ALGEBRA RELAZIONALE

Linguaggi per basi di dati

- operazioni sullo schema
 - o DDL: data definition language
- operazioni sui dati
 - o DML: data manipulation language
 - **x** interrogazione ("query")
 - × aggiornamento

Linguaggi di interrogazione per basi di dati relazionali

Dichiarativi

o specificano le proprietà del risultato ("che cosa")

Procedurali

o specificano le modalità di generazione del risultato ("come")

Linguaggi di interrogazione

- Algebra relazionale: procedurale
- Calcolo relazionale: dichiarativo (teorico)
- SQL (Structured Query Language): parzialmente dichiarativo (reale)
- QBE (Query by Example): dichiarativo (reale)

Algebra relazionale

 Notazione algebrica in cui le interrogazioni sono espresse applicando operatori particolari alle relazioni

- Insieme di operatori
 - o su relazioni
 - o che producono relazioni
 - e possono essere composti

Algebra Relazionale

- Riferimento solo al modello dei dati
- Limitata capacità espressiva
- Risolve in modo soddisfacente il problema dell' ottimizzazione
- Rende disponibile un linguaggio sufficientemente ricco
- Finitezza delle relazioni (non è possibile l'operazione algebrica di complemento)

Operatori dell'algebra relazionale

- unione, intersezione, differenza
- ridenominazione
- selezione
- proiezione
- join (join naturale, prodotto cartesiano, theta-join)

Operatori insiemistici

8

• le relazioni sono insiemi

• i risultati devono essere relazioni

• è possibile applicare unione, intersezione, differenza solo a relazioni definite sugli stessi attributi

Unione

9

Laureati

Matricola	Nome	Età
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

Quadri

Matricola	Nome	Età
9297	Neri	33
7432	Neri	54
9824	Verdi	45

Laureati ∪ **Quadri**

Matricola	Nome	Età
7274	Rossi	42
7432	Neri	54
9824	Verdi	45
9297	Neri	33

Intersezione

Laureati

Matricola	Nome	Età
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

Quadri

Matricola	Nome	Età
9297	Neri	33
7432	Neri	54
9824	Verdi	45

Laureati ∩ **Quadri**

Matricola	Nome	Età
7432	Neri	54
9824	Verdi	45

Differenza

Laureati

Matricola	Nome	Età
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

Quadri

Matricola	Nome	Età
9297	Neri	33
7432	Neri	54
9824	Verdi	45

Laureati - Quadri

Matricola	Nome	Età
7274	Rossi	42

Una unione sensata ma impossibile

Paternità

Padre	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

Maternità

Madre	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

Paternità ∪ Maternità

??

Ridenominazione

13

operatore monadico (con un argomento)

• "modifica lo schema" lasciando inalterata l'istanza dell'operando

• È indicato con la lettera ρ

Paternità

Padre	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

 $\rho_{\text{Genitore} \leftarrow \text{Padre}}$ (Paternità)

Genitore	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

Paternità

Padre	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

ρ Genitore ← Padre (Paternità)

Genitore	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

Maternità

Madre	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

ρ Genitore ← Madre (Maternità)

Genitore	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

$\rho_{\text{Genitore} \leftarrow \text{Padre}}$ (Paternità)

Genitore	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

ρ Genitore ← Madre (Maternità)

ρ Genitore ← Madre (Maternità)

Genitore	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

Genitore	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco
Eva	Abele
Eva	Set
Sara	Isacco

		4.1
\mathbf{Im}	n	へつti
		gati
	.	941

Cognome	Ufficio	Stipendio
Rossi	Roma	55
Neri	Milano	64

Operai

Cognome	Fabbrica	Salario
Bruni	Monza	45
Verdi	Latina	55

 $\rho_{Sede,\ Retribuzione} \leftarrow \underbrace{ Ufficio,\ Stipendio} \left(Impiegati\right)$

ρ _{Sede}, Retribuzione ← Fabbrica, Salario</sub> (Operai)

Cognome	Sede	Retribuzione
Rossi	Roma	55
Neri	Milano	64
Bruni	Monza	45
Verdi	Latina	55

Selezione

- operatore monadico
- produce un risultato che
 - o ha lo stesso schema dell'operando
 - o contiene un sottoinsieme delle ennuple dell'operando,
 - o quelle che soddisfano una condizione espressa combinando, con i connettivi logici \land (and), \lor (or), \neg (not), condizioni atomiche del tipo A θ B o A θ c, dove θ è un operatore di confronto, A e B sono attributi su cui l'operatore θ abbia senso, c una costante compatibile col dominio di A
- È denotata con σ, con la condizione messa a pedice

