

NOVEMBER 1982

MDC H0145

**SPACE STATION NEEDS,
ATTRIBUTES AND ARCHITECTURAL OPTIONS**

**Midterm Main Briefing
16 November 1982**

COPY NO 9

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY

**MCDONNELL
DOUGLAS**

**SPACE STATION NEEDS,
ATTRIBUTES AND ARCHITECTURAL OPTIONS**

**Midterm Main Briefing
16 November 1982**

NOVEMBER 1982

MDC H0145

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY-HUNTINGTON BEACH

5301 Bolsa Avenue, Huntington Beach, California 92647 (714) 896-3311

**SPACE STATION
NEEDS, ATTRIBUTES, AND
ARCHITECTURAL OPTIONS STUDY
NASA HEADQUARTERS**

Midterm Review

16 November 1982

A1

MDAC SPACE STATION MIDTERM BRIEFING

AGENDA

- Summary — Dave Wensley

- Mission Requirements (Task 1)

- Methodology - Dave Riel

- User Interaction - Dr. Harry Wolbers

- Science and Applications Missions - Dr. Harry Wolbers

- Commercial Missions

- Mission Candidates - Dr. Harry Wolbers

- Electrophoresis - Jim Rose - MDAC - St. Louis

- Selected Missions - Dr. Myron Weinberg - Booz, Allen & Hamilton

- Technology and Operational Missions

- National Security Missions (Summary)

- Missions Requirements Summary

} **Dave Riel**

A2

AGENDA (CONT)

- **Programmatics (Task 3) — Bob Cowls**

- Funding Model
- Element Costs
- Program Costs

- **Mission Implementation (Task 2) — Bill Nelson**

- Methodology
- Architectural Options
- Strawman Program

- **National Security Missions (DoD Task 4) — Dave Riel** **(Classified Session)**

- **Discussion**

■ Summary — Dave Wensley

- MDAC Team Organization
- Study Approach
- Progress Versus Plan
- Results to Date
- Midterm Conclusions (Trends)

A4

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY
President – John F. Yardley

**MCDONNELL DOUGLAS
TECHNICAL SERVICES COMPANY**
Vice President
General Manager
R. K. Jacobson
■ Florida ■ Huntsville ■ Houston

ST. LOUIS
Vice President
General Manager
E. F. Branahl

HUNTINGTON BEACH
Vice President
General Manager
C. J. Dorrenbacher

TITUSVILLE
Vice President
General Manager
T. W. Stephens

A5

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY HUNTINGTON BEACH

A6

MDAC-HB STUDY ORGANIZATION (U)

A7

SPACE STATION HERITAGE

A8

MDAC SUPPORT TEAMS

Consultants

- Booz, Allen & Hamilton
 - Commercial Missions
 - Benefits Analysis
- MDAC — St. Louis
 - Commercial Missions
- Stanford Research Institute
 - National Defense Missions
- Dr. John Logsdon
 - Program Planning

Mission Advisory Panels

- Science and Applications
- Commercial Missions
- National Security Missions

Subcontractors

- Ford Aerospace
 - Communications Missions
 - Ground Data System
- Hamilton Standard
 - Environmental Control and Life Support Systems
- Bendix
 - Navigation and Control
- Vought/LTV
 - Teleoperators

- Operational Missions
- Technology Missions

MDAC TEAM IS PROMOTING SPACE STATION

- 6 TV Interviews
- 5 Press Conferences and News Releases
- 2 Papers and Publications
- 12 Presentations and Briefings
- 8 Meetings With Private Sector
- 15 Meetings With Government Sector — Political
- 11 Meetings With Foreign Sector

Total: 59 Events to Midterm

A10

STUDY OBJECTIVES

DEFINE

- The Missions
- Requirements They Impose:
 - For Manned Space Station
 - For Supporting Orbital Facilities
 - For Transportation
- Architectural Solutions:
 - To Implement Above Requirements
- Program Concepts:
 - Content
 - Costs
 - Schedules

A11

MISSION ANALYSIS

Requirements

A12

MANNED SPACE STATION — CORE ELEMENT OF THE SPACE STATION SYSTEM

VFY233

MDAC STUDY APPROACH

A14

FEATURES OF MDAC STUDY APPROACH

- Complete First Study Cycle by Midterm
- Extensive Use of Background Data Base
- Use of Mission Advisory Panels
- Emphasis on Commercial Missions
- Buffered Access to Key Commercial Users
- Use of “Seed Ideas” to Stimulate New Missions
- Primary Focus on Initial Capability Needs
- Budget Constrained Optimization: “Build-To-Budget”
 - Missions
 - Concepts
 - Programs

MDAC PROGRESS VERSUS PLAN — MIDTERM

VFX843

- User Interaction Plan Implemented**
- User Orientation Briefing Package Completed**
- 63 User Contacts Completed**
- 365 Missions Defined; 95 Selected**
- Computerized Mission Data Base Is Operating**
- Budget Alternatives Are Defined**
- Cost Models Are Defined**
- System Costing Model Is Operating**
- Architectural Options Are Defined**
- Strawman Program Is Selected**

A16

First Study Cycle Complete As Planned

RESULTS SUMMARY — MISSIONS

Mission Categories	Identified Missions	Mid-Term Selections	Architecture and Concept Drivers
1. Science/ Applications	137	40	Orbit Location, Stability, Field of View, Contamination Control
2. Commercial	61	12	High Power, Proprietary Control, Man
3. National Security	65	6	Secure Operations, Endurance/Survivability, Hardening
4. Operational Support	25	25	Teleoperators, Manipulators, Depot Services, Man
5. Technology Development	77	12	Exterior OPS (EVA), Man, Hazard Control
Totals	365	95	

BENEFITS OF MAN IN ORBIT

Functions

Scientist/Observer

- Real-Time Data Analysis
- Multiple Sensor Use
- Sensor Mode/Parameter Selection
- Cooperation With Principal Investigator
- Target Selection

Typical
Tasks

Development Engineer

- Sensor Operation
- Sensor Evaluation
- Component Testing

Technical Operations Specialist

- Equipment Setup, Checkout, Maintenance, Calibration
- Servicing of Sensor and Equipment Consumables

SCIENCE AND APPLICATION MISSIONS

- Categories
- Astrophysics
 - Communication
 - Earth and Planetary Exploration
 - Life Sciences
 - Materials Processing

Results:

- 15 Missions Require Manned Station
- 6 Others Will Benefit Significantly

A19

REQUIREMENTS DEFINITION – ASTROPHYSICS (TYPICAL)

	MASS (KG)	ALTITUDE (KM)	INCLINATION (DEG)	POWER (KW)	HEAT REJECTION (KW)	FIELD OF VIEW (DEG)	POINTING (ARCMIN)	STABILITY ARCSEC/ TIME	DATA RATE (MBPS)
SOT	8,200	400	57	6.8	0.9	0.025	0.017/90	0.1/15	50
SIRTF	Mass (kg)	100	Inclination (deg)	1.3	Heat Rejection (kW)	0.125	Pointing (arcmin)	2/20	
STARLAB	100	100		2.2	0.8	0.8	10/30		
SCRN	100	100		0.8	70		N/A		
SOLAR SOFT X-RAY TELESCOPE	1,300	430	57	0.2	0.2			0.1	
STO	16,600	Altitude (km)	57	Power (kW)		Field of View (deg)	8-12	Stability sec/Time	
PINHOLE X-RAY CAMERA	10,000		97						
X-RAY OBSERVATORY	3,600	400	28.5	0.9	0.9		1.0		
HRS	1,800	400	< 45	0.5	0.5	10	6/90	36/0.02	0.03
XTE	1,000	400	28.5	0.6	0.6				
AXAF	10 TO 12,000	500	28.5	2.0	2.0		30	1.0	
LAMAR	9,500	400	28	3.4	0.4	1	3/67	10/0.02	0.1
VLBI	1,400	400	57	0.9	0.9	0.1	2.5/45	150/60	12
ASO	12,500	400	57	4.1		0.025	0.17/90	0.1/15	42

A20

COMMERCIAL MISSIONS

COMMERCIAL MISSIONS

(12 Identified to Date)

MDAC Data Bank Identifier	Areas of Responsibility	
	MDAC	BAH
CIR001	Materials Research Facility	●
CMP001	Electrophoretic Processes	●
CMP002	Silicon Ribbon Manufacture	●
CMP003	Crystals/Diffractors	●
CMP004	Melting/Refreezing	
CMP005	Homogeneous Mixtures	●
CMP006	Directional Crystal Growth	●
CMP007	Hot/Cold Processes	●
CMP008	Unidirectional Processes	●
CMP009	Earth Observations	●
CMP010	Materials Production	●
CMP011	Misc Operations	●

A22

BENEFITS ANALYSIS ELECTROPHORETIC PROCESSES

VFY232

Human Needs	Product Objective	Current Status
Growth Hormone (850,000)*	Stimulates Juvenile Bone Growth, Promotes Healing of Ulcers	Research Quantities, Low Purity
Beta Cells (3,200,000)	Single Injection Cure for Diabetes	Clinical Quantities, Not Separable
α - Antitrypsin (500,000)*	Limit Emphysema Disease State, Enhance Cancer Chemotherapy	Research Quantities, Low Purity
Epidermal Growth Factor (1,100,000)*	Skin Burn and Wound Healing	Research Quantities Low Purity
Interferon (20,000,000)*	Viral Infection Immunity	Low Yield and Purity
Antihemophilic Factor (15,000)*	Eliminate Immunological Reactions for Hemophilia	Low Purity and Loss of By-Products

*Annual Patient Load — U.S. Market

A23

MANNED SPACE STATION OPERATIONS

Enhances Rate of New Product Additions

- 15 Products in 10 Years With Space Station vs 3 Products With Unmanned Free-flyer
- Product Characterization Time Is Reduced From 1 or 2 Years to a Few Months
- Production Time for Clinical Materials is Reduced From 1 or 2 Years to a Few Months
- Dedicated Facilities and Manned Operation Allows:
 - Multiple Product Evaluation
 - Parallel Operations
 - Quick Turnaround

A24

COMMERCIAL MISSIONS MID-TERM INDICATIONS

- Electrophoresis Is Highest Confidence COMMERCIAL PRODUCTION Mission Identified to Date
 - Major Obstacles to Space Exploitation
 - Proprietary Issue
 - Cost
 - Time Delay
 - Risk
 - Unknowns
 - Attractive Alternatives
 - Large Scale Production Will Ultimately Require Independent Facilities, Privately Funded
-
- An Available R&D Space Facility is Best Incentive

