Databázové systémy

Přednáška 2. Množinové operace a restrikce

Jan Laštovička

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI

Obsah

Množinové operace

2 Projekce

Výrazu, jehož hodnota je relace, říkáme relační výraz.

Výrazu, jehož hodnota je relace, říkáme relační výraz.

R: relační proměnná

Výrazu, jehož hodnota je relace, říkáme relační výraz.

R: relační proměnná

(TABLE R)

... relační výraz

Výrazu, jehož hodnota je relace, říkáme relační výraz.

R: relační proměnná

(TABLE R)

... relační výraz

v: relační výraz

Výrazu, jehož hodnota je relace, říkáme relační výraz.

```
R: relační proměnná ( TABLE R ) ... relační výraz v: relační výraz v; ... vytištění hodnoty v
```


Výrazu, jehož hodnota je relace, říkáme relační výraz.

```
R: relační proměnná

( TABLE R )
... relační výraz

v: relační výraz

v;
... vytištění hodnoty v

Například:
( TABLE child );
```


Výrazu, jehož hodnota je relace, říkáme relační výraz.

```
R: \ {
m relačn\'i \ proměnn\'a} ( {
m TABLE} \ R ) ... {
m relačn\'i \ v\'iraz} v: \ {
m relačn\'i \ v\'iraz} v; ... {
m vytištěn\'i \ hodnoty} \ v Například: ( {
m TABLE} \ {
m child} );
```

Vynechání nejvíce vnějších závorek:

TABLE child;

■ typ relace = záhlaví relace

- typ relace = záhlaví relace
- relace stejného typu

- typ relace = záhlaví relace
- relace stejného typu

hodnota relačního výrazu se může změnit (proměnné)

- typ relace = záhlaví relace
- relace stejného typu

- hodnota relačního výrazu se může změnit (proměnné)
- typ hodnoty relačního výrazu je stále stejný

- typ relace = záhlaví relace
- relace stejného typu

- hodnota relačního výrazu se může změnit (proměnné)
- typ hodnoty relačního výrazu je stále stejný
- typ relačního výrazu = typ jeho hodnoty

- typ relace = záhlaví relace
- relace stejného typu

- hodnota relačního výrazu se může změnit (proměnné)
- typ hodnoty relačního výrazu je stále stejný
- typ relačního výrazu = typ jeho hodnoty
- relační výrazy stejného typu

- 1 vstup: jedna i více relací
- výstup: jedna relace

- 1 vstup: jedna i více relací
- výstup: jedna relace
- omezení na vstupní relace

- 1 vstup: jedna i více relací
- 2 výstup: jedna relace
- omezení na vstupní relace
- vstupy i výstup operace jsou relace

- 1 vstup: jedna i více relací
- 2 výstup: jedna relace
- omezení na vstupní relace
- vstupy i výstup operace jsou relace
- operace lze skládat

Operace:

- 1 vstup: jedna i více relací
- výstup: jedna relace
- omezení na vstupní relace
- vstupy i výstup operace jsou relace
- operace lze skládat

Relační proměnné uchovávají informace ve formě relace.

Operace:

- 1 vstup: jedna i více relací
- výstup: jedna relace
- omezení na vstupní relace
- vstupy i výstup operace jsou relace
- operace lze skládat

Relační proměnné uchovávají informace ve formě relace.

Dotazy vyjadřujeme skládáním operací s relacemi.

Operace:

- 1 vstup: jedna i více relací
- výstup: jedna relace
- omezení na vstupní relace
- vstupy i výstup operace jsou relace
- operace lze skládat

Relační proměnné uchovávají informace ve formě relace.

Dotazy vyjadřujeme skládáním operací s relacemi.

Výsledek dotazu je relace.

 r_1, r_2 : relace stejného typu

 r_1, r_2 : relace stejného typu Výstupem sjednocení r_1 a r_2 je relace r:

- 1 záhlaví r je stejné jako záhlaví r_1 a r_2
- 2 tělo r je množinové sjednocení těl r_1 a r_2

 r_1, r_2 : relace stejného typu Výstupem sjednocení r_1 a r_2 je relace r:

- f 1 záhlaví r je stejné jako záhlaví r_1 a r_2
- ${f 2}$ tělo r je množinové sjednocení těl r_1 a r_2

