Package 'FBMS'

December 21, 2023

December 21, 2023
Type Package
Title Flexible Bayesian Model Selection and Model Averaging
Version 1.0
Date 2023-12-20
Encoding UTF-8
Description Implements MJMCMC (mode jumping MCMC) described in Hubin and Storvik (2018) <doi:10.1016 j.csda.2018.05.020=""> and GMJMCMC (genetically modified MJMCMC) described in Hubin et al. (2021) <doi:10.1613 jair.1.13047=""> algorithms as well as the subsampling counterpart described in Lachmann et al. (2022) <doi:10.1016 j.ijar.2022.08.018=""> for flexible Bayesian model selection and model averaging.</doi:10.1016></doi:10.1613></doi:10.1016>
License GPL-2
Depends R (>= 3.5.0), fastglm, GenSA, parallel, stats, graphics
Imports Rcpp
LinkingTo Rcpp
Suggests testthat, knitr, rmarkdown, markdown
RoxygenNote 7.2.3
VignetteBuilder knitr
NeedsCompilation yes
Author Jon Lachmann [cre, aut], Aliaksandr Hubin [aut]
Maintainer Jon Lachmann < jon@lachmann.nu>
Repository CRAN
Date/Publication 2023-12-21 16:30:11 UTC
R topics documented:
FBMS-package

cos_deg		6
liagn_plot		6
erf		7
exoplanet		8
exp_dbl		9
bms		9
gauss	1	11
gaussian.loglik	1	11
gaussian.loglik.alpha		12
zelu		13
gen.params.gmjmcmc		13
gen.params.mjmcmc		14
gen.probs.gmjmcmc		14
gen.probs.mjmcmc	1	15
gmjmcmc		15
gmjmcmc.parallel		17
1S		18
inear.g.prior.loglik		19
ogistic.loglik		19
ogistic.loglik.alpha		20
narginal.probs		21
nerge_results		21
njmeme		23
njmeme.parallel		24
nodel.string		25
gelu		25
hs		26
100		26
nelu		27
00		27
005		28
00p0		28
00p05		20 29
00p1		29 29
00p2		30
00p3		30
1		31
00pm05		
00pm1		31
00pm2		32
2		32
3		33
olot.gmjmcmc		33
plot.gmjmcmc_merged		34
olot.mjmeme		35
plot.mjmcmc_parallel		36
om05		36
om1		37
om 2	3	37

FBMS-package 3

	predict.gmjmcmc	38
	predict.gmjmcmc_merged	39
	predict.gmjmcmc_parallel	40
	predict.mjmcmc	41
	predict.mjmcmc_parallel	41
	print.feature	
	relu	
	set.transforms	43
	sigmoid	44
	sin_deg	
	sqroot	
	string.population	
	string.population.models	
	summary.gmjmcmc	
	summary.gmjmcmc_merged	
	summary.mjmcmc	
	summary.mjmcmc_parallel	
	to23	
	to25	
	to35	
	to72	
	troot	
Index		53
FBMS-	-package Flexible Bayesian Model Selection and Model Averaging	

Description

Implements MJMCMC (mode jumping MCMC) described in Hubin and Storvik (2018) <doi:10.1016/j.csda.2018.05.020> and GMJMCMC (genetically modified MJMCMC) described in Hubin et al. (2021) <doi:10.1613/jair.1.13047> algorithms as well as the subsampling counterpart described in Lachmann et al. (2022) <doi:10.1016/j.ijar.2022.08.018> for flexible Bayesian model selection and model averaging.

Author(s)

Maintainer: Jon Lachmann < jon@lachmann.nu>

Authors:

- Jon Lachmann <jon@lachmann.nu>
- Aliaksandr Hubin <aliaksah@math.uio.no>

Other contributors:

- Florian Frommlet <florian.frommlet@meduniwien.ac.at>[contributor]
- Geir Storvik <geirs@math.uio.no> [contributor]

4 breastcancer

References

Lachmann, J., Storvik, G., Frommlet, F., & Hubin, A. (2022). A subsampling approach for Bayesian model selection. International Journal of Approximate Reasoning, 151, 33-63. Elsevier.

Hubin, A., Storvik, G., & Frommlet, F. (2021). Flexible Bayesian Nonlinear Model Configuration. Journal of Artificial Intelligence Research, 72, 901-942.

Hubin, A., Frommlet, F., & Storvik, G. (2021). Reversible Genetically Modified MJMCMC. Under review in EYSM 2021.

Hubin, A., & Storvik, G. (2018). Mode jumping MCMC for Bayesian variable selection in GLMM. Computational Statistics & Data Analysis, 127, 281-297. Elsevier.

breastcancer

Breast Cancer Wisconsin (Diagnostic) Data Set

Description

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image.

Usage

data(breastcancer)

Format

A data frame with 569 rows and 32 variables

Details

Separating plane described above was obtained using Multisurface Method-Tree (MSM-T) (K. P. Bennett, "Decision Tree Construction Via Linear Programming." Proceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society, pp. 97-101, 1992), a classification method which uses linear programming to construct a decision tree. Relevant features were selected using an exhaustive search in the space of 1-4 features and 1-3 separating planes.

The actual linear program used to obtain the separating plane in the 3-dimensional space is that described in: (K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34).

The variables are as follows:

- ID number
- Diagnosis (1 = malignant, 0 = benign)
- Ten real-valued features are computed for each cell nucleus

compute_effects 5

Source

Dataset downloaded from the UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

Creators:

- 1. Dr. William H. Wolberg, General Surgery Dept. University of Wisconsin, Clinical Sciences Center Madison, WI 53792 wolberg 'at' eagle.surgery.wisc.edu
- 2. W. Nick Street, Computer Sciences Dept. University of Wisconsin, 1210 West Dayton St., Madison, WI 53706 street 'at' cs.wisc.edu 608-262-6619
- 3. Olvi L. Mangasarian, Computer Sciences Dept. University of Wisconsin, 1210 West Dayton St., Madison, WI 53706 olvi 'at' cs.wisc.edu

Donor: Nick Street

References

W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology, volume 1905, pages 861-870, San Jose, CA, 1993.