CANDIDATE NATIONAL SECURITY MISSIONS

Source \ Mission Area	R&D	Data Fusion Center	Space Command Post	Service and Logistics	Surveillance and Reconnaissance	Weapon Platform
Source						
Military Space System Technology Model			1	24		1
Space Policy and Requirements				16		
Space Policy and Advanced Concepts				7	1	
Military Space Station Study	3	1	1	1	1	2
Legacy Missions	3					
New Ideas				2	1	
Total 65	6	1	2	50	3	3

Results
to Date

- 65 Candidate Missions Defined
- Most Require Dedicated Satellites
- 6 Are Space Station Candidates

A26

NATIONAL SECURITY MISSIONS MIDTERM

VFY144

A27

SPACE OPERATIONS MISSIONS

- Transportation (OTV, TMS, Other)
 - Deploy/Retrieve
 - Debris Collection
- Assembly, Integration, Checkout
 - Large Structures
 - Stage/Payload Mating
- Service
 - Maintain/Repair/Replenish
 - Instrument Reconfiguration
- Storage
 - Propellants (Cryo, Storables)
 - Spares
 - Payloads
- Space Utilization
 - Quarantine
 - Rescue

Results to Date

- Teleoperator
 - Is Required
- Satellite Servicing
 - Low Cost
 - High Payoff
- Cryogen Depot
 - Offers Major Economic Benefit
- Man Participation is Essential

TECHNOLOGY DEVELOPMENT MISSIONS

- Utilize the Unique Space Station Environment
 - Enable:
 - Advanced Mission Technology
 - Increased Space Station Capability
 - Provide Benefits to All Categories of Users
 - Majority Require Manned Participation
 - Are Relatively Short Term and Orbit Independent
-

MISSION FOCUS – INITIAL CAPABILITY

REQUIREMENTS ACCOMMODATION

INITIAL CAPABILITY

VFY242

A31

CAPABILITY GROWTH OPTIONS

A32

NASA BUDGET ALLOCATION ASSUMPTIONS

BUDGET MODEL NOMINAL CASE

(Billion Dollars, 1984)

Notes: (1) Science and Applications Budget Increased 60% Above 1983

(2) Shuttle Flights Budgeted at \$0.9 Billion/Yr, Are Excluded

A34 (3) All NASA Funds; No Commercial, DoD or Foreign Funds

SAMPLE PROGRAM COSTS

100% MISSION CAPTURE

VFY269

A35

MID-TERM SUMMARY

Mission
Needs

- Mission Opportunities and Benefits Sufficient to Justify Space Station
- Early Needs are R&D and Operations Oriented
- Space Station Availability Will Stimulate Commercial Interest

Space
Facilities

- Manned Facility has Highest Mission Capture
- 4-6 Man Crew Indicated
- Unmanned Platforms Highly Desired
- Multiple Orbit Locations Needed

Costs

- Affordable Within Projected NASA Budget

MISSION REQUIREMENTS (TASK 1) METHODOLOGY

Dave Riel

MISSION REQUIREMENTS

- Define Missions in Each Category
- Assess Benefits
- Validate Requirements and Benefits
- Prioritize Missions
- Derive Space Station System Sizing Requirements

- Manned Space Station
- Platform
- Dedicated Satellites

- Orbit Location
- Volume
- Power
- Crew

B1

PRIMARY MISSION DATA SOURCES

BENEFIT ANALYSIS TECHNIQUES USED

Mission Category	Technique	Data/Value
Science/Applications	Peer Judgment Performance	<ul style="list-style-type: none"> ■ Technology Mission Models ■ NASA Planning Documents ■ Increased Capability
Commercial	Economic Indicators Performance	<ul style="list-style-type: none"> ■ Market Potential ■ Return on Investment ■ Value Added ■ Increased Throughput
National Security	Performance Constituency	<ul style="list-style-type: none"> ■ New Capabilities ■ Augmented Capacity ■ SONs
Technology Development	Performance Peer Judgment	<ul style="list-style-type: none"> ■ Enabling Capability ■ Technology Mission Model ■ OAST Plans ■ Subsystem Test Bed
Space Operations	Performance Cost	<ul style="list-style-type: none"> ■ Increased Delivery ■ Reduced Flights

MISSION SELECTION PROCESS

HIGH-VALUE MISSIONS — MIDTERM

<u>Category</u>	<u>Mission Capability</u>	<u>Benefit</u>
■ Science/Applications	■ Solar, Stellar, Earth Orientation Capabilities	■ Increased Performance
■ Commercial	■ Electrophoresis	■ Measured Throughput Increase ■ Investment Commitment
■ National Security	■ RDT&E Mission Capability	■ Allows Development of Needed Systems
■ Technology Development	■ Cryogen Transfer/Storage	■ Enables High-Performance and Cost Saving OTV
■ Space Operations	■ Space Telescope Servicing	■ Reduced Launch Costs

MIDTERM MISSION DEFINITION

95 Mission Defined

MISSION NAME	CODE	TYPE	
		Science and Applications <input type="checkbox"/> Astrophysics <input type="checkbox"/> Communications <input type="checkbox"/> Earth and Planetary Exp <input type="checkbox"/> Environmental Observations <input type="checkbox"/> Life Sciences <input type="checkbox"/> Materials Commercial <input type="checkbox"/> Earth and Ocean Operations <input type="checkbox"/> Communications <input type="checkbox"/> Materials Processing <input type="checkbox"/> Industrial Research National Security <input type="checkbox"/> Research and Development	
CONTACT (Name, address, phone)			
STATUS	<input type="checkbox"/> Planned		
<input type="checkbox"/> Operational			
<input type="checkbox"/> Approved			
Year of first flight			
Number of missions			
OBJECTIVE		Apogee, km _____	
		Perigee _____	Tolerance : _____
		Inclination, deg _____	Tolerance : _____
		Argument of perigee, deg _____	Ephemeris accuracy _____
		Synchronization	<input type="checkbox"/> None <input type="checkbox"/> Earth <input type="checkbox"/> Sun <input type="checkbox"/> Other _____
DESCRIPTION		POINTING (Real Time)	
		View direction	<input type="checkbox"/> Inertial <input type="checkbox"/> Solar <input type="checkbox"/> Earth <input type="checkbox"/> Other _____
		Pointing accuracy _____	Field of view _____
		Specific targets	Stability angle _____
DATA/COMMUNICATIONS		THERMAL	
Monitoring requirements		Type of concept _____	
Data rate		Temperature, deg C	Operational min _____ max _____ Peak _____
<input type="checkbox"/> On-board data proc		Cryogenic Load	Temperature _____ Duration _____
<input type="checkbox"/> Encryption/Decryption		Heat Rejection W	Operational _____ Peak _____
POWER		CREW REQUIREMENTS	
Operating		Estimated crew size	Permanent _____ Service _____ EVA <input type="checkbox"/> Yes <input type="checkbox"/> No
Standby		Manhours/mission	Average time between visits, days _____
Peak		Skills required _____	
Voltage, V		PHYSICAL CHARACTERISTICS	
Duty Cycle Description		Launch mass, kg _____	Deployed mass _____ Expendables _____
ORBIT TRANSFER STAGE		Length, m	Launch w/OTV _____ Undeployed _____ Deployed _____
<input type="checkbox"/> PAM-A		Diameter, m	Launch _____ Undeployed _____ Deployed _____
		Center of gravity location, m	X _____ Y _____ Z _____
		SPECIAL CONSIDERATIONS/CLARIFICATIONS	
		SKETCH	

Name
Code
Type
Contact
Status
Flight Date
Number
Objective
Description
Altitude
Inclination
Pointing Direction
Accuracy
Data Rate
Power
Crew Number
Crew Hours
Mass
Length

MISSION REQUIREMENTS (TASK 1)

USER INTERACTION

Dr. Harry Wolbers

USER INTERACTION

- **User Requirements Define the Market for Space Systems**
- **Our Goal**
 - Understand Needs of Potential Users and Encourage Their Utilization of Future Space Systems Where Appropriate
- **Our Approach**
 - Review of the Literature
 - Review by MDAC Mission Advisory Panels
 - Direct Contact With Representatives of Each Interest Area
- **Our Emphasis in Approach Varies With the Maturity/Heritage of the Area**

USER INTERACTION PLAN

AREA	STATUS	PURPOSE OF USER CONTACT
Science and Applications	<ul style="list-style-type: none"> ■ Requirements Well Documented ■ Benefit of Prior Studies and Continuing Peer Reviews 	<ul style="list-style-type: none"> ■ Validate Our Understanding of Current Plans
Commercial	<ul style="list-style-type: none"> ■ Emerging Area ■ Little Hard Documentation 	<ul style="list-style-type: none"> ■ Continuing Contacts Needed to Stimulate New Insights
National Security	<ul style="list-style-type: none"> ■ Requirements Documented but Facilities Not Defined 	<ul style="list-style-type: none"> ■ Validate Our Understanding of Needs and Offer Ideas
Operations and Space Technology	<ul style="list-style-type: none"> ■ Previous Studies and Documentation Provide Point of Departure ■ New Requirements Emerge As Systems Are Defined 	<ul style="list-style-type: none"> ■ Validate Our Understanding of Current Requirements and Offer Ideas

C2

USER CONTACTS TO DATE

MISSION AREAS	INTERVIEWS
Science and Applications	5*
— (MDAC Science Advisory Panel)	
Commercial	25
— (15 Booz-Allen, 10 MDAC)	
National Security	16
— (DoD Space Division Headquarters, Los Alamos)	
Operations and Space Technology	17
— (MSFC, JSC, JPL, MDTSCO and 6 Aerospace Contractors)	
Total to Date	63

*Contacts Limited to MDAC Advisory Panels Pending Review With NASA Space Station Task Force Science and Application Mission Panel

C3

MISSION REQUIREMENTS (TASK 1)

SCIENCE AND APPLICATIONS

MISSIONS

Dr. Harry Wolbers

SCIENCE AND APPLICATIONS MISSION PLANS

SELECTION BASED ON PEER JUDGMENT

VFX890

D1

SCIENCE AND APPLICATIONS MISSION PLANS

SELECTION BASED ON PEER JUDGMENT

VFX891

D2

SCIENCE AND APPLICATIONS MISSIONS

- **Astrophysics**
- **Communications**
- **Earth and Planetary Exploration**
- **Environmental Observations**
- **Life Sciences**
- **Materials Processing**

