Визначення вагових коефіцієнтів альтернатив за матрицею парних порівнянь

Постановка задачі

Множина альтернатив

$$A = \{A_h\}, h \in \{1,...,k\},\$$

що порівнюються за якісним критерієм C для визначення відносних коефіцієнтів значущості ω_h (додатні та задовольняють рівнянню нормування):

$$\sum_{h=1}^{k} \omega_h = 1 \tag{1}$$

Коефіцієнт значущості ω_h виступає кількісною мірою ступеня наявності у альтернативи A_h властивості, описаної критерієм C

1. Побудова матриці парних порівнянь (МПП)

Експерту послідовно пред'являють пари (A_i, A_j) альтернатив для визначення ступеня переваги d_{ij} альтернативи A_i над альтернативою A_i відносно деякого якісного критерія C.

Якщо пара (A_i, A_j) була пред'явлена і експерт визначив ступінь переваги d_{ij} , то пара (A_j, A_i) не пред'являється, а d_{ji} визначається, виходячи зі співвідношення

$$d_{ii}=1/d_{ii} \tag{2}$$

Ступінь переваги визначається в т.зв. фундаментальній шкалі.

Значення рекомендують визначати так: «числа вказують, у скільки разів один об'єкт переважає інший відносно загальної властивості або критерія»

- 1 рівноцінність
- 3 помірна перевага
- 5 сильна перевага
- 7 дуже сильна перевага
- 9 безумовна перевага
- 2,4,6,8 проміжні значення

Структура МПП

Елементи d_{ij} утворюють квадратну МПП D.

- $d_{ij} = d_{ji}$, якщо об'єкти A_i та A_j рівноцінні з т. зору експерта
- $d_{ij} > d_{ji}$, якщо об'єкт A_i на думку експерта «кращий» за об'єкт A_i ($A_i > A_i$)

Елемент d_{ij} МПП D трактується як відношення вагових коефіцієнтів альтернатив A_i та A_j , тобто ω_i/ω_i :

$$D = \begin{vmatrix} \omega_1/\omega_1 & \omega_1/\omega_2 & \cdots & \omega_1/\omega_k \\ \cdots & \cdots & \cdots & \cdots \\ \omega_k/\omega_1 & \omega_k/\omega_2 & \cdots & \omega_k/\omega_k \end{vmatrix}$$
(3)

Кардинальна узгодженість в силі переваги (**надтранзитивність**)

має місце, якщо $\forall i, j, h$ виконується:

$$d_{ij} = d_{ih}d_{hj} = d_{hj}/d_{hi} \tag{4}$$

2. Оцінка ступеня узгодженості МПП

Позначимо вектор-стовпець відносних ваг альтернатив $W=[\omega_1,\ \omega_2,...,\ \omega_k]^{\mathsf{T}}$

Характеристичному рівнянню матриці *D*

$$|DW-\lambda W|=0$$

відповідає система лінійних однорідних рівнянь

$$(d_{11} - \lambda)\omega_1 + d_{12}\omega_2 + ... + d_{1k}\omega_k = 0,$$

$$d_{21}\omega_1 + (d_{22} - \lambda)\omega_2 + ... + d_{2k}\omega_k = 0,$$
(5)

$$d_{k1}\omega_1 + d_{k2}\omega_2 + ... + (d_{kk} - \lambda)\omega_k = 0$$

Н. та Д. умовою існування нетривіального розв'язку системи (5) (тобто $\exists i \ [\omega_i \neq 0]$) є рівність нулю детермінанта системи (5) **Характеристичні числа (власні значення**)

матриці D — значення k коренів рівняння k-го ступеня відносно λ (одержаного прирівнюванням виразу детермінанта системи (5) до нуля).

Кожному характеристичному числу відповідає своя СЛР (одержана підстановкою його в (5)).

Розв'язок отриманої системи відносно ω_i визначається з точністю до скалярного множника і називається власним вектором МПП.

Пропонується в якості множини відносних ваг альтернатив W використовувати компоненти власного вектора, що відповідають максимальному характеристичному числу λ_{max} .

Цей спосіб визначення вагових коефіцієнтів альтернатив отримав назву **метод власного вектора (Сааті)**

(Приклади)

Для повністю узгодженої матриці (тобто такої, що задовольняє умову (4)) справедливо:

$$\lambda_{max} = k$$

(для неузгодженої матриці λ_{max} ≥k), де k - порядок системи (5), тобто кількість альтернатив

Показник ступеня узгодженості елементів матриці D - **індекс узгодженості** (consistency index, CI):

$$CI = (\lambda_{max} - k)/(k-1)$$

Індекс узгодженості оцінює «ступінь невиконання» властивості узгодженості.

Вважається, що при СІ≤0,1 ступінь «неузгодженості» прийнятний і побудована МПП може бути використана для визначення вектора ваг альтернатив. Інакше рекомендується запропонувати експерту уточнити елементи матриці D

Для оцінки достатності ступеня узгодженості використовується відношення узгодженості (consistency ratio, CR):

$$CR = CI/CIS$$
,

де CIS — середнє значення CR, обчислених для великої кількості випадковим чином згенерованих матриць парних порівнянь в фундаментальній шкалі, які задовольняють умові (2).

Значення CIS наведено в таблиці:

k	1	2	3	4	5	6	7	8	9	10
CIS	0	0	0,52	0,89	1,11	1,25	1,35	1,4	1,45	1,49

Результуючий вектор відносних ваг альтернатив вважається прийнятним, якщо

CR ≈ 0,1 (але не перевищує 0,2).