Příklad:

r_1 :	name	age
	Anna	3
	Bert	4
	Cyril	4

name	age
Bert	4
Cyril	4
Daniela	5

 r_2 :

 r_1, r_2 : relace stejného typu

Výstupem sjednocení r_1 a r_2 je relace r:

- f 1 záhlaví r je stejné jako záhlaví r_1 a r_2
- f 2 tělo r je množinové sjednocení těl r_1 a r_2

Příklad:

r_1 :	name	age
	Anna	3
	Bert	4
	Cyril	4

 r_2 :

name	age
Bert	4
Cyril	4
Daniela	5

sjednocení r_1 a r_2 :

name	age
Anna	3
Bert	4
Cyril	4
Daniela	5

 v_1,v_2 : relační výrazy stejného typu


```
v_1,v_2: relační výrazy stejného typu ( v_1 UNION v_2 )
```



```
v_1,v_2: relační výrazy stejného typu ( v_1 UNION v_2 )
```

Například:

#


```
v_1,v_2: relační výrazy stejného typu ( v_1 UNION v_2 )
```

Například:

```
# ( TABLE child1 ) UNION ( TABLE child2 );
```



```
v_1,v_2: relační výrazy stejného typu ( v_1 UNION v_2 )
```

Například:

 r_1, r_2 : relace stejného typu

 r_1, r_2 : relace stejného typu Výstupem průniku r_1 a r_2 je relace r:

- f 1 záhlaví r je stejné jako záhlaví r_1 a r_2
- ${f 2}$ tělo r je množinový průnik těl r_1 a r_2

 r_1, r_2 : relace stejného typu Výstupem průniku r_1 a r_2 je relace r:

- f 1 záhlaví r je stejné jako záhlaví r_1 a r_2
- f 2 tělo r je množinový průnik těl r_1 a r_2

Příklad:

r_1 :	name	age
	Anna	3
	Bert	4
	Cyril	4

r_2 :	name	age
	Bert	4
	Cyril	4
	Daniela	5

 r_1, r_2 : relace stejného typu

Výstupem průniku r_1 a r_2 je relace r:

- f 1 záhlaví r je stejné jako záhlaví r_1 a r_2
- ${f 2}$ tělo r je množinový průnik těl r_1 a r_2

Příklad:

$_1$:	name	age
	Anna	3
	Bert	4
	Cyril	4

r_2 :	name	age
	Bert	4
	Cyril	4
	Daniela	5

průnik r_1 a r_2 :

name	age
Bert	4
Cyril	4

 v_1,v_2 : relační výrazy stejného typu

 v_1, v_2 : relační výrazy stejného typu (v_1 INTERSECT v_2)


```
v_1,v_2: relační výrazy stejného typu (v_1 INTERSECT v_2)
```

Například:

#


```
v_1,v_2: relační výrazy stejného typu (v_1 INTERSECT v_2)
```

Například:

```
# ( TABLE child1 ) INTERSECT ( TABLE child2 );
```



```
v_1, v_2: relační výrazy stejného typu
 (v_1 \text{ INTERSECT } v_2)
Například:
 # ( TABLE child1 ) INTERSECT ( TABLE child2 );
          | age
  name
  Bert | 4
  Cyril |
 (2 rows)
```


 r_1, r_2 : relace stejného typu

 r_1, r_2 : relace stejného typu Výstupem rozdílu r_1 a r_2 je relace r:

- 1 záhlaví r je stejné jako záhlaví r_1 a r_2
- $\mathbf{2}$ tělo r je množinový rozdíl těl r_1 a r_2

 r_1, r_2 : relace stejného typu Výstupem rozdílu r_1 a r_2 je relace r:

- f 1 záhlaví r je stejné jako záhlaví r_1 a r_2
- f 2 tělo r je množinový rozdíl těl r_1 a r_2

Příklad:

1:	name	age
	Anna	3
	Bert	4
	Cyril	4

r_2 :	name	age
	Bert	4
	Cyril	4
	Daniela	5

 r_1, r_2 : relace stejného typu Výstupem rozdílu r_1 a r_2 je relace r:

- f 1 záhlaví r je stejné jako záhlaví r_1 a r_2
- f 2 tělo r je množinový rozdíl těl r_1 a r_2

Příklad:

1:	name	age
	Anna	3
	Bert	4
	Cyril	4

name	age
Bert	4
Cyril	4
Daniela	5

rozdíl r_1 a r_2 :

name	age
Anna	3

 r_2 :

 v_1,v_2 : relační výrazy stejného typu

 v_1,v_2 : relační výrazy stejného typu (v_1 EXCEPT v_2)


```
v_1, v_2: relační výrazy stejného typu (v_1 EXCEPT v_2)
```

Například:

#


```
v_1,v_2: relační výrazy stejného typu (v_1 EXCEPT v_2)
```

Například:

```
# ( TABLE child1 ) EXCEPT ( TABLE child2 );
```


child1:

name	age
Anna	3
Bert	4
Cyril	4

child2:

age
4
4
5

Které děti jsou v právě jedné z relací?

child1:

name	age
Anna	3
Bert	4
Cyril	4

child2:

name	age
Bert	4
Cyril	4
Daniela	5
, ,	_

Které děti jsou v právě jedné z relací?

#

child1:	name	age
	Anna	3
	Bert	4
	Cyril	4

child2: name Bert

age 4 Cyril 4 Daniela 5

Které děti jsou v právě jedné z relací?

```
# ( ( TABLE child1 ) EXCEPT ( TABLE child2 ) )
      UNION
  ( ( TABLE child2 ) EXCEPT ( TABLE child1 ) );
```


child1:	name	age
	Anna	3
	Bert	4
	Cyril	4

name	age
Bert	4
Cyril	4
Daniela	5

child2:

Které děti jsou v právě jedné z relací?

Obsah

1 Množinové operace

2 Projekce

r: relace


```
r: relace r':
```

- relace
- lacktriangle záhlaví = záhlaví r
- lacktriangle tělo podmnožina těla r


```
r: relace r':
```

- relace
- lacktriangle záhlaví = záhlaví r
- lacktriangle tělo podmnožina těla r

Podmnožinu těla r zadáme podmínkou.

- $lacksquare \{A_1,\ldots,A_n\}$: záhlaví
- A_i je typu T_i $(1 \le i \le n)$

- $\{A_1,\ldots,A_n\}$: záhlaví
- A_i je typu T_i $(1 \le i \le n)$
- $1 \le j \le n$

- $\{A_1,\ldots,A_n\}$: záhlaví
- A_i je typu T_i $(1 \le i \le n)$
- $1 \le j \le n$
- lacksquare v: hodnota typu T_j

- $\{A_1,\ldots,A_n\}$: záhlaví
- A_i je typu T_i $(1 \le i \le n)$
- $1 \le j \le n$
- lacksquare v: hodnota typu T_j

$$(A_j = v)$$

 \dots podmínka nad A_1,\dots,A_n

Podmínky

- $\{A_1,\ldots,A_n\}$: záhlaví
- A_i je typu T_i $(1 \le i \le n)$
- $1 \le j \le n$
- lacksquare v: hodnota typu T_j

```
( A_j = v ) ... podmínka nad A_1, \ldots, A_n Příklad: ( name = 'Anna' )
```

```
( name = 'Anna' )
( age = 3 )
```

...podmínky nad name a age

Podmínky

- $\{A_1,\ldots,A_n\}$: záhlaví
- A_i je typu T_i $(1 \le i \le n)$
- $1 \le j \le n$
- $lackbox{v}$: hodnota typu T_j

```
(A_j = v)
...podmínka nad A_1, \ldots, A_n
```

Příklad:

```
( name = 'Anna' )
( age = 3 )
```

... podmínky nad name a age

Nejvíce vnější závorky vynecháváme:

```
name = 'Anna'
age = 3
```


 \blacksquare t: n-tice nad A_1, \ldots, A_n

- \blacksquare t: n-tice nad A_1, \ldots, A_n
- lacksquare (A_j = v): podmínka nad A_1,\ldots,A_n

- t: n-tice nad A_1, \ldots, A_n
- lacksquare (A_j = v): podmínka nad A_1,\ldots,A_n

Podmínka (A_j = v) je v t splněna, pokud t atributu A_j přiřazuje v.

