Exposure-Response解析 における交絡の問題

医薬品開発のためのPPK/PDセミナー2025上級者コース

内容

- ●医学研究における誤差
- ●交絡 (Confounding) とは?
- ●交絡要因の必要条件
- ●交絡の制御
- ●E-R解析における交絡の実例

医学研究における誤差

Rothman (2002)

●冠動脈性心疾患(CHD)と喫煙の関係(仮想例)

		全体	
CHD	あり	なし	合計
喫煙者	240	760	1000
非喫煙者	120	880	1000
リスク比		2.0	

- ●冠動脈性心疾患(CHD)と喫煙の関係(仮想例)
 - ✔年齢で層別すると…

		全体	
CHD	あり	なし	合計
喫煙者	240	760	1000
非喫煙者	120	880	1000
リスク比		2.0	

. 喫煙はCHDの リスクを2倍にする

	近年齢				
CHD	あり	なし	合計		
喫煙者	60	340	400		
非喫煙者	80	720	800		
リスク比		1.5			

	高年齢				
CHD	あり	なし	合計		
喫煙者	180	420	600		
非喫煙者	40	160	200		
リスク比		1.5			

高齢者グループでは 喫煙のリスクは 1.5倍

交絡要因の必要条件

- 交絡要因(Confounding factor)の必要条件 ≠ 交絡の定義
 - 1. XとZは関連する
 - 2. YとZは関連する
 - 3. X-Y間の因果連鎖の中間変数ではない

交絡の定義

交絡要因の必要条件 (CHDの例)

- 交絡要因(Confounding factor)の必要条件 ≠ 交絡の定義
 - 1. 年齢と喫煙傾向は関連する
 - 2. 年齢とCHDは関連する
 - 3. 喫煙した結果、年齢が上がるわけではない

1. XとZは関連する

●喫煙有無別の年齢の分布

		全体		
年齢	低年齢	高年齢	合計	高齢者の割合
喫煙者	400	600	1000	60%
非喫煙者	800	200	1000	20%

- 交絡要因(Confounding factor)の必要条件
- ✓ 1. 年齢と喫煙傾向は関連する
 - 2. 年齢とCHDは関連する
 - 3. 喫煙した結果, 年齢が上がるわけではない

2. YとZは関連する

- ●CHD発症と年齢の関連
 - ✔年齢は喫煙とは独立にCHD発症と関連するか
 - ✓非喫煙者での年齢ごとのCHD発症割合

		非喫煙		
CHD	あり	なし	合計	CHD発症割合
低年齡	80	720	800	10%
高年齡	40	160	200	20%

- 交絡要因(Confounding factor)の必要条件
- ✓ 1. 年齢と喫煙傾向は関連する
- ✓ 2. 年齢とCHDは関連する
 - 3. 喫煙した結果, 年齢が上がるわけではない

3. X一Y間の因果連鎖の中間変数ではない

- ●喫煙したことで、年齢が上がることはない
- ●喫煙とCHDの因果連鎖の中間パスではない

- 交絡要因(Confounding factor)の必要条件
- ✓ 1. 年齢と喫煙傾向は関連する
- ✓ 2. 年齢とCHDは関連する
- ✓ 3. 喫煙した結果, 年齢が上がるわけではない(当たり前ですが…)

3. X一Y間の因果連鎖の中間変数ではない

●中間変数の例

✓塩分摂取量と脳卒中リスク

CHDの例の結論

- 交絡要因(Confounding factor)の必要条件
- ✓ 1. 年齢と喫煙傾向は関連する
- ✓ 2. 年齢とCHDは関連する
- ✓ 3. 喫煙した結果, 年齢が上がるわけではない

ランダム化したら?

- ●被験者に曝露と非曝露をランダムに割り付ける
 - ✓曝露グループと非曝露グループの背景因子(測定されない因子も含めて)の分布は平均的に偏らない

なぜ、E-R解析において交絡が問題となるのか?