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Neri	Napoli	64

• impiegati che

- o guadagnano più di 50
- o guadagnano più di 50 e lavorano a Milano
- o hanno lo stesso nome della filiale presso cui lavorano

Selezione, sintassi e semantica

• Sintassi

 $\sigma_{Condizione}$ (Operando)

- o *Condizione*: espressione booleana (come quelle dei vincoli di ennupla)
- o Operando: una relazione.
- Semantica
 - o il risultato contiene le ennuple dell'operando che soddisfano la condizione

Impiegati che guadagnano più di 50

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
5698	Neri	Napoli	64

$$\sigma_{\text{Stipendio} > 50}$$
 (Impiegati)

Impiegati che guadagnano più di 50 e lavorano a Milano

Impiegati

σ Stipendio > 50 AND Filiale = 'Milano' (Impiegati)

Impiegati che hanno lo stesso nome della filiale presso cui lavorano

Impiegati

$$\sigma_{\text{Cognome} = \text{Filiale}}$$
(Impiegati)

Selezione con valori nulli

Impiegati

Matricola	Cognome	Filiale	Età
7309	Rossi	Roma	32
5998	Neri	Milano	45
9553	Bruni	Milano	NULL

$$\sigma_{Et\grave{a}>40}$$
 (Impiegati)

• la condizione atomica è vera solo per valori non nulli

Un risultato non desiderabile

$$\sigma_{\text{Età}>30} \text{(Persone)} \cup \sigma_{\text{Età}\leq=30} \text{(Persone)} \neq \text{Persone}$$

- Perché? Perché le selezioni vengono valutate separatamente!
- Ma anche

$$\sigma_{Et\grave{a}>30 \vee Et\grave{a}\leq 30}$$
 (Persone) \neq Persone

 Perché? Perché anche le condizioni atomiche vengono valutate separatamente!

$\sigma_{\text{Età} > 40}$ (Impiegati)

- la condizione atomica è vera solo per valori non nulli
- per riferirsi ai valori nulli esistono forme apposite di condizioni:

IS NULL IS NOT NULL

• si potrebbe usare (ma non serve) una "logica a tre valori" (vero, falso, sconosciuto)

27

• A questo punto:

```
\sigma_{Et\grave{a}>30} (Persone) \cup \sigma_{Et\grave{a}\leq30} (Persone) \cup \sigma_{Et\grave{a}} \text{ IS NULL}} 
(Persone) = 
\sigma_{Et\grave{a}>30 \vee Et\grave{a}\leq30 \vee Et\grave{a}} \text{ IS NULL}} (Persone) = 
= 
Persone
```


Impiegati

Matricola	Cognome	Filiale	Età
5998	Neri	Milano	45
9553	Bruni	Milano	NULL

$$\sigma_{(Et\grave{a}>40)\vee(Et\grave{a}\;IS\;NULL)}$$
 (Impiegati)

Selezione e proiezione

- operatori "ortogonali"
- selezione:
 - o decomposizione orizzontale
- proiezione:
 - o decomposizione verticale

Proiezione

operatore monadico

• produce un risultato che

- o ha parte degli attributi dell'operando
- o contiene ennuple cui contribuiscono tutte le ennuple dell'operando

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Neri	Napoli	55
5998	Neri	Milano	64
9553	Rossi	Roma	44
5698	Rossi	Roma	64

o per tutti gli impiegati:

- *matricola e cognome
- ×cognome e filiale

Proiezione, sintassi e semantica

Sintassi

π _{ListaAttributi} (Operando)

• Semantica

il risultato contiene le ennuple ottenute da tutte le ennuple dell'operando ristrette agli attributi nella lista

Matricola e cognome di tutti gli impiegati

Impiegati

Matricola	Cognome
7309	Neri
5998	Neri
9553	Rossi
5698	Rossi

π _{Matricola, Cognome} (Impiegati)

Cognome e filiale di tutti gli impiegati

Cognome	Filiale
Neri	Napoli
Neri	Milano
Rossi	Roma

π _{Cognome, Filiale} (Impiegati)

