- 4. A control system for a linear actuator according to claim 1, wherein the linear actuator current signal detection component includes a shunt resistor structure.
- 5. A control system for a linear actuator according to claim 1, wherein the force request signal is a digital signal.
- 6. A control system for a linear actuator according to claim 1, wherein the force request signal operation component includes a digital-to-analog converter.
- 7. A control system for a linear actuator according to claim 1, wherein the load signal generating device is a 10 comparator for comparing the force request signal and the current signal.
 - 8. A linear actuator control system comprising:
 - a linear actuator having a predetermined current level;
 - a current level detection device operatively coupled to the linear actuator and generating a current level signal;
 - a digital control device generating a first control signal and a second control signal, said digital control device receiving a feedback signal;
 - a comparator device for receiving the first control signal and the current level signal, said comparator device generating a comparison signal; and
 - a control device accepting the comparison signal and the second control signal and controlling the current level 25 of the linear actuator.
- A linear actuator control system according to claim 8, wherein the control device includes a FET switch.
- 10. A linear actuator control system according to claim 8, wherein the control device includes a NAND logic device. 30
- 11. A linear actuator control system according to claim 8, wherein the current level detection device includes a shunt resistor structure.
- 12. A linear actuator control system according to claim 8, wherein the first and second control signals are digital 35 signals.
- 13. A linear actuator control system according to claim 8, first control signal is processed by a D/A converter prior to being introduced to the comparator device.
- 14. A control system for a linear actuator device com- 40 prising:
 - a linear actuator including an electric motor having a current level;
 - an electronic controller generating a pair of signals, each signal representative of a desired delivery of current to the linear actuator,
 - a motor current sensing device for determining the current level of the linear actuator electric motor; said device generating a current signal;
- a comparator for comparing the current signal to one of the pair of signals, said comparator generating a com-

- parator signal upon the current signal exceeding a current level associated with the one of the pair of signals;
- a logic device receiving the comparator signal and the other of the pair of signals, said logic device controlling the flow of current to the electric motor of the actuator.
- 15. A control system according to claim 14, wherein the logic device is a NAND device and wherein an output of the NAND device is coupled to a current switch.
- 16. A control system according to claim 15, wherein the current switch is a FET switch.
- 17. A control system according to claim 14, wherein the electronic controller operates at a predetermined system speed, and wherein the pair of signals are generated and held through a predetermined time interval dependent upon the system speed.
- 18. A control system of claim 17, wherein the motor current sensing device, the first comparator, and the logic device function to control a current flow to the electric motor within a time interval which is substantially smaller than the predetermined time interval of the electronic controller.
 - 19. A control system for a linear actuator comprising:
 - a linear actuator having an electric motor, said electric motor drawing a variable current level during operation;
 - a current level sensor for determining an operational current level of the linear actuator;
 - a controller for generating a drive signal, said drive signal remaining constant during a predetermined time interval, said controller further generating a force request signal representative of a desired current level of the linear actuator; and
 - a current limiting component for receiving the force request signal, the current level of the linear actuator and the drive signal, said current limiting component minimizing the current level of the electric motor in response to a comparison between the force request signal and the desired current level, said current limiting component minimizing the current level within a time interval substantially smaller than the predetermined time interval.
- 20. A control system according to claim 19, wherein the current limiting component includes a comparator and a logic device.
- 21. A control system according to claim 20, wherein the drive signal includes a digital signal and the force signal includes an analog signal.

22. (new) A control system for an electric actuator comprising:

a electric actuator having an electric motor, said electric motor drawing a variable current level during operation;

a current level sensor for measuring an operational current level of the electric actuator;

a electronic controller for generating a force request signal representative of a desired current level of the electric actuator; and

a current limiting component for receiving the force request signal and the current level of the electric actuator, said current limiting component minimizing the current level of the electric motor in response to a comparison between the force request signal and the current level of the electric actuator.

- 23. (new) The control system of claim 22, wherein the current level sensor includes a shunt resistor structure.
- 24. (new) The control system of claim 22, wherein the force request signal includes at least a high current signal and a low current signal.
- 25. (new) The control system of claim 22, wherein the current limiting component includes a comparator receiving the force request signal and the current level of the electric actuator.
- 26. (new) The control system of claim 22, wherein the current limiting component includes a FET switch.
- 27. (new) A control system for an electric actuator device comprising:
- a electric actuator including an electric motor having a current level;
- a electronic controller generating a signal representative of a desired delivery of current to the electric actuator;
- a motor current sensing device for measuring the current level of the electric actuator and generating a current signal;

a comparator for comparing the current signal to the signal representative of the desired delivery of current to the electric actuator, said comparator generating a comparator signal upon the current signal exceeding a current level associated with the signal representative of the desired delivery of current to the electric motor; and

a logic device receiving the comparator signal, said logic device controlling the flow of current to the electric motor of the actuator.

28. (new) The control system of claim 27, wherein the logic device includes a NAND device.

29. (new) An electric actuator control system comprising:

a electric actuator;

a current level detection component operatively coupled to the electric actuator and generating a current level signal;

a digital control component generating a first control signal;

a comparator device for receiving the first control signal and the current level signal, said comparator device generating a comparison signal; and

a control component utilizing the comparison signal to control the current level of the linear actuator.

- 30. (new) The control system of claim 29, wherein the control component includes a FET switch.
- 31. (new) A method of controlling an electric actuator comprising:

providing a linear actuator on a surface maintenance machine;

measuring a current level of the linear actuator during operation;

generating a current level signal;

generating a first control signal;

comparing the first control signal and the measured current level signal;

generating a comparison signal based on the step of comparing; and

controlling the current level of the electric actuator based on the comparison signal.