

AD A067262

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-4

A A A O 67262

DDC FILE COPY

CEEDO-TR-78-33

HAROLD A. SCOTT, JR.

DENNIS F. NAUGLE
ENVIRONMENTAL SERVICES DIVISIONENVIRONMENTAL MODELING

SEPTEMBER 1978

FINAL REPORT FOR PERIOD AUGUST 1977-AUGUST 1978

Approved for Public Release; Distribution Unlimited

THIS DOCUMENT IS BEST QUALITY PRACTICES.
THE COPY FURNISHED TO DDC COPTAINED A
STUBIFICANT HUMBER OF PAGES WHECH IN HOR

CEEDO

CIVIL AND ENVIRONMENTAL
ENGINEERING DEVELOPMENT OFFICE
(AIR FORCE ENGINEERING AND SERVICES CENTER)
TYNDALL AIR FORCE BASE
FLORIDA 32403
79 04 12 002

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

(III)	REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM			
(17)	1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER			
1	CEEDO-TR-78-33					
1	A TITLE (and SubMilla)	(0)	5. TYPE OF REPORT & PERIOD COVERED			
(6)	AIRCRAFT AIR POLLUTION EMISSION		Final Report			
	ESTIMATION TECHNIQUES - ACEE		Aug 77 — Aug 78,			
			6. PERFORMING ORG. REPORT NUMBER			
_	7. AUTHORO		8. CONTRACT OR GRANT NUMBER(s)			
(10)	Harold A. Scott, Jr Dennis F. Naugle					
	9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
	Det 1 (CEEDO) AFESC/ECA		Program Element: 63723F			
	Tyndall AFB FL 32403	(16)	JON: 21,035A28			
			12. REPORT DATE			
	11. CONTROLLING OFFICE NAME AND ADDRESS Det 1 (CEEDO) AFESC/ECA	(12) -A/C	1 Sep 78			
	Tyndall AFB FL 32403	(1/3/11)	13. NUMBER OF PAGES			
	-7					
	14. MONITORING AGENCY NAME & ADDRESS(II different	from Controlling Office)	15. SECURITY CLASS. (of this report)			
		(12) 10	Unclassified			
		19/0.	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE			
		1	SCHEDULE			
	16. DISTRIBUTION STATEMENT (of this Report)					
	Approved for public release; distri		DDC			
	17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, Il different fro				
			APR 13 1979			
	18. SUPPLEMENTARY NOTES		C			
	Available in DDC.					
	Exhaust Emissions Total Environmental Quality Oxide	of Identify by block number, on Monoxide . Hydrocarbons as of Nitrogen .culate	Smoke			
	ABSTRACT (Continue on reverse side if necessary and A five-step analytical methodology any aircraft related air quality as use by base level environmental per emissions and (2) downfield polluta engine emission factors and other is contained in this report.	is presented that sessment problem sonnel to calculant concentration	t can be adapted to nearly The methodology is for ate (1) annual aircraft The latest individual			

DD 1 JAN 73 1473

UNCLASSIFIED 3 9 3 250
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

PREFACE

This final report was prepared by Det 1 AFESC Civil and Environmental Engineering Development Office (CLEDO), Tyndall AFB, Florida. This work was accomplished under Job Order Number 21035A28; Lt Harold A. Scott, Jr. and Capt Dennis F. Naugle were the project officers.

The methodology presented in this report was developed to enable base level environmental personnel to calculate annual aircraft emissions and estimate the aircraft's air pollution concentrations near the base. The information required to perform the air quality analysis methodology was accomplished using the Air Quality Assessment Model. The model was developed by the Air Force for the purpose of predicting air pollutant concentrations in the vicinities of airports. The results and recommendations do not represent Air Force policy but can be used by base personnel to estimate the impact of aircraft operations on local air quality.

This report has been reviewed by the Office of Information (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This report is approved for publication.

HAROLD A. SCOTT, JR, 1st Lt, USAF

Air Quality Research Engineer

PETER A. CROWLEY, Maj, USAF, BSC Director of Environics Michael G. MACNAUGHTON,

MICHAEL G. MACNAUGHTON, Maj, USAF, BSC

Chief, Environmental Sciences Div

JOSEPH S. PIZZUTO, Col, USAF, BSC

Commander

LIST OF FIGURES

Figure	Title	Page
1	Emission Factor	7
2	Landing and Takeoff Cycle	11
3	Runway Centerline Concentrations	17
4	CO LTO Aircraft Concentrations	18
5	NO _X LTO Aircraft Concentrations	19
6	PM LTO Aircraft Concentrations	20
7	SO, LTO Aircraft Concentrations	21

SECTION I

INTRODUCTION

The Aircraft Emissions Estimator (ACEE) is a screening methodology to indicate any significant air quality impact from US Air Force aircraft. This report contains all the data needed to perform ACEE analyses. Annual and maximum one-hour base aircraft operations are the only input data required for an ACEE analysis. The analysis will estimate annual emissions and one-hour maximum runway centerline ground pollution concentrations resulting from base aircraft operations. The report contains guidelines so that base environmental personnel can interpret the ACEE results. If ACEE indicates a possible air pollution problem, a more detailed base air quality analysis (e.g., Air Quality Assessment Model) may have to be performed.

The ACEE air quality analysis is not site specific. The analysis can be performed by base level personnel at any Air Force base. ACEE will allow preliminary air quality impact analysis of beddowns and mission changes at the base level. If an aircraft air pollution problem is indicated by ACEE, the base should request assistance in performing a more detailed base air pollution analysis. By screening aircraft air quality impacts at the base level, Air Force manpower and resources can be more effectively used.

SECTION II

BACKGROUND

The preliminary assessment of Air Force aircraft impact on the air quality is usually performed at the base level. This analysis is most likely an update of the aircraft emissions inventory. A great deal of time and effort is expended searching for the most current aircraft emissions factors. When total aircraft emissions are computed, they are compared with the total base emissions inventory. A crude air quality analysis might be performed using a "Q" or box dispersion model. The results of such models are inaccurate and very conservative.

The base environmental personnel are usually required to make quick impact analysis of the direct aircraft impact on air quality. Since aircraft are the only sources being investigated, a complex analysis of all base emission sources (i.e., AQAM) is not required. In addition, the base does not have the resources to spend on complex dispersion evaluations. The base personnel only need the annual aircraft emissions and "worst" case downfield pollution concentrations to estimate the impact of aircraft on air quality. This estimate gives base personnel a indication of a possible air pollution problem. If the estimate indicates a possible problem, a more detailed air quality analysis will be required.

The base level personnel require an analytical method to determine emissions from aircraft and the impact of these emissions on air quality. The procedure must contain all the data required to make aircraft emission and air quality impact analysis. The analysis must require only minimal data to eliminate the wasted man-hours. The procedure will give guidelines to interpret the results with respect to Federal, state and local standards. ACEE was developed for these reasons.

SECTION III

USAF AIRCRAFT EMISSIONS

1.0 ENGINE EMISSION MEASUREMENTS

Accurate emission data are required for analysis of the air pollution emissions from aircraft engines. For this reason the Air Force conducted a three-year engine emission survey from 1975 through 1977 (Reference 1). The most common Air Force engines were sampled using advance turbine engine emission measurement techniques. These emissions data are the most current and accurate available.

Table 1 contains emission indices for the most common Air Force aircraft engines. Careful attention should be given to the references from which the emissions data were obtained. The Scott Environmental Technology emissions measurement data are accurate to ±15 percent of the reported data (Reference 1). All other emissions data are extracted from other reports; no specific accuracy limits can be assigned to these emissions indices.

Almost all carbon monoxide (CO), total hydrocarbon (C_H) and oxides of nitrogen (NO_I) emissions were measured using procedures described in the Society of Automotive Engineers Aerospace Recommended Practice 1265. The particulate (PM) emissions were derived from SAE Smoke Numbers (SNs). The SNs were converted to mass per unit volume (Reference 2). The particulates mass rates in Table 1 were calculated using the mass per unit volume results, engine operating characteristics and mass balance. Sulfur emissions were calculated assuming complete oxidation of fuel sulfur to sulfur dioxide and the average percentage of sulfur in the fuel (Reference 3).

Afterburning engines in Table 1 (except the J-85) use extrapolated data based on J-79 afterburner emissions data and the actual engine AB fuel flow rates (Reference 4).

2.0 ENGINE EMISSIONS FACTORS

The aircraft emissions factors in Table 1 are expressed in units of pollutant mass per 1000 mass units of fuel consumed, e.g., pounds per thousand pounds or grams per kilograms (Figure 1). The emissions factors and fuel flows are given for each engine mode. The engine thrust modes listed are the primary modes used by an aircraft during Landing and Takeoff (LTO) and Touch and Go (TGO) cycles.

Emissions can be calculated for any engine mode using the aircraft emission indices in Table 1. Engine Mode (EGM), Time in Mode (TIMOD) and Number of Engines (NOEG) are the only parameters required to calculate emissions. The Engine Mode Fuel Flow (FLFLW) and Emission Factor (EMFAC) are obtained from Table 1. The engine modal emissions are calculated by Equation 1.

TABLE 1. USAF AIRCRAFT ENGINE EMISSION FACTORS

ENGINE	ENGINE				SSION RATE (g/kg fu		The state of the s
(AIRCRAFT)	MODE	kg/s	1000 lbs/hr	HOMOXIDE	HYDROCARBONS	OXIDIES OF NITROGEN	TOTAL PARTICULATES
F-100-P-100	IDLE1	0.1791	1.4171	24.01	3.22	3.31 .	0.121,2
(F-15)	APPROACH ³	0.3784	3.000	5.83	1.93	6.73	0.272.3
(F-16)	APPROACH ³	0.3784	3.000	5.83	1.93	6.73	0 272,3
	INTERMED ¹	0.6431	5.1061	1.61	0.1	9.81	0.471,2
	HILITARY ¹	1.3011	10.3251	0.91	0.1	27.01	0.341,2
	AB AB	5.7975	46.0105	4.06	0.016	3.16	0.156
JT8D-17	IDLE?	0.1457	1.1507	34.07	8.87	3.47	0.317
(C-9)	APPROACH ³	0.3547	2.8107	7.27	0.57	6.97	0.537
	INTERMED 7	0.9977	7.9107	1.07	0.057	15.67	0.337
	MILITARY ⁷	1.2	9.9807	0.77	0.057	20.37	0.37
J33-A-35	IDLE	0.1511	1.2001	127.01	19.51	1.51	0.731.2
(T-33)	APPROACH ³	0.2528	2.0008	84.6 ³	6.53	1.93	0.572.3
	INTERMED ¹	0.5981	4.7501	49.1	1.31	2.71	0.021.2
	MILITARY1	0.6961	5.5251	31.31	0.51	3.61	0.021.2
J57-P-19W	IDLE ¹	0.1201	0.9501	79.01	77.01	2.21	0.161,2
(B-52 D/E)	APPROACH ³	0.4259	3.3759	7.93	1.43	5.83	0.932.3
PERMIT	INTERMED ¹	0.8191	5.5041	2.41	0.21	9.51	1.921.2
	MILITARY1	0.941	7.4691	1.91	0.1	11.01	1.721,2
	WATER AUG ¹⁰	1.52910	12.13310	21.110	2.210	2.710	1.8910
	1	1	1	1			1.2
J57-P-21B	IDLE	0.1341	1.0631	72.01	62.01	2.31	0.161.2
(F-100)	APPROACH ³	0.31511	2.50011	15.73	4.23	4.33	0.722,3
(F-101)	APPROACH ³	0.31511	2.50011	15.73	4.23	4.33	0.722,3
(F-102)	APPROACH ³	0.31511	2.50011	15.7	4.23	4.3	0.722.3
	INTERMED 1	0.795	6 307	3.21	0.31	8.31	2.21.2
	MILITARY1	0.969 ¹ 4.549 ¹	7.693 ¹ 36.100 ¹	2.0 ¹ 4.0 ⁶	0.1 ¹ 0.01 ⁶	9.8 ¹ 3.1 ⁶	2.0 ^{1,2} 0.15 ⁶
J57-P-43, 43WB	IDLE	0.1241	0.9861	78.01	75.01	2.21	0.141,2
(C-135A, KC-135A)	APPROACH ³	0.23311	1.85011	9.73	1.83	5.3	0.522,3
(B-52F/G)	APPROACH ³ INTERMED ¹	0.2339	1.8499	24.03	9.23	3.63	0.293 ^{2,3} 1.23 ^{1,2}
	MILITARY ¹	0.8431	6.689 ¹ 7.779 ¹	2.31	0.11	9.91	1.741,2
	WATER AUG ¹⁰	0.980 ¹ 1.529 ¹⁰	12.13310	1.5 ¹ 21.1 ¹⁰	2.210	11.01	22.52,10
J57-P-59W	IDLE 10	0.15710	1.25010	65.010	52.910	2.410	0.132,10
(KC-135A)	APPROACH ³	0.23311	1.85011	32.52	14.22	3.32	0.223,10
	INTERMED ¹⁰	0.48710	3.86710	8.910	1 110	6.110	0 402,10
	HILITARY 10	0.99510	7.90010	2.410	0.210	11.310	0 842,10
	WATER AUG ¹⁰	1.52910	12.13310	21.110	2.210	2.710	22.52,10
J60-P-5B; P3	IDLE1	0.0581	0.4631	70.01	9.21	1.51	0.021,2
(T-39)	APPROACH ³	0.0667	0.5207	50.53	5.63	1.73	0.022,3
	INTERMED1	0.1801	1.4261	5.81	0.21	4.01	0 231,2
	MILITARY ¹	0.3111	2.4671	4.01	0.11	4.61	0.171,2
J69-T-25	IDLE1	0.0291	0.231	129.01	19.01	1.51	0.551.2
(T-37)	APPROACH1	0.0361	0.2881	106.91	11.11	1.71	0 281,2
Bulker	INTERMED ¹	0.0881	0.6981	50.01	1.31	2.71	0.021.2
	HILITARY ¹	0.1381	1.0951	32.01	0.51	3.61	0.021,2
J75-P-17	IDLE1	0.1961	1.5521	86.01	72.01	2.31	0.231,2
(F-106A)	APPROACH ³	0.44111	3.50011	17.53	5.23	4.33	0 442,3
	MILITARY1	1.6311	12.9431	1.31	0.11	12.01	1.081,2
	AB ⁶	6.7661	53.7001	4.06	0.016	3.16	0.156
775-P-19W	IDLE ¹	0.2001	1.584	62.01	38.01	2.6	0.231,2
(F-105)	APPROACH ³	0.21511	3.50011	17.53	5.23	4.33	0.442,3
,	INTERMED ¹	1.0891	8.644	1.91	0.31	9.01	1 041,2
	MILITARY ¹	1.7141	13.6041	1.51	0.31	10.01	1.041,2
	AB ⁶	4.5371	36.010 ¹	4.06	0.016	3.16	0.156

TABLE 1. USAF AIRCRAFT ENGINE EMISSION FACTORS (Continued)

