

École polytechnique de Louvain

LINFO1140 - Bases électroniques de l'informatique

Travail 1: Circuits DC

Auteur: Nicolas Jeanmenne

Noma: 4874-19-00

2021-2022

1 Introduction

Le but de ce premier travail est d'implémenter un circuit contenant au moins une source de tension ainsi qu'une source de courant avec plusieurs résistances. Il s'agira ensuite de calculer les tensions, courants et puissances du circuit et enfin de simuler le circuit avec le logiciel LTspice afin de démontrer l'exactitude des calculs.

À l'attention du correcteur / correctrice

N'hésitez pas à zoomer sur les schémas du circuit et autres images afin d'y voir plus clair.

2 Schéma initial du circuit

FIGURE 1 – Schéma du circuit

FIGURE 2 – Résultat du circuit

3 Calculs

3.1 Simplification du circuit initial

Je vais commencer par simplifier toutes les résistances présente dans le circuit. On aperçoit que R_2 et R_3 sont en série et que R_1 est en parallèle avec ces deux dernières. La résistance équivalente vaut donc :

$$R_{eq} = R_1 // (R_2 + R_3)$$

 $R_{eq} = 20 // (15 + 5)$
 $R_{eq} = 20 // 20$

$$R_{eq} = 10 \Omega$$

Nous obtenons donc le circuit suivant :

Figure 3 – Circuit simplifié

Grâce à la loi des noeuds, nous savons déjà qu'il y a une différence de potentiel de 2V aux bornes de la résistance équivalente (R_{eq}) . Le courant passant par R_{eq} vaut donc :

$$I_{R_{eq}} = \frac{V}{R}$$

$$I_{R_{eq}} = \frac{2}{10}$$

$$I_{R_{eq}} = 0.2$$

$$I_{R_{eq}} = 200 \ mA$$

3.2 Recomposition du circuit

Je vais maintenant recomposer le circuit, annoté avec les informations que nous connaissons :

Figure 4 – Circuit initial annoté

Nous avons donc la première étape de la recomposition de notre circuit avec en vert l'intensité du courant (pour le 2ème noeud, j'ai utilisé la loi des noeuds pour déterminer le courant). Nous pouvons calculer la tension aux bornes de R_1 :

$$V_{R_1} = R \cdot I$$

 $V_{R_1} = 20 \cdot 0.1$
 $V_{R_1} = 2$

$$V_{R_1} = 2 V$$

Ensuite, il faut calculer la tension de R_2 et R_3 . Comme celles-ci sont en série, elles sont traversée par la même intensité de courant. Leur tension respective vaut donc :

$$V_{R_2} = R \cdot I$$

 $V_{R_2} = 15 \cdot 0.1$
 $V_{R_2} = 1.5$

$$V_{R_2} = 1.5 V$$

$$V_{R_3} = R \cdot I$$

 $V_{R_3} = 5 \cdot 0.1$
 $V_{R_3} = 0.5$

$$V_{R_3} = 500 \ mV$$

3.3 Calculs des puissances

Il ne nous reste plus qu'a calculé les puissances :

$$P_{R_1} = V \cdot I$$

 $P_{R_1} = 2 \cdot 0.1$
 $P_{R_1} = 0.2$

$$P_{R_1} = 200 \ mW$$

$$P_{R_2} = V \cdot I$$

 $P_{R_2} = 1.5 \cdot 0.1$
 $P_{R_2} = 0.15$

$$P_{R_2} = 150 \ mW$$

$$P_{R_3} = V \cdot I$$

 $P_{R_3} = 0.5 \cdot 0.1$
 $P_{R_3} = 0.05$

$$P_{R_3} = 50 \ mW$$

$$P_{V_1} = V \cdot I$$

 $P_{V_1} = 2 \cdot 0.8$
 $P_{V_1} = 1.6$

$$P_{V_1} = 1.6 \ W$$

$$P_{I_1} = V \cdot I$$

 $P_{I_1} = -2 \cdot 1$
 $P_{I_1} = -2$

$$P_{I_1} = -2 W$$

4 Tableau récapitulatif

/	Intensité	Tension	Puissance
R1	100 mA	2 V	20 mW
R2	100 mA	1.5 V	150 mW
R3	100 mA	500 mV	50 mW
V1	800 mA	2 V	1.6 W
I2	1 A	-2 V	-2 W

Table 1 – Tableau résumant toutes les données obtenues

5 Conclusion

Pour conclure ce travail, je peux affirmer que les résultats sont accord avec la simulaation du circuit faite sur LTspice. Ce travail permet de bien mettre en pratique les concepts expliqués au cours magistral.