SRN						

PES University, Bengaluru (Established under Karnataka Act No. 16 of 2013)

JAN - MAY- 2020: END SEMESTER ASSESSMENT (ESA) B.TECH. IV SEMESTER UE18MA251 - LINEAR ALGEBRA (Scheme and Solution)

Instructions: You may bring only Calculators.

_	Tim	e: 3 Hr Answer All Questions. Max Marks: 10	0
1.		Let $A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 2 & 4 & 1 & 4 \\ 3 & 6 & 3 & 9 \end{bmatrix}$	
	a)	Find a lower triangular L and an upper triangular U so that A = LU. Answer: $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	10
	b)	Find the reduced row echelon form $R = rref(A)$. How many independent columns in A? Answer: $ 2 $	10
2.	a)	Find a basis for the nullspace of A. Answer: $ \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ 0 \\ 1 \end{bmatrix} $	10
	b)	If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. Answer: $x = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 3 \\ -2 \\ 0 \\ 1 \end{bmatrix}$	10

10

10

10

3. a

Consider a 120^0 rotation around the axis x = y = z. Show that the vector i = (1, 0, 0) is rotated to the vector j = (0, 1, 0). (Similarly j is rotated to k = (0, 0, 1) and k is rotated to i.) How is j - i related to the vector (1, 1, 1) along the axis?

Answer

$$j - i = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

is orthogonal to the axis vector $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$.

So are k-j and i-k. By symmetry the rotation takes i to j, j to k, k to i.

b)

This problem finds the curve $y = C + D2^t$ which gives the best least squares fit to the points (t,y) = (0, 6), (1, 4), (2, 0). Write down the 3 equations that would be satisfied if the curve went through all 3 points.

Answer:

$$C + 1D = 6$$

$$C + 2D = 4$$

- C + 4D = 0
- 4 a) Let

 $A = \left[\begin{array}{rr} 1 & 2 \\ 2 & 4 \\ 3 & 6 \end{array} \right]$

Find the eigen values of $\boldsymbol{A}^T\boldsymbol{A}$ and also of $\boldsymbol{A}\boldsymbol{A}^T$. For both matrices find a complete set of orthonormal eigenvectors.

Answer:

$$A^{T}A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \end{bmatrix} = \begin{bmatrix} 14 & 28 \\ 28 & 56 \end{bmatrix}$$

has $\lambda_1 = 70$ and $\lambda_2 = 0$ with eigenvectors $x_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $x_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -2 \\ 1 \end{bmatrix}$.

$$AA^{T} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix} = \begin{bmatrix} 5 & 10 & 15 \\ 10 & 20 & 30 \\ 15 & 30 & 45 \end{bmatrix} \text{ has } \lambda_{1} = 70, \ \lambda_{2} = 0, \ \lambda_{3} = 0 \text{ with }$$

$$\mathbf{x}_1 = \frac{1}{\sqrt{14}} \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
 and $\mathbf{x}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -2\\1\\0 \end{bmatrix}$ and $\mathbf{x}_3 = \frac{1}{\sqrt{70}} \begin{bmatrix} 3\\6\\-5 \end{bmatrix}$.

		SRN					
	b)	If you apply the Gram-Schmidt process (orthonormalization) to the columns of this matrix A, what is the resulting output? Answer: Gram-Schmidt will find the unit vector	10				
		$q_1 = \frac{1}{\sqrt{14}} \begin{bmatrix} 1\\2\\3 \end{bmatrix}.$					
		But the construction of q_2 fails because column $2 = 2$ (column 1).					
5	a)	If A is any m by n matrix with $m > n$, tell me why AA^{T} cannot be positive definite. Is $A^{T}A$ always positive definite? (If not, what is the test on A?) Answer:	10				
		AA^T is m by m but its rank is not greater than n (all columns of AA^T are combinations of columns of A). Since $n < m$, AA^T is singular.					
		A^TA is positive definite if A has full colum rank n. (Not always true, A can even be a zero matrix.)					
	b)	If a 3 by3 matrix P projects every vector onto the plane x+2y+z =0, find three eigen values and three independent eigenvectors of P. No need to compute P. Answer:	10				
		The plane is perpendicular to the vector $(1,2,1)$. This is an eigenvector of					
		P with $\lambda = 0$. The vectors $(-2, 1, 0)$ and $(1, -1, 1)$ are eigenvectors with $\lambda = 0$.					