Tema 1: Introducción. Importancia de las simetrías en física

- Intro
- Relación simetrías y teoría de Grupos
- · Tipos de simetrías
- · Activo vs pasivo
- · Case Study: Red discreta

Tema 2: Elementos generales de teoría de grupos

2.1. Definición y ejemplos

- Def: Grupo
 - Propiedades
 - o Grupo abeliano
 - o Órden de un grupo
- Th: Teorema de reordenamiento
- Eg:
 - o Grupos finitos
 - \circ Grupos discretos de órden ∞
 - Grupos contínuos compactos
 - Grupos contínuos no compactos
 - $lacksquare GL(n,\mathbb{K})$
 - $SL(n, \mathbb{K})$
 - \bullet E(n)

2.2. Subgrupos

- Def: Subgrupo
- Th: Identidad
- Def: Subgrupo propio
- Eg:
 - \circ Centro Z(g)
 - \circ Centralizador Z_q

2.3. Clases de conjugación

- Relación de Equivalencia
- Clase de conjugación
 - Propiedades
- Eg: Grupo de permutaciones S_3
- Tabla de multiplicación

2.4. Subgrupos normales

- Eg: Subgrupo normal o invariante por conjugación
- Th: Teorema de unión de clases de conjugación
- Def: Subgrupo simple
- Def: Subgrupo semisimple
- Eg: S_3 no es simple

2.5. Cosets

- · Def: Coset
 - Propiedades
- Th: Teorema de Lagrange
- · Def: Índice

2.6. Grupo cociente

- · Def: Producto de Cosets
- Prob: 1
- Th: Grupo cociente o grupo factor G/H
- Eg: Cociente S_3/A_3
- Grupo cociente de permutaciones cíclicas

2.7. Homomorfismos entre grupos

- Def: Homomorfismo
 - Propiedades
 - o Homomorfismo fiel o inyectivo
 - o Isomorfismo
- Pr: Imagen
- Def: Núcleo
- Th: Teorema de Cayley
- Eg:
 - \circ Aplicación $\mathbb{R} o S_1$
 - $\circ~S_3$ es isomorfo a D_3
- Th:
 - Núcleo y Subgrupo normal
 - o Imagen y Subgrupo
 - Grupo cociente y Núcleo
 - o Dems
 - Cor: Subgrupo normal y Homomorfismos
- Eg: Grupo matricial en K
- Resumen:
 - Homomorfismo
 - conjugación
 - Automorfismo
 - Centro

2.8. Producto de Grupos

- Def: Producto directo $G_1 imes G_2$
 - Propiedades
- Th: Producto directo de Subgrupos
- Eg:
 - $\circ \ U(n) = U(1) \times SU(n)$
 - $\circ~O(3) \sim SO(3) imes G_2$
- Def: Producto semidirecto
- Prob:
 - ∘ Grupo finito de órden primo → cíclico
 - $\circ \ G = H_1 imes H_2 \Rightarrow G/H_1 \sim H_2$
 - o Ejercicio del campus

Tema 3 - Representaciones de Grupos

3.1. Acciones de Grupos

- Def: Representación
- Def: Grupo simétrico de un conjunto X
- Def: Acción de Grupo
 - o Eg: Algunos grupos se definen por su acción
 - Props
 - Acción Fiel
 - Acción Transitiva
 - o Acción Libre
 - Acción Regular
 - o Obs
- Def: Órbita
- · Def: Estabilizador
- Th: Teorema Órbita-Estabilizador

3.2. Representaciones Lineales

- Grupo de operadores
- Composición de transformaciones lineales
- Grupo de transformaciones lineales o Grupo de operadores
- Def: Representación lineal de un grupo
 - o Def: Dimensión de la representación
 - Obs
 - o Def: Representación Fiel
 - o Def: Representación degenerada
- Def: Representación Matricial
 - Eg
 - o Eg: Representación Trivial
- Def: Representación "de definición"
 - o Eg: Ejemplos concretos
 - Proposiciones

3.3. Representación conjugada o contragradiente

- Def: Representacion compleja conjugada
 - o Obs: Representación real
- Def: Representación contragradiente

3.4. Representaciones equivalentes

- Def: Transformación de similaridad, "Intertwiner"
- Def: Representaciones equivalentes
- Def: Carácter de una Representación
 - o Props:

3.5. Representaciones reducibles e irreducibles

- Def: Espacio invariante
 - Representacón reducible
 - o Representacón irreducible
 - Representacón descomponible
 - o Representacón completamente reducible
 - o Eg:
- Def: Suma directa de representaciones

3.6. Unitariedad

- Def: Representación unitaria
 - o Props:
- Th: Teorema de Schur-Auerbach
 - o Dem:
- Grupos no finitos
 - o Def: Medida invariante de Haar
- Th: Teorema de Maschke

