Эллипс

Эллипс – это геометрическое место точек, сумма расстояний от которых до двух заданных точек F_1 и F_2 , называемых фокусами, постоянна.

Каноническое уравнение эллипса имеет вид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
.

Уравнение выводится при следующих предположениях:

- 1. Ось абсцисс проходит через фокусы F_1 и F_2 , при этом точка F_1 находится левее точки F_2 .
- 2. Ось ординат проходит через середину отрезка F_1F_2 и направлена снизу вверх.
- 3. Расстояние между фокусами F_1 и F_2 равно 2c, т.е. $F_1(-c,0)$ и $F_2(c,0)$.
- 4. Сумма расстояний от точки, принадлежащей эллипсу, до фокусов равна $r_1 + r_2 = 2a$.

Свойства эллипса:

- 1. У эллипса имеется две оси симметрии (ось абсцисс и ось ординат) и один центр симметрии (начало координат).
- 2. Координаты точки M(x,y), принадлежащей эллипсу, удовлетворяют следующим неравенствам: $|x| \le a$ и $|y| \le b$.

При x = 0 $y = \pm b$, при y = 0 $x = \pm a$.

Точки $A_1(-a,0)$, $A_2(a,0)$, $B_1(0,-b)$ и $B_2(0,b)$ называются вершинами эллипса.

Отрезки A_1A_2 и B_1B_2 называются большая ось и малая ось соответственно.

3. Эксцентриситет эллипса $e = c/a \le 1$.

При e = 0 эллипс превращается в окружность с радиусом a.

При $e \to 1$ эллипс вырождается в отрезок $A_1 A_2$.

4. Директрисы эллипса D_1 и D_2 имеют уравнения x=-a/e и x=a/e .

13.10.2017 22:55:07 crp. 1 u3 3

Гипербола

 Γ и геометрическое место точек, модуль разности расстояний от которых до двух заданных точек F_1 и F_2 , называемых фокусами, постоянна.

Каноническое уравнение гиперболы имеет вид

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

Уравнение выводится при следующих предположениях:

- 1. Ось абсцисс проходит через фокусы F_1 и F_2 , при этом точка F_1 находится левее точки F_2 .
- 2. Ось ординат проходит через середину отрезка F_1F_2 и направлена снизу вверх.
- 3. Расстояние между фокусами F_1 и F_2 равно 2c, т.е. $F_1(-c,0)$ и $F_2(c,0)$.
- 4. Разность расстояний от точки, принадлежащей эллипсу, до фокусов равна $|r_1 r_2| = 2a$.
- 5. $b^2 = c^2 a^2$.

Свойства гиперболы:

- 1. У гиперболы имеется две оси симметрии (ось абсцисс и ось ординат) и один центр симметрии (начало координат).
- 2. Для любой точки M(x,y), принадлежащей гиперболе, $|x| \ge a$, а координата y может принимать произвольные значения.

При y = 0 $x = \pm a$.

Точки $A_{\rm l}(-a,0)$, $A_{\rm 2}(a,0)$ называются вершинами гиперболы.

Отрезки A_1A_2 и B_1B_2 называются действительная ось и мнимая ось гиперболы соответственно.

- 3. Эксцентриситет гиперболы e=c/a>1. При $e\to 1$ гипербола вырождается в полупрямые, дополняющие отрезок A_1A_2 до всей оси Ox .
- 4. Директрисы гиперболы D_1 и D_2 имеют уравнения x = -a/e и x = a/e.
- 5. Асимптоты гиперболы L_1 и L_2 имеют уравнения y = -(b/a)x и y = (b/a)x.

Парабола

 Π арабола — это геометрическое место точек, расстояния от которых до фиксированной точки F, называемой фокусом, и прямой D, называемой директрисой, равны.

Каноническое уравнение параболы имеет вид

$$y^2 = 2 px.$$

Уравнение выводится при следующих предположениях:

- 1. Ось абсцисс проходит через фокус F перпендикулярно директрисе D , при этом директриса находится левее точки F .
- 2. Ось ординат располагается на одинаковом расстоянии от фокуса и директрисы и параллельна ей.
- 3. Расстояние между директрисой и фокусом равно p, т.е. F(p/2,0).

Свойства параболы:

- 1. У гиперболы имеется ось симметрии (ось абсцисс).
- 2. При p > 0 $x \ge 0$, при p < 0 $x \le 0$, при p = 0 парабола вырождается в прямую, совпадающую с ось ординат.
- 3. Начало координат точка с координатами (0,0) называется вершиной параболы.