

Orlando Contreras-López, Ph.D.

Leader Genomic Applications Lab Team orlando.contreras@scilifelab.se

Overview

The National Genomics Infrastructure (NGI)

DNA methylation

Omni-C and Micro-C

Omni-ATAC

Nanopore Sequencing

NGI Sweden Nodes

Lund (LU)

The **SNP&SEQ**Technology Platform

http://snpseq.medsci.uu.se/ http://ugc.igp.uu.se/

NGI Stockholm

https://ngisweden.scilifelab.se/resources/ngi-stockholm-status/

NGI Workflow

We provide **guidelines and support** for sample collection, study design, protocol selection and bioinformatics analysis

NGI Workflow

NGI Workflow

- 1) Here are a few challenges that users often face:
 - o Not knowing enough about their own sample
 - Lacking the necessary tools for quality control
 - Needing more bioinformatics capabilities
 - Feeling lost in communication/literature

2) NGI's tools

- Knowledge gathered from diverse sample types
- Providing guidance and sample QC service, clear thresholds and requirements.
- Offering basic data QC and connecting to NBIS
- Accessing the website and scheduling one-to-one meetings

INGI stockholm

De novo sequencing **DNA** extractions DNA resequencing Environmental sequencing **Epigenetics** Genotyping Single-cell Spatial Transcriptomics User-prepared libraries Proteomics with NGS readout

Overview

SciLifeLab

The National Genomics Infrastructure

DNA methylation

Omni-C and Micro-C

Omni-ATAC

Nanopore Sequencing

DNA methylation analysis

Library preparation for whole genome methylation sequencing

SPlinted Ligation Adapter Tagging (SPLAT) for Whole Genome Bisulphite sequencing

Developed at NGI!*

1. Illumina EPIC Arrays.

*Amanda Raine, Erika Manlig, Per Wahlberg, Ann-Christine Syvänen, Jessica Nordlund, SPlinted Ligation Adapter Tagging (SPLAT), a novel library preparation method for whole genome bisulphite sequencing, *Nucleic Acids Research*, Volume 45, Issue 6, 7 April 2017, Page e36

Overview

SciLifeLab

The National Genomics Infrastructure

DNA methylation

Omni-C and Micro-C

Omni-ATAC
Nanopore Sequencing

Epigenetics - HiC

Resolution (Seq Depth)

doi.org/10.1016/j.tibs.2019.03.001

HiC: Restriction Enzyme

Dovetail Genomics

Epigenetics - HiC

Epigenetics - HiC

HiC: Restriction Enzyme

Lysis

No Fragmentation

DNase/MNase digestion

Dovetail Genomics

Omni-C vs Micro-C

- Enzymatic titration
- Sample quality
- Frozen cells
- Frozen nuclei
- Genome Assembly
- Frozen Animal tissues
- Frozen Plant tissues/nuclei

10.1016/j.cell.2013.09.011

-C steps at NGI

- → Contact and Planning
 - ◆ Study design
 - ◆ Aims and Biological Question.
 - Expectations and Limitations
 - Turnaround Times
 - Paperwork and Sample delivery

- → 200M reads / 1Gb genome to start with
- → Around 6500 kr / Sample

SciLifeLab

Overview

Sci**L**ife**L**ab

The National Genomics Infrastructure

DNA methylation

Omni-ATAC

Omni-C and Micro-C

Nanopore Sequencing

Epigenetics - ATAC-seq

- Nucleosome mapping
- Transcription factor binding analysis
- Novel enhancer identification
- Evolutionary studies
- Comparative epigenomics

Epigenetics - Omni ATAC

Cell preparation for ATAC-seq

- Frozen cryopreserved cells
- Thaw cells in 37°C culture media
- DNase digestion
- PBS washes and cell counting

DNA transposition

- 1. Lysis of 50,000 cells
- 2. Transposition
- 3. DNA extraction

Library construction

- 1. PCR amplification
- 2. First bead purification
- 3. Second bead purification

SEQUENCING

This parts can be done by the user

Epigenetics - Omni ATAC

Omni ATAC has a higher number of unique reads, compared to regular ATACseq

Epigenetics - Omni ATAC

Omni ATAC generates fewer reads that map to mitochondrial DNA, compared to regular ATACseq

TSS enrichment between comparable for all samples

All annotated genes have been normalized to the same size.

- Green: -3.0Kb upstream of gene to TSS
- Yellow: TSS to TES
- Pink: TES to 3.0Kb downstream of gene

Omni ATAC at NGI

→ Contact and Planning

- ◆ Study design
- ◆ Aims and Biological Question.
- Expectations and Limitations
- ◆ Turnaround Times
- Paperwork and Sample delivery

→ Sequence > 50 M PE reads

VovaSeg 6000

→ Around 2000 kr / Sample

Overview

SciLifeLab

The National Genomics Infrastructure

DNA methylation
Omni-C and Micro-C

Omni-ATAC

Nanopore Sequencing

Oxford Nanopore Technologies (ONT)

- A protein channel (nanopore) anchored to a non-conductive membrane
- A voltage can be applied across the membrane
- This causes ions to travel through the protein channel, creating an electrical current

ONT new possibilities

- Sequencing native DNA or RNA avoids bias introduced by amplification steps
- RNA/DNA Methylation calling
- Long reads advantages:
 - haplotyping
 - analysis of repetitive regions
 - phasing
 - structural variants
- Very simple library preps and easy instrument operation

Life Laborato

ONT Adaptive Sampling

- ~150X coverage of the ROI (2Mb)
- 20-40X coverage for the rest of the genome
- No special Lib Prep
- Dependent on .bed file design

https://ngisweden.scilifelab.se/2024/02/t ech-note-adaptive-sampling-targetedoxford-nanopore-long-read-sequencing/

ONT coming soon

—Future methods:

- Direct RNA-seq
- Single Cell 10X Genomics
 - o 3' Gene Expression
- Spatial Transcriptomics 10X Genomics
 - Visium Spatial
- Pore-C: HiC + ONT

→ Around 2300 kr / Sample

Takeaway

- Make use of the SciLifeLab platforms!
 - National Genomics Infrastructure
 - https://ngisweden.scilifelab.se/
 - National Bioinformatics Infrastructure
 - http://nbis.se/
 - Pick a protocol that matches your biological question
 - Think carefully about your project plan
 - Ensure that you understand your data!
 - Ask us! -even if we don't offer the service, we might...

