

Aluno: Jhonatan Guilherme de Oliveira Cunha RA: 2135590

Disciplina: Algoritmo e Estrutura de Dados 2

c)

COMPRIMENTO DA LISTA MAIS LONGA

		N = 1000	N = 10000	N = 50000	N = 100000
M Composto	M = 10	110	923	2587	3129
	M = 100	X	109	274	321
	M = 500	X	X	60	66
	M = 1000	X	X	Х	33
M Primo	M = 7	148	1267	3686	4472
	M = 97	X	108	280	329
	M = 499	X	X	60	66
	M = 997	X	X	X	33

COMPRIMENTO DA LISTA MAIS CURTA

		N = 1000	N = 10000	N = 50000	N = 100000
M Composto	M = 10	86	835	2513	3103
	M = 100	X	67	236	302
	M = 500	X	X	39	56
	M = 1000	X	X	X	26
M Primo	M = 7	123	1181	3590	4422
	M = 97	X	66	243	312
	M = 499	X	X	38	53
	M = 997	X	X	X	27

COMPRIMENTO MÉDIO DAS LISTAS

		N = 1000	N = 10000	N = 50000	N = 100000
M Composto	M = 10	95,2	861,6	2556,3	3115,9
	M = 100	X	86,16	255,63	311,59
	M = 500	X	X	51,126	62,318
	M = 1000	X	X	X	31,159
M Primo	M = 7	136	1230,857	3651,857	4451,285
	M = 97	X	88,824	263,536	321,226
	M = 499	X	X	51,228	62,442
	M = 997	X	X	X	31,252

d) COMPRIMENTO ESPERADO DIANTE DA HIPÓTESE DE HASHING UNIFORME

		N = 1000	N = 10000	N = 50000	N = 100000
M Composto	M = 10	100	1000	5000	10000
	M = 100	X	100	500	1000
	M = 500	X	X	100	200
	M = 1000	x	x	X	100
M Primo	M = 7	142,857	1428,571	7142,857	14285,714
	M = 97	X	103,092	515,463	1030,927
	M = 499	X	X	100,200	200,400
	M = 997	X	X	X	100,300

e) Nos casos avaliados houve alguma diferença significativa no comprimento das listas mais longas e mais curtas entre M primo e M composto? Se sim, em qual(is) caso(s)?

Não houve uma diferença tao significativa.

f)Nos casos avaliados houve alguma diferença significativa no comprimento médio das listas entre M primo e M composto? Se sim, em qual(is) caso(s)?

No geral a média dos valores M primo são maiores que os M compostos. Isto nos mostra que nossa lista permanece melhor balanceada ao utilizar M primos.

g)O comprimento médio das listas (Tabela 3) é comparável ao comprimento esperado diante da hipótese de hashing uniforme (Tabela 4)? O que isso quer dizer?

Em todos os casos o comprimento médio das listas é inferior ao comprimento esperado diante da hipótese de hashing uniforme. Tais valores nos mostram que nossas listas estão bem distribuídas, ou seja, a função de hash modular funciona bem nesses casos.