30/04/2025

APLICACIONES DE VECTORES

RECTA en R³ - RECTA en R² - PLANO

DISTANCIAS - ANGULOS - POSICIONES RELATIVAS ENTRE RECTAS Y PLANOS

Ecuaciones de la recta en el espacio

$$\begin{cases} P_{o}(x_{0},y_{0},z_{0}) \in \text{recta} \\ \overrightarrow{d} = (\alpha_{1}b_{1}c) \text{ wetter director} \end{cases}$$

$$\overrightarrow{P} = \overrightarrow{P}_{o} + \lambda \overrightarrow{d}$$

$$(x_{1}y_{1}z) = (x_{0},y_{0},z_{0}) + \lambda(\alpha_{1}b_{1}c)$$

$$\begin{cases} x = x_{0} + \lambda \alpha \\ y = y_{0} + \lambda b \end{cases} \xrightarrow{x - x_{0}} = \frac{y - y_{0}}{c} = \frac{z - z_{0}}{c}$$

Dados dos puntos pertenecientes a la recta

Vector Dirección de la recta

Ecuaciones de la recta en el plano

$$\begin{cases} P_{0}(x_{0},y_{0}) \in \text{recta} & y = mx + b \\ \overrightarrow{d} = (A,B) & Ax + By + C = 0 \end{cases}$$

$$\overrightarrow{P} = \overrightarrow{P}_{0} + \lambda \overrightarrow{d}$$

$$(x_{1}y) = (x_{0},y_{0}) + \lambda (A,B)$$

$$\begin{cases} x = x_{0} + \lambda A & \frac{x-x_{0}}{A} = \frac{y-y_{0}}{B} \\ y = y_{0} + \lambda B & \frac{x}{A} = \frac{y-y_{0}}{B} \end{cases}$$

 \mathbf{X}

Recordemos que, el producto escalar se puede escribir:

$$\vec{N} \cdot \vec{P} = |\vec{N}|$$
. proyection _{\vec{N}} \vec{P} .

Si llamamos h = $proyeccion_{\bar{N}}$ Ph= distancia desde el origen al plano.

$$\vec{N} \cdot \vec{P} = |\vec{N}| \cdot h$$

Como modulo de \vec{N} y h son constantes independientes de \vec{P} ,

$$|\vec{N}| \cdot h = cte$$
, que llamamos $|\vec{N}| \cdot h = D$,

PLANO COMO APLICACION DE VECTORES

Ecuación general de los planos que pasan por un punto

PLANO COMO APLICACION DE VECTORES

Ecuación general de los planos que pasan por un punto

PLANO A PARTIR DE 3 PUNTOS CONOCIDOS

Encontrar la ecuación del plano perpendicular al

$$\overline{N} = (2,1,0)$$

vector

$$\sqrt{2}$$
 = $(2,1,0)$ y pasa por el punto $(-1,0,2)$

$$\frac{\vec{N} \cdot (P - P_0)}{(2 \cdot 11 \cdot 0) \cdot (x + 1) \cdot (y - 0) \cdot (z - 2)} = 0$$

$$2(x + 1) + y + 0(z - 2) = 0$$

$$2x + 2 + y = 0$$

$$2x + 3 + 2 = 0$$

1- Encontrar la ecuación del plano, perpendicular al vector (2,-1,2) y cuya distancia al origen es 6.

origin es 6.

$$N = (2, -1, 2)$$

 $N, P = D$
 $N, P = |N| \cdot k$
 $N, P = 3 \cdot k$
 $(2, -1, 2)(x, y, 2) = 18$
 $2x - y + 22 = 18$

$$R = 6$$

$$|\vec{N}| = \sqrt{2^2 + (-1)^2 + 2^2}$$

$$|\vec{N}| = 3$$

Determinar la ecuación del plano que pasa por (-1,0,4) y es ⊥ al vector (5,3,-2)

$$5\pi + 3y - 2z = \overrightarrow{Po} \cdot \overrightarrow{N}$$

= $(-1) \cdot 5 + 0 \cdot 3 + 4 \cdot (-2)$
 $5\pi + 3y - 2z = -13$

Encontrar la ecuación del plano que pasa por los puntos (1, 0, 3); (-2, -4, 5) y (2, -1, 3).

