# Sublinear Algorithms for Estimating Single-Linkage Clustering Costs



Pan Peng
University of Science &
Technology of China



Christian Sohler University of Cologne Cologne, Germany



Yi Xu
University of Science &
Technology of China

Women in TCS Workshop 2025

- Input: weighted graph G = (V, E), distance/similarity
- SLC: bottom-up hierarchical clustering combine two closest/most similar clusters

- Input: weighted graph G = (V, E), distance/similarity
- SLC: bottom-up hierarchical clustering combine two closest/most similar clusters
- Example:  $V = \{a, b, c, d, e\}$



- Input: weighted graph G = (V, E), distance/similarity
- SLC: bottom-up hierarchical clustering combine two closest/most similar clusters
- Example:  $V = \{a, b, c, d, e\}$



- Input: weighted graph G = (V, E), distance/similarity
- SLC: bottom-up hierarchical clustering combine two closest/most similar clusters
- Example:  $V = \{a, b, c, d, e\}$



- Input: weighted graph G = (V, E), distance/similarity
- SLC: bottom-up hierarchical clustering combine two closest/most similar clusters
- Example:  $V = \{a, b, c, d, e\}$



- Input: weighted graph G = (V, E), distance/similarity
- SLC: bottom-up hierarchical clustering combine two closest/most similar clusters
- Example:  $V = \{a, b, c, d, e\}$



- Input: weighted graph G = (V, E), distance/similarity
- SLC: bottom-up hierarchical clustering combine two closest/most similar clusters
- Example:  $V = \{a, b, c, d, e\}$



- Input: weighted graph G = (V, E), distance/similarity
- SLC: bottom-up hierarchical clustering combine two closest/most similar clusters

 $cost_k$ : sum of the costs of spanning trees within k clusters  $cost(G) := \sum_{k=1}^{n} cost_k$ , total clustering cost

- Input: weighted graph G = (V, E), distance/similarity
- SLC: bottom-up hierarchical clustering combine two closest/most similar clusters

```
cost_k: sum of the costs of spanning trees within k clusters cost(G) := \sum_{k=1}^{n} cost_k, total clustering cost
```

#### Motivation:

- cost<sub>k</sub> captures important structure
- SLC minimizes these costs

- Input: weighted graph G = (V, E), distance/similarity
- SLC: bottom-up hierarchical clustering combine two closest/most similar clusters

```
cost_k: sum of the costs of spanning trees within k clusters cost(G) := \sum_{k=1}^{n} cost_k, total clustering cost
```

#### Motivation:

- cost<sub>k</sub> captures important **structure**
- SLC minimizes these costs

Naive solution: compute an MST in  $\tilde{O}(nd)$  time Question: estimate cost(G) and  $cost_k$  in **sublinear** time?

## Main Results

W: max weight d: average degree query model: adj. list

| Setting         | cost(G)                                      | $cost_k$                                     | Lower bound                            |
|-----------------|----------------------------------------------|----------------------------------------------|----------------------------------------|
| Distance Case   | $\tilde{O}(\frac{\sqrt{W}}{\varepsilon^3}d)$ | $\tilde{O}(\frac{\sqrt{W}}{\varepsilon^3}d)$ | $\Omega(rac{\sqrt{W}}{arepsilon^2}d)$ |
| Similarity Case | $\tilde{O}(\frac{W}{\varepsilon^3}d)$        | $\tilde{O}(\frac{W}{\varepsilon^3}d)$        | $\Omega(rac{W}{arepsilon^2}d)$        |

## Main Results

W: max weight d: average degree query model: adj. list

| Setting         | cost(G)                                      | $cost_k$                                     | Lower bound                               |
|-----------------|----------------------------------------------|----------------------------------------------|-------------------------------------------|
| Distance Case   | $\tilde{O}(\frac{\sqrt{W}}{\varepsilon^3}d)$ | $\tilde{O}(\frac{\sqrt{W}}{\varepsilon^3}d)$ | $\Omega(\frac{\sqrt{W}}{\varepsilon^2}d)$ |
| Similarity Case | $\tilde{O}(\frac{W}{\varepsilon^3}d)$        | $\tilde{O}(\frac{W}{\varepsilon^3}d)$        | $\Omega(rac{W}{arepsilon^2}d)$           |

**Succinct** representation of the SLC estimates  $(\widehat{\cos t_1}, \dots, \widehat{\cos t_n})$  s.t.  $\forall k$ , recover  $\widehat{\cos t_k}$  in a **short** time, and **on average** a  $(1+\varepsilon)$  estimate

On average:  $\sum_{k=1}^{n} |\widehat{\operatorname{cost}}_k - \operatorname{cost}_k| \le \varepsilon \cdot \operatorname{cost}(G) = \varepsilon \sum_{k=1}^{n} \operatorname{cost}_k$ 

Short time: in  $O(\log \log W)$  time

## Main Results

W: max weight d: average degree query model: adj. list

| Setting         | cost(G)                                        | cost <sub>k</sub>                            | Lower bound                            |
|-----------------|------------------------------------------------|----------------------------------------------|----------------------------------------|
| Distance Case   | $\tilde{O}(\frac{\sqrt{W}}{\varepsilon^3}d)^1$ | $\tilde{O}(\frac{\sqrt{W}}{\varepsilon^3}d)$ | $\Omega(rac{\sqrt{W}}{arepsilon^2}d)$ |
| Similarity Case | $	ilde{O}(rac{W}{arepsilon^3}d)$              | $\tilde{O}(rac{W}{arepsilon^3}d)$           | $\Omega(rac{W}{arepsilon^2}d)$        |

