Digital signals/Sampling

Sampling

► **continuous signal** (normalized magnitude, length *L* in seconds)

$$x(t) \in [-1, 1]$$
 with $t \in [0, L]$

>> $x = 0(t) \sin(2*pi*f * t)$; % continuous sine with frequency f

ightharpoonup sampling rate f_S , quantization of time

$$t \to t_i = \frac{i-1}{f_S}$$
 with $i \in \{1, ..., N\}$ and $N = \lfloor Lf_S \rfloor$

- >> N = floor(L * fS); % number of samples
 >> ti = (0:N-1) / fS; % quantized time values
- \triangleright bits per sample n_S , quantization of amplitude

$$x(t) \to x_i = \frac{\lfloor (2^{(n_s - 1)} - 1)x(t_i) \rfloor}{2^{n_s - 1} - 1}$$

>> xi = round($(2^(nS-1)-1) * x(ti)) / (2^(nS-1)-1); % quantized amplitudes$

Sampling

example: matlab/sampling.m

- exercise:
 - verify from reconstruction that Nyquist frequency holds

$$f_{\rm Ny} = \frac{f_{\rm S}}{2}$$

 compare commonly used sampling standards (telephony, Audio-CD, professional audio equipment, ...)