Autómatas Finitos Deterministas

Fabio Martínez Carrillo

Autómatas Escuela de Ingeniería de Sistemas e Informatica Universidad Industrial de Santander - UIS

12 de septiembre de 2017

Agenda

- Introducción a Autómatas
 - Primer ejemplo

2 Autómatas finitos Deterministas

Automatismo y Autonomía

Autómatas

Los autómatas exhiben comportamientos automáticos que han sido establecidos durante su diseño.

Para que expresen otro comportamiento deben rediseñarse.

Autonomía

Implica la capacidad de alterar por si solo el propio comportamiento y surge de la interacción del sistema con el entorno.

- Debe tener la capacidad de alterar su función de transición para adoptar nuevas conductas.
- Amplia el alfabeto de entrada.
- Son clasificadas como artificial.

Qué es un automáta finito

- Un sistema formal que tiene un conjunto de estados y cambia entre estados a partir de entradas/estímulos externos.
- Recuerda solo una cantidad finita de información.
- Información es representada por sus estados.
- Los estados cambian en respuesta a las entradas.
- Las reglas que nos dicen como los estados cambian en relación a las entradas, se llaman transiciones.

Por qué estudiar un autómata finito

- Usado para el diseño y verificación de circuitos y protocolos de comunicación.
- Usado en aplicaciones para procesamiento de texto.
- Un componente fundamental en compiladores.
- Describe patrones simples de eventos.

Puntaje en tennis

- Es como el pin-pong, solo que éste es en un espacio pequeño y sobre una tabla.
- Partido: entre 3-5 sets.
- Set son 6 o más puntos (games).

Anotación de un punto (game)

- Una persona sirve.
- Para ganar, usted debe anotar al menos 4 puntos.
- Usted debe ganar por al menos dos puntos.
- Las entradas son:
 - S = el que sirve hace un punto.
 - **O** = el oponente hace un punto.

Aceptación de Entradas

- Dada una secuencia de entrada (entrada de palabras), comience en el estado start y siga la transición por cada símbolo.
- La entrada (palabra de entrada) es aceptada si usted termina en un estado final (aceptación) después de que todas las entradas han sido leídas.

Lenguaje de un autómata

Lenguaje de un autómata

- El conjunto de palabras (strings) aceptado por un autómata A es el **Lenguaje** de A.
- El lenguaje se denota como L(A).
- Diferentes conjuntos de estados finales, entonces diferentes lenguajes.
- L(Tennis) son las palabras que determinan el ganador.

Ejercicios

Defina el autómata para los estados civiles de una persona.

El siguiente diagrama representa el autómata para una máquina dispensadora de bebidas que recibe monedas de 1,2 y 5. Explique su funcionamiento.

¿Qué pasa con las palabras de entrada 1121 y 1122?

Ejercicios

Defina el autómata para los estados civiles de una persona.

Cuál es la trayectoria de estados para bba y aab?

Algunas consideraciones para hacer AF

- Diferenciar eventos instantáneos y permanentes (estados).
- Las condiciones asociadas a los estados deben ser *excluyentes* no hay validez para dos estados al tiempo.
- Las condiciones de los estados deben ser compresivas: cubren todos los casos posibles.
- Los eventos instantáneos son estímulos.

Agenda

- Introducción a Autómatas
 - Primer ejemplo

2 Autómatas finitos Deterministas

Autómata finito determinista (AFD)

$A = (Q, \Sigma, \delta, q_0, F)$

Solo puede estar en un único estado luego de leer cualquier secuencia de entradas.

Definición

- Un conjunto finito de *estados*, *Q*.
- Un conjunto finito de *símbolos de entrada*, Σ.
 Una función de transición que toma como argumentos:
 - a un octodo
 - un estado,un símbolo,
 - devuelve un estado, $\delta: Q \times \Sigma \to Q$.

Por ejemplo:

- Si q es un estado y a es un símbolo, entonces $\delta(q,a)$ es el estado p tal que existe un arco etiquetado a de q hasta p
- Un estado inicial, uno de los estados Q
- ullet Un conjunto de estados finales o de aceptación F. $F\subset Q$

Procesamiento de cadenas

Aceptación del lenguaje: $a_1 a_2 \dots a_n$

- En el estado inicial q_0 , $\delta(q_0, a_1) = q_1$
- Procesamos el siguiente símbolo $\delta(q_1, a_2) = q_2$
- Continuamos para q_3, q_4, \ldots, q_n tal que $\delta(q_{i-1}, a_i) = q_i$
- Si $q_n \in F$ entonces $a_1 a_2 \dots a_n$ se acepta.
- Se consumen todos los símbolos siguiendo los estados
- Al terminar la palabra se llega a un estado final

Ejemplos

- Especifique el lenguaje para AFD que acepta las cadenas binarias que contenga la secuencia "01".
- Qué tiene que recordar el autómata o cuáles son las condiciones?
- Cuáles son los estados y funciones de transición?