Lichman, M. (2013). UCI Machine Learning Repository http://archive.ics.uci.edu/ml. Irvine, CA: University of California, School of Information and Computer Science.

compute_effects

Compute effects for specified in labels covariates using a fitted model.

Description

This function computes model averaged effects for specified covariates using a fitted model object. The effects are expected change in the BMA linear predictor having an increase of the corresponding covariate by one unit, while other covariates are fixed to 0. Users can provide custom labels and specify quantiles for the computation of effects.

Usage

```
compute_effects(object, labels, quantiles = c(0.025, 0.5, 0.975))
```

Arguments

object A fitted model object, typically the result of a regression or predictive modeling.

labels A vector of labels for which effects are to be computed.

quantiles A numeric vector specifying the quantiles to be calculated. Default is c(0.025,

0.5, 0.975).

Value

A matrix of treatment effects for the specified labels, with rows corresponding to labels and columns to quantiles.

6 diagn_plot

See Also

```
predict
```

Examples

```
data <- data.frame(matrix(rnorm(600), 100))
result <- mjmcmc.parallel(runs = 2, cores = 1, data, gaussian.loglik)
compute_effects(result,labels = names(data)[-1])</pre>
```

cos_deg

Cosine function for degrees

Description

Cosine function for degrees

Usage

```
cos_deg(x)
```

Arguments

Х

The vector of values in degrees

Value

The cosine of x

Examples

```
cos_deg(0)
```

diagn_plot

Plot convergence of best/median/mean/other summary log posteriors in time

Description

Plot convergence of best/median/mean/other summary log posteriors in time

Usage

```
diagn_plot(res, FUN = median, conf = 0.95, burnin = 0, window = 10000)
```

erf 7

Arguments

res	Object corresp	ponding g	gmjmcmc	output
-----	----------------	-----------	---------	--------

FUN The summary statistics to check convergence

conf which confidence intervals to plot burnin how many first populations to skip

window sliding window for computing the standard deviation

Value

A list of summary statistics for checking convergence with given confidence intervals

Examples

```
result <- gmjmcmc(matrix(rnorm(600), 100), P = 2, gaussian.loglik, NULL, c("p0", "exp_dbl")) diagnstats <- diagn_plot(result)
```

erf

erf function

Description

erf function

Usage

erf(x)

Arguments

Χ

The vector of values

Value

```
2 * pnorm(x * sqrt(2)) - 1
```

Examples

erf(2)

8 exoplanet

exoplanet

Excerpt from the Open Exoplanet Catalogue data set

Description

Data fields include planet and host star attributes.

Usage

data(exoplanet)

Format

A data frame with 223 rows and 11 variables

Details

The variables are as follows:

- TypeFlag: Flag indicating the type of data
- PlanetaryMassJpt: Mass of the planetary object in Jupiter masses
- RadiusJpt: Radius of the planetary object in Jupiter radii
- PeriodDays: Orbital period of the planetary object in days
- SemiMajorAxisAU: Semi-major axis of the planetary object's orbit in astronomical units
- Eccentricity: Eccentricity of the planetary object's orbit
- HostStarMassSlrMass: Mass of the host star in solar masses
- HostStarRadiusSlrRad: Radius of the host star in solar radii
- HostStarMetallicity: Metallicity of the host star
- HostStarTempK: Effective temperature of the host star in Kelvin
- PlanetaryDensJpt: Density of the planetary object up to a constant

Source

Dataset downloaded from the Open Exoplanet Catalogue Repository. https://github.com/OpenExoplanetCatalogue/oec_tables/

Creators:

 Prof. Hanno Rein, Department for Physical and Environmental Sciences. University of Toronto at Scarborough Toronto, Ontario M1C 1A4 hanno.rein 'at' utoronto.ca exp_dbl 9

exp_dbl

Double exponential function

Description

Double exponential function

Usage

```
exp_dbl(x)
```

Arguments

Х

The vector of values

Value

```
e^{(-abs(x))}
```

Examples

```
exp_dbl(2)
```

fbms

Fit a BGNLM model using Genetically Modified Mode Jumping Markov Chain Monte Carlo (MCMC) sampling. Or Fit a BGLM model using Modified Mode Jumping Markov Chain Monte Carlo (MCMC) sampling.

Description

This function fits a model using the relevant MCMC sampling. The user can specify the formula, family, data, transforms, and other parameters to customize the model.

Usage

```
fbms(
  formula = NULL,
  family = "gaussian",
  data = NULL,
  transforms = NULL,
  loglik.pi = gaussian.loglik,
  loglik.alpha = gaussian.loglik.alpha,
  P = 10,
  runs = 10,
```

10 fbms

```
cores = 1,
verbose = FALSE,
...
)
```

Arguments

formula	A formula object specifying the model structure. Default is NULL.
family	The distribution family of the response variable. Currently supports "gaussian" and "binomial". Default is "gaussian".
data	A data frame containing the variables in the model. If NULL, the variables are taken from the environment of the formula. Default is NULL.
transforms	A list of transformations for BGNLM model. Default is NULL.
loglik.pi	The log-likelihood function for estimating the marginal likelihood and posterior modes (only used if family = "custom")
loglik.alpha	The log-likelihood function for the alpha parameter in the model. Default is gaussian.loglik.alpha.
Р	The number of GMJMCMC generations. Default is 10.
runs	The number of parallel chains in case of parallel processing. Default is 2.
cores	The number of CPU cores to use for parallel processing. Default is 2.
verbose	If TRUE, print detailed progress information during the fitting process. Default is FALSE.
	Additional parameters to be passed to the underlying MCMC fitting functions.

Value

An object containing the results of the fitted model and MCMC sampling.

See Also

```
\verb|mjmcmc,gmjmcmc.parallel|\\
```

```
# Fit a Gaussian multivariate time series model
fbms_result <- fbms(
   X1 ~ .,
   family = "gaussian",
   data = data.frame(matrix(rnorm(600), 100)),
   P = 10,
   runs = 1,
   cores = 1
)
summary(fbms_result)
plot(fbms_result)</pre>
```

gauss 11

gauss

Gaussian function

Description

Gaussian function

Usage

gauss(x)

Arguments

Χ

The vector of values

Value

 $e^{(-x^2)}$

Examples

gauss(2)

gaussian.loglik

Log likelihood function for gaussian regression with a prior $p(m)=r*sum(total_width)$.

