NOȚIUNI TEORETICE PENTRU BACALAUREAT Formule de calcul

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$

$$a^{2} - b^{2} = (a-b)(a+b)$$

$$a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2})$$

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$$

$$a^{n} - b^{n} = (a-b)(a^{n-1} + a^{n-2}b + \dots + b^{n-1})$$

Funcția de gradul I

Definiție: f:R \rightarrow R, f(x)=ax+b,a \neq 0, a,b \in R, se numește funcția de gradul I

Proprietăți:Dacă a>0 f este strict crescătoare

Dacă a<0 f este strict descrescătoare

$$A(\alpha, \beta) \in G_f \iff f(\alpha) = \beta$$

Funcția de gradul II

Definiție:f:R \rightarrow R,f(x)=ax $^2+bx+c$, $a \neq 0$,a,b,c $\in R$ se numește funcția de gradul II

Dacă a<0 atunci f
$$=\frac{-\Delta}{4a}$$
, realizat pentru $=\frac{-b}{2a}$

Dacă a >0 atunci
$$f_{min} = \frac{-\Delta}{4a}$$
, realizat pentru $x = \frac{-b}{2a}$; Vârful parabolei $V(\frac{-b}{2a}, \frac{-\Delta}{4a})$

Ecuația de gradul II:ax²+bx+c=0;x_{1,2}=
$$\frac{-b\pm\sqrt{\Delta}}{2a}$$
, $\Delta = b^2 - 4ac$

Relațiile lui Viete:
$$x_1 + x_2 = \frac{-b}{a}, x_1 \cdot x_2 = \frac{c}{a}$$

Dacă $\Delta > 0 \Longrightarrow$ ecuația are rădăcini reale și diferite.

Dacă $\Delta = 0 \Rightarrow$ ecuația are rădăcini reale și egale.

Dacă $\Delta < 0 \Longrightarrow$ ecuația nu are rădăcini reale.

Dacă $\Delta \ge 0 \Longrightarrow$ ecuația are rădăcini reale.

Intervale de monotonie :a<0

X	$-\infty$ $\frac{-b}{}$	∞			
	$\frac{-\infty}{2a}$	∞			
f(x)	$-\Delta$				
	$\overline{4a}$				

Semnul funcției de gradul II

 $\Delta > 0$

X	-∞	x ₁	X ₂		8
f(x)	semnul lui a	0 semn cont	erar lui a 0	semnul lui a	
$\Delta = 0$)				

X	-∞	$\mathbf{x}_1 = \mathbf{x}_2$	$x_1 = x_2$		
f(x)	semnul lui a	0	semnul lui a		

 $\Delta < 0$

X	-∞
f(x)	semnul lui a

Imaginea funcției de gr.II

a<0,Imf=
$$(-\infty, \frac{-\Delta}{4a}]$$

a>0, Imf=
$$\left[\frac{-\Delta}{4a},\infty\right)$$

Funcții

Definiții:Fie f:A → B

- I. 1) Funcția f se numește injectivă, dacă $\forall x_1, x_2 \in A$ cu $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$
 - 2) Funcția f este injectivă dacă $\forall x_1, x_2 \in A \text{ cu } x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$
- 3) Funcția f este injectivă, dacă orice paralelă la axa 0x, dusă printr-un punct al lui B, intersectează graficul funcției în cel mult un punct.
 - 4) Funcția f nu este injectivă dacă $\exists x_1 \neq x_2 a.i. f(x_1) = f(x_2)$
- **II.**1)**Funcția** f este surjectivă, dacă $\forall y \in B$, există cel puțin un punct $x \in A$, a.î. f(x)=y.
- 2) Funcția f este surjectivă, dacă f(A) = B.
- 3) Funcția f este surjectivă, dacă orice paralelă la axa 0x, dusă printr-un punct al lui B, intersectează graficul funcției în cel puțin un punct.

III.1) Funcția feste bijectivă dacă este injectivă și surjectivă.

- 2) Funcția f este bijectivă dacă pentru orice $y \in B$ există un singur $x \in A$ a.î. f(x) = y (ecuația f(x)=y, are o singură soluție, pentru orice y din B)
- 3) Funcția f este bijectivă dacă orice paralelă la axa 0x, dusă printr-un punct al lui B, intersectează graficul funcției într-un singur punct .

IV.Compunerea a două funcții

Fie f:A \rightarrow B,g:B \rightarrow C

$$g \circ f : A \rightarrow C, (g \circ f)(x) = g(f(x))$$

V. $1_A: A \to A$ prin $1_A(x) = x$, $\forall x \in A$.(aplicația identică a lui A)

Definiție:Funcția $f: A \rightarrow B$ este inversabilă , dacă există o funcție $g: B \rightarrow A$ astfel încât $g \circ f = 1_A$ și $f \circ g = 1_B$, funcția g este inversa funcției f și se notează cu f^{-1} .

2

Teoremă: f este bijectivă $\leq > f$ este inversabilă.

Funcții pare,funcții impare,funcții periodice.

Definiții:

f:R \rightarrow R se numește funcție pară dacă f(-x) = f(x), $\forall x \in R$

f:R \rightarrow R se numește funcție impară dacă f(-x) = -f(x), $\forall x \in R$

f:A \rightarrow R(A \subset R) se numește periodică de perioadă T \neq 0, $dacă\forall x \in$ A avem x+T \in A și f(x+T)=f(x).Cea mai mică perioadă strict pozitivă se numește perioada principală.

Numărul funcțiilor $f:A \rightarrow B$ este $[n(B)]^{n(A)}$,n(A) reprezentâd numărul de elemente al mulțimii A.

Numărul funcțiilor bijective f:A→A este egal cu n!,n fiind numărul de elemente al mulțimii A.

Numărul funcțiilor injective f: $A \rightarrow B$ este A_n^k , unde n reprezintă numărul de elemente al mulțimii B, iar k al mulțimii $A(k \le n)$

Funcția exponențială

Definiție f: $R \rightarrow (0,\infty)$, $f(x)=a^x$, a>0, $a \ne 1$ se numește funcție exponențială.

Proprietăți:

- 1)Dacă a>1 \Rightarrow f strict crescătoare
- 2)Dacă $a \in (0,1) \Rightarrow f$ strict descrescătoare
- 3)Funcția exponențială este bijectivă

Funcția logaritmică

Definiție: $f:(0,\infty) \to R$, $f(x) = \log_a x$, a>0, $a \ne 1$ se numește funcție logaritmică.

Proprietăți:

- 1)Dacă a $>1 \implies f$ strict crescătoare
- 2) Dacă $a \in (0,1) \Rightarrow f$ strict descrescătoare
- 3)Funcția logaritmică este bijectivă

$$4)\log_a xy = \log_a x + \log_a y \qquad 5)\log_a x^m = m\log_a x, m \in R$$

6)
$$\log_a \frac{x}{y} = \log_a x - \log_a y$$
 7) $a^{\log_a x} = x$

Schimbarea bazei:
$$\log_a A = \frac{\log_b A}{\log_b a}$$
, $\log_a b = \frac{1}{\log_b a}$

Progresii aritmetice

Definiție: Se numește **progresie aritmetică** un șir de numere reale a_n în care diferența oricăror doi termeni consecutivi este un număr constant r, numit rația progresiei aritmetice: $a_{n+1}-a_n=r, \forall n \geq 1$

Se spune că numerele a_1, a_2, \dots, a_n sunt în progresie aritmetică dacă ele sunt termenii consecutivi ai unei progresii aritmetice.

3

Teoremă: șirul
$$(a_n)_{n\geq 1}$$
 este progresie aritmetică $\Leftrightarrow a_n = \frac{a_{n-1} + a_{n+1}}{2}, \forall n \geq 2$

Termenul general al unei progresii aritmetice: $a_n = a_1 + (n-1)r$

Prop.:Numerele a,b,c sunt în progresie aritmetică $\Leftrightarrow b = \frac{a+c}{2}$

Suma primilor n termeni ai unei progresii aritmetice: $S_n = \frac{(a_1 + a_n)n}{2}$

Trei numere x_1, x_2, x_3 se scriu în progresie aritmetică de forma :

$$X_1 = u - r$$
, $X_2 = u$, $X_3 = u + r$; $u,r \in R$.

Patru numere x_1, x_2, x_3, x_4 se scriu în progresie aritmetică astfel:

$$x_1 = u - 3r$$
, $x_3 = u - r$, $x_3 = u + r$, $x_4 = u + 3r$, $u, r \in R$.

Progresii geometrice

Definiție : Se numește **progresie geometrică** un șir de numere reale $b_n, b_1 \neq 0$ în care raportul oricăror doi termeni consecutivi este un număr constant q, numit rația progresiei geometrice: $\frac{b_{n+1}}{b} = q$, $q \neq 0$

Se spune că numerele b_1, b_2, \dots, b_n sunt în progresie geometrică dacă ele sunt termenii consecutivi ai unei progresii geometrice.

