

Multi-view Subspace Clustering via An Adaptive Consensus Graph Filter

Lai Wei* Shanshan Song
College of information engineering, Shanghai Maritime University, Shanghai, China

*weilai@shmut.edu.cn

Abstract

Most existing MVSC methods first collect complementary information from different views and consequently derive a consensus reconstruction coefficient matrix to indicate the subspace structure of a multi-view data set. In this paper, we initially assume the existence of a consensus reconstruction coefficient matrix and then use it to build a consensus graph filter. In each view, the filter is employed for smoothing the data and designing a regularizer for the reconstruction coefficient matrix. Finally, the obtained reconstruction coefficient matrices from different views are used to create constraints for the consensus reconstruction coefficient matrix.

Multi-view subspace clustering

The generalized framework of MVSC could be expressed as follows:

$$\min_{\mathbf{C}^i} \{ \gamma^i [\mathcal{L}(\mathbf{X}^i, \mathbf{C}^i \mathbf{X}^i) + \lambda \mathcal{R}(\mathbf{C}^i)] \}_{i=1}^{v}$$

Where $\mathbf{X}^i \in \mathbb{R}^{n \times d_i}$ and $\mathbf{C}^i \in \mathbb{R}^{n \times n}$ is the feature matrix and the reconstruction coefficient matrix in the i-th view. Once the reconstruction coefficient matrix \mathbf{C}^i in each view is obtained, a consensus matrix will be defined as $\mathbf{C} = \mathcal{F}\left(\left\{\mathbf{C}^i\right\}_{i=1}^v\right)$, where $\mathcal{F}(\cdot)$ is some kind fusion function

Graph filter

- Suppose an undirected graph \mathbb{G} has n vertices with \mathbf{X} being the feature matrix corresponding to these vertices and $\mathbf{W} \in \mathbb{R}^{n \times n}$ represents the edge weights matrix. The normalized adjacency matrix and the normalized Laplacian matrix of this graph are defined as $\widetilde{\mathbf{A}} = \mathbf{W} + \mathbf{I}$ and $\mathbf{L} = \mathbf{I} \widetilde{\mathbf{D}}^{-\frac{1}{2}} \widetilde{\mathbf{A}} \widetilde{\mathbf{D}}^{-\frac{1}{2}}$ respectively. $\widetilde{\mathbf{D}}$ is a diagonal matrix satisfying $\left[\widetilde{\mathbf{D}}\right]_{ii} = \sum_{i=1}^{n} \left[\widetilde{\mathbf{A}}\right]_{ij}$. Then the low-pass graph filter $\mathbf{G} = \mathbf{I} \frac{\mathbf{L}}{\mathbf{L}}$.
- By using the defined low-pass graph filter, we can get the smooth data matrix of \mathbf{Y} , namely $\mathbf{Y} = \mathbf{G}\mathbf{X}$.

The proposed method: MVSC²GF

Figure 1: The overview of the proposed method. The consensus graph filter G is used to obtain the smoothed data for each view. Meanwhile, in each view, a regularizer of the coefficient matrix is devised by G. Then a coefficient matrix could be obtained in each view. These coefficient matrices are used to construct constraints for obtaining the consensus coefficient matrix C. Finally, G is derived by

The proposed method contains three main steps:

A. Designing a consensus graph filter. We first assume that a consensus coefficient matrix C from a multi-view data set has been gotten. Then a low-pass graph filter could be defined as $G = I - \frac{L}{2} = \frac{3I}{4} + \frac{3C}{4}$.

Here, we require $C \ge 0$, $C = C^T$, C1 = C, diag(C) = 0. Then the affinity graph W = C, hence the graph filter will have the above formulation.

B. Computing the reconstruction coefficient matrix in each view. The defined graph filter **G** should be consistent across different views.

- The smoothed features of a multi-view data set in each view could be computed, i.e., $\mathbf{Y}^i = \mathbf{G}\mathbf{X}^i$.
- \mathbf{Y}^i has the self-expressive property, namely, $\mathbf{Y}^i \approx \mathbf{C}^i \mathbf{Y}^i$, where \mathbf{C}^i is the reconstruction coefficient matrix.
- \mathbf{C}^i should also satisfies self-expressive property $\mathbf{C}^i pprox \mathbf{C}\mathbf{C}^i$.
- C. Fusing the reconstruction coefficient matrices.