Description

 $Log\ likelihood\ function\ for\ gaussian\ regression\ with\ a\ prior\ p(m) = r*sum(total_width).$

Usage

```
gaussian.loglik(y, x, model, complex, params)
```

Arguments

У	A vector containing the dependent variable
x	The matrix containing the precalculated features
model	The model to estimate as a logical vector
complex	A list of complexity measures for the features

params A list of parameters for the log likelihood, supplied by the user

12 gaussian.loglik.alpha

Value

A list with the log marginal likelihood combined with the log prior (crit) and the posterior mode of the coefficients (coefs).

Examples

```
gaussian.loglik(rnorm(100), matrix(rnorm(100)), TRUE, list(oc = 1), NULL)
```

gaussian.loglik.alpha Log likelihood function for gaussian regression for alpha calculation This function is just the bare likelihood function Note that it only gives a proportional value and is equivalent to least squares

Description

Log likelihood function for gaussian regression for alpha calculation This function is just the bare likelihood function Note that it only gives a proportional value and is equivalent to least squares

Usage

```
gaussian.loglik.alpha(a, data, mu_func)
```

Arguments

a A vector of the alphas to be used data The data to be used for calculation

mu_func The function linking the mean to the covariates, as a string with the alphas as

a[i].

Value

A numeric with the log likelihood.

```
gaussian.loglik.alpha(1, matrix(rnorm(100), 50), "a * data[, 2]")
```

gelu 13

gelu

GELU function

Description

GELU function

Usage

gelu(x)

Arguments

Х

The vector of values

Value

x*pnorm(x)

Examples

gelu(2)

gen.params.gmjmcmc

Generate a parameter list for GMJMCMC (Genetically Modified MJMCMC)

Description

Generate a parameter list for GMJMCMC (Genetically Modified MJMCMC)

Usage

```
gen.params.gmjmcmc(data)
```

Arguments

data

The dataset that will be used in the algorithm

Value

A list of parameters to use when running the mjmcmc function.

```
gen.params.gmjmcmc(matrix(rnorm(600), 100))
```

14 gen.probs.gmjmcmc

gen.params.mjmcmc

Generate a parameter list for MJMCMC (Mode Jumping MCMC)

Description

Generate a parameter list for MJMCMC (Mode Jumping MCMC)

Usage

```
gen.params.mjmcmc(data)
```

Arguments

data

The dataset that will be used in the algorithm

Value

A list of parameters to use when running the mjmcmc function.

Note that the \$loglik item is an empty list, which is passed to the log likelihood function of the model, intended to store parameters that the estimator function should use.

Examples

```
gen.params.mjmcmc(matrix(rnorm(600), 100))
```

gen.probs.gmjmcmc

Generate a probability list for GMJMCMC (Genetically Modified MJMCMC)

Description

Generate a probability list for GMJMCMC (Genetically Modified MJMCMC)

Usage

```
gen.probs.gmjmcmc(transforms)
```

Arguments

transforms

A list of the transformations used (to get the count).

Value

A list of probabilities to be used as input for the gmjmcmc function.

gen.probs.mjmcmc 15

Examples

```
gen.probs.gmjmcmc(c("p0", "exp_dbl"))
```

gen.probs.mjmcmc

Generate a probability list for MJMCMC (Mode Jumping MCMC)

Description

Generate a probability list for MJMCMC (Mode Jumping MCMC)

Usage

```
gen.probs.mjmcmc()
```

Value

A list of probabilities to be used as input for the mjmcmc function.

Examples

```
gen.probs.mjmcmc()
```

gmjmcmc

Main algorithm for GMJMCMC (Genetically Modified MJMCMC)

Description

Main algorithm for GMJMCMC (Genetically Modified MJMCMC)

Usage

```
gmjmcmc(
  data,
  loglik.pi = gaussian.loglik,
  loglik.alpha = gaussian.loglik.alpha,
  transforms,
  P = 10,
  N.init = 100,
  N.final = 100,
  probs = NULL,
  params = NULL,
  sub = FALSE,
  verbose = TRUE
)
```

16 gmjmcmc

Arguments

data A matrix containing the data to use in the algorithm, first column should be the

dependent variable, second should be the intercept and the rest of the columns

should be the independent variables.

loglik.pi The (log) density to explore

loglik.alpha The likelihood function to use for alpha calculation

transforms A Character vector including the names of the non-linear functions to be used

by the modification and the projection operator.

P The number of generations for GMJMCMC (Genetically Modified MJMCMC).

The default value is P = 10. A larger value like P = 50 might be more realistic for more complicated examples where one expects a lot of non-linear

structures.

N. init The number of iterations per population (total iterations = (T-1)*N.init+N.final)

N. final The number of iterations for the final population (total iterations = (T-1)*N.init+N.final)

probs A list of the various probability vectors to use

params A list of the various parameters for all the parts of the algorithm

sub An indicator that if the likelihood is inexact and should be improved each model

visit (EXPERIMENTAL!)

verbose A logical denoting if messages should be printed

Value

A list containing the following elements:

models All models per population.

10.models All local optimization models per population.

populations All features per population.

marg.probs Marginal feature probabilities per population.
model.probs Marginal feature probabilities per population.

model.probs.idx

Marginal feature probabilities per population.

best.margs Best marginal model probability per population.

accept Acceptance rate per population.

accept.tot Overall acceptance rate.

best Best marginal model probability throughout the run, represented as the maxi-

mum value in unlist(best.margs).

```
result <- gmjmcmc(matrix(rnorm(600), 100), P = 2, gaussian.loglik, NULL, c("p0", "exp_dbl"))
summary(result)
plot(result)</pre>
```

gmjmcmc.parallel 17

gmjmcmc.parallel	Run multiple gmjmcmc (Genetically Modified MJMCMC) runs in par-
	allel returning a list of all results.

Description

Run multiple gmjmcmc (Genetically Modified MJMCMC) runs in parallel returning a list of all results.

