El uso correcto del inhibidor de corrosión conducirá a la prolongación de la vida útil de la máquina y a la reducción de los costos de Propiedad y Operación.

En los motores Komatsu se instalan inhibidores de corrosión. Estos inhibidores tienen una función importante que es aumentar la durabilidad y prolongar la vida útil del motor, de las camisas y del enfriador del aceite. Además, también actúan para evitar otros problemas como las picaduras provocadas por la cavitación.

Refrigerante limpio e inhibidores disueltos en el refrigerante

Inhibidores

El producto químico sólido y de color blanco se disuelve en agua y forma una película anticorrosiva en la superficie de las camisas del bloque del motor. Esta sustancia también dificulta que las escamas se adhieran a la camisa ya que las esparce y las deja en suspenso en el agua y las descarga junto con el refrigerante. Si estas sustancias químicas disueltas en el agua se usan durante largo tiempo, o si se diluyen por el agua añadida al refrigerante, gradualmente pierden su efecto.

Elemento de papel

Esto actúa para recoger la suciedad y las partículas de escamas o herrumbre del refrigerante. De esta forma actúa para evitar que se adhieran a los pasadizos del refrigerante y protege el sello de la bomba del agua.

Tal como se muestra en el diagrama, parte del refrigerante es desviado y pasa a través del inhibidor de corrosión; pero como se está circulando constantemente, todo el refrigerante, en algún momento, pasará a través del inhibidor de corrosión.

TIPOS DE INHIBIDOR

El inhibidor de corrosión tiene siete tipos de inhibidores

·		_	
Inhibidores	Composición del inhibidor		
Agente amortiguador	Aumenta la alcalinidad y evita la corrosión del hierro fundido		
Inhibidor de corrosión del hierro	Crea una película sobre las superficies de hierro fundido (camisa) y evita corrosión		
Inhibidor de picaduras por cavitación	Evita la corrosión del aluminio		
Inhibidores de corrosión del aluminio	Evita la corrosión del aluminio		
Inhibidores de corrosión de cobre y aleaciones de cobre	Evita la corrosión del cobre y del latón		
Aditivo contra escamas	Evita las escamas		
Agente antiespumante	Evita la cavitación		

Composición	Proporción		Resistencia del refrigerante al afecto de corrosión	
Composición	Producto actual	Producto mejorado	Al	Fc
Borato	50	40	X	0
Nitrito	20-25	20-25		0
Silicato	5-15	5-15	\bigcirc	
Nitrato	0	20-30	0	
Triazol	5-10	5-10		
Polimero	2-5	2-5		
Aditivos especiales	0	Max. 0.5	\circ	0

X : Sin resistencia a la corrosión; provoca corrosión

O: Bueno
O: Excelente

El mecanismo de la resistencia contra la corrosión

Formas de evitar las picaduras por cavitación y la corrosión

La prevención de la cavitación en las camisas de cilindros del motor se realiza por la acción compleja de un total de cuatro tipos de inhibidores: inhibidor de picaduras de cavitación, agente compensador de Ph, inhibidor de corrosión de hierro e inhibidores de corrosión de cobre y aleaciones de cobre.

Proporciones adecuadas de inhibidores pueden evitar la corrosión no sólo de hierro fundido y cobre, también de aluminio, estaño, latón y otros metales.

Mecanismo de las picaduras

Cuando el pistón se mueve hacia arriba, también empuja la camisa hacia arriba y la mueve ligeramente hacia la derecha.

4

El eco de la vibración aumenta la formación y explosión de las burbujas.

En la superficie del lado opuesto, se generan pequeñas burbujas.

Cuando el pistón comienza a bajar, la camisa se mueve ligeramente, las burbujas se pegan contra la superficie de la camisa y revientan. Cuando esto ocurre, la alta presión resultante daña la camisa.

Corrosión

La presión formada por la explosión de las burbujas hace desaparecer la película de prevención de corrosión y esto facilita la corrosión de la superficie de la camisa.

Debido a este daño, se hace más fácil la formación de burbujas de manera que progresan los daños de las picaduras por cavitación.

