

Simulação de Filtro Ativo do tipo *Shunt* para Correção de Fator de Potência em Sistema Elétricos Aeronáuticos

João Paulo de Souza Oliveira

Orientador Prof. Dr. Roberto d'Amore

Coorientador M. Eng. André Domingues Rocha de Oliveira

São José dos Campos, SP – Brasil 2017

Agenda

- Introdução
 - Motivação
 - Objetivos
- Métodos de Correção de Fator de Potência
- Filtros Ativos Utilizando a Teoria p-q
- Teoria da Potências Instantâneas
 - Estratégias de Controle
- Simulação
 - Modelos
 - Resultados
- Conclusão

Introdução

- Tendência de aumento do uso do sistema elétrico em aeronaves
- Sistemas hidráulicos e pneumáticos tendem a ser trocados por similares elétricos

Introdução

Aumento de cargas não lineares compromete a qualidade de energia

Motivação

- Promover um estudo sobre diversas topologias de correção de fator de potência
- Aprofundar o estudo na teoria das potências instantâneas
- Viabilizar o conceito dos filtros ativos em sistemas elétricos aeronáuticos

Objetivos

- Desenvolver uma simulação com a inclusão de filtros ativos em cargas não lineares
- Promover um sistema de correção de fator de potência
- Garantir a manutenção das tensões dentro das normas aeronáuticas no que tange qualidade de energia

Métodos de Correção de Fator de Potência

- Sistemas passivos:
 - Filtros passivos
 - Conversores multipulso
- Sistemas ativos:
 - Filtros Ativos

Filtros Ativos Utilizando a Teoria PQ

 Filtro Ativo opera pela determinação da corrente de referência de um compensador, a qual carrega informação da potência instantânea que deseja-se anular no sistema

• i_{Ca}^* , i_{Cb}^* , i_{Cc}^* é determinado utilizando a teoria das potências instantâneas

Teoria das Potências Instantâneas

- É utilizada na determinação das potências instantâneas ativa e reativa (p e q, respectivamente), a qual carregam dados sobre a forma da tensão/corrente
- Aplicável apenas à sistemas trifásicos
- Baseada na transformada de Clarke:

$$\begin{bmatrix} v_0 \\ v_\alpha \\ v_\beta \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix}; \begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{1}{\sqrt{2}} & 1 & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{1}{\sqrt{2}} & -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} v_0 \\ v_\alpha \\ v_\beta \end{bmatrix}$$

Teoria das Potências Instantâneas

$$\begin{bmatrix} p_0 \\ p \\ q \end{bmatrix} = \begin{bmatrix} v_0 & 0 & 0 \\ 0 & v_\alpha & v_\beta \\ 0 & -v_\beta & v_\alpha \end{bmatrix} \begin{bmatrix} i_0 \\ i_\alpha \\ i_\beta \end{bmatrix}$$

• Significados físicos de p e q

 Tensão e corrente de sequencia zero são desconsideradas em sistemas elétricos aeronáuticos

$$\begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} v_{\alpha} & v_{\beta} \\ -v_{\beta} & v_{\alpha} \end{bmatrix} \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix}$$

Filtros Ativos Utilizando a Teoria PQ

- Determinação das correntes de referência i_{Ca}^* , i_{Cb}^* , i_{Cc}^*
 - Determinação das tensões e correntes em coordenadas $\alpha\beta$;
 - Seleção das potências a serem compensadas ($p^*e q^*$);
 - Calculo de corrente de compensação nas coordenadas $\alpha\beta$;

$$\begin{bmatrix} i_{C\alpha}^* \\ i_{C\beta}^* \end{bmatrix} = \frac{1}{v_{\alpha}^2 + v_{\beta}^2} \begin{bmatrix} v_{\alpha} & v_{\beta} \\ v_{\beta} & -v_{\alpha} \end{bmatrix} \begin{bmatrix} p^* \\ q^* \end{bmatrix}$$

Transformada inversa de Clarke;

Estratégia de Controle

- A teoria p-q por si só mostra-se insuficiente para garantir a filtragem quando a tensão do barramento é distorcida
- Controle de Corrente Senoidal com uso do Detector de Sequencia Positiva

Detector de Sequência Positiva

Malha de captura de fase (PLL)

Malha Principal

Controle de tensão do Capacitor do compensador

Textão

Sistema Completo

Simulação

- 3 EHAs
- Aeronave do tamanho comercial de 100 passageiros
- Etc (LER o BAGULHO)

Simulação

Modelo Empregado do Sistema de Geração

Resistência $[\Omega]$	Indutância [mH]	Impedância (400 Hz) $[\Omega]$
0.0404	0.09204	0.0404 + j0.213

Simulação

• Modelo Empregado do Sistema de Distribuição

Porção	Bitola	Comprimento	Impedância (400 Hz) $[\Omega]$
GEN - PDU	AWG 0	10 m	0,0047 + j0,0067
PDU - EHA 1	AWG 10	15 m	0,0540 + j0,0199
PDU - EHA 2	AWG 10	17.5 m	0,0630 + j0,0233
PDU - EHA 3	AWG 10	20 m	0,0720 + j0,0266

Simulação

Modelo Empregado do EHA

Simulação

Simulação dividida em quatro subperíodos durante a operação do EHA

Resultados são referentes a medições obtidas na PDU

150

100

-100

-150

150

100

-100

-150

72.935

Tensão [V]

72.935

72.9375

72.9375

72.94

tempo [s]

72.94

tempo [s]

72.9425

72.9425

Tensão [V]

Instituto Tecnológico de Aeronáutica Curso de Mestrado Profissionalizante em Engenharia Aeronáutica Programa de Pós-Graduação em Engenharia Aeronáutica e Mecânica

Resultados

EHA Inoperante

A

72.945

72.945

Resultados

Corrente Máxima

Resultados

Regime Transitório

Resultados

Regime Permanente

Conclusão

- O filtro operou como esperado, deixando a resposta dentro das normas aeronáuticas
- Quando há demanda de carga o filtro age deixando o sistema operando com alto fator de potência
- Houve a constatação que sem carga ou com baixa carga houve a degradação da qualidade de energia

Trabalhos Futuros

ew

Obrigado

João Paulo de Souza Oliveira