(19) 世界知的所有権機関 国際事務局

BS

(43) 国際公開日 2003 年11 月27 日 (27.11.2003)

PCT

(10) 国際公開番号 WO 03/097598 A1

式会社内 Osaka (JP). 稲垣 雅尚 (INAGAKI, Masanao)

[JP/JP]; 〒553-0002 大阪府 大阪市福島区 鷺洲 5 丁目

12番4号 塩野義製薬株式会社内 Osaka (JP).

(74) 代理人: 山内 秀晃, 外(YAMAUCHI, Hideaki et al.); 〒553-0002 大阪府 大阪市福島区 鷺洲 5 丁目 1 2番

4号 塩野義製薬株式会社 知的財産部 Osaka (JP).

(51) 国際特許分類?: C07D 209/14, 209/94, 209/86, 209/88, 401/04, 403/04, 409/12, 409/14, 471/04, 209/16, 403/06, 401/06, 401/14, 487/04, 231/56, 495/04, A61K 31/403, 31/405, 31/4439, 31/454, 31/437, 31/4709, 31/407, A61P 11/06, 37/08, 43/00

(21) 国際出願番号:

PCT/JP03/06076

(22) 国際出願日:

2003年5月15日(15.05.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-142126 2002年5月16日(16.05.2002)

(81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(71) 出願人 (米国を除く全ての指定国について): 塩野 義製薬株式会社 (SHIONOGI & CO., LTD.) [JP/JP]; 〒 541-0045 大阪府 大阪市中央区 道修町 3 丁目 1番8号

Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 谷本 憲彦 (TAN-IMOTO,Norihiko) [JP/JP]; 〒553-0002 大阪府 大阪市福島区 鷲洲 5 丁目 1 2番 4 号 塩野義製薬株式会社内 Osaka (JP). 平松 義春 (HIRAMATSU,Yoshiharu) [JP/JP]; 〒553-0002 大阪府 大阪市福島区 鷲洲 5 丁目 1 2番 4 号 塩野義製薬株式会社内 Osaka (JP). 光森進 (MITSUMORI,Susumu) [JP/JP]; 〒553-0002 大阪府大阪市福島区 鷲洲 5 丁目 1 2番 4 号 塩野義製薬株

(84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

- 国際調査報告書

2文字コード及び他の略語については、定期発行される各*PCT*ガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: COMPOUND EXHIBITING PGD 2 RECEPTOR ANTAGONISM

(54) 発明の名称: PGD2 受容体拮抗作用を有する化合物

(1)

(a)

(57) Abstract: A compound exhibiting CRTH 2 receptor antagonism, represented by the following formula (1), which compound is useful in the treatment of allergosis with which the association of eosinocytes is presumed, etc.: (1) wherein the group represented by the formula: (a) is a group of the formula: (b) or the like; R¹ represents carboxyl, etc.; R³ represents a group of the formula -(CH₂)₀-N(-Y)SO₂-Ar, etc.; and the other substituents are as defined in claim 1.

[続葉有]

(57) 要約:

CRTH2受容体拮抗作用を有する下記式(I)で表される新規化合物を見出した。該化合物は好酸球が関与していると考えられるアレルギー疾患等に有用である。

$$R^{13}$$
 R^{3} R^{14} N Z^{4} (I)

(式中、

式:

で示される基は

式:

等を、R¹は、カルボキシ等を、R³は

式:- (CH2) -N (-Y) SO2-Ar等を

その他の置換基は請求の範囲1に記載された通りを示す。)

明細書

PGD2受容体拮抗作用を有する化合物

5 技術分野

本発明は、CRTH2受容体拮抗作用を有する新規化合物に関する。

背景技術

10

15

20

25

プロスタグランジンD $_2$ (PGD $_2$)は、アラキドン酸からPGG $_2$ 、PGH $_2$ を経て産生される代謝産物であり、種々の強力な生理作用を有していることが知られている。例えば、中枢神経系においては睡眠、ホルモン分泌などに関与し、末梢においては血小板凝集阻害作用、気管支平滑筋の収縮、血管の拡張または収縮などに関与していることが知られている(Pharmacol. Rev. (1994) 46, 205-229)。さらに、PGD $_2$ は肥満細胞から産生される主要なアラキドン酸代謝産物であり、強力な気管支収縮作用、血管透過性の亢進や好酸球などの炎症細胞の遊走を惹起する事から、気管支喘息などのアレルギー性疾患の病態形成に深く関与していると考えられている。

PGD₂の受容体としては、従来DP受容体のみが知られており、その受容体 拮抗剤がWO98/25915号、WO01/66520号、WO01/79169等に記載されている。

しかし、DP受容体の選択的作動薬であるBW-245Cは、PGD₂による好酸球浸潤作用などを再現できないことから、PGD₂にはDP受容体とは別の受容体が存在することが以前より示唆されていた(J. Immunol. (1992) 148, 3536-3542; Invest. Ophthalmol. Vis. Sci. (1990) 31, 138-146、Br. J. Pharmacol. (1985) 85, 367-375; J. Pharmacol. Exp. Ther. (1995) 275, 611-617等)。最近になり、CRTH2受容体がPGD₂の第2の受容体であり、PGD₂はこの受容体を介して好酸球、好塩基球の遊走を惹起することが報告された(J. Exp. Med. (2001) 193, 255-261)。

本発明化合物に類似した構造を有するトロンボキサンA₂ (TXA₂) 受容体拮抗剤および血小板凝集抑制剤が特開昭 61-249960、特開昭 62-198659、特開昭 62-249969、特開平 2-193965、特開平 3-151360、特開平 4-230363、特開平 4-234846、特開平 4-257578、特開平 8-157471、特開平 8-245587、DE3909600、Eur. J. Med. Chem., (1991) 26(8), 821-827 に記載されているが、PGD₂拮抗活性については全く記載されていない。

 $3-(4-クロロフェニルスルホニルアミノ)-9-(2-カルボキシメチル)-1,2,3,4-テトラヒドロカルバゾールおよびそのエチルエステルが、<math>TXA_2$ 拮抗作用および TXA_2 合成酵素阻害作用を有することが特開平 3-151360 に開示されているが、具体的な活性値は記載されていない。

10

3-(4-クロロフェニルスルホニルアミノエチル)インドール-1-アセティックアシッドおよび 3-(4-クロロフェニルスルホニルアミノプロピル)インドール-1-アセティックアシッドが、 TXA_2/PGH_2 受容体拮抗作用を有することがEur.J.Med.Chem., 1991, 26(8), 821-827 に記載されている。

また 3-(4-フルオロフェニルスルホンアミド)-1,2,3,4-テトラヒドロ-9-カルバゾールプロピオン酸が、アレルギー性皮膚炎、遅延型アレルギー反応を介する皮膚炎、および乾癬の治療剤として有用であることが特開平 7-175991、WO97/44031、特開平 11-106337、および特開平 11-116477 に、ケモカイン産生抑制作用を有することが特開平 11-322600 に記載されている。さらに、該化合物が P G D 2 誘発 気管支収縮に対し抑制効果を示すことから、D P 受容体を介して P G D 2 拮抗作用を有する可能性のあることが J. Allergy Clin. Immunol. (1992) 89, 1119-1126に記載されている。しかし、現在では、1) P G D 2 が高濃度域(1 μ M 以上)においてトロンボキサン受容体にも結合すること(Eur. J. Pharmacol. (1992) 226, 149-156; Br. J. Pharmacol. (1991) 103, 1883-1888 etc.)、2) D P 受容体に対する親和性の弱い他のトロンボキサン受容体拮抗化合物も同様の抑制作用を示すこと(Int. Arch. Allergy Immunol. 1992, 98, 239-246)、3) 選択的 D P 受容体拮抗化合物は P G D 2 誘発気管支収縮を抑制しないこと(Br. J. Pharmacol.

(1989) 96, 291-300) が知られており、上記の抑制作用はトロンボキサン受容体を介した反応を抑制したものであり、該化合物が直接的な D P 受容体拮抗作用を有するものではないと考えられている (Br. J. Pharmacol. (1989) 96, 291-300)。

また、DP受容体と比較して選択的にCRTH2受容体に結合する4種の化合物がEP 1170594 に開示されている。しかし、本発明化合物とは構造が非類似であり、結合活性等の詳細についても記載されていない。

発明の開示

5

本発明者らは、TXA2受容体拮抗作用を有さない選択的なCRTH2受容体 10 拮抗作用を有する新規化合物を見出した。

すなわち、本発明は、

I)式(I):

$$R^{13}$$
 R^{3} (I) R^{14} R^{15} R^{1}

15 (式中、

式:

で示される基は式:

20 (式中、 Z^3 は=N-または=C($-R^7$)-; R^4 、 R^5 、 R^6 および R^7 はそれ それ独立して水素、ハロゲン、ハロアルキル、カルボキシ、アルキルオキシカル ボニル、置換されていてもよいアルキル、置換されていてもよいアルケニル、置

換されていてもよいシクロアルキル、置換されていてもよいアリールまたは置換されていてもよいアラルキル、式: $-S(O)_pR^8$ (式中、pは $0\sim2$ の整数;および R^8 はアルキルまたは置換されていてもよいアリール)で示される基、式: $-NR^9R^{10}$ (式中、 R^9 および R^{10} はそれぞれ独立して水素、アルキル、置換されていてもよいアリール、置換されていてもよいアラルキルまたはアシル)で示される基、式: $-OR^{11}$ (式中、 R^{11} は水素、アルキル、置換されていてもよいアリール、置換されていてもよいアリール、置換されていてもよいアリールスルホニル、置換されていてもよいアリールスルホニル、置換されていてもよいアラルキルスルホニル、ハロアルキル)で示される基)で示される基;

10 R 1 はカルボキシ、アルキルオキシカルボニル、置換されていてもよいアミノカルボニルまたはテトラゾリル;

 Z^4 d-N= $\pm c$ $d-C(-R^2)=$;

 R^2 は水素、アルキルまたはハロゲン;

 R^{15} は水素またはアルキル;

 R^3 は式: $-(CH_2)_n-N(-Y)-SO_2-Ar(式中、nは1~3の整数; Yは水素、アルキル、アルケニル、アルキニル、置換されていてもよいアリール、 置換されていてもよいアラルキル、 置換されていてもよいヘテロアリールアルキルまたは置換されていてもよいアリールアルケニル;および<math>Ar$ は置換されていてもよいアリールまたは置換されていてもよいヘテロアリール)で示される基、

20 式:

$$-(CH_2)_r$$
 $N-SO_2-E$

(式中、rは0~2の整数; xは0~3の整数; mは1~3の整数; 破線は結合の存在または不存在を表わし; Eは置換されていてもよいアリール、置換されていてもよいへテロアリール、アルキル、置換されていてもよいアラルキルまたは置換されていてもよいアリールアルケニル)で示される基、

式:

25

$$O = (CH_2)_m$$
 $N - SO_2 - E$

(式中、xは0~3の整数;mは1~3の整数;破線は結合の存在または不存在を表わし;Eは置換されていてもよいアリール、置換されていてもよいヘテロアリール、アルキル、置換されていてもよいアラルキルまたは置換されていてもよいアリールアルケニル)で示される基、

式: $-CR^{23}R^{24}-CR^{25}R^{26}-(CH_2)_y-N(-Y)-SO_2-Ar(式中、ArおよびYは前記と同意義;yは0または1;R^{23}およびR^{24}の一方はアルキル、他方は水素、アルキルまたはアリール;またはR^{23}およびR^{24}は一緒になって式:<math>-(CH_2)$ t-(式中、tは2~5の整数)で示される基;R² およびR²⁶はそれぞれ独立して水素またはアルキルオキシアルキル)で示される基、

式:

10

(式中、 Yおよび Arは前記と同意義) で示される基、または

15 式:

(式中、YおよびArは前記と同意義; uは1または2) で示される基; または式:

20 で示される基が式:

(yは1~3の整数;m、p、YおよびArは前記と同意義)で示される基、

: た

$$(CH_2)_y$$
 $N-SO_2-Ar$

(m、yおよびArは前記と同意義) で示される基、

5 または式:

または R^{13} が水素、アルキル、アラルキル、アシルまたは式: $-OR^{16}$ (式中、 R^{16} は水素またはアルキル)で示される基であり、 R^{14} が水素またはアルキルであるか、または式:

15

で示される基が式:

(式中、qは $0\sim3$ の整数; R^{17} は水素またはアルキル; Z^{1} は $-CH_{2}-$ 、-20 C(=NOH) -又は-C(=NOHe) -; Z^{2} は式: -S

 $(=0)_{s}$ - (式中、sは 0~2の整数)で示される基、式:-N($-R^{22}$) - (式中、 R^{22} は水素、アルキル、アルキルオキシカルボニルまたはアシル)で示される基または式: $-CR^{18}R^{19}$ - (式中、 R^{18} および R^{19} はそれぞれ独立して水素、アルキルまたはアリール;または R^{18} および R^{19} は一緒になって式: $-(CH_2)_{t}$ - (式中、tは 2~5の整数)で示される基である)で示される基であり;

 R^{1} および R^{15} は前記と同意義であり;

: 选

10 で示される基が式:

(Y、E、R²⁰およびR²¹は前記と同意義)で示される基である化合物、その プロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

II) 式:

15

で示される基が式:

(式中、 Z^3 は=C ($-R^7$) -であり; R^4 、 R^5 、 R^6 および R^7 は I) と同意義)で示される基であり; Z^4 が-C ($-R^2$) =であり; R^2 は I) と同意義で

あり; R 15 が水素であり;

 R^3 が式: $-(CH_2)_n-N(-Y)-SO_2-Ar(式中、nは1~3の整数; Yは水素、アルキル、アルケニル、置換されていてもよいアリール、置換されていてもよいアラルキル、または置換されていてもよいヘテロアリールアルキル; およびArは置換されていてもよいアリールまたは置換されていてもよいヘテロアリール)で示される基、式:$

(式中、rは $0\sim2$ の整数; xは $0\sim3$ の整数; mは $1\sim3$ の整数; 破線は結合 の存在または不存在を表わし; Eは置換されていてもよいアリールまたは置換されていてもよいヘテロアリール)で示される基;

または式:

10

で示される基が式:

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \begin{array}{c} (CH_2)_y \\ \end{array} \\ \begin{array}{c} (CH_2)_{\overline{p}} \end{array} \\ \end{array} \begin{array}{c} (CH_2)_{\overline{p}} \end{array} \begin{array}{c} Y \\ N - SO_2 - AI \end{array}$$

15 (yは1~3の整数; m、p、YおよびArは前記と同意義)で示される基、

式:

(m、yおよびArは前記と同意義)で示される基、

または式:

(YおよびArはI) と同意義であり; R^{20} および R^{21} は水素である)で示される基である I)項記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

5 III) Yがアルキル、アルケニル、置換されていてもよいアリールまたは置換されていてもよいアラルキルである I) または II) 記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

IV) R^3 が式: $-(CH_2)_n - N(-Y) - SO_2 - Ar(式中、nは2または3; Yは水素、アルキル、アルケニル、またはアラルキル; および<math>A$ rはI) と同意義)で示される基であるII)記載の化合物、そのプロドラッグ、それら

V) R³が式:

10

$$-(CH_2)_r$$
 $N-SO_2-E$

の製薬上許容される塩またはそれらの溶媒和物。

(式中、mは1; rは0; xは2; 破線は結合の不存在を表わし; およびEはII) と同意義) で示される基であるII) に記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

VI) 式:

で示される基が式:

(mは2;pは0;yは1;Yは水素、アルキル、アルケニルまたはアラルキル;およびArはI)と同意義)で示される基であるII)に記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

5 VII) 式:

で示される基が式:

$$(CH_2)_y$$
 $N-SO_2-Ar$

(mは1または2; yは1または2;およびArはII) と同意義) で示される 10 基であるII) に記載の化合物、そのプロドラッグ、それらの製薬上許容される 塩またはそれらの溶媒和物。

VIII) 式:

15

で示される基が式:

(Yは水素、アルキル、アルケニルまたはアラルキル;および R²⁰、 R²¹およ

びArはI)と同意義)で示される基であるII) 記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

- IX) R¹がカルボキシであるI) ~VIII) のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。
- 5 X) R^4 、 R^5 、 R^6 および R^7 がそれぞれ独立して水素、ハロゲン、アルキル、アルケニル、置換されていてもよいアリールまたは置換されていてもよいアラルキルである I) $\sim I(X)$ のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。
 - XI) R^2 が水素またはアルキルであるI) $\sim X$) のいずれかに記載の化合物、
- 10 そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。 XII) I) ~ XI) のいずれかに記載の化合物、そのプロドラッグ、それらの 製薬上許容される塩またはそれらの溶媒和物を有効成分として含有する医薬組成 物。
 - XIII) CRTH2受容体拮抗剤として使用するXII) 記載の医薬組成物。
- 15 XIV) I) に記載の化合物を投与することを特徴とする CRTH 2 受容体に関する疾患の治療方法。
 - XV) CRTH2受容体に関する疾患の治療剤を製造するための、I) に記載の 化合物の使用。
- 20 式(I)で示される化合物には、以下の化合物が包含される。

$$R^{5}$$
 R^{6}
 Z^{3}
 R^{15}
 R^{1}
 $(CH_{2})_{n}$
 X^{3}
 X^{4}
 Y
 X^{5}
 X^{2}
 Y

$$R^{5}$$
 R^{6}
 Z^{3}
 N
 Z^{4}
 R^{15}
 R^{1}
 $(CH_{2})_{r}$
 $(CH_{2})_{r}$
 $(CH_{2})_{x}$
 $(CH_{2})_{x}$

$$R^{5}$$
 R^{23}
 R^{24}
 R^{23}
 R^{24}
 R^{25}
 R^{26}
 R^{15}
 R^{1}

$$R^{5}$$
 R^{6}
 Z^{3}
 N
 Z^{4}
 N
 SO_{2} -Ar
 R^{15}
 R^{1}

(上記構造式中、各用語はI)と同意義である。)

以下に本発明を詳細に説明する。

$$R^{5}$$
 R^{6}
 Z^{3}
 N
 $(CH_{2})_{y}$
 $(CH_{2})_{p}$
 N
 $(CH_{2})_{p}$
 N
 $(CH_{2})_{p}$
 N
 $(CH_{2})_{p}$
 $(CH_{2})_$

$$R^{5}$$
 R^{6}
 Z^{3}
 N
 $(CH_{2})_{y}$
 N
 SO_{2} -Ar
 R^{15}
 R^{1}

$$R^{5}$$
 R^{6}
 Z^{3}
 R^{15}
 R^{1}
 R^{21}
 R^{20}

$$Z^{2}$$
 $(CH_{2})_{q}$
 R^{15}
 R^{20}
 R^{20}

本明細書中、「ハロゲン」とは、フッ素、塩素、臭素、ヨウ素を意味する。ハロゲンとしては、フッ素、塩素、および臭素が好ましい。

本明細書中、単独でもしくは他の用語と組み合わせて用いられる「アルキル」とは、炭素原子数 $1 \sim 8$ の直鎖または分枝鎖の 1 価の炭化水素基を包含する。例えば、メチル、エチル、n-プロピル、イソプロピル、n-プチル、イソプチル、s e c - プチル、t e r t - プチル、n-ペンチル、イソペンチル、n e o - ペンチル、n - ペンチル・n - ペン・n - ペン・n

10 本明細書中、単独でもしくは他の用語と組み合わせて用いられる「シクロアルキル」とは、炭素原子数が3~8個であるシクロアルキルを包含する。例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチルが挙げられる。好ましくはC3~C6シクロアルキルが挙げられる。

本明細書中、単独でもしくは他の用語と組み合わせて用いられる「アルケニル」とは、炭素原子数が2~8個であり、1個もしくは2個以上の二重結合を有する、直鎖または分枝鎖の1価の炭化水素基を包含する。例えば、ビニル、アリル、1-プロペニル、2-プロペニル、クロトニル、イソペンテニル、種々のプテニル異性体等が挙げられる。好ましくは、C2~C6アルケニルが挙げられる。さらに好ましくは、C2~C4アルケニルが挙げられる。

本明細書中、単独でもしくは他の用語と組み合わせて用いられる「アルキニル」とは、炭素原子数が2~8個であり、1個もしくは2個以上の三重結合を有する、直鎖または分枝鎖の1価の炭化水素基を包含する。例えば、エチニル、1ープロピニル、2ープロピニル等が挙げられる。好ましくは、C2~C6アルキニルが挙げられる。さらに好ましくは、C2~C4アルキニルが挙げられる。

本明細書中、単独でもしくは他の用語と組み合わせて用いられる「アリール」とは、単環状もしくは縮合環状芳香族炭化水素を包含する。例えば、フェニル、

25

1-ナフチル、2-ナフチル、アントリル等が挙げられる。好ましくは、フェニル、1-ナフチル、2-ナフチルが挙げられる。さらに好ましくは、フェニルが挙げられる。

本明細書中、単独でもしくは他の用語と組み合わせて用いられる「アラルキル」とは、前記「アルキル」に前記「アリール」が1または2以上置換したものを包含し、これらは可能な全ての位置で置換しうる。例えば、ベンジル、フェニルエチル (例えば、2ーフェニルエチル等)、フェニルプロピル (例えば、3ーフェニルプロピル等)、ナフチルメチル (例えば、1ーナフチルメチル、2ーナフチルメチル等)、アントリルメチル (例えば、9ーアントリルメチル等)等が挙げられる。好ましくは、ベンジル、2ーフェニルエチル、1ーナフチルメチル、2ーナフチルメチルが挙げられる。さらに好ましくはベンジル、2ーフェニルエチルが挙げられる。

10

本明細書中、「アラルキル」とは、前記「アルキル」に前記「アリール」が1または2以上置換したものを包含し、これらは可能な全ての位置で置換しうる。

15 例えば、ベンジル、フェニルエチル(例えば、2ーフェニルエチル等)、フェニルプロピル(例えば、3ーフェニルプロピル等)、ナフチルメチル(例えば、1ーナフチルメチル、2ーナフチルメチル等)、アントリルメチル(例えば、9ーアントリルメチル等)等が挙げられる。好ましくは、ベンジル、2ーフェニルエチル、1ーナフチルメチル、2ーナフチルメチルが挙げられる。さらに好ましく

20 はベンジル、2ーフェニルエチルが挙げられる。

本明細書中、「アリールアルケニル」とは、前記「アルケニル」に前記「アリール」が1または2以上置換したものを包含し、これらは可能な全ての位置で置換しうる。例えば、フェニルアリル、ナフチルアリル等が挙げられる。

本明細書中、「非芳香族複素環基」なる用語は、任意に選ばれる、酸素原子、 25 硫黄原子または窒素原子を環内に1個以上含む非芳香族の5~7員環またはそれ らが2個以上縮合した環を包含する。例えば、ピロリジニル(例えば、1-ピロ リジニル、2-ピロリジニル)、ピロリニル(例えば、3-ピロリニル)、イミ

ダゾリジニル (例えば、2ーイミダゾリジニル)、イミダゾリニル (例えば、イミダゾリニル)、ピラゾリジニル (例えば、1ーピラゾリジニル、2ーピラゾリジニル)、ピラゾリニル (例えば、ピラゾリニル)、ピペリジル (例えば、ピペリジノ、2ーピペリジル)、ピペラジニル (例えば、1ーピペラジニル)、インドリニル (例えば、1ーインドリニル)、イソインドリニル (例えば、イソインドリニル)、モルホリニル (例えば、モルホリノ、3ーモルホリニル)等が挙げられる。

本明細書中、単独でもしくは他の用語と組み合わせて用いられる「ヘテロアリ ール」とは、任意に選ばれる、酸素原子、硫黄原子または窒素原子を環内に1個 以上含む5~6 員の芳香環を包含する。これは前記「シクロアルキル」、前記「ア 10 リール」、前記「非芳香族複素環基」、もしくは他のヘテロアリールと可能な全 ての位置で縮合していてもよい。ヘテロアリールが単環および縮合環のいずれで ある場合も、すべての可能な位置で結合しうる。例えば、ピロリル (例えば、1 - ピロリル、2 - ピロリル、3 - ピロリル)、フリル(例えば、2 - フリル、3 一フリル)、チエニル(例えば、2ーチエニル、3ーチエニル)、イミダゾリル (例えば、2-イミダゾリル、4-イミダゾリル)、ピラゾリル (例えば、1-ピラゾリル、3 - ピラゾリル)、イソチアゾリル(例えば、3 - イソチアゾリル)、 イソキサゾリル(例えば、3-イソキサゾリル)、オキサゾリル(例えば、2-オキサゾリル)、チアゾリル(例えば、2-チアゾリル)、ピリジル(例えば、 2-ピリジル、3-ピリジル、4-ピリジル)、ピラジニル(例えば、2-ピラ 20 ジニル)、ピリミジニル(例えば、2-ピリミジニル、4-ピリミジニル)、ピ リダジニル(例えば、3-ピリダジニル)、テトラゾリル(例えば、1H-テト ラゾリル)、オキサジアゾリル(例えば、1,3,4-オキサジアゾリル)、チ アジアゾリル(例えば、1、3、4-チアジアゾリル)、インドリジニル(例え ば、2-インドリジニル、6-インドリジニル)、イソインドリル(例えば、2 25 ーイソインドリル)、インドリル(例えば、1ーインドリル、2ーインドリル、 3 ーインドリル)、インダゾリル(例えば、3 ーインダゾリル)、プリニル(例

えば、8-プリニル)、キノリジニル(例えば、2-キノリジニル)、イソキノ リル(例えば、3ーイソキノリル)、キノリル(例えば、2ーキノリル、5ーキ ノリル)、フタラジニル(例えば、1-フタラジニル)、ナフチリジニル(例え ば、2-ナフチリジニル)、キノラニル(例えば、2-キノラニル)、キナゾリ ニル(例えば、2ーキナゾリニル)、シンノリニル(例えば、3-シンノリニル)、 プテリジニル(例えば、2-プテリジニル)、カルバゾリル(例えば、2-カル バゾリル、4ーカルバゾリル)、フェナントリジニル(例えば、2-フェナント リジニル、3-フェナントリジニル)、アクリジニル(例えば、1-アクリニジ ル、2-アクリニジル)、ジベンゾフラニル(例えば、1-ジベンゾフラニル、 10 2-ジベンゾフラニル)、ベンゾイミダゾリル(例えば、2-ベンゾイミダゾリ ル)、ベンゾイソキサゾリル(例えば、3-ベンゾイソキサゾリル)、ベンゾオ キサゾリル(例えば、2-ベンゾオキサゾリル)、ベンゾオキサジアゾリル(例 えば、4-ベンゾオキサジアゾリル)、ベンゾイソチアゾリル(例えば、3-ベ ンゾイソチアゾリル)、ベンゾチアゾリル(例えば、2-ベンゾチアゾリル)、 ベンゾフリル(例えば、3-ベンゾフリル)、ベンゾチエニル(例えば、2-ベ 15 ンゾチエニル)、ジベンゾチエニル(例えば、2-ジベンゾチエニル)、ベンゾ ジオキソリル(例えば、1,3ーベンゾジオキソリル)等が挙げられる。

Arにおける「ヘテロアリール」としては、チエニル、ベンゾチエニル、ジベンゾチエニル、ベンゾジオキソリル、オキサゾリル等が好ましい。

本明細書中、「ヘテロアリールアルキル」とは、前記「アルキル」の任意の位置に前記「ヘテロアリール」が1または2以上置換したものを包含し、これらは可能な全ての位置で置換しうる。チェニルアルキル、フリルアルキル、ピロリルアルキル、イミダゾリルアルキル、ピラゾリルアルキル、チアゾリルアルキル、イソチアゾリルアルキル、イソキサゾリルアルキル、オキサゾリルアルキル、ピリジルアルキル、イソキサゾリルアルキル、オキサゾリルアルキル、ピリジルアルキル等が例示される。例えば、チェニルメチル(例えば、2ーチェニルメチル)、チェニルエチル(例えば、2ー(チオフェンー2ーイル)エチル)、フリルメチル(例えば、2ー(フラ

ンー2ーイル)エチル)、ピロリルメチル(例えば、2ーピロリルメチル)、ピロリルエチル(例えば、2ー(ピロールー2ーイル)エチル)、イミダゾリルメチル(例えば、2ーイミダゾリルメチル、4ーイミダゾリルメチル)、イミダゾリルエチル(例えば、2ーイミダゾリルメチル)、ピラゾリルメチル)、ピラゾリルメチル(例えば、2ー(ピラゾールー3ーイル)エチル)、チアゾリルメチル(例えば、2ーチアゾリルメチル)、チアゾリルエチル(例えば、2ーチアゾリルメチル)、チアゾリルエチル(例えば、2ーチアゾリルメチル)、イソチアゾリルメチル(例えば、3ーイソチアゾリルメチル)、イソキサゾリルメチル(例えば、3ーイソキサゾリルメチル)、オキサゾリルメチル(例えば、2ーオキサゾリルメチル)、オキサゾリルエチル(例えば、2ーイカーンーイル)エチル)、ピリジルメチル(例えば、2ーピリジルメチル、3ーピリジルメチル、4ーピリジルメチル)、ピリジルエチル(例えば、2ーピリジルエチル)等が挙げられる。

Yにおける「ヘテロアリール」としては、チエニルメチル等が好ましい。

15 本明細書中、「アルキルオキシ」としては、メチルオキシ、エチルオキシ、 n ープロピルオキシ、イソプロピルオキシ、 n ーブチルオキシ、イソブチルオキシ、 secーブチルオキシ、 tertーブチルオキシ等が挙げられる。好ましくは、 メチルオキシ、エチルオキシ、 n ープロピルオキシ、イソプロピルオキシ、 n ー ブチルオキシが挙げられる。特に好ましくは、C1~C3アルキルオキシが挙げ 20 られる。

本明細書中、「アルキルチオ」としては、メチルチオ、エチルチオ、nープロピルチオ、イソプロピルチオ、nープチルチオ、イソプチルチオ、secープチルチオ、tertープチルチオ等が挙げられる。好ましくは、メチルチオ、エチルチオ、nープロピルチオ、イソプロピルチオ、nープチルチオが挙げられる。

25 特に好ましくは、С1~С3アルキルチオが挙げられる

本明細書中、「アリールオキシ」としては、フェニルオキシ、ナフチルオキシ 等が挙げられる。

本明細書中、「アリールチオ」としては、フェニルチオ、ナフチルチオ等が挙 げられる。

本明細書中、「アリールアゾ」としては、フェニルアゾ、ナフチルアゾ等が挙 げられる。

本明細書中、「アルキルオキシカルボニル」としては、メチルオキシカルボニル、ハープロピルオキシカルボニル、イソプロピルオキシカルボニル、ローブチルオキシカルボニル、セertーブチルオキシカルボニル、ローペンチルオキシカルボニル等が挙げられる。好ましくは、メチルオキシカルボニル、エチルオキシカルボニルが挙げられる。特に好ましくは、C.1~C3アルキルオキシカルボニルが挙げられる。

本明細書中、単独でもしくは他の用語と組み合わせて用いられる「アシル」なる用語は、アルキル部分が前記「アルキル」であるアルキルカルボニルまたはアリール部分が前記「アリール」であるアリールカルボニルを包含する。「アルキル」および「アリール」はそれぞれ後述の「置換されていてもよいアルキル」および「置換されていてもよいアリール」において例示された置換基によって置換されていてもよい。例えば、アセチル、プロピオニル、プチロイル、ベンゾイル等が挙げられる。

15

本明細書中、単独でもしくは他の用語と組み合わせて用いられる「ハロアルキル」なる用語は、前記「ハロゲン」によって1~8ヶ所、好ましくは1~5ヶ所 20 置換された前記「アルキル」を包含する。例えば、トリフルオロメチル、トリクロロメチル、ジフルオロエチル、トリフルオロエチル、ジクロロエチル、トリクロロエチル、クロロメチル等が挙げられる。好ましくは、トリフルオロメチルが挙げられる。

本明細書中、「アシルオキシ」としては、アセチルオキシ、プロピオニルオキ 25 シ、ベンゾイルオキシ等が挙げられる。

本明細書中、「アルカンスルホニル」としては、メタンスルホニル、エタンス ルホニル、n-プロパンスルホニル、イソプロパンスルホニル、n-ブタンスル

ホニル、イソブタンスルホニル、secーブタンスルホニル、tertーブタンスルホニル等が挙げられる。好ましくは、メタンスルホニル、エタンスルホニルが挙げられる。

本明細書中、「アリールスルホニル」としては、フェニルスルホニル、ナフチ 5 ルスルホニル等が挙げられる。

本明細書中、「アラルキルスルホニル」としては、ベンジルスルホニル、フェ ニルエチルスルホニル等が挙げられる。

本明細書中、「ヘテロアリールスルホニル」としては、ピロリルスルホニル等が挙げられる。

本明細書中、単独でもしくは他の用語と組み合わせて用いられる「置換されていてもよいアミノ」なる用語は、前記「アルキル」、前記「アリール」、前記「アラルコ、前記「ヘテロアリール」、前記「ヘテロアリールアルキル」、前記「アシル」、前記「アルキルオキシカルボニル」および/または前記「アルカンスルホニル」で1または2個所置換されいてもよいアミノを包含する。例えば、アミノ、メチルアミノ、ジメチルアミノ、エチルメチルアミノ、ジェチルアミノ、エチルメチルアミノ、ジェチルアミノ、メチルオキシカルボニルアミノ、メタンスルホニルアミノ等が挙げられる。好ましてもよいアミノのア・ファットのア・ファックルのア・ファットのア・ファットのア・ファットのア・ファットのア・ファットのア・ファットのア・ファットのア・ファットのア・ファットのア・

くはアミノ、メチルアミノ、ジメチルアミノ、エチルメチルアミノ、ジエチルア

本明細書中、「置換されていてもよいアミノカルボニル」としては、アミノカルボニル、メチルアミノカルボニル、ジメチルアミノカルボニル、エチルメチルアミノカルボニル、ジエチルアミノカルボニル、ベンジルアミノ、アセチルアミノ、メタンスルホニルアミノカルボニル等が挙げられる。好ましくは、アミノカルボニル、メチルアミノカルボニル、ジメチルアミノカルボニル、メタンスルホ25 ニルアミノカルボニルが挙げられる。

ミノ、アセチルアミノ、メタンスルホニルアミノが挙げられる。

本明細書中、「置換されていてもよいウレイド」なる用語は、前記「アルキル」、前記「アリール」、前記「アラルキル」、前記「ヘテロアリール」、前記「ヘテ

ロアリールアルキル」、または前記「アシル」で1または2ヶ所以上置換されいてもよいウレイドを包含する。

本明細書中、「置換されていてもよいアルキル」における置換基としては、シクロアルキル、アルケニル、アルキリデン、ヒドロキシ、アルキルオキシ、メルカプト、アルキルチオ、ハロゲン、ニトロ、シアノ、カルボキシ、アルキルオキシカルボニル、ハロアルキル、ハロアルキルオキシ、置換されていてもよいアミノ、置換されていてもよいアミノカルボニル、アシル、アシルオキシ、置換されていてもよい非芳香族複素環基、アリールオキシ(例えば、フェニルオキシ)、アラルキルオキシ(例えば、ベンジルオキシ)、アルカンスルホニル、グアニジノ、アゾ基等が挙げられる。これらは、全ての可能な位置で1個以上置換しうる。R⁴、R⁵、R⁶、およびR⁷における「置換されていてもよいアルキル」の置換基としては、アルキルオキシ、ヒドロキシ、置換されていてもよいアミノ、アリールオキシ等が好ましい。

本明細書中、「置換されていてもよいシクロアルキル」における置換基として は、アルキル、シクロアルキル、アルケニル、アルキリデン、ヒドロキシ、アルキルオキシ、メルカプト、アルキルチオ、ハロゲン、ニトロ、シアノ、カルボキシ、アルキルオキシカルボニル、ハロアルキル、ハロアルキルオキシ、置換されていてもよいアミノ、置換されていてもよいアミノカルボニル、アシル、アシルオキシ、アリールオキシ(例えば、フェニルオキシ)、アラルキルオキシ(例え ば、ベンジルオキシ)、アルカンスルホニル、グアニジノ、アゾ基等が挙げられる。これらは、全ての可能な位置で1個以上置換しうる。