ASTROPHYSICS PAYLOADS

OBJECTIVES

- Investigate Properties of Extragalactic Space, the Milky Way Galaxy, and the Solar System
- Address the Key Questions of Cosmic Evolution

KEY MISSION DRIVERS

- Precise Pointing and Stability Requirements (SIRTF, STARLAB, SOT, ASO)
- Hot Object Avoidance Zones for Celestial Instruments
 - 90° Zone Around Sun (SIRTF, LAMAR)
 - 60° Zone From LOS (SIRTF)
- High Slew Rates ($> 40^\circ/\text{Min}$) (SIRTF, STARLAB)
- High Data Rates (SOT, ASO, VLBI)
- Focal Plane Instruments Susceptible to Radiation (SIRTF, STARLAB)
- Optical Instruments Sensitive to Contaminants/Condensation
- Some Instruments Vent He, Xe, CH₄ (SCRN, LAMAR)

D3

ASTROPHYSICS INSTRUMENTS/FACILITIES

Solar Optical
Telescope (SOT)

Spectra of
Cosmic Ray
Nuclei (SCRN)

Very Long Baseline
Interferometry (VLBI)

Large Area Modular
Array of Reflectors
(LAMAR)

Solar Terrestrial
Observatory (STO)

Advanced Solar
Observatory (ASO)

Starlab

Shuttle Infrared
Telescope Facility
(SIRTF)

CHARACTERISTICS OF ASTROPHYSICS INSTRUMENTS/FACILITIES

	MASS (KG)	ALTITUDE (KM)	INCLINATION (DEG)	POWER (KW)	HEAT REJECTION (KW)	FIELD OF VIEW (DEG)	POINTING (ARCMIN)	STABILITY ARCSEC/TIME	DATA RATE (MBPS)
SOT	8,200	400	57	6.8	0.9	0.025	0.017/90	0.1/15	50
SIRTF	Mass (kg)	100	Inclination (deg)	1.3	Heat Rejection (kW)	0.125	Pointing (arcmin)	2/20	
STARLAB		100		2.2		0.8		10/30	
SCRN		100		0.8		70		N/A	
SOLAR SOFT X-RAY TELESCOPE	1,300	430	57	0.2	0.2			0.1	
STO	16,600	Altitude (km)	57	Power (kW)		Field of View (deg)	8-12	Stability sec/Time	
PINHOLE X-RAY CAMERA	10,000		97						
X-RAY OBSERVATORY	3,600	400	28.5	0.9	0.9	1.0			
HRS	1,800	400	< 45	0.5	0.5	10	6/90	36/0.02	0.03
XTE	1,000	400	28.5	0.6	0.6				
AXAF	10 TO 12,000	500	28.5	2.0	2.0		30	1.0	
LAMAR	9,500	400	28	3.4	0.4	1	3/67	10/0.02	0.1
VLBI	1,400	400	57	0.9	0.9	0.1	2.5/45	150/60	12
ASO	12,500	400	57	4.1		0.025	0.17/90	0.1/15	42

D5

CHARACTERISTICS OF ASTROPHYSICS INSTRUMENTS/FACILITIES

	MASS (KG)	ALTITUDE (KM)	INCLINATION (DEG)	POWER (KW)	HEAT REJECTION (KW)	FIELD OF VIEW (DEG)	POINTING (ARC MIN)	STABILITY (ARC SEC/ TIME)	DATA RATE (MBPS)
SOT	8,200	400	57	6.8	0.9	0.025	0.017/90	0.1/15	50
SIRTF	5,300	400	28.5	1.3	0.8	0.125	1.6/20	2/20	1
STARLAB	3,300	400	28	2.2	1.0	0.8	2.5/30	10/30	7
SCRN	3,100	400	57	0.8	0.8	70	CONT	N/A	0.1
SOLAR SOFT X-RAY TELESCOPE	1,300	430	57	0.2	0.2			0.1	
STO	16,600	400	57	9.2		VARIOUS	0.08-120	2-1800	
PINHOLE X-RAY CAMERA	10,000	370	97						
X-RAY OBSERVATORY	3,600	400	28.5	0.9	0.9		1.0		
HRS	1,800	400	< 45	0.5	0.5	10	6/90	36/0.02	0.03
XTE	1,000	400	28.5	0.6	0.6				
AXAF	10 TO 12,000	500	28.5	2.0	2.0		30	1.0	
LAMAR	9,500	400	28	3.4	0.4	1	3/67	10/0.02	0.1
VLBI	1,400	400	57	0.9	0.9	0.1	2.5/45	150/60	12
ASO	12,500	400	57	4.1		0.025	0.17/90	0.1/15	42

COMMUNICATIONS PAYLOADS

VFX887

OBJECTIVES

- Provide Orbital R&D Facilities for Measurement of: Terrestrial Noise; Ionospheric Effects; Tropospheric Dielectric Properties and Transmissibility; Multipath Linkages
- Develop Space Deployment and Calibration Techniques
- Evaluate Millimeter and Optical (Including Laser) Systems
- Develop Potential Application in Nav, Traffic Control, Search and Rescue, etc.

KEY MISSION DRIVERS

- Payloads Sensitive to EMI and RFI
- Require Attitude to Within 1.7 Arc Min
- Require Position to Within 100 Meters
- Continuous Operation of Some Payloads
- Potentially High Data Rates and/or Onboard Storage of Data
- Simultaneous Operation of Multiband Space Transponders and Variety of Antennas
- Multiple Directional Pointing

D6

COMMUNICATIONS INSTRUMENTS/FACILITIES

VFX865

**Remote Sensing and
RFI Measurements (RFI)**

Manned Communications Research Facility (CRF)

D7

CHARACTERISTICS OF COMMUNICATIONS INSTRUMENTS/FACILITIES

VFX874

	MASS (KG)	ALTITUDE (KM)	INCLINATION (DEG)	POWER (KW)	HEAT REJECTION (KW)	FIELD OF VIEW (DEG)	POINTING (ARC MIN)	STABILITY (ARC SEC/ TIME)	DATA RATE (MBPS)
REMOTE SENSING/RFI	~ 2,500	ANY	> 57	0.12			~ 30	~ 150	0.005
ORBITING STANDARDS PACKAGE	50-100		57	0.15			0.5		0.1
COMMUNICATIONS RESEARCH FACILITY	15,000	435	57	25	25	90	1.7	35	120

EARTH AND PLANETARY EXPLORATION

OBJECTIVES

Development of Remote Sensing Capabilities for

- **Earth Resources Assessment**
- **Crop Monitoring and Forecasts**
- **Cartography**
- **Water Resources and Management**

KEY MISSION DRIVERS

- **High Resolution**
- **Broad Spectral Coverage**
- **Global Coverage**
- **Repeatable Ground Track**
- **High Data Rates (SAR to 120 MBPS)**
- **High Power (to 6 kW)**
- **SAR Susceptible to RFI**
- **Some Instruments May Leak N₂ (IS)**
- **Simultaneous Operation of Instruments**

EARTH AND PLANETARY EXPLORATION INSTRUMENTS/FACILITIES

VFX864

Multispectral Linear Array (Used on Adv Land Obs Sys, ALOS)

Synthetic Aperture Radar (SAR)

D9

Large Format Camera (LFC)

Imaging Spectrometer (IS)

Magnetic Field Mapper (MFM)

CHARACTERISTICS OF EARTH AND PLANETARY EXPLORATION INSTRUMENTS

	MASS (KG)	ALTITUDE (KM)	INCLINATION (DEG)	POWER (KW)	HEAT REJECTION (KW)	FIELD OF VIEW (DEG)	POINTING (ARC MIN)	STABILITY (ARC SEC/ TIME)	DATA RATE (MBPS)
SYNTHETIC APERTURE RADAR	1,900	400	57-90	6.5		6 x 60	60	70	120
ADV LAND OBS SYS	300	4-700	57-98	0.3					
MAGNETIC FIELD MAPPER	800	300	57-97	0.1			30	360	0.02
SNOW AND MOISTURE ASSESSMENT	3-500	465	90	1.2		45	6	100	0.2
LARGE FORMAT CAMERA		250	57				~ 0.5	~ 1	N/A
IMAGING SPECTROMETER	1900	400	57	2.8		8.6	0.5	0.04/0.077	100
FRAUNHOFER LINE DISCRIMINATOR	60	2-800	28-90	0.2		30 x 0.06	0.5	6	
ADVANCED THERMAL MAPPER		400	90						

ENVIRONMENTAL OBSERVATIONS

OBJECTIVES

- Atmospheric and Ocean Observations to Further the Fundamental Understanding of the
 - Solar Terrestrial Interactions
 - Effects of Man on Environment
 - Effects of Natural Phenomena on Environment
- Contribute to the Development of Global Environmental Models

KEY MISSION DRIVERS

- Global Coverage
- Broad Spectral Coverage
- Long-Term/Coordinated Multisensor, Multidirectional Measurements
- High Data Rates (to 120 MBPS)
- Some Instruments Require Cross-Track Scanning/Viewing
- Continuous Operation
- WISP Antenna Extends to 300 (± 150) Meters and Must Be Aligned with Respect to Magnetic Field
- High Voltages on HF and VLF Transmitters

ENVIRONMENTAL OBSERVATIONS INSTRUMENTS/FACILITIES

VFX863

**Meteorological
Payload (MET)**

**Upper Atmosphere
Research Satellite (UARS)**

Ocean Group

Space Plasma Physics (SPP)

D11

CHARACTERISTICS OF ENVIRONMENTAL OBSERVATION PAYLOADS

VFX872

	MASS (KG)	ALTITUDE (KM)	INCLINATION (DEG)	POWER (KW)	HEAT REJECTION (KW)	FIELD OF VIEW (DEG)	POINTING (ARC MIN)	STABILITY (ARC SEC/ TIME)	DATA RATE (MBPS)
OCEAN	10,000	400	57-90	10	10	1	720	720	120
LARS	1,200	780	≥ 60	1.7					50
UARS	2,400	400	56, 70	1.3	0.8	VARIOUS			0.02
SPACE PLASMA PHYSICS	3,200	3-400	57-90	2.7	1.8	45	60	60	7.5
ZERO-G CLOUD PHYSICS	500	ANY	ANY	1.4		N/A	N/A	N/A	0.5
METEOROLOGY	1,200	400	57	1.2	0.74		6	6	0.01
ICE AND CLIMATE EXPERIMENT	3,500	275	87	2.3					1.4 TO 17.8

