Lecture 2 — Introduction to Signals and Systems

Michael Brodskiy

Professor: I. Salama

September 5, 2024

- Signal Power and Energy
 - Definition
 - * Consider signal x(t) representing the voltage or current in a unit resistance. The signal power is defined as $p(t) = |x(t)|^2$
 - * It is a common terminology to refer to $|x(t)|^2$ or $|x[n]|^2$ as the signal power even if the signal does not represent voltage or current
 - Total energy in a finite duration interval
 - * The total energy in an interval $T = t_2 t_1$ is given by:

Continuous Time
$$\to E = \int_{t_1}^{t_2} \underbrace{|x(t)|^2}_{p(t)} dt$$

Discrete Time
$$\to E = \Delta T \sum_{n=n_1}^{n_2} \underbrace{|x[n]|^2}_{p(t)}$$
 where $T = (n_2 - n_1 + 1)\Delta T$

- The average power in a finite duration interval

$$P_{avg} = \frac{E}{t_2 - t_1} = \frac{1}{t_1 - t_2} \int_{t_1}^{t_2} |x(t)|^2 dt$$
or

$$P_{avg} = \frac{1}{n_2 - n_1 + 1} \sum_{n=n_1}^{n_2} |x[n]|^2$$

• Power and Energy over an infinite time interval

- Energy

Continuous Time
$$\to E_{\infty} = \lim_{T \to \infty} \int_{-T}^{T} \underbrace{|x(t)|^2}_{p(t)} dt$$

Discrete Time
$$\to E_{\infty} = \lim_{N \to \infty} \Delta \mathcal{T} \sum_{n=-N}^{N} \underbrace{|x[n]|^2}_{y(t)}$$

- Power

$$P_{\infty} = \lim_{T \to \infty} \frac{E_{\infty}}{2T} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \underbrace{|x(t)|^2}_{p(t)} dt$$

or

$$P_{\infty} = \lim_{N \to \infty} \frac{E_{\infty}}{2N+1} = \lim_{T \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} \underbrace{|x[n]|^2}_{p(t)}$$

- Energy Signals versus Power Signals
 - The energy or power of a signal quantifies the magnitude of the signal. For this measure to be meaningful, it must be finite. This requirement leads to the following classification of signals:
 - * Energy
 - · Signals with finite total energy $(E_{\infty} < \infty)$
 - · They have zero average power

$$P_{\infty} = \lim_{T \to \infty} \frac{E_{\infty}}{2T} = 0$$

$$P_{\infty} = \lim_{N \to \infty} \frac{E_{\infty}}{2N+1} = 0$$

- * Power
 - · Signals with finite average power $(P_{\infty} < \infty)$
 - · They have infinite energy

$$E_{\infty} = \lim_{T \to \infty} 2T(P_{\infty}) \to \infty$$
$$E_{\infty} = \lim_{N \to \infty} (2N+1)(P_{\infty}) \to \infty$$

- * Any finite signal is automatically an energy signal (think: some value in range, 0 otherwise)
- Periodic Signals

- Periodic signals are classified as power signals because they possess an infinite amount of energy
- The average power of a periodic signal can be determined by averaging its power over one period:

$$P_{\infty} = P_{avg} = \frac{1}{T_o} \int_{-T_o/2}^{T_o/2} |x(t)|^2 dt$$

- Signals with neither finite power nor energy
 - Some signals have neither finite power nor energy
 - An example is a ramp signal, where $x(t) = t, t \ge 0$
 - Neither the energy nor the power can be defined for such signals