Redes Auto-Organizáveis

Computação Natural Gisele L. Pappa

Aprendizado Supervisionado

- A classe a que os exemplos de entrada pertencem é conhecida
- Durante o treinamento, a saída da rede é comparada com a saída esperada (classe prevista pela rede *vs* a classe conhecida), e um erro é gerado
- Redes supervisionadas normalmente respondem a seguinte pergunta:
 - A que classe pertence esse dado de entrada?

Aprendizado não-supervisionado

- A classe a que os exemplos de entrada pertencem não é conhecida
- Medidas de distância são utilizadas para treinar a rede
 - Os neurônios da rede são posicionados no espaço dos dados
 - O erro é dado pela distância entre a entrada e os neurônios

Aprendizagem não-supervisionada

- Redes não-supervisionadas normalmente respondem as seguintes perguntas:
 - Que grupos existem nos dados ?
 - Como cada entrada de dados está relacionada a base de dados como um todo?
- Redes não-supervisionadas são utilizadas para resolver tarefas mais descritivas

Redes Auto-Organizáveis (SOM)

- Também conhecidas como redes de Kohonen (1982)
- Aprendizagem não-supervisionada
- Seguem o **conceito** de redes feedforward de uma camada
 - Porém, para entendê-las melhor, esqueça a função de ativação, o feedforward e o backpropagation ☺

Redes Auto-Organizáveis (SOM)

- Tem como principal objetivo transformar um padrão de entrada de dimensão *m* em um mapa discreto de uma ou duas dimensões
- Topologicamente ordenado
 - Existe um mapeamento dos dados de entrada para o mapa de forma que cada ponto no mapa representa uma região do espaço de dados
 - Existe uma motivação biológica para isso

Motivação Biológica

- Córtex cerebral
 - Contém áreas especializadas na fala, visão, audição e outras funções motoras
 - Cada área exibe uma lógica relacionada a ordem de seu funcionamento
 - Ex: mapa tonotópico Neurônios vizinhos respondem a frequências de som similares numa sequência ordenada da mais alta para o mais baixa
 - Quais são os mecanismos que fazem com que essa ordem apareça naturalmente?

Inspiração Biológica

- Mapas topográficos tem 2 propriedades:
 - Em cada estágio de processamento, a informação de entrada é mantida dentro de um contexto ou vizinhança
 - Neurônios trabalhando com informações relacionadas são mantidos juntos para que possam se comunicar por ligações sinápticas curtas.

Estrutura da Rede

• Todas as entradas estão conectadas por pesos a cada neurônio

• Existem conexões laterais virtuais entre nós

vizinhos

Estrutura da Rede

- Cada nó da rede está associado a uma posição topológica específica, representada por uma coordenada x,y
- A cada coordenada está associado um vetor de pesos, com o mesmo número de dimensões dos dados de entrada
- Vetor de entrada V = (v1, v2, v3, ..., vd) => vetor de pesos W = (w1, w2, w3, ..., wd)

Mapeamento

- Neurônios estão conectados em um grid 1D ou 2D
 - É esse grid que vai representar os dados

Estrutura da SOM

- Para mapear o vetor de entrada V para o *grid*, encontramos o nó com os pesos a menor distância de V.
- Durante o treinamento, os neurônios se movem no *grid* tentando se ajustar aos dados
 - Dois espaços de dados
- Quando a posição de um neurônio muda, a posição dos neurônios vizinhos a este também são modificadas

Algoritmo de Aprendizado

- Os pesos dos neurônios de entrada são inicializados aleatoriamente com valores pequenos
- A formação do mapa ocorre em 3 fases:
 - Competição
 - Para cada padrão de entrada, os neurônios vão competir entre si, e um (ou um grupo) será vencedor
 - Cooperação
 - O vencedor determina a região espacial (vizinhança) que será estimulada
 - Adaptação
 - Pesos do neurônio vencedor e seus vizinhos são atualizados

Competição

- Um padrão de entrada $X = \{x_1, x_2, ..., x_n\}$ é apresentado para todos os neurônios da rede
- Para determinar o neurônio vencedor, calculamos a distânica entre o vetor de pesos W de um neurônio e a entrada X
 venc(x) = arg min_i ||x w_i||, j = 1, ..., n

- Uma vizinhança é definida ao redor do neurônio vencedor
 - A cada iteração, apenas os pesos (posição) dos neurônios dentro dessa vizinhança são alterados
 - A largura ou o raio de vizinhança é um parâmetro da rede, e varia com o tempo

• O neurônio vencedor (i) é considerado o centro da vizinhança topológica

$$N_{eigh} = 4$$
 $N_{eigh} = 3$
 $N_{eigh} = 2$
 $N_{eigh} = 1$
 $N_{eigh} = 0$

• Uma função de kernel k_{ij} define a influência de um neurônio sobre seus vizinhos

$$h_{ji} = \exp\left(-\frac{d_{ji}^2}{2\sigma^2}\right)$$

$$h_{ji} = \exp\left(-\frac{d_{ji}^2}{2\sigma^2}\right)$$
 1-D, d = $||\mathbf{j} - \mathbf{i}||$
2-D, d = $||\mathbf{r}_{\mathbf{j}} - \mathbf{r}_{\mathbf{i}}||^2$, r é a posição do neurônio

onde σ é a largura da vizinhança

- A largura ou o raio de vizinhança varia com o tempo
 - Começa com uma largura grande e diminui exponencialmente com o tempo

$$\sigma(n) = \sigma_0 \exp\left(-\frac{n}{t_1}\right)$$

onde t_1 é uma constante de tempo e n é a época.

