

Cryptography and Network Security

Xiang-Yang Li

Introduction

The art of war teaches us not on the likelihood of the enemy's not coming, but on our own readiness to receive him; not on the chance of his not attacking, but rather on the fact that we have made our position unassailable.

-- The art of War, Sun Tzu

Information Transferring

Attack: Interruption

Attack: Interception

Attack: Modification

Attack: Fabrication

Attacks, Services and Mechanisms

- Security Attacks
 - > Action compromises the information security
- Security Services
 - > Enhances the security of data processing and transferring
- □ Security mechanism
 - > Detect, prevent and recover from a security attack

Important Features of Security

□ Confidentiality, authentication, integrity, non-repudiation, non-deny, availability, identification,

Attacks

- □ Passive attacks
 - > Interception
 - Release of message contents
 - Traffic analysis
- □ Active attacks
 - > Interruption, modification, fabrication
 - Masquerade
 - Replay
 - Modification
 - Denial of service

Network Security Model

CS595-Cryptography and Network Security

Cryptography

- Cryptography is the study of
 - > **Secret** (crypto-) **writing** (-graphy)
- □ Concerned with developing algorithms:
 - > Conceal the context of some message from all except the sender and recipient (privacy or secrecy), and/or
 - > Verify the correctness of a message to the recipient (authentication)
 - > Form the basis of many technological solutions to computer and communications security problems

Basic Concepts

Cryptography

➤ The art or science encompassing the principles and methods of transforming an intelligible message into one that is unintelligible, and then retransforming that message back to its original form

Plaintext

> The original intelligible message

□ Ciphertext

> The transformed message

Basic Concepts

□ Cipher

> An algorithm for transforming an intelligible message into unintelligible by transposition and/or substitution

□ Key

> Some critical information used by the cipher, known only to the sender & receiver

□ Encipher (encode)

> The process of converting plaintext to ciphertext

□ **Decipher** (decode)

> The process of converting ciphertext back into plaintext

Basic Concepts

□ Cryptanalysis

> The study of principles and methods of transforming an unintelligible message back into an intelligible message without knowledge of the key. Also called **codebreaking**

Cryptology

> Both cryptography and cryptanalysis

□ Code

> An algorithm for transforming an intelligible message into an unintelligible one using a code-book

Encryption and Decryption

K1, K2: from keyspace

CS595-Cryptography and Network Security

Security

- □ Two fundamentally different security
 - > Unconditional security
 - No matter how much computer power is available, the cipher cannot be broken
 - > Computational security
 - Given limited computing resources (e.G time needed for calculations is greater than age of universe), the cipher cannot be broken

History

□ Ancient ciphers

- > Have a history of at least 4000 years
- > Ancient Egyptians enciphered some of their hieroglyphic writing on monuments
- Ancient Hebrews enciphered certain words in the scriptures
- > 2000 years ago Julius Caesar used a simple substitution cipher, now known as the Caesar cipher
- > Roger bacon described several methods in 1200s

History

□ Ancient ciphers

- > Geoffrey Chaucer included several ciphers in his works
- ➤ Leon Alberti devised a cipher wheel, and described the principles of frequency analysis in the 1460s
- ➤ Blaise de Vigenère published a book on cryptology in 1585, & described the polyalphabetic substitution cipher
- > Increasing use, esp in diplomacy & war over centuries

Classical Cryptographic Techniques

- ☐ Two basic components of classical ciphers:
 - > Substitution: letters are replaced by other letters
 - > Transposition: letters are arranged in a different order
- □ These ciphers may be:
 - > Monoalphabetic: only one substitution/ transposition is used, or
 - > **Polyalphabetic:**where several substitutions/ transpositions are used
- **□** Product cipher:
 - > several ciphers concatenated together

Encryption and Decryption

Key Management

- Using secret channel
- □ Encrypt the key
- □ Third trusted party
- □ The sender and the receiver generate key
 - > The key must be same

Attacks

- □ Recover the message
- □ Recover the secret key
 - > Thus also the message
- ☐ Thus the number of keys possible must be large!

Possible Attacks

- Ciphertext only
 - > Algorithm, ciphertext
- Known plaintext
 - > Algorithm, ciphertext, plaintext-ciphertext pair
- □ Chosen plaintext
 - > Algorithm, ciphertext, chosen plaintext and its ciphertext
- □ Chosen ciphertext
 - > Algorithm, ciphertext, chosen ciphertext and its plaintext
- □ Chosen text
 - > Algorithm, ciphertext, chosen plaintext and ciphertext

Steganography

- □ Conceal the existence of message
 - > Character marking
 - > Invisible ink
 - > Pin punctures
 - > Typewriter correction ribbon
- □ Cryptography renders message unintelligible!

