2교시 : 딥러닝이 잘 되는 이유를 이해하기

2교시: 딥러닝이 잘 되는 이유를 이해하기

01 다층 퍼셉트론

02 XOR 문제의 해결

03 딥러닝의 태동, 오차 역전파

다층 퍼셉트론의 등장

XOR 문제 해결을 위해 필요했던 두가지 방법

성냥개비 6개로 정삼각형 4개를 만들어 보세요

검은 점과 흰 점을 한번에 나누어 보세요

다층 퍼셉트론

XOR 문제의 해결

X ₁	X ₂	n ₁	n_2	Y _{out}	우리가 원하는 값
0	0	$\sigma(0*(-2)+0*(-2)+3)\approx 1$	$\sigma(0*2+0*2-1)\approx 0$	$\sigma(1*1+0*1-1)\approx 0$	0
0	1	$\sigma(0*(-2)+1*(-2)+3)\approx 1$	$\sigma(0*2+1*2-1)\approx 1$	$\sigma(1*1+1*1-1)\approx 1$	1
1	0	$\sigma(1*(-2)+0*(-2)+3)\approx 1$	$\sigma(1*2+0*2-1)\approx 1$	$\sigma(1*1+1*1-1)\approx 1$	1
1	1	$\sigma(1*(-2)+1*(-2)+3)\approx 0$	$\sigma(1*2+1*2-1)\approx 1$	$\sigma(0*1+1*1-1)\approx 0$	0

학습은 어떻게?

오차 역전파, 딥러닝의 태동

XOR 문제 해결을 위해 필요했던 두가지 방법

오차 역전파

첫 번째 가중치 업데이트 공식 =
$$(y_{o1} - y_{dala}) \cdot y_{o1} (1-y_{o1}) \cdot y_{h1}$$

두 번째 가중치 업데이트 공식 = $(\delta y_{o1} \cdot w_{31} + \delta y_{o2} \cdot w_{41}) \frac{y_{h1}(1-y_{h1})}{y_{h1}(1-y_{h1})} \cdot x_1$

오차*<mark>out(1-out)</mark>

활성화 함수, 최적화 알고리즘의 발달

한번 더 기억!

- 활성화 함수 (Activation function): 출력을 결정하는 함수
 - ✓ Ex. 일차 함수, 시그모이드 함수
- 손실 함수(Loss function): 예측값과 실제값 사이의 차이를 측정하는 함수
 - ✓ Ex. 이차 함수와 교차 엔트로피 함수
- 최적화 알고리즘 (Optimizer): 가중치를 조정하여 손실 함수를 최소화하는 알고리즘
 - ✓ Ex. 경사하강법 → 아담(Adam)

활성화 함수의 발전

딥러닝의 구조 Input node Hidden node Decoder Output node Encoder (M) Match input output Dropo **RBM DBN** AE ut Pooling node RBM RLGAN RNN CNN Google DeepMind Apple

딥러닝이 잘 되는 이유

알고리즘의 혁신 : 다층 퍼셉트론, 오차역전파...

장비의 혁신 : GPU

데이터의 혁신: 빅 데이터의 확보

https://github.com/taehojo/fastcampus_ai