

BWM 圆柱法拉电容

产品规格书

Part No.	产品型号:	BWM2R7705QG
SPECS	产品规格:	2.7V 7F 1020
Customer	客户名称:	
Issue Date	发布日期:	2020-08

Checked 审核	Prepared 制作			
Customer Approve 客户核准				

深圳市必威尔科技有限公司

Shenzhen Bitwell Science&technology Co.,Ltd 技术部

1 概述 General

BWM系列圆柱式法拉电容单体容量范围: 1F-600F,工作电压2.7V-3.0V,工作温度-40℃~65℃,充放电寿命正常50万次以上。广泛应用于智能三表,汽车电子,工业仪表,电动玩具,汽车音响,低温启动,能量回收,风能发电等领域。

2 电容参数Specifications

	电音多数Specifications						
	项 目 Item	规格/条件 Specification/Condition					
01	产品型号Part No.	BWM2R7705QG					
02	额定放电容量Rate discharge capacitance (F)	7.0F					
03	额定电压 Rated Voltage	2.7V					
04	工作温度范围	-40℃~65℃					
	Operating temperature range						
05	尺寸Size (mm) (D*L)	10 x 20mm					
06	最大浪涌电压 (V)	电压保持时间<5s					
	Absolute Maximum Voltage	2.85V					
07	容量允许偏差Capacitance tolerance	-10%~+30%					
08	额定工作电流(A)Rated Current	3.0A					
09	最大尖峰电流,1S(不可重复)Maximum	5.0A					
	Peak Current, 1 second (non repetitive)						
10	交流等效内阻@1kHz	<55 m Ω					
11	直流流等效内阻	<80 m Ω					
12	漏电流	25℃,连续充电72小时后测量					
	Leakage Current	<0.020mA					
13	循环寿命	>500,000 avalas					
	Cycle life Expectancy	>500,000 cycles					
14	储存温度范围Storage Temperature Range	-40°C~70°C					
15	重量 Weight(g)	2.1					

3 环境指标(Environmental)

项	目 Item	规格/条件 Specification/Condition
01	温度特性	+65℃时 △C/C ≤30%, ESR≤2倍初始值(25℃)
	Temperature characteristics	-25℃时 △C/C ≤30%,ESR≤2倍初始值(25℃)
02	高温负荷特性	+65℃±2加额定电压,1000h后, △C/C ≤30%
	High temperature load	,ESR≤2倍初始值。
03	高温无负荷特性	+70℃±2, 1000±4h后, △C/C ≤30%, ESR≤2倍
	High temperature without load	初始值。
04	湿热负荷特性	$ +40^{\circ}\text{C}\pm2,9095\%\text{RH},\ 240\text{h},\ \triangle\text{C/C}\ \leqslant30\%,\ \text{ESR}\leqslant4$
	Humidity Resistance	倍初始值。

4 产品尺寸 SIZE

电容尺寸				
D	L	d	р	
10±0.5mm	20±1 mm	0.6±0.01mm	5.0±0.5 mm	

5 推荐应用 Recommended application

充放电工作过程:

充电时,通过功率电阻进行限流,避免因瞬间充电电流过大引起用户电源保护或者损坏,电阻的功率根据充电电流进行选择,合适的电阻功率非常重要,否则有烧电阻的风险。

放电时,通过肖特基回路进行放电,此二极管可以旁路电阻,避免电阻消耗法拉电容的能量。

恒流充电示意图

恒流充电效率高,充电速度快,是最佳的电容充电方式,但是由于恒流源成本高,电路复杂,实际应用中,应根据需要合理选择充电方式,以达到最优化的性价比。

选用恒压充电方式时,电阻阻值计算: R=U/I,单位欧姆,电阻功率计算: P=U*I,在恒压充电过程中,充电电流越来越小,在开始充电的初始阶段充电电流最大,选择电阻功率时,按照最大电流值时所需的功率值选取。

6 性能测试方法

(1) 依据标准

IEC 62391-1 《Fixed electric double-layer capacitors for use in electronic equipment –

Part 1:Generic specification》 Q/KMNY001-2009《电化学电容器》

(2) 容量测试方法 (capacitance)

一、 恒流放电方法constant current discharge method

1、测量电路

- (A) 直流电流表
- 💟 直流电压表
- S转换开关
- Cx 待测电容

图1 - 恒流放电方法电路

- 2、 测量方法measuring method
- ▶ 恒流/恒压源的直流电压设定为额定电压(U_R)。
- > 设定恒电流放电装置的恒定放电电流值。
- ▶ 将开关S切换到直流电源,在恒流/恒压源达到额定电压后恒压充电30min。
- ▶ 在充电30min结束后,将开关S变换到恒流放电装置,以恒定电流进行放电。
- ▶ 测量电容器两端电压从U₁到U₂的时间t₁和t₂,如图2所示,根据下列等式计算电容量值:

图2 电容器的端电压特性

$$C = \frac{I \times (t_2 - t_1)}{U_1 - U_2}$$

其中

- C 容量 (F):
- I 放电电流 (A):
- U₁测量初始电压(V);
- U₂ 测量终止电压(V);
- t₁ 放电初始到电压达到U₁(s)的时间;
- t₂放电初始到电压达到U₂(s)的时间。
- 二、 恒电阻充电方法

A 测量电路

应根据图3中所示测量电路进行测量。

- R 串联电阻
- (V) 直流电压表
- S转换开关
- Cx 待测电容

图3 - 恒电阻充电方法电路

B 测量方法

进行测量前,将电容器两端短路30min以上进行充分放电;

当施加直流电压U_κ时,测量时间常数 (τ),通过下列等式计算电容量值:

$$C = \frac{\tau}{R}$$

其中

- C 容量(F)
- τ 充电至0.632×UR的时间(s);
- R 串联电阻 (Ω)。

选择R值使 τ 为60s~120s。

振荡器

C_x 待测电容

(3) 内阻测试方法 (Internal resistance)

A 交流阻抗方法

测量电路

按如下所示测量电路进行测试。

图4- 交流阻抗方法电路

测量方法

电容器的内阻Ra应通过下式计算:

$$R_{\rm a} = \frac{U}{I}$$

其中

Ra 交流内阻 (Ω):

U 交流电压有效值(V r.m.s);

I 交流电流有效值(V r.m.s)。

测量电压的频率,应为1kHz。

交流电流应为1mA至10mA。

设备: 多频率LCR电桥

B 直流阻抗方法

测量方法

采用恒流放电方法所示的测量电路,采用额定电压。用电压记录仪测量电容器端电压。

将开关S切换至直流源,当恒流恒压源达到额定电压后施加电压充电30min。

在充电30min结束后,切换开关S至恒流放电装置,以表3中规定的恒定电流进行放电。用电压记录仪记录电容器端电压随时间变化。由电压记录仪得到的电压与时间成直线部分绘制辅助线,从辅助线与放电开始交点读取电压降 $\Delta U3$,如图5所示,根据下式计算内阻Rd。

$$R_{\rm d} = \frac{\Delta U_3}{I}$$

其中

Rd 为直流内阻 (Ω) ;

ΔU3 电压降 (V);

L 放电电流(A)。

图5 - 电容器端电压特性

电压降不表示从放电开始点的连续降落电压 Δ U_4 ,而是从曲线的直线部分作辅助线延长至与放电开始点交叉得到的 Δ U_4 。

(4) 漏电流测试方法

直流漏电流的测量原理如下:

A、放电: 该测量开始前,电容器应进行充分放电。放电过程持续1h到24h。

B、漏电流的测量应额定温度和额定电压(U_R)。经过最大30min充电时间后达到95%充电电压,充电时间从30min(\leq 1F),1h(\geq 1F),2h(\geq 10F),4h(\geq 20F),72h(\geq 120F)中选择。

C、应使用稳定的电源如直流稳压电源。

D、 通过1000 Ω以下的保护电阻给电容器施加电压。

E、设备: 电阻 万用表

(5) 自放电测试方法

A、测量方法(参见图6)

该测量开始前,电容器应进行充分放电。放电过程持续1h到24h。在电容器两端直接施加额定电压 U_R ,不使用保护电阻。充电时间为8h,包括电压达到施加电压95%的最大30min充电时间。将电容器两端 从电压源断开。电容器应置于标准常温常压条件下24h。

直流电压表的内阻应大于1MΩ。

图6 - 自放电测量原理

7 使用注意事项

- ▶ 法拉电容应在标称电压下使用,绝对禁止过压使用,过压将导致电容失效。
- ▶ 法拉电容有极性,请按规定极性使用。
- ▶ 环境温度影响法拉电容器的寿命,如果需要在高温下使用电容,请降低电压使用。
- ➤ 在放电的瞬间存在电压降 Δ V=IR (I 为放电电流 R 电容组内阻)
- ▶ 应储存在温度-40℃~70℃、相对湿度小于60%的环境中,过温环境将影响电容寿命
- ▶ 不可将模组存放于相对湿度大于85%或含有有毒气体的场所
- ▶ 法拉电容器不可应用于高频率充放电的电路中,高频脉冲将引起电容发热,影响寿命。
- ▶ 其它使用上的问题,请向厂家咨询或参照超级电容器使用说明的相关技术资料。
- ▶ 其它未尽事项请与厂家联系, http://www.bitwell.cn 技术支持: 0755-25587677