R⁴、R⁵、R⁶、およびR⁷における「置換されていてもよいシクロアルキル」 の置換基としては、アルキル、ハロゲン等が好ましい。

本明細書中、「置換されていてもよいアルケニル」における置換基としては、
25 アルキル、シクロアルキル、アルキリデン、ヒドロキシ、アルキルオキシ、メルカプト、アルキルチオ、ハロゲン、ニトロ、シアノ、カルボキシ、アルキルオキシカルボニル、ハロアルキル、ハロアルキルオキシ、置換されていてもよいアミ

ノ、置換されていてもよいアミノカルボニル、アシル、アシルオキシ、アリール、アリールオキシ (例えば、フェニルオキシ)、アラルキル、アラルキルオキシ (例えば、ベンジルオキシ)、アルカンスルホニル、グアニジノ、アゾ基等が挙げられる。これらは、全ての可能な位置で1個以上置換しうる。

 \mathbf{R}^4 、 \mathbf{R}^5 、 \mathbf{R}^6 、および \mathbf{R}^7 における「置換されていてもよいアルケニル」の 置換基としては、ハロゲン、アリール等が好ましい。

本明細書中、「置換されていてもよいアリール」、「置換されていてもよいア ラルキル」、「置換されていてもよいヘテロアリール」、「置換されていてもよ いアリールスルホニル」、「置換されていてもよいアラルキルスルホニル」、お よび「置換されていてもよい非芳香族複素環基」における置換基としては、アル 10 キル、ハロアルキル、シクロアルキル、アルケニル、アルキニル、ヒドロキシ、 アルキルオキシ、ハロアルキルオキシ、アリールオキシ、アラルキルオキシ、メ ルカプト、アルキルチオ、ハロゲン、ニトロ、シアノ、カルボキシ、アルキルオ キシカルボニル、アシル、アシルオキシ、アルカンスルホニル、グアニジノ、ア ソ基、置換されていてもよいアミノ、置換されていてもよいアミノカルボニル、 15 置換基群Cによって1または2ヶ所以上置換されていてもよいアリール、置換基 群Cによって1または2ヶ所以上置換されていてもよいヘテロアリール、置換基 群Cによって1または2ヶ所以上置換されていてもよい非芳香族複素環基、置換 基群Cによって1または2ヶ所以上置換されていてもよいアラルキル、または置 換されていてもよいウレイド等が挙げられる。これらは、全ての可能な位置で1 20 個以上置換しうる(置換基群C:アルキル、ハロアルキル、シクロアルキル、ア ルケニル、アルキニル、ヒドロキシ、アルキルオキシ、ハロアルキルオキシ、ア リールオキシ、アラルキルオキシ、メルカプト、アルキルチオ、ハロゲン、ニト ロ、シアノ、カルボキシ、アルキルオキシカルボニル、アシル、アシルオキシ、 25 アルカンスルホニル、グアニジノ、アゾ基、置換されていてもよいアミノ、およ び置換されていてもよいアミノカルボニル)。

R⁴、R⁵、R⁶、およびR⁷における「置換されていてもよいアリール」の置

換基としては、アルキル、アルキルオキシ、ハロゲン等が好ましい。

R®における「置換されていてもよいアリール」の置換基としては、アルキル、 アルキルオキシ、ハロゲン等が好ましい。

R⁹およびR¹⁰における「置換されていてもよいアリール」の置換基としては、 アルキル、アルキルオキシ、ハロゲン等が好ましい。

R¹¹における「置換されていてもよいアリール」の置換基としては、アルキル、 アルキルオキシ、ハロゲン等が好ましい。

Yにおける「置換されていてもよいアリール」の置換基としては、アルキル、 アルキルオキシ、ハロゲン等が好ましい。

10 Arにおける「置換されていてもよいアリール」の置換基としては、アルキル、アルキルオキシ、アリールオキシ、ハロゲン、ベンジル、置換基群Bで置換されていてもよいフェニル等が好ましい(置換基群B:アルキル、アルキルオキシ、アリールオキシ、ハロゲン、およびベンジル)。

 R^4 、 R^5 、 R^6 、および R^7 における「置換されていてもよいアラルキル」の 15 置換基としては、アルキル、ハロゲン等が好ましい。

 R^9 および R^{10} における「置換されていてもよいアラルキル」の置換基としては、アルキル、ハロゲン等が好ましい。

 R^{-1} における「置換されていてもよいアラルキル」の置換基としては、アルキル、ハロゲン等が好ましい。

20 Yにおける「置換されていてもよいアラルキル」の置換基としては、アルキル、 アルキルオキシ、ニトロ、ハロゲン等が好ましい。

Arにおける「置換されていてもよいヘテロアリール」の置換基としては、アルキル、アルキルオキシ、アリールオキシ、ハロゲン、ベンジル、置換基群Bで置換されていてもよいフェニル等が好ましい(置換基群B:アルキル、アルキルオキシ、アリールオキシ、ハロゲン、およびベンジル)。

25

 R^{11} における「置換されていてもよいアリールスルホニル」の置換基としては、アルキル等が好ましい。

 R^{-1} における「置換されていてもよいアラルキルスルホニル」の置換基としては、アルキル等が好ましい。

発明を実施するための最良の形態

5 式(I)で表される本発明化合物は、以下の式(IIa)~(IIk):

$$R^{5}$$
 R^{4}
 R^{23}
 R^{24}
 R^{25}
 R^{26}
 R^{15}
 R^{1}
(IIg)

$$\begin{array}{c|c}
R^{5} & & & (CH_{2})_{u} \\
R^{5} & & & NHY
\end{array}$$

$$\begin{array}{c}
R^{5} & & & (IIk) \\
R^{15} & & & R^{1}
\end{array}$$

$$\begin{array}{c|c}
R^{5} & & \\
\hline
R^{5} & & \\
\hline
R^{15} & & \\
\end{array}$$
(CH₂)_y
(CH₂)_p NHY
(IIb)

$$\begin{array}{c|c}
R^{5} & & & \\
R^{6} & Z^{3} & & & \\
R^{15} & & & \\
R^{15} & & & \\
\end{array}$$
(IId)

$$\begin{array}{c|c}
R^{5} & O & (CH_{2})_{m} \\
R^{5} & V & (CH_{2})_{x}
\end{array}$$
(IIf)

$$R^{13}$$
 NHY R^{20} (IIh)

$$R^{17}$$
 $(CH_2)_q$
 R^{15}
 R^{1}
 R^{20}
 R^{20}
(IIj)

[式中、 R^1 はアルキルオキシカルボニル;他の記号はI)の定義と同意義] で表される化合物またはその塩を、 $1\sim5$ 当量の $Ar-SO_2-X^1$ またはE-S

 O_2-X^1 で表される化合物 [式中Ar及びEは I) の定義と同意義; X^1 はハロゲン] と、不活性溶媒中、0 C から室温下、5 分から数時間反応させることにより製造することができる。 1 当量から5 当量の塩基の存在下に反応を行ってもよい。塩基としては、トリエチルアミン、ピリジン、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム、水酸化カリウム、水酸化ナトリウムなどが好ましい。不活性溶媒としては、ピリジン、アセトニトリル、塩化メチレン、テトラヒドロフラン(THF)などが好ましく、これらを単独あるいは水との混合溶媒として用いることができる。

上記反応によって得られた化合物のYが水素である場合は、THF、エーテル、 $N, N-\mathcal{Y}$ 10 アセトニトリル、アセトン、トルエン等の不活性溶媒中、水素化ナトリウム、水 素化カリウム、 t ーブトキシカリウム、炭酸カリウム等の塩基存在下、 Y ー X 2 (X²はハロゲン、置換されていてもよいアルカンスルホニルオキシまたは置換 されていてもよいアリールスルホニルオキシ)と、0°から80°、30分から 数時間反応させ、Yがアルキル、アルケニル、置換されていてもよいアリール又 15 は置換されていてもよいアラルキルである化合物を合成することができる。また、 式(IIa)、(IIb)および(IIe)で表されるYが水素である化合物を、 対応するアルデヒドまたはケトンと、THF、塩化メチレン等の溶媒中、1当量 ~5 当量の水素化ホウ素ナトリウム、水素化シアノホウ素ナトリウムまたは水素 化トリアセトキシホウ素ナトリウムを用いて、0℃から80℃、30分から数時 20 閻還元的アミノ化反応を行なうことによっても、Yがアルキル、アルケニル、ま たは置換されていてもよいアラルキル等である化合物を合成することができる。 0.1当量~5当量の塩酸、酢酸、パラトルエンスルホン酸等の酸触媒存在下で 反応を行ってもよい。その後上記スルホニル化反応を行ない、式(Ⅰ)で表され 25 る化合物に変換することも可能である。

式(I)で表される化合物において、R¹がカルボキシである化合物は、上記 反応後、通常の加水分解反応の条件にしたがってエステルを酸加水分解あるいは

アルカリ加水分解することにより得ることができる。

上記の式 (IIe) で表される化合物は、特開平8-169879等に記載の 方法に従って合成することができる。

また、上記の式(IIa)~(IIk)で表される化合物は、以下に示す式(IIa)~(IIIk)で表される化合物のいずれかを出発原料として製造することができる。

$$\begin{array}{c|c} R^{4} & (CH_{2})_{u} \\ \hline \\ R^{5} & N \\ \hline \\ R^{6} & Z^{3} & N \\ \hline \\ & N \\ \end{array} \qquad (IIIk)$$

[式中、各記号は1)の定義と同意義; Qは水素]

すなわち、以下の 1) ~ 3) の工程を行うことにより、式 (IIa) ~ (II

k) で表される化合物あるいは塩酸、硫酸等の無機酸、または酢酸、トリフルオ 口酢酸等の有機酸との塩として製造することができる;1)Qが水素である式(I IIa)~(IIIk)で表される化合物のアミノ基を、PROTECTIVE GRO UP IN ORGANIC SYNTHSIS, JOHN WILEY & SONS, INC. 等に記 載の方法によりt-ブトキシカルポニル、ベンジルオキシカルボニル、アリルオ キシカルボニル等のアミノ基の保護基で保護する、2)得られた化合物を、1~ $5 当量の<math>X^{1}-CH_{2}CO_{2}R^{12}$ (式中、 X^{1} はハロゲン; R^{12} はアルキル) で表 される化合物と、ピリジン、アセトニトリル、塩化メチレン、THF、DMF、 DMSO、アセトン、メチルエチルケトン、メチルイソブチルケトンなどの不活・ 性溶媒中、1当量から5当量の水素化ナトリウム、水素化カリウム、tープトキ シカリウム、炭酸カリウム等の塩基存在下、0℃から100℃、1時間から20 時間反応することにより、インドールの窒素をアルキルオキシカルボニルメチル 化する「0.1当量から1当量の相関移動触媒、例えば、塩化テトラブチルアン モニウム、臭化化テトラブチルアンモニウム、ヨウ化テトラブチルアンモニウム、 塩化ベンジルトリエチルアンモニウム、塩化ベンジルトリブチルアンモニウム等 を加えてもよい]、3)通常の脱保護条件下、アミノ基の保護基であるQを除去 する。

式 (IIIc) ならびに (IIId) で表される化合物、およびYが水素ではない式 (IIIa)、 (IIIb)、ならびに (IIIe) で表される化合物を、20 アミノ基を保護することなく、上記スルホニル化を行なった後、インドール窒素をアルキルオキシカルボニルメチル化し、式 (I) で表される化合物へと導くことも可能である。

式(I)で表される化合物は、TXA。受容体拮抗活性を有さない選択的CR
TH2受容体拮抗化合物である。そのような化合物として、特に以下に示す式(I
a) ~式(Ie)で表される化合物が好ましい。

式 (Ia):

10

15

[式中、 R^1 はカルボキシまたは置換されていてもよいアミノカルボニル; R^2 は水素またはアルキル;

 R^{5} 、 R^{6} および R^{7} はそれぞれ独立して水素、ハロゲン、アルキル、または式: OR^{11} (式中、 R^{11} はアルキル)で示される基;

Yは水素、アルキル、アルケニル、フェニル、置換基群Aにより1または2ヶ所以上置換されていてもよいフェニルアルキル、置換基群Aにより1または2ヶ所以上置換されていてもよいナフチルアルキル、または置換基群Aにより1または2ヶ所以上置換されていてもよいチェニルアルキル(置換基群A:アルキル、アルキルオキシ、およびニトロ);

Arは置換基群Bにより1または2ヶ所以上置換されていてもよいフェニル、置換基群Bにより1または2ヶ所以上置換されていてもよいビフェニル、置換基群Bにより1または2ヶ所以上置換されていてもよいチェニル、または置換基群Bにより1または2ヶ所以上置換されていてもよいジベンゾチェニル(置換基群B:アルキル、アルキルオキシ、アリールオキシ、ハロゲン、ヒドロキシ、およびベンジル);および

nは1、2、または3]で示される化合物、そのプロドラッグ、それらの製薬上 許容される塩またはそれらの溶媒和物。

式(Ib):

10

15

20

$$R^{5}$$
 $(CH_{2})_{y}$
 $(CH_{2})_{p}$
 $(CH_{2})_{p$

[式中、 R^1 はカルボキシまたは置換されていてもよいアミノカルボニル; R^5 、 R^6 および R^7 はそれぞれ独立して水素、ハロゲン、アルキル、または式: $- O R^{11}$ (式中、 R^{11} はアルキル)で示される基;

Yは水素、アルキル、アルケニル、フェニル、置換基群Aにより1または2ヶ所以上置換されていてもよいフェニルアルキル、置換基群Aにより1または2ヶ所以上置換されていてもよいナフチルアルキル、または置換基群Aにより1または2ヶ所以上置換されていてもよいチェニルアルキル(置換基群A:アルキル、アルキルオキシ、およびニトロ):

Arは置換基群Aにより1または2ヶ所以上置換されていてもよいフェニル、置換基群Aにより1または2ヶ所以上置換されていてもよいビフェニル、置換基群Aにより1または2ヶ所以上置換されていてもよいチェニル、または置換基群Aにより1または2ヶ所以上置換されていてもよいジベンゾチェニル(置換基群A:ハロゲン、アルキル、アルキルオキシ、アリールオキシ、ヒドロキシ、およびベンジル);

mは1または2;

10

pは0または1;および

yは0、1または2]で示される化合物、そのプロドラッグ、それらの製薬上許 15 容される塩またはそれらの溶媒和物。

式(Ic):

$$R^{5}$$
 R^{6}
 R^{7}
 R^{1}
 R^{1}
 $(CH_{2})_{r}$
 $(CH_{2})_{x}$
 $(CH_{2})_$

[式中、 R^1 はカルボキシまたは置換されていてもよいアミノカルボニル; R^2 は水素またはアルキル;

20 R^5 、 R^6 および R^7 はそれぞれ独立して水素、ハロゲン、アルキル、または式: $-OR^{-1}$ (式中、 R^{-1} はアルキル)で示される基;

Arは置換基群Bにより1または2ヶ所以上置換されていてもよいフェニル、置換基群Bにより1または2ヶ所以上置換されていてもよいピフェニル、置換基群Bにより1または2ヶ所以上置換されていてもよいチェニル、または置換基群B

により1または2ヶ所以上置換されていてもよいジベンゾチエニル (置換基群B:アルキル、アルキルオキシ、アリールオキシ、ハロゲン、ヒドロキシ、およびベンジル);

mは1、2または3;

5 rは0または1;および

xは0、1または2]で示される化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

式(Id):

$$R^5$$
 $(CH_2)_y$
 $N-SO_2-Ar$ (Id)

10 【式中、 R^1 はカルボキシまたは置換されていてもよいアミノカルボニル;

- O R ^{1 1} (式中、 R ^{1 1}はアルキル) で示される基;

Arは置換基群Bにより1または2ヶ所以上置換されていてもよいフェニル、置換基群Bにより1または2ヶ所以上置換されていてもよいビフェニル、置換基群Bにより1または2ヶ所以上置換されていてもよいチエニル、または置換基群B

R⁵、R⁶およびR⁷はそれぞれ独立して水素、ハロゲン、アルキル、または式:

により1または2ヶ所以上置換されていてもよいジベンゾチエニル (置換基群B:アルキル、アルキルオキシ、アリールオキシ、ハロゲン、ヒドロキシ、およびベンジル);

mは1または2;および

20 yは1または2]で示される化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

式(Ie):

15

[式中、 R^1 はカルボキシまたは置換されていてもよいアミノカルボニル; R^5 、 R^6 および R^7 はそれぞれ独立して水素、ハロゲン、アルキル、または式: $-OR^{11}$ (式中、 R^{11} はアルキル)で示される基;

Yは水素、アルキル、アルケニル、フェニル、置換基群Aにより1または2ヶ所 以上置換されていてもよいフェニルアルキル、置換基群Aにより1または2ヶ所 以上置換されていてもよいナフチルアルキル、または置換基群Aにより1または2ヶ所以上置換されていてもよいチエニルアルキル(置換基群A:アルキル、アルキルオキシ、およびニトロ);および

Arは置換基群Bにより1または2ヶ所以上置換されていてもよいフェニル、置換基群Bにより1または2ヶ所以上置換されていてもよいピフェニル、置換基群Bにより1または2ヶ所以上置換されていてもよいチエニル、または置換基群Bにより1または2ヶ所以上置換されていてもよいジベンゾチエニル(置換基群B:アルキル、アルキルオキシ、アリールオキシ、ハロゲン、ヒドロキシ、およびベンジル)]で示される化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

本明細書中、「溶媒和物」とは、例えば有機溶媒との溶媒和物、水和物等を包含する。有機溶媒との溶媒和物を形成する時は、任意の数の有機溶媒分子と配位していてもよい。水和物を形成する時は、任意の数の水分子と配位していてもよい。水和物が好ましい。

20 「本発明化合物」という場合には、製薬上許容される塩、またはその溶媒和物も包含される。例えば、アルカリ金属(リチウム、ナトリウム、カリウム等)、アルカリ土類金属(マグネシウム、カルシウム等)、アンモニウム、有機塩基およびアミノ酸との塩、または無機酸(塩酸、臭化水素酸、リン酸、硫酸等)、および有機酸(酢酸、クエン酸、マレイン酸、フマル酸、ベンゼンスルホン酸、パラトルエンスルホン酸等)との塩が挙げられる。これらの塩は、通常行われる方法によって形成させることができる。

プロドラッグは、化学的または代謝的に分解できる基を有する本発明化合物の

誘導体であり、加溶媒分解によりまたは生理学的条件下でインビボにおいて薬学 的に活性な本発明化合物となる化合物である。適当なプロドラッグ誘導体を選択 する方法および製造する方法は、例えばDesign of Prodrugs, Elsevier, Amsterdam 1985に記載されている。本発明化 合物がカルボキシル基を有する場合は、もとになる酸性化合物と適当なアルコー ルを反応させることによって製造されるエステル誘導体、またはもとになる酸性 化合物と適当なアミンを反応させることによって製造されるアミド誘導体のよう なプロドラッグが例示される。プロドラッグとして特に好ましいエステルとして は、メチルエステル、エチルエステル、n-プロピルエステル、イソプロピルエ 10 ステル、nープチルエステル、イソブチルエステル、tertーブチルエステル、 モルホリノエチルエステル、N、N-ジエチルグリコールアミドエステル等が挙 げられる。本発明化合物がヒドロキシル基を有する場合は、例えばヒドロキシル 基を有する化合物と適当なアシルハライドまたは適当な酸無水物とを反応させる ことに製造されるアシルオキシ誘導体のようなプロドラッグが例示される。プロ ドラッグとして特に好ましいアシルオキシとしては、一〇〇〇〇2H5、一〇〇〇 15 (t-Bu), $-OCOC_{15}H_{31}$, -OCO(m-COONa-Ph), -O $COCH_2CH_2COONa_-OCOCH(NH_2)CH_3_-OCOCH_2N(C$ H₃)₂等が挙げられる。本発明化合物がアミノ基を有する場合は、アミノ基を有 する化合物と適当な酸ハロゲン化物または適当な混合酸無水物とを反応させるこ 20 とにより製造されるアミド誘導体のようなプロドラッグが例示される。プロドラ ッグとして特に好ましいアミドとしては、-NHCO(CH₂)₂₀CH₃、-N HCOCH (NH₂) CH₃等が挙げられる。

また、本発明化合物は特定の異性体に限定するものではなく、全ての可能な異性体やラセミ体を含むものである。

175

25 本発明化合物は後述する実験例の記載の通り、優れたCRTH2受容体拮抗作用を示す。したがって、本発明医薬組成物は、好酸球が関与していると考えられるアレルギー性疾患、例えば喘息、アレルギー性鼻炎、アレルギー性皮膚炎、丘

疹性皮膚炎(糸状虫症など)、脈管炎、多発性動脈炎、皮膚好酸性肉芽腫、自己免疫疾患(例えば多発性硬化症、移植片拒絶など)、好酸球性肺症、組織球増殖症(Histiocytosis)、肺炎、肺払子菌(アスペルギルス)症、胸膜炎、サルコイドーシス、特発性肺線維症、好酸球増多症、フィラリア症、住血吸虫症、旋毛虫症、コクシジオイデス症、結核、気管支癌、リンパ腫、ホジキン病等の疾患の予防および/または治療剤として使用しうる。

本発明化合物を、上記の疾患の治療を目的としてヒトに投与する場合は、散剤、顆粒剤、錠剤、カプセル剤、丸剤、液剤等として経口的に、または注射剤、坐剤、経皮吸収剤、吸入剤等として非経口的に投与することができる。また、本化合物の有効量にその剤型に適した賦形剤、結合剤、湿潤剤、崩壊剤、滑沢剤等の医薬用添加剤を必要に応じて混合し、医薬製剤とすることができる。注射剤の場合には、適当な担体と共に滅菌処理を行って製剤とする。

投与量は疾患の状態、投与ルート、患者の年齢、または体重によっても異なるが、成人に経口で投与する場合、通常 $0.1\sim100\,\mathrm{mg/kg/H}$ であり、好ましくは $1\sim20\,\mathrm{mg/kg/H}$ である。

実施例

10

15

以下に実施例および試験例を挙げて本発明をさらに詳しく説明するが、本発明はこれらにより限定されるものではない。

20 実施例中、以下の略号を使用する。

Me:メチル

Et:エチル

iPr:イソプロピル

Ph:フェニル

25 Boc: t - ブトキシカルボニル

THF:テトラヒドロフラン

MeOH: メタノール

naphthyl:ナフチル

Benzyl:ベンジル

Thienyl: Fx=n

Biphenyl: ピフェニル

5 Dibenzothiophene:ジベンゾチオフェン

実施例1 化合物 I a - 9、化合物 I a - 51

$$H_2$$
 第1工程
 H_2 第1工程
 H_3 第2工程
 H_3 H_3

10 第1工程

トリプタミン(1)(20g、0.125mol)のジオキサン(160mL) ー水(80mL)溶液に、氷冷下、炭酸ナトリウム(39.7g、0.374m o1)と二炭酸ジーtertープチル(31.5mL、0.137mol)のジ オキサン(20mL)溶液を加え、2.5時間攪拌した。反応混合物に2mol / L塩酸を加えた後、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄、乾燥、 濃縮し、42.49gの残渣を得た。このうち7.0gをメチルエチルケトン(1 50mL)に溶解し、炭酸カリウム(11.15g、80.7mmol)、プロ モ酢酸メチル(10.2mL、0.108mol)を加え、48時間加熱還流した。酢酸エチルで希釈し、希塩酸、炭酸水素ナトリウム水溶液で順次洗浄、乾燥、 20 濃縮後、残渣をシリカゲルクロマトグラフィー(ヘキサンー酢酸エチル、2:1) で精製し、化合物(2)(4.57g;収率51%)を得た。

第2工程

化合物 (2) (1.5g、4.5 mmol) の塩化メチレン (10 m L) 溶液 に、トリフルオロ酢酸 (10 m L) を加え、室温で10分間攪拌した。反応混合 物を減圧濃縮した後、2mo1/L炭酸ナトリウム水溶液で中和し、酢酸エチル で抽出した。有機層を飽和食塩水で洗浄、乾燥、濃縮し、983mgの残渣を得 た。このうち120mgを塩化メチレン(3mL)溶液に溶解し、トリエチルア ミン (0.108mL、0.775mmol)、塩化4-フルオロベンゼンスル ホニル (121 mg、0.622 mmo1) を加え、室温で2時間攪拌した。酢 酸エチルで希釈し、希塩酸、炭酸水素ナトリウム水溶液で順次洗浄、乾燥、濃縮 した。残渣をシリカゲルクロマトグラフィー(ヘキサン-酢酸エチル、3:2) で精製し、化合物(3)(99mg;収率46%)を得た。

第3工程

10

25

化合物 (3) (99mg、0.254mmol) のMeOH (1.5mL) -THF (1.5 mL) 溶液に 2 m o 1 / L 水酸化ナトリウム溶液 (0.76 m L、 1.52mmol) を加え、室温で5.5時間攪拌した。希塩酸を加え酸性とし た後、酢酸エチルで抽出し、有機層を水および飽和食塩水で洗浄、乾燥、濃縮し、 化合物 I a - 9 (79 mg;収率83%)を得た。物理恒数は表12に示す。 第4工程

化合物 (3) (132 mg、0.339 mmo1) のN, N-ジメチルホルム アミド (2 m 1) 溶液に、臭化ベンジル (4 8 μ L、0.407 m m ο 1)、炭 酸カリウム (70mg、0.509mmo1) を加え、50℃で21.5時間攪 20 拌した。反応混合物を水に注ぎ、酢酸エチルで抽出、有機層を飽和食塩水で洗浄、 乾燥、濃縮した。残渣をMeOH(2mL)-THF(2mL)に溶解し、2m o 1 / L 水酸化ナトリウム溶液 (1.1 m L、2.2 m m o 1) を加え、室温で 5時間攪拌した。水で希釈し、エーテルで洗浄した後、水層に希塩酸を加え酸性 とし、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄、乾燥、濃縮 し、化合物 I a - 5 1 (175 mg;収率99%) を得た。物理恒数は以下の表 に示す。

実施例2 化合物 I b-20、化合物 I b-29

5 第1工程

特開昭 6 2 - 1 9 8 6 5 9 に記載されている(3 R) - 3 - アミノ- 1 , 2 , 3 , 4 - テトラヒドロカルバゾール(4)(3 . 3 3 g、 1 7 . 9 m m o 1)の 1 , 4 - ジオキサン(3 3 m L)溶液に二炭酸ジー tert-ブチル(4 . 1 g、 1 8 . 8 m m o 1)を加え室温で 2 時間攪拌した。減圧濃縮し得られた残渣をメ 10 チルエチルケトン(5 2 m L)に溶解し、炭酸カリウム(4 . 5 2 g、 3 2 . 7 m m o 1)、塩化ベンジルトチエチルアンモニウム(0 . 7 4 g、 3 . 2 6 m m o 1)、プロモ酢酸メチル(5 . 0 0 g、 3 2 . 7 m m o 1)を加え 4 時間加熱 還流した。不溶物を濾過し減圧濃縮、残渣を酢酸エチルで希釈し水洗、乾燥、濃縮した。残渣をヘキサンーエーテルから結晶化し、化合物(5)(4 . 3 6 g; 収率 6 8 %、融点 1 2 7 - 1 3 0 ℃)を得た。

第2工程

化合物(5)(4.25g、11.9mmol)の酢酸エチル(12mL)溶液に4mol/L塩酸-酢酸エチル溶液(12mL、48.0mmol)を加え、室温で2時間攪拌した。析出した結晶を濾過、酢酸エチルで洗浄し化合物(6)(3.44g、収率98%)を得た。

第3工程

20

化合物 (6) (295 mg、1.0 mmol) のTHF (6 mL) 溶液にトリ

エチルアミン (0.30g、3.0mmol)、塩化2-チオフェンスルホニル (296mg、1.62mmol)を加え、室温で16時間攪拌した。反応液を 水で希釈し、酢酸エチルで抽出、有機層を希塩酸、水で洗浄、硫酸マグネシウム で乾燥、濃縮した。得られた残渣をシリカゲルクロマトグラフィー (ヘキサンー酢酸エチル、1:1)で精製し、化合物 (7) (379mg;収率94%)を得た。

第4工程

化合物 (7) (371 mg、0.917 mmol)のMeOH(1.2 mL)
--THF(1.2 mL)溶液に、4 mol/L水酸化ナトリウム水溶液(0.6
10 mL、2.4 mmol)を加え、室温で2時間攪拌した。反応液を水で希釈し、希塩酸を加え酸性とした後、酢酸エチルで抽出し、抽出液を水で洗浄した。硫酸マグネシウムで乾燥、減圧濃縮し、化合物(+)-Ib-20(343 mg;収率91%)を得た。

第5工程

25 実施例3 化合物 I c - 1 4

第1工程

化合物(8)(610mg、3.28mmo1、シンセシス,443(1995) (199

第2工程

化合物(9)(800mg、2.32mmo1)のメチルエチルケトン(8m L)溶液に、炭酸カリウム(0.96g、6.96mmo1)、塩化ベンジルトチエチルアンモニウム(106mg、0.464mmo1)、プロモ酢酸メチル(1.06g、6.96mmo1)を加え2.5時間加熱環流した。反応液を水で希釈し、トルエンで抽出、抽出液を水で洗浄、乾燥、濃縮した。得られた残渣をシリカゲルクロマトグラフィー(トルエンー酢酸エチル、5:1)で精製した。生成物をMeOH(2.8ml)ーTHF(1.4ml)に溶解した。4mol/上水酸化ナトリウム水溶液(1.4mL、5.6mmo1)を加え、室温で2時間攪拌した。反応液を水で希釈し希塩酸を加え酸性とした後、酢酸エチルで抽出し、抽出液を水で洗浄、乾燥、濃縮した。残渣をヘキサンー酢酸エチルから結晶化し、化合物Ic-14(717mg;収率79%)を得た。物理恒数は以下の表に示す。

25 実施例4 化合物 I d - 2

第1工程

ジャーナル オブ オーガニックケミストリー 62 2676 (1997) 5 に記載の方法に準じて調製した化合物 (10) (1.25g、4.59mmol) のメチルエチルケトン (20mL) 溶液に、炭酸カリウム (1.9g、13.77mmol)、プロモ酢酸メチル (1.74mL、18.36mmol)、塩化ベンジルトリエチルアンモニウム (209mg、0.92mmol)を加え、20時間加熱還流した。酢酸エチルで希釈し、水、飽和食塩水で順次洗浄、乾燥、10 濃縮後、残渣をシリカゲルクロマトグラフィー (ヘキサンー酢酸エチル、3:1)で精製し、化合物 (11) (1.18g; 収率75%)を得た。

第2工程

化合物 (11) (355 mg、1.03 mmol) のエーテル (0.5 mL) 溶液に、4mo1/L塩酸-酢酸エチル溶液(2.06mL,8.24mmo1) を加え、室温で3時間攪拌した。析出した塩酸塩をろ過、エーテルで洗浄し、T 15 HF (3 m L) に溶解した。この溶液にトリエチルアミン (0.37 m L、2. 66mmo1)、塩化4-フルオロベンゼンスルホニル (365mg、1.88 mmo1) を加え、室温で16時間攪拌した。酢酸エチルで希釈し、希塩酸、炭 酸水素ナトリウム水溶液で順次洗浄、乾燥、濃縮した。残渣をシリカゲルクロマ 20 トグラフィー(ヘキサン-酢酸エチル、2:1)で精製した。生成物をMeOH (8 m L) - T H F (4 m L) に溶解した。1 m o l / L 水酸化ナトリウム溶液 (1.8mL、1.8mmol) を加え、室温で16時間攪拌した。反応混合物 を水で希釈し、エーテルで洗浄した。水層に希塩酸を加え、析出した結晶をろ過、 水洗、乾燥し、化合物 I d-2 (192 mg;収率48%)を得た。物理恒数は 25 以下の表に示す。

実施例5 化合物 I e - 2、化合物 I e - 5

$$H_{\text{CO}_2\text{Me}}$$
 第1工程 第2工程 第2工程 第2工程 第2工程 第2工程 13 $H_{\text{CO}_2\text{Me}}$ Y= H: Ie-2 Y= Me: Ie-5

5 第1工程

特開平8-169879に記載の方法に準じて調製した化合物(12)(509mg、2mmol)のTHF(10mL)溶液に、トリエチルアミン(0.84mL、6mmol)、塩化4-フルオロベンゼンスルホニル(506mg、2.6mmol)を加え、室温で19時間攪拌した。酢酸エチルで希釈し、希塩酸、 炭酸水素ナトリウム水溶液で順次洗浄、乾燥、濃縮した。残渣をシリカゲルクロマトグラフィー(トルエン-酢酸エチル、4:1)で精製し、化合物(13)(725mg;収率88%)を得た。

第2工程

化合物(13)(309mg、0.75mmo1)のMeOH(6mL)-T

HF(3mL)溶液に1mol/L水酸化ナトリウム溶液(1.9mL、1.9 mmol)を加え、室温で21時間攪拌した。希塩酸を加え酸性とした後、酢酸エチルで抽出し、有機層を水および飽和食塩水で洗浄、乾燥、濃縮した。残渣を酢酸エチルーヘキサンより結晶化し、化合物Ie-2(287mg;収率96%)を得た。物理恒数は以下の表に示す。

20 第3工程

化合物 (13) (363mg、0.88mmol) のN, N-ジメチルホルムアミド(3.6ml) 溶液に、ヨウ化メチル(250mg、1.76mmol)、炭酸カリウム(182mg、1.32mmol) を加え、室温で19時間攪拌した。反応混合物を水に注ぎ、酢酸エチルーへキサン(1:2) で抽出、有機層を

飽和食塩水で洗浄、乾燥、濃縮した。残渣をMeOH-THF(2:1)に溶解し、1mol/L水酸化ナトリウム溶液(1.8mL、1.8mmol)を加え、室温で26時間攪拌した。水で希釈し、エーテルで洗浄した後、水層に希塩酸を加え酸性とし、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄、乾燥、濃縮した後、残渣をヘキサンより結晶化し、化合物Ie-5(293mg;収率84%)を得た。物理恒数は以下の表に示す。

実施例6 化合物 I h-1

第1工程

10

15

パラニトロフェニルヒドラジン (12) (15.0g、97.9mmol)とシクロヘキサノン (10.15ml、97.9mmol)の酢酸 (45ml)混合液を60℃で20分加熱攪拌した。次に、反応混合物に濃塩酸を15ml加え、さらに、1時間30分加熱還流した。反応混合物に水を50ml加え、10分間加熱還流して、室温まで冷却した。析出した結晶をろ過、水でよく洗浄後、エタノールー水から再結晶し6-ニトロテトラヒドロカルバゾール (13)を17.0g (収率80%)を得た。

20 第2工程

化合物 (13) (6.80g、31.44mmol)、プロモ酢酸メチル (8.

