MA4002 Final Exam Solutions 1998

1.(i)
$$V = \int_0^7 \frac{200}{(t+3)^3} = \frac{91}{9}.$$

(ii) Use partial fractions:
$$\frac{x}{x^2 - 3x + 2} = -\frac{1}{x - 1} + \frac{2}{x - 2}$$
. Answer: $-\ln|x - 1| + 2\ln|x - 2| + C$.
(iii) $3\cos(9x^2)$. (iv) Integrate by parts. Answer: $\frac{1}{2} - \frac{3}{2}e^{-2}$. (v) Try it yourse.

(iii)
$$3\cos(9x^2)$$
. (iv) Integrate by parts. Answer: $\frac{1}{2} - \frac{3}{2}e^{-2}$. (v) Try it yoursel

(vi)
$$\int_{1}^{4} \sqrt{x} \, dx = \frac{14}{3}$$
. (vii) $f_x = y \sec^2 xy$; $f_y = x \sec^2 xy$;

$$f_{xx} = 2y^2 \sec^2 xy \tan xy;$$
 $f_{xy} = \sec^2 xy + 2xy \sec^2 xy \tan xy;$ $f_{yy} = 2x^2 \sec^2 xy \tan xy.$

$$f_{xx} = 2y^2 \sec^2 xy \tan xy;$$
 $f_{xy} = \sec^2 xy + 2xy \sec^2 xy \tan xy;$ $f_{yy} = 2x^2 \sec^2 xy \tan xy.$ (viii) Variables separable: $y = \frac{1}{1 - \ln|x|}$. (ix) $y_{n+1} = y_n + 0.2(0.2n + y_n)^2$, $y_0 = 1$. (x) $y_0 = 1$.

2.(i) Substitute
$$u = 1 + 2\cos^2 t$$
. Answer: $\frac{1}{4}(\ln 3 - \ln 2)$. **(ii)** Substitute $u = x - 3$ to obtain
$$\int_{-3}^{-2} \left(1 + \frac{6u}{u^2 + 1} + \frac{8}{u^2 + 1}\right) du$$
. Answer: $1 - 3\ln 2 + 8\tan^{1}(-2) - 8\tan^{-1}(-3)$.

(iii) Integrate by parts with
$$u = (\ln x)^2$$
 and $dv = x^{\frac{1}{2}} dx$.

Then integrate by parts with $u = \ln x$ and $dv = x^{\frac{1}{2}} dx$. Answer: $x^{\frac{3}{2}} \left(\frac{2}{3} (\ln x)^2 - \frac{8}{9} \ln x + \frac{16}{27}\right) + C$.

3. (i)
$$A = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (\sqrt{2} - \sec x) \, dx = \frac{\pi}{\sqrt{2}} + 2 \ln(\sqrt{2} - 1)$$
. (ii) By washers, $V = \int_{0}^{3} \pi (3y - y^{2})^{2} \, dy = \frac{81}{10} \pi$.

(iii)
$$M = \int_0^4 \rho_0(2+x^{\frac{1}{2}}) dx = \frac{40\rho_0}{3}$$
. $I = \int_0^4 \rho_0(2+x^{\frac{1}{2}})(x-1)^2 dx = \frac{1224\rho_0}{35}$.

(iv)
$$|\mathbf{r}'(t)|^2 = 5e^{-2t}$$
, so $s = \int_0^1 \sqrt{5}e^{-t} dt = \sqrt{5}(1 - e^{-1})$.

4.(a)
$$\frac{\sqrt{\pi}}{4}$$
; integrate by parts with $u = x^{2n-1}$ and $dv = xe^{-x^2} dx$; in last part use the fact that $(2n-1) \cdot (2n-3) \cdots 5 \cdot 3 \cdot 1 = \frac{(2n)!}{2^n n!}$

(b)
$$f(1+h, 1+k) = \ln 2 + 1 + h + k + \frac{h^2}{2} - 2hk + \frac{k^2}{2} + \cdots$$

5.(a)
$$-4 = m = -\frac{1}{34}(a - 2b + 120)$$
 and $\frac{23}{5} = c = \frac{1}{5}(a + b + 37)$. Solve to get $a = -4$ and $b = -10$.

(b) Use
$$h = \frac{1}{4}$$
 and $y_i = \cos(e^{\frac{i}{4}})$ to get $S_4 \approx -0.12279$. $E_S < \frac{h^4}{3} \approx 0.0013$. $E_S < \frac{1}{24n^4} < 10^{-8} \Rightarrow 2n \ge 76$.

6.(a) Integrating factor is
$$e^{\frac{Rt}{L}}$$
. Solution: $i(t) = \frac{E_0}{R}(1 - e^{-\frac{Rt}{L}})$. As $t \to \infty$, $i(t) \to \frac{E_0}{R}$.

(b) Char. eqn.
$$\lambda^2 + 2\lambda + 1 = 0 \Rightarrow \lambda = -1, -1$$
. So $y_h = Ae^{-x} + Bxe^{-x}$.

Try $y_p = \kappa x^2 e^{-x}$, to find $\kappa = 1$. Hence the general solution is $y = Ae^{-x} + Bxe^{-x} + x^2e^{-x}$.

7.(a)
(i) RREF:
$$\begin{bmatrix} 1 & 0 & -\frac{1}{4} & \frac{5}{4} \\ 0 & 1 & -\frac{7}{4} & -\frac{1}{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

No solution (inconsistent).