$$N = (2, 2, 7)$$

$$-3 -4 \times 2 \times -3 -4$$

$$-1 \times 2 \times -3 -4$$

$$\frac{1}{P_0P_1} = P_1 - P_0$$

$$= (-2_1 - 4_15) - (1_10_13)$$

$$\frac{1}{P_0P_2} = P_2 - P_0$$

$$= (2_1 - 1_13) - (1_10_13)$$

$$\frac{1}{P_0P_2} = (1_1 - 1_10)$$

ECUACIONES DE LOS PLANOS COORDENADOS

ECUACIONES DE LOS EJES COORDENADOS

Distancia de un punto a una recta

$$sen = \frac{d}{1RP_1}$$

$$d = \frac{\left| \overrightarrow{(P_1 - P_0)} \times \overrightarrow{A} \right|}{\left| \overrightarrow{A} \right|}$$

12 × 0 = |2/15/2000

Donde \vec{A} , $\overrightarrow{P_0}$ $y \vec{P_1}$, es todo conocido.

Deducción

Mínima distancia entre dos rectas alabeadas

Distancia de un punto al plano

dist
$$(P_0, T) = \frac{|Ax_0+By_0+Cz_0+D|}{|\vec{n}|}$$

Calcular la dist. entre el punto P(z,1,0) y el plano M: 2x-3y+2=5

Paralelismo, perpendicularidad y ángulo

El ángulo entre las rectas es el ángulo entre los vectores dirección de las rectas:

- $R_1 \perp R_2 \Leftrightarrow \vec{A}_1 \perp \vec{A}_2$

El ángulo entre los planos es el ángulo entre los vectores normales a ambos planos:

- $\pi_1 // \pi_2 \Leftrightarrow \vec{N}_1 // \vec{N}_2$
- $\pi_1 \perp \pi_2 \Leftrightarrow \vec{N}_1 \perp \vec{N}_2$

El ángulo entre la recta R_1 y el plano π_1 es el ángulo complementario del que forman el vector dirección de la recta y el vector normal al plano.

ANGULO ENTRE RECTA Y PLANO - POSICIONES RELATIVAS

$$R_1 //\pi_1 \Leftrightarrow \vec{A}_1 \perp \vec{N}_1$$
 $R_1 \perp \pi_1 \Leftrightarrow \vec{A}_1 // \vec{N}_1$

$$Cos \alpha = \frac{N_1 \cdot \overline{A_1}}{|N_1| \cdot |A_1|}$$

$$\beta = 90^\circ - \alpha$$

Dado que \propto = \prec ($\vec{N}_{\rm l}$, $\vec{A}_{\rm l}$), entonces el ángulo que forma la recta con el plano es $90^{\rm 0}$ - α .

Como cos
$$\propto = \frac{\overrightarrow{N_1} \cdot \overrightarrow{A_1}}{|\overrightarrow{N_1}||\overrightarrow{A_1}|} = \text{sen } (90^{\circ} - \propto)$$
.

Entonces:
$$R_1 //\pi_1 \Leftrightarrow \vec{A}_1 \perp \vec{N}_1$$

$$R_1 \perp \pi_1 \Leftrightarrow \vec{A}_1//\vec{N}_1$$

Encontrar la ecuación de la recta intersección de los planos π_1) 2x + y - z = 3 y π_2) 3x + 2y + 2z = 0.

POSICIÓN RELATIVA DE DOS PLANO

 $\pi_1 : Ax + By + Cz = D$ $\pi_2 : A'x + B'y + C'z = D'$

$$\mathbf{M}^* = \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} \\ \mathbf{A}' & \mathbf{B}' & \mathbf{C}' & \mathbf{D}' \end{pmatrix}$$

Rango(M)	Rango(M*)	Sistema	Posición relativa
1	1	Compatible indetermin ado 2 grados de libertad	Coincident es
1	2	Incompatib le	Paralelos
2	2	Compatible indetermin ado 1 grado de libertad	Secantes

POSICIÓN RELATIVA DE TRES PLANO

 π_1 : Ax + By + Cz = D

 $\pi_2 : A'x + B'y + C'z = D'$

 $\pi_3 : A'' x + B'' y + C'' z = D''$

 $\mathbf{M}^* = \begin{bmatrix} \mathbf{A'} & \mathbf{B'} & \mathbf{C'} & \mathbf{D'} \\ \mathbf{A''} & \mathbf{B''} & \mathbf{C''} & \mathbf{D''} \end{bmatrix}$

Rango(M)	Rango(M*)	Sistema	Posición relativa
1	1	Compatible indetermin ado 2 grados de libertad	Coincident es
1	2	Incompatib le	Paralelos 2 Paralelos - 1 coincident e