93m1、94.32mmo1)、炭酸カリウム(13g、94mmo1)、塩 化ベンジルトリエチルアンモニウム(1.43g、6.28mmo1)のメチル エチルケトン(100ml)の混合液を1時間加熱還流した。減圧濃縮し得られ た残渣を酢酸エチルで希釈し水洗、乾燥、濃縮した。残渣を酢酸エチルーへキサ ンから再結晶し、化合物(14)(7.93g;収率87%)を得た。

第3工程

化合物(14)(7.92g、27.47mmo1)、水酸化パラジウム(20% wt、1.0g)のTHF(70ml)及びMeOH(14ml)の混合液を水10 素雰囲気下に、7時間攪拌した。触媒を除いた後、減圧濃縮した。得られた残渣をシリカゲルクロマトグラフィー(ヘキサンー酢酸エチル、1:1)で精製し、化合物(15)(5.89g;収率83%)を得た。

第4工程

化合物(15)(3.89g、15.0mmol)のTHF(30ml)溶液にトリエチルアミン(4.18ml、30mmol)、塩化4-フルオロベンゼンスルフォニル(3.07g、15.8mmol)を加え、室温で1時間攪拌した。反応液に希塩酸を加え、酢酸エチルで抽出、有機層を水洗、乾燥、濃縮した。得られた残渣を酢酸エチルーヘキサンから結晶化し、化合物(16)(5.93g;
 収率95%)を得た。

第5工程

化合物 (16) (350 mg、0.84 mmol)、MeOH (4 ml) - TH F (2 ml) 溶液に 2 mol/L水酸化ナトリウム水溶液 (1 mL、2 mmol) を加え、室温で15時間攪拌した。反応液に希塩酸を加え、酢酸エチルで抽出した。有機層を水洗、乾燥、濃縮した。得られた残渣を酢酸エチルーへキサンから結晶化し、化合物 I h-1 (268 mg; 収率79%)を得た。物理恒数は以下

の表に示す。

実施例 1 ~ 6 に記載の方法に従って、以下の表に示す化合物を合成することができる。

(表1)

R⁵ (CH₂)_n N S Ar

		H'R15\R1											
No	R¹	R ²	R ⁴	R ⁵	R ⁶	R ⁷	R15	n	Y	Ar			
Ia-1	соон	H	Н	Н	Н	Н	Н	1	Н	C_6H_5			
Ia-2	соон	Н	Н	Н	Н	Н	Н	1	Н	4-F-C ₆ H ₄			
Ia-3	соон	Н	Н	Н	Н	Н	Н	1	Me	C ₆ H ₅			
Ia-4	соон	Н	Н	Н	Н	Н	Н	1	Me	4-F-C ₆ H ₄			
Ia-5	соон	Н	Н	Н	H	Н	H	1	CH ₂ C ₆ H ₅	C ₆ H ₅			
Ia-6	соон	H	Н	Н	H	Н	Н	1	$\mathrm{CH_{2}C_{6}H_{5}}$	4-F-C ₆ H ₄			
Ia-7	соон	Н	Н	Н	H	Н	Н	2	Н	C_6H_5			
Ia-8	СООН	Н	Н	Н	H	H	Н	2	Н	2-F-C ₆ H ₄			
Ia-9	соон	Н	Н	Н	Н	H	Н	2	H	4-F-C ₆ H ₄			
Ia-10	соон	н	Н	Н	Н	Н	Н	2	H	2-Me- C ₆ H ₄			
Ia-11	соон	Н	Н	Н	Н	Н	Н	2	H	4-Me- C ₆ H ₄			
Ia-12	соон	н	Н	Н	Н	Н	Н	2	Н	4-OMe- C ₆ H ₄			
Ia-13	СООН	Н	Н	H	Н	H	Н	2	H	2-thienyl			
Ia-14	СООН	Н	н	H	Н	Н	Н	2	H	3-thienyl			
Ia-15	соон	н	Н	Н	Н	н	Н	2	Н	4-F- biphenyl			
Ia-16	соон	н	Н	Н	H	Н	Н	2	Н	C ₆ H ₄ -4- OC ₆ H ₅			
Ia-17	соон	Н	н	Н	Н	Н	Н	2	Н	dibenzoth iophene- 3-yl			
Ia-18	СООН	Me	Н	Н	H	H	Н	2	H	C_6H_5			
Ia-19	СООН	Me	Н	Н	H	H	Н	2	H	2-F-C ₆ H ₄			
Ia-20	СООН	Me	Н	Н	Н	Н	Н	2	Н	4-F-C ₆ H ₄			
Ia-21	СООН	Me	H	Н	Н	Н	Н	2	Н	2-thienyl			
Ia-22	СООН	Me	Н	H	Н	Н	Н	2	Н	3-thienyl			
Ia-23	СООН	Н	H	Н	Н	Me	Н	2	H	C_6H_5			
Ia-24	СООН	Н	Н	H	Н	Me	Н	2	Н	2-F-C ₆ H ₄			
Ia-25	соон	Н	Н	Н	Н	Me	Н	2	Н	4-F-C ₆ H ₄			

(表2)

 $\begin{array}{c|c} R^5 & C_2 \\ \hline \\ R^6 & R^7 \end{array}$

	- 		,			·		R/R	15 R1	
No	R ¹	R ²	R4	R ⁵	R ⁶	R ⁷	R15	n	Y	Ar
Ia-26	СООН	Н	Н	H	Н	Me	Н	2	Н	4-OMe- C ₆ H ₄
Ia-27	СООН	H	Н	Н	Н	Me	Н	2	Н	3-thienyl
Ia-28	СООН	H	H	ОМе	Н	Н	Н	2	Н	4-F-C ₆ H ₄
Ia-29	СООН	H	Н	OMe	Н	Н	Н	2	Н	2-thienyl
Ia-30	СООН	H	H	Cl	Н	Н	Н	2	Н	C ₆ H ₅
Ia-31	СООН	H	Н	Cl	Н	Н	Н	2	Н	2-F-C ₆ H ₄
Ia-32	СООН	Н	Н	Cl	Н	Н	Н	2	Н	4-F-C ₆ H ₄
Ia-33	СООН	Н	Н	Cl	Н	Н	Н	2	Н	4-OMe- C ₆ H ₄
Ia-34	СООН	H	H	F	H	Н	H	2	Н	C ₆ H ₅
Ia-35	СООН	H	Н	F	Н	H	Н	2	Н	2-F-C ₆ H ₄
Ia-36	СООН	H	H	F	H	H	H	2	Н	4-F-C ₆ H ₄
Ia-37	СООН	H	Н	Н	F	H	Н	2	H	4-F-C ₆ H ₅
Ia-38	СООН	Н	Н	Н	H	H	Н	2	Me	C_6H_5
Ia-39	СООН	Н	Н	Н	H	H	Н	2	Me	4-F-C ₆ H ₄
Ia-40	СООН	Н	Н	Н	Н	H	Н	2	Me	3-thienyl
Ia-41	СООН	Me	H	Н	H	Н	Н	2	Me	4-F-C ₆ H ₄
Ia-42	СООН	H	H	Н	Н	Me	Н	2	Me	4-F-C ₆ H ₄
Ia-43	СООН	H	H	ОМе	Н	H	H	2	Me	4-F-C ₆ H ₄
Ia-44	СООН	H	H	Cl	Н	H	H	2	Me	4-F-C ₆ H ₄
Ia-45	СООН	H	Н	F	Н	H	H	2	Me	4-F-C ₆ H ₄
Ia-46	СООН	H	H	H	F	H	Н	2	Me	4-F-C ₆ H ₅
Ia-47	соон	Н	Н	Н	н	Н	Н	2	CH ₂ CH=CH	4-F-C ₆ H ₄
Ia-48	соон	H	Н	Н	Н	H	Н	2	iPr	4-F-C ₆ H ₄
Ia-49	СООН	H	Н	H	Н	H	Н	2	C_6H_5	4-F-C ₆ H ₄
Ia-50	СООН	H	H	Н	Н	H	Н	2	CH₂C ₆ H ₅	C_6H_5
Ia-51	СООН	H	H	Н	Н	Н	H -	2	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
Ia-52	CONH Ms	Н	н	Н	н	Н	Н	2	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄

(表3)

 R^{5} R^{6} R^{7} R^{15} R^{15} R^{15} R^{15} R^{15} R^{15} R^{15} R^{15} R^{15} R^{15}

	R _{R15} R1											
No	R¹	R ²	R4	R ⁵	R ⁶	R ⁷	R15	n	Y	Ar		
Ia-53	соон	Н	Н	Н	Н	Н	H	2	CH ₂ C ₆ H ₅	4-OMe- C ₆ H ₄		
Ia-54	соон	H	H	H	H	H	н	2	$\mathrm{CH_{2}C_{6}H_{5}}$	3-thienyl		
Ia-55	соон	Me	H	н	Н	Н	Н	2	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄		
Ia-56	соон	H	Н	Н	Н	Me	Н	2	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄		
Ia-57	соон	Н	H	OMe	Н	Н	Н	2	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄		
Ia-58	соон	Н	Н	Cl	Н	H	H	2	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄		
Ia-59	соон	H	Н	F	Н	Н	Н	2	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄		
Ia-60	соон	Н	Н	Н	F	Н	Н	2	CH ₂ C ₆ H ₅	4-F-C ₆ H ₅		
Ia-61	соон	Н	Н	Η	H	Н	Н	2	CH ₂ C ₆ H ₄ -2- Me	4-F-C ₆ H ₄		
Ia-62	соон	Н	Н	Н	Н	Н	Н	2	CH ₂ C ₆ H ₄ -4- OMe	4-F-C ₆ H ₄		
Ia-63	соон	Н	H	Н	H	H	Н	2	CH ₂ C ₆ H ₄ -4- NO ₂	4-F-C ₆ H ₄		
Ia-64	соон	Н	Н	Н	H	H	Н	2	CH ₂ -1- naphthyl	4-F-C ₆ H ₄		
Ia-65	соон	Н	H	H	H	Н	Н	2	CH ₂ -2- thienyl	4-F-C ₆ H ₄		
Ia-66	соон	Н	Н	H	H	Н	Н	2	CH ₂ CH ₂ C ₆ H	4-F-C ₆ H ₄		
Ia-67	соон	Η	H	Н	H	H	Н	3	H	C_6H_5		
Ia-68	СООН	H	Н	Н	н	Н	H	3	Н	$2\text{-F-C}_6\mathrm{H}_4$		
Ia-69	соон	H	H	Н	Н	Н	Н	3	Н	4-F-C ₆ H ₄		
Ia-70	соон	Н	н	Н	Н	H	H	3	H	2-Me- C ₆ H ₄		
Ia-71	соон	Н	н	Н	Н	H	Н	3	Н	4-Me- C ₆ H ₄		
Ia-72	соон	Н	н	Н	н	Н	Н	3	Н	4-OMe- C ₆ H ₄		
Ia-73	соон	Н	Н	H	Н	H	Н	3	Н	2-thienyl		
Ia-74	соон	Н	Н	Н	Н	н	Н	3	Н	C ₆ H ₄ -4- OC ₆ H ₅		
Ia-75	соон	Me	H	Н	Н	H	Н	3	Н	C_6H_5		
Ia-76	соон	Me	H	Н	Н	Н	Н	3	Н	4-F-C ₆ H ₄		
Ia-77	соон	Н	Н	Cl	H	Н	Н	3	Н	C ₆ H ₅		
Ia-78	COOH	Н	Н	Cl	Н	Н	Н	3	Н	2-F-C ₆ H ₄		

(表4)

 R^{5} R^{4} R^{5} R^{6} R^{7} R^{7

	R^{7} R^{15} R^{1}										
No	R¹	R ²	R4	R ⁵	R ⁶	R ⁷	R15	n	Y	Ar	
Ia-79	СООН	Н	Н	Cl	H	Н	Н	3	Н	4-F-C ₆ H ₄	
Ia-80	СООН	H	Н	Н	H	Н	Н	3	Me	C ₆ H ₅	
Ia-81	СООН	Н	Н	Н	Н	Н	Н	3	Me	4-F-C ₆ H ₄	
Ia-82	соон	Н	Н	Н	Н	Н	Н	3	Me	3-thienyl	
Ia-83	СООН	Me	Н	Н	H	Н	Н	3	Me	4-F-C ₆ H ₄	
Ia-84	СООН	Н	H	Н	H	Н	H	3	CH ₂ C ₆ H ₅	C ₆ H ₅	
Ia-85	СООН	Н	H	Н	Н	Н	Н	3	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄	
Ia-86	СООН	Н	Н	Н	Н	Н	Н	3	CH ₂ C ₆ H ₅	3-thienyl	
Ia-87	соон	Н	Н	H	Н	Н	Н	2	CH ₂ CH ₂ C ₆ H	4-Me- C ₆ H ₄	
Ia-88	СООН	H	H	Н	H	H	Н	2	Н	4-Cl-C ₆ H ₄	
Ia-89	соон	Н	Н	F	Н	Н	Н	2	Н	4-OMe- C ₆ H ₄	
Ia-90	соон	H	Н	F	H	H	Н	2	Н	2-thienyl	
Ia-91	СООН	Н	Н	Н	Н	Н	Н	2	CH ₂ CH ₂ C ₆ H	2-thienyl	
Ia-92	соон	н	Н	Cl	Н	Н	Н	2	CH ₂ CH ₂ C ₆ H	4-F-C ₆ H ₄	
Ia-93	соон	Н	H	H	Н	Н	Н	2	CH₂CH=CH C ₆ H ₆	4-F-C ₆ H ₄	
Ia-94	соон	Н	Н	Н	Н	Н	Н	2	CH_2CH_2C $H_2C_6H_5$	4-F-C ₆ H ₄	
Ia-95	соон	Н	Н	F	Н	Н	Н	2	Н	4-Me- C ₆ H ₄	
Ia-96	СООН	Н	Н	F	Н	Н	H	2	H	2- naphthyl	
Ia-97	соон	H	Н	F	H	H	Н	2	Н	4-NO ₂ - C ₆ H ₄	
Ia-98	СООН	Н	Н	F	Н	H	Н	2	Н	1- naphthyl	
Ia-99	СООН	Н	Н	F	Н	H	Н	2	Н	4 -CN- C_6H_4	
Ia-100	СООН	H	Н	ОН	Н	H	H	2	Н	2-F-C ₆ H ₄	
Ia-101	СООН	H	F	Н	Н	H	H	2	H	4-F-C ₆ H ₄	
Ia-102	соон	Н	F	Н	Н	H	Н	2	Me	4-F-C ₆ H ₄	
Ia-103	соон	H	F	H	H	H	Н	. 2	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄	
Ia-104	COOH	H	Н	Cl	H	H	Me	2	H	4-F-C ₆ H ₄	

(表 5)
$$\begin{array}{c} R^{5} & C_{2} \\ R^{6} & R^{2} \\ R^{7}_{B15} & R^{1} \end{array}$$

No	\mathbb{R}^1	R ²	R4	$ m R^5$	\mathbb{R}^6	R ⁷	R15	n	Y	Ar
Ia-105	СООН	Н	Н	CI	Н	Н	Me	2	Me	4-F-C ₆ H ₄
Ia-106	СООН	H	Н	Cl	Н	Н	Me	2	$\mathrm{CH_{2}C_{6}H_{5}}$	4-F-C ₆ H ₄

(表 7)
$$R^{5}$$
 $(CH_{2})_{y}$ $(CH_{2})_{p}$ $(CH$

				`R1	_				
No	R ¹	R ⁵	R ⁶	R^7	у	m	p	Y	Ar
Ib-21	СООН	H	Н	Н	1	2	0	Н	3-thienyl
Ib-22	СООН	Н	H	н	1	2	0	Н	5-benzyl-2- thienyl
Ib-23	СООН	H	Н	H	1	2	0	Me	C_6H_5
Ib-24	СООН	H	H	Н	1	2	0	Me	2-F-C ₆ H ₄
Ib-25	СООН	H	H	Н	1	2	0	Me	4-F-C ₆ H ₄
Ib-26	СООН	Н	Н	Н	1	2	0	Me	4-Cl-C ₆ H ₄
Ib-27	СООН	Н	H	Н	1	2	0	Me	4-Me-C ₆ H ₄
Ib-28	соон	Н	Н	Н	1	2	0	Me	$4 \cdot OMe - C_6H_4$
Ib-29	СООН	H	H	Н	1	2	0	Me	2-thienyl
Ib-30	СООН	H	H	H	1	2	0	Me	3-thienyl
Ib-31	СООН	Н	H	H	1	2	0	Me	5-benzyl-2- thienyl
Ib-32	СООН	Н	H	H	1	2	0	Et	4-F-C ₆ H ₄
Ib-33	соон	Н	Н	Н	1	2	0	Et	4-OMe - C_6H_4
Ib-34	СООН	H	H	Н	1	2	0	CH₂C ₆ H ₅	4-Me-C ₆ H ₄
Ib-35	соон	CI	H	H	1	2	0	Н	$\mathrm{C_6H_5}$
Ib-36	соон	Cl	H	H	1	2	0	Н	4-F-C ₆ H ₄
Ib-37	соон	Cl	Н	Н	1	2	0	Н	4-Me-C ₆ H ₄
Ib-38	соон	Cl	Н	Н	1	2	0	Н	4-OMe- C ₆ H ₄
Ib-39	СООН	C1	H	H	1	2	0	Н	3-thienyl
Ib-40	СООН	Cl	Н	H	1	2	0	Me	C_6H_5
Ib-41	соон	Cl	Н	H	1	2	0	Me	4-F-C ₆ H ₄
Ib-42	СООН	Cl	H	Н	1	2	0	Me	4-Me-C ₆ H ₄
Ib-43	соон	Cl	Н	Н	1	2	0	Me	4-OMe- C ₆ H ₄
Ib-44	соон	Cl	Н	Н	1	2	0	Me	3-thienyl
Ib-45	соон	Cl	Н	Н	1	2	0	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
Ib-46	соон	F	H	Н	1	2	0	H	4-F-C ₆ H ₄
Ib-47	соон	F	Н	Н	1	2	0	Me	4-F-C ₆ H ₄

		H		`R ¹					
No	R ¹	R ⁵	R^6	\mathbb{R}^7	у	m	p	Y	Ar
Ib-48	соон	F	Н	H	1	2	0	$\mathrm{CH_{2}C_{6}H_{5}}$	4-F-C ₆ H ₄
Ib-49	соон	Н	Н	Н	2	1	0	H	C_6H_5
Ib-50	соон	H	Н	Н	2	1	0	H	2-F-C ₆ H ₄
Ib-51	соон	Н	Н	Н	2	1	0	H	4-F-C ₆ H ₄
Ib-52	соон	H	Н	H	2	1	0	H	4-Cl-C ₆ H ₄
Ib-53	соон	H	H	Н	2	1	0	H	4-Me-C ₆ H ₄
Ib-54	соон	Н	H	Н	2	1	0	Н	4-OMe - C_6H_4
Ib-55	соон	H	Н	H	2	1	0	H	2-thienyl
Ib-56	соон	H	Н	H	2	1	0	Н	3-thienyl
Ib-57	соон	Н	Н	H	2	1	0	Me	C_6H_5
Ib-58	соон	H	H	H	2	1	0	Me	4-F-C ₆ H ₄
Ib-59	соон	H	H	H	2	1	0	Me	4-Me-C ₆ H ₄
Ib-60	соон	H	H	H	2	1	0	Me	2-thienyl
Ib-61	соон	H	H	Н	2	1	0	CH₂C ₆ H ₅	4 -F- C_6H_4
Ib-62	соон	Н	Н	Н	2	2	0	Н	C_6H_5
Ib-63	соон	Н	H	H	2	2	0	H	$4-F-C_6H_4$
Ib-64	соон	H	Н	Н	2	2	0	Н	4-Cl-C ₆ H ₄
· Ib-65	соон	H	Н	H	2	2	0	Н	4-Me-C ₆ H ₄
Ib-66	соон	Н	Н	H	2	2	0	Н	4-OMe- C ₆ H ₄
Ib-67	соон	H	Н	H	2	2	0	H	2-thienyl
Ib-68	соон	H	Н	H	2	2	0	Me	C_6H_5
Ib-69	соон	Н	н	Н	2	2	0	Me	4-F-C ₆ H ₄
Ib-70	соон	H	H	Н	2	2	0	Me	4-Cl-C ₆ H ₄
Ib-71	соон	H	H	Н	2	2	0	Me	4-Me-C ₆ H ₄
Ib-72	соон	Н	Н	Н	2	2	0	Me	$^{4 ext{-OMe-}}_{ ext{c}_{6} ext{H}_{4}}$
Ib-73	соон	Н	H	Н	2	2	0	Me	2-thienyl
Ib-74	СООН	H	H	H	2	2	0	CH ₂ C ₆ H ₅	C_6H_5

(表 9)
$$R^{5}$$
 $(CH_{2})_{y}$ $(CH_{2})_{p}$ $(CH$

	_			'R'					
No	R ¹	R ⁵	R ⁶	R ⁷	у	m	р	Y	Ar
Ib-75	СООН	H	Н	Н	2	2	0	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
Ib-76	СООН	Н	Н	Н	0	2	1	Н	C_6H_5
- Ib-77	СООН	H	H	Н	0	2	1	Н	4-F-C ₆ H ₄
Ib-78	СООН	Н	Н	Н	0	2	1	H	4-Cl-C ₆ H ₄
Ib-79	СООН	Н	Н	H	0	2	1	Н	4-Me-C ₆ H ₄
Ib-80	СООН	Н	Н	Н	0	2	1	Н	4-OMe - C_6H_4
Ib-81	СООН	H	H	H	0	2	1	Н	2-thienyl
Ib-82	СООН	H	H	н	0	2	1	Me	C_6H_5
Ib-83	СООН	H	Н	Н	0	2	1	Me	4-F-C ₆ H ₄
Ib-84	СООН	Н	H	Н	0	2	1	Me	4-Cl-C ₆ H ₄
Ib-85	соон	H	Н	Н	0	2	1	Me	$4-Me-C_6H_4$
Ib-86	СООН	H	Н	Н	0	2	1	Me	$4 - OMe - C_6H_4$
Ib-87	соон	Н	Н	Н	0	2	1	Me	2-thienyl
Ib-88	СООН	·H	Н	H	0	2	1	$\mathrm{CH_{2}C_{6}H_{5}}$	$C_{\mathfrak{g}}H_{\mathfrak{b}}$
Ib-89	соон	H	H	H	0	2	1	$\mathrm{CH_{2}C_{6}H_{5}}$	4-F-C ₆ H ₄
Ib-90	СООН	H	Н	Н	1	1	1	Н	C_6H_5
Ib-91	соон	H	Н	H	1	1	1	Н	4-F-C ₆ H ₄
Ib-92	СООН	H	H	н	1	1	1	Н	4-Cl-C ₆ H ₄
Ib-93	СООН	Н	Н	Н	1	1	1	Н	4-Me-C ₆ H ₄
Ib-94	соон	Н	H	Н	1	1	1	Н	4-OMe - C_6H_4
Ib-95	СООН	Н	H	Н	1	1	1	HH	2-thienyl
Ib-96	соон	Н	H	H	1	1	1	Me	C_6H_5
Ib-97	соон	H	H	H	1	1	1	Me	4-F-C ₆ H ₄
Ib-98	соон	Н	Н	Н	1	1	1	Me	4-Cl-C ₆ H ₄
Ib-99	соон	Н	Н	Н	1	1	1	Me	4-Me-C ₆ H ₄
Ib-100	соон	Н	Н	Н	1	1	1	Me	4-OMe - C_6H_4
Ib-101	соон	Н	Н	H	1	1	1	Me	2-thienyl

(表 1	1)					R ⁵		N-SO _{2-Ar}
No	R1	R ²	R4	R ⁶	R ⁶	\mathbb{R}^{η}	_ZN	Ar
Ic-1	соон	Н	Н	Н	н	н	~ Ny	$\mathrm{C_6H_5}$
Ic-2	соон	Н	Н	н	Н	н		4-F-C ₆ H ₄
Ic-3	соон	Н	Н	н	Н	Н	* Ny	4-Me-C ₆ H ₄
Ic-4	соон	Н	Н	н	Н	н	√N _y	2-thienyl
Ic-5	соон	Н	Н	Н	Н	н	Ny.	C_6H_6
Ic-6	соон	Н	Н	Н	Н	Н	Ny.	4-F-C ₆ H₄
Ic-7	соон	Н	Н	Н	Н	Н	*\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4-Me-C ₆ H ₄
Ic-8	соон	Н	Н	Н	н	Н	i, Ny	2-thienyl
Ic-9	соон	Me	н	Н	Н	Н	N ₂	4-F-C ₆ H ₄
Ic-10	соон	Н	н	Cl	Н	Н	√N _y	4-F-C ₆ H ₄
Ic-11	соон	Н	Н	F	н	Н	√N _y	4-F-C ₆ H ₄

N-SO_{2---Ar} (表12) R^5 R^2 \mathbb{R}^4 \mathbb{R}^1 R^6 R^7 No Ar Ic-12 COOH H Η \mathbf{H} Η Η $4-F-C_6H_4$ Ic-13 СООН Н H \mathbf{H} Η H C_6H_5 Ic-14 COOH Η Η H Η Η 4-F-C₆H₄ Ic-15 COOH H H \mathbf{H} H Η 4-Me-C₆H₄ Ic-16 COOH H \mathbf{H} \mathbf{H} Η H 2-thienyl Ic-17 COOH Me H Η Η Η C_6H_5 Ic-18 COOH Me \mathbf{H} \mathbf{H} H Η 4-F-C₆H₄ Ic-19 COOH \mathbf{H} \mathbf{H} Cl Η H $4-F-C_6H_4$ Ic-20 COOH Η H \mathbf{F} Η H 4-F-C₆H₄ Ic-21 | COOH | Η Η \mathbf{H} Η Η C_6H_5 Ic-22 COOH H \mathbf{H} H H H 4-F-C₆H₄ Ic-23 COOH \mathbf{H} H Η H Η C_6H_5 Ic-24 COOH H H H H Η 4-F-C₆H₄ Ic-25 СООН \mathbf{H} \mathbf{H} \mathbf{H} Η C_6H_5 Ic-26 COOH Η Η HH 4-F-C₆H₄ Η

2-thienyl

Ic-27 COOH

Η

Η

H H H

N-SO_{2-Ar} (表14) R⁶ \mathbb{R}^7 \mathbb{R}^2 \mathbb{R}^4 R^5 R⁶ No \mathbb{R}^1 Ar Н Η 2-thienyl COOH H Cl Η Ic-31 $4-F-C_6H_4$ Ic-32 COOH H Η Me H Η Ic-33 COOH H Η H Η $4-Me-C_6H_4$ Me Ic-34 COOH H H Н C_6H_5 Cl H Н Ic-35 COOH H CI $CH_2C_6H_5$ H Η Ic-36 COOH H H C1H H $4-Cl-C_6H_4$ 4-Me-C₆H₄ Ic-37 COOH H Η Cl \mathbf{H} H $4-F-C_6H_4$ Ic-38 COOH H Η Η F Η Ic-39 COOH Me H Η 2-thienyl F Η Ic-40 COOH H H OMe \mathbf{H} Η $4 \cdot F \cdot C_6 H_4$ Ic-41 | COOH | H Н OMe H Η 2-thienyl

(表15)

R ⁵	z-(N-SO ₂ -Ar
R ⁶ R ⁷	$N = \mathbb{R}^2$	

						R	1
\mathbb{R}^1	R²	R ⁴	R ⁵	R ⁶	\mathbb{R}^7	_Z(N-	Ar
соон	н	Н	ОН	Н	Н	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	4-F-C ₆ H ₄
соон	н	Н	F	Н	н	Y Ny	nBu
соон	н	Н	F	H	н	Y Ny	CH ₂ CH=CHC ₆ H ₅
соон	Н	Н	F	Н	н	Y Ny	$4 \cdot \mathrm{C_6H_5} \cdot \mathrm{C_6H_4}$
соон	Н	Н	F	Н	н	Y Ny	Me
соон	Н	Н	C_6H_5	Н	н	'Y Ny	4-F-C ₆ H ₄
соон	Н	Н	C_6H_6	Н	н	ZNZ	nBu
соон	Н	Н	$\mathrm{C_6H_5}$	Н	н	Z, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	2-thienyl
соон	н	H	F	Н	н		$\mathrm{CH_{2}CH_{2}C_{6}H_{5}}$
соон	н	Н	Н	Cl	н	Z-7-	4-F-C ₆ H ₄
соон	Н	Н	Н	Cl	н	Z N	2-thienyl
соон	Н	Н	Cl	Н	Н	, N	4-F-C ₆ H ₄
соон	н	H	Cl	Н	н	, NA,	3-F-C ₆ H ₄
соон	Me	Н	Cl	Н	н	Y, N	4-F-C ₆ H ₄
соон	Me	Н	Cl	Н	н	'Y N	2-thienyl
соон	Н	Н	CI	Н	Н	'Y Ny	nBu
соон	Н	Н	Cl	Н	Н	.√N ³	4-CF ₃ -C ₆ H ₄
соон	Н	Н	Cl	Н	Н	¹ _k √N _y	nBu
соон	Н	Н	Cl	Н	Н	" N ³	Octyl
	СООН СООН СООН СООН СООН СООН СООН СООН	COOH H COOH Me COOH H COOH H	COOH H H COOH He H COOH H H	COOH H H OH COOH H H F COOH H H F COOH H H F COOH H H C ₆ H ₅ COOH H H F COOH H H H COOH H H H COOH H H C1 COOH H H C1 COOH Me H C1 COOH H H	COOH H H OH H COOH H H F H COOH H H F H COOH H H F H COOH H H C ₆ H ₅ H COOH H H C ₆ H ₅ H COOH H H F H COOH H H H CI COOH H H CI H COOH	COOH H H OH H H COOH H H F H H COOH H H F H H COOH H H F H H COOH H H C ₆ H ₅ H H COOH H H C ₆ H ₅ H H COOH H H F H H COOH H H H C ₁ H COOH H H C ₁ H H COOH H H C ₁ H	R¹ R² R⁴ R⁵ R⁶ Rⁿ Z-N- COOH H H OH H H COOH H H F H H COOH H H COH H H COOH H H F H H COOH H H COH H H

(表16)

 R^{5} R^{6} R^{7} R^{7} R^{1} R^{2}

							R' \B	1
No	R1	R ²	R4	R^5	R ⁶	\mathbb{R}^7	_z-(N-	Ar
Ic-61	соон	Н	Н	Cl	Н	н	Ny.	1-naphthyl
Ic-62	соон	Н	Н	Cl	Н	н	Y N'Y	4-NO ₂ -C ₆ H ₄
Ic-63	соон	Н	Н	Cl	Н	н	Y Ny	4-CN-C ₆ H ₄
Ic-64	соон	Н	Cl	Н	Н	Н	'Y Ny	4-F-C ₆ H ₄
Ic-65	соон	Н	Cl	н	Н	Н	Y Ny	2-thienyl
Ic-66	соон	Н	Cl	Н	Н	н	Y Ny	nBu
Ic-67	соон	Н	Н	Cl	Н	н	Y N'Y	5-benzyl-thiophen- 2-yl
Ic-68	соон	н	Н	Cl	Н	Н	Y Ny	Quinolin-8-yl
Ic-69	соон	н	Н	Cl	. H	н	Y Ny	3-thienyl
Ic-70	соон	н	Н	Cl	Н	н	Z Z	Benzo[<i>b</i>]thiophen- 3-yl
Ic-71	соон	н	Н	Cl	Н	н	Y Ny	2,4-diF-C ₆ H ₃
Ic-72	соон	Н	Н	Cl	н	Н	Y Ny	Me
Ic-73	соон	Н	Н	Cl	Н	Н	Y N	4-OMe-C ₆ H ₄
Ic-74	соон	н	н	Cl	н	Н	Y Ny	CH₂CH=CHC ₆ H ₅
Ic-75	соон	Н	н	Cl	Н	н	Y Ny	Pyridin-3-yl
Ic-76.	соон	Me	Н	Н	Н	Н	Ny.	2-thienyl
Ic-77	соон	Me	Н	Н	Н	Н	Y Ny	nBu
Ic-78	соон	Н	Н	Cl	Н	Н	Ny	5-Cl-thiophen-2-yl
Ic-79	соон	Н	Н	Cl	Н	Н	*	4-OH-C ₆ H ₄

(表17)

Ŗ ⁴	
R⁵	Z(N-SO ₂ Ar
R _e →	N R ²
Ŕ ⁷	L _{R1}

No	R1	R^2	R4	R ⁵	R ⁶	R ⁷	_ZN	Ar
Ic-80	соон	н	Н	Н	Н	Н		4-F-C ₆ H ₄
Ic-81	соон	н	Н	Н	Н	н	\$-Z	4-OMe-C ₆ H ₄
Ic-82	соон	Н	Н	F	Н	Н	, v, C	4-F-C ₆ H ₄
Ic-83	соон	н	Н	F	Н	Н	0 N	4-F-C ₆ H ₄
Ic-84	соон	н	н	F	Н	Н	*** N	4-F-C ₆ H ₄
Ic-85	соон	Н	Н	F	Н	н	70, N	4-OMe-C ₆ H ₄

(表18)

$$(CH_2)_y$$
 $N-SO_2-Ar$

				K'
No	у	m	\mathbb{R}^1	Ar
Id-1	1	2	соон	C_6H_5
Id-2	1	2	СООН	4-F-C ₆ H ₄
Id-3	1	2	соон	2-thienyl
Id-4	2	1	СООН	$\mathrm{C_6H_5}$
Id-5	2	1	СООН	4-F-C ₆ H ₄
Id-6	2	1	СООН	2-thienyl

(表 19)
$$\begin{array}{c} R^5 \\ R^7 \\ R^7 \end{array} \begin{array}{c} N \\ R^{20} \end{array}$$

							R'	R^{1} R^{2}	
No	\mathbb{R}^1	R4	R ⁵	R^6	R^{7}	R20	R21	Y	Ar
Ie-1	соон	Н	Н	Н	Н	Н	Н	Н	C_6H_5
Ie-2	СООН	Н	Н	H	H	Н	Н	Н	4-F-C ₆ H ₄
Ie-3	соон	Н	H	Н	Н	Н	Н	H	2-thienyl
Ie-4	соон	Н	Н	Н	Н	Н	Н	Me	C_6H_5
Ie-5	СООН	Н	Н	Н	Н	Н	H	Me	$4-F-C_6H_4$
Ie-6	СООН	Н	H	Н	Н	Н	Н	Me	2-thienyl
Ie-7	соон	Н	Н	Н	Н	Н	Н	$\mathrm{CH_{2}C_{6}H_{5}}$	C_6H_5
Ie-8	СООН	Н	Н	Н	Н	Н	Н	CH ₂ C ₆ H ₅	4 -F- C_6H_4
Ie-9	соон	Н	Н	Н	H	Н	Н	CH ₂ C ₆ H ₅	2-thienyl
Ie-10	соон	Н	Н	F	Н	Н	Н	Н	4-F-C ₆ H ₄
Ie-11	соон	Н	Н	Me	Н	Н	Н	Н	4-F-C ₆ H ₄
Ie-12	СООН	Н	Н	F	Н	Н	H	Me	4-F-C ₆ H ₄
Ie-13	соон	Н	Н	F	Н	Н	H	$\mathrm{CH_{2}C_{6}H_{5}}$	$4 ext{-} ext{F-} ext{C}_6 ext{H}_4$
Ie-14	СООН	H	Н	Me	H	Н	Н	Me	4 -F- C_6H_4
Ie-15	СООН	Н	Н	Н	Н	Me	Н	$\mathrm{CH_2C_6H_5}$	$4-F-C_6H_4$
Ie-16	СООН	Н	F	Н	Н	Н	Н	Н	$4-F-C_6H_4$
Ie-17	СООН	Н	F	Н	Н	Н	Н	Me	$4-F-C_6H_4$
Ie-18	соон	Н	F	Н	H	Н	H	Me	4-F-C ₆ H ₄
Ie-19	СООН	F	Н	Н	Н	Н	Н	Н	4-F-C ₆ H ₄
Ie-20	соон	F	Н	Н	Н	Н	Н	Me	4-F-C ₆ H ₄
Ie-21	СООН	F	Н	Н	Н	Н	Н	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
Ie-22	соон	Н	Н	Н	Н	Н	F	Н	4-F-C ₆ H ₄
Ie-23	СООН	Н	Н	Н	Н	Н	F	Me	4-F-C ₆ H ₄
Ie-24	соон	Н	Н	Н	Н	Н	F	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
Ie-25	соон	Н	Н	Н	F	Н	Н	Me	4-F-C ₆ H ₄
Ie-26	соон	H	H	Н	F	Н	Н	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
Ie-27	соон	Н	Br	Н	Н	Н	Н	Н	4-F-C ₆ H ₄

(表 2 0) $\begin{array}{c|c} R^{23} & R^{24} \\ \hline R^{25} & N & S \\ R^{26} O_{2} \end{array}$

