Exercise 3.

The likelihood function is: $L(\Theta|x) = . \prod_{i=1}^{n} e^{-(x_i - \Theta)} I(x_i \ge 0)$ $= e^{-\sum_{i=1}^{n} x_i + n \Theta} I(x_1 \ge 0) . \prod_{i=1}^{n} I(x_i \in \mathbb{R})$

$$= e^{n\theta} I(x_1 \geqslant \theta) e^{-\frac{n}{2}x_1} \prod_{i=1}^{n} I(x_i \in \mathbb{R})$$

$$= e^{n\theta} I(x_1 \geqslant \theta) e^{-\frac{n}{2}x_1} \prod_{i=1}^{n} I(x_i \in \mathbb{R})$$

 $\frac{1}{3[x_1|\theta)} = \frac{1}{1} \frac{1$

Herre, $\chi_1 = min(\chi_1, \chi_2, ..., \chi_n)$ Herre χ_1 is a Sufficient statistic by

factorization theorem.

Likelehood Ratio Test Statistic is

$$\lambda(x) = \frac{L(\hat{\theta}_0|x)}{L(\hat{\theta}|x)}$$
Here, $\hat{\theta} = \alpha \pi q \max L(\theta|x); \theta = \{\theta: -\alpha < \theta < \alpha\}$

and
$$\hat{\theta}_0 = \underset{\theta \in \Theta_0}{\text{arg max } L(\theta|x); \Theta_0 = \{\theta: -\infty < \theta \le \theta_0\}}$$

Now for 1st case:

I when $\theta(x_1) = e^{-\sum_{i=1}^{n} x_i + n\theta_i}$ then $L(\theta|x) = e^{-\sum_{i=1}^{n} x_i + n\theta_i}$

ωhen θ>χ1, then L(Θ1χ)=0

Bo, L (O1X) is an increasing function when O is less than on equal to the minimum order statistic X1; when O is larger than X1 the likelihood functions drops to zerro.

and
$$SUP L(\Theta|X) = L(\widehat{\Theta}|X)$$
 $\Theta \in \Theta$

$$= L(X_1|X)$$

For second case:

50, 0= X1 Or min (X1, --, Xn)

So, $\widehat{\theta}_0 = \theta_0$ \square when $\theta_0 \geqslant \chi_1$,

then, $\widehat{\theta}_0 = \chi_1$ or $\widehat{\min}(\chi_1, ..., \chi_n)$

L(Olx) can be is L(Oolx).

when Oo < x s. then the largest

Now ean (1) become (L(001x)

$$L(\widehat{\theta}_{1}) \left(\frac{L(\mathcal{H}_{1}|\mathcal{H})}{L(\mathcal{H}_{1}|\mathcal{H})} = 1, \theta_{0} \right) \chi$$
We have $H_{0}: \theta \leqslant \theta_{0} \lor s H_{1}: \theta > \theta_{0}$

The ject Ho and conclude that 0>00.

It is only when x1>00 do we have evidence that O might be Larger than 00. So, the

If x1 <00, we centerinly don't want to

larger the x_1 , the smaller the $\lambda(x)$, the more evidence against H_0 .

Now, $\lambda(x) = \frac{L(\theta_0|x)}{L(\theta_0|x)} = \frac{e^{-\sum_{i=1}^{n} x_i} + n\theta_0}{R}$

Programming Part

In [1]: import random

create 10 random sample. i.e. x > theta, so minimum range is 1

lamda list.append(lamda) # append all the theta into a list

lamda = math.exp(-n * (min x - theta)) # lamda(x) = $e^{(-n(min(x) - theta))}$

plt.ylabel("lamda(x)")
plt.xlim(-2.5, 1.5)
plt.show()

import random
import math

In [2]:

In [4]:

import matplotlib.pyplot as plt

the given theta list

lamda list = []

for theta in theta list:

plt.xlabel("theta value")

theta list = [-2, 0, 0.5, 1]

x list = random.sample(range(1, 100), 10)

1e-40 8 -6 -(x) ye pure 4 -