Indexes deriválás

Tenzor algebra és analízis Einstein-féle konvencióval

Készítette: Kómár Péter, 2010

Az indexes írásmód ill. deriválás egy eszköz, amely tenzorok analízisét teszi egyszerűbbé a fizikai számításokban gyakran előforduló esetekben. Minden számítás, amelyet "indexesen" végeznek el, elvégezhető a parciális deriváltak koordinátánkénti kiszámításával és a tenzoralgebrai műveletek definíció szerinti alkalmazásával is, és ugyanarra az eredményre vezet.

Az indexes írásmód egyszerűsítő képessége azon a felismerésen alapul, hogy a fizikai számítások struktúrája általában szimmetrikus az n-dimenziós tér Descartes-koordinátáinak összes permutációjára. Ezt felhasználva az indexes írásmód nem csak tinta kímélő és emiatt átlátható, de beépített ellenőrzéseket is tartalmaz, melyek csökkentik az emberi hiba valószínűségét.

1. Algebra

1.1. Elemek

Tenzori rend szerint a mennyiségek az alábbi kategóriákba sorolhatók:

- 0. rend: skalár: α , elemei $\{\alpha\}$
- 1. rend: vektor: \mathbf{a} , elemei $\{a_1, a_2, \dots a_n\}$
- 2. rend: tenzor: \mathbf{A} , elemei $\{A_{11}, A_{12}, \dots A_{1m}; A_{21}, A_{22}, \dots A_{2m}; \dots; A_{n1}, A_{n2}, \dots A_{nm}\}$
- s. rend: (s-indexes) tenzor: \mathcal{A} , elemei $\{A_{i_1,i_2,\dots i_s}|i_j\in\{1,2,\dots n_j\}\}$

Itt az első három renddel (skalár, vektor és másodrendű tenzor) foglalkozunk.

1.2. Műveletek

Jelölések:

 $(\mathbf{a})_i$ – az **a** vektor *i*. eleme

 $(\mathbf{A})_{ij}$ – az \mathbf{A} tenzor i. sorában és j. oszlopában lévő eleme

 $\stackrel{E}{=}$ – az Einstein-féle automatikus összegzési konvenció szerinti egyenlőség

Vektor műveletek:

1. Összeadás: vektor + vektor = vektor
+ :
$$\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$$

 $\mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2, \dots a_n + b_n)$
 $(\mathbf{a} + \mathbf{b})_i = a_i + b_i$

2. Skalárral való szorzás: skalár \cdot vektor = vektor

$$\begin{aligned}
\cdot : \mathbb{R} \times \mathbb{R}^n &\to \mathbb{R}^n \\
\alpha \cdot \mathbf{a} &= (\alpha a_1, \, \alpha a_2, \, \dots \, \alpha a_n) \\
(\alpha \cdot \mathbf{a})_i &= \alpha \cdot a_i
\end{aligned}$$

3. Skaláris szorzás: vektor \cdot vektor = skalár

$$\cdot : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^n a_i b_i \stackrel{E}{=} a_i b_i$$

$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i \stackrel{E}{=} a_i b_i$$

4. Vektoriális szorzás: 3D vektor \times 3D vektor = 3D vektor

$$\times : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$$

$$\mathbf{a} \times \mathbf{b} = (a_2b_3 - a_3b_2, \ a_3b_1 - a_1b_3, \ a_1b_2 - a_2b_1) (\mathbf{a} \times \mathbf{b})_i = \sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{ijk} a_j b_k \stackrel{E}{=} \varepsilon_{ijk} a_j b_k$$

ahol ε a Levi-Civita-szimbólum

Levi-Civita-szimbólum:

Definíció:

$$\varepsilon_{ijk} = \begin{cases} +1 & \text{ha} & (i, j, k) \in \{(1, 2, 3), (2, 3, 1), (3, 1, 2)\} \\ -1 & \text{ha} & (i, j, k) \in \{(1, 3, 2), (2, 1, 3), (3, 2, 1)\} \\ 0 & \text{ha} & i = j \text{ vagy } i = k \text{ vagy } j = k \end{cases}$$

Tulajdonságai:

- $\varepsilon_{ijk} = \varepsilon_{jki}$ azaz indexei ciklikusan szabadon permutálhatók.
- $\varepsilon_{ijk} = -\varepsilon_{jik}$ azaz bármely két indexének felcserélésére előjelet vált.
- $\varepsilon_{ijk}\varepsilon_{ilm} \stackrel{E}{=} \sum_{i=1}^{3} \varepsilon_{ijk}\varepsilon_{ilm} = \delta_{jl}\delta_{km} \delta_{jm}\delta_{kl}$

ahol δ a Kronecker-delta.

Kronecker-delta:

Definíció:

$$\delta_{ij} = \begin{cases} 1 & \text{ha} & i = j \\ 0 & \text{ha} & i \neq j \end{cases}$$

Tulajdonságai:

- $\delta_{ik} = \delta_{ki}$ azaz indexeiben szimmetrikus.
- $\delta_{ij}a_j \stackrel{E}{=} \sum_i \delta_{ij}a_j = a_i$

$$\delta_{ij}A_{jk} \stackrel{E}{=} \sum_{j} \delta_{ij}A_{jk} = A_{ik}$$

azaz $\delta_{ik} = (\mathbf{I})_{ik}$, azaz az egységmátrix reprezentánsa.

