Understanding the Political Landscape in US

Data mining in Reddit posts

By Zawanah Sainuddin, Stephen Chan 15 January 2021

Content

- A. Overview and Agenda
- B. Exploratory Data Analysis
 - a. Feature Importance
 - b. Word Cloud
- C. Model Selection and Analysis
- D. Model Evaluation
- E. Conclusion

Overview

Given the popularity of social media, it is becoming a standard operating procedure for major political and business groups to extract insights of the public information.

In this project, we have performed a test to classify whether the posts are from the Conservatives or Democrats subreddits, using the Natural Language Processing (NPL) algorithms.

Out of a sample of \sim 2000 posts, we have built a classifier at an accuracy of 98%, versus a baseline accuracy of 66%.

Based on the weightings of key words in a model, some insights are derived as to what could be viewed as important issues. This will be useful in driving the marketing strategy of political and business groups.

Exploratory Data Analysis - Feature Importance

Importance of key words - Democrats

Exploratory Data Analysis - Feature Importance

Importance of key words - Conservatives

Exploratory Data Analysis - Word Cloud

Frequency of words used in titles of both *r/Conservative* and *r/democrats*

Democrats Camp

Frequency of words used in titles of *r/democrats*

Conservatives Camp

Frequency of words used in titles of *r/Conservative*

Model Analysis and Selection

	Titles_Lemm	Titles_Stemm	Comments_Lemm	Comments_Stemm	
Best accuracy score across folds	0.813	0.806	0.916	0.914	
Accuracy score on Train Set	0.994	0.993	0.985	0.98	
Accuracy score on Validation Set	0.842	0.813	0.926	0.927	
Results of Pipeline	2 (Tf-idf Vect	torizer, Multino	omial Naive Bayes	3)	
	Titles_Lemm	Titles_Stemm	Comments_Lemm	Comments_Stemm	
Best accuracy score across folds	0.806	0.813	0.893	0.887	
Accuracy score on Train Set	0.961	0.955	0.955	0.952	
Accuracy score on Validation Set	0.832 +	0.802	0.917	0.897	
Results of Pipeline	3 (Count Vector	orizer, Decision	n Tree Classifie	r)	
	Titles_Lemm	Titles_Stemm	Comments_Lemm	Comments_Stemm	
Best accuracy score across folds	0.776	0.756	0.886	0.876	
Accuracy score on Train Set	1.0	1.0	0.994	0.993	
Accuracy score on Validation Set	0.813 +	0.775 +	0.876	0.893	
Results of Pipeline	4 (Count Vector	prizer, Random I	Forest Classifier	r)	
	Titles_Lemm	Titles_Stemm	Comments_Lemm	Comments_Stem	
Best accuracy score across folds	0.826	0.81	0.954	0.952	
Accuracy score on Train Set	1.0	1.0	0.994	0.993	
Accuracy score on Validation Set	0.816	0.797 +	0.972	0.964	
Results of Pipeline			Vector Classifier		
			Comments_Lemm		
Best accuracy score across folds	0.801	0.798	0.856	0.855	
		0.987	0.929	0.933	
Accuracy score on Train Set	0.984	0.90/	0.525	0.555	

- 5 different classification algorithms considered :
 - Logistic Regression,
 - Multinomial Naive Bayes,
 - Decision Tree Classifier,
 - Random Forest Classifier, and
 - Support Vector Classifier
- Evaluation metric:
 - Accuracy score
 - No imbalanced classes
 - Objective of the project makes us impartial towards either class
- Baseline Model
 - Default parameters

Model Analysis and Selection

Results of Pipeli	ne 1 (Count Ve	ctorizer, Logist	tic Regression)	
	Titles_Lemm	Titles_Stemm	Comments_Lemm	Comments_Stemm
Best accuracy score across folds Accuracy score on Train Set Accuracy score on Validation Set	0.813 0.994 0.842	0.806 0.993 0.813	0.916 0.985 0.926	0.914 0.98 0.927
Results of Pipeline	2 (Tf-idf Vec	torizer, Multino	mial Naive Bayes	3)
	Titles_Lemm	Titles_Stemm	Comments_Lemm	Comments_Stemm
Best accuracy score across folds Accuracy score on Train Set Accuracy score on Validation Set	0.806 0.961 0.832	0.813 0.955 0.802	0.893 0.955 0.917	0.887 0.952 0.897
Results of Pipeline	3 (Count Vect	orizer, Decision	Tree Classifie	r)
	Titles_Lemm	Titles_Stemm	Comments_Lemm	Comments_Stemm
Best accuracy score across folds Accuracy score on Train Set Accuracy score on Validation Set	0.776 1.0 0.813	0.756 1.0 0.775	0.886 0.994 0.876	0.876 0.993 0.893
Results of Pipeline	4 (Count Vect	orizer, Random 1	orest Classifie	 r)
	Titles_Lemm	Titles_Stemm	Comments_Lemm	Comments_Stem
Best accuracy score across folds Accuracy score on Train Set Accuracy score on Validation Set	0.826 1.0 0.816	0.81 1.0 0.797	0.954 0.994 0.972	0.952 0.993 0.964
Results of Pipeline 5 (Count Vectorizer, Support V			ector Classifier)	
	Titles_Lemm	Titles_Stemm	Comments_Lemm	Comments_Stemm
Best accuracy score across folds Accuracy score on Train Set Accuracy score on Validation Set	0.801 0.984 0.821	0.798 0.987 0.797	0.856 0.929 0.889	0.855 0.933 0.887

