

VCE Specialist Mathematics

Written examination 2 – End of year

Sample questions

These sample questions are intended to demonstrate how new aspects of Units 3 and 4 of VCE Specialist Mathematics may be examined in written examination 2. They do **not** constitute a full examination paper.

SECTION A – Multiple-choice questions

Question 1

Consider the following statement.

Which one of the following is the contrapositive of this statement?

- **A.** For all integers n, if n^2 is odd, then n is odd.
- **B.** There exists an integer n such that n^2 is even and n is odd.
- C. There exists an integer n such that n is even and n^2 is odd.
- **D.** For all integers n, if n is odd, then n^2 is odd.
- **E.** For all integers n, if n is even, then n^2 is even.

Question 2

The procedure below has been written in pseudocode.

The output of the pseudocode is a list of numbers.

The final number in the list is

- **A.** 3
- **B.** 18
- **C.** 38
- **D.** 72
- **E.** 78

Question 3

A vector perpendicular to both of the lines represented by $\mathbf{r}_1 = 2\mathbf{i} + 3\mathbf{j} + t(\mathbf{i} + 2\mathbf{j} - \mathbf{k})$ and $\mathbf{r}_2 = 3\mathbf{i} + \mathbf{j} - 2\mathbf{k} + t(2\mathbf{i} + \mathbf{j} - \mathbf{k})$ is given by

A.
$$\begin{vmatrix} i & j & k \\ 2 & 3 & 0 \\ 3 & 1 & -2 \end{vmatrix}$$

C.
$$\begin{vmatrix} i & j & k \\ 3 & 1 & -2 \\ 2 & 3 & 0 \end{vmatrix}$$

D.
$$\begin{vmatrix} i & j & k \\ 3 & 1 & -2 \\ 1 & 2 & -1 \end{vmatrix}$$

Question 4

Consider two points with coordinates (5, -6, 4) and (-3, -1, -10).

Which one of the following is the equation of the straight line that passes through these two points?

(A.)
$$\underline{r}(t) = -3\underline{i} - \underline{j} - 10\underline{k} + t(8\underline{i} - 5\underline{j} + 14\underline{k})$$

B.
$$\underline{r}(t) = 5\underline{i} - 6\underline{j} + 4\underline{k} + t(3\underline{i} + \underline{j} + 10\underline{k})$$

C.
$$r(t) = -3i - j - 10k + t(5i - 6j + 4k)$$

D.
$$\tilde{\mathbf{r}}(t) = 5\tilde{\mathbf{i}} - 6\tilde{\mathbf{j}} + 4\tilde{\mathbf{k}} + t(-3\tilde{\mathbf{i}} - \tilde{\mathbf{j}} - 10\tilde{\mathbf{k}})$$

E.
$$r(t) = 8i - 5j + 14k + t(-3i - j - 10k)$$

Question 5

A plane is perpendicular to the vector $\mathbf{n} = \mathbf{i} - \mathbf{j} + 3\mathbf{k}$ and passes through the point (3, 2, -4).

The Cartesian equation of this plane is

A.
$$3x + 2y - 4z = -11$$

(B)
$$-x + y - 3z = 11$$

 $-3x - 2y + 4z = -11$

D.
$$x - y + 3z = 11$$

E.
$$x - y + 3z = 3$$

Question 6

The shortest distance between the planes given by 5x - 4y - 12z = 10 and -15x + 12y + 36z = 20 is

$$T_{1}: 5x-4y-12z=10$$

$$T_1: 5x - 4y - 12z = 10$$

$$T_2: 5y - 4y - 12z = \frac{-20}{3}$$

B.
$$\frac{10}{3\sqrt{185}}$$

C.
$$\frac{10}{\sqrt{185}}$$

$$\frac{50}{3\sqrt{185}}$$

$$d_1 = \frac{2\sqrt{185}}{37}$$
 $d_2 = \frac{-4\sqrt{185}}{111}$

E.
$$\frac{50}{\sqrt{185}}$$

Question 7

The time taken by a machine to make electronic components varies normally with a mean of 20 seconds and a standard deviation of 2 seconds. After the machine is serviced, it is believed that the mean time taken has been reduced to 18.5 seconds with the standard deviation remaining the same.