- ●ランダム化が崩れている
 - ✔被験者を低曝露グループと高曝露グループにランダム化しているわけではない
 - ✓低曝露グループと高曝露グループで患者背景の分布が異なる可能性が高い(対照群とも分布が異なる)

曝露量に応じた比較では, 「交絡| が起きている可能性が高い

E-R解析における交絡の事例

Yang et al. (2012)

●転移性胃癌(mGC)に対するトラスツズマブのE-R解析

- ●Phase 3試験
 - ✓N=594
 - Arm 1: Fluoropyrimidine or Cisplatin (FC alone; n=296)
 - Arm 2: Trastuzumab + FC (T+FC; n=298)
 - Trastuzumab=8 mg/kg loading dose followed by 6 mg/kg q3w until PD
 - ✓Sparse PK samples (Pop PK解析 n=266)
 - ✔サイクル1のトラフ濃度(Cmin)を用いて,OSとExposureの関係を解析
 - Cminの四分位数で4つの集団に分け、それぞれのOSを評価

曝露(Cmin)の四分位解析の結果 Yang et al. (2012)

※低曝露集団 (Q1) の生存時間が短い(かつQ1ではFC aloneよりも短いことが別途示された)

低曝露集団 (Q1) とそれ以外 (Q2-Q4) のリスク因子の分布

Yang et al. (2012)

Covariate	First Quartile (n = 67), %	Combined Second to Fourth Quartiles (n = 199), %	
ECOG PS			-
0	14.9	40.2	
1	61.2	454.8	✔ リスク因子の分布が不均衡
2	23.9	5.0	✓ 特にOSにネガティブな因子はQ1
Prior gastrectomy			集団に多かった
Yes	13.6	29.7	集団に多かつに
No	86.4	70.3	
Number of metastatic s	ites		
>2	64.2	40.4	曝露量C _{min1} ◆ 生存時間
1-2	35.8	59.6	*
Asian ethnicity			
Yes	46.3	57.3	リスク因子
No	53.7	42.7	ECOG PSなど
IHC3+ status			
Yes	47.8	48.7	交絡?
No	52.2	51.3	

交絡の制御(どうやって対処するか)

- ●ランダム化 ✓E-R解析では難しい
- ●マッチング
 - ✓比較する集団で交絡要因の分布が偏らないように2つの集団の被験者をマッチングする
 - 例:高齢の喫煙者に対し、高齢の非喫煙者をマッチ
- ●層別解析
 - ✓交絡要因の各層で解析し、その結果を併合
- ●共変量調整
 - ✓統計モデルによって、交絡要因の影響を調整

マッチング

●曝露グループの対象者と交絡要因の値が同じ(似た)対象者を 非曝露グループから選び、マッチさせる

層別解析

●交絡要因の各層で解析し, 結果を併合 交絡要因が多いと層が増え, 非曝露 各層の症例数が少なくなる 曝露 非曝露 曝露 結果 併合 重み付き平均

統計モデルによる共変量調整

- ●交絡要因(Z)を共変量として統計モデルに含め、その影響を調整
 - ✓線形モデルの場合の例: $Y = \beta_0 + \beta_1 X + \beta_2 Z$
 - ✓共分散分析,ロジスティック解析,Cox比例ハザードモデル,Emaxモデル,ポアソン回帰モデル,などなど
 - ✓モデルの中で、交絡要因(Z)の値ごとにYに対するXの影響を直接評価できるイメージ

YとXに加え,YとZの関係を正しくモデル化できていることが重要

- ✔ 線形関数でよいか(E-R解析ではEmaxモデル等の非線形も)?
- ✔ 尺度変換は必要ないか(対数を取るとか)?

など

トラスツズマブの事例では

Yang et al. (2012)

- ●マッチング(1:1)を使用
 - ✔T+FC群の低曝露の被験者(Q1)の5つの交絡要因と似た値を持つ対照群 (FC群)の被験者をマッチ
 - Mahalanobis距離によるマッチング(5次元空間上の距離の近さでマッチ)

		Before Matching			After Matching		
Treatment	FC	Q1T+FC	<i>P</i> Value	FC	QIT+FC	P Value	
No.	296	67		67	67		
ECOG PS (0-1 vs 2)	0.909	0.761	.0026	0.761	0.761	1.0000	
Prior surgery (yes vs no)	0.213	0.134	.1755	0.119	0.134	1.0000	
Asia (yes vs no)	0.561	0.463	.1745	0.478	0.463	1.0000	
Number of metastatic sites (I-2 vs >2)	0.505	0.358	.0310	0.358	0.358	1.0000	
IHC3+ status (yes vs no)	0.483	0.478	1.0000	0.478	0.478	1.0000	

※交絡要因の分布の均衡化

マッチング後のE-R解析の結果

Yang et al. (2012)

マッチング後の上乗せ効果なし

- ✓ Q1 FC Match: 7.5ヶ月
- ✓ Q1 T+FC Match: 7.7ヶ月
- → 低曝露では生存時間の延長は認め られなかった。これについては マッチング前と同じか。

