Theoretische Informatik Beweisideen 101

Kapitel 2

Lemma 2.5

Für jede Zahl $n \in \mathbb{N}$ existiert ein Wort $w_n \in (\Sigma_{bool})^n$, so dass

$$K(w_n) \ge |w_n| = n$$

d.h., es existiert für jede Zahl n ein nichtkomprimierbares Wort der Länge n.

Beweis:

Es gibt 2^n Wörter $x_1, ..., x_{2^n}$ über Σ_{bool} der Länge n. Wir bezeichnen $C(x_i)$ als den Bitstring des kürzesten Programms, der x_i generieren kann. Es ist klar, dass für $i \neq j : C(x_i) \neq C(x_j)$.

Die Anzahl der Bitstrings, i.e. der Wörter der Länge < n über Σ_{bool} ist:

$$\sum_{i=1}^{n-1} 2^i = 2^n - 2 < 2^n$$

Also muss es unter den Wörtern $x_1, ..., x_{2^n}$ mindestens ein Wort x_k mit $K(x_k) \geq n$ geben.

Satz 2.2

Sei L eine Sprache über Σ_{bool} . Sei, für jedes $n \in \mathbb{N} \setminus \{0\}$, z_n das n-te Wort in L bezüglich der kanonischen Ordnung. Wenn ein Programm A_L existiert, dass das Entscheidungsproblem (Σ_{bool}, L) löst, dann gilt für alle $n \in \mathbb{N} \setminus \{0\}$, dass

$$K(z_n) \le \lceil \log_2(n+1) \rceil + c$$

wobei c eine von n unabhängige Konstante ist.

Beweisidee:

Wir können aus A_L , ein Programm entwerfen, dass das kanonisch n-te Wort generiert, indem wir in der kanonischen Reihenfolge alle Wörter $x \in (\Sigma_{bool})^*$ durchgehen und mit A_L entscheiden, ob $x \in L$. Dann können wir einen Counter c haben und den Prozess abbrechen, wenn der Counter c = n wird und dann dieses Wort ausgeben.

Seite 1 von 13

Wir sehen, dass dieses Programm ausser der Eingabe n immer gleich ist. Sei die Länge dieses Programms c, dann können wir für das n-te Wort der Sprache L, z_n , die Kolmogorov-Komplexität auf n reduzieren, bzw:

$$K(z_n) \le \lceil \log_2(n+1) \rceil + c$$

Lemma 2.6

Sei $n_1, n_2, n_3, ...$ eine steigende unendliche Folge natürlicher Zahlen mit $K(n_i) \geq \lceil \log_2 n_i \rceil / 2$. Für jedes $i \in \mathbb{N} \setminus \{0\}$ sei q_i die grösste Primzahl, die die Zahl n_i teilt. Dann ist die Menge $Q = \{q_i \mid i \in \mathbb{N} \setminus \{0\}\}$ unendlich.

Beweis: Wir beweisen diese Aussage per Widerspruch:

Nehmen wir zum Widerspruch an, dass die Menge $Q = \{q_i \mid i \in \mathbb{N} \setminus \{0\}\}$ sei endlich. Sei q_m die grösste Primzahl in Q. Dann können wir jede Zahl n_i eindeutig als

$$n_i = q_1^{r_{i,1}} \cdot q_2^{r_{i,2}} \cdot \dots \cdot q_m^{r_{i,m}}$$

für irgendwelche $r_{i,1}, r_{i,2}, ..., r_{i,m} \in \mathbb{N}$ darstellen. Sei c die binäre Länge eines Programms, dass diese $r_{i,j}$ als Eingaben nimmt und n_i erzeugt (A ist für alle $i \in \mathbb{N}$ bis auf die Eingaben $r_{i,1}, ..., r_{i,m}$ gleich).

