The actuator saturation problem

When the controller output saturates the control signal stops changing.

If the error signal continues to be applied to the integrator in a PI controller, the integrator output will grow until the sign of the error changes and the integration turn direction (windup).

The result is a large overshoot and a poor transient response.

As soon as the actuator saturates the feed back loop around the integrator becomes active and keeps the input to the integrator small

The structure corresponds to a lead controller

Digital implementation

If
$$|u_c| = u_{max}$$
 then $k_I = 0$

The integrator is reset when the control signal is saturated.

Example

 $G(s) = \frac{1}{s}$ input to the plant is limited to ± 1.0

$$D(s) = k_p + \frac{k_i}{s} = 2 + \frac{4}{s}$$
 $K_a = 10$

Simulation results

Stepresponse - output

Stepresponse control effort

When the output saturates the integral term in the controller is re-calculated so that the new value gives an output at the saturation limit.

The integrator is not reset instantaneously but dynamically with a time constant T_t .

No saturation $u_c = u \Rightarrow e_s = 0$

The integrator input is

$$\frac{1}{T_t}e_S + \frac{K}{T_i}e \Rightarrow e_S = \frac{KT_t}{T_i}e$$

$$e_S = u_c - u_{max}$$

$$u_c = Ke + \frac{K}{T_i s} e + \frac{1}{T_t} \frac{1}{s} (-u_c + u_{max})$$

$$\frac{T_t s + 1}{T_t s} u_c = \frac{K T_i s + K}{T_i s} e + \frac{1}{T_t s} u_{max}$$

$$(T_t s + 1)u_c = \frac{(KT_i s + K)T_t}{T_i}e + u_{max}$$

In steady state ⇔ s=0

$$u_c = \frac{KT_t}{T_i}e + u_{max}$$

 $u_c \geq u_{max}$.

This prevent the integrator from winding up.

The rate at which the controller output is reset is governed by $\frac{1}{T_t}$,

 T_t is a kind of time constant for how quick the integrator is reset. T_t is also called the tracking time constant.

In the figure is the output y, setpoint y_{sp} , controlleroutput u integration I

System including back calculation

Response for different tracking time T_t

