Fields and Galois Theory File name: ktt.tex

Utkan Utkaner

May 1, 2020

1 Basic Definitions and Results

- 1.1 Symmetry
- 1.2 Rings
- 1.3 Domains and Fields
- 1.4 Homomorphisms and Ideals
- 1.5 Quotient Rings
- 1.6 Polynomial Rings over Fields
- 1.7 Prime Ideals and Maximal Ideals

2 Algebraic Extensions of Fields

2.1 Factoring Polynomials

Proposition 2.1 (Gauss's Lemma (Primitivity)). The product of two primitive polynomials f(x) and g(x) is itself primitive.

Proof. Assume that the product f(x)g(x) is not primitive, so there is some prime p dividing each of its coefficients. Let $\sigma: \mathbb{Z} \to \mathbb{Z}_p$ be the natural map, and consider the ring map $\sigma^*: \mathbb{Z}[x] \to \mathbb{Z}_p[x]$ reducing coefficients mod p. Now

$$\sigma^*(f(x)g(x)) = \sigma^*(f(x))\sigma^*(g(x)).$$

But $\sigma^*(f(x)g(x)) = 0$ in $\mathbb{Z}_p[x]$ while $\sigma^*(f(x)) \neq 0$ and $\sigma^*(g(x)) \neq 0$, and this contradicts the fact that $\mathbb{Z}[x]$ is a domain.

Proposition 2.2 (Gauss's Lemma (Irreducibility)). Let $f(x) \in \mathbb{Z}[x]$. If f(x) is irreducible over \mathbb{Z} , then it is also irreducible over \mathbb{Q} .

Proof. The proof is by contrapositive. Suppose f(x) is reducible over \mathbb{Q} . Without loss of generality we may assume that f(x) is primitive. Let f(x) = u(x)v(x) with $u(x), v(x) \in \mathbb{Q}[x]$ and $u(x), v(x) \notin \mathbb{Q}$. Then $f(x) = (\frac{a}{b})u'(x)v'(x)$, where $\frac{a}{b} \in \mathbb{Q}$ and u'(x) and v'(x) are primitive polynomials in $\mathbb{Z}[x]$. Then bf(x) = au'(x)v'(x). The gcd of the coefficients of bf(x) is b, and the gcd of the coefficients of au'(x)v'(x) is a, by xxx. Hence, $b = \pm a$, so $f(x) = \pm u'(x)v'(x)$. Therefore, f(x) is reducible over \mathbb{Z} . Having proved the contrapositive, we can then infer that the original statement is true.

Proposition 2.3. Let $f(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1} + x^n \in \mathbb{Z}[x]$ be a monic polynomial. If f(x) has a root $\alpha \in \mathbb{Q}$, then $\alpha \in \mathbb{Z}$ and $\alpha | a_0$.

Proof. Write $\alpha = \frac{c}{d}$, where $c, d \in \mathbb{Z}$ and (c, d) = 1. Then

$$a_0 + a_1(\frac{c}{d}) + \dots + a_{n-1}(\frac{c^{n-1}}{d^{n-1}}) + \frac{c^n}{d^n} = 0.$$

Multiply the above equation by d^{n-1} to obtain

$$a_0d^{n-1} + a_1cd^{n-2} + \dots + a_{n-1}c^{n-1} = -\frac{c^n}{d}.$$

Because $c, d \in \mathbb{Z}$, it follows that $\frac{c^n}{d} \in \mathbb{Z}$, so d must be ± 1 . The last equation also shows $c|a_0$. Hence, $\alpha = \pm c \in \mathbb{Z}$ and $\alpha|a_0$.

Proposition 2.4 (Eisenstein's Criterion). Let $f(x) = a_0 + a_1x + \cdots + a_nx^n \in \mathbb{Z}[x]$ for $n \geq 1$. If there is a prime p such that $p^2 \not| a_0, p | a_1, \dots, p | a_{n-1}, p \not| a_n$, then f(x) is irreducible over \mathbb{Q} .

