Exercice 1: Résoudre une inéquation du second degré

Résoudre dans R les inéquations suivantes :

1.
$$-x^2 + x + 2 < 0$$

2.
$$4x^2 + 24x + 40 \le 0$$

1. Soit P le polynôme défini pour tout x de $\mathbb R$ par $P(x)=-x^2+x+2$.

On cherche à résoudre P(x) < 0.

Pour cela, on cherche ses racines éventuelles.

$$\Delta = 1^2 - 4 \times (-1) \times 2 = 9$$

$$\Delta > 0$$
 donc le polynôme admet deux racines : $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

$$x_1 = \frac{-1 - \sqrt{9}}{-2} = 2$$

$$x_2 = \frac{-1 + \sqrt{9}}{-2} = -1$$

On sait qu'un polynôme du second degré est du signe de a à l'extérieur de ses racines.

Comme a = -1 < 0:

On peut résumer le signe du polynôme dans un tableau de signes :

x	$-\infty$		-1		2		$+\infty$
signe de $-x^2 + x + 2$		_	0	+	0	_	

Finalement $S =]-\infty; -1[\cup]2; +\infty[$.

2. Soit P le polynôme défini pour tout x de \mathbb{R} par $P(x) = 4x^2 + 24x + 40$.

On cherche à résoudre $P(x) \leq 0$.

Pour cela, on cherche ses racines éventuelles.

$$\Delta = 24^2 - 4 \times 4 \times 40 = -64$$

 $\Delta < 0$ donc le polynôme ${\cal P}$ n'admet pas de racine.

Il est toujours du signe de a=4>0, donc P(x)>0 pour tout x de \mathbb{R} .

On en déduit $S = \emptyset$.