

Séries

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

* très facile ** facile *** difficulté moyenne **** difficile **** très difficile I: Incontournable

Exercice 1

Nature de la série de terme général

1) (*)
$$\ln \left(\frac{n^2 + n + 1}{n^2 + n - 1} \right)$$

5) (**)
$$\arccos \sqrt[3]{1-\frac{1}{n}}$$

1) (*) $\ln\left(\frac{n^2+n+1}{n^2+n-1}\right)$ 2) (*) $\frac{1}{n+(-1)^n\sqrt{n}}$ 3) (**) $\left(\frac{n+3}{2n+1}\right)^{\ln n}$ 4) (**) $\frac{1}{\ln(n)\ln(\cosh n)}$ 5) (**) $\arccos\sqrt[3]{1-\frac{1}{n^2}}$ 6) (*) $\frac{n^2}{(n-1)!}$ 7) $\left(\cos\frac{1}{\sqrt{n}}\right)^n-\frac{1}{\sqrt{e}}$ 8) (**) $\ln\left(\frac{2}{\pi}\arctan\frac{n^2+1}{n}\right)$ 9) (*) $\int_0^{\pi/2}\frac{\cos^2x}{n^2+\cos^2x}\,dx$ 10) (**) $n^{-\sqrt{2}\sin(\frac{\pi}{4}+\frac{1}{n})}$ 11) (**) $e-\left(1+\frac{1}{n}\right)^n$

9) (*)
$$\int_0^{\pi/2} \frac{\cos^2 x}{n^2 + \cos^2 x} dx$$

10) (**)
$$n^{-\sqrt{2}\sin(\frac{\pi}{4}+\frac{1}{n})}$$

11) (**)
$$e - (1 + \frac{1}{n})$$

Correction ▼ [005688]

Exercice 2

Nature de la série de terme général

1) (***) $\sqrt[4]{n^4 + 2n^2} - \sqrt[3]{P(n)}$ où P est un polynôme. 2) (**) $\frac{1}{n^{\alpha}}S(n)$ où $S(n) = \sum_{p=2}^{+\infty} \frac{1}{p^n}$.

3) (**) u_n où $\forall n \in \mathbb{N}^*$, $u_n = \frac{1}{n}e^{-u_{n-1}}$. 4) (****) $u_n = \frac{1}{p_n}$ où p_n est le n-ème nombre premier

(indication : considérer $\sum_{n=1}^{N} \ln \left(\frac{1}{1-\frac{1}{p_n}} \right) = \sum_{n=1}^{N} \ln (1+p_n+p_n^2+\ldots)$).

5) (***) $u_n = \frac{1}{n(c(n))^{\alpha}}$ où c(n) est le nombre de chiffres de n en base 10. **6**) (*) $\frac{(\prod_{k=2}^{n} \ln k)^{a}}{(n!)^{b}}$ a > 0 et b > 0. **7**) (**) $\arctan\left(\left(1 + \frac{1}{n}\right)^{a}\right) - \arctan\left(\left(1 - \frac{1}{n}\right)^{a}\right)$. **8**) (**) $\frac{1}{n^{\alpha}} \sum_{k=1}^{n} k^{3/2}$. **9**) (***) $\left(\prod_{k=1}^{n} \left(1 + \frac{k}{n^{\alpha}}\right)\right) - 1$.

Correction ▼ [005689]

Exercice 3

Nature de la série de terme général

1) (***)
$$\sin\left(\frac{\pi n^2}{n+1}\right)$$

2) (**)
$$\frac{(-1)^n}{n+(-1)^{n-1}}$$

3) (**)
$$\ln\left(1+\frac{(-1)^n}{\sqrt{n}}\right)$$

Nature de la serie de terme general

1) (***)
$$\sin\left(\frac{\pi n^2}{n+1}\right)$$
2) (**) $\frac{(-1)^n}{n+(-1)^{n-1}}$
3) (**) $\ln\left(1+\frac{(-1)^n}{\sqrt{n}}\right)$
4) (***) $\frac{e^{in\alpha}}{n}$, $\frac{\cos(n\alpha)}{n}$ et $\frac{\sin(n\alpha)}{n}$

 $(-1)^n \frac{P(n)}{Q(n)}$ où P et Q sont deux polynômes non nuls

7) (****) $(\sin(n!\pi e))^p$ p entier naturel non nul.

Correction ▼ [005690]

Exercice 4

Calculer les sommes des séries suivantes après avoir vérifié leur convergence.

1) (**)
$$\sum_{n=0}^{+\infty} \frac{n+1}{3^n}$$

2) (**)
$$\sum_{n=3}^{+\infty} \frac{2n-1}{n^3-4n}$$

3) (***)
$$\sum_{n=0}^{+\infty} \frac{1}{(3n)!}$$

1) (**)
$$\sum_{n=0}^{+\infty} \frac{n+1}{3^n}$$
 2) (**) $\sum_{n=3}^{+\infty} \frac{2n-1}{n^3-4n}$ 3) (***) $\sum_{n=0}^{+\infty} \frac{1}{(3n)!}$ 4) (*) $\sum_{n=2}^{+\infty} \left(\frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n}}\right)$ 5) (**) $\sum_{n=2}^{+\infty} \ln\left(1 + \frac{(-1)^n}{n}\right)$ 6) (***) $\sum_{n=0}^{+\infty} \ln\left(\cos\frac{a}{2^n}\right) a \in \left]0, \frac{\pi}{2}\right[$ textbf7) $\sum_{n=0}^{+\infty} \frac{\ln\frac{a}{2^n}}{2^n}$

5) (**)
$$\sum_{n=2}^{+\infty} \ln \left(1 + \frac{(-1)^n}{n}\right)$$

6) (***)
$$\sum_{n=0}^{+\infty} \ln\left(\cos\frac{a}{2^n}\right) a \in \left]0, \frac{\pi}{2}\right[$$

Correction ▼ [005691]

Exercice 5 *** I

Soit $(u_n)_{n\in\mathbb{N}}$ une suite décroissante de nombres réels strictement positifs telle que la série de terme général u_n converge. Montrer que $u_n = o\left(\frac{1}{n}\right)$. Trouver un exemple de suite $(u_n)_{n\in\mathbb{N}}$ de réels strictement positifs telle que la série de terme général u_n converge mais telle que la suite de terme général nu_n ne tende pas vers 0.

Correction ▼ [005692]

Exercice 6 ***

Soit σ une injection de \mathbb{N}^* dans lui-même. Montrer que la série de terme général $\frac{\sigma(n)}{n^2}$ diverge.

Correction ▼ [005693]

Exercice 7 **

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs. Montrer que les séries de termes généraux u_n , $\frac{u_n}{1+u_n}$, $\ln(1+u_n)$ et $\int_0^{u_n} \frac{dx}{1+x^e}$ sont de mêmes natures.

Correction ▼ [005694]

Exercice 8 ***

Trouver un développement limité à l'ordre 4 quand n tend vers l'infini de $\left(e - \sum_{k=0}^{n} \frac{1}{k!}\right) \times (n+1)!$.

Correction ▼ [005695]

Exercice 9 ***

Nature de la série de terme général $u_n = \sin \left(\pi (2 + \sqrt{3})^n\right)$.

Correction ▼ [005696]

Exercice 10 **

Soit $(u_n)_{n\in\mathbb{N}}$ une suite positive telle que la série de terme général u_n converge. Etudier la nature de la série de terme général $\frac{\sqrt{u_n}}{n}$.

Correction ▼ [005697]

Exercice 11 ***

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels positifs. Trouver la nature de la série de terme général $v_n = \frac{u_n}{(1+u_1)...(1+u_n)}, n \ge 1$, connaissant la nature de la série de terme général u_n puis en calculer la somme en cas de convergence.

Correction ▼ [005698]

Exercice 12 ****

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs telle que la série de terme général u_n diverge.

Pour $n \in \mathbb{N}$, on pose $S_n = u_0 + ... + u_n$. Etudier en fonction de $\alpha > 0$ la nature de la série de terme général $\frac{u_n}{(S_n)^{\alpha}}$. [005699]

Exercice 13 **

Soit $\alpha \in \mathbb{R}$. Nature de la série de terme général $u_n = \frac{1 + (-1)^n n^{\alpha}}{n^{2\alpha}}, n \geqslant 1$.

Correction ▼ [005700]

Exercice 14 ****

On sait que $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ln 2$.

A partir de la série précédente, on construit une nouvelle série en prenant p termes positifs, q termes négatifs, p termes positifs ... (Par exemple pour p=3 et q=2, on s'intéresse à $1+\frac{1}{3}+\frac{1}{5}-\frac{1}{2}-\frac{1}{4}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}-\frac{1}{8}+\ldots$).

Correction ▼ [005701]

Exercice 15 ***

Nature de la série de terme général $u_n = \sum_{k=1}^{n-1} \frac{1}{(k(n-k))^{\alpha}}$.

Correction ▼ [005702]

Exercice 16

Convergence et somme éventuelle de la série de terme général

1) (**)
$$u_n = \frac{2n^3 - 3n^2 + 1}{(n+3)!}$$
 2) (***) $u_n = \frac{n!}{(a+1)(a+2)...(a+n)}, n \ge 1, a \in \mathbb{R}^{+*}$ donné.

Correction ▼ [005703]

Exercice 17 *

Nature de la série de terme général $u_n = \sum_{k=1}^n \frac{1}{(n+k)^p}, p \in]0, +\infty[$.

Correction ▼ [005704]

Exercice 18 **

Déterminer un équivalent simple de $\frac{n!}{(a+1)(a+2)...(a+n)}$ quand n tend vers l'infini (a réel positif donné).

Correction ▼ [005705]

Exercice 19 *

Nature de la série de terme général $u_n = \sum_{k=1}^n \frac{1}{(n+k)^p}, p \in]0, +\infty[$.

Correction ▼ [005706]

Exercice 20 *** I

Développement limité à l'ordre 4 de $\sum_{k=n+1}^{+\infty} \frac{1}{k^2}$ quand n tend vers l'infini.

Correction ▼ [005707]

Exercice 21

Partie principale quand n tend vers $+\infty$ de

1) (***)
$$\sum_{p=n+1}^{+\infty} (-1)^p \frac{\ln p}{p}$$
 2) (**) $\sum_{p=1}^n p^p$.

Correction ▼ [005708]

Exercice 22 ***

Soit $p \in \mathbb{N}^*$, calculer $\sum_{p \in \mathbb{N}^*} \left(\sum_{n \in \mathbb{N}^*, \, n \neq p} \frac{1}{n^2 - p^2} \right)$ et $\sum_{n \in \mathbb{N}^*} \left(\sum_{p \in \mathbb{N}^*, \, p \neq n} \frac{1}{n^2 - p^2} \right)$. Que peut-on en déduire ? [005709]

Exercice 23 **

 $\overline{\text{Calculer }\sum_{n=0}^{+\infty}\frac{(-1)^n}{3n+1}}.$

Correction ▼ [005710]

Exercice 24 ****

Soient $(u_n)_{n\geqslant 1}$ une suite réelle. Pour $n\geqslant 1$, on pose $v_n=\frac{u_1+\ldots+u_n}{n}$. Montrer que si la série de terme général $(u_n)^2$ converge alors la série de terme général $(v_n)^2$ converge et que $\sum_{n=1}^{+\infty}(v_n)^2\leqslant 4\sum_{n=1}^{+\infty}(u_n)^2$ (indication : majorer $v_n^2-2u_nv_n$).

Correction \blacktriangledown [005711]

Exercice 25 ***

Convergence et somme de la série de terme général $u_n = \frac{\pi}{4} - \sum_{k=0}^n \frac{(-1)^k}{2k+1}, n \geqslant 0.$

Correction ▼ [005712] 1. Pour $n \ge 1$, on pose $u_n = \ln\left(\frac{n^2 + n + 1}{n^2 + n - 1}\right)$. $\forall n \ge 1$, u_n existe

$$u_n = \ln\left(1 + \frac{1}{n} + \frac{1}{n^2}\right) - \ln\left(1 + \frac{1}{n} - \frac{1}{n^2}\right) \underset{n \to +\infty}{=} \left(\frac{1}{n} + O\left(\frac{1}{n^2}\right)\right) - \left(\frac{1}{n} + O\left(\frac{1}{n^2}\right)\right) = O\left(\frac{1}{n^2}\right).$$

Comme la série de terme général $\frac{1}{n^2}$, $n \ge 1$, converge (série de RIEMANN d'exposant $\alpha > 1$), la série de terme général u_n converge.

- 2. Pour $n \ge 2$, on pose $u_n = \frac{1}{n + (-1)^n \sqrt{n}}$. $\forall n \ge 2$, u_n existe et de plus $u_n \underset{n \to +\infty}{\sim} \frac{1}{n}$. Comme la série de terme général $\frac{1}{n}$, $n \ge 2$, diverge et est positive, la série de terme général u_n diverge.
- 3. Pour $n \ge 1$, on pose $u_n = \left(\frac{n+3}{2n+1}\right)^{\ln n}$. Pour $n \ge 1$, $u_n > 0$ et

$$\ln(u_n) = \ln(n) \ln\left(\frac{n+3}{2n+1}\right) = \ln(n) \left(\ln\left(\frac{1}{2}\right) + \ln\left(1 + \frac{3}{n}\right) - \ln\left(1 + \frac{1}{2n}\right)\right)$$

$$= \lim_{n \to +\infty} \ln(n) \left(-\ln 2 + O\left(\frac{1}{n}\right)\right) = \lim_{n \to +\infty} -\ln 2\ln(n) + o(1).$$

Donc $u_n = e^{\ln(u_n)} \sim_{n \to +\infty} e^{-\ln 2 \ln n} = \frac{1}{n^{\ln 2}}$. Comme la série de terme général $\frac{1}{n^{\ln 2}}$, $n \geqslant 1$, diverge (série de RIEMANN d'exposant $\alpha \leqslant 1$) et est positive, la série de terme général u_n diverge.

