Name:

Physics 51 Homework #15 October 31, 2016

SUP1, SUP2, 38-P3, 34-P6*

SUP1 A parallel plate capacitor has circular plates of radius R and separation d. The capacitor is connected to a battery of voltage V and then disconnected so that the charge ought to remain constant. The air is humid, however, and therefore slightly conducting; thus the stored charge leaks back across the air gap between the capacitor plates at rate i_{leak} . Assume that this leakage current is uniformly distributed across the area of the plates. Find the magnetic field everywhere between the plates.

-

SUP2 In a material of non-zero electrical resistivity ρ , the relationship between electric field and current density is $\vec{E} = \rho \vec{j}$. For copper, $\rho = 2 \times 10^{-8} \,\Omega \text{m}$. A copper wire with a circular cross-sectional area of $4 \, \text{mm}^2$ carries a current of $40 \, \text{A}$.

- (a) What is the longitudinal electric field (field along the length of the wire) in the copper?
- (b) If the current is changing at a rate of 5000 A/s, at what rate is \vec{E} changing, and what is the resulting displacement current?
- (c) Does the displacement current contribute significantly to the magnetic field outside the wire? Explain your answer.

38-P3 The capacitor in Fig 38-25 consisting of two circular plates with radius $R=18.2\,\mathrm{cm}$ is connected to a source of emf $\mathscr{E}=\mathscr{E}_m\sin\ \omega t$, where $\mathscr{E}_m=225\,\mathrm{V}$ and $\omega=128\,\mathrm{rad/s}$. The maximum value of the displacement current is $i_d=7.63\,\mathrm{\mu A}$. Neglect fringing of the electric field at the edges of the plates.

- (a) What is the maximum value of the current i?
- (b) What is the maximum value of $\frac{d\Phi_E}{dt}$, where Φ_E is the electric flux through the region between the plates?
- (c) What is the separation d between the plates?
- (d) Find the maximum value of the magnitude of $\vec{\mathbf{B}}$ between the plates at a distance $r = 11.0\,\mathrm{cm}$ from the center.

FIGURE 38-25. Problem 3.

3

34-P6* Figure 34-57 shows two parallel loops of wire having a common axis. The smaller loop (radius r) is above the larger loop (radius R), by a distance $x \gg R$. Consequently the magnetic field, due to the current i in the larger loop, is nearly constant throughout the smaller loop and equal to the value of the axis. Suppose that x is increasing at the constant rate $\frac{dx}{dt} = v$.

- (a) Determine the magnetic flux across the area bounded by the smaller loop as a function of x.
- (b) Compute the emf generated in the smaller loop.
- (c) Determine the direction of the induced current flowing in the smaller loop.

FIGURE 34-57. Problem 6.

-