- \blacksquare t: n-tice nad A_1, \ldots, A_n
- \blacksquare ($A_i = v$): podmínka nad A_1, \ldots, A_n

Podmínka ($A_j = v$) je v t splněna, pokud t atributu A_j přiřazuje v.

n-tice:

name	age
Anna	3

- 1 (name = 'Anna')
- 2 (age = 4)
- 3 (name = 'Bert')
- 4 (age = 3)

- t: n-tice nad A_1, \ldots, A_n
- \blacksquare ($A_i = v$): podmínka nad A_1, \ldots, A_n

Podmínka ($A_j = v$) je v t splněna, pokud t atributu A_j přiřazuje v.

n-tice:

name	age
Anna	3

- 1 (name = 'Anna') ...ano
- 2 (age = 4)
- 3 (name = 'Bert')
- 4 (age = 3)

- \blacksquare t: n-tice nad A_1, \ldots, A_n
- \blacksquare ($A_i = v$): podmínka nad A_1, \ldots, A_n

Podmínka (A_j = v) je v t splněna, pokud t atributu A_j přiřazuje v.

n-tice:

name	age
Anna	3

$$2 (age = 4) ... ne$$

$$4 (age = 3)$$

- t: n-tice nad A_1, \ldots, A_n
- \blacksquare ($A_j = v$): podmínka nad A_1, \ldots, A_n

Podmínka (A_j = v) je v t splněna, pokud t atributu A_j přiřazuje v.

n-tice:

name	age
Anna	3

$$2 (age = 4) ... ne$$

$$4 (age = 3)$$

- t: n-tice nad A_1, \ldots, A_n
- \blacksquare ($A_j = v$): podmínka nad A_1, \ldots, A_n

Podmínka (A_j = v) je v t splněna, pokud t atributu A_j přiřazuje v.

n-tice:

name	age
Anna	3

$$2 (age = 4) ... ne$$

$$4 (age = 3) ... ano$$

r: relace nad A_1, \ldots, A_n

r: relace nad A_1, \ldots, A_n

c: podmínka nad A_1,\ldots,A_n

r: relace nad A_1, \ldots, A_n c: podmínka nad A_1, \ldots, A_n r':

- lacksquare záhlaví r'= záhlaví r
- lacktriangle tělo obsahuje právě ty n-tice z těla r, které splňují podmínku c
- lacktriangleq restrikce r vzhledem k c

r : relace nad A_1,\dots,A_n c : podmínka nad A_1,\dots,A_n r' :

- lacksquare záhlaví r'= záhlaví r
- lacktriangle tělo obsahuje právě ty n-tice z těla r, které splňují podmínku c
- \blacksquare restrikce r vzhledem k c

Příklad:

name	age	
Bert	4	= restrikce
Cyril	4	

age
3
4
4

vzhledem k age = 4

- v...relační výraz
- hodnota $v = \text{relace } r \text{ nad } A_1, \ldots, A_n$

- v...relační výraz
- hodnota $v = \text{relace } r \text{ nad } A_1, \ldots, A_n$
- lacksquare R je jméno relace
- lacksquare c je podmínka nad A_1,\ldots,A_n

- v...relační výraz
- hodnota $v = \text{relace } r \text{ nad } A_1, \ldots, A_n$
- lacksquare R je jméno relace
- lacksquare c je podmínka nad A_1,\ldots,A_n

```
restrikce relace r vzhledem k c:
```

```
( SELECT *
FROM v AS R
WHERE c )
```

 $(R \ {\sf zatím} \ {\sf nemá} \ {\sf žádný} \ {\sf význam})$

Příklad restrikce

#

Příklad restrikce

TABLE child;

Příklad restrikce


```
# TABLE child;
```

Příklad restrikce # TABLE child;


```
name | age
-----+
Anna | 3
Bert | 4
Cyril | 4
(3 rows)
# SELECT *
FROM ( TABLE child ) AS t
WHERE age = 4;
```

Příklad restrikce # TABLE child;


```
name
      age
Anna | 3
Bert | 4
Cyril | 4
(3 rows)
# SELECT *
 FROM ( TABLE child ) AS t
 WHERE age = 4;
      | age
name
Bert | 4
Cyril | 4
(2 rows)
```


Děti:

#

Děti:

TABLE child;

Jak zjistit, které děti jsou ve věku čtyř let a bydlí v ulici Kosinova?

Které děti jsou ve věku čtyř let a bydlí v ulici Kosinova?

