## Topology

Trishan Mondal

## Assignment-5

## § Question 2

## Definition 2.1 ▶ Even action

We say a group G acts on a topological space X evenly if for any  $x \in X$  has an neighbourhood U such that  $\forall h \neq g \in G$ ,

$$gU \cap hU = \phi$$

- (i). The group  $\mu_n$  of all  $n^{\text{th}}$  roots of unity in  $\mathbb C$  acts on  $\mathbb C$  by left multiplication
  - Show that this action is not even.
  - The same action of  $\mu_n$  on  $\mathbb{C}^{\times} = \mathbb{C} \{0\}$  is even.

**Solution**. If we act  $\mu_n$  on any neighbourhood, U around 0 we can see that  $\{0\} \in g \cdot U$  for all  $g \in \mu_n$ , which means  $\{0\} \in gU \cap hU$  for any neighbourhood U (of 0) and  $g \neq h \in \mu_n$ . So, this action is not even.

• Consider, z be a point in the complex plane which is not zero. Take a circle of radius |z| centerd at origin. when we are acting  $\mu_n$  on z, it's rotating along the circle of given radius with some multiple of  $\frac{2\pi}{n}$ .

Now we will look at the arc of the circle which makes angle  $\frac{2\pi}{n}$  at center and keeps z at the middle of the arc. We will construct a circle centerd at z and touching the radii which are  $\frac{2\pi}{n}$  angle apart from each other. we can see that radius of such circle wil be  $|z|\sin\frac{\pi}{n}$ .



Now consider an open disk centerd at z with radius  $\frac{|z|}{2}\sin\frac{\pi}{n}$ . Call this disk  $D_z$ . When we translate  $D_z$  by the group action of  $\mu_n$ , the disk will move in such a way that it's center stay at the circle and the center will move  $\frac{2\pi k}{n}$  angle, where  $k \in \{0, \dots, n-1\}$ . we can clearly see that  $D_z \cap g \cdot D_z = \phi$ ,  $e \neq g \in \mu_n$ . Now by symmetry we can say that  $g.D_z \cap h.D_z = \phi$  for all  $g \neq h \in \mu_n$ .

(iii). Let G be the subgroup of the group of all self homeomorphisms of  $\mathbb{R}^2$  generated by the translation  $(x,y) \mapsto (x+1,y)$  and the map  $(x,y) \mapsto (-x,y+1)$ . Prove that this is an even action of G on  $\mathbb{R}^2$ . Also show that  $\mathbb{R}^2/G$  is the Klein bottle.

**Solution**. Let,  $\varphi_1, \varphi_2$  be the homeomorphisms corresponding  $(x, y) \mapsto (x + 1, y)$  and  $(x, y) \mapsto (-x, y + 1)$  respectively. The group generated by these two homeomorphisms is given as following,

$$G = \langle \varphi_1, \varphi_2 \rangle$$

We can see that,  $\varphi_1 \circ \varphi_2 = \varphi_2 \circ \varphi_1^{-1}$  and  $\varphi_2 \circ \varphi_1 = \varphi_1^{-1} \circ \varphi_2$ . So any element in the group G can be written as  $\varphi_1^m \circ \varphi_2^n$  for some  $m, n \in \mathbb{Z}$ . Generators of the group are distance preseving homeomorphisms. So and element of the group is distance preseving homeomorphism. For any point  $(x,y) \in \mathbb{R}^2$  take an open disk centerd at that point with diameter d < 1. Call this disk  $D_{(x,y)}$ , we will show,  $g(D_{(x,y)}) \cap h(D_{(x,y)}) = \emptyset$ . Which means the group action is even.