**Succinct** representation of the SLC estimates  $(\widehat{\cos t_1}, \dots, \widehat{\cos t_n})$  s.t.  $\forall k$ , recover  $\widehat{\cos t_k}$  in a **short** time, and **on average** a  $(1+\varepsilon)$  estimate

On average: 
$$\sum_{k=1}^{n} |\widehat{\operatorname{cost}}_k - \operatorname{cost}_k| \le \varepsilon \cdot \operatorname{cost}(G) = \varepsilon \sum_{k=1}^{n} \operatorname{cost}_k$$
  
Short time: in  $O(\log \log W)$  time

 $^1$  Applying [CRT05], one can get:  $(1+\varepsilon)\text{-estimate},~\tilde{O}(\frac{W}{\varepsilon^2}d)$  queries



CC: Connected Component W: max weight

#### Step 1

 $\mathsf{Reduction} \Rightarrow \mathsf{estimating} \ \# \ \mathsf{of} \ \mathbf{CC} \mathsf{s}$ 

CC: Connected Component W: max weight

#### Step 1

Reduction  $\Rightarrow$  estimating # of CCs

## Step 2 [CRT05]

Estimate # of CCs  $\Rightarrow$  sample & BFS

CC: Connected Component W: max weight

#### Step 1

Reduction  $\Rightarrow$  estimating # of **CC**s

$$cost(G) \approx \sum_{j=1}^{W} c_j^2$$

## Step 2 [CRT05]

Estimate # of CCs  $\Rightarrow$  sample & BFS

CC: Connected Component W: max weight

#### Step 1

Reduction  $\Rightarrow$  estimating # of **CC**s

$$cost(G) \approx \sum_{j=1}^{W} c_j^2$$

## Step 2 [CRT05]

Estimate # of CCs  $\Rightarrow$  sample & BFS in  $\tilde{O}(\frac{\sqrt{W}}{\varepsilon^2})$  time

CC: Connected Component W: max weight

#### Step 1

Reduction  $\Rightarrow$  estimating # of **CC**s  $cost(G) \approx \sum_{i=1}^{W} c_i^2$ 

## Step 2 [CRT05]

Estimate # of CCs  $\Rightarrow$  sample & BFS in  $\tilde{O}(\frac{\sqrt{W}}{c^2})$  time

Naive solution: estimate # of CCs for W graphs, in  $\tilde{O}(W \cdot \frac{\sqrt{W}}{c^2})$  time!

CC: Connected Component W: max weight

#### Step 1

Reduction  $\Rightarrow$  estimating # of **CC**s  $cost(G) \approx \sum_{i=1}^{W} c_i^2$ 

## Step 2 [CRT05]

Estimate # of CCs  $\Rightarrow$  sample & BFS in  $\tilde{O}(\frac{\sqrt{W}}{c^2})$  time

Naive solution: estimate # of CCs for W graphs, in  $\tilde{O}(W \cdot \frac{\sqrt{W}}{c^2})$  time!

#### Step 3

Apply binary search to accelerate

CC: Connected Component W: max weight

#### Step 1

Reduction  $\Rightarrow$  estimating # of **CC**s  $cost(G) \approx \sum_{i=1}^{W} c_i^2$ 

## Step 2 [CRT05]

Estimate # of CCs  $\Rightarrow$  sample & BFS in  $\tilde{O}(\frac{\sqrt{W}}{c^2})$  time

Naive solution: estimate # of CCs for W graphs, in  $\tilde{O}(W \cdot \frac{\sqrt{W}}{c^2})$  time!

#### Step 3

Apply binary search to accelerate

 $\{c_i\}$  is monotonic

CC: Connected Component W: max weight

#### Step 1

Reduction  $\Rightarrow$  estimating # of **CC**s  $cost(G) \approx \sum_{i=1}^{W} c_i^2$ 

$$cost(G) \approx \sum_{j=1}^{W} c_j^2$$

#### Step 2 [CRT05]

Estimate # of CCs  $\Rightarrow$  sample & BFS in  $\tilde{O}(\frac{\sqrt{W}}{c^2})$  time

Naive solution: estimate # of CCs for W graphs, in  $\tilde{O}(W \cdot \frac{\sqrt{W}}{c^2})$  time!

#### Step 3

Apply binary search to accelerate  $\{c_i\}$  is monotonic

- $\Rightarrow$  ROBUST algo, works even on **not** monotonic estimates  $\{\hat{c}_i\}$ !
- $\Rightarrow$  Estimate # of CCs upto  $O(\log W/\varepsilon)$  graphs!

CC: Connected Component W: max weight

#### Step 1

Reduction  $\Rightarrow$  estimating # of **CC**s  $cost(G) \approx \sum_{i=1}^{W} c_i^2$ 

$$cost(G) \approx \sum_{j=1}^{W} c_j^2$$

#### Step 2 [CRT05]

Estimate # of CCs  $\Rightarrow$  sample & BFS in  $\tilde{O}(\frac{\sqrt{W}}{c^2})$  time

Naive solution: estimate # of CCs for W graphs, in  $\tilde{O}(W \cdot \frac{\sqrt{W}}{c^2})$  time!

#### Step 3

Apply binary search to accelerate  $\{c_i\}$  is monotonic

- $\Rightarrow$  ROBUST algo, works even on **not** monotonic estimates  $\{\hat{c}_i\}$ !
- $\Rightarrow$  Estimate # of CCs upto  $O(\log W/\varepsilon)$  graphs!

Total running time & queries:  $\tilde{O}(\frac{\sqrt{W}}{c^3})$ 

