

KBL 2021-2022

플레이오프 승부 예측

22년도 1학기 주제분석

범주형자료분석팀 박지성 박지민 서희나 윤경선 이지윤

- I. 분석 주제
- II. 데이터 소개

III. EDA

IV. 변수 선택

V. 예고

l *즉, 각 경기의 승패 여부!!*

분석 주제 데이터 EDA 변수 선택

2주차 분석 흐름

EDA 변수선택 데이터 주제 선정

데이터 수집 범위 설정

₩ 분석 기간

2017년 기준 규칙 변경

① 언스포츠맨라이크 파울 1개 & 테크니컬 파울 1개 → 퇴장

② 벤치 인원이 퇴장 → 감독에게 벤치 파울 부여 → 상대팀에게 자유투 2개 주어짐

₩ 분석 기간 선택

2017-2022년 정규시즌 선수 & 경기 데이터

데이터 수집

KBL 홈페이지에서 2017-2022년 모든 경기의 경기/선수 데이터 크롤링

Date	team	Home/Away	entry	player_num	name	Min	Pts	2PT	3РТ	 DR	тот	DK	AST	то	Stl	BS	PF	FO	PP
1 2019.11.01	인천 전자랜드 엘리펀 츠	Home		20	정영삼	4:25	2	1/1	0/0	 0	0	0	0	0	0	0	1	0	1
2 2019.11.01	인천 전자랜드 엘리펀 츠	Home		1	민성주	16:34	4	2/3	0/1	 3	4	0	1	0	2	0	4	0	2
3 2019.11.01	인천 전자랜드 엘리펀 츠	Home	•	30	박찬희	28:36	14	2/5	2/4	 7	7	0	5	3	0	0	3	2	1
4 2019.11.01	인천 전자랜드 엘리펀 츠	Home		11	홍경기	0:0	0	0/0	0/0	 0	0	0	0	0	0	0	0	0	0
5 2019.11.01	인천 전자랜드 엘리펀 츠	Home	•	6	차바위	27:30	18	1/2	5/5	 0	2	0	0	1	0	0	1	1	1
8 2019.11.30	전주 KCC 이지스	Away	•	43	이대성	33:15	24	0/2	7/16	 1	1	0	3	3	2	0	- 1	5	0
9 2019.11.30	전주 KCC 이지스	Away	•	2	송교창	35:58	7	2/6	0/3	 8	9	0	11	1	2	0	4	4	2
10 2019.11.30	전주 KCC 이지스	Away		9	최승육	5:30	0	0/0	0/0	 0	0	0	0	0	0	0	0	0	0
11 2019.11.30	전주 KCC 이지스	Away		5	유현준	12:15	0	0/0	0/0	 1	1	0	0	3	0	0	2	0	0

EDA 변수선택 데이터 주제선정

데이터 전처리

선수 데이터

정규시즌에 참가 하지 않은 팀 제거

(D리그 / 이벤트성 경기)

Team					
서울삼성					
	라건아드림팀				
오리온	오세근매직팀				
КСС	이정현드림팀				
DB					
전주KCC	서울 삼성				
	고양오리온				

(17) 플레이 시간 **초 단위**로 변경

Min		Min
00:00	30:00 49:00 :50	0
35:30:00		2130
36:49:00		2209
1:50		110
13:05		785

시즌의 독립성 검정

2점 성공률

2점 성공률 수치형 변수 → **범주형**으로 변환

중간값보다 크면 1 작으면 0 부여

시즌(k)을 기준으로 **2점 성공률**(범주)과 **승패**에 관한 분할표 만들기 Breslow-Day test on Homogeneity of Odds Ratios

data: per_point2 X-squared = 3.1854, df = 3, p-value = 0.3639

 H_0 : Homogeneity of odds ratio vs H_1 : not H_0

(p-value < 0.05 기각)

각 시즌별로의 승패에 대한 오즈값이 동질적이다

→ 각 시즌에서 승패에 대한

2점 성공률의 영향은 유사!

파생변수 - 기존 경기 데이터 활용

Q1) 왜 비율로 확인해보고자 하였나요?

단위가 득점인 경우 승/패에 대해 직접적인 지표로써 작용된다고 판단

승패 여부에 영향을 주는지 확인해보자!!

Q2) 왜 4가지의 경우로 더 세분화를 하였나요?

