1. VÁRHATÓ ÉRTÉKRE VONATKOZÓ PRÓBÁK

(1) Egy teherautórakománnyi félliteres üdítőitalból 10 palackot véletleszerűen kiválasztva és lemérve azok űrtartalmát az alábbi, milliliterben kifejezett értékeket kaptuk:

499, 525, 498, 503, 501, 497, 493, 496, 500, 495

Ismert, hogy a palackokba töltött üdítőital mennyisége normális eloszlású 3 ml szórással. 95%-os döntési szintet használva vizsgálja meg a gyártó azon állítását, hogy a palackokba átlagosan fél liter üdítőitalt töltöttek!

(2) Az *Ezt idd teá*t 200 grammos dobozokban árulják, a csomagológép szórása 4 gramm. A Fogyasztóvédelmi Felügyelőség lemérte öt véletlenszerűen kiválasztott teásdoboz tömegét, melyekre az alábbi grammban kifejezett értékek adódtak:

196, 202, 198, 197, 190

Hipotéziseit pontosan megfogalmazva és feltételezve, hogy a teásdobozok tömege normális eloszlást követ, döntsön 98%-os szinten, hogy az átlagos töltőtömeg tényleg 200 gramm, avagy kevesebb annál!

(3) Egy gabonaraktárban 60 kg-os kiszerelésben búzát csomagolnak. A havi minőségellenőrzés során azt is meg akarták vizsgálni, hogy a raktárból kikerülő zsákokban tényleg 60 kg búza van-e, ezért lemértek tíz darab véletlenül kiválasztott zsákot. Eredményül a következőket kapták:

Hipotéziseit pontosan megfogalmazva döntsön 95%-os szinten arról, hogy a zsákok átlagos töltőtömege tényleg 60 kg-e! Feltételezzük, hogy a zsákok töltőtömege normális eloszlású.

(4) Egy üzem gyártósorán az egyik szerelési feladatra megadott szintidő 9 perc. Az e ponton dolgozó alkalmazottak már több kérvényben kérték a szintidő felemelését, mivel véleményük szerint az nem elegendő a feladat elvégzésére. Az üzem vezetősége egy ellenőrt küldött ki, aki 12 véletlenszerűen kiválasztott alkalommal megmérte a feladat elvégzéséhez szükséges időt. Az eredmények az alábbiak:

$$9.4, 8.8, 9.3, 9.1, 9.4, 8.9, 9.3, 9.2, 9.6, 9.3, 9.3, 9.1$$

Feltételezve, hogy a feladat elvégzéséhez szükséges idő normális eloszlású, hipotéziseit pontosan megfogalmazva döntsön 99%-os szinten, igazuk van-e a munkásoknak!

(5) Az atlétikai világbajnokságon résztvevő kokszföldi csapat néhány versenyzője arra panaszkodott, hogy a leadott doppingtesztjeiket nem megfelelően analizálták és az egyik szernek túlságosan magas koncentrációját mutatták ki, minek következtében a versenybíróság törölte az eredményeiket. A Kokszföldi Atlétikai Szövetség a laboratóriumot tesztelendő nyolc mintát küldött, melyek mindegyikében a kérdéses anyag koncentrációja pontosan 0.500 g/l volt. A laboratórium az alábbi eredményeket szolgáltatta:

0.485, 0.518, 0.460, 0.530, 0.560, 0.550, 0.490, 0.575.

A laboratórium méréseit normális eloszlásúnak tételezve fel, döntsön 95%-os szinten, igazuk van-e az atlétáknak!

2. Szórásnégyzetre/szórásra vonatkozó próba

(1) Űrlapok kitöltésével kapcsolatos - monoton - munkát végzők bizonyos hibaszázalékkel dolgoznak. A feltételezések szerint egy hónapban 35 darab az elrontott űrlapok várható száma. A vizsgált változó normális eloszlása feltételezhető. A szórás korábbi tapasztalatok szerint 6 darab. A tíz főre kiterjedő mintában az elrontott űrlapok szám egy hónapban az alábbi volt:

Hipotézisét pontosan megfogalmazva 95%-os szinten döntsön arról, hogy a hibás űrlapok számának szórása lehet-e 6 darab!

(2) Egy csővágó-automata gépnek 1200 mm hosszú csődarabokat kell levágnia. A gyártásközi ellenőrzés feladata annak megállapítása, hogy a gép által gyártott darabok hosszmérete megfelel-e az előírásoknak. Előző adatfelvételből ismert, hogy a szóban forgó gép által gyártott darabok hossza normális eloszlású 3 mm szórással. A gyártásközi ellenőrzéshez kiválasztottak egy 16 elemű mintát. A csődarabok hossza a mintában:

1208, 1204, 1202, 1202, 1194, 1195, 1205, 1194, 1197, 1193, 1205, 1202, 1191, 1195, 1194, 1187

A gyár részlegvezetője azt mondja, hogy a csövek hosszának szórása nem haladja meg a 3 mm-t. Hipotézisét pontosan megfogalmazva döntsön 99%-os szinten arról, hogy igaza van-e a részlegvezetőnek!

(3) Egy konzervgyárban a sűrített paradicsom töltését automata gép végzi. A dobozok névleges súlya 450 g, amitől csak véletlenszerű eltérések megengedettek. A töltési súly megengedett szórása 10 g. A súly szerinti eloszlás normálisnak tekinthető. A gyár az egyik szállítmányból 25 elemű mintát vett, a

mintában a dobozok átlagsúlya 446 g volt, a szórás pedig 11 g.

- a) Hipotézisét pontosan megfogalmazva, 90%-os szinten döntsön arról, hogy a névleges töltősúly valóban 450 g-e!
- b) Hipotézisét pontosan megfogalmazva, 98%-os szinten döntsön arról, hogy a töltősúly szórása lehet-e 10 g!

