Instruccions: Feu els exercicis a l'espai que se us proporciona. Feu servir la cara posterior si necessiteu més espai, indiqueu-ho clarament en aquest cas. Heu d'identificar clarament les respostes i mostrar el procés per tal d'aconseguir la màxima puntuació. La puntuació dels exercicis es dona entre parèntesis.

1. S'ha mesurat la longitud (l) d'un insecte, en mm, 15 vegades i s'ha obtingut els següents resultats:

Es demana trobar el millor valor per la mesura.

Calculem la mitjana aritmètica

$$\bar{l} = \frac{2,200 + 2,202 + 2,204 + 2,206 + 2,208 + 2,210 + 2,212 + 2}{15} = \frac{2,214 + 2,216 + 2,218 + 2,220 + 2,222 + 2,224 + 2,226 + 2,228}{15} = 2,214$$

Per la desviació estàndard fem servir una taula

l_i	$l_i - ar{l}$	$(l_i - \bar{l})^2$
2,200	2,200-2,214=-0,014	0,000196
2,202	2,202-2,214=-0,012	0,000144
2,204	2,204-2,214=-0,010	0,0001
2,206	2,206-2,214=-0,008	0,000064
2,208	2,208-2,214=-0,006	0,000036
2,210	2,210-2,214=-0,004	0,000016
2,212	2,212-2,214=-0,002	0,000004
2,214	2,214-2,214=0,000	0,00000
2,216	2,216-2,214=0,002	0,000004
2,218	2,218-2,214=0,004	0,000016
2,220	2,220-2,214=0,006	0,000036
2,222	2,222-2,214=0,008	0,000064
2,224	2,224-2,214=0,010	0,0001
2,226	2,226-2,214=0,012	0,000144
2,228	2,228-2,214=0,014	0,00196
Σ	0	0,00112

Llavors.

$$\sigma = \sqrt{\frac{\sum (l_i - \bar{l})^2}{n}} = \sqrt{\frac{0,00112}{15}} = \sqrt{0,000074666} = 0,008640987$$

amb els càlculs fets podem dir que el valor més aproximat de la longitud és

$$l = \bar{l} \pm \sigma = 2,214 \pm 0,008640987$$

com que les dades tenien quatre xifres significatives, la mitja aritmètica no cal arrodonir-la, mentre que la desviació estàndard s'ha d'arrodonir a tres decimals (els que té la mitja aritmètica)

$$l = \bar{l} \pm \sigma = 2,214 \pm 0,009 \, mm$$

2. S'ha fet una enquesta sobre una població de 100 persones referent a l'estona (t), en hores, que dediquen a la lectura cada dia, obtenint-se els següents resultats:

0,25 h; 25 persones

0,50 h; 5 persones

0,75 h; 4 persones

1,00 h; 10 persones

1,25 h; 16 persones

1,50 h; 6 persones

1,75 h; 6 persones

2,00 h; 14 persones

2,25 h; 14 persones

Es demana trobar el millor valor de la mesura.

Calculem la mitjana aritmètica

$$\bar{t} = \frac{0,25 \cdot 25 + 0,5 \cdot 5 + 0,75 \cdot 4 + 1 \cdot 10 + 1,25 \cdot 16 + 1,5 \cdot 6 + 1,75 \cdot 6 + 2 \cdot 14 + 2,25 \cdot 14}{100} = 1,2075$$

Per la desviació estàndard fem servir una taula

t_i	f_i	$t_i - ar{t}$	$(t_i - \bar{t})^2$
0,25	25	0,25 - 1,2075 = -0,9575	0,91680625
0,50	5	0, 5 - 1, 2075 = -0, 7075	0,50055625
0,75	4	0,75 - 1,2075 = -0,4575	0,20930625
1,00	10	1 - 1,2075 = -0,2075	0,04305625
1,25	16	1,25-1,2075=0,0425	0,00180625
1,50	6	1, 5 - 1, 2075 = 0, 2925	0,08555625
1,75	6	1,75 - 1,2075 = 0,5425	0,29430625
2,00	14	2 - 1,2075 = 0,7925	0,62805625
2,25	14	2,25-1,2075=1,0425	1,08680625
Σ	100	0 [†]	53,006875‡

Llavors,

$$\sigma = \sqrt{\frac{\sum (t_i - \bar{t})^2}{n}} = \sqrt{\frac{53,006875}{100}} = \sqrt{0,53006875} = 0,7280582051$$

amb els càlculs fets podem dir que el valor més aproximat del temps és

$$l = \bar{t} \pm \sigma = 1,2075 \pm 0,7280582051$$

com que les dades tenien tres xifres significatives, la mitja aritmètica s'ha d'arrodonir. El nombre de decimals de la desviació estàndard s'ha d'ajustar al mateix que la mitja aritmètica

$$l = \bar{t} \pm \sigma = 1,21 \pm 0,73 \, h$$

- † Per aquest càlcul cal tenir en compte la freqüència relativa de cada dada.
- ‡ Per aquest càlcul cal tenir en compte la freqüència relativa de cada dada.