ENGINE	ENGINE	FUEL FLOR		CARBON	SSION RATE (g/kg fu UNBURNED	OXIDIES OF	TOTAL
(AIRCRAFT)	MODE	kg/s	1000 lbs/hr	MONOXIDE	HYDROCARBONS	NITROGEN	PARTICULATES
	Tital of Teach	I TO LOOK OF		n salahar			
J79-GE-15	IDLE1	0.1421	1.1301	57.01	12.01	2.51	0.51,2
(F-4 C-D)	APPROACH ³	0.4414	3.5004	9.43	1.13	4.83	1.82,3
	INTERMED ¹	0.6751	5.3551	4.61	0.31	5.61	2.81,2
	HILITARY 1	1.1251	8.9291	2.21	0.21	8.91	2.21,2
		4.0621	32.241	4.06	0.016	3.16	0.156
J79-GE-17	IDLE 12	0.13412	1.06012	66.012	23.112	2.712	0.1812
(F-4E)	APPROACH ²	0.4414	3.5004	15.412	0.512	4.512	0.5112
	INTERMED 12	0.88212	7.00012	7.812	0.112	5.812	0.7212
	MILITARY 12	1.23712	9.82012	5.212	0.112	10.612	0.9212
	AB ⁶	4.4046	34.9506	4.06	0.016	3.16	0.156
6.1				1	904		
J85-GE-5	IDLE ¹	0.0571	0.4531	178.01	30.01	1.31	0.0031,2
(F-5)	APPROACH ¹	0.1264	1.0004	73.63	6.43	1.83	0.0072,3
(T-38)	APPROACH ³	0.1848	1.4628	43.03	3.53	2.33	0.0112,3
	INTERMED ¹ MILITARY ¹	0.284	1.4631	43.01	3.51	2.31	0.011
	AB6	0.331 ¹ 1.049 ¹	2.630 ¹ 8.323 ¹	29.01	0.81	2.61	0.0181
			8.323	26.06	0.076	2.06	0.0086
R-3350	IDLE 12	0.01312	0.10712	743.012	191.012	1.012	60.012
(C-119)(C-121)	INTERMED 12	0.07712	0.61012	692.012	9.512	9 4 12	40.011
	HILITARY 12	0.11812	0.93612	1160.012	20.412	11.112	20.012
R-4360	IDLE ¹²	0.01812	0.14012	743.012	191.02	1.012	60.012
(C-97)	INTERMED 12	0.10012	0.79412	692.012	9.512	9.412	40.012
	MILITARY 12	0.15312	1.21812	1160.012	20.412	11.112	20.012
	IDLE	1	1	1	1	2.31	0.011.2
TF30-P-3	APPROACH ³	0.1071	0.850 ¹ 2.100 ⁴	72.0 ¹ 9.2 ³	62.01	4.81	0.01
(F-111A/E)	INTERMED ¹	0.265 ⁴ 0.621 ¹		1.31	0.1	9.43	0.05
	MILITARY ¹	0.621	4.926 6.148 ¹	0.81	0.031	12.01	0.45
	AB ⁶	4.8381	38.400 ¹	4.06	0.016	3.16	0.156
	,				,	,	
TF30-P-7	IDLE ¹	0.1191	0.9481	53.01	30.01	3.01	0.02 ^{1,2}
FB-111A	APPROACH ³	0.2654	2.1004	11.53	3.23	6.13	0.121,2
	INTERMED 1	0.7194	5.7061	1.21	0.21	14.01	0.44
	MILITARY ¹	0.914 ¹ 4.838 ⁴	7.258 ¹ 38.400 ¹	0.8 ¹ 4.0 ⁶	0.1 ¹ 0.01 ⁶	20.0 ¹ 3.1 ⁶	0.35
		4.838	38.400				
TF 30-100	IDLE1	0.1191	0.9481	48.01	19.01	2.91	0.021,2
(F-111F)	APPROACH ³	0.2654	2.1004	9.93	2.73	6.33	0.082,3
	INTERMED1	0.9031	7.1641	0.71	0.1	20.01	0.321,2
	MILITARY	1.1441	9.077	0.71	0.1	28.01	0.241,2
	AFTERBURNER ⁶	6.8041	54.000 ¹	4.06	0.016	3.16	0.156
TF33-P-3	IDLE1	0.1131	0.9001	107.01	84.01	1.81	0.231,2
(B-52H)	APPROACH9	0.4789	3.7973	6.3	2.63	5.83	0.992,3
	INTERMED ¹	0.7861	6.2361	2.31	0.71	8.51	1.881
	MILITARY1	0.9371	7.4361	1.7	0.61	10.01	1.731
TF33-P-7	IDLE ¹	0.1341	1.0671	93.01	77.01	1.81	0.111,2
(C-141)	APPROACH ³	0.3157	2.5007	13.77	3.67	3.87	0.397
,0 1.1/	INTERMED ¹	0.911	7.230	1.31	0.11	9.41	1 301,2
	MILITARY1	1.0981	8.7111	0.81	0.031	12.01	0.911,2
	IDLE ¹	0.0491	0.3901	106.01	32.01	2.01	0.041,2
TF34-GE-2	APPROACH ³	0.049	0.390 ⁴ 1.250 ⁴	106.0° 8.3 ³			0.04
(A-10)			1.250		0.63	5.83	0.022,3
	INTERMED ¹	0.1861	1.4731	4.31	0.21	7.5 ¹ 10.0 ¹	0.01 ^{1,2} 0.05 ^{1,2}
	MILITARY ¹	0.3231	2.5621	2.31	0.11	10.0*	
TF39-GE-1	IDLE1	0.1431	1.1331	67.01	23.01	3.01	0.0151,2
(C-5A)	APPROACH ³	0.1897	1.5007	39.23	13.23	3.93	0.0162,3
	INTERMED 1	1.5151	12.025	0.71	0.21	28.01	0.0301,2
	MILITARY 1	1.5991	12.6871	0.71	0.21	28.01	0.0251,2

TABLE 1. SAF AIRCRAFT ENGINE EMISSION FACTORS (Continued)

				POLLUTANT EMI	SSION RATE (g/kg fu	el or lbs/1000 lb	s fuel)*
ENGINE	ENGINE	FUEL FLO		CARBON	UNBURNED	OXIDIES OF	TOTAL
(AIRCRAFT)	MODE	kg/s	1000 lbs/hr	MONOXIDE	HYDROCARBONS	NITROGEN	PARTICULATES
TF41-A-1	IDLE	0.1271	1.0091	119.01	92.01	1.51	0.151.2
(A-7D)	APPROACH ³	0.4414	3.5004	10.23	2.23	6.83	0.362,3
	INTERMED 1	0.7351	5.831	3.71	0.41	12.01	0.521,2
	MILITARY1	1.061	8.4191	1.81	0.21	21.01	0.671.2
T56-A-7	IDLE ¹	0.091	0.7251	32.01	21.01	3.91	0.831,2
(C-130A-F)	APPROACH ³	0.1047	0.8277	22.23	12.43	4.43	0.972.3
	INTERMED ¹	0.2331	1.8481	2.41	0.51	9.21	0.511.2
	MILITARY ¹	0.2481	1.9651	21	0.41	9.31	0.501,2
T76-G-10	IDLE ¹²	0.03112	0.25012	23.812	7.412	7.412	0.3812
(0V-10)	APPROACH12	0.0574	0.4504	17.212	C.8 ¹²	8.512	0.5012
	INTERMED 12	0.10112	0.30012	5.912	0.112	9.912	0.6312
	MILITARY 12	0.11312	0.90012	2.312	0.0612	10.312	0.7112
10-360	IDLE ¹³	0.00413	0.03013	848.013	145.013	1.113	60.013
(0-2)	APPROACH13	0.00813	0.06213	945.913	23.613	5.513	40 913
(T-41)	APPROACH13	0.0058	0.0408	879.013	70.613	2.513	55.03.13
	INTERMED ¹³	0.00913	0.07013	972.013	17.413	6.6 ¹³	40.013
	MILITARY 13	0.011	0.09013	1030.013	22.5 ¹³	5.3 ¹³	20.013
0-470	IDLE ¹³	0.00213	0.01513	743.013	191.013	1.113	60.013
(0-1)	APPROACH13	0.00813	0.06113	713.213	17.113	1.013	45.513
	INTERMED ¹³	0.01113	0.08613	697.013	9.513	1.013	40.013
	MILITARY 13	0.01713	0.13113	1,160.0 ¹³	20.4 ¹³	9.413	20.013

*Average sulfur emissions are 1.0g/kg fuel for turbine engines using JP-4 fuel and 0.6g/kg fuel for piston engines using "aviation gaso-line"

- 1. Souza, A. F. and Daley, P. S., USAF Turbine Engine Emission Survey, CEEDO-TR-78-34, September 1978.
- 2. Particulate mass flow rate calculations.
- 3. Approach engine emissions were calculated by a power curve interpolation method using engine mode fuel flows and emissions indices.
- 4. Mahler, Lt Col, HQ TAC/DOV, trip report containing approach aircraft fuel flows by Lt P. D. Music (Det 1 ADTC) dated 15 August 1977.
- 5. Souza, A. F., F-100 Afterturner Turbine Engine Emission Test Report, CEEDO-TR-78-54, September 1978.
- 6. "Development of Emissions Heasurement Techniques for Afterburning Turbine Engines", AFAPL-TR-75-52, October 1975. All engine's afterburner emissions (except for the J-85 engine) use the J79-G15 reactive plume emissions indices from AFPL-TR-75-52.
- 7. Pace, R. G., "Technical Support Report Aircraft Emission Factors," USEPA Office of Mobile Source Air Pollution Control, Ann Arbor, MI.
 March 1977.
- 8. Peterson, Lt Col Roy W., HQ ATC/DOV, letter report containing aircraft engine approach mode fuel flows dated 3 August 1977.
- 9. Hacker, Capt Kenneth, 1st GEG SAC, fuel flows for B-52 approach are given in a letter dated 21 December 1976.
- 10. Souza, A. F. and Scott, H. A., J57-59W Engine Emission Test Report, CEEDO-TR-78-37, September 1978.
- 11. Personal telephone communications from Lt David Van Gasbeck (NGB/DEM) to Lt John Hunt (Det 1 ADTC) on 2 August 1977 giving ANG's aircraft engine approach fuel flows.
- 12. "Aircraft Engine Emission Catalog", AESO 101-74-1, NARF, North Island CA March 1974.
- 13. Bogdan, Leonard and McAdams, H.T.: Analysis of Exhaust Emission Measurements, CAL Report No. NA-5007-K-1, October 15, 1971.

MASS UNITS POLLUTANTS CONSUMED BY ENGINE 1000 MASS UNITS FUEL

Figure 1. Emission Factor.

Emission (kg) = TIMOD (EGM) (s) x FLFLW(EGM) (kg/s) x EMFAC (EGMPOL) (g/kg) x NOEG

(1)

(2)

The emissions must be calculated for each pollutant type (POL) under consideration. Each engine mode must be calculated separately.

EXAMPLE 1:

A T-38 with a J-85-5 engine has a three-minute engine check before takeoff. The engine check is performed at military thrust. Calculate the amount of carbon monoxide produced by the engine check.

Solution:

Fuel Flow: FLFLW (military) = 0.331 kg/s Emission Factor: EMFAC (military, CO) = 29.0 g CO/kg fuel Time Mode: TIMOD (military) = 3 minutes x 60 s/minute = 180 s

Number of Engines: NOEG = 2

Using Equation 1:

Emission (engine check) = $(180 \text{ s}) \times (0.331 \text{ kg/s}) \times (29.0 \text{ g CO/kg})$ fuel/engine) x (2 engines)

Emission (engine check) = 10366.9 g CO

The emissions resulting from all phases of aircraft LTO and TGO cycles can be calculated by using Equation 1. Flyby and box pattern emissions can be determined. The time in mode for each mode making up the pattern must be determined. The pollutant emissions can be calculated (Equation 1) for each mode. The pollutant emission for an operation is the summation of all mode emissions. Equation 2 gives the relationship.

Total Emissions All Modes (kg) = Emissions Mode 1 (kg)+ n = number of modes Emissions Mode 2 (kg)+...+ Emissions Mode n(kg)

EXAMPLE 2:

A T-38 has a five-minute startup time, a 15-minute taxi-out time and three-minute engine check. Estimate the carbon monoxide emissions from startup to engine check.

Solution:

From Table 1: J-85-5 engine

Fuel Flow: FLFLW (idle) = 0.057 kg/s

Emission Factor: EMFAC (idle, CO) = 178.0 g CO/kg fuel

Total Idle Time: TIMOD (idle) = Engine Startup(s) + Taxi-Out(s) = (5 minutes + 15 minutes) x 60 s/minute = 1,200 s

Using Equation 1:

Emission (Startup-Taxi) = $(1,200 \text{ s}) \times (0.57 \text{ g/s}) \times (178.0 \text{ g CO/kg fuel}) \times (2 \text{ engines})$

Emissions (Startup-Taxi) = 24,350.4 g CO

From Example 1:

Emissions (Engine Check) = 10,366.9 g CO

Using Equation 2:

Emissions (Startup-Engine Check) = 24,350.4 g CO + 10,366.9 g CO

Emissions (Startup-Engine Check) = 34,717.30 g CO

The emissions are calculated in a multiplicative relation. Therefore, accurate time in mode data is required. Doubling the time in mode can double the amount of emissions.

The times in mode during each phase of the LTO and TGO cycles can be obtained by direct observation or pilot interviews. The direct observation consists of going out to the flight line and timing the aircraft. The time spent in each phase of the LTO or TGO cycle is recorded. LTO and TGO time in mode data should be collected for each aircraft. The best observation point is the tower. As many aircraft as possible should be timed during peak operational periods. An average of the time phase should be used as the time spent in that phase. Pilot interviews are less time consuming but much less accurate.

3.0 LTO AND TGO EMISSIONS

Calculations of the pollutant emissions for each phase of the LTO and TGO cycle are time consuming. To eliminate these calculations, the AQAM Source Inventory was employed (Reference 5). The AQAM Source Inventory uses the emissions indices and aircraft operational data (e.g., climb angle, approach speed) to calculate the amount of pollutants during each phase of the LTO cycle. The same procedures described in 2.0 are used by the AQAM Source Inventory to calculate total LTO and TGO aircraft emissions. Pollutant emissions per individual LTO phase and total emissions are outputs of AQAM Source Inventory. The standard AQAM LTO cycle is illustrated in Figure 2. The TGO cycle omits Phases 1-4 and 7-9. The runway roll speeds and distances are modified for the TGO faster approaches. All emissions are calculated to and from 0.914 km above ground level.

The AQAM Source Inventory calculates runway roll distances using meteorological conditions and pressure altitude. The parameters used for ACEE are listed in Table 2. The conditions are based on an annual average of 12 Air Force bases in the continental US and represent a cross section of US Air Force bases.

The taxi-out and taxi-in distances are assumed to be 4.0 km for both incoming and departing flights. The taxi distance was determined from an Air Force-wide average of taxi distances (Reference 6). The average time in the taxi phase varies with aircraft taxi speeds and operational procedures. Modifications to these taxi times and other LTO and TGO phases is discussed in 4.0.

The AQAM generated LTO and TGO pollutant emissions are presented in Appendix A. The aircraft emissions are listed in alphanumeric order by model designation. The emissions for each of the five pollutant types are given for the individual LTO phases. The total LTO pollutant emission is the sum of the individual phases. The TGO cycle total emissions are presented and are calculated separately from the LTO emissions.

The emissions emitted during an LTO cycle can be found by locating the aircraft model in Appendix A. The emissions are expressed in metric tons per cycle.

EXAMPLE 3:

Find the amount of NO, emitted by a T-38 during a standard LTO cycle.

Locate the T-38 LTO and TGO emissions in Table A-26.

Emissions (NO_x) = 6.0 E-04 metric tons x 103 kg/metric ton = 0.6 kg/LTO

The "E" exponential notation is explained in Appendix B. The conversion factors from metric tons to other units are also described in Appendix A.

4.0 LTO MODIFICATIONS

The LTO cycle emissions can be modified to simulate special cases (e.g., arming, queuing). The engine thrust mode and time în mode for each special case are required. Using Equation 1, the emissions can be calculated for each engine mode and pollutant. These special case emissions can be added to the final LTO pollutant total. The result is the LTO pollutant emissions including the special cases.

EXAMPLE 4:

At training base X, a 10-minute queue develops at the beginning of the runway because of the heavy aircraft traffic. What effect does the queue have on LTO CO emissions?

Pigure 2. LANDING AND TAKEOFF CYCLE

Using Table 1:

For the J-85-5 engine:

Fuel Flow: FLFLW (idle) = 0.057 kg/s

Emissions Factor: EMFAC (idle, CO) = 178.0 g CO/kg fuel

By Equation 1:

Emissions (queue) = $(10 \text{ min } \times 60 \text{ s/minute}) \times (0.057 \text{ kg/s}) \times (178.0 \text{ g CO/kg fuel}) \times (2 \text{ engines})$

Emissions (queue) = 12,175 g CO

From Table A-26:

Emissions (Normal T-38 LTO) = 4.0 E-02 metric tons CO = 40,000 g

Emissions (Modified T-38 LTO) = 40,000 g CO + 12,175 g CO = 52,175 g CO

The CO emissions increased 30 percent during the 10-minute period due to the queuing delay.

The time in mode can be calculated for each of the LTO phases. This calculation is important for determining the time of each phase of the standard LTO cycles (Appendix B) and checking emission calculations. The aircraft engine type, EGM, FLFLW(EGM), EMFAC(EGM, POL) and LTO phase emissions are required to make the time in mode calculation.

The following equation calculates the time spent in mode:

The amount of extra time that must be added or subtracted from the standard LTO phase can be determined.

EXAMPLE 5:

The average T-38 taxi-out time was estimated to be 10 minutes. Does this time compare with the ACEE LTO taxi-out phase?

From Table 1:

FLFLW (idle) = 0.057 kg/s

EMFAC (idle, CO) = 178.0 g CO/kg fuel

From Table A-26: LTO Emissions (Taxi-Out, CO) = 1.31 XE-02 metric tons $CO \times = 13,100 \text{ g CO}$

Time: TIMODF = $[(13.1 \text{ kg CO}) \times (1000 \text{ g/kg})] \div [(0.057 \text{ kg/s fuel}) \times (178.0 \text{ g CO/kg fuel}) \times (2 \text{ engines})]$

Time (Taxi-Out) = 646 s = 10 minutes 45 s

The 10-minute observed time and predicted 10-minute 45 second LTO taxiout time are similar. The normal LTO cycle taxi-out emission can be used.

All special modifications to the LTO and TGO emissions (Appendix A) will result in more accurate results. For quick estimates, the LTO and TGO cycle emissions tabulated should be used.

5.0 ANNUAL EMISSIONS

Most emissions are expressed in terms of annual emissions. Aircraft annual emissions can be calculated using ACEE. The annual aircraft emissions calculated by ACEE can be compared with other emission sources on and around the base. The comparison can give the aircraft's contribution to the area's total emissions.

The number of annual aircraft operations is required to compute annual emissions. The aircraft data must be in the form of LTOs and TGOs per year. The data can usually be obtained from the base operations sections and are reported monthly. The aircraft types might have to be separated and data manipulation might be necessary to reduce data into yearly operations format for ACEE.

The yearly aircraft operational and the LTO and TGO emission data are required. The number of LTO operations per year is multiplied by the pollutant emissions from one LTO operation (Equation 4). The result is the annual aircraft pollutant emissions. All emissions of the same pollutant are added to obtain the total aircraft emissions.