Cardinalità delle proiezioni

• una proiezione

- o contiene al più tante ennuple quante l'operando
- o può contenerne di meno
- se X è una superchiave di R, allora $\pi_X(R)$ contiene esattamente tante ennuple quante R.
- Se X non è superchiave, potrebbero esistere valori ripetuti su quegli attributi, che quindi vengono rappresentati una sola volta

Selezione e proiezione

Combinando selezione e proiezione, possiamo estrarre interessanti informazioni da una relazione

Esempio

38)

Matricola e cognome degli impiegati che guadagnano più di 50

Matricola	Cognome
7309	Rossi
5998	Neri
5698	Neri

 π Matricola, Cognome (σ Stipendio > 50 (Impiegati))

Selezione e Proiezione: osservazioni

 Combinando selezione e proiezione, possiamo estrarre informazioni da una relazione

 Non possiamo però correlare informazioni presenti in relazioni diverse

Join

• il join è l'operatore più interessante dell'algebra relazionale

• permette di correlare dati in relazioni diverse

Prove scritte in un concorso pubblico

- I compiti sono anonimi e ad ognuno è associata una busta chiusa con il nome del candidato
- Ciascun compito e la relativa busta vengono contrassegnati con uno stesso numero

Numero	Voto	Numero	Candidato
1	25	1	Mario Rossi
2	13	2	Nicola Russo
3	27	3	Mario Bianchi
4	28	4	Remo Neri

Mario Rossi	25
Nicola Russo	13
Mario Bianchi	27
Remo Neri	28

Numero	Voto	Numero	Candidato
1	25	1	Mario Rossi
2	13	2	Nicola Russo
3	27	3	Mario Bianchi
4	28	4	Remo Neri

Numero	Candidato	Voto
1	Mario Rossi	25
2	Nicola Russo	13
3	Mario Bianchi	27
4	Remo Neri	28

Join naturale

- operatore binario (generalizzabile) che correla dati in relazioni diverse, sulla base di <u>valori uguali in</u> attributi con lo stesso nome.
- produce un risultato
 - o sull'unione degli attributi degli operandi
 - o con ennuple che sono ottenute combinando le ennuple degli operandi con valori uguali sugli attributi in comune

Join, sintassi e semantica

- $R_1(X_1), R_2(X_2)$
- $R_1 \bowtie R_2$ è una relazione su $X_1 \cup X_2$

$$R_1 \bowtie R_2 = \{ t \operatorname{su} X_1 \cup X_2 \mid \operatorname{esistono} t_1 \in R_1 \text{ e} t_2 \in R_2$$

$$\operatorname{con} t[X_1] = t_1 \text{ e} t[X_2] = t_2 \}$$

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
Α	Mori
В	Bruni

Impiegato	Reparto	Capo
Rossi	Α	Mori
Neri	В	Bruni
Bianchi	В	Bruni

- ogni ennupla contribuisce al risultato:
 - o join completo

Un join non completo

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
В	Mori
С	Bruni

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori

Un join vuoto

48

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
D	Mori
C	Bruni

Impiegato Reparto Capo

Un join completo, con $n \times m$ ennuple

Impiegato	Reparto
Rossi	В
Neri	В

Reparto	Capo
В	Mori
В	Bruni

Impiegato	Reparto	Capo
Rossi	В	Mori
Rossi	В	Bruni
Neri	В	Mori
Neri	В	Bruni

Cardinalità del join

- Il join di R_1 e R_2 contiene un numero di ennuple compreso fra zero e il prodotto di $|R_1|$ e $|R_2|$;
- Se il join fra R_1 ed R_2 è completo, allora contiene un numero di ennuple almeno uguale al massimo fra $|R_1|$ e $|R_2|$;
- Se il join coinvolge una chiave di R_2 , allora il numero di ennuple è compreso fra zero e $|R_1|$;
- Se il join coinvolge una chiave di R_2 e un vincolo di integrità referenziale tra attributi di R_1 e la chiave di R_2 , allora il numero di ennuple è pari a $|R_1|$;

Cardinalità del join

- $R_1(A,B)$, $R_2(B,C)$
- in generale

$$0 \le |R_1| \bowtie R_2| \le |R_1| \times |R_2|$$

• se B è chiave in R₂

$$o \leq |R_1| \bowtie |R_2| \leq |R_1|$$

• se B è chiave in R_2 ed esiste vincolo di integrità referenziale fra B (in R_1) e R_2 :

$$|R_1 \bowtie R_2| = |R_1|$$

Join, una difficoltà

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
В	Mori
C	Bruni

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori

alcune ennuple non contribuiscono al risultato: vengono "tagliate fuori"

Join esterno

- Il join esterno estende, con valori nulli, le ennuple che verrebbero tagliate fuori da un join (interno)
- esiste in tre versioni:
 - o sinistro, destro, completo
 - o sinistro: mantiene tutte le ennuple del primo operando, estendendole con valori nulli, se necessario
 - o destro: ... del secondo operando ...
 - o completo: ... di entrambi gli operandi ...

