Text Mining on COVID-19Patients' Data

Data Science Capstone Project

Princess Allotey

O2. METHODS How? O3. RESULTS What? O4. DISCUSSION What? & What next? O5. REFERENCES			
How? O3. RESULTS What? O4. DISCUSSION	05.	REFERENCES	
How? O3. RESULTS	04.		
How?	03.		
O2. METHODS	07		
	02.	METHODS	
O1. INTRODUCTION What & Why?	01.		

01. INTRODUCTION

How have your day-to-day activities been affected by COVID-19?*

TIMELINE

- December 2019 discovered in Wuhan, China
- March 11th, 2020 declared a pandemic
- September 14th, 2020 29 million confirmed cases worldwide, and close to 1 million deaths

COVID-1

PROJECT GOAL & VISION OF THE FUTURE

Predicting the outcome of future patients from electronic health records

MAIN SIGNIFICANCE Triage practices

DATA SOURCE

Institute for Health Metrics and Evaluation

University of Washington

COVID-19

COLUMNS OF INTEREST

- symptoms
- outcome
- additional information
- notes for discussion
- chronic disease
- travel history location

MODEL 1

- Model 1: Natural Language Processing (NLP)
- Reason: Used in Electronic Health Records (Medical Informatics)

- Assumption: Text data is generated from the COVID patient
- Tool: Natural Language Toolkit (NLTK)
 - unique functions
 - popular toolkit

COVID-19

Text mining process:

- Punctuation
- Stemming
- Lemmatization
- Tokenization

Text analysis process & model training:

- 5 machine learning models
- Voting Classifier (Ensemble Method)

CORE NLTK FUNCTION

COVID-1

NLP MODEL BUILT FOR:

TEXT MINING

The outcome of a COVID patient dependent on:

- travel history location*
- symptoms*
- chronic disease*
- additional information

ANALYSING DATES

Predicting length of time in:

- hospital after onset of symptoms given additional information on patient
- hospital after hospital admission given symptoms

Why do you think these two are different?

COVID-19

MODEL 2

- **Model 2:** Logistic Regression
- **Reason:** Integrates previous explorations
- Predicts the likelihood that a patient will recover

COVID-19

Y:

Outcome

X:

- Age
- Sex
- Chronic disease binary
- 2 date differences
- Symptoms

TARGET AND FEATURES

COVID-19

• Ensemble Method Accuracy: 85.19%

• F1-score:

o Dead: 0.47

Recovered: 0.91

• Support:

o Dead: 259

Recovered: 1017

NLP: OUTCOME OF A COVID PATIENT DEPENDENT ON ADDITIONAL INFORMATION

COVID-19

04. DISCUSSION

What did I find?

What are my next steps?

1. Conclusion: Using text and dates data, I prepared Logistic Regression and Natural Language Processing models to determine the likelihood that a patient will recover from COVID-19

2. Future Work:

- Explore and learn from similar case studies
- Consider a more balanced dataset (recovered and dead)*

COVID-19

- 1. https://towardsdatascience.com/your-guide-to-natural-language-processing-nlp-48ea2511f6e1
- 2. https://opensource.com/article/19/3/natural-language-processing-tools
- 3. http://www.nltk.org/
- 4. https://www.activestate.com/blog/natural-language-processing-nltk-vs-spacy/
- 5. https://www.youtube.com/watch?v=5ctbvkAMQO4
- 6. https://www.youtube.com/watch?v=050NoGfmKvA
- 7. https://computingeverywhere.soc.northwestern.edu/wp-content/uploads/2017/07/Text-Analysis-with-NLTK-Cheatsheet.pdf
- 8. Olof Jacobson & Hercules Dalianis. (2016). Applying deep learning on electronic health records in Swedish to predict healthcare-associated infections_.

 Retrieved from: https://www.aclweb.org/anthology/W16-2926.pdf
- 9. Thomas H. McCoy et. al. (2015). A Clinical Perspective on the Relevance of Research Domain Criteria in Electronic Health Records. Retrieved from: https://ajp.psychiatryonline.org/doi/full/10.1176/appi.ajp.2014.14091177
- 10. https://pasterski.com/2014/02/basic-assumptions-nlp/#:~:text=NLP%20also%20assumes%20that%20the,differently%20from%20what%20was%20intended

05. REFERENCES

COVID-19

Let's tackle COVID-19 quickly and efficiently!

Do you have any questions? princess.allotey@centre.edu +1 859 319 0168

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik.

