# **GW-EM LISA Notes**

Accepted XXX. Received YYY; in original form ZZZ

### **ABSTRACT**

**Key words:** (stars:) white dwarfs – (stars:) binaries: eclipsing



Figure 1. Flow chart.

### 1 NOTES

5

10

15

### Lightcurve analysis

- Short-orbital period + general relativity means that binaries undergo rapid orbital decay due to the emission of gravitational
- We can use optical timing instruments to constrain the eclipse times ( $\sigma_T \sim 0.5$  s) (also longer time-scale measurements from PS1 or ZTF or whatever)
  - Use these eclipse times to measure a changing orbital period.
  - O-C diagram yields a deviation growing quadratically in time.

$$\Delta t_{eclipse}(t-t_0) = \left(\frac{1}{2}\dot{f}(t_0)(t-t_0)^2 + \frac{1}{6}\ddot{f}(t_0)(t-t_0)^3 + \ldots\right)P(t_0) \ \ (1)$$

where  $t_0$  is the reference epoch,  $P(t_0)$  is the orbital period at the reference epoch,  $f(t_0)$ ,  $\dot{f}(t_0)$ , etc, are the orbital frequency and its 12 time derivatives at the reference epoch, and  $t - t_0$  is the time since 13 the reference epoch. 14

Workflow

- Maria: Create a P and a  $T_0$  for every set of observations based on a fiducial  $\ddot{f}$  and  $P_0$ ; want to eventually choose a chirp mass
  - Greg: posteriors on P and  $T_0$  for every night of observations
  - To be done: script to combine posteriors to fit for  $\ddot{f}$

Light curves are generated using the ellc package (Maxted 2016), which depends on the mid-eclipse time of the primary eclipse,  $t_0$ , the inclination,  $\iota$ , the mass ratio,  $q = \frac{m_2}{m_1}$ , the ratio of the radii to the semi-major axis,  $r_1 = R_1/a$ ,  $r_2 = R_2/a$ , and the surface brightness ratio, J.

• Merger time-scale:  $\tau_C = \frac{3}{8} \frac{P}{|\dot{P}|}$ 

## 1.2 Gravitational-wave analysis

From LISA, we can get  $f_{GW}$ ,  $\dot{f}_{GW}$ , amplitude of the GW strain, inclination  $\iota$ , gravitational-wave polarization angle  $\psi$  and rotation angle  $\phi$ . From the GW strain, we measure chirp mass and distance:

• 
$$Mc = \left(\dot{f}_{GW} \times f_{GW}^{-11/3} \times \frac{5}{96} \times \pi^{-8/3}\right)^{3/5}$$
  
•  $D_l = \frac{5}{48} \left(\frac{\dot{f}_{GW}}{\pi^2 \times f_{GW}^3 \times A}\right)$ 

$$\bullet \ D_l = \frac{5}{48} \left( \frac{\dot{f}_{GW}}{\pi^2 \times f_{GW}^3 \times A} \right)$$

- Tides from the white dwarf binaries also affect the energy of the systems, which takes away additional energy from the binary, and therefore the purely gravitational-wave losses are less!
- Want to compare the optically measured number to those from LISA

# 1.3 Combined analysis

Portions of this work were performed during the CCA LISA Sprint, supported by the Simons Foundation

### REFERENCES

32

33

34

35

- Maxted P., 2016, Astronomy & Astrophysics, 591, A111
- 42 This paper has been typeset from a TEX/LATEX file prepared by the author.





Figure 2. Light curves for a purely ellipsoidal (left) and ellipsoidal and eclipsing (right) systems.



 $\textbf{Figure 3.} \ Gravitational \ wave-based \ constraints \ for \ a \ purely \ ellipsoidal \ (left) \ and \ ellipsoidal \ and \ eclipsing \ (right) \ systems.$ 



Figure 4. Light curve-based constraints for a purely ellipsoidal (left) and ellipsoidal and eclipsing (right) systems using the gravitational wave-based constraints as priors for the light curve analysis.