Свободные колебания в электрическом контуре

Введение

Рассмотрим идеализированный колебательный контур (рис. 1) в котором все омическое сопротивление контура сосредоточено в резисторе, нескомпенсированные заряды расположены только на обкладках конденсатора, а все магнитное поле, создаваемое током в контуре, локализовано в катушке самоиндукции. Также будем считать, что частоты колебаний не слишком большие, так что выполняется условие квазистационарности, то есть в любой момент времени сила тока во всех элементах контура одинакова.

Рис. 1. Колебательный контур.

Обозначим силу тока в контуре I, а заряд на конденсаторе q. Тогда согласно второму правилу Кирхгоффа можно записать:

$$IR + \frac{q}{C} = -L\frac{dI}{dt}$$

Продифференцируем это уравнение по времени и учтем, что $I = \frac{dq}{dt}$

$$L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{I}{C} = 0 \tag{1}$$

Разделим уравнение на L и введем обозначения

$$\gamma = \frac{R}{2L}$$
 и $\omega_0^2 = \frac{1}{LC}$.

Величину γ называют коэффициентом затухания, а ω_0 – собственной частотой контура. С учетом этих обозначений уравнение (1) можно переписать как

$$\frac{d^2I}{dt^2} + 2\gamma \frac{dI}{dt} + \omega_0^2 I = 0 \tag{2}$$

Можно показать, что такой же вид имеет уравнение для заряда на конденсаторе q. Решение уравнения будем искать с помощью подстановки

$$I = A \cdot e^{\lambda t}$$

 Γ де A и λ — некоторые константы, которые в общем случае являются комплексными. Подстановка приводит к так называемому характеристическому уравнению

$$\lambda^2 + 2\gamma\lambda + \omega_0^2 = 0,$$

которое определяет два возможных значения λ

$$\lambda_{1,2} = -\gamma \pm \sqrt{\gamma^2 - \omega_0^2}$$

Общее решение уравнения (2) имеет вид

$$I = A_1 e^{\lambda_1 t} + A_2 e^{\lambda_2 t},$$

где значения параметров A_1 и A_2 определяются начальными условиями задачи.

В зависимости от соотношений между значениями γ и ω_0 ток в контуре может по-разному зависеть от времени. В случае, когда затухание мало $\gamma < \omega_0$, значения $\lambda_{1,2}$ являются комплексными. Это означает, что в контуре будут происходить затухающие колебания с частотой $\omega = \sqrt{\omega_0^2 - \gamma^2}$. Эта частота называется частотой свободных, или собственных колебаний (не путать с собственной частотой контура ω_0).

Решение уравнения (2) в случае малого затухания можно искать в синусоидальной форме:

$$I(t) = e^{-\gamma t} \left(B_1 \sin(\omega t) + B_2 \cos(\omega t) \right),$$

или

$$I(t) = e^{-\gamma t} B \cos(\omega t + \varphi)$$

При малом затухании говорят о гармонических колебаниях, величину $B\mathrm{e}^{-\gamma t}$ называют амплитудой затухающих колебаний, аргумент косинуса $(\omega t + \varphi)$ — фазой колебаний. Большой практический интерес представляет контур с очень слабым затуханием $\gamma << \omega_0$. При этом условии частота колебаний практически совпадает с собственной частотой контура $\omega \approx \omega_0$.

В случае сильного затухания $\gamma > \omega_0$ оба корня характеристического уравнения являются вещественными, и зависимость тока от времени не является колебательной. Такой процесс называют апериодическим.