Finally, the MVSC²GF problem could be obtained:

$$\min_{\mathbf{C}^{i}} \sum_{i=1}^{v} \left\| \mathbf{Y}^{i} - \mathbf{C}^{i} \mathbf{Y}^{i} \right\|_{F}^{2} + \alpha \left\| \mathbf{C}^{i} - \mathbf{C} \mathbf{C}^{i} \right\|_{F}^{2} + \beta \left(\gamma^{i} \right)^{\eta} \left\| \mathbf{C}^{i} - \mathbf{C} \right\|_{F}^{2}$$

$$\mathbf{4} \mathbf{Y}^{i} = \mathbf{3} \mathbf{X}^{i} + \mathbf{C} \mathbf{X}, \mathbf{C} \geq \mathbf{0}, \mathbf{C} = \mathbf{C}^{\mathsf{T}}, \mathbf{C} \mathbf{1} = \mathbf{C}, \operatorname{diag}(\mathbf{C}) = \mathbf{0}$$

$$\sum_{i=1}^{v} \gamma^{i} = 1$$

Experiments

Databases	Metrics	Methods										
		DiMSC	AGML	MLAN	mPAC	GMC	LMSC	LMVSC	LSRMVSC	CiMSC	SIREN	MVSC ² GF
3sources	ACC	79.53(0.3)	76.43(0.4)	81.70(1.2)	79.76(0.1)	69.23(0.1)	78.53(0.4)	76.92(0.0)	75.15(0.0)	80.13(0.0)	76.12(1.2)	85.80(0.0)
	NMI	71.91(0.9)	69.32(0.0)	<i>75.43(0.0)</i>	72.30(0.1)	62.16(0.0)	65.87(0.2)	65.38(0.0)	65.03(0.2)	71.27(0.1)	62.16(0.1)	78.66(0.0)
	ARI	63.71(0.2)	60.43(0.2)	66.64(0.0)	64.52(0.0)	65.56(0.2)	50.56(0.5)	60.57(0.3)	69.64(0.2)	68.64(0.2)	64.52(0.1)	69.71(0.0)
	F-score	67.43(0.2)	72.43(0.1)	82.46(0.4)	80.54(0.1)	73.27(0.0)	70.13(0.7)	79.24(0.4)	76.73(0.6)	77.47(0.0)	77.83(0.2)	83.75(0.0)
ORL	ACC	79.70(2.6)	72.93(2.0)	68.50(0.0)	71.31(1.4)	63.25(0.0)	82.75(1.2)	71.33(2.3)	79.00(0.0)	89.56(2.8)	82.75(1.2)	90.00(0.0)
	NMI	90.45(1.3)	89.14(1.0)	83.12(0.0)	86.79(0.0)	85.71(0.0)	92.81(0.5)	84.19(2.5)	92.39(0.0)	94.22(0.2)	90.18(2.3)	95.97(0.0)
	ARI	73.76(3.3)	54.79(5.0)	33.16(0.0)	51.23(0.0)	33.67(0.0)	75.90(0.0)	69.77(0.1)	77.43(2.5)	83.56(2.3)	74.35(0.1)	84.58(0.0)
	F-score	74.39(3.25)	70.34(3.0)	33.47(1.1)	68.74(3.2)	35.90(0.0)	77.53(0.1)	73.12(0.0)	76.52(0.0)	84.30(0.4)	77.53(0.0)	86.58(0.0)
MSRC-v1	ACC	75.93(0.9)	76.44(0.5)	85.43(0.3)	81.43(0.1)	89.56(0.3)	77.02(2.2)	88.10(0.2)	68.67(1.3)	78.30(3.0)	88.18(0.8)	91.90(0.0)
	NMI	62.24(1.5)	77.65(2.1)	75.13(0.3)	75.08(0.0)	82.00(1.9)	67.95(2.5)	81.11(2.6)	55.63(0.0)	76.09(2.0)	78.49(0.9)	85.37(0.0)
	ARI	54.80(1.5)	59.07(0.4)	70.94(0.4)	61.27(0.0)	76.74(2.3)	59.88(2.8)	72.79(0.3)	46.42(0.1)	70.51(5.0)	74.73(0.8)	82.57(0.0)
	F-score	61.12(1.3)	72.80(2.2)	75.03(0.3)	73.20(1.3)	79.97(0.2)	65.44(2.4)	76.65(0.2)	61.62(0.0)	70.02(0.0)	81.12(1.3)	85.02(0.0)
BBCsport	ACC	89.71(0.0)	69.34(0.4)	79.62(0.0)	77.96(0.0)	80.63(0.0)	85.12(12.3)	48.78(3.4)	80.98(2.5)	72.05(0.1)	79.74(3.5)	98.16(0.0)
	NMI	79.20(0.0)	56.39(0.1)	77.91(0.0)	73.30(0.1)	75.68(0.0)	74.48(13.6)	27.21(1.6)	84.93(0.0)	68.39(8.0)	76.43(2.5)	93.27(0.0)