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Reparto	Capo
В	Mori
C	Bruni

Impiegati ⋈ _{LEFT} Reparti

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori
Rossi	Α	NULL

ImpiegatoRepartoRossiANeriBBianchiB

Reparti

Reparto	Capo
В	Mori
С	Bruni

Impiegati ⋈ _{RIGHT} Reparti

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori
NULL	С	Bruni

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Reparto	Capo
В	Mori
С	Bruni

Impiegati ⋈_{FULL} Reparti

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori
Rossi	Α	NULL
NULL	С	Bruni

Impiegato	Reparto
Rossi	A
Neri	В
Bianchi	В

Reparto	Capo
В	Mori
C	Bruni

Impiegati ⋈ Reparti

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori

π_{impiegato, reparto}
(Impiegati

⋈ Reparti)

ImpiegatoRepartoNeriBBianchiB

π_{reparto, capo}
(Impiegati

⋈ Reparti)

Reparto Capo B Mori Le proiezioni
del join su X1 e X2
danno luogo a
tabelle diverse da
quelle da cui il join è
stato ottenuto.

Il join delle proiezioni di una tabella può dare luogo a una tabella più grande

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Bruni
Verdi	Α	Bini

 $\pi_{\text{implegato, reparto}}$ (Implegati)

Impiegato	Reparto
Neri	В
Bianchi	В
Verdi	A

 $\pi_{\text{reparto, capo}}(\text{Impiegati})$

Reparto	Capo
В	Mori
В	Bruni
Α	Bini

 $(\pi_{impiegato, reparto}(Impiegati))$

 $(\pi_{\text{reparto, capo}}(\text{Impiegati}))$

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Bruni
Neri	В	Bruni
Bianchi	В	Mori
Verdi	Α	Bini

Join e proiezioni

Gli esempi precedenti mostrano che:

$$R_{1}(X_{1}), R_{2}(X_{2})$$

$$\pi_{X_1}(R_1 \bowtie R_2) \subseteq R_1$$

$$R(X)$$
, $X = X_1 \cup X_2$

$$R \supseteq (\pi_{X_1}(R)) \bowtie (\pi_{X_2}(R))$$

Prodotto cartesiano

- oun join naturale su relazioni senza attributi in comune
- contiene sempre un numero di ennuple pari al prodotto delle cardinalità degli operandi (le ennuple sono tutte combinabili)

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Codice	Capo
Α	Mori
В	Bruni

Impiegati ⋈ Reparti

Impiegato	Reparto	Codice	Capo
Rossi	Α	A	Mori
Rossi	Α	В	Bruni
Neri	В	Α	Mori
Neri	В	В	Bruni
Bianchi	В	Α	Mori
Bianchi	В	В	Bruni

Theta-join

• Il prodotto cartesiano, in pratica, ha senso solo se seguito da selezione:

$$\sigma_{\text{Condizione}} \left(R_1 \bowtie R_2 \right)$$

• L'operazione viene chiamata theta-join e può essere sintatticamente indicata con

$$R_1 \bowtie_{Condizione} R_2$$

Le due scritture sono equivalenti

Perché "theta-join"?

- La condizione C è spesso una congiunzione (∧) di atomi di confronto A₁9 A₂ dove 9 è uno degli operatori di confronto (=, >, <, ...)
- se l'operatore è sempre l'uguaglianza (=) allora si parla di equi-join

Reparti

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Codice	Capo
Α	Mori
В	Bruni

Impiegati ⋈_{Reparto=Codice} Reparti

Impiegato	Reparto	Codice	Capo
Rossi	Α	Α	Mori
Neri	В	В	Bruni
Bianchi	В	В	Bruni

65

Impiegati

ImpiegatoRepartoRossiANeriBBianchiB

Reparti

Reparto	Capo
Α	Mori
В	Bruni

Impiegati ⋈ Reparti

Join naturale ed equi-join

66

Impiegati

Impiegato Reparto

Reparto Capo

Impiegati ⋈ Reparti

Impiegati

Reparti

Impiegato Reparto

Codice Capo

Impiegati ⋈_{Reparto=Codice} Reparti=

(π_{Impiegato,Reparto,Capo}

(Impiegati $\bowtie \rho_{Codice \leftarrow Reparto}$ (Reparti)))

Self Join

Supponiamo di considerare la seguente relazione

Genitori

Genitore	Figlio
Luca	Anna
Maria	Anna
Giorgio	Luca
Silvia	Maria
Enzo	Maria

e di volere ottenere una relazione Nonno-Nipote.

