Fondamenti di elettronica

Corso di laurea in Ingegneria Biomedica – Canale 1 - Meneghesso

Compitino 2 Simulazione n. 2

N.B. le domande nel 2 compitino saranno 20, in questa simulazione ne ho messe di più

- 1) Uno stadio elementare a source comune è caratterizzato da:
 - a) Guadagno di corrente circa unitario
 - b) Guadagno di corrente negativo
 - c) Guadagno di corrente positivo
- 2) Il guadagno di un amplificatore lineare:
 - a) Deve essere necessariamente maggiore di 1
 - b) Deve essere necessariamente positivo
 - c) Può avere qualsiasi valore
- 3) Un amplificatore differenziale ideale:
 - a) La tensione di uscita è direttamente proporzionale alla differenza dei segnali di ingresso
 - b) La tensione di uscita è inversamente proporzionale alla differenza dei segnali di ingresso
 - c) La tensione di uscita è proporzionale alla derivata del segnale di ingresso
- 4) Il guadagno di modo differenziale in un amplificatore differenziale è definito come il rapporto tra la tensione di uscita e la differenza degli ingressi, applicando agli ingressi:
 - a) Un segnale di solo modo comune
 - b) Un segnale di solo modo differenziale
 - c) Un segnale di modo differenziale sovrapposto a un segnale di modo comune di valore arbitrario
- 5) Il guadagno di tensione di uno stadio elementare a source comune con resistenza al source è (in modulo):
 - a) Maggiore del guadagno di tensione di uno stadio a source comune senza resistenza al source.
 - b) Minore del guadagno di tensione di uno stadio a source comune senza resistenza al source.
 - c) Uguale al guadagno di tensione di uno stadio a source comune senza resistenza al source.
- 6) Uno stadio elementare a drain comune è caratterizzato da:
 - a) Guadagno di tensione circa unitario ma inferiore a 1.
 - b) Guadagno di tensione circa unitario ma superiore a 1.
 - c) Guadagno di tensione elevato
- 7) In uno stadio elementare a gate comune:
 - a) La resistenza di ingresso è elevata
 - b) La resistenza di ingresso è bassa
 - c) La resistenza di ingresso è elevata se la resistenza di carico è elevata
- 8) Uno stadio elementare a drain comune:
 - a) La resistenza di uscita è elevata
 - b) La resistenza di uscita è bassa
 - c) La resistenza di uscita è elevata se la resistenza di carico è elevata
- 9) Per realizzare un amplificatore di tensione a due stadi, quali delle seguenti alternative è la migliore
 - a) Primo stadio a source comune, secondo stadio a gate comune
 - b) Primo stadio a source comune, secondo stadio a drain comune
 - c) Primo stadio a gate comune, secondo stadio a drain comune
- 10) Mettendo in cascata amplificatori di corrente di guadagno a vuoto A₁, A₂ e A₃, a causa dell'effetto di carico, il guadagno di corrente complessivo A dei tre stadi è tale che:
 - a) $|A| < |A_1A_2A_3|$
 - b) $|A| = |A_1A_2A_3|$
 - c) $|A| > |A_1A_2A_3|$
- 11) Se mettiamo in cascata due amplificatori di corrente è richiesto che:
 - a) La resistenza di uscita del primo stadio sia molto maggiore della resistenza di ingresso del secondo
 - b) La resistenza di uscita del primo stadio sia molto minore della resistenza di ingresso del secondo
 - c) La resistenza di uscita del secondo stadio sia molto minore della resistenza di ingresso del primo

- 12) Il guadagno di modo comune in un amplificatore differenziale è definito come:
 - a) Il rapporto tra la tensione di uscita e la differenza degli ingressi quando agli ingressi è applicato un segnale di solo modo comune
 - b) Il rapporto tra la tensione di uscita e la differenza degli ingressi quando agli ingressi è applicato un segnale di solo modo differenziale
 - c) Il rapporto tra la tensione di uscita e il valore medio degli ingressi
- 13) Dati due segnali $v_1 = 4V e v_2 = 1V$, la componente di modo comune è:
 - a) 1.5V
 - b) 3V
 - c) 2.5V
- 14) Dati due segnali $v_1 = -3V$ e $v_2 = 4V$, la componente di modo comune è:
 - a) 3.5V
 - b) 1.0V
 - c) 0.5V
- 15) In un AO reale il principio del cortocircuito virtuale si verifica con buona probabilità:
 - a) Se l'AO ha guadagno molto elevato e lavora con retroazione negativa
 - b) Se l'AO ha guadagno molto elevato e lavora con retroazione positiva
 - c) Se l'AO ha guadagno molto elevato e lavora in saturazione
- 16) L'uscita di un operazionale ideale e schematizzabile mediante:
 - a) Un generatore di tensione costante
 - b) Un generatore di tensione pilotato dalla differenza di potenziale tra gli ingressi
 - c) Un generatore di corrente pilotato dalla differenza di potenziale tra gli ingressi
- 17) Dato il circuito in figura realizzato con un operazionale ideale e una resistenza di $2k\Omega$. Se I_S = 4mA, la tensione di uscita vale:

c) -2V

18) Dato il circuito in figura realizzato con un operazionale ideale e due resistenze $R_1 = 12 \text{ k}\Omega \text{ e } R_2 = 36 \text{ k}\Omega$. Il guadagno è:

a) -0.3333

b) -12.0

c) -3.0

19) Dato il circuito in figura realizzato con un operazionale ideale e resistenze $R_1 = 1k\Omega$ e $R_2 = 2k\Omega$. Se $v_1 = 2V$ e $v_2 = -2V$, l'uscita v_0 è:

b) 4V

c) -4V

20) Dato il circuito in figura realizzato con un operazionale reale con I_{BIAS} = 200nA, R_1 = 1k Ω , R_2 = 10k Ω . Se v_I = 0, il modulo della tensione di uscita vale:

a) 2mV

b) 0.2mV

c) 0V

21) Dato il circuito in figura realizzato con un operazionale reale con V_{OS} = 0.01V, R_1 = $1k\Omega$, R_2 = $10k\Omega$. Se v_1 = 0V, v_2 = 0.2V la tensione di uscita vale:

a) 1.9V

b) 2.11V

c) 2.0V

- v_1 v_2 R_1 R_2 V_0 R_1 R_2 R_2
- 22) Dato il circuito in figura realizzato con un operazionale ideale in tutto tranne che per la tensione di offset che è pari a 10 mV. Se v_I = 10 mV, quanto vale v_O ?

a) 0 mV

b) 10 mV

c) 20 mV

23) Dato il circuito in figura realizzato con un operazionale ideale e R = 2k Ω . S	e $v_A = 5 V$, $v_A \rightarrow \sim$
la corrente i ₀ vale:	
a) + 2.5mA	\mathbb{Z}^{VVV}_{R} $ \mathbf{z}_{o} \mathbf{z}_{R}$
b) - 2.5mA	→
c) Dipende dal valore di R∟	
24) Dato il circuito in figura realizzato con un operazionale ideale e R_1 = 1k Ω , R_2	= $10k\Omega$, R_2
$v_1 = 5 \text{ V}$, e CMRR = 100, quanto vale v_0 ?	R_1 $\lceil M \rceil$
a) + 55.55 V	
b) + 55,05 V	v_o
c) + 55.00 V	$v_i \rightarrow \overline{}$
25) La funzione di trasferimento del filtro mostrato in figura presenta:	r\\\\
a) Un solo polo reale negativo	\vdash
b) Uno zero nell'origine e un solo polo reale negativo	v_l \sim
c) Uno zero nell'origine e due poli reali negativi	v_0
	→
26) Che funzione svolge il circuito in figura?	., г///
a) Filtro passa-basso	$v_I + v_O$
b) Filtro passa-banda	- to
c) Filtro passa-alto	~
27) La funzione di trasferimento del filtro mostrato in figura presenta:	ſ ∕‱٦
a) Un solo polo reale negativo	
b) Uno zero nell'origine e un solo polo reale negativo	v_l
c) Uno zero nell'origine e due poli	₽
28) Data la funzione di trasferimento il cui diagramma di bode del modulo	<u>*</u>
è mostrato in figura. Quanti poli ha in totale:	60dB
a) 2	40dB
b) 3	20dB
c) Nessuno, ha solo zeri	OdB decadi
	1 1 1 1 1 7
29) Data la funzione di trasferimento il cui diagramma di bode del modulo	

- b) Un polo nell'origine e uno zero reale negativo
- c) Uno zero nell'origine e un polo reale negativo
- 30) Sia data la funzione di trasferimento il cui diagramma di bode della fase è rappresentato in figura. Essa ha:
 - a) Un polo a 10² rad/s e uno zero a 10⁴ rad/s
 - b) Un polo a 10³ rad/s
 - c) Un polo o uno zero a 10³ rad/s

20dB

180°<u>4</u>

135

90°

45°

1) Sia dato un filtro la cui funzione di trasferimento ha il diagramma di bode della fase mostrato in figura. Sapendo che non ci sono né poli e né zeri nell'origine e che tutti gli altri poli o zeri sono reali negativi. Di che tipo di filtro si tratta?

- b) Filtro passa-banda
- c) Filtro passa-alto
- 32) Data la funzione di trasferimento il cui diagramma di bode del modulo è mostrato in figura. Essa ha:

- Due poli nessuno dei quali nell'origine b)
- Un polo e uno zero c)

decadi