Let, g is an element in G then  $g = \varphi_1^m \circ \varphi_2^n$ . So,  $g.D_{(x,y)} = \{((-1)^n + u + m, v + n) : (u,v) \in D_{(x,y)}\}$ . If there is a point (x',y') the intersection of  $D_{(x,y)}$  and  $g.D_{(x,y)}$  then distance between (x',y') and  $((-1)^n x' + m, y' + n)$  is < d. which means,

$$\sqrt{(((-1)^n - 1)x' + m)^2 + n^2} \le d < 1$$

since n is an integer we must have n=0 and then  $m^2 \leq d < 1$  which means m=0 i.e g=e. If g is not identity then  $g(D_{(x,y)}) \cap (D_{(x,y)}) = \emptyset$ . We can see that  $\varphi_1(x,y), \varphi_2(x,y)$  are at least 1-unit distance apart from (x,y). By the similar calculation as shove, for any two distinct element  $g,h \in G$  we can say that g(x,y) and h(x,y) are at least 1-unit apart from each other  $\square$ 

If (x, y) lies in  $\mathbb{R}^2$ , by applying the homeomorphism  $\varphi_1^m$  for some appropriate integer m to (x, y), we can convert it to a point (a, y) where  $a \in [0, 1)$  (this is like taking fractinal part). Then by applying the homeomorphism  $\varphi_2^n$  for some appropriate integer v to (a, y), we get the point  $((-1)^n a, b)$  where  $b \in [0, 1]$ . If v is even, we get a point lying in  $[0, 1]^2$  lying in the same equivalence class as (x, y) in  $\mathbb{R}^2/G$ . Otherwise another application of g gives us such a point lying in  $[0, 1)^2$ . Moreover no two points in  $[0, 1]^2$  lie in the same equivalence class of  $\mathbb{R}^2/G$ . So  $\mathbb{R}^2/G$  can be identified with the space  $[0, 1]^2$  with the quotient topology induced.

Consider the unit square  $S = [0, 1] \times [0, 1]$  We can see that any orbit of the given action has a representative on S. If we look at the point interior of the square, they are representative of themself. This is because any  $g \in G$  must take a point at least 1-distance apart from itself by translation. We will look on the boundary of the square where, the points of the form (0, y) are representative with (1, y) (by  $\varphi_1$ ) and the points of the form (x, 1) representative with (1 - x, 0) (by  $\varphi_1 \circ \varphi_2^{-1}$ ). We can also see all four vertex belong to same orbit. (0, y) and (x, 1) can't be representative to each other if 0 < x, y < 1 this is clearly because the distance in y-coordinate is greater than 0 but less than 1.Similarly we can show (0, y), (1, y) can t be representative with (x, 0) and (x, 1) in any means.

Since, any orbit of the action has a representative in S we can say that the orbit can be written as [(x,y)]. Where  $(x,y) \in S$ . Let,  $q: \mathbb{R}^2 \to \mathbb{R}^2/G$  be the quotient map. The restriction  $q_S = q|_S$  will induce a quotient map to the orbit space on S, which is basically a

map send (x,y) to [(x,y)]. i.e  $q_S: \mathcal{S} \to \text{orbit space on } \mathcal{S}$  (this is because  $q_S$  is a continuous surjective map from comapact to Hausdorff space. It was shown in class that X/G is Hausdorff when a group G is acting on a Hausdorff topological space X.). Let,  $\pi: \mathcal{S} \to K$  be the odentification map from  $\mathcal{S}$  to klein bottle K. Define a map  $\phi$  from the orbit space to K as each orbit  $[(x,y)] \mapsto \overline{(x,y)}$ . Here  $\overline{(x,y)}$  is the point in K corresponding to the point in (x,y).



For the  $\psi$  we have constructed the above diagramm commutes. Now, It's not hard to see that  $\psi$  is one one and onto i.e. bijective. Here,  $\psi \circ q_s = \pi$  since  $q_s$  is continuous and  $\pi$  is quotient map we can say  $\psi$  is a continuous (**done in class**) and bijective map. Since  $q_s$  is also a quotient map from comapact set, orbit space on  $\mathcal{S}$  is also comapact and we know Klein bottle is a surface without boundary (**discussed in class**) it is Hausdorff. So, by closed map lemma (**done in class**) a continuous bijective map from a comapact space to Hausdorff space is homeomorphism. Hence, orbit space on  $\mathcal{S}$  which is equal to orbit space on  $\mathbb{R}^2$  is homeomorphic to Klein bottle K.

