Триъгълник – Теорема на Талес. Подобни триъгълници. Ъглополовящи. Медиани. Височини и симетрали.

Бележка:

Навсякъде в долните формули се използват следните означения: AB=c, AC=b, BC=a, \ll A= α , \ll B= β , \ll C= γ , m_a , m_b , m_c — медиани към съответните страни; l_a , l_b , l_c — ъглополовящи към съответните страни; h_a , h_b , h_c — височини към съответните страни; r - радиуса на вписаната окръжност; R — радиус на описаната окръжност; R — периметър, R — лице.

I. Теорема на Талес

Права теорема – Ако AB||CD (Фиг. 1), то

(1):
$$\frac{OD}{OB} = \frac{OC}{OA}$$

◆ Следствие – Ако AB||CD (Фиг. 1), то

(2):
$$\frac{BD}{OB} = \frac{AC}{OA}$$

• OT Φ иг. 1 \Rightarrow OD = OB + BD; OC = OA + AC;

• OT (1)
$$\Rightarrow \frac{OB + BD}{OB} = \frac{OA + AC}{OA} \Rightarrow \frac{OB}{OB} + \frac{BD}{OB} = \frac{OA}{OA} + \frac{AC}{OA} \Rightarrow 1 + \frac{BD}{OB} = 1 + \frac{AC}{OA} \Rightarrow \frac{BD}{OB} = \frac{AC}{OA}$$

♦ Обратна теорема на Талес – Ако $\frac{OD}{OB} = \frac{OC}{OA}$ (Фиг. 1), то AB||CD.

II. Подобни триъгълници

♦ Определение – Ако $\triangle ABC \sim \triangle A_1B_1C_1$, то $\checkmark A= \checkmark B= \checkmark C$ и $\frac{AB}{A_1B_1}=\frac{BC}{B_1C_1}=\frac{AC}{A_1C_1}=k$,

където k е коефициент на подобие (Фиг. 2)

• І признак — Ако два ъгъла от един триъгълник са съответно равни на два ъгъла от друг триъгълник, то триъгълниците са подобни, т.е. (Фиг. 2): Ако \prec A= \prec A₁ и \prec B= \prec B₁ \Rightarrow Δ ABC~ Δ A₁B₁C₁.

◆ II признак – Ако две страни от един триъгълник са съответно пропорционални на две страни от друг триъгълник и ъглите, заключени между тях са равни, то триъгълниците са подобни, т.е. (Фиг.2):

Ако
$$\frac{AB}{A_1B_1} = \frac{BC}{B_1C_1}$$
 и $\prec B = \prec B_1 \Rightarrow \Delta ABC \sim \Delta A_1B_1C_1$.

♦ III признак – Ако страните на един триъгълник са съответно пропорционални на страните на друг триъгълник, то триъгълниците са подобни, т.е. (Фиг.2):

$$\frac{A_{KO}}{A_{l}B_{l}} = \frac{BC}{B_{l}C_{1}} = \frac{AC}{A_{l}C_{1}} \Rightarrow \Delta ABC \sim \Delta A_{1}B_{1}C_{1}.$$

◆ IV признак (само за правоъгълни триъгълници) – Два правоъгълни триъгълника са подобни, ако катет и хипотенуза от един триъгълник са съответно пропорционални на катет и хипотенуза от друг триъгълник, т.е.

$$\frac{a}{a_1} = \frac{c}{c_1} \Leftrightarrow \Delta \sim \Delta_1$$

• Свойства на подобни триъгълници – Ако $\triangle ABC \sim \triangle A_1B_1C_1$, то

(3):
$$\frac{AB}{A_1B_1} = \frac{h_c}{h_{c_1}} = \frac{m_c}{m_{c_1}} = \frac{l_c}{l_{c_1}} = \frac{r}{r_1} = \frac{R}{R_1} = \frac{P}{P_1}$$

(4):
$$\frac{S_{\Delta ABC}}{S_{\Delta A_1B_1C_1}} = \frac{AB^2}{A_1B_1^2} = k^2$$

III. Ъглополовящи в триъгълник

◆ Ъглополовящите на всеки триъгълник се пресичат в една точка, която е център на вписаната в триъгълника окръжност.

◆ Свойства (Фиг. 3):

(5): Ako
$$\angle LAB = \angle LAC \Leftrightarrow \frac{BL}{LC} = \frac{AB}{AC}$$
.

