	Very Busy Expressions	
Domain	b-a; a-b (sets of expressions)	
Direction	forward : OUT[b] = fb(IN[B]) In[b] = ∧ OUT[pred(b)]	
Transfer function	$fb(x) = GEN[B] \cup (IN[B] - KILL[B])$	
Meet Operation (∧)	Λ	
Boundary Condition	OUT [entry] = 0	
Initial interior points	OUT [b] = 0	

Та	h۸	ш	2	٠
ıa	NE	ш	а	

Tabella :		
	Gen()	Kill()
BB2	0	0
BB3	3	4,7
BB4	4	3
BB5	5	0
BB6	6	0
BB7	7	4

Primo giro:

```
IN [ BB6 ] = { b-a }
OUT [ BB6 ] = 0 U ( { b-a } - kill { b-a } ) = 0

IN [ BB7 ] = 0
OUT [ BB7 ] = { a-b } U 0 = { a-b }

IN [ BB8 ] = OUT [ BB4 ] = { a-b, b-a }   OUT [ BB7 ] = { a-b }
OUT [ BB8 ] = 0 U { a-b } = { a-b }

→ solo 'a-b' è very busy, perchè 'a' di 'b-a' è stato cambiato (con a = 0, nel secondo branch)
```


Dominator Analysis

	Dominator Analysis
Domain	Sets of nodes
Direction	forward: out[b] = fb(in[b]) in[b] = ^ out[pred(b)]
Transfer function	$fb(x)=def(b) \cup (\land OUT[pred(b)])$
Meet Operation (∧)	
Boundary Condition	out[entry] = 0
Initial interior points	out[b] = 0

Blocco	IN[B]	OUT[B] (= DOM[B])
А	0	А

В	А	{A, B}
С	A	{A, C}
D	{A, C}	{A, C, D}
E	{A, C}	{A, C, E}
F	{A, C, D} ∧ {A, C, E} = = {A, C}	F U {A, C} = {A, C, F}
G	$\{A, B\} \land \{A, C, F\} = A$	{A, G}

DOM[B] = { A, B }

Constant propagation

	Constant propagation
Domain	Sets of Variables
Direction	forward : $OUT[b] = fb(IN[B])$ $In[b] = \land OUT[pred(b)]$
Transfer function	OUT[B] = Use[B] U ((^IN[B]) - KILL[B])
Meet Operation (∧)	Λ
Boundary Condition	OUT [entry] = 0
Initial interior points	OUT [b] = 0

	Iterazione1 I		Iterazione 2	
	IN(B)	OUT(B)		
BB1 (k=2)	0	k=2		
BB2 (a=k+2)	k=2	k=2, a=2+2=4		

BB3 (x=5)	k=2, a=4	k=2, x=5, a=4		
BB4 (a=k*2)	k=2	k=2, a=2*2=4		
BB5 (x=8)	k=2, a=4	k=2, x=8, a=4		
BB6 (k=a)	k=2, a=4, {x = 5, x = 8}	k=4, a=4, {x = 5, x = 8}		
BB7 (b=2)	k=4, a=4, {x = 5, x = 8}	k=4, a=4, b=2, {x = 5, x = 8}	k=5, a=4, b=2, x=8, y=8	k=5, a=4, b=2, x=8, y=8
BB8 (x=a+k)	k=4, a=4, b=2,{x = 5, x = 8}	k=4, a=4, b=2, x=8	k=5, a=4, b=2, x=8, y=8	k=5, a=4, b=2, x=4+5=9, y=8
BB9 (y=a*b)	k=4, a=4, b=2, x=8	k=4, a=4, b=2, x=8 y=4*2=8	k=5, a=4, b=2, x=9, y=8	k=5, a=4, b=2, x=9, y=8
BB10 (k++)	k=4, a=4, b=2, x=8, y=8	k=5, a=4, b=2, x=8, y=8	k=5, a=4, b=2, x=9, y=8	k=5+1=6, a=4, b=2, x=9, y=8