Ejemplos

- Especifique el lenguaje para AFD que acepta las cadenas binarias que contenga la secuencia "01".
- Qué tiene que recordar el autómata o cuáles son las condiciones?
- Cuáles son los estados y funciones de transición?
- Si leemos un 1: $\delta(q_0, 1) = q_0$
- Si leemos un 0: $\delta(q_0, 0) = q_2$
- Si estamos en q_2 y leemos un 0: $\delta(q_2, 0) = q_2$
- Si estamos en q_2 y leemos un 1: $\delta(q_2, 0) = q_1$
- En estado de aceptación: $\delta(q_1, 0) = \delta(q_1, 1) = q_1$

$$A = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_1\})$$

Notaciones simples de AFD

- Diagrama de transiciones
- Tabla de transiciones

Diagrama de transiciones

 $A = (Q, \Sigma, \delta, q_0, F)$ se define como un grafo, siguiendo:

- Para cada estado de Q existe un nodo.
- Para cada estado q de Q y cada símbolo de entrada a de Σ tal que $\delta(q,a)=p$. Entonces el diagrama tiene un arco desde q hasta p, etiquetado como a.
- Existe una flecha dirigida al estado inicial q₀, etiquetado como modo inicio. Esta flecha no tiene origen en ningún nodo
- Los nodos correspondientes a los estados de aceptación F están marcados con doble círculo.

Notaciones simples de AFD

Diagrama de transiciones

 $A = (Q, \Sigma, \delta, q_0, F)$ se define como un grafo, siguiendo:

- Para cada estado de Q existe un nodo.
- Para cada estado q de Q y cada símbolo de entrada a de Σ tal que $\delta(q,a)=p$. Entonces el diagrama tiene un arco desde q hasta p, etiquetado como a.
- Existe una flecha dirigida al estado inicial q_0 , etiquetado como modo inicio. Esta flecha no tiene origen en ningún nodo
- Los nodos correspondientes a los estados de aceptación F están marcados con doble círculo.

Tablas de transiciones

Definición

Representación tabular de una función δ , que toma dos argumentos y devuelve un valor.

- Filas corresponden a los estados.
- Columnas a las entradas.

	0	1
$ ightarrow q_0$	q_2	q_0
$*q_1$	q_1	q_1
q_2	q_2	q_1

Cuál es la tabla formal del siguiente autómata

Cuál es la tabla formal del siguiente autómata

\mathbf{q}	σ	$\delta(\mathbf{q}, \sigma)$
q_0	a	q_1
q_0	b	q_2
q_1	a	q_1
q_1	b	q_1
q_2	a	q_0
q_2	b	q_2

Ejemplo

Diseñar un AFD que acepte el lenguaje:

 $L = \{w | w \text{ tiene un número par de ceros y un número par de unos}\}$

Utilice los siguientes estados

- q_0 el número de ceros y unos leídos es par (estado inicial)
- q₁ el número de ceros es par y el de unos es impar
- q₂ el número de unos es par y el de ceros es impar
- q₃ el número de unos y ceros es impar

Ejemplo

Diseñar un AFD que acepte el lenguaje:

 $L = \{w | w \text{ tiene un número par de ceros y un número par de unos}\}$

$$A = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, \delta, q_0, \{q_0\})$$

Definición del lenguaje

Función de transición extendida $\hat{\delta}$

Describe lo que ocurre desde cualquier estado y sigue cualquier secuencia de entrada.

- Caso Base: $\hat{\delta}(q, \varepsilon) = q$
- Paso Inductivo: w es una cadena formada por xa

$$\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$$

$$\hat{\delta}(oldsymbol{q},oldsymbol{w})=\hat{\delta}(oldsymbol{q}_{0},110101)=oldsymbol{q}_{0}$$

$$\bullet \ \hat{\delta}(q_0,\varepsilon)=q_0$$

$$\hat{\delta}(q, w) = \hat{\delta}(q_0, 110101) = q_0$$

- $\hat{\delta}(q_0,\varepsilon)=q_0$
- $\hat{\delta}(q_0, 1) = \delta(\hat{\delta}(q_0, \varepsilon), 1) = \delta(q_0, 1) = q_1$

$$\hat{\delta}(\boldsymbol{q},\boldsymbol{w}) = \hat{\delta}(\boldsymbol{q}_0,110101) = \boldsymbol{q}_0$$

