데이터마트

데이터마트

- 데이터 웨어하우스의 한 분야
- 특정 목적을 위해 사용

요약변수와 파생변수

- 요약변수: 수집된 정보를 종합한 변수. 재활용성이 높다. (1개월간 수입)
- 파생변수: 의미를 부여한 변수. 논리적 타당성 필요. (고객구매등급)

결측값과 이상값 검색

EDA (탐색적 자료 분석) (exploartory data analysis)

- 데이터의 의미를 찾기 위해 통계, 시각화를 통해 파악
- 저잔재현
- 저항성의 강조: 자료 변동에 민감하지 않음
- 잔차 계산: 값들이 주경향으로부터 얼마나 벗어나 있는지 확인하는 척도
- 자료변수의 재표현: 원래 변수를 적당한 척도로 변환
- 그래프를 통한 현시성: 시각화를 통하여 효율적으로 파악

결측값 처리

- 존재하지 않는 데이터. null/NA
 - 1. 완전분석법: 결측값 삭제
 - 2. 평균대치법(= 비조건부 평균 대치): 단순 평균으로 대치
 - 3. 회귀 대치법(= 조건부 평균 대치): 회귀분석의 결과로 대치
 - 4. 단순 확률 대치법: 확률적으로 선택하여 대치
 - Nearest Neighbor: 가장 가까운 응답으로 대치
 - Hot-Deck: 현재 데이터 셋에서 비슷한 성향으로 대체
 - Cold-Deck: 유사한 외부 셋에서 대체
 - 5. 다중 대치법: 대치 -> 분석 -> 결합

이상값 처리

- 극단적으로 크거나 작은 값
- 의미 있는 데이터일수도 있음 (ex: 체중 3키로)
- 항상 제거하면 안됨
- 1. ESD(Extreme Studentized Deviation)
 - ㅇ 평균으로부터 표준편차 3배 이상 데이터는 이상값으로 판단
- 2. 사분위수 Box plot
 - Q1 1.5IQR보다 작거나 Q3 + 1.5IQR보다 큰 경우 이상값.

• IOR = O3-O1

0

3. Z-Score

○ 데이터 정규화 (평균 0 표준편차 1) 후 일정 임계 값 초과 시 이상값

4. DBScan

ㅇ 밀도를 이용하여 밀도가 적은 부분의 데이터를 이상값으로 판단

통계분석

전수조사와 표본조사

- 전수조사: 전체 다 조사. 오래걸림
- 표본조사: 일부만 추출하여 모집단 분석
- 표본집단으로 모집단을 예측하는 것이 목표
- 예측하는 과정에서 가설검정 필요

자료의 척도 구분

- 1. 질적 척도
 - ㅇ 명목척도: 어느 집단에 속하는지 나타내는 자료 (대학교, 성별, 지역)
 - 순서척도(서열척도): 서열관계가 존재(학년, 순위)
- 2. 양적 척도
 - 등간척도(구간척도): 구간 사이 의미가 있음. 덧셈 뺄셈만 가능. (온도, 지수)
 - 비율척도: 절대적 기준 0 존재. 사칙연산 가능 (무게, 나이, 시간)

확률적 표본 추출 방법

- 1. 랜덤 추출법
- 2. 계통 추출법: 일정 간격으로 추출
- 3. 집락 추출법(=군집 추출법)

- ㅇ 군집 내 이질적, 군집 간 동질적
- 4. 층화 추출법
 - ㅇ 군집 내 동질적, 군집 간 이질적
 - ㅇ 층간 비율 동일 시 비례 층화 추출법
- 5. 복원 / 비복원

비확률적 표본 추출 방법

- 1. 편의 추출법: 연구자가 쉽게 접근 가능한 대상으로 표본 추출
- 2. 의도적 추출법: 연구자가 기준을 정하고 표본 추출
- 3. 할당 추출법: 특정 기준으로 나누고 그 그룹에서 할당된 수만큼
- 4. 눈덩이 추출법: 다단계. 초기 응답자로부터 다음 응답자 추천
- 5. 자기선택 추출법: 응답자가 스스로 조사에 참여할지 결정

기초 통계량

- 1. 중심경향성 측면
 - ㅇ 산술평균
 - 기하평균: 모두 곱하고 n제곱근 (비율적 증가율)

$$H = \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}$$

- ㅇ 조화평균:
 - n/(역수의 산술평균)
- ㅇ 중앙값, 최빈값
- 2. 분산 정도 측면
 - ㅇ 분산
 - ㅇ 표준편차: 분산에 제곱근
 - 사분위수 (IQR): Q1~Q3의 중간 범위
- 3. 관계 측면
 - ㅇ 공분산: 두 확률변수의 상관정도
 - ㅇ 공분산 = 0: 상관이 없음
 - ㅇ 공분산 > 0: 양의 상관관계
 - ㅇ 공분산 < 0: 음의 상관관계
 - ㅇ 하지만 최소 / 최대값이 없으므로 강약 판단이 불가능함
 - 상관계수: 상관정도를 -1~1로 표현
 - 1이면 정, -1이면 반비례. 0이면 상관없음
 - 두 변수가 독립이면 -> 공분산은 0, 역은 성립하지 않는다.

첨도와 왜도

- 1. 첨도: 자료 분포가 얼마나 뾰족한지
 - ㅇ 첨도 = 3인 경우 정규분포
 - 시험문제에서 3을 빼서 0을 기준으로 정규분포를 파악하기도 함.

- 2. 왜도: 자료의 비대칭 정도
 - ㅇ 0일 때 대칭
 - o 왜도 > 0: 평균값 > 중앙값 > 최빈값
 - 왜도 < 0: 평균값 < 중앙값 < 최빈값
 - ㅇ 즉, 평균값은 꼬리를 따라감

Summary 함수 결과의 해석

- Age는 요약변수가 존재하므로 수치형 변수임
- 중앙값이 평균값보다 작음. 즉 왜도가 0보다 큼
- NA: 결측치 수
- Survived 변수는 집단의 빈도 수이므로 범주형 변수임.

