Εισαγωγή στη Λεκτική Ανάλυση

Outline

- Informal sketch of lexical analysis
 - Identifies tokens in input string
- · Issues in lexical analysis
 - Lookahead
 - Ambiguities
- Specifying lexical analyzers (lexers)
 - Regular expressions
 - Examples of regular expressions

Lexical Analysis

What do we want to do? Example:

```
if (i == j)
then
  z = 0;
else
  z = 1;
```

The input is just a string of characters:

```
if (i == j) \cdot n \cdot z = 0; \cdot n \cdot z = 1;
```

- Goal: Partition input string into substrings
 - where the substrings are tokens
 - and classify them according to their role

What's a Token?

- A syntactic category
 - In a natural language: noun, verb, adjective, ...
 - In a programming language:

 Identifier, Integer, Keyword, Whitespace, ...

Tokens

- Tokens correspond to sets of strings
 - these sets depend on the programming language

For example, our language could specify:

- Identifier: strings of letters or digits, starting with a letter.
- Integer: a non-empty string of digits.
- Keyword: "else" or "if" or "begin" or ...
- Whitespace: a non-empty sequence of blanks, newlines, and tabs.

What are Tokens Used for?

- Classify program substrings according to role
- Output of lexical analysis is a stream of tokens...

- ... which is input to the parser
- Parser relies on token distinctions
 - An identifier is treated differently than a keyword

Designing a Lexical Analyzer: Step 1

- Define a finite set of tokens
 - Tokens describe all items of interest
 - Choice of tokens depends on language, design of parser
- For our running example:

```
if (i == j) \cdot n \cdot z = 0; \cdot n \cdot z = 1;
```

· Useful tokens are:

```
Integer, Keyword, Relation, Identifier, Whitespace,
     (, ), =,;
```

Designing a Lexical Analyzer: Step 2

- Describe which strings belong to each token
- · Recall our language's specification:
 - Identifier: strings of letters or digits, starting with a letter.
 - Integer: a non-empty string of digits.
 - Keyword: "else" or "if" or "begin" or ...
 - Whitespace: a non-empty sequence of blanks, newlines, and tabs.

Lexical Analyzer: Implementation

An implementation must do two things:

- 1. Recognize substrings corresponding to tokens
- 2. Return the value or lexeme of the token
 - The lexeme is the substring

Example

For our running example:

```
if (i == j) \cdot n \cdot z = 0; \cdot n \cdot z = 1;
```

- Token-lexeme groupings:
 - Identifier: i, j, z
 - Keyword: if, then, else
 - Relation: ==
 - Integer: 0, 1
 - (,), =,; single character of the same token name

Why do Lexical Analysis?

- Simplify parsing
 - The lexer usually discards "uninteresting" tokens that don't contribute to parsing
 - · E.g. Whitespace, Comments
 - Converts data early
- · Separate out logic to read source files
 - Potentially an issue on multiple platforms
 - Can optimize reading code independently of parser

True Crimes of Lexical Analysis

Is it as easy as it sounds?

Not quite!

· Look at some programming language history . . .

Lexical Analysis in FORTRAN

· FORTRAN rule: Whitespace is insignificant

• E.g., VAR1 is the same as VA R1

FORTRAN whitespace rule was motivated by inaccuracy of punch card operators

A terrible design! Example

· Consider

```
-DO 5 I = 1,25
-DO 5 I = 1.25
```

- The first is DO 5 I = 1, 25 (iteration)
- The second is DO51 = 1.25 (assignment)
- Reading left-to-right, the lexical analyzer cannot tell if DO51 is a variable or a DO statement until after "," is reached

Lexical Analysis in FORTRAN. Lookahead.

