Assignment 2: Cardinality

Frank Tsai

October 10, 2024

6.13

1. Proof. Consider the following functions

$$f(a, (b, c)) = ((a, b), c)$$

 $g((a, b), c) = (a, (b, c))$

By direct computation, we have

$$f(g((a,b),c)) = f(a,(b,c)) = ((a,b),c)$$

and

$$g(f(a,(b,c))) = g((a,b),c) = (a,(b,c)),$$

so we have the required bijection.

2. Proof. Consider the following functions

$$\operatorname{curry}(f)(a)(b) = f(a, b)$$

$$\operatorname{uncurry}(g)(a, b) = g(a)(b)$$

By direct computation, we have

$$\operatorname{curry}(\operatorname{uncurry}(g))(a)(b) = \operatorname{uncurry}(g)(a,b) = g(a)(b)$$

and

$$uncurry(curry(f))(a, b) = curry(f)(a)(b) = f(a, b).$$

Then functional extensionality implies that we have the required bijection.

6.33

Proof. Let $i: A \to \mathbb{N}$ and $j: B \to \mathbb{N}$ be two injections witnessing the fact that $A \leq \mathbb{N}$ and $B \leq \mathbb{N}$ respectively. Consider the function $f: A \cup B \to \mathbb{N}$ defined by

$$f(x) = \begin{cases} 2 \cdot i(x) & \text{if } x \in A, \\ 2 \cdot j(x) + 1 & \text{otherwise.} \end{cases}$$

Suppose that f(x) = f(x'). If both $x, x' \in A$, then x = x' because $2 \cdot -$ and i are injective. Similarly, if $x, x' \in B \setminus A$, then x = x' because $2 \cdot -$, j, and - + 1 are all injective. Only the interesting cases remain. Without loss of generality, assume that $x \in A$ and $x' \in B \setminus A$. Then by assumption, $2 \cdot i(x) = 2 \cdot j(x') + 1$. This is not possible because the left-hand side is even while the right-hand side is odd. Thus, f is an injection witnessing $A \cup B \leq \mathbb{N}$, i.e., $A \cup B$ is countable.

6.37

Proof. It suffices to rule out $X < \mathbb{N}$. Let $f: X \to \mathbb{N}$ be an injection witnessing $X < \mathbb{N}$. Note that f restricts to a bijection $f': X \to \mathsf{ran}(f)$ because it is injective, i.e., $X \approx \mathsf{ran}(f)$.

Since $ran(f) \subseteq \mathbb{N}$, it is either finite or $ran(f) \approx \mathbb{N}$. The former case implies that X is finite, which is a contradiction. The latter case implies that $X \approx \mathbb{N}$, which is also a contradiction.

6.55

Lemma 1. For any natural number $n \ge 2$, there is a function (-): $n \to n$ with no fixed points.

Proof. By induction on n. In the base case, consider the function defined by

$$\overline{0} = 1$$

$$\overline{1} = 0$$

This is clearly a function with no fixed points.

In the induction step, we have a function (-): $k \to k$ with no fixed points. Consider $(-)_{k+1}$: $k+1 \to k+1$ defined as follows.

$$\overline{m}_{k+1} = \begin{cases} \overline{m} & \text{if } m < k, \\ 0 & \text{otherwise.} \end{cases}$$

Let $m \in k+1$. If m < k then it cannot be a fixed point because $\overline{(-)}$ does not have any fixed point. If m = k then $\overline{k}_{k+1} = 0$. Since k is at least 2, it cannot be a fixed point either.

1. This is not true: let X be the singleton set 1; $1 \approx 1 \times 1$ but 1 is clearly not infinite. Let us additionally assume that X is not the singleton set. We show that X is infinite.

Proof. If *X* is finite, then $X \approx n$ for some natural number *n*. Thus, $n \times n \approx X \times X \approx X \approx n$. We show that this is impossible for any $n \geq 2$.

Suppose that there is a bijection $f: n \to n \times n$. Let $\hat{f}: n \to \underbrace{n \times \cdots \times n}$ be

the composite of the following n-1 bijections.

$$n \xrightarrow{f} n \times n \xrightarrow{1 \times f} n \times n \times n \xrightarrow{1 \times (1 \times f)} \cdots \xrightarrow{n \text{ times}} \underbrace{n \times \cdots \times n}$$

By Lemma 1, there is a function $\overline{(-)}$: $n \to n$ with no fixed points. Consider the pair $\delta := (\widehat{f}(0).0, \widehat{f}(1).1, \ldots, \widehat{f}(n-1).n-1)$, where (-).i is the i-th projection.

Suppose that $\hat{f}(k) = \delta$. Then $\hat{f}(k).k = \delta.k = \overline{\hat{f}(k).k}$, but this is a fixed point of $\overline{(-)}$ so we have a contradiction.

2. *Proof.* This statement is not true for singleton sets since $2^1 \approx 2$, but there is a unique function from any set to the singleton set, i.e., $1^1 \approx 1$. Let us additionally assume that X is not the singleton set.

If *X* is \varnothing the statement is trivial: there is a unique function from 0 to any set, i.e., $2^0 \approx 0^0 \approx 1$.

If *X* is infinite, there is an evident injection $2^X \to X^X$. For the other direction, consider the function $j: X^X \to \mathcal{P}(X \times X)$ defined by

$$j(f) = \{(x, f(x)) \mid x \in X\}.$$

If j(f) = j(g) then for any $x \in X$, we have (x, f(x)) = (x, g(x)), so f(x) = g(x). Then functional extensionality implies that f = g. Thus, the following composition gives the required injection.

П

3. *Proof.* This is not true if X is the singleton set. Indeed, $1 + 1 \approx 2$.

The statement is trivial when $X = \emptyset$ since $\emptyset + \emptyset = \emptyset$.

If *X* is infinite. Let $m: 2 \to X$ be any injection witnessing $2 \le X$.

There is an evident injection $i: X \to X + X$ defined by i(x) = (x, 0). For the other direction, define $j: X + X \to X \times X$ by j(x, 0) = (x, m(0)) and j(x, 1) = (x, m(1)).

If j(x,0) = j(y,0) or j(x,1) = j(y,1) then the pair property gives what we want. However, if we ever have j(x,0) = j(y,1) then the pair property

gives m(0) = m(1). Since m is injective, we have a contradiction. Thus, the following composite gives the required injection.

$$X + X$$
 $\downarrow \downarrow$
 $X \times X \approx X$