Kinetic Langevin Diffusion for Crystalline Materials Generation

{François Cornet, Federico Bergamin}*, Arghya Bhowmik, Juan Maria Garcia Lastra, Jes Frellsen, Mikkel N. Schmidt

TL;DR

We propose a novel diffusion model for crystalline materials generation, where the key innovation is a diffusion process to model the fractional coordinates, inspired by kinetic Langevin dynamics.

Problem setting

Data

Unit cell

$$oldsymbol{x} = (oldsymbol{f}, oldsymbol{l}, oldsymbol{a})$$

Fractional coordinates
$$\boldsymbol{f} = (\boldsymbol{f}_1, \dots, \boldsymbol{f}_K) \in [0, 1)^{3 \times K}$$

Lattice vectors

$$oldsymbol{l} = (oldsymbol{l}_1, oldsymbol{l}_2, oldsymbol{l}_3) \in \mathbb{R}^{3 imes 3}$$

Atomic species

$$\boldsymbol{a} = (a_1, \dots, a_K) \in \mathbb{Z}^K$$

Tasks

Crystal Structure **Prediction (CSP)**

$$p_{\theta}(\boldsymbol{f}, \boldsymbol{l} | \boldsymbol{a}) \approx p_{\mathrm{data}}(\boldsymbol{f}, \boldsymbol{l} | \boldsymbol{a})$$

De-Novo Generation (DNG)

$$p_{\theta}(\boldsymbol{f}, \boldsymbol{l}, \boldsymbol{a}) \approx p_{\text{data}}(\boldsymbol{f}, \boldsymbol{l}, \boldsymbol{a})$$

Symmetries

Permutation of atom indices

$$p(\mathbf{f}, \mathbf{l}, \mathbf{a}) = p(g \cdot \mathbf{f}, \mathbf{l}, g \cdot \mathbf{a}), \quad \forall g \in S_K$$

Rotation of lattice vectors

$$p(\mathbf{f}, \mathbf{l}, \mathbf{a}) = p(\mathbf{f}, g \cdot \mathbf{l}, \mathbf{a}), \quad \forall g \in SO(3)$$

Periodic translation of fractional coordinates

$$p(\boldsymbol{f}, \boldsymbol{l}, \boldsymbol{a}) = p(g \cdot \boldsymbol{f}, \boldsymbol{l}, \boldsymbol{a}) \quad \forall g \in \mathbb{T}^3$$

Previous Work - Riemannian score-matching

 $\boldsymbol{f} \in [0,1)^{3 \times K} \cong \mathbb{T}^{3 \times K}$

Brownian motion on a torus

$$\mathrm{d}\boldsymbol{f}_t = \sqrt{\mathrm{d}\sigma^2(t)/\mathrm{d}t}\mathrm{d}\boldsymbol{w}_t$$

$$\begin{aligned} & \text{Transition kernel} & & p_{t|0}(\boldsymbol{f}_t|\boldsymbol{f}_0) \propto \sum_{\boldsymbol{k} \in \mathbb{Z}^{3 \times K}} \exp\left(-\frac{\|\boldsymbol{f}_t - \boldsymbol{f}_0 + \boldsymbol{k}\|^2}{2\sigma^2(t)}\right) \\ & & \text{Wrapped-Normal distribution} \end{aligned}$$

Kinetic Langevin Diffusion for Materials (KLDM)

Auxiliary variables

Velocities living on the Lie algebra (Euclidean space)

Forward process

$$\begin{cases} \mathrm{d} \boldsymbol{f}_t &= \boldsymbol{f}_t \boldsymbol{v}_t \mathrm{d} t, \\ \mathrm{d} \boldsymbol{v}_t &= -\gamma \boldsymbol{v}_t \mathrm{d} t + \sqrt{2\gamma} \mathrm{d} \boldsymbol{w}_t^{\mathfrak{g}}, \end{cases} \qquad \text{Linear ODE on the manifold}$$

$$\begin{cases} \mathrm{d} \boldsymbol{v}_t &= -\gamma \boldsymbol{v}_t \mathrm{d} t + \sqrt{2\gamma} \mathrm{d} \boldsymbol{w}_t^{\mathfrak{g}}, \end{cases} \qquad \qquad \text{Usual SDE on the Lie algebra}$$

$$\boldsymbol{f} \exp (\boldsymbol{v} dt) \rightarrow \boldsymbol{w} (\boldsymbol{f} + \boldsymbol{v} dt)$$

