Сертификация интерфейса программ

В соответствии с Законом РФ «О сертификации продукции и услуг», ГОСТ Р 560646–94 и МС ИСО 8402 объектом сертификации может быть программная продукция (программные средства, или просто программы).

Сертификация программы – это установление ее соответствия существующим нормам годности и техническим требованиям.

Наиболее актуальным является сертификация части программы – интерфейса пользователя, так как применение несоответствующего интерфейса может привести к отрицательному влиянию на здоровье пользователя.

Параметры интерфейса есть предмет оценивания разработчиками и экспертами, поэтому для сертификации интерфейса целесообразно применить: «Система сертификации ГОСТ Р» и технологии ТНМ: «Создание базы знаний», «Распознавание объектов» с результатом − технология сертификации интерфейса программ.

«Система сертификации ГОСТ Р» указывает на следующие результаты сертификации в части соответствия продукции:

- □ полное соответствие;
- □ частичное соответствие;
- □ отсутствие соответствия.

Для достижения таких результатов в технологи «Распознавание объектов» необходимо создать и использовать три эталона:

- c₁ для достижения результата «Полное соответствие»;
- c_2 для достижения результата «Частичное соответствие» в его наилучшем случае;
- c_3 для достижения результата «Частичное соответствие» в его наихудшем случае;

Результат «Отсутствие соответствия» в технологии распознавания объектов – это ОТКАЗ от распознавания.

Зададим число наблюдений n=10 и каждому элементу множеству наблюдений $\{d_1,d_2,\ldots,d_i\,,\ldots,d_{10}\,\}$ сопоставим параметр интерфейса и его градацию.

D	Параметр	Градация
d_1	Многооконность	1
d_2		2-3
d_3		Настраиваемая
d_4	Псевдопараллельность	Полная
d_5	обработки данных в	Частичная
d_6	окнах	Отсутствует
d ₇	Защита от абсурда	Да
d_8	при вводе данных	Нет
d ₉	Графическое	Да
d_{10}	сопровождение вывода	Нет

Теперь необходимо экспертным путем для каждого эталона определить значения μ_{ij} . Для этого следует руководствоваться относительным числом эталонов с состоянием c_j при наблюдении d_i в общем числе интерфейсов программ, с которыми приходилось работать. При этом использовать ранговую шкалу с лингвистическими и численными градациями множества S (индикатор частоты).

S	Значение						
	Лингвистическое	Численное					
S ₁	Иногда	0.1					
S 2	Не очень часто	0.4					
S 3	Обычно	0.5					
S 4	Довольно часто	0.7					
S 5	Часто	0.8					
S 6	Почти всегда	0.9					

Таким образом, эталоны $\{c_1, c_2, c_2\}$ образуют базу знаний:

$$HM_j = \{ [\{ d_i, c_j \}, \mu_{ij}] \},$$
где $j = 1 \div 3, i = 1 \div 10.$

По сформированной базе знаний получим набор функций доверия $\{ \, \text{Bel}_1 \, , \, \text{Bel}_2 \, , \, \text{Bel}_3 \, \} \,$ для эталонов $\{ \, c_1, \, c_2, \, c_3 \, \} \,$ соответственно.

Пороговое значение $Bel_0 = MIN$ (Bel_1 , Bel_2 , Bel_3).

Интерфейсу, подлежащему сертификации, соответствует объект, подлежащий распознаванию:

$$HM_k = \{ [\{ d_i, c_k \}, \mu_{ik}] \},$$
где $k \in \{ 1, 2, 3 \},$ $i = 1 \div 10.$

Теперь необходимо экспертным путем для объекта определить значения функции принадлежности μ_{ik} . Для этого следует руководствоваться мерой доверия Bel_k факту { [{ d_i , c_k }, μ_{ik}]} по ранговой шкале { 0.1, 0.4, 0.5, 0.7, 0.8, 0.9 }. Градации ранговой шкалы для μ_{ik} и μ_{ij} должны быть одинаковыми.

Распознавание объекта проводится при соблюдении следующих условий: $Bel_1 \le Bel_2 \le Bel_3$; $Bel_{oбъекта} < Bel_k$; k = const.

При соблюдении этих условий градации ранговой шкалы для μ_{ik} и μ_{ij} образуют области устойчивой сертификации интерфейса.

По Ляпунову, устойчивость представляет собой реакцию системы дифференциальных уравнений на вариацию параметров.

B технологии сертификации интерфейса программ использован частный случай – устойчивость «B малом».