A statistical test is proposed to check whether there is any evidence of a 1.5 second reduction in the mean time taken to make components. The test statistic will be the mean time taken to make a random sample of 16 such components. The type I error for the test will be $\alpha = 5\%$ with a critical sample mean of 19.2 seconds.

The type II error (β) for the test is closest to

34% В.

$$sl(\bar{X}) = \frac{2}{\sqrt{h}} = \frac{2}{\sqrt{4}}$$

$$\leq \mathcal{L}(\bar{\chi}) = \frac{2}{\sqrt{h}} = \frac{2}{\sqrt{16}}$$
 normCdf $\left(\frac{19.2, \infty}{19.2, \infty}, \frac{18.5}{\sqrt{16}}\right)$

0.080756711166

SECTION B

Question 1 (10 marks)

a. Express $\left\{z: \left|z\right| = \left|z - 2\operatorname{cis}\left(\frac{\pi}{4}\right)\right|, z \in C\right\}$ in the form y = ax + b, where $a, b \in R$.

2 marks

Let
$$Z=x+yi$$

b. On the Argand diagram below, sketch and label $A = \{z : z\overline{z} = 4, z \in C\}$ and sketch and label $B = \{z : |z| = |z - 2\operatorname{cis}\left(\frac{\pi}{4}\right)|, z \in C\}$. Label the axis intercepts of the graph of B.

3 marks

c. On the Argand diagram in **part b.**, shade the region defined by $\{z: z\overline{z} \le 4, z \in C\} \cap \{z: \operatorname{Re}(z) + \operatorname{Im}(z) \ge \sqrt{2}, z \in C\}.$

1 mark

d. Find the area of the shaded region in **part c.**

2 marks

$$\begin{array}{c}
\bigcirc = 8 \cdot \frac{\pi}{12} = \frac{2\pi}{3} \\
A = 2 \times \left(\frac{2\pi}{3} - \sin(\frac{2\pi}{3})\right) = 2 \times \left(\frac{2\pi}{3} - \frac{5\pi}{2}\right) \\
= \frac{4\pi}{3} - \sqrt{3} \quad \text{on its}^{2}
\end{array}$$

The elements of $\{z: z\overline{z} \le 4, z \in C\} \cap \{z: |z| = |z - 2\operatorname{cis}\left(\frac{\pi}{4}\right)|, z \in C\}$ provide two of the e. cube roots of w, where $w \in C$.

Write down all three cube roots of w in the form $r \operatorname{cis}(\theta)$ and find w in the form a + ib, where $a, b \in R$.

2 marks

Intersections of circle and line are 2 roots
$$\frac{2}{1}$$
, $\frac{2}{1}$

$$\frac{2}{1} = \frac{2}{1} = \frac{2}{1}$$

Question 2 (10 marks)

In a certain region, 500 rare butterflies are released to maintain the species. It is believed that the region can support a maximum of 30 000 such butterflies. The butterfly population, \underline{P} , \underline{t} years after release can be modelled by the logistic differential equation $\frac{dP}{dt} = rP\left(1 - \frac{P}{30000}\right)$, where *r* is the growth rate of the population.

Use an integration technique and partial fractions to solve the differential equation above to find P in terms of r and t.

3 marks

$$\frac{dP}{dt} = rP\left(\frac{30\,000 - P}{30\,000}\right)$$

$$\int \frac{30\,000}{P(30000 - P)} dP = \int rdt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{30000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{90000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{90000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{90000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{90000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{90000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{90000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{90000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{90000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{90000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{90000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{90000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{90000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{90000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{90000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{90000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{90000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{90000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{90000 - P} dP = rt$$

$$\int \frac{1}{P} + \frac{1}{90000 - P} dP = rt$$

Given that after 10 years there are 1930 butterflies in the population, find the value of r correct b.