Usage

```
gmjmcmc.parallel(
  runs,
  cores = getOption("mc.cores", 2L),
  merge.options = list(populations = "best", complex.measure = 2, tol = 1e-07),
  data,
  loglik.pi = gaussian.loglik,
  loglik.alpha = gaussian.loglik.alpha(),
  transforms,
  ...
)
```

Arguments

runs	The number of runs to run
cores	The number of cores to run on
merge.options	A list of options to pass to the merge_results() function run after the
data	A matrix containing the data to use in the algorithm, first column should be the dependent variable, second should be the intercept and the rest of the columns should be the independent variables.
loglik.pi	The (log) density to explore
loglik.alpha	The likelihood function to use for alpha calculation
transforms	A Character vector including the names of the non-linear functions to be used by the modification and the projection operator.
	Further params passed to mjmcmc.

Value

Results from multiple gmjmcmc runs

```
result <- gmjmcmc.parallel(
runs = 1,
cores = 1,</pre>
```

hs hs

```
list(populations = "best", complex.measure = 2, tol = 0.0000001),
matrix(rnorm(600), 100),
P = 2,
gaussian.loglik,
loglik.alpha = gaussian.loglik.alpha,
c("p0", "exp_dbl")
)
summary(result)
plot(result)
```

hs

heavy side function

Description

heavy side function

Usage

hs(x)

Arguments

Х

The vector of values

Value

as.integer(x>0)

Examples

hs(2)

linear.g.prior.loglik 19

linear.g.prior.loglik Log likelihood function for linear regression using Zellners g-prior

Description

Log likelihood function for linear regression using Zellners g-prior

Usage

```
linear.g.prior.loglik(y, x, model, complex, params = list(g = 4))
```

Arguments

У	A vector containing the dependent variable
X	The matrix containing the precalculated features
model	The model to estimate as a logical vector
complex	A list of complexity measures for the features
params	A list of parameters for the log likelihood, supplied by the user

Value

A list with the log marginal likelihood combined with the log prior (crit) and the posterior mode of the coefficients (coefs).

Examples

```
linear.g.prior.loglik(rnorm(100), matrix(rnorm(100)), TRUE, list(oc=1))
```

logistic.loglik	Log likelihood function for logistic regression with a prior $p(m)=sum(total_width)$ This function is created as an example of how to create an estimator that is used to calculate the marginal likelihood of a model
	of a model.

Description

Log likelihood function for logistic regression with a prior p(m)=sum(total_width) This function is created as an example of how to create an estimator that is used to calculate the marginal likelihood of a model.

Usage

```
logistic.loglik(y, x, model, complex, params = list(r = 1))
```

20 logistic.loglik.alpha

Arguments

y A vector containing the dependent variable

x The matrix containing the precalculated features

model The model to estimate as a logical vector complex A list of complexity measures for the features

params A list of parameters for the log likelihood, supplied by the user

Value

A list with the log marginal likelihood combined with the log prior (crit) and the posterior mode of the coefficients (coefs).

Examples

```
logistic.loglik(as.integer(rnorm(100) > 0), matrix(rnorm(100)), TRUE, list(oc = 1))
```

logistic.loglik.alpha Log likelihood function for logistic regression for alpha calculation
This function is just the bare likelihood function

Description

Log likelihood function for logistic regression for alpha calculation This function is just the bare likelihood function

Usage

```
logistic.loglik.alpha(a, data, mu_func)
```

Arguments

a A vector of the alphas to be used data The data to be used for calculation

a[i].

Value

A numeric with the log likelihood.

marginal.probs 21

		-	
marc	าากว	al n	robs

Function for calculating marginal inclusion probabilities of features given a list of models

Description

Function for calculating marginal inclusion probabilities of features given a list of models

Usage

```
marginal.probs(models)
```

Arguments

models

The list of models to use.

Value

A numeric vector of marginal model probabilities based on relative frequencies of model visits in MCMC.

Examples

```
result <- gmjmcmc(matrix(rnorm(600), 100), P = 2, gaussian.loglik, NULL, c("p0", "exp_dbl")) \\ marginal.probs(result$models[[1]])
```

merge_results

Merge a list of multiple results from many runs This function will weight the features based on the best mlik in that population and merge the results together, simplifying by merging equivalent features (having high correlation).

Description

Merge a list of multiple results from many runs This function will weight the features based on the best mlik in that population and merge the results together, simplifying by merging equivalent features (having high correlation).

Usage

```
merge_results(
  results,
  populations = NULL,
  complex.measure = NULL,
  tol = NULL,
  data = NULL
)
```

22 merge_results

Arguments

results A list containing multiple results from GMJMCMC (Genetically Modified MJM-

CMC).

populations Which populations should be merged from the results, can be "all", "last" (de-

fault) or "best".

complex.measure

The complex measure to use when finding the simplest equivalent feature, 1=to-

tal width, 2=operation count and 3=depth.

tol The tolerance to use for the correlation when finding equivalent features, default

is 0.

data Data to use when comparing features, default is NULL meaning that mock data

will be generated, if data is supplied it should be of the same form as is required

by gmjmcmc, i.e. with both x, y and an intercept.

Value

An object of class "gmjmcmc_merged" containing the following elements:

features The features where equivalent features are represented in their simplest form.

marg.probs Importance of features.

counts Counts of how many versions that were present of each feature.

results Results as they were passed to the function.

pop.best The population in the results which contained the model with the highest log

marginal posterior.

thread.best The thread in the results which contained the model with the highest log marginal

posterior.

crit.best The highest log marginal posterior for any model in the results.

reported The highest log marginal likelihood for the reported populations as defined in

the populations argument.

rep.pop The index of the population which contains reported.

best.log.posteriors

A matrix where the first column contains the population indices and the second column contains the model with the highest log marginal posterior within that

population.

rep. thread The index of the thread which contains reported.

result <- gmjmcmc.parallel(runs = 1, cores = 1, list(populations = "best", complex.measure = 2, tol = 0.0000001), matrix(rnorm(600), 100), P = 2, gaussian.loglik, loglik.alpha = gaussian.loglik.alpha, c("p0", "exp_dbl"))

summary(result)

plot(result)

merge_results(result\$results)

mjmcmc 23

mjmcmc

Main algorithm for MJMCMC (Genetically Modified MJMCMC)