E' ovvio che in questo caso abbiamo bisogno di utilizzare due volte la stessa tabella

Self Join

Tuttavia Genitore ⋈ Genitore = Genitore, poiché tutti gli attributi coincidono.

In questo caso è utile effettuare una ridenominazione:

 $\rho_{\text{Nonno, Genitore} \leftarrow \text{Genitore, Figlio}}(\text{Genitore})$

A questo punto effettuando un natural join con la tabella Genitore, si ottiene l'informazione cercata

Nonno	Genitore
Luca	Anna
Maria	Anna
Giorgio	Luca
Silvia	Maria
Enzo	Maria

Self Join

69

 $\rho_{\text{Nonno, Genitore} \leftarrow \text{Genitore}, \text{ Figlio}} \left(Genitore \right) \bowtie \rho_{\text{Nipote} \leftarrow \text{Figlio}} \left(Genitore \right)$

Nonno	Genitore	Nipote
Giorgio	Luca	Anna
Silvia	Maria	Anna
Enzo	Maria	Anna

Eventualmente si può effettuare una proiezione

 $\pi_{\text{Nonno, Nipote}}\left(\rho_{\text{Nonno, Genitore} \leftarrow \text{Genitore}, \text{ Figlio}}\left(\text{Genitore}\right) \bowtie \rho_{\text{Nipote} \leftarrow \text{Figlio}}\left(\text{Genitore}\right)\right)$

Nonno	Nipote
Giorgio	Anna
Silvia	Anna
Enzo	Anna

Self Join, esempio

Data la tabella

IMPIEGATI(Codice, Nome, Cognome, Età)

Trovare nome e cognome delle coppie di Impiegati che hanno lo stesso cognome.

Esempi

Impiegati

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45
5998	Bianchi	37	38
9553	Neri	42	35
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

Supervisione

Impiegato	Capo
7309	5698
5998	5698
9553	4076
5698	4076
4076	8123

Esempio

Trovare gli impiegati che guadagnano più di 40 mila euro

σ _{Stipendio>40}(Impiegati)

• Trovare matricola, nome ed età degli impiegati che guadagnano più di 40 mila euro

 $\pi_{\text{Matricola, Nome, Età}}(\sigma_{\text{Stipendio}>40}(\text{Impiegati}))$

Matricola	Nome	Età
7309	Rossi	34
5698	Bruni	43
4076	Mori	45
8123	Lupi	46

$$\pi_{\text{Matricola, Nome, Età}} \\ \left(\sigma_{\text{Stipendio}>40}(\text{Impiegati}) \right)$$

Trovare le matricole dei capi degli impiegati che guadagnano più di 40 mila euro

$$\pi_{\text{Capo}}$$
 (Supervisione $\bowtie_{\text{Impiegato}=\text{Matricola}} (\sigma_{\text{Stipendio}>40}(\text{Impiegati})))$

• Trovare nome e stipendio dei capi degli impiegati che guadagnano più di 40 mila euro

```
\begin{array}{c} \pi_{Nome,Stipendio}(\\ Impiegati \bowtie_{Matricola=Capo}\\ \pi_{Capo}(Supervisione\\ \bowtie_{Impiegato=Matricola}(\sigma_{Stipendio>40}(Impiegati)))) \end{array}
```

 Trovare gli impiegati che guadagnano più del proprio capo, mostrando matricola, nome e stipendio dell'impiegato e del capo

```
\pi_{\text{Matr,Nome,Stip,MatrC,NomeC,StipC}} (\sigma_{\text{Stipendio}>\text{StipC}} (\sigma_{\text{Stipendio}>\text{StipC}} (\sigma_{\text{Stipendio}>\text{StipC}} (\sigma_{\text{Stipendio}>\text{StipC}} (\sigma_{\text{Stipendio}>\text{StipC}} (\sigma_{\text{Stipendio}>\text{StipC}} (\sigma_{\text{Stipendio}>\text{StipC}} (\sigma_{\text{Stipendio}}))) (\sigma_{\text{Stipendio}} (\sigma_{\text{Stipendio}},\sigma_{\text{StipC}})))
```


