

IQ-MED

Validation of stereo vision based liver surface reconstruction for image guided surgery

Teatini Andrea^{1,3*}, Wang Congcong^{2*}, Palomar Rafael^{1,2}, Alaya Cheikh Faouzi², Beghdadi Azeddine⁴, Edwin Bjørn^{1,5}, Elle Ole Jakob^{1,3}

¹The Intervention Centre, Oslo University Hospital, Oslo, Norway.
²Norwegian Colour and Visual Computing Lab, NTNU, Norway.
³Department of Informatics, University of Oslo, Oslo, Norway
⁴L2TI-Institut Galilee, Universite Paris 13, Sorbonne Paris Cite, Villetaneuse, France
⁵Oslo University Hospital, Department of Hepato-Pancreatic-Biliary surgery, Norway

*Denotes equal contributions and listed in alphabetical order.

Stereo Reconstruction

Validation

Conclusions

Future work

Introduction

Laparoscopic Liver Resection

VIII

- Liver Metastasis from Primary Colorectal Cancer (CRM) affects 550,000 patients p/y.
- Post-operative reoccurrence of 80% of patients for Colorectal Liver Metastases.
- Parenchyma Sparing approaches to spare healthy liver tissue.
- Laparoscopic Liver Resection presents great benefits for patient recovery.

Introduction

Stereo Reconstruction

Validation

Conclusions

Future work

Laparoscopic Liver Resection (2)

- Surgeon can only visualize the anatomy of the patient through the laparoscope camera. The field of view is greatly reduced with respect to open liver surgery.
- Anatomical understanding only through preoperative CT/MRI scans.

Image Guided Surgery (IGS)

Introduction

Stereo Reconstruction

Validation

Conclusions

Future work

Aid the surgeon by displaying preoperative resection planning with surgical navigation.

Stereo video reconstruction

We focus on navigation through Stereo Reconstruction.

Stereo Reconstruction

Validation

Conclusions

Introduction

Future work

UiO : University of Oslo

2D left and right images

3D reconstruction

Stereo-reconstruction Method

Introduction

Stereo Reconstruction

Validation

Conclusions

Future work

Variational Method based on global image disparity¹

<u>Smoothing terms (local and non-local)</u>

UiO : University of Oslo

Validation through Registration

 For IGS, we want to combine Intra-operative laparoscopic data to pre-operative CT/MRI volumes.

Introduction

Stereo Reconstruction

Validation

Results

Conclusions

NTNU

UiO: University of Oslo

3D stereo-reconstruction

3D CT reconstruction

Validate the Reconstruction

Introduction

Stereo Reconstruction

Validation

Results

Conclusions

Workflow to check reconstructed liver surface.

- Patient specific liver phantom.
- Markers to register CT and Stereo.
- Refine through Iterative Closest Points (ICP) registration.

Stereo Reconstruction

Validation

Results

Conclusions

Registered Surface to CT scan

 Examples of stereo-point clouds (Red) registered to the CT scan liver point clouds (Colour).

Measures of Accuracy

Introduction

Stereo Reconstruction

Validation

Results

Conclusions

Two measures of accuracy were used to evaluate:

Mean Absolute Error (MAE)

$$MAE = \sum_{(x,y,z)\in\Omega} |\hat{Y}(x,y,z) - Y(x,y,z)|$$

$$h(A,B) = \max_{a \in A} \min_{b \in B} ||a - b||$$

$$H(A,B) = \max(h(A,B),h(B,A))$$

Stereo Reconstruction

Validation

Results

Conclusions

Results

 MAE and Hausdorff were tested on 2 datasets, (Dataset1 and Dataset2) of 15 surface reconstructions for a total of 30 reconstructions.

TABLE 1. MAE AND HAUSDORFF IN [MM] IN TERMS OF MEAN μ , STANDARD DEVIATION σ AND MAXIMA FOR *Dataset1* AND *Dataset2*.

	Dataset1	Dataset2
MAE $(\mu \pm \sigma)$	4.6±1.0	4.4 ± 0.8
max_{MAE}	128.8	105.2
Hausdorff $(\mu \pm \sigma)$	3.7±0.8	3.6 ± 0.8
max_H	78.5	106.6

• Results show an accuracy of ~4 mm, with large outliers due to triangulation error, which is inherent to laparoscopic stereo video reconstruction.

Conclusions and Future Work

- The reconstruction method can correctly reproduce (up to 4mm) the surface of the liver.
- Future studies will test the reconstruction method using data from both porcine (ongoing) and patient stereo laparoscopic video.

 Hand-eye camera calibration will be used instead of markers to perform registration to CT/MR scans.

Stereo Reconstruction

Validation

Results

Conclusions

Thank you!

Introduction

Stereo Reconstruction

Validation

Results

Conclusions

Thank you all very much for the attention, Questions?

IQ-MED

