- $\mathbf{B2}$ AB=5, BC=6, CA=4 の \triangle ABC がある。
 - (1) cos A の値を求めよ。
 - (2) $\triangle ABC$ の面積 S を求めよ。また、 $\sin B$ の値を求めよ。
 - (3) 直線 BC 上に ∠BAD = 90° となるような点 D をとる。△ACD の外接円の半径を求め よ。 (配点 20)

- $|\mathbf{B3}|$ 4次方程式 $x^4-kx^2+4=0$ ……① がある。ただし,k は実数の定数である。
 - (1) k=5 のとき、方程式①を解け。
 - (2) 方程式①が異なる4つの実数解をもつようなkの値の範囲を求めよ。
 - (3) 方程式①が異なる4つの実数解をもち、その4つの解の値を数直線上にとった4点が等間隔に並ぶ。このとき、kの値と4つの実数解を求めよ。 (配点 20)

- **B4** 座標平面上に、円 $C_1: x^2+y^2=2$ 、円 $C_2: x^2+y^2-6ax-2ay+10a^2-18=0$ がある。 ただし、a は正の定数である。
 - (1) a=1 のとき、円 C_2 の中心の座標と半径を求めよ。
 - (2) 円 C_1 上の点 (-1, 1) における接線 ℓ の方程式を求めよ。また,接線 ℓ と円 C_2 が接するとき,a の値を求めよ。
 - (3) (2)のとき、円 C_1 と C_2 の共通接線のうち、円 C_1 上の接点 (p, q) が第3象限にあるものを mとする。このとき、p、q の値と m の方程式を求めよ。 (配点 20)

- $|\mathbf{B5}|$ 関数 $y = \sin \theta + \sqrt{3} \cos \theta$ ……① がある。
 - (1) $\theta = \frac{\pi}{3}$ のとき, yの値を求めよ。
 - (2) 関数①を $y = r\sin(\theta + \alpha)$ $(r > 0, -\pi < \alpha \le \pi)$ の形に変形するとき, $r \ge \alpha$ の値を求めよ。また, $0 \le \theta \le \pi$ のとき, y のとり得る値の範囲を求めよ。
 - (3) 関数①のグラフを θ 軸方向に $\frac{\pi}{6}$ だけ平行移動したグラフを表す関数を $y=p\sin\theta+q\cos\theta$ とするとき,定数 p, q の値を求めよ。さらに,このとき, $0 \le \theta < 2\pi$ において, $(p+1)\sin\theta+(q+\sqrt{3})\cos\theta=\frac{\sqrt{2}}{\sqrt{3}-1}$ を満たす θ の値を求めよ。(配点 20)

- | **B6** 関数 $f(x) = x^3 3x^2 + 2$ があり、座標平面上で曲線 C: y = f(x) を考える。
 - (1) f'(x) を求めよ。また、点 (-1, f(-1)) における C の接線の方程式を求めよ。
 - (2) t は実数とする。点 (t, f(t)) における C の接線 ℓ の方程式を求めよ。また、接線 ℓ が点 (0, 2) を通るとき、t の値を求めよ。
 - (3) 点 (2, a) を通る C の接線がちょうど 2 本存在するような定数 a の値を求めよ。

(配点 20)

- **37** 数列 $\{a_n\}$ は等差数列で、 $a_1+a_2+a_3=243$ 、 $a_2+a_3=160$ である。また、数列 $\{b_n\}$ は公比が正の等比数列で、 $b_2=16$ 、 $b_3+b_4=320$ である。
- (1) 数列 $\{a_n\}$ の一般項 a_n を n を用いて表せ。
- (2) 数列 $\{b_n\}$ の一般項 b_n を n を用いて表せ。
- (3) 数列 $\{a_n\}$ の初項から第n 項までの和が最大となるときのn を N とするとき,N の値を求めよ。さらに, b_n の一の位の数を c_n $(n=1, 2, 3, \cdots)$ とするとき, $\sum_{k=1}^{N} a_k c_k$ の値を求めよ。

4

- **B8** OA = 3, OB = 4, $\angle AOB = 60^{\circ}$ の $\triangle OAB$ があり、辺 AB を 1:2 に内分する点を C, 線分 OC の中点を M とする。また、 $\overrightarrow{AP} = k \overrightarrow{AM}$ (k は実数)となる点 P をとり、 $\overrightarrow{OA} = \overrightarrow{a}$ 、 $\overrightarrow{OB} = \overrightarrow{b}$ とする。
 - (1) \overrightarrow{OC} を \overrightarrow{a} , \overrightarrow{b} を用いて表せ。また、内積 $\overrightarrow{a} \cdot \overrightarrow{b}$ の値を求めよ。
 - (2) \overrightarrow{OP} を k, \overrightarrow{a} , \overrightarrow{b} を用いて表せ。また、点 P が直線 OB 上にあるとき、k の値を求めよ。
 - (3) $\angle AOP = 90^\circ$ となるとき、k の値を求めよ。また、このとき $\triangle OAP$ の面積を求めよ。 (配点 20)