Random Knot Diagrams

Jason Cantarella (UGA) Harrison Chapman (UGA), Matt Mastin (Mailchimp, Inc.) Crucial Assist: Eric Rawdon (St. Thomas)

Rocky Mountain Algebraic Combinatorics Seminar June 23, 2016

Question

What fraction of 8-crossing diagrams are trefoils?

Question

What fraction of 8-crossing diagrams are trefoils? \$12.48%

Question

What is the average minimal crossing # of an 8-crossing diagram?

Question

What is the average minimal crossing # of an 8-crossing diagram? 0.52

Definition

The **untwisting** operator deletes all 1-crossing connect summands of a diagram. (Equivalently, performs all "available" Reidemeister I moves.)

Question

What is the average crossing # of a untwisted 8-crossing diagram?

Question

What is the average crossing # of a untwisted 8-crossing diagram? 2.20

Question

How many 8-crossing diagrams can be untwisted to the unknot?

Question

How many 8-crossing diagrams can be untwisted to the unknot? 42.05%

Ansatz

Combinatorial approaches

Random diagrams

Definition

In the **random diagram model** of random knotting, a *n*-crossing diagram is drawn uniformly from the finite set of *n*-crossing knot diagrams.

How to enumerate knot diagrams (like a topologist)

Definition

A **knot shadow** is a equivalence class of generic immersions of the unoriented S^1 into the sphere S^2 up to diffeomorphism of S^2 .

Plan to Enumerate Diagrams

- **I** Enumerate shadows (and discard isomorphic shadows)
- 2 Assign crossing and orientation information (and discard crossing patterns related by an automorphism of the shadow)

How to enumerate knot diagrams (like a topologist)

Definition

A **knot shadow** is a equivalence class of generic immersions of the unoriented S^1 into the sphere S^2 up to diffeomorphism of S^2 .

Plan to Enumerate Diagrams

- Enumerate shadows (and discard isomorphic shadows)
- 2 Assign crossing and orientation information (and discard crossing patterns related by an automorphism of the shadow)

Observation (known to all combinatoricists, but new to me) *Symmetry stinks*.

Proposition

Knot shadows \leftrightarrow 1-component 4-valent embedded planar multigraphs up to embedded isomorphism

Proposition

Knot shadows \leftrightarrow 1-component 4-valent embedded planar multigraphs up to embedded isomorphism

1 Add loops and edges to planar simple graphs (slow)

Proposition

Knot shadows \leftrightarrow 1-component 4-valent embedded planar multigraphs up to embedded isomorphism

- Add loops and edges to planar simple graphs (slow)
- 2 Generate multiquadrangulations of sphere by careful pattern of connect sums, take dual graphs (fast)

Proposition

Knot shadows \leftrightarrow 1-component 4-valent embedded planar multigraphs up to embedded isomorphism

- Add loops and edges to planar simple graphs (slow)
- 2 Generate multiquadrangulations of sphere by careful pattern of connect sums, take dual graphs (fast)

Actually generate all link shadows, then restrict to knot shadows

Cloud computing for mathematicians

Several thousand hours of CPU time were required to produce about 1.8 billion diagrams. How to organize this kind of computation?

Moral: If you know Linux and a little python, you can play in the cloud.

AWS Services (you only need three)

EC2: A better computer (or lots of them) by the hour.

Cloud computing runs on virtual Linux machines. You are root on the machine, and can install software, edit configuration files, compile code, or attach a license for Mathematica or MAGMA.

Type	Processor	Cores	Memory	Price
c4.large	Haswell	2	3.75 gb	1.9 cents/hour
c4.8xlarge	Haswell	36	60 gb	59 cents/hour
r3.large	Ivy Bridge	2	15.75 gb	2.5 cents/hour
r3.8xlarge	Ivy Bridge	32	244 gb	58 cents/hour
x1.32xlarge	Haswell	128	2 tb	397 cents/hour

At peak, we had 100 c4.large instances running simultaneously. The machine may shut down at any time; you are only charged for full hours.

S3: Permanent Internet Accessible Storage, Cheap

If the machines are temporary, where does the data go once they are done computing? To your desktop? (But what if it crashes?) The solution is the "Simple Storage Service":

The cost is 3 cents/gb for instant access, but as low as 0.7 cents/gb for archival storage. Access is by web interface or command line tools (cp, ls, ...). The filesystem is distributed, backed up, and always accessible. There are no limits on the number of files in a "bucket".

SQS: How to get everyone working

SQS is a message queue— the messages describe work to do. You can write to and read from an sqs queue with the Python library boto.

- Worker reads message (should describe < 1 hour of work).
- SQS "locks" the message for one hour.
- If the worker completes the job, the worker should delete the message.
- If the worker dies, the message unlocks and is returned to the queue.
- Messages returned to queue more than n times are set aside for debugging.

Your first million messages (per month) are free. SQS is distributed, backed up, fault-tolerant and always working.

How can you play?

You get \$75 in credits when you sign up. I spent < \$10 on this computation.