2 marks

to two decimal places.

$$\frac{30 \circ 00 e^{10r}}{1930} = \frac{30 \circ 00 e^{10r}}{e^{10r} + 59}$$

$$\Rightarrow r = 0.14$$

c. What is the initial rate of increase of the population, correct to one decimal place?

1 mark

d. After how many years will the population reach 10 000 butterflies? Give your answer correct to one decimal place.

1 mark

$$t = \frac{1}{V} \ln \left(\frac{59P}{3000-P} \right) = \frac{1}{0.14} \ln \left(\frac{59 \times 10000}{20000} \right) = 24.2 \text{ years}$$

e. Sketch the graph of P versus t on the axes below, showing the value of the vertical intercept. Label the point of fastest population growth as a coordinate pair (t, P), with t labelled correct to two decimal places, and label the asymptote with its equation.

3 marks

Question 3 (10 marks)

A plane, Π_1 , is described by the parametric equations

$$x = 1 + 2s + 3t$$
$$y = -2 - s - 2t$$
$$z = 2 - s + t$$

A second plane, Π_2 , contains the point P(1, 0, 3) and is parallel to the plane Π_1 .

a. Find a vector equation of the plane Π_1 in the form $\mathbf{r} = \mathbf{a} + s\mathbf{b} + t\mathbf{c}$.

 Π_2 : $-3\chi - 5\gamma - 7 = -6$

2 marks

$$\overline{\Pi}: \quad \underline{\Gamma} = \lambda^{-2}\underline{i} + 2\underline{k} + 5(2\underline{i} - \underline{i} - \underline{k}) + t(3\underline{i} - 2\underline{i} + \underline{k}), \quad 5, t \in \mathbb{R}$$

b. Hence, find a Cartesian equation of the plane Π_1 .

2 marks

Choose 2 points on
$$T_1$$
. Let $r_0 = \frac{1}{2} - \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$

c. Find a Cartesian equation of the plane Π_2 .

1 mark

i. Find the shortest distance between the planes Π_1 and Π_2 . d.

=	=		
T1: 3x+54	+7=6		
6			
$2 = \sqrt{3+5^2+1^2}$			
6135			

$$T_{1}: 3_{12}+5_{4}+z=-5$$

$$T_{2}: 3_{12}+5_{4}+z=-5$$

$$T_{3}: 3_{12}+5_{4}+z=-5$$

$$T_{1}: 3_{12}+5_{4}+z=-5$$

$$T_{2}: 3_{12}+5_{4}+z=-5$$

$$T_{3}: 3_{12}+5_{4}+z=-5$$

$$T_{1}: 3_{12}+5_{4}+z=-5$$

$$G_{35}: G_{35}: G_{35}:$$

ii.

Hence, find the coordinates of point Q, which is the reflection of point P in the plane Π_1 , as shown in the diagram above.

3 marks

2 marks

$$P(10,3) \qquad = 3x + 5y + k$$

$$P(10,3) \qquad = (x+3k) + t(3x+5y+k) \qquad = (x+3k) + t(3x+5y+k) \qquad = (x+3k) + 2 = -5$$

$$y = (x+3k) + (3x+5y+k) \qquad = (x+3k) + 2 = 3+t$$

$$\frac{3+9t+25t+3+t=-5}{t=\frac{-11}{35}}$$

$$\therefore M(\frac{2}{35}, \frac{-11}{7}, \frac{94}{35}) \text{ is intersection } f \text{ line and } \Pi_1$$

$$M\left(\frac{2}{35}, \frac{-11}{7}, \frac{94}{35}\right)$$
 is intersection of line and M

