Generikus irányítatlan gráf

Készítette Doxygen 1.8.13

Tartalomjegyzék

1.	Gen	erikus i	rányítatlan gráf specifikáció	1
	1.1.	Generi	kus irányítatlan gráf specifikáció	1
		1.1.1.	Feladatkiírás	1
		1.1.2.	Bevezetés	1
		1.1.3.	A program képességei	1
		1.1.4.	Gráfok eltárolása	2
			1.1.4.1. Gráfok beolvasása	2
			1.1.4.2. Gráfok kiírása	2
		1.1.5.	Gráf összefüggőségének vizsgálata	2
2.	Gen	erikus i	rányítatlan gráf terv	3
	2.1.	Generi	kus irányítatlan gráf terv	3
		2.1.1.	Osztályok	3
			2.1.1.1. Felhasznált osztályok	4
			2.1.1.2. Bővíthetőség	4
		2.1.2.	Felhasznált algoritmus	5
3.	Prog	jramozó	ói Dokumentáció	7
	3.1.	Progra	mozói Dokumentáció	7
		3.1.1.	Véglegesített osztályok	7
		3.1.2.	A program részei	8
			3.1.2.1. graph.hpp	8
			3.1.2.2. vertex.hpp	8
			3.1.2.3. edge.hpp	8
			3.1.2.4. matrix.hpp	8
			3.1.2.5. ember.h	8
			3.1.2.6. ember.cpp	8
		3.1.3.	Memóriaszivárgás ellenőrzése	8
		3.1.4.	A program használata	8

TARTALOMJEGYZÉK

4.	Tesz	tesetek	Dokumentációja	9
	4.1.	Tesztes	setek Dokumentációja	9
		4.1.1.	Az Ember osztály	9
		4.1.2.	A main-ben található tesztesetek	9
			4.1.2.1. Teszt 1	9
			4.1.2.2. Teszt 2	9
			4.1.2.3. Teszt 3	10
			4.1.2.4. Teszt 4	10
5 .	Hiera	archikus	s mutató	11
	5.1.	Osztály	hierarchia	11
6.	Adat	tszerkez	zet-mutató	13
	6.1.	Adatsz	erkezetek	13
7.	Fájlr	nutató		15
	7.1.	Fájllista	a	15
•	A -1			4-7
8.	Adai		zetek dokumentációja	17
	8.1.	Graph<	< T >::BFSSet osztályreferencia	17
		8.1.1.	Részletes leírás	19
		8.1.2.	Konstruktorok és destruktorok dokumentációja	19
			8.1.2.1. BFSSet() [1/2]	19
			8.1.2.2. BFSSet() [2/2]	19
		8.1.3.	Tagfüggvények dokumentációja	20
			8.1.3.1. addPrevVertex()	20
			8.1.3.2. getDistance()	20
			8.1.3.3. operator=()	20
			8.1.3.4. setDistance()	21
		8.1.4.	Barát és kapcsolódó függvények dokumentációja	21
			8.1.4.1. operator<<	21
	8.2.	Edge<	T > osztálysablon-referencia	22

TARTALOMJEGYZÉK iii

	8.2.1.	Részletes leírás	23
	8.2.2.	Konstruktorok és destruktorok dokumentációja	23
		8.2.2.1. Edge() [1/2]	23
		8.2.2.2. Edge() [2/2]	23
	8.2.3.	Tagfüggvények dokumentációja	24
		8.2.3.1. getDestination()	24
		8.2.3.2. getID()	24
		8.2.3.3. getSource()	24
		8.2.3.4. isConnected()	25
		8.2.3.5. operator=()	25
	8.2.4.	Barát és kapcsolódó függvények dokumentációja	25
		8.2.4.1. operator<<	25
8.3.	Ember	osztályreferencia	26
	8.3.1.	Részletes leírás	27
	8.3.2.	Konstruktorok és destruktorok dokumentációja	27
		8.3.2.1. Ember() [1/2]	27
		8.3.2.2. Ember() [2/2]	27
	8.3.3.	Tagfüggvények dokumentációja	27
		8.3.3.1. CreateEmber()	27
		8.3.3.2. operator=()	28
	8.3.4.	Barát és kapcsolódó függvények dokumentációja	28
		8.3.4.1. operator<<	28
8.4.	Graph	< T > osztálysablon-referencia	29
	8.4.1.	Részletes leírás	30
	8.4.2.	Konstruktorok és destruktorok dokumentációja	31
		8.4.2.1. Graph()	31
	8.4.3.	Tagfüggvények dokumentációja	31
		8.4.3.1. BFS()	31
		8.4.3.2. getDataFromID()	32
		8.4.3.3. getNumberOfEdges()	32

iv TARTALOMJEGYZÉK

		8.4.3.4.	getNumberOfVertices()	32
		8.4.3.5.	getVertexFromID()	32
		8.4.3.6.	isConnectedGraph()	33
		8.4.3.7.	listNeighboursOfVertex()	33
		8.4.3.8.	readAdjMatrixFromFile()	33
		8.4.3.9.	readDataFromFile() [1/2]	34
		8.4.3.10.	readDataFromFile() [2/2]	34
		8.4.3.11.	saveAdjMatrixToFile()	34
		8.4.3.12.	setEdge()	35
	8.4.4.	Barát és l	kapcsolódó függvények dokumentációja	35
		8.4.4.1.	operator<<	35
8.5.	Matrix<	< T > oszt	álysablon-referencia	36
	8.5.1.	Részletes	s leírás	37
	8.5.2.	Konstrukt	orok és destruktorok dokumentációja	38
		8.5.2.1.	Matrix() [1/3]	38
		8.5.2.2.	Matrix() [2/3]	38
		8.5.2.3.	Matrix() [3/3]	38
	8.5.3.	Tagfüggv	ények dokumentációja	39
		8.5.3.1.	executeOnEveryElement()	39
		8.5.3.2.	freeCell()	39
		8.5.3.3.	getxmax()	39
		8.5.3.4.	getymax()	40
		8.5.3.5.	operator=()	40
		8.5.3.6.	operator[]() [1/2]	40
		8.5.3.7.	operator[]() [2/2]	41
		8.5.3.8.	readMatrixFromFile()	41
		8.5.3.9.	saveMatrixToFile()	41
		8.5.3.10.	setData()	42
		8.5.3.11.	setToDefaultValue()	42
	8.5.4.	Barát és l	kapcsolódó függvények dokumentációja	42

TARTALOMJEGYZÉK

		8.5.4.1. operator<<	42
8.6.	Matrix	Row < T > osztálysablon-referencia	43
	8.6.1.	Részletes leírás	44
	8.6.2.	Konstruktorok és destruktorok dokumentációja	45
		8.6.2.1. MatrixRow() [1/2]	45
		8.6.2.2. MatrixRow() [2/2]	45
	8.6.3.	Tagfüggvények dokumentációja	45
		8.6.3.1. operator=()	45
		8.6.3.2. operator[]() [1/2]	46
		8.6.3.3. operator[]() [2/2]	46
8.7.	Vertex	< V > osztálysablon-referencia	47
	8.7.1.	Részletes leírás	47
	8.7.2.	Konstruktorok és destruktorok dokumentációja	47
		8.7.2.1. Vertex() [1/3]	48
		8.7.2.2. Vertex() [2/3]	48
		8.7.2.3. Vertex() [3/3]	48
	8.7.3.	Tagfüggvények dokumentációja	48
		8.7.3.1. getData()	49
		8.7.3.2. getID()	49
		8.7.3.3. operator=()	49
		8.7.3.4. setData()	49
8.8.	Graph-	< T >::VertexSet osztályreferencia	50
	8.8.1.	Részletes leírás	51
	8.8.2.	Konstruktorok és destruktorok dokumentációja	51
		8.8.2.1. VertexSet() [1/2]	51
		8.8.2.2. VertexSet() [2/2]	52
	8.8.3.	Tagfüggvények dokumentációja	52
		8.8.3.1. add()	52
		8.8.3.2. getLen()	52
		8.8.3.3. getVertex()	53
		8.8.3.4. operator=()	53

