Filter Design Assignment Report

Debarnab Mitra

Roll No.: 140070037

Filter No.: 47

$$m = 47$$
, $\Longrightarrow q(m) = 4 \& r(m) = 7$

1 Bandpass filter

$$B_L(m) = 18.8 \& B_H(m) = 23.8$$

- 1. Un-normalized discrete time filter specifications
 - Sampling frequency = 140 kHz
 - Monotonic passband
 - Passband: 18.8 kHz to 23.8 kHz
 - Stopband: 0 kHz to 17.8 kHz & 24.8 kHz to 70 kHz
 - \bullet Transition band: 17.8 kHz to 18.8 kHz & 23.8 kHz to 24.8 kHz
 - Passband magnitude response: 0.9 to 1.1
 - Stopband magnitude response: 0 to 0.1
- 2. Normalized digital filter specifications

$$\omega = \frac{2\pi f}{f_s} \tag{1}$$

Using (1) we get the following digital filter specifications,

- Monotonic passband
- Passband: 0.268π to 0.340π
- Stopband: 0 to 0.254π & 0.354π to π
- Transition band: 0.254π to 0.268π & 0.340π to 0.354π
- Passband magnitude response: 0.9 to 1.1
- Stopband magnitude response: 0 to 0.1
- 3. Corresponding analog filter specifications

Using the bilinear transformation to map the normalized frequencies from the discrete domain to the analog domain,

$$\Omega = \tan(\frac{\omega}{2}) \tag{2}$$

- Monotonic passband
- Passband: 0.4488 to 0.5913
- Stopband: 0 to 0.4221 & 0.6220 to ∞
- \bullet Transition band: 0.4221 to 0.4488 & 0.5913 to 0.6220
- Passband magnitude response: 0.9 to 1.1
- Stopband magnitude response: 0 to 0.1

4. The frequency transformation to be employed

To convert these bandpass analog filter specifications to lowpass analog filter specifications, we need to employ the frequency transform,

$$\Omega_L = \frac{\Omega^2 - \Omega_0^2}{B\Omega} \tag{3}$$

where Ω is the bandpass filter frequency and Ω_L is the frequency of the equivalent lowpass filter. Ω_0 and B are parameters with the following values,

$$\Omega_0 = \sqrt{\Omega_{p1}\Omega_{p2}} \tag{4}$$

$$B = \Omega_{p2} - \Omega_{p1} \tag{5}$$

where Ω_{p1} and Ω_{p2} are the frequencies of the edge of the passband, in increasing order, so that B is positive. In our case $\Omega_{p1} = 0.4488$ and $\Omega_{p2} = 0.5913$, which gives $\Omega_0 = 0.5151$ and B = 0.1425.

5. The frequency transformed lowpass analog filter specifications

Under the above frequency transformation, the edge frequencies of passband and stopband get mapped as follows:

Ω	Ω_L
0+	$-\infty$
$0.4221 (= \Omega_{s1})$	$-1.4495 (= -\Omega_{Ls1})$
$0.6220 (= \Omega_{p1})$	$-1 (= -\Omega_{Lp})$
Ω_0	0
$0.59 (= \Omega_{p2})$	$1 (=\Omega_{Lp})$
$0.622 (= \Omega_{s2})$	1.3706 $(=\Omega_{Ls2})$
$+\infty$	$+\infty$

Therefore, the specifications of the lowpass filter are as follows:

• Monotonic passband

• Passband: 0 to 1

• Stopband: 1.3706 (= $min(\Omega_{Ls1}, \Omega_{Ls2})$)

• Passband magnitude response: 0.9 to 1.1

• Stopband magnitude response: 0 to 0.1

6. The analog lowpass filter transfer function $H_{analog,LPF}(s_L)$

Since the magnitude response is monotonic in the passband and monotonic in the stopband, we need to design a Butterworth filter for this purpose. The absolute value of the transfer function for a lowpass Butterworth filter is given by,

$$|H(j\Omega_L)| = \frac{1}{\sqrt{1 + (\frac{\Omega_L}{\Omega_c})^{2N}}}$$
 (6)