Teoremă: șirul $(b_n)_{n\geq 1}$ este progresie geometrică $\Leftrightarrow b_n^2 = b_{n-1} \cdot b_{n+1}, \forall n \geq 2$

Termenul general al unei progresii geometrice: $b_n = b_1 \cdot q^{n-1}$

Prop.:Numerele a,b,c sunt în progresie geometrică $\Leftrightarrow b^2 = a \cdot c$

Suma primilor n termeni ai unei progresii geometrice: $S_n = \frac{b_1(q^n - 1)}{q - 1}, q \ne 1$ sau

$$S_n = n \cdot b_1, dac \check{a} \neq 1$$

Trei numere x_1, x_2, x_3 se scriu în progresie geometrică de forma :

$$x_1 = \frac{u}{q}, x_2 = u, x_3 = u \cdot q, q \neq 0$$

Patru numere x_1, x_2, x_3, x_4 se scriu în progresie geometrică de forma:

$$x_1 = \frac{u}{q^3}, x_2 = \frac{u}{q}, x_3 = u \cdot q, x_4 = u \cdot q^3, q \neq 0$$

Formule utile:

$$1+2+3+\cdots+n = \frac{n(n+1)}{2}$$

$$1^{2}+2^{2}+\cdots+n^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$1^{3}+2^{3}+\cdots+n^{3} = \left[\frac{n(n+1)}{2}\right]^{2}$$

Modulul numerelor reale Proprietăți:

$$|x| = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$$

1.
$$|x| \ge 0, \forall x \in R$$
 2. $|x| = |y| \iff x = \pm y$ **3.** $|x| = |-x|$ **4.** $|x \cdot y| = |x| \cdot |y|$ **5.** $\left| \frac{x}{y} \right| = \frac{|x|}{|y|}$

6.
$$|x| \le a \iff -a \le x \le a, a > 0$$
 7. $|x| \ge a \iff x \in (-\infty, -a] \cup [a, \infty), a > 0$ **8.** $|x + y| \le |x| + |y|$

Partea întreagă

$$1.x = [x] + \{x\}, \forall x \in R, [x] \in Z \text{ si } \{x\} \in [0,1)$$

2.
$$[x] \le x < [x] + 1, [x] = a \implies a \le x < a + 1$$

3.
$$[x+k]=[x]+k, \forall x \in R, k \in Z$$

4.
$$\{x+k\}=\{x\}, \forall x \in R, k \in Z$$

Numere complexe

1. Numere complexe sub formă algebrică

$$z = a+bi, a,b \in R, i^2 = -1, a=Re z, b=Im z$$

C- mulțimea numerelor complexe; $C = \{a+bi/a, b \in R \}$

Conjugatul unui număr complex: z = a - bi

Proprietăți:

$$1.\,\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}$$

$$2.\,\overline{z_1\cdot z_2} = \overline{z_1}\cdot \overline{z_2}$$

$$3.\overline{z^n} = (\overline{z})^n$$

$$4.\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$$

$$5.z \in R \Leftrightarrow z = \overline{z}$$

$$6.z \in R^*i \Leftrightarrow z = -z$$

Modulul unui număr complex: $|z| = \sqrt{a^2 + b^2}$

Proprietăți:

$$1. \left| z \right| \geq 0, \forall z \in C \ 2. \left| z \right| = \left| \overline{z} \right| \ 3. \ \left| z_1 \cdot z_2 \right| = \left| z_1 \right| \cdot \left| z_2 \right|$$

4.
$$|z^n| = |z|^n 5. \frac{|z_1|}{|z_2|} = \frac{|z_1|}{|z_2|} 6. |z_1 + z_2| \le |z_1| + |z_2|$$

Numere complexe sub formă trigonometrică

Forma trigonometrică a numerelor complexe:

$$z = r(\cos t + i \sin t), r = \sqrt{a^2 + b^2}, tgt = \frac{b}{a}; r-raza polară; t-argument redus, t \in [0, 2\pi)$$

M(a,b)-reprezintă imaginea geometrică a numărului complex z=a+bi

Operații:

$$z_1 = r_1(\cos t_1 + i\sin t_1), z_2 = r_2(\cos t_2 + i\sin t_2)$$

$$z_1 \cdot z_2 = r_1 r_2 [\cos(t_1 + t_2) + i \sin(t_1 + t_2)], z^n = r^n (\cos nt + i \sin nt)$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} [\cos(t_1 - t_2) + i\sin(t_1 - t_2)]$$

$$\sqrt[n]{z} = z_k = \sqrt[n]{r}(\cos\frac{t + 2k\pi}{n} + i\sin\frac{t + 2k\pi}{n}), k \in \{0, 1, \dots, n - 1\}$$

Combinatorică

$$n!=1 \cdot 2 \cdot \cdot \cdot n, n \in N(0!=1)$$
 , $P_n = n!, n \in N^*$

$$A_n^k = \frac{n!}{(n-k)!}, 0 \le k \le n; k, n \in \mathbb{N}, n \ge 1$$
 $C_n^k = \frac{n!}{k!(n-k)!}, 0 \le k \le n; k, n \in \mathbb{N}$

Proprietăți: 1.
$$C_n^k = C_n^{n-k}$$
, $0 \le k \le n$; $k, n \in N$ 2. $C_n^k = C_{n-1}^k + C_{n-1}^{k-1}$, $1 \le k < n$; $k, n \in N$

Binomul lui Newton:
$$(a+b)^n = C_n^0 a^n + C_n^1 a^{n-1} b + \dots + C_n^n b^n$$

Termenul general:
$$T_{k+1} = C_n^k a^{n-k} b^k, k = 0,1,\dots,n$$

Proprietăți:

 $C_n^0 + C_n^1 + \cdots + C_n^n = 2^n$ (numărul tuturor submulțimilor unei mulțimi cu n elemente este 2^n).

$$C_n^1 + C_n^3 + C_n^5 + \dots = C_n^0 + C_n^2 + C_n^4 + \dots = 2^{n-1}$$

Geometrie vectorială

Definiție:

Se numesc vectori egali, vectorii care au aceeași direcție, același sens și același modul. Doi vectori se numesc opuși dacă au aceeași direcție, același modul și sensuri contrare:

$$\overrightarrow{AB} = -\overrightarrow{BA}$$

Definitie:

Doi vectori se numesc **coliniari** dacă cel puțin unul este nul sau dacă amândoi sunt nenuli și au aceeași direcție. În caz contrar se numesc necoliniari.

Teoremă: Fie \vec{a} \vec{s} \vec{b} doi vectori necoliniari. Oricare ar fi vectorul \vec{v} , există

$$\alpha, \beta \in R(unice)$$
 astfel încât $\vec{v} = \alpha \cdot \vec{a} + \beta \cdot \vec{b}$

$$|\overrightarrow{AB}| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$
 -modulul vectorului \overrightarrow{AB}

$$\overrightarrow{AB}(x_B - x_A, y_B - y_A) - coordonatele$$
 vectorului \overrightarrow{AB}

Mijlocul segmentului AB:
$$x_M = \frac{x_A + x_B}{2}, y_M = \frac{y_A + y_B}{2}$$

Centrul de greutate al triunghiului ABC:
$$x_G = \frac{x_A + x_B + x_C}{3}$$
, $y_G = \frac{y_A + y_B + y_C}{3}$

Adunarea vectorilor se poate face după regula paralelogramului sau triunghiului

6

Teoremă: Vectorii \vec{u} și \vec{v} sunt **coliniari** $\Leftrightarrow \exists \lambda \in R \ a.i. \ \vec{v} = \lambda \cdot \vec{u}$.

Punctele A, B, C sunt coliniare $\Leftrightarrow \exists \lambda \in R \ a.i. \ \overrightarrow{AB} = \lambda \ \overrightarrow{AC}$

AB
$$\parallel$$
 CD $\Leftrightarrow \exists \lambda \in R \ a.i. \overrightarrow{AB} = \lambda \overrightarrow{AC}$

Produsul scalar a doi vectori.

$$\vec{u} \cdot \vec{v} = |\vec{u}| \cdot |\vec{v}| \cos(\vec{u}, \vec{v})$$

$$\vec{u} = x_1 \vec{i} + y_1 \vec{j}, v = x_2 \vec{i} + y_2 \vec{j} \Rightarrow \vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2, |\vec{u}| = \sqrt{x_1^2 + y_1^2}$$

Daca $\vec{u}, \vec{v} \neq \vec{0}$, atunci $\vec{u} \perp \vec{v} \Leftrightarrow \vec{u} \cdot \vec{v} = 0$

Ecuațiile dreptei în plan

Ecuația carteziană generală a dreptei:ax+by+c=0 (d)

Punctul M(
$$x_M, y_M$$
) $\in d \Leftrightarrow a \cdot x_M + by_M + c = 0$

Ecuația dreptei determinată de două puncte distincte: A(x_A, y_A), B(x_B, y_B)

AB:
$$\begin{vmatrix} x & y & 1 \\ x_A & y_A & 1 \\ x_B & y_B & 1 \end{vmatrix} = 0$$

Ecuația dreptei determinată de un punct $A(x_A, y_A)$ și panta m : y-y_A = $m(x - x_A)$

Dreptele d_1, d_2 sunt paralele $\Leftrightarrow m_{d_1} = m_{d_2}$

Dreptele d_1, d_2 sunt perpendiculare $\Leftrightarrow m_{d_1} \cdot m_{d_2} = -1$

Distanța dintre punctele A(x_A, y_A),B(x_B, y_B):AB= $\sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$

Distanța de la punctul $A(x_A, y_A)$ la dreapta h:ax+by+c=0:

$$d(A,h) = \frac{|ax_A + by_A + c|}{\sqrt{a^2 + b^2}}$$

Punctele A,B,C sunt coliniare
$$\Leftrightarrow \begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix} = 0$$

Permutări

Definiție: Se numește permutare de gradul n a mulțimii $A = \{1, 2, \dots, n\}$ orice funcție bijectivă $\sigma: A \to A$.

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

$$e = \begin{pmatrix} 1 & 2 & \cdots & n \\ 1 & 2 & \cdots & n \end{pmatrix}$$
 se numește permutarea identică de gradul n.

 S_n reprezintă mulțimea permutărilor de gradul n.