4. Pour $n \ge 2$, on pose $u_n = \frac{1}{\ln(n)\ln(\cosh n)}$. u_n existe pour $n \ge 2$. $\ln(\cosh n) \underset{n \to +\infty}{\sim} \ln\left(\frac{e^n}{2}\right) = n - \ln 2 \underset{n \to +\infty}{\sim} n$ et $u_n \underset{n \to +\infty}{\sim} \frac{1}{n\ln(n)} > 0$.

Vérifions alors que la série de terme général $\frac{1}{n \ln n}$, $n \ge 2$, diverge. La fonction $x \to x \ln x$ est continue, croissante et strictement positive sur $]1, +\infty[$ (produit de deux fonctions strictement positives et croissantes sur $]1, +\infty[$). Par suite, la fonction $x \to \frac{1}{x \ln x}$ est continue et décroissante sur $]1, +\infty[$ et pour tout entier k supérieur ou égal à 2,

$$\frac{1}{k \ln k} \geqslant \int_{k}^{k+1} \frac{1}{r \ln r} dx$$

Par suite, pour $n \ge 2$,

$$\sum_{k=2}^{n} \frac{k \ln k}{\geqslant} \sum_{k=2}^{n} \int_{k}^{k+1} \frac{1}{x \ln x} dx = \int_{2}^{n+1} \frac{1}{x \ln x} dx = \ln(\ln(n+1)) - \ln(\ln(2)) \xrightarrow{n \to \infty} +\infty.$$

Donc u_n est positif et équivalent au terme général d'une série divergente. La série de terme général u_n diverge.

5. Pour $n \ge 1$, on pose $u_n = \arccos \sqrt[3]{1 - \frac{1}{n^2}}$. u_n existe pour $n \ge 1$. De plus $u_n \underset{n \to +\infty}{\to} 0$. On en déduit que

$$u_n \underset{n \to +\infty}{\sim} \sin(u_n) = \sin\left(\arccos\sqrt[3]{1 - \frac{1}{n^2}}\right) = \sqrt{1 - \left(1 - \frac{1}{n^2}\right)^{2/3}} \underset{n \to +\infty}{=} \sqrt{1 - 1 + \frac{2}{3n^2} + o\left(\frac{1}{n^2}\right)}$$

$$\underset{n \to +\infty}{\sim} \sqrt{\frac{2}{3}} \frac{1}{n} > 0$$

terme général d'une série de RIEMANN divergente. La série de terme général un diverge.

6. Pour $n \ge 1$, on pose $u_n = \frac{n^2}{(n-1)!}$. u_n existe et $u_n \ne 0$ pour $n \ge 1$. De plus,

$$\left| \frac{u_{n+1}}{u_n} \right| = \frac{(n+1)^2}{n^2} \times \frac{(n-1)!}{n!} = \frac{(n+1)^2}{n^3} \underset{n \to +\infty}{\sim} \frac{1}{n} \underset{n \to +\infty}{\to} 0 < 1.$$

5

D'après la règle de d'ALEMBERT, la série de terme général u_n converge.

7. Pour $n \ge 1$, on pose $u_n = \left(\cos\frac{1}{\sqrt{n}}\right)^n - \frac{1}{\sqrt{e}}$. u_n est défini pour $n \ge 1$ car pour $n \ge 1$, $\frac{1}{\sqrt{n}} \in \left]0, \frac{\pi}{2}\right[$ et donc $\cos \frac{1}{\sqrt{n}} > 0$. Ensuite

$$\ln\left(\cos\frac{1}{\sqrt{n}}\right) \underset{n \to +\infty}{=} \ln\left(1 - \frac{1}{2n} + \frac{1}{24n^2} + o\left(\frac{1}{n^2}\right)\right) \underset{n \to +\infty}{=} -\frac{1}{2n} + \frac{1}{24n^2} - \frac{1}{8n^2} + o\left(\frac{1}{n^2}\right)$$

$$\underset{n \to +\infty}{=} -\frac{1}{2n} - \frac{1}{12n^2} + o\left(\frac{1}{n^2}\right).$$

Puis $n \ln \left(\cos \frac{1}{\sqrt{n}}\right) = \frac{1}{n \to +\infty} - \frac{1}{2} - \frac{1}{12n} + o\left(\frac{1}{n}\right)$ et donc

$$u_n = e^{n\ln(\cos(1/\sqrt{n}))} - \frac{1}{\sqrt{e}} = \frac{1}{\sqrt{e}} \left(e^{-\frac{1}{12n} + o\left(\frac{1}{n}\right)} - 1 \right) \underset{n \to +\infty}{\sim} - \frac{1}{12n\sqrt{e}} < 0.$$

La série de terme général $-\frac{1}{12n\sqrt{e}}$ est divergente et donc la série de terme général u_n diverge.

8.

$$\begin{split} \ln\left(\frac{2}{\pi}\arctan\left(\frac{n^2+1}{n}\right)\right) &= \ln\left(1-\frac{2}{\pi}\arctan\left(\frac{n}{n^2+1}\right)\right) \\ &\underset{n\to+\infty}{\sim} -\frac{2}{\pi}\arctan\left(\frac{n}{n^2+1}\right) \underset{n\to+\infty}{\sim} -\frac{2}{\pi}\frac{n}{n^2+1} \underset{n\to+\infty}{\sim} -\frac{2}{n\pi} < 0. \end{split}$$

Donc, la série de terme général u_n diverge.

9. Pour $n \ge 1$, on pose $u_n = \int_0^{\pi/2} \frac{\cos^2 x}{n^2 + \cos^2 x} dx$. Pour $n \ge 1$, la fonction $x \mapsto \frac{\cos^2 x}{n^2 + \cos^2 x} dx$ est continue sur $\left[0, \frac{\pi}{2}\right]$ et positive et donc, u_n existe et est positif. De plus, pour $n \ge 1$,

$$0 \leqslant u_n \leqslant \int_0^{\pi/2} \frac{1}{n^2 + 0} dx = \frac{\pi}{2n^2}.$$

La série de terme général $\frac{\pi}{2n^2}$ converge et donc la série de terme général u_n converge.

10.
$$-\sqrt{2}\sin\left(\frac{\pi}{4} + \frac{1}{n}\right) = -\sin\left(\frac{1}{n}\right) - \cos\left(\frac{1}{n}\right) \underset{n \to +\infty}{=} -1 + O\left(\frac{1}{n}\right)$$
 puis

$$-\sqrt{2}\sin\left(\frac{\pi}{4}+\frac{1}{n}\right)\ln n \underset{n\to+\infty}{=} -\ln(n) + O\left(\frac{\ln n}{n}\right) \underset{n\to+\infty}{=} -\ln(n) + o(1).$$

Par suite,

$$0 < u_n = e^{-\sqrt{2}\sin\left(\frac{\pi}{4} + \frac{1}{n}\right)\ln n} \underset{n \to +\infty}{\sim} e^{-\ln n} = \frac{1}{n}.$$

La série de terme général $\frac{1}{n}$ diverge et la série de terme général u_n diverge.

11. $n \ln \left(1 + \frac{1}{n}\right) = 1 - \frac{1}{2n} + o\left(\frac{1}{n}\right)$ et donc

$$u_n \underset{n \to +\infty}{=} e - e^{1 - \frac{1}{2n} + o\left(\frac{1}{n}\right)} \underset{n \to +\infty}{=} e\left(1 - 1 + \frac{1}{2n} + o\left(\frac{1}{n}\right)\right) \underset{n \to +\infty}{\sim} \frac{e}{2n} > 0.$$

La série de terme général $\frac{e}{2n}$ diverge et la série de terme général u_n diverge.

Correction de l'exercice 2 A

1. Si P n'est pas unitaire de degré 3, u_n ne tend pas vers 0 et la série de terme général u_n diverge grossièrement.

Soit *P* un polynôme unitaire de degré 3. Posons $P = X^3 + aX^2 + bX + c$.

$$u_{n} = n \left(\left(1 + \frac{2}{n^{2}} \right)^{1/4} - \left(1 + \frac{a}{n} + \frac{b}{n^{2}} + \frac{c}{n^{3}} \right)^{1/3} \right)$$

$$= n \left(\left(1 + \frac{1}{2n^{2}} + O\left(\frac{1}{n^{3}}\right) \right) - \left(1 + \frac{a}{3n} + \frac{b}{3n^{2}} - \frac{a^{2}}{9n^{2}} + O\left(\frac{1}{n^{3}}\right) \right) \right)$$

$$= -\frac{a}{3} + \left(\frac{1}{2} - \frac{b}{3} + \frac{a^{2}}{9} \right) \frac{1}{n} + O\left(\frac{1}{n^{2}}\right).$$

- Si $a \neq 0$, u_n ne tend pas vers 0 et la série de terme général u_n diverge grossièrement.
- Si a=0 et $\frac{1}{2}-\frac{b}{3}\neq 0$, $u_n \underset{n\to +\infty}{\sim} \left(\frac{1}{2}-\frac{b}{3}\right)\frac{1}{n}$. u_n est donc de signe constant pour n grand et est équivalent au terme général d'une série divergente. Donc la série de terme général u_n diverge.
- Si a = 0 et $\frac{1}{2} \frac{b}{3} = 0$, $u_n = O\left(\frac{1}{n^2}\right)$. Dans ce cas, la série de terme général u_n converge (absolument).

En résumé, la série de terme général u_n converge si et seulement si a=0 et $b=\frac{3}{2}$ ou encore la série de terme général u_n converge si et seulement si P est de la forme $X^3+\frac{3}{2}X+c, c\in\mathbb{R}$.

2. Pour $n \ge 2$, posons $u_n = \frac{1}{n^{\alpha}}S(n)$. Pour $n \ge 2$,

$$0 < S(n+1) = \sum_{p=2}^{+\infty} \frac{1}{p} \times \frac{1}{p^n} \le \frac{1}{2} \sum_{p=2}^{+\infty} \frac{1}{p^n} = \frac{1}{2} S(n)$$

et donc $\forall n \geqslant 2$, $S(n) \leqslant \frac{S(2)}{2^{n-2}}$. Par suite,

$$u_n \leqslant \frac{1}{n^{\alpha}} \frac{S(2)}{2^{n-2}} = o\left(\frac{1}{n^2}\right).$$

Pour tout réel α , la série de terme général u_n converge.

- 3. $\forall u_0 \in \mathbb{R}, \forall n \in \mathbb{N}^*, u_n > 0$. Par suite, $\forall n \geqslant 2, 0 < u_n < \frac{1}{n}$. On en déduit que $\lim_{n \to +\infty} u_n = 0$ et par suite $u_n \underset{n \to +\infty}{\sim} \frac{1}{n} > 0$. La série de terme général u_n diverge.
- 4. On sait qu'il existe une infinité de nombres premiers.

Notons $(p_n)_{n\in\mathbb{N}^*}$ la suite croissante des nombres premiers. La suite $(p_n)_{n\in\mathbb{N}^*}$ est une suite strictement croissante d'entiers et donc $\lim_{n\to+\infty}p_n=+\infty$ ou encore $\lim_{n\to+\infty}\frac{1}{p_n}=0$.

Par suite, $0 < \frac{1}{p_n} \sim \ln\left(\left(1 - \frac{1}{p_n}\right)^{-1}\right)$ et les séries de termes généraux $\frac{1}{p_n}$ et $\ln\left(\left(1 - \frac{1}{p_n}\right)^{-1}\right)$ sont de même nature.

Il reste donc à étudier la nature de la série de terme général $\ln \left(\left(1 - \frac{1}{p_n} \right)^{-1} \right)$.

Montrons que $\forall N \in \mathbb{N}^*$, $\sum_{n=1}^{+\infty} \ln \left(\left(1 - \frac{1}{p_n} \right)^{-1} \right) \geqslant \ln \left(\sum_{k=1}^{N} \frac{1}{k} \right)$.

Soit $n \ge$. Alors $\frac{1}{p_n} < 1$ et la série de terme général $\frac{1}{p_n^k}$, $k \in \mathbb{N}$, est une série géométrique convergente de somme : $\sum_{k=0}^{+\infty} \frac{1}{p_n^k} = \left(1 - \frac{1}{p_n}\right)^{-1}$.

Soit alors N un entier naturel supérieur ou égal à 2 et $p_1 < p_2 ... < p_n$ la liste des nombres premiers inférieurs ou égaux à N.