(6):
$$l_a^2 = AB.AC - BL.CL$$
.

Тема 1: "Триъгълник – Теорема на Талес. Подобни триъгълници. Ъглополовящи. Медиани. Височини и симетрали"

обучение по математика, физика, български и английски език, компютър

адрес: гр.София, ж.к. Надежда, бл. 335 🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solema.hit.bg ; E-mail: solema@gbg.bg

(7):
$$l_a^2 = bc - \frac{bca^2}{(b+c)^2}$$

Бележка:

- 1. Формули (6) и (7) може да се запишат и за ъглополовящите към другите страни в триъгълника.
- 2. Други формули за ъглополовяща виж Зад. № 4 от Тема "Лице на триъгълник".

Основни задачи:

Зад. 1: Даден е триъгълник ΔАВС, при които: ∢АСВ = γ, Ъглополовящите на върховете А и В се пресичат в т. L. Да се намери ∢АLВ.

<u>Решение:</u> Нека ∢ALB = γ₁

- AL и BL са ъглополовящи $\Rightarrow \ll$ BAL = \ll LAC = α_1 , \ll ABL = \ll LBC = β_1 .
- От теорема за сбор на ъгли в $\Delta ABC \Rightarrow$ $2\alpha_1 + 2\beta_1 + \gamma = 180^0 \Rightarrow \alpha_1 + \beta_1 = \frac{180^0 \gamma}{2} = 90^0 \frac{\gamma}{2} \,.$
- От теорема за сбор на ъгли в $\Delta ABL \Rightarrow$ $\alpha_1 + \beta_1 + \gamma_1 = 180^0 \Rightarrow \gamma_1 = 180^0 (\alpha_1 + \beta_1) = 180^0 (90^0 \frac{\gamma}{2}) = 90^0 + \frac{\gamma}{2}.$
- $\bullet \ \, \blacktriangleleft ALB = \gamma_1 = 90^0 + \frac{\gamma}{2}.$
- **Зад.** 2: Даден е равнобедрения \triangle ABC със страни AB = c, BC = AC = a. Ъглополовящите при върховете A и B пресичат страните BC и AC съответно в точките N и M.
 - а) Да се докаже, че MN е успоредна на AB.
 - б) Намерете дължината на отсечката МN.

Решение:

вие) $\Rightarrow \frac{CM}{CN} = \frac{BC}{AC} \Rightarrow \frac{CM}{BC} = \frac{CN}{AC}$, но $AC = BC \Rightarrow \frac{CM}{AC} = \frac{CN}{BC}$ и

а) $\Delta MBC \sim \Delta ANC$ (по I признак, защото $\angle C$ – общ, $\angle MBC = \angle NAC = \alpha$ – по усло-

от Обратна теорема на Талес \Rightarrow MN \parallel AB.

б) В а) доказахме, че MN \parallel AB \Rightarrow \prec ANM $= \prec$ NAB $= \alpha$ и \prec ABM $= \prec$ MBN $= \alpha$, т.е. Δ AMN и Δ MBN - равнобедрени или AM = MN = BN = x. Тогава CM = CN = AC - AM = a - x.

• Δ MNC ~ Δ ABC (по I признак, защото \angle C + общ и \angle CMN = \angle CNM - като съответни ъгли на MN || AB) \Rightarrow $\frac{MN}{AB} = \frac{CM}{AC} \Rightarrow \frac{x}{c} = \frac{a-x}{a} \Rightarrow x = MN = \frac{ac}{a+c}$.

Зад. 3: (Матура, 2010): Даден е ΔABC със страни AB = c и AC = b. Построена е ъглополовящата AL ($L \in BC$) и през точка L е построена права LP ($P \in AB$) и $LP \parallel AC$. Намерете отношението $S_{\Delta LPB}$: $S_{\Delta ABC}$.

Решение:

ullet AL – ъглополовяща на $\sphericalangle A \Rightarrow$

$$\frac{CL}{BL} = \frac{AC}{AB} \Rightarrow \frac{CL}{BL} = \frac{b}{c} \Rightarrow CL = \frac{b}{c}BL;$$

∆ABC ~ ∆PBL (по І признак) защото:
 ○ ≺В – общ;

IV. Медиани в триъгълник

◆ Медианите на всеки триъгълник се пресичат в една точка, която се нарича медицентър. Тя разделя медианата в отношение 2:1, считано от върха на триъгълника.