Produsul(compunerea) a două permutări: Fie $\sigma, \tau \in S_n$

$$\sigma \circ \tau : A \to A, (\sigma \circ \tau)(k) = \sigma(\tau(k))$$

Proprietăți:

1)
$$(\sigma \tau)\delta = \sigma(\tau \delta), \forall \sigma, \tau, \delta \in S_n$$

2)
$$\sigma e = e \sigma = \sigma, \forall \sigma \in S_n$$

3)
$$\forall \sigma \in S_n, \exists \sigma^{-1} \in S_n a.i.\sigma \sigma^{-1} = \sigma^{-1} \sigma = e, \sigma^{-1}$$
 se numește inversa permutării σ

Puterile unei permutări: Fie $\sigma \in S_n$ – definim $\sigma^n = \sigma^{n-1}\sigma, n \in N^*(\sigma^0 = e)$

Prop.:
$$Fie \sigma \in S_n \Rightarrow \sigma^m \sigma^n = \sigma^{m+n}, (\sigma^m)^n = \sigma^{mn}, \forall m, n \in N$$

Inversiunile unei permutări:

Definiție: $Fie \sigma \in S_n$ și $i,j \in \{1,2,\cdots,n\}, i \langle j \text{ .Perechea } (i,j) \text{ se numește inversiune a permutării } \sigma \text{ dacă } \sigma(i) \rangle \sigma(j) . \text{Numărul inversiunilor permutării } \sigma \text{ se notează cu m} (\sigma).$

Definiții:Se numește semnul permutării σ , numărul $\varepsilon(\sigma) = (-1)^{m(\sigma)}$

Permutarea σ se numește permutare pară dacă $\varepsilon(\sigma) = 1$

Permutarea σ se numește permutare impară dacă $\varepsilon(\sigma) = -1$

Propoziție: $\varepsilon(\sigma\tau) = \varepsilon(\sigma)\varepsilon(\tau), \forall \sigma, \tau \in S_n$

Permutarea
$$\delta_{ij} = \begin{pmatrix} 1 & 2 & \cdots & i & j & \cdots & n \\ 1 & 2 & \cdots & j & i & \cdots & n \end{pmatrix}$$
 se numește transpoziție.

Proprietăți:

1)
$$\delta_{ii} = \delta_{ii}$$
 2) $(\delta_{ii})^2 = e$ 3) $\delta_{ii}^{-1} = \delta_{ii}$ 4) $\varepsilon(\delta_{ii}) = -1$

Matrice

$$A = \begin{pmatrix} a_{11}a_{12}.....a_{1n} \\ a_{21}a_{22}.....a_{2n} \\ \\ a_{m1}a_{m2}....a_{mn} \end{pmatrix} -\text{matrice cu m linii și n coloane; } A = (a_{ij})_{\substack{i=\overline{1,m} \\ j=1,n}}$$

 $A \in M_{m,n}(C)$, unde $M_{m,n}(C)$ -reprezintă mulțimea matricelor cu m linii și n coloane cu elemente din C.

 $^{t}A \in M_{n,m}(C)$ -reprezintă transpusa lui A și se obține din A prin schimbarea liniilor în coloane(sau a coloanelor în linii).

Dacă m = n atunci matricea se numește pătratică de ordinul n și are forma

$$\mathbf{A} = \begin{pmatrix} a_{11}a_{12}.....a_{1n} \\ a_{21}a_{22}.....a_{2n} \\ \\ a_{n1}a_{n2}....a_{nn} \end{pmatrix} - A \in M_n(C)$$

 $\operatorname{Tr}(A) = a_{11} + a_{22} + \cdots + a_{nn}$ -reprezintă urma matricei A

Sistemul ordonat de elemente $(a_{11}, a_{22}, \dots, a_{nn})$ se numește diagonala principală a matricei A,iar sistemul ordonat de elemente (a_{1n}, \dots, a_{n1}) se numește diagonala secundară a matricei A.

$$I_{n} = \begin{pmatrix} 100 \cdots 0 \\ 010 \cdots 0 \\ 000 \cdots 1 \end{pmatrix} - \text{matricea unitate de ordinul n}; O_{m,n} = \begin{pmatrix} 000 \cdots 0 \\ 000 \cdots 0 \\ 000 \cdots 0 \\ 000 \cdots 0 \end{pmatrix} - \text{matricea nulă}$$

Proprietăți ale operațiilor cu matrice.:

1)A+B=B+A,
$$\forall A, B \in M_{m,n}(C)$$
 (comutativitate)

2)(A+B)+C = A+(B+C),
$$\forall A, B, C \in M_{m,n}(C)$$
 (asociativitate)

3)A+
$$O_{m,n} = O_{m,n} + A = A$$
, $\forall A \in M_{m,n}(C)$

4)
$$\forall A \in M_{mn}(C), \exists (-A) \in M_{mn}(C)$$
 a.î. $A + (-A) = (-A) + A = O_{mn}, \forall A \in M_{mn}(C)$

5)(AB)C = A(BC),
$$A \in M_{m,n}(C), B \in M_{n,p}(C), C \in M_{p,q}(C)$$
 (asociativitate)

6)a)A(B+C) = AB+AC, $A \in M_{m,n}(C)$, $B, C \in M_{n,n}(C)$ (distributivitatea înmulțirii față de adunare)

b)(B+C)A = BA+CA,
$$B, C \in M_{m,n}(C), A \in M_{n,p}(C)$$

7)
$$AI_n = I_n A = A, \forall A \in M_n(C)$$

8)a(bA) = (ab)A,
$$\forall a, b \in C, A \in M_{mn}(C)$$

9)(a+b)A=aA+bA,
$$\forall a,b \in C, A \in M_{mn}(C)$$

10)a(A+B)=aA+aB,
$$\forall a \in C, A, B \in M_{m,n}(C)$$

11)aA =
$$O_{mn} \Leftrightarrow a = 0$$
 sau A= O_{mn}

$$12)^{t}(^{t}A) = A,^{t}(A+B) = {}^{t}A + {}^{t}B,^{t}(aA) = a^{t}A,^{t}(AB) = {}^{t}B^{t}A$$

Puterile unei matrice: Fie $A \in M_n(C)$

Definim
$$A^0 = I_n, A^1 = A, A^2 = A \cdot A, A^3 = A^2 \cdot A, \dots, A^n = A^{n-1} \cdot A, n \in \mathbb{N}^*$$

Definim
$$A^0 = I_n, A^1 = A, A^2 = A \cdot A, A^3 = A^2 \cdot A, \dots, A^n = A^{n-1} \cdot A, n \in \mathbb{N}^*$$

Relaţia Hamilton-Cayley: $A^2 - (a+d)A + (ad-bc)I_2 = O_2$, unde $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \text{ (determinantul de ordinul doi)}$$

Determinantul de ordinul trei(regula lui Sarrus)

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = aei + dhc + gbf - ceg - fha - ibd$$

$$\begin{vmatrix} a & b & c \\ d & e & f \end{vmatrix}$$

Proprietăți:

- 1. Determinantul unei matrice este egal cu determinantul matricei transpuse;
- 2. Dacă toate elementele unei linii (sau coloane) dintr-o matrice sunt nule, atunci determinantul matricei este nul;
- 3. Dacă într-o matrice schimbăm două linii(sau coloane) între ele obținem o matrice care are determinantul egal cu opusul determinantului matricei inițiale.
- 4. Dacă o matrice are două linii (sau coloane) identice atunci determinantul său este nul;
- 5. Dacă toate elementele unei linii(sau coloane) ale unei matrice sunt înmulțite cu un element a, obținem o matrice al cărei determinant este egal cu a înmulțit cu determinantul matricei inițiale.
- 6. Dacă elementele a două linii(sau coloane) ale unei matrice sunt proporționale atunci determinantul matricei este nul;
- 7. Dacă o linie (sau coloană) a unei matrice pătratice este o combinație liniară de celelate linii(sau coloane) atunci determinantul matricei este nul.
- 8. Dacă la o linie (sau coloană) a matricei A adunăm elementele altei linii (sau coloane) înmulțite cu același element se obține o matrice al cărei determinant este egal cu determinantul matricei initiale;

9)
$$\begin{vmatrix} a & b & c \\ d+m & e+n & f+p \\ g & h & i \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} + \begin{vmatrix} a & b & c \\ m & n & p \\ g & h & i \end{vmatrix}$$

10)det(A · B) = det A · det B, \forall A,B \in $M_n(C)$

Definiție:Fie $A = (a_{ij}) \in M_n(C)$. Se numește minor asociat elementului a_{ij} , $1 \le i, j \le n$ determinantul matricei obținute din A prin eliminarea liniei i și a coloanei j. Se notează acest minor cu M_{ii} .

Numărul $A_{ij} = (-1)^{i+j} M_{ij}$ se numește complementul algebric al elementului a_{ij} .

Matrice inversabile

Inversa unei matrice : $A \in M_n(C)$ se numește inversabilă dacă există o matrice notată

$$A^{-1} \in M_n(C)$$
 a.i. $A \cdot A^{-1} = A^{-1} \cdot A = I_n$

Teoremă: $A \in M_n(C)$ inversabilă $\Leftrightarrow \det A \neq 0$

 $A^{-1} = \frac{1}{\det A} A^*, A^*$ adjuncta matricei A. A^* se obține din $^t A$ înlocuind fiecare element cu complementul său algebric.

