### Métodos Numéricos

Primer Cuatrimestre 2016

## Práctica 4

Matrices ortogonales. Factorización QR.



Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

- 1. Sean  $x, y \in \mathbb{R}^n$ .
  - a) ¿Qué quiere decir que x sea ortogonal a y?
  - b) Probar que  $x \perp y$   $(x, y \text{ no nulos}) \Rightarrow \{x, y\}$  es l.i.
  - c) Dar un ejemplo de 2 vectores en  $\mathbb{R}^3$  que sean ortogonales, y 2 que no lo sean.
  - d) ¿Es cierto que  $\perp$  define una relación transitiva en  $\mathbb{R}^n$ ?
- 2. Sea  $Q \in \mathbb{R}^{n \times n}$ . Probar que son equivalentes:
  - a)  $Q^{-1} = Q^t$
  - b) Las columnas de Q forman un conjunto ortonormal<sup>1</sup>.
  - c) Las filas de Q forman un conjunto ortonormal<sup>1</sup>.
  - $d) \|Qx\|_2 = \|x\|_2$

Interpretar (d) geométricamente.

Sugerencia: para demostrar la implicación  $(d \Rightarrow b)$  usar que  $x^t y = \frac{1}{4}(\|x + y\|_2^2 - \|x - y\|_2^2)$ .

- 3. Sean  $A \in \mathbb{R}^{m \times r}$ ,  $B \in \mathbb{R}^{r \times n}$  ortogonales. Probar que  $A \cdot B$  es ortogonal.
- 4. Sea  $Q \in \mathbb{R}^{n \times n}$  ortogonal. Probar que:
  - a) det(Q) = 1 ó -1
  - b)  $\kappa_2(Q) = 1$
- 5. Sea  $u_1, \ldots, u_n$  una base ortonormal de vectores de  $\mathbb{R}^n$ . Demostrar que para cualquier vector  $x \in \mathbb{R}^n$ , la coordenada de x respecto de  $u_k$  es igual a  $u_k^t x$ , para cualquier  $k = 1, \ldots, n$ .
- 6. ¿Cuáles de las siguientes matrices es necesariamente ortogonal?
  - a) Permutación
  - b) Simétrica definida positiva
  - c) No singular
  - d) Diagonal
- 7. Hallar la descomposición QR de la matriz A según los métodos de Givens y Householder, siendo

$$A = \begin{bmatrix} 12 & -51 & 4 \\ 6 & 167 & -68 \\ -4 & 24 & -41 \end{bmatrix}$$

8. Verificar que si  $A \in \mathbb{R}^{n \times n}$  es no singular y tiene descomposición QR, entonces R es no singular.

<sup>&</sup>lt;sup>1</sup>  $\{v_1, \ldots, v_n\}$  con  $v_i \in \mathbb{R}^n$  se dice ortonormal si  $v_i^t v_j = 0 \ (\forall i \neq j)$  y  $v_i^t v_i = 1 \ (\forall i : 1 \leq i \leq n)$ .

- 9. a) Sea  $C \in \mathbb{R}^{n \times n}$  una matriz ortogonal y triangular superior. Demostrar que  $\forall j = 1, \dots, n$ ,  $col_j(C) = \pm e_j$ , donde  $e_j$  es el j-ésimo canónico de  $\mathbb{R}^n$ .
  - b) Demostrar que si A es no singular, entonces la factorización A = QR es única si los elementos de la diagonal de R son positivos.
- 10. Sea  $Q \in \mathbb{R}^{2 \times 2}$  una matriz ortogonal tal que:

$$Q\left(\begin{array}{c} x_1\\ x_2 \end{array}\right) = \left(\begin{array}{c} \alpha\\ 0 \end{array}\right)$$

¿cuál debería ser el valor de  $\alpha$ ?

11. Sea  $b \neq 0$  y la matriz A definida de la siguiente manera. Mostrar que si A es ortogonal, entonces sus elementos se pueden tomar como senos y cosenos de un ángulo  $\theta$ .

$$A = \left(\begin{array}{cc} a & b \\ -b & c \end{array}\right)$$

12. Dadas dos matrices de Givens de  $\mathbb{R}^{2\times 2}$ ,  $G_1$  y  $G_2$ , con ángulos  $\theta$  y  $\omega$  respectivamente, calcular e interpretar geométricamente  $G_1^2$ ,  $G_1G_2$  y  $G_1^tG_1$ . Pista: recordar las relaciones trigonométricas:

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$

Para  $G_1$ , determinar el ángulo  $\theta$  tal que

$$G_1\left(\begin{array}{cc}\sqrt{3} & 1\\1 & \sqrt{3}\end{array}\right) = \left(\begin{array}{cc} * & *\\0 & *\end{array}\right)$$

- 13. Sea  $G \in \mathbb{R}^n$  una matriz de rotación de Givens con un ángulo asociado  $\theta \in [-\pi, \pi)$ . Demostrar que G es definida positiva si y sólo si  $|\theta| < \pi/2$ .
- 14. Considerar la transformación de Householder  $P := I 2uu^t$  con  $u = e_i$ . Calcular explícitamente P e interpretar geométricamente Px con  $x \in \mathbb{R}^n$ .
- 15. Sea  $u \in \mathbb{R}^n$  tal que  $||u||_2 = 1$ . Demostrar que la matriz  $Q := I 2uu^t$  es ortogonal y simétrica.
- 16. Sean x,y dos vectores de  $\mathbb{R}^n$  tales que  $||x||_2 = ||y||_2$ . Demostrar que la elección v := x y conduce a una transformación de Householder  $H := I \frac{2vv^t}{||v||^2}$  tal que Hx = y y Hy = x.
- 17. Sea  $U = I 2uu^t$  un reflector ortogonal. Sea x tal que x = v + w con v múltiplo de u y w ortogonal a u. Mostrar que Ux = -v + w. Interpretar geométricamente en  $\mathbb{R}^n$ .
- 18. Sea  $H_v = I 2(vv^t)/(v^tv)$  la transformación de Housholder asociada al vector  $v \in \mathbb{R}^n$ .
  - a) Sean dos matrices  $V, W \in \mathbb{R}^{n \times k}$ , y sea  $G = I + VW^t$ . Mostrar que  $H_vG = I + VW^t + vw^t$ , con  $w = \frac{-2(v + WV^tv)}{v^tv}$ .
  - b) Demostrar que el producto de k reflectores de Householder  $H_v$  pueden escribirse como  $I + VW^t$ , con  $V, W \in \mathbb{R}^{n \times k}$ .

# Resolver en computadora

I Sea el sistema lineal Ax = b:

$$\begin{bmatrix} 4 & 2 & 0 & 1 \\ -2 & 1 & -2 & 4 \\ 2 & 0 & 2 & 2 \\ 1 & 2 & 1 & -2 \end{bmatrix} x = \begin{bmatrix} 1 \\ -2 \\ 3 \\ -1 \end{bmatrix}$$

Usando los métodos de Householder y Givens, se pide:

- a) Resolver el sistema
- b) Calcular explícitamente la factorización QR de A
- c) Calcular la cantidad de operaciones realizadas
- II Para cada una de las siguientes matrices en  $\mathbb{R}^{6\times 4}$ , se calcular el rango de cada matriz y su factorización QR. Observar la forma de la matriz R para cada caso.

$$A = \begin{bmatrix} 4 & 2 & 0 & 1 \\ -2 & 1 & -2 & 4 \\ 2 & 0 & 2 & 2 \\ 1 & 2 & 1 & -2 \\ 3 & 1 & 0 & 5 \\ 1 & 0 & 4 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & 2 & 0 & -4 \\ -2 & 1 & -2 & 2 \\ 2 & 0 & 2 & -2 \\ 1 & 2 & 1 & -1 \\ 3 & 1 & 0 & -3 \\ 1 & 0 & 4 & -1 \end{bmatrix}$$

#### Funciones útiles

Tanto Matlab<sup>1</sup> como Numpy<sup>2</sup> proveen funciones para calcular la descomposición QR de una matriz.

■ En Matlab:

$$[Q,R] = \mathbf{qr}(A)$$

■ En Python, usando Numpy:

from numpy import \*
from numpy.linalg import \*

$$A = matrix([[8,2],[2,4],[5,3]], float)$$
 Q,  $R = qr(A)$ 

Notar que si  $A \in \mathbb{R}^{m \times n}$  no es cuadrada, como en el ejemplo, la matriz R retornada es de  $k \times n$  donde  $k = \min(m, n)$ .

## Referencias

- [1] C. Meyer. Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics, 2000.
- [2] D.S. Watkins. Fundamentals of Matrix Computations. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley, 2010.

<sup>1</sup> http://www.mathworks.com/help/matlab/ref/gr.html

 $<sup>^2 \</sup>mathtt{http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.qr.html}$