LIFE SCIENCES FACILITY PAYLOAD

OBJECTIVES

Provide Facilities for

- Understanding the Role of Gravity in Life Sciences
- Addressing the Problems of Long-Duration, Manned Space Missions

KEY MISSION DRIVERS

- Low Gravity, $< 10^{-5}$ g's
- Initial Payloads May Operate Unmanned, but "Shirtsleeve" Environment for Active Manned Involvement Desired at Earliest Opportunity
- Living Specimens, Including Man, Serve as Experimental Subjects
- Onboard Centrifugation of Specimens Required
- Continuous Operation Required

D12

LIFE SCIENCES INSTRUMENTS/FACILITIES

**Early Life
Science Payload**

**Pressurized
Life Science
Payload**

**Space Biology
Research Facility (SBRF)**

Large Primate Facility (LPF)

**Biomedical
Research
Facility (BRF)**

D13

CHARACTERISTICS OF LIFE SCIENCES FACILITIES

VFX875

	MASS (KG)	ALTITUDE (KM)	INCLINATION (DEG)	POWER (KW)	HEAT REJECTION (KW)	FIELD OF VIEW (DEG)	POINTING (ARC MIN)	STABILITY (ARC SEC/ TIME)	DATA RATE (MBPS)
LARGE PRIMATE FACILITY	~ 3000	~ 400	ANY	1.8	1.8	N/A	N/A	N/A	0.017
SPACE BIOLOGY RESEARCH FACILITY	~ 3000	~ 400	ANY	3.5	3.5	N/A	N/A	N/A	0.05
BIOMEDICAL RESEARCH FACILITY	~ 3000	~ 400	ANY	2.4	2.4	N/A	N/A	N/A	0.016
ORBITING QUARANTINE FACILITY	~ 3000	~ 400	ANY	1.7	1.7	N/A	N/A	N/A	TBD
EXPERIMENTAL MEDICAL TREATMENT FACILITY	~ 3000	~ 400	ANY	1.2	1.2	N/A	N/A	N/A	TBD

MATERIALS PROCESSING FACILITIES

OBJECTIVES

- Utilize the Unique Features of Space to Process Laboratory Quantities of R&D Materials
- Develop Standards
- Verify Conceptual Approaches to Process/Product Development

KEY MISSION DRIVERS

- Low Level of Acceleration/Jitter, $< 10^{-5}$ g's
- Vacuum Useful in Some Processes
- Emission of Purge Gases and Process Materials
- High Power Requirements (to 25 kW)
- Long-Duration Missions — Ninety Days or More
- Wide Range of Sample Sizes and Quantities

D14

MATERIALS PROCESSING INSTRUMENTS/FACILITIES

VFX862

**Materials Experiment
Assembly (MEA)**

**Materials Research
Facility (MRF)**

**Materials Experiment
Carrier (MEC)**

D15

CHARACTERISTICS OF MATERIALS PROCESSING FACILITIES

	MASS (KG)	ALTITUDE (KM)	INCLINATION (DEG)	POWER (KW)	HEAT REJECTION (KW)	FIELD OF VIEW (DEG)	POINTING (ARC MIN)	STABILITY (ARC SEC/ TIME)	DATA RATE (MBPS)
MATERIAL EXPERIMENT ASSEMBLY	2,200	435	28.5-90	5	5	N/A	N/A	10^{-5} G'S	0.006
MATERIAL EXPERIMENT CARRIER	7,300	435	28.5	12	12	N/A	N/A	10^{-5} G'S	0.5
MATERIAL RESEARCH FACILITY	7,500	~ 400	ANY	25	25	N/A	N/A		10
SPACE VACUUM RESEARCH FACILITY	1,000	400	ANY	4.0		N/A	120		

BENEFITS OF MAN IN ORBIT

Scientist/Observer

- Real-Time Data Analysis
- Multiple Sensor Use
- Sensor Mode/Parameter Selection
- Cooperation With Principal Investigator
- Target Selection

Development Engineer

- Sensor Operation
- Sensor Evaluation
- Component Testing

Technical Operations Specialist

- Equipment Setup, Checkout, Maintenance, Calibration
- Servicing of Sensor and Equipment Consumables

CONCERNS OF MAN IN ORBIT

Safety of Flight

- External Environment
- Physiological Limits
- Psychological Stress
- Onboard Safety

Performance Degradation

- Acceleration Disturbances
- Effluent Release
- Repetitive Duty Cycles

EVALUATION OF MAN IN-ORBIT INFLUENCES

				ENVIRONMENTAL					LIFE SCIENCES			MPS						
				ICE	MET	OCEAN	SPP	ZERO-g CLOUD	LARS	LPF	SBRF	BRF	OAF	EMTF	MEA	MEC	MRF	VACUUM
BENEFICIAL	SCIENTIST OBSERVER	REAL-TIME DATA ANALYSIS		○	●	○	○	○	○	●	●	●	●	●	○	○	●	
	DEVEL ENGR	MULTIPLE SENSOR USE		●	●	○	○	●	○	●	●	●	●	●	●	●	●	
	TECH OPS	SENSOR MODE/PARAMETER SELECTION		○	●	○	○	●	○	●	●	●	●	●	●	●	●	
	SAFETY OF FLIGHT	COOPERATION WITH PRINCIPAL INVESTIGATOR		●	●	●	●	●	●	●	●	●	●	●	●	●	●	
	PERF DEGRAD	TARGET SELECTION		●	●	●	○	●	●	●	●	●	●	●	●	●	●	
	FLIGHT	SENSOR OPERATION		●	●	●	●	●	●	●	●	●	●	●	●	●	●	
	OPS	SENSOR EVALUATION		●	○	○	●	●	●	●	●	●	●	●	●	●	●	
	DEGRAD	COMPONENT TESTING		○	○	○	○	○	●	●	●	●	●	●	●	●	●	
	OF FLIGHT	EQUIPMENT SETUP, CHECKOUT, MAINTENANCE, CALIBRATION, ETC		●	●	●	●	●	●	●	●	●	●	●	●	●	●	
	OPS	SERVICING OF SENSOR AND EQUIPMENT CONSUMABLES		○	●	●	●	●	●	●	●	●	●	●	●	●	●	
DETERRIMENTAL	EXTERNAL ENVIRONMENT			○	○	○	○	○	○	○	○	○	○	○	○	○	○	
	PHYSIOLOGICAL LIMITS			○	○	○	○	○	○	○	○	○	○	○	○	○	○	
	PSYCHOLOGICAL STRESS			○	○	○	○	○	○	○	○	○	○	○	○	○	○	
	ONBOARD SAFETY			○	○	○	○	○	○	○	○	○	○	?	?	○	○	
	ACCELERATION DISTURBANCES			○	○	○	○	○	○	○	○	○	○	○	○	○	○	
PERF DEGRAD	EFFLUENT RELEASE			○	○	○	○	○	○	○	○	○	○	?	?	○	○	
	REPETITIVE DUTY CYCLES			○	○	○	○	○	○	○	○	○	○	○	○	○	○	
	SPACE STATION CANDIDATE			○	○	○	●	●	●	●	●	●	●	●	○	●	●	
PLATFORM CANDIDATE				○	●	○	●	○	○					○	●			

Required
Desirable
Acceptable
Intolerable
Effects Unknown

Space Station Candidate

Platform Candidate

D18

EVALUATION OF MAN IN-ORBIT INFLUENCES

VFX878

			ASTROPHYSICS													
BENEFICIAL	DETRIMENTAL	SCIENTIST OBSERVER	SOT	SIRTF	STAR LAB	SCRN	SOFT X-RAY	STO	PINHOLE X-RAY	XRO	HRS	XTE	AXAF	LAMAR	VLBI	ASO
			● = REQUIRED	○ = DESIRABLE	○ = ACCEPTABLE	○ = INTOLERABLE	?	●	○	○	○	○	○	○	○	○
REAL-TIME DATA ANALYSIS		●	●	○	●	○	●	●	○	●	○	○	○	○	○	●
MULTIPLE SENSOR USE		●	○	●	○	○	○	●	○	○	○	○	○	○	○	○
SENSOR MODE/PARAMETER SELECTION		●	●	●	●	○	●	●	●	○	○	○	○	○	○	○
COOPERATION WITH PRINCIPAL INVESTIGATOR		●	●	●	●	○	●	●	●	●	●	●	●	●	●	●
TARGET SELECTION		●	●	●	●	○	●	●	●	●	●	●	●	●	●	●
SENSOR OPERATION		●	●	●	●	○	○	●	●	●	●	●	●	●	●	●
SENSOR EVALUATION		●	●	●	●	○	●	●	●	●	●	●	●	●	●	●
COMPONENT TESTING		●	●	●	●	○	●	●	●	●	●	●	●	●	●	●
EQUIPMENT SETUP, CHECKOUT, MAINTENANCE, CALIBRATION, ETC		●	●	●	●	●	●	●	●	●	●	●	●	●	●	●
SERVICING OF SENSOR AND EQUIPMENT CONSUMABLES		●	●	●	●	●	●	●	●	●	●	●	●	●	●	●
EXTERNAL ENVIRONMENT	PERF DEGRAD OF FLIGHT	○	○	○	○	○	○	○	○	○	○	○	○	○	○	○
PHYSIOLOGICAL LIMITS		○	○	○	○	○	○	○	○	○	○	○	○	○	○	○
PSYCHOLOGICAL STRESS		○	○	○	○	○	○	○	○	○	○	○	○	○	○	○
ONBOARD SAFETY		○	○	○	○	○	○	○	○	○	○	○	○	○	○	○
ACCELERATION DISTURBANCES		○	○	○	○	○	○	○	○	○	○	○	○	?	○	○
EFFLUENT RELEASE		○	○	○	○	○	○	○	○	○	○	○	○	○	○	○
REPETITIVE DUTY CYCLES		○	○	○	○	○	○	○	○	○	○	○	○	○	○	○
SPACE STATION CANDIDATE		●	●	●	●	●	●	●	○	○						
PLATFORM CANDIDATE		○			○	○	○	○	○	○	○	○	○	○	○	○

