

沈海华

shenhh@ucas.ac.cn

第五讲 Flash Storage

- 简介
- 分类
- ■应用
- 特性

手机里面最主要的芯片有什么?

Diagram of a CellPhone SoC

- Flash is ubiquitous in cellphones and tablets
 - And increasingly common in notebooks and servers

闪存Flash

- Flash是一种非易失性(Non-Volatile)存储器
 - 比较: DRAM 属于易失存储器
 - 停止供电内存中的数据就无法保持,因此每次开机都需要把数据重新载入内存。
 - Flash作为非易失性(Non-Volatile)存储器, 在断电的条件下也能够长久保持数据,其存储特 性相当于硬盘
- 闪存分类: NAND Flash vs NOR Flash
 - NOR Flash (Intel 1988, 替代EPROM和EEPROM)
 - NAND Flash(东芝 1989,成本低,容量大,有利于大规模普及)

Flash vs EPROM(或EEPROM)

- Flash是EPROM和EEPROM的升级换代产品。
- ▶ 比较:

相同点:

- 都是非易失性(Non-Volatile) 存储器
- 技术上是EPROM和EEPROM二者的结合

不同点:

- Flash对芯片提供整块(big block)擦除,降低芯片设计复杂性
- Flash单元结构较EEPROM省一个晶体管,单位面积容量更大、 集成度更高。
- 改进了工艺,写入速度更快。
- EEPROM可以按位擦写,Flash只能按块(block)擦写,由于RAM通常需要按字节修改,Flash ROM还做不到,所以目前不能替代内存。
- 抗震、无噪声、速度快、耗电低,基本取代硬盘。

为什么要用Flash?

- Flash: semiconductor, non-volatile memory
- Compared to a hard disk
 - Lower latency
 - Lower power
 - Lighter weight, smaller size, shock resistance
- Rough comparisons for DRAM : Flash : Disk
 - Cost per bit: 100 : 10 : 1
 - Access latency: 1 : 5,000 : 1,000,000

DDR4 0.5USD/Gbits
TLC 0.014USD/Gbits MLC 0.065USD/G bit SLC 0.825USD/Gbits
Disk 0.005 USD/Gbits

Flash 基本单元

- Store bit as charge trapped in floating gate
 - Charge modulates Vth of underlying transistor
 - Writing/erasing by applying high/low Vcg

Flash的类型

NOR flash

- Fast read (~100ns), slow writes (200usec), very slow erase (1sec)
- 10K to 100K erase cycles
- Used for instruction memory in mobile systems

NAND flash (our focus today)

- Denser (bits/area, ~40% of NOR), cheaper per GB
- Slow read (20-50usec), slow writes (200usec), slow erase (2msec)
- 100K to 1M erase cycles
- Used for data storage (phones, USB keys, solid-state drives, ...)

Both types have durability issues

Damaged after some number of write/erase cycles

Flash 芯片的基本结构

Page layout for large-block flash memory

- chip
- Single (SLC) or multiple (MLC) bits per cell
- Page: minimum unit of read/write
 - 0.5Kb 8Kb of data + spare area for error coding
- Block: minimum unit of erasing
 - 64 128 pages
- Chip: 1 16GB
 - Upto 16K blocks per chip

Flash 基本操作

- Read the contents of a page
 - 20-50us
- Write (program) data to a page
 - Only 1 → 0 transitions are allowed
 - Writing within a block must be ordered by block
 - 100-300us
- Erase all bits in a block to 1
 - Pages must be erased before they can be written
 - Update-in-place is not possible
 - 0.5-3ms

Flash的可靠性

Wear out

 Flash cells are physically damaged programming and erasing them

Writing disturb

Programming pages can corrupt the values of other pages in the block

Read disturb

- Reading data can corrupt the data in the block
- It takes many reads to see this effect

Multi-level Cells

SLC		MLC		TLC	QLC		
	AnandTech.com						
				000	0000		
		00		000	0001		
		00		001	0010		
0				001	0011		
0				010	0100		
		01		010	0101		
		01		011	0110		
			011	0111			
		10		100	1000		
				100	1001		
		10		101	1010		
1				101	1011		
1				110	1100		
		11		110	1101		
		11		111	1110		
				111	1111		

