Supplementary Material FSE 2022 submission

Anonymous Author(s)

March 2022

In the following, to have a self contained document we provide the proof of the Lemma 1 together with our grounding algorithm.

Lemma 1 (Over-approximation Query). For an FOL formula ϕ_f , and a domain $D_{AU\downarrow}$, if $\phi_q = G(\phi_f, D_{AU\downarrow})$ is UNSAT, then so is ϕ_f .

Proof. Suppose ϕ_g is UNSAT but there exists a solution v_f for ϕ_f in some domain D_{AU} (D_{AU} may be different from $D_{AU\downarrow}$). We show that we can always construct a solution v_g that satisfies ϕ_g , which causes a contradiction. First, we construct a solution v_g' for $\phi_g' = G(\phi_f, D_{AU})$ from the solution v_f (for ϕ_f). Then, we construct a solution v_g for ϕ_g from the solution v_g' for ϕ_g' .

We can construct a solution v_g' for ϕ_g' in $D_{AU} \cup NewRs$ where NewRs are the

We can construct a solution v_g' for ϕ_g' in $D_{AU} \cup NewRs$ where NewRs are the new relational objects added by G. The encoding of G uses the standard way for expanding universally quantified expression by enumerating every relation object in D_{AU} (L:10). For every existentially quantified expression, there exists some relation object $r \in D_{AU}$ enabled by v_f that satisfies the expression in ϕ_f , whereas ϕ_g' contains a new relational object $r' \in NewRs$ for satisfying the same expression (L:6). Let $v_f(r) = v_g'(r')$ for r and r', and then v_g' is a solution to ϕ_g' .

To construct the solution v_g for $\phi_g = G(\phi_f, D_{AU\downarrow})$ from the solution v_g' for $\phi_g' = G(\phi_f, D_{AU})$, we consider the expansion of universally quantified expression in ϕ_f (L:8). For every relational objects in $r^+ \in D_{AU} - D_{AU\downarrow}$, G creates constraints (L:10) in ϕ_g' , but not in ϕ_g . On the other hand, for every relational objects in $r^- \in D_{AU\downarrow} - D_{AU}$, we disable r^- in the solution v_g , (i.e., $v_g(r^-) = \bot$). Therefore, the constraints instantiated by r^- (at L:10) in ϕ_g are vacuously satisfied.

For every relational object $r \in D_{AU\downarrow} \cap D_{AU}$, we let $v_g(r) = v'_g(r)$, and all shared constraints in ϕ_g and ϕ'_g are satisfied by v_g and v'_g , respectively. Therefore, v_g is a solution to ϕ_g . Contradiction.

Algorithm 1 G grounds an FOL formula with quantifiers over relational objects

Input an FOL formula ϕ_f .

```
Input a domain of relational objects D_{AU\downarrow}.
     Output a grounded quantifier-free formula \phi_g over relational objects.
 1: if IS_ATOM(\phi_f) then return \phi_f end if
 2: if \phi_f.op = \exists then //process the existential operator
         Cls \leftarrow \phi_f.class
 3:
          //creates a new relational object of class Cls
 4:
          newR \leftarrow \text{NewAct}(Cls)
 5:
          return G (\phi_f.body[\phi_f.headAct \leftarrow newR], D_{AU\downarrow})
 6:
 7: end if
 8: if \phi_f.op = \forall then //process the universal operator
         Cls \leftarrow \phi_f.class
         return \bigwedge_{[r:Cls]\in D_{AU\downarrow}}^{r} r \Rightarrow G (\phi_f.\text{body}[\phi_f.head \leftarrow r], D_{AU\downarrow})
10:
12: return \phi_f.op(G(\phi_{child}, D_{AU\downarrow}) \text{ for } \phi_{child} \text{ in } \phi_f.\text{body})
```