Exercices d'oraux banque PT 2025 - Mathématiques

Table des matières

1	Mines Télécom	1
2	Maths I	4
3	Maths II	5
4	Questions de cours	6

1 Mines Télécom

exercice 1:

On définit le produit scalaire sur $\mathcal{M}_2(\mathbb{R})$ par, pour tout $M, N \in \mathcal{M}_2(\mathbb{R})$,

$$\langle M, N \rangle = \operatorname{Tr} \left(M^{\top} N \right)$$

On pose
$$F = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, \, (a,b) \in \mathbb{R}^2 \right\}$$
.

- 1. Déterminer une base orthonormée de F^{\perp} .
- 2. Déterminer le projeté de $J = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ sur F^{\perp} .
- 3. Déterminer la distance de J à F.

exercice 2:

On considère les deux fonctions f et g définies par, pour tout $x,y\in\mathbb{R}: f(x,y)=x^2+y^2+xy+1$ et $g(x,y)=x^2+y^2+2xy+2$.

- 1. Déterminer les points critiques de f et g.
- 2. En repérant le début d'un carré, déterminer la nature des extrema locaux de f.
- 3. En utilisant deux droites, déterminer la nature des extrema locaux de g.

exercice 3:

On pose, pour tout
$$n \in \mathbb{N}$$
 et pour tout $x \in \mathbb{R}$, $I_n = \int_0^{\pi} \sin^{2n}(t) dt$ et $F(x) = \int_0^{\pi} \cos(x \sin(t)) dt$.

- 1. Exprimer I_n en fonction de I_{n-1} .
- 2. Exprimer I_n en fonction de n (et de factorielles).
- 3. Montrer que $f_t: x \mapsto \cos(x\sin(t))$ est développable en série entière en 0 et donner son développement en série entière.
- 4. À l'aide du théorème d'intégration terme à terme, donner un développement en série entière en 0 de F

exercice 4:

- 1. Diagonaliser $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.
- 2. La matrice $B_a = \begin{pmatrix} 1+a & 1 & 1 \\ 1 & 1+a & 1 \\ 1 & 1 & 1+a \end{pmatrix}$ est-elle diagonalisable? Si oui, la diagonaliser.

exercice 5:

Déterminer le rayon de courbure, les centres de courbure et tracer la courbe paramétrée définie par :

$$\begin{cases} x(t) &= t \\ y(t) &= \ln(\cos(t)) \end{cases}$$

exercice 6:

Déterminer, pour
$$\alpha \in \mathbb{R}_+^*$$
, la nature de $\sum_{n \in \mathbb{N}^*} \ln \left(1 + \frac{(-1)^n}{n^{\alpha}}\right)$.

exercice 7:

Soit $(a, b) \in \mathbb{R}^2$, $n \in \mathbb{N}^*$. On pose, pour tout $M \in \mathcal{M}_n(\mathbb{R})$, $u(M) = aM + bM^{\top}$.

- 1. Montrer que u est un endomorphisme.
- 2. Montrer que u est diagonalisable et donner ses valeurs propres.
- 1. Calculer tr(u) et det(u).

exercice 8:

Soit $n \in \mathbb{N}^*$ $X, Y \in \mathcal{M}_{n,1}(\mathbb{R})$. Discuter de la diagonalisabilité de $M = XY^{\top}$.

exercice 9:

1. Soit $a, b, c \in \mathbb{R}$. Trouver a, b et c tels que, pour tout $t \in \mathbb{R} \setminus \{-1, 0, 1\}$, on ait :

$$\frac{2}{t(t^2-1)} = \frac{a}{t} + \frac{b}{t-1} + \frac{c}{t+1}$$

2

2. Résoudre $t(t^2 - 1)x' + 2x = \frac{t}{t^2 - 1}$.

exercice 10:

On pose $A = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$ et pour tout $M \in \mathcal{M}_2(\mathbb{R}), f(M) = AM$.