обучение по математика, физика, български и английски език, компютър

адрес: гр.София, ж.к. Надежда, бл. 335

☎: 897 99 54 вечер, г-н Станев; Web страница: www.solema.hit.bg; E-mail: solema@gbg.bg

- Формула за медианите в триъгълник:
 - (8): $4m_a^2 = 2(b^2 + c^2) a^2$.
- ♦ Формули за връзка между страна и медиани:

(9):
$$9a^2 = 4(2m_b^2 + 2m_c^2 - m_a^2)$$
.

Бележка:

Формули (8) и (9) може да се запишат и за медианите към другите страни в триъгълника.

Основни задачи:

- **Зад.** 4: Нека медианата от върха С на \triangle ABC пресича AB в т. С₁, а точка М е медицентърът на \triangle ABC с лице S. Да се докаже, че:
 - а) всяка медиана разделя триъгълника на два равнолицеви триъгълника;
 - б) триъгълниците АМВ, ВМС и СМА са равнолицеви, т.е.

$$S_{AMB} = S_{BMC} = S_{AMC} = \frac{1}{3} S \cdot$$

B)
$$S_{AC_1M} = \frac{1}{6} S$$

Решение:

а) Нека CH \perp AB, тогава CH е височина, както в ΔAC_1C_2 така и в ΔBC_1C_2 . Затова

$$S_{\Delta AC_1C} = rac{AC_1 \cdot CH}{2}$$
, no $AC_1 = BC_1 \Rightarrow S_{\Delta AC_1C} = S_{\Delta BC_1C}$

- б) Нека AE \perp CC₁, тогава AE е височина в Δ AMC, Δ AC₁M и Δ AC₁C.
 - т.М медицентър в $\triangle ABC \Rightarrow CM = 2MC_1$. Тогава $MC_1 = x$, CM = 2x, $CC_1 = 3x$. Затова $\frac{CM}{CC_1} = \frac{2}{3} \Rightarrow CM = \frac{2}{3} CC_1$ и $MC_1 = \frac{1}{3} CC_1$

- От а) следва, че $S_{\Delta AC_1C} = \frac{1}{2}S$
- $S_{\Delta AMC} = \frac{CM \cdot AE}{2} = \frac{2}{3} \frac{CC_1 \cdot AE}{2} = \frac{2}{3} S_{\Delta AC_1C} = \frac{2}{3} \frac{1}{2} S = \frac{1}{3} S$
- По подобен начин се доказва, че $S_{AMB} = S_{BMC} = \frac{1}{3}S$

B) OT
$$6$$
) $\Rightarrow \frac{MC_1}{CC_1} = \frac{1}{3} \Rightarrow MC_1 = \frac{1}{3}CC_1$

•
$$S_{\Delta AC_1M} = \frac{MC_1 \cdot AE}{2} = \frac{1}{3} \frac{CC_1 \cdot AE}{2} = \frac{2}{3} S_{\Delta AC_1C} = \frac{1}{3} \frac{1}{2} S = \frac{1}{6} S$$

Зад. 5:Нека точка M е медицентърът на $\triangle ABC$ с лице S и CC_1 и BB_1 са медиани. Да се намери лицето на $\triangle C_1MB_1$.

Решение:

• CC_1 – медиана в ΔABC и от Основна задача $3 \Rightarrow$

(A):
$$S_{\Delta C_1 MB_1} = \frac{1}{2} S_{\Delta ABC} = \frac{1}{2} S$$
;

• C_1B_1 – медиана в ΔAC_1C , тогава от (A) и от Основна за-

дача
$$3 \Rightarrow (B): S_{\Delta C_1 C B_1} = \frac{1}{2} S_{\Delta A C_1 C} = \frac{1}{4} S_{\Delta A B C} = \frac{1}{4} S;$$

• т. М – медицентър в $\triangle ABC \implies C_1M = x$, MC = 2x;

$$S_{\Delta C_1 MB_1} = \frac{C_1 M \cdot B_1 D}{2} = \frac{x \cdot h}{2}$$

$$\Rightarrow S_{\Delta M CB_1} = \frac{2x \cdot h}{2} = 2$$

- $S_{\Delta MCB_{1}} = \frac{MC \cdot B_{1}D}{2} = \frac{2x \cdot h}{2}$ $\Rightarrow S_{\Delta C_{1}MB_{1}} = \frac{2}{x \cdot h} = 2 = \frac{2}{x \cdot h} =$
- $S_{\Delta C_1 CB_1} = S_{\Delta C_1 MB_1} + S_{\Delta M CB_1}$ и от (В) и (С) $\Rightarrow \frac{1}{4} S = S_{\Delta C_1 MB_1} + 2 S_{\Delta C_1 MB_1} \Rightarrow$ $S_{\Delta C_1 MB_1} = \frac{1}{12} S$.
- - а) лицето на ΔMNC;

б) лицето на ΔMNP.

