计算机科学组合学丛书之五

单目标、多目标与整数规划

卢开澄 编著

清华大学出版社

(京)新登字 158 号

内 容 简 介

本书共 12 章, 前 7 章讨论单目标线性规划; 第 8 章讨论多目标线性规划; 后面 4 章讨论与整数规划相关的问题。

书中对单目标线性规划、多目标线性规划和整数规划等问题的提出、各种解算方法及其灵敏度的分析进行了比较全面的介绍和深入的讨论、并有众多的例题、是本书的特点。

本书可作为数学与经济管理专业运筹学的教材,并可作为这一领域的工作人员的参考书。

版权所有,翻印必究。

本书封面贴有清华大学出版社防伪标签,无标签者不得销售。

图书在版编目(CIP)数据

单目标、多目标与整数规划/卢开澄编著.—北京:清华大学出版社,1999 (计算机科学组合学丛书)

ISBN 7-302-03330-7

. 单... . 卢... . 线性规划-教材 . 0221.1

中国版本图书馆 CIP 数据核字(1999) 第 03091 号

出版者: 清华大学出版社(北京清华大学校内,邮编 100084)

http://www.tup.tsinghua.edu.cn

印刷者: 北京昌平环球印刷厂

发行者: 新华书店总店北京发行所

开 本: 78% 1092 1/16 印张: 26.5 字数: 627千字

版 次: 1999年7月第1版 1999年7月第1次印刷

书 号: ISBN 7-302-03330-7/TP・1793

印 数: 0001~4000

定 价: 29.80元

前言

众所周知,线性规划是由于解决二战期间美军的后勤运输问题而提出来的。半个世纪以来,它的应用范围日益扩大,几乎遍及商业活动、工业生产等一切经济领域,甚至于关系到许多军事行动。单纯形法始终扮演着光彩夺目的角色。线性规划也成为运筹学的主要内容受到普遍的重视,以至于许多高校的数学系、经济管理系以及系统工程等专业都把它列为一门必修课。

线性规划在它发展的历程中有几件事是值得特别提及的。一是受经济理论的影响,经济活动已不完全像"经济人"那样,追求的是"利润极大"、"代价极小",代以决策时开始考虑"普遍感到满意"。多目标规划便应运而生。单目标规划仅是它的一个特例,它比单目标规划更灵活,应用的领域更广阔。开展它的研究,推广它的应用,在今天有着非常现实的意义。

另一个是 20 世纪 70 年代以来计算机科学蓬勃发展, 计算复杂性理论新军突起, 成果骄人。其中与线性规划有关而值得一提的有: (a) 单纯形法的时间复杂性被提出来; (b) 大量属于整数线性规划的著名问题被证明属于 NP 类中最困难的一类。算法复杂性理论中

P = NP?

是问题的关键。线性规划究竟是属于 P 类还是其他? 有的权威猜测它属于 NP 困难类问题。70 年代末前苏联的数学家哈奇杨() 发表了他的线性规划的椭球算法,并证明了椭球算法的多项式时间复杂性。这一消息在西方引起了轰动。如若线性规划属于 NP 困难类,现在找到多项式算法,似乎使

P = NP

这结论曙光在望。但椭球算法计算效果十分不理想,仅有理论价值。它只是证明了线性规划是 P 类问题。不久,贝尔实验室的印度人卡玛卡(Karmarkar)发表了他的线性规划问题投影算法,证明了它的复杂性也是多项式,而且优于椭球算法。卡玛卡(Karmarkar)算法的思想异于单纯形法,它企图在可行解域内部找一最快方向奔向极值点。这种想法十分新颖,引起广泛的兴趣,研究的结果也多起来。无论如何,它已打破了单纯形法一枝独秀的局面。

现实中有许多整数规划的问题,它的难度较相应的线性规划大得多。其中不少是 NP 理论中的著名问题。就是这样一类的困难问题,找近优的启发式算法也是十分吸引人的。

作者从事组合优化和算法的教学多年,本书也是这方面工作的总结。第1章,第6章,第8章及第12章是由卢华明执笔的。囿于作者的水平,存在错误和不妥将很难避免,敬请读者指正。

目 录

1.1 引言
1.2 问题的提出
1.3 标准形式与矩阵表示法
1.4 几何解释
习题一 1
第 2 章 单纯形法 1
2.1 凸集1
2.1.1 凸集概念 1
2.1.2 可行解域与极方向概念
2.2 凸多面体1
2.3 松弛变量1
2.3.1 松弛变量概念 1
2.3.2 松弛变量的几何意义1
2.4 单纯形法的理论基础1
2.4.1 极值点的特性 1
2.4.2 矩阵求逆 2
2.4.3 可行解域无界的情况2
2.4.4 退化型举例 2
2.5 单纯形法基础2
2.5.1 基本公式 2
2.5.2 退出基的确定与进入基的选择2
2.5.3 例
2.6 单纯形法(续)2
2.6.1 基本定理 2
2.6.2 退化型概念 3
2.6.3 单纯形法步骤 3
2.6.4 举例
2.7 单纯形表格3
习题二
第 3 章 改善的单纯形法 5
3.1 数学准备5

		3.1.1	改善之一: $C_B(B^{-1}a) = (C_B/B^{-1})a$	50
		3.1.2	改善之二: 矩阵求逆	50
	3.2	改善的	单纯形法	52
		3.2.1	改善单纯形法步骤	52
		3.2.2	举例	53
	3.3	改善的	单纯形法表格及其分析	58
		3.3.1	改善的单纯形法表格	58
		3.3.2	改善单纯形法的复杂性分析	62
	3.4	变量有.	上下界约束的问题	62
		3.4.1	下界不为零的情况	62
		3.4.2	有上界的情况	63
	3.5	分解原:	理	68
		3.5.1	问题的提出	68
		3.5.2	分解算法	69
		3.5.3	说明举例	71
	3.6	无界域	问题的分解算法	80
		3.6.1	分解原理	80
		3.6.2	说明举例	81
	习题.	≡		86
第 4	音	单纯形法	*************************************	89
<i>></i> 3				
	4.1	以) E分)	i大	
	4.1		法	
	4.2	大M法	ŧ ·	98
		大 M 法退化情况	· 形	98 103
	4.2	大 M 法 退化情报 4.3.1	形 退化形问题	98 103 103
	4.2	大 M 法 退化情况 4.3.1 4.3.2	形 退化形问题出现循环举例	98 103 103 104
	4.2	大 M 法 退化情报 4.3.1	形 退化形问题出现循环举例	98 103 103 104 106
	4.2	大 M 法 退化情 4.3.1 4.3.2 防止循	形	98 103 103 104 106 106
	4.2	大 M 法 退化情 4.3.1 4.3.2 防止循 4.4.1 4.4.2	形	98 103 104 106 106 107
	4.2	大 M 法 退化情 4.3.1 4.3.2 防止循 4.4.1 4.4.2 4.4.3	形	98 103 104 106 106 107
	4. 2 4. 3 4. 4	大 M 法 退化情 4.3.1 4.3.2 防止循 4.4.1 4.4.2 4.4.3	形	98 103 104 106 106 107 108
	4. 2 4. 3 4. 4	大 M 法 退化情 4.3.1 4.3.2 防止循 4.4.1 4.4.2 4.4.3 灵敏度	形 退化形问题 出现循环举例 球 退出基不唯一时的选择办法 首正向量概念 不出现循环的证明 分析 C 有变化	98 103 104 106 106 107 108 109
	4. 2 4. 3 4. 4	大 M 法 退化情 4.3.1 4.3.2 防止循 4.4.1 4.4.2 4.4.3 灵敏度 4.5.1	形	98 103 104 106 106 107 108 109 110
	4. 2 4. 3 4. 4	大M法 退化情 4.3.1 4.3.2 防止循 4.4.1 4.4.2 4.4.3 灵敏度 4.5.1 4.5.2	形 退化形问题 出现循环举例 球 退出基不唯一时的选择办法 首正向量概念 不出现循环的证明 分析 C 有变化	98 103 104 106 106 107 108 110 112
	4. 2 4. 3 4. 4	大M法 退化情 4.3.1 4.3.2 防止循 4.4.1 4.4.2 4.4.3 灵敏度 4.5.1 4.5.2 4.5.3	形 退化形问题	98 103 104 106 106 107 108 110 112 112
	4. 2 4. 3 4. 4	大M法 退化情 4.3.1 4.3.2 防止循 4.4.1 4.4.2 4.4.3 灵敏度 4.5.1 4.5.2 4.5.3 4.5.4	形	98 103 104 106 106 107 108 110 112 114 115
	4. 2 4. 3 4. 4	大M法 退化情 4.3.1 4.3.2 防止循 4.4.1 4.4.2 4.4.3 灵敏度 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5	形	98 103 104 106 106 107 108 110 112 114 115 117
	4. 2 4. 3 4. 4	大M法 退化情 4.3.1 4.3.2 防止循 4.4.1 4.4.2 4.4.3 灵敏 5.1 4.5.2 4.5.3 4.5.4 4.5.5 4.5.6	形	98 103 104 106 106 107 108 110 112 114 115 117

		4.5.9	参数规划	121
	习题	四		123
第 5	章	对偶原理	」与对偶单纯形法	127
	5.1	对偶问是	项	127
		5.1.1	对偶问题定义	127
		5.1.2	对偶问题的意义	128
		5.1.3	互为对偶	129
		5.1.4	Ax= b 的情形	130
		5.1.5	其他类型	131
	5.2	对偶性质	贡	132
		5.2.1	弱对偶性质	132
		5.2.2	强对偶定理	133
			min 问题的对偶解法	
	5.3		各	
	5.4	对偶单约	屯形法	140
		5.4.1	基本公式	140
		5.4.2	对偶单纯形法	142
		5.4.3	举例	142
	5.5	主偶单约	屯形法	146
		5.5.1	问题的引入	146
		5.5.2	主偶单纯形法之一	147
		5.5.3	主偶单纯形法之二	148
	习题:	五		150
第 6	章	运输问题	及其他	152
	6.1	运输问题	题的数学模型	152
		6.1.1	问题的提出	152
		6.1.2	运输问题的特殊性	153
	6.2	矩阵Af	的性质	154
	6.3	运输问题	圆的求解过程	155
		6.3.1	求初始可行解的西北角法	155
		6.3.2	最小元素法	157
		6.3.3	图上作业法	158
	6.4	ci- zi 的]计算,进入基的确定	159
	6.5		勺确定	
	6.6	举例		162
	6.7		非问题	
		6.7.1	任务安排与运输问题	168

•

.

		6.7.2	求解举例	168
	6.8	任务安排	非的匈牙利算法	171
		6.8.1	代价矩阵	171
		6.8.2	科涅格(Konig)定理	172
		6.8.3	标志数法	173
		6.8.4	匈牙利算法	176
		6.8.5	匹配算法	179
	6.9	任务安排	非的分支定界法	180
	6.10	一般的]任务安排问题	182
	6.11	运输网]络	185
		6.11.1	网络流	185
		6.11.2	2 割切	186
		6.11.3	3 福德-福克逊(Ford-Fulkerson)定理	188
		6.11.4	4 标号法	189
		6.11.5	5 埃德蒙斯-卡普(Edmonds-Karp)修正算法	191
		6.11.6	5 狄尼(Dinic) 算法	192
	习题	``		194
第 7	章	哈奇扬() 算法与卡玛卡(Karmarkar) 算法	196
			lee)与明特(Minty)举例	
			章法 章法	
		7.2.1	问题的转化	198
		7.2.2	哈奇扬算法步骤	198
		7.2.3*	算法的正确性证明的准备	202
		7.2.4*	定理的证明	205
		7.2.5	严格不等式组	208
		7.2.6*	复杂性分析	210
	7.3	卡玛卡第	算法与卡玛卡典型问题	212
		7.3.1	卡玛卡标准型	212
		7.3.2	化为标准型的方法之一	212
		7.3.3	化为标准型的方法之二	216
		7.3.4	T ₀ 变换	218
		7.3.5	卡玛卡算法步骤	219
		7.3.6	卡玛卡算法的若干基本概念	226
		7.3.7	T k 变换的若干性质	228
		7.3.8	势函数及卡玛卡算法复杂性	233
	习题-	t		239
第 &	音 :	多目标抑	!划	241
-,- 0	 -	1.3.7.71		

	8.1	问题的提出	241
	8.2	多目标规划的几何解释	244
	8.3	多目标规划的单纯形表格	249
	8.4	多目标规划的目标序列化方法	253
	8.5	多目标规划的灵敏度分析	258
	8.6	应用举例	269
	习题	[八	272
第 9	章	整数规划问题的 DFS 搜索法与分支定界法	277
	9.1	问题的提出	277
	9.2	整数规划的几何意义	281
	9.3	可用线性规划求解的整数规划问题	283
	9.4	0-1 规划和 DFS 搜索法	284
		9.4.1 穷举法	284
		9.4.2 DFS 搜索法	285
	9.5	整数规划的 DFS 搜索法	288
		9.5.1 搜索策略	288
		9.5.2 举例	291
	9.6	替代约束	293
		9.6.1 吉阿福里昂(Geoffrion)替代约束	293
		9.6.2 举例	295
	9.7	分支定界法介绍	301
		9.7.1 对称型流动推销员问题	301
		9.7.2 非对称型流动推销员问题	
		9.7.3 最佳匹配问题	
	9.8	整数规划问题的分支定界解法	306
	9.9	分支定界法在解混合规划上的应用	311
	9.10) 估界方法	315
	习题	[九	321
第 1	0 章	整数规划的割平面法	323
	10.1	割平面	323
		10.1.1 郭莫莱(Gomory)割平面方程	323
		10.1.2 例	
	10.2	2 割平面的选择	329
	10.3	3 马丁(Martin)割平面法	331
	10.4	4 全整数割平面法	336
		10.4.1 全整数单纯形表格	336
		10.4.2 举例	338

•

.

	10.4.3	确定的	勺策略.					 	341
10.5	混合规划	訓的割平同	面法					 	344
习题-	+							 	346
第 11 章	奔德斯(B	Sen der s) ら	}解算:	去与群的	り解法.			 	348
11.1									
	11.1.1								
	11.1.2								
	11.1.3			-					
11.2	群的解法	去						 	360
	11.2.1	群的解》	去原理.					 	360
	11.2.2								
11.3	群的解法	去和最短距	烙径问题	题				 	365
	11.3.1	图的构词	告					 	365
	11.3.2	求最短距	烙径的	載克斯特	持拉(Di	jkstra)	算法	 	368
11.4	背包问是	<u> </u>						 	369
11.5	将整数规	见划归约为	为背包i	可题				 	371
11.6	背包问是	烫的网络 角	解法					 	373
11.7	背包问是	圆的分支 宽	定界解》	去				 	374
11.8	流动推销	肖员问题的	的近似角	解法				 	380
	11.8.1	最近插。	入法					 	380
	11.8.2	最小增量	量法					 	381
	11.8.3	回路改证	进法					 	385
习题-	+							 	387
第 12 章	动态规划	算法						 	388
12.1									
	12.1.1								
	12.1.2	改进的第	章法					 	389
	12.1.3	复杂性的	分析					 	390
12.2	最佳原理	里						 	391
	12.2.1	最佳原理	里					 	391
	12.2.2	最佳原理	里的应用	用举例.				 	391
12.3	流动推销	肖员问题.						 	394
	12.3.1	动态规划	划解法.					 	394
	12.3.2	复杂性的	分析					 	397
12.4	任意两点	点间的最短	豆距离.					 	399
	12.4.1	距离矩阵	车算法.					 	399
	12.4.2	动态规划	划算法.					 	399

	12.5	同顺序流水作业的任务安排	401
	12.6	整数规划的动态规划解法	403
		12.6.1 多段判决公式	403
		12.6.2 举例	404
	12.7	背包问题的动态规划解法	408
	习题十	. _	412
参考	文献		413

. .

第1章 引 论

1.1 引 言

自从丹捷(George B. Dant zig)于 1947年公开发表他的单纯形法以来(实际上他提出单纯形法远在第二次世界大战期间),有许多作者在线性规划这个领域作出了贡献,这里包括理论研究、算法以及它的应用。至今单纯形法依然在线性规划领域中占据了重要的位置,其原因在于许多复杂的经济问题大都能在合理的时间里获得解决。尽管近年来提出了若干理论分析方面占有便宜的算法,但单纯形法依然光彩耀人。正是由于这个原因,本书将着重讨论它,后面还将对其中若干有希望的算法做简单介绍。

所谓线性规划问题指的是在一组线性不等式约束下求线性目标函数的极大或极小值问题。例如:

这里 s.t. 是 subject to 的缩写, 即"满足于"的意思。其中, 线性函数 $c_1x_1+c_2x_2+...+c_nx_n$ 称为目标函数; $x_1,x_2,...,x_n$ 称为判决变量。第 i 个约束条件可以写成:

$$\sum_{j=1}^{n} a_{ij} x_{j} \qquad b_{i}, \quad i = 1, 2, ..., m$$

由系数 a j 构成的矩阵称为约束矩阵, 即

由右端bi构成的向量

$$egin{array}{ccc} b_1 & & & \\ b_2 & & & \\ b_m & & & \end{array}$$

称为右端项。

一组满足(1.1) 约束条件的变量 $x_1, x_2, ..., x_n$ 的值称为一组可行解, 可行解的集合称为可行解域, 或可行解空间。线性规划问题也就是在可行解域上寻找使目标函数取得极小

(或极大)值的可行解。

例 1.1

min
$$z = 3x_1 + 2x_2$$

s.t. $2x_1 + 3x_2 = 6$
 $x_1 + x_2 = 4$
 $x_1, x_2 = 0$

可行解域是由 4 条边界线包围起来的域, 4 条边界线为 $2x_1+3x_2=6$, $x_1+x_2=4$, $x_1=0$, $x_2=0$ 。由它们包围起来的可行解域如图 1.1 中阴影线所示。箭头 标出可行解域在该边界线的一侧。例如其中 $2x_1+3x_2=6$ 如图 1.2 所示。

图 1.1 图 1.2

1.2 问题的提出

这一节将提出若干典型的线性规划实际问题,目的在于说明如何对具体问题的控制变量找出其间存在的具有线性约束条件的数学模型来。

例 1.2 饲料问题

饲养场的饲料由各种食物混合而成, 要求各种营养素达到各自一定的限量。假定有 n 种食物 $f_1, f_2, ..., f_n$ 可供选择, m 种营养素 $v_1, v_2, ..., v_m$, 要求每天所供给的量分别不少于 $b_1, b_2, ..., b_m$ 单位, 食物 f_i 的单位重量的价格为 c_i, f_i 含 v_i 的百分比为 a_{i} , j=1,2,...,m, i=1,2,...,n。

假定每天每份饲料含食物 f_i 的重量为 x_i , i=1,2,...,n,则代价 $z=c_1x_1+c_2x_2+...+c_nx_n$ 。要求在保证营养素 v_i 不少于 b_i 的条件下, i=1,2,...,m,使代价最小,则问题导致

如若考虑营养素 v_i 不得少于 b_i , 但不得超过 b_i , b_i b_i , i=1,2,...,n, 则问题导致

如若进一步考虑饲料中食物 f_i 的含量不得超过 d_i 单位, $i=1,2,\ldots,n$,则问题导致

例 1.3 生产计划问题

某工厂生产两种产品 P_1 和 P_2 。产品 P_1 的单位售价 29 元,产品 P_2 单位售价 23 元;产品 P_1 每单位原材料费为 12 元,而产品 P_2 每单位原材料费为 11 元;产品 P_1 每单位需要机器 m_1 2 小时和机器 m_2 1 小时,产品 P_2 每单位需要机器 m_1 2 小时和机器 m_2 6 1 小时。产品 P_1 每单位机器费用 13 元,产品 P_2 每单位机器费用 10 元。该工厂机器 m_1 每天有 100 小时可供使用,机器 m_2 每天有 80 小时可供使用。产品 P_1 销售量不受限制,而产品 P_2 最多只能卖出 40 个单位。问该厂生产应如何安排使利润达到最大。

假定每日生产产品 P_1 为 x_1 单位, 生产产品 P_2 为 x_2 单位。产品 P_1 每单位的利润为 29- 12- 13= 4元, 产品 P_2 每单位的利润为 23- 11- 10= 2元。

总利润

$$z = 4x_1 + 2x_2$$

约束条件

$$2x_1 + x_2 = 100$$
 $x_1 + x_2 = 80$
 $x_1 = 0, 0 = x_2 = 40$

故生产计划问题导致下面的线性规划问题,即安排生产使总利润达到最大。

$$\begin{array}{rll} max & z = & 4x_1 + 2x_2 \\ s. t. & & 2x_1 + & x_2 & 100 \\ & & & x_1 + & x_2 & 80 \\ & & & 0 & x_1, & 0 & x_2 & 40 \end{array}$$

例 1.4 下料问题

现有钢筋长为 1, 由它截成长度为 1_i 的钢条 b_i 根, i=1,2,...,m。假定现有 n 种切割方

案,每种方案用一列向量表示它,即

$$a_{1j}$$
 a_{2j}
 a_{mj}
, $j = 1, 2, ..., n$

其中 a ; 为第 ; 种方案截取长度为 1 ; 的钢条数, 即

$$a_{1j}1_1 + a_{2j}1_2 + ... + a_{mj}1_m$$
 1

假定用第i 种方案截断的钢筋数为 x_i , i=1,2,...,n。于是问题导致

min
$$z = x_1 + x_2 + ... + x_n$$

s.t. $a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n$ l_1
 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n$ l_2
...
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n$ l_m
 x_i 0 且均为整数, $i = 1, 2, ..., n$

例 1.5 运输问题

设某产品有 m 个产地 $A_1, A_2, ..., A_m; n$ 个销地 $B_1, B_2, ..., B_n$ 。 每单位产品从产地 A_i 运往销地 B_j 的运费为 c_{ij} (i=1,2,...,m, j=1,2,...,n),如图 1.3 所示。已知产地 A_i 的产量为 a_i , i=1,2,...,m,销地 B_j 的需求量为 b_j , j=1,2,...,n。试问应如何安排运输,使保证供给且运费最省。已知 $a_i = b_i$ b_i $a_i = b_i$

图 1.3

设由 A; 运往 B; 的产品为 x; 单位, 则此问题变成

例 1.6 投资问题

假定某单位拟在以后 4 年内对某项目依次投资 300 万,500 万,900 万,600 万元,为了筹措这笔资金,该单位打算出售长期债券。长期债券的市场年利率四年中依次为7.5%,6%,7.5%,6.5%,可连续付 10 年利息后还本。与此同时,有短期存款年利率分别为6.5%,6.5%,5.5%。问最佳投资策略是什么?即每年出售多少长期债券和用多少作为短期存款,使最后付出最小?

设第 i 年开始时卖出的长期债券为 x_i 百万元, i=1,2,3,4。收到长期债券后立即用于投资, 余下的款作为短期存款以备下一年投资用。又设第 j 年存入的短期存款为 y_i 百万元, i=1,2,3。因此

第1年售出长期债券 x1万元, y1万元用于短期存款, 故有

$$x_1 - y_1 = 3;$$

第 2 年开始时短期存款还本付息数量为 $1.065y_1$, 第 2 年开始时长期债券卖出 x_2, y_2 用于短期存款。故有

1.
$$065y_1 + x_2 - y_2 = 5$$
;

第3年有

1.
$$065y_2 + x_3 - y_3 = 9$$
;

第4年有

1.
$$055y_3 + x_4 = 6_0$$

应该如何安排使得 10 年里付的总利息最少。问题导致

min z =
$$10(0.075x_1) + 10(0.06x_2) + 10(0.075x_3) + 10(0.065x_4)$$

s.t. $x_1 - y_1 = 3$
 $1.065y_1 + x_2 - y_2 = 5$
 $1.065y_2 + x_3 - y_3 = 9$
 $1.055y_3 + x_4 = 6$
 $x_1 = 0, i = 1, 2, 3, 4; y_j = 0, j = 1, 2, 3$

例 1.7 用工安排问题

某邮局从星期一到星期日,每天需要工作人员数见下表:

星期	_		Ш	四	五	六	日
需要工作人员数	17	13	15	19	14	16	11

邮局规定每位工作人员连续工作 5 天, 休息 2 天。试问该邮局应如何雇用工作人员使所雇总人数最少?

设 \mathbf{x}_1 为从星期 i 开始工作的人数, i= 1, 2, 3, 4, 5, 6, 7。其中 \mathbf{x}_7 为星期日雇用工作人员数, 于是依题意有

min
$$z = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$$

s. t. $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$ 17
 $x_1 + x_2 + x_3 + x_6 + x_7$ 13
 $x_1 + x_2 + x_3 + x_4 + x_7$ 15
 $x_1 + x_2 + x_3 + x_4 + x_5$ 14
 $x_2 + x_3 + x_4 + x_5 + x_6$ 16
 $x_3 + x_4 + x_5 + x_6 + x_7$ 11
 $x_1 = 0$ 整数, $i = 1, 2, ..., 7$

将许多实际问题转化为线性规划问题,本身就是一门学问。它的案例丰富多彩,不一而足,这里只是抛砖引玉,介绍以上几个典型例子,详细讨论超出本书范围。

1.3 标准形式与矩阵表示法

后面讨论的线性规划问题基本上可以归结为两种形式

$$(A) \quad min \ z = \int_{\substack{j=1 \\ n}}^{n} c_{j} x_{j}$$
 s.t.
$$x_{j} \quad a_{ij} x_{j} \quad b_{i}, \ i = 1, 2, ..., m$$

$$x_{j} \quad 0, \ j = 1, 2, ..., n$$

$$(B) \quad max \ z = \int_{\substack{j=1 \\ n}}^{n} c_{j} x_{j}$$
 s.t.
$$a_{ij} x_{j} \quad b_{i}, \ i = 1, 2, ..., m$$

$$x_{j} \quad 0, \ j = 1, 2, ..., n$$

其他形式可以转换为这两种形式之一。以后我们将主要讨论形式(B), 而形式(A)则可以通过在目标函数中两边同乘-1转化成(B)。至于可能出现的约束 x_i d> 0,则可通过 $x_i = x_i$ -d 0 变换来实现标准化。

为了方便起见,引进矩阵符号

$$C = (c_1 c_2...c_n),$$

$$x = (x_1 x_2...x_n)^T$$

$$b = (b_1 b_2...b_m)^T,$$

$$A = (a_{ij})_{mx} n$$

于是标准问题可写为

$$max z = Cx$$
s.t.
$$Ax b$$

$$x 0$$
(1.2)

通常还可以将 A 写成(a1 a2...an), 其中

$$a_i = (a_{1i} a_{2i} ... a_{mi})^T, i = 1, 2, ..., n$$

即 ai 为矩阵 A 的第 i 列列向量, 所以标准问题也可表示为

读者务必要熟悉这些表示法。

1.4 几何解释

这一节介绍一种求解线性规划问题的几何方法,尽管它仅适用于维数很低的小问题,但其中却包含了这类问题的基本原理和它直观的几何意义。

还是先举例说明。

例 1.8 求解线性规划问题

max
$$z = x_1 + x_2$$

s. t. $2x_1 + 3x_2 = 6$
 $3x_1 + 2x_2 = 6$
 $x_1 = 0, x_2 = 0$

满足 $2x_1+3x_2-6$ 的域如图 1.4 中影线所示, 表示域在直线 $2x_1+3x_2=6$ 的一侧。同样理由, $3x_1+2x_2-6$ 所示域如图 1.5 中影线部分。

所以例 1.8 的可行解域如图 1.6 所示。

目标函数 $x_1+x_2=c$ 在 ox_1x_2 平面上是一直线, 表示使目标函数值增大的方向,见图 1.7。不难直观得出目标函数在可行域的顶点 $\frac{6}{5}$, $\frac{6}{5}$ 处取得极大值 $max \ z=\frac{6}{5}+\frac{6}{5}$ $=\frac{12}{5}$ 。

图 1.6

例 1.9 求解线性规划问题

max
$$z = 2x_1 + 3x_2$$

s. t. $2x_1 + 3x_2 = 6$
 $3x_1 + 2x_2 = 6$
 $x_1 = 0, x_2 = 0$

类似于例 1.8 方法画出可行域如图 1.8。显然, 从此图可看出联接(0,2) 与 $\frac{6}{5}$, $\frac{6}{5}$ 的 线段上的所有点都是使得目标函数在可行域上取得极大值的点, 即最优解有无穷多个。

图 1.8

例 1.10 解线性规划问题

max
$$z = x_1 + x_2$$

s. t. $2x_1 + 3x_2 = 6$
 $3x_1 + 2x_2 = 6$
 $x_1 + x_2 = 3$
 $x_1, x_2 = 0$

由图 1.9 容易看出约束条件 x1+ x2 3 是多余的。

例 1.11 解线性规划问题

max
$$z = -2x_1 + x_2$$

s. t. $-2x_1 + 3x_2 = 6$
 $-x_1 + x_2 = 1$
 $x_1, x_2 = 0$

本题与前面诸题不同, 从图 1.10 知, 其可行解域无界, 但目标函数在(0,1) 处取得极大值 $\max z=1$ 。

图 1.10

但线性规划问题

$$\begin{array}{rll} max \ z = x_1 + x_2 \\ s. \ t. & -2x_1 + 3x_2 & 6 \\ & -x_1 + x_2 & 1 \\ & x_1, \ x_2 & 0 \end{array}$$

显然没有有界解。

但也并非所有线性规划问题都有解。比如下面的问题就无解,因可行解域根本不存在,也就是约束条件不合理,见图 1.11。

max
$$z = x_1 + x_2$$

s. t. $2x_1 + 3x_2 = 6$
 $3x_1 + 2x_2 = 6$
 $x_1 + x_2 = 3$
 $x_1, x_2 = 0$

总而言之,可行解域可能是有界的,也可能是无界域,还可能是空集。最优解可以是一个,也可能是无穷多个,还可能解是无界的,甚至可能无解。二维情况如此,高维情况也类似。以上的例子给出线性规划可行解域的一些直观概念。

还应特别指出的是: 有界极值点必在可行解域顶点上取得; 对于二维问题可行解域是由若干直线包围起来的凸多边形, 即边界为直线的凸多边形; 其极值点是凸多边形的顶点。这些特点带有共性, 即对于 n(> 2)维问题, 也有类似的结果。

对于线性规划问题

$$max z = Cx$$
s.t.
$$Ax b$$

$$x 0$$

其中矩阵 $A=(a_{ij})_{m \times n}=(a_1a_2...a_n)$,则问题可改写为

$$\max z = \int_{j=1}^{n} c_{i}x_{i}$$
s.t.
$$\int_{j=1}^{n} a_{j}x_{j} \quad b$$

$$x_{j} \quad 0, \ j = 1, 2, ..., n + m$$

已给向量 $a_1, a_2, ..., a_n$, 寻找非负数 $x_1, x_2, ..., x_n$ 使得

$$b \qquad a_j x$$

成立, 并让 $\prod_{j=1}^{n} c_j x_j$ 取极大值, $\prod_{j=1}^{n} a_j x_j$ 表示由向量 $a_1, a_2, ..., a_n$ 产生的锥体, 其中 $x_j = 0, j = 1, 2, ..., n_o$

例 1.12 对于约束条件为

引进松弛变量 x3, x4 使

$$2x_{1} + x_{2} + x_{3} = 2$$

$$- x_{1} + 3x_{2} + x_{4} = 3$$

$$x_{1} = 0, i = 1, 2, 3, 4$$

$$b = \frac{2}{3}, a_{1} = \frac{2}{-1}, a_{2} = \frac{1}{3}, a_{3} = \frac{1}{0}, a_{4} = \frac{0}{1}$$

$$b = 2a_{3} + 3a_{4}$$

说明存在 x_1, x_2, x_3, x_4 0, 使 b= $a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4$ 故例 1.12 存在可行解域。 例 1.13 对于约束条件为

$$2x_1 + x_2 + x_3 = -2$$

$$-x_1 + 3x_2 + x_4 = 3$$

$$x_1 = 0, i = 1, 2, 3, 4$$

显然不可能找到 x_i 0, i 1, 2, 3, 4, 使 $\frac{-2}{3} = \frac{2}{-1} x_1 + \frac{1}{3} x_2 + \frac{1}{0} x_3 + \frac{0}{1} x_4$ 成立, 故例 1.13 不存在可行解, 它的可行解域是空集。

习 题 一

- 1. 已知有 4 台机器分别位于(3,0), (0,-3), (-2,1)和(1,4)点, 现有一台新机器安放在 (x_1,x_2) 点处。要求:
 - (a) 新机器到其他 4 台机器的街道距离之和最短。所谓 (x_1,x_2) 与 (x_1,x_2) 间街道距离 d指的是

$$d = \mathbb{Q}_{1}^{1} - X_{1} \mathbb{Q}_{1}^{+} \mathbb{Q}_{2}^{+} - X_{2} \mathbb{Q}_{1}^{1}$$

- (b) 若对 (x_1, x_2) 附加条件- 1 x_1 2, 0 x_2 1, 又将如何?
- 2. 一工厂生产两种季节性产品,第一种产品 10 月份到 12 月份需要 100 000 单位;1 到 4 月份只需要 10 000;其他月份需要 30 000 单位。第二种产品从 10 月到 2 月需要 50 000 单位;其余月份只需要 15 000 单位。第一种产品和第二种产品每单位成本分别为 5 元和 8 元。这些产品在 6 月份交货,6 月以后成本分别降为 4.5 元和 7 元,那是由于新设备的引进。这两种产品任何一个月生产总量都不要超过 120 000,此外第一种产品占 2 立方英尺的空间,第二种产品占 1 立方英尺,假定最大库存为 150 000 立方英尺,库存每 1 立方英尺付出 0.1 元。试问应如何安排生产使全部生产费用达到最省。
- 3. 用几何方法解下列问题

(a) max
$$z = 5x_1 + x_2$$
 (b) max $z = 5x_1 + x_2$
s.t. $x_1 + x_2$ 12 s.t. $x_1 + x_2$ 12
 $4x_1 + x_2$ 20 $4x_1 - x_2$ 20
 x_1, x_2 0 x_1, x_2 0

(c) min $z = 3x_1 - x_2$ (d) 问题(c)中, 若 x_1, x_2 不加限制。

s.t.
$$x_1 + 2x_2 = 12$$

 $4x_1 - x_2 = 20$
 $3x_1 + 6x_2 = 36$
 $x_1, x_2 = 0$

(e) max
$$z = x_1 + x_2$$
 (f) min $z = 4x_1 + x_2$
s.t. $x_1 + x_2 = 10$ s.t. $x_1 + 2x_2 = 7$
 $x_1 + x_2 = 5$ $3x_1 + 2x_2 = 30$
 $x_1, x_2 = 0$ $x_1, x_2 = 0$

- 4. 某电视机制造厂决定生产彩色和黑白电视机, 市场调查表明, 每月最多能卖 1 000 台彩电和 4 000 台黑白电视机。假定现每月最多可供 50 000 个工时。而一台彩电需要 20 个工时, 黑白电视需要 15 个工时。每台彩电和黑白电视机的利润分别为 60 美元与 30 美元。问如何安排生产使其利润最大。建立其数学模型。
- 5. 某生产经理正考虑在 4 台机器上加工 3 种产品,每种产品都可以在每台机器上加工,设单位产品代价列表如下(单位:元):

		机	器	
产品	1	2	3	4
1	4	4	5	7
2	6	7	5	6
3	12	10	8	11

各产品在机器上生产每单位产品所需时间(小时)列表如下:

		机	器	
产品	1	2	3	4
1	0.3	0. 25	0. 2	0.2
2	0.2	0. 3	0. 2	0.25
3	0.8	0. 6	0.6	0.5

设需产品数分别为 4 000, 5 000, 3 000, 有效机器时数分别为 1 500, 1 200, 1 500, 2 000, 请建立此问题的线性规划模型。

6. 某钢厂生产 4 种规格的钢条: 小型、中型、大型和超大型。这些钢条可以在 3 种类型 A, B, C 的机器上的任一机器上生产。每台机器每小时可产长度列表如下:(单位: 米)

		机 器	
钢条	A	В	С
小型	300	600	800
中型	250	400	700
 大型	200	350	600
超大型	100	200	300

假定每台机器最多只能使用 50 小时/周,机器每小时代价分别为 30 元,50 元,80 元,不同规格钢条需求量分别为 $10\ 000,8\ 000,6\ 000,6\ 000$ (单位: 米/周)。试建立此问题的线性规划模型。

第2章 单纯形法

2.1 凸 集

2.1.1 凸集概念

定义 $2.1 \quad X$ 是 E^{n} 空间的点集, x_1 和 x_2 是 X 上任意两点, 若对任意 0 1 使得 $x_1 + (1 -)x_2 = X$

则称 X 为凸集。

这里 $x_1 + (1-)x_2$ 表示以 x_1 和 x_2 为两端点的线段, 若设

$$X_{1}^{(1)}$$
 $X_{1}^{(2)}$ $X_{2}^{(2)}$ $X_{2}^{(2)}$ $X_{2}^{(2)}$ $X_{1}^{(2)}$ $X_{1}^{(2)}$ $X_{1}^{(2)}$

则 $x_1 + (1-)x_2 = (x_1 x_2 ... x_n)^T$, 其中 0 1, 且 $x_1 = x_1^{(1)} + (1-)x_1^{(2)}$, i=1,2,...,n。 二维空间凸集的概念容易理解。比如圆 $x^2 + y^2 = R^2$ 就是一个凸集。而图 2.1 所示区 域便为非凸集, 因为在该区域内存在两点 x_1, x_2 使得两点间的联线上有不属于区域的点。

图 2.1

例 2.1 设 $A=(a_{ij})_{m\times n}$, $b=(b_1 b_2 ... b_m)^T$, 存在 x, 使 Ax=b。证明 $\{x @ Ax=b, x=0\}$ 是 凸集。

证明 设
$$x_1$$
: $Ax_1 = b$, $x_1 = 0$
 x_2 : $Ax_2 = b$, $x_2 = 0$
对" $(0 = 1)$: $x = x_1 + (1 - 1)x_2$ 有 $x = 0$, 且
 $Ax = Ax_1 + (1 - 1)Ax_2$
 $= b + (1 - 1)b$
 $= b$

故由凸集定义得证。

定义 2.2 x 是 X 的顶点当且仅当不存在 x_1, x_2 X 及 0 1, 使得 $x=x_1+(1-)x_2$ 成立。

定义 2.3 $\{x \otimes x = b\}$ 称为 E° 空间的超平面, 其中 a 是 E° 的非零行向量, b 为实数。

超平面 $a_1x_1+a_2x_2+...+a_nx_n=b$, 当 n=2 时是 E^2 中的直线, n=3 时为 E^3 中的平面概念的拓广。向量 a 通常称为与超平面正交的法向量。

设 x_0 是超平面中的一个点, 即 $ax_0 = b$

$$a(x - x_0) = 0$$

即向量 a 和平面上的任一向量 x- x_0 正交, 如图 2.2 图 2.2

2.1.2 可行解域与极方向概念

超平面 ax= b是凸集,还可证明线性规划问题的可行解域是凸集。

定义 2.4 称 $\{x @ ax b\}$ 和 $\{x @ ax b\}$ 为 E° 的半空间。

 E^n 被超平面 ax = b 分割成 $\{x @ lx = b\}$ 和 $\{x @ lx = b\}$ 两个半空间。

定义 2.5 $\{x_0+d \odot > 0\}$ 称为以 x_0 为顶点, d 为方向的射线, 其中 d 为非零向量。射线也是凸集。

定义 2.6 已知一凸集, x_0 是集上任意一点, 如若存在非零向量 d, 使得射线 $\{x_0 + d \odot \}$ 0} 也属于该凸集, 则称 d 是凸集的方向。

显然有界域没有方向。

对于超多面体 $\{x \otimes Ax = b, x = 0\}$, d 为该多面体方向的充要条件是 A(x + d) = b, x + d = 0, x + d

总之, d 是多面体 $\{x \bigcirc Ax = b, x = 0\}$ 的方向当且仅当

d 0, d 0,
$$Ad = 0$$

同样理由可证 d 是凸集 $\{x \bigcirc Ax \quad b, x \quad 0\}$ 的方向, 当且仅当 $d \quad 0, d \quad 0,$ 并且 $Ad \quad 0$ 。 凸集的方向集合也是一凸集。

例 2.2 已知凸集 $\{x$ ©Ax b, x 0 $\}$, 其中 A= $\begin{pmatrix} 1 & -2 \\ 1 & -1 \end{pmatrix}$, b= $\begin{pmatrix} -6 \\ -2 \end{pmatrix}$, x= $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ 。见图 2.3。

直观上可以观察到这个例子的方向集合本身也是一凸集。若对方向标准化,即取方向的模为1,则此例有两个方向很特殊:

$$d_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, d_2 = \begin{pmatrix} 2/ \\ 5/ \\ 1/ \end{pmatrix}$$

这两个方向称为极方向,而凸集的任一其他方向都可表示为

$$d = {}_{1}d_{1} + {}_{2}d_{2}, {}_{1}, {}_{2} > 0$$

定义 2.7 d 是凸集的方向, 若不存在两个方向 d_1 和 d_2 , d_1 , d_2 0, 使得 d_1 d_2 d_2 , 则称 d_1 为极方向。

定义 2.8 $a_1, a_2, ..., a_k$ 是一组向量, C= $\begin{bmatrix} k \\ ia_1 \end{bmatrix}$ i 0, i=1, 2, ..., k 称为由 $a_1, a_2, ..., a_k$ 组合成的凸锥。

定义 2.9 有限个半空间的交集 $\{x \bigcirc Ax \ b\}$ 称为多面体,其中 $A=(a_{ij})_{mx}$, $b=(b_1b_2...b_m)^T$,若 b=0 时有 $\{x \bigcirc Ax \ 0\}$ 称为多面锥体,即所有的超平面过原点。

2.2 凸多面体

先讨论有界多面体的情形。

1. n=1 一维的单纯形为线段, 设两端点为 x_1, x_2, x 是线段中任一点, 设 = $\frac{x^2-x_1}{x_2-x_1}$, 则 $x=(1-x_1)x_1+x_2$ 或改写为

$$x = {}_{1}x_{1} + {}_{2}x_{2}, {}_{1} + {}_{2} = 1, {}_{1}, {}_{2} = 0$$
 (2.1)

2. n=2 平面上的单纯形为三角形, 三个顶点设为 x_1, x_2, x_3 。见图 2.4。 x 是三角形内任意一点, 过 x_1, x 引直线交 x_2x_3 线段于 x 点, 根据(2.1)得

$$x = {}_{1}x_{2} + {}_{2}x_{3}, {}_{1} + {}_{2} = 1, {}_{1}, {}_{2} = 0$$
 (2.2)

但 x 在 x_1 与 x 的线段上, 故由(2.1)有

$$x = \mu_1 x_1 + \mu_2 x, \quad \mu_1 + \mu_2 = 1, \quad \mu_1, \quad \mu_2 = 0$$
 (2.3)

将 x 的(2.2)式代入(2.3)得

$$x = \mu_1 x_1 + \mu_1 (_{1}x_2 + _{2}x_3)$$

$$= \mu_1 x_1 + _{1}\mu_2 x_2 + _{2}\mu_2 x_3$$

$$= _{1}x_1 + _{2}x_2 + _{3}x_3$$

$$= _{1}x_1 + _{2}x_2 + _{3}x_3$$

$$= _{1}x_1 + _{2}x_2 + _{3}x_3$$

3. n= 3 三维空间的单纯形为四面体, 四个顶点设为 x_1, x_2, x_3, x_4, x 是单纯形内部一点。过 x_1, x 点引直线交对面于一点 x (见图 2.5), 有 $x = 1x_2 + 2x_3 + 3x_4, 1 + 2 + 3 = 1$, $x_1, x_2, x_3 = 0$ 。又因 $x = \mu_1 x_1 + \mu_2 x, \mu_1 + \mu_2 = 1, \mu_1, \mu_2 = 0$

图 2.4

图 2.5

$$x = \mu x_1 + \mu (1x_2 + 2x_3 + 3x_4)$$

= 1x1 + 2x2 + 3x3 + 4x4

其中 1= μ , 2= 1 μ , 3= 2 μ , 4= 3 μ ,

且 1, 2, 3, 4 0:

依此类推可证一般。

无界多面体的情形

在给出无界多面体的表示之前,先就二维情形作一直观分析。

例图 2.6 中点 x 可以看作是 x 和 μd_1 之和, 其中 d_1 是某一极方向, 即

$$x = x + \mu d_1$$

图 2.6

但
$$x = 1x_1 + 2x_2 + 3x_3$$
, $1 + 2 + 3 = 1$ 且 1, 2, 3 0
 $x = 1x_1 + 2x_2 + 3x_3 + \mu d_1$

定理 2.2 令 $X = \{x \bigcirc Ax = b, x = 0\}$ 为无界多面体,则有有限个顶点 x_1, x_2, x_k 及有有限个极方向 $d_1, d_2, ..., d_h, x = X$ 的充要条件是存在 $a_1, a_2, ..., a_k = 0$, $a_1 + a_2 + ... + a_k = 1$ 及 $a_1, a_2, ..., a_k = 0$, 使得

定理的严格证明从略。

了解凸多面体的结构对讨论线性规划是重要的。

2.3 松弛变量

2.3.1 松弛变量概念

假如讨论的典型问题是

或记为

其中 A= $(a_{ij})_{m \times n}$, C= $(c_1 c_2 \dots c_n)$, X= $(x_1 x_2 \dots x_n)^T$, b= $(b_1 b_2 \dots b_m)^T$ 。

引进变量 X n+ 1, X n+ 2, ..., X n+ m(后面称之为松弛变量)可将问题(2.4)转换为下列形式

或记为

$$\begin{array}{ll}
max & z = Cx \\
s. t. & Ax = b \\
x & 0
\end{array}$$

其中 $x=(x_1 x_2... x_n x_{n+1}... x_{n+m})$, $C=(c_1 c_2... c_{n+m})$, $A=(A \mid I_{(m)})$, $I_{(m)}$ 表示 m 维的单位矩阵。举例如下

引进松弛变量 x3, x4 得

max
$$z = x_1 + x_2$$

s.t. $2x_1 + 3x_2 + x_3 = 6$
 $3x_1 + 2x_2 + x_4 = 6$
 $x_1 = 0, i = 1, 2, 3, 4$

2.3.2 松弛变量的几何意义

 x_1, x_2 是变量, 松弛变量是什么意思呢? $x_1 = 0, x_2 = 0$ 是坐标轴, $x_3 = 0, x_4 = 0$ 又是什么呢? 从 $2x_1 + 3x_2 + x_3 = 6$ 可知, $2x_1 + 3x_2 = 6$ 这条直线便是 $x_3 = 0$; $2x_1 + 3x_2 = 3$ 这条直线便是 $x_3 = 3$ 。所以, 与 $2x_1 + 3x_2 = 6$ 这条直线平行的直线族对应于 $x_3 =$ 常数的平行线族。

同理, 对于 $3x_1+2x_2+x_4=6$, $3x_1+2x_2=6$ 便是 $x_4=0$, 与之平行的直线族 $3x_1+2x_2=c$ 便是 $x_4=$ 常数的平行直线族, 见图 2.7。

图 2.7

图(d) 饶有趣味。可行解域的边界分别为 $x_1=0$, $x_2=0$, $x_3=0$, $x_4=0$, 恰巧是由 4 个约束条件: $x_1=0$, $x_2=0$, $x_3=0$, $x_4=0$, 恰巧是由 4 个约束条件: $x_1=0$, $x_2=0$, $x_3=0$, $x_4=0$, 恰巧是由 4 个约束条件: $x_1=0$, $x_2=0$, $x_3=0$, $x_4=0$, 恰巧是由 4 个约束条件: $x_1=0$, $x_2=0$, $x_3=0$, $x_4=0$, 恰巧是由 4 个约束条件: $x_1=0$, $x_2=0$, $x_3=0$, $x_4=0$, 信万是由 4 个约束条件: $x_1=0$, $x_2=0$, $x_3=0$, $x_4=0$, 信万是由 4 个约束条件: $x_1=0$, $x_2=0$, $x_3=0$, $x_4=0$, 所确定。 4 个顶点(0,0), $x_1=0$, $x_2=0$, $x_3=0$, $x_4=0$,

引进松弛变量后,线性规划问题

变成了

或用矩阵形式写成

$$max z = Cx$$
s.t.
$$Ax= b$$

$$x = 0$$

其中 $A=(A \mid I_{(m)})_{m \in (n+m)}$ 。它的几何意义和 n=2 时的情形类似。不过 n=2 时可行解域的边界是直线,而一般情况下,可行解域的边界为 n 维空间的超平面。n=2 时可行解域的顶点为两条边界线的交点,而 n 维空间可行解域的顶点为 n 个超平面的交点。

2.4 单纯形法的理论基础

2.4.1 极值点的特性

对干问题

$$\begin{array}{cccc} max & z = & Cx \\ s. \, t. & & Ax = & b \\ & & x & 0 \end{array}$$

 $\{x \bigcirc Ax = b, x = 0\}$ 是有界域。 x S, 必存在顶点 $x_1, x_2, ..., x_k$, 使得

$$x = {}_{1}x_{1} + {}_{2}x_{2} + ... + {}_{k}x_{k}$$
 $i = 0, i = 1, 2, ..., k; i + 2 + ... + k = 1$

由于 $Cx = c_1 x_1 + c_2 x_2 + ... + c_n x_n$ 是线性函数,

$$C(x) = C \sum_{i=1}^{k} ix_i = \sum_{i=1}^{k} iC(x_i)$$

要求 z=Cx 达到极大,问题导致求顶点 x_h ,使 $max\{C(x_1),C(x_2),...,C(x_k)\}=M=C(x_h)则 x=x_h$, h=1,其余 i=0(i=h)。

于是找使 C(x) 取 max 的问题变成求凸多面体 $\{x \bigcirc Ax = b, x = 0\}$ 的顶点中使 C(x) 达到最大的点 x_b 。

还是讨论前面的例子。

从联立方程组

$$2x_1 + 3x_2 + x_3 = 6$$

 $3x_1 + 2x_2 + x_4 = 6$

分别求得多边形的顶点:

(1) 边界线 $x_1 = 0$, $x_2 = 0$ 的交点。

以 $x_1 = 0$, $x_2 = 0$ 代入(2.6)的约束条件分别得

故得顶点 $X_1(0,0,6,6)^T$, C=(1,1,0,0), $CX_1=0$ 。

(2) 求边界线 $x_1 = 0, x_3 = 0$ 的交点, 以之代入(2.6)的约束条件得

$$3x_{2} = 6$$

$$2x_{2} + x_{4} = 6$$

$$3 \quad 0 \quad x_{2}$$

$$2 \quad 1 \quad x_{4} = 6$$

$$6 \quad x_{2} = 3 \quad 0^{-1} \quad 6 = 2$$

$$0$$

故得顶点 $X^2(0, 2, 0, 2)^T$, $CX^2=(1, 1, 0, 0)$ $\frac{2}{0}=2$

(3) 边界线 $x_1 = 0, x_4 = 0$ 的交点为

$$3x_{2} + x_{3} = 6 3 1 x_{2} = 6$$

$$2x_{2} = 6 2 0 x_{3} = 6$$

$$\frac{x_{2}}{x_{3}} = \frac{3}{2} \frac{1}{0} \frac{1}{6} = \frac{3}{3}$$

由于 $X_3 = -3 < 0$, 故(0,3,-3,0)不在可行解域上。

(4) 边界线 $x_2 = 0$, $x_3 = 0$ 的交点为

由于 $x_{4}=$ - 3< 0, 故(-3,0,3,0)也不在可行域上。

(5)
$$x_2 = 0$$
, $x_4 = 0$ 的交点为

$$2x_{1} + x_{3} = 6 2 1 x_{1}$$

$$3x_{1} = 6 3 0 x_{3} = 6$$

$$\frac{x_{1}}{x_{3}} = \frac{2}{3} \frac{1}{0} \frac{1}{6} = \frac{2}{2}$$

$$x_{3} = (2, 0, 2, 0)^{T}, Cx_{3} = 2$$

(6) $x_3 = 0$, $x_4 = 0$ 的交点为

$$2x_{1} + 3x_{2} = 6 2 3 x_{1} = 6$$

$$3x_{1} + 2x_{2} = 6 3 2 x_{2} = 6$$

$$x_{1} = 2 3 6 = 6/5$$

$$x_{2} = 3 2 6 = 6/5$$

$$x_{4} \frac{6}{5}, \frac{6}{5}, 0, 0 Cx_{4} = 12/5$$

$$max z = max 0, 2, 2, \frac{12}{5} = 12/5$$

极大值点为 $(x_1, x_2) = (6/5, 6/5)$ 。

2.4.2 矩阵求逆

这里用到矩阵求逆的一种算法。设 $A=(a_{ij})_{n \times n}$,作加边矩阵 $A=(A \mid I_{(n)})$,其中 $I_{(n)}$ 是 n 阶单位阵。对 A 作初等变换(某行乘除以某个数,或某行乘除一数加到另一行去) 相当于对 A 左乘某一矩阵,当将 A 变换成 $(I_{(n)} \mid A^{(-1)})$ 形式时,显然 A 的 $I_{(n)}$ 子矩阵部分变成

其中(1)/2表示第1行除以2,(2)-(1)表第2行减以第1行,余此类推。

$$\frac{2}{3} \quad \frac{3}{2} \quad = \quad \frac{-2/5}{3/5} \quad \frac{3/5}{-2/5}$$

2.4.3 可行解域无界的情况

可行解域为无界域问题,即假定

S:
$$Ax = b$$

 $x = 0$

为无界域。对于 x S, 存在有限个顶点 $x_1, x_2, ..., x_k$ 及有限个极方向 $d_1, d_2, ..., d_k$, 使

$$x = \int_{i=1}^{K} i x_i + \int_{j=1}^{n} \mu d_j$$

其中 $_{\text{i}}$ 0, i 1, 2, ..., k, 且 $_{\text{1}}$ + $_{\text{2}}$ + ...+ $_{\text{k}}$ = 1, μ 0, j = 1, 2, ..., h 。

$$Cx = \int_{i=1}^{k} {}_{i}C(x_{i}) + \int_{j=1}^{h} \mu_{j}C(d_{j})$$

问题导致求

$$\max z = \sum_{i=1}^{k} {}_{i}C(x_{i}) + \sum_{j=1}^{h} \mu C(d_{j})$$

1+ 2+ ...+ k= 1, i 0, i= 1, 2, ..., k; y 0, j= 1, 2, ..., h_o

如若存在 $C(d_i)>0$, 可见在 S 域上 C_X 可无限增长, 问题无解或有无穷大解。若对所有的 j , $C(d_i)<0$, 可选取 μ = 0,j= 1,2,...,h , 问题导致求 $m_{\mu}x$ { $C(x_i)$ }。

例 2.3 求解线性规划问题

max
$$z = -2x_1 + 3x_2$$

s.t. $-x_1 + x_2 + x_3 = 2$
 $-x_1 + 2x_2 + x_4 = 6$
 $x_1 = 0, i = 1, 2, 3, 4$

从图 2.8 可得

$$x_{1} = \begin{array}{c} 0 \\ 0 \end{array}, \quad x_{2} = \begin{array}{c} 0 \\ 2 \end{array}, \quad x_{3} = \begin{array}{c} 2 \\ 4 \end{array}$$

$$d_{1} = \begin{array}{c} 1 \\ 0 \end{array}, \quad d_{2} = \begin{array}{c} 2/\overline{5} \\ 1/\overline{5} \end{array}, \quad C = (-2, 3)$$

$$Cd_{1} = (-2, 3) \begin{array}{c} 1 \\ 0 \end{array} = -2 < 0$$

$$Cd_{2} = (-2, 3) \begin{array}{c} 2/\overline{5} \\ -\overline{5} \end{array} = \frac{-1}{5} < 0$$

$$Cx_{1} = (-2, 3) \begin{array}{c} 0 \\ 0 \end{array} = 0, \quad Cx_{2} = (-2, 3) \begin{array}{c} 0 \\ 2 \end{array} = 6$$

$$Cx_{3} = (-2, 3) \begin{array}{c} 2 \\ 4 \end{array}$$

$$= 8$$

故 $\max z = 8$, 极大值点为(2,4)。

例 2.4
$$\max z = x_1 + x_2$$
$$s. t. - x_1 + x_2 + x_3 = 2$$
$$- x_1 + 2x_2 + x_4 = 6$$
$$x_i \quad 0, i = 1, 2, 3, 4$$

Cd₁= (1, 1)
$$\frac{1}{0} = 1 > 0$$

Cd₂= (1, 1) $\frac{2}{5} = 3 / \frac{5}{5} > 0$

故问题解无界。

综上讨论可见,对于一般问题

$$max z = Cx$$
s.t.
$$Ax = b$$

$$x = 0$$

假定

$$\begin{split} A &= \left(\begin{array}{c|c} A & I_{(m)} \right)_{m \varkappa \quad (n+\ m)} \\ b &= \left(\begin{array}{cccc} b_1 & b_2 & \dots & b_m \end{array} \right)^T \\ C &= \left(\begin{array}{cccc} c_1 & c_2 & \dots & c_n & 0 \dots & 0 \end{array} \right)_{k \varkappa \quad (n+\ m)} \\ A &= \left(\begin{array}{cccc} a_{ij} \right)_{m \varkappa \quad n} \end{split}$$

其中

约束条件有 n+m 个, 可行解域顶点可能有 $C(n+m,n) = \frac{(m+n)!}{m!}$ 个。

因 n 维空间 n 个超平面一般可确定一交点, 所以当 n 和 m 充分大时, 搜索可行解域顶点的穷举法是不可取的。

2.4.4 退化型举例

一般说来, n 维空间的一个顶点由 n 个超平面决定。但是也有例外, 如例 2.5 中所讨论的情况。

例 2.5

max
$$z = x_1 + x_2$$

s.t. $2x_1 + 3x_2 = 6$
 $5x_1 + 2x_2 = 10$
 $7x_1 + 5x_2 = 16$
 $x_1, x_2 = 0$

直观不难发现 $7x_1 + 5x_2 = 16$ 是多余的。过

$$\frac{18}{11}$$
, $\frac{10}{11}$ 有 3 条直线: $2x_1 + 3x_2 = 6$, $5x_1 + 2x_2 = 6$

10 以及 $7_{X_1} + 5_{X_2} = 16$ 。 见图 2.9。

引进松弛变量 X3, X4, X5 得

max
$$z = x_1 + x_2$$

s. t. $2x_1 + 3x_2 + x_3 = 6$
 $5x_1 + 2x_2 + x_4 = 10$
 $7x_1 + 5x_2 + x_5 = 16$
 $x_1 = 0, i = 1, 2, ..., 5$

图 2.9

不难发现, 令 $x_3 = x_5 = 0$

$$2x_1 + 3x_2 = 6$$

 $5x_1 + 2x_2 + x_4 = 10$
 $7x_1 + 5x_2 = 16$

解联立方程组得

$$x_1$$
 18/11
 $x_2 = 10/11$
 x_4 0

 $\mathbb{D} X_1 = 18/11, X_2 = 10/11, X_3 = X_4 = X_5 = 0_0$

类似地令 X₄= X₅= 0 得

$$2x_1 + 3x_2 + x_3 = 6$$

 $5x_1 + 2x_2 = 10$
 $7x_1 + 5x_2 = 16$

解联立方程组得

$$x_1$$
 18/11
 $x_2 = 10/11$
 x_3 0

 $\mathbb{D} x_1 = 18/11, x_2 = 10/11, x_3 = x_4 = x_5 = 0_0$

这个例子是3条直线过同一顶点,即以后讨论时要遇到的退化的情形。

2.5 单纯形法基础

2.5.1 基本公式

这一节将导出单纯形法依据的若干公式。读者务必熟练地掌握它。

上一节已经证明了线性规划的最优解可以在其可行解域的顶点上找到,虽然可将搜索的目标缩小到有限个顶点,但实际上因搜索工作量太大,不可行。

一般对于问题

$$max z = Cx$$
s.t.
$$Ax b$$

$$x 0$$

若 $A=(a_{1j})_{m\times n}$,引进松弛变量 $x_{n+1},x_{n+2},...,x_{n+m}$ 后,将问题转化为求如(2.6)形式可行解域的每一个顶点,它的 n+m 个坐标中必然有 n 个为零,m 个非零,一般如此。非零坐标的变量称为基变量,坐标为零对应的变量为非基变量。例如

max
$$z = x_1 + x_2$$

s. t. $2x_1 + 3x_2 = 6$
 $3x_1 + 2x_2 = 6$
 $x_1, x_2 = 0$

引进松弛变量 x3, x4 后得

max
$$z = x_1 + x_2$$

s.t. $2x_1 + 3x_2 + x_3 = 6$
 $3x_1 + 2x_2 + x_4 = 6$
 $x_1 = 0, i = 1, 2, 3, 4$

 $x_1 = x_2 = 0$, $x_3 = 6$, $x_4 = 6$, 满足约束条件, 故对应于顶点(0, 0, 6, 6), x_3 , x_4 是基变量, x_1 , x_2 为非基变量, (0, 0, 6, 6) 是可行解域的另一个顶点。类似有顶点(6/5, 6/5, 0, 0), 其中 x_1 , x_2 为基变量, x_3 , x_4 为非基变量。对于一般问题也有类似情况。

约束条件为 Ax = b, $A = (a_{ij})_{m \times (m+n)}$, 设 x 分为基变量部分 x_B 和非基变量部分 x_N 。相应地, 目标函数系数 C 也分为基变量对应的系数 C_B 和非基变量的系数 C_N 。矩阵 A 各列也

相应地分为 B 和 N 两部分, 不失一般性, 设 $X = \begin{pmatrix} X_B \\ X_N \end{pmatrix}$, $C = (C_B \mid C_N)$,

$$A = (B \mid N) = (a_1 \ a_2 \ ... \ a_{n+m})$$

其中 B 也可以看作是属于基变量的下标序列, N 是属于非基变量的下标序列, B 是矩阵 A 与 B 序列对应的列, N 是与 N 序列对应的列。 $a_1, a_2, ..., a_{n+m}$ 分别是矩阵 A 的列向量。

$$Ax = b$$
 可以写为 $(B \mid N)$ $\frac{x_B}{x_N} = b$ 即 $Bx_B + Nx_N = b$ 或 $x_B = B^{-1}b - B^{-1}Nx_N = B^{-1}b - B^{-1}a_jx_j$ 如令 $x_N = 0$ 则 $x_B = B^{-1}b$ $z = C_Bx_B + C_Nx_N = C_BB^{-1}b$ 将 $x_B = B^{-1}b - B^{-1}Nx_N = B^{-1}b - B^{-1}a_jx_j$ 代入 $z = C_Bx_B + C_Nx_N = C_B(B^{-1}b - B^{-1}Nx_N) + C_Nx_N = C_BB^{-1}b + (C_N - C_BB^{-1}N)x_N$ $= C_BB^{-1}b + (C_N - C_BB^{-1}a_j)x_j$

可见, 若非基变量 x_j 有 c_j - $C_B B^{-1} a_j > 0$, 则 x_j 从零增加, 使目标函数 z 有所增加, 对提高 z 有好处。后面我们将观察 x_j 增加引起的问题。

总之, 对于非基变量 x_i , 对应的 c_i - $C_B B^{-1} a_i > 0$ 可选择 x_i 从 0 增大以改善目标函数。必须指出, 如若对所有的 j, c_i - $C_B B^{-1} a_i = c_i$ - z_i 0, 则已达到极值点, 因目标函数无法改善了。

如果 $x^*_B = B^{-1}b, x^*_N = 0$ 是

$$\begin{array}{cccc} max & z = & Cx \\ s. t. & Ax = & b \\ & x & 0 \end{array}$$

的可行解,而且 C_N - C_B B^{-1} N 0,则 $x^* = (x_B^*, x_N^*)$ 是最优解。假如 x 是某一可行解,可证

 $Cx \quad Cx^*$

由于
$$x$$
 是可行解, 由 $x^* = B^{-1}b$, 可得

由假定 C_N - C_BB⁻¹N 0 Cx Cx^{*}

2.5.2 退出基的确定与进入基的选择

不失一般性,不妨假定 $A=(a_1\,a_2...\,a_{n+\,m})$ 矩阵经 B^{-1} 左乘后为 $(p_1,p_2,...,p_{n+\,m})$,其中 $p_j=B^{-1}a_j$,而且 $(p_1\,p_2...\,p_m)=I_{(m)}$ 。 即

$$0 \quad 0 \quad 0 \quad \dots \quad 1 \quad p_{\,m,\,\,m+\,\,1} \quad p_{\,m,\,\,m+\,\,2} \quad \dots \quad p_{\,m,\,\,m+\,\,n}$$

假定基变量为 $X_1, X_2, ..., X_m$, 非基变量为 $X_{m+1}, X_{m+2}, ..., X_{m+n}$ 。

对应于一可行解域的一个顶点 $(p_1, p_2, ..., p_m, 0, ..., 0)$,即 $p_0 = p_i p_i$ 表示基变量 $x_i = n \wedge 0$

 p_i , i = 1, 2, ..., m, 其他为非基变量。该点的目标函数值为

$$z_1 = c_1 p_1 + c_2 p_2 + ... + c_m p_m = C_B B^{-1} b$$

若 c_i - $C_B B^{-1} a_i > 0$ 或 c_i - $C_B p_i > 0$

或

由于 从 0 增大, 当

$$= \min_{h} \frac{p_{h}}{p_{hj}} \left| p_{hj} > 0 \right| = \frac{p_{1}}{p_{1j}}, 1 \quad 1 \quad m$$
 (2.7)

(2.7) 式很重要, 从此可见 p_1 - p_3 = 0, p_1 项从 p_0 中消失, 但 p_1 出现, 通常也说 p_1 退出基, 而 p_1 进入基。若 p_1 0, 即 p_1 的所有分量均为负, 这时(2.7)找不到 ,即 p_1 不消失。即随 的无限增长而趋向无穷, 故为无界问题。

$$p_0 = (p_1 - p_{1j})p_1 + (p_2 - p_{2j})p_j + ... + (p_1 - p_{1j})p_1$$

 $+ \dots + (p_m - p_{mj})p_m + p_j$

即 p_1 进入时 p_1 消失, 即从顶点($p_1, p_2, ..., p_m, 0, 0, ... 0$) 改为新的顶点(m 个坐标非零, n 个坐标为 n0):

该点的目标函数值为

$$\begin{split} z &= c_1 (\,p_{\,1} \,-\, p_{\,1j}) \,+\, c_2 (\,p_{\,2} \,-\, p_{\,2j}) \,+\, \ldots \,+\, c_m (\,p_{\,m} \,-\, p_{\,mj}) \,+\, c_j \\ &= c_1 p_{\,1} +\, c_2 p_{\,2} \,+\, \ldots \,+\, c_m p_{\,m} \,+\, (\,c_j \,-\, c_1 p_{\,1j} \,-\, c_2 p_{\,2j} \,-\, \ldots \,-\, c_m p_{\,mj}) \\ &= z_1 \,+\, (\,c_j \,-\, C_B B^{-\,1} a_j) \end{split}$$

 $z_1 = c_1 p_1 + c_2 p_2 + ... + c_m p_m 为(p_1, p_2, ..., p_m, 0, ..., 0)$ 点的目标函数值。

总之, 非基变量 x_i 对应的基 p_i 的进入和基变量 x_i 对应的基 p_i 的退出, 从顶点(p_i , $p_2,...,p_m,0,...,0$) 换到新的顶点

$$(p_1 - p_{1j}, p_2 - p_{2j}, ..., 0, ..., p_m - p_{mj}, 0, ..., 0)$$

使目标函数有所提高,如此反复进行,直至达到极大点。这就是单纯形法。

2.5.3 例

下面用前面讨论过的实例,用单纯形法求解。请读者特别注意符号推演背后的真实含意。

max
$$z = x_1 + x_2$$

s.t. $2x_1 + 3x_2 + x_3 = 6$
 $3x_1 + 2x_2 + x_4 = 6$
 $x_1 = 0, i = 1, 2, 3, 4$

 $p_0 = \frac{6}{6} = 6p_3 + 6p_4$ 说明 $x_3 = 6, x_4 = 6, x_1 = x_2 = 0$, 即基变量为 x_3, x_4 , 非基变量为 x_1, x_2 对应于顶点(0,0,6,6)。

 $c_1 = c_2 = 1$, $c_3 = c_4 = 0$, 故(0, 0, 6, 6) 点的目标函数为 0。 $c_1 - C_B B^{-1} a_1 = 1 > 0$, 取 p_1 作为进入基。

$$p_{1} = \frac{2}{3} = 2p_{3} + 3p_{4}, p_{0} = \frac{6}{6} = 6p_{3} + 6p_{4}$$

$$p_{0} - p_{1} = (6 - 2)p_{3} + (6 - 3)p_{4},$$

$$= \min \frac{6}{2}, \frac{6}{3} = 2 \text{ ft}, 6 - 3 = 0$$

当

$$p_0 = 2p_3 + 2p_1$$

这一过程可以用消去步骤说明如下。已知

$$2x_1 + 3x_2 + x_3 = 6 (1)$$

$$3x_1 + 2x_2 + x_4 = 6 (2)$$

由(2)得
$$x_1 + \frac{2}{3}x_2 + \frac{1}{3}x_4 = 2$$
 (3)

(1) - 2(3)
$$\frac{5}{3}$$
 $x_2 + x_3 = \frac{2}{3}$ $x_4 = 2$ (4)

用(4)取代(1)和(3)并列得

$$\frac{5}{3}x_{2} + x_{3} - \frac{2}{3}x_{4} = 2$$

$$x_{1} + \frac{2}{3}x_{2} + \frac{1}{3}x_{4} = 2$$

此时
$$p_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $p_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $p_2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix} = 2p_3 + 2p_1_0$

即 x_1 和 x_3 作为基, p_1 进入, p_4 退出, (2,0,2,0) 是新的顶点, 目标函数值为 2。这时相当于取

$$B = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}, B^{-1} = \begin{pmatrix} 1 & -2/3 \\ 0 & 1/3 \end{pmatrix}$$

以B一左乘A得

B 左乘 b 得

$$p_0 = \begin{array}{cccc} 1 & -2/3 & 6 \\ 0 & 1/3 & 6 \end{array} = \begin{array}{cccc} 2 \\ 2 \end{array}$$

再进一步重复此过程

$$C_B = \left(\, 0, \, 1 \right), \quad B^{-1} = \begin{array}{c} 1 & - \, \, 2/\, 3 \\ \\ 0 & 1/\, 3 \end{array}$$

$$c_2 - C_B B^{-1} a_2 = 1 - \left(\, 0, \, 1 \right) \, \frac{1}{0} \, \frac{- \, \, 2/\, 3}{1/\, 3} \, \frac{3}{2} = 1 - \left(\, 0, \, 1 \right) \, \frac{5/\, 3}{2/\, 3} = \frac{1}{3} > \, 0$$

故选 p2 作为进入基

$$p_{0} = 2p_{3} + 2p_{1}$$

$$p_{2} = \frac{5}{3}p_{3} + \frac{2}{3}p_{1}$$

$$p_{0} - p_{2} = 2 - \frac{5}{3} p_{3} + 2 - \frac{2}{3} p_{1}$$

$$= \min \frac{6}{5}^{*}, 3 = \frac{6}{5}$$

即 p2 进入, p3 退出。

$$p_0 = \frac{6}{5}p_1 + \frac{6}{5}p_2$$

故基变量 $x_1 = x_2 = \frac{6}{5}$, 非基变量 $x_3 = x_4 = 0$, $\frac{6}{5}$, $\frac{6}{5}$, 0, 0 点的目标函数值为 $z = \frac{12}{5} = 2\frac{2}{5}$

2.6 单纯形法(续)

2.6.1 基本定理

定理 2.3 设 $X = (X_1 X_2 ... X_{n+m})^T$ 满足约束条件

$$Ax = b$$
$$x = 0$$

其中 $A=(a_{ij})_{m\times (m+n)}, b=(b_{i}\ b_{2}...\ b_{m})^{T}, x$ 是可行解域顶点的充要条件是基变量对应于矩阵 A 的列向量线性无关。

证明 用反证法。

先证必要性。设 x 是顶点, 为方便起见, 不失一般性, 不妨设基变量为 $x_1, x_2, ..., x_m$, 非基变量为 $x_{m+1}, x_{m+2}, ..., x_{n+m}$, 即设 $x = (x_1 x_2 ... x_m 0 ... 0)^T$ 。但 $a_1, a_2, ..., a_m$ 线性相关,

其中 a_i 是矩阵 A 的第 i 列列向量, i=1,2,...,m+n, 即

$$A = (a_1 a_2 ... a_{n+m})$$

故存在不全为零的常数 1, 2,..., m, 使得

$$_{1}a_{1} + _{2}a_{2} + ... + _{m}a_{m} = 0$$

令 z= (1 2... m 0...0) T。取 足够小,使

$$x \pm z = 0$$

而且

$$A(x \pm z) = Ax + Az = Ax = b$$

所以

$$x \pm z S$$

S 是可行解域, 令

 $X_1 = X + Z$, $X_2 = X - Z$ 使得

$$x = \frac{1}{2}z_1 + \frac{1}{2}z_2$$

与 x 是顶点的假定矛盾, S 多面体的顶点不可能存在 z_1 S, z_2 S, 使得 x 在 z_1 与 z_2 的连线上。

再证充分性。设 $a_1, a_2, ..., a_m$ 线性无关, 但对应的 $x = (x_1 x_2 ... x_m 0 ... 0)^T$ 不是顶点。

n个

存在 x₁ S, x₂ S, 使

$$x = x_1 + (1 -)x_2, 0 < < 1$$

由于 x 的坐标中 $x_{m+1} = x_{m+2} = ... = x_{n+m} = 0$, 故 x_1 和 x_2 相应的后面 x_2 个坐标均为 x_3 0,

$$x_{1} = (x_{1}^{(1)} \ x_{2}^{(1)} \ x_{3}^{(1)} \ \dots \ x_{m}^{(1)} \ 0 \dots 0)^{T}$$

$$n \uparrow$$

$$x_{2} = (x_{1}^{(2)} \ x_{2}^{(2)} \ x_{3}^{(2)} \ \dots \ x_{m}^{(2)} \ 0 \dots 0)^{T}$$

$$n \uparrow$$

$$y = x + (x_{1} - x_{2}), \ x_{1} - x_{2},$$

$$y - x$$

$$A(y - x) = 0$$

$$(y_{1} - x_{1}) a_{1} + (y_{2} - x_{2}) a_{2} + \dots + (y_{m} - x_{m}) a_{m} = 0$$

这与 $a_1, a_2, ..., a_m$ 线性无关的假定矛盾, 因而 $x \in S$ 的顶点。

2.6.2 退化型概念

定义 2.10 如果 b 可表示成 A 的少于 m 个列向量的线性结合, 称 Ax = b 为是退化型的。

如果退化,则可能出现这样的顶点,它的坐标中零元素的个数超过 n,也就是说有多于 n 个约束平面过一点。除非特别声明,以后讨论中都假定问题不存在退化情况。

定理 2.4 $x=(x_1 x_2... x_{n+m})^T$ S 是 S 顶点的充要条件是 $x_1, x_2, ..., x_{n+m}$ 中非零元素数目是 m 个。

证明 先证必要性。若 x 是顶点, 但非零元素超过 m 个, 不失一般性, 设 $x=(x_1 x_2...x_m x_{m+1} 0 ... 0)^T$, $x_i > 0$, i=1,2,...,m+1, 取

$$A_0 = (p_1 p_2 ... p_{m+1})$$

则方程组

$$A_0z = 0$$

为 m 个约束, m+ 1 个未知数, 故必有非零解。设为

$$z = (z_1 z_2 ... z_{m+1})^T > 0$$

令

$$z = (z_1 z_2 ... z_{m+1} 0...0)^T$$

n- 1 \uparrow

则

$$Az = 0$$

为充分小数, 使 $x_1 > 0$, $x_2 > 0$, 且

$$Ax_{i} = b$$
 $i = 1, 2$

即 X_1 S, X_2 S, 且

$$x = \frac{1}{2}x_1 + \frac{1}{2}x_2$$

 $\mathbf{R} \times \mathbf{E} \times \mathbf{S}$ 顶点的假定相矛盾。

充分性证明: 设 $x = (x_1 x_2 ... x_m 0 ... 0)^T$, 其中 $x_i > 0$, i = 1, 2, ..., m, 证 x 必为 S 的顶点。如若不然, 存在

$$x_i = (x_1^{(i)} x_2^{(i)} \dots x_m^{(i)} 0 \dots 0)^T, i = 1, 2$$

使得

$$x = \frac{1}{2}x_1 + \frac{1}{2}x_2$$

由于假 $x \in S$, i = 1, 2, 故

$$Ax_1 = b$$
 $i = 1, 2$
 $A(x_1 - x_2) = 0$

令

$$y = x + (x_1 - x_2)$$

 $Ay = Ax + A(x_1 - x_2) = b$

设

$$y = (y_1 y_2 ... y_m 0 ... 0)^T$$

 $y_i = x_i + (x_i^{(1)} - x_i^{(2)}), i = 1, 2, ..., m$

是任意实数, 可适当选择使 $y_1,y_2,...,y_m$ 中至少必有一元素为零。结果使得

$$Ay = b$$

即

$$y_1p_1 + y_2p_2 + ... + y_mp_m = b$$

即 b 可表为 A 的少于 m 个列向量的线性结合, 与非退化的假设相矛盾。

2.6.3 单纯形法步骤

针对

$$max z = Cx$$

现在将单纯形法的步骤归纳如下:

- S_1 解方程组确定 X_B , $BX_B = b$, 得 $X_B = B^{-1}b = b$, $X_N = 0$, $Z = C_B X_B$
- S₂ 计算 C_N- C_BB⁻¹N, 即

$$c_{i} - z_{i} = c_{i} - C_{B}B^{-1}a_{i}, i N$$

N 是非基变量的下标序列。若所有的 c_i - z_i 0, i N, 已得到最优解, 终止。 如若不然, c_i - z_i = c_i - C_B B^{-1} a_i > 0, 则转 S_3

- S_3 计算 $p_j = B^{-1}a_j$, 若 $p_j = 0$, 则问题解无界, 否则转 S_4
- S₄ x_j 进入基, 计算

$$= \min_{h} \frac{b_{h}}{p_{hj}} \left| p_{hj} > 0 \right| = b_{k}/p_{kj}$$

Xj 进入基取代 Xk, 即 Xk 退出。转 Sı

这里附带说明 S_2 找进入基 x_i ,满足 c_i - z_i > 0 有 3 种策略:

- $1. \ c_{\rm j} \text{--} \ z_{\rm j} \text{=-} \ m_{\rm i} x \{c_{\rm i} \text{--} \ z_{\rm i} \text{--} c_{\rm i} > 0\}$
- 2. 任一 c_j - z_j > 0
- 3. c_i z_i > 0 是非基变量中下标最小的一个。

图 2.10 是其步骤的流程图。

2.6.4 举例

例 2.6 用单纯形法解线性规划问题

max
$$z = x_1 + 3x_2$$

s.t. $2x_1 + 3x_2 = 6$
 $-x_1 + x_2 = 1$
 $x_1, x_2 = 0$

引进松弛变量 X3, X4, 使问题变为

max
$$z = x_1 + 3x_2$$

s.t. $2x_1 + 3x_2 + x_3 = 6$
 $-x_1 + x_2 + x_4 = 1$
 $x_1 = 0, i = 1, 2, 3, 4$

第一轮迭代:

基变量为 x_3 = 6, x_4 = 1, 非基变量 x_1 = x_2 = 0, B= $\frac{1}{0} \frac{0}{1} \frac{1}{1}, B^{-1} = \frac{1}{0} \frac{0}{1}, C_B = (0 \ 0),$ c_1 - c_1 - c_2 - c_3 - c_4 - c_5 - c_5 - c_6

$$=\frac{b_1}{p_{11}}=\frac{6}{2}=3$$

故 x1 为进入基以取代 x3, x3 为退出基。

以上步骤还可叙述为

1.
$$x_B = \begin{pmatrix} x_3 \\ x_4 \end{pmatrix}$$
, $x_N = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = B^{-1}$

3.
$$B^{-1}a_1 = (2, -1)^{T}$$

4. 为确定退出基, 计算 $=\frac{b_1}{p_{11}}=3$ 。 x_1 进入。

第二轮迭代:

基变量为 X_1, X_4 , 非基变量 X_2, X_3 。

$$B = \begin{cases} 2 & 0 \\ -1 & 1 \end{cases}, B^{-1} = \begin{cases} 1/2 & 0 \\ 1/2 & 1 \end{cases}, C_B = (10)$$

$$b = \begin{cases} X_1 \\ X_3 \end{cases} = B^{-1}b = \begin{cases} 1/2 & 0 & 6 \\ 1/2 & 1 & 1 \end{cases} = \begin{cases} 3 \\ 4 \end{cases}$$

$$c_2 - C_B B^{-1}a_2 = 3 - (10) \begin{cases} 1/2 & 0 & 3 \\ 1/2 & 1 & 1 \end{cases} = 3 - (10) \begin{cases} 3/2 \\ 5/2 \end{cases}$$

$$= 3 - \begin{cases} \frac{3}{2} = \frac{3}{2} > 0 \end{cases}$$

故 x_2 为进入基, $p_2 = B^{-1}a_2 = \frac{1/2}{1/2} \frac{0}{1} = \frac{3/2}{5/2}$ 为确定退出基, 计算 $= \min \frac{3}{3/2}, \frac{4}{5/2} = \min 2, \frac{8}{5} = \frac{8}{5}$

故 X4 退出。

第三轮迭代:

$$x_1, x_2$$
 是基, $B = \begin{pmatrix} 2 & 3 \\ -1 & 1 \end{pmatrix}$, $B^{-1} = \begin{pmatrix} 1/5 & -3/5 \\ 1/5 & 2/5 \end{pmatrix}$
 $b = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1/5 & -3/5 & 6 \\ 1/5 & 2/5 & 1 \end{pmatrix} = \begin{pmatrix} 3/5 \\ 8/5 \end{pmatrix}$, $C_B = \begin{pmatrix} 1 & 3 \end{pmatrix}$
 $c_3 - C_B B^{-1} a_3 = 0 - \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 1/5 & -3/5 & 1 \\ 1/5 & 2/5 & 0 \end{pmatrix} = 0 - \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 1/5 \\ 0 \end{pmatrix} = - \begin{pmatrix} 1 & 5 \\ 5 \end{pmatrix} = 0$
 $c_4 - C_B B^{-1} a_4 = 0 - \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 1/5 & -3/5 & 0 \\ 1/5 & 2/5 & 1 \end{pmatrix} = 0 - \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} -3/5 \\ 6/5 \end{pmatrix} = - \begin{pmatrix} 3 \\ 5 \end{pmatrix} < 0$

至此最优解已找到

$$x_1 = \frac{3}{5}, x_2 = \frac{8}{5}, x_3 = x_4 = 0, max z = \frac{27}{5}$$

显然,我们的第二、三、四次迭代都是按第一次迭代的四个步骤来进行的。

例 2.7 用单纯形法解

max
$$z = 3x_1 + x_2 + 2x_3$$

s.t. $x_1 + 2x_2 + 4x_3$ 18
 $3x_1 + 2x_2 + 12x_3$ 54
 x_1, x_2, x_3 0

引进松弛变量 X4, X5 得

max
$$z = 3x_1 + x_2 + 2x_3$$

s.t. $x_1 + 2x_2 + 4x_3 + x_4 = 18$
 $3x_1 + 2x_2 + 12x_3 + x_5 = 54$
 $x_i = 0, i = 1, 2, ..., 5$

第一轮迭代:

基变量 $X_4, X_5, B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = B^{-1}, C_B = (0\ 0), c_1 - C_B B^{-1} a_1 = 1 > 0, 故 x_1 为进入基。为确定退出基, 计算$

$$= \min \frac{18}{1}, \frac{54}{3} = 18$$

若 X 5 退出,则

$$x_{B} = (x_{4} x_{1})^{T}, B = \begin{bmatrix} 1 & 1 \\ 0 & 3 \end{bmatrix}, B^{-1} = \begin{bmatrix} 1 & -\frac{1}{3} \\ 0 & \frac{1}{3} \end{bmatrix}$$

$$b = B^{-1}b = \begin{pmatrix} 1 & -\frac{1}{3} & 18 \\ 0 & \frac{1}{3} & 54 \end{pmatrix} = \begin{pmatrix} 0 \\ 18 \end{pmatrix}$$

$$c_{2} - C_{B} B^{-1} a_{2} = 1 - (03) \begin{pmatrix} 1 & -\frac{1}{3} & 2 \\ 0 & \frac{1}{3} & 2 \end{pmatrix} < 0$$

$$c_3 - C_B B^{-1} a_3 = 2 - (03)$$

$$0 \frac{1}{3} \frac{4}{12} < 0$$

$$c_{5} - C_{B}B^{-1}a_{5} = 0 - (03) \begin{vmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & \frac{1}{3} & 1 \end{vmatrix} < 0$$

故 $x_1 = 18$, $x_2 = x_4 = x_3 = x_5 = 0$ 便是最优解, $\max z = (3 \ 1 \ 2 \ 0 \ 0)(18 \ 0 \ 0 \ 0)^T = 54$ 。

本例为退化情形。

例 2.8 用单纯形法解

max
$$z = 5x_1 - 2x_2 + 3x_3$$

s.t. $3x_1 + x_2 + 2x_3 + x_4 = 7$
 $x_1 + x_2 + x_5 = 3$
 $x_1 = 0, i = 1, 2, 3, 4, 5$

第一轮迭代:

$$x_B = \begin{pmatrix} x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 7 \\ 3 \end{pmatrix}, C_B = (00), c_1 - C_B B^{-1} a_1 = 5 > 0,$$

故引 x1 为进入基。为确定退出基, 计算

$$= \min \frac{7}{3}, 3 = \frac{7}{3}$$

故 X4 退出。

第二轮迭代:

$$X^{B} = \begin{pmatrix} X_{1} \\ X_{5} \end{pmatrix}, C_{B} = (5 \ 0), B = \begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix}$$

$$B^{-1} = \begin{pmatrix} \frac{1}{3} & 0 \\ -\frac{1}{3} & 1 \end{pmatrix}, B^{-1}b = b = \begin{pmatrix} 7/3 \\ 2/3 \end{pmatrix}$$

$$c_2 - C_B B^{-1} a_2 = -2 - (50)$$

$$-\frac{1}{3} \quad 0 \quad 1 < 0$$

$$c_3 - C_B B^{-1} a_3 = 3 - (50)$$
 $\frac{1}{3} \quad 0 \quad 2 < 0$ $-\frac{1}{3} \quad 1 \quad 0 < 0$

$$c_{4} - C_{B}B^{-1}a_{4} = 0 - (5 0) \begin{vmatrix} \frac{1}{3} & 0 & 1 \\ -\frac{1}{3} & 1 & 0 \end{vmatrix} < 0$$

故 $x_1 = 7/3$, $x_2 = x_3 = x_4 = x_5 = 0$, $z = \frac{35}{3}$ 是最优解。

例 2.9 解线性规划问题

max
$$z = x_1 + 3x_2$$

s. t. $x_1 - 2x_2 = 4$
 $x_1 + x_2 = 3$
 $x_1, x_2 = 0$

引进松弛变量 X3, X4 后得

max
$$z = x_1 + 3x_2$$

s.t. $x_1 - 2x_2 + x_3 = 4$
 $-x_1 + x_2 + x_4 = 3$
 $x_1 = 0, i = 1, 2, 3, 4$

第一轮迭代:

 $x_B = \begin{cases} x_3 \\ x_4 \end{cases} = \begin{cases} 4 \\ 3 \end{cases}$, $c_1 - C_B B^{-1} a_1 = 1 > 0$, x_1 为进入基。为了确定退出基,计算 = 4, 故 x_3 退出。

第二轮迭代:

$$x_{B} = \begin{array}{c} x_{1} \\ x_{4} \end{array}, \ C_{B} = \ (1\ 0) \,, \ B = \begin{array}{c} 1 & 0 \\ - & 1 & 1 \end{array}, \ B^{-1} = \begin{array}{c} 1 & 0 \\ 1 & 1 \end{array}$$

$$b = \begin{array}{c} 1 & 0 & 4 \\ 1 & 1 & 3 \end{array} = \begin{array}{c} 4 \\ 7 \end{array}$$

$$c_{2} - C_{B}B^{-1}a_{2} = 3 - \ (1\ 0) \begin{array}{c} 1 & 0 & - & 2 \\ 1 & 1 & 1 \end{array} = 5 > 0$$

故 x2 为进入基。为了确定退出基,计算

故问题解无界,见图 2.11。

例 2.10 用单纯形法解

max
$$z = 6x_1 + 14x_2 + 13x_3$$

s.t. $x_1 + 4x_2 + 2x_3 - 48$
 $x_1 + 2x_2 + 4x_3 - 60$
 $x_1, x_2, x_3 - 0$

引进松弛变量 X4, X5, 问题变成:

max
$$z = 6x_1 + 14x_2 + 13x_3$$

s.t. $x_1 + 4x_2 + 2x_3 + x_4 = 48$
 $x_1 + 2x_2 + 4x_3 + x_5 = 60$
 $x_1, x_2, x_3, x_4, x_5 = 0$

第一轮迭代:

$$x_{B} = \begin{array}{cccc} x_{4} & & 48 \\ x_{5} & & 60 \end{array}, \ C_{B} = \ (0\ 0)\,, \ B = \begin{array}{cccc} 1 & 0 \\ 0 & 1 \end{array} = \ B^{-1}$$

 c_3 - $C_B B^{-1} a_3 = 13 > 0$, 故将 x_3 引进基变量。为了确定退出基变量, 计算

$$= \min \frac{48}{2}, \frac{60^*}{4} = 15$$

故 X 5 退出。

第二轮迭代:

$$x_{B} = \begin{pmatrix} x_{4} \\ x_{3} \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ 0 & 4 \end{pmatrix}, B^{-1} = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}, b = \begin{pmatrix} 1 &$$

故 x1 作为进入基变量。为了确定退出基变量, 计算

$$p_{1} = \begin{pmatrix} 1 & -\frac{1}{2} & 1 \\ 0 & \frac{1}{4} & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{4} \end{pmatrix}, = \min\{36, 60\} = 36$$

故 X4 退出基变量。

第三轮迭代:

$$x_B = \begin{pmatrix} x_1 \\ x_3 \end{pmatrix}, C_B = \begin{pmatrix} 6 & 13 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ 1 & 4 \end{pmatrix}, B^{-1} = \begin{pmatrix} 2 & -1 \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

$$c_{2} - z_{2} = c_{2} - C_{B}B^{-1}a_{2} = 14 - (6 \quad 13) - \frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} = -9 < 0$$

$$c_{5} - z_{5} = c_{5} - C_{B}B^{-1}a_{5} = -(6 \quad 13) - \frac{1}{2} \quad \frac{1}{2} \quad 1 < 0$$

故

$$x_{B} = \begin{pmatrix} 2 & -1 & 48 & 36 \\ -\frac{1}{2} & \frac{1}{2} & 60 & 6 \end{pmatrix}$$

$$max z = \begin{pmatrix} 6 & 13 \end{pmatrix} \frac{36}{6} = 294_{\circ}$$

2.7 单纯形表格

上面讨论的单纯形法其计算步骤可以程式化为如下一种表格法,即将上面介绍的计算过程变成表上作业。表 2.1 为单纯形表。

表 2.1

	G	X	X 1	X 2	 Хj	 X n+ m	
Хв	Св	b C	C1	C2	 Cj	 Cn+ m	
X B ₁	СВ1	b ₁	a 11	a 12	 a 1j	 a 1,n+ m	b_1/a_{1j}
X B ₂	СВ2	b_2	a ₂₁	a_{22}	 a_{2j}	 a _{2,n+ m}	b_2/a_{2j}
x_{B_k}	c_{B_k}	bk	a k1	a k2	 \mathbf{a}_{kj}	 a k, n+ m	b_k/a_{kj}
XB _m	CB _m	bm	a _{m1}	a m2	 a _{mj}	 a m, n+ m	b _m /a _{mj}
		Z 0	C1 - Z1	C2 - Z2	 Cj - Z j	 Cn+ m- Zn+ m	

表上的元素如表上所标明的一样,不一一说明。

计算过程说明如下:

(1) 计算
$$z_0$$
 及 c_j - z_j , j = 1, 2, ..., n + m
$$z_0 = c_{B_1}b_1 + c_{B_2}b_2 + ... + c_{B_m}b_m$$

$$z_j = c_{B_1}a_{1j} + c_{B_2}a_{2j} + ... + c_{B_m}a_{mj}$$

- (2) 如果所有 c_i z_i 0,则已达到最大值。否则,设 c_i z_i > 0,则 p_j 作为进入基。
- (3) 计算 $= \min\{b_i/a_i, @a_{ij} > 0\} = b_k/a_{kj}$
- (4) 利用 akj 作为主元素进行行消元

$$b_k^{(1)} = b_k/a_{kj}, a_{ki}^{(1)} = a_{ki}/a_{kj}, i = 1, 2, ..., n + m$$

下面说明为什么在以 $a_{\kappa i}$ 为主元素进行列消元时, c_i - z_i , i= 1, 2, ..., n+ m, 也同时进行。

按规定

$$\begin{split} z_1^{(1)} &= c_{B_1} \ a_{11} - \frac{a_{kl}}{a_{kj}} a_{1j} \ + \ c_{B_2} \ a_{21} - \frac{a_{kl}}{a_{kj}} a_{2j} \ + \ \dots \\ &+ \ c_j \frac{a_{kl}}{a_{kj}} + \ \dots + \ c_{B_m} \ a_{ml} - \frac{a_{kl}}{a_{kj}} a_{mj} \\ &= C_B p_1 - \ c_{B_k} a_{kl} + \ c_j \frac{a_{kl}}{a_{kj}} - \frac{a_{kl}}{a_{kj}} (C_B p_j - \ c_{B_k} a_{kj}) \\ &= z_1 + \frac{a_{kl}}{a_{kj}} (c_j - \ z_j) \\ &c_1 - \ z_1^{(1)} = c_1 - z_1 - \frac{a_{kl}}{a_{kj}} (c_j - \ z_j) \end{split}$$

将所得结果写入表中。

还必须特别指出,初始表中原单位阵所在的部分,在迭代过程中便是新基下的逆矩阵 B⁻¹。

请注意, 消元结束, x_j 取代 x_{B_k} 作为新的基, 应将 c_B 列中原为 c_{B_k} 者改为 c_j , 即新的 c_{B_k} = c_i , 新的第 i 列除第 i 个元素变为 i 外, 其余为 i0。

表 2.2 为新的单纯形表。

表 2.2

W n	Св	X	X 1	X 2	 Хj	 X n+ m
Хв	Св	b	C 1	C 2	 Cj	 Cn+ m
$\mathbf{X}\mathbf{B}_1$	Св ₁	$b_1^{(1)}$	$a_{11}^{(1)}$	a 12	 0	 a (1), n+ m
x_{B_2}	СВ2	$b_2^{(1)}$	a ⁽¹⁾	a 22	 0	 a ⁽¹⁾ a ² ,n+ m
Хj	Cj	$b_k^{(1)}$	$a^{(1)}_{k1}$	a k2	 1	 a k, n+ m
XB _m	CB _m	$b_{\mathrm{m}}^{(1)}$	$a_{\mathfrak{m}}^{(1)}$	$a^{(1)}_{ m m2}$	 0	 a (1) m,n+ m
		z ⁽¹⁾	c_{1} - $z_{1}^{(1)}$	$c_2 - Z_2^{(1)}$	 c_j - $z_j^{(1)}$	 Cn+ m- Z(1)

例 2.11 用表上运算解线性规划问题

max
$$z = 3x_1 + 6x_2 + 2x_3$$

s.t. $3x_1 + 4x_2 + x_3 = 2$
 $x_1 + 3x_2 + 2x_3 = 1$
 $x_1 = 0, i = 1, 2, 3$

引进松弛变量 x4, x5, 导致

max
$$z = 3x_1 + 6x_2 + 2x_3$$

s.t. $3x_1 + 4x_2 + x_3 + x_4 = 2$
 $x_1 + 3x_2 + 2x_3 + x_5 = 1$
 $x_i = 0, i = 1, 2, 3, 4, 5$

表上运算如下(见表 2.3):

表 2.3

									_
Хв	Св	X	X 1	X 2	X 3	X 4	X 5		
AB	Св	b C	3	6	2	0	0		_
X 4	0	2	3	4	1	1	0	1/2	
X 5	0	1	1		2	0	1		第一轮迭代
		0	3		2	0	0		
X 4	0	2/3		0	- 5/3	1	- 4/3	2/5	
X 2	6	1/ 3	1/ 3	1	2/3	0	1/ 3	1	第二轮迭代
		2		0	- 2	0	- 2		
X 1	3	2/ 5	1	0	- 1	3/ 5	- 4/5		
X 2	6	1/ 5	0	1	1	- 1/5	3/ 5		第三轮迭代
		12/ 5	0	0	- 1	- 3/5	- 6/5		

从表上可得出最优解

 $x_1 = 3$, $x_2 = 6$, $x_3 = x_4 = x_5 = 0$, max $z = 12/5_0$

为了便于理解,现用单纯形法解之如下,读者可以比较。可见单纯形表格实即单纯形法的表上作业。

第一轮迭代:

1.
$$x_B = \begin{pmatrix} x_4 \\ x_5 \end{pmatrix}$$
, $x_N = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = B^{-1}$, $C_B = (0 \ 0)$

2.
$$c_1$$
- $C_B B^{-1} a_1 = 3 > 0$, c_2 - $C_B B^{-1} a_2 = 6 > 0$ c_3 - $C_B B^{-1} a_3 = 2 > 0$, x_2 作为进入基变量。

3.
$$p_2 = B^{-1}a_2 = \frac{4}{3}$$
, $= \min \frac{2}{4}, \frac{1}{3} = 1/3$, $\& x_5 \& \& .$

第二轮迭代:

1.
$$x_B = \begin{pmatrix} x_4 \\ x_2 \end{pmatrix}$$
, $C_B = \begin{pmatrix} 0 & 6 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 4 \\ 0 & 3 \end{pmatrix}$, $B^{-1} = \begin{pmatrix} 1 & -\frac{4}{3} \\ 0 & 1/3 \end{pmatrix}$

2.
$$c_1 - z_1 = c_1 - C_B B^{-1} a_1 = 3 - (0 \quad 6)$$

$$0 \quad \frac{1}{3} \quad 1 = 1$$

$$c_{3}-z_{3}=2-(0 6) \begin{cases} 1 - \frac{4}{3} \\ 0 \frac{1}{3} \end{cases} = 2-(0 6) -\frac{5/3}{2/3} = -2 < 0$$

$$c_{5}-z_{5}=0-(0 6) \frac{1}{1} \frac{4}{3} 0 = (0 6) \frac{-\frac{4}{3}}{1} = -2 < 0$$

故 X1 为进入基变量。

3.
$$p_1 = \frac{1}{0} - \frac{4/3}{1/3}$$
 $a_1 = \frac{5/3}{1/3}$, $p_0 = \frac{1}{0} - \frac{4/3}{1/3} = \frac{2/3}{1/3}$ $= \min \frac{2}{3} / \frac{5}{3}$, $\frac{1}{3} / \frac{1}{3} = \frac{2}{5}$, 故 x_4 退出。

第三轮迭代:

1.
$$x_B = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
, $C_B = \begin{pmatrix} 3 & 6 \end{pmatrix}$, $B = \begin{pmatrix} 3 & 4 \\ 1 & 3 \end{pmatrix}$, $B^{-1} = \begin{pmatrix} \frac{3}{5} & -\frac{4}{5} \\ -\frac{1}{5} & \frac{3}{5} \end{pmatrix}$

2.
$$c_3$$
- z_3 = 2- $c_B B^{-1} a_3$ = 2- $c_B B^{-$

$$c_{4}-z_{4}=-(3 \quad 6) \quad \frac{\frac{3}{5}}{5}-\frac{\frac{4}{5}}{5} \quad 1 \\ -\frac{1}{5}-\frac{3}{5} \quad 0 = -\frac{3}{5}<0$$

$$c_{5}-z_{5}=-(3 \quad 6) \quad \frac{\frac{3}{5}}{5}-\frac{\frac{4}{5}}{5} \quad 0 \\ -\frac{1}{5}-\frac{3}{5} \quad 1 = -\frac{6}{5} < 0$$

故
$$x = \frac{2}{5} \frac{1}{5} 0 0 0^{T}$$
 是最优解, $\max z = C_B x_B = (3 \ 6) \frac{2}{5} = 12/5$ 。

例 2.12 解线性规划问题

max
$$z = x_1 + 3x_2$$

s. t. $2x_1 + 3x_2 + x_3 = 8$
 $-x_1 + x_2 + x_4 = 1$
 $x_1, x_2, x_3, x_4 = 0$

几何解法如图 2.12 所示。

图 2.12

原问题可改写成

max
$$z = x_1 + 3x_2$$

s.t. $2x_1 + 3x_2 = 8$
 $-x_1 + x_2 = 1$
 $x_1, x_2 = 0$

显然,当直线 $x_1+3x_2=c$ 朝右上方移动时, x_1+3x_2 便是一个逐渐增大的过程,最后在(1,2)点处取得最优解, $\max z=1+3$ 2= 7。

表上作业法如表 2.4 所示。

表 2.4

		_						-
Хв	Св	X C	X 1	X2	x 3	X4 0		
		b	1	5	Ŭ	Ŭ		-
X 3	0	8	2	3	1	0	8/3	
X 4	0	1	- 1		0	1		第一轮迭代
		0	1					
X 3	0	5		0	1	- 3	1	-
X 2	3	1	- 1	1	0	1		第二轮迭代
		3		0	0	0		
X 1	1	1	1	0	1/5	- 3/5		
X 2	3	2	0	1	1/5	2/5		. 第三轮迭代
		7	0	0	- 4/5	- 3/5		· · · · · · · · · · · · · · · · · · ·

从单纯形最终表可以看出与几何解法有相同的最优解。

矩阵方法(单纯形法)

第一轮迭代:

1.
$$x_B = \begin{pmatrix} x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 8 \\ 1 \end{pmatrix}$$
, $C_B = (0\ 0)$, $B = B^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

- 2. c_1 z_1 = 1, c_2 z_2 = 3, x_2 引进作为基变量。
- 3. 为确定退出变量,计算

$$= \min \frac{8}{3}, \frac{1}{1} = 1$$

故 X4 退出基变量。

第二轮迭代:

1.
$$x_B = \begin{pmatrix} x_3 \\ x_2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$, $B^{-1} = \begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix}$

2.
$$C_B = (0 \ 3), c_1 - z_1 = 1 - (0 \ 3) \frac{1}{0} - \frac{3}{1} = 4 > 0$$

X1 引进作为基变量

3. 为了确定退出基变量

$$p_{1} = B^{-1}a_{1} = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 5 \\ -1 \end{bmatrix}$$

$$p_{0} = B^{-1}b = \begin{bmatrix} 1 & -3 & 8 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

= 1,故 X_1 作为进入基变量。

第三轮迭代:

1.
$$x_B = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 3 \\ -1 & 1 \end{pmatrix}$, $B^{-1} = \begin{pmatrix} \frac{1}{5} & -\frac{3}{5} \\ \frac{1}{5} & \frac{2}{5} \end{pmatrix}$

2.
$$c_{3}$$
- z_{3} = 0- (13) $\frac{\frac{1}{5}}{\frac{1}{5}}$ $-\frac{\frac{3}{5}}{\frac{1}{5}}$ $\frac{1}{\frac{2}{5}}$ 0 = - $\frac{\frac{4}{5}}{5}$ < 0 $\frac{\frac{1}{5}}{\frac{1}{5}}$ $-\frac{\frac{3}{5}}{\frac{1}{5}}$ 0 = - $\frac{\frac{3}{5}}{5}$ < 0 $\frac{\frac{1}{5}}{\frac{1}{5}}$ $\frac{\frac{2}{5}}{\frac{1}{5}}$ 1 = - $\frac{\frac{3}{5}}{5}$ < 0

故
$$x_B = \begin{pmatrix} x_1 & 1 \\ x_2 & z \end{pmatrix}$$
 是最优解, max $z = 7$ 。

例 2.13 用表上作业法解

max
$$z = 2x_1 + x_2 - x_3$$

s. t. $x_1 + x_2 + 2x_3 = 6$
 $x_1 + 4x_2 - x_3 = 4$
 $x_1, x_2, x_3 = 0$

引进松弛变量 X4, X5 得

max
$$z = 2x_1 + x_2 - x_3$$

s.t. $x_1 + x_2 + 2x_3 + x_4 = 6$
 $x_1 + 4x_2 - x_3 + x_5 = 4$
 $x_1 = 0, i = 1, 2, 3, 4, 5$

表上运算如下(见表 2.5):

表 2.5

		_						
	C	X	X 1	X 2	X 3	X 4	X 5	
Хв	Св	b C	2	1	- 1	0	0	
X 4	0	6	1	1	2	1	0	6
X 5	0	4		4	- 1	0	1	
				1	- 1	0	0	
X 4	0	2	0	- 3		1	- 1	2/3
X 1	2	4	1	4	- 1	0	1	
		8	0	- 7		0	- 2	
X 3	0	2/3	0	- 1	1	1/ 3	- 1/3	
X 1	2	14/3	1	3	0	1/ 3	2/3	
		26/3	0	- 6	0	- 1/3	- 5/3	

得最优解:

$$x_3 = \frac{2}{3}, x_1 = \frac{14}{3}, x_2 = x_4 = x_5 = 0, \text{ max } z = \frac{26}{3}$$

例 2.14 分别用表上作业和单纯形的矩阵法求解线性规划问题

max
$$z = 2x_1 + 3x_2 + 4x_3$$

s.t. $x_1 + x_2 + 2x_3 + x_4 = 2$
 $x_1 + 4x_2 - x_3 + x_5 = 1$
 $x_1 + 2x_2 - 4x_3 + x_6 = 1$
 $x_1 = 0, i = 1, 2, ..., 6$

表上运算如单纯形表(表 2.6)所述。

从表上可以看出最优解:

$$(x_1 x_2 x_3 x_4 x_5 x_6)^T = 0 \frac{4}{9} \frac{7}{9} 0 0 \frac{29}{9}^T, \text{ max } z = \frac{40}{9}$$

下面与矩阵方法进行比较。

第一轮迭代:

$$x_4$$
 1 0 0
1. $x_B = x_5$, $B = 0$ 1 0 = B^{-1} , $C_B = (0 \ 0 \ 0)$
 x_6 0 0 1
2. $c_1 - z_1 = 2 - C_B B^{-1} a_1 = 2$
 $c_2 - z_2 = 3 - C_B B^{-1} a_2 = 3$

$$c_3$$
- z_3 = 4- $C_BB^{-1}a_3$ = 4

因为 4 最大, 所以选 x3 作为入基变量。

3. = 1,故 X_4 退出基变量。

表 2.6

			ı	1	I	I	I	I	
	C	X	X 1	X 2	X 3	X 4	X 5	X 6	
X B	Св	b C	2	3	4	0	0	0	
X 4	0	2	1	1		1	0	0	
X 5	0	1	1	4	- 1	0	1	0	
X 6	0	1	1	2	- 4	0	0	1	
			2	3		0	0	0	
X 3	4	1	1/2	1/2	1	1/2	0	0	2
X 5	0	2	3/ 2		0	1/2	1	0	
X 6	0	5	3	4	0	2	0	1	5/ 4
_		4	0		0	- 2	0	0	
X 3		7/9	1/3	0	1	4/ 9	- 1/9	0	
X 2		4/9	1/3	1	0	1/9	2/9	0	
X 6		29/9	5/ 3	0	0	14/ 9	- 8/9	1	
		40/9	- 1/3	0	0	- 19/9	- 2/9	0	

第二轮迭代:

因为仍有 1> 0, 故选 x² 作为入基变量。

$$p_{2} = B^{-1}a_{2} = \begin{bmatrix} \frac{1}{2} & 0 & 0 & 1 & \frac{1}{2} \\ \frac{1}{2} & 1 & 0 & \frac{4}{2} & = & 9/2 \\ 2 & 0 & 1 & & 4 \end{bmatrix}$$

$$= \min 2, \frac{1}{3}, 5/4 = \frac{1}{3}$$

故 X5 便为退出基变量。

第三轮迭代:

$$x_3$$
 2 1 0 4/9 - 1/9 0
1. $x_B = x_2$, x_2 , x_3 2 1 0 x_4 1 1/9 2/9 0, x_5 2 1 1/9 2/9 1 1/9 2/9 1

$$\frac{4}{9} - \frac{1}{9} = 0$$

$$2. c_{1} - z_{1} = c_{1} - C_{B}B^{-1}a_{1} = 2 - (4 \ 3 \ 0) = \frac{1}{9} = \frac{2}{9} = 0$$

$$\frac{14}{9} - \frac{8}{9} = 1$$

$$\frac{4}{9} - \frac{1}{9} = 0$$

$$c_{4} - z_{4} = c_{4} - C_{B}B^{-1}a_{4} = - (4 \ 3 \ 0) = \frac{1}{9} = \frac{2}{9} = 0$$

$$\frac{14}{9} - \frac{8}{9} = 1$$

$$\frac{4}{9} - \frac{1}{9} = 0$$

$$c_{5} - z_{5} = -(4\ 3\ 0) = \frac{1}{9} = \frac{2}{9} = 0 = 0$$

$$\frac{14}{9} - \frac{8}{9} = 1$$

故
$$x_2 = \frac{4}{9}$$
, $x_3 = \frac{7}{9}$, $x_6 = \frac{29}{9}$, $x_1 = x_4 = x_5 = 0$ 是最优解, max $z = C_B x_B = \frac{7}{9}$ (4 3 0) $\frac{4}{9} = \frac{40}{9}$ °。 $\frac{29}{9}$

例 2.15 用表上运算解

解法见下面单纯形表(表 2.7)。

表 2.7

		X	X 1	X 2	X 3	X 4	X 5	X 6	X 7	
Хв	Св	b C	3	2	- 1	1	0	0	0	
X 5	0	8	2	- 4	- 1	1	1	0	0	4
X 6	0	10	1	1	2	- 3	0	1	0	10
X 7	0	3		- 1	- 4	1	0	0	1	
		0		2	- 1	1	0	0	0	
X 5	0	2	0	- 2		- 1	1	0	- 2	2/ 7
X 6	0	7	0	2	0	- 4	0	1	- 1	7/6
X 1	3	3	1	- 1	- 4	1	0	0	1	
		9	0	8	?	- 2	0	0	- 3	
X 3	- 1	2/7	0	- 2/7	1	- 1/7	1/7	0	- 2/7	
X 6	0	37/7	0	26/7	0	- 22/7	- 6/7	1	5/7	
X 1	3	29/7	1	- 15/7	0	3/ 7	4/7	0	3/7	
		85/7	0	30/7	0	- 3/7	- 11/7	0	11/7	
X 3	- 1	126 182	0	0	1	- <u>51</u> 7	<u>7</u> 91	14 182	- <u>42</u> 182	
X 2	2	37 26	0	1	0	- <u>22</u> 7	$-\frac{6}{26}$	$\frac{7}{26}$	<u>5</u> 26	
X 1	3	1309 182	1	0	0	- <u>309</u> - 49	<u>14</u> 182	105 182	<u>153</u> 182	
		1442 182	0	0	0	<u>820</u> 49	<u>656</u> 182	- <u>399</u> 182	- <u>265</u> 182	

 x_4 列对应的 $p_4 < 0$, 故问题无解。

习 题 二

1. 对线性规划问题

max
$$z = x_1 - 2x_2 - x_3 + x_4$$

s.t. $3x_1 + 2x_2 + x_3 = 5$
 $x_1 + 2x_2 + x_4 = 6$
 $x_1 = 0, i = 1, 2, 3, 4$

试列出所有的基矩阵,并讨论它对应的解是否为可行解。

2.
$$\max z = x_1 + x_2 + 2x_3 + x_4 - x_5 + 3x_6 + x_7$$
 s. t.
$$x_1 + 2x_3 + 2x_4 + x_6 = 4$$

$$x_2 + x_3 + 3x_4 + 4x_6 = 4$$

$$x_3 + 2x_4 + x_5 + 4x_6 = 2$$

$$x_3 + 3x_4 + x_6 + x_7 = 5$$

$$x_i \quad 0, \quad i = 1, 2, ..., 7$$

 $x = (4, 4, 0, 0, 0, 2, 5)^{T}$ 是否是可行解? 为什么?

