Векторная алгебра

Опр: 1. Направленный отрезок - упорядоченная пара точек [AB].

Опр: 2. [AB] и [CD] коллинеарны (параллельны), если прямые AB и CD - параллельны или совпадают.

Опр: 3. Длиной направленного отрезка называется длина соответствующего отрезка: $|[AB]| = |AB| \ge 0$.

Отметим, что возможна следующая ситуация:

Рис. 1: Направленные отрезки $[AB] \neq [CD]$.

Следовательно, необходимо что-то для сонаправленности.

Опр: 4. Пусть [AB] и [CD] - коллинеарны, не лежат на одной прямой, тогда [AB] и [CD] - сонаправлены, если B и D лежат по одну сторону от прямой AC.

Рис. 2: Сонаправленные отрезки [EF] и [GH], и разнонаправленные отрезки [AB] и [CD].

Опр: 5. Если [AB] и [CD] коллинеарны и лежат на одной прямой, то [AB] и [CD] сонаправлены, если они сонаправлены с направленным отрезком, не лежащим на прямой AB.

Утв. 1. Определение выше задано - корректно.

 \square Пусть [AB] и [CD] сонаправлены с [EF], не лежащим на AB. Пусть [AB] и [GH] сонаправлены и [GH] не лежит на одной прямой с [AB], тогда докажем, что [CD] и [GH] сонаправлены.

AB и CD лежат на одной прямой, $EF||AB||GH \Rightarrow CD||GH$. B и F лежат по одну сторону от AE. D и F лежат по одну сторону от EC. B и H лежат по одну сторону от AG.

Без ограничения общности, поскольку три параллельные прямые можно пересечь одной линией, то передвинем отрезок [GH] вдоль прямой GH до точки пересечения с прямой AE. Поскольку и F и H будут по одну сторону с точкой B относительно прямой AE, то [GH] и [EF] будут сонаправлены. Аналогичным образом передвинем отрезок [GH] вдоль прямой GH до пересечения с прямой EC.

Рис. 3: Корректность определения сонаправленности.

Поскольку точки D и G будут находится по одну сторону от прямой EC и точки H и F также будут находится по одну сторону, то точки D и H также будут находится по одну сторону \Rightarrow [GH] и [CD] будут сонаправленны.

Опр: 6. Отрезки $[AB] \sim [CD]$, если они:

- 1) Коллинеарны;
- 2) Сонаправлены;
- 3) Одинаковой длины;

Опр: 7. Вектор - это класс эквивалентности относительно \sim .

Опр: 8. Класс эквивалентности [AA], называется нудевой вектор, если удовлетворяет ряду свойств:

- 1) [AA] коллинеарен любому направленному отрезку;
- 2) Сонаправленность не определена;
- 3) $[AA] \sim [BB], \forall A, B \in \mathbb{R}^2;$

Векторы: $\overrightarrow{a} = \overrightarrow{AB}$ - класс эквивалентности [AB], 0 - нулевой вектор.

Опр: 9. Два вектора коллинеарны, если их представители коллинеарны. Нулевой векторо коллинеарен любому вектору.

Векторы в трехмерном пространстве

В \mathbb{R}^3 направленные отрезки определяются аналогично и также обозначаются: [AB]. Коллинеарность определяется аналогично.

Опр: 10. Коллинеарные направленные отрезки [AB] и [CD] сонаправлены, если после их параллельного переноса переводящего C в A, образ D и B лежат на прямой \overline{AB} по одну сторону от A.

Rm: 1. Если вектора лежат на одной прямой, то перенесем один из них на параллельную прямую и затем применим это определение.

Опр: 11. Три вектора компланарны, если их представители параллельны одной плоскости.

Операции с векторами

Определим операции над векторами.

- 1) Умножение вектора на скаляр: $\forall \lambda \in \mathbb{R}$, и для любого вектора \overrightarrow{a} , новый вектора $\lambda \cdot \overrightarrow{a}$ это:
 - (1) Нулевой вектор 0, если $\lambda = 0$ или $\overrightarrow{a} = 0$;
 - (2) Вектор, коллинеарный \overrightarrow{a} , длины $|\lambda| \cdot |\overrightarrow{a}|$, сонаправленный с \overrightarrow{a} , если $\lambda > 0$;
 - (3) Вектор, коллинеарный \overrightarrow{a} , длины $|\lambda| \cdot |\overrightarrow{a}|$, направлен в другую сторону с \overrightarrow{a} , если $\lambda < 0$;
- 2) Сложение векторов: Пусть [AB] представитель \overrightarrow{a} , [BC] представитель \overrightarrow{b} , тогда $\overrightarrow{a} + \overrightarrow{b}$ определяется, как класс [AC];

Рис. 4: Сложение векторов.

Упр. 1. Проверить независимость от представителя (через параллелограммы).

Опр: 12. Обратным вектором $-\overrightarrow{a}$ к вектору \overrightarrow{a} называется вектор: $-\overrightarrow{a} \coloneqq (-1) \cdot \overrightarrow{a}$.

Свойства операций с векторами

1) Коммутативность сложения: $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$;

Рис. 5: Коммутативность сложения векторов.