Γ	Т	ı—	·						`R¹	
No	R ¹	R ²	R ⁵	R ²³	R24	R ²⁵	R^{26}	\mathbb{Z}^3	Y	Ar
If-1	СООН	Me	Н	Me	Me	Н	H	=CH-	Н	4-F-C ₆ H ₄
If-2	соон	Me	Н	Me	Me	H	H	=CH-	Me	4-F-C ₆ H ₄
If-3	соон	Me	Н	Me	Me	Н	Н	=CH-	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
If-4	соон	Me	Н	Me	Н	Н	Н	=CH-	Н	4-F-C ₆ H ₄
If-5	соон	Me	Н	Me	Н	Н	Н	=CH-	Me	4-F-C ₆ H ₄
If-6	СООН	Me	Η.	Me	Н	Н	H	=CH-	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
If-7	соон	H	Н	-(CH	2)4-	Н	Н	=CH-	Me	4-F-C ₆ H ₄
If-8	соон	Н	Н	-(CH	2)4-	Н	Н	=CH-	CH₂C ₆ H ₅	4-F-C ₆ H ₄
If-9	соон	H	Н	C_6H_5	Н	H	Н	=CH-	Н	4-F-C ₆ H ₄
If-10	соон	Me	Н	C_6H_5	Н	Н	Н	=CH-	Me	4-F-C ₆ H ₄
If-11	СООН	Н	Н	-(CH	2)3-	Н	Н	=CH-	Н	4-F-C ₆ H ₄
If-12	соон	Н	H	-(CH	2)3-	H	Н	=CH-	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
If-13	СООН	Н	Н	Me	Me	Н	Н	=CH-	Н	4-F-C ₆ H ₄
If-14	СООН	Н	Н	Me	Me	Н	н	=CH-	Me	4-F-C ₆ H ₄
If-15	СООН	Н	Н	Me	Me	Н	н	=CH-	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
If-16	соон	Н	Н	Н	н	CH ₂ OMe	н	=CH-	Н	4-F-C ₆ H ₄
If-17	соон	Н	Cl	Me	Me	Н	Н	=CH-	Н	4-F-C ₆ H ₄
If-18	СООН	н	Cl	Me	Me	Н	Н	=CH-	Me	4-F-C ₆ H ₄
If-19	соон	н	Cl	Me	Me	Н	H	=CH-	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
If-20	соон	Н	Н	Н	Н	Н	H	=N-	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄

(表21)

					R'	
No	\mathbb{R}^1	$\mathbf{Z}^{_{1}}$	\mathbb{Z}^2	q	Y	Ar
Ig-1	соон	-CH ₂ -	-CH ₂ -	0	Н	4-F-C ₆ H ₄
Ig-2	соон	-CH ₂ -	-S-	1	Н	4-F-C ₆ H ₄
Ig-3	соон	-CH ₂ -	-S-	1	Me	4-F-C ₆ H ₄
Ig-4	соон	-C(=O)-	-CH ₂ -	1	Me	4-F-C ₆ H ₄
Ig-5	соон	-C(=O)-	-CH(Et)-	1	Me	4-F-C ₆ H ₄
Ig-6	соон	-CH ₂ -	-N(COOEt)-	1	Н	4-F-C ₆ H ₄
Ig-7	соон	-CH ₂ -	-N(COOEt)-	1	Me	4-F-C ₆ H ₄
Ig-8	соон	-CH ₂ -	-N(COOEt)-	1	Н	$_{\mathrm{C_6H_4}}$
Ig-9	соон	-CH ₂ -	-N(COOEt)-	1	Me	$^{4\text{-OMe-}}_{6\mathrm{H_4}}$
Ig-10	соон	-CH ₂ -	-N(COMe)-	1	Me	$^{4 ext{-}OMe}$ - $^{6} ext{H}_{4}$
Ig-11	соон	-CH ₂ -	-CH ₂ -	2	Ή	4-F-C ₆ H ₄
Ig-12	соон	-CH ₂ -	-CH ₂ -	2	Me	4-F-C ₆ H ₄
Ig-13	соон	-CH ₂ -	-CH ₂ -	2	$\mathrm{CH_{2}C_{6}H_{5}}$	4-F-C ₆ H ₄
Ig-14	соон	-CH ₂ -	-CH ₂ -	2	Me	4-OMe- C ₆ H ₄
Ig-15	соон	-CH ₂ -	-CH ₂ -	2	Et	4-F-C ₆ H ₄
Ig-16	СООН	-CH ₂ -	-CH ₂ -	2	Me	4-OH-C ₆ H ₄
Ig-17	СООН	-CH ₂ -	-NH-	2	Me	4-F-C ₆ H ₄
Ig-18	СООН	-CH ₂ -	-CH ₂ -	3	Н	4-F-C ₆ H ₄
Ig-19	СООН	-CH ₂ -	-CH ₂ -	3	Me	4-F-C ₆ H ₄
Ig-20	СООН	-CH ₂ -	-CH ₂ -	3	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
Ig-21	СООН	-CH ₂ -	-CH ₂ -	0	Me	4-F-C ₆ H ₄
Ig-22	СООН	-CH ₂ -	-S(=O)-	1	Н	4-F-C ₆ H ₄
Ig-23	соон	-CH ₂ -	-S(=0)-	1	Me	4-F-C ₆ H ₄
Ig-24	соон	-C(=O)-	-NH-	2	H	4-OMe- C ₆ H ₄
Ig-25	СООН	-C(=O)-	-NH-	2	Me	$\begin{array}{c c} 4\text{-OMe} - \\ C_6H_4 \end{array}$

COOH C(=NOMe

Ig-27

(表 2 3) R^{18} R^{18} R^{19} Y Ar

 $-CH_2-$

 $4-F-C_6H_4$

Me

1

No	\mathbb{R}^1	R17	R18	R ¹⁹	Y	Ar
Ih-1	соон	Н	Н	H	н	4-F-C ₆ H ₄
Ih-2	соон	Н	Н	H	Me	$4-F-C_6H_4$
Ih-3	соон	H	H	Н	$\mathrm{CH_{2}C_{6}H_{5}}$	4-F-C ₆ H ₄
Ih-4	соон	Н	Н	Me	Н	4-F-C ₆ H ₄
Ih-5	соон	Н	Н	Me	Me	4-F-C ₆ H ₄
Ih-6	соон	Н	Н	Me	$\mathrm{CH_{2}C_{6}H_{5}}$	4-F-C ₆ H ₄
Ih-7	СООН	H	Н	Н	Me	2-thienyl
Ih-8	СООН	Н	Н	H	Me	nBu
Ih-9	соон	Н	H	Н	CH ₂ C ₆ H ₅	2-thienyl
Ih-10	соон	Н	Н	Н	$\mathrm{CH_{2}C_{6}H_{5}}$	nBu
Ih-11	СООН	Н	Н	Н	Н	2-thienyl
Ih-12	СООН	Н	H	Н	Me	4-OMe-C ₆ H ₄
Ih-13	СООН	Н	Н	H	Н	4-OH-C ₆ H ₄
Ih-14	соон	Н	Н	Н	Н	4-OMe-C ₆ H ₄
Ih-15	СООН	Н	Н	Н	Me	4-OH-C ₆ H ₄
Ih-16	СООН	Н	Н	Et	Н	4-F-C ₆ H ₄
Ih-17	СООН	Н	Н	Et	Н	4-OMe-C ₆ H ₄
Ih-18	СООН	Н	Н	Et	Me	4-F-C ₆ H ₄
Ih-19	СООН	Н	Н	Et	Me	4-OMe-C ₆ H ₄

(表24)

R¹⁹ N Ar

					`R	
No	R1	R17	R ¹⁸	R ¹⁹	Y	Ar
Ih-20	соон	Н	H	· H	H	C_6H_5
Ih-21	соон	H	Н	Н	Н	4-Me-C ₆ H ₄
Ih-22	СООН	Н	Н	Н	Me	C_6H_5
Ih-23	СООН	Н	Н	Н	Me	4-Me-C ₆ H ₄
Ih-24	соон	H	Н	Н	Me	$\mathrm{CH_{2}C_{6}H_{5}}$
Ih-25	соон	Н	Н	Н	Me	CH ₂ CH=CHC ₆ H ₅
Ih-26	соон	Н	Me	Me	Н	4-OMe-C ₆ H ₄
Ih-27	соон	Н	Me	Me	Н	4-F-C ₆ H ₄
Ih-28	СООН	H	Me	Me	Н	2-thienyl
Ih-29	соон	H	H	Н	Н	CH ₂ C ₆ H ₅
Ih-30	соон	H	Н	Н	H	CH ₂ CH=CHC ₆ H ₅
Ih-31	СООН	H	Me	Me	Me	4-F-C ₆ H ₄
Ih-32	СООН	Н	Me	Me	Me	4-OMe-C ₆ H ₄
Ih-33	соон	Н	Me	Me	Me	2-thienyl
Ih-34	соон	Н	Н	С ₆ Н ₅	H	4-F-C ₆ H ₄
Ih-35	соон	H	н	C ₆ H ₅	H	4-OMe-C ₆ H ₄
Ih-36	соон	Н	Н	C ₆ H ₅	Me	4-F-C ₆ H ₄
Ih-37	соон	Н	Н	C ₆ H ₅	Me	4-OMe-C ₆ H ₄
Ih-38	СООН	Н	Et	Et	Н	4-OMe-C ₆ H ₄
Ih-39	соон	Н	Н	Н	Н	4-CI-C ₆ H ₄
Ih-40	СООН	Н	Н	Н	Н	4-CF ₃ -C ₆ H ₄
Ih-41	СООН	Н	Н	Н	Me	4-Cl-C ₆ H ₄
Ih-42	СООН	Н	Н	Н	Me	4-CF ₃ -C ₆ H ₄
Ih-43	соон	Н	Н	Н	Me	3-thienyl
Ih-44	СООН	Н	H	Н	Me	4-OCF ₃ -C ₆ H ₄
Ih-45	COOH	H	Et	Et	Me	4-F-C ₆ H ₄
Ih-46	COOH	Н	Et	Et	Me	4-OMe-C ₆ H ₄
Ih-47	СООН	Н	-(C)	H ₂) ₅ -	Н	4-F-C ₆ H ₄

(表25)

R¹⁹ N Ar

No	R ¹	R ¹⁷	R ¹⁸	R ¹⁹	Y	Ar
Ih-48	СООН	Н	-(CI	$H_2)_5$ -	Н	4-OMe-C ₆ H ₄
Ih-49	СООН	Н	Н	Н	Н	3-thienyl
Ih-50	СООН	Н	Н	Pr	Н	4-F-C ₆ H ₄
Ih-51	СООН	Н	H	tBu	Н	4-F-C ₆ H ₄
Ih-52	СООН	Н	Н	Pr	Н	4-OMe-C ₆ H ₄
Ih-53	СООН	Н	Н	tBu	Н	4-OMe-C ₆ H ₄
Ih-54	СООН	Н	Н	Н	H	4-OCF ₃ -C ₆ H ₄
Ih-55	СООН	Н	-(CI	I ₂) ₅ .	Me	4-F-C ₆ H ₄
Ih-56	СООН	Н	-(CI	I ₂) ₅ -	Me	4-OMe-C ₆ H ₄ .
Ih-57	соон	Н	Н	Pr	Me	4-F-C ₆ H ₄
Ih-58	СООН	Н	Н	tBu	Me	4-F-C ₆ H ₄
Ih-59	СООН	Н	Н	Pr	Me	4-OMe-C ₆ H ₄
Ih-60	СООН	Н	H	tBu	Me	4-OMe-C ₆ H ₄
Ih-61	СООН	Н	Н	pent yl	Me	4-F-C ₆ H ₄
Ih-62	СООН	Н	Н	pent yl	Me	4-OMe-C ₆ H ₄
Ih-63	СООН	Н	Н	Н	Et	4-OMe-C ₆ H ₄
Ih-64	СООН	Н	Н	Н	Pr	4-OMe-C ₆ H ₄
Ih-65	СООН	Н	Н	Н	iBu	4-OMe-C ₆ H ₄
Ih-66	СООН	Н	Н	Н	iPr	4-OMe-C ₆ H ₄
Ih-67	СООН	Н	Н	Н	Et	4-F-C ₆ H ₄
Ih-68	СООН	Н	Н	Н	Pr	4-F-C ₆ H ₄
Ih-69	СООН	Н	Н	Н	allyl	4-F-C ₆ H ₄
Ih-70	СООН	Н	Н	Н	propargyl	4-F-C ₆ H ₄
Ih-71	СООН	Н	. Н	Н	CH ₂ CF ₃	4-F-C ₆ H ₄
Ih-72	СООН	Н	Н	Н	CH₂CH₂OH	4-F-C ₆ H ₄
Ih-73	соон	Н	Н	Н	cyclopropylmet hyl	4-F-C ₆ H ₄
Ih-74	СООН	Н	Н	Н	allyl	4-OMe-C ₆ H ₄

(表26)

R ¹⁹ N	\bigwedge^{N} \bigwedge^{Ar}

No	R1	R17	R ¹⁸	R19	Y	Ar
Ih-75	соон	Н	Н	Н	2- methylpropene	4-OMe-C ₆ H ₄
Ih-76	соон	H	H	H	propargyl	4-OMe-C ₆ H ₄
Ih-77	соон	Н	Н	Н	cyclopropylmet hyl	4-OMe-C ₆ H ₄
Ih-78	соон	Н	H	H	CH ₂ CH ₂ OH	4-OMe-C ₆ H ₄
Ih-79	соон	Н	Н	Н	cyclohexylmeth yl	4-F-C ₆ H ₄
Ih-80	соон	Н	Н	Н	cyclohexylmeth yl	4-OMe-C ₆ H ₄
Ih-81	соон	H	H	H	CH ₂ OMe	4-F-C ₆ H ₄
Ih-82	соон	Н	Н	H	CH ₂ OMe	4-OMe-C ₆ H ₄
Ih-83	соон	Me	Н	Н	Me	4-F-C ₆ H ₄
Ih-84	соон	Me	Н	H	Me	4-OMe-C ₆ H ₄

(表27)

No	R¹	R ⁵	Z^4	Y	Ar
Ii-1	соон	Me	-N=·	Н	4-F-C ₆ H ₄
Ii-2	соон	Me	-CH=	H	4-F-C ₆ H ₄
Ii-3	СООН	Me	-CH=	Me	4-F-C ₆ H ₄

(表28)

No	R ¹	R ⁵	Y	Ar
Ij-1	СООН	H	Н	4-F-C ₆ H ₄
Ij-2	СООН	Н	Me	4-F-C ₆ H ₄
Ij-3	СООН	Н	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄

(表 2 9) R¹³ N S A

	r			, <u>R</u> '	
No	R ¹	R ¹³	Z^{14}	Y	Ar
Ik-1	соон	Me	Me	Me	4-F-C ₆ H ₄
Ik-2	СООН	H	Me	Me	4-F-C ₆ H ₄
Ik-3	СООН	Et	Me	Н	4-F-C ₆ H ₄
Ik-4	соон	Pr	Me	Н	4-F-C ₆ H ₄
Ik-5	СООН	Et	Me	Me	4-F-C ₆ H ₄
Ik-6	СООН	iPr	Me	Me	4-F-C ₆ H ₄
Ik-7	соон	Me	Pr	Me	4-F-C ₆ H ₄
Ik-8	СООН	Et	H	Me	4-F-C ₆ H ₄
Ik-9	СООН	Pr	Me	Н	4-F-C ₆ H ₄
Ik-10	СООН	Pr	Me	Me	4-F-C ₆ H ₄
Ik-11	соон	Et	Pr	Н	4-F-C ₆ H ₄
Ik-12	СООН	Et	Pr	Н	2-thienyl
Ik-13	СООН	Et	Pr	Me	4-F-C ₆ H ₄
Ik-14	соон	Et	Pr	Me	2-thienyl
Ik-15	СООН	Pr	Me	Н	4-OMe-C ₆ H ₄
Ik-16	СООН	Pr	Me	Me	4-OMe-C ₆ H ₄
Ik-17	соон	Et	Pr	Н	4-OMe-C ₆ H ₄

No	R^1	R13	Z14	Y	Ar
Ik-18	соон	Et	Pr	Me	4-OMe-C ₆ H ₄
Ik-19	СООН	CH₂C ₆ H ₅	Me	Me	4-F-C ₆ H ₄
Ik-20	соон	CH₂C ₆ H ₅	Me	Me	4-OMe-C ₆ H ₄
Ik-21	соон	iBu	Me	Me	4-F-C ₆ H ₄
Ik-22	соон	nBu	Me	H	4-F-C ₆ H ₄
Ik-23	соон	nВu	Me	Н	4-OMe-C ₆ H ₄
Ik-24	соон	nBu	Me	Me	4-F-C ₆ H ₄
Ik-25	соон	nВu	Me	Me	4-OMe-C ₆ H ₄
Ik-26	СООН	iBu	Me	H	4-OMe-C ₆ H ₄
Ik-27	соон	iBu	Me	Me	4-OMe-C ₆ H ₄
Ik-28	соон	Pr	Me	Et	4-OMe-C ₆ H ₄
Ik-29	соон	Pr	Me	Me	4-OH-C ₆ H ₄
Ik-30	соон	CH ₂ C ₆ H ₅	Me	Н	4-F-C ₆ H ₄
Ik-31	СООН	Pr	Me	Me	4-OEt-C ₆ H ₄
Ik-32	соон	Pr	Me	proprgyl	4-OMe-C ₆ H ₄
Ik-33	соон	$\mathrm{CH_{2}C_{6}H_{5}}$	Me	proprgyl	4-OMe-C ₆ H ₄
Ik-34	COOH	iBu	Me	Me	4-F-C ₆ H ₄
Ik-35	соон	OMe	Me	Me	4-F-C ₆ H ₄
Ik-36	соон	OMe	Me	Me	4-OMe-C ₆ H ₄
Ik-37	соон	C(=O)Et	Me	Me	4-OMe-C ₆ H ₄
Ik-38	соон	C(=O)Et	Me	Et	4-OMe-C ₆ H ₄
Ik-39	соон	Pr	Me	Me	C ₆ H ₅
Ik-40	соон	Pr	Me	Me	4-Me-C ₆ H ₄
Ik-41	соон	Pr	Me	Me	2-F-C ₆ H ₄
Ik-42	соон	Pr	Me	Me	4-Cl-C ₆ H ₄
Ik-43	СООН	Pr	Me	Me	4-Br-C ₆ H ₄

物理恒数を以下の表に示す。

(表31)

(48.0	_ ,
化合物 番号	物性值
Ia-7	1 H-NMR (CDCl ₃) δ 2.95 (m, 2H), 3.28 (m, 2H), 4.62 (br, 1H), 4.81 (s, 2H), 6.84 (s, 1H), 7.06-7.22 (m, 3H), 7.38-7.72 (m, 4H), 7.71-7.74 (m, 2H); IR (CHCl ₃) 3480, 2953, 1731, 1603, 1469, 1447, 1409, 1329, 1162, 1093 cm ⁻¹ ;
Ia-8	1 H-NMR (CDCl ₃) δ 2.95 (t, J = 6.3 Hz, 2H), 3.31 (dt, J = 5.4 and 6.3 Hz, 2H), 4.79 (t, J = 5.4 Hz, 1H), 4.84 (s, 2H), 6.90 (s, 1H), 6.99-7.22 (m, 5H), 7.41 (d, J = 7.8 Hz, 1H), 7.50 (m, 1H), 7.86 (m, 1H); IR (CHCl ₃) 3482, 3374, 2929, 1732, 1601, 1475, 1453, 1411, 1384, 1335, 1266, 1169, 1156, 1126, 1077, 1015 cm ⁻¹ ; 元素分析 (C ₁₈ H ₁₇ FN ₂ O ₄ S-0.4H ₂ O) 計算值 (%): C, 56.36; H, 4.68; N, 7.30; F, 4.95; S, 8.36 実測値 (%): C, 56.52; H, 4.67; N, 7.10; F, 4.69; S, 8.30
Ia-9	1 H-NMR (CDCl ₃) δ 2.94 (m, 2H), 3.26 (m, 2H), 4.54 (t, J = 5.7 Hz, 1H), 6.86 (s, 1H), 6.97-7.27 (m, 6H), 7.37 (d, J = 7.8 Hz, 1H), 7.65-7.69 (m, 2H), 7.71-7.74 (m, 2H); IR (KBr) 3422, 3290, 2929, 1731, 1592, 1494, 1469, 1408, 1382, 1328, 1292, 1237, 1166, 1152, 1092, 1013 cm ⁻¹ ; 元素分析 (C ₁₈ H ₁₇ FN ₂ O ₄ S·0.5AcOEt) 計算值 (%): C, 57.13; H, 5.03; N, 6.66; F, 4.52; S, 7.63 実測値 (%): C, 57.36; H, 5.07; N, 6.94; F, 4.58; S, 7.35
Ia-12	1 H-NMR (CDCl ₃) δ 2.92 (t, J = 6.6 Hz, 2H), 3.21-3.25 (m, 2H), 3.83 (s, 3H), 4.50 (br, 1H), 4.80 (s, 2H), 6.80-6.82 (m, 3H), 7.06 (m, 1H), 7.18-7.23 (m, 2H), 7.39 (d, J = 7.8 Hz, 1H), 7.60-7.65 (m, 2H); IR (CHCl ₃) 3481, 2967, 2945, 2842, 1732, 1598, 1580, 1498, 1468, 1441, 1409, 1330, 1260, 1155, 1096, 1047, 1030 cm $^{-1}$; 元素 分析 (C ₁₉ H ₂₀ N ₂ O ₅ S·0.5AcOEt) 計算值 (%): C, 58.32; H, 5.59; N, 6.48; S, 7.41 実測值 (%): C, 57.95; H, 5.40; N, 6.61; S, 7.73
Ia-13	¹ H-NMR (CDCl ₃) δ 2.97 (t, J = 6.3 Hz, 2H), 3.35 (m, 2H), $\overline{4}$.62 (t, J = 5.7 Hz, 1H), 4.82 (s, 2H), 6.86 (s, 1H), 7.00 (m, 1H), 7.11 (m, 1H), 7.19-7.26 (m, 2H), 7.43-7.51 (m, 3H); IR (CHCl ₃) 3360, 2930, 1732, 1469, 1407, 1382, 1334, 1158, 1092, 1069, 1048, 1016 cm ⁻¹ ; 元素分析 (C ₁₆ H ₁₆ N ₂ O ₄ S ₂ ·0.4AcOEt) 計算值 (%): C, 52.89; H, 4.84; N, 7.01; S, 16.05 実測値 (%): C, 52.93; H, 4.88; N, 7.04; S, 16.01
Ia-14	1 H-NMR (CDCl ₃) δ 2.94 (t, J = 6.3 Hz, 2H), 3.30 (dt, J = 6.0 and 6.3 Hz, 2H), 4.61 (t, J = 6.0 Hz, 1H), 4.80 (s, 2H), 6.85 (s, 1H), 7.07-7.27 (m, 5H), 7.42 (d, J = 7.8 Hz, 1H), 7.84 (dd, J = 1.2 and 3.0 Hz, 1H); IR (CHCl ₃) 3481, 2930, 1732, 1469, 1410, 1331, 1157, 1101, 1076, 1015 cm ⁻¹ ; 元素分析 (C ₁₆ H ₁₆ N ₂ O ₄ S·0.1AcOEt) 計算值 (%): C, 52.77; H, 4.54; N, 7.51; S, 17.18 実測値 (%): C, 52.39; H, 4.57; N, 7.40; S, 17.00

(表32)

(表 3 /	
化合物	物性值
番号	177 777 (CD CL) 0 0 0 0 (L T. 0 0 TL 0 TL) 2 20 (m. 0 TL) 4 5 C (m.
Ia-15	1 H-NMR (CDCl ₃) δ 2.96 (t, J = 6.3 Hz, 2H), 3.29 (m, 2H), 4.56 (m, 1H), 4.81 (s, 2H), 6.88 (s, 1H), 7.03 (m, 1H), 7.13-7.21 (m, 4H), 7.39 (d, J = 7.5 Hz, 1H), 7.51-7.55 (m, 4H), 7.73-7.76 (m, 2H); IR (CHCl ₃) 2930, 1732, 1604, 1519, 1469, 1408, 1331, 1160, 1096, 1047 cm ⁻¹ ; 元素分析 (C ₂₄ H ₂₁ FN ₂ O ₄ S·0.5AcOEt) 計算値 (%): C, 62.89; H, 5.07; N, 5.83; F, 3.83; S, 6.46 実測値 (%): C, 62.74; H, 4.97; N, 5.90; F, 3.82; S, 6.54
Ia-16	1 H-NMR (CDCl ₃) δ 2.94 (t, J = 6.9 Hz, 2H), 3.26 (m, 2H), 4.51 (br, 1H), 4.81 (s, 2H), 6.86-6.94 (m, 3H), 7.03-7.11 (m, 3H), 7.19-7.24 (m, 3H), 7.37-7.63 (m, 3H), 7.64-7.70 (m, 2H); IR (KBr) 3279, 3059, 2930, 1730, 1583, 1488, 1469, 1410, 1382, 1327, 1298, 1245, 1152, 1094, 1013 cm $^{-1}$; 元素分析 (C ₂₄ H ₂₂ N ₂ O ₅ S·0.6AcOEt) 計算值 (%): C, 62.99; H, 5.37; N, 5.57; S, 6.37 実測値 (%): C, 62.99; H, 5.19; N, 5.77; S, 6.47
Ia-17	¹ H-NMR (CDCl ₃) δ 2.92 (t, J = 6.3 Hz, 2H), 3.31 (m, 2H), 4.66 (m, 1H), 4.73 (s, 2H), 6.80 (s, 1H), 6.91 (m, 1H), 7.06-7.11 (m, 2H), 7.28 (m, 1H), 7.47-7.90 (m, 5H), 8.10 (dd, J = 2.7 and 6.3 Hz, 1H), 8.49 (s, 1H); IR (CHCl ₃) 3480, 2929, 1732, 1670, 1616, 1586, 1468, 1428, 1411, 1377, 1330, 1158, 1077, 1047, 1025, 1015 cm ⁻¹ ;
Ia-20	¹ H-NMR (CDCl ₃) δ 2.31 (s, 3H), 2.95 (t, J = 6.0 Hz, 2H), 3.19 (dt, J = 6.0 and 6.3 Hz, 2H), 4.37 (t, J = 6.3 Hz, 1H), 4.82 (s, 2H), 6.98-7.18 (m, 5H), 7.30 (d, J = 7.5 Hz, 1H), 7.63-7.68 (m, 2H); IR (CHCl ₃) 2926, 1730, 1594, 1495, 1410, 1375, 1335, 1292, 1167, 1154, 1093 cm ⁻¹
Ia-25	1 H-NMR (CDCl ₃) δ 2.62 (s, 3H), 2.90 (t, J = 6.3 Hz, 2H), 3.22 (t, J = 6.3 Hz, 2H), 4.53 (br, 1H), 5.03 (s, 2H), 6.74 (s, 1H), 6.93-7.03 (m, 4H), 7.19 (m, 1H), 7.64-7.69 (m, 2H); IR (CHCl ₃) 2940, 1729, 1594, 1495, 1465, 1438, 1408, 1373, 1329, 1292, 1167, 1154, 1093, 1074, 1046, 1014 cm ⁻¹ ; 元素分析 (C ₁₉ H ₁₉ FN ₂ O ₄ S·0.5H ₂ O) 計算値 (%): C, 57.13; H, 5.05; N, 7.01; F, 4.76; S, 8.03 実測値 (%): C, 57.15; H, 4.99; N, 6.74; F, 4.42; S, 7.72
Ia-28	1 H-NMR (CDCl ₃) δ 2.87-2.92 (m, 2H), 3.19-3.24 (m, 2H), 3.79 (s, 3H), 4.59 (br, 1H), 4.77 (s, 2H), 6.78-7.11 (m, 6H), 6.63-7.68 (m, 2H); IR (CHCl ₃) 2942, 2837, 1731, 1622, 1594, 1492, 1455, 1409, 1333, 1292, 1167, 1153, 1093, 1051, 1014 cm ⁻¹ ; 元素分析 (C ₁₉ H ₁₉ FN ₂ O ₅ S·0.2H ₂ O) 計算值 (%): C, 55.66; H, 4.77; N, 6.83; F, 4.63; S, 7.82 実測値 (%): C, 55.52; H, 4.87; N, 6.54; F, 4.45; S, 7.55
Ia-32	¹ H-NMR (CDCl ₃) δ 2.87 (t, J = 6.3 Hz, 2H), 3.20-3.22 (m, 2H), 4.58 (br, 1H), 4.77 (s, 2H), 6.89 (s, 1H), 6.98-7.18 (m, 5H), 7.62-7.67 (m, 2H); IR (CHCl ₃) 3477, 2930, 1731, 1594, 1495, 1471, 1409, 1376, 1333, 1293, 1167, 1154, 1093, 1073, 1046, 1014 cm ⁻¹

(表33)

(表 3	
化合物 番号	物性值
Ia-36	¹ H-NMR (CDCl ₈) δ 2.90 (t, J = 6.6 Hz, 2H), 3.23 (t, J = 6.6 Hz, 2H), 4.44 (br, 1H), 4.83 (s, 2H), 6.93-7.13 (m, 6H), 7.68-7.72 (m, 2H); IR (KBr) 3290, 2664, 2573, 1721, 1629, 1591, 1493, 1460, 1440, 1410, 1346, 1323, 1292, 1252, 1090, 1049, cm ⁻¹ ; 元素分析 (C ₁₈ H ₁₆ F ₂ N ₂ O ₄ S·0.2AcOEt) 計算值 (%): C, 54.80; H, 4.31; N, 6.80; F, 9.22; S, 7.78 実測値 (%): C, 54.70; H, 4.27; N, 6.68; F, 9.03; S, 7.81
Ia-39	1 H-NMR (CDCl ₃) δ 2.79 (s, 3H), 3.03 (t, J = 7.5 Hz, 2H), 3.34 (t, J = 7.5 Hz, 2H), 4.85 (s, 2H), 6.95 (s, 1H), 7.12-7.23 (m, 5H), 7.55 (d, J = 8.1 Hz, 1H), 7.74-7.79 (m, 2H); IR (CHCl ₃) 3482, 2928, 2865, 1732, 1594, 1495, 1469, 1408, 1383, 1341, 1292, 1166, 1154, 1189, 1044, 1014 cm ⁻¹ ; 元素分析 (C ₁₉ H ₁₉ FN ₂ O ₄ S·0.1AcOEt) 計算值 (%): C, 58.36; H, 5.00; N, 7.02; F, 4.76; S, 8.03 実測値 (%): C, 58.64; H, 5.07; N, 6.90; F, 4.46; S, 7.90
Ia-41	H-NMR (CDCl ₈) δ 2.35 (s, 3H), 2.78 (s, 3H), 3.02 (t, J = 8.4 Hz, 2H), 3.22 (t, J = 8.4 Hz, 2H), 4.83 (s, 2H), 7.09-7.17 (m, 5H), 7.47 (d, J = 7.5 Hz, 1H), 7.72-7.77 (m, 2H); IR (CHCl ₃) 2928, 2866, 1906, 1731, 1594, 1496, 1469, 1416, 1376, 1341, 1292, 1166, 1154, 1090, 1046, 1013 cm ⁻¹ ; 元素分析 (C ₂₀ H ₂₁ FN ₂ O ₄ S·0.3H ₂ O) 計算值 (%): C, 58.61; H, 5.31; N, 6.83; F, 4.64; S, 7.82 実測值 (%): C, 58.58; H, 5.11; N, 6.61; F, 4.32; S, 7.46
Ia-42	¹ H-NMR (CDCl ₃) δ 2.62 (s, 3H), 2.78 (s, 3H), 2.99 (t, J = 7.8 Hz, 2H), 3.32 (t, J = 7.8 Hz, 2H), 5.06 (s, 2H), 6.83 (s, 1H), 6.95-7.17 (m, 4H), 7.37 (d, J = 7.8 Hz, 1H), 7.74-7.78 (m, 2H); IR (CHCl ₃) 2933, 2869, 1731, 1594, 1495, 1463, 1439, 1406, 1375, 1342, 1292, 1166, 1154, 1089, 1044, 1014 cm ¹ ; 元素分析 (C ₂₀ H ₂₁ FN ₂ O ₄ S) 計算值 (%): C, 59.39; H, 5.23; N, 6.93; F, 4.70; S, 7.93 実測値 (%): C, 59.28; H, 5.26; N, 6.75; F, 4.45; S, 7.66
Ia-43	¹ H-NMR (CDCl ₃) δ 2.79 (s, 3H), 3.00 (t, J = 7.8 Hz, 2H), 3.33 (t, J = 7.8 Hz, 2H), 3.86 (s, 3H), 4.81 (s, 2H), 6.88-7.18 (m, 6H), 7.75-7.79 (m, 2H); IR (CHCl ₃) 2930, 1731, 1594, 1490, 1455, 1342, 1166, 1154, 1089, 1045, 1014 cm ⁻¹
Ia-44	¹ H-NMR (CDCl _s) δ 2.78 (s, 3H); 2.98 (t, J = 7.2 Hz, 2H), 3.32 (t, J = 7.2 Hz, 2H), 4.83 (s, 2H), 7.01 (s, 1H), 7.11-7.20 (m, 3H), 7.47 (s, 1H), 7.74-7.79 (m, 2H); IR (CHCl _s) 3481, 2928, 2864, 1732, 1594, 1496, 1471, 1342, 1293, 1241, 1166, 1154, 1089, 1072, 1041, 1014 cm ⁻¹
Ia-45	1 H-NMR (CDCl ₃) δ 2.78 (s, 3H), 2.97 (t, J = 6.9 Hz, 2H), 3.31 (t, J = 6.9 Hz, 2H), 4.83 (s, 2H), 6.97-7.19 (m, 6H), 7.75-7.79 (m, 2H); IR (KBr) 2927, 1730, 1626, 1592, 1489, 1458, 1338, 1293, 1236, 1153, 1087, 1039, 1013 cm ⁻¹ ; 元素分析 (C ₁₉ H ₁₈ F ₂ N ₂ O ₄ S·0.7MeOH) 計算值 (%): C, 54.92; H, 4.87; N, 6.50; F, 8.82; S, 7.44 実測値 (%): C, 55.19; H, 4.93; N, 6.33; F, 8.44; S, 7.24

(表34)

