In nholds for tegnelse

- 1. Introduksjon
- 2. Felles utfordringer for offentlig
- 3. Nyttige definisjoner og terminologi
- 4. Introduksjon til sky
- 5. Klassifisering av data og systemer
- 6. Arkitektur og tekniske tiltak
- 7. Antimønstre
- 8. Vedlegg

Introduksjon

Felles utfordringer for offentlig

- Teknisk gjeld
- Mangel på ressurser (Personell)
- Mangel på kompetanse
- IT Support
- Utdaterte systemer (Og da usikre eller lite fleksbile systemer)
- Sikkerhet & Forensic
- Mangel på alternativer
- Tradisjonell sonemodell/IT infrastruktur v
s moderne sky-miljø
- Mangel på standardisering (duplikater av fellestjenester, mangel på tjenestekataloger++)
- GDPR & Data Governance
- Kommunesammenslåing
- Kost
- Tilknytting til Helsenett

Risikovurderinger (list vanlige risikoelementer som diskuteres og hvordan det kan begrenses/minimaliseres).

- Brudd på fiberkabler (Datasenter eller hel region)
- Strømbrudd (Datasenter)
- Tjeneste(r) går ned (oppgradering, patching)
- Leverandør går konkurs
- Ikke tilgjengelig kapasitet
- Myndigheter ber om innsyn
- Hacker(e) får tilgang (Storage, compute)
- Korrupt ansatt (internt)
- Korrupt ansatt (vendor/tredjepart)
- Korrupt ansatt (skyleverandør)
- Myndigheter klarer å digital tilgang til datasentere
- Fysisk tilgang til utstyr
- FISA 702

Landingssoner

Landingssoner i Azure består av flere abonnementer i satt opp på en skalerbar måte og som samtidig ivaretar sikkerhet og tilhørende tjenester som nettverk og identitet.

Landingssoner muliggjør migrering, modernisering og innovasjon i stor-skala i Azure.

Sonene som etableres tar høyde for alle plattformressurser som er nødvendig for å understøtte en bedrift's applikasjons-portefølje og differensierer ikke mellom infrastruktur som tjeneste og plattform som en tjeneste.

Figure 1: Landingssone

Tilgjengelighet (SLA)

- Høy tilgjengelighet (E.g Konsumenttjeneste) 99.99 eller 99.95% oppetid. Noe nedetid (minutter) per år aksetabelt. Redundante server(e) og lagringskopier men ikke på tvers av datasentere.
- Meget høy tilgjengelighet (e.g. pasientsystem) 99.99% eller høyere. Redundante servere og kopier av data på tvers av datasentere (med mer enn 10 km avstand).
- Unntakssituasjon (Disaster scenario) En hel region går ned og blir utilgjengelig.
- Fullstendig suverenitet/autonomitet (autonomity/soveriginity) Skyleverandør går konkurs, Norge mister all kommunikasjon med omverden, systemer som må fungere uavhengig av skyleverandør.

Gjenopprettingspunkt (RPO)

Tradisjonell sonemodell

Hva er sky?

Hva er et datasenter

I informasjonsteknologiens spede barndom var det en gjengs oppfattning at verden kun ville trenge et begrenset antall datamaskiner. Vi kan kalle dette "stormaskinens tidsalder", og de fleste som benyttet en datamaskin jobbet gjennom en terminal som gav tilgang til data og regnekraft som befant seg i en sentral datamaskin. Disse stormaskinene befant seg typisk i datarommet til en organisasjon eller bedrift - en fysisk sikret lokasjon hvor kun autorisert personnel hadde tilgang.

Etterhvert som avhengigheten til datasystemer økte, ble det satt større og større krav til fysisk sikring og redundans for slike datarom, og det ble etterhvert både vanskelig, upraktisk og ulønnsomt å etterleve disse kravene for hver enkelt organisasjon og bedrift. Samtidig fikk vi ny og raskere nettverksteknologi som gjorde det mulig å flytte både stormaskiner, servere og data lengre unna brukerne. Dette la grunnlaget for en ny industri: datasenterindustrien.

Idag er datasenterindustrien en sentral komponent i vår digitale infrastruktur. Dedikerte datasenterleverandører leverer redundante tilkoblinger til nettverkog elektrisitetsnett, nød-aggregater som holder datasenteret igang selv gjennom lange perioder med strømbrudd, og strenge tiltak for fysisk sikring slik som perimetersikring kombinert med videoovervåking og døgkontinuerlig bemanning.

I dag vil de aller fleste organisasjoner velge å benytte en profesjonell datasenterleverandør fremfor å bygge sitt eget datarom.

Hva er så sky, og hvordan skiller skyleverandører seg fra datasenterleverandører?

Idag bærer stort sett alle rundt på både mere regnekraft og lagringsplass en vi trenger. (Faktisk har en moderne smarttelefon mer regnekraft enn hele land hadde tilgang til for bare tiår siden. TODO: Kilde) På samme måte har de fleste datarom mer regnekraft og lagringsplass enn organisasjonen som eier det trenger. Vi overdimensjonerer systemene våre for å kunne ta unna for perioder med intens bruk - tenk 8-timers arbeidsdag for de fleste organisasjoner og bedrifter, black-friday og julehandel for varehandelen, og frist for innlevering av skattemeldingen for alle norske borgere. Dette fører til at vi har mange enkeltsiloer av overdimensjonerte systemer - dette er både dyrt og har store miljøimplikasjoner. Datasenterindustrien er i ferd med å bli en av verdens mest energikrevende bransjer. (TODO: Kilde)

