DESCRIERE SOLUȚII

REŢETA

prof. Dana Lica, C.N. "I.L. Caragiale" Ploiești

Problema admite o soluție de complexitate exponențială O(2^m).

Se generează fiecare submulțime a mulțimii rețetelor. Se identifică acele submulțimi pentru care medicamentele înscrise pe rețete includ toate cele n medicamente, fără să repete vreunul.

Se va păstra ca soluție submulțimea de rețete care are cost total minim.

SUBMAT

prof. Stelian Ciurea, Liceul "S. Brukenthal" Sibiu

Se citesc informațiile din fișier determinându-se un vector al coloanelor unde se află ultimul 0 din cadrul fiecărei linii (nu este necesară memorarea matricei!):

 c_i = coloana unde apare ultimul 0 în linia i

Se sortează acest vector descrescător.

Submatricile cu număr maxim de elemente sunt cele determinate de linia 1 și linia i, respective coloana 1 și coloana c_{i.} Trebuie determinată cea care conține numărul maxim de elemente dintre acestea.

PM

prof. Emanuela Cerchez, Liceul de Informatică "Grigore Moisil" Iași

Numărul de secvențe PM care conțin x plus și y minus este Comb (x+1, y).

Demonstrație

Să considerăm o succesiune formată din x+1 litere a.

Între aceste litere putem plasa exact x semne +.

Înlocuind y dintre cele x+1 litere a cu semne - și eliminând apoi literele a rămase obținem o secvență PM cu x semne + și y semne -.

Evident, cele y litere a care vor fi înlocuite pot fi selectate în Comb(x+1, y) moduri.

Pentru a calcula combinările am utilizat triunghiul lui Pascal.

Este necesară implementarea operațiilor pe numere mari.

O soluție care nu utilizează numere mari obține 50 de puncte.