

Our Teachers. Our Future.

Graphs of the trigonometric functions

The sine and cosine graphs

1.
$$y = \sin \theta$$

The graph repeats itself every 360°

Domain: All real numbers

Range: [-1, 1]

Maximum value: 1 when $\theta = -270^{\circ}$; 90° Minimum value: -1 when $\theta = -90^{\circ}$; 270°

Zero: when the graph cuts the θ -axis, i.e. when $\theta = -360^{\circ}$; -180° ; 0° ; 180° ; 360°

2. $y = \cos \theta$

Unit 7

The graph repeats itself every 360°

Domain: All real numbers

Range: [-1, 1]

Maximum value: 1 when $\theta = -360^{\circ}$; 0° ; 360° Minimum value: -1 when $\theta = -180^{\circ}$; 180°

Zero: when the graph cuts the θ -axis, i.e. when $\theta = -270^{\circ}$; -90° ; 90° ; 270°

7.2 The tan graph

The graph repeats itself every 180°

No maximum or minimum turning points

Zero: when the graph cuts the θ -axis, i.e. when $\theta = -360^{\circ}$; -180° ; 0° ; 180° ; 360°

Asymptotes: at $\theta = -270^{\circ}$; -90° ; 90° ; 270°

Questions

In ΔABC, DC is perpendicular to AB, ∠A = 55°,
 AD = BD and DC = 15 cm.
 (Use your calculator to answer following questions.)

- a Find the length of AD and then AB.
- b Find the length of AC.
- c Find the length of BC. (What does you answer imply about ΔABC?)
- d Find ∠DBC.

- 2 A rocket is launched vertically and changes direction through an angle of 55° to the vertical line after 2 minutes. If the average speed of the rocket is 6 000 km/h, calculate:
 - a The height of the rocket after 2 minutes.
 - b The height of the rocket after 3 minutes.
 - c The horizontal distance from A, the launching tower, to B, a point directly under the rocket after 3 minutes.
- 3 From the top of a perpendicular cliff, AB, 60 m above sea level, the angles of depression to two boats at C and D, in the same vertical plane as B, are 20° and 25°, respectively.

 Calculate the distance between the two boats at C and D (correct to one decimal place).

- 4 In the figure, M and N represent service vehicles for a cellular telephone company and are parked on opposite sides of a cellular phone mast, PT. MTN is a straight line. The angles of elevation of mast PT from the vehicles M and N are 52° and 38° respectively.

 If MTN = 160 m, calculate:
 - a the magnitude (size) of ∠MPN
 - b the length of MP, to the nearest metre
 - c the height of the mast PT, to the nearest metre

- 5 Use your calculator to solve the following equations, correct to two decimal numbers $(0^{\circ} \le x \le 90^{\circ}).$
 - a $\sin x = 0.57$
 - b $3\cos x = 0.96$
 - c $\frac{2}{3} \tan x = 4,2$
 - d $\sin(x + 25^{\circ}) = 0.813$
 - e $\tan x = \sin 42^{\circ}$
- 6 Using the special angles, solve the following equations for $0^{\circ} \le x \le 90^{\circ}$.
 - a $2\sin x = \sqrt{3}$

 - b $\cos 3x = \frac{1}{2}$ c $4\sin (2x 10^{\circ}) 1 = 1$
 - d $x.\tan 60^{\circ} = \cos 30^{\circ}$