Рассмотрим предельный случай $\gamma = \omega_0$, такой режим называется критическим. Приравнивая γ и ω_0 можно найти критическое сопротивление контура

$$R_{\rm kp} = 2\sqrt{\frac{L}{C}} \ .$$

В колебательном режиме потери энергии в контуре характеризуют добротностью и логарифмическим декрементом затухания. Добротностью называют величину

$$Q = 2\pi \frac{W}{\Delta W_T}$$

Где W – запасенная в контуре энергия, а ΔW_T – потеря энергии за период. Можно сказать, что добротность показывает, во сколько раз запасенная в колебательном контуре энергия превосходит потери в контуре за время, в течение которого фаза колебаний меняется на 1 радиан. При слабом затухании, если $2\gamma T << 1$ можно выразить добротность как

$$Q = \frac{\omega_0 L}{R} = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{\pi}{\gamma T}$$

Для описания затухания колебаний вводят логарифмический декремент затухания Θ , равный логарифму отношения двух последовательных амплитуд

$$\Theta = \ln \frac{U_k}{U_{k+1}} = \gamma T$$

Практически удобнее измерять амплитуды, разделенные целым числом периодов n, тогда

$$\Theta = \frac{1}{n} \ln \frac{U_k}{U_{k+n}}$$

Логарифмический декремент затухания равен обратному числу периодов, за которое амплитуда колебаний меняется в e раз. В случае слабого затухания логарифмический декремент и добротность контура связаны следующим соотношением: $\Theta = \frac{\pi}{O}$.

$$R_{KP} = 2\sqrt{\frac{L}{C}}$$

$$Q = \frac{1}{2}\sqrt{\frac{L}{C}} = \frac{R_{KP}}{2D}$$

$$Q = \frac{1}{2}\sqrt{\frac{L}{C}} = \frac{R_{KP}}{2D}$$

2

Экспериментальная установка

На рис. 2 приведена схема для исследования свободных колебаний в контуре, содержащем постоянную индуктивность L и переменные ёмкость C и сопротивление R. Колебания наблюдаются на экране осциллографа.

Рис. 2. Схема экспериментальной установки для исследования свободных колебаний.

Для периодического возбуждения колебаний в контуре используется генератор импульсов Γ 5-63. С выхода генератора по коаксиальному кабелю импульсы поступают на колебательный контур через электронное реле, состоящее из динистора D и ограничительного резистора R_1 . Динистор имеет S-образную вольт-амперную характеристику. Если напряжение на динисторе меньше порогового значения (в нашем случае приблизительно 40 B), динистор находится в закрытом состоянии и практически не пропускает ток. После того, как напряжение превышает пороговое значение, динистор открывается. В открытом состоянии напряжение на динисторе значительно меньше порогового, в нашей установке напряжение на открытом динисторе порядка 5 B.

Импульсы с генератора заряжают конденсатор C. После каждого импульса динистор закрывается, и генератор отключается от колебательного контура. Поэтому в контуре возникают свободные затухающие колебания.

Входное сопротивление осциллографа велико (порядка 1 МОм), поэтому его влиянием на контур можно пренебречь. Для получения устойчивой картины затухающих колебаний используется режим ждущей развёртки с синхронизацией внешними импульсами, поступающими с генератора.

Для измерения зависимости периода колебаний от емкости конденсатора на панели имеются 8 конденсаторов с различной ёмкостью. Значения ёмкостей конденсаторов в нашей установке указаны в таблице:

	C_1	C_2	C_3	C_4	C_5	C_6	C_7	C_8
ёмкость, нФ	21,86	33,23	50,72	70,83	100,3	223,6	477,5	927,7

ЗАДАНИЕ

В работе предлагается исследовать зависимость периода свободных колебаний в колебательном контуре от ёмкости, зависимость логарифмического декремента затухания от сопротивления, определить критическое сопротивление и добротность контура.

Подготовка приборов к работе

- 1. а) Соберите схему согласно рис. 2.
- 2. Включите генератор импульсов в сеть. Регулировка параметров выходного сигнала производится при помощи ручек переключения пределов и ручек плавной регулировки со шкалами. Установите период повторения импульсов $T_0 = 0.01$ с и длительность импульса $\tau = 1$ мкс. Установите амплитуду импульсов порядка 40 В. На осциллографе включите режим синхронизации внешними импульсами и настройте осциллограф так, чтобы на экране полностью умещался один цикл колебаний. Если амплитуда колебаний в колебательном контуре мала, можно немного увеличить амплитуду или длительность импульсов на генераторе.