Dann gilt:

$$K(n_i) \le c + 8 \cdot (\lceil \log_2(r_{i,1} + 1) \rceil + \lceil \log_2(r_{i,2} + 1) \rceil + \dots + \lceil \log_2(r_{i,m} + 1) \rceil)$$

Die multiplikative Konstante 8 kommt daher, dass wir für die Zahlen $r_{i,1}, r_{i,2}, ..., r_{i,m}$ dieselbe Kodierung, wie für den Rest des Programmes verwenden (z.B. ASCII-Kodierung), damit ihre Darstellungen eindeutig voneinander getrennt werden können. Weil $r_{i,j} \leq \log_2 n_i, \forall j \in \{1, ..., m\}$ erhalten wir

$$K(n_i) \leq c + 8m \cdot \lceil \log_2(\log_2 n_i + 1) \rceil, \forall i \in \mathbb{N} \setminus \{0\}$$

Weil m und c Konstanten unabhängig von i sind, kann

$$\lceil \log_2 n_i \rceil / 2 \le K(n_i) \le c + 8m \cdot \lceil \log_2(\log_2 n_i + 1) \rceil$$

$$\lceil \log_2 n_i \rceil / 2 \le c + 8m \cdot \lceil \log_2 (\log_2 n_i + 1) \rceil$$

nur für endlich viele $i \in \mathbb{N} \setminus \{0\}$ gelten.

Dies ist ein Widerspruch!

Folglich ist die Menge Q unendlich.

Kapitel 3

Lemma 3.3

Sei $A = (Q, \Sigma, \delta_A, q_0, F)$ ein EA. Seien $x, y \in \Sigma^*, x \neq y$, so dass

$$\hat{\delta}_A(q_0, x) = p = \hat{\delta}_A(q_0, y)$$

für ein $p \in Q$ (also $x, y \in \mathrm{Kl}[p]$). Dann existiert für jedes $z \in \Sigma^*$ ein $r \in Q$, so dass xz und $yz \in \mathrm{Kl}[r]$, also gilt insbesondere

$$xz \in L(A) \iff yz \in L(A)$$

Beweis:

Aus der Existenz der Berechnungen

 $(q_0,x) \mid_{A}^{*} (p,\lambda)$ und $(q_0,y) \mid_{A}^{*} (p,\lambda)$ von A folgt die Existenz der Berechnungen auf xz und yz:

$$(q_0, xz) \left| \frac{*}{A}(p, z) \right|$$
 und $(q_0, yz) \left| \frac{*}{A}(p, z) \right|$ für alle $z \in \Sigma^*$.

Wenn $r = \hat{\delta}_A(p, z)$ ist, dann ist die Berechnung von A auf xz und yz:

$$(q_0, xz) \left| \frac{*}{A} (p, z) \right| \frac{*}{A} (r, \lambda) \text{ und } (q_0, yz) \left| \frac{*}{A} (p, z) \right| \frac{*}{A} (r, \lambda).$$

Wenn $r \in F$, dann sind beide Wörter xz und yz in L(A). Falls $r \notin F$, dann sind $xz, yz \notin L(A)$.

Lemma 3.4: Pumping-Lemma

Sei L regulär. Dann existiert eine Konstante $n_0 \in \mathbb{N}$, so dass sich jedes Wort $w \in \Sigma^*$ mit $|w| \ge n_0$ in drei Teile y, x und z zerlegen lässt, das heisst w = yxz, wobei

- (i) $|yx| \leq n_0$,
- (ii) $|x| \ge 1$ und
- (iii) entweder $\{yx^kz \mid k \in \mathbb{N}\} \subseteq L \text{ oder } \{yx^kz \mid k \in \mathbb{N}\} \cap L = \emptyset.$

Beweis:

Sei $L \in \Sigma^*$ regulär. Dann existiert ein EA $A = (Q, \Sigma, \delta_A, q_0, F)$, so dass L(A) = L. Sei $n_0 = |Q|$ und $w \in \Sigma^*$ mit $|w| \ge n_0$. Dann ist $w = w_1 w_2 ... w_{n_0} u$, wobei $w_i \in \Sigma$ für $i = 1, ..., n_0$ und $u \in \Sigma^*$. Betrachten wir die Berechnung auf $w_1 w_2 ... w_{n_0}$:

$$(q_0, w_1 w_2 w_3 ... w_{n_0}) \mid_{\overline{A}} (q_1, w_2 w_3 ... w_{n_0}) \mid_{\overline{A}} (q_2, w_3 ... w_{n_0}) \mid_{\overline{A}} ... \mid_{\overline{A}} (q_{n_0-1}, w_{n_0}) \mid_{\overline{A}} (q_{n_0}, \lambda)$$