각 독립적인 득점 방법을 하나씩 고려해 봄으로써 결과에

강한 욕인을 죽는 용소가 있는지 파악하고자 함

자유투 득점

페인트 득점

페인트존 외 2점슛 득점

3점슛 득점

1. 총 득점 중 자유투 득점 비율

자유투 득점 비율

가정: 팀별 <mark>자유투 득점</mark> 비율이 높을 수록 정규리그 순위가 높을 것

유의미하지 않다고 판단

파생변수로 사용 X

EDA 변수선택 데이터 주제선정

경기시간 가중평균

(1) 경기시간 가중평균

선수 데이터 기반으로 여러가지 파생변수 생성

우리가 예측하고자 하는 것은

팀 vs 팀의 경기 승패 여부

경기별로 파생변수 할당 필요

Name	Team	Min	파생변수
경선	범주	2400	10
지윤	범주	100	3
희나	범주	500	2

Game	Team	파생변수
1	범주	?

5. KBL Efficiency (가산점 항목)

Efficiency 공식

(득점+스틸+블록슛+수비리바운드)*1.0+(공격리바운드+굿디펜스 +어시스트)*1.5 + 출전시간(분)/4

선수 개개인을 위한 스탯

[(득점+스틸+블록슛+수비리바운드)*1.0+(공격리바운드+어시스트)*1.5]의 가중평균

팀의 전체적인 능력을 위한 스탯

5. KBL Efficiency (가산점 항목)의 가중평균

가정: 팀의 전체적인 능력이 좋을 것으로 예상 특히, 공격 리바운드가 좋을 것으로 기대

유의미한 차이를 <mark>보여</mark> 파생 변수로 활용하기로 결정

EDA 변수선택 데이터 주제선정

7. 변수 범주화

속공에 대한 득점

1718, 1819시즌은 (8, 15) 1920시즌 이후는 (6, 12) 기준

각각 '낮음', '보통', '높음' 으로 범주화

FB_p
4
18
10

변수선택 – (1) eFG vs TS

eFG vs TS

Shapiro-Wilk Test를 통해 변수 간 정규성 검정

> 정규성을 따르지 않는 변수 존재 비모수적 방법 중 하나인 Spearman **상관분석 이용**

변수	P-value
TR	1.981
2P%	0.27
AST_Rating	0.0029

KBL 2021-2022

플레이오프 승부 예측

22년도 1학기 주제분석

범주형자료분석팀 박지성 박지민 서희나 윤경선 이지윤

- l. 변수선택
- II. NBA P/O
 - Ⅲ. 모델링
 - IV. 결과

모델링 결과 NBA P/O 변수선택

차원 축소 (Dimension Reduction)

설명변수 간 상관관계 확인

소수의 예측 변수만을 선택

변수 추출

변환을 통해 새로운 변수 추출

변수들의 조합들 중 상관관계가 높은 조합의

비율이 얼마나 되는지 확인해보자!

변수 간 상관관계 고려 어려움 이때, 변수들의 type에 따라 상이한 상관분석 기법 적용이 줄일 수 있음

상관관계 – 범주형 vs 범주형

카이제곱 검정 통계량을 이용

Crammer 계수가 0.25미만이면 두 변수간 상관성이 거의 존재하지 않는다고 판단

범주형 변수끼리의 연관성 측도 파악

	Home/Away	FB_p	то_р	SC_p	ВС_р	연장여부
Home/Away	0.999	0.020	0.025	0.032	0.028	0.000
FB_p	0.020	1.000	0.181	0.045	0.074	0.018
TO_p	0.025	0.181	1.000	0.058	0.069	0.079
SC_p	0.032	0.045	0.058	1.000	0.057	0.078
BC_p	0.028	0.074	0.069	0.057	1.000	0.073
연장여부	0.000	0.018	0.079	0.078	0.073	0.99
해당 계수의 최대값이 0.181						

→ 범주형 변수들 간 상관성이 거의 존재하지 않음

상관관계 분석

변수 선택

부제 : 변수듀스 101

두 가지의 기준에 대해 <mark>공통적</mark>으로 중요하다고 판단된 변수 최종적으로 선택

① Select K Best 를 통한 타겟 변수와의 상관관계 확인

② KS test , 카이 제곱 검정을 통한 승/패에 따른 이질성 확인

선택된 변수

득점우위시간, TS, eFG, Effi, 최다연속득점, 3P%, 2P%, AST_Rating, TR

추가 데이터 수집

0910 시즌 경기 규칙 변경

① Traveling 규칙 변경

(패스, 정지, 슈팅 전 2 걸음 더 움직일 수 있음 →Foul 기준 달라짐)

② 무조건 5 대 5로 경기

(2008년 12월 30일Portland Trailblazers와 Boston Celtics 경기참고)

2009-2021년 P/O 선수 & 경기 데이터

추가 데이터 전처리

● 필드 골 (FGA, FGM)과 3PT로 2PT, 2P% 생성

FGM	FG3M	FGA	FG3A
4	2	13	3
	•••		
8	3	13	4

2PT성공	2PT시도	2P%
2	10	0.2
5	9	0.556

2PT 성공 = 필드골 횟수 (FGM) - 3점슛 횟수 (FG3M)

2PT 시도 = 필드골 시도(FGA) - 3점슛 시도 (FG3A)

2P% = 2PT성공 / 2PT 시도

샘플링 (Sampling)

① 2122 KBL 팀 별 7개 설명변수에 대한 샘플링 진행

Sampling이란?

