LECTURE 3 (MAY 17)

Fields, Induction, Binomial Theorem: $TEXTBOOK\ pg\ 20\ -$

Author

Tom Jeong

Contents

1	Remarks on supremums and bounded above		
	1.1	Upper Bound	3
	1.2	Supremum	3

1 Remarks on supremums and bounded above

Supremums and Upper bounds are not the same and it's been quite confusing so I'll make a note here:

Let P be a partially ordered set and $A\subset P$

1.1 Upper Bound

 $x \in P$ is an upper bound of A if $a \le x$ for all $a \in A$.

1.2 Supremum

We say $s \in P$ is the supremum of A if it satisfies two things:

- 1. s is an upper bound of A
- 2. s is the smallest upper bound of A