

Esther Galby², Daniel Marx², Philipp Schepper², **Roohani Sharma**¹, Prafullkumar Tale²

¹Max Planck Institute for Informatics ²CISPA Helmholtz Center for Information Security

International Symposium on Parameterized and Exact Computation 2022

No induced cycle of length four or more.

No induced cycle of length four or more.

No induced cycle of length four or more.

No induced cycle of length four or more.

Intersection graph of sub-trees of a tree.

Admit tree decomposition where every bag is a clique.

Input: A graph G, integer k

Question: Does there exist a set S of size at most k

such that N[S] = V(G)?

Input: A graph G, integer k

Question: Does there exist a set S of size at most k

such that N[S] = V(G)?

DOMINATING SET is W[2]-complete, parameterized by k, even for chordal (split) graphs.

Input: A graph G, integer k

Question: Does there exist a set S of size at most k

such that N[S] = V(G)?

DOMINATING SET is W[2]-complete, parameterized by k, even for chordal (split) graphs.

Split graphs

Intersection graph of intervals of a path

Split graphs

Split graphs

Intersection graph of intervals of a path

Intersection graph of intervals of a path

Split graphs

Intersection graph of sub-stars of a star

Interval graphs	Split Graphs
70	Z
T	P
	\mathbf{C}
9	On
D .	d
<u>\text{\O}_{-}\text{\omega}</u>	Ö
≕.	Ťe
3	······································
0	

How close is a chordal graph to an interval graph?

Leafage: minimum ℓ such that a graph is an intersection graph of sub-trees of a tree with ℓ leaves.

Leafage: minimum ℓ such that a graph is an intersection graph of sub-trees of a tree with ℓ leaves.

Parameterized Complexity on chordal graphs parameterized by leafage.

 $f(\ell)$ poly(n) generalizes polynomial-time algorithm on interval graphs.

Leafage: minimum ℓ

such that a graph is an intersection graph of sub-trees of a tree with ℓ leaves.

Parameterized Complexity on chordal graphs parameterized by leafage.

 $f(\ell)$ poly(n) generalizes polynomial-time algorithm on interval graphs.

A tree representation of minimum leafage can be computed in polynomial time with linear in n nodes [Habib, Stacho ESA 2009].

DOMINATING SET

Parameter: leafage ℓ

DOMINATING SET

XP [Chaplick, Zeman EUROCOMB 2017]

DOMINATING SET

XP [Chaplick, Zeman EUROCOMB 2017]

 $\mathcal{O}(\ell^2)$ [Fomin, Golovach, Raymond ESA 2018]

DOMINATING SET

XP [Chaplick, Zeman EUROCOMB 2017]

 $2^{\mathcal{O}(\ell^2)}$ [Fomin, Golovach, Raymond ESA 2018]

Our Result

 ${
m no}~2^{o(\ell)}$ under ETH

DOMINATING SET

CONNECTED

DOMINATING SET

XP [Chaplick, Zeman EUROCOMB 2017]

 $2^{\mathcal{O}(\ell^2)}$ [Fomin, Golovach, Raymond ESA 2018]

STEINER TREE

 $2^{\mathcal{O}(\ell)}$ [Our Result

under ETH

DOMINATING SET

XP [Chaplick, Zeman EUROCOMB 2017]

 $2^{\mathcal{O}(\ell^2)}$ [Fomin, Golovach, Raymond ESA 2018]

 $2^{\mathcal{O}(\ell)}$ [Our Result]

 ${
m no}~2^{o(\ell)}$ under ETH

under ETH

MULTICUT

Input: A graph G, terminal pairs (s₁,t₁), ..., (s_p,t_p)

Question: Find a minimum set of non-terminal vertices S such that G-S has no si-ti path.

Input: A graph G, terminal pairs (s_1,t_1) , ..., (s_p,t_p) Question: Find a minimum set of non-terminal vertices S such that G-S has no s_i - t_i path.

Parameter: solution size 2^k FPT [MPR**S**S MFCS 2019]

Input: A graph G, terminal pairs (s₁,t₁), ..., (s_p,t_p)

Question: Find a minimum set of non-terminal vertices S such that G-S has no s_i-t_i path.