M is midpoint of PQ

$$\frac{1}{2} \left(\left(\chi_{i} + k_{i} + 2k \right) + \left(k_{i} + 3k \right) \right) = \frac{2}{35} k - \frac{11}{7} k + \frac{94}{35} k$$

$$= 2 \times \left[-\frac{31}{35}, \quad y = \frac{-22}{7}, \quad z = \frac{83}{35} \right]$$

$$\therefore Q \left(\frac{-31}{35}, \frac{-22}{7}, \frac{83}{35} \right)$$

Question 4 (10 marks)

a. Find the shortest distance between the two parallel lines given by $\underline{\mathbf{r}}(t) = 4\underline{\mathbf{i}} + 2\underline{\mathbf{j}} + \underline{\mathbf{k}} + t\left(-\underline{\mathbf{i}} + \underline{\mathbf{j}} + 3\underline{\mathbf{k}}\right)$, where $t \in R$, and $\underline{\mathbf{r}}(s) = 5\underline{\mathbf{i}} + 4\underline{\mathbf{j}} - 2\underline{\mathbf{k}} + s\left(-\underline{\mathbf{i}} + \underline{\mathbf{j}} + 3\underline{\mathbf{k}}\right)$, where $s \in R$.

3 marks

b. Given that the lines with equations $\underline{\mathbf{r}}(t) = \underline{\mathbf{i}} - 3\underline{\mathbf{j}} + 6\underline{\mathbf{k}} + t\left(3\underline{\mathbf{i}} + 5\underline{\mathbf{j}} - a\underline{\mathbf{k}}\right)$, where $t \in R$, and $\underline{\mathbf{r}}(s) = -6\underline{\mathbf{i}} + 2\underline{\mathbf{j}} + \underline{\mathbf{k}} + s\left(4\underline{\mathbf{i}} - 10\underline{\mathbf{j}} + 6\underline{\mathbf{k}}\right)$, where $s \in R$, intersect, find the value of a and the point of intersection.

4 marks

$$f(t)=f(s)$$

Sol
$$t=-1$$
, $s=1 \rightarrow 3$ gives $a=-11$

$$: f = -2i - 8i + 7k =) (-2, -8, 7)$$

c. The line with equation $\underline{\mathbf{r}}(t) = \underline{\mathbf{i}} + \underline{\mathbf{j}} - 5\underline{\mathbf{k}} + t(4\underline{\mathbf{i}} + b\underline{\mathbf{j}} + 2\underline{\mathbf{k}})$, where $t, b \in R$, is parallel to the plane with equation 2x - 3y - z = 2.

Find the value of *b* and the shortest distance of the line from the plane.

3 marks

$$(2i-3i-h)\cdot(4i+bi+2k)=0$$

8-36-2=0

$$\frac{b=2}{\text{Shortes+ dis+}} = \frac{|\hat{c}\cdot(\hat{i}+\hat{i}-5\hat{r})|}{|\hat{n}|} = \frac{2}{\sqrt{14}}$$

Question 5 (10 marks)

- **a.** Given the points A(1, 0, 2), B(2, 3, 0) and C(1, 2, 1)
 - i. find the vector $\overrightarrow{AB} \times \overrightarrow{AC}$ $\overrightarrow{AB} \times \overrightarrow{AC} = \underbrace{i + i + 2}_{i} + 2\underbrace{k}_{i}$

1 mark

ii. show that the Cartesian equation of the plane Π_1 , containing the points A, B and C, is x+y+2z=5.

1 mark

- A second plane, Π_2 , has the Cartesian equation x y z = 0. L is the line of intersection of the planes Π_1 and Π_2 .
 - Find the coordinates of the point P, where L crosses the y-z plane.

1 mark

$$\frac{\chi_{-\gamma-z}=0}{2} = \frac{\chi_{+\gamma+1}z=50}{2}$$

$$0+0: \quad \text{Let } z=\lambda, \quad \chi_{-\frac{5-\lambda}{2}}, \quad \gamma_{-\frac{5-3\lambda}{2}} = \lambda$$

$$\chi_{=0} = \lambda_{=5}$$
 .. $\chi_{=0} = 0, \gamma_{=-5} = 0, \gamma_{=5} = 0$

ii. Hence, find the vector equation of the line L.