化合物	
番号	物性値
Ia-47	1 H-NMR (CDCl ₃) δ 2.98-3.03 (m, 2H), 3.38-3.43 (m, 2H), 3.84 (d, J = 6.3Hz, 2H), 4.01 (s, 2H), 5.13-5.18 (m, 2H), 5.64 (m, 1H), 6.81 (s, 1H), 7.07-7.15 (m, 3H), 7.17-7.24 (m, 2H), 7.54 (d, J = 7.8 Hz, 1H), 7.76-7.82 (m, 2H); IR (CHCl ₃) 3503, 2928, 2869, 2656, 2558, 1770, 1733, 1594, 1495, 1469, 1342, 1291, 1165, 1153 cm ⁻¹ ; 元素分析 (C ₂₁ H ₂₁ FN ₂ O ₄ S·0.3H ₂ O) 計算値 (%): C, 59.79; H, 5.16; F, 4.50; N, 6.64; S, 7.60 実測値 (%): C, 59.83; H, 4.91; F, 4.42; N, 6.67; S, 7.52
Ia-48	H-NMR (CDCl ₃) δ 1.05 (s, 3H), 1.07 (s, 3H), 3.12-3.18 (m, 2H), 3.31-3.36 (m, 2H), 4.11 (m, 1H), 4.85 (s, 2H), 6.92 (s, 1H), 7.11-7.26 (m, 5H), 7.68 (d, J = 7.5 Hz, 1H), 7.83-7.88 (m, 2H); IR (CHCl ₃) 3503, 2935, 2875, 2653, 2558, 1733, 1594, 1494, 1468, 1334, 1291, 1187, 1150 cm ⁻¹ ; 元素分析 (C ₂₁ H ₂₃ FN ₂ O ₄ S·0.2H ₂ O) 計算値 (%): C, 59.76; H, 5.59; F, 4.50; N, 6.64; S, 7.60 実測値 (%): C, 59.80; H, 5.44; F, 4.48; N, 6.65; S, 7.62
Ia-51	$^1\text{H-NMR}$ (CDCl ₃) δ 2.82 (dd, J = 8.1 and 5.1 Hz, 2H), 3.36 (dd, J = 8.1 and 5.1 Hz, 2H), 4.37 (s, 2H), 4.77 (s, 2H), 6.69 (s, 1H), 7.05-7.30 (m, 11H), 7.79-7.84 (m, 2H); IR (CHCl ₃) 3282, 2928, 2871, 1732, 1594, 1496, 1469, 1407, 1384, 1339, 1292, 1165, 1154, 1093, 1068, 1014 cm ⁻¹ ; 元素分析 (C ₂₅ H ₂₃ FN ₂ O ₄ S·0.8H ₂ O) 計算值 (%): C, 62.43; H, 5.16; N, 5.82; F, 3.95; S, 6.67 実測值 (%): C, 62.43; H, 5.39; N, 5.64; F, 3.70; S, 6.38
Ia-52	¹ H-NMR (CDCl ₃) δ 2.65 (t, J = 7.8 Hz, 2H), 3.24-3.28 (m, 2H), 3.36 (s, 3H), 4.45 (s, 2H), 4.49 (s, 2H), 6.87-7.45 (m, 12H), 7.90-7.95 (m, 2H); IR (KBr) 3434, 2926, 1592, 1494, 1469, 1405, 1380, 1335, 1293, 1234, 1152, 1069, 1013 cm ⁻¹ ;
Ia-55	¹ H-NMR (CDCl ₃) δ 2.13 (s, 3H), 2.78 (t, J = 8.1 Hz, 2H), 3.19 (t, J = 8.1 Hz, 2H), 4.36 (s, 2H), 4.75 (s, 2H), 7.03-7.37 (m, 11H), 7.82-7.87 (m, 2H); IR (CHCl ₃) 2928, 2868, 1659, 1594, 1496, 1469, 1340, 1292, 1165, 1154, 1097, 1015 cm ⁻¹ ; 元素分析 (C ₂₆ H ₂₆ FN ₂ O ₄ S) 計算值 (%): C, 64.98; H, 5.24; N, 5.83; F, 3.95; S, 6.67 実測値 (%): C, 65.28; H, 5.24; N, 5.59; F, 3.64; S, 6.31
Ia-56	1 H-NMR (CDCl ₃) δ 2.58 (s, 3H), 2.79 (t, J = 7.8 Hz, 2H), 3.35 (t, J = 7.8 Hz, 2H), 4.37 (s, 2H), 4.98 (s, 2H), 6.57 (s, 1H), 6.90-7.37 (m, 10H), 7.79-7.89 (m, 2H); IR (CHCl ₃) 3482, 2934, 2871, 1731, 1594, 1496, 1455, 1439, 1406, 1341, 1292, 1165, 1154, 1093, 1070, 1029, 1013 cm ⁻¹ ; 元素分析(C ₂₆ H ₂₅ FN ₂ O ₄ S)計算值(%): C, 64.98; H, 5.24; N, 5.83; F, 3.95; S, 6.67 実測値(%): C, 64.81; H, 5.26; N, 5.60; F, 3.75; S, 6.47
Ia-57	¹ H-NMR (CDCl ₃) δ 2.79 (t, J = 7.5 Hz, 2H), 3.36 (t, J = 7.5 Hz, 2H), 3.79 (s, 3H), 4.37 (s, 2H), 4.73 (s, 2H), 6.66 (s, 1H), 6.78-7.38 (m, 10H), 7.80-7.84 (m, 2H); IR (CHCl ₃) 2937, 1732, 1593, 1491, 1455, 1340, 1292, 1165, 1154, 1093, 1066, 1043, 1014 cm ⁻¹ ;

(表35)

(表 3	0 /
化合物 番号	物性值
Ia-58	1 H-NMR (CDCl ₃) δ 2.77 (t, J = 7.8 Hz, 2H), 3.31 (t, J = 7.8 Hz, 2H), 4.36 (s, 2H), 4.75 (s, 2H), 6.74 (s, 1H), 7.04-7.32 (m, 10H), 7.81-7.86 (m, 2H); IR (CHCl ₃) 3481, 2929, 2868, 1732, 1594, 1496, 1471, 1410, 1386, 1341, 1292, 1165, 1154, 1093, 1071, 1029, 1013 cm ⁻¹ ; 元素分析 (C ₂₅ H ₂₂ ClNF ₂ O ₄ S) 計算値 (%): C, 59.94; H, 4.43; N, 5.59; Cl, 7.08; F, 3.79; S, 6.40 実測値 (%): C, 59.65; H, 4.34; N, 5.48; Cl, 6.71; F, 3.62; S, 6.19
Ia-59	1 H-NMR (CDCl ₃) δ 2.77 (t, J = 8.1 Hz, 2H), 3.32 (t, J = 8.1 Hz, 2H), 4.36 (s, 2H), 4.76 (s, 2H), 6.76 (s, 1H), 6.80-7.37 (m, 11H), 7.81-7.86 (m, 2H); IR (KBr) 3429, 2927, 1733, 1625, 1594, 1486, 1455, 1408, 1338, 1295, 1241, 1209, 1199, 1166, 1154, 1137, 1097, 1070, 1028, 1014 cm ⁻¹ ; 元素分析 ($C_{25}H_{22}F_2N_2O_4S\cdot 0.3AcOEt$) 計算值 (%): C, 61.59; H, 4.81; N, 5.48; F, 7.44; S, 6.28 実測値 (%): C, 61.98; H, 4.83; N, 5.31; F, 7.12; S, 6.13
Ia-61	¹ H-NMR (CDCl ₃) δ 2.36 (s, 3H), 2.67-2.72 (m, 2H), 3.23-3.29 (m, 2H), 4.34 (s, 2H), 4.74 (s, 2H), 5.70 (br s, 1H), 6.63 (s, 1H), 7.03 (m, 1H), 7.11-7.27 (m, 9H), 7.81-7.88 (m, 2H); IR (CHCl ₃) 3502, 2929, 2868, 2656, 2558, 1732, 1594, 1495, 1468, 1340, 1240 cm ⁻¹ ; 元素分析 (C ₂₆ H ₂₅ FN ₂ O ₄ S·0.2H ₂ O) 計算値 (%): C, 64.50; H, 5.29; F, 3.92; N, 5.79; S, 6.62 実測値 (%): C, 64.50; H, 5.24; F, 3.78; N, 5.82; S, 6.61
Ia-62	mp 108-110 °C; 1 H-NMR (CDCl ₃) δ 2.75-2.80 (m, 2H), 3.28-3.34 (m, 2H), 3.77 (s, 3H), 4.27 (s, 2H), 4.64 (s, 2H), 6.13 (br s, 1H), 6.63 (s, 1H), 6.80-6.82 (m, 2H), 7.00-7.15 (m,7H), 7.24 (m, 1H), 7.75-7.80 (m, 2H); IR (Nujol) 2726, 1727, 1612, 1590, 1513, 1494, 1467, 1333, 1246, 1152 cm $^{-1}$; 元素分析($C_{26}H_{25}FN_{2}O_{5}S\cdot 0.3H_{2}O$)計算值(%): C , 62.21; H , 5.14; F , 3.78; N , 5.58; S , 6.39 実測値(%): C , 62.26; H , 5.16; F , 3.56; S , 5.43; S , 6.21
Ia-63	¹ H-NMR (CDCl ₃) δ 2.86 (t, J = 7.4 Hz, 2H), 3.42 (t, J = 7.4 Hz, 2H), 4.34 (s, 2H), 4.80 (s, 2H), 5.35 (br s, 1H), 6.74 (s, 1H), 7.01 (m, 1H), 7.14-7.32(m, 7H), 7.83-7.87 (m, 2H), 7.98-8.01 (m, 2H); IR (Nujol) 2725, 1725, 1591, 1520, 1493, 1465, 1377, 1345, 1235, 1153 cm ⁻¹
Ia-64	mp $163-165$ °C; 1 H-NMR (CDCl $_{3}$) δ $2.50-2.56$ (m, 2H), $3.24-3.30$ (m, 2H), 4.64 (s, 2H), 4.75 (s, 2H), 6.48 (s, 1H), $6.95-7.07$ (m, 3H), $7.11-7.22$ (m, 3H), $7.32-7.40$ (m, 2H), $7.49-7.59$ (m, 2H), $7.81-7.93$ (m, 4H), $8.29-8.32$ (m, 2H); IR (Nujol) 3105 , 3061 , 1736 , 1592 , 1492 , 1465 , 1343 , 1333 , 1239 , 1221 , 1170 , 1152 cm $^{-1}$; 元素分析($C_{29}H_{25}FN_{2}O_{4}S$)計算值(%): C, 67.43 ; H, 4.88 ; F, 3.68 ; N, 5.42 ; S, 6.21 実測值(%): C, 67.20 ; H, 4.71 ; F, 3.51 ; N, 5.30 ; S, 6.04

(表36)

(衣る	
化合物 番号	物性值
	¹ H-NMR (CDCl ₃) δ 2.94-2.99 (m, 2H), 3.41-3.46 (m, 2H), 4.57 (s, 2H), 4.79 (s, 2H), 6.77-6.90 (m, 3H), 7.06-7.25 (m, 6H), 7.41 (d, J = 7.8Hz, 1H), 7.75-7.79 (m, 2H); IR (CHCl ₃) 3503, 2929, 2655, 2558, 1733, 1594, 1495, 1469, 1342 cm ⁻¹ ; 元素分析 (C ₂₃ H ₂₁ FN ₂ O ₄ S ₂ ·0.6H ₂ O) 計算值 (%): C, 57.15; H, 4.63; F, 3.93; N, 5.80; S, 13.27 実測値 (%): C, 57.04; H, 4.48; F, 3.78, N, 5.63; S, 13.44
Ia-66	1 H-NMR (CDCl ₃) δ 2.82 (t, J = 8.0Hz, 2H), 2.97-3.02 (m, 2H), 3.35-3.48 (m, 4H), 4.79 (s, 2H), 5.99 (bs, 1H), 6.83 (s, 1H), 7.05-7.28 (m, 10H), 7.54 (d, J = 7.5Hz, 1H), 7.73-7.78 (m, 2H); IR (CHCl ₃) 3503, 2932, 2869, 2655, 2558, 1733, 1594, 1496, 1468, 1334 cm ⁻¹ ; 元素分析 (C ₂₆ H ₂₅ FN ₂ O ₄ S·0.5H ₂ O) 計算值 (%): C, 63.79; H, 5.35; F, 3.88; N, 5.72; S, 6.55 実測値 (%): C, 64.02; H, 5.29; F, 3.60, N, 5.75; S, 6.26
Ia-69	1 H-NMR (CDCl ₃) δ 1.86 (m, 2H), 2.75 (t, J = 6.3 Hz, 2H), 3.00 (m, 2H), 4.58 (t, J = 5.7 Hz, 1H), 4.83 (s, 2H), 6.83 (s, 1H), 7.06-7.24 (m, 5H), 7.45 (d, J = 7.8 Hz, 1H), 7.70-7.75 (m 2H); IR (CHCl ₃) 3780, 3369, 2936, 1732, 1594, 1495, 1468, 1410, 1381, 1334, 1292, 1240, 1167, 1154, 1093, 1046, 1014 cm ⁻¹ ; 元素分析 (C ₁₉ H ₁₉ FN ₂ O ₄ S·0.2AcOEt) 計算值 (%): C, 58.28; H, 5.09; N, 6.87; F, 4.66; S, 7.86 実測値 (%): C, 58.39; H, 5.14; N, 6.96; F, 4.52; S, 7.72
Ia-74	1 H-NMR (CDCl ₃) δ 1.83-1.91 (m, 2H), 2.75 (t, J = 7.2 Hz, 2H), 2.97-3.04 (m, 2H), 4.56 (m, 1H), 4.82 (s, 2H), 6.82 (s, 1H), 6.95-7.12 (m, 5H), 7.19-7.25 (m, 3H), 7.34-7.49 (m, 3H), 7.67-7.75 (m, 2H); IR (CHCl ₃) 3480, 2935, 1732, 1584, 1488, 1469, 1412, 1376, 1332, 1298, 1246, 1154, 1095, 1045, 1022 cm ⁻¹ ; 元素分析 (C ₂₅ H ₂₄ N ₂ O ₅ S·0.3H ₂ O) 計算值 (%): C, 63.90; H, 5.28; N, 5.96; S, 6.82 実測値 (%): C, 63.95; H, 5.51; N, 5.72; S, 6.39
Ia-81	¹ H-NMR (CDCl ₃) δ 1.91 (m, 2H), 2.73 (s, 3H), 2.81 (t, J = 6.9 Hz, 2H), 3.60 (t, J = 7.2 Hz, 1H), 4.86 (s, 2H), 6.95 (s, 1H), 7.10-7.23 (m, 5H), 7.54 (d, J = 7.8 Hz, 1H), 7.73 (m, 2H); IR (CHCl ₃) 3481, 2932, 2868, 1731, 1615, 1594, 1494, 1468, 1407, 1378, 1342, 1292, 1166, 1154, 1090, 1014 cm ⁻¹
Ia-85	¹ H-NMR (CDCl ₃) δ 1.68-1.77 (m, 2H), 2.56 (t, J = 6.9 Hz, 2H), 3.17 (t, J = 7.8 Hz, 2H), 4.31 (s, 2H), 4.80 (s, 2H), 6.67 (s, 1H), 7.03-7.38 (m, 11H), 7.71-7.77 (m, 2H); IR (CHCl ₃) 3481, 2931, 1732, 1594, 1495, 1468, 1339, 1292, 1165, 1154, 1095, 1013 cm ⁻¹
Ia-87	mp 125-126 °C; 1 H-NMR (CDCl ₃) δ 2.39 (s, 3H), 2.81 (m, 1H), 2.99 (m, 1H), 3.33-3.46 (m, 2H), 4.82 (s, 2H), 6.85 (s, 1H), 7.06-7.28 (m, 10H), 7.55 (d, J = 8.1 Hz, 1H), 7.68 (d, J = 8.4 Hz, 2H); IR (Nujol) 3428, 3081, 3026, 2927, 1713, 1598, 1468, 1325, 1241, 1191, 1149 cm ⁻¹ ; 元素分析 ($C_{27}H_{28}N_2O_4S$) 計算值 (%): C, 68.04; H, 5.92; N, 5.88; S, 6.73 実測值 (%): C, 68.07; H, 5.82; N, 5.95; S, 6.60

(表37)

(表3	
化合物	物性値
番号	¹ H-NMR (CDCl ₃) δ 2.89 (t, J = 6.6 Hz, 2H), 3.21-3.27 (m, 2H),
1	1 H-NMK (CDCl ₃) 8 2.85 (t, 5 = 6.6 Hz, 2H), 6.21-6.27 (a), 517, 4.53 (t, J = 6.6 Hz, 1H), 4.81 (s, 2H), 6.92-7.02 (m, 3H), 7.13 (m, 1H), 7.30-7.34 (m, 2H), 7.59-7.62 (m, 2H); IR (KBr) 3290, 3087, 2571, 1721, 1627, 1586, 1490, 1409, 1346, 1323, 1251, 1225, 1163, 1092, 1048, 1013 cm ⁻¹ ; 元素分析 ($C_{18}H_{26}ClFN_2O_4S$) 計算值 (%): C , 52.62; H , 3.93; N , 6.82; Cl , 8.63; F , 4.62; F , 7.80 実測值 (%): C , 52.46; F , 3.85; F , 6.62; F , 4.34; F , 7.64
	$^{1}H-NMR$ (CDCl ₃) δ 2.85 (t, J = 6.6 Hz, 2H), 3.19 (m, 2H), 3.84 (s,
la-89	3H), 4.56 (br, 1H), 4.77 (s, 2H), 6.80-6.98 (m, 5H), 7.10 (m, 1H), 7.58-7.64 (m, 2H); IR (CHCl ₃) 2945, 2843, 1732, 1598, 1580, 1498, 1488, 1458, 1410, 1329, 1303, 1260, 1180, 1155, 1096, 1029 cm ⁻¹ ; 元素分析 (C ₁₉ H ₁₉ FN ₂ O ₅ S·0.4H ₂ O) 計算值 (%): C, 55.17; H, 4.82; N, 6.77; F, 4.59; S, 7.75 実測値 (%): C, 55.30; H, 4.81; N, 6.56: F, 4.33, S, 7.45
Ia-90	1 H-NMR (CDCl ₈) δ 2.91 (t, J = 6.3 Hz, 2H), 3.34-3.49 (m, 2H), 4.63 (t, J = 6.0 Hz, 1H), 4.80 (s, 2H), 6.92-7.15 (m, 5H), 7.48-7.53 (m, 2H); IR (KBr) 3269, 2655, 2565, 1728, 1626, 1584, 1488, 1459, 1433, 1324, 1241, 1096, 1073, 1017 cm ⁻¹ ; 元素分析 (C ₁₆ H ₁₅ FN ₂ O ₄ S ₂ ·0.3H ₂ O) 計算值 (%): C, 49.55; H, 4.05; N, 7.22; F, 4.90; S, 16.54 実測値 (%): C, 49.89; H, 3.98; N, 6.98; F, 4.54; S, 16.12
<u> </u>	mp 95-97°C; ¹ H-NMR (CDCl ₃) δ 2.84 (m, 1H), 3.02 (m, 1H),
la-91	3.34-3.49 (m, 2H), 4.83 (s, 2H), 6.88 (s, 1H), 7.04-7.29 (m, 9H), 7.52-7.59 (m, 3H); IR (Nujol) 3429, 3087, 3029, 2932, 1713, 1615, 1469, 1406, 1340, 1242, 1190, 1151 cm ⁻¹ ; 元素分析 (C ₂₄ H ₂₄ N ₂ O ₄ S ₂) 計算值 (%): C, 61.52; H, 5.16; N, 5.98; S, 13.69 宝潮值 (%): C, 61.39; H, 5.06; N, 5.78; S, 13.66
-	mp 113-114.5 °C: ¹ H-NMR (CDCl ₃) δ 2.81 (m, 1H), 2.93 (m, 1H),
 la-92	3.35-3.42 (m, 2H), 4.79 (s, 2H), 6.88 (s, 1H), 7.07-7.29 (m, 9H), 7.45 (d, J = 2.1 Hz, 1H), 7.77 (dd, J = 5.1, 8.7 Hz); IR (Nujol) 3423, 3028, 1720, 1591, 1494, 1470, 1405, 1336, 1293, 1226, 1147, 1094 cm ⁻¹ ; 元素分析 (C ₂₆ H ₂₄ ClFN ₂ O ₄ S) 計算値 (%): C, 60.64; H, 4.70; N, 5.44; Cl, 6.88; F, 3.69; S, 6.23 実測値 (%): C, 60.54; H, 4.60; N, 5.29; Cl, 6.70; F, 3.56; S, 6.28
la-93	mp 103-107 °C; 'H-NMR (CDCl ₃) δ 3.05 (m, 2H), 3.45 (m, 2H), 3.96 (d, J = 6.6 Hz, 2H), 4.77 (s, 2H), 5.94 (dt, J = 6.6, 15.6 Hz), 6.37 (d, J = 15.6 Hz, 1H), 6.84 (s, 1H), 7.01-7.33 (m, 10H), 7.49 (d, J = 8.1 Hz, 1H), 7.82 (dd, J = 4.8, 8.7 Hz, 2H); IR (Nujol) 3456,

(表38)

化合物	
番号	物性値
	mp 126-129 °C; ¹H-NMR (CDCl ₃) δ 1.85 (m, 1H), 2.58 (t, J = 7.8 Hz, 2H), 2.99 (m, 2H), 3.19 (t, J = 7.8 Hz, 2H), 3.39 (m, 2H), 4.80 (s, 2H), 6.86 (s, 1H), 7.07-7.29 (m, 10H), 7.50 (d, J = 8.1 Hz, 1H), 7.75 (dd, J = 5.1, 9.0 Hz, 2H); IR (Nujol) 3404, 3056, 1724, 1591, 1492, 1471, 1413, 1340, 1290, 1232, 1154, 1095 cm ⁻¹ ; 元素分析 (C ₂₇ H ₂₇ FN ₂ O ₄ S) 計算値 (%): C, 65.57; H, 5.50; N, 5.66; F, 3.84; S, 6.48 実測値 (%): C, 65.48; H, 5.60; N, 5.56; F, 3.77; S, 6.35
la-95	1 H-NMR (CD ₃ OD) δ 2.39 (s, 3H), 2.80 (t, J = 7.2 Hz, 2H), 3.10-3.16 (m, 2H), 6.89 (m, 1H), 6.98-7.29 (m, 5H), 7.63-7.66 (m, 2H); IR (KBr) 3293, 2575, 1721, 1628, 1598, 1491, 1459, 1440, 1407, 1321, 1252, 1224, 1187, 1092, 1048 cm $^{-1}$;元素分析 (C ₁₉ H ₁₉ FN ₂ O ₄ S·0.2H ₂ O) 計算值 (%): C, 57.91; H, 4.96; N, 7.11; F, 4.82; S, 8.14 実測値 (%): C, 57.87; H, 4.98; N, 6.85; F, 4.66, S, 7.93
la-96	1 H-NMR (CDCl ₃) & 2.86 (t, J = 6.3 Hz, 2H), 3.25-3.32 (m, 2H), 4.64 (br, 1H), 4.74 (s, 2H), 6.85-7.09 (m, 4H), 7.57-7.66 (m, 3H), 7.81-7.89 (m, 3H), 8.33 (s, 1H); IR (KBr) 3281, 1713, 1625, 1588, 1487, 1456, 1411, 1325, 1239, 1216, 1157, 1132, 1102, 1075 cm ⁻¹ ; 元素分析 (C ₂₂ H ₁₉ FN ₂ O ₄ S·0.3H ₂ O) 計算值 (%): C, 61.18; H, 4.57; N, 6.49; F, 4.40; S, 7.42 実測値 (%): C, 61.08; H, 4.56; N, 6.22; F, 4.09, S, 7.14
la-97	1 H-NMR (CD ₃ OD) δ 2.82 (t, J = 6.3 Hz, 2H), 3.26-3.44 (m, 2H), 4.63 (t, J = 6.0 Hz, 1H), 6.76-7.13 (m, 4H), 7.76-7.81 (m, 2H), 8.06-8.10 (m, 2H); IR (KBr) 3280, 3104, 2938, 1721, 1626, 1606, 1583, 1526, 1487, 1410, 1349, 1310, 1254, 1225, 1164, 1092, 1047 cm ⁻¹ ; 元素分析 (C ₁₈ H ₁₆ FN ₃ O ₆ S·0.2H ₂ O) 計算值 (%): C, 50.87; H, 3.89; N, 9.89; F, 4.47; S, 7.54 実測値 (%): C, 50.99; H, 3.86; N, 9.59; F, 4.19, S, 7.31
la-98	1 H-NMR (CDCl ₃) δ 2.73 (t, J = 6.3 Hz, 2H), 3.18-3.22 (m, 2H), 4.71 (t, J = 6.0 Hz, 1H), 6.63 (s, 1H), 6.81-7.05 (m, 3H), 7.45-7.53 (m, 3H), 7.89 (d, J = 8.1 Hz, 1H), 8.03 (d, J = 8.1 Hz, 1H), 8.22 (d, J = 5.4 Hz, 1H), 8.40 (d, J = 5.4 Hz, 1H) ; IR (CDCl ₃) 1732, 1487, 1457, 1408, 1328, 1162, 1135, 1079, 1045 cm ⁻¹ ; 元素分析 (C ₂₂ H ₁₉ FN ₂ O ₄ S·0.5H ₂ O) 計算值 (%): C, 60.68; H, 4.63; N, 6.43; F, 4.36; S, 7.36 実測値 (%): C, 60.65; H, 4.58; N, 6.26; F, 4.10, S, 7.20
la-99	1 H-NMR (CDCl ₃) δ 2.88 (t, J = 6.0 Hz, 2H), 3.24-3.28 (m, 2H), 4.35 (br, 1H), 4.78 (s, 2H), 6.92-7.13 (m, 4H), 7.63 (d, J = 6.6 Hz, 2H), 7.79 (d, J = 6.6 Hz, 2H); IR (KBr) 3269, 2655, 2565, 1728, 1626, 1584, 1488, 1459, 1433, 1324, 1241, 1096, 1073, 1017 cm ⁻¹ ; 元素分析 (C ₁₉ H ₁₆ FN ₃ O ₄ S ₂ ·0.4H ₂ O) 計算値 (%): C, 55.85; H, 4.14; N, 10.28; F, 4.65; S, 7.85 実測値 (%): C, 55.91; H, 4.23; N, 9.89; F, 4.33, S, 7.40

(表39)

(AC 3	
化合物 番号	物性值
la-100	1 H-NMR (d ₆ -DMSO) δ 2.68 (t, J = 6.9 Hz, 2H), 2.93-2.98 (m, 2H), 4.09 (br, 1H), 4.81 (s, 2H), 6.59 (dd, J = 6.0 and 2.1 Hz, 1H), 6.70 (s, 1H), 7.00 (s, 1H), 7.09 (d, J = 6.0 Hz, 1H), 7.36-7.42 (m, 2H), 7.78-7.87 (m, 3H), 8.70 (s, 1H); IR (KBr) 3431, 2927, 1732, 1626, 1591, 1494, 1465, 1407, 1322, 1292, 1231, 1151, 1092, cm ⁻¹ ; 元素分析 ($C_{18}H_{17}FN_2O_5S\cdot H_2O$) 計算值 (%): C, 52.68; H, 4.67; N, 6.83; F, 4.63; S, 7.81 実測值 (%): C, 52.41; H, 4.72; N, 6.58; F, 4.38, S, 7.76
la-101	1 H-NMR (CD ₃ OD) δ 2.91 (t, J = 6.9 Hz, 2H), 3.21 (t, J = 6.9 Hz, 2H), 6.63 (m, 1H), 6.93 (s, 1H), 7.04-7.13 (m, 4H), 7.71-7.77 (m, 2H); IR (KBr) 3303, 1721, 1633, 1592, 1557, 1494, 1466, 1440, 1409, 1327, 1290, 1253, 1235, 1190, 1166, 1152, 1092, 1076, 1046 cm ⁻¹ ; 元素分析 (C ₁₈ H ₁₆ F ₂ N ₂ O ₄ S) 計算值 (%): C, 54.82; H, 4.09; N, 7.10; F, 9.63; S, 8.13 実測値 (%): C, 54.63; H, 4.05; N, 6.97; F, 9.28; S, 7.87
la-102	¹ H-NMR (CDCl ₃) δ 2.79 (s, 3H), 3.08 (t, J = 7.2 Hz, 2H), 3.35 (t, J = 7.2 Hz, 2H), 4.83 (s, 2H), 6.74 (m, 1H), 6.92-7.17 (m, 5H), 7.74-7.79 (m, 2H); IR (CHCl ₃) 2931, 1732, 1630, 1594, 1557, 1496, 1460, 1408, 1374, 1341, 1292, 1238, 1166, 1154, 1089, 1045 cm ⁻¹ ; 元素分析 (C ₁₉ H ₁₈ F ₂ N ₂ O ₄ S·0.4MeOH) 計算值 (%): C, 55.32; H, 4.69; N, 6.65; F, 9.02; S, 7.61 実測値 (%): C, 55.52; H, 4.50; N, 6.45; F, 8.70, S, 7.31
la-103	¹ H-NMR (CDCl ₃) δ 2.87 (t, J = 7.8 Hz, 2H), 3.43 (t, J = 7.8 Hz, 2H), 4.40 (s, 2H), 4.60 (s, 2H), 6.62-7.36 (m, 12H), 7.77-7.81 (m, 2H); IR (CHCl ₃) 2930, 1732, 1629, 1593, 1496, 1457, 1406, 1329, 1292, 1154, 1098 cm ⁻¹ .
la-104	1 H-NMR (CDCl ₈) δ 1.83 (d, J = 7.2 Hz, 3H), 2.79-2.94 (m, 2H), 3.19-3.49 (m, 2H), 4.55 (br, 1H), 5.07 (q, J = 7.5 Hz, 1H), 6.99-7.20 (m, 5H), 7.63-7.68 (m, 2H); IR (CHCl ₈) 1725, 1594, 1495, 1466, 1409, 1331, 1292, 1167, 1153, 1092, 1062 cm ⁻¹ ; 元素分析 (C ₁₉ H ₁₈ ClFN ₂ O ₄ S·0.5H ₂ O) 計算值 (%): C, 52.60; H, 4.41; N, 6.46; Cl, 8.17; F, 4.38; S, 7.39 実測値 (%): C, 52.64; H, 4.36; N, 6.35; Cl, 7.95; F, 4.29, S, 7.42
	1 H-NMR (CDCl ₈) δ 1.84 (d, J = 7.2 Hz, 3H), 2.97 (t, J = 8.1 Hz, 2H), 3.31 (t, J = 8.1 Hz, 2H), 5.07 (q, J = 7.2 Hz, 1H), 7.13-7.19 (m, 5H), 7.46 (s, 1H), 7.75-7.80 (m, 2H); IR (CHCl ₈) 1726, 1594, 1495, 1465, 1375, 1342, 1292, 1166, 1154, 1090 cm ⁻¹ ; 元素分析 (C ₂₀ H ₂₀ ClFN ₂ O ₄ S·0.3H ₂ O) 計算值 (%): C, 54.07; H, 4.67; N, 6.30; Cl, 7.98; F, 4.28; S, 7.22 実測値 (%): C, 54.09; H, 4.89; N, 5.99; Cl, 7.63; F, 4.03; S, 6.86
la-106	1 H-NMR (CDCl ₈) δ 1.78 (d, J = 7.5 Hz, 3H), 2.77 (t, J = 8.4 Hz, 2H), 3.32 (d, J = 8.4 Hz, 2H), 4.71 (s, 1H), 5.01 (q, J = 7.5 Hz, 1H), 6.91 (s, 1H), 7.08-7.7.38 (m, 10H), 7.82-7.87 (m, 2H); IR (CHCl ₈) 1725, 1594, 1496, 1465, 1341, 1292, 1165, 1154, 1092, 1066 cm ⁻¹ ; 元素分析 (C ₂₆ H ₂₄ ClFN ₂ O ₄ S·0.3H ₂ O) 計算值 (%): C, 60.01; H,4.76; N, 5.38; Cl, 6.81; F, 3.65; S, 6.16 実測値 (%): C, 60.24; H, 4.65; N, 5.25; Cl, 6.51; F, 3.55; S, 6.04

(表40)

(32,4	
化合物 番号	物性值
Ib-2	1 H-NMR (d_6 -DMSO) δ 2.54-2.68 (m, 2H), 2.89-3.06 (m, 2H), 3.35 (m, 1H), 4.84 (s, 2H), 6.93-7.04 (m, 2H), 7.26-7.32 (m, 2H), 7.45-7.52 (m, 2H), 7.92-7.97 (m, 2H), 8.36 (d, $J = 7.8$ Hz, 1H), 12.96 (br, 1H); IR (KBr) 3429, 3300, 3061, 2913, 2856, 1725, 1592, 1494, 1458, 1432, 1409, 1382, 1340, 1291, 1241, 1167, 1155, 1092, 1002 cm $^{-1}$; 元素分析(C_{19} H ₁₇ FN ₂ O ₄ S·0.4H ₂ O)計算值(%): C, 57.68; H, 4.54; N, 7.08; F, 4.80; S, 8.11 実測值(%): C, 57.89; H, 4.36; N, 6.76; F, 4.49; S, 7.77
Ib-6	1 H-NMR (CD ₃ OD) δ 2.56-2.65 (m, 2H), 2.71 (s, 3H), 2.95-3.04 (m, 2H), 4.75 (d, J = 18 Hz, 1H), 4.80 (d, J = 18 Hz, 1H), 5.36 (m, 1H), 6.96-7.08 (m, 2H), 7.19-7.41 (m, 4H), 7.93-7.98 (m, 2H); IR (KBr) 3413, 2925, 2653, 2551, 1719, 1706, 1616, 1592, 1493, 1461, 1404, 1378, 1335, 1291, 1234, 1151, 1087, 1012 cm ⁻¹ ; 元素分析 (C ₂₀ H ₁₉ FN ₂ O ₅ S·0.4AcOEt) 計算值 (%): C, 59.27; H, 5.11; N, 6.40; F, 4.34; S, 7.33 実測値 (%): C, 59.03; H, 4.95; N, 6.34; F, 4.17; S, 7.29
Ib-11	¹ H-NMR (CD ₃ OD) δ 2.46-2.55 (m, 2H), 2.89-2.98 (m, 2H), 4.30 (d, J = 7.2 Hz, 1H), 4.42 (d, J = 7.2 Hz, 1H), 4.50 (d, 12.0 Hz, 1H), 4.63 (d, J = 12.0 Hz, 1H), 5.36 (m, 1H), 6.95-7.39 (m, 11H), 7.96-8.01 (m, 2H); IR (KBr) 3430, 2927, 2859, 1728, 1591, 1493, 1457, 1404, 1381, 1340, 1292, 1236, 1208, 1165, 1153,1092, 1052, 1012 cm ⁻¹ ;
Ib-16	mp 162-168 °C; ¹H-NMR (d_6 -DMSO) δ 1.77 (m, 1H), 1.92 (m, 1H), 2.46-2.78 (m, 4H), 3.41 (m, 1H), 4.80 (d, J = 18.6 Hz, 1H), 4.86 (d, J = 18.6 Hz, 1H), 6.96 (m, 1H), 7.04 (m, 1H), 7.25 (d, J = 7.2 Hz, 1H), 7.29 (d, J = 8.1 Hz, 1H), 7.40-7.48 (m, 2H), 7.90-7.97 (m, 3H), 12.95 (br, 1H); IR (Nujol) 3261,1734,1590,1493,1469,1444,1329,1188,1168,1153 cm ⁻¹ ; [α] _D ²⁴ +60.4±1.0° (c=1.012, MeOH); 元素分析 (C_{20} H ₁₉ FN ₂ O ₄ S) 計算值 (%): C , 59.69; C , 4.76; C , 4.72; C , 6.96; C , 7.97 実測値 (%): C , 59.51; C , 4.68; C , 4.57; C , 6.77; C , 7.78
Ib-18	1 H-NMR (d ₆ -DMSO) δ 1.74 (m, 1H), 1.90 (m, 1H), 2.39 (s, 3H), 2.45-2.75 (m, 4H), 3.30(m, 1H), 4.79 (d, J = 19.2 Hz, 1H), 4.88 (d, J = 19.2 Hz, 1H), 6.96 (m, 1H), 7.04 (m, 1H), 7.24 (d, J = 6.9 Hz, 1H), 7.29 (d, J = 7.8 Hz, 1H), 7.40 (d, J = 8.1 Hz, 2H), 7.76 (d, J = 8.1 Hz, 2H), 7.82 (d, J = 6.6 Hz, 1H), 12.93 (br, 1H); IR (KBr) 3272,2924,1728,1617,1598,1468,1434,1382,1319,1156 cm ⁻¹ ; [α] _D ²³ +76.2±1.2° (c=1.010, MeOH); 元素分析 (C ₂₁ H ₂₂ N ₂ O ₄ S·0.5H ₂ O) 計算值 (%): C, 61.90; H, 5.69; N, 6.87; S, 7.87 実測値 (%): C, 62.01; H, 5.45; N, 6.81; S, 7.76

(表41)

