Lógica

Mauro Polenta Mora

Ejercicio 12

Consigna

Sean φ , ψ fórmulas de un lenguaje de primer orden. Suponer que $FV(\varphi) = FV(\psi) = \{x\}$. Demuestre que:

- 1. $\models \forall x(\varphi \to \psi) \to (\forall x\varphi \to \forall x\psi)$
- 2. $\models (\exists x \varphi \to \exists x \psi) \to \exists x (\varphi \to \psi)$
- 3. $\models \forall x(\varphi \leftrightarrow \psi) \rightarrow (\forall x\varphi \leftrightarrow \forall x\psi)$
- 4. $\models (\forall x\varphi \rightarrow \exists x\psi) \rightarrow \exists x(\varphi \rightarrow \psi)$
- 5. $\models (\exists x \varphi \rightarrow \forall x \psi) \rightarrow \forall x (\varphi \rightarrow \psi)$

Resolución

Para todos los casos, se considera una estructura \mathcal{M} de tipo adecuado cualquiera. Además también se observa que por hipótesis, todas las fórmulas que aparecen en el ejercicio son sentencias.

Parte 1

Demostraremos esto por absurdo, por lo que veamos que pasa si:

•
$$\not\models \forall x(\varphi \to \psi) \to (\forall x\varphi \to \forall x\psi)$$

Veamos lo siguiente:

Ahora, consideremos $a_1 \in |\mathcal{M}|$ tal que:

- $\mathcal{M} \not\models \psi[\overline{a_1}/x]$, sabemos que este existe por la propiedad (iii)
- Por la propiedad (ii), tenemos que $\mathcal{M} \models \varphi[\overline{a_1}/x]$
- Usando lo anterior, más la propiedad (i), podemos concluir que:

$$-\mathcal{M} \models \psi[\overline{a_1}/x]$$

Pero esto es absurdo por la primera afirmación que obtuvimos. Por lo tanto:

$$\bullet \ \models \forall x (\varphi \to \psi) \to (\forall x \varphi \to \forall x \psi)$$

Parte 2

Demostraremos esto por absurdo, veamos que pasa si:

•
$$\not\models (\exists x\varphi \to \exists x\psi) \to \exists x(\varphi \to \psi)$$

Veamos lo siguiente:

Observemos que (i) es totalmente incompatible con (ii) y (iii), pues:

- Por la propiedad (ii), tomo $a_1 \in \mathcal{M}$ tal que $\mathcal{M} \models \varphi[\overline{a_1}/x]$
- Entonces por la propiedad (i), tenemos que $(\overline{\exists} a \in |\mathcal{M}|)\mathcal{M} \models \psi[\overline{a}/x]$
- Pero esto último es absurdo por la propiedad (iii)