Proof. Suppose

$$f(x) = (b_0 + b_1 x + \dots + b_r x^r)(c_0 + c_1 x + \dots + c_s x^s),$$

with $b_i, c_i \in \mathbb{Z}$, $b_r \neq 0$, $c_s \neq 0$, r < n, and s < n. Then $a_0 = b_0 c_0$ and $a_n = b_r c_s$. Then since $p|a_0$ and $p^2 \not|a_0$, either $p|b_0$ and $p \not|c_0$ or $p|c_0$ and $p \not|b_0$. Consider the case $p|c_0$ and $p \not|b_0$. Because $p \not|a_n$, it follows that $p \not|b_r$ and $p \not|c_s$. Let c_m be the first coefficient in $c_0 + \cdots + c_s x^s$ such that $p \not|c_m$. Then note that $a_m = b_0 c_m + b_1 c_{m-1} + \cdots + b_m c_0$. From this we see that $p \not|a_m$ (otherwise, $p|c_m$), so m = n. Then $n = m \leq s < n$, which is impossible. Similarly, if $p|b_0$ and $p \not|c_0$, we arrive at an absurdity. Hence by xxx, f(x) is irreducible over \mathbb{Q} .

Remark 2.1. The last three propositions hold mutatis mutandis with \mathbb{Z} replaced by a unique factorization domain R (replace \mathbb{Q} with the field of fractions of R and p with a prime element of R).

2.2 Adjunction of Roots

Definition 2.1. If F is a subfield of a field E, one also says that E is an extension of F, and one writes E/F is an extension.

Definition 2.2. Let E/F be an extension. The dimension of E viewed as a vector space over F is called the degree of E over F and it is denoted by [E:F]. One says that E/F is a finite extension if [E:F] is finite.

Definition 2.3. When E and E' are extensions of a field F, an F-homomorphism of E into E' or an embedding of E in E' over F is a homomorphism $\varphi: E \to E'$ such that $\varphi(c) = c$ for all $c \in F$.

Proposition 2.5 (Multiplicativity of Degrees). If $F \subset K \subset E$ are fields with [E:K] and [K:F] finite, then E/F is a finite extension and

$$[E:F] = [E:K][K:F].$$

Proof. Let $\{\alpha_1, \ldots, \alpha_n\}$ be a basis of E/K, and let $\{\beta_1, \ldots, \beta_m\}$ be a basis of K/F. It suffices to prove that $\{\beta_j\alpha_i: 1 \leq i \leq n, 1 \leq j \leq m\}$ is a basis of E/F.

This set spans E. If $\gamma \in E$; then there are b_i in K with $\gamma = \sum b_i \alpha_i$. But each $b_i = \sum c_{ij}\beta_j$ for c_{ij} in F, hence $\gamma = \sum c_{ij}\beta_j\alpha_i$. To see that this set is linearly independent, assume that $\sum c_{ij}\beta_j\alpha_i = 0$ for c_{ij} in F. Now $b_i = \sum c_{ij}\beta_j \in K$, so that independence of the α_i over K implies that $b_i = 0$ for all i. Hence $\sum c_{ij}\beta_j = 0$ for all i, and so the independence of the β_j over F implies that $c_{ij} = 0$ for all i, j, as desired.

Proposition 2.6. If F is a field and $p(x) \in F[x]$ is irreducible, then the quotient ring F[x]/(p(x)) is a field containing (an isomorphic copy of) F and a root of p(x).

Proof. Since p(x) is irreducible, the principle ideal I = (p(x)) is a nonzero prime ideal; since F[x] is a PID, I is a maximal ideal, and so E = F[x]/I is a field. Now the map $a \mapsto a + I$ is an isomorphism from F to $F' = a + I : a \in F \subset E$.

