P. Maurer ENS Rennes

Leçon 123. Corps finis. Exemples et applications.

Devs:

- Polynômes cyclotomiques
- Loi de réciprocité quadratique

Références:

- 1. Perrin, Cours d'algèbre
- 2. Gozard, Théorie de Galois
- 3. Combes, Algèbre et géométrie
- 4. Caldero, H2G2

Dans tout ce qui suit, p est un nombre premier et on note $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. On rappelle que \mathbb{F}_p est un corps a p éléments.

1 Construction des corps finis

1.1 Caractéristique et extensions de corps

Définition 1. On dit que L est une extension de K si K est un sous-corps de L, i.e s'il existe un morphisme de corps injectif $\rho: K \to L$. Dans ce cas, on peut voir L comme K-espace vectoriel. On note [L:K] la dimension de L en tant que K-ev, si cette dernière est finie.

Théorème 2. (Base télescopique)

Soit $K \subset L \subset M$ des corps, $(e_i)_{i \in I}$ une base de L sur K, $(f_j)_{j \in J}$ une base de M sur L. Alors $(e_i f_j)_{i \in I, j \in J}$ est une base de M sur K. En particulier, [M:K] = [M:L][L:K].

Proposition 3. Soit K un corps, et $\varphi \colon \mathbb{Z} \to K$ l'homomorphisme d'anneau défini par $\varphi(n) = n \cdot 1 = 1 + \dots + 1$. L'ensemble $\operatorname{Ker} \varphi$ est un idéal de \mathbb{Z} , donc de la forme $p\mathbb{Z}$ et comme $\mathbb{Z}/p\mathbb{Z} \simeq \operatorname{Im}(\varphi) \subset K$ est intègre, $p\mathbb{Z}$ est un idéal premier. Il y a donc deux cas : p est nul ou p est premier.

Définition 4. On appelle caractéristique de K l'entier p tel que $\operatorname{Ker} \varphi = p\mathbb{Z}$, et on le note $\operatorname{car}(K)$. On a donc $\operatorname{car}(K) = 0$ ou $\operatorname{car}(K) \in \mathbb{P}$.

Proposition 5. Si car(K) = p > 0, alors pour tout $x \in K$, on a px = 0.

Exemple 6. Les corps de caractéristique nulle sont infinis.

Exemple 7. Si K est fini, alors $\operatorname{car}(K) = p > 0$, et $\mathbb{F}_p \subset K$. Le théorème de la base téléscopique donne alors $|K| = q = p^n$ pour un certain n > 1.

Proposition 8. Soit K un corps de caractéristique p > 0. L'application $F: K \to K$ définie par $x \mapsto x^p$ est un morphisme de corps appelé morphisme de Frobenius. Si K est fini, c'est un automorphisme, et si $K = \mathbb{F}_p$, c'est l'identité.

1.2 Existence et unicité

Définition 9. Soit K un corps et L une extension de K. Soit $P \in K[X]$, avec $\deg(P) = n \in \mathbb{N}^*$. On dit que L est un corps de décomposition de P sur K si P s'écrit $P(X) = a(X - \alpha_1) \cdots (X - \alpha_n)$ avec $a, \alpha_1, \ldots, \alpha_n \in L$ et si $L = K(\alpha_1, \ldots, \alpha_n)$.

Exemple 10. $\mathbb{C} = \mathbb{R}(i)$ est un corps de décomposition de $X^2 + 1$ sur \mathbb{R} , et $\mathbb{Q}(\sqrt{2})$ est un corps de décomposition de $X^2 - 2$ sur \mathbb{Q} .

 $\mathbb{Q}(\sqrt[3]{2})$ est un corps de rupture de $\sqrt[3]{2}$ sur \mathbb{Q} mais pas un corps de décomposition.

Théorème 11. Soit $P \in K[X]$ de degré $n \ge 1$.

- 1. Il existe un corps de décomposition L de P sur K, avec $[L:K] \leq n!$
- 2. Si L et L' sont deux corps de décomposition de P sur K, alors il existe un K-isomorphisme de L dans L'.