 Trovare le matricole dei capi i cui impiegati guadagnano tutti più di 40 mila euro

```
\pi_{\text{Capo}} (Supervisione) - \pi_{\text{Capo}} (Supervisione \bowtie Impiegato=Matricola (\sigma_{\text{Stipendio}} \leq 40 (Impiegati)))
```

Capi che hanno almeno un Impiegato che guadagna meno di 40

Trovare quali sono gli impiegati che hanno stipendio massimo

```
\pi_{Matricola}(Impiegati) - \\ \pi_{Matricola}(Impiegati) \\ \bowtie_{Stip < Stip1} \\ (\rho_{Matr1, Nome1, Eta1, Stip1} \leftarrow_{Matr, Nome, Stip, Età} (Impiegati)))
```

La parte dopo il – indica gli impiegati che non hanno stipendio massimo perché esiste un altro impiegato che ha stipendio maggiore. Di tutto si calcola il complementare

CodiceFilm Titolo Anno Regista*

Artisti

CodiceArtista Cognome Nome Sesso

Interpretazioni

CodiceFilm* CodiceAttore* Personaggio

Titolo e anno dei film diretti da Federico Fellini

$$\pi_{\text{Titolo, Anno}}$$
 ($\sigma_{\text{Cognome}=\text{"Fellini"} \land \text{Nome}=\text{"Federico"}}$ (Film $\bowtie_{\text{Regista}=\text{CodiceArtista}}$ Artisti))

Trovare i titoli dei film nei quali Henry Fonda è stato interprete

$$\pi_{\text{Titolo}}$$
 (Film \bowtie ($\sigma_{\text{(Nome="Henry")} \land \text{(Cognome="Fonda")}}$

(Artisti ⋈_{CodiceArtista=CodiceAttore} Interpretazioni)))

• Elencare i titoli dei film in cui Brad Pitt e Angelina Jolie hanno recitato insieme.

```
\pi_{titolo} (\sigma_{Cognome="Pitt" \land Nome="Brad"} ((Film \bowtie Interpretazioni))
\bowtie_{codiceArtista=CodiceAttore} Artisti)
\cap \pi_{titolo} (\sigma_{Cognome="Jolie" \land Nome="Angelina"} ((Film \bowtie Interpretazioni))
\bowtie_{codiceArtista=CodiceAttore} Artisti)
```


Trovare i titoli dei film per i quali il regista è stato anche interprete

 $\pi_{\text{Titolo}}(\sigma_{\text{Regista=CodiceAttore}})$ Interpretazioni \bowtie Film))

 Scrivere i nomi e cognomi degli attori che hanno recitato in film di Woody Allen

```
\pi_{\text{Nome, Cognome}}
(Artisti \bowtie_{\text{CodiceArtista=CodiceAttore}} Interpretazioni)
\bowtie (\sigma_{\text{Cognome="Allen" and Nome="Woody"}}
(Film \bowtie_{\text{CodiceArtista=Regista}} Artisti))
```


 Trovare i titoli dei film in cui gli attori noti siano tutti dello stesso sesso.

```
\pi_{Titolo} (Film) - \\ \pi_{Titolo} (Film \bowtie \\ \sigma_{Sesso<>SessoI} ((Artisti \bowtie_{CodiceAttore = CodiceArtista} \\ Interpretazioni) \bowtie \rho_{SessoI \leftarrow Sesso} (\pi_{CodiceFilm,Sesso} (Artisti \bowtie_{CodiceAttore = CodiceArtista} \\ Interpretazioni))))
```


• Determinare i titoli dei film i cui attori hanno tutti meno di 30 anni.

```
\pi_{\text{Titolo}} (Film) - \pi_{\text{Titolo}} (Film \bowtie \sigma_{\text{Eta>30}} ((Artisti) \bowtie \sigma_{\text{CodiceAttore}} = \sigma_{\text{CodiceArtista}} (Interpretazioni))
```

Equivalenza di espressioni algebriche

- L'Algebra Relazione permette di formulare espressione fra loro equivalenti
- Due espressioni sono equivalenti se producono lo stesso risultato qualunque sia l'istanza attuale della base di dati.
- L'equivalenza è importante in pratica perché i DBMS cercano di eseguire fra le espressioni equivalenti a quelle date, quelle meno "costose", cioè che riducano la dimensione dei risultati intermedi.

