Database Technology

Teaching Session 1: Functional Dependencies and Normalization

Valentina Ivanova Slides from Olaf Hartig

Motivation

- How can we be sure that the translation of an EER diagram into a relational schema results in a good database design?
- Given a deployed database, how can we be sure that it is well-designed?
- What is a good database design?
 - Informal measures
 - Formal measure: normal forms
 - Definition based on functional dependencies

Example of Bad Design

- Every tuple contains employee data and department data
- Redundancy
 - Dname and Dmgr_ssn repeated for every employee in a department
- Potential for too many NULL values
 - Employees not in any department need to pad tuples with NULLs
- Update anomalies
 - Deleting the last employee in a department will result in deleting the department
 - Changing the department name or manager requires many tuples to be updated
 - Inserting employees requires checking for consistency of its department name and manager

Informal Measures

- Easy-to-explain meaning for each relation schema
 - Each relation schema should be about only one type of entities or relationships
 - Natural result of good ER design
- Minimal redundant information in tuples
 - Avoids update anomalies
 - Avoids wasted space
- Minimal number of NULL values in tuples
 - Avoids inefficient use of space
 - Avoids costly outer joins
 - Avoids ambiguous interpretation (e.g., unknown vs. does not apply)

Functional Dependencies (FDs) – Idea

- Assume that no two actors have the same name, i.e., name is unique
- Each actor has one year and city of birth
- Thus, given an actor's name, there is only one possible value for birth year and city
 - name → yearOfBirth
 - name \rightarrow cityOfBirth

Actor		
name	yearOfBirth	cityOfBirth
Ben Affleck	1972	Berkeley
Alan Arkin	1934	New York
Tommy Lee Jones	1946	San Saba
John Wells	1957	Alexandria
Steven Spielberg	1946	Cincinnati
Daniel Day-Lewis	1957	Greenwich

- However, given a birth year, we do not have a unique corresponding name or city
 - year $OfBirth \rightarrow name$
 - yearOfBirth \rightarrow city
- Cannot tell from the example whether city determines name or birth year

Functional Dependencies (FDs) – Definition

Constraint between two sets of attributes from a relation

Let R be a relational schema with the attributes $A_1, A_2, ..., A_n$ and let X and Y be subsets of $\{A_1, A_2, ..., A_n\}$.

Then, the functional dependency $X \rightarrow Y$ specifies the following constraint on *any* valid relation state r of R.

For *any* two tuples t_1 and t_2 in state r we have that:

if
$$t_1[X] = t_2[X]$$
, then $t_1[Y] = t_2[Y]$.

- where t[X] is the sequence of values that the tuple t has for the attributes in set X
- We say "X determines Y" or "Y depends on X"

Trivial Functional Dependencies

- Some dependencies must always hold
 - {name, yearOfBirth} → {name, yearOfBirth}
 - {name, yearOfBirth} → {name}
 - {name, yearOfBirth} → {yearOfBirth}
- Formally:
 - Let R be a relation schema, and
 - let X and Y be subsets of attributes in R.
 - If Y is a subset of X, then $X \rightarrow Y$ holds trivially.

Reasoning About FDs

- Logical implications can be derived by using inference rules called **Armstrong's rules**:
 - Reflexivity: If Y is a subset of X, then $X \rightarrow Y$
 - Augmentation: If $X \to Y$, then $XZ \to YZ$ (we use XY as a short form for $X \cup Y$)
 - Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- Additional rules can be derived:
 - Decomposition: If $X \rightarrow YZ$, then $X \rightarrow Y$
 - Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 - Pseudo-transitivity: If $X \rightarrow Y$ and $WY \rightarrow Z$, then $WX \rightarrow Z$

Warmup

Consider the relation R(A,B,C,D,E,F) with the following FDs:

FD1: A → BC

FD2: $\mathbf{C} \rightarrow \mathbf{AD}$

FD3: **DE** \rightarrow **F**

■ Use the Armstrong rules to derive the following FD: AC → D

■ Use the Armstrong rules to derive the following FD: A → D

Warmup – Solutions

Consider the relation R(A,B,C,D,E,F) with the following FDs:

FD1: A → BC

FD2: C → AD

- Use the Armstrong rules to derive the following FD: AC → D
 - FD4: AC → AD (Augmentation of FD2 with A)
 - FD5: AC → D (Decomposition of FD4)
- Use the Armstrong rules to derive the following FD: A → D
 - FD6: A → C (Decomposition of FD1)
 - FD7: A → AD (Transitivity of FD6 and FD2)
 - FD8: A → D (Decomposition of FD7)

Consider the relation R(A,B,C,D,E,F) with the following FDs:

FD1: $A \rightarrow BC$

FD2: C → AD

FD3: **DE** \rightarrow **F**

Use the Armstrong rules to derive the following FD: AE → ABCDEF

Consider the relation R(A,B,C,D,E,F) with the following FDs:

FD1: $A \rightarrow BC$

FD2: $\mathbf{C} \rightarrow \mathbf{AD}$

- Use the Armstrong rules to derive the following FD: AE → ABCDEF
 - FD9: AE → BCE (Augmentation of FD1 with E)
 - FD10: AE → C (Decomposition of FD9)
 - FD11: **AE** → **AD** (Transitivity of FD10 and FD2)
 - FD12: AE → ADE (Augmentation of FD11 with E)
 - FD13: AE → DE (Decomposition of FD12)
 - FD14: **AE** → **F** (Transitivity of FD13 and FD3)
 - FD15: **AE** → **ABCDEF** (Union of FD9, FD11, and FD14)

Revisiting Keys

- Given a relation schema R with attributes $A_1, A_2, ..., A_n$ and X a subset of these attributes
- X is a **superkey** of R if $X \rightarrow \{A_1, A_2, ..., A_n\}$ or, $X \rightarrow \{A_1, A_2, ..., A_n\} \setminus X$
 - Often written as $X \rightarrow R$

• Given a set of FDs, how can we easily test whether $X \rightarrow R$?

Let Σ be a set of FDs over the attributes of a relation R and let X be a subsets of these attributes.

The **attribute closure** of X w.r.t. Σ is the maximum set of attributes functionally determined by X.

- If the attribute closure of X contains all attributes, we have $X \rightarrow R$
- The attribute closure can be computed in polynomial time ...

Computing (Super)Keys

```
X – set with attributes
\Sigma – set with functional dependencies
function ComputeAttrClosure(X, \Sigma)
begin
     X^{+} := X;
     while \Sigma contains an FD Y \rightarrow Z such that
            (i) Y is a subset of X^+, and
            (ii) Z is not a subset of X^+ do
     X^{+} := X^{+} \cup Z;
     end while
     return X^+;
end
```


Revisiting Keys (cont'd)

- Given a relation schema R with attributes $A_1, A_2, ..., A_n$ and X a subset of these attributes
- X is a **superkey** of R if $X \rightarrow \{A_1, A_2, ..., A_n\}$ or, $X \rightarrow \{A_1, A_2, ..., A_n\} \setminus X$
 - Often written as $X \rightarrow R$
 - Can be tested easily by computing the attribute closure of X
- However, not every superkey is a candidate key
- To determine that X is a candidate key of R, we also need to show that no proper subset of X determines R
 - i.e., there does not exist a Y such that $Y \subseteq X$ and $Y \rightarrow R$
- Hence, identifying *all* candidate keys is a matter of testing increasingly smaller subsets of $\{A_1, A_2, ..., A_n\}$

Consider the relation R(A,B,C,D,E,F) with the following FDs:

FD1: A → BC

FD2: $C \rightarrow AD$

FD3: **DE** \rightarrow **F**

- Determine all candidate keys of R
 - Compute the **attribute closure** of $X = \{ A,E,C,D \}$ w.r.t. $\Sigma = \{FD1, FD2, FD3\}$

to show that we have: **AECD** → **ABCDEF**

Consider the relation **R(A,B,C,D,E,F)** with the following FDs:

```
FD1: A → BC
FD2: C → AD
FD3: DE \rightarrow F
```

- Determine all candidate keys of R
 - Compute the **attribute closure** of $X = \{A,E,C,D\}$ w.r.t. $\Sigma = \{FD1,$ FD2, FD3}

to show that we have: **AECD** → **ABCDEF**

```
- Initially: X<sup>+</sup> = { A,E,C,D }
- For FD1: X^+ = \{ A, E, C, D, B \} A in X^+ thus add B (C already included)
- For FD2: X^+ = \{ A, E, C, D, B \} C in X^+, A and D already in the set thus do
   nothing
- For FD3: X^+ = \{ A, E, B, C, D, F \} D and E in X^+ thus add F
```


Consider the relation R(A,B,C,D,E,F) with the following FDs:

FD1: A → BC

FD2: $C \rightarrow AD$

- Determine all candidate keys of R
 - AECD is a superkey → find the minimal superkeys (i.e. the candidate keys) by computing the attribute closure for all of the subsets
 - AE and CE are all candidate keys

Decomposition into 2NF

2NF: Non-prime attributes must not be functionally dependent on a part of a candidate key.

- Let $X \rightarrow Y$ be the FD that violates 2NF in a relation schema R
- Create a new relation schema R2 with the attributes in X and in Y
- Remove attributes Y from R
- New relational database schema consists now of R1 and R2

R_{non2NF}

<u>EmpID</u>	<u>Dept</u>	Work%	EmpName
<u>100</u>	<u>Dev</u>	50	Baker
<u>100</u>	Support	50	Baker
<u>200</u>	<u>Dev</u>	80	Miller

FD1: EmpID → EmpName

FD2: { EmpID, Dept } → { Work%, EmpNai

 $R1_{2NF}$

<u>EmpID</u>	EmpName
<u>100</u>	Baker
<u> 200</u>	Miller

R2_{2NF}

<u>EmpID</u>	<u>Dept</u>	Work%
<u>100</u>	<u>Dev</u>	50
<u>100</u>	<u>Support</u>	50
<u>200</u>	<u>Dev</u>	80

Decomposition into 3NF

3NF: Non-prime attributes must not be functionally dependent on a set of attributes that is not a superkey.

- Let $X \rightarrow Y$ be the FD that violates 3NF in a relation schema R
- Create a new relation schema R2 with the attributes in X and in Y
- Remove attributes Y from R
- New relational database schema consists now of R1 and R2

R_{non3NF}

<u>ID</u>	Name	Zip	City
<u>100</u>	Andersson	58214	Linköping
<u>101</u>	Björk	10223	Stockholm
<u>102</u>	Carlsson	58214	Linköping

FD1: Zip → City

FD2: $ID \rightarrow \{ Name, Zip, City \}$

R1_{3NE}

<u>ID</u>	Name	Zip
<u>100</u>	Andersson	58214
<u>101</u>	Björk	10223
<u>102</u>	Carlsson	58214

$R2_{3NF}$

<u>Zip</u>	City
<u>58214</u>	Linköping
10223	Stockholm

Decomposition into BCNF

BCNF: For every FD $X \rightarrow Y$ it holds that X is a superkey of the relation that the FD is associated with.