Для k=3 CR не повинен перевищувати 0,05,

для k=4 CR не повинен перевищувати 0,08.

experts reached a certain degree of consistency. The consistency ratio (*C.R.*) of the paired comparison matrix can be defined as follow:

$$C.R. = \frac{C.I.}{R.I.} \tag{10}$$

The consistency index (C.I.) indicates the degree of difference between the maximum eigenvalue (λ_{max}) and the order (n). When C.R. = 0, the judgment and consensus of the selected experts are completely consistent. When C.R. > 0, the judgment and consensus of the selected experts are inconsistent, and satisfactory consistency can be obtained only when C.R. < 0.1. The random index (R.I.) indicates that when the problem becomes increasingly complicated, the judgments of the pairwise comparison and the order of the pairwise comparison matrix increase. Under this condition, judgment consistency is lower. Therefore, Saaty [67] proposed the R.I. (Table 2) to adjust varying degrees of C.I. value changes under different orders and obtain a favorable C.R.

Table 2. R.I. values.

3	4	5	6	7	8	9	10	11	12	13	14	15
0.52	0.89	1.11	1.25	1.35	1.40	1.45	1.49	1.52	1.54	1.56	1.58	1.59

Приклад Таблиця 1 Матриця парних порівнянь критеріїв

<u>+</u>			
	M_1	M_2	$M_{\scriptscriptstyle 3}$
$M_{_1}$	1	7	1/2
M_2	1/7	1	1/9
M_3	2	9	1

Матриця парних порівнянь критеріїв, наведена в табл. 1, відповідає умовам, що має місце значна перевага критерія 1 над критерієм 2 (значення «7») та дуже сильна перевага критерія 3 над критерієм 2 (значення «9»), а також невелика помірна перевага критерія 3 над критерієм 1 (значення «2»). Обчислені за наведеною матрицею парних порівнянь локальні пріоритети критеріїв наведені в табл. 2.

Таблиця 2

Результати обчислення вагових коефіцієнтів критеріїв

	$M_{\scriptscriptstyle 1}$	M_2	M_3
ω_{i}	0,3458	0,0572	0,597
$\lambda_{_{ m max}}$	3,0217		
CI	0,0109		
CR	0,0209		

Як видно із табл. 3, матриця парних порівнянь є узгодженою, оскільки значення індексу узгодження СІ, визначене на основі максимального власного числа матриці λ_{\max} , не перевищує порогу 0,05. Крім цього, величина відношення узгодженості СR також не перевищує значення 0,05 (при розмірності матриці 3×3). Отже, отримані за цією матрицею значення локальних пріоритетів є прийнятними та не потребують уточнення.

Which drink is consumed more in the USA?

An example of examination using judgements								
Drink consumption in US	Coffee	Wine	Tea	Beer	Sodas	Milk	Water	
Coffee		9	5	2	1	1	1/2	
Wine	1/9	1	1/3	1/9	1/9	1/9	1/9	
Tea	1/5	2	1	1/3	1/4	1/3	1/9	
Beer	1/2	9	3	1	1/2	1	1/3	
Soda	1	9	4	2	1	2	1/2	
Milk	1	9	3	1	1/2	1	1/3	
Water	$\sqrt{2}$	9	9	3	2	3	1 _	

Note: The derived scale based on the judgements in the matrix is:

0.177

0.019

0.042

0.116

0.190

0.129

0.327

With a consistency ratio of 0.022.

the actual consumption (from statistical sources) is:

0.180

0.010

0.040

0.120

0.180

0.140

0.330

3. Коригування МПП у випадку її неузгодженості

Процедура коригування, яка виконується, поки МПП А – неузгоджена:

- 1. Формування матриці відношень пріоритетів ω_i / ω_j (3).
- 2. Аналіз матриці абсолютних різниць $\left|\left|a_{ij}-\left(\omega_{i}/\omega_{j}\right)\right|\right|$
- 3. Перегляд даних про елемент з найбільшою різницею (заміна a_{ij} на ω_i / ω_j та, відповідно, a_{ii} на ω_i / ω_i)
- 4. Перерахунок пріоритетів та перевірка узгодженості

Інші способи обчислення вагових коефіцієнтів за МПП

Приклади

[1] Обчислити максимальне характеристичне число матриці А можна, наприклад, за допомогою метода простої векторної ітерації.

Для цього необхідно побудувати векторну послідовність:

$$x^{(m+1)} = A x^{(m)} = A^{m+1} x^{(0)},$$
 (6)

де $x^{(0)}$ — заданий. Тоді максимальне характеристичне число λ_{max} визначається так:

$$\lambda_{\max} = \lim_{m \to \infty} \frac{x_i^{(m+1)}}{x_i^{(m)}}$$

[2] обчислення вагових коефіцієнтів методом середніх геометричних

1. Обчислити $\forall i = (1,...,k)$

$$v_i = \sqrt[k]{\prod_{j=1}^k d_{ij}}$$

2. Здійснити нормування $\forall i = (1,...,k)$

$$\omega_i = \nu_i / \sum_{j=1}^k \nu_j$$

Одержано вектор відносних ваг

$$W=[\omega_1, \omega_2, ..., \omega_k]^T$$

[3] обчислення вагових коефіцієнтів методом степеня

- 1. Обчислити D^r , де $D M\Pi\Pi$ альтернатив
- 2. Обчислити

$$\omega_{i}^{(r)} = \sum_{j=1}^{k} d_{ij} / \sum_{i=1}^{k} \sum_{j=1}^{k} d_{ij}$$

3. Якщо |
$$\mathcal{O}_i^{(r)}$$
- $\mathcal{O}_i^{(r-1)}$ |< $\mathcal{E} \ \forall i$ =(1,.., k),

де ${\mathcal E}$ - заздалегідь задана величина похибки, то кінець. Одержано вектор відносних ваг

$$W=[\omega_1, \omega_2,..., \omega_k]^T$$

Інакше збільшити r та перейти на п.2