- Generally across all models, training the model on comments did better than titles
 - Much more words in comments than in titles
 - For a post, there is a title but there could be >1,000 comments in the comment thread
- Between stemming and lemmatizing the words, the models are mixed in their results
 - Impartial toward either
 - Move forward with stemmed comments

Model Analysis and Selection

	Titles_Lemm	Titles_Stemm	Comments_Lemm	Comments_Stemm
Best accuracy score across folds	0.813	0.806 0.993	+ 0.916 0.985	0.914 0.98
Accuracy score on Train Set Accuracy score on Validation Set	0.842	0.813	0.926	0.927
Results of Pipeline	2 (Tf-idf Vect	torizer, Multino	omial Naive Bayes	3)
	Titles_Lemm	Titles_Stemm	Comments_Lemm	Comments_Stemm
Best accuracy score across folds	0.806	0.813	0.893	0.887
Accuracy score on Train Set Accuracy score on Validation Set	0.961 0.832	0.955 0.802	0.955 0.917	0.952 0.897
Results of Pipeline	3 (Count Vecto	prizer, Decision	n Tree Classifie	r)
	Titles_Lemm	Titles_Stemm	Comments_Lemm	Comments_Stem
Best accuracy score across folds		0.756	0.886	0.876
Accuracy score on Train Set Accuracy score on Validation Set	1.0 0.813	1.0 0.775	0.994 0.876	0.993 0.893
Results of Pipeline	4 (Count Vecto	orizer, Random I	orest Classifie	r)
	Titles_Lemm	Titles_Stemm	Comments_Lemm	Comments_Stemm
Best accuracy score across folds	0.826	0.81	0.954	0.952
Accuracy score on Train Set Accuracy score on Validation Set	1.0 0.816	1.0 0.797	0.994 0.972	0.993 0.964
Results of Pipeline S	6 (Count Vector	rizer, Support N	Vector Classifier	r)
	Titles_Lemm	Titles_Stemm	Comments_Lemm	Comments_Stem
Best accuracy score across folds	0.801	0.798	0.856	0.855

- Based on accuracy score on train set,
 Decision Tree Classifier and Random
 Forest Classifier did the best
- Compared with score on validation set, the Random Forest Classifier generalized better on unseen data.

Selected Model:

Random Forest Classifier

Model Evaluation

Performed a grid search to find best parameters

```
The best parameters are : {'cvec_min_df': 2, 'cvec_ngram_range': (1, 2), 'cvec_stop_words': None, 'rf_max_depth': None}
```

- Removing stop words did not improve the model, likely because stop words help with the context of content in each subreddit
- Unigrams and bigrams perform better than using just unigrams for a similar reason

Acc	uracy Score with Best Parameters on Trainin	g, Vali	dation and Test	t Set	
Dataset		!	Accuracy Score		
	Accuracy score on Training Set	1	0.994		
	Accuracy score on Validation Set	1	0.985		
	Accuracy score on Test Set	1	0.979		

- Performed better than the baseline model
- Model is able to account for
 97.9% of variability of data

Model Evaluation

- Represents degree or measure of separability
- With a relatively high performing model, an AUC close to 1 is expected

Conclusion

- Production model did very well to classify a post into *r/Conservative* and *r/democrats*.
- For the same topic, content that is discussed in each subreddit goes in very different directions (ie.
 redditors use very distinct words for each subreddit)
- From wordcloud and feature importance, it is clear that there are no common repeats (except "trump") between both subreddits.
- The weightings of model coefficients were ranked and the more "influential" key words were examined. Comparing this list with the most common key words in the corpus, it was confirmed that the most popular words in the corpus may not be the most effectively in classification, ie the model was able to extract important key words from each class.

Thank You

Questions