IST438-W6-Applications

2023-04-17

Decision trees - II

In this application, we will train decision trees for regression and classification tasks by tuning the hyperparameters in rpart().

Dataset

The PimaIndiansDiabetes data set as it relates to predicting whether someone has diabetes. This data is provided by the mlbench package.

```
#install.packages("mlbench")
library(mlbench)
data("PimaIndiansDiabetes")
str(PimaIndiansDiabetes)

'data.frame': 768 obs. of 9 variables:
$ pregnant: num 6 1 8 1 0 5 3 10 2 8 ...
$ glucose : num 148 85 183 89 137 116 78 115 197 125 ...
$ pressure: num 72 66 64 66 40 74 50 0 70 96 ...
$ triceps : num 35 29 0 23 35 0 32 0 45 0 ...
$ insulin : num 0 0 0 94 168 0 88 0 543 0 ...
$ mass : num 33.6 26.6 23.3 28.1 43.1 25.6 31 35.3 30.5 0 ...
$ pedigree: num 0.627 0.351 0.672 0.167 2.288 ...
$ age : num 50 31 32 21 33 30 26 29 53 54 ...
$ diabetes: Factor w/ 2 levels "neg", "pos": 2 1 2 1 2 1 2 1 2 2 ...
```

The relevant variables are:

pregnant - Number of times pregnant

```
glucose - Plasma glucose concentration (glucose tolerance test)

pressure - Diastolic blood pressure (mm Hg)

triceps - Triceps skin fold thickness (mm)

insulin - 2-Hour serum insulin (mu U/ml)

mass - Body mass index (weight in kg/(height in m)^2)

pedigree - Diabetes pedigree function

age - Age (years)

diabetes - Class variable (test for diabetes)
```

Splitting

Hyperparameters

rpart() consists many hyperparameters, but we focus on the most commonly used ones as follows:

- minsplit: the minimum number of observations that must exist in a node in order for a split to be attempted.
- minbucket: the minimum number of observations in any terminal node.
- cp: complexity parameter.
- maxdepth: set the maximum depth of any node of the final tree, with the root node counted as depth 0.

The default values of hyperparameters in rpart(): minsplit = 20, minbucket = round(minsplit/3), cp = 0.01, and maxdepth = 30.

Training a vanilla decision tree

Training a less deeper decision tree by tuning cp

Compare the performance of the vanilla dt and less deeper dt1

```
library(caret)

Loading required package: ggplot2

Warning: package 'ggplot2' was built under R version 4.3.1

Loading required package: lattice
```

```
Warning: package 'lattice' was built under R version 4.3.1
  # performance metrics of the vanilla dt
  vanilla_preds <- predict(vanilla_dt, diabetes_test, type = "class")</pre>
  confusionMatrix(vanilla_preds,
                  diabetes test$diabetes,
                  positive = "pos")
Confusion Matrix and Statistics
          Reference
Prediction neg pos
       neg 74 24
       pos 25 31
               Accuracy: 0.6818
                 95% CI : (0.602, 0.7545)
    No Information Rate: 0.6429
    P-Value [Acc > NIR] : 0.1778
                  Kappa: 0.3099
 Mcnemar's Test P-Value: 1.0000
            Sensitivity: 0.5636
            Specificity: 0.7475
         Pos Pred Value: 0.5536
         Neg Pred Value: 0.7551
             Prevalence: 0.3571
         Detection Rate: 0.2013
   Detection Prevalence: 0.3636
      Balanced Accuracy: 0.6556
       'Positive' Class : pos
  # performance metrics of the less deeper dt
  less_preds1 <- predict(less_dt1, diabetes_test, type = "class")</pre>
  confusionMatrix(less_preds1,
```

```
diabetes_test$diabetes,
                  positive = "pos")
Confusion Matrix and Statistics
         Reference
Prediction neg pos
      neg 75 26
       pos 24 29
              Accuracy : 0.6753
                95% CI: (0.5953, 0.7485)
    No Information Rate: 0.6429
   P-Value [Acc > NIR] : 0.2257
                 Kappa : 0.2872
 Mcnemar's Test P-Value: 0.8875
           Sensitivity: 0.5273
           Specificity: 0.7576
        Pos Pred Value: 0.5472
        Neg Pred Value: 0.7426
            Prevalence: 0.3571
        Detection Rate: 0.1883
  Detection Prevalence: 0.3442
     Balanced Accuracy: 0.6424
       'Positive' Class : pos
```

