Euler's Method - Solutions

1. We have

$$y(x_{i+1}) = y(x_i + h)$$

= $y(x_i) + hy'(x_i) + \frac{h^2}{2}y''(\xi)$

where $\frac{h^{2}}{2}y''\left(\xi\right)$ is the residual term. Since $y'=f\left(x,y\right)$ we have

$$y(x_{i+1}) = y(x_i) + hf(x_i, y(x_i)) + \frac{h^2}{2}y''(\xi)$$

and so

$$[y(x_i) + hf(x_i, y(x_i))] - y(x_{i+1}) = -\frac{h^2}{2}y''(\xi) \equiv \varepsilon_{i+1}.$$

2. Euler's method is

$$y_{m+1} = y_m + hf(x_m, y_m)$$

and so we obtain

\boxed{m}	0	1	2	3	4	5
x_m	0	0.01	0.02	0.03	0.04	0.05
y_m	1	1.0100	1.0203	1.0309	1.0418	1.0531

	m	6	7	8	9	10
	x_m	0.06	0.07	0.08	0.09	0.10
ĺ	y_m	1.0646	1.0765	1.0887	1.1013	1.1142

We are now required to estimate the global error at $x_{10} = 0.1$. We have

$$\Delta_{10} = \varepsilon_{10} + \alpha_9 \varepsilon_9 + \ldots + \alpha_9 \alpha_8 \cdots \alpha_1 \varepsilon_1$$

so that

$$|\Delta_{10}| \leq \max_{[x_0, x_{10}]} |\varepsilon_m| \left(1 + \alpha + \alpha^2 + \dots + \alpha^9\right)$$

$$= \max_{[x_0, x_{10}]} |\varepsilon_m| \underbrace{\left(\frac{\alpha^{10} - 1}{\alpha - 1}\right)}_{\text{geometric sum}}$$

where

$$\alpha \equiv \max_{[x_0, x_{10}]} |\alpha_m| = 1 + h \max_{[x_0, x_{10}]} |f_y|$$

and

$$\max_{[x_0, x_{10}]} |\varepsilon_m| = \max_{[x_0, x_{10}]} \left| \frac{h^2}{2} y'' \right| = \max_{[x_0, x_{10}]} \left| \frac{h^2}{2} \left(f_x + f f_y \right) \right|.$$

In this problem f(x,y) = x + y + xy and so

$$f_x + f f_y = 1 + y + (x + y + xy) (1 + x)$$

 $f_y = 1 + x.$

We now substitute the values of x_m and y_m which we have obtained using Euler's method, for each $m \in [0, 10]$, to find

$$\alpha \equiv 1 + h \max_{[x_0, x_{10}]} |f_y| = 1.0110$$

$$\max_{[x_0, x_{10}]} |\varepsilon_m| = \max_{[x_0, x_{10}]} \left| \frac{h^2}{2} (f_x + f f_y) \right| = 0.0001786$$

both of which happen to occur at x = 0.1. Thus, we have

$$|\Delta_{10}| \le (0.0001786) (1 + 1.011 + 1.011^2 + \dots + 1.011^9)$$

= 0.00187

This is an estimate of the maximum error in our result y(0.1) = 1.1142. The exact value is y(0.1) = 1.1159, so that the actual error is 0.0017.

3. We must solve

$$\frac{dy}{dx} = \frac{x}{y} \equiv f(x, y)$$

with the initial condition y(0) = 1, using Euler's Method with h = 0.1, up to x = 0.9. Euler's Method is

$$y_{m+1} = y_m + hf(x_m, y_m)$$

and so we obtain

m	0	1	2	3	4	5
x_m	0	0.1	0.2	0.3	0.4	0.5
y_m	1	1	1.01	1.0298	1.0589	1.0967

m	6	7	8	9
x_m	0.6	0.7	0.8	0.9
y_m	1.1423	1.1948	1.2534	1.3172

We are now required to estimate the global error at $x_5 = 0.5$ and $x_9 = 0.9$. We have

$$\Delta_5 = \varepsilon_5 + \alpha_4 \varepsilon_4 + \ldots + \alpha_4 \alpha_3 \alpha_2 \alpha_1 \varepsilon_1$$