Seite 3 von 13

In dieser Berechnung kommen n_0+1 Zustände $q_0, q_1, ..., q_{n_0}$ vor. Da $|Q| = n_0$, existieren $i, j \in \{0, 1, ..., n_0\}, i < j$, so dass $q_i = q_j$. Daher haben wir in der Berechnung die Konfigurationen

$$(q_0, w_1 w_2 w_3 ... w_{n_0}) \stackrel{*}{|_A} (q_i, w_{i+1} w_{i+2} ... w_{n_0}) \stackrel{*}{|_A} (q_i, w_{j+1} ... w_{n_0}) \stackrel{*}{|_A} (q_{n_0}, \lambda)$$

Dies impliziert

$$(q_i, w_{i+1}w_{i+2}...w_j) \stackrel{|*}{\mid_A} (q_i, \lambda) \tag{1}$$

Wir setzen nun $y = w_1...w_i$, $x = w_{i+1}...w_j$ und $z = w_{j+1}...w_{n_0}u$, so dass w = yxz.

Wir überprüfen nun die Eigenschaften (i),(ii) und (iii):

- (i) $yx = w_1...w_i w_{i+1}...w_j$ und daher $|yx| = j \le n_0$.
- (ii) Da $|x| \ge j i$ und i < j, ist $|x| \ge 1$.
- (iii) (1) impliziert $(q_i, x^k) \Big|_{A}^* (q_i, \lambda)$ für alle $k \in \mathbb{N}$. Folglich gilt für alle $k \in \mathbb{N}$:

$$(q_0, yx^kz) \left| \frac{*}{A} (q_i, x^kz) \right| \frac{*}{A} (q_i, z) \left| \frac{*}{A} (\hat{\delta}_A(q_i, z), \lambda) \right|$$

Wir sehen, dass für alle $k \in \mathbb{N}$ die Berechnungen im gleichen Zustand $q_{end} = \hat{\delta}_A(q_i, z)$ enden. Falls also $q_{end} \in F$, akzeptiert A alle Wörter aus $\{yx^kz \mid k \in \mathbb{N}\}$. Falls $q_{end} \notin F$, dann akzeptiert A kein Wort aus $\{yx^kz \mid k \in \mathbb{N}\}$.

Lemma 3.6

Sei $L_k = \{x1y \mid x \in (\Sigma_{bool})^*, y \in (\Sigma_{bool})^k\}.$

Für alle $k \in \mathbb{N} \setminus \{0\}$ muss jeder EA, der L_k akzeptiert, mindestens 2^k Zustände haben.

Beweis:

Sei $B_k = (Q_k, \Sigma_{bool}, \delta_k, q_{0k}, F_k)$ ein EA mit $L(B_k) = L_k$.

Nach **Lemma 3.3** gilt für $x, y \in (\Sigma_{bool})^*$:

Wenn $\hat{\delta}_k(q_{0k}, x) = \hat{\delta}_k(q_{0k}, y)$, dann gilt für alle $z \in (\Sigma_{bool})^*$:

$$xz \in L(B_k) \iff yz \in L(B_k)$$

Die Idee des Beweises ist es, eine Menge S_k von Wörtern zu finden, so dass für keine zwei unterschiedlichen Wörter $x, y \in S_k$ die Gleichung $\hat{\delta}_k(q_{0k}, x) = \hat{\delta}_k(q_{0k}, y)$ gelten darf. Dann müsste B_k mindestens $|S_k|$ viele Zustände haben.

Wir wählen $S_k = (\Sigma_{bool})^k$ und zeigen, dass $\hat{\delta}_k(q_{0k}, q)$ paarweise unterschiedliche Zustände für alle $u \in S_k$ sind.

Seite 4 von 13

Wir beweisen dies per Widerspruch.