Tout entier entre 1 et N s'écrit de manière unique $p_1^{\beta_1} \dots p_k^{\beta_k}$ où $\forall i \in [\![1,n]\!], 0 \leqslant \beta_i \leqslant \alpha_i = E\left(\frac{\ln(N)}{\ln(p_i)}\right)$ et deux entiers distincts ont des décompositions distinctes. Donc

$$\begin{split} \sum_{k=1}^{+\infty} \ln\left(\left(1 - \frac{1}{p_k}\right)^{-1}\right) &\geqslant \sum_{k=1}^{n} \ln\left(\left(1 - \frac{1}{p_k}\right)^{-1}\right) \left(\operatorname{car} \forall k \in \mathbb{N}^*, \left(1 - \frac{1}{p_k}\right)^{-1} > 1\right) \\ &= \sum_{k=1}^{n} \ln\left(\sum_{i=0}^{+\infty} \frac{1}{p_k^i}\right) \geqslant \sum_{k=1}^{n} \ln\left(\sum_{i=0}^{\alpha_k} \frac{1}{p_k^i}\right) \\ &= \ln\left(\prod_{k=1}^{n} \left(\sum_{i=0}^{\alpha_k} \frac{1}{p_k^i}\right)\right) = \ln\left(\sum_{0 \leqslant \beta_1 \leqslant \alpha_1, \dots, \dots, 0 \leqslant \beta_n \leqslant \alpha_n} \frac{1}{p_1^{\beta_1} \dots, p_n^{\beta_n}}\right) \\ &\geqslant \ln\left(\sum_{k=1}^{N} \frac{1}{k}\right). \end{split}$$

Or
$$\lim_{N\to+\infty} \ln\left(\sum_{k=1}^N \frac{1}{k}\right) = +\infty$$
 et donc $\sum_{k=1}^{+\infty} \ln\left(\left(1 - \frac{1}{p_k}\right)^{-1}\right) = +\infty$.

La série de terme général $\ln\left(1-\frac{1}{p_k}\right)^{-1}$ diverge et il en est de même de la série de terme général $\frac{1}{p_n}$. (Ceci montre qu'il y a beaucoup de nombres premiers et en tout cas beaucoup plus de nombres premiers que de carrés parfaits par exemple).

5. Soit $n \in \mathbb{N}^*$. Posons $n = a_p \times 10^p + ... + a_1 \times 10 + a_0$ où $\forall i \in [0, p], a_i \in \{0, 1; ..., 9\}$ et $a_p \neq 0$. Alors c(n) = p + 1.

Déterminons p est en fonction de n. On a $10^p \le n < 10^{p+1}$ et donc $p = E(\log(n))$. Donc

$$\forall n \in \mathbb{N}^*, u_n = \frac{1}{n(E(\log n) + 1)^{\alpha}}.$$

Par suite, $u_n \underset{n \to +\infty}{\sim} \frac{\ln^{\alpha}(10)}{n \ln^{\alpha}(n)}$ et la série de terme général u_n converge si et seulement si $\alpha > 1$ (séries de BERTRAND). Redémontrons ce résultat qui n'est pas un résultat de cours.

La série de terme général $\frac{1}{n \ln n}$ est divergente (voir l'exercice 1, 4)). Par suite, si $\alpha \leqslant 1$, la série de terme général $\frac{1}{n \ln^{\alpha}(n)}$ est divergente car $\forall n \geqslant 2, \frac{1}{n \ln^{\alpha}(n)} \geqslant \frac{1}{n \ln n}$.

Soit $\alpha > 1$. Puisque la fonction $x \mapsto \frac{1}{x \ln^{\alpha} x}$ est continue et strictement décroissante sur $]1, +\infty[$, pour $k \geqslant 3$,

$$\frac{1}{k \ln^{\alpha} k} \leqslant \int_{k-1}^{k} \frac{1}{x \ln^{\alpha} x} \, dx$$

puis, pour $n \ge 3$, en sommant pour $k \in [3, n]$

$$\sum_{k=3}^{n} \frac{1}{k \ln^{\alpha} k} \leqslant \sum_{k=3}^{n} \int_{k-1}^{k} \frac{1}{x \ln^{\alpha} x} dx = \int_{2}^{n} \frac{1}{x \ln^{\alpha} x} dx = \frac{1}{\alpha - 1} \left(\frac{1}{\ln^{\alpha - 1}(2)} - \frac{1}{\ln^{\alpha - 1}(n)} \right) \leqslant \frac{1}{\alpha - 1} \frac{1}{\ln^{\alpha - 1}(2)}.$$

Ainsi, la suite des sommes partielles de la série à termes positifs, de terme général $\frac{1}{k \ln^{\alpha} k}$, est majorée et donc la série de terme général $\frac{1}{k \ln^{\alpha} k}$ converge.

6 Soit $n \ge 2$.

$$\left|\frac{u_{n+1}}{u_n}\right| = \frac{\ln^a(n+1)}{(n+1)^b} \underset{n \to +\infty}{\longrightarrow} 0 < 1$$

et d'après la règle de d'ALEMBERT, la série de terme général u_n converge.

6. $\lim_{n \to +\infty} u_n = \frac{\pi}{4} - \frac{\pi}{4} = 0$. Donc

$$u_{n} \underset{n \to +\infty}{\sim} \tan(u_{n})$$

$$= \frac{\left(1 + \frac{1}{n}\right)^{a} - \left(1 - \frac{1}{n}\right)^{a}}{1 + \left(1 - \frac{1}{n^{2}}\right)^{a}} = \frac{\frac{2a}{n} + O\left(\frac{1}{n^{2}}\right)}{2 + O\left(\frac{1}{n^{2}}\right)} = \frac{a}{n + O\left(\frac{1}{n^{2}}\right)}.$$

Par suite, la série de terme général u_n converge si et seulement si a = 0.

7. La fonction $x \mapsto x^{3/2}$ est continue et croissante sur \mathbb{R}^+ . Donc pour $k \ge 1$, $\int_{k-1}^k x^{3/2} dx \le k^{3/2} \le \int_k^{k+1} x^{3/2} dx$ puis pour $n \in \mathbb{N}^*$:

$$\int_0^n x^{3/2} dx \sum_{k=1}^n \int_{k-1}^k x^{3/2} dx \leqslant \sum_{k=1}^n k^{3/2} \leqslant \sum_{k=1}^n \int_k^{k+1} x^{3/2} dx = \int_1^{n+1} x^{3/2} dx$$

ce qui fournit

$$\frac{2}{5}n^{5/2} \leqslant \sum_{k=1}^{n} k^{3/2} \leqslant \frac{2}{5}((n+1)^{5/2}-1)$$
 et donc $\sum_{k=1}^{n} k^{3/2} \sim 2n^{5/2} = 2n^{5/2}$.

Donc $u_n \sim \frac{2n^{\frac{5}{2}-\alpha}}{5} > 0$. La série de terme général u_n converge si et seulement si $\alpha > \frac{7}{2}$.

8. Pour $n \ge 1$,

$$u_n = \left(1 + \frac{1}{n^{\alpha}}\right) \left(1 + \frac{2}{n^{\alpha}}\right) \dots \left(1 + \frac{n}{n^{\alpha}}\right) - 1 \geqslant \frac{1}{n^{\alpha}} + \frac{2}{n^{\alpha}} + \dots + \frac{n}{n^{\alpha}} = \frac{n(n+1)}{2n^{\alpha}} > 0.$$

Comme $\frac{n(n+1)}{2n^{\alpha}} \underset{n \to +\infty}{\sim} \frac{1}{2n^{\alpha-2}}$, si $\alpha \leqslant 3$, on a $\alpha-2 \leqslant 1$ et la série de terme général u_n diverge. Si $\alpha > 3$,

$$0 < u_n \leqslant \left(1 + \frac{n}{n^{\alpha}}\right)^n - 1 = e^{n\ln\left(1 + \frac{1}{n^{\alpha - 1}}\right)} - 1$$

$$\underset{n \to +\infty}{\sim} n\ln\left(1 + \frac{1}{n^{\alpha - 1}}\right)$$

$$\underset{n \to +\infty}{\sim} \frac{1}{n^{\alpha - 2}} \text{ terme général d'une série de RIEMANN convergente,}$$

et, puisque $\alpha - 2 > 1$, la série de terme général u_n converge. Finalement, la série de terme général u_n converge si et seulement si $\alpha > 3$.

Correction de l'exercice 3

1. Pour $n \in \mathbb{N}$,

$$u_n = \sin\left(\frac{\pi n^2}{n+1}\right) = \sin\left(\frac{\pi (n^2 - 1 + 1)}{n+1}\right) = \sin\left(\frac{\pi}{n+1} + (n-1)\pi\right) = (-1)^{n-1}\sin\left(\frac{\pi}{n+1}\right).$$

La suite $\left((-1)^{n-1}\sin\left(\frac{\pi}{n+1}\right)\right)_{n\in\mathbb{N}}$ est alternée en signe et sa valeur absolue tend vers 0 en décroissant. La série de terme général u_n converge donc en vertu du critère spécial aux séries alternées.

2. (la suite $\left(\frac{1}{n+(-1)^{n-1}}\right)_{n\in\mathbb{N}}$ n'est pas décroisante à partir d'un certain rang).

$$u_n = \frac{(-1)^n}{n} \frac{1}{1 + \frac{(-1)^{n-1}}{n}} = \frac{(-1)^n}{n} \left(1 + O\left(\frac{1}{n}\right)\right) = \frac{(-1)^n}{n} + O\left(\frac{1}{n^2}\right).$$

La série de terme général $\frac{(-1)^n}{n}$ converge en vertu du critère spécial aux séries alternées et la série de terme général $O\left(\frac{1}{n^2}\right)$ est absolument convergente. On en déduit que la série de terme général u_n converge.

3. $u_n = \ln\left(1 + \frac{(-1)^n}{\sqrt{n}}\right) \underset{n \to +\infty}{=} \frac{(-1)^n}{\sqrt{n}} - \frac{1}{2n} + O\left(\frac{1}{n^{3/2}}\right)$. Les séries de termes généraux respectifs $\frac{(-1)^n}{\sqrt{n}}$ et $O\left(\frac{1}{n^{3/2}}\right)$ sont convergentes et la série de terme général $-\frac{1}{2n}$ est divergente. Si la série de terme général u_n convergeait alors la série de terme général $-\frac{1}{2n} = u_n - \frac{(-1)^n}{\sqrt{n}} - O\left(\frac{1}{n^{3/2}}\right)$ convergerait ce qui n'est pas. Donc la série de terme général u_n diverge.

Remarque. La série de terme général u_n diverge bien que u_n soit équivalent au terme général d'une série convergente.

4. Si $\alpha \in 2\pi\mathbb{Z}$, alors les deux premières séries divergent et la dernière converge. Soit $\alpha \notin 2\pi\mathbb{Z}$. Pour $n \in \mathbb{N}^*$, posons $v_n = e^{in\alpha}$ et $\varepsilon_n = \frac{1}{n}$ de sorte que $u_n = \varepsilon_n v_n$. Pour $n \in \mathbb{N}^*$, posons encore $V_n = \sum_{k=1}^n v_k$. Pour $(n,p) \in (\mathbb{N}^*)^2$, posons enfin $R_n^p = \sum_{k=1}^{n+p} u_k - \sum_{k=1}^n u_k = \sum_{k=n+1}^{n+p} u_k$. (On effectue alors une transformation d'ABEL).

$$R_n^p = \sum_{k=n+1}^{n+p} \varepsilon_k v_k = \sum_{k=n+1}^{n+p} \varepsilon_k (V_k - V_{k-1}) = \sum_{k=n+1}^{n+p} \varepsilon_k V_k - \sum_{k=n+1}^{n+p} \varepsilon_k V_{k-1} = \sum_{k=n+1}^{n+p} \varepsilon_k V_k - \sum_{k=n+1}^{n+p-1} \varepsilon_k V_k - \sum_{k=n+1}^{n+p$$

Maintenant, pour $n \in \mathbb{N}^*$, $V_n = e^{i\alpha} \frac{e^{in\alpha} - 1}{e^{i\alpha} - 1} = e^{i\alpha} \frac{\sin(n\alpha/2)}{\sin(\alpha/2)}$ et donc $\forall n \in \mathbb{N}^*$, $|V_n| \leqslant \frac{1}{|\sin(\alpha/2)|}$. Par suite, pour $(n, p) \in (\mathbb{N}^*)^2$

$$\begin{split} |R_n^p| &= \left| \frac{1}{n+p} V_{n+p} - \frac{1}{n+1} V_n + \sum_{k=n+1}^{n+p-1} \left(\frac{1}{k} - \frac{1}{k+1} \right) V_k \right| \\ &\leqslant \frac{1}{|\sin(\alpha/2)|} \left(\frac{1}{n+p} + \frac{1}{n+1} + \sum_{k=n+1}^{n+p-1} \left(\frac{1}{k} - \frac{1}{k+1} \right) \right) \\ &= \frac{1}{|\sin(\alpha/2)|} \left(\frac{1}{n+p} + \frac{1}{n+1} + \frac{1}{n+1} - \frac{1}{n+p} \right) = \frac{2}{|\sin(\alpha/2)|(n+1)} \\ &\leqslant \frac{2}{n|\sin(\alpha/2)|}. \end{split}$$

Soit alors ε un réel strictement positif. Pour $n \geqslant E\left(\frac{2}{\varepsilon |\sin(\alpha/2)|}\right) + 1$ et p entier naturel non nul quelconque, on a $|R_n^p| < \varepsilon$.

