Лекция по математическому анализу №2

Дудников Илья

29 сентября 2021 г.

Содержание

1	. Продолжение про вещественные числа		
	1.1	Теорема о вложенных отрезках	1
	1.2	Принцип математической индукции	1
	1.3	Супремум и инфимум	2
2	Ото	ображения	4

1 Продолжение про вещественные числа

1.1Теорема о вложенных отрезках

Теорема 1 (Теорема о вложенных отрезка). Пусть $[a_1,b_1]\supset [a_2,b_2]\supset [a_3,b_3]\supset...\supset [a_n,b_n].$ Tог ∂a

$$\exists a \in \bigcap_{n=1}^{\infty} [a_n, b_n]$$

Доказательство. $a_1 \leqslant a_2 \leqslant a_3 \leqslant \ldots \leqslant a_n \leqslant b_n \leqslant b_{n-1} \leqslant \ldots \leqslant b_1$

Значит, $\forall k, m \to a_k \leqslant b_m$

Пусть $A = \{a_n\}, B = \{b_n\}$. По аксиоме полноты $\exists c \in \mathbb{R} : \forall k, m \in \mathbb{N} \to a_k \leqslant c \leqslant b_m \Rightarrow c \in \mathbb{R}$ $\bigcap_{n=1}^{\infty} [a_n, b_n]$

Замечания: 1) $\bigcap_{n=1}^{\infty} \left(0; \frac{1}{n}\right] = \varnothing$. Важно, что именно отрезки, а не интервалы или полуинтервалы. 2) $\bigcap_{n=1}^{\infty} [n; +\infty) = ?$

- 3) Без аксиомы полноты не работает. Например

$$[1.4; 1.5] \supset [1.41; 1.42] \supset \dots$$

$$\bigcap_{n=1}^{\infty} [a_n,b_n] = \{\sqrt{2}\},$$
 но не в $\mathbb Q$

Принцип математической индукции 1.2

 $\{P_n\}_{n=1}^\infty$ - утверждения. Если

- 1. P_1 верно база
- 2. $\forall n \in \mathbb{N} \to P_n \Rightarrow P_{n+1}$ индукционный переход

Тогда $\forall n \in \mathbb{N} \to P_n$.

Определение 1. $M \subset \mathbb{R}$ - индуктивное, если $1 \in M \land (x \in M \Rightarrow x+1 \in M)$.

Определение 2. \mathbb{N} - минимальное индуктивное подмножество \mathbb{R}

Определение 3 (Сдвиг индекса суммирования).

$$\sum_{n=m}^{k} a_n = \sum_{j=m+p}^{k+p} a_{j-p}, p \in \mathbb{Z}$$

Определение 4. k!! - произведение целых чисел до k включительно одной четности с k.

Определение 5 (Биномиальные коэффициенты).

$$C_n^k = \frac{n!}{k!(n-k)!} = \binom{n}{k}$$

Теорема 2 (Формула бинома Ньютона). Пусть $n \in \mathbb{Z}, x, y \in \mathbb{R}$. Тогда

$$(x+y)^n = \sum_{k=0}^n C_n^k x^k y^{n-k}$$

Доказательство. $n=0 \to 1=1$, верно Индукционный переход:

$$\begin{split} &(x+y)^{n+1} = (x+y)(x+y)^n = (x+y)(\sum_{k=0}^n C_n^k x^k y^{n-k}) = \\ &= \sum_{k=0}^n C_n^k x^{k+1} y^{n-k} + \sum_{k=0}^n C_n^k x^k y^{n-k+1} = \sum_{j=1}^{n+1} C_n^{j-1} x^j y^{n+1-j} + \sum_{k=0}^n C_n^k x^k y^{n-k+1} = \\ &= \sum_{k=1}^{n+1} C_n^{k-1} x^k y^{n+1-k} + \sum_{k=0}^n C_n^k x^k y^{n-k+1} = C_n^n x^{n+1} y^0 + \sum_{k=1}^n \left(C_n^{k-1} x^k y^{n+1-k} + C_n^k x^k y^{n+1-k} \right) + C_n^0 x^0 y^{n+1} = \\ &= C_{n+1}^{n+1} x^{n+1} y^0 + \sum_{k=1}^n \left(C_n^{k-1} + C_n^k \right) x^k y^{n+1-k} + C_{n+1}^0 x^0 y^{n+1} = \sum_{k=0}^{n+1} C_{n+1}^k x^k y^{n+1-k} \end{split}$$

1.3 Супремум и инфимум

Определение 6. $E \subset \mathbb{R}$ - ограниченное сверху, если $\exists A : \forall x \in E \to x \leqslant A$

Определение 7. $E \subset \mathbb{R}$ - ограниченное снизу, если $\exists B: \forall x \in E \to x \geqslant B$

Определение 8. $E \subset \mathbb{R}$ - ограниченное, если оно ограничено и снизу, и сверху.