(衣4	
化合物 番号	物性値
Ib-20	1 H-NMR (d_{6} -DMSO) δ 1.78 (m, 1H), 1.94 (m, 1H), 2.48-2.80 (m, 4H), 3.47 (m, 1H), 4.81 (d, J = 18.3 Hz, 1H), 4.87 (d, J = 18.3 Hz, 1H), 6.97 (m, H), 7.05 (m, 1H), 7.19 (dd, J = 3.6, 5.1 Hz, 1H), 7.26-7.32 (m, 2H), 7.66 (dd, J = 1.5, 3.6 Hz, 1H), 7.94 (dd, J = 1.5, 5.1 Hz, 1H), 8.12 (d, J = 6.9 Hz, 1H), 12.95 (br, 1H); IR (KBr) 3435,3276,2925,1727,1617,1468,1433,1405,1382,1320,1227,1182,1154 cm $^{-1}$; [α] $_{D}^{24}$ +70.9±1.1° (c=1.010, MeOH); 元素分析 ($C_{18}H_{18}N_{2}O_{4}S_{2}$ ·0.5H $_{2}$ O) 計算値 (%): C , 54.12; C ,
Ib-21	1 H-NMR (1 R-DMSO) δ 1.77 (1 M-1, 1.95 (1 M-1), 2.46-2.76 (1 M-1), 3.40 (1 M-1), 4.80 (1 M-1), 7.26 (1 M-1), 4.86 (1 M-1), 7.29 (1 M-1), 6.96 (1 M-1), 7.04 (1 M-1), 7.26 (1 M-1), 7.78 (1 M-1), 7.29 (1 M-1), 7.84 (1 M-1), 7.41 (1 M-1), 8.20 (1 M-1), 7.78 (1 M-1), 7.84 (1 M-1), 7.84 (1 M-1), 8.20 (1 M-1), 12.95 (1 M-1); IR (1 M-1), 7.84 (1 M-1), 12.95 (1 M-1), 12.95 (1 M-1); IR (1 M-1), 7.84 (1 M-1), 12.95 (1 M-1), 12.95 (1 M-1), 10.75 (1 M-1), 12.95 (1 M-1), 12.95 (1 M-1), 10.75 (1 M-1), 12.95 (1 M-1), 12.95 (1 M-1), 10.75 (1 M-1), 12.95 (1 M-1), 12.95 (1 M-1), 12.95 (1 M-1), 12.95 (1 M-1), 13.75 (1 M-1), 13.75 (1 M-1), 13.75 (1 M-1), 13.75 (1 M-1), 14.75 (1 M-1), 15.75 (1 M-1), 15.7
Ib-22	1 H-NMR (d ₆ -DMSO) δ 1.76 (m, 1H), 1.93 (m, 1H), 2.45-2.76 (m, 4H), 3.41 (m, 1H), 4.22 (s, 2H), 4.80 (d, J = 18.6 Hz, 1H), 4.86 (d, J = 18.6 Hz, 1H), 6.95-7.07 (m, 3H), 7.20-7.37 (m, 7H), 7.48 (d, J = 3.6 Hz, 1H), 12.97(br, 1H); IR (KBr) 3431,3271,2923,1726,1486,1453,1382,1320,1153 cm ⁻¹ ; 元素分析 ($C_{25}H_{24}FN_{2}O_{4}S_{2}$ -0.3 $H_{2}O$) 計算値 (%): C, 61.78; H, 5.10; N, 5.76; S, 13.12 実測値 (%): C, 61.76; H, 5.01; N, 5.67; S, 13.12
Ib-25	mp 185-196 °C; ¹H-NMR (d ₆ -DMSO) δ 1.53 (m, 1H), 1.88 (m, 1H), 2.48-2.85 (m, 4H), 2.83 (s, 3H), 4.12 (m, 1H), 4.85 (s, 2H), 6.98 (m, 1H), 7.06 (m, 1H), 7.28-7.32 (m, 2H), 7.45-7.51 (m, 2H), 7.91-7.98 (m, 2H), 12.95 (br, 1H); IR (Nujol) 2683,1715,1592,1490,1465,1473,1335,1288,1167 cm ⁻¹ ; [α] _D ²⁴ +95.0±1.3° (c=1.004, MeOH); 元素分析 (C ₂₀ H ₁₉ FN ₂ O ₄ S) 計算值 (%): C, 60.56; H, 5.08; F,4.56; N, 6.73; S, 7.70 実測値 (%): C, 60.34; H, 5.15; F,4.33; N, 6.47; S, 7.43
Ib-27	mp 154-160°C; ¹H-NMR (d ₆ -DMSO) δ 1.50 (m, 1H), 1.85 (m, 1H), 2.42 (s, 3H), 2.52-2.78 (m, 4H), 2.80 (s, 3H), 4.10 (m, 1H), 4.82 (d, J = 18.3 Hz, 1H), 4.88 (d, J = 18.3 Hz, 1H), 6.97 (m, 1H), 7.05 (m, 1H), 7.28-7.32 (m, 2H), 7.51 (d, J = 8.1 Hz, 2H), 7.75 (d, J = 8.1 Hz, 2H), 12.95 (br, 1H); IR (Nujol) 2658,1714,1598,1465,1335,1288,1165 cm ⁻¹ ; [α] ₀ ²⁴ +119.5±1.6° (c=1.012, MeOH); 元素分析 (C ₂₂ H ₂₄ N ₂ O ₄ S) 計算値 (%): C, 64.06; H, 5.86; N, 6.79; S, 7.77 実測値 (%): C, 64.02; H, 5.78; N, 6.75; S, 7.68

(表42)

(表 4	Z)
化合物 番号	物性値
Ib-29	Mp 185-196 °C; ¹H-NMR (d_6 -DMSO) δ 1.52 (m, 1H), 1.88 (m, 1H), 2.53-2.82 (m, 4H), 2.86 (s, 3H), 4.11 (m, 1H), 4.82 (d, J = 18.3 Hz, 1H), 4.88 (d, J = 18.3 Hz, 1H), 6.98 (m, 1H), 7.06 (m, 1H), 7.26-7.33 (m, 3H), 7.74 (dd, J = 1.5, 3.6 Hz, 1H), 8.03 (dd, J = 1.5, 5.1 Hz, 1H), 12.93 (br, 1H); IR (Nujol) 2683,1715,1592,1490,1465,1473,1335,1288,1167 cm ¹; [α] _D ²⁴ +95.0±1.3° (c=1.004, MeOH); 元素分析 ($C_{20}H_{19}FN_{2}O_{4}S$) 計算值 (%): C , 60.56; C , 5.08; C , 7.70 実測値 (%): C , 60.34; C , 7.70 C , 7.43
Ib-30	mp 175-180°C; 1 H-NMR (d_{6} -DMSO) δ 1.36 (m, 1H), 1.88 (m, 1H), 2.52 (m, 1), 2.64-2.86 (m, 3H), 2.83 (s, 3H), 4.11 (m, 1H), 4.85 (s, 2H), 6.98 (m, 1H), 7.06 (m, 1H), 7.28-7.32 (m, 2H), 7.45 (dd, J=1.2, 5.1 Hz, 1H), 7.83 (dd, J=3.0, 5.1 Hz, 1H), 8.31 (dd, J=1.2, 3.0 Hz, 1H), 12.93 (br, 1H); IR (Nujol) 3100,2662,1721,1468,1336,1323,1253,1201,1163,1138 cm ⁻¹ ; 元素分析 ($C_{19}H_{20}N_{2}O_{4}S_{2}$) 計算値 (%): C_{7} , 56.42; C_{7} H, 4.98; C_{7} N, 6.93; C_{7} S, 15.85 実測値 (%): C_{7} C, 56.34; C_{7} H, 4.88; C_{7} N, 6.85; C_{7} S, 15.80
Ib-31	mp 138-140 °C; ¹H-NMR (d_6 -DMSO) δ 1.49 (m, 1H), 1.86 (m, 1H), 2.49-2.77 (m, 4H), 2.81 (s, 3H), 4.02 (m, 1H), 4.25 (s, 2H), 4.85 (s, 2H), 6.96-7.08 (m, 3H), 7.22-7.38 (m, 7H), 7.56 (d, J = 3.9 Hz, 1H), 12.97(br, 1H); IR (Nujol) 1712,1468,1449,1431,1410,1380,1341,1238,1154 cm $^{-1}$; 元素分析 ($C_{26}H_{26}N_2O_4S_2$) 計算値 (%): C, 63.13; H, 5.30; N, 5.66; S, 12.97 実測値 (%): C, 62.99; H, 5.26; N, 5.56; S, 13.00
Ib-77	cm ⁻¹ ; 元素分析 (C ₂₀ H ₁₉ FN ₂ O ₄ S) 計算值 (%): C, 59.69; H, 4.76; F,4.72; N, 6.96; S, 7.97 実測値 (%): C, 59.40; H, 4.74; F,4.60; N, 17.04; S, 7.91
Ic-2	mp 142-143 °C; ¹H-NMR (CDCl ₃) δ 2.42 (br s, 2H), 3.31 (t, J = 5.7 Hz, 2H), 3.97 (br s, 2H), 4.87 (s, 2H), 6.21 (br s, 1H), 7.03 (s, 1H), 7.14-7.29 (m, 5H), 7.75 (d, J = 7.8 Hz, 1H), 7.85 (dd, J = 4.8, 8.7 Hz, 2H); IR (KBr) 3348, 1770, 1590, 1491, 1466, 1347, 1331, 1167, 1156, 1095 cm ¹; 元素分析 ($C_{21}H_{19}FN_2O_4S$) 計算値 (%): C , 60.86; H , 4.62; N , 6.76; F , 4.58; S , 7.74 実測値 (%): C , 60.94; H , 4.65; N , 6.65; F , 4.24; S , 7.70
Ic-6	mp 189-194 °C (dec); ¹H-NMR (CDCl ₃) δ 1.56 (m, 1H), 1.84 (m, 2H), 2.06 (m, 1H), 2.40-2,54 (m, 2H), 3.24 (m, 1H), 3.70 (m, 1H), 3.94 (dd, J = 2.1, 11.7 Hz, 1H), 4.84 (s, 2H), 6.88 (s, 1H), 7.13-7.26 (m, 5H), 7.63 (d, J = 7.8 Hz, 1H), 7.76 (dd, J = 5.1, 9.0 Hz, 2H); IR (KBr) 3423, 1706, 1590, 1492, 1468, 1405, 1332, 1288, 1240, 1148 cm ⁻¹ ; 元素分析 (C ₂₁ H ₂₁ FN ₂ O ₄ S) 計算値 (%): C, 60.56; H, 5.08; N, 6.73; F, 4.56; S, 7.70 実測値 (%): C, 60.51; H, 5.12; N, 6.63; F, 4.35; S, 7.56

(表43)

(表 4	
化合物 番号	物性值
Ic-8	mp 152-157 °C; ¹H-NMR (CDCl ₃) δ 1.57 (m, 1H), 1.79-1.90 (m, 2H), 2.06 (m, 1H), 2.53-2.65 (m, 2H), 3.26 (m, 1H), 3.70 (m, 1H), 3.94 (m, 1H), 4.84 (s, 2H), 6.90 (s, 1H), 7.10-7.28 (4H, m), 7.51 (m, 1H), 7.58 (m, 1H), 7.64 (d, J = 7.8 Hz, 1H); IR (Nujol) 3424, 3101, 3055, 2930, 1717, 1614, 1579, 1469, 1406, 1337, 1243, 1164, 1146 cm ⁻¹ ; 元素分析 ($C_{19}H_{20}N_2O_4S_2$) 計算值 (%): C , 56.42; C ,
Ic-11	mp 212-214 °C; ¹H-NMR (d_6 -DMSO) δ 1.41-1.96 (m, 4H), 2.27-2.42 (m, 2H), 3.06 (m, 1H), 3.64-3.84 (m, 2H), 4:94 (s, 2H), 6.97 (td, J = 2.7, 9.0 Hz, 1H), 7.23 (s, 1H), 7.31 (dd, J = 2.7, 10.2 Hz, 1H), 7.36 (dd, J = 4.5, 9.0 Hz, 1H), 7.42-7.48 (m, 2H), 7.80-7.86 (m, 2H); IR (Nujol) 2654, 2558, 1709, 1624, 1591, 1489, 1458, 1407, 1334, 1319, 1283, 1241, 1192, 1155 cm ¹; 元素分析 ($C_{21}H_{20}F_2N_2O_4S\cdot 0.2AcOEt$) 計算值 (%): C , 57.92; H , 4.82; F , 8.40; N , 6.20; S , 7.09 実測値 (%): C , 58.06; H , 4.67; F , 8.24; N , 6.36; S , 7.31
Ic-14	mp 155-156°C; 1 H-NMR (d_{6} -DMSO) δ 1.86 (m, 1H), 2.21 (m, 1H), 3.13 (dd, $J=8.4$, 9.6 Hz, 1H), 3.29-3.51 (m, 3H), 3.73 (dd, $J=7.2$, 9.6 Hz, 1H), 4.89 (s, 2H), 6.98 (m, 1H), 7.06 (s, 1H), 7.11 (m, 1H), 7.31 (m, 1H), 7.37 (d, $J=8.1$ Hz, 1H), 7.37 (d, $J=8.1$ Hz, 1H), 7.42-7.49 (m, 2H), 7.88-7.95 (m, 2H), 12.93 (br, 1H); IR (Nujol) 2662, 1732, 1712, 1587, 1490, 1469, 1341, 1333, 1241, 1198, 1162, 1095 cm $^{-1}$; 元素分析($C_{20}H_{19}FN_{2}O_{4}S$)計算值(%): C , 59.69; H, 4.76; F, 4.72; N, 6.96; S, 7.97 実測値(%): C , 59.55; H, 4.66; F, 4.54; N, 6.83; S, 7.93
Ic-16	mp 126-133 °C; ¹H-NMR (dg-DMSO) δ 1.84 (m, 1H), 2.22 (m, 1H), 3.17 (dd, J = 8.7, 9.9 Hz, 1H), 3.33-3.55 (m, 3H), 3.76 (dd, J = 7.5, 9.9 Hz, 1H), 4.91 (s, 2H), 7.00 (m, 1H), 7.07 (s, 1H), 7.12 (m, 1H), 7.28-7.40 (m, 3H), 7.75 (dd, J = 1.5, 3.9 Hz, 1H), 8.05 (dd, J = 1.5, 5.1 Hz, 1H), 12.92 (br, 1H); IR (Nujol) 3230, 1752, 1726, 1469, 1333, 1211, 1146, 1098, 1030 cm ⁻¹ ; 元素分析 ($C_{18}H_{18}N_2O_4S_2\cdot 0.2AcOEt$) 計算值 (%): $C, 55.33$; $H, 4.84$; $N, 6.86$; $S, 15.71$ 実測值 (%): $C, 55.08$; $H, 4.90$; $N, 6.83$; $S, 15.56$
Ic-18	mp 139-140 °C; ¹ H-NMR (d_6 -DMSO) δ 1.84-2.16 (m, 2H), 2.20 (s, 3H), 3.30-3.76 (m, 5H), 4.88 (s, 2H), 6.77 (m, 2H), 7.02 (m, 1H), 7.31 (d, J = 8.1 Hz, 1H), 7.50-7.64 (m, 2H), 7.94-8.08 (m, 2H); IR (Nujol) 3075, 2925, 2736, 2656, 2561, 1725, 1590, 1468, 1375, 1351, 1291, 1241, 1152 cm ⁻¹
Ic-22	mp 185-190 °C (dec); 1 H-NMR (CDCl ₈) δ 2.65 (br t, 2H), 3.36 (t, J = 5.7 Hz, 2H), 3.83 (br s, 2H), 4.78 (s, 2H), 6.10 (br s, 1H), 7.06 (s, 1H), 7.11-7.27 (m, 5H), 7.77 (d, J = 8.1 Hz, 1H), 7.87 (dd, J = 5.1, 9.0 Hz, 2H); 元素分析 ($C_{21}H_{19}FN_{2}O_{4}S$) 計算值 (%): C, 60.86; H, 4.62; N, 6.76; F, 4.58; S, 7.74 実測値 (%): C, 60.59; H, 4.68; N, 6.57; F, 4.29; S, 7.46

ŕ

(表44)

(衣生	
化合物 番号	物性値
	mp 119-124 °C (dec); ¹H-NMR (CDCl ₃) δ 1.86 (m, 2H), 2.11 (m, 2H), 2.45 (m, 2H), 2.77 (m, 1H), 3.93 (m, 2H), 4.84 (s, 2H), 6.81 (s, 1H), 7.10 (m, 1H), 7.21-7.27 (m, 4H), 7.51 (d, J = 8.1 Hz, 1H), 7.83 (dd, J = 5.1, 9.0 Hz, 2H); IR (KBr) 3422, 1715, 1593, 1493, 1467, 1349, 1333, 1240, 1168, 1154 cm ⁻¹ ; 元素分析 (C ₂₁ H ₂₁ FN ₂ O ₄ S) 計算值 (%): C, 60.56; H, 5.08; N, 6.73; F, 4.56; S, 7.70 実測値 (%): C, 60.48; H, 4.98; N, 6.67; F, 4.35; S, 7.55
Ic-26	1 H-NMR (CDCl ₃) δ 1.43-1.71 (m, 4H), 2.89 (m, 1H), 3.08 (m, 1H), 3.34-3.49 (m, 2H), 3.92 (m, 1H), 4.86 (s, 2H), 6.93 (s, 1H), 7.15-7.26 (m, 5H), 7.79 (d, J = 7.8 Hz, 1H), 7.87-7.91 (m, 2H); IR (KBr) 2927, 1727, 1591, 1493, 1468, 1332, 1292, 1235, 1197, 1152, 1091, 1038 cm ⁻¹ ; 元素分析 (C ₂₁ H ₂₁ FN ₂ O ₄ S·0.6H ₂ O) 計算値 (%): C, 59.03; H, 5.24; N, 6.56; F, 4.45; S, 7.50 実測値 (%): C, 59.38; H, 5.21; N, 6.42; F, 4.12, S, 7.11
Ic-29	1 H-NMR (CDCl ₃) δ 1.26-1.65 (m, 6H), 2.97-3.21 (m, 3H), 3.82 (m, 1H), 4.36 (m, 1H), 4.82 (s, 2H), 6.86 (s, 1H), 6.99-7.26 (m, 5H), 7.61 (d, J = 4.8 Hz, 1H), 7.69-7.74 (m, 2H); IR (KBr) 3426, 2936, 1728, 1591, 1494, 1468, 1330, 1289, 1232, 1149, 1091 cm ⁻¹ ; 元素分析 (C ₂₂ H ₂₃ FN ₂ O ₄ S·0.4H ₂ O) 計算值 (%): C, 60.37; H, 5.48; N, 6.40; F, 4.34; S, 7.33 実測値 (%): C, 60.53; H, 5.49; N, 6.26; F, 3.97; S, 6.93
Ic-30	mp 205-208 °C; ¹ H-NMR (d_6 -DMSO) δ 1.46-1.97 (m, 4H), 2.16-2.37 (m, 2H), 3.07 (m, 1H), 3.64-3.83 (m, 2H), 3.84 (s, 3H), 4.93 (s, 2H), 7.05 (m, 1H), 7.10-7.15 (m, 3H), 7.34 (d, J = 8.1 Hz, 1H), 7.53 (d, J = 7.5 Hz, 1H), 7.67 (d, J = 9.0 Hz, 2H).
Ic-31	mp 155-159 °C; ¹H-NMR (d ₆ -DMSO) δ 1.80 (m, 1H), 2.23 (m, 1H), 3.16 (dd, J = 8.7, 9.3 Hz, 1H), 3.34-3.56 (m, 3H), 3.74 (dd, J = 7.5, 9.9 Hz, 1H), 4.93 (s, 2H), 7.12 (dd, J = 2.1, 8.7 Hz, 1H), 7.16 (s, 1H), 7.28 (dd, J = 3.6, 5.1 Hz, 1H), 7.38 (d, J = 8.7 Hz, 1H), 7.49 (d, J = 2.1 Hz, 1H), 7.74 (dd, J = 1.5, 3.6 Hz, 1H), 8.03 (dd, J = 1.5, 5.1 Hz, 1H), 12.99 (br, 1H); IR (Nujol) 2669, 1745, 1669, 1469, 1388, 1347, 1226, 1156, 1040 cm¹; 元 素 分 析 ($C_{18}H_{17}ClN_2O_4S_2$) 計算值 (%): C , 50.88; C , 4.03; C , 8.34; C , 6.59; C , 15.09 実測値 (%): C , 55.86; C , 8.92; C , 8.04; C , 6.58; C , 15.00
Ic-32	mp 169-171 °C; ¹H-NMR (d ₆ -DMSO) δ 1.83 (m, 1H), 2.19 (m, 1H), 3.11 (dd, J = 8.7, 9.3 Hz, 1H), 3.29-3.50 (m, 3H), 3.71 (dd, J = 7.5, 9.9 Hz, 1H), 4.84 (s, 2H), 6.93 (dd, J = 1.5, 8.4 Hz, 1H), 7.00 (s, 1H), 7.13 (d, J = 1.5 Hz, 1H), 7.19 (d, J = 8.4 Hz, 1H), 7.42-7.50 (m, 2H), 7.89-7.96 (m, 2H), 12.89 (br, 1H); IR (Nujol) 2663, 1730, 1708, 1588, 1492, 1463, 1342, 1243, 1198, 1160, 1096, 1025 cm ⁻¹ ; 元素分析 (C ₂₁ H ₂₁ FN ₂ O ₄ S) 計算値 (%): C, 60.56; H, 5.08; F, 4.56; N, 6.73; S, 7.70 実測値 (%): C, 60.49; H, 5.08; F, 4.27; N, 6.67; S, 7.40

(表45)

化合物	
番号	物性値
lc-33	mp $145-149$ °C; ¹H-NMR $(d_6$ -DMSO) δ 1.83 (m, $1H$), 2.20 (m, $1H$), 2.36 (s, $3H$), 3.16 (t, $J=9.0$ Hz, $1H$), $3.34-3.54$ (m, $3H$), 3.74 (dd, $J=7.5$, 9.6 Hz, $1H$), 4.86 (s, $2H$), 6.94 (dd, $J=1.5$, 8.4 Hz, $1H$), 7.01 (s, $1H$), 7.17 (d, $J=1.5$ Hz, $1H$), 7.20 (d, $J=8.4$ Hz, $1H$), 7.30 (dd, $J=3.9$, 5.1 Hz, $1H$), 7.75 (dd, $J=1.5$, 3.9 Hz, $1H$), 8.05 (dd, $J=1.5$, 5.1 Hz, $1H$), 12.90 (br, $1H$); $1R$ (Nujol) 2662 , 1705 , 1484 , 1463 , 1348 , 1246 , 1156 , 1034 cm $^{-1}$; π \$ π \$ π \$ π ($C_{19}H_{20}N_2O_4S_2$) 計算值 (%): C , 56.42 ; H , 4.98 ; H , 5.93 ; H , 5.85 実測值 (%): H 0, 1.85 ; H 1, 1.85 ; H 2, 1.85 ; H 3, 1.85 ; H 3, 1.85 ; H 4, 1.85 ; H 5, 1.85 ; H 5, 1.85
lc−34	mp 145-146 °C; ¹H-NMR (d ₆ -DMSO) δ 1.76 (m, 1H), 2.20 (m, 1H), 3.11 (t, J = 9.0 Hz, 1H), 3.27-3.48 (m, 3H), 3.72 (dd, J = 7.5, 9.6 Hz, 1H), 4.90 (s, 2H), 7.10 (s, 1H), 7.11 (dd, J = 1.8, 8.7 Hz, 1H), 7.37 (d, J = 8.7 Hz, 1H), 7.46 (d, J = 1.8 Hz, 1H), 7.61-7.66 (m, 2H), 7.73 (m, 1H), 7.83-7.87 (m, 2H), 12.98 (br, 1H); IR (Nujol) 2663, 1731, 1471, 1446, 1340, 1242, 1198, 1162, 1099, 1029 cm ⁻¹ ; 元素分析 (C ₂₀ H ₁₉ ClN ₂ O ₄ S) 計算值 (%): C, 57.34; H, 4.57; Cl, 8.46; N, 6.69; S, 7.65 実測値 (%): C, 57.00; H, 4.48; Cl, 8.13; N, 6.71; S, 7.43
Ic−35	¹ H-NMR (d ₆ -DMSO) δ 1.97 (m, 1H), 2.30 (m, 1H), 3.08 (t, J = 9.0 Hz, 1H), 3.29-3.59 (m, 3H), 3.68 (d, J = 8.1 Hz, 1H), 4.50 (d, J = 13.5 Hz, 1H), 4.56 (d, J = 13.5 Hz, 1H), 4.98 (s, 2H), 7.14 (dd, J = 1.8, 8.7 Hz, 1H), 7.29 (s, 1H), 7.36-7.50 (m, 6H), 7.59 (d, J = 1.8 Hz, 1H), 13.01 (br, 1H); IR (KBr) 3439, 2637, 1731, 1471, 1329, 1152 cm ⁻¹ ; 元素分析($C_{21}H_{21}ClN_2O_4S\cdot0.6H_2O$)計算值(%): C, 56.84; H, 5.04; Cl, 7.99; N, 6.31; S, 7.23 実測値(%): C, 56.96; H, 4.81; Cl, 7.61; N, 6.34; S, 7.17
lc-36	mp 158-159 °C; ¹ H-NMR (d ₆ -DMSO) δ 1.82 (m, 1H), 2.22 (m, 1H), 3.13 (t, J = 9.0 Hz, 1H), 3.28-3.50 (m, 3H), 3.72 (dd, J = 7.5, 9.3 Hz, 1H), 4.91 (s, 2H), 7.13 (dd, J = 1.8, 8.7 Hz, 1H), 7.16 (s, 1H), 7.37(d, J = 8.7 Hz, 1H), 7.46 (d, J = 1.8 Hz, 1H), 7.64-7.68 (m, 2H), 7.82-7.86 (m, 2H), 12.99 (br, 1H); IR (Nujol) 2669, 1741, 1726, 1472, 1346, 1246, 1162, 1100, 1086, 1032 cm ⁻¹ .
lc-37	mp 195-196 °C; ¹H-NMR (d_6 -DMSO) δ 1.76 (m, 1H), 2.19 (m, 1H), 2.42 (s, 3H), 3.08 (t, J = 9.0 Hz, 1H), 3.26-3.45 (m, 3H), 3.68 (dd, J = 7.5, 9.3 Hz, 1H), 4.90 (s, 2H), 7.10 (s, 1H), 7.11 (dd, J = 1.8, 8.7 Hz, 1H), 7.37 (d, J = 8.7 Hz, 1H), 7.42-7.44 (m, 4H), 7.71-7.74 (m, 2H), 12.98 (br, 1H); IR (Nujol) 2671, 1728, 1470, 1347, 1249, 1199, 1158, 1097, 1030 cm ⁻¹ ; 元素分析 ($C_{21}H_{21}ClN_2O_4S$) 計算值 (%): C, 58.26; H, 4.89; Cl, 8.19; N, 6.47; S, 7.41 実測值 (%): C, 58.18; H, 4.87; Cl, 7.92; N, 6.40; S, 7.28

(表46)

化合物	
番号	物性值
lc-38	mp 166-168 °C; ¹H-NMR (d ₆ -DMSO) δ 1.81 (m, 1H), 2.20 (m, 1H), 3.10 (t, J = 9.0 Hz, 1H), 3.27-3.50 (m, 3H), 3.72 (dd, J = 7.5, 9.3 Hz, 1H), 4.90 (s, 2H), 6.95 (m, 1H), 7.15-7.19 (m, 2H), 7.34 (dd, J = 4.5, 9.0 Hz, 1H), 7.40-7.47 (m, 2H), 7.85-7.94 (m, 2H), 12.96 (br, 1H); IR (Nujol) 2662, 1725, 1715, 1587, 1457, 1341, 1333, 1237, 1198, 1160, 1096 cm ⁻¹ ; 元素分析 ($C_{20}H_{18}F_2N_2O_4S$) 計算值 (%): C, 57.14; H, 4.32; F, 9.04; N, 6.66; S, 7.63 実測値 (%): C, 57.15; H, 4.25; F, 8.79; N, 6.54; S, 7.57
Ic-39	1 H-NMR (d ₆ -DMSO) δ 1.80 (m, 1H), 2.22 (m, 1H), 3.15 (t, J = 9.0 Hz, 1H), 3.31-3.53 (m, 3H), 3.75 (dd, J = 7.5, 9.6 Hz, 1H), 4.92 (s, 2H), 6.96 (m, 1H), 7.15 (s, 1H), 7.21 (dd, J = 2.4, 9.9 Hz, 1H), 7.28 (dd, J = 3.9, 4.8 Hz, 1H), 7.35 (dd, J = 4.5, 9.0 Hz, 1H), 7.74 (dd, J = 1.2, 3.9 Hz, 1H), 8.03 (dd, J = 1.2, 4.8 Hz, 1H), 12.97 (br, 1H); IR (KBr) 1729, 1626, 1580, 1486, 1457, 1403, 1344, 1225, 1155 cm ⁻¹ ; 元素分析 (C ₁₈ H ₁₇ FN ₂ O ₄ S ₂) 計算値 (%): C, 52.24; H, 4.29; F, 4.59; N, 6.77; S, 15.50 実測値 (%): C, 52.26; H, 4.22; F, 4.46; N, 6.33; S, 15.47
Ic-40	mp 157-160 °C; ¹H-NMR (d_6 -DMSO) δ 1.82 (m, 1H), 2.21 (m, 1H), 3.10 (t, J = 9.0 Hz, 1H), 3.30-3.50 (m, 3H), 3.71 (dd, J = 7.5, 9.6 Hz, 1H), 3.74 (s, 3H), 4.83 (s, 2H), 6.75 (dd, J = 2.4, 8.7 Hz, 1H), 6.88 (d, J = 2.4 Hz, 1H), 7.00 (s, 1H), 7.21 (d, J = 8.7 Hz, 1H), 7.40-7.48 (m, 2H), 7.88-7.95 (m, 2H), 12.90 (br, 1H); IR (Nujol) 3204, 1742, 1718, 1622, 1586, 1493, 1452, 1338, 1331, 1224, 1151, 1095, 1037, 1027 cm $^{-1}$; 元素分析($C_{21}H_{21}FN_{2}O_{5}S$)計算值 (%): C , 58.32; H , 4.89; F , 4.39; N , 6.48; S , 7.41 実測值 (%): C , 58.02; F , 4.22; F , 6.30; F , 7.15
lc-41	1 H-NMR (1 R-DMSO) 1 8 1.82 (1 M, 1H), 2.23 (1 M, 1H), 3.14 (1 M, J=9.0 Hz, 1H), 3.30-3.52 (1 M, 3H), 3.75 (1 M, 1H), 3.75 (1 M, 3H), 4.85 (1 M, 6.76 (1 Md, J=2.4, 8.7 Hz, 1H), 6.92 (1 M, J=2.4 Hz, 1H), 7.01 (1 M, 7.22 (1 M, J=8.7 Hz, 1H), 7.29 (1 Md, J=3.9, 5.1 Hz, 1H), 7.75 (1 Md, J=1.2, 3.6 Hz, 1H), 8.04 (1 Md, J=1.2, 5.1 Hz, 1H), 12.74 (1 Mr, 1H); IR (1 MBr) 1727, 1622, 1580, 1488, 1454, 1403, 1345, 1226, 1155, 1031 cm $^{-1}$; 元素分析 (1 M+ 1 M
lc−42	1 H-NMR (1 d ₆ -DMSO) 5 1.82 (m, 1H), 2.16 (m, 1H), 3.09 (t, J = 9.0 Hz, 1H), 3.25-3.47 (m, 3H), 3.69 (dd, J = 7.5, 9.9 Hz, 1H), 4.79 (s, 2H), 6.63 (dd, J = 2.1, 9.0 Hz, 1H), 6.72 (d, J = 2.1 Hz, 1H), 6.93 (s, 1H), 7.10 (d, J = 9.0 Hz, 1H), 7.42-7.47 (m, 2H), 7.88-7.93 (m, 2H), (d, J = 8.7 Hz, 1H), 7.46 (d, J = 1.8 Hz, 1H), 7.61-7.66 (m, 2H), 7.73 (m, 1H), 8.73 (br, 1H), 12.87 (br, 1H); IR (KBr) 3436, 1730, 1625, 1590, 1492, 1466, 1332, 1293, 1226, 1153, 1096 cm ⁻¹ ; 元素分析 (1 C ₂₀ H ₁₉ FN ₂ O ₅ S·0.7H ₂ O) 計算値 (%): C, 55.73; H, 4.77; F, 4.41; N, 6.50; S, 7.44 実測値 (%): C, 55.69; H, 4.68; F, 4.05; N, 6.28; S, 7.19

(表47)

化合物	物性値
番号	<u> </u>
lc-43	mp 119-123 °C; ¹H-NMR (d_6 -DMSO) δ 0.90 (t, J = 7.5 Hz, 3H), 1.34-1.46 (m, 2H), 1.60-1.79 (m, 2H), 2.03 (m, 1H), 2.36 (m, 1H), 3.02-3.65 (m, 6H), 3.80 (dd, J = 7.5, 9.0 Hz, 1H), 4.96 (s, 2H), 6.98 (m, 1H), 7.33-7.44 (m, 3H), 12.96 (br, 1H); IR (Nujol) 3254, 1751, 1626, 1583, 1488, 1456, 1318, 1299, 1274, 1183, 1127, 1095, 1045 cm ⁻¹ ; 元素分析($C_{18}H_{23}FN_2O_4S$)計算值(%): C , 56.53; H , 6.06; F , 4.97; N , 7.32; S , 8.38 実測値(%): C , 56.46; S , 5.99; S , 7.19; S , 8.20
lc-44	mp 178-182 °C; ¹H-NMR (d_6 -DMSO) δ 1.99 (m, 1H), 2.33 (m, 1H), 3.20 (t, J = 9.0 Hz, 1H), 3.23-3.60 (m, 3H), 3.80 (dd, J = 7.5, 9.9 Hz, 1H), 4.91 (s, 2H), 6.95 (m, 1H), 7.29 (s, 1H), 7.31-7.47 (m, 7H), 7.73-7.76 (m, 2H), 12.95 (br, 1H); IR (Nujol) 1719, 1620, 1577, 1486, 1459, 1331, 1228, 1144, 1048, 1023 cm $^{-1}$; 元素分析 ($C_{22}H_{21}FN_2O_4S$) 計算値 (%): C , 61.67; H , 4.94; F , 4.43; N , 6.54; S , 7.48 実測値 (%): C , 61.45; H , 4.92; F , 4.27; N , 6.40; S , 7.40
lc-45	mp 205-207 °C; ¹H-NMR (d_6 -DMSO) δ 1.82 (m, 1H), 2.22 (m, 1H), 3.15 (t, J = 9.0 Hz, 1H), 3.34-3.54 (m, 3H), 3.76 (dd, J = 7.5, 9.3 Hz, 1H), 4.88 (s, 2H), 6.95 (m, 1H), 7.17 (s, 1H), 7.20 (dd, J = 2.4, 9.9 Hz, 1H), 7.32 (dd, J = 4.5, 9.0 Hz, 1H), 7.43-7.56 (m, 3H), 7.76-7.79 (m, 2H), 9.93 (s, 4H), 12.93 (br, 1H); IR (Nujol) 1721, 1597, 1483, 1457, 1337, 1233, 1199, 1158 cm ¹; 元素分析 ($C_{26}H_{23}FN_2O_4S$) 計算值 (%): C , 65.26; H , 4.84; F , 3.97; N , 5.85; S , 6.70 実測値 (%): C , 65.03; H , 4.85; F , 3.78; N , 5.72; S , 6.59
lc-46	mp 172-174 °C; ¹H-NMR (d ₆ -DMSO) δ 2.20 (m, 1H), 2.36 (m, 1H), 2.94 (s, 3H), 3.16 (t, J = 9.0 Hz, 1H), 3.33-3.64 (m, 3H), 3.79 (dd, J = 7.2, 9.0 Hz, 1H), 4.97 (s, 2H), 6.98 (m, 1H), 7.34 (s, 1H), 7.38 (dd, J = 4.2, 9.0 Hz, 1H), 7.44 (dd, J = 2.4, 10.2 Hz, 1H), 12.98 (br, 1H); IR (Nujol) 1722, 1487, 1456, 1318, 1233, 1196, 1141, 1042 cm ⁻¹ ; 元素分析 ($C_{15}H_{17}FN_2O_4S$) 計算值 (%): C , 52.93; H , 5.03; F , 5.58; N , 8.23; S , 9.42 実測値 (%): C , 52.76; H , 4.96; F , 5.39; N , 8.15; S , 9.20
lc-47	mp 171-173 °C; ¹H-NMR (d_6 -DMSO) δ 1.88 (m, 1H), 2.26 (m, 1H), 3.17 (t, $J=9.3$ Hz, 1H), 3.34-3.57 (m, 3H), 3.76 (dd, $J=6.9$, 9.3 Hz, 1H), 4.93 (s, 2H), 7.12 (s, 1H), 7.32 (m, 1H), 7.39-7.48 (m, 6H), 7.63-7.68 (m, 3H), 7.89-7.96 (m, 2H), 12.99 (br, 1H); IR (Nujol) 2668, 1736, 1592, 1493, 1476, 1347, 1335, 1258, 1244, 1187, 1166, 1154 cm ⁻¹ ; 元素分析 ($C_{26}H_{23}FN_2O_4S$) 計算值 (%): C, 65.26; H, 4.84; F, 3.97; N, 5.85; S, 6.70 実測値 (%): C, 65.29; H, 4.84; F, 3.91; N, 5.75; S, 6.78
lc-48	mp $161-163$ °C; ¹H-NMR $(d_6$ -DMSO) δ 0.89 $(t, J=7.5$ Hz, $3H)$, $1.34-1.46$ $(m, 2H)$, $1.61-1.71$ $(m, 2H)$, 2.08 $(m, 1H)$, 2.41 $(m, 1H)$, $3.04-3.20$ $(m, 2H)$, $3.27-3.58$ $(m, 3H)$, $3.68-3.86$ $(m, 2H)$, 4.99 $(s, 2H)$, $7.29-7.33$ $(m, 2H)$, $7.42-7.48$ $(m, 4H)$, $7.68-7.71$ $(m, 2H)$, 7.86 $(s, 1H)$, 12.97 $(br, 1H)$; IR $(Nujol)$ 2666 , 1715 , 1478 , 1455 , 1325 , 1243 , 1197 , 1133 , 1094 , 1046 cm $^{-1}$; 元素分析 $(C_{24}H_{28}N_2O_4S)$ 計算值 $(\%)$: C , 65.43 ; H , 6.41 ; N , 6.36 ; S , 7.28 実測値 $(\%)$: C , 65.16 ; H , 6.37 ; N , 6.24 ; S , 7.29