On a montré que $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}^* / \forall (n,p) \in \mathbb{N}^*$, $(n \geqslant n_0 \Rightarrow \left| \sum_{k=1}^{n+p} u_k - \sum_{k=1}^n u_k \right| < \varepsilon$.

Ainsi, la série de terme général u_n vérifie le critère de CAUCHY et est donc convergente. Il en est de même des séries de termes généraux respectifs $\frac{\cos(n\alpha)}{n} = \text{Re}\left(\frac{e^{in\alpha}}{n}\right)$ et $\frac{\sin(n\alpha)}{n} = \text{Im}\left(\frac{e^{in\alpha}}{n}\right)$.

- 5. Pour $x \in]0, +\infty[$, posons $f(x) = \frac{\ln x}{x}$. f est dérivable sur $]0, +\infty[$ et $\forall x > e$, $f'(x) = \frac{1 \ln x}{x} < 0$. Donc, la fonction f est décroissante sur $[e, +\infty[$. On en déduit que la suite $\left(\frac{\ln n}{n}\right)_{n\geqslant 3}$ est une suite décroissante. Mais alors la série de terme général $(-1)^n \frac{\ln n}{n}$ converge en vertu du critère spécial aux séries alternées.
- 6. Si $\deg P \geqslant \deg Q$, u_n ne tend pas vers 0 et la série de terme général u_n est grossièrement divergente.
 - Si $\deg P \leqslant \deg Q 2$, $u_n = O\left(\frac{1}{n^2}\right)$ et la série de terme général u_n est absolument convergente.
 - Si $\deg P = \deg Q 1$, $u_n = (-1)^n \frac{\operatorname{dom} P}{n \operatorname{dom} Q} + O\left(\frac{1}{n^2}\right)$. u_n est alors somme de deux termes généraux de séries convergentes et la série de terme général u_n converge.

En résumé, la série de terme général u_n converge si et seulement si $\deg P < \deg Q$.

7. $e = \sum_{k=0}^{+\infty} \frac{1}{k!}$ puis pour $n \ge 2$, $n!e = 1 + n + \sum_{k=0}^{n-2} \frac{n!}{k!} + \sum_{k=n+1}^{+\infty} \frac{n!}{k!}$.

Pour $0 \le k \le n-2$, $\frac{n!}{k!}$ est un entier divisible par n(n-1) et est donc un entier pair que l'on note $2K_n$. Pour $n \ge 2$, on obtient

$$\sin(n!\pi e) = \sin\left(2K_n\pi + (n+1)\pi + \pi\sum_{k=n+1}^{+\infty} \frac{n!}{k!}\right) = (-1)^{n+1}\sin\left(\pi\sum_{k=n+1}^{+\infty} \frac{n!}{k!}\right).$$

Déterminons un développement limité à l'ordre 2 de $\sum_{k=n+1}^{+\infty} \frac{n!}{k!}$ quand n tend vers $+\infty$.

$$\sum_{k=n+1}^{+\infty} \frac{n!}{k!} = \frac{1}{n+1} + \frac{1}{(n+1)(n+2)} + \sum_{k=n+3}^{+\infty} \frac{n!}{k!}.$$

Maintenant, pour $k \ge n+3$, $\frac{n!}{k!} = \frac{1}{k(k-1)...(n+1)} \le \frac{1}{(n+1)^{k-n}}$ et donc

$$\sum_{k=n+3}^{+\infty} \frac{n!}{k!} \leqslant \sum_{k=n+3}^{+\infty} \frac{1}{(n+1)^{k-n}} = \frac{1}{(n+1)^3} \times \frac{1}{1 - \frac{1}{n+1}} = \frac{1}{n(n+1)^2} \leqslant \frac{1}{n^3}.$$

On en déduit que $\sum_{k=n+3}^{+\infty} \frac{n!}{k!} = o\left(\frac{1}{n^2}\right)$. Il reste

$$\sum_{k=n+1}^{+\infty} \frac{n!}{k!} = \frac{1}{n+1} + \frac{1}{(n+1)(n+2)} + o\left(\frac{1}{n^2}\right) = \frac{1}{n \to +\infty} \frac{1}{n} \left(1 + \frac{1}{n}\right)^{-1} + \frac{1}{n^2} + o\left(\frac{1}{n^2}\right) = \frac{1}{n \to +\infty} \frac{1}{n} + o\left(\frac{1}{n^2}\right).$$

Finalement, $\sin(n!\pi e) = (-1)^{n+1} \sin\left(\frac{\pi}{n} + o\left(\frac{1}{n^2}\right)\right) = \frac{(-1)^{n+1}\pi}{n} + \left(\frac{1}{n^2}\right)$.

 $\sin(n!\pi e)$ est somme de deux termes généraux de séries convergentes et la série de terme général $\sin(n!\pi e)$ converge.

Si $p \geqslant 2$, $|\sin^p(n!\pi e)| \underset{n \to +\infty}{\sim} \frac{\pi^p}{n^p}$ et la série de terme général $\sin^p(n!\pi e)$ converge absolument.

Correction de l'exercice 4

1. $\frac{n+1}{3^n} = o\left(\frac{1}{n^2}\right)$. Par suite, la série de terme général $\frac{n+1}{3^n}$ converge.

1er calcul. Soit $S = \sum_{n=0}^{+\infty} \frac{n+1}{3^n}$. Alors

$$\frac{1}{3}S = \sum_{n=0}^{+\infty} \frac{n+1}{3^{n+1}} = \sum_{n=1}^{+\infty} \frac{n}{3^n} = \sum_{n=1}^{+\infty} \frac{n+1}{3^n} - \sum_{n=1}^{+\infty} \frac{1}{3^n}$$
$$= (S-1) - \frac{1}{3} \frac{1}{1 - \frac{1}{3}} = S - \frac{3}{2}.$$

On en déduit que $S = \frac{9}{4}$.

$$\sum_{n=0}^{+\infty} \frac{n+1}{3^n} = \frac{9}{4}.$$

2ème calcul. Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}$, on pose $f_n(x) = \sum_{k=0}^n x^k$.

Soit $n \in \mathbb{N}^*$. f_n est dérivable sur \mathbb{R} et pour $x \in \mathbb{R}$,

$$f'_n(x) = \sum_{k=1}^n kx^{k-1} = \sum_{k=0}^{n-1} (k+1)x^k.$$

Par suite, pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R} \setminus \{1\}$

$$\sum_{k=0}^{n-1} (k+1)x^k = f_n'(x) = \left(\frac{x^n - 1}{x - 1}\right)'(x) = \frac{nx^{n-1}(x - 1) - (x^n - 1)}{(x - 1)^2} = \frac{(n - 1)x^n - nx^{n-1} + 1}{(x - 1)^2}.$$

Pour $x = \frac{1}{3}$, on obtient $\sum_{k=0}^{n-1} \frac{k+1}{3^k} = \frac{\frac{n-1}{3^n} - \frac{n}{3^{n-1}} + 1}{\left(\frac{1}{3} - 1\right)^2}$ et quand n tend vers l'infini, on obtient de nouveau $S = \frac{9}{4}$.

2. Pour $k \ge 3$, $\frac{2k-1}{k^3-4k} = \frac{3}{8(k-2)} + \frac{1}{4k} - \frac{5}{8(k+2)}$. Puis

$$\begin{split} \sum_{k=3}^{n} \frac{2k-1}{k^3 - 4k} &= \frac{3}{8} \sum_{k=3}^{n} \frac{1}{k-2} + \frac{1}{4} \sum_{k=3}^{n} \frac{1}{k} - \frac{5}{8} \sum_{k=3}^{n} \frac{1}{k+2} = \frac{3}{8} \sum_{k=1}^{n-2} \frac{1}{k} + \frac{1}{4} \sum_{k=3}^{n} \frac{1}{k} - \frac{5}{8} \sum_{k=5}^{n+2} \frac{1}{k} \\ &= \frac{3}{n \to +\infty} \frac{3}{8} \left(1 + \frac{1}{2} + \sum_{k=3}^{n} \frac{1}{k} \right) + \frac{1}{4} \sum_{k=3}^{n} \frac{1}{k} - \frac{5}{8} \left(-\frac{1}{3} - \frac{1}{4} \sum_{k=3}^{n} \frac{1}{k} \right) + o(1) \\ &= \frac{3}{n \to +\infty} \frac{3}{8} \times \frac{3}{2} + \frac{5}{8} \times \frac{7}{12} + o(1) = \frac{89}{n \to +\infty} \frac{9}{96} + o(1). \end{split}$$

La série proposée est donc convergente de somme $\frac{89}{96}$.

$$\sum_{n=3}^{+\infty} \frac{2n-1}{n^3-4n} = \frac{89}{96}.$$

3. Pour $k \in \mathbb{N}$, on a $1^{3k} + j^{3k} + (j^2)^{3k} = 3$ puis $1^{3k+1} + j^{3k+1} + (j^2)^{3k+1} = 1 + j + j^2 = 0$ et $1^{3k+2} + j^{3k+2} + (j^2)^{3k+2} = 1 + j^2 + j^4 = 0$. Par suite,

$$e + e^{j} + e^{j^{2}} = \sum_{n=0}^{+\infty} \frac{1^{n} + j^{n} + (j^{2})^{n}}{n!} = 3 \sum_{n=0}^{+\infty} \frac{1}{(3n)!}$$

et donc

$$\begin{split} \sum_{n=0}^{+\infty} \frac{1}{(3n)!} &= \frac{1}{3} (e + e^j + e^{j^2}) = \frac{1}{3} \left(e + e^{-\frac{1}{2} + i\frac{\sqrt{3}}{2}} + e^{-\frac{1}{2} - i\frac{\sqrt{3}}{2}} \right) = \frac{1}{3} \left(e + 2e^{-1/2} \operatorname{Re}(e^{-i\sqrt{3}/2}) \right) \\ &= \frac{1}{3} \left(e + 2e^{-1/2} \cos\left(\frac{\sqrt{3}}{2}\right) \right). \\ \boxed{\sum_{n=0}^{+\infty} \frac{1}{(3n)!} = \frac{1}{3} \left(e + \frac{2}{\sqrt{e}} \cos\left(\frac{\sqrt{3}}{2}\right) \right). \end{split}$$

4.

$$\begin{split} \sum_{k=2}^n \left(\frac{1}{\sqrt{k-1}} + \frac{1}{\sqrt{k+1}} - \frac{2}{\sqrt{k}} \right) &= \sum_{k=2}^n \left(\left(\frac{1}{\sqrt{k-1}} - \frac{1}{\sqrt{k}} \right) - \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}} \right) \right) \\ &= \left(1 - \frac{1}{\sqrt{2}} \right) - \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right) \text{ (somme t\'elescopique)} \\ &= \sum_{n \to +\infty} 1 - \frac{1}{\sqrt{2}} + o(1) \end{split}$$

$$\sum_{n=2}^{+\infty} \left(\frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n}} \right) = 1 - \frac{1}{\sqrt{2}}.$$

5. $\ln\left(1+\frac{(-1)^n}{n}\right) \underset{n \to +\infty}{=} \frac{(-1)^n}{n} + O\left(\frac{1}{n^2}\right)$. Donc la série de terme général $\ln\left(1+\frac{(-1)^n}{n}\right)$ converge. Posons $S = \sum_{k=2}^{+\infty} \ln\left(1+\frac{(-1)^k}{k}\right)$ puis pour $n \geqslant 2$, $S_n = \sum_{k=2}^n \ln\left(1+\frac{(-1)^k}{k}\right)$. Puisque la série converge $S = \lim_{n \to +\infty} S_n = \lim_{p \to +\infty} S_{2p+1}$ avec

$$\begin{split} S_{2p+1} &= \sum_{k=2}^{2p+1} \ln\left(1 + \frac{(-1)^k}{k}\right) = \sum_{k=1}^p \left(\ln\left(1 - \frac{1}{2k+1}\right) + \ln\left(1 + \frac{1}{2k}\right)\right) \\ &= \sum_{k=1}^p \left(\ln(2k) - \ln(2k+1) + \ln(2k+1) - \ln(2k)\right) = 0 \end{split}$$

et quand p tend vers $+\infty$, on obtient S=0.

$$\sum_{n=2}^{+\infty} \ln\left(1 + \frac{(-1)^n}{n}\right) = 0.$$

6. Si $a \in \left]0, \frac{\pi}{2}\right[$ alors, pour tout entier naturel $n, \frac{a}{2^n} \in \left]0, \frac{\pi}{2}\right[$ et donc $\cos\left(\frac{a}{2^n}\right) > 0$. Ensuite, $\ln\left(\cos\left(\frac{a}{2^n}\right)\right) = \ln\left(1 + O\left(\frac{1}{2^{2n}}\right)\right) = O\left(\frac{1}{2^{2n}}\right)$ et la série converge. Ensuite,

$$\begin{split} \sum_{k=0}^{n} \ln\left(\cos\left(\frac{a}{2^{k}}\right)\right) &= \ln\left(\prod_{k=0}^{n} \cos\left(\frac{a}{2^{k}}\right)\right) = \ln\left(\prod_{k=0}^{n} \frac{\sin\left(2 \times \frac{a}{2^{k}}\right)}{2\sin\left(\frac{a}{2^{k}}\right)}\right) = \ln\left(\frac{1}{2^{n+1}} \prod_{k=0}^{n} \frac{\sin\left(\frac{a}{2^{k-1}}\right)}{\sin\left(\frac{a}{2^{k}}\right)}\right) \\ &= \ln\left(\frac{\sin(2a)}{2^{n+1}\sin\left(\frac{a}{2^{n}}\right)}\right) \text{ (produit t\'elescopique)} \\ & \underset{n \to +\infty}{\sim} \ln\left(\frac{\sin(2a)}{2^{n+1} \times \frac{a}{2^{n}}}\right) = \ln\left(\frac{\sin(2a)}{2a}\right). \end{split}$$

