Lineární programování a kombinatorická optimalizace - příprava na zkoušku

Karel Velička

10. září 2024

Vyučující: prof. RNDr. Martin Loebl, CSc.

Obsah

1	Standardní tvar LP, vrchol, stěny, bázická řešení	2
2	Simplexová metoda	4
3	Pivotovací pravidla geometricky	5
4	Blandovo pravidlo	5
5	Dualita	6
6	Farkasovo lemma a dualita	8
7	Fourier-Motzkinova eliminace	9
8	Veta o oddělování	9
9	Minkowski-Weylova věta	10
10	Racionální a celočíselné mnohostěny	11
11	TU matice a Hoffman-Kruskalova věta	11
12	Chvátalovy řezy	12
13	Primární dualní algoritmy	13

1 Standardní tvar LP, vrchol, stěny, bázická řešení

Definice 1.1. (Úloha LP v kanonickém tvaru) je následující optimalizační úloha daná maticí $A \in \mathbb{R}^{m \times n}$ a vektory $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$:

maximalizuj
$$c^T x$$
pro $x \in \mathbb{R}^n$
za podmínek $Ax < b$

Definice 1.2. (Úloha LP v rovnicovém/ standardním tvaru) je následující optimalizační úloha daná maticí $A \in \mathbb{R}^{m \times n}$ a vektory $\boldsymbol{b} \in \mathbb{R}^{m}$.

maximalizuj
$$\boldsymbol{c}^T \boldsymbol{x}$$
 pro $\boldsymbol{x} \in [0, \infty)^n$ za podmínek $A\boldsymbol{x} = \boldsymbol{b}$

Definice 1.3. (Úloha celočíselného lineárního programování) je následující optimalizační úloha daná maticí $A \in \mathbb{R}^{m \times n}$ a vektory $\boldsymbol{b} \in \mathbb{R}^m$, $\boldsymbol{c} \in \mathbb{R}^n$:

maximalizuj
$$\boldsymbol{c}^T \boldsymbol{x}$$
 pro $\boldsymbol{x} \in \mathbb{Z}^n$ za podmínek $A\boldsymbol{x} \leq \boldsymbol{b}$

Definice 1.4. (Báze matice) $B \subseteq \{1, ..., n\}$ je báze matice A, jestliže $A_B \neq 0$

Definice 1.5. (Množina přípustných řešení) je množina $P = \{x \mid Ax = b, x \ge 0\}$.

Definice 1.6. (Bázické řešení) je $x \in P$, pokud existuje báze B matice A taková, že $x_i = 0$ pro každé $i \notin B$.

Definice 1.7. (Konvexní mnohostěn) je průnikem konečně mnoha poloprostorů:

$$P = \{ \boldsymbol{x} \in \mathbb{R}^n, A\boldsymbol{x} \leq \boldsymbol{b} \}.$$

Definice 1.8. (Dimenze konvexního mnohostěnu): dim $P = \max d$, t.ž. $\exists x_0, x_1, \dots, x_d \subseteq P$ takové, že $x_1 - x_0, x_2 - x_0, \dots, x_d - x_0$ jsou afinně (tedy i lineárně) nezávislé. (platí dim $\{x_0\} = 0$, dim $\emptyset = -1$.)

Definice 1.9. (Vrchol): značíme $v \in P \subseteq \mathbb{R}^n$, pokud existuje $c \in \mathbb{R}^n \setminus \{0\}$, že $c^T v > c^T y$, prokaždé $y \in P \setminus \{v\}$.

Definice 1.10. (k-dimenzionální stěna): je $F \subseteq P$, pokud F je k-dimenzionální konvexní mnohostěn a pokud $(\exists c \in \mathbb{R}^n \setminus \{0\})(z \in \mathbb{R}) : (\forall y \in F)(c^Ty = z)$ a zároveň $(\forall y \in P \setminus F)(c^Ty < z)$.

Věta 1.1. Každou úlohu LP lze převést na standardní tvar.

Důkaz.

- (i) Rovnice na nerovnice: $Ax = b \iff Ax \le b \land Ax \ge b$
- (ii) Nerovnice na rovnice: $Ax \leq b \implies Ax + z = b; z \geq 0$
- (iii) Nezáporné na neomezené proměnné: ${\pmb x} \ge 0 \iff$ přidáme podmínky na nezápornost jako nerovnice
- (iv) Neomezené na nezáporné proměnné: $\boldsymbol{x}_i \in \mathbb{R}^n \ \leadsto \ \boldsymbol{x}_i^+ \boldsymbol{x}_i^-; \ \boldsymbol{x}_i^+ \geq 0, \boldsymbol{x}_i^- \geq 0$

Pozorování 1.1. Každé bázi přísluší nejvýše jedno bázické řešení.

Důkaz.

Pozorování 1.2. Řešení $\mathbf{x} \in P$ je bázické \iff sloupce matice A_K , kde $K = \{i \mid \mathbf{x}_i > 0\}$, jsou lineárně nezávislé.

Důkaz.

 $\Rightarrow x$ odpovídá bázi $B; K \subset B \rightsquigarrow z$ definice

$$\Leftarrow \qquad \qquad A_K$$

$$\begin{array}{rcl} |K|&=&m&\Longrightarrow K$$
 je báze
$$|K|< m&\Longrightarrow \text{rozšíříme }K\text{ na bázi }K'.\\ &\pmb{x}\text{ je pak jediným řešením soustavy }A_{K'}\pmb{x}=\pmb{b}. \end{array}$$

Věta 1.2. Je-li účelová funkce $(\max \mathbf{c}^T \mathbf{x}, A\mathbf{x} = \mathbf{b}, \mathbf{x} \geq 0)$ s alespoň jedním přípustným řešením shora omezená na množině P přípustných řešení, potom pro každé $\mathbf{x}_0 \in P$ existuje bázické řešení $\bar{\mathbf{x}}$ splňující $\mathbf{c}^T \mathbf{x}_0 \leq \mathbf{c}^T \bar{\mathbf{x}}$.

Důkaz.

Nechť $\bar{x} \in P$ splňuje $c^T x_0 \le c^T \bar{x}$ a zároveň má \bar{x} minimální počet nenulových komponent. Ukážeme, že je \bar{x} bázické.

