Question number	Scheme	Marks
8(a)	(i) $x = \frac{1}{2}$	B1
	(ii) $y = \frac{5}{2}$	B1 (2)
(b)	Coordinates of intersection with y-axis $y = \frac{-3}{-1} = 3$ (0,3)	B1
	Coordinates of intersection with y-axis $5x - 3 = 0 \Rightarrow x = \frac{3}{5} \Rightarrow \left(\frac{3}{5}, 0\right)$	B1
	$\frac{dy}{dx} = \frac{5(2x-1)-2(5x-3)}{(2x-1)^2}$	(2)
(c)	$\frac{dx}{dx} = (2x-1)^2$	M1A1
	$\frac{dy}{dx} = \frac{1}{(2x-1)^2}$ - numerator is positive, denominator is squared so	dM1A1
	always positive, hence $\frac{dy}{dx}$ is also always positive (except when	(4)
	$x = \frac{1}{2}$, so not defined).	
(d)	$\begin{vmatrix} y \\ 3 \end{vmatrix} = \frac{1}{2}$	
		B1
	$y = \frac{3}{2}$	B1
		B1
	$\frac{1}{5}$ $\frac{3}{5}$ x	
	\	(3)
(e)	y = 2 $dy = 1$	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1^2} = 1$	M1
	$(y-2) = 1 \times (x-1)$ $\Rightarrow y = x+1$	M1 A1
		(4)
		[15]

Additional Notes				
Part Mark Guidance				
(a) (i)	B1	$x = \frac{1}{2} \text{ or } x = 0.5 \text{ only}$ $y = \frac{5}{2} \text{ or } y = 2.5 \text{ only}$	If these parts are not labelled clearly (i) and (ii) then mark in order treating the first answer as (i) and the second as (ii)	
(ii)	B1	$y = \frac{5}{2} \text{ or } y = 2.5 \text{ only}$		
(b)	B1	$(0,3) \text{ OR } \left(\frac{3}{5},0\right)$	Accept paired values of $x = 0, y = 3$	
	B1	$(0,3)$ AND $\left(\frac{3}{5},0\right)$	$x = \frac{3}{5}, y = 0$	
(c)	M1	Attempts to differentiate both terms and uses the quotient rule correctly. Minimally acceptable attempt; • $5x-3 \Rightarrow a$, $2x-1 \Rightarrow b$ $a \neq 0, b \neq 0$ • $\frac{dy}{dx} = \frac{a(2x-1)-b(5x-3)}{(2x-1)^2}$ OR $\frac{b(5x-3)-a(2x-1)}{(2x-1)^2}$ Or uses Product Pulo with the same conditions		
	A1	Or uses Product Rule with the same conditions. For the correct differentiated expression. $\frac{dy}{dx} = \frac{5(2x-1)-2(5x-3)}{(2x-1)^2}$		
	dM1	Simplifies their $\frac{dy}{dx}$ to give $\frac{dy}{dx} = \frac{k}{(2x-1)^2}$ $k \neq 0$		
	A1	A conclusion that must include; Denominator is squared hence will always be positive or $\frac{dy}{dx} > 0$		
(d)	B1	Shape: As shown with two arms, one arm in the 1 st and 2 nd quadrants, and the other arm in the 4 th and 1 st quadrants. The ends must look like they approach asymptotes – do not accept ends curling back on themselves.		
	B1	For both asymptotes drawn and marked cao	At least one branch of the curve must be present for the award of either of these marks (which must be	
	B1	For both intersections marked cao	asymptotic) and the curve must go through the axes for the intersection mark. i.e., not stop at the axis.	
(e)	B1	For $y = 2$ only	7 1	
	M1	Substitutes $x = 1$ into their differentiated expression and attempts to find a value for the gradient.		
	M1	Uses the formula for the equation of a line or $y = mx + c$ with their values of y and m. If they use $y = mx + c$ they must achieve a value for c for the award of this mark.		
	A1	For $y = x + 1$ or $y = 1 + x$		