기초 확률 이론

1. 확률: 통계적 현상의 확실함을 나타내는 척도. 수학적, 통계적

- 2. 사건: 시행을 통해 결과로서 나타나는 표본공간의 부분 집합
- 3. 표본공간: 통계실험을 통해 일어날 수 있는 모든 결과
 - o ex) 동전던지기 S = {HH, HT, TH, TT}
- 4. 확률변수: 표본공간의 각 원소에 해당하는 값을 대응하는 함수
 - o ex) 키 150~160 확률: P(150<=X<=160)
- 5. 조건부확률: 특정 사건 B가 발생했을 때 A가 발생할 확률
 - \circ P(A|B) = P(A \cap B)/P(B)
- 6. 독립사건: A, B가 영향을 주지 않음. 즉 P(A|B) = P(A)
 - \circ P(A \cap B) = P(A)P(B)
- 7. 배반사건: 같이 일어날 수 없는 사건. A∩B = 0
- 8. 베이즈 정리: 두 확률변수의 사전 확률과 사후 확률 사이의 관계를 나타내는 정리
 - \circ P(A|B) = P(B|A)P(A)/P(B)

이산확률분포 - 확률질량함수

- 이산균등분포
- 베르누이분포(결과가 두가지 중 한가지로만 나오는 베르누이시행)
- 이항분포: N번의 베르누이 중 K번 성공할 확률
- 기하분포: 성공률이 p 이상인 베르누이시행에서 처음으로 성공할 때까지의 시행횟수 분포
- 음이항분포: ~번 성공할 때까지의 반복 시행 수
- 초기하분포: 비복원추출로 원하는 결과가 k번 나올 확률 분포
- 다항분포: 각 시행이 여러 개의 결과를 가질 수 있는 확률 분포
- 포아송분포: 단위 시간 내 발생할 수 있는 사건 발생 수에 대한 분포 (한 시간 동안 걸려온 전화 수)
- "베 포 항 항 하"

연속확률분포 - 확률밀도함수

- 정규분포: Z검정에 활용
- t분포: 정규분포와 유사하지만 꼬리가 더 두꺼움
 - ㅇ T검정에 활용
 - ㅇ 표본이 30개보다 작은 집단에 대한 평균 검정
- 카이제곱분포: 독립적 정규분포를 따르는 변수들의 제곱합
- F분포: 서로 다른 카이제곱 분포 비율

확률분포의 기댓값

- 확률변수 X의 f(x) 확률분포에 대한 기댓값 E(X)
 - 이산적 확률변수: \$E(X) = \sum xf(x)\$
 - 연속적 확률변수: \$E(X) = \int xf(x)\$

- (1) 동전을 3개 던지는 확률실험을 할 때, 확률변수 X(앞면F의 개수)의 기댓값은?
- (2) 1~12의 숫자가 표시된 원형시계에서, 확률변수 X(시계 바늘이 가르키는 시간)의 기댓값은?

(1)

- $-P(X=0) = P(\{BBB\}) = \frac{1}{9}$
- $-P(X = 1) = P(\{FBB, BFB, BBF\}) = \frac{3}{8!}$
- $-P(X = 2) = P(\{FFB, FBF, BFF\}) = \frac{3}{8}$
- $-P(X = 3) = P({FFF}) = \frac{1}{8}$

$$E(X) = 0 \times \frac{1}{8} + 1 \times \frac{3}{8} + 2 \times \frac{3}{8} + 3 \times \frac{1}{8} = 1.5$$

(2)

$$\therefore E(X) = \int_0^{12} x f(x) dx = \int_0^{12} x \left(\frac{1}{12}\right) dx = 6$$

중심극한정리

- 임의의 모집단으로부터 추출된 표본평균분포는 표본크기가 충분히 크다면 정규분포를 이룬다. (30개 이상)
- 모집단의 분포와 관계없이 표본평균분포가 정규분포를 이룬다.
- 표본평균의 평균 = 모평균

$$E(\overline{\chi}) \equiv \mu$$

• 표본평균의 분산 = 모분산 / n

$$V(\overline{X}) = \frac{V(X)}{n} = \frac{\sigma(X)^2}{n} = \frac{\sigma^2}{n}$$

• 표본평균의 표준편차는 루트를 씌우자.

$$\sigma(\overline{X}) = \sqrt{\frac{V(X)}{n}} = \frac{\sigma(X)}{\sqrt{n}} = \frac{\sigma}{\sqrt{n}}$$

모집단이 정규분포 $N(m,\sigma^2)$ 을 따르면, 표본평균 \overline{X} 도 정규분포 $N(m,\left(\frac{\sigma}{\sqrt{n}}\right)^2)$ 을 따른다.

• 표본평균의 표준화

$$Z = \frac{\overline{X} - \mu}{(\sigma/\sqrt{n})} \sim N(0, 1)$$

점추정

• 모집단을 특정한 값으로 추정. 추정량으로 모수를 추정

- 추정량의 조건 불효일충
- 불편성, 효율성, 일치성, 충족성
- 대표적인 추정량

1) 모집단의 평균 $\mu \to$ 표본평균 $\bar{X} = \frac{1}{n} \sum X$

2) 모집단의 분산 $\sigma^2 \rightarrow$ 표본분산 $s^2 = \frac{1}{n-1} \sum (X - \overline{X})^2$

구간추정

• 모집단이 특정한 구간으로 추정 (주로 95%, 99%)

• 신뢰구간 95%: 1.960

• 신뢰구간 99%: 2.576

$$P\left(\bar{X} - Z_{\alpha/2} \, \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + Z_{\alpha/2} \, \frac{\sigma}{\sqrt{n}} \right) = 1 - \alpha$$

○ \$1-a\$는 신뢰구간을 의미함. 즉, 신뢰구간 0.95일 때 a는 0.05. Z 0.025를 의미함.