Nechť $K = \{\bar{x}_j > 0 \mid j \in \{1, \dots, n\}\}.$

- (a) Sloupce matice A_K jsou lineárně nezávislé $\implies \bar{x}$ je bázické řešení (viz. Pozorování 1.2).
- (b) Sloupce A_K jsou lineárně závislé. To povedeme ke sporu. Jelikož jsou závislé, tak $\exists \tilde{\boldsymbol{w}} \neq 0$ takové, že $A_K \tilde{\boldsymbol{w}} = 0$. To doplníme nulami na $\boldsymbol{w} \in \mathbb{R}^n$, kde $\boldsymbol{w} \neq 0$ a $A\boldsymbol{w} = 0$.
 - (i) Nechť platí $\mathbf{c}^T \mathbf{w} \geq 0$ a $\exists j \in K : \mathbf{w}_j < 0$. Dále definujme $\mathbf{x}(t) = \bar{\mathbf{x}} + t \cdot \mathbf{w}$. Ukážeme nyní, že $\exists t_1 > 0 : \mathbf{x}(t_1)$ je přípustné řešení. Kdyby $\mathbf{c}^T \mathbf{x}(t_1) > \mathbf{c}^T \mathbf{x}_0$, pak $\mathbf{x}(t_1)$ má méně nenulových komponent a to nám dává spor.

Vezměme si $t \ge 0$ a definujme:

$$Ax(t) = A\bar{x} + t \cdot Aw = b + 0,$$

$$c^{T}x(t) = c^{T}\bar{x} + \underbrace{t \cdot c^{T}w}_{>0} \ge c^{T}\bar{x} \ge c^{T}x_{0}.$$

A jelikož víme, že $\boldsymbol{w}_j < 0$, ta zvětšujeme t z nuly, zachováváme $\boldsymbol{x}(t) \geq 0$ a skončíme v okamžiku, kdy jedna kladná složka $\boldsymbol{x}_i = 0$.

(ii) Nechť $\boldsymbol{c}^T\boldsymbol{w} < 0$. Kdyby to platilo, tak buď $-\boldsymbol{c}^T\boldsymbol{w} = 0$, nebo $\boldsymbol{c}^T\boldsymbol{w} > 0$, což obojí implikuje k tomu, že \boldsymbol{w} nebo $-\boldsymbol{w}$ splňuje (i) .

Nebo může nastat $\boldsymbol{w} \geq 0 \implies$ všechna $\boldsymbol{x}(t)$ jsou přípustná řešení \implies jsou neomezené a to nám dává spor.

Věta 1.3. Nechť $P = \{ \boldsymbol{x} \in \mathbb{R}^n, A\boldsymbol{x} = \boldsymbol{b}, \boldsymbol{x} \geq 0 \}$ a $\boldsymbol{v} \in P$, potom je ekvivalentní:

- (1) \mathbf{v} je vrchol,
- (2) **v** je přípustné bázické řešení.

Důkaz.

- \Rightarrow Plyne z $V\check{e}ty$ 1.2 a z definice vrcholu.
- \Leftarrow Stačí vhodně dodefinovat c.

Nechť tedy $c_i = \begin{cases} 0 & i \in B, \\ -1 & i \notin B \end{cases}$ a nechť v odpovídá bázi B.

Platí tedy $\mathbf{v} \in P \implies \mathbf{c}^T \mathbf{x} \leq 0$. Takže buď $\mathbf{c}^T \mathbf{v} = 0$, pak je optimum, nebo $\mathbf{c}^T \mathbf{x} < 0$ a pak \mathbf{x} má alespoň 1 složku mimo B. A jelikož každé bázi odpovídá nejvýše jedno bázické řešení (viz. Pozorování 1.1), tak \mathbf{v} je vrchol.

2 Simplexová metoda

Definice 2.1. (Simplexová tabulka): Definujme proměnné x_1, \ldots, x_n, z , dále všechny bázické proměnné $N = \{1, \ldots, n\} \setminus B, \ p \in \mathbb{R}^m, \ Q \in \mathbb{R}^{m \times (n-m)}, \ r \in \mathbb{R}^{n-m} \ \text{a} \ z_0 \in \mathbb{R}.$ Potom pro bázi B je simplexová tabulka T_B :

$$\boldsymbol{x}_B = p + Q\boldsymbol{x}_N$$
$$\boldsymbol{z} = z_0 + r^T \boldsymbol{x}_N$$

a řešením tak je $(\boldsymbol{x}, \boldsymbol{z})$, pro $\boldsymbol{x}_N = 0 \quad \leadsto \quad \boldsymbol{x}_B = p, \ \boldsymbol{z} = z_0.$

Pozorování 2.1. (O simplexové tabulce)

- (1) T_B vznikne elementárními řádkovými úpravami z $(A\boldsymbol{x}=\boldsymbol{b},\ \boldsymbol{z}=c^T\boldsymbol{x}).$
- (2) Množina řešení $(A\boldsymbol{x}=\boldsymbol{b},\ \boldsymbol{z}=c^T\boldsymbol{x})$ a T_B je stejná.
- (3) Řádkové úpravy jsou násobeny maticí zleva.
- (4) Řešení $\boldsymbol{x}T_B$ je přípustné $\iff p \geq 0$.
- (5) Řešení $\boldsymbol{x}T_B$ je optimální $\iff p \geq 0, \ r \leq 0.$

Definice 2.2. (Pivotovací krok) Formálně popsaný převod k další tabulce: Máme B bázi, kterou upravíme na $B \cup \{v\} \setminus \{u\}$.

- (a) Vstupující proměnná: \boldsymbol{x}_v , že $r_u > 0$.
- (b) Vystupující proměnná: \boldsymbol{x}_u , že $Q_{uv} < 0$ a $-\frac{p_u}{Q_{uv}} = \min\{-\frac{p_i}{Q_{iv}} \mid i \in B, Q_{iv} < 0\}.$
- (c) Úprava tabulky: Převedeme \boldsymbol{x}_v na levou stranu a dosadíme.

- (d) Pokud neexistuje vstupujici proměnná $v \implies B$ je optimálni. Pokud neexistuje vystupující proměnná $u \implies$ úloha je neomezená (viz. Pozorování).
- (e) Pokud (u, v) existují, tak B' je bazí matice A, protože elementárními řádkovými úpravami dostaneme $T_{B'}$ z T_B . Platí tedy, že $(A_{B'})^{-1}$ existuje a det $A_{B'} \neq 0$.

Pozorování 2.2. Pokud je sloupec Q^v matice Q indexovaný $v \in \mathbb{N}$ nezáporný, pak je úloha STneomezená.