- 1. L'application f est-elle un endomorphisme?
- 2. Déterminer les dimensions de Ker(f) et Im(f).
- 3. Est-ce que f est diagonalisable?

exercice 11:

On considère l'équation différentielle :

(E):
$$2x(x-1)y'' + (x+1)y' + y = 0$$

- 1. Déterminer les solutions polynomiales de (E).
- 2. On suppose que $x \mapsto x^{\alpha}$ est une solution de (E). Déterminer α .
- 3. Résoudre complètement (E).

exercice 12:

Déterminer les plans tangents à $S: x^2 - 3y^2 + z^2 = 1$ passant par A(1,0,1) (on se place dans un espace euclidien . . .)

exercice 13:

On considère l'équation différentielle :

(E):
$$(x^2 + x)y'' + (3x - 1)y' + y = 0$$

- 1. Déterminer les solutions développables en série entière de (E).
- 2. Déterminer les solutions de (E) qui s'écrivent sous la forme $y(x) = \frac{z(x)}{1+x}$.

exercice 14:

$$\begin{cases} x(u,\theta) &= e^{-u}\cos(\theta) \\ y(u,\theta) &= e^{-u}\sin(\theta) \\ z(u,\theta) &= \int_0^u \sqrt{1 - e^{-2t}} \,\mathrm{d}\,t \end{cases}$$

1. Soit $\theta \in \mathbb{R}$ fixé. Montrer que C_{θ} : $(x(u,\theta),y(u,\theta),z(u,\theta))$ est une courbe plane. Dans quel plan est-elle contenue?

3

- 2. Soit $u \in \mathbb{R}$. On pose $\Gamma_u : \theta \mapsto (x(u,\theta),y(u,\theta),z(u,\theta))$. Quel est le type de courbe? Donner son équation.
- 3. Trouver le point d'intersection des tangentes telles qu'elles soient orthogonales.

2 Maths I

exercice 1:

Soit $n \in \mathbb{N}^*$. On pose Q un polynôme tel que $\deg(Q) \leq n$. On définit alors f_Q sur $E = \mathbb{R}_n[X]$ par :

$$\forall P \in E, \quad f_Q(P) = (PQ)^{(n)}$$

- 1. Montrer que f_Q est un endomorphisme de E.
- 2. Donner une condition nécessaire et suffisante sur Q pour que f_Q soit un automorphisme.
- 3. Donner une condition nécessaire et suffisante sur Q pour que f_Q soit diagonalisable. Donner $\operatorname{Im}(f_Q)$ et $\operatorname{Ker}(f_Q)$.
- 4. Soit n=2. Donner les sous-espaces propres de f_Q pour :
- a) Q = X 1
- b) $Q = X^2 + X + 1$

exercice 2:

On considère la série $\sum_{n\geq 1} \left(\frac{1}{n} - \frac{1}{n+x}\right)$.

1. Montrer que pour $x \ge 0$, cette série converge.

On pose, pour tout $x \in \mathbb{R}_+$, $S(x) = \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+x}\right)$.

- 2. Montrer que S est dérivable sur \mathbb{R}_+ et que pour tout $x \in \mathbb{R}_+$, $S'(x) = \sum_{n=1}^{+\infty} \frac{1}{(n+x)^2}$.
- 3. Calcular $\int_{1}^{+\infty} \left(\frac{1}{t} \frac{1}{t+x} \right) dt$.

exercice 3:

s Soit β la courbe paramétrée définie par, pour $a \in \mathbb{R}_+$:

$$\beta: \begin{cases} x(t) &= a(t - \cos(t)) \\ y(t) &= a(1 - \sin(t)) \end{cases}, \quad t \in]0, \ 2\pi[$$

- 1. Calculer la longueur de la courbe.
- 2. On cherche à trouver les courbes Γ qui vérifient les conditions suivantes : il existe une droite \mathcal{D} et une abscisse curviligne s telles que quel que soit $M \in \Gamma$, l'image de M par la translation de vecteur $-\frac{S}{2}\overrightarrow{T}$ appartient à la droite \mathcal{D} .

a) Ceci est-il vrai pour β et $\mathcal{D}: y = ax$? Si oui, quelle est l'origine de s?

exercice 4:

Soit \mathcal{S} une surface définie par z=f(x,y), avec f de classe \mathcal{C}^1 sur \mathbb{R} .

