# Mathématiques 2 : Les Relations Binaires

Loïc Lecharlier

HE Vinci - Informatique de gestion

15 février 2023

### **Relations Binaires: Introduction**

Dans la vie de tous les jours, il est fréquent de mettre des choses en relation.

Exemple : magasin de DVD : "est-ce que vous avez des films de Spielberg?".

- ightarrow Relation entre les films vendus dans le magasin et les réalisateurs de films.
- → La relation serait "est réalisé par".
- → 2 types d'objets en relation
- → obtention de couples (film, réalisateur).
- → Relation Binaire

# Couples

Un couple (a,b) est une paire ordonnée d'objets.

### Propriétés :

• Si  $a \neq b$  alors le couple (a, b) est différent du couple (b, a)

$$ightarrow (a 
eq b) \Rightarrow \Big( (a,b) 
eq (b,a) \Big)$$

• Deux couples (a, b) et (c, d) seront égaux ssi a = c et b = d.

$$\rightarrow \Big((a,b)=(c,d)\Big) \Leftrightarrow \Big((a=c) \land (b=d)\Big)$$

• Un couple identique est un couple de la forme (a, a)

### Exemples:

- (1,3) (Hergé ,L'oreille cassé)
- (3,3) (Les aventuriers de l'arche perdue, Steven Spielberg)
- (3, *a*) (tomate, rouge)

### Produit cartésien

Le **produit cartésien** de deux ensembles A et B, noté  $A \times B$ , est

l'ensemble de tous les couples (a,b) tel que a est un élément de A et b un élément de B.

Mathématiquement : 
$$A \times B = \{(a,b) \mid (a \in A) \land (b \in B)\}$$

### Produit cartésien

### Exemple:

Si

- $A = \{1,2\}$
- $B = \{a, b, c\}$

Alors

• 
$$A \times B = \{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)\}$$
  
 $\rightarrow$  on a associé chaque élément de  $A$  avec chaque élément  $B$ :



- $B \times A = \{(a,1), (a,2), (b,1), (b,2), (c,1), (c,2)\}$
- $A \times A = \{(1,1), (1,2), (2,1), (2,2)\}$

ightarrow on a associé chaque élément de A avec chaque élément de A.

### Produit cartésien

### Propriété:

Le cardinal de  $A \times B$  est lié à ceux de A et B par la propriété

$$|A \times B| = |A| \cdot |B|$$

### Exemple:

Dans l'exemple précédent

- A possède 2 éléments  $\rightarrow |A| = 2$
- B possède 3 éléments  $\rightarrow |B| = 3$
- $A \times B$  possède 6 éléments  $\rightarrow |A \times B| = 6$ .

$$\rightarrow |A \times B| = |A| \cdot |B|$$

### Remarque:

Le produit cartésien  $A \times A$  est souvent noté de manière raccourcie par  $A^2$ .

### Relations Binaires : Exemple

Si un auteur est quelqu'un qui a participé à la création d'une bande dessinée, Considérons la relation "est auteur de" entre des auteurs et des BDs :



→ association entre des auteurs et bandes dessinées.

### Relations Binaires : Exemple

#### On constate que

- Morris est auteur des bandes dessinées "Ma Dalton", "Le fil qui chante" et "Chasse à l'homme"
- Goscinny est auteur des bandes dessinées "L'odyssée d'Astérix", "Astérix le gaulois", "Ma Dalton", "Le fil qui chante".
- Un auteur peut être auteur de plusieurs BD
- Une BD peut avoir plusieurs auteurs
- $\rightarrow$  Si A est l'ensemble des auteurs et B l'ensemble des BDs, alors chaque élément de la relation  $\mathcal{R}$  (est auteur de) est un couple constitué d'un élément de A et d'un élément de B.
- $\rightarrow \mathcal{R}$  est un sous-ensemble de  $A \times B$ .

### Relations Binaires: Définitions

Soit deux ensembles A et B, alors

 $\mathcal R$  est une **relation binaire** de l'ensemble A vers l'ensemble B ssi  $\mathcal R\subseteq A\times B$ .

 $\to \mathcal{R}$  est une **relation binaire** de A vers B si  $\mathcal{R}$  est un **sous-ensemble de**  $A \times B$ .

#### De plus

- A est appelé ensemble de départ de la relation  $\mathcal R$
- B est appelé ensemble d'arrivée de la relation  $\mathcal R$

### Relations Binaires: Définitions

### Remarques:

- L'ensemble vide Ø est une relation de A vers B quels que soient A et B.
- $A \times B$  est une relation de A vers B quels que soient A et B
- Si  $\mathcal{R}$  est une relation de A vers A, on dira que  $\mathcal{R}$  est une relation sur A
- La relation sur A, notée 1<sub>A</sub>, est une relation qui associe chaque élément de A avec lui-même :
  - o Mathématiquement  $1_A = \{(a, a) \mid a \in A\}$
  - Ou encore  $(x,y) \in 1_A \Leftrightarrow x = y$
- La notation la plus utilisée pour une relation est la notation infixe :
   on notera a ℝ b à la place de (a, b) ∈ ℝ pour dire que a est en relation
   avec b par la relation ℝ.

Exemple : a < b,  $a = b^2$ , ...

### Relations Binaires: Définitions

### Exemples d'écriture de relation en extension :

1. Soit les ensembles  $A = \{a, d, c, g\}$  et  $B = \{5, 2, 3\}$ . Alors

$$\mathcal{R} = \left\{ \left( a, 2 \right), \, \left( a, 5 \right), \, \left( c, 3 \right), \, \left( g, 2 \right), \, \left( g, 3 \right) \right\}$$

est une relation de A vers B.

2. Soit les ensembles  $A = \{1, 3, 4, 0\}$  et  $B = \{5, 2, 1, 3\}$ . Alors la relation  $\mathcal{R}$  de A vers B définie par  $(x, y) \in \mathcal{R} \Leftrightarrow y = x + 1$  peut être écrite en extension par

$$\mathcal{R} = \left\{ (1,2), (4,5), (0,1) \right\}$$

# Représentation sagittale

Représentation sagittale d'une relation  $\mathcal R$  de A vers B:

- Les ensembles A et B sont représentés par des ovales (ou des cercles) contenant leurs éléments.
- L'appartenance de (a, b) à la relation  $\mathcal{R}$  est représentée par une flèche de a vers b

# Représentation sagittale

### Exemple:

#### Soit

- l'ensemble  $A = \{1, 2, 3, 4, 5\}$
- l'ensemble  $B = \{a, b, c, d\}$
- la relation  $\mathcal{R}$  de A vers B dont l'écriture en extension est

$$\mathcal{R} = \left\{ (1,c), (1,d), (2,b), (3,a), (3,c), (3,d), (4,c) \right\}$$

Alors la représentation sagittale de  $\mathcal{R}$  est la suivante



### Digraphe

Dans le cas d'une relation sur un ensemble A: digraphe (pour graphe dirigé). Dans un digraphe d'une relation  $\mathcal{R}$  sur un ensemble A

- Chaque élément est représenté par un cercle avec l'élément à l'intérieur
- L'appartenance de  $(a_1, a_2)$  à la relation  $\mathcal{R}$  est représentée par une flèche de  $a_1$  vers  $a_2$

## Digraphe

#### Exemple:

#### Soit

- l'ensemble  $A = \{1, 2, 3, 4, 5, 6\}$
- la relation  $\mathcal R$  sur A dont l'écriture en extension est

$$\mathcal{R} = \left\{ \left(3,1\right), \, \left(3,4\right), \, \left(4,3\right), \left(4,4\right), \, \left(5,3\right), \, \left(6,4\right) \right\}$$

Alors le digraphe de  $\mathcal{R}$  est le suivant



### Digraphe

#### Remarques:

- la relation de 4 avec lui-même est représentée par une flèche en boucle 4 vers lui-même.
- même si l'élément 2 n'est en relation avec aucun élément, il est présent sur le digraphe
  - ightarrow c'est un élément de l'ensemble A sur lequel la relation  $\mathcal R$  est définie.
- la relation  $\mathcal{R}$  contient les couples (3,4) et (4,3)
  - $\rightarrow$  la flèche entre 3 et 4 est à double sens.

# Domaine et Image

Si  $\mathcal{R}$  est une relation d'un ensemble A vers un ensemble B alors

- 1. Le **domaine de**  $\mathcal{R}$ , noté  $\mathrm{dom}(\mathcal{R})$ , est l'ensemble des éléments de A qui sont en relation avec au moins un élément de l'ensemble B. Mathématiquement :  $\mathrm{dom}(\mathcal{R}) = \left\{ a \in A \middle| \exists b \in B : (a,b) \in \mathcal{R} \right\}$
- 2. L'image de  $\mathcal{R}$ , notée,  $\operatorname{Im}(\mathcal{R})$ , est l'ensemble des éléments de B tels qu'il existe au moins un élément de A qui est relation avec eux. Mathématiquement :  $\operatorname{Im}(\mathcal{R}) = \left\{ b \in B \,\middle|\, \exists \, a \in A : (a,b) \in \mathcal{R} \right\}$

- dom( $\mathcal{R}$ )  $\subseteq$  A
- $\operatorname{Im}(\mathcal{R}) \subseteq B$

# Domaine et Image

### Exemple:

#### Soit

- l'ensemble  $A = \{1, 2, 3, 4\}$
- l'ensemble  $B = \{a, b, c\}$
- une relation  $\mathcal{R}$  de A vers B dont la représentation sagittale est



## Domaine et Image

Alors le domaine et l'image de la relation  $\mathcal R$  sont

1. Graphiquement:



- 2. Analytiquement:
  - $\circ$  **dom**( $\mathcal{R}$ ) = {1, 3, 4}
  - $\circ$  Im $(\mathcal{R}) = \{a, b\}$

## Propriétés des relations sur un ensemble

Nous allons voir 5 propriétés des relations sur un ensemble :

- La réflexivité
- 2. L'antiréflexivité
- 3. La symétrie
- 4. L'antisymétrie
- 5. La transitivité

### Réflexivité: Introduction

Considérons la relation  $\mathcal{R}$ : "est multiple de" sur l'ensemble des naturels  $\mathbb{N}$ .

