# Um estudo sobre o número de mortes provindo do terrorismo nas províncias do Afeganistão

Ângelo Ghigiarelli, Clézio Lopes, Mayara Formenton

Universidade Federal de São Carlos - UFSCar Centro de Ciências Exatas e Tecnológicas - CCET Departamento de Estatística - DEs

22 de novembro de 2019



## Sumário

- Introdução
- Objetivo
- Conjunto de dados
  - Variável Resposta
  - Variáveis preditoras
- Metodologia
- Fundamentação teórica

- Ajuste de Modelos
- Seleção de Variáveis
- Análise de Diagnóstico
- 6 Resultados
  - Interpretação dos parâmetros
- Conclusão
- Referências



O terrorismo pode ser explicado como um processo que engloba tanto as características psicológicas quanto o seu contexto político e social. John Horgan e Max Taylor (2006) defendem que este processo é constituído pelas seguintes variáveis:

- Os fatores pessoais;
- Contexto social, político e organizacional.



É possível analisar as causas associadas ao terrorismo em dois aspectos: push e pull factors.

**Push factors**: causas relacionadas às estruturas do ambiente que abrem espaço para o surgimento do terrorismo.

Exemplo: pobreza, desemprego ou discriminação.

Pull factors: são fatores desencadeantes - os que levam à radicalização.

Exemplo: ideologia do grupo, sensação de pertencimento ou perspectiva de fama.



De acordo com pesquisas secundárias, 75% de todos os ataques terroristas registrados no mundo se concentraram em dez países: Iraque, Afeganistão, Índia, Paquistão, Filipinas, Somália, Turquia, Nigéria, Iêmen e Síria.

Segundo especialistas, esse total pode estar subestimado, pois a *Global Terrorism Database* exclui sistematicamente os incidentes que não são noticiados pela imprensa.



## Objetivo

Explicar o número de baixas (mortes) relacionadas ao terrorismo nas províncias do Afeganistão através de variáveis demográficas da região.



Os dados são referentes a 34 províncias do Afeganistão coletados de 1994 a 2008.

As variáveis preditoras são compostas por:

- Províncias existentes no Afeganistão
- Total de incidentes de atos terroristas
- Total de baixas (mortes) nos atos terroristas
- Média de hectares de cultivo de ópio
- População em cada província
- Área total de cada província em 1000s km²
- % de áreas montanhosas por províncias



- % da população alfabetizada
- % da população com acesso a água potável
- % da população que ingere menos do que o mínimo de calorias
- % de estradas sem restrições de peso
- Taxa de mortalidade de crianças até os 5 anos
- Se a maioria da população da província é Pashtun:
  - Se a maioria da população da província é Pashtun caso contrário



• Média de tropas militares estrangeiras.

$$T_{i1} = egin{cases} X_{i12}, & ext{representa a média } 1225 \ X_{i13}, & ext{representa a média } 4256.2 \ X_{i14}, & ext{representa média } 5193.7 \end{cases}$$

Observação: O nível de referência representa a média 1000.



#### Variável resposta





Figura 1: Histograma da variável resposta (Nº de Mortes)

Tabela 1: Descritiva da variável resposta

| Mín     | 0.0      |
|---------|----------|
| 1° Q.   | 26.5     |
| Mediana | 113.5    |
| Média   | 247.4    |
| 3° Q.   | 265.0    |
| Máx     | 1839.0   |
| Var     | 153327.6 |
| DP      | 391.6    |



#### Relação esperada

#### Total de baixas vs Total de incidências



Figura 2: Dispersão da variável resposta

Tabela 2: Teste de correlação

| Correlação  | 0.9686  |
|-------------|---------|
| L. Inferior | 0.9376  |
| L. superior | 0.9844  |
| p-valor     | 2.2e-16 |