Training a less deeper decision tree by tuning minsplit

Compare the performance of the vanilla dt and less deeper dt2

Confusion Matrix and Statistics

Reference Prediction neg pos neg 74 24 pos 25 31

Accuracy : 0.6818

95% CI: (0.602, 0.7545)

No Information Rate : 0.6429 P-Value [Acc > NIR] : 0.1778

Kappa : 0.3099

Mcnemar's Test P-Value : 1.0000 Sensitivity : 0.5636

Specificity: 0.7475
Pos Pred Value: 0.5536
Neg Pred Value: 0.7551
Prevalence: 0.3571
Detection Rate: 0.2013

Detection Prevalence : 0.3636 Balanced Accuracy : 0.6556

'Positive' Class : pos

Confusion Matrix and Statistics

Reference

Prediction neg pos

neg 73 24 pos 26 31

Accuracy : 0.6753

95% CI : (0.5953, 0.7485)

No Information Rate : 0.6429 P-Value [Acc > NIR] : 0.2257

Kappa: 0.2986

Mcnemar's Test P-Value: 0.8875

Sensitivity: 0.5636 Specificity: 0.7374 Pos Pred Value: 0.5439 Neg Pred Value: 0.7526 Prevalence : 0.3571
Detection Rate : 0.2013
Detection Prevalence : 0.3701
Balanced Accuracy : 0.6505

'Positive' Class : pos

Training a deeper decision tree by tuning cp

Compare the performance of the vanilla dt, less deeper dt2, deeper tree

```
# performance metrics of the vanilla dt
  confusionMatrix(vanilla_preds,
                  diabetes_test$diabetes,
                  positive = "pos")
Confusion Matrix and Statistics
          Reference
Prediction neg pos
      neg 74 24
       pos 25 31
               Accuracy : 0.6818
                95% CI: (0.602, 0.7545)
    No Information Rate: 0.6429
   P-Value [Acc > NIR] : 0.1778
                  Kappa : 0.3099
 Mcnemar's Test P-Value : 1.0000
            Sensitivity: 0.5636
            Specificity: 0.7475
         Pos Pred Value: 0.5536
         Neg Pred Value: 0.7551
             Prevalence: 0.3571
         Detection Rate: 0.2013
   Detection Prevalence: 0.3636
      Balanced Accuracy: 0.6556
       'Positive' Class : pos
  # performance metrics of the less deeper dt2
  confusionMatrix(less_preds2,
```

diabetes_test\$diabetes,

positive = "pos")

Confusion Matrix and Statistics

```
Reference
Prediction neg pos
      neg 73 24
       pos 26 31
               Accuracy : 0.6753
                 95% CI: (0.5953, 0.7485)
    No Information Rate: 0.6429
    P-Value [Acc > NIR] : 0.2257
                  Kappa: 0.2986
 Mcnemar's Test P-Value: 0.8875
            Sensitivity: 0.5636
            Specificity: 0.7374
         Pos Pred Value: 0.5439
         Neg Pred Value: 0.7526
             Prevalence: 0.3571
         Detection Rate: 0.2013
   Detection Prevalence: 0.3701
      Balanced Accuracy: 0.6505
       'Positive' Class : pos
  # performance metrics of the deeper tree
  deeper_preds <- predict(deeper_dt, diabetes_test, type = "class")</pre>
  confusionMatrix(deeper_preds,
                  diabetes_test$diabetes,
                  positive = "pos")
Confusion Matrix and Statistics
         Reference
```

Prediction neg pos

neg 74 22

pos 25 33

```
Accuracy : 0.6948
95% CI : (0.6156, 0.7664)
No Information Rate : 0.6429
P-Value [Acc > NIR] : 0.1026

Kappa : 0.3433

Mcnemar's Test P-Value : 0.7705

Sensitivity : 0.6000
Specificity : 0.7475
Pos Pred Value : 0.5690
Neg Pred Value : 0.7708
Prevalence : 0.3571
Detection Rate : 0.2143

Detection Prevalence : 0.3766
Balanced Accuracy : 0.6737
```

Grid search in caret

 $caret\ provides\ many\ models\ with\ the\ list\ of\ hyperparameters:\ https://topepo.github.io/caret/available-models.html$

rpart.plot(dt_model\$finalModel)

Random search in caret


```
rpart.plot(dt_model$finalModel)
```