7. Vérifions que pour tout réel x on a $th(2x) = \frac{2 th x}{1 + th^2 x}$. Soit $x \in \mathbb{R}$.

$$\operatorname{ch}^{2}x + \operatorname{sh}^{2}x = \frac{1}{4}((e^{x} + e^{-x})^{2} + (e^{x} - e^{-x})^{2}) = \frac{1}{2}(e^{2x} + e^{-2x}) = \operatorname{ch}(2x) \text{ et } 2\operatorname{sh}x\operatorname{ch}x = \frac{1}{2}(e^{x} - e^{-x})(e^{x} + e^{-x}) = \frac{1}{2}(e^{2x} - e^{-2x}) = \operatorname{sh}(2x) \text{ puis}$$

$$\frac{2\operatorname{th} x}{1+\operatorname{th}^2 x} = \frac{2\operatorname{sh} x \operatorname{ch} x}{\operatorname{ch}^2 x + \operatorname{sh}^2 x} = \frac{\operatorname{sh}(2x)}{\operatorname{ch}(2x)} = \operatorname{th}(2x).$$

Par suite, pour $x \in \mathbb{R}^*$, th $x = \frac{2}{\operatorname{th}(2x)} - \frac{1}{\operatorname{th}x}$. Mais alors, pour $a \in \mathbb{R}^*$ et $n \in \mathbb{N}$

$$\begin{split} \sum_{k=0}^{n} \frac{1}{2^k} \operatorname{th} \left(\frac{a}{2^k} \right) &= \sum_{k=0}^{n} \frac{1}{2^k} \left(\frac{2}{\operatorname{th} \frac{a}{2^{k-1}}} - \frac{1}{\operatorname{th} \frac{a}{2^k}} \right) = \sum_{k=0}^{n} \left(\frac{1}{2^{k-1} \operatorname{th} \frac{a}{2^{k-1}}} - \frac{1}{2^k \operatorname{th} \frac{a}{2^k}} \right) \\ &= \frac{2}{\operatorname{th}(2a)} - \frac{1}{2^n \operatorname{th} \frac{a}{2^n}} \text{ (somme t\'elescopique)} \\ &\stackrel{\rightarrow}{\underset{n \to +\infty}{\longrightarrow}} \frac{2}{\operatorname{th}(2a)} - \frac{1}{a}, \end{split}$$

ce qui reste vrai quand a = 0.

$$\forall a \in \mathbb{R}, \sum_{n=0}^{+\infty} \frac{1}{2^n} \operatorname{th}\left(\frac{a}{2^n}\right) = \frac{2}{\operatorname{th}(2a)} - \frac{1}{a}.$$

Correction de l'exercice 5

Il faut vérifier que $nu_n \underset{n \to +\infty}{\longrightarrow} 0$. Pour $n \in \mathbb{N}$, posons $S_n = \sum_{k=0}^n u_k$. Pour $n \in \mathbb{N}$, on a

$$0 < (2n)u_{2n} = 2(\underbrace{u_{2n} + \ldots + u_{2n}}_{n}) \leqslant 2\sum_{k=n+1}^{2n} u_k \text{ (car la suite } u \text{ est décroissante)}$$
$$= 2(S_{2n} - S_n).$$

Puisque la série de terme général u_n converge, $\lim_{n\to+\infty} 2(S_{2n}-S_n)=0$ et donc $\lim_{n\to+\infty} (2n)u_{2n}=0$. Ensuite, $0<(2n+1)u_{2n+1}\leqslant (2n+1)u_{2n}=(2n)u_{2n}+u_{2n}\underset{n\to+\infty}{\to} 0$. Donc les suites des termes de rangs pairs et impairs extraites de la suite $(nu_n)_{n\in\mathbb{N}}$ convergent et ont même limite à savoir 0. On en déduit que $\lim_{n\to+\infty} nu_n=0$ ou encore que $u_n\underset{n\to+\infty}{=} o\left(\frac{1}{n}\right)$.

Contre exemple avec u non monotone. Pour $n \in \mathbb{N}$, on pose $u_n = \begin{cases} 0 \text{ si } n = 0 \\ \frac{1}{n} \text{ si } n \text{ est un carr\'e parfait non nul } . \text{ La suite } \\ 0 \text{ sinon} \end{cases}$

u est positive et $\sum_{n=0}^{+\infty} u_n = \sum_{p=1}^{+\infty} \frac{1}{p^2} < +\infty$. Pourtant, $p^2 u_{p^2} = 1 \underset{p \to +\infty}{\to} 1$ et la suite (nu_n) admet une suite extraite convergeant vers 1. On a donc pas $\lim_{n \to +\infty} nu_n = 0$.

Correction de l'exercice 6 ▲

Soit σ une permutation de [1,n]. Montrons que la suite $S_n = \sum_{k=1}^n \frac{\sigma(k)}{k^2}$, $n \ge 1$, ne vérifie pas le critère de CAUCHY. Soit $n \in \mathbb{N}^*$.

$$S_{2n} - S_n = \sum_{k=n+1}^{2n} \frac{\sigma(k)}{k^2} \geqslant \frac{1}{(2n)^2} \sum_{k=n+1}^{2n} \sigma(k)$$

$$\geqslant \frac{1}{4n^2} (1 + 2 + \dots + n) \text{ (car les } n \text{ entiers } \sigma(k), \ 1 \leqslant k \leqslant n, \text{ sont strictement positifs et deux à deux distincts)}$$

$$= \frac{n(n+1)}{8n^2} \geqslant \frac{n^2}{8n^2} = \frac{1}{8}.$$

Si la suite (S_n) converge, on doit avoir $\lim_{n\to+\infty}(S_{2n}-S_n)=0$ ce qui contredit l'inégalité précédente. Donc la série de terme général $\frac{\sigma(n)}{n^2}$, $n \geqslant 1$, diverge.

Correction de l'exercice 7 ▲

Pour $n \in \mathbb{N}$, posons $v_n = \ln(1+u_n)$, $w_n = \frac{u_n}{1+u_n}$ et $t_n = \int_0^{u_n} \frac{dx}{1+x^e}$. • Si $u_n \to 0$, alors $0 \le u_n \underset{n \to +\infty}{\sim} v_n \underset{n \to +\infty}{\sim} w_n$. Dans ce cas, les séries de termes généraux u_n , v_n et w_n sont de

D'autre part, pour $n \in \mathbb{N}$, $\frac{u_n}{1+u_n^e} \leqslant t_n \leqslant u_n$ puis $\frac{1}{1+u_n^e} \leqslant \frac{t_n}{u_n} \leqslant 1$ et donc $t_n \underset{n \to +\infty}{\sim} u_n$. Les séries de termes généraux u_n et t_n sont aussi de même nature.

• Si u_n ne tend pas vers 0, la série de terme général u_n est grossièrement divergente. Puisque $u_n = e^{v_n} - 1$, v_n ne tend pas vers 0 et la série de terme général v_n est grossièrement divergente. Dans ce cas aussi, les séries de termes généraux sont de même nature.

De même, puisque $w_n = \frac{u_n}{1+u_n} < 1$, on a $u_n = \frac{w_n}{1-w_n}$ et w_n ne peut tendre vers 0. Enfin, puisque u_n ne tend pas vers 0, il existe $\varepsilon > 0$ tel que pour tout entier naturel N, il existe $n = n(N) \ge N$ tel que $u_n \ge \varepsilon$. Pour cet ε et ces n, on a $t_n \ge \int_0^\varepsilon \frac{dx}{1+x^\varepsilon} > 0$ (fonction continue, positive et non nulle) et la suite t_n no tend pas vers 0. Dans la ces où u_n no tend pas vers 0 les quetre séries sont grassièrement divergentes. ne tend pas vers 0. Dans le cas où u_n ne tend pas vers 0, les quatre séries sont grossièrement divergentes.

Correction de l'exercice 8 A

Pour $n \in \mathbb{N}$, posons $u_n = (n+1)! \left(e - \sum_{k=0}^n \frac{1}{k!}\right)$. Soit $n \in \mathbb{N}$.

$$u_n = \sum_{k=n+1}^{+\infty} \frac{(n+1)!}{k!}$$

$$= 1 + \frac{1}{n+2} + \frac{1}{(n+2)(n+3)} + \frac{1}{(n+2)(n+3)(n+4)} + \frac{1}{(n+2)(n+3)(n+4)(n+5)} + \sum_{k=n+6}^{+\infty} \frac{1}{(n+2)(n+3)\dots k}$$

On a $0 < \sum_{k=n+6}^{+\infty} \frac{1}{(n+2)(n+3)...k} = \sum_{k=n+1}^{+\infty} \frac{1}{(n+2)^{k-(n+1)}} = \frac{1}{(n+2)^5} \frac{1}{1-\frac{1}{2}} = \frac{1}{(n+2)^4(n+1)} \leqslant \frac{1}{n^5}$. On en déduit que $\sum_{k=n+6}^{+\infty} \frac{1}{(n+2)(n+3)...k} \frac{1}{n^5}$ $o\left(\frac{1}{n^4}\right)$. Donc

$$\begin{split} u_n &= 1 + \frac{1}{n+2} + \frac{1}{(n+2)(n+3)} + \frac{1}{(n+2)(n+3)(n+4)} + \frac{1}{(n+2)(n+3)(n+4)(n+5)} + o\left(\frac{1}{n^4}\right) \\ &= 1 + \frac{1}{n}\left(1 + \frac{2}{n}\right)^{-1} + \frac{1}{n^2}\left(1 + \frac{2}{n}\right)^{-1}\left(1 + \frac{3}{n}\right)^{-1} + \frac{1}{n^3}\left(1 + \frac{2}{n}\right)^{-1}\left(1 + \frac{3}{n}\right)^{-1}\left(1 + \frac{4}{n}\right)^{-1} + \frac{1}{n^4} + o\left(\frac{1}{n^4}\right) \\ &= 1 + \frac{1}{n}\left(1 - \frac{2}{n} + \frac{4}{n^2} - \frac{8}{n^3}\right) + \frac{1}{n^2}\left(1 - \frac{2}{n} + \frac{4}{n^2}\right)\left(1 - \frac{3}{n} + \frac{9}{n^2}\right) + \frac{1}{n^3}\left(1 - \frac{2}{n}\right)\left(1 - \frac{3}{n}\right)\left(1 - \frac{4}{n}\right) \\ &+ \frac{1}{n^4} + o\left(\frac{1}{n^4}\right) \\ &= 1 + \frac{1}{n}\left(1 - \frac{2}{n} + \frac{4}{n^2} - \frac{8}{n^3}\right) + \frac{1}{n^2}\left(1 - \frac{5}{n} + \frac{19}{n^2}\right) + \frac{1}{n^3}\left(1 - \frac{9}{n}\right) + \frac{1}{n^4} + o\left(\frac{1}{n^4}\right) \\ &= 1 + \frac{1}{n} - \frac{1}{n^2} + \frac{3}{n^4} + o\left(\frac{1}{n^4}\right). \end{split}$$

Finalement

$$(n+1)! \left(e - \sum_{k=0}^{n} \frac{1}{k!} \right) \underset{n \to +\infty}{=} 1 + \frac{1}{n} - \frac{1}{n^2} + \frac{3}{n^4} + o\left(\frac{1}{n^4}\right).$$

Correction de l'exercice 9 A

Pour $n \in \mathbb{N}$, posons $u_n = \sin\left(\pi(2+\sqrt{3})^n\right)$. D'après la formule du binôme de NEWTON, $(2+\sqrt{3})^n = A_n + B_n\sqrt{3}$ où A_n et B_n sont des entiers naturels. Un calcul conjugué fournit aussi $(2-\sqrt{3})^n=A_n-B_n\sqrt{3}$. Par suite, $(2+\sqrt{3})^n+(2-\sqrt{3})^n=2A_n$ est un entier pair. Par suite, pour $n\in\mathbb{N}$,

$$u_n = \sin(2A_n\pi - \pi(2-\sqrt{3})^n) = -\sin(\pi(2-\sqrt{3})^n).$$

Mais $0 < 2 - \sqrt{3} < 1$ et donc $(2 - \sqrt{3})^n \underset{n \to +\infty}{\to} 0$. On en déduit que $|u_n| \underset{n \to +\infty}{\sim} \pi (2 - \sqrt{3})^n$ terme général d'une série géométrique convergente. Donc la série de terme général u_n converge.

