學號:R05921078 系級: 電機碩1 姓名:洪立達

1. 請簡明扼要地闡述你如何抽取模型的輸入特徵 (feature)

答:

参考一些空氣污染的研究報告去掉一些可能無關的因素,之後再嘗試搭配某些因素取次方向來作測試。最終取了 AMB_TEMP、CO、NO2、NOx、PM10、PM2.5、PM2.5**2、SO2、WD_HR、WIND_DIREC 為我的 feature

2.請作圖比較不同訓練資料量對於 PM2.5 預測準確率的影響 答:

Hours	Degree	Times	Loss
4	2	5000	8735.158
4	2	7000	8738.07
4	2	9000	8738.067
4	3	5000	9096.855
4	3	7000	9162.037
4	3	9000	9220.128
5	2	5000	8645.364
5	2	7000	8665.507
5	2	9000	8675.121
5	3	5000	8917.751
5	3	7000	8953.3
5	3	9000	8981.086
6	2	5000	8742.454
6	2	7000	8792.784
6	2	9000	8833.6
6	3	5000	8875.926
6	3	7000	8943.304
6	3	9000	8994.508
7	2	5000	8909.323
7	2	7000	8965.619
7	2	9000	9008.55
7	3	5000	9270.323
7	3	7000	9421.393
7	3	9000	9507.614

Hours:一次取多少小時的資料區間做為 feature

Degree: feature 的複雜度

Times:訓練次數

Loss:用 Test_X 前八小時來預測第九小時的 pm2.5 之誤差 (圖表為我在測試提升 feature 複雜度與訓練次數是否對預測準度有所幫助)

由圖表發現,訓練次數達到 7000 次後,誤差值大致上也趨於穩定,不過取的時間範圍越大,訓練次數增加時,誤差值的增加也變大。猜測的原因是使用 adagrad 後,訓練次數到達一定數量時,就會趨於穩定。另外我也測了一次極端的情況,調整次數為三萬次,不過依舊對準確率沒有進一步的幫助。

3. 請比較不同複雜度的模型對於 PM2.5 預測準確率的影響 答:

(同上圖)

在測試調高複雜度後,出來的 loss 值確實比一次方的時候來得好,但是上傳 kaggle 的結果確是相反,推測是已經 overfitting 了。因此最後我只取了幾個感覺 比較重要的 feature 加入二次式來測試,出來的結果是我目前的 best case。

4. 請討論正規化(regularization)對於 PM2.5 預測準確率的影響答:

在提高複雜度後有可能出現 overfitting 的情況,加入 regularization 可以讓高次方的曲線較為平滑,進而提升準確率。不過我自己的測試是加入 regularization 後,準確率還是不如原本一次方的 model,所以最終沒有使用 regularization。

5. 在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 x^n ,其標註(label)為一存量 y^n ,模型參數為一向量 w (此處忽略偏權值 b),則線性回歸的損失函數(loss function)為 n=1Nyn-wxn2 。若將所有訓練資料的特徵值以矩陣 $X = [x^1 \ x^2 \ ... \ x^n]$ 表示,所有訓練資料的標註以向量 $y = [y^1 \ y^2 \ ... \ y^n]$ 表示,請以 $x \in \mathbb{R}$ 和 $x \in \mathbb{R}$ 表示可以最小化損失函數的向量 $x \in \mathbb{R}$ 答:

 $w = (X^T X)^{-1} X^T y$