Reverse process

$$\begin{cases} d\boldsymbol{f}_t = \boldsymbol{f}_t \boldsymbol{v}_t dt, \\ d\boldsymbol{v}_t = \left[-\gamma \boldsymbol{v}_t - 2\gamma \nabla_{\boldsymbol{v}_t} \log p_t(\boldsymbol{f}_t, \boldsymbol{v}_t) \right] dt + \sqrt{2\gamma} d\boldsymbol{w}_t^{\mathfrak{g}}. \end{cases}$$

Trivialized Diffusion Model [Zhu et al., 2024]

Transition kernel

$$\begin{aligned} p_{t|0}(\boldsymbol{f}_t, \boldsymbol{v}_t | \boldsymbol{f}_0, \boldsymbol{v}_0) & \text{Procedure remains simulation-free} \\ &= \text{WN}_{\boldsymbol{r}} \big(\log (\boldsymbol{f}_0^{-1} \boldsymbol{f}_t) | \boldsymbol{\mu}_{\boldsymbol{r}_t}, \boldsymbol{\sigma}_{\boldsymbol{r}_t}^2 \big) \cdot \mathcal{N}_{\boldsymbol{v}} \big(\boldsymbol{v}_t | \boldsymbol{\mu}_{v_t}, \boldsymbol{\sigma}_{v_t}^2 \big) \end{aligned}$$

$$\nabla_{\boldsymbol{v}_t} \log p_{t|0} = \nabla_{\boldsymbol{\mu_{r_t}}} \log WN \left(\boldsymbol{r}_t | \boldsymbol{\mu_{r_t}}, \sigma_{\boldsymbol{r}_t}^2 \mathbf{I}\right) \frac{\partial \boldsymbol{\mu_{r_t}}}{\partial \boldsymbol{v}_t} + \nabla_{\boldsymbol{v}_t} \log \mathcal{N}_{\boldsymbol{v}} \left(\boldsymbol{v}_t | \boldsymbol{\mu_{v_t}}, \sigma_{v_t}^2 \mathbf{I}\right)$$

Design choices

- $p(\boldsymbol{v}_0) = \delta(\boldsymbol{v}_0)$ 1) Distribution of the initial velocities "Atoms are at rest"
- 2) Improved score parameterisation

$$\nabla_{\boldsymbol{v}_t} \log p_{t|0}(\boldsymbol{f}_t, \boldsymbol{v}_t | \boldsymbol{f}_0, \boldsymbol{v}_0) = \frac{1 - e^{-t}}{1 + e^{-t}} \nabla_{\boldsymbol{\mu_{r}}_t} WN \left(\boldsymbol{r}_t | \boldsymbol{\mu_{r}}_t, \sigma_{\boldsymbol{r}_t}^2 \mathbf{I}\right) \left[-\frac{\boldsymbol{\varepsilon_v}}{\sigma_{\boldsymbol{v}_t}} \right]$$

"With 1) in place"
$$s_{\theta}^{\boldsymbol{v}}(\boldsymbol{x}_t,t) = \frac{1-e^{-t}}{1+e^{-t}}s_{\theta}^{\boldsymbol{f}}(\boldsymbol{x}_t,t) - \boxed{\frac{\boldsymbol{v}_t}{\sigma_{\boldsymbol{v}_t}^2}}, \quad \boldsymbol{v}_t = \boxed{\boldsymbol{\mu}_{\boldsymbol{v}_t}} + \boldsymbol{\sigma}_{\boldsymbol{v}_t}\varepsilon_{\boldsymbol{v}}$$

3) Mean-free velocity field

$$\sum_k^K oldsymbol{v}_k = oldsymbol{0}$$

$oldsymbol{\mu_{v_t}} = \mathbf{0}, orall t$

Other modalities

(C) Continuous diffusion on one-hot encodings (C-AB) Continuous diffusion on Analog Bits (D) Discrete (masking) diffusion

Experiments

CSP

KLDM is competitive on MP-20 and MPTS-52 using an EM sampler, and provides improved performance with a PC samples.