Решение:

а)Точки М и N са среди на АС и ВС ⇒

$$CM = \frac{1}{2}AC \Rightarrow \frac{CM}{AC} = \frac{1}{2}$$

$$CN = \frac{1}{2}BC \Rightarrow \frac{CN}{BC} = \frac{1}{2}$$

• ΔMNC ~ ΔABC (по II признак, защото: 1. ∢С –

общ, 2.
$$\frac{CM}{AC} = \frac{CN}{BC} = \frac{1}{2}$$
)

• Ot (4)
$$\Rightarrow \frac{S_{\Delta MNC}}{S_{\Delta ABC}} = \left(\frac{CN}{BC}\right)^2 = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \Rightarrow S_{\Delta MNC} = \frac{1}{4}S$$
.

б) По подобен начин се доказва, че $S_{\Delta MPA} = S_{\Delta NPB} = \frac{1}{4} \, S$.

$$\bullet \quad S_{\Delta MNP} = S_{\Delta ABC} - (S_{\Delta MPA} + S_{\Delta NPB} + S_{\Delta MNC}) = S - \frac{3}{4}S = \frac{1}{4}S.$$

V. Височини и симетрали в триъгълник

♦ Височините на всеки триъгълник се пресичат в една точка, която се нарича

ортоцентър. На чертежа ортоцентърът е отбелязан с т. Н, като на Фиг. 4 △АВС е остроъгълен, на Фиг. 5 △АВС е

правоъгълен и на Фиг. 6 ДАВС е тъпоъгълен.

◆ Симетралите на всеки триъгълник се пресичат в една точка, която е център на описаната около триъгълника окръжност. На чертежите центърът на описаната окръжност е отбелязан с т. О, като на Фиг. 7 △ABC е остроъгълен, на Фиг. 8 △ABC е правоъгълен и на Фиг. 9 △ABC е тъпоъгълен.

Бележки:

- 1) В равностранен триъгълник медицентърът, ортоцентърът, центърът на вписаната и центърът на описаната окръжност съвпадат, т.е. те лежат върху височината.
- 2) В равнобедрен триъгълник медицентърът, ортоцентърът, центърът на вписаната и центърът на описаната окръжност лежат върху височината към основава, но не съвпадат.

VI. Основни типове задачи:

Зад. 7: Нека A_1 , B_1 , C_1 са петите на височините, спуснати от върховете A, B, C на остроъгълния $\triangle ABC$ и $\angle ABC = \beta$, $\angle BAC = \alpha$, $\angle ACB = \gamma$. Да се докаже, че:

а) ако т. H е ортоцентър на $\triangle ABC$, то $\blacktriangleleft BHC$ =180 – α , $\blacktriangleleft AHB$ =180 – γ ,

 \angle AHC = $180 - \beta$;

б) $\triangle AB_1C_1$, $\triangle A_1BC_1$, $\triangle A_1B_1C$, $\triangle A_1B_1C_1$ са подобни на $\triangle ABC$ и за първите три триъгълника да се намери коефициента на подобие;

B) $B_1C_1 = a \cos \alpha$; $C_1A_1 = b\cos \beta$; $A_1B_1 = \cos \gamma$;

г) височините на $\triangle ABC$ са ъглополовящи на $\triangle A_1B_1C_1$.

Решение: а)

• OT $\triangle ABB_1 \Rightarrow \langle ABB_1 = 90^0 - \alpha;$

• Ot $\triangle BHC_1 \Rightarrow \angle BHC_1 = 90^0 - \angle C_1BH = 90^0 - (90^0 - \alpha) = \alpha;$

• $\angle BHC = 180^{\circ} - \angle BHC_1 = 180^{\circ} - \alpha;$

По аналогичен начин доказваме, че ∢АНВ=180 – γ,
 ∢АНС = 180 – β.

