Fixed point iteration

designing fixed point iterations

very general class (but not including bisection) of iterations defined by

$$x_{n+1} = F(x_n)$$

necessary condition: exact solution satisfies fixed point equation

$$x^* = F(x^*)$$

simple iteration method for solution of f(x) = 0 where $\alpha \neq 0$:

$$F(x) = x - \alpha f(x)$$

```
# simple fixed point iteration

f = lambda x : x**4 - 3*x**3 + 1.0
F = lambda x, alpha=1.0, f=f : x - alpha*f(x)

n = 100
x = np.zeros(n)
for k in range(1,n):
    x[k] = F(x[k-1], alpha=-0.02) # play with alpha!
```


Figure 1: png

Figure 2: png

motivation of simple iteration:

• correct the approximation $x^{(k)}$ with the error:

$$x^* = x^{(k)} - e^{(k)}$$

- use $f(x^{(k)})$ as measure for error $e^{(k)}$ (approximately proportional)
- approximation

$$e^{(k)} \approx \alpha f(x^{(k)})$$

gives

$$x^* \approx x^{(k)} - \alpha f(x^{(k)})$$

use this approximation to be the next iterate

$$x^{(k+1)} = x^{(k)} - \alpha f(x^{(k)})$$

Contractive mapping theorem (calculus)

F(x) is *contractive* on interval I if for some $0 \le \lambda < 1$ one has

$$|F(x) - F(y)| \le \lambda |x - y|,$$

The Contractive Mapping Theorem Let F be contractive for all x in a closed bounded interval I = [a, b] with $F(x) \in I$ for all $x \in I$. Then F has a unique fixed point in that interval. Further, for any $x_0 \in I$, the iteration defined by will converge to this fixed point.

Convergence of fixed point iteration

If F is contractive on a real interval [a,b] and $F([a,b]) \subset [a,b]$ then the sequence x_n defined by fixed point iteration with F converges and the error satisfies

$$|e_n| \leq \lambda^n |e_0|.$$

• example $F(x) = x - \alpha f(x)$ needs to satisfy

$$|x-y-\alpha(f(x)-f(y))| \leq \lambda|x-y|$$

• if f is differentiable on some interval and $0 < \beta < f'(x)$ one can use the intermediate value theorem to get an idea how to choose α

Function Iteration Formulation

Newton's method can be written in the form

$$x^{(k)} = F(x^{(k)})$$

with
$$F(x) = x - f(x)/f'(x)$$
 (to come in a few days)

- fundamental strategy:
 - 1. start with some approximation
 - 2. use approximation and the function to estimate the error of the approximation
 - 3. subtract the approximate error to get updated approximation
 - 4. repeat

```
# iteration for fixed point problem x = exp(-x)
F = lambda x : np.exp(-x)
f = lambda x : x - F(x)

n = 10
x = np.zeros(n)
for k in range(1,n):
    x[k] = F(x[k-1]) # play with alpha!
```


Figure 3: png

Figure 4: png

Show that the sequence $x^{(k)}$ converges . . .