Two important points:

- 1. The goal is to partition the string
 - This is implemented by reading left-to-right, recognizing one token at a time
- 2. "Lookahead" may be required to decide where one token ends and the next token begins
 - Even our simple example has lookahead issues

```
i vs. if = vs. ==
```

Another Great Moment in Scanning History

PL/1: Keywords can be used as identifiers:

```
IF THEN THEN THEN = ELSE; ELSE ELSE = IF
```

can be difficult to determine how to label lexemes

More Modern True Crimes in Scanning

Nested template declarations in C++

```
vector<vector<int>> myVector

vector < vector < int >> myVector

(vector < (vector < (int >> myVector)))
```

Review

- The goal of lexical analysis is to
 - Partition the input string into *lexemes* (the smallest program units that are individually meaningful)
 - Identify the token of each lexeme
- Left-to-right scan ⇒ lookahead sometimes required
- · We still need
 - A way to describe the lexemes of each token
 - A way to resolve ambiguities
 - Is if two variables i and f?
 - Is == two equal signs = =?

Regular Languages

 There are several formalisms for specifying tokens

- · Regular languages are the most popular
 - Simple and useful theory
 - Easy to understand
 - Efficient implementations

Languages

Def. Let Σ be a set of characters. A language Λ over Σ is a set of strings of characters drawn from Σ (Σ is called the alphabet of Λ)

Examples of Languages

- Alphabet = set of English characters
- Language = set of English sentences
- Not every string of English characters is an English word

- Alphabet = set of ASCII characters
- Language = set of C programs
- Not every string of ASCII characters is a valid C token

Notation

- Languages are sets of strings
- Need some notation for specifying which sets of strings we want our language to contain
- The standard notation for regular languages is regular expressions

Atomic Regular Expressions

Single character

$$c' = \{ c'' \}$$

Epsilon

$$\mathcal{E} = \{""\}$$

Compound Regular Expressions

Union

$$A + B = \{ s \mid s \in A \text{ or } s \in B \}$$

Concatenation

$$AB = \{ab \mid a \in A \text{ and } b \in B\}$$

Iteration

$$A^* = \bigcup_{i \ge 0} A^i$$
 where $A^i = A...i$ times ...A

Regular Expressions

Def. The regular expressions over Σ are the smallest set of expressions including

```
\mathcal{E}
'c' where c \in \Sigma
A + B where A, B are rexp over \Sigma
AB " " " "
A^* where A is a rexp over \Sigma
```

Syntax vs. Semantics

 To be careful, we should distinguish syntax and semantics (meaning) of regular expressions

$$L(\varepsilon) = \{""\}$$

$$L('c') = \{"c"\}$$

$$L(A+B) = L(A) \cup L(B)$$

$$L(AB) = \{ab \mid a \in L(A) \text{ and } b \in L(B)\}$$

$$L(A^*) = \bigcup_{i \ge 0} L(A^i)$$

Example: Keyword

Keyword: "else" or "if" or "begin" or ...

Note: 'else' abbreviates 'e''l''s"e'

Example: Integers

Integer: a non-empty string of digits

```
digit = '0'+'1'+'2'+'3'+'4'+'5'+'6'+'7'+'8'+'9'
integer = digit digit*
```

Abbreviation: $A^+ = AA^*$

Example: Identifier

Identifier: strings of letters or digits, starting with a letter

```
letter = 'A' + ... + 'Z' + 'a' + ... + 'z'
identifier = letter (letter + digit)^*
```

Is (letter* + digit*) the same?

Example: Whitespace

Whitespace: a non-empty sequence of blanks, newlines, and tabs

$$\left('' + \n' + \t' \right)^+$$

Example 1: Phone Numbers

- · Regular expressions are all around you!
- Consider +30 210-772-2487

```
∑ = digits ∪ {+,−}
country = digit digit
city = digit digit digit
univ = digit digit digit
extension = digit digit digit digit
phone_num = '+'country' 'city'-'univ'-'extension
```

Example 2: Email Addresses

Consider kostis@cs.ntua.gr

```
\sum = letters \cup \{., @\}
name = letter^+
address = name '@' name '.' name '.' name
```

Summary

- Regular expressions describe many useful languages
- · Regular languages are a language specification
 - We still need an implementation
- Next: Given a string s and a regular expression R, is

$$s \in L(R)$$
?