Tout naturel *n* est multiple de lui-même car  $n = 1 \cdot n$ .

 $\rightarrow$  pour tout naturel n on a  $n\mathcal{R}$  n ou encore  $(n,n) \in \mathcal{R}$ .

On dira alors que la relation  $\mathcal{R}$  est **réflexive**.

### Réflexivité: Définition

#### Soient

- un ensemble E
- $\mathcal R$  une relation sur E  $\left(\mathcal R\subseteq E^2\right)$

Alors la relation  $\mathcal{R}$  est réflexive.

ssi tout élément de E est en relation avec lui-même par  $\mathcal{R}$ 

ssi 
$$\forall x \in E : x \mathcal{R} x \ \left( (x, x) \in \mathcal{R} \right)$$

La relation qui associe un élément à lui-même est la relation identité 1<sub>E</sub>

ightarrow la relation  $\mathcal R$  est **réflexive** ssi  $\mathbf{1}_{E} \subseteq \mathcal R$ 

# Réflexivité : Interprétation graphique : digraphe

Un relation réflexive aura un digraphe où

TOUS les éléments ont une flèche vers eux-mêmes (une boucle).

### Exemples:

Soit 
$$E = \{1, 2, 3, 4, 5, 6\}$$

1. La relation  $\mathcal{R}$  sur E, dont le digraphe est celui ci-dessous, est réflexive



En effet, tous les éléments de *E* ont une boucle vers eux-mêmes.

# Réflexivité : Interprétation graphique : digraphe

2. La relation S, dont le digraphe est celui ci-dessous, n'est pas réflexive



En effet, l'élément 5 n'est pas en relation avec lui-même  $\rightarrow$  il n'a pas de flèche vers lui-même.

# Réflexivité : Détermination mathématique

- Pour prouver mathématiquement qu'une relation  $\mathcal{R}$  sur un ensemble E est réflexive.
  - $\rightarrow$  prouver que  $x \Re x$  est vraie pour tout élément x de E.

- Pour prouver qu'une relation  $\mathcal{R}$  sur un ensemble E n'est pas réflexive
  - $\rightarrow$  trouver un élément de E tel que  $x \mathcal{R}_{\cdot} x$  soit faux.

# Réflexivité : Détermination mathématique

### Exemples:

- 1. Soit la relation  $\mathcal{R}$  :  $x \mathcal{R} y \Leftrightarrow x < y + 1$  définie sur  $\mathbb{N}$ 
  - Prenons y = x alors  $x < x + 1 \Leftrightarrow 0 < 1$ 
    - $\rightarrow$  toujours vrai.
    - $\rightarrow$  pour tout naturel x on a  $x \mathcal{R}_{\cdot} x$ .
    - $\rightarrow$  la relation  $\mathcal{R}$  est réflexive.

- 2. Soit la relation S: "x < 2y" définie sur  $\mathbb{N}$ 
  - Prenons x = y = 0, on a alors que  $0 < 2 \cdot 0 = 0$  est faux.
    - $\rightarrow 0S0$  est faux, autrement dit (0,0) n'appartient pas à S.
    - $\rightarrow$  la relation  $\mathcal{S}$  n'est pas réflexive.

### Antiréflexivité : Introduction

Considérons la relation  $\mathcal R$  : "est strictement inférieur" sur l'ensemble des naturels  $\mathbb N$ .

Pour tout naturel n, n < n est toujours faux

 $\rightarrow$  pour tout naturel n on a  $\neg(nRn)$  ou encore  $(n,n) \notin R$ .

On dira alors que la relation  $\mathcal{R}$  est **antiréflexive**.

### Antiréflexivité : Définition

#### Soient

- un ensemble E
- $\mathcal{R}$  une relation sur E  $\left(\mathcal{R}\subseteq E^2\right)$

Alors la relation  $\mathcal{R}$  est antiréflexive.

ssi **aucun élément** de E n'est en relation avec lui-même par  $\mathcal{R}$ 

ssi 
$$\forall x \in E : \neg(x \mathcal{R} x) \ \left((x, x) \notin \mathcal{R}\right)$$

# Antiréflexivité: Interprétation graphique: digraphe

Un relation antiréflexive aura un digraphe où

AUCUN éléments n'a une flèche vers lui-même (une boucle).

### Exemples:

Soit 
$$E = \{1, 2, 3, 4, 5, 6\}$$

1. La relation  $\mathcal R$  sur E, dont le digraphe est celui ci-dessous, est antiréflexive



En effet, aucun élément de *E* n'a de boucle vers lui-même.

# AntiRéflexivité : Interprétation graphique

2. La relation S, dont le digraphe est celui ci-dessous, n'est pas antiréflexive



En effet, l'élément 4 est en relation avec lui-même

→ il a une flèche vers lui-même. (L'élément 5 aussi)

# Antiréflexivité : Détermination mathématique

- Pour prouver mathématiquement qu'une relation R sur un ensemble E est antiréflexive.
  - $\rightarrow$  prouver que  $x \mathcal{R} x$  est fausse pour tout élément x de E.

- Pour prouver qu'une relation R sur un ensemble E n'est pas antiréflexive
  - $\rightarrow$  trouver un élément de *E* tel que  $x \mathcal{R} x$  soit vraie.

# Antiréflexivité : Détermination mathématique

### Exemples:

- 1. Soit la relation  $\mathcal{R}$  :  $x \mathcal{R} y \Leftrightarrow x + 1 < y$  définie sur  $\mathbb{N}$ 
  - Prenons y = x alors  $x + 1 < x \Leftrightarrow 1 < 0$ 
    - $\rightarrow$  toujours faux.
    - $\rightarrow$  pour tout naturel x on a  $\neg(x \mathcal{R} x)$ .
    - $\rightarrow$  la relation  $\mathcal{R}$  est antiréflexive.

- 2. Soit la relation S: "x > 2y" définie sur  $\mathbb{N}$ 
  - Prenons x = y = 0, on a alors que  $0 \ge 2 \cdot 0 = 0$  est vraie.
    - $\rightarrow 0.50$  est vraie, autrement dit (0,0) appartient à S.
    - $\rightarrow$  la relation S n'est pas antiréflexive.

# Antiréflexivité : Remarque

Ce n'est pas parce qu'une relation n'est pas réflexive qu'elle est antiréflexive!!!

En effet, soit la relation S dont le digraphe est celui ci-dessous



- → S n'est pas réflexive car l'élément 5 n'est pas en relation avec lui-même.
- → S n'est pas antiréflexive non plus car l'élément 4 est en relation avec lui-même (les éléments 1, 2, 3 et 6 aussi).

# Symétrie : Introduction

Soit la relation  $\mathcal{R}$ : "est frère ou soeur de" sur l'ensemble des êtres humains.

Si un être humain x est le frère ou la soeur d'un autre être humain y alors forcément y est le frère ou la soeur de x.

 $\rightarrow$  pour tout êtres humains x et y on a que si  $x \mathcal{R} y$  est vraie alors  $y \mathcal{R} x$  est vraie ou encore  $(x,y) \in \mathcal{R} \Rightarrow (y,x) \in \mathcal{R}$ 

On dira alors que la relation  $\mathcal{R}$  est symétrique.

# Symétrie : Définition

#### Soient

- un ensemble E
- $\mathcal{R}$  une relation sur E  $\left(\mathcal{R}\subseteq E^2\right)$

Alors la relation  $\mathcal{R}$  est symétrique.

- ssi quand un élément x de E est en relation avec un élément y par  $\mathcal{R}$  alors y est en relation avec x.
- ssi  $\forall x, y \in E : x \mathcal{R} y \Rightarrow y \mathcal{R} x \quad ((x, y) \in \mathcal{R} \Rightarrow (y, x) \in \mathcal{R})$

## Symétrie : Interprétation graphique : digraphe

Un relation **symétrique** aura un digraphe

#### ne comportant aucune flèche simple

→ Le digraphe ne comportera que des boucles et/ou des flèches doubles

#### Exemples:

Soit 
$$E = \{1, 2, 3, 4, 5, 6\}$$

1. La relation  $\mathcal R$  sur E, dont le digraphe est celui ci-dessous, est symétrique



En effet, le digraphe ne comporte que des boucles et des doubles flèches

## Symétrie : Interprétation graphique : digraphe

2. La relation S, dont le digraphe est celui ci-dessous, n'est pas symétrique



En effet, 5 en relation avec 6 mais l'élément 6 n'est pas en relation avec 5.  $\rightarrow$  il y a une flèche simple de 5 vers 6.