From the above expression, we observe that $|H(\Omega_L)| \leq 1$, so we only need to ensure that $|H(\Omega_L)| \geq 0.9$ in the passband and $|H(\Omega_L)| \leq 0.1$ in the stopband, which gives

 $\delta_1 = \delta_2 = 0.1$, when compared with the usual lowpass filter specifications. To meet the tolerance criterion, Ω_c and N should satisfy the following inequalities,

$$N \ge \frac{ln(\sqrt{\frac{D_2}{D_1}})}{ln(\frac{\Omega_s}{\Omega_n})} \tag{7}$$

$$\frac{\Omega_p}{D_1^{1/2N}} \le \Omega_c \le \frac{\Omega_s}{D_2^{1/2N}} \tag{8}$$

where D_1 and D_2 depend upon δ_1 and δ_2 respectively as,

$$D_1 = \frac{1}{(1 - \delta_1)^2} - 1 \tag{9}$$

$$D_2 = \frac{1}{\delta^2} - 1 \tag{10}$$

Using the values of δ_1 , δ_2 , Ω_s and Ω_p , we get $D_1 = 0.0101$ and $D_2 = 99$. Therefore,

$$N \ge \frac{\ln(\sqrt{\frac{99}{0.0101}})}{\ln(\frac{1.3706}{1})}$$

$$\implies N \ge 9.5862$$

$$\implies N = 10$$

$$\implies \frac{1}{0.0101^{1/20}} \le \Omega_c \le \frac{1.4127}{99^{1/20}}$$

$$\implies 1.0751 \le \Omega_c \le 1.089$$
Taking $\Omega_c = \frac{(1.0751 + 1.089)}{2} = 1.0822$ (12)

Using these values of N and Ω_c , we can find the poles of the analog domain, lowpass filter transfer function $H_{analog,LPF}(s_L)$. The location of the poles is given by,

$$s_i = j\Omega_c e^{(2i+1)\frac{\pi}{2N}}, i = 0, 1, \dots, 9 = N-1$$
 (13)

which gives,

$$s_i = \Omega_c(-\sin(\frac{(2i+1)\pi}{2N}) + j\cos(\frac{(2i+1)\pi}{2N})), i = 0, 1, \dots, 9 = N-1)$$
 (14)

To normalize the dc gain to 1, the expression for the analog lowpass filter transfer function should be,

$$H_{analog,LPF}(s_L) = \Omega_c^N \prod_{i=0}^{i=9} \frac{1}{(s_L - s_{L,i})}$$
 (15)

^{2.2043}

 $^{=\}frac{1}{s^{10}+6.9182s^9+23.93106s^8+54.2562s^7+89.0104s^6+110.2153s^5+104.2552s^4+74.432s^3+38.4532s^2+13.0203s+2.20437s^2+13.0203s+2.20435s+2.2045s+2.2045s+2.2045s+2.2045s+2.2045s+2.2045s+2.2045s+2.2045s+2.2045s+2.2045s+2.2$

7. The analog transfer function for the bandpass filter To convert the analog lowpass filter transfer function to analog bandpass filter transfer function, the following transformation needs to be applied:

$$s_L \to \frac{s^2 + \Omega_0^2}{Bs} \tag{16}$$

$$\implies H_{analog,BPF}(s) =$$
 (17)

$$\frac{7.654^{-9}s^{10}}{s^{20} + 0.98640s^{19} + 3.1408s^{18} + 2.5136s^{17} + 4.2402s^{16} + 2.8005s^{15} + 3.2632s^{14} + 1.7908s^{13} + 1.5916s^{12} + 0.72449s^{11} + 0.5151s^{10}}$$

8. The discrete time filter transfer function Applying the bilinear transformation converts the analog domain transfer function to discrete domain transfer function, which is:

$$s \to \frac{1 - z^{-1}}{1 + z^{-1}} = \frac{z - 1}{z + 1} \tag{18}$$

Under this transformation:

$$\implies H(z) =$$
 (19)

Figure 1: Frequency response of Bandpass IIR Filter(in green)