9.	Fájlo	k doku	mentációja	55
	9.1.	edge.h	pp fájlreferencia	55
		9.1.1.	Részletes leírás	56
		9.1.2.	Függvények dokumentációja	56
			9.1.2.1. operator<<()	56
	9.2.	ember.	cpp fájlreferencia	57
		9.2.1.	Részletes leírás	57
		9.2.2.	Függvények dokumentációja	58
			9.2.2.1. operator<<()	58
	9.3.	ember.	h fájlreferencia	58
		9.3.1.	Részletes leírás	59
	9.4.	graph.h	npp fájlreferencia	59
		9.4.1.	Részletes leírás	60
		9.4.2.	Függvények dokumentációja	60
			9.4.2.1. operator<<()	60
	9.5.	main.c	pp fájlreferencia	61
		9.5.1.	Részletes leírás	61
	9.6.	matrix.	hpp fájlreferencia	62
		9.6.1.	Részletes leírás	63
	9.7.	vertex.	hpp fájlreferencia	63
		9.7.1.	Részletes leírás	64
Tá	rgymı	utató		65

Generikus irányítatlan gráf specifikáció

1.1. Generikus irányítatlan gráf specifikáció

1.1.1. Feladatkiírás

Készítsen generikus irányítatlan gráfot! A gráf megadása szomszédsági mátrixszal történjen! A csomópontokat osztállyal reprezentálja! Definiáljon műveleteket annak meghatározására, hogy a gráfnak hány csomópontja és hány éle van! Szélességi bejárással állapítsa meg, hogy a gráf összefüggő-e! Demonstrálja a működést külön modulként fordított tesztprogrammal! A megoldáshoz **ne** használjon STL tárolót!

1.1.2. Bevezetés

A program elsődleges célja generikus irányítatlan gráfok tárolása és ezekkel történő műveletek végzése. Ezen felül nyújtson segítséget a BSZ2 tárgynak a feladatkiírásban szereplő részeinek a mélyebb megértésében és az ehhez kapcsolódó feladatok ellenőrzésében.

1.1.3. A program képességei

A gráf kifejezés alatt mindenhol egy n csúcsú és e élű irányítatlan egyszerű G gráfot értek.

- · Gráfok eltárolása a programban
 - Szomszédsági mátrix beolvasása fájlból.
 - Szomszédsági mátrix kiírása fájlba.
 - Szomszédsági mátrix megjelenítése a standard outputon.
- · Műveletek gráfokkal
 - Csomópont szám meghatározása
 - Élszám meghatározása
 - Gráf összefüggőségének vizsgálata
- Tesztprogram
 - A Programhoz tartozik tesztprogram is, ami a fenti képességek helyességét ellenőrzi.

1.1.4. Gráfok eltárolása

A program legyen képes olyan módon gráfokat tárolni, amely lehetővé teszi a műveletvégzést.

1.1.4.1. Gráfok beolvasása

A gráf megadása egy M szomszédsági mátrixszal történik. Az M mátrix n x n-es méretű. Az M mátrix a_{1,2}

eleme 1, ha a 1-es és 2-es indexű csúcsok között él húzódik és 0, ha nem. A csúcsok tetszőleges típusú adatokat tartalmazhatnak.

Szomszédsági mátrix minta:

Minden T típusú adathoz létezik egy függvény, ami elvégzi annak az adatnak a beolvasását. Ennek az elkészítése és a helyesség biztosítása a felhasználó dolga.

1.1.4.2. Gráfok kiírása

A gráf kiírása a bemenethez hasonló szomszédsági mátrixszal történik.

1.1.5. Gráf összefüggőségének vizsgálata

A feladat megvalósításához a program a BSZ2 tárgy során tanult BFS algoritmust fogja használni.

Generikus irányítatlan gráf terv

2.1. Generikus irányítatlan gráf terv

2.1.1. Osztályok

A feladat megvalósításához előreláthatólag 7 db osztályt használok fel. A tanult eszközök közül az öröklést, az egymásba ágyazott osztályokat és a tartalmazást tervezem felhasználni. Az ábrán még nem szerepel, de a diagram bővülni fog a teszteléshez használt példa osztályokkal.

2.1.1.1. Felhasznált osztályok

2.1.1.1.1 Graph Osztály

Ez az osztály fogja össze a maradék 6 db osztályt. Ez az osztály tartalmazza, a feladatkiírásban szereplő feladatokat megvalósító függvényeket. A legtöbb feladat több segédfüggvényre van bontva.

2.1.1.1.2. Edge Osztály

Ez az osztály foglalja össze az élekhez tartozó információkat. Az osztály megkülönbözteti az élnek a forrás és cél csúcsát. Ezzel a felkészítve arra, hogy a jövőben irányított gráfokat is tudjon kezelni. A weight változó lehetővé teszi, hogy az éleket súlyokkal lássuk el, ez szintén a jövőbeli továbbfejlesztés lehetőségét szolgálja.

2.1.1.1.3. Vertex Osztály

Ez az osztály tárolja a csúcsokhoz tartozó adatokat. Mindent csúcsot ellátok egy azonosítóval. Ez a BFS algoritmus során segít a csúcsok megkülönböztetésében és így tudok valamilyen módon hivatkozni a csúcsokra.

2.1.1.1.4. VertexSet Osztály

Ezt az osztályt azért hoztam létre, hogy a függvényekből visszatérő adatokat egységbe tudjam foglalni. Így A dinamikus tömb és annak mérete egymás mellett tárolódik, könnyen elérhető. Az osztály a Graph osztály részét képezi, mert logikailag oda tartozik.

2.1.1.1.5. BFFSet Osztály

Ez az osztály a VertexSet osztályból származik. A célja hasonló. Ez kifejezetten a BFS algoritmus visszatérési értékének a tárolója.

2.1.1.1.6. Matrix Osztály

Ez az általános felhasználásra szánt osztályt felelős a fájlból történő beolvasás mátrixának tárolására. Az osztályt tervezése során felhasználtam a programozás 1 tárgy keretein belül készített házim(mátrix függvénykönyvtár) létrehozása során szerzett tapasztalataimat.

2.1.1.1.7. MatrixRow Osztály

Ez az osztály azért jött létre, hogy a mátrix osztály kettős indexelését lehetővé tegye. Ezen kívül ennek az osztálynak a segítségével elkerülhető, hogy a Mátrix osztályban T*** típusú adatot kelljen tárolni.

2.1.1.2. Bővíthetőség

A program tervezése során lehetőséget biztosítottam a jövőbeli bővíthetőségre és továbbfejlesztésre.

- A mátrix és a gráf generikus, így bármilyen adatot képes tárolni
- · Az élek fel vannak készítve irányított gráfok által való használatra
- Az élekben található weight paraméter lehetőséget teremt, hogy a gráf éleit súlyokkal lássuk el.

