

Bayesian Optimisation: Mastering Sequential Decision Making

PhD. Juan Ungredda, ESTECO SpA

Content

- Recap
- Motivation & applications of Bayesian Optimisation.
- Surrogate model.
- Acquisition functions.
- Advanced topics.

Gaussian Process Regression: Recap

$$f(x) \sim GP(m(x), k(x, x'))$$

- Model is fully determined by m(x) and k(x, x')
- Posterior can be computed in closed form.
- Provides mean predictions and uncertainty calibration.

Motivation of Bayesian Optimization.

Consider a function $f: \mathcal{X} \to \mathbb{R}$ in a bounded domain $\mathcal{X} \subseteq \mathbb{R}^D$. We aim to,

$$x^* = \operatorname{argmax}_{x \in \mathcal{X}} f(x)$$

- Black-box Function: Lacks a known analytical form. Only input-output pairs (x, f(x)) are observable.
- **Expensive**: There's a constraint on the number of function evaluations allowed.
- Noisy or Uncertain Observations: Function evaluations might have noise.

Applications

• Model configuration in machine learning: find optimal hyper-parameter values, learning rates, number of layers, etc.

Deep Neural Network

Figure 12.2 Deep network architecture with multiple layers.

Applications

 Adaptive experimentation: Optimize a function embodied in a physical process.

Applications

Many other problems:

- Robotics.
- Control, reinforcement learning.
- A/B testing.
- Scheduling, planning.
- Industrial design.
- Simulation-optimization.

Method: random , Number of Sampler: 10 , Computational Time: 2 hours and 30 minutes

Bayesian Optimization Preview

Ingredients of Bayesian Optimization

- Surrogate Model: Calibrates the prediction and uncertainty over the data.
- Acquisition function: Transform the surrogate model and decision maker's utility into a sampling decision.

Surrogate Model

We typically use a Gaussian process (GP) but other models may be considered,

- T-Student processes.
- Random Forests.
- Bayesian neural networks.
- Trees of Parzen estimators.
- etc.

Any model able to calibrate uncertainty (needed for exploration) can be used in Bayesian optimization.

Exploration vs Exploitation

Out[8]: Toggle show/hide

Bandit Problem

Acquisition Functions

 $\alpha(x): \mathcal{X} \to \mathbb{R}$

Aim:

Maps an arbitrary query point x to a measure of quality of the experiment.

Important considerations:

- 1. Computationally Efficiency
- 2. Consistency

GP Upper (lower) Confidence Band

$$\alpha_{UCB}(x) = \mu(\mathbf{x}) + +\beta_n \sigma(\mathbf{x})$$

Expected Improvement

$$\begin{split} \alpha_{EI}(x) &= \mathbb{E}_y[max(0, y - y_{best})] \\ &= \alpha_{EI}(x) = (\mu(x) - f_{best}) \Phi\!\left(\frac{\mu(x) - f_{best}}{\sigma(x)}\right) + \sigma(x) \phi\!\left(\frac{\mu(x) - f_{best}}{\sigma(x)}\right) \end{split}$$

Entropy search and Predictive Entropy search

$$\alpha_{ES} = H[p(x_{max}|\mathcal{D})] - \mathbb{E}_{p(y|\mathcal{D},x)}[H[p(x_{max}|\mathcal{D} \cup \{x,y\})]]$$

- Information theoretic approaches: reduce the entropy of p(xmin).
- Same acquisition, two different approximations (ES, PES).
- Approximating $p(x_{min})$ is not trivial.

Thompson sampling

 $\alpha_{THOMP}(x) = g(x)$, where g(x) is sampled from $GP(\mu(x), k(x, x'))$

Other acquisition functions

Each acquisition balances exploration-exploitation in a different way. No universal best method.

Others:

- Probability of improvement.
- Knowledge gradient.
- etc.

Bayesian Optimization Algorithm

- 0. Collect initial data and fit a Gaussian process.
- 1. While the budget is not over:
 - Compute $x_{new} = \operatorname{argmax}_{x \in \mathcal{X}} \alpha(x)$
 - Update daset, $\mathcal{D}^{new} = \mathcal{D}^{old} \cup \{(x, y)_{new}\}$
 - Update Gaussian process to \mathcal{D}^{new} .
 - Update budget consumed
- 2. Recommend best found or estimated solution.

BO samples: 1

Out[10]: Toggle show/hide

Summary of Standard Bayesian Optimization

- Simple algorithm, multiple applications.
- Performs global optimization
- Decent calibration of exploration-exploitation

Bayesian Optimization with Constraints

Consider a function $f: \mathcal{X} \to \mathbb{R}$ in a bounded domain $\mathcal{X} \subseteq \mathbb{R}^D$. We aim to,

$$x^* = \operatorname{argmax}_{x \in \mathcal{X}} f(x)$$

s. t. $c_k(x) \le v_k$ for all $k \in \{1, \dots, K\}$

Constraints are black-box Function, expensive, and potentially noisy

Out[12]: Toggle show/hide

Bayesian Optimization with Constraints

$$PF(x) = \mathbb{P}(c_i(x) \le v_i) = \Phi\left(\frac{v_i - \mu_k^n(x)}{\sqrt{k_k^n(x, x)}}\right)$$

- PF represents a score between (0, 1) that measures the feasibility of a point location x.
- More feasible designs would tend to 1.
- More infeasible designs would tend to 0.

Out[26]: Toggle show/hide

Bayesian Optimization with Constraints

We may adapt any acquisition function to constrained problems by,

$$\alpha_{cons}(x) = \alpha_{uncons}(x) \prod_{k=1}^{K} PF^{k}(x)$$

- Likely unfeasible regions are discouraged.
- Gives some importance to sampling unfeasible locations.
- Hard to sample on the feasibility boundary.

Bayesian Optimization with multiple objectives

$$\max_{x \in \mathcal{X}} f_1(x), \dots, f_M(x)$$

- Trade-off between the different objectives.
- Each function may be an expensive-to-optimize function.

Bayesian Optimization with multiple objectives:

- Hypervolume based:
 - Computes the volume of the area enclosed by the Pareto front approximation and a reference point.
- Scalarization based:
 - Objectives may be aggreaged by an scalarization function, e.g.,

$$U(x) = \sum_{j=1,...,M} \theta_j f_j(x) , s. t. \sum_{j=1,...,M} \theta_j = 1$$

Bayesian Optimization with multiple objectives

- Hypervolume Based BO algorithms
 - SExI-EGO [Emmerich et al. (2011)].
 - EMO [Couckuyt et al. (2014)].
 - BMOO [Feliot et al. (2017)].
- Scalarization Based BO algorithms
 - ParEGO [Knowles (2006)].
 - EI-UU [Astudillo et al. (2020)].
 - MOEA/D-EGO [Zhang et al. (2010)].

see Rojas-Gonzalez, et al "A survey on kriging-based infill algorithms for all "A survey on kriging based in "A survey on kriging" algorithms for all "A survey on kriging based in the survey of the survey

Other exotic settings.

- Optimize problems with a high number of input/output dimensions.
- Optimizing over non-euclidian spaces.
- Including user preferences for multi-objective problems.
- Acquisition functions with multiple steps.
- Bayesian optimization with heteroskedastic noise.

Benefits

- Global Optimization of black-box and (potentially) functions
- Sample Efficient

Difficulties

- Limited to Smooth Functions
- Struggles to scale to high number of dimensions or observations.