Let $\alpha = x + I \in E$; we claim that α is a root of p(x). Write $p(x) = a_0 + a_1x + \cdots + a_nx^n$, where $a_i \in F$. Then, in E

$$p(\alpha) = (a_0 + I) + (a_1 + I)\alpha + \dots + (a_n + I)\alpha^n$$

$$= (a_0 + I) + (a_1 + I)(x + I) + \dots + (a_n + I)(x + I)^n$$

$$= (a_0 + I) + (a_1x + I) + \dots + (a_nx^n + I)$$

$$= a_0 + a_1x + \dots + a_nx^n + I$$

$$= p(x) + I$$

$$= I,$$

because I = (p(x)). But I = 0 + I is the zero element of F[x]/I, and hence α is a root of p(x).

Remark 2.2. One usually identifies F with the subfield F' of E in xxx. Henceforth, whenever there is an embedding of a field F into a field E, we say that E is an extension of F.

Proposition 2.7 (Kronecker Theorem). Let $f(x) \in F[x]$, where F is a field. There exists an extension E of F in which f(x) has a root.

Proof. The proof is by induction on the degree of f(x). If $\partial(f(x)) = 1$, then f(x) is linear and we can choose E = F. If $\partial(f(x)) > 1$, write f(x) = p(x)u(x), where p(x) is irreducible. xxx provides a field B containing F and a root α of p(x). Hence $p(x) = (x - \alpha)v(x)$ in B[x]. By induction, there is a field E containing B in which v(x)u(x), hence f(x) has a root.

Proposition 2.8. Let F be a field. Let p(x) be an irreducible polynomial in F[x] and α be a root of p(x) in an extension E of F. Then

(i) $F(\alpha)$, the subfield of E generated by F and α is the set

$$F[\alpha] = \{b_0 + b_1 \alpha + \dots + b_m \alpha^m \in E : b_0 + b_1 x + \dots + b_m x^m \in F[x]\}$$

(ii) If the degree of p(x) is n, the set $\{1, \alpha, \dots, \alpha^{n-1}\}$ forms a basis of $F(\alpha)$ over F; that is, each element of $F(\alpha)$ can be written uniquely as $a_0 + a_1\alpha + \dots + a_{n-1}\alpha^{n-1}$, where $a_i \in F$ and $[F(\alpha) : F] = n$.

Proof. Let p(x) be an irreducible polynomial in F[x] having a root, say α , in an extension E of F. We denote by $F(\alpha)$ the subfield of E generated by F and α that is, the smallest subfield of E containing F and α . Consider the mapping $\varphi: F[x] \to E$ defined by

$$\varphi(b_0 + b_1 x + \dots + b_m x^m) = b_0 + b_1 \alpha + \dots + b_m \alpha^m,$$

where $b_0 + b_1 x + \cdots + b_m x^m \in F[x]$. Obviously, φ is a homomorphism whose kernel contains p(x), because $p(\alpha) = 0$. We show that $\text{Ker} \varphi = (p(x))$.

Because F[x] is a PID, $\operatorname{Ker}\varphi = (f(x))$ for some $f(x) \in F[x]$. Then $p(x) \in \operatorname{Ker}\varphi$ implies p(x) = f(x)g(x) for some $g(x) \in F[x]$. Because p(x) is irreducible over $F, g(x) \in F$. Thus $\operatorname{Ker}\varphi = (f(x)) = (p(x))$.

By xxx,

$$F[x]/(p(x)) \cong \operatorname{Im}\varphi$$

$$= \{b_0 + b_1\alpha + \dots + b_m\alpha^m \in E : b_0 + b_1x + \dots + b_mx^m \in F[x]\}$$

$$= F[\alpha],$$

say. Because F[x]/(p(x)) is a field, the set $F[\alpha]$ is a field. Obviously $F[\alpha]$ is the smallest subfield of E containing F and α , so $F(\alpha) = F[\alpha]$. If the degree of p(x) is n, then α cannot satisfy any polynomial in F[x] of degree less that n. This shows that the set

$$\{1, \alpha, \dots, \alpha^{n-1}\}$$

forms a basis of $F(\alpha)$ over F, and $[F(\alpha):F]=n$.

2.3 Algebraic Extensions

Definition 2.4. Let E be an extension of a field F. An element $\alpha \in E$ is algebraic over F if there exists a nonconstant polynomial $f(x) \in F[x]$ such that $f(\alpha) = 0$.