(表48)

化合物	物性值
番号	
Ic-49	mp 174-178 °C; ¹H-NMR (d_6 -DMSO) δ 1.86 (m, 1H), 2.28 (m, 1H), 3.18-3.57 (m, 4H), 3.78 (dd, $J = 6.9$, 9.3 Hz, 1H), 4.94 (s, 2H), 7.12 (s, 1H), 7.27 (dd, $J = 3.9$, 5.1 Hz, 1H), 7.32 (m, 1H), 7.42-7.49 (m, 4H), 7.64-7.70 (m, 3H), 7.75 (dd, $J = 1.5$, 3.9 Hz, 1H), 8.02 (dd, $J = 1.5$, 5.1 Hz, 1H), 12.97 (br, 1H); IR (Nujol) 2664, 1738, 1714, 1476, 1345, 1336, 1251, 1187, 1157, 1020 cm ⁻¹ ; 元素分析 ($C_{24}H_{22}N_2O_4S$) 計算值 (%): C, 61.78; H, 4.75; N, 6.00; S, 13.74 実測値 (%): C, 61.73; H, 4.74; N, 5.90; S, 13.62
lc-50	mp 160-170 °C; ¹H-NMR (d_6 -DMSO) δ 1.99 (m, 1H), 2.32 (m, 1H), 3.00 (t, J 8.1 Hz, 1H), 3.17 (t, J = 9.0 Hz, 1H), 3.35-3.61 (m, 5H), 3.83 (dd, J = 7.5, 9.0 Hz, 1H), 4.93 (s, 2H), 6.97 (m, 1H), 7.20-7.43 (m, 8H), 12.94 (br, 1H); IR (Nujol) 3617, 3498, 2625, 1739, 1713, 1488, 1458, 1327, 1224, 1147, 1135, 1049 cm ⁻¹ ; 元素分析 ($C_{22}H_{23}FN_2O_4S\cdot H_2O$) 計算值 (%): C, 58.91; H, 5.62; F, 4.24; N, 6.25; S, 7.15 実測値 (%): C, 59.09; H, 5.51; F, 4.17; N, 6.12; S, 7.19
lc-51	mp 192-194 °C; ¹H-NMR (d_6 -DMSO) δ 1.82 (m, 1H), 2.21 (m, 1H), 3.11 (t, J = 9.0 Hz, 1H), 3.27-3.50 (m, 3H), 3.73 (dd, J = 7.5, 9.3 Hz, 1H), 4.89 (d, J = 18.3 Hz, 1H), 4.95 (d, J = 18.3 Hz, 1H), 7.00 (dd, J = 1.5, 8.4 Hz, 1H), 7.11 (s, 1H), 7.40-7.51 (m, 4H), 7.87-7.93 (m, 2H), 12.97 (br, 1H); IR (Nujol) 2641, 1736, 1529, 1492, 1470, 1414, 1335, 1241, 1227, 1178, 1168, 1159 cm ⁻¹ ; 元素分析 ($C_{20}H_{18}ClFN_2O_4S$) 計算值 (%): C, 54.98; H, 4.15; Cl, 8.11; F, 4.35; N, 6.41; S, 7.34 実測値 (%): C, 54.95; H, 4.07; Cl, 7.91; F, 4.33; N, 6.40; S, 7.36
Ic-52	Mp 224-226 °C; ¹H-NMR (d_6 -DMSO) δ 1.81 (m, 1H), 2.22 (m, 1H), 3.15 (dd, $J=8.7$, 9.6 Hz, 1H), 3.34-3.53 (m, 3H), 3.75 (dd, $J=7.2$, 9.6 Hz, 1H), 4.90 (d, $J=18.3$ Hz, 1H), 4.96 (d, $J=18.3$ Hz, 1H), 7.01 (dd, $J=1.8$, 8.4 Hz, 1H), 7.12 (s, 1H), 7.29 (dd, $J=3.9$, 5.1 Hz, 1H), 7.41 (d, $J=8.4$ Hz, 1H), 7.51 (d, $J=1.8$ Hz, 1H), 7.74 (dd, $J=1.5$, 3.9 Hz, 1H), 8.04 (dd, $J=1.5$, 5.1 Hz, 1H), 12.97 (br, 1H); IR (Nujol) 1729, 1472, 1341, 1327, 1236, 1200, 1157, 1032 cm ⁻¹ ; 元素分析 ($C_{18}H_{17}ClN_2O_4S_2\cdot AcOEt$) 計算值 (%): C, 51.09; H, 4.33; Cl, 7.85; N, 6.21; S, 14.21 実測值 (%): C, 50.97; H, 4.22; Cl, 7.65; N, 6.31; S,14.51
lc-53	Mp 133-136 °C; ¹H-NMR (d_6 -DMSO) δ 1.93 (m, 1H), 2.30 (m, 1H), 3.19-3.59 (m, 4H), 3.80 (m, 1H), 4.89 (d, J = 18.9 Hz, 1H), 4.95 (d, J = 18.9 Hz, 1H), 7.12 (dd, J = 2.1, 8.7 Hz, 1H), 7.19 (s, 1H), 7.36-7.50 (m, 3H), 7.53 (d, J = 2.1 Hz, 1H), 7.69-7.88 (m, 2H), 12.99 (brs, 1H); IR (Nujol) 3093, 2668, 2575, 1714, 1598, 1472, 1416, 1376, 1351, 1304, 1263, 1248, 1223, 1189, 1164, 1127, 1108 cm ⁻¹ ; 元素分析 ($C_{20}H_{18}ClFN_2O_4S$) 計算值 (%): C, 54.98; H, 4.15; Cl, 8.11; F, 4.35; N, 6.41; S, 7.34 実測值 (%): C, 54.68; H, 4.01; Cl, 7.81; F, 4.17; N, 6.38; S, 7.30

(表49)

r	
化合物 番号	物性値
lc−54	mp 162-165 °C; ¹H-NMR (d ₆ -DMSO) δ 1.82 (m, 1H), 2.20 (m, 1H), 3.11-3.52 (m, 4H), 3.75 (dd, J = 7.2, 9.6 Hz, 1H), 4.92 (d, J = 18.6 Hz, 1H), 4.94 (d, J = 18.6 Hz, 1H), 7.11 (dd, J = 2.1, 8.4 Hz, 1H), 7.16 (s, 1H), 7.37 (d, J = 8.4Hz, 1H), 7.48 (d, J = 2.1 Hz, 1H), 7.53-7.73 (m, 4H), 12.99 (brs, 1H); IR (Nujol) 3084, 2667, 2573, 1710, 1590, 1472, 1415, 1390, 1378, 1345, 1304, 1267, 1249, 1221, 1197, 1162, 1106 cm ⁻¹ ; 元素分析 ($C_{20}H_{18}ClFN_2O_4S\cdot 0.1AcOEt$) 計算值 (%): C , 54.97; H , 4.25; Cl , 7.95; F , 4.26; N , 6.29; S , 7.19 実測値 (%): C , 54.97; H , 4.11;
	Cl, 7.74; F, 4.36; N, 6.36; S, 7.25
lc-55	mp 193-197 °C; ¹H-NMR (d_6 -DMSO) δ 1.94-2.02 (m, 2H), 2.21 (s, 3H), 3.15-3.69 (m, 5H), 4.92 (s, 2H), 6.88 (d, $J = 1.5 \text{ Hz}$, 1H), 7.02 (dd, $J = 1.5$, 8.7 Hz, 1H), 7.38 (d, $J = 8.7 \text{ Hz}$, 1H), 7.50-7.57 (m, 2H), 7.96-8.01 (m, 2H), 13.04 (br, 1H); IR (Nujol) 1734, 1592, 1494, 1469, 1338, 1169, 1159 cm ⁻¹ ; 元素分析 ($C_{21}H_{20}\text{ClFN}_2\text{O}_4\text{S}$)計算值 (%): C, 55.94; H, 4.47; Cl, 7.86; F, 4.21; N, 6.21; S, 7.11 実測値 (%): C, 55.78; H, 4.41; Cl, 7.59; F, 4.28; N, 6.25; S, 7.10
lc-56	mp 196-201 °C; ¹H-NMR (d ₆ -DMSO) δ 1.98-2.07 (m, 2H), 2.21 (s, 3H), 3.24-3.40 (m, 2H), 3.45-3.55 (m, 2H), 3.65 (m, 1H), 4.93 (s, 2H), 7.02-7.05 (m, 2H), 7.36-7.40 (m, 2H), 7.81 (dd, $J = 1.5$, 3.6 Hz, 1H), 8.13 (dd, $J = 1.5$, 5.1 Hz, 1H), 13.06 (br, 1H); IR (Nujol) 3278, 1770, 1739, 1470, 1346, 1325, 1231, 1221, 1159, 1089, 1059, 1027 cm ⁻¹ ; 元素分析 ($C_{19}H_{19}ClN_2O_4S_2$) 計算値 (%): C , 51.99; H, 4.36; Cl , 8.08; N, 6.38; S, 14.61 実測値 (%): C , 51.86; H, 4.34; Cl , 7.75; N, 6.36; S,14.74
Ic-57	mp 153-161 °C; ¹H-NMR (d_6 -DMSO) δ 0.94 (t, J = 7.8 Hz, 3H), 1.39-1.52 (m, 2H), 1.67-1.77 (m, 2H), 2.13 (m, 1H), 2.31 (m, 1H), 2.31 (s, 3H), 3.20 (m, 1H), 3.33-3.43 (m, 3H), 3.54-3.76 (m, 3H), 4.96 (s, 2H), 7.07 (dd, J = 2.1, 9.0 Hz, 1H), 7.41 (d, J = 9.0 Hz, 1H), 7.56 (d, J = 2.1 Hz, 1H), 13.06 (br, 1H); IR (Nujol) 3187, 1759, 1713, 1472, 1420, 1380, 1328, 1318, 1301, 1247, 1190, 1142, 1114, 1049 cm ⁻¹ ; 元素分析 ($C_{19}H_{25}ClN_2O_4S$) 計算値 (%): C , 55.26; H , 6.10; Cl , 8.59; N , 6.78; S , 7.77 実測値 (%): C , 55.47; H , 6.10; Cl , 8.36; N , 6.77; S , 7.54
Ic-58	mp 180-183 °C; ¹H-NMR (d_6 -DMSO) δ 1.85 (m, 1H), 2.24 (m, 1H), 3.13-3.55 (m, 4H), 3.77 (dd, J = 7.5, 9.6 Hz, 1H), 4.90(s, 2H), 7.11 (dd, J = 1.8, 8.7 Hz, 1H), 7.19 (s, 1H), 7.37 (d, J = 8.7 Hz, 1H), 7.48 (d, J = 1.8 Hz, 1H), 7.98 (d, J = 8.4 Hz, 2H), 8.06 (d, J = 8.4 Hz, 2H), 12.95 (brs, 1H); IR (Nujol) 3092, 2730, 2665, 2553, 1723, 1695, 1612, 1473, 1403, 1378, 1329, 1289, 1268, 1245, 1233, 1189, 1163, 1140, 1106 cm $^{-1}$; 元素分析($C_{21}H_{18}ClF_3N_2O_4S$)計算值 (%): C, 51.80; H, 3.73; Cl, 7.28; F, 11.71; N, 5.75; S, 6.59 実測值 (%): C, 51.65; H, 3.66; Cl, 7.02; F, 11.55; N, 5.76; S, 6.72

(表50)

化合物	
番号	物性值
	mp 136-142 °C; ¹H-NMR (d ₆ -DMSO) δ 0.90 (t, J = 7.2 Hz, 3H), 1.34-1.47 (m, 2H), 1.59-1.72 (m, 2H), 2.02 (m, 1H), 2.36 (m, 1H), 3.03-3.68 (m, 6H), 3.80 (dd, J = 7.5, 9.0 Hz, 1H), 4.97 (s, 2H), 7.13 (dd, J = 2.1, 8.7 Hz, 1H), 7.34 (s, 1H), 7.41 (d, J = 8.7 Hz, 1H), 7.68 (d, J = 2.1Hz, 1H), 13.00 (brs, 1H); IR (Nujol) 3133, 3093, 2664, 2549, 1721, 1697, 1472, 1403, 1389, 1333, 1297, 1277, 1242, 1231, 1199, 1146, 1100 cm ⁻¹ ; 元素分析 ($C_{18}H_{23}ClN_2O_4S$) 計算值 (%): C , 54.20; H , 5.81; Cl , 8.89; N , 7.02; S , 8.04 実測値 (%): C , 54.09; H , 5.74; Cl , 8.65; N , 7.00; S , 7.93
lc-60	mp 158-162 °C; ¹H-NMR (d ₆ -DMSO) δ 0.81-0.91 (m, 3H), 1.17-1.46 (m, 10H), 1.58-1.74 (m, 2H), 2.02 (m, 1H), 2.35 (m, 1H), 3.01-3.68 (m, 6H), 3.80 (dd, J = 7.5, 9.0 Hz, 1H), 4.97 (s, 2H), 7.13 (dd, J = 2.1, 8.7 Hz, 1H), 7.34 (s, 1H), 7.41 (d, J = 8.7 Hz, 1H), 7.68 (d, J = 2.1Hz, 1H), 13.00 (brs, 1H); IR (Nujol) 3135, 3094, 1720, 1695, 1471, 1403, 1391, 1378, 1333, 1285, 1230, 1199, 1146, 1119 cm ⁻¹ ; 元素分析 (C ₂₂ H ₃₁ ClN ₂ O ₄ S) 計算值 (%): C, 58.07; H, 6.87; Cl, 7.79; N, 6.16; S, 7.05 実測値 (%): C, 58.00; H, 6.82; Cl, 7.55; N, 6.20; S, 6.99
Ic-61	mp 220-223 °C; ¹H-NMR (d_6 -DMSO) δ 1.92 (m, 1H), 2.29 (m, 1H), 3.15-3.60 (m, 4H), 3.83 (dd, J = 7.5, 9.3 Hz, 1H), 4.86 (s, 2H), 7.09 (s, 1H), 7.10 (dd, J = 2.1, 8.7 Hz, 1H), 7.35 (d, J = 8.7 Hz, 1H), 7.47 (d, J = 2.1 Hz, 1H), 7.63-7.77 (m, 3H), 8.11 (m, 1H), 8.16 (m, 1H), 8.27 (d, J = 8.4 Hz, 1H), 8.75 (d, J = 7.5 Hz, 1H), 12.96 (brs, 1H); IR (Nujol) 3266, 3064, 3045, 1764, 1736, 1592, 1565, 1506, 1471, 1430, 1404, 1385, 1345, 1329, 1266, 1203, 1187, 1161, 1137, 1111 cm ⁻¹ ; 元素分析 ($C_{24}H_{21}ClN_2O_4S\cdot0.2H_2O$)計算值 (%): C, 61.00; H, 4.56; Cl, 7.50; N, 5.93; S, 6.79 実測値 (%): C, 61.11; H, 4.57; Cl, 7.33; N, 5.93; S, 6.63
Ic-62	mp 195-198 °C; ¹H-NMR (d_6 -DMSO) δ 1.88 (m, 1H), 2.24 (m, 1H), 3.13-3.59 (m, 4H), 3.77 (dd, $J=7.2$, 9.3 Hz, 1H), 4.89 (s, 2H), 7.09 (dd, $J=1.8$, 8.7 Hz, 1H), 7.18 (s, 1H), 7.34 (d, $J=8.7$ Hz, 1H), 7.43 (d, $J=1.8$ Hz, 1H), 8.06 (d, $J=9.0$ Hz, 2H), 8.35 (d, $J=9.0$ Hz, 2H), 12.97 (brs, 1H); IR (Nujol) 3108, 3068, 1738, 1606, 1530, 1472, 1414, 1401, 1376, 1348, 1320, 1303, 1261, 1238, 1227, 1200, 1179, 1165, 1134, 1103 cm ¹; 元素分析 ($C_{20}H_{18}ClN_3O_6S$) 計算値 (%): C , 51.78; H, 3.91; Cl , 7.64; N, 9.06; C , 6.91 実測値 (%): C , 51.59; H, 3.81; Cl , 7.34; N, 8.87; C , 6.84
Ic-63	1 H-NMR (d ₆ -DMSO) δ 1.83 (m, 1H), 2.22 (m, 1H), 3.12-3.83 (m, 5H), 4.83, 4.87 (each s, total 2H), 7.06-7.19 (m, 2H), 7.31-7.43 (m, 2H), 7.89-8.16 (m, 4H); IR (KBr) 3413, 3226, 3091, 2233, 1728, 1611, 1568, 1472, 1437, 1399, 1344, 1282, 1218, 1161, 1107 cm ⁻¹ .

(表51)

化合物	
番号	物性值
lc-64	Mp 205-206 °C; ¹H-NMR (d ₆ -DMSO) δ 1.92 (m, 1H), 2.19 (m, 1H), 3.10 (m, 1H), 3.34-3.51 (m, 2H), 3.69-3.79 (m, 2H), 4.90 (d, J = 18.3 Hz, 1H), 4.96 (d, J = 18.3 Hz, 1H), 7.03 (dd, J = 1.2, 7.8 Hz, 1H), 7.09 (t, J = 7.8 Hz, 1H), 7.23 (s, 1H), 7.33 (dd, J = 1.2, 7.8 Hz, 1H), 7.39-7.45 (m, 2H), 7.85-7.91 (m, 2H), 13.03 (br, 1H); IR (Nujol) 2662, 1723, 1589, 1491, 1476, 1447, 1350, 1332, 1248, 1236, 1182, 1162, 1098, 1029 cm ⁻¹ ; 元素分析 ($C_{20}H_{18}ClFN_{2}O_{4}S$) 計算値 (%): C , 54.98; H , 4.15; Cl , 8.11; F , 4.35; N , 6.41; S , 7.34 実測値 (%): C , 55.04; H , 4.13; Cl , 7.79; F , 4.33; N , 6.42; S , 7.32
lc-65	mp 170-171 °C; ¹H-NMR (d_6 -DMSO) δ 1.93 (m, 1H), 2.21 (m, 1H), 3.14 (m, 1H), 3.37-3.54 (m, 2H), 3.72-3.83 (m, 2H), 4.91 (d, J=18.6 Hz, 1H), 4.98 (d, J=18.6 Hz, 1H), 7.03 (dd, J=1.2, 7.8 Hz, 1H), 7.09 (t, J=7.8 Hz, 1H), 7.24 (s, 1H), 7.26 (dd, J=3.9, 5.1 Hz, 1H), 7.34 (dd, J=1.2, 8.1 Hz, 1H), 7.70 (dd, J=1.5, 3.9 Hz, 1H), 8.01 (dd, J=1.5, 5.1 Hz, 1H), 13.02 (br, 1H); IR (Nujol) 3204, 1755, 1728, 1554, 1453, 1401, 1338, 1326, 1196, 1146, 1033 cm¹; 元素分析 ($C_{18}H_{17}ClN_2O_4S_2$) 計算值 (%): C, 50.88; H, 4.03; Cl, 8.34; N, 6.59; S, 15.09 実測值 (%): C, 50.87; H, 3.97; Cl, 8.10; N, 6.52; S,14.89
lc-66	mp 169-171 °C; ¹H-NMR (d ₆ -DMSO) δ 0.88 (t, J = 7.2 Hz, 3H), 1.32-1.45 (m, 2H), 1.59-1.69 (m, 2H), 2.08 (m, 1H), 2.35 (m, 1H), 2,99-3.14 (m, 2H), 3.21 (dd, J = 8.4, 9.3 Hz, 1H), 3.38-3.54 (m, 2H), 3.88 (dd, J = 6.9, 9.6 Hz, 1H), 4.04 (m, 2H), 5.00 (s, 2H), 7.06-7.14 (m, 2H), 7.37 (dd, J = 1.2, 7.5 Hz, 1H), 7.44 (s, 1H), 13.06 (br, 1H); IR (Nujol) 2660, 1715, 1555, 1480, 1451, 1404, 1327, 1246, 1182, 1140, 1096, 1041 cm ¹; 元素分析 ($C_{18}H_{23}ClN_2O_4S$) 計算値 (%): $C_{18}H_{23}ClN_2O_4S$) 計算位 (%): $C_{18}H_{23}ClN_2O_4S$) 計算 (%): $C_{18}H_{23}ClN$
	mp 170-173 °C; ¹H-NMR (d_6 -DMSO) δ 1.81(m, 1H), 2.23 (m, 1H), 3.11-3.49 (m, 4H), 3.70 (dd, $J=7.2$, 9.6 Hz, 1H), 4.23 (s, 2H), 4.94 (s, 2H), 7.06 (d, $J=3.9$ Hz, 1H), 7.13 (dd, 2.1, 8.7 Hz, 1H), 7.18 (s, 1H), 7.21-7.36 (m, 5H), 7.40 (d, $J=8.7$ Hz, 1H), 7.50 (d, $J=2.1$ Hz, 1H), 7.57 (d, $J=3.9$ Hz, 1H), 13.00 (brs, 1H); IR (Nujol) 3084, 3027, 2665, 2570, 1731, 1601, 1571, 1554, 1527, 1494, 1472, 1442, 1415, 1380, 1344, 1244, 1198, 1156, 1113 cm ⁻¹ ; 元素分析 ($C_{25}H_{23}ClN_2O_4S_2$) 計算値 (%): C, 58.30; H, 4.50; Cl, 6.88; N, 5.44; S, 12.45 実測値 (%): C, 58.15; H, 4.39; Cl, 6.64; N, 5.39; S, 12.35

(表52)

(32)	
化合物 番号	物性値
lc−68	mp 207-210°C; ¹H-NMR (d ₆ -DMSO) δ 1.85 (m, 1H), 2.20 (m, 1H), 3.17-3.57 (m, 3H), 3.88 (m, 1H), 4.13 (m, 1H), 4.88 (s, 2H), 7.09 (dd, J = 1.8, 8.7 Hz, 1H), 7.14 (s, 1H), 7.31 (d, J = 1.8 Hz, 1H), 7.34 (d, J = 8.7 Hz, 1H), 7.70 (dd, J = 4.2, 8.1 Hz, 1H), 7.76 (dd, J = 7.5, 8.1 Hz, 1H), 8.31 (dd, J = 1.5, 8.1 Hz, 1H), 8.42 (dd, J = 1.5, 7.5 Hz, 1H), 8.56 (dd, J = 1.5, 8.1 Hz, 1H), 9.05 (dd, J = 1.5, 4.2 Hz, 1H), 12.94 (brs, 1H); IR (Nujol) 3539, 3214, 3032, 2725, 2614, 1768, 1747, 1726, 1611, 1596, 1561, 1493, 1470, 1419, 1378, 1362, 1338, 1265, 1223, 1211, 1198, 1159, 1140, 1131, 1101 cm-¹; 元素分析 (C_{23} H ₂₀ ClN ₃ O ₄ S·0.5H ₂ O) 計算值 (%): C, 57.68; H, 4.42; Cl, 7.40; N, 8.77; S, 6.69 実測値 (%): C, 57.77; H, 4.32; Cl, 7.18; N, 8.76; S, 6.70
Ic-69	mp 166-170 °C; ¹H-NMR (d_6 -DMSO) δ 1.80 (m, 1H), 2.22 (m, 1H), 3.09-3.51 (m, 4H), 3.73 (dd, $J=7.2$, 9.3Hz, 1H), 4.93 (s, 2H), 7.12 (dd, $J=1.8$, 8.7 Hz, 1H), 7.16 (s, 1H), 7.38 (d, $J=8.7$ Hz, 1H), 7.46 (dd, $J=1.2$, 5.1 Hz, 1H), 7.48 (d, $J=1.8$ Hz, 1H), 7.82 (dd, $J=3.0$, 5.1 Hz, 1H), 8.33 (dd, $J=1.2$, 3.0 Hz, 1H), 12.95 (brs, 1H); IR (Nujol) 3112, 3087, 2669, 1743, 1710, 1667, 1469, 1431, 1387, 1363, 1342, 1303, 1247, 1220, 1202, 1155, 1106 cm ⁻¹ ; 元素分析 ($C_{18}H_{17}ClN_2O_4S_2$) 計算值 (%): C, 50.88; H, 4.03; Cl, 8.34; N, 6.59; S, 15.09 実測值 (%): C, 50.76; H, 3.92; Cl, 8.14; N, 6.53; S, 15.08
Ic-70	mp 222-226°C; 1 H-NMR (d ₆ -DMSO) δ 1.85 (m, 1H), 2.22 (m, 1H), 3.13-3.60(m, 4H), 3.82 (dd, J = 7.2, 9.3 Hz, 1H), 4.85 (s, 2H), 7.06 (s, 1H), 7.09 (dd, J = 2.1, 8.7 Hz, 1H), 7.33 (d, J = 8.7 Hz, 1H), 7.39 (d, J = 2.1 Hz, 1H), 7.47-7.58 (m, 2H), 8.15 (m, 1H), 8.27 (m, 1H), 8.63 (s, 1H), 12.86 (brs, 1H); IR (Nujol) 3275, 3079, 1764, 1734, 1485, 1471, 1454, 1421, 1405, 1386, 1342, 1320,1304,1260, 1241, 1221, 1186, 1159, 1158, 1147, 1114 cm 1 ; 元素分析 ($C_{22}H_{19}ClN_2O_4S_2$) 計算値 (%): C, 55.63; H, 4.03; Cl, 7.46; N, 5.90; S, 13.50 実測値 (%): C, 55.46; H, 4.12; Cl, 7.17; N, 5.76; S, 13.27
Ic-71	mp 166.5-168°C; ¹ H-NMR (d_6 -DMSO) δ 1.95 (m, 1H), 2.30 (m, 1H), 3.10-3.61(m, 4H), 3.78 (m, 1H), 4.93 (s, 2H), 7.12 (dd, J = 1.8, 8.7 Hz, 1H), 7.19-7.32 (m, 2H), 7.38 (d, J = 8.7 Hz, 1H), 7.48-7.59 (m, 2H), 7.90 (m, 1H), 13.00 (brs, 1H); IR (Nujol) 3092, 3056, 2731, 2658, 2550, 1722, 1696, 1604, 1473, 1426, 1403, 1384, 1340, 1272, 1233, 1206, 1196, 1163, 1120, 1103 cm ⁻¹ .
lc-72	Mp 223-225°C; ¹ H-NMR (d_6 -DMSO) δ 1.99 (m, 1H), 2.37 (m, 1H), 2.94 (s, 3H), 3.16 (t, J = 9.0 Hz, 1H), 3.25-3.68 (m, 3H), 3.80 (dd, J = 7.5, 9.0 Hz, 1H), 4.98 (s, 2H), 7.13 (dd, J = 2.1, 8.7 Hz, 1H), 7.34 (s, 1H), 7.40 (d, J = 8.7 Hz, 1H), 7.70 (d, J = 2.1 Hz, 1H), 13.00 (br, 1H); IR (Nujol) 3275, 1764, 1744, 1473, 1426, 1398, 1384, 1381, 1361, 1338, 1305, 1253, 1222, 1202, 1175, 1150 cm ⁻¹ ; 元素分析 ($C_{15}H_{17}ClN_2O_4S\cdot 0.2AcOEt$) 計算值 (%): C, 50.68; H, 5.01; Cl, 9.47; N, 7.48; S, 8.56 実測値 (%): C, 50.48; H, 4.83; Cl, 9.49; N, 7.68; S, 8.52

(表53)

化合物	4. 10. 11
番号	物性值
	mp 196-198°C; ¹ H-NMR (d ₆ -DMSO) δ 1.76 (m, 1H), 2.19 (m, 1H), 3.07 (m, 1H), 3.15-3.48 (m, 3H), 3.67 (dd, $J = 7.5$, 9.3 Hz, 1H), 3.85 (s, 3H), 4.90 (s, 2H), 7.08-7.16 (m, 2H), 7.13 (d, $J = 9.0$ Hz, 2H), 7.37 (d, $J = 9.0$ Hz, 1H), 7.44 (d, $J = 1.8$, 1H), 7.77 (d, $J = 9.0$ Hz, 2H), 12.98 (br, 1H); IR (Nujol) 3083, 3050, 2667, 2572, 1728, 1593, 1574, 1497, 1473, 1444, 1415, 1381, 1340, 1307, 1258, 1245, 1194, 1157, 1110 cm ⁻¹ .
Ic-74	mp 195-199°C; 1 H-NMR (d ₆ -DMSO) δ 1.98(m, 1H), 2.33 (m, 1H), 2.94 (s, 3H), 3.16 (t, J = 9.0 Hz, 1H), 3.25-3.68 (m, 3H), 3.80 (dd, J = 7.5, 9.0 Hz, 1H), 4.98 (s, 2H), 7.13 (dd, J = 2.1, 8.7 Hz, 1H), 7.34 (s, 1H), 7.40 (d, J = 8.7 Hz, 1H), 7.70 (d, J = 2.1 Hz, 1H), 13.00 (brs, 1H); IR (Nujol) 3054, 3028, 2645, 2541, 1716, 1616, 1576, 1494, 1470, 1448, 1408, 1381, 1336, 1301, 1261, 1228, 1192, 1146, 1111 cm ⁻¹ ; 元素分析 ($C_{22}H_{22}ClN_2O_4S \cdot 0.2AcOEt$) 計算值 (%): C , 59.20; H , 4.92; Cl , 7.66; N , 6.06; S , 6.93 実測値 (%): C , 59.32; H , 4.76; Cl , 7.41; N , 6.19; S , 6.94
Ic-75	mp 190-193°C; ¹ H-NMR (d_6 -DMSO) δ 1.83 (m, 1H), 2.24 (m, 1H), 3.16 (m, 1H), 3.24-3.57 (m, 3H), 3.78 (dd, J = 7.2, 9.6 Hz, 1H), 4.88 (d, J = 18.2 Hz, 1H), 4.94 (d, J = 18.2 Hz, 1H), 7.11 (dd, J = 1.8, 8.7 Hz, 1H), 7.18 (s, 1H), 7.37 (d, J = 8.7 Hz, 1H), 7.51 (d, J = 1.8 Hz, 1H), 7.63 (m, 1H), 8.24 (m, 1H), 8.87 (dd, J = 1.8, 4.8 Hz, 1H), 9.00 (d, J = 1.8 Hz, 1H), 12.99 (brs, 1H); IR (Nujol) 3124, 3083, 3056, 2726, 2594, 2516, 1928, 1843, 1778, 1732, 1612, 1589, 1567, 1553, 1473, 1416, 1357, 1335, 1325, 1273, 1254, 1232, 1210, 1191,1173, 1166, 1116 cm ⁻¹ ; 元素分析 ($C_{19}H_{18}ClN_3O_4S$) 計算值 (%): C , 54.35; H , 4.32; Cl , 8.44; N , 10.01; S , 7.64 実測值 (%): C , 54.29; H , 4.31; Cl , 8.20; N , 9.95; S , 7.43
lc-76	mp 105-107 °C; ¹H-NMR (d_6 -DMSO) δ 1.94-2.20 (m, 2H), 2.29 (s, 3H), 3.30-3.60 (m, 4H), 3.66 (m, 1H), 4.88 (s, 2H), 6.80-7.08 (m, 3H), 7.34 (d, J = 7.8 Hz, 1H), 7.38 (dd, J = 3.6, 4.8 Hz, 1H), 7.80 (dd, J = 1.2, 3.6 Hz, 1H), 8.14 (dd, J = 1.2, 5.1 Hz, 1H); IR (Nujol) 2924, 1748, 1693, 1611, 1467, 1376, 1335, 1292, 1156 cm ⁻¹ .
lc-77	mp 125-126 °C; ¹H-NMR (d ₆ -DMSO) δ 1.07 (t, J = 7.2 Hz, 3H), 1.38-1.52 (m, 2H), 1.64 (m, 2H), 2.13 (m, 1H), 2.31 (m, 1H), 2.31 (s, 3H), 3.13-3.28 (m, 2H), 3.22-3.80 (m, 5H), 4.92 (s, 2H), 6.94 (m, 2H), 7.35 (d, J = 7.5 Hz, 1H), 7.55 (d, J = 7.5 Hz, 1H); IR (Nujol) 3243, 3053, 2924, 1755, 1567, 1418, 1321, 1298, 1275, 1180, 1143 cm ⁻¹ ; 元素分析 ($C_{19}H_{26}N_2O_4S$) 計算値 (%): C , 60.29; C , 6.92; C ,

(表54)