- O valor σ_0 é definido pelo usuário, e depende da abrangência da vizinhança definida.

Adaptação

 Atualizar os pesos do vencedor e sua vizinhança de forma que eles fiquem mais parecidos com os dados

Taxa de aprendizado
$$w_{j}(n+1) = w_{j}(n) + \eta(n)h_{ji}(n)(x - w_{j}(n))$$
Função de kernel

• A taxa de aprendizado varia de acordo com a fórmula

$$\eta(n) = \eta_0 \exp\left(-\frac{n}{t_2}\right)$$

Como funciona?

Como funciona?

Propriedades do mapa de características

Mapa de características

- Quando o SOM converge, esse mapa de características reflete 4 propriedades estatísticas interessantes do espaço de entrada:
 - 1. Aproximação do espaço de entrada
 - 2. Ordenação topológica
 - 3. Densidade preservada
 - 4. Seleção de atributos

P1: Aproximação do espaço de entrada

- O mapa de características, representado pelo conjunto de vetores de pesos w_i no espaço de saída, provê uma boa representação do espaço de entrada
- O objetivo do SOM é armazenar um grande número de entradas *x* encontrando um conjunto de protótipos

P1: Aproximação do espaço de entrada

 A qualidade da aproximação é dada pela distância quadrática que queremos minimizar

$$D = \sum_{\mathbf{x}} \left\| \mathbf{x} - \mathbf{w}_{I(\mathbf{x})} \right\|^2$$

• Trabalhando com a matemática da descida do gradiente, chegamos a fórmula de atualização de pesos da rede.

P2: Ordenação topológica

- O mapa de características criado pela SOM é topologicamente ordenado no sentido que a localização espacial de um neurônio no *grid* de saída corresponde a um domínio ou característica particular dos padrões de entrada
- Essa ordenação é consequência da equação de atualização dos pesos, que força o neurônio vencedor a se mover em direção ao vetor de entrada

P2: Ordenação topológica

- O ponto crucial é que o algoritmo de atualização de pesos também move os neurônios vizinhos do vencedor.
- Essas mudanças de peso fazem com que o espaço de saída se torne ordenado.

P3: Densidade Preservada

- O mapa de características reflete variações nas estatísticas da distribuição de entrada
 - Regiões do espaço de entrada para os quais os vetores de treinamento tem maior probabilidade de ocorrer são mapeadas em regiões maiores do espaço de saída
 - Sabe-se que regiões menos densas podem ser sutilmente super-representadas.

P4: Seleção de características

- Dado um ponto em um espaço de entrada com distribuição não-linear, a rede SOM é capaz de selecionar o melhor conjunto de características capaz de aproximar essa distribuição
- A rede SOM provê uma aproximação discreta das curvas ou superfícies principais, e podem ser vistos como uma generalização não-linear do PCA (*Principal Component Analysis*)

Treinamento da Rede

- Normalmente acontece em duas fases:
- 1. Fase de ordenação
 - Ordenação topológica da rede leva em torno de 1000 iterações
 - η(n) deve ser um valor próximo de 0.1 e permanecer acima de 0.01 e t₂ igual a 1000
 - Inicialmente, h(n) deveria incluir a maioria dos neurônios. Assim, σ_0 deve ser igual ao raio da rede e $t_1 = 1000/\log \sigma_0$

Treinamento da Rede

2. Fase de convergência

- Diferenciação entre neurônios vizinhos
- O número de interações deve ser pelo menos
 500 vezes o número de neurônios
- O parâmetro de aprendizagem η deve ser mantido em torno de 0.01
- Função de vizinhança deve incluir 0 ou 1 neurônios

Aplicações

- Reconhecimento de voz
- Monitoramente de plantas e processos industriais
- Classificação de nuvens em imagens de satélites
- Organização de coleções de documentos
 - WEBSOM
- Análise e visualização de coleções de dados estatísticos
 - Ex: dados financeiros

Mapa de Características

- O resultado da rede é um mapa de características em 1D ou 2D
- Os neurônios estão agrupados no espaço de dados, seguindo as posições dos grupos de dados
- Pode-se projetar dados nesse mapa com o objetivo de vizualizá-los melhor
- Observando a quais neurônios os dados estão mapeados, podemos encontrar relações nos dados

Agrupamento de Países de Acordo com seu grau de Pobreza

(Poverty map based on 39 indicators from World Bank Statistics, 1992)

Demos

http://www.patol.com/java/TSP/index.html

 http://www.cis.hut.fi/research/javasomdemo/ demo2.html