LTAT.02.004 MACHINE LEARNING II

Graphical models

Sven Laur University of Tartu

Discrete random variables

- \triangleright A random variable X with possible outcomes $x \in \text{supp}(X)$

$$\Pr[x_1] := \Pr[\xi \leftarrow X_1 : \xi = x_1]$$

$$\Pr[x_1 \land x_2] := \Pr[\xi_1 \leftarrow X_1, \xi_2 \leftarrow X_2 : \xi_1 = x_1 \land \xi_2 = x_2]$$

▶ Bayes formula

$$\Pr[a|b] = \frac{\Pr[a \land b]}{\Pr[b]} = \frac{\Pr[b|a]\Pr[a]}{\Pr[b]}$$

 \triangleright Independence of random variables $X_1 \dots X_m \perp Y_1, \dots Y_n$:

$$\Pr\left[x_1 \wedge \ldots \wedge x_m \wedge y_1 \wedge \ldots \wedge y_n\right] = \Pr\left[x_1 \wedge \ldots \wedge x_m\right] \cdot \Pr\left[y_1 \wedge \ldots \wedge y_n\right]$$

 \triangleright Marginalisation over variables Y_1, \ldots, Y_n :

$$\Pr\left[x_1 \wedge \ldots \wedge x_m\right] = \sum_{y_1, \ldots, y_n} \Pr\left[x_1 \wedge \ldots \wedge x_m \wedge y_1 \wedge \ldots \wedge y_n\right]$$

Common models

Markov chain

Definition. Let X_1, X_2, \ldots be correlated random variables such that the probability of the observation x_{i+1} depends only on the observation x_i . Then the entire process is known as Markov chain.

Parametrisation. Markov chain is determined by specifying

- \triangleright state spaces $\mathcal{S}_1 \dots, \mathcal{S}_n$
- \triangleright initial probabilities $\Pr[x_1]$
- \triangleright state transition probabilities $\Pr[x_{i+1}|x_i]$

What questions can we ask?

Sampling: What are typical outcomes of the chain? ▷ Synthesis of time-series, textures, sounds, games movements.

Stationary distribution: What happens if we run the chain infinitely long?
▷ Getting samples from an unnormalised posterior, optimisation tasks.

Likelihood estimation: What is a probability of an observation x_1, \ldots, x_n ? \triangleright Reasoning about probabilities and clustering sequences.

Decoding: What is the most probable outcome x_1, \ldots, x_n ? \triangleright Imputing missing values. Rudimentary logical reasoning.

Parameter estimation: What is are the model parameters?

▷ Machine learning – finding parameters based on observations.

Parameter inference for homogenous case

For a sequence of observations $\boldsymbol{x}=(x_1,\ldots,x_n)$ the log-likelihood is

$$\ell[\mathbf{x}] = \log \Pr[x_1] + \sum_{i=1}^{n-1} \log \Pr[x_{i+1}|x_i]$$

$$= \log \beta[x_1] + \sum_{u_1, u_2} k(u_1, u_2) \log \alpha[u_1, u_2]$$

where $k(u_1, u_2)$ is the count of bigrams u_1, u_2 in the sequence \boldsymbol{x} .

Posterior decomposition

As a result the log-likelihood of unnormalised posterior decomposes into the sum of independent terms

$$\log p[\boldsymbol{\alpha}, \boldsymbol{\beta} | \boldsymbol{x}] = \sum_{u_1} k(u_1) \log \beta[u_1] + \log p(\boldsymbol{\beta})$$
$$+ \sum_{u_1, u_2} k(u_1, u_2) \log \alpha[u_1, u_2] + \sum_{u_1} \log p(\boldsymbol{\alpha}[u_1, \cdot])$$

where

- $\triangleright k(u_1)$ is the count u_1 at the beginning of the observed sequences
- $\triangleright k(u_1, u_2)$ is the count of bigrams u_1, u_2 in the observed sequences.
- $\triangleright p(\beta)$ is the prior for an entire vector of initial probabilities
- $\triangleright p(\alpha[u_1,\cdot])$ is the prior for the transition probabilities from u_1

Reduction to the dice throwing experiment

Posterior decomposition leads to many independent optimisation tasks

$$\sum_{u_1} k(u_1) \log \beta[u_1] + \log p(\boldsymbol{\beta}) \to \max$$

$$\sum_{u_2} k(u_1, u_2) \log \alpha[u_1, u_2] + \log p(\boldsymbol{\alpha}[u_1, \cdot]) \to \max$$

where each of these is equivalent to optimisation of dice throwing posterior. Thus Maximum Aposteriori estimates for parameters are

$$\beta[u_1] = \frac{k(u_1) + c}{k(*) + mc} \qquad \alpha[u_1, u_2] = \frac{k(u_1, u_2) + c}{k(u_1, *) + mc}$$

where

- > * is a wildcard symbol in the count queries
- $\triangleright m$ is the number of states and c is a constant for Laplacian smoothing.