Results! (Compared to counts in literature)

oriented	n = 0	1	2	3	4	5
S^2 , S^1	1	1	3	9	37	182
S^2	1	1	2	6	21	99
S^1	1	1	2	6	21	97
-	1	1	2	6	19	76

V.I. Arnol'd. *Topological Invariants of Plane Curves*

A008989	Number of immersions of unoriented circle into unoriented sphere with n double points.
1, 1, 2, 6,	19, 76, 376, 2194 (list; graph; refs; listen; history; text; internal format)
OFFSET	0,3
REFERENCES	V. I. Arnold, Topological Invariants of Plane Curves, American Math.
LINKS	Table of n, $a(n)$ for $n=07$.
CROSSREFS	Sequence in context: <u>A150119 A181770 A138800 * A057240 A079564 A079453</u> Adjacent sequences: <u>A008986 A008987 A008988 * A008990 A008991 A008992</u>
KEYWORD	nonn
AUTHOR	N. J. A. Sloane.
EXTENSIONS	Two more terms from Guy H. Valette (guy.valette(AT)skynet.be), Feb 09 20
STATUS	approved

OEIS A008989

n	# knot shadows
0	1
1	1
2	2
3	6
4	19
5	76
6	376
7	2194
8	14614
9	106421
10	823832

We have not found any existing counts of diagrams.

The space of shadows

Monogons are very common

Mean Number of Monogons in a Shadow

Cr	3	4	5	6	7	8	9	10
	$\frac{12}{6}$	$\frac{48}{19}$	213 76	1196 376	$\frac{7714}{2194}$	56540 14614	448584 106421	3758456 823832
	2.	2.53	2.8	3.18	3.52	3.87	4.22	4.56

Fraction of Shadows Containing a Monogon

Cr	3	4	5	6	7	8	9	10
	<u>5</u>	$\frac{18}{19}$	7 <u>4</u> 76	371 376	2178 2194	$\frac{14562}{14614}$	106216 106421	822989 823832
	0.833	0.947	0.974	0.987	0.993	0.996	0.998	0.999

Bigons are very common

Mean Number of Bigons in a Shadow

Cr	3	4	5	6	7	8	9	10
	<u>6</u>	18 19	88 76	$\frac{470}{376}$	$\frac{3037}{2194}$	21925 14614	173342 106421	1450209 823832
	1.	0.947	1.16	1.25	1.38	1.5	1.63	1.76

Fraction of Shadows Containing a Bigon

Cr	. 3	4	5	6	7	8	9	10
	<u>3</u>	$\frac{11}{19}$	<u>52</u> 76	275 376	1714 2194	$\frac{11892}{14614}$	89627 106421	712961 823832
	0.5	0.579	0.684	0.731	0.781	0.814	0.842	0.865

Basic polyhedra 8*, 9*, and 10*

Proposition

Conway's basic polyhedra 8^* , 9^* , and 10^* are the only shadows in ≤ 10 crossings with no monogons or bigons.

 8_{18} (left), 9_{40} (middle), 10_{123} (right)

Assign crossings, orientation, identify

- Orient each component. (2 choices)
- 2 Assign over-under information to each vertex. (2^n choices)

n	# knot shadows	2^{n+1} (# shadows)	# knot diagrams
3	6	96	36
4	19	608	276
5	76	4,864	2,936
6	376	48,128	35,872
7	2,194	561,664	484,088
8	14,614	7,482,368	6,967,942
9	106,421	108,975,104	105,555,336
10	823,832	1,687,207,936	1,664,142,836

Assign crossings, orientation, identify

- Orient each component. (2 choices)
- 2 Assign over-under information to each vertex. (2^n choices)

n	# knot shadows	2^{n+1} (# shadows)	# knot diagrams
3	6	96	36
4	19	608	276
5	76	4,864	2,936
6	376	48,128	35,872
7	2,194	561,664	484,088
8	14,614	7,482,368	6,967,942
9	106,421	108,975,104	105,555,336
10	823,832	1,687,207,936	1,664,142,836

Observation

Symmetry becomes rare, quickly!

Size of the automorphism group of a random diagram

Knotting in diagrams

Unknot fraction

Cr	Unknots	(decimal)
3	17 18	0.94
4	265 276	0.96
5	343 367	0.93
6	4057 4484	0.90
7	$\frac{105583}{121022}$	0.87
8	2926416 3483971	0.84
9	<u>42626767</u> 52777668	0.81
10	$\frac{1291291155}{1664142836}$	0.78

Unknots are very common, even among $10\ \text{crossing diagrams}.$ Why?

Most diagrams are (very) composite

Maximally composite diagrams are "treelike"

Question

Treelike diagrams can't be knotted with any assignment of crossings. Does this (crude) bound explain the unknot fraction?

Pretty much.

A question on unknotting

Theorem ([Frisch-Wassermann-Delbrück Conjecture] Sumners-Whittington 1988)

The ratio of unknots in random n-edge self-avoiding lattice polygons tends to zero exponentially with n.

Theorem (Chapman)

The ratio of unknots in diagrams tends to zero exponentially as n increases.

Future Direction: So what about those log-log plots?

Proposition (with Shonkwiler, 2015)

The symplectic structure on polygon space yields a fast direct sampling algorithm for closed equilateral polygons.

Future Direction: You can play, too!

- Knot Probabilities in Random Diagrams Cantarella, Chapman, Mastin. arXiv:1512.05749
- All data (and pictures for all the diagrams) available at www.jasoncantarella.com/wordpress/papers/
- A Fast Direct Sampling Algorithm for Random Equilateral Polygons Cantarella, Duplantier, Shonkwiler, Uehara. arXiv:1510.02466

Future Direction: Uniform sampling of large diagrams

Harrison Chapman has results on sampling large diagrams:

Future Direction: Uniform sampling of large diagrams

Harrison Chapman has results on sampling large diagrams:

Future Direction: Uniform sampling of large diagrams

Harrison Chapman has results on sampling large diagrams:

Thank you!

This research was supported in part by NSF grant DMS-1344994 (RTG in Algebra, Algebraic Geometry, and Number Theory, at the University of Georgia).