Seien $x = x_1 x_2 ... x_k$ und $y = y_1 y_2 ... y_k$ für $x_i, y_i \in \Sigma_{bool}, i \in \{1, ..., k\}$ zwei unterschiedliche Wörter aus S_k . Nehmen wir zum Widerspruch an, dass $\hat{\delta}_k(q_{0k}, x) = \hat{\delta}_k(q_{0k}, y)$.

Weil $x \neq y$, existiert ein $j \in \{1, ..., k\}$, so dass $x_j \neq y_j$. O.B.d.A. setzen wir $x_j = 1$ und $y_j = 0$. Betrachten wir nun $z = 0^{j-1}$. Dann ist

$$xz = x_1...x_{j-1}1x_{j+1}...x_k0^{j-1}$$
 und $yz = y_1...y_{j-1}0y_{j+1}...y_k0^{j-1}$

und daher $xz \in L_k$ und $yz \notin L_k$. Dies ist ein Widerspruch! Folglich gilt $\hat{\delta}_k(q_{0k}, x) \neq \hat{\delta}_k(q_{0k}, y)$ für alle paarweise unterschiedliche $x, y \in S_k = (\Sigma_{bool})^k$.

Daher hat B_k mindestens $|S_k| = 2^k$ viele Zustände.

Kapitel 4

Lemma 4.2

Für jede Mehrband-TM A existiert eine zu A äquivalente TM B.

Beweis:

Sei A eine k-Band-Turingmaschine für ein $k \in \mathbb{N} \setminus \{0\}$. Wir konstruieren eine TM B, die Schritt für Schritt A simuliert.

B speichert die Inhalte aller k+1 Bänder von A auf ihrem einzigen Band. Anschaulich gesprochen ist jedes Feld auf dem Band von B ein 2(k+1)-Tupel und jedes Element dieses Tupels ist auf einer Spur. Sei Γ_A das Arbeitsalphabet von A. Dann gilt

$$\Gamma_B = (\Sigma_A \cup \{ \circlearrowleft, \$, \square \}) \times \{ \sqcup, \uparrow \} \times (\Gamma_A \times \{ \sqcup, \uparrow \})^k \cup \Sigma_A \cup \{ \sqcup, \circlearrowleft \}$$

Für ein Symbol $\alpha=(a_0,a_1,a_2,...,a_{2k+1})\in\Gamma_B$ sagen wir, dass a_i auf der i-ten Spur liegt. Daher bestimmen die i-ten Elemente der Symbole auf dem Band von B den Inhalt der i-ten Spur. Eine Konfiguration $(q,w,i,x_1,i_1,x_2,i_2,...,x_k,i_k)$ von A ist dann in B wie folgt gespeichert.

- Der Zustand q ist in der endlichen Kontrolle von B gespeichert.
- Die 0-te Spur des Bandes von B enthält die cw (i.e. den Inhalt des Eingabebandes von A)
- Für alle $i \in \{1, ..., k\}$ enthält die (2i)-te Spur des Bandes von B den Inhalt vom i-ten Band von A (i.e. $c c x_i$).
- Für alle $i \in \{1, ..., k\}$ bestimmt die (2i+1)-te Spur des Bandes von B mit dem Symbol \uparrow die Position des Kopfes auf dem i-ten Arbeitsband von A.

Seite 5 von 13

Ein Schritt von A kann jetzt durch folgende Prozedur von B simuliert werden:

- 1. B liest einmal den Inhalt ihres Bandes von links nach rechts, bis sie alle k+1 Kopfpositionen von A gefunden hat, und speichert dabei in ihrem Zustand die k+1 Symbole, die an diesen Positionen stehen. (Dies kann ohne weiteres in der Zustandsmenge abgespeichert werden, da k fix ist, folglich ist dann Γ_A^k auch endlich)
- 2. Nach der ersten Phase kennt B das ganze Argument (der Zustand von A ist im Zustand von B gespeichert) der Transitionsfunktion von A und kann also die entsprechenden Aktionen (Köpfe bewegen, Ersetzen von Symbolen) von A bestimmen. Diese Änderungen führt B in einem Lauf über ihr Band von rechts nach links durch.

Kapitel 5

Satz 5.4

 $\mathcal{P}((\Sigma_{bool})^*)$ ist nicht abzählbar.