EVALUATION OF MAN IN-ORBIT INFLUENCES

VFX879

EVALUATION OF MAN IN-ORBIT INFLUENCES

VFX880

				ENVIRONMENTAL					LIFE SCIENCES			MPS						
		BENEFICIAL	SCIENTIST OBSERVER	ICE	MET	OCEAN	SPP	ZERO G CLOUD	LARS	LPF	SBRF	BRF	OQF	EMTF	MEA	MEC	MRF	VACUUM
BENEFICIAL	REAL-TIME DATA ANALYSIS	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	
	MULTIPLE SENSOR USE	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	
	SENSOR MODE/PARAMETER SELECTION	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	
	COOPERATION WITH PRINCIPAL INVESTIGATOR	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	
	TARGET SELECTION	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	
	SENSOR OPERATION	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	
	SENSOR EVALUATION	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	
	COMPONENT TESTING	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	
	EQUIPMENT SETUP, CHECKOUT, MAINTENANCE, CALIBRATION, ETC	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	
	SERVICING OF SENSOR AND EQUIPMENT CONSUMABLES	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	
DETRIMENTAL	EXTERNAL ENVIRONMENT	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	
	PHYSIOLOGICAL LIMITS	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	
	PSYCHOLOGICAL STRESS	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	
	ONBOARD SAFETY	O	O	O	O	O	O	O	O	O	O	O	?	?	O	O	O	
	ACCELERATION DISTURBANCES	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	
	EFFLUENT RELEASE	O	?	O	O	O	O	O	O	O	O	?	?	O	O	O	O	
	REPETITIVE DUTY CYCLES	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	
SPACE STATION CANDIDATE		O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	
PLATFORM CANDIDATE		O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	

IMPACT OF MANNED PRESENCE ON SCIENCE AND APPLICATIONS

VFX868

Pros

- **Responds Creatively As Unanticipated Events or Problems Arise**
- **Contributes to Assembly, Maintenance, Repair**
- **Allows Schedule Compression — Reduced Cost and Risk**
- **Has Unique Perceptual Abilities**
- **Contribution is Historic Fact**

Cons

- **Creates Disturbances for Fine Pointing**
- **Has Physiological and Psychological Performance Limits**
- **Manned Life Support Systems Can Reduce Viewing Sensitivities**

SERVICE MISSIONS IDENTIFIED SCIENCE AND APPLICATIONS

Missions	Mass (kg)	Altitude (km)	Inclination (deg)	Service Requirements
Space Telescope	11,000	600	28.8	Repair, 5-year Refurbishment
SIDM	2,600	575	28/98	Propellant Resupply, Refurbishment
LDR	20,500	700	28	Cryogen Resupply, Refurbishment, Reboost
Gamma Ray Observatory	11,000	400	28.5	Repair, Propellant Resupply, Refurbishment
LANDSAT D-D'	1,600	705	97	Repair, Refurbishment
GRAVSAT-B				Cryogen Resupply, Refurbishment, Reboost
UARS	2,400	500	56, 70	Cryogen Resupply, Repair, Refurbishment
TIROS-N	740	830	90	Repair, Refurbishment

SCIENCE AND APPLICATIONS MISSION ALLOCATION STATUS

VFX869

ALLOCATED TO SPACE STATION — 15

- | | | | |
|--------|-----------|----------------|-----------------|
| ■ SOT | ■ STARLAB | ■ SCRN | ■ Pinhole X-Ray |
| ■ OSP | ■ LFC | ■ Zero g Cloud | ■ LPF |
| ■ SBRF | ■ BRF | ■ OQF | ■ EMTF |
| ■ MRF | ■ Vacuum | ■ CRF | |

ALLOCATED TO SPACE STATION OR PLATFORM — 17

- | | | | |
|---------|--------------|-------|-------|
| ■ SIRTF | ■ Soft X-Ray | ■ STO | ■ XRO |
| ■ HRS | ■ ASO | ■ RFI | ■ SAR |
| ■ MFM | ■ SMA | ■ FLD | ■ ATM |
| ■ ICE | ■ Ocean | ■ SPP | ■ MEA |
| ■ MEC | | | |

ALLOCATED TO SPACE PLATFORM — 8

- | | | | |
|--------|--------|---------|--------|
| ■ XTE | ■ AXAF | ■ LAMAR | ■ VLBI |
| ■ ALOS | ■ IS | ■ MET | ■ LARS |

ALLOCATED TO FREE FLYER SERVICE — 8

- | | | | |
|-------------------|-------------|--------|---------|
| ■ Space Telescope | ■ SIDM | ■ LDR | ■ GRO |
| ■ LANDSAT D-D' | ■ GRAVSAT-B | ■ UARS | ■ TIROS |

D19

MISSION REQUIREMENTS (TASK 1)

CANDIDATE COMMERCIAL

MISSIONS

Dr. Harry Wolbers

COMMERCIAL USES OF SPACE PAST EXPERIENCE

VFY168

- Substantial Survey Work Since 1972
 - (e.g.: GE, TRW, SAI, RI, MDAC)
- Typical Results of Prior Studies
 - Few Concepts Stand Up Under Scrutiny
 - Attractive Alternatives - Less Expensive
 - Products and Markets Poorly Defined
 - Risks High - Many Unknowns
 - Long Time Delay - Concept to Implementation
 - Payback Period Long for Capital Outlay Required
 - Protection of Proprietary Rights Critical

E1

COMMERCIAL USES OF SPACE CURRENT STATUS

VFY169

- Only One Potential Product for Space Manufacturing Has Reached Testing Stage — (Electrophoresis Operations)
- Interest in Space Exists
- Companies Want to Stay Ahead of Competition
- Risk Reducing/Sharing Policies Would Spur Interest
- Continuing Dialog With Potential Users Required

E2

COMMERCIAL USERS INTERACTION STRATEGY

VFY139

PROCEDURE

- Develop Case Study As Example
- Establish Continuing Dialog and In-Depth Interviews With Selected Users

RESULTS TO DATE

- Relationships With 18 Corporate Entities Established (8 Booz Allen, 10 MDAC)
- 25 In-Depth Interviews (15 Booz Allen, 10 MDAC)
- 12 Potential Commercial Missions Identified
- 59 Products/Processes Identified to Date

E3

TWELVE POTENTIAL COMMERCIAL MISSIONS IDENTIFIED TO DATE

VFY006

MDAC Data Bank Identifier	Areas of Responsibility		
	MDAC HB	MDAC STL	BAH
CIR001 Materials Research Facility	●	○	
CMP001 Electrophoretic Processes		●	
CMP002 Silicon Ribbon Manufacture		●	
CMP003 Crystals/Diffractors	○		●
CMP004 Melting/Refreezing	○		●
CMP005 Homogeneous Mixtures	○		●
CMP006 Directional Crystal Growth	○		●
CMP007 Hot/Cold Processes	○		●
CMP008 Unidirectional Processes	○		●
CMP009 Earth Observations	○		●
CMP010 Materials Production	○		●
CMP011 Misc Operations	○		●

- Product Definition
- System Support

E4

MISSION REQUIREMENTS (TASK 1)

SELECTED COMMERCIAL

MISSIONS

Jim Rose — MDAC St. Louis

CASE HISTORY OF A COMMERCIAL SPACE MISSION

VFY047

- Potential Benefits
- Program Characteristics
- Development Considerations
- Manned Space Station Operations

VFY048

CONTINUOUS FLOW ELECTROPHORESIS

POSSIBLE PRODUCTS UTILIZING EOS TECHNOLOGY

VFY049

Field	Types of Products
Pharmaceuticals	Enzymes, Hormones, Other Proteins, Cells
Diagnostics	Monoclonal Antibodies, Hormones for Radioimmunoassays
Veterinary	Enzymes, Hormones, Other Proteins, Spermatozoa, Other Cells
Agrichemicals	Growth Stimulants, Pathogens
Food Products	Additives

F3

EXAMPLES OF BENEFICIAL BIOLOGICAL PRODUCTS

VFY050

Product	Product Objective	Current Status
Growth Hormone (850,000)*	Stimulates Juvenile Bone Growth, Promotes Healing of Ulcers	Research Quantities, Low Purity
Beta Cells (3,200,000)	Single Injection Cure for Diabetes	Clinical Quantities Not Separable
α - Antitrypsin (500,000)*	Limit Emphysema Disease State, Enhance Cancer Chemotherapy	Research Quantities, Low Purity
Epidermal Growth Factor (1,100,000)*	Skin Burn and Wound Healing	Research Quantities, Low Purity
Interferon (20,000,000)*	Viral Infection Immunity	Low Yield and Purity
Antihemophilic Factor (15,000)*	Eliminate Immunological Reactions for Hemophilia	Low Purity and Loss of By-Products

*Annual Patient Load — U.S. Market

F4

CHARACTERISTICS OF THE EOS PROGRAM

- Cooperative Venture
 - (1) Within Industry: MDAC for Aerospace, Johnson and Johnson (J&J) for Pharmaceuticals
 - (2) With Government: NASA for Shuttle Launch and Support
- High Technology Activity
 - (1) New Process Development Required
 - (2) New Product Development Required
- Proprietary Marketable Products
 - (1) Impressive Medical Benefits Possible
 - (2) Low Weight/High Value
 - (3) Projected Positive Return on Investment (ROI)
- Successful Early Development Effort

F5

EVOLUTION OF A COMMERCIAL SPACE PROGRAM

VFY052

F6

EOS MIDDECK SYSTEM

VFY053

Flight Dates Under Joint Endeavor Agreement

STS	4	July	1982
	6	Jan	1983
	7	April	1983
	8	July	1983
	11	Jan	1984
	14	May	1984

Results From First STS Flight

1. 500 Times Increase in Yield
2. Quantitatively Repeatable Separation
3. Validated Design Concepts

STEPS TO COMMERCIAL OPERATIONS

F8

PRODUCTION PROTOTYPE IN SHUTTLE PAYLOAD BAY

- Production Prototype Unit: 3 ft Long × 14 ft Wide, 5,000 lb
- 24-Chamber, Automated System
- Checkout Continuous Operation for 5 Days During 7-Day Sortie
- Produce Doses for Phase III Clinical Tests
- Scheduled as Joint Endeavor Agreement (JEA) Flights 7 and 8 in 1985-1986

F9

COMMERCIAL OPERATIONS ALTERNATIVES

F10

CONSIDERATIONS IN DEVELOPMENT OF NEW COMMERCIAL SPACE PRODUCTS

VFY057

- Requires Verification and Development of Space Processes and Products
- Significant Investment Capital at High Risk
- Unproven Markets for New Products
- Elapsed Time to Marketable Product Is Significant
- Vulnerable Proprietary Rights
- Dependence on Supporting Government Space Facilities
- Technology Obsolescence