- $\hat{\delta}(q_0,\varepsilon)=q_0$
- $\hat{\delta}(q_0, 1) = \delta(\hat{\delta}(q_0, \varepsilon), 1) = \delta(q_0, 1) = q_1$
- $\hat{\delta}(q_0, 11) = \delta(\hat{\delta}(q_0, 1), 1) = \delta(q_1, 1) = q_0$

$$\hat{\delta}(q, w) = \hat{\delta}(q_0, 110101) = q_0$$

- $\bullet \ \hat{\delta}(q_0,\varepsilon)=q_0$
- $\bullet \ \hat{\delta}(q_0,1) = \delta(\hat{\delta}(q_0,\varepsilon),1) = \delta(q_0,1) = q_1$
- $\hat{\delta}(q_0, 11) = \delta(\hat{\delta}(q_0, 1), 1) = \delta(q_1, 1) = q_0$
- $\hat{\delta}(q_0, 110) = \delta(\hat{\delta}(q_0, 11), 0) = \delta(q_0, 0) = q_2$

$$\hat{\delta}(\boldsymbol{q},\boldsymbol{w}) = \hat{\delta}(\boldsymbol{q}_0,110101) = \boldsymbol{q}_0$$

- $\bullet \ \hat{\delta}(q_0,\varepsilon)=q_0$
- $\bullet \ \hat{\delta}(q_0,1) = \delta(\hat{\delta}(q_0,\varepsilon),1) = \delta(q_0,1) = q_1$
- $\hat{\delta}(q_0, 11) = \delta(\hat{\delta}(q_0, 1), 1) = \delta(q_1, 1) = q_0$
- $\hat{\delta}(q_0, 110) = \delta(\hat{\delta}(q_0, 11), 0) = \delta(q_0, 0) = q_2$
- $\hat{\delta}(q_0, 1101) = \delta(\hat{\delta}(q_0, 110), 1) = \delta(q_2, 1) = q_3$

$$\hat{\delta}(\boldsymbol{q},\boldsymbol{w}) = \hat{\delta}(\boldsymbol{q}_0,110101) = \boldsymbol{q}_0$$

- $\bullet \ \hat{\delta}(q_0,\varepsilon)=q_0$
- $\bullet \ \hat{\delta}(q_0,1) = \delta(\hat{\delta}(q_0,\varepsilon),1) = \delta(q_0,1) = q_1$
- $\hat{\delta}(q_0, 11) = \delta(\hat{\delta}(q_0, 1), 1) = \delta(q_1, 1) = q_0$
- $\hat{\delta}(q_0, 110) = \delta(\hat{\delta}(q_0, 11), 0) = \delta(q_0, 0) = q_2$
- $\hat{\delta}(q_0, 1101) = \delta(\hat{\delta}(q_0, 110), 1) = \delta(q_2, 1) = q_3$
- $\hat{\delta}(q_0, 11010) = \delta(\hat{\delta}(q_0, 1101), 0) = \delta(q_3, 0) = q_1$

$$\hat{\delta}(q,w)=\hat{\delta}(q_0,110101)=q_0$$

- $\bullet \ \hat{\delta}(q_0,\varepsilon)=q_0$
- $\bullet \ \hat{\delta}(q_0,1) = \delta(\hat{\delta}(q_0,\varepsilon),1) = \delta(q_0,1) = q_1$
- $\hat{\delta}(q_0, 11) = \delta(\hat{\delta}(q_0, 1), 1) = \delta(q_1, 1) = q_0$
- $\hat{\delta}(q_0, 110) = \delta(\hat{\delta}(q_0, 11), 0) = \delta(q_0, 0) = q_2$
- $\hat{\delta}(q_0, 1101) = \delta(\hat{\delta}(q_0, 110), 1) = \delta(q_2, 1) = q_3$
- $\hat{\delta}(q_0, 11010) = \delta(\hat{\delta}(q_0, 1101), 0) = \delta(q_3, 0) = q_1$
- $\bullet \ \hat{\delta}(q_0, 110101) = \delta(\hat{\delta}(q_0, 11010), 1) = \delta(q_1, 1) = q_0$

Lenguaje de un AFD

El lenguaje de un autómata determinista $A = (Q, \Sigma, \delta, q_0, F)$ se define como:

$$L(A) = \left\{ w \mid \hat{\delta}(q_0, w) \in F \right\}$$

- Conjunto de cadenas w que parten de un estado inicial q₀ y van hasta un estado de aceptación.
- Si L es L(A) para un determinado AFD, entonces L es un lenguaje regular.

Cuáles son las palabras aceptables para el autómata?

Muchas gracias por su atención

