

To znamená, že ak zelená podmienka neplatí, rad NIE JE konvergentný.

Ak zelená podmienka platí, tak rad MôŽE, ale NEMUSÍ byťkonvergentný.

$$\sum_{n=1}^{\infty} \frac{n+2}{n+1} \frac{1}{n} = \lim_{n\to\infty} \frac{n+2}{n+1} = \lim_{n\to\infty} \frac{n+2}{n+1} = \lim_{n\to\infty} \frac{n+2}{n+1} = 1 \neq 0$$

$$RAN \leq \frac{n+2}{n+1} \text{ nie je konvergentný}$$

Konvergovať k a znamená približovať sa (blížiť sa) ka.

Ak rad nekonverguje, tak diverguje (k +∞ alebo k -∞)

Ak rad nie je konvergentný, tak je divergentný.

ALTERNUJÚCI rad (rad so striedavými znamienkami)

Nech $a_m > 0$ pre $\forall m \in N^+$ $\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + a_5 - \cdots$

Leibnitzovo kritérium konvergencie radu

Next
$$\alpha_{M} \neq 0$$
 $m \in N^{+}$ a postupnost' $(\alpha_{M})^{\infty}$ je klesajúca.
Potom ak $\lim_{M \to \infty} \alpha_{M} = 0 \implies \text{rad} \implies (-1)^{M+1} \alpha_{M} = \alpha_{1} - \alpha_{2} + \alpha_{3} - \alpha_{4} + \alpha_{5}$ je konvergentný.

To znamená, že NUTNÁ PODMIENKA KONVERGENCIE pre rad je pre ALTERNUJÚCI rad zároveň aj POSTAČUJÚCOU PODMIENKOU KONVERGENCIE.

$$\sum_{n=1}^{\infty} (-1)^{n+1} \sum_{n+1}^{\infty} a_n = \lim_{n\to\infty} \frac{1}{n+1} = 0 = \sum_{j \in \mathbb{N}} \operatorname{rad}(\operatorname{ked}\check{z}e_j) = \operatorname{alternuj\acute{u}ci})$$

$$\sum_{n=1}^{\infty} (-1)^{n+1} \sum_{n+1}^{\infty} a_n = \lim_{n\to\infty} \frac{1}{n+1} = 0 = \sum_{j \in \mathbb{N}} \operatorname{rad}(\operatorname{ked}\check{z}e_j) = \operatorname{alternuj\acute{u}ci})$$

Nech
$$\underset{n=1}{\overset{\sim}{\sum}} a_n = \underset{n=1}{\overset{\sim}{\sum}} l_n \text{ sú také, že } |a_n| \leq l_n \text{ pre} + n \in \mathbb{N}^+$$

Potom hovoríme, že $\overset{\sim}{\sum} l_n$ io MA JORANITNÝ RADK radu $\overset{\sim}{\sum}$ G_n

Potom hovoríme, že
$$\underset{\gamma=1}{\overset{\infty}{\underset{}}}$$
 je MAJORANTNÝ RADk radu $\underset{\gamma=1}{\overset{\infty}{\underset{}}}$

Zapisujeme to nasledovne
$$\leq c$$

Zapisujeme to nasledovne
$$\underset{n=1}{\overset{\infty}{\leq}}$$

Porovnávacie kritérium

Nech
$$\underset{h=1}{\overset{\infty}{\leq}}$$
 $\underset{h=1}{\overset{\infty}{\leq}}$ $\underset{h=1}{\overset{\infty}{\leq}}$

Ak rad $\underset{\sim}{\nearrow}$ konverguje $\underset{\sim}{\nearrow}$ rad $\underset{\sim}{\nearrow}$ $\underset{\sim}{\nearrow}$ tiež konverguje.

dôsledok Porovnávacieho kritéria

Ak rad $\underset{\sim}{\nearrow}$ diverguje $\underset{\sim}{\nearrow}$ rad $\underset{\sim}{\nearrow}$ $\underset{\sim}{\nearrow}$ $\underset{\sim}{\nearrow}$ tiež diverguje.

DôLEŽITÉ, ak rad $\underset{\sim}{\nearrow}$ diverguje alebo rad $\underset{\sim}{\nearrow}$ $\underset{\sim}{\longrightarrow}$ $\underset{\sim}{\longrightarrow$

Pri porovnávaciom kritériu používame na porovnávanie často:

konvergentné rady:
$$\begin{cases} 2 & 1 \\ 2 & 1 \end{cases}$$

divergentné rady:
$$\frac{2}{2}$$
 $\frac{1}{2}$

alebo rady z nich odvodené alebo geometrické rady.

geometrický rad
$$\frac{2}{3}$$
 $\frac{2}{3}$ $\frac{2}{3}$

Ak / 9/ / < 1 => geometrický rad konverguje

Ak
$$|g/| \ge 1 =$$
 geometrický rad diverguje

Ak rad
$$\begin{cases} 2 \\ \sqrt{2} \\ \sqrt{2} \end{cases}$$
 konverguje \Rightarrow rad $\begin{cases} 2 \\ \sqrt{2} \\ \sqrt{2} \end{cases}$ absolútne konverguje.

Ak rad
$$\underset{N=1}{\overset{\infty}{\nearrow}}$$
 $\underset{N=1}{\overset{\infty}{\nearrow}}$ konverguje, ale rad $\underset{N=1}{\overset{\infty}{\nearrow}}$ | diverguje $\underset{N=1}{\overset{\infty}{\nearrow}}$ $\underset{N=1}{\overset{\infty}{\nearrow}}$

konverguje len relatívne.

konverguje len rela Pri príkladoch na cvičeniach budeme používať fakt, že
$$= 1$$
 $= 1$ $= 1$

a teda podľa Porovnávacieho kritéria, keď konverguje rad $\lesssim |a_m|$, tak konverguje aj rad

$$\sum_{n=1}^{\infty} C_{n}$$
 a konveguje absolútne.

D'Alamertovo kritérium

Cauchyho(Košiho) odmocninové kritérium

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\$$

$$-\langle \langle | \rangle \rangle$$
 rad konverguje

$$\frac{1}{2}$$
 $\frac{1}{2}$ rad diverguje

Cauchyho (čítaj Košiho) integrálne kritérium

Nech rad má nezáporné členy a nech existuje spojitá, nerastúca funkcia f(x), taká že pre $\forall m > k$ platí $\alpha_m = f(m)$, potom rad konverguje práve vtedy a len vtedy, keď integrá f(x) konverguje.

To, že integrál konverguje znamená to, že výsledok určitého integrálu je konečné číslo (teda výsledok nemôže byť +∞ alebo ∽).

Ak výsledok určitého integrálu výjde +∞ alebo -∞ , znamená to, že integrál diverguje a teda podľa Cauchyho integrálneho kritéria diverguje aj rad.