Matlab Functions and Tools

- Some functions are given. There is no need to implement them. Please refer to the links in the next slide.
- You can also use other resources, with proper citation in your report.

Useful Matlab Functions

- Naïve Bayes classifier
 - PredictClass = classify(Xtest,Xtrain,Ytrain,'diaglinear');
- Randomly split data
 - p = randperm(n,k) -
 - Indices = crossvalind('Kfold', N, K)

n: total # of samples

k: select k samples by permutation

decide the

model to learn

- plotImages
 - plotImages(digitsImages, xy_coord, scale, skip);
- IIF:
 - http://www.cs.nyu.edu/~roweis/lle/code.html
- ISOMAP:
 - http://isomap.stanford.edu/
- LDA-dimension reduction
 - http://homepage.tudelft.nl/19j49/Matlab Toolbox for Dimensionality
 y Reduction.html

Datasets

- Dataset A (record activity sensors):
 - Sample-feature matrix: fea (19,000 x 81)
 - Features: readings of 81 sensors
 - The data is in **time-series**, given in time order
 - Missing values
 - 'NaN'
 - Outliers
 - Negative readings are not outliers

Datasets

- Dataset B (image data of handwritten digits)
 - Sample-feature matrix: fea (2066 x 784)
 - Features: 28 x 28 gray-scale images, in column-wise
 - Ground truth labels: gnd (2066 x 1)
 - Labels: 0, 1, 2, 3, 4

Datasets

- Dataset C (clinic data)
 - Sample-feature matrix:
 - fea (2100 x 21)
 - Need to be normalized (min-max) before further processing
 - Ground truth labels
 - gnd (2100 x 1)
 - 3 classes: normal(1), suspect(2), pathologic(3)

Q1: Data Cleaning and Preprocessing

- Missing values; Outliers
 - Detect and fix them
- Normalization:
 - Min-max
 - Z-score
- Plot histograms
- Observations and comments!

Q2&3: Feature Extraction

- Linear methods:
 - PCA
 - LDA
- Nonlinear methods:
 - LLE
 - ISOMAP
- Supervised vs. non-supervised dimensionality reduction

Q4: Feature Selection

- Search strategy
 - SFS
 - SBS
- Objective function
 - Filter based
 - Wrapper based

'Hello World!'

```
- a = 3;- b = 4;- c = a + b
```

 end each statement with semicolon, if you do not like to see the result in the command window

- arithmetic operators:
 - addition: A+B
 - subtraction: A-B
 - multiplication: A*B
 - right division: A/B = A*inv(B)
 - left division: $A B = inv(A)^*B$
 - power: A^b
 - transpose: A'
 - colon operator:
 - to create vectors: a:b
 - array subscripting: A(:,b)

- dot operators (a.k.a element-wise operators)
 - **❖** A.*B, A./B, A.\B, and A.^B
- relational operators
 - ❖a<b, a<=b, a>b, a>=b, a==b, and a~=b
- logical operations
 - ❖a||b (or), a&&b (and), ~ a(not)
- element-wise logical operators
 - **❖**A|B, A&B, ~A

- operator precedence
 - Parentheses
 - transpose and power
 - unary plus, unary minus, and logical negation
 - multiplication(s) and division(s)
 - addition and subtract

— ...

- flow control
 - conditional control
 - if, else, and elseif
 - switch and case
 - loop control
 - for
 - while
 - break
 - continue

```
• if
  if expression1
     statements1
  elseif expression2
     statements2
  else
     statements3
  end
```

• for

```
for index = values
  program statements
end
```

while

```
while expression

program statements
end
```

- function definition
 - function [output_variables] =
 fcn_name(input_variables)
 - the name of a function should be consistent with the file name

an example

- Given the corresponding coefficients of two lines (ax+by+c=0), calculate the intersection point and plot the lines on a figure.
- Function:

```
[intersection, Runtime] = myPlot(line1, line2)
```

Script to call this function:

```
clear all;clc
load coeffs
line1 = coeff(1,:);
line2 = coeff(2,:);
[intersection,RunTime] = myPlot(line1,line2)
```

how to access?

- have a license
- Nexus computers
 - on campus
 - remotely
- Octave

help

- where to look for answers?
 - Matlab Help
 - Mathworks website
 - Online forums
 - TAs

refs

- www.mathworks.com
- www.gnu.org/software/octave/
- saw.uwaterloo.ca/matlab/