# Symétrie : Détermination mathématique

- Pour prouver mathématiquement qu'une relation R sur un ensemble E est symétrique.
  - $\rightarrow$  prouver que pour tout éléments x, y de E si  $x \mathcal{R} y$  est vraie alors  $y \mathcal{R} x$  est vraie.

- Pour prouver qu'une relation  $\mathcal R$  sur un ensemble E n'est pas symétrique
  - $\rightarrow$  trouver deux éléments x et y de E tels que  $x \mathcal{R} y$  est vraie mais  $y \mathcal{R} x$  est fausse.

# Symétrie: Détermination mathématique

#### Exemples:

- 1. Soit la relation  $\mathcal{R}: x \mathcal{R} y \Leftrightarrow (x-y) \mod 2 = 0$  définie sur  $\mathbb{N}$  Soient 2 naturels x, y. Si  $(x-y) \mod 2 = 0$ 
  - $\rightarrow (y-x) \mod 2 = (-(x-y)) \mod 2 = 0$
  - $\rightarrow$  pour tout naturel x et y on a que si x  $\Re$  y est vraie alors y  $\Re$  x est vraie
  - $\rightarrow$  la relation  $\mathcal R$  est symétrique.

2. Soit la relation S: "y - x < 5" définie sur  $\mathbb{N}$ 

Prenons 
$$x = 10$$
 et  $y = 3$ ,

- $\rightarrow y x = 3 10 = -7 < 5 \text{ mais } x y = 10 3 = 7 > 5$
- $\rightarrow x S y$  est vraie mais y S x est fausse.
- $\rightarrow$  la relation  $\mathcal{S}$  n'est pas symétrique.

## Symétrie : Remarque

Une relation symétrique est généralement représentée par un graphe (non dirigé) :



# Antisymétrie : Introduction

Soit la relation  $\mathcal R$  définie par  $x \mathcal R y \Leftrightarrow x$  divise y sur  $\mathbb N_0$ 

Soient deux naturels non nuls x et y, si x divise y a

- $\rightarrow$  il existe un entier *p* tel que  $y = p \cdot x$ .
- $\rightarrow$  si  $x \neq y$  alors  $p \neq 1$
- $\rightarrow x = \frac{1}{p} \cdot y$
- → y ne divise pas x car on doit multiplier y par un nombre qui n'est pas un entier pour obtenir x

On dira alors que la relation  $\mathcal{R}$  est antisymétrique.

## Antisymétrie : Définition

#### Soient

- un ensemble E
- $\mathcal R$  une relation sur E  $\left(\mathcal R\subseteq E^2\right)$

Alors la relation  $\mathcal{R}$  est antisymétrique.

ssi quand un élément x de E est en relation avec un élément  $y \neq x$  par  $\mathcal{R}$  alors y n'est pas en relation avec x.

ssi 
$$\forall x, y \in E : ((x \mathcal{R} y) \land (x \neq y)) \Rightarrow \neg (y \mathcal{R} x)$$

ssi 
$$\forall x, y \in E : \Big( \big[ ((x,y) \in \mathcal{R}) \land (x \neq y) \big] \Rightarrow (y,x) \notin \mathcal{R} \Big)$$

## Antisymétrie: Interprétation graphique: digraphe

Une relation antisymétrique aura un digraphe

#### ne comportant aucune double flèche

→ Le digraphe ne comportera que des boucles et/ou des flèches simples

#### Exemples:

Soit  $E = \{1, 2, 3, 4, 5, 6\}$ 

1. La relation  $\mathcal R$  sur E, dont le digraphe est celui ci-dessous, est antisymétrique



En effet, le digraphe ne comporte que des boucles et des flèches simples

# Antisymétrie : Interprétation graphique : digraphe

2. La relation S, dont le digraphe est celui ci-dessous, n'est pas antisymétrique



En effet, 5 en relation avec 4, 4 est en relation avec 5 mais  $4 \neq 5$ .  $\rightarrow$  il y a une double flèche entre 4 et 5. (Entre 2 et 5 aussi)

# Antisymétrie : Détermination mathématique

- Pour prouver mathématiquement qu'une relation R sur un ensemble E est antisymétrique.
  - $\rightarrow$  prouver que pour tout éléments x, y de E si  $x \mathcal{R} y$  est vraie et  $x \neq y$  alors  $y \mathcal{R} x$  est fausse.

- Pour prouver qu'une relation R sur un ensemble E n'est pas antisymétrique
  - $\rightarrow$  trouver deux éléments x et y de E différents tel que  $x \mathcal{R} y$  est vraie et  $y \mathcal{R} x$  est vraie.

# Antisymétrie : Détermination mathématique

#### Exemples:

- 1. Soit la relation  $\Re: x \Re y \Leftrightarrow (x-y) \ge 0$  définie sur  $\mathbb N$  Soient 2 naturels x, y tels que  $y \ne x$ . Si  $(x-y) \ge 0$ 
  - $\rightarrow x y > 0 \text{ car } x \neq y$
  - $\rightarrow y x < 0$
  - $\rightarrow$  pour tout naturel x et y on a que si  $x \mathcal{R} y$  est vraie et  $x \neq y$  alors  $y \mathcal{R} x$  est fausse
  - $\rightarrow$  la relation  $\mathcal{R}$  est antisymétrique.

2. Soit la relation S: "y - x < 3" définie sur  $\mathbb{N}$ 

Prenons 
$$x = 1$$
 et  $y = 3$ ,

$$\rightarrow x - y = 1 - 3 = -2 < 3$$
 et  $y - x = 3 - 1 = 2 < 3$ 

- $\rightarrow x S y$  est vraie et y S x est vraie et  $x \neq y$ .
- $\rightarrow$  la relation  $\mathcal S$  n'est pas antisymétrique.

#### Antisymétrie : Remarque

Ce n'est pas parce qu'une relation n'est pas symétrique qu'elle est antisymétrique!!!

En effet, soit la relation S dont le digraphe est celui ci-dessous



- → S n'est pas symétrique car 5 est en relation avec 6 mais 6 n'est pas en relation avec 5.
- $\rightarrow$  S n'est pas antisymétrique non plus car 4 est en relation 5 et 5 avec 4 et  $4 \neq 5$ .

#### Transitivité: Introduction

Soit la relation  $\mathcal{R}$ : "est ancêtre de" sur l'ensemble des êtres humains.

Si un être humain x est l'ancêtre d'un autre humain y et que y est l'ancêtre d'un autre humain z alors forcément x est l'ancêtre de z.

 $\rightarrow$  pour tout êtres humains x, y et z on a que si  $x \mathcal{R} y$  et  $y \mathcal{R} z$  sont vraie alors  $x \mathcal{R} z$  est vraie ou encore

$$(((x,y)\in\mathcal{R})\wedge((y,z)\in\mathcal{R}))\Rightarrow((x,z)\in\mathcal{R})$$

On dira alors que la relation  $\mathcal{R}$  est transitive.

#### Transitivité: Définition

#### Soient

- un ensemble E
- $\mathcal R$  une relation sur E  $\left(\mathcal R\subseteq E^2\right)$

Alors la relation  $\mathcal{R}$  est **transitive**.

ssi quand un élément x de E est en relation avec un élément y par  $\mathcal{R}$  et que y est en relation avec un élément z alors x est en relation avec z.

ssi 
$$\forall x, y, z \in E : ((x \mathcal{R} y) \land (y \mathcal{R} z)) \Rightarrow (x \mathcal{R} z)$$

ssi 
$$\forall x, y, z \in E : ([((x,y) \in \mathcal{R}) \land ((y,z) \in \mathcal{R})] \Rightarrow (x,z) \in \mathcal{R})$$

## Transitivité: Interprétation graphique: digraphe

Un relation transitive aura un digraphe tel que

si je peux aller d'un élément  $e_1$  à un autre élément  $e_2$  en deux étapes (en passant par un autre élément  $e_3$ ) alors il existe une flèche de  $e_1$  vers  $e_2$ .

# Transitivité: Interprétation graphique: digraphe

#### Exemples:

Soit  $E = \{1, 2, 3, 4, 5, 6\}$ 

1. La relation  $\mathcal{R}$  sur  $\mathcal{E}$ , dont le digraphe est celui ci-dessous, est transitive



Quand on peut aller d'un premier élément à un deuxième élément via un troisième élément, il existe une flèche du premier vers le deuxième. Par exemple

- On peut aller de 2 à 4 en passant par 5 (flèches rouges) et il y a une flèche (verte) de 2 vers 4.
- On peut aussi aller de 2 à 3 en passante par 5 (flèches jaunes) et il y a une flèche (bleue) de 2 vers 3.

## Transitivité: Interprétation graphique: digraphe

2. La relation S, dont le digraphe est celui ci-dessous, n'est pas transitive



En effet, on peut aller de l'élément 5 à l'élément 6 en passant par l'élément 3 (flèches oranges) mais il n'y a pas de flèche de 5 vers 6

## Transitivité: Détermination mathématique

- Pour prouver qu'une relation  $\mathcal{R}$  sur un ensemble E est transitive.
  - $\rightarrow$  prouver que pour tout éléments x, y et z de E si  $x \mathcal{R} y$  et  $y \mathcal{R} z$  sont vraies alors  $x \mathcal{R} z$  est vraie.

