Un détecteur d'obstacles pour malvoyants Santé et prévention

Arthur Jacquin

Candidat 27397

Sommaire

- Introduction
- Capteurs de distance
- Interface utilisateur
- Produit fini
- Annexes

Introduction - Contexte

- Solutions existantes partiellement satisfaisantes
 - Chiens-guides
 - Cannes
 - Cannes électroniques

Figure 1 : L'UltraCane (CECIAA, 1055 €)

Introduction - Problématique

Peut-on proposer une meilleure alternative ?

Introduction - Cahier des charges fonctionnel

Fonction	Critère	Valeur
Détecter la distance de	Portée	>3 m
l'obstacle le plus proche	Faisceau de détection	
	Réactivité	>5 Hz
Traiter l'information	Cohérence	
Communiquer l'information	Clarté	
à l'utilisateur	Progressivité	
Être reproductible	Accessibilité économique	<50 €
	Accessibilité technique	
Être ergonomique	Compacité	
	Maniabilité	
	Robustesse	

Capteurs de distance - Modèles

Capteur

Type d'onde Domaine Prix Interface

Lumineuse Infrarouge (940 nm) 19,40 € I²C

MB1013

Sonore Ultrasonore (42 kHz) 39,90 €

Capteurs de distance - Faisceau de détection

Figure 2 : Faisceau de détection

Capteurs de distance - Précision

Figure 3 : Mesures de distance

Capteurs de distance - Réactivité

Figure 4 : Détection d'une feuille A4 lachée à 30 cm du capteur à t_0

Capteurs de distance - Conclusion

• Récapitulatif des tests

$$\begin{array}{c|cccc} \textbf{Capteur} & \textbf{VL53L1X} & \textbf{MB1013} \\ \textbf{Port\'ee} & ++ & +++ \\ \textbf{Faisceau} & \textbf{Directif} & \textbf{Large} \\ \textbf{Pr\'ecision} & \textbf{Suffisante} & \textbf{Suffisante} \\ \textbf{R\'eactivit\'e} & +++ & + \\ \textbf{Prix} & 19,40 \in & 39,90 \in \\ \end{array}$$

- Capteur retenu : VL53L1X
- Léger bruit : moyenne glissante sur 3 points (0,15 s)

Interface utilisateur - Modèles

- Signal sonore : désagréable
- Vibrations : comparaison de différents vibreurs

Vibreur Gotronic	VPM2	Gravity	SMD
1,30 €	4,20 €	2,60 €	1,30 €

Interface utilisateur - Modulation de largeur d'amplitude

- Pulse Width Modulation (PWM)
- Caractérisé par le rapport cyclique ($duty\ cycle$) noté $D=rac{T_{on}}{T}$

$$< E(t) > = rac{1}{T} \int_0^T E(t) \ dt = rac{1}{T} \left(\int_0^{T_{on}} E_0 \ dt + \int_{T_{on}}^T 0 \ dt \right) = D \cdot E_0$$

Interface utilisateur - Courbes intensité-ressenti

Figure 5 : Intensité de vibration ressentie en fonction de l'intensité des vibrations (5 utilisateurs en pointillés, moyenne en rouge)

Interface utilisateur - Fonction dist_to_intensity

$$f(x) = \begin{cases} ax^3 + bx^2 + bx + d & x \le 2000 \\ 0 & x > 2000 \end{cases}$$
$$(a, b, c, d) = (-1.8 \cdot 10^{-8}, \ 1.08 \cdot 10^{-4}, \ -0.234, \ 255)$$

Figure 6: Fonction dist_to_intensity

Produit fini - Conception générale

- Choix du microcontrôleur
- Alimentation : externe
- Nombre de couples capteur-vibreur : un seul
- Boîtier : aucun
- Disposition générale des composants

Produit fini - Composants

• Composants retenus

Composant	Nom	Prix (€)
Microcontrôleur	Arduino Nano Every	8,80
Capteur de distance	VL53L1X	19,40
Vibreur	VPM2	4,20
	TOTAL	32,40

- Matériel nécessaire
 - Station de soudure
 - Scotch double face
 - Fils de prototypage

Produit fini - Schéma de soudure

Figure 7 : Schéma de soudure

Produit fini - Conclusion

(a) Vue de face

(b) Dans la main

Figure 8: Produit fini

• Documentation disponible en ligne

Annexes

- Liens
- Prototype final sur breadboard
- Liste complète des composants
- Code
 - Bibliothèques et variables
 - Initialisation
 - Boucle principale
- Schéma électrique du VL53L1X

