Stereo vision

Dröppelmann, Hueting, Latour, Van der Veen

Stereo Vision using the OpenCV library

Sebastian Dröppelmann Moos Hueting Sander Latour Martijn van der Veen

University of Amsterdam

June 2010

Preface

Problems

Approach

. .

Goal

Stereo vision

Dröppelmann, Hueting, Latour, Van der Veen

Preface

Problems

Approach

Approaci

Planning

Goal

Generating a disparity depth map of the environment using stereo vision.

Why it is interesting

Stereo vision

Dröppelmann. Hueting. Latour. Van der Veen

Preface

Problems

Approach

Planning

A depthmap can be used for various purposes:

- 3D modeling of 2D images
- Tracking of objects
- Recognising front objects
- As information about the environment in path planning

Theoretical problems

Stereo vision

Dröppelmann, Hueting, Latour, Van der Veen

Preface

Problems

Approach

Planning

Stereo vision in a real life environment can be split up in several subproblems:

- Camera calibration problems
- Generating epipolar line
- Matching points in both images
- Occlusion

Approach

Stereo vision

Dröppelmann, Hueting, Latour, Van der Veen

Preface

Problems

Approach

- Camera calibration
- Epipolar geometry
- Dense stereo algorithms
 - Graph Cut
 - Belief Propagation
 - Region Based
- Using the OpenCV library

Separate goals

Stereo vision

Dröppelmann, Hueting, Latour, Van der Veen

Preface

Problems

Approach

Planning

The goal can be seperated into two independent subgoals:

- Calibration and rectification Starting with two cameras and building a rectified image
- Dense stereo Starting with a rectified image and building a dense disparity map
 Can use an external dataset

Practical problems

Stereo vision

Dröppelmann, Hueting, Latour, Van der Veen

Preface

Problems

Approach

- Getting webcams to work
- Learning OpenCV
- Selecting and understanding the right dense stereo algorithm

Tasks

Stereo vision

Dröppelmann, Hueting, Latour, Van der Veen

Preface

Problems

Approach

- Martijn and Moos
 - Camera calibration
 - Epipolar geometry
- Sander and Sebastian
 - Finding corresponding points
 - Generating depth map

Planning

Stereo vision

Dröppelmann, Hueting, Latour, Van der Veen

Preface

Problem

Approach

Planning

Week 1

- Reading literature
- Getting webcams to work
- Choosing dense algorithm
- Week 2 and 3
 - Implementing
 - Camera calibration
 - Rectification of images using epipolar geometry
 - Dense disparity map algorithm
 - Halfway report
- Week 4
 - Optimizing and testing
 - If there's enough time left
 - Generate 3D image of environment
 - Remove background using dense disparity map