обучение по математика, физика, български и английски език, компютър

адрес: гр.София, ж.к. Надежда, бл. 335 🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solema.hit.bg; E-mail: solema@gbg.bg

- 6) om $\Delta AA_1C \Rightarrow \frac{CA_1}{AC} = \cos \gamma$ om $\Delta BCB_1 \Rightarrow \frac{CB_1}{BC} = \cos \gamma$ \Rightarrow (A): $\frac{CA_1}{AC} = \frac{CB_1}{BC} = \cos \gamma$
 - $\Delta A_1 B_1 C \sim \Delta ABC$ (по II признак, защото (A) е изпълнено и γ общ ъгъл) с коефициент на подобие соз γ (следва от (A)).
 - По подобен начин се доказва, че $\Delta B_1 C_1 A \sim \Delta ABC$ с коефициент на подобие $\cos \alpha$ и $\Delta A_1 C_1 B \sim \Delta ABC$ с коефициент на подобие $\cos \beta$.
 - Доказваме, че $\Delta A_1 B_1 C_1$ е подобен на ΔABC : От $\Delta A_1 B_1 C \sim \Delta B_1 C_1 A \sim \Delta A_1 C_1 B \sim \Delta ABC$ $\Rightarrow \frac{A_1 B_1}{AB} = \frac{B_1 C_1}{BC} = \frac{A_1 C_1}{AC}$, т.е. $\Delta A_1 B_1 C_1 \sim \Delta ABC$
- в) От $\Delta A_1 B_1 C \sim \Delta ABC \Rightarrow \frac{CA_1}{AC} = \frac{CB_1}{BC} = \frac{A_1 B_1}{AB} = \cos \gamma \Rightarrow A_1 B_1 = \text{с.cos } \gamma$. По подобен начин се доказват и останалите равенства.
- г) От $\Delta A_1 B_1 C \sim \Delta ABC \Rightarrow \angle CA_1 B_1 = \alpha$, тогава (B): $\angle AA_1 B_1 = 90^0 \angle CA_1 B_1 = 90^0 \alpha$ От $\Delta A_1 BC_1 \sim \Delta ABC \Rightarrow \angle BA_1 C_1 = \alpha$, тогава (C): $\angle AA_1 C_1 = 90^0 - \angle BA_1 C_1 = 90^0 - \alpha$
 - От (B) и (C) $\Rightarrow \langle AA_1B_1 = \langle AA_1C_1,$ т.е. AA_1 е ъглополовяща на $\langle C_1A_1B_1.$
 - По подобен начин се доказва, че BB_1 е ъглополовяща на $∢C_1B_1A_1$ и CC_1 е ъглополовяща на $∢A_1C_1B_1$.
- **Зад.** 8: В триъгълника ABC точките M и N съответно от страните AB и AC са такива, че MN \parallel BC. Намерете:
 - a) AN : AC и AN : NC, ако AM : AB = 3 : 7;
 - б) NC, ако AM = 3 cm, AB = 9 cm и AN = 2 cm;
 - в) AN, ако AM : AB = 2 : 3 и AC = 15 cm;
 - Γ) AN, ако AM = 2 cm, NC = 8 cm и AN = MB.

Решение:

- a) Ot AM : $AB = 3 : 7 \Rightarrow AM = 3x$, AB = 7x.
 - BM = AB AM = 4x:
 - MN || BC \Rightarrow от (1) Теорема на Талес \Rightarrow $\frac{AN}{AC} = \frac{AM}{AB} = \frac{3x}{7x} = \frac{3}{7}$;
 - От (2) следствие на Теорема на Талес ⇒

$$\frac{AN}{NC} = \frac{AM}{MB} = \frac{3x}{4x} = \frac{3}{4}$$

- б) От чертежа \Rightarrow CN = AC AN. Намираме AC:
 - MN || BC \Rightarrow от (1) Теорема на Талес $\Rightarrow \frac{AN}{AC} = \frac{AM}{AB} \Rightarrow \frac{2}{AC} = \frac{3}{9} \Rightarrow AC = 6;$
 - CN = AC AN = 6 2 = 4;
- B) OT AM : AB = $2:3 \Rightarrow$ AM = 2x, AB = 3x.
 - MN || BC \Rightarrow от (1) Теорема на Талес $\Rightarrow \frac{AN}{AC} = \frac{AM}{AB} \Rightarrow \frac{AN}{15} = \frac{2x}{3x} \Rightarrow \text{AN} = 10;$
- Γ) Ot $AN = MB \Rightarrow AN = MB = x$.
 - MN || BC \Rightarrow от (2) следствие на Теорема на Талес $\Rightarrow \frac{AN}{NC} = \frac{AM}{MB} \Rightarrow \frac{x}{8} = \frac{2}{x} \Rightarrow$ $x^2 = 16 \Rightarrow x = AN = 4$;
- **Зад.** 9: Нека т. М и т. N са среди съответно на страните AC и BC на Δ ABC. Да се намери лицето на Δ MNC, ако:
 - а) лицето на \triangle ABC е 80 cm²;
 - б) лицето на ΔABC е S.

