Deep Learning for Microparticle Characterisation in Medicines Manufacturing

Nikilkumar Patel | Dr. Javier Cardona

EE997 - MSc. Machine Learning & Deep Learning, Department of Electronic & Electrical Engineering

1. Introduction

Crystallisation in Pharma

- To isolate the compound as a solid with the polymorphic at a high yield and with minimal impurities
- Robust crystallization = Better Quality product

2. Current Solution and Challenges

Crystal Shape Classification using Supervised Deep Learning

Supervised Models for Computer Vision Tasks

Extracted Data

ImageNet Classifiers

- ResNet (18,34,50)
- EfficientNet and more...

Object Segmentations

- R-CNN
- Mask R-CNN and more..

Challenges in Supervised Learning

Annotations Cost

- Manual: Crowd Source vs Experts
- Automated Platforms : Amazon Rekognition, **GCP**
- Estimated Market Value **in 2022**: **US\$0.8B** vs Forecasted Market Value **by 2027 US\$3.6B**

Task Complexity

Is this a Plate or Needle? What to label if it is visibly too dark?

Common Sense

- Deviation of the truth from Human perception
- Learnings can be rigid and does not always work accurately

3. Proposed Methodology **SimCLR: Simple Framework for Contrastive Learning of Visual Representations** Google Research Self – Supervised Learning without **Annotations** Repel Projection Head g(.) Projection Head g(.) | Deep CNN | Base Encoder f(.)

Data Augmentation

Contrastive Loss

NT- Xent Pairwise Loss

$$L = \frac{\sum_{k=1}^{N} [l(2k-1,2k) + l(2k,2k-1)]}{2N}$$

Pair loss:
$$l(i,j) = -\log \frac{e^{S_{i,j}/T}}{\sum_{k=1}^{2N} e^{S_{i,k}/T}}$$

Cosine Similarity: $S_{i,i} = sim(X_i, X_i)$ T: Temperature

Network Architecture

Simple structure, No Memory Bank

4. Results and Discussion

Dataset	Datapoints	Learning Rule	Model	Accuracy	F1
CIFAR10	60000	Supervised	ResNet18 ImageNet Pretrained & Finetuned	38.14	37.83
CIFAR10	60000	Supervised	ResNet18 Fully Trained	72.84	72.61
CIFAR10	60000	Self-Supervised	ResNet18 encoder SimCLR	59.48	58.25
DataFactory	4344	Supervised	ResNet18 ImageNet Pretrained & Finetuned	94.13	93.99
DataFactory	4344	Supervised	ResNet18 Fully Trained	92.45	92.42
DataFactory	4344	Self-Supervised	ResNet18 encoder SimCLR	94.55	94.47

- SimCLR outperforms all supervised models for our experiment data; can match supervised models if trained for longer on CIFAR10 data with better suitable optimizer
- Having required no labels at all for training, SimCLR seems to address the challenges faced by supervised approach, with decent accuracy and more distinctive classification
- For N augments per image, training data increases *N* times; longer training time and more computation power

5. Future Direction

Google Research SimCLR v2 **Semi Supervised**

- Modified architecture and training with small fraction of annotations.
- Training with 10% annotations SimCLRv2 surpasses SOTA both supervised and unsupervised models.