Description

Main algorithm for MJMCMC (Genetically Modified MJMCMC)

Usage

```
mjmcmc(
  data,
  loglik.pi,
  N = 100,
  probs = NULL,
  params = NULL,
  sub = FALSE,
  verbose = TRUE
)
```

Arguments

data A matrix containing the data to use in the algorithm, first column should be the

dependent variable, second should be the intercept and the rest of the columns

should be the independent variables.

loglik.pi The (log) density to explore

N The number of iterations to run for

probs A list of the various probability vectors to use

params A list of the various parameters for all the parts of the algorithm

sub An indicator that if the likelihood is inexact and should be improved each model

visit (EXPERIMENTAL!)

verbose A logical denoting if messages should be printed

Value

A list containing the following elements:

models All visited models.

accept Average acceptance rate of the chain.

lo.models All models visited during local optimization.

best.crit The highest log marginal probability of the visited models.

marg.probs Marginal probabilities of the features.

model.probs Marginal probabilities of all of the visited models.

model.probs.idx

Indices of unique visited models.

populations The covariates represented as a list of features.

24 mjmcmc.parallel

Examples

```
result <- mjmcmc(matrix(rnorm(600), 100), gaussian.loglik)
summary(result)
plot(result)</pre>
```

mjmcmc.parallel

Run multiple mjmcmc runs in parallel, merging the results before returning.

Description

Run multiple mjmcmc runs in parallel, merging the results before returning.

Usage

```
mjmcmc.parallel(runs, cores = getOption("mc.cores", 2L), ...)
```

Arguments

runs The number of runs to run

cores The number of cores to run on

... Further params passed to mjmcmc.

Value

Merged results from multiple mjmcmc runs

```
result <- mjmcmc.parallel(runs = 1, cores = 1, matrix(rnorm(600), 100), gaussian.loglik)
summary(result)
plot(result)</pre>
```

model.string 25

model.string Function to generate a function string for a model consisting tures	g of fea-
--	-----------

Description

Function to generate a function string for a model consisting of features

Usage

```
model.string(model, features, link = "I", round = 2)
```

Arguments

model A logical vector indicating which features to include

features The population of features

link The link function to use, as a string

round Rounding error for the features in the printed format

Value

A character representation of a model

Examples

```
result <- gmjmcmc(matrix(rnorm(600), 100), P = 2, gaussian.loglik, NULL, c("p0", "exp_dbl"))
summary(result)
plot(result)
model.string(c(TRUE, FALSE, TRUE, FALSE, TRUE), result$populations[[1]])
model.string(result$models[[1]][[1]][[1]]$model, result$populations[[1]])</pre>
```

ngelu

Negative GELU function

Description

Negative GELU function

Usage

ngelu(x)

Arguments

Χ

26 not

```
Value
```

```
-x*pnorm(-x)
```

Examples

ngelu(2)

nhs

negative heavy side function

Description

negative heavy side function

Usage

nhs(x)

Arguments

Χ

The vector of values

Value

as.integer(x<0)

Examples

nhs(2)

not

not x

Description

not x

Usage

not(x)

Arguments

Х

The vector of binary values

nrelu 27

```
Value
```

1-x

Examples

not(TRUE)

nrelu

negative ReLu function

Description

negative ReLu function

Usage

nrelu(x)

Arguments

Х

The vector of values

Value

max(-x,0)

Examples

nrelu(2)

p0

p0 polynomial term

Description

p0 polynomial term

Usage

p0(x)

Arguments

Х

p0p0

```
Value
```

```
log(abs(x) + .Machine double.eps)
```

Examples

p0(2)

p05

p05 polynomial term

Description

p05 polynomial term

Usage

p05(x)

Arguments

Х

The vector of values

Value

```
(abs(x)+.Machine double.eps)^{(0.5)}
```

Examples

p05(2)

p0p0

p0p0 polynomial term

Description

p0p0 polynomial term

Usage

p0p0(x)

Arguments

Χ

p0p05 29

```
Value
```

```
p0(x)*p0(x)
```

Examples

p0p0(2)

p0p05

p0p05 polynomial term

Description

p0p05 polynomial term

Usage

p0p05(x)

Arguments

Х

The vector of values

Value

```
p0(x)*(abs(x)+.Machine$double.eps)^(0.5)
```

Examples

p0p05(2)

p0p1

p0p1 polynomial term

Description

p0p1 polynomial term

Usage

p0p1(x)

Arguments

Χ

30 p0p3

Value

p0(x)*x

Examples

p0p1(2)

p0p2

p0p2 polynomial term

Description

p0p2 polynomial term

Usage

p0p2(x)

Arguments

Х

The vector of values

Value

 $p0(x)*x^{(2)}$

Examples

p0p2(2)

p0p3

p0p3 polynomial term

Description

p0p3 polynomial term

Usage

p0p3(x)

Arguments

Х

p0pm05

```
Value
```

```
p0(x)*x^{(3)}
```

Examples

p0p3(2)

p0pm05

p0pm05 polynomial term

Description

p0pm05 polynomial term

Usage

p0pm05(x)

Arguments

Χ

The vector of values

Value

```
p0(x)sign(x)(abs(x)+.Machine$double.eps)^(-0.5)
```

Examples

p0pm05(2)

p0pm1

p0pm1 polynomial terms

Description

p0pm1 polynomial terms

Usage

p0pm1(x)

Arguments

Χ

32 p2

```
Value
```

```
p0(x)*(x+.Machine$double.eps)^(-1)
```

Examples

p0pm1(2)

p0pm2

p0pm2 polynomial term

Description

p0pm2 polynomial term

Usage

p0pm2(x)

Arguments

Χ

The vector of values

Value

```
pO(x)sign(x)(abs(x)+.Machine double.eps)^{(-2)}
```

Examples

p0pm2(2)

p2

p2 polynomial term

Description

p2 polynomial term

Usage

p2(x)

Arguments

Χ

p3

Value

x^(2)

Examples

p2(2)

р3

p3 polynomial term

Description

p3 polynomial term

Usage

p3(x)

Arguments

Χ

The vector of values

Value

x^(3)

Examples

p3(2)

plot.gmjmcmc

Function to plot the results, works both for results from gmjmcmc and merged results from merge.results

Description

Function to plot the results, works both for results from gmjmcmc and merged results from merge.results

Usage

```
## S3 method for class 'gmjmcmc'
plot(x, count = "all", pop = "last", ...)
```

Arguments

x The results to use

count The number of features to plot, defaults to all

pop The population to plot, defaults to last

... Not used.

