Métodos Numéricos

Derivación e Integración Numérica

Diego Passarella

Universidad Nacional de Quilmes

2^{do} Cuatrimestre de 2014

Motivación

La necesidad de la utilización de métodos numéricos para realizar integrales o derivades surge de las siguientes situaciones:

- Se conoce f(x) pero el cálculo de sus derivadas $f'(x), f''(x), \cdots$ es muy complejo. Lo mismo para su primitiva $\int f(x)dx$.
- No se conoce la expresión de la función, solamente su valor en algunos puntos. Por lo tanto se debe usar esa información para estimar las derivadas e integrales.

Aproximación Polinómica

De forma general, se pueden utilizar las aproximaciones polinómicas vistas anteriormente para estimar las derivadas e integrales. Si:

$$f(x) \approx \sum_{k=0}^{m} y_k I_k(x) \Rightarrow$$

$$f'(x) \approx \sum_{k=0}^{m} y_k I'_k(x)$$
 , $\int_{x_0}^{x_1} f(x) dx \approx \sum_{k=0}^{m} y_k \int_{x_0}^{x_1} I_k(x) dx$

Aproximación Polinómica

En general, la utilización de polinomios interpolantes globales de alto orden (elevado *m*) no suele utilizarse (recordar fenómeno de Runge). En cambio, se pueden utilizan aproximaciones locales de bajo orden, como ser:

- Interpolación lineal a trozos
- Interpolación parabólica a trozos
- Splines cúbicos

La interpolación lineal a trozos es simple pero genera derivadas de primer orden constantes y discontinuas, mientras que la derivación de un spline no suele ser práctica de implementar.

Diferencias Finitas

Se pueden generar diversas aproximaciones de la derivada de una función partir de desarrollo en serie de Taylor alrededor de un punto.

$$f(x) = f(x_0) + \sum_{k=1}^{\infty} f^{(k)}(x_0) \frac{(x - x_0)^k}{k!}$$

Si consideramos una discretización equiespaciada del dominio donde está definida f(x) de la forma

$$a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$$

de tal manera que $x_i - x_{i-1} = h$, podemos generar combinaciones de desarrollos de Taylor centrados en un x_i para obtener la derivada en ese punto.

Diferencias Finitas

Analizando las posiciones i + 1 e i, podemos expresar a $f(x_{i+1})$ a partir de una serie de Taylor centrada en x_i :

$$f(x_{i+1}) = f(x_i) + \sum_{k=1}^{\infty} f^{(k)}(x_i) \frac{(x_{i+1} - x_i)^k}{k!}$$

que es igual a:

$$f(x_{i+1}) = f(x_i) + \sum_{k=1}^{\infty} f^{(k)}(x_i) \frac{h^k}{k!}$$

de forma equivalente, podemos expresar a $f(x_{i-1})$ a partir de una serie de Taylor centrada en x_i y tomando un paso igual a -h:

$$f(x_{i-1}) = f(x_i) + \sum_{k=1}^{\infty} (-1)^k f^{(k)}(x_i) \frac{h^k}{k!}$$

Derivada progresiva de primer orden

A partir de la aproximación de $f(x_{i+1})$ centrada en x_i y del valor de $f(x_i)$ se puede construir una aproximación de primer orden de la derivada en xi.

$$f(x_{i+1}) = f(x_i) + hf'(x_i) + \Re(h^2)$$

$$f(x_i) = f(x_i)$$

Restando ambas expresiones se llega a:

$$f(x_{i+1}) - f(x_i) = hf'(x_i) + \Re(h^2) \Rightarrow$$

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} + \Re(h)$$

El error (residuo) que se comete con este esquema es proporcional a *h*.

Derivada regresiva de primer orden

De forma equivalente al caso anterior, se puede tomar el desarrollo en un punto anterior de la discretización.

En este caso conviene expresar a los desarrollos de Taylor como:

$$f(x_i) = f(x_i)$$

$$f(x_{i-1}) = f(x_i) - h f'(x_i) + \frac{h^2}{2} f''(x_i) - \frac{h^3}{6} f'''(x_i) + \dots - /+$$

De los cuales se obtiene:

$$f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{h} + \Re(h)$$

Con este esquema el error que se comete vuelve a ser proporcional a h.

Derivada centrada de segundo orden

Una mejor aproximación de la derivada primera en x_i viene dada por:

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h} + \Re(h^2)$$

¿Como se llega a este esquema y por qué el error cometido es propocional a h^2 ?

