${f Assignment} \,\, 9$

Student ID: 45875852 Grade: Due time: 10:15, Dec 4, 2020 (Friday)

Name: 陈 稼 霖

Problem 1 (3.1) Score: _____. Let U be an analog rv uniformly distributed between -1 and 1.

- (a) Find the 3-bit (M = 8) quantizer that minimizes the MSE.
- (b) Argue that your quantizer satisfies the necessary condition for optimality.
- (c) Show that the quantizer is unique in the sense that no other 3-bit quantizer satisfies the necessary condition for optimality.

Solution: (a)

(b)

(c)

Problem 2 (3.3) Score: _____. Consider a binary scalar quantizer that partitions the set of reals $\mathbb R$ into two subsets $(-\infty, b]$ and (b, ∞) and then presents $(-\infty, b]$ by $a_1 \in \mathbb{R}$ and (b, ∞) by $a_2 \in \mathbb{R}$. This quantizer is used on each letter U_n of a sequence \cdots , U_1, U_0, U_1, \cdots of iid random variables, each having the probability density f(u). Assume throughout this exercise that f(u) is symmetric, i.e. that f(u) = f(-u) for all $u \ge 0$.

- (a) Given the representation levels a_1 and $a_2 > a_1$, how should b be chosen to minimize the mean-squared distortion in the quantization? Assume that f(u) > 0 for $a_1 \le u \le a_2$ and explain why this assumption is relevant.
- (b) Given $b \ge 0$, find the values of a_1 and a_2 that minimize the mean-squared distortion. Given both answer in terms of the two functions $Q(x) = \int_x^\infty f(u) du$ and $y(x) = \int_x^\infty u f(u) du$.
- (c) Show that for b = 0, the minimizing values of a_1 and a_2 satisfy $a_1 = -a_2$.
- (d) Show that the choice of b, a_1 , and a_2 in part (c) satisfies the Lloyd-Max conditions for minimum mean-squared distortion.
- (e) Consider the particular symmetric density

Figure 1:

Find all sets of triples $\{b, a_1, a_2\}$ that satisfy the Lloyd-Max conditions and evaluate the MSE for each. You are welcome in your calculation to replace each region of nonzero probability density above with an impulse, i.e. $f(u) = (1/3)[\delta(-1) + \delta(0) + \delta(1)]$, but you should use Figure 1 to resolve the ambiguity about regions that occurs when b is -1, 0 or +1.

(f) Given the MSE for each of your solutions above (in the limit of $\varepsilon \to 0$). Which of your solutions minimizes the MSE?

Solution: (a)

- (b)
- (c)
- (d)
- (e)
- (f)

Problem 3 (3.4) Score: ______. Section 3.4 partly analyzed a minimum-MSE quantizer for a pdf in which $f_U(u) = f_1$ over an interval of size L_1 , $f_U(u) = f_2$ over an interval of size L_2 , and $f_U(u) = 0$ elsewhere. Let M be the total number of representation points to be used, with M_1 in the first interval and $M_2 = M - M_1$ in the second. Assume (from symmetry) that the quantization intervals are of equal size $\Delta_1 = L_1/M_1$ in interval 1 and of equal size $\Delta_2 = L_2/M_2$ in interval 2. Assume that M is very large, so that we can approximately minimize the MSE over M_1 , M_2 without an integer constraint on M_1 , M_2 (that is, assume that M_1 , M_2 can be arbitrary real numbers).

- (a) Show that the MSE in minimized if $\Delta_1 f_1^{1/3} = \Delta_2 f_2^{1/3}$, i.e. the quantization interval sizes are inversely proportional to the cube root of the density. [Hint. Use a Lagrange multiplier to perform the minimization. That is, to minimize a function $\text{MSE}(\Delta_1, \Delta_2)$ subject to a constraint $M = f(\Delta_1, \Delta_2)$, first minimize $\text{MSE}(\Delta_1, \Delta_2) + \lambda f(\Delta_1, \Delta_2)$ without the constraint, and, second, choose λ so that the solution meets the constraint.]
- (b) Show that the minimum MSE under the above assumption is given by

$$MSE = \frac{(L_1 f_1^{1/3} + L_2 f_2^{1/3})^3}{12M^2}.$$

- (c) Assume that the Lloyd-Max algorithm is started with $0 < M_1 < M$ representation points in the first interval and $M_2 = M M_1$ points in the second interval. Explain where the Lloyd-Max algorithm converges for this starting point. Assume from here on that the distance between the two intervals is very large.
- (d) Redo part (c) under the assumption that the Lloyd-Max algorithm is started with $0 < M_1 < M 2$ representation points in the first interval, one point between the two intervals, and the remaining points in the second interval.
- (e) Express the exact minimum MSE as a minimum over M-1 possibilities, with one term for each choice of $0 < M_1 < M$. (Assume there are no representation points between the two intervals.)
- (f) Now consider an arbitrary choice of Δ_1 and Δ_2 (with no constraint on M). Show that the entropy of the set of quantization points is given by

$$H(V) = -f_1 L_1 \log(f_1 \Delta_1) - f_2 L_2 \log(f_2 \Delta_2).$$

(g) Show that if the MSE is minimized subject to a constraint on the entropy (ignoring the integer constraint on quantization level), then $\Delta_1 = \Delta_2$.

Solution: (a)

(b)
(c)
(d)
(e)
(f)
(g)
Problem 4 (3.5) Score: (a) Assume that a continuous-valued rv Z has probability density that is 0 except over the interval $[-A, +A]$. Show that the differential entropy $h(Z)$ is upperbounded $1 + \log_2 A$.
(b) Show that $h(Z) = 1 + \log_2 A$ if and only if Z is uniformly distributed between $-A$ and $+A$.
Solution: (a)
(b)