Liens

- Présentation du projet : jacquin.xyz/tipe
- Toutes les ressources : github.com/arthur-jacquin/tipe

Prototype final sur breadboard

Figure 9: Prototype final sur breadboard

Liste complète des composants

Catégorie	Nom/objet	Qté	Fabriquant	Réf. fabr.	Fournisseur	Prix (€)
Microcontrôleur	Arduino Nano	1	Arduino	A000005	Gotronic	22,90
Microcontrôleur			Arduino	ABX00028-3P	Arduino	
	Arduino Nano Every	3				25,10
Microcontrôleur	Seeeduino XIAO	1	Seeedstudio	102010328	Gotronic	5,90
Microcontrôleur	Beetle	1	DFRobot	DFR0282	Gotronic	9,80
Capteur de dist.	VL53L1X	1	Polulu	3415	Gotronic	19,40
Capteur de dist.	HRLV-MaxSonar-EZ1	1	Maxbotic	MB1013	Gotronic	39,90
Vibreur	Vibreur miniature	2	Gotronic	25355	Gotronic	2,60
Vibreur	VMP2	1	Solarbotics	VPM2	Gotronic	4.20
Vibreur	Gravity	1	DFRobot	DFR0440	Gotronic	2,60
Vibreur	SMD	1	Seeedstudio	316040005	Gotronic	1,30
Prototypage	Kit plaque de montage	1	Gotronic	SD80A	Gotronic	9,50
Prototypage	Alimentation	2	Velleman	PS910	Gotronic	15,90
Prototypage	Kit pour prototypage	1	Elegoo	E0	Amazon	20,99
Soudure	Station de soudage	1	Velleman	VTSS4N	Gotronic	17,90
Soudure	Pompe à dessouder	1	Gotronic	13580	Gotronic	3,50
Soudure	Fil de soudure	1	Gotronic	13673	Gotronic	8,30
					TOTAL	209,79

Code - Bibliothèques et variables

```
1 // Libraries
2 #include <Wire.h>
3 #include <VI.53I.1X.h>
5 // Declare used pins
6 const int pinVibr = 3;
  VL53L1X sensor; // I2C protocol
9 // Declare variables
              // Distance measured (in mm)
10 int dist:
11 int intensity; // Command for vibration (from 0 to 255)
12 const int n = 3; // Number of points for sliding average
13 int logs[n]; // Array to store last measurements
14 int k = 0;
                   // Sliding index in array
15 int avg = 0; // Average value
```

Code - Initialisation

```
17
   void setup () {
     pinMode(pinVibr, OUTPUT); // Set vibration motor as output
18
19
20
     for (int i = 0; i < n; i++) { // Initialize array</pre>
21
       logs[i] = 0;
22
     }
23
24
     // Communication through I2C (for VL53L1X), set at 400 kHz
25
     Wire.begin();
     Wire.setClock(400000);
26
27
28
     // Configure VL53L1X in long distance mode
29
     // Read rate frequency set as 20Hz (<< 400 kHz)
     sensor.setTimeout(500):
30
31
     if (!sensor.init()) { while (1); } // No sensor detected
     sensor.setDistanceMode(VL53L1X::Long);
32
33
     sensor.setMeasurementTimingBudget(50000);
34
     sensor.startContinuous(50):
35 }
```

Code - Boucle principale

```
37 void loop () {
38
   // Reading the sensor measurement
39
   dist = sensor.read():
40
41
   // Computing sliding average
42
     k = (k + 1) \%n:
43
     avg = avg + (dist - logs[k])/n;
44
     logs[k] = dist;
45
46
     // Modifying vibration intensity
47
     intensity = dist_to_intensity(avg);
48
     analogWrite(pinVibr, intensity);
49
50
51
   int dist_to_intensity (int x) {
     // Takes dist in mm. return command between 0 and 255
52
53 if (x > 2000) {
54
     return 0;
55 } else {
56
       return -1.8*pow(10, -8)*x*x*x + 0.108*x*x/1000 - 0.234*x
        + 255:
57
     };
58 }
```

Schéma électrique du VL53L1X

Figure 10 : Schéma électrique du VL53L1X