Name	
Student No	

University of Toronto

Final Exam MMS 315 Environmental Degradation of Materials April 2001

Examiner: D.W. Kirk

You may remove the data sheet and graph papers from the exam. Be sure to record your name on each page used.

Marks

1 Pourbaix Diagram

Tin has 2 principal solid phases Sn and SnO₂. The principal aqueous phases are Sn², Sn⁴, and SnO_3^{-2} .

- a)Construct a simplified Pourbaix diagram for the tin water system using the following 10 information and graph paper provided. T= 25°C
- 5 b) Identify the regions of corrosion, immunity and passivation
- c). Using the diagram give the pH limit for SnO_2 stability in acid and alkali for a 1 x 10^4 M 5 dissolved tin. pH = _____, pH = _____

Assume the dissolved species have a concentration of 1 \times 10⁻⁶ M Convert the following data to equations of lines for the Pourbaix diagram

$$E^{\circ} = 0.15 \text{V vs SHE}$$

$$E^{o} = -0.136 \text{V vs SHE}$$

iii)
$$SnO_2 + 4H' + 4e' + Sn + 2H_2O = E'' = -0.106V$$
 vs SHE

$$E'' = -0.106 \text{V vs SHE}$$

iv)
$$SnO_2 + 4H^2 - Sn^{41} + 2H_2O$$
 $K = 2.089 \times 10^{-8}$

$$K = 2.089 \times 10^{-6}$$

v)
$$SnO_2 + H_2O - SnO_3^{2} + 2H^2$$

$$K = 6.918 \times 10^{-32}$$

÷			Name
			Student No
	10	2 Corrosion Kinetics - Evans Diagram	
\$		Part A A steel vessel is used to contain an aqueous fluid having a p atmosphere and has an oxygen content of 0.376 x 10 ⁻³ mol	
		a) Using the graph paper provided, determine the corrosion kinetic parameters.	rate of the steel based on the following
-		Oxygen reduction: $b_c = -0.045 \text{ volts/ decade}$, $i_o = 1.5 \text{ O}_2 + 2\text{H}_2\text{O} + 4\text{e}^2 = 4\text{OH}$; $E^\circ = +0.401 \text{ V vs SHE}$	x 10 ⁻⁵ A/m ²
		Steel oxidation: $b_a = 0.04 \text{ volts/ decade}$, $i_o = 1.5$ Fe = Fe ² + 2e' $E^o = -0.44 \text{ V vs SHE}$ (Assume an iron concentration of $1 \times 10^{15} \text{ mol/L}$)	∢ 10 ⁻⁴ A/m²
-			
•		b) If after several months the potential of the steel vessel is a Copper- copper sulphate electrode and is found to be -0.5 \text{ N}	
:		i _{con} =	
	10	Part B	
Ī		What would be the effect on the corrosion rate if the follow answer.	ing changes were made. Explain your
		a) the fluid conductivity was decreased	
=			
		b) the fluid was stagnant	
=		c) the fluid temperature was cooled by 10°C	
•		d) the vessel was operated under vacuum	

-		Name
		Student No
	10	General material properties and behaviour Part A
-		Provide the best match of the following 6 materials with the 6 specified environments. You may use each material only once. Briefly justify your choice. (cost is not a consideration)
		Materials: polypropylene, SS304, carbon steel, aluminum alloy, tin alloy, copper alloy
		a) Exterior application exposed to industrial atmosphere
2		
		b) in-ground application with anaerobic environment
•		
		c) flowing seawater application
÷		cy nowing seawards approaction
<u>=</u>		d) concrete structural support
_		e) food contact application room temperature
_		
_		
-		
_		
~		

Name	
Student No	·

Qu 3 Part B

10

Briefly describe 2 of the following forms of corrosion. Identify the mechanism and effects on the material intergranular corrosion, filiform corrosion, hydrogen embrittlement. Make a sketch if it will help your explanation.

i)

ii)

Page 4 of 6

=		Name
		Student No.
		4 Resistance Polarization
_		A sample of zinc coated steel is to be tested for corrosion in an acidified fluid containing salt.
_		The polarization method is used but only one measurement is taken. A cathodic current of $10~\mu\text{A/cm}^2$ is applied and the steady state voltage measured is 2.7 mV from E_{con} .
	lo	The kinetic parameters for the coated steel were determined to be $ b_a = 30 \text{ mV}$, $ b_c = -118 \text{ mV}$. An AC impedance technique was used to determine the solution resistance of 1000Ω .
-	10	a) Determine the expected corrosion rate of the sample in the fluid.
2		
-		
=		
÷	5	b) Show a schematic polarization plot of a metal that passivates. Identify i_{a_abbe} , i_{arc} , $i_{painvaluon}$, $E_{painvaluon}$, $i_{transposition}$

5

c) Show on the same plot a polarization curve of a metal that pits. Identify $E_{\rm pit}$, $E_{\rm repulsivation}$, $E_{\rm corr}$

Name	
Student No.	