Ez úgy is megfogalmazható, hogy a Kronecker-delta összegzés hatására beírja a másik indexét az összegző index helyébe a másik tényezőben, a δ pedig eltűnik.

5. **Tenzoriális** (v. diadikus) szorzás: vektor \otimes vektor = tenzor $\otimes : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^{n \times m}$

$$\mathbf{a} \otimes \mathbf{b} = \begin{pmatrix} a_1b_1 & a_1b_2 & \cdots & a_1b_m \\ a_2b_1 & a_2b_2 & \cdots & a_2b_m \\ \vdots & \vdots & \ddots & \vdots \\ a_nb_1 & a_nb_2 & \cdots & a_nb_m \end{pmatrix}$$

$$(\mathbf{a} \otimes \mathbf{b})_{ik} = a_i b_k$$

Tenzor műveletek:

1. Összeadás: tenzor + tenzor = tenzor + : $\mathbb{R}^{n \times m} \times \mathbb{R}^{n \times m} \to \mathbb{R}^{n \times m}$

$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} A_{11} + B_{11} & A_{12} + B_{12} & \cdots & A_{1m} + B_{1m} \\ A_{21} + B_{21} & A_{22} + B_{22} & \cdots & A_{2m} + B_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} + B_{n1} & A_{n2} + B_{n2} & \cdots & A_{nm} + B_{nm} \end{pmatrix}$$

$$(\mathbf{A} + \mathbf{B})_{ik} = A_{ik} + B_{ik}$$

2. Skalárral való szorzás: skalár · tenzor = tenzor · : $\mathbb{R} \times \mathbb{R}^{n \times m} \to \mathbb{R}^{n \times m}$

$$\alpha \cdot \mathbf{A} = \begin{pmatrix} \alpha A_{11} & \alpha A_{12} & \cdots & \alpha A_{1m} \\ \alpha A_{21} & \alpha A_{22} & \cdots & \alpha A_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha A_{n1} & \alpha A_{n2} & \cdots & \alpha A_{nm} \end{pmatrix}$$

$$(\alpha \cdot \mathbf{A})_{ik} = \alpha \mathbf{A}_{ik}$$

3. **Mátrix szorzás**: tenzor · tenzor = tenzor · : $\mathbb{R}^{n \times s} \times \mathbb{R}^{s \times m} \to \mathbb{R}^{n \times m}$

$$\mathbf{A} \cdot \mathbf{B} = \begin{pmatrix} \sum_{j} A_{1j} B_{j1} & \sum_{j} A_{1j} B_{j2} & \cdots & \sum_{j} A_{1j} B_{jm} \\ \sum_{j} A_{2j} B_{j1} & \sum_{j} A_{2j} B_{j2} & \cdots & \sum_{j} A_{2j} B_{jm} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{j} A_{nj} B_{j1} & \sum_{j} A_{nj} B_{j2} & \cdots & \sum_{j} A_{nj} B_{jm} \end{pmatrix}$$

$$(\mathbf{A} \cdot \mathbf{B})_{ik} = \sum_{j=1}^{s} A_{ij} B_{jk} \stackrel{E}{=} A_{ij} B_{jk}$$

4. **Mátrix hatása vektorra** (mátrix szorzás spec esete): tenzor · vektor = vektor · : $\mathbb{R}^{n \times s} \times \mathbb{R}^{s} \to \mathbb{R}^{n}$

$$\mathbf{A} \cdot \mathbf{a} = \left(\sum_{j} A_{1j} a_j, \sum_{j} A_{2j} a_j, \dots \sum_{j} A_{nj} a_j, \right)$$
$$(\mathbf{A} \cdot \mathbf{a})_i = \sum_{j=1}^s A_{ij} a_j \stackrel{E}{=} A_{ij} a_j$$

5. **Trace** (v. Spur, v. nyom): $\operatorname{Tr}(\operatorname{tenzor}) = \operatorname{skal\acute{a}r}$ $\operatorname{Tr}: \mathbb{R}^{n \times n} \longrightarrow \mathbb{R}$

Tr
$$\mathbf{A} = A_{11} + A_{22} + \dots + A_{nn}$$

Tr $\mathbf{A} = \sum_{j=1}^{n} A_{jj} \stackrel{E}{=} A_{jj}$

6. **Transzponálás**: $(\text{tenzor})^T = \text{tenzor}$ $()^T : \mathbb{R}^{n \times m} \to \mathbb{R}^{m \times n}$

 $\mathbf{A}^T = \text{az } \mathbf{A}$ főátlóra való tükrözöttje.

$$(\mathbf{A}^T)_{ik} = A_{ki}$$

Transzponálásra való szimmetria alapján három kategóriát különböztetünk meg:

- Szimmetrikus: $S_{ik} = S_{ki}$
- Antiszimmetrikus: $A_{ik} = -A_{ki}$
- egyik sem: $M_{ik} \neq \pm M_{ki}$

1.3. Szabályok

Az indexes írásmód használata közben sok-indexes kifejezéseket rendezünk és újrarendezünk. Példa egy ilyenre:

$$A_{ij}\delta_{kl}B_{kp}a_{l}\varepsilon_{sip}d_{s} + \delta_{rv}d_{v}(C_{sq}\varepsilon_{tjq}a_{t}b_{s}d_{r} + c_{j}e_{r})$$

Az ilyen kifejezések úgy manipulálhatók mint valós változók hagyományos szorzatai és összegei:

- 1. A tagok sorrendje szabadon cserélhető (hiszen az összeadás kommutatív)
- 2. Indexes alakban a tényezők sorrendje is szabadon cserélgethető, ugyanis a "nemkommutatív tulajdonságot" az index párok hordozzák, ezért viszont fontos, hogy minden tényező viszi magával az indexeit.

pl:
$$A_{ij}\delta_{kl}B_{kp}a_l\varepsilon_{sip}d_s = \delta_{kl}a_lA_{ij}d_s\varepsilon_{sip}B_{kp}$$

3. A szorzás disztributív az összegen.

pl:
$$\delta_{rv}d_v(C_{sq}\varepsilon_{tjq}a_tb_sd_r + c_je_r) = \delta_{rv}d_vC_{sq}\varepsilon_{tjq}a_tb_sd_r + \delta_{rv}d_vc_je_r$$

Az indexek kezelésére az alábbiak érvényesek:

- 4. Egy index az egyes tagokban szerepelhet
 - 0-szor
 - 1-szer: (megmaradó index) Az adott kifejezés tenzori rendjét e párosítatlan indexek száma adja:

pl: $a_i B_{kl} \varepsilon_{ikl} \delta_{ij}$ skalár

 $A_{ij}c_i\delta_{kl}\Lambda_{ssk}b_i$ vektor

 $\Gamma_{ijkl}\delta_{jk}a_i\varepsilon_{lpq}$ másodrendű tenzor

• 2-szer: (néma index) Az ilven kétszer szereplő indexekre automatikusan összegzünk. (Einstein-konvenció)

NB: 2-nél többször ugyanaz az index nem szerepelhet egy tagban.

5. A néma indexek betűi mindig átjelölhetők más betűkre, csak arra kell figyelni, hogy egy tagon belül ne legyen 2-nél több egyik indexből sem.

pl:
$$C_{sq}\varepsilon_{tjq}a_tb_s + c_j \stackrel{E}{=} C_{sr}\varepsilon_{pjr}a_pb_s + c_j$$

Az eredmények értelmezéséhez két relációt használunk:

6. $(\mathcal{P})_{ijkl...} = (\mathcal{Q})_{ijkl...} \Rightarrow \mathcal{P} = \mathcal{Q}$

azaz ha két kifejezés azonos indexű elemei megegyeznek (az indexek minden értékére), akkor a két kifejezés egyenlő.

7. $\sum_{i} \sum_{j} \sum_{k} \sum_{l} \dots a_{i} \dots B_{jl} \dots c_{i} \dots d_{j} \dots F_{lkk} \dots \stackrel{E}{=} a_{i} \dots B_{jl} \dots c_{i} \dots d_{j} \dots F_{lkk} \dots$ azaz az egy tagban kétszer szereplő indexekre az összegzés akkor is ki van róva ha azt nem jelöljük. (Einstein-féle automatikus összegzés konvenciója)

NB: Az automatikus összegzés csak egy tagon belül – az azonos indexű **tényezők**re

– érvényes. Két külön tagban előforduló ugyanolyan indexekre nincs összegzés:

$$a_i b_i c_k \stackrel{E}{=} \sum_i a_i b_i c_k = ((\mathbf{a} \cdot \mathbf{b}) \mathbf{c})_k$$
 (automatikus összegzés)

$$\lambda \cdot a_i + \nu \cdot b_i = (\lambda \mathbf{a} + \nu \mathbf{b})_i$$
 (nincs összegzés)

1.4. Példák

Az alábbiakban bemutatjuk az indexes írásmód és a hagyományos írásmód közötti oda-vissza váltást a gyakorlatban, miközben hasznos (így megjegyzésre is javasolt) azonosságokat vezetünk le.

skalárral való szorzás disztributivitása:

$$[\lambda \cdot (\mathbf{a} + \mathbf{b})]_i = \lambda (a_i + b_i) = \lambda a_i + \lambda b_i = (\lambda \mathbf{a} + \lambda \mathbf{b})_i$$

skalárral való szorzás és a skaláris szorzat asszociativitása:

$$\mathbf{a} \cdot (\lambda \cdot \mathbf{b}) \stackrel{E}{=} (\mathbf{a})_i (\lambda \cdot \mathbf{b})_i = a_i \lambda b_i = \lambda a_i b_i \stackrel{E}{=} \lambda (\mathbf{a} \cdot \mathbf{b})$$

skaláris szorzat disztributivitása:

$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) \stackrel{E}{=} (\mathbf{a})_i (\mathbf{b} + \mathbf{c})_i = a_i (b_i + c_i) = a_i b_i + a_i c_i \stackrel{E}{=} \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$$

vektoriális szorzás disztributivitása:

$$[\mathbf{a} \times (\mathbf{b} + \mathbf{c})]_i \stackrel{E}{=} \varepsilon_{ijk} (\mathbf{a})_j (\mathbf{b} + \mathbf{c})_k = \varepsilon_{ijk} a_j (b_k + c_k) = \varepsilon_{ijk} a_j b_k + \varepsilon_{ijk} a_j c_k \stackrel{E}{=} \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$$

kettős vektoriális szorzat kifejtése:
$$[\mathbf{a} \times (\mathbf{b} \times \mathbf{c})]_i \stackrel{E}{=} \varepsilon_{ijk} a_j (\mathbf{b} \times \mathbf{c})_k \stackrel{E}{=} \varepsilon_{ijk} a_j \varepsilon_{klm} b_l c_m = \varepsilon_{ijk} \varepsilon_{klm} a_j b_l c_m = \varepsilon_{kij} \varepsilon_{klm} a_j b_l c_m \stackrel{E}{=} (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) a_j b_l c_m \stackrel{E}{=} a_j b_i c_j - a_j b_j c_i \stackrel{E}{=} b_i (\mathbf{a} \cdot \mathbf{c}) - c_i (\mathbf{a} \cdot \mathbf{b}) = [\mathbf{b} (\mathbf{a} \cdot \mathbf{c}) - \mathbf{c} (\mathbf{a} \cdot \mathbf{b})]_i$$

vegyes szorzat ciklikus permutációja:

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \stackrel{E}{=} a_i (\mathbf{b} \times \mathbf{c})_i \stackrel{E}{=} a_i \varepsilon_{ijk} b_j c_k = \varepsilon_{ijk} a_i b_j c_k = \varepsilon_{kij} a_i b_j c_k \stackrel{E}{=} (\mathbf{a} \times \mathbf{b})_k c_k \stackrel{E}{=} (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$

tenzor szorzat hatása:

$$[(\mathbf{a} \otimes \mathbf{b})\mathbf{c}]_i \stackrel{E}{=} (\mathbf{a} \otimes \mathbf{b})_{ij}c_j = a_ib_jc_j \stackrel{E}{=} a_i(\mathbf{b} \cdot \mathbf{c}) = [\mathbf{a}(\mathbf{b} \cdot \mathbf{c})]_i$$

tenzor szorzat trace-e:

$$\operatorname{Tr}\left(\mathbf{a}\otimes\mathbf{b}\right)\stackrel{E}{=}\left(\mathbf{a}\otimes\mathbf{b}\right)_{ij}=a_{i}b_{i}\stackrel{E}{=}\left(\mathbf{a}\cdot\mathbf{b}\right)$$

n-dimenziós egység mátrix trace-e:

Tr
$$(\mathbf{I}) \stackrel{E}{=} (\mathbf{I})_{jj} = \delta_{jj} \stackrel{E}{=} \sum_{j=1}^{n} \delta_{jj} = \sum_{j=1}^{n} 1 = n$$

trace ciklikus permutációja:

Tr
$$(\mathbf{ABCD}) \stackrel{E}{=} (\mathbf{ABCD})_{ii} \stackrel{E}{=} A_{ij} B_{jk} C_{kl} D_{li} = D_{li} A_{ij} B_{jk} C_{kl} \stackrel{E}{=} (\mathbf{DABC})_{ll} \stackrel{E}{=} \mathrm{Tr} (\mathbf{DABC})$$

Feladatok: algebra

Alakítsuk az alábbi kifejezéseket indexessé ill. index mentessé!

- 1. $\mathbf{a}(\mathbf{b} \otimes \mathbf{c})\mathbf{d}$
- 2. $[\mathbf{a} \times (\lambda \mathbf{b} + (\mathbf{cd})\mathbf{e})]_i$
- 3. $\mathbf{aABC}(\mathbf{bc})(\mathbf{d} \times \mathbf{e})$
- 4. $\mathbf{a}(\mathbf{b} \times \mathbf{c}) + \operatorname{Tr}(\mathbf{A}^2)$
- 5. Tr $(\lambda \mathbf{I} + \nu((\mathbf{a} \times \mathbf{b}) \otimes \mathbf{c}))$
- 6. $\{[\mathbf{A}(\mathbf{a}\times(\mathbf{b}\times\mathbf{c}))]\times\mathbf{d}\}_i$
- 7. $[(\mathbf{AB})^T]_{ik}$
- 8.Tr $\left\{ ([(\mathbf{a} \otimes \mathbf{b})(\mathbf{c} \times \mathbf{d})] \otimes \mathbf{e})^T \right\}$

- 9. $a_i \delta_{ij} b_i$
- 10. $c_k \delta_{kl} c_l + A_{ij} b_j a_i$
- 11. $A_{ik}\delta_{kl}a_l$
- 12. $\varepsilon_{klm}a_kb_lc_m$
- 13. $\varepsilon_{ijk}\varepsilon_{ilm}a_kb_lc_m$
- 14. $A_{ij}B_{ij}$
- 15. $A_{ij}b_iC_{ik}a_lB_{lk}$
- 16. $\delta_{ii}a_ib_i + A_{ij}B_{jk}C_{kl}\delta_{il}$

2. Analízis

2.1. Mezők és deriváltjaik

A három-dimenziós téren (\mathbb{R}^3) értelmezett különböző tenzori rendű függvényeket **tenzormező**knek hívjuk:

$$\mathcal{T}\cdot\mathbb{R}^3\to\mathbb{R}^{3\times3\times\cdots\times3}$$

Jelölés:

- $\mathbf{r} = (x, y, z) = (x_1, x_2, x_3)$ az alaphalmazként szolgáló háromdimenziós tér egy általános vektora. Ez játsza a mezőknél a független változó szerepét.
- $\partial_1 = \frac{\partial}{\partial x}$, $\partial_2 = \frac{\partial}{\partial y}$, $\partial_3 = \frac{\partial}{\partial z}$ az **r** vektor három komponense szerinti parciális deriválás operátorai.
- Nabla: $\nabla = (\partial_1, \partial_2, \partial_3)$, amely algebrai tulajdonságait tekintve első rendű tenzor, miközben egy elsőrendű deriváló operátor.

