Paul Gustafson

Texas A&M University - Math 637

Instructor: Zoran Sunik

HW 2

3 Let a group G act on a topological space X by homeomorphisms. Show that the projection $\pi: X \to G \backslash X$ is an open map. As a corollary show that if X is locally compact so is $G \backslash X$.

Proof. To see that π is continuous, let $U \subset G \setminus X$ be open. Then $\pi^{-1}(U) = GU \subset X$ is open by the definition of the topology on $G \setminus X$.

To see that π is open, let $U \subset X$ be open. Then $\bigcup_{x \in U} Gx = \bigcup_{g \in G} gU$ is open since the RHS is a union of open sets. Thus $\pi(U)$ is open, so π is an open map.b Suppose X is locally compact. Let $Gx \in G \setminus X$. Pick a compact set $K \subset X$ with $x \in K$. Then $\pi(K)$ is compact since it is the image of a compact set under a continuous map.

4 Let a group G act properly discontinuously on a locally compact, Hausdorff space X by homeomorphisms. Show that, for any two points $x, y \in X$, there exists an open set U_x containing x such that only finitely many elements of the orbit Gy are in U_x . As a corollary show that the orbit space $G \setminus X$ is Hausdorff.

Proof. Let K_x be a compact neighborhood of x. Since the action of G is properly discontinuous, $Gy \cap K_x$ is finite. Let U_x be the interior of K_x . Then $Gy \cap U_x$ is finite.

To show that $G\backslash X$ is Hausdorff, suppose $Gx\neq Gy$. From the above paragraph, pick a compact neighborhood K_x of x with such that $Gy\cap K_x$ is finite. Since X is locally compact Hausdorff, we can intersect K_x with compact neighborhoods of x separating x from each point of $Gy\cap K_x$ to get a new compact neighborhood V_x of x such that $Gy\cap V_x=\emptyset$.

Let K_y be any compact neighborhood of y. Since G acts properly discontinuously, $F:=\{g\in G: gV_x\cap K_y\neq\emptyset\}$ is finite. Hence $A:=\bigcup_{g\in F}gV_x$ is closed. Since $y\not\in GV_x$, the open set A^c is a neighborhood of y. Let $V_y=K_y\cap A^c$. Then $V_y\cap GV_x=\emptyset$, so GV_y and GV_x are disjoint neighborhoods of GX and GY_x in $G\setminus X$.