Annual Emissions (metric tons) = LTO pollutant emissions (metric tons) x
Number of Annual Aircraft LTOs and TGOs

(4)

The pollution emissions changes can be calculated for operational changes (e.g., decreased engine checks times, decreased arming times) or subtracted from the modified LTO, TGO or flyby cycle.

The detail to which to modifications and special operational characteristics are addressed will depend upon the purpose of the analysis. ACEE LTO and TGO emissions can be used for quick estimates of emissions. The modified LTO and TGO cycles can be used for environmental impact statements. Section V gives the limitation of ACEE emissions, and should be examined before any application of ACEE emissions.

SECTION IV

SHORT TERM AIR QUALITY

1.0 AIR QUALITY

Air quality analysis is the most important factor in determining the impact of aircraft on the environment. Dispersion and emission analyses are the two main factors in air quality analysis. The dispersion analysis estimates the atmosphere's ability to transport and dilute pollution due to advective winds and eddies caused by atmospheric instability. Atmospheric dispersion of pollutant is independent of source emissions. The emission analysis determines the amount of pollutants released into the atmosphere.

The AQAM short term model quantifies the ambient air quality resulting from atmospheric dispersion and source emissions. It can calculate atmospheric dispersion as a function of wind speed, mixing height, atmospheric stability and distance from almost any base emission source. Gaussian dispersion models are used by AQAM to predict air quality ground level concentrations at air bases (References 7 and 8). These concentrations can be compared with US National Primary and Secondary Ambient Air Quality Standards to predict the impact on air quality. ACEE uses AQAM short term and typical meteorological conditions to predict ambient air quality resulting from aircraft operations. ACEE does not consider other base sources (i.e., power plants).

2.0 METEOROLOGICAL CONDITIONS

Meteorological conditions determine the dispersion potential of the atmosphere. Under poor atmospheric dispersion conditions, air pollution problems can exist. These poor dispersion conditions usually occur during the early morning hours. Calm wind speeds and a stable atmosphere cause very little diluting or transporting of pollutants. The lowest dispersion potential of the year is called the "worst case." The National Ambient Air Quality Standards are described in terms of annual average concentration or concentrations not to be exceeded more than once per year.

Typical "worst case" meteorological conditions were used for ACEE dispersion and air quality calculations. These conditions are presented in Appendix C and Figures 4-7. The meteorological data are annual one-hour averages from 12 US Air Force bases. The averages represent a good cross section of weather climates in the United States. The morning conditions were chosen because the greatest potential for air pollution problems occur then. The small tailwind for takeoff gives the maximum downfield pollution concentrations for the "worst case." The tailwind is not typical of normal aircraft takeoff procedures.

TABLE 2. ACEE ANNUAL METEOROLOGICAL CONDITIONS 12 AIR FORCE BASES ANNUAL AVERAGES

Meteorological Data

Average Temperature

17.8°C (64°F)

Pressure Altitude

359.6 m (1180 ft)

Average Wind Speed*

3.8 m/s (8.5 mph)

^{*} A headwind to the aircraft's takeoff and landing is used for AQAM Source Inventory calculations.

TABLE 3. GROUP NUMBER

Aircraft	СО	NO _x	PM	sox
A-7	2	3	2	2
A-10	2	2	e multiple segment	2
A-37	3	2	1	
B-52D/F	5	5	4	2 5
B-52G	5	4	4	5
В-52Н	8) 5	4	They a bally	5 5
B-57A/E	3	2	4	2
B-57F	3	4	3	3
C-5LS	4	5	2 2	2 3 4
C-7	1	2	of the land 2	
C-9	1	3	3	2 2
C-97	5	3	5	2
C-119	4	2	4	ī
C-121	5	3	5	î
C-130A/G	3	4	4	4
C-130H	2	4	3	
C-135B	4	4	4	3 5
C-141	4	4	3	4
F-4	2	3	3	450
F-4E	2	3	3	A
F-5	3	2	3 3 2 2 2 2 2 2 3 3	
F-15	1	3	2	
F-16	1	3	2	
F-1.00	3	3	2	
F-101	2	3	3	
F-102	2	4	3	
F-104A	3	3		
F-104G	2	3	,	
F-105	3	3	3 3 3	3
F-106	2	3		
P-111A	3	4	3	3
F-111D	3	4	2	4
F-111F	3	4	2	4
KC-135A	4	4	3	4
0-1	i	i	3	i
0-2	2	1	3	ī
OV-10	1	4	2	î
T-33	2	1	2	2
T-37	2	1	3 3 2 2 3 3 3 2 2 2 1 2 2	i
T-38	3	1	2	5
T-39	1	ī	,	2 2
T-41	1	ī	3	1
				-

DISTANCE FROM START OF TAKE OFF (KM)

Figure 4. CO LTO Aircraft Concentrations

Figure 5. NO LTO Aircraft Concentrations

Figure 6. PM LTO Aircraft Concentrations

Figure 7. SO $_{\mathbf{x}}$ LTO Aircraft Concentrations

3.0 RUNWAY CENTERLINE CONCENTRATIONS

Downfield centerline pollutant concentrations were calculated for each major aircraft type, using the AQAM short term program. The AQAM short term model simulated downfield ground receptor concentrations resulting from an aircraft takeoff and climb to 914 m and its approach and landing from the same altitude. The centerline concentrations represent the highest ground concentration. The AQAM short term Gaussian dispersion model calculated the hourly average centerline concentrations resulting from one aircraft LTO and TGO cycle. The pollution concentrations were estimated at points 5 to 35 km down the runway centerline (Figure 3). The start of runway to 5 km pollutant concentrations were not calculated because of inaccuracy due to near field effects. The takeoff and climbout downfield pollution concentrations were calculated for the typical "worst case" meteorological conditions.

The pollutant concentrations are presented in tabular form (Appendix C) and graphical format (Figures 4-7). Table 3 lists aircraft groups with similar pollutant concentrations and is used in conjunction with Figures 4-7. The groups include 98.0 percent of the aircraft emissions in the group. The graphical method considers the worst case for a quick analysis of pollution concentrations. By knowing the aircraft type, the group can be found. The distance from the start of runway roll is selected and the pollutant concentration associated with the distance is determined. The upper boundary of each group's plot should be used for multiengine aircraft. All other aircraft concentrations can be estimated using the midpoint of the plot.

The downfield pollutant concentration (Appendix C) tables are broken down to individual aircraft groups for the worst and average meteorological conditions. The tables can be used for greater accuracy. The aircraft type is the only information required to determine centerline pollution concentrations.

The AQAM short term program deals only with one-hour time periods. The number of aircraft taking off during a one-hour time period are multiplied by the particular pollutant concentration. The result is the one-hour average pollutant concentration. For environmental assessments, the maximum number of planes taking off during a one-hour time period should be used. The concentrations of all aircraft takeoffs during the same time period and at the same receptor are summed for the total centerline concentration at the receptor point.

EXAMPLE 8:

Base X has a town lying on the runway centerline 20 km from the start of runway roll. What are the NO concentrations resulting from the following 0800-0900 recorded maximum operations?

Departures

T-37 T-38 14

Using Figure 5 for a quick estimate:

T-37 NO_x Concentration at 20 km = $.6 \text{ Mg/m}^3$

T-38 NO Concentration at 20 km = 1.5 Mg/m^3 Note: Figures 4-7 have log concentration scales.

Multiply each concentration by the number of departures:

 $T-37 \approx 0.6 \text{ mg/m}^3 \times 12 \text{ departures} = 7.2 \text{ Mg/m}^3$

 $T-38 = 1.5 \text{ mg/m}^3 \times 10 \text{ departures} = 15.0 \text{ t/g/m}^3$

Adding the concentrations:

Total NO_x concentrations at 20 km = 22.2 Mg/m^3

Using Tables C-67 and C-68 from Appendix A:

Total NO concentrations at 20 km = $22.1 \, \text{Mg/m}^3$ Note: The value 0.00 indicates that the centerline concentrations are less than 0.005 mg.

The centerline concentrations calculated assume a straight climbout and represent the highest ambient pollution concentrations. Pollution concentrations will decrease rapidly from either side of the runway centerline. Special fighter climbout procedures are not simulated by the AQAM program; however, the pollution concentration would be lower than the straight climbout now being simulated by AQAM because of the steeper climbout angles used by fighters and trainers.

4.0 COMPARISON WITH STANDARDS

The pollution concentration can be compared with the National Primary Standards. ACEE concentrations represent the "worst case." These "worst case" concentrations can be directly compared to "not to exceed more than once a year" standards. A power law (Reference 9) is required to convert one-hour averages to 24- or 8-hour average concentrations.

The Pollution Standards Index (PSI) and EPA Report (Reference 10) can facilitate evaluating effects of aircraft on air quality. The PSI is based on a scale of 0 to 500 according to health effects. A PSI of 100 is the Primary National Ambient Air Quality Standard (NAAQS). A PSI of 50 is 50 percent of the Primary NAAQS. Hydrocarbons do not have PSIs because there are no known direct health effects associated with this

pollutant (Reference 10). Every pollutant can be normalized using the PSI scale. Since all the pollutants are normalized, their PSIs can be compared directly. Problem pollutants can be identified directly.

at all 0 . In set 05 as retainmentation of 16.-Y

with Ed - at 05 an anti-company, of 51. T

SECTION Y

ACEE DATA ANALYSIS

Calculated emissions and air quality data using ACEE must be analyzed. ACEE is not a final analytical tool. It is a decision step to determine the possibility of an air quality problem resulting from aircraft. A more powerful analytical model such as AQAM must be used if ACEE detects a possible air pollution problem. It is important to remember that ACEE is a conservative screening device. Any indication of possible aircraft pollution problems will have to be examined more thoroughly. A more comprehensive air quality examination will either confirm or reject the ACEE "possibility" of an adverse impact of aircraft on the air quality.

1.0 EMISSIONS ANALYSIS

The annual aircraft emissions can be employed to make crude air quality analyses. The annual aircraft emissions can be compared with other base sources or environ sources. A survey of most major United States airports indicated that the average aircraft annual emissions did not exceed two percent of the total source emissions (Reference 11). The two percent aircraft emissions can be used as a guide if the base is located in a major urban area. However, the two percent figure is not valid for areas where the base is the only major source.

Base aircraft operations resulting in annual emissions in excess of 226,796 kg of any one pollutant per year should be investigated more closely. The EPA defines 226,796 kg annual emissions as a major source. The possibility of an aircraft related air pollution problem could exist. ACEE air quality should be examined carefully in this case. Any conclusions made concerning aircraft impacts should use the ACEE air quality data. Emissions data do not give any information about the dispersion of pollutants in the atmosphere.

2.0 SHORT TERM AIR QUALITY ANALYSIS

The downfield ambient air quality can be estimated using ACEE. The air pollution concentrations can be estimated for one-hour periods. The calculated results represent the maximum air pollution concentration from an aircraft takeoff and climbout. The results must be interpreted very carefully. The limitations are summarized in Section VI. Failure to recognize the limitations will result in poor conclusions with no value for assessment of air quality.

The downfield dispersion curves are given for CO, NO, PM and SO. The total hydrocarbon dispersion curves have not been computed because hydrocarbons do not have any health effects in themselves. For hydrocarbons the emission estimates are the most valid indicator of a significant aircraft contribution.

The Gaussian dispersion model does not predict reactive pollutants concentrations, e.g., oxidants. However, hydrocarbons are a main contributor with NO in forming oxidants. The downfield hydrocarbons presented in Appendix C are for future reference when hydrocarbon pollution is better understood.

The centerline concentration curves and tables (Appendix C) are based on one-hour worst case meteorological conditions. The AQAM Short Term program uses special one-hour wind averaging schemes. An attempt to predict the air quality for more than a one-hour time period is invalid without special correction factors. The curves and tables assume a "straight out" climb path.

The one-hour pollutant concentrations can be compared with the worst case National Ambient Air Quality Standards (NAAQS) to provide a point of reference. The predicted ACEE concentrations can be easily compared with the NAAQS by using EPA's Pollution Standards Index (PSI) The PSI normalizes all pollutants on a scale of 0-500 according to the short term NAAQS and health effects. Thus, all pollutants can be compared at the time. The 5-km point is probably the best to use when determining the overall impact of aircraft on air quality. The centerline pollutant concentrations 6 km to 35 km can be used to determine aircraft air quality impact off base.

Any pollutant concentration exceeding 50 percent of the one-hour NAAQS* should be examined more closely using AQAM or other techniques. An AQAM analysis would use specific meteorological conditions for the base. AQAM simulates all special base aircraft operations and gives a much more detailed analysis of pollutant concentrations. If ACEE air pollution concentrations are below 50 percent of the worst case one-hour standards, the base aircraft operations have little adverse effect on air quality and further analysis is not required.

^{*} Special attention should be given to state and local air pollution standards where applicable.

SECTION VI

CONCLUSIONS

ACEE is a preliminary screening procedure to determine the impact of aircraft on ambient air quality. The preliminary impact analysis is performed at base level, saving time and manpower. ACEE is not site specific and can be used at any US Air Force base. ACEE contains all the information required to perform a preliminary air quality impact analysis including: (1) present Air Force aircraft engine emissions factors, (2) LTO and TGO cycle emission factors and (3) climbout aircraft downfield dispersion data. ACEE contains the procedures and examples needed to make preliminary aircraft impact analyses.

ACEE includes procedures to: (1) calculate the annual aircraft emissions at an Air Force base and (2) estimate the one-hour "worst case" ground level air pollution concentrations resulting from an aircraft LTO cycle. The analyses of these results are explained fully in ACEE. The ACEE analyses show one of two things: (1) aircraft pollution impact is negligible, (i.e., aircraft pollution concentrations are below 50 percent of the NAAQS primary standards) or (2) an aircraft air pollution is possible. In the second case, a more detailed analysis using AQAM or other techniques would be required. ACEE will not predict an aircraft air pollution problem. It only indicates the possibility of a problem. ACEE is the first step in the Air Force aircraft air pollution impact analyses.

REFERENCES

- Souza, A. F. and Daley P. S., "US Air Force Turbine Engine Emission Survey - Volume I: Test Summaries," CEEDO-TR-78-34, August 1978.
- Shaffernocker, W. M. and Stanforth, C. M., "Smoke Measurement Techniques," SAE 68-0346, 1968.
- Shelton, E. M., "Aviation Turbine Fuels, 1978," BERC/PPS-76/2, March 1976.
- 4. Lyon, T. F., Colley, W. C., Kenworthy, M. J., and Bahr, D. W., "Development of Emissions Measurement Techniques for Afterburning Turbine Engines," AFAPL-TR-75-52, October 1975.
- Bingaman, D. J. and Wangen, L. E., "Air Quality Assessment Model for Air Force Operations - Source Emissions Inventory Computer Code Documentation," CEEDO-TR-76-33, April 1977.
- Naugle, D. F. and Nelson, S.R., "USAF Aircraft Pollution Emission Factors and Landing and Takeoff (LTO) Cycles," AFWL-TR-74-303, February 1975.
- 7. Rote, D. M. and Wangen, L. E., "A Generalized Air Quality Assessment Model for Air Force Operations," AFWL-TR-74-304, March 1975.
- Bingaman, D. J., "Air Quality Assessment Model for Air Force Operations - Short Term Emission/Dispersion Computer Code Documentation," CEEDO-TR-76-34, April 1977.
- Turner, D. Bruce, "Workbook of Atmospheric Dispersion Estimates," EPA-AP-26, 1970.
- 10. "Guidelines for Public Reporting of Daily Air Quality Pollutant Standards Index (PSI)," EPA-450/2-76-013, August 1976.
- 11. Environmental Protection Agency, "Control of Air Pollution From Aircraft and Aircraft Engines, 43 FR 12615, March 24, 1978.