• 모분산을 모르는 경우 t분포를 활용하자. 단 자유도는 n-1로 계산한다. 표준편차 역시 표본표준편차 s를 활용한다.

$$\left[\overline{X} - t_{\alpha/2} \frac{s}{\sqrt{n}}, \ \overline{X} + t_{\alpha/2} \frac{s}{\sqrt{n}}\right]$$

○ 이때 t분포는 표로 준다.

가설검정

- 귀무가설(H0): 일반적인 사실.
- 대립가설(H1): 귀무가설을 기각하는 가설. 증명하고자 하는 가설. 어떤 확률변수의 차이가 존재한다 / 크다 / 작다
- 유의수준(a): 귀무가설이 참일 때 기각하는 1종 오류를 범할 확률의 허용 한계(일반적으로 0.05)
- 유의확률(p-value): 귀무가설을 지지하는 정도를 나타내는 확률
- ex) 평택시의 한달 강수량을 예측해보려고 한다.
 - 일반적으로 한달 강수량은 200mm로 알려져 있다.(H0, 귀무가설)
 - 나는 평택시 강수량이 300mm라고 예측한다.(H1, 대립가설)
 - 가설검정 결과 강수량 300mm가 틀릴 확률이 7%로 나왔다. (p-value = 7%)

- 유의수준은 5% (0.05)이다.
- 따라서 대립가설 H1을 기각하고 귀무가설을 채택한다.
- 이때 귀무가설 H0이 옳지만 이를 옳지 않다고 판단하는 경우를 1종 오류라고 한다.
 - 이 오류가 발생할 확률의 한계치가 유의수준이다.
- 반대로 H0이 거짓이지만 참이라고 판단하는 경우를 2종 오류라고 한다.

검정결과 실제	H0가 사실이라고 판정	H0가 거짓이라고 판정
H0가 사실	옳은 결정	1종 오류(α)
H0가 거짓	2종 오류(β)	옳은 결정

가설검정 문제 풀이 방법

- 1. 차이가 없다, 동일하다 -> 귀무가설
- 2. 양측 / 단측 검정 확인
 - ㅇ 대립가설의 값이 '같지 않다' -> 양측검정
 - ㅇ 대립가설의 값이 '작다', '크다' -> 단측검정
- 3. 일표본 / 이표본 확인 -> 모집단 수와 동일
- 4. 귀무가설 채택 혹은 기각
 - o p-value > 유의수준: 귀무가설 채택, 대립가설 기각
 - o p-value < 유의수준: 대립가설 채택(예측 성공)

5. t검정인 경우

- ㅇ 단일표본: 모집단에 대한 평균검정
- ㅇ 대응표본: 동일 모집단에 대한 평균비교 검정
- ㅇ 독립표본: 서로 다른 모집단에 대한 평균비교 검정

비모수 검정

- 모집단에 대한 정보가 없을 때의 검정. 관측 자료가 특정 분포를 따른다고 보기 어려울 때.
- 두 관측 값의 순위나 차이로 검정
- 부호, 순위, 민-휘트니, U, 크러스칼-윌리스, 프리먼드, 카이제곱

기초 통계분석

회귀분석

- 방정식 만들어서 y 예측하는거
- 독립변수: 원인을 나타내는 변수 (x), 광고비
- 종속변수: 결과를 나타내는 변수 (y), 수익
- 잔차: 계산값과 예측값의 차이 (~= 오차)
- \$\text{y}{수의} = \beta_1 , \text{x}{tv광고} + \beta_2 , \text{x}{\Q目넷광고} + \beta_3 , \text{x}{\Q스타광 고} + \beta_i\$
- 회귀계수 추정방법

- 최소제곱법(최소자승법): 잔차의 제곱합(SSE = sum of squares error)이 최소가 되는 회귀계수와 절편을 구하는 방법
 - 이걸 활용해서 위의 식에서 가중치(베타)들을 추정해야 함.
 - 제곱하는 이유? 회귀선 아래에 있는 관측값의 잔차는 음수임. 제곱해야 잔차의 합이 상쇄되지 않음.
 - 당연히 제곱이니 2차함수. 2차함수의 극솟값 지점을 찾는 것이 최소제곱법의 목표(이 값은 각 회귀계수(weight)와 절편의 값이 됨)

- 회귀모형 평가
 - o R-square: 총 변동 중에서 회귀모형에 의해 설명되는 변동이 차지하는 비율
 - 0과 1 사이의 값을 가지며, 1에 가까울수록 모델의 설명력이 높다고 볼 수 있음.

- 가장 쉽게 생각할 수 있는 회귀선은 v의 평균값인 상수함수임.
- 이 회귀선을 기준으로, 새로 구한 회귀선과 비교해봤을 때, 새로 생긴 회귀선은 평균값보다 R만큼 개선되었다고 할 수 있음.
- 또한 새로 구한 회귀선과 실제 관측값 간에는 여전히 차이가 존재하는데 이를 E라고 할 수 있음.
- R^2의 목적은 새로 구한 회귀선이 얼마나 관측값을 반영하는지에 대한 수치.
 - 즉, 개선된 차이(R) / 전체 오류(T = 평균값~관측값)
- SST: sum of squares total: 관측값에서 평균값을 뺌

$$SST = \sum_{i=1}^n (y_i - ar{y})^2$$

- SSR = sum of squares regression: 추정값(regression)에서 평균값을 뺌
- SSE = sum of squres error: 관측값에서 추정값을 뺌
- R^2 = SSR/SST = 1 SSE/SST

선형회귀분석의 가정

선 분 정 독

- 1. 선형성: 종속변수(y)와 독립변수(x)는 선형관계
- 2. 등분산성: 잔차의 분산이 고르게 분포
- 3. 정상성(정규성): 잔차가 정규분포의 특징을 지님
- 4. 독립성: 오차가 서로 독립. 독립변수간 상관관계가 없음.
 - <mark>다중공선성: 독립변수들간(x1, x2 간) 강한 상관관계가 나타나는 문제</mark>
 - VIF(분산팽창인수) 값이 10 이상이면 다중공선성이 존재한다고 판단함.