A három legfontosabb mező és az azokon értelmezett gyakran előforduló deriváló operátorok:

Skalármező:
$$\phi: \mathbb{R}^3 \to \mathbb{R}$$
, $\mathbf{r} \mapsto \phi(\mathbf{r}) = \phi(x, y, z)$

1. **Gradiens**: skalármező \rightarrow vektormező

$$\begin{aligned} \operatorname{grad} &: (\mathbb{R}^3 \to \mathbb{R}) \to (\mathbb{R}^3 \to \mathbb{R}^3) \\ &\operatorname{grad} \phi = (\partial_1 \phi, \partial_2 \phi, \partial_3 \phi) = \nabla \phi \\ &(\operatorname{grad} \phi)_i = \partial_i \phi \end{aligned}$$

2. Laplace-operátor: skalármező \rightarrow skalármező

3. **Derivált tenzor**: skalármező → tenzormező

$$D: (\mathbb{R}^3 \to \mathbb{R}) \to (\mathbb{R}^3 \to \mathbb{R}^{3 \times 3})$$

$$D\phi = \begin{pmatrix} \partial_1^2 \phi & \partial_1 \partial_2 \phi & \partial_1 \partial_3 \phi \\ \partial_2 \partial_1 \phi & \partial_2^2 \phi & \partial_2 \partial_3 \phi \\ \partial_3 \partial_1 \phi & \partial_3 \partial_2 \phi & \partial_3^2 \phi \end{pmatrix} = \nabla \otimes (\nabla \phi) = (\nabla \otimes \nabla) \phi$$

 $(D\phi)_{ik} = \partial_i \partial_k \phi$ Ez mindig szimmetrikus. (Young-tétel: $\partial_i \partial_k = \partial_k \partial_i$)

Vektormező:
$$\mathbf{v}: \mathbb{R}^3 \to \mathbb{R}^3$$
, $\mathbf{r} \mapsto (v_1(\mathbf{r}), v_2(\mathbf{r}), v_3(\mathbf{r})) = (v_1(x, y, z), v_2(x, y, z), v_3(x, y, z))$

1. **Divergencia**: vektormező → skalármező

$$\operatorname{div}: (\mathbb{R}^3 \to \mathbb{R}^3) \to (\mathbb{R}^3 \to \mathbb{R}) \operatorname{div} \mathbf{v} = \partial_1 v_1 + \partial_2 v_2 + \partial_3 v_3 = \nabla \cdot \mathbf{v} \operatorname{div} \mathbf{v} = \sum_{i=1}^3 \partial_i v_i \stackrel{E}{=} \partial_i v_i$$

2. Rotáció: vektormező \rightarrow vektormező

rot :
$$(\mathbb{R}^3 \to \mathbb{R}^3) \to (\mathbb{R}^3 \to \mathbb{R}^3)$$

rot $\mathbf{v} = (\partial_2 v_3 - \partial_3 v_2, \, \partial_3 v_1 - \partial_1 v_3, \, \partial_1 v_2 - \partial_2 v_1) = \nabla \times \mathbf{v}$
 $(\text{rot } \mathbf{v})_i = \sum_{j=1}^3 \sum_{k=1}^3 \varepsilon_{ijk} \partial_j v_k \stackrel{E}{=} \varepsilon_{ijk} \partial_j v_k$

3. Gradiens: vektormező \rightarrow tenzormező

grad :
$$(\mathbb{R}^3 \to \mathbb{R}^3) \to (\mathbb{R}^3 \to \mathbb{R}^{3\times 3})$$

$$\operatorname{grad} \mathbf{v} = \begin{pmatrix} \partial_1 v_1 & \partial_1 v_2 & \partial_1 v_3 \\ \partial_2 v_1 & \partial_2 v_2 & \partial_2 v_3 \\ \partial_3 v_1 & \partial_3 v_2 & \partial_3 v_3 \end{pmatrix} = \nabla \otimes \mathbf{v}$$

$$(\operatorname{grad} \mathbf{v})_{ik} = \partial_i v_k$$

4. Laplace-operátor: vektormező → vektormező

$$\triangle : (\mathbb{R}^3 \to \mathbb{R}^3) \to (\mathbb{R}^3 \to \mathbb{R}^3)$$

$$\triangle \mathbf{v} = \partial_1^2 \mathbf{v} + \partial_2^2 \mathbf{v} + \partial_3^2 \mathbf{v} = (\nabla \cdot \nabla) \mathbf{v} = \nabla^2 \mathbf{v}$$

$$(\triangle \mathbf{v})_i = \sum_{j=1}^3 \partial_j^2 v_i \stackrel{E}{=} \partial_j \partial_j v_i$$

Tenzormező: $T: \mathbb{R}^3 \to \mathbb{R}^{3 \times 3}$

$$\mathbf{r} \mapsto \begin{pmatrix} T_{11}(\mathbf{r}) & T_{12}(\mathbf{r}) & T_{13}(\mathbf{r}) \\ T_{21}(\mathbf{r}) & T_{22}(\mathbf{r}) & T_{23}(\mathbf{r}) \\ T_{31}(\mathbf{r}) & T_{32}(\mathbf{r}) & T_{33}(\mathbf{r}) \end{pmatrix} = \begin{pmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} & T_{23} \\ T_{31} & T_{32} & T_{33} \end{pmatrix} (x, y, z)$$

