OBTENCIÓN DE HORMIGÓN Y MORTERO A PARTIR DEL CATALIZADOR AGOTADO DE LA UNIDAD DE CRAQUEO CATALÍTICO FLUIDIZADO DE LA REFINERÍA ESMERALDAS COMO ADICIÓN PUZOLÁNICA

Escuela Politécnica Nacional Facultad de Química y Agroindustria Alex Frederick Mosquera Canchingre

INTRODUCCIÓN

Proceso FCC

Convierte cortes pesados del crudo en fracciones más ligeras

Catalizador
 Sólido particulado

Componentes

Zeolita

Matriz activa, inerte y sintética

INTRODUCCIÓN

Propiedades

Superficie específica: 200-300 m²/seg

Tamaño de partícula: < 150 µm

Densidad: 0,90-1,05 g/cm³

Regeneración limitada Se agota o envenena Disminuye área superficial

Refinería Esmeraldas

Desecho tóxico, metales pesados Contamina suelo y acuíferos subterráneos

METODOLOGÍA EXPERIMENTAL

Catalizador agotado, cemento, agregados fino y grueso

Caracterización física y mineralógica

Dosificación

Evaluación de propiedades mecánicas en hormigón fresco

Evaluación de propiedades mecánicas en hormigón endurecido

Evaluación de propiedades mecánicas en mortero

Diseño de la planta

Análisis de prefactibilidad económica

Caracterización física y mineralógica

Dosificación

Proceso

Cálculo del contenido de agregado fino

Ajustes en mezclas de prueba

Adición de catalizador agotado: 5,10,15 y 20%

grueso

Evaluación de propiedades mecánicas en Hormigón

Tiempo de fraguado Contenido de aire Calor de hidratación Requerimiento de agua

Hormigón fresco

Resistencia a la compression Expansión y contracción en autoclave Test de lixiviación TCLP

Hormigón endurecido

Evaluación de propiedades mecánicas en Mortero

Ensayos

- Contenido de aire
- Expansión en mortero
- Índice de actividad puzolánica
- Contracción por secado
- Resistencia a los sulfatos

Caracterización física del catalizador agotado

Propiedad física	Valor
Granulometría d ₈₀ (μm)	106
Densidad real (g/cm³)	2,57

Caracterización mineralógica

Componente	Fórmula
Faujasita	(Na,Ca,Mg) ₅ (Si,Al) ₁₂ O ₂₄ ·15H ₂ O
Caolinita	$Al_2Si_2O_5(OH)_4$
Bohemita	AlO(OH)
Muscovita	KAl ₂ (Si ₃ Al)O ₁₀ (OH,F) ₂

Caracterización física del cemento

Propiedad física	Valor	Límite
Densidad real (g/cm³)	2,84	2,90-3,15
Densidad suelta (g/cm³)	1,05	0,96-1,28
Densidad compactada (g/cm³)	1,32	1,20-1,40

Caracterización física agregado grueso y fino

Propiedad física	Agreg.	Límite	Agreg.	Límite
1 Topiculu IIsicu	grueso		fino	
Densidad SSS (g/cm³)	2,53	2,40-2,90	2,31	2,40-2,90
Absorción	4,43	<5	9,79	<10
Densidad suelta (g/cm³)	1,41	1,40-1,50	1,67	1,50-1,70
Densidad compactada (g/cm³)	1,49	1,50-1,70	1,84	1,70-1,90

Dosificación

Hormigón convencional

Componentes	Peso (kg)
Cemento	309,7
Agua	193,0
Agregado grueso	950,9
Agregado fino	723,7

Dosificación

• Hormigón con diferentes porcentajes de catalizador agotado

Material	Porcentaje de sustitución de cemento por catalizador (%)						
Matchai			15	20			
	Peso (kg)						
Cemento	294,3	278,8	263,3	247,8			
Agua	193,0	193,0	193,0	193,0			
Agregado fino	723,8	723,8	723,8	723,8			
Agregado grueso	951,0	951,0	951,0	951,0			
Catalizador	15,5	31,0	46,5	62,0			

Dosificación

Mortero estándar

Componentes	Peso (kg)
Cemento	500,0
Agua	250,0
Agregado fino	1375,0

PROPIEDADES MECÁNICAS EN HORMIGÓN

Hormigón Fresco

• Tiempo inicial de fraguado

Muestra	Cemento Patrón	Cemento con adición de catalizador agotado Porcentaje (%)			_	tes de orma N 490	
		5	10	15	20	Mín.	Máx.
Tiempo de fraguado (min)	233	220	200	186	171	45	420

