Optimizing Guest Experience: Data-Driven Forecasting & Capacity Strategies for Euro-Park

Gong Hei Fat Choy Consulting (Team #4)

Prashant ARYA, Piangpim CHANCHARUNEE, Ruxi HE, I-Hsun LU, Hanqi YANG, Bowei ZHAO

February 14, 2025

The team

Piangpim is a master's student in data science and business analytics with experience in management consulting.

Hanqi is a master's student in data science and business analytics with experience in data visualization for business management.

Bowei is a master's student in data science and business analytics with experience in pricing and sales forecasting.

Ruxi is a master's student in data science and business analytics with experience in machine learning modeling and forecasting.

Prashant is a master's student in data science and business analytics with experience in engineering.

I-Hsun is a master's student in data science and business analytics with experience in data analytics and optimization.

1. Problem Description

Waiting times have significantly increased post-COVID, resulting in negative impacts on customer satisfaction as well as efficiency and effectiveness of operations

Attendance decreased by almost 10% in 2022 compared to 2019, but waiting times have increased significantly...

...leading to negative implications in four aspects

	Internal	External
Financial	Resource Inefficiency	Guest Spending
Non-financial	Operational Strain	Guest Satisfaction

Four main negative implications of increased waiting times can be classified into four categories

Proposed solution is to build a dashboard displaying more accurate predictions to derive key insights and facilitate decision making

Phase	Key Activities	Mon	Tue	١	Wed	Thur	Fri
Part 1: Data Inspection and Modeling	Study data and perform data cleaning						
	Discussion and agreement on methodology, strategies, evaluation metrics, and performance indicators						
	Implement and test chosen models, including performing parameter optimization						
	Improve models as needed						
Part 2: Dashboard Creation and Insight Gathering	Design layout of dashboard, such as determining relevant features and KPIs						
	Develop full dashboard using model developed in Part 1						
	Retrieve insights from dashboard to develop actionable solutions		Deliverables 1		<u> </u>		
	Develop and present final report on methodology and insights		submiss				*

There are six key factors to ensuring successful implementation

- **a. Expertise in Data Science:** Our experienced team is fully committed to developing the right model adapted to key variables with continuous improvement.
- **b. High Quality Data & Preprocessing:** We have ensured that the data is reliable, clean, and complete.
- **c. Strong Domain Knowledge:** Our team is comprised of members with industry experience and extensive domain knowledge.
- **d. Clear & Actionable Insights:** Not only do we provide predictions, but also actionable recommendations and visualization tools to add business value as well.
- e. Stakeholder Engagement & Collaboration: We emphasize the importance of fully understanding stakeholder goals, frequent feedback, and constant communication.
- **f. Long-Term Vision & Scalability:** We ensure that our predictions can be used in multiple areas and business functions such as marketing, process optimization, and pricing as well as other parks.

2. Methodology

KPIs have been identified to potentially address these implications

	Decrease in guest spending	Decrease in guest satisfaction	Under-or over-utilized resources	Less efficient crowd control
Average Wait Time (mean of WAIT_TIME_MAX)	***	+		
Peak Wait Time (max of WAIT_TIME_MAX)	***	***		+ + +
Attraction Capacity Utilization (ratio of guests carried and capacity)		+	***	***
Peak Hour(s) (maximum of average wait times)	***	+		***

1.1 Model Development (1/2)

Data Cleaning & Assumptions Assumption Feature No show on dates not Parade/Night in parade_night_show Every show is 15 show minutes long Ride is open if not on Opening times entity_schedule.csv "Normal operation" Up/Down Times means no down times Exclude entries during COVID (2020-03-14 to 2021-06-10) Dates Cut off date at

1.1 Model Development (2/2)

Model #1: LSTM

Advantages

Deep learning model which can make accurate predictions by inputting multiple features

Disadvantages

Requires knowledge/predictions of features in the targeted time frame

Results & Conclusion

Error: 10 minutes

✓ Can produce highly accurate results; however, requires input of external features