- 1. Déterminer le vecteur normal à S.
- 2. Montrer que si la normale à S en M_0 est parallèle à (Oz) ou coupe (Oz), alors on a la relation

$$y_0 \frac{\partial f}{\partial x}(x_0, y_0) - x_0 \frac{\partial f}{\partial y}(x_0, y_0) = 0$$

(A stuce : trouver une relation entre $\overrightarrow{OM_0}, \ \overrightarrow{n} \ {\rm et} \ \overrightarrow{k}.)$

- 3. Soit $g = f(r\cos(\theta), r\sin(\theta))$. Déterminer les dérivées partielles de g.
- 4. Montrer que S est une surface de révolution si la normale à S est parallèle à (Oz) ou sécante à (Oz).

exercice 5:

Soit $n \in \mathbb{N}$, $A \in \mathcal{M}_n(\mathbb{R})$.

- 1. On suppose que $\operatorname{rg}(A) = 1$. Montrer qu'il existe $X, Y \in \mathcal{M}_{n,1}(\mathbb{R})$ tel que $A = XY^{\top}$.
- 2. Qu'en est-il de la réciproque?

Dans toute la suite, on suppose que rg(A) = 1.

- 3. Montrer que $A^2 = \text{Tr}(A)A$.
- 4. Déterminer une expression de A^k pour $k \in \mathbb{N}^*$.
- 5. À quelle condition nécessaire et suffisante a-t-on $A^n = 0$? (condition sur la trace)
- 6. À quelle condition nécessaire et suffisante A est-elle diagonalisable?

exercice 6:

Soit $A \in \mathbb{R}$, et f une fonction continue et décroissance sur $[A, +\infty[$.

1. Soit $p \in \mathbb{N}^*$ et $N \in \mathbb{N}^*$ avec $N \leq p$. Montrer que :

$$\int_{A}^{\frac{(p+1)A}{N}} f(t) \, \mathrm{d} \, t \le \frac{1}{N} \sum_{n=N}^{p} f\left(\frac{nA}{N}\right) \le \int_{A}^{\frac{pA}{N}} f(t) \, \mathrm{d} \, t + f\left(\frac{A}{N}\right)$$

2. Montrer que $\sum_{n=N}^{+\infty} f\left(\frac{nA}{N}\right)$ converge.

3 Maths II

exercice 1:

Soit $I = \left[-\frac{\pi}{2}, \, \frac{\pi}{2} \right]$ et f la fonction définie par :

$$f: I \longrightarrow \mathbb{R}$$

 $x \longmapsto x \ln(5 + \sin(x))$

- 1. Démontrer que f est de classe \mathcal{C}^{∞} sur I.
- 2. Encadrer $h(x) = \ln(5 + \sin(x))$ et $g(x) = \frac{1}{5 + \sin(x)}$. En déduire le signe de f' et ses variations.
- 3. Montrer que f réalise une bijection de I sur J un segment à déterminer.
- 4. Déterminer un développement limité à l'ordre 4 en 0 de f.
- 5. Déterminer f^{-1} .

4 Questions de cours

- 1. Développement en série entière de l'exponentielle. Théorème de dérivabilité d'un développement en série entière. Montrer que la dérivée du développement en série entière de exp vaut bien exp.
- 2. Tous les moyens disponibles pour montrer qu'une matrice est diagonalisable.
- 3. Inégalité de Bienaymé-Tchebychev. Dans quel cas est-ce intéressant (loi faible des grand nombres)?
- 4. Loi géométrique. Est-il plus probable que le premier succès soit pair ou impair?
- 5. Énoncer le théorème des valeurs intermédiaires et le théorème des accroissements finis. Soit $f:[0,1] \to [0,1]$ continue. Montrer que f admet un point fixe.
- 6. Tout sur la loi de Poisson.