Value

No return value, just creates a plot

Examples

```
result <- gmjmcmc(matrix(rnorm(600), 100), P = 2, gaussian.loglik, NULL, c("p0", "exp_dbl")) plot(result)
```

plot.gmjmcmc_merged

Plot a gmjmcmc_merged run

Description

Plot a gmjmcmc_merged run

Usage

```
## S3 method for class 'gmjmcmc_merged'
plot(x, count = "all", ...)
```

Arguments

x The results to use

count The number of features to plot, defaults to all

... Not used.

Value

No return value, just creates a plot

plot.mjmcmc 35

Examples

```
result <- gmjmcmc.parallel(
  runs = 1,
  cores = 1,
  list(populations = "best", complex.measure = 2, tol = 0.0000001),
  matrix(rnorm(600), 100),
  P = 2,
  gaussian.loglik,
  loglik.alpha = gaussian.loglik.alpha,
  c("p0", "exp_dbl")
)
plot(result)</pre>
```

plot.mjmcmc

Function to plot the results, works both for results from gmjmcmc and merged results from merge.results

Description

Function to plot the results, works both for results from gmjmcmc and merged results from merge.results

Usage

```
## S3 method for class 'mjmcmc'
plot(x, count = "all", ...)
```

Arguments

x The results to usecount The number of features to plot, defaults to all... Not used.

Value

No return value, just creates a plot

```
result <- mjmcmc(matrix(rnorm(600), 100), gaussian.loglik)
plot(result)</pre>
```

36 pm05

```
\verb"plot.mjmcmc_parallel" Plot a mjmcmc_parallel run"
```

Description

Plot a mjmcmc_parallel run

Usage

```
## S3 method for class 'mjmcmc_parallel'
plot(x, count = "all", ...)
```

Arguments

x The results to use

count The number of features to plot, defaults to all

... Not used.

Value

No return value, just creates a plot

Examples

```
result <- mjmcmc.parallel(runs = 1, cores = 1, matrix(rnorm(600), 100), gaussian.loglik)
plot(result)</pre>
```

pm05

pm05 polynomial term

Description

pm05 polynomial term

Usage

pm05(x)

Arguments

Х

The vector of values

Value

```
(abs(x)+.Machine\$double.eps)^{(-0.5)}
```

pm1 37

Examples

```
pm05(2)
```

pm1

pm1 polynomial term

Description

pm1 polynomial term

Usage

pm1(x)

Arguments

Х

The vector of values

Value

```
sign(x)*(abs(x)+.Machine$double.eps)^{(-1)}
```

Examples

pm1(2)

pm2

pm2 polynomial term

Description

```
pm2 polynomial term
```

Usage

pm2(x)

Arguments

Х

The vector of values

Value

```
sign(x)*(abs(x)+.Machine$double.eps)^(-2)
```

38 predict.gmjmcmc

Examples

pm2(2)

predict.gmjmcmc

Predict using a gmjmcmc result object.

Description

Predict using a gmjmcmc result object.

Usage

```
## S3 method for class 'gmjmcmc' predict(object, x, link = function(x) x, quantiles = c(0.025, 0.5, 0.975), ...)
```

Arguments

object The model to use.

The new data to use for the prediction, a matrix where each row is an observa-

tion.

link The link function to use

quantiles The quantiles to calculate credible intervals for the posterior moddes (in model

space).

... Not used.

Value

A list containing aggregated predictions and per model predictions.

aggr Aggregated predictions with mean and quantiles.

preds A list of lists containing individual predictions per model per population in ob-

ject.

```
result <- gmjmcmc(
  matrix(rnorm(600), 100),
P = 2,
  gaussian.loglik,
  loglik.alpha = gaussian.loglik.alpha,
  c("p0", "exp_dbl")
)
preds <- predict(result, matrix(rnorm(600), 100))</pre>
```

```
predict.gmjmcmc_merged
```

Predict using a merged gmjmcmc result object.

Description

Predict using a merged gmjmcmc result object.

Usage

```
## S3 method for class 'gmjmcmc_merged' predict(object, x, link = function(x) x, quantiles = c(0.025, 0.5, 0.975), ...)
```

Arguments

object The model to use.

x The new data to use for the prediction, a matrix where each row is an observation.

link The link function to use

quantiles The quantiles to calculate credible intervals for the posterior moddes (in model

space).

Not used.

Value

A list containing aggregated predictions and per model predictions.

aggr Aggregated predictions with mean and quantiles.

preds A list of lists containing individual predictions per model per population in ob-

ject.

```
result <- gmjmcmc.parallel(
  runs = 1,
  cores = 1,
  list(populations = "best", complex.measure = 2, tol = 0.0000001),
  matrix(rnorm(600), 100),
  P = 2,
  gaussian.loglik,
  loglik.alpha = gaussian.loglik.alpha,
  c("p0", "exp_dbl")
)
preds <- predict(result, matrix(rnorm(600), 100))</pre>
```

```
predict.gmjmcmc_parallel
```

Predict using a gmjmcmc result object from a parallel run.

Description

Predict using a gmjmcmc result object from a parallel run.

Usage

```
## S3 method for class 'gmjmcmc_parallel'
predict(object, x, link = function(x) x, quantiles = c(0.025, 0.5, 0.975), ...)
```

Arguments

object The model to use.

x The new data to use for the prediction, a matrix where each row is an observa-

tion.

link The link function to use

quantiles The quantiles to calculate credible intervals for the posterior moddes (in model

space).

. . . Additional arguments to pass to merge_results.