- Pour prouver qu'une relation  $\mathcal R$  sur un ensemble E n'est pas transitive
  - $\rightarrow$  trouver trois éléments x, y et z de E tels que  $x \mathcal{R} y$  et  $y \mathcal{R} z$  sont vraies mais  $x \mathcal{R} z$  est fausse.

## Transitivité: Détermination mathématique

#### Exemples:

- 1. Soit la relation  $R: x \mathcal{R} y \Leftrightarrow (x-y) \mod 2 = 0$  définie sur  $\mathbb{N}$ Soient 3 naturels x, y et z. Si  $(x-y) \mod 2 = 0$  et  $(y-z) \mod 2 = 0$ 
  - $\rightarrow$   $(x-z) \mod 2 = (x-y+y-z) \mod 2 = 0+0=0$
  - $\rightarrow$  pour tout naturel x, y et z on a que si  $x \mathcal{R} y$  et  $y \mathcal{R} z$  sont vraies alors  $x \mathcal{R} z$  est vraie
  - $\rightarrow$  la relation  $\mathcal R$  est transitive.

2. Soit la relation  $S: "x \cdot y \ge 0"$  définie sur  $\mathbb{Z}$ 

Prenons 
$$x = -1$$
,  $y = 0$  et  $z = 1$ ,

- $\rightarrow x \cdot y = (-1) \cdot 0 = 0 \ge 0$  et  $y \cdot z = 0 \cdot 1 = 0 \ge 0$  mais  $(-1) \cdot 1 = -1 < 0$
- $\rightarrow x S y$  et y S z sont vraie mais x S z est fausse.
- $\rightarrow$  la relation  $\mathcal{S}$  n'est pas transitive.

## Check-up complet d'une relation sur base de son digraphe

Soit la relation  $\mathcal R$  donc le digraphe est le suivant



Quelle(s) propriété(s) a cette relation?

1. Est-elle **réflexive**? NON → il manque la boucle sur l'élément 4



## Check-up complet d'une relation sur base de son digraphe

2. Est-elle **antiréflexive ? NON** → il y a une boucle sur l'élément 3



3. Est-elle **symétrique?** NON  $\rightarrow$  il y a une simple flèche de 5 vers 4.



### Check-up complet d'une relation sur base de son digraphe

 Est-elle antisymétrique? NON → il y a une double flèche entre les éléments 1 et 2



- Est-elle transitive? OUI → les possibilités d'aller d'un élément à un autre en passant par un troisième élément sont
  - 1) d'aller de 1 à 1 en passant par 2 et il y a bien une boucle sur l'élément 1.
  - 2) d'aller de 2 à 2 en passant par 1 et il y a bien une boucle sur l'élément 2.



## Check-up complet d'une relation sur base de sa définition

Soit la relation sur l'ensemble  $\mathbb{Z}$  définie par  $x \mathcal{R}, y \Leftrightarrow |x - y| \leq 4$ .

Quelle(s) propriété(s) a cette relation?

- 1. Cette relation est-elle **réflexive**? Oui! Considérons un couple (x,x), autrement dit y=x.
  - $\rightarrow |x-y| = |x-x| = |0| = 0 \le 4.$
  - $\rightarrow$  pour tout entier x on a que  $(x,x) \in \mathcal{R}$ .
  - $ightarrow \mathcal{R}$  est réflexive.
- Cette relation est-elle antiréflexive? Non!
   Si on prend le couple (4,4)
  - $\rightarrow |4-4| = |0| = 0 \le 4$
  - → On a donc au moins un élément en relation avec lui même.
  - $ightarrow \, \mathcal{R}$  n'est pas antiréflexive.

## Check-up complet d'une relation sur base de sa définition

- 3. Cette relation est-elle **symétrique**? **Oui!** 
  - Considérons un couple (x, y). Si  $x \mathcal{R} y$  est vraie
    - $\rightarrow |y-x|=|x-y|\leq 4$
    - $\rightarrow$  pour tout entiers x et y on a que si x  $\Re$  y est vraie alors y  $\Re$  x est vraie
    - $ightarrow \mathcal{R}$  est symétrique.
- 4. Cette relation est-elle antisymétrique? Non!
  - Si on prend les couples (5,3) et (3,5)
    - $\rightarrow |5-3| = |2| = 2 \le 4 \text{ et } |3-5| = |-2| = 2 \le 4$
    - $\rightarrow$  5  $\Re$  3 et 3  $\Re$  5 sont vraies et 5  $\neq$  3.
    - $ightarrow \mathcal{R}$  n'est pas antisymétrique.
- 5. Cette relation est-elle **transitive**? Non!
  - Si on prend les couples (1,3) et (3,6)
    - $\rightarrow$   $|1-3| = |-2| = 2 \le 4$  et  $|3-6| = |-3| = 3 \le 4$  mais |1-6| = |-5| = 5 > 4
    - $\rightarrow$  1  $\Re$  3 et 3  $\Re$  6 sont vraies mais 1  $\Re$  6 est fausse.
  - $ightarrow \mathcal{R}$  n'est pas transitive.

#### Clôtures: Définition

Soit  ${\mathcal R}$  une relation sur  $E\left({\mathcal R}\subseteq E^2\right)$ 

"Fermer" ou "clôturer" la relation  ${\mathcal R}$  pour une propriété p consiste à

ajouter à  $\mathcal R$  les flèches indispensables pour que  $\mathcal R$  acquière la propriété p.

Donc la clôture "comme-ci" de  $\mathcal R$  est la plus petite relation "comme-ci" incluant la relation  $\mathcal R$ . Plus petite signifie obtenue en ajoutant le moins de flèches possible.

Si une clôture est possible, elle est unique.

## Clôtures possibles

Une clôture ne peut être obtenue qu'en ajoutant des flèches.

 $\rightarrow$  On ne peut donc pas en retirer.

#### Or

- pour rendre antiréflexive une relation qui ne l'est pas
  - → il faudrait retirer les boucles qui sont présentes.
  - → il faudrait retirer des flèches.
  - → La clôture antiréflexive n'est pas possible.
- pour rendre antisymétrique une relation qui ne l'est pas
  - → il faudrait "remplacer" des doubles flèches par des simples.
  - → il faudrait retirer des flèches.
  - → La clôture antisymétrique n'est pas possible.

#### Conclusion : les clôtures possibles sont

- La clôture réflexive
- La clôture symétrique
- La clôture transitive

#### Clôture réflexive

#### Pour faire la clôture réflexive

- → il faut rendre la relation réflexive
- → il faut que tous les éléments soient en relation avec eux-mêmes
- → il faut ajouter les boucles sur les éléments qui n'en n'ont pas.
- ightarrow la clôture réflexive d'une relation  ${\mathcal R}$  sur un ensemble  ${\it E}$  est  ${\it R}\cup {\it 1}_{\it E}$

## Clôture réflexive : Exemple

#### Exemple:

Soit la relation  $\mathcal R$  dont voici le digraphe



Alors la clôture réflexive de  $\mathcal{R}$  est donnée par le digraphe ci-dessous



# Clôture symétrique

Pour faire la clôture symétrique

- → il faut rendre la relation symétrique
- $\rightarrow$  si  $(x,y) \in \mathcal{R}$  et pas (y,x) alors il faut ajouter (y,x) dans la clôture
- → les simples flèches doivent devenir des doubles flèches.
- $\to$  la clôture symétrique d'une relation  $\mathcal R$  sur un ensemble E est  $\mathcal R \cup \mathcal R^{-1}$  ( $\mathcal R^{-1}$  sera vu plus tard)

## Clôture symétrique : Exemple

#### Exemple:

Soit la relation  $\mathcal{R}$  dont voici le digraphe



Alors la clôture symétrique de  $\mathcal{R}$  est donnée par le digraphe ci-dessous



#### Clôture transitive

#### Pour faire la clôture transitive

- → il faut rendre la relation transitive
- $\to$  si  $(x,y) \in \mathcal{R}$  et  $(y,z) \in \mathcal{R}$  mais  $(x,z) \notin \mathcal{R}$  alors on ajoute (x,z) à la clôture
- $\rightarrow$  si on peut aller d'un élément  $e_1$  à un élément  $e_2$  en passant par un ou plusieurs autres états  $e_i$  alors il faut ajouter une flèche de  $e_1$  vers  $e_2$ .
- ightarrow la clôture transitive d'une relation  $\mathcal R$  sur un ensemble E est : ... (on verra cela plus tard)

## Clôture transitive : Exemple

#### Exemple:

Soit la relation  $\mathcal{R}$  dont voici le digraphe



Alors la clôture transitive de  $\mathcal{R}$  est donnée par le digraphe ci-dessous



## Clôtures: Remarque

L'ordre dans lequel on fait plusieurs clôtures successivement est important!!

#### Exemple:

Soit la relation  $\mathcal{R}$  dont le digraphe est le suivant



Si on fait la clôture symétrique de la clôture transitive (clôture transitive suivie de la clôture symétrique), on obtient



la relation obtenue n'est pas transitive car  $(2,5) \in \mathcal{R}$ , et  $(5,3) \in \mathcal{R}$ . mais  $(2,3) \notin \mathcal{R}$ .

#### Si pour la même relation $\mathcal R$



Si on fait la clôture **transitive** de la clôture **symétrique** (clôture symétrique suivie de la clôture transitive), on obtient



→ La relation obtenue est transitive!!