	PEROV-5		MP-20		MPTS-52		
MODEL	MR [%] ↑	$RMSE \downarrow$	MR [%] ↑	$RMSE \downarrow$	MR [%] ↑	$RMSE \downarrow$	
	METRICS @ 1						
CDVAE	45.31	0.1138	33.90	0.1045	5.34	0.2106	
DIFFCSP (PC)	52.02	0.0760	51.49	0.0631	12.19	0.1786	
EQUICSP (PC)	52.02	0.0707	57.59	0.0510	14.85	0.1169	
FLOWMM	53.15	0.0992	61.39	0.0566	17.54	0.1726	
KLDM- ε (EM)	$53.14_{\pm .6}$	$0.0758 {\scriptstyle~\pm .002}$	$61.72 {\scriptstyle~\pm .2}$	$0.0686 \scriptstyle{\pm .001}$	$17.71_{~\pm.3}$	$0.2023 _{~\pm .005}$	
KLDM- ε (PC)	$52.72 {\scriptstyle \pm .8}$	$\underline{0.0678}_{~\pm.002}$	$65.37_{\pm .1}$	$\textbf{0.0455} \pm .001$	$21.46_{\pm .2}$	$0.1339 {\scriptstyle \pm .002}$	
KLDM- $oldsymbol{x}_0$ (EM)	$52.44_{~\pm.7}$	$0.0698 \scriptscriptstyle~\pm .002$	$62.92 {\scriptstyle~\pm .2}$	$0.0833 {\scriptstyle~\pm .002}$	$21.13 {\scriptstyle~\pm .2}$	0.1800 ± 0.003	
KLDM- \boldsymbol{x}_0 (PC)	$52.14 \scriptstyle~\pm .9$	$\textbf{0.0647}_{\pm .002}$	$\textbf{65.83}_{~\pm.2}$	$0.0517 \scriptscriptstyle~\pm.001$	$\textbf{23.93}_{~\pm.2}$	$\underline{0.1276}_{~\pm.002}$	
	METRICS @ 20						
CDVAE	88.51	0.0464	66.95	0.1026	20.79	0.2085	
DIFFCSP (PC)	98.60	0.0128	77.93	0.0492	34.02	0.1749	
FLOWMM	98.60	0.0328	75.81	0.0479	34.05	0.1813	
KLDM- ε (EM)	99.97	0.0152	83.68	0.0532	39.04	0.1865	
KLDM- ε (PC)	99.94	$\overline{0.0226}$	81.08	0.0440	39.81	0.1462	
KLDM- x_0 (EM)	$\overline{99.89}$	0.0186	82.94	0.0575	37.77	$\overline{0.1673}$	
KLDM- x_0 (PC)	99.92	0.0255	$\overline{80.18}$	0.0453	37.10	0.1394	

DNG

KLDM produces samples that are more stable and closer to the convex hull on average, but with slightly higher RMSD and fewer unique and stable samples.

	RMSD [Å]↓	AVG. ABOVE HULL [eV/atom] \downarrow	STABLE [%]↑	S.U.N. [%]↑
MATTERGEN-MP*	0.147	0.201	47.05	25.76
DIFFCSP*	0.413	0.189	41.25	20.13
KLDM- x_0 (C)	$0.371 _{~\pm .01}$	$0.269_{~\pm.01}$	$38.62 {\scriptstyle~\pm .1}$	$16.67_{~\pm.1}$
KLDM- x_0 (C-AB)	$0.296_{~\pm.01}$	$0.187_{~\pm.01}$	$49.84_{~\pm.1}$	$17.91_{~\pm.1}$
KLDM- x_0 (D)	$0.283_{~\pm.01}$	$0.155_{\ \pm .01}$	$59.21_{~\pm.1}$	$18.52_{\ \pm.1}$

Ablation study

(left) Variance of initial velocity, (center) simplified parametrization, and (right) zero-net translation velocity field.

Conclusion

In KLDM, fractional coordinates are modelled through a coupling with auxiliary variables representing velocities, leading to improved generative performance on both CSP and DNG tasks.