Dacă A,B $\in M_n(C)$ sunt inversabile, atunci au loc relațiile: a)(A⁻¹)⁻¹ = A b)(AB)⁻¹ = $B^{-1}A^{-1}$

Rangul unei matrice

Fie A
$$\in M_{m,n}(C)$$
, $r \in N, 1 \le r \le \min(m,n)$

Definiție: Se numește minor de ordinul r al matricei A,determinantul format cu elementele matricei A situate la intersecția celor r linii și r coloane.

10

Definiție: Fie $A \neq 0_{m,n}$ o matrice. Numărul natural r este rangul matricei $A \Leftrightarrow$ există un minor de ordinul r al lui A,nenul, iar toți minorii de ordin mai mare decât r (dacă există)sunt nuli.

Teoremă: Matricea A are rangul $r \Leftrightarrow există$ un minor de ordin r al lui A, nenul , iar toți minorii de ordin r+1 (dacă există) obtinuți prin bordarea (adaugarea unei linii și a unei coloane) minorului de ordin r cu elementele corespunzatoare ale uneia dintre liniile și uneia dintre coloanele rămase sunt zero.

Sisteme de ecuații liniare

Forma generală a unui sistem de m ecuații cu n necunoscute:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

 a_{ii} -coeficienții necunoscutelor, x_1, x_2, \dots, x_n - necunoscute, b_1, b_2, \dots, b_m -termenii liberi

$$\mathbf{A} = \begin{pmatrix} a_{11}a_{12}.....a_{1n} \\ a_{21}a_{22}.....a_{2n} \\ a_{m1}a_{m2}.....a_{mn} \end{pmatrix} - \text{matricea sistemului}, \quad \overline{\mathbf{A}} = \begin{pmatrix} a_{11}a_{12}.....a_{1n}b_1 \\ a_{21}a_{22}......a_{2n}b_2 \\ \\ a_{m1}a_{m2}.....a_{mn}b_m \end{pmatrix} - \text{matricea extinsă}$$

$$\mathbf{B} = \begin{pmatrix} b_1 \\ b_2 \\ \\ b_m \end{pmatrix} \text{matricea coloană a termenilor liberi}, \mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \\ ... \\ x_n \end{pmatrix} . \text{matricea necunoscutelor.}$$

AX=B -forma matriceală a sistemului Definiție:

- Un sistem se numeste incompatibil dacă nu are soluție;
- Un sistem se numește compatibil dacă are cel puțin o soluție;
- Un sistem se numește compatibil determinat dacă are o singură soluție;
- Un sistem se numeste compatibil nedeterminat dacă are mai mult de o soluție.

Rezolvarea sistemelor prin metoda lui Cramer:

Un sistem de ecuații liniare este de tip Cramer dacă numărul de ecuații este egal cu numărul de necunoscute și determinantul matricei sistemului este nenul.

Teorema lui Cramer: Dacă det A notat $\Delta \neq 0$, atunci sistemul AX=B are o soluție

unică $x_i = \frac{\Delta_i}{\Delta}$, unde Δ_i se obține înlocuind coloana i cu coloana termenilor liberi.

Teorema lui Kronecker- Capelli: Un sistem de ecuații liniare este compatibil ⇔ rangul matricei sistemului este egal cu rangul matricei extinse.

Teorema lui Rouche: Un sistem de ecuații liniare este compatibil ⇔ toți minorii caracteristici sunt nuli.

Elemente de geometrie și trigonometrie

Formule trigonometrice. Proprietăți.

$$\sin^2 x + \cos^2 x = 1, \forall x \in R$$

 $-1 \le \sin x \le 1, \forall x \in R$

 $\sin(x+2k\pi) = \sin x, \forall x \in R, \forall k \in Z$

sin(a+b)=sinacosb+sinbcosa

sin(a-b)=sinacosb-sinbcosb

sin2x=2sinxcosx,

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

$$\sin a + \sin b = 2\sin \frac{a+b}{2}\cos \frac{a-b}{2}$$

$$\sin a - \sin b = 2\sin \frac{a-b}{2}\cos \frac{a+b}{2}$$

$$tgx = \frac{\sin x}{\cos x}, \cos x \neq 0$$

$$tg(x+k\pi) = tgx$$

$$tg\left(\frac{\pi}{2} - x\right) = ctgx$$

$$tg(a+b) = \frac{tga + tgb}{1 - tgatgb}$$

$$tg2x = \frac{2tgx}{1 + tg^2x}$$

$$\sin x = \frac{2tg\frac{x}{2}}{1 + tg^2\frac{x}{2}}$$

$$-1 \le \cos x \le 1, \forall x \in R$$

$$cos(x+2k \pi) = cos x, \forall x \in R, \forall k \in Z$$

cos(a+b)=cosacosb-sinasinb

cos(a-b)=cosacosb+sinasinb

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$\cos a + \cos b = 2\cos \frac{a+b}{2}\cos \frac{a-b}{2}$$

$$\cos a - \cos b = -2\sin \frac{a-b}{2}\sin \frac{a+b}{2}$$

$$\operatorname{ctgx} = \frac{\cos x}{\sin x}, \sin x \neq 0$$

$$\operatorname{ctg}(x+k\pi) = \operatorname{ctg} x$$

$$\operatorname{ctg}\left(\frac{\pi}{2} - x\right) = tgx$$

$$tg(a-b) = \frac{tga - tgb}{1 + tgatgb}$$

$$\cos x = \frac{1 - tg^{2} \frac{x}{2}}{1 + tg^{2} \frac{x}{2}}$$

Valori principale ale funcțiilor trigonometrice

X	0	$\frac{\pi}{}$	$\underline{\pi}$	$\frac{\pi}{}$	$\frac{\pi}{}$	π	3π	2π
		6	4	3	2		2	
sinx	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cosx	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1
tgx	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	-	0	-	0
ctgx	-	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	-	0	-

Semnele funcțiilor trig.

sin:+,+,-,-

tg.,ctg.:+,-+,-

cos:+,-,-,+

$$\sin(-x) = -\sin x \text{ (impară)}$$
 $\cos(-x) = \cos x \text{ (pară)}$ $tg(-x) = -tgx$ $ctg(-x) = -ctgx$

Funcții trigonometrice inverse

$$\arcsin[-1,1] \rightarrow [-\frac{\pi}{2}, \frac{\pi}{2}]$$

$$\arcsin(\sin x) = x, \ \forall x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$$

$$\arccos[-1,1] \rightarrow [0,\pi]$$

$$\arccos(\cos x) = \pi - \arccos x$$

$$\arccos(\cos x) = x, \ \forall x \in [0,\pi]$$

$$\cos(\arccos x) = x, \ \forall x \in [-1,1]$$

$$\arcsin x + \arccos x = \frac{\pi}{2}, \forall x \in [-1,1]$$

$$\operatorname{arctg:R} \to (-\frac{\pi}{2}, \frac{\pi}{2}) \qquad \operatorname{arctg(-x)=-arctgx}$$

$$\operatorname{arctg(tgx)=x}, \forall x \in (-\frac{\pi}{2}, \frac{\pi}{2}) \qquad \operatorname{tg(arctgx)=x}, \forall x \in R$$

$$\operatorname{arcctg:R} \to (0, \pi) \qquad \operatorname{arcctg(-x)=\pi-arcctgx}$$

$$\operatorname{arcctg(ctgx)=x}, \forall x \in (0, \pi) \qquad \operatorname{ctg(arcctgx)=x}, \forall x \in R$$

$$\arctan x + \arctan x = \frac{\pi}{2}, \forall x \in R$$

Ecuații trigonometrice

$$\sin x = a, a \in [-1,1] \Rightarrow x \in \{(-1)^k \arcsin a + k\pi, k \in Z\}$$

 $\cos x = b, b \in [-1,1] \Rightarrow x \in \{\pm \arccos b + 2k\pi, k \in Z\}$
 $\tan x = c, c \in R \Rightarrow x \in \{arctgc + k\pi, k \in Z\}$
 $\cot x = d, d \in R \Rightarrow x \in \{arcctgd + k\pi, k \in Z\}$
 $\sin x = \sinh x \Rightarrow ax = (-1)^k bx + k\pi, k \in Z$
 $\cos x = \cosh x \Rightarrow ax = \pm bx + 2k\pi, k \in Z$
 $\tan x = \tan x \Rightarrow ax = bx + k\pi, k \in Z$
 $\tan x = \cot x \Rightarrow ax = bx + k\pi, k \in Z$

Teorema sinusurilor: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ =2R,unde R este raza cercului circumscris triunghiului.

Teorema cosinusului: $a^2 = b^2 + c^2 - 2bc \cos A$ Aria unui triunghi:

$$\mathbf{A}_{\Delta} = \frac{b \cdot h}{2} \qquad \mathbf{A}_{\Delta} = \frac{AB \cdot AC \sin(AB, AC)}{2} \qquad \mathbf{A}_{\Delta} = \sqrt{p(p-a)(p-b)(p-c)}, \mathbf{p} = \frac{a+b+c}{2}$$

$$\mathbf{A}_{\Delta ABC} = \frac{|\Delta|}{2}, \Delta = \begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix} \qquad \mathbf{A}_{\Delta dreptunghi} = \frac{c_1 \cdot c_2}{2} \qquad \mathbf{A}_{\Delta echilaterd} = \frac{l^2 \sqrt{3}}{4}$$

Raza cercului circumscris unui triunghi: $R = \frac{abc}{4S}$, unde S este aria triunghiului

Raza cercului înscris într-un triunghi: $R = \frac{S}{p}$, unde S este aria triunghiului iar

$$p = \frac{a+b+c}{2}$$

Grupuri

Definiție:Fie $*: M \times M \to M$ lege de compozitie pe M.O submultime nevidă H a lui M ,se numește parte stabilă a lui M în raport cu legea "* "dacă $\forall x, y \in H \Rightarrow x * y \in H$.