9. Direct Form II realization

10. FIR filter The FIR filter transfer function needs to be obtained by applying the Kaiser window on the ideal bandpass impulse response and then taking its z-transform. The Kaiser window parameters can be calculated using the values of transition banswidth, passband and stopband tolerances as follows:

$$(2N+1) \ge 1 + \frac{A-8}{2.285\Delta\omega_t} \tag{20}$$

where,

$$\Delta\omega_t = \omega_s - \omega_p = 0.354\pi - 0.340\pi = 0.014\pi \tag{21}$$

$$A = -20\log_{10}\delta = -10\log_{10}0.1 = 20 \tag{22}$$

$$\implies (2N+1) \ge 1 + \frac{20-8}{2.285x0.014\pi} = 118.01545$$

(23)

A < 21, $\implies \alpha = \beta = 0$. So, the Kaiser window reduces to a rectangular window of length 2N+1. The impulse response of a bandpass filter with cutoff frequencies ω_{c1} and ω_{c2} ($\omega_{c2} > \omega_{c1}$) is given by:

$$h[n] = \frac{\sin(n\omega_{c2}) - \sin(n\omega_{c1})}{\pi n}$$
(24)

h[n] needs to be restricted from n = -N to n = N to achieve the desired specifications. The cutoff frequencies need to be defined as the average of the corresponding passband edge and stopband edge frequencies i.e. in the midst of the transition band. Therefore, $\omega_{c1} = 0.261\pi$ and $\omega_{c2} = 0.3471\pi$, giving

$$h_{FIR}[n] = \frac{\sin(0.3471\pi n) - \sin(0.261\pi n)}{\pi n}, \quad \forall |n| \le N$$

$$= 0. \qquad \text{otherwise}$$
(25)

N = 59,60,61,62, in fact, did not satisfy the specifications and using trial and error, N = 63 was the least value of N satisfying the specifications. Hence, the discrete domain transfer function is,

$$H_{FIR}(z) = \sum_{n=-63}^{n=63} h_{FIR}[n]z^{-n}$$
 (26)

Figure 2: Frequency response of Bandpass FIR Filter(in green)

2 Bandstop filter

$$B_L(m) = 14.9 \& B_H(m) = 17.9$$

- 1. Un-normalized discrete time filter specifications
 - Sampling frequency = 90 kHz
 - Equiripple passband
 - Stopband: 17.6 kHz to 27.6 kHz
 - \bullet Passband: 0 kHz to 13.9 kHz & 18.9 kHz to 45 kHz
 - \bullet Transition band: 13.9 kHz to 17.9 kHz & kHz to 18.9 kHz
 - Passband magnitude response: 0.9 to 1.1
 - Stopband magnitude response: 0 to 0.1
- 2. Normalized digital filter specifications

$$\omega = \frac{2\pi f}{f_s} \tag{27}$$

Using the above equation we obtain the digital filter specification

- Equiripple passband
- Stopband: 1.0402 to 1.2496
- \bullet Passband: 0 to 0.9704 1.319 to π
- Transition band: 0.9704 to 1.0402 1.2496 to 1.319
- Passband magnitude response: 0.9 to 1.1
- Stopband magnitude response: 0 to 0.1
- 3. Corresponding analog filter specifications

Using the bilinear transformation to map the normalized frequencies from the discrete domain to the analog domain,

$$\Omega = \tan(\frac{\omega}{2}) \tag{28}$$

- Equiripple passband
- Stopband: 0.6171 to 1.1783
- Passband: 0 to 0.5335 & 1.3406 to ∞
- Transition band: 0.5335 to 0.6171 & 1.1783 to 1.3406
- Passband magnitude response: 0.85 to 1.15
- Stopband magnitude response: 0 to 0.15
- 4. The frequency transformation to be employed

To convert these bandstop analog filter specifications to lowpass analog filter specifications, we need to employ the frequency transform,

$$\Omega_L = \frac{B\Omega}{\Omega_0^2 - \Omega^2} \tag{29}$$

where Ω is the bandstop filter frequency and Ω_L is the frequency of the equivalent lowpass filter. Ω_0 and B are parameters with the following values,

$$\Omega_0 = \sqrt{\Omega_{p1}\Omega_{p2}} \tag{30}$$

$$B = \Omega_{p2} - \Omega_{p1} \tag{31}$$

where Ω_{p1} and Ω_{p2} are the frequencies of the edge of the passband, in increasing order, so that B is positive. In our case $\Omega_0 = 0.6395$ and B = 0.2484.