Измерение периодов

3. Установите на магазине сопротивлений величину R=0 и подключите конденсатор C_1 номинальной ёмкостью 22 нФ; Измерив на экране расстояние, которое занимают несколько полных периодов колебаний, определите период колебаний контура. Измерьте период колебаний для восьми различных конденсаторов, имеющихся на установке.

Для дальнейших измерений используйте конденсатор C_1 .

Критическое сопротивление и декремент затухания

- 4. Считая, что $L=15 \,\mathrm{mFH}$ рассчитайте критическое сопротивление контура $R_{\mathrm{кp}}$. Увеличивая сопротивление магазина R от нуля до R_{kp} , наблюдайте картину затухающих колебаний на экране осциллографа. Зафиксируйте сопротивление магазина, при котором колебательный режим переходит в апериодический.
- 5. Установите сопротивление $R \approx 0.1~R_{\rm kp}$. Получите на экране картину затухающих колебаний. Для расчёта логарифмического декремента затухания Θ для 5-7 точек измерьте амплитуды и соответствующие этим точкам номера периодов колебаний. Точность измерений повысится, если сместить горизонтальную ось симметрии сигнала в нижнюю часть экрана. Расчёт будет тем точнее, чем больше отличаются друг от друга измеряемые амплитуды, а минимальная не должна быть меньше 5-6 мм.
- 6. Повторите измерения для 5-6 значений R в интервале $(0.05-0.2) \cdot R_{\rm kp}$.

Колебания на фазовой плоскости

- 7. Для наблюдения затухающих колебаний на фазовой плоскости подайте на вход X осциллографа напряжение с магазина сопротивлений. Переведите ручку TIME/DIV развёртки в положение X-Y и ручками чувствительности каналов подберите удобный масштаб спирали. При минимальном значении C наблюдайте за изменением спирали при увеличении сопротивления от 0.05 до $0.2\,R_{\rm kp}$. Для определения логарифмического декремента затухания Θ измерьте радиусы витков спирали, разделённые целым числом периодов n, для одного-двух значений R на каждом краю рабочего диапазона.
- 8. Отсоедините катушку от цепи. Измерьте омическое сопротивление катушки R_L и индуктивность L с помощью измерителя LCR на частотах 50 Γ ц, 1 к Γ ц и частоте собственных колебаний в контуре с конденсатором C_1 . Для измерения индуктивности

кнопкой MODE выберите режим L/Q, для измерения сопротивления выберите режим R/Q. Для выбора частоты тест-сигнала нужно нажать кнопку FREQ, на клавиатуре набрать значение частоты в килогерцах и нажать кнопку ввода ENTER.

Подумайте, почему результат измерения R_L зависит от частоты.

Обработка результатов

- 1. Рассчитайте экспериментальные значения периодов по результатам измерений и теоретические по формуле $T=2\pi\sqrt{LC}$. Постройте график $T_{\text{эксп}}=f(T_{\text{теор}})$.
- 2. Постройте на одном графике зависимости логарифма амплитуды колебаний от номера периода для различных значений сопротивления *R*. Для каждой серии точек постройте аппроксимирующую прямую и по наклону этой прямой определите значение логарифмического декремента затухания Θ.
- 3. Для каждого значения сопротивления R рассчитайте полное сопротивление контура $R_{\text{конт}}$, которое включает сопротивление магазина R и омическое сопротивление катушки R_L . Опираясь на формулы, приведенные во введении к работе, получите выражение, связывающее логарифмический декремент затухания Θ и сопротивление контура $R_{\text{конт}}$. Постройте график зависимости $\Theta = f\left(R_{\text{конт}}\right)$ и по наклону этой зависимости определите критическое сопротивление $R_{\text{кр}}$. Рассчитайте теоретическое значение $R_{\text{кр}}$ и сравните значение с измеренным.
- 4. Для каждого значения сопротивления магазина рассчитайте добротность контура Q через логарифмический декремент затухания Θ и сравните полученные значения с расчётом Q через параметры контура $R_{\text{конт}}$, L и C.
- 5. Рассчитайте добротность Q по спирали.
- 6. Оцените погрешности и сравните результаты измерения критического сопротивления и добротности. Какой из методов определения $R_{\kappa p}$ и Q точнее?