Proposition 2.9. Let E be an extension of a field F, and let $\alpha \in E$ be algebraic over F. Let $f(x) \in F[x]$ be a polynomial of the least degree such that $f(\alpha) = 0$. Then

- (i) f(x) is irreducible over F.
- (ii) If $g(x) \in F[x]$ is such that $g(\alpha) = 0$, then f(x)|g(x).
- (iii) There is exactly one monic polynomial $f(x) \in F[x]$ of least degree such that $f(\alpha) = 0$.
- Proof. (i) Let f(x) = u(x)v(x), and $\partial(u(x))$, $\partial(v(x))$ be less than $\partial(f(x))$. Then $0 = f(\alpha) = u(\alpha)v(\alpha)$. This gives $u(\alpha) = 0$ or $v(\alpha) = 0$; that is, α satisfies a polynomial of degree less than that of f(x), a contradiction. So f(x) is irreducible of F.
 - (ii) By the division algorithm g(x) = f(x)q(x) + r(x), where r(x) = 0 or $\partial(r(x)) < \partial(f(x))$. Then $g(\alpha) = f(\alpha)q(\alpha) + r(\alpha)$; that is, $r(\alpha) = 0$. Because f(x) is of the least degree among the polynomials satisfied by α , r(x) must be 0. Thus, f(x)|g(x).
- (iii) Let g(x) be a monic polynomial of least degree such that $g(\alpha) = 0$. Then by (ii) f(x)|g(x) and g(x)|f(x), which gives f(x) = g(x) since both are monic polynomials.

Definition 2.5. The monic irreducible polynomial in F[x] of which α is a root will be called the minimal polynomial of α over F.

Definition 2.6. An extension E of a field F is called algebraic if each element of E is algebraic over F.

Extensions that are not algebraic are called transcendental extensions.

Proposition 2.10. If E/F is a finite extension, then it is an algebraic extension.

Proof. Assume that [E:F]=n and $\alpha \in E$. In any n-dimensional vector space, any sequence of n+1 vectors is linearly dependent. There are thus scalars $a_i \in F$ for $i=0,1,\ldots,n$, not all 0, with

$$\sum_{i=0}^{n} a_i \alpha^i = 0;$$

there is thus a nonzero polynomial in F[x] having α as a root, and so α is algebraic over F.

Remark 2.3. Not every algebraic extension is finite.

Example 1. Define the algebraic numbers \mathbb{A} to be the set of all those complex numbers that are algebraic over \mathbb{Q} . Than \mathbb{A}/\mathbb{Q} is an algebraic extension that is not finite.

Definition 2.7. An extension E/F is finitely generated if there are elements $\alpha_1, \alpha_2, \ldots, \alpha_n$ in E such that $E = F(\alpha_1, \alpha_2, \ldots, \alpha_n)$.

Remark 2.4. A finitely generated extension need not be algebraic.

Example 2. Let f(x) be a polynomial ring over a field F in a variable x. Consider the field of quotients E of F[x]. The elements of E are of the form

$$(a_0 + a_1x + \dots + a_nx^n)(b_0 + b_1x + \dots + b_mx^m)^{-1},$$

where $a_i, b_i \in F$ and not all b_i are zero. Thus, E is generated by x over F; that is, E = F(x). Clearly, by the definition of a polynomial ring, x cannot be algebraic over F. Hence, E is not an algebraic extension.

Proposition 2.11. Let $E = F(\alpha_1, ..., \alpha_n)$ be a finitely generated extension of F such that each α_i , i = 1, ..., n, is algebraic over F. Then E is finite over F and, hence, an algebraic extension of F.