 \blacksquare VIF = 1/(1-R^2)

회귀분석 종류

- 1. 단순회귀: 하나의 독립변수와 종속변수의 선형관계
 - \circ y = ax + b
- 2. 다중회귀: 2개 이상의 독립변수와 종속변수의 선형관계
 - \circ y = ax1 + bx2 + cx3 + ... + z
- 3. 다항회귀: 2개 이상의 독립변수와 종속변수가 2차 이상의 관계
 - \circ y = ax1^2 + bx^3 ...
- 4. 릿지회귀(L2 norm, L2 규제): L2 norm을 포함.
 - ㅇ 유클리디안 거리 기반
 - \$\sum W^2\$
- 5. 라쏘회귀(L1 norm, L1 규제): L1 norm을 포함.
 - ㅇ 맨하탄 거리 기반
 - \$\sum |W|\$
- 6. 교호항이 포함된 회귀
 - ㅇ 교호작용: 두 개 이상의 독립변수가 상호작용하여 종속변수에 영향을 미치는 경우
 - \circ y = w1x1 + w2x2 + b
 - o y = 고혈압, x1 = 비만, x2 = 유전정보
 - w1 = 2, w2 = 4라고 가정해보자. 즉, 비만은 고혈압에 두 배 기여하고, 유전정보는 네 배 기여한다고 가정하자.
 - 이때 새로운 독립변수 $x3 = (x1 \cap x2)$, 즉 비만과 유전인자를 모두 가진 케이스라고 하자.
 - y = w3x3 + b'에서, w3이 20이라고 해보자.
 - 즉, x1과 x2가 상호작용하여 종속변수 y에 더 큰 영향을 미치게 되었는데, 이를 교호작용이라고 한다.

최적의 회귀 방정식 탐색 방법

- 1. 전진선택법: 변수를 하나씩 늘려가면서. x1, x2, x3, ... 추가
- 2. 후진선택법: 변수를 하나씩 줄여가면서.
- 3. 단계별 선택법: 전진전택법 + 후진제거법
 - AIC(아카이케 정보 기준): 편향과 분산이 최적화되는 지점 탐색. 자료 많을수록 부정확
 - BIC(베이즈 정보 기준): AIC를 보완. AIC보다 큰 페널티를 갖는다.
 - AIC, BIC 모두 작을수록 좋음.

회귀분석의 분산분석표(ANOVA)

요인	제곱합	자유도	제곱평균	FII
회귀	$SSR = \sum (\hat{Y} - Y)^2$	p(회귀계수 수)	$MSR = \frac{SSR}{p}$	MSR
잔차	SSE = $\sum (Y - \hat{Y})^2$	n(전체 데이터 수) – p – 1	$MSE = \frac{SSE}{n - p - 1}$	$F = \frac{1}{MSE}$
총	SST = SSR + SSE	n - 1		

- 회귀 자유도 = p
- 잔차 자유도 = n p 1 (걍 외우자 증명보니 어지럽다)
- 전체 자유도 = n 1

$$R_{adj}^2 = 1 - \frac{(n-1)}{(n-p)} (1 - R^2)$$

수정된 R-square = (MSE/SST)

- = 1-(n-1)
- 전체 자유도는 회귀계수 자유도(p) + 잔차 자유도(n-p-1)을 더한 값이다.
- 데이터 수는 자유도 + 1. 즉 n

회귀 모형의 검정

- y = w1x1 + w2x2 + b
- 1. 독립변수와 종속변수 설정 (x, y)
- 2. 회귀계수 값의 추정 (w1, w2, b)
- 3. 모형이 통계적으로 유의미한가: 모형에 대한 <mark>F검정</mark> 수행 -> p-value를 구해보자.
- 귀무가설 H0: 모든 회귀계수는 0이다.
 - 당연히 이를 기각시켜야 한다. weight가 0이면 회귀 모형이 존재하지 않는다는 것을 의미함.
- 첫번째 귀무가설을 기각시켰다면, 각각의 회귀계수 (w1, w2, w3, ..., b)에 대해 각각 0인지 다시 검정.
 - 귀무가설: w1은 0이다. w2는 0이다. ... b는 0이다.
 - 당연히 싹 다 기각시켜야 함.
 - 이 때 각각의 회귀계수에 대해서는 T검정을 수행함.
- 최종적으로, 두 귀무가설이 모두 기각되었다면 해당 모델을 활용할 수 있음.
- 모델의 설명력 -> R square 값으로. R^2 = SSR / SST

- 종속변수(y): height
- 독립변수(x): age, no_sibilings

• 회귀모형 F검정 -> p-value = 1.65e-09 <= 0.05이므로 귀무가설을 기각 (귀무가설: 모든 독립변수 가중치는 0이다)

- 각 회귀계수의 t검정
 - age의 p-value(pr(>|t|))는 4.34e-10이므로 귀무가설 기각 (유효함)
 - o no_sibilings의 p-value는 0.851로 재수행 권장
- 이 모형은 다중회귀 모델 (종속변수가 두 개 이상)
- R-squared가 0.9888이므로 설명력이 98%
- 회귀 자유도 2, 잔차 자유도 9이므로 전체 자유도는 11, 데이터 수는 12
- 회귀식 y = 0.63416x_height 0.01137x_no_sibilings + 64.95872