POSICIÓN RELATIVA DE TRES PLANO

 π_1 : Ax + By + Cz = D

 $\pi_2 : A'x + B'y + C'z = D'$

 $\pi_3 : A'' x + B'' y + C'' z = D''$

A B C D

A' B' C' D'

A" B'' C'']

Rango(M)	Rango(M*)	Sistema	Posición relativa
2	2	Compatible indetermin ado 1 grado de libertad	Secantes en recta

POSICIÓN RELATIVA DE TRES PLANO

 π_1 : Ax + By + Cz = D

 $\pi_2 : A'x + B'y + C'z = D'$

 $\pi_3 : A'' x + B'' y + C'' z = D''$

 $\mathbf{M}^* = \begin{bmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} \\ \mathbf{A}' & \mathbf{B}' & \mathbf{C}' & \mathbf{D}' \\ \mathbf{A}'' & \mathbf{B}'' & \mathbf{C}'' & \mathbf{D}'' \end{bmatrix}$

Rango(M)	Rango(M*)	Sistema	Posición relativa
2	3	Incompatib le	2 Paralelos - 1 secante Secantes en rectas paralelas
3	3	Compatible determinad o	Secantes en punto

POSICIÓN RELATIVA DE DOS RECTAS

Posición relativa		
Coincident es		
Paralelas		
Secantes		
Se cruzan		

POSICIÓN RELATIVA DE DOS RECTAS

 $\begin{aligned} & \mathbf{f}_1 : \\ & \mathbf{A} x + \mathbf{B} y + \mathbf{C} z = \mathbf{D} \\ & \mathbf{A}' x + \mathbf{B}' y + \mathbf{C}' z = \mathbf{D}' \\ & \mathbf{f}_2 : \\ & \mathbf{A}'' x + \mathbf{B}'' y + \mathbf{C}'' z = \mathbf{D}'' \\ & \mathbf{A}'' x + \mathbf{B}''' y + \mathbf{C}''' z = \mathbf{D}''' \end{aligned} \right\} \qquad \mathbf{M}^* = \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} \\ & \mathbf{A}' & \mathbf{B}' & \mathbf{C}' & \mathbf{D}' \\ & \mathbf{A}'' & \mathbf{B}'' & \mathbf{C}'' & \mathbf{D}'' \\ & \mathbf{A}''' & \mathbf{B}''' & \mathbf{C}''' & \mathbf{D}''' \end{aligned}$

Rango(M)	Rango(M*)	Sistema	Posición relativa
2	2	Compatible indetermin ado 1 grado de libertad	Coincident es
2	3	Incompatib le	Paralelas
3	3	Compatible determinad o	Secantes
3	4	Incompatib le	Se cruzan

POSICIÓN RELATIVA DE RECTA Y PLANO

 $\pi : Ax + By + Cz = D$ r : A'x + B'y + C'z = D' A''x + B''y + C''z = D'' A''x + B''y + C''z = D''

			The Both Distriction of the Control
Rango(M)	Rango(M*)	Sistema	Posición relativa
2	2	Compatible indetermin ado 1 grado de libertad	Recta contenida en plano
2	3	Incompatib le	Paralelos
3	3	Compatible determinad o	Secantes

Encontrar las ecuaciones de la recta:

2) a) Que para par el punto
$$A(1,2,1)$$
, en la dirección del mector $\vec{u} = (4,5,-1)$
 $(n,y,z) = (1,2,1) + \lambda(4,5,-1)$ Ec. Vectorial $y = 2 + 5\lambda$ Ec. Paramétrica $z = 1 - \lambda$

$$\frac{\chi-1}{4} = \frac{\chi-2}{5} = \frac{z-1}{-1}$$
 Ec. cartesiana

$$\frac{\chi - 1}{4} = \frac{\gamma_1 - 2}{5} = \frac{Z - 1}{-1}$$

$$\frac{x-1}{4} = \frac{y-2}{5} \qquad \lambda \qquad \frac{y-2}{5} = \frac{z-1}{-1}$$

$$5(x-1) = 4(y-2) \qquad -1(y-2) = 5(z-1)$$

$$5x-5 = 4y-8 \qquad -y+2 = 5z-5$$

$$5x-4y+3 = 0 \qquad -y-5z+1 = 0$$

$$\begin{cases} 5x-4y+3 = 0 & \text{Implicita} \\ -y-5z+1 = 0 & \text{Implicita} \end{cases}$$

Implicita