Practica 4: Practica de relevadores

Unidad I: Motores a CD Tema 1.1 Sistemas Embebidos II 18MPEDS0729 Ago-Dic 2025

Centro de Enseñanza Tecnica Industrial Plantel Colomos

Tgo. en Desarrollo de Software Academia: Sistemas Digitales

Profesor: Antonio Lozano Gonzáles

EMMANUEL BUENROSTRO 22300891 7F1 EMILIANO ARZATE 22300929 7F1

17 de Septiembre de 2025

§1 Objetivo

Usar relevadores para el cambio de giro de un motor a CD y ver alguna aplicación diferente.

§2 Desarrollo de la Práctica

§2.1 Condiciones de la Práctica

la cual consiste en usar dos reveladores, para poder hacer el cambio de giro de un motor a CD; deberán preguntar el sentido de giro del motor y programar los cuatro porcentajes de energía que se le entregara a dicho motor, dichas velocidades se entregaran también en un tiempo determinado por el usuario, que es de máximo dos minutos,

§2.2 Algoritmo o Diagrama de Flujo

- Al iniciar el sistema, se realiza la configuración de la pantalla LCD, el teclado matricial y los pines necesarios para controlar los relevadores y el motor de corriente directa. Se muestra un mensaje de bienvenida en la pantalla para indicar el inicio de la práctica.
- 2. Posteriormente, el sistema solicita al usuario que seleccione el sentido de giro del motor, mostrando las opciones disponibles en la pantalla LCD. El usuario debe elegir entre giro a la izquierda o a la derecha utilizando el teclado.
- 3. Una vez seleccionado el sentido de giro, el sistema pide al usuario que ingrese el tiempo de operación del motor, el cual debe estar en el rango de uno a ciento veinte segundos. El usuario introduce el valor deseado mediante el teclado y lo confirma.
- 4. Con los datos ingresados, el sistema activa los relevadores para establecer el sentido de giro seleccionado y comienza a controlar el motor. La velocidad del motor se incrementa en cuatro etapas: primero al 25%, luego al 50%, después al 75% y finalmente al 100%, mostrando cada porcentaje en la pantalla LCD y manteniendo cada velocidad durante el tiempo especificado.
- 5. Al finalizar el ciclo de velocidades, el sistema apaga el motor y los relevadores, mostrando un mensaje de finalización en la pantalla LCD. Finalmente, espera unos segundos antes de reiniciar el proceso para permitir una nueva operación.

§2.3 Código C

```
#include <LiquidCrystal.h>
2
   #include <Keypad.h>
3
4
5
   const int LCD_RS = 22;
   const int LCD_E = 23;
   const int LCD_D4 = 25;
   const int LCD_D5 = 24;
   const int LCD_D6 = 26;
   const int LCD_D7 = 27;
   LiquidCrystal lcd(LCD_RS, LCD_E, LCD_D4, LCD_D5, LCD_D6, LCD_D7);
11
12
13
```

```
14 const byte ROWS = 4;
15 const byte COLS = 4;
   char keys[ROWS][COLS] = {
16
     {'1', '2', '3', '/'},
17
    {'4','5','6','-'},
18
    {'7', '8', '9', '+'},
19
    {'C','O','=','*'}
20
21 };
22 byte rowPins[ROWS] = {31, 33, 35, 37};
23 byte colPins[COLS] = {30, 32, 34, 36};
   Keypad teclado = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS);
24
25
26
  const int PIN_RELE_1 = 14;
27
   const int PIN_RELE_2 = 15;
  const int PIN_MOTOR_VELOCIDAD = 9;
29
30
31 void setup() {
    lcd.begin(16, 2);
32
    lcd.print("Practica #4");
33
34
    lcd.setCursor(0, 1);
    lcd.print("Control de Motor");
35
36
37
     pinMode(PIN_RELE_1, OUTPUT);
38
     pinMode(PIN_RELE_2, OUTPUT);
39
     pinMode(PIN_MOTOR_VELOCIDAD, OUTPUT);
40
41
42
     digitalWrite(PIN_RELE_1, LOW);
43
     digitalWrite(PIN_RELE_2, LOW);
44
     analogWrite(PIN_MOTOR_VELOCIDAD, 0);
45
46
     delay(2000);
47
48
49
   void loop() {
50
51
    lcd.clear();
52
    lcd.print("Sentido de Giro:");
53
     lcd.setCursor(0, 1);
54
     lcd.print("1:Izq / 2:Der");
55
     char sentidoGiro = 0;
56
     while (sentidoGiro != '1' && sentidoGiro != '2') {
57
       sentidoGiro = teclado.waitForKey();
58
     }
59
60
61
    lcd.clear();
62
     lcd.print("Velocidad (%):");
63
    lcd.setCursor(0, 1);
64
    lcd.print("1:25 2:50 3:75 4:100");
65
66
     char opcionVelocidad = 0;
     while (opcionVelocidad < '1' || opcionVelocidad > '4') {
67
68
       opcionVelocidad = teclado.waitForKey();
69
70
```