## Opérations sur les relations : Introduction

Dans cette section nous allons voir les opérations suivantes

- 1. La réciproque d'une relation
- 2. La complémentaire d'une relation
- 3. L'union de deux relations
- 4. L'intersection de deux relations
- 5. La composée de deux relations

## Réciproque d'une relation : Définition

#### Soit

- A et B deux ensembles
- $\mathcal{R}$  une relation de A vers B

#### Alors

La réciproque de  $\mathcal{R}$  est la relation de  $\mathbf{B}$  vers  $\mathbf{A}$ , notée  $\mathcal{R}^{-1}$ , et définie par :  $x \mathcal{R}^{-1} y$  ssi  $y \mathcal{R} x$ .

#### Donc

- le couple (x,y) appartient à la relation  $\mathcal{R}^{-1}$  ssi (y,x) appartient à la relation  $\mathcal{R}$
- l'ensemble de départ de  $\mathcal{R}^{-1}$  est B= l'ensemble d'arrivée de  $\mathcal{R}$
- l'ensemble d'arrivée de  $\mathcal{R}^{-1}$  est A = l'ensemble de départ de  $\mathcal{R}$
- $\mathcal{R}^{-1} \subseteq B \times A$

## Réciproque d'une relation : Représentation sagittale

Soit la relation  $\mathcal{R}$  de A vers B dont la représentation sagittale est la suivante



Alors une représentation sagittale de sa réciproque  $\mathcal{R}^{-1}$  est



→ On a inversé le sens des flèches!

# Réciproque d'une relation : Digraphe

Soit la relation  $\mathcal R$  dont le digraphe est le suivant



Alors un digraphe de  $\mathcal{R}^{-1}$  est



→ On a gardé les boucles et les flèches double mais on a inversé le sens des flèches simples!

## Complémentaire d'une relation : Définition

### Soit

- A et B deux ensembles
- $\mathcal{R}$  une relation de A vers B

### Alors

La complémentaire de  $\mathcal R$  est la relation de  $\overline{\mathcal R}$ , notée  $\overline{\mathcal R}$ , et définie par :  $x\,\overline{\mathcal R}\,y$  ssi  $\neg(x\,\mathcal R\,y)$ .

#### Donc

- le couple (x,y) appartient à la relation  $\overline{\mathcal{R}}$  ssi (x,y) n'appartient pas à la relation  $\mathcal{R}$
- $\overline{\mathcal{R}} \subset A \times B$

## Complémentaire d'une relation : Représentation sagittale

Soit la relation  $\mathcal{R}$  de A vers B dont la représentation sagittale est la suivante



Alors une représentation sagittale de sa complémentaire  $\overline{\mathcal{R}}$  est



 $\rightarrow$  On met une flèche d'un élément a de A vers un élément b de B dans la représentation sagittale de  $\overline{\mathcal{R}}$  s'il n'y a pas de flèche de a vers b dans la représentation sagittale de  $\mathcal{R}$ .

## Complémentaire d'une relation : Digraphe

Soit la relation  $\mathcal R$  dont le digraphe est le suivant



Alors un digraphe de  $\overline{\mathcal{R}}$  est



 $\rightarrow$  On met une flèche d'un élément  $a_1$  vers un élément  $a_2$  de A sur le digraphe de  $\overline{\mathcal{R}}$  s'il n'y a pas de flèche de  $a_1$  vers  $a_2$  sur le digraphe de  $\mathcal{R}$ .

## Complémentaire d'une relation : Digraphe

### Donc

- Si il y a une flèche double entre deux éléments sur le digraphe de  $\mathcal{R}$  alors il n'y pas de flèche entre ses éléments sur le digraphe de  $\overline{\mathcal{R}}$ . (éléments 5 et 8 dans notre exemple)
- S'il n'y a pas de flèche entre deux éléments sur le digraphe de R alors il y a une flèche double entre ses élément sur le digraphe de R.
   (éléments 2 et 8 dans notre exemple)
- Si il y a une flèche simple d'un élément  $e_1$  vers une élément  $e_2$  sur le digraphe de  $\mathcal R$  alors il y a une flèche en sens inverse entre ses éléments sur le digraphe de  $\overline{\mathcal R}$ . (éléments 5 et 2 dans notre exemple)
- S'il y a une boucle sur un élément sur le digraphe de  $\mathcal R$  alors il n'y a pas de boucle sur cet élément sur le digraphe de  $\overline{\mathcal R}$  (élément 2 notre exemple)
- S'il n'y a pas de boucle sur un élément sur le digraphe de  $\mathcal{R}$  alors il y a une boucle sur cet élément sur le digraphe de  $\overline{\mathcal{R}}$  (éléments 5 et 8 dans notre exemple)

### Union de deux relations : Définition

### Soit

- A et B deux ensembles
- $\mathcal{R}$  une relation de A vers B
- S une relation de A vers B

#### Alors

L'union de  $\mathcal{R}$  et  $\mathcal{S}$  est la relation de  $\boldsymbol{A}$  vers  $\boldsymbol{B}$ , notée  $\mathcal{R} \cup \mathcal{S}$ , et définie par :  $x(\mathcal{R} \cup \mathcal{S})y$  ssi  $(x\mathcal{R},y) \vee (x\mathcal{S}y)$ .

### Donc

- le couple (x,y) appartient à la relation  $\mathcal{R} \cup S$  ssi (x,y) appartient à la relation  $\mathcal{R}$  OU (x,y) appartient à la relation S.
- pour pouvoir faire l'union de deux relations R et S, il faut qu'elles aient le même ensemble de départ et le même ensemble d'arrivée.
- $\mathcal{R} \cup \mathcal{S} \subseteq A \times B$

## Union de deux relations : Représentation sagittale

Soient les les représentation sagittales des relations  $\mathcal R$  et  $\mathcal S$  de  $\mathcal A$  vers  $\mathcal B$ 



Alors une représentation sagittale de leur union  $\mathcal{R} \cup \mathcal{S}$  est



 $\rightarrow$  flèche  $a \in A$  vers  $b \in B$  dans la représentation sagittale de  $\mathcal{R} \cup \mathcal{S}$  si flèche de a vers b soit dans la représentation sagittale de  $\mathcal{R}$  soit dans la représentation sagittale de  $\mathcal{S}$  (soit dans les deux)

## Union de deux relations : Digraphe

Soit les relations  $\mathcal R$  et  $\mathcal S$  dont les digraphe sont les suivants



Alors un digraphe de  $\mathcal{R} \cup \mathcal{S}$  est



 $\rightarrow$  Pour obtenir le digraphe de  $\mathcal{R} \cup \mathcal{S}$ , on a recopié toutes les flèches du digraphe de  $\mathcal{R}$  et puis on a ajouté les flèches du digraphe de  $\mathcal{S}$  qui ne sont pas présentes sur le digraphe de  $\mathcal{R}$ .

### Intersection de deux relations : Définition

#### Soit

- A et B deux ensembles
- R une relation de A vers B
- S une relation de A vers B

### Alors

L'intersection de  $\mathcal{R}$  et  $\mathcal{S}$  est la relation de  $\mathbf{A}$  vers  $\mathbf{B}$ , notée  $\mathcal{R} \cap \mathcal{S}$ , et définie par :  $x(\mathcal{R} \cap \mathcal{S})y$  ssi  $(x\mathcal{R}y) \wedge (x\mathcal{S}y)$ .

#### Donc

- le couple (x,y) appartient à la relation  $\mathcal{R} \cap \mathcal{S}$  ssi (x,y) appartient à la relation  $\mathcal{R} \in \mathcal{E}(x,y)$  appartient à la relation  $\mathcal{S}$ .
- pour pouvoir faire l'intersection de deux relations R et S, il faut qu'elles aient le même ensemble de départ et le même ensemble d'arrivée.
- $\mathcal{R} \cap \mathcal{S} \subseteq A \times B$

## Intersection de deux relations : Représentation sagittale

Soient les les représentation sagittales des relations  $\mathcal R$  et  $\mathcal S$  de  $\mathcal A$  vers  $\mathcal B$ 



Alors une représentation sagittale de leur intersection  $\mathcal{R} \cap \mathcal{S}$  est



 $\rightarrow$  flèche  $a \in A$  vers  $b \in B$  dans la représentation sagittale de  $\mathcal{R} \cap \mathcal{S}$  si flèche de a vers b dans la représentation sagittale de  $\mathcal{R}$  et dans la représentation sagittale de  $\mathcal{S}$ 

### Intersection de deux relations : Digraphe

Soit les relations  $\mathcal{R}$  et  $\mathcal{S}$  dont les digraphe sont les suivants



Alors un digraphe de  $\mathcal{R} \cap \mathcal{S}$  est



 $\rightarrow$  Pour obtenir le digraphe de  $\mathcal{R} \cap \mathcal{S}$ , on a pris uniquement les flèches communes aux deux digraphes de  $\mathcal{R}$  et  $\mathcal{S}$ .