Théorème 12. Soit $n \in \mathbb{N}^*$. On pose $q = p^n$. Alors il existe un corps K à q éléments, c'est le corps de décomposition du polynôme $X^q - X$ sur \mathbb{F}_p . En particulier, K est unique à isomorphisme près.

Théorème 13. (Wedderburn). Tout corps fini est commutatif.

Proposition 14. Soit $n, m \in \mathbb{N}$. Alors \mathbb{F}_{p^n} s'injecte dans \mathbb{F}_{p^m} si et seulement si $n \mid m$.

Exemple 15. Les sous-corps de \mathbb{F}_6 sont \mathbb{F}_4 et \mathbb{F}_2 .

Dans tout ce qui suit, on se donne $n \in \mathbb{N}$ et on note $q = p^n$.

1.3 Le groupe \mathbb{F}_q^*

Définition 16. On note \mathbb{F}_q^* le groupe des inversibles de \mathbb{F}_q , donc $\mathbb{F}_q \setminus \{0\}$. On a ainsi $|\mathbb{F}_q^*| = q - 1$.

Lemme 17. On note φ l'indicatrice d'Euler. Alors $\varphi(n) = \sum_{d \mid n} \varphi(d)$.

Théorème 18. Le groupe (\mathbb{F}_q^*, \times) est cyclique, donc isomorphe à $\mathbb{Z}/(q-1)\mathbb{Z}$.

Remarque 19. En général, il est difficile d'exhiber un générateur de \mathbb{F}_q^*

Section 3

Corollaire 20. (Théorème de l'élément primitif pour les corps finis). Soit L/\mathbb{F}_q une extension finie du corps fini \mathbb{F}_q . Alors il existe $\alpha \in L$ tel que $L = \mathbb{F}_q(\alpha)$.

2 Carrés dans \mathbb{F}_a

2.1 Propriétés de \mathbb{F}_q^2

Notation 21. On pose $\mathbb{F}_q^2 := \{ y \in \mathbb{F}_q : \exists x \in \mathbb{F}_q, y = x^2 \}, et \mathbb{F}_q^{*2} := \mathbb{F}_q^* \cap \mathbb{F}_q^2$

Proposition 22. Si p = 2, on a $\mathbb{F}_q^2 = \mathbb{F}_q$. Si p > 2, on a $|\mathbb{F}_q^2| = \frac{q+1}{2}$ et $|\mathbb{F}_q^{*2}| = \frac{q-1}{2}$.

Proposition 23. On suppose p > 2 et on se donne $a \in \mathbb{F}_q^*$. Alors

$$a^{\frac{q-1}{2}} = \begin{cases} 1 & \text{si a est un carr\'e dans } \mathbb{F}_q^* \\ -1 & \text{si a n'est pas un carr\'e dans } \mathbb{F}_q^* \end{cases}.$$

Corollaire 24. Soit p > 2 premier. Alors -1 est un carré dans \mathbb{F}_p si et seulement si $p \equiv 1[4]$.

Application 25. Soit $n \in \mathbb{Z}$. Alors n est somme de deux carrés si et seulement si $\forall p \in \mathbb{P}$ $v_p(n) \equiv 0[2]$,

où \mathbb{P} désigne l'ensemble des nombres premiers et $v_p(n)$ est la valuation p-adique de n.

2.2 Symbole de legendre

Définition 26. On définit le symbole de Legendre pour p > 2 et $a \in \mathbb{F}_p$ par

$$\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{si a est un carr\'e dans } \mathbb{F}_p^*, \\ -1 & \text{si a n'est pas un carr\'e dans } \mathbb{F}_p^*, \\ 0 & \text{si } a = 0. \end{cases}$$

Remarque 27. D'après ce qui précède, pour $a \neq 0$ on a donc $\left(\frac{a}{p}\right) = a^{\frac{p-1}{2}}$. En particulier, le symbole de Legendre est multiplicatif, au sens où $\left(\frac{a}{p}\right) \times \left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right)$.