(表 5	4)
化合物 番号	物性值
Ic-78	mp 140-142°C; ¹ H-NMR (d ₆ -DMSO) δ 1.84 (m, 1H), 2.28 (m, 1H), 3.15-3.57 (m, 4H), 3.75 (m, 1H), 4.93 (s, 2H), 7.13 (dd, J = 1.8, 8.7 Hz, 1H), 7.22 (s, 1H), 7.33 (d, J = 4.2 Hz, 1H), 7.39 (d, J = 8.7 Hz, 1H), 7.53 (d, J = 1.8 Hz, 1H), 7.62 (d, J = 4.2 Hz, 1H), 12.90 (brs, 1H); IR (Nujol) 3091, 2670, 2577, 1726, 1567, 1513, 1471, 1445, 1414, 1380, 1357, 1332, 1310, 1266, 1249, 1199, 1180, 1155, 1112 cm ⁻¹ ; 元素分析 ($C_{18}H_{16}Cl_2N_2O_4S_2\cdot 0.05AcOEt$) 計算值 (%): C, 47.13; H, 3.56; Cl, 15.29; N, 6.04; S, 13.83 実測値 (%): C, 46.95; H, 3.47; Cl, 15.10; N, 6.11; S, 14.02
Ic-79	mp 220-221 °C; ¹H-NMR (d_6 -DMSO) δ 1.76 (m, 1H), 2.19 (m, 1H), 3.06 (t, J = 9.3 Hz, 1H), 3.22-3.46 (m, 3H), 3.65 (dd, J = 7.5, 9.3 Hz, 1H), 4.91 (s, 2H), 6.92-6.96 (m, 2H), 7.11 (dd, J = 2.1, 8.4 Hz, 1H), 7.13 (s, 1H), 7.37 (d, J = 8.4. Hz, 1H), 7.47 (d, J = 2.1 Hz, 1H), 7.64-7.69 (m, 2H), 10.48 (br, 1H), 12.97 (br, 1H); IR (Nujol) 3409, 1741, 1712, 1603, 1586, 1500, 1472, 1440, 1319, 1245, 1151, 1094, 1028 cm ¹; 元素分析 ($C_{20}H_{19}ClN_2O_5S$) 計算値 (%): C, 55.24; H, 4.40; Cl, 8.15; N, 6.44; S, 7.37 実測値 (%): C, 55.21; H, 4.52; Cl, 7.62; N, 6.20; S,7.14
Ic-80	1 H-NMR (CDCl ₃) δ 1.84-1.89 (m, 2H), 2.04-2.17 (m, 3H), 3.49-3.54 (m, 3H), 4.88 (m, 1H), 5.12 (m, 1H), 7.09-7.45 (m, 5H), 7.85-8.08 (m, 3H), 8.30 (m, 1H); IR (KBr) 3387, 1739, 1647, 1591, 1526, 1493, 1467, 1428, 1389, 1343, 1292, 1236, 1152, 1092, 1066, 1011 cm ⁻¹ ; 元素分析 (C ₂₁ H ₁₉ FN ₂ O ₅ S·1.0H ₂ O) 計算值 (%): C, 56.24; H, 4.72; N, 6.25; F, 4.24; S, 7.15 実測値 (%): C, 56.18; H, 4.56; N, 6.29; F, 4.11, S, 7.06
lc-81	¹ H-NMR (CDCl ₃) δ 1.43-1.68 (m, 4H), 2.88 (m, 1H), 3.09 (m, 1H), 3.34-3.44 (m, 2H), 3.85 (s, 3H), 3.91 (m, 1H), 4.85 (s, 2H), 6.93-6.98 (m, 3H), 720-7.26 (m, 3H), 7.80-7.83 (m, 3H); IR (KBr) 2945, 1728, 1596, 1497, 1468, 1331, 1260, 1153, 1092, 1024 cm ⁻¹ ; 元素分析 (C ₂₂ H ₂₄ N ₂ O ₅ S·0.5H ₂ O) 計算值 (%): C, 60.40; H, 5.76; N, 6.40; S, 7.33 実測値 (%): C, 60.42; H, 5.78; N, 6.27; S, 6.97
Ic-82	¹ H-NMR (CDCl ₃) δ 1.86-2.20 (m, 4H), 3.45-3.55 (m, 2H), 4.91 (s, 2H), 5.06 (m, 1H), 7.04-7.28 (m, 4H), 7.74 (m,1H), 7.88 (m, 1H), 8.00 (dd, J = 2.4, 6.9 Hz, 2H), 8.10 (s, 1H); IR (KBr) 3433, 2929, 1738, 1626, 1590, 1528, 1493, 1394, 1344, 1293, 1233, 1153, 1092, 1062, 1010 cm ⁻¹ ;
Ic-83	¹ H-NMR (CDCl ₃) δ 1.86-2.20 (m, 4H), 3.45-3.55 (m, 2H), 4.91 (s, 2H), 5.06 (m, 1H), 7.04-7.28 (m, 4H), 7.74 (m,1H), 7.88 (m, 1H), 8.00 (dd, $J = 2.4$, 6.9 Hz, 2H), 8.10 (s, 1H); IR (KBr) 3433, 2929, 1738, 1626, 1590, 1528, 1493, 1394, 1344, 1293, 1233, 1153, 1092, 1062, 1010 cm ⁻¹ ; [α] _D ²² +29.0±0.7° (c=1.001, MeOH)
Ic-84	¹ H-NMR (CDCl ₃) δ 1.433-1.72 (m, 4H), 2.89 (dd, J = 9.3 and 14.4 Hz, 1H), 3.10 (m, 1H), 3.27 (dd, J = 3.9 and 14.4 Hz, 1H), 3.41 (m, 1H), 3.87 (m, 1H), 4.84 (s, 2H), 6.95-7.02 (m, 2H), 7.11-7.26 (m, 3H), 7.40 (dd, J = 2.4 and 9.6 Hz, 1H), 7.85-7.91(m, 2H); IR (CHCl ₃) 1729, 1593, 1493, 1456, 1348, 1292, 1164, 1154, 1092 cm ⁻¹ ; $[\alpha]_D^{22} + 109.6 \pm 1.5$ (c=1.003, MeOH)

(表55)

化合物	
番号	物性值
lc-85	¹ H-NMR (CDCl ₃) δ 1.43-1.66 (m, 4H), 2.87 (dd, J = 6.0 and 14.1 Hz, 1H), 3.11 (m, 1H), 3.26 (dd, J = 3.3 and 14.1 Hz, 1), 3.82 (m, 1H), 3.86 (s, 3H), 4.83 (s, 2H), 6.95-7.01 (m, 4H), 7.11 (dd, J = 3.9 and 8.7 Hz, 1H), 7.40 (dd, J = 2.4 and 9.3 Hz, 1H), 7.73-7.83 (m, 2H); IR (CHCl ₃) 1730, 1626, 1597, 1578, 1497, 1487, 1457, 1338, 1304, 1260, 1155, 1094, 1030 cm ⁻¹ ; $[\alpha]_D^{22} + 124.6 \pm 1.6$ (c=1.002, MeOH)
Id-2	mp 220-222 °C; ¹H-NMR (CDCl₃) δ 2.84 (t, J = 5.7 Hz, 2H), 3.57 (t, J = 5.7 Hz, 2H), 4.42 (s, 2H), 4.67 (s, 2H), 7.05-7.25 (m, 5H), 7.35-7.43 (m, 1H), 7.84-7.92 (m, 2H),; IR (CHCl₃) 3428, 3048, 2927, 1727, 1595, 1494, 1467, 1345, 1240, 1169, 1103 cm⁻¹; 元素分析 (C¹9H¹₁γFN₂O₄S) 計算値 (%): C, 58.75; H, 4.41; F, 4.89; N, 7.21; S, 8.26 実測値 (%): C, 58.58; H, 4.37; F, 4.69; N, 7.13; S, 8.08
Ie-2	mp 139-141 °C; ¹H-NMR (CDCl ₃) δ 4.95 (s, 2H), 7.02-7.11 (m, 3H), 7.18-7.25 (m,2H), 7.34 (m, 1H), 7.46 (t, J = 7.7Hz, 1H), 7.68-7.73 (m, 2H), 7.80 (d, J = 1.8 Hz, 1H), 7.99 (d, J = 7.5 Hz, 1H); IR (Nujol) 3300, 3245, 3047, 1776, 1736, 1688, 1590, 1493, 1466, 1335, 1285, 1163, 1152 cm ⁻¹ ; 元素分析 (C ₂₀ H ₁₅ FN ₂ O ₄ S·0.6CH ₃ CO ₂ C ₂ H ₅) 計算值 (%): C, 59.62; H, 4.42; F, 4.21; N, 6.21; S, 7.11 実測値 (%): C, 59.45; H, 4.19; F, 4.14; N, 6.51; S, 7.02
Ie-5	mp 188-191 °C; 1 H-NMR (CDCl ₃) δ 3.28 (d, J = 1.5 Hz, 3H), 5.02 (s,2H), 7.09-7.33 (m, 6H), 7.49 (t, J = 7.8 Hz, 1H), 7.57-7.61 (m, 2H), 7.73 (d, J = 1.5 Hz, 1H), 7.97 (d, J = 8.1 Hz, 1H); IR (Nujol) 3102, 3049, 2728, 1727, 1628, 1591, 1491, 1292, 1228, 1210, 1173, 1150 cm ⁻¹ ; 元素分析 ($C_{21}H_{17}FN_{2}O_{4}S\cdot0.2H_{2}O$) 計算值 (%): C, 60.63; H, 4.22; F, 4.57; N, 6.73; S, 7.71 実測値 (%): C, 60.52; H, 4.13; F, 4.46; N, 6.82; S, 7.63
	mp 212-213 °C; ¹H-NMR (d_6 -DMSO) δ 4.89 (s, 2H), 5.16 (s, 2H), 7.06 (dd, J = 8.4, 2.1 Hz, 1H), 7.13-7.32 (m, 6H), 7.41-7.52 (m, 5H), 7.73-7.77 (m, 2H), 7.84 (d, J = 1.8 Hz, 1H), 8.04 (d, J = 7.8 Hz, 1H), 13.05 (br s, 1H); IR (Nujol) 3063, 3035, 2658, 1705, 1630, 1591, 1232, 1214, 1162 cm⁻¹; 元素分析 ($C_{27}H_{21}FN_2O_4S$) 計算值 (%): C, 66.38; H, 4.33; F, 3.89; N, 5.73; S, 6.56 実測值 (%): C, 66.33; H, 4.26; F, 3.79; N, 5.80; S, 6.53
le-10	mp 171-175 °C; ¹H-NMR (d ₆ -DMSO) δ 5.15 (s, 2H), 6.98-7.07 (m, 2H), 7.32-7.47 (m, 4H), 7.74-7.81 (m, 3H), 8.05-8.10 (m, 2H), 10.10 (s, 1H); IR (Nujol) 3621, 3313, 3107, 3070, 2727, 1737, 1702, 1636, 1603, 1592, 1490, 1330, 1164, 1146 cm ⁻¹ .
le-11	mp 183-187 °C; ¹H-NMR (d ₆ -DMSO) δ 2.13 (s, 3H), 5.14 (s, 2H), 7.00-7.95 (m, 10H), 9.61 (s, 1H); IR (Nujol) 3517, 3236, 3105, 3068, 2732, 1735, 1635, 1607, 1591, 1494, 1408, 1335, 1270 cm ⁻¹ ; 元素分析(C ₂₁ H ₁₇ FN ₂ O ₄ S·0.4H ₂ O) 計算值 (%): C, 60.10; H, 4.28; F, 4.53; N, 6.68; S, 7.64 実測値 (%): C, 60.28; H, 4.47; F, 4.42 N, 6.54; S, 7.52

(表56)

(表 5	0)
化合物 番号	物性值
le-12	mp 201-203 °C; ¹H-NMR (CDCl ₃) δ 3.26 (s, 3H), 4.95 (s, 2H), 6.95-7.02 (m, 2H), 7.09-7.20 (m, 4H), 7.56-7.61 (m, 2H), 7.72 (m, 1H), 7.89 (m, 1H); IR (Nujol) 3106, 3067, 2744, 2657, 2558, 1734, 1635, 1605, 1592, 1495, 1483, 1340, 1236 cm ¹; 元素分析 (C ₂₁ H ₁₆ F ₂ N ₂ O ₄ S·0.2AcOEt) 計算值 (%): C, 58.44; H, 3.96; F, 8.48; N, 6.25; S, 7.16 実測値 (%): C, 58.49; H, 3.72; F, 8.33 N, 6.37; S, 7.16
le-13	mp 215-218 °C; ¹H-NMR (CDCl ₃ +CD ₈ OD) δ 4.82 (s, 2H), 4.86 (s, 2H), 6.92-7.02 (m, 3H), 7.14-7.24 (m, 9H), 7.60-7.86 (m, 3H); IR (Nujol) 3066, 3036, 2656, 1708, 1635, 1605, 1591, 1492, 1483, 1406, 1338, 1232 cm⁻¹; 元素分析 ($C_{27}H_{20}F_2N_2O_4S$ ·0.2AcOEt) 計算值 (%): C, 63.70; H, 4.15; F, 7.25; N, 5.34; S, 6.12 実測値 (%): C, 63.79; H, 4.04; F, 6.99; N, 5.31; S, 6.11
le-14	mp 219-225 °C; ¹H-NMR (CDCl ₃ +CD ₈ OD) δ 2.56 (s, 3H), 3.24 (s, 3H), 4.95 (s, 2H), 7.09-7.23 (m, 5H), 7.31 (m, 1H), 7.44 (m, 1H), 7.73-7.77 (m, 3H); IR (Nujol) 2742, 2656, 2560, 1727, 1711, 1632, 1605, 1590, 1495, 1483, 1412, 1339, 1275 cm ⁻¹ ; 元素分析 ($C_{22}H_{19}FN_2O_4S\cdot 0.2AcOEt$) 計算值 (%): C, 61.67; H, 4.68; F, 4.28; N, 6.31; S, 7.22 実測値 (%): C, 61.82; H, 4.59; F, 4.00; N, 6.31; S, 7.14
le-15	mp 194-197 °C; ¹H-NMR (CDCl ₃ +CD ₃ OD) δ 2.13 (s, 3H), 4.36 (d, J = 13.5 Hz, 1H), 4.90 (s, 2H), 5.09 (d, J = 13.5 Hz, 1H), 7.07 (s, 1H), 7.13-7.24 (m, 10H), 7.31 (m, 1H), 7.45 (t, J = 7.2 Hz, 1H), 7.73-7.78 (m, 2H); IR (Nujol) 3060, 3032, 2739, 2644, 2557, 1715, 1633, 1604, 1593, 1494, 1478, 1414, 1342, 1240 cm ⁻¹ ; 元素分析 (C ₂₈ H ₂₃ FN ₂ O ₄ S·0.2AcOEt) 計算值 (%): C, 66.50; H, 4.77; F, 3.65; N, 5.39; S, 6.16 実測値 (%): C, 66.74; H, 4.76; F, 3.39; N, 5.37; S, 6.04
le-16	mp 164-165 °C; ¹ H-NMR (d_{e} -DMSO) δ 5.16 (s, 2H), 7.08 (dd, J = 1.8, 9.0 Hz, 1H), 7.52-7.45 (m, 4H), 7.54 (dd, J = 4.2, 8.7 Hz, 1H), 7.75-7.79 (m, 2H), 7.86 (d, J = 2.1 Hz, 1H), 7.95 (dd, J = 2.4, 9.3 Hz, 1H), 10.09 (s, 1H); IR (Nujol) 3301, 3191, 3108, 1778, 1691, 1590, 1496, 1474, 1337, 1286 cm ⁻¹ .
le-17	mp 187-188 °C; 1 H-NMR (CDCl ₈) δ 3.26 (s, 3H), 4.96 (s, 2H), 7.08-7.21 (m, 6H), 7.55-7.61 (m, 3H), 7.66 (d, J = 0.9 Hz, 1H); IR (Nujol) 2747, 2650, 2566, 2483, 1720, 1593, 1492, 1414, 1348, 1295, 1254 cm ⁻¹ ; 元素分析 (C ₂₁ H ₁₆ F ₂ N ₂ O ₄ S·0.2AcOEt) 計算值 (%): C, 58.44; H, 3.96; F, 8.48; N, 6.25; S, 7.16 実測値 (%): C, 58.55; H, 3.77; F, 8.40; N, 6.23; S, 7.34
le-18	mp 189-191 °C; ¹ H-NMR (CDCl ₃ +CD ₃ OD) δ 4.82 (s, 2H), 4.89 (s, 2H), 7.01 (dd, J = 1.8, 8.7 Hz, 1H), 7.14-7.27 (m, 10H), 7.56 (dd, J = 2.4, 9.0 Hz, 1H), 7.59 (d, J = 1.8 Hz, 1H), 7.67-7.71 (m, 2H); IR (Nujol) 3089, 3074, 3033, 2742, 2653, 2558, 1710, 1591, 1343, 1296 cm ⁻¹ ; 元素分析 (C ₂₇ H ₂₀ F ₂ N ₂ O ₄ S·0.1AcOEt) 計算值 (%): C, 63.86; H, 4.07; F, 7.37; N, 5.44; S, 6.22 実測値 (%): C, 63.84; H, 3.95; F, 7.14; N, 5.81; S, 6.33

(表57)

化合物	
番号	物性値
	Mp 189-191 °C; ¹H-NMR (d ₆ -DMSO) δ 5.19 (s, 2H), 6.99 (m, 1H), 7.21 (dd, J = 2.1, 9.0 Hz, 1H), 7.33-7.46 (m, 4H), 7.51 (d, J = 9.0 Hz, 1H), 7.75-7.79 (m, 3H), 10.15 (s, 1H); IR (Nujol) 3262, 3103, 3061, 2661, 2558, 1715, 1640, 1611, 1590, 1484,1406, 1331, 1294 cm ⁻¹ ; 元素分析 (C ₂₀ H ₁₄ F ₂ N ₂ O ₄ S·0.1AcOEt) 計算值 (%): C, 57.62; H, 3.51; F, 8.94; N, 6.59; S, 7.54 実測值 (%): C, 57.43; H, 3.26; F, 8.65; N, 6.46; S, 7.34
le-20	Mp 214-217 °C; ¹H-NMR (CDCl ₈) δ 3.27 (s, 3H), 5.00 (s, 2H), 6.92 (dd, J = 8.1, 9.9 Hz, 1H), 7.06-7.17 (m, 3H), 7.23 (d, J = 8.7 Hz, 1H), 7.32 (dd, J = 2.1, 8.7 Hz, 1H), 7.39 (m, 1H), 7.56-7.63 (m, 2H), 7.70 (d, J = 1.8 Hz, 1H); IR (Nujol) 3087, 2748, 2651, 2568, 2486, 1723, 1637, 1592, 1493, 1308, 1236 cm ⁻¹ ; 元素分析 (C ₂₁ H ₁₆ F ₂ N ₂ O ₄ S·0.1AcOEt) 計算值 (%): C, 58.52; H, 3.86; F, 8.65; N, 6.38; S, 7.30 実測値 (%): C, 58.64; H, 3.61; F, 8.37; N, 6.39; S, 7.21
le−21	Mp 209-213 °C; ¹H-NMR (CDCl ₃ +CD ₃ OD) δ 4.82 (s, 2H), 4.91 (s, 2H), 6.90 (dd, $J=8.1$, 9.9 Hz, 1H), 7.08-7.13 (m, 2H), 7.15-7.28 (m, 8H), 7.38 (m, 1H), 7.65 (d, $J=1.8$ Hz, 1H), 7.68-7.73 (m, 2H); IR (Nujol) 3063, 3033, 2659, 1708, 1641, 1610, 1590, 1492, 1241 cm ⁻¹ ; 元素分析 (C ₂₇ H ₂₀ F ₂ N ₂ O ₄ S·0.1AcOEt) 計算值 (%): C, 63.86; H, 4.07; F, 7.37; N, 5.44; S, 6.22 実測値 (%): C, 63.77; H, 3.90; F, 7.21; N, 5.45; S, 6.18
le-22	mp 153-156 °C; ¹H-NMR (CDCl ₃ +CD ₃ OD) δ 5.13 (s, 2H), 6.92 (dd, J = 1.8, 10.4 Hz, 1H), 7.04-7.12 (m, 2H), 7.25 (td, J = 0.6, 15.0 Hz, 1H), 7.32 (d, J = 8.4 Hz, 1H), 7.49 (td, J = 1.2, 7.7 Hz, 1H), 7.55 (d, J = 1.8 Hz, 1H), 7.72-7.77 (m, 2H), 7.96 (d, J = 7.5 Hz, 1H); IR (Nujol) 3236, 3109, 3073, 3050, 2725, 1761, 1732, 1641, 1610, 1591, 1497, 1375,1288 cm ⁻¹ ; 元素分析 ($C_{20}H_{14}F_2N_2O_4S\cdot 0.2AcOEt$) 計算值 (%): C, 57.56; H, 3.62; F, 8.75; N, 6.45; S, 7.39 実測値 (%): C, 57.27; H, 3.39; F, 8.82; N, 6.58; S, 7.49
	1 H-NMR (CDCl ₃) δ 3.25 (s, 3H), 5.22 (s, 2H), 6.91 (dd, J = 2.1, 12.9 Hz, 1H), 7.09-7.16 (m, 2H), 7.28-7.33 (m, 2H), 7.48-7.54 (m, 2H), 7.56-7.62 (m, 2H), 7.94 (d, J = 7.8 Hz, 1H); IR (Nujol) 3505, 3103, 3052, 2729, 2648, 1728, 1639, 1589, 1494, 1297, 1238 cm ⁻¹ ; 元素分析 (C ₂₁ H ₁₆ F ₂ N ₂ O ₄ S·0.3H ₂ O) 計算值 (%): C, 57.87; H, 3.84; F, 8.72; N, 6.43; S, 7.36 実測値 (%): C, 57.99; H, 3.79; F, 8.55; N, 6.43; S, 7.07
	mp 199-201 °C; ¹H-NMR (CDCl ₃ +CD ₃ OD) δ 4.80 (s, 2H), 5.13 (s, 2H), 6.76 (dd, J = 2.1, 13.2 Hz, 1H), 7.17-7.28 (m, 8H), 7.32 (d, J = 8.4 Hz, 1H), 7.44 (d, J = 2.1 Hz, 1H), 7.49 (m, 1H), 7.67-7.74 (m, 2H), 7.89 (d, J = 7.5 Hz, 1H); IR (Nujol) 3087, 3062, 3032, 2644, 2560, 2470, 1714, 1638, 1585, 1493, 1300, 1249 cm ⁻¹ ; 元素分析 ($C_{27}H_{20}F_2N_2O_4S$ ·0.1AcOEt) 計算値 (%): C, 63.86; H, 4.07; F, 7.37; N, 5.44; S, 6.22 実測値 (%): C, 64.07; H, 3.90; F, 7.17; N, 5.52; S, 6.10

(表58)

(表5)	~ <i>,</i>
化合物 番号	物性値
le-25	mp 204-206 °C; ¹H-NMR (CDCl ₃) δ 3.27 (s, 3H), 5.22 (s, 2H), 7.09-7.22 (m, 6H), 7.56-7.61 (m, 2H), 7.71-7.74 (m, 2H); IR (Nujol) 3327, 3085, 3046, 2680, 1774, 1637, 1592, 1578, 1339, 1242 cm ¹; 元素分析 ($C_{21}H_{16}F_{2}N_{2}O_{4}S\cdot 0.1AcOEt$) 計算値 (%): C, 58.52; H, 3.86; F, 8.65; N, 6.38; S, 7.30 実測値 (%): C, 58.60; H, 3.70; F, 8.51; N, 6.44; S, 7.46
le-26	mp 194-197 °C; ¹H-NMR (CDCl ₃) δ 4.81 (s, 2H), 5.13 (s, 2H), 7.00 (dd, $J = 2.1$, 8.7 Hz, 1H), 7.07-7.25 (m, 11H), 7.62-7.69 (m, 3H); IR (Nujol) 3093, 3066, 3040, 3023, 2657, 2561, 1722, 1593, 1581, 1493, 1294, 1236 cm ⁻¹ ; 元素分析 ($C_{27}H_{20}F_2N_2O_4S$) 計算値 (%): C, 64.02; H, 3.98; F, 7.50; N, 5.53; S, 6.33 実測値 (%): C, 64.00; H, 3.98; F, 7.26; N, 5.49; S, 6.13
le-27	mp 190-191 °C; ¹ H-NMR (CDCl ₃ +CD ₃ OD) δ 4.92 (s, 2H), 7.03-7.09 (m, 2H), 7.13-7.23 (m, 3H), 7.54 (dd, J = 1.8, 8.7 Hz, 1H), 7.68-7.73 (m, 3H), 8.10 (d, J = 1.8 Hz, 1H); IR (Nujol) 3263, 3102, 3060, 2657, 1715, 1591, 1487, 1406, 1335, 1286 cm ⁻¹ .
le-28	mp 200-202 °C; ¹H-NMR (CDCl ₈ +CD3OD) δ 3.28 (s, 3H), 4.95 (s, 2H), 7.11-7.29 (m, 5H), 7.54-7.61 (m, 3H), 7.69 (d, $J = 1.8$ Hz, 1H), 8.09 (d, $J = 2.1$ Hz); IR (Nujol) 3066, 2744, 2658, 2565, 1731, 1454, 1444, 1293, 1247, 1224 cm ⁻¹ ; 元素分析 (C ₂₁ H ₁₆ BrFN ₂ O ₄ S·0.4AcOEt) 計算値 (%): C, 51.55; H, 3.68; Br, 15.17; F, 3.61; N, 5.32; S, 6.09 実測値 (%): C, 51.74; H, 3.13; Br, 14.82; F, 3.66; N, 5.60; S, 6.28
lf-1	1 H-NMR (CDCl ₈) δ 1.56 (s, 6H), 2.43 (s, 3H), 3.20 (d, J = 5.7 Hz, 2H), 4.21 (t, J = 5.7 Hz, 1H), 4.82 (s, 2H), 6.85-6.98 (m, 3H), 7.13-7.15 (m, 2H), 7.35 (d, J = 8.1 Hz, 1H), 7.49-7.53 (m, 2H); IR (KBr) 3505, 1728, 1594, 1495, 1478, 1468, 1406, 1340, 1292, 1166, 1154, 1092, 1076 cm ⁻¹ ; 元素分析 (C ₂₁ H ₂₃ FN ₂ O ₄ S·0.6H ₂ O) 計算値 (%): C, 58.75; H, 5.68; N, 6.53; F, 4.43; S, 7.47 実測値 (%): C, 58.83; H, 5.73; N, 6.32; F, 4.29, S, 7.24
lf-2	¹ H-NMR (CDCl _s) δ 1.68 (s, 6H), 2.28 (s, 3H), 2.52 (s, 3H), 3.40 (s, 2H), 4.83 (s, 2H), 7.05 (m, 1H), 7.13-7.18 (m, 4H), 7.71-7.77 (m, 3H); IR (CHCl ₃) 2976, 2930, 1729, 1594, 1495, 1479, 1467, 1393, 1342, 1293, 1166, 1155, 1089, 1015 cm ⁻¹ ; 元素分析 (C ₂₂ H ₂₅ FN ₂ O ₄ S·0.2H ₂ O) 計算值 (%): C, 60.59; H, 5.87; N, 6.42; F, 4.36; S, 7.35 実測値 (%): C, 60.57; H, 6.01; N, 6.31; F, 4.26, S, 7.15
lf−3	1 H-NMR (CDCl ₃) δ 1.58 (s, 6H), 2.10 (s, 3H), 3.71 (s, 2H), 3.96 (s, 2H), 4.56 (s, 2H), 6.47 (d, J = 7.2 Hz, 2H), 6.95-7.15 (m, 8H), 7.56 (d, J = 8.4 Hz, 1H), 7.72-7.77 (m, 2H); IR (CHCl ₃) 1729, 1594, 1495, 1479, 1467, 1342, 1292, 1239, 1165, 1154, 1091, 1056 cm ⁻¹ ; 元素分析 (C ₂₈ H ₂₉ FN ₂ O ₄ S·0.2MeOH) 計算値 (%): C, 65.77; H, 5.83; N, 5.44; F, 3.69; S, 6.23 実測値 (%): C, 66.15; H, 5.98; N, 5.23; F, 3.40, S, 5.87

(表59)

化合物	
番号	物性值
lf4	1 H-NMR (CDCl ₃) δ 1.38 (d, J = 6.6 Hz, 3H), 2.29 (s, 3H), 3.07-3.36 (m, 3H), 4.29 (d, J = 9.0 Hz, 1H), 4.81 (d, J = 5.1 Hz, 2H), 6.91-7.27 (m, 6H), 7.54-7.59 (m, 2H); IR (CHCl ₃) 2976, 2930, 1729, 1594, 1495, 1479, 1467, 1393, 1342, 1293, 1166, 1155, 1089, 1015 cm ⁻¹ ; 元素分析 (C ₂₀ H ₂₁ FN ₂ O ₄ S·1.2MeOH) 計算值 (%): C, 57.49; H, 5.87; N, 6.32; F, 4.29; S, 7.24 実測値 (%): C, 57.55; H, 5.65; N, 6.14; F, 4.22, S, 7.23
lf5	¹ H-NMR (CDCl ₃) δ 1.48 (d, J = 6.9 Hz, 3H), 2.35 (s, 3H), 2.57 (s, 3H), 3.02 (m, 1H), 3.36 (m, 1H), 3.65 (m, 1H), 4.82 (s, 2H), 7.04-7.17 (m, 5H), 7.58 (d, J = 8.7 Hz, 1H), 7.68-7.73 (m, 2H); IR (CHCl ₃) 2976, 2930, 1729, 1594, 1495, 1479, 1467, 1393, 1342, 1293, 1166, 1155, 1089, 1015 cm ⁻¹
lf-6	1 H-NMR (CDCl ₈) δ 1.31 (d, J = 6.6 Hz, 3H), 2.17 (s, 3H), 3.15-3.23 (m, 2H), 3.70 (q, J = 6.6 Hz, 1H), 4.17 (s, 2H), 4.76 (s, 2H), 6.96-7.23 (m, 10H), 7.40 (d, J = 7.8 Hz, 1H), 7.69-7.74 (m, 2H); IR (CHCl ₈) 2974, 2932, 2876, 1731, 1594, 1496, 1468, 1409, 1339, 1292, 1240, 1165, 1153, 1089, 1022 cm ⁻¹ ; 元素分析 (C ₂₇ H ₂₇ FN ₂ O ₄ S·1.1MeOH) 計算值 (%): C, 63.70; H, 5.97; N, 5.29; F, 3.59; S, 6.05 実測値 (%): C, 64.02; H, 5.78; N, 5.20; F, 3.42, S, 5.70
lf7	$^1\text{H-NMR}$ (CDCl ₃) δ 1.73-1.85 (m, 4H), 2.02-2.23 (m, 4H), 3.30 (s, 2H), 4.86 (s, 1H), 6.91 (s, 1H), 7.04-7.21 (m, 5H), 7.60 (d, J = 8.1 Hz, 1H), 7.70-7.75 (m, 2H); IR (CHCl ₃) 2961, 2874, 1594, 1494, 1468, 1340, 1292, 1240, 1155, 1089 cm ⁻¹ ; 元素分析 (C ₂₃ H ₂₅ FN ₂ O ₄ S·0.2H ₂ O) 計算值 (%): C, 61.65; H, 5.71; N, 6.25; F, 4.24; S, 7.16 実測値 (%): C, 61.74; H, 5.93; N, 5.96; F, 3.93, S, 6.95
lf−8	1 H-NMR (CDCl ₃) δ 1.65-1.80 (m, 4H), 2.00-2.09 (m, 4H), 3.64 (s, 2H), 3.80 (s, 2H), 4.58 (s, 2H), 6.47 (s, 1H), 6.54 (d, J = 7.8 Hz, 2H), 6.97-7.15 (m, 7H), 7.37-7.45 (m, 2H), 7.67-7.72 (m, 2H); IR (CHCl ₃) 2960, 2874, 1731, 1592, 1495, 1468, 1339, 1292, 1239, 1165, 1154, 1092, 1022 cm ⁻¹ .
If-9	mp 117-120 °C; ¹H-NMR (CDCl ₃) δ 3.50-3.69 (m, 2H), 4.34 (t, J = 7.5 Hz, 1H), 4.58 (br t, J = 6.0 Hz, 1H), 4.80 (d, J = 18.3 Hz, 1H), 4.81 (d, J = 18.3 Hz, 1H), 6.84 (s, 1H), 7.01 (m, 1H), 7.08 (t, J = 9.0 Hz, 2H), 7.17-7.30 (m, 8H), 7.72 (dd, J = 5.1 9.0 Hz, 2H); IR (Nujol) 3351, 3295, 3063, 1727, 1706, 1614, 1592, 1494, 1468, 1406, 1331, 1241, 1165, 1152 cm ⁻¹ ; 元素分析 (C ₂₄ H ₂₁ FN ₂ O ₄ S·0.4AcOEt) 計算值 (%): C, 63.04; H, 5.00; N, 5.74; F, 3.90; S, 6.57 実測値 (%): C, 62.73; H, 4.75; N, 5.77; F, 3.91; S, 6.58

(表60)

(表 6	J /
化合物 播号	物性值
If-10	mp 167-170 °C; ¹H-NMR (CDCl ₃) & 2.61 (s, 3H), 3.36 (dd, J = 7.8, 13.5 Hz, 1H), 3.93 (dd, J = 7.8, 13.5 Hz, 1H), 4.55 (t, J = 7.8 Hz, 1H), 4.87 (s, 2H), 7.06 (m, 1H), 7.10 (s, 1H), 7.13 (t, J = 9.0 Hz, 2H), 7.20-7.31 (m, 7H), 7.43 (br d, J = 8.1 Hz, 1H), 7.70 (dd, J = 5.1, 9.0 Hz, 2H); IR (Nujol) 3429, 3030, 1722, 1704, 1592, 1493, 1469, 1406, 1332, 1237, 1150, 1087 cm ⁻¹ ; 元素分析 (C ₂₅ H ₂₃ FN ₂ O ₄ S) 計算值 (%): C, 64.36; H, 4.97; N, 6.00; F, 4.07; S, 6.87 実測值 (%): C, 64.28; H, 4.93; N, 5.91; F, 3.85; S, 6.73
lf-11	1 H-NMR (CDCl ₃) δ 2.00-2.41 (m, 6H), 3.30 (d, J = 6.0 Hz, 2H), 4.21 (t, J = 5.7 Hz, 1H), 4.84 (s, 2H), 6.82-6.98 (m, 4H), 7.13-7.27 (m, 3H), 7.45-7.50 (m, 2H); IR (CHCl ₃) 2984, 2934, 2875, 1731, 1594, 1496, 1468, 1408, 1333, 1292, 1240, 1167, 1154 cm ⁻¹ ; 元素 分析 (C ₂₁ H ₂₁ FN ₂ O ₄ S·0.4H ₂ O) 計算值 (%): C, 59.53; H, 5.19; N, 6.61; F, 4.48; S, 7.57 実測値 (%): C, 59.49; H, 5.23; N, 6.35; F, 4.20, S, 7.34
lf−12	1 H-NMR (CDCl ₃) δ 1.91-1.95 (m, 2H), 2.25-2.42 (m, 4H), 3.74 (s, 2H), 3.92 (s, 2H), 4.70 (s, 2H), 6.53 (s, 1H), 6.67 (d, J = 8.1 Hz, 2H), 6.97-7.38 (m, 9H), 7.62-7.67 (m, 2H); IR (CHCl ₃) 2932, 1731, 1593, 1495, 1468, 1333, 1292, 1239, 1163, 1153, 1089 cm ⁻¹ ; 元素 分析 (C ₂₈ H ₂₇ FN ₂ O ₄ S·0.8H ₂ O) 計算值 (%): C, 64.55; H, 5.53; N, 5.38; F, 3.65; S, 6.15 実測値 (%): C, 64.61; H, 5.27; N, 5.08; F, 3.55, S, 5.87
If-13	1 H-NMR (CDCl ₃) δ 1.43 (s, 6H), 3.17 (d, J = 5.7 Hz, 2H), 4.20 (t, J = 6.0 Hz, 1H), 4.83 (s, 2H), 6.85 (s, 1H), 6.90-6.97 (m, 3H), 7.21 (d, J = 3.6 Hz, 2H), 7.32 (d, J = 8.4 Hz, 1H), 7.49-7.54 (m, 2H); IR (CHCl ₃) 2971, 2933, 2878, 1731, 1594, 1496, 1467, 1408, 1386, 1331, 1292, 1239, 1194, 1167, 1154, 1092, 1076 cm ⁻¹ ; 元素分析 (C ₂₀ H ₂₁ FN ₂ O ₄ S·0.5H ₂ O) 計算值 (%): C, 58.10; H, 5.36; N, 6.78; F, 4.59; S, 7.76 実測値 (%): C, 58.05; H, 5.31; N, 6.55; F, 4.34, S, 7.58
If-14	¹ H-NMR (CDCl ₃) δ 1.54 (s, 3H), 2.26 (s, 3H), 3.37 (s, 2H), 4.86 (s, 2H), 6.89 (s, 1H), 7.07-7.22 (m, 5H), 7.69-7.77 (m, 3H); IR (CHCl ₃) 2974, 2929, 1731, 1594, 1495, 1480, 1467, 1340, 1292, 1240, 1166, 1155, 1089, 1020 cm ⁻¹ ; 元素分析 (C ₂₁ H ₂₃ FN ₂ O ₄ S·0.3H ₂ O) 計算值 (%): C, 59.50; H, 5.61; N, 6.61; F, 4.48; S, 7.56 実測値 (%): C, 59.59; H, 5.62; N, 6.39; F, 4.26, S, 7.42
If-15	¹ H-NMR (CDCl ₃) δ 1.47 (s, 3H), 3.67 (s, 2H), 3.96 (s, 2H), 4.61 (s, 2H), 6.51-6.54 (m, 3H), 6.95-7.15 (m, 7H), 7.37 (d, J = 4.8 Hz, 1H), 7.48 (d, J = 8.4 Hz, 1H), 7.71-7.76 (m, 2H); IR (CHCl ₃) 2972, 2931, 1731, 1594, 1495, 1468, 1339, 1292, 1239, 1165, 1154, 1091, 1056 cm ⁻¹ .

. . . .

•

•