2.1.2. Felhasznált algoritmus

A specifikációban már említettem, hogy a program célja a BSZ2 tárgyból tanultak elmélyítése. Így a szélességi bejárás algoritmusát is a tárgyban tanultak alapján szeretném megvalósítani. Az algoritmus és annak teljes leírása itt érhető el. Szeretném kiemelni az alábbi fontosabb részt:

- b(i) (i = 1, 2, ...): az *i*-edikként **b**ejárt csúcs
- t(v) ($v \in V$): v **t**ávolsága s-től
- m(v) ($v \in V, v \neq s$): a v-t **m**egelőző csúcs az algoritmus által megtalált, s-ből v-be vezető legrövidebb úton
- j: az eddig bejárt csúcsok száma
- k: a jelenleg aktív csúcs sorszáma a $b(1), b(2), \ldots$ sorozatban

```
BFS ALGORITMUS
Bemenet: Egy G = (V, E) gráf és egy s \in V csúcs
        j \leftarrow 1; k \leftarrow 1; b(1) \leftarrow s
 2
        t(s) \leftarrow 0; minden v \in V, v \neq s-re t(v) \leftarrow *
 3
        ciklus
            ha a b(k) csúcsnak van olyan v szomszédja, amelyre t(v) = *, akkor:
 4
 5
                i \leftarrow i + 1
 6
                b(j) \leftarrow v
 7
                t(v) \leftarrow t(b(k)) + 1
 8
                m(v) \leftarrow b(k)
 9
            különben:
10
                ha k = j, akkor:
11
                     stop
12
                különben:
13
                     k \leftarrow k + 1
14
        ciklus vége
```

Az algoritmusom megvalósítása közben hasonló változóneveket szeretnék használni. Az algoritmust jelenleg egy helyen tervezem módosítani. A * távolság helyett -1-et tervezek használni. Nálam ez lesz a végtelen jelölése, ez hibakeresés során jól megkülönböztethető lesz a többi távolság értéktől.

Programozói Dokumentáció

3.1. Programozói Dokumentáció

3.1.1. Véglegesített osztályok

Az elkészített program a fent látható osztályokat tartalmazza. A tervben szereplő UML diagramhoz képest néhány kisebb és 1 darab nagyobb változtatást tartalmaz. Ezen az ábrán már megtalálható egy Ember osztály is. Ez az osztályt a teszteléshez készítettem, ezért nem szerepelt még a tervben szereplő UML diagramban.

3.1.2. A program részei

Részletes leírás a dokumentáció második felében található.

3.1.2.1. graph.hpp

Ebben a fájlban található a gráfhoz és az azon végzek feladatok megvalósításához szükséges osztályok (Graph , Graph < T >::BFSSet) és függvények.

3.1.2.2. vertex.hpp

Ebben a fájlban található a csúcsokhoz tartozó (Vertex) osztály és annak függvényei.

3.1.2.3. edge.hpp

Ebben a fájlban található az élekhez tartozó (Edge) osztály és annak függvényei.

3.1.2.4. matrix.hpp

Ebben a fájlban található a mátrixhoz tartozó osztályok és annak függvényei.

A Matrix osztály egyik kulcsfontosságú eleme a kettős indexelés kényelmes működése. Ehhez a mátrixot két osztályra bontottam. Az első a Matrix osztály. Ez MatrixRow<T> elemeket tárol egy listában. A második a MatrixRow osztály. Ez T -ket tárol egy listában. (Itt a T generikus adatot jelent) Ezzel a megközelítéssel a józan ész elvárásai szerint működik a kettős indexelés.

3.1.2.5. ember.h

Ez a fájl az Ember osztályhoz tartozó header fájl.

3.1.2.6. ember.cpp

Ez a fájl az Ember osztályhoz tartozó cpp fájl. Az ember osztály létezésének az oka részletesen a Tesztesetek Dokumentációja-ban található.

3.1.3. Memóriaszivárgás ellenőrzése

A program fejlesztése során felhasználtam a memtrace nevű programot, amelyet már korábban a laborok során használtam. Így végig ellenőrizni tudtam, hogy a programban nem található memóriaszivárgás.

3.1.4. A program használata

A program használatára a Tesztesetek Dokumentációja -ban található részletes bemutató. Ezen felül a belső működés részletes leírása a dokumentáció végén található.

Tesztesetek Dokumentációja

4.1. Tesztesetek Dokumentációja

4.1.1. Az Ember osztály

A tesztekhez létrehoztam egy Ember osztályt, ami tetszőlegesen kicserélhető bármilyen másik osztályra is. Az Ember osztály két változót tartalmaz. Egy nev és egy kor. Ezekben az emberek nevét és életkorát tárolom. Ezenkívül tartalmaz az osztály még néhány alapvető függvényt is. Az osztály részletesebb leírása megtalálható a Dokumentáció második felében.

4.1.2. A main-ben található tesztesetek

A main függvényben összesen 4 db fő tesztet készítettem el. Ebből az utolsó két teszteset két darab alrészből áll.

4.1.2.1. Teszt 1

Az első teszt a fájlból történő beolvasás és az oda történő kiírás ellenőrzését szolgálja. Miután lefutott létrejön glsave.txt nevű fájl, aminek a tartalma megegyezik a glf.txt tartalmával. Ezzel ellenőriztük, hogy a fájlba írás és onnan olvasás megfelelően működik. A konzolon megjelennek a gráfhoz tartozó adatok is ezzel ez a rész is ellenőrzésre került.

```
{c++}
    std::ifstream tlf("glf.txt");
    std::ifstream tlfdata("gldata.txt");
    Graph<Ember> tl(tlf);
    tl.readDataFromFile(tlfdata,Ember::CreateEmber);
    tl.saveAdjMatrixToFile("glsave.txt");
    std::cout << tl;</pre>
```

4.1.2.2. Teszt 2

A második teszt arra szolgál, hogy ellenőrizzük, hogy az elkészült osztály generikus-e. Itt az Ember után char típussal hozom létre a gráfot. Itt a konzolon megjelennek a char típusú adatok ebből tudjuk, hogy ez is jól működik.

```
std::ifstream t2f("g2f.txt");
std::ifstream t2fdata("g2fdata.txt");
Graph<char> t2(t2f);
t2.readDataFromFile(t2fdata);
std::cout << t2;</pre>
```

4.1.2.3. Teszt 3

A harmadik tesztben a gráfon lefuttatok egy BFS algoritmust. Itt a konzolon megjelennek az algoritmus által bejárt csúcsok. Ebből tudjuk, hogy ez is jól működik.

```
std::ifstream t3f("g5f.txt");
Graph<char> t3(t3f);
Graph<char>::BFSSet *ret = t3.BFS(4);
std::cout << t3;
std::cout << *ret;
delete ret</pre>
```

4.1.2.4. Teszt 4

A negyedik tesztben az összefüggőségi vizsgálatot végzem el. Az A részben a gráf összefüggő a B részben nem. A B részben található gráf nagy mértékben hasonlít az A részben láthatóhoz. A fő különbség annyi, hogy a B gráfban a 0-ás és 1-es csúcs csak egymással vannak összekötve, ezért a gráfnak legalább 2 db komponense van, tehát nem lesz összefüggő.