교호항이 포함된 모형 검정

2025-08-07

```
jobclass
    wage
                     age
                                1. Industrial: 1544
Min. : 20.09
                 Min. :18.00
                                 2. Information: 1456
1st Qu.: 85.38
                 1st Qu.:33.75
Median :104.92
                Median :42.00
Mean
                 Mean :42.41
3rd Qu.:128.68
                 3rd Qu.:51.00
     :318.34
Max.
                 Max.
                       :80.00
model <- lm(wage ~ age + jobclass + age * jobclass, data = Wage)
summary(model)
Call:
lm(formula = wage ~ age + jobclass + age * jobclass, data = Wage)
Residuals:
    Min
               10
                     Median
                                   30
                                            Max
-105.656 -24.568 -6.104
                             16.433 196.810
Coefficients:
                          Estimate Std. Error t value Pr(>|t|)
                                     3.76133
                                               19.548
(Intercept)
                                                        < 2e-16 ***
                                     0.08744
age
jobclass2. Information
age:jobclass2. Information -0.16017 0.12785
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 40.16 on 2996 degrees of freedom
Multiple R-squared: 0.07483, Adjusted R-squared: 0.07391
F-statistic: 80.78 on 3 and 2996 DF, p-value: <
```

- 종속변수 wage
- 독립변수 age, jobclass
- jobclass 변수는 범주형 변수
- 아래 분석에서 jobclass2. Information만 나와있으므로 Industrial을 0으로 보고 Information을 1로 본다.
- 이 때 jobclass_Information의 회귀계수가 22.73086이므로 임금에 양의 방향으로 기여 -> information이 industrual보다 임금이 높다.
- y_wage = 0.71966age + 22.73086jobclass_information 0.16017(age * jobclass_information) + 73.52831 • 이때 - 0.16017(age * jobclass_information) 이 교호항이다.
- F검정의 p-value는 2.2e-16이므로 귀무가설 기각 -> 유의미

- age, intercept, jobclass information의 t검정 p-value는 모두 유의미
- age*jobclass information 교호항의 p-value는 0.21 > 0.05이므로 교호작용이 유의미하지 않다.

다변량 분석

상관분석

- 두 변수간 선형적 관계가 존재하는지 파악하는 분석
- 1. 피어슨 상관분석: 양적 척도, 연속형 변수, 선형관계 크기 측정
 - 피어슨 계수가 1이면 양의 방향으로 선형적 (1차함수 모양)
 - 피어슨 계수가 0보다 크고 1보다 작으면, 증가함수지만 선형적이지 않음.
 - 피어슨 계수가 음수이면 감소함수지만 선형적이지 않음.
 - 피어슨 계수가 -1이면 음의 방향으로 선형적
- 2. 스피어만 상관분석: 서열 척도, 순서형 변수, 선형/비선형적 관계
 - 스피어만 상관계수는 x와 y가 선형 관계가 아니더라도 +1, -1 값을 가질 수 있다.

주성분 분석 (PCA)

- 선형 결합으로 차원을 축소해 새로운 변수 생성
 - o ex) 종속변수 y가 집값인 경우, 독립변수 x는 지역, 건설사, 역과의 거리, ... 등등 많은 변수가 존재함. 각 변수 개수만큼의 차원을 가짐.
 - 자료의 분산이 가장 큰 축을 기준으로 차원 축소 진행 (고유값을 활용하자.)

```
> result<-prcomp(data,center=T,scale.=T)
> summary(result)

PC1 PC2 PC3 PC4 PC5 PC6 PC7
Standard deviation 2.1119 1.0928 0.72181 0.67614 0.49524 0.27010 0.2214
Proportion of Variance 0.6372 0.1706 0.07443 0.06531 0.03504 0.01042 0.0070
[Cumulative Proportion 0.6372 0.8078 0.88223 0.94754 0.98258 0.99300 1.0000]
- center=T: 평균을 0, scale.=T: 데이터의 표준화 수행
- 첫번째 주성분(PC1)의 분산(0.6372)이 가장 큼
- 두 개의 주성분(PC1, PC2)을 적용하면 전체 데이터의 약 80%를 설명
```

■ deviation: 표준편차

■ variation: 분산

스크리플롯(Screeplot)

- 주성분들의 분산을 표에 기입한 후 그래프가 완만해지기 직전까지의 주성분을 채택한다.
- 여기서 분산은 위의 R 코드로부터 얻은 표준편차를 제곱하여 얻는다.

☞ 주성분 개수의 선택은 절대적인 것은 없으며, 연구자의 판단 (3개로 선택도 가능)

다차원 척도법 (MDS: multi-dimensional Scaling)

- 데이터 간 거리 정보의 근접성을 보존하는 방식으로 차원 축소
- Stress 값이 0에 가까울 수록 좋음.
- x/y축 해석이 불가능함
- 계량적 MDS -> 양적척도
- 비계량적 MDS -> 순서척도

시계열 예측

시계열 분석

• 시간의 흐름에 따라 관찰된 자료의 특성을 파악하여 미래를 예측 (주가, 기온..)