## Composée de deux relations : Définition

#### Soit

- A, B et C trois ensembles
- $\mathcal{R}$  une relation de A vers B
- S une relation de B vers C

### Alors

La composée de  $\mathcal{R}$  et  $\mathcal{S}$  est la relation de  $\mathbf{A}$  vers  $\mathbf{C}$ , notée  $\mathcal{S} \circ \mathcal{R}$  ( $\mathcal{S}$  après  $\mathcal{R}$ ) et définie par :  $x(\mathcal{S} \circ \mathcal{R})y$  ssi  $\exists z \in B : (x\mathcal{R}z) \land (z\mathcal{S}y)$ .

#### Donc

- le couple (x, y) appartient à la relation  $S \circ R$  ssi il existe  $z \in B$  tel que (x, z) appartient à la relation R. **ET** (z, y) appartient à la relation S.
- pour pouvoir faire la composée de R et S, il faut que l'ensemble de d'arrivée de R soit égal à l'ensemble de départ de S.
- $S \circ \mathcal{R} \subseteq A \times C$

## Composée de deux relations : Représentation sagittale

Soient les représentation sagittales de  $\mathcal{R}$  de A ver B et  $\mathcal{S}$  de B vers C



Alors une représentation sagittale de leur composée  $\mathcal{S} \circ \mathcal{R}$  est



 $\rightarrow$  flèche  $a \in A$  vers  $c \in C$  dans la représentation sagittale de  $S \circ \mathcal{R}$  si existe une flèche de a vers  $b \in B$  dans la représentation sagittale de  $\mathcal{R}$  et de b vers c dans la représentation sagittale de S

## Composée de deux relations : Digraphe

Soit les relations  $\mathcal{R}$  et  $\mathcal{S}$  et  $\mathcal{S} \circ \mathcal{R}$ 



 $\rightarrow$  flèche de  $a_1$  vers  $a_2$  sur le digraphe de  $\mathcal{S} \circ \mathcal{R}$ , s'il existe une flèche de  $a_1$  vers un élément  $a_3$  sur le digraphe de  $\mathcal{R}$  et une flèche de  $a_3$  vers  $a_2$  sur le digraphe de  $\mathcal{S}$ 

### Composée de deux relations : NON Commutativité

Attention, la composé ∘ de deux relations n'est pas commutative!

En effet, en général  $S \circ \mathcal{R} \neq \mathcal{R} \circ S$ .

### Exemple:

Voici les relations  $\mathcal{R}$ ,  $\mathcal{S}$ ,  $\mathcal{S} \circ \mathcal{R}$  et  $\mathcal{R} \circ \mathcal{S}$  sur l'ensemble  $\{1,2,3,4,5,6\}$ .

| R     | S     | S∘R<br>→          | $R \circ S$ |
|-------|-------|-------------------|-------------|
| R 1 2 | S 3 4 | 1 2<br>3 4<br>6 6 | 3 4         |

On constate que  $S \circ \mathcal{R} \neq \mathcal{R} \circ S$ !

## Opérations sur les relations binaires : exemple concret

### Soient

- A un ensemble d'individus
- $\mathcal{M}$  une relation sur A définie par  $x \mathcal{M} y$  signifie "x est la mère de y".
- $\mathcal{P}$  une relation sur A définie par  $x \mathcal{P} y$  signifie "x est le père de y".

### Alors

- $x(\mathcal{M} \cup \mathcal{P})y$  signifie "x est la mère ou le père de y"
  - $\rightarrow \mathcal{M} \cup \mathcal{P}$  est la relation "est parent de"
- x (M∘P) y signifie "il existe un individu z tel x est le père de z et z est la mère de y"
  - $\rightarrow \mathcal{M} \circ \mathcal{P}$  est la relation "est grand-père maternel de"
- $x\left((\mathcal{M}\cup\mathcal{P})\circ(\mathcal{M}\cup\mathcal{P})\right)y$  signifie "il existe un individu z tel x est parent de z et z est parent de y"
  - $\rightarrow (\mathcal{M} \cup \mathcal{P}) \circ (\mathcal{M} \cup \mathcal{P})$  est la relation "est grand parent de"
- $x(\mathcal{M} \cup \mathcal{P})^{-1} y$  signifie "y est parent de x"
  - $ightarrow (\mathcal{M} \cup \mathcal{P})^{-1}$  est la relation "est enfant de"

# Opérations sur les relations binaires : exemple concret



### Identité et composée

Soit  $\mathcal R$  une relation quelconque de A vers B  $(\mathcal R\subseteq A\times B)$ 

Alors

$$\mathbf{1}_{B} \circ \mathcal{R} = \mathcal{R} = \mathcal{R} \circ \mathbf{1}_{A}$$

→ Les identités sont neutres pour l'opération o

**Attention!** En général  $\mathcal{R}^{-1} \circ \mathcal{R} \neq \mathbf{1}_{A}$  et  $\mathcal{R} \circ \mathcal{R}^{-1} \neq \mathbf{1}_{B}$ .

Exemple : Soit la relation  $\mathcal{R}$  de A vers B dont voici le digraphe



Alors 
$$\mathcal{R}^{-1}\circ\mathcal{R}=\left\{ \left(1,1\right),\,\left(2,2\right),\,\left(1,2\right),\,\left(2,1\right)\right\} 
eq \mathbf{1}_{\boldsymbol{A}}$$

# Propriétés et Opérations

Soit  $\mathcal{R}$  une relation sur un ensemble E:

Certaines propriétés des relations peuvent être réécrite grâce aux opérations :

- $\mathcal{R}$  est dite **antiréflexive** ssi  $\forall x \in E : \neg(x \mathcal{R} x)$  ou encore ssi  $\mathbf{1}_{E} \cap \mathcal{R} = \emptyset$ 
  - $\mathcal{R}$  est dite **symétrique** ssi  $\forall x, y \in E : x \mathcal{R} y \Rightarrow y \mathcal{R} x$  ou encore ssi  $\mathcal{R} = \mathcal{R}^{-1}$
- $\mathcal{R}$  est dite antisymétrique ssi  $\forall x, y \in E : ((x \mathcal{R} y) \land (x \neq y)) \Rightarrow \neg (y \mathcal{R} x)$  ou encore ssi  $\mathcal{R} \cap \mathcal{R}^{-1} \subseteq \mathbf{1}_E$ 
  - $\mathcal{R}$  est dite **transitive** ssi  $\forall x, y, z \in E : ((x \mathcal{R}, y) \land (y \mathcal{R}, z)) \Rightarrow (x \mathcal{R}, z)$  ou encore ssi  $\mathcal{R} \circ \mathcal{R} \subseteq \mathcal{R}$

### Digraphe

Un **digraphe** (graphe "dirigé") est une représentation graphique d'une relation sur un ensemble fini E.

### Exemple:

Soit  $E = \{1, 2, 3, 4, 5, 6\}$  et la relation  $\mathcal{R}$  sur E dont voici le digraphe



#### Alors

- Les disques étiquetés sont appelés sommets.
- Les flèches sont appelées arêtes.
- Une arête d'un sommet x à un sommet y signifie que (x,y) ∈  $\Re$ .

## Chemin dans un digraphe : définition

### Dans un digraphe,

- un chemin de x à y est une séquence d'arêtes consécutives, l'origine de la première étant le sommet x et l'extrémité de la dernière étant le sommet y.
- un cycle est un chemin dont l'origine de la première arrête, le sommet x, est égale à l'extrémité de la dernière, le sommet y → cycle = chemin de x à x.
- la longueur d'un chemin est le nombre d'arêtes le composant.
- Dans le cas d'un digraphe d'une relation  $\mathcal R$ , on parlera de  $\mathcal R$ -chemin et de  $\mathcal R$ -cycle.

### Chemin dans un digraphe : Exemple

Soit la relation  $\mathcal{R}$  sur l'ensemble  $E = \{1,2,3,4,5,6\}$  dont voici le digraphe



Alors



- $\rightarrow$  Le chemin (4,2,5,1,3) est un  $\mathcal{R}$ -chemin de longueur 4 de 4 à 3
  - $\rightarrow$  Le chemin (5,1,2,5) est un  $\mathcal{R}$ -cycle de longueur 3 de 5 à 5.

### Chemin Hamiltonien

Un chemin est dit hamiltonien

s'il ne contient aucun sous-chemin qui soit un cycle.

Dans un digraphe à n sommets, la longueur maximum d'un chemin hamiltonien est n.

### Dans l'exemple précédent :



- 1. Le  $\mathcal{R}$ -chemin  $6 \rightarrow \mathbf{5} \rightarrow \mathbf{1} \rightarrow \mathbf{2} \rightarrow \mathbf{5} \rightarrow \mathbf{3}$  n'est pas hamiltonien car il contient le cycle  $\mathbf{5} \rightarrow \mathbf{1} \rightarrow \mathbf{2} \rightarrow \mathbf{5}$
- 2. Le  $\mathcal{R}$ -chemin  $6 \rightarrow 5 \rightarrow 3$  est hamiltonien.
- 3. Le  $\mathcal{R}$ -cycle 1  $\rightarrow$  2  $\rightarrow$  5  $\rightarrow$  1 est hamiltonien.

### Puissance d'une relation : définition

Soit  $\mathcal{R} \subseteq E^2$ , une relation sur E.

Alors par définition

• 
$$\mathcal{R}^{0} = \mathbf{1}_{E}$$

• 
$$\mathcal{R}^k = \mathcal{R}^{k-1} \circ \mathcal{R} = \underbrace{\mathcal{R} \circ \mathcal{R} \circ \mathcal{R} \cdots \circ \mathcal{R}}_{k \text{ fois}}$$

Donc

$$x \mathcal{R}^k y$$
 ssi il existe un  $\mathcal{R}$ -chemin de longueur  $k$  de  $x$  vers  $y$ .

