Understanding the spectrum of GRB 190114C Bright ideas for a dark universe

Marc Klinger, Andrew Taylor, Walter Winter 23.09.2021

GRB ? → **Gamma-ray burst**

remnant

II

afterglow

core collapse

 $\sigma(10^{10}cm)$

rotating

compact object $\sigma(10km \sim 10^6 cm)$

relativistic plasma shell $\sigma(10^{16}cm\sim0.01lyr)$

GRB? → Relativistic, Radiating Blast Wave

Simple Box Assumption

- Homogeneous shell of electrons/positrons and photons
- relativistic shock
 - → injection of non-thermal particles
 - → turbulent magnetic fields
- particles cool
- photons escape

GRB 190114C - Afterglow

- triggered:
 - → Swift satellite (BAT, XRT)
 - → Fermi satellite (GBM, LAT)
- rapid follow up by MAGIC

GRB 190114C - Afterglow

- triggered:
 - → Swift satellite (BAT, XRT)
 - → Fermi satellite (GBM, LAT)
- rapid follow up by MAGIC
- afterglow observed from
 1 to 40 minutes
- redshift z = 0.42

What can we learn from this?

- photon spectrum basically resembles electron spectrum
 - → synchrotron spectacle: electron spectrum + magnetic field + smearing
 - → inverse Compton spectacle: electron spectrum + size of region + more smearing
 - → understanding these spectacles we can see the high energy electrons at work

Synchrotron Radiation

• electron (energy $E_{\rm el}$) spiraling in turbulent magnetic field B emits synchrotron radiation at characteristic energy:

$$E_{
m ph,syn} = rac{B}{B_{
m crit}} rac{E_{
m el}^2}{m_{
m e} c^2} \propto E_c$$

$$E \frac{\mathrm{d}N}{\mathrm{d}E_{\mathrm{ph,syn}}} \propto \left(\frac{E}{E_c}\right)^{\frac{1}{3}} e^{-\frac{E}{E_c}}$$

electrons

photons

Strong B-field solution

Problem:

$$\tau_{\rm acc} = \eta \frac{R_{\rm Larmor}}{\beta c} \approx \frac{\eta E_{\rm el}}{eBc}$$

$$\tau_{\rm syn} = \frac{9}{8\pi} \frac{h}{\alpha} \left(\frac{B_{\rm c}}{B}\right)^2 \frac{1}{E_{\rm el}}$$

$$\rightarrow E_{\rm el,max}^2 = \frac{911}{4\pi} \frac{1}{\pi} \frac{B_c}{B} m_e^2 c^4$$

$$\rightarrow E_{\rm ph,max} = \frac{B}{B_{\rm c}} \frac{E_{\rm el,max}^2}{m_e c^2} = \frac{9}{4} \frac{m_e c^2}{\alpha \eta} \approx \frac{160 MeV}{\eta}$$

Inverse Compton Scattering

- electron scatters photon to higher energy (similar to synchrotron)
- Klein-Nishina suppression when photon momentum non-negligible

DESY.

Weak B-field solution

• Problems:

- → statistical preference of strong B-field case over weak B-field case (like for other GRBs)
- → naturalness: why keV and TeV emission at the same height?

Weak or strong magnetic field?

Let the data decide!

DESY. 12