Material appendix to:

Fang, Demi, Peter Wang, Sophia V. Kuhn, Michael A. Kraus, and Caitlin Mueller. "Trans-Typology Design Space Exploration: Using Gradients to Inform Decision-Making in the Design of Spanning Structures." In Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium. Zurich, Switzerland, 2024.

This table is an extension of Table 3 in the paper:

		Embodied Carbon Coefficient (A1-A3) (originally reported units), [kg CO ₂ e/kg]		Material specific	Material strength and
	Typology and elements				
Material		20th percentile	80 th percentile	weight	stiffness
Steel plate	Steel girder (primary system)	(~1550 kg CO ₂ e / metric ton),	(~1650 kg CO ₂ e / metric ton),	78.5 kN/m³	
		1.55 kg CO ₂ e / kg	$\begin{array}{c} 1.65 \\ kg \ CO_2e \ / \ kg \end{array}$		$f_t = f_c = 36$
Steel hot-rolled section	Steel girder (secondary system)	(~650 kg CO ₂ e / metric ton),	(~850 kg CO ₂ e / metric ton),		$f_y = 34.5 \text{ kN/cm}^2$ $f_y = 34.5 \text{ kN/cm}^2$ $E = 20,000$ kN/cm^2
	Steel truss (secondary system)	0.650 kg CO ₂ e / kg	$\begin{array}{c} 0.850 \\ kg~CO_2e~/~kg \end{array}$		
Steel hollow section	Steel truss (primary system)	(~1400 kg CO ₂ e / metric ton),	(~1700 kg CO ₂ e / metric ton),		KI (/CIII
		1.40 kg CO ₂ e / kg	1.70 kg CO ₂ e / kg		
Glue-laminated timber	Pair of glulam girders (primary)	(~140 kg CO ₂ e / m³),	$(\sim 320$ kg CO ₂ e / m ³),	5 kN/m ³	$f_t = 1.4 \text{ kN/cm}^2$ $f_c = 2.1 \text{ kN/cm}^2$
		0.275 kg CO ₂ e / kg	$\begin{array}{c} 0.628 \\ \text{kg CO}_2\text{e} / \text{kg} \end{array}$		$E_{parallel} = 1160$ kN/cm^2
Softwood timber	Pair of glulam girders (secondary)	$(\sim 140 \text{ kg CO}_2\text{e/m}^3),$	$(\sim 320 \text{ kg CO}_{2}\text{e/m}^3),$		$f_t = 1.4 \text{ kN/cm}^2$
(ECCs of glulam used as a conservative estimate)	Timber truss (primary and secondary)	0.392 kg CO ₂ e / kg	0.897 kg CO ₂ e / kg	3.5 kN/m^3	$f_c = 1.6 \text{ kN/cm}^2$ $E_{parallel} = 700$ kN/cm^2
Ready-mix concrete, 27.6 MPa (4000 psi) normal weight	Reinforced concrete barrel beam (partial by volume, see Table 2)	(291 kg CO ₂ e / m³), 0.121 kg CO ₂ e / kg	$\begin{array}{c} (422 \\ kg \ CO_{2}e \ / \ m^{3}), \\ 0.176 \\ kg \ CO_{2}e \ / \ kg \end{array}$	23.5 kN/m³	f _i = 2.67 kN/cm ² (only for simplified model used to calculate live load deflection)
					$f_c = 2.67 \text{ kN/cm}^2$ $E = 3500 \text{ kN/cm}^2$
Rebar, fabricated	Reinforced concrete barrel beam (partial by volume, see Table 2)	(739 kg CO ₂ e / metric ton), 0.739 kg CO ₂ e / kg	$\begin{array}{c} (925\\ kg\ CO_{2}e\ /\ metric\ ton),\\ 0.925\\ kg\ CO_{2}e\ /\ kg\end{array}$	77.0 kN/m³	$f_y = 55.2 \text{ kN/cm}^2$

20th and 80th percentile embodied carbon coefficients (A1-A3) from: Carbon Leadership Forum, "2023 Carbon Leadership Forum: North American Material Baselines, Category Appendices v2," Aug. 2023. [Online]. Available: https://carbonleadershipforum.org/clf-material-baselines-2023/

[&]quot;~" indicates an approximation, where concluded that not enough EPDs were available to report a precise value at the percentile