3. 设线性规划问题

$$\max z = x_1 + 3x_2$$
s.t.
$$-x_1 + x_2 + 4$$

$$-x_1 + 2x_2 + 12$$

$$x_1 + x_2 + 10$$

$$x_1, x_2 + 0$$

画出可行解域,并用图解法求解。

4. 设 S 是满足约束条件 Ax b 的域,其中 A 是 mx n 的矩阵, m> n,则 x_0 是某一顶点的 充要条件是 A 和 b 分别可以分解为

$$A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}, b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

其中 A₁, b₁ 有 n 行, A₂, b₂ 有 m- n 行, 使得

$$A_1 x_0 = b_1, A_2 x_0 b_2$$

5.
$$\max z = 2x_1 + x_2 - x_3$$
s. t.
$$x_1 + x_2 + 2x_3 = 6$$

$$x_1 + 4x_2 - x_3 = 6$$

$$x_1, x_2, x_3 = 0$$

求出可行解域顶点,计算它的目标函数,并求问题的最优解。

6.
$$\max z = x_1 + 2x_2 + 4x_3 + x_4 + 5x_5 + x_6$$
s. t.
$$2x_1 + 6x_2 + 3x_3 + 2x_4 + 3x_5 + 4x_6 = 600$$

$$x_i = 0, i = 1, 2, ..., 6$$

求所有的基可行解,通过比较它们的值找出最优解。

7. 分别用图解法和单纯形法求解

max
$$z = 5x_1 + 4x_2$$

s.t. $x_1 + 2x_2 = 6$
 $2x_1 - x_2 = 6$
 $5x_1 + 3x_2 = 15$
 $x_1, x_2 = 0$

8. 用单纯形法求解下列线性规划问题,每一轮都确定它的 B 和 B · 。

max
$$z = 3x_1 + 2x_2$$

s.t. $2x_1 - 3x_2 - 3$
 $-x_1 + x_2 - 5$
 $x_1, x_2 - 0$

9. 已知(4,0)点是下列问题的基可行解,由此起步解下面问题

max
$$z = -x_1 + 2x_2$$

s.t. $3x_1 + 4x_2 = 12$
 $2x_1 - x_2 = 12$
 $x_1, x_2 = 0$

- 10. 用表上作业法和单纯形法的矩阵运算求解下列线性规划问题:
- (a) $\max z = 20x_1 + 24x_2$

s. t.
$$2x_{1} + x_{2} + 24$$

$$2x_{1} + 3x_{2} + 48$$

$$x_{1} + x_{2} + 20$$

$$2x_{1} - 3x_{2} + 0$$

$$x_{1}, x_{2} + 0$$

(c) max
$$z = 10x_1 + 8x_2$$

s.t. $2x_1 + x_2 = 4$
 $3x_1 + x_2 = 10$

$$x_1, x_2 = 0$$

(e) max
$$z=$$
 $x_1-2x_2+x_3$
s.t. $x_1+x_2+x_3$ 12
 $2x_1+x_2-x_3$ 6
 $-x_1+3x_2$ 9
 x_1, x_2, x_3 0

(b) max
$$z = 45x_1 + 15x_2$$

s. t.
$$4x_{1}+ x_{2} 364$$

 $8x_{1}+ 5x_{2} 120$
 $x_{1} 0, 0 x_{2} 2$

(d) max
$$z = 5x_1 + 4x_2 + 2x_3$$

s.t.
$$2x_1 + x_2 + x_3 = 4$$

 $4x_1 + 4x_2 + 2x_3 = 12$
 $x_1, x_2, x_3 = 0$

(f) max
$$z = 2x_1 + x_2 - 3x_3 + 5x_4$$

s. t.
$$x_{1} + 2x_{2} + 4x_{3} - x_{4} = 6$$

$$2x_{1} + 3x_{2} - x_{3} + x_{4} = 12$$

$$x_{1} + x_{3} + x_{4} = 4$$

$$x_{i} = 0, \quad i = 1, 2, 3, 4$$

第3章 改善的单纯形法

3.1 数学准备

3.1.1 改善之一: $C_B(B^{-1}a) = (C_BB^{-1})a$

单纯形法至今依然是线性规划最常用的算法。所谓改善的单纯形法只不过是对单纯形法某些步骤作些改进,使得效率提高许多。也就是说,前面讲的单纯形法步骤中有若干多余的计算,可以省略。读者通过计算的过程也可以发现。

例如对于i N 反复计算

$$c_i$$
 - z_i = c_i - $C_B B^{-1} a_i$
但 $C_B B^{-1} a_i = C_B (B^{-1} a_i) = (C_B B^{-1}) a_i$

 $C_B(B^{-1}a_i)$ 即先计算 $B^{-1}a_i$, 再计算 $C_B(B^{-1}a_i)$, 是单纯形表格用的方法。根据矩阵乘法的结合律, 先计算 = C_BB^{-1} , 再计算 c_i - z_i = a_i , 也可以节省计算量。

3.1.2 改善之二: 矩阵求逆

单纯形法求解过程的关键性计算是对基矩阵求逆,换一个基后还要对新矩阵求逆,新旧矩阵仅仅一列之差,它的求逆有没有更方便的方法?矩阵求逆在线性代数中讨论得很多,常用的有约当(Jordan)求逆法。这是一般的方法。特殊的问题能否利用其特殊性?答案是肯定的。其实,在从事单纯形表格计算时,细心的读者不难发现无需整个表格消元完毕后,B⁻¹才出来,其实只要进入的基的列作主元素消去法,就可以确定 B⁻¹。

下面先讨论一个问题

已知 B₀= (p₁ p₁... p_k... p_n)_{nx} n及 B₀⁻¹, 矩阵 B_n 只是 B₀ 中的 p_k 列改为 p, 即

$$B_n = (p_1 p_2 ... p ... p_n)_{n \in n}$$

第k列

求 Bil。令

$$B_{\circ}y = p, y = B_{\circ}^{-1}p = (y_1 y_2 ... y_n)^T$$

令

$$0 \quad 0 \quad \dots \quad y_n \quad \dots \quad 1$$

即 E_k 为 n 的单位阵 $I_{(n)}$ 第 k 列用 y 取代之, 其中 e_i 为第 i 个元素为 1 的单位列向量。

不难验证

$$B_0E_k=B_n$$
因 $B_0e_i=p_1,\ i=1,2,...,n,B_0y=p$ $B_0^{-1}=(B_0E_k)^{-1}=E_k^{-1}B_0^{-1}$ 但 $1=0-...-y_1/y_k=...=0$ $0=1/y_k=0$ $E_k^{-1}=0=0$ $1/y_k=0$ $0=1/y_k=0$ $0=1/y_k=0$

第k列

D 即为 E_k^{-1} 。这个过程只要对列向量 y 以 y_k 为主元素进行列消元时, 右半部分便出现 E_k^{-1} 。这说明以 y 的 y_k 为主元素进行列消元的过程相当于左乘以 E_k^{-1} 。这一点非常重要, 在改善单纯形法中主要改善之点便在于求 B_k^{-1} 。另一方面请注意

第k列

都说明用 Ek 左乘干 B。 相当于对增广矩阵

$$\mathbf{B}_{o}^{-1} \mid \mathbf{y}$$

对 y 以 y k 为主元素进行列消元, 即得

$$B_n^{-1} \mid E_k$$

例 3.1 已知

求 B⁻¹。

第一步求 y=
$$B_{\circ}^{-1}$$
p= $1/9$ 0 1 $1/3$ 第一步求 y= B_{\circ}^{-1} p= $1/9$ 2/9 0 1 = $1/3$,问题变成对下列增广矩阵对 $14/9$ - $8/9$ 1 0 $2/3$

所示的元素进行列消元。

3.2 改善的单纯形法

3.2.1 改善单纯形法步骤

改善的单纯形法就是单纯形法,不同点在于矩阵 B 求逆的方法,以及求 $C_N - C_B B^{-1}N$ 时用到的方法。改善的单纯形法大大降低了时间复杂度。后面还将看出空间复杂性变化不大。

为例, 求解步骤如下:

- S1. 确定 XB, 求 B⁻¹
- S 2. 计算 = $C_B B^{-1}$, c_{i-} $z_{i=}$ c_{i-} a_{i} , i N, 若所有 c_{j} z_{j} 0, 则已达到最优解, 结束。 若 c_{j} z_{j} > 0, 则 x_{j} 进入基变量。转 S 3。
- S3. 为了确定退出基, 计算 $b=B^{-1}b$, $p_i=B^{-1}a_i$ 。若 $p_i=0$, 则问题无界。

$$= \min_{h} \frac{b_{h}}{p_{hj}} | p_{hj} > 0 = \frac{b_{k}}{p_{kj}}$$

则 Xk 为退出基变量, 转 S1。

3.2.2 举例

例 3.2 用改善单纯形法求解

max
$$z = 2x_1 + x_2$$

s.t. $x_1 + 4x_2 = 32$
 $x_1 + x_2 = 11$
 $5x_1 + x_2 = 35$
 $x_1, x_2 = 0$

引进松弛变量 X3, X4, X5, 问题变为:

$$\max z = 2x_1 + x_2 + 0 ; x_3 + 0 ; x_4 + 0 ; x_5$$
s.t.
$$x_1 + 4x_2 + x_3 = 32$$

$$x_1 + x_2 + x_4 = 11$$

$$5x_1 + x_2 + x_5 = 35$$

$$x_1 = 0, i = 1, 2, ..., 5$$

第一轮迭代:

$$x_3$$
 32 1 0 0
1. $x_B = x_4 = 11$, $B = 0$ 1 0 = B^{-1} , $C_B = (0 \ 0 \ 0)$
 x_5 35 0 0 1
1 0 0

2.
$$= C_B B^{-1} = (0\ 0\ 0) \ 0 \ 1 \ 0 = (0\ 0\ 0)$$

 $c_1 - z_1 = c_1 - a_1 = 2 > 0$

因 2> 1 故选 x1 作为进入基变量。

3. 为了确定退出基, 计算 b=b, p=a

$$= \min 32, 11, \frac{35}{5} = 7$$

故 x5 作为退出基变量。

 c_2 - z_2 = c_2 - a_2 = 1> 0

第二轮迭代:

 $= \min \frac{25}{19/5}, \frac{4}{4/5}, \frac{7}{1/5} = 5$

故 X4 退出。

2.
$$= C_B B^{-1} = (0 \ 1 \ 2) \ 0 \ \frac{5}{4} \ - \frac{1}{4} = 0 \ \frac{3}{4} \ \frac{1}{4}$$

$$0 \ - \frac{1}{4} \ \frac{1}{4}$$

$$0 \ c_{4^-} \ a_{4^-} = 0 \ \frac{3}{4} \ \frac{1}{4} \ 1 = - \frac{3}{4} < 0$$

$$0 \ c_{5^-} \ a_{5^-} = 0 \ \frac{3}{4} \ \frac{1}{4} \ 0 = - \frac{1}{4} < 0$$

故

$$x_N = \frac{X_4}{X_5} = 0$$
 是最优解。
$$6$$
max z= (0 1 2) 5 = 17

例 3.3 用改善单纯形法求解

max
$$z = -x_1 - x_2 + 4x_3$$

s.t. $x_1 + x_2 + 2x_3 + x_4 = 9$
 $x_1 + x_2 - x_3 + x_5 = 2$
 $-x_1 + x_2 + x_3 + x_6 = 4$
 $x_1 = 0, i = 1, 2, ..., 6$

第一轮迭代:

1.
$$x_B = (x_4 x_5 x_6)^T$$
, $C_B = (0 \ 0 \ 0)$
 $1 \ 0 \ 0$
 $B = B^{-1} = 0 \ 1 \ 0$
 $0 \ 0 \ 1$

3. 为了确定退出基,计算

$$= \min \frac{9}{2}, \frac{4}{1} = 4, 故 x_6 退出。$$

第二轮迭代:

第二程 医 \(\text{C} \).

1.
$$x_B = (x_4 x_5 x_3)^T$$
, $C_B = (0 0 4)$

1 0 2

B= 0 1 - 1 , 求 B⁻¹。

0 0 1

1 0 0 2 1 0 0 2 1 0 - 2 0

0 1 0 - 1 0 1 1 0 0 1 1 0 0 1 1

1 0 2 - 1 1 0 - 2

故 0 1 - 1 = 0 1 1

0 0 1 0 0 1

1 0 - 2

2. = $C_B B^{-1} = (0 0 4) 0 1 1 = (0 0 4)$

$$c_{2}-z_{2}=c_{2}-a_{2}=-1-(0\ 0\ 4)\ 1=-5<0$$

故 xī 选为进入基变量。

第三轮迭代:

$$x_1$$
 1 0 2
1. $x_B = x_5$, $B = 1$ 1 - 1, 求 B^{-1} 。
 x_3 - 1 0 1
1 0 - 2 1 3
 $y = 0$ 1 1 1 = 0
0 0 1 - 1 - 1

故 B⁻¹ = 0 1 1 。
$$\frac{1}{3} \quad 0 \quad -\frac{2}{3}$$

$$\frac{1}{3} \quad 0 \quad -\frac{2}{3}$$
2. $C_B = (-1 \quad 0 \quad 4), \quad = C_B B^{-1} = (-1 \quad 0 \quad 4) \quad 0 \quad 1 \quad 1 \quad = (1 \quad 0 \quad 2)$

$$\frac{1}{3} \quad 0 \quad \frac{1}{3}$$

$$c_2$$
- c_2 - c_3 - 1- c_4 - 1- c_5 - 1-

$$c_{4}$$
 z_{4} - (1 0 2) 0 = - 1< 0

$$0$$
 c_6 - z_6 = - $(1 \ 0 \ 2)$ $0 = - 2 < 0$
 1
故 $x_1 = \frac{1}{3}$, $x_2 = 0$, $x_3 = \frac{13}{3}$, $z = 17$ 是最优解。

3.3 改善的单纯形法表格及其分析

3.3.1 改善的单纯形法表格

改善的单纯形法也可以在表上进行作业,目的在于使运算能够紧凑地进行。表格如下 (见表 3.1),其中 p_k 是进入基, $p_k = B_0^{-1} a_k$ 。

表 3.1

Хв	Св	b	B ⁻¹	ak	рĸ	
		Z	СвВ- 1			

例 3.4 见上一节例 3.3, 读者可以比较。

 c_1 - z_1 = - 1, c_2 - z_2 = - 1, c_3 - z_3 = 4, 故 x_3 进入。将 p_3 填入表 3.2 和表 3.4。

表 3.2

Хв	Св	b		B ⁻¹		a k	рk	
X 4	0	9	1	0	0	2	2	9/2
X 5	0	2	0	1	0	- 1	- 1	
X 6	0	4	0	0	1	1		
		0	0	0	0			

表 3.3

Хв	Св	b		B ⁻¹		p
X4	0	1	1	0	- 2	0
X 5	0	6	0	1	1	0
X 3	4	4	0	0	1	1
		16	0	0	4	

c₁- z₁= - 1- (0 0 4) 1 = 3> 0, 故 x₁ 进入基变量。

- 1

表 3.4

XB	Св	b		B ⁻¹		a 1	p 1	
X 4	0	1	1	0	- 2	1		
X 5	0	6	0	1	1	1	0	
X 3	4	4	0	0	1	- 1	- 1	
		16	0	0	4			

表 3.5

ΧB	Св	b		B.	1	p 1
X 1	- 1	1/ 3	1/3	0	- 2/3	1
X 5	0	6	0	1	1	0
X 3	4	13/ 3	1/3	0	1/3	0
		17	- 1	0	2	

故 $x_1 = \frac{1}{3}$, $x_2 = 0$, $x_3 = \frac{13}{3}$, max z = 17 是最优解。

例 3.5 用改善单纯形表格解

 c_{5} - z_{5} = 4> 0,选 x_{5} 进入基变量改善单纯形表格见表 3.6。

表 3.6

ХВ	Св	b		\mathbf{B}^{-1}		a 5	p 5	
X 7	0	6	1	0	0	1	1	6
X 8	0	4	0	1	0	0	0	
X 9	0	4	0	0	1	2		
		0	0	0	0			

消元得

Хв	Св	b		B ⁻¹		p 5
X 7	0	4	1	0	- 1/2	0
X 8	0	4	0	1	0	0
X 5	4	2	0	0	1/2	1

1

 c_1 - z_1 = 1- (0 0 2) 2 = 1> 0, 故 x_1 进入基变量(见表 3.7)。

表 3.7

Хв	Св	b		B ⁻¹		a ₁	p 1	
X 7	0	4	1	0	- 1/2	1	1	4
X 8	0	4	0	1	0	2		
X 5	4	2	0	0	1/2	0	0	
		8	0	0	2			

消元得

Хв	Св	b		B ⁻¹		p 1
X 7	0	2	1	- 1/2	- 1/2	0
X 8	1	2	0	1/2	0	1
X 5	4	2	0	0	1/2	0

$$c_2$$
- z_2 = 2- 0 $\frac{1}{2}$ 2 - 1 = $\frac{3}{2}$ > 0, 故 x_2 进入基变量(见表 3.8)。

表 3.8

Хв	Св	b		B ⁻¹		a 2	p 2	
X 7	0	2	1	- 1/2	- 1/2	1		
X 1	1	2	0	1/2	0	- 1	1/2	
X 5	4	2	0	0	1/2	0	0	
		10	0	1/2	2			

消元得

X _B	Св	b		B ⁻¹		p 2
X 2	2	4/ 3	2/3	- 1/3	- 1/3	1
X 1	1	8/ 3	1/3	1/3	- 1/6	0
X 5	4	2	0	0	1/2	0

$$c_{3}-z_{3}=-1-\frac{5}{3}-\frac{1}{3}\frac{7}{6}-2=-1-\frac{73}{30}<0$$

$$c_{4}-z_{4}=1-\frac{5}{3}-\frac{1}{3}\frac{7}{6}\frac{1}{1}=1-\frac{43}{30}<0$$

$$c_{4}$$
- z_{4} = 1- $\frac{5}{3}$ - $\frac{1}{3}$ $\frac{7}{6}$ $\frac{1}{1}$ = 1- $\frac{43}{30}$ < 0

$$c_{6} - z_{6} = -2 - \frac{5}{3} - \frac{1}{3} \frac{7}{6} \quad 0 = -2 - \frac{17}{6} < 0$$

$$c_{7} - z_{7} = -\frac{5}{3} - \frac{1}{3} \frac{7}{6} \quad 0 = -\frac{5}{3} < 0$$

$$c_{8} - z_{8} = -\frac{5}{3} - \frac{1}{3} \frac{7}{6} \quad 1 = \frac{1}{3} > 0$$

$$c_{9} - z_{9} = -\frac{7}{6} < 0$$

x₈作为进入基变量(见表 3.9 和表 3.10)。

表	3.9							
ХВ	Св	b		B ⁻¹		a ₈	p8	
X 2	2	4/3	2/3	- 1/3	- 1/3	0	- 1/3	
X 1	1	8/3	1/3	1/3	- 1/3	1		
X 5	4	2	0	0	1/2	0	0	
		22/3	5/3	- 1/3	7/ 6			

消元得

Хв	Св	b		B ⁻¹		p 8
X 2	2	4	1	0	- 1/2	0
X 8	0	8	1	1	- 1/2	1
X 5	4	2	0	0	1/2	0

表 3.10

Хв	Св	b		B ⁻¹	
X 2	2	4	1	0	- 1/2
X 8	0	8	1	1	- 1/2
X 5	4	2	0	0	1/2
		16	2	0	1

消元得

Хв	Св	b		B ⁻¹		p 8
X ₂	2	4	1	0	- 1/2	0
X 8	0	8	1	1	- 1/2	1
X 5	4	2	0	0	1/2	0

$$c_{1}-z_{1}=1-(2\ 0\ 1)\ 2=-1<0$$

$$c_{3}-z_{3}=-4<0$$

$$c_{4}-z_{4}=-2<0$$

$$c_{6}-z_{6}=-1<0$$

$$c_{7}-z_{7}=-2<0$$

$$c_{9}-z_{9}=-1<0$$

$$x_{2}-4$$
故 $x_{B}=x_{8}=8$, $x_{N}=0$, $max\ z=16$ 是最优解。

3.3.2 改善单纯形法的复杂性分析

还是以问题

$$\begin{array}{cccc} max & z = & Cx \\ s. t. & Ax & b \\ & x & 0 \end{array}$$

为例, 其中 A= (a_i) x n, 来比较单纯形表格与改善单纯形表格的时空复杂性。

空间复杂性分析: 单纯形表格占有单元数

$$(m + 1)(m + n + 4) = mn + m^2 + n + 5m + 4$$

改善单纯形法表格占有单元数

$$nm + (m + 1)(m + 6) = mn + m^2 + 7m + 6$$

单考虑到高阶项 mn 和 m^2 一样, 所以两种方法的空间复杂性基本上差别不大。

时间复杂性分析: 消元运算对改善单纯形法是在(m+1)m 阶矩阵上进行, 而单纯形法则在 m(m+n)阶矩阵上进行。改善单纯形法占明显优势。

计算 c_{i-} z_{i} , i N, 在最坏情况下, 改善单纯形法共需 m^2 + mn 次乘法。而单纯形表格则需作 nm^2 次乘法运算。

一般 n> m, 所以改善单纯形法在时间复杂性上优势明显。

3.4 变量有上下界约束的问题

3.4.1 下界不为零的情况

在许多实际问题中, 变量通常是有约束条件的, 即有上界或下界。下面将讨论问题:

$$max z = Cx$$
s.t.
$$Ax = b$$

$$1 x u$$

但如果变量的下界不为零,可通过简单的变换,将它变为零。例如:

引进松弛变量 X3, X4, X5, 得

可作 $x_1 = x_1 + 1, x_2 = x_2 + 1$ 代入得

从而变成了下界为零的问题。

3.4.2 有上界的情况

设 X= X_B X_N $X_$

在变量有上界时, 考虑要复杂些, 必须考虑非基变量 x_N 分成非基变量在下界 0 和非基变量在上界 u 两种情况, 即 $N=N_1$ N_2 , 使得 $x_{N_1}=0$, $x_{N_2}=u_2$ 。

当非基变量 x_k 进入基变量时, 也有两种情况: (1) c_k - z_k > 0, 而 x_k = 0, x_k 从零上升, 有可能作为基变量上升到它的上界再退出。(2) 另一种可能是 x_k 未达到它的上界 u_k 。

当然 x_k 进入基变量, x_k 从 0 上升到 ,可能引起其他基变量的变化, 必须保证其他基变量不至于低于各自的下界, 不超过各自的上界。

还是通过一个实例来说明,一般的道理都是一样的。

例 3.6
$$\max \ z = 2x_1 + x_2$$
$$s.t. \quad x_1 + 2x_2 + x_3 = 10$$
$$x_1 + x_2 + x_4 = 6$$
$$x_1 - x_2 + x_5 = 2$$

表上作业见表 3.11。

表 3.11

	C	X	X 1	X 2	X3	X 4	X 5	
X _B	Св	b C	2	1	0	0	0	
X 3	0	10	1	2	1	0	0	10
X 4	0	6	1	1	0	1	0	6
X 5	0	2		- 1	0	0	1	

 $0 x_1 3, 0 x_2 2, x_3, x_4, x_5 0$

$$x_3$$
 10
 $x_B = x_4 = 6$, $x_N = \frac{x_1}{x_2} = 0$, x_1 作为进入基。
 x_5 2
10
 $p_0 = 6 = 10p_3 + 6p_4 + 2p_5$
2
1
 $p_1 = 1 = p_3 + p_4 + p_5$
1
 $p_0 - p_1 = (10 -)p_3 + (6 -)p_4 + (2 -)p_5$

 x_1 从零增至 ,不仅考虑基变量退出的问题,还应该考虑新进入的基变量 x_1 不超过它的上界 3,同时考虑基变量 x_3 从原来的 10 降到 10- 。基变量 x_4 从 6 降到 6- , x_5 从 2 降至 2- 都不要低于各自的下界。故

$$= \min\{10, 6, 2^*, 3\} = 2$$

= 2 时, 即 x_1 上升到 2, x_3 下降到 8, x_4 下降为 4, x_5 下降为下界 0, 故从(0, 0, 10, 6, 2) 点变到(2, 0, 8, 4, 0) 点, 目标函数 z 从 0 增至 4, x_5 以退到下界 0 而退出。对表 3.11 进行以 x_1 进入基取代 x_5 的单纯形法运算得表 3.12。

再选 x₂ 作为进入基, 非基变量 x₂ 从 0 增至 。

$$p_0 - p_2 = (8 - 3)p_3 + (4 - 2)p_4 + (2 +)p_1$$

表 3.12

	G	X	X 1	X 2	X 3	X 4	X 5	
Хв	Св	b C	2	1	0	0	0	
X 3	0	8	0	3	1	0	- 1	
X 4	0	4	0	2	0	1	- 1	
X 1	2	2	1	- 1	0	0	0	
			0	3	0	0	0	

而 增加要保证 x_2 不超过上界 2, 不仅如此, x_3 不使值 8- 3 0, x_4 的值不至于使 4 - 2 0, x_1 的值 2+ 不超过 3, 即

$$= \min\{3 - 2^*, 8/3, 4/2, 2\} = 1$$

 取以 X1 达到上界 3 而退出, X2 进入, X1 退出, XB=
 X3
 1 0 2

 取以 X2 进入, X1 退出, XB=
 X4 , B= 0 1 1 , 求 B-1。或

 X2 0 0 - 1

$$y = B_{\circ}^{-1}p = 0 \quad 1 \quad -1 \quad 2 \quad 3$$

$$y = B_{\circ}^{-1}p = 0 \quad 1 \quad -1 \quad 1 = 2$$

$$0 \quad 0 \quad 1 \quad -1 \quad -1$$

$$1 \quad 0 \quad -1 \quad 3 \quad 1 \quad 0 \quad 2 \quad 0$$

$$0 \quad 1 \quad -1 \quad 2 \quad 0 \quad 1 \quad 1 \quad 0$$

$$0 \quad 0 \quad 1 \quad -1 \quad 0 \quad 0 \quad -1 \quad 1$$

$$1 \quad 0 \quad 2 \quad -1 \quad 1 \quad 0 \quad 2$$

$$0 \quad 1 \quad 1 \quad = 0 \quad 1 \quad 1$$

$$0 \quad 0 \quad -1 \quad 0 \quad 0 \quad -1$$

$$x_{B} = B^{-1}b \quad B^{-1}a_{1}x_{1}$$

$$1 \quad 0 \quad 2 \quad 10 \quad 1 \quad 5$$

$$= 0 \quad 1 \quad 1 \quad 6 \quad -1 \quad 3 \quad = 2$$

取
$$x_3$$
 5 即 x_4 = 2,这和 = 1时 x_3 = 8- = 5, x_4 = 4- 2 = 2, x_2 = = 1一致。 x_2 1

0 0 - 1 2

1

1

 $x^{\frac{1}{1}}$ 表示非基变量 $x^{\frac{1}{1}}$ 已达到上界, 考虑 $x^{\frac{1}{5}}$ 进入基变量。

$$B^{-1}a_{1} = \begin{array}{ccc} & 3 & & 2 \\ 2 & , & B^{-1}a_{5} = & 1 \\ & - & 1 & & - & 1 \end{array}$$

得单纯形表格(表 3.13)。

5

表 3.13

	_	X	X 1	X 2	X 3	X 4	X 5
Хв	Св	p ₀ C	2	1	0	0	0
X 3	0	5	3	0	1	0	2
X 4	0	2	2	0	0	1	1
X 2	1	1	- 1	1	0	0	- 1
			3	0	0	0	1

$$p_0=2=5p_3+2p_4+p_2+3p_1$$
 1 $p_5=2p_5+p_4-p_2$ $p_0-p_5=(5-2)p_5+(2-)p_4+(1+)p_2+3p_1$ $=\min\frac{5}{2},2,2-1$ $=1$ 以 x_2 从 1 升到上界 2 而退出基, $=1$ 时, $x_1=3$, $x_2=2$, $x_3=3$, $x_4=1$, $x_5=1$ 或求 0 0 0 0 1 0 的逆 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

表 3.14

_	C	X	X 1	X 2	X 3	X 4	X 5
Хв	Св	p ₀ C	2	1	0	0	0
X 3	0	3	1	2	1	0	0
X 4	0	1	1	1	0	1	0
X 5	0	1	1	- 1	0	0	1
			2	1	0	0	0

由于 c_1 - z_1 = 2> 0, c_2 - z_2 > 0, 而且 x_1 和 x_2 各达到其界, 故已达到最优解(见表 3.14)。

例 3.7

引进松弛变量 X4, X5 得

表 3.15 是其单纯形表。

表 3.15

	Q	X	X 1	X 2	X 3	X 4	X 5
ХВ	Св	p 0 C	2	4	1	0	0
X 4	0	10	2	1	1	1	0
X 5	0	4	1		- 1	0	1
		0	2		1	0	0

考虑 X2 作为进入基

$$p_0 = \frac{10}{4} = 10p_4 + 4p_5, p_2 = \frac{1}{1} = p_4 + p_5$$

$$p_0 - p_2 = (10 -)p_4 + (4 -)p_5$$

$$= \min\{10, 4, 6\} = 4$$

故 X2 进入, X5 退出。

得单纯形表格(表 3.16)。

表 3.16

		X	X 1	X 2	X 3	X 4	X 5
Хв	Св	p_0 C	2	4	1	0	0
X 4	0	6	1	0	2	1	- 1
X 2	4	4	1	1	- 1	0	1
		16	- 2	0	5	0	- 4

选 X3 作为进入基,

$$p_0 = \begin{pmatrix} 6 \\ 4 \end{pmatrix} = 6p_4 + 4p_2$$

$$p_3 = \begin{pmatrix} 2 \\ -1 \end{pmatrix} = 2p_4 - p_2$$

$$p_0 - p_3 = (6 - 2)p_4 + (4 +)p_2$$

= min $\frac{6}{2}$, 6 - 4, 4 = 2

以基变量 x_2 达到上界而退出, 即 x_3 取代 x_2 。 = 2 时, x_2^* = 6, x_3 = 2, x_4 = 4。

表 3.17 是其单纯形表。

表 3.17

	C	X	X 1	X 2	X 3	X 4	X 5
Хв	Св	p 0 C	2	4	1	0	0
X 4	0	2	3	2	0	1	1
X 3	1	2	- 1	- 1	1	0	- 1
				5	0	0	1

$$z = 26$$

$$x_1$$
 作为进入基, $p_0 = 2p_4 + 2p_3$, $p_1 = 3p_4 - p_3$
$$p_0 = (2 - 3)p_4 + (2 +)p_3 + p_1$$

$$= \min \frac{2}{3}, 4, 2 = 2/3, x_4$$
 退出。

表 3.18 是其单纯形表。

表 3.18

	C	X	X 1	X 2	X 3	X 4	X 5
Хв	Св	p 0 C	2	4	1	0	0
X 1	2	2/3	1	2/3	0	1/3	1/3
X 3	1	2	0	- 1/3	1	1/3	- 2/3
			0	3	0	- 1	0

 c_2 - $z_2 > 0$, 但 x_2 已到了上界, 故问题已达到最优解, z=28。

3.5 分解原理

3.5.1 问题的提出

现代许多经济或技术问题涉及的范围十分广,有时仅约束条件就多达数千甚至上万。若技术由若干单位协作或由若干部分组成,每个单位或部分有自己内部的约束条件,也有各单位或部分间的约束条件,于是线性规划问题有如下的形式

约束矩阵 A:

$$A_1 \quad A_2 \quad \dots \quad A_n$$

$$B_1 \quad B_2 \quad 0$$

$$0 \quad w \quad B_n$$

其中
$$A_i$$
= $(a_{hk})_{M\times n_i}$, B_j = $(b_{lm})_{l\not k n_i}$, C_i = $(c_j)_{k n_i}$, x_i = $(x_1^{(i)}, x_2^{(i)}, ..., x_{ni}^{(i)})^T$, i = $1, 2, ..., n$ b = $(b_1 b_2 ... b_m)^T$, b_i = $(b_1^{(i)}, b_2^{(i)}, ..., b_{ni}^{(i)})^T$, i = $1, 2, ..., n$

可见 A 是稀疏矩阵, 即 0 元素占很大比例。

例如 n 个城市间航空运输, k 种物品由各自的产地运往销地。令 x_i^h 为第 h 种物品从 i 地运往 j 地的数量; b_i 为由 i 地运往 j 地的运输容量; c_i^h 为物品 h 由 i 地运往 j 地的单位运费; d_i^h 为 i 地提供的物品 h 的数量; d_i^h < 0 为表示 i 地为物品 h 的销售地。

于是问题为:

min
$$z= c_{i,j}^1 x_{ij}^1 + c_{i,j}^2 x_{ij}^2 + \ldots + c_{ij}^k x_{ij}^k$$
 $s.t.$ $x_{ij}^1 + x_{ij}^2 + \ldots + x_{ij}^k$ b_{ij} 对 " i,j $x_{ij}^1 - x_{ij}^1 - x_{ii}^1 = d_i^1$ 对 " i $x_{ij}^2 - x_{ij}^2 - x_{ii}^2 = d_i^2$ 对 " i $x_{ij}^2 - x_{ij}^2 - x_{ii}^2 = d_i^2$ 对 " i $x_{ij}^k - x_{ij}^k - x_{ii}^k = d_i^k$ 对 " i $x_{ij}^k - x_{ij}^k - x_{ij}$

3.5.2 分解算法

上述大型问题用一般的单纯形解法无疑占的存储单元十分巨大, 花费的计算时间也非常可观。下面介绍针对这类问题的单纯形解法。以 n= 2 为例。

将问题(3.1)改写为

$$max z = Cx$$
s.t.
$$Ax = b$$

$$x S$$

其中
$$x=$$
 x_1 x_2 , x_2 , x_3 , x_4 x_2 , x_4 x_5 x_6 x_6 x_7 x_8 x_9 x_9

$$\mathbf{B}_2 \mathbf{X}_2 = \mathbf{D}_2$$

$$\mathbf{X}_1, \mathbf{X}_2 = \mathbf{0}$$

S 是多凸面体。设 S 有界, 故有顶点 $x_1, x_2, ..., x_l$, 对于 x S, 存在 $t_1, t_2, ..., t_l$ 使

$$x = \int_{i=1}^{1} t_i x_i, \quad \int_{i=1}^{1} t_i = 1, t_i \quad 0, i = 1, 2, ..., 1$$

于是有关 t1, t2, ..., t1 的问题:

max
$$z = \int_{i=1}^{1} (Cx_i) t_i$$

s.t. $\int_{i=1}^{1} (Ax_i) t_i = b$
 $\int_{i=1}^{1} t_i = 1$
t_i 0, i = 1, 2, ..., 1

1 的数目一般是非常大的, x_1 , x_2 , ..., x_1 是事实上存在, 然而不可能完全给出来的。也就是说数 Cx_1 和 Ax_1 都是未知的, 在计算过程逐步求出。下面利用改善的单纯形法求解。

引进符号

$$Ax_1 = A_1, Ax_2 = A_2, ..., Ax_1 = A_1$$

 $cx_1 = c_1, cx_2 = c_2, ..., cx_n = c_n$

于是问题导致

请注意系数 $c_1, c_2, ..., c_l$ 以及 $A_1, A_2, ..., A_l$ 都和多面体 S 的顶点对应, 当顶点找到时, 对应的项便计算出来了。

令
$$p^k = \begin{array}{c} Ax_k \\ 1 \end{array}$$
 ,根据单纯形法,要求
$$c_k - z_k = \max_j \{c_j - z_j\} > 0$$

$$c_j = Cx_j, \ z_j = C_B B^{-1} p_j = C_B B^{-1} \begin{array}{c} Ax_j \\ 1 \end{array}$$

寻找进入基导至解一线性规划问题:

$$max = Cx - C_B B^{-1} \frac{Ax}{1}$$

$$x S$$

如若解 0, 即为最优, 这相当于对所有的 i, c_i z_i 0。

3.5.3 说明举例

通过简单例子来说明分解算法是怎样进行的,对加深直观理解是有好处的。

例 3.8
$$\max z = 2x_1 + x_2 + 3x_3 + x_4$$
 s.t.
$$x_1 + x_2 + x_3 + x_4 = 4$$

$$x_2 + 2x_3 + x_4 = 6$$

$$x_2 = 2$$

$$- x_3 + x_4 = 3$$

$$x_3 + x_4 = 5$$

$$x_1 = 0, \ i = 1, 2, 3, 4$$

$$C = (2 \ 1 \ 3 \ - 1), \ A = \begin{array}{c} 1 \ 1 \ 1 \ 1 \\ 0 \ 1 \ 2 \ 1 \end{array}$$

$$S : \begin{array}{c} 1 \ 1 \ x_1 = 6 \\ 0 \ 1 \ x_2 = 2 \end{array}$$

$$(S_1)$$

$$-1 \ 1 \ x_3 = 3 \\ 1 \ 1 \ x_4 = 5 \end{array}$$

$$(S_2)$$

$$\begin{array}{c} x_1 = 0, \ x_3 = 0 \\ x_2 = 0, \ x_4 = 0 \end{array}$$

S₁和 S₂见图 3.1。

图 3.1

本问题的 $S=S \times S_2$, 即多面体是由低维的 S_1 和 S_2 两个多边形的直积构成, S 的顶点可以想像是由 S_1 的顶点和 S_2 的顶点的直积构成, 其中 $y_1=(0\ 0\ 0\ 0)^T$ 是一个顶点。本题的顶点有 I=16 个, 令

$$A_{1} = Ax_{1} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$c_{1} = Cx_{1} = \begin{pmatrix} 2 & 1 & 3 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

代入下式

其中 b= $\begin{pmatrix} 4 \\ 6 \end{pmatrix}$,引进松弛变量 t_{s1} 和 t_{s2} 使得约束条件有

其中 $E_{s1} = \frac{1}{0}$, $E_{s2} = \frac{0}{1}$,所以 t_{s1} 和 t_{s2} 及 t_1 构成了基, $t_1 = 1$, $t_{s1} = 4$, $t_{s2} = 6$, $t_2 = t_3 = ... = t_{16}$ = 0 是一组可行解, 单纯形法以此起步。

第一轮迭代:

1 0 0
1. B= 0 1 0 = B⁻¹,
$$C_{X_1}$$
= 0, $C_B B^{-1}$ = (0 0 0)
0 0 1

2. 寻找进入基导至问题

$$\max w = Cx - C_B B^{-1} p$$

$$x S$$

其中,
$$p = \begin{pmatrix} Ax \\ 1 \end{pmatrix}$$
, 即

$$x S$$
 $max z = 2x_1 + x_2 + 3x_3 + x_4$
 $x S$

可分解成两个子问题:

即

可用单纯形法解上面子问题,实际上本题还可通过几何方法得解,见图 3.1。

 $x_1 = 6, x_2 = 0, x_3 = 5, x_4 = 0,$ 即得新的顶点 $x_2 = (6 \ 0 \ 5 \ 0)^T$ 。

取 $X_2 = (6 \ 0 \ 5 \ 0)^T$, 由于 $C_B B^{-1} = (0 \ 0 \ 0)$

$$c_2$$
- z_2 = C_{X_2} - $C_B B^{-1} \frac{A_{X_2}}{1} = c_2$ = $2 > 0$

故 $p_2 = \begin{pmatrix} Ax_2 \\ 1 \end{pmatrix}$ 作为进入基。

$$Ax^{2} = \begin{cases} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1 & 5 \end{cases} = \begin{cases} 11 \\ 10 \end{cases}$$

$$0$$

$$p^{2} = B^{-1} Ax^{2}$$

$$1 & 0 & 0 & 11 & 11$$

$$0 & 0 & 1 & 1 & 1$$

3. 为确定退出基,进行表上作业,由表 3.19 化为表 3.20。

表 3.19

基	Св	p 0		B ⁻¹		p 2	p ₂	
t _{s1}	0	4	1	0	0	11	?	4/11
ts2	0	6	0	1	0	10	10	6/ 10
t 1	0	1	0	0	1	1	1	1

表 3.20

基	Св	p 0	В	1		p 2
t ₂	27/11	4/ 11	1/ 11	0	0	0
ts2	0	26/11	- 10/11	1	0	1
t 1	0	7/ 11	- 1/11	0	1	0

故 tsī 退出基变量。tī= 7/11, t2= 4/11 可得

$$x = t_1x_1 + t_2x_2 = \frac{4}{11} \frac{0}{5} = \frac{0}{20/11}$$

$$0 \qquad 0$$

$$24/11$$

$$z = Cx = (2 \quad 1 \quad 3 \quad 1) \frac{0}{20/11} = 108/11$$

$$C_{B} = \begin{pmatrix} c_{2} \\ 0 = (27 \ 0 \ 0)^{T} \\ c_{1} \end{pmatrix}$$

第二轮迭代:

2. 为确定进入基,解

$$max w = Cx - C_B B^{-1} \frac{Ax}{1}$$

$$x S$$

即

$$\max w = 2x_1 + x_2 + 3x_3 + x_4 - \frac{27}{11} = -\frac{5}{11}x_1 - \frac{16}{11}x_2 + \frac{6}{11}x_3 - \frac{16}{11}x_4$$

$$x = S$$

问题分解为两个子问题:

$$\max w_{1} = -\frac{5}{11}x_{1} - \frac{16}{11}x_{2}$$

$$\max w_{2} = \frac{6}{11}x_{3} - \frac{16}{11}x_{4}$$

$$s.t. \quad x_{1} + x_{2} = 6$$

$$x_{2} = 2$$

$$x_{3} + x_{4} = 5$$

$$x_{1}, \quad x_{2} = 0$$

$$x_{1} = x_{2} = 0$$

解得
$$x_1 = x_2 = 0$$
, $x_3 = 5$, $x_4 = 0$, $x_3 = (0\ 0\ 5\ 0)^T$, $x_4 = 0$, $x_5 = 0$ $x_5 =$

$$p_3 = \begin{array}{ccc} Ax_3 & 5 \\ 1 & 1 \end{array}$$

$$c_3 - z_3 = c_3 - C_B B^{-1} \frac{Ax_3}{1} = 15 - \frac{27}{11} 0 0 \quad 10 = 15 - 135/11 > 0$$

故p³进入。

3.
$$p_0 = B^{-1}b = -\frac{10}{11} = 0 = 0 = 4 = \frac{4}{11}$$

$$-\frac{1}{11} = 0 = 0 = \frac{4}{11} = \frac{4}{11}$$

$$-\frac{1}{11} = 0 = 0 = \frac{4}{11} = \frac{4}{11}$$

计算

表 3.21

基	Св	p 0	B ⁻	1		p 3	р3	
t _{s1}	27	4/ 11	1/11	0	0	5	5/ 11	4/5
t ₂	0	26/11	- 10/11	1	0	10	60/ 11	26/60
t ₁	0	7/ 11	- 1/11	0	1	1	6/ 11	7/6

表 3.22

基	Св	p 0	B ⁻¹		р з
t _{s1}	27	1/6	1/6 - 1/12	0	0
t ₃	15	13/ 30	- 1/6 11/60	0	1
t 1	0	2/ 5	0 - 1/10	1	0

故 ts2退出。

第三轮迭代:

1.
$$x_B = (t_2 t_3 t_1)^T$$
, $B^{-1} = -1/6 - 11/60 = 0$
 $0 - 1/10 = 1$

$$C_B = (c_2 c_3 c_1) = (27 15 0)$$

$$C_{B}B^{-1} = (27 \ 15 \ 0) - 1/6 \ 11/60 \ 0 = 2 \frac{1}{2} 0$$

$$0 - 1/10 \ 1$$

2. 寻找进入基,解

$$max w = Cx - C_B B^{-1} \frac{Ax}{1}$$

$$x = S$$

即

max w =
$$-\frac{3}{2}x_2 - \frac{3}{2}x_4$$

x S

问题分解成解以下两个子问题:

$$\max w_{1} = -\frac{3}{2}x_{2}$$

$$s.t. \quad x_{1} + x_{2} = 6$$

$$2x_{2} = 2$$

$$x_{1}, x_{2} = 0$$

$$\max w_{2} = -\frac{3}{2}x_{4}$$

$$s.t. \quad -x_{3} + x_{4} = 3$$

$$x_{3} + x_{4} = 5$$

$$x_{3}, x_{4} = 0$$

解得
$$X_1 = 0$$
, $X_2 = 0$, $X_3 = 0$, $X_4 = 0$

$$x_A = \begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}^T, c_4 = Cx = 0$$

$$c_4 - z_4 = - 2 \frac{1}{2} 0 \frac{Ax_4}{0} = 0$$

故问题已得到最优解。

$$x_{1} = \begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}^{T}, \quad t_{1} = \frac{2}{5}$$

$$6 & 0 & 1 & 1$$

$$x = t_{2}x_{2} + t_{3}x_{3} = \frac{1}{6} \cdot \frac{0}{5} + \frac{13}{30} \cdot \frac{0}{5} = \frac{0}{3}, \quad z = \begin{pmatrix} 2 & 1 & 3 & 1 \end{pmatrix} \cdot \frac{0}{3} = 11$$

$$0 & 0 & 0$$

总而言之:

1. 问题转化

其中每一列的元素 $c_i = Cx_i$, $A_i = Ax_i$ 都对应于 S 的顶点 x_i 计算的值。

2. 为引进新的基, 求 ci- zi 的最大值转化为解线性规划问题

$$\max w = Cx - C_B B^{-1} \frac{Ax}{1}$$

而且可分解为若干个子问题, 解为 S 的顶点 x, $p = \begin{pmatrix} Ax \\ 1 \end{pmatrix}$ 为新基。

3. 为了确定退出基,利用改善的单纯形法进行。下面再举一个例子。

图 3.2 是其域图。

第一轮迭代:

 $x_1, x_2 = 0$

 $x_3, x_4 = 0$

2. 为了寻找进入基,导致

即

分解为两个子问题:

解之得 $X_1 = 6$, $X_2 = 0$, $X_3 = 5$, $X_4 = 0$

$$max w = 27$$

11

故 10 是进入基, t2 是进入基变量。

1

3.
$$Cx_2$$
- C_BB^{-1} Ax_2 = c_2 = 27 t_2 进入, s_2 退出。

表上作业如表 3.23 和 3.24 所示。

表 3.23

基	Св	b		B ⁻¹		p	p	
S 1	0	6	1	0	0	11	11	6/11
S 2	0	4	0	1	0	10	0,	
t 1	0	1	0	0	1	1	1	1

表 3.24

基	Св	p 0		\mathbf{B}^{-1}		p ₂
S 1	0	8/ 5	1	- 11/10	0	0
t 2	27	2/ 5	0	1/10	0	1
t 1	0	3/ 5	0	- 1/10	1	0

第二轮迭代:

2. 为了确定进入的基

$$max \ w = Cx - C_B B^{-1} \frac{Ax}{1}$$
 s. t. $x S$
$$Cx - C_B B^{-1} \frac{Ax}{1} = 2x_1 + x_2 + 3x_3 + x_4 - \frac{27}{10}(x_2 + 2x_3 + x_4)$$

$$= 2x_1 - \frac{17}{10}x_2 - \frac{24}{10}x_3 - \frac{17}{10}x_4$$

问题导至解两个子问题:

解得
$$x_1 = 6$$
, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_3 = (6 \ 0 \ 0 \ 0)^T$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$,

所以t3进入。

3. 为了确定退出基,表上作业如表 3.25 和 3.26 所示。

表 3.25

基	Св	b		B- 1		р 3	р3	
\mathbf{s}_1	0	8/5	1	- 11/10	0	6		8/ 30
t 2	27	2/5	0	1/ 10	0	0	0	
t 1	0	3/5	0	- 1/10	1	1	1	3/5

表 3.26

基	Св	p 0			B ^{- 1}		p ₃
t_3	12	8/ 30	-	1/6	- 11/60	0	1
t ₂	27	2/5		0	1/ 10	0	0
t 1	0	10/5	-	1/6	5/60	1	0

6

$$C_{B}B^{-1} = (12 \ 27 \ 0) \quad 0 \quad 1/10 \quad 0 = 2 \ \frac{1}{2} \ 0$$

$$-1/6 \quad 5/60 \quad 1$$

第三轮迭代:

2. 为了计算进入基

$$\max \ z = Cx - C_B B^{-1} \frac{Ax}{1}$$
 s.t. $x \cdot S$
$$x_1 + x_2 + x_3 + x_4$$

$$\max z = 2x_1 + x_2 + 3x_3 + x_4 - 2\frac{1}{2}0 \qquad x_2 + 2x_3 + x_4$$

即

max
$$z = -\frac{3}{2}x_2 - \frac{3}{2}x_4$$

s.t. x S

分解为两个子问题:

max
$$w_1 = -\frac{3}{2}x_1$$
 max $w_2 = -\frac{3}{2}x_4$

s. t. $\frac{x_1}{x_2}$ S₁ s. t. $\frac{x_3}{x_4}$ S₄

解之得 $x_1 = x_2 = x_3 = x_4 = 0$, $x_4 = \frac{0}{0}$, $x_4 = 0$, x

3.6 无界域问题的分解算法

3.6.1 分解原理

无界域问题的分解算法与有界域略有不同。若S是无界域,则对于xS有

$$x = \int\limits_{i=1}^{1} t_i x_i + \int\limits_{j=1}^{m} s_j r_j$$

$$i = 1, 2, ..., 1; j = 1, 2, ..., m$$

其中 $x_1, x_2, ..., x_1$ 是 S 域的顶点, $r_1, r_2, ..., r_m$ 是域 S 的极方向。和前面讨论一样, 1 和 m 都是数目很大的整数, 并非 $x_1, x_2, ..., x_1$ 都已完全计算出来。问题导至下列关于 $s_1, s_2, ..., s_m$, $t_1, t_2, ..., t_1$ 的线性规划问题

还是通过例子加以说明。

3.6.2 说明举例

经引进松弛变量 x_4, x_5, x_6, x_7 后, 便可化成标准型。先用单纯形表运算, 如表 3.27 所示。

图 3.3 是其域图。

表 3.27

12	3.21									
		X	X 1	X 2	X 3	X 4	X 5	X 6	X 7	
Хв	Св	b C	1	2	1	0	0	0	0	
X 4	0	12	1	1	1	1	0	0	0	12
X 5	0	2	- 1		0	0	1	0	0	2
X 6	0	8	- 1	2	0	0	0	1	0	4
X 7	0	3	0	0	1	0	0	0	1	
				2						
X 4	0	10	2	0	1	1	- 1	0	0	5
X 2	2	2	- 1	1	0	0	1	0	0	
X 6	0	4		0	0	0	- 2	1	0	4
X 7	0	3	0	0	1	0	0	0	1	
X 4	0	2	0	0		1	3	- 2	0	2
X 2	2	6	0	1	0	0	- 1	1	0	
X 1	1	4	1	0	0	0	- 2	1	0	
X 7	0	3	0	0	1	0	0	0	1	
X 3	1	<u>2</u> 3	0	0	<u>1</u> 3	<u>1</u> 3	1	$-\frac{2}{3}$	0	<u>2</u> 3
X 2	2	6	0	1	0	0	- 1	1	0	
X 1	1	4	1	0	0	0	- 2	1	0	
X 7	0	1	0	0	0	- 1	- 3	2	1	
			0	0	0	- 1	1	- 1	0	
X 5	0	<u>2</u> 3	0	0	<u>1</u> 3	<u>1</u> 3	1	- <u>2</u> 3	0	
X 2	2	<u>20</u> 3	0	1	<u>1</u> 3	<u>1</u> 3	0	<u>1</u> 3	0	
X 1	1	<u>16</u> 3	1	0	<u>2</u> 3	<u>2</u> 3	0	$-\frac{1}{3}$	0	
X 7	0	3	0	0	1	0	0	0	1	
		<u>56</u> 3	0	0	$-\frac{1}{3}$	- 1	0	$-\frac{1}{3}$	0	

再用分解算法求解。

第一轮迭代:

1. 基变量为
$$t_{s_1}$$
和 t_1 , $B^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $C_B = \begin{pmatrix} 0 & 0 \end{pmatrix}$, $C_B B^{-1} = \begin{pmatrix} 0 & 0 \end{pmatrix}$

2. 为寻找进入基, 求 max{ci- zi}, 导致

$$max w = Cx - C_B B^{-1} Ax$$

$$s.t. x S$$

即

$$max w = x_1 + 2x_2 + x_3$$

s.t. x S

分解为

标准化:

表上作业如表 3.28 所示。

表 3.28

	G	X	X 1	X 2	X 3	X 4	
Хв	Св	p 0 C	1	2	0	0	
X 3	0	2	- 1		1	0	2
X 4	0	8	- 1	2	0	1	4
		0	1	2			
X ₂	2	2	- 1	1	1	0	
X 4	0	4		0	- 2	0	
		4		0	- 2	0	
X 2	2	2	0	1	- 1	1	
X 1	1	6	1	0	- 2	1	
		10	0	0		- 3	

故此子问题为无界问题。

我们还应该考察
$$Cr - C_{\mathbb{B}}B^{-1}$$
 0 。

通过观察可知

$$c_1 - z_1 = Cr - C_B B^{-1} \frac{Ar}{0} = (1 \quad 2 \quad 1) \quad 1 = 4$$

$$Ar = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 3 \\ 0 & 0 \end{pmatrix}$$
作为进入基。

表上作业如表 3.29 所示。

表 3.29

基	Св	p 0	B ⁻	1	p
t_{s_1}	0	12	1	0	
t ₁	6	1	0	1	0

基	Св	p 0	B.	1	p	
S ₁	4	4	1/3	0	1	
t 1	0	1	0	1	0	

故 r 取代 t_{s_1} 作为基, 进入第二轮迭代。

第二轮迭代:

1. 基 r 和
$$t_1$$
, $B^{-1} = \begin{pmatrix} 1/3 & 0 \\ 0 & 1 \end{pmatrix}$, $C_B = \begin{pmatrix} 4 & 0 \end{pmatrix}$, $C_B B^{-1} = \begin{pmatrix} 4 & 0 \end{pmatrix} \begin{pmatrix} 1/3 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 4/3 & 0 \end{pmatrix}$

2. 为了确定进入基,解

$$\max z = Cx - C_B B^{-1} \frac{Ax}{1}$$

$$Cx - C_B B^{-1} \frac{Ax}{1} = x_1 + 2x_2 + x_3 - \frac{4}{3} 0 \frac{x_1 + x_2 + x_3}{1}$$
$$= -\frac{1}{3} x_1 + \frac{2}{3} x_2 - \frac{1}{3} x_3$$

即

max
$$z = -\frac{1}{3}x_1 + \frac{2}{3}x_2 - \frac{1}{3}x_3$$

s.t.

分解为

max
$$w_1 = -\frac{1}{3}x_1 + \frac{2}{3}x_2$$
 max $w_2 = -\frac{1}{3}x_3$
s.t. $-x_1 + x_2 + 2$ s.t. $0 + x_3 + 3$
 $-x_1 + 2x_2 + 8$
 $x_1, x_2 = 0$

用图解法可知 $x_1 = 4$, $x_2 = 6$, $x_3 = 0$

$$x_2 = \begin{cases} 4 \\ 6 \end{cases}$$
, $c_2 = 16$, $Ax_2 = 10$, $p_2 = \begin{cases} 10 \\ 1 \end{cases}$ 进入基。

3. 确定退出基

表上作业如表 3.30 所示。

表 3.30

基	Св	p _o	B ⁻	1	p	p	
S1	4	4	1/3	0	10	10/ 3	12/10
t_1	0	1	0	1	1		

基	Св	p 0	B ⁻¹	p
S 1	4	2/3	1/3 - 10/3	0
X 2	2	1	0 1	1

故 X2 进入基取代 t1, 即 t1 退出。

第三轮迭代:

1.
$$B = \begin{pmatrix} r_1 \\ x_2 \end{pmatrix}$$
, $B^{-1} = \begin{pmatrix} 1/3 & -10/3 \\ 0 & 1 \end{pmatrix}$, $C_B = (4\ 16)$, $C_B B^{-1} = (4\ 16) \begin{pmatrix} \frac{1}{3} & -\frac{10}{3} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{4}{3} & \frac{8}{3} \\ 0 & 1 \end{pmatrix}$

2. 为找出进入基,导至

max w = Cx -
$$\frac{4}{3} \frac{8}{3}$$
 $x_1 + 2x_2 + x_3$

s.t. x S

$$Cx - C_B B^{-1} \frac{Ax}{1} = x_1 + 2x_2 + x_3 - \frac{4}{3}(x_1 + x_2 + x_3) - \frac{8}{3}$$

$$= -\frac{1}{3}x_1 + \frac{2}{3}x_2 - \frac{1}{3}x_3 - \frac{8}{3}$$

$$x = \frac{4}{3} + \frac{2}{3} = \frac{16}{3}$$

$$x = \frac{6}{3} + \frac{2}{3} = \frac{1}{3}x_1 + \frac{2}{3}x_2 - \frac{1}{3}x_3 - \frac{8}{3}$$

$$max z = -\frac{1}{3}x_1 + \frac{2}{3}x_2 - \frac{1}{3}x_3 - \frac{8}{3}$$

$$s.t. \qquad x = S$$

$$x = S, \qquad max w = 0$$

故问题已得到最优解。

习 题 三

1. 用改善的单纯形法解下列线性规划问题

(a)
$$\max z = 2x_2 - x_3$$
 (b) $\max z = 3x_1 + 4x_2 + x_3 + 7x_4$ s.t. $8x_1 + 2x_2 - x_3 + 4x_3 + x_4$ s.t. $8x_1 + 3x_2 + 4x_3 + x_4$ 2x₁+ x₂+ x₃ = 9 2x₁+ 6x₂+ x₃+ 5x₄ 2x₁+ 4x₂+ 5x₃+ 2x₄ x₁, x₂, x₃ = 0 x₁, x₂, x₃, x₄ = 0 (c) $\min z = x_1 + 6x_2 - 7x_3 + x_4 + 5x_5$

s.t.
$$x_{1} - \frac{3}{4}x_{2} + 2x_{3} - \frac{1}{4}x_{4} = 5$$

 $-\frac{1}{4}x_{2} + 3x_{3} - \frac{3}{4}x_{4} + x_{5} = 5$
 $x_{1} = 0, i = 1, 2, 3, 4, 5$

(d) max
$$z=7x_1-7x_2+2x_3+x_4+6x_5$$

s.t. $3x_1-x_2+x_3-2x_4=3$
 $2x_1+x_2+x_4+x_5=4$
 $-x_1+3x_2-3x_4+x_6=12$
 $x_1=0, i=1,2,...,6$

(e)
$$\max z = x_4 - x_5$$

s.t. $-2x_2 + x_3 + x_4 - x_5 = 0$
 $-2x_1 - 2x_3 + x_4 - x_5 = 0$
 $-x_1 + 2x_2 + x_4 - x_5 = 0$
 $x_1 + x_2 + x_3 = 1$
 $x_1 = 0, i = 1, 2, 3, 4, 5$

(f) max
$$z = 5x_1 - x_2 + x_3 - 10x_4 + 7x_5$$

s. t. $3x_1 - x_2 - x_3 = 4$
 $x_1 - x_2 + x_3 + x_4 = 1$
 $2x_1 + x_2 + 2x_3 + x_5 = 7$
 $x_i = 0, \quad i = 1, 2, 3, 4, 5$

2.
$$\vec{x}$$
 m ax $z = x_1 + x_2 + 3x_3$

s.t.
$$x_1 + x_2 + x_3 = 12$$

$$-x_1 + x_2 = 5$$

$$x_2 + 2x_3 = 8$$

$$0 = x_1 = 3, \quad 0 = x_2 = 6$$

$$0 = x_3 = 4$$

3. 求解
$$\max z = -x_1 - 2x_2 - 3x_3 + x_4$$

s.t.
$$x_{1}$$
- x_{2} + x_{3} - $2x_{4}$ 6
- x_{1} + x_{2} - x_{3} + x_{4} 8
 $2x_{1}$ + x_{2} - x_{3} 2
0 x_{1} 3, 0 x_{3} 10
1 x_{2} 4, 2 x_{4} 5

4. 求解
$$\max z = 2x_1 + 3x_2 - 2x_3$$

s.t.
$$x_1+x_2+x_3=8$$
 $2x_1+x_2-x_3=8$ $0 x_1 4, -2 x_2=6$ $2 x_3$

5. 求解 max
$$z = 2x_1 + 3x_2 + 8x_3 + x_4 + x_5$$

s.t. $3x_1 + 7x_2 + 12x_3 + 2x_4 + 3x_5$ 10
 x_1 0, $i = 1, 2, 3, 4, 5$

6. 求解 max
$$z = 2x_1 + 6x_2 - x_3 - 4x_4 + x_5$$

s. t. $2x_1 + x_2 + 4x_3 + x_4 + x_5 = 10$
 $3x_1 + 8x_2 - 3x_3 + x_4 = 7$
0 x_1 3, 1 x_2 4
0 x_3 8, 1 x_4 2
0 x_5 20

7. 求解
$$\max z = 6x_1 + 4x_2 + 2x_3$$

s. t.
$$4x_1 - 3x_2 + x_3 = 8$$

 $x_1 + 2x_2 + 4x_3 = 10$
 $0 = x_1 = 3, \quad 0 = x_2 = 2, \quad x_3 = 0$

8. 求解 $\max z = x_1 + x_2 + 2x_3 + x_4$

s.t.
$$x_1 + 2x_2 + 2x_3 + x_4$$
 40

$$-x_1+x_2+x_3+x_4$$
 10

$$x_1 + 3x_2$$
 30

$$2x_1 + x_2$$
 20

$$x_3 + x_4 = 15$$

$$x_i = 0, i = 1, 2, 3, 4$$

9. \mathbf{x} \mathbf{m} \mathbf{m} \mathbf{x} \mathbf{z} = $\mathbf{x}_1 + 3\mathbf{x}_2 - \mathbf{x}_3 + \mathbf{x}_4$

s.t.
$$x_1 + x_2 + x_3 + x_4$$
 8

$$x_1 + x_2$$
 6

$$x_3 + 2x_4 = 10$$

$$-x_3+x_4$$

$$x = 0, i = 1, 2, 3, 4$$

10. 求解 $\max z = x_1 + x_2 + 3x_3 - x_4$

s.t.
$$x_1 + x_2 + x_3 + x_4$$
 12

$$- x_1 + x_2$$
 2

$$3x_1 - 4x_3 5$$

$$x_3 + x_4$$
 4

$$- x_3 + x_4 = 5$$

$$x_i$$
 0, $i = 1, 2, 3, 4$

第 4 章 单纯形法的若干补充与灵敏度分析

前面几章我们集中讨论典型问题

$$\begin{array}{cccc} max & z = & Cx \\ s. t. & Ax & b \\ & x & 0 \end{array}$$

的单纯形解法。这类问题的特点是引进松弛变量 xs 使问题具有基可行解,从此起步,一步一步地前进最后到达极值点,实际问题不一而足,不完全都具有这个特点,不能简单地转化成上面这种类型。利用单纯形法求解线性规划问题还需要若干补充办法。最简单的问题,例如右端项 b 若出现负分量怎么办?因为它不符合可行解非负的要求。又如Ax= b 又怎么办?单纯形法是很有效的一种算法,但对于 Ax= b 的约束条件不能自己起步。

这一章里主要讨论一般问题

$$max z = Cx$$

$$s.t. Ax = b$$

$$x 0$$

至于

$$min z = Cx$$
s. t.
$$Ax b$$

$$x 0$$

也可以通过引进松弛变量 Xs 后变成

$$min z = Cx$$

$$s.t. Ax - x_s = b$$

$$x_s = 0, x = 0$$

4.1 二阶段法

对于约束条件 Ax = b, 引进 x_a 使得 $Ax + x_a = b$, 形式上有一基可行解, 单纯形法似乎可以起步。为了回到原问题, 我们必须设法让引进的 x_a 最后退出去。 x_a 不同于松弛变量,是人为引进的, 目的在于找到基可行解, 找到后便失去作用, 称之为人工变量。如何设法驱出人工变量 x_a 呢? 这一节介绍一种二阶段法: 第一阶段驱逐人工变量, 让 x_a 退出基, 用原问题的变量取而代之, 于是在原问题的可行解域找一基可行解, 第二阶段才开始着手解原问题。

也就是说

$$\begin{array}{llll} min \ z = & Ix_a \\ s. \ t. & Ax + & x_a = & b \\ & & x, x_a & 0 \end{array}$$

若最优解中有 $x_a=0$,则第一阶段结束, x_a 退出基变量。将原问题的变量分为基变量 x_B 和非基变量 x_N 。如若最优解中 $x_a=0$,则原问题无解,说明原问题的约束条件有矛盾。当然后面我们将讨论到一种情况,第一阶段结束时 $x_a=0$,但并未全部退出基变量的情况。

第二阶段 在第一阶段最后结果 $x_B=B^{-1}b$, 约束条件改为 $B^{-1}x_B+B^{-1}Nx_N=B^{-1}b$ 的基础上解

例 4.1 用二阶段法解

min
$$z = 2x_1 + x_2$$

s. t. $3x_1 + x_2 = 3$
 $4x_1 + 3x_2 = 6$
 $x_1 + 2x_2 = 2$
 $x_1, x_2 = 0$

引进松弛变量 x3, x4, x5 得

min
$$z = 2x_1 + x_2$$

s.t. $3x_1 + x_2 - x_3 = 3$
 $4x_1 + 3x_2 - x_4 = 6$
 $x_1 + 2x_2 - x_5 = 2$
 $x_1 = 0, i = 1, 2, 3, 4, 5$

再引进人工变量 x6, x7, x8, 并进入第一阶段

min w =
$$x_6 + x_7 + x_8$$

s.t. $3x_1 + x_2 - x_3 + x_6 = 3$
 $4x_1 + 3x_2 - x_4 + x_7 = 6$
 $x_1 + 2x_2 - x_5 + x_8 = 2$
 $x_1 = 0, i = 1, 2, ..., 8$

表上作业如表 4.1 所示。

第一阶段求的是目标函数为 $min \ w= \ x_6+ \ x_7+ \ x_8$ 。求解 min 问题不同于求解 max 之处就在于 $c_k- \ z_k< 0$ 时 x_k 便可以进入基变量。

第一阶段结束, $x_6=x_7=x_8=0$ 退出基变量, 同时也找到了原问题的一个初始基可行解。 $x_1=\frac{6}{5}, x_2=\frac{2}{5}, x_3=1, x_4=x_5=0$ 。

表 4.1

V n	Св	X	X 1	X 2	X 3	X 4	X 5	X 6	X 7	X 8	
ХВ	Св	b C	0	0	0	0	0	1	1	1	
X 6	1	3		1	- 1	0	0	1	0	0	
X 7	1	6	4	3	0	- 1	0	0	1	0	
X 8	1	2	1	2	0	0	- 1	0	0	1	
		11	- 8	- 6	1	1	1	0	0	0	
X 1	0	1	1	1/3	- 1/3	0	0	1/3	0	0	3
X 7	1	2	0	5/3	4/ 3	- 1	0	- 4/3	1	0	6/ 5
X 8	1	1	0	3/5	1/3	0	- 1	- 1/3	0	1	3/5
		3	0	- 10/3	- 5/3	1	1	5/3	0	0	
x ₁	0	6/5	1	0	- 2/5	0	1/5	2/5	0	- 1/5	
X 7	1	1	0	0		- 1	1	- 1	1	- 1	
X 2	0	3/5	0	1	1/5	0	- 3/5	- 1/5	0	3/ 5	
		1	0	0	- 1	1	- 1	2	0	2	
X 1	0	6/5	1	0	0	- 2/5	3/5	0	2/5	- 3/5	
X 3	0	1	0	0	1	- 1	1	- 1	1	- 1	
X 2	0	2/5	0	1	0	1/ 5	- 4/5	0	- 1/5	4/ 5	
		0	0	0	0	0	0	1	1	1	

现在转入第二阶段。利用上面的最终单纯形表,不过要去掉人工变量所在诸列,并更换 C 行元素, 重新计算 c_{i} - z_{i} , 见表 4.2。

表 4.2

		X	X 1	X 2	X ₃	X 4	X 5	
X_{B}	Св	b C	2	1	0	0	0	
X ₁	2	6/5	1	0	0	- 2/5	3/5	
X 3	0	1	0	0	1	- 1		
X 2	1	2/5	0	1	0	1/ 5	- 4/5	
		14/5	0	0	0	3/5	- 2/5	
X 1	2	3/5	1	0	- 3/5	1/5	0	
X 5	0	1	0	0	1	- 1	1	
X 2	1	6/5	0	1	4/5	- 3/5	0	
		12/5	0	0	2/5	1/5	0	

故得最优解 $(x_1 \ x_2) = \frac{3}{5} \frac{6}{5}$, min $z = \frac{12}{5}$ 。

例 4.2 用二阶段法求解

min
$$z = 2x_1 + 3x_2$$

s. t. $2x_1 + x_2 = 16$
 $x_1 + 3x_2 = 20$
 $x_1 + x_2 = 10$
 $x_1, x_2 = 0$

引进松弛变量 x3 及人工变量 x4, x5 得

min
$$z = 2x_1 + 3x_2$$

s.t. $2x_1 + x_2 + x_3 = 16$
 $x_1 + 3x_2 - x_4 + x_5 = 20$
 $x_1 + x_2 + x_6 = 10$
 $x_1 = 0, i = 1, 2, ..., 6$

第一阶段求解

min w =
$$x_5 + x_6$$

s.t. $2x_1 + x_2 + x_4 = 16$
 $x_1 + 3x_2 - x_3 + x_5 = 20$
 $x_1 + x_2 + x_6 = 10$
 $x_1 = 1, 2, ..., 6$

第一阶段的单纯形法表上作业如表 4.3 所示。

表 4.3

		Х	X 1	X 2	X 3	X 4	X 5	X 6	
Хв	Св	b C	0	0	0	0	1	1	
X 4	0	16	2	1	0	1	0	0	16
X 5	1	20	1		- 1	- 1	1	0	20/3
X 6	1	10	1	1	0	0	0	1	10
		30	- 2	- 4	1	1	0	0	
X 4	0	28/3	5/3	0	1/ 3	1/3	- 1/3	0	28/5
X 2	0	20/3	1/3	1	- 1/3	- 1/3	1/3	0	20
X ₆	1	10/3	2/3	0	1/ 3	1/3	- 1/3	1	
		10/3	- 2/3	0	- 1/3	- 1/3	1/3	0	
X 4	0	1	0	0	1/ 30	1/30	1/2	- 5/2	
X 2	0	5	0	1	- 1/2	- 1/2	1/2	1/3	
X 1	0	5	1	0	1/2	1/2	- 1/2	3/2	
		0	0	0	0	0	1	1	

第二阶段求解计算

表上作业如表 4.4 所示。

表 4.4

		X	X 1	X 2	X 3	X 4	
Хв	Св	b C	2	3	0	0	
X 4	0	1	0	0	1/30	1/ 30	
X 2	3	5	0	1	- 1/2	- 1/2	
X 1	2	5	1	0	1/2	1/ 2	
		25	0	0	1/2	1/2	

最优解 $x_1 = 5$, $x_2 = 5$, $x_4 = 1$, $x_3 = 0$, z = 25.

当第一阶段结束时 x_a á 0, 这时原问题无解, 否则若存在 x=0, 满足 Ax=b, 则 x=00 第一阶段的最优解 x_a á x=00 的假定矛盾。即若原问题有解 x=00 的货 x=0

第一阶段结束时 $x_a=0$,且全体退出基变量,第二阶段即可接着开始,由于 x_a 退出,即约束条件可改为

但也存在 x_a 未全部退出基变量的情形, 但 $x_a = 0$, 例如, 下面例 4.3 中所讨论的情形。

例 4.3
$$\max z = 2x_{1} + x_{2} + x_{3}$$
s.t.
$$4x_{1} + 6x_{2} + 3x_{3} + 8$$

$$x_{1} - 9x_{2} + x_{3} - 3$$

$$- 2x_{1} - 3x_{2} + 5x_{3} - 4$$

$$x_{1} = 0, i = 1, 2, 3$$

引进松弛变量 x4, x5, x6 得

$$4x_1 + 6x_2 + 3x_3 + x_4 = 8 (4.1)$$

$$x_1 - 9x_2 + x_3 + x_5 = -3$$
 (4.2)

$$-2x_1 - 3x_2 + 5x_3 + x_6 = -4 (4.3)$$

(4.2)- (4.3) $# 3_{X_1}$ - 6_{X_2} - 4_{X_3} + 4_{X_5} - 4_{X_6} = 1

再引进人工变量 x7 得

$$4x_1 + 6x_2 + 3x_3 + x_4 = 8$$

 $3x_1 - 6x_2 - 4x_3 + x_5 - x_6 = 1$
 $2x_1 + 3x_2 - 5x_3 - x_6 + x_7 = 4$

表上作业如表 4.5 所示。

表 4.5

		X	X 1	X 2	X 3	X 4	X 5	X 6	X 7	
Хв	Св	b C	0	0	0	0	0	0	1	
X 4	0	8	4		3	1	0	0	0	4/3
X 5	0	1	3	- 6	- 4	0	1	- 1	0	
X 7	1	4	2	3	- 5	0	0	- 1	1	4/3
		4	- 2	- 3	5	0	0	1	0	
X 2	0	4/3	2/3	1	1/2	1/6	0	0	0	
X 5	0	9	7	0	- 1	1	1	- 1	0	
X 7	1	0	0	0	- 13/2	- 1/2	0	- 1	1	
		0	0	0	13/2	1/2	0	1	0	

第一阶段结束,人工变量 $x_7=0$,但没有退出基变量。一种办法是直接进入第二阶段,由表 4.6 可知 $x_7=0$ 保持不变。等式两端同乘以(-1) 右端仍不出现负号,从而使 x_7 退出基变量,即消去 x_7 ,同时得到最优解:

$$x_1 = \frac{7}{9}$$
, $x_2 = 10/21$, $x_3 = x_4 = x_5 = 0$, max $z = 64/21$ _o

表 4.6

	_	X	X 1	X 2	X 3	X 4	X 5	X 6	X 7	
Хв	Св	b C	2	1	1	0	0	0	0	
X 2	1	4/3	2/ 3	1	1/2	1/6	0	0	0	2
X 5	0	9		0	- 1	1	1	- 1	0	9/ 7
X 7	0	0	0	0	- 13/2	- 1/2	0	- 1	1	
			4/3	0	1/2	- 1/6	0	0	0	
x ₂	1	10/21	0	1	25/42	1/14	- 2/21	2/21	0	
x 1	2	9/ 7	1	0	- 1/7	1/7	1/7	- 1/7	0	
X 7	0	0	0	0	- 13/2	- 1/2	0	- 1	1	
		64/ 21	0	0	29/42	- 5/14	- 4/21	4/21	0	
X 2	1	10/21	0	1	- 1/42	1/42	- 2/21	0	2/21	
X 1	2	9/7	1	0	11/14	3/14	1/7	0	- 1/7	
X 6	0	0	0	0	13/2	1/2	0	1	- 1	
		64/21	0	0	- 23/42	19/42	- 4/21	0	- 4/21	

其实在第一阶段结束时,可以设法将为0的人工变量从基中消去。以本例为例,办法是将最后一行(即 x_7 列元素1所在行)取任一非人工变量的列的非零元素作为主元素,由于本行右端项为0,故消元结果不至于右端项出现负数。表上作业如表4.7所示。

表 4.7

		X	X 1	X 2	X 3	X 4	X 5	X 6	X 7	
Хв	Св	b C	0	0	0	0	0	0	1	
X 2	0	4/3	2/3	1	1/2	1/6	0	0	0	
X 5	0	9	7	0	- 1	1	1	- 1	0	
X 7	1	0	0	0	- 13/2	- 1/2	0	- 1	1	
X 2	0	4/3	2/3	1	1/2	1/6	0	0	0	
X 5	0	9	7	0	11/2	3/2	1	0	- 1	
X 6	0	0	0	0	13/2	1/2	0	1	- 1	
		0	0	0	0	0	0	0	1	

这种将人工变量基赶出去的办法有其普遍性。用非基变量 x_6 取代 x_7 , 得第一阶段的最优解, 利用这单纯形表格去掉 x_7 列, 改换 C 行, 开始第二阶段(见表 4.8)。

表 4.8

		X	X 1	X 2	X 3	X 4	X 5	X 6	
Хв	Св	b C	2	1	1	0	0	0	
X 2	1	4/3	2/3	1	1/2	1/6	0	0	2
X 5	0	9		0	11/2	3/2	1	0	9/7
X 6	0	0	0	0	13/2	1/2	0	1	
		4/ 3	4/ 3	0	1/2	- 1/6	0	0	
X 2	1	10/21	0	1	- 1/42	1/42	- 2/21	0	
X 1	2	9/7	1	0	11/14	3/ 14	1/7	0	
X 6	0	0	0	0	13/2	1/2	0	1	
		64/21	0	0	- 23/42	- 19/42	- 4/21	0	

得到与前面相同的结果。

$$\min z = 2x_1 + x_2$$

s.t.
$$5x_1 + 10x_2 = 8$$

 $2x_1 + 2x_2 = 1$
 $x_1, x_2 = 0$

引进松弛变量 X3, X4, 人工变量 X5 后得

min
$$z = 2x_1 + x_2$$

s.t.
$$5x_1 + 10x_2 - x_3 + x_5 = 8$$
$$2x_1 + 2x_2 + x_4 = 1$$
$$x_1 = 0, i = 1, 2, 3, 4, 5$$

第一阶段 $\min w = x_5$ 表 4.9 是其单纯形表格。

表 4.9

		X	X 1	X 2	X 3	X 4	X 5	
Хв	Св	b C	0	0	0	0	1	
X 5	1	8	5	10	- 1	0	1	4/5
X 4	0	1	2		0	1	0	1/ 2
		8	- 5	- 10	1	0	0	
X 5	1	3	- 5	0	- 1	- 5	1	
X 2	0	1/2	1	1	0	1/2	0	
		3	5	0	1	5	0	

因人工变量 x₅ 0, 故原问题无解。

例 4.5
$$\max z = 2y_1 - 3y_2 + 4y_3 - y_4$$
s.t.
$$y_1 + y_2 + 2y_3 - 4y_4 + 4$$

$$y_1 - 3y_2 - 2y_4 + 6$$

$$y_1 - y_3 = -1$$

$$y_1 + y_2 + y_4 = 0$$

$$y_3 + y_4 + y_4 = 0$$

$$y_3 + y_4 + y_5 + y_4 = 0$$

$$y_1 + y_2 + y_4 = 0$$

 \Rightarrow $y_1 = x_1 - x_2, y_2 = x_3 - x_4, y_3 = x_5, y_4 = x_6$

代入原问题得

引进松弛变量 x7, x8, x9, 人工变量 x9, x10, x11把原问题化为标准型:

第一阶段: 求 min w= x₉+ x₁₀+ x₁₁ 表 4.10 是其单纯形表格。

表 4.10

		X	X 1	X 2	X ₃	X 4	X 5	X ₆	X 7	X 8	X 9	X ₁₀	X ₁₁	
ХВ	Св	b C	0	0	0	0	0	0	0	0	1	1	1	
X 9	1	4	1	- 1	1	- 1	2	- 4	- 1	0	1	0	0	
X 8	0	6	1	- 1	- 3	3	0	- 2	0	1	0	0	0	
X 10	1	1	- 1	1	0	0		0	0	0	0	1	0	
X 11	1	0	1	- 1	1	- 1	0	1	0	0	0	0	1	
		5	- 1	1	- 2	2	- 3	3	1	0	0	0	0	
X 9	1	2	3	- 3	1	- 1	0	- 4	- 1	0	1	- 2	0	
X 8	0	6	1	- 1	- 3	3	0	- 2	0	1	0	0	0	
X 5	0	1	- 1	1	0	0	1	0	0	0	0	1	0	
X 11	1	0		- 1	1	- 1	0	1	0	0	0	0	1	
		2	- 4	4	- 2	2	0	3	1	0	0	2	0	
X 9	1	2	0	0	- 2		0	- 7	- 1	0	1	- 2	- 3	
X 8	0	6	0	0	- 4	4	0	- 4	0	1	0	0	- 2	
X 5	0	1	0	0	1	- 1	1	1	0	0	0	1	1	
X 1	0	0	1	- 1	1	- 1	0	1	0	0	0	0	1	
		2	0	0	2	- 2	0	7	1	0	0	3	4	
X 4	0	1	0	0	- 1	1	0	- 7 2	- <u>1</u> 2	0	1 2	- 1	$-\frac{3}{2}$	
X 8	0	2	0	0	0	0	0	1 2	2	1	- 2	4	4	
X 5	0	2	0	0	0	0	1	- <u>5</u> 2	- <u>1</u>	0	1 2	0	$-\frac{1}{2}$	
X 1	0	1	1	- 1	0	0	0	- <u>5</u> 2	$-\frac{1}{2}$	0	1/2	- 1	$-\frac{1}{2}$	
		0	0	0	0	0	0	0	0	0	1	1	1	

第一阶段结束,人工变量全部退出基,下面进入第二阶段(见表 4.11)。 得最优解:

 $x_{11}=11, x_{2}=x_{3}=x_{7}=x_{8}=0, x_{4}=15, x_{5}=12, x_{6}=4,$ $y_{1}=11, y_{2}=-15, y_{3}=12, y_{4}=4,$ $\max z=111_{\circ}$

表 4.11

		X	X 1	X 2	X 3	X 4	X 5	X 6	X 7	X 8	
Хв	Св	b C	2	- 2	- 3	3	4	- 1	0	0	
X 4	3	1	0	0	- 1	1	0	- 7/2	- 1/2	0	
X 8	0	2	0	0	0	0	0	1/2	2	1	
X 5	4	2	0	0	0	0	1	- 5/2	- 1/2	0	
x 1	2	1	1	- 1	0	0	0	- 5/2	- 1/2	0	
		13	0	0	0	0	0	49/2	9/ 2	0	
X 4	3	15	0	0	- 1	1	0	0	27/2	7	
X 6	- 1	4	0	0	0	0	0	1	4	2	
X 5	4	12	0	0	0	0	1	0	19/2	5	
X ₁	2	11	1	- 1	0	0	0	0	19/2	5	
		111	0	0	0	0	0	0	187/2	49	

4.2 大 M 法

上面的二阶段法,引入人工变量后,第一步设法将它驱赶出基变量,使得在原问题的可行解域上找到一立脚点,然后单纯形法方可施展其步步进逼极值点的目的。下面介绍另一种将人工变量赶出基变量的大M法。还是通过例子来叙述大M法思想。它针对问题:

$$\begin{array}{lll} \text{min} & z = & Cx \\ \text{s. t.} & & Ax = & b \\ & & x & 0 \end{array}$$

例 4.6 用大 M 法解

min
$$z = -5x_1 + x_2 + x_3 + 2x_5 + x_6$$

s.t. $2x_1 + x_2 - x_3 + x_4 - 2x_5 + 6x_6 = 4$
 $3x_2 + 6x_3 - 6x_4 - 2x_5 + 12x_6 = 18$
 $2x_1 + x_2 + 8x_3 + 4x_4 - 2x_5 + 6x_6 = 4$
 $x_1 = 0, i = 1, 2, ..., 6$

引进人工变量 x7, x8, x9, 并将原问题变为

min
$$z = -5x_1 + x_2 + x_3 + 2x_5 + x_6 + M(x_7 + x_8 + x_9)$$

s.t. $2x_1 + x_2 - x_3 + x_4 - 2x_5 + 6x_6 + x_7 = 4$
 $3x_2 + 6x_3 - 6x_4 - 2x_5 + 12x_6 + x_8 = 18$
 $2x_1 + x_2 + 8x_3 + 4x_4 - 2x_5 + 6x_6 + x_9 = 4$
 $x_1 = 0, i = 1, 2, ..., 9$

其中 M 是充分大一个数的标志。

现用单纯形表格解之如下,通过这样的办法逼迫 x_7, x_8, x_9 退出基(见表 4.12)。

表 4.12

хв	$C_{\mathbf{B}}$	X	x 1	x 2	х 3	x 4	X 5	х 6	x 7	х 8	х 9	
	ъ	b C	- 5	1	1	0	2	1	M	M	M	
х 7	M	4	2	1	- 1	1	- 2	6	1	0	0	4/6
x 8	M	18	0	3	6	- 6	- 2	12	0	1	0	
х 9	M	4	2	1	8	4	- 2		0	0	1	4/ 6
		26M	- 5- 4M	1- 5M	1- 13M	M	2+ 6M	1- 24M	0	0	0	
X 7	M	0	0	0	- 9	- 3	0	0	1	0	- 1	
X 8	M	10	- 4	1	- 10	- 14		0	0	1	- 2	
X 6	1	<u>2</u> 3	<u>1</u> 3	<u>1</u> 6	<u>4</u> 3	2 3	- 1/3	1	0	0	<u>1</u> 6	
		$10M + \frac{2}{3}$	$4M - \frac{16}{3}$	$\frac{5}{6}$ - M	$-\frac{1}{3}+19$ M $-$	$\frac{2}{3}$ + 17M	$\frac{7}{3}$ - 2M	0	0	0	$4M - \frac{1}{6}$	
X 7	M	0	0	0	- 9	- 3	0	0	1	1	- 1	
X 5	2	5	- 2	1/2	- 5	- 7	1	0	0	1/2	- 1	
X 6	1	$\frac{7}{3}$	$-\frac{1}{3}$	1/3	- 1/3	- <u>5</u>	0	1	0	<u>1</u>	- <u>1</u>	
		<u>37</u> 3	- <u>2</u> 3	- <u>1</u> 3	$\frac{31}{3}$ + 9M	$\frac{47}{3}$ + 3M	0	0	0	M - 7/6	$2M + \frac{13}{6}$	
X 4	0	0	0	0	3	1	0	0	- 1/3	0	1/3	
X 5	2	5	- 2	1/2	?	0	1	0	- 7 3	1/2	<u>4</u> 3	<u>5</u> 16
X 6	1	7/3	- 1/3	<u>1</u> 3	<u>14</u> 3	0	0	1	- <u>5</u>	<u>1</u> 6	$\frac{7}{18}$	1 2
		<u>37</u> 3	- <u>2</u> 3	- 1/3	- 36 <u>2</u>	0	0	0	$M + \frac{47}{9}$	M - 7/6	M - $\frac{55}{18}$	

人工变量虽然被驱赶出基变量,但发现这时问题无界,可证原问题也无界。一般也如此。

例 4.7 用大 M 法解

引进松弛变量 X3, X4, X5, 人工变量 X6, X7 得

min
$$z = x_1 - 2x_2 + M(x_6 + x_7)$$

s.t. $x_1 + x_2 - x_3 + x_6 = 2$
 $-x_1 + x_2 - x_4 + x_7 = 1$
 $x_2 + x_5 = 3$
 $x_1 = 0, i = 1, 2, ..., 7$

表 4.13 是其单纯形表格。

表 4.13

		X	X 1	X 2	X 3	X 4	X 5	X 6	X 7	
Хв	Св	b C	1	- 2	0	0	0	M	M	
X 6	M	2	1	1	- 1	0	0	1	0	2
X 7	M	1	- 1		0	- 1	0	0	1	
X 5	0	3	0	1	0	0	1	0	0	3
		3M	1	- 2- 2M	M	M	0	0	0	
X 6	M	1		0	- 1	1	0	1	- 1	1 2
X 2	- 2	1	- 1	1	0	- 1	0	0	1	
X 5	0	2	1	0	0	1	1	0	- 1	2
		M- 2	- 2M+ 3	0	M	- M- 2	0	0	2M+ 2	
X 1	1	<u>1</u> 2	1	0	- <u>1</u> 2	$\frac{1}{2}$	0	$\frac{1}{2}$	- <u>1</u> 2	
X 2	- 2	<u>3</u> 2	0	1	- <u>1</u> 2	$-\frac{1}{2}$	0	$\frac{1}{2}$	1/2	
X 5	0	3 2	0	0	1/2	1 2	1	- <u>1</u>	- <u>1</u>	
		- 1	0	0	$-\frac{1}{2}$	1/2	0	$M+\frac{1}{2}$	$M + \frac{1}{3}$	
X 1	1	2	1	0	0		1	0	- 1	$\frac{1}{2}$
X 2	- 2	3	0	1	0	0	1	0	0	
X 3	0	3	0	0	1	1	2	- 1	- 1	3
		- 4	0	0	0	- 1	1	M	M+ 1	
X 4	0	2	1	0	0	1	1	0	- 1	
X 2	- 2	3	0	1	0	0	1	0	0	
X 3	0	1	- 1	0	1	0	1	- 1	0	
		- 6	1	0	0	0	2	M	M	

得原问题的最优解为:

 $x_2 = 3, x_3 = 1, x_4 = 2, x_1 = x_5 = 0, min z = -6$

但也可能出现人工变量不退出基,而为0的情况。

例 4.8
$$\min z = x_1 - 3x_2 - x_3$$

s.t.
$$2x_1 + x_2 + x_3 = 4$$

 $x_1 - x_3 = 4$
 $x_1 = 3$

$$x_1, x_2, x_3 = 0$$

引进松弛变量 X4, X5, X6, 人工变量 X7, X8

表 4.14 是其单纯形表格。

表 4.14

	C	X	X 1	X 2	X 3	X 4	X 5	X 6	X 7	X 8	
Хв	Св	b C	1	- 3	- 1	0	0	0	M	M	
X 4	0	4		1	1	1	0	0	0	0	2
X 7	M	4	1	0	- 1	0	- 1	0	1	0	4
X 8	M	3	1	0	0	0	0	- 1	0	1	3
		7M	1- 2M	- 3	- 1+ M	0	M	M	0	0	
X 1	1	2	1	$\frac{1}{2}$	$\frac{1}{2}$	1/2	0	0	0	0	
X 7	M	2	0	$-\frac{1}{2}$	$-\frac{3}{2}$	$-\frac{1}{2}$	- 1	0	1	0	
X 8	M	1	0	- 1 2	- 1/2	- <u>1</u>	0	- 1	0	1	
			0	$-\frac{7}{2}+M$	$\frac{3}{2}$ + 2M	$M-\frac{1}{2}$	M	M	0	0	

M 是大数, 故所有的 c_i - z_i 0, 可见人工变量 x_7 , x_8 始终留在基内, 即原问题无可行解。

例 4.9 用大 M 法解

min
$$z = -x_2 - x_3$$

s.t. $-x_1 - x_2 + x_3 = 1$
 $2x_1 + x_2 - x_3 - x_4 = 1$
 $x_1, x_2, x_3, x_4 = 0$

引进人工变量 x5, x6, 将原问题变为

min
$$z = -x_2 - x_3 + Mx_5 + Mx_6$$

s.t. $-x_1 - x_2 + x_3 + x_5 = 1$
 $2x_1 + x_2 - x_3 - x_4 + x_6 = 1$
 $x_i = 0, i = 1, 2, 3, 4, 5, 6$

做出其单纯形表,如表 4.15 所示。

表 4.15

		X	X 1	X 2	X 3	X 4	X 5	X 6	
Хв	Св	b C	0	- 1	- 1	0	M	M	
X 5	M	1	- 1	- 1	1	0	1	0	
X 6	M	1		1	- 1	- 1	0	1	
		M	- M	- 1	- 1	M	0	0	
X 1	0	<u>3</u> 2	0	- 1/2	1 2	- <u>1</u>	1	1 2	
X 6	M	1/2	1	1 2	- 1/2	- <u>1</u>	0	1 2	
		<u>M</u> 2	0	- 1- $\frac{1}{2}$ M	$-1+\frac{1}{2}M$	<u>M</u> 2	0	<u>M</u> 2	
x 1	0	2	1	0	0	- 1	1	1	
X 2	- 1	1	2	1	- 1	- 1	0	1	
		- 1	2	0	0	- 1	0	M+ 1	

故问题无界。

例 4.10 用大 M 法解

min
$$z = -x_1 - x_2$$

s. t. $-x_1 + x_2 - 1$
 $x_1 - x_2 - 1$
 $x_1, x_2 - 0$

引进松弛变量 X3, X4, 人工变量 X5, X6 得

min
$$z = -x_1 - x_2 + M(x_5 + x_6)$$

s.t. $-x_1 + x_2 - x_3 + x_5 = 1$
 $x_1 - x_2 - x_4 + x_6 = 1$
 $x_1 - x_2 - x_4 - x_6 = 1$

做出其单纯形表,如表 4.16 所示。

表 4.16

		X	X 1	X 2	X 3	X 4	X 5	X 6	
Хв	Св	b C	- 1	- 1	0	0	M	M	
X 5	M	1	- 1	1	- 1	0	1	0	
X 6	M	1		- 1	0	- 1	0	1	
		2м	- 1	- 1	0	0	0	0	
X 5	M	2	0	0	- 1	- 1	1	1	
X 1	- 1	1	1	- 1	0	- 1	0	1	
		2M- 1	0	0	M	M- 1	0	1	

所有的 c_i - z_i 0, 但人工变量 x_s = 2, 保持为基变量, 故原问题无可行解。

总之,大 M 法有以下几种可能结果:

- 1. 有有限的最优解。人工变量全部为零,非人工变量则给出原问题的解。
- 2. 有有限的最优解。但人工变量不全为零,可以证明,这时原问题无可行解。
- 3. 解无界。若所有人工变量为零,则可证原题的解无界。
- 4. 解无界。人工变量不全为零,则原问题无可行解。
- 以上结论的证明留给读者自己去做。

4.3 退化情形

4.3.1 退化形问题

对于问题

$$\begin{array}{cccc} max & z = & Cx \\ s. t. & Ax = & b \\ & x & 0 \end{array}$$

其中 $A=(a_{ij})_{m \times (n+m)}, b=(b_1 b_2 ... b_m)^T, C=(c_1 c_2 ... c_{n+m}), x=(x_1 x_2 ... x_{n+m})^T$

如若 b 可表为少于 m 个 A 的列向量的线性结合, 或更确切地说, 存在一基可行解, 其中至少有一分量为零时, 称该问题为退化的。当 n=2 时比较直观, 如

$$\max z = 2x_{1} + 5x_{2}$$
s.t.
$$2x_{1} + 3x_{2} = 6$$

$$3x_{1} + 2x_{2} = 6$$

$$x_{1} + x_{2} = 12/5$$

$$x_{1}, x_{2} = 0$$

$$6$$

$$\frac{2}{5} = \frac{6}{5} \frac{3}{3} + \frac{6}{5} \frac{2}{2}, b = \frac{6}{5}a_{1} + \frac{6}{5}a_{2}$$

$$\frac{12}{5} = \frac{6}{5} \frac{3}{1} + \frac{6}{5}a_{1} + \frac{6}{5}a_{2}$$

在图 4.1 中直观可见 $x_1+x_2=\frac{12}{5}$ 与 $2x_1+3x_2=12$, $3x_1+2x_2=12$ 共过 $\frac{12}{5}$, $\frac{12}{5}$ 点, 即三线共点。实际上, 3 个约束条件中有一个是多余的, 如果引进松弛变量 x_3 , x_4 , x_5 便得

max
$$z = 2x_1 + 5x_2$$

s.t. $2x_1 + 3x_2 + x_3 = 6$
 $3x_1 + 2x_2 + x_4 = 6$
 $x_1 + x_2 + x_5 = 12/5$
 $x_1 = 0, i = 1, 2, 3, 4, 5$

