Quentin Fortier

December 8, 2021

Recherche arborescente

Considérons le problème du sac à dos avec une capacité de 10 et les objets suivants :

Poids	5	8	3
Valeur	45	48	35

Pour le résoudre, on peut faire une **recherche arborescente** : explorer toutes les possibilités.

Recherche arborescente

Poids	5	8	3
Valeur	45	48	35

Arbre des possibilités :

On peut améliorer cette recherche exhaustive de différentes façons.

On peut améliorer cette recherche exhaustive de différentes façons.

Branch and Bound

- Conserver en mémoire la meilleure solution vue jusqu'à présent.
- Avant de visiter un noeud : calculer un majorant sur la valeur maximale atteignable depuis ce noeud.
- Si ce majorant est inférieur à la meilleure solution : ne pas le visiter.

On peut améliorer cette recherche exhaustive de différentes façons.

Branch and Bound

- Conserver en mémoire la meilleure solution vue jusqu'à présent.
- Avant de visiter un noeud : calculer un majorant sur la valeur maximale atteignable depuis ce noeud.
- Si ce majorant est inférieur à la meilleure solution : ne pas le visiter.

<u>Intérêt</u> : Diminuer la taille de l'arbre de recherche donc gagner en rapidité.

ldée de majorant pour le sac à dos :

ldée de majorant pour le sac à dos : la valeur totale qu'on obtiendrait en prenant tous les objets restants.

Poids	5	8	3
Valeur	45	48	35

Meilleure solution : $-\infty$

Meilleure solution : $-\infty$

Meilleure solution : $-\infty$

Meilleure solution: 80

Meilleure solution: 80

 $\label{eq:Meilleure solution: 80} \mbox{Meilleure solution: } 80$

Meilleure solution: 80

 $\label{eq:Meilleure solution: 80} \mbox{Meilleure solution: } 80$

Meilleure solution: 80

Meilleure solution: 80

Relaxer le problème : sac à dos fractionnaire (où on peut prendre une fraction $x \in [0,1]$ d'un objet).

Relaxer le problème : sac à dos fractionnaire (où on peut prendre une fraction $x \in [0,1]$ d'un objet).

Comme une solution du sac à dos est aussi solution du sac à dos fractionnaire, l'optimum du sac à dos fractionnaire est un majorant de l'optimum du sac à dos.

Relaxer le problème : sac à dos fractionnaire (où on peut prendre une fraction $x \in [0,1]$ d'un objet).

Comme une solution du sac à dos est aussi solution du sac à dos fractionnaire, l'optimum du sac à dos fractionnaire est un majorant de l'optimum du sac à dos.

Exercice

Donner un algorithme glouton pour résoudre le sac à dos fractionnaire. Complexité?

Poids	5	8	3
Valeur	45	48	35

On peut généraliser à n'importe quel PLNE à résoudre :

① On résout (avec l'algo. du simplexe) la relaxation du PLNE, ce qui donne une solution $\mathbf{x} = \mathbf{v}$.

- **1** On résout (avec l'algo. du simplexe) la relaxation du PLNE, ce qui donne une solution $\mathbf{x} = \mathbf{v}$.
- Si l'optimum du relaxé est moins bon que la meilleure solution : arrêter la recherche.

- ① On résout (avec l'algo. du simplexe) la relaxation du PLNE, ce qui donne une solution $\mathbf{x} = \mathbf{v}$.
- Si l'optimum du relaxé est moins bon que la meilleure solution : arrêter la recherche.
- Si v est entier, on a résolu le PLNE : mettre à jour la meilleure solution déjà obtenue.

- ① On résout (avec l'algo. du simplexe) la relaxation du PLNE, ce qui donne une solution $\mathbf{x} = \mathbf{v}$.
- Si l'optimum du relaxé est moins bon que la meilleure solution : arrêter la recherche.
- Si v est entier, on a résolu le PLNE : mettre à jour la meilleure solution déjà obtenue.
- \bullet Sinon, soit v_i une coordonnée non entière de \mathbf{v} .

