(c) Amendments to the Claims

Please cancel claim 2 without prejudice or disclaimer of subject matter.

Kindly amend claims 1, 3, 6, 8 and 9 as follows. A detailed listing of all the claims that are or were in the application follows:

1. (Currently Amended) A magnetic toner comprising magnetic toner particles each comprising at least a binder resin and a magnetic iron oxide, wherein:

the magnetic toner has a saturation magnetization δs being in the range of 5 to 60 Am²/kg and a remanent magnetization δr being in the range of 0.1 to 10.0 Am²/kg in a measured magnetic field of 795.8 kA/m; and

the binder resin contains a polyester component polymerized by using a Ti chelate compound <u>having a ligand selected from the group consisting of a diol, a dicarboxylic acid, and an oxycarboxylic acid</u> as a catalyst.

2. (Cancelled)

3. (Currently Amended) A magnetic toner according to claim 1, wherein the Ti chelate compound is represented by any one of the following formulae (I) to (VIII) and hydrates thereof:

Formula (I)

$$\begin{pmatrix} O & O & O \\ R_1 & Ti^{2+} & R_1 \end{pmatrix}^{2-} \cdot mM^{n+}$$

(In the formula (I), R₁ denotes one of an alkylene group and or an alkenylene group each having 2 to 10 carbon atoms and may have a substituent, M denotes a countercation, m denotes a cation number, n denotes a cation valence, n=2 when m=1, n=1 when m=2, and M denotes one of a hydrogen ion, an alkali metal ion, an ammonium ion, and or an organic ammonium ion when n=1, and or denotes an alkali earth metal ion when n=2[[.]]); Formula (II)

(In the formula (II), R₂ denotes one of an alkylene group and or an alkenylene group each having 1 to 10 carbon atoms and may have a substituent, M denotes a countercation, m denotes a cation number, n denotes a cation valence, n=2 when m=1, n=1 when m=2, and M denotes one of a hydrogen ion, an alkali metal ion, an ammonium ion, and or an organic ammonium ion when n=1, and or denotes an alkali earth metal ion when n=2[[.]]); Formula (III)

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
C & 0 & 0 & C & 0 \\
C & 0 & 0 & C & 0 \\
C & 0 & 0 & 0 & 0
\end{pmatrix}
\cdot mM^{n+}$$

(In the formula (III), M denotes a countercation, m denotes a cation number, n denotes a cation valence, n=2 when m=1, n=1 when m=2, and M denotes one of a hydrogen ion, an alkali metal ion, an ammonium ion, and or an organic ammonium ion when n=1, and or denotes an alkali earth metal ion when n=2[[.]]);

Formula (IV)

$$\begin{pmatrix}
0 \\
| 1 \\
C - Q
\\
R_3
\end{pmatrix}
Ti^{2+}
\begin{pmatrix}
R_3 \\
Q - C
\\
| 1 \\
Q
\end{pmatrix}$$
• mMⁿ⁺

(In the formula (IV), R_3 denotes one of an alkylene group and or an alkenylene group each having 1 to 10 carbon atoms and may have a substituent, M denotes a countercation, m denotes a cation number, n denotes a cation valence, n=2 when m=1, n=1 when m=2, and M denotes one of a hydrogen ion, an alkali metal ion, an ammonium ion, and or an organic ammonium ion when n=1, and or denotes an alkali earth metal ion when n=2[[.]]); Formula (V)

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ R_4 & Ti^{2+} & 0 & R_4 \end{pmatrix} \cdot mM^{n+}$$

(In the formula (V), R_4 denotes one of an alkylene group and or an alkenylene group each having 2 to 10 carbon atoms and may have a substituent, M denotes a countercation, m denotes a cation number, n denotes a cation valence, n=2 when m=1, n=1 when m=2, and M denotes one of a hydrogen ion, an alkali metal ion, an ammonium ion, and or an organic ammonium ion when n=1, and or denotes an alkali earth metal ion when n=2[[.]]); Formula (VI)

(In the formula (VI), R_5 denotes one of an alkylene group and or an alkenylene group each having 1 to 10 carbon atoms and may have a substituent, M denotes a countercation, m denotes a cation number, n denotes a cation valence, n=2 when m=1, n=1 when m=2, and M denotes one of a hydrogen ion, an alkali metal ion, an ammonium ion, and or an organic ammonium ion when n=1, and or denotes an alkali earth metal ion when n=2[[.]]); Formula (VII)

(In the formula (VII), M denotes a countercation, m denotes a cation number, n denotes a cation valence, n=2 when m=1, n=1 when m=2, and M denotes one of a hydrogen ion, an alkali metal ion, an ammonium ion, and or an organic ammonium ion when n=1, and or denotes an alkali earth metal ion when n=2[[.]]);

Formula (VIII)

$$\begin{pmatrix}
0 & 0 & 0 \\
C & 0 & 0 & 0 \\
R_6 & Ti^{2+} & R_6 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
R_6 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

(In the formula (VIII), R₆ denotes one of an alkylene group and or an alkenylene group each having 1 to 10 carbon atoms and may have a substituent, M denotes a countercation, m denotes a cation number, n denotes a cation valence, n=2 when m=1, n=1 when m=2,

and M denotes one of a hydrogen ion, an alkali metal ion, an ammonium ion, and or an organic ammonium ion when n=1, and or denotes an alkali earth metal ion when n=2[[.]]).

- 4. (Original) A magnetic toner according to claim 1, wherein the magnetic iron oxide comprises 0.1 to 2.0% by mass of an Si element.
- 5. (Original) A magnetic toner according to claim 1, further comprising hydrophobic silica treated with hexamethyldisilazane and with silicone oil.
- 6. (Currently Amended) A magnetic toner according to claim 1, wherein an average circularity of the magnetic toner particles of the magnetic toner which have equivalent circle diameters of 3 μm or more and 400 μm or less measured with a flow type particle image analyzer, is 0.930 or more and less than 0.970.
- 7. (Original) A magnetic toner according to claim 3, wherein the Ti chelate compound is represented by any one of the formulae (II), (III), (VI), and (VII) and hydrates thereof.
- 8. (Currently Amended) A magnetic toner according to claim 1, wherein the polyester component comprises a compound having a structure containing oxyalkylene ether of a novolak type phenolic resin as an alcohol component.

9. (Currently Amended) A magnetic toner according to claim 1, further comprising a metal aromatic hydroxycarboxylate.compound of aromatic hydroxyl carboxylic acid represented by the following formula (13).

Formula (13)

wherein M represents a coordinating central metal; (B) represents (i) a compound of the following structure:

which may contain a substituent, wherein X represents a hydrogen atom, a halogen atom, or a nitro group); or (ii)

wherein, R represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or an alkenyl group having 2 to 18 carbon atoms.

A'+ represents hydrogen, a sodium ion, a potassium ion, an ammonium ion, or an aliphatic ammonium ion and Z represents -O- or -C(=O)-O-.)