Определение 9. $M \in \mathbb{R}$ называется максимумом мн-ва E, если $\forall x \in E \to x \leqslant M \land M \in E$

Определение 10. $K \in \mathbb{R}$ называется минимумом мн-ва E, если $\forall x \in E \to x \geqslant K \land K \in E$

Теорема 3 (Существование минимума и максимума у конечного множества из \mathbb{R}). Во всяком конечном непустом подмножестве \mathbb{R} есть наибольший и наименьший элементю

Доказательство. n=1 - количество элементов (База) Индукционный переход: $\exists \max\{x_1,x_2,...,x_n\}=C$ Добавим x_{n+1} : если $x_{n+1}>C\Rightarrow \max\{x_1,...,x_{n+1}\}=x_{n+1}$ если $x_{n+1}\leqslant C\Rightarrow \max\{x_1,...,x_{n+1}\}=C$

Следствие 1. $\forall E \neq \emptyset \land E \subset \mathbb{Z} \land E$ - orp. $\rightarrow \exists \max E \land \min E$

Следствие 2. $\forall E \subset \mathbb{N}, E \neq \emptyset \rightarrow \exists \min E$

Далее везде $E \subset \mathbb{R}, E \neq \emptyset$

Определение 11. Пусть E ограничено сверху, тогда $\sup E$ - наименьшаяя из верхних границ. (точная верхняя граница)

Определение 12. Пусть E ограничено снизу, тогда $\inf E$ - наибольшая из нижних границ. (точная нижняя граница)

Теорема 4. $E \neq \emptyset$. Если E ограничено снизу, то $\exists ! \inf E$

Доказательство. Пусть A - множество всех нижних границ $E(A \neq \varnothing)$ $\forall a \in A, b \in E \to a \leqslant b$

Тогда по аксиоме полноты $\Rightarrow \exists c \in \mathbb{R} : a \leqslant c \leqslant b \ \forall a \in A, b \in E \Rightarrow$ $\Rightarrow \begin{cases} c \leqslant b \ \forall b \in E \text{ - } c \text{ - } \text{нижняя граница,} \\ c \geqslant a \ \forall a \in A \text{ - } c \text{ - } \text{наибольшеe} \end{cases}$

Определение 13.

$$l = \sup E \Leftrightarrow \begin{cases} \forall x \in E \to x \leqslant l \\ \forall \varepsilon > 0 \to \exists y \in E : y > l - \varepsilon \end{cases}$$
$$m = \inf E \Leftrightarrow \begin{cases} \forall x \in E \to x \geqslant m \\ \forall \varepsilon > 0 \to \exists y \in E : y < l + \varepsilon \end{cases}$$

Если E не ограничено сверху, то $\sup E = +\infty$

Если $E=\varnothing$, то чаще всего $\sup E$ и $\inf E$ не определены, но иногда $\sup \varnothing = -\infty, \inf \varnothing = +\infty$

Утверждение 1. $\emptyset \neq B \subset A \subset \mathbb{R}$. Тогда если A ограничено снизу, то inf $A \leqslant \inf B$

Доказательство. Если C - нижняя граница A, то $\forall x \in A \to C \leqslant x \Rightarrow \forall y \in B \to C \leqslant y \Rightarrow C$ - нижняя граница $B \Rightarrow \inf A$ - тоже нижняя граница $B \Rightarrow \inf A \leqslant \inf B$

Утверждение 2. $\varnothing \neq B \subset A \subset \mathbb{R}$. Тогда если A ограничено сверху, то $\sup A \geqslant \sup B$

2 Отображения

```
f: A \to B \ f(x) = y
y — образ элемента X
x — прообраз y
f(A) — образ множества A
f^{-1}(B) — прообраз множества B
G_f = \{(x,y): x \in A, y = f(x)\}
```

Определение 14. $f:A\to B.$ Если f(A)=B, то f сюръективно.

Определение 15. $f:A\to B.$ Если $(x_1\neq x_2\in A)\Leftrightarrow (f(x_1)\neq f(x_2)),$ то f инъективно.

Определение 16. Биекция - f инъективно и сюръективно.

Определение 17 (Композиция). g(x), f(x).

$$h(x) = g \circ f(x) = g(f(x))$$

$$f: X \to Y \ g: Y_0 \to Z, f(x) \subset Y_0$$

Определение 18. id_x - тождественное отображение: f(x) = x

Определение 19. $f:X\to Y, X_0\subset X$ $f|_{X_0}$ - сужение отображения f на X_0