Value

A list containing aggregated predictions and per model predictions.

aggr Aggregated predictions with mean and quantiles.

preds A list of lists containing individual predictions per model per population in ob-

ject.

```
result <- gmjmcmc.parallel(
  runs = 1,
  cores = 1,
  list(populations = "best", complex.measure = 2, tol = 0.0000001),
  matrix(rnorm(600), 100),
  P = 2,
  gaussian.loglik,
  loglik.alpha = gaussian.loglik.alpha,
  c("p0", "exp_dbl")
)
preds <- predict(result$results, matrix(rnorm(600), 100))</pre>
```

predict.mjmcmc 41

predict.mjmcmc	Predict using a mjmcmc result object.	
----------------	---------------------------------------	--

Description

Predict using a mjmcmc result object.

Usage

```
## S3 method for class 'mjmcmc' predict(object, x, link = function(x) x, quantiles = c(0.025, 0.5, 0.975), ...)
```

Arguments

object The model to use.

x The new data to use for the prediction, a matrix where each row is an observa-

tion.

link The link function to use

quantiles The quantiles to calculate credible intervals for the posterior moddes (in model

space).

... Not used.

Value

A list containing aggregated predictions.

mean Mean of aggregated predictions.

quantiles Quantiles of aggregated predictions.

Examples

```
result <- mjmcmc(matrix(rnorm(600), 100), gaussian.loglik)
preds <- predict(result, matrix(rnorm(500), 100))</pre>
```

```
predict.mjmcmc_parallel
```

Predict using a mjmcmc result object from a parallel run.

Description

Predict using a mjmcmc result object from a parallel run.

42 print.feature

Usage

```
## S3 method for class 'mjmcmc_parallel'
predict(object, x, link = function(x) x, quantiles = c(0.025, 0.5, 0.975), ...)
```

Arguments

object The model to use.

x The new data to use for the prediction, a matrix where each row is an observa-

tion.

link The link function to use

quantiles The quantiles to calculate credible intervals for the posterior moddes (in model

space).

... Not used.

Value

A list containing aggregated predictions.

mean Mean of aggregated predictions.
quantiles Quantiles of aggregated predictions.

Examples

```
result <- mjmcmc.parallel(runs = 1, cores = 1, matrix(rnorm(600), 100), gaussian.loglik)
preds <- predict(result, matrix(rnorm(500), 100))</pre>
```

print.feature

Print method for "feature" class

Description

Print method for "feature" class

Usage

```
## S3 method for class 'feature'
print(x, dataset = FALSE, alphas = FALSE, labels = FALSE, round = FALSE, ...)
```

Arguments

X	An object of class "feature"
da+aaa+	Cat the manulan accomintes as

dataset Set the regular covariates as columns in a dataset

alphas Print a "?" instead of actual alphas to prepare the output for alpha estimation

labels Should the covariates be named, or just referred to as their place in the data.frame.

Should numbers be rounded when printing? Default is FALSE, otherwise it can

be set to the number of decimal places.

... Not used.

relu 43

Value

String representation of a feature

Examples

```
result <- gmjmcmc(matrix(rnorm(600), 100), P = 2, gaussian.loglik, NULL, c("p0", "exp_dbl")) print(result$populations[[1]][1])
```

relu

ReLu function

Description

ReLu function

Usage

relu(x)

Arguments

Х

The vector of values

Value

max(x,0)

Examples

relu(2)

set.transforms

Set the transformations option for GMJMCMC (Genetically Modified MJMCMC), this is also done when running the algorithm, but this function allows for it to be done manually.

Description

Set the transformations option for GMJMCMC (Genetically Modified MJMCMC), this is also done when running the algorithm, but this function allows for it to be done manually.

Usage

```
set.transforms(transforms)
```

44 sigmoid

Arguments

transforms

The vector of non-linear transformations

Value

No return value, just sets the gmjmcmc-transformations option

Examples

```
set.transforms(c("p0","p1"))
```

 $\operatorname{sigmoid}$

Sigmoid function

Description

Sigmoid function

Usage

sigmoid(x)

Arguments

Х

The vector of values

Value

The sigmoid of x

```
sigmoid(2)
```

sin_deg 45

sin_deg

Sine function for degrees

Description

Sine function for degrees

Usage

```
sin_deg(x)
```

Arguments

Χ

The vector of values in degrees

Value

The sine of x

Examples

```
sin_deg(0)
```

sqroot

Square root function

Description

Square root function

Usage

```
sqroot(x)
```

Arguments

Х

The vector of values

Value

The square root of the absolute value of x

```
sqroot(4)
```

string.population

Function to get a character respresentation of a list of features

Description

Function to get a character respresentation of a list of features

Usage

```
string.population(x, round = 2)
```

Arguments

x A list of feature objects

round Rounding precision for parameters of the features

Value

A matrix of character representations of the features of a model.

Examples

```
result <- gmjmcmc(matrix(rnorm(600), 100), P = 2, gaussian.loglik, NULL, c("p0", "exp_dbl"))
string.population(result$populations[[1]])</pre>
```

string.population.models

Function to get a character respresentation of a list of models

Description

Function to get a character respresentation of a list of models

Usage

```
string.population.models(features, models, round = 2, link = "I")
```

Arguments

features A list of feature objects on which the models are build

models A list of model objects

round Rounding precision for parameters of the features

link The link function to use, as a string

summary.gmjmcmc 47

Value

A matrix of character representations of a list of models.

Examples

```
result <- gmjmcmc(matrix(rnorm(600), 100), P = 2, gaussian.loglik, NULL, c("p0", "exp_dbl")) string.population.models(result$populations[[2]], result$models[[2]])
```

summary.gmjmcmc

Function to print a quick summary of the results

Description

Function to print a quick summary of the results

Usage

```
## S3 method for class 'gmjmcmc'
summary(object, pop = "last", tol = 1e-04, labels = FALSE, effects = NULL, ...)
```

Arguments

object	The results to use
pop	The population to print for, defaults to last
tol	The tolerance to use as a threshold when reporting the results.
labels	Should the covariates be named, or just referred to as their place in the data.frame.
effects	Quantiles for posterior modes of the effects across models to be reported, if either effects are NULL or if labels are NULL, no effects are reported.
	Not used.