Proprietățile legilor de compoziție

Fie $*: M \times M \rightarrow M$ lege de compoziție pe M.

Legea "* " se numește asociativă dacă $(x * y) * z = x * (y * z), \forall x, y, z \in M$

Legea "* " se numește comutativă dacă $x * y = y * x, \forall x, y \in M$

Legea "* " admite element neutru dacă exista $e \in M$ a.i. $x * e = e * x = x, \forall x \in M$

Definiție:Cuplul (M, *) formează un monoid dacă are proprietățile:

1)
$$(x * y) * z = x * (y * z), \forall x, y, z \in M$$

2) există $e \in M$ a.i. $x * e = e * x = x, \forall x \in M$

Dacă în plus $x * y = y * x, \forall x, y \in M$ atunci monoidul se numește comutativ.

Notatie:U(M)= $\{x \in M / x \text{ este simetrizabil}\}$

Definiție:Cuplul (G,*) formează un grup dacă are proprietățile:

1)
$$(x * y) * z = x * (y * z), \forall x, y, z \in G$$

2) există $e \in M$ a.i. $x * e = e * x = x, \forall x \in G$

3)
$$\forall x \in G, \exists x' \in G \text{ a.i. } x * x' = x' * x = e$$

Dacă în plus $x * y = y * x, \forall x, y \in G$ atunci grupul se numește abelian sau comutativ.

Definiție:Un grup G se numește finit dacă mulțimea G este finită și grup infinit ,în caz contrar.

Se numeste ordinul grupului G ,cardinalul multimii G(numărul de elemente din G).

Ordinul unui element

Definție:Fie (G, \bullet) un grup și $x \in G$. Cel mai mic număr natural nenul n cu proprietatea $x^n = e$ se numește ordinul elementului x în grupul G. (ordx = n)

Subgrup

Definiție:Fie (G, *) un grup.O submulțime nevidă H a lui G se numește subgrup al grupului (G, *) dacă îndeplinește condițiile:

1)
$$\forall x, y \in H \Rightarrow x * y \in H$$
.

2)
$$\forall x \in H \Rightarrow x' \in H$$

Grupul claselor de resturi modulo n, $Z_n = \{1, 2, \dots, n-1\}$

$$(Z_n,+)$$
 – grup abelian

$$(Z_n,\cdot)$$
 -monoid comutativ, în care $U(Z_n) = \{k \in Z_n \mid c.m.m.d.c.(k,n) = 1\}$

Morfisme și izomorfisme de grupuri

Definiție:Fie (G, *) și (G', \circ) două grupuri.O funcție $f: G \to G'$ se numește morfism de grupuri dacă are loc conditia $f(x * y) = f(x) \circ f(y), \forall x, y \in G$

Dacă în plus f este bijectivă atunci f se numește izomorfism de grupuri.

Prop. Fie (G, *) și (G', \circ) două grupuri. Dacă $f: G \to G'$ este morfism de grupuri atunci:

1)f(e)=e unde e,e sunt elementele neutre din cele două grupuri.

$$2)f(\mathbf{x}') = [f(x)]' \ \forall x \in G$$

Inele și corpuri

Definiție:Un triplet (A,*,°), unde A este o multime nevidă iar "*" și "°" sunt două legi de compozitie pe A,este inel dacă:

- 1) (A, *) este grup abelian
- 2) (A, °) este monoid
- 3)Legea "° "este distributivă fata de legea "* ":

$$x \circ (y * z) = (x \circ y) * (x \circ z), (y * z) \circ x = (y \circ x) * (z \circ x) \forall x, y, z \in A$$

Inelul (A,*, \circ), este fără divizori ai lui 0,dacă $\forall x.y \neq e_* \Rightarrow x \circ y \neq e_*$ (e $_*$ element neutru de la legea ...*")

Un inel $(A, *, \circ)$, se numește comutativ dacă satisface și axioma: $x \circ y = y \circ x, \forall x, y \in A$ Un inel $(A, *, \circ)$, comutativ,cu cel putin 2 elemente și fără divizori ai lui 0, se numește,**domeniu de integritate**.

Definiție: Un inel $(K, *, \circ)$ cu $e_* \neq e_*$ se numește corp dacă $\forall x \in K, x \neq e_*, \exists x' \in K$ a.i. $x \circ x' = x' \circ x = e_\circ(e_*, e_\circ)$ fiind elementele neutre)

Un corp $(K, *, \circ)$, se numește comutativ dacă satisface și axioma: $x \circ y = y \circ x, \forall x, y \in K$ **Obs**.:Corpurile nu au divizori ai lui zero.

Morfisme și izomorfisme de inele și corpuri.

Definiție :Fie $(A, *, \circ), (A' \oplus, \otimes)$ două inele.O funcție $f: A \to A'$ se numește morfism de inele dacă :

1)
$$f(x * y) = f(x) \oplus f(y), \forall x, y \in A$$

1)
$$f(x \circ y) = f(x) \otimes f(y), \forall x, y \in A$$

3) $f(e_{\circ}) = e_{\otimes}(e_{\circ}, e_{\otimes})$ fiind elementele neutre corespunzătoare legilor \circ, \otimes)

Dacă în plus f este bijectivă atunci f se numește izomorfism de inele.

Definiție:Fiind date corpurile K, K', orice morfism(izomorfism) de inele de la K la K', se numește morfism(izomorfism)de corpuri.

Inele de polinoame

Forma algebrică a unui polinom: $\mathbf{f} = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, a_n \neq 0, a_i \in A$ un inel comutativ.

Definiție: $a \in A$ se numește rădăcină a polinomului f dacă f(a)=0.

Teorema împărțirii cu rest:Fie K un corp comutativ,iar f și g,cu $g \ne 0$, *polinoame* din K[X].Atunci există polinoamele q și r din K[X] ,unic determinate,astfel încât f=gq+r cu gradr<gradg.

Dacă r = 0, adică f = gq, atunci spunem că polinomul g divide polinomul f.

Teorema restului: Fie K un corp comutativ, f un polinom din K[X] și a un element din K \Rightarrow restul împărțirii lui f la X-a este f(a).

Consecință: a este radăcină a lui $f \Leftrightarrow X$ -a divide f.

Definiție:Elementul $a \in K$ este rădăcină de ordinul $p \in N^*$ pentru polinomul $f \in K[X]$ dacă $(X-a)^p$ divide pe f iar $(X-a)^{p+1}$ nu divide pe f.

Teoremă: Elementul $a \in K$ este rădăcină de ordinul $p \in N^*$ pentru polinomul $f \in K[X] \Leftrightarrow f(a) = 0, f'(a) = 0, \cdots, f^{(p-1)}(a) = 0$ și $f^{(p)}(a) \neq 0$, unde f este fucția polinomială asociată polinomului f.

Polinoame cu coeficienți reali

Teoremă: Fie $f \in R[X]$, $f \ne 0$. Dacă z = a+ib, $b \ne 0$ este o rădăcină complexă a lui f, atunci:

1) \bar{z} = a-ib este de asemenea o rădăcină complexă a lui f

1)z și \bar{z} au același ordin de multiplicitate.

Obs. : $(X - z)(X - \overline{z}) / f$

Polinoame cu coeficienți raționali

Teoremă: Fie $f \in Q[X]$, $f \neq 0$. Dacă $x_0 = a + \sqrt{b}$ este o rădăcină a lui f, unde $a,b \in Q,b > 0, \sqrt{b} \notin Q$, atunci

1) $\overline{x_0} = a - \sqrt{b}$ este de asemenea o rădăcină a lui f 2) x_0 , $\overline{x_0}$ au același ordin de multiplicitate.

Obs. : $(X - x_0)(X - \overline{x_0}) / f$

Polinoame cu coeficienți întregi

Teoremă: fie $f = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, a_n \neq 0$; $f \in Z[X]$

1)Dacă $x_0 = \frac{p}{q}(p, q \text{ numere prime între ele})$ este o rădăcină rațională a lui f,atunci

a)p divide termenul liber a₀

b)q divide pe a_n

2) Dacă $x_0 = p$ este o rădăcină întreagă a lui f,
atunci p este un divizor al lui a $_0$.

Polinoame ireductibile

Definiție:Fie K un corp comutativ, f un polinom din K[X] cu gradf>0 se numește reductibil peste K dacă există g,q din K[X] cu gradg<gradf, gradq<gradf astfel încât f=gq. Dacă f nu este reductibil peste K atunci se spune că f este ireductibil peste K.

Prop.:Polinoamele de grad 2 sau 3 din K[X] sunt ireductibile peste $K \Leftrightarrow$ nu au rădăcini în K.