Correction de l'exercice 10 ▲

Pour $n \in \mathbb{N}^*$, on a $\left(\sqrt{u_n} - \frac{1}{n}\right)^2$ et donc $0 \leqslant \frac{\sqrt{u_n}}{n} \leqslant \frac{1}{2}\left(u_n + \frac{1}{n^2}\right)$. Comme la série terme général $\frac{1}{2}\left(u_n + \frac{1}{n^2}\right)$ converge, la série de terme général $\frac{\sqrt{u_n}}{n}$ converge.

Correction de l'exercice 11 Pour $n \ge 2$, $v_n = \frac{u_n + 1 - 1}{(1 + u_1)...(1 + u_n)} = \frac{1}{(1 + u_1)...(1 + u_{n-1})} - \frac{1}{(1 + u_1)...(1 + u_n)}$ et d'autre part $v_1 = 1 - \frac{1}{1 + u_1}$. Donc, pour $n \ge 2$

$$\sum_{k=1}^{n} v_k = 1 - \frac{1}{(1+u_1)\dots(1+u_n)}$$
 (somme télescopique).

Si la série de terme général u_n converge alors $\lim_{n\to+\infty}u_n=0$ et donc $0< u_n \underset{n\to+\infty}{\sim} \ln(1+u_n)$. Donc la série de terme général $\ln(1+u_n)$ converge ou encore la suite $(\ln(\prod_{k=1}^n(1+u_k)))_{n\geqslant 1}$ converge vers un certain réel ℓ . Mais alors la suite $(\prod_{k=1}^n (1+u_k))_{n\geq 1}$ converge vers le réel strictement positif $P=e^{\ell}$. Dans ce cas, la suite $(\sum_{k=1}^n v_k)_{n\geq 1}$ converge vers $1-\frac{1}{P}$.

Si la série de terme général u_n diverge alors la série de terme général $\ln(1+u_n)$ diverge vers $+\infty$ et il en est de même que la suite $(\prod_{k=1}^n (1+u_k))_{n\geqslant 1}$. Dans ce cas, la suite $(\sum_{k=1}^n v_k)_{n\geqslant 1}$ converge vers 1.

Correction de l'exercice 12 ▲

Etudions tout d'abord la convergence de la série de terme général $\frac{u_n}{S_n}$. Si $\frac{u_n}{S_n}$ tend vers 0 alors

$$0 < \frac{u_n}{S_n} \sim \lim_{n \to +\infty} -\ln\left(1 - \frac{u_n}{S_n}\right) = \ln\left(\frac{S_{n-1}}{S_n}\right) = \ln(S_n) - \ln(S_{n-1}).$$

Par hypothèse, $\lim_{n\to+\infty} S_n = +\infty$. On en déduit que la série de terme général $\ln(S_n) - \ln(S_{n-1})$ est divergente $\operatorname{car} \sum_{k=1}^n \ln(S_k) - \ln(S_{k-1}) = \ln(S_n) - \ln(S_0) \underset{n \to +\infty}{\to} +\infty. \text{ Dans ce cas, la série de terme général } \tfrac{u_n}{S_n} \text{ diverge ce qui}$ est aussi le cas si $\frac{u_n}{S_n}$ ne tend pas vers 0.

Donc, dans tous les cas, la série de terme général $\frac{u_n}{S_n}$ diverge.

Si $\alpha \leqslant 1$, puisque S_n tend vers $+\infty$, à partir d'un certain rang on a $S_n^{\alpha} \leqslant S_n$ et donc $\frac{u_n}{S_n^{\alpha}} \geqslant \frac{u_n}{S_n}$. Donc, si $\alpha \leqslant 1$, la série de terme général $\frac{u_n}{S^{\alpha}}$ diverge.

Si $\alpha > 1$, puisque la suite (S_n) est croissante,

$$0 < \frac{u_n}{S_n^{\alpha}} = \frac{S_n - S_{n-1}}{S_n^{\alpha}} = \int_{S_{n-1}}^{S_n} \frac{dx}{S_n^{\alpha}} \leqslant \frac{dx}{x^{\alpha}} = \frac{1}{\alpha - 1} \left(\frac{1}{S_{n-1}^{\alpha - 1}} - \frac{1}{S_n^{\alpha - 1}} \right),$$

qui est le terme général d'une série télescopique convergente puisque $\frac{1}{\varsigma^{\alpha-1}}$ tend vers 0 quand n tend vers l'infini. Dans ce cas, la série de terme général $\frac{u_n}{S_n^{\alpha}}$ converge.

La série de terme général $\frac{u_n}{S_n^{\alpha}}$ converge si et seulement si $\alpha > 1$.

Correction de l'exercice 13

Si $\alpha < 0$, $u_n \sim n^{-2\alpha}$ et si $\alpha = 0$, $u_n = 1 + (-1)^n$. Donc si $\alpha \le 0$, u_n ne tend pas vers 0. La série de terme général u_n diverge grossièrement dans ce cas.

On suppose dorénavant que $\alpha > 0$. Pour tout entier naturel non nul n, $|u_n| \underset{n \to +\infty}{\sim} \frac{1}{n^{\alpha}}$ et donc la série de terme général u_n converge absolument si et seulement si $\alpha > 1$.

Il reste à étudier le cas où $0 < \alpha \le 1$. On a $u_n = \frac{(-1)^n}{n^{\alpha}} + \frac{1}{n^{2\alpha}}$. La suite $\left(\frac{1}{n^{\alpha}}\right)_{n \ge 1}$ tend vers 0 en décroissant et donc la série de terme général $\frac{(-1)^n}{n^{\alpha}}$ converge en vertu du critère spécial aux séries alternées. On en déduit que la série de terme général u_n converge si et seulement si la série de terme général $\frac{1}{n^{2\alpha}}$ converge ou encore si et seulement si $\alpha > \frac{1}{2}$.

En résumé

Si $\alpha \leqslant 0$, la série de terme général $\frac{1+(-1)^n n^\alpha}{n^{2\alpha}}$ diverge grossièrement, si $0<\alpha\leqslant\frac{1}{2}$, la série de terme général $\frac{1+(-1)^n n^\alpha}{n^{2\alpha}}$ diverge, si $\frac{1}{2}<\alpha\leqslant 1$, la série de terme général $\frac{1+(-1)^n n^\alpha}{n^{2\alpha}}$ est semi convergente, si $\alpha>1$, la série de terme général $\frac{1+(-1)^n n^\alpha}{n^{2\alpha}}$ converge absolument.

Correction de l'exercice 14 ▲

Pour $n \in \mathbb{N}^*$, on note S_n la somme des n premiers termes de la série considérée et on pose $H_n = \sum_{k=1}^n \frac{1}{k}$. Il est connu que $H_n = \lim_{n \to +\infty} \ln n + \gamma + o(1)$.

Soit $m \in \mathbb{N}^*$.

$$\begin{split} S_{m(p+q)} &= \left(1 + \frac{1}{3} + \ldots + \frac{1}{2p-1}\right) - \left(\frac{1}{2} + \frac{1}{4} + \ldots + \frac{1}{2q}\right) + \left(\frac{1}{2p+1} + \ldots + \frac{1}{4p-1}\right) - \left(\frac{1}{2q+2} + \ldots + \frac{1}{4q}\right) + \ldots \\ &\quad + \left(\frac{1}{2(m-1)p+1} + \ldots + \frac{1}{2mp-1}\right) - \left(\frac{1}{2(m-1)q+2} + \ldots + \frac{1}{2mq}\right) \\ &= \sum_{k=1}^{mp} \frac{1}{2k-1} - \sum_{k=1}^{mq} \frac{1}{2k} = \sum_{k=1}^{2mp} \frac{1}{k} - \sum_{k=1}^{mp} \frac{1}{2k} - \sum_{k=1}^{mq} \frac{1}{2k} = H_{2mp} - \frac{1}{2}(H_{mp} + H_{mq}) \\ &= \sum_{m \to +\infty}^{mp} \left(\ln(2mp) + \gamma\right) - \frac{1}{2}\left(\ln(mp) + \gamma + \ln(mq) + \gamma\right) + o(1) = \ln 2 + \frac{1}{2}\ln\left(\frac{p}{q}\right) + o(1). \end{split}$$

Ainsi, la suite extraite $(S_{m(p+q)})_{m\in\mathbb{N}^*}$ converge vers $\ln 2 + \frac{1}{2} \ln \left(\frac{p}{q}\right)$.

Montrons alors que la suite $(S_n)_{n\in\mathbb{N}^*}$ converge. Soit $n\in\mathbb{N}^*$. Il existe un unique entier naturel non nul m_n tel que $m_n(p+q)\leqslant n<(m_n+1)(p+q)$ à savoir $m_n=E\left(\frac{n}{p+q}\right)$.

$$|S_n - S_{m_n(p+q)}| \le \frac{1}{2m_n p + 1} + \dots + \frac{1}{2(m_n + 1)p - 1} + \frac{1}{2m_n q + 2} + \frac{1}{2(m_n + 1)q}$$
$$\le \frac{p}{2m_n p + 1} + \frac{q}{2m_n q + 2} \le \frac{1}{2m_n} + \frac{1}{2m_n} = \frac{1}{m_n}.$$

Soit alors $\varepsilon > 0$.

Puisque $\lim_{n\to+\infty} m_n = +\infty$, il existe $n_0 \in \mathbb{N}^*$ tel que pour $n \ge n_0$, $\frac{1}{m_n} < \frac{\varepsilon}{2}$ et aussi $\left| S_{m_n(p+q)} - \ln 2 - \frac{1}{2} \ln \left(\frac{p}{q} \right) \right| < \frac{\varepsilon}{2}$. Pour $n \ge n_0$, on a alors

$$\left| S_n - \ln 2 - \frac{1}{2} \ln \left(\frac{p}{q} \right) \right| \leq \left| S_n - S_{m_n(p+q)} \right| + \left| S_{m_n(p+q)} - \ln 2 - \frac{1}{2} \ln \left(\frac{p}{q} \right) \right| \leq \frac{1}{m_n} + \left| S_{m_n(p+q)} - \ln 2 - \frac{1}{2} \ln \left(\frac{p}{q} \right) \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

On a montré que $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}^* / \forall n \in \mathbb{N}$, $(n \geqslant n_0 \Rightarrow \left| S_n - \left(\ln 2 + \frac{1}{2} \ln \left(\frac{p}{q} \right) \right) \right| < \varepsilon$) et donc, la série proposée converge et a pour somme $\ln 2 + \frac{1}{2} \ln \left(\frac{p}{q} \right)$.

Correction de l'exercice 15

La série proposée est le produit de CAUCHY de la série de terme général $\frac{1}{n^{\alpha}}$, $n \ge 1$, par elle même.

- Si $\alpha > 1$, on sait que la série de terme général $\frac{1}{n^{\alpha}}$ converge absolument et donc que la série proposée converge.
- Si $0 \leqslant \alpha \leqslant 1$, pour 0 < k < n on a $0 < k(n-k) \leqslant \frac{n}{2} \left(n \frac{n}{2}\right) = \frac{n^2}{4}$. Donc $u_n \geqslant \frac{n-1}{\left(\frac{n^2}{4}\right)^{\alpha}}$ avec $\frac{n-1}{\left(\frac{n^2}{4}\right)^{\alpha}} \sim \frac{4^{\alpha}}{n^{2\alpha-1}}$.

Comme $2\alpha - 1 \le 1$, la série proposée diverge. • Si $\alpha < 0$, $u_n \ge \frac{1}{(n-1)^{\alpha}}$ et donc u_n ne tend pas vers 0. Dans ce cas, la série proposée diverge grossièrement.

Correction de l'exercice 16 ▲

1. Soit $n \in \mathbb{N}$.

$$2n^3 - 3n^2 + 1 = 2(n+3)(n+2)(n+1) - 15n^2 - 22n - 11 = 2(n+3)(n+2)(n+1) - 15(n+3)(n+2) + 53n + 79$$
$$= 2(n+3)(n+2)(n+1) - 15(n+3)(n+2) + 53(n+3) - 80$$

Donc

$$\sum_{n=0}^{+\infty} \frac{2n^3 - 3n^2 + 1}{(n+3)!} = \sum_{n=0}^{+\infty} \left(\frac{2}{n!} - \frac{15}{(n+1)!} + \frac{53}{(n+2)!} - \frac{80}{(n+3)!} \right) = 2e - 15(e-1) + 53(e-2) - 80\left(e - \frac{5}{2}\right)$$

$$= -40e + 111.$$

$$\sum_{n=0}^{+\infty} \frac{2n^3 - 3n^2 + 1}{(n+3)!} = -40e + 111.$$

2. Pour $n \in \mathbb{N}$, on a $u_{n+1} = \frac{n+1}{a+n+1}u_n$. Par suite $(n+a+1)u_{n+1} = (n+1)u_n = (n+a)u_n + (1-a)u_n$ puis $(1-a)\sum_{k=1}^{n} u_k = \sum_{k=1}^{n} (k+a+1)u_{k+1} - \sum_{k=1}^{n} (k+a)u_k = (n+a+1)u_{n+1} - (a+1)u_1 = 0$

Si a = 1, $\forall n \in \mathbb{N}^*$, $u_n = \frac{1}{n+1}$. Dans ce cas, la série diverge.

Si $a \neq 1$, $\forall n \in \mathbb{N}^*$, $\sum_{k=1}^n u_k = \frac{1}{1-a}((n+a+1)u_{n+1}-1) = \frac{1}{a-1} - \frac{1}{a-1}(a+n+1)u_{n+1}$.