- **1** On résout (avec l'algo. du simplexe) la relaxation du PLNE, ce qui donne une solution $\mathbf{x} = \mathbf{v}$.
- Si l'optimum du relaxé est moins bon que la meilleure solution : arrêter la recherche.
- Si v est entier, on a résolu le PLNE : mettre à jour la meilleure solution déjà obtenue.
- f 0 Sinon, soit v_i une coordonnée non entière de f v. On résout récursivement 2 nouveaux PLNE :
 - En ajoutant la contrainte $x_i \leq \lfloor v_i \rfloor$
 - En ajoutant la contrainte $x_i \ge \lceil v_i \rceil$

Branch and Bound en PLNE: Sac à dos

Poids	5	8	3
Valeur	45	48	35

$$\max 45x_1 + 48x_2 + 35x_3$$
$$5x_1 + 8x_2 + 3x_3 \le 10$$

Poids	5	8	3
Valeur	45	48	35

Optimum relaxé : 92 $x_1 = 1, x_2 = 0.25, x_3 = 1$

 $\max 45x_1 + 48x_2 + 35x_3$ $5x_1 + 8x_2 + 3x_3 \le 10$

Poids	5	8	3	
Valeur	45	48	35	

Optimum relaxé : 92 $x_1 = 1$, $x_2 = 0.25$, $x_3 = 1$

$$\max 45x_1 + 48x_2 + 35x_3 5x_1 + 8x_2 + 3x_3 \le 10$$

$$x_2 \leq 0$$

$$\max 45x_1 + 48x_2 + 35x_3$$
$$5x_1 + 8x_2 + 3x_3 \le 10$$

Poids	5	8	3	
Valeur	45	48	35	

Optimum relaxé : 92
$$x_1 = 1$$
, $x_2 = 0.25$, $x_3 = 1$

$$\max 45x_1 + 48x_2 + 35x_3$$
$$5x_1 + 8x_2 + 3x_3 \le 10$$

$$x_2 \leq 0$$

$$\max 45x_1 + 48x_2 + 35x_3$$
$$5x_1 + 8x_2 + 3x_3 \le 10$$
$$x_2 \le 0$$

Optimum relaxé : **80**
$$x_1 = 1$$
, $x_2 = 0$, $x_3 = 1$

 $x_2 < 0$

Optimum relaxé : 92
$$\mid x_1=1, \; x_2=0.25, \; x_3=1 \mid$$

$$\max 45x_1 + 48x_2 + 35x_3 5x_1 + 8x_2 + 3x_3 \le 10$$

 $x_2 \geq 1$

$$\max 45x_1 + 48x_2 + 35x_3$$
$$5x_1 + 8x_2 + 3x_3 \le 10$$
$$x_2 \le 0$$

Optimum relaxé : **80**
$$\{x_1 = 1, x_2 = 0, x_3 = 1\}$$

$$\max 45x_1 + 48x_2 + 35x_3$$
$$5x_1 + 8x_2 + 3x_3 \le 10$$
$$x_2 \ge 1$$

Optimum relaxé : 71.3
$$x_1 = 0$$
, $x_2 = 1$, $x_3 = \frac{2}{3}$

Poids	5	8	3
Valeur	45	48	35

Optimum relaxé : 92
$$x_1 = 1$$
, $x_2 = 0.25$, $x_3 = 1$

$$\max 45x_1 + 48x_2 + 35x_3 5x_1 + 8x_2 + 3x_3 \le 10$$

 $x_2 \ge 1$

$$\max 45x_1 + 48x_2 + 35x_3$$
$$5x_1 + 8x_2 + 3x_3 \le 10$$
$$x_2 \le 0$$

 $x_2 \leq 0$

Optimum relaxé : **80**
$$x_1 = 1$$
, $x_2 = 0$, $x_3 = 1$

Optimum relaxé : 71.3
$$x_1 = 0$$
, $x_2 = 1$, $x_3 = \frac{2}{3}$

Branch and Bound en PLNE : 2ème exemple

Exercice

Résoudre le PLNE suivant par Branch & Bound (en résolvant les PL relaxés graphiquement) :

$$\min x_1 - 2x_2$$

$$-4x_1 + 6x_2 \le 9$$

$$x_1 + x_2 \le 4$$

$$x_1, x_2 \in \mathbb{N}$$

Branch and Bound en PLNE : 2ème exemple

Branch and bound est très utilisé par les solveurs pour résoudre des PLNE :

https://www.coin-or.org/Cbc/cbcuserguide.html

Coupes (cutting planes)

