Machine Learning Live Session #8

Supervised vs. Unsupervised Learning

- Unsupervised learning: no labels associated with observations
 - Try to infer relationships between the observations or between the features
 - Useful for data visualization and dimension reduction
- Supervised learning: each observation is associated with a label
 - Try to infer a relationship between the features and labels
 - The label acts as a teacher that supervises the learning process
 - Use the relationship to predict label for a new observation

Supervised Learning

Supervised vs. Unsupervised Learning

Unsupervised Learning

- Observations (here, customers) have no labels
- Use unsupervised learning to explore and learn about customers
 - E.g., do sub-groups of customers exist, with each sub-group exhibiting similar characteristics?
 - This is called customer segmentation

Supervised Learning

- Each observation (here, customer) is associated with a label
 - E.g., whether the customer left or stayed
- Use supervised learning to predict the label for new customers

Unsupervised Learning

- Unsupervised learning methods try to infer relationships between features or between observations
 - More subjective than supervised learning, since there is no clear objective
- Unsupervised learning is an important step in the machine learning process
 - Exploring and visualizing the data
 - Dimension reduction
- Unsupervised learning methods discussed in this course are:
 - Principal component analysis (PCA)
 - *k*-means clustering
 - Hierarchical clustering
- Important: these methods are intended for numerical features only

Clustering

- Clustering is the process of grouping similar observations in the data
 - Commonly used for customer segmentation
 - Group (i.e., cluster) similar customers together based on their demographics and purchasing behaviors
 - Target each group (i.e., cluster) with a specific marketing campaign

Clustering

- There are two main types of clustering:
 - Hierarchical agglomerative clustering
 - Build the clusters in a bottom-up manner
 - Start with each observation as its own cluster, end with all observations in one cluster
 - Result is a tree-like visualization of the observations, called the dendrogram, that displays all the possible clusters obtained from the hierarchical clustering
 - Partitioning clustering (k-means)
 - Specify the number of clusters (k) in advance

 In hierarchical agglomerative clustering, we build the clusters in a bottom-up approach

 In hierarchical agglomerative clustering, we build the clusters in a bottom-up approach

 The dendrogram summarizes how the hierarchical agglomerative clustering proceeded

 The dendrogram can help us select the number of clusters by specifying the cut-point

Partitioning Clustering

• In partitioning clustering (k-means), we specify the number, k, of clusters we want to identify

- 1. Choose the variables to include in the cluster analysis
- 2. Identify and remove outliers
- 3. Scale the data
- 4. Select a clustering algorithm
- 5. Evaluate one or more cluster solutions
- 6. Select and run the final cluster solution
- 7. Interpret the clusters

- 1. Choose the variables to include in the cluster analysis
 - Requires knowledge of the data
 - Select the variables that may be important for identifying and understanding differences between groups in the data
 - Example: customer segmentation analysis
 - Demographic variables
 - Purchasing behavior

- 2. Identify and remove outliers
 - Univariate outlier: an observation that has an extreme value in one variable
 - Use the "outliers" R package
 - Multivariate outlier: an observation that has extreme values in at least two variables
 - Use the "mvoutlier" R package

3. Scale the data

- Scale each variable to have a mean of 0 and a standard deviation of 1
 - Otherwise, variables with larger magnitudes may have more influence on the clusters, since they will dominate the distance calculation
- In R, we use "scale(data)"

income	age		income_scaled	age_scaled
50000	28		-0.9368211	-0.9874276
75000	46		0.29583823	0.69386807
47000	34		-1.0847402	-0.4269957
100000	42		1.52849753	0.3202468
65000	56		-0.1972255	1.62792125
90000	39		1.03543381	0.04003085
56000	25		-0.6409828	-1.2676436

4. Select a clustering algorithm

- Hierarchical agglomerative clustering is better suited for smaller problems
 - It is difficult to visualize the dendrogram for larger problems
- Partitioning clustering can handle larger problems
 - Need to choose number of clusters (k) beforehand
- Can try both (with several variations for each) and compare results
 - This is often done to see gauge the robustness of the results

4. Select a clustering algorithm

- Need to specify parameters of the chosen clustering algorithm
 - E.g., need to specify definition of distance between two clusters for hierarchical clustering (see below)
 - E.g., need to specify k for agglomerative (k-means) clustering

Table 16.1: Hierarchical clustering methods

Cluster method

Single linkage
Shortest distance between a point in one cluster and a point in the other cluster.

Complete linkage
Average distance between each point in one cluster and each point in the other cluster (also called UPGMA [unweighted pair group mean averaging]).

Centroid
Distance between the centroids (vector of variable means) of the two clusters. For a single observation, the centroid is the variable's values.

Ward
The ANOVA sum of squares between the two clusters added up over all the variables.

- 5. Evaluate one or more cluster solutions
 - Use NbClust() to evaluate cluster solutions specified using a range (minimum and maximum number of clusters to evaluate)

- 6. Select and run the final cluster solution
 - Use hclust() for hierarchical clustering
 - Use cutree() to obtain the number of clusters selected from NbClust()
 - Use kmeans() for k-means clustering
 - Specify the "centers" argument to be the number of clusters selected from NbClust()

- 7. Interpret the clusters
 - Use the aggregate() function to aggregate the rows in the data by their assigned clusters