Atomizzazione delle selezioni

Una selezione congiuntiva può essere sostituita da una cascata di selezioni atomiche

$$\sigma_{F_1 \wedge F_2}(E) = \sigma_{F_1}(\sigma_{F_2}(E))$$

Idempotenza delle Proiezioni

Una proiezione può essere trasformata in una cascata di proiezioni che eliminano i vari attributi in fasi diverse

$$\pi_{X}(E) = \pi_{X}(\pi_{XY}(E))$$

se E è definita su un insieme di attributi che contiene Y oltre che X

Anticipazione della selezione rispetto al Join (Pushing Selection down)

$$\sigma_F(E_1 \bowtie E_2) = E_1 \bowtie \sigma_F(E_2)$$

se F fa riferimento solo ad attributi di E_2

Anticipazione della proiezione rispetto al join (Pushing Projections down)

$$\pi_{X_1Y_2}(E_1 \bowtie E_2) = E_1 \bowtie \pi_{Y_2}(E_2)$$

Se E_1 e E_2 definite rispettivamente su X_1 e $X_{2,1}$ $Y_2 \subseteq X_2$ e gli attributi in $X_2 - Y_2$ non sono coinvolti nel join

Distributività della selezione rispetto all' unione

$$\sigma_{F}(E_{1} \cup E_{2}) = \sigma_{F}(E_{1}) \cup \sigma_{F}(E_{2})$$

Distributività della selezione rispetto alla differenza

$$\sigma_F(E_1 - E_2) = \sigma_F(E_1) - \sigma_F(E_2)$$

Distributività della proiezione rispetto all'unione

$$\pi_{X}(E_{1} \cup E_{2}) = \pi_{X}(E_{1}) \cup \pi_{X}(E_{2})$$

Non Distributività della proiezione rispetto alla differenza

$$\pi_{A}(R_{1} - R_{2}) <> \pi_{A}(R_{1}) - \pi_{A}(R_{2})$$

Se R₁ e R₂ sono definite su AB, e contengono tuple uguali su A e diverse su B

Esempio

98

Imp1

Impiegato	Capo
Neri	Mori
Bianchi	Bruni
Verdi	Bini

Imp2

Impiegato	Capo
Neri	Rossi
Bianchi	Bordeaux
Verdi	Blu

$$\pi_A \text{ (Imp1 - Imp2)} \equiv \pi_A \text{ (Imp1)} - \pi_A \text{ (Imp2)}$$
?

Dipende da chi è A....

Se R₁ e R₂ sono definite su AB e contengono tuple uguali su A e diverse su B, NO

Inglobamento di una selezione in un prodotto cartesiano a formare un join

$$\sigma_{\rm F}(R_1 \bowtie R_2) \equiv R_1 \bowtie_{\rm F} R_2.$$

Altre equivalenze

•
$$\sigma_{F_1\vee F_2}(R) \equiv \sigma_{F_1}(R) \cup \sigma_{F_2}(R)$$
.

•
$$\sigma_{F_1 \wedge F_2}(R) \equiv \sigma_{F_1}(R) \cap \sigma_{F_2}(R)$$
.

•
$$\sigma_{F_1 \wedge \neg F_2}(R) \equiv \sigma_{F_1}(R) - \sigma_{F_2}(R)$$
.

• Si noti infine che valgono proprietà commutativa e associativa di tutti gli operatori binari tranne la differenza.

Viste (relazioni derivate)

- Rappresentazioni diverse per gli stessi dati (schema esterno)
- Relazioni derivate:
 - o relazioni il cui contenuto è funzione del contenuto di altre relazioni (definito per mezzo di interrogazioni)
- Relazioni di base: contenuto autonomo
- Le relazioni derivate possono essere definite su altre derivate, ma se è definito un ordinamento fra le relazioni.

