

Features

- CRM(CQ) Super_Junction technology
- Much lower Ron*A performance for On-state efficiency
- Better efficiency due to very low FOM
- Ultra-fast body diode
- Qualified for industrial grade applications according to JEDEC

Applications

- LED/LCD/PDP TV and monitor Lighting
- Solar/Renewable/UPS-Micro Inverter System
- Charger
- Power Supply

Product Summary

VDS	650V
$R_{DS(on)_typ}$	90mΩ
I_{D}	31A

100% DVDS Tested

100% Avalanche Tested

Package Marking and Ordering Information

Part #	Marking	Package	Packing	Reel Size	Tape Width	Qty
CRJQ99N65G2BF	CRJQ99N65G2BF	TO-247-3L	Tube	N/A	N/A	25pcs

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source voltage	V _{DS}	650	V
Continuous drain current 1)			
$T_C = 25$ °C	${ m I}_{ m D}$	31	Α
$T_{C} = 100^{\circ}C$		20	
Pulsed drain current $^{2)}(T_{C} = 25^{\circ}C, t_{p} \text{ limited by } T_{jmax})$	${ m I}_{ m D\ pulse}$	93	Α
Avalanche energy, single pulse (L=30mH)	E _{AS}	480	mJ
MOSFET dv/dt ruggedness	dv/dt	50	V/ns
Gate-Source voltage	V _{GS}	±30	V
Power dissipation ($T_C = 25$ °C)	P _{tot}	255	W
Continuous diode forward current($T_C = 25$ °C)	I _S	31	А
Diode pulse current ²⁾ (T _C = 25°C)	I _{S pulse}	93	А
Recovery diode dv/dt ³⁾	dv/dt	50	V/ns
Operating junction and storage temperature	T_j , T_{stg}	-55+150	°C

¹⁾ Limited by Tj,max. Maximum Duty Cycle D = 0.50 2) Pulse width to limited by Ti.max

³⁾ Identical low side and high side switch with identical RG

CRJQ99N65G2BF

SJMOS N-MOSFET 650V, $90m\Omega$, 31A

Thermal Resistance

Parameter	Symbol	Value			Unit	Test Condition
raiametei	Symbol	min.	typ.	max.	Oilit	rest condition
Thermal resistance, junction – case	R _{thJC}	-	0.35	0.49	°C/W	
Thermal resistance, junction – ambient	R _{thJA}	-	-	46	°C/W	

Electrical Characteristic (at Tj = 25 °C, unless otherwise specified)

Davameter	Cumbal		Value		Unit	Test Condition
Parameter	Symbol	min.	typ.	max.	Unit	lest Condition
Static Characteristic						
Drain-source breakdown voltage	BV_{DSS}	650	-	-	V	V _{GS} =0V, I _D =250uA
Gate threshold voltage	V _{GS(th)}	2.9	-	4.9	V	$V_{DS}=V_{GS}$, $I_{D}=250$ uA
						V _{DS} =650V,V _{GS} =0V
Zero gate voltage drain current	I_{DSS}	-	-	5	μΑ	T _j =25°C
		-	800	-		T _j =150°C
Gate-source leakage current	I_{GSS}	-	-	±100	nA	V_{GS} =±30V, V_{DS} =0V
						V _{GS} =10V, I _D =17A,
Drain-source on-state resistance	$R_{DS(on)}$	-	90	103	mΩ	T _j =25°C
		-	230	-		T _j =150°C
Transconductance	g _{fs}		19		S	V _{DS} =20V,I _D =17A

Dynamic Characteristic

Input Capacitance	C _{iss}	-	1900	-		
Output Capacitance	C _{oss}	-	117	-	pF	V_{GS} =0V, V_{DS} =100V, f=1MHz
Reverse Transfer Capacitance	C _{rss}	-	2.2	-		
Gate Total Charge	Q_{G}	-	70	-		
Gate-Source charge	Q _{gs}	-	17	-	nC	V _{GS} =10V, V _{DS} =480V, I _D =17A
Gate-Drain charge	Q_{gd}	-	45	-		
Gate plateau voltage	V _{plateau}	-	7.7	-	V	
Turn-on delay time	t _{d(on)}	-	50	-		
Rise time	t _r	-	80	-	nc	$V_{GS}=10V, I_{D}=17A, V_{DS}=400V, R_{g}=27\Omega$
Turn-off delay time	t _{d(off)}	-	180	-	ns	
Fall time	t _f	-	50	-		
Gate resistance	R_{gint}	-	0.9	-	Ω	f=1MHz

CRJQ99N65G2BF

SJMOS N-MOSFET 650V, $90m\Omega$, 31A

Body Diode Characteristic

Darameter	Value				Took Condition		
Parameter	Symbol	min.	typ. max.		Unit	Test Condition	
Body Diode Forward Voltage	V _{SD}	0.7	0.9	1.1	V	$V_{GS}=0V,I_{SD}=17A$	
Body Diode Reverse Recovery Time	t _{rr}	- 140 -		ns	Isd=17A		
Body Diode Reverse Recovery Charge	Q _{rr}	-	0.89	-	uC	dI/dt=100A/us Vds=400V	

Typical Performance Characteristics

Fig 1. Output Characteristics (Tj=25℃)

Fig 2. Output Characteristics (Tj=150℃)

Fig 3: Transfer Characteristics

Fig 4: V_{TH} Vs Tj Temperature

Fig 5: Rdson Vs Ids Characteristics(Tj=25℃)

Fig 6: Rds(on) vs. Temperature

Fig 7: BVDSS vs. Temperature

Fig 8: Rds(on) vs Gate Voltage

Fig 9: Body-diode Forward Characteristics

Fig 10: Gate Charge Characteristics

Fig 11: Capacitance Characteristics

Fig 12: Safe Operating Area

Test Circuit & Waveform

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Package Outline: TO-247-3L

Symbol	Dimensions In I	Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	4.70	5.30	0.185	0.209	
A1	2.20	2.60	0.087	0.102	
A2	1.50	2.49	0.059	0.098	
b	1.04	1.33	0.041	0.052	
b2	1.90	2.41	0.075	0.095	
b4	2.87	3.43	0.113	0.135	
С	0.55	0.70	0.022	0.028	
D	20.70	21.30	0.815	0.839	
D1	16.25	17.65	0.640	0.695	
D2	0.51	1.40	0.020	0.055	
е	5.44 BS	C.	0.214	4 BSC.	
E	15.50	16.30	0.610	0.642	
E1	13.08	14.16	0.515	0.557	
E2	3.80	5.49	0.150	0.216	
E3	1.00	2.75	0.039	0.108	
L	19.72	20.32	0.776	0.800	
L1	3.85	4.50	0.152	0.177	
Q	5.25	6.25	0.207	0.246	
Р	3.50	3.70	0.138	0.146	
S	6.04	6.30	0.238	0.248	

Marking

NOTE:

NXBBAAAAY

X —Assembly location code

BB —Fab code AAAA —Lot code Y —Bin code

Revision History

IXCVISIOII	instory	
Revison	Date	Major changes
1.0	2022/9/14	First version

Disclaimer

Unless otherwise specified in the datasheet, the product is designed and qulified as a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability, such as automotive, aviation/aerospace and life-support devices or systems.

Any and all semicondutor products have certain probability to fail or malfunction, which may result in personal injury, death or property damage. Customer are solely responsible for providing adequate safe measures when design their systems.

CRM(CQ) reserves the right to improve product design, function and reliability without notice.