Hidden Markov Model

Definition. Let X_1, X_2, \ldots be hidden states that form a Markov chain and let Y_1, Y_2, \ldots be observations that the probability of y_i depends only on the state x_i . Then the entire process is known as Hidden Markov Model.

Common tasks

- > parameter estimation

Applications

Modelling and prediction

Sequence annotation

Decoding

- > speech recognition
- > communication over a nosy channels
- ▷ object tracking and data fusion

Random Markov Fields

Definition. Markov random field is specified by undirected graph connecting random variables X_1, X_2, \ldots such that for any node X_i

$$\Pr\left[x_i|(x_j)_{j\neq i}\right] = \Pr\left[x_i|(x_j)_{j\in\mathcal{N}(X_i)}\right]$$

where the set of neighbours $\mathcal{N}(X_i)$ is also known as *Markov blanket* for X_i .

Hammersley-Clifford theorem

The probability of an observation $\boldsymbol{x}=(x_1,x_2,\ldots)$ generated by a Markov random field can be expressed in the form

$$\Pr\left[\boldsymbol{x}\right] = \frac{1}{Z(\omega)} \cdot \exp\left(-\sum_{c \in \mathsf{MaxClique}} \Psi_c(\boldsymbol{x}_c, \omega)\right)$$

where

- $\triangleright Z(\omega)$ is a normalising constant
- ▷ MaxClique is the set of maximal cliques in the Markov random field
- $riangleq \Psi_c$ is defined on the variables in the clique c

Conditional Random Fields

Definition. Let X_1, X_2, \ldots and Y_1, Y_2, \ldots be random variables. The entire process is conditional random field if random variables Y_1, Y_2, \ldots conditioned for any sequence of observations x_1, x_2, \ldots form a Markov random field

$$\Pr[y_i|(x_k)_{k=1}^{\infty}, (y_j)_{j\neq i}] = \Pr[y_i|(x_k)_{k=1}^{\infty}, (y_j)_{j\in\mathcal{N}(Y_i)}]$$

where the set of neighbours $\mathcal{N}(Y_i)$ is a *conditional Markov blanket* for Y_i .

Applications

Standard setting

- \triangleright The input x is used to predict labels y_1, y_2, \ldots
- > A correct label sequence must satisfy possibly unknown restrictions.
- > These restrictions are captured by conditional random random field.

Instantiation

- riangleright Hammersley-Clifford theorem prescribes the format of $\Pr\left[m{y}|m{x}
 ight]$
- \triangleright Clique features Ψ_c can depend on $(y_i)_{i \in c}$, $(x_i)_{i=1}^{\infty}$
- > Features can be defined as linear combination of vertex and edge features.
- \triangleright A vertex feature looks only variable y_i associated with the vertex.
- \triangleright An edge feature looks only variables y_i, y_j associated with the edge.

Belief propagation

Belief propagation in a simple chain

Inference goal. Given evidence at the ends of the chain find marginal posterior probabilities for each node in the chain.

- \triangleright Evidence ε_V is an observational data associated with the node V.
- ▷ Upstream evidence is the evidence at the end of chain.
- ▷ Downstream evidence⁺ is the evidence at the beginning of chain.
- \triangleright Attributes π_V, λ_V, p_V are needed to compute marginal distributions.

Initialisation

- \triangleright Direct evidence ε_V determines the value of V.
- \triangleright Indirect evidence ε_V determines the value distribution for V.
- > We can assign the prior for the first and likelihood for the last node

$$\pi_A(a) = \Pr\left[A = a | \text{evidence}^+\right] = \Pr\left[A = a | \varepsilon_A\right]$$

$$\lambda_E(e) = \Pr\left[\text{evidence}^-|E=e\right] = \Pr\left[\varepsilon_E|E=e\right]$$

Belief propagation

Inference goal

$$\pi_B(b) = \Pr\left[b|\text{evidence}^+\right]$$

$$\lambda_D(d) = \Pr\left[\text{evidence}^-|d\right]$$

Iterative propagation rules

- \triangleright Marginalisation gives an update rule $\lambda_D = M_{D \to E} \lambda_E$.
- \triangleright Marginalisation gives an update rule $\pi_B \propto \pi_A M_{A \to B}$.