F11

STEPS FOR NEW BIOLOGICAL PRODUCT DEVELOPMENT

VFY058

	Unmanned Free-Flyer Mode			Manned Space Station Mode
	Middeck or Spacelab	Payload Bay	Unmanned Free-Flyer	
Characterization	✓			✓
Clinical Trial Materials		✓		✓
Initial Commercial Production		✓ (Interim)	✓	✓
Expanded Production			✓	✓

F12

**MANNED SPACE STATION
SHOWS SIGNIFICANT IMPROVEMENT OVER
UNMANNED PLATFORM ON PRODUCT PRICE TO PATIENT**

VFY059

	Unmanned Operations Mode	Manned Operations Mode
Relative Cost of Front-End Expense	1	0.38
Relative Cost of Operating Expense	1	0.77
Relative Number of New Products Developed	1	5.0

F13

MANNED SPACE STATION OPERATION

Enhances Rate of New Product Additions

- Fifteen Products Can Be Added in 10 Years With Space Station Compared With Three Products for Unmanned Free-Flyer
- Product Characterization Time Is Reduced From 1 or 2 Years to a Few Months
- Production Time for Clinical Materials Is Reduced From 1 or 2 Years to a Few Months
- Dedicated Section of Plant and Manned Operation Allow Many Products to Be Evaluated or Produced in Short Runs in Same Time Frame

F14

MISSION REQUIREMENTS (TASK 1)

SELECTED COMMERCIAL

MISSIONS

Dr. Myron Weinberg — Booz, Allen and Hamilton

OBJECTIVES

- Identify Missions and Introduce Space Station Opportunities to Potential Commercial Users
- Develop “Real World” Qualified List of Commercial Missions
- Identify Broad Space Station Requirements for the Selected Missions

G1

OVERALL APPROACH TO COMMERCIAL MISSION SELECTION AND ANALYSIS

VFX846

G2

KEY ELEMENTS OF BOOZ ALLEN APPROACH

G3

COMMERCIAL AREAS OF INTEREST

G4

CANDIDATE MISSION SUMMARY

Category	Product/Process	File Reference
Unidirectional Processing	Composite Material Directional Solidification Directed Crystal Growth as in Silicons Directed Quartz Crystal Growth Other Crystal Growth Orientation in Heterogeneous Composites Protein Purification as in Immunoglobulins Cellular or Protein Fractionation Other Hormone Fractions	A-MP-017 B-005 B-032 B-033 B-034 B-036 B-035 B-019

G5

46 CANDIDATE PRODUCTS/PROCESSES AND POTENTIAL USERS

VFX849

Miscellaneous				
Containerless Heating/Refreezing				
Materials Production				
Earth Observations				
Directional Crystal Growth				
Homogeneous Mixtures				
Cold/Hot Processing				
Radiation Processing				
Unidirectional Processing				
Category	Product/Process	File Reference	Potential Users	Remarks
UNIDIRECTIONAL PROCESSING	COMPOSITE MATERIAL DIRECTIONAL SOLIDIFICATION	A-MP-017		ABSENCE OF OXYGEN, DUST, OPERATION IN VACUUM
	DIRECTED CRYSTAL GROWTH AS IN SILICONS	B-005	MONSANTO	
	DIRECTED QUARTZ CRYSTAL GROWTH	B-032	U.S. TIME	
	OTHER CRYSTAL GROWTH	B-033		GLASS FIBERS ARE THE SIGNIFICANT TARGET
	ORIENTATION IN HETEROGENEOUS COMPOSITES	B-034	BELL LABS	
	PROTEIN PURIFICATION AS IN IMMUNOGLOBULINS	B-036	MONSANTO SCHERING PLOUGH	
	CELLULAR OR PROTEIN FRACTIONATION	B-035	HYLAND	
	OTHER HORMONE FRACTIONS	B-019	ELI LILLY	

G7

CANDIDATE MISSION SUMMARY

Category	Product/Process	File Reference	Potential Users
Unidirectional Processing	Composite Material	A-MP-017	
	Directional Solidification	B-005	Monsanto
	Directed Crystal Growth as in Silicones	B-032	U.S. Time
	Directed Quartz Crystal Growth	B-033	
	Other Crystal Growth	B-034	Bell Labs
	Orientation in Heterogeneous Composites	B-036	Monsanto Schering Plough
	Protein Purification as in Immunoglobulins	B-035	Hyland
	Cellular or Protein Fractionation		
	Other Hormone Fractions	B-019	Eli Lilly

G6

TARGET USERS 1

American Telephone and Telegraph Company

Homogenous Mixtures, Directional Crystal Growth

E. I. Dupont & Company

Homogenous Mixtures, Directional Crystal Growth, Undirectional Processing

Monsanto Company

Homogenous Mixtures, Directional Crystal Growth, Undirectional Processing

Allegheny International

Cold/Hot Processing, Homogenous Mixtures, Containerless Heating/Refreezing

Johnson Matthey Company

Cold/Hot Processing, Containerless Heating/Refreezing

Perkin Elmer, Inc.

Directional Crystal Growth, Radiation Processing

TARGET USERS 2

Celanese, Inc.

Homogenous Mixtures, Cold/Hot Processing

Eli Lilly Co., Inc.

Homogenous Mixtures, Unidirectional Processing

Union Carbide, Inc.

Earth Observations

The Fluor Corporation

Cold/Hot Processing, Homogenous Mixtures, Containerless Heating/Refreezing, Unidirectional Processing

International Business Machines

Directional Crystal Growth, Containerless Heating/Refreezing

Eastman Kodak

Directional Crystal Growth

Baxter Travenol

Unidirectional Processing, Homogenous Mixtures, Containerless Heating/Refreezing

Department of Defense

Miscellaneous — Medical Uses

Environmental Protection Agency

Earth Observations

USER INTERACTION

G10

USER INTERACTION RESULTS TO DATE

USER

American Telephone
and Telegraph Company

Monsanto

International
Business Machines

Baxter Travenol

RESPONSE

- Interest in New Product Identified — Up-Coming Concept Meeting

- Three Major Areas of Processing Identified — Planning Meeting to Be Set

- Unique Area of Interest Identified — Concept Meeting Week of November 16, 1982

- Three Major Areas of Interest in New Products — Concept Meeting on November 16, 1982

G11

USER INTERACTION RESULTS TO DATE (CONT)

USER**Eli Lilly and Company****RESPONSE**

- Two Areas of Processing Interest Identified — Concept Meeting on November 17, 1982

Allegheny International

- Specific New Product Idea Identified by Allegheny — Meeting on Environmental Requirements Set for Week of December 1, 1982

Johnson Matthey

- Identified — Meeting Week of November 22, 1982

Celanese

- First Concept Meeting Completed — Technical Analysis of a New Concept Generated

G12

TYPICAL USER INTERACTION RESULTS (CELANESE MEETING)

VFX857

Our Initial Meeting With Celanese Is an Example of the Results of Our Contacts to Date

- The Meeting Involved Discussion of Our Concepts — One Major New Idea Was Developed by Celanese**
- Several Detailed Technical Questions Were Asked**
- Technical Analysis of These Questions Is Required Before Followup Is Possible**
- Proprietary Rights Were Discussed**

CELANESE... TECHNICAL ANALYSIS

- Handling of Materials

- Time/Temperature/
Cooling

- Effects of Microgravity
on Stretched Molecules

G14

"WHAT WE HAVE LEARNED TO DATE"

We have completed two or more contacts with eight of the identified potential users and have drawn some general observations and conclusions from these discussions.

These observations may be summarized under three topic headings:

- Current user interest
- Current user concerns
- Ways to speed up the generation of user interest and, ultimately,
user-sponsored development

WHAT WE HAVE LEARNED TO DATE

G15

WHAT WE HAVE LEARNED TO DATE - USER INTEREST

We have reached three general conclusions about user interest:

- (1) Developing the basic relationship required to explore user interest is a multi-step, complex and time consuming process, necessarily involving all of the following steps:
 - Initial contacts at levels where decisions can be made
 - Follow up contacts to establish
 - the framework for controlled exchange of information
 - the range of business and technical areas to be explored
 - Meetings to exchange concepts
 - Follow up analyses to
 - validate feasibility of concepts
 - demonstrate commitment to support user needs
 - Follow up meetings
- (2) Once there is real user interest
 - Potential users will commit significant resources in establishing relationships, conducting meetings and following up
 - An incubation period is required to develop product and process concepts of real value
 - Users will wish to participate in the follow up studies of the conceptual ideas
- (3) User interest must be nurtured by continued exchanges involving:
 - Technological analyses
 - Additional contacts
 - Information exchange

WHAT WE HAVE LEARNED TO DATE

— USER INTEREST —

VFX859

G16

WHAT WE HAVE LEARNED TO DATE - USER CONCERNS

Potential users have expressed a number of concerns which interfere with user commitments to and support of programs -- These include

- The concern that intellectual property rights developed in the conceptualization, investigation and reduction to practice of processes and products cannot be safeguarded in a vehicle involving major government effort
- A question as to who will make the basic investment to develop and launch the vehicle which will support the enterprise which could arise from reduction of a concept to practice
- A need for assurance that the concept can be reduced to practice with use of in-house resources. Users are not interested in making significant out-of-pocket investments in others to do research or hardware development.

WHAT WE HAVE LEARNED TO DATE – USER CONCERNS –

G17

WHAT WE HAVE LEARNED TO DATE - SPEED UP THE PROCESS

We feel that there are ways for an initializing agency to improve communication with and improve the opportunity to identify, attract and maintain interested, committed commercial users -- These include:

- Development and institutionalization of buffered access techniques which assure user protection of proprietary interests in process, product and service concepts during identification, investigation, analysis and development
- Communication of commitments to protect intellectual property rights after the concept has been developed and is in practice
- Demonstration that there is a program to provide the operating base on which the final enterprise (mission) will be carried out
- Development and application of a formalized, ongoing marketing program which will provide support to the interested user and maintain a visible point of focus for stimulating and developing potential future users.

