# Разработка антифрикционного материала, содержащего добавки оксида графена

Балабанов Р.Д., Сергеев М.М., Титов Г.А., Туголуков Е.Н., д.х.н. Дьячкова Т.П.

# Актуальность работы

- Рост объемов перевозок и производство воздушных судов в России (программа развития авиации, 2023)
- Сложности в производстве газотурбинных двигателей ключевого узла летательных аппаратов
- Широкое применение графитовых материалов в уплотнениях авиационных двигателей
- Остановка производства нефтяного кокса КНПС в 90-х годах ограничение сырьевой базы
- Необходимость разработки новых антифрикционных материалов на отечественном сырье

# Цель работы

Разработка антифрикционного материала на основе графита для уплотнений авиационных двигателей.



а - торцовое контактное уплотнение (1 — вал ротора; 2 — втулка уплотняющая; 3 - направляющие штифты; 4 — втулка прижимная; 5 — кольца уплотнительные; 6 — графитовое кольцо); б - Уплотнительное кольцо на основе графита

Состав материала

| Nº | Компонент                        | Назначение                        | Примечание                                 |
|----|----------------------------------|-----------------------------------|--------------------------------------------|
| 1  | Графитированный бой              | Основной наполнитель              | Продукт графитации при температуре 2400 °C |
| 2  | Нитрид бора                      | Улучшение смазочных свойств       | ТУ 2112-003-49534204-<br>2002              |
| 3  | Высокотемпературный пек          | Связующее вещество                | ГОСТ 1038                                  |
| 4  | Суспензия оксида<br>графена (ОГ) | Повышение спекаемости и адсорбции | ООО "НаноТехЦентр" г.<br>Тамбов            |
| 5  | Фурфуриловый спирт               | Импрегнат                         | ГОСТ Р 57243-2016                          |
| 6  | Лимонная кислота                 | Катализатор                       | ГОСТ 908-2004                              |

### Методика получения материала



### Состав и свойства наполнителя



Содержание фр. (0-30 мкм) от общего количества графита, %



### Рамановская спектроскопия



### Инфракрасная спектроскопия



# Рентгено-фазовый анализ



### Физико-механические характеристики

| Содержание ОГ, %                     | 0      | 1,64   | 3,66   |
|--------------------------------------|--------|--------|--------|
| Плотность, г/см <sup>3</sup>         | 1,88   | 1,92   | 1,82   |
| Предел прочности при сжатии,         | 150    | 175    | 110    |
| Коэффициент газопроницаемости, см²/с | 1.10-4 | 7.10-6 | 2·10-4 |

### Выводы

- Разработан эффективный способ получения антифрикционного самосмазывающегося материала
- Модификация наполнителя суспензией ОГ значительно повышает адсорбционные и спекающие свойства в отношении пека
- Полученный материал обладает улучшенными физико-механическими характеристиками по сравнению с аналогами при типичных условиях эксплуатации