Relațiile lui Viete: Fie K un corp comutativ,f un polinom din K[X],

 $f = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, a_n \neq 0$. Dacă x_1, x_2, \dots, x_n sunt n rădăcini ale lui f în K atunci $f = a_n (X - x_1)(X - x_2) \cdots (X - x_n)$ și

$$x_1 + x_2 + \dots + x_n = -a_{n-1} \cdot a_n^{-1}$$

$$x_1x_2 + x_1x_3 + \dots + x_{n-1}x_n = a_{n-2}a_n^{-1}$$

.....

$$x_1 x_2 \cdots x_n = (-1)^n a_0 a_n^{-1}$$

$$\begin{aligned} \operatorname{Dac\check{a}} & \ f = a_3 x^3 + a_2 x^2 + a_1 x + a_0, f \in C[X] \Longrightarrow \begin{cases} x_1 + x_2 + x_3 = -\frac{a_2}{a_3} \\ x_1 x_2 + x_1 x_3 + x_2 x_3 = \frac{a_1}{a_3} \\ x_1 x_2 x_3 = -\frac{a_0}{a_3} \end{cases} \\ f = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0, f \in C[X] \Longrightarrow \begin{cases} x_1 + x_2 + x_3 + x_4 = -\frac{a_3}{a_4} \\ x_1 x_2 + x_1 x_3 + \dots + x_3 x_4 = \frac{a_2}{a_4} \\ x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4 = -\frac{a_1}{a_4} \\ x_1 x_2 x_3 x_4 = \frac{a_0}{a_4} \end{cases} \end{aligned}$$

Ecuații reciproce

Definiție:O ecuație de forma $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, a_n \neq 0$ pentru care $a_{n-i} = a_i, 0 \leq i \leq n$ se numește ecuație reciprocă de gradul n.

Orice ecuație reciprocă de grad impar are rădăcina -1.

Ecuația reciprocă de gradul IV are forma: $ax^4 + bx^3 + cx^2 + bx + a, a \ne 0$

Se împarte prin x^2 și devine a $(x^2 + \frac{1}{x^2}) + b(x + \frac{1}{x}) + c = 0$; notez $x + \frac{1}{x} = t$ și obținem o ecuație de gradul II.

Siruri de numere reale

Sir monoton (crescător sau descrescător)

Fie $(a_n)_{n \in \mathbb{N}}$ un şir de numere reale.

Şirul (a_n) este crescător dacă: $a_n \le a_{n+1}, \forall n \in N$.

Şirul (a_n) este strict crescător dacă: $a_n < a_{n+1}, \forall n \in N$.

Şirul (a_n) este descrescător dacă: $a_n \ge a_{n+1}, \forall n \in N$.

Şirul (a_n) este strict descrescător dacă: $a_n > a_{n+1}, \forall n \in N$.

Şir mărginit

Fie $(a_n)_{n \in \mathbb{N}}$ un şir de numere reale.

Şirul (a_n) este mărginit dacă: $\exists \alpha, \beta \in \mathbb{R}$ a.i. $\alpha \le a_n \le \beta, \forall n \in \mathbb{N}$

Definitie

Un sir care are limita finită se numeste convergent.

Un șir care nu are limită sau care are limita infinită se numește divergent

Teoremă: Orice șir convergent este mărginit.

Consecință :Dacă un şir este nemărginit atunci el este divergent.

Teoremă Dacă un șir are limită, atunci orice subșir al său are aceeași limită.

Consecintă: dacă un șir conține două subșiruri cu limite diferite, atunci șirul nu are limită.

•Teorema lui Weierstrass

Orice şir monoton şi mărginit este convergent.

■Teorema cleştelui

Dacă
$$x_n \le a_n \le y_n, \forall n \ge k$$
 si $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = l$ atunci $\lim_{n \to \infty} a_n = l$.

Criteriul raportului

Fie $(a_n)_{n\in\mathbb{N}}$ un șir cu termeni strict pozitivi. Dacă $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=l\in[0,1)$ atunci $\lim_{n\to\infty}a_n=0$.

Daca
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l \in (1,\infty)$$
 sau $l=\infty$ atunci $\lim_{n\to\infty} a_n = \infty$.

Lema lui Stolz-Cezaro

Fie $(a_n)_{n\in\mathbb{N}}$ și $(b_n)_{n\in\mathbb{N}}$ două șiruri de numere reale.

Dacă $\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n} = l$ (finit sau infinit) și $(b_n)_{n\in\mathbb{N}}$ este strict monoton și nemărginit,

atunci
$$\lim_{n\to\infty} \frac{a_n}{b_n} = l$$

• Criteriul radicalului

Fie $(a_n)_{n\in\mathbb{N}}$ un șir cu termeni strict pozitivi. Dacă $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=l$ atunci $\lim_{n\to\infty}\sqrt[n]{a_n}=l$.

Siruri remarcabile

$$\lim_{n \to \infty} q^{n} = \begin{cases} 0, \operatorname{dac\check{a}} & q \in (-1,1) \\ 1, \operatorname{dac\check{a}} & q = 1 \\ \infty, \operatorname{dac\check{a}} & q \in (1,\infty) \\ nu \text{ exist\check{a}}, \operatorname{dac\check{a}} & q \in (-\infty,-1] \end{cases} \qquad \lim_{n \to \infty} n^{\alpha} = \begin{cases} \infty, \alpha > 0 \\ 0, \alpha < 0 \end{cases}$$

$$\lim_{n \to \infty} n^k a^n = 0 \text{,unde } a \in (-1,1), k \in \mathbb{N}$$

$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e \; ; \; e = 2,7178...\text{este constanta lui Euler}$$

generalizare:
$$\lim_{n\to\infty} \left(1+\frac{1}{x_n}\right)^{x_n} = e \operatorname{dacă} x_n \to \pm \infty$$
; $\lim_{n\to\infty} \left(1+y_n\right)^{\frac{1}{y_n}} = e \operatorname{dacă} y_n \to 0$

$$\lim_{n\to\infty} \frac{\sin x_n}{x_n} = 1 \operatorname{dac\check{a}} x_n \to 0, \lim_{n\to\infty} \frac{\operatorname{tg} x_n}{x_n} = 1 \operatorname{dac\check{a}} x_n \to 0,$$

$$\lim_{n\to\infty}\frac{\arcsin\,x_n}{x_n}=1\,\mathrm{dac\check{a}}\ x_n\to0\,,\\ \lim_{n\to\infty}\frac{arc\,\mathrm{tg}\,x_n}{x_n}=1\,\mathrm{dac\check{a}}\ x_n\to0\,,$$

Limite de functii

Teoremă:O funcție are limită într-un punct finit de acumulare dacă și numai dacă are limite laterale egale în acel punct.

f are limită în
$$\mathbf{x}_0 \Leftrightarrow l_s(x_0) = l_d(x_0) \Leftrightarrow f(x_0 - 0) = f(x_0 + 0) \Leftrightarrow \lim_{\substack{x \to x_0 \\ x \neq x_0}} f(x) = \lim_{\substack{x \to x_0 \\ x \neq x_0}} f(x)$$

Obs.:Funcția $f:D\to R$ nu are limită în punctul de acumulare x_0 în una din situațiile : a) există un şir $x_n\in D-\{x_0\}$ cu limita x_0 astfel încât şirul $(f(x_n))$ nu are limită b) există şirurile $(x_n),(y_n),x_n,y_n\in D-\{x_0\}$, astfel încât şirurile $(f(x_n)),(f(y_n))$ au limite diferite.

Teoremă: Fie $f:D\to R$, o funcție elementară și $x_0\in D$ un punct de acumulare al lui $D\Rightarrow \lim_{x\to x_0}f(x)=f(x_0)$

Teoremă(Criteriul majorării,cazul limitelor finite)

Fie f,g:D $\rightarrow R$ și x₀ un punct de acumulare al lui D.Dacă $\lim_{x \to x_0} g(x) = 0$ și există $l \in R$

a.î.
$$|f(x) - l| \le g(x), \forall x \in D \cap V, x \ne x_0, V$$
 vecinătate a lui x_0 și dacă $\lim_{x \to x_0} g(x) = 0 \Rightarrow \lim_{x \to x_0} f(x) = l$

Teoremă(Criteriul majorării,cazul limitelor infinite)

Fie f,g:D $\rightarrow R$, x_0 un punct de acumulare al lui D şi $f(x) \le g(x)$, $\forall x \in D \cap V$, $x \ne x_0$, V vecinătate a lui x_0 .

a)Dacă
$$\lim_{x \to x_0} f(x) = \infty \Rightarrow \lim_{x \to x_0} g(x) = \infty$$

b)Dacă
$$\lim_{x \to x_0} g(x) = -\infty \Rightarrow \lim_{x \to x_0} f(x) = -\infty$$

Teoremă(Criteriul cleştelui)

Fie f,g,h:D $\rightarrow R$, x₀ un punct de acumulare al lui D și

$$f(x) \le g(x) \le h(x), \forall x \in D \cap V, x \ne x_0$$
, V vecinătate a lui x_0 .