Решение:

а) M и N са среди на AC и BC \Rightarrow MN средна отсечка в Δ ABC, т.е. AB || MN, CM = $\frac{1}{2}$ AC;

- $\frac{S_{\Delta MNC}}{80} = \frac{1}{4} \Rightarrow S_{\Delta MNC} = 20 \text{ cm}^2.$
- δ) Ot (A) ⇒ S_{ΔMNC} = $\frac{1}{4}$ S;
- **Зад. 10:** Даден е равнобедрен \triangle ABC (AB = AC) точка M е среда на BC и AM пресича описаната окръжност в т. N. Ако AM = 8 cm и MN = 1 cm намерете бедрото на триъгълника

обучение по математика, физика, български и английски език, компютър

адрес: гр.София, ж.к. Надежда, бл. 335 🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solema.hit.bg ; E-mail: solema@gbg.bg

<u>Решение:</u> Нека AB = AC = x

- \triangle ABN ~ \triangle AMC (по I признак, защото ∢CAM = ∢BAN – по условие и ∢ACM = ∢ANB – по д-во) ⇒ $\frac{AN}{AC} = \frac{AB}{AM} \Rightarrow \frac{9}{x} = \frac{x}{8} \Rightarrow x^2 = 9.8 \Rightarrow x = AC = 6\sqrt{2} \ cm$

Зад. 11: От т. А, външна за окръжност k, са построени допирателна AB и секуща AD (С е между A и D). Намерете:

- а) CD, ако AB = 2 cm, AD = 4 cm;
- б) AD, ако AC: CD = 4:5 и AB = 12 cm.

Решение:

- ΔADB ~ ΔABC (по I признак, защото ∢А общ и ∢ADB = ∢ABC по д-во)

$$\Rightarrow (1): \frac{AD}{AB} = \frac{BD}{BC} = \frac{AB}{AC}$$

а) Нека CD = x, тогава AC = AD – CD = 4 – x и от (1) \Rightarrow $\frac{AD}{AB} = \frac{AB}{AC} \Rightarrow \frac{4}{2} = \frac{2}{4-x} \Rightarrow x = CD = 3 \text{ cm.}$

Зад. 12: Даден е ∆АВС. Ъглополовящата на върха В пресича страната АС в точка L. Да се намери АL, LC и BL, ако:

- a) AB = 35 cm, AC = 36 cm, BC = 10 cm;
- б) AB = c, AC = b, BC = a (Формула 7).

<u>Решение:</u> а) BL – ъглополовяща и от (5) ⇒ $\frac{CL}{AL} = \frac{BC}{AB} = \frac{10}{35} = \frac{2}{7}$, т.е. CL = 2x, AL = 7x;

• $AL + CL = AC \Rightarrow 2x + 7x = 36 \Rightarrow x = 4$;

- CL = 2x = 8 cm, AL = 7x = 28 cm;
- OT (6) \Rightarrow BL² = AB.BC AL.CL = 35.10 8.28 = 126 \Rightarrow BL = $3\sqrt{14}$.
- 6) Ot (5) $\Rightarrow \frac{CL}{AL} = \frac{BC}{AB} = \frac{a}{c}$, r.e. CL = ax, AL = cx
 - AL + CL = AC \Rightarrow cx + ax = b \Rightarrow $x = \frac{b}{a+c}$;
 - $CL = ax = \frac{ab}{a+c}$, $AL = cx = \frac{cb}{a+c}$
 - OT (6) \Rightarrow BL² = AB.BC AL.CL \Rightarrow BL² = $ca \frac{acb^2}{(a+c)^2}$.