対照群(FC群)内の差に着目

Yang et al. (2012)

マッチング後

- マッチング後の上乗せ効果なし
- ✓ Q1 FC Match: 7.5ヶ月
- ✓ Q1 T+FC Match: 7.7ヶ月
- → 低曝露では生存時間の延長は認め られなかった

対照群(FC群)内で差あり

- ✓ Q1 FC Match: 7.5ヶ月
- ✓ Remaining FC: 12.8ヶ月
- ➡ 同じFC群内でもT+FC群の低曝露 集団と交絡要因の分布が似ている 集団 (Q1 FC Match) では、それ 以外のFC群の被験者より生存時間 が5.3ヶ月短かった

(交絡要因の影響のみでの差)

実薬群(T+FC群)内の差に着目

Yang et al. (2012)

マッチング後

(曝露の影響のみでの差)

Q1でOSが短い傾向だったが、 その要因は低曝露よりも交絡要 因の偏りであることが示唆

➡ 同じFC群内でもT+FC群の低曝露 集団と交絡要因の分布が似ている 集団 (Q1 FC Match) では、それ 以外のFC群の被験者より生存時間 が5.3ヶ月短かった

(交絡要因の影響のみでの差)

Confounding in immuno-oncology biologics

定常状態の曝露量

依存ではなく、 (消失能) 依存的な関係

Confounding in immuno-oncology biologics

Recommended roadmap to identify the true E-R relationship in immuno-oncology

**If data do not allow the identification of shared baseline factors, baseline CL may be used as a surrogate for shared baseline factors

解析で交絡を制御する際の留意点

- ●ランダム化とは異なり,あくまでも測定された交絡要因のみを 制御している(未知・未測定の因子の可能性は常にある)
- ●交絡を制御する方法はいろいろありますが、それぞれの特徴を 考慮して、手法を選択する
- ●特にE-R解析では、Exposureと強く相関する因子があることもあり、低曝露集団と高曝露集団でその因子の分布が大きく異なる(分布が重ならない)。その場合、マッチングが困難となる。
 - ✔なので、トラスツマブの例では、実薬群内でQ1とQ2-Q4をマッチング するのではなく、対照群の被験者とマッチングしている

解析で交絡を制御する際の留意点

- ●ランダム化とは異なり,あくまでも測定された交絡要因のみを 制御している(未知・未測定の因子の可能性は常にある)
- ●交絡を制御する方法はいろいろありますが、それぞれの特徴を 考慮して、手法を選択する
- ●特にE-R解析では、Exposureと強く相関する因子があることもあり、低曝露集団と高曝露集団でその因子の分布が大きく異なる(分布が重ならない)。その場合、マッチングが困難となる。
 - ✔なので、トラスツマブの例では、実薬群内でQ1とQ2-Q4をマッチング するのではなく、対照群の被験者とマッチングしている

因果推論を応用した PAGE2025でのプレゼン

A new PKPD modelling approach allowing a granular Exposure-Response analysis

Mats Karlsson & Divya Brundavanam

Dept of Pharmacy, Uppsala University, Uppsala, Sweden

Instrumental variable (操作変数)

An instrumental variable can be used to estimate causal effects in observational data given that it fulfills three conditions:

- i. Relevance assumption: it has a causal effect on exposure
- ii. Exclusion restriction: it is related to the response only through exposure
- iii. Exchangeability assumption: it doesn't share common causes with response

For ER analysis, randomised dose can act as an instrumental variable

Instrumental variable (操作変数)

未調整交絡に対処するには

◆IVとは<u>1</u>)

IVとは、下記の3つの条件を満たす変数を指します(図1)。

- ・ 曝露-アウトカムの因果効果($β_3$)を直接推定せずに、IV-曝露の因果効果($β_1$)とIV-アウトカムの因果効果($β_2$)から、間接的に $β_3$ を推測($\mathbf{2}$ 2)
- 曝露とアウトカムとの間の因果効果($=\beta_3$)は β_2/β_1 によって与えられる

E-R評価での操作変数の適用例

簡便のため、IV infusionを想定

A new PKPD modelling approach allowing a granular Exposure-Response analysis

Mats Karlsson & Divya Brundavanam Dept of Pharmacy, Uppsala University, Uppsala, Sweden