4.1.2.4.1. A rész

Itt a konzolon megjelenő 1-es szám jelzi számunkra, hogy a gráf összefüggő.

```
std::ifstream t4af("g6af.txt");
std::ifstream t4afdata("g6bdata.txt");
Graph<Ember> t4a(t4af);
t4a.readDataFromFile(t4afdata,Ember::CreateEmber);
std::cout << t4a;
std::cout << t4a.isConnectedGraph() << std::endl;</pre>
```

4.1.2.4.2. B rész

Itt a konzolon megjelenő 0-ás szám jelzi, hogy a gráf nem összefüggő.

```
std::ifstream t4bf("g6bf.txt");
std::ifstream t4bfdata("g6bdata.txt");
Graph<Ember> t4b(t4bf);
t4b.readDataFromFile(t4bfdata,Ember::CreateEmber);
std::cout << t4b;
std::cout << t4b.isConnectedGraph() << std::endl;</pre>
```

Összességében úgy gondolom, hogy ezekkel a tesztekkel lefedtem a programot, azok alapján a szempontok alapján, amit a specifikációban rögzítettem.

Hierarchikus mutató

5.1. Osztályhierarchia

Majdnem (de nem teljesen) betűrendbe szedett leszármazási lista:

ye $<$ T $>$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	22
ber	26
$ph \!< T \!> \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	29
$rix < T > \dots $	36
rix < Edge < T > >	36
$rixRow < T > \dots$	43
$rixRow < Edge < T > > \dots$	43
tex< $V > \dots$	47
tex< T > \dots	47
ph< T >::VertexSet	50
Graph< T >::BFSSet	. 17

12 Hierarchikus mutató

Adatszerkezet-mutató

6.1. Adatszerkezetek

Az összes adatszerkezet listája rövid leírásokkal:

apn< I >::BFSSet	
BFS algoritmushoz készült tároló. A VerexSet-ből származik	17
lge <t></t>	
Él osztály	22
nber	
Ember osztály	26
raph< T >	
Graph osztály	29
atrix< T >	
A mátrix osztály	36
atrixRow< T >	
A mátrix sora	43
rtex< V >	
A csúcs osztály	47
raph< T >::VertexSet	
Csúcsok halmazának tárolására alkalmas osztály	50

14 Adatszerkezet-mutató

Fájlmutató

7.1. Fájllista

Az összes dokumentált fájl listája rövid leírásokkal:

edge.hpp	
Edge header	55
ember.cpp	
Ember.cpp kód	57
ember.h	
Ember.h header	58
graph.hpp	
Graph.h header	59
main.cpp	
Main.cpp forrás	61
matrix.hpp	
Matrix header	62
vertex.hpp	
Vertex header	63

16 Fájlmutató

Adatszerkezetek dokumentációja

8.1. Graph < T >::BFSSet osztályreferencia

BFS algoritmushoz készült tároló. A VerexSet-ből származik.

#include <graph.hpp>

A Graph < T >::BFSSet osztály származási diagramja:

A Graph < T >::BFSSet osztály együttműködési diagramja:

Publikus tagfüggvények

• BFSSet ()

BFSSet default konstruktora.

BFSSet (size_t len)

Max méretet beállító konstruktora.

• BFSSet (const BFSSet &bs)

BFSSet másoló konstruktora.

• BFSSet & operator= (const BFSSet &bs)

BFSSet értékadó operátora.

void setDistance (size_t kinek, long mire)

Beállítja a csúcs távolságát.

long getDistance (size_t kinek)

Visszaadja a csúcs távolságát a kezdőponttól mérve.

void addPrevVertex (Vertex< T > *v)

A PrevVertex listának a végéhez hozzáad egy elemet.

∼BFSSet ()

A BFSSet destruktora.

Privát attribútumok

long * distance

csúcs távolsága a kezdőcsúcstól

Vertex< T > ** prevVertex

Lista, amely minden csúcshoz hozzárendelő az őt megelőző csúcs azonosítóját.

size_t prevVertexLen

Tárolja a lista aktuális méretét.

Barátok

```
    std::ostream & operator<< (std::ostream &os, const BFSSet &bfss)</li>
    A BFSSet << operátora.</li>
```

Additional Inherited Members

8.1.1. Részletes leírás

```
\label{template} \begin{split} \text{template} &< \text{typename T} > \\ \text{class Graph} &< \text{T} > :: \text{BFSSet} \end{split}
```

BFS algoritmushoz készült tároló. A VerexSet-ből származik.

8.1.2. Konstruktorok és destruktorok dokumentációja

8.1.2.1. BFSSet() [1/2]

Max méretet beállító konstruktora.

Paraméterek

```
len maximális méret
```

8.1.2.2. BFSSet() [2/2]

BFSSet másoló konstruktora.

Paraméterek

```
bs a másik BFSSet
```

8.1.3. Tagfüggvények dokumentációja

8.1.3.1. addPrevVertex()

A PrevVertex listának a végéhez hozzáad egy elemet.

Paraméterek

v A hozzáadandó csúcsra mutató pointer

8.1.3.2. getDistance()

Visszaadja a csúcs távolságát a kezdőponttól mérve.

Paraméterek

```
kinek a megfelelő csúcs
```

Visszatérési érték

a távolság értéke

8.1.3.3. operator=()

BFSSet értékadó operátora.

Paraméterek

bs a másik BFSSet

Visszatérési érték

visszaadja a keletkezett BFSSetet

8.1.3.4. setDistance()

Beállítja a csúcs távolságát.

Paraméterek

kinek	a megfelelő csúcs
mire	a távolság érték

8.1.4. Barát és kapcsolódó függvények dokumentációja

8.1.4.1. operator <<

A BFSSet << operátora.

Paraméterek

os	A kapott ostream
bfss	A kapott BFSSet

Visszatérési érték

A keletkezett ostream

Ez a dokumentáció az osztályról a következő fájl alapján készült:

graph.hpp

8.2. Edge < T > osztálysablon-referencia

Él osztály.

#include <edge.hpp>

Az Edge< T > osztály együttműködési diagramja:

Publikus tagfüggvények

• Edge ()

Az Él default konstruktora.

• Edge (size_t id, Vertex< T > *src, Vertex< T > *dst, bool connected=false, double weight=1)

Az Él konstruktora.

Edge (const Edge< T > &e)

Az Él copy konstruktora.

• Edge < T > & operator= (const Edge &e)

Az Él értékadó operátora.

• size_t getID ()

visszadja az él IDjét

• bool isConnected ()

Visszadja, hogy az él be van-e húzva.

Vertex< T > * getSource ()

Visszadja az él forráscsúcsát.

Vertex< T > * getDestination ()

Visszadja az él célcsúcsát.

Privát attribútumok

· size_t id

Az él azonosítója.

Vertex< T > * src

A forrás csúcs.

Vertex< T > * dst

A cél csúcs.

· bool connected

Az él be van-e húzva.

· double weight

Az él súlya.

Barátok

```
    template<typename F >
        std::ostream & operator<< (std::ostream &os, const Edge< F > &e)
        Az él kiírása.
```

8.2.1. Részletes leírás

```
\label{eq:typename} \begin{array}{l} \text{template}\!<\!\text{typename T}\!>\\ \text{class Edge}\!<\!\text{T}\!> \end{array}
```

Él osztály.

Template Parameters

```
T az élek típusa
```

8.2.2. Konstruktorok és destruktorok dokumentációja

```
8.2.2.1. Edge() [1/2]
```

Az Él konstruktora.

Paraméterek

id	Az Él id-je
src	A forrás csúcsra mutató pointer
dst	A cél csúcsra mutató pointer
connected	Be van-e húzva az él?
weight	Az éj súlya

```
8.2.2.2. Edge() [2/2]
```

Az Él copy konstruktora.

Paraméterek

```
e A másik él
```

8.2.3. Tagfüggvények dokumentációja

8.2.3.1. getDestination()

```
template<typename T>
Vertex<T>* Edge< T >::getDestination ( ) [inline]
```

Visszadja az él célcsúcsát.

