IC 242 – Assignment 1 (due date: 23 March 2017)

Instructor: Gaurav Bhutani

March 13, 2017

Problem 1. Simplify:

- (i) $\delta_{ij}\delta_{ji}$
- (ii) $\delta_{ij}\delta_{jk}\delta_{ki}$
- (iii) $\epsilon_{jkq}\epsilon_{jkq}$

Problem 2.

- (i) Demonstrate that the tensor $B_{ij} = \epsilon_{ipj} a_p$ is anti-symmetric.
- (ii) If v_i is the dual vector of the above tensor B, show that $B_{ij} = \frac{1}{2}\epsilon_{kij}v_k$. (Note: dual vector of a tensor is defined as $v_i = \epsilon_{ijk}B_{jk}$)

Problem 3. Show that $(A_{ijk} + A_{jki} + A_{jik}) x_i x_j x_k = 3A_{ijk} x_i x_j x_k$.

Problem 4.

- (i) If A_{ij} is symmetric and B_{ij} is anti-symmetric, then show that $A_{ij}B_{ij}=0$.
- (ii) Using indicial notation show that $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = \mathbf{0}$.

Problem 5. Show that the triple cross product $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$ simplifies to $(\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$ (hint: use indicial notation).

Problem 6. Show that $\epsilon_{qmn}det(A) = \epsilon_{ijk}A_{iq}A_{jm}A_{kn}$.

Problem 7. For a second order tensor σ , show that σ_{ii} is invariant.

Problem 8. Find the transformation matrix A for the following transformations:

- (i) 90° clockwise rotation about the x_1 axis,
- (ii) reflection about the $x_1 x_2$ plane.

Apply the above two transformations to the vector \mathbf{v} and tensor σ , which are given as:

$$\mathbf{v} = (1, 2, 0), \text{ and } \sigma = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$

Problem 9. Find the principal directions and principal values of the 2nd-order tensor σ given as: $\sigma = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix}$.

Problem 10. For a scalar field $\phi(\mathbf{x})$, show that:

$$\int_{\Omega} \nabla^2 \phi d\Omega = \oint_{\Gamma} \frac{\partial \phi}{\partial n} d\Gamma,$$

where Γ is the surface enclosing the volume Ω , and n is the normal coordinate (to the surface).