Proposition 28. Soit p un nombre premier impair et a un élément de \mathbb{F}_p^* . On a

$$|\{x \in \mathbb{F}_p : ax^2 = 1\}| = 1 + \left(\frac{a}{p}\right)$$

Développement 1 :

Théorème 29. (Loi de réciprocité quadratique)
Soit p et q deux nombres premiers impairs distincts. Alors on a

$$\left(\frac{p}{q}\right)\cdot\left(\frac{q}{p}\right)=\left(-1\right)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}.$$

Exemple 30. Calcul du symbol de Legendre :

$$\left(\frac{23}{59}\right) = (-1)^{11.29} \left(\frac{59}{23}\right) = -\left(\frac{13}{23}\right) = \dots = \left(\frac{2}{3}\right) = -1.$$

Lemme 31. Pour tout nombre premier p impair, 8 divise $p^2 - 1$.

Proposition 32. Pour tout nombre premier p impair, on a $\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}$.

2.3 Résolution des équations de degré 2

Proposition 33. Traver des solutions à l'équation $ax^2 + bx + c \equiv 0[p]$ avec $a, b, c \in \mathbb{Z}$ revient à traver les racines du polynôme $\bar{a} X^2 + \bar{b} X + \bar{c} \in \mathbb{F}_p[X]$.

Proposition 34. Le polynôme $\bar{a} X^2 + \bar{b} X + \bar{c}$ a des racines dans \mathbb{F}_p si et seulement si son discriminant $\Delta = \bar{b}^2 - 4\bar{a}\bar{c}$ appartient à \mathbb{F}_p^2 .

Proposition 35. Si $\Delta \in \mathbb{F}_p^2$, en notant $\alpha \in \mathbb{F}_p$ tel que $\Delta = \alpha^2$, alors $\bar{a} X^2 + \bar{b} X + \bar{c}$ a pour racines α et $-\alpha$.

3 Applications

3.1 Polynômes sur \mathbb{F}_q

Définition 36. Un corps K est dit algébriquement clos si tout polynôme de K[X] non constant admet une racine dans K.

Remarque 37. \mathbb{F}_q n'est pas algébriquement clos car $X^q - X + 1$ n'a aucune racine dans \mathbb{F}_q .

Proposition 38. $F:=\bigcup_{m\geq 1}\mathbb{F}_{p^{m!}}$ est un corps algébriquement clos contenant \mathbb{F}_q . On dit que F est une clotûre algébrique de \mathbb{F}_q .

Théorème 39. Soit $P = \sum_{i=0}^{n} a_i X^i \in \mathbb{Z}[X]$, et \overline{P} sa réduction sur \mathbb{F}_p avec p premier, c'est-à-dire $\overline{P} = \sum_{i=0}^{n} \overline{a_i} X^i$. Si \overline{P} est irréductible sur \mathbb{F}_p , alors P est irréductible sur \mathbb{Z} .

Applications 3

Remarque 40. La réciproque est fausse, par exemple en prenant $P = X^4 + 1$.

Proposition 41. Le polynôme $X^p - X - 1$ est irréductible sur \mathbb{F}_p .

3.2 Cyclotomie

Dans ce qui suit, K est un corps et $n \in \mathbb{N}^*$ est un entier tel que $\operatorname{car}(K) \nmid n$.

Définition 42. On appelle groupe des racines $n^{\text{èmes}}$ de l'unité dans K, et on note $\mu_n(K)$ l'ensemble $\{\zeta \in K : \zeta^n = 1\}$. Une racine $n^{\text{ème}}$ de l'unité est dite primitive si de plus, pour tout k divisant n, on a $\zeta^k \neq 1$. On note $\mu_n^*(K)$ l'ensemble des racines primitives $n^{\text{èmes}}$ de l'unité.