## Matriz de correlação dos dados

|         | Inc.  | Mortes | Hect. | Pop.  | Area  | Mont. | Alfab. | Água  | Cal.  | Est.  | M. Inf. | Pashtun | T. Est. |
|---------|-------|--------|-------|-------|-------|-------|--------|-------|-------|-------|---------|---------|---------|
| Inc.    | 1.00  | -      | -     | -     | -     | -     | -      | -     | -     | -     | -       | -       | -       |
| Mortes  | 0.97  | 1.00   | -     | -     | -     | -     | -      | -     | -     | -     | -       | -       | -       |
| Hect.   | 0.39  | 0.36   | 1.00  | -     | -     | -     | -      | -     |       |       | -       | -       | -       |
| Pop.    | 0.30  | 0.24   | 0.48  | 1.00  | -     | -     | -      | -     | -     | -     | -       | -       | -       |
| Área    | 0.34  | 0.33   | 0.48  | 0.51  | 1.00  | -     | -      | -     | -     | -     | -       | -       | -       |
| Mont.   | -0.40 | -0.39  | -0.20 | -0.31 | -0.29 | 1.00  | -      | -     | -     | -     | -       | -       | -       |
| Alfab.  | 0.06  | 0.15   | -0.24 | 0.08  | -0.26 | 0.14  | 1.00   | -     | -     | -     | -       | -       | -       |
| Água    | 0.65  | 0.66   | 0.06  | 0.18  | 0.10  | -0.68 | 0.25   | 1.00  | -     | -     | -       | -       | -       |
| cal.    | 0.09  | 0.08   | 0.26  | 0.07  | 0.38  | -0.23 | -0.46  | -0.00 | 1.00  | -     | -       | -       | -       |
| Est.    | 0.53  | 0.54   | 0.20  | 0.18  | 0.03  | -0.65 | 0.17   | 0.64  | -0.13 | 1.00  | -       | -       | -       |
| M. Inf. | -0.47 | -0.45  | -0.27 | -0.31 | -0.25 | 0.22  | -0.40  | -0.57 | 0.13  | -0.38 | 1.00    | -       | -       |
| Pashtun | 0.61  | 0.50   | 0.25  | 0.10  | -0.06 | -0.28 | -0.12  | 0.49  | 0.02  | 0.51  | -0.38   | 1.00    | -       |
| T. Est. | 0.20  | 0.13   | 0.23  | -0.24 | -0.19 | 0.15  | -0.25  | -0.01 | 0.23  | 0.15  | -0.04   | 0.40    | 1.00    |





Figura 3: Análise descritiva





Figura 4: Análise descritiva





Figura 5: Análise descritiva



## Metodologia

Será realizado um modelo linear generalizado para dados de contagem, uma vez que a variável resposta contabiliza o número de baixas em atentados terroristas.

Posteriormente, será diagnosticado se o modelo apresentado é o correto. E por fim, serão verificadas as interpretações dos resultados.



#### Ajuste de Modelos

Inicialmente foram ajustados três modelos e seus resultados foram os seguintes:

Tabela 3: Modelos Ajustados

| Modelo | Distribuição | F. Lig.        | AIC     |
|--------|--------------|----------------|---------|
| 1      | B. Negativa  | $log(\mu_i)$   | 412.01  |
| 2      | Poisson      | $\sqrt{\mu_i}$ | 863.94  |
| 3      | Poisson      | $log(\mu_i)$   | 1168.80 |

#### Seleção de variáveis

Utilizando-se o método de seleção de variáveis *stepwise-backward* obteve-se os seguintes resultados: Modelo inicial, AIC = 412.01

Tabela 4: Passos do Stepwise

| Passo | Var. Remov.                    | Nome    | AIC    |
|-------|--------------------------------|---------|--------|
| 1     | $X_{i12}, X_{i13} \in X_{i14}$ | T. Est. | 405.82 |
| 2     | $X_{i2}$                       | Hect.   | 404.16 |
| 3     | $X_{i6}$                       | Alfab.  | 402.78 |
| 4     | $X_{i1}$                       | Inc.    | 401.84 |

#### Modelo Stepwise

Desta forma, um modelo para trabalhar é dado por:

$$g(\mu_i) = \hat{\beta}_0 + \hat{\beta}_1 X_{i3} + \hat{\beta}_2 X_{i4} + \hat{\beta}_3 X_{i5} + \hat{\beta}_4 X_{i7} + \hat{\beta}_5 X_{i8} + \hat{\beta}_6 X_{i9} + \hat{\beta}_7 X_{i10} + \hat{\beta}_8 X_{i11},$$

sendo que:

 $X_{i3}$  = População em cada província;

 $X_{i4} = \text{Área total de cada província em 1000s } km^2;$ 

 $X_{i5} = \%$  de áreas montanhosas por província;

 $X_{i7} = \%$  da população com acesso a água potável;

 $X_{i8} = \%$  da população que ingere menos do que o mínimo de caloria;

 $X_{i9} = \%$  de estradas sem restrições de peso;

 $X_{i10} = \text{Taxa}$  de mortalidade de crianças até os 5 anos;

 $X_{i11}$  = Se a maioria da população da província é Pashtun.