APPENDIX A

LTO and TGO Aircraft Emissions

TABLE A-4. A-7 AND A-10 LTO AND TGO EMISSIONS

	×0×	14-000001-14010 1500000000010 4000000000014 11-11-11-11-11-11-11-11-11-11-11-11-11-	1.36-04	. Y05	04-114-20-24-40 E 1-4-20-24-40 E 1-4-26-40-40 E 1-4-26-40-40 E 1-4-26-40-40 E 1-4-26-40 E 1-4-26-40
	2	7 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.45-05	2	4 1113011175577 0 011001000000000000000000000000000000
RAFT TYPE O CYCLE)	NON		1.75-03	NOX	1311488118011 2 1010004100011 0 1000001114010 0 1111111111
SIONS BY AIRC ETHIC TONSTLI	JL	404-4-494210 ••••••••••••••••••••••••••••••••••••	1.8E-04 A 10	J.	6 14 14 14 14 14 14 14 14 14 14 14 14 14
SIZ N	CO	1200-1000 (100 (100 (100 (100 (100 (100 (1	8.35-04	00	04000000000000000000000000000000000000
	OPERATION	STARTUCE FNGING CHECK CLIMBA L CCLIMB L CCLIMB L CCLIMB L CLIMB L TANDING L TANDING L TOTAL	TOUCH + 60	OPERATION	STANTUP TAXI OUT ENGINE CHECK CLIMB 1 CLIMB 1 CLIMB 1 APPROACH 2 APPROACH 2 TAXI IN TOTAL + 60

TABLE A-5. A-37 LTO AND TGO EMISSIONS

EMI	SSIONS BY ALR	CRAFT TYPE		
	A 37			
C	J.	NON	T d	×0×
0	.64E-0	.12E-0	64E-	48E-0
30E-0	. 18E-U	. 46E-0	18t-	7.28E-05
36E-0	.06E-0	.46E-0	396-	33E-0
16E-0	.59E-0	.17E-0	58E-	99E-0
201	17E10	20110	346	32FF
4 3E-0	.42E-0	-306-	39E-	26E-0
4 DE-0	. 04E-0		40	35E-0
4 PIL	11F-0		בו	37F-0
4.7E-02	7.1E-03	8.3E-04	4.1E-06	4.4E-04
4.54-03	2.7E-04	3.06-04	1.8E-06	1.2E-04
	T WWW 4 4 WW 4 WWW 1	## ## ## ## ## ## ## ## ## ## ## ## ##	EMISSIONS CU MESTIONS 30E-03 30E-03 100E-03 210E-03 220 A 37 A 17 A 16 A 17 A 16 A 17 A 17 A 16 A 17 A	EMISSIONS BY AIRCRAFT TYPE A 37 CU TO STATE OF TYPE A 37 NOX NOX NOX NOX NOX NOX NOX NO

TABLE A-6. B-52D/F AND B-52G LTO AND TGO EMISSIONS

EMISSIONS BY AIRCHAFT TYPE (METRIC TONS/LTO CYCLE)

		4 5207F	3/F		
OPERATION	00	Ç	XO2	Ž.	SUX
STARTUP	BIE	39E	91E	444-0	41E-0
ENGINE CHECK	8 1F-0	39E-0	. y 1 E - 0	446	41E-0
TABACO TABACO	. 60E-0	13E-0	. 55F - 0	554-	. 45E-0
LIMH	. 77E-0	.57E-0	. 72E-0	. 13E-0	.57E-0
70	. 81E-0	23.00	. 53E-0	001470	00740
ANDING	44E-0	31E-0	. 52E-0	10E-0	. 89E-0
N I CHILL	29E-0	1 8E-0	19E-0	· 684-0	43E-
2	0000				
TUTAL	. 2E-0	. yE-0	.3E-0	.7E-0	. 3E-0
TOUCH + 60	7.8E-03	1.3E-03	1.24-02	2.0E-03	1.56-03
		6-526			
OPERATION	00	Ž,	NON	ĭ	SUX
STARTUP	.65E-0	0-47E-0	.31E-0	.35t-U	. YOE - 0
FAXI OUT	. 06E-0	47F-0	- 56E-0	.63E-0	- 16E-0
T ROLL	. 60E-0	.07E-U	37E-0	346-0	07E-0
CLIMB	.04E-0	-36E-0	- 70E-0	. 85t - 0	.36E-0
APPROACH 1	016-0	07E-0	.11E-0	78E-0	34E-0
APPROACE 2	2.08E-03	5.365-03	3.76-03	3.27F-05	7-156-09
TAXI	. 34E-0	-22E-0	. 24E-0	. 89E-0	. 03E-0
2000000	. 1 CE - U	001610	13610	011001	043610
TOTAL	.6E-01	.4E-0	.3E-02	.3E-0	. DE-0
TOUCH + 60	1.2E-02	4.3E-03	2.35-02	1.4E-03	1.2E-03

TABLE A-7. B-52H LTO AND TGO EMISSIONS

EMISSIONS SY AINCHAFT TYPE (METRIC TONS/LTO CYCLE)

	55 6	r		
00	9	NON	3 1	SUX
	5.826-02	9.80E-04	1.25t-04	5.44E-04
4.57E-02	5.82E-02	9.80E-04	1.256-04	5.44E-04
	1.76E-04	2.93E-03	5.07E-04	2. y 3E - 04
	1.93E-04	3.21E-03	5.56t-04	3.21E-04
	1.78F-03	3.476-03	0 18E-04	6.85E-04
	5.95E-04	1.33E-03	2.27E-04	2.24E-04
5.48E-03	6.99E-03	1.18E-04	1.50E-05	6.53E-05
3.24E-02	4.13E-02	6.944-04	8.87E-05	3.46E-04
8.23E-03	1.05E-02	1.70E-04	2.254-05	9.80E-05
2.3E-01	2.9E-01	2.0E-02	3.2E-03	4.6E-03
7.05-03	2.9E-03	1.26-02	2.1E-03	1.6E-03
		1, 11,	111111	1

TABLE A-8, B-57A-E AND B-57F LTO AND TGO EMISSIONS

TONS/LTO CYCLE!

SZO

EMISSI(

44VN4AVNVN440 2.0E-04 -00 3. YE.

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 +0--03 . UE 51A-E u 19-8 n +0-+0-1.8E-2E 1041444446641 04 4E 6E STARTUP ENGINE CCLIMMAY COTE CANDING COTE TANDING COTE TANDING COTE TANDING COTE TOWN STARTOP CCLIMBACT CCLIMBACT CCLIMBACT CCLIMBACT COLIMBACT COLIMBAC UPERATION OPERATION 09 09 TOUCH TOTAL TOUCH TOTAL

TABLE A-9, C-5A AND C-5LS LTO AND TGO EMISSIONS

440444400401 6.0E-04 5.9E -05 1.4E-8.1185778113 1.185778779 1.18578788 1.1857878 1.18578 3E-02 02 BY AINCRAFT TYPE TONS/LTO CYCLE) 7E LS SA C-5 U -03 -03 EMISSIONS (METHIC -03 -03 6.4E W STARTUL TAXI OUT KUNWAY OUT CLIMB 1 CCLIMB 1 CCLIMB 2 CCL HECK OPERATION OPERATION 09 TO 09 STANDAR AND CONTRACT OF THE PARTITION OF + + TOUCH TOUCH TOTAL TOTAL

TABLE A-10. C-7 AND C-9A LTO AND TGO EMISSIONS

EMISSIONS BY AIRCRAFT TYPE (METRIC FONS/LTO CYCLE)

		xox	0 1 7E - 0	· 344-0	ったかいしつ	0 1 7E - C	OJE-0	.48E-0	. 76E-0	1/100	• CIE-0	- 10F-0	1.10E-05	1	. 2E-0	1.35-04		SOX		.046-0	1000	0000	A I F - 0	03E-0	. 75E-0	. 50E-0	. 19E-0	1000	. 35E	UE-04	3.1E-04
		Σ 1	· BZE-0	. 08E-0	01440	· 09E-0	. 50E-0	. C4E-0	.04E-0	· / CE-0	· 84E-0	· 871-0	9.10E-00	1 - 6 - C	· / E = 0	9.2E-05		E d	100	· CAE-O	10000	73510	405	57E-0	.27E-0	.73E-0	·316-0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-016-	1.15-03	6.0E-04
111000		NON	.55E-0	· SPE-0	. 38E-0	· / PE-0	. 38E-0	. 03E-0	.65E-0	· 80F-0	. 03E-0	0/1/1-0	4.28E-05	80000	. YE-0	9.5E-04		NON	0	· 285-0	. 09E-0	20110	35	42E-0	.42E-0	.34E-0	- 38F-0	011100	. / UE -	2.2E-03	1.16-03
2000	2 3	HC	. 60E-0	· 544-0	つしいいいい	· 48F-0	.60E-0	·596-0	* 06E-0	· 404-0	00000	047110	2.30E-04	100	. YE = 0	7.2E-04	C 9A	HC	1	. 45E-0	1000	としてい	77F-0	17E-0	.01E-0	· 11E-0	. 10E-0	100	- 18E	3.8E-03	1.0E-03
NOT THE REAL PROPERTY.		00	. 02E-0	34410	0 1 7F-0	\$30F-0	.89E-0	.36E-0	.34E-0	のとはいって	· 085-0	のしいりつ。	3.51E-04	100	. 8E-0	1.4E-03		00	100	. 36F-0	011111111111111111111111111111111111111	1416	199	23E-0	.12E-0	·62E-0	· TOE-O	20000	0 1 / E	96-02	5.0E-03
		OPERATION	STARTUP	TAXI COL	ENGINE CHECK	KUNEAY KOLL	CLIMB I	CLIMB 2	APPROACH	APPROACH	LANDING	AXI IN	SHUTDOWN		IDIAL	TOUCH + 60		OPERATION		STANDE	LAAI OOLEGE	COLUMN COLUMN	The state of the s	CLIMB 2	APPROACH 1	APPROACH 2	LANDING	NI CALL	2800-010	TOTAL	TOUCH + 60

TABLE A-11. C-97 AND C-119 LTO AND TGO EMISSIONS

EMISSIONS BY AIRCRAFI TYPE (METRIC TONS/LTO CYCLE)

	SOX	3.82E-05 2.20E-05	14.00 16.00 16.00	.57E-0	004E-0	. 87E-0	0 - 3 6 0 ·	.7E-04	9.5E-05		xos	.11E-0	8 4 9 1 1 0 2	. 85E-0	- 39E-0	. 30E-0	32E-0	.91E-0	. 0E-05	4.0E-05
	1	3.82E-03 2.20E-03	.77E-0	.22E-0	. 69E-0	.87E-0	0 9 E - 0	.7E-02	5.2E-03		ž	.11E-0	2.83F-05	. 95E-0	013E-0	536-0	32E-0	.91E-0	.7E-03	2.1E-03
5.	NOX	6.36E-05 3.67E-05	. 65E-0	. 90E-0	31E-0	12E-0	49E-0	.2E-03	1.66-03		NON	. 18E-0	1.578-05	. 08E-0	416-0	30E-0	. 55E-0	.85E-0	. ZE-04	6.7E-04
16 3	Q.	1.22E-02 7.02E-03	.87E-0	.18E-U	. 37E-0	. 55E-0	.62E-0	.4E-02	2.1E-03	c 119	Ď.	.89E-0	2.89E-05	996-0-	- 19E-0	31E-0	97E-0	.27E-0	.8E-03	9.2E-04
	3	2.736-02	. 77E-0	03E-0	- 60E-0	0.3E-0	30E-0	.0E-01	1.35-01		CO	.85E-0	1.64E-03	136-0	-82E-0	-56E-0	15E-0	.61E-0	.0E-01	5.8E-02
	OPEHATION	STARTUP TAKI OUT	KUNWAY ROLL	CLIMB 1	APPROACH 1	LANDING	SHUTDOWN	TOTAL	10UCH + 60		OPERATION	STARTUP	ENGINE CHECK	٦	CLIMB 2	APPROACH 2	TAXI	SHUTDOWN	TOTAL	TOUCH + 60

TABLE A-12. C-130A-G AND C-130H LTO AND TGO EMISSIONS

44wownr-4www!-+0-+0-2.1E .3E-04 1.66. 02000422000000 12 040000000000 12 0400000000000 13 1111111111110 44044444040 1 BY AINCHAFT TYPE TONS/LTO CYCLE! -03 -03 .7L. I 130 C130 0 1.5E-03 04E-04 Y EMISSIONS (METHIC -03 2E-03 STARTUP CLINWAY CLINWAY CLINWAY CLINWAY CLINWAY CLINWAY CHECK TANDING TANDING TAXI IN SHUTIONNA STARTUP TAXAT CUP RUNEWAY COLT CCLIMB 1 CCLIMB 1 CCLIMB 2 APPROPACH 1 TAXI IN SHUTDOWN OPERATION OPERATION 09 09 LOUCH FOUCH TOTAL TUTAL

KC-135A AND C-135B LTO AND TGO EMISSIONS TABLE A-13.

EMISSIONS BY AINCHAFT TYPE (METHIC TONS/LTO CYCLE)

	×0×	.78E-U	. 54E-0	. / BE-0	. 446-0	- 346	776-0	36F-0	.51E-0	. 22E-0	- 50E-	6E-03	6.4E-04		SOX	.44E-0	. 78E-0	- 62E - 0	59E-0	. 25E-0	4000	. 25E-0	.64E-0	1.22E-04	.1E-03	7.5E-04
	1	.91E-0	.64E-0	·91c-0	-41E-0	- 47E-0	10100	001-00	87E-0	.19E-0	.11t-	6E-04	4.0E-04		Z d	.25k-0	. 10E-0	344-0	75E-0	.90E-U	775-0	48E-0	.07E-0	-82E-	SE-03	9.6E-04
35A	NON	.07E-0	.59E-0	.07E-0	.63E-0	- 71L-0	1000	1 F - 0	08E-0	.73E-0	. 04E-	020	5.5E-03	58	NON	.80E-0	.61E-0	- 62E-0	59E-0	- 25E-0	3/F-0	85E-0	.35E-0	2.20E-04	SE-02	5.7E-03
KC 13	7 1	.00E-0	.51E-0	.00E-0	. 88F10	1776	17610	4016	39E-0	.70E-0	.50E-	1.0E-01	3.3E-03	C 135	£	.82E-0	.12E-0	.37E-0	52E-0	.35E-0	4 OF - 0	48E-0	.96E-0	1.31E-02	8E-01	1.96-03
	00	.46E-0	.32E-0	.46E-0	. 45E-0	. USE-U	745	11474	93E-0	.09F0	.53E-	3E-01	8.35-03		00	.57E-0	.02E-0	- 56E-0	70E-0	. 83E-0	- 86E-0	73E-0	. 90E-0	. 03E	4E-01	4.3E-03
	OPERATION	STARTUR	TAXT OUT	ENGINE CHECK	KUNWAY AULL	ברושה ד	ASSESSACE 1	TO A CORDOR	LANDING	TAXI IN	SHUTDOWN	TOTAL	TOUCH + 60		UPERATION	STARTUP	TAXI OUT	ENGINE CHECK	CLIMB 1	CLIMB 2	APPROACT TO THE TOTAL TO THE TO	LANDING	TAXI IN	SHUTDOWN	TOTAL	TOUCH + 60

TABLE A-14. C-121 AND C-141A LTO AND TGO EMISSIONS

EMISSIONS BY AFPCRAFT TYPE (METHIC TONS/LTO CYCLE)

	SUX	VIE 68E	. 0.7E-0	33E-0	10E-0	.72E-0	. 63E-0	1F-04	0-39.		>OX	. 23E-0	2.63E-05	. 82E-0	41F-0	43E-0	0.00 E	45F-0	. 84E-0	10	• 8E-0.	5.5E-04
	2	414 68H	. 70E-0 . 67E-0	444	075	. 72E-0	.63E-0	4F-02	1E-0		2	.55£-0	2.40E-05	.65E-0	245-0	.54E-0	-24k-0	745-0	.32E-0	1	. St - 0	3.6E-04
	NON	85E 80E	.43E-0	• 40E -0	856-0	196-0	.72E-0	56-03	3E-0	THE RESIDENCE	NON	.81E-0	3.16E-04	. 18E-0	000000	43E-0	13E-0	316-0	.71E-0		· 64-0	4.5E-03
2 121	J.	.27E	3E-0	.53E-0	-89E-0	. 18E-0	. 19E-0	AF-02	7E-0		2	.48E-0	7.90E-07	. 45E-0	23F-0	15E-0	· > 1E-0	27F	.73E-0		. 9E-0	9.7E-04
	00	61E-0	85E-	.57E-0	SAE	. 60E-0	. 02E-0	10.01	11-0		00	.00E-0	2.13F-05	.45E-0	115-0	96E-0	-49E-0	746-0	. 50E-0		. 8E-0	3.7E-03
	OPERATION	STARTUP TAXI OUT	ENGINE CHECK	CLIMB 1	APPROACH 1	LANDING	NAT IXAT	ToTal	TOUCH + 60		OPERATION	STARTUP	FNG INF CHECK	RUNWAY ROLL	TO THE PLANT	APPROACH 1	APPROACH 2	TAXTING	SHUTDORN		TOTAL	TOUCH + 60

TABLE A-15. F-100 LTO AND TGO EMISSIONS

	EMI	EMISSIONS AT AIRCRAF	CHAFT TYPE TO CYCLE)		
		F 100	0		
OPERATION	20	Ç	NON	2 1	SUX
STARTUR	3.53£-03	-	1.13E-04	0	4.30E-05
TAXI GOT	1.37E-02	1.14E-02	4.30E-04	3.04E-05	1.40E-04
ENGINE CHECK	6.98E-05	-	3.42E-04	S	3.49E-05
RUNWAY ROLL	8.13E-04	-	6.32E-04	5	2.03E-04
CLIMB 1	6.45E-04	-	5.01E-04	5	1.61E-04
CLIMA	6.44E-05	-	3.10E-04	J	3.22E-05
APPROACH 1	5.71E-04	-	1.574-04	5	3.64E-05
APPROACH 2	2.02E-04	-	5.53E-05	9	1.675-05
LANDING	7.42E-04	0.195-04	2.37E-05	91	1.03E-05
TAXI IN	1.32E-02	1.10E-02	4.23E-04	5	1.84E-04
SHUTDOWN	5.79E-04	4.82E-04	1.858-05	0	8.04E-00
TOTAL	3.4£-02	2.7E-02	3.0E-03	2.9E-04	9.2E-04
TOUCH + 60	1.56-03	2.2E-04	1.16-03	1.3E-04	<->> − − 0 + − 0 + − − 0 + − − − − − − − − −