3.7. Lemas de Schur

- · Lema previo
 - o Dem:
- Lemas:
 - 0 1
 - o 2
 - 0 3
 - Proposiciones
- Probs:
 - \circ Representación del grupo cíclico C_3
 - \circ Representación del grupo bidimensional S_1

3.8. Relaciones de ortonormalidad y completitud

- Relación de ortonormalidad
 - Grupos finitos
 - Grupos compactos
 - \circ Eg: Grupo de Klein V_4
- · Relación de completitud
 - o Grupos finitos
 - Grupos compactos
 - o Delta de Dirac adaptada a la medida de Haar de un grupo
- Th: Teorema de Peter-Weyl
- Relaciones de ortonormalidad y completitud con caracteres
- · Tabla de caracteres
 - Eg: Grupos abelianos
 - Props:
- Prob: Representación paridad

3.9. Producto tensorial de representaciones y coeficientes de Clebsch-Gordan

- Tensores
 - Def: Producto tensorial de operadores
 - o Def: Producto tensorial de representaciones
 - o Def: Descomposición de Clebsch-Gordan
 - Def: Multiplicidad
 - Proposicion
- Probs:
 - \circ Representación irreducible unitaria de $D^{(2)}$
 - $\circ~$ Tabla de caracteres de S_3
 - \circ Representación bidimensional irreducible unitaria de S_3
- Def: Coeficientes de Clebsch-Gordan
 - Relaciones de ortogonalidad y completitud
 - \circ Prob: Coeficientes de Clebsch-Gordan para $D^{(2)}\otimes D^{(2)}$

3.10. Teorema de Wigner-Eckart

- Def: Conjunto de operadores tensoriales irreducibles
- Th: Teorema de Wigner-Eckart

3.11. Representaciones del producto directo de grupos

Tema 4: Grupos y álgebras de Lie

4.1 Elementos básicos sobre espacios topológicos

- Compacidad
- Conexión
 - o Camino en S
 - Arco-conexo

- o Simplemente conexo
- o n-veces conexo
- \circ Eg: \mathcal{R}^n y \mathcal{R}^2
- Mapa homeomórfico
 - Continuo
 - Propiedades o invariantes topológicos
- Espacio Hausdorff
 - Axioma de separabilidad
- Carta
- · Variedad analítica de dimensión n

4.2 Grupo de Lie: definición

- Def: Grupo de Lie
 - Condiciones sobre elementos

4.3 Grupos de Lie lineales

- · Def: Condiciones sobre un grupo lineal
- · Recubridor universal
- Representaciones unitarias del grupo de Lie
- Eg:
 - $\circ GL(n,\mathcal{C})$: grupo general lineal de matrices complejas, de dimensión $2n^2$.
 - \circ $SL(n,\mathcal{C})$: grupo especial lineal
 - $GL(n, \mathcal{R})$: de dimensión n^2 .
 - $\circ~SL(n,\mathcal{R})$: de dimensión n^2-1 .
 - $\circ U(n)$: grupo unitario de matrices complejas U tal que $U^+U=UU^+=\mathbf{1}^n$ de dimensión n^2 (en principio es subgrupo de GL pero la condición de conmutación nos quita la mitad).
 - \circ SU(n): grupo especial unitario, subgrupo de U(n) que agrupa las matrices con detU=1, de dimensión n^2-1 (como el det U es un complejo de fase libre y norma 1 solo pone 1 condición sobre el detU).
 - o O(n): grupo ortogonal de matrices reales que cumplen $OO^+=O^+O={f 1}_n$ de dimensión ${n(n-1)\over 2}$.
 - SO(n): grupo ortogonal especia, subgrupo de O(n) con detO=1, de la misma dimensión que O(n).
 - Sp(n): grupo simpléptico, grupo de matrices unitarias (n \times n) con n par.
 - \circ U(I,n-I): grupo pseudo-unitario de matrices complejas U que satisfacen $UgU^+=g$ siendo g una matriz diagonal de unos y menos unos.
 - \circ O(n,l-n): grupo pseudo-ortogonal de matrices reales con $OgO^+=g$ con la misma g, de dimensión $\frac{n(n-1)}{2}$. Es el grupo de Lorentz, la g es una pseudo-métrica.
- Eg:
 - Compactos
 - No Compactos
- · Prob:
 - \circ ¿Son O(n) y U(n) grupos conexos?
 - \circ ¿Son $SO(2) \sim U(1)$ y SU(2) simplemente conexos?