Beweis:

Wir definieren eine injektive Funktion von $f:[0,1]\to \mathcal{P}((\Sigma_{bool})^*)$ und beweisen so $|\mathcal{P}((\Sigma_{bool})^*)|\geq |[0,1]|$.

Sei $a \in [0,1]$ beliebig. Wir können a wie folgt binär darstellen: Nummer $(a) = 0.a_1a_2a_3a_4...$ mit $a = \sum_{i=1}^{\infty} a_i \cdot 2^{-i}$. Hier ist zu beachten, dass wir für eine Zahl a immer die lexikographisch letzte Darstellung. Dies tun wir, weil eine reelle Zahl 2 verschiedene Binärdarstellungen haben kann. Beispiel: $\frac{1}{2} = 0.1\overline{0} = 0.0\overline{1}$.

Für jedes a definieren wir:

$$f(a) = \{a_1, a_2a_3, a_4a_5a_6, ..., a_{\binom{n}{2}+1}a_{\binom{n}{2}+2}...a_{\binom{n+1}{2}}, ...\}$$

Da $f(a) \subseteq (\Sigma_{bool})^*$ gilt $f(a) \in \mathcal{P}((\Sigma_{bool})^*)$.

Wir haben für alle $n \in \mathbb{N} \setminus \{0\}$, dass f(a) genau ein Wort dieser Länge enthält. Nun können wir daraus folgendes schliessen:

Weil die Binärdarstellung zweier unterschiedlichen reellen Zahlen an mindestens einer Stelle unterschiedlich ist, gilt $b \neq c \implies f(b) \neq f(c), \forall b, c \in [0, 1].$

Folglich ist f injektiv und wir haben $|\mathcal{P}((\Sigma_{bool})^*)| \geq |[0,1]|$.

Da [0, 1] nicht abzählbar ist, folgt daraus:

 $\mathcal{P}((\Sigma_{bool})^*)$ ist nicht abzählbar.

Seite 6 von 13

Satz 5.5

 $L_{\mathrm{diag}} \notin \mathcal{L}_{\mathrm{RE}}$.

Beweis:

Wir haben

$$L_{\text{diag}} = \{ w \mid w = w_i \text{ und } M_i \text{ akzeptiert } w_i \text{ nicht für ein } i \in \mathbb{N} \setminus \{0\} \}$$

Widerspruchsbeweis:

Sei $L_{\text{diag}} \in \mathcal{L}_{\text{RE}}$. Dann existiert eine TM M, so dass $L(M) = L_{\text{diag}}$. Da diese TM eine TM in der Nummerierung aller TM ist, existiert ein $i \in \mathbb{N}$, so dass $M_i = M$.

Wir betrachten nun das Wort w_i für diese $i \in \mathbb{N}$. Per Definition von L_{diag} , gilt:

$$w_i \in L_{\text{diag}} \iff w_i \notin L(M_i)$$

Da aber $L(M_i) = L_{\text{diag}}$, haben wir folgenden Widerspruch:

$$w_i \in L_{\text{diag}} \iff w_i \notin L_{\text{diag}}$$

Folglich gilt $L_{\text{diag}} \notin \mathcal{L}_{\text{RE}}$.

Lemma 5.4

Sei Σ ein Alphabet. Für jede Sprache $L\subseteq \Sigma^*$ gilt:

$$L \leq_{\mathbf{R}} L^{\complement} \text{ und } L^{\complement} \leq_{\mathbf{R}} L$$

Beweis: Es reicht $L^{\complement} \leq_{\mathbf{R}} L$ zu zeigen, da $(L^{\complement})^{\complement} = L$ und somit dann $(L^{\complement})^{\complement} = L \leq_{\mathbf{R}} L^{\complement}$.

Sei M' ein Algorithmus für L, der immer hält $(L \in \mathcal{L}_R)$. Dann beschreiben wir einen Algorithmus B, der L^{\complement} entscheidet.

B übernimmt die Eingaben und gibt sie an M' weiter und invertiert dann die Entscheidung von M'. Weil M' immer hält, hält auch B immer und wir haben offensichtlich L(B) = L.