TABLE A-16. F-101 AND F-102 LTO AND TGO EMISSIONS

EMISSIONS BY AIRCHAFT TYPE (METHIC TONS/LTO CYCLE)

	SOX	25322 2532 253	100000 1000000	1.2E-03	4.6E-04		SOX	42-40-40-40-40-40-40-40-40-40-40-40-40-40-	3012 3012 500 51 51 51 51 51 51 51 51 51 51 51 51 51	6E	1.8E-04
	ĭ	11.05 11.05 11.05 11.05 11.05 11.05 11.05		7.36-04	1.95-04		ž d	2000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24422 41477 77777 77777	• 6E-04	9.45-05
	NOX	ろいて の 4 8 8 6 6 の 4 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	22.00 20.00	3E-03	1.8E-03		NON	11.2786 22.12466 33.12466 33.9766 10.04 10.04 10.04	31.25.5 31.25.5 32.46.6 33.46.6 40.65.6 5.45	2.5E-03	7.6E-04
F 101	JF.	8888 55336 7536 756 756 756 756 756 756 756 756 756 75	11.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000	2E-02	3.95-04	F 102	¥	33.00 10.00	44470 80014 MMMMM	.2E-02	2.1E-04
	00	0000 0000 0000 0000	2411494 344666 3766666 37666666 37666666 37666666 3766666666	3.0E-02	2.8E-03		90	4 KNN W W W W W W W W W W W W W W W W W W	0046 0056 0056 0066 0066 0066 0066 0066	-02	1.2E-03
	OPERATION	STARTUP TAXI OUT ENGINE CHECK RUNWAY ROLL	APPING APPROACH APPROACH I AND ING TAXI ING SHUTDOWN	TOTAL	TOUCH + 60		OPERATION	IO	APPROACH APPROACH INGUINGUINGUINGUINGUINGUINGUINGUINGUINGU		TOUCH + 60

U4444 UUUU 4U I

TABLE A-17. F-104A AND F-104C LTO AND TGO EMISSIONS

EMISSIONS BY AIRCHAFT TYPE (METHIC TONS/LTO CYCLE)

	×0×	90E-	40E-0	. 72E-0	- 09E-0	17E-0	. 1 3E - 0	×66-0	 .7E-0	1.06-04		SOX	.01E-U	. 04E-0	73F-0	.05E-0	.30E-0	. CSE-0	70E-0	.97E-U	.01E-	21-04	1.8E-04
	ž	48E	196-0	. 46E-0	. 60t-0	14E-0	. 66E-0	.48E-0	 . 3E-0	1.35-04		Z d	.22E-U	. 68E-0	46E-U	.58E-0	. 10E-0	-47E-0	23E-0	.54t-0	- 22E-	6F-04	1.2E-04
d	NOX	24E	40 F - 0	.02E-0	47F-0	35E-0	. 83E-0	24E-0	 . 8F-0	6.9E-04		XON	.08E-0	- 50E-0	0.3F-0	.27E-0	· 40E-0	· 425-0	62E-0	.33E-0	. 08E-	4F-03	7.7E-04
F 104	ş	95E	. 08E-0	. 72E-0	- 18t-0	47E-0	. 36E-0	. 95E-0	 .8E-0	8.5E-05	F104C	ų	.61E-0	. 83E - 0	735-0	.05E-0	. 38E-0	-086	73E-0	.78E-0	.61E-	4F-03	3.4E-04
	00	82E	-19t-0	89E-0	- 60E-0	.16E-0	.46E-0	82E-0	 . 4E-0	1.16-03		OO	.61E-0	. 16E-0	30 LUL 30	.21E-0	.14E-0	- ZIE-0	84E-0	.92E-0	.61E-	15-02	2.0E-03
	UPERATION	STARTUP TAXI OUT	ENGINE CHECK	CL.IMB 1		APPROACH 2	DA CONT	SHUTDOWN	TOTAL	TOUCH + 60		OPERATION	STARTUP	TAXI OUT	RUNWAY ROLL	CLIMB 1	CLIMB 2	APPROACH	ANDING	TAXIIN	SHUTDOWN	TOTAL	100CH + GO

TABLE A-18. F-105 AND F-106 LTO AND TGO EMISSIONS

. 7E-04 OE. -05 +0-2.0E. 21/42 & WOLE 10 | 4 -03 -03 BY AIRCRAFT TYPE TONS/LTO CYCLE) 1. BE. 1.2E 105 14 +0-+0-4 THICAS NDNN470-4DM AISS (AE) 414141W44114 -03 -03 1.7E 1.9E. STARTUP TARXI OUT CLINE OT CLIME 1 CLIME 1 CLIME 1 CLIME 1 CLIME 1 CLIME 1 APPROACH 2 TANDING 7 SHUTDOWN STARTUP CLIMB 1 CCLIMB 1 CCLIM OPERATION OPERATION 09 09 + + TOUCH TOTAL TOUCH TOTAL

TABLE A-19. F-4C/F AND F-4E LTO AND TGO EMISSIONS

444440000001 3.8E-04 9E-04 XOX 2.6E-04 64444444444 EMISSIONS BY AIRCHAFT TYPE (METHIC TONS/LTO CYCLE) 1.7L-03 2.1E-03 4-C/F W 4 4 +0-1.6E-04 L Y 8.3E -03 2.2E-03 4.6E STARTUP CLINEAN COL CLINEAN COL CLINE 1 CEL APPROACH TANDING 1 CEL STANDING 1 CEL STANDING 1 CEL STANDING 1 CEL STANDING 1 CEL STARTUP TAXI OUT CLIMB 1 CCLIMB 1 CCLIMB 2 CCLIMB 2 CCLIMB 2 APPROACH 2 LANDING 1 SHUTDOWN UPERATION OPERATION 09 09 + LOUCH TOUCH TOTAL TOTAL

TABLE A-20. F-5 AND F-111A LTO AND TGO EMISSIONS

9.5E-05 3.5E-04 -07 10-OE 2011-2011-408 | 7 EMISSIONS BY AIRCRAFT TYPE (METRIC TONS/LTO CYCLE) 1.95-04 2.9E-03 XON 4 111 5 1 10-2.6E-04 1.9E. SH 4.3E-03 .3E-03 STARTUP TAXI OUT ENGINE CHECK CLIMB 1 CCLIMB 1 APPROACH 1 AAPPROACH 2 TAXI ING SHUTOWN STARTUP TAXI OUT RUNWAY OUT CLIMB 1 CCLIMB 2 APPROACH 2 APPROACH 3 TAXI ING SHUTDOWN OPERATION OPERATION TOUCH + 60 09 + TOTAL TOUCH TOTAL

TABLE A-21. F-111D/E AND F-111F LTO AND TGO EMISSIONS

EMISSIONS BY AIRCRAFT LIPE (MEIRIC TONS/LTO CYCLE)

	SUX	8. 84E-05	. > > t - 0	. 000-	- C/E-0	0-11-		115-0	.52E-0	. 00t-0	 . SE-U	4.0E-04		×0×	. 89E-0	.00E-0	. >2E-0	. POF -0	0-4/F-0	• 11E-0	. U/E-0	. C 3E - 0	1000	. 56t-0	1.86E-05	10134	0 30 .	4.0E-04
	2	1.786-00	.61t-0	0-454.	01101.	2000	0 1 1 2 4	474-0	.04t-0	.73F-0	 .6E-0	0.75-05		2	. 78E-0	. 19E-U	.61E-0	・ソンドーロ	· YOE - O	. 85E-0	· 455-0	0111	• אוניים	.044.0	3.73E-07	101	• 05 - 0	6.7E-05
./E	NON	2.50E-04 7.53E-04	. 36E-0	. 28E-0	.000	155-0	2000	2011	30E-0	. + 0E-0	 .1E-0	2.8E-03	ı	YOY.	.58E-0	.53t-0	.38E-0	. 28t-0	. OKT - C	. 15E-0	. 82t-0	- 4 IE - 0	0-210.	. 30E -0	5.40E-05	100136	. 15-0	2.4E-03
F1111	7	1.645-03	. 92t-U	. 66t-0	. C/E-0	• 11E-0	1040	25F-0	19E-0	.54E-0	 . 2E-0	2.3t-04	F1111	25	.69E-0	. 43E-0	. 92E-0	.66E-0	· 2/2-0	· 11110	·64E-0	・ログド・ロ	. / IE - U	-17E-0	3.54E-04	20170	• 25-0	2.4E-04
	00	4.276-03	.34E-0	· 064-0	. 31E -0	· 4/E-0	11110	70400	21E-0	. 94E-0	 .4E-0	2.21-03		CC	.27E-0	.25E-0	.34E-0	.06E-0	.31E-0	. 8/E-0	.01E-0	0-117.	. 38E-0	.21E-0	8.94E-04	00137	0134.	2.2E-03
	OPERATION	STARTUR TAXT OUT	ENGINE CHECK	HONNAY HOLL	CLIMB 1	CLIMB Z	L L L L L L L L L L L L L L L L L L L	N STATE OF THE STA	TAXIIN	SHUTDOWN	TOTAL	TOUCH + 60		OPERATION	STARTUP	TAXI OUT	ENGINE CHECK	RUNWAY ROLL	CLIMB 1	CLIMB	APPROACH	APPROACH	CANDING	NI IXA	SHUTDOWN	TOTAL	LOTAL	TOUCH + GO

TABLE A-22. F-15 AND F-16 LTO AND TGC EMISSIONS

BY AIRCRAFT TYPE TONS/LTO CYCLE)

EMISSIONS (METHIC

10-6.2L-05 1.9E-05 7.3E -03 1.24-03 XON 2.0t. F 15 16 +0-L 5.1E-05 1.5E 1.4E-03 1.8E-04 STARTUP TAXI OUT ENGINE CHECK CLIMB 1 CLIMB 2 CLIMB 2 APPROACH 1 APPROACH 2 TAXI ING SHUTOWN START CUT ENGINE CLIMENT OUT CANDING OUT OPERATION UPERATION 09 09 + TOUCH TOUCH TOTAL TOTAL

TABLE A-23. O-1 AND O-2 LTO AND TGO EMISSIONS

EMISSIONS MY AIMCRAFT TYPE (METHIC TONS/LTO CYCLE)

	SOX	S OF	. 19E-0	.15E-0	. 31E-0	. ZIE-0	15610	82E-0	.71E-0	. 36E-0	. 3E-06	2.95-06		SUX	.44E-0	. 36E-0	5 2 AF	83E-0	. 66E-0	7 7 7 7 7	-28E-0	. 28E-0	· 44E-	8E-05	4.8E-06
	2	80E	. YOU - 0	. 84E-0	.17E-0	. U3E - 0	144	82E-0	.71E-0	.36E-U	.1E-04	1.5E-04		2	· +4E-0	.36E-0	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.61E-0	.54E-0	74410	28E-0	.28E-0	· 44E-	1.4E-03	2.5E-04
	NOX	SSE	BOE - 0	.80E-0	.51E-0	- 87E-0	10000	346-0	.05E-0	. 4VE-0	.1E-05	2.85-05		XO.	. 98E-0	. 32E-0	1 1 1 1 0 1 1 1 0 1	.27E-0	.47E-0	77610	34E-0	.19E-0	-386.	9E-05	4.3E-05
0 1) I	175	04E-0	. 41E-0	·19E-0	.11E-0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. NOE-0	. 82E-0	.33E-0	.ZE-04	7.2E-05	0 2	J.C.	.32E-0	0-36a.	936-0	. 81E-0	. 23E-0	0.000	76E-0	.52E-0	.32E-	E-03	1.9E-04
	Cu	4 3E	30E-0	.23E-0	.79E-0	- 34E-	000000000000000000000000000000000000000	26E-0	· 07E-0	.69E-0	.7E-03	4.68-03		00	.69E-0	. 33E-0	716-0	.29E-0	. 85E-0	10407	03E	.23E-0	-369°	7E-02	7.95-03
	OPERATION	STAKTUR	FAGINE CHECK	AUNAAY HULL	CLIME 1				TAX! IN	SHUTDOWN	TOTAL	TOUCH + 60		OPERATION	TAR	AXI OUT	ENGINE CONC.	LIM	CLIMB	100000000000000000000000000000000000000	ANDINA	TAXI IN	SHUTDOWN	TOTAL	TOUCH + 60

5
EMISSIONS
H
S
H
Σ
121
0
TGC
9
AND
2
LTO
0V-10
1
N
C
A-24
1
N.
[7]
TABLE
B
LA
-

		SOX	C 1000 - 4 - 4 - 4 - 6 0 - 4 - 6 0 - 4 - 6 0 - 6 - 6 0	4.75-05
		2 1	0 a wo con-march	2.8E-05
INCHAFT TYPE		NON	0 100 00 00 10 10 00 00 10 00 00 10	4.5E-04
MISSIONS BY AIR	0110) I	O L WALLE WALLE COUNTY	2.7E-05
E 3		00	W-W-DONONOR 16 V1046-WV1001 M MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	5.8E-04
		OPERATION	TO TAKE TO THE T	TOUCH + 60

TABLE A-25. T-33 LTO AND TGO EMISSIONS

EMISSIONS BY AIRCRAFT TYPE (METHIC TONS/LTO CYCLE)

	SOX	0.000000000000000000000000000000000000	1.2E-04
	ĵ.	44/242444414 6000000000000000000000000000000000000	3.1£-05
	×0×	W340	3.45-04
T 33	J C	4.02.03.02.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	3.8E-04
	၀၀	がたませる。	6.5E-03
	OPERATION	FENGING CHECK COLL COLL COLL COLL COLL COLL COLL CO	TOUCH + 60

TABLE A-26. T-37 AND T-38 LTC AND TGO EMISSIONS

EMISSIONS BY AINCHAFT TYPE (METHIC TONS/LTO CYCLE)

	SOX	1.33E-05	-28E-0	. 54E-0	. 62E-0	. 96E-0	. 5 ST 10	10E-0	45-04	. 8E-0		×0×	. 56E-0	. 19E-0	.50E-0	- 70E-0	74E-0	.02E-0	. 66E-0	4.79E-06	 . 5E-	1.1E-04
	ž 1	7.306-00	. 66t-0	-71E-0	695-0	.48E-0	01/10	.15E-0	6F-05	. BE-0		Σ	.07E-0	15E-0	. 80t-0	- 96E - 0	21E-0	.634-0	-30E-	10445-08	 .3E-0	1.38-06
	NOX	5.446-05	. VBE-0	. 07E-0	044110	.33E-0	14th	14E-0	01-04	.16-0		NOX	.63E-0	. 10E-0	. >7E-0	- 30E -	0.000	. 39E-0	- 20F-0	6.234-06	 .0E-	2.5E-04
T 37	J.	2.52E-04 6.96E-04	.14E-0	-27E-0	.07E-0	.17E-0	144L10	. 98E-0	0F-03	.4E-0	1 38	J.	.07E-0	54E-0	.45E-0	. 59E-0	. 66E-0	.11E-0	- 40E-	1.446-04	 .1E-0	2.1E-04
	00	1.71E-03	46F-0	. 73E-0	. 03E-0	.09E-0	5.7. 1.1. 1.1. 1.1. 1.1. 1.1. 1.1. 1.1.	. 70E-0	56-02	.1E-0		00	.34E-0	. 46E-0	.11E-0	-63E-0	. 04E-0	.59E-0	.74E-0	8.53E-04	 . 0E-0	3.95-03
	UPERATION	STARTUP TAXI OUT	ENGINE CHECK	CL IMB 1	APPROACH 1	APPROACH 2	TAXOLNG TAXOLNG	SHUTDOWN	TOTAL	100CH + 60		OPERATION	STARTUR	ENGINE CHECK	KUNWAY ROLL	CLIMB	APPROACH 1	APPROACH 2	LANDING	SHUTDOWN	TOTAL	TOUCH + 60

EMISSIONS BY AIRCRAFT TYPE (METRIC TONS/LTO CYCLE)

	SUX	1.616-05	. 89E-0	.31E-0	87E-0	085-0	23E-0	. 0E-04	7.65-05		SOX	· 09E-0	16E-0	.91E-0	.55E-0	. 84E-0	64F-0	1 - 14E - 06		. 6E-06	2.7E-06
	ī	3.22r-07	514-0	. 93E-0 . 48E-0	•61E-0	156-0	.46E-0	.4E-05	9.6E-06		E Q	· 09E-0	.72E-0	-64E-0	. 85E-0	. 69E-0	64610	1 - 14 - 04	177.	.7E-04	1.4E-04
	NON	2.42E-05	. 09E-0	.06E-0	- IBE-0	. 6 1E-0	.35E-0 .15E-0	. 0E-04	2.8E-04		NOX	. 00E-0	21E-0	. 99E-0	90E-0	· 68t-0	68E-0	2.09E-06		.5E-05	2.0E-05
1 39	J.	1.48E-04	895-0	.31E-0 .64E-0	. 05E-0	89E-0	.89E-0	.2E-03	1.4E-04	T 41	H C	· 63E - 0	.06E-0	97E-0	08E-0	017E-0	BOE-0	2.76E-04		.2E-0	1.7E-04
	00	1.13E-03	.56E-0	. 05E-0	-44E-0	53E-0	.96E-0	.5E-03	1.56-03		20	.54E-0	40E-0	36E-0	53E-0	3 / F 1 0	15E-0	1.61E-03		.2E-0	4.4E-03
	OPERATION	STARTUP TAXI OUT	2	CLIMB 2	APPROACH	LANDING	SHUTDOWN	TUTAL	TOUCH + 60		OPERATION	STARTUR	ENGINE CHECK	RUNWAY ROLL	SCLING SC	APROACT	LANDING	ZI CI XI		TOTAL	TUUCH + 60