5 Steel alloy tubes are being considered for a hot furnance application at 1000°C. One of these has been surface treated with aluminum and the manufacturer claims has better corrosion resistance (but at a higher cost). Measurements of the untreated and treated steel alloy materials in the environment have been conducted and are presented below.

untreated alloy		treated	alloy
% wt gain	time (hr)	% wt gain	time (hr)
7.5	10	1.0	10
		1.2	20
16.5	30	1.3	30
22.0	50	1.35	60
36 0	175	1.88	175

10	a) determine the nature/type of corrosion using the graph paper provided.							
5	b) linearize the data and extrapolate to end of life. Determine end of life (40% wt gain) untreated alloy life, treated alloy life							

c) speculate why aluminum treatment is effective

5

```
Data Page
```

The information provided below may be used in any of the questions as required.

DATA:

R=8.314 J/K·mol; F=96,487 c/mol e'; $\ln x = 2.303 \log x$

Ideal Gas Law PV = $n_{mot}RT$

Nernst Equ. E=E° -RT/nF in $(a_{i prod}/a_{i react})$ at 25°C RT/F in $(x) = 0.0591 \log (x)$

Tafel Equ. $\eta = a + b \log i$ or $\eta = b \log(i/i_0)$

Overpotential $\eta = E_{-} E_{equilibrium}$

Linear Polarization

$$\begin{aligned} Rp &= \Delta E / \Delta i = b_a b_c / (2.3 \ i_{corr} (b_a + b_c)) \\ (R &= V / I \ for \ simple \ electrical \ circuit) \\ Total \ R &= R_{solution} + R_{polarization} \end{aligned}$$

Butler Volmer i = i_0 [exp($\alpha \eta z F/RT$) - exp ((1- α) $\eta z F/RT$)]

Mass transfer limitation

 $i_{\rm lim} \approx zFD(C_b - C_s)/\delta$ where δ is 0.05 cm in unstirred , 0.001 cm in stirred conditions

$$D_{O2} = 2.0 \times 10^{-9} \text{ m}^2/\text{s} 25^{\circ}\text{C}$$

Reference Electrodes

 $pH = -log[H^*]$

$$[H^*][OH^*] = 1 \times 10^{-14}$$

Units: 1 inch = 2.54 cm 1 mpy = 1×10^{-3} inch/year

٠										· ·
									;	
=		}	٠				: .			
										
						:	,			
	1	<u> </u>					-		-	
_		}			1	1 1	, ;			
•		<u> </u>					-			
				•	1 ;	: :				
						· · · · · · · · · · · · · · · · · · ·				
		Ì	÷	•	: :	' .				
•				:			1			
			,	·	:		1	,		
9	שַ		}		;	1 :		, l		
- N	Ē.									
- Ž	ž	:	1	, i	1 :	1			}	
•		} <u>-</u> -		<u>:</u>	!;-				-	
	Ĕ] '	, ; ; t	i			1 1		¦ ≥	<u> </u>
		·		· · · · ·		_ <u> </u>	<u> </u>		n Si	2
	at	:			: ;	1 :			de	3
•	Ĭ.			; ·	1	1	i		a tra	=
	polarization	:		:				· · ·	Current density	5
	100			•			· !		5)
	90			 -		_				
•	<u></u> ,		: :	:		, ,			i	
							-			
					;		;	1		
				:-						
		,	i i	,		1		ļ		
•		<u> </u>	1	;	: - :	· 	· · · · · · · · · · · · · · · · · · ·	· !	<u>i</u>	
					:	,		· · · · · · · · · · · · · · · · · · ·		
				;		· ,	# · · · · · · · · · · · · · · · · · · ·		1	
			·-·· ····· ·- · ·- · ·				· · ·	:		
•			·							
					·-··· ,	- :		·	- ;	
				•	i ;	: .	1	1		
_	<u></u>					!	· · · · · · · · · · · · · · · · · · ·	; 		
= ~	ব		-	; 1	1	٠.	i i		i	
= \frac{1}{2}	⊋		· 	· - 		· · ·	: ;	<u> </u>		
	ב				(V)	3			,	
						- 				

ï

Name Corrosion rate