从图 4.1 中可见, 在可行解域的四个顶点 2,0,2,0, $\frac{2}{5}$, 0,2,0,2, $\frac{2}{5}$, 0,0,0,0,6,6, $\frac{12}{5}$, $\frac{6}{5}$, $\frac{6}{5}$,0,0,0 中每个顶点都只有两个零元素, 唯有 $\frac{6}{5}$, $\frac{6}{5}$,0,0,0 有 3

图 4.1

个 0。 n= 2 时, 一般两条直线定一交点, b= $\frac{6}{5}$ a₁+ $\frac{6}{5}$ a₂, 表达了 x₁= x₂= $\frac{6}{5}$, x₃= x₄= x₅ = 0, 即 $\frac{6}{5}$, $\frac{6}{5}$, 0, 0, 0 为三条线 x₃= 0, x₄= 0, x₅= 0 的交点。

以这个例来分析。三条线原交于3点,比如给它们以微扰,如

$$2x_1 + 3x_2 = 6 + ,$$

 $3x_1 + 2x_2 = 6 + ,$
 $x_1 + x_2 = \frac{12}{5} + .$

则应有3个交点:

 P_1 $\frac{6+}{5}$, $\frac{6+}{5}$, P_2 $\frac{6}{5}$ + 2 , $\frac{6}{5}$ - , P_3 $\frac{6}{5}$ - , $\frac{6}{5}$ + 2 , 所以 $\frac{6}{5}$, $\frac{6}{5}$ 点可以看作是当 0 时, P_1 , P_2 , P_3 点汇聚在一起的结果。了解这一点,后面讨论为什么会循环不已以及如何回避循环出现就有了基础。

4.3.2 出现循环举例

min
$$z = -\frac{3}{4}x_1 + 20x_2 - \frac{1}{2}x_3 + 6x_4$$

s.t. $\frac{1}{4}x_1 - 8x_2 - x_3 + 9x_4 = 0$
 $\frac{1}{2}x_1 - 12x_2 - \frac{1}{2}x_3 + 3x_4 = 0$
 $x_3 = 1$
 $x_1, x_2, x_3, x_4 = 0$

引进松弛变量 x 5, x 6, x 7 使得

min
$$z = -\frac{3}{4}x_1 + 20x_2 - \frac{1}{2}x_3 + 6x_4$$

s.t. $\frac{1}{4}x_1 - 8x_2 - x_3 + 9x_4 + x_5 = 0$
 $\frac{1}{2}x_1 - 12x_2 - \frac{1}{2}x_3 + 3x_4 + x_6 = 0$
 $x_3 + x_7 = 1$
 $x_i = 0, i = 1, 2, ..., 7$

其单纯形表如表 4.17 所示。

表 4.17

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Xs O O 1/4 -8 -1 9 1 O O O Xs O O 1/2 -1/2 -1/2 3 O 1 O O Xs O O O O O O O O O
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
x ₇ 0 1 5/2 - 56 0 0 2 6 1 0 - 1/2 16 0 0 - 1 1 0 x ₅ 0 0 - 5/4 28 1/2 0 1 - 3 0 x ₄ 6 0 1/6 - 4 - 1/6 1 0 1/3 0
0 - 1/2 16 0 0 - 1 1 0 x5 0 0 - 5/4 28 1/2 0 1 - 3 0 x4 6 0 1/6 - 4 - 1/6 1 0 1/3 0
x5 0 0 - 5/4 28 1/2 0 1 - 3 0 x4 6 0 1/6 - 4 - 1/6 1 0 1/3 0
x 4 6 0 1/6 - 4 - 1/6 1 0 1/3 0
x 7 0 1 0 0 1 0 0 1
0 - 7/4 44 1/2 0 0 - 2 0
x 5 0 0 1/4 - 8 - 1 9 1 0 0
x 6 0 0 1/2 - 12 - 1/2 3 0 1 0
x 7 0 1 0 0 1 0 0 0 1
0 - 3/4 20 1/2 6 0 0

请注意, 迭代至第 7 轮, 恢复到原来的状态, 其实 7 次迭代中始终是原地踏步, 从未离开过 $x_1 = x_2 = x_3 = x_4 = x_5 = x_6 = 0$, $x_7 = 1$ 这个可行解。

上面这个循环例子,其实改变进入基便立即走出循环不已的"迷宫"。见表 4.18, 说明循环不已并非是问题固有的。例子揭示了这种可能性。

表 4.18

	1110									
		X	X 1	X 2	X 3	X 4	X 5	X 6	X 7	
Х в	Св	b C	- <u>3</u>	20	- 1/2	6	0	0	0	
X 5	0	0	- <u>1</u>	- 8	- 1	9	1	0	0	
X 6	0	0	1 2	- 12	$-\frac{1}{2}$	3	0	1	0	
X 7	0	1	0	0	1	0	0	0	1	
			- <u>3</u>	20	- <u>1</u> 2	6	0	0	0	
X 5	0	0	0	- 2	- <u>3</u>	1 <u>5</u> 2	1	1 2	0	
X 1	- <u>3</u>	0	1	- 24	- 1	6	0	2	0	
X 7	0	1	0	0		0	0	0	1	
		0	0	2	- <u>5</u>	<u>21</u> 2	0	<u>3</u> 2	0	
X 5	0	0	0	2	0	1 <u>5</u> 2	1	1 2	<u>3</u> 4	
X 1	- 3/4	0	1	- 24	0	6	0	2	1	
X 3	- 1/2	1	0	0	1	0	0	0	1	
			0	2	0	2 <u>1</u> 2	0	<u>3</u> 2	<u>5</u> 4	

4.4 防止循环

4.4.1 退出基不唯一时的选择办法

出现循环的现象见上一节,虽然很少见,但理论上已说明它的确存在。如何防止出现循环不已,也是理论上必须回答的问题。还是假定

$$\begin{array}{cccc} max & z = & Cx \\ s. \, t. & & Ax = & b \\ & & x & 0 \end{array}$$

其中, $A=(a_{ij})_{mx (m+n)}$, $b=(b_1 b_2... b_m)^T$, $x=(x_1 x_2... x_{n+m})^T$, $C=(c_1 c_2... c_{m+n})$

单纯形法开始时, 从基矩阵为单位阵出发。不失一般性, 假定开始时最后 m 列是单位阵, 并假定 c_k - z_k > 0, x_k 作为进入基, 单纯形法退出基 x_{B_r} 的确定是根据: 若唯一存在 r, 使

$$\min \frac{b_i}{a_{ik}} \left| a_{ik} > 0 \right| = \frac{b_r}{a_{rk}}$$

则令 XB,作为退出基。

如若 $\min_{a_{ik}} \left| a_{ik} > 0 \right|$ 不仅存在唯一一个, 而是一个集合, 用 R_0 表示。

$$R_0 = r \left| \frac{b_r}{a_{rk}} = \min_i \frac{b_i}{a_{ik}} \right| a_{ik} > 0$$

下面令 B⁻¹= (a₁ a₂...a_m), 定义

$$R_1 = r_1 \left| \begin{array}{cc} a_{r_1 1} \\ a_{r_1 k} \end{array} \right| = \min_{i \in R_0} \frac{a_{i1}}{a_{ik}}$$

若 R_1 只有一个 r_1 ,则令 x_{Br_1} 为退出基,如若不然,用 R_2 表示它的集合。

$$R_2 = r_j \left| \begin{array}{cc} \frac{a_{r_j j}}{a_{r_j k}} = \min_{i = R_{j-1}} \frac{a_{ij}}{a_{ik}} \end{array} \right|$$

如此反复直到 R_i 只有一个元素 r_i 为止, 则令 x_{Br_i} 退出基。

4.4.2 首正向量概念

下面来证明上述的退出基的选择可以避免循环。先引进一概念, 假定非零向量 A 的第一个非零元素为正时, 用 A> 0 来表示它, 称向量 A 为首正向量。例如(2, -1, 0, 2), (0, 1, 1, -1), (0, 0, 2, 1) 等都是首正向量, 而(0, 0, -1, 2) 不是首正向量, (0, 0, 0, 0) 也不是首正向量。

下面证明开始时 $b \mid I_{(m)} > 0$, 在单纯形法迭代过程中, 如若依照上述退出基的法则, 则 $B^{-1}b \mid B^{-1} > 0$ 。

若开始迭代前的单纯形表格如表 4.19, 为了讨论方便起见, 前 m 列为 B 「所在的列。

	4.19							
		X	X 1	X 2	 X m	X m+ 1	 Xk	 $\mathbf{X}n+\;m$
Хв	Св	b C	C1	C 2	 Cm	Cm+ 1	 Ck	 Cn+ m
X B ₁	СВ	bı	a 11	a 12	 a 1 m	a 1,m+1	 a 1,k	 $a_{1,n+m}$
X B ₂	Св ₂	b_2	a ₂₁	a_{22}	 a_{2m}	$a_{2,m+1}$	 $a_{2,k}$	 $a_{2,\text{n+}\ m}$
XB _r	СВ _r	b _r	a _{r1}	ar2	 arm	a r, m+ 1	 a r, k	 $a_{r,n+m}$
X B _m	CB _m	b _m	a _{m1}	a_{m2}	 a_{mm}	a _{m, m+ 1}	 $a_{m,k}$	 $a_{m,\text{n+}\ m}$
		7	C1 - 71	C2- 72	Cm = 7 m	Cm+ 1- 7m+ 1	Ck - Zk	Cn+ m= 7n+ m

表 4.19

迭代后的单纯形表格如表 4.20 所示。

表 4.20

	G	X	X1 X2	Xh	X m	 Xk	 X n+ m
Хв	Св	b C	C1 C2	Ch	Cm	 Ck	 Cn+ m
X B ₁	CB ₁	$b_1 - \frac{b_r}{a_{rk}} a_{1k}$ $b_2 - \frac{b_r}{a_{rk}} a_{2k}$		a_{1h} - $\frac{a_{rh}}{a_{rk}}a_{1}k$			$a_{1 n+ m} - \frac{a_{rn+m}}{a_{rk}} a_1 k$
х в ₂	CB ₂	$b_2 - \frac{b_r}{a_{rk}} a_{2k}$		$a_{2h} - \frac{a_{rh}}{a_{rk}} a_{2k}$		0	 $a_{2 n+ m} - \frac{a_{r n+ m}}{a_{r k}} a_{2 k}$
X k	Ck	b _r / a _{rk}		$a_{ m rh}/a_{ m rk}$		1	 <u>arn+ m</u> a _{rk}
X B _m	Св _т	$b_m - \frac{b_r}{a_{rk}} a_{mk}$		a_{mh} - $\frac{a_{rh}}{a_{rk}}a_{mk}$		0	 $a_{ ext{m n+ m}}$ $a_{ ext{rk}}$ $a_{ ext{mk}}$ $a_{ ext{mk}}$
		$z - \frac{b_r}{a_{rk}}(c_h - z_h)$		$(c_h-z_h)-\frac{a_{rh}}{a_{rk}}(c_k-$	z k)	 0	

4.4.3 不出现循环的证明

 $B^{-1}b \mid B^{-1}$ 的第 i 行分为 i r 和 i= r 两种情况:

$$b_i - \frac{b_r}{a_{rk}} a_{ik} a_{i1} - \frac{a_{r1}}{a_{rk}} a_{ik} \dots a_{im} - \frac{a_{rm}}{a_{rk}} a_{ik} , i r$$

即

$$(b_i \ a_{i1} \ a_{i2} \ ... \ a_{im}) \ \text{-} \quad \frac{a_{ik}}{a_{rk}} (b_r \ a_{r1} \ a_{r2} \ ... \ a_{rm})$$

$$\frac{b_r}{a_{rk}} \frac{a_{rl}}{a_{rk}} \dots \frac{a_{rm}}{a_{rk}} , \qquad i = r$$

先考虑 i= r。

由于 $a_{rk} > 0$, 所以第 r 行(即 i= r 行) 迭代后有> 0。

i r 有两种情况: i R₀和 i| R₀

(1) i| R₀,又分若 a ik < 0,则

$$(\,b_{\text{i}},\,a_{\text{i}1},\,a_{\text{i}2},\,...,\,a_{\text{im}})\,\,\text{-}\,\,\,\frac{a_{\text{i}k}}{a_{\text{r}k}}(\,b_{\text{r}},\,a_{\text{r}1},\,a_{\text{r}2},\,...,\,a_{\text{rm}}\,)\,\,\,\text{>}\,\,\,0$$

若 a k > 0, 因 i | R₀, 故

$$\frac{b_r}{a_{rk}} < \frac{b_i}{a_{ik}}$$

$$b_i - \frac{b_r}{a_{rk}} a_{ik} > 0$$

故

$$(b_i a_{i1} a_{i2} \dots a_{im}) - \frac{a_{ik}}{a_{rk}} (b_r a_{r1} a_{r2} \dots a_{rm}) > 0$$

(2) i R₀, 根据 R₀ 的定义, a k> 0, 且

$$\frac{b_i}{a_{ik}} = \frac{b_r}{a_{r\,k}}$$

又分i Rı和il Rı两种情形

(a) i | R₁, 由 R₁ 的定义

$$\frac{a_{i1}}{a_{ik}} > \frac{a_{r1}}{a_{rk}}, a_{t1} - \frac{a_{r1}}{a_{rk}} a_{ik} > 0$$

故第 i 行> 0。

(b) i R_1 , a_{i1} - $\frac{a_{r1}}{a_{rk}}$ $a_{ik} = 0$, 又分 i R_2 或 i| R_2 两种情形, 这种分析可以一直延续 m+ 1步, 直到证明 $B^{-1}b \mid B^{-1} > 0$ 。

利用上述结果可证明依照上述退出基的准则不可能出现重复出现的基。可证从基 B_i 到 B_{i+1} 迭代过程, 下列等式成立。

$$C_{B_j}B_j^{-1}b\mid C_{B_j}B_j^{-1}\quad -\quad C_{B_{j+1}}B_{j+1}^{-1}b\mid C_{B_{j+1}}B_{j+1}^{-1}\quad \equiv\quad \frac{c_k\;-\;\;z_k}{a_{rk}}(\;b_r\;a_{r1}\;a_{r2}\;\ldots\;a_{rm})$$

由于 c_k - z_k > 0, a_{rk} > 0 故

$$C_{B_{j}}B_{j}^{\text{-}1}b \mid C_{B_{j}}B_{j}^{\text{-}1} \quad - \quad C_{B_{j+1}}B_{j+1}^{\text{-}1}b \mid C_{B_{j+1}}B_{j+1}^{\text{-}1} \quad \text{>} \quad 0$$

最后证明,不至于出现循环。如若不然,

$$\begin{split} B_{1}, B_{2}, \dots, B_{l} &= B_{1} \\ C_{B_{1}} B_{1}^{-1} b \mid C_{B_{1}} B_{1}^{-1} - C_{B_{2}} B_{2}^{-1} b \mid C_{B_{2}} B_{2}^{-1} > 0 \\ C_{B_{2}} B_{2}^{-1} b \mid C_{B_{2}} B_{2}^{-1} - C_{B_{3}} B_{3}^{-1} b \mid C_{B_{3}} B_{3}^{-1} > 0 \end{split}$$

导出矛盾。这就证明了有限次迭代可获得最优解,避免了基循环出现。

伯兰德(Bland)也导出避免循环的准则。要求进入的基 x_i 有 c_i - z_i > 0, 且 i 是关于 A 矩阵中列的序数最小的。也就是选 i 的最小值, i= $\min_{j} \{j @_{ij} - z_i > 0\}$, 二者实质类似, 这里就不讨论它了。

4.5 灵敏度分析

在许多实际问题中,包括大型线性规划问题,其参数经常有少许变动。比如目标函数的系数,右端项或约束条件有数量不大的变动。当然,继续动用单纯形法重新求解是可以的,能否在原有基础上适当地修正就可以给出变动以后的答案呢?回答是肯定的。这一节将讨论这一问题。分几种情况举例讨论如下。

max
$$z= x_1 + 2x_2 + x_3$$

s.t. $2x_1 + x_2 - x_3 + x_4 = 2$
 $2x_1 - x_2 + 5x_3 + x_5 = 6$
 $4x_1 + x_2 + x_3 + x_6 = 6$
 $x_i = 0, i = 1, 2, ..., 6$

单纯形表格见表 4.21。

表 4.21

		Х	X 1	X 2	X 3	X 4	X 5	X 6	
Хв	Св	b C	1	2	1	0	0	0	
X 4	0	2	2		- 1	1	0	0	2
X 5	0	6	2	- 1	5	0	1	0	
X 6	0	6	4	1	1	0	0	1	6
	0	0	1		1	0	0	0	
X 2	2	2	2	1	- 1	1	0	0	
X 5	0	8	4	0	4	- 1	1	0	2
X ₆	0	4	2	0		- 1	0	1	2
		4	- 3	0		- 2	0	0	
X 2	2	4	3	1	0	1 2	0	1 2	
X 5	0	0	0	0	0	3	1	- 2	
X 3	1	2	1	0	1	- <u>1</u>	0	1/2	
		10	- 6	0	0	- <u>1</u> 2	0	- <u>3</u> 2	

4.5.1 C有变化

C 有变化又分两种情况:

(1) x^k 非基变量, c^k 改为 c^k , z^k 不因 c^k 的改变而改变, 但

$$c_k - z_k = (c_k - c_k) + (c_k - z_k)$$

 c_k - z_k < 0, 若 c_k - c_k 的值没能改变到使 c_k - z_k 改变为正值, 则原来解依然有效。例如 c_i 从 1 改为 3, c_i - z_i = - 4, 则原来的解不变, 若 c_i 从 1 改为 8, 则 c_i - z_i = 1> 0 则起质的变化。 x_i 必将进入基,也只要在最后的单纯形表格再进行一次迭代而无需从头开始。

表上作业如表 4.22 所示。表 4.22 是在表 4.21 基础上进行的。

表 4.22

	_	X	X 1	X 2	X 3	X 4	X 5	X 6	
Хв	Св	b C	8	2	1	0	0	0	
X 2	2	4		1	0	1/2	0	1/2	<u>4</u> 3
X 5	0	0	0	0	0	3	1	- 2	
X 3	1	2	1	0	1	$-\frac{1}{2}$	0	1 2	2
		10		0	0	- <u>1</u>	0	- 3	
X 1	8	<u>4</u> 3	1	<u>1</u> 3	0	<u>1</u> 6	0	<u>1</u> 6	
X 5	0	0	0	0	0	3	1	- 2	
X 3	1	<u>2</u> 3	0	- 1 3	1	$-\frac{2}{3}$	0	<u>1</u> 3	
		34 3	0	- 1/3	0	- <u>2</u> 3	0	- <u>5</u>	

(2) X k 是基变量, Ck 改为 Ck, 则 Zj 代以 Zj= CBB⁻¹aj

 c_i - z_i 按上式进行修改, 其中 a_{ki} 是 $B^{-1}A$ 矩阵第 k 行第 j 个元素。例如 x_3 从 1 改为 2,可见解改为

$$x_2 = 4$$
, $x_3 = 2$, $x_1 = x_4 = x_5 = x_6 = 0$, $z = 12$

表上作业如表 4.23 所示。

表 4.23

		X	X 1	X 2	X 3	X 4	X 5	X 6	
Хв	Св	b C	1	2	2	0	0	0	
X 2	2	4	3	1	0	1 2	0	1 2	
X 5	0	0	0	0	0	3	1	- 2	
X 3	2	2	1	0	1	$-\frac{1}{2}$	0	$\frac{1}{2}$	
		12	- 7	0	0	0	0	- 2	

若 c3 从 2 改为 4,情况有不同。

表上作业如表 4.24 所示。

表 4.24

		X	X 1	X 2	X 3	X 4	X 5	X 6	
Хв	Св	b C	1	2	4	0	0	0	
X 2	2	4	3	1	0	1 2	0	1 2	
X 5	0	0	0	0	0		1	- 2	
X 3	4	2	1	0	1	$-\frac{1}{2}$	0	1/2	
		16	- 9	0	0		0	- 3	
X 2	2	4	3	1	0	0	$-\frac{1}{6}$	<u>5</u> 6	
X_4	0	0	0	0	0	1	<u>1</u> 3	$-\frac{2}{3}$	
X 3	4	2	1	0	1	0	<u>1</u> 6	<u>1</u> 6	
		16	- 9	0	0	0	- <u>1</u> 3	- 7 3	

4.5.2 右端项改变

例如 b₃ 从 6 改为 3,新的解基不变的

$$\frac{1}{2} \quad 0 \quad \frac{1}{2} \quad 2 \quad \frac{5}{2}$$

$$b = B^{-1}b = 3 \quad 1 \quad -2 \quad 6 = 6$$

$$-\frac{1}{2} \quad 0 \quad \frac{1}{2} \quad 3 \quad \frac{1}{2}$$

$$x_2 = \frac{5}{2}, x_5 = 6, x_3 = \frac{1}{2}, x_1 = x_4 = x_6 = 0$$

$$\min z = \frac{11}{2}$$

若 b₃= 1,则情况有变化

$$b = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} & 2 & \frac{3}{2} \\ 3 & 1 & -2 & 6 & = & 10 \\ -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

右端出现负数,遇到这种情况如何处理,留到以后讨论。

4.5.3 aij 改变

若 x_i 不是基变量,则 B^{-1} 不变,但 z_i = $C_B B^{-1} a_i$ 。若 c_i - z_i 为正号,则 a_i 的改变不影响原来解,否则在原来解的基础上作相应的处理。若 x_i 是基变量,则修改 B^{-1} ,并考虑由此引起的一切影响。

例如 a_{11} 由 2 改为 4, c_{1} - z_{1} = 1- 8= - 7< 0, 故原来的解不变。若 x_{1} 是基变量, 则将引起 B^{-1} 的改变, 并由此引起一系列变化。这里用到前面讨论过的:

已知 $B_0 = (a_1 \ a_2 ... \ a_k ... \ a_n)$ 及其逆 B_0^{-1}, B_n 只是用 a 取代 $a_k,$ 即 $B_n = (a_1 \ a_2 ... \ a \ ... a_n)$

第k列

求 B⁻¹。

对矩阵

求 $a= B^{-1}a= (a_1 a_2... a_k... a_n)^T$

即以 ak 为主元素进行消元, 即得 Bh 1。

例如,上例中若 a_{23} 从 5 改为 1, 即已知 $B_{0}^{-1}=$ - 1 1 5 = 3 1 - 2 1 0 $\frac{1}{2}$ 0 $\frac{1}{2}$

即

Bn 看作是Bo的第3列被取代,根据3.1节方法

根据单纯形法迭代相当于用 Bil 左乘矩阵 A。即左乘于矩阵

即

做出单纯形表,于是有表 4.25。

表 4.25

		X	X 1	X 2	X 3	X 4	X 5	X 6	
Хв	Св	b C	1	2	1	0	0	0	
X 2	2	4	3	1	0	1/2	0	1/2	
X 5	0	8	4	0	0	1	1	0	
X 3	1	2	1	0	1	$-\frac{1}{2}$	0	$\frac{1}{2}$	
		10	- 6	0	0	- <u>1</u>	0	- <u>3</u> 2	

故得最优解 $x_2 = 4$, $x_3 = 2$, $x_5 = 8$, $x_1 = x_4 = x_6 = 0$, max z = 10.

4.5.4 A 的列向量改变

例如将 a23 改为 9 求 B-1

a 33

考虑 B。的第3列被改变。

$$a = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} & -3 & -\frac{1}{2} \\ 3 & 1 & -2 & 9 & = & -4 \\ -\frac{1}{2} & 0 & \frac{1}{2} & \frac{5}{2} \end{bmatrix}$$

对下列矩阵作消元计算。

即

做单纯形表格,如表 4.26 所示。

表 4.26

		X	X 1	X 2	X 3	X 4	X 5	X 6	
Хв	Св	b C	1	2	1	0	0	0	
X 2	2	22 5	<u>16</u> 5	1	0	<u>2</u> 5	0	<u>3</u> 5	
X 5	0	<u>16</u> 5	<u>8</u> 5	0	0	<u>11</u> 5	1	- <u>6</u> 5	
X 3	1	<u>4</u> 5	<u>2</u> 5	0	1	- <u>1</u> 5	0	<u>1</u> 5	
		<u>48</u> 5	- <u>29</u> - 5	0	0	- <u>3</u> 5	0	- 7 5	

故得最优解 $x_2 = \frac{22}{5}$, $x_3 = \frac{4}{5}$, $x_5 = \frac{16}{5}$, $x_4 = x_4 = x_6 = 0$, max $z = \frac{48}{5}$.

4.5.5 A 的行向量改变

现在来看一看若 $(a_{21} \ a_{22} \ a_{23})$ 从(2 - 15)改为 $(10 - 10 \ 10)$ 如何处理。首先证明等式 $(B^{T})^{-1} = (B^{-1})^{T}$

只要对上式右端左乘(或右乘) B^{T} 得 $B^{T}(B^{-1})^{T} = (B^{-1}B)^{T} = I$ $(B^{-1})^{T} = (B^{T})^{-1}$

已知

问题变成求 0 1 0 , * 表示改变了的元素。可以考虑 B_{\circ} 的第 2 列被新的取 -1 10^{\cdot} 1

代。

$$\frac{1}{2} \quad 3 \quad -\frac{1}{2} \quad -10 \quad -7$$

$$A = 0 \quad 1 \quad 0 \quad 1 = 1$$

$$\frac{1}{2} \quad -2 \quad \frac{1}{2} \quad 10 \quad -2$$

对下列矩阵进行主元素消元,

计算

表 4.27 是其单纯形表格。

表 4.27

	C	X	X 1	X 2	X 3	X 4	X 5	X 6	
X _B	$C_{\mathbb{B}}$	b C	1	2	1	0	0	0	
X 2	2	4	3	1	0	1 2	0	1/2	
X 5	0	26	30	0	0	10	1	0	
X 3	1	2	1	0	1	$-\frac{1}{2}$	0	$\frac{1}{2}$	
		10	- 6	0	0	- <u>1</u>	0	- 3/2	

故得最优解 $x^2 = 4$, $x^3 = 2$, $x^5 = 26$, $x^1 = x^4 = x^6 = 0$, max z = 10.

4.5.6 增加新变量

例如新增一变量 y:

对于基 x_2, x_5, x_3 ,有 B^{-1} = 3 1 - 2 ,检查 c_y - z_y = c_y - $C_B B^{-1} a_y$ 。 - $\frac{1}{2}$ 0 $\frac{1}{2}$

若 c_y - z_y > 0, 则 y 为进入基变量进行迭代; 若 c_y - z_y 0, 则原问题的解不变, y 作为非基变量, y= 0。

$$\frac{1}{2} \quad 0 \quad \frac{1}{2} \quad _{1} \quad \frac{1}{2} \quad _{1} + \frac{1}{2} \quad _{3}$$

$$B^{-1}a_{y} = \quad 3 \quad 1 \quad _{2} \quad _{2} = \quad 3 \quad _{1} + \quad _{2} - \quad _{2} \quad _{3}$$

$$- \quad \frac{1}{2} \quad 0 \quad \frac{1}{2} \quad _{3} \quad _{3} \quad _{4} \quad \frac{1}{2} \quad _{1} + \quad \frac{1}{2} \quad _{3}$$

$$\frac{1}{2} \quad _{1} + \quad \frac{1}{2} \quad _{3}$$

$$C_{B}B^{-1}a_{y} = \quad (2 \quad 0 \quad 1) \quad 3 \quad _{1} + \quad _{2} - \quad 2 \quad _{3} = \quad \frac{1}{2} \quad _{1} + \quad \frac{3}{2} \quad _{3}$$

$$- \quad \frac{1}{2} \quad _{1} + \quad \frac{1}{2} \quad _{3}$$

$$c_{y} - \quad z_{y} = \quad + \quad \frac{1}{2} \quad _{1} + \quad \frac{3}{2} \quad _{3}$$

比如 = 5, 1 = 2 = 3 = 2。

 c_y - z_y = 5 > 0,则 y 作为进入基变量,

 $B^{-1}a_y = 2$,最优解为 y = 4, $x_3 = 1$, $x_5 = x_1 = x_2 = x_4 = 0$,max z = 22

做单纯形表,如表 4.28 所示。

表 4.28

	~	X	X 1	X 2	X 3	X 4	X 5	X 6	y	
ХВ	Св	b C	1	2	1	0	0	0	5	
X 2	2	4	3	1	0	1/2	0	1/2		2
X 5	0	8	4	0	0	1	1	0	2	2
X 3	1	2	1	0	1	$-\frac{1}{2}$	0	1/2	0	
		10	- 6	0	6	- 1/2	0	$-\frac{3}{2}$		
у	5	4	3	1	0	1/2	0	1/2	1	
X 5	0	0	- 2	- 2	0	0	1	- 1	0	
X 3	1	2	1	0	1	- <u>1</u>	0	1 2	0	
		22	- 15	- 3	0	- 2	0	- 3	0	

4.5.7 增加新约束条件

已知

$$max z = Cx$$

$$s.t. Ax= b$$

$$x 0$$

设 $A=B^{-1}N$,B 是基变量 x_B 对应的矩阵,N 是非基变量 x_N 对应的矩阵。 $x=\begin{bmatrix} x_B \\ x_N \end{bmatrix}$,则 $x_B+B^{-1}Nx_N=B^{-1}b$ 。若新增加的约束条件为:

$$A_1X_B + A_2X_N$$
 b, 则
$$A_1X_B + A_2X_N + x_{N+1} = b$$
 又因
$$A_1X_B + A_1B^{-1}Nx_N = A_1B^{-1}b$$

$$(A_2 - A_1B^{-1}N)x_N + x_{N+1} = b - A_1B^{-1}b$$

若 b- A₁B⁻¹b 0,则新增加的约束条件自然满足,这时原来的解不变。

上面的做法实际上是将原问题的解代入新增加的约束条件中去,看是否解满足,若右端项 0,则 $x_N = 0$, $x_{N+1} = 0$ 。如若不然,出现右端为负,这种情况也留以后讨论。

例如新增加的约束条件为 $x_1 + x_2 + x_3 = 8$, 从单纯形表格(见表 4.29)

表 4.29

		X	X 1	X 2	X 3	X 4	X 5	X 6	
Хв	Св	b C	1	2	1	0	0	0	
X 2	2	4	3	1	0	1 2	0	$\frac{1}{2}$	
X 5	0	0	0	0	0	3	1	- 2	
X3	1	2	1	0	1	$-\frac{1}{2}$	0	$\frac{1}{2}$	
		10	- 6	0	0	$-\frac{1}{2}$	0	- <u>3</u> 2	

可得

$$3x_1 + x_2 + \frac{1}{2}x_4 + \frac{1}{2}x_6 = 4 \tag{1}$$

$$3x_4 + x_5 - 2x_6 = 0 (2)$$

$$x_1 + x_3 - \frac{1}{2}x_4 + \frac{1}{2}x_6 = 2$$
 (3)

(1)+(3) 得

$$4x_1 + x_2 + x_3 + x_6 = 6$$

新增约束条件为

$$x_1 + x_2 + x_3 + x_7 = 8$$

或 - 3x₁

 $- x_{6} + x_{7} = 2$

相当于新的单纯形表格(见表 4.30)。

表 4.30

										Т
	C	X	X 1	X 2	X 3	X 4	X 5	X 6	X 7	
X B	Св	b C	1	2	1	0	0	0	0	
X 2	2	4	3	1	0	1 2	0	1 2	0	
X 5	0	0	0	0	0	3	1	- 2	0	
X 3	1	2	1	0	1	$-\frac{1}{2}$	0	1/2	0	
X 7	0	2	- 3	0	0	0	0	- 1	1	
		10	- 6	0	0	- 1/2	0	- <u>3</u> 2	0	

若新加约束条件:

$$x_1 + x_2 + x_3 = 5$$

则出现

$$-3x_1-x_6+x_7=-1$$

做单纯形表(见表 4.31)。

表 4.31

		X	X 1	X 2	X 3	X 4	X 5	X 6	X 7	
ХВ	Св	b C	1	2	1	0	0	0	0	
X 2	2	4	3	1	0	1 2	0	1 2	0	
X 5	0	0	0	0	0	3	1	- 2	0	
X 3	1	2	1	0	1	$-\frac{1}{2}$	0	$\frac{1}{2}$	0	
X 7	0	- 1	- 3	0	0	0	0	- 1	1	
		10	- 6	0	0	$-\frac{1}{2}$	0	- 3/2	0	
X 2	2	7/2	<u>3</u> 2	1	0	1 2	0	0	1/2	
X 5	0	2	6	0	0	3	1	0	- 2	
X 3	1	<u>3</u> 2	$-\frac{1}{2}$	0	1	$-\frac{1}{2}$	0	0	$\frac{1}{2}$	
X 6	0	1	3	0	0	0	0	1	- 1	
		<u>17</u> 2	- <u>3</u> 2	0	0	- <u>1</u>	0	0	- <u>3</u> 2	

得最优解 $x_2 = \frac{7}{2}$, $x_3 = \frac{3}{2}$, $x_5 = 2$, $x_6 = 1$, $x_4 = x_4 = x_7 = 0$, max $z = \frac{17}{2}$.

4.5.8 应用举例

某工厂生产 P_1, P_2, P_3 三种产品,单位产品的利润分别为 2, 3, 1 单位。设 x_1, x_2, x_3 分别表示这 3 种产品的每周产量,其约束条件无非是人力和材料两方面。设

人力限制: X1+ X2+ X3 3

材料限制: $x_1 + 4x_2 + 7x_3$ 9

问如何安排生产,使每周的利润最大?

引进松弛变量 x4, x5 得

max
$$z = 2x_1 + 3x_2 + x_3$$

s.t. $x_1 + x_2 + x_3 + x_4 = 3$
 $x_1 + 4x_2 + 7x_3 + x_5 = 9$
 $x_1 = 0, i = 1, 2, 3, 4, 5$

表 4.32 是其单纯形表格。

现若人力约束有变化:右端 3 改为 b 时

只要 $4b_1$ - 9 0, 9- b_1 0, 即 $\frac{9}{4}$ b_1 9 时, 前面的计划可以不改变, 但当 b_1 > 9 时, 情

表 4.32

		X	X 1	X 2	X 3	X 4	X 5	
Хв	Св	b C	2	3	1	0	0	
X 4	0	3	1	1	1	1	0	3
X 5	0	9	1		7	0	1	9/4
		0	2	3	1	0	0	
X 4	0	1/4	1/4	0	- 1/4	1	- 1/4	
X 2	3	9/4	1/4	1	7/4	0	1/4	9
			5/4	0	- 17/4	0	- 3/4	
Х 1	2	1	1	0	- 1	1	- 1	
X 2	3	2	0	1	2	- 1	1	
		8	0	0	- 3	- 5	- 1	

况有变。比如 bi= 12:

$$B^{-1}b = \begin{pmatrix} 4 & -1 & 12 \\ -1 & 1 & 9 \end{pmatrix} = \begin{pmatrix} 39 \\ -3 \end{pmatrix}$$

其单纯形表为表 4.33。

表 4.33

		X	X 1	X 2	X 3	X 4	X 5	
Хв	Св	b C	2	3	1	0	0	
X 1	2	39	1	0	- 1	4	- 1	
X 2	3	- 3	0	1	2	- 1	1	
		69	0	0	- 3	- 5	- 1	
X 1	2	27	1	4	7	0	3	
X 4	0	3	0	- 1	- 2	1	- 1	
		54	0	- 5	- 13	0	- 6	

即当 b_1 增为 12 时, $x_1 = 27$, $x_4 = 3$, $x_2 = x_3 = x_5 = 0$, max z = 54.

4.5.9 参数规划

(1) 目标函数含有参数

例如 4.5.8 节讨论的例

max
$$z = (2 +)x_1 + (3 -)x_2 + (1 +)x_3$$

s.t. $x_1 + x_2 + x_3 + x_4 = 3$
 $x_1 + 4x_2 + 7x_3 + x_5 = 9$
 $x_1 = 0, i = 1, 2, 4, 5, 3$

表 4.34 是其单纯形表格。

表 4.34

	C	X	X 1	X 2	X 3	X 4	X 5	
Хв	Св	b C	2+	3-	1+	0	0	
X 1	2+	1	1	0	- 1	4	- 1	
X ₂	3-	2	0	1	2	- 1		
		8-	0	0	- 3+ 4	- 5- 5	- 1+ 2	

$$-3+4$$
 0, $<\frac{3}{4}$

$$-1+2$$
 0, $\frac{1}{2}$

即- 1 $\frac{1}{2}$ 时生产计划不变。

当 $\frac{1}{2}$ < < $\frac{3}{4}$ 时, c_5 - z_5 > 0, x_5 进入基。

再进行表上作业(见表 4.35)。

表 4.35

Хв	Св	b C	X1 2+	X 2 3-	x3 1+	X 4 O	x 5
X 1	2+	3	1	1	1	3	0
X ₅	0	2	0	1	2	- 1	1
		6+ 3	0	1- 2	- 1	- 6- 3	0

(2) 右端项出现参数

max
$$z = 2x_1 + 3x_2 + x_3$$

s. t. $x_1 + x_2 + x_3 + x_4 = 3(1 +)$
 $x_1 + 4x_2 + 7x_3 + x_5 = 3(3 -)$
 $x_1 = 0, i = 1, 2, 3, 4, 5$

故 B⁻¹ =
$$\begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix}$$
, B⁻¹b = $\begin{pmatrix} 4 & -1 & 3(1+) \\ -1 & 1 & 3(3-) \end{pmatrix}$ = $\begin{pmatrix} 3+15 \\ 6-6 \end{pmatrix}$

故
$$x_1 = 3 + 15$$
 , $x_2 = 6 - 6$ 。

即当- $\frac{1}{5}$ 1时,计划不变。当 > 1时,右端出现负号。

> 1 时, x_1 = 27- 9 , x_4 = 6 - 6, x_2 = x_3 = x_5 = 0, max z= 54- 18 表 4.36 是其单纯形表格。

表 4.36

Хв	Св	b C	X 1	X 2	X 3	X 4	X 5	
			2	3	1	0	0	
X 1	2	3+ 15	1	0	- 1	4	- 1	
X 2	3	6- 6	0	1	2	- 1	1	
		24+ 12	0	0	- 3	- 5	- 1	
X 1	2	27- 9	1	4	7	0	3	
X 4	0	6 - 6	0	- 1	- 2	1	- 1	
		54- 18	0	- 5	- 13	0	- 6	

习 题 四

1. 用二阶段法解

2. 解

s. t.
$$x_1 + x_2 + x_3 = 3$$

 $-x_1 + 2x_2 = 2$
 $-x_1 + 5x_2 + x_3 = 4$
 $x_1 = 0, i = 1, 2, 3$

min $z = x_1 + 3x_2 - x_3$

3. 解

max
$$z = 4x_1 + 5x_2 - 3x_3$$

s. t. $x_1 + x_2 + x_3 = 10$
 $x_2 - x_2$ 1
 $2x_1 + 3x_2 + x_3$ 20
 x_1, x_2, x_3 0

4. 用几何方法及二阶段法解

max
$$z = x_1 + 2x_2$$

s.t. $x_1 + x_2 = 1$
 $-x_1 + x_2 = 3$
 $x_2 = 5$
 $x_1, x_2 = 0$

max
$$z = 9x_2 + x_3 - 2x_5 - x_6$$

s. t. $5x_2 + 50x_3 + x_4 + x_5 = 10$
 $x_1 - 15x_2 + 2x_3 = 2$
 $x_2 + x_3 + x_5 + x_6 = 6$
 $x_1 = 0, i = 1, 2, ..., 6$

6. 用大 M 法解

max
$$z = 2x_1 - 2x_2 - x_3 - x_4$$

s.t. $x_1 + 2x_2 + x_3 + x_4 = 2$
 $x_1 - x_2 + x_3 + 5x_4 = 4$
 $2x_1 - x_2 + x_3 = 2$
 $x_i = 0, i = 1, 2, 3, 4$

7. 用二阶段法及大 M 法解

min
$$z = 3x_1 - 2x_2 + 5x_3$$

s. t. $x_1 + 2x_2 + x_3 = 5$
 $-3x_1 + x_2 - x_3 = 4$
 $x_1, x_2, x_3 = 0$

8. 解

max
$$z = x_1 + 2x_2 + x_3$$

s.t. $x_1 + 4x_2 + 6x_3 + 4$
- $x_1 + x_2 + 4x_3 + 1$
 $x_1 + 3x_2 + x_3 + 6$
 $x_1, x_2, x_3 + 0$

9. 试解下面退化型问题

(a)
$$\min z = -\frac{3}{4}x_{4} + 20x_{5} - \frac{1}{2}x_{6} + 6x_{7}$$

$$s. t. x_{1} + \frac{1}{4}x_{4} - 8x_{5} - x_{6} + 9x_{7} = 0$$

$$x_{2} + \frac{1}{2}x_{4} - 12x_{5} - \frac{1}{2}x_{6} + 3x_{7} = 0$$

$$x_{3} + x_{6} = 1$$

$$x_{1} = 0, i = 1, 2, ..., 7$$
(b)
$$\min z = -\frac{3}{4}x_{1} + 150x_{2} - \frac{1}{50}x_{3} + 6x_{4}$$

$$s. t. -\frac{1}{4}x_{1} - 60x_{2} - \frac{1}{25}x_{3} + 9x_{4} + x_{5} = 0$$

$$\frac{1}{2}x_{1} - 90x_{2} - \frac{1}{50}x_{3} + 3x_{4} + x_{6} = 0$$

$$x_{3} + x_{7} = 1$$

$$x_{1} = 0, i = 1, 2, ..., 7$$

10. 试证在单纯形法的迭代过程中, 从基矩阵 B_j 到 B_{j+1}, 下列不等式成立 · 124 ·

$$C_{B_{j}}B_{j}^{-1}b\mid C_{B_{j}}B_{j}^{-1}\quad -\quad C_{B_{j+1}}B_{j+1}^{-1}b\mid C_{B_{j+1}}B_{j+1}^{-1}b\mid C_{B_{j+1}}B_{j+1}^{-1}b\mid C_{B_{j+1}}B_{j+1}^{-1}>0$$

11. 讨论线性规划问题

(a)
$$\min z = (3-)x_{1}-(2+)x_{2}$$

$$s. t. \quad 2x_{1}+5x_{2} \quad 10$$

$$6x_{1}+ \quad x_{2} \quad 12$$

$$x_{1}- \quad x_{2} \quad 1$$

$$x_{1} \quad 0, \quad i=1,2$$
(b)
$$\min z = 2 \quad x_{1}+(1-)x_{2}-3x_{3}+x_{4}+2x_{5}-3 \quad x_{6}$$

$$s. t. \quad x_{1}+3x_{2}-x_{3}+2x_{5}=7$$

$$-2x_{2}+4x_{3}+x_{4}=12$$

$$-4x_{2}+3x_{3}+8x_{5}+x_{6}=10$$

$$x_{1} \quad 0, \quad i=1,2,...,6$$

12. 讨论线性规划问题

max
$$z = 45x_1 + 80x_2$$

s. t. $5x_1 + 20x_2 - 400$
 $10x_1 + 15x_2 - 450$
 $x_1, x_2 - 0$

- (a) 若 c1 从 45 改为 45+ ,讨论问题的解。
- (b) 若 b₁ 从 400 改为 400+ , 讨论问题的解。
- (c) an从 5 改为 5+ ,讨论问题的解。
- (d) 若增加一约束条件 X1+ X2= , 试讨论之。
- 13. 讨论

min
$$z = x_2 - 3x_3 + 2x_5$$

s.t. $x_1 + 3x_2 - x_3 + 2x_5 = 7$
 $-2x_2 + 4x_3 + x_4 = 12$
 $-4x_2 + 3x_3 + 8x_5 + x_6 = 10$
 $x_1 = 0, i = 1, 2, ..., 6$

- (a) 若 c₆ 从 0 变为 r 时, 讨论之。
- (b) 若 b₂ 从 12 变为 12+ 时, 讨论之。
- (c) 若 a12从 3 改变为 3+ 时, 讨论之。
- (d) 若第 2 个约束条件改为- $3x_2 + 8x_3 + x_4 = 14$ 时, 讨论之。
- 14. 在下列情况下解线性规划问题。

max
$$z = 2x_1 - x_2 + x_3$$

s. t. $x_1 + x_2 + x_3 = 6$
 $x_1 + 2x_2 = 4$
 $x_1, x_2, x_3 = 0$

(a) 若 c2 从- 1 改为 3。

- (b) 若 c₁ 从 2 改为 0 时。
- (c) 若 a_2 从 $\frac{1}{2}$ 改为 $\frac{2}{5}$ 时。
- (d) 若右端项从 $\begin{pmatrix} 6 \\ 4 \end{pmatrix}$ 改为 $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$ 时。
- (e) 若新增一变元 x_6 , 已知 c_6 = 1, a_6 = $\begin{pmatrix} -1 \\ 2 \end{pmatrix}$, $x_6 > 0$ 。
- (f) 若新增一约束条件: x₁+ 2x₃ 2。

15. 对线性规划问题

max
$$z = x_1 + 3x_2$$

s.t. $x_1 + x_2 = 6$
 $-x_1 + 2x_2 = 6$
 $x_1, x_2 = 0$

- (a) 若 c_1 从 1 改为 1+2 , c_2 从 3 改为 3+ ,讨论问题的解。
- (b) 若右端项从 ${6 \atop 6}$ 改为 ${6- \atop 6+}$ 时,讨论之。

第5章 对偶原理与对偶单纯形法

5.1 对偶问题

5.1.1 对偶问题定义

与一个线性规划问题相关联的线性规划问题, 称为原来问题的对偶问题, 原来的问题 就称为原问题。例如

与原问题对应的对偶问题为:

原问题与对偶问题的关系可用表 5.1 表示:

表 5.1

原变量对偶变量	x ₁ 0	x ₂ 0	•••	x n 0	原关系	min w
y ₁ 0	a 11	a 12	•••	a ln		bı
$y_2 = 0$	a 21	a 22		a 2n		b_2
y _m 0	a _{ml}	a_{m2}	•••	$a_{ m mn}$		b_{m}
对偶关系			•••			
max z	C 1	C 2		Cn		

或用矩阵形式来表示

对偶问题

其中,
$$x = (x_1 \ x_2 \ \dots \ x_n)^T$$
, $y = (y_1 \ y_2 \ \dots \ y_m)$

$$A=(a_{ij})_{mx}$$
 n, $C=(c_1 c_2 ... c_n)$,

$$b= (b_1 b_2 \dots b_m)^T$$

例 5.1 原问题

max z =
$$4x_1 + 2x_2 + 4x_3 + 7x_4 + 9x_5$$

s.t. $x_1 + x_2 + x_3 + x_4 + x_5$ 10
 $2x_2 + x_3 + x_4$ 4
 $6x_1 + 6x_2 - 4x_3 - 4x_4 + 3x_5$ 2
 $4x_1 + 10x_2 - x_3 - 2x_4 - 3x_5$ 1
 $x_1 = 0, i = 1, 2, 3, 4, 5$
 $C = (4 \quad 2 \quad 4 \quad 7 \quad 9), b = (10 \quad 4 \quad 2 \quad 1)^T$
 $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 6 & 6 & -4 & -4 & 3 \\ 4 & 10 & -1 & -2 & -3 \end{bmatrix}$

其对偶问题为:

5.1.2 对偶问题的意义

我们用下面的例题来说明原问题与对偶问题的含义。

例 5. 2 设某工厂甲生产 3 种产品: P_1, P_2, P_3 。 P_1, P_2, P_3 产品的单位利润分别为 60, 30, 20。三种单位产品占用三种机器 m_1, m_2, m_3 的时间见表 5. 2(单位: 小时):

表 5.2

产 品 机 器	P 1	P 2	P 3
m_1	8	6	1
m_2	4	2	1.5
<u>m</u> 3	2	1	0.5

工厂每天机器 m_1 , m_2 , m_3 可供时间分别为 48, 20, 8 小时。设每天 P_1 , P_2 , P_3 产品的产量分别为 x_1 , x_2 , x_3 则有如下问题

若有乙厂因生产需要, 拟向甲厂租所有机器, 则从乙厂来看如何使租金达到最少, 当然甲厂利润也要得到保证。显然, 如若甲厂的利润得不到保证, 甲厂是不肯出租的。这就变成如下问题:

设 y₁, y₂, y₃ 分别表示机器 m₁, m₂, m₃ 的单位时间租金, 则导致

若 $8y_1+4y_2+2y_3<60$,则甲厂宁可生产 P_1 也不愿出租,同样理由 $6y_1+2y_2+1.5y_3$ 30,及 $y_1+1.5y_2+0.5y_3$ 20 是甲厂出租机器的经济依据。显然这个问题恰好便是前问题的对偶问题。

5.1.3 互为对偶

对偶问题本身还是一个线性规划问题,它作为原问题也还应有自己的对偶问题。

若将对偶问题

$$\begin{array}{ll}
min & w = yb \\
s.t. & yA = C \\
& y & 0
\end{array}$$

b_iy_i

 $\max w = -$

改写成

由定义可得

所以对偶问题的对偶问题就是原问题;就是说,原问题与对偶问题间是互为对偶的。

5. 1. 4 Ax= b 的情形

对于问题

$$\begin{array}{llll} max \ z = & \displaystyle \prod_{j=1}^{n} c_{j}x_{j} \\ & \\ s.\ t. & \displaystyle \prod_{j=1}^{n} a_{ij}x_{j} = b_{j} \\ & & \\ i = \ 1, \, 2, \, ..., \, m \\ & x_{j} & 0, \quad j = \ 1, \, 2, \, ..., \, n \end{array}$$

可转化为

其对偶问题为:

或

$$\begin{array}{lll} min \ w = & \sum\limits_{\stackrel{i=-1}{i=1}}^{m} b_{i}y_{i} \\ s. \ t. & \sum\limits_{\stackrel{i=-1}{i=1}}^{m} a_{ij}y_{i} & c_{i}, \\ j = & 1, 2, ..., n \end{array}$$

这里 y; 无约束条件, i= 1, 2, ..., m

5.1.5 其他类型

引进松弛变量,使问题变为

利用 5.1.4 节所得结果,得对偶问题。令 y_i, y_i, y_i 分别为三组对偶变量

这里 y_1 无约束, $i=m_2+1, m_2+2, ..., m$ 。 对于问题

其对偶问题为

原问题与对偶问题有一般的对偶关系。首先,原问题等号约束条件对应于对偶问题无限制的变量;原问题不等式约束条件对应于对偶问题的有限制的变元等等。对应关系归结如下:

表 5.3

—————————————————————————————————————	对偶问题(min)
 第 i 个约束	第 i 个变量 0
第i个约束	第 i 个变量 0
第 i 个约束=	第 i 个变量无约束
第 方 个 变量 0	第j个约束条件
第 j 个变量 0	第j个约束条件
第 j 个变量无约束	第 j 个约束条件=

5.2 对偶性质

5.2.1 弱对偶性质

这节我们假定讨论的原问题为

$$max z = Cx$$
s.t.
$$Ax b$$

$$x 0$$

对偶问题

其中, $x = (x_1 x_2 ... x_n)^T$, $C = (c_1 c_2 ... c_n)$, $A = (a_i)_{m \times n}$, $b = (b_1 b_2 ... b_m)^T$, $y = (y_1 y_2 ... y_m)$ 弱对偶性质 若 x_i , j = 1, 2, ..., n, 是原问题的可行解, y_i 是对偶问题的可行解。则 · 132 ·

$$\begin{array}{cccc} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

证明: 由于

$$\sum_{j=1}^{n} a_{ij} x_{j} \qquad b_{i}, \quad i = 1, 2, ..., m, x_{j} \qquad 0, \quad j = 1, 2, ..., n$$

$$a_{ij} y_{i} \qquad c_{j}, \quad j = 1, 2, ..., n, y_{i} \qquad 0, \quad i = 1, 2, ..., m$$

原问题第i个约束条件乘以yi,相加得

$$y_i \quad a_{ij} x_j = a_{ij} x_j = a_{ij} x_j y_i \quad b_i y_i$$

对偶问题的第j个约束条件乘以 xi, 相加得

但

弱对偶性质的直接推论是, 若原问题的可行解的目标函数值和对偶问题的可行解的目标函数值相等,则各可行解都是各自最优解。对偶问题的可行解是原问题解的上界; 原问题的可行解是对偶问题解的下界; 若原问题无界,则对偶问题无可行解。

5. 2. 2 强对偶定理

若 x 和 y 分别是原问题与其对偶问题的最优解, 则 Cx = yb 证明 根据假设, x 是原问题最优解。故

$$max z = Cx$$
s.t.
$$Ax b$$

$$x 0$$

同理y满足

$$min w = yb$$

对原问题引进松弛变量 xs 使

max
$$z = \begin{pmatrix} C & | & 0 \end{pmatrix} \begin{pmatrix} x \\ x_s \end{pmatrix}$$

s.t. $\begin{pmatrix} A & | & I \end{pmatrix} \begin{pmatrix} x \\ x_s \end{pmatrix} = b$
 $\begin{pmatrix} x \\ x_s \end{pmatrix}$

设 $(A \mid I) = (a_1 \quad a_2 \quad \dots \quad a_{n+m})_{\circ}$

设 B 为原问题最优解的基矩阵, $x = B^{-1}b$, $z_j = C_B B^{-1}a_j$, j = 1, 2, ..., n + m。令 $y = C_B B^{-1}$, 可以通过论证 y 是对偶问题的可行解。

$$y(A \mid I) = C_B B^{-1}(A \mid I) = (C_B B^{-1} A \mid C_B B^{-1})$$

由于 B^{-1} 是最优解基矩阵, 故 c_i - z_i 0, j = 1, 2, ..., n + m, 即 $C_B B^{-1} A$ C, $C_B B^{-1}$ 0, 即 $yA = C_B B^{-1} A$ C, y 0 (5. 2)

由(5.2)知 $y= C_B B^{-1}$ 是对偶问题(5.1)的可行解。另一方面,因

$$yb = C_B B^{-1}b = C_B (B^{-1}b) = C_B X_B$$

根据对偶定理可知x和y分别是原问题和对应的对偶问题的最优解,则

$$Cx = yb$$

成立

5. 2. 3 min 问题的对偶解法

强对偶定理证明过程很别致,实际上提供了求 min 问题的一种解法。即若 B 是 max 题最优解的基矩阵,则 C_BB^{-1} 是 min 问题的最优解。原问题与对偶问题是互为对偶, 也就提供了求解线性规划问题的又一种途径。

对偶性质可以归结为如下几点:

- (a) 原问题最优,则对偶问题也最优,反之亦然。
- (b) 原问题无界,则对偶问题无解。
- (c) 对偶问题无界,则原问题无解。
- (d) 原问题无解,则对偶问题无界或无解。
- (e) 对偶问题无解,则原问题无界或无解。

由对偶定理还可得出下面重要结果:

定理 若 x 和 y 分别是下面问题

的最优解。其中 $x^{i} = (x_{1}^{i} x_{2}^{i} ... x_{n}^{i})^{T}, y^{i} = (y_{1}^{i} y_{2}^{i} ... y_{m}^{i})^{T}$

(a) 若
$$y_i^* > 0$$
, 则 $a_{ij}x_j^* = b_i$, $i = 1, 2, ..., m$

(b) 若
$$a_{ij}x_{j}^{*}$$
 < b_{i} , 则 y_{i}^{*} = 0, $i = 1, 2, ..., m$

证明
$$c_i x_i^{\dagger}$$
 $a_{ij} x_j^{\dagger} y_i^{\dagger}$

由

又

若 $y_i^* > 0$,则只能 $a_{ij}x_j = 0$ 。同样道理,若 $a_{ij}x_j^* < b_i$,则只能 $y_i^* = 0$

又从
$$_{j=1}^{n}c_{j}x_{j}^{*}=\sum_{j=1}^{n}a_{ij}x_{j}^{*}y_{i}^{*}$$
可得

(b) 若
$$a_{ij}y_{j}^{*} > c_{j}$$
,则 $x_{i}^{*} = 0$

上面定理也称为互补松弛条件,可利用它求出对偶问题最优解。例如下面的例题。 例 5.3 已知原问题

的最优解为 $x_1 = \frac{4}{5}$, $x_2 = \frac{3}{5}$, z = 5.

其对偶问题为

min w =
$$2y_1 + 3y_2 + 5y_3 + 2y_4 + 3y_5$$

s.t. $y_1 + y_2 + 2y_3 + y_4 + 3y_5$ 4
 $2y_1 - 2y_2 + 3y_3 + y_4 + y_5$ 3
 $y_1 = 0$, $i = 1, 2, 3, 4, 5$

由于原问题第1,5个约束条件等式成立,第2,3,4个约束成立严格不等式,故由互补 松弛条件知 $y_2 = y_3 = y_4 = 0$

又
$$x_1, x_2 > 0$$
 故

$$y_1 + 3y_5 = 4$$
 $y_1 = 1$
 $2y_1 + y_5 = 3$ $y_5 = 1$

故得对偶问题最优解 $y_1 = 1$, $y_5 = 1$, $y_2 = y_3 = y_4 = 0$, w = 5。

例 5.4
$$\max z = x_1 + x_2$$
s.t.
$$2x_1 + 3x_2 = 6$$

$$3x_1 + 2x_2 = 6$$

$$x_1, x_2 = 0$$

表 5.4 是其单纯形表格。

表 5.4

	_	X	X 1	X 2	X 3	X 4	
Хв	Св	b C	1	1	0	0	
X 3	0	6	2	3	1	0	3
X 4	0	6		2	0	1	2
		0	1	1	0	0	
X 3	0	2	0	5/3	1	- 2/3	6/ 5
X 1	1	2	1	2/3	0	1/3	3
		2	0	1/3	0	- 1/3	
X 2	1	6/5	0	1	3/5	- 2/5	
X 1	1	6/5	1	0	- 2/5	3/5	
		12/5	0	0	- 1/5	- 1/5	

对偶问题

$$\begin{array}{rll} min \ w = & 6y_1 + & 6y_2 \\ s. \ t. & 2y_1 + & 3y_2 & 1 \\ & & 3y_1 + & 2y_2 & 1 \\ & & y. y_2 & 0 \end{array}$$

由于 CBB 是对偶问题的解, 可知对偶问题的最优解为

$$y_{1} = \frac{1}{5}, y_{2} = \frac{1}{5}, w = \frac{12}{5},$$
min $z = 2x_{1} + 6x_{2}$
s.t. $3x_{1} + x_{2} = 3$
 $4x_{1} + 3x_{2} = 6$
 $x_{1} + 2x_{2} = 2$
 $x_{1}, x_{2} = 0$

其对偶问题为

max w =
$$3y_1 + 6y_2 + 2y_3$$

s.t. $3y_1 + 4y_2 + y_3 + 2$
 $y_1 + 3y_2 + 2y_3 + 1$
 $y_1, y_2, y_3 + 0$

表 5.5 为对偶问题的单纯形表格。

可见原问题的解为

$$x_1 = \frac{3}{5}, x_2 = \frac{6}{5}, z = \frac{12}{5}$$

若原问题用二阶段法计算就麻烦得多了。

表 5.5

	_	y	y 1	y 2	y 3	y 4	y 5	
ув	Св	b C	3	6	2	0	0	
y 4	0	2	3	4	1	1	0	1/2
y 5	0	1	1		2	0	1	1/3
			3	6	2	0	0	
y 4	0	2/3	5/3	0	- 5/3	1	- 4/3	2/5
<u>y</u> 2	6	1/3	1/3	1	2/3	0	1/3	1
		2	1	0	- 2	0	- 2	
y 1	3	2/ 5	1	0	- 1	3/5	- 4/5	
y 2	6	1/5	0	1	1	- 1/5	3/5	
		12/5	0	0	- 1	- 3/5	- 6/5	

min w=
$$y_1 + 2y_2$$

s. t. $3y_1 + 4y_2 = 6$
 $y_1 + 3y_2 = 3$
 $2y_1 + y_2 = 2$
 $y_1, y_2 = 0$

先用二阶段法求解。

引进松弛变量 y3, y4, y5 及人工变量 y6, y7, y8, 得

min
$$w = y_1 + 2y_2$$

s. t. $3y_1 + 4y_2 - y_3 + y_6 = 6$
 $y_1 + 3y_2 - y_4 + y_7 = 3$
 $2y_1 + y_2 - y_5 + y_8 = 2$
 $y_1 = 0, \quad i = 1, 2, ..., 8$

表 5.6 和表 5.7 为用二阶段求解时的单纯形表格。

原问题最优解
$$y_1 = \frac{6}{5}$$
, $y_2 = \frac{3}{5}$, min $w = \frac{12}{5}$

下面通过解对偶问题求原问题的解。

对偶问题:

max
$$z = 6x_1 + 3x_2 + 2x_3$$

s.t. $3x_1 + x_2 + 2x_3 + x_4 = 1$
 $4x_1 + 3x_2 + x_3 + x_5 = 2$
 $x_1, x_2, x_3, x_4, x_5 = 0$

表 5.8 是通过解对偶问题时的单纯形表格。

表 5.6

		y	y 1	y 2	y 3	y 4	y 5	y 6	y 7	y 8	
ув	Св	b C	0	0	0	0	0	1	1	1	
<u>y</u> 6	1	6	3	4	- 1	0	0	1	0	0	3/2
y 7	1	3	1		0	- 1	0	0	1	0	1
<u>y</u> 8	1	2	2	1	0	0	- 1	0	0	1	2
		11	- 6	- 8	1	1	1	0	0	0	
y 6	1	2	5/ 3	0	- 1	4/ 3	0	1	- 4/3	0	6/5
y 2	0	1	1/ 3	1	0	- 1/3	0	0	1/3	0	3
y 8	1	1	5/3	0	0	1/3	- 1	0	- 1/3	1	3/5
		3	- 10/3	0	1	- 5/3	1	0	8/3	0	
X 6	1	1	0	0	- 1	1		1	- 1	- 1	
\mathbf{X}_{2}	0	4/5	0	1	0	2/5	1/5	0	2/5	- 1/5	4
X 1	0	3/5	1	0	0	1/ 5	- 3/5	0	- 1/5	3/5	
		1	0	0	1	- 1	- 1	0	2	3	
y 5	0	1	0	0	- 1	1	1	1	- 1	- 1	
y 2	0	3/5	0	1	1/5	- 3/5	0	- 1/5	3/5	0	
y ₁	0	6/ 5	1	0	- 3/5	4/ 5	0	3/5	- 4/5	0	
		0	0	0	0	0	0	1	1	1	

表 5.7

VR	ув Св	Y	y 1	y 2	y 3	y 4	y 5	
уь	СБ	b C	1	2	0	0	0	
y 5	0	1	0	0	- 1	1	1	
y 2	2	3/ 5	0	1	1/5	- 3/5	0	
y 1	1	6/ 5	1	0	- 3/5	4/5	0	
		12/5	0	0	1/5	2/5	6	

表 5.8

	G	X	X 1	X 2	X 3	X 4	X 5	
Хв	Св	b C	6	3	2	0	0	
X 4	0	1		1	2	1	0	1/3
X 5	0	2	4	3	1	0	1	2
		0	6	3	2	0	0	
X 1	6	1/3	1	1/ 3	2/3	1/3	0	1
X 5	6	2/ 3	0	5/3	- 5/3	- 4/3	1	2/5
		2	0		- 2	- 2	0	
X 1	6	1/5	1	0	1	3/5	- 1/5	
X 2	3	2/5	0	1	- 1	- 4/5	3/ 5	
		12/5	0	0	- 1	- 6/5	- 3/5	

$$y = C_B B^{-1} = (6 \ 3) \frac{\frac{3}{5}}{\frac{4}{5}} - \frac{\frac{1}{5}}{\frac{3}{5}} = \frac{\frac{6}{5}}{\frac{3}{5}}$$

和前表上结果一致。

5.3 影子价格

原问题 对偶问题 max z = Cx min = yb $s \cdot t \cdot Ax b$ $s \cdot t \cdot yA C$ y 0

设 B 是原问题最优解基矩阵, $z=C_BB^{-1}b=yb$, 或 $z=\bigcup_{i=1}^m y_ib_i, y=(y_1 y_2 \dots y_m)$

= grad z, 即 y_i = $\frac{Z}{b_i}$, i = 1, 2, ..., m。称 y 为影子价格。如果右端项 b 是产品的资源条件,即 b_i 是第 i 种资源的限额,则 y_i 是目标函数 z 关于第 i 种资源限额的变化率,i = 1, 2, ..., m。判定目标函数(通常是利润) 对第 i 个约束条件右端 b_i 的变化率对一位经济工作者作出如何改变右端项资源以提高 z 的值有着重要意义。影子价格是系统内部的资源价值。这在经济学有其重大的意义。

以 5.1 节例 5.2 为例:

表 5.9 是其单纯形表格。

对偶问题

min w =
$$48y_1 + 20y_2 + 8y_3$$

s. t. $8y_1 + 4y_2 + 2y_3 = 60$
 $6y_1 + 2y_2 + \frac{3}{2}y_3 = 30$
 $y_1 + \frac{3}{2}y_2 + \frac{1}{2}y_3 = 8$
 $y_i = 0, \quad i = 1, 2, 3$

的最优解为 $y_1=0,y_2=10,y_3=10$, 即影子价格为 y=(0-10-10)。 机器 m_1 时数的增加对 z 改变率为 0, 其他两项各为 10。从 $x_4=24$ 仔细观察不难发现, 机器 m_1 有很大余力。若

有资金投到 m_2 和 m_3 上可以直接提高效益, 若将资金投到 m_1 上将产生浪费。所以说影子价格是系统内部的资源价值, 说的就是这个意思。

=	_	Λ
বহ	Э.	9

	C	X	X 1	X 2	X 3	X 4	X 5	X 6	
Хв	Св	b C	60	30	20	0	0	0	
X 4	0	48	8	6	1	1	0	0	6
X 5	0	20	4	2	1. 5	0	1	0	5
X 6	0	8		1. 5	0. 5	0	0	1	4
		0	60	30	20	0	0	0	
X 4	0	16	0	0	- 1	1	0	- 4	
X 5	0	4	0	- 1	1 2	0	1	- 2	8
X 1	60	4	1	<u>3</u> 4	<u>1</u> 4	0	0	- <u>1</u>	16
		240	0	- 15	5	0	0	- 30	
X 4	0	24	0	- 2	0	1	2	- 8	
X 3	20	8	0	- 2	1	0	2	- 4	
X 1	60	2	1	<u>5</u> 4	0	0	- 1/2	3 2	
		280	0	- 5	0	0	- 10	- 10	

5.4 对偶单纯形法

5.4.1 基本公式

对于问题

$$max z = Cx$$
s.t.
$$Ax b$$

$$x 0$$

当 b 中出现有负元素时, 单纯形法便出现麻烦。通常借用二阶段法, 计算量将随之增加许多。这一节将介绍一种对偶单纯形法, 主要针对 b 可能出现负数的情况, 当然也更适用于解 min 问题。

已知单纯形表格如表 5.10 所示, 且所有 c = z = 0。

若其中 $b_r < 0$, 存在 $a_{rk} < 0$, 令 a_{rk} 为主元素进行消元得表 5. 11。

其中
$$z_h = c_{B_1} a_{1h} - \frac{a_{rh}}{a_{rk}} a_{1k} + c_{B_2} a_{2h} - \frac{a_{rh}}{a_{rk}} a_{2k} + ... + c_k \frac{a_{rh}}{a_{rk}} + ... + c_{B_m} a_{mh} - \frac{a_{rh}}{a_{rk}} a_{mk}$$

$$= (c_{B_1} a_{1h} + c_{B_2} a_{2h} + ... + c_{B_m} a_{mh}) - c_{B_r} a_{rh} + c_k \frac{a_{rh}}{a_{rk}}$$

$$= z_{h} - c_{B_{r}} a_{rh} + c_{k} \frac{a_{rh}}{a_{rk}} - \frac{a_{rh}}{a_{rk}} (z_{k} - c_{B_{r}} a_{rk})$$

$$= z_{h} + \frac{a_{rh}}{a_{rk}} (c_{k} - z_{k})$$

$$c_{h} - z_{h} = c_{h} - z_{h} - \frac{a_{rh}}{a_{rk}} (c_{k} - z_{k})$$

$$h = 1, 2, ..., n, h \quad k$$

$$(*)$$

 $- \frac{a_{rh}}{a_{rk}} (c_{B_1} a_{1k} + c_{B_2} a_{2k} + \ldots + c_{B_m} a_{m_k} - c_{B_r} a_{rk})$

表 5.10

	Св	X	X 1	X 2	 X k	 X n	
Хв	Св	b C	C 1	C 2	 Ck	 Cn	
X B ₁	CB ₁	b ₁	a 11	a 12	 a 1k	 a In	
X_{B_2}	c_{B_2}	b ₁ b ₂	a 21	a 22	 a 2k	 a 2n	
		$b_r(<0)$	a _{r 1}	a_{r2}	 $a_{rk}(<0)$	 $a_{\sf rn}$	
X B _m	CB _m	b _m	a m1	am2	 a mk	 $a{}_{ m mn}$	
		Z	C1- Z1	C2- Z2	 Ck- Zk	 Cn- Zn	

表 5.11

••-	Св	X	X 1	X 2	 Χh	 X k		X n	
Хв	CB	b C	C 1	C 2	 Ch	 Ck		Cn	
х в ₁ х в ₂	СВ ₁	b_1 - $\frac{b_r}{a_{rk}}a_{1k}$			a_{1h} - $\frac{a_{rh}}{a_{rk}}a_{1k}$	 0			
Хв ₂	СВ ₂	$b_1 = \frac{b_r}{a_{rk}} a_{1k}$ $b_2 = \frac{b_r}{a_{rk}} a_{2k}$			a_{2h} - $\frac{a_{rh}}{a_{rk}}a_{2k}$	0			
Xk	Ck	<u>b</u> r ark			<u>a_{rh}</u> a _{rk}	 1	•••		
X _B _m	$c_{B_{m}}$	b_{m} - $\frac{b_r}{a_{rk}}a_{mk}$			a_{mh} - $\frac{a_{rh}}{a_{rk}}a_{mk}$	 0			
		z			Ch - Zh	 0			

同理可证
$$z=z-\frac{b_r}{a_{rk}}(c_k-z_k)$$
。

5.4.2 对偶单纯形法

5.4.1节的公式(*)是下面矩阵

进行以 ark 为主元素的列消元的结果。显然右端项有

$$\frac{\mathbf{b}_{r}}{\mathbf{a}_{rk}} > 0$$

下面证明:

若要保持所有的 c_i - z_i 0 仍保持不改变符号, 可选择 k 使

$$\frac{c_k - z_k}{a_{rk}} = \min_{j} \frac{c_j - z_j}{a_{rj}} \left| a_{rj} < 0 \right|$$
 (**)

分两种情况讨论如下:

(a) $a_{rh} > 0$

由于
$$c_k - z_k < 0, a_{rk} < 0, b \frac{c_k - z_k}{a_{r-k}} 0$$

$$c_h - z_h = (c_h - z_h) - \frac{a_{rh}}{a_{rk}} (c_k - z_k) = 0$$

(b) $a_{rh} < 0$

$$\frac{C_{k}-Z_{k}}{a_{rk}} = \frac{C_{h}-Z_{h}}{a_{rh}}, c_{h}-Z_{h} = \frac{a_{rh}}{a_{rk}}(c_{k}-Z_{k})$$

$$c_{h}-Z_{h}=(c_{h}-Z_{h})-\frac{a_{rh}}{a_{rk}}(c_{k}-Z_{k}) = 0$$

这说明若 $b_r < 0$,可选择主元素 a_{rk} 满足(**)要求。消元结果 $c_i - z_i = 0$ 依然不变符号,但右端项改变了符号。这在解 min 问题时可以利用。

5.4.3 举例

例 5.7
$$\min z = 3x_1 + x_2$$

$$s \cdot t \cdot x_1 + x_2 \cdot 1$$

$$2x_1 + 3x_2 \cdot 2$$

$$x_1, x_2 \cdot 0$$
转化为
$$\max w = -3x_1 - x_2$$

$$s \cdot t \cdot -x_1 - x_2 - 1$$

$$-2x_1 - 3x_2 - 2$$

$$x_1, x_2 = 0$$

引进松弛变量 X3, X4, 使

max w = -
$$3x_1$$
- x_2
s.t. - x_1 - x_2 + x_3 = - 1
- $2x_1$ - $3x_2$ + x_4 = - 2
 x_1, x_2, x_3, x_4 0

表 5.12 是其单纯形表。

表 5.12

	C	X	X 1	X 2	X 3	X 4	
Хв	Св	b C	- 3	- 1	0	0	
X ₃	0	- 1	- 1	- 1	1	0	
X 4	0	- 2	- 2	- 3	0	1	
		0	- 3	- 1	0	0	
X 3	0	- 1/3	- 1/3	0	1	- 1/3	
X 2	- 1	<u>2</u> 3	<u>2</u> 3	1	0	- <u>1</u> 3	
		$-\frac{2}{3}$	- 7 3	0	0	- <u>1</u> 3	
X 4	0	1	1	0	- 3	1	
X 2	- 1	1	1	1	- 1	0	
		- 1	- 2	0	- 1	0	

$$c_1$$
- z_1 = - 3, c_2 - z_2 = - 1, c_3 - z_3 = c_4 - z_4 = 0, b_2 = - 2, $min \ \frac{3}{2}, \frac{1}{3} = \frac{1}{3}$
故得解 x_2 = 1, x_4 = 1, z = 1.

min z=
$$x_1 + 3x_2 + 2x_3$$

s.t. $6x_1 + 3x_2 - 4x_3 = 8$
 $3x_1 + x_2 - 3x_3 = 2$
 $x_1, x_2, x_3 = 0$

引进松弛变量 X4, X5 得

表 5.13 是其单纯形表格。

表 5.13

		X	X 1	X 2	X 3	X 4	X 5	
Хв	Св	b C	- 1	- 3	- 2	0	0	
X 4	0	8	6	3	- 4	1	0	
X 5	0	- 2	- 3	- 1	3	0	1	
			- 1	- 3	- 2	0	0	
X 4	0	4	0	1	2	1	2	
X 1	- 1	<u>2</u> 3	1	<u>1</u> 3	- 1	0	- <u>1</u> 3	
		- 2/3	0	- <u>8</u> 3	- 3	0	- <u>1</u> 3	

得解
$$x_1 = \frac{2}{3}$$
, $x_4 = 4$, $x_2 = x_3 = x_5 = 0$, $z = \frac{2}{3}$ °

例 5.9 见 4.5 节例 4.11。已知

有解 $X_2 = 4$, $X_3 = 2$, $X_5 = 0$, $X_1 = X_4 = X_6 = 0$, 最终单纯形表为表 5. 14。

表 5.14

	C	X	X 1	X 2	X 3	X 4	X 5	X 6	
X _B	Св	b C	1	2	1	0	0	0	
X 2	2	4	3	1	0	1 2	0	1/2	
X 5	0	0	0	0	0	3	1	- 2	
X 3	1	2	1	0	1	$-\frac{1}{2}$	0	<u>1</u> 2	
		10	- 6	0	0	- <u>1</u>	0	- <u>3</u>	

若右端项 b3 从 6 改为 1

$$b = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} & 2 & \frac{3}{2} \\ 3 & 1 & -2 & 6 & = & 10 \\ -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

可利用对偶单纯形法得表 5.15。

表 5.15

	C	X	X 1	X 2	X 3	X 4	X 5	X 6	
Хв	Св	b C	1	2	1	0	0	0	
X 2	2	3/2	3	1	0	1/2	0	1/2	
X 5	0	10	0	0	0	3	1	- 2	
X 3	1	- 1/2	1	0	1	- 1/2	0	1/2	
X 2	2	1	4	1	1	0	0	1	
X 5	0	7	6	0	6	0	1	1	
X 4	0	1	- 2	0	- 2	1	0	- 1	
			- 7	0	- 1	0	0	- 2	

例 5.10
$$\max z = 2x_1 + 3x_2 + x_3$$
$$s.t. \qquad x_1 + x_2 + x_3 + x_4 = 3$$
$$x_1 + 4x_2 + 7x_3 + x_5 = 9$$
$$x_1, x_2, x_3, x_4, x_5 = 0$$

其最终表为表 5.16。

表 5.16

_	C	X	X 1	X 2	X 3	X 4	X 5	
Хв	Св	b C	2	3	1	0	0	
X 1	2	1	1	0	- 1	4	- 1	
X 2	3	2	0	1	2	- 1	1	
		8	0	0	- 3	- 5	- 1	

若右端含参数 3+ 3 9- 3

$$b = \begin{pmatrix} 4 & -1 & 3+3 \\ -1 & 1 & 9-3 \end{pmatrix} = \begin{pmatrix} 3+15 \\ 6-6 \end{pmatrix}, > 1$$

表 5.17 是其单纯形表格。

表 5.17

		X	X 1	X 2	X 3	X 4	X 5
ХВ	Св	b C	2	3	1	0	0
X 1	2	3+ 15	1	0	- 1	4	- 1
X 2	3	6- 6	0	1	2	- 1	1
		24+ 12	0	0	- 3	- 5	- 1
X 1	2	27- 9	1	4	7	0	3
X 4	0	6 - 6	0	- 1	- 2	1	- 1
		54- 18	0	- 5	- 13	0	- 6

对偶单纯形法的步骤:

已知

$$max z = Cx$$
s.t.
$$Ax = b$$

$$x = 0$$

其中 C 0, A= (aij) mx n。

- S_{\perp} 若 b_{\perp} 0, i= 1, 2, ..., m, 则结束, 表明已找到最优解, 否则存在 b_{\parallel} 0。
- S_2 $b_r = \min_i \{b_i @ b_i < 0\}$,若 a_{rj} 0, j = 1, 2, ..., n,则问题无可行解,结束;否则,存在 $a_{rj} < 0$ 。

$$S_3 \quad \frac{c_s - z_s}{a_{rs}} = \min_j \quad \frac{c_j - z_j}{a_{rj}} \mid a_{rj} < 0$$

- S_4 第 r 个基变量代以 x_s , 以 a_{rs} 为主元素进行列消元。
- S₅ 转S₁。

对偶单纯形迭代可使 b_i < 0 变号, S_2 计算 b_r , 目的在于将负值 b_i 中绝对值最大的予以优先解决。

5.5 主偶单纯形法

5.5.1 问题的引入

前面介绍了单纯形法和对偶单纯形法,其实这两种方法可以灵活地交替应用。 先举一个例子。

max
$$z=3x_1+6x_2$$

s. t. $x_1+2x_2=6$
 $3x_1+x_2=9$
 $7x_1+5x_2=35$
 $x_1, x_2=0$

引进松弛变量 X3, X4, X5 得

max
$$z = 3x_1 + 6x_2$$

s.t. $-x_1 - 2x_2 + x_3 = -6$
 $-3x_1 - x_2 + x_4 = -9$
 $7x_1 + 5x_2 + x_5 = 35$
 $x_1 = 0, i = 1, 2, 3, 4, 5$

表上运算见表 5.18。

在这例中,第一次迭代用的是单纯形法,第二次迭代用的是对偶单纯形法。可见,巧妙地交替使用单纯形法和对偶单纯形法还是很有效的。

可以想像,用对偶单纯形法在使原 c_i - z_i - 0 不致于被破坏的前提下,使 b_i < 0 变正,最后达到 b- 0,然后用单纯形法求解。

这方面的办法不一而足,介绍其中两个很有启发。

· 146 ·

表 5.18

	1		1				1	
		X	X 1	X 2	X 3	X 4	X 5	
Хв	Св	b C	3	6	0	0	0	
X 3	0	- 6	- 1	- 2	1	0	0	
X 4	0	- 9	- 3	- 1	0	1	0	
X 5	0	35	7		0	0	1	
			3	6	0	0	0	
X 3	0	8	9/5	0	1	0	2/5	
X 4	0	- 2	- 8/5	0	0	1	1/5	
X 2	6	7	7/5	1	0	0	1/5	
			- 27/5	0	0	0	- 6/5	
X 3	0	23/4	0	0	1	9/8	5/8	
X 1	3	5/ 4	1	0	0	- 5/8	- 1/8	
X 2	6	21/4	0	1	0	7/8	3/8	
		141/4	0	0	0	27/8	15/8	

5.5.2 主偶单纯形法之一

- S₁. 问题的形式:将问题转化为 max 型,约束条件为。
- S_2 . 增加松弛变量使之成为 Ax = b。
- S₃. 若问题已解决则结束, 否则作
 - (a) 假定用单纯形法 设主元素为 ark, 计算

$$_{1} = \left| \frac{\left(c_{k} - z_{k} \right) b_{r}}{a_{rk}} \right|$$

(b) 假定用对偶单纯形法 设主元素为 $a_{r_1k_1}$, 计算

$$_{2} = \left| \frac{(c_{k} - z_{k})b_{r_{1}}}{a_{r_{1}k_{1}}} \right|$$

 S_4 . 若 $_1>$ $_2$,则采用单纯形法,否则用对偶单纯形法,转 S_3 。

这里 1, 2 无非给选用那种算法以定量的判定。

min
$$z = -3x_1 + x_2 - 2x_3$$

s.t.
$$x_1 - x_2 + 2x_3 = 10$$

$$x_{1} + x_{2}$$
 3

$$x_1, x_2, x_3$$
 0

转化为

max
$$z = 3x_1 - x_2 + 2x_3$$

s.t. $x_1 - x_2 + 2x_3 + x_4 = 10$
 $x_1 - x_2 + x_5 = -3$
 $x_1 = 0, i = 1, 2, 3, 4, 5$

表上运算见表 5.19。

表 5.19

		X	X 1	X 2	X 3	X 4	X 5	
Хв	Св	$b \subset C$	3	- 1	2	0	0	
X 4	0	10		- 1	2	1	0	
X 5	0	- 3	1	- 1	0	0	1	
		0	3	- 1	2	0	0	
X 1	3	10	1	- 1	2	1	0	
X 5	0	- 13	0	0	- 2	- 1	1	
		30	0	2	- 4	- 3	0	

若采用单纯形法,以 a11为主元素,若采用对偶单纯形法,以 a22为主元素。

曲于
$$_{1}=\left|\frac{10\cdot 3}{1}\right|=30, _{2}=\left|\frac{-3\cdot (-1)}{1}\right|=3$$

故第一轮迭代应用单纯形法。

问题无界。

5.5.3 主偶单纯形法之二

再通过例子说明另一种主偶单纯形法基本方法。

max
$$z = -2x_1 + 3x_2$$

s.t. $x_1 + x_2 = 6$
 $-x_1 + 2x_2 = -\frac{1}{2}$
 $x_1 - 3x_2 = -1$
 $x_1, x_2 = 0$

引进松弛变量 X3, X4, X5 得

max
$$z = -2x_1 + 3x_2$$

s. t. $x_1 + x_2 + x_3 = 6$
 $-x_1 + 2x_2 + x_4 = -\frac{1}{2}$
 $x_1 - 3x_2 + x_5 = -1$
 $x_1, x_2, x_3, x_4, x_5 = 0$

将问题看成的函数,见表 5.20。

表 5.20

·	C	Х	X 1	X 2	X 3	X 4	X 5	
Хв	Св	b C	- 2	3-	0	0	0	
X 3	0	6	1	1	1	0	0	
X 4	0	$-\frac{1}{2}+$	- 1		0	1	0	
X 5	0	- 1+	1	- 3	0	0	1	
		z	0	3-	0	0	0	

当 充分大时,可得最优解,然后逐渐降低 直至为 0。开始时 = 4,降至 < 3,情况 开始起变化, c_2 - z_2 > 0,应将 x_2 引入基,根据

$$\frac{b_{r}}{a_{rs}} = \min_{i} \frac{b_{i}}{a_{ri}} \left| a_{ri} > 0 \right|$$

表上运算见表 5.21。

表 5.21

	C	X	X 1	X 2	X 3	X 4	X 5	
ХВ	Св	ь	- 2	3-	0	0	0	
X 3	0	$\frac{25}{4}$ - $\frac{1}{2}$	3 2	0	1	$-\frac{1}{2}$	0	
X 2	3-	$-\frac{1}{4}+\frac{1}{2}$	$-\frac{1}{2}$	1	0	1 2	0	
X 5	0	$-\frac{7}{4}+\frac{5}{2}$	$-\frac{1}{2}$	0	0	3 2	1	
		$(3-) \frac{1}{2} - \frac{1}{4}$	$-\frac{1}{2}-\frac{2}{2}$	0	0	$-\frac{3}{2}+{2}$	0	

降至 $\frac{7}{10}$ 以下, 右端项第 3 项改为负号, x_5 退出基, x_1 进入基, 利用对偶单纯形法(见表 5. 22) 得

表 5.22

		Х	X 1	X 2	X 3	X 4	X 5	
Хв	Св	b C	- 2	3-	0	0	0	
X 3	0	1- 7	0	0	1	4	3	
X 2	3-	$\frac{3}{2}$ - 2	0	1	0	- 1	- 1	
X 1	- 2	$\frac{7}{2}$ - 5	1	0	0	- 3	- 2	
		$2^{2} + \frac{5}{2} - \frac{5}{2}$	0	0	0	- 3-	- 1-	

习 题 五

1. 求下列问题的对偶问题。

(a) min
$$z=3x_1+2x_2-3x_3+4x_4$$

s.t. $x_1-2x_2+3x_3+4x_4-3$
 $x_2+3x_3+4x_4-5$
 $2x_1-3x_2-7x_3-4x_4=2$
 x_1-0,x_4-0,x_2,x_3 无约束

(b) max
$$z = 3x_1 + 2x_2$$

s. t. $x_1 + 3x_2 = 3$
 $6x_1 - x_2 = 4$
 $x_1 + 2x_2 = 2$

$$x_1$$
 0, x_2 0
2. 呂知 $\max z = -4x_2 + 3x_3 + 2x_4 - 8x_5$
s.t. $3x_1 + x_2 + 2x_3 + x_4 = 3$

$$x_1 - x_2 + x_4 + x_5 = 2$$

x = 0, i = 1, 2, 3, 4, 5

用图解法求对偶问题的解,通过对偶问题的解判断哪些变元在原问题中的解中为 0。

3. $minz = 2x_1 + x_2$

s.t. -
$$4x_1 + 3x_2 - x_3$$
 16
 $x_1 + 6x_2 + 3x_3$ 12
 x_1, x_2, x_3 0

- (a) 写出对偶问题。
- (b) 利用对偶单纯形法求原问题最优解。
- (c) 利用(b)的结果求对偶问题解。
- 4. 已知min $z = 2x_1 + 3x_2 + 5x_3 + 6x_4$ s.t. $x_1 + 2x_2 + 3x_3 + x_4$ 2

- (a) 给出对偶问题。
- (b) 用图解法解对偶问题。
- (c) 利用对偶问题解的信息讨论原问题解。
- 5. 已知 min $z = 2x_1 + 3x_2 5x_3$

s.t.
$$x_{1}+x_{2}-x_{3}+x_{4}$$
 5
 $2x_{1}+x_{3}$ 4
 $x_{2}+x_{3}+x_{4}=6$
 x_{2},x_{3} 0, x_{1} 0

X4 无约束

求其对偶问题。

- 6. 用主偶单纯形法解下列问题。
 - (a) max $z = x_1 + 6x_2$

$$s.t.$$
 $x_1 + x_2 2$

$$x_1 + 3x_2$$
 3

$$x_1, x_2 = 0$$

(b) min
$$z = x_1 + 2x_3 - x_4$$

s.t.
$$x_1 + x_2 + x_3 + x_4 = 6$$

$$2x_1 - x_2 + 3x_3 - 3x_4 = 5$$

$$x = 0, i = 1, 2, 3, 4$$

(c) max
$$z = 5x_1 + 7x_2 + 2x_3$$

s.t.
$$2x_1+3x_2+x_3+x_4=5$$

$$\frac{1}{2}x_1 + x_2$$

$$+ x_5 = 1$$

$$x = 0, i = 1, 2, 3, 4, 5$$

第6章 运输问题及其他

这一章将讨论若干特殊类型的线性规划问题,它们也可以用单纯形法求解。但由于它的特殊性,因而可以利用特殊的方法处理,究其实,本质上还是单纯形法。

6.1 运输问题的数学模型

6.1.1 问题的提出

设某种物品有 m 个产地 $A_1, A_2, ..., A_m; n$ 个销地 $B_1, B_2, ..., B_n$ 。 A_i 地的产量为 $a_i, i=1, 2, ..., m; B_j$ 处的需求量为 $b_i, j=1, 2, ..., n$ 。

不妨假定 $\prod_{i=1}^{m} a_i = \prod_{j=1}^{n} b_j$ 。对所有 i 和 j , a_i , $b_j > 0$ 。如果 $\prod_{i=1}^{m} a_i > \prod_{j=1}^{n} b_j$,即供过于求时,可假定有一虚拟的销地 B_{n+1} , $b_{n+1} = \prod_{i=1}^{m} a_i - \prod_{j=1}^{n} b_j$,而且 $c_{i,n+1} = 0$, i = 1, 2, ..., m。若 $\prod_{i=1}^{m} a_i < \prod_{j=1}^{n} b_j$ 则问题无解。由 A_i 运往 B_j 单位产品的运费为 c_{ij} , i = 1, 2, ..., m, j = 1, 2, ..., n。

问题是决定最优运输方案: 保证供给, 使运费最少。

假定从 A; 运往 B; 的量为 x; 个单位, 于是运输问题的数学模型为:

$$\begin{aligned} & \text{min } z = \sum_{\substack{i=1 \ j=1 \\ n}}^{m} c_{ij} \, x_{ij} \\ & \text{s. t.} \end{aligned} \quad \begin{aligned} & x_{ij} = a_{i}, \quad i = 1, 2, ..., m \\ & \sum_{\substack{j=1 \\ m}}^{m} x_{ij} = b_{j}, \quad j = 1, 2, ..., n \\ & x_{ij} = 0, \quad i = 1, 2, ..., m \end{aligned}$$

 $x_{j=1}$ $x_{j} = a_{i}$ 表示从 A_{i} 运出的量正好是 A_{i} 的产量 a_{i} , i = 1, 2, ..., m。同样的理由, x_{j} $x_{j} = b_{j}$ 表示运往 B_{j} 的量正好是它的需求量 b_{j} , j = 1, 2, ..., n。共 mn 个变量, m+n 个约束条件。运输问题(N) 以后简称为问题(N)。

其中 $a_{ij}=e_{i}+e_{m+j}$, e_{i} 为n+m维列向量且第i个分量为1, 其余分量为0, e_{m+j} 为第m+j个分量为1, 其余为0, i=1,2,...,m; j=1,2,...,n。则有

$$min z = Cx$$

$$s.t. Ax = b$$

$$x 0$$

例 6.1 m= 3, n= 5

产地与销地关系如图 6.1 所示。

则有 3x 5= 15 个变元, 3+ 5= 8 个约束条件, 列举如下:

图 6.1

$$\mathbf{x}_{11} + \mathbf{x}_{12} + \mathbf{x}_{13} + \mathbf{x}_{14} + \mathbf{x}_{15} = \mathbf{a}_1$$

$$X_{21} + X_{22} + X_{23} + X_{24} + X_{25} = a_2$$

$$x_{31} + x_{32} + x_{33} + x_{34} + x_{35} = a_3$$

6.1.2 运输问题的特殊性

对于一般的运输问题, 矩阵 A 为 m+ n 行 mn 列, 具有下列形式:

$$A = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \\ A = & & & \\ 0 & 0 & \dots & 1 \\ & I & I & \dots & I & (m+n)mn \end{bmatrix}$$

其中1为元素均为1的n维行向量,即

$$1 = (1, 1, ..., 1)$$

同样 0 是元素全部为 0 的 n 维行向量。

I为nx n单位方阵

矩阵 A 每列只有 2 个 1, 一在产地约束 m 行, 一在销地约束的 n 行, 其余元素均为 0。

定理 6.1 运输问题(N)有可行解。

证明 由于 $\prod_{j=1}^{m}a_{i}=\prod_{j=1}^{n}b_{j}=s$,可以验证, $x_{ij}=\frac{a_{i}b_{j}}{s}$, $i=1,2,...,m;\;j=1,2,...,n$ 是一组可行解。

而且 $0 \times \min\{a_i, b_i\}$

推论 问题(N)有最优解,而且无需用二阶段法。

6.2 矩阵 A 的性质

m 和 n 大于 2 时, mn m+n, 故 A 的秩小于等于 m+n。不难看出 A 矩阵前 m 行之和 等于后 n 行之和, 即 A 的 m+n 行不是独立的。

性质 6.1 rank(A)= m+ n- 1

因 A 的 m+ n 行不独立, 所以 rank(A) m+ n- 1。

要证明 rank(A) = m + n - 1, 只要构造一个 m + n - 1 阶的子方阵, 它的行列式不为零就可以了。

先举一个例子,它的构造法包含有普遍的规律性。图 6.1 的矩阵 A 将其最后一行去掉,得

$$A = (a_{11} \ a_{12} \ a_{13} \ ... \ a_{15} \ a_{21} \ a_{22} \ ... \ a_{25} \ a_{31} \ a_{32} \ ... \ a_{35})$$

其中 a_{ij} 为对应于 a_{ij} 一列, $i=1,2,3;\ j=1,2,...,5$,例如 a_{15} 对于 a_{15} 的列应为
$$(1 \ 0 \ 0 \ 0 \ 0 \ 0)^T$$

从A矩阵中取

$$(a_{15} \ a_{25} \ a_{35} \ a_{11} \ a_{22} \ a_{33} \ a_{34})$$

 a_{15} a_{25} a_{35} a_{11} a_{22} a_{33} a_{34}

这个矩阵为上三角矩阵,对角线元素为 1。故行列式不为 0。

一般的情形不再赘述, 总之可构造类似的(m+n-1)x (m+n-1)的上三角方阵, 行列式不为零。

知道 A 的秩为 m+n-1,则对 m+n 个约束条件可任意去掉一个,剩下 m+n-1 个约束条件是线性无关的,必存在一组基。

性质 6.2 A 的任一子方阵的行列式值为 ± 1 或 0。

A 只有 0 和 1 元素,由于 rank(A) = m + n - 1,故任一 m + n 阶子方阵的行列式为零。

现用数学归纳法证明上述结论。假定 A 的任一(k-1) 阶子方阵的行列式为 0, 证任一 k 阶子方阵 A_k 的行列式为零。

 A_k 的每一列元素或为全零, 或含有 $1 \land 1$, 其余为 0; 最多两个 1, 其余为 0。

- (1) 若有一列全为 0,则其行列式为 0。
- (2) 若 A_k 每一列有两个 1, 则一个 1 在前 m 个产地约束上, 另一个在后 n 个约束销地上, 故属于产地约束的行之和等于销地约束之和, 故 A_k 的行线性相关, $\det A_k = 0$ 。
 - (3) 若 A_k 有一列有一个元为 1, 则 $det A_{k-1}$ 。

6.3 运输问题的求解过程

6.3.1 求初始可行解的西北角法

上面讨论了关于运输问题矩阵 A 的特点,下面根据它的特殊结构找到单纯形法的有效步骤。其过程有:

- 1. 寻找初始可行解。
- 2. 检查是否已达最优。若已是最优或无可行解,则结束。
- 3. 进一步改善目前的解。

当初始可行解找到后,反复应用2与3步,有限步后达到最优。

运输问题属于 Ax= b 型的约束条件, 但求解无需用二阶段法, 而且后面两个步骤也非常简单。可用表 6.1 表示。

 \mathbf{B}_1 B_2 \mathbf{B}_3 \mathbf{B}_{n} B n- 1 c_{11} c_{12} c_{13} $c_{1,\,\mathsf{n-}\ 1}$ $c_{1\mathsf{n}}$ A_1 a_1 **X** 12 **X** 13 **X**1, n- 1 C21 C22 C2, n- 1 C2n C23 A_2 X 22 X 23 $X_{2, n-1}$ X_{2n} Cm1 Cm2 Cm3 Cm, n- 1 C_{mn} $A_{\rm m}$ $a_{\rm m}$ **X** m3 X mn X m1X m2X m. n- 1 b_1 b_2 b_3 b_{n-1} b_n

表 6.1

表中每行对应于产地, 列对应于销地, 最后一行是需求量, 最后一列是产量。格子 (i,j) 左上角是单位运费 c_i ,右下方是 x_i 值。第 i 行 x_i 的总和等于 a_i ,第 j 列 x_i 和等于 b_i 。

要使用单纯形法,首先应确定初始基可行解,有许多方法可以产生初始基可行解。其中最简单的一种方法通过例子介绍于后,一般的文字叙述从略,因为道理是完全一样的。

min z=
$$10x_{11} + 8x_{12} + 12x_{13} + 11x_{14} + 11x_{21} + 14x_{22} + 15x_{23} + 9x_{24}$$
 $+ 16x_{31} + 11x_{32} + 18x_{33} + 7x_{34}$

s.t. $x_{11} + x_{12} + x_{13} + x_{14} = 40$
 $x_{21} + x_{22} + x_{23} + x_{24} = 60$
 $x_{31} + x_{32} + x_{33} + x_{34} = 45$
 $x_{11} + x_{21} + x_{21} + x_{31} = 50$
 $x_{12} + x_{22} + x_{23} + x_{32} = 25$
 $x_{13} + x_{22} + x_{23} + x_{33} = 35$
 $x_{14} + x_{24} + x_{34} = 35$
 $x_{15} + x_{15} + x_{15} + x_{15} = 1, 2, 3, 4$

表 6.2 是表示这一运输问题的。

表 6.2

	B 1	B ₂	Вз	B 4	
A 1	10	8	12	11	40
A ₂	11	14	15	9	60
A 3	16	11	18	7	45
	50	25	35	35	145

先不考虑运输代价, A_1 先满足 B_1 的需要, $x_{11}=\min\{a_1,b_1\}=\min\{40,50\}=40$, A_1 全部空, 但 B_1 未满足, 差额为 10。 A_2 给 B_1 , $x_{12}=\min\{60,10\}=10$, B_1 全部满足。 A_2 余 50, 给 B_2 25, 即 $x_{22}=\min\{50,25\}=25$, 余 25, B_2 完全满足, A_2 余下 25 全部给 B_3 , A_2 空, B_3 差 10, A_3 给 B_3 10, A_3 余下 35 全部给 B_4 。 这样, A_3 空, B_3 , B_4 全部得到满足。

上述方法也称西北角法则,意即从最左上方开始,不考虑代价,最大限度地运往销地。图 6.2 和图 6.3 直观地表达这一过程,该过程用表的形式表示于表 6.3。

表 6.3

	B 1	B ₂	Вз	B 4	
Aı	40				ÆÓ
A ₂	10	25	25		,50 ,50 ,25
A 3			10	35	45 85
	56 X	25	25 X1	<i>1</i> 5	

6.3.2 最小元素法

下面介绍另一种求初始运输方案的方法,即最小元素法。

首先考虑最小运价 7, 即(A_3 , B_4)格, 将对应产、销量最小值即 35 填入此格, 同时从产销两个量中减去此数; 再考虑次小运价 8(若有两个相同运费, 则可先任选一个, 下次再选另一个, 等等)。在(A_1 , B_2)格, 实行上述相同操作; 再选第三小的运价 9, 在(A_2 , B_4)格, 又实施上述相同操作, 直至检查完所有运价。最后可得一初始运输方案, 实行过程如表 6. 4 所示。

表 6.4

	B 1	B ₂	B 3	B 4	
	10	8	12	11	A 0
A ₁	15	25			#0 #5
	11	14	15	9	<i>5</i> 60
A ₂	35		25		25
	16	14	18	7	A5
A 3			10	35	26
	<i>,5</i> 0	25	<i>3</i> 5	25	1.1-
	,50 ,35	0	X 6	0	145

在实行过程中, 若遇所在格对应产或销量已为 0 时, 则跳过此格。

这两种给出初始基可行解的方法各有利弊,西北角法简单,最小元素法给出的解可能较接近最优解。

图 6.4(a)、(b) 两图分别是用两种方法得出的初始基可行解的表示法。3x 4 格子, 每一格子代表 A 矩阵的行列。比如(a) 图说明 $x_{11}, x_{21}, x_{22}, x_{23}, x_{33}, x_{34}$ 构成了基; (b) 图表示 $x_{12}, x_{11}, x_{21}, x_{23}, x_{33}, x_{34}$ 构成另一组基,每组都是 6 个元素,而且每行每列都有一个属于基的方格。对于一般 m 个产地,m 个销地的运输问题可以证明用以上方法产生的初始基可行

解最多有 m+ n- 1 个非零解。

图 6.4

以上基的性质无疑是带有普遍性。下面将说明怎样才能保证使得矩阵 A 的任何一列都可以用基来表示。

前面已知

 $A = (a_{11} \ a_{12} \ \dots \ a_{1n} \ a_{21} \ a_{22} \ \dots \ a_{2n} \ \dots \ a_{m1} \ a_{m2} \ \dots \ a_{mn})$

有 $a_{ij} = e_{i} + e_{m+j}$, 其中 e_{i} 是 n+m-1 维空间中第 i 个分量为 1, 其他分量为 0 的列向量。 对于图 6.4(a) a_{14} 可以看作是

 $a_{14} = a_{11} - a_{21} + a_{23} - a_{33} + a_{34}$

事实上,右端= $(e_1 + e_4)$ - $(e_2 + e_4)$ + $(e_2 + e_6)$ - $(e_3 + e_6)$ + $(e_3 + e_7)$ = e_1 + e_7 = 左端。对于图 6.4(b)也有类似情形。

和图 6.4 一样, 一般 m 个产地, n 个销地的运输问题, 属于基的格子点用水平垂直的边连接起来的图是一棵支撑树, 是一棵有 m+n-1 个结点的支撑树, 既然是树, 不能存在回路。如若构成一回路, 则彼此非线性无关, 也就是说一般最多有 m+n-1 个正数解, 跟基的概念矛盾。

6.3.3 图上作业法

任何基可行解都对应一棵支撑树,这将使得单纯形法运算起来比较方便。

例如,已知支撑树如图 6.5 所示。从图中找出线度为 1 的点,其中有 A_1 和 B_4 ,说明 A_1 已空, B_4 已满。将 A_1 从图中删去,将 B_1 的需求量降为 10,同样将 B_4 删去,将 A_3 的产量从 45 改为 10,在剩下的图中找线度为 1 的点,即 B_1 和 A_3 ,同样的办法删去 B_1 将 A_2 的产量 60 改为 50,将 A_3 删去,将 B_3 的需求量从 35 改为 25。在剩下的图中继续寻求线度为 1 的点, B_3 , B_2 是所求的,将 B_3 删去,将 A_2 的量 45 改为 25。为了直观起见,用图 6.6 表示这个过程;或用图 6.7 表示这个全过程。

图 6.5

这过程说明了一个很重要的结论:

若 $a_1, a_2, ..., a_m, b_1, b_2, ..., b_n$ 都是整数, 因为解题过程只用到加减运算, 则运输问题的解也都是整数。

图 6.6

6.4 ci- zi 的计算, 进入基的确定

基可行解确定之后要计算所有的 c_{ij} - z_{ij} , 判断是否达到最优, 若未达到最优, 则要确定进入的基。

$$c_{ij} - z_{ij} = c_{ij} - C_B B^{-1} a_{ij}$$
 $i = 1, 2, ..., m; j = 1, 2, ..., n$

请注意: $a_{ij}=e_{i}+e_{m+j}$,又由于 A 的秩为 n+m-1,不妨约定将最后一行删去。所以,实际上

$$a_{ij} = \begin{cases} e_i & j = \text{ n, } i = 1,2,...,m \\ e_i + e_{m+j} & i = 1,2,...,m; \ j = 1,2,...,n-1 \end{cases}$$

$$\diamondsuit C_B B^{-1} = \begin{pmatrix} u_1 & u_2 & ... & u_m & v_1 & v_2 & ... & v_{n-1} \end{pmatrix},$$

$$c_{ij} - z_{ij} = c_{ij} - u_{i} - v_j , \quad i = 1,2,...,m; \ j = 1,2,...,n$$