Korollar 5.2 (bzw. Anwendung von Lemma 5.4)

$$(L_{\mathrm{diag}})^{\complement} \notin \mathcal{L}_{\mathrm{R}}.$$

Seite 7 von 13

Beweis:

Aus Lemma 5.4 haben wir $L_{\text{diag}} \leq_{\mathbf{R}} (L_{\text{diag}})^{\complement}$. Daraus folgt $L_{\text{diag}} \notin \mathcal{L}_{\mathbf{R}} \implies (L_{\text{diag}})^{\complement} \notin \mathcal{L}_{\mathbf{R}}$. Da $L_{\text{diag}} \notin \mathcal{L}_{\mathbf{RE}}$ gilt auch $L_{\text{diag}} \notin \mathcal{L}_{\mathbf{R}}$.

Folglich gilt $(L_{\text{diag}})^{\complement} \notin \mathcal{L}_{\mathbf{R}}$.

Lemma 5.8

 $L_{\mathrm{H},\lambda} \notin \mathcal{L}_{\mathrm{R}}$.

Beweis:

Wir zeigen $L_{\rm H} \leq_{\rm EE} L_{\rm H,\lambda}$. Wir beschreiben einen Algorithmus B, so dass $x \in L_{\rm H} \iff B(x) \in L_{\rm H,\lambda}$. Für jede Eingabe arbeitet B wie folgt:

- Falls x von der falschen Form, dann $B(x) = M_{inf}$, wobei M_{inf} unabhängig von der Eingabe immer unendlich läuft.
- Sonst x = Kod(M) # w: Dann B(x) = M', wobei M' die Eingabe ignoriert und immer M auf w simuliert.

Wir sehen, dass M' genau dann auf λ hält, wenn $x \in L_{\mathrm{H}}$.

Daraus folgt $x \in L_{\mathrm{H}} \iff B(x) \in L_{\mathrm{H},\lambda}$.

Kapitel 6

Lemma 6.1

Sei k eine positive ganze Zahl. Für jede k-Band Turingmaschine A, die immer hält, existiert eine äquivalente 1-Band-TM B, so dass

$$\operatorname{Space}_B(n) \leq \operatorname{Space}_A(n)$$

Beweisskizze:

Gleiche Konstruktion wie in Lemma 4.2. Wir können leicht sehen, dass B genau so viele Felder braucht, wie A.

Seite 8 von 13

Lemma 6.2

Zu jeder MTM A existiert eine äquivalente MTM B mit

$$\operatorname{Space}_B(n) \le \frac{\operatorname{Space}_A(n)}{2} + 2$$

Beweisskizze:

Wir fassen jeweils 2 Felder von A zu einem Feld in B zusammen. $\Gamma_B = \Gamma_A \times \Gamma_A$. Wir addieren 1 für das φ am linken Rand und 1 für das Aufrunden im Fall von ungerader Länge.

Lemma 6.3

 $TIME(t) \subseteq SPACE(t)$

Beweisskizze: In t Schritten sind höchstens t Felder beschreibbar.

Lemma 6.4

Sei S platzkonstruierbar. Für jede MTM M, für welche $\operatorname{Space}_{M}(w) \leq s(|w|)$ nur für alle $w \in L(M)$ erfüllt, existiert eine äquivalente MTM M', welche dies für alle $w \in \Sigma^*$ erfüllt.

Beweisskizze: Erzeuge für jede Eingabe $x \in \Sigma^*$ zuerst $0^{s(|x|)}$ auf einem zusätzlichen Band und nutze das als Platzüberwachung. Wenn M' diesen Platz überschreiten will, wird die Simulation unterbrochen und die Eingabe verworfen.

Lemma 6.5

Sei t zeitkonstruierbar. Zu jeder MTM, welche $\mathrm{Time}_M(w) \leq t(|w|)$ nur für alle $w \in L(M)$ erfüllt, existiert eine äquivalente MTM M', welche zumindest $\mathrm{Time}_M(w) \leq 2t(|w|) \in \mathcal{O}(t(|w|))$ für alle $w \in \Sigma^*$ erfüllt.

