DAY 10

1. ABC is an isosceles right angled at C. Prove that $AB^2 = 2AC^2$.

[Ex 6.5, Q4]

Sol:- In
$$\triangle$$
ABC, AC = BC i)

By Pythagoras Theorem, we get

$$AB^2 = AC^2 + BC^2 = AC^2 + AC^2$$
 [By i)]

$$\Rightarrow$$
 AB² = 2AC².

2. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals. [Ex 6.5, Q7]

Sol:- Given ABCD is a rhombus where $AB = BC = CD = DA \dots i)$

and diagonals AC and BD bisect at right angles at 0 **To prove:**
$$AB^2 + BC^2 + CD^2 + AD^2 = AC^2 + BD^2$$

$$AB^{2} = 0A^{2} + 0B^{2} = \left(\frac{AC}{2}\right)^{2} + \left(\frac{BD}{2}\right)^{2} = come - educa$$

$$\begin{cases} As OA = OC So AC = 20A \\ and OB = OD So BD = 20B \end{cases}$$

$$= \frac{AC^2}{4} + \frac{BD^2}{4}$$

$$\Rightarrow$$
 4AB² = AC² + BD²

or
$$AB^2 + BC^2 + CD^2 + AD^2 = AC^2 + BD^2$$
 [by i)]

3. D and E are points on the sides CA and CB respectively of \triangle ABC right angled at C. Prove that $AE^2 + BD^2 = AB^2 + DE^2$. [Ex 6.5, Q13]

Sol:- {In this sum, take right triangles according to what to prove $e.\,g.$ for AE² take Δ ACE, for BD² take Δ BDC, for AB² take Δ ABC, for DE² take Δ CDE}

Now In right
$$\triangle ACE$$
, $AE^2 = AC^2 + CE^2 \dots \dots \dots i$

In right
$$\triangle BDC$$
, $BD^2 = BC^2 + CD^2 \dots \dots \dots ii$)

Adding i) and ii), we get

$$AE^{2} + BD^{2} = (AC^{2} + CE^{2}) + (BC^{2} + CD^{2})$$

$$= (AC^{2} + BC^{2}) + (CE^{2} + CD^{2})$$

$$= AB^{2} + CD^{2}$$

{As In right
$$\Delta ABC,~AB^2=AC^2+BC^2$$
 and In right $\Delta DCE,~DE^2=CE^2+CD^2\}$

Hence the result

4. In the figure, if AD \perp BC, prove that $AB^2 + CD^2 = BD^2 + AC^2$

[Example 12]

Sol:- In right \triangle ADC, we have

In right \triangle ADB, we have

Subtracting i) from ii),we get

$$AB^2 - AC^2 = BD^2 - CD^2$$

or
$$AB^2 + CD^2 = BD^2 + AC^2$$

5. BL and CM are medians of a $\triangle ABC$ right angled at A. Prove that $4(BL^2 + CM^2) = 5BC^2$ [Example 13]

Sol:- In $\triangle ABC$, $\angle A = 90^{\circ}$ and BL, CM are medians, so $AM = BM = \frac{1}{2}AB$, $AL = LC = \frac{1}{2}AC \dots i)$

In $\triangle AMC$, we have $CM^2 = AM^2 + AC^2$iii) e-educate

Adding ii) and iii), we get

$$BL^{2} + CM^{2} = AB^{2} + AL^{2} + AM^{2} + AC^{2}$$

$$= AB^{2} + \left(\frac{AC}{2}\right)^{2} + \left(\frac{AB}{2}\right)^{2} + AC^{2}$$
 {by i)]
= $AB^{2} + \frac{AC^{2}}{4} + \frac{AB^{2}}{4} + AC^{2} = \frac{4AB^{2} + AC^{2} + AB^{2} + 4AC^{2}}{4}$

$$= \frac{5AB^2 + 5AC^2}{4} = \frac{5(AB^2 + AC^2)}{4} = \frac{5}{4}BC^2$$

$$\Rightarrow 4(BL^2 + CM^2) = 5BC^2$$