为了方便起见, 假定 $v_n = 0$ 。 $C_B B^{-1}$ 的 m+ n- 1 个分量正好由 m+ n- 1 个基来定。

对于基 x_{ij} ,必有 c_{ij} - z_{ij} = 0。例如在图6.8中,由于 $x_{11},x_{21},x_{22},x_{23},x_{33},x_{34}$ 是基变量,

$$z = 10x \quad 40 + 11x \quad 10 + 14x \quad 25 + 15x \quad 25 + 18x \quad 10 + 7x \quad 35$$

= 1660

而且由于 A 的最后一行删去, 故

但令 v₄= 0

图 6.8 是表示该过程的图。

u = 7

 $v_3 = 18 - u_3 = 18 - 7 = 11$

图 6.8

$$u_{2}=15-v_{3}=15-11=4$$
 $v_{2}=14-u_{2}=14-4=10$
 $v_{1}=11-u_{2}=11-4=7$
 $u_{1}=10-v_{1}=10-7=3$
 $c_{12}-z_{12}=8-u_{1}-v_{2}=8-3-10=-5$
 $c_{13}-z_{13}=12-u_{1}-v_{3}=8-3-11=-6$
 $c_{14}-z_{14}=11-u_{1}-v_{4}=8-3=5$
 $c_{24}-z_{24}=9-u_{2}-v_{4}=9-4=5$
 $c_{31}-z_{31}=16-u_{3}-v_{1}=16-7-7=2$
 $c_{32}-z_{32}=14-u_{3}-v_{2}=14-7-10=-3$

因为是 min 问题, 故选 X13作为进入基变量。

6.5 退出基的确定

还是以上一节例为研究对象,通过它说明退出基的确定。

若 x_{13} 进入基, 从图 6. 11 可知, 令 = 25, 即与 x_{13} 同行及同列的基为 x_{11} , x_{23} , 考虑将 x_{11} 和 x_{23} 各减 25, 使 x_{23} 退出基, x_{13} 从 0 升为 25, 这时使约束条件得到满足, 但

z = 10x 15 + 11x 35 + 14x 25 + 12x 25 + 18x 10 + 7x 35 = 1610 显然有所改善。

图 6.9,图 6.10 和图 6.11 表示了这一过程。

图 6.9

图 6.10

重新计算 cij- zij

$$u_1 + v_1 = c_{11} = 10$$
, $u_1 + v_3 = c_{13} = 12$,
 $u_2 + v_1 = c_{21} = 11$
 $u_2 + v_2 = c_{22} = 14$, $u_3 + v_3 = c_{33} = 18$, $u_3 = c_{14} = 7$
 $v_3 = 18$ - $u_3 = 11$, $u_1 = 12$ - $v_3 = 12$ - $11 = 1$,
 $v_1 = 15$ - $u_1 = 14$, $u_2 = 11$ - $v_1 = 11$ - $14 = -3$
 $v_2 = 14$ - $u_2 = 14$ + $3 = 17$

图 6.11

故 $u_1 = 1$, $u_2 = -3$, $u_3 = 7$, $v_1 = 14$, $v_2 = 17$, $v_3 = 11$, $v_4 = 0$

$$c_{12}$$
- u_{1} - v_{2} = 8- 1- 17= - 10

$$c_{14}$$
- u_{1} - v_{4} = 11- 1= 10

$$c_{23}$$
- u_{2} - v_{3} = 15- (-3) - 11= 7

$$c_{24}$$
- u_2 - v_4 = 9- (-3) = 12

$$c_{31}$$
- u_{3} - v_{1} = 16- 7- 14= - 5

$$c_{32}$$
- u_{3} - v_{2} = 14- 7- 17= - 10

故 X12作为进入基变量, 从图 6. 12 可知 X11退出, 得图 6. 13。

图 6.12

图 6.13

这时

$$z = 8 \times 15 + 12 \times 15 + 11 \times 35 + 14 \times 10 + 18 \times 10 + 7 \times 35 = 1535$$

$$c_{12} = u_1 + v_2 = 8$$
, $c_{13} = u_1 + v_3 = 12$, $c_{21} = u_2 + v_1 = 11$

$$c_{22} = u_2 + v_2 = 14$$
, $c_{33} = u_3 + v_3 = 18$, $c_{34} = u_3 + v_4 = 7$

$$u_3 = 7, v_3 = 18 - u_3 = 18 - 7 = 11, u_1 = 12 - v_3 = 12 - 11 = 1$$

$$v_2 = 8 - u_1 = 8 - 1 = 7, u_2 = 14 - v_2 = 14 - 7 = 7$$

$$v_1 = 11 - u_2 = 11 - 7 = 4$$

$$u_1 = 1, u_2 = 7, u_3 = 7, v_1 = 4, v_2 = 7, v_3 = 11$$

$$c_{11}$$
- u_{1} - v_{1} = 10- 1- 4= 5

$$c_{14}$$
- u_{1} - v_{4} = 11- 1= 10

$$c_{23}$$
- u_{2} - v_{3} = 15- 7- 11= - 3

$$c_{24}$$
- u_{2} - v_{4} = 9- 7= 2

$$c_{31}$$
- u_{3} - v_{1} = 16- 7- 4= 5

$$c_{32}$$
- u_{3} - v_{2} = 14- 7- 7= 0

故 X^{23} 进入基, 从图 6. 14 可知 = 10, 使 X^{22} 退出, 得图 6. 15。

$$u_1 + v_2 = c_{12} = 8$$
, $u_1 + v_3 = c_{13} = 12$, $u_2 + v_1 = c_{21} = 11$

$$u_2 + v_3 = c_{23} = 15$$
, $u_3 + v_3 = c_{33} = 18$, $u_3 + v_4 = c_{34} = 7$

 $u_3 = 7$, 依次回溯 $v_3 = 18 - u_3 = 11$

$$u_2 = 15 - v_3 = 15 - 11 = 4$$
, $v_1 = 11 - u_2 = 11 - 4 = 7$

$$u_3 = 12 - v_3 = 12 - 11 = 1, v_2 = 8 - u_1 = 8 - 1 = 7$$

$$u_1 = 1, u_2 = 4, u_3 = 7, v_1 = 7, v_2 = 7, v_3 = 11$$

$$c_{11}$$
- u_{1} - v_{1} = 10- 1- 7= 2

$$c_{14}$$
- u_{1} - v_{4} = 11- 1= 10

$$c_{22}$$
- u_{2} - v_{2} = 14- 4- 7= 3

$$c_{24}$$
- u_{2} - v_{4} = 9- 4= 5

$$c_{31}$$
- u_{3} - v_{1} = 16- 7- 7= 2

$$c_{32}$$
- u_{3} - v_{2} = 14- 7- 7= 0

图 6.14

图 6.15

故已达到最优解:

$$X_{12}=25, X_{13}=15, X_{21}=50, X_{23}=10, X_{33}=10, X_{34}=35, 其余为 0。$$

总运价

$$z = 8 \times 25 + 12 \times 15 + 11 \times 50 + 15 \times 10 + 18 \times 10 + 7 \times 35$$

= 1505

6.6 举 例

下面完整地计算一例子,看看单纯形法在运输问题上是怎么运作的。

例 6.2 已知一运输问题, 其单位运价及产销量均见表 6.5, 求最佳运输方案。

表 6.5

	B ₁	B_2	B ₃	B ₄	B ₅	B ₆	
A_1	10	12	13	8	14	19	18
A 2	15	18	12	16	19	20	22
A 3	17	16	13	14	10	18	39
A4	19	18	20	21	12	13	14
	10	11	13	20	24	15	93

用西北角法得初始解,见表 6.6。

表 6.6

	B 1	B 2	Вз	B 4	B 5	B 6	_		
A 1	10	8					18	18	
A 2		3	13	6			22	18 18 25	8
A_3				14	24	1	29	25	1
A 4						14	1/4		
	Ж	X	1/3	20	24	25	_		
		13		14		14			

$$z_0 = 10x 10 + 12x 8 + 18x 3 + 12x 13 + 16x 6 + 14x 14 + 10x 24 + 18x 1 + 13x 14$$

= 1140

$$u_1 + v_1 = c_{11}, \quad u_1 + v_1 = 10$$

$$u_1 + v_2 = c_{12}, \quad u_1 + v_2 = 12$$

$$u_2 + v_2 = c_{22}, \quad u_2 + v_2 = 18$$

$$u_2 + v_3 = c_{23}, \quad u_2 + v_3 = 12$$

$$u_2 + v_4 = c_{24}, \quad u_2 + v_4 = 16$$

$$u_3 + v_4 = c_{34}, \quad u_3 + v_4 = 14$$

$$u_3 + v_5 = c_{35}, \quad u_3 + v_5 = 10$$

$$u_3 + v_6 = 18$$
, $u_3 = 18$

$$u_4 + v_6 = 13, \quad u_4 = 13$$

从后面算起,依次回溯得 u_4 = 13, u_3 = 18, u_3 + v_5 = c_{35} = 10, v_5 = - 8 等等, 所以 u_4 = 13, u_3 = 18

$$u_3 + v_5 = 10$$
, $v_5 = 10 - u_3 = -8$

$$u_3 + v_4 = 14$$
, $v_4 = 14 - u_3 = -4$,

$$u_2 + v_4 = 16$$
 $u_2 = 16 - v_4 = 16 + 4 = 20$

$$u_2 + v_3 = 12, v_3 = 12 - u_2 = -8$$

$$u_2 + v_2 = 18$$
, $v_2 = 18 - u_2 = 18 - 20 = -2$

$$u_1 + v_2 = 12$$
, $u_1 = 12$ - $v_2 = 14$

$$u_1 + v_1 = 10$$
, $v_1 = 10$ - $u_1 = 10$ - $14 = -4$

$$u_1 = 14, u_2 = 20, u_3 = 18, u_4 = 13, v_1 = -4$$

$$v_2 = -2$$
, $v_3 = -8$, $v_4 = -4$, $v_5 = -8$, $v_6 = 0$

$$c_{13}$$
- u_{1} - v_{3} = 13- 14+ 8= 7

$$c_{14}$$
- u_{1} - v_{4} = 8- 14+ 4= - 2

$$c_{15}$$
- u_{1} - v_{5} = 14- 14+ 8= 8

$$c_{16}$$
- u_{1} - v_{6} = 19- 14= 5

$$c_{21}$$
- u_2 - v_1 = 15- 20+ 4= - 1

$$c_{25}$$
- u_{2} - v_{5} = 19- 20+ 8= 7

$$c_{26}$$
- u_{2} - v_{6} = 20- 20= 0

$$c_{31}$$
- u_{3} - v_{1} = 17- 18+ 4= 3

$$c_{32}$$
- u_{3} - v_{2} = 16- 18+ 2= 0

$$c_{33}$$
- u_{3} - v_{3} = 13- 18+ 8= 3

$$c_{41}$$
- u_{4} - v_{1} = 19- 13+ 4= 10

$$c_{42}$$
- u_{4} - v_{2} = 18- 13+ 2= 7

$$c_{43}$$
- u_4 - v_3 = 20- 13+ 8= 15

故 X_{14} 进入基, 从图 6. 16 可知 = 6, 即 X_{24} 退出, 如图 6. 17 所示。

图 6.16

图 6.17

调整后得

$$z = 10x 10 + 12x 2 + 8x 6 + 12x 13 + 18x 9 + 14x 14 + 10x 24 + 18x 1 + 13x 14$$

= 1126

$$u_4 + v_6 = 13$$
, $u_4 = 13$, $u_3 = 18$

$$u_3 + v_5 = 10$$
, $v_5 = 10 - 18 = -8$

$$u_3 + v_4 = 14$$
, $v_4 = 14 - 18 = -4$

$$u_1 + v_4 = 8$$
, $u_1 = 8 + 4 = 12$

$$u_1 + v_2 = 12$$
, $v_2 = 12 - 12 = 0$

$$u_1 + v_1 = 10$$
, $v_1 = 10 - 12 = -2$

$$u_2 + v_2 = 18, \quad u_2 = 18$$

$$u_2 + v_3 = 12$$
, $v_3 = 12 - 18 = -6$

$$u_1 = 12, u_2 = 18, u_3 = 18, u_4 = 13$$

$$v_1 = -2$$
, $v_2 = 0$, $v_3 = -6$, $v_4 = -4$, $v_5 = -8$

$$c_{13}$$
- u_{1} - v_{3} = 13- 12+ 6= 7

$$c_{15}$$
- u_{1} - v_{5} = 14- 12+ 8= 8

$$c_{16}$$
- u_{1} - v_{6} = 19- 12= 7

$$c_{21}$$
- u_2 - v_1 = 15- 18+ 2= - 1

$$c_{24}$$
- u_{2} - v_{4} = 16- 18+ 4= 2

$$c_{25}$$
- u_2 - v_5 = 19- 18+ 8= 9

$$c_{26}$$
- u_{2} - v_{6} = 20- 18= 2

· 164 ·

$$c_{31}$$
- u_{3} - v_{1} = 17- 18+ 2= 1

$$c_{32}$$
- u_{3} - v_{2} = 16- 18= - 2

$$c_{33}$$
- u_{3} - v_{3} = 13- 18+ 6= 1

$$c_{41}$$
- u_{4} - v_{1} = 19- 13+ 2= 8

$$c_{42}$$
- u_{4} - v_{2} = 18- 13= 5

$$c_{43}$$
- u_4 - v_3 = 20- 13+ 6= 13

$$c_{44}$$
- u_{4} - v_{4} = 21- 13+ 4= 12

$$c_{45}$$
- u_{4} - v_{5} = 12- 13+ 8= 7

故 X 32作为进入基。其过程如图 6.18 和图 6.19 所示。

图 6.18

图 6.19

从上图可知 = 2, 即 X_{12} 退出得图 6.19。

调整后

$$z = 10x 10 + 8x 8 + 14x 12 + 16x 2 + 18x 9 + 12x 13 + 10x 24 + 18 + 13x 14$$

= 1122

$$u_4 + v_6 = c_{46} = 13, u_4 = 13, u_3 = c_{36} = 18$$

$$u_3 + v_5 = c_{35} = 10$$
, $v_5 = 10 - 18 = -8$

$$u_3 + v_4 = c_{34} = 14$$
, $v_4 = 14 - 18 = -4$

$$u_3 + v_2 = 16$$
, $v_2 = 16$ - $18 = -2$, $u_2 + v_2 = 18$, $u_2 = 20$

$$u_2 + v_3 = c_{23} = 12$$
 $v_3 = 12 - 20 = -8$

$$u_1 + v_4 = 8$$
, $u_1 = 8 + 4 = 12$, $u_1 + v_1 = 10$, $v_1 = 10 - 12 = -2$

$$u_1 = 12, u_2 = 20, u_3 = 18, v_4 = 13, v_1 = -2$$

$$v_2 = -2, v_3 = -8, v_4 = -4, v_5 = -8$$

$$c_{11}$$
- u_{1} - v_{2} = 12- 12+ 2= 2

$$c_{13}$$
- u_{1} - v_{3} = 13- 12+ 8= 9

$$c_{15}$$
- u_1 - v_5 = 14- 12+ 8= 10

$$c_{16}$$
- u_{1} - v_{6} = 19- 12= 7

$$c_{21}$$
- u_{2} - v_{1} = 15- 20+ 2= - 3

$$c_{24}$$
- u_{2} - v_{6} = 16- 20+ 4= 0

$$c_{25}$$
- u_{2} - v_{5} = 19- 20+ 8= 7

$$c_{26}$$
- u_{2} - v_{6} = 20- 20= 0

$$c_{31}$$
- u_{3} - v_{1} = 17- 18+ 2= 1

$$c_{33}$$
- u_{3} - v_{3} = 13- 18+ 8= 3

$$c_{41}$$
- u_{4} - v_{1} = 19- 13+ 2= 8

$$c_{42}$$
- u_{4} - v_{2} = 18- 13+ 2= 7

$$c_{43}$$
- u_{4} - v_{3} = 20- 13+ 8= 15

$$c_{44}$$
- u_{4} - v_{4} = 21- 13+ 4= 12

$$c_{45}$$
- u_{4} - v_{5} = 12- 13+ 8= 7

故 x_{21} 作为进入基变量, 请注意: 在图 6.20 中可看出 = $9, x_{22}$ 退出。

图 6.20

调整后的运输方案如图 6.21 所示。

图 6.21

z = 10+ **8** 15+ 15* 9+ 12* 13+ 16* 11+ 14* 3+ 10* 24+ 18+ 13* 14= 1079

检验是否是最优。

 $u_4 = 13$, $u_3 = 18$, $u_3 + v_5 = 10$, $v_5 = -8$, $u_3 + v_4 = 14$, $v_4 = -4$, $u_3 + v_2 = 16$, $v_2 = -2$, $u_1 + v_4 = 8$, $u_1 = 8 + 4 = 12$, $u_1 + v_1 = 10$, $v_1 = -2$, $u_2 + v_1 = 15$, $u_2 = 17$, $u_2 + v_3 = 12$, $v_3 = 12 - 17 = -5$, $u_3 + v_2 = 16$, $v_2 = 16 - 18 = -2$

 $u_1 = 12, u_2 = 17, u_3 = 18, u_4 = 13, v_1 = -2, v_2 = -2, v_3 = -5, v_4 = -4, v_5 = -8, v_6 = 0$ 继续计算所有非基变量 x_{ij} 的 c_{ij} - u_{i} - v_{j} , 发现 c_{ij} - z_{ij} - 0, 故有最优解 z = 1079

例 6.3 运输问题如图 6.22 所示,并同时得到初始解。

初始基 $X^{22}=0$, 即出现退化现象, 下面以 $X^{22}=0$ 直接参加运算。

· 166 ·

图 6.22

$$u_{3}+v_{4}=3$$
, $u_{3}=0$, $u_{2}+v_{4}=1$, $u_{2}=1$
 $u_{2}+v_{3}=5$, $v_{3}=5-1=4$, $u_{2}+v_{2}=12$, $v_{2}=11$
 $u_{1}+v_{2}=3$, $u_{1}=-8$, $u_{1}+v_{1}=2$, $v_{1}=10$
 $c_{13}-u_{1}-v_{3}=4+8-4=8$
 $c_{14}-u_{1}-v_{4}=9+8=17$
 $c_{21}-u_{2}-v_{1}=14-1-10=3$
 $c_{31}-u_{3}-v_{1}=12-3-10=-1$
 $c_{32}-u_{3}-v_{2}=15-3-11=1$
 $c_{33}-u_{3}-v_{3}=9-3-4=2$

故 X 31作为进入基。如图 6.23(a)所示。

图 6.23

故 = 0, 即 X_{31} 作为进入基, X_{22} 退出。 调整后如图 6.23(b) 所示。

$$u_{3}=3$$
, $u_{2}=1$, $u_{3}+v_{1}=12$, $v_{1}=9$
 $u_{2}+v_{3}=5$, $v_{3}=4$, $u_{1}+v_{1}=2$, $u_{1}=-7$
 $u_{1}+v_{2}=3$, $v_{2}=10$
 $c_{13}-u_{1}-v_{3}=4+7-4=7$
 $c_{14}-u_{1}-v_{4}=9+7-0=16$
 $c_{21}-u_{2}-v_{1}=14-1-9=4$
 $c_{22}-u_{2}-v_{2}=12-1-10=1$

$$c_{32}$$
- u_{3} - v_{2} = 15- 3- 10= 2
 c_{33} - u_{3} - v_{3} = 9- 3- 4= 2

请注意不论图 6.22 或 6.23,将取 0 值的基消去后,支撑树分解为不连通的两个子树 T_1 和 T_2 ,例如图 6.23(b) 中粗线所示。上面的基恒有

6.7 任务安排问题

6.7.1 任务安排与运输问题

任务安排是运输问题的特殊情形,即 m= n,且 $a_1=a_2=...=a_m=b_1=b_2=...=b_n=1$ 。 背景是 n 个工作人员 $A_1,A_2,...,A_n$ 和 n 项任务 $B_1,B_2,...,B_n$,若 A_i 从事 B_i 任务所需代价为 c_{ij} ,令 $x_{ij}=0$ 表示 A_i 不从事 B_i 工作; $x_{ij}=1$ 表示 A_i 从事 B_i 工作。其数学模型是:

min
$$z = \sum_{\substack{i=1 \ j=1}^{n}}^{n} c_{ij} x_{ij}$$
s.t. $x_{ij} = 1, \quad i = 1, 2, ..., n$

$$x_{ij} = 1, \quad j = 1, 2, ..., n$$

$$x_{ij} = 0 或 1, \quad i, j = 1, 2, ..., n$$

或写成矩阵形式

$$\begin{aligned} & \text{min } z = & Cx \\ & \text{s. t.} & & Ax = & I \end{aligned}$$

其中 $x = (x_{11} \dots x_{1n} x_{21} \dots x_{2n} \dots x_{n1} \dots x_{nn})^T$, $x_{ij} = 0$ 或 1, $i, j = 1, 2, ..., n_o$ C 叫代价矩阵。

$$A = (a_{ij})_{2n \times n^2} = (a_{11} \dots a_{1n} a_{21} \dots a_{2n} \dots a_{nn})$$

 $a_{ij} = e_{i+} e_{n+j}$ 。作为运输问题,它有整数解,而且由于约束条件无一超过 1,故可将问题改为

$$min z = Cx$$

$$s. t. Ax = I$$

$$x 0$$

也就是说 $x_{ij} = 0$ 或 1 的约束无必要。其中 $I = \begin{pmatrix} 1 & 1 & \dots & 1 \end{pmatrix}^T$ 。

问题导至解一般的运输问题了,但不难发现有出现退化可能。

6.7.2 求解举例

例 6.4 已知工作人员 A_1 , A_2 , A_3 , A_4 , 从事 B_1 , B_2 , B_3 , B_4 任务的代价矩阵 C, 求最佳 安排问题的解。

$$C = \begin{pmatrix} A_1 & 3 & 2 & 5 & 4 \\ A_2 & 0 & 1 & 2 & 3 \\ A_3 & 4 & 1 & -1 & 3 \\ A_4 & 2 & 5 & 3 & 4 \\ B_1 & B_2 & B_3 & B_4 \end{pmatrix}$$

问题的约束条件和初始求解如图 6.24 和图 6.25 所示。

图 6.24

图 6.25

得到初始解后,计算:

では、
$$v_4 = v_4 = v_4$$

$$c_{11}$$
- u_{1} - v_{1} = 3- u_{1} - v_{1} = 0, u_{1} = 3

$$c_{12}$$
- u_1 - v_2 = 2- 3- 1= - 2

 c_{21} - u_{2} - v_{1} = 0- u_{2} - v_{1} = 0,

$$c_{14}$$
- u_{1} - v_{4} = 4- 3= 1

$$c_{23}$$
- u_{2} - v_{3} = 2+ 1= 3

$$c_{24}$$
- u_{2} - v_{4} = 3

$$c_{31}$$
- u_{3} - v_{1} = 4

$$c_{34}$$
- u_{3} - v_{4} = 3

$$c_{41}$$
- u_{4} - v_{1} = 2- 4= - 2

$$c_{42}$$
- u_{4} - v_{2} = 5- 4- 1= 0

故 X41作为进入基, X21退出。

调整后如图 6.26 所示。

$$c_{44}$$
- u_4 = 0, u_4 = 4

图 6.26

$$c_{41}$$
- u_{4} - v_{1} = 0, 2- 4- v_{1} = 0, v_{1} = -2, c_{11} - u_{1} - v_{1} = 0, u_{1} = 5

 $v_1 = 0$

故 X 12作为进入基变量, X 32退出。

调整后如图 6.27 所示。

 c_{23} - u_{2} - v_{3} = 2- 2+ 1= 1

明金加氢 6.
$$27$$
 所示。 $u_4 = 4$, $v_4 = 0$, $v_3 = -1$, $v_1 = -2$, $u_1 = 5$, $c_{12} - u_1 - v_2 = 0$ $v_2 = -3$, $c_{22} - u_2 - v_2 = 0$, $u_2 = 4$, $c_{33} - u_3 - v_3 = 0$, $u_3 = 2$ $u_1 = 5$, $u_2 = 4$, $u_3 = 2$, $u_4 = 4$, $v_1 = -2$, $v_2 = -3$, $v_3 = -1$, $v_4 = 0$ $c_{11} - u_1 - v_3 = 5 - 5 + 3 = 3$; $c_{14} - u_1 - v_4 = 4 - 5 = -1$ $c_{21} - u_2 - v_1 = -4 + 2 = -2$; $c_{23} - u_2 - v_3 = 2 - 4 + 1 = -1$ $c_{24} - u_2 - v_4 = 3 - 4 = -1$; $c_{31} - u_3 - v_1 = 4 - 2 + 2 = 4$ $c_{32} - u_3 - v_2 = 1 - 2 + 3 = 2$; $c_{34} - u_3 - v_4 = 3 - 2 = 1$ $c_{42} - u_4 - v_2 = 5 - 4 + 3 = 4$

图 6.27

故选 X21为进入基变量, X11退出。如图 6.28 所示。

$$u_4 = 4, v_4 = 0, v_3 = -1, v_1 = -2, u_3 = 2, v_3 = -1$$
 $c_{21} - u_2 - v_1 = 0, u_2 = 2, c_{22} - u_2 - v_2 = 0, v_2 = -1$
 $c_{12} - u_1 - v_2 = 0, 2 - u_1 + 1 = 0, u_1 = 3$
故 $u_1 = 3, u_2 = 2, u_3 = 2, u_4 = 4, v_1 = -2, v_2 = -1, v_3 = -1, v_4 = 0$
 $c_{11} - u_1 - v_1 = 3 - 3 + 2 = 2; c_{13} - u_1 - v_3 = 5 - 3 + 1 = 3$
 $c_{14} - u_1 - v_4 = 4 - 3 = 1; c_{23} - u_2 - v_3 = 2 - 2 + 1 = 1$
 $c_{24} - u_2 - v_4 = 3 - 2 = 1; c_{31} - u_3 - v_1 = 4 - 2 + 2 = 4$
 $c_{32} - u_3 - v_2 = 1 - 2 + 1 = 0; c_{34} - u_3 - v_4 = 3 - 2 = 1$
 $c_{42} - u_4 - v_2 = 5 - 4 + 1 = 2$
故得最优解 $x_{12} = x_{21} = x_{33} = x_{44} = 1, z = 5_0$

6.8 任务安排的匈牙利算法

6.8.1 代价矩阵

任务安排的数学模型是运输问题的特例,可作为运输问题来求解,前面对此已作讨论。本节将介绍一种比较方便的匈牙利算法,它对于手算更有效。

下面我们通过例子来说明。

假定代价矩阵为

其中 A_1, A_2, A_3, A_4, A_5 表示工作人员, J_1, J_2, J_3, J_4, J_5 表示任务, c_i 为第 i 个工作人员 A_i 从事第 j 项任务 J_i 的代价。可将它转化为与之等价的问题, 办法如下:

- (a) 取矩阵 C 每行的最小元素, 用它作为减数, 该行所有元素减去该数, 这样一来, 每行就至少有一个 0 元素。
 - (b) 在(a) 的基础上, 每列减去该列的最小元素, 结果得到每列至少有一个 0 元素。由(a),(b)步骤, 执行过程:

15 = 1 + 4 + 3 + 3 + 3 + 1

矩阵外的数 1, 4, 3, 3, 3 分别是第 1, 2, 3, 4, 5 行的最小元素, 矩阵下面的 1 为第 1 列

最小元素,最后的15是这些数之和。

问题转化为代价矩阵

的任务安排问题(C 的特点是每行每列都有 0 元素), 理由是, 上述转化相当于 A_1 的工作代价一律降 1, A_2 的工作代价一律降 4, A_3 , A_4 , A_5 的工作代价一律降 3。同时, 从事任务 J_1 的代价一律再降 1。由于任务安排 A_1 , A_2 , A_3 , A_4 , A_5 每人都有一项, 且仅有一项任务, 每项任务都有一人且仅由一人去做, 所以 C 矩阵的任务安排问题等价于 C 矩阵的任务安排问题。

任务安排问题看作是运输问题的特殊情形。若把 C 矩阵看作是运费矩阵, 其道理更容易理解, 从 A_i 发出的运费都降一样的钱, 进入 B_i 的旅费也降一样的, 则对应的最佳运输方案也必然是 C 对应的最佳运输方案。

C 有许多 0 元素, 每行每列至少有一个 0, 若能从 C 中取 5 个 0 元素, 使得每行每列都正好有其中一个, 比如, c_{51} , c_{22} , c_{43} , c_{34} , c_{15} 。即矩阵 C 中打*号的 0, 其所在行列均不相同。它给出了问题的最优解:即 A_1 从事 J_5 , A_2 从事 J_2 , A_3 从事 J_4 , A_4 从事 J_3 , A_5 从事 J_1 , 代价为 I_5 。

这 5 个 0 元素是通过观察法得到的, 当问题规模较大时, 必须有一种算法。下面给出的匈牙利算法就是其中的一种。

6.8.2 科耗格(Konig)定理

已知(0,1)-矩阵 $A=(a_{ij})_{i \in n}$,可适当选择若干行和列,使这些行、列覆盖 A 的所有元素 1,办法不唯一。其中存在使用的行、列数之和 m 为最少的,显然 m n。

另一方面, 从 A 中找出若干元素 1, 使得两两不同行也不同列, 其中必存在这样的 1 最多者, 记为 M, 即从 A 中可选出 M 个元素 1, 散布在 A 中, 使得每行每列最多只有其中的 1 个。关于 m 和 M 有下面的定理。

科秏格定理 m= M

证明 m M 是显然的, 因为 m 条线就能覆盖住所有 1, 也必然能覆盖住这 M 个 1元素。所以只要证明 M m 即可。

设这 m 条线中有 r 条是行, c 条是列, 即 m=r+c, 不妨假定这 r 行是 $i_1,i_2,...,i_r$ 行, c 列为第 $j_1,j_2,...,j_s$ 列。

对应于这 r 行中的 in, 有

$$s_{\text{h}} > \ \{ 1 \, \text{Od}_{\, i_{_{h}} \, l} \, = \ 1, \quad 1 \quad j_{\, 1}, j_{\, 2}, \, ..., \, j_{\, c} \}$$

即 Sh 是第 ih 行中元素 1 的列标序列, 但不包括属于 c 列: j1, j2, ..., jc 的。

于是对 $s_1, s_2, ..., s_r$, 从中任取 k(k-r)个, 它所包含的不同元素个数不少于 k, 否则这 \cdot 172 \cdot

k 行可用少于它的列所取代,这与 m=r+c 是最少的行列数矛盾了。这个结论对于 1-k r 都对,根据匹配理论(见拙著《图论及其应用》),故可从这 r 行中找到 r 个 1 分别在不同的 r 列上,而且也不在 $j_1,j_2,...,j_c$ 列中任何一列上。

类似的理由可知, 从 $j_1, j_2, ..., j_c$ 列可选出 c 个元素 1 分别在不同的 c 行上, 而且也不在 $i_1, i_2, ..., i_c$ 行中任何一行上。

故可得 r+c 个 1 两两不在同一行、同一列上, 这就证明了 m-m。

6.8.3 标志数法

令 J 为 1, 2, ..., n 的某一排列 j₁ j₂ ... j_n, 它对应于一种任务安排方案, 即第 1 个工作人员完成 j₁ 任务, 第 2 人完成 j₂ 任务, ..., 第 n 人完成 j_n 任务。

$$W(J) = \sum_{i=1}^{n} c_{ij}$$

为其代价。问题导至求排列 J 使 W(J) 取极小值。

若对 A_i 给以标志数 $I(A_i)$, i=1,2,...,n; J_j 给以标志数 $I(J_j)$, j=1,2,...,n, 满足 $I(A_i)+I(J_j)$ c_{ij} , i,j=1,2,...,n。这样的标志数 $I(A_i)$, $I(J_j)$ 也不是唯一的, 下面假定 (c_{ij}) 是整数矩阵。

定理 6.2 设排列 $J = (j_1, j_2, ..., j_n)$ 使得 W(J) 取得最小值, 则存在标志数 $I(A_i)$, $I(J_i)$, i, j = 1, 2, ..., n, 使得

$$\min_{J} W(J) = \max_{(1)} \sum_{i=1}^{n} [l(A_i) + l(J_i)]$$

并且满足

$$l(A_i) + l(J_{j_i}) = c_{ij_i}$$

证明 证明是构造性的,也就是证明的过程就是给出算法。

$$m = \max_{(1)} \sum_{i=1}^{n} [1(A_i) + 1(J_i)]$$

$$M = \min_{(1)} \sum_{i=1}^{n} c_{ij}$$

取初始标志数

$$\begin{split} 1(A_i) = & \min_{j} (c_{ij}), 1(J_i) = 0, \quad i = 1, 2, ..., n \\ & \quad 1(A_i) + 1(J_j) \quad c_{ij} \\ & \quad \bigcap_{j = 1}^{n} \left[1(A_i) + 1(J_{ij}) \right] = \bigcap_{j = 1}^{n} \left[1(A_i) + 1(J_i) \right] \quad c_{ij} \\ & \quad \vdots \end{split}$$

这式子说明对于任何满足条件 1(A_i) + 1(J_j) c_{ij}的标志数 1, 则

$$\prod_{i=1}^{n} [l(A_i) + l(J_{j_i})] 不小于 \prod_{i=1}^{n} c_{ij_i}$$

自然也不大于利润的最大值 m, 所以 m M。只要能找到一种标志数, 使

$$\sum_{i=1}^{n} [1(A_i) + 1(J_j)] = \sum_{i=1}^{n} c_{ij}$$

即 $m=M, J=(j_1,j_2,...,j_n)$ 便是最优解,即 A_i 从事 J_{j_i} 工作,i=1,2,...,n,使代价达到最小。下面提供一种不断修改标志数,逐步提高 $\prod_{i=1}^n [1(A_i)+1(J_i)]$ 的和数,最后达到最大。

作矩阵

$$B = \ (\,b_{ij}\,)_{\,\text{nx}\,\,n},\, b_{ij} = c_{ij} - \ [\,l(\,A_{\,i}) \,+\, l(\,J_{\,j})\,]$$

i, j = 1, 2, ..., n。显然, 若 B 存在一组 $n \land 0$ 元素, 其中不存在两个 0 元素同行或同列, 则这些 0 元素的位置设为(i, j), 即

即得问题的解。如若不然, B 矩阵只能找到最多 k(< n) 个 0 元素, 使得其中任意两个不在同一行或同一列上。根据科耗格定理, 这相当于可以找到总数为 k 的行和列, 覆盖住所有 A 矩阵中的 0 元素。假定这 k 个行和列分别是 r 行 c 列, k=r+c, 其中 r 行分别是 i_1 , i_2 , ..., i_r ; c 列分别是 j_1 , j_2 , ..., j_s , 对标志数 1 作如下修改:

- (a) $A_{i_1}, A_{i_2}, ..., A_{i_r}$ 的标志数不动, 对其解 n- r 行的标志数分别加上作为新的标志数;
 - (b) $J_{j_1}, J_{j_2}, ..., J_{j_c}$ 的标志数减 1 作为新的标志数, 此外的 n- c 列的标志数不变。

其中 A_i 是任意一行, J_i 是任意一列, 请注意右端虚线相交的格子点·代表在新标志数 1 下, $1(A_i)+1(J_j)=1(A_i)+1(J_j)$ 的点, 代表 $1(A_i)+1(J_j)=1(A_i)+1(J_j)-1$ 的点, 表示 $1(A_i)+1(J_j)=1(A_i)+1(J_j)+1$ 的点。

总之,在1标志数下,条件:

 $1(A_i) + 1(J_i)$ c_{ij} 成立。但可能出现新的 0 元素。分别讨论如下:

$$\Leftrightarrow$$
 A_r= $(A_{i_1}, A_{i_2}, ..., A_{i_r}), J_c = (J_{j_1}, J_{j_2}, ..., J_{j_c})$

(1) A_i A_r, J_j J_c 时

$$1(A_i) + 1(J_j) = 1(A_i) + 1(J_j) - 1 < c_{ij}$$

(2) $A_p \mid A_r, J_q \mid B_c$ 时,

$$1(A_i) + 1(J_j) = 1(A_i) + 1(J_j) + 1 c_{ij}$$

(3) $A_i A_r, J_j \mid J_c(\mathbf{g} A_i \mid A_r, J_j J_c)$ 有

$$1 (A_i) + 1 (J_j) = 1(A_i) + 1(J_j)$$

但对于新标号1有

即标号和增加了, 增加的量为 n-r-c=n-(r+c)>0, 经过有限次迭代到达最大值。

B被4条线所覆盖,故修改标号如下:

即得任务安排的最优方案: A1—J5, A2—J1, A3—J4, A4—J2, A5—J3。 总代价为

$$[1(A_i) + 1(J_j)] = 2 + 3 + 2 + 2 + 2 - 4 = 7$$

这里附带说, 从 B_2 找出 $5 \cap 0$ 元素, 分别位于 $5 \cap 5$ 列, 即不存在两个零同行或同列, 一般的办法可以看成是对二分图求匹配。

 B_2 矩阵中第 1 行有 1 个 0 元素为 b_{15} , 则从 A_1 连 J_5 以直线。同样, A_2 行有 2 个 0 元素 b_{21} , b_{22} , 则 B_2 与 J_1 , J_2 相联, 等等, 可得二分图(见图 6. 29)。其中存在一匹配, 即 A_1 和唯一 J_1 有连线(见图 6. 30)。 寻找匹配的一般算法可参见图论。

本例 A_1 只有一条边 A_1J_5 , A_3 也仅有 A_3J_4 , 从 A_2 出发不难找一交互道: $A_2J_1A_5J_3A_4J_2$ 。所谓交互道,指一端为 A_1 ,另一端为 J_1 的道路, 故得匹配:

$$A_1 - J_5$$
, $A_2 - J_1$, $A_3 - J_4$, $A_4 - J_2$, $A_5 - J_3$

 A_1 — J_5 表示 A_1 和 J_5 匹配, 余此类推。

图 6.29

图 6.30

6.8.4 匈牙利算法

一般的任务安排问题

min
$$z = \sum_{\substack{i=1 \ j=1 \ n}}^{n} c_{ij} x_{ij}$$
s.t. $x_{ij} = 1, \quad i = 1, 2, ..., n$

$$x_{ij} = 1, \quad j = 1, 2, ..., n$$

$$x_{ij} = 0 或 1 \quad i, j = 1, 2, ..., n$$

下面给出的算法是前面讨论的总结

- S 1. 初始标号: $l(A_i)$ min $\{c_{ij}\}$, $i=1,2,...,n; l(J_j)$ 0,j=1,2,...,n
- S 2. 构造矩阵 $B_1 = (b_{ij})$, b_{ij} c_{ij} $1(A_i)$ $1(J_j)$, i, j = 1, 2, ..., n。 构造二分图 $G_1 = (V, E)$, $V = \{x_1 \ x_2 \ ... \ x_n \ y_1 \ y_2 \ ... \ y_n\}$, $E = \{(x_i, y_j)$ © $b_{ij} = 0$, $i, j = 1, 2, ..., n\}$
- S 3. 若能找到图 G_1 的匹配, 从 E 中选出 n 条边使 $x = (x_1 \ x_2 \ ... \ x_n)$ 和 $y = (y_1 \ y_2 \ ... \ y_n)$ 每点都与一条边有且仅有一条边关联, 则已达到最优解, 停止; 否则转 S4。
- S4. 找一未饱和点 X_0 X, 作 V_1 $\{X_0\}$, V_2
- S 5. 若图 G₁ 有 (V₁)= V₂, 则转 S 6, 否则转 S 7。

S 6.
$$\min\{c_{ij} - 1(x_i) - 1(y_j) \otimes x_i \quad V_1, y_j \quad (V_1) \setminus V_2\}$$

$$1(v) + v \quad V_1$$

$$1(v) \quad 1(v) - v \quad V_2$$

$$1(v) \quad 其他$$

构造矩阵 Bi 及二分树 Gi。

- S7. 找 y $(V_1) \setminus V_2$ 。
- S8. 若 y 饱和则转 S9, 否则转 S10。
- S9. 存在饱和边 $yx, V_1 = \{x\}, V_2 = \{y\}, 转 S5$ 。
- S10. 从 x_0 到 y 有一增广道路 P, 作

M M E(P)

· 176 ·

转 S3。

为了使上述算法更清晰起见,写下流程图如图 6.31 所示。

图 6.31

几点说明:

- (1) 饱和: 二分图的顶点 x; 或 y; 得到匹配, 则称为饱和, 否则称为未饱和。
- (2) (v): 在图 G 中 v 点的邻接点集合。
- (3) 增广道路: 若道路 $x_{i_1}y_{j_1}x_{i_2}y_{j_2}...x_{i_k}y_{j_k}$ 的首尾二顶点 x_{i_1}, y_{j_k} 未饱和, y_{j_1} — x_{i_2}, y_{j_2} — $x_{i_3}, ..., y_{j_{k-1}}$ — x_{i_k} 都是匹配边, 则称该道路为可增广道路。可改变匹配为: x_{i_1} — y_{j_1}, x_{i_2} — $y_{j_2}, ..., x_{i_k}$ — y_{j_k} , 使匹配的边数增加。这里 y—x 表示 y 和 x 相匹配。

则 $E(P) = \{x_{i_1}y_{j_1}, x_{i_2}y_{j_2}, ..., x_{i_k}y_{j_k}\}_{o}$

对于已知利润矩阵的任务安排问题,即已知 P= (pij)≈ n,其中 pij为 Ai 从事 Ji 的利

润,问题导致

类似可用匈牙利算法求解,不同之点:

- (1) 初始标志数 $1(A_i) = \max_j \{p_{ij}\}, i = 1, 2, ..., n, 1(J_j) = 0, i = 1, 2, ..., n, 保证 <math>1(A_i) + 1(J_j) = p_{ij}$
- (2) B= $(b_{ij})_{i \in n}$, 其中 $b_{ij} = p_{ij}$ $l(A_i)$ $l(J_j)$, i,j = 1,2,...,n
- (3) $S6 \oplus \min\{l(A_i) + l(J_j) p_{ij}\},\$

$$l(v) - v V_1$$

$$l(v) = l(v) + v V_2$$

$$l(v) 其他$$

例 6.5 已知利润矩阵

求最佳任务安排。

 $l(A_i)$

取 4 条行列覆盖住矩阵 B 的所有 0 元素, 由科秏格定理可知最多只能取 4 个 0 元素, 使得两两不同行不同列。例如: A_1 - J_2 , A_2 - J_1 , A_3 - J_3 , A_3 - J_4

S 4. A₄ 未匹配, V₁ {A₄}, V₂

S5.
$$I(V_1) = \{J_2, J_3\}$$
 $V_2, I(V_1) \setminus V_2 = \{J_2, J_3\}$

S7. 取 J 3, 匹配边 A 3 J 3 M

S 9. 所以
$$V_1$$
 V_1 $\{A_3\} = \{A_3, A_4\}$
$$V_2 \quad V_2 \quad \{J_3\} = \{J_3\}, \quad {}_{1}(V_1) = \{J_2, J_3\} \quad V_2,$$
 ${}_{1}(V_1) \setminus V_2 = \{J_2\},$ 取 A_1J_2 匹配边,即

· 178 ·

$$\begin{split} &A_1J_2 \quad M, \quad V_1 = \{A_1,A_3,A_4\}, \, V_2 = \{J_2,J_3\} \\ &_1(V_1) = \{J_2,J_3\} = V_2 \\ &(V_1) \setminus V_2 = \{J_1,J_4,J_5\} \\ &= \min_{\substack{A_i \quad V_1 \\ J_i = (V_1) \setminus V_2}} \{l(A_i) + l(J_j) - p_{ij}\} = \min_{\substack{i=1,2,3 \\ j=1,4,5}} \{l(A_i) + l(J_j) - p_{ij}\} = 1 \end{split}$$

重新更改标志数: $l(A_1) = 7$ - l = 6, $l(A_3) = 6$ - l = 5, $l(A_4) = 0$, $l(J_2) = 0$ + l = 1, $l(J_3) = 1$

在新的标志数1下:

或作出二分树 G₁(见图 6.32)。

图 6.32

即 A_1 - J_4 , A_2 - J_1 , A_3 - J_2 , A_4 - J_3 , A_5 - J_5 是最佳安排, 利润为 24。本例 n=5, B_1 矩 阵 0 元素 12 个, 找出匹配不难, n 比较大时要有算法, 即步骤。

6.8.5 匹配算法

这里附上匹配算法,供使用参考,读者不难看出其思路和最佳任务安排有类似之处: 先给初始匹配,然后经过修改,最后达到最大限度地匹配。

算法步骤如下:

- S1. 任给初始匹配 M。
- S2. 若 x 已完全匹配,则结束; 否则转 S3。
- S3. 取 x_0 x, 要求 x_0 为未饱和点, 作 V_1 $\{x_0\}, V_2$ 。
- S4. 若 $(V_1) = V_2$,则无法继续匹配而结束,否则任选 y $(V_1) \setminus V_2$ 。
- S5. 若 y 已匹配,则转 S6,否则,作 求一条从 x_0 到 y 的可增广道路 P, 改变匹配 M = M = E(P),转 S2。
- S 6. 由于 y 已饱和, 故 M 中存在匹配边(y,z), 作 $V_1 = \{z\}$, $V_2 = \{y\}$, 转 S 4。 以前面的问题为例, 如图 6. 33 所示, 进行 S 1 和 S 2。

图 6.33

S 3. X_4 未匹配,作 V_1 { X_4 }, V_2 。

S4. $(V_1) = \{y_2, y_3\}$ V_2 , $(V_1) \setminus V_2 = \{y_2, y_3\}$ 。任选 y_2 已匹配,转 S6。

S 6. 存在匹配边 $(y_2, x_3), V_1 = \{x_4, x_3\}, V_2 = \{y_2\}$ 。

S4. $(V_1) = \{y_2, y_3\}, (V_1)$ V_2 ,从 $(V_1) \setminus V_2$ 中选 y_3, y_3 已匹配。

 $S6. (x_1, y_2)$ 为已匹配边,作 $V_1 \{x_1, x_4, x_3\}, V_2 \{y_2, y_3\}$ 。

S 6. (x_2, y_4) 是匹配边, 故 $V_1 \{x_1, x_2, x_3, x_4\}, V_2 \{y_2, y_3, y_4\}$ 。

S4. $(V_1) = \{y_1, y_2, y_3, y_4\}$ V_2 , $\mathbb{R} y_1$ $(V_1) \setminus V_2, y_1$ 未匹配, 故存在可增广道路:

 $\{x_2y_1, x_2y_4, x_1y_4, x_1y_3, x_4y_3\}$ $\{x_1y_3, x_2y_4, x_3y_2, x_5y_5\}$

 $= \{x_2y_1, x_1y_4, x_3y_2, x_4y_3, x_5y_5\}$

即得匹配:

 x_1 — y_4 , x_2 — y_1 , x_3 — y_2 , x_4 — y_3 , x_5 — y_5

6.9 任务安排的分支定界法

关于任务安排问题,还有一种有效的算法:分支定界法。举例说明如下:设已知利润矩阵

设确定 A_1 从事 J_1 工作, 排除 A_1 从事其他工作的可能, 也排除其他人从事 J_1 工作。 从矩阵 P 划去 A_1 行和 J_1 列, 得

$$P_{1} = \begin{bmatrix} A_{2} & 10 & 10^{*} & 8 & 5^{*} \\ A_{3} & 9 & 7 & 7 & 4 \\ A_{4} & 12^{*} & 10 & 11^{*} & 5 \\ A_{5} & 11 & 8 & 8 & 4 \\ J_{2} & J_{3} & J_{4} & J_{5} \end{bmatrix}$$

矩阵 P1 中有*的元素分别是该元素所在列的最大元素。我们用

4 2 4 2

4 4

表示 A_1 确定从事 J_1 的前提下, A_4 从事 J_2 , A_2 从事 J_3 , A_4 从事 J_4 , A_2 从事 J_5 可达到最大 利润 44=6+12+10+11+5。 44 是界, 可知 A_1 从事 J_1 的前提下最高利润不超过 44, 在 A_1 从事 J_1 的前提下, A_2 从事 J_2 利润最大, 余此类推。类似可划去矩阵的 A_2 行、 J_1 列得

$$P_{2} = \begin{cases} A_{1} & 11 & 10^{*} & 4 & 7^{*} \\ A_{3} & 9 & 7 & 7 & 4 \\ A_{4} & 12^{*} & 10 & 11^{*} & 5 \\ A_{5} & 11 & 8 & 8 & 4 \\ J_{2} & J_{3} & J_{4} & J_{5} \end{cases}$$

$$4 & 1 & 41 \\ 53 & ,$$

得

同样理由得

以 界最高,即 A_2 从事 J_1 工作获得的利润可能最高。故先在 A_2 从事 J_1 工作前提下,继续搜索。

确定 A_2 从事 J_1 的前提下, 若确定 A_1 从事 J_2 , 从 P 中划去 A_1 , A_2 两行, J_1 , J_2 两列后得

同理有

价值:

A2-J1, A3-J3, A4-J4, A5-J2, 利润为 49, 是目前找到的最佳方案。

又找到新的分配方案 50

 A_1 — J_5 , A_2 — J_3 , A_3 — J_4 , A_4 — J_1 , A_5 — J_2 , 利润为 50, 其他各树枝上的状态都低于或等于 50, 故无搜索价值, 最优解已得到。

图 6.35

6.10 一般的任务安排问题

前面讨论的是n个工作人员、n项任务,每人完成一项任务,每项任务由1人完成。如 若有n项任务,m个人,n>m,每个人可以完成几项工作,但每个人工作的时间有限制。

设已知 A₁, A₂, A₃, A₄4 位工作人员, 9 项任务: J₁, J₂, ..., J₉,

$$C = \begin{pmatrix} A_1 & 4 & 8 & 3 & 10 & 10 & 8 & 7 & 5 & 10 \\ A_2 & 3 & 10 & 5 & 6 & 3 & 10 & 2 & 9 & 8 \\ A_3 & 12 & 12 & 2 & 2 & 7 & 9 & 10 & 4 & 15 \\ A_4 & 7 & 6 & 5 & 4 & 9 & 9 & 12 & 14 & 7 \\ & & J_1 & J_2 & J_3 & J_4 & J_5 & J_6 & J_7 & J_8 & J_9 \end{pmatrix} = (c_{ij})_{4x}$$

 $c_{ij} = A_i$ 从事 J_j 工作所需时间, i=1,2,3,4; j=1,2,...,9。且已知 $b=(15-12-20-14)^T$,其中 15,12,20,14 分别表示 A_1,A_2,A_3,A_4 四个人的有效时间。最佳安排导致:

当然, 我们假定 $\min_{j} \{c_{ij}\}$ b_{i} , 如若不然, A_{i} 什么任务也干不了, 只好退出了。 先建立一个表(见表 6.7)。

表 6.7

	\mathbf{J}_1	$_{ m J}$ 2	J 3	J 4	J 5	J 6	J 7	J 8	J 9	
\mathbf{A}_{1}	4	8	3	10	10	8	7	5	10	15
\mathbf{A}_2	3	10	5	6	3	10	2	9	8	12
A 3	12	12	2	2	7	9	10	4	15	20
A_4	7	6	5	5	9	9	12	14	7	14
	1	2	1	3	4	1	5	1	1	

最后一行是该列最小元素与次小元素的差。例如第 7 列最小元素为 2, 次小为 7, 两者之差为 5。 5 是最后一行中的最大数, 便得任务 J_7 给了 A_2 , A_2 余下的有效时间为 12- 2=10 (见表 6. 8)。

表 6.8

	\mathbf{J}_{1}						J 7				
A 1	4	8	3	10	10	8	7 10	5	10	15	
A_2	3	10	5	6	3	10		9	8	12	10
A 3	12	12	2	2	7	9	10	4	15	20	
A_4	7	6	5	5	9	9	12	14	7	14	
	1	2	1	3	4*	1		1	1		

现在, 最后一行最大数为 4, 故得 J 5 任务再分派给 A2, 结果见表 6.9。

表 6.9

	J 1	\mathbf{J}_2	J 3	J 4	J 5	J 6	J 7	J 8	J 9			
A 1	4		3	10	10	8	7	5	10	15		
A 2	3	10	5	6		10		9	8	12	X	7
A 3	12	12	2		7	9	10	4	15	20		
A_4	7	6	5	5	9	9	12	14	7	14		
	1	2	1	3*		1		1	1			

剩下的最后一行元素中最大的为 3, 故 J_4 分派给 A_3 , A_3 的有效时间从 20 降为 18(见表 6. 10)。

Œ	-	1	\sim
নহ	6.	- 1	.,

A 1	4	8	3	10	10	8	7	5	10	15		
A_2	3	10	5	6		10		9	8	12	18	7
A_3	12	12	2		7	9	10	4	15	20	18	
A 4	7	6	5	5	9	9	12	14	7	14		
	1	2*	1			1		1	1			

依上述方法继续得表 6.11。

表 6.11

_	\mathbf{J}_{1}	J ₂	J 3	J 4	J 5	J 6	J 7	J 8	J 9			
A 1	4	8	3	10	10	8	7	5	10	15		
A_2	3	10	5	6		10		9	8			7
A_3	12	12	2		7	9	10	4	15	20	18	
A_4	7	6	5	5	9	9	12	14	7	1/4	8	
	1*		1			1		1	1			

算法的思想十分直观,即依优势最大的先分配工作。用什么作为评判优势的标准呢?即同一项目中时间最小的与其次小的差作为考虑的依据。这样得到的结果可能只是近似解。

继续解上面的例得表 6.12。

表 6.12

	\mathbf{J}_1	J 2	J 3	J 4	J 5	J 6	J 7	J 8	J 9				
A 1	4	8	3	10	10	8	7	5	10	15			
A_2		10	5	6		10		9	8	12	20	A	4
A 3	12	12			7	9	10	4	15	20	18		
A 4	7		5	5	9	9	12	14	7	1/4	8		
			1*			1		1	1				

请注意这时 A2 的有效时间已不足完成余下的任务, A2 退出(见表 6.13)。

表 6.13

	\mathbf{J}_{1}	\mathbf{J}_2	J 3	J 4	J 5	J 6	J 7	J 8	J 9				
A 1	4	8	3	10	10		7	5	10	15			
A_2		10	5	6		10		9	8	12	M	X	4
A 3	12	12	2		7	9	10	4	15	26	18	16	
A 4	7		5	5	9	9	12	14	7	8			
						1		1	3*				

最后一行最后元素改为3,由于 A_2 退出,最小元素与次小数之差为10-7=3(见表6.14)。

表 6.14

	\mathbf{J}_{1}	\mathbf{J}_2	J 3	J 4	\mathbf{J}_{5}	J 6	J 7	J 8	J 9				
A 1	4	8	3	10	10	8	7	5	10	15			
A 2		10	5	б		10		9	8	12	20	X	4
A 3	12	12			7	9	10	4	15	20	18		
A 4	7		5	5	9	9	12	14		1/4	18	1	
						1		1					

依同样方法可将问题解至最后(见表 6.15 和表 6.16)。

表 6.15

	\mathbf{J}_{1}	\mathbf{J}_{2}	\mathbf{J}_3	\mathbf{J}_{4}	${f J}_5$	\mathbf{J}_{6}	\mathbf{J}_{7}	J_8	\mathbf{J}_{9}				
Αı	4	8	3	3	10	8	7	5	10	15			
A_2		10	5	5		10		9	8	12	20	X	4
A 3	12	12			7	9	10	4	15	26	18		
A 4	7		5	5	9	9	12	14		1/4	18	1	
						1*		1					

表 6.16

	\mathbf{J}_{1}	$_{ m J}$ $_{ m 2}$	\mathbf{J}_3	$_{ m J}$ $_{ m 4}$	${f J}_5$	$_{ m J}$ $_{ m 6}$	J 7	\mathbf{J}_{8}	J 9				
A 1	4	8	3	3	10		7	5					
A_2		10	5	5		10		9	8	12		X	4
A 3	12	12			7	9	10		15		x8 \$	14	
A_4	7		5	5	9	9	12	14		<i>X</i> 4	18	1	

即 A1 从事 J6; A2 从事 J1, J5, J7; A3 从事 J3, J4, J8; A4 从事 J2, J9。

6.11 运输网络

6.11.1 网络流

在这一节将介绍另一类运输问题。它的提法是这样的: 若已知一有向图 G=(V,E),且

- (a) 有且仅有一顶点 Z, 它的入度为零, 即 $d^{-}(Z) = 0$, 这个顶点 Z 称为源。
- (b) 有且仅有一点 Z, 它的出度为零, 即 $d^+(Z) = 0$, 这个顶点 Z 称为沟。
- (c) 每一条边都有一非负数, 称为该边的容量。边 (v_i,v_i) 的容量用 c_i 表示。

显然源点 Z 可以看作是某一产品的产地, 沟点 Z 可以看作是产品的销地。每条边是运输通道, 容量是该通道的运输量。

这样定义的网络称为运输网络。

例如, 有如图 6. 36 所示运输网络, 要求对这样的运输网络找出一种运输方案, 使得从 Z 运往 Z 的量达到最大。

边 (v_i, v_j) 上的运输量设为 f_{ij} , 以图 6.36 为例, 问题 图 6.36 导致下列的线性规划问题

其中 f za+ f ba = f az+ f ab, 即进入 a 点的运输量等于从 a 点输出的量, 即运输量守恒。 其余同此。

针对具体的这样一类特殊的运输问题,下面介绍一种较方便的网络流方法。

对于网络流图 G=(V,E), 每一条边(i,j) 都给定一非负的数 f_i 。这一组数是下列两条件时称为是该运输网络的容许流, 用 f 表示它。

- (a) 每一条边(i,j)有 f j c j 。
- (b) 除 Z 点和 Z 点外, 其他所有的点 i 恒有

$$f_{ij} = f_k$$

这个等式也就是 i 点的流量守恒, 输入量等于输出量。

(c) 对于源 Z 和沟 Z 有

w 被称为这个网络流的流量。

6.11.2 割切

已知网络流图 G=(V,E), S 是 V 的一个子集, 并满足下面两个条件:

- (a) Z S
- (b) Z | S
- · 186 ·

令 $S = V \setminus S$, 这样将 V 分成 S 和 S 两部分, 其中 Z = S, Z = S。对于一端点在 S, 另一端点在 S 的所有边构成的集合叫做一割切, 用(S, S) 表示它。把始点在 S, 终点在 S 的边的容量总和称为这割切的容量, 用 C(S,S) 表示它。即

$$C(S,S) = c$$

$$\int_{\substack{i \in S \\ j \in S}} c$$

以图 6.36 为例, 若 S= {Z, b, c, d}, S= {a, Z}, 则

$$C(S,S) = c_{Za} + c_{ba} + c_{b\overline{Z}} + c_{d\overline{Z}} = 4 + 3 + 2 + 4$$

= 13

不同的割切有不同的割切容量。

定理 6.3 对于已知的网络流, 从源 Z 到沟 Z 的流量 w, 恒有

$$\min C(S, S) \quad \max w$$

其中S和S是任意割切。即割切容量的最小值大于流量的最大值。

这个定理说明流量不可能超过割切容量的最小值。给流量一个上界。

证明 对 i 点既不是 Z 点也不是 Z 点时, 恒满足流量守恒律, 即

$$\int_{i} \int_{v}^{v} f_{ij} - \int_{v}^{v} f_{ji} = 0$$
(6. 1)

旧

$$\int_{j} V f z_{j} = W$$
 (6.2)

i S 对(6.1)和(6.2)求和得

$$\begin{tabular}{lll} & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$$

由于

$$V = S S$$

所以

$$[f_{ij} - f_{ji}] = [f_{ij} - f_{ji}]$$

$$+ [f_{ij} - f_{ji}] = w$$

$$[f_{ij} - f_{ji}] = [f_{ij} - f_{ji}] = w$$

$$[f_{ij} - f_{ji}] = [f_{ij} - f_{ji}] = 0$$

$$= [f_{ij} - f_{ji}] = w$$

$$[f_{ij} - f_{ji}] = w$$

$$[f_{ij} - f_{ji}] = w$$

$$[f_{ij} - f_{ji}] = w$$

旧

但

$$w = \prod_{i = S, j = S} [\ f_{ij} \ - \ f_{ji}] \qquad f_{i = S, j} = C(S, S)$$

流 f 以及割切(S,S)都是任意的,即流量 w 不能超过任意割切容量,

$$w = min C(S, S),$$
 $max w = min C(S, S)$

6. 11.3 福德-福克逊(Ford-Fulkerson)定理

定理 6.3 证明任一流 f, 恒有流量 w 不超过任一割切容量。

福德-福克逊定理回答只有流 f 的流量 w 等于某一割切容量 C(S,S) 时, 才是最大流。定理的证明是构造性的, 证明用的办法可以引出求最大流的算法。

定理 6.4 在一给定的网络流图上,流的极大值等于割切容量的最小值,即

$$\max_{f} w = \min_{S} C(S, S)$$

由于已证

$$\max w \min C(S, S)$$

所以只需证明对于某一割切(S,S),仅仅是 $\max w < \min C(S,S)$ 是不够的。证明过程实际上提供一种进一步提高流量的算法,直至使 $\max w = \min C(S,S)$ 成立。为此定义网络流图 G 中,从 Z 到 Z 的道路为网络流道路,即设

$$Z(= v_0)$$
 v_1 ... $v_n(= Z)$

为网络流图 G 上点的序列。对于 i=0,1,2,...,n-1 恒有 (v_i,v_{i+1}) 或 (v_{i+1},v_i) 边是 G 的一条边时,则称 $Z(=v_0)v_1...v_n(=Z)$ 是一条从 Z 点到 Z 点的道路。

由于图 G 是有向图, 道路上的边的方向与道路方向一致与否分为两类, 如图 6.37 所示。若 (v_i, v_{i+1}) 是 G 的边, 则称它为向前边, 即边的方向与道路方向一致; 反之, 若 (v_{i+1}, v_i) 是 G 的边, 则称之为后退边, 后退边的方向与 Z Z 的道路方向相反, 也叫反向边。

图 6.37

对于向前边(i,j),若 $f_{ij}=c_{ij}$,或后退边(i,j)的流量 $f_{ij}=0$,称之为饱和边。

对于从 Z 点到 Z 点的道路上所有的向前边(i,j)恒有 $f_{ij} < c_{ij}$;对于所有后退边(i,j)恒有 $f_{ji} > 0$,则称这条道路为可增广道路。令

所谓可增广道路也就是它的向前边均未饱和,向前边流量可增加,后退边流量可减少,后退边流量实为倒流量。即在这条道路上每条向前的边的流都可以提高一增量 ,而相应地后退的边的流减少 ,从而使得这个网络流的流量获得增加。同时保证使得每条边的流量不超过它的容量,而且保持为正的,也不影响其他边的流量。总之,可增广道路的存在,便可以使得流量得到相应的增加。

现在我们证明定理: $\max w = \min C(S, S)$ 。

设网络流图 G 的网络流 f 使得流量达到极大。我们定义一割切(S,S)如下:

(a) Z S,

· 188 ·

(b) 若 x S,且 f xy< cxy,则 y S;

若 x S且 $f_{yx} > 0$,则 y S。

显然, 收点 $Z = V \setminus S$; 否则按子集 S 的定义存在一条从 Z 到 Z 的道路:

$$Z = v_1, v_2, ..., v_k = Z_o$$

在这条道路上所有的向前边都满足 $f_{i,i+1} < c_{i,i+1}$,所有的向后边都满足 $f_{i+1,i} > 0$ 。因而这条道路是可增广道路,这和 f_{i} 是最大流的假设矛盾。因而 i_{i} i_{i

按照 S 的定义, 若 x S, y S,则 f xy = cxy。若 y S, x S,则 f yx = 0。 所以

$$w = c_{x} c_{xy} = C(S, S)$$

即

$$\max_{f} w = \min_{S} C(S, S)$$

定理的证明提供了一种利用逐渐增大流量 w 的办法,循环反复可达到最大流的目的。

6.11.4 标号法

这一节将介绍一种寻找可增广道路的办法。只要存在这样的可增广道路,便可以提高流量,直至达到最大。

标号法可分为两个过程,一是标号过程,通过标号找到一条可增广道路,接着沿已找的可增广道路增加流量。

- A. 标号讨程
- (1) 给发点 Z 以标记(+ Z,)。
- (2) 选择一个已给标记的顶点 x, 对于 x 的所有未给标记的邻接点 y, 按下列规则处理:
 - (a) 若边(y,x) E,y 未给标记,而且fyx> 0时, 令 y= min[fyx, x],则y给以标记(-x,y)。
 - (b) 若(x,y) E,y 未给标记,而且 cxy> f xy时, 令 y= min[cxy- f xy, x],则 y 给以标记(+ x, y)。
- (3) 重复(2) 直到收点 Z 被标记, 或不再有顶点可以标记为止。如若 Z 点给了标记, 说明存在一条可增广道路, 故转向增广过程 B。如若 Z 点不能获得标记, 而且不存在其他可标记的顶点时, 算法结束, 所得到的流便是最大流。
 - B. 增广过程
 - (1) \diamondsuit $u = Z_{\circ}$
 - (2) 若 u 的标记为(+ v,),则

$$f_{vn}$$
 $f_{vn} + z$:

若 u 的标记为(- v,),则

(3) 若 v=Z, 则把全部标记去掉, 并转向标记过程 A。如若不然, 令 u=v 并回到增广过程的(2)。

下面我们通过例子(见图 6.38(a))说明标号法如下。图 6.38(b)中各边都标以一对有序数,第一个数是该边容量,第二个数是该边的流量。

从上面的标记过程可知, 当一顶点 v 被标记时, 说明从发点 Z 到 v 点的流可以增加 v。如若 Z 被标记表明从 Z 到 Z 存在一条可增广道路, 这条道路上的流的增量由 z 确定。

当边的容量都是正整数时,对每一次增广过程,至少使网络流的流量增加一个单位。由于极大流也是正整数,故可在有限步骤内使网络流达到极大。类似的理由可说明:当各边的流量为有理数时,可在有限步骤内使网络流达到最大。

6. 11.5 埃德蒙斯-卡普(Edmonds-Karp)修正算法

福德-福克逊算法理论上存在着严重的弱点,以下面图 6. 39 为例,各边上的权是它们的容量,若交替地采用 ZabZ 和 ZbaZ 作为增广道路,当初始流量 f。为零时,无疑需作 2m 次的增加流量才能使之达到最大,可见福德-福克逊算法的时间复杂度不仅依赖于网络的规模(即依赖于网络点数和边数),还和各边的容量有关。以图 6. 39 为例,当 ZabZ 和 ZbaZ 交替作为增广道路时,出现 ab 边交替地用作向前边和后退边。福德-福克逊算法的复图 6. 39 杂性分析变得很困难了。

埃德蒙斯(Edmonds)和卡普(Karp)对福德-福克逊法作了修正,可概括为一句话: "先给标记的先扫描。"它的意思是对已给标记的顶点 v 进行扫描时,先对所有和 v 邻接的未给标记的顶点给予标记。具体地说,在图 6.39 的例子中,顶点 Z 先标记,所以应该先扫描。因此避免了福德-福克逊算法那样交替地出现 ZabZ, ZbaZ 的情况;也就避免了ab 边交替地以向前边和后退边来回摇摆的局面。按照埃德蒙斯-卡普算法,Z 首先标记,对Z 扫描时若依次对 a 和 b 标记;根据先给标记先扫描的原则应对 a 扫描,所以埃德蒙斯-卡普的修正实质是对顶点给标记过程采用了"宽度优先"策略。使得流量增加总是沿着一条长度最短的道路从Z 流向Z。

假定 f_0 是网络的初始流, 通过埃德蒙斯-卡普标记法依次得流序列: f_0 , f_1 , ..., f_{k-1} , f_k ...。

设fk+1的一条增广道路是

其中 $c(e_i)$ 为 e_i 边的容量, $f_k(e_i)$ 为 e_i 边的流量, $m_{in}\{\frac{p}{i}\}=\frac{p}{i}$ 说明 e_i 边是" 瓶颈"。通过标记法使得流 $f(e_i)$ 产生如下的变化, 若 e_i 边是向前边, 则令 $c(e_i)=f_{k+1}(e_i)$, 即使 e_i 边达到饱和; 若 e_i 边是后退边, 则令 $f_{k+1}(e_i)=0$, 即使之倒流量降为零。

令 $1_i(u, v)$ 表示流 f_i 中由 u 到 v 最短未饱和路径的长度。既然是未饱和路径,路径上的向前边 e_i 必然有 $c(e_i) > f_i(e_i)$,后退边 e_i 有 $f_i(e_i) > 0$ 。

假定下面是一条由 Z 到 u 流 f k 最短的未饱和的路径

若 e_i 是这路径上一条向前边,则有

$$c(e_j) > f_k(e_j)$$

对于fk+1自然有

$$c(e_j)$$
 $f_{k+1}(e_j)$

若 e_i 是后退边则有 $0 < f_k(e_i) c(e_i)$, 而且

$$0 f_{k+1}(e_j) c(e_j)$$

也就是说从 Z 到 u, f k 流未饱和边的最短路径上有可能出现 f k+1流的饱和边, 故有

$$l_k(Z, u)$$
 $l_{k+1}(Z, u)$

类似的理由

$$l_k(u, Z) = l_{k+1}(u, Z)$$

下面这个结论是很重要的:

引理 利用埃德蒙斯-卡普修正算法, e=(u,v) 作为增广路径中的向前边从 f_k 流转变为 f_{k+1} 流,又在 f_k 流中作为增广路径中的后退边转变为 f_{h+1} , h>k,则

$$1_h(Z,Z)$$
 $1_k(Z,Z) + 2$

也就是从 Z 到 Z 的最短路径 f h 流比 f k 流至少要长出 2。由于

$$l_h(Z, u) = l_k(Z, u), l_h(v, Z) = l_k(v, Z)$$

$$1_k(Z,Z) = 1_k(Z,u) + 1_k(v,Z) + 1, 1_k(Z,v) = 1_k(Z,u) + 1$$

$$l_h(Z,Z) = l_h(Z,v) + l_h(u,Z) + 1 \quad l_k(Z,v) + l_k(u,Z) + 1 = l_k(Z,u) + l_k(u,Z) + 2$$

$$l_h(Z,Z) \quad l_k(Z,Z) + 2$$

请注意这里的 $l_h(Z,v), l_h(u,Z)$ 等都是利用埃德蒙斯-卡普算法所得的最短距离。

下面对埃德蒙斯-卡普算法的复杂性进行估计。

假定网络图有 n 个顶点, m 条边。则从 Z 到 Z 的最长路径不超过 n- 1。每条边最多作为增广路径上的后退边反复了 $\frac{1}{2}(n$ - 1) 次, 所以增广路径数不超过

$$\frac{1}{2}$$
(n - 1) m

也就是埃德蒙斯-卡普算法在不超过 $\frac{1}{2}$ (n-1)m 次增广过程达到最大流。

6. 11.6 **狄里(Dinic)**算法

狄里算法的特点是将顶点按其与 Z 点的最短距离分层。埃德蒙斯-卡普算法的实质也是一种分层。如果说福德-福克逊算法是采用了深度优先策略,埃德蒙斯-卡普算法则是用宽度优先取代了深度优先。 狄里算法则是兼取这两种方法,在分层时用的是宽度优先法,而寻求增广路径时则采用深度优先策略。

狄里算法

- (1) 对所有 e E, f(e) 0。
- (2) $L_0 = \{Z\}$, i = 0, $R = V \setminus \{Z\}$,
- · 192 ·

- (3) S $\{v \otimes R, \textbf{且存在一条从 } L, \textbf{某一顶点到 } v \text{ 的未饱和边 } \}$
- (4) 若 S = ,则网络流已达到最大, 停止。 否则若 Z | S 则转(5) ,否则转(6) 。
- (5) i i+ 1, L_i S, R R\{L_i}, **转**(3).
- (6) u Z, T
- (7) 选择未饱和边 e=(u,v), 其中 v 在后面一层, 将 e 进入栈 T, u v, 若 u t 则转 (7), 否则转(8)。
 - (8) 存在一条从 Z 到 Z 的增广路径 P 作

$$c(e) = \begin{cases} c(e) - f(e), 若 e 是向前边 \\ f(e), 若 e 是后退边 \end{cases}$$
 $c(e) = \begin{cases} f(e), \\ e \end{bmatrix}$

(9) 对所有 e P 作

$$f(e) = egin{array}{ll} f(e) + & , 若 e 是向前边 \\ f(e) - & , 若 e 是后退边 \end{array}$$

(10) 转(2)

狄里算法的时间复杂性为 $O(n^2m)$, 现通过例子说明如下。 图 6.40 中各边括弧里第一个数是边容量, 第 2 个数是该边的流 f(e)。 第一次应用狄里算法得图 6.41。

图 6.40

流量为 12+ 9= 21。

根据非饱和边构成的导出网络见图 6.42,对图 6.42进行分层得图 6.43。

图 6.42

再利用分层法得图 6.44。继续下去得 S= 。故得最大流见图 6.45。最后,我们简单地谈一谈最大流最小割切定理的推广。

多产地多销地问题:

某一种物资若有1个发点 $Z_1, Z_2, ..., Z_l, m$ 个收点 $Z_1, Z_2, ..., Z_m$ 。如图 6. 46 所示, 对于

这种网络, 我们放入两个顶点 Z 和 Z, Z 作为新的发点, Z 作为新的收点, 连接新的弧(Z, Z₁), (Z, Z₂), ..., (Z, Z₁) 和(Z₁, Z₂), ..., (Z, Z₂), ..., (Z, Z₂), ..., (Z, Z₂), ..., (Z, Z₃) 指定它们的容量均为+ ,这样就把原来的网络化为一个发点和一个收点的网络。在求得最大流后, 通过 Z₁ 的物资均看作是由 Z₁ 发点, 经由 Z₁ 的物资均由 Z₂ 收留。

图 6.44

图 6.45

图 6.46

习 题 六

1. 试求下列运输问题的解。

(a) min
$$z = 9x_{11} + 8x_{12} + 12x_{13} + 13x_{14} + 10x_{21} + 10x_{22} + 12x_{23} + 14x_{24} + 8x_{31} + 9x_{32} + 11x_{33} + 12x_{34} + 10x_{41} + 10x_{42} + 11x_{43} + 12x_{44}$$

s.t.
$$x_{1j} = 18, \quad x_{3j} = 6$$

$$x_{2j} = 24, \quad x_{4j} = 12$$

$$x_{2j} = 6, \quad x_{4j} = 12$$

$$x_{1i} = 6, \quad x_{1i} = 14$$

$$x_{1i} = 6, \quad x_{1i} = 14$$

$$x_{1i} = 35, \quad x_{1i} = 5$$

$$x_{1i} = 0, \quad i, j = 1, 2, 3, 4$$

(b) min
$$z = 5x_{11} + 6x_{12} + 2x_{13} + 4x_{14} + 3x_{21} + 6x_{22} + 8x_{23} + 2x_{24} + 4x_{31} + x_{32} + 9x_{33} + 10x_{34}$$

s.t.
$$x_{1j} = 35, \quad x_{2j} = 42, \quad x_{3j} = 23$$

$$x_{i1} = 20, \quad x_{i2} = 10, \quad x_{i3} = 40, \quad x_{i4} = 30$$

$$x_{ij} = 0, \quad i = 1, 2, 3; \quad j = 1, 2, 3, 4$$

(c) min
$$z = 6x_{11} + 2x_{12} - x_{13} + 4x_{21} + 7x_{22} + 2x_{23} + 5x_{24} + 3x_{31} + x_{32} + 2x_{33} + x_{34}$$

s.t.
$$x_{1j} = 5, \quad x_{2j} = 25, \quad x_{3j} = 25$$

$$x_{1i} = 10, \quad x_{1i} = 10,$$

$$x_{ij}$$
 0, $i = 1, 2, 3, j = 1, 2, 3, 4$

2. 已知代价矩阵 C,解下面任务安排问题。

3. 讨论下面问题的解法

4. 已知代价矩阵

求最佳任务安排方案。

- 5. 用匈牙利法求题 4 的解。
- 6. 用分枝定界法求题 4 的解。
- 7. 若题 4 的矩阵是利润矩阵,用分枝定界法及匈牙利法求最佳任务安排方案。
- 8. 已知有 J₁, J₂, ..., J₁₀十项任务, m₁, m₂, m₃, m₄ 四台机器, m₁, m₂, m₃, m₄ 加工 J₁, J₂, ..., J₁₀所需时间为

 m_1, m_2, m_3, m_4 的有效时间为 22, 18, 26, 30, 试问应如何有效地安排任务?

9. 已知 $J_1, J_2, ..., J_7$ 七项任务, A_1, A_2, A_3, A_4 四位工作人员, 它们完成任务所需时间为

$$T = \begin{pmatrix} A_1 & 10 & 8 & 20 & 12 & 17 & 5 & 9 \\ A_2 & 12 & 10 & 10 & 14 & 15 & 10 & 8 \\ A_3 & 8 & 7 & 22 & 20 & 14 & 15 & 12 \\ A_4 & 7 & 7 & 30 & 32 & 15 & 16 & 17 \end{pmatrix}$$

 A_1, A_2, A_3, A_4 的有效时间分别为 20, 18, 20, 22, 求最佳任务安排。

第7章 哈奇扬()算法与卡玛卡(Karmarkar)算法

7.1 克里(Klee)与明特(Minty)举例

线性规划的单纯形法自从 40 年代提出以来表现一直良好, 应用范围不断扩大, 但它的时间复杂性分析始终未触及。后来, 克里和明特举出一个例子揭示了单纯形法的时间复杂性有可能是指数型。于是线性规划问题究竟是否属于多项式类问题, 也就是说是否存在计算复杂性是规模 n 的多项式问题成了计算机科学家和数学家十分感兴趣的问题。

1979年前苏联数学家哈奇扬利用索尔(H-)的求解非线性规划椭球算法来求线性规划问题的解,并证明了它的时间复杂性是规模 n 的多项式,第一次解决了线性规划是否属于多项式类的问题,遗憾的是线性规划的椭球算法的实际表现极不理想,所以它的贡献只是在理论上。几年后,印度人卡玛卡于 1984 年又提出另一种多项式算法,作者申言,它的算法对于超大型问题超过单纯形法,但在一般情况下仍然远不如单纯形法。不管怎样,单纯形法的一统天下开始受到挑战。

下面先介绍克里和明特的例子,而且仅讨论二维和三维情况,关于高维问题,同理可推,不详细讨论。

n= 2 时

引进松弛变量 1, 2, 1, 2 得

max
$$z = x_2$$

s. t. $x_1 - x_1 = x_1 + x_2 - x_1 - x_2 = 0$
 $x_2 - x_1 + x_2 = 1$
 $x_1, x_2, x_1, x_2, x_1, x_2 = 0$

其可行解域如图 7.1 所示。

图 7.1 中 v_1 , v_2 , v_3 , v_4 是可行解域的 4 个顶点, 沿着路径 v_1 v_2 v_3 v_4 目标函数 x_2 是单调增加的。

对于三维问题(n=3 H),其可行解域如图 7.2 所示。

图 7.1

可行解域的 8 个顶点:

$$v_1(\ ,\ ^2,\ ^3),\ v_2(1,\ ,\ ^2),\ v_3(1,1-\ ,\ -\ ^2),\ v_4(\ ,1-\ ^2,\ -\ ^2)$$
 $v_5(\ ,1-\ ^2,1-\ +\ ^3),\ v_6(1,1-\ ,1-\ +\ ^2),\ v_7(1,\ ,1-\ ^2),\ v_8(\ ,\ ^2,1-\ ^3)$

注意序列 $v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8$ 中前后两点相邻, 而且目标函数 x_3 依序单调增。从 n=2 推广到 n=3 的过程可以推广到更一般 n 维空间问题。

引进松弛变量 ;,;得

$$x_i$$
, i , i 0, $i = 1, 2, ..., n$

该问题的可行解域有 2^n 个顶点, 可以证明: 存在一个顶点序列 $v_1, v_2, ..., v_{2^n}$ 使得前后两顶点相邻, 而且 $x_n^{(1)} < x_n^{(2)} < ... < x_n^{(2^n)}$, 其中 $x_n^{(1)}$ 是 v_1 点的 x_n 坐标。

7.2 哈奇扬算法

7.2.1 问题的转化

对于线性规划问题

$$max z = Cx$$
s.t. $Ax b$

$$x 0$$
(P)

有对偶问题

$$min w = yb$$

$$s.t. yA C$$

$$y 0$$
(D)

其中 $x = (x_1 \quad x_2 \quad \dots \quad x_n)^T$, $y = (y_1 \quad y_2 \quad \dots \quad y_m)$, $A = (a_{ij})_{m \times n}$, $C = (c_1 \quad c_2 \quad \dots \quad c_n)$, $b = (b_1 \quad b_2 \quad \dots \quad b_m)^T$ 。

若 x 和 y 分别是问题(P) 和(D)的可行解,则有 Cx yb, x 和 y 分别是问题(P)和(D)最优解的充要条件为 Cx=yb。于是问题(P)对应一不等式组:

$$Cx yb yA C Ax b x 0, y 0$$

问题(P)有解的充要条件是(I)有解,可将(I)化为:

问题(I)可简记为 $A \times b$ 。这样的不等式组可以化为严格的不等式组 Ax < b,以后就假定直接讨论某一严格的不等式组 Ax < b。

$$A = (a_{ij})_{m \times n}, b = (b_1 \ b_2 \ ... \ b_m)^T, 并假定 A 和 b 的元素均为整数。令
$$L = \sum_{\substack{i=1 \ j=1}}^{m} log_2(@d_{ij}@+ 1) + \sum_{\substack{i=1 \ j=1}}^{m} log_2(@b_i@+ 1) + log_2(mn) + 1$$$$

数 L 表达了线性规划(P)问题规模的大小。

7.2.2 哈奇扬算法步骤

哈奇扬算法,也就是椭球算法,步骤如下:

· 198 ·

S1. j 0,
$$e_j$$
 0, B_j $n^2 2^{2L} E(n)$ (即给定初始椭球: $E = \{x x x B_j^{T} B_j^{T} x 1, 向量 x 满足 Ax b \}_{\circ}$)

S 2. 若 $Ae_i < b$,则 e_j 已是问题的解,结束;否则若 j > 16n(n+1)L,则无解,否则转 S_3 。

S 3. 若 a iei bi, 则做 始

终。

先举例说明哈奇扬算法。

不等式组:

第一轮迭代:

S1. 取正定矩阵
$$B_0=$$

$$\begin{array}{ccc} 5 & 0 \\ 0 & 4 \end{array}$$

S 2.
$$Ae_0 = 0 / \frac{1}{5}$$

$$\Leftrightarrow i \quad 1 \quad a_1^T = \begin{bmatrix} - & 1 \\ & - & 1 \end{bmatrix}$$

$$B_{0}a_{1}^{T} = \begin{cases} 5 & 0 & -1 \\ 0 & 4 & -1 \end{cases} = \begin{cases} -5 \\ -4 \end{cases}$$

$$a_{1}B_{0}a_{1}^{T} = (-1 - 1) \begin{cases} -5 \\ -4 \end{cases} = 9, \quad a_{1}B_{0}a_{1}^{T} = 3$$

$$e_{1} = e_{0} - \frac{1}{n+1}B_{0}a_{1}^{T} / \quad a_{1}B_{0}a_{1}^{T} = -\frac{1}{9} - \frac{5}{4} = \frac{1}{9} + \frac{5}{4}$$

$$(B_{0}a_{1}^{T})(B_{0}a_{1}^{T})^{T} = \begin{cases} -5 \\ -4 \end{cases} (-5 - 4) = \begin{cases} 25 & 20 \\ 20 & 16 \end{cases}$$

$$B_{1} = \frac{n^{2}}{n^{2}-1}B_{0} - \frac{2}{n+1}\frac{B_{0}a_{1}^{T}(B_{0}a_{1}^{T})^{T}}{a_{1}B_{0}a_{1}^{T}}$$

$$= \frac{4}{3} \quad \frac{5}{0} \quad 0 \quad 4 - \frac{2}{27} \quad \frac{25}{20} \quad \frac{20}{16}$$

$$= \frac{4}{3} \quad \begin{array}{r} 5 \quad 0 \\ 0 \quad 4 \end{array} - \begin{array}{r} \frac{50}{27} \quad \frac{40}{27} \\ \frac{40}{27} \quad \frac{32}{27} \\ \frac{27}{27} \end{array}$$

$$= \frac{4}{3} \quad \begin{array}{r} \frac{85}{27} \quad -\frac{40}{27} \\ -\frac{40}{27} \quad \frac{76}{27} \\ \frac{340}{81} \quad -\frac{160}{81} \\ \frac{160}{81} \quad \frac{304}{81} \end{array}$$

$$= \frac{160}{81} \quad \frac{304}{81} \quad \frac{304}{81}$$

第二轮迭代:

$$Ae_{1} = \begin{pmatrix} - & 1 & - & 1 & \underline{5} \\ & 1 & - & 2 & 9 \\ & 1 & & 3 & \underline{4} \\ & - & 5 & & 3 & 9 \end{pmatrix} = \begin{pmatrix} - & 1 \\ & - & 3/9 \\ & & 17/9 \\ & - & 13/9 \end{pmatrix}$$

不满足条件 Aei < b。

即(1 - 2)
$$\frac{\frac{5}{9}}{\frac{4}{9}} = -\frac{1}{3} > -1$$

故 $i= 2, a_2 = (1 - 2)$
 $B_1 a_2^T = \frac{340/81}{-160/81} \frac{1}{304/81} - \frac{660/81}{2} = \frac{660/81}{-768/81}$
 $a_2 B_1 a_2^T = (1 - 2) \frac{660/81}{-768/81} = 2196/81$
 $B_1 a_2^T (B_1 a_2^T)^T = \frac{660/81}{-768/81} \frac{660}{81} = \frac{-768}{81}$
 $B_1 a_2^T (B_1 a_2^T)^T = \frac{66.392}{-768/81} = \frac{77.257}{-77.257}$
 $B_1 a_2^T (B_1 a_2^T)^T = \frac{66.392}{-77.257} = \frac{77.257}{-77.257}$
 $a_2 B_1 a_2^T$
 $a_2 B_1 a_2^T$
 $a_2 B_1 a_2^T$
 $a_2 B_1 a_2^T$
 $a_3 B_1 - \frac{3}{2196} \frac{660/81}{-768/81} = \frac{0.5555}{0.4444} + 0.6069$
 $a_3 B_1 - \frac{2}{3} \frac{(B_1 a_2^T)(B_1 a_2)^T}{a_2 B_1 a_2^T}$

第三轮迭代:

不满足条件 Ae₂ b

$$i = 4, a_4 = (-5 3)$$

$$B_{2}a_{4}^{T} = \begin{cases} 3.4199 & -1.008 & -5 \\ -0.1008 & 2.0565 & 3 \end{cases} = \begin{cases} -17.4023 \\ 6.6735 \end{cases}$$

$$a_{4}B_{2}a_{4}^{T} = \begin{pmatrix} -5 & 3 \end{pmatrix} \begin{cases} -17.4023 \\ 6.6735 \end{cases}$$

$$= 87.0115 + 20.0205$$

$$= 107.032$$

$$(B_{2}a_{4}^{T})(B_{2}a_{4}^{T})^{T} = \begin{cases} -17.4023 \\ 6.6735 \end{cases} (-17.4023 - 6.6735)$$

$$= \begin{cases} 302.84 - 116.1342 \\ -116.1342 - 44.5366 \end{cases}$$

$$\begin{array}{l} e_3 = & e_2 - \frac{1}{\mathsf{n} + 1} B_2 a_4^\mathsf{T} \Big/ \overline{a_4 B_2 a_4^\mathsf{T}} \\ \\ = & \frac{0.034}{1.13} - \frac{1}{3 \times 10.3456} \frac{17.4023}{6.6735} \\ \\ = & \frac{0.5946989}{0.914969} \end{array}$$

$$B_3 = \begin{array}{ccc} \frac{4}{3} & B_2 - & \frac{2}{3} & \frac{(B_2 a_4^T)(B_2 a_4^T)^T}{a_4 B_2 a_4^T} \end{array}$$

$$= \begin{array}{ccc} 1.0447 & 0.8301 \\ 0.8301 & 2.3721 \end{array}$$

$$i = 4$$

第四轮迭代:

7.2.3 算法的正确性证明的准备

定理 7.1 设 B_i 是正定矩阵, e_i R^n , a 是任意 n 维空间非零行向量, e_{i+1} 和 B_{i+1} 是椭球算法 S3 中定义的向量和矩阵, 则有

- (a) B_{j+1} 是正定矩阵, 即 $E_{j+1} = \{x \otimes (x e_{j+1})^T B_{j+1}^{-1} (x e_{j+1}) 1, x R^n\}$ 也是一椭球。
- (b) 半椭球 $\{x @ (x-e_j)^T B_j^{-1} (x-e_j) = 1, a(x-a_j) = 0, x = R^n \} = E_{j+1}$
- (c) E_i 和 E_{i+1}体积之比为

$$\frac{\text{vol}(E_{j+1})}{\text{vol}(E_{j})} < 2^{-\frac{1}{2(n+1)}}$$

定理 7.1 的证明要用到下面的几个引理。首先设

都是正定的。

若
$$e = \frac{-1}{n+1} \ 0 \ \dots \ 0^{T} \ R^{n}$$
,则
$$E = \{x \ R^{n} \mathbb{C}[x - e]^{T} B^{-1}(x - e) \ 1\}, S_{n} = \{x \mathbb{C}[x - 1]\}$$

是一个椭球。

引理 7.1 半球 $\frac{1}{2}$ SnC $\{x \ R^n \otimes x^T x \ 1, x \in 0\}$ 是 E 的子集。

证明 设 $x = \frac{1}{2}S_n$, 考察

哈奇扬算法的理论证明繁琐冗长,而且该算法实际效果极差,若不是特别需要,这一节以后的内容可以考虑略去证明细节,仅了解它的思路。

$$(x - e)^{T} B^{-1} (x - e) = \frac{(n + 1)^{2}}{n^{2}} x_{1} + \frac{1}{n + 1}^{2} + \frac{n^{2} - 1}{n^{2}} x_{1}^{2}$$

$$= \frac{n^{2} - 1}{n^{2}} x^{T} x + \frac{2n + 2}{n^{2}} x_{1}^{2} + \frac{2n + 2}{n^{2}} x_{1} + \frac{1}{n^{2}}$$

$$1 + \frac{2n + 2}{n^{2}} (x_{1}^{2} + x_{1}) \quad (\boxtimes x - S_{n})$$

$$1 \quad (\boxtimes x - \frac{1}{2} S_{n})$$

$$x \quad E, \quad \frac{1}{2} S_{n} \quad E$$

引理 7.2 $\frac{\text{vol}(E)}{\text{vol}(S_n)} < 2^{-\frac{1}{2(n+1)}}$

证明 设

 $_{1} = \frac{n+1}{n} x_{1} + \frac{1}{n+1}, \quad i = \frac{\overline{n^{2}-1}}{n} x_{1}, \quad i = 2,3,...,n$ 。则椭球 E 变为 Sn: $\frac{2}{1} + \frac{2}{2} + ... + \frac{2}{n}$ 1, 所以

$$dx_{1}dx_{2}...dx_{n} = \frac{n}{n+1} \frac{n}{n^{2}-1} d_{1}d_{2}...d_{n}$$

$$\frac{vol(E)}{vol(S_{n})} = \frac{n}{n+1} \frac{n}{n^{2}-1} = \frac{n}{n+1} \frac{n^{2}}{n^{2}-1}$$

由不等式: 当 x > 0 时 e^{-x} 1- x, e^{x} 1+ x

$$\frac{n^{2}}{n^{2}-1} = 1 + \frac{1}{n^{2}-1} \qquad e^{\frac{1}{n^{2}-1}}$$

$$\frac{n}{n+1} = 1 - \frac{1}{n+1} \qquad e^{\frac{1}{n+1}}$$

$$\frac{\text{vol}(E)}{\text{vol}(S_{n})} \qquad e^{\frac{1}{2(n+1)}} < 2^{-\frac{1}{2(1+n)}}$$

设 B_i 是一对称正定方阵,则存在非奇异阵 L,使 $B_i = L_i L_i^T$ 。

若 e_i R^n , a_i 是 A 的一个行向量, R 是一旋转正交阵, 即 $R^{-1} = R^T$, $RR^T = E^{(n)}$, 且其行列式等于 1, 使得

其中 x 2表示 x 的一种范数, 即 x 2 = x² x²

引进变换

$$T T_i(x) = e_i + L_i Rx$$

则存在逆变换

$$T^{-1} T_{j}^{-1}(y) = R^{T}L_{j}^{-1}(y - e_{j})$$

引理 7.3 令 $S_n = \{x \quad R^n \otimes_{x}^T x \quad 1\}$

$$E_{j} = \{x \ R^{n} \otimes x - e_{j}\}^{T} B_{j}^{-1} (x - e_{j})$$
 1}

则

$$T_{j}(S_{n}) = E_{j}$$

则

$$T_{j}(E) = E_{j+1}$$

其中 $T_i(x) = e_i + L_i Rx$

证明 因为 B_j= L_jL_j^T= L_jRR^TL_j^T

$$\begin{split} B_{j+1} &= \frac{n^2}{n^2 - 1} \ B_j - \frac{2}{n + 1} \frac{B_j a_j^T a_j B_j^T}{a_i B_j a_j^T} \\ &= \frac{n^2}{n^2 - 1} \ B_j - \frac{2}{n + 1} \frac{L_j R(R^T(L_j^T a_j^T)(a_i L_j) R) R^T L_j^T}{a_i L_j R^T R L_j^T a_j^T} \\ &= \frac{n^2}{n^2 - 1} \ B_j - \frac{2}{n + 1} \frac{L_j R \ diag(-L_j^T a_j^T - \frac{2}{2} - 0 - ... - 0) R^T L_j^T}{L_j^T a_j^T - \frac{2}{2}} \\ &= \frac{n^2}{n^2 - 1} \ B_j - \frac{2}{n + 1} L_j R \ diag(1 - 0 - ... - 0) R^T L_j^T} \\ &= \frac{n^2}{n^2 - 1} \ L_j R R^T L_j^T - \frac{2}{n + 1} L_j R \ diag(1 - 0 - 0 - ... - 0) R^T L_j^T} \\ &= \frac{n^2}{n^2 - 1} L_j R \ diag(1 - 0 - ... - 0) R^T L_j^T} \\ &= L_j R \ diag(1 - 0 - ... - 0) R^T L_j^T} \\ &= L_j R \ diag(1 - 0 - ... - 0) R^T L_j^T} \end{split}$$

因此得

其中,
$$e= -\frac{1}{n+1} 0 \dots 0$$

因为若 $y= T_j(x)= e_j + L_j Rx, 则$

$$T_{j}^{-1}(y) = R^{T}L_{j}^{-1}(y - e_{j})$$

 $y - e_{j} = L_{j}Rx$

但

所以

$$x - e_j = L_j R(T_j^{-1}(x))$$

$$\begin{split} T_{j}\left(E\right) &= \left\{T_{j}\left(x\right) \textcircled{0}[x-e]^{T}B^{-1}(x-e) \quad 1\right\} \\ &= \left\{x \textcircled{0}[T_{j}^{-1}(x)-e]^{T}B^{-1}(T_{j}^{-1}(x)-e) \quad 1\right\} \\ &= \left\{x \textcircled{0}[x-e_{j+1}]^{T}(L_{j}^{-1})^{T}RB^{-1}R^{T}L_{j}^{-1}(x-e_{j+1}) \quad 1\right\} \\ &= \left\{x \textcircled{0}[x-e_{j+1}]^{T}B_{j+1}^{-1}(x-e_{j+1}) \quad 1\right\} \\ &= E_{j+1} \end{split}$$

引理 7.5 $T_i = \frac{1}{2}S_n = \frac{1}{2}E_i(a)$

其中 $\frac{1}{2}$ E_j(a)= {x © E_j, a(x-e_j) 0}

$$\frac{1}{2}S_n = \{x \otimes x \quad S_n, x_1 \quad 0\}$$

证明 由于

$$\{x @ x^{^{\mathsf{T}}} x \quad 1, x \quad R^{^{\mathsf{n}}}, x_{^{\mathsf{1}}} \quad 0\} = \{x \quad R^{^{\mathsf{n}}} @ x^{^{\mathsf{T}}} x \quad 1\} \quad \{x \quad R^{^{\mathsf{n}}} @ x_{^{\mathsf{1}}} \quad 0\}$$

即

$$\frac{1}{2}S_n = S_n \quad \{x \quad R^n \otimes_{i} \quad 0\}$$

$$T_{j} = \frac{1}{2} S_{n} = T_{j}(S_{n}) - T_{j}(\{x \in \mathbb{R}^{n} \otimes x_{1} = 0\})$$

由引理 7.3

$$T_j(S_n) = E_j$$

另一方面,由于

$$T_{j}(x) = e_{j} + L_{j}Rx, R^{T}L_{j}^{T}a^{T} = (L_{j}^{T}a^{T} _{2} 0 ... 0)^{T}$$

$$a(T_{j}(x) - e_{j}) = (aL_{j}R)x = L_{j}^{T}a^{T} _{2}x_{1}$$

$$x_{1} 0 a(T_{j}(x) - e_{j}) 0$$

这意味着

所以

$$\begin{split} T_{j}(\{x & R^{n}@x_{1} & 0\}) &= T_{j}(\{x & R^{n}@a(x-e_{j}) & 0\}) \\ T_{j} & \frac{1}{2}S_{n} &= T_{j}(S_{n}) & T_{j}(\{x & R^{n}@a(x-e_{j}) & 0\}) \\ &= E_{j} & T_{j}(\{x & R^{n}@a(x-e_{j}) & 0\}) \\ &= \frac{1}{2}E_{j}(a) \end{split}$$

7. 2. 4 定理的证明

现在我们转而证明定理1

(a) 若 Bi 正定,则 Bi+ 1也正定。

由引理 7.4 可知, 存在变换 T1 使椭球:

$$(x - e_i)^T B_i^{-1} (x - e_i)$$
 1

在 T 1 作用下变为 B_{j+1}, 即变为椭球

$$(x - e_{j+1})^{T} B_{j+1}^{-1} (x - e_{j+1})$$
 1
 $(x - e_{j})^{T} B_{j}^{-1} (x - e_{j})$ 1

但椭球

是由 $\mathbf{x}^{\mathrm{T}}\mathbf{x}$ 1 经 \mathbf{T}_{2} 变换而得的, 即

即

$$\{x \qquad R^{\mathsf{n}} @_{\!\! x}^{\mathsf{T}} x \qquad 1\} \qquad \begin{array}{c} T_{3} = T_{2} T_{1} \\ > \{x \qquad R^{\mathsf{n}} @_{\!\! 1}^{\mathsf{t}} x - e_{\mathsf{j}+1})^{\mathsf{T}} B_{\mathsf{j}+1}^{\mathsf{-}1} (x - e_{\mathsf{j}+1}) \qquad 1\} \\ \end{array}$$

 T_1 和 T_2 都是仿射变换,故 $T_3 = T_2T_1$ 也为仿射变换,即

$$\{x \ R^{n}$$
 @ $\{x - e_{j+1}\}^{T} B_{j+1}^{-1} (x - e_{j+1}) \ 1\} > E_{j+1}$ 是一椭球, 所以 B_{j+1} 也正定。

(b) 证明

$$\frac{1}{2}E_{j}(a) = \{x \quad R^{n} \otimes (x - e_{j})^{T} B_{j}^{-1}(x - e_{j}) \quad 1, a(x - e_{j}) \quad 0\} \quad E_{j+1}$$

由引理 7.5 知,存在变换 T 使

$$\{x \ R^n \otimes x^T x \ 1, x_1 \ 0\}^T > \{x \ R^n \otimes (x - e_j)^T B_j^{-1} (x - e_j) \ 1, a(x - e_j) \ 0\}$$
 而根据引理 7.1 有

$$\frac{1}{2}S_{n} = \{x \quad R^{n} \otimes x^{T} x \quad 1, x_{1} \quad 0\}$$

$$E = \{x \quad R^{n} \otimes (x - e)^{T} B^{-1} (x - e) \quad 1\}$$

而后者在变换 T 作用下, 将它变为 E_{j+1}, 即

$$\frac{1}{2}S_n = x^Tx - 1, x_1 - 0$$
 在 T_1 作用下变为 $\frac{1}{2}E_j(a)$

 $E = (x-e)^{T}B^{-1}(x-e) 1 在 T_2 作用下变为 E_{j+1},$

但

$$\frac{1}{2}$$
S_n E

故

$$\frac{1}{2}$$
E_j(a) E_{j+1}

(c) 证明
$$\frac{\text{vol}(E_{j+1})}{\text{vol}(E_{i})} < 2^{-\frac{1}{2(1+n)}}$$
。

由引理 7.3 和 7.4 知, 存在变换 T 使

$$S_n\{x \ R^n @ x^T x \ 1\}$$
 变换 $T > E\{x \ R^n @ (x-e)^T B^{-1}(x-e) \ 1\}$

 \mathbf{X} 1

其中 $x^T x = x_1^2 + x_2^2 + \dots + x_n^2 = (x_1 \ x_2 \ \dots \ x_n)$ X

 \mathbf{X} n

$$E\{x \ R^{n} \mathbb{C}(x-e)^{T}B^{-1}(x-e) \ 1\}^{T} > E_{j+1}\{x \ R^{n} \mathbb{C}(x-e_{j+1})^{T}B_{j+1}^{-1}(x-e_{j+1}) \ 1\}$$

$$\cdot 206 \cdot$$

其中 $T(x) = e_j + L_j Rx$

旧

$$\begin{split} \frac{\text{vol}(E_{j})}{\text{vol}(S_{n})} &= \text{@let}(L_{j}R) \text{@l} \\ \frac{\text{vol}(E)}{\text{vol}(S_{n})} &< 2^{-\frac{1}{2(1+n)}} < 1 \\ \frac{\text{vol}(E_{j+1})}{\text{vol}(E_{j})} &= \frac{\text{vol}(T_{j}(E))}{\text{vol}(T_{j}(S_{n}))} \\ &= \frac{\text{@let}(L_{j}R) \text{@lol}(E)}{\text{@let}(L_{j}R) \text{@lol}(S_{n})} \\ &= \frac{\text{vol}(E)}{\text{vol}(S_{n})} \\ &< 2^{-\frac{1}{2(n+1)}} < 1 \end{split}$$

这个结果说明: S_0, S_1, S_2, \dots 这个序列的体积递减。

线性规划问题可转化为解一组不等式:

Ax b, x = 0

设这个问题的解集为C。

半椭球 $\frac{1}{2}$ E_i(a)是 E_i 中满足 ax ae_i 的部分, 但 ae_i b, 因此椭球另一部分中所有的 点均满足 ax> b, 即不包含不等式组的解, 因此

 $(E_{j} \quad C) \quad \frac{1}{2}E_{j} \quad E_{j+1}$

故有

$$(E_0 \quad C) \quad E_j, \quad j = 1, 2, ...$$

也就是说,只要 E_0 C ,则 $E_1,E_2,...$ 始终与 C 相交。定理 7.1 证明了 $E_1,E_2,...$,的体积是单调递减序列,且趋于 0。