(iv). Let G be a finite group action fixed point freely on a Hausdorff space Y, ie.  $q \cdot y = y$  for some  $q \in G, y \in Y \Rightarrow q = e$ . Prove that such an action is even.

**Solution**. Let,  $\{g_0(=1), g_1, g_2, \dots, g_n\}$  are element of G. Now consider  $\{x, g_1.x, \dots, g_n.x\}$  where  $x \in Y$ , all of these are distinct as the action is fixed point free. Since there are finitely many point in the above set we can separate them by disjoint open sets(**This was done in class**)\*\*.i.e there are open sets  $U_0, \dots U_n$  with  $g_i.x \in U_i$  and  $g_j.x \in U_j$  and  $U_i \cap U_j$  for  $i \neq j$ .

Consider  $W_i = U_0 \cap g_i^{-1}U_i$  clearly this is open set since thi is finite intersection of opensets and  $g^{-1}U_i$  open as the map  $x \mapsto g.x$  is continuous. So,  $W_i$  are open neighbourhood of x. Define,  $U = \bigcap_{i=1}^n W_i$ . This is also finite intersection of opensets which means it is open. We have  $g_iU \subset U_i$ . So,  $g_iU \cap U = \emptyset$ . And hence the action is free.

\*\* **Lemma :** There exist pairwise disjoint open neighbourhoods of  $g_1 \cdot y, \ldots, g_n$ . y. *Proof.* Induction on n. For n=1,2, the statement is clear. Now suppose n>2, and we have disjoint open neighbourhoods  $U'_1,\ldots,U'_{n-1}$  of  $g_1\cdot y,\ldots,g_{n-1}\cdot y$  respectively. Then since Y is Hausdorff, and  $g_1\cdot y,\ldots,g_n\cdot y$  are all distinct points, there exist open sets  $V'_1,\ldots,V'_{n-1}$  and open sets  $W'_1,\ldots,W'_{n-1}$  such that  $g_i\cdot y\in V'_i$  for all  $1\leq i\leq n-1$  and  $g_n\cdot y\in W'_i$  for all i, and i and

(v). We discussed an action of  $\mu_n$  on the complex sphere

$$S_{\mathbb{C}}^{m-1} := \left\{ (z_1, \dots, z_m) : |z_1|^2 + \dots + |z_m|^2 = 1 \right\}$$

 $\zeta \cdot (z_1, \ldots, z_m) := (\zeta z_1, \ldots, \zeta z_m)$ . Prove this is an even action.

**Solution**. Let  $(z_1,\ldots,z_m)$  be an arbitrary point in  $S^{m-1}_{\mathbb{C}}$ . Then at least one of  $z_1,\ldots,z_m$  is not zero; assume W.L.O.G. that  $z_1\neq 0$ . Then by part (i) of this assignment, there exists an open neighbourhood U of  $z_1$  such that  $g,h\in \mu_n$  and  $g\neq h$  implies that  $g(U)\cap h(U)=\emptyset$ . Then  $U\times\prod_{i=1}^{n-1}\mathbb{C}$  is an open neighbourhood of  $(z_1,\ldots,z_m)$  in  $\mathbb{C}^{m-1}$ . But then  $\left(U\times\prod_{i=1}^{n-1}\mathbb{C}\right)\cap S^{m-1}_{\mathbb{C}}$  is an open neighbourhood of  $(z_1,\ldots,z_m)$  in  $S^{m-1}_{\mathbb{C}}$ , and  $g,h\in \mu_n$  and  $g\neq h$  implies that

$$g_i\left(\left(U\times\prod_{i=1}^{n-1}\mathbb{C}\right)\cap S_{\mathrm{C}}^{m-1}\right)\cap g_j\left(\left(U\times\prod_{i=1}^{n-1}\mathbb{C}\right)\cap S_{\mathrm{C}}^{m-1}\right)=\emptyset$$

And hence We are done.