APPENDIX B

CONVERSION AND VARIABLES

The following is a list of variables used in the ACEE methodology:

Variable	Variable Names	Units
EGM	Engine Thrust Mode	<pre>idle, approach, normal, military takeoff and afterburner</pre>
POL	Pollutant Type	CO, HCy, NOx, PM, SOx
EMFAC (EGM, POL	for the specified Thrust Mode and Pollutant Type	mass units pollutants/ 1000 mass units fuel
FLFLW (EGM)	Engine Fuel Flow for the specified Thrust Mode	kg/hr
NOEG	Number of Engines per Aircraft	engines/aircraft

Exponential Notation

The LTO emissions tables were computer generated. The LTO mode pollutant emissions differ by orders of magnitude. To present these data, exponential notation had to be used. The relationship between exponential and scientific notation is:

AE
$$\pm$$
 N = A x $10^{\pm N}$

where: A is a real number
N is a integer or zero

Examples:

1.2 E-02 = 1.2 x
$$10^{-2}$$
 = 0.012.
1.2 E+00 = 1.2 x 10^{0} = 1.2
1.2 E+02 = 1.2 x 10^{2} = 20

APPENDIX C

Downfield Pollutant Concentrations Tables

TABLE C-28. A-7 WORST CASE DOWNFIELD CONCENTRATIONS

AIRCHAFT A 7

NORMAL 1 LTO

ATMOSPHERIC CONDITIONS WORST CASE STABILITY CATEGORY 6 WIND SPEED (METERS/SECOND) 1.00 WIND DIRECTION TAILWIND TEMPERATURE (F) 38.00 MIXING DEPTH (METERS) 115.00

DISTANCE I	н	ECEPTOR CO	NCENTRAT	ION DATA	
START OF 1 TAKE-OFF I (KM) I	со		AMS/CU. N	ETER)	505
5	1.11 1.01 .98 .98 1.01 1.05 1.09 1.14 1.13 1.10 1.06 1.01	825 7723 773 779 826 84 84 877 84 877 859	557 -477 -437 -330 -285 -220 -165 -132 -10	.02 .02 .01 .01 .01 .01 .01 .01	04 03 03 02 02 02 02 02 02 02 02 02 02

TABLE C-29. A-10 WORST CASE DOWNFIELD CONCENTRATIONS

AIRCHAFT A 10

NORMAL 1 LTO

ATMOSPHERIC CONDITIONS WORST CASE STABILITY CATEGORY 6 WIND SPEED (METERS/SECUND) 1.00 WIND DIRECTION TAILWIND TEMPERATURE (F) 38.00 MIXING DEPTH (METERS) 115.00

FROM I	RECEPTOR CONCENTRATION DATA											
START OF I TAKE-OFF I (KM) I	СО		AMS/CU. NOX	METER) PT	S02							
5	.78 .78 .77 .77 .79 .80 .72 .682 .52	23 22 22 22 23 24 24 23 22 21 21 27 16	07 006 005 005 005 004 004 003 003 003 002	00 00 00 00 00 00 00 00 00 00 00 00 00	.01 .01 .01 .01 .01 .01 .01 .01							

TABLE C-30. A-37 WORST CASE DOWNFIELD CONCENTRATIONS

AIRCRAFT A 37 NORMAL 1 LTO
ATMUSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY 6
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

FROM I START OF I	18313B	ECEPTOR CO	NCENTRAT	TON DATA	in Table
TAKE-OFF I	CO		AMS/CU. NOX	METER) PT	SU2
5 1	2.86	.40 .37	.07	0.00	.03
7 1	2.44	. 35	.05	0.00	.03
9 1	2.35	.34	.05	0.00	.02
10 1	2.26	•34	.04	0.00	.02
13 1	2.14	• 34 • 33 • 32	.04	0.00	.02
17 1	1.74	.30	.03	0.00	.02
21 1	1.83	.21	.03	0.00	.02
27 I	1.63	.26	50.	0.00	.01
31 1 35 I	1.31	.21	-02	0.00	:01

TABLE C-31. B-52D/F WORST CASE DOWNFIELD CONCENTRATIONS

AIRCRAFT B 52D/F NORMAL 1 LTO
ATMOSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

FROM I		ECEPTUR C			
TAKE-OFF I	со	(MICHOG HC	HAMS/CU.	METER) PT	505
5 1	15.00	13.52	2.12	.30	.40
7 I	12.17	11.53 11.02 10.67	1.54	•24 •22 •20	•33 •31
10 1	11.47	10.40	1.36	.19	.26
15 1	10.61	9.64 9.10 8.57	1.10	.17 .15 .14	.24
19 1	8.86 8.33 7.85	8.05 7.57 7.13	.95 .89	.13	.21 .20
27 I 31 I 35 I	7.00	5.73 5.20	.74 .66	.10	11

TABLE C-32. B-52G WORST CASE DOWNFIELD CONCENTRATIONS

AIRCRAFT 8-52G NORMAL 1 LTO
AIMOSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

FRUM 1 START OF 1	RECEPTOR CONCENTRATION DATA					
TAKE-OFF I	CO	(MICROS	RAMS/CU.	METER) PT	502	
5 1	17.46	10.57	1.03	:17	.31	
7 1	14.88	14.15	1.22	.12	25	
10 1	13.72	13.07	1.02	10	.22	
	13.01	12.40	.89	.09	.20	
15 1	11.65	11.12	.72	.07	.18	
19 1	10.30	9.84	.60	.06	:15	
21 I 23 I 27 I	9.13	8.72 7.78	.52	.05	.14	
31 1	7.33	7.01	.41 .37	.04	:11	

TABLE C-33. B-52H WORST CASE DOWNFIELD CONCENTRATIONS

AIRCRAFT B 52 H NORMAL 1 LTO
ATMUSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY 6
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

FROM I	RECEPTOR CONCENTRATION DATA					
TAKE-OFF I	со	(MICHOG	RAMS/CU. NOX	PT	S02	
5 I	16.42	20.71	1.21	.19	.29	
7 1	13.89	17.54	.90	:14	.23	
9 I 10 I	12.74	16.11	.74	.12	.20	
	12.04	15.24	•64	.10	:17	
15 1	10.75	13.62	•54	.08	.16	
19 1	9.51	12.05	.43	.07	.14	
21 1	8.42	10.68	.37	.06	.13	
31 1	6.77	8.59	.33	.05	.11	
31 1	6.15	7.80	.26	.04	.09	

TABLE C-34. B-57A-E WORST CASE DOWNFIELD CONCENTRATIONS

AIRCRAFT B 57A-E NORMAL 1 LTO
ATMOSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY 6
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

START OF I	RECEPTUR CONCENTRATION DATA						
	СО		AMS/CU. NOX	METER)	502		
5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.35 2.35 2.00 2.00 2.00 1.94 1.97 1.55 1.55 1.55 1.51	3199999987543197	005 005 004 004 000 000 000 000 000 000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	04 03 03 03 02 02 02 02 02 01 01		

TABLE C-35. B-57F WORST CASE DOWNFIELD CONCENTRATIONS

AIRCRAFT 8-57 F NORMAL 1 LTO
ATMOSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY 6
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

FROM I START OF I TAKE-OFF I (KM) I	RECEPTOR CONCENTRATION DATA					
	CO		AMS/CU. N	ETER) PT	S02	
5 6 7 8 9 11 11 11 11 11 11 11 11 11 11 11 11 1	1.81 1.56 1.55 1.55 1.56 1.50 1.54 1.50 1.43 1.37 1.30 1.23 1.11	2.06 1.94 1.94 1.95 1.96 1.88 1.87 1.65 1.65 1.65 1.65 1.65	.29 .24 .21 .17 .16 .13 .11 .10 .09 .07	.05 .03 .03 .03 .02 .02 .02 .02 .01	044 044 044 043 044 044 044 044 044 044	

TABLE C-36. C-5 WORST CASE DOWNFIELD CONCENTRATIONS

AIRCHAFT C 5

NORMAL 1 LTO

Almuspheric conditions worst case Stability Category 6 wind speed (Meters/Second) 1.00 wind direction tailwind temperature (F) 38.00 mixing depth (Meters) 115.00

I DISTANCE I FRUM I START OF I TAKE-OFF I (KM)	RECEPTOR CONCENTRATION DATA (MICROGRAMS/CU. METER) CO HC NOX PT SOZ				
1 56 1 7 89 1 10 11 15 1 17 17 17 17 17 17 17 17 17 17 17 17 17	1 5.42 1 5.10 4.94 1 4.85 4.85 4.84 1 4.82 4.72 4.30 1 3.66 1 3.66 1 2.70	1.85 1.75 1.66 1.66 1.65 1.56 1.40 1.33 1.26 1.13	4.47 3.51 2.89 2.20 1.81 1.55 1.32 1.01 1.01 1.01	.01 .00 .00 .00 .00 .00 .00 .00 .00	.23 .19 .17 .14 .14 .13 .12 .11 .10 .09 .09 .08

TABLE C-37. C-5LS WORST CASE DOWNFIELD CONCENTRATIONS

AIRCHAFT C-5 LS

NORMAL 1 LTO

ATMOSPHERIC CONDITIONS WORST CASE STABILITY CATEGORY 6 WIND SPEED (METERS/SECOND) 1.00 WIND DIRECTION TAILWIND TEMPERATURE (F) 38.00 MIXING DEPTH (METERS) 115.00

START OF I	RECEPTOR CONCENTRATION DATA						
TAKE-OFF I	со	(MICROGI	RAMS/CU. M NOX	ETER) PT	S02		
5 1 7 1 8 1 10 1 113 1 115 1 117 1 123 1 217 1 213 1 213 1 217 1 31 35 1	4.85 3.87 3.66 3.50 3.50 3.08 3.08 3.08 3.08 3.08 3.08 3.08 3.0	1.23 1.15 1.11 1.09 1.07 1.05 1.03 .98 .98 .81 .76 .72	3.48 2.86 2.47 1.97 1.63 1.42 1.023 .85 .75 .69	01 01 01 01 00 00 00 00 00 00 00	16 14 13 11 11 10 10 08 08 07 07		

TABLE C-38. C-7 WORST CASE DOWNFIELD CONCENTRATIONS

AIRCRAFT C 7 NORMAL 1 LTO
ATMOSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY 6
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

FROM I	R	ECEPTOR CO	NCENTHATI	ON DATA	
START OF I TAKE-OFF I (KM) 1	CO	(M1CHOGH HC	AMS/CU. M	ETER) PT	Suz
5 II 6 II 8 II 10 II 113 II 115 II 127 II 227 II 227 II 231 II 35 II	547 •442 •	30 30 30 30 30 30 30 30 30 30 30 30 30 3	.10 .09 .08 .08 .07 .07 .00 .05 .05 .00 .00 .00 .00 .00 .00 .00	.02 .01 .01 .01 .01 .01 .01 .01 .01	.02 .02 .02 .02 .01 .01 .01

TABLE C-39. C-9 WORST CASE DOWNFIELD CONCENTRATIONS

AIRCHAFT C 9 NORMAL 1 LTO
ATMOSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

DISTANCE I	RECEPTOR CONCENTRATION DATA					
START OF I	co	(MICHOGH HC	AMS/CU.	ETER) PT	502	
5 [1.09	-22	. 20	•11	.06	
6 1	.99	.20	.16	.09	• 05	
, i	. 89	.18	:13	.06	.04	
9 i	.86	.17	:11	.06	.04	
10 I	.84	.17	iii	.05	.03	
11 I	.82	.10	.10	.05	.03	
13 [. 18	.15	.09	.04	.03	
15 1	.73	•14	.08	.04	•03	
17 1	•69	.14	.07	.03	.02	
19 1	•64	•13	.06	.03	-02	
21 I	•60	:12	.06	•03	.02	
27 1	.57	:10	.05	•03	.02	
31 1	•45	.09	.03	.02	.02	
35 1	.41	.08	.04	50.	.01	

TABLE C-40. C-97 WORST CASE DOWNFIELD CONCENTRATIONS

AIRCHAFT C 97 NORMAL 1 LTO

ATMOSPHERIC CONDITIONS WORST CASE STABILITY CATEGORY 6 WIND SPEED (METERS/SECOND) 1.00 WIND DIRECTION TAILWIND TEMPERATURE (F) 38.00 MIXING DEPTH (METERS) 115.00

FROM I START OF I					
TAKE-OFF I (KM) I	CO	HC	RAMS/Cu. I	PT	SUZ
5 II 7 II 89 II 10 II 113 II 113 II 123 II 124 II 125 II 126 II 127	36.23 37.25 27.25 27.25 27.25 21.05 17.74 16.79 13.66 11.81 10.40 9.39	1.84 1.53 1.46 1.46 1.46 1.46 1.32 1.05 1.05 1.05	.31 .27 .23 .18 .17 .16 .13 .11 .10 .09 .08	1.03 .89 .876 .70 .68 .64 .55 .48 .35	. 02 . 02 . 02 . 01 . 01 . 01 . 01 . 01 . 01

TABLE C-41. C-119 WORST CASE DOWNFIELD CONCENTRATIONS

AIRCHAFT C119

NORMAL 1 LTO

ATMOSPHENIC CONDITIONS WORST CASE STABILITY CATEGORY 6 WIND SPEED (METERS/SECOND) 1.00 WIND DIRECTION TAILWIND TEMPERATURE (F) 38.00 MIXING DEPTH (METERS) 115.00

DISTANCE I	RE	ECEPTOR CO	NCENTHATI	ON DATA	
START OF I TAKE-OFF I (KM) I	co		AMS/CU. M NOX	ETER)	502
5	7.11 6.06 5.38 4.88 4.51 4.20 3.95 3.53 3.92 2.92 2.68 2.31 2.02 1.80 1.62	637 65510 65551 65551 6551 6551 6551 6551 6	05 04 03 03 03 03 03 03 03 03 03 03 03 03 03	29 25 22 22 20 19 16 15 11 11 10 10 10	.01 .00 .00 .00 .00 .00 .00 .00 .00 .00

TABLE C-42. C-121 WORST CASE DOWNFIELD CONCENTRATIONS

AIRCRAFT C 121 NORMAL 1 LTO

ATMOSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY 6
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

FROM I START OF I	K	ECEPTOR CO	INCENTRATI	ON DATA	
TAKE-OFF I	co	(MICROGR HC	AMS/CU. M	ETER) PT	S02
5	27.88 23.77 20.99 17.36 16.16 15.08 11.34 11.34 11.47 19.00 7.92 7.92	1.41 1.26 1.17 1.13 1.12 1.11 1.11 1.07 1.03 .98 .80 .80 .73	24 220 116 117 118 119 119 119 119 119 119 119	7992853297 6553297 44197 3337	02 01 01 01 01 01 01 01 01

TABLE C-43. C-130A-E WORST CASE DOWNFIELD CONCENTRATIONS

AIRCHAFT C 130 NORMAL 1 LTO

ATMOSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

FROM I	RECEPTOR CONCENTRATION DATA						
START OF I TAKE-OFF I (KM) I	со		AMS/Cu. NOX	ETER) PT	502		
5 1	2.96	1.88	.92	•11	-15		
7 1	2.82	1.79	. 61	•10	.14		
8 1	2.07	1.71	.69	.09	.12		
	5.65	1.68	.64	.08	.12		
$\begin{array}{ccc} 10 & 1 \\ 11 & 1 \end{array}$	2.57	1.65	-61	.08	:11		
13 1	2.38	1.54	.52	.07	:10		
15 1	2.23	1.44	.48	.07	.09		
14 1	2.09	1.35	• 44	•06	• 08		
21 1	1.95	1.26	.40	.06	.08		
23 1	1.71	1.11	.35	.05	.07		
27 I 31 I	1.52	.98	.30	.05	.06		
31 I	1.36	.88	.27	.04	.05		

TABLE C-44. C-130H WORST CASE DOWNFIELD CONCENTRATIONS

AIRCRAFT C130 H NORMAL 1 LTO

ATMOSPHERIC CONDITIONS WORST CASE STABILITY CATEGORY 6 WIND SPEED (METERS/SECOND) 1.00 WIND DIRECTION TAILWIND TEMPERATURE (F) 38.00 MIXING DEPTH (METERS) 115.00

FRUM I	R	ECEPTOR C	DNCENTRAT	ION DATA	
START OF I- TAKE-OFF I (KM) I	Cυ	(MICHOGI HC	RAMS/CU.	METER) PT	S02
5 1	1.21	.91	1.03	.08	.14
0 1	1.14	.87	.88	.07	.12
1 1	1.10	. 85	•77	.06	.11
8 1	1.07	.83	.70	.06	.10
9 1	1.05	-82	.64	.05	.10
10 1	1.03	.81	.59	.05	.09
11 1	1.00	.79	•55	.05	.09
13 1	. 94	.75	.48	.04	.08
15 1	.89	.70	.43	.04	.07
1/ 1	.63	.66	.39	•03	.07
19 I	.71	.62	.36	.03	.06
21 1	.14	•58	.33	.03	.06
23 1	.68	.54	•30	.03	. 05
27 1	.00	.40	.26	.02	.05
31 1	.54	.43	.23	.02	.04
35 1	. 48	.39	.21	.02	. 04