Si a > 1, la suite u est strictement positive et la suite des sommes partielles (S_n) est majorée par $\frac{1}{a-1}$. Donc la série de terme général u_n converge. Il en est de même de la suite $((a+n+1)u_{n+1})$. Soit $\ell = \lim_{n \to +\infty} (a+n+1)u_{n+1}.$

Si $\ell \neq 0$, $u_{n+1} \sim \frac{\ell}{n \to +\infty}$ contredisant la convergence de la série de terme général u_n . Donc $\ell = 0$ et

si
$$a > 1$$
, $\sum_{n=1}^{+\infty} u_n = \frac{1}{a-1}$.

Si 0 < a < 1, pour tout $n \in \mathbb{N}^*$, $u_n \geqslant \frac{1 \times 2 \times ... \times n}{2 \times 3 ... \times (n+1)} = \frac{1}{n+1}$. Dans ce cas, la série diverge.

Correction de l'exercice 17

Pour tout entier naturel non nul n, $0 < \frac{1}{2^p n^{p-1}} = \sum_{k=1}^n \frac{1}{(2n)^p} \leqslant \sum_{k=1}^n \frac{1}{(n+k)^p} \leqslant \sum_{k=1}^n \frac{1}{n^p} = \frac{1}{n^{p-1}}$ et la série de terme général u_n converge si et seulement si p > 2.

Correction de l'exercice 18 A

(On applique la règle de RAABE-DUHAMEL qui n'est pas un résultat de cours.) Pour $n \in \mathbb{N}$, posons $u_n =$

$$\frac{u_{n+1}}{u_n} = \frac{n+1}{a+n+1} = \left(1 + \frac{1}{n}\right) \left(1 + \frac{a+1}{n}\right)^{-1} = \left(1 + \frac{1}{n}\right) \left(1 - \frac{a+1}{n} + O\left(\frac{1}{n^2}\right)\right) = 1 - \frac{a}{n} + O\left(\frac{1}{n^2}\right),$$

et « on sait » qu'il existe un réel strictement positif K tel que $u_n \sim \frac{K}{n^a}$.

Correction de l'exercice 19 ▲

Pour tout entier naturel non nul n, $0 < \frac{1}{2^p n^{p-1}} = \sum_{k=1}^n \frac{1}{(2n)^p} \leqslant \sum_{k=1}^n \frac{1}{(n+k)^p} \leqslant \sum_{k=1}^n \frac{1}{n^p} = \frac{1}{n^{p-1}}$ et la série de terme général u_n converge si et seulement si p > 2.

Correction de l'exercice 20 ▲

Pour $n \in \mathbb{N}^*$, posons $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^2}$. Puisque la série de terme général $\frac{1}{k^2}$, $k \geqslant 1$, converge, la suite (R_n) est définie et tend vers 0 quand n tend vers $+\infty$. $0 < \frac{1}{k^2} \sim \frac{1}{k(k-1)} = \frac{1}{k-1} - \frac{1}{k}$ et puisque la série de terme général $\frac{1}{k^2}$ converge, la règle de l'équivalence des

restes de séries à termes positifs convergentes permet d'affirmer que

$$\begin{split} R_n &= \sum_{k=n+1}^{+\infty} \frac{1}{k^2} \mathop{\sim}_{n \to +\infty} \sum_{k=n+1}^{+\infty} \left(\frac{1}{k-1} - \frac{1}{k} \right) \\ &= \lim_{N \to +\infty} \sum_{k=n+1}^{N} \left(\frac{1}{k-1} - \frac{1}{k} \right) \text{ (surtout ne pas décomposer en deux sommes)} \\ &= \lim_{N \to +\infty} \left(\frac{1}{n} - \frac{1}{N} \right) \text{ (somme télescopique)} \\ &= \frac{1}{n} \end{split}$$

ou encore $R_n = \frac{1}{n \to +\infty} \frac{1}{n} + o\left(\frac{1}{n}\right)$.

Plus précisément, pour $n \in \mathbb{N}^*$, $R_n - \frac{1}{n} = \sum_{k=n+1}^{+\infty} \frac{1}{k^2} - \sum_{k=n+1}^{+\infty} \frac{1}{k(k-1)} = -\sum_{k=n+1}^{+\infty} \frac{1}{k^2(k-1)}$. Or $-\frac{1}{k^2(k-1)} + \frac{1}{k(k-1)(k-2)} = \frac{2}{k^2(k-1)(k-2)}$ puis $\frac{2}{k^2(k-1)(k-2)} - \frac{6}{k(k-1)(k-2)(k-3)} = -\frac{6}{k^2(k-1)(k-2)(k-3)}$ et donc

$$R_n = \frac{1}{n} - \sum_{k=n+1}^{+\infty} \frac{1}{k^2(k-1)} = \frac{1}{n} - \sum_{k=n+1}^{+\infty} \frac{1}{k(k-1)(k-2)} + \sum_{k=n+1}^{+\infty} \frac{2}{k^2(k-1)(k-2)}$$

$$= \frac{1}{n} - \sum_{k=n+1}^{+\infty} \frac{1}{k(k-1)(k-2)} + \sum_{k=n+1}^{+\infty} \frac{2}{k(k-1)(k-2)(k-3)} - \sum_{k=n+1}^{+\infty} \frac{6}{k^2(k-1)(k-2)(k-3)}$$

Ensuite $\sum_{k=n+1}^{+\infty} \frac{1}{k^2(k-1)(k-2)(k-3)} \sim \sum_{n \to +\infty}^{+\infty} \sum_{n \to +\infty}^{+\infty} \frac{1}{k^5} \sim \frac{1}{4n^4}$ ou encore $-\sum_{k=n+1}^{+\infty} \frac{6}{k^2(k-1)(k-2)(k-3)} = -\frac{3}{2n^4} + \frac{1}{k^2(k-1)(k-2)(k-3)} = -\frac{3}{2n^4} + \frac{3}{2n^4} = -\frac{3}{2n^4} + \frac{3}{2n^4} = -\frac{3}{2n^4} + \frac{3}{2n^4} = -\frac{3}{2n^4} = -\frac$ $o\left(\frac{1}{n^4}\right)$. Puis

$$\begin{split} \sum_{k=n+1}^{+\infty} \frac{1}{k(k-1)(k-2)} &= \lim_{N \to +\infty} \frac{1}{2} \sum_{k=n+1}^{N} \left(\frac{1}{(k-1)(k-2)} - \frac{1}{k(k-1)} \right) = \lim_{N \to +\infty} \frac{1}{2} \left(\frac{1}{n(n-1)} - \frac{1}{N(N-1)} \right) = \frac{1}{2n(n-1)} \\ &= \frac{1}{2n^2} \left(1 - \frac{1}{n} \right)^{-1} \underset{n \to +\infty}{=} \frac{1}{2n^2} + \frac{1}{2n^3} + \frac{1}{2n^4} + o\left(\frac{1}{n^4} \right) \end{split}$$

et

$$\begin{split} \sum_{k=n+1}^{+\infty} \frac{2}{k(k-1)(k-2)(k-3)} &= \lim_{N \to +\infty} \frac{2}{3} \sum_{k=n+1}^{N} \left(\frac{1}{(k-1)(k-2)(k-3)} - \frac{1}{k(k-1)(k-2)} \right) \\ &= \lim_{N \to +\infty} \frac{2}{3} \left(\frac{1}{n(n-1)(n-2)} - \frac{1}{N(N-1)(N-2)} \right) = \frac{2}{3n(n-1)(n-2)} \\ &= \frac{2}{3n^3} \left(1 - \frac{1}{n} \right)^{-1} \left(1 - \frac{2}{n} \right)^{-1} \underset{n \to +\infty}{=} \frac{2}{3n^3} \left(1 + \frac{1}{n} + o\left(\frac{1}{n}\right) \right) \left(1 + \frac{2}{n} + o\left(\frac{1}{n}\right) \right) \\ &= \frac{2}{n \to +\infty} \frac{2}{3n^3} + \frac{2}{n^4} + o\left(\frac{1}{n^4}\right) \end{split}$$

et finalement

$$R_{n} \underset{n \to +\infty}{=} \frac{1}{n} - \left(\frac{1}{2n^{2}} + \frac{1}{2n^{3}} + \frac{1}{2n^{4}}\right) + \left(\frac{2}{3n^{3}} + \frac{2}{n^{4}}\right) - \frac{3}{2n^{4}} + o\left(\frac{1}{n^{4}}\right) \underset{n \to +\infty}{=} \frac{1}{n} - \frac{1}{2n^{2}} + \frac{1}{6n^{3}} + o\left(\frac{1}{n^{4}}\right).$$

$$\sum_{k=n+1}^{+\infty} \frac{1}{k^{2}} \underset{n \to +\infty}{=} \frac{1}{n} - \frac{1}{2n^{2}} + \frac{1}{6n^{3}} + o\left(\frac{1}{n^{4}}\right).$$

Correction de l'exercice 21

1. La suite $\left(\frac{\ln n}{n}\right)_{n\in\mathbb{N}^*}$ tend vers 0, en décroissant à partir du rang 3 (fourni par l'étude de la fonction $x\mapsto \frac{\ln x}{x}$ sur $[e,+\infty[)$ et donc la série de terme général $(-1)^n\frac{\ln n}{n},\,n\geqslant 1$, converge en vertu du critère spécial aux séries alternées. Pour $n\in\mathbb{N}^*$, on pose $R_n=\sum_{p=n+1}^{+\infty}(-1)^p\frac{\ln p}{p}$.

 $(-1)^k \frac{\ln k}{k}$ n'est pas de signe constant à partir d'un certain rang et on ne peut donc lui appliquer la règle de l'équivalence des restes.

Par contre, puisque la série de terme général $(-1)^k \frac{\ln k}{k}$ converge, on sait que l'on peut associer les termes à volonté et pour $k \in \mathbb{N}^*$, on a

$$R_{2k-1} = \sum_{p=2k}^{+\infty} (-1)^p \frac{\ln p}{p} = \sum_{p=k}^{+\infty} \left(\frac{\ln(2p)}{2p} - \frac{\ln(2p+1)}{2p+1} \right).$$

Puisque la fonction $x\mapsto \frac{\ln x}{x}$ est décroissante sur $[e,+\infty[$ et donc sur $[3,+\infty[$, pour $p\geqslant 2,\frac{\ln(2p)}{2p}-\frac{\ln(2p+1)}{2p+1}\geqslant 0$ et on peut utiliser la règle de l'équivalence des restes de séries à termes positifs convergentes.

Cherchons déjà un équivalent plus simple de $\frac{\ln(2p)}{2p} - \frac{\ln(2p+1)}{2p+1}$ quand p tend vers $+\infty$.

$$\begin{split} \frac{\ln(2p)}{2p} - \frac{\ln(2p+1)}{2p+1} &= \frac{\ln(2p)}{2p} - \frac{1}{2p} \left(\ln(2p) + \ln\left(1 + \frac{1}{2p}\right) \right) \left(1 + \frac{1}{2p}\right)^{-1} \\ &= \frac{\ln(2p)}{2p} - \frac{1}{2p} \left(\ln(2p) + \frac{1}{2p} + o\left(\frac{1}{p}\right) \right) \left(1 - \frac{1}{2p} + o\left(\frac{1}{p}\right) \right) \\ &= \frac{\ln(2p)}{4p^2} + o\left(\frac{\ln p}{p^2}\right) = \frac{\ln p + \ln 2}{4p^2} + o\left(\frac{\ln p}{p^2}\right) \\ &\stackrel{\sim}{\underset{p \to +\infty}{\longrightarrow}} \frac{\ln p}{4p^2}. \end{split}$$

et donc $R_{2k-1} \sim_{k \to +\infty} \frac{1}{4} \sum_{p=k}^{+\infty} \frac{\ln p}{p^2}$.

Cherchons maintenant un équivalent simple de $\frac{\ln p}{p^2}$ de la forme $v_p - v_{p+1}$.

Soit $v_p = \frac{\ln p}{p} - \frac{\ln(p+1)}{p+1}$ (suggéré par $\left(\frac{\ln x}{x}\right)' = \frac{1-\ln x}{x^2} \underset{x \to +\infty}{\sim} - \frac{\ln x}{x^2}$). Alors

$$v_p - v_{p+1} = \frac{\ln p}{p} - \frac{1}{p} \left(\ln p + \ln \left(1 + \frac{1}{p} \right) \right) \left(1 + \frac{1}{p} \right)^{-1} = \lim_{p \to +\infty} \frac{\ln p}{p} - \frac{1}{p} \left(\ln p + \frac{1}{p} + o\left(\frac{1}{p}\right) \right) \left(1 - \frac{1}{p} + o\left(\frac{1}{p}\right) \right) = \lim_{p \to +\infty} \frac{\ln p}{p^2}.$$

D'après la règle de l'équivalence des restes de séries à termes positifs convergentes, $R_{2k-1} \sim \frac{1}{k \to +\infty} \frac{1}{4} \sum_{p=k}^{+\infty} \left(\frac{\ln p}{p} - \frac{\ln(p+1)}{p+1} \right)$ (série télescopique).