정상성

- 모든 시점에 일정한 평균과 분산을 가지는 정상성을 만족해야 함
 - ㅇ 주가, 기온은 시간이 가면서 계속 그래프가 변하므로, 평균 및 분산이 계속해서 변화함
 - 이를 정상 시계열로 변환해야 함
- 1. 차분: 현재 데이터에 이전 데이터를 빼줌
 - ㅇ 그러면 데이터의 차이만 남게되므로 평균과 분산이 일정해짐

• 차분을 수행하기 전 / 후의 삼성전자 주가

- 2. 이동평균법: 시계열 데이터 특: 위아래로 엄청 흔들림 -> 평균 내서 이평선 만들기
- 3. 지수평활법: 최근 시간 데이터에 가중치를 줌
- 4. 그 외: 지수변환, 로그변환, Box-Cox 변환

백색잡음

- 시계열 모형의 오차항을 의미함
- 평균이 0이라면 가우시안 백색잡음이라고 함

시계열 모형

- 1. 자기회귀 모형 (AR)
 - ㅇ 말 그대로, 자기자신의 과거 값이 미래를 결정하는 모형
 - 부분자기상관함수 (PACF) 활용하여 p+1 시점 이후 급격히 감소하면 AR(p)를 선정함.

0

- 이 경우 p = 2, AR(2) 채택
- 2. 이동평균 모형 (MA)
 - ㅇ 이전 백색잡음들의 선형결합으로 표현되는 모형
 - 자기상관함수(ACF)를 활용하여 q+1 시점 이후 급격히 감소하면 MA(q)를 선정함.
- 3. 자기회귀누적이동평균(ARIMA)
 - AR + MA
 - ARIMA(p, d, q)
 - p는 AR, q는 MA, d는 차분 횟수
 - 문제에서 차분 몇번 했냐 하면 d 쓰면됨
 - o p = 0 -> IMA 모형
 - o d = 0 -> ARMA 모형
 - o q = 0 -> ARI 모형

분해시계열

- 시계열에 영향을 주는 일반적인 요인을 시계열에서 분리해 분석하는 방법 -> <mark>추운 계절의 순환이 불규칙 하다.</mark>
- 1. 추세 요인: 장기적으로 증가 / 감소하는 추세
- 2. 계절 요인: 계절과 같이 고정된 주기에 따라 변화
- 3. 순환 요인: 알려지지 않은 주기를 갖고 변화(경제 전반, 특정 산업..)
- 4. 불규칙 요인: 몰?루

정형 데이터 마이닝

데이터마이닝

- 방대한 데이터 속에서 규칙, 패턴을 찾고 예측하는 분야
- 지도학습
 - ㅇ 정답이 있는 데이터를 활용
 - 인공신경망, 의사결정트리, 회귀분석, 로지스틱회귀
 - o <mark>인공의사회귀</mark>
- 비지도학습

- 정답이 없는 데이터 사이의 규칙을 파악(no labelling)
- 군집분석, SOM, 차원축소, 연관분석

과대적합과 과소적합

- 과대적합: 모델이 지나치게 데이터 학습
 - overfitting
 - 높은 분산, 낮은 편향(bias) -> 오차가 없음, 분산이 높음
- 과소적합: 데이터를 충분히 설명하지 못하는 단순한 모델
 - underfitting
 - 낮은 분산, 높은 편향(bias) -> 오차가 큼

데이터 분할

- 과대적합, 과소적합 방지, 데이터 불균형 문제 해결
- 훈련용 (training set)
 - ㅇ 모델 학습에 사용
- 검증용 (validation set)
 - ㅇ 모델의 과대/과소 적합을 조정하는데 사용
- 평가용 (test set)
 - ㅇ 모델을 평가
- 학습 및 검증 방법
 - 홀드아웃: 검증용 셋 필요 없음. 훈련용 / 평가용만 나눔
 - k-fold: 데이터를 k개로 나누고 k-1로 훈련, k번째로 테스트, 이를 k번 반복.
 - LOOCV(leave one out cross validation): 1개의 데이터로만 평가. 나머지는 훈련. 데이터 적을 때
 - ㅇ 부트스트레핑: 복원추출로 데이터 셋 생성. 데이터 적을 때, 불균형 문제 해소.

분류분석

로지스틱 회귀분석

- 범주형 데이터를 대상으로 성공/실패 2개의 집단을 분류하는 문제에 활용
- 1. 오즈(odds)
 - ㅇ 성공확률 / 실패확률
 - \circ Odds = P/(1-P)

2025-08-07

- 2. 로짓 변환(logit)
 - 오즈에 자연로그를 취해 선형 관계로 변환
 - ln(P/(1-P)) = ax + b (선형으로 변환됨)
- 3. 시그모이드
 - ㅇ 로짓 함수의 역함수를 취해 0~1 사이의 확률을 도출하는 함수로 바꿈
 - 독립변수 x가 n 증가하면 확률이 e^n 만큼 증가함.

$$p=rac{1}{1+e^{-(ax+b)}}$$

KNN(K-nearest neighbors)

- 거리 기반으로 이웃에 더 많은 데이터가 포함되어 있는 범주로 분류
- 단순, 효율적. 훈련 필요 없음, lazy model
- k에 따라 결과가 바뀜

나이브베이즈 분류

• 베이즈 정리

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(A \cap B)}{P(B)}$$

A대학 입시에 응시한 남학생과 여학생의 비율이 60%와 40%이고 남학생의 합격률은 30%, 여학생의 합격률은 50%이다. 이때, A대학에 합격한 신입생 중 남학생을 고를 확률은? 불합격률 합격률 우도표 0.6*0.3 0.6*0.7 남학생 0.6 = 0.18= 0.420.4*0.5 0.4*0.5 여학생 0.4 = 0.20= 0.20 $P(A \cap B)$ 0.18 $\frac{}{0.38} = 0.47$ P(A|B) = P(남학생|합격한신입생

- 나이브베이즈 분류
 - ㅇ 나이브(독립) + 베이즈. 범주에 속할 확률 계산
 - ㅇ 서로 독립적이라는 가정이 필요
 - 과거의 경험을 활용하는 귀납적 추론 방법

의사결정나무(decision tree)