TABLE C-45. C-135B WORST CASE DOWNFIELD CONCENTRATIONS

AIRCHAFT C 1358 NORMAL 1 LTO
ATMOSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

FROM I		ECEPTOR CO			
TAKE-OFF I	CO	(MICROGO HC	RAMS/CU. I	PT	502
5	6.03 5.77 5.70 5.90 5.91 6.96 5.76 5.26 5.26 5.26 5.31 4.11	7.43 7.13 7.10 7.10 7.24 7.40 7.53 7.61 7.49 7.49 6.31 5.71 5.71	1.44 1.22 1.07 .96 .88 .81 .75 .67 .60 .54 .50 .46 .43 .37	24 218 116 115 112 110 107 107 107 107 105 105	.20 .16 .15 .14 .13 .13 .13 .10 .00 .00 .00 .00

TABLE C-46. C-141 WORST CASE DOWNFIELD CONCENTRATIONS

AIRCRAFT C 141

NORMAL 1 LTO

ATMOSPHERIC CONDITIONS WORST CASE STABILITY CATEGORY 6 WIND SPEED (METERS/SECOND) 1.00 WIND DIRECTION TAILWIND TEMPERATURE (F) 38.00 MIXING DEPTH (METERS) 115.00

FRUM 1	н	ECEPTOR CO	NCENTHATI	ON DATA	
START OF I- TAKE-OFF I (KM) I	CO	(MICHOGR HC	AMS/CU. N	ETER)	S02
5 1	4.81	3.90 3.63	.76	.06	:11
6 1	4.31	3.51	.55	.04	.09
9 1	4.20	3.47	.49	.04	.08
10 1	4.21	3.49	•45	.03	.08
ii i	4.33	3.54	.38	.03	.07
13 I	4.30	3.52	. 34	.03	.07
15 1	4.18	3.43	.30	50.	.07
19 1	3.83	3.15	.25	.02	.06
21 1	3.64	2.99	.23	.02	. 05
	3.46	2.84	.22	- 05	.05
31 1	3.11	2.50	:19	.01	.04
35 1	2.57	2.11	:15	.01	.04

TABLE C-47. F-4C-D WORST CASE DOWNFIELD CONCENTRATIONS

AIRCHAFT F 4 NORMAL 1 LTO

ATMOSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY 6
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

START OF I					
TAKE-OFF I	со		AMS/CU. M	ETER)	SUZ
5 I 6 I 7 I 8 I	1.31 1.19 1.12 1.08 1.06	.23 .21 .21 .20 .20	•34 •29 •26 •23 •21	• 06 • 05 • 04 • 04	.08 .07 .06
10 I	1.05 1.04 1.01	.20 .20 .20	.20 .18 .16	.03 .03 .03	.05 .05 .04
17 I 19 I 21 I 23 I 27 I	.93 .88 .83 .78	.18 .17 .16 .16	.13 .12 .11 .11	20. 20. 20. 20.	.03 .03 .03

TABLE C-48. F-4E WORST CASE DOWNFIELD CONCENTRATIONS

AIRCRAFT F 4 E

NORMAL 1 LTO

ATMOSPHERIC CONDITIONS WORST CASE STABILITY CATEGORY 6 WIND SPEED (METERS/SECOND) 1.00 WIND DIRECTION TAILWIND TEMPERATURE (F) 30.00 MIXING DEPTH (METERS) 115.00

FROM I	K	ECEPTOR CO	NCENTRAL	ION DATA	
START OF I TAKE-OFF I (KM) I	СО		AMS/CU. I	METER)	502
5 I 6 I	.99	.17	•48	• 05	.09
8 1	.83 .80 .78	.15 .15 .15	•36 •32 •29	.04 .04 .03	.06
$\begin{array}{ccc} 10 & I \\ 11 & I \\ 13 & I \end{array}$.15	.15 .15 .14	.27 .25 .22	•03 •03 •03	.05
15 I 17 I 19 I	.69 .65	.14 .13 .13	.20 .18	.02 .02	.04
21 1	•58	.12	.15	20.	.03
27 I 31 I 35 I	• 44 • 40	.10 .09 .08	•12 •11 •10	•01 •01	.03

TABLE C-49. F-5A WORST CASE DOWNFIELD CONCENTRATIONS

AIRCHAFT F SA

NURMAL I LTU

ATMOSPHERIC CONDITIONS WORST CASE STABILITY CATEGORY 6 WIND SPEED (METERS/SECOND) 1.00 WIND DIRECTION TAILWIND TEMPERATURE (F) 38.00 MIXING DEPTH (METERS) 115.00

FROM I	К	ECEPTOR CO	NCENTHAT	ION DATA	
START OF 1 TAKE-OFF I (KM) I	CU		AMS/CU. NOX	METER)	502
5 1	2.66	.34	.07	0.00	.04
6 1	2.40	• 32	•06	0.00	• 0 3
4 1	2.25	.30	.05	0.00	.03
8 1	2.08	.29	.04	0.00	.02
10 1	2.03	.29	. 04	0.00	.02
11 1	1.98	.28	.04	0.00	.00
13 1	1.87	.27	.03	0.00	.02
15 1	1.77	• 26	.03	0.00	.02
17 1	1.66	.25	.03	0.00	.02
19 [1.55	:22	.02	0.00	.01
21 1	1.37	.21	.02	0.00	.01
27 1	1.22	.18	.02	0.00	.01
31 1	1.10	.17	.02	0.00	.01
35 1	. 49	.15	.02	0.00	.01

TABLE C-50. F-15 WORST CASE DOWNFIELD CONCENTRATIONS

AIRCHAFT F 15 NORMAL 1 LTO

ATMOSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

FROM I	K	ECEPTOR CO	INCENTRAT	ION DATA	
START OF I	CO	(MICROGR HC	AMS/CU.	METER)	502
5 Î	.16	.11	.31	.01	.07
6 1	.68	.10	.27	.01	.06
1 1	.64	.09	.24	.01	.06
8 I	-62	.09	.22	• 01	- 05
9 1	•60	.08	.20	.01	. 05
10 1	•60	.08	.19	.01	.05
11 [•59	.08	- 18	• 01	• 04
13 1	•57	.08	•17	• 01	• 04
15 1	• 55	.07	• 15	•01	• 04
10 1	•52	.07	• 14	.01	.04
19 I 21 I	•50	.06	.13	.01	.03
23 1	.44	.06	:11	.00	.03
27 1	.40	.05	:10	.00	.03
31 1	.36	.05	.09	.00	.02
35 I	• 33	.04	.08	.00	.02

TABLE C-51. F-16 WORST CASE DOWNFIELD CONCENTRATIONS

ATMOSPHERIC CONDITIONS WORST CASE STABILITY CATEGORY 6 WIND SPEED (METERS/SECOND) 1.00 WIND DIRECTION TAILWIND TEMPERATURE (F) 38.00 MIXING DEPTH (METERS) 115.00

FROM 1	K	ECEPTOR CO	NCENTRATI	ON DATA	
START OF I	CO	(MICROGH HC	AMS/CU. M NOX	ETER) PT	Su2
10 11 10 11 11 11 11 11 11 11 11 11 11 1	24 221 222 24 24 24 24 24 24 24 34 32 32 32 32 32 32 32	033 033 033 04 04 04 005 04 04 04	.26 .23 .18 .17 .16 .14 .13 .12 .11 .10 .08	.00 .00 .00 .00 .00 .00 .00	. 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

TABLE C-52. F-100 WORST CASE DOWNFIELD CONCENTRATIONS

AIRCRAFT F 100 NORMAL 1 LTO
ATMOSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY 6
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

PRUM I	н	ECEPTOR CO	NCENTRATI	ON DATA	
START OF I TAKE-OFF I (KM) I	CO		AMS/CU. M	ETER) PT	502
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.01 1.95 1.88 1.85 1.82 1.73 1.53 1.43 1.26 1.100	1.59 1.551 1.47 1.44 1.38 1.22 1.15 1.08 1.09 1.73	.27 .23 .28 .17 .16 .15 .11 .10 .09 .09 .07	200 200 200 200 200 100 100 100 100 100	.08 .07 .06 .05 .05 .05 .04 .04 .04 .03 .03

TABLE C-53. F-101 WORST CASE DOWNFIELD CONCENTRATIONS

AIRCRAFT F 101 NORMAL 1 LTO
ATMUSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY 6
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

DISTANCE I	К	ECEPTOR CO	NCENTRATI	UN DATA	
I START OF I	CO		AMS/CU. M	ETER) PT	502
1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.06 1.51 1.43 1.38 1.36 1.35 1.36 1.32 1.27 1.21 1.09 1.09 1.09	1.15 1.07 1.02 1.01 1.01 1.01 1.02 1.01 1.02 1.01 .94 .89 .89 .80 .72	.54 .46 .437 .331 .2331 .2220 .17 .16 .14 .11	08 07 06 06 05 04 04 03 03 03 02 02 02	.10 .09 .08 .07 .07 .06 .05 .05 .04 .04 .04 .03 .03

TABLE C-54. F-102 WORST CASE DOWNFIELD CONCENTRATIONS

AIRCRAFT F 102

NOHMAL 1 LTO

ATMOSPHERIC CONDITIONS WORST CASE STABILITY CATEGORY 6 WIND SPEED (METERS/SECUND) 1.00 WIND DIRECTION TAILWIND TEMPERATURE (F) 38.00 MIXING DEPTH (METERS) 115.00

FROM I	R	RECEPTOR CONCENTRATION DATA					
START OF I	CO		AMS/CU. NOX	ETER)	SUZ		
5	.81	.57	.27	.04	.09		
6	. 74	•53	.23	.04	.04		
1	. 70	•51	.20	.03	.04		
8	•69	•50	• 18	•03	• 0.		
10	.68	.52	.16	.03	.0.		
ii	.69	.52	.14	.02	.0.		
13 1	.68	.52	.12	.02	.03		
15	.66	•51	.11	.02	.02		
17	.63	.49	.10	.02	.0		
19	.61	• 47	.09	.01	.0		
21	. 58	.45	.08	.01	.02		
23	•55	•43	.08	•01	. 0		
2/	.49	• 39	.07	.01	.0.		
31 1	• 44	• 35	.05	.01	.0		

TABLE C-55. F-104C WORST CASE DOWNFIELD CONCENTRATIONS

AIRCRAFT F 104A NORMAL 1 LTO
ATMOSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY 6
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

FRUM I START OF I		ECEPTOR CO			
TAKE-OFF I	co		AMS/CU. M	ETER) PT	S02
5 1	2.08	.42	.23	.04	.07
8 1	1.96 1.92 1.90	.40 .39 .39	•19 •18 •17	.03 .03 .03	• 06 • 05
10 I 11 I 13 I 15 I	1.83	•36 •36 •34	.16 .15 .14	.03 .03 .03	.05 .05 .04
17 1	1.53 1.44 1.34	.32 .30 .28	:11 :11 :10	.02	.04
21 1 23 1 27 1	1.12	.26	.09	.02 .02	.03
31 I 35 I	1.00	.21	.07	.01	.02

TABLE C-56. F-104C WORST CASE DOWNFIELD CONCENTRATIONS

AIRCRAFT F1046

NORMAL 1 LTO

ATMOSPHERIC CONDITIONS WORST CASE STABILITY CATEGORY 6 WIND SPEED (METERS/SECUND) 1.00 WIND DIRECTION TAILWIND TEMPERATURE (F) 38.00 MIXING DEPTH (METERS) 115.00

FROM I	RECEPTOR CONCENTRATION DATA					
TAKE-OFF I	со		AMS/CU. I	ETER) PT	S02	
5 1	1.21	•26 •25	.29	.03	.06	
7 1 8 1	1.18	.25 .24 .24	.23	.03	.05	
10 1	1.13	.24	•20 •18 •17	.02 .02	• 05 • 04 • 04	
13 1	1.03	.22 .21 .19	.16	50.	.04	
21 1	.84 .79	.18 .17	13	.01 .01	•03 •03	
27 1	.74	.16	.10	.01	.03	
31 1 35 1	.53	:13	.08	.01	.02	

TABLE C-57. F-105 WORST CASE DOWNFIELD CONCENTRATIONS

AIRCHAFT F 105 NORMAL 1 LTO
ATMOSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

FROM I	K	ECEPTOR CO	NCENTRAT.	ION DATA	
START OF I- TAKE-OFF I (KM) 1	CO	(MICROGH HC	AMS/CU.	METER) PT	S02
5 1	2.07	1:24	:45	.06	.07
1 1	1.94	1.17	.35	.04	.06
9 1	1.92	1.16	.32	.04	:05
10 I	1.87	1.14	.27	.03	.05
11 [1.85	1.12	.25	.03	.05
13 1	1.68	1.02	.20	.02	.04
17 1	1.58	.96	.18	50.	.04
21 1	1.39	.85	.16	.02	.03
53 1	1.31	• 79	• 15	-02	.0.
27 I 31 I	1.16	•71	:13	-02	.03
35 Î	. 45	.58	.10	. ŏ i	.02

TABLE C-58. F-105 WORST CASE DOWNFIELD CONCENTRATIONS

AIRCRAFT F 106 NORMAL 1 LTO
ATMOSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY 6
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

START OF I					
TAKE-OFF I (KM) 1	со		AMS/CU. NOX	PT	S02
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.41 1.29 1.20 1.19 1.19 1.19 1.18 1.15 1.10	1.00 .92 .89 .88 .90 .91 .92 .90 .87	.535 .455 .455 .329 .227 .224 .219	.04 .03 .03 .02 .02 .02 .02	.09 .08 .07 .06 .05 .05 .04
21 I 23 I 27 I 31 I 35 I	1.00 .95 .86 .78	.79 .75 .68 .62	.16 .15 .13 .12	• 01 • 01 • 01 • 01	.03 .03 .02

TABLE C-59. F-111A WORST CASE DOWNFIELD CONCENTRATIONS

AIRCHAFT F 111A NORMAL 1 LTO
ATMOSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

FROM I	RECEPTOR CONCENTRATION DATA					
START OF I	со	(MICROGR HC	AMS/CU. NOX	ETER) PT	S02	
5 I 1 6	2.80	2.10	.19	.12	•11	
8 1	2.54 2.48 2.43	1.96	•59 •53 •48	.08 .07	.05	
10 I 11 I 13 I	2.39	1.90	•44	.06	.07	
15 1	2.12	1.72	•36 •32 •29	.05 .04 .04	.06	
19 21 1 23	1.87 1.76 1.65	1.43	.21	.03 .03	.04	
2/ I 31 I 35 I	1.47 1.32 1.19	1.20	.20 .18 .15	20. 20.	.04	

TABLE C-60. F-111D WORST CASE DOWNFIELD CONCENTRATIONS

AIRCRAFT F1110 NORMAL 1 LTO
ATMUSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY 6
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

FRUM I	K	ECEPTOR C	ONCENTRAT	ION DATA	
START OF I TAKE-OFF I (KM) I	co	(MICHOG	RAMS/CU.	METER)	502
5 I 6 I	2.10	./1	1.17	50.	:14
1 1	1.91	.67	.69	.01	.11
8 1	1.86	.66	.80	.01	:10
9 1	1.83	.66	.73	.01	.09
10 1	1.80	. 65	.67	.01	.09
11 1	1.76	.64	.62	.01	.08
13 1	1.68	.62	•55	.01	.08
15 1	1.59	.59	.49	.01	.0
17 1	1.49	•55	.44	.01	.06
19 1	1.40	•52	• 40	• 01	• 06
21 1	1.32	.49	•37	.01	.05
27 Î	1.10	.41	.30	.00	.04
3i i	.99	.37	.26	.00	.04
35 1	.89	.33	.23	.00	.03

TABLE C-61. F-111F WORST CASE DOWNFIELD CONCENTRATIONS

AIRCRAFT FILIF NORMAL 1 LTO
ATMOSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

FROM I	K	ECEPTOR C	DNCENTHAT	ION DATA	
TAKE-OFF 1 (KM) 1	СО	(MICHOGI HC	RAMS/Cu. NOX	METER)	S02
5 i	2.14	.73	1:17	50.	:14
7 1	1.93	.68	.89	.02	.17
8 1	1.88	.67	.80	.01	.10
9 1	1.84	.66	.73	.01	.09
10 1	1.81	.65	.67	.01	.05
11 1	1.78	• 65	.62	.01	.08
13 1	1.69	•62	• 55	•01	.08
15 I	1.50	•59	.49	•01	.06
19 1	1.41	.52	-40	.01	.06
21 1	1.32	.49	.37	.01	.05
21 1	1.24	.46	.34	.01	. 05
27 1	1.10	.41	.30	.00	.04
31 I	.99	.37	.21	.00	. 04
35 I	.89	. 34	.23	.00	.03

TABLE C-62. KC-135A WORST CASE DOWNFIELD CONCENTRATIONS

AIRCRAFT KC 135A NORMAL 1 LTO
ATMUSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY 6
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