(4) Egy szupermarketben fél kilogrammos darált húst árusítanak. A súly megengedett szórása kevesebb, mint 10 gramm. A Fogyasztóvédelmi Felügyelőség munkatársai 30 véletlenszerűen kiválasztott csomagot megmértek, és azt találták, hogy ezek súlyának átlaga 446 gramm, szórása pedig 20 gramm. A csomagok súlya normális eloszlásúnak tekinthető.

Hipotézisét pontosan megfogalmazva, döntsön 95%-os szinten arról, hogy teljesül-e a szórásra vonatkozó előírás!

(5) A Felsőkutyfalvi Kerékpárüzem kerékrészlegének vezetője arra gyanakszik, hogy az egyik beszállító által készített küllők hosszúsága igencsak változékony. Gyanújának ellenőrzése céljából az adott beszállító termékeiből véletlenszerűen kiválasztott 20 darabot és megmérte azok hosszát. A hossz szórásnégyzetének a minta alapján számolt torzítatlan becslése (azaz a minta korrigált tapasztalati szórásnégyzete) 1.0369 mm². A beszállító állítása szerint a küllők hosszának szórása 0.75 mm.

A küllők hosszát normális eloszlásúnak tételezve fel ellenőrizze, megalapozotte a részlegvezető gyanúja! Döntsön 95%-os szinten!

3. Sokasági arányra vonatkozó próba

(1) Egy négy évvel ezelőtti felmérés során azt az eredményt kapták, hogy egy középiskola diákjainak 43%-a nézte az Eurovíziós Dalfesztivál magyarországi nemzeti válogatóját. A napokban hasonló felmérést végeztek az iskolában és 750 megkérdezett közül 550 diák nézte idén a nemzeti válogatót. 90%-os szinten döntsön arról, hogy változott-e a fesztivál nemzeti döntőjét nézők aránya a négy évvel ezelőttihez képest!

(2) Az egyik élelmiszerbolt-hálózat üzleteibe érkező import baracknak eddig átlagosan 15%-a sérült meg szállítás közben. Miután beszállítót váltottak, az új

beszállítót!

95%-os szinten döntsön abban a kérdésben, hogy megérte-e lecserélni a régi

szállítmányból megvizsgáltak 50 barackot. Ezek között 3 sérültet találtak.

állítás!

bal kézzel.

Ellenőrizze 95%-os szinten, hogy elfogadható-e a balkezesek arányára vonatkozó

(4) Egy felmérés során a háztartások mikrohullámú sütővel való ellátottságát vizsgálták. A véletlenszerűen kiválasztott 1000 háztartás 56%-ában találták

mikrohullámú sütővel.

meg a kérdéses háztartási gépet. 95%-os döntési szintet használva vizsgálja

meg azt az állítást, miszerint a háztartások kevesebb, mint 60%-a rendelkezik

(5) A Kiskacsa Párt jelenleg nem tagja a parlamentnek, de a vezetői állítják, hogy bejutnak a közelgő válsztásokon. A bejutási határ 5%. Előzetes felmérés

alapján 600 megkérdezettből 16-an szavaznának a Kiskacsa Pártra, 400-an a

van-e a Kiskacsa párt vezetőinek!

kormánypártra és 184-en az ellenzékre. Döntsön 95%-os szinten, hogy igaza

4. KÉT VÁRHATÓ ÉRTÉKRE VONATKOZÓ PRÓBÁK

(1) Kétfajta instant kávé oldódási idejét tesztelték, melyekből minden alkalommal azonos menynyiséget tettek 1 dl forrásban lévő vízbe. A kísérletek eredményei az alábbiak voltak:

Mokka Makka: 8.2, 5.0, 6.8, 6.7, 5.8, 7.3, 6.4, 7.8

Koffe In: 5.1, 4.3, 3.4, 3.7, 6.1, 4.7

Az oldódási időket normálisnak tételezve fel, 95%-os szinten vizsgáljuk meg azt az állítást, hogy a Mokka Makka kávé lassabban oldódik, mint a Koffe In!

(2) Az angliai New Dumber golflabdagyárában egy újfajta golflabda borítást fejlesztettek ki. A tesztek azt mutatták, hogy ez az új borítás jóval ellenállóbb, mint a hagyományos. Felmerült azonban a kérdés hogy az új borítás nem változtatja-e meg az átlagos ütéstávolságot. Ennek eldöntésére 42 labdát próbáltak ki, 26 hagyományosat és 16 labdát az újak közül. A labdákat géppel lőtték ki, elkerülve ezzel az emberi tényező okozta szóródást. A yardban mért ütéstávolságok összesítő adatait, mely távolságokat mindkét esetben normális eloszlásúnak tételezzük fel, az alábbi táblázat tartalmazza:

			korrigált empirikus
borítás	mintaelemszám	mintaátlag	szórásnégyzet
Hagyományos	26	271.4	35.58
Új	16	268.7	48.47

90%-os szinten vizsgáljuk meg, hogy az új borítás megváltoztatja-e az átlagos ütéstávolságot!

(3) Egy átlagos januári napon 6 InterCity vonatot vizsgáltak, hogy mennyi idő alatt (perc) teszi meg a Debrecen-Budapest utat. A menetidők:

Két nap múlva leesett 10 cm hó. Ezen a napon 7 InterCity vonat menetidejét (perc) mérték le Debrecen és Budapest között. Akkor az alábbi időket kapták:

A vonatok menetidejét normális eloszlásúnak tekintjük. Az utasok szerint a hóesés több mint 10 perces késést eredményezett ezen a vonalon.

