一、是非判断(对的在括号内打"√",错的打"×")

- 1. 开环工作的比较器的输出电压只有两种数值。
- 2. 工作中的集成运算放大器,总有 $u_+ \approx u_-$ 。 (\mathbf{x})
- 3. 处于开环或闭环正反馈状态的集成运算放大器总是工作在非线性区。 (√)

二、单项选择

- 1. 对于理想运算放大器,下面的叙述正确的是(A)。
 - A. 输入端的电流为零
- B. 输出电阻 r。为无穷大
- C. 输入电阻 r_i 为零
- D. 同相输入端与反相输入端的电位总是相同
- 2. 集成运算放大器的开环电压放大倍数么 A_{uo} 的值一般在(D)
 - A. 1~10

 $B.10 \sim 10^{2}$

C. $10^2 \sim 10^3$

- $D.10^4 \sim 10^7$
- 3. 下右图中电路, $R=R_b=10$ kΩ,C=0.1μF, $u_i=3\sin 1000t$ V,则 $u_o=($ D)。
 - A. 3sin1000t V
- B. -3sin1000*t* V
- C. 3sin(1000*t*+90°) V
- D. 3sin(1000t-90°) V

4. 上左图所示的电压比较器, U_{om} =±15V, U_{R} =5V,则其传输特性曲线为(D)。

(✓)

A.

В.

C.

D.

- 5. 某报警装置电路如下左图所示, UR 为参考信号, ui 为监控信号, 其波形如下右图所示。从 波形图判断报警指示灯 HL 亮的时间为(D)。
 - $A \cdot t_1, t_3$
- B. t_2 , t_4
- C. t_1 , t_3 , t_5 D. t_2 , t_4 , t_6

- 6. 运算放大器电路如图所示,该电路中反馈极性和类型为(A)。
 - A. 电压串联负反馈
- B. 电流串联负反馈
- C. 电压并联负反馈
- D. 电流并联负反馈

三、填空题(将答案填入空格内)

- 1. 为了提高放大电路的输入电阻,减小输出电阻,则应引入交流 电压串联 负反馈。
- 2. 理想运算放大器的开环电压增益 $A_{uo} = __{_{_{_{_{_{_{_{_{0}}}}}}}}}$,输出电阻 $r_{o} = _{_{_{_{_{_{_{_{_{_{_{0}}}}}}}}}}$
- **四、**电路如图所示,试计算输出电压 u_o 的值。(A_1 、 A_2 、 A_3 均为理想运算放大器)

$$\mathbf{m}: \quad u_{o1} = -3V \qquad \qquad u_{o2} = 4V$$

$$u_o = -\frac{R_5}{R_1}u_{o1} - \frac{R_5}{R_2}u_{o2} + (1 + \frac{R_5}{R_1/R_2})(\frac{R_3}{R_3 + R_4})4$$

$$u_0 = -u_{01} - u_{02} + 6 = 5V$$

五、理想运放 A 组成的电路及参数如图所示,

设运放最大输出电压 Umax 为±14V, 试求:

- 1. 电路的输入电阻 r_{if} ;
- 2. u_0 与 u_1 的关系表达式; 3. 设 u_1 =50mV 直流量,试分别计算当 R_1 在开路、短路、正常三种情况下的 u_0 值。

解:

- 1.电路的输入电阻 $r_{if}=R_1=20$ kΩ
- 2.设 a 点电位为 u_a , $u_a = -\frac{R_2}{R_1}u_i$

a 点电流方程
$$\frac{u_a}{R_2} + \frac{u_a}{R_4} = \frac{u_o - u_a}{R_3}$$

整理后得到
$$u_o = -\frac{R_2}{R_1}(1 + \frac{R_3}{R_2} + \frac{R_3}{R_4})u_i$$

3. $u_i = 50 \text{mV}$

当
$$R_4$$
 开路 $u_o = -\frac{R_2 + R_3}{R_1} u_i = -10 u_i = -500 \text{mV}$

 R_4 短路,运放工作在开环状态, $u_o = -14V$

$$R_4$$
 正常时, $u_o = -\frac{R_2}{R_1}(1 + \frac{R_3}{R_2} + \frac{R_3}{R_4})u_i = -260u_i = -13V$

六、 图示电路中各运放均为理想运放,输出饱和电压为±12V,已知 $R_1=R_2$, $R_3=R_4$, $R_5=100$ k Ω , C=1μF , $u_{i1}=0.1$ V, $u_{i2}=0.1$ V, 求: u_{01} 、 u_{02} 、 u_{03} 和 u_{04} ,并画出 u_{04} 的波形(设 C 的初始储能为 0)。

解: U_{O1} = U_{i1} = 0.1 V

$$1/2 U_{O2} = U_{i2}$$
 $U_{O2} = 2 U_{i2} = 0.2 V$

$$U_{O3} = -\frac{R_2}{R_1}U_{O1} + (1 + \frac{R_2}{R_1})U_{O2}$$

$$=-U_{O1}+2U_{O2} =-0.1+0.4=0.3V$$

$$U_{O4} = -\frac{1}{R_5 C} \int U_{O3} dt = -\frac{1}{100 \times 10^3 \times 1 \times 10^{-6}} \int 0.3 dt = -3t \quad (V)$$

- 七、电路如图所示, 试求:
 - (1) A 点电位 uA 与 ui 的关系表达式;
 - (2) 第一级电路的放大倍数;
 - (3) 如 R_1 = R_2 = R_3 = R_f ,输入电压时幅值为 1V 的正弦波 u_i = $sin\omega t(V)$,稳压管稳定电压 U_Z = $\pm 6V$,忽略稳压管的正向导通压降,分别画出 u_{o1} 和 u_{o2} 的波形图。

5

解: (1)
$$u_A = -\frac{R_f}{R_1}u_i$$

(2)
$$A_f = -\frac{1}{R_1} (R_f + R_3 + \frac{R_f R_3}{R_2})$$

(3) 如右图所示

- 八、在图示电路中,设 A_1 、 A_2 、 A_3 均为理想运算放大器,其最大输出电压幅值为 ± 12 V, $R_1=R_2=R_3=R_4=10$ k Ω 。
 - 1. 试说明 *A*₁、*A*₂、*A*₃ 各组成什么电路?
 - 2. A₁、A₂、A₃分别工作在线性区还是非线性区?
 - 3. 若输入为 1V 的直流电压,则各运算放大器输出端 u_{01} 、 u_{02} 、 u_{03} 的电压为多大?

解:

1. A1组成反相比例电路,

A2组成反相过零比较电路

A3组成电压跟随器电路

2. A₁、A₃工作在线性区

A2工作在非线性区

3. 若输入为 1V 的直流电压,则各运算放大器输出端 u_{O1} 、 u_{O2} 、 u_{O3} 的电压

$$u_{\rm O1} = -(R_2/R_1)u_{\rm i} = -1V$$

$$u_{\rm O2} = +12 \rm V$$

$$u_{\rm O3} = +U_{\rm Z} = +6{\rm V}$$