Multivariable Calculus

Day 20

Vector Calculus: Line integrals

Warning

Don't be confused with arc length!!!

Definition

Let D be a domain on \mathbb{R}^n . A vector field on \mathbb{R}^n is a function $\mathbf{F}: D \to \mathbb{R}^n$ that assign each point $\mathbf{x} \in D$ to a vector $\mathbf{F}(\mathbf{x}) \in \mathbb{R}^n$.

We only think about vector fields on \mathbb{R}^2 and \mathbb{R}^3 .

2

Definition

Let D be a domain on \mathbb{R}^n . A vector field on \mathbb{R}^n is a function $\mathbf{F}: D \to \mathbb{R}^n$ that assign each point $\mathbf{x} \in D$ to a vector $\mathbf{F}(\mathbf{x}) \in \mathbb{R}^n$.

We only think about vector fields on \mathbb{R}^2 and \mathbb{R}^3 .

In \mathbb{R}^2 , one typically write the vector fields in terms of **component functions** P, Q

$$\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}.$$

In \mathbb{R}^3 , one typically write the vector fields in terms of **component functions** P, Q, R

$$\mathbf{F}(x,y,z) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j} + R(x,y,z)\mathbf{k}.$$

2

Example

$$\mathbf{F}(x,y) = -y\mathbf{i} + x\mathbf{j}.$$

Worksheet

Matching the vector fields with the pictures

$$\mathbf{F}(x,y) = \langle x, -y \rangle, \ \mathbf{F}(x,y) = \langle y, x - y \rangle, \ \mathbf{F}(x,y) = \langle y, y + 2 \rangle, \ \mathbf{F}(x,y) = \langle \cos(x+y), x \rangle,$$

This is similar to integration of parametric curves but there are differences.

We now perform a Riemann-sum-like action.

Definition

Let C be a smooth curve. The **line integral of** f **along** C is defined as

$$\int_C f(x,y) ds = \lim_{n\to\infty} \sum_{i=1}^n f(x_i^*, y_i^*) \Delta s_i,$$

where Δs_i is the length of a subarc of C.

Worksheet

Suppose the curve C is given by the parametric equation

$$\mathbf{r}(t) = \langle x(t), y(t) \rangle, \qquad t \in [a, b].$$

Find a formula for

$$\int_C f(x,y)\,ds$$

that can relate to the parametric equation. (Hint: use the arclength formula)

7

Example

• Evalutate

$$\int_C (2+x^2y)\,ds$$

where *C* is the upper half of the unit circle.

2 Evaluate

$$\int_C 2x \, ds$$

where C consists of the arc C_1 of the parabola $y=x^2$ from (0,0) to (1,1) followed by the vertical line segment C_2 from (1,1) to (1,2).