2 marks

Find the distance from the point A to the plane Π_2 .

2 marks

Find the distance from the point A to the line L.

3 marks

Question 6 (11 marks)

The position vector $\mathbf{r}_{S}(t)$, from an origin O, of a sparrow t seconds after being sighted is modelled by $\mathbf{r}_{S}(t) = 23t\,\mathbf{i} + 5t\,\mathbf{j} + \left(4\sqrt{2}\sin\left(\frac{\pi t}{2}\right) + 4\sqrt{2}\right)\mathbf{k}$, $t \ge 0$, where \mathbf{i} is a unit vector in the forward direction, \mathbf{j} is a unit vector to the left and \mathbf{k} is a unit vector vertically up. Displacement components are measured in centimetres.

a. Find the value of *t* when the sparrow first lands on the ground.

2 marks

to component =0:
$$4\sqrt{2}\sin(\frac{\pi}{2}t)+4\sqrt{2}=0$$

 $t=4n-1, n\in\mathbb{Z}$

- First landing at t=3 for t>0
- **b.** Find the distance of the sparrow from *O* when it first lands. Give your answer correct to one decimal place.

2 marks

first landing at
$$t=3$$

$$\int_{S} (3) = 69i + 15i$$

$$|x_{s}(3)| = 3\sqrt{554} = 70.6cm$$

c. Find the maximum flight speed, in centimetres per second, of the sparrow. Give your answer correct to one decimal place.

2 marks

$$\frac{|\dot{x}(t)| - 23\dot{x} + 5\dot{y} + 2\sqrt{2}\pi\cos(\frac{\pi}{2}t)\dot{x}}{|\dot{x}(t)| = \sqrt{2(4\pi^2\cos^2(\frac{\pi}{2}t) + 277)}}$$
Max $|\dot{x}(t)| = \cos^2(\frac{\pi}{2}t) + 2\pi$

$$|\dot{x}(t)| = \cos^2(\frac{\pi}{2}t) = 1$$

$$|\dot{x}(t)|_{max} = 25.2 \text{ cm s}^{-1}$$

A second bird, a miner, flies such that its velocity vector $\mathbf{y}_{\mathbf{M}}(t)$, relative to the same origin O, is modelled by $\mathbf{y}_{\mathbf{M}}(t) = 6\mathbf{i} + \mathbf{j} + \left(\frac{\pi}{6}\cos\left(\frac{\pi t}{6}\right)\right)\mathbf{k}$, $t \ge 0$, where velocity components are measured in centimetres per second.

d. Given that the miner has an initial position vector of $10\underline{i} + 4\underline{j} + 4\sqrt{2}\underline{k}$, show that its position vector at time t seconds is given by $\underline{r}_{M}(t) = (6t + 10)\underline{i} + (t + 4)\underline{j} + \left(\sin\left(\frac{\pi t}{6}\right) + 4\sqrt{2}\right)\underline{k}$. 2 marks $\underline{r}_{M}(t) = \int_{0}^{\infty} 6dt\underline{i} + \int_{0}^{\infty} dt\underline{i} + \int_{0}^{\infty} \frac{1}{2}dt\underline{k} + \int_{0}^{\infty} \frac{1$

e. The sparrow and the miner are at the same position at different times.

Find the coordinates of this position and the times at which each bird is at this position.

3 marks

$$r_{s}(\lambda) = r_{m}(\gamma), \lambda, \gamma \in \mathbb{R} = 1$$
 23 $\lambda = 6\gamma + 100$, $5\lambda + \gamma + 42$ $\Rightarrow \lambda = 2$, $\gamma = 6$

Sparrow at P at 2 seconds, Miner at. P at 6 seconds

Answers to multiple-choice questions

Question	Answer	
1	D	
2	С	
3	E	
4	А	
5	В	
6	D	
7	А	