2 = (110)_2 \leftrightarrow (-2)_{10}$$

Exemple de transcodage sur 8 bits :

$(N)_2$	$(N)_{10}$	$(Z)_{10}$
$(11010111)_2$	$(215)_{10}$	$(-41)_{10}$

Codage par excès

Le principe consiste à utiliser un entier naturel N (pour n=3 bits, $N \in [0,7]$), et de lui associer un entier relatif Z « décalé ». Deux décalages semblent logiques :

- Décaler de 3 : 0 devient -3 et 7 devient 4
- Décaler de 4 : 0 devient -4 et 7 devient 3

Le choix est fait de procéder au premier décalage dont l'expression en fonction de n s'écrit :

$$B = 2^{n-1} - 1$$

$$Z = N - B \iff N = Z + B$$

$$N \in [0, 2^n] \quad ; \quad Z \in [-2^{n-1} + 1, 2^{n-1}]$$

$(Z)_{10}$	-3	-2	-1	0	1	2	3	4
$(N)_{10}$	0	1	2	3	4	5	6	7
$(N)_2$	$(000)_2$	$(001)_2$	$(010)_2$	$(011)_2$	$(100)_2$	$(101)_2$	$(110)_2$	$(111)_2$

Exemple de transcodage sur 8 bits (B = 127) que nous utiliserons plus tard :

$(N)_2$	$(N)_{10}$	$(Z)_{10}$
$(10101100)_2$	$(86)_{10}$	$(-41)_{10}$

Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>
23/05/2022	10 - Représentation des nombres	Résumé

	Vii	rgule :	flottant	e – Nori	ne IEI	EE 754						
	Il est impossible						mbres	dans	l'ordinat	eur. Un	ıe	
Contexte	représentation officielle a été choisie, permettant de représenter les réels en											
	machine à l'aide de « flottants », ensemble fini de nombres décimaux											
	-289456,5 en base 10											
		$-2,894565.10^{5}$										
		- 2 894565 5										
	Signe Caractéristique Mantisse Puissance Partie significative											
				Partie si	gnitic	ative						
	-289456,5 en virgule flottante											
							18)				
	Signe	`aract	<u> </u>		0110	Manti		7001	Puissa			
	Jigile (Jaraci		Partie si	gnific		330		T UISSE	ince		
	La caractéristiqu	e est					is excei	ntionr	l Lel de O			
Exemple		La caractéristique est toujours égale à 1 sauf le cas exceptionnel de 0 $(s = 0 \Leftrightarrow x > 0)$										
	Le bit de signe vaut $\begin{cases} s = 0 \Leftrightarrow x > 0 \\ s = 1 \Leftrightarrow x < 0 \end{cases}$											
	La puissance (entier relatif Z), est codée sur n bits (8 en simple précision) en un											
	entier naturel $N: N = Z + (2^{n-1} - 1)$. Dans ce cas, $18 + 127 = (145)_{10} = 127$											
	(10010001) ₂											
	1 10010001 000110101011000							001				
	Signe Puissance Mantisse											
	En simple précision, la mantisse est codée sur 23 bits, on complète donc de											
	quelques 0 :		1	1001	0001	1 000	11010	1010	110000	10000	٦	
	Représentat	tion	1 Signo				0001101010101100001000			10000	-	
	32 bits		Signe 1 bit		Puissance 8 bits		Mantisse 23 bits			-		
	Le nombre -289	2456				flottar	nta sim			32 hitcl		
	Le nombre 20		001000		_					32 bits)	•	
			001000	10001	10101	10101	10000	10000	,			
		N	ombre	Bit de	В	its	Bits		Bits		_	
			le bits	signe		osant	implici		mantisse	Décal	ag	
	Simple précision		32	1		8	1		23	127	7	
Norme	Double précision		64	1	1	11	1		52	102	3	
	Quadruple		420						442			
	précision		128	1]	15	1		112	1638	33	
	_					I				•	_	
	Certains nombre											
Remarques	représentation d								-			
curques	des nombres po	ur co	mprend	lre qu'il	s puis	ssent a	voir de	es cor	rséquenc	es sur	nc	
	calculs.											

Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>
23/05/2022	10 - Représentation des nombres	Résumé

	<u> </u>	110000100100111000000000000000		
	11000010010011100000000000000000000000			
	Virgule flottante	1 10000010 0100111000000000000000000000		
	32 bits	Signe Puissance Mantisse (120)		
	→ →	Le signe est négatif; $(10000010)_2 = (130)_{10}$		
	Réel	$N = 130$; $Z = N - (2^{n-1} - 1) = 130 - 127 = 3$ Sans oublier d'ajouter le bit implicite, la partie significative vaut : $(1, 0100111)_2 = 1,3046875$;		
Transcodage				
En 32 bits	$x = -1,3046875.2^3 = -10,4375$			
	$x = (-10,125)_{10} = (-1010,001)_2 = (-1,010001)_2.2^3$			
	Réel	$Z = 127$; $N = 3 + (2^{n-1} - 1) = 3 + 127 = 130$		
	\rightarrow	$(130)_{10} = (10000010)_2$		
	Virgule	$(-10,125)_{10}$		
	flottante	1 10000010 0100010000000000000000000000		
	32 bits	Signe Puissance Mantisse		
		110000010010001000000000000000000000000		
	Justesse	C'est la correspondance entre nombre représenté et réel associé).		
		On peut représenter une quantité finie de nombres : 32 bits 4 294 967 296		
		32 bits 4 294 967 296 64 bits 18 446 744 073 710 000 000		
		La justesse est assurée si le nombre de bits de la mantisse suffit à		
		la représenter complètement.		
	Min Max	Valeurs Valeur min Valeur min		
Limites (cf cours)		normalisées normalisée dénormalisée Valeur max		
		Simple 1,2.10 ⁻³⁸ 1,4.10 ⁻⁴⁵ 3,4.10 ³⁸		
		precision		
		Double 2,2.10 ⁻³⁰⁸ 4,9.10 ⁻³²⁴ 1,8.10 ³⁰⁸		
		precision		
	Ecart entre nombres successifs et applications en virgule flottante	ODG de l'écart ΔV entre $A = a.10^n$ avec $a \in [0; 10[$ et le suivant :		
		Simple précision Double précision $7 \approx 23 \log 2$ 10^{n-7} 10^{n-16} $16 \approx 52 \log 2$		
		Une erreur d'arrondi peut conduire à $A = B + \Delta V$ alors que A et B		
		devraient être égaux \rightarrow Etudier $ A - B < \varepsilon$, avec ε de l'ordre de		
		grandeur de ΔV du tableau précédent Attention, c'est un ODG !		
		On prendra $arepsilon=10^{n-6}$ (32) ou $arepsilon=10^{n-15}$ (64) par exemple		
		ε trop faible \Rightarrow Le test dit $A \neq B$ alors que $A = B$		
		ε trop grand \Rightarrow Le test dit $A=B$ alors que $A \neq B$		
		ODG du nombre de chiffres significatifs (caractéristique +		
		mantisse) en base 10, auxquels on peut avoir confiance :		
		Simple précision Double précision 7 16		
	Les errours d'	, 10		
	Les erreurs d'arrondis ou l'overflow (nombre non représentable, induisant le codage d'une mauvaise valeur) ont déjà eu de lourdes conséquences (explosion de			
Conséquences	la fusée Ariane 5, Missile Patriot passant à travers un système anti-missile)			
	Attention au test == - Attention aux sommes répétées			
	1 et 1.0 sont fondamentalement différents – Attention à l'évaluation d'une dérivée			
Numpy	<pre>a = np.float32(0.1) - b = np.uint8(10) A = np.array([1,2],dtype='int8')</pre>			
A - mp.array([1,2],ucype- rmco)				