#

Které děti jsou ve věku čtyř let a bydlí v ulici Kosinova?


```
# ( SELECT *
   FROM ( TABLE child ) AS t
   WHERE age = 4 )
   INTERSECT
   ( SELECT *
   FROM ( TABLE child ) AS t
   WHERE street = 'Kosinova' );
```

Které děti jsou ve věku čtyř let a bydlí v ulici Kosinova?


```
# ( SELECT *
   FROM ( TABLE child ) AS t
   WHERE age = 4)
   INTERSECT
  ( SELECT *
   FROM ( TABLE child ) AS t
   WHERE street = 'Kosinova' );
name | age | street
-----
Cyril | 4 | Kosinova
(1 row)
```

Které děti jsou ve věku tří let nebo bydlí v ulici Mahlerova?

#

Které děti jsou ve věku tří let nebo bydlí v ulici Mahlerova?


```
# ( SELECT *
    FROM ( TABLE child ) AS t
    WHERE age = 3 )
    UNION
( SELECT *
    FROM ( TABLE child ) AS t
    WHERE street = 'Mahlerova' );
```

Které děti jsou ve věku tří let nebo bydlí v ulici Mahlerova?


```
# ( SELECT *
    FROM ( TABLE child ) AS t
    WHERE age = 3)
   UNTON
  ( SELECT *
    FROM ( TABLE child ) AS t
    WHERE street = 'Mahlerova' );
name | age | street
 Bert | 4 | Mahlerova
Anna | 3 | Kosinova
(2 rows)
```

Kterým dětem nejsou tři roky?

#


```
# ( TABLE child )
    EXCEPT
  ( SELECT *
    FROM ( TABLE child ) AS t
    WHERE age = 3 );
```



```
# ( TABLE child )
   EXCEPT
  ( SELECT *
   FROM ( TABLE child ) AS t
   WHERE age = 3);
      | age | street
name
Bert | 4 | Mahlerova
Cyril | 4 | Kosinova
(2 rows)
```


 c_1, c_2 : podmínky nad A_1, \ldots, A_n


```
c_1,\,c_2: podmínky nad A_1,\dots,A_n  (\ c_1\ {\tt AND}\ c_2\ )   (\ c_1\ {\tt OR}\ c_2\ )   (\ {\tt NOT}\ c_1\ )   \dots {\tt podmínky}\ {\tt nad}\ A_1,\dots,A_n
```



```
c_1,\ c_2: podmínky nad A_1,\dots,A_n ( c_1 AND c_2 ) ( c_1 OR c_2 ) ( NOT c_1 ) ... podmínky nad A_1,\dots,A_n
```

t: n-tice nad A_1, \ldots, A_n


```
c_1,\ c_2: podmínky nad A_1,\dots,A_n  (\ c_1\ \ {\rm AND}\ \ c_2\ )   (\ c_1\ \ {\rm OR}\ \ c_2\ )   (\ \ {\rm NOT}\ \ c_1\ )   \dots {\rm podmínky}\ {\rm nad}\ A_1,\dots,A_n
```

```
t: n-tice nad A_1, \ldots, A_n
```

Podmínka je splněna:


```
c_1, c_2: podmínky nad A_1, \ldots, A_n
```

```
( c_1 AND c_2 )
( c_1 OR c_2 )
( NOT c_1 )
...podmínky nad A_1, \ldots, A_n
```

t: n-tice nad A_1, \ldots, A_n

Podmínka je splněna:

lacksquare (c_1 AND c_2)...obě podmínky v_1 a v_2 jsou v t splněny


```
c_1, c_2: podmínky nad A_1, \ldots, A_n
```

```
( c_1 AND c_2 )
( c_1 OR c_2 )
( NOT c_1 )
...podmínky nad A_1, \ldots, A_n
```

t: n-tice nad A_1, \ldots, A_n

Podmínka je splněna:

- lacksquare (c_1 AND c_2)...obě podmínky v_1 a v_2 jsou v t splněny
- lacksquare (c_1 OR c_2) ...aspoň jedna z podmínek v_1 a v_2 je v t splněna


```
c_1,\ c_2: podmínky nad A_1,\dots,A_n  (\ c_1\ \ {\tt AND}\ \ c_2\ )   (\ c_1\ \ {\tt OR}\ \ c_2\ )   (\ {\tt NOT}\ \ c_1\ )   \dots {\tt podmínky}\ {\tt nad}\ A_1,\dots,A_n
```

```
t: n-tice nad A_1, \ldots, A_n
```

Podmínka je splněna:

- lacksquare (c_1 AND c_2)...obě podmínky v_1 a v_2 jsou v t splněny
- lacksquare (c_1 OR c_2) ...aspoň jedna z podmínek v_1 a v_2 je v t splněna
- \blacksquare (NOT c_1) ... c_1 není v t splněna

Které děti jsou ve věku čtyř let a bydlí v ulici Kosinova?