- (a) 95%-os szinten döntsünk, igazuk van-e az utasoknak!
- (b) 95%-os szinten döntsünk, igazuk van-e az utasoknak, ha korábbi tapasztalatokból tudjuk, hogy amikor nincs hó, akkor a menetidő szórása 3 perc, míg hóeséskor 10 perc!

(4) Egy kiterjedt népegészségügyi vizsgálat során megállapították, hogy az egészséges felnőtt populáció esetén a diasztolés (alsó) vérnyomás értékek átlaga 84.8 higanymilliméter, szórása pedig 12.8 higanymilliméter. Az Alsóbezgenyei Atlétikai Klub hat véletlenszerűen kiválasztott versenyzőjénél a klub sportorvosa az alábbi diasztolés értékeket jegyezte fel:

(a) A sportorvos ezek alapján úgy gondolta, hogy az atléták átlagos diasztolés vérnyomása alacsonyabb, mint 84.8. Feltételezve, hogy az atléták diasztolés vérnyomása normális eloszlást követ, szórása pedig megegyezik a teljes populációra kapott értékkel (12.8 higanymilliméter), döntsön 95%-os szinten, igaza van-e a doktornak!

Az Alsóbezgenyei Sakk Klub versenyzői szintén meglátogatták a fent említett doktort, aki az Ő esetükben is feljegyezte hat véletlenszerűen kiválasztott sportoló diasztolés vérnyomás értékét, melyek az alábbiak:

(b) Hipotéziseit pontosan megfogalmazva döntsön 95%-os szinten, hogy a sakkozók átlagos diasztolés vérnyomása magasabb-e, mint az atlétáké! A sakkozók diasztolés vérnyomásáról szintén feltehetjük, hogy normális eloszlást követ, szórása pedig megegyezik a teljes népesség körében mért értékkel.

(5) Egy felmérésben 12 azonos életkorú sportoló pulzusát mérik terhelés után azonnal és egy perc múlva. Az eredmények az alábbiak voltak:

sportoló	1	2	3	4	5	6	7	8	9	10	11	12
azonnal	170	165	148	175	165	140	160	145	160	140	156	140
1 perc múlva	140	160	140	136	160	130	110	125	113	132	150	132

Döntsön 90%-os szinten arról, hogy igaz-e, hogy a terhelés után egy perccel átlagosan 20-szal kevesebb a sportolók pulzusa!

(6) Az Árelhajlásvizsgáló Hivatal összehasonlította két konkurens hipermarket élelmiszerárait. Tíz véletlenszerűen kiválasztott terméket vizsgáltak, melyek árait az alábbi táblázat tartalmazza:

Termék	1	2	3	4	5	6	7	8	9	10
Alfa Hipermarket	464	158	376	112	98	92	38	74	66	38
Beta Hipermarket	432	148	416	104	84	98	36	62	76	34

Az árkülönbségeket normális eloszlásúnak tételezve fel döntsön 95%-os szinten, van-e eltérés a két hipermarket élelmiszereinek árszintje között!

(7) A Mindent Tudás Egyeteme másodéves közgazdász hallgatói két zárthelyi dolgozatot írtak statisztikából. Az alábbi táblázat tíz véletlenszerűen kiválasztott hallgató eredményeit tartalmazza:

Hallgató	\mathbf{A}	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	G	Н	Ι	J
I. dolgozat	57	63	67	82	45	65	53	32	51	27
II. dolgozat	53	62	63	80	46	64	44	28	50	29

A dolgozateredmények eltérését normális eloszlásúnak tételezve fel, döntsön 95%-os szinten, van-e különbség a két dolgozat nehézségi foka között!

5. KÉT SZÓRÁSNÉGYZETRE/SZÓRÁSRA VONATKOZÓ PRÓBA

(1) Kétfajta instant kávé oldódási idejét tesztelték, melyekből minden alkalommal azonos menynyiséget tettek 1 dl forrásban lévő vízbe. A kísérletek eredményei az alábbiak voltak:

Mokka Makka: 8.2, 5.0, 6.8, 6.7, 5.8, 7.3, 6.4, 7.8

Koffe In: 5.1, 4.3, 3.4, 3.7, 6.1, 4.7

Az oldódási időket normálisnak tételezve fel, 95%-os szinten igazoljuk, hogy nincs különbség az oldódási idők szórása között!

(2) Egy bevásárlóközpontban lévő 3-6 éves gyerekek részére kialakított játékházban egy új készségfejlesztő játék fogadtatását tesztelik az ott megfordulók közül véletleszerűen kiválasztott fiúk és lányok segítségével. A mintába került gyerekek néhány jellemzője:

nem	mintaelemszám	átlagos játszási idő	idő szórása	
	$(f\ddot{o})$	(perc)	(perc)	
fiú	21	30	10	
lány	25	25	9	

A játékkal töltött időt normális eloszlásúnak tekintjük. Döntsön 95%-os szinten, hogy azonosnak tekinthető-e a fiúk és a lányok adott játékkal töltött idejének szórása!

- (3) Két különböző típusú mérleg összehasonlítására kísérletsorozatot végeztek olyan módon, hogy ugyanazt a tárgyat többször mérték meg mindkét mérlegen. Az egyiken 30, a másikon 41 mérést végeztek, az eredmények szórása 72 és 98 mg volt. A mérési eredmények eloszlása mindkét esetben normálisnak tekinthető.
 - 95%-os szinten ellenőrizze, hogy a második mérleg valóban nagyobb szórással mér-e!