5. The frequency transformed lowpass analog filter specifications
Under the above frequency transformation, the edge frequencies of passband and stopband
get mapped as follows:

Ω	Ω_L
0+	0+
$0.5272 (= \Omega_{p1})$	$1 (= -\Omega_{Lp})$
$0.5727 (= \Omega_{s1})$	$1.7570 (= -\Omega_{Ls1})$
$0.7212 (= \Omega_{s2})$	$-1.6114 (= \Omega_{Ls2})$
$0.7756 (= \Omega_{p2})$	$-1 (=\Omega_{Lp})$
$+\infty$	0^+

Therefore, the specifications of the lowpass filter are as follows:

- Equiripple passband
- Passband: 0 to 1
- Stopband: 1.6114 (= $min(\Omega_{Ls1}, \Omega_{Ls2})$)
- Passband magnitude response: 0.9 to 1.1
- Stopband magnitude response: 0 to 0.1
- 6. The analog lowpass filter transfer function $H_{analog,LPF}(s_L)$

Since the magnitude response is equiripple in the passband and monotonic in the stopband, we need to design a Chebyshev filter for this purpose. The absolute value of the transfer function for a lowpass Chebyshev filter is given by,

$$|H(j\Omega_L)| = \frac{1}{\sqrt{1 + \epsilon^2 C_N^2(\frac{\Omega}{\Omega_p})}}$$
(32)

where $C_N(x)$ is the N^{th} order Chebyshev polynomial in x. From the above expression, we observe that $|H(j\Omega_L)| \leq 1$, so we only need to ensure that $|H(j\Omega_L)| \geq 0.9$ in the passband and $|H(j\Omega_L)| \leq 0.1$ in the stopband, which gives $\delta_1 = \delta_2 = 0.1$, when compared with the usual lowpass filter specifications. To meet the tolerance criterion, ϵ and N should satisfy the following inequalities,

$$\epsilon = \sqrt{D_1} \tag{33}$$

$$N \ge \frac{\cosh^{-1}(\sqrt{\frac{D_2}{D_1}})}{\cosh^{-1}(\frac{\Omega_s}{\Omega_n})}$$
(34)

where D_1 and D_2 depend upon δ_1 and δ_2 respectively as,

$$D_1 = \frac{1}{(1 - \delta_1)^2} - 1 \tag{35}$$

$$D_2 = \frac{1}{\delta^2} - 1 \tag{36}$$

Using the values of δ_1 , δ_2 , Ω_s and Ω_p , we get $D_1 = 0.2345$ and $D_2 = 99.\overline{4}$. Therefore,

$$\epsilon = 0.4843 \tag{37}$$

$$N \ge \frac{\cosh^{-1}(\sqrt{\frac{99}{0.2345}})}{\cosh^{-1}(\frac{1.6114}{1})}$$

$$\implies N \ge 3.5178$$

$$\implies N = 4 \tag{38}$$

Using these values of N and ϵ , we can find the poles of the analog domain, lowpass filter transfer function $H_{analog,LPF}(s_L)$. The location of the poles is given by,

$$s_{7-k} = -\Omega_p(\sin(A_k)\sinh(B_k) + j\cos(A_k)\cosh(B_k)), k = 4, 5, 6, 7$$
(39)

where A_k and B_k are given as,

$$A_k = (2k+1)\frac{\pi}{2N} (40)$$

$$B_k = \frac{1}{N} \sinh^{-1}\left(\frac{1}{\epsilon}\right) \tag{41}$$

which gives,

$$s_0 = -0.1440501 + j0.9871655 \tag{42}$$

$$s_1 = -0.3477677 + j0.4088973 \tag{43}$$

$$s_2 = -0.3477677 - j0.4088973 \tag{44}$$

$$s_3 = -0.1440501 - j0.9871655 \tag{45}$$

Now the frequency response is given by

$$H_{analog,LPF}(s_L) = \frac{K_o(-1)^4 \prod_{i=0}^{i=3} (s_i)}{\prod_{i=0}^{i=3} (s_L - s_i)}$$
(46)