Hormigón Fresco

• Contenido de aire

Muestra	Muestra Hormigón sustitución (%)					Valor aceptado
		5	10	15	20	
Cont. de aire (%)	1,4	1,3	1,4	1,8	2,1	1,5

• Calor de hidratación

N	in oct no	Hormigón	Hormigón con sustitución (%)			Límite máx. de la
171	uestra	convencional	5 10		15	norma INEN 490
hid	alor de lratación kJ/kg)	334,1	362,4	406,0	444,3	290,0

Hormigón Fresco

Requerimiento de agua

m³ de agua/m³ de hormigón

Hormigón Endurecido

Resistencia a la compresión

Hormigón Endurecido

• Expansión y contracción en autoclave

Muestra	Hormigón convencional	O .				Límites norma 49	INEN
		5	10	15	20	Cont.	Exp.
Expansión(%)	0,35	0,34	0,30	0,24	0,18	0,20	0,80

Hormigón Endurecido

• Test de lixiviación TCLP

	Límite máximo	Hormigón con sustitució					
Elemento	permisible (mg/L)	5 %	10 %	15 %			
As (ug/L)	5,00	< 0,10	< 0,10	< 0,10			
Ba(mg/L)	100,00	0,10	0,10	0,15			
Cd(mg/L)	1,00	0,04	0,04	0,05			
Cr(mg/L)	5,00	0,62	0,36	0,15			
Hg (ug/L)	0,20	< 0,10	< 0,10	< 0,10			
Ni(mg/L)	2,00	0,25	0,33	0,39			
Ag(mg/L)	5,00	0,01	0,02	0,02			
Pb(mg/L)	5,00	0,35	0,62	0,62			
Se (ug/L)	1,00	< 0,10	< 0,10	< 0,10			

PROPIEDADES MECÁNICAS EN MORTERO

• Contenido de aire

Muestra	Mortero	Mortero con sustitución			Valor aceptado	
Muestra	estándar	Porcentaje (%) 5 10 15 20				
Cont. de aire (%)	1,4	1,4	1,5	1,7	1,8	1,5

• Índice de actividad puzolánica

Propiedad	Porcentaje	Requisito norma INEN 494
Índice de actividad puzolánica	86,61 %	75,00 %

• Expansión en mortero

Muestra	Mortero estándar		Mortero con varios porcentajes de sustitución			Límite de la norma INEN
	estandar	5 %	10 %		20 %	490
Expansión en autoclave (%)	0,018	0,018	0,017	0,015	0,013	0,020

Contracción por secado

Resistencia a los sulfatos

MEJORES CONDICIONES

Propiedad	Resultados con adición de 10 % de catalizador	Requisitos de la norma INEN 490
Tiempo inicial de fraguado	200 min	45 – 420 min
Contenido de aire (hormigón)	1,4 %	1,5 %
Calor de hidratación	406,0 kJ/kg	290,0 kJ/kg
Resistencia a la compresión	207,98 kg/cm ²	210,00 kg/cm ²
Expansión en autoclave	0,3 %	0,2 - 0,8 %
Contenido de aire (mortero)	1,5 %	1,5 %
Expansión en mortero	0,017 %	0,020 %
Contracción por secado	0,12 %	0,15 %
Resistencia a los sulfatos	0,12 %	0,10 %

• Capacidad de la planta

Material	Cantidad (kg/día)
Catalizador FCC agotado	1 500
Cemento portland sin adición puzolánica	13 500
Total cemento portland puzolánico	15 000

(Cervantes, 2009, p. 52)

Material	Relación en peso	Cantidad (kg/día)
Cemento portland puzolánico	1,00	15 000,00
Agregado grueso	3,07	46 046,75
Agregado fino	2,34	35 044,76

Agregado grueso

46 t/día

• Distribución de la planta

• Localización de la planta

ANÁLISIS ECONÓMICO PRELIMINAR

Indicador	Con adición de catalizador	Sin adición de catalizador
VAN	\$ 298 279,43	\$ 119 023,37
TIR	35 %	26 %
B/C	1,78	1,30
Inversión inicial	\$ 410 100,78	\$ 410 250,87

CONCLUSIONES

El catalizador FCC agotado es un material de alta reactividad compuesto mayoritariamente por silicio y aluminio. Su uso permitió cumplir con los requisitos para hormigón establecidos en la norma INEN 490 sin representar riesgo ambiental y en algunos casos presentó mejoras con respecto a las muestras patrón.

Los indicadores económicos VAN y TIR evidenciaron que el proceso de obtención de hormigón y mortero con la adición de catalizador agotado es más rentable que el caso sin la adición mismo.

iGracias!