Parameter: solution size 2^k FPT [MPRSS MFCS 2019]

Parameter: leafage \(\epsilon \) W[1]-complete

[Our Result]

Input: A graph G, set of terminals {t₁, ...,t_p}

Question: Find a minimum set of non-terminal vertices S such that G-S has no t_i-t_i path.

Input: A graph G, set of terminals {t₁, ...,t_p}

Question: Find a minimum set of non-terminal vertices S such that G-S has no t_i-t_i path.

Parameter: solution size 1.2738^k FPT [MPRSS MFCS 2019]

Input: A graph G, set of terminals {t₁, ...,t_p}

Question: Find a minimum set of non-terminal vertices S

such that G-S has no ti-ti path.

Parameter: solution size 1.2738^k FPT [MPRSS MFCS 2019]

NP-hard?

Input: A graph G, set of terminals {t₁, ...,t_p}

Question: Find a minimum set of non-terminal vertices S such that G-S has no ti-ti path.

Parameter: solution size 1.2738^k FPT [MPRSS MFCS 2019]

NP-hard?

Polynomial-time
[Our Result]

MULTICUT

 $2^{\mathcal{O}(\ell)}$

W[1]-complete

MULTIWAY CUT

Polynomial time (on chordal)

MULTICUT

MULTIWAY CUT

 $2^{\mathcal{O}(\ell)}$

W[1]-complete

Polynomial time (on chordal)

Branching
Greedy
Hitting Set and Set Cover/ |U|

MULTICUT

 $2^{\mathcal{O}(\ell)}$

W[1]-complete

MULTIWAY CUT

Polynomial time (on chordal)

Branching
Greedy
Hitting Set and Set Cover/ |U|

Observation: For each root to leaf path, except at most 1, any solution contains some adhesion of this path.

Assume: There exists a solution that contains some adhesion of every root to leaf path.

MULTIWAY CUT* in bipar

WEIGHTED VERTEX COVER in bipartite graphs

Terminals at leaves

- Terminals at leaves
- Vertices without branching node

in bipartite graphs

- Terminals at leaves
- Vertices without branching node

- Terminals at leaves
- Vertices without branching node

- Terminals at leaves
- Vertices without branching node

- Terminals at leaves
- Vertices without branching node

- Terminals at leaves
- Vertices without branching node

- Terminals at leaves
- Vertices without branching node

WEIGHTED VERTEX COVER in bipartite graphs

- Terminals at leaves
- Vertices without branching node

Vertices containing the branching node

- Terminals at leaves
- Vertices without branching node

WEIGHTED VERTEX COVER in bipartite graphs

- Terminals at leaves
- Vertices without branching node

Vertices containing the branching node

MINIMUM (S,T)-CUT

cost(e) = minimum size of the solution "below e" assuming adh(e) is in the solution.

Multiway Cut on chordal graphs require flow-based arguments as Vertex Cover on bipartite graph reduces to it.

Multiway Cut on chordal graphs require flow-based arguments as Vertex Cover on bipartite graph reduces to it.

Longest Cycle	
Longest Path	
Component Order	
s-Club Contraction	
Independent Set	
Bandwidth	
Cluster Vertex Deletion	

PC wrt to leafage?

Multiway Cut on chordal graphs require flow-based arguments as Vertex Cover on bipartite graph reduces to it.

Longest Cycle
Longest Path
Component Order
s-Club Contraction
Independent Set
Bandwidth
Cluster Vertex Deletion

PC wrt to leafage?

Is there a natural problem on chordal graphs that is NP-hard on interval graphs but polynomial-time on split?

Multiway Cut on chordal graphs require flow-based arguments as Vertex Cover on bipartite graph reduces to it.

Longest Cycle
Longest Path
Component Order
s-Club Contraction
Independent Set
Bandwidth
Cluster Vertex Deletion

PC wrt to leafage?

Is there a natural problem on chordal graphs that is NP-hard on interval graphs but polynomial-time on split?

Do you know of examples of other graph classes that have nice structural parameters?

Multiway Cut on chordal graphs require flow-based arguments as

Vertex Cover on bipartite graph reduces to it.

Longest Cycle	
Longest Path	
Component Order	
s-Club Contraction	
Independent Set	
Bandwidth	
Cluster Vertex Deletic	on

PC wrt to leafage?

Do you know of examples of other graph classes that have nice structural parameters?