- 스무고개 형식임
- 노드 내 동질성이 커지고, 노드 간 이질성이 커지는 방향으로
- 1. 분류(범주형) 분할 방법
 - o CHAID: 카이제곱 통계량
 - o CART: 지니계수 활용
 - C4.5/C5.0: 엔트로피지수 활용
- 2. 회귀(연속형) 분할 방법

○ CHAID: ANOVA, F-통계량

o CART: 분산감소량

• 지니계수

$$G(S)=1-\sum_{i=1}^c p_i^2$$

•

• 엔트로피

$$H(S) = -\sum_{c=1}^{C} p(c) \log_2 p(c)$$

c: class의 개수

p(c): 집합 S에서 class c의 비율

- 지니지수와 엔트로피지수 계산

- 앞면 확률 = $\frac{3}{5}$, 뒷면 확률 = $\frac{2}{5}$

- 지니지수 : $1 - \left(\frac{3}{5}\right)^2 - \left(\frac{2}{5}\right)^2 = \frac{12}{25}$

- 엔트로피지수 : $-\frac{3}{5}\log\left(\frac{3}{5}\right) - \frac{2}{5}\log\left(\frac{2}{5}\right)$

- 과적합 방지 방안
 - ㅇ 의사결정나무는 가지를 계속 내릴 수 있으므로 과적합 문제가 발생함
 - 정지규칙: 분리를 더이상 수행하지 않고 나무 성장 멈추기
 - 가지치기: 일부 가지를 제거해서 과적합 방지

SVM(서포트벡터머신)

- 마진이 최대가 되는 초평면을 찾음
- 선형/비선형 이진분류, 회귀에서 활용 가능한 다목적 모델
- 하이퍼플레인(초평면): 데이터를 구분하는 기준이 되는 경계
 - 가중치벡터와 편향으로 결정함
- 서포트벡터: 클래스를 나누는 하이퍼플레인과 가까운 위치의 샘플
- 마진: 서포트벡터 <-> 하이퍼플레인 사이의 거리
- 커널함수: 저차원 -> 고차원 데이터 변경 함수
- 하드마진분류: 오류 비허용
- 소프트마진분류: 마진 내 어느 정도 오류 허용

앙상블

- 여러 개의 예측 모형을 조합하여, 전체적인 분산을 감소시켜 성능 향상
- 1. 보팅(voting)
 - ㅇ 다수결 방식으로 최종 모델 선택
- 2. 배깅(bagging) Bootstrap Aggregation

ㅇ 복원추출에 기반을 둔 부트스트랩을 생성

- ㅇ 학습 후 보팅으로 결합
- 복원추출을 무한히 반복할 때 특정 하나의 데이터가 선택되지 않을 확률은 36.8%이다.
 - N개의 데이터 중에서 특정 한 개가 선택될 확률은 1/N
 - 즉, 특정 데이터가 선택되지 않을 확률은 1-1/N
 - 이걸 무한히 N번 반복하면 lim(1-1/N)^N = 36.8%
 - 따라서, 부트스트래핑으로 선택되지 않은 비율은 36.8%이고, 이를 테스트셋으로 활용한다.
 - 부트스트래핑으로 선택된 나머지 데이터는 학습에 사용된다.

3. 부스팅(Boosting)

- ㅇ 잘못된 분류 데이터에 가중치를 둠
- 이 이상치에 민감하다.
- A 셋으로 학습 -> 조정 -> B 셋으로 학습 -> 조정 ...
- o AdaBoost, GBM, XGBoost(GBM의 향상, 규제 포함), light GBM(학습 속도 개선)

4. 스태킹(stacking)

ㅇ 각 모델에서 학습한 결과를 합쳐서 다시 학습

5. 랜덤포레스트

- ㅇ 배깅 + 의사결정트리
- ㅇ 성능이 좋고 이상치에 강함
- 보팅, 배깅, 랜덤포래스트는 병령 가능. 부스팅은 병렬이 불가능하다.

SVM	KNN	의사결정 나무	앙상블
			평균/다수결
1	1	1	1
0	1	0	0
1	0	1	1
0	1	0	0
1	0	0	0

인공신경망

- 인간 뇌 구조를 모방한 퍼셉트론을 활용한 추론모델
- 단층 신경망: 입력층, 출력층으로 구성
- 다층 신경망: 입력층, 출력층 사이 하나 이상의 은닉층 보유 (다층 퍼셉트론)
 - 이때 은닉층 수는 하이퍼파라미터
- 은닉층에서의 활성 함수: 인공신경망의 선형성 극복.
 - 시그모이드: 0~1 사이. 로지스틱 회귀 분석과 유사함
 - Tanh: 시그모이드 함수의 <mark>기울기 소실문제</mark>를 지연시킴. -1~1 사이.
 - ReLU: <mark>기울기 소실문제 극복</mark>. max(0, x)
 - vanishing gradient: back propagation 과정 중 출력층에서 멀어질수록 gradient 값이 매우
 작아지는 현상
 - 시그모이드의 경우, 값이 커지거나 작아지는 경우 기울기가 0에 가까워짐.
 - tanh도 마찬가지로 유의미한 미분값이 나오는 구간이 늘었지만 여전히 매우 크거나 작은 값에 취약
 - ReLU는 입력 값이 양수일 경우 언제나 기울기가 1. 그 외 0. 게다가 함수도 존나 간단해서 연산도 빠름.
 - 다만, 인풋이 음수인 경우 기울기가 0이 되어버림. -> Dying ReLU
 - 이를 보안하기 위해 도입한 것이 leaky ReLU. 음수에 0 대신 매우 작은 값을 출력하도
 록 함.
 - Leaky relu, gelu, elu...
- 출력층에서의 활성 함수
 - 시그모이드: 이진 분류의 경우. 0~1 사이임
 - 소프트맥스: 다중 분류의 경우. 확률 합이 1이 된다. 고양이, 강아지, 소, 닭 등을 분류할 때.
- 손실함수: 예측값과 실제값의 차이를 측정하는 함수
 - 목표는 이 손실함수의 최소값을 구하는 것.
 - o MSE(Mean square error): 회귀 모델에 사용
 - Cross-entropy: 분류 모델에 사용
- 학습 방법
 - ㅇ 순전파(forward propagation)

