Solving the phase boundary between two solid phases

David C. de Busturia

Department of Chemistry. Imperial College London

Tuesday 5th June, 2018

Outline

F(V), G(P) and pressure of intersection. Thermal evolution

Shapes of G, F, \mathcal{E}

Shape of H(P; T)

Phase Boundary

Outline I

F(V), G(P) and pressure of intersection. Thermal evolution

Shapes of G, F, \mathcal{E}

Shape of H(P; T)

Phase Boundary

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8 (0.87 - 0.98)V_{ro} and (0.98 - 1.08)V_{ro}

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8 (0.87 - 0.98)V_{eq} and (0.98 - 1.08)V_{eq}

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8 (0.87 - 0.98)V_{ro} and (0.98 - 1.08)V_{ro}

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8 (0.87 - 0.98)V_{eq} and (0.98 - 1.08)V_{eq}

T = 10.00K

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

T = 30.10K

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

T = 50.20K

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

T = 70.30K

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8 $(0.87 - 0.98)V_{eq}$ and $(0.98 - 1.08)V_{eq}$. T = 70.30K

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

T = 90.40K

₱8E-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8 $(0.87 - 0.98)V_{eq}$ and $(0.98 - 1.08)V_{eq}$. T = 90.40K

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

T = 110.51K

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

T = 130.61K

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

T = 150.71K

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8 ⊐ $(0.87 - 0.98)V_{eq}$ and $(0.98 - 1.08)V_{eq}$. T = 150.71K

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

T = 170.81K

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8 $(0.87 - 0.98)V_{eq}$ and $(0.98 - 1.08)V_{eq}$. T = 170.81K

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

T = 190.91K

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

T = 211.01K

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

T = 231.11K

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

T = 251.21K

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

T = 271.31K

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

T = 291.41K

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

T = 311.52K

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

T = 331.62K

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

Outline I

F(V), G(P) and pressure of intersection. Thermal evolution

Shapes of G, F, \mathcal{E}

Shape of H(P; T)

Phase Boundary

T = 291.41 KPBE-D3, poin-TZVP, SHRIMK 8 6, Bipolar 18 18, TOUNTEG 8 18, XXLGRID, TOLDEE 8 PBE-D3, poin-TZVP, SHRINK 8 8, Bipolar 18 18, TOUNTEG 8 16, XXLGRID, TOLDEE 8 $(0.87 \cdot 0.98)V_{\rm eq}$ and $(0.58 \cdot 1.08)V_{\rm eq}$ T = 291.416 ▲ Calcite I - Cubic fit Calcite I △ Calcite II Cubic fit Calcite II ± 0.0000 E 0.0084 ▲ Calcite I £ - Cubic fit Calcite I △ Calcite II 0.0000 Cubic fit Calcite V / F.U. (Angstrom³) V / F.U. (Angstrom³) T = 311.52K: PRE-DS, poly-TZVP, SHAWK B & Blocker 18 18, TOLINTEG B 18, XXLGRID, TOLDEE B PRE-DS, poly-TZVF, SHRINK B & Blocker 18 18, TOLINTEG B 18, XXLGRID, TOLDEE B 10.07 - 8.90(4); and 10.90 - 1.60(4); T = 311.52K (ILEZ - 0.98 M_{cs} and (ILEG - 1.08 M_{cs}, T = 311.524) ▲ Calcite I ▲ Calcite I Cubic fit Calcite I Cubic fit Calcite I △ Calcite II △ Calcite II Cubic fit Calcite II Cubic fit Calcite II <u>s</u> € 0.0852 E V / F.U. (Angstrom³) V / F.U. (Angstrom³) T = 331.62K: SHRINK 6 6. Blooker 18 16. TOLINTOG 6 16. XXLGRID. TOLDES 6 10.87 - 8.8894., and 10.98 - 1.8894... T = 323.624 ▲ Calcite I ▲ Calcite I Cubic fit Calcite I Cubic fit Calcite I △ Calcite II △ Calcite II Cubic fit Calcite I Cubic fit Calcite II <u>6</u> 0.005 ₫ 0.0050 ⊒ 0.0050 0.0056 0.005 V / F.U. (Angstrom³) V / F.U. (Angstrom³) T = 351.72K: ▲ Calcite I Calcite I Cubic fit Calcite I Cubic fit Calcite I △ Calcite II △ Calcite II Cubic fit Calcite II Cubic fit Calcite II 9000 ⊒ 0.084 ⊃ 0.0064 0.0063

0.0061

V / F.U. (Angstrom³)

V / F.U. (Angstrom³)

ė 3

Outline I

F(V), G(P) and pressure of intersection. Thermal evolution

Shapes of G, F, \mathcal{E}

Shape of H(P; T)

Phase Boundary

When $H(P; T) = E + E_{ZP} + \mathcal{E}(T) + PV$:

PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8 PBE-D3, pob-TZVP, SHRINK 8 8, Bipolar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8 (0.87 - 0.98)V_{ec} and (0.98 - 1.08)V_{ec}, T = 291.41K (0.87 - 0.98)V_{cc} and (0.98 - 1.08)V_{cc}, T = 311.52K

PBE-D3, pob-TZVP, SHRINK 8 8, Bipplar 18 18, TOLINTEG 8 18, XXLGRID, TOLDEE 8

Outline I

F(V), G(P) and pressure of intersection. Thermal evolution

Shapes of G, F, \mathcal{E}

Shape of H(P; T)

Phase Boundary

Figure 1: Pressure-temperature phase boundary