(4) Az angliai New Dumber golflabdagyárában egy újfajta golflabda borítást fejlesztettek ki. A tesztek azt mutatták, hogy ez az új borítás jóval ellenállóbb, mint a hagyományos. Felmerült azonban a kérdés hogy az új borítás nem változtatja-e meg az átlagos ütéstávolságot. Ennek eldöntésére 42 labdát próbáltak ki, 26 hagyományosat és 16 labdát az újak közül. A labdákat géppel lőtték ki, elkerülve ezzel az emberi tényező okozta szóródást. A yardban mért ütéstávolságok összesítő adatait, mely távolságokat mindkét esetben normális eloszlásúnak tételezzük fel, az alábbi táblázat tartalmazza:

			korrigált empirikus
borítás	mintaelemszám	mintaátlag	szórásnégyzet
Hagyományos	26	271.4	35.58
Új	16	268.7	48.47

90%-os szinten igazoljuk, hogy nincs különbség az ütéstávolságok szórása között!

(5) Valamely bűncselekménytípus áldozataira vonatkozó rendőrségi feljegyzésekből vett 100-100 elemű véletlen minta adatai két egymást követő évben:

év	60 évnél fiatalabbak aránya	életkor átlaga	életkor szórása
2002	20	68	11
2003	18	71	10

Feltéve, hogy az életkor normális eloszlású, döntsön 95%-os szinten, hogy csökkent-e az életkor szórása!

6. KÉT SOKASÁGI ARÁNYRA VONATKOZÓ PRÓBA

(1) Egy áruházból kifelé menet 500 főt, köztük 350 nőt és 150 férfit kérdeztek meg véletleszerűen arról, hogy vásárolt-e. A nők közül 210-en, a férfiak közül 60-an válaszoltak igennel.

95%-os szinten ellenőrizze, hogy igaz-e az a feltevés, hogy a nők több mint 10%-kal nagyobb arányban vásárolnak, mint a férfiak!

változatlan árú 460 db szappant adtak el, ebből 138 db volt *Kék-Vörös* márkájú. Miután a *Kék-Vörös* szappan csomagolását megváltoztatták, újabb tíznapos megfigyelés szerint 400 eladott szappan közül 160 db volt a *Kék-Vörös* márkájú.

(2) Egy kozmetikumokat árusító üzletben tíz nap alatt változatlan minőségű és

Állítható-e 99%-os szinten, hogy az új csomagolás növeli a *Kék-Vörös* piaci részesedését?

(3) Egy piackutató intézet rendszeresen végez kérdőíves közvélemény-kutatást a politikai élet szereplőinek ismertségére és kedveltségére vonatkozóan 1000 fős minta alapján. Két politikus augusztusi és szeptemberi ismertségi indexei (%):

politikus	augusztus	szeptember
A	69	71
В	74	80

- (a) Ellenőrizze 95%-os szignifikanciaszinten, hogy nőtt-e az "A" politikus ismertsége!
- (b) Ellenőrizze 95%-os szignifikanciaszinten, hogy szeptemberben a "B" politikus több mint 5%-kal ismertebb, mint az "A" politikus!

(4) Valamely bűncselekménytípus áldozataira vonatkozó rendőrségi feljegyzésekből vett 100-100 elemű véletlen minta adatai két egymást követő évben:

év	60 évnél fiatalabbak aránya	életkor átlaga	életkor szórása
2002	20	68	11
2003	18	71	10

Döntsön 95%-os szinten arról, hogy változott-e a 60 éven aluli áldozatok aránya!

(5) Magyarországon nemrég végeztek felmérést abban a kérdéskörben, hogy menynyire támogatnák szélerőművek építését. A kérdés az alábbi volt: "Ha az ország villamosenergia-szükségletének fedezésére szélerőműveket kellene építeni, egyetértene-e ezzel?". Két különböző mintában némileg eltérő volt a kérdés vége. Az 1. változatban a kérdés vége az volt, hogy "ez az Ön környezetében épülne", míg a 2. változatban "valahol az országban, ahol jók a szélviszonyok". A mintaelemszámok 200, illetve 300 fő, a válaszok megoszlása pedig az alábbi volt:

válasz	az Ön környezetében (%)	a megfelelő helyen (%)
igen	61	68
nem	39	32

Vizsgálja meg 95%-os biztonsággal, hogy szignifikánsan kevesebben támogatjáke a szélerőműveket azok között, akik környezetében építenék!

7. Varianciaanalízis

(1) Egy vizsgálat során azt próbálták kideríteni, hogy a diákok tanulási hatékonysága függ-e a tanulási szokásaiktól. Ennek érdekében a kísérletben részvevők kaptak egy szöveget, amit háromféle módszerrel memorizálhattak: csak olvasással, olvasva és aláhúzva a fontosabb részeket, olvasva és kijegyzetelve a lényeges dolgokat. Egy hét elteltével ugyanezek a diákok írtak egy felmérőt, amiben a kapott szöveg tartalmáról kérdezték őket. A felmérők eredményeinek (pontszámainak) összesítését az alábbi táblázat tartalmazza:

tanulási módszer	a felmérő eredménye
olvas	15 14 18 13 11 14 13
olvas és aláhúz	16 20 18 17 14
olvas és jegyzetel	18 17 23 16 19 22 20 25

Hipotéziseit pontosan megfogalmazva döntsön 95%-os szinten, igaz-e hogy a tanulás módja befolyásolja annak hatékonyságát!

(2) A Debreceni Egyetem egyik oktatója minden hétfőn, szerdán és pénteken autóval jár ki a Tócóskertből a város másik végén fekvő Kassai úti Campusra. Otthonról mindig azonos időben indul el és ugyanazon az útvonalon autózik. Úgy érzi azonban, hogy a menetideje függ attól, hogy a hét melyik napján van órája. Ezért aztán márciusban, áprilisban és májusban véletlenszerűen kiválasztott 5-5 hétfőt, szerdát és pénteket és lejegyezte a menetidőket. Adatainak összegzését az alábbi táblázat tartalmazza:

nap	menetidő
hétfő	28 34 29 34 30
szerda	24 27 25 25 22
péntek	25 28 27 26 21

Hipotéziseit pontosan megfogalmazva döntsön 95%-os szinten, igaz-e a szeminári-umvezető sejtése!