Med skyteknologi så endres måten man kan kjøpe regnekraft og lagringsplass seg dramatisk. Organisasjoner kan nå kjøpe bare det de har behov for, når de har behov for det. En bedrift i varehandelen kan skalere opp før black-friday, og ned igjen etterpå. De kan til og med designe systemet sitt slik at det autoskalerer med bruk. Finn.no har for eksempel XX% av besøkene sine innenfor lunsjperioden på hverdagene (TODO: Kilde). Resten av tiden trenger de bare en

brøkdel av regnekraften - som så kan frigis av skyleverandøren og selges til andre kunder, for eksempel forskningsorganisasjoner som kjører store jobber som ikke er tidskritiske - og derfor kan kjøpe kapasitet rimeligere, siden deres jobber kan aktivieres når det er mindre behov i markedet. Store skyleverandører vil også flytte om på workloads for kunder, slik at servere, racks, eller til og med hele datasentre kan skrus av for å spare energi i perioder med lav etterspørsel.

En annen forskjell på en datasenterleverandør og en skyleverandør er tjenestespekteret. Mens en datasenterleverandør er som en avansert utleier av fysisk plass, er en skyleverandør også en programvare- og driftsleverandør av hundrevis av avanserte tjenester som gjør det mulig å bygge digitale systemer raskere og bedre.

. . .

Fysisk og logisk sikring av datasentre Ansvarsmodellen for offentlig sky

Klassifisering

- Ikke sensitivt (Ikke PII)
- Sensitivt (PII mm.)
- Begrenset (Sikkerhetsloven)
- Konfidensielt (Sikkerhetsloven)
- Hemmelig (Sikkerhetsloven)
- Strengt hemmelig (Sikkerhetsloven)

Klassifisering av data

Risikoklassifisering av systemer

Referansearkitektur

Figure 2: High-level

On-premises

Dette er servere (virtualisert eller bare-metal) du har i dine egne datasentere hvor du kan drifte deler av applikasjonsporteføljen.

Plassering av applikasjoner

Nettverk

Du kan sikkert knytte ditt kontor til Azure ved hjelp av f.eks Site-to-Site VPN.

Dersom det er behov for svært mange klienter tilknyttet et virtuelt nettverk og/eller det er mange kontorer som skal tilknyttes - så bør man vurdere å kombinere dette med Azure Virtual WAN.

Tekniske komponenter for sikring og compliance

• Azure Datasenter sikring

- Customer Lockbox
- Confidential computing
- Azure Policy
- Customer managed Keys (Kryptering og Bring-Your-Own-Key)
- Azure Dedicated HSM
- Azure ARC
- Azure Dedicated Hosts

Utvalgte sikkerhetselementer

- Security baseline
- Security baseline (Azure Stack Edge)
- Security baseline (Azure Stack HCI)
- Azure Active Directory: Conditional access
- Azure Active Directory: Privileged identity management (PIM)
- Microsoft Defender for Cloud
- Azure DDOS Protection

Krisesituasjoner

I en særskilt krisesituasjon bør vi stille oss følgende spørsmål:

- Hvor lang tid tar det før ditt eget utstyr begynner å feile?
- Hvilke 'skjulte' avhengigheter har dine systemer?
- Hvordan skal sluttbrukere nå applikasjoner som er eksponert på internett?
 (DNS/Sertifikater mm.)

Særskilte norske krav (som man bør ta stilling til)

- Arkivloven: "Arkivloven inneholder ingen bestemmelser som direkte regulerer lagring av arkiv i skytjenester, og er i utgangspunktet ikke til hinder for bruk av slike løsninger. Det følger likevel av arkivloven § 9 b at arkivmateriale ikke kan «førast ut or landet, dersom dette ikkje representerer ein naudsynt del av den forvaltningsmessige eller rettslege bruken av dokumenta." Når det er lagt til grunn at den fysiske lagringsplassen avgjør hvor data er å finne, følger det naturlig av denne bestemmelsen at overføring av arkivmateriale til servere i utlandet bryter med forbudet mot å føre arkiv ut av landet."
- [Bokføringsloven]
- [Sikkerhetsloven]
- [NKOM]

Datacenters in Norway

- 2 datasentere i Norge
- Datalagring i Azure
- Availability Zones in Norway
- Mission Critical workloads in Norway

Rapporter, audit, innsyn

Klareringssenter inneholder hundrevis av rapporter, innsyn og tredjepart audits for Microsoft sine tjenester i sky. Her kan du finne alt fra linker rundt overholdelse av regler og standarder, personvern, datainnsyn mm.

Alternativt kan du også gå inn her for å finne rapporter direkte: https://servicetrust.microsoft.com/ ## Schrems-II - EU Data Boundry - EU Data Boundry - FAQ

GDPR

Som kunde opprettholder du eierskap til kundedata – innhold, personlige kundedata og andre data du leverer til lagring og drifting i Azure-tjenestene. Du har også kontroll over eventuelle andre geografiske områder der du bestemmer deg for å rulle ut løsningene eller replikere dataene dine.

Der en tjenestes funksjonalitet krever global datareplikering, er detaljene tilgjengelige her.

Linker

- Protecting privacy in Microsoft Azure
- Microsoft EU Data Boundary
- Trusted Cloud
- Datalagring i Azure
- Microsoft Azure SOC Rapporter
- Online Services Terms for Microsoft Azure

Verktøy

- Azure Advisor
- Microsoft Defender for Cloud
- Azure Policy
- Azure Optimization Engine