Contemporary Equiv.

- □ Least significant bits of picture frames
 - > 2048x3072 pixels with 24-bits RGB info
 - ➤ Able to hide 2.3M message
- Drawbacks
 - > Large overhead
 - > Virtually useless if system is known

Caesar Cipher

- Replace each letter of message by a letter a fixed distance away (use the 3rd letter on)
- □ Reputedly used by Julius Caesar
- □ Example:

L FDPH L VDZ L FRQTXHUHG
L CAME I SAW I CONGUERED

➤ The mapping is
ABCDEFGHIJKLMNOPQRSTUVWXYZ
DEFGHIJKLMNOPQRSTUVWXYZABC

Mathematical Model

- Description
- \triangleright Encryption $E_{(k)}: i \rightarrow i + k \mod 26$
- \triangleright Decryption $D_{(k)}: i \rightarrow i k \mod 26$

Cryptanalysis: Caesar Cipher

- □ Key space: 26
 - > Exhaustive key search
- Example
 - > GDUCUGQFRMPCNJYACJCRRCPQ HEVDVHRGSNQDOKZBDKDSSDQR
 - Plaintext: JGXFXJTIUPSFQMBDFMFUUFSTKHYGYKUJVGRNCEGNG VVGTU
 - Ciphertext: LIZHZLVKWRUHSODFHOHWWHUVMJAIAMWXSVITPEGI PIXXIVW

Character Frequencies

- ☐ In most languages letters are not equally common
 - > in English e is by far the most common letter
- □ Have tables of single, double & triple letter frequencies
- Use these tables to compare with letter frequencies in ciphertext,
 - > a monoalphabetic substitution does not change relative letter frequencies
 - > do need a moderate amount of ciphertext (100+ letters)

Letter Frequency Analysis

- □ Single Letter
 - > A,B,C,D,E,....
- □ Double Letter
 - > TH,HE,IN,ER,RE,ON,AN,EN,....
- □ Triple Letter
 - > THE,AND,TIO,ATI,FOR,THA,TER,RES,...

Modular Arithmetic Cipher

- Use a more complex equation to calculate the ciphertext letter for each plaintext letter
- $\Box E_{(a,b)} : i \rightarrow a*i + b \mod 26$
 - \triangleright Need gcd(a,26) = 1
 - > Otherwise, not reversible
 - > So, a \neq 2, 13, 26
 - > Caesar cipher: a=1

Cryptanalysis

- □ Key space:23*26
 - > Brute force search
- ☐ Use letter frequency counts to guess a couple of possible letter mappings
 - > frequency pattern not produced just by a shift
 - > use these mappings to solve 2 simultaneous equations to derive above parameters

Playfair Cipher

Used in WWI and WWII

S	i/j	m	p	1
e	a	b	c	d
f	g	h	k	n
О	q	r	t	u
V	W	X	y	Z

Key: simple

Playfair Cipher

- ☐ Use filler letter to separate repeated letters
- □ Encrypt two letters together
 - > Same row—followed letters
 - ac--bd
 - > Same column—letters under
 - qw--wi
 - > Otherwise—square's corner at same row
 - ar--bq

Analysis

- □ Size of diagrams: 25!
- □ Difficult using frequency analysis
 - > But it still reveals the frequency information

Hill Cipher

- Encryption
 - > Assign each letter an index
 - > C=KP mod 26
 - ➤ Matrix K is the key
- Decryption
 - $> P=K^{-1}C \mod 26$

Analysis

- □ Difficult to use frequency analysis
- But vulnerable to known-plaintext attack

Polyalphabetic Substitution

- □ Use more than one substitution alphabet
- Makes cryptanalysis harder
 - > since have more alphabets to guess
 - > and flattens frequency distribution
 - same plaintext letter gets replaced by several ciphertext letter, depending on which alphabet is used

Vigenère Cipher

- □ Basically multiple Caesar ciphers
- □ key is multiple letters long
 - $ightharpoonup K = k_1 k_2 ... k_d$
 - > ith letter specifies ith alphabet to use
 - > use each alphabet in turn, repeating from start after d letters in message
- □ Plaintext Thisprocesscanalsobeexpressed Keyword Ciphercipherciphercipherciphe Ciphertext vpxztiqktzwtcvpswfdmtetigahlh

One-time Pad

- □ Gilbert Vernam (AT&T)
- Encryption
 - $\succ C = P \oplus K$
- Decryption
 - \rightarrow P=C \oplus K
- □ Difficulty: key K is as long as message P

Transposition Methods

- □ Permutation of plaintext
- Example
 - > Write in a square in row, then read in column order specified by the key
- Enhance: double or triple transposition
 - > Can reapply the encryption on ciphertext