CS 310 - ALGORITHMS

"I Hear and I Forget,

I See and I Remember,

I Do and I Understand."

Chinese Proverb

Designing an algorithm is a creative and rewarding process

Think before you leap.

Designing an algorithm is a creative and rewarding process

Think before you leap code.

"Weeks of programming can save you hours of planning."

- Anonymous quote

514 × 401 - courses.ischool.utexas.edu

472 × 445 - isoin.es

1730 × 1155 - makeawebsitehub.com

Why Study Algorithms?

Algorithms make the world run!

Computers are ubiquitous

Education and research Networks (internet, local nets, ...) Banks and commerce **Business management** Communication Defense and military Health Management Medical imaging Exploration (space, sea, land) Data analytics

Transportation Multimedia **Robotics Simulations** Manufacturing **Entertainment** Governance Security Al and automation Social media

- - -

What are Algorithms?

algorithm

noun

Word used by programmers when they do not want to explain what they did.

What are Algorithms again?

"An algorithm is a finite, definite, effective procedure, with some input and some output."

Donald Knuth

An algorithm stays the same whether the program is in java on Windows or C on Linux or python on Mac OS X.

Concept of an algorithm has existed for centuries

Muhammad ibn Musa Al-Khwarizmi formerly latinized as *Algoritmi*

Kitāb al-jabr wa'l-muqābala, which evolved into today's high school algebra text.

"Algorism": technique of performing arithmetic with Hindu-Arabic numerals developed by al-Khwārizmī.

Famous 9th century Persian mathematician, astronomer, and geographer. (Source: Wikipedia.)

Core computer science problems that arise in many different applications.

- Many problems *reduce* to them.

Follow a design process using a variety of computing problems.

Understand the problem.

Discuss design techniques based on the structure of the problem.

Analyze the algorithm and *discover* efficient solutions to the problem and show it's correct.

How many have not taken Data Structures?

Course Syllabus

- Algorithm Analysis

- Algorithm Analysis
- Graph Algorithms

- Algorithm Analysis
- Graph Algorithms
- Design Techniques

- Algorithm Analysis
- Graph Algorithms
- Design Techniques
 - Greedy Algorithms

- Algorithm Analysis
- Graph Algorithms
- Design Techniques
 - Greedy Algorithms
 - Divide and Conquer

- Algorithm Analysis
- Graph Algorithms
- Design Techniques
 - Greedy Algorithms
 - Divide and Conquer
 - Dynamic Programming

- Algorithm Analysis
- Graph Algorithms
- Design Techniques
 - Greedy Algorithms
 - Divide and Conquer
 - Dynamic Programming
 - Reductions

- Algorithm Analysis
- Graph Algorithms
- Design Techniques
 - Greedy Algorithms
 - Divide and Conquer
 - Dynamic Programming
 - Reductions
 - Network Flow

- Algorithm Analysis
- Graph Algorithms
- Design Techniques
 - Greedy Algorithms
 - Divide and Conquer
 - Dynamic Programming
 - Reductions
 - Network Flow
- NP Complete Problems (if time permits)

Grading breakup

- Assignments: 25% (No-show for vivas=70% reduction)
- Quizzes, In-class problems, homework: 20%

- Midterm Examination: 25%

- Final Examination: 30%

CS 310 TAs (in alphabetical order)

- Ali Ahad (20100284@lums.edu.pk)
- Javaria Hassan (20100058@lums.edu.pk)
- Sheikh Abdul Mannan (20100261@lums.edu.pk)
- Syed Hamza Ahmad (20100108@lums.edu.pk)

What should you do to succeed in this course?

Visual source: Barbara Oakley - Learning how to learn

Visual source: Barbara Oakley - Learning how to learn

Visual source: Barbara Oakley - Learning how to learn

Students who:

- Enjoy problem solving and thinking about creative solutions
- Review material after class and through spaced repetitions.
- Focus on understanding in-class, homework and practice problems
- Start work on assignments early

Students who:

- Cram for exam a couple of days before it.
- **Don't review** material after class
- Waste time during class
- Don't spend sufficient time on problem solving
- Procrastinate on the assignments

The first time you **actually** understand something is when you can do it yourself.

What should you do to succeed in this course?

Come to class on time (5 minute rule)

Be an active participant.

Enjoy learning!

What things are important in software design?

Why is performance (time) important?

to load?

How long are you willing to wait for a web page

EVERY SECOND COUNTS

Loading time is a major contributing factor to page abandonment. The average user has no patience for a page that takes too long to load, and justifiably so.

Observation: slower page response time results in an increase in page abandonment, as demonstrated in the following chart.

How do we determine efficiency of an

algorithm?

Running Times of different algorithms on inputs of increasing sizes

n f(n)	$\lg n$	n	$n \lg n$	n^2	2^n	n!
10	$0.003~\mu { m s}$	$0.01~\mu \mathrm{s}$	$0.033~\mu { m s}$	$0.1~\mu \mathrm{s}$	$1~\mu \mathrm{s}$	$3.63~\mathrm{ms}$
20	$0.004~\mu\mathrm{s}$	$0.02~\mu\mathrm{s}$	$0.086~\mu \mathrm{s}$	$0.4~\mu \mathrm{s}$	1 ms	77.1 years
30	$0.005 \; \mu { m s}$	$0.03~\mu\mathrm{s}$	$0.147~\mu \mathrm{s}$	$0.9~\mu \mathrm{s}$	1 sec	$8.4 \times 10^{15} \text{ yrs}$
40	$0.005~\mu \mathrm{s}$	$0.04~\mu \mathrm{s}$	$0.213~\mu\mathrm{s}$	$1.6~\mu \mathrm{s}$	18.3 min	
50	$0.006~\mu { m s}$	$0.05~\mu\mathrm{s}$	$0.282~\mu\mathrm{s}$	$2.5~\mu\mathrm{s}$	13 days	
100	$0.007~\mu \mathrm{s}$	$0.1~\mu \mathrm{s}$	$0.644~\mu \mathrm{s}$	$10~\mu s$	$4 \times 10^{13} \text{ yrs}$	
1,000	$0.010~\mu \mathrm{s}$	$1.00~\mu\mathrm{s}$	$9.966~\mu { m s}$	$1 \mathrm{\ ms}$	£356.3	
10,000	$0.013~\mu { m s}$	$10~\mu \mathrm{s}$	$130~\mu \mathrm{s}$	$100 \mathrm{\ ms}$		
100,000	$0.017~\mu { m s}$	$0.10~\mathrm{ms}$	$1.67~\mathrm{ms}$	10 sec		
1,000,000	$0.020~\mu \mathrm{s}$	$1 \mathrm{\ ms}$	$19.93~\mathrm{ms}$	$16.7 \mathrm{min}$		
10,000,000	$0.023~\mu { m s}$	0.01 sec	$0.23 \sec$	$1.16 \mathrm{days}$		
100,000,000	$0.027~\mu \mathrm{s}$	$0.10 \sec$	$2.66 \sec$	$115.7 \mathrm{days}$		
1,000,000,000	$0.030 \; \mu s$	$1 \sec$	29.90 sec	31.7 years		