Visszatérési érték

A csúcsra mutató pointer

8.2.3.2. getID()

```
template<typename T>
size_t Edge< T >::getID ( ) [inline]
```

visszadja az él IDjét

Visszatérési érték

Az ID

8.2.3.3. getSource()

```
template<typename T>
Vertex<T>* Edge< T >::getSource ( ) [inline]
```

Visszadja az él forráscsúcsát.

Visszatérési érték

A csúcsra mutató pointer

8.2.3.4. isConnected()

```
template<typename T>
bool Edge< T >::isConnected ( ) [inline]
```

Visszadja, hogy az él be van-e húzva.

Visszatérési érték

igen/nem

8.2.3.5. operator=()

Az Él értékadó operátora.

Paraméterek

```
e A másik él
```

Visszatérési érték

A keletkezett él

8.2.4. Barát és kapcsolódó függvények dokumentációja

```
8.2.4.1. operator <<
```

Az él kiírása.

Template Parameters

```
F | Az él típusa
```

Paraméterek

os	A kapott ostream
е	A kapott él

Visszatérési érték

A keletkezett ostream

Ez a dokumentáció az osztályról a következő fájl alapján készült:

· edge.hpp

8.3. Ember osztályreferencia

Ember osztály.

```
#include <osztály>
```

Publikus tagfüggvények

• Ember ()

Az Ember osztály alapértelmezett konstruktora.

• Ember (const std::string &nev, int kor)

Névből és korbol Embert hoz létre.

• Ember (Ember &e)

Ember osztály másoló konstruktora.

• Ember & operator= (const Ember &e)

Az Ember osztály értékadás operátora.

Statikus publikus tagfüggvények

• static Ember * CreateEmber (const std::string &s)

Pontosvesszővel tagolt sorból Ember-t hoz létre.

Privát attribútumok

· std::string nev

A név.

int kor

A kor.

Barátok

std::ostream & operator<< (std::ostream &os, const Ember &e)
 Ember osztály kiíratását megvalósító függvény.

8.3.1. Részletes leírás

Ember osztály.

8.3.2. Konstruktorok és destruktorok dokumentációja

Névből és korbol Embert hoz létre.

Paraméterek

nev	A kapott név
kor	A kapott kor

```
8.3.2.2. Ember() [2/2]

Ember::Ember (

Ember & e ) [inline]
```

Ember osztály másoló konstruktora.

Paraméterek

```
e A kapott Ember
```

8.3.3. Tagfüggvények dokumentációja

8.3.3.1. CreateEmber()

Pontosvesszővel tagolt sorból Ember-t hoz létre.

Paraméterek

```
s A kapott sor
```

Visszatérési érték

A létrehozott Emberre mutató pointer

8.3.3.2. operator=()

Az Ember osztály értékadás operátora.

Paraméterek

```
e A kapott ember
```

Visszatérési érték

A kapott e-vel egyenlő lesz az objektum

8.3.4. Barát és kapcsolódó függvények dokumentációja

```
8.3.4.1. operator <<
```

Ember osztály kiíratását megvalósító függvény.

Paraméterek

os	ostream referencia
e	A kapott ember

Visszatérési érték

A keletkezett ostream referencia

Ez a dokumentáció az osztályról a következő fájlok alapján készült:

- ember.h
- ember.cpp

8.4. Graph < T > osztálysablon-referencia

Graph osztály.

#include <graph.hpp>

A Graph < T > osztály együttműködési diagramja:

Adatszerkezetek

· class BFSSet

BFS algoritmushoz készült tároló. A VerexSet-ből származik.

class VertexSet

Csúcsok halmazának tárolására alkalmas osztály.

Publikus tagfüggvények

• Graph ()

Grapf default konstruktora.

• Graph (std::ifstream &file)

a Graph konstruktora fájlból

size_t getNumberOfVertices ()

Visszadja a csúcsok számát.

• size_t getNumberOfEdges ()

Visszadja az élek számát.

• bool isConnectedGraph ()

Visszadja, hogy összefüggő-e a gráf, ehhez a BFS algoritmust fogja használni.

void setEdge (size_t y, size_t x, bool con, Vertex< T > *src, Vertex< T > *dst)

Beállít egy élet a megadott értékekre.

Vertex< T > * getVertexFromID (size t id)

Visszaad egy csúcsra mutató pointert, amit ID alapján határoz meg.

T getDataFromID (size_t id)

Visszadja a kapott ID alapján a megfelelő csúcshoz tartozó adatot.

BFSSet * BFS (size_t honnan=0)

BFS alkogritmus.

VertexSet * listNeighboursOfVertex (size_t v)

Megkeresi a kapott csúcs szomszédait.

• void readAdjMatrixFromFile (std::ifstream &file)

Beolvas egy szomszédsági mátrixot és beállítja azt a gráfnak.

void saveAdjMatrixToFile (const std::string &file)

Elmenti a szomszédsági mátrixot a megadott nevő fájlba.

void readDataFromFile (std::ifstream &file)

Beolvassa a csúcs adatait fájlból.

• template<class FUNC >

void readDataFromFile (std::ifstream &file, FUNC f)

Beolvassa a csúcs adatait fájlból, majd meghívja miden soron a kapott függvényt.

• ~Graph ()

A gráf destruktora.

Privát attribútumok

· size_t numofv

A csúcsok száma.

• size_t numofe

Az élek száma.

Matrix < Edge < T > > adjMatrix

A gráfhoz tartozó szomszédsági mátrix.

Vertex< T > ** verteces

A gráfhoz tartozó csúcsok.

bool isDataUploaded

A gráf fel van-e töltve adatokkal.

Barátok

```
    template < typename F >
        std::ostream & operator < < (std::ostream &os, Graph < F > &g)
        Kirajzolja a gráf szomszédsági mátrixát.
```

8.4.1. Részletes leírás

```
\label{template} \mbox{template} < \mbox{typename T} > \\ \mbox{class Graph} < \mbox{T} > \\
```

Graph osztály.

Template Parameters

```
T a csúcsok típusa
```

8.4.2. Konstruktorok és destruktorok dokumentációja

8.4.2.1. Graph()

a Graph konstruktora fájlból

Paraméterek

file a szomszédsági mátrix fájlja

8.4.3. Tagfüggvények dokumentációja

8.4.3.1. BFS()

BFS alkogritmus.

Paraméterek

honnan csúcs id, ahonnan az algoritmus indul

Visszatérési érték

visszad egy BFSSet-re mutató pointert. A felszabadítás a felhasználó dolga.

8.4.3.2. getDataFromID()

Visszadja a kapott ID alapján a megfelelő csúcshoz tartozó adatot.

Paraméterek

```
id A kapott ID
```

Visszatérési érték

A csúcs adata

8.4.3.3. getNumberOfEdges()

```
template<typename T>
size_t Graph< T >::getNumberOfEdges ( ) [inline]
```

Visszadja az élek számát.

Visszatérési érték

élek száma

8.4.3.4. getNumberOfVertices()

```
template<typename T>
size_t Graph< T >::getNumberOfVertices ( ) [inline]
```

Visszadja a csúcsok számát.

Visszatérési érték

csúcsok száma

8.4.3.5. getVertexFromID()

Visszaad egy csúcsra mutató pointert, amit ID alapján határoz meg.

```
id Az ID amit a felhasználótól kapunk
```

Visszatérési érték

A csúcsra mutató pointer

8.4.3.6. isConnectedGraph()

```
template<typename T>
bool Graph< T >::isConnectedGraph ( ) [inline]
```

Visszadja, hogy összefüggő-e a gráf, ehhez a BFS algoritmust fogja használni.

