Трекинг нескольких человек на нескольких камерах

2019

Студент: Арсений Рылов,

Ментор: Юстина Иванова

Постановка задачи

- Необходимо отследить перемещения каждого человека по магазину самообслуживания от момента входа до завершения визита. В реальном времени.
- Трекинг часть более общей задачи: сверки того, что взял человек по видео и того, что прошло по кассе.
- Дальнейшие применения отслеживание очередей, мест остановки, изучение предпочтений и индивидуальные предложения, heat map на плане

Постановка задачи

- Дано:
- Два магазина 6 и 36 широкоугольных камер. Камеры, чаще всего, перекрывают друг друга. Слепых зон нет.
- В крупном магазине более 100 визитов в день
- Одновременно в магазине не более 15 человек

Метрики

- Метрика Accuracy = TP/N 17/35=48 %
- Ee аналог Rough accuracy = 1abs(IDs_nmb-N)/N, 1-(51-35)/35=54 %

IDs-nmb – число объектов созданных трекером.

План решения:

- Детекция. Инициализация трекера
- Извлечение фичей для мэтчинга
- Сравнение детекций между соседними кадрами и обновление трекера

https://github.com/zamarseny/ homework_python/blob/master/CV/ Diploma/ YOLO_and_multi_tracking.ipynb

update tracker:

- 1) new_ids
- 2) deregister ids
- 3) update info

Проблемы

• Люди плохо детектируются на видах сверху предобучеными моделями

Проблемы

- Разброс углов установки камер в вертикальной плоскости. От 0 до 60 градусов к вертикали
- Люди очень по-разному выглядят с разных ракурсов
- Перекрывание детекций
- Влияние фона на фичи
- Отражения на стеклянных поверхностях
- Ограниченность ресурсов: две нейросети изначально не хотелось

Препроцессинг

- Синхронизация видеопотоков с камер
- Выравнивание освещенности
- Выбор оптимального разрешения для YOLO

Детекция

- YOLO3
- MobileNet
- faster_rcnn_
- Resnet50
- mask_rcnn_
- inception

Детекция

Performance on the COCO Dataset

Model	mAP	FLOPS	FPS
SSD300	41.2	-	46
SSD500	46,5	_	19
SSD321	45.4	-	16
DSSD321	46.1	Ė	12
R-FCN	51.9	-	12
SSD513	50.4	-	8
DSSD513	53.3	-	6
FPN FRCN	59.1	-	6
Retinanet-50-500	50.9	-	14
Retinanet-101-500	53.1	4.	11
Retinanet-101-800	57.5	_	5
YOLOv3-320	51.5	38.97 Bn	45
YOLOv3-416	55.3	65.86 Bn	35
YOLOv3-608	57.9	140.69 Bn	20
YOLOv3-spp	60.6	141.45 Bn	20

Фичи

- Координаты детекций
- Средний цвет по трем каналам
- Стандартные отклонения цвета
- Гистограммы цветов
- ORB

Мера близости – евклидово расстояние

Фичи

• Цвет каждой конечности

Выводы и заключения

- Для решения проблемы перекрывающихся детекций нужно обучать детектор и реидентификацию на своих данных.
- Нужно сосредоточиться на разметке данных

Следующие шаги

- Натренировать детектор на виды сверху
- Учесть близость камер, скорость человека при мэтчинге
- Применить person reidentification покадрово и к локальным трекам

Список источников

- https://www.pyimagesearch.com/2018/07/23/simple-object-tracking-with-opency/
- People Detection in Fish-eye Top-views. Meltem Demirkus, Ling Wang, Michael Eschey, Herbert Kaestle and Fabio Galasso
- Intelligent multi-camera video surveillance: A review. 2012
 Xiaogang Wang
- Unsupervised Person Re-identification by Deep Learning Tracklet Association https://www.youtube.com/watch?v=-ljltl_arX8
- Person Re-identification: Past, Present and Future. Liang Zheng, Yi Yang, and Alexander G. Hauptmann