- A yes/no answer is not enough!
- · Instead: partition the input into tokens
- · We will adapt regular expressions to this goal

Υλοποίηση της Λεκτικής Ανάλυσης

Outline

- Specifying lexical structure using regular expressions
- Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)
- Implementation of regular expressions $RegExp \Rightarrow NFA \Rightarrow DFA \Rightarrow Tables$

Notation

 For convenience, we will use a variation (we will allow user-defined abbreviations) in regular expression notation

```
• Union: A + B \equiv A \mid B
```

- Option: $A + \varepsilon \equiv A$?
- Range: $a'+b'+...+z' \equiv [a-z]$
- Excluded range:

complement of
$$[a-z] \equiv [^a-z]$$

Regular Expressions \Rightarrow Lexical Specifications

- 1. Select a set of tokens
 - Integer, Keyword, Identifier, LeftPar, ...
- 2. Write a regular expression (pattern) for the lexemes of each token
 - Integer = digit+
 - Keyword = 'if' + 'else' + ...
 - Identifier = letter (letter + digit)*
 - LeftPar = '('
 - •

Regular Expressions \Rightarrow Lexical Specifications

3. Construct R, a regular expression matching all lexemes for all tokens

$$R = Integer + Keyword + Identifier + ...$$

= $R_1 + R_2 + R_3 + ...$

Facts: If $s \in L(R)$ then s is a lexeme

- Furthermore $s \in L(R_j)$ for some "j"
- This "j" determines the token that is reported

Regular Expressions \Rightarrow Lexical Specifications

- 4. Let input be $x_1...x_n$
 - $(x_1 ... x_n \text{ are characters in the language alphabet})$
 - For $1 \le i \le n$ check $x_1...x_i \in L(R)$?
- 5. It must be that $x_1...x_i \in L(R_j)$ for some i and j (if there is a choice, pick the smallest such j)
- 6. Report token j, remove $x_1...x_i$ from input and go to step 4

How to Handle Spaces and Comments?

1. We could create a token Whitespace

```
Whitespace = (' ' + '\n' + '\t')+
```

- We could also add comments in there
- An input " \t\n 555 " is transformed into
 Whitespace Integer Whitespace
- 2. Lexical analyzer skips spaces (not always!)
 - Modify step 5 from before as follows: It must be that $x_k ... x_i \in L(R_j)$ for some j such that $x_1 ... x_{k-1} \in L(Whitespace)$
 - Parser is not bothered with spaces

Ambiguities (1)

- There are ambiguities in the algorithm.
- How much input is used?
- What if

```
x_1...x_i \in L(R) and also x_1...x_K \in L(R)
```

 The "maximal munch" rule: Pick the longest possible substring that matches R

Ambiguities (2)

- Which token is used?
- What if

```
x_1...x_i \in L(R_i) and also x_1...x_i \in L(R_k)
```

- Rule: use rule listed first (j if j < k)
- · Example:
 - R_2 = Keyword and R_3 = Identifier
 - "if" matches both
 - Treats "if" as a keyword not an identifier

Error Handling

- What if
 No rule matches a prefix of input?
- Problem: Can't just get stuck ...
- · Solution:
 - Write a rule matching all "bad" strings
 - Put it last
- · Lexical analysis tools allow the writing of:

$$R = R_1 + ... + R_n + Error$$

- Token Error matches if nothing else matches

Summary

- Regular expressions provide a concise notation for string patterns
- · Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
- Good algorithms known (next)
 - Require only single pass over the input
 - Few operations per character (table lookup)

Regular Languages & Finite Automata

Basic formal language theory result:

Regular expressions and finite automata both define the class of regular languages.