 $D\mathring{u}kaz$. Nechť $(\boldsymbol{x},\boldsymbol{z})$ je přípustné řešení báze B úlohy ST. Pro $t\geq 0$ nechť:

$$\mathbf{x}(t)_B = \mathbf{x}_B + Q^v \cdot t, \qquad \mathbf{x}(t)_v = 0, \qquad \mathbf{x}(t)_w = 0 \text{ pro } w \in \mathbb{N} \setminus \{v\}.$$

Potom hodnota účelové funkce pro $\boldsymbol{x}(t)$ je $\boldsymbol{z}_0 + t \cdot \boldsymbol{z}_v$.

Navíc tato hodnota pro $t \to \infty$ jde také do ∞ a každé $\boldsymbol{x}(t)$ je přípustné.

3 Pivotovací pravidla geometricky

Definice 3.1. (Dantzigovo pravidlo): Pro vstupující proměnnou x_{β} a vystupující x_{α} vybereme $\beta \in N$ s maximální r_{β} a zvolíme \boldsymbol{x}_{α} libovolně z množiny proměnných.

Věta 3.1. Nechť x je bázické řešení báze B, x' bázické řešení báze $B' := B \setminus \{\alpha\} \cup \{\beta\}$. $Nechť\ \bar{B}=B\cup\{eta\}\ a\ nechť\ \bar{P}:=\{m{z}\mid A_{\bar{B}}m{z}_{\bar{B}}=m{b}; m{z}_i=0, i\notin\bar{B}\}\ je\ přímka\ (afinní\ prostor\ dimense$ 1) $a \mathbf{x} \in \bar{P} \ni \mathbf{x}'$. Pak \bar{P} definuje stěnu $P = \{\mathbf{z} \mid A\mathbf{z} = \mathbf{b}, \ \mathbf{z} \ge 0\}$.

 $D\mathring{u}kaz$. Definujme $c=(c_1,\ldots,c_n)$ předpisem $c_i=0$ pro $i\in\bar{B}$ a $c_i=-1$ pro $i\notin\bar{B}$. Všimneme si následujících pozorování:

- Pokud $\mathbf{y} \in P \implies \mathbf{c}^T \mathbf{y} = 0$.
- Pokud ${\pmb z} \in \bar{P} \cap P \implies {\pmb z}$ je optimální přípustné řešení (je to stěna).

Pokud $z \in P \setminus \bar{P}$, pak Az = b pro $z \ge 0$ a $\exists i \notin \bar{B} : z_i > 0$. Takže $c^T z \le c_i z_i = -z_i < 0$.

Blandovo pravidlo 4

Definice 4.1. (Blandovo pravidlo): Pro vstupující proměnnou x_t a vystupující x_s vybereme nejmenší možné $t \in \mathbb{N}$ a pro něj vybereme nejmenší možný index $s \in B$. Tento postup necyklí, ale je pomalý.

Věta 4.1. Simplexová metoda s Blandovým pravidlem se nezacyklí.

 $D\mathring{u}kaz$. Sporem. Nechť $F \subset \{1,\ldots,n\}$ je množina indexů vstupující do a vystupujících z cyklu. Všimněme si, že všechny báze cyklu mají stejné bázické řešení \boldsymbol{x} a navíc $i \in F \implies \boldsymbol{x}_i = 0$. Nyní definujme v jako největší index v F, B jako bázi kroku, kde v vstoupí do báze a B' jako bázi kroku, kde v vystoupí z báze. Označme p, Q, r, z_0 pro T_B a p', r', Q', z'_0 pro $T_{B'}$.

Pozorování 4.1. $r_v > 0$, $r_i \le 0$ a to $\forall i \in F - B \setminus \{v\}$.

Pozorování 4.2. Nechť β je vstupní index pro B', pak $p'_{v\beta} < 0$, $p'_{i\beta} \ge 0$ a to $\forall i \in B' \cap (F \setminus \{v\})$.

Vytvoříme pomocný lineární program (⋆) a ukážeme, že má přípustné řešení a že je neomezené.

$$\max c^T \boldsymbol{x}, \quad A\boldsymbol{x} = \boldsymbol{b}, \quad \boldsymbol{x}_{F \setminus \{v\}} \ge 0$$
$$\boldsymbol{x}_v \le 0, \quad \boldsymbol{x}_{N \setminus F} = 0$$
$$\boldsymbol{x}_{B \setminus F} \text{ neomezen\'e}.$$

1. úloha: x je optimální přípustné řešení (\star) .

- (a) $\mathbf{x}_N = 0$, $\mathbf{x}_F = 0$, \mathbf{x} je přípustné řešení (\star) $c^T \mathbf{x} = z_0$.
- (b) \boldsymbol{z} splňuje $A\boldsymbol{z} = \boldsymbol{b} \implies$ hodnota cílové funkce je $c^T\boldsymbol{z} = z_0 + \underbrace{r^T\boldsymbol{x}_N}_{\leq 0 \ Poz. \ 4.2.} \stackrel{Poz. \ 4.1.}{\leq} z_0$ a to pokud \boldsymbol{z} je přípustné řešení (\star) .

2. úloha: \boldsymbol{x} je neomezený. Nechť \boldsymbol{x} je bázické řešení pro B'. Všimněme si, že \boldsymbol{z} splňuje $A\boldsymbol{z} = \boldsymbol{b}$. Potom $\boldsymbol{z}_{B'} = p' + Q'_{z_N}, \ z_{N'} = 0$. Pro $\forall t \geq 0$ tedy definujme $\boldsymbol{x}(t)$:

- (1) $(x(t))_i = 0; i \in N' \setminus \{B\},$
- (2) $(x(t))_{\beta} = t$,
- (3) $(\boldsymbol{x}(t))_{B'}$ upravíme tak, aby $A\boldsymbol{x}(t) = \boldsymbol{b}$.

Dostaneme tak, že $c^T \boldsymbol{x}(t) = z_0' + r_\beta' t \to \infty$ a že $\boldsymbol{x}(t)$ je přípustné řešení (\star) , což nám dává spor s úlohou 1.

$$(\boldsymbol{x}(t))_{i} = \boldsymbol{x}_{i} + t \cdot q'_{i\beta} \begin{cases} > 0 & i \in (F \setminus \{v\}) \cap B', \\ = 0 & i \in N \setminus F, \quad \checkmark \\ < 0 & i = v. \end{cases}$$

5 Dualita

Definice 5.1. (Dualita): Pro linární program (P) je duální úloha (D). Nechť $A \in \mathbb{R}^{m \times n}$:

- (P) $\max c^T x$, $Ax \le b$, $x \ge 0$,
- (D) $\max \boldsymbol{b}^T \boldsymbol{y}, A^T \boldsymbol{y} \geq \boldsymbol{c}, \quad \boldsymbol{y} \geq 0.$

Věta 5.1. (Slabá věta o dualitě): Nechť x a y jsou přípustná řešení (P) a (D), pak $c^Tx \leq b^Ty$.