Beweisskizze: Schreibe für jede Eingabe $x \in \Sigma^*$ $0^{t(|x|)}$ auf ein zusätzliches Arbeitsband und nutze dies zur Zeitzählung. Wenn M' mehr Schritte machen will, wird die Simulation abgebrochen und die Eingabe verworfen.

Satz 6.2

Für jede Funktion s mit $s(n) \ge \log_2(n)$ gilt:

$$\mathbf{SPACE}(s(n)) \subseteq \bigcup_{c \in \mathbb{N}} \mathbf{TIME}(c^{s(n)})$$

Beweis:

Seite 9 von 13

Sei $L \in \mathbf{SPACE}(s(n))$. Nach Lemma 6.1 existiert eine 1-Band-TM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, die **immer hält**, so dass L = L(M) und $\mathrm{Space}_M(n) \leq d \cdot s(n)$ für $d \in \mathbb{N}$ gelten. Für jede Konfiguration C = (q, w, i, x, j) von M definieren wir die **innere Konfiguration von** C als

$$In(C) = (q, i, x, j).$$

Die innere Konfiguration enthält das Eingabewort w nicht, da dies sich während einer Berechnung nicht ändert.

Wir betrachten die Menge aller inneren Konfigurationen , dass bei einer **deterministischen** TM jede Berechnung $D = C_1, C_2, C_3, ...$ von M auf einem Wort w mit |w| = n, die länger als

1 EE-Reduktionen und R-Reduktionen – Komplexitätsbeweise

Mit Inspiration von der Zsf. von Fabian Frei

Generelle Bemerkungen:

- L rekursiv (entscheidbar) $\iff L \in \mathcal{L}_{R}$
- L rekursiv aufzählbar $\iff L \in \mathcal{L}_{RE}$
- "Algorithmus" ist ein anderes Wort für eine Turingmaschine, die **immer** terminiert.

1.1 $L \in \mathcal{L}_{\mathbf{R}}$

Wir kennen zwei Methoden um dies zu beweisen:

- Wir finden eine Sprache $L' \in \mathcal{L}_R$ und zeigen $L \leq_R L'$. (Meistens ein wenig umständlich)
- Direkter Beweis: Eine TM (bzw. ein Algorithmus) A beschreiben, so dass L(A) = L und A immer terminiert.

1.2 $L \notin \mathcal{L}_{\mathbf{R}}$

Wir kennen hier auch 3 Arten:

- Folgt sofort aus $L \notin \mathcal{L}_{RE}$, da $\mathcal{L}_{R} \subset \mathcal{L}_{RE}$.
- Wir wählen eine Sprache L', so dass $L' \notin \mathcal{L}_R$ und beweisen $L' \leq_{R/EE} L$. Geeignete Sprachen als L' sind: $L_{empty}^{\complement}, L_{diag}^{\complement}, L_H, L_U, L_{H,\lambda}$. (Alle im Buch bewiesen)
- Satz von Rice

Seite 10 von 13

Für den Satz von Rice:

- Wir können mit diesem Satz nur $L \notin \mathcal{L}_{\mathbf{R}}$ beweisen!
- Wir haben folgende Bedingungen:
 - 1. $L \subseteq \text{KodTM}$
 - 2. $\exists \text{ TM } M \colon \text{Kod}(M) \in L$
 - 3. $\exists \text{ TM } M \colon \text{Kod}(M) \notin L$
 - 4. $\forall \text{ TM } M_1, M_2: L(M_1) = L(M_2) \implies (\text{Kod}(M_1) \in L \iff \text{Kod}(M_2) \in L)$

Für den letzten Punkt (4) muss man überprüfen, ob in der Definition von $L = \{ \text{Kod}(M) \mid M \text{ ist TM und } ... \}$ überall nur L(M) vorkommt und nirgends M direkt. Beziehungsweise reicht es, wenn man die Bedingung so umschreiben kann, dass sie nur noch durch L(M) beschrieben ist.

1.3 $L \in \mathcal{L}_{RE}$

Wir beschreiben eine TM M mit L(M) = L, die nicht immer halten muss.

Meistens muss die TM eine Eigenschaft, für alle möglichen Wörter prüfen. (Bsp: $Kod(M_1) \in L_H^{\complement}$: Wir gehen alle Wörter durch, um dasjenige zu finden, für das M_1 hält.)