Visszatérési érték

összefüggő -e a gráf

8.4.3.7. listNeighboursOfVertex()

Megkeresi a kapott csúcs szomszédait.

Paraméterek

```
v a kapott csúcs
```

Visszatérési érték

VertexSet*-ot ad vissza. A felszabadítás a felhasználó dolga

8.4.3.8. readAdjMatrixFromFile()

Beolvas egy szomszédsági mátrixot és beállítja azt a gráfnak.

```
file A file-ra mutató ifstream
```

8.4.3.9. readDataFromFile() [1/2]

Beolvassa a csúcs adatait fájlból.

Paraméterek

```
file A beolvasandó file
```

8.4.3.10. readDataFromFile() [2/2]

Beolvassa a csúcs adatait fájlból, majd meghívja miden soron a kapott függvényt.

Template Parameters

Paraméterek

file	A kapott file	
f	A kapott fügvény, amely létrehozza a T objektumot a kapott sor alapján.	1

8.4.3.11. saveAdjMatrixToFile()

Elmenti a szomszédsági mátrixot a megadott nevő fájlba.

```
file A kapott fájlnév
```

8.4.3.12. setEdge()

Beállít egy élet a megadott értékekre.

Paraméterek

У	melyik sor
X	a soron belül melyik elem
con	az él be van-e húzva
src	forráscsúcs
dst	célcsúcs

8.4.4. Barát és kapcsolódó függvények dokumentációja

8.4.4.1. operator < <

Kirajzolja a gráf szomszédsági mátrixát.

Paraméterek

os	ostream
а	a gráf

Visszatérési érték

ostream

Template Parameters

F	A gráf ilyen adatokat tárol
---	-----------------------------

Paraméterek

os	ostream referencia
g	A kapott gráf

Visszatérési érték

A keletkezett ostream referencia

Ez a dokumentáció az osztályról a következő fájl alapján készült:

• graph.hpp

8.5. Matrix < T > osztálysablon-referencia

A mátrix osztály.

```
#include <matrix.hpp>
```

Publikus tagfüggvények

• Matrix ()

A mátrix default konstruktora.

Matrix (size_t y, size_t x)

A mátrix konstruktora.

Matrix (std::ifstream &file)

A mátrix konstruktora fájl alapján.

Matrix (const Matrix < T > &m)

A mátrix copy konstruktora.

Matrix< T > & operator= (const Matrix< T > &m)

A mátrix értékadó operátora.

• size_t getxmax ()

Visszaadja a mátrix szélességét.

• size_t getymax ()

Visszaadja a mátrix magasságát.

MatrixRow< T > & operator[] (size_t i)

Mátrix indexelő operátora.

const MatrixRow
 T > & operator[] (size_t i) const

Mátrix indexelő konstans operátora.

void setToDefaultValue (size_t y, size_t x)

Visszaállítja a mátrix celláját az alapértelmezett értékre.

void setData (size_t y, size_t x, T mire)

Beállítja a mátrix adatát a megadott értékre.

• template<typename FUNC >

FUNC executeOnEveryElement (FUNC func)

Lefutatja a kapott függvényt a mátrix összes elemén.

• void saveMatrixToFile (const std::string &filename)

A mátrixot elmenti fájlba.

• std::ifstream & readMatrixFromFile (std::ifstream &file)

Mátrixot beolvassa fájlból.

~Matrix ()

Mátrix destruktora.

Statikus publikus tagfüggvények

• static void freeCell (T &t)

felszabadítja a mátrix megfelelő celláját

Védett attribútumok

size_t ymax

A mátrix magassága.

size_t xmax

A mátrix szélessége.

MatrixRow< T > * rows

A mátrix sorait tároló lista.

Barátok

std::ostream & operator<< (std::ostream &os, const Matrix < T > &mx)
 Mátrix kiírása.

8.5.1. Részletes leírás

template < typename T> class Matrix < T>

A mátrix osztály.

mátrix osztály

Template Parameters

T a mátrix adatainak típusa

8.5.2. Konstruktorok és destruktorok dokumentációja

A mátrix konstruktora.

Paraméterek

У	A mátrix magassága
Χ	A mátrix szélessége

8.5.2.2. Matrix() [2/3]

A mátrix konstruktora fájl alapján.

Paraméterek

```
file A kapott fájl
```

8.5.2.3. Matrix() [3/3]

A mátrix copy konstruktora.

Paraméterek

m A kapott mátrix

8.5.3. Tagfüggvények dokumentációja

8.5.3.1. executeOnEveryElement()

Lefutatja a kapott függvényt a mátrix összes elemén.

Template Parameters

```
FUNC függvénytípus
```

Paraméterek

```
func A kapott függvény
```

Visszatérési érték

A függvénytípus

8.5.3.2. freeCell()

felszabadítja a mátrix megfelelő celláját

Paraméterek

```
t A felszabadítandó adat
```

8.5.3.3. getxmax()

```
template<typename T>
size_t Matrix< T >::getxmax ( ) [inline]
```

Visszaadja a mátrix szélességét.

Visszatérési érték

A mátrix szélessége

```
8.5.3.4. getymax()
```

```
template<typename T>
size_t Matrix< T >::getymax ( ) [inline]
```

Visszaadja a mátrix magasságát.

Visszatérési érték

A mátrix magassága

8.5.3.5. operator=()

A mátrix értékadó operátora.

Paraméterek

```
m A kapott mátrix
```

Visszatérési érték

A keletkezett mátrix

```
8.5.3.6. operator[]() [1/2]
```

Mátrix indexelő operátora.

Paraméterek

i A megfelelő sor kiválasztása

Visszatérési érték

A mátrix megfelelő sora

```
8.5.3.7. operator[]() [2/2]
```

Mátrix indexelő konstans operátora.

Paraméterek

i A megfelelő sor kiválasztása

Visszatérési érték

A mátrix megfelelő sora

8.5.3.8. readMatrixFromFile()

Mátrixot beolvassa fájlból.

Paraméterek

file A fájlra mutató referencia

Visszatérési érték

visszadja a fájlt

8.5.3.9. saveMatrixToFile()

A mátrixot elmenti fájlba.

filename	A kapott fájl neve
----------	--------------------

8.5.3.10. setData()

Beállítja a mátrix adatát a megadott értékre.

Paraméterek

У	A sor kiválasztása
X	A soron belüli elem kiválasztása
mire	A beállítandó érték

8.5.3.11. setToDefaultValue()

Visszaállítja a mátrix celláját az alapértelmezett értékre.

Paraméterek

У	A sor kiválasztása
X	A soron belüli elem kiválasztása

8.5.4. Barát és kapcsolódó függvények dokumentációja

8.5.4.1. operator <<

```
template<typename T>
std::ostream& operator<< (</pre>
```

```
std::ostream & os,
const Matrix< T > & mx ) [friend]
```

Mátrix kiírása.

Paraméterek

os	A kapott ostream
mx	A kapott mátrix

Visszatérési érték

A keletkezett ostream

Ez a dokumentáció az osztályról a következő fájl alapján készült:

· matrix.hpp

8.6. MatrixRow < T > osztálysablon-referencia

A mátrix sora.

```
#include <matrix.hpp>
```

Publikus tagfüggvények

· MatrixRow ()

A mátrix sorának default konstruktora.

MatrixRow (size_t x)

A mátrix sorának konstruktora méret alapján.