 $D\mathring{u}kaz$. Vezmeme nerovnost $A^T y \geq c$ a převedeme ji na $y^T A \geq c^T$.

Obě strany vynásobíme \boldsymbol{x} , čímž dostaneme $\boldsymbol{y}^T A \boldsymbol{x} \geq \boldsymbol{c}^T \boldsymbol{x}$ a využijeme vztah z (P), že $\boldsymbol{b} \geq A \boldsymbol{x}$:

$$\mathbf{y}^T b \ge \mathbf{y}^T A \mathbf{x} \ge \mathbf{c}^T \mathbf{x}.$$

Věta 5.2. (Silná věta o dualitě): Pro (P) a (D) platí právě jedno z následujících:

- 1. (P) ani (D) nemají přípustné řešení,
- 2. (P) je neomezená, (D) nemá přípustné řešení,
- 3. (D) je neomezená, (P) nemá přípustné řešení,
- 4. (P) i (D) mají přípustné, tedy i optimální řešení \mathbf{x}^* pro (P) a \mathbf{y}^* pro (D) a platí $\mathbf{c}^T \mathbf{x}^* = \mathbf{b}^T \mathbf{y}^*$.

 $D\mathring{u}kaz$. Předpokládejme, že (P) a (D) mají přípustné řešení \Longrightarrow (D) je omezené \Longrightarrow (D) má optimální řešení. Použijeme Blendovo pravidlo. Bude to sice pomalejší, ale máme jistotu, že se program nezacyklí a že tak dostaneme optimální řešení.

Převedeme tedy úlohu:

$$\max \boldsymbol{c}^T \boldsymbol{x}, \ A \boldsymbol{x} < \boldsymbol{b}, \ \boldsymbol{x} > 0$$

na ST a dostaneme:

$$\max \bar{\boldsymbol{c}}^T \bar{\boldsymbol{x}}, \ \bar{A} \bar{\boldsymbol{x}} = \boldsymbol{b}, \ \boldsymbol{x} > 0,$$

kde $\bar{A} = (A \mid I_m)$ a $\bar{c} = (c \mid O_m^T)$. Označme \bar{x}^* optimální řešení (P) v rovnicovém tvaru. Poslední řádek v ST bude mít vektor $r \leq 0$.

Lemma 5.1. Nechť $\mathbf{y}^* = (\bar{\mathbf{c}}_B^T, A_B^{-1})$, $kde\ B \subseteq \{1, \dots, n+m\}$ je výsledná báze. Potom \mathbf{y}^* je přípustné pro (D) a $\mathbf{c}^T \mathbf{x}^* = \mathbf{b}^T \mathbf{y}^*$, $kde\ \bar{\mathbf{x}}^* = (\mathbf{x}^*, \bar{\mathbf{x}}_{n+1}^*, \dots, \bar{\mathbf{x}}_{n+m}^*)$. (Lemma implikuje Větu o dualitě pomocí Slabé věty o dualitě.)

Důkaz:

$$\bar{\boldsymbol{x}}^* = \bar{A}_B^{-1} \boldsymbol{b}, \ \bar{\boldsymbol{x}}_N = 0 \implies \boldsymbol{c}^T \boldsymbol{x}^* = \bar{\boldsymbol{c}}^T \bar{\boldsymbol{x}}^* = \bar{\boldsymbol{c}}_B^T \bar{\boldsymbol{x}}_B = \bar{\boldsymbol{c}}_B^T (\bar{A}_B^{-1} \boldsymbol{b}) = (\underline{\boldsymbol{c}}_B^T \bar{A}_B^{-1}) \boldsymbol{b} = (\boldsymbol{y}^*)^T \boldsymbol{b}$$

Zbývá ukázat, že \boldsymbol{y}^* je přípustné řešení (D), tedy že $A\boldsymbol{y}^* \geq \boldsymbol{c}, \ \boldsymbol{y}^* \geq 0$. Ukážeme tedy, že $A\boldsymbol{y}^* \geq \boldsymbol{c}, \ \boldsymbol{y}^* \geq 0 \iff \bar{A}^T\boldsymbol{y}^* \geq \bar{\boldsymbol{c}}, \ \boldsymbol{y}^* \geq 0$. Přepíšeme $A^{-1}\boldsymbol{y}^* \geq \boldsymbol{c}$ jako $\underbrace{\bar{A}^T(\bar{\boldsymbol{c}}_B^T\bar{A}_B^{-1})^T}_{w} \geq c$ a definujme $w := (\bar{\boldsymbol{c}}_B^T\bar{A}_B^{-1}\bar{A}^T)^T$.

Dokazujeme tedy, že $w \geq \bar{c}$:

- (a) $w_B \geq \bar{\boldsymbol{c}}_B$: máme $w_B = (\bar{\boldsymbol{c}}_B^T \bar{\boldsymbol{A}}_B^{-1} \bar{\boldsymbol{A}}_B^T)^T = \bar{\boldsymbol{c}}_B$.
- (b) $w_N \geq \bar{\boldsymbol{c}}_N$: máme $w_N = (\bar{\boldsymbol{c}}_B^T \bar{A}_B^{-1} \bar{A}_N^T)^T = \bar{\boldsymbol{c}}_N r \geq \bar{\boldsymbol{c}}_N$, protože $r = \bar{\boldsymbol{c}}_N^T \bar{\boldsymbol{c}}_B^T \bar{A}_B^{-1} \bar{A}_N^T \leq 0$ ze simplexové metody a podle kritéria optimality. Platí tedy $w_N \geq \bar{\boldsymbol{c}}_N$.

Máme tedy \boldsymbol{x}^* , k němu odpovídající přípustné řešení \boldsymbol{y}^* takové, že $c^T \boldsymbol{x}^* = b^T \boldsymbol{y}^*$. A jelikož \boldsymbol{y}^* je přípustné \Longrightarrow z $V \check{e} t y$ 5.1. je \boldsymbol{y}^* optimální.

Důsledek 5.1. Úloha LP je algoritmicky ekvivalentní úloze najít $x \geq 0$, že $\tilde{A}x = \tilde{b}$.

 $D\mathring{u}kaz$. Mějme LP $\max c^T \boldsymbol{x}, A\boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \geq 0$.