Belief propagation

Inference goal

$$p_C(c) = \Pr\left[c|\text{evidence}^+, \text{evidence}^-\right]$$

Iterative update rule

 \triangleright Bayes formula gives $p_C \propto \pi_C \otimes \lambda_C$.

Belief propagation in a simple tree

Inference goal. Given evidence at the ends of the leafs and the root of tree find marginal posterior probabilities for each node in the tree.

- \triangleright Evidence ε_V is an observational data associated with the node V.
- \triangleright Attributes π_V, λ_V, p_V are needed to compute marginal distributions.

Evidence decomposition

- ▷ Evidence decomposes into up- and downstream evidence
- \triangleright Downstream evidence (V) is reachable through child nodes.
- \triangleright Upstream evidence⁺(V) is reachable through the predessesor node.
- ▷ Different nodes have totally different decompositions.

Initialisation

Goal. Assign prior to the root node and likelihood to the leaf nodes.

$$\pi_A(a) = \Pr\left[A = a | \text{evidence}^+(A)\right] = \Pr\left[A = a | \varepsilon_A\right]$$

$$\lambda_B(b) = \Pr\left[\text{evidence}^-(B)|F = f\right] = \Pr\left[\varepsilon_B|B = b\right]$$

. . .

$$\lambda_F(f) = \Pr\left[\text{evidence}^-(F)|F = f\right] = \Pr\left[\varepsilon_F|F = f\right]$$

Likelihood propagation

Inference goal

$$\lambda_D(d) = \Pr\left[\text{evidence}^-(D)|D = d\right]$$

Iterative propagation rules

- \triangleright Independence gives a pooling rule $\lambda_D = \lambda_1 \otimes \lambda_2$
- \triangleright Marginalisation gives rules $\lambda_1 = M_{D \to E} \lambda_E$ and $\lambda_2 = M_{D \to F} \lambda_F$.

Posterior propagation

Inference goal

$$p_A(a) = \Pr \left[A = a | \text{evidence}^+(A), \text{evidence}^-(A) \right]$$

Iterative propagation rule

hd Marginal conditional probability $p_A \propto \pi_A \otimes \lambda_A$

Prior propagation

Inference goal

$$\pi_D(d) = \Pr\left[D = d | \text{evidence}^+(D) \right]$$

= $\Pr\left[D = d | \text{evidence}^+(A), \text{evidence}^-(B), \text{evidence}^-(C) \right]$

Iterative propagation rule

 \triangleright Prior can be computed as $\pi_D \propto \pi_A M_{A \to D} \otimes M_{\underline{A} \to B} \lambda_B \otimes M_{A \to C} \lambda_C$.

Posterior Maximisation

Posterior maximisation in a simple chain

Inference goal. Given evidence at the ends of the chain find the sequence of states x that maximise the posterior probability $\Pr[x|\text{evidence}]$.

- \triangleright The log-posterior $\log \Pr[x| \text{evidence}]$ decomposes into a sum.
- ▶ We must find a sequence with maximal weight.
- ▶ The task can be split into subtask as all subpaths of the path with maximal weight must have maximal weight.
- > The corresponding iterative algorithm is known as Viterbi algorithm.

Posterior maximisation in a simple tree

Inference goal. Given evidence at the ends of the chain find the sequence of states x that maximise the posterior probability $\Pr[x|\text{evidence}]$.

- \triangleright The log-posterior $\log \Pr[x| \text{evidence}]$ decomposes into a sum.
- ▶ We must find a tree with maximal weight.

Decomposition into subtasks

All subtrees of the tree with maximal weight must have maximal weight.

- > We can merge subtrees with maximum weight to maximise the weight.
- > The algorithm works from leafs to the root node.
- > The corresponding iterative algorithm is known as Viterbi algorithm.

Applications

Rainfall data

There are two monsoon seasons in Singapore: dry and wet phase.