Otras derivadas primeras de segundo orden

Otro tipo de derivadas con error proporcional a h^2 son:

$$f'(x_i) \approx \frac{-3f(x_i) + 4f(x_{i+1}) - f(x_{i+2})}{2h}$$

$$f'(x_i) \approx \frac{f(x_{i-2}) - 4f(x_{i-1}) + 3f(x_i)}{2h}$$

Estas aproximaciones sirven para tener una estimación de la derivada primera con un error proporcional a h^2 en todos los puntos de la discretización. ¿Cómo se obtiene cada esquema?

Con los desarrollos de Taylor anteriores se puede obtener la siguiente aproximación de la derivada segunda en x_i

$$f''(x_i) = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{h^2} + \Re(h^2)$$

Tomando cada vez más puntos se pueden obtener aproximaciones de derivadas de mayor orden.

Integración mediante interpolación polinómica

Volviendo sobre la idea de aproximar a f(x) con un polinomio de orden m, se puede plantear una aproximación de la integral de f(x) como:

$$\int_{x_s}^{x_e} f(x) \, dx \approx \int_{x_s}^{x_e} P_m(x) \, dx = \sum_{i=0}^m f(x_i) \int_{x_s}^{x_e} I_i(x) \, dx = \sum_{i=0}^m f(x_i) \omega_i$$

Fórmulas de integración del tipo

$$\int_{x_s}^{x_e} f(x) dx \approx \sum_{i=0}^m f(x_i) \omega_i$$

Donde el polinomio interpolante se toma localmente (recta, parábola) y la integral sobre todo el intervalo es el resultado de la aplicación de una fórmula de cuadratura compuesta en subintervalos del intervalo [a,b].

Fórmulas de Newton-Cotes

Se considera cada subintervalo de integración subdividido de forma equiespaciada en m+1 puntos, de forma que:

$$x_0 = a$$
, $x_m = b$, $x_{i+1} - x_i = b = \frac{b-a}{m}$

Considerando distintos m's para cada subintervalo de la fórmula de cuadratura es que se llegan a las siguientes fórmulas de integración:

Fórmulas de Newton-Cotes

• Fórmula del punto medio (m = 0):

$$\int_{a}^{b} f(x) dx \approx hf\left(\frac{a+b}{2}\right)$$

• Fórmula del trapecio (m = 1):

$$\int_a^b f(x) dx \approx \frac{h}{2} \left(f(x_0) + f(x_1) \right)$$

$$x_0 = a y x_1 = b$$

Fórmulas de Newton-Cotes

• Fórmula de Simpson (m = 2):

$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} (f(x_0) + 4f(x_1) + f(x_2))$$

$$x_0 = a$$
, $x_1 = a + h$ y $x_2 = b$

• Fórmula de 3/8 (m = 3):

$$\int_{a}^{b} f(x) dx \approx \frac{3h}{8} \left(f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3) \right)$$

$$x_0 = a$$
, $x_1 = a + h$, $x_2 = a + 2h$ y $x_3 = b$

Fórmulas de Newton-Cotes - Cuadratura Compuesta

Ejemplo:

Si se desea integrar un conjunto de n+1 datos, la condición que deberá cumplir n+1 para poder integrar todo el intervalo y la cantidad p de veces que se debe aplicar la fórmula de integración es:

Fórmula	n+1	р	
Trapecio	$n+1 \geq 2$	n	
Simpson	$impar \geq 3$	n/2	
3/8	múltiplo de 4	(n+1)/4	

Ejercicios - Derivadas

La altura h(t) de fluido en un recipiente cilíndrico de radio R=1 m, con un agujero circular de r=0.1 m en su fondo, fue medida cada 5 segundos, dando los siquientes resultados:

t [s]	0	5	10	15	20
h [m]	0.6350	0.5336	0.4410	0.3572	0.2822

Calcular la velocidad de vaciamiento del cilindro (h'(t)) y compararla con la Ley de Torricelli $(h'(t) = -0.6(r/R)^2\sqrt{2gh(t)}$. Donde g es la aceleración de la gravedad.

Ejercicios - Integrales

Comparar el error cometido al calcular la integral

$$\int_0^{2\pi} x e^{-x} \cos(2x) dx = \frac{-(10\pi - 3 + 3e^{2\pi})}{25e^{2\pi}}$$

por medio de distintas fórmulas y discretizaciones.

Grafique en escala logarítmica el error cometido por cada fórmula como función de *h*.