 \Rightarrow \checkmark

← Nejprve zjistíme, zda (P) a (D) mají přípustná řešení. Pokud ne, tak (z Věty 5.2.) známe řešení LP. Nechť tedy obě mají přípustná řešení a uvažme:

$$A\boldsymbol{x} \leq \boldsymbol{b}, \quad A^T \boldsymbol{y} \geq \boldsymbol{c}, \quad \boldsymbol{c}^T \boldsymbol{x} \geq \boldsymbol{b}^T \boldsymbol{y}, \quad \boldsymbol{x} \geq 0, \quad \boldsymbol{y} \geq 0.$$

Za pomoci $V \check{e}ty$ 5.2. převedeme na rovnicový tvar. Pokud existuje řešení (x^*, y^*) , pak x^* je optimum (P) a y^* je optimum (D).

7

Důsledek 5.2. (Podmínky komplementarity): Nechť x je přípustné řešení (P) a y je přípustné řešení (D). Potom x, y jsou optimální \iff

(i)
$$\boldsymbol{x}_i = 0$$
, nebo $A_i^T \boldsymbol{y} = \boldsymbol{c}_i$, kde $i = 1, \dots, n$

(ii)
$$\mathbf{y}_i = 0$$
, nebo $A_j \mathbf{x} = \mathbf{b}_j$, $kde \ j = 1, \dots, m$

Důkaz.

$$egin{aligned} oldsymbol{c}^T oldsymbol{x} &= \sum_{i=1}^n oldsymbol{c}_i oldsymbol{x}_i &\leq \sum_{i=1}^n (oldsymbol{y}^T A)_i oldsymbol{x}_i &= (oldsymbol{y}^T A) oldsymbol{x} &= oldsymbol{y}^T (A oldsymbol{x}) &= \\ &= \sum_{j=1}^m oldsymbol{y}_j (A_j oldsymbol{x}) &\leq \sum_{j=1}^m oldsymbol{y}_j oldsymbol{b}_j &= oldsymbol{b}^T oldsymbol{y}. \end{aligned}$$

Pokud jsou přípustné, platí x = y a jsou tedy optimální.

6 Farkasovo lemma a dualita

Definice 6.1. (Varianty Farkasova lemmatu):

- $(\exists x \ge 0)(Ax \le b) \iff (\forall y \ge 0)(y^T A \ge 0 \implies y^T b \ge 0)$
- $(\exists \boldsymbol{x})(A\boldsymbol{x} \leq \boldsymbol{b}) \iff (\forall \boldsymbol{y} \geq 0)(\boldsymbol{y}^T A = 0 \implies \boldsymbol{y}^T \boldsymbol{b} \geq 0)$

Definice 6.2. (Konvexní kužel): generovaný a_1, \ldots, a_n se definuje

$$cone(a_1, \ldots, a_n) = \{t_1 a_1 + \ldots + t_n a_n; \ t_1, \ldots, t_m \ge 0\}.$$

Tvrzení 6.1. (Farkasovo lemma (geometricky) a souvislost s větou o oddělování): Nastane právě jedna za následujících:

- (i) Bod $\mathbf{b} \in cone(a_1, \dots, a_n)$
- (ii) Existuje nadrovina h obsahující $0 \in \mathbb{R}^m$, t.j. $h = \{ \boldsymbol{x} \in \mathbb{R}^m; \ \boldsymbol{y}^T \boldsymbol{x} = 0 \}$ pro nějaké $0 \in \mathbb{R}^m$ tak, že $cone(a_1, \ldots, a_n) \subseteq \{ \boldsymbol{x}; \ \boldsymbol{y}^T \boldsymbol{x} \ge 0 \}$ a zároveň $\boldsymbol{y}^T \boldsymbol{b} < 0$.

Tvrzení 6.2. (Farkasovo lemma): Nastane právě jedna z následujících:

- (i) $\exists \boldsymbol{x} > 0, A\boldsymbol{x} = \boldsymbol{b}$
- (ii) $\exists \boldsymbol{y}, \boldsymbol{y}^T A \geq 0, \boldsymbol{y}^T \boldsymbol{b} < 0.$

Důkaz.

Farkasovo lemma plyne z $V \check{e}ty$ o oddělování. Vyjádříme geometricky, vezmeme kužel a $\mathbf{b} \in cone(a^1, \dots, a^n)$, kde a^i značí i-tý sloupec A.

Tvrzení 6.3. Ferkasovo lemma plyne ze silné věty o dualitě.

 $D\mathring{u}kaz$. Mějme (P) $\max\{0^T \boldsymbol{x}; A\boldsymbol{y} \leq \boldsymbol{b}\}$, (D) $\min\{\boldsymbol{b}^T \boldsymbol{y}; A^T \boldsymbol{y} = 0; \boldsymbol{y} \geq 0\}$. Platí, že $A\boldsymbol{x} \leq \boldsymbol{b}$ má řešení \iff (P) má přípustné řešení a je omezená \iff (D) má přípustné řešení a $0 = \max\{0^T \boldsymbol{x}; A\boldsymbol{y} \leq \boldsymbol{b}\} = \min\{\boldsymbol{b}^T \boldsymbol{y}; A^T \boldsymbol{y} = 0; \boldsymbol{y} \geq 0\}$.

7 Fourier-Motzkinova eliminace

Metoda, kde ze soustavy nerovnic s n proměnnými uděláme soustavu n-1 proměnnými tak, že zachová řešitelnost. V podstatě Gaussova eliminace pro nerovnice.

Věta 7.1. (Fourier-Motzkinova eliminace): Nechť $Ax \leq b$ je systém s n proměnnými a m nerovnicemi. Pak existuje systém $A'x' \leq b'$ s (n-1) proměnnými a nejvýše $\max(m, \frac{m^2}{4})$ nerovnicemi splňující:

- (1) $Ax \le b \mod \check{r}e\check{s}eni \iff A'x' \le b' \mod \check{r}e\check{s}eni$,
- (2) Každá nerovnice v $A'x' \leq b'$ je nezáporná lineární kombinace nerovnic systému $Ax \leq b$.

 $D\mathring{u}kaz$. Vynásobíme řádky kladnými čísly $\Longrightarrow A$ splňuje $a_{i1} \in \{0, 1, -1\}$. Dále definujme $C = \{i, a_{i1} = 1\}, F = \{i, a_{i1} = -1\}$ a $L = \{i, a_{i1} = 0\}$. Systém $A'x' \leq b'$ splňuje:

- (i) $a_i^{\prime T} \boldsymbol{x}' + a_k^{\prime T} \boldsymbol{x}' \leq \boldsymbol{b}_j + \boldsymbol{b}_k \text{ pro } \forall j \in C, \ k \in F,$
- (ii) $a_l^{\prime T} \boldsymbol{x}^{\prime} < \boldsymbol{b}_l \text{ pro } l \in L.$

Máme tedy (2) splněno. Stačí dokázat ekvivalenci v (1).