Зад. 13: В равнобедрен \triangle ABC (AC = BC) с периметър P=14 радиусът на вписаната окръжност се отнася към височината от върха C, както 2:7. Да се намери дължината на основата AB. (УНСС, 2009)

<u>Решение:</u> От даденото отношение $r:h = 2:7 \Rightarrow r = 2z$, h = 7z;

- O_1 център на вписаната окръжност \Rightarrow AO_1 ъглополовяща, но AO_1 е ъглополовяща и в $\triangle ADC$. От свойство на ъглополовяща (5) $\Rightarrow \frac{CO_1}{DO_1} = \frac{AC}{AD} \Rightarrow \frac{5z}{2z} = \frac{y}{x} \Rightarrow \frac{y}{x} = \frac{5}{2}$, т.е. y=5n, x=2n

- $P_{\triangle ABC} = 2x + 2y = 2(x + y) = 2(2n + 5n) \Rightarrow 14n = 14 \Rightarrow n = 1$
- $AB = 2x = 2.2n = 4 \Rightarrow AB = 4$.
- **Зад. 14:** Върху страните AB, BC на △ABC с дадено лице S са избрани съответно точките N и M така, че AN: MB = BM: MC = 1: 3. Точката P е пресечна точка на CN с AM така, че CP: PN = 5: 1.
 - а) Да се докаже, че $S_{\Delta ANC}=\frac{1}{4}\,S$; $S_{\Delta NBP}=3\,S_{\Delta ANP}\,\cdot$
 - б) Да се изрази лицето на ΔВМР чрез S.

Решение:

а) От AN : MB = BM : MC = 1 : 3 \Rightarrow AN = BM = x, NB=MC=3x, тогава AB = 4AN = 4x.

обучение по математика, физика, български и английски език, компютър

🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solema.hit.bg ; E-mail: solema@gbg.bg

адрес: гр.София, ж.к. Надежда, бл. 335

- $S_{\Delta NBP} = \frac{1}{2} BN.PH = \frac{1}{2} 3AN.PH = 3.\frac{1}{2} AN.PH =$
- б) От $CP : PN = 5 : 1 \Rightarrow CP = 5$ у, PN =у, тогава NH NC = 6PN = 6y. Търсеното лице го намираме от равенството $S_{\Delta BMP} = S_{\Delta NBC} - (S_{\Delta NBP} + S_{\Delta MCP})$. Последователно намираме:
 - В а) доказахме, че $S_{\Delta ANC} = \frac{1}{4}S \Rightarrow S_{\Delta NBC} = \frac{3}{4}S$;
 - Намираме $S_{\Lambda NRP}$:
 - \circ ΔNHP ~ ΔNDC (по I признак, защото ∢NHP = ∢NDC = 90° и ∢N общ) =

$$\frac{PH}{CD} = \frac{NP}{NC} = \frac{y}{6y} = \frac{1}{6}$$

$$\circ$$
 $S_{\Delta NBP} = \frac{1}{2}$ NB.PH и $S_{\Delta NBC} = \frac{1}{2}$ NB.DC $\Rightarrow \frac{S_{\Delta NBP}}{S_{\Delta NBC}} = \frac{\frac{1}{2}NB.PH}{\frac{1}{2}NB.CD} = \frac{PH}{CD} = \frac{1}{6} \Rightarrow$

$$S_{\Delta NBP} = \frac{1}{6} S_{\Delta NBC} = \frac{1}{6} \cdot \frac{3}{4} S = \frac{1}{8} S.$$

- $S_{\Delta MCP} = \frac{1}{2}MC.PE = \frac{1}{2}3BM.PE = 3. \frac{1}{2}BM.PE = 3S_{\Delta BMP}.$
- $S_{\Delta BMP} = S_{\Delta NBC} (S_{\Delta NBP} + S_{\Delta MCP}) = \frac{3}{4} S \frac{1}{8} S 3S_{\Delta BMP} \Rightarrow S_{\Delta BMP} + 3S_{\Delta BMP} = \frac{3}{4} S \frac{1}{8} S$ \Rightarrow S_{\text{\DeltaBMP}} = $\frac{5}{22}$ S.