무작위로 표본을 추출하는 방법

진행방식 (목표: 경기 데이터(X)값 생성)

① 후보 분포 정의

'norm','t', 'f', 'chi', 'cosine', 'alpha', 'beta', 'gamma', 'dgamma', 'dweibull', 'maxwell', 'pareto', 'fisk'

② Fitter 함수를 사용하여각 설명변수 별로 SSE최소화하는 후보 분포 찾기

③ 각 설명 변수에 적합 된 분포에서 필요한 경기 수 만큼 random하게 하나의 값 선택

예측 흐름

DATA 1718 ~ 2021 KBL 정규시즌

KBL의 농구경기에서 승패에 영향을 주는 중요 **7개 변수** 추출

DATA 0910 ~ 2021 NBA P/O

P/O 예측을 위한 모델 형성

본래 모델을 적합하기 위해선 train set과 Test set이 같은 분포에서 유래 해야함

Why?

NBA P/O는 0910~2021 시즌 데이터

각 팀의 이번 시즌 설명변수를 샘플링을 위해 활용한 KBL P/O는 2021 오직 <mark>한 시즌</mark>,,

예측 흐름

시뮬레이터를 이용

대진표를 토대로 N번의 시뮬레이터 결과로 플레이오프 결과 예측

1번의 시뮬레이션마다 주어진 대진표에 따라 6강부터 4강, 결승까지 진출팀 예측

모델링 결과 NBA P/O 변수선택

예측 흐름 - 평가지표

6 평가지표

실제 결승에 진출한 두 팀의 4강 진출 시 결승 진출 조건부 확률의 조화 평균

한 쪽 팀의 결승 진출 조건부 확률만 잘 예측하는 모델 패널티 부여

P(결승 진출 | 4강 진출)

1 혼동행렬

⑥ F1-Score | 조화평균

불균형한 데이터가 주어졌을 때도 보다 정확한 성능 파악

조화평균을 기하학적으로 접근해보면.

밑변의 길이와 동일한 거리에 떨어진 지점에서 빗변으로의 높이가 곧 조화평균!

조화 평균의 자세한 내용은 범주팀 3주차 클린업 참고!

예측 흐름

경기 승리에 영향을 주는 7개 변수 선택→ 고정!

SVC w. linear kernel

하이퍼 파라미터 튜닝

데이터셋의 구분이 선형적인 관계를 C값을 갖게 튜닝하여 이상치를

일부 허용한다면을 통해 Auxiliary Dataset에 대한 문제를 해결 기대 최적의 결정 경계로 <mark>선명적인 경계를</mark> 생성 (Why? 선명적인 SVM모델)

C: 경계를 결정할 때 이상치를 허용하는 정도

C가 낮은 값을 가진 정확도 간 차이가 크지 않아 과적합을 이상치를 많이 허용 과적합 방지 방지하기 위해 C=0.3으로 채택

모델링 결과 NBA P/O 변수선택

SVM(Support Vector Machine) – 예측 결과

SVM _ Linear

우승 확률 부분에서 실제 순위와 유사하게 예측

실제 결과 1등 서울 SK / 2등 안양 KGC

	Team	4강진출진출	결승진출확률	우승 확률
0	안양KGC	0.675	0.418	0.310
1	울산현대모비스	0.653	0.124	0.023
2	서울SK	1.000	0.816	0.328
3	대구한국가스공사	0.325	0.105	0.048
4	고양오리온	0.347	0.060	0.007
5	수원KT	1.000	0.477	0.284

모델링 NBA P/O 결과 변수선택

SVM(Support Vector Machine) – 결과 해석

6 SVM - 결과 해석

반응변수와 설명변수의 관계가 선형적인 형태를 띔 Ex) 3P%가 높을 수록 승리와 가까워짐

SVM에서의 비선형 커널 함수를 사용하는 것보다 선형적인 경계를 생성하는 것이 효과적

시각화 및 해석

SVM Linear (C: 0.3)

안양이 6강전에서 승리한다면 수원과 4강에서 대결

안양은 0과 1 사이에서 증가, 수원은 증가 없음 안양과 수원의 대결은 안양이 승리할 확률 높음 (실제 경기결과와 동일)