1. Divergencia: tenzormező \rightarrow vektormező

$$\operatorname{div}: (\mathbb{R}^3 \to \mathbb{R}^{3 \times 3}) \to (\mathbb{R}^3 \to \mathbb{R}^3)$$

$$\operatorname{div} \mathbf{T} = (\partial_1 T_{11} + \partial_2 T_{21} + \partial_3 T_{31}, \ \partial_1 T_{12} + \partial_2 T_{22} + \partial_3 T_{32}, \ \partial_1 T_{13} + \partial_2 T_{23} + \partial_3 T_{33}) = \nabla \cdot \mathbf{T}$$

$$(\operatorname{div} \mathbf{T})_i = \sum_{j=1}^3 \partial_j T_{ji} \stackrel{E}{=} \partial_j T_{ji}$$

NB: Ez a művelet kitünteti az első indexet, előfordulhat a fordított definíció is. (Ez csak szimmetrikus tenzor esetén lényegtelen.)

2. Laplace-operátor: tenzormező \rightarrow tenzormező

$$\Delta: (\mathbb{R}^3 \to \mathbb{R}^{3\times 3}) \to (\mathbb{R}^3 \to \mathbb{R}^{3\times 3})
\Delta \mathbf{T} = \partial_1^2 \mathbf{T} + \partial_2^2 \mathbf{T} + \partial_3^2 \mathbf{T} = (\nabla \cdot \nabla) \mathbf{T} = \nabla^2 \mathbf{T}
(\Delta \mathbf{T})_{ik} = \sum_{j=1}^3 \partial_j^2 T_{ik} \stackrel{E}{=} \partial_j \partial_j T_{ik}$$

2.2. Differenciál operátorok összefoglaló

	∇ -val	differenciálási rend	mire hathat	tenzori rend változás
div	$\nabla \cdot$	1	\mathbf{v}, \mathbf{T}	-1
rot	abla imes	1	v	0
grad	∇	1	$\phi, \mathbf{v}, \mathbf{T}$	+1
\triangle	$\nabla \cdot \nabla$	2	$\phi, \mathbf{v}, \mathbf{T}$	0
\overline{D}	$ abla \otimes abla$	2	$\phi, \mathbf{v}, \mathbf{T}$	+2

2.3. Szabályok

Indexes deriválás során sokindexes kifejezésekkel kell dolgoznunk, mint például:

$$T_{ij}\partial_j\partial_k v_l a_k u_s b_r \varepsilon_{srp}\partial_t (\lambda(\delta_{tq} + A_{tq})w_q + c_t \phi)$$

ahol most λ ; $\mathbf{a}, \mathbf{b}, \mathbf{c}$; \mathbf{A} konstansok, δ a Kronecker-delta, ε a Levi-Civita-szimbólum, ϕ ; $\mathbf{v}, \mathbf{u}, \mathbf{w}$; \mathbf{T} pedig mezők.

NB: A ∂ -k pozíciója fontos ugyanis definíció szerint mindazt deriválják ami mögöttük áll.

Az ilyen kifejezések manipulálása az alábbiak szerint történik:

1. A konstans tényezők szabadon áthelyezhetők a szorzatban, azaz nem csak egymáson és a mezőkön de a deriválásokon is átemelhetők. (ugyanis $\partial(\lambda\phi) = \lambda\partial f$) (NB: δ és ε is konstans)

pl:
$$T_{ij}\partial_j\partial_k v_l a_k u_s b_r \varepsilon_{srp} \partial_t (\lambda(\delta_{tq} + A_{tq})w_q + c_t \phi) =$$

= $a_k b_r \varepsilon_{srp} T_{ij} \partial_j \partial_k v_l u_s \partial_t (\lambda(\delta_{tq} + A_{tq})w_q + c_t \phi)$

- 2. A deriválás disztributív az összeadáson. $(\partial(f+g) = \partial f + \partial g)$ pl: $\partial_t(\lambda(\delta_{tq} + A_{tq})w_q + c_t\phi) = \lambda(\delta_{tq} + A_{tq})\partial_t w_q + c_t\partial_t\phi$
- 3. Az egymás mellé került ∂ -k felcserélhetők (Young-tétel).
- 4. Szorzaton a deriválás a Leibnitz-szabály szerint oszlik szét: $\partial(f \cdot g) = (\partial f)g + f\partial g$
- 5. Összetett függvény deriváltjánál megjelenik a külső függvény argumentum szerinti deriváltja: $\partial(f(g)) = f'(g) \cdot \partial g$
- 6. Index átnevezések továbbra is végrehajthatók a korábban ismertetett szabályok szerint.

Feladatok: differenciál operátorok

Határozzuk meg, hogy a div ,
rot , grad , \triangle, D operátorok közül melyek hattathatók az alábbi kifejezések
re:

- 1. $(\mathbf{r} \times (\mathbf{a} + \mathbf{b})) \cdot \mathbf{r}$
- 2. $\mathbf{r}\phi(\mathbf{r}) + (\mathbf{a} \otimes \mathbf{r})\mathbf{b}$
- 3. ATr $(\mathbf{a} \otimes \mathbf{v}(\mathbf{r})) + (\mathbf{a} \otimes \mathbf{r})\mathbf{a}\psi(\mathbf{r})$

Értelmesek-e az alábbi kifejezések?