— 17 de Septiembre de 2025

```
// Convertir la opcin a un valor PWM
72
     int valorPWM = 0;
     if (opcionVelocidad == '1') valorPWM = 64;
73
     if (opcionVelocidad == '2') valorPWM = 128;
74
     if (opcionVelocidad == '3') valorPWM = 192;
75
     if (opcionVelocidad == '4') valorPWM = 255;
76
77
78
     lcd.clear();
79
     lcd.print("Tiempo (1-120s):");
80
      int tiempoSegundos = readNumberFromKeypad();
81
82
      if (tiempoSegundos < 1) tiempoSegundos = 1;</pre>
83
      if (tiempoSegundos > 120) tiempoSegundos = 120;
84
85
86
     lcd.clear();
87
     lcd.print("Motor girando...");
88
     lcd.setCursor(0, 1);
89
     lcd.print("25");
90
91
     if (sentidoGiro == '1') { // Izquierda
92
       digitalWrite(PIN_RELE_1, HIGH);
93
       digitalWrite(PIN_RELE_2, HIGH);
94
     } else { // Derecha
95
       digitalWrite(PIN_RELE_1, LOW);
96
       digitalWrite(PIN_RELE_2, LOW);
97
98
99
      // Encender el motor a la velocidad deseada
100
      analogWrite(PIN_MOTOR_VELOCIDAD, 60);
101
102
      // Esperar el tiempo especificado
103
     delay(tiempoSegundos * 250L);
104
105
     lcd.clear();
     lcd.print("Motor girando...");
106
     lcd.setCursor(0, 1);
107
     lcd.print("50");
108
      analogWrite(PIN_MOTOR_VELOCIDAD, 100);
109
110
      // Esperar el tiempo especificado
111
      delay(tiempoSegundos * 250L);
112
      analogWrite(PIN_MOTOR_VELOCIDAD, 130);
113
114
     lcd.clear();
     lcd.print("Motor girando...");
115
     lcd.setCursor(0, 1);
116
     lcd.print("75");
117
     // Esperar el tiempo especificado
118
     delay(tiempoSegundos * 250L);
119
      analogWrite(PIN_MOTOR_VELOCIDAD, 255);
120
     lcd.clear();
121
     lcd.print("Motor girando...");
122
     lcd.setCursor(0, 1);
123
     lcd.print("100");
124
125
     // Esperar el tiempo especificado
      delay(tiempoSegundos * 250L);
126
     //DETENER EL MOTOR
127
```

— 17 de Septiembre de 2025

```
128
      lcd.clear();
129
      lcd.print("Proceso Finalizado");
130
      // Apagar el motor cortando la tierra con el transistor
131
      analogWrite(PIN_MOTOR_VELOCIDAD, 0);
132
133
      // Regresar los rels al estado por defecto (Derecha)
134
      digitalWrite(PIN_RELE_1, LOW);
135
      digitalWrite(PIN_RELE_2, LOW);
136
137
      delay(2000);
138
139
140
    int readNumberFromKeypad() {
141
142
      String inputString = "";
      int number = 0;
143
144
      lcd.setCursor(0, 1);
145
      lcd.print(" ");
146
      lcd.setCursor(0, 1);
147
      lcd.cursor();
148
149
      while (true) {
150
        char key = teclado.getKey();
151
        if (key) {
152
          if (isdigit(key)) {
153
154
           inputString += key;
           lcd.print(key);
155
         } else if (key == 'C') {
156
           inputString = "";
157
           lcd.setCursor(0, 1);
158
           lcd.print(" ");
159
           lcd.setCursor(0, 1);
160
         } else if (key == '*' || key == '=') {
161
162
           break;
163
164
165
      }
166
      lcd.noCursor();
167
      if (inputString.length() > 0) {
168
169
         number = inputString.toInt();
170
171
      return number;
172
    }
```

§3 Observaciones y Conclusiones

- Estamos realizando el puente H pero por nuestra cuenta.
- Esta practica estuvo bastante compleja porque teniamos que ver donde/como poner los transisotres
- Además usamos un transistor que aguanta mas voltaje de los que solemos usualmente usar.