Soit P un PLNE d'optimum Opt(P) et P' sa relaxation d'optimum $\mathsf{Opt}(P').$

Définition

L'*integrality gap* est défini par $\left| \frac{\mathsf{Opt}(P')}{\mathsf{Opt}(P)} \right|$

S'il est égal à 1, on peut utiliser la relaxation pour résoudre P.

Coupes (cutting planes)

Soit P un PLNE d'optimum Opt(P) et P' sa relaxation d'optimum $\mathsf{Opt}(P').$

Définition

L'*integrality gap* est défini par $\left| \frac{\mathsf{Opt}(P')}{\mathsf{Opt}(P)} \right|$

S'il est égal à 1, on peut utiliser la relaxation pour résoudre P.

ldée des cutting planes : ajouter des contraintes à P sans changer les solutions entières (donc sans changer Opt(P)) mais en rapprochant le gap de 1.

Idée des Gomory cut :

 $\textbf{ 0} \ \, \mathsf{Appliquer I'algo}. \ \, \mathsf{du simplexe sur} \, \, P' \\$

- lacktriangle Appliquer l'algo. du simplexe sur P'
- ${f 2}$ L'algo. termine sur un sommet vérifiant n égalités

- lacktriangle Appliquer l'algo. du simplexe sur P'
- ${f 2}$ L'algo. termine sur un sommet vérifiant n égalités

- lacktriangle Appliquer l'algo. du simplexe sur P'
- ${f 2}$ L'algo. termine sur un sommet vérifiant n égalités
- $oldsymbol{3}$ Supposons que l'une de ces égalités, disons $x_1+\sum_{k=n+1}a_kx_k=b_1$, donne $x_1=b_1\notin\mathbb{N}$
- **4** On ajoute la contraine $x_1 + \sum_{k=n+1} \lfloor a_k \rfloor x_k \leq \lfloor b_1 \rfloor$ à P.

- lacktriangle Appliquer l'algo. du simplexe sur P'
- ${f 2}$ L'algo. termine sur un sommet vérifiant n égalités
- $\textbf{ Supposons que l'une de ces égalités, disons } x_1 + \sum_{k=n+1} a_k x_k = b_1, \\ \text{donne } x_1 = b_1 \notin \mathbb{N}$
- **1** On ajoute la contraine $x_1 + \sum_{k=n+1} \lfloor a_k \rfloor x_k \leq \lfloor b_1 \rfloor$ à P.
- On recommence, jusqu'à obtenir une solution entière.

Relaxation P'

Enveloppe convexe de ${\cal P}$

Un polyhedral cut est une inégalité qui correspond à une face de l'enveloppe convexe de P.

Un polyhedral cut est une inégalité qui correspond à une face de l'enveloppe convexe de P.

Définition

Un **stable** (*independent set* dans un graphe est un ensemble de sommets sans aucune arête.

Un polyhedral cut est une inégalité qui correspond à une face de l'enveloppe convexe de P.

Définition

Un **stable** (*independent set* dans un graphe est un ensemble de sommets sans aucune arête.

Exercice

Exprimer la recherche du stable de taille maximum comme PLNE.

<u>Définition</u>

Une **clique** est un ensemble de sommets tous reliés entre eux.

Définition

Une clique est un ensemble de sommets tous reliés entre eux.

Exercice

Quel est le lien entre clique et stable? Quelle inégalité peut-on ajouter au PLNE des stables à partir de cliques (on peut montrer que ce sont des *polyhedral cuts*)

Branch and Cut

Définition

Branch and Cut = Branch and Bound + Cutting plane

Branch and Cut

Définition

Branch and Cut = Branch and Bound + Cutting plane

Pour résoudre un PLNE :

- Résoudre sa relaxation
- 2 Tant que possible, ajouter des inégalités correspondant à des cutting planes
- 3 Faire du Branch and Bound