(3) A Budapesti Értéktőzsdén 2003. február és április között tíz hétig figyelték a MATÁV-részvény forgalmát (az adatok ezer darabra kerekítve, a napi forgalom normális eloszlása feltételezhető):

hét	hétfő	kedd	szerda	csütörtök	péntek
1.	1794	795	1567	2116	1728
2.	1794	3137	827	1644	1249
3.	488	838	954	1110	955
4.	866	1509	2305	1484	1024
5.	3790	1276	2030	851	3458
6.	1902	1894	1388	1007	2270
7.	2849	4500	1317	449	595
8.	1995	1467	1762	4305	3226
9.	4900	1463	2780	1862	1595
10.	1659	1685	2656	991	320

Hipotéziseit pontosan megfogalmazva döntsön 95%-os szinten, hogy a hét napjain azonos-e az átlagos forgalom!

(4) Egy egészségügyi kutatócsoport öt különböző fogyókúra-eljárást kívánt összehasonlítani. A vizsgálatra 25 túlsúlyos személyt kértek fel, akiket öt csoportba soroltak be. Egy hónapon keresztül alkalmazták az egyes eljárásokat. (Minden eljárás esetén feltételezhető a súlycsökkenés normális eloszlása, és az egyes eljárások esetén a súlyveszteségek szórása között nincs szignifikáns különbség.)

eljárás	súlyveszteség (kg)						
A	13	16	16	15	15		
В	7	4	7	8	9		
С	12	8	6	9	10		
D	6	10	5	7	7		
Е	9	11	13	11	11		

95%-os szignifikanciaszinten ellenőrizze, hogy van-e különbség az egyes eljárások között a hatékonyság szempontjából!

(5) Egy cég négy különböző típusú autógumi kopásállóságát vizsgáltatta meg. Az 5-5 elemű mintákban a futófelület kopása alapján meghatározott élettartamuk ezer km-ben kifejezve az alábbiak voltak:

típus	kopásállóság (ezer km)				
A	53	61	58	56	57
В	51	60	64	67	58
С	46	50	57	50	47
D	50	59	53	56	47

Az élettartamok normális eloszlású, azonos szórású változóknak tekinthetőek. Varianciaanalízis felhasználásnak segítségével ellenőrizze 95%-os szinten, hogy az egyes abroncsok kopásállósága azonosnak tekinthető-e.

8. Függetlenségvizsgálat

(1) Az egyik közvéleménykutató cég 2002-ben felmérést végzett az akkor futó valóságshow-król. A kérdés így szólt: A két kerekedelmi adón sugárzott Big Brother és Való Világ valóságshow-k közül Ön melyiket szokta többet nézni? A felmérés során arra is rákérdeztek, hogy mi a válaszadók legmagasabb végzettsége. A kapott eredményeket egy táblázatba foglalták:

	Big Brother	Való Világ	összesen
8 osztály	953	1610	2563
gimnázium/középiskola	1112	1076	2188
egyetem/főiskola	1319	667	1986
összesen	3384	3353	6737

Döntsön 97,5%-os szinten arról, hogy befolyásolja-e a végzettség azt, hogy melyik valóságshow-t nézték az emberek!

(2) Egy Maradj talpon! rajongó a műsor eddigi összes adását látta. A rajongó feljegyezte, hogy a középen álló nő és férfi kihívók közül hányan nyertek és hányan tértek haza üres kézzel. Az eredményeket az alábbi táblázatba foglalta össze:

	férfi	nő	összesen
nyert	48	49	97
nem nyert	62	57	119
összesen	110	106	216

Vizsgálja meg 95%-os biztonsággal, hogy van-e összefüggés a kihívó játékosok neme és a között, hogy nyertek-e!

(3) Közlekedésbiztonsági szervek 1000 személyi sérüléses közúti balesetet vizsgáltak meg aszerint, hogy milyen súlyos volt a baleset, és a baleset alkalmával a sérült viselt-e biztonsági övet. A kapott eredmények az alábbiak voltak:

baleset	viselt övet	nem viselt övet	összesen
könnyű	510	120	630
súlyos	120	150	270
halálos	70	30	100
összesen	700	300	1000

Ellenőrizze 99%-os biztonsággal, hogy a baleset kimenetele független-e attól, hogy az illető viselt-e biztonsági övet!

(4) Egy közvélemény-kutatás során az egyik gazdasági témájú TV-műsorról a következő kép alakult ki a diplomások körében:

	jó	megfelelő	rossz	összesen
közgazdász	100	200	100	400
jogász	100	60	40	200
egyéb diplomás	100	60	40	200
összesen	300	320	180	800

Tesztelje 95%-os szinten a foglalkozás jellege és a TV-műsor minősítése közötti kapcsolatot!

(5) 2001-ben a szállodai vendégek közül véletlenszerűen kiválasztott 400-elemű minta adatai a szálloda besorolása és elhelyezkedése szerint:

	5*	4*	3*	2*	1*	összesen
belföldi	5	25	80	35	15	160
külföldi	25	85	110	15	5	240
összesen	30	110	190	50	20	400

Ellenőrizze 95%-os szinten a minta alapján, hogy befolyásolja-e a vendégeket az, hogy milyen a szálloda besorolása és hogy hol helyezkedik el a szálloda!