Partitioned Effect (PE) model

Partitioning of:

$$Effect = \frac{E_{max,dose} * C_{dose}}{C_{50,dose} + C_{dose}} +$$

$$C_{dose} = \frac{Dose/duration}{\theta_{CL}}$$

$$\left[\frac{E_{max,re} * C}{C_{50,re} + C} - \frac{E_{max,re} * C_{dose}}{C_{50,re} + C_{dose}}\right]$$

random effects
$$C = \frac{Dose/duration}{\theta_{CL} \cdot \exp(\eta_{CL})}$$

交絡の事例 at PAGE2023 (E-Rの事例ではないが・・)

The combined use of propensity score matching and a joint tumor growth dynamics (TGD) - Overall Survival (OS) model to benchmark the efficacy of new treatments for advanced renal cell carcinoma (RCC)

Mayu Osawa¹, Martin Winiger², Ramon Garcia³, Jonathan French³, Anna Kondic¹, Bauke Stegenga², and Amit Roy¹

NRDG (Non-registrational data generation) ISR (investigator sponsored research)

¹Clinical Pharmacology and Pharmacometrics, Bristol Myers Squibb, Princeton, NJ, United States

² Worldwide Scientific Collaborations, Global Medical, Bristol-Myers Squibb, Princeton, NJ, United States

³ Metrum Research Group, Tariffville, CT, United States

交絡の事例 at PAGE2023 (E-Rの事例ではないが・・)

参考文献

- Rothman KJ. *Epidemiology: An Introduction*. Oxford University Press, 2002. [矢野英二,橋本秀樹監訳. ロスマンの疫学. 篠原出版新社, 2004]
- 丸尾和司. *臨床研究の計画と解析*. BRA定例シンポジウム2016「医療 で必要とされる統計的基礎知識」, 2016.
- Yang J, et al., The Combination of Exposure-Response and Case-Control Analyses in Regulatory Decision Making. The Journal of Clinical Pharmacology. 53, 160-166, 2012.
- Osawa, et al., The combined use of propensity score matching and a joint tumor growth dynamics (TGD) Overall Survival (OS) model to benchmark the efficacy of new treatments for advanced renal cell carcinoma (RCC). PAGE 31 (2023) Abstr 10608

Back up

- ●理想的な比較
 - ✓CHDの発生に喫煙が与える影響を測るためには?

「喫煙者」での CHD発生割合 (*IP*₁)

VS.

「喫煙者」が仮に過去から喫煙しなかった場合の<math>CHD発生割合 (IP_0^*)

 \rightarrow リスク比= IP_1/IP_0^*

- ●現実的には…
 - ✓CHDの発生に喫煙が与える影響を測るためには?

「喫煙者」での CHD発生割合 (*IP*₁)

VS.

「喫煙者」が <u>仮に過去から喫煙しなかった場合</u>の CHD発生割合 (*IP*₀*)

 \rightarrow リスク比= IP_1/IP_0 算出不可能

「喫煙者」はすでに喫煙してしまっているので,「喫煙しなかったら…」という状況は観測できない

反事実(Counterfactual)

- ●現実的な比較
 - ✔CHDの発生に喫煙が与える影響を測るためには?

「喫煙者」での CHD発生割合 (*IP*₁)

VS.

「非喫煙者」での CHD発生割合 (*IP*₀)

 \rightarrow リスク比= IP_1/IP_0 算出可能

「非喫煙者」のCHD発生割合は観測可能 $\rightarrow IP_0^*$ を IP_0 で代替していることになる

比較の妥当性と交絡の定義

- ●比較の妥当性
 - ✓本当に知りたいのは… $RR^* = IP_1/IP_0^*$
 - ✓実際に観測できるのは… $RR = IP_1/IP_0$
 - $\checkmark IP_0^* = IP_0$ のとき、 $RR^* = RR$ が成り立つ
 - ✓つまり、どちらの集団(喫煙者と非喫煙者)も仮に喫煙しなかった場合のCHD発生割合は同じとき、観測可能なRRでRR*を求めることが可能
 - →「比較の妥当性」が満たされている
- ●一方, $IP_0^* \neq IP_0$ のとき, $RR^* \neq RR$ となる
 - ✓つまり、どちらの集団(喫煙者と非喫煙者)も仮に喫煙しなかった場合、 CHD発生割合は異なる
 - ✔「喫煙者」が喫煙の影響でCHDリスクが高くなったのか,元々「非喫煙者」に比べて,CHDリスクが高い集団だったのか,が区別できない