Likelihood

MLC vs SLC

SLC – single-level cell

- Faster but less dense
- More reliable (100K -1M erase cycles)
- \$5.60/GB
- Used in "enterprise" drives (i.e. Intel Extreme SSDs)

MLC – multilevel cell

- Slower but denser
- Less reliable (1K 10K erase cycles)
- \$0.53/GB
- Used in consumer drives (flash cards, thumb drives, cheap SSDs, etc.)

Making Flash Useful

- Raw flash is not terribly useful
 - The interface is ugly; rules are onerous
- Instead, we want it to look like a disk
 - Build a "flash translation layer (FTL)
 - Exposes a block-based interface (like a disk)
 - Manages program/erase granularity mismatch
 - Equalizes wear
 - Delivers high performance (not always...)
- FTL implemented using a microcontroller & SRAM/DRAM buffers
 - See any issue with the latter?

Flash Translation Layer (FTL)

- User
 - Logical Block Address
- Flash
 - Write pages in order
 - Erase/Write granularity
 - Wears out
- FTL
 - Logical → physical map
 - Wear leveling
 - Power cycle recovery

Centralized FTL State

Map

LBA	Physical Page Address		
0	Block 5	Page 7	
2k	Block 27	Page 0	
4k	Block 10	Page 2	

Write Point

Block	Erased	Erase Count	Valid Page Count	Sequence Number	Bad Block Indicator
0	False	3	15	5	False
1	True	7	0	-	False
2	False	0	4	9	False

Read

1. Read Data at LBA 2k

2. Map

LBA	Physical Page Address		
0	Block 5	Page 7	
2k	Block 27	Page 0	
4k	Block 10	Page 2	

3. Flash Operation

Write – Mid Block

Write 0101101011001010 to LBA 2k

Write Point = Block 2, Page 5

Map

LBA	Physical Page Address		
0	Block 5	Page 7	
2k	Block 0	Page 0	
4k	Block 10	Page 2	

Block	Erased	Erase Count	Valid Page Count	Sequence Number	Bad Block Indicator
0	False	3	15	5	False
1	True	7	0	1	False
2	False	0	4	9	False
	Taise				1 4150

Write – Mid Block

Write 0101101011001010 to LBA 2k

Write Point = Block 2, Page 5 Page 6

Map

LBA	Physical Page Address		
0	Block 5	Page 7	
2k	Block ₽ 2	Page ₽ 5	
4k	Block 10	Page 2	

Block	Erased	Erase Count	Valid Page Count	Sequence Number	Bad Block Indicator
0	False	3	15 14	5	False
1	True	7	0	ı	False
2	False	0	4 5	9	False

Write – Block Jump (1)

Write 0101001010100110 to LBA 2k

Write Point = Block 2, Page 63

Map

LBA	Physical Page Address		
0	Block 5	Page 7	
2k	Block 0	Page 5	
4k	Block 0 Page 2		

Block	Erased	Erase Count	Valid Page Count	Sequence Number	Bad Block Indicator		
0	False	3	15	5	False		
1	True	7	0	ı	False		
2	False	0	4	9	False		

Write – Block Jump (1)

Write 0101001010100110 to LBA 2k

Write Point = Block 2, Page 63

Block 1, Page 0

LDA	Filysical Page Address		
0	Block 5	Page 7	
2k	Block ₽ 2	Page 5 63	
4k	Block 0	Page 2	

0101011010101010

Block	Erased	Erase Count	Valid Page Count	Sequence Number	Bad Block Indicator	
0	False	3	15 14	5	False	
1	True	7	0	ı	False	
2	False	0	4 5	9	False	

Write – Block Jump (2)

Write 1101000101101001 to LBA 4k

Write Point = Block 1, Page 0

Map

LBA	Physical Page Address			
0	Block 5	Page 7		
2k	Block 2 Page 63			
4k	Block 0 Page 2			