лължината на отсечката ВЕ е с 8 ст по-голяма от дължината на отсечката АЕ. Дължината на хордата АВ е:

- A) 4 cm:
- Б) 6 cm:
- B) 8 cm:
- Γ) 12 cm:
- Д) 16 cm.
- 2. (Матура, 2010): На чертежа ABCD е успоредник и PO || BD. Aко AB = 8 cm, BC = 6 cm и AP = 12 cm, то дължината на DQ е:
 - A) 1, 5 cm;
- Б) 2 cm;
- Γ) 4 cm. B) 3 cm;
- (Матура, 2011): На чертежа правите а и b са успоредни, като OA = 6, CD = 8, OC = AB = x. Стойността на $x \in C$
 - A) $2\sqrt{2}$;
- Б) $2\sqrt{3}$:
- B) 4:
- Γ) $4\sqrt{3}$
- 4. (Матура, 2012): На чертежа AC || BD. Ако OA = $4\sqrt{2}$ $CD = 8\sqrt{2}$ и OC = AB, то отсечката AB е:
 - A) 4;
- Б) $4\sqrt{2}$;
- B) 8;
- Г) невъзможно да се определи.

- A) 16 cm; B) 14 cm;
- B) 17 cm:
- Γ) 18 cm;
- Д) 12 cm.
- (Матура, 2012) В ДАВС симетралата на страната АВ пресича страната ВС в точка М така, че ВМ :CM = 5 : 2. Ако CH (H \in AB) е височина в \triangle ABC, намерете отношението АН:НВ.
 - A) 1:5;
- Б) 3:5;
- B) 3:7;
- Γ) 2 : 7.

VII. Задачи за упражнение:

Тестови задачи:

1. (ТУ, 2011): Точките А, В. С и D лежат на окръжност. Хордите АВ и CD се пресичат в точка E, която лежи вътре в окръжността, като DE = 6 cm, EC = 8 cm и

обучение по математика, физика, български и английски език, компютър

☎: 897 99 54 вечер, г-н Станев; Web страница: www.solema.hit.bg; E-mail: solema@gbg.bg

7. (Матура, 2010): Даден е ΔABC със страни AB = 12 и AC=15. Построена е ъглополовящата AL ($L \in BC$) и през точка L е построена права LP ($P \in AB$) и LP || AC. Отношението S_{ALPB} : S_{AABC} е равно на:

адрес: гр.София, ж.к. Надежда, бл. 335

8. (ТУ, 2011): В равнобедрения \triangle ABC (AC= BC) отсечката AL (L \in BC) е ъглополовяща, LC = 2BL и периметърът на \triangle ABC е 15 cm. Дължината на BL в cm е:

- A) 6:
- Б) 3:
- B) 2:
- Γ) 4:
- Д) 5.

9. (Матура, 2012): В равнобедрен \triangle ABC с основа AB = 8 cm е вписана окръжност. Центърът О на окръжността дели височината СН в отношение 5 : 2. Дължината на АС е равна на:

- Б) 10 cm:
- B) 16 cm;
- Γ) 20 cm.

10. (Матура, 2010): Страните на триъгълник са BC = 27 cm, AC = 36 cm и AB = 21 cm. Намерете отношението, в което центърът на вписаната окръжност дели ъглополовящата CL (L ∈ АВ), считано от точка С.

A) 2:1:

- Б) 1:2:

- B) 4:1:
- Γ) 3:1.

11. (Матура, 2011): За ДАВС на чертежа точка М е средата на ВС, а точка N е средата на АВ. Правите АМ и CN се пресичат в точка S. Каква част от лицето на **ABC** е лицето на **AMNS**?

- A) $\frac{1}{1}$;

12. (Матура, 2011): Окръжността, вписана в равнобедрен триъгълник, разделя височината към основата му на две части, които са в отношение 1:3, считано от върха на триъгълника. Ако основата има дължина 12 ст., дължината на бедрото е:

- A) 8 cm;
- Б) 10 cm;
- B) 12 cm;
- Γ) 18 cm.

13. (Матура, 2012): На чертежа за ∆АВС е дадено АВ = 6 см, ВС = 8 см и ∢ВАО = ∢АСВ. Дължината на отсечката ВD е равна на:

- A) 6 cm:
- Б) 4.5 cm:
- B) 4 cm:
- Γ) 3.5 cm.

Задачи за подробно решаване:

Следват 47 задачи групирани по сложност. Част от тях са давани на конкурсни изпити или на матури.

За съжаление те са авторски и не се разпространяват свободно. Използват се за подготовка на кандидат-студенти с учител от Учебен център "СОЛЕМА".

Учебен център "СОЛЕМА" подготвя ученици за кандидатстване във всички университети, а така също и за кандидатстване след 7 клас.

За цените и всичко свързано с подготовката на кандидатстудентите и учениците кандидатстващи след 7 клас по математика и физика, виж www.solemabg.com раздел "За нас".