Consider the function $f(x) = \frac{x^3}{e^x - 1}$

- 1. Evaluate $\int_0^\infty f(x)dx$ using Monte Carlo method. Since the integral extends to infinity which can not be simulated, try different maximum values (x_{max}) to examine which one is sufficient.
- (i) Generate 10^4 uniform random numbers between 0 and x_{max} and evaluate the integration over a sample size of 100, 500 and 10^4 . (note: use a 19-20 digit integer number as SEED)
- (ii) Make histograms (do not use python inbuilt list) of the integration values for sample size N= 100, 500 and check the $1/\sqrt{N}$ law for Monte Carlo integration.
- (iii) What is the optimum value of x_{max} ? Plot the histogram of x for the optimum x_{max} .