上面虽然证明了椭球算法的正确性,但还有若干问题需要解决。

引理 7.6 凸多面体 Ax b, x 0 的顶点为

则 而且

证明 证明过程中用到哈达曼德(Hadamand)不等式,即

$$y_{11} \quad y_{12} \quad \dots \quad y_{1n}$$

$$y_{21} \quad y_{22} \quad \dots \quad y_{2n}$$

$$y_{n1} \quad y_{n2} \quad \dots \quad y_{nn}$$

$$y_{i} = (y_{i1}, y_{i2}, \dots, y_{in}), \quad i = 1, 2, \dots, n$$

$$y_{i} \quad z_{i} = y_{ij}^{2} = (y_{i}, y_{i})$$

$$det(y_{i} x_{i} y_{i}^{T}) = [det(y_{i})]^{2}$$

$$y_{i} \quad z_{i} = (y_{i}, y_{i})$$

令

即

或

现在证明引理 7.6。

凸 多面体的顶点 $V(v_1, v_2, ..., v_n)$ 是 n 个约束超平面的交点, $v_i = \det(D_i)/\det(D)$, i = 1, 2, ..., n, 其中 D 和 D_i 所含元素都是 $\{0, 1, a_{ij}, b_i\}$ 中的,

证

另外由于

$$\begin{split} L &= \left\lceil \frac{m}{\log_2(\mathbb{Q}_{i,j} \mathbb{Q}_{i+1})} + \frac{n}{\log_2(\mathbb{Q}_{i,j} \mathbb{Q}_{i+1})} + \frac{\log_2(\mathbb{Q}_{i+1})}{\log_2(\mathbb{Q}_{i+1})} \right\rceil \\ &= \left\lceil \log_2 mn \right\rceil \frac{m}{\sum_{i=1}^{m} (\mathbb{Q}_{i,i} \mathbb{Q}_{i+1})} \frac{n}{\sum_{j=1}^{m} (\mathbb{Q}_{i,j} \mathbb{Q}_{j+1})} \right\rceil \\ &= \left\lceil \log_2 mn \right\rceil \frac{m}{\sum_{i=1}^{m} (\mathbb{Q}_{i,j} \mathbb{Q}_{i+1})} \frac{n}{\sum_{j=1}^{m} (\mathbb{Q}_{i,j} \mathbb{Q}_{j+1})} \right\rceil \\ &= \left\lceil \log_2 mn \right\rceil \frac{m}{\sum_{j=1}^{m} (\mathbb{Q}_{i,j} \mathbb{Q}_{j+1})} \left(\mathbb{Q}_{i,j} \mathbb{Q}_{j+1} \right) - \mathbb{Q}^L \right\rceil \\ &= \left\lceil \log_2 mn \right\rceil \frac{n}{\sum_{j=1}^{m} (\mathbb{Q}_{i,j} \mathbb{Q}_{j+1})} \left(\mathbb{Q}_{i,j} \mathbb{Q}_{j+1} \right) - \mathbb{Q}^L \right\rceil \\ &= \left\lceil \log_2 mn \right\rceil \frac{n}{\sum_{j=1}^{m} (\mathbb{Q}_{i,j} \mathbb{Q}_{j+1})} \left(\mathbb{Q}_{i,j} \mathbb{Q}_{j+1} \right) - \mathbb{Q}^L \right\rceil \\ &= \left\lceil \log_2 mn \right\rceil \frac{n}{\sum_{j=1}^{m} (\mathbb{Q}_{i,j} \mathbb{Q}_{j+1})} \left(\mathbb{Q}_{i,j} \mathbb{Q}_{j+1} \right) - \mathbb{Q}^L \right\rceil \\ &= \left\lceil \log_2 mn \right\rceil \frac{n}{\sum_{j=1}^{m} (\mathbb{Q}_{i,j} \mathbb{Q}_{j+1})} \left(\mathbb{Q}_{i,j} \mathbb{Q}_{j+1} \right) - \mathbb{Q}^L \right\rceil$$

同理可得 $det(D_i) < 2^L/mn_o$

由最初的假定可知 $\det(D)$ 是整数, 不小于 1, 从而 $\max\{v_i\} < 2^L/mn$ 这个引理说明了为何球体的初始半径取 2^L 的原因。

7. 2. 5 严格不等式组

引理 7.7 线性不等式

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n$$
 b_1 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n$ b_2 () $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n$ b_m

有解的充要条件是下面线性不等式有解:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n < b_1 + 0$$

$$a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n < b_2 + 0$$

$$a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n < b_m + 0$$

其中 o= 2^{-L}。

如果引理 7.7 成立的话,则说明问题()和()是等价的,这样也就证明线性规划问题可化为解一组严格的不等式。

证明 若()有解,则这个解显然也满足()。反之,若()有一个解,那么我们由这个解来构造()的一个解。

设
$$x=(x_1 \ x_2 \ ... \ x_n)$$
是()的解,有
$$a_{i1}x_1+a_{i2}x_2+...+a_{in}x_n < b_i+ , \quad i=1,2,...,m$$
 令
$$A_i=(a_{i1},a_{i2},...,a_{in}),$$

$$I>\{i@0 \ A_ix-b_i<\}$$

集合 I 表示对()的解满足 A_ix-b_i 0的 A_i 的下标集合。

不妨假定对一切j:1 j m,存在常数 ji使得

$$A_{j} = \int_{i} \int_{i} A_{i}$$

因为若 A; 与 I 中的诸 A; 不相关, 那么

$$A_{i}y = 0, \quad i \quad I$$

$$A_{j}y = 1, \quad j \mid I$$

有解 y, 我们取 x=x+y, 那么当 充分小时, 比如取

$$= \ \, \min_{i} \ \, - \ \, \frac{A_{i}x \, - \ \, b_{i}}{A_{i}\,y} \, \bigg| \, A_{i}y > \ \, 0 \ \, = \ \, - \ \, \frac{A_{k}x \, - \ \, b_{k}}{A_{k}y}$$

由于 $j \mid I$ 时有 $A_i x$ - $b_i < 0$,故 > 0,而且对于 $j \mid I$,有 - $\frac{Ax_i - b_i}{A_i y}$ 。下面证明x 满足()。

因

故 x 满足(), 且 i I 时, A_ix - b_i = A_ix - b_i > 0, 但对于 j | I, A_jx - b_j = A_jx - b_j + A_jy 0, 且其中至少有一个 k, 使得

$$A_k x - b_k = A_k x - b_k + A_k y = 0$$

这样就使得 I 增加了一个数 k, 这一过程最多重复 m 次后停止, 此时 I 便满足要求。不失一般性, 设 $I = \{1, 2, ..., r\}, x^{\hat{r}}$ 是下列方程的解:

$$A_i x = b_i, \quad i = 1, 2, ..., r$$

可以证明 x^{i} 也是() 的解。设

$$A_{\rm j} = {}_{\rm j\, l}\,A_{\rm l} + {}_{\rm j\, 2}\,A_{\rm 2} + \ldots + {}_{\rm j\, r}\,A_{\rm r}$$

或

$$DA_j = \int_{i-1}^r D_{ji}A_i$$

其中 $j_i = D_{j_i}/D$, D 是矩阵 A 的子行列式, 由于 $A_ix^* = b_i$, i = 1, 2, ..., r, 所以

$$D(A_{j}x^{*} - b_{j}) = \int_{j=1}^{r} D_{j} A_{i}x^{*} - Db_{j} = \int_{i=1}^{r} D_{j} b_{i} - Db_{j}$$

然而

其中x是()的解,所以

$$\begin{split} D(A_{j}x^{*} - b_{j}) &= \prod_{i=1}^{r} D_{j}ib_{i} - Db_{j} \\ &= - \prod_{i=1}^{r} D_{j}iA_{i}x - DA_{j}x \\ &= - \prod_{i=1}^{r} (D_{j}iA_{i}x - D_{j}ib_{i}) + D(A_{j}x - b_{i}) \\ &= - \prod_{i=1}^{r} D_{j}i(A_{i}x - b_{i}) + D(A_{j}x - b_{j}) \\ &< \prod_{i=1}^{r} D_{j}i + D \\ &< 2^{-L} \frac{2^{L}}{mn} + \frac{2^{L}}{n} < 1 \end{split}$$

然而

$$\sum_{j=1}^r D_{j\,i}b_{j\,}-Db_{i\,}$$

是整数, 所以 $A_i x^i - b_i = 1, 2, ..., m$, 也就是说, x^i 是()的解。

7. 2. 6 复杂性分析

引理 7.8 球体 $x^Tx = 2^L$ 内部满足 Ax < b, x > 0 的体积不少于 $2^{-\frac{(n+1)L}{2}}$ 。证明 若 Ax < b 有解, 满足

$$Ax < b, 0 \quad x_i \quad 2^L/n, \quad i = 1, 2, ..., n$$

的 n+ 1 个顶点, 它们的坐标列向量记为

$$\mathbf{V}_0$$
 \mathbf{V}_1 ... \mathbf{V}_n

这 n+ 1 个向量线性无关, 由这 n+ 1 个顶点确定的超多面体体积为

$$v_i = \frac{1}{D_i} u_i$$
, $i = 0, 1, 2, ..., n$

其中 ui 是相应的整数向量, Di 为绝对值至少为 2^L 的行列式, 且

这就证明了以 $\mathbf{v}_0, \mathbf{v}_1, ..., \mathbf{v}_n$ 为顶点的超多面体体积不少于 $2^{\mathbf{v}_0(\mathbf{n}+1)\mathbf{L}}$ 。

引理 7.9 若椭球算法的迭代次数达到 4(n+1)²L 时,问题无解。

证明 由引理 7.8, 若问题(I)在 $x^Tx 2^L$ 内部有解, 则体积至少为 $2^{-\frac{(n+1)L}{n}}$ 。而由定理 7.1 知

于是

$$\begin{split} \frac{vol(E_{j+1})}{vol(E_{j})} &< 2^{-\frac{1}{2(n+1)}} \\ \frac{vol(E_{1})}{vol(E_{0})} &< 2^{-\frac{1}{2(n+1)}} \\ \frac{vol(E_{2})}{vol(E_{0})} &= \frac{vol(E_{2})}{vol(E_{1})} \; i^{\frac{vol(E_{1})}{vol(E_{0})}} &< 2^{-\frac{2}{2(n+1)}} \\ \cdots \\ \frac{vol(E_{j})}{vol(E_{0})} &< 2^{-\frac{j}{2(n+1)}} \end{split}$$

当 $j = 4(n+1)^2$ L 时,

$$\frac{\text{vol}(E_{j})}{\text{vol}(E_{0})} < \ 2^{-\frac{4(n+1)^{2}L}{2(n+1)}} = \ 2^{-\frac{2(n+1)L}{2}}$$

而 $E_0: \mathbf{x}^T \mathbf{x} \quad 2^{2L}$,即 $\mathbf{x}_1^2 + \mathbf{x}_2^2 + \ldots + \mathbf{x}_n^2 \quad 2^{2L}$

$$vol(E_0) \, = \, \frac{\frac{n}{m!} 2^{mL}}{\frac{n}{2} + 1} = \, \frac{\frac{m}{m!} 2^{mL}}{\frac{2(2)^m}{(2m+1)!!} 2^{(2m+1)L}}, \quad n = 2m + 1$$

 $vol(E_0)$ 小于边长为 2×2^L 的正方体体积,即

$$\begin{split} vol(E_{\scriptscriptstyle 0}) < & (2\textbf{x} \quad 2^{^{L}})^{^{n}} = \ 2^{^{(L+\ 1)\,n}} \\ vol(E_{\scriptscriptstyle j}) < & 2^{^{-\frac{j}{2(n+\ 1)}}} \, j z 2^{^{(L+\ 1)\,n}} \end{split}$$

当 $j = 4(n+1)^2 L$ 时,由于 L > n,所以有

$$vol(E_{\text{j}}) < \ 2^{-(n+|1|)L} \ \text{in} \ 2^{(L+|1|n|} < \ 2^{-(n+|1|)L}$$

结果与引理 7.8 相反, 故无解。

定理 7.2 线性规划问题有多项式时间的算法。

椭球算法从理论上解决了线性规划问题存在多项式算法。它的另一功能是为判定 LP 问题是否有解提供一理论。判定 LP 是否存在解,也就是判定提法是否合理的问题,这本身就很麻烦。椭球算法至少在理论上提供了一种办法。

7.3 卡玛卡算法与卡玛卡典型问题

7.3.1 卡玛卡标准型

1984年 AT&T 贝尔实验室的印度数学家卡玛卡提出一种新的算法。它的理论分析时间复杂度优于椭球算法。据作者报道:"在解超大型线性规划问题时优于单纯形法。"一般情况还有待于实践,它和椭球算法一样来源于非线性规划,而且也是迭代法。

单纯形法是, 若线性规划问题有解, 则可从可行解域凸多面体的一个顶点出发, 每走一步便挪动到邻近较优的另一顶点, 直至到达最优点为止。每走一步算是迭代一次。在超大型问题时, 由于顶点数目多, 弄得不好就因迭代次数太多而使算法失效。

卡玛卡算法则是从解域内一点出发,在可行解域内找一最佳方向,沿着该方向逐步逼近最优点。卡玛卡算法思想似乎很有希望,还有潜力,从而对它研究的也比较多。

本书只介绍其基本方法,有兴趣的读者可以以此作为起点继续深入下去。

卡玛卡算法或称卡玛卡投影算法是针对下面一种标准型问题(简称(S)问题)的。

min
$$z = Cx$$

s. t. $Ax = 0$
 $ex = 1$

其中, $A=(a_{ij})_{m \times n}$, 所有 a_{ij} 都是整数, e 是全为 1 的 n 维行向量, 即 $e=(1\ 1\ ...\ 1)_{k \times n}$ 并且满足下面两个假设:

$$(A_1)$$
 $x_0 = \begin{array}{cccc} \frac{1}{n} & \frac{1}{n} & \dots & \frac{1}{n} \end{array}^{\mathrm{T}}$ 是问题的可行解。

 (A_2) 最优解的目标函数值为 0。

这一节将先讨论如何将一般的线性规划问题化为卡玛卡类型,然后才开始介绍它的算法,最后作理论上的探讨。

假定一般的线性规划问题为

$$min z = Cx$$

$$Ax b$$

$$x 0$$

$$(7. 1)$$

 $A=(a_{ij})_{m \in n}, a_{ij}$ 是整数, i=1,2,...,m; j=1,2,...,n, 转化为卡玛卡典型问题(S), 办法介绍下面的两种。

7.3.2 化为标准型的方法之一

已知一般的线性规划问题(7.1),引进松弛变量转化为

$$min z = Cx$$
s.t.
$$Ax = b$$

$$x = 0$$
(7.2)

由于假定可行解域有界,故存在 0,使满足

最坏情况下 $Q=2^L$, 其中 L 已定义于前面, 反映出问题的规模。再引入松弛变量 x_{n+1} , 使问题(7.2)变为型为

min
$$z = Cx$$

s.t. $Ax = b$

$$ex + x_{n+1} = Q$$

$$x = 0$$
(7.3)

其中 $e=(1\ 1\ ...\ 1)$, 再引进变量 x_{n+2} , 将(7.3) 的约束条件改为

容易知道由 $ex + x_{n+1}$ - $Qx_{n+2} = 0$ 和 $ex + x_{n+1} + x_{n+2} = Q + 1$,可以确定 $x_{n+2} = 1$ 。为了使 $ex + x_{n+1} + x_{n+2} = Q + 1$ 规范为满足单纯形结构,作变换

$$x_j = (Q + 1)y_j, \quad j = 1, 2, ..., n + 2$$

于是将(7.3)转化为

为了使问题满足假设(A_1),引入人工变量 y_{n+3} ,考虑到(y_1 y_2 ... y_{n+1} y_{n+2} y_{n+3})

$$=$$
 $\frac{1}{n+3}$ $\frac{1}{n+3}$... $\frac{1}{n+3}$ 是可行解, 故导致下列问题

 $y = \frac{1}{n+3}$, i = 1, 2, ..., n+3 是(7.5) 的可行解。即(7.5)有解。

用大 M 法求(7.5)的最小解。可得 $y_{n+3}=0$,并从而获得一可行解。因此(7.5) 有可行解域,而且 $\frac{1}{n+3}$ $\frac{1}{n+3}$... $\frac{1}{n+3}$ 是可行解域中的点。

为了保证满足假设 (A_2) ,即最优解的目标函数值为零,只有已知最优解结果是目标函数值为零,为此上面的步骤还应作修改。由对偶原理知存在最优解的必要条件是存在 x 和 y 满足

将(7.6)转换成

$$Ax = 0, x = 0$$
 (7.7)

如若(7.7)有解,存在一正整数 Q,使

$$ex Q (7.8)$$

Q 尽可能取得小一些, 最坏情况下, 充其量有

$$Q = 2^{L} \tag{7.9}$$

(7.9)是根据(7.8)及其子行列式展开式估计得来的。故得一组形为

$$Ax = b$$
, $ex = Q$, $x = 0$

的等式。进一步引进新的松弛变量,最后导致解一组形为

$$Ax = b, ex = Q, x = 0$$

的等式。

最后改变变量的单位,得

$$Ax = b, ex = 1, x = 0$$
 (7.10)

由于

bex = b

故

$$Ax = b$$

又可改写为

$$(A-be)x=0$$

或 A- be 作为新的矩阵 A, 得

$$Ax = 0, ex = 1, x = 0$$
 (7.11)

如若

$$Ae^{T} = 0$$

则 $\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n} = \frac{1}{n}e^{T}$ 是(7.11)的解。否则,若

$$A = (a_{ij})_{nx m}$$

令

$$Ae^{T} = (v_1 \quad v_2 \quad \dots \quad v_n)^{T} = v$$

即

$$v_i = a_{ij}, i = 1, 2, ..., n$$
 (7.12)

后面对矩阵 A 作如下的初等变换:

- (a) 对所有不为 0 的 v_i , A 的第 i 行除以 v_i 。
- (b) 若 $v_i = 0$, 由(a)产生的某一行, 与 A 的第 j 行相加的和作为 A 的第 j 行。由上面所得的新矩阵 A 满足

$$Ae^{T} = e^{T}$$

而且不影响

$$Ax = 0$$

再通过引进人工变量 , 使导致

$$\min z =$$

s. t.
$$A x - e^{T} = 0$$

$$e x = 1$$

$$x \quad 0$$

$$A = (A \mid e^{T}), x = (x^{T},)^{T}$$

其中

$$e = (1 \ 1 \ \dots \ 1)_{k \ (n+1)} \tag{7.13}$$

(7.13)满足假设(A₁)和(A₂)。

例 7.1

$$\max z = 2x_1 + x_2$$

s.t.
$$x_1 - x_2 = 2$$

 $x_1 + 2x_2 = 4$
 $x_1, x_2 = 0$ (P)

对偶问题为

min w =
$$2y_1 + 4y_2$$

s. t. $y_1 + y_2 = 2$
 $y_1 + 2y_2 = 1$
 $y_1, y_2 = 0$ (D)

分别引进松弛变量 x_3, x_4 及 $y_3, y_4, m(P)(D)$ 导致解下列方程组

$$x_1 - x_2 + x_3 = 2$$

 $x_1 + 2x_2 + x_4 = 4$
 $y_1 + y_2 - y_3 = 2$
 $y_1 + 2y_2 - y_4 = 1$
 $2x_1 + x_2 = 2y_1 + 4y_2$
 $x_i, y_i = 0, i = 1, 2, 3, 4$

引进约束条件

$$X_1 + X_2 + X_3 + X_4 + y_1 + y_2 + y_3 + y_4$$
 Q

再引进松弛变量 s1, 使

$$X_1 + X_2 + X_3 + X_4 + Y_1 + Y_2 + Y_3 + Y_4 + S_1 = Q$$

由此得

实际上 $S^2=1$ 。于是得

引进新变量

得

最后引进人工变量 Z11,由(7.5)的约束条件,可得

min w =
$$z_{11}$$

s.t. $z_1 - z_2 + z_3 - 2z_{10} + z_{11} = 0$
 $z_1 - 2z_2 + z_4 - 4z_{10} = 0$
 $z_5 + z_6 - z_7 - 2z_{10} + z_{11} = 0$
 $z_5 + 2z_6 - z_8 - z_{10} + z_{11} = 0$
 $2z_1 + z_2 - 2z_5 - 4z_6 + 3z_{11} = 0$
 $z_i - Qz_{10} + (Q - 9)z_{11} = 0$
 $z_i = 1$
 $z_i = 0$, $i = 1, 2, ..., 11$

(7.14) 满足 $(A_1), (A_2)$ 两个假设, 可以利用卡玛卡算法求解。

7.3.3 化为标准型的方法之二

原问题

$$\begin{aligned} & \text{min } z = Cx \\ & s. \, t. & Ax \quad b \\ & x \quad 0 \end{aligned} \tag{P}$$

对偶问题

$$max w = yb$$
s. t. yA c
$$y 0$$
(D)

由对偶问题知,问题(P)有解等价于下列不等式组有解:

$$Ax b$$

$$yA c$$

$$cx - yb = 0$$

$$x 0, y 0$$
(I)

引进松弛变量将(I)转化为

$$Ax - u = b$$

 $yA + v = c$
 $cx - yb = 0$
 $x = 0, y = 0, u = 0, v = 0$
(1)

再引进人工变量 得

min

s. t.
$$Ax - u + (b - Ax^{(0)} + u^{(0)}) = b$$

 $yA + v + (c - y^{(0)}A - v^{(0)}) = c$
 $cx - yb + (-cx^{(0)} + y^{(0)}b) = 0$
 $x = 0, y = 0, u = 0, v = 0$

其中 $x^{(0)}$ 0, $y^{(0)}$ 0, $u^{(0)}$ 0, $v^{(0)}$ 0是任取的。

显然, $x = x^{(0)}$, $y = y^{(0)}$, $u = u^{(0)}$, $v = v^{(0)}$, v = 1 是问题(J)的可行解,说明问题(J)有解。不难证明(J)不可能有无界解,即存在有最优解。问题(J)的解的目标函数只能或为正,或等于零,分别讨论如下。

若(J) 的最优解使目标函数等于零, 这等价于(I) 有解, (I) 有解等价于(D) 有最优解。若(J) 的最优解使目标函数 > 0, 则原问题(P) 无最优解。如不然, 设(I) 的解为 x^{i} , y^{i} , u^{i} , v^{i} , 则 x^{i} , v^{i} , u^{i} , v^{i} , 则 u^{i} , v^{i} , u^{i} , v^{i} , 一0 是(J)的一组解, 且目标函数值为 0, 与假定最优解 > 0相矛盾。

总之, 若问题(J)有解且目标函数等于 (I)0, 则问题(I)0, 有解; 若问题(I)0 的最优解使目标函数值大于 (I)0, 则(I)0, 无解。

于是问题(P)转化为问题(J)。

将问题(J)也表为

$$\begin{aligned} & \text{min } z = & C & x \\ & \text{s. t.} & & A & x = & b \\ & & & x & 0 \end{aligned}$$

且目标函数为0。

7. 3. 4 To 变换

现引进变换 T, 使约束条件也化为卡玛卡标准型如下。

设 $a = (a_1 a_2... a_n)^T > 0, x = (x_1 x_2... x_n)^T$ 0, 定义变换:

$$x_i = \frac{x_i}{a_i} / 1 + \frac{x_i}{a_i}$$
 $i = 1, 2, ..., n$

 T_0

$$x_{n+1} = 1 - \sum_{i=1}^{n} x_i = \frac{1}{1 + \frac{x_i}{a_i}}$$
 (7.15)

变换 To 有如下性质:

性质 7.1 变换 T_0 将 $P_+ = \{x \otimes x = 0\}$ R^n 映射为单纯形

证明 由于
$$\frac{X_{i}}{a_{i}}$$
 0, $\frac{X_{i}}{a_{i}}$ 0, $\frac{X_{i}}{a_{i}}$ $\frac{X_{i}}{a_{i}}$

 $\mathbf{H} x_1 + x_2 + ... + x_n + x_{n+1} = 1$

即 T_0 将 P_+ R^n 中任一点 $(x_1 \ x_2 \ ... \ x_n)^T$ 0 转化为 上一点 x: $x = (x_1 \ x_2 \ ... \ x_n \ x_{n+1})^T$ R^{n+1}

性质 7.2 T_0 将 $a=(a_1\ a_2\ ...\ a_n)^T>0$ 转换为 的中心 $\frac{1}{n+1}$ $\frac{1}{n+1}$... $\frac{1}{n+1}$ T

可直接验证结论成立。

性质 7.3 T₀ 的逆变换为

$$T_0^{-1}$$
: $x_i = a_i x_i / x_{n+1}$, $i = 1, 2, ..., n$

由式(7.15) 和(7.16) 可知 $\frac{X_i}{a} = \frac{X_i}{X_{n+1}}$, $X_i = aX_i / X_{n+1}$ o

下面讨论对约束条件 A = b, x = 0 利用变换 T_0 化为卡玛卡标准型。设 $a = (a_1 - a_2 \dots - a_n)^T > 0$ 是(P) 问题的初始可行解,根据 T_0 变换性质可知,通过变换 T_0 可将其可行解 $x = (x_1 - x_2 - \dots - x_n)^T - R^n$ 转化为

$$(x_1 \quad x_2 \quad \dots \quad x_n \quad x_{n+1})^T$$

并将 $a = (a_1 \ a_2 \ ... \ a_n)^T$ 转化为 的中心 $a_0 = \frac{1}{n+1} (1\ 1\ ...\ 1)^T$ 。

设问题(P)中的 $A=(a_1\ a_2\ ...\ a_n)$,即 a_i 为 A 的第 i 列向量, i=1,2,...,n,则

$$A x = b$$
 可写为 $\prod_{i=1}^{n} a_i x_i = b$ (7.17)

根据 T o 1:

$$x_j = a_j x_j / x_{n+1}, \quad j = 1, 2, ..., n$$

代入式(7.17)得:

$$a_{j} a_{j} x_{j}$$
 - $bx_{n+1} = 0$

便得关于 $X_1, X_2, ..., X_n, X_{n+1}$ 的线性齐次方程组了。

$$\mathbf{\hat{A}} = (a_1, a_2, ..., a_n, a_{n+1})$$

其中 $a_i = a_i a_i$, $i = 1, 2, ..., n, a_{n+1} = -b_o$

于是(P)的约束条件 A x=b 转化为

$$a_i x_i = 0$$

$$A x = 0$$

或

于是变换 T₀ 将(P)转换为

$$A x = 0$$

$$x_i = 1, x_i \quad 0, \quad i = 1, 2, ..., n + 1$$

$$\frac{1}{1} \frac{1}{n+1} ... \frac{1}{n+1} ^{T} 是 - 可行解。$$

不难证明在 T₀ 变换下(P)的目标函数

$$c x = \frac{1}{x_{n+1}} \sum_{i=1}^{n} c_i a_i x_i$$

 $x_{n+1} > 0$, 故 c x 与 cia ix i 同号且同时为 0。

总之, 原问题(P) 有最优解时, 可导出(P) 的最优解为目标函数值等于 0, 从而 $c_ia_ix_i$ 也达到极小值 0。令

$$c_i = c_i a_i, \quad i = 1, 2, ..., n, c_{n+1} = 0$$

则(P)又可转化为卡玛卡标准型

min
$$z = C x$$

s. t. $A x = 0$
 $x = 1$
 $x = 0$

并且满足

- (A_1) 的中心 $a_0 = \frac{1}{n+1}(1 \ 1 \ ... \ 1)$ 是可行解。
- (A₂) 目标函数在可行域上的最小值等于 0。
- 7.3.5 卡玛卡算法步骤

卡玛卡算法选 0, $\frac{n-1}{n}$ 及收敛参数 q。其步骤如下:

(1)
$$x^{(0)} = \frac{1}{n} e^{T}, k = 0_{\circ}$$

(2) 若 Cx^(k) 2^{-q}Cx⁽⁰⁾则结束。

(3)
$$D_k$$
 $diag(x_1^{(k)} x_2^{(k)} ... x_n^{(k)})$
 AD_k
 B
 e

计算 $C = CD_k$
 $C_p [I_n - B^T(BB^T)^{-1}B]C^T$

$$C_{p} \quad C_{p}/C_{p}$$

$$(4) 计算 r \quad \frac{1}{\overline{n(n-1)}}$$

$$b \quad \frac{1}{n}e^{T}-rC_{p}$$

(5)
$$x^{(k+1)} = \frac{D_k b}{e D_k b}, k = k+1, 5 (2)$$

$$eD_kb$$
, $R+1$, $+2(2)$ 。
 $min z = -x_1$
 $s.t.$ $x_2-x_3=0$
 $x_1+x_2+x_3=1$

对于本题有:

$$A=(0\ 1-\ 1),$$
 观察知 $x_1=0,$ $x_2=\frac{1}{2},$ $x_3=\frac{1}{2}$ 是一个解且属于卡玛卡标准型。
$$=\frac{1}{4},$$
 $r=\frac{1}{n(n-1)}=\frac{1}{6}$

 x_1, x_2, x_3 0

第一次迭代:

$$x^{(0)} = _{0} = \frac{1}{3} \frac{1}{3} \frac{1}{3}^{T}$$

$$\frac{1}{3} \quad 0 \quad 0$$

$$D_{k} = 0 \quad \frac{1}{3} \quad 0$$

$$0 \quad 0 \quad \frac{1}{3}$$

$$\frac{1}{3} \quad 0 \quad 0$$

$$AD_{k} = (0 \quad 1 \quad - \quad 1) \quad 0 \quad \frac{1}{3} \quad 0 \quad = \quad 0 \quad \frac{1}{3} \quad - \quad \frac{1}{3}$$

$$0 \quad 0 \quad \frac{1}{3}$$

$$B = \begin{array}{cccc} 0 & \frac{1}{3} & - & \frac{1}{3} \\ & 1 & 1 & & 1 \end{array}$$

$$x^{(1)} = \begin{array}{c} D_k b \\ e D_k b \end{array} = \begin{array}{c} 10 \\ 24 \end{array} = \begin{array}{c} 7 \\ 7 \end{array}$$

继续这样的过程可得到解 $\mathbf{x} = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}^{\mathsf{T}}$ 。

故得最优解是 $x_1 = 1, x_2 = x_3 = 0$ 。

值得一提的是, 若选择 $r = \frac{6}{3}$ 时, 则

$$b = \frac{1}{n}e^{T} - r i^{p}C_{p}$$

$$= \frac{1}{3} \cdot \frac{1}{1} - \frac{6}{3} i^{p} \cdot \frac{1}{6} \cdot \frac{1}{1}$$

$$= 0$$

$$0$$

$$1$$

$$D_k b = \begin{array}{c} 1 \\ \hline 3 \\ 0 \end{array}$$

$$eD_kb = \frac{1}{3}$$

$$x^{(1)} = \begin{array}{c} D_k b \\ eD_k b \end{array} = \begin{array}{c} 1 \\ 0 \\ 0 \end{array}$$

$$\min z = x_2$$

s.t.
$$x_1 + x_2 - 2x_3 = 0$$

 $x_1 + x_2 + x_3 = 1$
 $x_1, x_2, x_3 = 0$

n=3, m=1

 $x^{(0)} = \frac{1}{3} \frac{1}{3} \frac{1}{3}^{T}$ 是可行解, $\frac{2}{3}$ 0 $\frac{1}{3}^{T}$ 是最优解,目标函数值等于 0。

$$r = \frac{1}{6}, = \frac{2}{9}$$

第1次迭代:

$$\frac{1}{3}$$
 0 0 由 $\mathbf{x}^{(0)}$ 开始, \mathbf{k} 0, \mathbf{D}_0 = 0 $\frac{1}{3}$ 0 0 0 0 $\frac{1}{3}$

$$D_0^{-1} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

$$eD_0^{-1}x^{(0)} = (1 \quad 1 \quad 1) \quad 0 \quad 3 \quad 0 \quad \frac{1}{3} = 3$$

$$0 \quad 0 \quad 3 \quad \frac{1}{3} = 3$$

$$y = \frac{D_0^{-1}x}{eD_0^{-1}x} = \frac{D_0^{-1}}{3x_1 + 3x_2 + 3x_3} \begin{vmatrix} x_1 & x_1 \\ x_2 & = x_2 \\ x_3 & x_3 \end{vmatrix} = x$$

$$y^{(0)} = \frac{1}{3}$$

$$\frac{1}{3}$$

$$\frac{1}{3}$$
 0 0

$$C = CD_k = (0 \ 1 \ 0) \ 0 \ \frac{1}{3} \ 0 = 0 \ \frac{1}{3} \ 0$$

$$0 \ 0 \ \frac{1}{3}$$

$$A = (1 \ 1 \ - \ 2), B = \begin{cases} AD_k \\ e \end{cases}$$

$$\frac{1}{3} \ 0 \ 0$$

$$AD_k = (1 \ 1 \ - \ 2) \ 0 \ \frac{1}{3} \ 0 = \frac{1}{3} \ \frac{1}{3} \ - \ \frac{2}{3}$$

 $0 \quad 0 \quad \frac{1}{3}$

$$B = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \\ 1 & 1 & 1 & 0 & 0 & 3 \end{pmatrix}$$

$$\frac{1}{2} & \frac{1}{2} & 0$$

$$B^{T}(BB^{T})^{-1}B = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$C_{p} = \begin{bmatrix} I - B^{T} (BB^{T})^{-1} B \end{bmatrix} C^{T} = \begin{pmatrix} 1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 - & \frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{3} \\ 0 & 0 & 1 & 0 - & 0 \end{pmatrix}$$

$$-\frac{1}{6}$$

$$=\frac{1}{6}$$

$$0$$

$$C_{p} = \frac{2}{6}$$

$$b = \frac{1}{n}e - rC_p^T = \frac{1}{3} - \frac{2}{9}i^{\frac{1}{n}}\frac{1}{6}i^{\frac{1}{n}}\frac{6}{2} - \frac{1}{6}i^{\frac{1}{n}}\frac{$$

k 1.

第2次迭代:

$$C = CD_{1} = 0 \quad \frac{1}{3} - \frac{1}{9 \cdot 3} \quad 0 = 0 \quad \frac{9 - \frac{3}{3}}{27} \quad 0$$

$$A = (1 \quad 1 \quad - 2)$$

$$B = AD_{k} = \frac{1}{3} + \frac{1}{9 \cdot 3} \cdot \frac{1}{3} - \frac{1}{9 \cdot 3} - \frac{2}{3}$$

$$1 \quad 1 \quad 1$$

$$BB^{T} = \frac{1}{3} + \frac{1}{9 \cdot 3} \cdot \frac{1}{3} - \frac{1}{9 \cdot 3} - \frac{2}{3} \cdot \frac{1}{3} - \frac{1}{9 \cdot 3} \cdot 1 = \frac{164}{243} \quad 0$$

$$1 \quad 1 \quad 1 \quad 0 \quad 3$$

$$(BB^{T})^{-1} = \frac{243}{164} \quad 0$$

$$0 \quad \frac{1}{3}$$

$$B^{T}(BB^{T})^{-1} = \frac{9 + \frac{3}{3}}{27} \quad 1 \quad \frac{243}{164} \quad 0$$

$$-\frac{9}{164}(9 + \frac{3}{3}) \quad \frac{1}{3}$$

$$-\frac{9 + \frac{3}{3}}{27} \quad 1 \quad 0 \quad \frac{1}{3} \quad -\frac{81}{82} \quad \frac{1}{3}$$

$$-\frac{2}{3} \quad 1 \quad -\frac{81}{82} \quad \frac{1}{3} \quad \frac{1}{3}$$

$$-\frac{81}{82} \quad \frac{1}{3} \quad -\frac{81}{82} \quad \frac{1}{3}$$

$$B^{T}(BB^{T})^{-1}B = \frac{13}{82} + \frac{1}{3} \quad \frac{14 + \frac{3}{3}}{82} + \frac{1}{3} \quad -\frac{3}{82}(9 + \frac{3}{3}) + \frac{1}{3}$$

$$-\frac{3(9 + \frac{3}{3})}{82} + \frac{1}{3} \quad -\frac{3(9 - \frac{3}{3})}{82} + \frac{1}{3} \quad \frac{27}{82} + \frac{1}{3} \quad \frac{27}{82}(9 + \frac{3}{3})$$

$$-\frac{1}{3} \quad -\frac{14 + \frac{3}{3}}{2} \quad -\frac{121}{246} \quad -\frac{1}{3} + \frac{3}{82}(9 + \frac{3}{3})$$

$$1 - B^{T}(BB^{T})^{-1}B = \quad -\frac{121}{246} \quad \frac{2}{3} - \frac{14 + \frac{3}{3}}{82} \quad \frac{3}{82}(9 - \frac{3}{3}) - \frac{1}{3}$$

$$\frac{3(9 + \frac{3}{3})}{82} - \frac{1}{3} \quad \frac{3(9 - \frac{3}{3})}{82} - \frac{1}{3} \quad \frac{123}{82}$$

$$-\frac{121}{246} \quad \frac{3}{27} - \frac{9}{27}$$

$$-\frac{3(9 - \frac{3}{3})}{82} - \frac{1}{3} \quad \frac{9 - \frac{3}{3}}{82}$$

$$-\frac{10 \cdot 1324030}{82} = 0 \cdot 1505548$$

$$-0 \cdot 0181517$$

$$C_{9} = 0 \cdot 2013121$$

$$\frac{1}{3}$$

$$b_{1} = \frac{1}{0}c^{T} - rC_{7}^{T} = \frac{1}{3} - \frac{r}{C_{9}}C_{7}^{T}$$

$$\frac{1}{3}$$

$$\frac{1}{3} - 0.1324030 0.3930009$$

$$= \frac{1}{3} - 0.4506524 0.1505548 = 0.2654855$$

$$- 0.0181517 0.3415134$$

$$0.457409$$

$$0.457409$$

$$0.209258$$

$$x^{(1)} = \frac{D_0 b_1}{e D_0 y_1} = \begin{array}{c} 0.457409 \\ 0.209258 \\ 0.333333 \end{array}$$

设 q=4, 即 $2^{-q}=2^{-4}$ 。请读者求问题的解。

7.3.6 卡玛卡算法的若干基本概念

(1) 投影变换

卡玛卡典型问题

$$min z = Cx$$

$$s. t. Ax = 0$$

$$ex = 1$$

$$x = 0$$
(K)

其中 $A=(a_{ij})_{m\times n}$, A 的秩为 m,n 2。满足下面两个假定:

$$(A_1)$$
 $x_0 = \frac{1}{n} \frac{1}{n} \dots \frac{1}{n}^{T}$ 是问题 (K) 的可行解。

 (A_2) 目标函数的最优解等于 0。

Ax = 0 是 n- m 维, ex = 1 为 n- 1 维。可行解域为 $\{x \otimes Ax = 0, x = 0\}$ 与 $\{x \otimes Ax = 0, x = 0\}$ 的交,即 $\{x \otimes Ax = 0, x = 0\}$ $\{x \otimes Ax = 0, x = 0\}$ 。

故可行解域为 n- m- 1 维单纯形。

以 n=3, m=1 为例。Ax=0, 即 $a_1x_1+a_2x_2+a_3x_3=0$ 为过原点的平面, ex=1 即 $x_1+x_2+x_3=1$ 。故可行解域为一维单纯, 即图 7. 3 中的粗线段 AB 所示。

$$x_0 = \frac{1}{3} \frac{1}{3} \frac{1}{3} = \frac{1}{3} = AB$$
 线段中点。

上面介绍了 n=3, m=1。这时 $x_1+x_2+x_3=1$, $x_1=0$, i=1,2,3, 是过(1=0=0), (0=1=0), (0=0=1)三点的三角形(二维单纯形)。

n=4, m=1。这时 $x_1+x_2+x_3+x_4=1, x_1=0, i=1,2,3,4,$ 可以几何地看作是一个三维单纯形(见图 7.4)。

一般情况假定 $x_k = (x_1^{(k)} \quad x_2^{(k)} \quad \dots \quad x_n^{(k)})^T$ 是可行解域一点。

$$D_{^{k}} = \ diag \, \{ x_{^{1}}^{^{(k)}} \quad x_{^{2}}^{^{(k)}} \quad ... \quad x_{^{n}}^{^{(k)}} \}$$

变换 Tҟ:

要
$$y = D_k^{-1} x / (eD_k^{-1} x)$$
 要 $y_j = \frac{x_j / x_j^{(k)}}{\sum_{i=1}^{n} \frac{X_i}{X_i^{(k)}}}, j = 1, 2, ..., n$

图 7.3

图 7.4

称为投影变换。

显然 $\{x@x=1,x=0\}$ 在 T^k 作用下映射为 $\{y@y=1,y=0\}$ 。同时,由于 ex=1,且 $x=(D^ky)(eD^{-1}x)$

$$(eD_k y) (eD_k^{-1} x) = 1$$

$$eD_k^{-1} x = \frac{1}{eD_k y}$$

$$x = (D_k y) (eD_k^{-1} x) = \frac{D_k y}{eD_k y}$$

这正是 T㎏变换的逆变换。

在 T_k 作用下, Ax = 0 映射为 $AD_k y = 0$ 。 $x_k = (a_1^{(k)} \ a_2^{(k)} \ \dots \ a_n^{(k)})^T$ 点在 T_k 作用下映射为 $\frac{1}{n}$ $\frac{1}{n}$ $\frac{1}{n}$ \dots $\frac{1}{n}$ 。

以 n= 3, m= 1 为例, 见图 7.5。

图 7.5

投影变换 $y = \frac{D_k^{-1}x}{eD_k^{-1}x}$ 的几何意义可从向量 $D_k^{-1}x$ 与 $\frac{D_k^{-1}x}{eD_k^{-1}x}$ 的关系来说明。 $y^* = \frac{D_k^{-1}x}{eD_k^{-1}x}$ 可以看作是向量 $y = D_k^{-1}x$ 到 {y @ y = 1, y = 0} 上的垂直部分,见图 7. 6。

图 7.6

7. 3. 7 Tk 变换的若干性质

在变换 T k 作用下, 问题(K) 转换为问题

问题 $(K^{\hat{}})$ 的目标函数是线性分式, 根据假设 (A_2) , 目标函数的最优值为 0。 $eD_ky>0$,有界。故可将问题 $(K^{\hat{}})$ 先变为

$$\begin{array}{ll} \mbox{min } z = & CD_k y \\ s.\,t. & AD_k y = & 0 \\ & ey = & 1 \\ & y = & 0 \end{array}$$

或

$$\begin{aligned} & \text{min } z = & Cy \\ & s. \, t. & & P \, y = & b \\ & & y & 0 \end{aligned}$$

其中

$$C= CD_k, P = \begin{matrix} AD_k \\ e \end{matrix}$$

$$b = \begin{matrix} 0 \\ 1 \end{matrix}$$

还可进一步将问题简化:

设 $y_0=$ $\frac{1}{n}$ $\frac{1}{n}$... $\frac{1}{n}$ T , 以 y_0 为中心 r 为半径的球:

$$B(y_0,r)$$
: $\int_{i=1}^n y_i - \frac{1}{n}^2 = r^2$ 与超平面: $ey = 1, y = 0$ 的交,即 $y \Big|_{i=1}^n y_i - \frac{1}{n}^2 = r^2, y = 0$ {y@dy = 1, y = 0}

是单纯形{y@y= 1, y 0}上的 n- 1 维球。

问题导致求球 $B(y_0, r)$ 内切于 n-1 维单纯形 $\{x@x=1, x=0\}$, 求半径 r.

先以 n= 3, m= 1 为例。见图 7.7。

故 r 等于 $\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$ 到 $\frac{1}{2}$, $\frac{1}{2}$, 0, 或到 $\frac{1}{2}$, 0, $\frac{1}{2}$, 或到 0, $\frac{1}{2}$, $\frac{1}{2}$ 点的距离。

n=4, m=1。则对应于从 $\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}$ 到 $\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0$ 的距离。见图 7.8。

同理可推广到一般的情况, 即单纯形 $x_1+x_2+...+x_n=1, x_1, x_2, ..., x_n=0$ 。 n-1 维内 切球半径 r 等于中心 $\frac{1}{n}, \frac{1}{n}, ..., \frac{1}{n}$ 到 $0, \frac{1}{n-1}, \frac{1}{n-1}, ..., \frac{1}{n-1}$ 的距离。

$$r = \frac{\frac{1}{n^2} + (n-1) \frac{1}{n} - \frac{1}{n-1}^2}{\frac{1}{n} - \frac{1}{n} \frac{1}{n}} = \frac{1}{\frac{1}{n(n-1)}}$$

同理可证 $\frac{1}{n}, \frac{1}{n}, ..., \frac{1}{n}$ 到点(1, 0, ..., 0)的距离为外接圆半径:

$$R = \frac{\frac{1}{n} - 1^{2} + (n - 1) \frac{1}{n^{2}}}{n} = \frac{\frac{n - 1}{n}}{n}$$

问题导致求解比较简单的问题

$$\begin{array}{lll} min\ z=&Cy\\ s.\ t. & By=&b\\ & y & B \quad \frac{1}{n}e, \quad r\\ & r=& \frac{1}{n(n-1)}, \quad 0<&<&1 \end{array}$$

取(0,1)区间的某一数是为了计算方便,不至于由于计算误差引起失效,其中 B=

先举一个二维的例子。

min
$$z = -x_1 + x_2$$

s. t. $x_1^2 + x_2^2 = 1$

从几何上直观可见: - $x_1+x_2=c$ 平行线族和 $x_1^2+x_2^2=1$ 相切于第 4 象限一点 P, 该 切线为- $x_1+x_2=-$ 2, 其法向量C=(-1,1)。

图 7.9

一般情况下,问题

$$\begin{aligned} & \text{min } z = & Cx \\ & \text{s. t.} & & x & & r \end{aligned}$$

的解
$$x^* = -\frac{C^T}{C}r$$

事实上, $Cx = C \cdot x \cdot \cos(C^{T}, x)$

 $\mathbf{Z} \quad \mathbf{C} = \mathbf{C} \cdot \mathbf{C}^{\mathrm{T}} / \mathbf{C}$

类似地有,问题

$$\begin{aligned} & \text{min } z = & Cx \\ & \text{s. t.} & & x - & a_0 & & r \end{aligned}$$

的解: $x^* = a_0 - \frac{C^T r}{C}$ 。

下面讨论向量在 Bx=0 空间的正交投影。这是卡玛卡算法的重要环节。因为问题是求解

$$\begin{aligned} \min \ z &= \ Cx \\ s. \ t. & Bx &= \ b \\ x & r \end{aligned}$$

如若将向量 C 分解成互相垂直的两个向量之和, 即 $C=C_P+C_P$, 其中 C_P 为 C 在超平面 Bx=0 上的投影, 或 C_P 为 C 在子空间 $\{x \otimes x=0\}$ 上的投影。子空间 $\{x \otimes x=0\}$ 为与 B 正交的空间, 故用 C_P 表 C 在其上的投影。 C_P 为在超平面 Bx=0 的法线方向的投影, 或为 C 在向量空间 B^T 上的投影。x 满足 Bx=0 表明 x 垂直于法向量 B^T , 故 $C_P x=0$, $C_P x=0$ 0 大 $C_P x=0$ 0 大

$$\begin{array}{rcl} min \ z &=& C_{\scriptscriptstyle P} x \\ \\ s. \ t. & Bx = 0 \\ \\ & x & r \end{array}$$

问题的球心在 Bx= 0 上, 记这球为

$$B(0,r) = \{x \otimes x = 0\}$$

即问题变为求解问题

$$\begin{array}{lll} \text{min } z & = & C_p x \\ \\ \text{s.t.} & x & B (0, r) \end{array}$$

问题的解为

$$\mathbf{x}^* = - \frac{\mathbf{C}_p^{\mathsf{T}} \mathbf{r}}{\mathbf{C}_p}$$

故只要得到 C^T 在 Bx = 0 上的投影 C^T 即可得解。

现在考虑一般情形。由 Bx=0 可知 x 与 B 的每一行向量正交, 所以 x 属于与由 B 的行向量生成的线性空间正交的子空间。Bx=0 与 x r 的交集是超平面 Bx=0 空间里半径为 r 的球。

令由 B 的行向量生成的线性空间为 V_B , 将 C 分解成 $C = C_P + C_A$, C_P 和 C_A 互相正交, $C_A = V_B$, C_P 和 V_B 正交, 即 C_P 和 B 的行向量正交。

由于 V_B 中的任一向量都可表成 B 的行向量的线性组合, 而且由于 B 的行线性无关, 故表达式是唯一的。设 $C_b = uB$

其中 u 是 m 维行向量,记 $u=(u_1 \quad u_2 \quad ... \quad u_m)$

$$C_p = (C - C_h) = C - uB$$

设 uB 是 V_B 中任一向量, 应有 C_B uB C_B uB , 这是因为 C_B 是 C 对 V_B 上的垂直距离(见图 7. 10)。

$$C - uB^{2} = (C - uB)(C - uB)^{T}$$

$$= (C - uB)(C^{T} - B^{T}u^{T})$$

$$= CC^{T} - CB^{T}u^{T} - uBC^{T} + uBB^{T}u^{T}$$

由于 $CB^{T}u^{T}$ 和 uBC^{T} 都是数量, $(CB^{T}u^{T})^{T} = uBC^{T} = CB^{T}u^{T}$, 故

$$C - uB^{2} = C^{2} - 2uBC^{T} + uBB^{T}u^{T}$$
 (7.18)

求 u 的问题导致求二次函数(7.18)极小值。

$$F(u_1, u_2, ..., u_m) = uGu^T + uH^T + C^{-2}$$

其中 $G = BB^T$, $H^T = -2BC^T$, 显然有 $G^T = G$ 。

设
$$G=(g_{ij})_{m \times m}, H=(h_1 h_2 \dots h_m)$$

$$\frac{F}{u_i} = 2(g_{i1}u_1 + g_{i2}u_2 + ... + g_{im}u_m) + h_i = 0$$

$$i = 1, 2, ..., m$$

即

 $g_{\,\text{m}\,\text{1}} \quad g_{\,\text{m}2} \quad \dots \quad g_{\,\text{m}m} \quad u_{\,\text{m}} \qquad h_{\,\text{m}} \qquad 0$

或写为

$$2Gu^{T} + H^{T} = 0$$

$$u^{T} = -\frac{1}{2}G^{-1}H^{T} = (BB^{T})^{-1}BC^{T}$$

$$u = CB^{T}(BB^{T})^{-1} \circ$$

$$[I - B^{T}(BB^{T})^{-1}B]^{T} = I - B^{T}(BB^{T})^{-1}B$$

$$C_{p} = C - uB = C - CB^{T}(BB^{T})^{-1}B$$

$$= C[I - B^{T}(BB^{T})^{-1}B]$$

$$C_{p}^{T} = [I - B^{T}(BB^{T})^{-1}B]C^{T}$$

由于

7.3.8 势函数及卡玛卡算法复杂性

定义 7.1 称 $f(C,x) = nln(Cx) - \int_{i=1}^{n} lnx_i$ 为势函数。

定理 7.3 对于单纯形 $x \Big|_{i=1}^{n} x_i = 1, x = 0$ 中任意两点 x_1, x_2 , 设投影变换 T 将它们分别变为 y_1, y_2 , 则在变换 T 下, 变换前势函数在 x_1 与 x_2 之差等于变换后势函数在 y_1, y_2 之差, 而且有

$$f(C, x) = f(CD, y) - \int_{i=1}^{n} \ln x_i^{(k)}$$

证明

T:
$$y = T(x) = D^{-1}x/(eD^{-1}x)$$

$$y_{j} = \frac{X_{j}}{X_{j}^{(k)}} / \frac{X_{j}}{X_{j}^{(k)}}, \quad j = 1, 2, ..., n_{o} \text{ M}$$

$$x = T^{-1}(y) = Dy/(eDy)$$
(7.19)

其中 $D = diag\{x_1^{(k)} \ x_2^{(k)} \ ... \ x_n^{(k)}\}$

或

$$x_{j} = \frac{X_{j}^{(k)} y_{j}}{n}, \quad j = 1, 2, ..., n$$

$$X^{(k)} y_{i}$$
 $i = 1$

将式(7.19)代入f(C,x)得

$$\begin{split} f\left(C,T^{-1}(y)\right) &= f\left(C,\frac{Dy}{CDy}\right) = nlog \frac{CDy}{eDy} - \sum_{i=1}^{n} \frac{x_{i}^{(k)}y_{i}}{eDy} \\ &= nlog(CDy) - nlog(eDy) - \sum_{i=1}^{n} log x_{i}^{(k)} \\ &- \sum_{i=1}^{n} log y_{i} + nlog(eDy) \\ &= f\left(CD,y\right) - \sum_{i=1}^{n} log x_{i}^{(k)} \\ f\left(C,x\right) &= f\left(CD,y\right) - \sum_{i=1}^{n} ln x_{i} \end{split}$$

即

若

$$T(x_1) = y_1, T(x_2) = y_2$$

 $f(C, x_1) - f(C, x_2) = f(CD, y_1) - f(CD, y_2)_{o}$

据本定理还可得

$$f(CD, y) - f(C, x) = f(CD, \frac{1}{n}e^{T} - f(C, x_k) = \int_{i-1}^{n} \ln x_i^{(k)}$$

在进入讨论卡玛卡算法的多项式复杂性前,对变换 T_k 及其性质作一回顾,并作些准备是必要的。

$$T_k$$
: $y = T_k(x) = \frac{D_k^{-1}x}{eD_k^{-1}x}$

或

$$y_{j} = \frac{X_{j}/X_{j}^{(k)}}{\sum\limits_{i=1}^{k} X_{i}^{(k)}}, \quad j = 1, 2, ..., n$$

其中

$$D^{-1} = diag \frac{1}{x_1^{(k)}} \frac{1}{x_2^{(k)}} \cdots \frac{1}{x_n^{(k)}}$$

$$D \hspace{-0.05cm}=\hspace{-0.05cm} diag\{x_1^{\hspace{0.05cm} (k)} \hspace{0.5cm} x_2^{\hspace{0.05cm} (k)} \hspace{0.5cm} \ldots \hspace{0.5cm} x_n^{\hspace{0.05cm} (k)}\}$$

下面的结论不难证明,现仅叙述而不给证明。

1.
$$T_k$$
 变换将 x 变为 y^k , 其中 = $\{x @ Ax = 0\}$, = $\{x @ 4x = 1, x = 0\}$ $k = \{y @ ADy = 0\}$, = $\{y @ 4y = 1, y = 0\}$

2. Tk 变换将卡玛卡标准型转化为

$$\begin{array}{ll} min \ z = \ CDy \\ s. \ t. & Ay = \ 0 \\ ey = \ 1 \\ v & 0 \end{array}$$

并满足(A₁)和(A₂)两个假定。

3. 不难证明 $y = Z + \frac{1}{n} e^{T}$ 可将问题

min
$$z = CDy$$

s.t. $ADy = 0$
 $ey = 1$
 $y - \frac{1}{n}e^{T}$ r, (0,1)
 $y = 0$

转化为问题

$$\begin{array}{rcl} \text{min } z &=& CDZ \\ s.\,t. && ADZ = & 0 \\ && eZ = & 0 \\ && Z && r && (0,\,1) \\ && Z && 0 \end{array}$$

4. 若 ADy = 0, ey = 1, $y - \frac{1}{n}e^{T}$ r, 0 < < 1, y - 0, $b = \frac{1}{n}e^{T}$ $r - \frac{C_p}{C_p}$, 其中 C_p $= I - B^T(BB^T)^{-1}BDC^T$, 则有 AD(b - y) = 0, e(b - y) = 0。 容易验证 b 满足 ADb = 0, eb = 1。

5. 若 ADy= 0, ey= 1, y- $\frac{1}{n}e^{T}$ r, 0< < 1, y 0, 则有(CD)(b-y)= C_p^T (b-y)。

因
$$C_p = [I - B^T (BB^T)^{-1}B](CD)^T$$

$$CD - C_p^T = CD - CD[I - B^T (BB^T)^{-1}B] = CDB^T (BB^T)^{-1}B$$
 由于 $B(b - y) = 0$, 所以

$$(CD - C_p^T)(b - y) = 0$$

即

$$(CD)(b - y) = C_p^T(b - y)$$

定理 7.4
$$b = \frac{1}{n}e^{T} - r \frac{C_p}{C_p}$$
 是问题

$$\begin{aligned} & \text{min } z = & & \text{CDy} \\ & \text{s. t.} & & & \text{Ay} = & 0 \\ & & & & \text{ey} = & 1 \\ & & & & & \text{y} - & \frac{1}{n} e^T & & & r, 0 < & < & 1 \\ & & & & & & y & 0 \end{aligned}$$

的最优解。

故

证明 首先证 Cp (b - y) 0

$$\begin{split} C_{p}^{T} \left(b - y \right) &= C_{p}^{T} \frac{1}{n} e^{T} - y - r & C_{p} \\ \frac{C_{p}^{T}}{C_{p}} \frac{1}{n} e^{T} - y & \frac{1}{n} e^{T} - y & r \\ C_{p}^{T} \left(b - y \right) & 0 \end{split}$$

再证 B(b - y)= 0, 其中 B=

y)= 0, 共中 B= (

由于

$$(CD)(b - y) = C_p^T(b - y) = 0$$

$$CDb \quad CDy$$

故得证 b 是最优解。

定理 7.5 存在 b 满足

$$Ab^{+} = 0$$
, $eb^{+} = 1$, $b - \frac{1}{n}e^{T}$ $r, 0 < < 1$, $b^{+} = 0$, 使得不等式 $f(CD, \frac{1}{n}e^{T} - f(CD, b^{+})$ 成立, 是一正常数。

证明方法是构造性的。

假定y^{*}是问题

$$\begin{aligned} & \text{min } z = & \text{CDy} \\ & \text{s.t.} & & \text{Ay} = & 0 \\ & & \text{ey} = & 1 \\ & & \text{y} & 0 \end{aligned}$$

并满足两个假定 (A_1) 和 (A_2) 的最优解。故 $CDy^*=0$,问题的可行解域是一凸多面体,目标函数不可能在多面体内部取得最小值,当然也不可能在 $\{x@t=1,x=0\}$ 的单纯形内部的

$$b^* = y^* + (1 -) \frac{1}{n} e^T$$

下面证明 b^{*} 便为所求。

由 CDy^{*} = 0 可得

$$CDb^{\star} = (1 -)CD \frac{1}{n}e^{T}$$

即

$$\frac{1}{\mathsf{n}}\mathsf{CDe}^{\mathsf{T}} = \frac{1}{1 - \mathsf{CDb}^{\mathsf{T}}}, \frac{\mathsf{CDe}^{\mathsf{T}}}{\mathsf{CDb}^{\mathsf{T}}} = \frac{\mathsf{n}}{1 - \mathsf{CDb}^{\mathsf{T}}}$$

由于 b 满足定理的条件, 故 CDb > 0, b > 0。

$$f \ CD, \frac{1}{n}e^{T} - f(CD, b^{\cdot}) = n \ln \frac{CD \frac{1}{n}e^{T}}{\frac{1}{n}} - n \ln CDb^{\cdot} + \prod_{i=1}^{n} \ln \frac{(1-\dots)}{n} + y_{i}^{\cdot}$$

$$= n \ln \frac{CDe^{T}}{CDb^{\cdot}} + \prod_{i=1}^{n} \ln \frac{(1-\dots)}{n} + y_{i}^{\cdot}$$

$$= n \ln \frac{n}{1-\dots} + \prod_{i=1}^{n} \ln \frac{1-\dots}{n} + y_{i}^{\cdot}$$

$$= \prod_{i=1}^{n} \ln \frac{n}{1-\dots} + \prod_{i=1}^{n} \ln \frac{1-\dots}{n} + y_{i}^{\cdot}$$

$$= \prod_{i=1}^{n} \ln 1 + \frac{n}{1-\dots} y_{i}^{\cdot}$$

由于 y_i^* 0, 有 $(1 + y_i^*)$ 1 + y_i^* 及 y_i^* 及 y_i^* = 1 故有

f CD,
$$\frac{1}{n}e^{T}$$
 - f (CD, b^{*}) ln 1 + $\frac{n}{1 - \frac{1}{n}}y_{i}^{*}$ = ln 1 + $\frac{n}{1 - \frac{1}{n}}$

$$b^* = (1 -) \frac{1}{n} e^T + y^*, 而且 b^* - \frac{1}{n} e^T = r, 故$$

$$r=$$
 b^{\cdot} - $\frac{1}{n}e^{T}$ = y^{\cdot} - $\frac{1}{n}e^{T}$ R, 其中 R 是单纯体 $\{x \otimes x = 1, x = 0\}$ 的外接

球半径, 而且 $R = \frac{n-1}{n}$

$$\frac{r}{R} = \frac{\frac{1}{n(n-1)}}{\frac{1}{n}} = \frac{1}{n-1}$$

$$1 + \frac{n}{1-} \quad 1 + \frac{n}{n-1} \quad 1 - \frac{n}{n-1} = 1 + \frac{n}{n-1-} \quad 1 + \frac{n}{n-1} \quad 0 < < 1$$

$$f \quad CD, \frac{1}{n}e^{T} - f(CD, b^{*}) \quad ln(1+), \quad 0 < < 1$$

定理 7.6 $b=\frac{1}{n}e-r\frac{C_p^T}{C_p}$,有

$$f$$
 CD, $\frac{1}{n}e^{T}$ - f (CD, b) , 是一正常数。

证明 b 是问题 min z = CDy

s.t.
$$Ay = 0$$

$$ey = 1$$

$$y - \frac{1}{n}e^{T}$$

$$y = 0$$

的最优解。故 CDb> 0, b 0。

$$f CD, \frac{1}{n}e^{T} - f(CD, b)$$

$$= f CD, \frac{1}{n}e^{T} - f(CD, b^{*}) + [f(CD, b^{*}) - f(CD, b)]$$

$$+ [f(CD, b) - f(CD, b)]$$

其中b是问题

$$\begin{aligned} & \text{min } z = f\left(CD, y\right) \\ & \text{s.t.} & Ay = 0 \\ & & ey = 1 \\ & & y - \frac{1}{n}e^T \qquad r \end{aligned} \tag{*} \end{aligned}$$

的最优解。

由于在可行解上 CDy>0, 故本问题最优解是存在的, 这里 $b^{\hat{i}}$ 就是定理 7.5 中的 $b^{\hat{i}}$ 。 根据定理 7.5

f CD,
$$\frac{1}{n}e^{T}$$
 - f (CD, b^{*}) ln(1+)

对于第二部分,因 b 是问题(*)的最优解,由于 b 在满足问题的约束条件的可行解域上的目标函数值应是最小。故 f(CD,b))- f(CD,b) 0。第三部分,由势函数定义

$$f(CD, b) - f(CD, b) = n \ln \frac{CDb}{CDb} - \ln \frac{b_i^*}{b_i}$$

b 是 CDy 在问题(*)的可行解域上的最小值, b 是问题(*)的最优解, 故

CDb CDb,
$$\frac{\text{CDb}}{\text{CDb}}$$
 1

因此

$$\ln \frac{CDb}{CDb} = 0$$

$$f\left(Cd,b\right) - f\left(CD,b\right) = - \prod_{i=1}^{n} \ln \frac{b_i}{b_i}$$

下面要利用一个结果。

对于满足条件

$$y-\frac{1}{n}e^{T} \qquad r, \ 0< \ < \ 1, \ y \quad 0, \ ey= \ 1 \ \text{的} \ y$$

$$\left| \begin{array}{c} \overset{n}{\underset{\models \ 1}{}} \ln \frac{y_{\, i}}{1} \\ \overset{n}{\underset{n}{}} \end{array} \right| \qquad \frac{\overset{2}{\underset{2(1-)}{}}}{2(1-)}, \quad = \qquad \frac{\overline{n}}{n-1} < \ 1$$

这个不等式的证明留给读者自己去做。

利用这个不等式可得

$$f(CD,b) - f(CD,b)$$
 $= \lim_{i=1}^{n} \ln \frac{b_i}{\frac{1}{n}} - \lim_{i=1}^{n} \frac{b_i}{\frac{1}{n}} = \frac{-\frac{2}{n}}{1-\frac{2}{n}}$

$$= \frac{\frac{n}{n-1}}{1-1} < 1$$

$$f CD, \frac{1}{n}e^{T} - f(CD, b) \ln(1+1) - \frac{\frac{2}{1-1}}{1-1} = \frac{\frac{2}{n}}{1-1} = \frac{\frac{n}{n-1}}{1-1}$$

由定理 7.6 可推出

$$f(CD, x_k)$$
 - $f(C, x_{k+1})$

这是根据

$$T(x_{k+1}) = b, T(x_k) = \frac{1}{n}e^{T}$$

 $f(C, x_k) - f(C, x_{k+1}) = f(CD, \frac{1}{n}e^{T} - f(CD, b)$

可以推出

即

由于 $\prod_{i=1}^{n} x_{i}^{k} = 1$, $\prod_{i=1}^{n} x_{i}^{k}$ 的最大值为 $\frac{1}{n}$ 。

所以

$$k \qquad n \ln \frac{Cx_0}{Cx_k}, \quad \ln \frac{Cx_0}{Cx_k} \qquad \frac{1}{n}k$$

$$Cx_0 \qquad e^{\frac{1}{n}k} Cx_k$$

$$Cx_k \qquad e^{-\frac{1}{n}k} Cx_0$$

$$\frac{k}{n} = q, \quad k = nq/ = O(nq)$$

即可通过 nq 次迭代, 使

$$\frac{\mathbf{C}\mathbf{x}_k}{\mathbf{C}\mathbf{x}_0}$$
 2^{-q}

习 题 七

1.
$$Ax = b, x$$
 0, 其中 $A = (a_{ij})_{m \times n}, b = (b_1, b_2, ..., b_m)^T$
设 $L = \begin{bmatrix} 1 + \log_2 m + \log_2 n + & \log_2 [1 + \log_2 (1 + \log_2 (1$

试证: 基变量 X_B= (X₁^(B), X₂^(B), ..., X_m^(B))有

$$x_{j}^{B} < 2^{L}/mn, \quad j = 1, 2, ..., m$$

 $x < 2^{L}/n$

2. 用哈奇扬算法解整数线性不等式组

3. 用卡玛卡算法解

min
$$z = x_3$$

s. t. $x_1 - x_2 = 0$
 $x_1 + x_2 + x_3 = 1$
 $x_i = 0, i = 1, 2, 3$

4. 设 $b = \frac{1}{n}e^{T}$ - $r = \frac{C_p^{T}}{C_p}$, 试证 b 是问题

$$\begin{aligned} & \text{min } z = & Cx \\ & \text{s. t.} & & Ax = & 0 \\ & & ex = & 1 \\ & & & & x - & \frac{1}{n}e^{T} & & r \\ & & & & x & 0 \end{aligned}$$

的最优解。

提示:

由于

5. 试证

 $\ln(ny_i) = \ln[1 + (ny_i - 1)] - (ny_i - 1) + \frac{1}{2}(ny_i - 1)^2$

第8章 多目标规划

在这以前,我们集中讨论了单目标线性规划问题,也就是目标函数的极大、极小解。这满足于"经济人"的经营决策要求,要么利润极大,要么代价极小的模型。近来在经营思想上有一重大变化,并非一味追求利润,而是要力争做到普遍感到满意。多目标规划适应了这样的要求。多目标规划是线性规划的一个突破和飞跃,它比单目标规划更灵活。

8.1 问题的提出

在讨论多目标规划之前,先引进偏差的概念。

例如: 求 $x_1, x_2, ..., x_n$ 使 $Ax=a_1x_1+a_2x_2+...+a_nx_n=b$, 可引进偏差 p 和 n, 将问题转化为求

$$\begin{aligned} & \text{min } z = & p + n \\ & \text{s. t.} & & Ax - & p + n = & b \\ & & & x, p, n & 0 \end{aligned}$$

p 和 n 分别称为正、负偏差量。若 Ax - b > 0,则 p > 0, n = 0, 若 Ax - b < 0,则 n > 0, p = 0, 显然 p 和 n 不可能同时为正,其中 $A = \begin{pmatrix} a_1 & a_2 & \dots & a_n \end{pmatrix}$, $x = \begin{pmatrix} x_1 & x_2 & \dots & x_n \end{pmatrix}^T$ 。当然, 若要求 x 使满足 Ax - b,可转化为求

$$\begin{array}{lllll} min \ z = & n \\ s. \ t. & Ax - & p + & n = & b \\ & & x, \, p, \, n & 0 \end{array}$$

与此类似求 x 使满足 Ax b,则有

$$min z = p$$
s. t.
$$Ax - p + n = b$$

$$x, p, n = 0$$

道理很直观,对于目标 Ax = b,则要求 Ax - b 的绝对值极小,对于目标 Ax - b,则要求负偏差量 p 极小,对于目标 Ax - b,则要求正偏差量 p 达到极小。

再引进目标函数优先级概念。这一点不同于单目标规划。举例如下。

例 8.1 有一公司生产两种产品 P_1 和 P_2 , 它们单位产品的利润分别为 80 元和 100元。 P_1 和 P_2 都需要 A,B,C 三种资源

资源 产品	A	В	С
P 1	4	4	1
P 2	5	2	0

该公司每天拥有 A, B, C 的有效资源分别为 80, 48, 6 单位。问题是如何安排生产, 使利润达到最大?

设: X_1 为每天生产 P_1 产品数, X_2 为每天生产 P_2 产品数, 问题导至

max z=
$$80x_1 + 100x_2$$

s. t. $4x_1 + 5x_2 = 80$
 $4x_1 + 2x_2 = 48$
 $x_1 = 6$
 $x_1, x_2 = 0$

如若公司经理必须考虑目标的优先级顺序为:

1. 首先要保证 A, B 两种资源不能超过限度:

$$4x_1 + 5x_2 = 80$$

 $4x_1 + 2x_2 = 48$

2. 每天收入至少800元:

$$80x_1 + 100x_2 800$$

3. 资源 C 不超过 6:

- x 1 6
- 4. 产品 P₁ 和 P₂ 产量总和(单位数)不超过 7 单位: x₁+ x₂ 7 用下列形式表达之

min z =
$$P_1(p_1 + p_2) + P_2n_3 + P_3p_4 + P_4p_5$$

s. t. $4x_1 + 5x_2 + n_1 - p_1 = 80$
 $4x_1 + 2x_2 + n_2 - p_2 = 48$
 $80x_1 + 100x_2 + n_3 - p_3 = 800$
 $x_1 + n_4 - p_4 = 6$
 $x_1 + x_2 + n_5 - p_5 = 7$
 $x_1, x_2, p_1, n_1 = 0, i = 1, 2, 3, 4, 5$

现在这里 P_1 , P_2 , P_3 , P_4 仅是一种符号, 表示优先数等级, 其实也是各自的权。最高优先数是保证 p_1+p_2 达到最小, 即 $4x_1+5x_2-80$, $4x_1+2x_2-48$, 在保证最优先级的前提下, 力求 $80x_1+100x_2-800$, 再其次为 x_1-6 , 最后为 x_1+x_2-7 。

例 8.2 一作坊生产两种产品,产品 P_1 每单位产品净获利润 10 元,产品 P_2 每单位产品净获利润 8 元, P_1 产品每单位产品需机器时间 3 小时, P_2 产品为 2 小时, 公司每周共有机器时数 120 小时,适当的加班是允许的,但加班生产的产品单位利润各降 1 元。根据合同,每周两种产品各需提供 30 单位。根据上述条件建立如下的目标优先级顺序:

- 1. 在有效机器时间 120 小时内首先满足合同。
- 2. 其次加班时数应尽量减少,假定每周加班不超过 20。
- 3. 最后利润要求每周至少为800元。

 $\phi_{X} = \rho_{X} = \rho_{$

 x^2 产品 P_1 在加班时间内每周的产量.

 $x_3 = \rho = \rho = \rho_2$ 在正常开工时间内每周的产量,

 X_{4} = 产品 P_{2} 在加班时间内每周的产量。

因此

例 8.3 用 3 种不同的原液 M_1 , M_2 , M_3 配制 3 种饮料 D_1 , D_2 , D_3 。已知每天有 1500 升的 M_1 , 每升 6.00 元; 每天有 2100 升的 M_2 , 每升 4.50 元; 每天有 950 升的 M_3 , 每升 3.00 元。已知配方如下:

 D_1 由不到 10% 的 M_2 和超过 50% 的 M_1 配成, 每升售价 6.00 元; D_2 由不到 60% 的 M_3 和超过 20% 的 M_1 配成, 每升售价 5.50 元; D_3 由不到 50% 的 M_3 和超过 10% 的 M_2 配成, 每升售价 5.00 元。

根据以上条件确定目标优先级如下:

- 1. 首先保证利润最高。
- 2. 其次每天生产 2000 升 D₁。

 $X_{ij} = M_i$ 用于生产 D_i 的数量(升), i, i = 1, 2, 3

$$\frac{x_{23}}{x_{13} + x_{23} + x_{33}} = 0.1$$

$$6(x_{11} + x_{21} + x_{31}) + 5.5(x_{12} + x_{22} + x_{32}) + 5(x_{13} + x_{23} + x_{33})$$

$$- 6(x_{11} + x_{12} + x_{13}) - 4.5(x_{21} + x_{22} + x_{23}) - 3(x_{31} + x_{32} + x_{33}) = 5000$$

$$x_{11} + x_{21} + x_{31} = 2000$$

故以上问题转化为目标规划:

这里第 1 目标是保证用完 3 种原液及 3 种饮料的配方, 然后才依次是最高利润和每天生产 2000 升 D_1 。

8.2 多目标规划的几何解释

先举例说明。

例 8.4
$$\min z = P_1(p_1 + p_2) + P_2n_3 + P_3p_4 + P_4p_5$$
s. t.
$$4x_1 + 5x_2 + n_1 - p_1 = 80 (G_1)$$

$$4x_1 + 2x_2 + n_2 - p_2 = 48 (G_2)$$

$$80x_1 + 100x_2 + n_3 - p_3 = 800(G_3)$$

$$x_1 + n_4 - p_4 = 6 (G_4)$$

$$x_1 + x_2 + n_5 - p_5 = 7 (G_5)$$

$$x_1, x_2, n_i, p_i = 0, i = 1, 2, 3, 4, 5$$

图 8.1 画出了各约束条件。

首先保证满足第 1 目标, 即令 $p_1 = p_2 = 0$, 可行解域为图 8.2 的影线部分。

图 8.1

图 8.2

进一步满足第2目标,即 n₃= 0,得可行解域又缩为图 8.3 的影线域。

再考虑第 3 个目标, 即 p₄= 0, 得图 8.4 中阴影部分代表的可行解域。

图 8.4

最优解为(0,8)点, 即 $x_1=0$, $x_2=8$, 该点使 p_5 达到最小, 过(0,8) 点引 $x_1+x_2=c$ 的平行线, c=8, 故 $p_5=1$ 。

例 8.5
$$\min z = P_1p_1 + P_2n_2 + P_3n_3$$
s.t.
$$x_1 + x_2 + n_1 - p_1 = 10$$

$$2x_1 + x_2 + n_2 - p_2 = 26$$

$$- x_1 + 2x_2 + n_3 - p_3 = 6$$

$$x_1, x_2, n_i, p_i = 0, i = 1, 2, 3$$

约束条件及可行解域如图 8.6 所示。

图 8.6

若考虑第 1 目标, 图 8.6 中的影线域是可行解域。若考虑第 2 目标, 则(10, 0) 点使 n_2 达到最小, 过(10, 0) 引 $2x_1+x_2=c$ 的平行线, c=20, $n_2=6$, 第 3 目标放弃, 即第 3 目标不能完全达到。因为第 2 目标的优先级高于第 3 目标。故只能在保证第 2 目标条件下, 求第 3 目标尽可能好一些。

例 8.6 某工厂生产 A、B 两种产品, 若生产产品 A, 每单位需加工 2 个机时, 产品 B 每单位需加工 1 机时, 工厂每周开工时间为 140 机时, 根据市场预测产品 A 每周需求量不超过 60 个单位, B 产品不超过 100 单位, 产品 A 的利润为 300 元/单位, B 产品的利润为 120 元/单位, 问应如何安排生产。

max z =
$$300x_1 + 120x_2$$

s. t. $2x_1 + x_2 = 140$
 $x_1 = 60$
 $x_2 = 100$
 $x_1, x_2 = 0$

其中, x_1 为产品 A 的每周生产单位数, x_2 为产品 B 的每周生产单位数。

结果: A 产品生产 60 单位, B 产品生产 20 单位, 每周利润为 z=20 400 元。若改变为:

第1目标:利润不少于25000元。

第2目标:(1)加工时数不超过140小时;

- (2) 产品 A 不超过 60 单位:
- (3) 产品 B 不超过 100 单位。

则有

约束条件如图 8.7 所示。

显然第2个目标是不能完全达到的,只能求得 p2+ p3+ p4 尽可能小(见图 8.8)。

对于(60, 100) 点, $p_3 = p_4 = 0$, 但 p_2 不为 0; (60, 58, 3) 点, $p_3 = p_4 = 0$, 但 p_2 也不为 0; (43, 3, 100) 点, $p_3 = p_4 = 0$, p_2 也不为 0, 不过 p_2 较小。从直观也可见到在(60, 58, 3) 点处 p_2 最小, 即为最佳方案, 第 1 目标完全达到, 第 2 目标部分满足, 由于 $p_2 < > 0$, 即加工时数超过了 140 机时, 原来的

$$2x_1 + x_2$$
 140

的条件不能满足。

例 8.7 某工厂生产 A, B 两种产品,每小时均可生产 1000 单位,工厂正常开工为每周 80 小时,根据市场预测,产品 A 需求量为每周 70 000 单位,产品 B 需求量为每周 45 000单位,产品 A 的利润为每单位 2.50 元,产品 B 的利润为每单位 1.50 元,

第1目标:避免开工不足;

第2目标:加班时数不超过10小时;

第3目标:努力达到最大销售量;

第4目标:尽可能减少加班时数。

设 x_1, x_2 分别是产品 A, B 的产量, 以 1000 为单位, 则

min z =
$$P_1 n_1 + P_2 p_4 + P_3 (5n_2 + 3n_3) + P_4 p_1$$

s.t. $x_1 + x_2 + n_1 - p_1 = 80$
 $x_1 + n_2 - p_2 = 70$
 $x_2 + n_3 - p_3 = 45$
 $x_1 + x_2 + n_4 - p_4 = 90$
 $x_1, x_2, n_1, n_2, n_3, n_4, p_1, p_2, p_3, p_4 = 0$

请注意这里由于产品 A 的利润为 $2.5 \, \pi$ / 单位, 而产品 B 的利润为 $1.5 \, \pi$ / 单位, 故第 3 目标 n_2 的权为 5, n_3 的权为 3。即 n_2 和 n_3 目标级相同, 但系数不同。

图 8.9 画出了约束条件。

若考虑第 1 目标, 即 $n_1 = 0$, 以及加班时间限制在 10 小时内, 即 $p_4 = 0$, 故解域缩为图 8.10 中的影线部分。

但由于第 3 个目标 n_2 的权高于 n_3 , 故(20, 70)点是最佳点。第 4 个目标为 $p_1=0$ 这是不可能的,第 4 个目标必须服从于第 3 个目标。

若在上面例子中,有一老主顾急需产品 A 100 000 单位,必须将这项任务作为第一目标,将保持正常开工作为第 2 目标,第 3 目标为将加班时间尽可能少,第 4 个目标为尽可能多地销售产品 B。

则有

约束条件如图 8.11 所示。

图 8.10

为了满足第 1 目标, 允许解域在 $x_1=100$ 的上方, 这样第 2 目标自动满足, 第 3 个目标不能达到, 但尽量做到使 p_1 达到最小, 显然这一点是 $x_1=100$, $x_2=0$, 第 4 个目标是达不到的。

8.3 多目标规划的单纯形表格

多目标规划的单纯形表格实质上就是线性规划的单纯形表格。

举例说明如下:

例 8.8 某公司生产 A, B 两种产品, 每单位所需的机器时间相同, 都是一单位时间。 A 的单位利润为 25 万元, B 的单位利润为 15 万元。该公司生产能力为每月 80 单位机器时间, 市场估计 A 的每月最高需求量为 70 单位, B 的每月最高需求量为 45 单位。若仅考

虑最高利润,则导致解下面线性规划问题。设 x1, x2 分别为 A, B 的每月产量。

max
$$z = 25x_1 + 15x_2$$

s. t. $x_1 + x_2 = 80$
 $0 = x_1 = 70, 0 = x_2 = 45$

如若考虑下列目标

- 1. 第1目标为避免开工不足;
- 2. 第2目标避免加班时数超过10单位机器时数:
- 3. 第3目标 A, B 达到各自的最高销售目标;
- 4. 第4目标为加班时数尽可能少。

这里需要说明的是, n_2 和 n_3 原都属第 3 目标, 因 A 产品的利润为每单位 250, 而 B 产品的利润为 150, 故分别给以权 5P $_3$, 3P $_3$ 。

下面给出多目标规划的单纯形表格:

表 8.1

	C		X 1	\mathbf{X}_2	n_1	n_2	n_3	n_4	p_1	p 2	p 3	p 4	
	Св	b C	0	0	P 1	5P 3	3P ₃	0	P 4	0	0	P 2	
n 1	P 1	80	1	1	1	0	0	0	- 1	0	0	0	80
n_2	5P 3	70		0	0	1	0	0	0	- 1	0	0	O?
n ₃	3P 3	45	0	1	0	0	1	0	0	0	- 1	0	
n 4	0	10	0	0	0	0	0	1	1	0	0	- 1	
	P 4		0	0					1	0	0	0	
	P 3	485	- 5	- 3					0	5	3	0	
Ci- Zi	P 2		0	0					0	0	0	1	
	P 1	80	- 1	- 1					1	6	0	0	

在这里 P_1 , P_2 , P_3 , P_4 作为系数处理, 可以看作 P_1 m P_2 m P_3 m P_4 。 Am P_4 意味着对于任意正常数 P_4 , P_5 , P_4 , P_5 , P_4 , P_5 , P_7 , P_8 , P_9 ,

表 8.2

	l												
			X 1	X 2	n ₁	n ₂	n ₃	n ₄	p 1	p 2	p 3	p 4	
	Св	b C	0	0	P 1	5P3	3P 3	0	P 4	0	0	P 2	
n 1	P 1	10	0		1	- 1	0	0	- 1	1	0	0	0,
X 1	0	70	1	0	0	1	0	0	0	- 1	0	0	45
n ₃	3P ₃	45	0	1	0	0	1	0	0	0	- 1	0	
<u>n</u> 4	0	10	0	0	0	0	0	1	1	0	0	- 1	
	P_4			0		0			1	0	0	0	
	P 3	135		- 3		5			0	0	3	0	
Ci- Zi	P 2			0		0			0	0	0	1	
	P 1	10		- 1		1			1	- 1	0	0	
X 2	0	10	0	1	1	- 1	0	0	- 1	1	0	0	
X 1	0	70	1	0	0	1	0	0	0	- 1	0	0	
n ₃	3P 3	35	0	0	- 1	1	1	0	1	- 1	- 1	0	35
n₄	0	10	0	0	0	0	0	1		0	0	- 1	10
	P 4				0				1	0	0	0	
_	P ₃	105			3	2			- 3	3	3	0	
Ci- Zi	P 2				0				0			1	
	P 1				1				0			0	
X 2	0	20	0	1	0	0	1	1	0	0	- 1	- 1	
X 1	0	70	1	0	0	1	0	0	0	- 1	0	0	
nз	3P 3	25	0	0	- 1	1	1	0	0	- 1	- 1	1	
p_ı	0	10	0	0	0	0	0	1	1	0	0	- 1	
	P 4	25			0	0			1		0	0	
a. –	P 3				3	2			0	3	3	- 3	
Ci- Zi	P_2				0	0			0	0	0	1	
	P 1				1	0			0	0	0	0	

所以 $x_1 = 70$, $x_2 = 20$, $p_1 = 10$, $p_3 = 25$, 使第 1 目标, 第 2 目标得到满足, 第 3 目标得到部分满足, 第 4 目标 $p_4 = 10$ 未达到最小。

例 8.9 一工厂有全时工人 5 人, 半时工人 4 人。全时工人每月工作 160 小时, 半时工人每月工作 80 小时。全时工人每小时完成 5 个单位产品, 半时工人每小时完成 2 个单位产品。全时工人每小时工资 3 元, 半时工人每小时 2 元, 单位产品利润为 1.5 元。假若全时加班费为每小时 4.5 元, 半时加班费每小时 2 元。设

- 1. 第1目标为下月完成5500单位产品;
- 2. 限制全时工人加班不超过 100 小时作为第 2 目标;
- 3. 第3目标为工作人员做满正常工作时数;
- 4. 加班总时数达到最少。

设 x1, x2 分别是全时和半时工作人员的每月工作时数。

问题导致下面多目标规划问题:

由于全时工人每月正常工作时数是半时工人的一倍, 所以对 n_2 和 n_3 分别给以权 $2P_3$ 和 P_3

全时工人的加班每小时利润为 5x 1.5- 4.5= 3, 半时工人的加班每小时利润为 2x 1.5- 2= 1, 全时工人加班 1 小时创造的利润是半时工人的 3 倍, 故 p_2 给以权 P_4 , p_3 给以权 P_4 , P_4 , P_4 , P_5 。表 8.3 是其单纯形表格。

表 8.3

	C		X 1	X 2	n 1	n_2	n ₃	N ₄	p 1	p 2	p 3	p 4	
	Св	b C	0	0	P 1	2P ₃	P 3	0	0	P 4	3P 4	P ₂	
n 1	P 1	5500	5	2	1	0	0	0	- 1	0	0	0	1100
n ₂	2P ₃	800		0	0	1	0	0	0	- 1	0	0	800
n ₃	P 3	320	0	1	0	0	1	0	0	0	- 1	0	
<u>n</u> 4	0	100	0	0	0	0	0	1	0	1	0	- 1	
	P 4	0	0	0						1	3		
	P 3	1920	- 2	- 1						2	1		
Ci- Zi	P 2	0	0	0								1	
	P 1	5500	- 5	- 2					1				
n ₁	P 1	1500	0	2	1	- 5	0	0	- 1	5	0	0	300
X ₁	0	800	1	0	0	1	0	0	0	- 1	0	0	
n 3	P 3	320	0	1	0	0	1	0	0	0	- 1	0	
<u>n</u> 4	0	100	0	0	0	0	0	1	0		0	- 1	100
	P 4	0		0		0			0	1	3	0	
	P 3	3200		- 1		2			0	0	1	0	
Ci- Zi	P 2	0		0		0			0	0	0	1	
	P 1	1500		- 2		5			1	- 5	0	0	
n 1	P 1	1000	0	2	1	- 5	0	- 5	- 1	0	0		
X 1	0	900	1	0	0	1	0	1	0	0	0	- 1	
n_3	P ₃	320	0	1	0	0	1	0	0	0	- 1	0	
p 2	P 4	100	0	0	0	0	0	1	0	1	0	- 1	
	P 4	100		0		0		- 1	0		3	1	
	P 3	320		- 1		2		0	0		1	0	
Ci- Zi	P 2	0		0		0		0	0		0	1	
	P 1	1000		- 2		5		5	1		0	- 5	
p 4	P 2	200	0	2/5	1/5	- 1	0	- 1	- 1/5	0	0	1	
X 1	0	1100	1	2/5	1/5	0	0	0	- 1/5	0	0	0	

			X 1	X 2	n ₁	n ₂	n ₃	n ₄	p 1	p 2	рз	p 4	
	Св	b C	0	0	\mathbf{P}_1	2P ₃	P 3	0	0	P 4	3P ₄	P ₂	
n ₃	P 3	320	0		0	0	1	0	0	0	- 1	0	
p 2	P 4	300	0	2/5	1/5	- 1	0	0 -	1/5	1	0	0	
	P 4	300	-	2/5 -	1/5	1		0	1/5		3		
	P 3	320		- 1	0	2		0	0		1		
	P 2	200	-	2/5 -	1/5	1		1	1/5		0		
	P 1	0		0	1	0		0	0		0		
p 4	P 2	72	0	0	1/5	- 1 -	2/5	- 1 -	1/5	0	2/5	1	
X 1	0	972	1	0	1/5	0 -	2/5	0 -	1/5	0	2/5	0	
X 2	0	320	0	1	0	0	1	0	0	0	- 1	0	
p 2	P 4	172	0	0	1/5	- 1 -	2/5	0 -	1/5	1	2/5	0	
	P 4	172		-	1/5	1	2/5	0	1/5		13/5		
	P 3	0			0	2	1	0	0		0		
	P 2	72		-	1/5	1	2/5	- 1	1/5		- 2/5		
	P 1	0			1	0	0	0	0		0		
р з	3P 4	180	0	0	1/2	- 5/2	- 1	- 5/2 -	1/2	0	1	5/ 2	
\mathbf{X}_1	0	900	1	0	0	1	0	1	0	0	0	- 1	
X 2	0	500	0	1	1/2	- 5/2	0	- 5/2 -	1/2	0	0 -	- 5/2	
p 2	P 4	100	0	0	0	0	0	1	0	1	0	- 1	
	P 4	640		-	- 3/2	15/2	3	13/2	3/2		-	13/2	
	P 3	0			0	2	1					0	
	P 2	0			0	0						1	
	P ₁	0			1	0						0	

可见第1、第2、第3目标都获得满足,第4目标达到它所能达到的最好结果:

$$x_1 = 900, x_2 = 500, p_2 = 100, p_3 = 180_{\circ}$$

8.4 多目标规划的目标序列化方法

上节讨论的单纯形表格法实际上是单纯形表格的变形,从实践中体验到其实质是先解决第1目标问题,然后依次解决第2、第3等目标问题,所以可以依顺序进行。关键一点是在从优先级高转入低一级时,非基变量的 ci-zi为正的,应退出,因它的进入将损害优先级高的目标。在作形式化说明之前,先通过例子说明。

例 8.10
$$\min z = P_1(p_1 + p_2) + P_2n_3 + P_3p_4 + P_4(n_1 + 1.5n_2)$$

s.t. $x_1 + n_1 - p_1 = 30$
 $x_2 + n_2 - p_2 = 15$
 $8x_1 + 12x_2 + n_3 - p_3 = 1000$
 $x_1 + 2x_2 + n_4 - p_4 = 40$
 $x_1, x_2, n_i, p_i = 0, i = 1, 2, 3, 4$

第一阶段:

表 8.4 是其单纯形表格。

表 8.4

D	Св	X	X 1	X 2	n ₁	n ₂	p 1	p 2	
D	Св	b C	0	0	0	0	1	1	
n ₁	0	30	1	0	1	0	- 1	0	
n_2	0	15	0	1	0	1	0	- 1	
							1	1	

$$n_1$$
= 30, n_2 = 15, x_1 = x_2 = p_1 = p_2 = 0, z_1 = p_1 + p_2 = 0。
由 p_1 + p_2 = 0, p_1 , p_2 0, 故 p_1 = p_2 = 0, 得第 2 阶段。
min z_2 = n_3
s.t. x_1 + n_1 = 30
 x_2 + n_2 = 15
 $8x_1$ + $12x_2$ + n_3 - p_3 = 1000
 x_1 , x_2 , n_1 , n_2 , n_3 , p_3 0

其单纯形表格见表 8.5。

表 8.5

D		X	X 1	X 2	n ₁	n ₂	n ₃	р з	
В	Св	b C	0	0	0	0	1	0	
n_1	0	30	1	0	1	0	0	0	
n_2	0	15	0		0	1	0	0	?
n ₃	1	1000	8	12	0	0	1	- 1	1000/12
		1000	- 8	- 12	2 0	0	0	1	
n_1	0	30		0	1	0	0	0	30
X 2	0	15	0	1	0	1	0	0	
n ₃	1	820	8	0	0	- 12	1	- 1	102
		820	- 8	0	0	12	0	1	
X 1	0	30	1	0	1	0	0	0	
X 2	0	15	0	1	0	1	0	0	
n ₃	1	580	0	0	- 8	- 12	1	- 1	
		580	0	0	8	12	0	1	

$$x_1 = 30, x_2 = 15, z_2^* = n_3 = 580$$

请注意上表中 n_1 , n_2 , p_3 列的 c_i - z_i 值都是正, 它们若进入基, 将破坏第 2 目标的结果, 故在进入第 3 目标时可以略去。

$$min \ z_3 = p_4$$
 $s.t. \ x_1 = 30$
 $x_2 = 15$
 $8x_1 + 12x_2 = 420$
 $x_1 + 2x_2 + n_4 - p_4 = 40$
 $x_1, x_2, n_4, p_4 = 0$
 $min \ z = p_1(p_1 + p_2) + p_2 + p_3 + p_3 + p_4$
 $s.t. \ 2x_1 + x_2 + n_1 - p_1 = 12$
 $x_1 + x_2 + n_2 - p_2 = 10$
 $x_1 + x_2 + n_3 - p_3 = 7$
 $x_1 + 4x_2 + n_4 - p_4 = 14$
 $x_1, x_2, n_i, p_i = 0, \quad i = 1, 2, 3, 4$

解第1目标:

表 8.6 是其单纯形表格。

表 8.6

D	C	X	X 1	X 2	n 1	n ₂	p 1	p 2
В	Св	b C	0	0	0	0	1	1
\mathbf{n}_1	0	12	2	1	1	0	- 1	0
n_2	0	10	1	1	0	1	0	- 1
							1	1

故
$$z_1$$
 = p_1 + p_2 = 0 , p_1 = p_2 = 0 , n_1 = 12 , n_2 = 10 , x_1 = x_2 = 0 , 转入第 2 目标: min z_2 = n_3 s. t. $2x_1 + x_2 + n_1 = 12$ $x_1 + x_2 + n_2 = 10$ $x_1 + n_3 - p_3 = 7$ $x_1, x_2, n_1, n_2, n_3, p_3 = 0$

表 8.7 是其单纯形表格。

表 8.7

	G	X	X 1	X 2	n ₁	n ₂	n 3	рз	
В	Св	b C	0	0	0	0	1	0	
n ₁	0	12		1	1	0	0	0	
n_2	0	10	1	1	0	1	0	0	10
n ₃	1	7	1	0	0	0	1	- 1	7
		7	- 1	0	0	0	0	1	
X 1	0	6	1	1/2	1/2	0	0	0	
n_2	0	4	0	1/2 -	1/2	1	0	0	
n ₃	1	1	0 -	1/2 -	1/2	0	1	- 1	
		1		1/2	1/2	0	0	1	

 $x_1 = 6$, $n_2 = 4$, $n_1 = x_2 = p_3 = 0$, $z_2^* = n_3 = 1$, 而且 x_2 , n_1 , p_3 作为非基变量不可能进入基, 因它的进入将损坏第 2 目标, 故在进入第 3 目标时予以放弃。

$$min \ z_3 = p_4$$
 $s.t. \quad 2x_1 = 12$
 $x_1 + n_2 = 10$
 $x_1 + 1 = 7$
 $x_1 + n_4 - p_4 = 4$
 $n_2 = 4, n_4 = 0, p_4 = 2,$ 故 $x_1 = 6, x_2 = 0, z_1 = 0, z_2 = 1, z_3 = 2_o$
例 8.12
 $min \ z = P_1 n_1 + P_2 p_4 + 5 P_3 n_2 + 3 P_3 n_3 + P_4 p_1$
 $s.t. \quad x_1 + x_2 + n_1 - p_1 = 80$
 $x_1 + n_2 - p_2 = 70$
 $x_2 + n_3 - p_3 = 45$
 $p_1 + n_4 - p_4 = 10$
 $x_1, x_2, n_i, p_i = 0, \quad i = 1, 2, 3, 4$

解第1目标:

单纯形表格见表 8.8。

表 8.8

D	C	X	X 1	X 2	n ₁	p 1	
Б	Св	b C	0	0	1	0	
X 1	0	80	1	1	1	- 1	
			0	0	1	0	

故 $z_1^* = n_1 = 0, x_1 = 80$

解第2目标:

表 8.9 是其第 2 目标的单纯形表格。

表 8.9

D		X	X 1	X 2	p 1	n ₄	p 4
В	Св	b C	0	0	0	0	1
X 1	0	80	1	1	- 1	0	0
n_4	0	10	0	0	1	1	- 1
							1

故
$$x^{2} = p_{4} = 0$$

现转而解决第3目标:

表 8.10 是解决第 3 目标的单纯形表格。

表 8.10

	_	X	X 1	X 2	n ı	n ₂	n ₃	n 4	p 1	p 2	р 3	
В	Св	b C	0	0	0	5	3	0	0	0	0	
n 1	0	80	1	1	1	0	0	0	- 1	0	0	80
n_2	5	70		0	0	1	0	0	0	- 1	0	02
n ₃	3	45	0	1	0	0	1	0	0	0	- 1	
n ₄	0	10	0	0	0	0	0	1	1	0	0	
		485	- 5	- 3	0	0	0	0	0	5	3	
n 1	0	10	0		1	- 1	0	0	- 1	1	0	0,
X 1	0	70	1	0	0	1	0	0	0	- 1	0	
n ₃	3	45	0	1	0	0	1	0	0	0	- 1	45
n ₄	0	10	0	0	0	0	0	1	1	0	0	
		135	0	- 3	0	0	2	0	0	0	3	
X 2	0	10	0	1	1	- 1	0	0	- 1	1	0	
X 1	0	70	1	0	0	1	0	0	0	- 1	0	
n ₃	3	35	0	0	- 1	1	1	0	1	- 1	- 1	35
n ₄	0	10	0	0	0	0	0	1		0	0	0,

D	C	X	X 1	X 2	n 1	n 2	n 3	n ₄	p 1	p 2	рз	
В	Св	b C	0	0	0	5	3	0	0	0	0	
		105	0	0	3	2	0	0	- 3	3	3	
X 2	0	20	0	1	1	- 1	0	1	0	1	0	
X 1	0	70	1	0	0	1	0	0	0	- 1	0	
n ₃	3	25	0	0	- 1	1	1	- 1	0	- 1	- 1	
p_1	0	10	0	0	0	0	0	1	1	0	0	
			0	0	3	2	0	3	0	3	3	

故得 $x_1 = 70$, $x_2 = 20$, $n_2 = 0$, $n_3 = 25$, $p_1 = 10$, $z_4^* = p_1 = 10$, $z_3^* = 5n_2 + 3n_3 = 75$ 。

本例在 8.2 节用几何方法已讨论过它的解法。在 8.3 节又用单纯形表格给出解, 异途同归, 结果与以前得到的是一样的。

8.5 多目标规划的灵敏度分析

举例说明如下:

做表上运算(见表 8.11)。

表 8.11

	C	X	X 1	X 2	n ₁	n ₂	n 3	N ₄	p 1	p 2	p 3	p 4	
В	Св	b C	0	0	P 3	0	P 2	2P 2	P 1	P 1	0	0	
n ₁	P 3	20	1	0	1	0	0	0	- 1	0	0	0	
n_2	0	35	0		0	1	0	0	0	- 1	0	0	35
nз	P 2	220	- 5	3	0	0	1	0	0	0	- 1	0	220/3
<u>n</u> 4	2P ₂	60	1	- 1	0	0	0	1	0	0	0	- 1	
	P 3	20	- 1	0					1	0	0	0	
Ci- Zi	P 2	340	3	- 1					0	0	1	2	
	P 1	0	0	0					1	1	0	0	
n 1	P 3	20	1	0	1	0	0	0	- 1	0	0	0	
X 2	0	35	0	1	0	1	0	0	0	- 1	0	0	
n_3	P_2	115	- 5	0	0	- 3	1	0	0	3	- 1	0	
n ₄	2P ₂	95	1	0	0	1	0	1	0	- 1	0	- 1	

D	ζ.	X	X 1	X 2	n ₁	n ₂	n ₃	n ₄	p 1	p 2	р з	p 4
В	Св	b C	0	0	P 3	0	P 2	2P 2	P 1	P 1	0	0
	P 3	20	- 1			0			1	0	0	0
Ci- Zi	P 2	305	3			1			0	- 1	1	2
	P 1	0	0			0			1	1	0	0

表 8.11 中最后一轮两虚线间的矩阵即为 B^{-1} , 即基变量 n_1 , x_2 , n_3 , n_4 的基矩阵 B 的 逆矩阵

$$B^{-1} = \begin{array}{cccccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -3 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{array}$$

例 8.13 设 p₂ 的权从 P₁ 改为 0

把 p 2 的权由 P 2 改为 0,则对应的 ci- zi 改为

p2的权的改变引起基的变化, p2作为进入基进行迭代得表 8.12。

表 8.12

	_												
D		X	X 1	X 2	n ₁	N ₂	n 3	n ₄	p 1	p 2	рз	p 4	
В	Св	b C	0	0	P 3	0	P 2	2P 2	P 1	0	0	0	
n ₁	P 3	20	1	0	1	0	0	0	- 1	0	0	0	
X 2	0	35	0	1	0	1	0	0	0	- 1	0	0	
nз	P 2	115	- 5	0	0	- 3	1	0	0		- 1	0	
<u>n</u> 4	2P 2	190	1	0	0	1	0	1	0	- 1	0	- 1	
	P 3	20	0			0			1	0	0	0	
	P_2	115	5			1			0	- 1	1	2	
	P 1	190	0			0			1	0	0	0	
n ₁	P 3	20	1	0	1	0	0	0	- 1	0	0	0	
X 2	0	73	- 5/3	1	0	0	1/3	0	0	0	- 1/3	0	
p 2	0	38	- 5/3	0	0	- 1	1/3	0	0	1	- 1/3	0	
<u>n</u> 4	2P ₂	228	- 2/3	0	0	0	1/3	1	0	0	- 1/3	- 1	
	P 3	20	- 1				0		1		0	0	
	P 2	456	4/ 3				1/3		0		2/3	2	
	P 1	0	0				0		1		0	0	

若考虑 n4 的权从 2P 2 改为 6P 2。由于 n4 是基变量, 所以改变了 CB B 1, 新的 CB B 1为

对于 x₁, x₂, n₁, n₂, n₃, n₄, p₁, p₂, p₃, p₄ 对应的 c_i- z_i 分别为:

$$x_{1}: - (P_{3} 3P_{2} P_{2} 6P_{2}) = - P_{3}- P_{2}$$

$$1$$

$$0$$

$$x_{2}: (P_{3} 3P_{2} P_{2} 6P_{2}) = 0$$

$$- 1$$

$$1$$

$$0$$

$$- 1$$

$$1$$

$$1$$

$$0$$

$$- 1$$

$$1$$

$$0$$

$$- 1$$

n₂: - (P₃ 3P₂ P₂ 6P₂)
$$\frac{1}{0}$$
 = - 3P₂

n₃: P₂- (P₃ 3P₂ P₂ 6P₂)
$$\frac{0}{1} = 0$$

 n_4 : 0

p₃:
$$(P_3 3P_2 P_2 6P_2) = P_2$$
0

p₄: - $(P_3 3P_2 P_2 6P_2) = 6P_2$
- 1

- 1

进行表上运算(见表 8.13)。

表 8.13

			X 1	X 2	n ₁	n ₂	n ₃	n ₄	p 1	p 2	рз	p 4	
	Св	C											
		b	0	0	P 3	0	P 2	6P ₂	P 1	P 1	0	0	
n ₁	P 3	20	1	0	1	0	0	0	- 1	0	0	0	
X 2	0	35	0	1	0		0	0	0	- 1	0	0	ζ?
nз	P 2	115	- 5	0	0	- 3	1	0	0	3	- 1	0	
n ₄	6P 2	95	1	0	0	1	0	1	0	- 1	0	- 1	95
	P 3	20	- 1			0			1	0	0	0	
Ci- Zi	P 2	685	- 1			- 3			0	3	1	6	
	P 1	0	0			0			1	1	0	0	
n 1	P 3	20		0	1	0	0	0	- 1	0	0	0	Q
n ₂	0	35	0	1	0	1	0	0	0	- 1	0	0	
n ₃	P 2	220	- 5	3	0	0	1	0	0	0	- 1	0	
n ₄	6P ₂	60	1	- 1	0	0	0	1	0	0	0	- 1	60
	P 3	240	0	0					1	0	0	0	
	P 2	120	- 1	3					0	0	1	6	
	P_1	0	0	0					1	1	0	0	
X 1	0	20	1	0	1	0	0	0	- 1	0	0	0	
n ₂	0	35	0	1	0	1	0	0	0	- 1	0	0	
n_3	P_2	320	0	3	5	0	1	0	- 5	0	- 1	0	
n ₄	6P ₂	40	0	- 1	- 1	0	0	1	1	0	0	- 1	
	P 3	0		0	1				0		0	0	
	P 2	560		3	1				5		1	6	
	P 1	0		0	0				1		0	0	