#### Análise de Diagnóstico

O modelo encontrado anteriormente necessita de algumas suposições para que seus resultados sejam confiáveis. É necessário atender os seguintes casos:

- $Y_i|X_i$  é independente de  $Y_j|X_j$ .
- ullet  $\phi$  não varia em função das variáveis preditoras.
- $Y_j|X_j$  tem distribuição que pertence a família exponencial linear e a correta distribuição foi escolhida para  $Y_j$ .
- A função de ligação escolhida é a correta.
- Todas as variáveis foram inseridas corretamente no modelo.





Figura 6: Análise de Diagnóstico - Resíduos vs Preditoras





Figura 7: Análise de Diagnóstico - Resíduos vs Preditoras





Figura 8: Análise de Diagnóstico - Resíduos vs Preditoras





Figura 9: Análise de Diagnóstico - Resíduos vs Preditoras





Figura 10: Análise de Diagnóstico - Tipos de Resíduos





Figura 11: Análise de Diagnóstico - Alavanca e Distância de Cook's





Figura 12: Análise de Diagnóstico - Envelope Simulado



Conforme Figura 10 e Figura 11 temos um destaque para as observações 18 e 23, pois ambas possuem alto valores de resíduos (Deviance) e Distância de Cook's, sendo assim pode-ser que estas observações estejam interferindo negativamente no ajuste.

Para tentar identificar se de fato isso ocorre, foi ajustado um modelo sem estas observações e comparado as estimativas:



Tabela 5: Comparação das estimativas

| Parâmetro                    | Com ambas | Sem 18  | Sem 23  | Sem ambas |
|------------------------------|-----------|---------|---------|-----------|
| $\hat{eta}_{0}$              | -4.3194   | -5.9298 | -5.4636 | -6.1930   |
| $\boldsymbol{\hat{\beta}_1}$ | 0.0007    | 0.0009  | 0.0011  | 0.0011    |
| $\hat{eta}_{	extsf{2}}$      | 0.0221    | 0.0204  | 0.0201  | 0.0196    |
| $\hat{eta}_{f 3}$            | 0.0290    | 0.0290  | 0.0331  | 0.0306    |
| $\hat{eta}_{	extsf{4}}$      | 0.0535    | 0.0642  | 0.0601  | 0.0653    |
| $\hat{eta}_{f 5}$            | 0.0275    | 0.0385  | 0.0172  | 0.0332    |
| $\hat{eta}_{6}$              | 0.0416    | 0.0429  | 0.0364  | 0.0408    |
| $\hat{eta}_{7}$              | 0.0091    | 0.0127  | 0.0130  | 0.0137    |
| $\hat{eta}_{8}$              | 1.3050    | 1.1004  | 1.5368  | 1.2146    |

Sendo assim, ambas as observações 18, 23 não serão removidas da nossa base e o modelo final é dado por:

$$g(\mu_i) = \hat{\beta}_0 + \hat{\beta}_1 X_{i3} + \hat{\beta}_2 X_{i4} + \hat{\beta}_3 X_{i5} + \hat{\beta}_4 X_{i7} + \hat{\beta}_5 X_{i8} + \hat{\beta}_6 X_{i9} + \hat{\beta}_7 X_{i10} + \hat{\beta}_8 X_{i11}$$

AIC: 401.84



As estimativas do modelo mencionado acima é dado por:

Tabela 6: Estimação dos Parâmetros

| Variável   | Estimativa | Std. Error | t value | p-valor  |
|------------|------------|------------|---------|----------|
| Intercepto | -4.3294    | 2.0366     | -2.121  | 0.0339   |
| $X_{i3}$   | 0.0007     | 0.0004     | 1.637   | 0.1016   |
| $X_{i4}$   | 0.0221     | 0.0108     | 2.042   | 0.0412   |
| $X_{i5}$   | 0.0290     | 0.0100     | 2.900   | 0.0037   |
| $X_{i7}$   | 0.0534     | 0.0162     | 3.291   | 0.0009   |
| $X_{i8}$   | 0.0275     | 0.0123     | 2.235   | 0.0253   |
| $X_{i9}$   | 0.0416     | 0.0112     | 3.715   | 0.0002   |
| $X_{i10}$  | 0.0091     | 0.0049     | 1.872   | 0.0612   |
| $X_{i11}$  | 1.3050     | 0.3325     | 3.924   | 8.69e-05 |

#### Interpretação dos Parâmetros

 $exp(\hat{\beta}_1) = exp(0.0007) = 1.0007$  Estima-se, em média, que o total de baixas relacionadas ao terrorismo nas províncias do Afeganistão sofre um acréscimo de 0.07% quando acrescenta-se uma unidade na variável população, mantida as demais variáveis constantes.

 $exp(\hat{\beta}_2) = exp(0.0221) = 1.0223$  Estima-se, em média, que o total de baixas relacionadas ao terrorismo nas províncias do Afeganistão sofre um acréscimo de 2.23% quando acrescenta-se uma unidade na variável área total de cada província, mantida as demais variáveis constantes.

 $exp(\hat{\beta}_3) = exp(0.0290) = 1.0295$  Estima-se, em média, que o total de baixas relacionadas ao terrorismo nas províncias do Afeganistão sofre um acréscimo de 2.95% quando acrescenta-se um ponto percentual na variável % de áreas montanhosas por província, mantida as demais variáveis constantes.

 $exp(\hat{\beta}_4) = exp(0.0534) = 1.0549$  Estima-se, em média, que o total de baixas relacionadas ao terrorismo nas províncias do Afeganistão sofre um acréscimo de 5.49% quando acrescenta-se um ponto percentual na variável % da população com acesso a água potável, mantida as demais variáveis constantes.

 $exp(\hat{\beta}_5) = exp(0.0275) = 1.0279$  Estima-se, em média, que o total de baixas relacionadas ao terrorismo nas províncias do Afeganistão sofre um acréscimo de 2.79% quando acrescenta-se um ponto percentual na variável % da população que ingere menos do que o mínimo de calorias, mantida as demais variáveis constantes.

 $exp(\hat{\beta}_6) = exp(0.0416) = 1.0425$  Estima-se, em média, que o total de baixas relacionadas ao terrorismo nas províncias do Afeganistão sofre um acréscimo de 4.25% quando acrescenta-se um ponto percentual na variável % de estradas sem restrições de peso, mantida as demais variáveis constantes.

 $exp(\hat{\beta}_7) = exp(0.0091) = 1.0092$  Estima-se, em média, que o total de baixas relacionadas ao terrorismo nas províncias do Afeganistão sofre um acréscimo de 0.92% quando acrescenta-se uma unidade na variável taxa de mortalidade de crianças até os 5 anos, mantida as demais variáveis constantes.

 $exp(\hat{\beta}_8) = exp(1.3050) = 3.6876$  Estima-se, em média, que o total de baixas relacionadas ao terrorismo nas províncias do Afeganistão sofre um acréscimo de 268.76% quando a maioria da população da província não é Pashtun e passa a ser, mantida as demais variáveis constantes.



#### Conclusão

Desta forma o objetivo foi atendido, pois foi possível relacionar o número de baixas provindos de atentados terroristas no Afeganistão por meio de um modelo linear generalizado com resposta binomial negativa e função de ligação logarítmica.

Todas as suposições necessárias para a continuidade desse tipo de análise foram atendidas. Sendo assim, o modelo final é considerado como correto e ainda produziu parâmetros interpretáveis.



#### Referências

- Teodoro, Ana Cláudia S. C., Ramalho, Diana Gonçalves, "O combate ao terrorismo: uma análise das principais causas e das estratégias e modelos contraterroristas" 2017
- Piazza, James A. 2012. "O comércio de ópio e os padrões de terrorismo nas províncias do Afeganistão: uma análise empírica". Terrorismo e violência política (24 março): 213-234.
- Pereira, Gustavo. Notas de Aula Modelos Lineares Generalizados. 2019.