- Let $X \rightarrow Y$ be the FD that violates BCNF in a relation schema R
- Create a new relation schema R2 with the attributes in X and in Y
- Remove attributes Y from R
- New relational database schema consists now of R1 and R2
- We may have to find a new primary key for R

Example

- Let $R(\underline{A},\underline{B},C,D)$ be a relation schema with $AB \to CD$ and $C \to B$
- AB is a candidate key, and so is AC!
- *R* is in 3NF (*D* is the only non-prime attribute and AB)
- *R* is not in BCNF (because *C* is not a candidate key)
- By using $C \rightarrow B$, we decompose R into $R1(\underline{A},\underline{C},D)$ with $AC \rightarrow D$ and $R2(\underline{C},B)$ with $C \rightarrow B$

Normalization Algorithm

- Identify all candidate keys based on the given FDs
 - By using the algorithm to compute superkeys and then finding the minimal superkeys
- Given all the candidate keys, mark all prime and all non-prime attributes
- Choose one of the candidate keys as the primary key
- 2NF Question: Is there any FD that violates the condition of 2NF? Try to derive FDs that violates 2NF (prime → (all) non-primes) by applying the Armstrong's rules!
 - Yes: Decompose the relation based on the violating FD; this gives you two new relations; restart the algorithm for both of them
 - No: Continue to 3NF
- 3NF Question: Is there any FD that violates the condition of 3NF? Try to derive FDs that violates 3NF!
 - Yes: Decompose the relation based on the violating FD; this gives you two new relations; restart the algorithm for both of them
 - No: Continue to BCNF
- BCNF Question: Is there any FD that violates the condition of BCNF? Try to derive such!
 - Yes: Decompose the relation based on the violating FD; this gives you two new relations; restart the algorithm for both of them
 - No: Done

Running Example

Recall R(PID, Country, PersonName, Continent, ContinentArea, NumberVisitsCountry) with:

FD1: PID → PersonName

FD2: PID, Country → NumberVisitsCountry

FD3: Country → Continent

FD4: Continent → ContinentArea

Is R in BCNF?
If not, normalize R into BCNF relations.

2NF: Non-prime attributes must not be functionally dependent on a part of a candidate key.

3NF: Non-prime attributes must not be functionally dependent on a set of attributes that is not a superkey.

BCNF: For every FD $X \rightarrow Y$ it holds that X is a superkey of the relation that the FD is associated with.

In order to identify all candidate keys we first need to find a superkey:

function ComputeAttrClosure(X, Σ) **begin** $X^+ := X$;

while Σ contains an FD $Y \rightarrow Z$ such that

(i) Y is a subset of X^+ , and

(ii) Z is not a subset of X^+ do

 $X^{+} := X^{+} \cup Z;$

end while

return X⁺;

end

R(PID, PersonName, Country, Continent, ContinentArea,

NumberVisitsCountry):

FD1: PID → PersonName

FD2: PID, Country → NumberVisitsCountry

FD3: Country → Continent

FD4: Continent → ContinentArea

 The attribute closure of X = { PID, Country } w.r.t. FD1–FD4 is { PID, Country, PersonName, NumberVisitsCountry, Continent, ContinentArea }

- The only candidate key: (PID, Country)
- Prime attributes: PID, Country
- Non-prime: PersonName, Continent, ContinentArea, NumberVisitsCountry

Recall R(PID, Country, PersonName, Continent, ContinentArea, NumberVisitsCountry) with:

FD1: PID → PersonName

FD2: PID, Country → NumberVisitsCountry

FD3: Country → Continent

FD4: Continent → ContinentArea

2NF: Non-prime attributes must not be functionally dependent on a part of a candidate key.

■ Is *R* in 2NF?

- No, non-prime attribute PersonName depends on PID (part of a candidate key), similarly for Continent and Country
- Try to derive PID → all non-primes
 - Only PID → PersonName
- Try to derive Country → all non-primes
 - Country → Continent and Continent → ContinentArea imply Country → ContinentArea (using transitivity rule)
 - Country → Continent and Country → ContinentArea imply Country → Continent, ContinentArea (using additive rule)
- Decompose R into R1(<u>PID</u>, PersonName) and R2(<u>PID</u>, <u>Country</u>, NumberVisitsCountry) and R3(<u>Country</u>, Continent, ContinentArea)

Recall R(PID, Country, PersonName, Continent, ContinentArea, NumberVisitsCountry) with:

FD1: PID → PersonName

FD2: PID, Country → NumberVisitsCountry

FD3: Country → Continent

FD4: Continent → ContinentArea

2NF: Non-prime attributes must not be functionally dependent on a part of a candidate key.