例 8.14 若右端项第 2 个数从原先的 35 改为 40,则

结果基不变, 只不过第 2 个基 x_2 的值改为 40, 第 3 个基 n_3 和第 4 个基 n_4 都改为

100, 其余不变。

第1和第4目标达到,第2目标的值改为300,第3目标没变化。

若右端项第2个数从35改为75,则

$$B^{-1} \overline{b} = \begin{cases} 1 & 0 & 0 & 0 & 20 & 20 \\ 0 & 1 & 0 & 0 & 75 \\ 0 & -3 & 1 & 0 & 220 \end{cases} = \begin{cases} 75 \\ -5 \end{cases}$$

利用对偶单纯形法求解如表 8.14 所示。

表 8.14

	C		X 1	X 2	n 1	n ₂	n ₃	n ₄	p 1	p 2	р з	p 4	
	Св	b C	0	0	P 3	0	P 2	2P 2	P 1	P 1	0	0	
n 1	P 3	20	1	0	1	0	0	0	- 1	0	0	0	
X 1	0	75	0	1	0	1	0	0	0	- 1	0	0	
n ₃	P 2	- 5	- 5	0	0	- 3	1	0	0	3	- 1	0	
n 4	2P ₂	135	1	0	0	1	0	1	0	- 1	0	- 1	
	P 3	20	- 1			0			1	0	0	0	
Ci- Zi	P 2	265	3			1			0	- 1	1	2	
	P 1	0	0			0			1	1	0	0	
n 1	P 3	20	1	0	1	0	0	0	- 1	0	0	0	
X 2	0	73	- 5/3	1	0	0	1/3	0	0	0	- 1/3	0	
n_2	0	5/3	5/ 3	0	0	1	- 1/3	0	0	1	1/3	0	
n ₄	2P 2	133	- 2/3	0	0	0	1/3	1	0	0	- 1/3	- 1	
	P 3	20	- 1				0		1	0	0	0	
Ci- Zi	P 2	266	4/ 3				2/3		0	0	2/3	2/3	
	P 1	0	0				0		1	1	0	0	

例 8.15 若矩阵 A 的系数变化, 例如 a31从- 5 改为 2,则

$$B^{-1}a_{1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & - & 3 & 1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

对应的 c1- Z1 改变为:

进行表上运算(见表 8.15)。

表 8.15

	_		X 1	X 2	n ₁	n ₂	n ₃	n ₄	p 1	p 2	рз	p 4	
	Св	b C	0	0	P 3	0	P 2	2P 2	P 1	P 1	0	0	
n 1	P 3	20		0	1	0	0	0	- 1	0	0	0	Q
\mathbf{X}_{2}	0	35	0	1	0	1	0	0	0	- 1	0	0	
n ₃	P 2	115	2	0	0	- 3	1	0	0	3	- 1	0	115/2
n ₄	2P ₂	95	1	0	0	1	0	1	0	- 1	0	- 1	95
	P 3	20	- 1			0			1	0	0	0	
c _i - z _i	P 2	305	- 4			1			0	- 1	1	2	
	P 1	0	0			0			1	1	0	0	
\mathbf{X}_1	0	20	1	0	1	0	0	0	- 1	0	0	0	
X 2	0	35	0	1	0	1	0	0	0	- 1	0	0	
n_3	P 2	75	0	0	- 2	- 3	1	0	2	3	- 1	0	
n 4	2P ₂	75	0	0	- 1	1	0	1	1	- 1	0	- 1	
	P 3	0			1	0			0	0	0	0	
Ci- Zi	P 2	25			4	1			- 4	- 1	1	2	
	P 1	0			0	0			1	1	0	0	

例 8.16 若增加一约束条件:

$$-4x_1 + x_2 + n_5 - p_5 = 8$$

其中 p s 为第 1 目标, 从单纯形表格(表 8.16):

表 8.16

	C		X 1	X 2	n ı	n ₂	n ₃	n 4	p 1	p 2	рз	p 4	
	Св	b C	0	0	P 3	0	P 2	2P ₂	P 1	P 1	0	0	
n 1	P 3	20	1	0	1	0	0	0	- 1	0	0	0	
X 2	0	35	0	1	0	1	0	0	0	- 1	0	0	
n 3	P 2	115	- 5	0	0	- 3	1	0	0	3	- 1	0	
n₄	2P ₂	95	1	0	0	1	0	1	0	- 1	0	- 1	
	P 3	20	- 1			0			1	0	0	0	
Ci- Zi	P 2	305	3			1			0	- 1	1	2	
	P 1	0	0			0			1	1	0	0	

可知 $x_2+ n_2- p_2= 35$,解出 x_2 并以之代入新的约束条件,消去基 x_2 得

-
$$4x_1$$
 - n_2 + p_2 + n_5 - p_5 = 8 - 35 = - 27

构造新的单纯形表格(见表 8.17)。

表 8.17

	(X 1	X 2	n 1	n 2	n ₃	n ₄	n 5	p 1	p 2	p 3	p 4	p 5	
	Св	b C	0	0	P 3	0	P 2	2P ₂	0	P 1	P 1	0	0	P 1	
n ₁	P 3	20	1	0	1	0	0	0	0	- 1	0	0	0	0	
X 2	0	30	0	1	0	1	0	0	0	0	- 1	0	0	0	30
n 3	P 2	115	- 5	0	0	- 3	1	0	0	0	3	- 1	0	0	
n ₄	2P 2	95	1	0	0	1	0	1	0	0	- 1	0	- 1	0	95
p 5	P 1	27	4	0	0		0	0	- 1	0	- 1	0	0	1	،?
	P 3	20	- 1			0			0	1	0	0	0	0	
Ci- Zi	P 2	305	3			1			0	0	- 1	1	2	0	
	P 1	27	- 4			- 1			1	1	2	0	0	0	
n 1	P 3	20	1	0	1	0	0	0	0	- 1	0	0	0	0	20
X 2	0	3	- 4	1	0	0	0	0	1	0	0	0	0	- 1	
n ₃	P 2	196	7	0	0	0	1	0	- 3	0	0	- 1	0	3	197/7
n ₄	2P 2	68	- 3	0	0	0	0	1	1	0	0	0	- 1	- 1	
<u>n</u> 2	0	27		0	0	1	0	0	- 1	0	- 1	0	0	1	27/4
	P 3	20	- 1						0	1	0	0	0	0	
Ci- Zi	P 2	332	- 1						1	0	0	1	2	- 1	
	P 1	0	0						0	1	1	0	0	0	
n	P 3	53/4	0	0	1 -	1/4	0	0	1/4	- 1	1/4	0	0	1/4	
\mathbf{X}_2	0	30	0	1	0	1	0	0	0	0	- 1	0	0	0	
n ₃	P 2	695/4	0	0	0 -	7/4	1	0 -	- 5/4	0	7/4	- 1	0	5/4	
n ₄	2P 2	353/4	0	0	0	3/4	0	1	1/4	0 -	3/4	0	- 1 -	1/4	
\mathbf{X}_{1}	0	27/4	1	0	0	1/4	0	0 -	- 1/4	0 -	1/4	0	0	1/4	
	P 3	53/4				1/4			- 1/4	1 -	1/4	0	0	0	
	P 2	130				1/4			3/4	0 -	1/4	1	2 -	3/4	
	P 1	0				0			0	1	1	0	0	1	

例 8.17 增加新变量

由于

建立单纯形表格(见表 8.18)。

表 8.18

		\ v												
В	Св	X	X 1	X 2	X 3	n ı	n ₂	n ₃	n ₄	p 1	p 2	р з	p 4	
		b	0	0	0	P 3	0	P 2	2P ₂	P 1	P 1	0	0	
n_1	P 3	20	1	0	0	1	0	0	0	- 1	0	0	0	
X 2	0	35	0	1		0	1	0	0	0	- 1	0	0	
n_3	P 2	115	- 5	0	- 2	0	- 3	1	0	0	3	- 1	0	
n ₄	2P ₂	95	1	0	0	0	1	0	1	0	- 1	0	- 1	
	P 3	20	1		0					1	0	0	0	
Ci- Zi	P 2	305	3		- 2		1			0	- 1	1	2	
	P 1	0	0		0					1	1	0	0	
n ₁	P 3	20	1	0	0	1	0	0	0	- 1	0	0	0	
X 3	0	35	0	1	1	0	1	0	0	0	- 1	0	0	35
n_3	P ₂	45	- 5		0	0	- 1	1	0	0	1	- 1	0	45/2
n 4	2P ₂	95	1	0	0	0	0	0	1	1	- 1	0	- 1	
	P 3	20	- 1	0			0			1	0	0	0	
	P 2	235	3	- 2			1			- 2	1	1	2	
	P 1	0	0	0			0			1	1	0	0	
n 1	P 3	20	1	0	0	1	0	0	0	- 1	0	0	0	20
X 3	0	25/ 2	5/2	0	1	0	0 -	1/2	0	0 -	3/2	1/2	0	
X 2	0	45/ 2	- 5/2	1	0	0 -	1/2	1/2	0	0	1/2 -	1/2	0	
n ₄	2P 2	95	1	0	0	0	0	0	1	1	- 1	0	- 1	95
	P 3	20	- 1					0		1	0		0	
	P 2	190	- 2					1		- 2	2		2	
	P 1	0	0					0		1	1		0	
nı	P 3	15	0	0 -	- 2/5	1	0	1/ 5	0	- 1	3/5 -	1/ 5	0	
X 1	0	5	1	0	2/5	0	0 -	1/5	0	0 -	3/5	1/5	0	
X 2	0	35	0	1	1	0 -	1/2	0	0	0	- 1	0	0	
n ₄	2P ₂	90	0		- 2/5	0	0	1/5	1	1 -	2/5 -	1/5	- 1	
	P 1	15			2/5		_	1/ 5			3/5	1/ 5	0	
	P 2	180			4/5			3/5		- 2	4/5	2/5	2	
	P 1	0			0			0		1	1	0	0	
	F 1	U			0			U		1	1	U	U	

例 8.18 参数目标规划

令 r = 0, 下面是 r = 0 时的单纯形表格(表 8.19)。

表 8.19

		X	X 1	X 2	n ı	n ₂	n ₃	n 4	p 1	p 2	p 3	p 4	
В	Св	b C	0	0	P 3	0	P 2	P 2	P 1	P 1	0	0	
n 1	P 3	20	1	0	1	0	0	0	- 1	0	0	0	_
n_2	0	35	0		0	1	0	0	0	- 1	0	0	35
n_3	P_2	220	- 5	3	0	0	1	0	0	0	- 1	0	220/3
n_4	P 2	60	1	- 1	0	0	0	1	0	0	0	- 1	
	P 3	20	1						1	0	0	0	
	P 2	280	4	- 2					0	0	1	1	
	P 1	0	0						1	1	0	0	
n 1	P 3	20	1	0		0	0	0	- 1	0	0	0	Q
X 2	0	35	0	1	0	1	0	0	0	- 1	0	0	
n ₃	P 2	115	- 5	0	0	- 3	1	0	0	3	- 1	0	24
<u>n</u> 4	P 2	95	1	0	0	1	0	1	0	- 1	0	- 1	
	P 3	0	0			0			1	0	0	0	
	P 2	210	4			2			0	- 2	1	1	
	P 1	0	0			0			1	1	0	0	

对于r 0, 依相同步骤可得表 8.20。

表 8.20

D	C	X	X 1	X 2	n ₁	n ₂	n ₃	n ₄	p 1	p 2	рз	p 4	
B	Св	b C	0	0	P 3	0	P 2 1	P ₂ (1+ r) P 1	P 1	0	0	
n_1	P 3	20	1	0	1	0	0	0	- 1	0	0	0	
n_2	0	35	0		0	1	0	0	0	- 1	0	0	
n 3	P 2	220	- 5	3	0	0	1	0	0	0	- 1	0	
n ₄	P ₂ (1+ r)	60	1	- 1	0	0	0	1	0	0	0	- 1	
	P 3	20							1	0	0	0	
Ci- Zi	P 2	280+ 60r	4- r	- 2+ r					0	0	1	1+ r	
	P 1	0							1	1	0	0	
n 1	P 3	20	1	0	1	0	0	0	- 1	0	0	0	
\mathbf{X}_2	0	35	0	1	0	1	0	0	0	- 1	0	0	
n_3	P 2	115	- 5	0	0	- 3	1	0	0	3	- 1	0	
n₄	$P_{2}(1+r)$	95	1	0	0	1	0	1	0	- 1	0	- 1	

.	ζ	X	X 1	X 2	n ₁	n ₂	n ₃	N ₄	p 1	p 2	рз	p 4	
В	Св	b C	0	0	P 3	0	P 2 P	₂ (1+ r)	P ₁	P 1	0	0	
	P 3	20	1			0			0	0	0	0	
Ci- Zi	P 2	210+ 95r	4- r			2- r			0	- 2+ r	1	1+ r	
	P 1	0				0			1	1	0	0	

若 4- r 0, 2- r 0, 1+ r $0, \mathbb{D}$ - 1 r 2 时,上表给出了最优解。 若 2 < r 4, 2- r < 0, 4- r 0 时,则 n_2 进入基(见表 8.21)。

表 8.21

	G	X	X 1	X 2	n_1	n_2	n ₃	n_4	p ₁	p 2	p 3	p 4	
В	Св	b C	0	0	P 3	0	P 2	P ₂ (1+ r)	P 1	P 1	0	0 0 0 0 0 0 0 0 -1 0 0 -1 0 0 1 1+ r 0 0 0 0 0 0	
n ₁	P 3	20	1	0	1	0	0	0	- 1	0	0	0	
X 2	0	35	0	1	0		0	0	0	- 1	0	0	ζ?
N ₃	P 2	110	- 5	0	0	- 3	1	0	0	3	- 1	0	
<u>n</u> 4	$P_2(1+r)$	95	1	0	0	1	0	1	0	- 1	0	- 1	95
	Р з	20	1			0			0	0	0	0	
c_i - z_i	P 2	210+ 95r	4- r			2- r			0	- 2+ r	1	1+r	1
	P 1	0				0			1	1	0	0	
n 1	Р з	20	1	0	1	0	0	0	- 1	0	0	0	
n_2	0	35	0	1	0	1	0	0	0	- 1	0	0	
n ₃	P 2	220	- 5	3	0	0	1	0	0	0	- 1	0	
<u>n</u> 4	$P_2(1+r)$	60	1	- 1	0	0	0	1	0	0	0	- 1	
	P 3	20	1	0					1	0	0	0	
Ci- Zi	P 2	280+ 60 _r	4- r	- 2+ r					0	0	1	1+ r	
	P 1	0	0	0					1	1	0	0	

若 r> 4, x₁ 作为进入基, 单纯形表格如表 8.22 所示。

表 8.22

	G	X	X 1	X 2	n ₁	n ₂	N ₃	N ₄	p 1	p 2	р з	p 4	
В	Св	b C	0	0	P 3	0	P 2 P	P ₂ (1+ r	P 1	P 1	0	0	
n 1	Р з	20		0	1	0	0	0	- 1	0	0	0	20
n_2	0	35	0	1	0	1	0	0	0	- 1	0	0	
n 3	P 2	220	- 5	3	0	0	1	0	0	0	- 1	0	
<u>n</u> 4	P ₂ (1+ r)	60	1	- 1	0	0	0	1	0	0	0	- 1	60
	P 3	20	1	1					1	0	0	0	
Ci- Zi	P 2	280+ 60 _r	4- r	- 2+ r					0	0	1	1+r	
	P 1	0	0	0					1	1	0	0	
\mathbf{X}_1	0	20	1	0	1	0	0	0	- 1	0	0	0	
<u>n</u> 2	0	35	0	1	0	1	0	0	0	- 1	0	0	

D		X	X 1	X 2	n ı	n ₂	N ₃	n ₄	p 1	p 2	рз	p 4	
В	Св	b C	0	0	P 3	0	P 2	$P_2(1+r)$	P 1	P 1	0	0	
n ₃	P 2	320	0	3	5	0	1	0	- 5	0	- 1	0	
n₄	$P_{2}(1+r)$	40	0	- 1	- 1	0	0	1	1	0	0	- 1	
	P 3	0		1	- 1				2		0	0	
Ci- Zi	P 2	360+ 40r		- 2+ r	- 4+ n	•			4- r		1	1+ r	
	P 1	0			0				1		0	0	

例 8.19 参数 r 出现在右端项:

r=0 时的解见前面。基变量为 n_1, x_2, n_3, n_4 时有

$$B^{-1} = \begin{cases} 0 & 1 & 0 & 0 \\ 0 & -3 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{cases}$$

$$0 & 0 & 0 & 20 - r \\ 0 & 1 & 0 & 0 & 35 + r \\ 0 & -3 & 1 & 0 & 220 \end{cases} = \begin{cases} 20 - r \\ 35 + r \\ 115 - 3r \\ 0 & 1 & 0 & 1 & 60 + 2r \end{cases}$$

建立单纯形表格(见表 8.23)。

表 8.23

D		X	X 1	X 2	n ı	N ₂	n 3	n 4	p 1	p 2	рз	p 4	
В	Св	b C	0	0	P 3	0	P 2	2P 2	P 1	P 1	0	0	
n 1	P 3	20- r	1	0	1	0	0	0	- 1	0	0	0	
X 2	0	35+ r	0	1	0	1	0	0	0	- 1	0	0	
n 3	P 2	115- 3r	- 5	0	0	- 3	1	0	0	3	- 1	0	
<u>n</u> 4	2P ₂	95+ 3 _r	1	0	0	1	0	1	0	- 1	0	- 1	
	P 3	20- r	- 1			0			0	0	0	0	
	P 2	305+ 3r	3			1			1	- 1	1	2	
	P 1	0	0			0			1	1	0	0	

若 20- r 0, 35+ r 0, 115- 3r 0, 95+ 3r 0, 即若- 31 $\frac{2}{3}$ r 2 时, 上面单纯形

表格给出最优解。若 $r < -31 \frac{2}{3}$,则 95+3r < 0,利用对偶单纯形法于上面单纯形表格,得表 8.24。

表 8.24

D		X	X 1	X 2	n ₁	n 2	n ₃	n ₄	p 1	p 2	рз	p 4	
В	Св	b C	0	0	P 3	0	P ₂	2P 2	P 1	P 1	0	0	
n ₁	P 3	20- r	1	0	1	0	0	0	- 1	0	0	0	
X 2	0	35+ r	0	1	0	1	0	0	0	- 1	0	0	
n ₃	P 2	115- 3r	- 5	0	0	- 3	1	0	0	3	- 1	0	
p 4	0	- 95- 3r	- 1	0	0	- 1	0	- 1	0	1	0	1	
	P 3	20- r	- 1			0			1	0	0		
Ci- Zi	P 2	115- 3r	5			3			0	- 3	1		
	P 1	0				0			1	1	0		

若 20- r 0, 35+ r 0, 115- 3r 0, - 95- 3r 0, 即- 35 r - $31\frac{2}{3}$ 时; 表 8.24 给出最优解。

类似的办法可讨论, 115- 3r 0, 20- r 0, 即若 r $38\frac{1}{3}$, r 20 或 20< r $38\frac{1}{3}$ 时解的情况, 这时利用对偶单纯形法, 主元素为 n_1 行、 p_1 列(见表 8.25)。

表 8.25

	_	X	X 1	X 2	n ₁	n ₂	n ₃	n ₄	p 1	p 2	p 3	p 4	
В	Св	b C	0	0	P 3	0	P ₂	2P 2	P 1	P 1	0	0	
p 1	P 1	r- 20	- 1	0	- 1	0	0	0	1	0	0	0	
X 2	0	35+ r	0	1	0	1	0	0	0	- 1	0	0	
n ₃	P 2	115- 3r	- 5	0	0	- 3	1	0	0	3	- 1	0	
<u>n</u> 4	2P ₂	95+ 3r	1	0	0	1	0	1	0	- 1	0	- 1	
	P 3	0	0		1	0				0	0	0	
Ci- Zi	P 2	305+ 3r	3		0	1				- 1	1	2	
	P 1	r- 20	1		1	0				1	0	0	

8.6 应用举例

例 8.20 某电子公司生产两种录音机,该公司有两个车间。录音机 A 需先在第一车间加工 2 小时,然后到第二车间组装 2.5 小时;而产品 B 先在第一车间加工 4 小时,然后在第二车间组装 1.5 小时。录音机 A 和 B 的每台库存成本分别为 800 元和 1 200 元。第一车间有 12 台机器,每天工作 8 小时,每月正常工作 25 天;第二车间有 7 台机器,每天工作 16 小时,每月正常工作也是 25 天。每小时运转费用:第一车间为每台 1 800 元;第二车间为每台 1 500 元。目标依次为:

A,B产品的每台利润分别为 200 元,230 元。市场预测 A,B 的下月销售量为 1500 和 1000 台。

P1: 库存成本不超过 30 000;

P2: A 产品必须达到 1500 台;

P3: 充分开工:

P4: 第一车间全月加班时数不超过 30 小时;

Ps: 产品 B 必须达到 1000 部;

P 6: 加班时间加以限制。

设 x_1, x_2 分别代表下月 A, B 两种产品的数量:

1.
$$2x_1 + 4x_2 + n_1 - p_1 = 8 \times 12 \times 25 = 2400$$

2. $5x_1 + 1$. $5x_2 + n_2 - p_2 = 16 \times 7 \times 25 = 2800$

2.
$$800x_1 + 1200x_2 + n_3 - p_3 = 30000$$

3.
$$x_1 + n_4 - p_4 = 1500$$

 $x_2 + n_5 - p_5 = 1000$

4. $p_1 + n_{11} - p_{11} = 30$

$$x_1, x_2, n_i, p_i = 0, i = 1, 2, ..., 11$$

 $n_{11}, p_{11} = 0$

例 8.21 某商店有职工 5 人, 其中经理 1 人, 管理员 1 人, 2 个全时售货员, 临时工 1 人。工作一小时贡献: 经理 24 元, 管理员 16 元, 全时售货员 9 元, 临时工 1.5 元。

规定销售额的 0.055 作为工资收入。计划: 经理和管理员每月工作 200 小时, 全时售货员甲工作 172 小时, 乙工作 160 小时, 临时工工作 100 小时。

P1: 销售额达到 14 500 元;

P2: 保证正常工作;

P3: 管理员的收入不低于 170元;

P4: 经理、管理员和甲的加班时间不超过规定;

Ps: 乙和临时工加班时间不超过规定;

P₆: 保证甲、乙的收入分别为 87 元和 52 元。

设: x1: 经理每月工作时数;

X2: 管理员每月工作时数;

X3: 甲每月工作时数;

x₄: 乙每月工作时数;

X5: 临时工每月工作时数。

s.t.
$$24x_{1} + 16x_{2} + 9x_{3} + 5x_{4} + 1.5x_{5} + n_{1} - p_{1} = 14500$$

$$x_{1} + n_{2} - p_{2} = 200$$

$$x_{2} + n_{3} - p_{3} = 200$$

$$x_{3} + n_{4} - p_{4} = 172$$

$$x_{4} + n_{5} - p_{5} = 160$$

$$x_{5} + n_{6} - p_{6} = 100$$

$$0.55(16x_{2}) + n_{7} - p_{7} = 170$$

$$0.55(10X_2) + 117 - p_7 = 1/0$$

$$0.55(9x_3) + n_8 - p_8 = 87$$

$$0.055(5x_4) + n_9 - p_9 = 52$$

$$p_2 + n_{21} - p_{21} = 24$$

$$p_3 + n_{31} - p_{31} = 24$$

$$p_4 + n_{41} - p_{41} = 52$$

$$p_5 + n_{51} - p_{51} = 32$$

$$p_6$$
 + n_{61} - p_{61} = 32

结果: $x_1 = 224$, $x_2 = 224$, $x_3 = 224$, $x_4 = 665$, $x_5 = 132$.

目标 1, 2, 3, 4 全部达到, 只有 5 未达到, 根据这计划乙必须加班 505 小时, 这显然不 可能,每月的销售量达到 14 500 元这个目标太高了, 改为 12 000 元。

根据经验广告费每增加100元销售额可增加2%,指标:广告费不超过500元。

P1: 保证正常工作;

P2: 销售额至少为 12 000 元;

P3: 管理员收入 170 元;

P₄: 广告费不超过 450 元;

Ps: 全体职工加班时间不超过规定;

P 6: 力争达到销售额 13 200 元;

P₇: 保证甲和乙的收入分别为 87 元和 52 元。

X1, X2, ..., X5 同上, X6 为广告费。

$$x_2 + n_3 - p_3 = 200$$

$$x_2 + n_3 - p_3 = 200$$

$$x_3 + n_4 - p_4 = 172$$

$$x_4 + n_5 - p_5 = 160$$

 $x_5 + n_6 - p_6 = 100$
 $x_6 + n_7 - p_7 = 450$
 $0.055(16x_2) + n_8 - p_8 = 170$
 $0.055(9x_3) + n_9 - p_9 = 87$
 $0.055(5x_4) + n_{10} - p_{10} = 52$
 $p_1 + n_{11} - p_{11} = 1320$
 $p_2 + n_{21} - p_{21} = 24$
 $p_3 + n_{31} - p_{31} = 24$
 $p_4 + n_{41} - p_{41} = 52$
 $p_5 + n_{51} - p_{51} = 32$
 $p_6 + n_{61} - p_{61} = 32$
 $x_i, p_j, n_j, p_{k1}, n_{k1}$ 0
 $i = 1, 2, ..., 6; j = 1, 2..., 10; k = 1, 2, ..., 6$

约束条件中 x_6 的系数 2.4 是根据每投资 100 元广告可增加销售额 0.02, 假定投资 450 元计算出的一元广告费产生的贡献(0.02x 12 000/100= 2.4)。

结果: $x_1 = 224$, $x_2 = 224$, $x_3 = 224$, $x_4 = 192$, $x_5 = 132$, $x_6 = 450$, 总销售额: 13214 元。除 P_6 之外全部完成, 此要求的销售额仅低于 106 元。

习 题 八

- 1. 一公司有两条生产线生产一种产品,第一生产线每小时生产 5 个单位产品,第二生产线每小时生产 6 个单位产品,每天都开工 8 小时,若目标优先级考虑为:
 - (a) 首先保证完成每天生产 120 单位;
 - (b) 第2目标为避免第二生产线加班每天超过3小时;
 - (c) 第3目标为加班总时数最小:
 - (d) 第4目标为尽量避免开工时间不足。

试求问题的解。

- 2. 一工厂有两条生产线生产某一产品,第一生产线每小时生产 2 个单位产品,第二生产 线每小时生产 $\frac{1}{2}$ 单位产品,正常开工每周 40 小时,每单位产品获利 100 元。设:
 - (a) 第1目标是生产180个单位产品;
 - (b) 第2目标是限制第一条生产线每周加班不得超过10小时;
 - (c) 第3目标避免开工不足;
 - (d) 最后目标是加班时数达到最少。假定两条生产线的开工费用相同。
 - i) 试建立上面问题的目标规划。
 - ii) 若考虑每周利润 19 000 作为以上 4 个目标前面的第 1 目标, 如何修改其模型?
 - iii) 若仅考虑一个目标, 即利润达最大又如何?

3.
$$\min z = P_1 n_1 + P_2 p_4 + 6P_3 n_2 + 4P_3 n_3 + P_4 p_1$$

$$s.t. \quad x_1 + x_2 + n_1 - p_1 = 90$$

$$x_1 + n_2 - p_2 = 70$$

$$x_2 + n_3 - p_3 = 45$$

$$x_1 + x_2 + n_4 - p_4 = 100$$

$$x_1, x_2, n_i, p_i = 0, \quad i = 1, 2, 3, 4$$

试用图解法求上问题的解。

4.
$$\min z = P_1 p_1 + P_2 n_2 + P_3 n_3$$
s.t.
$$10x_1 + 15x_2 + n_1 - p_1 = 40$$

$$100x_1 + 100x_2 + n_2 - p_2 = 1000$$

$$x_2 + n_3 - p_3 = 7$$

$$x_1, x_2, n_i, p_i = 0, \quad i = 1, 2, 3$$

用图解法求解。

5.
$$\min z = P_1(p_3 + p_4) + P_2(p_1) + P_3n_2 + P_4(n_3 + 1.5n_4)$$
s. t.
$$x_1 + x_2 + n_1 - p_1 = 40$$

$$x_1 + x_2 + n_2 - p_2 = 100$$

$$x_1 + n_3 - p_3 = 30$$

$$x_2 + n_4 - p_4 = 15$$

$$x_1, x_2, n_i, p_i = 0, \quad i = 1, 2, 3, 4$$

用图解法求解。

- 6. 试用单纯形法求问题 1~4 的解。
- 7. 试用目标序列法求问题 1~4 的解。

8.
$$\min z = P_1(2p_1 + 3p_2) + P_2(n_3) + P_3p_4$$
s.t.
$$x_1 + x_2 + n_1 - p_1 = 10$$

$$x_1 + n_2 - p_2 = 4$$

$$5x_1 + 3x_2 + n_3 - p_3 = 56$$

$$x_1 + x_2 + n_4 - p_4 = 12$$

$$x_1, x_2, n_i, p_i = 0, \quad i = 1, 2, 3, 4$$

解此目标规划。

- 9. 若问题 8 中
 - (a) 右端项 b₂ 从 4 改为 12, 求解。
 - (b) 若第 1 个约束条件改为: $2x_1 + x_2 + n_1 p_1 = 10$,求问题的解。
 - (c) 若目标函数改为: $\min z = P_1(p_1 + 2p_2) + P_2(n_3) + P_3p_4$, 求问题的解。
 - (d) 若增加一约束条件: $x_1 x_2 + n_5 p_5 = 4$, 求问题的解。

10.
$$\min z = P_1(n_1) + P_2(n_3) + P_3(n_2) + P_4(p_1 + p_2)$$

$$s. t. \quad 2x_1 + x_2 + n_1 - p_1 = 20$$

$$x_1 + n_2 - p_2 = 12$$

$$x_2 + n_3 - p_3 = 10$$

$$x_1, x_2, n_i, p_i = 0, \quad i = 1, 2, 3$$

求解问题。

11.
$$\min z = P_1 n_1 + P_2 p_2 + P_3 (8n_3 + 5n_4) + P_4 p_1$$
s. t.
$$x_1 + x_2 + n_1 - p_1 = 100$$

$$x_1 + x_2 + n_2 - p_2 = 90$$

$$x_1 + n_3 - p_3 = 80$$

$$x_2 + n_4 - p_4 = 55$$

$$x_1, x_2, n_i, p_i = 0, \quad i = 1, 2, 3, 4$$

求解问题。

12.
$$\min z = P_1(n_1 + p_1) + P_2(2p_2 + p_3)$$
s.t.
$$x_1 - 10x_2 + n_1 - p_1 = 50$$

$$3x_1 + 5x_2 + n_2 - p_2 = 20$$

$$8x_1 + 6x_2 + n_3 - p_3 = 100$$

$$x_1, x_2, n_i, p_i = 0, \quad i = 1, 2, 3$$

求问题的解。

13.
$$\min z = P_1(p_1 + p_2) + P_2n_3 + P_3p_4$$
s. t.
$$x_1 + 2x_2 + n_1 - p_1 = 4$$

$$4x_1 + 3x_2 + n_2 - p_2 = 12$$

$$x_1 + x_2 + n_3 - p_3 = 8$$

$$x_1 + n_4 - p_4 = 2$$

$$x_1, x_2, n_i, p_i = 0, \quad i = 1, 2, 3, 4$$

求问题的解。

14.
$$\min z = P_1(n_1 + p_2) + P_2n_3 + P_3p_4 + P_4(n_1 + 1.5n_2)$$

$$s.t. \qquad x_1 + n_1 - p_1 = 30$$

$$x_2 + n_2 - p_2 = 15$$

$$8x_1 + 12x_2 + n_3 - p_3 = 1000$$

$$x_1 + 2x_2 + n_4 - p_4 = 40$$

$$x_1, x_2, n_i, p_i = 0, \quad i = 1, 2, 3, 4$$

求问题的解。

15. 若题 14 的目标函数改为

$$\min z = P_1(n_1 + p_1) + P_2p_4 + P_3(n_1 + 1.5n_2) + P_4(n_3)$$
 求问题的解。

· 274 ·

16. 分别用图解法、单纯形法、目标序列法求下列问题的解。

min z =
$$P_1(p_1 + p_2) + P_2n_3 + P_3n_4$$

s. t. $x_1 + x_2 + n_1 - p_1 = 400$
 $2x_1 + x_2 + n_2 - p_2 = 500$
 $x_1 + n_3 - p_3 = 300$
 $0.4x_1 + 0.3x_2 + n_4 - p_4 = 240$
 $x_1, x_2, n_i, p_i = 0, i = 1, 2, 3, 4$

- 17. 求解下列各题。在问题 10 中,
 - (a) 目标 P4 中的 p1 的系数从 1 改为 3, 求其影响。
 - (b) 若 P₂n₃ 改为 P₂(100n₃)。
 - (c) 第 1 约束条件改为: $2x_1 + 5x_2 + n_1 p_1 = 20$ 。
 - (d) 第1约束条件的x1系数改为-1。
- 18. 在问题 11 中, 右端项 100 改为 75, 90 改为 80, 求问题的解; 若 100 和 90 分别改为 150, 75 时, 又如何?
- 19. 求

20. 求解

21. 求解

在本题中

(a) 若增加一约束条件: $x_1 + x_2 + n_5 - p_5 = 50$, 目标函数 $P_2(n_3 + 2n_4)$ 改为 $P_2(n_3 + 2n_4)$ + $2p_5$), 求问题的解。

(b) 若增加一变量 x3, 约束:

求问题的解。

第 9 章 整数规划问题的 DFS 搜索法与分支定界法

9.1 问题的提出

例 9.1 某种原料有 m 个产地 $A_1, A_2, ..., A_m, n$ 个销地 $B_1, B_2, ..., B_n$, 若产地 A_i 投入 开发, 应投资 g_i 元, 产量不超过 M_i , i=1,2,...,m。 B_j 的需求量为 D_j , j=1,2,...,n。从 A_i 到 B_j 单位产品的运费为 c_{ij} , i=1,2,...,m; j=1,2,...,n。问题为应开发哪些产地, 使得满足要求, 费用最少?

设 x_{ij} 为从 A_{i} 运往 B_{j} 的量, $y_{i=1}$ 表示 A_{i} 投入开发, 否则 $y_{i=0}$, i=1,2,...,m; j=1,2,...,n。 故得整数规划问题:

 $\mathbf{x}_{ij} = \mathbf{D}_{j}$ 保证满足 \mathbf{B}_{j} 的需求,而 \mathbf{x}_{ij} $\mathbf{M}_{i}\mathbf{y}_{i}$ 则表示 \mathbf{A}_{i} 开发后的产量不超过 \mathbf{M}_{i} 。

上面的问题可推广到多种货物:

设 1 种货物, 有 m 个产地 $A_1, A_2, ..., A_m$; 产地 A_i 生产第 k 种货物的产量为 M_{ik} , i= 1, 2, ..., m; k= 1, 2, ..., 1。销地为 $B_1, B_2, ..., B_n$; B_j 需要第 k 种产品的需求量为 D_{jk} , j= 1, 2, ..., n; k= 1, 2, ..., 1。第 k 种货物从 A_i 运往 B_j 的单位运费设为 c_{ijk} , 为简单起见, 假定不考虑 A_i 开发投资费用, 只考虑运输费用, 则问题导致

例 9.2 背包问题。已知 n 个物品分别重 $a_1, a_2, ..., a_n$ 单位, 代价分别为 $c_1, c_2, ..., c_n$ 。 现从中取出若干装进背包, 使总重量不超过 b, 但代价达到最大。

令 x = 1 表示第 i 个物品被选中, 否则 x = 0, i = 1, 2, ..., n。于是问题导致

例 9.3 流动售货员问题。n 个城市 $v_1, v_2, ..., v_n$, 已知距离矩阵 $D=(d_{ij})_{n}$, 其中 d_{ij} 为 v_i 到 v_j 间的距离, $d_{ii}=0$ 。一流动售货员从 v_0 出发遍历 n 个城市一次且仅一次, 最后返回 v_0 , 要求距离最短。

令 $x_{ij}=1$ 标志回路取 v_i v_j 为边, 否则 $x_{ij}=0$ 。引进 $v_{n+1}=v_0$, 问题导致

min
$$z = d_{ij}x_{ij}$$

s.t.

$$x_{ij} = 1, j = 1, 2, ..., n + 1$$

$$x_{ij} = 1, i = 0, 1, 2, ..., n$$

$$u_{i} - u_{j} + (n + 1)x_{ij} \quad n$$

$$i = 0, 1, ..., n, j = 1, 2, ..., n + 1, i \quad j$$

$$x_{ij} = 0 \quad x_{ij} = 1, i = 0, 1, 2, ..., n + 1, i \quad j$$

$$x_{ij} = 0 \quad x_{ij} = 1, i = 0, 1, 2, ..., n + 1, i \quad j$$

$$x_{ij} = 0 \quad x_{ij} = 1, 2, ..., n + 1, i \quad j$$

$$x_{ij} = 0 \quad x_{ij} = 1, 2, ..., n + 1, i \quad j$$

约束条件(9.1)和(9.2)的含意十分清楚,(9.3)条件是为了避免出现子回路,例如: $n=6, x_{12}=x_{23}=x_{31}=1, x_{45}=x_{56}=x_{64}=1$, 其余 $x_{ij}=0$, 见图 9.1。

图 9.1

显然(9.1)和(9.2)均被满足,但不是所求。(9.3)便可避免这种情况出现,否则

$$u_4 - u_5 + 6 = 5$$
 $u_5 - u_6 + 6 = 5$
 $u_6 - u_4 + 6 = 5$

三式相加6 5导致矛盾。

又如一车间要加工 n 项任务 $J_1, J_2, ..., J_n$ 。加工 J_1 完毕后, 为了加工 J_k , 需要时间 d_{1k} 进行准备, i, k = 1, 2, ..., n, i_1k 。如何安排加工顺序可以转化成类似的流动售货员问题。

例 9.4 覆盖问题。一仓库有 m 件预订的货物要发送, 有 n 辆送货车, 每辆至多送 k 项货物。

第 i 辆车送的货物可用向量 A_i 表示, A_i 为 m 个元素的列向量, 它的第 j 个元素为 1 则表示它负责发送第 j 件货物。启用第 i 辆车的代价为 c_i 。于是问题导致

其中 A₀ 为全为 1 的列向量。

例 9.5 资金分配问题。设有 n 个投资项目 $I_1, I_2, ..., I_n$, 及 m 年内逐年投入资金矩阵 $b = (b_1, b_2, ..., b_m)$, 其中 b_i 为第 i 年的投资金额,以及投资矩阵 $A = (a_i)_{m \in n}$, 其中 $a_i =$ 第 i 年项目 I_i 所需投入的金额。利润矩阵 $C = (c_1 \ c_2 \ ... \ c_n)$, c_i 为 I_i 项目的利润。

资金分配问题即在提供的资金的容许条件下,求利润最高的投资决策。

设 x = 1 表示选取第 i 项投资项目, 否则 x = 0, i = 1, 2, ..., n。问题导致

$$max z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

 $s. t. \quad a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \quad b_1$
 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \quad b_2$
...
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \quad b_m$
 $x_i = 0$ 或 $1, i = 1, 2, ..., n$

例 9.6 下料问题。工地上需要长度为 $l_1, l_2, ..., l_m$ 的钢材数分别为 $b_1, b_2, ..., b_m$ 根,取长为 l 的原材料进行截取。已知有 n 种截取方案:

下料问题就是在满足要求: 截取长度为 $l_1, l_2, ..., l_m$ 的钢材数分别为 $b_1, b_2, ..., b_m$ 根时, 用的原材料数最少的方案。假定 x_i 表示按方案 A_i 截取用的原钢材数目, 于是问题表示为:

min
$$z = x_1 + x_2 + ... + x_n$$

s. t. $a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n$ b₁
 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n$ b₂
...
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n$ b_m
 $x_i = 0$,整数, $i = 1, 2, ..., n$

例 9.7 非线性规划问题线性化。对于下列类型的非线性规划问题:

min
$$z = \int_{i=1}^{m} f_i(x_i)$$
 (9.4)
s.t. $g_{ij}(x_i)$ b_i , $j = 1, 2, ..., n$
 x_i $0, i = 1, 2, ..., m$

连续函数 f(x)可以在所讨论的区间[a, b] 上用逐段线性化的逼近办法。如图 9.2 所示,即将区间[a, b]分成 n 个子区间,分点为:

$$a = a_0 < a_1 < ... < a_{n-1} < a_n = b$$

若 x 在闭区间[ai, ai+1]上,则可写成

$$x = t_i a_i + t_{i+1} a_{i+1},$$

其中 t_{i+} t_{i+} t_{i+} t_{i+} 0

图 9.2

$$f(x) = t_i f(a_i) + t_{i+1} f(a_{i+1}).$$

若 f(x)是逐段线性函数, 可令

$$x = t_1 a_1 + t_2 a_2 + ... + t_n a_n$$

 $f(x) = t_1 f(a_1) + t_2 f(a_2) + ... + t_n f(a_n)$

其中 $t_1+t_2+...+t_n=1$, $t_1=0$, i=1,2,...,n, 引进 0,1 变量 $y_1,y_2,...,y_n$, 使 $y_1+y_2+...+y_n=1$, 且

若 y_i 是 1, 则其余的 y_j = 0, j = 1, 2, ..., n, j i。故 t_i y_i, t_{i+1} y_i+ y_{i+1}, 其余 t_j 0, j i, i+ 1, 而且由于 t_1 + t_2 + ...+ t_n = 1

$$t_{i+} t_{i+} = 1$$

根据以上结果,将非线性规划(9.4)化为下列关于 tij, yik的混合规划问题:

9.2 整数规划的几何意义

对于下面混合规划问题:

$$max z = Cx + dy$$

 $s.t.$ $Ax + Dy$ b
 $x \quad 0, y \quad 0$
 $x \quad \Rightarrow 2$

其中
$$x = \begin{pmatrix} x_1 & x_2 & \dots & x_n \end{pmatrix}^T$$
, $y = \begin{pmatrix} y_1 & y_2 & \dots & y_n \end{pmatrix}^T$, $A = \begin{pmatrix} a_{ij} \end{pmatrix}_{m \times n}$, $D = \begin{pmatrix} d_{pq} \end{pmatrix}_{m \times n}$, $b = \begin{pmatrix} b_1 & b_2 & \dots & b_m \end{pmatrix}^T$, $C = \begin{pmatrix} c_1 & c_2 & \dots & c_n \end{pmatrix}$, $d = \begin{pmatrix} d_1 & d_2 & \dots & d_n \end{pmatrix}$

Ax + Dy b, x 0, y 0 是 n + n 维空间的凸多面体包含了其中 x 为整数的点。若不加 x 是整数限制,则 z = Cx + dy 的极大值必在凸多面体的某顶点上取得,加上 x 是整数的限制后,混合规划的极值点便在凸多面体内的 x 为整数的内点上取得。

有些问题整数规划的解和线性规划的解是一致的,但一般不是这样。

例 9.8
$$\max z = 2x_1 - x_2$$
s.t.
$$5x_1 + 7x_2 - 45$$

$$-2x_1 + x_2 - 1$$

$$2x_1 - 5x_2 - 5$$

$$x_1, x_2 - 0$$

图 9.3 是上述约束条件及可行解域的图解法。

图 9.3 中影线标出可行解域, 域内实线分别是 x_1 为整数的点, 图中 A 点的坐标为 $6, \frac{7}{5}$, 故 $z=\frac{53}{5}$ 。

若不加 x1 为整数的限制,则线性规划的极值点在交点:

$$2x_1 - 5x_2 = 5$$

 $5x_1 + 7x_2 = 45$

上, 即 $x_1 = 260/39$, $x_2 = 65/39$, 故这时线性规划的最优解为 z = 35/3。

在这里自然要问:整数规划解可否由求解线性规划后取整而得到呢?其实不然,见例 9.9。

例 9.9
$$\max z = x_1 + x_2$$
 s.t.
$$3x_1 - x_2 = 3/2$$

$$-x_1 + x_2 = 1/2$$

$$x_1, x_2 = 0, 整数$$

若去掉整数解条件,则线性规划最优解为 $x_1 = 1, x_2 = \frac{3}{2}$, max $z = \frac{5}{2}$ 。取整后 $x_1 = x_2 = 1$, 点(1,1) 根本就不在可行解域上,事实上,(0,0) 才是唯一解。在可解域内无整数点。见图 9.4

max z =
$$5x_1 + 8x_2$$

s. t. $x_1 + x_2 = 6$
 $5x_1 + 9x_2 = 45$
 $x_1, x_2 = 0$ 整数

由图解法可知(见图 9.5),相应的线性规划问题解为交点:

$$x_1 + x_2 = 6$$
 $5x_1 + 9x_2 = 45$

即

$$x_1 = \frac{9}{4}, x_2 = \frac{15}{4}, z = 41 \frac{1}{4},$$

但(2,4)点不是可行解。

(2,3)点的目标函数值为 z=34。 实际上本整数规划问题的解为(0,5)点, 并非在 $\frac{9}{4},\frac{15}{4}$ 的附近。

可见,若线性规划有整数解,则它也是相应的混合规划或整数规划的解。当然,若线性规划无可行解,则相应的混合规划或整数规划也无解。

9.3 可用线性规划求解的整数规划问题

本节讨论一类整数规划问题,它的解就是线性规划解,即可以通过单纯形法求整数规划的解。

首先介绍幺模矩阵的概念。矩阵 $A=(a_{i})_{m \times n}$, 若它的任一子行列式的值均为 0,1 或者- 1. 则称这样的矩阵为幺模矩阵。幺模矩阵的所有元素都是 0,1, - 1。

若 A 是 A 模矩阵, 则 B 的所有元素都是 0,1,-1。这结果不难证明。

又 $x_B = B^{-1}b$, 若 b 是整数, 则 x_B 是整数。

例 9.11 任务指派问题。设有 3 项任务 J_1, J_2, J_3 ; 3 个工作人员 A_1, A_2, A_3 ; 以及代价矩阵 $C=(c_{ij})_{3 \leftarrow 3}$, 其中 $c_{ij}=J_1$ 任务由 A_j 完成的代价, i,j=1,2,3。

令 $x_{ij}=1$ 表示 J_i 由 A_j 来完成, 否则 $x_{ij}=0$ 。任务指派问题是确定每一位工作人员的任务, 使代价和最小, 故导致

$$\begin{aligned} & \text{min } z = \sum_{\substack{i=1 \ j=1}}^{3} c_{ij} x_{ij} \\ & \text{s. t.} \\ & \sum_{\substack{i=1 \ 3}}^{3} x_{ij} = 1, \ j = 1, 2, 3 \\ & \sum_{\substack{i=1 \ 3}}^{3} x_{ij} = 1, \ i = 1, 2, 3 \end{aligned}$$

$$x_{ij} = 0$$
 或 1, $i, j = 1, 2, 3$

系数矩阵 A 为

A 的每列有两个 1 元素, A 的前 3 行的和等于后 3 行的和, 即 A 的秩 < 6, 即 6 阶子行列式全为 0。 A 矩阵的所有元素都是 0 或 1, 任何 2 阶子矩阵的行列式只能是 0, 1 或 - 1。

假定 A 的任何 k 阶子矩阵的行列式只取 0,1 或- 1, 证明 k+1 阶子矩阵的行列式也取值 0,1 或- 1。设 B 是 k 阶子矩阵, 若 B 有一列元素全为 0,则 det(B)=0。若 B 有一列只含 1 个元素 1,则沿该列展开 $det(B)=\pm det(B)$, B 是 k-1 阶子矩阵, 故 det(B) 也是 0,1 或- 1。

最后若 B 的所有列都含有两个元素 1,则其中一个在前 3 个约束条件,另一个在后 3 个约束条件,正如前面证明的那样,诸行之间线性相关,行列式为零。

9.4 0-1 规划和 DFS 搜索法

9.4.1 穷举法

变元只取 0,1 两种值的整数规划是最基本的问题,许多变量有上界的线性规划问题可以转为 0-1 规划。办法如下,例如对于约束

$$0 \quad x < 2^{1+1}$$

可今

$$x = 2^{1}y_{1} + 2^{1-1}y_{1-1} + ... + 2y_{1} + y_{0}$$

其中 y = 0 或 1, i = 0, 1, 2, ..., 1, 求 x 问题便转为求 $y_0, y_1, ..., y_1$ 的 0-1 规划问题。

必须指出: 0-1 规划问题可以化为在正方体 $(n \ 4): 0 \ x = 1, i=1, 2, ..., n$ 上的线性规划求解, 因后者若有解, 必在正方体顶点上取得。

搜索法是最简单的一种办法,搜索法中最简单的莫过于穷举,见下面例9.12。

例
$$9.12$$
 max $z = 2x_1 + x_2 - x_3$ s.t. $x_1 + 3x_2 + x_3 = 2$ $4x_2 + x_3 = 5$ $x_1 + 2x_2 - x_3 = 2$ $x_1 + 4x_2 - x_3 = 4$ $x_1, x_2, x_3 = 0$ 或 1

 x_1, x_2, x_3 共有 $2^3 = 8$ 种状态, 分别枚举如表 9.1 中所示。

表 9.1

约束 X1 X2 X3	(1)	(2)	(3)	(4)	x S	Z
0 0 0	0	0	0	0	是	0
0 0 1	1	1	- 1	- 1	是	- 1
0 1 0	(3)	4	2	4	非	
0 1 1	(4)	5	1	3	非	
1 0 0	1	0	1	1	是	2
1 0 1	2	1	0	0	是	1
1 1 0	(4)	4	(3)	(5)	非	
1 1 1	(5)	5	2	4	非	

表 9.1 中加有()的项表示不满足约束条件。例如 0 1 0 行(1)列为(3),即 $x_1=x_3=0$, $x_2=1$,第 1 约束条件不满足,结果为 3。其余同此类推 。故最优解为 $x_1=1$, $x_2=x_3=0$, z=2。

穷举法的时间复杂性为 (2^{n}) , 所以不是一种可行的算法。当 n 充分大时, 用该方法实际上不可能。例如 n= 100, 2^{100} 1. 267% 10^{30} , 用每秒完成 10^{7} 个搜索的超高速计算机需要时间: T=1.267% $10^{30}/3.1536$ % $10^{4}=4.019$ % 10^{15} 年, 其中 3.1536% $10^{7}=365$ % 24 × 3600, 每年以 365 天计, 每年 3.1536% 10^{7} 秒。

穷举法,也叫做强行搜索法,是对搜索空间的遍历。上述例子的搜索空间是如图 9.6 所示高度为 3 的树。

图 9.6

9.4.2 DFS 搜索法

搜索技术在于探讨能否缩小搜索空间,提高搜索效率。

首先介绍 DFS 搜索法。

DFS 是 Depth First Search 的缩写, 顾名思义是深度优先搜索的意思。典型的思想可以从下面例子看出。

例 9.13 设有一 ★ 4 的棋盘, 即每行每列都有 4 个方格的棋盘, 用 4 个棋子布在这棋盘的格子上, 要求满足以下两个条件:

(a) 任意两个棋子不在同一行和同一列上:

(b) 任意两个棋子不在同一对角线上。 试求这样的布局。

若采用穷举法,即是对搜索空间的遍历(见图 9.7)。

图 9.7

对于 $n \times n$ 的棋盘, 穷举搜索的时间复杂性为 O(n!), 根据斯特灵(Stirling) 公式: n! ~ $\frac{1}{2n}$ $\frac{n}{e}$ $\frac{n}{e}$ $\frac{n}{e}$ $\frac{n}{e}$ $\frac{n}{e}$ $\frac{n}{e}$ $\frac{n}{e}$ $\frac{n}{e}$ $\frac{n}{e}$

若第 1 行棋子布在第 h 格, 第 2 行布在第 i 格, 第 3 行布在第 j 格, 第 4 行布在第 k 格, h, i, j, k 互不相等, 故棋子的一种布局对应于 1, 2, 3, 4 的一个排列 h ij k。例如图 9 . 8 对应干排列 2413。

图 9.8

DFS 搜索法介绍如下:

图 9.9 中(1) 为第 1 行第 1 格布上棋子, (2) 中× 表示第 2 行不适合于布棋子的格子, 即布了棋子将违反两棋子不在同列或同一对角线上的规定。余此类推。直到(6) 表明第 4 行所有格子都不适合于布棋子, (7) 说明退到第 3 行其他所有格子也不适宜布棋子, (8) 说明第 2 行也不存在适合于布棋子的格子, (9) 是第 1 行的第 1 格子布了棋子, 找不到合适的布局, 故也不适合布棋子, 因此改布在第 2 格子。

DFS 搜索法可以概括为"向前走,碰壁回头"。例如: (7)—(8) 便是第 3 行走不通,碰壁后退到第 2 行,发现也走不通,退到第 1 行,说明第 1 行的第 1 格子走不通,改布在第 2 格。

上面的搜索过程相当于对图 9.7 所示的搜索树从树根开始自上而下,自左向右搜索直到走不通,退回去,另走下一条路。× 是碰壁的标志,× 以下的树枝被剪去了,这样可以节省搜索时间,提高效率。

图 9.9

将图 9.10 与图 9.7 作比较便可以明显看出 DFS 搜索法的效率。

图 9.10

下面通过例子说明 0-1 整数规划如何利用 DFS 搜索法,关键是如何判断"碰壁",即断定走不通。

首先确定搜索树, 假定自上而下的搜索顺序为 x_2 , x_1 , x_3 , 引进栈 S 用以记录搜索过程的状态栈是按后进先出的原则建立起来的数据结构。属于 S 栈的变量定义为固定变量。 $S = \{x_3 = x_4 = 0, x_4 = 1\}$, 作为约定栈顶元素为 $x_3 = x_4 = 0$

= 0, 中间为 $x_1 = 0$, 栈底为 $x_2 = 1$ 。若从 S 取走栈顶元素, 则取出的是 $x_3 = 0$,取走后的 S 为 $\{x_1 = 0, x_2 = 1\}$,S= $\{x_1 = 0, x_2 = 1\}$,栈顶元素则为 $x_1 = 1$ 。

搜索空间即搜索树(如图 9.11 所示),搜索的思想用流程图 9.12 表示。

图 9.11 图 9.12

1. $S = \{x_2 = 0\}, k = 1, 由于 x_2 = 0, x_1 和 x_3 不论为 0 或 1 均不能满足 <math>2x_1 - 6x_2 + 6x_3 - 4$ 。故 $x_2 = 0$ 应放弃。

2. $S = \{x^2 = 1\}$, 前进一步 $S = \{x^1 = 0, x^2 = 1\}$, 再前进一步 $S = \{x^3 = 0, x^4 = 0, x^2 = 1\}$, k= 3, z= 1。

- 3. 从栈顶元素 $x_3 = 0$ 后退, 改为 $S = \{x_3 = 1, x_1 = 0, x_2 = 1\}, k = 3$ 。
- 4. $S = \{x_3 = 1, x_4 = 0, x_2 = 1\}$ 不满足约束, 应放弃。
- 5. $S = \{x_1 = 1, x_2 = 1\}$, 前进一步为 $S = \{x_3 = 0, x_4 = 1, x_2 = 1\}$, 应放弃。
- 6. 进入 $S = \{x_3 = 1, x_4 = 1, x_2 = 1\}$, 不满足约束, 应放弃, 故后退。直到 k = 0, 停止。 故得最优解 $x_2 = 1, x_4 = x_3 = 0$, z = 1。

9.5 整数规划的 DFS 搜索法

9.5.1 搜索策略

DFS 算法的关键在于如何决定后退,并找寻前进方向的策略,目的使得剪去的搜索树枝越多越好。

如求目标函数的极大值,可化为求极小值。若有 $c_k < 0$, 可令 $x_k = 1$ - x_k ,则 x_k 的系数为正,且 $x_k = 0$ 或 1。所以,不失一般性,都假定

$$c_j$$
 0, $j = 1, 2, ..., n$

决定后退的依据大致有:

- (a) 若前进将使得约束条件不满足, 应后退。
- (b) 前进将使得目标函数值超过已知 Zmin 时, 应后退。

令 y1= 1- x1, y2= x2, y3= x3, y4= 1- x4, y5= x5, 并引进松弛变量 S1, S2, S3 得:

min
$$z = 5x_1 + 7x_2 + 10x_3 + 3x_4 + x_5 - 8$$

s. t. $-x_1+3x_2-5x_3-x_4+4x_5+s_1=-2$
 $2x_1-6x_2+3x_3+2x_4-2x_5+s_2=0$
 $x_2-2x_3+x_4+x_5+s_3=-1$
 $x_i=0$ 或 1, $i=1,2,3,4,5$
 $s_j=0,j=1,2,3$

为了方便起见, 栈 S 的状态记为 S(1, 2, 3) 以表达 $x_1 = 1, x_2 = x_3 = 0$,栈顶元素为 $x_1 = 0$,这作为约定。

对应于S有松弛变量

其中 S^+ = {j ⑤ S, x_j = 1}, 即 S^+ 为 S 中使 x_j = 1 的下标集合。若对于 i = 1, 2, ..., m 恒有 s_i 0, 相应地

$$\mathbf{x}_{j} = \begin{array}{cccc} 1 & j & S^{+} \\ 0 & j \mid S^{+} \end{array}$$

由此构成点 $x = \begin{pmatrix} x_1 & x_2 & \dots & x_n \end{pmatrix}^T$ 满足约束条件。若存在 i, 使 s < 0, 即 x 不在可行解域上。

对应于 k, 有时栈 S 也写成 $S^{(k)}$, x 记作 $x^{(k)}$, 松弛变量也记为 $s^{(k)}$, 不一一赘述。从 $x^{(k)}$ 出发, 为了有效地确定前进方向, 避免盲目性, 步骤如下, 其中 $N=\{1,2,...,n\}$ 。

 $S1. A_k \ge \{j \ N \setminus S^{(k)}$ ©使 $s_i^{(k)} < 0$ 的所有下标 i, 恒有 $a_{ij} > 0\}$

(注: 松弛变量 $s_i^{(k)} < 0$ 表明 $x_i^{(k)}$ 不在可行解域上。由 $s_i^{(k)} = b_i$ - a_{ij} 可知, 凡是 j

 A_k 的变量 x_j , 由 0 改为 1 对改善 $x^{(k)}$ 的可行性不仅没有帮助, 反而使之更坏。找出 A_k , 若 i A_k 则 x_j 应予放弃, 从而将搜索范围缩小到 $N\setminus S^{(k)}\setminus A_k$)。

S2. B_k > $N \setminus A_k \setminus S^{(k)}$,若 B_k = ,即 $N = A_k$ $S^{(k)}$,继续搜索已无意义,应后退。否则令 $C_k > \{j \quad B_k @ k + c_j \quad z_{min} \}$

(注: C_k 是 B_k 的子集,对于 j C_k , x_j 由 0 改为 1, 使 z_{k+} c_j z_{min} ,这结果对于搜索没有价值。故对于 j C_k 也不予考虑,从 B_k 中排除 C_k ,搜索的范围进一步缩小)。

 $S3. E_k > B_k \setminus C_k$,若 $E_k = 1$,则无可行解存在的可能,应后退。否则令

$$F_{\,k} \; \geq \; \{ \; i \; \quad M \, \textcircled{S}_{ii}^{(\,k)} \; < \; 0, \; \min_{j \; E_{\,k}} \{ 0, a_{\,ij} \, \} > \; s_{\,i}^{(\,k)} \, \}$$

(注: F_k 不是空集, 说明存在 j M, 使得松弛变量 $s_i^{(k)} < 0$, 而且绝对值如此之大, 继续前进根本不可能找到可行解。显然只有 $a_{ij} < 0$ 时, x_j 从 0 变 1 才能减小 $s_i^{(k)}$ 的绝对值, 进而有可能使 $s_i^{(k)}$ 变为正数。 $s_i^{(k)} < \min_{j \in F_k} \{0, a_{ij}\}$ 意味着继续往前已不存在这种可能性)。若 F_k 非空, 则后退。否则转 $S_i^{(k)}$

S4. 计算

$$v_{j} = \sum_{i=1}^{m} \min\{0, s_{i}^{(k)} - a_{ij}\}, j \qquad E_{k}$$

令 $v_i = \max_i \{v_i\}, 则令$

 $x_1 = 1$, 即 x_1 1。即选 x_1 从 0 变为 1, 前进一步。

(注: $\min\{0, s_i^{(k)} - a_{ij}\}$ 用来衡量 x_i 改为 1 后引起的不可行性改变的宏观标准, 若

 $a_{ij} < 0$, 使 s_{i} - $a_{ij} > 0$, 则第 i 个约束条件得到满足, 如果 $\min_{i=0}^{m} \min\{0, s_{i}^{(k)} - a_{ij}\} = 0$, 表

明由于 x_{ij} 的进入, 所有约束条件均获得满足, 若 $\min_{i=0}^{m} \{0, s_i^{(k)} - a_{ij}\} < 0$, 则使绝对值最小的作为选择标准)。

搜索的过程用流程图表示,如图 9.13 所示。

9.5.2 举例

为了深入了解算法,耐心地做完下面的例子的求解的全过程是非常必要的。

例 9.16
$$\min z = 3x_1 + 2x_2 + 5x_3 + 2x_4 + 3x_5$$
s.t.
$$-x_1 - x_2 + x_3 + 2x_4 - x_5 - 1$$

$$-7x_1 + 3x_3 - 4x_4 - 3x_5 - 2$$

$$11x_1 - 6x_2 - 3x_4 - 3x_5 - 1$$

$$x_i = 0, 1, \quad i = 1, 2, 3, 4, 5$$

引进松弛变量 S1, S2, S3 使得

min z =
$$3x_1 + 2x_2 + 5x_3 + 2x_4 + 3x_5$$

s.t. - x_1 - x_2 + x_3 + $2x_4$ - x_5 + s_1 = 1
- $7x_1$ + $3x_3$ - $4x_4$ - $3x_5$ + s_2 = - 2
 $11x_1$ - $6x_2$ - $3x_4$ - $3x_5$ + s_3 = - 1
 x_1 = 0, 1, i = 1, 2, 3, 4, 5, s_1 0, j = 1, 2, 3

解算过程如下:

1. 由于 $s_2^{(1)}$ = - 2< 0, $s_3^{(1)}$ = - 1< 0, 故 x = (0 0 0 0 0) 不在可行解域上, 因存在 j = 3, 使得 a_{23} , a_{33} 0, A_1 = {3}, B_1 = {1, 2, 3, 4, 5}, C_1 = , F_1 = , E_1 = {1, 2, 4, 5},

$$v_{1} = \min\{0, 1+1\} + \min\{0, -2+7\} + \min\{2, -1-11\} = -12$$

$$v_{2} = \min\{0, 1+1\} + \min\{0, -2\} + \min\{0, -1+6\} = -2$$

$$v_{4} = \min\{0, 1-2\} + \min\{0, -2+4\} + \min\{0, -1+3\} = -1$$

$$v_{5} = \min\{0, 1+1\} + \min\{0, -2+3\} + \min\{0, -1+3\} = 0$$

$$v_{1} = \max\{-12, -2, -1, 0\} = 0, v_{1} = v_{5}$$

2. 令 v₅= 1, 代入(9.5)得

min z =
$$3x_1 + 2x_2 + 5x_3 + 2x_4 + 3$$

s.t. - x_1 - x_2 + $x_3 + 2x_4 + s_1 = 2$
- $7x_1 + 3x_2$ - $4x_4 + s_2 = 1$
 $11x_1 - 6x_2$ - $3x_4 + s_3 = 2$
 $x_1 = 0, 1, i = 1, 2, 3, 4; s_1, s_2, s_3 = 0$

$$S_2 = \{\overline{5}\}, A_2 = , B_2 = \{1, 2, 3, 4\}, C_2 = , F_2 = , E_2 = \{1, 2, 3, 4\}$$

得到一可行解 $X_1 = X_2 = X_3 = X_4 = 0$, $X_5 = 1$, Z = 3

$$v_1 = \min\{0, 2+1\} + \min\{0, 1+7\} + \min\{0, 2-11\} = -9$$

$$v_2 = \min\{0, 2+ 1\} + \min\{0, 1\} + \min\{0, 2+ 6\} = 0$$

$$v_3 = \min\{0, 2-1\} + \min\{0, 1-3\} + \min\{0, 2+3\} = -2$$

$$v_4 = \min\{\,0,\,2\text{-}\ 2\,\} + \,\min\{\,0,\,1\text{+}\ 4\,\} + \,\min\{\,0,\,2\text{+}\ 4\,\} = \,0$$

$$v_1 = max \{-9, 0, -2, 0\} = 0, v_1 = v_2$$

3.
$$x_2 = x_5 = 1$$
, 即 $S_3 = \{2, 5\}$, 代入(9.5)得

min z=
$$3x_1 + x_3 + 2x_4 + 5$$

s. t. $-x_1 + x_3 + 2x_4 + s_1 = 3$
 $-7x_1 + 3x_3 - 4x_4 + s_2 = -2$
 $11x_1 - 3x_4 + s_3 = 8$
 $x_1, x_3, x_4 = 0, 1; s_1, s_2, s_3 = 0$

由于 Z₃> Z_{min}= 3, 故后退。

4.
$$S_4 = \{2, \overline{5}\}$$
, 以 $x_2 = 0$, $x_5 = 1$ 代入(9.5)得 min $z = 3x_1 + 5x_3 + 2x_4 + 3$ s.t. $-x_1 + x_3 + 2x_4 + s_1 = 2$ $-7x_1 + 3x_3 - 4x_4 + s_2 = 1$ $11x_1 - 3x_4 + s_3 = 2$ $x_1, x_3, x_4 = 0, 1; s_1, s_2, s_3 = 0$

由于 Z4> Zmin, 故后退。

$$5. S_5 = \{5\}$$
, 即

min z =
$$3x_1 + 2x_2 + 5x_3 + 2x_4$$

s.t. - x_1 - x_2 + $x_3 + 2x_4 + s_1 = 1$
- $7x_1$ + $3x_3$ - $4x_4 + s_2 = -2$
 $11x_1$ - $6x_2$ - $3x_4 + s_3 = -1$
 $x_1, x_2, x_3, x_4 = 0, 1; s_1, s_2, s_3 = 0$

A₅= {3}, B₅= {1, 2, 4}, C₅= {1}, E₅= {2, 4}, F₅=

$$v_2 = \min\{0, 1+1\} + \min\{0, -2\} + \min\{0, -1+6\} = -2$$

 $v_4 = \min\{0, 1-2\} + \min\{0, -2+4\} + \min\{0, -1+3\} = -1$

min z =
$$3x_1 + 2x_2 + 5x_3 + 2$$

s.t. $-x_1 - x_2 + x_3 + s_1 = -1$
 $-7x_1 + 3x_3 + s_2 = 2$
 $11x_1 - 6x_2 + s_3 = 2$
 $x_1, x_2, x_3 = 0, 1; s_1, s_2, s_3 = 0$

A₆= {3}, B₆= {1, 2}, C₆= {1, 2}, E₆= 故应后退。

7.
$$S_7 = \{4, 5\}$$
, 即

min z =
$$3x_1 + 2x_2 + 5x_3$$

s.t. - x_1 - x_2 + x_3 + x_4 = 1
- $7x_1$ + $3x_3$ + x_4 = - 2
 $11x_1$ - $6x_2$ + x_4 = - 1
 x_1, x_2, x_3 = 0, 1; x_1, x_2, x_3 0

$$A_7 = \{3\}, B_7 = \{1, 2\}, C_7 = \{1\}, E_7 = \{2\}, F_7 =$$

令 X2= 1,转到下一步。

8. $S_8 = \{2, 4, 5\}$, 有

min z =
$$3x_1 + 5x_3 + 2$$

s.t. - $x_1 + x_3 + s_1 = 2$
- $7x_1 + 3x_3 + s_2 = -2$
 $11x_1 + s_3 = 5$
 $x_1, x_3 = 0, 1; s_1, s_2, s_3 = 0$

 $A_8 = \{3\}, B_8 = \{1\}, C_8 = \{1\}, E_8 =$,应后退。

9. $S_9 = \{2, 4, 5\}$, 有

min z =
$$3x_1 + 5x_3$$

s.t. - $x_1 + x_3 + s_1 = 1$
- $7x_1 + 3x_3 + s_2 = -2$
 $11x_1 + s_3 = -1$
 $x_1, x_3 = 0, s_1, s_2, s_3 = 0$

 $A_9 = \{3\}, B_9 = \{1\}, C_9 = \{1\}, E_9 = ,$ 应后退。

故最优解为 $X_1 = X_2 = X_3 = X_4 = 0$, $X_5 = 1$, $Z_{min} = 3$.

搜索的过程可用搜索树形式表达,如图 9.14 所示。

图 9.14

图 9.14 中有向边上分别标以数 1, 2, ..., 15 用以表示搜索时前进后退过程的顺序。比如(1),(2)即为搜索的第 1 步,第 2 步。其余同此类推。

9.6 替代约束

9. 6. 1 吉阿福里昂(Geoffrion)替代约束

在引进替代约束概念前, 先举一个例子。例如两个约束条件

$$-x_1 + 2x_2 - 1, 2x_1 - x_2 - 1, x_1, x_2 = 0, 1$$

从单个约束条件来观察都有各自的可行解域,但合在一起没有可行解。只要将两不等式相加后得新不等式 x_1+x_2-2 ,由此更容易看得清楚了。

对于 0-1 整数规划:

$$min z = Cx$$
s.t.
$$Ax b$$

$$x = \{0, 1\}$$

引进非负行向量 u. 构造替代约束条件

$$u(Ax - b) = 0$$

可以证明: 若原问题有可行解,则替代约束条件有可行解; 若原问题无可行解,则替代约束条件也无可行解。

也就是说, 令 u= (u1 u2 ... um) 0, 对

min
$$z = c_i x_i$$
s.t.
$$a_{ij} x_j \quad b_i, \quad i = 1, 2, ..., m$$

$$x_i = 0 或 1, \quad i = 1, 2, ..., n$$

引进一个新的约束条件

虽然()比()弱,但()可能含有()所没有的信息。可附加上替代约束作为上面搜索法的补充。

当然,任意的 u 0 都可以产生一替代约束,但力求替代约束尽可能地强。

下面介绍吉阿福里昂的研究成果。首先为衡量替代约束强和弱给一个标准。当然给出的标准还必须是可计算的。

若 u¹ 0, u² 0, 且

$$\max_{x \, = \, \{ \, 0, \, 1 \}} \big\{ u^{\, 1} \big(\, b \, - \, - \, Ax \, \big) \, + \, z_{\, m \, in} \, - \, Cx \, \big\} \qquad \max_{x \, = \, \{ \, 0, \, 1 \, \}} \big\{ u^{\, 2} \big(\, b \, - \, - \, Ax \, \big) \, + \, z_{\, min} \, - \, Cx \, \big\}$$

则称 $u^1(b-Ax)+z_{min}-Cx-0$ 作为替代约束强于 $u^2(b-Ax)+z_{min}-Cx$, $x=\{0,1\}$, 求 u 的问题导致 $min\ max\ 问题的解:$

$$\min_{u} \max_{x = \{0,1\}} \{ u(b - Ax) + z_{min} - Cx \}$$
 (9.6)

其中 $\max\{u(b-Ax)+z_{\min}-Cx\}$ 可以细展开写成:

$$\max_{\substack{j \mid S_k \\ x_j = (0, 1)}} u_i b_i - a_{ij} x_j - a_{ij} x_j + z_{min} - c_j x_j - c_j x_j$$

$$= \prod_{i=1}^{m} T_i u_i + z_{min} - z_s + \max_{\substack{j \mid S_k \\ x_j = (0, 1)}} (-1) \prod_{i=1}^{m} a_{ij} u_i + c_j x_j$$

$$= \prod_{i=1}^{m} T_i u_i + z_{min} - z_s + \max_{\substack{j \mid S_k \\ x_j = (0, 1)}} (-1) \prod_{i=1}^{m} a_i u_i + c_j x_j \begin{vmatrix} 0 & x_j & 1 \\ 0 & x_j & 1 \end{vmatrix}$$

其中 $T_i = b_i$ - $a_{ij}x_j$, i M, $z_s = c_jx_j$, 但问题

其对偶问题为

根据对偶原理,(9.6)式有

其中
$$T := b_i$$
 - $a_{ij} x_j$, i $M, z_s = c_j x_j$ 。

上面式子中j Sx表达 xj的值为已知值。

上面第二等式由于在 0 x_i 1, j = 1, 2, ..., n 上线性规划问题有解只能在顶点上取得。 故(9.6)式问题可写成

若 $w_{min} < 0$ 则无可行解, 应放弃。若 $w_{min} = 0$, 则 S_k 无须放弃, 利用所得的 u_i 计算替代约束加到问题上去。

9.6.2 举例

例 9.17 9.5 节例 9.16 用替代约束求解如下:

利用替代约束之前必须找到一可行解。已知 $S_1 = \{\overline{5}\}, s_1^{(1)} = 2, s_2^{(1)} = 1, s_3^{(1)} = 3, z_{min} = 3, s_2 = \{5\}, s_1^{(2)} = 1, s_2^{(2)} = -2, s_3^{(2)} = -1.$

找 u 的问题导致

做单纯形表格(见表 9.2)

表 9.2

			u1	U2	u 3	y 1	y 2	y 3	y 4	S 1	S2	S 3	S4	
	Св	b C	1	- 2	- 1	1	1	1	1	0	0	0	0	
S 1	0	3	1		- 11	- 1	0	0	0	1	0	0	0	3/7
S 2	0	2	1	0	6	0	- 1	0	0	0	1	0	0	
S 3	0	5	- 1	- 3	0	0	0 -	. 1	0	0	0	1	0	
S4	0	2	- 2	4	3	0	0	0	- 1	0	0	0	1	1/2
		0	1	- 1	- 1	1	1	1	1	0	0	0	0	
u_2	- 2	3/7	1/7	1	- 11/7	- 1/7	0	0	0	1/7	0	0	0	
S 2	0	2	1	0	6	0	- 1	0	0	0	1	0	0	1/3
S 3	0	44/7	- 4/7	0	- 33/7	- 3/7	0 -	1	0	3/7	0	1	0	
S4	0	2/7	- 18/7	0	65/7	4/ 7	0	0	- 1 -	4/7	0	0	1	2/65
		- 6/7	9/ 7	0	- 29/7	5/7	1	1	1	2/7	0	0	0	
U2	- 2	217 455	- <u>56</u> 455	1	0	$-\frac{21}{455}$	0	0	<u>11</u> 65	<u>21</u> 455	0	0	<u>11</u> 65	
S 2	0	118 65	3 <u>1</u> 65	0	0	$-\frac{24}{65}$	- 1	0 -	<u>24</u> 65	<u>24</u> 65	1	0	- <u>42</u> 65	
S 3	0	<u>2926</u> 455	- <u>623</u> 455	0	0	$-\frac{63}{455}$	0 -	. 1 -	31 65	<u>63</u> 455	0	1	231 65	
u 3	- 1	<u>2</u> 65	- $\frac{11}{65}$	0	1	<u>4</u> 65	0	0	<u>4</u> 65	$-\frac{4}{65}$	0	0	<u>7</u> 65	
		- $\frac{448}{445}$	<u>196</u> 455	0	0	<u>469</u> 455	1	1	<u>83</u> 65	<u>70</u> 455	0	0	<u>29</u> 65	

$$u_1 = 0, u_2 = 0.47, u_3 = 0.03$$

构造相应的替代约束

0.
$$477[-2-(-7x_1+3x_3-4x_4)]+0.030[-1-(11x_1-6x_2-3x_4)]$$

+ $(3-1)-(3x_1+2x_2+5x_3+2x_4)=0$

即- $0.004x_1+1.82x_2+6.54x_3-0.01x_4$ 1.016, 从而知道必须有 $x_2=x_3=0$ 。故 $S_2=\{2,3,5\}$, 即有

min
$$z = 3x_1 + 2x_4$$

s.t. $-x_1 + 2x_4 = 1$
 $-7x_1 = -2$
 $11x_1 - 3x_4 = 1$
 $x_1, x_4 = 0$ 或 1_0 (9.7)

2

 $11x_1$

对问题(9.7)用 DFS 搜索法求解如下:

$$A=$$
 , $B=\{1,4\}$, $C=\{1\}$, $E=\{4\}$, $F=$ $x_4=1$, 即 $S_3=\{\overline{4},2,3,5\}$, 得
$$minz=3x_1+2$$
 $s.t.$ $-x_1$ -1 $-7x_1$ 2

应后退。

$$S_4 = \{4, 2, 3, 5\}, \hat{\mathbf{q}}$$

min
$$z = 3x_1$$

s.t. - x_1 1
 $7x_1$ - 2
 $11x_1$ - 1
 $x_1 = 0$ 或 1

无解,应后退。

例 9.18
$$\min z = 2x_1 + 4x_2 + 6x_3 + 8x_4 + 12x_5$$
s.t.
$$-8x_1 + 4x_2 + x_3 - x_4 - 5x_5 - 5$$

$$-6x_1 + 3x_2 + 2x_3 - x_5 - 2$$

$$2x_1 - 9x_2 - 3x_3 + 2x_4 - 3x_5 - 4$$

$$x_1 = 0, 1, \quad i = 1, 2, 3, 4, 5$$

先用 DFS 搜索法求一可行解。

搜索过程如下:

1.
$$S_{1}$$
= , A_{1} = , B_{1} = {1, 2, 3, 4, 5}, C_{1} = , E_{1} = B_{1} , F_{1} =

 v_{1} = $min\{0, -5 + 8\} + min\{0, -2 + 6\} + min\{0, -4 - 2\} = -6$
 v_{2} = $min\{0, -5 - 4\} + min\{0, -2 - 3\} + min\{0, -4 + 9\} = -9 - 5 = -14$
 v_{3} = $min\{0, -5 -1\} + min\{0, -2 - 2\} + min\{0, -4 + 3\} = -11$
 v_{4} = $min\{0, -5 + 1\} + min\{0, -2\} + min\{0, -4 - 2\} = -12$
 v_{5} = $min\{0, -5 + 5\} + min\{0, -2 + 1\} + min\{0, -4 + 3\} = -2$
 v_{5} = $max\{-6, -14, -12, -11, -2\}$

2.
$$S_2 = \{5\}$$

min z =
$$2x_1 + 4x_2 + 6x_3 + 8x_4 + 12$$

s.t. - $8x_1 + 4x_2 + x_3 - x_4 = 0$
- $6x_1 + 3x_2 + 2x_3 = -1$
 $2x_1 - 9x_2 - 3x_3 + 2x_4 = 1$
 $x_i = 0, 1, \quad i = 1, 2, 3, 4$

 $3. S_3 = \{1, 5\}, 即$

min
$$z = 4x_2 + 6x_3 + 8x_4 + 14$$

s.t. $4x_2 + x_3 - x_4 = 8$
 $3x_2 + 2x_3 = 5$
 $-9x_2 - 3x_3 + 2x_4 - 3$
 $x_2, x_3, x_4 = 0, 1$

$$A_3 = \{4\}, B_3 = \{2, 3\}, C_3 = , E_3 = B_3, F_3 =$$

$$v_2 = \min\{0, 8 - 4\} + \min\{0, 5 - 3\} + \min\{0, - 3 + 9\} = 0$$

 $v_3 = \min\{0, 8-1\} + \min\{0, 5-2\} + \min\{0, -3+3\} = 0$

由于 c_2 = 4< c_6 = 6, 故选 x_2 = 1。

从而得一可行解:

$$x_1 = x_2 = x_5 = 1, x_3 = x_4 = 0, z_{min} = 18$$

下面从 $S = \{2, \overline{1}, \overline{5}\}$ 出发寻找替代约束条件。即 $X^2 = 0, X^1 = X^5 = 1$ 得

min z =
$$6x_3 + 8x_4 + 14$$

s.t. $x_3 - x_4 = 8$
 $2x_3 = 5$
 $-3x_3 + 2x_4 - 3$
 $x_3, x_4 = 0, 1$

关于 u 的线性规划为

min w=
$$8u_1 + 5u_2 - 3u_3 + y_3 + y_4 + (18 - 2 - 14)$$

s.t. - $u_1 - 2u_2 + 3u_3 - y_3 = 6$
 $u_1 - 2u_3 - y_4 = 8$
 $u_i, y_i = 0, i = 1, 2, 3, j = 3, 4$

表 9.3 是其单纯形表格。

表 9.3

	C		u1	u 2	u 3	y 3	y 4	S 1	S2	
	Св	b C	8	5	- 3	1	1	0	0	
S1	0	6	- 1	- 2		- 1	0	1	0	
S2	0	8	1	0	- 2	0	- 1	0	1	
			8	5	- 3	1	1	0	0	
u ₃	- 3	2	- 1/3	- 2/3	1	- 1/3	0	1/ 3	0	
S2	0	12	1/3	- 4/3	0	- 2/3	1	2/3	1	
		- 6	7	3	0	0	1	1	0	

4.
$$S_4 = \{1, \overline{5}\}, \, \square$$

替代约束 u 可改为较强的 u(b-Ax)+(zmin-d-Cx),其中 d= gcd{c1, c2, ..., cn},本例 d= 2。

min
$$z = 4x_2 + 6x_3 + 8x_4 + 12$$

s.t. $4x_2 + x_3 - x_4 = 0$
 $3x_2 + 2x_3 - 1$
 $-9x_2 - 3x_3 + 2x_4 - 1$
 $x_2, x_3, x_4 = 0$ 或 1

替代约束向量 u 满足

min w = -
$$u_2$$
 - u_3 + y_1 + y_2 + y_3 + (18 - 2 - 12)
s. t. - $4u_1$ - $3u_2$ + $9u_3$ - y_1 + s_1 = 4
- u_1 - $2u_2$ + $3u_3$ - y_2 + s_2 = 6
 u_1 - $3u_3$ - y_3 + s_3 = 8
 u_i , y_i , s_i 0, i = 1, 2, 3

表上运算见表 9.4。

表 9.4

			u_1	u_2	u ₃	y 1	y 2	y 3	S ₁	S 2	S ₃	
	C _B	b C	0	- 1	- 1	1	1	1	0	0	0	
Sı	0	4	- 4	- 3		- 1	0	0	1	0	0	4/ 9
S2	0	6	- 1	- 2	3	0	- 1	0	0	1	0	2
S 3	0	8	1	0	- 2	0	0	- 1	0	0	1	
		0	0	- 1	- 1	1	1	1	0	0	0	
u ₃	- 1	4/9	- 4/9 -	1/3	1 -	1/9	0	0	1/9	0	0	
S2	0	42/9	1/ 3	- 1	0	1/3	- 1	0 -	1/3	1	0	
S 3	0	80/9	1/9 -	2/3	0 -	2/9	0	- 1	2/9	0	1	
			4/9 -	2/3	0	10/9	1	1	1/9	0	0	

本问题解无界,而且 w< 0,故后退。

$$5. S_5 = \{5\}$$
, 即

min
$$z = 2x_1 + 4x_2 + 6x_3 + 8x_4$$

s.t. $-8x_1 + 4x_2 + x_3 - x_4 - 5$
 $-6x_1 + 3x_2 + 2x_3 - 2$
 $-9x_1 - 3x_2 + 2x_4 - 1$
 $x_1, x_2, x_3, x_4 = 0, 1$

$$A_{5}= , B_{5}= (1,2,3,4), C_{5}= , E_{5}= B_{5}, F_{5}=$$

$$v_{1}= \min\{0, -5+8\} + \min\{0, -2+6\} + \min\{0, -4-2\} = -6$$

$$v_{2}= \min\{0, -5-4\} + \min\{0, -2-3\} + \min\{0, -4+9\} = -14$$

$$v_{3}= \min\{0, -5-1\} + \min\{0, -2-2\} + \min\{0, -4+3\} = -11$$

$$v_{4}= \min\{0, -5+1\} + \min\{0, -2\} + \min\{0, -4-2\} = -12$$

$$v_{1}= \max\{-6, -14, -11, -12\}, \Leftrightarrow x_{1}=1$$

6.
$$S_6 = \{1, 5\}$$
, 得

min z =
$$4x_2 + 6x_3 + 8x_4 + 2$$

s.t. $4x_2 + x_3 - x_4 = 3$
 $3x_2 + 2x_3 = 4$
 $-9x_2 - 3x_3 + 2x_4 - 6$
 $x_2, x_3, x_4 = 0, 1$

$$A_6 = \{4\}, B_6 = \{2, 3\}, C_6 = , E_6 = B_6, F_6 =$$

$$v_2 = \min\{0, 3-4\} + \min\{0, 4-3\} + \min\{0, -6+9\} = -1$$

$$v_3 = \min\{0, 3-1\} + \min\{0, 4-2\} + \min\{0, -6+3\} = -3$$

7. $S_7 = \{\overline{2}, \overline{1}, 5\}, \mathbb{P}$

min z =
$$6x_3 + 8x_4 + 6$$

s. t. $x_3 - x_4 - 1$
 $2x_3$ 1
 $-3x_3 + 2x_4$ 3
 $x_3, x_4 = 0, 1$

$$A_7 = \{3\}, B_6 = \{4\}, C_6 = B_6 = \{4\}, F_6 = B_6 = B_6 = \{4\}, F_6 = B_6 = B$$

8. $S_8 = \{\overline{4}, \overline{2}, \overline{1}, 5\}$

min
$$z = 6x_3 + 14$$

s.t. $x_3 = 0$
 $2x_3 = 4$
 $-3x_3 = 1$
 $x_3 = 0, 1$

故 $X_3 = 0$, 即 $S = \{3, \overline{4}, \overline{2}, \overline{1}, 5\}$ 是一可行解 $Z^{min} = 14$ 。
9. $S_9 = \{4, \overline{2}, \overline{1}, 5\}$

min
$$z = 6x_3 + 6$$

s.t. $x_3 - 1$
 $2x_3 1$
 $3x_3 3$
 $x_3 = 0, 1$

无可行解,后退。

10. $S_{10} = \{2, \overline{1}, 5\}$,即

min
$$z = 6x_3 + 8x_4 + 2$$

s.t. $x_3 - x_4 = 3$
 $2x_3 = 4$
 $-3x_3 + 2x_4 - 6$

$$x_3, x_4 = 0, 1$$

$$A_{10} = \{4\}, B_{10} = \{3\}, C_{10} = , E_{10} = \{3\}, F_{10} ,$$
 故后退。

11. $S_{11} = \{1, 5\}$

min z =
$$4x_2 + 6x_3 + 8x_4$$

s.t. $4x_2 + x_3 - x_4 - 5$
 $3x_2 + 2x_3 - 2$
 $-9x_2 - 3x_3 + 2x_4 - 4$
 $x_2, x_3, x_4 = 0, 1$

$$A_{11}$$
= , B_{11} = {2,3,4}, C_{11} = , E_{11} = {2,3,4}, F_{11} , 应后退。

- 12. S₁₂= {5},后退。
- 13. S₁₃= ,结束。

故最优解为 $X_1 = X_2 = X_4 = 1$, $X_3 = X_5 = 0$, $Z_{min} = 14$.

9.7 分支定界法介绍

9.7.1 对称型流动推销员问题

在介绍如何用分支定界法求解整数规划之前,先介绍什么是分支定界法,还是从流动推销员问题谈起。流动推销员问题本身就是整数规划问题。

例 9.19 已知 5 个城市 v₁, v₂, v₃, v₄, v₅ 间的距离矩阵

 $d_{ij} = v_i$ 到 v_i 的距离。矩阵 D 是对称的: $d_{ij} = d_{ij}$, 即从 v_i 到 v_i 的距离等于从 v_i 到 v_i 间的距离,i, j = 1, 2, 3, 4, 5。

解题步骤如下:

1. 先从两两间距离找出其中最短的 5 条:

$$d_{13}(=1), d_{24}(=1), d_{15}(=2), d_{25}(=3), d_{45}(=6)$$

 $d_{13}+d_{24}+d_{15}+d_{25}+d_{45}=1+1+2+3+6=13.$

由于下标中5出现3次,所以这5条边不构成流动推销员问题的解。

- 2. 考虑排除 d_{15} , 即在不走 v_1v_5 边的前提下, 选其他 5 条最短边, 即选 v_1v_5 边除外的另 5 条最短边。实际上用 d_{35} 取代 d_{15} , 而且 d_{13} + d_{24} + d_{25} + d_{35} + d_{45} = 19, 下标中 5 仍出现 3 次。
- 3. 考虑保留 d_{15} 边, 但在排除 d_{25} 边的前提下选 5 条最短边, 得 d_{13} + d_{15} + d_{24} + d_{35} + d_{45} = 18, 下标中 5 仍出现 3 次。

- 4. 考虑保留 d₁₅, d₂₅, 排除 d₄₅边, 找 5 条最短边得 d₁₃+ d₁₅+ d₂₅+ d₂₄+ d₃₅= 15, 下标 5 仍出现 3 次。
- 5. 保留 d₁₅, d₂₅, 在排除 d₄₅, d₃₅的条件下, 找出最短的 5 条边: d₁₃+ d₁₅+ d₂₄+ d₂₅+ d₃₄ = 17。下标中 1, 2, 3, 4, 5 都出现两次, 故得一最短的回路: v₁ v₃ v₄ v₂ v₅ v₁, 总长度为 17。

搜索过程用图 9.15 表示比较直观。

图 9.15

图 9.15 中 15, 15分别表示选取 v_1v_5 边和排除 v_1v_5 边; $S_1(13, 24, 15, 25, 45) = 13$, 表示最短的 5 条边为 d_{13} , d_{24} , d_{15} , d_{25} , d_{45} , 总长度为 13, 其余类推。 $S_5(13, 15, 24, 25, 34) = 17$ 是可行解, 总长度为 17, 但 $S_2(13, 24, 25, 35, 45) = 19$, $S_3(13, 24, 15, 35, 45) = 18$, 尽管不是回路, 估界已超过 17, 故没有搜索的价值, 即选取 15 排除 25 或排除 15 都没有不超过 17 的解, 故予以排除, 无需搜索, 从而 $S_5(13, 25, 24, 25, 34) = 17$ 是最优解。

9.7.2 非对称型流动推销员问题

例 9.20 下面是距离矩阵为非对称的例子, 即 d ii和 dii未必相等。

对矩阵 D 每行元素减去该行的最小元素,每列减去该列的最小元素得一新的矩阵, 这样得到的新矩阵每行每列都至少有一个 0 元素。

矩阵右下方的数是各行(各列)最小元素之和,例如 17=5+3+4+2+3。

若将矩阵 D 理解为旅费矩阵, 则第 1 行诸元素减去最小元素 5, 第 2 行减去最小元素 3, ..., 可以理解为从 v_1 发出到 v_2 , v_3 , v_4 , v_5 的旅费一律减价 5 单位, 从 v_2 发出的旅费一律减价 3, ...。第 3 列的元素减该列最小元素 1, 相当于进入 v_3 的旅费一律减 1。由于流动推销员进出各点各一次, 所以原来问题的最优解也一定是后面矩阵 D_1 的最优解。问题变为求距离矩阵

的最短回路问题。

若流动推销员从 v_1 出发, 下一站选 v_4 , 因 D_1 中第 1 行第 4 列的元素为 0, 从 D_1 中划去第 1 行第 4 列, 因排除再从 v_1 出发, 及再进入 v_4 的可能, 并将 d_{41} 改为 ,以排除 v_4 v₁ 的可能。

$$D_{2} = \begin{cases} v_{2} & 7 & 7 & 0 \\ v_{3} & 0 & 2 & 2 \\ v_{4} & 8 & 10 & 0 \\ v_{5} & 10 & 0 & 0 \\ v_{1} & v_{2} & v_{3} & v_{5} \end{cases}$$

从 v_4 出发应选路径 v_4 v_5 , 因 $d_{45}=0$, 和上面方法相类似, 划去 v_4 行 v_5 列, 并将 d_{54} 改为 , 得

但 D₃ 的第 1 行无零元素, 故该行减去最小元素 7, 矩阵下脚改为 25, 得

排除 v_1 v_4 边, 即 D_1 矩阵中令 $d_{14}=$. 得

同样的道理, D2 矩阵, 若排除 v4 v5, 应有

搜索的全过程见图 9.16, 矩阵右上肩() 里的数是搜索的顺序。最佳路径是

全长 25, 凡是估界低于 25 的则应继续搜索, 高于 25 的界则没有搜索价值, 道理是显而易见, 从而达到减少搜索时间的目的。

用于非对称矩阵的后一种方法也可以用于对称矩阵。

9.7.3 最佳匹配问题

最佳匹配也是整数规划问题,下面介绍用分支定界法求解。

例 9.21 若已知 A, B, C, D 四位工作人员从事 J_1, J_2, J_3, J_4 四项任务的代价矩阵为

$$C = \begin{pmatrix} A & 99 & 6 & 59 & 73 \\ B & 79 & 15 & 93 & 87 \\ C & 67 & 93 & 13 & 81 \\ D & 16 & 79 & 86 & 26 \\ J_1 & J_2 & J_3 & J_4 \end{pmatrix}$$

现将 J_1, J_2, J_3, J_4 四项任务分派给 A, B, C, D, 每人一项, 求最佳安排, 使代价最小。 在确定 A 从事 J_1 任务的前提下, 寻找最低成本的界。从矩阵 C 中划去 A 列 J_1 行得

结果: B 从事 J₂, C 从事 J₃, D 从事 J₄ 最理想。因 J₂ 行的最小元素为 15, J₃ 行的最小元素为 13, J₄ 行最小元素为 26。99+ 15+ 13+ 26= 153, 记作

ABCD 是一合理的分派, A 表示 A 是指定的分派, 而不是搜索来的, 其他是搜索来的。 用类似办法确定在 B 从事 J L 任务的前提下, 估界如下: 划去 B 行 J L 列得

故有

BACD 是一种分派, 但 124 较 153 更佳。 类似可得

CAAD 没有搜索价值, 因它的界 158 > 124, 但 DACA 的界 108 < 124, 必须进一步搜索。 在确定 D 从事 J₁ 任务的前提下, 分别确定 A, B, C 从事 J₂ 任务, 类似可得

无搜索价值。但 DACC 似乎还需继续追查。

图 9.17

9.8 整数规划的分支定界解法

前面介绍了利用分支定界法求解流动推销员问题和任务安排问题。这两个问题都属整数规划范围。虽然对若干其他问题,分支定界法都显示出它的威力,但毕竟是针对具体内容设计的,对于一般整数规划问题,如何利用它是本节要讨论的内容。

先举一个简单例子。

$$\max z = x_1 + x_2$$

s.t.
$$x_{1} + \frac{3}{5}x_{2} + 4\frac{1}{3}$$

- $2x_{1} + x_{2} + 1$
 $x_{1}, x_{2} = 0$ 整数

(1) 本问题作为线性规划问题图解如图 9.18 所示。

解得:

$$x_1 = \frac{56}{33}, \ x_2 = \frac{145}{33}, \ z = \frac{201}{33}$$

由于 1< x1< 2, 我们还要考虑下面两个问题。

(2)
$$\max z = x_1 + x_2$$
s.t.
$$x_1 + \frac{3}{5}x_2 + 4\frac{1}{3}$$

$$-2x_1 + x_2 + 1$$

$$0 \quad x_1 \quad 1, x_2 \quad 0$$

结果: $x_1 = 1$, $x_2 = 3$, $z_1 = 4$

max
$$z = x_1 + x_2$$

s.t. $x_1 + \frac{3}{5}x_2 + 4\frac{1}{3}$
 $-2x_1 + x_2 + 1$
 $x_1 + x_2 + 0$

结果: $x_1=2$, $x_2=3\frac{8}{9}$, $z_2=5\frac{8}{9}$

由于 $z_2 > z_1$, 故先搜索 x_1 2。 z_1 和 z_2 分别给出位于 0 x_1 1, x_1 2 两部分的解的界, 又由于 3 x_2 4, 故分别考虑。

(3)
$$\max z = x_1 + x_2$$
s.t.
$$x_1 + \frac{3}{5}x_2 + 4\frac{1}{3}$$

$$-2x_1 + x_2 + 1$$

$$x_1 + 2, 0 + x_2 + 3$$
(9.8)

解:
$$x_1 = 2\frac{8}{15}$$
, $x_2 = 3$, $z = 5\frac{8}{15}$

$$\max z = x_1 + x_2$$

s.t.
$$x_1 + \frac{3}{5}x_2 + 4\frac{1}{3}$$

- $2x_1 + x_2 + 1$
 $x_1 + 2, x_2 + 4$

问题无解。

由于(9.8)的解: 2×3 ,故又分成下面的两个问题。

$$(4) max z = x_1 + x_2$$

s.t.
$$x_{1} + \frac{3}{5}x_{2} + 4\frac{1}{3}$$

$$-2x_{1} + x_{2} + 1$$

$$x_{1} = 2, 0 \quad x_{2} + 3$$

$$x_{1} = 2, x_{2} = 3, z = 5$$

若对于约束

$$x_1 = 3, 0 = x_2 = 3$$

其结果为: $x_1 = 3$, $x_2 = 2\frac{2}{9}$, $z = 5\frac{2}{9}$ 。 x_1 和 x_2 给出搜索到目前为止最好的整数解, 取代 $x_1 = 1$, $x_2 = 3$, z = 4。

搜索到此可以结束了, 因为 z=5 $\frac{2}{9}$ 虽然比 z 大, 但若考虑到是整数解, 充其量也不过是 z=5。

搜索全部结束,它的全过程从图 9.19 和图 9.20 中可以一目了然。

图 9.20

注: 图中 $\frac{56/33, 145/33}{201/33}$ 表达 $x_1 = \frac{56}{33}, x_2 = \frac{145}{33}, z = \frac{201}{33},$ 其余类似。

max 问题分支定界流程图如图 9.21 所示。

分支定界法最难的是判断什么情况下应后退。整数规划问题基本上有以下三种情况:

- (a) 在该分域上问题无意义:
- (b) 已获得整数解;
- (c) 最优解 z z。

流程图上标有(a),(b),(c)便是此意。

选择哪一个非整数解变量进行分支是一个十分复杂而敏感的问题,目前只能做到任选其中一个。

由上例可知,分支是将连续问题的解空间分解成两个互相排斥的子空间,目的在于消去不存在所求的整数解的部分。分支定界法实际上是基于遍历搜索的,在遍历的过程中尽可能缩小搜索空间。如上述搜索的全过程是一棵搜索树。

例 9.23
$$\max z = 3x_1 + x_2$$
s.t.
$$17x_1 + 11x_2 = 86.5$$

$$x_1 + 2x_2 = 10.2$$

$$x_1 = 3.87$$

$$x_1, x_2 为非负整数$$

本例可行解域如图 9.22 中影线所示。

图 9.22

(1) 线性规划的最优解为(3.87,1.87), z= 13.48

1
$$x_2 = 1.87$$
 2

- (2) 对于 $0 x_1 3.87, 0 x_2 1$, 得解(3.87, 1), z = 12.6。对于 $0 x_1 3.87, x_2 2$, 得解(3.87, 2), z = 13.4。
 - (3) x_2 2 前提下, 令 0 x_1 3, 解为

$$x_1 = 3, x_2 = 3.22, z = 12.23$$

x1 4时,问题无解。

(4) 由于(3.87,1) 点的 z=12.6,故考虑 0 x_1 $3, x_2$ 1。此问题的解为(3,1), z=10,是目前获得的最好的整数解。

而对于 x_1 4, x_2 1, 则问题无解。

(5) 由于(3,3.22)点的 z= 12.23,故

当 0 x_1 3, 2 x_2 3 时有解 x_1 = 3, x_2 = 3, z = 12。

当 x_1 4, x_2 4 时有解 x_1 = 2.2, x_2 = 4, z = 10.6 < 12。

故得最优解 $x_1 = 3$, $x_2 = 3$, z = 12,

搜索过程用搜索树表示(见图 9.23),图中大括号 右肩上的小括号()中的数表示搜索顺序。

图 9.23

9.9 分支定界法在解混合规划上的应用

上述解整数规划的分支定界法也可用于混合规划。举例如下。

例 9.24
$$\max z = 3x_1 + 2x_2 + x_3$$

s.t.
$$x_1 - 2x_2 + x_3 = \frac{5}{2}$$

 $2x_1 + x_2 + x_4 = \frac{3}{2}$

 x_1 0, $i = 1, 2, 3, 4, x_2, x_3$ 为整数

(1) 解相应的线性规划问题(见表 9.5)得解:

$$x_2 = \frac{3}{2}, x_3 = \frac{11}{2}, x_1 = x_4 = 0, z = \frac{17}{2}$$

- (2) 依 x_2 分为下面两个分域: (a) $0 x_2 1$, (b) $x_2 2$ 。
- (a) 解在表 9.6 中, $x_1 = \frac{1}{4}$, $x_2 = 1$, $x_3 = \frac{17}{4}$, z = 7.
- (b) 解在表 9.7 中, 该问题无解。

表 9.5

		X	X 1	X 2	X 3	X 4	S 1	S 2	
ХВ	Св	b C	3	2	1	0	0	0	
S 1	0	5/2	1	- 2	1	0	1	0	
S 2	0	3/2	2		0	1	0	1	
		0	3		1	0	0	0	
S 1	0	11/2	5	0	1	2	0	2	
X 2	2	3/2	2	1	0	1	1	1	
		3	- 1	0	1	- 2	0	- 2	
X 3	1	11/2	5	0	1	2	1	2	
X 2	2	3/2	2	1	0	1	0	1	
		17/2	- 6	0	0	- 4	0	- 4	

表 9.6 $(0 x_2 2, x_1, x_2, x_3 0)$

	C	X	X 1	X 2	X 3	X 4	S 1	S 2	S 3	
Xв	Св	b C	3	2	1	0	0	0	0	
S_1	0	5/2	1	- 2	1	0	1	0	0	
S 2	0	3/2		1	0	1	0	1	0	
S 3	0	1	0	1	0	0	0	0	1	
			3	2	1	0	0	0	0	
S1	0	7/4	0	- 2	1	- 1/2	1	- 1/2	0	
X 1	3	3/4	1	1/2	0	1/2	0	1/2	0	6
S 3	0	1	0		0	0	0	0	1	
		9/4	0	1/2	1	- 3/2	0	- 3/2	0	
Sı	0	17/4	0	0	1	1/2	1	- 1/2	5/2	
X 1	3	1/4	1	0	0	1/2	0	1/2	- 1/2	
X 2	2	1	0	1	0	0	0	0	1	
		11/4	0	0		- 3/2	0	- 3/2	- 1/2	
X 3	1	17/4	0	0	1	1/2	1	- 1/2	5/2	
X 1	3	1/4	1	0	0	1/2	0	1/2	- 1/2	
X 2	2	1	0	1	0	0	0	0	1	
		7	0	0	0	- 1	- 1	- 1	- 1	

(3) 下面继续搜索。

分域:(a) 0 x3 4, (b) x3 5

- (a) 的解见表 9.8。 $x_1 = \frac{1}{4}$, $x_2 = 1$, $x_3 = 4$, $x_4 = 0$, $z = 6\frac{3}{4}$ 是目前最好的解。
- (b) 的解见表 9.9, 无可行解。

表 $9.7 (x_2 2, x_1, x_3, x_4 0)$

	a	X	X 1	X 2	X 3	X 4	S 1	S 2	S 3	
Хв	Св	b C	3	2	1	0	0	0	0	
Sı	0	5/2	1	- 2	1	0	1	0	0	
S2	0	3/2	2	1	0	1	0	1	0	
S 3	0	- 2	0	- 1	0	0	0	0	1	
		0	3	2	1	0	0	0	2	
Sı	0	13/2	1	0	1	0	1	0	- 2	
S 2	0	- 1/2	2	0	0	1	0	1	1	
X 2	2	2	0	1	0	0	0	0	- 1	
			3	0	1	0	0	0	2	

