Curso: Inteligencia Artificial

Unidad 2: Aprendizaje automático

Sesión 11: Aprendizaje de reglas

Docente: Carlos R. P. Tovar

INICIO ¿Tienen dudas o consultas sobre la clase previa?

Objetivo de la sesión

Al finalizar la sesión, el alumno será capaz de:

- Comprender los fundamentos del aprendizaje de reglas.
- Implementar algoritmos básicos de aprendizaje de reglas.
- Evaluar la calidad de conjuntos de reglas aprendidas.
- Aplicar estas técnicas en problemas de clasificación.

UTILIDAD ¿Por qué es importante el Aprendizaje de reglas?

Ventajas

- Interpretabilidad.
- Flexibilidad.
- Sin necesidad de escalado.
- Base para modelos ensemble.

Casos de uso

- Diagnóstico médico.
- Scoring crediticio.
- Segmentación de clientes.
- Auditoría de procesos.

TRANSFORMACIÓN Introducción al Aprendizaje de Reglas

El aprendizaje de reglas es una técnica de machine learning que extrae reglas lógicas de los datos. Estas reglas siguen la estructura: **SI** (condición) **ENTONCES** (conclusión).

Ejemplo:

SI "Llueve" Y "Hace frío" ENTONCES "Llevar paraguas".

Ventajas:

- Interpretación fácil para humanos.
- Ideal para sistemas expertos y diagnósticos.

Aplicaciones en el Mundo Real

- Medicina: Diagnóstico de enfermedades
- Finanzas: Detección de fraudes
- Marketing: Segmentación de clientes
- Manufactura: Control de calidad

Algoritmos Principales

- CN2: Genera reglas iterativamente cubriendo ejemplos.
- RIPPER: Optimizado para datasets grandes y ruidosos.
- OneR: Basado en un solo atributo (sencillo pero limitado).
- PART: Combina árboles de decisión y reglas.

Prolog para Aprendizaje de Reglas – Ventajas:

- Lenguaje nativo para reglas: Sintaxis diseñada específicamente para lógica de reglas
- Inferencia automática: Motor de inferencia incorporado
- Transparencia: Las reglas son explícitas y fácilmente interpretables
- Unificación: Potente para manejar relaciones complejas

Prolog para Aprendizaje de Reglas – Implementación típica:

```
% Sistema de reglas médico en
                                  enfermedad(neumonia):-
Prolog
                                    sintoma(fiebre_alta),
sintoma(fiebre_alta).
                                    sintoma(dificultad_respirar).
sintoma(tos_persistente).
sintoma(dificultad_respirar).
                                  % Consulta
                                  ?- enfermedad(X).
enfermedad(gripe):-
 sintoma(fiebre_alta),
  sintoma(tos_persistente).
```


Python para Aprendizaje de Reglas - Ventajas

- Ecosistema completo: Bibliotecas como scikit-learn, PyKEEN, Orange
- Integración con ML: Fácil transición a otros algoritmos de aprendizaje automático
- Comunidad amplia: Más recursos, tutoriales y soporte
- Preprocesamiento: Herramientas robustas para limpieza y preparación de datos

Métricas de Evaluación

- Precisión: Proporción de aciertos
- Cobertura: Proporción de instancias cubiertas
- Confianza: Fiabilidad de la regla

Fórmula:

$$Confianza = \frac{Instancias correctas}{Instancias cubiertas}$$

Implementación en Python

```
from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split from sklearn.rules import RuleFitClassifier
```

```
# Cargar datos
data = load_wine()
X, y = data.data, data.target
```

```
# Dividir datos
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Entrenar modelo
model = RuleFitClassifier()
model.fit(X_train, y_train)
# Evaluar
print("Precisión:", model.score(X_test,
```

y_test))

Algoritmo OneR (One Rule)

• Concepto: Crea reglas basadas en un solo atributo.

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score

```
# Cargar datos
iris = load_iris()
X, y = iris.data, iris.target
```

```
# Entrenar modelo

model =
DecisionTreeClassifier(max_depth
=1) # Solo una regla

model.fit(X, y)
```


Algoritmo RIPPER

Ventajas:

- Maneja datasets grandes
- Resistente a ruido
- Reglas interpretables

Proceso:

- 1. Crear reglas iniciales
- 2. Podar reglas (eliminar condiciones)
- 3. Optimizar conjunto de reglas

Algoritmo CN2:

Ventajas

- Manejo de Ruido y Datos Incompletos
- Flexibilidad en la Búsqueda
- Reglas Comprehensibles
- Eficiencia Computacional
- Evaluación Estadística

Proceso

- Fase 1: Inicialización
- Fase 2: Búsqueda de Reglas (Beam Search)
- Fase 3: Generación de Especializaciones
- Fase 4: Evaluación de Reglas

CN2 Implementación en Python

Bibliotecas:

- Scikit-learn: DecisionTree (max_depth=1)
 - MLxtend: Apriori algorithm
 - Orange3: Rule induction

import Orange

data =

Orange.data.Table('deportes')

learn =

Orange.classification.rules.CN2

Learner()

clasificador = learn(data)

PART - Algoritmo Híbrido de Reglas

¿Qué es PART?

PART (*Partial Decision Trees*) es un algoritmo híbrido que combina:

- La estructura de los árboles de decisión (como C4.5).
- La estrategia de aprendizaje de reglas (como RIPPER).

Objetivo principal:

Generar reglas interpretables manteniendo la precisión de un árbol.

Cómo funciona:

- Construye un árbol de decisión parcial (no completo).
- Convierte la rama más "pura" del árbol en una regla.
- Elimina los ejemplos cubiertos por esa regla.
- Repite el proceso con los datos restantes.

