Die "bestmöglichen" Dreiecke

Dr. Wolfgang Moldenhauer (Bad Berka), Carsten Moldenhauer (Dresden)

Zur Lösung einer Geometrieaufgabe "Gegeben sei ein Dreieck $ABC\ldots$ " fertigt man zumeist eine Skizze an. Das Dreieck wird gezeichnet. Doch es wird gleichseitig. Die nächste Skizze zeigt ein gleichschenkliges. Ein weiterer Versuch ergibt ein rechtwinkliges – wieder ein Spezialfall. Es wirkt Murphys Gesetz: Wenn etwas schief gehen kann, dann wird es auch schief gehen. (If anything can go wrong, it will.)

Aber: Welches ist denn nun das "beste" Dreieck? Die Suche nach diesem bestmöglichen nichtspeziellen Dreieck basiert auf dem Grundsatz von G. Polya: "Die Figur darf nicht eine unangebrachte Spezialisierung nahe legen" ([1, S. 108]).

Es seien α , β , γ die Größen der Innenwinkel eines spitzwinkligen Dreiecks mit o. B. d. A. $90^{\circ} > \alpha > \beta > \gamma$. Dann misst $90^{\circ} - \alpha$ die Differenz zu einem rechtwinkligen und $\alpha - \beta$ bzw. $\beta - \gamma$ die Differenz zu einem gleichschenkligen bzw. gleichseitigen Dreieck. Es sei $\delta = \min(90^{\circ} - \alpha, \alpha - \beta, \beta - \gamma)$. Da δ den kleinsten Abstand zu den Spezialfällen (rechtwinklig, gleichschenklig, gleichseitig) misst, unterscheidet sich das Dreieck mit dem größten δ dann am meisten von den Spezialfällen.

Nun gilt für das gewichtete arithmetische Mittel der Differenzen $90^{\circ} - \alpha$, $\alpha - \beta$, $\beta - \gamma$ die Beziehung

$$\frac{3 (90^{\circ} - \alpha) + 2 (\alpha - \beta) + (\beta - \gamma)}{6} = \frac{270^{\circ} - (\alpha + \beta + \gamma)}{6} = 15^{\circ}.$$

Ist $\alpha = 75^{\circ}$, $\beta = 60^{\circ}$, $\gamma = 45^{\circ}$, so gilt $\delta = 15^{\circ}$. Gilt aber nicht $\alpha = 75^{\circ}$, $\beta = 60^{\circ}$, $\gamma = 45^{\circ}$, so ist eine der drei genannten Differenzen nach dem Schubfachschluss kleiner als 15° . Mithin:

Satz 1 Das bestmögliche nicht-spezielle spitzwinklige Dreieck hat die Innenwinkel $\alpha = 75^{\circ}$, $\beta = 60^{\circ}$, $\gamma = 45^{\circ}$ und es ist $\delta = 15^{\circ}$.

Jetzt seien α , β , γ die Größen der Innenwinkel eines stumpfwinkligen Dreiecks mit o. B. d. A. $\alpha > 90^{\circ} > \beta > \gamma$. Das Minimum der Differenzen $\alpha - 90^{\circ}$, $90^{\circ} - \beta$, $\beta - \gamma$, $\gamma - 0^{\circ}$ (sie messen wieder die Abweichungen von den Spezialfällen.) muss wieder möglichst groß sein. Mit $\alpha = 180^{\circ} - \beta - \gamma$ ist $\alpha - 90^{\circ} = 90^{\circ} - \beta - \gamma < 90^{\circ} - \beta$, so dass die Differenze $90^{\circ} - \beta$ nicht weiter einzubeziehen ist. Für das gewichtete arithmetische Mitte der Differenzen $\alpha - 90^{\circ}$, $\beta - \gamma$, $\gamma - 0^{\circ}$ gilt

$$\frac{(\alpha-90^\circ)+(\beta-\gamma)+2\;(\gamma-0^\circ)}{4}=\frac{\alpha+\beta+\gamma-90^\circ}{4}=22,5^\circ\,.$$

Für $\alpha=112,5^{\circ},\ \beta=45^{\circ},\ \gamma=22,5^{\circ}$ ist $\delta=22,5^{\circ}.$ Gilt aber nicht $\alpha=112,5^{\circ},\ \beta=45^{\circ},\ \gamma=22,5^{\circ},$ so ist eine der drei genannten Differenzen nach dem Schubfachschluss kleiner als $22,5^{\circ}.$ Also gilt:

Satz 2 Das bestmögliche nicht-spezielle stumpfwinklige Dreieck hat die Innenwinkel $\alpha = 112, 5^{\circ}$, $\beta = 45^{\circ}$, $\gamma = 22, 5^{\circ}$ und es ist $\delta = 22, 5^{\circ}$.

For the KoSemNet project see http://www.lsgm.de/KoSemNet.

This material belongs to the Public Domain KoSemNet data base. It can be freely used, distributed and modified, if properly attributed. Details are regulated by the *Creative Commons Attribution License*, see http://creativecommons.org/licenses/by/3.0.

In [2] wird $\alpha=80^\circ$, $\beta=60^\circ$, $\gamma=40^\circ$ mit dem Abstand $\delta=10^\circ$ zu den Spezialfällen (gleichseitig, rechtwinklig und gleichschenklig) und für stumpfwinklige Dreiecke $\alpha=108^\circ$, $\beta=54^\circ$, $\gamma=18^\circ$ mit $\delta=18^\circ$ angegeben. Diese angegebenen Werte führen nicht auf das beste δ .

Literatur:

- [1] Polya, George: Schule des Denkens. A. Franke Verlag, Tübingen und Basel 1995.
- [2] Hendriks, Björn, Schöbel, Konrad: Immer Ärger mit den Dreiecken Wurzel 9+10/02, S. 226-229.

Attribution Section

moldenhauer (2006-07-20): Text für KoSemNet freigegeben. graebe (2006-08-10): Umsetzung in LATEX für das KoSemNet-Projekt.