Modelling with Hidden Markov Model

Markov chain with states $S = \{0, 1\}$ and parameters

$$\boldsymbol{\beta} = (0.5, 0.5)$$

$$\alpha = \begin{pmatrix} 0.95 & 0.05 \\ 0.05 & 0.95 \end{pmatrix}$$

Emission distributions

$$Y_i|X_i=0 \sim \mathcal{N}(\mu_0,\sigma_0)$$

$$Y_i|X_i=1\sim\mathcal{N}(\mu_1,\sigma_1)$$

Belief propagation. Initialisation

- \triangleright We have a direct evidence $Y_i = y_i$ for each node Y_i .
- \triangleright The likelihood vector is infinite and captured by $\lambda_{Y_i} = \delta_{y_i}$.
- \triangleright The local likelihood $\lambda_i^*(x_i) = \Pr[Y_i = y_i | x_i]$ is a finite vector.

Prior propagation. Filtering

Prior propagation rule yields

$$\pi_{X_i}(x_i) \propto \sum_{x_{i-1} \in \mathcal{S}} \alpha[x_{i-1}, x_i] \cdot \lambda_{i-1}^*(x_{i-1}) \cdot \pi_{X_{i-1}}(x_{i-1})$$

Now we can do filtering

$$\Pr[x_i|y_1,\ldots,y_i] \propto \pi_{X_i}(x_i) \cdot \lambda_i^*(x_i)$$

Likelihood propagation. Smoothing

Likelihood propagation rule yields

$$\lambda_{X_i}(x_i) \propto \sum_{x_{i+1} \in \mathcal{S}} \alpha[x_i, x_{i+1}] \cdot \lambda_{X_{i+1}}(x_{i+1}) \cdot \lambda_i^*(x_i)$$

Now we can do smoothing

$$\Pr[x_i|y_1,\ldots,y_n] \propto \pi_{X_i}(x_i) \cdot \lambda_{X_i}(x_i)$$

Annotated rainfall data

Sensor fusion problem. Kalman filter

Several sensors measure a physical system

- hd Measurements are observable as $oldsymbol{y} \in \mathbb{R}^p$.
- hd Physical system has an hidden state $oldsymbol{x} \in \mathbb{R}^n$.
- \triangleright Physical system evolves linearly ${m x}_{i+1} = A{m x}_i + {m w}_i$.
- hd Measurements are linear from the state $oldsymbol{y}_i = Coldsymbol{x}_i + oldsymbol{v}_i$.

Unknown quantities in the system

- \triangleright Measurement noise v_t is modelled with a normal distribution.
- hd Unknown control signal $oldsymbol{w}_i$ is modelled with a normal distribution.
- \triangleright Unknown initial state x_0 is modelled with a normal distribution.
- \triangleright Quantities x_0, v_i, w_i are assumed to be independent.
- > All normal distributions can have complex correlation structure.

Belief propagation. Initialisation

- \triangleright We have a direct evidence $Y_i = y_i$ for each node Y_i .
- \triangleright The likelihood vector is infinite and captured by $\lambda_{Y_i} = \delta_{y_i}$.
- \triangleright The local likelihood $\lambda_i^*(x_i) = p[Y_i = y_i | x_i]$ is an infinite vector.
- ho The form $m{y}_i = Cm{x}_i + m{v}_i$ assures that $m{y}_i | m{x}_i$ is normal distribution.
- \triangleright The local likelihood λ_i^* has a finite description.

Prior propagation. Filtering

Prior propagation rule

$$\pi_{X_i}(\boldsymbol{x}_i) \propto \int_{\boldsymbol{x}_{i-1}} \alpha[\boldsymbol{x}_{i-1}, \boldsymbol{x}_i] \cdot \lambda_{i-1}^*(\boldsymbol{x}_{i-1}) \cdot \pi_{X_{i-1}}(\boldsymbol{x}_{i-1}) d\boldsymbol{x}_{i-1}$$

leads to a finite description because on the right is a normal distribution.

Likelihood propagation. Smoothing

Likelihood propagation rule

$$\lambda_{X_i}(x_i) \propto \int_{\boldsymbol{x}_{i+1}} \alpha[\boldsymbol{x}_i, \boldsymbol{x}_{i+1}] \cdot \lambda_{X_{i+1}}(\boldsymbol{x}_{i+1}) \cdot \lambda_i^*(\boldsymbol{x}_i) d\boldsymbol{x}_{i+1}$$

leads to a finite description because on the right is a normal distribution.