SOLARNET: SOLAR FLARES PREDICTION WITH SELF-SUPERVISED LEARNING

Jonathan Donzallaz (jonathan.donzallaz@hefr.ch)

André Csillaghy (andre.csillaghy@fhnw.ch)

Jean Hennebert (jean.hennebert@hefr.ch)

March 21, 2022, Boulder CO

CONTEXT

STATE OF THE ART

Reference	Method	Destar	True Skill Statistic (TSS)	
		Data	≥C-class	≥M-class
Park et al. (2018)	CNN	soho/mdi, sdo/hmi	0,63	
Nishizuka et al. (2018)	MLP	SDO/HMI&AIA	0,63	0,8
Wang et al. (2019)	LSTM	SHARP	0,559	0,681
Ahmed et al. (2013)	CCNN	SOHO/MDI	0,512	
Huang et al. (2018)	CNN	SOHO/MDI, SDO/HMI AR	0,487	0,662
Bloomfield et al. (2012)	Poisson prob.	Flares & AR	0,456	
Jonas et al. (2017)	Linear classifier	SDO/HMI&AIA AR		0,814
Bobra and Couvidat (2015)	SVM	SHARP		0,761
Zheng, Li, and Wang (2019)	CNN	SDO/HMI AR		0,749
Liu et al. (2017)	Random forest	SHARP		0,532

CONTRIBUTIONS

- Self-Supervised Learning (SSL) applied to solar images
- Prepared datasets for SSL pre-training and flares prediction
- Seamless reproducibility of results with a library to use the pre-trained models

SELF-SUPERVISED LEARNING

Step 1

Pretraining with unlabelled data

Pretext task

Large volume of data

- Learns pattern in the data
- General-purpose model

Step 2

Finetuning with lower amount of data

Step 1: Self-Supervised Learning

Step 2: Finetuning on supervised downstream task Encoder Classifier ResNet-50 Flare Prediction Output Representation

DATASETS

SDO-Dataset

from "A Machine Learning Dataset Prepared From the Step 1: Pre-training NASA Solar Dynamics Observatory Mission" Full-disk images 512x512, corrected 2010-2018

SDOBenchmark

images of active regions 256x256, preprocessed Step 2: Finetuning Labeled with peak flux 2012-2018

RESULTS

Dataset	Model	Split	TSS	F1
	Naive (random)		0.0	0.5
SDOBenchmark (active regions)	CNN (baseline)	Train/test split: SDOBenchmark	0.607	0.803
	ResNet-50 with SSL	Pretrain: SDO-Dataset 2010-2011 Train/test split: SDOBenchmark	0.646	0.819

Predict "Quiet sun" or "Flare ≥C-class" in next 24 hours, Data is magnetogram

RESULTS

RESULTS

Dataset	Model	Split	TSS	FI
	Naive (random)	_	0.0	0.5
SDO-Dataset (full-disk)	CNN (baseline)	Operational case: Train: 2010-2014	0.404	0.707
	ResNet-50 with SSL	Test: 2015-2017	0.446	0.726
	ResNet-50 with SSL	Split by months: Train: JanNov. Test: Dec.	0.783	0.891

Predict "Quiet sun" or "Flare ≥C-class" in next 24 hours, Data is magnetogram

REPRODUCIBILITY & LIBRARY

Links to repositories

- Reproducible results: gitlab.com/jdonzallaz/solarnet-thesis
- Library: gitlab.com/jdonzallaz/solarnet

Get started

```
>> pip install solarnet-lib
model = ImageClassification.from_pretrained("solarnet-ssl-bz-ft-month")
with torch.no_grad():
    y_pred = model(tensor)
```

WORKING WITH REAL-TIME DATA

solarnet.kube.isc.heia-fr.ch

POTENTIAL DEVELOPMENTS

- Use of multi-channel images (see Yana Shtyk's poster)
- Evaluate other architectures & SSL approaches
- In-depth operational testing
- Extend pre-training dataset to 1996-2022

SUMMING UP

- Self-Supervised Learning provides good representation of data
- Consistently improving results
- Great reproducibility and reusability

SOLARNET: SOLAR FLARES PREDICTION WITH SELF-SUPERVISED LEARNING

AUTHORS

Jonathan Donzallaz (jonathan.donzallaz@hefr.ch)

André Csillaghy (andre.csillaghy@fhnw.ch)

Jean Hennebert (jean.hennebert@hefr.ch)

LINKS

Library: gitlab.com/jdonzallaz/solarnet

Docs: jdonzallaz.gitlab.io/solarnet

Application: solarnet.kube.isc.heia-fr.ch

REFERENCES

Source of images: SDOML, SDOBenchmark & Helioviewer