Et par conséquent, on a les propriétés sympathiques

• 
$$\mathcal{R}_{\cdot}^{n} \circ \mathcal{R}_{\cdot}^{p} = \mathcal{R}_{\cdot}^{n+p}$$

• 
$$(\mathcal{R}^k)^n = \mathcal{R}^{k \cdot n}$$

## Puissance d'une relation : exemple

Si R est la relation dont le digraphe est ci-dessous



#### Alors

1. La relation  $\mathcal{R}^2 = \mathcal{R} \circ \mathcal{R}$  est donnée par le digraphe



 $\rightarrow$  flèche de 3 vers 4 car  $\mathcal{R}$ -chemin 3  $\rightarrow$  5  $\rightarrow$  4.

## Puissance d'une relation : exemple

Si  $\mathcal R$  est la relation dont le digraphe est ci-dessous



#### Alors

2. La relation  $\mathcal{R}^3 = \mathcal{R}^2 \circ \mathcal{R} = \mathcal{R} \circ \mathcal{R} \circ \mathcal{R}$  est donnée par le digraphe



- $\rightarrow$  flèche de 3 vers 4 car  $\mathcal{R}$ -chemin 3  $\rightarrow$  2  $\rightarrow$  5  $\rightarrow$  4.
  - $\rightarrow$  boucle sur 1 car  $\mathcal{R}$ -cycle 1  $\rightarrow$  5  $\rightarrow$  2  $\rightarrow$  1.

### Puissance +: définition

Soit  $\mathcal{R} \subseteq E^2$  , une relation sur E.

Alors on définit  $\mathcal{R}^+ \subset E^2$  par

 $x \mathcal{R}^+ y$  ssi il existe un  $\mathcal{R}$ -chemin de x vers y

### Donc

- $\mathcal{R}^+$  "englobe" toutes les relations  $\mathcal{R}^k$   $(k>0) o \mathcal{R}^+ = \bigcup_{k=1}^\infty \mathcal{R}^k$
- Si le digraphe possède n sommets (|E|=n) alors  $\mathcal{R}^+=\bigcup_{k=1}^n\mathcal{R}^k$

### Remarque:

- 1)  $\mathcal{R}^+$  n'englobe pas  $\mathcal{R}^0$ !  $\to$  on a pas nécessairement  $\mathcal{R}^0 \subseteq \mathcal{R}^+$ .
- 2) Calculer  $\mathcal{R}^+$  revient à faire la clôture transitive de  $\mathcal{R}^+$ !

### Puissance + : Exemple

Soit la relation  $\mathcal R$  dont le digraphe est le suivant



### ll y a

- une flèche de 1 vers 3 car il y a le  $\mathcal{R}$ -chemin de longueur 1 : 1 ightarrow 3
- une flèche de 2 vers 3 car il y a le  $\mathcal{R}$ -chemin de longueur 2 : 2 ightarrow 1 ightarrow 3
- une flèche de 5 vers 3 car il y a le  $\mathcal{R}$ -chemin de longueur 3 :  $5 \to 2 \to 1 \to 3$
- une boucle de 6 vers 6 car il y a le  $\mathcal{R}$ -cycle de longueur 2 : 6  $\rightarrow$  4  $\rightarrow$  6
- ...

# Calcul de $\mathcal{R}^+$

Soit une relation  $\mathcal{R}$  sur l'ensemble  $E = \{1, 2, \dots, n\}$  |E| = n

Si on veut calculer  $\mathcal{R}^+$ , il faut

- Calculer tous les R<sup>k</sup> pour k de 1 à n.
- Faire l'union de tous ces  $\mathcal{R}^k$ .

Voici un algorithme permettant de faire cela

$$\begin{array}{lll} \mathcal{R}+&=\varnothing & \longrightarrow \text{Au départ } \mathcal{R}^+ \text{ est } \\ \mathcal{R} &=& \mathbf{1}_E & \longrightarrow \text{initialisation de } \mathcal{R}^k \\ \text{pour } &=& 1 \text{ jusque n} \\ \mathcal{R} &=& \mathcal{R} & k \circ \mathcal{R} & \longrightarrow \text{Calcul de } \mathcal{R}^k \text{ à par} \\ \mathcal{R}+&=& \mathcal{R}+\bigcup \mathcal{R} & \longrightarrow \text{Ajout de } \mathcal{R}^k \text{ à } \mathcal{R}^+ \end{array}$$

- $\rightarrow$  Au départ  $\mathcal{R}^+$  est vide
- $\rightarrow$  initialisation de  $\mathcal{R}^k$  à  $\mathcal{R}^0$
- $\mathcal{R}_k = \mathcal{R}_k \circ \mathcal{R} \qquad | \rightarrow \text{Calcul de } \mathcal{R}^k \text{ à partir de } \mathcal{R}^{k-1} \text{ et } \mathcal{R}$

# Calcul de $\mathcal{R}^+$ : Remarque

- 1. Comme c'est algorithme calcule  $\mathcal{R}^+$ , il fait donc la clôture transitive de  $\mathcal{R}$
- 2. Cet algorithme n'est pas efficace! En effet
  - $|E| = n \text{ alors } |E^2| = n^2$
  - ∘ L'union  $\mathcal{R}^+ \bigcup \mathcal{R}^k$  est en O $(n^2)$  (Parcours des couples à ajouter)
  - La composée  $\mathcal{R}^k \circ \mathcal{R}$  est en O( $n^3$ ) (ajout de (x,y) s'il existe z tel que  $(x,z) \in \mathcal{R}$  et  $(z,y) \in \mathcal{R}^k \to \text{triple parcours des éléments de } E$ )
  - o On parcours la boucle *n* fois.
  - $\rightarrow$  l'algorithme est en  $O(n \cdot (n^2 + n^3)) = O(n^4)!!!$

Il existe un algorithme plus efficace pour calculer la clôture transitive :

ightarrow l'algorithme de Warshall que nous verrons dans la section suivante.

### Relation de Warshall : Définition

Soit  $\mathcal{R}$  une relation sur un ensemble  $E = \{1, 2, \dots, n\}$ .

Considérons les éléments de E dans l'ordre 1, 2,  $\cdots$ , n.

Alors on définit la relation de Warshall  $\mathcal{R}_k$   $(0 \le k \le n)$  par

 $x \mathcal{R}_k y \Leftrightarrow \text{il existe un } \mathcal{R}\text{-chemin de } x \text{ à } y \text{ dont les sommets intérieurs}$  appartiennent tous au sous-ensemble  $\{1, 2, \cdots, k\}$ .

### On a alors que

- ${\mathcal R}_0 = {\mathcal R} o {\mathcal R}$  -chemin dont les sommets intérieurs sont dans  ${\varnothing}$ 
  - ightarrow  ${\mathcal R}$ -chemin de longueur 1.
- $\mathcal{R}_{\!\scriptscriptstyle D} = \mathcal{R}^+ o \mathcal{R}$ -chemin dont les sommets intérieurs sont dans E
  - ightarrow n'importe quel  ${\mathcal R}$ -chemin!
- $\mathcal{R}_{k-1} \subseteq \mathcal{R}_k$ 
  - ightarrow un  $\mathcal R$ -chemin dont les sommets intérieurs sont dans  $\{1,\,2,\,\cdots,\,k-1\}$  est un  $\mathcal R$ -chemin dont les sommets intérieurs sont dans  $\{1,\,2,\,\cdots,\,k\}$
  - $\rightarrow x \mathcal{R}_{k-1} y \Rightarrow x \mathcal{R}_k y$ .

Soit  $\mathcal{R}$  une relation sur  $E = \{1, 2, 3, 4, 5, 6\}$  dont le digraphe est le suivant



Considérons les éléments dans l'ordre 1, 2, 3, 4, 5, 6.

### Alors

1. Le digraphe de  $\mathcal{R}_1$  est



 $\rightarrow$  on ajoute 4  $\rightarrow$  5 car il y a un  $\mathcal{R}$ -chemin de 4 à 5 dont les sommets intérieurs appartiennent à {1}

2. Le digraphe de  $\mathcal{R}_2$  est



- $\rightarrow$  on part de  $\mathcal{R}_1$  et on ajoute  $5 \rightarrow 3$  et  $6 \rightarrow 3$  car il y a des  $\mathcal{R}$ -chemins de 5 à 3 et de 6 à 3 dont les sommets intérieur appartiennent à  $\{1,2\}$
- 3. Le digraphe de  $\mathcal{R}_3$  est



 $\rightarrow \mathcal{R}_3 = \mathcal{R}_2$  car il n'y a pas de flèche partant de 3 donc les  $\mathcal{R}$ -chemins dont les sommets intérieurs appartiennent à  $\{1,2,3\}$  sont ceux dont les sommets intérieurs appartiennent à $\{1,2\}$ .