Value

A data frame containing the following columns:

feats.strings Character representation of the features ordered by marginal probabilities.

marg.probs Marginal probabilities corresponding to the ordered feature strings.

```
result <- gmjmcmc(matrix(rnorm(600), 100), P = 2, gaussian.loglik, NULL, c("p0", "exp_dbl"))
summary(result)</pre>
```

```
summary.gmjmcmc_merged
```

Function to print a quick summary of the results

Description

Function to print a quick summary of the results

Usage

```
## S3 method for class 'gmjmcmc_merged'
summary(object, tol = 1e-04, labels = FALSE, effects = NULL, ...)
```

Arguments

object	The results to use
tol	The tolerance to use as a threshold when reporting the results.
labels	Should the covariates be named, or just referred to as their place in the data.frame.
effects	Quantiles for posterior modes of the effects across models to be reported, if either effects are NULL or if labels are NULL, no effects are reported.
	Not used.

Value

A data frame containing the following columns:

feats.strings Character representation of the features ordered by marginal probabilities.

marg.probs Marginal probabilities corresponding to the ordered feature strings.

```
result <- gmjmcmc.parallel(
  runs = 1,
  cores = 1,
  list(populations = "best", complex.measure = 2, tol = 0.0000001),
  matrix(rnorm(600), 100),
  P = 2,
  gaussian.loglik,
  loglik.alpha = gaussian.loglik.alpha,
  c("p0", "exp_dbl")
)
summary(result)</pre>
```

summary.mjmcmc 49

summary.mjmcmc	Function to print a quick summary of the results

Description

Function to print a quick summary of the results

Usage

```
## S3 method for class 'mjmcmc'
summary(object, tol = 1e-04, labels = FALSE, effects = NULL, ...)
```

Arguments

object	The results to use
tol	The tolerance to use as a threshold when reporting the results.
labels	Should the covariates be named, or just referred to as their place in the data.frame.
effects	Quantiles for posterior modes of the effects across models to be reported, if either effects are NULL or if labels are NULL, no effects are reported.
	Not used.

Value

A data frame containing the following columns:

```
feats.strings Character representation of the covariates ordered by marginal probabilities.

marg.probs Marginal probabilities corresponding to the ordered feature strings.
```

Examples

```
result <- mjmcmc(matrix(rnorm(600), 100), gaussian.loglik)
summary(result)</pre>
```

```
summary.mjmcmc_parallel
```

Function to print a quick summary of the results

Description

Function to print a quick summary of the results

Usage

```
## S3 method for class 'mjmcmc_parallel'
summary(object, tol = 1e-04, labels = FALSE, effects = NULL, ...)
```

50 to23

Arguments

object The results to use

tol The tolerance to use as a threshold when reporting the results.

labels Should the covariates be named, or just referred to as their place in the data.frame.

effects Quantiles for posterior modes of the effects across models to be reported, if either effects are NULL or if labels are NULL, no effects are reported.

... Not used.

Value

A data frame containing the following columns:

feats.strings Character representation of the covariates ordered by marginal probabilities.

marg.probs Marginal probabilities corresponding to the ordered feature strings.

Examples

```
result <- mjmcmc.parallel(runs = 1, cores = 1, matrix(rnorm(600), 100), gaussian.loglik)
summary(result)</pre>
```

to23

To the 2.3 power function

Description

To the 2.3 power function

Usage

to23(x)

Arguments

Х

The vector of values

Value

x^2.3

Examples

to23(2)

to25

to25

To 2.5 power

Description

To 2.5 power

Usage

to25(x)

Arguments

Х

The vector of values

Value

x^(2.5)

Examples

to25(2)

to35

To 3.5 power

Description

To 3.5 power

Usage

to35(x)

Arguments

Χ

The vector of values

Value

x^(3.5)

Examples

to35(2)

52 troot

to72

To the 7/2 power function

Description

To the 7/2 power function

Usage

to72(x)

Arguments

Χ

The vector of values

Value

 $x^{(7/2)}$

Examples

to72(2)

troot

Cube root function

Description

Cube root function

Usage

troot(x)

Arguments

Х

The vector of values

Value

The cube root of x

Examples

troot(27)

Index

	1.7
* datasets	model.string, 25
breastcancer, 4	ngolu 25
exoplanet, 8	ngelu, 25 nhs, 26
breastcancer, 4	not, 26
bi eastcancer, 4	
compute_effects, 5	nrelu, 27
cos_deg, 6	p0, 27
	p05, 28
diagn_plot, 6	p0p0, 28
	p0p05, 29
erf, 7	p0p1, 29
exoplanet, 8	p0p2, 30
exp_dbl, 9	p0p3, 30
	p0pm05, 31
FBMS (FBMS-package), 3	
fbms, 9	p0pm1, 31
FBMS-package, 3	p0pm2, 32
	p2, 32
gauss, 11	p3, 33
gaussian.loglik,11	plot.gmjmcmc, 33
gaussian.loglik.alpha, 12	plot.gmjmcmc_merged, 34
gelu, 13	plot.mjmcmc, 35
gen.params.gmjmcmc, 13	plot.mjmcmc_parallel, 36
gen.params.mjmcmc, 14	pm05, 36
gen.probs.gmjmcmc, 14	pm1, 37
gen.probs.mjmcmc, 15	pm2, 37
gmjmcmc, 10, 15	predict, 6
gmjmcmc.parallel, 10,17	predict.gmjmcmc, 38
	predict.gmjmcmc_merged, 39
hs, 18	predict.gmjmcmc_parallel,40
1. 1.1.10	predict.mjmcmc, 41
linear.g.prior.loglik, 19	predict.mjmcmc_parallel,41
logistic.loglik, 19	print.feature, 42
logistic.loglik.alpha,20	
manginal probe 21	relu, 43
marginal.probs, 21	ant transforms 12
merge_results, 21	set.transforms, 43
merge_results(), 17	sigmoid, 44
mjmcmc, 10, 23	sin_deg, 45
mjmcmc.parallel,24	sqroot, 45

54 INDEX

```
string.population, 46
string.population.models, 46
summary.gmjmcmc, 47
summary.gmjmcmc_merged, 48
summary.mjmcmc, 49
summary.mjmcmc_parallel, 49
to23, 50
to25, 51
to35, 51
to72, 52
troot, 52
```