- Is R in 2NF (cont'd)?
 - Decompose *R* into *R1*(<u>PID</u>, PersonName) and *R2*(<u>PID</u>, <u>Country</u>, NumberVisitsCountry) and R3(<u>Country</u>, Continent, ContinentArea)
 - Don't forget to write down the FDs for each new relation:
 - R1: PID → PersonName
 - R2: PID, Country → NumberVisitsCountry
 - R3: Country → Continent and Continent → ContinentArea
 - All are in 2NF

Recall R(PID, Country, PersonName, Continent, ContinentArea, NumberVisitsCountry) with:

FD1: PID → PersonName

FD2: PID, Country → NumberVisitsCountry

FD3: Country → Continent

FD4: Continent → ContinentArea

3NF: Non-prime attributes must not be functionally dependent on a set of attributes that is not a superkey.

- Is R in 3NF?
 - No, R3 is not in 3NF due to Continent → ContinentArea
 - Can we derive other FDs that violate 3NF? No.
 - Decompose to R31(<u>Country</u>, Continent) and R32(<u>Continent</u>, ContinentArea)
 - Don't forget to write down the FDs for each new relation:
 - R31: Country → Continent
 - R32: Continent → ContinentArea

Now we have R1(PID, PersonName),

R2(PID, Country, NumberVisitsCountry),

R31(Country, Continent), and

R32(Continent, ContinentArea) and initial FDs:

FD1: PID → PersonName

FD2: PID, Country → NumberVisitsCountry

FD3: Country → Continent

FD4: Continent → ContinentArea

Are R1, R2, R31 and R32 in 3NF, respectively?

Yes.

3NF: Non-prime attributes must not be functionally dependent on a set of attributes that is not a superkey.

Now we have R1(PID, PersonName),

R2(PID, Country, NumberVisitsCountry),

R31(Country, Continent), and

R32(Continent, ContinentArea) and initial FDs:

FD1: PID → PersonName

FD2: PID, Country → NumberVisitsCountry

FD3: Country → Continent

FD4: Continent → ContinentArea

BCNF: For every FD $X \rightarrow Y$ it holds that X is a superkey of the relation that the FD is associated with.

- Are R1, R2, R31 and R32 in BCNF, respectively?
 - · Yes.

2NF: Non-prime attributes must not be functionally dependent on a part of a candidate key.

Consider the relation R(A,B,C,D,E,F) with the following FDs:

FD1: A → BC

FD2: $C \rightarrow AD$

- Candidate keys: {A,E} and {C,E}
- Prime attributes: A,C,E
- Non-prime attributes: B,D,F
- In which normal form is R? Normalize it into BCNF relations.

2NF: Non-prime attributes must not be functionally dependent on a part of a candidate key.

Consider the relation R(A,B,C,D,E,F) with the following FDs:

```
FD1: A \rightarrow BC
```

FD3: **DE**
$$\rightarrow$$
 F

Is R in 2NF? Try to derive one of these:

```
A → BDF
```

$$C \rightarrow BDF$$

$$E \rightarrow BDF$$

Let's go for A → BDF:

- A → BC implies A → B and A → C (decomposition)
- C → AD implies C → D and C → A (decomposition)
- $A \rightarrow C$ and $C \rightarrow D$ imply $A \rightarrow D$ (transitivity)
- $A \rightarrow B$ and $A \rightarrow D$ imply $A \rightarrow BD$ (additive)
- What about A → F, can we derive it? No.
 - OBS: A \rightarrow D and DE \rightarrow F imply AE \rightarrow F (by transitivity) but this is not the same as A \rightarrow F!!!