- 역전파(back propagation): 가중치를 수정하여 손실함수의 값을 줄임.
- 경사하강법(gradient descent algorithm)
 - 편미분 써서 최적해 찾기
- gradient vanishing(기울기 소실)
 - 시그모이드 쓰면 기울기 사라짐
 - 렐루써

딥러닝

- 1. DNN
- 2. CNN
 - o 이미지 패턴 찾는 신경망. convolution layer, pooling layer, flatten.
- 3. RNN
 - ㅇ 순차적 데이터 학습
 - 。 과거 정보가 전달되지 않는데 이거 해결법으로 LSTM, GRU 씀
- 4. 오토인코더

분류모델 평가지표

	실제		
		TRUE	FALSE
예측	TRUE	TRUE POSITIVE (TP)	FALSE POSITIVE (FP)
	FALSE	FALSE NEGATIVE (FN)	TRUE NEGATIVE (TN)

• 예측과 실제가 같으면 True. 예측이 True면 positive

지표	계산식
정밀도(Precision)	$\frac{TP}{TP + FP}$
재현율(Recall)	$\frac{TP}{TP + FN}$
특이도(Specificity)	$\frac{TN}{FP + TN}$
정확도(Accuracy)	$\frac{TP + TN}{TP + FP + FN + TN}$
FP Rate (False Alarm Rate)	$\frac{FP}{FP + TN}$
F-1 Score	$2 \times \frac{Precision \cdot recall}{Precision + recall}$
F-β Score	$(1 + \beta^2) \times \frac{Precision \cdot recall}{(\beta^2 \cdot Precision) + recall}$

- 1) 재현율(Recall)은 민감도(Sensitivity), TP Rate, Hit Rate라고도 함
- 2) F-1 Score는 Precision과 Recall의 조화평균
- 3) Precision과 Recall은 Trade-Off 관계
- 4) F-β Score
- β > 1 : 재현율(Recall)에 큰 비중
- β < 1 : 정밀도(Precision)에 큰 비중
- $\beta = 1$: F-1 Score와 동일
- recall = 민감도 = TP rate = Hit rate
- precision과 recall은 trade-off

ROC 커브

- 가로축에 1-특이도(FPR, false positive rate), 세로축에 민감도(recall) = (TPR, true positive rate)
- 최악의 경우 y = x의 직선이 나옴. 그럼 면적이 0.5인데 찍기라는 뜻
- 모델이 좋으면 y = 1 그래프가 그려짐. 면적이 1. 다 맞춤.
- 그래프 면적은 0.5~1 사이. 1에 가까울수록 성능이 좋음.

군집분석

연속형 변수

• 유클리디안 거리: 두 점 사이의 직선 거리

$$d(x,y) = \sum_{i=1}^{p} \sqrt{(x_i - y_i)^2} = \sqrt{(x - y)'(x - y)}$$

• 맨하튼 거리: 각 변수들 차이의 단순 합. 직각 거리.

$$d(x,y) = \sum_{i=1}^{p} |x_i - y_i|$$

- 체비셰프 거리: 변수 거리 차 중 최댓값. (== 체스판 거리, 킹이 움직일 때 최소한의 움직임 수)
- 민코우스키: 유클리드, 맨하튼 거리의 일반화.

$$d(x,y) = \left[\sum_{i=1}^{n} |x_i - y_i|^p\right]^{\frac{1}{p}}$$

계층적 군집분석

- 단일 연결법 = 최단 연결법. 가장 가까운 데이터랑.
- 완전 연결법 = 최장 연결법. 군집 간 가장 먼 데이터.
- 평균 연결법
- 중심 연결법
- 와드 연결법: 두 군집 편차 제곱합이 최소

덴드로그램

- 계층 군집화를 시각적으로 나타내는 트리 모양의 그래프
- 거리를 15에서 나누면 군집이 3개.
- 25에서 나누면 2개.

K 평균 군집화

- 비계층적 군집화 방법
- 노이즈, 이상치에 약함. 군집 중심점 계산에 영향을 미치므로.
- 거리기반

- 중심점이 변경되면 군집이 변할 수 있음
- 초기 중심 값에 의해 결과가 달라짐
- 군집의 개수 K개 설정: Elbow method 활용

0

○ 딱 꺾이는 지점의 개수를 K로 두자.

• 이상치에 민감

DBSCAN

- 밀도 기반
- 군집 개수 K 지정 필요 없음
- 노이즈와 이상치에 강함.

실루엣 계수

- 같은 군집 간 가깝고 다른 군집간 먼 정도를 판단.
- -1~1

연관분석

- 비지도 학습
- 장바구니 분석
- 비목적성 분석기법
- Apriori 알고리즘
 - ㅇ 최소 지지도 활용

연관분석의 지표

- 지지도
 - A, B 두 품목이 동시에 포함된 거래 비율
 - P(A교집합B)

- 신뢰도
 - A 품목이 거래될 때 B 품목도 거래될 확률 (조건부 확률)
 - P(A교집합B) / P(A), 즉, A 샀을 때 A와 B를 같이 산 비율
- 향상도
 - ㅇ A 품목과 B 품목의 상관성
 - P(A교집합B) / P(A)P(B)
 - 1보다 크면 양의 상관관계. 1이면 상관없음. 1보다 작으면 음의 상관관계. 안산다는 뜻