- Given that $\sin \theta = -\frac{5}{6}, \frac{3\pi}{2} \le \theta \le 2\pi$, evaluate 1.
 - (a) $\sin 2\theta$
- (b) $\cos 2\theta$
- (c) tan 20
- (d) $\sin 4\theta$

- Given that $\tan x = -3$, $\frac{\pi}{2} \le x \le \pi$, evaluate 2.
 - (a) $\sin 2x$
- (b) $\cos 2x$
- (c) $\tan 2x$
- (d) $\tan 4x$

- Find the exact value of $\sin \frac{\pi}{12}$ 3.
- Given that $\tan x = \frac{a}{b}$, $\pi \le x \le \frac{3\pi}{2}$, evaluate
 - (a) $\sin 2x$
- (b) $\csc 2x$
- (c) $\cos 4x$

(j)

 $\tan 2x$ (d)

- Prove the following identities: **5.**
 - $\tan(\theta + \phi) + \tan(\theta \phi) = \frac{2\sin 2\theta}{\cos 2\theta + \cos 2\phi}$
- $\frac{1+\cos 2y}{\sin 2y} = \frac{\sin 2y}{1-\cos 2y}$ (b)
- $\cos^4 \alpha \sin^4 \alpha = 1 2\sin^2 \alpha$ (c)
- $\frac{1}{\sin v \cos y} \frac{\cos y}{\sin y} = \tan y$ (d)

- $\frac{1+\sin 2\theta}{\cos 2\theta} = \frac{\cos \theta + \sin \theta}{\cos \theta \sin \theta}$
- (f) $\cos 2x = \frac{1 \tan^2 x}{1 + \tan^2 x}$
- $\cos\beta + \sin\beta = \frac{\cos 2\beta}{\cos\beta \sin\beta}$ (g)
- (h) $\sin^2 \frac{\theta}{2} = \frac{1 \cos \theta}{2}$
- $\frac{\sin^3 x + \cos^3 x}{\sin x + \cos x} = 1 \frac{1}{2}\sin 2x$ (i)

- $\cos 4x = 8\cos^4 x 8\cos^2 x + 1$
- **6.** For the right-angled triangle shown, prove that
 - (a)
- $\sin 2\alpha = \frac{2ab}{c^2} \qquad \text{(b)} \qquad \cos 2\alpha = \frac{b^2 a^2}{c^2}$
 - (c) $\sin \frac{1}{2}\alpha = \sqrt{\frac{c-b}{2c}}$ (d) $\cos \frac{1}{2}\alpha = \sqrt{\frac{c+b}{2c}}$

- 7. Solve the following for $0 \le x \le 2\pi$
 - (a) $\sin x = \sin 2x$
- $\sin x = \cos 2x$ (b)
- (c) $\tan 2x = 4\tan x$

1. (a)
$$-\frac{5\sqrt{11}}{18}$$
 (b) $-\frac{7}{18}$ (c) $\frac{5\sqrt{11}}{7}$ (d) $\frac{35\sqrt{11}}{162}$ **2.** (a) $-\frac{3}{5}$ (b) $-\frac{4}{5}$ (c) $\frac{3}{4}$ (d) $\frac{24}{7}$ **3.** $\frac{(\sqrt{3}-1)\sqrt{2}}{4}$

4. (a)
$$\frac{2ab}{a^2+b^2}$$
 (b) $\frac{a^2+b^2}{2ab}$ (c) $\frac{a^4-6a^2b^2+b^4}{(a^2+b^2)^2}$ (d) $\frac{2ab}{b^2-a^2}$ **7.** (a) $0, \frac{\pi}{3}, \pi, \frac{5\pi}{3}, 2\pi$ (b) $\frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2}$

(c)
$$0, \pi, 2\pi, \alpha, \pi \pm \alpha, 2\pi - \alpha, \alpha = \tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$$