so that

$$|\Delta_{5}| \leq \max_{[x_{0},x_{5}]} |\varepsilon_{m}| \left(1 + \alpha + \alpha^{2} + \alpha^{3} + \alpha^{4}\right)$$

$$= \max_{[x_{0},x_{5}]} |\varepsilon_{m}| \underbrace{\left(\frac{\alpha^{5} - 1}{\alpha - 1}\right)}_{\text{geometric sum}}$$

where

$$\alpha \equiv \max_{[x_0, x_5]} |\alpha_m| = 1 + h \max_{[x_0, x_5]} |f_y|$$

and

$$\max_{[x_0, x_5]} |\varepsilon_m| = \max_{[x_0, x_5]} \left| \frac{h^2}{2} y'' \right| = \max_{[x_0, x_5]} \left| \frac{h^2}{2} \left(f_x + f f_y \right) \right|.$$

In this problem $f(x,y) = \frac{x}{y}$ and so

$$f_x + f f_y = \frac{1}{y} - \frac{x^2}{y^3}$$

$$f_y = -\frac{x}{y^2}.$$

We now substitute the values of x_m and y_m which we have obtained using Euler's method, for each $m \in [0, 5]$, to find

$$\alpha \equiv 1 + h \max_{[x_0, x_5]} |f_y| = 1.0416$$

$$\max_{[x_0, x_5]} |\varepsilon_m| = \max_{[x_0, x_5]} \left| \frac{h^2}{2} (f_x + f f_y) \right| = 0.005$$

The maximum in $|f_y|$ occurs at x = 0.5 and the maximum in $|f_x + ff_y|$ occurs at x = 0. Thus, we have

$$|\Delta_5| \le (0.005) \left(\frac{1.0416^5 - 1}{1.0416 - 1} \right)$$

= 0.0272.

The exact value is y(0.5) = 1.1180, so that the actual error is 0.0213.

For $y(x_9)$ we consider each $m \in [0, 9]$, and we find

$$\alpha \equiv 1 + h \max_{[x_0, x_9]} |f_y| = 1.0519$$

$$\max_{[x_0, x_9]} |\varepsilon_m| = \max_{[x_0, x_9]} \left| \frac{h^2}{2} (f_x + f f_y) \right| = 0.005$$

Here, the maximum in $|f_y|$ occurs at x = 0.9 and the maximum in $|f_x + ff_y|$ occurs at x = 0. So, we have

$$|\Delta_{9}| \leq \max_{[x_{0},x_{9}]} |\varepsilon_{m}| \left(1 + \alpha + \alpha^{2} + \ldots + \alpha^{8}\right)$$

$$= \max_{[x_{0},x_{9}]} |\varepsilon_{m}| \left(\frac{\alpha^{9} - 1}{\alpha - 1}\right)$$

which gives

$$|\Delta_9| \le (0.005) \left(\frac{1.0519^9 - 1}{1.0519 - 1} \right)$$

= 0.0556.

The exact value is y(0.5) = 1.3454, so that the actual error is 0.0282. Incidentally, the analytical solution is

$$y(x) = \sqrt{x^2 + 1}$$

which you may verify for yourself.

4. Euler's method is

$$y_{m+1} = y_m + hf(x_m, y_m)$$

and so we obtain

m	0	1	2	3	4	5
x_m	0	0.01	0.02	0.03	0.04	0.05
y_m	2	2.0400	2.0811	2.1233	2.1667	2.2113

m	6	7	8	9	10
x_m	0.06	0.07	0.08	0.09	0.10
y_m	2.2572	2.3043	2.3527	2.4024	2.4535

We are now required to estimate the global error at $x_8 = 0.8$. We have

$$\Delta_8 = \varepsilon_8 + \alpha_7 \varepsilon_7 + \ldots + \alpha_7 \alpha_6 \cdots \alpha_1 \varepsilon_1$$

so that

$$|\Delta_8| \leq \max_{[x_0, x_8]} |\varepsilon_m| \left(1 + \alpha + \alpha^2 + \ldots + \alpha^7\right)$$

$$= \max_{[x_0, x_8]} |\varepsilon_m| \underbrace{\left(\frac{\alpha^8 - 1}{\alpha - 1}\right)}_{\text{geometric sum}}$$

where

$$\alpha \equiv \max_{[x_0, x_8]} |\alpha_m| = 1 + h \max_{[x_0, x_8]} |f_y|$$

$$h = 0.01$$

and

$$\max_{[x_0, x_8]} |\varepsilon_m| = \max_{[x_0, x_8]} \left| \frac{h^2}{2} y'' \right| = \max_{[x_0, x_8]} \left| \frac{h^2}{2} \left(f_x + f f_y \right) \right|.$$