Model #2: VAR

Advantages

Time series model which can make predictions without external features; able to capture dependencies of one entity on another

Disadvantages

Assumes linear relationships between variables; may not capture complex and nonlinear dynamics

■→□ →□ →□

Results & Conclusion

Error: 11 minutes

✓ Can produce accurate results solely based on features at hand; chosen for its suitability to the situation

1.2 Model Result

2. Dashboard

Scan the QR code or use the link for the demo!

https://crew-malaysia-mambo-routes.trycloudflare.com

3. Initiatives & Solutions

There are three main initiatives to address the identified KPIs

Initiative

Optimize Capacity

Personalize Notifications

Maximize Queue Revenue

Deploy food or

merchandise carts to

attractions with long

waiting times.

Issues Identified Less efficient crowd control Under-or over-utilized Decrease in quest spending Decrease in guest satisfaction

Description

Ensure that the capacity of each ride is always at 85%*.

Allow quests to be notified when certain rides have low wait times.

> ✓ Transformed idle time into revenue

streams

✓ Higher revenue per

Impact

cost management ✓ Enhanced quest flow management ✓ Ideal capacity

✓ Improved operating

✓ Elevated guest experience ✓ Increased time for quest spending

visitor

(3)**Related KPIs**

(1)

Related Issues

utilization

KPIs Utilized Average Wait Time

Attraction Capacity Utilization

Peak Wait Time

Peak Hour(s)

Next steps

Prototype Development (0 - 3 months)

- Implement and test prototype with additional data, e.g. yearly
- Gather feedback

Iteration & Optimization (3 - 6 months)

- Refine model based on feedback
- Implement improved prototype
- Financial modeling

<u>Scalability & Stakeholder Alignment (6 - 12+ months)</u>

- Add features to model, e.g. unexpected events
- Add features to dashboard, e.g. staff allocation optimization
- Constantly align with stakeholders on needs and use cases through ongoing engagement

Thank you

- https://www.linkedin.com/in/prashantarya01250502/
- https://www.linkedin.com/in/piangpim-chancharunee/
- https://www.linkedin.com/in/ruxi-he/
- https://www.linkedin.com/in/i-hsun-lu/
- https://www.linkedin.com/in/hangi-yang-0064431b2/
- https://www.linkedin.com/in/bowei-zhao-ph-d-59658a80/

Appendix

Evaluation of Attendance Model

Evaluation of LSTM Model

Comparison of Attendance in 2019 and 2022

Net change in attendance: -9.87%

Data Cleaning Steps

Issues

Negative values in columns

Dataset requires certain assumptions to be made

Certain values must be excluded to assume "normal operation"

Dates on attendance.csv and waiting_times.csv do not end at same time

Solutions

- Calculate moving averages
- Replace values with zeros
- Replace values with previous valid values
- If a date is not in parade_night_show, assume no show on that date
- If no entry for a ride in entity_schedule, assume open
- Assume every show is 15 minutes long

Exclude entries during COVID period (2020-03-14 to 2021-06-10) and disregard UP/DOWN TIMES

Cut the data to attendance.csv end date (2022-07-26)

- ✓ Include the process, the needs, the potential ROI, etc.
- c. 2/3 slides

> c. 1 slide

✓ What you could do, how, what you have already done, any relevant insight to prove your expertise and how much time do you need for the mission!

c. 6/8 slides

✓ Introduce yourself, your background and explain why you are relevant for this mission

> c. 1 slide

1.1 Model Development (3/3)

The team

Piangpim is a master's student in data science and business analytics with experience in management consulting.

I-Hsun is a master's student in data science and business analytics with experience in data analytics and optimization.

Bowei is a master's student in data science and business analytics with experience in pricing and sales forecasting.

Ruxi is a master's student in data science and business analytics with experience in machine learning modeling and forecasting.

Prashant is a master's student in data science and business analytics with experience in engineering.

Hanqi is a master's student in data science and business analytics with experience in data visualization for business management.