- ⇒ Splněno.
- \leftarrow Nechť $\tilde{\boldsymbol{x}}' = (\tilde{\boldsymbol{x}}_2, \dots, \tilde{\boldsymbol{x}}_n)$ je řešení $A'\boldsymbol{x}' \leq \boldsymbol{b}$. Chceme najít $\tilde{\boldsymbol{x}}_1'$, aby $A\tilde{\boldsymbol{x}} \leq \boldsymbol{b}$. Z (i) vyplývá vztah $a_k'^T\boldsymbol{x}' \boldsymbol{b}_k \leq \boldsymbol{b}_j a_j'^T\boldsymbol{x}'$, pro $\forall j \in C, \ k \in F$. Z toho vyplývá, že:

$$\max_{k \in F} \left(a_k'^T \tilde{\boldsymbol{x}}' - \boldsymbol{b}_k \right) \leq \min_{j \in C} \left(\boldsymbol{b}_j - a_j'^T \tilde{\boldsymbol{x}}' \right).$$

Zvolíme tedy $\tilde{\boldsymbol{x}}_1$ mezi těmito omezeními.

Takže $j \in C \implies \tilde{\boldsymbol{x}}_1 + a'^T \tilde{\boldsymbol{x}}' \leq \boldsymbol{b}'_j$, analogicky pro $k \in F \implies \tilde{\boldsymbol{x}}_1 + a'^T \tilde{\boldsymbol{x}}' \leq \boldsymbol{b}'_k$.

8 Veta o oddělování

Definice 8.1. (Konvexní množina): Množina X je konvexní, pokud je mezi každými dvěma body $x, y \in X$ mezi nimi úsečka, tj. $t \in [0, 1] : tx + (1 - t)y \in X$.

Věta 8.1. (O oddělování): Nechť $C, D \subseteq \mathbb{R}^n$ jsou neprázdné, uzavřené, konvexní a disjunktní a C je omezená. Pak existuje nadrovina $\{x \mid a^Tx = b\}$, která silně odděluje C a D, tj. taková, že $C \subseteq \{x \mid a^Tx < b\}$ a $D \subseteq \{x \mid a^Tx > b\}$.

 $D\mathring{u}kaz$. (Náznak důkazu). Vezmeme dva nejbližší body. Pokud je jedna z množin nekonečná, vezmeme vhodné okolí. Pak vezmeme nadrovinu, která je kolmá na vektor bodů (rozdíl) a leží na půli cesty mezi body. Oba body leží na různých stranách, jiné body neleží blíž.

9 Minkowski-Weylova věta

Definice 9.1. (*Diskrétní optimalizace*): Nechť X je konečná, $\varphi \subseteq 2^x$ a $w: X \to \mathbb{Q}$. Najděte $\max_{A \in \varphi} w(A)$, kde $w(A) = \sum_{a \in A} w(a)$.

Definice 9.2. (Konvexní obal): množiny $X \subseteq \mathbb{R}^n$ značíme $\operatorname{conv}(X)$ a definujeme jako průnik všech konvexních množin obsahujících X, tedy:

$$\operatorname{conv}(X) = \{C \mid C \text{ je konvexní a } X \subseteq C\}$$

Definice 9.3. (Afinní obal): množiny $X \subseteq \mathbb{R}^n$ je průnik všech afinních prostorů L takových, že $X \subseteq L$.

Definice 9.4. (Afinní kombinace): bodů z X je libovolný bod daný výrazem $\alpha_0 a_0 + \ldots + \alpha_k a_k$, pro nějaké $k \in \mathbb{N}$, $a_i \in X$, $\alpha_i \in \mathbb{R}$, $\sum_{i=0}^k \alpha_i = 1$.

Věta 9.1. (Minkowski-Weyl): Nechť $X \subseteq \mathbb{R}^n$, pak X je omezený konvexní mnohostěn \iff existuje $V \subseteq \mathbb{R}^n$ tak, že V je konečná a X = conv(V).

Důkaz.

- \Rightarrow Indukcí podle dim Q. L je afinní obal $Q \rightsquigarrow \dim L = \dim Q$.
 - (i) $\dim Q \le 0 \implies |Q| \le 1 \implies V = Q$.
 - (ii) dim $Q \ge 1 \implies L$ obsahuje přímku \implies dim $L = d \ge 1$. Pro $i = \{1, ..., m\}$, nechť:

$$Q = \{ \boldsymbol{x} \mid a_i^T \boldsymbol{x} \leq b \}$$

$$P_i = \{ \boldsymbol{x} \mid a_i^T \boldsymbol{x} \leq b_i \}$$

$$R_i = \{ \boldsymbol{x} \mid a_i^T \boldsymbol{x} = b \}$$

$$M = \{ i \mid Q \cap R_i \neq Q \},$$

Jelikož $i \in M \implies \dim(Q \cap R_i) \le d-1$, protože $Q \subseteq L \cap R_i \subsetneq L \implies$ dle indukčního předpokladu, že $i \in M \implies Q \cap R_i = \operatorname{conv}(V_i)$, kde $V = \bigcup_{i \in M} V_i$.

Ukážeme, že Q = conv(V).

- $\circ V_i \subseteq Q \implies V \subseteq Q \implies \operatorname{conv}(V) \subseteq Q.$
- o $\boldsymbol{x} \in Q$, p je přímka, $p \subseteq L$, $\boldsymbol{x} \in p$. Víme, že p existuje, protože dim $L \ge 1$. Takže $\boldsymbol{x} \in p \cap Q = p \cap (\bigcap P_i; \ i \in M) = \bigcap_{i \in M} (p \cap P_i) \neq 0$, takže $p \cap Q$ je úsečka s

koncovými body $\boldsymbol{y}, \boldsymbol{z}: \boldsymbol{y} \in R_i, \ \boldsymbol{z} \in R_j, \text{ pro } i, j \in M.$

A tedy $\boldsymbol{y}, \boldsymbol{z} \in \operatorname{conv}(V), \boldsymbol{x}$ leží na úsečkách $\boldsymbol{y}, \boldsymbol{z} \implies \boldsymbol{x} \in \operatorname{conv}(V) \implies Q \subseteq \operatorname{conv}(V).$

 \Leftarrow Nechť $V \in \mathbb{R}^n$ je konečná a X = conv(V).