#

Které děti jsou ve věku čtyř let a bydlí v ulici Kosinova?


```
# SELECT *
FROM ( TABLE child ) AS t
WHERE ( age = 4 )
AND ( street = 'Kosinova' );
```

Které děti jsou ve věku čtyř let a bydlí v ulici Kosinova?

Které děti jsou ve věku tří let nebo bydlí v ulici Mahlerova?

#

Které děti jsou ve věku tří let nebo bydlí v ulici Mahlerova?


```
# SELECT *
FROM ( TABLE child ) AS t
WHERE ( age = 3 )
OR ( street = 'Mahlerova' );
```

Které děti jsou ve věku tří let nebo bydlí v ulici Mahlerova?


```
# SELECT
 FROM ( TABLE child ) AS t
 WHERE ( age = 3 )
 OR (street = 'Mahlerova'):
name | age |
            street
-----
Anna | 3 | Kosinova
Bert | 4 | Mahlerova
(2 rows)
```


#


```
# SELECT *
FROM ( TABLE child ) AS t
WHERE NOT ( age = 3 );
```


Studenti

student

name	mathematics	informatics
Anna	2	2
Bert	1	3
Cyril	3	3

Kdo má stejnou známku z matematiky a informatiky?

Studenti

student

name	mathematics	informatics
Anna	2	2
Bert	1	3
Cyril	3	3

Kdo má stejnou známku z matematiky a informatiky?

```
SELECT *

FROM ( TABLE student ) AS t

WHERE ( ( ( ( mathematics = 1 AND informatics = 1 )

OR ( mathematics = 2 AND informatics = 2 ) )

OR ( mathematics = 3 AND informatics = 3 ) )

OR ( mathematics = 4 AND informatics = 4 ) )

OR ( mathematics = 5 AND informatics = 5 )
```


- $\{A_1,\ldots,A_n\}$: záhlaví
- A_i je typu T_i $(1 \le i \le n)$

- $\{A_1,\ldots,A_n\}$: záhlaví
- A_i je typu T_i $(1 \le i \le n)$
- $1 \le j, k \le n$
- lacksquare T_j se rovná T_k (Atributy A_j a A_k mají stejný typ)

- $\{A_1,\ldots,A_n\}$: záhlaví
- A_i je typu T_i $(1 \le i \le n)$
- $1 \le j, k \le n$
- lacksquare T_j se rovná T_k (Atributy A_j a A_k mají stejný typ)

podmínka nad A_1, \ldots, A_n :

$$(A_j = A_k)$$

- $\{A_1,\ldots,A_n\}$: záhlaví
- A_i je typu T_i $(1 \le i \le n)$
- $\quad \blacksquare \ 1 \leq j, k \leq n$
- lacksquare T_j se rovná T_k (Atributy A_j a A_k mají stejný typ)

podmínka nad A_1, \ldots, A_n :

$$(A_j = A_k)$$

$$t$$
: n -tice nad A_1, \ldots, A_n

- $\{A_1,\ldots,A_n\}$: záhlaví
- A_i je typu T_i $(1 \le i \le n)$
- $1 \le j, k \le n$
- lacksquare T_j se rovná T_k (Atributy A_j a A_k mají stejný typ)

podmínka nad A_1, \ldots, A_n :

$$(A_j = A_k)$$

t: n-tice nad A_1,\ldots,A_n ($A_j=A_k$) je v n-tici t splněna $\ldots t$ přiřazuje stejnou hodnotu atributu A_i i atributu A_k

name	mathematics	informatics	physics
Anna	2	2	1

name	mathematics	informatics	physics
Anna	2	2	1

```
■ ( mathematics = informatics )
```

```
■ (mathematics = physics)
```


name	mathematics	informatics	physics
Anna	2	2	1

- (mathematics = informatics)...je v n-tici splněna
- (mathematics = physics)

name	mathematics	informatics	physics
Anna	2	2	1

- (mathematics = informatics)...je v n-tici splněna
- (mathematics = physics) ...není v n-tici splněna

Použití

#

Použití


```
# SELECT * FROM ( TABLE student ) AS t
WHERE mathematics = informatics;
```

Použití