FROM I	R	ECEPTUR CO	INCENTRAT !	ON DATA	
START OF I TAKE-OFF I (KM) I	CO		AMS/CU. M	ETER) PT	S02
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.86 8.02 7.12 7.12 7.12 7.16 7.16 7.16 7.14 7.14 7.14 7.14 7.14 7.14 7.14 7.14	7.08 6.00 6.07 6.07 6.07 6.07 6.07 6.07 6.07	5237296185208420 655444185208420	06 05 04 03 03 03 03 03 02 02 02 02 02 01	.18 .16 .13 .12 .12 .11 .10 .09 .09

TABLE C-63. O-1 WORST CASE DOWNFIELD CONCENTRATIONS

ATRCRAFT 0 1 NORMAL 1 LTO
ATMOSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY 6
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
JEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

START OF 1					
TAKE-OFF I	со		AMS/CU. M	ETER) PT	502
5 1	.69	.05	.00	.02	0.00
0 1	.53	.04	.00	.02	0.00
9 1	.48	.04	.00	.02	0.00
	• 44	• 04	• 00	.02	0.00
10 4	.41	.04	.00	.02	0.00
13 1	. 35	.04	.00	.02	0.00
15 I	.32	.03	.00	.01	0.00
17 1	.30	.03	.00	.01	0.00
19 [•27	• 03	.00	-01	0.00
21 1	.25	.03	.00	.01	0.00
27 1	.21	.03	.00	.01	0.00
31 1	.19	.02	.00	.01	0.00
35 1	.17	.02	.00	.01	0.00

FLED

AD A067262

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-

TABLE C-64. O-2 WORST CASE DOWNFIELD CONCENTRATIONS

AIRCHAFT 0 2

NORMAL 1 LTO

ATMUSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY 6
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION FAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

PRUM I START UF I	KTAO HOL	ECEPTOR CO	MOTHER DE	ON DATA	1 Bush
TAKE-OFF I	CO	(MICROGR	AMS/CU.	METER) PT	502
5 II 6 II 7 II 10 II 11 II 12 II 17 II 19 II 19 II 19 II 19 II 19 II 19 II 10 II 11 II 12 II 13 II 14 II 15 II 16 II 17 II 18 II	1.42 1.24 1.07 1.07 1.03 1.01 .99 .96 .92 .88 .84 .79 .75	14 12 11 11 11 12 12 12 11 11 11 10 09 08	.01 .00 .00 .00 .00 .00 .00 .00 .00	07 06 055 055 055 055 055 064 044 043	.00 .00 .00 .00 .00 .00 .00 .00 .00

TABLE C-65. OV-10 WORST CASE DOWNFIELD CONCENTRATIONS

AIRCHAFT OVIO NORMAL 1 LTO

ATMUSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY 6
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

FROM 1	R	ECEPTOR CO	NCENTRAT	ION DATA	
START OF I	CO	(MICHOGH HC	AMS/CU. NOX	METER) PT	502
5 67 89 01 11 11 11 11 11 11 11 11 11 11 11 11	17 14 13 13 13 13 14 13 12 12 11 10 09	.04 .04 .04 .04 .04 .04 .04 .04 .03 .03 .03	11 09 08 07 07 07 07 00 06 00 05 04	.01 .01 .01 .00 .00 .00 .00 .00	.01 .01 .01 .01 .01 .01 .01 .01

TABLE C-66. T-33 WORST CASE DOWNFIELD CONCENTRATIONS

AIRCHAFT T 33 NORMAL 1 LTO
ATMOSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY 6
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

FROM I	RECEPTOR CONCENTRATION DATA				
TAKE-OFF I	CO	(MICHOGH HC	AMS/CU. N	ETER) PT	S02
5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.85 1.65 1.46 1.40 1.36 1.32 1.23 1.23 1.08 1.01	24 -22 -21 -20 -19 -19 -17 -16 -15 -14 -13 -11	.04 .04 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03	.01 .01 .01 .01 .01 .01 .01 .01	.02 .02 .02 .01 .01 .01 .01

TABLE C-67. T-37 WORST CASE DOWNFIELD CONCENTRATIONS

AIRCRAFT T 37 NORMAL 1 LTO

ATMOSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY 6
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

FROM I		ECEPTOR CO	NCENTRAL	ION DATA	1 30
START OF I	co	(MICROGH HC	AMS/CU.	METER) PT	SOS
5 1	1.00	:13	50.	.00	.01
9 1	.85 .81 .78		20.	•00	.01
10 1 11 1 13 1	.76 .74 .70	.10 .10 .10	.01 .01	•00 •00 •00	.01 .01
17 1	•61 •57	.09 .08	.01 .01	.00	01
23 I 27 I 31 I	.50 .45	.07 .06	.01 .01	.00	.00
35	. 36	.05	:01	:00	:00

TABLE C-68. T-38 WORST CASE DOWNFIELD CONCENTRATIONS

AIRCHAFT T 38 NORMAL 1 LTO
ATMOSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY 6
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

DISTANCE I	ATAU NO	ECEPTOR CO	NCENTRAT	ION UATA	
START OF I	CU	(MICROGR	AMS/CU.	METER)	SUZ
5678901151111111111111111111111111111111111	2.31 2.32 2.03 1.99 1.99 1.59 1.59 1.49 1.22 1.01	36 34 33 31 31 31 32 27 24 20 18	04 04 03 03 03 03 03 03 02 02 02 02 01	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	03 02 02 02 02 02 02 01 01 01

TABLE C-69. T-39 WORST CASE DOWNFIELD CONCENTRATIONS

Alechaft 1 39 NORMAL 1 LTO

ATMOSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY 6
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

FROM I	**************************************	ECEPTOR C	UNCENTRAT	ION DATA	enee 1
START OF I	co	(MICHOG	RAMS/CU. NOX	METER) PT	SUZ
5	6554209752963 6554209752963	.08 .07 .07 .06 .06 .06 .05 .05 .04 .04	E0. E0. E0. E0. E0. E0. E0. E0. E0. E0.		.01 .01 .01 .01 .01 .01 .01 .01 .01 .01

TABLE C-70. T-41 WORST CASE DOWNFIELD CONCENTRATIONS

AIRCRAFT T 41 NORMAL 1 LTO
AIMUSPHERIC CONDITIONS WORST CASE
STABILITY CATEGORY 6
WIND SPEED (METERS/SECOND) 1.00
WIND DIRECTION TAILWIND
TEMPERATURE (F) 38.00
MIXING DEPTH (METERS) 115.00

FROM I	SAFAU V	ECEPTOR CO	MCENIKATI	ON DATA	
TAKE-OFF I	со	(MICROGH HC	AMS/CU. M	ETER) PT	S02
5	. /3 . 64 . 57 . 53 . 50 . 48 . 40 . 37 . 35 . 31 . 27 . 25 . 25	07 06 06 05 05 05 05 05 04 04 04	.00	03 03 03 03 02 02 02 02 02 02 02 02 02	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

(CO SIBLE DERECT APPENDIX DESERVED APPENDIX DESERVED

EXAMPLE ACEE APPLICATION

Super Air Force Base is a UPT training base. An environmental assessment must be made for increased number of training missions to be flown the next fiscal year. The downfield pollution concentrations must also be determined for Home City. Home City is citing the AF base for its CO concentrations during the morning missions.

The increase in aircraft operations is as follows:

	Increased LTOs	Increased TGOs
	(per year)	(per year)
T-37	1,500	250
T-38	1,000	200

These increased T-38 LTOs will result in a 5-minute queue delay before takeoff.

STEP 1 - CURRENT AIRCRAFT OPERATIONS

From base operations, the following operational data were collected for the current fiscal year.

	LTOs (per year)	THE SECTION A	TGOs	(per year)
T-37	15,000			2895
T-38	16,525			2982

STEP 2 - MODIFY EMISSIONS FOR THE QUEUING

Since every item in the LTO cycle compared favorably with the ACEE time in mode, the ACEE LTO cycle is used. The only emissions that have to be added are the queue time.

The idle engine mode is used during the queue. Locating the idle emission factors in the Table 1, the emissions per 5-minute queue can be calculated:

Engine J85-5:

EGM = Idle

NOEG = 2

TIMOD = $5 \min x 60 \text{ s/min} = 300 \text{ s}$

Emissions (POL) (g) = FLFLW(idle) (kg/s) x TIMOD(s) X EMFAC(idle, CO)

co	3,043.8	0.057	300	178.0
H C	513.0	0.057	300	30.0
H C NO Y PM*	22.2	0.057	300	1.3
PMX	0.05	0.057	300	0.003
so	17.1	0.057	300	1.0

These factors are added to the LTO cycle emissions. Thus, the LTO emissions are presented below:

	СО	C,H	NOX	PM	so _x
LTO Total (metric tons)	4.0x10 ²	6.1x10 ³	6.0x10 ⁻⁴	2.3x10 ⁻⁶	3.5x10 ⁻⁴
(From Table A-26					
+ Queue Emissions (metric tons)	3.0x10 ⁻³	5.1x10 ⁻⁴	2.2x10 ⁻⁵	5.0x10 ⁻⁸	1.7x10 ⁻⁵
Modified LTO Emissions (metric tons)	4.3x10 ⁻²	6.6x10 ⁻³	6.2x10 ⁻⁴	2.4x10 ⁻⁶	3.7x10 ⁻⁴

Note: Queue emissions were converted to metric tons.

STEP 3 - CALCULATE ANNUAL POLLUTANT EMISSIONS

The number of operations LTO and TGO are multiplied by the emission factors. The annual emissions computed by this process are presented below:

		Current	Yr (ops/yr)	+ Additional	l (ops/yr)	= Total (ops/yr)	
T-37	(LTOs)	15	,000	1,500		= 16,500	
	(TGOs)	1	,895	250		= 2,145	
T-38	(LTOs)	16	,525	1,000		= 17,525	
	(TGOs)	1	,982	800		= 2,182	
			СО	C,H	NO _X	PM SO _x	
T-37	(LTOs/yr	•)	16,500	16,500	16,500	16,500 16,500	
	llutant E	missions	1.5x10 ⁻²	2.0x10 ⁻³	3.0x10 ⁻⁴	5.6x10 ⁻⁵ 1.4x10 ⁻⁴	
		A-(11) A	-25)			\$ = 28080	_
		t Annual etric to		33.0	5.0	0.9 2.3	

Projected Pollutant Annual Emissions (metric tons)

Water	СО	C _x H _y	NO _X	PM	sox
T-37 (LTOs)	247.5	33.0	5.0	0.9	2.3
T-37 (TGOs)	4.5	0.3	0.3	0.0	0.1
T-38 (LTOs)	701.0	106.9	10.5	0.0	6.1
T-38 (TGOs)	8.5	0.5	0.4	0.0	0.2
Total A/C Emissions	961.5	140.7	16.2	0.9	8.7

Change in Emissions

The H C , NO , PM and SO emissions are below the 227 metric tons per year. However, CO annual emissions exceed 227 metric tons. Additional analysis would be required. This should include a comparison with base, local and regional emission inventories. Aircraft nationwide contribute only one percent of the total annual emissions. Remember, ACEE is a screening device; closer examination might or might not predict an air pollution problem from aircraft.

STEP 4 - AIR QUALITY ANALYSIS

The greatest number of aircraft operations during a one-hour period is found from aircraft operations records. An interview with the operations personnel will give a good estimate of greatest number LTO/hour. An interview is a good method to gather the data for quick assessments. The maximum number of LTOs/hour is 22 at 0800 hrs which includes 10 T-37s and 11 T-38s.

The particulate dispersion curve is used to make a quick assessment. Using Table 2, the T-37 and T-38 group number is 2 for CO. The T-38 group number is 3. Home City is located 30 km downfield from start of runway roll. The worst case downfield CO concentration is 0.4 mg/m (T-37) and 1.1 mg/m (T-38) (Figure 4). The one-hour pollution concentrations are:

$$(0.4 \text{ Mg/m}_3^3/\text{LTO}) \times (10 \text{ T}-37 \text{ LTOs/hr}) = 4.0 \text{ Mg/m}_3^3$$

 $(1.1 \text{ Mg/m}^3/\text{LTO}) \times (11 \text{ T}-38 \text{ LTOs/hr}) = 12.1 \text{ Mg/m}_3^3$
Total CO at 30 km = 16.1 Mg/m

The worst case one-hour CO ground level concentration at 30 km downfield (Home City) is 16.1 mg/m using the downfield dispersion curves.

The aircraft pollution concentration T-37 and T-38 tables in Appendix C can be used to make more accurate calculations at the 30-km point. Using the concentration values in the appendix, the 30-km downfield CO concentrations are computed:

 $(0.41 \text{ Mg/m}_3^3/\text{T}-37 \text{ LTO}) \times (10 \text{ T}-37 \text{ LTOs/hr}) = 4.1 \text{ Mg/m}_3^3$ $(1.15 \text{ Mg/m}/\text{T}-38 \text{ LTO}) \times (11 \text{ T}-38 \text{ LTOs/hr}) = 12.6 \text{ Mg/m}_3^3$ Total CO at 34 km 16.7 Mg/m³

The 31-km worst case CO concentration is 16.7 Mg/m^3 or 0.01 Mg/m^3 using the downfield concentration tables (C-67 and C-68).

The primary and secondary NAAQS CO are 40 mg/m³ maximum one-hour concentrations not to be exceeded more than once per year. The maximum one-hour concentration calculated using ACEE was 0.01 mg/m³. The computation is far less than the primary and secondary NAAQS for CO. Therefore, the ACEE result is valid and predicts that aircraft CO concentration contributions are negligible over Home City. ACEE predicts aircraft concentrations only. Other base air pollution sources are not considered for analysis.

THE WORLD SELECTION OF THE STATE OF A STATE OF THE STATE

INITIAL DISTRIBUTION

	0101111	
HQ AFSC/DEV	1	AFETO/DEV
HO AFSC/SGB	1	USAFSAM/EDE
HQ AFSC/SGPA	1	HQ AFISC
HQ TAC/DE	1	HQ AUL/LSE
HQ TAC/DEEV	1	HQ USAFA/Library
HQ TAC/SGPA	1	Det 1 AFESC/TST
HQ SAC/DEPA	1	1 MSEW
HQ SAC/DEPV	1	OUSDR&E
HQ SAC/SGPA	. 1	USAF Hospital, Wiesbaden
HQ USAFE/DEPV	1	Argonne National Laboratory
HQ USAFE/SG	1	AFWAL/CC
HQ MAC/DEPM	1	USAFRCE/ER
HQ MAC/DEEE	1	Det 1 AFESC/ECC
HQ MAC/SGPE	1	
HQ PACAF/DEMU	1	
HQ PACAF/SGPE	1	
HQ ADCOM/DEEV	1	
HQ ADCOM/SGPAP	1	
HQ USAFSS/DEE	1	
HQ USAFSS/DEMM	1	
HQ AFCS/DEEE	1	
HO ATC/DEPV	1	
HQ ATC/SGPAP	1	
HQ AAC/DEV	1	
HQ AAC/SGB	1	
HQ AFLC/DEPV	1	
HQ AFLC/SGB	1	
HO AFLC/MANT	1	
HQ AFLC/MMRF	1	
USAFRCE/WR	1	
USAFRCE/CR	1	
Naval Air Propulsion Ctr	1	
Naval Envmtl Support Office	1	
ADTC/CZ	1	
DDC/DDA	2	
HQ AFSC/DL	1	
HQ AFSC/SD	1	
HQ USAF/LEEV	1	
HQ USAF/SGPA	1	
OSAF/MIQ	1	
OSAF/OI	1	
AFIT/DE	1	
AFIT/Library	1	
National Science Foundation	1	
EPA/ORD		
USA Chicf, R&D/EQ	1	
USN Chief, R&D/EQ	1	
USAFOEHL/CC	1	
USAFOEHL/ECA		

AD-A067 262L ABERDEEN PROVING GROUND MD
DIRECT DETERMINATION OF TOTAL ZINC IN MIXED PAINT PIGMENTS(U)
JUN 55 M SWANN
LSD R 249
DOD 0 DOD ONLY

END DATE 1-80

DDC

OF

AD. A067262

MURROLDIN RESCLUTION TEST CHAST

SUPPLEMENTARY

INFORMATION

ERRATA

CEEDO-TR-78-33 - Aircraft Air Pollution Emission Estimation Techniques - ACEE

HQ AFESC/RDVC Tyndall AFB FL 32403

- 1. Page No. 23 Change "Using Figure 6" to read "Using Figure 5."
 Change all "mg/m" to read "µ/m"."
 - Page No. 54 Change "1.2 E 02 = 1.2 x 10^{-1} = 0.02" to read "1.2 E 02 = 1.2 x 10^{-2} = 0.012." - Change "1.2 E + 02 = 1.2 x 10^{2} = 20" to read "1.2 E + 02 = 120.0."
 - Page No. 100 Change "(From Table A-41)" to read "(From Table A-26)."
 Change "(from Table A-40)" to read "(from Table A-25)."
 - Page No. 101 Change "Change in Emissions (Percent)" to read "Change in Emissions."
 Change all "mg/m³" to read "µg/m³."
 - Page No. 102 Change all "mg/m3" to read "µg/m3" except for "40 mg/m3" and "0.02 mg/m3."

2. This errata is unclassified.

HAROLD A. SCOTT, 1st Lt, USAF

Project Officer