PART - Algoritmo Híbrido de Reglas

import weka.core.jvm as jvm from weka.core.converters import Loader from weka.classifiers import Classifier, Evaluation

from weka.core.classes import Random

Iniciar la JVM de Java
jvm.start()

Cargar dataset
loader =
Loader(classname="weka.core.converter
s.ArffLoader")
data = loader.load_file("iris.arff") #
Asegúrate de tener el archivo iris.arff

data.class_is_last() # Indicar que la clase está en la última columna

Crear el clasificador PART

part =
Classifier(classname="weka.classifiers.r
ules.PART")

PART - Algoritmo Híbrido de Reglas

```
# Evaluar el clasificador con validación
cruzada
evaluation = Evaluation(data)
evaluation.crossvalidate_model(part, data,
10, Random(1))
print("Resultados de evaluación:")
print(f"Correctos:
{evalùation.percent_correct}")
print(f"Incorrectos:
{evaluation.percent_incorrect}")
print(f"Kappa: {evaluation.kappa}")
print(f"Matriz de
confusion:\n{evaluation.confusion matrix}")
```

```
# Entrenar el modelo en todos los datos part.build_classifier(data)

# Imprimir el modelo (las reglas) print("\nReglas generadas por PART:") print(part)

# Detener la JVM jvm.stop()
```


Comparación con Otros Algoritmos

Característica	CN2	RIPPER	OneR	PART
Tipo de algoritmo	Inductivo, basado en cobertura	Optimización de reglas	Basado en un solo atributo	Híbrido (árboles + reglas)
Manejo de datos	Numéricos y categóricos	Numéricos y categóricos	Requiere discretización	Numéricos y categóricos
Complejidad	Alta (iterativo)	Media-alta (optimizado)	Muy baja	Media
Escalabilidad	Moderada	Alta (eficiente en grandes datos)	Muy alta	Moderada-alta
Calidad de reglas	Reglas precisas pero complejas	Reglas compactas y generalizables	Reglas simples pero limitadas	Reglas balanceadas

Comparación con Otros Algoritmos

Característica	CN2	RIPPER	OneR	PART
Ruido en datos	Sensible	Robusto	Muy sensible	Moderadamente robusto
Interpretabilidad	Media (reglas pueden ser largas)	Alta (reglas concisas)	Muy alta (reglas simples)	Alta (reglas estructuradas)
Aplicaciones típicas	Diagnóstico, sistemas expertos	Clasificación general	Baseline rápido	Sistemas de recomendación
Ventajas	Reglas detalladas	Eficiencia en grandes volúmenes	Simplicidad y velocidad	Equilibrio precisión- interpretación
Desventajas	Lento en datos grandes	Complejidad de implementación	Bajo rendimiento en problemas complejos	Puede sobreajustar si no se ajusta bien

Ejercicio Práctico

Tarea:

- Cargar el dataset wine de Scikit-Learn.
- Entrenar un modelo RuleFitClassifier.
- Extraer las 3 reglas más importantes.
- · Calcular la matriz de confusión.

Entrega:

- Código completo en Python.
- Comentarios sobre el significado de las reglas generadas.

CIERRE Conclusiones

1. Importancia del Aprendizaje de Reglas

- El aprendizaje de reglas proporciona **modelos interpretables** que se asemejan al razonamiento humano
- Es fundamental en aplicaciones donde la **explicabilidad** es crucial (medicina, finanzas, derecho)
- Los sistemas basados en reglas son la base de los sistemas expertos en IA.

Conclusiones

2. Algoritmos Clave Aprendidos

- OneR: Ideal para introducción al concepto, pero limitado en expresividad
- RIPPER: Eficiente para datasets grandes, con buena resistencia al ruido
- CN2: Potente para descubrimiento de reglas complejas con evaluación estadística

Conclusiones

3. Aplicaciones Prácticas

- Diagnóstico médico y sistemas de recomendación
- Detección de fraudes y análisis de riesgo crediticio
- Sistemas de clasificación interpretables
- Automatización de procesos de decisión

Conclusiones

4. Ventajas Comparativas del uso de Reglas

- Interpretabilidad
- Similitud al razonamiento humano
- Manejo datos incompletos
- Evaluación Estadística.

Limitaciones y Consideraciones

- Sensibilidad al ruido (excepto RIPPER y CN2)
- Dificultad con atributos continuos sin discretización
- Posible sobreajuste con reglas demasiado específicas
- Computacionalmente costoso para datasets muy grandes

Recursos adicionales

1. Libros Recomendados

- "Machine Learning" de Tom Mitchell Capítulo 3: Aprendizaje de Reglas
- "Data Mining: Practical Machine Learning Tools and Techniques" de lan H.
 Witten Capítulo 4: Algoritmos de Reglas
- "An Introduction to Machine Learning" de Miroslav Kubat Capítulo 6: Rule Learning

2. Tutoriales y Guías Prácticas

- Scikit-learn: Decision Trees for Rule Extraction
- Orange Data Mining: Rule Induction
- KNIME: Rule-Based Learning Nodes

Recursos adicionales

3. Conjuntos de Datos para Practicar

- UCI Machine Learning Repository Buscar "rule learning"
- Kaggle: Medical Diagnosis Datasets
- OpenML: Rule Learning Benchmarks

Recursos adicionales

4. Herramientas y Bibliotecas

- # Bibliotecas Python para aprendizaje de reglas
- Scikit-learn: Decision Trees (para extracción de reglas)
- Skope-rules: Implementación de algoritmos de reglas
- Orange3: Plataforma visual con herramientas de rule learning
- PyKEEN: Para reglas en knowledge graphs
- # Herramientas especializadas
- WEKA: Implementación de RIPPER y otros algoritmos
- RapidMiner: Extensiones para rule learning
- LISP/Prolog: Para sistemas expertos basados en reglas