9. Illeszkedésvizsgálat

(1) Egy újonnan kifejlesztett müzli ötféle magot (A, B, C, D és E) tartalmaz, melyek százalékos megoszlása a terméken lévő tájékoztató szerint 35%, 25%, 20%, 10%, illetve 10%. Egy véletlenül kiválasztott zacskóban az alábbi mennyiségi megoszlást találtuk:

összetevő	A	В	C	D	E
szem (darab)	184	145	100	68	63

Döntsön 90%-os szinten, hogy a minta összetétele megfelel-e a csomagoláson feltüntetettnek!

(2) Egy város rendőrsége szerint az éjszakai betörések száma egyenletesen oszlik meg a hét napjain. Egy heti megfigyelés alapján a betörések száma a következő volt:

nap	betörések száma
hétfő	6
kedd	8
szerda	5
csütörtök	7
péntek	12
szombat	17
vasárnap	15
összesen	70

Ellenőrizze le 95%-os szinten, hogy igaz-e a rendőrség állítása!

(3) Az egyik konfekcióipari vállalat a mérettáblázat kialakításához a nők testmagasságát 500 fős véletlen minta alapján vizsgálta:

magasság (cm)	nők száma (fő)
-150	6
150-160	110
160-170	250
170-180	100
180-	34
összesen	500

Ellenőrizze 90%-os szinten, hogy a felnőtt nők testmagasságának eloszlása tekinthető-e normális eloszlású változónak!

(4) Egy ebéd házhoz szállításával foglalkozó cég gépkocsijáratai útvonalának összeállításához megrendelői közül 100 véletlenszerűen kiválasztott vevőt megkérdeztek, hogy 9 és 14 óra között mikor igényelné az ebéd házhoz szállítását. A minta megoszlása:

óra	fő
9-10	12
10-11	18
11-12	26
12-13	24
13-14	20
összesen	100

95%-os biztonság mellett tekinthető-e egyenletes eloszlásúnak a megrendelők szállítási igénye?

(5) Egy közvélemény-kutató intézet a foglalkoztatottak köréből származó mintáról azt állítja, hogy a minta legmagasabb iskolai végzettség szerinti összetétele megfelel a sokasági iskolai végzettségnek:

iskolai	${ m foglalkoztatottak}$	foglalkoztatottak
végzettség	megoszlása 2001-ben (%)	száma a mintában
< 8 általános	0,7	0
8 általános	16,5	200
szakiskola	33,0	300
középiskola	32,5	340
főiskola	10,3	100
egyetem	7,0	60
összesen	100,0	1000

99%-os szinten ellenőrizze, hogy reprezentatív-e a minta az iskolai végzettség szerint!

10. Homogenitásvizsgálat

(1) A személysérüléssel járó közúti közlekedési balesetekre vonatkoznak az alábbi, mintavételből származó adatok 2003-ban:

baleset történésének	balesetek száma	balesetek száma
ideje	Budapesten	az ország többi részén
0-8	14	27
8-12	20	39
12-15	19	34
15-18	23	47
18-24	24	53
összesen	100	200

Döntsön 99%-os szinten arról, hogy a balesetek számának eloszlása megegyezike Budapesten és az ország többi részén!

(2) A módszertani szigorlat két tárgyából – statisztika és matematika – elért pontszámok eloszlását reprezentálja az alábbi minta:

	Statisztika	Matematika
pontszámok	hallgatók száma (fő)	hallgatók száma (fő)
0-10	3	3
11-20	12	6
21-30	29	39
31-40	52	42
41-50	14	20
összesen	110	110

Hasonlítsa össze a két tantárgy pontszám szerinti eloszlást! Döntsön 99%-os szinten!

(3) Egy nagy Legyen Ön is milliomos! rajongó a magyarországi és a német adón adott összes adását látta a vetélkedőnek. Az évek folyamán feljegyezte, hogy a játékosok hányadik kérdésnél fejezik be a játékot (vagy kiesnek vagy kiszállnak). Az eredményeket az alábbi táblázatba foglalta:

kérdés sorszáma	Magyarországon	Németországban
1-5	53	111
6-10	274	418
11-15	39	17

97,5%-os szinten döntsön arról, hogy a két országban megegyezik-e a játék végét jelentő kérdések sorszámának eloszlása!

(4) 2000-ben két nagyvárosban arra voltak kíváncsiak, hogy milyen a mobilelőfizetések eloszlása az egyes mobilszolgáltatók között. Ezért a két városban felmérést végeztek, melynek eredményeit az alábbi táblázat tartalmazza:

szolgáltató	"A" város	"B" város
\mathbf{Westel}	144	89
Pannon GSM	84	96
Vodafone	72	65
összesen	300	250

Döntse el 90%-os biztonsággal, hogy van-e különbség a két városban a mobilelőfizetések eloszlása között!

(5) Egy felmérés során azt vizsgálták, hogy az alacsony és a magas jövedelműek hogyan vélekednek a bevándorlókról. A kapott eredményeket az alábbi táblázatban láthatjuk:

	alacsony jövedelmű (fő)	magas jövedelmű (fő)
nem zavarja	17	18
közömbös	35	20
zavarja	38	12
összesen	90	50

Vizsgálja meg és döntsön 95%-os szinten arról, hogy eltér-e a bevándorlókról való vélekedés az alacsony és a magas jövedelműek körében!

11. Idősorelemzés - trendszámítás

(1) Egy város lakosságának alakulása (év eleji adatok ezer főben):

év	lakosság (ezer fő)	év	lakosság (ezer fő)
1995	17	2000	25
1996	19	2001	28
1997	20	2002	31
1998	22	2003	33
1999	24		

$$\sum \lg y_t = 12,3878 \sum y_t = 219 \sum t \lg y_t = 64,077$$

$$\sum t y_t = 1214 \sum t = 45 \sum t^2 = 285$$

$$\sum \lg t = 5,5597 \sum (\lg t)^2 = 4,2151 \sum \lg t \lg y_t = 7,8853$$

Illesszünk az idősorra lineáris, exponenciális és hatványtrendet! Értelmezzük is a kapott paramétereket!

