12.3 Dot Products

Def Given two nonzero vectors u and v in two or three dimensions, their dot product is

4. v = |u||v| coso

where or is the angle between u and v with $0 \le 0 \le \pi$.

Observations: if $\Phi > \pi l_2$ then $u \cdot v < 0$ if $\Phi < \pi l_2$ then $u \cdot v > 0$ if $\Phi = \pi l_2$ then $u \cdot v = 0$

Def Two vectors u and v are orthogonal if and only if $u \cdot v = 0$.

In two or three dimensions, two nonzero orthogonal vectors are perpendicular to each other.

—> (cu)·v = c(u·v) = u·(cv)

Theorem Given two vectors $u = \langle u_1, u_2, u_3 \rangle$ and $v = \langle v_1, v_2, v_3 \rangle$,

U. V = U.V1 + U2 V2 + U3 V3

$$\hat{\lambda} \cdot \hat{\beta} = 0 \qquad \hat{\beta} \cdot \hat{\lambda} = 0$$

$$2.2 = 0 \qquad 2.3 = 0$$

That is, the dot product is commutative.

4. V= |4| |V| 6050

This original definition of dot product is the one we will use when computing angles between vectors:

Example Let $u = \hat{i} - 4\hat{j} - 6\hat{z}$ and $v = 2\hat{i} - 4\hat{j} + 2\hat{z}$ (a) Find the dot product of u and v $u \cdot v = (1)(2) + (-4)(-4) + (-6)(2)$ = 2 + 16 - 12 = 6

Since U.V=b is positive we expect the angle between 4 and V to be less than The

(b) Find the angle between the vectors

$$Cose = \frac{u \cdot v}{|u||v|}$$

$$\frac{1.050}{\sqrt{53}\sqrt{24}} = 0.16823$$

Orthogonal projections.

to construct a vector that goes along us with magnitude NI cost we do:

UL 1/1 0050

Def The orthogonal projection of v onto u, denoted projuv, where v ≠ 0, is

 $\text{proj}_{\mathbf{u}} = |\mathbf{v}| \cos \left(\frac{\mathbf{u}}{|\mathbf{u}|}\right)$

This orthogonal projection can also be computed as follows: $Proj_{u} = |v| \cos \frac{u}{|u|} = \frac{|u| |v| \cos \frac{u}{|u|^2}}{|u|^2}$

 $Proj_{u} = \frac{u \cdot v}{1 \cdot 1 \cdot 1^{2}} \quad u$

Def The scalar component of v in the direction of U is: $scal_{11}v = |v| cos\theta$

Example Calculate $Proj_{u}V$ and $scal_{u}V$ if $u = \langle -1, 4 \rangle$ $v = \langle -4, 2 \rangle$

 $\text{proj}_{u}v = \frac{u \cdot v}{|u|^2} u$

 $|u \cdot v| = |-1|(-4) + |-4|(2) = 12$, $|u| = \sqrt{17}$, $|u|^2 = 17$ |v| = |-1|(-4) + |-4|(2) = 12, |u| = |-4|(-1) = |-4

Scal $u^{\vee} = \frac{u \cdot v}{|u|} = \frac{12}{\sqrt{13}}$

Applications of Dot Products.

Def Work.

Let a constant force F be applied to an object, producing a displacement d. If the angle between F and d is θ , then the work done by the force is

W= | F | | d | cosp = F. d

IFIcoso only this component of F does work.

Ex A force $F = \langle 3,3,2 \rangle$ (in newtons) moves an object along a line segment from P(1,1,0) to Q(6,6,0) (in meters). What is the throughout work done by the force?

$$\overrightarrow{PQ} = (5,5,0)$$

 $W = F \cdot \overrightarrow{PQ} = (5)(3) + (5)(3) + (0)(2) = 30 \text{ J.}$