4. Le digraphe de  $\mathcal{R}_4$  est



- $\rightarrow$  on a  $\mathcal{R}_4 = \mathcal{R}_3 = \mathcal{R}_2$  car les  $\mathcal{R}$ -chemins dont les sommets intérieurs appartiennent à  $\{1,2,3,4\}$  et contenant 4 sont ceux permettant d'aller de 4 à 4, de 4 à 5 et de 4 à 1. Or les couples (4,4), (4,5) et  $(4,1) \in \mathcal{R}_3 = \mathcal{R}_2$ .
- 5. Le digraphe de  $\mathcal{R}_5$  est



 $\rightarrow$  on part de  $\mathcal{R}_4$  et on ajoute 1  $\rightarrow$  2, 1  $\rightarrow$  3, 4  $\rightarrow$  2 et 4  $\rightarrow$  3 car il y a des  $\mathcal{R}$ -chemins de 1 à 2, de 1 à 3, de 4 à 2 et de 4 à 3 dont les sommets intérieurs appartiennent à  $\{1,2,3,4,5\}$ 

6. Le digraphe de  $\mathcal{R}_6$  est



 $\rightarrow \mathcal{R}_6 = \mathcal{R}_5$  car il n'y a pas de flèche arrivant à 6 donc les  $\mathcal{R}$ -chemins dont les sommets intérieurs appartiennent à  $\{1,2,3,4,5,6\}$  sont les  $\mathcal{R}$ -chemins dont les sommets appartiennent à  $\{1,2,3,4,5\}$ .

**Conclusion**  $\mathcal{R}^+ = \mathcal{R}^6$  car *E* a 6 éléments.

## Relations de Warshall : Propriété récurrente

### Rappel:

- On a définit xR<sub>k</sub>y ⇔ il existe un R-chemin de x à y dont tous les sommets intérieurs appartiennent au sous-ensemble {1, 2, ···, k}.
- On a vu que  $\mathcal{R}_{k-1} \subseteq \mathcal{R}_k$
- Pour calculer  $\mathcal{R}_k$  on partait de  $\mathcal{R}_{k-1}$  et on regardait les  $\mathcal{R}$ -chemins dont les sommets intérieurs sont dans  $\{1, 2, \dots, k\}$  ET passant par k!

#### Donc

 $\mathcal{R}_k$  se calcule à partir de  $\mathcal{R}_{k-1}$  en utilisant la propriété

$$\boxed{a\mathcal{R}_{k} b \Leftrightarrow (a\mathcal{R}_{k-1} b) \vee \left( (a\mathcal{R}_{k-1} k) \wedge (k\mathcal{R}_{k-1} b) \right)}$$

Autrement dit, il y a un  $\mathcal{R}$ -chemin de a à b dont les sommets sont intérieurs à  $\{1, 2, \dots, k\}$  ssi il existe  $\mathcal{R}$ -chemin de a à k et un  $\mathcal{R}$ -chemin de k à b dont les sommets sont intérieurs à  $\{1, 2, \dots, k-1\}$ .

### Relations de Warshall : Propriété récurrente

Voici une illustration de la propriété précédente :



# Algorithme de Warshall : Gros plan sur une étape

Dans l'exemple précédent pour trouver  $\mathcal{R}_5$ ,

1. On est parti de  $\mathcal{R}_4$  et on s'est focalisé sur 5 :



2. On a regardé toutes les flèches qui arrivent à 5 :



3. On regarde toutes les flèches qui partent de 5 :



## Algorithme de Warshall : Gros plan sur une étape

4. On relie le départ chaque flèche qui arrive à 5 avec l'arrivée de chaque flèche qui part de 5 :



### Conclusion:

Pour trouver  $\mathcal{R}_5$ , en partant de  $\mathcal{R}_4$ , on a cherché toutes les flèches arrivant à 5 et pour chacune d'elle relier leur point de départ avec le point d'arrivée de toutes les flèchent partant de 5

- ightarrow le calcul de  $\mathcal{R}_{\mathbf{k}}$  à partir de  $\mathcal{R}_{\mathbf{k}-1}$  nécessite une double boucle sur les éléments
- $\rightarrow$  le calcul de  $\mathcal{R}_k$  à partir de  $\mathcal{R}_{k-1}$  est en  $O(n^2)$  si le digraphe possède n sommets.

## Algorithme de Warshall

Soit  $\mathcal{R}$  une relation sur  $\textit{E} = \{1,\,2,\,\cdots,\,n\}$ 

Si on considère les éléments dans l'ordre 1, 2,  $\cdots$ ; 6, Alors l'algorithme de Warshall permettant de calculer  $\mathcal{R}^+$  est le suivant

```
\mathcal{R} + = \mathcal{R}
                                                                     \rightarrow initialisation de \mathcal{R}^+ à \mathcal{R}_0
                                                                     \rightarrow début du calcul de \mathcal{R}_k
pour k = 1 jusque n faire
                                                                     \rightarrow recherche des flèches arrivant à k
     pour i = 1 jusque n faire
            si i \mathcal{R} + k alors
                                                                     \rightarrow s'il y a une flèche de i à k
                  pour j = 1 jusque n faire
                                                                     \rightarrow recherche des flèches partant de k
                        si k \mathcal{R} + i alors
                                                                   \rightarrow s'il y a une flèche de k à i
                              ajouter (i , j) à \mathcal{R}+
                                                                     \rightarrow ajout de (i,j) à \mathcal{R}^+:
                                                                                         \mathcal{R}-chemin i \to k \to j
                  fin-pour
      fin-pour
fin-pour
```

- ightarrow calcul les n relations  $\mathcal{R}_{\mathcal{D}}$  avec calcul d'une relation  $\mathcal{R}_{\mathcal{D}}$  en  $O(n^2)$
- $\rightarrow$  l'algorithme de Warshall est en O $(n^3)$ !
- $\rightarrow$  nettement plus efficace que l'algorithme précédent pour calculer  $\mathcal{R}^+$ !

Soit  $\mathcal{R}$  une relation sur  $E = \{2,3,6,7,8,12\}$  dont le digraphe est le suivant



Considérons les sommets dans l'ordre 7, 3, 6, 2, 12, 8.

1. Etape 1 :  $\mathcal{R}_1$  en considérant **7** comme sommet intérieur :



On regarde toutes les flèches arrivant à 7 et les flèches partant de 7

 $\rightarrow$  ajout de la **flèche de** 3 **vers** 2 :  $\mathcal{R}$ -chemin 3  $\rightarrow$  **7**  $\rightarrow$  2

2. Etape 2 :  $\mathcal{R}_2$  à partir de  $\mathcal{R}_1$  en considérant 3 comme sommet intérieur :



On regarde toutes les flèches arrivant à 3 et les flèches partant de 3

- $\rightarrow$  ajout de la flèche de 2 vers 7 :  $\mathcal{R}$ -chemin 2  $\rightarrow$  3  $\rightarrow$  7
- $\rightarrow$  ajout de la flèche de 2 vers 6 :  $\mathcal{R}$ -chemin 2  $\rightarrow$  3  $\rightarrow$  6
- $\rightarrow$  ajout de la **boucle de** 2 **vers** 2 :  $\mathcal{R}$ -chemin 2  $\rightarrow$  3  $\rightarrow$  2
- $\rightarrow$  ajout de la flèche de 2 vers 12 :  $\Re$  -chemin 2  $\rightarrow$  3  $\rightarrow$  12

3. Etape 3 :  $\mathcal{R}_3$  à partir de  $\mathcal{R}_2$  en considérant 6 comme sommet intérieur :



On regarde toutes les flèches arrivant à 6 et les flèches partant de 6

- → pas de flèche partant de 6
- $ightarrow \mathcal{R}_3 = \mathcal{R}_2$ .

4. Etape 4 :  $\mathcal{R}_4$  à partir de  $\mathcal{R}_3$  en considérant 2 comme sommet intérieur :



On regarde toutes les flèches arrivant à 2 et les flèches partant de 2

- $\rightarrow$  ajout de la **boucle de** 7 vers 7 :  $\mathcal{R}$  -chemin 7  $\rightarrow$  2  $\rightarrow$  7
- $\rightarrow$  ajout de la flèche de 7 vers 3 :  $\Re$ -chemin 7  $\rightarrow$  2  $\rightarrow$  3
- $\rightarrow$  ajout de la flèche de 7 vers 6 :  $\mathcal{R}$  -chemin 7  $\rightarrow$  2  $\rightarrow$  6
- $\rightarrow$  ajout de la flèche de 7 vers 12 :  $\Re$ -chemin 7  $\rightarrow$  2  $\rightarrow$  12
- $\rightarrow$  ajout de la **boucle de** 3 **vers** 3 :  $\mathcal{R}$ -chemin 3  $\rightarrow$  2  $\rightarrow$  3

5. Etape 5 :  $\mathcal{R}_5$  à partir de  $\mathcal{R}_4$  en considérant 12 comme sommet intérieur :



On regarde toutes les flèches arrivant à 12 et les flèches partant de 12

 $\rightarrow$  ajout de la flèche de 8 vers 6 :  $\mathcal{R}$ -chemin 8  $\rightarrow$  12  $\rightarrow$  6

6. Etape 6 :  $\mathcal{R}_6$  à partir de  $\mathcal{R}_5$  en considérant 8 comme sommet intérieur :



On regarde toutes les flèches arrivant à 8 et les flèches partant de 8

- → pas de flèche arrivant à 8
- $\rightarrow \mathcal{R}_6 = \mathcal{R}_5$ .

### **Conclusion:**

$$\mathcal{R}^+ = \mathcal{R}_6 = \mathcal{R}_5$$