Wir verwenden oft einen von den folgenden 2 Tricks, um dies zu tun:

- Da es für jede NTM M', eine TM M gibt, so dass L(M') = L(M), können wir eine solche definieren, für die L(M') = L gilt.
- Die andere Variante, ist die parallele Simulation von Wörtern, bei dem man das Diagonalisierungsverfahren aus dem Buch verwendet. (Bsp: Beweis $L_{\text{empty}} \in \mathcal{L}_{\text{RE}}$, S. 156 Buch)

1.4 $L \notin \mathcal{L}_{RE}$

Hier haben wir 2 mögliche (offizielle) Methoden:

- Diagonalisierungsargument mit Widerspruch, wie beim Beweis von $L_{\text{diag}} \notin \mathcal{L}_{\text{RE}}$.
- Widerspruchsbeweis mit der Aussage $L \in \mathcal{L}_{RE} \wedge L^{\complement} \in \mathcal{L}_{RE} \implies L \in \mathcal{L}_{R}$.

Inoffiziell könnten wir auch die EE-Reduktion verwenden, wird aber weder in der Vorlesung noch im Buch erwähnt.

1.5 EE- und R-Reduktionen: Tipps und Tricks

- Die vorgeschaltete TM A muss immer terminieren! I.e. sie muss ein Algorithmus sein.
- Die Eingabe sollte immer zuerst auf die Richtige Form überprüft werden!
 Auch im Korrektsheitsbeweis, sollte dieser Fall als erstes abgehandelt werden.
- Für Korrektheit müssen wir immer $x \in L_1 \iff A(x) \in L_2$ beweisen.
- Wir verwenden meistens folgende 2 Tricks:
 - 1. Transitionen nach q_{accept} oder q_{reject} umleiten nach q_{reject}/q_{accept} oder einer **Endlosschleife**.
 - 2. TM M' konstruieren, die ihre Eingabe ignoriert und immer dasselbe tut (z.B. eine TM dessen Kodierung gegeben ist, auf ein fixes Wort simuliern).
- Die Kodierung einer TM generieren, dessen Sprache gewisse Eigenschaften hat(z.B. sie akzeptiert alle Eingaben, läuft immer unendlich etc.)

2 Polynomialzeitreduktionen

Typische Aufgabe: L ist NP-Vollständig. Dann müssen wir (i) L in NP und (ii) L ist NP-schwer zeigen.

- (i) Wir beschreiben eine NTM M, so dass L(M) = L. M errät (nichtdeterministisch) ein Zertifikat und verfiziert dies (deterministisch) in Polynomialzeit. M akzeptiert, wenn die Verfikation erfolgreich ist. M akzeptiert $\iff M$ hat eine akzeptierende Berechnung
- (ii) Wir nehmen eine Sprache L' die NP-Schwer ist und zeigen $L' \leq_p L$.

Beweisidee:

Wir zeigen eine Reduktion indem wir einen Polynomialzeit Algorithmus A beschreiben, so dass $x \in L \iff A(x) \in L'$. Wir müssen also folgende 2 Punkte für A beweisen:

- $-x \in L \iff A(x) \in L'$ (meist recht komplex, beide Richtungen einzeln beweisen)
- A läuft in Polynomialzeit (meist trivial, es reicht eine High-Level Begründung zu geben)
- Wir könnten es auch direkt beweisen(wie Beweis vom Satz von Cook). Dies ist aber meist zu komplex.

3 Grammatiken

Beispiel 10.6

Sei $L = \{a^n b^n c^n \mid n \in \mathbb{N}\}$

Beweis durch Widerspruch:

Sei L kontextfrei. Dann gilt das Pumping Lemma für kontextfreie Sprachen.

Sei n_L die Konstante aus dem Pumping Lemma.

Dann wählen wir $z=a^{n_L}b^{n_L}c^{n_L}, |z|\geq n_L, z\in L.$

Dann gilt für jede Partition z = uvwxy mit (i) $|vx| \ge 1$ und (ii) $|vwx| \le n_L$, auch (iii) $\{uv^iwx^iy \mid i \in \mathbb{N}\}.$