	ARI	83.20(0.0)	70.48(0.5)	65.54(0.0)	68.48(2.0)	72.20(0.0)	77.04(16.5)	31.45(1.4)	81.34(0.2)	60.04(1.0)	71.30(1.1)	95.03(0.0)
	F-score	87.32(0.0)	73.54(0.8)	72.44(0.0)	82.04(0.0)	79.41(0.0)	82.88(11.4)	39.34(5.6)	86.03(0.0)	68.13(0.0)	80.13(0.0)	96.22(0.0)
COIL20	ACC	77.85(2.2)	73.21(1.3)	86.21(1.1)	72.43(0.0)	79.11(0.1)	77.97(0.1)	70.83(0.3)	70.56(1.2)	85.98(0.0)	76.54(1.2)	90.00(0.0)
	NMI	84.63(0.2)	79.54(0.8)	96.10(0.4)	84.46(0.0)	94.10(0.2)	85.92(0.1)	81.49(0.2)	79.97(0.0)	94.56(3.2)	81.34(0.1)	97.17(0.0)
	ARI	73.21(0.5)	66.32(1.5)	83.56(0.6)	71.44(0.0)	78.20(0.0)	67.52(0.2)	59.41(0.6)	62.89(0.3)	82.32(0.2)	74.56(0.5)	84.34(0.0)
	F-score	74.50(0.5)	69.40(0.4)	84.43(1.3)	73.02(0.0)	80.21(0.0)	71.61(0.2)	63.95(0.5)	64.98(0.0)	81.65(0.0)	77.38(0.0)	86.80(0.0)
Caltech101-7	ACC	51.74(0.1)	68.73(0.3)	62.70(0.0)	59.65(0.0)	67.52(2.2)	86.33(0.1)	83.46(0.1)	46.47(0.0)	81.33(0.0)	78.54(0.0)	90.50(0.0)
	NMI	31.73(0.7)	49.43(11.5)	54.67(0.0)	46.24(0.0)	61.99(1.9)	72.97(0.4)	58.50(0.4)	18.52(0.0)	69.79(3.4)	70.33(2.8)	81.79(0.0)
	ARI	38.63(0.6)	53.21(0.0)	41.47(0.0)	51.23(2.0)	41.17(0.4)	41.17(0.4)	38.04(0.5)	13.00(0.0)	54.33(7.3)	51.32(0.0)	55.05(0.0)
	F-score	42.11(0.8)	61.53(6.9)	61.88(0.0)	57.51(0.0)	68.29(0.0)	91.28(0.2)	78.28(2.2)	44.70(0.0)	77.35(0.3)	75.53(1.2)	95.89(0.0)
HW	ACC	86.61(0.3)	87.32(0.0)	96.05(0.0)	88.90(2.5)	88.20(2.5)	89.35(0.3)	92.66(0.0)	35.36(0.0)	94.32(0.0)	96.41(1.1)	96.59(0.0)
	NMI	79.20(0.1)	83.72(6.4)	92.22(0.0)	83.61(0.0)	90.41(0.1)	83.70(0.2)	86.01(0.1)	57.36(0.0)	89.90(0.0)	92.42(0.2)	92.59(0.0)
	ARI	75.04(0.2)	71.30(0.0)	82.45(0.0)	79.67(0.0)	80.12(0.0)	78.93(0.3)	86.13(0.1)	22.49(0.0)	83.44(1.3)	91.12(0.0)	91.65(0.0)
	F-score	77.53(0.2)	76.32(10.3)	84.32(0.0)	82.15(0.0)	86.53(0.0)	82.02(0.2)	84.69(0.1)	55.64(0.0)	82.13(0.0)	90.03(0.0)	92.48(0.0)

Table 1: Clustering results (in %) including mean and std (in the brackets) of evaluated methods on the used benchmark data sets. The best results are emphasized in red and bold, the second-best results are denoted in bold and italics.

Figure 2: The filtered features in each view obtained by LSRMVSC (the first row) and MVSC²GF (the second row). The filtered features from the first and second views are listed in the first and second columns respectively.

Figure 3: The consensus reconstruction coefficient matrices of MVSC²GF obtained on the rest six data sets.

Figure 4: The convergence of MVSC²GF