WHAT WE HAVE LEARNED TO DATE

- SPEED UP THE PROCESS -

VFX861

G18

MISSION REQUIREMENTS (TASK 1)

Technology Development Missions

Space Operations Missions

National Security Missions

Mission Requirements Summary

Dave Riel

TECHNOLOGY DEVELOPMENT MISSIONS

**TECHNOLOGY DEVELOPMENT MISSIONS PROVIDE
ON-ORBIT TESTING WHICH ENABLES:**

- **Generic Mission and Payload Equipment for Future Applications**

- **Technology for Space Station Growth Applications**

SPACE STATION ENVIRONMENTAL TEST FACILITY

VFY026

TECHNOLOGY DEVELOPMENT MISSION SELECTION

VFY084

H3

MISSION/ENVIRONMENT INTERACTION

MISSIONS	ENVIRONMENTAL ATTRIBUTES											
	MICROGRAVITY	VACUUM	UNLIMITED SPACE	ORBIT ALTITUDE	ORBIT VELOCITY	MAGNETIC FIELD	PRESSURIZED VOLUME	LARGE-SCALE DYNAMICS	PLASMA	MICROMETEOROIDS	RADIATION	CONTAMINATION
LARGE SPACE STRUCTURE CONSTRUCTION	X	X	X						X			
LARGE SPACE STRUCTURE CONTROL	X	X	X						X			
ZERO-g ANTENNA RANGE COMMUNICATIONS		X		X								
LASER COMMUNICATIONS AND TRACKING		X	X								X	
MATERIALS AND COATINGS TECHNOLOGY		X			X				X	X	X	X
CREW/MANIPULATOR CONTROLS	X	X					X	X				
SATELLITE SERVICING	X	X					X	X				X
OTV SERVICING	X	X					X	X				
MAN'S ROLE EVALUATION	X	X	X				X	X			X	X
TETHER DYNAMICS	X	X				X			X	X		X
FLUID STORAGE AND MANAGEMENT	X	X										
ECLS WATER RECOVERY	X						X					
ECLS OXYGEN RECOVERY	X						X					
LIQUID DROPLET RADIATOR	X	X	X					X	X		X	X

H4

GENERIC PAYLOAD DEVELOPMENT

MISSION	FUNCTIONAL VALUE	POTENTIAL USE	MISSION CATEGORY
• LARGE SPACE STRUCTURES CONSTRUCTION AND CONTROL	• HIGH-RESOLUTION ANTENNAS AND MIRRORS	• EARTH OBSERVATION • ASTRONOMY • SURVEILLANCE • COMMUNICATIONS	• SCIENCE AND APPLICATIONS • NATIONAL SECURITY • COMMERCIAL
• ZERO-g ANTENNA RANGE COMMUNICATIONS	• IMPROVED DIRECTIONALITY AND ISOLATION	• COMMUNICATIONS	• COMMERCIAL • NATIONAL SECURITY
• LASER COMMUNICATIONS AND TRACKING	• HIGHER DATA RATES • NARROW BEAM TRANSMISSION	• EARTH OBSERVATION • COMMUNICATIONS • SURVEILLANCE • SPACE STATION COMMUNICATIONS	• SCIENCE AND APPLICATIONS • COMMERCIAL • NATIONAL SECURITY • SPACE OPERATIONS
• CREW MANIPULATOR CONTROLS • SATELLITE SERVICING • OTV SERVICING	• IMPROVED SPACE ROBOTICS • REDUCED MISSION COST	• SATELLITE SERVICE • OTV SERVICE	• ALL MISSION CATEGORIES
• FLUID STORAGE AND MANAGEMENT TECHNOLOGY	• IMPROVED ON-ORBIT TRANSFER VEHICLES • REDUCED STS FLIGHTS	• ON ORBIT DEPOT	• SPACE OPERATIONS

H5

POTENTIAL HIGH VALUE MISSIONS

H6

GROWTH SPACE STATION IMPROVEMENTS

Subsystem	Technology Development Mission	Major Benefit Areas				
		Initial Weight	Resupply Weight	Cost	Performance	Security
ECLS	O ₂ Recovery		▲	▲		
	Water Recovery		▲	▲		
CDMS	Laser Communications and Tracking				▲	▲
Thermal Control	Liquid Droplet Radiator	▲			▲	
	Material and Coating Technology	▲			▲	
ACS	Large Space Structure Control				▲	
	Tether Thrust and Drag Control		▲		▲	
Crew Systems	Man's Role Evaluation			▲	▲	

H7

TECHNOLOGY DEVELOPMENT MISSION MIDTERM CONCLUSIONS

VFY021

Technology Development Missions:

- Utilize the Unique Space Station Environment
 - Enable:
 - Advanced Mission Technology
 - Increased Space Station Capability
 - Provide Benefits to All Categories of Users
 - Require Manned Participation For the Majority
 - Are Relatively Short Term and Orbit Independent
 - Require Exterior Volume — 15 Pallets (Equiv)
-

SPACE OPERATIONS MISSIONS

- Transportation (OTV, TMS, Other)
 - Deploy/Retrieve
 - Debris Collection
- Assembly, Integration, Checkout
 - Large Structures
 - Stage/Payload Mating
- Service
 - Maintain/Repair/Resupply
 - Instrument Reconfiguration
- Storage
 - Propellants (Cryo, Storables)
 - Spares
 - Payloads
- Space Utilization
 - Quarantine
 - Rescue

SPACE OPERATIONS MISSION MODEL

SPACE OPERATIONS MISSIONS 1990-2000

H11

ORBIT TRANSFER VEHICLE CAPABILITY

H12

STS FLIGHT REQUIREMENTS REUSABLE OTV AND DEPOT EFFECTS

VFX979

H13

SPACE OPERATIONS ISSUES

- Traffic Model Validation
- Shuttle Fleet Size
- Shuttle Utilization Factor
- Upper Stage Program Development
- Cryogen Scavenging Feasibility
- Orbital Propellant Depot Cost

H14

SPACE TELESCOPE MAINTENANCE

H15

SPACE TELESCOPE MAINTENANCE

	Planned Service Items	Designed Service Items	Potential Service Items
On-Orbit	<ul style="list-style-type: none"> ■ Batteries (6) ■ Fine Guidance Sensor (2) ■ Guidance Sensor Electronics (1) ■ Rate Sensor Unit (1) ■ Rate Sensor Electronics (1) ■ SI Control and Data Handling (1) ■ Axial Scientific Instrument (1) 		
Ground	<ul style="list-style-type: none"> ■ FH Star Tracker ■ Radial Scientific Instr ■ ACS Units ■ Tape Recorder ■ Sun Sensors 	<ul style="list-style-type: none"> ■ FH Star Tracker ■ Radial Scientific Instr ■ ACS Units ■ Tape Recorder ■ Sun Sensors 	<ul style="list-style-type: none"> ■ Comm/Data Mgmt Unit ■ Solar Array Wings ■ Solar Array Drive Electronics ■ Change Current Controller

H16

SPACE TELESCOPE MAINTENANCE SPACE STATION

VFX819

- Orbiter Requires DMP

H17

REQUIRED SPACE OPERATIONS CAPABILITIES

VFY019

H18

NATIONAL SECURITY MISSIONS

VFX972

H19

NATIONAL SECURITY MISSIONS MIDTERM

VFY144

H20

NATIONAL SECURITY MISSION REQUIREMENTS

VFY018

	<u>INITIAL</u>	<u>ULTIMATE</u>
Orbit	28.5° Initial	Polar
Facilities (Equiv)	2 Modules 2 Pallets	3 Modules 4 Pallets
Crew	1-2	2-5
Power	3 kW	10 kW

H21

NATIONAL SECURITY MISSIONS MIDTERM CONCLUSIONS

- Minimal Influence on Overall Requirements
- Prime Continuing Missions Are RDT&E
 - Additional Duration, Power, and Crew
 - Reduced Support System Requirements
- Space Station Enhances Current Capabilities
 - Reduced Satellite Response/Replacement Time
 - Enhanced Space System Survivability/Endurance
- Space Station Offers New Mission Capabilities
 - Low-Cost Space Sensor Base
 - Orbital Assembly of Large Structures
 - Potential Depot Advantages

MISSION REQUIREMENTS SUMMARY

Dave Riel

MIDTERM MISSION SET — 95 TOTAL

CODE	NAME	N ^o	DUR	INC	INC	INC	ALT	ALT	ALT	STAT	SER	NO	HRS	POWER	MASS G	KG	
															DATA	KBPS	
SAS001	SOLAR OPT TELE	88	1	33	57	28	400	435	370	R	1.00	4	5000	8175	0	0	
SAS002	SIRTF	89	10	28	57	0	400	430	350	R	1.00	4	1045	8103	0	0	
SAS003	STARLAB	90	1	28	57	20	400	800	350	R	1.00	4	2220	3280	0	0	
SAS004	COMP SPEC COSRAY NUC	94	2	57	57	28	400	435	370	R	1.00	8	731	3082	0	0	
SAS005	SOL SOFT XRAY TS	88	5	57	98	28	430	600	350	D A M	1.00	2	240	16559	0	0	
SAS006	SOLAR TERR OBS	93	2	57	57	57	400	350	600	D A L	1.00	8	3000	10000	0	0	
SAS007	PINHOLE XRAY	91	1	97	97	80	370	800	350	R	1.00	8	0	11070	0	0	
SAS008	XRAY OBSE	92	2	28	57	0	400	370	370	A A	1.00	2	900	1668	0	0	
SAS009	SPACE TELESC	85	15	28	28	28	600	600	600	M	3.00	8	2100	1000	0	0	
SAS010	HIPRES X&G-RAY SPEC	90	2	28	45	0	400	500	350	A A M	1.00	2	530	9516	0	0	
SAS011	XRAY TIMING EXPL	88	2	28	57	0	400	600	300	A M	1.00	4	600	1354	0	0	
SAS012	SOLAR INT DYNAMICS	91	5	28	28	28	575	575	575	M	2.00	8	800	2600	0	0	
SAS013	ADV XRAY ASTROFAC	91	10	28	57	0	500	600	400	A	1.00	4	2000	20500	0	0	
SAS014	LAMAR	92	6	28	57	0	400	435	200	A M	1.00	2	3400	0	0	0	
SAS015	VLBI	93	3	28	57	28	400	600	350	A B	2.00	8	900	0	0	0	
SAS016	LRG AMB DEPL IRTSC	93	10	28	50	28	700	800	400	M	3.00	8	3000	0	0	0	
SAS017	ADV SOLAR OBSR	93	5	57	57	0	400	600	250	P	1.00	4	4000	0	0	0	
<hr/>																	
TGN001	LSS CONTR EXP	92	1	28	90	0	400	999	300	R	1.00	1	1000	250	0	0	
TGN002	ZERO G ANT RANGE	90	1	28	90	28	400	999	300	R	2.00	8	1000	600	0	0	
TGN003	MATERIALS&COAT TECH	90	5	28	97	28	400	600	300	D M	1.00	2	0	9000	200	0	0
TGN004	TETHER DYNAMICS	92	1	28	97	0	400	600	300	R	1.00	2	1000	0	0	0	
TGN005	LRG STRUCT CONSTR	92	1	28	57	28	400	999	350	R	2.00	8	500	0	0	0	
TGN006	FLUID STORE&MANAG	90	1	28	97	28	400	999	300	R	1.00	4	500	0	0	0	
TGN007	LIQUID DROPLET RAD	92	1	28	97	0	400	999	350	R	1.00	4	200	0	0	0	
TOP001	SATELL SERV TECH	90	99	28	90	28	400	999	300	R	2.00	8	0	0	0	0	
	TV SERVICE TECH	90	1	28	90	28	400	999	300	R	2.00	4	1500				