Architettura standard (ANSI/SPARC) a tre livelli per DBMS

Viste virtuali e materializzate

- Due tipi di relazioni derivate:
 - viste materializzate
 - relazioni virtuali (o semplicemente viste)

Viste materializzate

Relazioni derivate memorizzate nella base di dati

- o vantaggi:
 - ⋆immediatamente disponibili per le interrogazioni
- o svantaggi:
 - × Dati ridondanti
 - ×Inconsistenze di dati uguali
 - ×appesantiscono gli aggiornamenti
 - ×non sono supportate dai DBMS

Viste virtuali

- relazioni virtuali (o viste):
 - o sono supportate dai DBMS
 - o una interrogazione su una vista viene eseguita "ricalcolando" la vista (o quasi)

Viste virtuali

- Le Viste Logiche o Viste o View possono essere definite come delle tabelle virtuali, i cui dati sono riaggregazioni dei dati contenuti nelle tabelle "fisiche" presenti nel database.
- Le tabelle fisiche sono gli unici veri contenitori di dati. Le viste non contengono dati fisicamente diversi dai dati presenti nelle tabelle, ma forniscono una diversa visione, dinamicamente aggiornata, di quegli stessi dati.

Viste, esempio

Afferenza

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В
Verdi	В

Direzione

Reparto	Capo
Α	Mori
В	Bruni
В	Leoni

• una vista:

Supervisione =

 $\pi_{\text{Impiegato, Capo}}$ (Afferenza \bowtie Direzione)

Interrogazioni sulle viste

Sono eseguite sostituendo alla vista la sua definizione:

$$\sigma_{Capo='Leoni'}$$
 (Supervisione)

viene eseguita come

$$\sigma_{\text{Capo='Leoni'}}(\pi_{\text{Impiegato, Capo}}(Afferenza \bowtie Direzione))$$

Viste, motivazioni

- Schema esterno: ogni utente vede solo
 - o ciò che gli interessa e nel modo in cui gli interessa, senza essere distratto dal resto
 - o ciò che è autorizzato a vedere (autorizzazioni)
- Strumento di programmazione:
 - o si può semplificare la scrittura di interrogazioni: espressioni complesse e sottoespressioni ripetute
- Utilizzo di programmi esistenti su schemi ristrutturati

Invece:

• L'utilizzo di viste non influisce sull'efficienza delle interrogazioni

Viste come strumento di programmazione

- Trovare gli impiegati che hanno lo stesso capo di Rossi
- Senza vista:

```
\pi_{\text{Impiegato}} \text{ (Afferenza} \bowtie \text{Direzione)} \bowtie
\rho_{\text{ImpR,RepR} \leftarrow \text{Imp,Reparto}} (
\sigma_{\text{Impiegato='Rossi'}} \text{ (Afferenza} \bowtie \text{Direzione)})
```

• Con la vista:

```
\pi_{Impiegato} (Supervisione) \bowtie
\rho_{ImpR \leftarrow Imp}
(\sigma_{Impiegato='Rossi'} (Supervisione))
```

Viste e aggiornamenti, attenzione

Afferenza Direzione

Impiegato	Reparto	Reparto	Capo
Rossi	Α	Α	Mori
Neri	В	В	Bruni
Verdi	Α	C	Bruni

^			• .	
SU	per	VISI	ion	16
-	7 .	•	•	•

Impiegato	Capo
Rossi	Mori
Neri	Bruni
Verdi	Mori

• Vogliamo inserire, nella vista, una riga che indichi che il capo di Bruni è Lupi; oppure il capo di Belli è Falchi; come facciamo?

Viste e aggiornamenti

- 112
- "Aggiornare una vista":
 - o modificare le relazioni di base in modo che la vista, "ricalcolata" rispecchi l'aggiornamento
- L'aggiornamento sulle relazioni di base corrispondente a quello specificato sulla vista deve essere univoco
- In generale però non è univoco!
- Ben pochi aggionamenti sono ammissibili sulle viste

Considerare il seguente schema

DEPUTATI (<u>Codice</u>, Cognome, Nome, Commissione, Provincia, Collegio)

COLLEGI (Provincia, Numero, Nome)

PROVINCE (Sigla, Nome, Regione)

REGIONE(Codice, Nome)

COMMISSIONI(Numero, Nome, Presidente)

- Trovare nome e cognome dei presidenti di commissioni cui partecipa almeno un deputato eletto in una provincia siciliana
- Trovare nome e cognome dei deputati della commissione Bilancio
- Trovare nome, cognome e provincia di elezione dei deputati della commissione Bilancio
- Trovare nome, cognome, provincia e regione di elezione dei deputati della commissione Bilancio
- Trovare le regioni in cui vi sia un solo collegio, indicando il nome e cognome del deputato ivi eletto
- Trovare i collegi di una stessa regione in cui siano stati eletti deputati con lo stesso nome proprio