Puis,
$$R_{2k} = R_{2k-1} - \frac{\ln(2k)}{2k} \underset{k \to +\infty}{\sim} \frac{\ln k}{4k} - \frac{\ln(2k)}{2k} + o\left(\frac{\ln k}{k}\right) \underset{k \to +\infty}{\sim} \frac{\ln k}{4k} - \frac{\ln k}{2k} + o\left(\frac{\ln k}{k}\right) \underset{k \to +\infty}{\sim} - \frac{\ln k}{4k} + o\left(\frac{\ln k}{k}\right).$$

En résumé, $R_{2k-1} \underset{k \to +\infty}{\sim} \frac{\ln k}{4k}$ et $R_{2k} \underset{k \to +\infty}{\sim} -\frac{\ln k}{4k}$

On peut unifier : $R_{2k-1} \sim \frac{\ln k}{k \to +\infty} \sim \frac{\ln k}{4k} \sim \frac{\ln(2k-1)}{2(2k-1)}$ et $R_{2k} \sim -\frac{\ln k}{k \to +\infty} \sim -\frac{\ln(2k)}{2(2k)}$. Finalement,

$$\sum_{p=n+1}^{+\infty} (-1)^p \frac{\ln p}{p} \underset{n \to +\infty}{\sim} (-1)^{n-1} \frac{\ln n}{2n}.$$

2. $\sum n^n$ est une série à termes positifs grossièrement divergente.

1 ère solution.

$$0 < n^n \underset{n \to +\infty}{\sim} n^n - (n-1)^{n-1} \operatorname{car} \frac{n^n - (n-1)^{n-1}}{n^n} = 1 - \frac{1}{n-1} \left(1 - \frac{1}{n}\right)^n \underset{n \to +\infty}{=} 1 - \frac{1}{ne} + o\left(\frac{1}{n}\right) \underset{n \to +\infty}{\to} 1.$$

D'après la règle de l'équivalence des sommes partielles de séries à termes positifs divergentes,

$$\sum_{p=1}^n p^p \underset{n \to +\infty}{\sim} \sum_{p=2}^n p^p \underset{n \to +\infty}{\sim} \sum_{p=2}^n (p^p - (p-1)^{p-1}) = n^n - 1 \underset{n \to +\infty}{\sim} n^n.$$

(La somme est équivalente à son dermier terme.)

2 ème solution. Pour $n \geqslant 3$, $0 \leqslant \frac{1}{n^n} \sum_{p=1}^{n-2} p^p \leqslant \frac{1}{n^n} \times (n-2)(n-2)^{n-2} \leqslant \frac{n^{n-1}}{n^n} = \frac{1}{n}$. Donc $\frac{1}{n^n} \sum_{p=1}^{n-2} p^p$. On en déduit que $\frac{1}{n^n} \sum_{p=1}^n p^p = 1 + \frac{(n-1)^{n-1}}{n^n} + \frac{1}{n^n} \sum_{p=1}^{n-2} p^p = 1 + o(1) + o(1) = 1 + o(1)$.

$$\sum_{p=1}^n p^p \underset{n\to+\infty}{\sim} n^n.$$

Correction de l'exercice 22 A

Soit $p \in \mathbb{N}^*$. Pour $n \in \mathbb{N}^* \setminus \{p\}$, $\frac{1}{n^2 - p^2} = \frac{1}{2p} \left(\frac{1}{n - p} - \frac{1}{n + p} \right)$. Donc pour N > p,

$$\begin{split} \sum_{1 \leqslant n \leqslant N, \, n \neq p} \frac{1}{n^2 - p^2} &= \frac{1}{2p} \sum_{1 \leqslant n \leqslant N, \, n \neq p} \left(\frac{1}{n - p} - \frac{1}{n + p} \right) = \frac{1}{2p} \left(\sum_{1 - p \leqslant k \leqslant N - p, \, k \neq 0} \frac{1}{k} - \sum_{p + 1 \leqslant k \leqslant N + p, \, k \neq 2p} \frac{1}{k} \right) \\ &= \frac{1}{2p} \left(-\sum_{k = 1}^{p - 1} \frac{1}{k} + \sum_{k = 1}^{N - p} \frac{1}{k} - \sum_{k = 1}^{N + p} \frac{1}{k} + \frac{1}{2p} + \sum_{k = 1}^{p} \frac{1}{k} \right) = \frac{1}{2p} \left(\frac{3}{2p} - \sum_{k = N - p + 1}^{N + p} \frac{1}{k} \right) \end{split}$$

Maintenant, $\sum_{k=N-p+1}^{N+p} \frac{1}{k} = \frac{1}{N-p+1} + \ldots + \frac{1}{N+p}$ est une somme de 2p-1 termes tendant vers 0 quand N tend vers $+\infty$. Puisque 2p-1 est constant quand N varie, $\lim_{N\to+\infty} \sum_{k=N-p+1}^{N+p} \frac{1}{k} = 0$ et donc

$$\sum_{n \in \mathbb{N}^*, \, n \neq p} \frac{1}{n^2 - p^2} = \frac{1}{2p} \times \frac{3}{2p} = \frac{3}{4p^2} \text{ puis } \sum_{p \in \mathbb{N}^*} \left(\sum_{n \in \mathbb{N}^*, \, n \neq p} \frac{1}{n^2 - p^2} \right) = \sum_{p=1}^{+\infty} \frac{3}{4p^2} = \frac{\pi^2}{8}.$$

Pour $n \in \mathbb{N}^*$ donné, on a aussi $\sum_{p \in \mathbb{N}^*, \ p \neq n} \frac{1}{n^2 - p^2} = -\sum_{p \in \mathbb{N}^*, \ p \neq n} \frac{1}{p^2 - n^2} = -\frac{3}{4n^2}$ et donc

$$\sum_{n\in\mathbb{N}^*} \left(\sum_{p\in\mathbb{N}^*,\ p\neq n} \frac{1}{n^2 - p^2} \right) = -\frac{\pi^2}{8}.$$

On en déduit que la suite double $\left(\frac{1}{n^2-p^2}\right)_{(n,p)\in(\mathbb{N}^*)^2,\,n\neq p}$ n'est pas sommable.

Correction de l'exercice 23 ▲

La suite $((-1)^n \frac{1}{3n+1})_{n \in \mathbb{N}}$ est alternée en signe et sa valeur absolue tend vers 0 en décroissant. Donc la série de terme général $(-1)^n \frac{1}{3n+1}$, $n \geqslant 1$, converge en vertu du critère spécial aux séries alternées. Soit $n \in \mathbb{N}$.

$$\textstyle \sum_{k=0}^{n} \frac{(-1)^k}{3k+1} = \sum_{k=0}^{n} (-1)^k \int_0^1 t^{3k} \ dt = \int_0^1 \frac{1-(-t^3)^{n+1}}{1-(-t^3)} \ dt = \int_0^1 \frac{1}{1+t^3} \ dt + (-1)^n \int_0^1 \frac{t^{3n+3}}{1+t^3} \ dt.$$

Mais $\left| (-1)^n \int_0^1 \frac{t^{3n+3}}{1+t^3} dt \right| = \int_0^1 \frac{t^{3n+3}}{1+t^3} dt \leqslant \int_0^1 t^{3n+3} dt = \frac{1}{3n+4}$. On en déduit que $(-1)^n \int_0^1 \frac{t^{3n+3}}{1+t^3} dt$ tend vers 0 quand n tend vers $+\infty$ et donc que

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{3n+1} = \int_0^1 \frac{1}{1+t^3} dt.$$

Calculons cette dernière intégrale.

$$\frac{1}{X^3+1} = \frac{1}{(X+1)(X+j)(X+j^2)} = \frac{1}{3} \left(\frac{1}{X+1} + \frac{j}{X+j} + \frac{j^2}{X+j^2} \right) = \frac{1}{3} \left(\frac{1}{X+1} + \frac{-X+2}{X^2-X+1} \right)$$

$$\frac{1}{3} \left(\frac{1}{X+1} - \frac{1}{2} \frac{2X-1}{X^2-X+1} + \frac{3}{2} \frac{1}{\left(X-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} \right).$$

Donc,

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{3n+1} = \frac{1}{3} \left[\ln(t+1) - \frac{1}{2} \ln(t^2 - t + 1) + \sqrt{3} \arctan\left(\frac{2t-1}{\sqrt{3}}\right) \right]_0^1 = \frac{1}{3} \left(\ln 2 + \sqrt{3} \left(\frac{\pi}{6} - \left(-\frac{\pi}{6}\right)\right) \right) = \frac{3\ln 2 + \pi\sqrt{3}}{9}.$$

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{3n+1} = \frac{3\ln 2 + \pi\sqrt{3}}{9}.$$

Correction de l'exercice 24 A

Pour tout entier $n \ge 2$, on a $nv_n - (n-1)v_{n-1} = u_n$ ce qui reste vrai pour n = 1 si on pose de plus $v_0 = 0$. Par suite, pour $n \in \mathbb{N}^*$

$$v_n^2 - 2u_n v_n = v_n^2 - 2(nv_n - (n-1)v_{n-1})v_n = -(2n-1)v_n^2 + 2(n-1)v_{n-1}v_n$$

$$\leq -(2n-1)v_n^2 + (n-1)(v_{n-1}2 + v_n^2) = (n-1)v_{n-1}^2 - nv_n^2.$$

Mais alors, pour $N \in \mathbb{N}^*$,

$$\sum_{n=1}^{N} (v_n^2 - 2u_n v_n) \leqslant \sum_{n=1}^{N} ((n-1)v_{n-1}^2 - nv_n^2) = -nv_n^2 \leqslant 0.$$

Par suite,

$$\sum_{n=1}^{N} v_n^2 \leqslant \sum_{n=1}^{N} 2u_n v_n \leqslant 2 \left(\sum_{n=1}^{N} u_n^2\right)^{1/2} \left(\sum_{n=1}^{N} v_n^2\right)^{1/2}$$
 (inégalité de CAUCHY-SCHWARZ).

Si $\left(\sum_{n=1}^N v_n^2\right)^{1/2} > 0$, on obtient après simplification par $\left(\sum_{n=1}^N v_n^2\right)^{1/2}$ puis élévation au carré

$$\sum_{n=1}^N v_n^2 \leqslant 4 \sum_{n=1}^N u_n^2,$$

cette inégalité restant claire si $\left(\sum_{n=1}^{N} v_n^2\right)^{1/2} = 0$. Finalement,

$$\sum_{n=1}^{N} v_n^2 \leqslant 4 \sum_{n=1}^{N} u_n^2 \leqslant 4 \sum_{n=1}^{+\infty} u_n^2$$

La suite des sommes partielles de la série de terme général $v_n^2 (\geqslant 0)$ est majorée. Donc la série de terme général v_n^2 converge et de plus, quand N tend vers l'infini, on obtient

$$\sum_{n=1}^{+\infty} v_n^2 \leqslant 4 \sum_{n=1}^{+\infty} u_n^2.$$

Correction de l'exercice 25

Soit $n \in \mathbb{N}$.

$$u_n = \frac{\pi}{4} - \sum_{k=0}^n \frac{(-1)^k}{2k+1} = \int_0^1 \frac{1}{1+t^2} dt - \sum_{k=0}^n (-1)^k \int_0^1 t^{2k} dt = \int_0^1 \frac{1}{1+t^2} dt - \int_0^1 \frac{1-(-t^2)^{n+1}}{1+t^2} dt$$
$$= (-1)^{n+1} \int_0^1 \frac{t^{2n+2}}{1+t^2} dt.$$

Par suite, pour $N \in \mathbb{N}$,

$$\sum_{n=0}^{N} u_n = \int_0^1 \sum_{n=0}^{N} \frac{(-t^2)^{n+1}}{1+t^2} dt = \int_0^1 (-t^2) \frac{1-(-t^2)^{N+1}}{(1+t^2)^2} dt = -\int_0^1 \frac{t^2}{(1+t^2)^2} dt + (-1)^{N+1} \int_0^1 \frac{t^{2N+2}}{(1+t^2)^2} dt.$$

Or $\left| (-1)^{N+1} \int_0^1 \frac{t^{2N+2}}{(1+t^2)^2} dt \right| = \int_0^1 \frac{t^{2N+2}}{(1+t^2)^2} dt \leqslant \int_0^1 t^{2N+2} dt = \frac{1}{2N+3}$. Comme $\frac{1}{2N+3}$ tend vers 0 quand N tend vers $+\infty$, il en est de même de $(-1)^{N+1} \int_0^1 \frac{t^{2N+2}}{(1+t^2)^2} dt$. On en déduit que la série de terme général u_n , $n \in \mathbb{N}$, converge et de plus

$$\sum_{n=0}^{+\infty} u_n = -\int_0^1 \frac{t^2}{(1+t^2)^2} dt = \int_0^1 \frac{t}{2} \times \frac{-2t}{(1+t^2)^2} dt$$
$$= \left[\frac{t}{2} \times \frac{1}{1+t^2} \right]_0^1 - \int_0^1 \frac{1}{2} \times \frac{1}{1+t^2} dt = \frac{1}{4} - \frac{\pi}{8}.$$

$$\sum_{n=0}^{+\infty} \left(\frac{\pi}{4} - \sum_{k=0}^{n} \frac{(-1)^k}{2k+1} \right) = \frac{1}{4} - \frac{\pi}{8}.$$