Exercises in Numerics of Differential Equations

$$29^{\rm th} \ / \ 24^{\rm th} \ {
m May} \ 2019$$

Exercise 1. Show that RK-methods fit into the framework of multi-step methods. Furthermore, show that they satisfy the root condition.

Exercise 2. If we drop the assumption of uniform step-size, the coefficients β_j of a linear multistep method depend additionally on the step-sizes $h_{\ell+j} = t_{\ell+j+1} - t_{\ell+j}$ for $j = 0, \ldots, m-1$. Compute the coefficients of a three-step Adams–Bashforth method with non-uniform step-size:

$$y_{\ell+3} - y_{\ell+2} = \sum_{j=0}^{2} \beta_j(h_{\ell+2}, h_{\ell+1}, h_{\ell}) f_{\ell+j}.$$

Hint. For uniform step-size the method reads

$$y_{\ell+3} - y_{\ell+2} = \frac{h}{12} \left(23f_{\ell+2} - 16f_{\ell+1} + 5f_{\ell} \right). \tag{1}$$

Use this to verify your results.

Exercise 3. Consider the Milne–Simpson rules from the lecture. Show that they are linear, implicit multi-step methods. Furthermore, show that they satisfy the root-condition and have consistency order $p \ge m+1$ (i.e., in case of m odd, they reach the first Dahlquist barrier). For the Milne-Simpson rule with m=2,

$$y_{\ell+2} = y_{\ell} + \frac{4}{3}(f_{\ell+2} + 4f_{\ell+1} + f_{\ell}),$$

show that it has consistency order p = 4.

Exercise 4. Consider an initial value problem

$$y'(t) = f(t, y(t))$$
 in $[0, T], y(0) = y_0 \in \mathbb{R}$.

Implement a general solver for this kind of problem, based on linear explicit m-step methods, i.e.,

$$\sum_{j=0}^{m} \alpha_j y_{\ell+j} = \sum_{j=0}^{m} \beta_j f_{\ell+j},$$

with $\alpha_m = 1$ and $\beta_m = 0$. To this end, write a function linearExplicitLMM that takes as input the function f, a step-size h, the end-time T, initial values y_0, \ldots, y_{m-1} , and the coefficient vectors $(\alpha_j)_{j=0}^m$ and $(\beta_j)_{j=0}^m$ of the explicit LMM. Your function should return the corresponding vector of approximations $y_\ell \approx y(t_\ell)$.

Solve the initial value problem to the function $y(t) = \sqrt{1+t^2}$,

$$y'(t) = \frac{t}{y(t)}$$
 in $[0, 1]$, $y(0) = 1 \in \mathbb{R}$,

with the method given in (1). For the initial steps, y_1 and y_2 , use

- 1. the exact values $y_1 = \sqrt{1+h^2}$ and $y_2 = \sqrt{1+4h^2}$,
- 2. the values from the first two steps of the explicit Euler method,
- 3. the values from the first two steps of the modified Euler method (cf. Example 2.19 in the lecture notes).

Compare your numerical results at t = 1 with the exact solution $y(1) = \sqrt{2}$ for different stepsizes. What rates of convergence do you expect? What rates do you get?