Proof. Set $E_i = F(\alpha_1, \ldots, \alpha_i)$, $1 \leq i \leq n$. Observe that if an element in E is algebraic over a field F, then, trivially, it is algebraic over any field B such that $F \subset B \subset E$. Therefore, each α_i is algebraic over E_{i-1} , $i = 1, \ldots, n$, with $E_0 = F$. Also, $E_i = E_{i-1}(\alpha_i)$. Therefore, by xxx, $[E_i : E_{i-1}]$ is finite, say d_i . By xxx,

$$[E:F] = [E:E_{n-1}][E_{n-1}:E_{n-2}]\dots[E_1:F];$$

hence,

$$[E:F] = d_n d_{n-1} \dots d_1.$$

Thus, E is a finite extension of F and therefore algebraic over F.

Proposition 2.12. Let E be an extension of F. If K is the subset of E consisting of all the elements that are algebraic over F, then K is a subfield of E and an algebraic extension of F.

Proof. We need only show that if $\alpha, \beta \in E$ and are algebraic over F, then $\alpha \pm \beta, \alpha\beta$ and $\alpha\beta^{-1}$ (if $\beta \neq 0$) are also algebraic over F. This follows from the fact that all these elements lie in $F(\alpha, \beta)$, which by xxx, is an algebraic extension of F.

Thus, K is an algebraic extension of F in E.

2.4 Algebraically Closed Fields

Definition 2.8. A field F is algebraically closed if it possesses no proper algebraic extensions.

Definition 2.9. A field E is an algebraic closure of a subfield F if it is algebraically closed and algebraic over F.

Proposition 2.13. Let F be a field. Then there is an extension E of F that is algebraically closed.

Proof. The following proof is due to Emil Artin. The first step is to construct an extension field F_1 of F, with the property that all nonconstant polynomials in F[x] have a root in F_1 . To this end, for each nonconstant polynomial $p(x) \in F[x]$, let x_p be an independent variable and consider the ring R of all polynomials in the variables x_p over the field F. Let I be the ideal generated by the polynomials $p(x_p)$. We contend that I is not the entire ring R. For if it were, then there would exist polynomials $q_1, \ldots, q_n \in R$ and $p_1, \ldots, p_n \in I$ such that

$$q_1p_1(x_{p_1}) + \cdots + q_np_n(x_{p_n}) = 1.$$

This is an algebraic expression over F in a finite number of independent variables. But there is an extension field E of F in which each of the polynomials $p_1(x), \ldots, p_n(x)$ has a root, say $\alpha_1, \ldots, \alpha_n$. Setting $x_{p_i} = \alpha_i$ and setting any other variables appearing in the equation above equal to 0 gives 0 = 1. This contradiction implies that $I \neq R$.

Since $I \neq E$, there exists a maximal ideal J such that $I \subseteq J \subset R$. Then $F_1 = R/J$ is a field in which each polynomial $p(x) \in F[x]$ has a root, namely $x_p + J$. (We may think of F_1 as an extension of F by identifying $\alpha \in F$ with $\alpha + J$.)

Using the same technique, we may define a tower of extensions

$$F/F_1/F_2/\ldots$$

such that each nonconstant polynomial $p(x) \in F_i[x]$ has a root in F_{i+1} . The union $E = \bigcup F_i$ is an extension field of F. Moreover, any polynomial $p(x) \in E[x]$ has all of its coefficients in F_i for some i and so has a root in F_{i+1} , hence in E. It follows that every polynomial $p(x) \in E[x]$ factors into linear factors over E. Hence E is algebraically closed.

Proposition 2.14. Let E/F be an extension where E is algebraically closed. Then the collection of elements K of E that are algebraic over F is an algebraic closure of F. An algebraic closure of F is unique up to homomorphism.

Proof. By xxx, K is an algebraic extension of F. Let $f(x) \in K[x]$. Then f(x) has a root $\alpha \in E$ because E is algebraically closed. But then $\alpha \in E$ is algebraic over K, and because K is algebraic over F, we obtain, that α is algebraic over F. Hence, $\alpha \in K$. Thus, K is algebraically closed, which proves that K is an algebraic closure of F.

Fields and Galois Theory	8
Proposition 2.15.	
Proof.	
Proposition 2.16.	
Proof.	
3 Normal and Separable Extensions	

Galois Theory

4

REFERENCES 9

References

[1]