

Bi-LSTM, Bi-RNN, Seq2Seq, Attention

??

Bi-directinoal?

02 Bi-RNN

Bi-LSTM

04 Seq2Seq

05

Attention

양방향?

Bi- Directional

기존의 RNN

현시점보다 미래 시점인 데이터는 추론하지 못한다는 단점 있음.

$$ps[i] = softmax(ys[i])$$

$$v \times 1 \qquad v \times 1$$

$$ys[i] = W_{hy} hs[i] + by$$

$$v \times 1 \qquad v \times H \quad H \times 1 \qquad v \times 1$$

$$hs[i] = \tanh(W_{xh} \quad xs[i] + W_{hh} \quad h[i-1] + bh)$$

$$H \times 1 \qquad H \times V \quad V \times 1 \qquad H \times H \quad H \times 1 \qquad H \times 1$$

$$Wocabulary size = V$$

Bi-directional RNN

두 개의 RNN 을 서로 합친 모델. 한 RNN 에 대해서는 정방향으로 입력, 다른 RNN에 대해서는 역방향으로 입력되어 합쳐진 후 출력.

Bi-directional LSTM

Attention? 우선 Seq2Seq 부터!

Attention + Bi LSTM 을 사용하는 것이 가장 성능이 좋다고 알려져 있음.

je suis étudiant
기계 번역기
(SEQUENCE TO SEQUENCE)

am a student

train / test 과정이 다름!

• • C

seq2seq의 문제점

1. 정해진 크기의 벡터에 정보를 압축하다 보니 인코더에 정보손실 발생. 이렇게 되면 디코더는 인코더가 압축한 정보를 초반 예측에만 활용하는 경향 존재. -> boottle neck 문제.

2. RNN의 고질적인 Vanishing Gradient 문제.

-> Attention의 필요성.

Attention

디코더에서 출력 단어를 예측하는 매 시점(time step)마다, 인코더에서의 전체 입력 문장을 다시 한 번 참고하는 매커니즘.

가정) 인코더가 'bier'를 받아서 벡터로 만든 결과(인코더 출력)는 디코더가 'beer'를 예측할 때 쓰는 벡터(디코더 입력)와 유사할 것

중요한것만 집중하게 만들자!

• • C

Attention

1. Attention Score 구한다.

Attention Score)

현재 디코더의 시점t에서 단어를 예측하기 위해 인코더의 모든 은닉상태 각각이 디코더의 은닉상태와 얼마나 유사한지 판단하는 스코어.

Attention

Attention Score 구하기 위해 내적 수행.

Attention score의 모음값

$$e^t = [s_t^T h_1, \ldots, s_t^T h_N]$$

3. 각 인코더의 어텐션 가중치와 은닉상태를 가중합하여 Attention Value 구한다.

4. 어텐션 값과 디코더의 t 시점의 은닉상태를 연결

5. 출력층 연산의 입력값이 되는 것을 계산함.

6. softmax 씌워 출력층의 결과, 즉 예측 벡터를 얻습니다.

즉, 전체 과정을 수식으로 나타내 보자면,