- $2) \ \, \textbf{Ассоциативность сложения} : \ \, \overrightarrow{a'} + \left(\overrightarrow{b'} + \overrightarrow{c'}\right) = \left(\overrightarrow{a'} + \overrightarrow{b'}\right) + \overrightarrow{c'};$
- 3) Существование нейтрального элемента по сложению: $\overrightarrow{a} + \overrightarrow{0} = \overrightarrow{a}$;
- 4) Существование обратного элемента по сложению: $\overrightarrow{a} + (-1) \cdot \overrightarrow{a} = \overrightarrow{0}$;

- 5) Ассоциативность умножения: $\forall \alpha, \beta \in \mathbb{R}, (\alpha \cdot \beta) \overrightarrow{a} = \alpha \cdot (\beta \cdot \overrightarrow{a});$
- 6) Дистрибутивность относительно сложения: $\forall \alpha, \beta \in \mathbb{R}, (\alpha + \beta) \cdot \overrightarrow{a} = \alpha \cdot \overrightarrow{a} + \beta \cdot \overrightarrow{a};$
- 7) Дистрибутивность относительно умножения: $\forall \alpha \in \mathbb{R}, \ \alpha \cdot \left(\overrightarrow{a} + \overrightarrow{b}\right) = \alpha \cdot \overrightarrow{a} + \alpha \cdot \overrightarrow{b};$
- 8) Существование нейтрального элемента по умножению: $1 \cdot \overrightarrow{a} = \overrightarrow{a}$;

Линейная независимость

Пусть $\overrightarrow{a}_1, \dots, \overrightarrow{a}_k$ - векторы.

Опр: 13. Динейной комбинацией $\overrightarrow{a}_1,\dots,\overrightarrow{a}_k$ называется вектор: $\lambda_1\cdot\overrightarrow{a}_1+\dots+\lambda_k\cdot\overrightarrow{a}_k,\ \forall i=\overline{1,k},\ \lambda_i\in\mathbb{R}.$

Опр: 14. Линейная комбинация называется тривиальной, если $\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$ и нетрививальной в противном случае.

Опр: 15. Вектора $\overrightarrow{a}_1, \dots, \overrightarrow{a}_k$ называются <u>линейно зависимыми</u>, если существует хотя бы одна их нетривиальная линейная комбинация равная 0.

Опр: 16. Вектора $\overrightarrow{a}_1, \dots, \overrightarrow{a}_k$ называются <u>линейно независимыми</u>, если любая их линейная комбинация, равная нулю, является тривиальной.

Ещё это можно сформулировать по-другому:

- 1) $\overrightarrow{a}_1, \dots, \overrightarrow{a}_k$ линейно зависимы $\Leftrightarrow \exists \lambda_1, \dots, \lambda_k$ не все равные $0 \colon \lambda_1 \cdot \overrightarrow{a}_1 + \dots + \lambda_k \cdot \overrightarrow{a}_k = 0$;
- 2) $\overrightarrow{a}_1, \dots, \overrightarrow{a}_k$ линейно независимы $\Leftrightarrow \lambda_1 \cdot \overrightarrow{a}_1 + \dots + \lambda_k \cdot \overrightarrow{a}_k = 0 \Rightarrow \lambda_1 = \dots = \lambda_k = 0;$

Утв. 2. Вектора \overrightarrow{a} и \overrightarrow{b} - линейно зависимы $\Leftrightarrow \overrightarrow{a}$ и \overrightarrow{b} - коллинеарны.

 (\Rightarrow) Пусть \overrightarrow{a} и \overrightarrow{b} - линейно зависимы $\Rightarrow \lambda_1 \neq 0 \lor \lambda_2 \neq 0$: $\lambda_1 \overrightarrow{a} + \lambda_2 \overrightarrow{b} = 0$. Пусть $\lambda_1 \neq 0$, тогда:

$$\lambda_1 \neq 0, \ \lambda_1 \overrightarrow{a} + \lambda_2 \overrightarrow{b} = 0 \Rightarrow \overrightarrow{a} + \frac{\lambda_2}{\lambda_1} \overrightarrow{b} = 0 \Rightarrow \overrightarrow{a} = -\frac{\lambda_2}{\lambda_1} \overrightarrow{b}$$

то есть \overrightarrow{a} и \overrightarrow{b} - коллинеарны.

 (\Leftarrow) Пусть \overrightarrow{a} и \overrightarrow{b} - коллинеарны \Rightarrow возможно несколько ситуаций:

- $1)\ \overrightarrow{a}=\overrightarrow{b}=\overrightarrow{0}\Rightarrow 1\cdot\overrightarrow{a}+0\cdot\overrightarrow{b}=\overrightarrow{0}\Rightarrow$ линейно зависимы;
- 2) $\overrightarrow{a}=0,$ $\overrightarrow{b}\neq0\Rightarrow1\cdot\overrightarrow{a}+0\cdot\overrightarrow{b}=0\Rightarrow$ линейно зависимы;
- 3) $\overrightarrow{a} \neq 0$, $\overrightarrow{b} = 0 \Rightarrow 0 \cdot \overrightarrow{a} + 1 \cdot \overrightarrow{b} = 0 \Rightarrow$ линейно зависимы;
- 4) $\overrightarrow{a} \neq 0$, $\overrightarrow{b} \neq 0 \Rightarrow \overrightarrow{a} = \frac{|\overrightarrow{a}|}{|\overrightarrow{b}|} \overrightarrow{b}$, если сонаправленны и $\overrightarrow{a} = -\frac{|\overrightarrow{a}|}{|\overrightarrow{b}|} \overrightarrow{b}$ иначе, тогда $|\overrightarrow{b}| \cdot \overrightarrow{a} \pm |\overrightarrow{a}| \cdot \overrightarrow{b} \Rightarrow$ линейно зависимы;

Утв. 3. Вектора \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{c} - линейно зависимы $\Leftrightarrow \overrightarrow{a}$, \overrightarrow{b} и \overrightarrow{c} - компланарны.