MatrixRow (const MatrixRow< T > &mr)

A mátrix sorának copy konstruktora.

MatrixRow< T > & operator= (const MatrixRow< T > &mr)

A mátrix értékadó operátora.

T & operator[] (size_t x)

A mátrix sorának indexelő operátora.

const T & operator[] (size_t x) const

A mátrix sorának indexelő konstans operátora.

∼MatrixRow ()

A mátrix sor destruktora.

Privát attribútumok

T * data

A tárolandó adatokat tartalmazó lista.

size_t xmax

A sor maximális mérete.

8.6.1. Részletes leírás

$$\label{template} \begin{split} \text{template} &< \text{typename T}> \\ \text{class MatrixRow} &< \text{T}> \end{split}$$

A mátrix sora.

Mátrix sorait tároló osztály.

Template Parameters

T	A mátrix sorának a típusa
T	A mátrixban tárolandó adat

8.6.2. Konstruktorok és destruktorok dokumentációja

```
8.6.2.1. MatrixRow() [1/2]
```

A mátrix sorának konstruktora méret alapján.

Paraméterek

```
x A kapott méret
```

8.6.2.2. MatrixRow() [2/2]

A mátrix sorának copy konstruktora.

Paraméterek

```
mr A kapott mátrix sor
```

8.6.3. Tagfüggvények dokumentációja

8.6.3.1. operator=()

A mátrix értékadó operátora.

```
mr A kapott mátrix sor
```

Visszatérési érték

A keletkezett mátrix sor

8.6.3.2. operator[]() [1/2]

A mátrix sorának indexelő operátora.

Paraméterek

```
x melyik elem a sorban
```

Visszatérési érték

Az adatra mutató referencia

8.6.3.3. operator[]() [2/2]

A mátrix sorának indexelő konstans operátora.

Paraméterek

```
x melyik elem a sorban
```

Visszatérési érték

Az adatra mutató referencia

Ez a dokumentáció az osztályról a következő fájl alapján készült:

matrix.hpp

8.7. Vertex < V > osztálysablon-referencia

A csúcs osztály.

#include <vertex.hpp>

Publikus tagfüggvények

• Vertex ()

A csúcs default konstruktora.

Vertex (size_t id)

A csúcs konstruktora.

Vertex (size_t id, V &data)

A csúcs konstruktora.

Vertex (const Vertex &v)

A csúcs copy konstruktora.

Vertex & operator= (Vertex &v)

A csúcs értékadó operátora.

• size_t getID ()

Visszadja a csúcs azonosítóját.

void setData (V d)

Beállítja a csúcs adatát a kapott értékre.

V & getData ()

Visszadja a csúcs adatát.

Privát attribútumok

• size_t id

A csúcs azonosítója.

V data

A csúcshoz tartozó adat.

8.7.1. Részletes leírás

template<typename V> class V=V>

A csúcs osztály.

Template Parameters

8.7.2. Konstruktorok és destruktorok dokumentációja

```
8.7.2.1. Vertex() [1/3]
```

A csúcs konstruktora.

Paraméterek

```
id a kapott azonosító
```

8.7.2.2. Vertex() [2/3]

A csúcs konstruktora.

Paraméterek

id	A kapott azonosító
data	A kapott adat

8.7.2.3. Vertex() [3/3]

A csúcs copy konstruktora.

Paraméterek

```
v A kapott csúcs
```

8.7.3. Tagfüggvények dokumentációja

8.7.3.1. getData()

```
template<typename V>
V& Vertex< V >::getData ( ) [inline]
```

Visszadja a csúcs adatát.

Visszatérési érték

A csúcs adata

8.7.3.2. getID()

```
template<typename V>
size_t Vertex< V >::getID ( ) [inline]
```

Visszadja a csúcs azonosítóját.

Visszatérési érték

A csúcs azonosítója

8.7.3.3. operator=()

A csúcs értékadó operátora.

Paraméterek

```
v A kapott csúcs
```

Visszatérési érték

A keletkezett csúcs

8.7.3.4. setData()

Beállítja a csúcs adatát a kapott értékre.

d A kapott érték

Ez a dokumentáció az osztályról a következő fájl alapján készült:

vertex.hpp

8.8. Graph < T >:: VertexSet osztályreferencia

Csúcsok halmazának tárolására alkalmas osztály.

#include <graph.hpp>

A Graph < T >:: VertexSet osztály származási diagramja:

A Graph < T >:: VertexSet osztály együttműködési diagramja:

Publikus tagfüggvények

VertexSet ()

A csúcshalmaz default konstruktora.

VertexSet (size_t len)

A csúcshalmaz méret alapján történő konstruktora. Itt a méret a halmaz méretét jelenti.

VertexSet (const VertexSet &vs)

A halmaz copy ctorja.

VertexSet & operator= (const VertexSet &vs)

A halmaz = operatora.

Vertex< T > * getVertex (size_t index)

visszaadja a kért csúcsot

• size_t getLen ()

visszaadja a set aktuális méretét

void add (Vertex< T > *v)

Hozzáad a halmazhoz egy új csúcsot.

virtual ∼VertexSet ()

A halmaz osztály destruktora. A csúcsok felszabadítását a Gráf végzi.

Védett attribútumok

• size_t len

Vertex set aktuális mérete.

Vertex< T > ** data

Az adatokat tároló tömb.

8.8.1. Részletes leírás

```
template<typename T> class Graph< T>::VertexSet
```

Csúcsok halmazának tárolására alkalmas osztály.

8.8.2. Konstruktorok és destruktorok dokumentációja

A csúcshalmaz méret alapján történő konstruktora. Itt a méret a halmaz méretét jelenti.

```
len A halmaz mérete
```

```
8.8.2.2. VertexSet() [2/2]
```

A halmaz copy ctorja.

Paraméterek

vs A halmaz, amit másolni szeretnénk.

8.8.3. Tagfüggvények dokumentációja

8.8.3.1. add()

Hozzáad a halmazhoz egy új csúcsot.

Paraméterek

```
v a csúcsra mutató pointer
```

8.8.3.2. getLen()

```
template<typename T>
size_t Graph< T >::VertexSet::getLen ( ) [inline]
```

visszaadja a set aktuális méretét

Visszatérési érték

a méret

8.8.3.3. getVertex()

visszaadja a kért csúcsot

Paraméterek

```
index a csúcs id-je
```

Visszatérési érték

a kért csúcs

8.8.3.4. operator=()

A halmaz = operatora.

Paraméterek

vs az egyenlőségjel jobb oldalán lévő halmazra mutató referencia

Visszatérési érték

Az új halmaz

Ez a dokumentáció az osztályról a következő fájl alapján készült:

• graph.hpp

9. fejezet

Fájlok dokumentációja

9.1. edge.hpp fájlreferencia

edge header

#include "memtrace.h"
#include "vertex.hpp"
Az edge.hpp definíciós fájl függési gráfja:

Ez az ábra azt mutatja, hogy mely fájlok ágyazzák be közvetve vagy közvetlenül ezt a fájlt:

Adatszerkezetek

class Edge < T >

 Él osztály.

Függvények

```
    template<typename F >
        std::ostream & operator<< (std::ostream &os, const Edge< F > &e)
        Az él kiírása.
```

9.1.1. Részletes leírás

edge header

9.1.2. Függvények dokumentációja

9.1.2.1. operator << ()

Az él kiírása.