Now at s = 0 we have

$$H_{analog,LPF}(0) = \frac{1}{\sqrt{1+\epsilon^2}} \tag{47}$$

Thus,

$$K_0 = \frac{1}{\sqrt{1+\epsilon^2}} = 0.9\tag{48}$$

Hence we derive the frequency response as per (48)

$$H_{analog,LPF}(s_L) = \frac{0.2017}{s^4 + 0.9836s^3 + 36.4395s^2 + 1.4837s + 0.2867}$$
(49)

7. The analog transfer function for the bandpass filter

To convert the analog lowpass filter transfer function to analog bandpass filter transfer function, the following transformation needs to be applied:

$$s_L \to \frac{Bs}{s^2 + \Omega_0^2} \tag{50}$$

Under this transformation,

$$H_{analog,BSF}(s) = (51)$$

 $\frac{0.2580s^8 + 0.4222s^6 + 0.25900s^4 + 0.07061s^2 + 0.00722}{0.2867s^8 + 0.1926s^7 + 0.5607s^6 + 0.25138s^5 + 0.36650s^4 + 0.10280s^3 + 0.09378s^2 + 0.01317s + 0.0080}$

8. The discrete time filter transfer function

Applying the bilinear transformation converts the analog domain transfer function to discrete domain transfer function, which is:

$$s \to \frac{1 - z^{-1}}{1 + z^{-1}} = \frac{z - 1}{z + 1} \tag{52}$$

Under this transformation:

$$H(z) = \tag{53}$$

$$=\frac{0.5422-1.8197z^{-1}+4.4590z^{-2}-6.7399z^{-3}+8.1022z^{-4}-6.7399z^{-5}+4.45904z^{-6}-1.81972z^{-7}+0.5422z^{-8}}{1-2.9169z^{-1}+2.9379z^{-2}-8.1901z^{-3}+8.6843z^{-4}-6.4623z^{-5}+3.8564z^{-6}-1.4521z^{-7}+0.4029z^{-8}}$$

Figure 3: Frequency response of Bandstop IIR Filter(in green)

9. Direct Form II realization

10. FIR filter The FIR filter transfer function needs to be obtained by applying the Kaiser window on the ideal bandstop impulse response and then taking its z-transform. The Kaiser window parameters can be calculated using the values of transition banswidth, passband and stopband tolerances as follows:

$$(2N+1) \ge 1 + \frac{A-8}{2.285\Delta\omega_t} \tag{54}$$

here,

$$\Delta\omega_t = 0.06981\tag{55}$$

$$A = -20 \log_{10} \delta = -20 \log_{10} 0.1 = 20$$

$$\implies (2N+1) \ge 1 + \frac{20 - 8}{2.285 \times 0.014 \pi} = 76.224218$$
(56)

A < 21, $\implies \alpha = \beta = 0$. So, the Kaiser window reduces to a rectangular window of length 2N+1. The impulse response of a bandstop filter with cutoff frequencies ω_{c1} and ω_{c2} ($\omega_{c2} > \omega_{c1}$) is given by:

$$h[n] = \delta[n] - \frac{\sin(n\omega_{c2}) - \sin(n\omega_{c1})}{\pi n}$$
(57)

h[n] needs to be restricted from n = -N to n = N to achieve the desired specifications. The cutoff frequencies need to be defined as the average of the corresponding passband edge and stopband edge frequencies i.e. in the midst of the transition band. Therefore, $\omega_{c1} = 0.32\pi$ and $\omega_{c2} = 0.408\pi$, giving

$$h_{FIR}[n] = \delta[n] - \frac{\sin(0.572\pi n) - \sin(0.332\pi n)}{\pi n}, \quad \forall |n| \le N$$

$$= 0, \qquad \text{otherwise}$$
(58)

N=37, in fact, did not satisfy the specifications and using trial and error, N=40 was the least value of N satisfying the specifications. Hence, the discrete domain transfer function is.

$$H_{FIR}(z) = \sum_{n=-40}^{n=40} h_{FIR}[n]z^{-n}$$
(59)

Figure 4: Frequency response of Bandstop FIR Filter(in green)