- 4. rot rot $(\mathbf{r} \times \psi(\mathbf{r}) \cdot \mathbf{a})$
- 5. div div $((\mathbf{a} \cdot \mathbf{r}) \cdot \mathbf{v}(\mathbf{r}))$
- 6. $\triangle(\mathbf{a} \cdot \phi(\mathbf{r}) + \lambda \psi(\mathbf{r}))$
- 7. grad (rot $(\mathbf{a} \otimes \mathbf{b})(\mathbf{r} \cdot \mathbf{v}(\mathbf{r}))$)

Bizonyítsuk az alábbi azonosságokat az indexes írásmód segítségével:

- 1. div grad $\phi = \triangle \phi$
- 2. rot rot $\mathbf{v} = \operatorname{grad} \operatorname{div} \mathbf{v} \triangle \mathbf{v}$
- 3. div rot $\mathbf{v} = 0$
- 4. rot grad $\phi = 0$
- 5. Tr $(D\phi) = \Delta \phi$

2.4. Példák

Három gyakran előforduló példa:

identitás függvény (
$$\mathbf{r} \mapsto \mathbf{r} = (x_1, x_2, x_3)$$
) deriváltja: $\partial_i x_j = \frac{\partial}{\partial x_i} x_j = \delta_{ij}$ (javasolt koordinátás írásmóddal ellenőrizni, (= $\nabla \otimes \mathbf{r}$)_{ij})

abszolút érték
$$(r = |\mathbf{r}| = \sqrt{x_1^2 + x_2^2 + x_3^2})$$
 deriváltja: $\partial_i r = \partial_i \sqrt{r^2} \stackrel{E}{=} \partial_i \sqrt{x_j x_j} = \frac{1}{2} \frac{1}{\sqrt{x_j x_j}} \cdot \partial_i x_j x_j \stackrel{E}{=} \frac{1}{2} \frac{1}{r} \cdot ((\partial_i x_j) x_j + x_j \partial_i x_j) = \frac{1}{2} \frac{1}{r} \cdot 2 \cdot \delta_{ij} x_j \stackrel{E}{=} \frac{x_i}{r}$

irányított egységvektor (
$$\mathbf{e} = \mathbf{r}/|\mathbf{r}|$$
) deriváltja: $\partial_i e_i = \partial_i x_i \cdot \frac{1}{\pi} = (\partial_i x_i) \cdot \frac{1}{\pi} + x_i \partial_i \frac{1}{\pi} = \delta_{ij} \frac{1}{\pi} + x_j \cdot \left(-\frac{1}{\pi^2}\right) \cdot \partial_i r = \frac{1}{\pi^3} (r^2 \delta_{ij} - x_j x_i) = \frac{1}{\pi} (\delta_{ij} - e_i e_j)$

További példák:

$$[\operatorname{grad}(\mathbf{ar})]_i = \partial_i(\mathbf{ar}) \stackrel{E}{=} \partial_i a_j x_j = a_j \partial_i x_j = a_j \delta_{ij} \stackrel{E}{=} a_i = (\mathbf{a})_i$$

$$\left[\operatorname{grad} \frac{1}{r^{\alpha}}\right]_{i} = \partial_{i} \frac{1}{r^{\alpha}} = (-\alpha) \frac{1}{r^{\alpha+1}} \partial_{i} r = -\alpha \frac{x_{i}}{r^{\alpha+2}} = \left[-\alpha \frac{\mathbf{r}}{r^{\alpha+2}}\right]_{i}$$

$$\operatorname{div}\left(\frac{\mathbf{r}}{r^{\alpha}}\right) \stackrel{E}{=} \partial_{i} \frac{x_{i}}{r^{\alpha}} = (\partial_{i} x_{i}) \frac{1}{r^{\alpha}} + x_{i} \partial_{i} \frac{1}{r^{\alpha}} = \delta_{ii} \frac{1}{r^{\alpha}} + x_{i} (-\alpha) \frac{1}{r^{\alpha+1}} \partial_{i} r = \frac{1}{r^{\alpha}} \left(\delta_{ii} + x_{i} (-\alpha) \frac{1}{r} \frac{x_{i}}{r}\right) \stackrel{E}{=} \frac{1}{r^{\alpha}} \left(3 - \alpha \frac{r^{2}}{r^{2}}\right) = (3 - \alpha) \frac{1}{r^{\alpha}}$$

$$\begin{aligned} & \left[\operatorname{rot} \left(\mathbf{a} \times \frac{\mathbf{r}}{r^{\alpha}} \right) \right]_{i} \overset{E}{=} \varepsilon_{ijk} \partial_{j} \left(\mathbf{a} \times \frac{\mathbf{r}}{r^{\alpha}} \right)_{k} \overset{E}{=} \varepsilon_{ijk} \partial_{j} \varepsilon_{klm} a_{l} \frac{x_{m}}{r^{\alpha}} = \varepsilon_{kij} \varepsilon_{klm} a_{l} \partial_{j} \frac{x_{m}}{r^{\alpha}} = \\ & = \left(\delta_{il} \delta_{jm} - \delta_{jl} \delta_{im} \right) a_{l} \left(\left(\partial_{j} x_{m} \right) \frac{1}{r^{\alpha}} + x_{m} \partial_{j} \frac{1}{r^{\alpha}} \right) = \\ & = \left(\delta_{il} \delta_{jm} - \delta_{jl} \delta_{im} \right) a_{l} \left(\delta_{jm} \frac{1}{r^{\alpha}} + x_{m} \left(-\alpha \right) \frac{1}{r^{\alpha+1}} \frac{x_{j}}{r} \right) = \\ & = a_{i} \left(\delta_{jj} \frac{1}{r^{\alpha}} - \alpha \frac{1}{r^{\alpha}} \frac{x_{j} x_{j}}{r^{2}} \right) - a_{j} \left(\delta_{ji} \frac{1}{r^{\alpha}} - \alpha \frac{1}{r^{\alpha}} \frac{x_{i} x_{j}}{r^{2}} \right) = \\ & = \frac{1}{r^{\alpha}} \left(\delta_{jj} a_{i} - \alpha a_{i} e_{j} e_{j} - a_{j} \delta_{ji} + \alpha a_{j} e_{i} e_{j} \right) \overset{E}{=} \\ & = \frac{1}{r^{\alpha}} \left(3 a_{i} - \alpha a_{i} - a_{i} + \alpha e_{i} (\mathbf{ae}) \right) = \\ & = \left[\frac{1}{r^{\alpha}} \left((2 - \alpha) \mathbf{a} + \alpha \mathbf{e} (\mathbf{ae}) \right) \right]_{i} \end{aligned}$$