Thus, we are going to use:

- Regular expressions for specification
- Finite automata for implementation (automatic generation of lexical analyzers)

Finite Automata

A finite automaton is a *recognizer* for the strings of a regular language

A finite automaton consists of

- A finite input alphabet Σ
- A set of states S
- A start state n
- A set of accepting states $F \subseteq S$
- A set of transitions state → input state

Finite Automata

Transition

$$s_1 \rightarrow^a s_2$$

Is read

In state s_1 on input "a" go to state s_2

- If end of input
 - If in accepting state ⇒ accept
- Otherwise
 - If no transition is possible ⇒ reject

Finite Automata State Graphs

· A state

The start state

An accepting state

· A transition

A Simple Example

· A finite automaton that accepts only "1"

 A finite automaton accepts a string if we can follow transitions labeled with the characters in the string from the start to some accepting state

Another Simple Example

- A finite automaton accepting any number of 1's followed by a single 0
- Alphabet: {0,1}

And Another Example

- Alphabet {0,1}
- · What language does this recognize?

And Another Example

Alphabet still { 0, 1 }

- The operation of the automaton is not completely defined by the input
 - On input "11" the automaton could be in either state

Epsilon Moves

Another kind of transition: ε-moves

Machine can move from state A to state B without reading input

Deterministic and Non-Deterministic Automata

- · Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No ε-moves
- · Non-deterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves
- Finite automata have finite memory
 - Enough to only encode the current state

Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input
- NFAs can choose
 - Whether to make ε -moves
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

An NFA can get into multiple states

- Input: 1 0 1
- Rule: NFA accepts an input if it <u>can</u> get in a final state

NFA vs. DFA (1)

 NFAs and DFAs recognize the same set of languages (regular languages)

- · DFAs are easier to implement
 - There are no choices to consider

NFA vs. DFA (2)

 For a given language the NFA can be simpler than the DFA

 DFA can be exponentially larger than NFA (contrary to what is shown in the above example)

Regular Expressions to Finite Automata

· High-level sketch

Regular Expressions to NFA (1)

- · For each kind of reg. expr, define an NFA
 - Notation: NFA for regular expression M

i.e. our automata have one start and one accepting state

• For ε

For input a

Regular Expressions to NFA (2)

For AB

• For A + B

Regular Expressions to NFA (3)

• For A*

Example of Regular Expression -> NFA conversion

- Consider the regular expression (1+0)*1
- · The NFA is

NFA to DFA. The Trick

- Simulate the NFA
- Each state of DFA
 - = a non-empty subset of states of the NFA
- Start state
 - = the set of NFA states reachable through ϵ -moves from NFA start state
- Add a transition $S \rightarrow \alpha S'$ to DFA iff
 - S' is the set of NFA states reachable from <u>any</u> state in S after seeing the input a
 - considering ε-moves as well

NFA to DFA. Remark

- · An NFA may be in many states at any time
- · How many different states?
- If there are N states, the NFA must be in some subset of those N states
- How many subsets are there?
 - $2^N 1 = finitely many$

NFA to DFA Example

Implementation

- A DFA can be implemented by a 2D table T
 - One dimension is "states"
 - Other dimension is "input symbols"
 - For every transition $S_i \rightarrow^a S_k$ define T[i,a] = k
- DFA "execution"
 - If in state S_i and input a, read T[i,a] = k and skip to state S_k
 - Very efficient

Table Implementation of a DFA

	0	1
5	۲	C
Τ	۲	C
J	٢	J

Implementation (Cont.)

- NFA → DFA conversion is at the heart of tools such as lex, ML-Lex, flex or jlex
- · But, DFAs can be huge
- In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations

Theory vs. Practice

Two differences:

- DFAs recognize lexemes. A lexer must return a type of acceptance (token type) rather than simply an accept/reject indication.
- DFAs consume the complete string and accept or reject it. A lexer must find the end of the lexeme in the input stream and then find the next one, etc.