(2) Az eszpresszó kávék hőmérsékletváltozását vizsgálták az idő függvényében. Ennek érdekében főztek egy eszpresszót és különböző időpontokban megmérték a kávé hőmérsékletét. A kapott eredményeket az alábbi táblázat tartalmazza:

idő (perc)	hőmérséklet (°C)	idő (perc)	hőmérséklet (°C)
1	82	25	51
5	76	30	47
8	70	34	45
11	65	38	43
15	61	42	41
18	57	45	39
22	52	50	38

$$\sum \ln y_t = 55,63 \qquad \sum y_t = 767 \qquad \sum t \ln y_t = 1316,19$$

$$\sum ty_t = 16048 \qquad \sum t = 344 \qquad \sum t^2 = 11658$$

$$\sum \ln t = 40 \qquad \sum (\ln t)^2 = 129 \qquad \sum \ln t \ln y_t = 155,76$$

Illesszünk az idősorra lineáris, exponenciális és hatványtrendet! Értelmezzük is a kapott paramétereket!

(3) A magyarországi kőolaj-kitermelés mennyisége az 1990-es évek eleje óta csökken. A termelés alakulása 1991 és 2002 között (ezer tonna):

év	termelés	év	termelés
1991	1893	1997	1360
1992	1825	1998	1258
1993	1709	1999	1243
1994	1631	2000	1136
1995	1669	2001	1064
1996	1477	2002	1050

Illesszünk lineáris és exponenciális trendet az idősorra, és értelmezzük a kapott paramétereket! A kapott trendek alapján becsülje meg a 2003. évi kőolajkitermelés mennyiségét!

(4) Egy rádióműsorhoz érkező hallgatói levelek számának alakulását mutatják a következő adatok:

év	levelek száma (ezer db)	év	levelek száma (ezer db)
1984	6,1	1994	6,9
1985	5,2	1995	7,9
1986	6,7	1996	8,6
1987	6,5	1997	9,1
1988	8,2	1998	10,3
1989	7,0	1999	10,0
1990	7,0	2000	9,4
1991	5,7	2001	10,4
1992	7,0	2002	10,4
1993	7,6	2003	9,4

Határozza meg és értelmezze a lineáris trend paramétereit! $(\sum ty_t = 1836, 2)$

(5) Magyarország exportja az utóbbi években dinamikusan növekedett (milliárd dollár):

év	export (milliárd USD)	év	export (milliárd USD)
1995	15,1	1999	25,0
1996	15,7	2000	28,1
1997	19,1	2001	30,5
1998	23,0	2002	34,3

Számítsa ki és értelmezze az exponenciális trend paramétereit!

12. Idősorelemzés - szezonalitás

(1) Egy fagylaltárus forgalma (ezer gombócban) az alábbi volt:

év	I. negyedév	II. negyedév	III. negyedév	IV. negyedév
2000	95	152	255	118
2001	102	146	248	124
2002	97	156	245	122

$$\sum y_t = 1860 \quad \sum ty_t = 12342 \quad \sum t = 78 \quad \sum t^2 = 650$$

- (a) Határozza meg a lineáris trend egyenletét és értelmezze a paramétereket!
- (b) Határozza meg a nyers és a tisztított szezonális eltéréseket/indexeket és értelmezze az utóbbiakat!
- (c) Becsülje meg a forgalmat 2003 minden negyedévére!

(2) A munkanélküliek számának (ezer főben) alakulása egy országban a következő volt:

év	I. negyedév	II. negyedév	III. negyedév	IV. negyedév
2005	208	574	456	184
2006	231	703	560	239
2007	284	874	710	216

$$\sum y_t = 5239 \quad \sum ty_t = 36363 \quad \sum t = 78 \quad \sum t^2 = 650$$

- (a) Határozza meg a lineáris trend egyenletét és értelmezze a paramétereket!
- (b) Határozza meg a nyers és a tisztított szezonális eltéréseket/indexeket és értelmezze az utóbbiakat!
- (c) Becsülje meg a munkanélküliséget 2009 III. negyedévére!

(3) A magyar gazdaság összes energiafelhasználása negyedévenként 1998 és 2002 között (petajoule):

év	I. negyedév	II. negyedév	III. negyedév	IV. negyedév
1998	308	215	209	323
1999	321	211	200	309
2000	321	215	204	297
2001	319	216	202	328
2002	317	217	204	321

- (a) Illesszen lineáris trendet az idősorra és értelmezze a paramétereket!
- (b) Határozza meg a nyers és a tisztított szezonális eltéréseket/indexeket és értelmezze az utóbbiakat!
- (c) Becsülje meg az energiafelhasználást 2003 IV. negyedévére!

(4) Az alábbi táblázatban a magyarországi sörtermelés negyedéves idősorát adtuk meg az 1998 és 2002 közötti időszakra (1000 hl):

év	1998	1999	2000	2001	2002
I.	132	129,7	123,3	132,8	131,6
II.	215,4	230,3	227,8	211,3	210,8
III.	237,5	222,1	234,2	224,3	235,4
IV.	128,6	140,7	159,3	154	151,5

$$\sum y_t = 3632, 6$$
 $\sum ty_t = 38423, 1$ $\sum t = 210$ $\sum t^2 = 2870$

- (a) Illesszen lineáris trendet az idősorra és értelmezze a paramétereket!
- (b) Határozza meg a nyers és a tisztított szezonális eltéréseket/indexeket és értelmezze az utóbbiakat!
- (c) Becsülje meg a sörtermelést 2003 II. negyedévére!