$$\triangle(\sin(\mathbf{ar})) \stackrel{E}{=} \partial_i \partial_i \sin(\mathbf{ar}) = \partial_i [\cos(\mathbf{ar}) \cdot \partial_i (\mathbf{ar})] = \partial_i [\cos(\mathbf{ar}) a_i] =$$

$$= a_i \partial_i \cos(\mathbf{ar}) = a_i (-\sin(\mathbf{ar})) \cdot \partial_i (\mathbf{ar}) = a_i (-\sin(\mathbf{ar})) a_i = -a_i a_i \sin(\mathbf{ar}) \stackrel{E}{=} -a^2 \sin(\mathbf{ar})$$

$$[(\mathbf{b}\nabla)(\mathbf{a}\times\mathbf{r})]_i \stackrel{E}{=} b_j \partial_j \varepsilon_{ikl} a_k x_l = b_j a_k \varepsilon_{ikl} \partial_j x_l = b_j a_k \varepsilon_{ikl} \delta_{jl} \stackrel{E}{=} b_l a_k \varepsilon_{ikl} = \varepsilon_{ikl} a_k b_l \stackrel{E}{=} (\mathbf{a}\times\mathbf{b})_i$$

Feladatok: indexes deriválás

6. div $(\mathbf{r} \exp(r))$

1.
$$\operatorname{grad}((\mathbf{a} \times \mathbf{r})\mathbf{b})$$
 7. $\operatorname{rot}(\mathbf{r} \cdot (\log(\sin(r)))$
2. $\operatorname{grad}(\sin(\mathbf{ar} \cdot r^{\alpha}))$ 8. $\operatorname{rot}(\mathbf{a} \times \mathbf{r} + \mathbf{r} \times (\mathbf{r} \times \mathbf{b}))$
3. $\operatorname{grad}(\exp(r) + \exp(-r))$ 9. $\operatorname{rot}(\mathbf{r} \times (\mathbf{Ar}))$
4. $\operatorname{div}(\mathbf{a} \times \mathbf{r})$ 10. $\triangle(\mathbf{rAr})$
5. $\operatorname{div}(\mathbf{r}\sin(\mathbf{ar}) + \mathbf{b} \times \mathbf{r}\cos(\mathbf{br}))$ 11. $\triangle(\sin(r^2))$

12. $\triangle[((\mathbf{ar})(\mathbf{br}))^3]$

Emlékeztető kártyák

$$\begin{vmatrix} (\mathbf{a} + \mathbf{b})_i = a_i + b_i \\ (\alpha \mathbf{a})_i = \alpha a_i \\ \mathbf{a} \mathbf{b} = a_i b_i \\ (\mathbf{a} \times \mathbf{b})_i = \varepsilon_{ijk} a_j b_k \\ \mathbf{a} (\mathbf{b} \times \mathbf{c}) = \varepsilon_{ijk} a_i b_j c_k \\ (\mathbf{a} \otimes \mathbf{b})_{ik} = a_i b_k \end{vmatrix} \begin{vmatrix} (\mathbf{A} + \mathbf{B})_{ik} = A_{ik} + B_{ik} \\ (\alpha \mathbf{A})_{ik} = \alpha A_{ik} \\ (\mathbf{A} \mathbf{B})_{ik} = \alpha A_{ik} \\ (\mathbf{A} \mathbf{B})_{ik} = A_{ij} B_{jk} \\ (\mathbf{A} \mathbf{a})_i = A_{ij} a_j \\ (\mathbf{A}^T)_{ik} = A_{ki} \\ (\mathbf{A} \mathbf{b})_{ik} = a_i b_k \end{vmatrix}$$

Háttér

Ez az anyag önszorgalomból készült 2010. április 8. és 10. között. A nettó időbefektetés kb. 20 óra volt, melynek kb.

10%-a volt papír feletti tervezés,

20%-a gépelés és formázás,

60%-a a legtömörebb és leginformatívabb formák kiválasztása és 10%-a a hibajavítás.

A sajtóhibák észrevételeit és egyéb megjegyzéseket az alábbi címre várom: peter pont komar pont hu kukac gmail pont com

Sok sikert! (az élethez, a tudományhoz, de legelöször is a zh-hoz!)

Ha még ezt a sort is el akarod olvasni akkor elmondom, hogy nagyon izgulok, hogy sikerült-e hasznos anyagot írnom, és közben reménykedem, hogy sokan fogják a tudtomon kívül dícsérni :)