1. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$\frac{6}{8} + \frac{4}{5}x \ge \frac{9}{6}x - \frac{8}{9}$$

- A. $[a, \infty)$, where $a \in [-1.5, 8.25]$
- B. $(-\infty, a]$, where $a \in [-6, -0.75]$
- C. $(-\infty, a]$, where $a \in [0.75, 6]$
- D. $[a, \infty)$, where $a \in [-4.5, 0.75]$
- E. None of the above.
- 2. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-8 + 4x > 5x$$
 or $3 + 6x < 8x$

- A. $(-\infty, a] \cup [b, \infty)$, where $a \in [-11.25, -3.75]$ and $b \in [0.75, 6.75]$
- B. $(-\infty, a] \cup [b, \infty)$, where $a \in [-4.5, 2.25]$ and $b \in [2.25, 9]$
- C. $(-\infty, a) \cup (b, \infty)$, where $a \in [-3.75, 3]$ and $b \in [6.75, 9.75]$
- D. $(-\infty, a) \cup (b, \infty)$, where $a \in [-12, -3.75]$ and $b \in [-1.5, 7.5]$
- E. $(-\infty, \infty)$
- 3. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$9 - 9x < \frac{-49x + 9}{9} \le 6 - 6x$$

- A. $(-\infty, a) \cup [b, \infty)$, where $a \in [-3.75, -1.5]$ and $b \in [-11.25, -6.75]$
- B. (a, b], where $a \in [-7.5, 0]$ and $b \in [-10.5, -7.5]$
- C. $(-\infty, a] \cup (b, \infty)$, where $a \in [-7.5, 1.5]$ and $b \in [-15.75, -4.5]$
- D. [a, b), where $a \in [-3.75, 0.75]$ and $b \in [-9.75, -3]$

E. None of the above.

4. Using an interval or intervals, describe all the x-values within or including a distance of the given values.

More than 10 units from the number -4.

A.
$$(-\infty, -14) \cup (6, \infty)$$

B.
$$[-14, 6]$$

C.
$$(-14, 6)$$

D.
$$(-\infty, -14] \cup [6, \infty)$$

- E. None of the above
- 5. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$8x - 7 < 10x + 7$$

A.
$$(a, \infty)$$
, where $a \in [7, 11]$

B.
$$(-\infty, a)$$
, where $a \in [5, 8]$

C.
$$(a, \infty)$$
, where $a \in [-10, -6]$

D.
$$(-\infty, a)$$
, where $a \in [-11, -1]$

- E. None of the above.
- 6. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-5 + 4x > 7x$$
 or $8 + 3x < 4x$

A.
$$(-\infty, a] \cup [b, \infty)$$
, where $a \in [-11.25, -7.5]$ and $b \in [-0.75, 5.25]$

B.
$$(-\infty, a] \cup [b, \infty)$$
, where $a \in [-3.75, 0.75]$ and $b \in [4.5, 9]$

C.
$$(-\infty, a) \cup (b, \infty)$$
, where $a \in [-4.5, 1.5]$ and $b \in [6.75, 15]$

1430-1829 test

D.
$$(-\infty, a) \cup (b, \infty)$$
, where $a \in [-11.25, -3]$ and $b \in [0.75, 4.5]$

E.
$$(-\infty, \infty)$$

7. Using an interval or intervals, describe all the x-values within or including a distance of the given values.

More than 8 units from the number 5.

A.
$$[-3, 13]$$

B.
$$(-\infty, -3) \cup (13, \infty)$$

C.
$$(-3, 13)$$

D.
$$(-\infty, -3] \cup [13, \infty)$$

8. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-3 - 3x < \frac{-7x + 9}{4} \le 9 - 3x$$

A.
$$[a, b)$$
, where $a \in [-7.5, -0.75]$ and $b \in [2.25, 9]$

B.
$$(-\infty, a] \cup (b, \infty)$$
, where $a \in [-5.25, 2.25]$ and $b \in [3, 10.5]$

C.
$$(a, b]$$
, where $a \in [-5.25, -1.5]$ and $b \in [5.25, 6]$

D.
$$(-\infty, a) \cup [b, \infty)$$
, where $a \in [-7.5, 0.75]$ and $b \in [2.25, 6]$

E. None of the above.

9. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-9x - 7 > -6x + 8$$

A.
$$(a, \infty)$$
, where $a \in [-7, 0]$

1430-1829 test

- B. $(-\infty, a)$, where $a \in [-6, 1]$
- C. $(-\infty, a)$, where $a \in [4, 8]$
- D. (a, ∞) , where $a \in [5, 8]$
- E. None of the above.
- 10. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$\frac{8}{3} - \frac{7}{6}x < \frac{-4}{4}x - \frac{10}{8}$$

- A. $(-\infty, a)$, where $a \in [20.25, 25.5]$
- B. (a, ∞) , where $a \in [-24.75, -20.25]$
- C. $(-\infty, a)$, where $a \in [-26.25, -20.25]$
- D. (a, ∞) , where $a \in [21, 27.75]$
- E. None of the above.