(5) Egy új termék piacra történő bevezetésének adatai az alábbiak voltak (1000 emberből a termékkel rendelkezők száma):

év	I. negyedév	II. negyedév	III. negyedév	IV. negyedév
2008	10	12	14	15
2009	17	19	20	21
2010	23	25	28	30
2011	35	39	43	46

$$\sum y_t = 397 \quad \sum ty_t = 4150 \quad \sum t = 136 \quad \sum t^2 = 1496$$
$$\sum \ln y_t = 49, 5 \quad \sum t \ln y_t = 453, 7 \quad \sum t = 136$$

- (a) Illesszen lineáris és exponenciális trendet az idősorra és értelmezze a paramétereket!
- (b) Határozza meg a nyers és a tisztított szezonális eltéréseket/indexeket és értelmezze az utóbbiakat!

13. KÉTVÁLTOZÓS REGRESSZIÓSZÁMÍTÁS

(1) Egy taxivállalat 15 véletlenszerűen kiválasztott fuvar alapján vizsgálja, hogy hogyan függ a menetidő a távolságtól (megtett km-től). A 15 fuvar esetén a távolság és a menetidő:

távolság (km)	menetidő (perc)	távolság (km)	menetidő (perc)
3	8	9	20
4	19	12	23
4	13	15	44
6	21	16	47
6	11	16	41
7	19	20	46
8	14	26	48
8	19		

$$\sum y = 393 \quad \sum xy = 5433 \quad \sum x \ln y = 545,8033$$
$$\sum \ln y = 46,7381 \quad \sum x = 160 \quad \sum x^2 = 2328$$
$$\sum \ln x \ln y = 106,6887 \quad \sum (\ln x)^2 = 77,2063 \quad \sum \ln x = 32,7487$$

- (a) Jellemezze a távolság és a menetidő közötti lineáris, exponenciális, illetve hatvány kapcsolatot és értelmezze a paramétereket!
- (b) Mekkora az elaszticitás az átlagos és a 15 km távolságú fuvar környezetében?
- (c) Becsülje meg a modell alapján, hogy egy 15 km távolságú út hány percet vesz igénybe!

(2) A fogászati világnapon az életkor és a fogak száma közötti összefüggést vizsgálták tíz önként vállalkozó segítségével:

életkor (év)	fogak száma (db)
18	30
40	21
20	29
71	8
36	23
55	14
34	25
62	12
17	31
30	28

$$\sum x = 383$$
 $\sum y = 221$ $\sum xy = 7087$ $\sum x^2 = 17875$

- (a) Számítsa ki és értelmezze a lineáris regresszió paramétereit!
- (b) A lineáris modell alapján várhatóan hány foga van egy 55 éves embernek?

(3) Henry Ford, a futószalag első ipari alkalmazója egyben a statisztika szerelmese is volt. A futószalag bevezetése során tapasztalta, hogy a nagyobb sebességgel haladó szalag mellett természetesen több a hibázás is, és ennek számszerűsítését regressziószámítással végeztette el. Néhány korabeli adat:

sebesség (db/óra)	hibás darabok száma/óra
55	8
55	11
60	14
60	12
65	14
65	18
70	16
70	17
70	20
75	19

$$\sum x = 645$$
 $\sum y = 149$ $\sum xy = 9820$ $\sum x^2 = 42025$

- (a) Becsülje meg a lineáris regresszió paramétereit és értelmezze azokat!
- (b) Becsülje meg a hibás darabok számát 60 db/óra sebesség mellett!

(4) Egy áruházlánc különböző városokban lévő tíz véletlenszerűen kiválasztott boltjára jellemző adatok:

reklámkiadás (ezer Ft)	eladási forgalom (millió Ft)
180	6
71	2
143	5
317	11
210	7
54	1
111	5
163	5
264	9
487	19

$$\sum x = 2000 \quad \sum y = 70 \quad \sum xy = 19947 \quad \sum x^2 = 551150$$

- (a) Határozza meg a lineáris regressziófüggvény paramétereit és értelmezze azokat!
- (b) A modell alapján becsülje meg a 100000 Ft reklámkiadással rendelkező üzletek várható eladási forgalmát!

14. Többváltozós regressziószámítás

- (1) A tobbregresszio_cars.sav adatfájlt felhasználva válaszolja meg az alábbi kérdéseket:
 - (a) Adja meg a gyorsulás és az átlagfogyasztás, hengerűrtartalom, teljesítmény, súly, hengerszám közötti lineáris regressziós kapcsolatot. Használja az Enter, a Forward és a Backward eljárásokat!
 - (b) Írja le, hogy a különböző eljárások során mi történik az egyes lépésekben! Értelmezze, hogy miért ez történik az egyes lépésekben!
 - (c) Határozza meg az egyes eljárások során, hogy melyik a legalkalmasabb modell! Mi alapján döntött így? Ebben a modellben milyen a modell magyarázóereje?
 - (d) Az egyes eljárások során a legjobb modellben írja fel a lineáris regressziós egyenletet és értelmezze a kapott paramétereket! Ebben a modellben adja meg, hogy mennyi idő alatt gyorsul fel egy olyan gépkocsi, melynek átlagfogyasztása 16 mérföld/gallon, hengerűrtartalma 326 inch³, teljesítménye 195 lóerő, súlya 4000 font, a hengerszáma pedig 10.
 - (e) Milyen hipotézispárt tud felírni és hogyan dönt az ANOVA táblázat alapján?
 - (f) Melyik magyarázóváltozó befolyásolja legjobban a gyorsulást? Mi alapján döntött így?
 - (g) Adjon 95%-os intervallumbecslést az egyes paraméterekre!