Dacă
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = l \Rightarrow \lim_{x \to x_0} g(x) = l$$

Limite uzuale.Limite remarcabile.

$$\lim_{x \to \pm \infty} (a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0) = \lim_{x \to \pm \infty} a_n x^n$$

$$\lim_{x \to \pm \infty} \frac{a_k x^k + a_{k-1} x^{k-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0} = \begin{cases} \frac{a_k}{b_m}, k = m \\ 0, m > k \\ \frac{a_k}{b_m} \cdot (\pm \infty)^{k-m}, k > m \end{cases}$$

$$\lim_{x \to \infty} \frac{1}{x} = 0 \qquad \lim_{x \to -\infty} \frac{1}{x} = 0 \qquad \lim_{x \to 0} \frac{1}{x} = -\infty \qquad \lim_{x \to 0} \frac{1}{x} = +\infty$$

$$\lim_{x \to \infty} \sqrt{x} = \infty \qquad \lim_{x \to \infty} \sqrt[3]{x} = \infty \qquad \lim_{x \to -\infty} \sqrt[3]{x} = -\infty$$

$$\lim_{x \to \infty} a^x = \begin{cases} \infty \text{, daca } a > 1 \\ 0 \text{, daca } a \in (0,1) \end{cases} \qquad \lim_{x \to -\infty} a^x = \begin{cases} 0 \text{, daca } a > 1 \\ \infty \text{, daca } a \in (0,1) \end{cases}$$

$$\lim_{x \to \infty} \log_a x = \begin{cases} \infty \text{, daca } a > 1 \\ -\infty \text{, daca } a \in (0,1) \end{cases} \qquad \lim_{x \to 0} \log_a x = \begin{cases} -\infty \text{, daca } a > 1 \\ \infty \text{, daca } a \in (0,1) \end{cases}$$

$$\lim_{x \to \infty} \operatorname{arct} gx = \frac{\pi}{2} \qquad \lim_{x \to -\infty} \operatorname{arct} gx = -\frac{\pi}{2} \qquad \lim_{x \to \infty} \operatorname{arcct} gx = 0 \qquad \lim_{x \to -\infty} \operatorname{arcct} gx = \pi$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e \qquad \lim_{x \to -\infty} \left(1 + \frac{1}{x}\right)^x = e \qquad \lim_{x \to \infty} (1 + x)^{\frac{1}{x}} = e$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \lim_{x \to 0} \frac{tgx}{x} = 1 \qquad \lim_{x \to 0} \frac{\operatorname{arcsin} x}{x} = 1 \qquad \lim_{x \to 0} \frac{\operatorname{arct} gx}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1 \qquad \lim_{x \to 0} \frac{a^x - 1}{x} = \ln a \quad , \quad a > 0, a \neq 1$$

$$\lim_{x \to 0} \frac{\ln(1 + u(x))}{u(x)} = 1 \qquad \lim_{x \to 0} \frac{\operatorname{arct} gu(x)}{u(x)} = 1$$

$$\lim_{x \to 0} \frac{\ln(1 + u(x))}{u(x)} = 1 \qquad \lim_{x \to 0} \frac{a^{u(x)} - 1}{u(x)} = \ln a \quad , \quad a > 0, a \neq 1 \text{ unde } \lim_{x \to x_0} u(x) = 0$$

$$\operatorname{Operaţii fără sens:} \frac{\infty}{\infty}, \frac{0}{0}, \infty - \infty, 0 \cdot \infty, 1^{\infty}, 0^{0}, \infty^{0}$$

Funcții continue

Definiție Fie $f: D \rightarrow R$ și $x_0 \in D$ punct de acumulare pentru D

$$f$$
 este continuă în $x_0 \in D$ dacă $\lim_{x \to x_0} f(x) = f(x_0)$

Dacă f nu este continuă în $x_0 \in D$, ea se numește discontinuă în x_0 , iar x_0 se numește punct de discontinuitate.

Definiții:Un punct de discontinuitate $x_0 \in D$ este punct de discontinuitate de prima speță pentru f, dacă limitele laterale ale funcției f în punctul x_0 există și sunt finite.

Un punct de discontinuitate $x_0 \in D$ este punct de discontinuitate de speța a doua dacă nu este de prima speță. (cel puțin una din limitele laterale ale funcției f în punctul x_0 nu este finită sau nu există)

Teoremă: Fie $f: D \to R$ și $x_0 \in D$ punct de acumulare pentru $D \Rightarrow$ f continuă în $x_0 \Leftrightarrow l_s(x_0) = l_d(x_0) = f(x_0)$

Teoremă: Funcțiile elementare sunt continue pe domeniile maxime de definiție.

Operații cu funcții continue

Teoremă: Fie f,g:D $\rightarrow R$ continue pe D

$$\Rightarrow$$
 f+g, $f \cdot g$, $\frac{f}{g}(g \neq 0)$, $|f|$, max (f,g) , min (f,g) sunt funcții continue pe D.

Compunerea a două funcții continue este o funcție continuă.

Teoremă: Fie f:[a,b] \rightarrow R o funcție continuă a.î. f(a)f(b)<0 $\Rightarrow \exists c \in (a,b)$ pentru care f(c)=0.

Asimptote

1.Asimptote verticale

Definiție: Fie $f: E \to R, a \in R$ punct de acumulare pentru E.Se spune că dreapta x = a este asimptotă verticală la stanga pentru f,dacă $\lim_{\substack{x \to a \\ y < a}} f(x) = \infty$ sau $\lim_{\substack{x \to a \\ y < a}} f(x) = -\infty$.

Definiție:Fie $f: E \to R, a \in R$ punct de acumulare pentru E.Se spune că dreapta x = a este asimptotă verticală la dreapta pentru f,dacă $\lim_{x\to a} f(x) = \infty$ sau $\lim_{x\to a} f(x) = -\infty$.

Definiție : Fie $f: E \to R, a \in R$ punct de acumulare pentru E.Se spune că dreapta x = a este asimptotă verticală pentru f dacă ea este asimptotă verticală atât la stânga cât și la dreapta sau numai lateral.

2.Asimptote oblice

Teorema : Fie $f: E \to R$, unde E conţine un interval de forma (a, ∞)

Dreapta y=mx+n,m $\neq 0$ este asimptotă oblică spre $+\infty$ la graficul lui f dacă și numai dacă m,n sunt numere reale finite,unde m= $\lim_{x\to\infty}\frac{f(x)}{x}$, $n=\lim_{x\to\infty}[f(x)-mx]$. Analog la $-\infty$.

3. Asimptote orizontale

Dacă $\lim_{x\to\infty} f(x) = l, l$ număr finit atunci y = l este asimptotă orizontală spre $+\infty$ la graficul lui f.

Analog la -∞

Obs : O funcție nu poate admite atât asimptotă orizontala cât și oblică spre $+\infty(-\infty)$

Funcții derivabile

Definiție: Fie f: D \rightarrow R, $x_0 \in D$ punct de acumulare pentru D

Derivata într-un punct:
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
.

f este derivabilă în x_0 dacă limita precedentă există și este finită.

•Dacă f este derivabilă în x_0 , graficul funcției are în punctul $M_0(x_0, f(x_0))$ tangentă a cărei pantă este $f'(x_0)$. Ecuația tangentei este: $y - f(x_0) = f'(x_0)(x - x_0)$.

Teoremă:Fie f:D \rightarrow R , $x_0 \in D$ punct de acumulare pentru D \Rightarrow f este derivabilă în f(x) - f(x)

punctul de acumulare
$$x_0 \Leftrightarrow f_s(x_0) = f_d(x_0) \in R(finite) \Leftrightarrow \lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0)}{x - x_0} = .$$

$$\lim_{\substack{x \to x_0 \\ x > x_0 \\ x > x_0}} \frac{f(x) - f(x_0)}{x - x_0} \in R.$$

 $\textbf{Teorem\Bar{a}}$. Orice funcție derivabilă într-un punct este continu \Bar{a} în acel punct.

Puncte de întoarcere.Puncte unghiulare.

Definiții:Fie f:D \rightarrow R, $x_0 \in D$ punct de acumulare pentru D.Punctul x_0 se numește punct de întoarcere al funcției f, dacă f este continuă în x_0 și are derivate laterale infinite și diferite în acest punct. Punctul x_0 se numește punct unghiular al funcției f dacă f este continuă în x_0 , are derivate laterale diferite în x_0 și cel puțin o derivată laterală este finită.

21

Derivatele funcțiilor elementare

Functia	Derivata
С	0
х	$\frac{1}{nx^{n-1}}$
$x^n, n \in \mathbf{N}^*$	nx^{n-1}
$x^r, r \in \mathbf{R}$	rx^{r-1}
\sqrt{x}	1
	$2\sqrt{x}$
$\sqrt[n]{x}$	1
	$n^{n\sqrt{x^{n-1}}}$
$\ln x$	$\frac{1}{x}$ e^x
	X
e^x	e^{λ}
$a^x (a > 0, a \neq 1)$	$a^x \ln a$
$\sin x$	$\cos x$
cos x	$-\sin x$
tg x	1
	$\cos^2 x$
$\operatorname{ctg} x$	1
	$\frac{-\sin^2 x}{1}$
arcsin x	1
	$\sqrt{1-x^2}$
arccos x	1
	$ \frac{1}{\sqrt{1-x^2}} $ $ -\frac{1}{\sqrt{1-x^2}} $ $ \frac{1}{1+x^2} $ $ -\frac{1}{1+x^2} $
arctg x	1
	$\overline{1+x^2}$
arcctg x	11
	$-\frac{1}{1+x^2}$

Operații cu funcții derivabile

Teoremă: Fie f,g:D $\rightarrow R$ derivabile pe D \Rightarrow f+g ,fg, $\frac{f}{g}$ (g \neq 0) sunt funcții derivabile pe D.

Compunerea a două funcții derivabile este o funcție derivabilă.

Reguli de derivare

$$(f \pm g)' = f' \pm g'; (f \cdot g)' = f' \cdot g + f \cdot g'; (\lambda \cdot f)' = \lambda \cdot f'; \left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}$$

$$(f \circ u)' = f'(u) \cdot u'$$

Proprietățile funcțiilor derivabile

Definiție:Fie f:D \rightarrow R.Un punct $x_0 \in D$ se numește punct de maxim local(respectiv de minim local)al lui f dacă există o vecinătate U a punctului x_0 astfel încât

 $f(x) \le f(x_0)$ (respectiv $f(x) \ge f(x_0)$) pentru orice $x \in D \cap U$.

Dacă $f(x) \le f(x_0)$ (respectiv $f(x) \ge f(x_0)$) pentru orice $x \in D$ atunci x_0 se numește punct de maxim absolut(respectiv minim absolut)

Teoremă . (Fermat) Fie I un interval deschis și $x_0 \in I$ un punct de extrem al unei funcții $f: I \rightarrow R$. Dacă f este derivabilă în punctul x_0 atunci $f'(x_0)=0$.