Définition 43. Le $n^{\text{ème}}$ polynôme cyclotomique sur K est défini par :

$$\Phi_{n,K}(X) := \prod_{\zeta \in \mu_n^*(K)} X - \zeta.$$

Lemme 44. $\Phi_{n,K}(X)$ est unitaire, de degré $\varphi(n)$, et vérifie $X^n-1=\prod_{d\mid n}\Phi_{d,K}(X)$.

Développement 2 :

Théorème 45. (Polynômes cyclotomiques rationnels)

- i. $\Phi_{n,\mathbb{Q}}(X)$ est à coefficients dans \mathbb{Z} .
- ii. $\Phi_{n,\mathbb{Q}}(X)$ est irréductible sur \mathbb{Z} .

Théorème 46. (Cas des corps finis)

Les propositions suivantes sont équivalentes :

- i. Il existe p premier, avec $p \wedge n = 1$, tel que $\Phi_{n,\mathbb{F}_p}(X)$ soit irréductible sur \mathbb{F}_p .
- ii. $(\mathbb{Z}/n\mathbb{Z})^{\times}$ est cyclique.

3.3 Groupes linéaires sur \mathbb{F}_q

Définition 47. Pour $n \in \mathbb{N}$, on note $U_n(k)$ l'ensemble des matrices triangulaires supérieures dont les coefficients diagonaux sont tous égaux à 1. C'est un sous-groupe de $\mathrm{GL}_n(k)$.

Proposition 48. Soit p un nombre premier et $n \in \mathbb{N}$. Alors on a :

- $|GL_n(\mathbb{F}_p)| = (p^n 1) \cdots (p^n p^{n-1}) = mp^{\frac{n(n-1)}{2}},$
- $|\operatorname{SL}_n(\mathbb{F}_p)| = (p^n 1) \cdots (p^n p^{n-2}) \cdot p^{n-1},$
- $|U_n(\mathbb{F}_p)| = p^{\frac{n(n-1)}{2}}$.

 $O\grave{u} m = (p-1)\cdots(p^n-1)$ est premier avec p.

Définition 49. Soit G un groupe d'ordre $p^{\alpha}m$ avec $p \nmid m$. On dit que H < G est un p-Sylow de G si c'est un sous-groupe d'ordre p^{α} .

Proposition 50. Le groupe $GL_n(\mathbb{F}_p)$ admet pour p-Sylow le sous-groupe $U_n(\mathbb{F}_p)$.

Théorème 51. (Sylow)

Soit G un groupe d'ordre $p^{\alpha}m$ avec $p \nmid m$. Alors :

- 1. G possède au moins un p-Sylow.
- 2. Les p-Sylow sont tous conjugués entre eux.
- 3. En notant k le nombre de p-Sylow, on a $k \equiv 1 \pmod{p}$ et k divise m.

Proposition 52.

Le nombre de matrices diagonalisables de $\mathcal{M}_n(\mathbb{F}_q)$ est :

$$\sum_{n_1 + \dots + n_q = n} \frac{|\operatorname{GL}_n(\mathbb{F}_q)|}{\prod_{i=1}^q |\operatorname{GL}_{n_i}(\mathbb{F}_q)|}$$

Théorème 53. (isomorphismes exceptionnels)

On a les isomorphismes suivants :

- $\operatorname{GL}_2(\mathbb{F}_2) = \operatorname{SL}_2(\mathbb{F}_2) = \operatorname{PSL}_2(\mathbb{F}_2) \simeq \mathcal{S}_3$,
- $\operatorname{PGL}_2(\mathbb{F}_3) \simeq \mathcal{S}_4$ et $\operatorname{PSL}_2(\mathbb{F}_3) \simeq \mathcal{A}_4$,
- $\operatorname{PGL}_2(\mathbb{F}_4) = \operatorname{PSL}_2(\mathbb{F}_4) \simeq \mathcal{A}_5$,
- $\operatorname{PGL}_2(\mathbb{F}_5) \simeq \mathcal{S}_5$ et $\operatorname{PSL}_2(\mathbb{F}_5) \simeq \mathcal{A}_5$.