表 9.8 $(1 x_2 2, 0 x_3 4, x, x_4 0)$

		X	X 1	X 2	X 3	X 4	S 1	S 2	S 3	S 4	
ХВ	Св	b C	3	2	1	0	0	0	0	0	
S1	0	7/4	0	- 5/2		- 1/2	1	- 1/2	0	0	1/4
X 1	3	3/4	1	1/2	0	1/2	0	1/2	0	0	
S 3	0	1	0	1	0	0	0	0	1	0	
S4	0	4	0	0	1	0	0	0	0	1	2
		9/4	0	1/2		- 2/3	0	- 3/2	0	0	
X 3	1	7/4	0	- 5/2	1	- 1/2	1	- 1/2	0	0	
X 1	3	3/4	1	1/2	0	1/2	0	1/2	0	0	3/ 2
S 3	0	1	0	1	0	0	0	0	1	0	1
S4	0	9/4	0	5/2	0	1/ 2	- 1	1/2	0	1	9/ 10
		4	0	3	0	- 1	- 1	- 1	0	0	
X 3	1	4	0	0	1	0	0	0	0	1	
X 1	3	3/ 10	1	0	0	2/5	1/5	2/5	0 - 2	1/ 5	3/ 2
S 3	0	1/ 10	0	0	0	- 1/5	2/5	- 1/5	1 - 2	2/ 5	1/2
X 2	2	9/ 10	0	1	0	1/5	- 2/5	1/5	0 2	2/ 5	
		6 1/10	0	0	0	- 8/5	1/5	- 8/5	0 - 0	6/ 5	
X 3	1	4	0	0	1	0	0	0	0	1	
X 1	3	1/4	1	0	0	1/2	0	1/2	- 1/2	0	
S1	0	1/4	0	0		- 1/2	1	- 1/2		- 1	
X 2	2	1	0	1	0	0	0	0	1	0	
-		6	0	0	0	- 3/2	0	- 3/2	- 1/2 -	- 1	

		X	X 1	X 2	X 3	X 4	S 1	S 2	S 3	S 4	
ХВ	Св	b C	3	2	1	0	0	0	0	0	
S1	0	7/4	0	- 5/2	1	- 1/2	1	- 1/2	0	0	
X 1	3	3/4	1	1/2	0	1/2	0	1/2	0	0	
S 3	0	1	0	1	0	0	0	0	1	0	
S4	0	- 5	0	0	- 1	0	0	0	0	1	
			0	1/2	1	- 3/2	0	- 3/2	0	0	
S1	0	- 13/4	0	- 5/2	0	- 1/2	1	- 1/2	0	0	
X 1	3	3/4	1	1/2	0	1/2	0	1/2	0	0	
S 3	0	1	0	1	0	0	0	0	1	0	
X 3	1	5	0	0	1	0	0	0	0	- 1	
			0	1/2	0	- 3/2	0	- 3/2	0	1	
X 4	0	13/2	0	5	0	1	- 2	1	0	0	
X 1	3	- 10/4	1	- 2	0	0	1	0	0	0	
S 3	0	1	0	1	0	0	0	0	1	0	
X 3	1	5	0	0	1	0	0	0	0	- 1	
			0	- 4	0	0	- 3	0	0	1	
X 4	0	1/4	5/2	0	0	1	1/2	1	0	0	
X 2	2	5/4	- 1/2	1	0	0	- 1/2	0	0	0	
S3	0	- 1/4	1/2	0	0	0	1/2	0	1	0	
X 3	1	5	0	0	1	0	0	0	0	- 1	
		7	4	0	0	0	1	0	1/4	5	

故得全部搜索过程(见图 9.24)。

9.10 估界方法

从上面的讨论可知,分支定界法的搜索过程是一搜索树,树上每一节点都对应于解一线性规划问题,求解的实际作用在于得到一个目标函数的界。为了节省计算量,本节将介绍一种对目标函数进行简单估界的算法。

将 X 为非负整数改为 X 0 的线性规划问题。设 $X = \frac{XB}{XN}$, $A = (B \mid N) = (a_{ij})_{m \times n}$, $C = (C_B \mid C_N)$ 。

于是有

$$\begin{split} z &= \left(\left. C_{B} \right| \left| \left. C_{N} \right. \right) \right|_{X_{N}}^{X_{B}} \\ &= \left. C_{B} x_{B} + \left. C_{N} x_{N} \right. \\ \\ &= \left. C_{B} \left(\left. B^{-1} b - \right|_{j=N} B^{-1} P_{j} x_{j} \right) + \int_{j=N}^{n} c_{j} x_{j} \right. \\ \\ &= \left. C_{B} B^{-1} b + \int_{j=N}^{n} \left(\left. c_{j} - \left. C_{B} B^{-1} P_{j} \right) x_{j} \right. \end{split}$$

或写成

设最优解为

$$z = C_B B^{-1} b = z_0, x_B = B^{-1} b, x_N = 0$$

最优解 $x^{i} = x^{i} + i$, i B。其中 B 是基变量 x^{B} 对应下标集合。

分支定界法即对其中的一个 x; 分别附加下面的限制:

$$0 \quad x_j \quad \overset{\star}{x_j} \quad , x_j \quad \overset{\star}{x_j} \quad + \quad 1$$

再去求各自线性规划的解。

如图 9.25 所示, 实线表示 z 的真实改变图像。

z1和 zr可从单纯形表格中得到。z0- z1和 z0- zr可以分别作为真实的 z1 和 zr 的界。

 $x_{j} = x_{j}^{*} - \sum_{j=N}^{*} x_{j}$ 。为了使 x_{j} 是整数,故有 x_{j} 或 x_{j} 或 x_{j} , x_{j}^{*} 十 1 两种可能。设 N 是非基变量集合,N $^{+}$ > $\{j = N \otimes_{ij} > 0\}$,N $^{-}$ > $\{j = N \otimes_{ij} < 0\}$ 于是,对于 x_{j} ,有

$$x_{\,\mathtt{j}} \, - \, x_{\,\mathtt{j}}^{\,\star} \quad = \, x_{\,\mathtt{j}}^{\,\star} \, - \, x_{\,\mathtt{j}}^{\,\star} \quad - \, x_{\,\mathtt{j}}^{\,\star} \quad - \, x_{\,\mathtt{j}}^{\,\star} \quad 0$$

令 $f_j = x_j^* - x_j^* < 1$, 有

或

基没有改变。

对于 x_i x_i^* + 1也有类似情况。

将(9.10)加到单纯形表格中,利用对偶单纯形法求解。

利用对偶单纯形法可得

$$\begin{array}{lll} z_1 = \min_{k = N^+} \; \{ \, c_k f_{\,\, j} / \,\,_{j \, k} \, \}, & z_r = \min_{k = N^-} \; \{ c_k (\, f_{\,\, j} \, - \,\, 1) / \,\,_{j \, k} \, \} \\ \\ max \{ z_1, \, z_r \} = \; z_0 \, - \; \min \left\{ \,\,_{z1}, \,\,_{zr} \, \right\} \end{array}$$

还是通过例子说明算法的思想比较直观。

例 9.26
$$\max z = 18x_1 + 14x_2 + 8x_3 + 4x_4$$

s. t.
$$15x_1 + 12x_2 + 7x_3 + 4x_4 + x_5 + 43$$

(1) 用单纯形法求解(见表 9.10)。

表 9.10

	CR CR	Св	X 1	X 2	X 3	X 4	X 5	X 6	
Хв	Св	b C	18	14	8	4	0	0	
S	0	43	15	12	7	4	1	1	
		0	?	14	8	4	0	0	
X ₁	18	43/15	1	4/ 5	7/15	4/ 15	1/15	1/15	
		51	0	- 2/5	- 2/5	- 4/5	- 6/5	- 6/5	

$$x_{1} = 2\frac{13}{15} - \frac{4}{5}x_{2} - \frac{7}{15}x_{3} - \frac{4}{15}x_{4} - \frac{1}{15}x_{5} - \frac{1}{15}x_{6}$$

$$z = 51\frac{3}{5} - \frac{2}{5}x_{2} - \frac{2}{5}x_{3} - \frac{4}{5}x_{4} - \frac{6}{5}x_{5} - \frac{6}{5}x_{6}$$

 $x_2 = x_3 = x_4 = x_5 = 0, z = 51 \frac{3}{5}$ 是最优解。

(2) 若考虑 x₁ 2 和 x₁ 3 两种情况,则分别讨论如下。

(a)
$$x_1^* = 2$$

$$x_{1} - x_{1}^{2} = \frac{13}{15} - \frac{4}{5}x_{2} - \frac{7}{15}x_{3} - \frac{4}{15}x_{4} - \frac{1}{15}x_{5} - \frac{1}{15}x_{6} = 0$$

$$- \frac{4}{5}x_{2} - \frac{7}{15}x_{3} - \frac{4}{15}x_{4} - \frac{1}{15}x_{5} - \frac{1}{15}x_{6} = -\frac{13}{15}$$

将它作为附加约束条件,应用对偶单纯形法求解,见表9.11。

表 9.11

хв Св	C	X	X 1	X 2	X 3	X 4	X 5	X 6	X 7
ХВ	Св	b C	18	14	8	4	0	0	0
X 1	18	43/15	1	4/5	7/ 15	4/15	1/15	1/ 15	0
X 7	0	- 13/15	0	- 4/5	- 7/ 15	- 4/15	- 1/15	- 1/15	1
		51	0	- 2/5	- 2/5	- 4/5	- 6/5	- 6/5	0

由于 $\min \frac{2/5}{4/5}, \frac{2/5}{7/15}, \frac{4/5}{4/15}, \frac{6/5}{1/15}, \frac{6/5}{1/15} = \frac{1}{2}$, 以 22为主元素进行消元。下面通过本例介绍一种估界法。

从 $x_1 = 2\frac{13}{15} - \frac{4}{5}x_2 - \frac{7}{15}x_3 - \frac{4}{15}x_4 - \frac{1}{15}x_5 - \frac{1}{15}x_6$ 可知: 可以通过非基变量 x_2, x_3, x_4, x_5 的升值(设 x_2 从 0 升到 x_1) 使 z 从 2 $\frac{13}{15}$ 下降到 2, 即 $\frac{13}{15} = \frac{4}{5}$ x_2 , $x_2 = \frac{13/15}{4/5}$, 由此 $z_2 = -\frac{2}{5}$ $x_2 = -\frac{13}{30}$, 依类似理由, x_3 从 0 增加 x_3 , 也可使 z 下降 $\frac{13}{15}$, $\frac{13}{15} = \frac{7}{15}$ x_3 , $x_3 = \frac{13}{15}$ $\frac{15}{7}$

$$= \frac{13}{7}, \quad z_{3} = -\frac{2}{5} \times \frac{13}{7} = -\frac{26}{35},$$
同理可得 $x_{4} = \frac{13}{15} / \frac{4}{15} = \frac{13}{4}, \quad z_{4} = -\frac{4}{5} \times \frac{13}{4} = -\frac{13}{5}, \quad x_{5} = x_{6} = \frac{13}{15} / \frac{1}{15} = 13, \quad z_{5} = z_{6} = -\frac{6}{5} \times 13 = -\frac{78}{5},$

$$\Rightarrow \qquad \qquad z \geq -\min\{z_{2}, z_{3}, z_{4}, z_{5}, z_{6}\}$$

$$= -\min\{\frac{13}{30}, \frac{26}{35}, \frac{13}{5}, \frac{78}{5}, \frac{78}{5}\}$$

$$= -\frac{13}{30}$$

即由 x2 的增加而达到,从而可以断言

max
$$z = 18x_1 + 14x_2 + 8x_3 + 4x_4$$

s.t. $15x_1 + 13x_2 + 7x_3 + 4x_4 + x_5$ 43
0 x_1 2. x_1 0

的解 z $51\frac{3}{5} - \frac{13}{30} = 51\frac{1}{6}$ 。

 $x_1 = 2\frac{13}{15}$ 到此搜索过程见图 9.26, 未写出的变量均为 0, 例如 $x_2 = 2\frac{13}{15}$, $x_3 = x_4 = x_5 = 0$ 。 $x_4 = 2\frac{13}{15}$, $x_5 = x_5 = x_$

图 9.26

- (b) x_1 3 原问题无解。可从 $15x_1+12x_2+7x_3+4x_4+x_5$ 43, 直观得出。也可利用附加- x_1 3 约束条件、利用对偶单纯形法得出相同结果。
 - (3) 下面转入求 0 x1 2 的解。

令 X1= 2- X1, 代入(*), 整理得

$$2 - x_{1} = 2 \frac{13}{15} - \frac{4}{5} x_{2} - \frac{7}{15} x_{3} - \frac{4}{15} x_{4} - \frac{1}{15} x_{5} - \frac{1}{15} x_{6}$$

$$x_{2} = \frac{13}{12} + \frac{5}{4} x_{1} - \frac{7}{12} x_{3} - \frac{1}{3} x_{4} - \frac{1}{12} x_{5} - \frac{1}{12} x_{6}$$

代入

$$z = 51\frac{1}{6} - \frac{1}{2}x_1 - \frac{1}{6}x_3 - \frac{2}{3}x_4 - \frac{7}{6}x_5 - \frac{7}{6}x_6$$

于是导致解下列问题:

max
$$z = 51\frac{1}{6} - \frac{1}{2}x_1 - \frac{1}{6}x_3 - \frac{2}{3}x_4 - \frac{7}{6}x_5 - \frac{7}{6}x_6$$

$$x_{2} = \frac{13}{12} + \frac{5}{4}x_{1} - \frac{7}{12}x_{8} - \frac{1}{3}x_{4} - \frac{1}{12}x_{5} - \frac{1}{12}x_{6}$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} = 0$$

故得一可行解:

$$x_2 = \frac{13}{12}, x_1 = x_3 = \dots = x_6 = 0, z = 51 \frac{1}{6}$$

这个结果和估的界一致。

(4) 由于 $1 x^2$ 2, 故又分解为: (a) $0 x^2$ 1, (b) x^2 2。 两种情况分别讨论如下。

先讨论 x₂ 2。

由于 $x_2 = \frac{13}{12} + \frac{5}{4}x_1 - \frac{7}{12}x_3 - \frac{1}{3}x_4 - \frac{1}{12}x_5 - \frac{1}{12}x_6$, 故只有一种可能, 由 x_1 的增加而达到。

$$x_1 = 2 - \frac{13}{12} / \frac{5}{4} = \frac{11}{12} / \frac{5}{4} = \frac{11}{15}, \quad z = -\frac{1}{2} \times \frac{11}{15} = -\frac{11}{30}$$

至于 0 x₂ 1,

$$z=-\frac{1}{12}min$$
 $\frac{2}{7}$, 2, 14, 14 $=\frac{2}{7}-\frac{1}{12}=-\frac{1}{42}$ (3) (4) (5) (6)

可见 x_2 2 估的界比 0 x_2 1 小, 故沿 0 x_2 1 往后搜索, 而且下面括号内的数是对应 变量的下标, 例如 $\frac{2}{7}$, 表示 $\frac{2}{7}$ 是由 x_3 从 0 上升计算而得到的, 其余类似, 不赘述。

令 X2= 1- X2, 得

$$x_{3} = \frac{1}{7} + \frac{15}{7}x_{1} + \frac{12}{7}x_{2} - \frac{4}{7}x_{4} - \frac{1}{7}x_{5} - \frac{1}{7}x_{6}$$

$$z = 51\frac{1}{7} - \frac{6}{7}x_{1} - \frac{2}{7}x_{2} - \frac{4}{7}x_{4} - \frac{8}{7}x_{5} - \frac{8}{7}x_{6}$$

 $0 < x_3 = \frac{1}{7} < 1$, 故分解为 $x_3 = 0$ 和 $x_3 = 1$ 两种情况, 下面分别进行讨论。

(5) 由于 $x_3 = \frac{1}{7} + \frac{15}{7}x_1 + \frac{12}{7}x_2 - \frac{4}{7}x_4 - \frac{5}{7}x_5 - \frac{1}{7}x_6$, 故 $x_3 = 0$ 只能通过 x_4, x_5, x_6 由 0 上升而达到,而且

$$z = -\frac{1}{7} \min \left\{ \frac{1}{4}, \frac{4}{5}, \frac{8}{6} \right\} = -\frac{1}{7}$$

$$x_4 = \frac{1}{4} + \frac{15}{4} x_1 + 3x_2 - \frac{1}{4} x_5 - \frac{1}{4} x_6$$

$$z = 51 - 3x_1 - 2x_2 - x_5 - x_6$$

(6) 由于只能由 x_5, x_6 的改变才能使 $x_4=0$

$$z = -\frac{1}{4} \min \{ \frac{4}{5}, \frac{4}{6} \} = -1$$

而 x_4 0, $z=-\frac{3}{4}\min\{\frac{4}{5},\frac{2}{3}\}=-\frac{1}{2}$ 等等, 搜索的全过程见图 9.27。

图 9.27

其中最优解是 $x_4=0$ 时 $x_1=2$, $x_2=1$, z=50。为了简单起见, 图中只给出非零的变元的值, 未写出的变元自然是取零值了。

现将 x_1 2, x_2 1, x_3 = 0, x_4 = 0 条件下的结果解答于后。

max z=
$$18x_1 + 14x_2$$

s.t. $15x_1 + 13x_2 + x_5 + x_6 = 43$
 $x_1 + x_7 = 2$
 $x_2 + x_8 = 1$
 $x_1, x_2, x_5, x_6, x_7, x_8 = 0$

进行表上运算(见表 9.12)。

表 9.12

		X	X 1	X 2	X 5	X 6	X 7	X 8	
ХВ	Св	b C	18	14	0	0	0	0	
X 6	0	43	15	13	1	1	0	0	43/ 15
X 7	0	2		0	0	0	1	0	
X 8	0	1	0	1	0	0	0	1	
			?	14	0	0	0	0	
X 6	0	13	0	13	1	1	- 15	0	
X 1	18	2	1	0	0	0	1	0	
X 8	0	1	0		0	0	0	1	
			0	14	0	0	0	0	
X 6	0	0	0	0	1	1	- 15	- 13	
X 1	18	2	1	0	0	0	1	0	
X 2	14	1	0	1	0	0	0	1	
		50	0	0	0	0	0	0	

故得问题的最优解为:

$$x_1 = 2, x_2 = 1, x_3 = x_4 = x_5 = 0, z = 50$$

习 题 九

1. 求解

min z = -
$$5x_1+ 7x_2+ 10x_3- 3x_4+ x_5$$

s.t. - $x_1- 3x_2+ 5x_3- x_4- 4x_5= 0$
- $2x_1- 6x_2+ 3x_3- 2x_4- 2x_5= -4$
- $x_2+ 2x_3+ x_4- x_5= 2$
 $x_1= 0, 1; i= 1, 2, 3, 4, 5$

2. 求解

max
$$z = x_1 + 3x_2 + 10x_3$$

s.t. $2x_1 + 4x_2 + 8x_3$ 15
 x_1 4
 x_2 2
 x_3 3/2
 x_i 0整数, $i = 1, 2, 3$

3. 求解

max z =
$$2x_1+ 3x_2+ 4x_3+ 7x_4$$

s.t. $4x_1+ 6x_2+ 2x_3+ 8x_4= 16$
 $x_1+ 2x_2- 6x_3+ 7x_4= 3$
 x_1 0,整数, $i = 1, 2, 3, 4$

- 4. 利用替代约束法解问题 1。
- 5. 用分支定界法求解

max
$$z = x_1 + 2x_2$$

s.t. $x_1 + x_2 = 0.9$
 $-2x_1 - x_2 = 0.2$
 $x_1, x_2 = 0$ 整数

6. 用分支定界法求解

max
$$z = 3x_1 + 3x_2 + x_3$$

s.t. $x_1 - x_2 + 2x_3 - 4$
 $-3x_1 + 4x_2 - 2$
 $2x_1 + x_2 - 3x_3 - 3$
 $x_1, x_2 - 0$ 整数, $x_3 - 0$

第 10 章 整数规划的割平面法

割平面法是一种没法通过附加必要的约束条件求解线性规划的一种办法。约束条件 增多使可行解域逐渐缩小,从而最后找到最优解。作者认为分支定界法一般说来比割平面 法优越,但无论如何,割平面法在整数规划研究的过程中也是重要的一种。目前它的效率 比较低,还有待于进一步发展。

10.1 割 平 面

10.1.1 郭莫莱(Gomory)割平面方程

在开始时先介绍一实例,通过例子直观地引进割平面法。 假定

其中 $c_i = c_i - z_i$ 。若讨论的是一般线性规划问题, 设最优解为 $x_i = x_i^*$, i = B , $x_j = 0$, j = 0 $N, z^* = \overline{z}$

假定 x_i á $0 \mod 1$, 即 x_i 不是整数, i B, 选基变量 $x_k = x_k^* + \sum_{i=N}^k k_i x_i$ 。设 $x_k = \begin{bmatrix} x_k \end{bmatrix} + f_k$,即 f_k 是 x_k 的分数部分。

同样令 kj = L kj J + f kj

$$x_k = \begin{bmatrix} x_k^* \end{bmatrix} + f_k - \begin{bmatrix} b_i \\ b_j \end{bmatrix} + f_{kj} x_j$$

或

$$x_k$$
 - $\lfloor x_k^* \rfloor$ + $\sum_{j=N} \lfloor x_j \rfloor x_j = f_k$ - $\sum_{j=N} f_{kj} x_j$

若考虑到 Xk 和 Xi 都是整数,但

$$f_{\ k} \text{ - } \underset{\text{j} \ N}{\text{ }} f_{\ kj} x_{j} \qquad f_{\ k} < \ 1$$

故对于基变量,
$$x_k$$
 对应一 f_{k} - $f_{kj}x_j$ 0

是必要条件,或引进松弛变量 s> 0. 使得

$$f_{k} - \int_{j=N} f_{kj} x_{j} + s = 0$$

$$s - \int_{j=N} f_{kj} x_{j} = -f_{k}$$
(10.1)

将(10.1)附于单纯形表格中作为附加约束条件,利用对偶单纯形法求解,若结果是整

数,则结束,否则引进新的割平面作为附加约束条件。若继续下去找不到可行解,则可得原问题无解。

由于割平面法导出的是所有变量,包括松弛变量都应是全整数,故初始单纯形表格必须是整数的,必要时可乘以因子。例如

$$\frac{1}{2}x_1 + \frac{1}{3}x_2 \qquad \frac{1}{6}$$

乘以 6 得 $3x_1 + 2x_2 = 1$, 引进 s, 使 $3x_1 + 2x_2 + s = 1$ 。

10.1.2 例

先举一例,给以直观的理解。

例 10. 1
$$\max z = 3x_1 - x_2$$
s.t.
$$3x_1 - 2x_2 - 3$$

$$-5x_1 - 4x_2 - 10$$

$$2x_1 + x_2 - 5$$

$$x_1, x_2 - 0$$
整数

先通过单纯形法解原问题的线性规划问题,引进松弛变量,利用单纯形法求解如表 10.1 所示。

表 10.1

		X	X 1	X 2	s_1	s_2	S ₃	
ХВ	$C_{\rm B}$	b C	3	- 1	0	0	0	
S1	0	3	3	- 2	1	0	0	
S ₂	0	- 10	- 5	- 4	0	1	0	
S3	0	5	2	1	0	0	1	
			3	- 1	0	0	0	
S 1	0	8	11/2	0	1	- 1/2	0	16/ 11
X 2	- 1	5/2	5/ 4	1	0	- 1/4	0	2
S ₃	0	5/2	3/ 4	0	0	1/4	1	10/3
		- 5/2	17/ 4	0	0	1/4	0	
X 1	3	10/11	1	0	2/ 11	- 1/11	0	
X 2	- 1	15/22	0	1	- 5/22	- 6/44	0	35/6
S ₃	0	31/22	0	0	- 3/22	7/22	1	31/7
		61/22	0	0	- 17/ 22	9/22	0	
X 1	13	13/7	1	0	1/7	0	2/7	
X 2	- 1	9/7	0	1	- 2/7	0	22/7	
S ₂	0	31/7	0	0	- 3/7	1	22/7	
		30/7	0	0	- 5/7	0	- 3/7	

max
$$z = \frac{30}{7} - \frac{5}{7}s_1 - \frac{3}{7}s_2$$

s.t. $x_1 = \frac{13}{7} - \frac{1}{7}s_1 - \frac{2}{7}s_3$
 $x_2 = \frac{9}{7} + \frac{2}{7}s_1 - \frac{3}{7}s_3$ (10.2)
 $s_2 = \frac{31}{7} + \frac{3}{7}s_1 - \frac{22}{7}s_3$
 x_1, x_2, s_1, s_2, s_3 整数

原问题所有的系数都是整数, 但(10.2) 的系数都是分数。由于假定 x_1, x_2, s_1, s_2, s_3 的解都是整数, 于是有

$$x_{1} - 1 = \frac{6}{7} - \frac{1}{7}s_{1} - \frac{2}{7}s_{3}$$

$$x_{2} - s_{1} - 1 = \frac{2}{7} - \frac{5}{7}s_{1} - \frac{3}{7}s_{3}$$

$$s_{2} - s_{1} + 3s_{3} - 4 = \frac{3}{7} - \frac{4}{7}s_{1} - \frac{1}{7}s_{3}$$
(10. 3)

(10.3) 左端都是整数, 故右端有

$$\frac{6}{7} - \frac{1}{7}s_1 - \frac{2}{7}s_3 = 0$$

$$\frac{2}{7} - \frac{5}{7}s_1 - \frac{3}{7}s_3 = 0 \mod 1$$

$$\frac{3}{7} - \frac{4}{7}s_1 - \frac{1}{7}s_3 = 0$$
(10. 4)

即

$$\frac{6}{7} - \frac{1}{7}s_{1} - \frac{2}{7}s_{3} < \frac{6}{7} < 1$$

$$\frac{2}{7} - \frac{5}{7}s_{1} - \frac{3}{7}s_{3} < \frac{2}{7} < 1$$

$$\frac{3}{7} - \frac{4}{7}s_{1} - \frac{1}{7}s_{3} < \frac{3}{7} < 1$$
(10. 5)

由(10.4)知(10.4)左端都是整数,故

$$\frac{6}{7} - \frac{1}{7}s_1 - \frac{2}{7}s_3 = 0, \frac{2}{7} - \frac{5}{7}s_1 - \frac{3}{7}s_3 = 0, \frac{3}{7} - \frac{4}{7}s_1 - \frac{1}{7}s_3 = 0$$

或

$$- \frac{1}{7}s_1 - \frac{2}{7}s_3 + s_4 = - \frac{6}{7}, - \frac{5}{7}s_1 - \frac{3}{7}s_3 + s_5 = - \frac{2}{7}, - \frac{4}{7}s_1 - \frac{1}{7}s_3 + s_6 = - \frac{3}{7}$$

例如取 - $\frac{1}{7}s_1$ - $\frac{2}{7}s_3$ + s_4 = - $\frac{6}{7}$ 作为附加约束,由于 x_1 = $\frac{13}{7}$ - $\frac{1}{7}s_1$ - $\frac{2}{7}s_3$,即 x_1 = $\frac{13}{7}$

$$-\frac{6}{7} + s_4 = 1 - s_4$$
, 所以引进的约束条件即为 x_1 1。

图 10.1 是其约束条件和可行解域图。

进行表上运算(见表 10.2)。

图 10.1

表 10.2

		X	X 1	X 2	S_1	S ₂	S ₃	S4
ΧB	$C_{\mathbb{B}}$	b C	3	- 1	0	0	0	0
X 1	13	13/7	1	0	1/7	0	2/7	0
X 2	- 1	9/7	0	1	- 2/7	0	22/7	0
S_2	0	31/7	31/7	0	- 3/7	1	22/7	0
S ₄	0	- 6/7	0	0	- 1/7	0	- 2/7	1
		36/7	0	0	- 5/7	0	- 3/7	0
X 1	3	1	1	0	0	0	0	1
X 2	- 1	0	0	1	- 1/2	0	0	3/2
S 2	0	- 5	0	0	- 2	1	0	11
S ₃	0	3	0	0	- 1/2	0	1	- 7/2
		3	0	0	- 1/2	0	0	- 3/2
X 1	3	1	1	0	0	0	0	1
X 2	- 1	5/4	0	1	0	- 1/4	0	- 5/4
s_1	0	5/2	0	0	1	- 1/2	0	- 11/2
S_3	0	7/4	0	0	0	1/4	1	- 3/4
		7/4	0	0	0	- 1/4	0	17/4

即

$$x_1 + s_4 = 1$$

$$x_2 - \frac{1}{4}s_2 - \frac{5}{4}s_4 = \frac{5}{4}$$

$$s_1 - \frac{1}{2}s_2 - \frac{11}{2}s_4 = \frac{5}{2}$$

$$s_3 + \frac{1}{4}s_2 - \frac{3}{4}s_4 = \frac{7}{4}$$

或

$$(x_2 - 2 - s_4) - \frac{1}{4}s_2 - \frac{1}{4}s_4 = - \frac{3}{4}$$

$$(s_1 - 3 - 5s_4) - \frac{1}{2}s_2 - \frac{1}{2}s_4 = -\frac{1}{2}$$

 $(s_3 - 2 + s_2) - \frac{3}{4}s_2 - \frac{3}{4}s_4 = -\frac{1}{4}$

考虑到 X1, X2, S1, S2, S3, S4 是整数, 故类似可得

$$\frac{3}{4} - \frac{1}{4}s_2 - \frac{1}{4}s_4 \quad 0$$

$$\frac{1}{2} - \frac{1}{2}s_2 - \frac{1}{2}s_4 \quad 0$$

$$\frac{1}{4} - \frac{3}{4}s_2 - \frac{3}{4}s_4 \quad 0$$

比如选 -
$$\frac{1}{4}$$
 s₂ - $\frac{1}{4}$ s₄ - $\frac{3}{4}$, 引进 s₅ 0, - $\frac{1}{4}$ s₂ - $\frac{1}{4}$ s₄ + s₅ = - $\frac{3}{4}$ 作为附加约束。
$$x_2 - \frac{1}{4}(s_2 + s_4) - s_4 = \frac{5}{4}$$
- $\frac{1}{4}(s_2 + s_4) = -\frac{3}{4} - s_5$

所以 x_2 - $\frac{3}{4}$ - s_5 - s_4 = $\frac{5}{4}$, x_2 = 2 + s_4 + s_5 , 或 x_2 2。

再进行表上运算(见表 10.3)。

表 10.3

		_								
		The state of the s	X ₁	X 2	S_1	S_2	S ₃	S4	S ₅	
X _B	C _B	b C	3	- 1	0	0	0	0	0	
X 1	3	1	1	0	0	0	0	1	0	
X 2	- 1	5/4	0	1	0 -	1/4	0 -	5/4	0	
S_1	0	5/2	0	0	1	1/2	0 -	11/2	0	
S_3	0	7/4	0	0	0	1/4	1 -	3/4	0	
S ₅	0	- 3/4	0	0	0 -	1/4	0 -	1/4	1	
		7/4	0	0	0 -	1/4	0 -	4	0	
X 1	- 3	1	1	0	0	0	0	1	0	
X 2	- 1	2	0	1	0	0	0	- 1	- 1	
S1	0	4	0	0	1	0	0	- 5	- 2	
S ₃	0	1	0	0	0	0	1	- 1	1	
S2	0	3	0	0	0	1	0	1	4	
		1	0	0	0	0	0	- 4	- 1	

最后得解
$$x_1 = 1, x_2 = 2, s_1 = 4, s_3 = 1, s_2 = 3, z = 1_0$$
 例 10. 2
$$\max z = x_1 + x_2$$

$$s.t. - 4x_1 + x_2 - 1$$

$$4x_1 + x_2 - 3$$

做其单纯形表格(见表 10.4)。

表 10.4

	Св	X	X 1	X 2	s_1	S ₂
Хв	Св	b C	1	1	0	0
S1	0	- 1	- 4	1	1	0
S ₂	0	3	4	1	0	1
			1	1	0	0
X 1	1	1/4	1	- 1/4	- 1/4	0
S ₂	0	2	0	2	1	1
		1/4	0	1/4	1/4	0

$$x_1 = \frac{1}{4} + \frac{1}{4}x_2 + \frac{1}{4}s_1$$

$$x_1 - x_2 - s_1 = \frac{1}{4} - \frac{3}{4}x_2 - \frac{3}{4}s_1, 由于 x_1, x_2, s_1, s_2$$
 都是整数, 故
$$\frac{1}{4} - \frac{3}{4}x_2 - \frac{3}{4}s_1 \quad 0 \text{ mod } 1$$

$$\frac{1}{4} - \frac{3}{4}x_2 - \frac{3}{4}s_1 < 0$$

 $-\frac{3}{4}x_2 - \frac{3}{4}s_1 + s_3 = -\frac{1}{4}$ 作为新增的约束条件。

再进行表上运算(见表 10.5)。

表 10.5

		X	X 1	X 2	s_1	S_2	S_3	
Хв	Св	b C	1	1	0	0	0	
X 1	1	1/4	1	- 1/4	- 1/4	0	0	
S 2	0	2	0	2	1	1	0	
S ₃	0	- 1/4	0	- 3/4	- 3/4	0	1	
		1/4	0	5/4	1/4	0	0	
X 1	1	7/12	1	0	0	0	- 1/3	
S_2	0	2/3	0	1	0	1	4/3	
S ₁	0	4/3	0	1	1	0	- 4/3	
		7/12	0	1	0	0	1/3	

$$x_{1} = \frac{7}{12} + \frac{1}{3}s_{3}, \quad x_{1} - s_{3} = \frac{7}{12} - \frac{2}{3}s_{3}$$

$$\frac{7}{12} - \frac{2}{3}s_{3} \quad 0 \text{ mod } 1, \quad \frac{7}{12} - \frac{2}{3}s_{3} < 0$$

$$- \frac{2}{3}s_{3} + s_{4} = -\frac{7}{12}$$

再做表上运算(见表 10.6)。

表 10.6

V -	Св	X	X 1	X 2	S 1	S 2	S 3	S4	
Хв	C _B	b C	1	1	0	0	0	0	
X 1	1	7/12	1	0	0	0 -	1/3	0	
S_2	0	2/3	0	1	0	1	4/3	0	
\mathbf{S}_1	0	4/3	0	1	1	0 -	4/3	0	
S4	0	- 7/12	0	0	0	0 -	2/3	1	
-			0	1	0	0	1/3	0	
X ₁	1	2/24	1	0	0	0	0	- 1/2	
S 2	0	- 1/2	0	1	0	1	0	2	
S_1	0	5	0	1	1	0	0	- 2	
S ₃	0	7/8	0	0	0	0	1	- 3/2	
-		21/24	0	1	0	0	0	1/2	

第2个等式右端为负,但左端系数为非负,可见问题无可行解,故原问题亦无解。

10.2 割平面的选择

上节讨论了引进一种割平面的方法,其实后面将看到引进割平面的方法并不唯一。

取一整数 , 乘
$$x_k = x_k^*$$
 - $k_j x_j$ 得

或

$$x_k$$
 - $\begin{bmatrix} x_k^* \end{bmatrix}$ + $\begin{bmatrix} x_j \end{bmatrix} x_j = f_k$ - $\begin{bmatrix} x_j \end{bmatrix} x_j$

等式左端为整数,故右端也必是整数,或

$$f_k - \lfloor f_k \rfloor - \int_{i} (f_{kj} - \lfloor f_{kj} \rfloor) x_j$$

必须是整数。但 f k - L f k] < 1, 故

前面讨论的只不过是 = 1的特例。

因此产生割平面的强度比较问题。对于任一非基变量 x_j , 割平面 $f_{kj}x_j = f_k$ 与 x_j 轴 交于 $x_j = f_k/f_{kj}$ 点。所以对于 max 问题可以认为 f_k/f_{kj} 越大,割平面越强有力,或

则称f^{*}割平面强于f^{**}割平面。

比如 x_1 - 5. $4x_2$ + 4. $6x_3$ = 7. 4. 则

$$x_1$$
 - $6x_2$ + $4x_3$ - 7 = 0.4 - $0.6x_1$ - $0.6x_3$, 由此产生割平面 0.4 - $0.6x_1$ - $0.6x_2$ 0, 或 $0.6x_1$ + $0.6x_2$ 0. 4, 若乘以 2 得 $2x_1$ - $10.8x_2$ + $9.2x_3$ = 14.8 。
 $2x_1$ - $11x_2$ + $9x_3$ - 14 = 0.8 - $0.2x_2$ - $0.2x_3$, 故得割平面 $0.2x_2$ + $0.2x_3$ 0.8

 $0.2x_2 + 0.2x_3$ 0.8比 $0.6x_1 + 0.6x_2$ 0.4强,所以给出简便的办法选择较强的割平面是需要的,有以下两个衡量标准。

(a) max f i © B , (b) max f
$$_{i}$$
 / $_{j}$ N $_{j}$ B $_{j}$ M $_{i}$ B $_{j}$ M $_{i}$ M

做表上运算(见表 10.7)。

表 10.7

	C	X	X 1	X 2	X 3	S 1	S 2	S 3	
Хв	$C_{\mathbb{B}}$	b C	1	- 3	3	0	0	0	
S_1	0	4	2	1	- 1	1	0	0	
s_2	0	2	4	- 3	0	0	1	0	
S ₃	0	3	- 3	2	1	0	0	1	
		0	1	- 3	3	0	0	0	
S ₁	0	7	- 1	3	0	1	0	1	
S_2	0	2	4	- 3	0	0	1	0	
X 3	3	3	- 3	2	1	0	0	1	
			10	- 9	0	0	0	- 3	
s_1	0	7	0	2	0	1	1/4	1	
X 1	1	1/2	1	- 3/4	0	0	1/4	0	
X 3	3	4	0	- 1/4	1	0	3/4	0	
		14	0	- 3/2	0	0 -	10/4	- 3	

$$x_{1} = \frac{1}{2} + \frac{3}{4}x_{2} - \frac{1}{4}s_{2}$$

$$x_{3} = 4\frac{1}{2} + \frac{1}{4}x_{2} - \frac{3}{4}s_{2} - s_{3}$$

$$s_{1} = 7\frac{1}{2} - 2\frac{1}{4}x_{2} - \frac{5}{2}s_{2} - s_{3}$$

$$z = 14 - \frac{3}{2}x_{2} - \frac{5}{2}s_{2} - 3s_{3}$$

$$- \frac{1}{4}x_{2} - \frac{1}{4}s_{2} + s_{4} = -\frac{1}{2}$$

由此得

$$- \frac{3}{4}x_2 - \frac{3}{4}s_2 + s_5 = - \frac{1}{2}$$

$$- \frac{1}{4}x_2 - \frac{1}{4}s_2 + s_6 = - \frac{1}{2}$$

故选割平面

$$- \frac{1}{4}x_2 - \frac{1}{4}s_2 + s_4 = - \frac{1}{2}$$

把它加到表 10.7 后面, 得表 10.8。

表 10.8

	C	X	X 1	X 2	X3	S_1	S ₂	S ₃	S4
Хв	Св	b C	1	- 3	3	0	0	0	0
S ₁	0	7	0	2	0	1	1/4	1	0
X 1	1	1/2	1	- 3/4	0	0	1/4	0	0
X 3	3	4	0	- 1/4	1	0	3/4	1	0
S ₄	0	- 1/2	0	- 1/4	0	0 -	- 1/4	0	1
		14	0	- 3/2	0	0 -	- 5/2	- 3	0
S1	0	3	0	0	0	1	- 2	1	9
X 1	1	2	1	0	0	0	2	0	- 3
X 3	3	5	0	0	1	0	1	1	- 1
X 2	- 3	2	0	1	0	0	1	0	- 4
		11	0	0	0	0	- 1	- 3	- 2

10.3 马丁(Martin)割平面法

马丁割平面法是前面提到的割平面法的一种变异。算法大致如下: 假定取割平面的源行, 它的系数非全为整数, 设为

$$x_i = b_i^{(1)} - a_{ij}^{(1)} x_j$$
 (10. 6)

称(10.6)为割的第一源行。

对应的第一割平面为

$$s_1 = -f_i^{(1)} - f_{ij}^{(1)} x_j$$
 (10.7)

取(10.7)作为主元素所在行。通过对偶单纯形法确定主元素,设为 x_k ,仅仅对(注意仅对第一源行)(10.6)作高斯消去法,产生新的割的第二源行

$$x_{i} = b_{i}^{(2)} - a_{ij}^{(2)} x_{j} - a_{is_{1}} s_{1}$$
 (10.8)

假定(10.8)的系数 $b_i^{(2)}, a_j^{(2)}, j$ N\{k}及 a_{i_1} 至少有一个非整数,则从(10.8)可产生新的割

$$s_2 = - f_i^{(2)} - f_{ij}^{(2)} x_j - f_{is_1} s_1$$
 (10.9)

(10.9) 称为第二割。

(10.9) 作为主元素所在的行, (10.9) 和第一源行(10.6) 对 s_1 (注意是对 s_1) 作主元素消去法。这样给出第 3 割平面源行

$$x_{\,\text{i}} = b_{\,\text{i}}^{\,\text{(3)}} - a_{\,\text{j}}^{\,\text{(3)}} x_{\,\text{j}} - a_{\,\text{is}_2}^{\,\text{(3)}} s_2$$

上述办法不断反复,直至得到源行所有系数都是整数为止。这时一系列的不同割平面将导出一复合的割平面。

马丁割平面法叙述如下:

- S1. 对问题用单纯形法求解, 若问题无解则结束, 若问题的解全部都是整数, 则已求得解而结束, 否则转 S2。
- S2. 选一系数非全是整数的行(设为 i 行) 作为源行,由之产生一割平面。通过对偶单纯形法确定主元素列(设为第 k 列)。
- S3. 利用产生的割平面对第 i 行作主元素消元, 主元素是割平面的第 k 列元素。若主元素是整数则转 S5, 否则转 S4。
- S4. 由消元后的割平面行产生新的割平面,转 S3。
- S5. 求复合割平面。
- S 6. 将复合割平面附于 S 1 的最后单纯形表格后面。转 S 1。

还是通过例子来说明算法的步骤。

从下面例子的解题过程可以了解算法的思想。

max
$$z = 2x_1 + 3x_2$$

s. t. $2x_1 + 5x_2 = 8$
 $3x_1 + 2x_2 = 9$
 $x_1, x_2 = 0$. 整数

或写成

max z =
$$2x_1 + 3x_2$$

 $2x_1 + 5x_2 + x_3 = 8$
 $3x_1 + 2x_2 + x_4 = 9$
 $x_1 \quad 0$ 整数
 $i = 1, 2, 3, 4$

解相应的线性规划问题得表 10.9。

表 10.9

		X	X 1	X 2	X 3	X 4	
X _B	$C_{\mathbb{B}}$	b C	2	3	0	0	
X 3	0	8	2	5	1	0	8/5
X 4	0	9	3	2	0	1	9/2
		0	2	3	0	0	
X 2	3	8/5	2/5	1	1/5	0	4
X 4	0	29/5	11/ 5	0	- 2/5	1	29/ 11
		24/5	4/ 5	0	- 3/5	0	
X 2	3	6/11	0	1	3/11	- 2/11	
X 1	2	29/11	1	0	- 2/11	5/11	
		76/11	0	0	- 5/11	- 4/11	

$$x_{1} = \frac{29}{11} + \frac{2}{11}x_{3} - \frac{5}{11}x_{4}$$

$$x_{1} - 2 - x_{3} = \frac{7}{11} - \frac{9}{11}x_{3} - \frac{5}{11}x_{4}$$

$$- \frac{9}{11}x_{3} - \frac{5}{11}x_{4} + s_{1} = -\frac{7}{11}$$
(10. 11)

将(10.11)和(10.12)连立,对 x3 消元得

表 10.10

X _B	b	X 1	X 2	X 3	X 4	s_1
X ₁	29/11	1	0	- 2/11	5/ 11	0
S 1	- 7/11	0	0	- 9/11	- 5/ 11	1
X 1	25/9	1	0	0	5/9	- 2/9
X 3	7/ 9	0	0	1	5/9	- 11/9

由表 10.10 得

$$x_{3} = \frac{7}{9} - \frac{5}{9}x_{4} + \frac{11}{9}s_{1}$$

$$x_{4} - 2s_{1} = \frac{7}{9} - \frac{5}{9}x_{4} - \frac{7}{9}s_{1}$$

$$- \frac{5}{9}x_{4} - \frac{7}{9}s_{1} + s_{2} = -\frac{7}{9}$$
(10.13)

以式(10.9)作为一复合割平面代入表 10.10 中,以 \mathbf{s}_1 作主元素进行消元得表 10.11。

表 10.11

Хв	b	X 1	X 4	S ₁	S ₂
X 1	25/9	1	5/9	- 2/9	0
S ₂	- 7/9	0	- 5/9	- 7/9	1
X 1	3	1	5/7	0	- 2/7
S ₁	1	0	5/7	1	- 9/7

表 10.11 中只写出非全零的列,为了紧凑起见,表 10.10 的 \mathbf{x}^2 列由于全零,故消元后依然是全零。

$$s_{1} = 1 - \frac{5}{7}x_{4} + \frac{9}{7}s_{2}$$

$$s_{1} - 1 - 2s_{2} = -\frac{5}{7}x_{4} - \frac{5}{7}s_{2}$$

$$-\frac{5}{7}x_{4} - \frac{5}{7}s_{2} + s_{3} = 0$$
(10.14)

(10.14) 是第二割,继续进行表上运算(见表 10.12)。

表 10.12

X _B	b	X 1	X 4	S_2	S ₃
X 1	3	1	5/7	- 2/7	0
S ₃	0	0	- 5/7	- 5/7	1
X ₁	3	1	1	0	- 2/5
S2	0	0	1	1	- 7/5

表 10. 12 是对 S2 作主元素消去法。

$$s_{2} = -x_{4} + \frac{7}{5}s_{3}, \quad s_{2} - 2s_{3} = -x_{4} - \frac{3}{5}s_{3}$$

$$-\frac{3}{5}s_{3} + s_{4} = 0$$
(10.15)

(10.15)是第3割,再进行表上运算(见表10.13)。

表 10.13

X _B	b	X 1	X ₄	S ₃	S ₄
X 1	3	1	1	- 2/5	0
S ₄	0	0	0	- 3/5	1
X 1	3	1	1	0	- 2/3
S 3	0	0	0	1	- 5/3

表 10.13 是对 S3 作主元素消去法。

$$s_3 - \frac{5}{3}s_4 = s_3 - 2s_4 = -\frac{1}{3}s_4 < 0$$

$$-\frac{1}{3}s_4 + s_5 = 0$$

依类似的办法对 s_4 消元作表 10.14, 但和前面一样对于全零的列略去不再写出来。没有写出的项即作全零理解。

表 10.14

Хв	b	X 1	X 4	S4	S ₅
X 1	3	1	1	- 2/3	0
S	0	0	0	- 1/3	1
X 1	3	1	1	0	- 2
S4	0	0	0	1	- 3

主元素出现整数,故应回溯求复合割平面如下:

$$s_{1} = -\frac{7}{11} + \frac{5}{11}x_{4} + \frac{9}{11}x_{3}$$

$$s_{2} = -\frac{7}{9} + \frac{5}{9}x_{4} + \frac{7}{9}s_{1}$$

$$= -\frac{7}{9} + \frac{5}{9}x_{4} + \frac{7}{9} - \frac{7}{11} + \frac{5}{11}x_{4} + \frac{9}{11}x_{3}$$

$$= -\frac{7}{9} i^{2} \frac{18}{11} + \frac{10}{11} x_{4} + \frac{7}{11} x_{3}$$

$$s_{3} = \frac{5}{7} x_{4} + \frac{5}{7} s_{2} = -\frac{10}{11} + \frac{15}{11} x_{4} + \frac{5}{11} x_{3}$$

$$s_{4} = \frac{3}{5} s_{3} = -\frac{6}{11} + \frac{9}{11} x_{4} + \frac{3}{11} x_{3}$$

$$s_{5} = \frac{1}{3} s_{4} = -\frac{2}{11} + \frac{3}{11} x_{4} + \frac{1}{11} x_{3}$$

$$(10.16)$$

将复合割(10.16)附于表 10.9 后面,利用对偶单纯形法继续求解线性规划问题,得表 10.15。

表 10.15

	C	X	X ₁	X 2	X ₃	X 4	S ₅	
Хв	Св	b C	2	3	0	0	0	
X 2	3	6/11	0	1	3/ 11	- 2/11	0	
X 1	2	29/11	1	0	- 2/11	5/11	0	
S ₅	0	- 2/11	0	0	- 1/11	- 3/11	1	
			0	0	- 5/11	- 4/11	0	
X 2	- 3	0	0	1	0	- 1	3	
X ₁	2	3	1	0	0	1	- 2	
X 3	0	2	0	0	1		- 11	
		6	0	0	0	1	- 5	
X 2	3	2/3	0	1	1/3	0	- 2/3	
X 1	2	2	1	0	- 1/3	0	5/3	
X 4	0	2/3	0	0	1/3	1	- 11/3	
		10/3	0	0	- 1/3	0	- 4/3	

还是利用

$$x_{1} - \frac{1}{3}x_{3} + \frac{5}{3}s_{5} = 2\frac{1}{3}; x_{1} - 2 - x_{3} + 7 = \frac{1}{3} - \frac{2}{3}x_{3} - \frac{2}{3}s_{5}$$
$$- \frac{2}{3}x_{3} - \frac{2}{3}s_{5} + s_{6} = -\frac{1}{3}$$

做表上运算(见表 10.16)。

表 10.16

Хв	b	X 1	X ₃	S ₅	S_6
X ₁	7/3	1	- 1/3	5/3	0
S6	- 1/3	0	- 2/3	- 2/3	1
X ₁	5/ 2	1	0	2	- 1/2
X 3	1/2	0	1	1	- 3/2

$$s_5 = \frac{1}{2} - x_3 + \frac{3}{2} s_6; \quad s_5 + x_3 - 2 s_6 = \frac{1}{2} - \frac{1}{2} s_6$$

$$- \frac{1}{2} s_6 + s_7 = - \frac{1}{2}$$

做表上运算(见表 10.17)。

表 10.17

X_{B}	b	X 1	s_1	S ₅	S_6	S ₇
X ₁	5/2	1	0	2	- 1/2	0
S7	- 1/2	0	0	0	- 1/2	1
X 1	3	1	0	2	0	2
S6	1	0	0	0	1	- 2

又出现全整数

$$s_{7} = -\frac{1}{2} + \frac{1}{2}s_{6}; \quad s_{6} = -\frac{1}{3} + \frac{2}{3}x_{3} + \frac{2}{3}s_{5}$$

$$s_{7} = -\frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{2}{3}x_{3} + \frac{2}{3}s_{5}$$

$$= -\frac{1}{2} - \frac{1}{6} + \frac{1}{3}x_{3} + \frac{1}{3}s_{5}$$

$$= -\frac{2}{3} + \frac{1}{3}x_{3} + \frac{1}{3}s_{5}$$

即取 - $\frac{1}{3}x_3$ - $\frac{1}{3}s_5$ + s_7 = - $\frac{2}{3}$ 作为割平面附加在单纯形表格后面(见表 10.18)。

表 10.18

	хв Св	X	X 1	X 2	X 3	X 4	S 5	S 7
Хв		b C	2	3	0	0	0	0
X 2	3	2/3	0	1	1/3	0	- 2/3	0
X 1	2	7/ 3	1	0	- 1/3	0	5/3	0
X 4	0	2/3	0	0	1/3	1	- 11/3	0
S 7	0	- 2/3	0	0	- 1/3	0	- 1/3	1
		20/3	0	0	- 1/3	0	- 4/3	0
X 2	3	0	0	1	0	0	- 1	- 3
\mathbf{X}_{1}	2	3	1	0	0	0	2	3
X 4	0	0	0	0	0	1	4	- 3
X 3	0	2	0	0	1	0	1	- 3
		7	0	0	0	0	- 1	- 1/2

10.4 全整数割平面法

10.4.1 全整数单纯形表格

前面介绍的割平面法(有时也称为分数型割平面法)有一个非常不利的因素。分数在 计算机里运算难免有舍入误差,如果按分子分母分开存放,程序势必异乎寻常地复杂。若 初始表格都是整数,割平面方程能不能也是整数,特别是主元素是1时。这一节就讨论这 样的可能。目的在于解题过程始终保持单线形表格全是整数。假定讨论的问题可用对偶单纯形法求解,即对于 max 问题,所有的 c_i - z_i < 0, 若 i N , 对于 min 问题, c_i - z_i > 0, i N 。设存在 k, 使 b_k = min { b_i @ b_i < 0, i N }。

假定取 $x_k = b_k - a_{kj} x_j, b_k < 0$ 作为割平面的源。设 0。

$$\frac{x_k}{} = \frac{b_k}{} - \underbrace{\frac{a_{kj}}{}}_{j N} x_j$$

$$\left[\underbrace{1}_{j N} \right] + f_k x_k = \underbrace{\frac{b_k}{}}_{j N} - \underbrace{\left[\underbrace{a_{kj}}_{j N} \right]}_{j N} + f_{kj} x_j$$

由于 xk 和 xj,j N, 都假定是非负整数

$$\left[\begin{array}{c} 1 \\ \end{array}\right]_{X_k} + \left[\begin{array}{c} a_{kj} \\ \end{array}\right]_{X_j} \left[\begin{array}{c} b_k \\ \end{array}\right]$$

当 > 1 时 = 0, 故有

引进松弛变量 8k 使得

这就是割平面(-割)。为了保持全整数,主元素必须为-1,这样消元过程都是作整数的乘和加运算。这只要割平面方程左端系数为负的项等于-1。例如只要 $\max_{j \in \mathbb{N}} \{-a_{kj} \otimes a_{kj}\}$ $<-1\}$ 。

当然, 有其它选择的余地,可以选择,使目标函数变化得最快,即 max 问题使目标函数增加最多,对 min 问题则应求下降最多。比如当前目标函数值为 b。假定主元素在第 r 列为 - 1,加上割平面后通过对偶单纯形法可得新的目标函数值为

$$b_0^{\scriptscriptstyle 1} = b_0 + \left\lfloor \frac{b_k}{} \right\rfloor \frac{-c_r}{c_r}$$

其中 \overline{c} 是第r 列的检验数。 $b_k < 0$,所以除非 $\overline{c}_r = 0$,否则 取得越小,目标函数值下降得越快,还保持主元素为 - 1。

下面要讨论 r 和 的选择。

主元素列 r 的选择根据对偶单纯形法。以 max 问题为例, 主元素行 k 是取右端项

$$b_{k} = \min_{j} \left\{ b_{j} \otimes b_{j} < 0 \right\}$$

主元素所在的列应满足

$$\frac{c_r - z_r}{a_{kr}} = \min_{i} \frac{c_i - z_i}{a_{ki}} \left| a_{ki} < 0 \right|$$

现在主元素的行即新加上去的割平面,这时 акі 为 акі , 所以

$$\frac{c_{r} - z_{r}}{\left\lfloor \frac{a_{kr}}{2} \right\rfloor} = \min_{i} \frac{c_{i} - z_{i}}{\left\lfloor \frac{a_{ki}}{2} \right\rfloor} a_{ki} < 0$$

的选择: 一是使主元素为 - 1, 另一目的在于使收敛速度尽可能快, 若有若干个 ,

使主元素为 - 1,则 选取其中最小的。

10.4.2 举例

先来看两个例子。

例 10.5
$$\min z = 4x_1 + 5x_2$$
s.t.
$$x_1 + 4x_2 = 5$$

$$3x_1 + 2x_2 = 7$$

$$x_1, x_2 = 0, 整数$$

或

max
$$z = -4x_1 - 5x_2$$

s. t. $-x_1 - 4x_2 + x_3 = -5$
 $-3x_1 - 2x_2 + x_4 = -7$
 $x_1, x_2, x_3, x_4 = 0$ 整数

取 - $3x_1$ - $2x_2$ + x_4 = - 7作为割的源行。

做表上运算(见表 10.19)。

表 10.19

ХВ	Св	b C	Х 1	X 2	X 3	X4	S ₁
X 3	0	- 5	- 1	- 4	1	0	0
X 4	0	- 7	- 3	- 2	0	1	0
X 5	0		_ 3	$\begin{bmatrix} - & 2 \end{bmatrix}$	0	$\lfloor \frac{1}{} \rfloor$	1
			- 4	- 5	0	0	0

从
$$\frac{-4}{|-3|}$$
, $\frac{-5}{|-2|}$, 可知, $4 < 5$, 故 x_1 为主元素, = 3。

再做表上运算(见表 10.20)。

表 10.20

	C_{B}	C	X ₁	X 2	X ₃	X 4	S_1	
ХB	$C_{\rm B}$	b C	- 4	- 5	0	0	0	
X 3	0	- 5	- 1	- 4	1	0	0	
X 4	0	- 7	- 3	- 2	0	1	0	
S_1	0	- 3	- 1	- 1	0	0	1	
		0	- 4	- 5				
X 3	0	- 2	0	- 3	1	0	- 1	
X 4	0	2	0	1	0	1	- 3	
X 1	- 4	3	1	1	0	0	- 1	
		- 12	0	- 1	0	0	- 4	

取 -
$$3x_2 + x_3 - s_1 = -2$$
 作为割平面的源行。从 $\begin{bmatrix} -1 \\ -3 \end{bmatrix}$ 和 $\begin{bmatrix} -4 \\ -1 \end{bmatrix}$ 可知 = 3。

继续做表上运算(见表 10.21)。

表 10.21

	C	X	X 1	X 2	X 3	X 4	S 1	S2	
Хв	Св	b C	- 4	- 5	0	0	0	0	
X 3	0	- 2	0	- 3	1	0	- 1	0	
X 4	0	2	0	1	0	1	- 3	0	
X 1	- 4	3	1	1	0	0	- 1	0	
S2	0	- 1	0	- 1	0	0	0	1	
		- 12	0	- 1	0	0	- 4	0	
X 3	0	1	0	0	1	0	- 1	- 3	
X 4	0	1	0	0	0	1	- 3	1	
X 1	- 4	2	1	0	0	0	- 1	1	
X 2	- 5	1	0	1	0	0	0	- 1	
		- 13	0	- 5	0	0	- 4	- 1	

例 10.6
$$\max z = -10x_1 - 14x_2 - 21x_3$$
s.t.
$$-8x_1 - 11x_2 - 9x_3 + x_4 = -12$$

$$-2x_1 - 2x_2 - 7x_3 + x_5 = -14$$

$$-9x_1 - 6x_2 - 3x_3 + x_6 = -10$$

$$x_1 - 0$$
整数, $i = 1, 2, ..., 6$

若 = 2,则有

$$- x_1 - x_2 - 4x_2 + s_1 = - 7$$

$$| \frac{-10}{-2} |, \frac{-14}{-2} |, \frac{-21}{-7} |$$
 可知 = 2, 则主元素非 - 1, 故应取 = $\frac{7}{2}$ 为合适。

建立单纯形表格(见表 10.22)。

表 10.22

		X	X 1	X 2	X ₃	X 4	X 5	X 6	\mathbf{S}_1
Хв	$C_{\mathbb{B}}$	b C	- 10	- 14	- 21	0	0	0	0
X 4	0	- 12	- 8	- 11	- 9	1	0	0	0
X 5	0	- 14	- 2	- 2	- 7	0	1	0	0
X 6	0	- 10	- 9	- 6	- 3	0	0	1	0
S ₁	0	- 4	- 1	- 1	2	0	0	0	1
			- 10	- 14	- 21	0	0	0	0
X 4	0	20	0	- 3	7	1	0	0	- 8
X 5	0	- 6	0	0	- 3	0	1	0	- 2
X 6	0	- 26	0	3	15	0	0	1	- 9
X 1	- 10	4	1	1	2	0	0	0	- 1
		- 40	0	- 4	- 1	0	0	0	- 10

-
$$3x_3$$
 - $2s_1$ = - 6 , 从 $\frac{-4}{-3}$, $\frac{-10}{-2}$ 可知, = 3 时有割平面。

$$-x_3 - s_1 + s_2 = -2$$

做表上运算(见表 10.23)

表 10.23

		X	X 1	X 2	X 3	X 4	X 5	X 6	S_1	S_2	
Хв	$C_{\mathbb{B}}$	b C	- 10	- 14	- 21	0	0	0	0	0	
X 4	0	20	0	- 3	7	1	0	0	- 8	0	
X 5	0	- 6	0	0	- 3	0	1	0	- 2	0	
X 6	0	26	0	3	15	0	0	1	- 9	0	
X 1	- 10	4	1	1	2	0	0	0	- 1	0	
S2	0	- 2	0	0	- 1	0	0	0	- 1	1	
		- 40	0	- 4	- 1	0	0	0	- 10	0	
X 4	0	6	0	- 3	0	1	0	0	- 15	7	
X 5	0	0	0	0	0	0	1	0	1	- 3	
X 6	0	- 4	0	3	0	0	0	1	- 24	15	
\mathbf{X}_{1}	- 10	0	1	1	0	0	0	0	- 3	2	
X 3	- 21	2	0	0	1	0	0	0	1	- 1	
		- 42	0	- 4	0	0	0	0	- 9	- 1	

$$3x_2 + x_6 - 24s_1 + 15s_2 = -4$$

= 24, - $s_1 + s_3 = -1$

再做表上运算(见表 10.24)。

表 10.24

		X	X 1	X 2	X 3	X 4	X 5	X 6	S 1	S2	S 3	
ХВ	Св	b C	- 10	- 14 -	- 21	0	0	0	0	0	0	
X 4	0	6	0	- 3	0	1	0	0 -	15	7	0	
X 5	0	0	0	0	0	0	1	0	1	- 3	0	
X ₆	0	- 4	0	3	0	0	0	1 -	24	15	0	
X 1	- 10	0	1	1	0	0	0	0	- 3	2	0	
X 3	- 21	2	0	0	1	0	0	0	1	- 1	0	
S ₃	0	- 1	0	0	0	0	0	0	- 1	0	1	L
		- 42	0	- 4	0	0	0	0 -	21	- 1	0	
X 4	0	21	0	- 3	0	1	0	0	0	7	- 15	
X 5	0	- 1	0	0	0	0	1	0	0	- 3	1	
X 6	0	20	0	3	0	0	0	1	0	15	- 24	
\mathbf{X}_{1}	- 10	3	1	1	0	0	0	0	0	2	- 3	
X 3	- 21	1	0	0	1	0	0	0	0	- 1	1	
S1	0	1	0	0	0	0	0	0	1	0	- 1	$oxed{oxed}$
		- 51	0	- 4	0	0	0	0	0	- 1	- 9	

$$x_5 - 3s_2 + s_3 = -1$$

 $\frac{1}{2}x_5 - \frac{3}{2}s_2 + \frac{1}{2}s_3 = -\frac{1}{2}$, = 3有
 $\left[\frac{-3}{2}\right]s_2 + \left[\frac{1}{2}\right]s_3 + s_4 = \left[\frac{-1}{2}\right]$

即

- $s_2 + s_4 = -$ 1

继续做表上运算(见表 10.25)。

表 10.25

		X	X 1	X 2	X 3	X 4	X 5	X 6	S 1	S2	S3	S4	
Хв	Св	b C	- 10 -	14 -	. 21	0	0	0	0	0	0	0	
X 4	0	21	0	- 3	0	1	0	0	0	7 -	15	0	
X 5	0	- 1	0	0	0	0	1	0	0	- 3	1	0	
X 6	0	20	0	3	0	0	0	1	0	15 -	24	0	
\mathbf{X}_{1}	- 10	3	1	1	0	0	0	0	0	2	- 3	0	
X 3	- 21	1	0	0	1	0	0	0	0	- 1	1	0	
S 1	0	1	0	0	0	0	0	0	1	0	- 1	0	
S4	0	- 1	0	0	0	0	0	0	0	- 1	0	1	
		51	0	- 4	0	0	0	0	0	- 1	- 9	0	
X 4	0	14	0	- 3	0	1	0	0	0	0 -	15	7	
X 5	0	2	0	0	0	0	0	1	0	0	1	- 3	
X 6	0	5	0	3	0	0	0	1	0	0 -	24	15	
\mathbf{X}_{1}	- 10	1	1	1	0	0	0	0	0	0	- 3	2	
X 3	- 21	2	0	0	1	0	0	0	0	0	1	- 1	
S_1	0	1	0	0	0	0	0	0	1	0	- 1	0	
S ₂	0	1	0	0	0	0	0	0	0	1	0	- 1	
		- 52	0	- 4	0	0	0	0	0	0	- 9	- 1	

得解 $x_1 = 1, x_2 = 0, x_3 = 2, z = 52$ 。

10.4.3 确定 的策略

从上面的例子可见, 的选择有一定的自由度。下面给出一种实用的策略, 当割平面源 行确定之后, 第二步确定主元素所在的列, 然后适当地调整 的值, 使得主元素保持为- 1, 还要保证满足对偶单纯形法对主元素的要求。以例 10.6 为例,第一步选定右端为- 14 的行 作为割平面的源行后, 从表 10.22 可知, 在 a_2 为负数的列中, 取 $c_1 - z_1$ 绝对值最小的非零元 素 10 所在列, 即 x 1 列。但若令 = 2, 虽能保证主元素为 - 1, 但不能适应作为对偶单纯形法 主元素的要求, 所以应适当地增大。

下面介绍求 的算法。假定第 r 行取作主元素所在行。

算法的步骤如下:

S1. 在 $a_{ri} < 0$ 的诸列中, 求 $g - z_i$ 绝对值最小的列作为主元素所在列, 设为第 p 列。

S 2. 令
$$u_p = 1$$
, 对于 $a_{rj} < 0$, $j = p$, 令 u_j 为使 $\frac{1}{u_j} | c_j - z_j | > | c_p - z_p |$ 的最大正整数。
$$j = \frac{-a_{rj}}{u_i}, j$$
 不要求是整数。

$$S3.$$
 求 = $\max\{j\}$ 。

例 10.7
$$\max z = -2x_1 - 5x_2 - 2x_3$$

s.t. $x_1 - 4x_2 - x_3 + x_4 = -7$
 $-x_1 - 2x_2 + x_3 + x_5 = -4$
 $-3x_1 - x_2 - 2x_3 + x_6 = -5$
 $x_i \quad 0$ 整数, $i = 1, 2, ..., 6$

以 x_1 - $4x_2$ - x_3 + x_4 = - 7 作为割平面的源, 取 x_3 列作为主元素所在列。

$$\begin{bmatrix} 1 \\ \end{bmatrix} x_1 + \begin{bmatrix} -4 \\ \end{bmatrix} x_2 + \begin{bmatrix} -1 \\ \end{bmatrix} x_3 + \begin{bmatrix} 1 \\ \end{bmatrix} x_4 + s_1 = \begin{bmatrix} -7 \\ \end{bmatrix}$$

$$u_3 = 1, \frac{1}{u_2}$$
 ②5 ② > 2, $u_2 = 2, \quad z = \frac{4}{2} = 2, \quad = \max\{2, 2\} = 2$, 故有割平面 $-2x_2 - x_3 + s_1 = -4$

做表上运算(见表 10.26)。

表 10.26

	C	X	X 1	X 2	X 3	X 4	X 5	X 6	S1	
Хв	Св	b C	- 2	- 5	- 2	0	0	0	0	
X 4	0	- 7	1	- 4	- 1	1	0	0	0	
X 5	0	- 4	- 1	- 2	1	0	1	0	0	
X 6	0	- 5	- 3	- 1	- 2	0	0	1	0	
S ₁	0	- 4	0	- 2	- 1	0	0	0	1	
		0	- 2	- 5	- 2	0	0	0	0	
X 4	0	- 3	1	- 2	0	1	0	0	- 1	
X 5	0	- 8	- 1	- 4	0	0	1	0	1	
X 6	0	3	- 3	3	0	0	0	1	- 2	
X 3	- 2	4	0	2	1	0	0	0	- 1	
		- 8	- 2	- 1	0	0	0	0	- 2	

取 - x_1 - $4x_2$ + x_5 + s_1 = - 8作为割平面的源, x_2 作为主元素列, u_2 = 1, 使 $\frac{1}{u_1}$ © t_1 -

再做表上运算(见表 10.27)。

表 10.27

		X	X 1	X 2	X 3	X 4	X 5	X 6	S ₁	S 2	
X_B	$C_{\mathbb{B}}$	b C	- 2	- 5	- 2	0	0	0	0	0	
X 4	0	- 3	- 1	- 2	0	1	0	0	- 1	0	
X 5	0	- 8	- 1	- 4	0	0	1	0	1	0	
X 6	0	3	- 3	3	0	0	0	1	- 2	0	
X 3	- 2	4	0	2	1	0	0	0	- 1	0	
S ₂	0	- 2	- 1	- 1	0	0	0	0	0	1	
		- 8	- 2	- 1	0	0	0	0	- 2	0	
X 4	0	1	3	0	0	1	0	0	- 1	- 2	
X 5	0	0	3	0	0	0	1	0	1	- 4	
X 6	0	- 3	- 6	0	0	0	0	1	- 2	3	
X 3	- 2	0	- 2	0	1	0	0	0	- 1	2	
X 2	- 5	2	1	1	0	0	0	0	0	- 1	
		- 10	- 1	0	0	0	0	0	- 2	- 1	

取 -
$$6x_1 + x_6 - 2s_1 + 3s_2 = -3$$
, 主元素列为 x_1 列。 $\left[-\frac{6}{3} \right] x_1 + \left[\frac{1}{3} \right] x_6 + \left[-\frac{2}{3} \right] s_1 + \left[\frac{3}{3} \right] s_2 + s_3 = \left[-\frac{3}{3} \right]$, $u_1 = 1$, $\frac{1}{u_7}$ ②② > 1 , $u_7 = 1$,

做表上运算(见表 10.28)。

表 10.28

12 1	J. 20										
		X	X 1	X 2	X 3	X 4	X 5	X 6	S_1	S ₂	S 3
ХВ	C _B	b C	- 2	- 5	- 2	0	0	0	0	0	0
X 4	0	1	3	0	0	1	0	0	- 1	- 2	0
X 5	0	0	3	0	0	0	1	0	1	- 4	0
X 6	0	- 3	- 6	0	0	0	0	1	- 2	3	0
X 3	- 2	0	- 2	0	1	0	0	0	- 1	2	0
X 2	- 5	2	1	1	0	0	0	0	0	- 1	0
S ₃	0	- 1	- 1	0	0	0	0	0	- 1	0	1
X_4	0	- 2	0	0	0	1	0	0	- 4	- 2	3
X ₅	0	- 3	0	0	0	0	1	0	- 2	- 4	3
X 6	0	3	0	0	0	0	0	1	4	3	- 6
X 3	- 2	2	0	0	1	0	0	0	1	2	- 2
X 2	- 5	1	0	1	0	0	0	0	- 1	- 1	1
X ₁	- 2	1	1	0	0	0	0	0	1	0	- 1
		- 11	0	0	0	0	0	0	- 1	- 1	- 1

取 x_5 - $2s_1$ - $4s_2$ + $3s_3$ = - 3 为割平面源行, s_1 为主元素, = 4。 再做表上运算(见表 10.29)。

表 10.29

	G	X	X ₁	X 2	X 3	X 4	X 5	X ₆	s_1	S ₂	S ₃	S ₄	
ХВ	C_{B}	b C	- 2	- 5	- 2	0	0	0	0	0	0	0	
X 4	0	- 2	0	0	0	1	0	0 -	- 4	- 2	3	0	
X 5	0	- 3	0	0	0	0	1	0 -	- 2	- 4	3	0	
X 6	0	3	0	0	0	0	0	1	4	3	- 6	0	
X 3	- 2	2	0	0	1	0	0	0	1	2	- 2	0	
X 2	- 5	1	0	1	0	0	0	0 -	- 1	- 1	1	0	
\mathbf{X}_{1}	- 2	1	1	0	0	0	0	0	1	0	- 1	0	
S4	0	- 1	0	0	0	0	0	0 -	- 1	- 1	0	1	
		- 11	0	0	0	0	0	0 -	- 1	- 1	- 1	0	
X 4	0	0	0	0	0	1	0	0 -	- 2	0	3 -	- 2	
X 5	0	1	0	0	0	0	1	0	2	0	3	- 4	
X 6	0	0	0	0	0	0	0	1	1	0	- 6	3	
X ₃	- 2	0	0	0	1	0	0	0 -	- 1	0	- 2	2	
X 2	- 5	2	0	1	0	0	0	0	0	0	1 -	- 1	
X 1	- 2	1	1	0	0	0	0	0	1	0	- 1	0	
S_2	0	1	0	0	0	0	0	0	1	1	0 -	- 1	
		- 12	0	0	0	0	0	0	0	0	- 1	- 1	

故解为: $x_1 = 1, x_2 = 2, x_5 = 1, x_3 = x_4 = x_6 = 0, z = -12$ 。

10.5 混合规划的割平面法

线性规划问题,部分变量要求是整数,称之为混合规划问题。设 x_k 是整数变量,令

$$x_k = b_k - \sum_{j = N} k_j x_j$$

由于 x_k 是整数, 故 x_k b_k + 1 或 x_k b_k , 对于混合问题依然是必要条件, 由于

$$x_k$$
 - $b_k = f_k$ - $b_j x_j$

若

$$x_k \quad \lfloor b_k \rfloor \quad \blacksquare$$

$$f_{k} - \sum_{j=N}^{k_{j}} x_{j} = 0$$
 或 $-\sum_{j=N}^{k_{j}} x_{j} < -f_{k}$ (10.17)

若

$$x_k = \lfloor b_k \rfloor + 1, \mathbb{N}_{j} = k_j x_j = f_k - 1$$
 (10.18)

事先不了解究竟是(10.17)或(10.18)必须满足,必须导出由(10.17)和(10.18)组合 而成的一个约束条件,令

$$N^+ > \{j \otimes_{k_j}^l > 0, j N \}$$

$$N$$
 > $\{j \, \mathbb{O}^{\text{\tiny l}}_{\text{\tiny l}\,\text{\tiny k}j} < \ 0, j \ N \, \}$

(10.17) 即为 -
$$k_j X_j$$
 - f_k (10.17)

同理

(10.19)的两端同乘以 f k/(1 - f k) 得

$$\frac{f_{k} k_{j}}{1 - f_{k}} x_{j} - f_{k}$$
 (10.18)

由于(10.17)和(10.18)是互斥的,故有割

$$\frac{f_{k-kj}}{1-f_{k}} x_{j} - \int_{j-N^{+}}^{kj} x_{j} - f_{k}$$
 (10.20)

若考虑有些非基变量 x_j 也是整数, (10.20) 还可以强化, 在不影响 x_k 为整数的前提下, 使 x_j 的系数尽可能地减少, 割切的效果更强。 $k_j < 0$ 时的系数最小值为 f_{k_j} 。 1 , $k_j > 0$ 的最小值为 f_{k_j} 。这里 $k_j = \begin{bmatrix} k_j \end{bmatrix} + f_{k_j}$ 。故割平面 x_j 的系数 k_j ,j = I ,I 是整数变量的下标集合, 有

$$k_{ij} = \min \frac{f_{k}(1 - f_{kj})}{1 - f_{k}}, f_{kj}, j$$

即 j N 时 \bigcirc lkj \bigcirc

$$\frac{ \int_{k}^{k} \frac{k_{j}}{k_{c}} x_{j} - \int_{k_{c}}^{k_{j}} x_{j} - \int_{k$$

其中 N_c^+ > $\{j \ G \mid N_c^+ \mid I_c^-\}, N_c^-$ > $\{j \ G \mid N_c^- \mid I_c^-\}, I_c^-$ 表示非I,即不属于I 的集合。故 N_c^+ 为连续变量 X_j 满足 $X_j > 0$ 的下标集合; N_c^- 不满足 $X_j < 0$ 的连续变量 X_j 的下标集合。

例 10.8
$$\max z = -5x_2 - 10x_4 + 20$$

s. t.
$$x_1 - \frac{5}{3}x_2 - \frac{1}{3}x_4 = \frac{5}{3}$$

 $-\frac{4}{3}x_2 + x_3 + \frac{11}{3}x_4 = \frac{7}{3}$

x1, x2 0, x3, x4 0整数

选 -
$$\frac{4}{3}$$
x₂ + x₃ + $\frac{11}{3}$ x₄ = $\frac{7}{3}$ 作为割的源行,可写为
x₃ + - $\frac{4}{3}$ x₂ + 3 + $\frac{2}{3}$ x₄ = 2 + $\frac{1}{3}$

考虑到 X2 是连续变量, X4 是整数, 故割为

$$\frac{\frac{1}{3} - \frac{4}{3}}{1 - \frac{1}{3}} \quad x_2 - \frac{\frac{1}{3} \quad 1 - \frac{2}{3}}{1 - \frac{1}{3}} \quad x_4 + s_1 = -\frac{1}{3}$$

或

$$- \frac{2}{3}x_2 - \frac{1}{6}x_4 + s_1 = - \frac{1}{3}$$

做表上运算(见表 10.30)。

表 10.30

_		X	X 1	X 2	X 3	X 4	s_1
Хв	Св	b C	0	- 5	0	- 10	0
\mathbf{X}_{1}	0	5/3	1	- 5/3	0	- 1/3	0
X ₃	0	7/3	0	- 4/3	1	11/3	0
S 1	0	- 1/3	0	- 2/3	0	- 1/6	1
			0	- 5	0	- 10	0
\mathbf{X}_1	0	5/2	1	0	0	1/ 12	- 5/2
X ₃	0	3	0	0	1	4	- 2
X 2	- 5	1/2	0	1	0	1/4	- 3/2
		- 5/2	0	0	0	- 35/4	- 15/2

问题的解为:

$$x_1 = \frac{5}{2}, x_2 = \frac{1}{2}, x_3 = 3, x_4 = 0, z = 20 - \frac{5}{2} = \frac{35}{2}$$

习 题 十

用割平面法解下列各题

1.
$$\max z = 2x_1 + 4x_2$$
s. t.
$$2x_1 + 6x_2 = 23$$

$$x_1 - x_2 = 1$$

$$x_1 + x_2 = 6$$

$$x_1, x_2 = 0$$

$$2.$$

$$\min z = 3x_1 + 2x_2 + 4x_3$$

s.t.
$$-x_1 + x_2 + 3x_3$$
 8
 $3x_1 - 4x_2 + x_3$ 9
 $2x_1 + x_2 - x_3$ 6
 x_1, x_2, x_3 整数

- 3. 习题 2 中, 目标函数改为 $\min z = 2x_1 x_2 + 3x_2$

max
$$z = 4x_1 + 3x_2$$

s.t. $4x_1 + x_2 = 10$
 $2x_1 + 3x_2 = 8$
 $x_1, x_2 = 0$ 整数

6.

min
$$z = 2x_1 + 5x_2$$

s.t.
$$x_1 + x_2 = 4.5$$

 $2x_1 + 6x_2 = 22$

x1, X2 0整数

第 11 章 奔德斯(Benders)分解算法与群的解法

11.1 混合规划的奔德斯分解算法

11.1.1 分析算法的原理

利用对偶理论可以证明任意混合整数规划问题可以写成整数规划。也就是说解一混合整数规划可通过解与它等价的整数规划问题。

混合整数规划可简记为 MIP。

若混合整数规划问题为:

$$(MIP)$$
 $\min z = cx + dy$ $s. t. \quad Ax + Dy \quad b$ $x \quad 0, y \quad 0$ x 为整数

其中 $A = (a_{ij})_{mx}, D = (d_{ij})_{mx},$ 其余都是 m, n 或 n 维向量, 不一一说明。令 X 为可行的非负整数向量 x 的集合。MIP 问题还可写为

$$\min_{x} z = \min_{x} \{ cx + \min(dy \mathbb{O} y \quad b - Ax, y \quad 0) \}$$

x 固定后, 括号里的极小问题是线性规划

$$\begin{aligned} & \text{min } w = dy \\ & \text{s.t.} & & \text{Dy} & & \text{b-} & \text{Ax} \\ & & & \text{y} & & 0 \end{aligned}$$

其对偶问题为

若 \overline{U} = {u@tD d, u 0} 是空集,则对偶问题(DL) 无可行解,由对偶原理,原问题(L) 无解或无界,后一种情况为原来的混合整数问题无界。无论如何,假定混合整数问题有界,所以假定 \overline{U} 非空, 凸多面体 \overline{U} 与 x 无关,不论 x 取何值, \overline{U} 上 u(b - Ax) 的极大值在它的顶点取得或沿着它的极方向无界地增大,但 \overline{u} 有有限个顶点和极方向。

令 $u^P(p=1,2,3...,\overline{p})$ 是 \overline{U} 的顶点, $v^s(s=1,2,...,\overline{s})$ 是极方向, 若对于 x 存在 v^s 使得 $v^s(b-Ax)>0$, 则 $\max_{u=\overline{U}}\{u(b-Ax)\}$ 无界, 另一方面, 若 $\max_{u=\overline{U}}\{u(b-Ax)\}$ 无界, 则对于这一个 x, 存在 v^s , 使得 $v^s(b-Ax)>0$, 当对偶问题(DL) 无界, 由对偶原理, 原问题(L) 无解, 所以混合整数规划问题无解。故

$$v^{s}(b - Ax) = 0, (s = 1, 2, ..., \bar{s})$$

是混合整数规划存在可行解 v 的关于 x 的充要条件。

$$v^{s}(b - Ax) = 0(s = 1, 2, ..., \bar{s}), x = 0,$$
整数, 令可行解集合为 X。
对于 x X,问题

$$\begin{array}{lll} min \ w = \ dy \\ s. \ t. & Dy & b - Ax \\ & y & 0 \end{array}$$

等于求(DL)max问题,所以混合整数规划是

$$\begin{split} \min_{x} \left\{ cx + \max_{p=1,2,...,p} u^{p}(b-Ax) \right\} \\ s.t. \quad u^{s}(b-Ax) \quad 0, \, s=1,2,...,s \\ x \quad 0 整数 \end{split}$$

令 $z = cx + max\{u^p(b-Ax)\}, p = 1, 2, ..., p f z cx + u^p(b-Ax), p = 1, 2, ..., p,$ 且混合整数规划等价于整数规划:

min w = z
s.t.
$$cx + u^{p}(b - Ax)$$
 $z, p = 1, 2, ..., p$
 $v^{s}(b - Ax)$ $0, s = 1, 2, ..., s$
 x 0 整数

11.1.2 奔德斯分解算法

算法的步骤如下:

- S1. 任给 x 以初始非负整数向量, x, z , z , p 0, q 0
- S2. 解对偶问题(DL)

$$\begin{array}{lll} max & w = & u(b - Ax) \\ s. & t. & uD & d \\ & u & 0 \end{array}$$

其中 x 是固定的 x, 若解得一顶点 u ,则作 p p + 1 , z cx + u^p (b - Ax) , 若解无界又得一极方向 v^q ,作 q q + 1

S 3. 解 min z

$$s.t.$$
 $z > cx + u^h(b - Ax), h = 1, 2, ..., p$ $v^k(b - Ax)$ $0, k = 1, 2, ..., q$ x $0, 整数$

<u>z</u> z, x x

S4. 若 z < z 转 S2, 否则 x 是最优解。

$$\begin{aligned} & \text{min } w = dy \\ & \text{s.t.} & \text{Dy} & \text{b-} & \text{Ax} \\ & & y & 0 \end{aligned}$$

现就混合整数规划问题

$$min z = cx + dy$$

s.t. $Ax + Dy b$
 $x 0 整数, y 0$

用分解算法求解的流程图如图 11.1 所示。

图 11.1

11.1.3 算法举例

解算过程如下:

S 1.
$$x = 0, \overline{z} + , z - , p 0, q 0,$$

S2. x = 0, 故对偶问题为

做表上运算(见表 11.1)。

表 11.1

		X	u_1	u_2	s_1	S_2	S ₃	
X B	$C_{\mathbb{B}}$	b C	1	2	0	0	0	
S1	0	1	1	- 1	1	0	0	
S ₂	0	0	- 6	1	0	1	0	
S ₃	0	1	- 5	2	0	0	1	
		0	1	2	0	0	0	
S 1	0	1	- 5	0	1	0	0	
\mathbf{u}_2	2	0	- 6	1	0	1	0	
S ₃	0	1	7	0	0	- 2	1	
		0	13	0	0	- 2	0	
S_1	0	12/7	0	0	1	- 10/7	5/7	
u_2	2	6/7	0	1	0	- 5/7	6/ 7	
u_1	1	1/7	1	0	0	- 2/7	1/7	
		13/7	0	0	0	12/7	- 13/7	

可见解无界。

基变量 u1, u2 随着

而趋向无界,但

$$\lim \frac{u^2}{u_1} = \lim \frac{\frac{6}{7} + \frac{5}{7}}{\frac{1}{7} + \frac{2}{7}} = \frac{5}{2}$$

得极方向 v = (2, 5)

S4. 由于z < z 转 S2。

$$S2. \ x = M, D = \begin{cases} 1 & -6 & -5 \\ -1 & 1 & 2 \end{cases}$$

$$uD = (u_1 \ u_2) \begin{cases} 1 & -6 & -5 \\ -1 & 1 & 2 \end{cases} = \begin{cases} u_1 - u_2 \\ -6u_1 + u_2 \\ -5u_1 + 2u_2 \end{cases}$$

$$max \ z = u_1(1 - 2M) + u_2(2 - 3M)$$

$$s. \ t. \quad u_1 - u_2 \quad 1$$

$$-6u_1 + u_2 \quad 0$$

$$-5u_1 + 2u_2 \quad 1$$

$$u_1, u_2 \quad 0$$

做表上运算(见表 11.2)。

表 11.2

V 5	Св	X	u ı	u 2	S 1	S 2	S 3
Хв	Св	b C	1 - 2M	2 - 3M	0	0	0
S_1	0	1	1	- 1	1	0	0
S_2	0	0	- 6	1	0	1	0
S 3	0	1	- 5	2	0	0	1
			1 - 2M	2 - 3M	0	0	0

S3. 由于
$$cx + u^{(1)}(b - Ax) = x$$

$$x = 1, z = 1, z = 1$$

S4.
$$z = 1, \overline{z} = M > 1$$
, 由于 $x = 1, b$ - $Ax = \begin{bmatrix} 1 - 2 \\ 2 - 3 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$, $z < \overline{z}$

max $w = -u_1 - u_2$

s.t. $u_1 - u_2 = 1$
 $-6u_1 + u_2 = 0$
 $-5u_1 + 2u_2 = 1$

$$u_1, u_2 = 0$$
 是最优解, $z = 1 - 0 - 0 = 1$ S 3. $min \ w = z$ s. t. $12 - 19x = 0$ $x = z$ $x = 0$ 整数

解不变 $x = 1, z = 1, \underline{z} = 1$

$$S4. z = z = 1, x = 1$$

min w =
$$y_1 + y_3$$

s. t. $y_1 - 6y_2 - 5y_3 - 1$
 $- y_1 + y_2 + 2y_3 - 1$
 $y_1, y_2 = 0$
min w = $y_1 + y_3$
s. t. $- y_1 + 6y_2 + 5y_3 + s_1 = 1$

 $y_1 - y_2 - 2y_3 + s_2 = 1$ $y_1, y_2, y_3 = 0$

进行表上运算(见表 11.3)。

表 11.3

即

Хв	Св	b C	y ₁	y ₂ 0	y ₃	s ₁	s ₂
S ₁	0	1	- 1	6	5	1	0
S2	0	1	1	- 1	- 2	0	1
			1	0	1	0	0

得解
$$y_1 = y_2 = y_3 = 0_0$$

例 11. 2 $\min z = x_1 + 4x_2 + y_1 + 3y_2$
 $s.t.$ $x_1 - 2x_2 - 2y_1 - y_2 = 1$
 $-x_1 + 3x_2 + 2y_1 + 2y_2 = 1$
 $3 - x_1, x_2 = 0$ 整数, $y_1, y_2 = 0$
令 $x_1 = 2 + 2$ $y_1 + 2$ $y_2 + 3$ $y_1 + 3$ $y_2 + 3$ $y_2 + 3$ $y_1 + 3$ $y_2 + 3$ $y_2 + 3$ $y_1 + 3$ $y_2 + 3$ $y_2 + 3$ $y_1 + 3$ $y_2 + 3$ $y_2 + 3$ $y_1 + 3$ $y_1 + 3$ $y_2 + 3$ $y_1 + 3$ $y_1 + 3$ $y_2 + 3$ $y_1 + 3$ $y_2 + 3$ $y_1 + 3$

将(1)写成

関中
$$A = \begin{pmatrix} min \ z = cx + dy \\ s.t. & Ax + Dy & b \\ x & \{0,1\}, y & 0 \end{pmatrix}$$
其中 $A = \begin{pmatrix} 2 & 1 & -4 & -2 \\ -2 & -1 & 6 & 3 \end{pmatrix}, D = \begin{pmatrix} -2 & -1 \\ 2 & 2 \\ x = \begin{pmatrix} 1, & 2, & 1, & 2 \end{pmatrix}^T, y = \begin{pmatrix} y_1, y_2 \end{pmatrix}^T$
 $b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, c = \begin{pmatrix} 2 & 1 & 8 & 4 \end{pmatrix}, d = \begin{pmatrix} 1 & 3 \end{pmatrix}$

求解过程如下:

S 1. 给
$$\mathbf{x} = (0,0,0,0)^{\mathrm{T}}, \overline{\mathbf{z}}$$
 , $\underline{\mathbf{z}}$ - , \mathbf{p} 0, \mathbf{q} 0
S 2. 解对偶问题 $\mathbf{u}\mathbf{D} = (\mathbf{u}_1 \ \mathbf{u}_2)$ - $\frac{2}{2}$ - $\frac{1}{2}$ - $\frac{$

对偶问题的约束条件及域如图 11.3 所示。

图 11.3

做表上运算(见表 11.4)

表 11.4

v	C	K	\mathfrak{u}_1	u_2	\mathbf{S}_1	S ₂	
Хв	C_{B}	b C	1	1	0	0	
S_1	0	1	- 2	2	1	0	
S_2	0	3	- 1	2	0	1	
			1	1	0	0	

$$(u_1, u_2) = (2, 1), q 1$$

 $\min w = z$

s. t.
$$(2 \quad 1) \quad \frac{1 - 2 \cdot 1 - 2 + 4 \cdot 1 + 2 \cdot 2}{1 + 2 \cdot 1 + 2 \cdot - 6 \cdot 1 - 3 \cdot 2}$$

$$i, \quad i = 0, 1; \quad i = 1, 2$$

即

$$3 - 2 \cdot 1 - 2 + 2 \cdot 1 + 2 \quad 0$$
 $1 = 2 = 1, \quad 1 = 2 = 0$

S4. 转S2。

$$Ax = \begin{pmatrix} 2 & 1 & -4 & -2 & 1 \\ -2 & -1 & 6 & 3 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 3 & 3 & 0 \\ -3 & 3 & 0 & -3 \end{pmatrix}$$

$$\mathbf{p} = \begin{pmatrix} u_1 + 2u_2 = 3 \\ -2u_1 + 2u_2 = 1 \end{pmatrix}$$

-
$$u_1 + 2u_2 = 3$$

- $2u_1 + 2u_2 = 1$ 得 $u_1 = 2$, $u_2 = \frac{5}{2}$, $u = 2$, $\frac{5}{2}$

$$\overline{z} = cx + u(b - Ax) = 3 + 2 \frac{5}{2} \frac{1 - 3}{1 + 3} = 9$$

S3. 解

$$\min w = z$$

s.t.
$$3_{1} + \frac{3}{2}_{2} + 1 + \frac{1}{2}_{2} + \frac{9}{2} < z$$

$$3 - 2_{1} - 2 + 2_{1} + 2 \quad 0$$

$$i, i = 0, 1, i = 1, 2$$

$$1 = 2 = 1, 1 = 2 = 0, z = 9, \underline{z} \quad 9$$

 $S4. \overline{z} = z = 9$

解

$$\min w = y_1 + 3y_2$$

s.t.
$$-2y_1 - y_2 - 2$$

 $2y_1 + 2y_2 - 4$
 $y_1, y_2 - 0$

即

$$\begin{array}{rll} \text{max } w & = - & y_1 - & 3y_2 \\ \text{s.t.} & & 2y_1 + & y_2 + & s_1 = & 2 \\ & & - & 2y_1 - & 2y_2 + & s_2 = - & 4 \\ & & y_1, y_2, s_1, s_2 & 0 \end{array}$$

作表上运算(见表 11.5)。

表 11.5

	C	X	y 1	y 2	\mathbf{S}_1	\$2	
X _B	C_{B}	b C	- 1	- 3	0	0	
S_1	0	2	2	1	1	0	
S2	0	- 4	- 2	- 2	0	1	
		0	- 1	- 3	0	0	
S_1	0	- 2	0	- 1	1	1	
y 1	- 1	2	1	1	0	- 1/2	
		- 2	0	- 2	0	- 1/2	
y 2	- 3	2	0	1	- 1	- 1	
y 1	- 1	0	1	0	1	1/2	
		- 6	0	0	- 2	- 5/2	

故得
$$y_1 = 0$$
, $y_2 = 2$, $x_1 = 3$, $x_2 = 0$, $z = 9$ 。
例 11. 3 $\min z = x_1 + 4x_2 + y_1 + 3y_2$
s.t. $x_1 - 2x_2 - 2y_1 - y_2 = 1$
 $-x_1 + 3x_2 + 2y_1 + 2y_2 = 1$
 $x_1, x_2 = 0$ 整数, $y_1, y_2 = 0$

c = (1 4), d = (1 3)

$$A = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}, D = \begin{bmatrix} -2 & -1 \\ 2 & 2 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

解算过程如下:

S1. 给
$$\overline{x} = (0 \ 0), \overline{z}$$
 , \underline{z} - , p 0, q 0

S 2. 解

进行表上运算(见表 11.6)。

表 11.6

	C	X	u ₁	U2	S 1	S2	
ХВ	Св	b C	1	1	0	0	
S_1	0	1	- 2	2	1	0	
S_2	0	3	- 1	2	0	1	
			1	1			

解无界,得一极方向(见图 11.4)。

$$b - a_1 = \begin{pmatrix} 1 + 2 \\ 3 + \end{pmatrix}$$
 随着 的增加而无限增加, 故极方向为

图
$$11.4$$

$$v^{(1)} = \begin{pmatrix} 1 & 0 \end{pmatrix}$$
 S 3. 解 min z

s.t.
$$1 - x_1 + 2x_2 = 0$$

 $x_1, x_2 = 0$ 整数

故 $x_1 = M, M$ 是大于等于 1 的整数, $x_2 = 0$ 。

S2.
$$\Rightarrow \bar{x} = (1 \ 0)$$

$$(u_1 \quad u_2) \quad \frac{1}{1} - \frac{1}{1} - \frac{2}{1} \quad \frac{1}{3} \quad 0 = (u_1 \quad u_2) \quad \frac{1}{1} - \frac{1}{1} = (u_1 \quad u_2) \quad \frac{0}{2} = 2u_2$$

$$max \quad z = 2u_2$$

$$s. \ t. \quad - 2u_1 + 2u_2 \quad 1$$

$$- u_1 + 2u_2 \quad 3$$

$$u_1, u_2 \quad 0$$

进行表上运算(见表 11.7)。

表 11.7

		X	u_1	\mathfrak{u}_2	s_1	S_2	
Хв	Св	b C	0	2	0	0	
Sı	0	1	- 2	2	1	0	
S ₂	0	3	- 1	2	0	1	
		0	0	2	0	0	
u ₂	2	1/2	- 1	1	1/2	0	
S ₂	0	2	1	0	- 1	1	
		1	2	0	- 1	0	
u ₂	2	3/2	0	1	- 1/2	1	
u_1	0	2	1	0	- 1	0	
		3	0	0	1	- 2	

解无界。b -
$$a_3 = \begin{pmatrix} 3/2 & -1/2 & 3/2 + /2 \\ 2 & -1 & 2 + \end{pmatrix}$$

$$, \frac{u_1}{u_2} \quad 2,$$
 故得一极方向 $v^2 = (2 \quad 1)$ 。
 min z
 s. t. $-x_1 + 2x_2 - 1$
 $-x_1 + x_2 - 3$
 $x_1, x_2 \quad 0$ 整数

做表上运算(见表 11.8)。

表 11.8

S 3.