Устойчивость сертификации «В малом» тестируется заменой: одна область (набор градаций) \rightarrow другая область (набор градаций) с результатом — сохранение вышеперечисленных условий.

Например, на наборах градаций $\{0.1, 0.4, 0.7, 0.\}$ и $\{0.1, 0.5, 0.7, 0.8\}$, то есть при замене: градация $0.4 \rightarrow$ градация 0.5 состояние объекта $-c_3$.

- В лабораторной работе заданы эталоны: интерфейсы программ Mathcad, «С2», «С3»; объект интерфейс программы «Объект». Цель работы: определить области устойчивой сертификации интерфейса программы «Объект» на наборе { 0.1, 0.4, 0.5, 0.7, 0.8, 0.9 }. Порядок выполнения работы.
- В адресе http://eco.sutd.ru/mathcad/docs/mathcad/interface.htm изучить Эталон₁ базы знаний интерфейс программы Mathcad по параметрам { многооконность, псевдопараллельность обработки данных в окнах, защита от абсурда при вводе данных, графическое сопровождение вывода }.
- → 2 Изучить Эталон₂ базы знаний интерфейс программы «С2» по параметрам { многооконность, псевдопараллельность обработки данных в окнах, защита от абсурда при вводе данных, графическое сопровождение вывода }.
- → 3 Изучить Эталон₃ базы знаний интерфейс программы «С3» по параметрам { многооконность, псевдопараллельность обработки данных в окнах, защита от абсурда при вводе данных, графическое сопровождение вывода }.

→ 4 Сформировать множество наблюдений по таблице.

D	Параметр	Градация
d_1	Многооконность	1
d_2		2-3
d_3		Настраиваемая
d_4	Псевдопараллельность	Полная
d_5	обработки данных в	Частичная
d_6	окнах	Отсутствует
d_7	Защита от абсурда	Да
d_8	при вводе данных	Нет
d ₉	Графическое	Да
d_{10}	сопровождение вывода	Нет

 \rightarrow 5 Набору { Эталон₁, Эталон₂, Эталон₃ } поставить в соответствие множество состояний { c_1 , c_2 , c_2 }.

ightharpoonup 6 Оцифровать ho_{ij} эталонов, руководствуясь относительным числом эталонов с состоянием c_i при наблюдении d_i в общем числе интерфейсов программ, с которыми приходилось работать. При этом использовать ранговую шкалу с лингвистическими и численными градациями S.

S	Значение						
	Лингвистическое	Численное					
S 1	Иногда	0.1					
S 2	Не очень часто	0.4					
S 3	Обычно	0.5					
S4	Довольно часто	0.7					
S 5	Часто	0.8					
S 6	Почти всегда	0.9					

Таким образом, сформирована база знаний (набор эталонных интерфейсов): $HM_i = \{ [\{ d_i, c_j \}, \mu_{ij}] \},$ где $j = 1 \div 3,$ $i = 1 \div 10.$

→ 7 Изучить объект – интерфейс программы «Объект» по параметрам { многооконность, псевдопараллельность обработки данных в окнах, защита от абсурда при вводе данных, графическое сопровождение вывода }.

Оцифровать µ_{ik} объекта, руководствуясь экспертными результатами, полученными в пункте 7. При этом использовать ранговую шкалу с лингвистическими и численными градациями S.

S	Значение						
	Лингвистическое	Численное					
S ₁	Иногда	0.1					
S 2	Не очень часто	0.4					
S 3	Обычно	0.5					
S4	Довольно часто	0.7					
S 5	Часто	0.8					
S ₆	Почти всегда	0.9					

Таким образом, получен объект (сертифицируемый интерфейс): $HM_k = \{ [\{ d_i, c_k \}, \mu_{ik}] \},$ где $k \in \{ 1, 2, 3 \},$ і $= 1 \div 10.$

Руководствуясь технологией сертификации интерфейса программ и ГОСТ P, определить области устойчивой сертификации объекта как сочетания градаций для μ_{ij} и μ_{ik} из набора { 0.1, 0.4, 0.5, 0.7, 0.8, 0.9 } с шагом градации 0.1. Некоторые области устойчивой сертификации – *.

№ области	Диапазон градаций с шагом 0.1								
устойчивой	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
сертификации	Заданный набор градаций								
интерфейса	0.1			0.4	0.5		0.7	0.8	0.9
1	*			*			*	*	
2	*			*				*	*
3	*			*			*		*
4	*			*			*	*	*
5				*	*			*	*
6	*				*		*	*	
7	*				*			*	*