NIRMA UNIVERSITY

Institute of Technology

B. Tech. Computer Science and Engineering

Open Elective (open to all branches except Dept. of CSE, EC and IC Eng)

L	T	P	C
2	0	2	3

Course Code	2CSOE51	
Course Title	Machine Learning	

Course Outcomes:

At the end of the course, students will be able to -

- 1. comprehend statistical methods as basis of machine learning domain
- 2. learn variety of learning algorithms for appropriate applications
- 3. identify various machine learning techniques to solve problems in applicable domains

Syllabus:	Teaching Hours
Unit I	03
Probability and Statistics: Empirical Probability, Theoretical	05
Probability, Joint Probability, Bayes' Theorem, Descriptive Statistics, Measure of Center, Measure of Variability, Measure of Position	
Unit III	08
Regression Techniques: Basic concepts and applications of Regression,	
Simple Linear Regression - Gradient Descent and Normal Equation	
Method, Non-Linear Regression, Linear Regression with Regularization,	
Hyper-parameters tuning, Loss Functions, Evaluation Measures for	
Regression Techniques	
Unit IV	11
Classification Techniques: Basics of supervised learning, Naïve Bayes	
Classification, Fitting Multivariate Bernoulli Distribution, Gaussian	
Distribution and Multinomial Distribution, K-Nearest Neighbours,	
Decision trees, Random Forest	
Support Vector Machines: Hard Margin and Soft Margin, Kernels and	
Kernel Trick, Evaluation Measures for Classification Techniques	
Unit V	04
Artificial Neural Networks: Biological Neurons and Biological Neural	
Networks, Perceptron Learning, Activation Functions, Multilayer	
Perceptron, Back-propagation Neural Networks	

Unit VI 04

Clustering: Basics of unsupervised learning, Hierarchical Agglomerative Clustering, k-means Algorithm, Self-Organizing Maps

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Laboratory Work:

Laboratory work will be based on applications of the above syllabus with minimum 10 experiments to be incorporated.

Suggested Readings^:

- 1. Tom Mitchell, Machine Learning, TMH
- 2. C. Bishop, Pattern Recognition and Machine Learning, Springer
- 3. R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification and Scene Analysis, Wiley
- 4. KishanMehrotra, Chilukuri Mohan and Sanjay Ranka, Elements of Artificial Neural Networks, Penram International
- 5. RajjanShinghal, Pattern Recognition, Techniques and Applications, OXFORD
- 6. Athem Ealpaydin, Introduction to Machine Learning, PHI

L=Lecture, T=Tutorial, P=Practical, C=Credit

^this is not an exhaustive list