Dále nechť $H = \{\binom{a}{b} \in \mathbb{R}^{n+1} \mid a \in [-1,1]^n, b \in [-1,1], (\forall \boldsymbol{v} \in V)(a^T\boldsymbol{v} \leq b)\}$ je omezený mnohostěn. Podle " \Rightarrow " je $H = \operatorname{conv}(W)$ pro nějaké konečné W.

Platí $Y := \{ \boldsymbol{x} \in \mathbb{R}^n \mid (\forall \binom{a}{b} \in W) (a^T \boldsymbol{x} \leq b) \}$ a ukážeme, že conv(V) = Y.

- \circ Dle definice $V \subseteq Y \implies \operatorname{conv}(V) \subseteq Y$.
- o Pro důkaz $Y \subseteq \operatorname{conv}(V)$ nechť $\boldsymbol{x} \notin \operatorname{conv}(V) \Longrightarrow \operatorname{Věta}$ o oddělování (8.1.) $\Longrightarrow \exists a,b: a^T\boldsymbol{x} > b, \ (\forall \boldsymbol{v} \in V)(a^T\boldsymbol{v} < b) \Longrightarrow \binom{a}{b} \in H \Longrightarrow \boldsymbol{x}$ nesplňuje nerovnost z $H \Longrightarrow \boldsymbol{x}$ nesplňuje nerovnost z $W \Longrightarrow \boldsymbol{x} \notin Y$.

Důsledek 9.1. Každá úloha diskrétní optimalizace je úloha lineárního programování.

 $D\mathring{u}kaz$. $P_{\varphi} = \operatorname{conv}(\boldsymbol{x}_A \mid A \in \varphi) \subseteq \mathbb{R}^n$, kde \boldsymbol{x}_A je charakteristický vektor.

Z Minkowski-Weylovy věty (9.1.) víme, že P_{φ} je mnohostěn \implies jde řešit pomocí lineárního programu.

10 Racionální a celočíselné mnohostěny

Definice 10.1. (Celočíselný mnohostěn): P je celočíselný \iff má všechny vrcholy celočíselné.

Definice 10.2. (Racionální mnohostěn): P je racionální $\iff P = \{x; Ax \leq b\} \subseteq \mathbb{R}^n$ a všechny složky A i b jsou racionální.

Věta 10.1. Nechť P je racionální, potom všechny vrcholy P jsou racionální a jsou dosvědčeny racionální cílovou funkcí.

 $D\mathring{u}kaz$. Pro rovnicový tvar $P = \{ \boldsymbol{x} \mid A\boldsymbol{x} = b, \ \boldsymbol{x} \geq 0 \}$. Vrcholy P odpovídají bázickým řešením

$$Ax = b, x \ge 0 \implies \exists B \in \{1, \dots, n\}, |B| = m,$$

že $A_B v_B = b$, $v_N = 0$, $N = \{1, \ldots, n\} \setminus B$. Tedy v_B je jediné řešení, a to $v_B = b \cdot A_B^{-1} \implies v$ je racionální. (Pro nestandardně popsaný P odpovídají vrcholy $A\mathbf{x} \leq b$).

Věta 10.2. Mnohostěn P je celočíselný \iff pro každý celočíselné w platí, že $\max\{w^T \boldsymbol{x} \mid \boldsymbol{x} \in P\}$ je celé číslo.

Důkaz.

- $\Rightarrow \max w^T x, \ x \in P$ se nebývá ve vrcholu $z \implies \max w^T x, \ x \in P = w^T z \in \mathbb{Z}$.
- \Leftarrow Nechť \boldsymbol{z} je vrchol $\Longrightarrow \boldsymbol{z}$ je optimum $\max w^T \boldsymbol{x}, \ \boldsymbol{x} \in P$, pro nějaké $w \in \mathbb{Z}$. Vynásobíme w velkým číslem, aby pro každý vrchol $\boldsymbol{u} \neq \boldsymbol{z}: \ w^T \boldsymbol{z} > w^T \boldsymbol{u} + \boldsymbol{u}_1 - \boldsymbol{z}_1$. A tedy \boldsymbol{z} je jediné optimální řešení pro w i pro $\bar{w} = (w_1 + 1, w_2, \ldots) \implies w^T \boldsymbol{z}, \bar{w}^T \boldsymbol{z} \in \mathbb{Z} \implies$

11 TU matice a Hoffman-Kruskalova věta

Definice 11.1. (*Unimodulární matice*): Matice A s lineárně nezávislými řádky je *unimodulární*, pokud je A celočíselná a pokud pro každou bázi B: $det(A_B) \in \{-1, 1\}$.

Definice 11.2. (*Totálně unimodulární matice*): Matice A je totálně unimodulární, pokud každá čtvercová podmatice má det $\in \{-1, 0, 1\}$.

Věta 11.1. Nechť $A \in \mathbb{Z}^{m \times n}$ je celočíselná s det $A \neq 0$, pak pro každý celočíselný vektor b platí, že

$$A^{-1}b$$
 je celočíselné \iff det $A \in \{-1, 1\}$.

Důkaz.

 \Leftarrow Cramerovo pravidlo $\implies A^{-1}$ je celočíselný.

 $z_1 \in \mathbb{Z} \implies z$ je celočíselné.

 $\Rightarrow A^{-1}e_i$ je celočíselný \iff i-tý sloupec A^{-1} je celočíselný \implies $\Rightarrow A^{-1}$ je celočíselné, ale $\det(A) \cdot \det(A^{-1}) = 1 \implies \det(A) \in \{-1, 1\}.$

Věta 11.2. Nechť A je celočíselná a má lineárně nezávislé řádky, potom $\{x \mid Ax = b, x > 0\}$ je celočíselné pro každé $b \in \mathbb{Z} \iff A$ je unimodulární.

Důkaz.

- \Leftarrow Každý vrchol je bázické řešení pro bázi $B \implies A_B \mathbf{z}_B = b, \ Z_{N \setminus B} = 0 \implies \mathbf{z}_B = A^{-1}b \implies$ je celočíselné (viz. Věta 11.1.).
- \Rightarrow Stačí dokázat, že $A_B^{-1}b$ je celočíselné pro každé $b\in\mathbb{Z}$ a bázi B.

Nechť $\boldsymbol{y} \in \mathbb{Z}$ splňuje $\boldsymbol{y} + A_B^{-1}b \geq 0$ a nechť $\bar{b} = A_B(\boldsymbol{y} + A_B^{-1}b)$, kde \bar{b} je celočíselný.