Template Parameters

F Az él típusa	
----------------	--

Paraméterek

os	A kapott ostream
е	A kapott él

Visszatérési érték

A keletkezett ostream

9.2. ember.cpp fájlreferencia

ember.cpp kód

#include "ember.h"
Az ember.cpp definíciós fájl függési gráfja:

Függvények

• std::ostream & operator<< (std::ostream &os, const Ember &e)

Ember osztály kiíratását megvalósító függvény.

9.2.1. Részletes leírás

ember.cpp kód

9.2.2. Függvények dokumentációja

9.2.2.1. operator << ()

```
std::ostream& operator<< (
          std::ostream & os,
          const Ember & e )</pre>
```

Ember osztály kiíratását megvalósító függvény.

Paraméterek

os	ostream referencia
е	A kapott ember

Visszatérési érték

A keletkezett ostream referencia

9.3. ember.h fájlreferencia

ember.h header

```
#include <iostream>
#include <sstream>
#include <cstdlib>
```

Az ember.h definíciós fájl függési gráfja:

Ez az ábra azt mutatja, hogy mely fájlok ágyazzák be közvetve vagy közvetlenül ezt a fájlt:

Adatszerkezetek

class Ember
 Ember osztály.

9.3.1. Részletes leírás

ember.h header

9.4. graph.hpp fájlreferencia

graph.h header

```
#include <iostream>
#include "memtrace.h"
#include "matrix.hpp"
#include "edge.hpp"
#include "vertex.hpp"
A graph.hpp definíciós fájl függési gráfja:
```


Ez az ábra azt mutatja, hogy mely fájlok ágyazzák be közvetve vagy közvetlenül ezt a fájlt:

Adatszerkezetek

```
• class Graph < T >
```

Graph osztály.

class Graph< T >::VertexSet

Csúcsok halmazának tárolására alkalmas osztály.

class Graph< T >::BFSSet

BFS algoritmushoz készült tároló. A VerexSet-ből származik.

Függvények

```
    template<typename F >
        std::ostream & operator<< (std::ostream &os, Graph< F > &g)
        A gráf kiírását végző függvény.
```

9.4.1. Részletes leírás

graph.h header

9.4.2. Függvények dokumentációja

9.4.2.1. operator << ()

A gráf kiírását végző függvény.

Kirajzolja a gráf szomszédsági mátrixát.

Template Parameters

F A gráf ilyen adatokat tárol	
-------------------------------	--

Paraméterek

os	ostream referencia
g	A kapott gráf

Visszatérési érték

A keletkezett ostream referencia

9.5. main.cpp fájlreferencia

main.cpp forrás

```
#include <iostream>
#include "memtrace.h"
#include "graph.hpp"
#include "ember.h"
```

A main.cpp definíciós fájl függési gráfja:

Függvények

• int main ()

9.5.1. Részletes leírás

main.cpp forrás

9.6. matrix.hpp fájlreferencia

matrix header

```
#include <iostream>
#include <fstream>
#include <iomanip>
#include <cstring>
#include <sstream>
#include "memtrace.h"
```

A matrix.hpp definíciós fájl függési gráfja:

Ez az ábra azt mutatja, hogy mely fájlok ágyazzák be közvetve vagy közvetlenül ezt a fájlt:

Adatszerkezetek

class Matrix< T >

A mátrix osztály.

class MatrixRow
 T >

A mátrix sora.

class Matrix< T >

A mátrix osztály.

class MatrixRowT >

A mátrix sora.

9.6.1. Részletes leírás

matrix header

9.7. vertex.hpp fájlreferencia

vertex header

#include "memtrace.h"

A vertex.hpp definíciós fájl függési gráfja:

Ez az ábra azt mutatja, hogy mely fájlok ágyazzák be közvetve vagy közvetlenül ezt a fájlt:

Adatszerkezetek

class Vertex < V >
 A csúcs osztály.

9.7.1. Részletes leírás

vertex header

Tárgymutató

add	Graph::VertexSet, 52
Graph::VertexSet, 52	getNumberOfEdges
addPrevVertex	Graph, 32
Graph::BFSSet, 20	getNumberOfVertices
	Graph, 32
BFSSet	getSource
Graph::BFSSet, 19	Edge, 24
BFS	getVertex
Graph, 31	Graph::VertexSet, 52
	getVertexFromID
CreateEmber	Graph, 32
Ember, 27	getxmax
Edna	Matrix, 39
Edge	getymax
Edge, 23	Matrix, 40
getDestination, 24	Graph
getID, 24	BFS, 31
getSource, 24	getDataFromID, 31
isConnected, 24	getNumberOfEdges, 32
operator<<, 25	getNumberOfVertices, 32
operator=, 25	getVertexFromID, 32
Edge < T >, 22	Graph, 31
edge.hpp, 55	isConnectedGraph, 33
operator<<, 56	listNeighboursOfVertex, 33
Ember, 26	operator<<, 35
CreateEmber, 27	readAdjMatrixFromFile, 33
Ember, 27	readDataFromFile, 34
operator<<, 28	saveAdjMatrixToFile, 34
operator=, 28	setEdge, 35
ember.cpp, 57	Graph $<$ T $>$, 29
operator<<, 58	Graph< T >::BFSSet, 17
ember.h, 58	Graph< T >::VertexSet, 50
executeOnEveryElement	graph.hpp, 59
Matrix, 39	operator<<, 60
freeCell	Graph::BFSSet
Matrix, 39	addPrevVertex, 20
Wattix, 00	BFSSet, 19
getData	getDistance, 20
Vertex, 48	operator<<, 21
getDataFromID	operator=, 20
Graph, 31	setDistance, 21
getDestination	Graph::VertexSet
Edge, 24	add, 52
getDistance	getLen, 52
Graph::BFSSet, 20	getVertex, 52
getID	operator=, 53
Edge, 24	VertexSet, 51, 52
Vertex, 49	
getLen	isConnected

66 TÁRGYMUTATÓ

Edge, 24	saveMatrixToFile
isConnectedGraph	Matrix, 41
Graph, 33	setData
1 /	Matrix, 42
listNeighboursOfVertex	Vertex, 49
Graph, 33	setDistance
	Graph::BFSSet, 21
main.cpp, 61	setEdge
Matrix	Graph, 35
executeOnEveryElement, 39	setToDefaultValue
freeCell, 39	Matrix, 42
getxmax, 39	
getymax, 40	Vertex
Matrix, 38	getData, 48
operator<<, 42	getID, 49
operator=, 40	operator=, 49
operator[], 40, 41	setData, 49
readMatrixFromFile, 41	Vertex, 47, 48
saveMatrixToFile, 41	Vertex< V >, 47
setData, 42	vertex.hpp, 63
setToDefaultValue, 42	VertexSet
Matrix < T >, 36	Graph::VertexSet, 51, 52
matrix.hpp, 62	
MatrixRow	
MatrixRow, 45	
operator=, 45	
operator[], 46	
MatrixRow $<$ T $>$, 43	
anaratar / /	
operator<<	
Edge, 25	
edge.hpp, 56 Ember, 28	
ember.cpp, 58	
Graph, 35	
graph.hpp, 60	
Graph::BFSSet, 21	
Matrix, 42	
operator=	
Edge, 25	
Ember, 28	
Graph::BFSSet, 20	
Graph::VertexSet, 53	
Matrix, 40	
MatrixRow, 45	
Vertex, 49	
operator[]	
Matrix, 40, 41	
MatrixRow, 46	
readAdjMatrixFromFile	
Graph, 33	
readDataFromFile	
Graph, 34	
readMatrixFromFile	
Matrix, 41	
saveAdjMatrixToFile	
Graph, 34	