Definiție:O funcție $f: [a, b] \rightarrow \mathbb{R}$ (a< b) se numește funcție Rolle dacă este continuă pe intervalul compact [a, b] și derivabilă pe intervalul deschis (a, b).

Teorema lui Rolle

Fie $f: [a, b] \to R$, a< b o funcție Rolle astfel încât f(a) = f(b), atunci există cel puțin un punct $c \in (a, b)$ astfel încât f'(c) = 0.

Teorema(teorema lui J. Lagrange). Fie f o funcție Rolle pe un interval compact [a, b]. Atunci $\exists c \in (a, b)$ astfel încât f(b)- f(a)= (b- a)f'(c)

Consecinte:

- 1.Dacă o funcție derivabilă are derivata nulă pe un interval atunci ea este constantă pe acel interval.
- 2.Dacă două funcții derivabile au derivatele egale pe un interval atunci ele diferă printr-o constantă pe acel interval.

Rolul primei derivate

3. Fie f o funcție derivabilă pe un interval I.

Dacă f'(x) > 0 ($f'(x) \ge 0$), $\forall x \in I$, atunci f este strict crescătoare(crescătoare) pe I.

Dacă f'(x) < 0 ($f'(x) \le 0$), $\forall x \in I$, atunci f este strict descrescătoare(descrescătoare) pe I.

4. Fie f:D \rightarrow R,D interval și $\mathbf{x}_0 \in D$. Dacă

1) f este continuă în x_0

2)f este derivabilă pe D- $\{x_0\}$

3) există
$$\lim_{x \to x_0} f'(x) = l \in \overline{R}$$

atunci f are derivată în x_0 și f $(x_0) = l$. Dacă $l \in R$ atunci f este derivabilă în x_0 .

Observație: Cu ajutorul primei derivate se stabilesc intervalele de monotonie ale unei funcții derivabile și se determină punctele de extrem local.

Rolul derivatei a doua

Teoremă: Fie f o funcție de două ori derivabilă pe I.

Dacă $f''(x) \ge 0, \forall x \in I$, atunci f este convexă pe I.

Dacă $f''(x) \le 0, \forall x \in I$, atunci f este concavă pe I.

Definiție: Fie f o funcție continuă pe I si $x_0 \in \mathbf{I}$ punct interior intervalului. Spunem că x_0 este punct de inflexiune al graficului funcției dacă f este convexă pe o vecinătate stânga a lui x_0 și concavă pe o vecinătate dreapta a lui x_0 sau invers.

Observație:Cu ajutorul derivatei a doua se stabilesc intervalele de convexitate și concavitate și se determină punctele de inflexiune.

Noțiunea de primitivă

Definiție: Fie I \subseteq R interval, $f: I \to R$. Se numește primitivă a funcției f pe I, orice funcție $F: I \to \mathbf{R}$ derivabilă pe I cu proprietatea F'(x) = f(x), $\forall x \in I$.

Teoremă. Orice funcție continuă $f: I \rightarrow R$ posedă primitive pe I.

Teoremă: Fie $f: I \to R$, I interval ,o funcție care admite primitive pe I. Atunci f are proprietatea lui Darboux.

Consecințe:

- 1. Dacă g : I \rightarrow R nu are proprietatea lui Darboux pe intervalul I,
atunci g nu admite primitive pe I.
- 2. Fie g: I \rightarrow R. Dacă g(I)={ $g(x)/x \in I$ } nu este interval atunci g nu admite primitive pe I.
- 3. Dacă g : $I \rightarrow R$ are discontinuități de prima speță atunci g nu admite primitive pe I.

Tabel de integrale nedefinite

$$\int x^{n} dx = \frac{x^{n+1}}{n+1} + C, n \in N, x \in R$$

$$\int x^{a} = \frac{x^{a+1}}{a+1} + C, a \in R, a \neq -1, x \in (0, \infty)$$

$$\int \frac{1}{x} dx = \ln|x| + C, x \in (0, \infty) \text{ sau } x \in (-\infty, 0)$$

$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C, a > 0, a \neq 1, x \in R$$

$$\int \frac{1}{x^{2} - a^{2}} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C, a \neq 0, x \in (-\infty, -a) \text{ sau } x \in (-a, a) \text{ sau } x \in (a, \infty)$$

$$\int \frac{1}{x^{2} + a^{2}} dx = \frac{1}{a} \arctan \frac{x}{a} + C, a \neq 0, x \in R$$

$$\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \arcsin \frac{x}{a} + C, a \neq 0, x \in (-a, a)$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln(x + \sqrt{x^{2} + a^{2}}) + C, a \neq 0, x \in R$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln \left| x + \sqrt{x^{2} - a^{2}} \right| + C, a \neq 0, x \in (-\infty, -a) \text{ sau } x \in (a, \infty)$$

$$\int \sin x dx = -\cos x + C, x \in R$$

$$\int \cos x dx = \sin x + C, x \in R$$

$$\int \frac{1}{\cos^{2} x} dx = tgx + C, \cos x \neq 0$$

$$\int \frac{1}{\sin^{2} x} dx = -ctgx + C, \sin x \neq 0$$

Integrala definită

Teoremă.Funcțiile continue pe un interval [a,b] sunt integrabile pe [a,b].

Teoremă.Funcțiile monotone pe un interval [a,b] sunt integrabile pe [a,b].

Proprietățile funcțiilor integrabile.

a)(Proprietatea de linearitate)

Dacă f,g: $[a.b] \rightarrow R$ sunt integrabile și $\lambda \in R \Rightarrow$

1)
$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

$$2) \int_{a}^{b} \lambda f(x) dx = \lambda \int_{a}^{b} f(x) dx$$

b)Dacă $f(x) \ge 0, x \in [a,b]$ și este integrabilă pe [a,b], atunci $\int_a^b f(x) dx \ge 0$.

c)Dacă $f(x) \ge g(x)$ pentru orice $x \in [a,b]$ și dacă f și g sunt integrabile pe [a,b], atunci $\int_a^b f(x) dx \ge \int_a^b g(x) dx$

d)(Proprietatea de aditivitate în raport cu intervalul)

Funcția $f: [a, b] \to \mathbb{R}$ este integrabilă pe [a, b] dacă și numai dacă, $\forall c \in (a, b)$ funcțiile $f_1 = f | [a, c]$ și $f_2 = f | [c, b]$ sunt integrabile și are loc formula:

$$\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx.$$

e)Dacă funcția f este integrabilă pe [a,b], atunci și |f| este integrabilă pe [a,b] și

$$\left| \int_a^b f(x) dx \right| \le \int_a^b \left| f(x) \right| dx.$$

Teoremă (Formula Leibniz - Newton)

Dacă $f:[a, b] \rightarrow \mathbf{R}$ este o funcție integrabilă și f admite primitive pe [a, b] atunci pentru orice primitivă F a lui f pe [a, b] are loc formula Leibniz-Newton:

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a) .$$

Teorema de medie Dacă $f:[a,b] \to \mathbf{R}$ este o funcție continuă, atunci există $c \in [a,b]$ a.i. $\int_{-b}^{b} f(x) dx = (b-a)f(c).$

25

Teorema de existență a primitivelor unei funcții continue

Dacă g : [a, b] \rightarrow R este o funcție continuă, atunci funcția G: [a, b] \rightarrow R,

$$G(x) = \int_{a}^{x} g(t)dt, x \in [a,b]$$
 are proprietățile:

1)G este continuă pe [a, b] și G(a) = 0

2)G este derivabilă pe [a, b] și $G'(x) = g(x), \forall x \in [a,b]$

Reţinem:
$$\left(\int_{a}^{x} g(t)dt\right) = g(x)$$

Teoremă (Formula de integrare prin părți)

Fie f, g: [a, b] \rightarrow **R** cu f, g derivabile cu derivatele continue, atunci are loc **formula de** integrare prin părți: $\int_a^b fg' dx = fg\Big|_a^b - \int_a^b f' g dx$.

Teoremă: Fie f:[-a,a] \rightarrow R, a>0 o funcție continuă. Atunci

1)
$$\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx$$
, dacă f este funcție pară.

2)
$$\int_{-a}^{a} f(x)dx = 0$$
, dacă f este funcție impară.

Teoremă:Fie f:R→ R o funcție continuă de perioadă

$$|T\rangle 0 \Rightarrow \int_{a}^{a+T} f(x)dx = \int_{0}^{T} f(x)dx, \forall a \in R$$

Aria unui domeniu din plan

- 1. Aria mulțimii din plan $D \subset \mathbb{R}^2$ mărginită de dreptele x = a, x = b, y = 0 și graficul funcției $f: [a, b] \to \mathbb{R}$ pozitivă și continuă se calculează prin formula: $\mathcal{A}(D) = \int_a^b f(x) dx$.
- 2. În cazul $f: [a, b] \to \mathbb{R}$ continuă și de semn oarecare, avem: $\mathcal{A}(D) = \int_a^b |f(x)| dx$.
- 3. **Aria mulțimii** din plan mărginită de dreptele x = a, x = b și graficele funcțiilor $f, g : [a, b] \rightarrow \mathbb{R}$ continue este calculată prin formula: $\mathcal{A}(D) = \int_a^b |g(x) f(x)| dx$.

Volumul unui corp de rotație Fie $f:[a,b] \to \mathbf{R}$ o funcție continuă, atunci corpul C_f din spațiu obținut prin rotirea graficului lui f, G_f , în jurul axei Ox, are volumul calculat prin

formula:
$$V(C_f) = \pi \int_a^b f^2(x) dx$$