H24

RELATIVE MISSION VALIDATION

<u>VALIDATION SCALE</u>	<u>SCIENCE AND APPLICATION</u>	<u>COMMERCIAL</u>	<u>NATIONAL SECURITY</u>	<u>TECHNOLOGY DEVELOPMENT</u>	<u>SPACE OPERATIONS</u>
EXISTING SYSTEM	{ ASTROPHYSICS { EARTH AND PLANETARY { ENVIRON OBSERVATORY { ASTROPHYSICS				● SERVICING ● PAYLOAD DEPLOYMENT
EXISTING SUPPORT CAPABILITY			● SPACE TEST PROGRAM		
SYSTEM DEVELOPMENT				{ SERVICING ● FLUID STORAGE	
TECHNOLOGY DEVELOPMENT		● EOS			
FUNDED DEFINITION STUDIES	● EARTH AND PLANETARY ● COMMUNICATION ● LIFE SCIENCES ○ MATERIAL ● PROCESSING	○ CRYSTAL FACILITY	○ SPACE BASED RADAR ○ DIRECTED ENERGY WEAPON ○ DEFENSIVE SYSTEM	● ADV ECLS ● ANTENNA RANGE ● MATERIALS ○ LARGE STRUCT ○ TETHER ● LASER COMM ○ DROPLETS ○ CREW MANIPULATOR ○ MAN'S ROLE EVAL ○ LIQUID DROP RADIATOR	○ STORABLE OPS ○ ASSEMBLY ○ CRYO OPS ○ DEPOT ○ DEBRIS COLLECTION ○ PLANETARY SUPPORT
FUNDED STUDIES PLANNED STUDIES	● ASTROPHYSICS ● EARTH AND PLANETARY ○ ENVIRON OBSERVATORY ○ LIFE SCIENCES	○ RESEARCH FAC			
NEEDS IDENTIFIED CONCEPTS PROPOSAL		○ PRODUCTION FACILITIES	● SPACE DETECTION ● SILO		
CONCEPT IDEA					

● 1990-1991
○ 1992-2000

H25

MISSION PRIORITY

H26

MISSION INCLINATION DISTRIBUTION

H27

ORBIT INCLINATION SENSITIVITIES

VFX823

EARTH OBSERVATIONS

SOLAR VIEWING

STELLAR VIEWING

SHUTTLE PERFORMANCE

H28

SPACE STATION SYSTEM ALLOCATION REQUIREMENTS

VFY000

H29

EXTERNAL VOLUME ALLOCATION REQUIREMENTS

3M Pallets (Equivalent)

VFY147

H30

MISSION MANHOUR REQUIREMENTS

H31

MISSION POWER REQUIREMENTS SPACE STATION INCLINATION ALLOCATION

H32

MISSION POWER REQUIREMENTS PLATFORM ALLOCATION

VFY083

28.5 Degrees

57 Degrees

H33

MISSION REQUIREMENTS ANALYSIS

MIDTERM CONCLUSIONS

VFY239

- **Manned Space Stations Required at 28.5 and 57 Degrees**
Combined Requirements:
 - Pressurized Modules⁽¹⁾: 8
 - External Pallets⁽¹⁾: Up to 45
 - Crew Size: 4-6
 - Power: 40 to 90 kW
- **Unmanned Platforms Desired at 28.5 and 57 Degrees**
Combined Requirements:
 - Pressurized Modules (Man-Tended): 2
 - External Pallets: Up to 25
 - Power: Up to 48 kW
- **STS Growth Needed:**
 - TMS: 1990
 - Propellant Depot and Reusable OTV: 1995

⁽¹⁾Equivalent Spacelab 3M Modules or Pallets

PROGRAMMATICS (TASK 3)

Bob Cowls

J1

MDAC APPROACH — PROGRAMMATICS

J2

NASA FUNDING PROFILE ASSUMPTIONS

- Continued Correspondence to GNP Growth (0.18% GNP)
- Need Balance Between Orbital Facility and Mission Expenditures (Recognizes Shortfall in Non-STS Areas Over Recent Years)
- No External Funds for Orbital Facilities Development
- Diminishing STS Requirement Produces Budget Wedge Opening

NASA BUDGET FORECAST

J4

SPACE STATION PROGRAM BUDGET ALLOCATION ASSUMPTIONS

FUNDING SOURCE	SPACE STATION FACILITIES AND OPERATIONS*	MISSION EQUIPMENTS AND OPERATIONS*					
		SCIENCE AND APP'S MISSIONS	TECHNOLOGY DEVELOPMENT MISSIONS	SPACE OPS** MISSIONS	NATIONAL SECURITY MISSIONS	COMMERCIAL MISSIONS	INTER-NATIONAL MISSIONS
NASA							
OSTS	●		○	●			
OSSA		●	○				
OAST			●				
DoD				●			
COMMERCIAL					●		
FOREIGN (BARTER)						●	●

● PRIMARY
○ SECONDARY

*INCLUDES HARDWARE COST (DEVELOPMENT, PRODUCTION) AND OPERATIONAL PHASE ACTIVITIES' COST

**OPERATIONAL MISSION, e.g., SPACECRAFT TRANSFER FROM LEO TO GEO, NOT MISSION OPERATIONAL PHASE ACTIVITIES, VIZ., ACTIVATION, RESUPPLY AND REFURBISHMENT

FUNDING ALLOCATION

Objective: Facility Capability = Mission Needs

**Orbital Location
Electrical Power
Crew Size
Volume
Data
Schedule
Equipment**

NASA BUDGET ALLOCATION ASSUMPTIONS

BUDGET MODEL NOMINAL CASE

(Billion Dollars, 1984)

Notes: (1) Science and Applications Budget Increased 60% Above 1983
 (2) Shuttle Flights Budgeted at \$0.9 Billion/Yr, Are Excluded
 (3) All NASA Funds; No Commercial, DoD or Foreign Funds

PROGRAMMATICS SUMMARY

- Funds for Space Station Program Are Available Due to Diminishing Shuttle Hardware Costs
- Funds for Fifth Orbiter Available
- Balance Between Mission Needs and Facility Capability Is Necessary

MISSION IMPLEMENTATION (TASK 2)

Bill Nelson

TASK 2

MISSION IMPLEMENTATION CONCEPTS

VFY027

Cummulative
Budget and Cost (\$)

K1

ARCHITECTURAL GOALS

- Maximize Mission Capture

- Total Number
- Number of Categories

- Provide Flexible Accommodations

- Orbit Locations
- Facility Types

- Maximize Cost Effectiveness

- Cluster Facilities Preferred
- Locate at Shuttle Traffic Lanes (Comanifesting)
- Maximize Mission Capture per Unit Cost

K2

MISSION LOCATION AND FACILITY TYPE REQUIREMENTS

VFY008

Inclination (deg)	Facility Type				
	Manned	Either	Either	Either	Unmanned
28	17		4	4	1
28-57	4		2	2	4
28-90	4	0		0	1
28-98	17	5		5	1
57	4	3	3		0
57-90	1	7		7	0
57-98	2	3		3	1
90	0	1		1	0
90-98	1	0		0	1
98	3	1		1	0

**Number of Missions Requiring
Manned Facility at 57 Degree Inclination**

K3

MISSION CAPTURE FOR SPACE STATION AT 57° INCLINATION

VFY009

Inclination (deg)	Facility Type				
	Manned	Either	Either	Either	Unmanned
28	17		4	4	1
28-57	4	2		2	4
28-90	4	0		0	1
28-98	17	5		5	1
57	4	3		3	0
57-90	1	7		7	0
57-98	2	3		3	1
90	0	1		1	0
90-98	1	0		0	1
98	3	1		1	0

Mission Capture for
Space Station at 57 Degree
Inclination

K4

FACILITY NUMBER AND LOCATION FOR 100% MISSION CAPTURE

Inclination (deg)	Facility Type				
	Manned	Either	Either	Either	Unmanned
28	17		4		1
28-57	4		2		4
28-90	4	0			
28-98	17	5			
57	4	3			0
57-90	1	7			0
57-98	2	3			
90	0	1			0
90-98	1	0			
98	3	1			

Space Station Mission Capture Platform Mission Capture

Mission Allocation for Capture

K5

SINGLE FACILITY MISSION CAPTURE

(Shows Maximum Mission % Capture
by Any Single Facility)

VFY167

K6

ALLOCATION OF FACILITY REQUIREMENTS ULTIMATE CAPABILITY

VFY135

INITIAL CAPABILITY SPACE STATION FACILITY

VFY065

Manned Space Station

■ Crew	4
■ Payload Power	24 kW
■ Total Power	37 kW
■ Data	120 Mbps
■ Payload Complement	10

Platform

■ Payload Power	35 kW
■ Total Power	38 kW
■ Data	120 Mbps
■ Payload Complement	10

K9

CAPABILITY GROWTH OPTIONS

STS ELEMENTS FOR SPACE STATION PROGRAM

VFY064

1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
------	------	------	------	------	------	------	------	------	------

K11

SAMPLE PROGRAM COSTS

100% MISSION CAPTURE

VFY269

K11

SPACE STATION SYSTEM GROWTH BASED ON SPECIALTY NEEDS

VFY066

K13

CONCLUSIONS

MISSION IMPLEMENTATION CONCEPTS

- **100 Percent Mission Capture Possible**
 - Within Total Budget Limits
 - Space Stations/Platforms/Transportation
- **Buildup Constraints**
 - Rate of Budget Availability
 - Production Rates
- **Initial Capability in 1990 - 1991**

K13

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY-HUNTINGTON BEACH

5301 Bolsa Avenue, Huntington Beach, California 92647 (714) 896-3311