Next Sequence Number: 12

Block	Erased	Erase Count	Valid Page Count	Sequence Number	Bad Block Indicator
0	False	3	14	5	False
1	True	7	0	-	False
2	False	0	5	9	False

Write – Block Jump (2)

Write 1101000101101001 to LBA 4k

Write Point = Block 1, Page 0

Page 1

Map

LBA	Physical Page Address			
0	Block 5	Page 7		
2k	Block 2	Page 63		
4k	Block ₽ 1 Page 2 0			

Block	Erased	Erase Count	Valid Page Count	Sequence Number	Bad Block Indicator	
0	False	3	14 13	5	False	
1	∓F	7	₽1	12	False	
2	False	0	5	9	False	

Erase

Block Info Table

Block	Erased	Erase Count	Valid Page Count	Sequence Number	Bad Block Indicator	
0	False	3	13	5	False	
1	False	7	1	12	False	
2	False	0	3	9	False	

Move Valid Pages

Block 2

Erase

Block Info Table

Block	Erased	Erase Count	Valid Page Count	Sequence Number	Bad Block Indicator
0	False	3	13	5	False
1	False	7	1	12	False
2	False	0	3 0	9	False

Move Valid Pages

Block 2

Update:

•etc.

Erase

Block Info Table

Block	Erased	Erase Count	Valid Page Count	Sequence Number	Bad Block Indicator	
0	False	3	13	5	False	
1	False	7	1	12	False	
2	₽Τ	Q 1	0	-	False	

Move Valid Pages

Block 2

Update:

- •Map
- Valid Pg Counts
- •etc.

Distributed FTL State

Metadata

Summary Page

Power Cycle

Map

Write Point

Scan each block:

- 1. Summary page
- 2. First Page
- 3. All Pages

LBA	Physical Page Address		
0	Block 5	Page 7	
2k	Block 27	Page 0	
4k	Block 10	Page 2	

Next Sequence Number: 12

Block	Erased	Erase Count	Valid Page Count	Sequence Number	Bad Block Indicator
0	False	3	15	5	False
1	True	7	0	0	False
2	False	0	4	9	False

FTL Options

- Per-page vs per-block mapping
 - Per-page: flexibility at the cost of large tables
 - Per-block: small tables but write-amplification issue
 - Must copy whole block when 1 page updated
- Log-based systems
 - Log changes to data sequentially in empty blocks
 - Makes writes sequential but reads can be scattered
- **.** . . .
- Lots of FTL variations overall
 - Performance can vary significantly with FTL choice
 - Implementation cost can also vary

Connecting Flash to the System

- ONFI standard for NAND Flash
 - Allows Flash chips to talk to controllers
 - Controller can be integrated

Flash SSD

A SATA device

- Flash chips + control/buffering chip + ROM
- They sometimes include a capacitor or small battery
 - Needed to flush buffered data on power loss
- Internal concurrency through multiple channels

Higher Performance Flash

- SSDs connected to PCI-e
 - Similar latencies but higher bandwidth (2-4x)
 - Highly banked architectures, multi-queue interface
- Examples: Fusion-IO storage cards

2014年7月,Fusion-IO举行了PCI-e闪存卡发布会。 2015年2月,闪迪Sandisk收购Fusion-IO。

Other Uses of Flash

Notebooks

- In addition to hard disk
 - Store code to accelerate program launch
- Replacement for hard disk

Servers and data centers

- High bandwidth (IOPS) storage system
- Performance & energy savings
- Good for systems not limited by capacity
 - Cost/IOPS > cost/bit
 - Or for hot data only

Flash Power Consumption

Flash vs Disk

- Sleep state: <0.3W vs >2W
- Read/write: 2-3W vs 2-10W
- Bandwidth: 500MB/s vs 60MB/sec

Flash vs DRAM

- Sleep state: <0.3W vs ~1W</p>
- Read/write: 2-3W vs 2-3W
- Capacity: 128GB vs 8GB

致谢:

本讲内容参考了M.I.T. Daniel Sanchez教授的课程讲义,特此感谢。