- Justificar por qué SO(1,1) no es compacto
- \circ ¿Qué grupo es el recubridor universal de SO(2)? Buscar el grupo normal de G tal que $S_1 \sim G/H$.
- Medida de integración invariante
 - o Th: Integral invariante para grupos de Lie compactos
 - o Medida de Lebesgue

4.4 Estudio local de un grupo de Lie: álgebras de Lie

- Def: Álgebra de Lie real
 - o Def: Corchete de Lie
 - Def:
 - Subálgebra
 - Subálgebra invariante
 - Función exponencial de matrices
 - Props:
 - Fórmula de Campbell-Baker-Hausdorff
- Subgrupo uniparamétrico de un grupo de Lie lineal
- Generadores del álgebra de Lie
- Relación entre álgebras de Lie lineales y grupos de Lie linealees
 - Th: Exponenciación
 - o Th: Subrupos uniparamétrico
 - Nota:
 - \circ Eg: Álgebra de Lie real de SU(n)
 - \circ Eg: Álgebra de Lie real de $SL(n,\mathbb{R})$
 - \circ Ex: Caracterizar el álgebra de Lie so(2)

4.5 Representaciones adjuntas de álgebras y grupos de Lie: constantes de estructura

- Representación de un álgebra de Lie
 - Obs: Eqyuvakebcua de reoresentaciones, irreducibilidad, lemas de Schur, Descomposición CB...
 - o Th: Representación analítica n-dimensional
- Constantes de estructura
 - \circ Def: Matriz adjunta de $A \in \mathcal{L}$
 - o Def: Representación adjunta del álgebra
 - o Def: Constantes de estructura
 - Obs:
 - Props:
- Representación de un grupo de Lie lineal
 - o Def: Representación adjunta del grupo
 - Obs:
 - Th: Representaciones adjuntas
 - o Th: Automorfismo interno del álgebra

4.6 Álgebras de Lie simples y semi-simples

- Def: Álgebra de Lie simple
- Def: Álgebra de Lie semi-simple
 - o Props:
- Operadores de casimir
 - o Th: Conmutación
- Def: Forma de Killing

Tema 5: Rotaciones en R^3: Los grupos SO(3) y SU(2)

5.1. Descripción de SO(3)

- Parametrización ángulo-eje
 - \circ Eg: S=(3) es doblemente conexos
- Clases de conjugación
- Parametrización en ángulos de Euler

5.2. De SO(3) a SU(2)

- · Def: Matrices de Pauli
- Def: Matriz hermítica $X = \vec{x} \vec{\sigma}$
 - \circ Homomorfismo SU(2)-SO(3)

5.3. Generados infinitesimales y el álgebra de Lie

- Eg: Generadores de SO(3)
 - o Base de generadores del álgebra de Lie
- Eg: Generadores de SU(2)

5.4. Representaciones de SU(2)

- Propiedades de m
- Represendación de espín j de SU(2)
 - Matriz de Wigner

5.5. Producto directo de representaciones de SU(2)

- Coeficiente de Clebsch-Gordan de SU(2)
- 5.6. Medida de Haar invariante en SU(2)

5.7. Ortogonalidad, completitud, caracteres

· Polinomios de Chebyshev

5.8. Teorema de Wigner-Eckart

- · Th: Wigner-Eckart
- Reglas de selección

5.9. Aplicación física: Isospín

- Transiciones
 - o Operador de transición

5.10 Rotación de funciones de onda

5.11 Rotación de operadores

- Escalares
- Vectoriales
 - o Eg: Operador de posición
 - \circ Relación entre coordenadas V_i y Q_m^j
- Tensoriales
 - o Tensor de órden 2
 - ∘ Ex:

Tema 6: El grupo de Lorentz

6.1. Propiedades básicas

- Espacio de Minkowski
- Ex: Matrices Λ
- Subgrupo ortocrono propio

6.2 Grupo de Lorentz ortocrono propio

- Rotaciones espaciales
- Transformación de Lorentz pura
 - ∘ Ex:
- Parametrización
 - Compacidad
 - Conectividad
- Recubridor universal de \mathcal{L}_+^{\uparrow}
 - Homeomorfismo
 - Matrices unitarias y hermíticas

6.3 Álgebra de Lie

- Generadores hermíticos de rotaciones
- Boosts puros
- Tensor antisimétrico $M_{\mu
 u}$
- Casimires

6.4 Representaciones irreducibles

- Complexificación
- Representaciones tensoriales y espinoriales

• Representación de espín más bajo

Tema 7: El grupo de Poincaré

- 7.1 Propiedades básicas
- 7.2 Álgebra de Lie del grupo de Poincaré ortocrono propio
- 7.3 Representaciones unitarias del grupo de Poincaré ortocrono propio
- 7.4 Representación sobre estados de una partícula
- 7.5 Campo de Klein-Gordon