Definujme $\boldsymbol{z}_B = \boldsymbol{y} + A_B^{-1}b, \ \boldsymbol{z}_{N\backslash B} = 0 \Longrightarrow \boldsymbol{z}$ je bázické řešení $(A\boldsymbol{x} = \bar{b}, \ \boldsymbol{x} \geq 0) \Longrightarrow \boldsymbol{z}$ je vrchol $\Longrightarrow \boldsymbol{z} \in \mathbb{Z} \Longrightarrow \boldsymbol{z}_B = \boldsymbol{y} + A_B^{-1}b$ je celočíselný $\Longrightarrow A_B^{-1}b$ je celočíselný.

Věta 11.3. (Hoffman-Kruskal): Nechť $A \in \mathbb{Z}^{m \times n}$, $P = \{x \mid Ax \leq b, x \geq 0\}$ je celočíselný pro $každé\ b \in \mathbb{Z} \iff každá\ čtvercová\ podmatice\ A\ má\ \det A \in \{-1,0,1\}.$

 $D\mathring{u}kaz$. Dodáme pomocné proměnné a převedeme na standardní tvar. Tedy P převedeme na ST.

P je celočíselný $\iff \max(w^T \boldsymbol{x}, \ \boldsymbol{x} \in P)$ je celé číslo $\forall w \in \mathbb{Z}^n$

 $\iff P' = \{ \boldsymbol{z} \mid [A|I]\boldsymbol{z} = b, \ \boldsymbol{z} \geq 0 \}$ je celočíselný $\forall b \in \mathbb{Z}$

 \iff [A|I] je unimodulární (viz. věta 11.2.)

 \iff každá báze má $\det = 1$, nebo $\det = -1$

 \iff A je totálně unimodulární.

12 Chvátalovy řezy

Definice 12.1. (Gomory-Chvátalův řez): Pro $Ax \leq b$, $A \in \mathbb{Q}^{m \times n}$, $y \geq 0$, $c = y^T A$, $d = y^T b$. Pokud c je celočíselné, potom podmínka $c^T x \leq |d|$ se nazývá řez.

Definice 12.2. (Chvátalův uzávěr): $P' = \{x \in P \mid x \text{ splňuje každý řez }\}.$

Věta 12.1. (O Chvátalově řezu): Nechť $P = \{x \mid Ax \leq b\}$ je racionální mnohostěn, $w^Tx \leq t$, $w \in \mathbb{Z}^n$ je splněno pro $\forall x \in P \cap \mathbb{Z}^n$. Potom existuje důkaz $w^Tx \leq t'$, pro $t' \leq t$.

Věta 12.2. (O Chvátalově řezu): $P \cap \mathbb{Z}^n = \emptyset \implies \text{existuje odvození "} 0^t \mathbf{x} \leq -1$ ".

Pozorování 12.1. $P = \{x \mid Ax \leq b\}$ je racionální mnohostěn, P_I je konvexní obal celočíselných bodů P a $P' = \{x \in P \mid x \text{ splňuje každý řez }\}.$

Věta 12.3. Chvátalův uzávěr je racionální mnohostěn.

 $D\mathring{u}kaz$. Mějme $P = \{ \boldsymbol{x} \mid A\boldsymbol{x} \leq b \}$ a předpokládejme, že $A, b \in \mathbb{Z}$.

 $* \begin{cases} P' \text{ je definovan\'e podm\'inkami } A\boldsymbol{x} \leq b \text{ a nerovnicemi } (\boldsymbol{y}^TA)x \leq \lfloor \boldsymbol{y}^Tb \rfloor, \ 0 \leq \boldsymbol{y} \leq 1. \\ (protože podm´inek je konečně mnoho, tak P' je racion´aln´i mnohostěn) \end{cases}$

Nechť $w^T \pmb{x} \leq \lfloor t \rfloor$ je řez odvozený z $A \pmb{x} \leq b$ vektorem \pmb{y} a nechť

$$\mathbf{y}' = \mathbf{y} - |\mathbf{y}| \implies w' = (\mathbf{y}')^T A = w - (|\mathbf{y}|)^T A$$

je celočíselné.

Jelikož $t' = (\boldsymbol{y}')^T b = t - (\lfloor \boldsymbol{y} \rfloor)^T b$ se liší o celé číslo od t, tak řez $(w')^T \boldsymbol{x} \leq \lfloor t' \rfloor$ odvozený vektor \boldsymbol{y}' je podmínka z * a společně s platnou nerovností

$$((\lfloor \boldsymbol{y} \rfloor)^T A) \boldsymbol{x} \le (\lfloor \boldsymbol{y} \rfloor)^T b,$$

se sečte na podmínku $w^T \boldsymbol{x} \leq \lfloor t \rfloor \implies * \implies P'$ je racionální mnohostěn.

13 Primární dualní algoritmy

Definice 13.1. (*T-join*) G = (V, E) je graf, $T \subseteq V$, |V| je sudá, $E' \subseteq E$ je *T-join*, jestli pro graf H = (V, E') platí, že $\deg_H(v)$ je lichý $\iff v \in T$.

Definice 13.2. (*P-D algoritmus*) Algoritmus založený na podmínkách komplementarity. Pokud x je přípustné řešení (P) a y pro (D), pak

$$\boldsymbol{x}, \boldsymbol{y}$$
 jsou optimální $\iff (\forall u, v \in E)(\boldsymbol{x}_{u,v} > 0 \implies \boldsymbol{y}_u + \boldsymbol{y}_v = c_{u,v}).$

Příklad 13.1. (Minimální perfektní párování)

$$\begin{array}{ll} \text{(P)} & \min \sum c_e \boldsymbol{x}_e \\ \forall v \in V : \sum_{v \in e} \boldsymbol{x}_e = 1 \\ & \boldsymbol{x}_e \geq 0 \end{array} \qquad \begin{array}{l} \text{(D)} & \max \sum \boldsymbol{y}_v \\ \forall u, v \in E : \boldsymbol{y}_u + \boldsymbol{y}_v \leq e_{u,v} \end{array}$$

Postupně upravujeme (M, \mathbf{y}) , kde M je párování v G a \mathbf{y} je přípustné řešení (D).

Začátek: $M \neq \emptyset$, y = 0

Konec: Pokud M je perfektní $\implies (M, \mathbf{y})$ je optimum (P). To vychází z podmínek komplementarity.

Je to podobné jako kytičkový algoritmus.

Zdroje

Čerpal jsem z vlastních poznámek z hodin plus:

- skripta prof. Jiřího Sgalla
- zápisky z přednášek od Štěpána Vodseďálka
- "skripta" (ručně psaná) přednášejícího prof. Martina Loebla