	C	X	X 1	X 2	s_1	S_2	
Хв	Св	b C	0	0	0	0	
S1	0	- 1	- 1	2	1	0	
S_2	0	- 3	- 1	1	0	1	
S 1	0	2	0	1	1	- 1	
X 1	0	3	1	- 1	0	- 1	
			0	0	0	0	

X1, X2

图 11.5

$$x_1 = 3, x_2 = 0, (31)$$
 点是凸多面体的一个顶点, $x = (30)^T, Ax = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}$

$$\binom{3}{0} = \binom{3}{3}$$

S4. z <u>z</u>转S2。

max
$$z = -2u_1 + 4u_2$$

s. t. $-2u_1 + 2u_2 = 1$
 $-u_1 + 2u_2 = 3$
 $u_1, u_2 = 0$

进行表上运算(见表 11.9)。

	C	X	\mathbf{u}_1	u_2	s_1	s_2	
Хв	Св	b C	- 2	4	0	0	
S1	0	1	- 2	2	1	0	
S ₂	0	3	- 1	2	0	1	
		0	- 2	4	0	0	
u_2	4	1/2	- 1	1	1/2	0	
S ₂	0	2	1	0	- 1	1	
		2	2	0	- 2	0	
u_2	4	5/2	0	1	- 1/2	1	
<u>u</u> 1	- 2	2	1	0	- 1	1	
		6	0	0	0	- 2	

$$u_1 = 2$$
, $u_2 = \frac{5}{2}$, $u^2 = 2$ $\frac{5}{2}$

$$\overline{z} = C\overline{x} + u^2(b - A\overline{x}) = 3 + 2 \frac{5}{2} - \frac{2}{4} = 9$$

$$\min z$$

S3. min z
s.t.
$$-x_1 + 2x_2 - 1$$
 $-x_1 + x_2 - 3$
 $\frac{3}{2}x_1 + \frac{1}{2}x_2 + \frac{9}{2}$ z
 $x_1, x_2 = 0$ 整数

本问题改写为

min
$$z = \frac{3}{2}x_1 + \frac{1}{2}x_2 + \frac{9}{2}$$

s.t. $-x_1 + 2x_2 + s_1 = -1$
 $-x_1 + x_2 + s_2 = -3$
 $x_1, x_2 = 0$

做表上运算(见表 11.10)。

表 11.10

		X	X 1	X 2	S 1	S2	
ХВ	Св	b C	3/2	1/2	0	0	
S_1	0	- 1	- 1	2	1	0	
s_2	0	- 3	- 1	1	0	1	
			3/2	1/2	0	0	
s_1	0	2	0	1	1	- 1	
X 1	3/2	3	1	- 1	0	- 1	
		9/2	0	2	0	3/2	

$$\overline{z} = 9/2 + 9/2 = 9$$

S4.
$$z = \underline{z} = 9$$
, 故 $x_1 = 3$, $x_2 = 0$ 是解。

$$min w = dy$$

s.t. Dy
$$b - A\overline{x}$$

y 0

$$\min z = y_1 + 3y_2$$

$$y_1, y_2 = 0$$

或

min
$$z = y_1 + 3y_2$$

s.t. $2y_1 + y_2 + s_1 = 2$
 $-2y_1 - 2y_2 + s_2 = -4$
 $y_1, y_2 = 0$

做表上运算(见表 11.11)。

表 11.11

	C	X	y 1	y ₂	\mathbf{S}_1	s_2	
Хв	Св	b C	1	3	0	0	
S_1	0	2	2	1	1	0	
S2	0	- 4	- 2	- 2	0	1	
			1	3	0	0	
S_1	1	- 2	0	- 1	1	1	
<u>y</u> 1	0	2	1	1	0	- 1/2	
		1	0	5/2	1/2	0	
y 2	3	2	0	1	- 1	- 1	
y 1	1	0	1	0	1	1/2	
		6	0	0	2	5/2	

$$y_2 = 2, y_1 = 0, x_1 = 3, x_2 = 0$$

11.2 群的解法

11.2.1 群的解法原理

对于问题

$$max z = Cx$$

s.t.
$$Ax = b$$

假定 A, b, C 的所有元素都是整数。

若不假定x的整数要求,问题(P)等价于下面的问题

$$\max z = C_B B^{-1} b + (C_N - C_B B^{-1} N) x_N$$
s. t.
$$x_B = B^{-1} b - B^{-1} N x_N$$

$$x_B, x_N = 0$$
(P)

假定 ai 是矩阵 A 对应于 xi 的列, 可改写为

若考虑 x 的整数要求,则有

$$B^{-1}b - B^{-1}Nx_N = 0 \mod 1$$

 $x_N = 0$ 整数

也就是说对于非负整数 x_N , $B^{-1}b$ - $B^{-1}Nx_N$ 必须是整数, 因此

$$f(B^{-1}b) - f(B^{-1}Nx_N) \qquad 0 \mod 1$$
$$x_N \qquad 0 整数$$

f 对向量的运算意味着对该向量的每一元素 a 有

$$f(a) = a - \lfloor a \rfloor$$
于是
$$\min z_r = (C_B B^{-1} N - C_N) x_N$$

$$s. t. \quad f(B^{-1} b) - f(B^{-1} N x_N) = 0 \text{ mod } 1$$

$$x = 0 整数$$
(R)

满足问题(R) 是问题(P) 解的必要条件, 故由求(R) 的解提供了求原问题解的一种途径。 对 $z = C_B B^{-1} b - z_F$ 的极大, 略去常数项 $C_B B^{-1} b$, 故导致上面关于 z_F 的极小值。

11.2.2 举例

例 11. 4
$$\max z = x_1 + 2x_2$$
s. t.
$$x_1 + 2x_2 = 8$$

$$2x_1 = 7$$

$$-2x_1 + 4x_2 = 9$$

$$x_1, x_2 = 0$$
整数

进行表上运算(见表 11.12)。

表 11.12

	C	X	X 1	X 2	S 1	S 2	S 3	
X _B	$C_{\mathbb{B}}$	b C	1	2	0	0	0	
S_1	0	8	1	2	1	0	0	
S_2	0	7	2	0	0	1	0	
S 3	0	9	- 2	4	0	0	1	
			1	2	0	0	0	
S_1	0	9/2	0	2	1	- 1/2	0	
\mathbf{X}_{1}	1	7/2	1	0	0	1/2	0	
S 3	0	16	0	4	0	1	1	
			0	2	0	- 1/2	0	
X 2	2	9/4	0	1	1/2	- 1/4	0	
X 1	1	7/2	1	0	0	1/2	0	
S ₃	0	7	0	0	- 2	2	1	
		8	0	0	- 1	0	0	

$$x_{1} = \frac{7}{2} - \frac{1}{2}s_{2}$$

$$x_{2} = \frac{9}{4} - \frac{1}{2}s_{1} + \frac{1}{4}s_{2}$$

$$s_{3} = 7 + 2s_{1} - 2s_{2}$$

$$z = 8 - s_{1}$$

或

故问题(R)导致

注意到与 S3 关联的行所有系数全为 0, 故问题(R) 的约束条件改为

这两个约束条件说明向量

只能是有限几个可能性之一。见表 11. 13。

表 11.13

81:	0	1	2	3	4	5	6	
0	0	0	0	0	0	0	0	
$\frac{1}{2}$ s_1 :	0	$\frac{1}{2}$	1	<u>3</u> 2	2	<u>5</u> 2	3	•••
0	0	0	0	0	0	0	0	
$f \qquad \underline{1} \qquad s_1 :$	0	$\frac{1}{2}$	0	$\frac{1}{2}$	0	$\frac{1}{2}$	0	•••
s ₂ :	0	1	2	3	4	5	6	
$\frac{1}{2}$	0	$\frac{1}{2}$	1	<u>3</u> 2	2	<u>5</u> 2	3	
$\frac{1}{3}$ $\frac{3}{4}$	0	<u>3</u> 4	<u>3</u> 2	9 4	3	15 4	9 2	•••
$\frac{1}{2}$	0	1 2	0	1 2	0	1 2	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	<u>3</u> 4	1/2	<u>1</u> 4	0	<u>3</u> 4	1/2	

例如 f
$$\frac{\frac{1}{2}}{\frac{3}{4}}$$
 s₂ 当 s₂ = 3 时有 f $\frac{\frac{3}{2}}{\frac{9}{4}}$ = $\frac{\frac{1}{2}}{\frac{1}{4}}$, 余此类推。

$$\frac{3}{2}$$
 = $\frac{1}{2}$, 余此类推。

从表中可知, s_1 , s_2 只取有限个值。例如 s_1 考虑 0, 1 两个值, s_2 只要取 0, 1, 2, 3。这是由 min Zr = Si 所确定的。

$$s_1 = 0, s_2 = 3$$
 满足

$$\frac{1}{2} \quad 0 \quad \frac{1}{2} \quad 3 = \frac{1}{2} \quad \frac{3}{2} = -1 \quad 0 \quad \text{mod } 1$$

$$\frac{1}{4} \quad \frac{1}{2} \quad 0 + \frac{3}{4} \quad 3 = \frac{1}{4} \quad \frac{9}{4} = -2 \quad 0 \quad \text{mod } 1$$

虽然 $s_1 = 1$, $s_2 = 1$ 或 $s_1 = 1$, $s_2 = 5$ 都有相同结果, 但由于 $min z_r = s_1$, 所以不是最优。 由 $s_1 = 0$, $s_2 = 3$ 得

$$x_1 = \frac{7}{2} - \frac{1}{2}(3) = 2$$
 $x_2 = \frac{9}{4} + \frac{1}{4} \times 3 = 3$
 $s_3 = 7 - 2(3) = 1$

故最优解为 $x_1 = 2, x_2 = 3, z = 8$ 。

例 11.5
$$\max z = 2x_1 + x_2 + 4x_3 + 3x_4 + x_5$$
s.t.
$$2x_2 + x_3 + 4x_4 + 2x_5 \quad 41$$

$$3x_1 - 4x_2 + 5x_3 + x_4 - x_5 \quad 47$$

$$x_i \quad 0$$
整数, $i = 1, 2, 3, 4, 5$

引进松弛变量 s₁, s₂ 进行表上运算(见表 11.14)。

表 11.14

	C	X	X 1	X 2	X 3	X 4	X 5	S_1	S ₂	
Хв	$C_{\mathbb{B}}$	b C	2	1	4	3	1	0	0	
S1	0	41	0	2	1	4	2	1	0	
S ₂	0	47	3	- 4	5	1	- 1	0	1	
		0	2	1	4	3	1	0	0	
S_1	0	158/5	- 3/5	14/ 5	0	19/5	11/5	1 -	- 1/5	
X 3	4	47/5	3/5	- 4/5	1	1/5	- 1/5	0	1/5	
		188/5	- 2/5	21/5	0	11/5	9/5	0 -	- 4/5	
X 2	1	158/14	- 3/4	1	0	19/ 14	11/ 14	5/ 14 -	1/14	
X 3	4	129/7	3/7	0	1	9/7	3/7	2/7	1/7	
		85	1/2	0	0	- 7/2	- 3/2	- 3/2 -	- 1/2	
X 2	1	20	0	1	1/ 2	2	1	1/2	0	
X 1	2	43	1	0	7/3	3	1	2/3	1/3	
		106	0	0	- 7/6	- 5	- 2 -	11/6 -	- 2/3	

max
$$z = 106\frac{1}{2} - \frac{7}{6}x_3 - 5x_4 - 2x_5 - \frac{11}{6}s_1 - \frac{2}{3}s_2$$
s.t.
$$\frac{x_1}{x_2} = \frac{43}{20\frac{1}{2}} - \frac{7/3}{1/2}x_3 - \frac{3}{2}x_4 - \frac{1}{1}x_5 - \frac{2/3}{1/2}s_1 - \frac{1/3}{0}s_2$$

$$x_1, x_2, x_3, x_4, x_5 = 0$$
整数, $s_1, s_2 = 0$ 整数

故问题(R)为

min
$$z_r = \frac{1}{6}x_3 + \frac{5}{6}s_1 + \frac{2}{3}s_2$$

s. t.
$$\frac{\frac{1}{3}}{2}x_3 + \frac{\frac{2}{3}}{2}s_1 + \frac{1}{3}s_2 \qquad 0$$
 $x_3, s_1, s_2 \qquad 0$ 整数

再做表上运算(见表 11.15)。

表 11.15

X 3:	0	1	2	3	4	5	6
$ \begin{array}{c} \frac{1}{3} \\ \frac{1}{2} \end{array} $	0	$\begin{array}{c} \underline{1} \\ 3 \\ \underline{1} \\ 2 \end{array}$	2 3 0	0 <u>1</u> 2	$\frac{1}{3}$	$\begin{array}{c} \frac{2}{3} \\ \frac{1}{2} \end{array}$	0 0
S ₁ :	0	1	2	3	4	5	6
$f = \begin{array}{c} \frac{2}{3} \\ \frac{1}{2} \end{array}$ s ₁ :	0	2 3 1 2	1 3 0	0 1 2	2 3 0	$\frac{1}{3}$ $\frac{1}{2}$	0 0
S ₂ :	0	1	2	3	4		
f	0	1 3 0	2 3 0	0	$\frac{1}{3}$		

问题的最优解是

$$s_1 = s_2 = 1$$

$$x_1 = 42, x_2 = 20, x_3 = x_4 = x_5 = 0, z = 102$$

容易看到 $s_1 = s_2 = 0$, $x_3 = 3$, $x_1 = 36$, $x_2 = 19$, $x_4 = x_5 = 0$ 也是(R) 的解, 不过它不是(P) 的解。

11.3 群的解法和最短路径问题

首先简单介绍有限群的定义,设 $G = \{a_1, a_2, ..., a_g\}$ 是有限个元素的集合,在集合中定义一算法";¤",若满足以下四个条件者称之构成群。

- 1. 封闭性: a G, b G, a; zb = c G.
- 2. 可结合性: a, b, c G, a; pc = a; pc = a; pc = (a; pc) = (a; pc); pc
- 3. 存在单位元: 存在 e G, 对于 " a G, 有 a ¡¤e = e ;¤a = a
- 4. 存在逆元素: 对于 " a G, v b G, a j = b j = e

11.3.1 图的构造

上节的例子是从整数规划问题导出相应的问题(R)。

在上节例 11. 4 中,f $\frac{1}{2}$ s₁ ,f $\frac{1}{2}$ s₂ ,当 s₁, s₂ = 0, 1, 2, ... 导出有限 A bel 群(交

换律成立的群称之 Abel 群) 即 a j zb = b j za, 例如

$$G_{1} = \begin{pmatrix} 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & \frac{3}{4} & \frac{1}{2} & \frac{1}{4} \end{pmatrix}$$

关于 mod 1 加法构成群。

又在例 11. 5 中, f $\frac{\frac{1}{3}}{\frac{1}{2}} s_2 , s_2 = 0, 1, 2, ...$ 关于 mod 1 加法构成群 G_2 :

$$G_2 = \begin{pmatrix} 0 & \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} & \frac{2}{3} \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$$

同样 f $\frac{2}{3}$ s₃ , s₃ = 0, 1, 2, ... 构成群 G₃。

$$G_3 = \begin{pmatrix} 0 & \frac{2}{3} & \frac{1}{3} & 0 & \frac{2}{3} & \frac{1}{3} \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$$

且 G_2 G_3

问题(R)可以表为

$$\begin{aligned} & \text{min } z_r = \sum_{\substack{j \in N}} c_j(g_j) x_j \\ & \text{s. t.} \qquad g_j x_j = g_b \text{ mod } 1 \\ & x_i = 0 \text{ 整数} \end{aligned}$$

足 g $_k$ - $g_i = g_j$ 者) 一次表示 x_j 增加 1, 从开始点 $\frac{0}{0}$ 出发时所有的 x_j 均为 0。

现回到上节例 11.4。

S₁, S₂ 0整数。

$$g_2 - g_2 = g_1 - g_2 = \frac{\frac{1}{2}}{\frac{3}{4}} = g_2, g_1 - g_2 = g_5 - g_2 = \frac{1}{2} = g_1$$

图 11.7

$$g_2$$
 $g_1 = g_b, s_2 = 3, s_1 = 0$

例 11.6

max
$$z = 110 - (2x_3 + 7x_4 + 4x_5)$$

s.t.
$$x_1 + \frac{5}{8}x_3 + \frac{5}{2}x_4 - \frac{5}{8}x_5 = \frac{15}{8}$$

 $x_2 + \frac{3}{4}x_3 + \frac{5}{4}x_5 = \frac{9}{4}$

$$x_i$$
 0 整数, $i = 1, 2, 3, 4, 5$

$$min \ z_{\, \rm r} = \ 2x_{\, 3} + \ 7x_{\, 4} + \ 4x_{\, 5}$$

s.t.
$$\frac{\frac{5}{8}}{\frac{3}{4}} x_3 + \frac{\frac{1}{2}}{0} x_4 + \frac{\frac{3}{8}}{\frac{1}{4}} x_5 = \frac{\frac{7}{8}}{\frac{1}{4}}$$

由 $\frac{\frac{5}{8}}{\frac{3}{4}}$ 生成的群 G:

$$g_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, g_1 = \begin{pmatrix} \frac{5}{8} \\ \frac{3}{4} \end{pmatrix}, g_2 = \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \end{pmatrix}, g_3 = \begin{pmatrix} \frac{7}{8} \\ \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}$$

$$g_{4} = \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix}, g_{5} = \begin{pmatrix} \frac{1}{8} \\ \frac{3}{4} \end{pmatrix}, g_{6} = \begin{pmatrix} \frac{3}{4} \\ \frac{1}{2} \end{pmatrix}, g_{7} = \begin{pmatrix} \frac{3}{8} \\ \frac{1}{4} \end{pmatrix}$$

 $g_1 - g_0 = g_1, g_2 - g_1 = g_1, g_3 - g_2 = g_1, g_4 - g_3 = g_1, g_5 - g_4 = g_1, g_6 - g_5 = g_1,$ $g_7 - g_6 = g_1, g_0 - g_7 = g_1, g_4 - g_0 = g_4, g_5 - g_1 = g_4, g_6 - g_2 = g_4, g_7 - g_3 = g_4,$

 g_0 - g_4 = g_4 , g_1 - g_5 = g_4 , g_2 - g_6 = g_4 , g_3 - g_7 = g_4 , g_1 - g_0 = g_7 , g_0 - g_1 = g_7 , g_1 - g_2 = g_7 , g_2 - g_3 = g_7 , g_3 - g_4 = g_7 , g_4 - g_5 = g_7 , g_5 - g_6 = g_7 , g_6 - g_7 = g_7 .

图 11.8

(R)问题的网络图实际上是由(a),(b),(c)三个图的重叠,即

图 11.9

从 g₀ 到达 g₃(g_b) 的最短路径为 $x_3 = 3, x_4 = x_5 = 0$, 问题(R) 给出原问题的解。

11.3.2 求最短路径的戴克斯特拉(Dijkstra)算法

在介绍关于问题 (R) 的解法之前, 先引进求网络上 0 点到其它各点的最短距离的戴克斯特拉算法。

假定已知距离矩阵 $D=(d_{ij})_{n \in n}, d_{ij}=(v_i,v_j)$ 边的长度。假定顶点分别用 0,1,2,..., n-1 表示。

算法的步骤如下:

- S1. i $0, \overline{M}$ {i}, M {1, 2, ..., n 1}, s $0, s_i$ 0, j 0_{\circ}
- S2. " j M, 若 $S_i > S_i + d_{ij}$ 则 S_i $S_i + d_{ij}$ 。
- $S 3. s_r = \min_{j} \{s_j\}_o$

S4. M $M \setminus \{r\}$, 若 M = ,则结束,否则 \overline{M} \overline{M} $\{r\}$, i r 转 S2。

戴克斯特拉算法的基本思想是逐个将与 0 点距离最短的点取出 M, 放进 M, 直到 M 为空集为止。这种思想可以稍加修改用于群的问题(R)。

还是以
$$\min z_r = 2x_3 + 7x_4 + 4x_5$$

s.t.
$$\frac{\frac{5}{8}}{\frac{3}{4}} x_3 + \frac{\frac{1}{2}}{0} x_4 + \frac{\frac{3}{8}}{\frac{1}{4}} x_5 = \frac{\frac{7}{8}}{\frac{1}{4}}$$

$$x_i$$
 0,整数, $i = 3, 4, 5$

为例,令

$$g_{1} = \begin{cases} \frac{5}{8} \\ \frac{3}{4} \end{cases}, g_{2} = \begin{cases} \frac{1}{4} \\ \frac{1}{2} \end{cases}, g_{3} = \begin{cases} \frac{7}{8} \\ \frac{1}{4} \end{cases}, g_{4} = \begin{cases} \frac{1}{2} \\ \frac{3}{4} \end{cases}, g_{5} = \begin{cases} \frac{3}{4} \\ \frac{1}{2} \end{cases}, g_{7} = \begin{cases} \frac{3}{4} \\ \frac{1}{4} \end{cases}, g_{9} = \begin{cases} 0 \\ 0 \end{cases}$$

求解过程如下:

1.
$$c(g_1)$$
 2, $c(g_4)$ 7, $c(g_7)$ 4, $c(g_1)$ = $min\{2, 7, 4\}$ = 2, 故 \overline{M} $\{0, 1\}, c(g_2)$, $c(g_3)$, $c(g_5)$, $c(g_6)$ 。

2.
$$c(g_1) + c(g_2) = 4$$
, $c(g_1 + g_1) = c(g_2)$, 故 $c(g_2) = 4$, $c(g_7) = 4$

$$\overline{M} = \overline{M} = \{0, 1, 7\}$$

$$M = \{2, 3, 4, 5, 6\}_{\circ}$$

3.
$$c(g_1) + c(g_7) = 2 + 4 = 6$$
, $c(g_1 + g_7) = c(g_0) = 0$, $c(g_7) + c(g_7) = 8$, 由于 $c(g_7 + g_7) = c(g_6) = 0$, 故 $c(g_6) = 0$

4.
$$c(g^2) = 4$$
, $c(g^6) = 8$, $c(g^2)$ 是 M 中 $c(g^i)$ 值最小的, 故 \overline{M} \overline{M} {2} = {0,1,2,7}, M = {3,4,5,6}。

$$c(g_1) + c(g_2) = 6$$
, $c(g_1 + g_2) = c(g_3) =$,故修改 $c(g_3) =$ 6
 $c(g_7) + c(g_2) = 8$, $c(g_2 + g_7) = c(g_1) = 2$, $2 < 8$, $c(g_2) + c(g_2) = 8$, $c(g_2 + g_2) =$ $c(g_4) = 7$, $7 < 8$ 。

从 g_0 点到 g_3 点的最短路径已求得, 回溯可得 $x_3 = 3$, $x_4 = x_5 = 0$ 。 群问题(R) 有效的解法在下一章动态规划中再详细介绍。

11.4 背包问题

$$\max z = \int_{j=1}^{n} c_{j}x_{j}$$
s.t.
$$\sum_{j=1}^{n} a_{j}x_{j} b$$

$$x_{j} 0 整数$$

假定系数 a_j, c_j, b 都是非负整数。这个问题的重要性不仅在该问题是著名的整数规划问题、典型 NP 完全类难题,而且在理论上可以把一般的整数规划问题转换为背包问题。

例 11.7 下料问题。来料经常是有标准长度的, 但必须将它截成需要的长短。以一维的情况为例, 固定长度 L 的钢筋, 将它截成长度为 1 的钢条 b 条, i = 1, 2, ..., m。

设现有 n 种截取的方案: 第 i 种方案的钢筋 x_i 条, 单价设为 c_i , i=1,2,...,n。令

$$a_{i} = (a_{i1} \ a_{i2} \ \dots \ a_{im})^{T},$$
 $a_{i1}l_{1} + a_{i2}l_{2} + \dots + a_{im}l_{m} \ L_{o}$

也就是 a_i 表达第 i 种截取方案, 其中长为 l_i 的截取 a_{ij} 根, i = 1, 2, ..., m。

问题是应如何下料,保证需求,代价最小,问题导致

min
$$z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

s. t. $\sum_{j=1}^{n} a_{ij}x_j$ b_i , $i = 1, 2, ..., m$
 x_j 0整数, $j = 1, 2, ..., n$

引进松弛变量 s_i 0, i = 1, 2, ..., m, 使得

假定 XB 是可行解基变量, B 是基变量矩阵, XB 是最优解的条件是

$$C - C_B B^{-1} A = 0$$

令
$$D = C_B B^{-1} = (d_1 \ d_2 \ ... \ d_m)$$
,对于任意 $a_j = (a_{1j} \ a_{2j} \ ... \ a_{mj})^T$,恒有
$$d_j a_{j\,i} - c_i \ 0, \ i = 1, 2, ..., n$$

若 a = (1 2 ... m) 是新的下料方案,则 a 应满足下面背包问题

$$max \ w = d_{1} \ _{1} + d_{2} \ _{2} + ... + d_{m \ m}$$
 $s. \ t. \qquad l_{1} \ _{1} + l_{2} \ _{2} + ... + l_{m \ m} \ L$

$$0 整数, \ i = 1, 2, ..., m$$
(11. 1)

实际上下料的方案数目很多。在前面已知 n 种方案的基础上, 还可以推出新的来。

(11.1) 的解若对 i = 1, 2, ..., n, 恒满足 d_{i-1} c_{i} 这个解才是理想的方案。

例 11.8 资金分配问题。假定有一笔固定的资金 b, n 个项目 $P_1, P_2, ...P_n$ 。 P_1 项目的 \cdot 370 \cdot

效益为 c_i , 投资额为 a_i , $i=1,2,...,n_o$ 试讨论资金 b 应如何分配, 使收益最大。

则问题导致

若投资分 m 个阶段, 每个阶段投资额分别为 $b_1, b_2, ..., b_m, P_1$ 的各阶段的投资额分别为 $a_{1i}, a_{2i}, ..., a_{mi}, i = 1, 2, ..., n$,则资金分配问题为

11.5 将整数规划归约为背包问题

问题的实质是将多约束条件归约为单个约束条件。

定理 11.1 已知下列方程式

其中 a_{i}, x_{i} 都是非负整数, i = 1, 2; i = N。

这里 N = $\{1, 2, ..., n\}$

- (a) 若两方程式有可行解,至少存在一个 j, 使 bıa2i b2a1i
- (b) 若 是满足下列条件的正整数

$$> \ b_2 \ \max_{_{j} \ _{N}} \left\{ a_{1j} \, / \, a_{2j} \, \right\} > \ b_1$$

则

$$a_1 + a_2 = b_1 + b_2$$
 (11.3)

即(11.3)和原方程组(11.2)有相同的可行解集。

证明 首先证明 (a)。假定(a) 不真,则对所有的 j,恒有 $a_{1j}>0$, $a_{2j}>0$ 且 $b_1a_{2j}>b_2a_{1j}$ 。令 $\{x_j \bigcirc N\}$ 是该方程组的一组可行解。由于 $x_j=0$,所以 b_1 $a_{2j}x_j>b_2$ $a_{1j}x_j$ 或 b_1 $a_2>b_2$ 1,这和两端都为 b_1b_2 的事实相矛盾。

若不然,设 k > 0, 由于 b_1 , 则 $a_1 = b_1 - k < 0$, 这是不可能的, 由于表达式 a_1 的 所有系数都是正的, 若 k < 0, 则 $a_2 < b_2$, $a_1 = b_1 + b_2$ 。由 $a_2 > b_2$ (a_{1j}/a_{2j}), j $a_3 = b_1$ N,得

 $b_1 + b_2 +$

 $a_2 > b_2$ 1 **蕴含有** $a_2 > b_1b_2 + b_2$ $a_2 > b_2$ 导致矛盾,故 $a_3 = b_2$

本定理可以用来将几个约束条件集聚为一个约束条件,即可通过将两个方程集聚为一个方程的办法,连续利用本定理若干次即得。

例 11.9

$$1 \quad x_1 + 2x_2 + 3x_3 = 6$$

$$2 \quad 2x_1 \quad + 4x_3 + 4x_4 = 8$$

$$3 = x_1 + x_2 + 3x_3 + x_4 = 6$$

$$x_1, x_2, x_3, x_4 \quad 0$$
整数

为了保证所有的系数> 0. 作

先对 $_1$ 和 $_2$ 进行集聚。引进 $_1$ $_1$ + $_2$ $_4$ $_1$ + $_4$ $_2$ + $_1$ $_2$ + $_1$ $_3$ + $_1$ $_4$ = $_2$ 问题导致对 $_1$ 和 $_2$ 进行集聚为一个方程。

$$> 14 \text{max} \quad \frac{4}{3}, \frac{4}{2}, \frac{10}{7}, \frac{1}{4} = 28$$

取 = 29,即

再将 1 和 3 集聚为一个方程。

>
$$20 \max \frac{91}{4}, \frac{62}{3}, \frac{213}{10}, \frac{120}{5} = 500, \mathbb{R} = 502$$

 $91x_1 + 62x_2 + 213x_3 + 12x_4 + 502(4x_1 + 3x_2 + 10x_3 + 5x_4)$
= $426 + 10040$

下面的定理 11.2 对系数要求要少一些。

定理 11.2 已知方程组

$$a_{1j} x_{j} = b_{1}, \quad 2 \qquad a_{2j} x_{j} = b_{2}$$
(11.4)

所有的系数 a_{ij} 、 b_{i} 都是正整数(即大于 0), i = 1, 2, j N。

已知方程组(11.4)有一组非负整数解,若

$$> \max \max_j (b_2 - 1) a_{1j}/a_{2j} - b_1 , \max_j b_1 - (b_2 + 1) a_{1j}/a_{2j}$$
 则 $_1 + _2 = b_1 + _b_2$ 与方程组 (11.4) 等价。

. 372 .

本定理的证明与定理 11.1 类似, 此处从略。但可见 的界比定理 11.1 的界低, 故集聚后的方程系数也较小。

11.6 背包问题的网络解法

背包问题

min
$$z = \int_{j=1}^{n} (-c_j) x_j$$

s. t.
$$\int_{j=1}^{n} a_j x_j = b$$
$$x_j \quad 0 整数, j = 1, 2, ..., N$$

可以用求一网络的最短路径表示它。这个网络有 b + 1 个点: $v_0, v_1, v_2, ..., v_b$

对于任意两点 v_t 和 v_g ,假定 t > g,若存在系数 a_j ,使得 $a_j + g = t$,则从 v_g 引一有向边指向 v_t 。通过该边一次对应于 x_j 增量为 1,故该边的权为 - c_j 。开始时所有的 $x_j = 0$,故问题导致求 v_0 点到 v_0 点的最短路径。若 b 非常大,而 a_i 相对比较小,这种方法效率不高。

例 11. 10
$$\min z = -2x_1 - 3x_2 - 4x_3$$
s. t.
$$x_1 + 2x_2 + 3x_3 + x_4 = 4$$

$$x_1 \quad 0 整数, i = 1, 2, 3, 4$$

根据上述方法构造网络见图 11.11, 其过程如图 11.10 所示。

令 d₁表示从 v₀ 到 v₁最短路径。

$$d_{1} = -2,$$

$$d_{2} = \min\{d_{1} - 2, d_{0} - 2\} = \min\{-2 - 2, -3\} = -4$$

$$d_{3} = \min\{d_{0} - 3, d_{1} - 3, d_{2} - 2\} = \min\{-3, -3 - 2, -4 - 2\} = -6$$

$$d_{4} = \min\{d_{1} - 3, d_{2} - 3, d_{3} - 2\} = \min\{-2 - 3, -4 - 3, -6 - 2\} = -8$$
最短路径: v_{0} v_{0}

11.7 背包问题的分支定界解法

背包问题既然是一特殊形式的整数规划, 所以也可以用分支定界法求解。分支定界法的关键在于确定上(下)界, 不过背包问题有它的特殊性。由下面的例子可以看出。

例 11. 11
$$\max z = 18x_1 + 14x_2 + 8x_3 + 4x_4$$
$$s.t. \quad 15x_1 + 12x_2 + 7x_3 + 4x_4 \quad 33$$
$$x_1 \quad 0 整数, i = 1, 2, 3, 4$$

首先要指出的是,这里的 x_1, x_2, x_3, x_4 是按 c_i/a_i 大小顺序排列的,使得

即

解算过程如下:

(1) 由于 $\frac{c_1}{a_1} = \frac{6}{5}$, 故问题的线性规划解为

$$x_1 = \frac{33}{15}, x_2 = x_3 = x_4 = 0, z_1 = 18x \frac{33}{15} = 39 \frac{3}{5}$$

(2) 0 x_1 2, 令 $x_1 = 2$ 代入得

max z =
$$14x_2 + 8x_3 + 4x_4 + 36$$

s.t. $12x_2 + 7x_3 + 4x_4 + 3$
 $x_2, x_3, x_4 = 0$ 整数

$$x_1 = 2, x_2 = \frac{1}{4}, x_3 = x_4 = 0, z = 39 \frac{1}{2}$$

(3) x_1 3, $\Leftrightarrow x_1 = 3 + x_1$

由于
$$15x_1 + 12x_2 + 7x_3 + 4x_4 - 12$$

$$x_1, x_2, x_3, x_4$$
 0

无可行解。

$$(4) x_1 = 2, x_2 = 0, 有$$

$$\max z = 8x_3 + 4x_4 + 36$$
s. t.
$$7x_3 + 4x_4 + 3$$

$$x_3, x_4 = 0$$

$$x_3 = \frac{3}{7}, x_4 = 0, z_4 = 39 \frac{3}{7}$$

上述 5 步可用图 11.13 来表示其过程。

(6) 若
$$x_1$$
 2, $x_2 = 0$, $x_3 = 0$

$$max z = 18x_1 + 4x_4$$
s. t. $15x_1 + 4x_3$ 33
$$x_1, x_3 = 0$$

$$x_1 = 2, 4x_3 = 3, x_3 = \frac{3}{4}, z = 39$$
(7) x_1 2, $x_2 = 0$, $x_3 = 1$, $\Rightarrow x_3 = 1 + x_3$, 故有
$$max z = 18x_1 + 8x_3 + 4x_4 + 8$$
s. t. $15x_1 + 7x_3 + 4x_4 = 26$

$$x_1, x_3, x_4 = 0$$

$$x_1 = \frac{26}{15}, x_2 = x_3 = 0, z = 39 \frac{1}{5}$$

(8) z = $39\frac{1}{5}$ 的界有(5)和(7)两种状态。先沿(7)继续搜索。

$$x_1$$
 1, $x_2 = 0$, x_3 1
 $max z = 18x_1 + 8x_3 + 4x_4 + 8$
s. t. $15x_1 + 7x_3 + 4x_4$ 26
 x_1, x_3, x_4 0, x_1 1

故
$$x_1 = 1,7x_3 + 4x_3$$
 $11, x_3 = \frac{11}{7}, x_4 = 0$
 $z = 26 + \frac{88}{7} = 38\frac{4}{7}$

即
$$x_1 = 1, x_2 = 0, x_3 = 2\frac{4}{7}, z = 38\frac{4}{7}$$

- (9) $x_1 = 2, x_2 = 0, x_3$ 1, 由于 $8x_3 + 4x_4 4, x_3, x_4 0$ 整数, 无可行解。
- (10) (5)的界为 $z = 39\frac{1}{5}$,故继续搜索。

$$x_1$$
 1, x_2 1, 有
$$\max z = 18x_1 + 14x_2 + 8x_3 + 4x_4 + 14$$
 s.t.
$$15x_1 + 12x_2 + 7x_3 + 4x_4$$
 21
$$0 x_1 1, x_2, x_3, x_4 0$$

$$x_1 = 1, 12x_2 + 7x_3 + 4x_4 6$$

$$x_2 = \frac{1}{2}, z = 39$$

(11)
$$x_1$$
 2, x_2 1, 由于 $x_1 = 2 + x_1$ 有 $15x_1 + 12x_2 + 7x_3 + 4x_4 - 9$ $x_1, x_2, x_3, x_4 = 0$

无可行解。

(12) z 的界为 39 的有(6)和(10)两种状态。先搜索(10),即

$$x_1$$
 1, $x_2 = 1$ 有

max
$$z = 18x_1 + 8x_3 + 4x_4 + 14$$

s.t. $15x_1 + 7x_3 + 4x_4$ 21
0 x_1 1, x_3 , x_4 0
 $7x_3 + 4x_4$ 6

$$x_1 = 1, x_2 = 1, x_3 = \frac{6}{7}, z = 38\frac{6}{7}$$

(13)
$$x_1$$
 1, x_2 2, \diamondsuit $x_2 = 2 + x_2$ \clubsuit

max
$$z = 18x_1 + 14x_2 + 8x_3 + 4x_4 + 28$$

s.t. $15x_1 + 12x_2 + 7x_3 + 4x_4 = 9$
 $x_1, x_2, x_3, x_4 = 0$
 $x_1 = \frac{3}{5}, x_2 = 3, x_3 = x_4 = 0, z = 38\frac{4}{5}$
 $x_1 = 39$ 为最高, 故沿此方向向下搜索。 $x_1 = 39$ 为最高, 故沿此方向向下搜索。 $x_1 = 39$

(14) 到此, (6) 的界 z = 39 为最高, 故沿此方向向下搜索。 $x_1 = 2, x_2 = 0, x_3 = 0$ 有

max
$$z = 4x_4 + 30$$

s. t. $4x_4 = 3$
 $x_4 = 0$, $z = 36$

 $(15) x_1 = 2, x_2 = 0, x_3 = 1, 显然线性规划无可行解, 整数规划无解。$

(16) 回到(12) 状态继续搜索:
$$x_1$$
 $1, x_2 = 1, x_3 = 0$ $max z = 18x_1 + 4x_4 + 14$ $s. t.$ $15x_1 + 4x_4$ 21 x_1, x_4 0 x_1 $1, x_3 = 0$ $x_1 = 1, x_2 = 1, x_3 = 0, x_4 = \frac{3}{2}, z = 38$

(18)
$$x_1 = 0, x_2 = 1, x_3$$
 1
 $\max z = 8x_3 + 4x_4 + 22$
s. t. $7x_3 + 4x_4$ 14
 x_3, x_4 0, $x_3 = 2$
 $x_1 = 0, x_2 = 1, x_3 = 3, x_4 = 0, z = 38$

(19)
$$x_1$$
 1, $x_2 = 1$, x_3 1
$$15x_1 + 7x_3 + 4x_4 14$$

$$x_1, x_3, x_4 0, x_1 1$$

无可行解

搜索过程用搜索树形式表达如图 11.14 所示。

表示 $x_1 = a_1, x_2 = a_2, x_3 = a_3, x_4 = a_4, z = b$ 的状态。 图 11.14 中

图 11.14

例 11.12 0-1 背包问题的分支定界法。

$$max \ z = \int_{j=1}^{n} c_{j} x_{j}$$
 $s.t. \quad a_{j} x_{j} \quad b$
 $x_{j} = 0 或 1, j = 1, 2, ..., n$

不失一般性,假定

(1)
$$c_j > 0, j = 1, 2, ..., n_o$$

$$(2) \ \frac{c_1}{a_1} \quad \frac{c_2}{a_2} \quad \dots \quad \frac{c_n}{a_n} \circ$$

 $(3) b > 0_{\circ}$

最好的办法是通过例子叙述算法的分支与定界的过程。

· 378 ·

例 11. 13 max
$$z = 70x_1 + 20x_2 + 39x_3 + 37x_4 + 7x_5 + 5x_6 + 10x_7$$

s.t. $31x_1 + 10x_2 + 20x_3 + 19x_4 + 4x_5 + 3x_6 + 6x_7$ 50 $x_1 = 0$ 或 1, $i = 1, 2, ..., 7$

- (0) 线性规划解 $x_1 = x_2 = 1, x_3 = 9/20, z = 107.55$ 。
- $(1) x_1 = 1$

max
$$z = 20x_2 + 39x_3 + 37x_4 + 7x_5 + 5x_6 + 10x_7 + 70$$

s.t. $10x_2 + 20x_3 + 19x_4 + 4x_5 + 3x_6 + 6x_7$ 19
1 x₁ 0, i= 2, 3, ..., 7
 $x_2 = 1, x_3 = 9/20, z = 107.55$

(2)
$$x_1 = 0$$
, $x_2 = x_3 = x_4 = 1$, $x_5 = \frac{1}{4}$, $z = 97 \frac{3}{4}$

- (3) $x_1 = x_2 = 1, x_3 = 9/20, z = 107.55$
- $(4) x_1 = 1, x_2 = 0$

max
$$z = 39x_3 + 37x_4 + 7x_5 + 5x_6 + 10x_7 + 10$$

s.t. $20x_3 + 19x_4 + 4x_5 + 3x_6 + 6x_7$ 19
0 $x_3, x_4, ..., x_7$ 1

$$x_3 = 19/20, x_4 = x_5 = x_6 = x_7 = 0, z = 107.05$$

 $(5) x_1 = x_2 = 1, x_3 = 0$

max
$$z = 37x_4 + 7x_5 + 5x_6 + 10x_7 + 90$$

s.t. $19x_4 + 4x_5 + 3x_6 + 6x_7 + 9$
 $0 \quad x_1 \quad 1, i = 4, 5, 6, 7$
 $x_4 = \frac{9}{19}, z = 107.5$

(6) $x_1 = x_2 = 1, x_3 = x_4 = 0$

max z =
$$7x_5 + 5x_6 + 10x_7 + 90$$

s.t. $4x_5 + 3x_6 + 6x_7 + 9$
 $0 \quad x_5, x_6, x_7 = 1$
 $x_5 = x_6 = 1, x_7 = \frac{1}{3}, z = 105 \frac{1}{3}$

- $(7) x_1 = x_2 = 1, x_3 = 0, x_4 = 1, \mathbb{Z}_{\mathbf{w}}$
- (8) 回到状态(4),继续搜索。

$$x_1 = 1, x_2 = x_3 = 0$$

$$\max z = 37x_4 + 7x_5 + 5x_6 + 10x_7 + 70$$

$$s.t. \quad 19x_4 + 4x_5 + 3x_6 + 6x_7 \quad 19$$

$$x_4 = 1, z = 107$$

故(1,0,0,1,0,0,0)是一整数解, z = 107 也是最优解。

- $(9) x_1 = 1, x_2 = 0, x_3 = 1, \mathcal{E}_{\mathbf{M}_{\mathbf{S}}}$
- $(10) x_1 = x_2 = x_3 = 1 \, \pi_{\mathbf{m}}$

搜索过程用树状表达如图 11.15 所示。

图 11.15

11.8 流动推销员问题的近似解法

流动推销员问题是著名的整数规划问题。前面已讨论了它的分支定界法,作为数学问题,它属于 NP 困难问题,也就是说它的困难程度和 NP 完全类一样,它的时间复杂度是指数型的,至今还不存在有效的算法,求近优解是必由之路。

11.8.1 最近插入法

算法的基本思想是先找一初始的回路 T_k , 基于某一种标准找一顶点插入到回路中去, 反复这个过程直到所有顶点都进入回路为止。最近插入法选择新插入点 v_i 的标准是, 点 v_i 插入到 v_k 与 v_j 之间, 要求 v_i 与 T_k 上一点 v_j 距离最短, 且 ,为较短一侧, 即 $i=d_{ij}$ + d_{ik} - d_{jk} 较小。最近插入法所得的回路长 L_n ,最优路径长 L_n^* 。并有下述定理存在。

定理 11.3 L_n/L_n < 2

证明 不失一般性, 令最近插入法先后插入的点的顺序为 1, 2, ..., n, 设 i 插入于点 j 与 k 之间。i 加入引起回路长度的增量为

$$i = d_{ij} + d_{ik} - d_{jk}$$

设 11, 12, ..., 16 是最优回路的边, 11 是其中最长的边。

可以证明: 点 2, 3, ..., n 可以与最优哈密尔顿回路中长度最大边除外的 n-1 条边建立一对一的对应关系,而且与 i 对应的边的长度 1, 6

$$1_i$$
 $\frac{1}{2}$ i, i 21_i

所以

$$L_n = 2 + 3 + ... + n 2(1_2 + 1_3 + ... + 1_n)$$

= $2(L_n^* - 1_1)$

其中11为最优哈密尔顿回路中长度最大的边长。

下面证一对一的对应关系。

图 11.16 中粗线为 T_k , 细线为过 T_k 上的点属于最优回路的边(I_k 除外), 这些细线将仍未插入到 T_k 的点与 T_k 连接起来。

设新插入点 i 插入在 j 与 k 之间,则有

$$i = d_{ij} + d_{ik} - d_{jk}$$

p 是 T k 上一点, q 是不在 T k 上与 p 点相邻的点, 通过属于最优回路的边与 p 相连。由于

当 i 点插入到 j, k 之间时(即用 ki 和 ij 边取代 kj 边), 再从图中去掉(p,q) 边得图 11.17。

图 11.17

图 11.16

定理得证。

11.8.2 最小增量法

与最近插入法不同的是选择 k 点插入 i, j 之间, 不是要求 i, k 两点距离最短。而是在 i 的两侧, 选j 点一侧, 要求j 一侧的增量较小。最小增量法则是从直接以增量 k 达到最小作为标准, 即

$$_{k} = \min_{\tiny (i,j)} \left\{ d_{ik} + d_{kj} - d_{ij} \right\}$$

其中dik为vi到vi间的路径(vi,vk)的长度。

初始回路 vi vi vi 使

$$d_{\,ij} \; + \; d_{j\,i} = \; \underset{v_{\,h},\,v_{\,k}}{min}_{\,V} \{ d_{\,hk} \; + \; d_{\,kh} \, \}$$

例 11.14 已知距离矩阵

本例为 i = 7, j = 8, 即

图 11.18

为方便起见, 7 即为 v_7 , 8 即表示 v_8 , 以后同此, 不另说明。 先列表计算 1, 2, ..., 6 插入到 7, 8 中去的 $_k$ 值 (见表 11. 16)。

表 11.16

k	d 7k	dk8	d k7	d 8k	$d_{7k} + d_{k8} - d_{78}$	$d_{8k} + d_{k7} - d_{87}$	i j
1	10	5	6	7	10 + 5 - 3 = 12	7 + 6 - 1 = 12	7 8 8 7
2	11	7	6	10	11 + 7 - 3 = 15	10 + 6 - 1 = 15	7 8 8 7
3	12	11	3	10	12 + 11 - 3 = 20	10 + 3 - 1 = 12	8 7
4	10	10	8	10	10 + 10 - 3 = 17	10 + 8 - 1 = 17	7 8 8 7
5	9	9	10	6	9 + 9 - 3 = 15	6 + 10 - 1 = 15	7 8 8 7
6	12	9	11	3	12 + 9 - 3 = 18	3 + 11 - 1 = 13	8 7

的最小值为 12, 故将 1 点插入到 7 到 8 之间, 或 8 到 7 之间(见图 11.19)。

下面计算 2,3,4,5,6 分别插入到(1,7),(1,8)间的 k 值,注意插入到(7,8)间的 已 在前面计算了(见表 11.17)。

表 11.17 (1\7)

k	$d_{1k} + d_{k7} - d_{17}$	$d_{7k} + d_{k1} - d_{71}$	k	i j
2	2 + 6 - 6 = 2	11 + 6 - 10 = 7	2	1 7
3	11 + 3 - 6 = 8	12 + 5 - 10 = 7	7	7 1
4	10 + 8 - 6 = 12	10 + 11 - 10 = 11	11	7 1
5	8 + 10 - 6 = 12	9 + 11 - 10 = 10	10	7 1
6	7 + 11 - 6 = 12	12 + 12 - 10 = 14	12	1 7

表 11.18 (8\1)

k	$d_{8k} + d_{k1} - d_{81}$	$d_{1k} + d_{k8} - d_{18}$	k	i j
2	10 + 6 - 7 = 9	2 + 7 - 5 = 4	4	1 8
3	10 + 5 - 7 = 8	11 + 11 - 5 = 17	8	8 1
4	10 + 11 - 7 = 14	10 + 10 - 5 = 15	14	8 1
5	6 + 11 - 7 = 10	8 + 9 - 5 = 12	10	8 1
6	3 + 12 - 7 = 8	7 + 9 - 5 = 11	8	8 1

综合以上 3 个表, k 的最小值为 k = 2, 插入到 1 - 7 间得图 11.20。

同样考虑 3, 4, 5, 6 点插入位置。现在列表 11.19 讨论插入 1-2, 2-7 的 $_k$ 值, 7-8, 8-1 的 $_k$ 见表 11.16 和表 11.18。

表 11.19

k	$d_{1k} + d_{k2} - d_{12}$	$d_{2k} + d_{k7} - d_{27}$
3	11 + 12 - 2 = 21	4 + 3 - 6 = 1
4	10 + 9 - 2 = 17	8 + 8 - 6 = 10
5	8 + 11 - 2 = 17	8 + 10 - 6 = 12
6	7 + 8 - 2 = 13	4 + 11 - 6 = 9

№ 的最小值为 3 插入到 2 7 间, 如图 11.21 所示。

进一步考虑 4, 5, 6 插入到 2 3, 3 7 间的 $_{k}$ 的值, 见表 11.20。1 2, 7 8, 8 1 的情况前面的表已经列出。

表 11.20

k	d2k + dk3 - d23	d 3k + d k7 - d 37
4	8 + 10 - 4 = 14	11+ 8- 3= 16
5	8 + 9 - 4 = 13	8 + 10 - 3 = 15
6	4 + 5 - 4 = 5	12 + 11 - 3 = 20

可见 k的最小值为6插入到2 3间(见图11.22)。

图 11.22

剩下 4, 5, 考虑插入到 2 6 和 6 3 间的 k (见表 11.21)。

表 11.21

k	$d_{2k} + d_{k6} - d_{26}$	$d_{6k} + d_{k3} - d_{63}$
4	8 + 9 - 4 = 13	2 + 10 - 5 = 7
5	8 + 2 - 4 = 6	11 + 9 - 5 = 15

№ 的最小值为 5 插入到 2 6 间, 如图 11.23 所示。

最后计算

 $d_{24}+d_{45}-d_{25}=8+1-8=1, d_{54}+d_{46}-d_{56}=4+9-2=11$ 故得 4 插入到 2 5 之间, 由此可得近优路径为 1 2 4 5 6 3 7 8 1, 如图 11. 24 所示。

图 11.23

图 11.24

定理 11.4 满足三角不等式条件及对称条件:

$$d_{ik} + d_{kj}$$
 d_{ij} , $d_{ij} = d_{ji}$

的流动推销员问题不会出现相交的路径的解。

先给以直观的概念。例如回路(图 11.25) 1 2 3 4 1, 其中 2 3 边和 4 1 边相 交于 P 点, 可改变为 1 2 4 3 1。

图 11.25

根据三角不等式可知,后者路径长度较前者为短。严格证明留给读者自己去完成。利用本定理可得出回路改进法。

11.8.3 回路改进法

回路改进法的步骤如下:

- S1. 任找一哈密尔顿回路 T。
- S2. 回路 T 上每一对边端点交换, 计算回路长度的增量。若增量为负, 则取作为新的连边, 否则转回再次执行 S2。S2 操作直到所有两条边交换端点均引起增量 > 0 为止。 当然, 这种算法只适用于满足三角不等式及对称关系成立的情况。

例 11.15 已知 6 个城市的距离矩阵

最简单的办法:

找一哈密尔顿回路: v_1 v_2 v_3 v_4 v_5 v_6 v_1 总长度: 6+7+5+8+3+11=40

以 (v_1, v_2) 边为例,分别与 (v_3, v_4) , (v_4, v_5) , (v_5, v_6) 成对交换端点,比较长短。以 (v_1, v_2) 与 (v_3, v_4) 为例,去掉 (v_1, v_2) , (v_3, v_4) ,连上 (v_1, v_3) , (v_2, v_4) 及回路: $v_1 = v_3 = v_2 = v_4 = v_5$ 以 点使回路长度增加。

一般说来, (v_i, v_j) 和 (v_h, v_k) 成对, 对应回路 v_i v_j ... v_h v_k ... v_i 。去掉 (v_i, v_j) , (v_h, v_k) 边。连接 (v_i, v_h) , (v_j, v_k) 得新回路 v_i v_h ... v_j v_k ... v_i (见图 11.27)。

回路长度增量 = $d_{ih} + d_{jk}$) - $(d_{ij} + d_{hk})$

现就对边 $(v_i, v_j), (v_h, v_k)$ 的各种情况列表计算如下(见表 11.22)。

表 11.22

(v_i, v_j)	(v_h, v_k)	$= (d_{ih} + d_{jk}) - (d_{ij} + d_{hk})$
(v_1, v_2)	(v_3, v_4)	$(d_{13} + d_{24}) - (d_{12} + d_{34}) = (8 + 4) - (6 + 5) = 1$
	(v_4, v_5)	$(d_{14} + d_{25}) - (d_{12} + d_{45}) = (9 + 6) - (6 + 8) = 1$
	(v_5, v_6)	$(d_{15} + d_{26}) - (d_{12} + d_{56}) = (12 + 10) - (6 + 3) = 13$
(v_2, v_3)	(v_4, v_5)	$(d_{24} + d_{35}) - (d_{23} + d_{45}) = (4 + 12) - (7 + 8) = 1$
	(v_5, v_6)	$(d_{25} + d_{36}) - (d_{23} + d_{56}) = (6 + 9) - (7 + 3) = 5$
	(v_6, v_1)	$(d_{26} + d_{31}) - (d_{23} + d_{61}) = (10 + 8) - (7 + 11) = 0$
(v_3, v_4)	(v_5, v_6)	$(d_{35} + d_{46}) - (d_{34} + d_{56}) = (12 + 4) - (5 + 3) = 8$
	(v_6, v_1)	$(d_{36} + d_{41}) - (d_{34} + d_{61}) = (9 + 9) - (5 + 11) = 2$
(v_4, v_5)	(v_6, v_1)	$(d_{46} + d_{51}) - (d_{45} + d_{61}) = (4 + 12) - (8 + 11) = -3$

可见将回路改为 v_1 v_2 v_3 v_4 v_6 v_5 v_1 使回路长度从 40 降为 37。

在叙述下一定理之前先引进凸包的概念。设 1, 2, ..., n 是平面上 n 个有确定坐标的顶点。把包含这 n 个顶点的最小凸集称为这 n 个顶点的凸包(见图 11. 28)。

图 11.27 图 11.28

定理 11.5 平面上 n 个顶点的最短哈密尔顿回路(即这 n 个点的流动推销员问题) 经过凸包上顶点 的先后顺序和凸包上顶点的顺序相同。

定理 11.5 的证明留作习题。

根据定理 11.5 初始的回路可以选择凸包的边界线。

算法的步骤如下:

S1. 找 n 个顶点的凸包作为初始回路 T。

- S 2. 对于不在回路T 的顶点k, 存在T 上的边 (i_k,j_k) , 使得由 (i_k,k) 边和 (k,j_k) 边张的角达到最大。
- S3. 将 k 点插入到 ik, j k 之间。

反复执行 S2 S3, 直到所有顶点都加入到回路为止。

必须再强调一下本算法只能对有确定相对位置的 n 个顶点有效。不论凸包, 还是角度大小都有量的概念。

习 题 十 一

x1, x2 0整数

用群的方法解下列各题。

1.
$$\max z = 7x_1 + 9x_2 + 3x_3$$
s. t.
$$2x_1 - x_2 + 3x_3 = 6$$

$$3x_1 + 7x_2 + x_3 = 35$$

$$x_1, x_2, x_3 = 0$$
整数
2.
$$\min z = 5x_1 + 4x_2$$
s. t.
$$2x_1 + 3x_2 = 7$$

$$x_1 + 2x_2 = 2$$

$$4x_1 + x_2 = 5$$

第 12 章 动态规划算法

在讨论整数规划问题的解的过程中,我们多次提到一种称之为动态规划的算法。动态规划与其说是与线性规划并列的一种规划论,勿宁说它是一种解题的办法。一种数学方法仅用之于一两个具体问题,只能算为一种技巧,若能用来处理几个问题,就可称之为算法了。动态规划就属于后一种。

12.1 最短路径问题

12.1.1 穷举法

下面先通过一个最短路径问题,介绍如何将一个最优化问题通过动态规划来求解的基本原理。

例 12.1 如图 12.1, 从 A_0 点要铺设一条管道到 A_6 点, 中间必须经过 5 个中间站, 第一站可以在 A_1 , B_1 两地中任选一个, 与此类似, 第二、三、四、五站可以供选择的地点分别是: $\{A_2, B_2, C_2, D_2\}$, $\{A_3, B_3, C_3\}$, $\{A_4, B_4, C_4\}$, $\{A_5, B_5\}$ 。连接两地间管道的距离(或造价)用连线上的数字表示, 要求选一条从 A_0 到 A_6 的铺管线路, 使总距离最短(或总造价最小)。

图 12.1

我们首先想到使用穷举法。第一阶段,有两种路径选择: A_0A_1 , A_0B_1 。第二阶段, 若选 A_0A_1 , 第二段路径有 3 种选择: A_1A_2 , A_1B_2 , A_1C_2 ; 若选 A_0B_1 , 也有 3 种选择: B_1B_2 , B_1C_2 , B_1D_2 。所以两段共有 6 种选择。依次类推, 从 A_0 到 A_6 共有 2x 3x 2x 2x 2x 1 = 48 种不同路径。可通过 48x 5 = 240 次加法, 47 次比较,即通过各种可能方案的穷举,最后可求出从 A_0 到 A_6 的最短路径是:

 A_0 A_1 B_2 A_3 B_4 B_5 A_6

相应的最短距离是18。

12.1.2 改进的算法

但是我们注意到最短路径有这样一个特性: 即如果最短路径的第 k 站通过 P_k , 则这一最短路径在由 P_k 出发到达终点的那一部分路径, 对于始点为 P_k 到终点的所有可能的路径来说, 必定也是距离最短的。这一特性很容易证明。读者可自己去完成。

根据最短路径这一特性, 启发我们计算时从最后一段开始, 从后向前逐步递推的方法, 求出各点到 A₆ 的最短路径, 最后求得从 A₆ 到 A₆ 的最短路径。步骤如下:

k = 6 时

设 $f(A_s)$ 表示由 A_s 到 A_a 的最短距离, $f(B_s)$ 表示由 B_s 到 A_a 的最短距离, 显然有:

$$f(A_5) = 4, f(B_5) = 3$$

k = 5 时

$$f(A_4) = \min\{d(A_4, A_5) + f(A_5), d(A_4, B_5) + f(B_5)\}$$

= $\min\{3 + 4, 5 + 3\} = 7$

括号内的下划线表示最小值所取的项。即 $f(A_4)$ 取的是 A_4 A_5 A_6 , 而不是 A_4 B_5 A_6 。以后同此, 不再说明。

$$f(B_4) = \min\{d(B_4, A_5) + f(A_5), d(B_4, B_5), + f(B_5)\}$$

$$= \min\{5 + 4, 2 + 3\} = 5$$

$$f(C_4) = \min\{d(C_4, A_5) + f(A_5), d(C_4, B_5) + f(B_5)\}$$

$$= \min\{6 + 4, 6 + 3\} = 9$$

k = 4 时

$$\begin{split} f\left(A_{3}\right) &= \min\left\{d\left(A_{3}, A_{4}\right) + f\left(A_{4}\right), d\left(A_{3}, B_{4}\right) + f\left(B_{4}\right)\right\} \\ &= \min\left\{2 + 7, \underline{2 + 5}\right\} = 7 \\ f\left(B_{3}\right) &= \min\left\{d\left(B_{3}, B_{4}\right) + f\left(B_{4}\right), d\left(B_{3}, C_{4}\right) + f\left(C_{4}\right)\right\} \\ &= \min\left\{\underline{1 + 5}, 2 + 9\right\} = 6 \\ f\left(C_{3}\right) &= \min\left\{d\left(C_{3}, B_{4}\right) + f\left(B_{4}\right), d\left(C_{3}, C_{4}\right) + f\left(C_{4}\right)\right\} \\ &= \min\left\{\underline{3 + 5}, 3 + 9\right\} = 8 \end{split}$$

k = 3 时

$$f(A_2) = \min\{d(A_2, A_3) + f(A_3), d(A_2, B_3) + f(B_3)\}$$

$$= \min\{\frac{6+7}{8}, 8+6\} = 13$$

$$f(B_2) = \min\{d(B_2, A_3) + f(A_3), d(B_2, B_3) + f(B_3)\}$$

$$= \min\{\frac{3+7}{5}, 5+6\} = 10$$

$$f(C_2) = \min\{d(C_2, B_3) + f(B_3), d(C_2, C_3) + f(C_3)\}$$

$$= \min\{\frac{3+6}{6}, 3+8\} = 9$$

$$f(D_2) = \min\{d(D_2, B_3) + f(B_3), d(D_2, C_3) + f(C_3)\}$$

$$= \min\{8+6, 4+8\} = 12$$

k = 2 时

$$\begin{split} f\left(A_{1}\right) &= \min\{d(A_{1},A_{2}) + \ f\left(A_{2}\right), d(A_{1},B_{2}) + \ f\left(B_{2}\right), d(A_{1},C_{2}), + \ f\left(C_{2}\right)\} \\ &= \min\{1 + \ 13, \underline{3 + \ 10}, 6 + \ 9\} = \ 13 \\ f\left(B_{1}\right) &= \min\{d(B_{1},B_{2}) + \ f\left(B_{2}\right), d(B_{1},C_{2}) + \ f\left(C_{2}\right), d(B_{1},D_{2}) + \ f\left(D_{2}\right)\} \\ &= \min\{8 + \ 10, \underline{7 + \ 9}, 6 + \ 12\} = \ 16 \\ k &= \ 1 \ \mbox{BJ} \\ f\left(A_{0}\right) &= \min\{d(A_{0},A_{1}) + \ f\left(A_{1}\right), d(A_{0},B_{1}) + \ f\left(B_{1}\right)\} \\ &= \min\{\underline{5 + \ 13}, 3 + \ 16\} = \ 18 \end{split}$$

上述计算结果可表示如图 12.2, 其中 $\frac{A_5}{4}$ 表示从 A_5 出发到终点的最短路径长度为 4 即 A_5 A_6 , 余此类推。

图 12.2

一共要用 15 次比较运算和 28 次加法运算才可得到从 A_0 到 A_6 的最短距离, 而且在这过程中, 还得到其它各点到 A_6 的最短路径和最短距离。

12.1.3 复杂性分析

一般地说, 若我们考虑如图 12.3 所示从始点 O(0,0) 到终点 E(m,n) 的最短路径(也称格路)问题,

若用穷举法,则需

$$(m + n - 1)C(n + m, n) = \frac{(n + m - 1)(n + m)!}{n!m!}$$

但用后一种方法只需 2mn + m + n 次加法及 mn 次比较就够了。不难知道图 12.3 由虚线包围的矩形域内的点要作 2 次比较, 2 次加法, 在这以外的点只需 1 次加法, 无需作比较。

当 m = n 时, 穷举法需进行(2n - 1) $p(2n)!/(n!)^2$ 次加法, $(2n)!/(n!)^2$ - 1次比较。后一种方法只要作 $2(n^2 + n)$ 次加法, n^2 次比较。由斯特灵公式

$$n! \frac{\overline{2} \overline{n}}{e}$$

可知穷举法的运算量是 n 的指数函数, 后一种算法则只是 n² 量级。

12.2 最佳原理

12.2.1 最佳原理

由上节例子知道: 一个最短路径问题可变成多段判决问题, 利用了最短路径的一个性质: 从起点到终点的最短路径也是该路径上各点到终点的最短路径。与此类似的问题很多, 可以抽象成组合优化问题中的一个重要的最佳原理: 假设为了解决某一优化问题, 需要依次作出 n 个决策 $D_1, D_2, ..., D_n$, 若这个决策序列是最优的, 则对任何一个整数 k, 1 < k < n, 不论前面 k 个决策是怎样的, 以后的最优决策只取决于由前面决策所确定的当前状态, 即以后的决策 $D_{k+1}, D_{k+2}, ..., D_n$ 也是最优的。

本章的这节和以后各节主要举例说明如何灵活运用最佳原理。动态规划与线性、非线性规划不尽相同,实际上它是一种算法。最佳原理说起来很简单,如何灵活应用它则又是另一回事。它用途很广,利用它来解决一个新问题的本身也就是一种创造。我们希望下面的例子能帮助读者掌握它的技巧,并达到举一反三。

12.2.2 最佳原理的应用举例

例 12. 2 某工厂购进 1000 台机器,准备生产 P_1 , P_2 两种产品。若生产产品 P_1 ,每台机器每年可收入 50 千元,损坏率达 65%;若生产产品 P_2 ,每台机器年收入为 40 千元,但损坏率只有 40%;估计 3 年后将有新的机器出现,旧的机器将全部淘汰。试问应如何安排生产,使 3 年内收入最多?计划以 1 年为周期。

本例可化为整数规划问题求解。设 x_1, x_2, x_3 分别是第1, 2, 3年中用以生产产品 P_1 的机器数, y_1, y_2, y_3 分别是第1, 2, 3年用以生产产品 P_2 的机器数。则得到求

max
$$z = 50\ 000(x_1 + x_2 + x_3) + 40\ 000(y_1 + y_2 + y_3)$$

约束条件

$$x_1 + y_1 = 1000$$

 $x_1 + y_2 = 0.35x_1 + 0.60y_1$
 $x_3 + y_3 = 0.35x_2 + 0.60y_2$
 $x_i, y_i = 0$ 整数, $i = 1, 2, 3$

现应用最佳原理变成多段判决问题如下:

设 $p_i(n)$ 为 n 台机器在以后 i 年内的最大收益。若只考虑安排 1 年的生产, x_3 为生产 P_1 的机器数目。从 i=1 开始,即 1 年后的最大收益为

$$p_1(n) = \max_{\substack{0 = x_3 = n}} \{ 50 \ 000x_3 + 40 \ 000(n - x_3) \}$$
$$= 50 \ 000n$$

即

$$x_3 = n$$

进而考虑 i=2, 即若考虑两年的生产, x_2 为两年中第一年生产 P_1 的机器数目, 则 1 年后机器剩余数为 $0.35x_2+0.60(n-x_2)$, 故有

$$p_{2}(n) = \max_{\substack{x_{2} = n \\ 0 \text{ } x_{2} = n}} \{50\ 000x_{2} + 40\ 000(n - x_{2}) + p_{1}(0.35x_{2} + 0.60(n - x_{2})) \}$$
由于 $p_{1}(k) = 50\ 000k$,故
$$p_{2}(n) = \max_{\substack{0 = x_{2} = n \\ 0 = x_{2} = n}} \{50\ 000x_{2} + 40\ 000n - 40\ 000x_{2} + 50\ 000(0.6 - 0.25x_{2})\}$$

$$= \max_{\substack{0 = x_{2} = n \\ 0 \text{ } x_{2} = n}} \{-2\ 500x_{2} + 70\ 000n\}$$

$$= 70\ 000n$$

即

$$\mathbf{x}_2 = \mathbf{0}$$

最后考虑 i=3, 若考虑 3 年的生产, 第一年生产 P_1 的机器数目设为 x_1 , 则有 $p_3(1000) = \max_{\substack{x_1=1000}} \{50\ 000x_1 +\ 40\ 000(1\ 000-x_1) +\ p_2(0.35x_1 +\ 0.6(1\ 000-x_1))\}$ $= \max_{\substack{x_1=1000}} \{50\ 000x_1 +\ 40\ 000\ 000-\ 40\ 000x_1 +\ 70\ 000(0.35x_1 +\ 600-\ 0.6x_1)\}$ $= \max_{\substack{x_1=1000}} \{40\ 000\ 000+\ 42\ 000\ 000+\ 10\ 000x_1 -\ 17\ 500x_1\}$ $= 82\ 000\ 000$

即 $\mathbf{x}_1 = \mathbf{0}$

故 3 年中生产计划安排如下:

第一年 1 000 台机器一律生产产品 P 2;

第二年把余下的机器继续生产 P2:

第三年把所有的机器改为生产 P₁。

总收入为82000000元。

例 12.3 资源分配问题

设有资源 a 分配给 n 个项目, $g_i(x)$ 为将数量 x 的资源分配给项目 i 所能得到的利润, i=1,2,...,n。最合理的资源分配导致下面的问题

max
$$z = g_1(x_1) + g_2(x_2) + ... + g_n(x_n)$$

s.t. $x_1 + x_2 + ... + x_n = a$
 $x_1 = 0, i = 1, 2, ..., n$

若 $g_i(x_i)$ 是 x_i 的线性函数,则是一般的线性规划问题。下面介绍如何利用最佳原理将 其转化为多段判决问题。

设 $f_k(n)$ 为资源 n 分配给前 k 个项目所得的最大利润。

$$f_{1}(a) = \max_{0 = x = a} g_{1}(x)$$

$$f_{2}(a) = \max_{0 = x = a} \{g_{2}(x) + f_{1}(a - x)\}$$

$$f_{3}(a) = \max_{0 = x = a} \{g_{3}(x) + f_{2}(a - x)\}$$
...
$$f_{n}(a) = \max_{0 = x = a} \{g_{n}(x) + f_{n-1}(a - x)\}$$

例如有 7 万元资本投资到 A, B, C 三个项目, 其利润见表 12.1。

表 12.1

投资额项目	1	2	3	4	5	6	7
A	0.12	0. 15	0.20	0. 21	0. 24	0.30	0. 36
В	0.22	0. 24	0.26	0. 28	0.30	0.33	0. 34
С	0.18	0. 22	0.26	0. 28	0.30	0.34	0. 36

1. 考虑投资项目 A 的生产资金 a 与利润 f 1(a) 的关系见表 12. 2。

表 12.2

a f	1	2	3	4	5	6	7
f 1(a)	0.12	0. 15	0.20	0. 21	0. 24	0.30	0. 36

2. 若考虑投到 A, B 两项目, 资金 a 与利润 $f_2(a)$ 关系如下, 其中 x_2 为投到项目 B 的生产资金。

$$f_2(a) = \max_{0 = x_2=a} \{g_2(x_2) + f_1(a - x_2)\}$$

其利润见表 12. 3, 其中*表示利润最大的状态。

表 12.3

a X2	0	1	2	3	4	5	6	7	f 2(a)
1	0.12	0. 22*							0. 22
2	0.15	$\begin{vmatrix} 0.12 + 0.22 \\ = 0.34^* \end{vmatrix}$	0. 24						0.34
3	0. 20		0. 12 + 0. 24 = 0. 36	0.26					0.37
4	0.21	$\begin{vmatrix} 0.20 + 0.22 \\ = 0.42^{*} \end{vmatrix}$	0. 15 + 0. 24 = 0. 39	0.12 + 0.26 = 0.38	0. 28				0.42
5	0. 24	$ \begin{array}{rcl} 0.21 + & 0.22 \\ = & 0.43 \end{array} $		0.15 + 0.26 = 0.41	0. 12 + 0. 28 = 0. 40	0.30			0.44
6	0.30	$ \begin{vmatrix} 0.24 + 0.22 \\ = 0.46 \end{vmatrix} $		0.20 + 0.26 = 0.46^*	0. 15 + 0. 28 = 0. 43	$ \begin{array}{rcl} 0.12 + & 0.30 \\ = & 0.42 \end{array} $	0.33		0.46
7	0.30	0.30 + 0.22 = 0.52^*			0. 15 + 0. 30 = 0. 45	$0.12 + 0.33 \\ = 0.45$	0.34		0.52

3. 考虑投入 7 万元资金于三项目 A, B, C, 利润与资金关系如下:

$$f_{3}(7) = \max_{0 = x_{3}^{7}} \{g_{3}(x_{3}) + f_{2}(7 - x_{3})\}$$

其中 x3 为投入到项目 C 的生产资金。利润如表 12.4 所示。

表 12.4

X 3	0	1	2	3	4	5	6	7
g ₃ (x)	0.00	0.18	0. 22	0. 26	0. 28	0.30	0. 34	0. 36
f ₂ (7-x)	0.52	0.46	0.44	0.42	0.37	0.34	0. 22	0. 00
$g_3(x) + f_2(7-x)$	0.52	0.64	0.66	0. 68	0. 65	0. 64	0. 56	0. 36

所以

$$f_{3}(7) = \max_{0 = x_{3}} \{g_{3}(x) + f_{2}(7 - x)\} = 0.68$$

即可获得最大利润 0.68 万元。从表 12.4 知 $x_3 = 3, f_2(7 - x_3) = f_2(4)$ 。 从表 12.3 可知 $f_2(4) = 0.42$,而且 $x_2 = 1$,故 $x_1 = 3$ 。

12.3 流动推销员问题

12.3.1 动态规划解法

已知一个由 n 个城市(或节点) 组成的网络, 这 n 个城市编号为 $v_1, v_2, ..., v_n$ 。 d_i 表示从 v_i 到 v_j 的距离(或时间、费用等), 一般 d_i d_j 。一个推销员要从 v_l 开始, 访问每一城市一次且仅一次, 最后返回 v_l 。这个推销员应如何选择线路, 才能使行程最短?通常称这个问

题为流动推销员问题,有时也称旅行商问题。

我们知道这样的线路和 $v_1, v_2, ..., v_n$ 绕一圆圈排列一一对应, 故有(n-1)! 种不同方案, 若使用穷举法, 需作(n-1)(n-1)! 次加法和(n-1)!-1 次比较, 当 n 很大时, 这是不能接受的运算量, 故流动推销员问题是典型的难解问题。下面我们介绍如何将流动推销员问题化为多段判决问题, 用动态规划方法求解, 并对其时间及空间复杂性作出估计。

令 $f(v_i, V)$ 表示从 v_i 点出发, 遍历 V 中的点一次且仅一次, 最后返回到 v_i 的最短距离, 其中 V 是某些顶点构成的集合, 且 v_i | V。这样, 有以下多段判决递推公式:

V\ {v_i} 表示从 V 中除去 v_i。

设图 $G = (V, E), V = \{v_1, v_2, ..., v_n\}, 关于图 G 的流动推销员问题即求 <math display="block">f(v_1, \{v_2, v_3, ..., v_n\})$

 $v_1 \ 0 \ 2 \ 1 \ 3 \ 4$

下面看一个具体例子。

设距离距阵为

$$\begin{array}{c} v_2 \ 1 \ 0 \ 4 \ 4 \ 2 \\ D = v_3 \ 5 \ 4 \ 0 \ 2 \ 2 \ = \ (d_{\frac{1}{2}})_{\frac{1}{2} \times 5} \\ v_4 \ 5 \ 2 \ 2 \ 0 \ 3 \\ v_5 \ 4 \ 2 \ 4 \ 2 \ 0 \\ v_1 \ v_2 \ v_3 \ v_4 \ v_5 \\ \end{array}$$

$$f\left(v_2; \right) = 1 = d_{21}$$

$$f\left(v_3; \right) = 5 = d_{31}$$

$$f\left(v_4; \right) = 5 = d_{41}$$

$$f\left(v_4; \right) = 4 = d_{51}$$

$$f\left(v_2; v_3\right) = d_{23} + f\left(v_3; \right) = 4 + 5 = 9$$

$$f\left(v_2; v_4\right) = d_{24} + f\left(v_4; \right) = 4 + 5 = 9$$

$$f\left(v_2; v_5\right) = d_{25} + f\left(v_5; \right) = 2 + 4 = 6$$

$$f\left(v_3; v_2\right) = d_{32} + f\left(v_2; \right) = 4 + 1 = 5$$

$$f\left(v_3; v_4\right) = d_{34} + f\left(v_4; \right) = 2 + 5 = 7$$

$$f\left(v_4; v_5\right) = d_{45} + f\left(v_5; \right) = 2 + 4 = 6$$

$$f\left(v_4; v_3\right) = d_{45} + f\left(v_5; \right) = 2 + 1 = 3$$

$$f\left(v_4; v_5\right) = d_{45} + f\left(v_5; \right) = 2 + 1 = 3$$

$$f\left(v_5; v_2\right) = d_{52} + f\left(v_2; \right) = 2 + 1 = 3$$

$$f\left(v_5; v_4\right) = d_{54} + f\left(v_4; \right) = 2 + 5 = 7$$

$$f\left(v_2; v_3, v_4\right) = \min\{d_{23} + f\left(v_3; v_4\right), d_{24} + f\left(v_4; v_5\right)\}$$

$$= \min\{d_{23} + f\left(v_3; v_4\right), d_{24} + f\left(v_4; v_5\right)\}$$

$$= \min\{d_{23} + f\left(v_3; v_4\right), d_{24} + f\left(v_4; v_5\right)\}$$

式中的下划线表示最小值的状态。

$$\begin{split} f\left(v_2;v_3,v_5\right) &= \min \{d_{23} + f\left(v_3;v_5\right), d_{25} + f\left(v_5;v_4\right)\} \\ &= \min \{\frac{4+6}{6},2+9\} = 10 \\ f\left(v_2;v_4,v_5\right) &= \min \{d_{22} + f\left(v_2;v_5\right), d_{23} + f\left(v_5;v_4\right)\} \\ &= \min \{4+7,2+7\} = 9 \\ f\left(v_1;v_2,v_4\right) &= \min \{d_{32} + f\left(v_2;v_4\right), d_{34} + f\left(v_4;v_5\right)\} \\ &= \min \{4+9,2+3\} = 5 \\ f_2(v_3;v_2,v_5) &= \min \{4+6,2+3\} = 5 \\ f_3(v_3;v_4,v_5) &= \min \{d_{24} + f\left(v_2;v_3\right), d_{35} + f\left(v_5;v_4\right)\} \\ &= \min \{4+6,2+3\} = 5 \\ f\left(v_3;v_4,v_5\right) &= \min \{d_{24} + f\left(v_4;v_5\right), d_{25} + f\left(v_5;v_4\right)\} \\ &= \min \{2+7,2+7\} = 9 \\ f\left(v_4;v_2,v_3\right) &= \min \{d_{42} + f\left(v_2;v_3\right), d_{43} + f\left(v_3;v_2\right)\} \\ &= \min \{2+9,2+5\} = 7 \\ f\left(v_4;v_2,v_5\right) &= \min \{d_{42} + f\left(v_2;v_5\right), d_{45} + f\left(v_5;v_5\right)\} \\ &= \min \{2+6,3+3\} &= \min \{8,6'\} = 6 \\ f\left(v_4;v_5,v_5\right) &= \min \{d_{42} + f\left(v_5;v_5\right), d_{43} + f\left(v_5;v_5\right)\} \\ &= \min \{2+6,3+9\} = 8 \\ f\left(v_5;v_2,v_3\right) &= \min \{d_{32} + f\left(v_2;v_3\right), d_{34} + f\left(v_4;v_5\right)\} \\ &= \min \{2+9,4+5\} = 9 \\ f\left(v_5;v_2,v_4\right) &= \min \{d_{52} + f\left(v_2;v_4\right), d_{54} + f\left(v_4;v_2\right)\} \\ &= \min \{2+9,2+3\} = 5 \\ f\left(v_5;v_2,v_4\right) &= \min \{d_{52} + f\left(v_3;v_4\right), d_{54} + f\left(v_4;v_5\right)\} \\ &= \min \{4+7,2+7\} = 9 \\ f\left(v_5;v_5,v_4,v_5\right) &= \min \{d_{52} + f\left(v_5;v_4,v_5\right), d_{54} + f\left(v_4;v_5,v_5\right), d_{55} + f\left(v_5;v_5,v_4\right)\} \\ &= \min \{4+9,4+8,2+9\} = 11 \\ f\left(v_4;v_2,v_4,v_5\right) &= \min \{d_{52} + f\left(v_5;v_5,v_5\right), d_{54} + f\left(v_4;v_5,v_5\right), d_{55} + f\left(v_5;v_5,v_4\right)\} \\ &= \min \{4+9,2+6,2+5\} &= \min \{13,8,7\} = 7 \\ f\left(v_5;v_2,v_3,v_4\right) &= \min \{d_{52} + f\left(v_5;v_3,v_5\right), d_{52} + f\left(v_5;v_2,v_5\right), d_{54} + f\left(v_5;v_5,v_5\right)\} \\ &= \min \{4+9,2+6,2+5\} &= \min \{13,8,7\} = 7 \\ f\left(v_5;v_2,v_3,v_4\right) &= \min \{d_{52} + f\left(v_5;v_3,v_5\right), d_{53} + f\left(v_5;v_2,v_5\right), d_{54} + f\left(v_5;v_5,v_5\right), d_{54} + f\left(v_5;v_5,v_5\right), d_{54} + f\left(v_5;v_5,v_5\right)\} \\ &= \min \{4+9,2+6,2+5\} &= \min \{13,8,7\} = 7 \\ f\left(v_5;v_2,v_3,v_4\right) &= \min \{d_{52} + f\left(v_5;v_3,v_4\right), d_{53} + f\left(v_5;v_2,v_4\right), d_{54} + f\left($$

故从 v_1 出发先到 v_3 ,又从 $f(v_3; v_2, v_4, v_5) = 7$ 可知 v_3 到 v_5 ,从而依次回溯过程知最短线路是:

除了穷举法外, 动态规划方法给出了求流动推销员问题的方法。

12.3.2 复杂性分析

现在把上节中的例在 n = 5 时作具体分析, 由此可推到一般情况。

图 12.4

图 12.4 表示动态规划解法的一种计算关系或计算顺序。比如要计算 $f(v_2; v_3, v_4)$ 必须先计算 $f(v_3; v_4)$ 和 $f(v_4; v_3)$; 要计算 $f(v_3; v_4)$, 必先计算 $f(v_4; v_4)$, 余此类推。计算过程自左向右, 自下而上。

注意图 12. 4 树状结构中元素并非完全不同, 现只考虑其不同的元素。

不失一般性情况, 现在假定 $V = \{v_0, v_1, v_2, ..., v_n\}, \overline{V} = V \setminus \{v_0\} = \{v_1, v_2, ..., v_n\}$ 。从 v_0 出发遍历 \overline{V} 中的点最后返回 v_0 ,求最短路径。则在图 12.4 中

第1列:即右一列,显然只有一个 $f(v_0; V)$;

第 2 列: $f(v_{i_1}; \overline{V} \setminus \{v_{i_1}\})$ 。由于 v_{i_1} $\overline{V}, \overline{V} \setminus \{v_{i_1}\}$ 的个数为 n - 1, 故第 2 列有 nC (n - 1, n - 1) = n 个不同的 $f(v_i; \overline{V} \setminus \{v_i\})$;

nC(n-1,n-2) 个不同的 $f(v_i,\overline{V}\setminus\{v_i,v_j\})$ 。

. . .

一般第 k 列有:

$$nC(n - 1, n - k + 1) = nC(n - 1, k - 2)$$

个不同的元素 $f(v_{i_1}; V \setminus \{v_{i_1}, v_{i_2}, ..., v_{i_{k-1}}\})$ 。

故若利用一个存储单元存储一个 f(vi; vi);则所需存储单元数为:

$$S = 1 + \prod_{k=2}^{n+1} nC (n - 1, k - 2)$$

$$= 1 + \prod_{k=2}^{n+1} C (n - 1, k - 2)$$

$$= 1 + \prod_{k=0}^{n-1} C (n - 1, k)$$

$$= 1 + \prod_{k=0}^{n-1} C (n - 1, k)$$

下面对时间复杂性作出估计:

第 1 列: 顶点 $f(v_0; V)$ 的计算要作 n 次加法和比较。

第 2 列: 不同的 $f(v_{i_1}; \overline{V} \{v_{i_1}\})$ 的个数为 nC(n-1, n-1),每个要作 n-1 次加法和比较运算。

第 3 列: 不同的 $f(v_{i_2}; V \setminus \{v_{i_1}, v_{i_2}\})$ 的个数为 nC(n-1, n-2),每个要作 n-2 次加法和比较运算。

. . .

一般第 k 列: 不同的 f $(v_{i_{k-1}}; V \setminus \{v_{i_1}, v_{i_2}, ..., v_{i_{k-1}}\})$ 的数目是 nC(n - 1, k - 2) 个, 每个要作 n - k + 1 次加法和比较运算。k = 2, ..., n, 故加法和比较总次数为

$$T = n + \sum_{k=2}^{n} (n - k - 1)C(n - 1, k - 2)$$

$$= n + \sum_{k=2}^{n} (n - k + 1)C(n - 1, n - k + 1)$$

$$= n + n\{(n - 1)C(n - 1, n - 1) + (n - 2)C(n - 1, n - 2) + \dots + C(n - 1, 1)\}$$
由于
$$(1 + x)^{n-1} = 1 + C(n - 1, 1)x + C(n - 1, 2)x^{2} + \dots + x^{n-1}$$
所以
$$(n - 1)(1 + x)^{n-2} = C(n - 1, 1) + 2C(n - 1, 2)x + \dots + (n - 1)x^{n-2}$$

$$x = 1 代入等式两端得$$

 $C(\mathsf{n-1},1) + 2C(\mathsf{n-1},2) + \ldots + (\mathsf{n-1})C(\mathsf{n-1},\mathsf{n-1}) = (\mathsf{n-1})2^{\mathsf{n-2}}$ 故得

$$T = n + n(n - 1)2^{n-2}$$

从上面的分析可知,用动态规划求解流动推销员问题,它的时间复杂性虽然较穷举法有所下降,但时间复杂性和空间复杂性都仍然保持为规模 n 的指数函数,所以动态规划虽然提供了一种解法,但也不是一种可行的算法。

12.4 任意两点间的最短距离

12.4.1 距离矩阵算法

已知图
$$G=(V,E), V=\{v_1,v_2,...,v_n\}$$
 及距离矩阵
$$D=(d_{ij})_{i \in n}$$

$$(v_i,v_j)$$
 的长度, 若 (v_i,v_j) E
$$d_{ij}=0 \qquad , \quad v_i=v_j$$
 , 其他
$$i,j=1,2,...,n$$

求图G的任意两顶点间的最短路径。

设矩阵 A = (a_{ij})_{nx n}, B = (b_{ij})_{nx n}, 定义矩阵运算如下:

$$C^{C} A^* B = (c_{ij})_{n \times n}$$

其中

$$c_{ij} = \ \min_{_k} \{\, a_{\,ik} \, + \ b_{kj} \,\}, \ i,j = \ 1,2,...,n$$

$$\Leftrightarrow D^{(1)} = D, D^{(k+1)} = D^{(k)} * D^{(1)}$$

显然 $D^{(2)} = (d^{\binom{2}{i}}), d^{\binom{2}{i}} = \min_{k} \{d_{k} + d_{ki}\}, 表示从 v_{i}$ 出发经过某一中间点到达 v_{i} 点的最短距离。同样 $d^{\binom{3}{i}}$ 表示从 v_{i} 经过两个中间点到 v_{i} 的最短距离。

定义

A B
$$^{\mathsf{C}}$$
 $(\min(a_{ij}, b_{ij}))_{\mathsf{n} \mathsf{c}}$

今

$$D^* = D^{(1)} D^{(2)} ... D^{(n)} = (d^*_{ij})_{n \times n}$$

则 dij 表示从 vi 点到 vi 点的最短距离。

由于 $D^{(k)}$ 有 n^2 个元素, 每个元素要作 n 次乘法运算, 依以上办法可知, 求 D^* 的时间复杂性为 $H(n^4)$ 。

12.4.2 动态规划算法

设
$$\overline{D}^{(k)} = (\overline{d}_{ij}^{(k)})$$

 $d_{ij}^{(k)}$ 为从 v_i 出发中途经过以($v_1, v_2, ..., v_k$) 为中间点到 v_j 的最短距离。可化为多段判决问题如下:

$$\overline{d}_{ij}^{(k)} = min \ \overline{d}_{ij}^{(k-1)}, \overline{d}_{ik}^{(k-1)} + \overline{d}_{kj}^{(k-1)}, i, j = 1, 2, ..., n$$

其中 $d_{ij}^{(0)} = d_{ij}$ 并且 $d_{ij}^{(n)}$ 即为 i, j 间的最短距离。

算法如下:

- (1) D D_o
- (2) k从1到n,作

【从1到n,作

【 从 1 到 n, 作

$$\overline{\mathbf{d}}_{ij}$$
 min $\overline{\mathbf{d}}_{ji}$, $\overline{\mathbf{d}}_{ik}$ + $\overline{\mathbf{d}}_{kj}$

算法有 i, j, k 三重循环, 故其时间复杂性为 $H(n^3)$, 而不是 $H(n^4)$ 。 这个算法实际上是十分直观的, 举例如下:

k = 2 时

k = 3 时

$$D^{(3)} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ & 1 & 2 & 3 \\ & & 1 & 2 & 7 \\ & & & 3 \\ & & & 6 \end{bmatrix}$$

类似的步骤可得:

$$D^{(4)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 6^{2} \\ & 1 & 2^{2} & 3 & 5^{2} \\ & & 1 & 2 & 4^{2} \\ & & & 3 \\ & & & 6 \end{bmatrix}$$

而且

$$D^{(4)} = D^{(5)} = D^{(6)}$$

12.5 同顺序流水作业的任务安排

设有 m 种加工用的工作母机: $M_1, M_2, ..., M_m$,所谓同顺序流水作业是指它的加工顺序是相同的, 不妨为

$$M_1$$
 M_2 ... M_m

即先通过 M₁ 加工, 然后依次为 M₂, 等等。

现有 n 项任务, 其加工顺序一样, 设为

$$J_1, J_2, ..., J_n$$

已知矩阵

$$T = (t_{ij})_{m \times n}$$

其中 $t_{ij} =$ 任务 J_{j} 每加工一单元所需 M_{i} 机器的时数。求所用时间最短的任务加工顺序。 下面仅就 m=2 的情形加以讨论。令

$$S_0 = \{J_1, J_2, ..., J_n\}, N = \{1, 2, ..., n\}$$

若 n 个任务的加工顺序不同, 从第一个任务在机器 M_1 上加工开始, 到最后一个任务在机器 M_2 上加工完毕为止, 所需的时间也将迥异。从直观上我们知道最佳的安排是使得机器 M_2 的空闲时间达到最少, 而对机器 M_1 不存在空闲等任务问题。当然 M_2 也存在任务等机器的状况, 即 M_1 加工完毕, 而 M_2 还在加工前面一个任务。

设 S 是任务的集合, 若机器 M_1 开始加工 S 中的任务时, M_2 机器还在加工其它任务, t 时刻后才可利用, 在这样的条件下, 加工 S 任务所需的最短时间设为 T(S,t), 则有:

$$T\left(\,S\,,\,t\,\right) \;=\; \min_{J_{\,i} \;\;S} \left\{\,t_{\,1\,i} \;+\;\; T\left(\,S\,\backslash\,\left\{\,J_{\,\,i}\,\right\};\,t_{\,2\,i} \;+\;\; max\left\{\,t \;-\;\;t_{\,1\,i},\,0\right\}\,\right)\,\right\}$$

其中 t_{2i} + $\max\{t - t_{1i}, 0\}$ 的意义可从图 12.5 中看出。

图 12.5

设最佳的方案是 J , 在前, J , 在后, 则

$$\begin{split} T(S,t) &= t_{1i} + T(S \setminus \{J_i\}; t_{2i} + max\{t - t_{1i}, 0\}) \\ &= t_{1i} + t_{1j} + T(S \setminus \{J_i, J_j\}; t_{2i} + max\{t_{2i} + max\{t - t_{1i}, 0\} - t_{1j}, 0\}) \\ &= t_{1i} + t_{1j} + T(S \setminus \{J_i, J_j\}; T_{ij}) \end{split}$$

$$\begin{split} T_{ij} &= t_{2j} + max\{t_{2i} + max\{t - t_{1i}, 0\} ... t_{1j}, 0\} \\ &= t_{2i} + t_{2j} - t_{1j} + max\{max\{t - t_{1i}, 0\}, t_{1j} - t_{2i}\} \\ &= t_{2i} + t_{2j} - t_{1j} + max\{t - t_{1i}, t_{1j} - t_{2i}, 0\} \\ &= t_{2i} + t_{2j} - t_{1i} - t_{1j} + max\{t, t_{1i}, t_{1i} + t_{1j} - t_{2i}\} \\ &= t + t_{2i} + t_{2j} - t_{1i} - t_{1j}, \quad \\ &= t_{2i} + t_{2j} - t_{2j} = t_{1i}, \\ &= t_{2i} + t_{2j} - t_{2j} + t_{2j} - t_{2j} = t_{2j} \\ &= t_{2i} + t_{2j} - t_{2j} + t_{2j} - t_{2j} + t_{2j} - t_{2j} \\ &= t_{2i} + t_{2j} - t_{2j} + t_{2j} - t_{2j} + t_{2j} - t_{2j} \\ &= t_{2i} + t_{2j} - t_{2j} + t_{2j} - t_{2j} + t_{2j} - t_{2j} \\ &= t_{2i} + t_{2j} - t_{2j} + t_{2j} - t_{2j} + t_{2j} - t_{2j} \\ &= t_{2i} + t_{2j} - t_{2j} + t_{2j} - t_{2j} + t_{2j} - t_{2j} \\ &= t_{2i} + t_{2j} - t_{2j} + t_{2j} - t_{2j} + t_{2j} - t_{2j} \\ &= t_{2i} + t_{2j} - t_{2j} + t_{2j} - t_{2j} + t_{2j} - t_{2j} \\ &= t_{2i} + t_{2j} - t_{2j} + t_{2j} - t_{2j} + t_{2j} - t_{2j} \\ &= t_{2i} + t_{2j} - t_{2j} + t_{2j} - t_{2j} + t_{2j} - t_{2j} \\ &= t_{2i} + t_{2j} - t_{2j} + t_{2j} - t_{2j} + t_{2j} - t_{2j} \\ &= t_{2i} + t_{2j} - t_{2j} + t_{2j} - t_{2j} + t_{2j} - t_{2j} + t_{2j} - t_{2j} \\ &= t_{2i} + t_{2j} - t_{2j} + t_{2j} - t_$$

若最优次序 J; J; 的加工顺序互换,则

$$T(S;t) = t_1 i + t_1 j + T(S \setminus \{J_i, J_j\}; T_j i)$$

其中

$$T_{ji} = t_{2i} + t_{2j} - t_{1i} - t_{1j} + max\{t, t_{1j}, t_{1i} + t_{1j} - t_{2j}\}$$

若

$$\max\{t, t_{1i} + t_{1j} - t_{2i}, t_{1i}\} \quad \max\{t, t_{1i} + t_{1j} - t_{2j}, t_{1j}\}$$

$$T(S, t) \quad \overline{T}(S; t)$$
(12. 1)

则

若下面条件成立,则式(12.1)成立。

$$t_{1i} + t_{1j} + max\{-t_{2i}, -t_{1j}\}$$
 $t_{1i} + t_{1j} + max\{-t_{2j}, -t_{1i}\}$

即

$$\min\{t_{2j}, t_{1j}\} \qquad \min\{t_{2i}, t_{1j}\} \qquad (12. 2)$$

式(12.2)便是(Johnson) 公式。也就是说(12.2) 式成立时,则任务 J_1 安排在任务 J_2 之前加工。意思是在 M_1 上加工时间短的任务优先,而在 M_2 上加工时间短的任务应排在后面。因而将 $t_{11}, t_{12}, t_{21}, t_{22}, ..., t_{n1}, t_{n2}$ 按从小到大的顺序排列。若最小的是 t_{k1} ,则 J_k 排在第一个,若 t_{k2} 为最小,则 J_k 排在最后一个。并从序列中排除 t_{k1} 和 t_{k2} ,然后再依次观察余下的序数中的最小数且至 n 个任务都排完。

例 12.4 某印刷厂有 6 项加工任务 $J_1, J_2, J_3, J_4, J_5, J_6$,在印刷车间各需时间 3, 12, 5, 2, 9, 11 单位; 在装订车间需 8, 10, 9, 6, 3 和 1 单位。即

将矩阵 T 的元素从小到大按次序排列得:

这序列中最小元素为 t26, 故 J 6 是最后加工, 从序列中删去 t16, t26 剩下序列中求最小元素, 依此类推。

按上面所述算法得最佳加工顺序为:

$$J_4$$
 J_1 J_3 J_2 J_5 J_6

加工总时间为43单位。

12.6 整数规划的动态规划解法

12.6.1 多段判决公式

前成已讨论过可将整数规划问题

$$min z = Cx$$

s.t. $Ax = b$
 $x = 0$,整数

转化为群问题。由于 $A = (a_1 a_2 ... a_{m+n})_{m \times (m+n)} = (B|N)$

设
$$x = \frac{x_B}{x_N}$$

$$z = C_B B^{-1} b + (C_N - C_B B^{-1} N) x_N$$

$$= C_B B^{-1} b + (c_j - C_B B^{-1} a_j) x_j$$

$$x_B = B^{-1} b - B^{-1} N x_N$$

$$= B^{-1} b - B^{-1} p_j a_j x_j$$

$$x_B, x_N = 0$$
 整数

导致

其中f(x) C x - Lx 」,或

$$\begin{aligned} & \text{min } z = \sum_{\substack{j \in \mathbb{N} \\ j \in \mathbb{N}}} c(\overline{g}_{j}) \, x_{j} \\ & s. \, t. & \sum_{\substack{j \in \mathbb{N} \\ j \in \mathbb{N}}} \overline{g}_{j} x_{j} = \overline{g}_{0} \end{aligned}$$
 (G)

其中 $g_0 = f(B^{-1}b), g_j = f(B^{-1}P_j), c(g_j) = C_B B^{-1}P_j - c_j, j$ 下面介绍问题(G)的动态规划解法。

令
$$F_{k}(g) = \min_{\substack{j=1 \ j=1}}^{k} c(\overline{g}_{j}) x_{j}$$

$$s.t. \qquad g_{j} x_{j} = g$$

$$x_{j} \quad 0 整数, j = 1, 2, ..., k$$

$$F_{k}(0) = 0$$

可将上面问题转化为多段判决:

$$F_{k}(g) = \min\{F_{k}(g - g_{k}) + c(g_{k}), F_{k-1}(g)\}$$

$$F_{k}(0) = 0$$
(12. 3)

即

$$x_k = 0$$
 时, $F_k(g) = f_{k-1}(g)$
 $x_k = 1$ 时, $F_k(g) = F_k(g - g_k) + c(g_k)$

为了计算起见, 必须对所有的 k, 计算 $F_k(g)$, 即 k = 1, 2, ..., n。若 g 生成群 G, 这一般是可以做到的。 $F_1(0) = 0$, $F_1(g) = c(g_1) + F_1(g - g_1)$ 。进而求 $F_2(g)$, ..., $F_k(g)$ 。

12.6.2 举例

现将上面计算结果列表于后(见表 12.5)。

· 405 ·

1	1	2	3	4	5	6	7	8	9	10
2	7	4	1	8	5	2	9	6	3	10
$g_{i} = \frac{\frac{1}{1}g_{1}}{\frac{2}{2}g_{2}}$	2/10 7/10	4/ 10 4/ 10	6/ 10 1/ 10	8/10 8/10	0 5/ 10	2/ 10 2/ 10	4/10 9/10	6/ 10 6/ 10	8/ 10 3/ 10	0
$F_1(g_i)$	7/10	14/ 10	21/10	28/10	35/ 10	42/10	49/10	56/ 10	63/10	
j ₁ (g _i)	1	1	1	1	1	1	1	1	1	1
$F_2(g_i)$	7/10	14/ 10	11/10	18/10	25/ 10	22/10	29/10	26/ 10	33/10	_
j ₂ (g _i)	1	1	2	2	2	2	2	2	2	

$$\frac{-}{g_0} = \frac{8/10}{8/10} = g_4$$
, 从 $F_2(g_4)$ 开始回溯, $j_2(g_4) = 2$, 对应于 $x_4 = 1$

从表上可知, $g_0 = g_4 = 8g_2$, $8g_2 - g_2 = 7g_2 = g_1$, $2j_2(g_1) = 1$ 表示 $F_2(g_1) = F_1(g_1)$, 对应于 $x_3 = 1$ 。

曲
$$x_B = B^{-1}b - B^{-1}Nx_N$$
,由 $x_3 = 1, x_4 = 1$ 可得

例 12.6 min
$$z = 2x_1 + 7x_2 + 4x_3$$

$$x_i = 0$$
 整数, $i = 1, 2, 3, 4, 5$

$$x_i$$
 0, $i = 1, 2, 3, 4, 5$ 整数

$$\frac{1}{g_{1}} = g_{1} = \frac{5/8}{3/4}, g_{2} = 2g_{1} = \frac{1/4}{1/2}, g_{3} = 3g_{1} = \frac{7/8}{1/4}, g_{4} = 4g_{1} = \frac{1/2}{0}$$

$$g_{5} = 5g_{1} = \frac{1/8}{3/4}, g_{6} = 6g_{1} = \frac{3/4}{1/2}, g_{7} = 7g_{1} = \frac{3/8}{1/4}, g_{8} = \frac{0}{0}$$

$$\frac{1}{g_{2}} = \frac{1/2}{0} = g_{4}, 2g_{2} = \frac{0}{0} = g_{0}$$

$$\frac{1}{g_{3}} = \frac{3/8}{1/4} = g_{7}, 2g_{3} = \frac{3/4}{1/2} = g_{6}, 3g_{3} = \frac{1/8}{3/4} = g_{5}, 4g_{3} = \frac{1/2}{0} = g_{4}$$

$$5g_{3} = \frac{7/8}{1/4} = g_{3}, 6g_{3} = \frac{1/4}{1/2} = g_{2}$$

$$7g_{3} = \frac{5/8}{3/4} = g_{1}, 8g_{3} = \frac{0}{0}, g_{0} = \frac{7/8}{1/4} = g_{3}$$

现将计算结果列表于后(见表 12.6)。

 $j_3(g_1) = j_2(g_1) = 1$

表 12.6

1	1	2	3	4	5	6	7	8
2				1, 3, 5, 7				2, 4, 6, 8
3	8	7	6	5	4	3	2	1
	5/8	1/4	7/8	1/2	1/8	3/4	3/8	0
$g_i(=ig_i)$	3/4	1/2	1/4	0	3/ 4	1/2	1/4	0
$F_1(g_i)$	2	4	6	8	10	12	14	_
$j_1(g_i)$	1	1	1	1	1	1	1	_
$F_2(g_i)$	2	4	6	7	9	11	13	
j 2(g i)	1	1	1	2	2	2	2	
$F_3(g_i)$	2	4	6	7	9	8	4	
j ₃ (g _i)	1	1	1	2	2	3	3	

从 $j_3(g_3) = 1$ 可知, $x_3 = 0$; 从 $j_2(g_3) = 1$ 可知 $x_2 = 0$, 代入原约束条件知 $x_1 = 3$ 。

12.7 背包问题的动态规划解法

背包问题

$$max \ z = \int_{i=1}^{n} c_{i}x_{i}$$
s.t. $a_{j}x_{j}$ b
$$x_{i} \quad 0 整数, i = 1, 2, ..., n$$

$$F_{k}(g) = max \int_{i=1}^{n} c_{i}x_{i}$$
s.t. $a_{i}x_{i}$ d
$$x_{i} \quad 0, 整数, i = 1, 2, ..., k$$

问题导致已知 $F_k(0) = 0, k = 1, 2, ..., n, 求 F_k(d), k = 1, 2, ..., n, d = 0, 1, ..., b。 系数 <math>a_j$ 非负, j = 1, 2, ..., n, d = 0, fluid f

$$F_k(g) = \max_{k-1} c_k x_k + \sum_{j=1}^{k-1} a_j x_j$$
s. t.
$$\sum_{j=1}^{k-1} a_j x_j = d - a_k x_k$$

$$x_j \quad 0 整数, j = 1, 2, ..., k-1$$

$$x_k = 0, 1, 2, ..., \lfloor d/a_k \rfloor$$

或对 $x_k = 0, 1, 2, ..., \lfloor d/a_k \rfloor$, 求
$$\max\{c_k x_k + F_{k-1}(d - a_k x_k)\}$$
 已知 $F_0(d) = 0, d = 0, 1, ..., b$ 。
举例如下。

举例如下。

已知 $F_0(d) = 0, d = 0, 1, ..., b_o$

max z =
$$3x_1 + 5x_2 + x_3 + x_4$$

s. t. $2x_1 + 4x_2 + 3x_3 + 2x_4$
 x_i 0 整数, $i = 1, 2, 3, 4$

$$x_j$$
 1, $j = 1, 2, 3$

$$k = 1$$

$$F_1(d) = \max 3x_1$$

s. t.
$$2x_1$$
 d

$$d = 0$$
 或 1, $x_1 = 0$, $F_1(d) = 0$, $d = 2$, 3, 4, 5; $x_1 = 1$ 时, $F_1(d) = 3$, 即
$$F_1(d) = \begin{cases} 0 & d = 0, 1, x_1 = 0 \\ 3 & d = 2, 3, 4, 5; x_1 = 1 \end{cases}$$

$$k = 2, a_2 = 4$$

$$F_2(d) = \max_{x_2=0,1} \{5x_2 + F_1(d - 4x_2)\}$$

$$d = 0, 1, 2, 3 \, \mathbb{H}, x_2 = 0, F_2(d) = F_1(d)$$

$$F_{1}(d) =$$

$$0, d = 0, 1$$

$$3, d = 2, 3$$

$$d = 4, F_2(4) = \max_{x_2=0, 1} \{5x_2 + F_1(4 - 4x_2)\}$$

$$= \max\{F_1(4), 5 + F_1(0)\} = \max\{3, 5^*\} = 5$$

 $\mathbf{x}_2 = 1$ 时

$$F_{2}(5) = \max_{x_{2}=0,1} \{5x_{2} + F_{1}(5 - 4x_{2})\}$$

$$= \max\{F_{1}(5), 5 + F_{1}(1)\} = \max\{3, 5\} = 5$$

 $x_2 = 1$

$$F_{2}(d) = \begin{cases} 0 & d = 0, 1 \\ 3 & d = 2, 3 \\ 5 & d = 4 \quad (x_{2} = 1) \\ 5 & d = 5 \quad (x_{2} = 1) \end{cases}$$

$$k = 3, a_3 = 3$$

$$\begin{split} F_3(d) &= \max_{x_3 = 0, 1} \{x_3 + F_2(d - 3x_3)\} \\ &= \frac{\max\{F_2(d), 1 + F_2(g - 3)\} = F_2(d), \quad d \quad 3}{F_2(d)} \\ F_3(d) &= F_2(d) \end{split}$$

现将计算结果列表于下(见表 12.7)。

表 12.7

d	0	1	2	3	4	5
$F_1(d)$	0	0	3	3	3	3
X ₁	_	0*	1	1	1	1
F ₂ (d)	0	0	3	3	5	5
X 2	_	0	0	0	1	1*
F ₃ (d)	0	0	3	3	5	5
X 3	_	0	0	0	0	0*
F ₄ (d)	0	0	3	3	5	5
X 4	_	0	0	0	0	0*

$$F_4(5) = \max\{x_4 + F_3(5 - 2x_4\}$$

由于 $x_4 = 0$,故 $F_4(5) = F_3(5)$
从表 12. 7 知, $x_3 = 0$
 $F_3(5) = \max\{x_3 + F_2(5 - 3x_3)\} = F_2(5)$
从表上可知 $x_2 = 1$
 $F_2(5) = \max\{5x_2 + F_1(5 - 4x_2)\}$, $5 - 4x_2 = 1$
从表上可知 $F_1(1) = 0$, $x_1 = 0$

故解为

本例不同之点在于约束条件要求等号成立。

$$F_k(d) = \max_{k=1}^{k-1} c_j x_j$$

$$s.t. \quad a_j x_j = d$$

$$x_j \quad 0 整数, j = 1, 2, ..., k-1$$

$$x_j = 0, 1..., b/a_k \rfloor$$

$$F_k(d) = \max_{x_k = 0, 1, ..., b/a_k} \{c_k x_k + f_{k-1}(d - a_k x_k)\}$$

$$k = 1, 2, ..., n, F_0(0) = 0, \Leftrightarrow F_0(d) = -, d > 0_o$$

$$F_1(d) = \max_{x_1 = 0, 1, ..., b/a_1} \{c_1 x_1 + F_0(d - a_1 x_1)\}$$

若 d - $a_1x_1 > 0$, $F_0(d - a_1x_1) = -$,故 x_1 只能选使 d - $a_1x_1 = 0$ 者。

 $F_2(d) = \max\{c_2x_2 + F_1(d - a_2x_2)\},$ 所以也影响到 x_2 的选择,即要求 $F_1(g - a_2x_2)$ 不为 - ,计算本例就容易弄清楚。

$$\begin{split} F_1(d) &= \max\{3x_1 + F_0(d - 2x_1)\}, 例如 \\ F_1(4) &= \max_{x_1=0,1,2} \{3x_1 + F_0(4 - 2x_1)\} \\ &= \max\{F_0(4), 3 + F_0(2), 6 + F_0(0)\} \\ &= \max\{- , - , 6\} = 6 \end{split}$$

现将 F₁(g) 列表于后(见表 12.8):

表 12.8

d	0	1	2	3	4	5
$F_1(d)$	0	-	3	-	6	
X 1	0	_	1*		2	

表中只记录 $F_1(d)$ 不为 - 时 x_1 的值。 $F_1(d) = -$ 表示 $2x_1 = d$ 无整数解。 进而计算

$$F_2(d) = \max_{x_2=0, 1} \{5x_2 + F_1(d - 4x_2)\}$$

同样可得 F₂(d) 表格

表 12.9

d	0	1	2	3	4	5
$F_2(d)$	0	-	3	-	6	-
X 2	_	_	0*	_	0	0

例如
$$F_2(4) = \max_{x_2 = 0,1} \{5x_2 + F_1(d - 4x_1)\} = \max\{F_1(4), 5 + F_1(0)\}$$
$$= F_1(4) = 6, x_2 = 0$$
$$F_3(d) = \max_{x_3 = 0,1} \{x_3 + F_2(d - 3x_3)\}, F_4(d) = \max_{x_4 = 0,1,2} \{x_4 + F_3(d - 2x_4)\}$$

列表于下(见表 12.10)。

表 12.10

d	0	1	2	3	4	5
F ₃ (d)	0	-	3	1	6	4
X 3	0	_	0	1	0	1*
F ₄ (d)	0	-	3	1	6	4
X 4			0	0	0	0*

例如

 $x_1 = 1_0$

$$F_3(5) = \max\{0, 4\} = 4$$

 $F_4(5) = \max\{F_3(5), 1 + F_3(3), 2 + F_3(1)\}$
 $= \max\{4, 2, - \} = 4$

 $x_4 = 0$, 从此回溯, 从表知 $F_3(5) = 4$, $x_3 = 1$, $F_2(2) = 3$, $x_2 = 0$, $F_1(2) = 3$,

习 题 十 二

1. 已知图 G = (V, E) 的距离矩阵

求两点间最短距离。

2. 解整数规划问题

max z =
$$110x_1 + 160x_2 + 260x_3 + 210x_4$$

 $2x_1 + 3x_3 + 5x_3 + 4x_4$ 20
 x_i 0整数, $i = 1, 2, 3, 4$

3. 已知下列距离矩阵,解流动售货员问题。

参考文献

- 1. Bazaraa M S, Jarvis J J, Sherali H D. Linear Programming and Network Flows (2nd Edition). New York: John Wiley & Sons, 1990
- 2. Ignizi J P. Goal Programming and Extensions Lexington Books. Toronto: D. C. Health and Company, 1976
- 3. Lee S M. Goal Programming for Decision Analysis. Anerback Publishing Inc., 1972
- 4. Hemhanser G L, Wolsey L A. Integer and Combinatorial Optimization. New York: John Wiley & Sons, 1988
- 5. Salkin H M, Mathur Kamlesh. Foundations of Integer Programming. New York: North-Holland, 1989
- 6. Fang Shu-Cherng, Puthenpura S. Linear Optimization and Extensions, Theory and Algorithms. Englewood Cliffs: Prentice Hall, 1993