In this problem f(x,y) = x + 2y + xy and so

$$f_x + f f_y = 1 + y + (x + 2y + xy) (2 + x)$$

 $f_y = 2 + x.$

We now substitute the values of x_m and y_m which we have obtained using Euler's method, for each $m \in [0, 8]$, to find

$$\alpha = 1 + h \max_{[x_0, x_8]} |f_y| = 1.0208$$

$$\max_{[x_0, x_8]} |\varepsilon_m| = \max_{[x_0, x_8]} \left| \frac{h^2}{2} (f_x + f f_y) \right| = 0.0006849$$

both of which happen to occur at x = 0.08. Thus, we have

$$|\Delta_8| \le (0.0006849) (1 + 1.0208 + 1.0208^2 + \dots + 1.0208^7)$$

= 0.0059.

This is an estimate of the maximum error in our result y(0.08) = 2.3527. The exact value is y(0.08) = 2.3579, so that the actual error is 0.0052.

5. Euler's method is

$$y_{m+1} = y_m + hf(x_m, y_m)$$

and so we obtain

m		0	1	2	3	4	5
x_m	,	0	0.01	0.02	0.03	0.04	0.05
y_m		1	1.0100	1.0203	1.0309	1.0418	1.0531

m	6	7	8	9	10
x_m	0.06	0.07	0.08	0.09	0.10
y_m	1.0646	1.0765	1.0887	1.1013	1.1142

We are now required to estimate the global error at $x_{10} = 0.1$. We have

$$\Delta_{10} = \varepsilon_{10} + \alpha_9 \varepsilon_9 + \ldots + \alpha_9 \alpha_8 \cdots \alpha_1 \varepsilon_1$$

so that

$$|\Delta_{10}| \leq \max_{[x_0, x_{10}]} |\varepsilon_m| \left(1 + \alpha + \alpha^2 + \ldots + \alpha^9\right)$$

$$= \max_{[x_0, x_{10}]} |\varepsilon_m| \underbrace{\left(\frac{\alpha^{10} - 1}{\alpha - 1}\right)}_{\text{geometric sum}}$$

where

$$\alpha \doteq \max_{[x_0, x_{10}]} |\alpha_m| = 1 + h \max_{[x_0, x_{10}]} |f_y|$$

and

$$\max_{[x_0, x_{10}]} |\varepsilon_m| = \max_{[x_0, x_{10}]} \left| \frac{h^2}{2} y'' \right| = \max_{[x_0, x_{10}]} \left| \frac{h^2}{2} \left(f_x + f f_y \right) \right|.$$

In this problem f(x,y) = x + y + xy and so

$$f_x + f f_y = 1 + y + (x + y + xy) (1 + x)$$

 $f_y = 1 + x.$

We now substitute the values of x_m and y_m which we have obtained using Euler's method, for each $m \in [0, 10]$, to find

$$\alpha \ \ \ \, \stackrel{\cdot}{\div} \ \ 1 + h \max_{[x_0, x_{10}]} |f_y| = 1.0110$$

$$\max_{[x_0, x_{10}]} |\varepsilon_m| \ \ = \ \ \max_{[x_0, x_{10}]} \left| \frac{h^2}{2} \left(f_x + f f_y \right) \right| = 0.0001786$$

both of which happen to occur at x = 0.1. Thus, we have

$$|\Delta_{10}| \le (0.0001786) (1 + 1.011 + 1.011^2 + ... + 1.011^9)$$

= 0.00187.

This is an estimate of the maximum error in our result y(0.1) = 1.1142. The exact value is y(0.1) = 1.1159, so that the actual error is 0.0017.

6.