2NF: Non-prime attributes must not be functionally dependent on a part of a candidate key.

Consider the relation R(A,B,C,D,E,F) with the following FDs:

```
FD1: A → BC
FD2: C → AD
FD3: DE → F
```

Is R in 2NF? Try to derive one of these:

```
A \rightarrow BDF
C \rightarrow BDF
F \rightarrow BDF
```

- Similarly we can show C → BDF:
 - C → A and A → BD implies C → BD (transitivity)
 - What about C → F, can we derive it? No.
 - OBS: $C \rightarrow D$ and $DE \rightarrow F$ imply $CE \rightarrow F$ (by transitivity) but this is not the same as $C \rightarrow F!!!$
- Can we derive E → BDF? No!

2NF: Non-prime attributes must not be functionally dependent on a part of a candidate key.

Consider the relation R(A,B,C,D,E,F) with the following FDs:

FD1: A → BC

FD2: C → AD

- Is R in 2NF? A → BD and C → BD violate 2NF
- By using A → BD we decompose R into R1 and R2:
 - R1(A,B,D) with $A \rightarrow BD$
 - Candidate keys: {A}; non-prime attributes: B, D
 - R2(A,C,E,F) A \rightarrow C, C \rightarrow A, **AE** \rightarrow **F** and **CE** \rightarrow **F**
 - What happened with DE → F?
 Recall we derived AE → F and CE → F
 - Candidate keys: {A,E} and {C,E}; non-prime attributes: F
- R1 and R2 are in 2NF: in R2, C and A are both prime attributes

3NF: Non-prime attributes must not be functionally dependent on a set of attributes that is not a superkey.

Consider the relation R(A,B,C,D,E,F) with the following r box.

FD1: A → BC

FD2: C → AD

- Is R in 3NF?
 - R1(A,B,D) with $A \rightarrow BD$
 - Candidate keys: {A}; non-prime attributes: B, D
 - R1 is in 3NF
 - R2(A,C,E,F) A \rightarrow C, C \rightarrow A, AE \rightarrow F and CE \rightarrow F
 - Candidate keys: {A,E} and {C,E}; non-prime attributes: F
 - R2 is in 3NF since the only non-prime attribute F is functionally determined only by superkeys (AE and CE)
- R1 and R2 are in 3NF: in R2, C and A are both prime attributes

BCNF: For every FD $X \rightarrow Y$ it holds that X is a superkey of the relation that the FD is associated with.

Consider the relation R(A,B,C,D,E,F) with the following FDs:

FD1: A → BC

FD2: $C \rightarrow AD$

- Is R in BCNF?
 - R1(A,B,D) with $A \rightarrow BD$
 - Candidate keys: {A}; non-prime attributes: B, D
 - R1 is in BCNF
 - R2(A,C,E,F) A \rightarrow C, C \rightarrow A, AE \rightarrow F and CE \rightarrow F
 - Candidate keys: {A,E} and {C,E}; non-prime attributes: F
 - R2 is not in BCNF due to A → C, C → A

BCNF: For every FD $X \rightarrow Y$ it holds that X is a superkey of the relation that the FD is associated with.

Consider the relation R(A,B,C,D,E,F) with the following FDs:

FD1: A → BC

FD2: $C \rightarrow AD$

FD3: **DE** \rightarrow **F**

- Is R in BCNF?
- R2(A,C,E,F) A \rightarrow C, C \rightarrow A, AE \rightarrow F and CE \rightarrow F
 - Candidate keys: {A,E} and {C,E}; non-prime attributes: F
 - R2 is not in BCNF due to A → C, C → A
 - Decompose using A → C into R21 (A,E,F) and R22 (A,C)
 - R21: AE → F
 - R22: A → C and C → A

•

Now R1, R21 and R22 are in BCNF

www.liu.se

