Simulación Multiagente de Movilidad Urbana

Joaquín Badillo Granillo

A01026364@TEC.MX

Escuela de Ingeniería y Ciencias Tecnológico de Monterrey Campus Santa Fe

Pablo Bolio Pradilla

A01782428@TEC.MX

Escuela de Ingeniería y Ciencias Tecnológico de Monterrey Campus Santa Fe

Resumen

Palabras Clave: Simulación, Multiagentes, Agentes Reactivos, Movilidad

1. Introducción

El rápido crecimiento urbano ha dado como resultado altas densidades poblacionales. En zonas centralizadas como la Ciudad de México, aunque la cercanía de los servicios es muy alta, la cantidad de vehículos que se trasladan por las calles ha hecho que el tiempo para llegar a dichos servicios sea muy largo en comparación con su distancia.

1.1 Propuesta de Solución

En este proyecto se consideró el problema de la movilidad urbana a partir de una simulación multiagente utilizando la librería de mesa (Kazil, Masad, y Crooks, 2020). En esta simulación, los agentes toman decisiones con un cierto grado de autonomía a partir de un conjunto de reglas finitas y sencillas, como el respetar las señales de tránsito (en particular los semáforos) y la navegación a partir de las rutas más cortas para alcanzar un destino,

Es entonces de nuestro interés observar si a partir de estas sencillas reglas y limitando el entendimiento que tienen los agentes del ambiente a pequeñas vecindades, pueden emerger comportamientos egoístas que resulten en congestionamientos. Asímismo, se planteó una simulación en la que es posible modificar la afluencia de agentes, de tal forma que se puedan observar los límites que tiene el diseño de una ciudad tras un incremento en la densidad poblacional.

2. Diseño de Agentes

- 1. Esperar
- 2. Moverse
- 3. Calcular ruta
- 4. Llegar a destino

- 2.1 Objetivo
- 2.2 Capacidad Efectora (Actuadores)
- 2.3 Percepción
- 2.4 Proactividad
- 2.5 Métricas de Desempeño
- 3. Arquitectura de Subsunción

	Evento	Condiciones	Acción
4	Nada	Nada	Calcular ruta
3	Seguir ruta	Celda disponible (es su	Llegar a destino
		destino)	
2	Seguir ruta	Celda disponible	Moverse siguiendo ruta
1	Seguir ruta	Celda ocupada por otro	Calcular ruta
		coche	(actualizando costos para
			las celdas vecinas)
0	Seguir ruta	En un cruce con semáforo	Esperar
		en estado rojo	

Tabla 1: Arquitectura de subsunción para los coches

- 4. Características del Ambiente
- 5. Conclusiones

MOVILIDAD URBANA

Referencias

Kazil, J., Masad, D., y Crooks, A. (2020). Utilizing python for agent-based modeling: The mesa framework. En R. Thomson, H. Bisgin, C. Dancy, A. Hyder, y M. Hussain (Eds.), Social, cultural, and behavioral modeling (pp. 308–317). Cham: Springer International Publishing.