Mecanismo de las picaduras

Prevención de la corrosión por alcalinidad

Prevención de la corrosión del aluminio

El agente compensador del Ph en el inhibidor de corrosión alcaliniza el refrigerante y evita la corrosión del hierro. Con este Ph, es fácil la corrosión del aluminio de manera que, se incluye un poderoso inhibidor de corrosión del aluminio. Esto tiene un efecto mucho mas fuerte que los inhibidores de corrosión generales para el aluminio, tal como se muestra en el diagrama que sigue. También evita la corrosión por la velocidad del flujo.

MANTENIMIENTO DEL

Sustitución del inhibidor de corrosión

Sustitución del inhibidor de corrosión (Refrigerante con anticongelante)

		_	10
Modelo		Pieza no.	Cantidad química (g)
EP4D94		600-411-1130	100
4D95L	WA70	600-411-1130	100
(S) 6D95L	WA100,WA150,PC100,PC120 PC150,PW150	600-411-1140	100
4D105	EC75Z(S)-2,D31-17	600-411-1140	200
S4D105	EC105Z(S)-1	600-411-1140	200
	EPS4D105	600-411-1130	100
6D105	WA200,D40.,D41-3,EP6D105	600-411-1140	200
S6D105	EC170Z(S)-1	600-411-1150	400
000 100	WA300,PC200,220-3,EP	600-411-1140	200
S6D110	WA350	600-411-1140	200
SA6D110	WA400,EPSA6D110	000-411-1140	
SAODIIO	EG150-3,EC210Z-1	600-411-1150	400
6D125,SA6D125			400
S6D140 15T,EG200 *		600-411-1170	
(S) 4D130(OP)		600-411-1150	400
S6D140	WA300		400
SA6D140	EPSA6D140	600-411-1150	
SAGDIAO	HD325-5,PO650-3	600-411-1170	1000
S(A)6D155		600-411-1150	400
S(A)6D155 *	···	600-411-1570	400
	PC650,,PC1500	600-411-1170	1000
S6D170	EG400,EPS6D170 *	600-411-1160	600
	PC650 *	600-411-1590	1000
	D375A,HD465-3	600-411-1170	400
SA6D170	EG450,EG550,EPSA6D170,A,E	600-411-1160	600
	EG550 *	600-411-1580	600
SA8V170	D475,HD785	600-411-1160	600
	WA800	600-411-1170	1000
SA12V170	HD1200,EG1100		1000
	HD1200 *	600-411-1590	1000
NH220,NTO	6,NRTO-6(12T),N(T)855	600-411-1150	400
NTA855		600:411-1170	1000

^{*}Temperaturas extremadamente frías

Al reponer el inhibidor de corrosión, es necesario prestar atención a los puntos siguientes:

La cantidad de productos químicos en el inhibidor de corrosión difiere según el modelo del motor.

El contenido de productos químicos está impreso en el cartucho del inhibidor de corrosión; confirme cuantos gramos tiene.

El tipo de inhibidor de corrosión y productos químicos para cada modelo de motor es como indica la tabla.

La cifra de 1000 horas para intervalo de cambio del inhibidor de corrosión en la tabla es el valor usando agua de clase 1.

Es difícil juzgar la calidad del agua por la tabla, tómelo como el intervalo de cambio al usar agua del acueducto de la ciudad.

En términos generales, agua fresca (agua subterránea, agua de ríos, agua de pocetas, etc.) no es de muy buena calidad. Al usar ese agua, añada la cantidad de productos químicos iguales a la cantidad que contiene el inhibidor de corrosión y cámbielo por primera vez después de las 1000 horas.

Si no se añaden productos químicos adicionales, haga la sustitución después de las 500 horas aunque se indiquen 1000 horas como intervalo de cambio. Reducir el intervalo de cambio aumentará la vida útil del motor.

Sustitución del inhibidor de corrosión (Refrigerante sin anticongelante)

Sustitúyalo cada 2000 horas ó 1 año si el intervalo de cambio se indica como de 1000 horas.

Sustitúyalo cada 1000 horas ó 6 meses si el intervalo de cambio se indica como de 500 horas.

Esto tiene vigencia sólo para usar agua de buena calidad.

INHIBIDOR DE CORROSION

Normas para Normas de calidad de agua sobre el uso de inhibidores de corrosión

Item			Clase 1	Clase 2	Agua local
te	PH		6.8 ~ 7.5		
refrigerante	Conductividad (μv/cm)	Max. 200	ax. 200 Min 200		Max. 100
del refri	Dureza Total (asCaCO4ppm)	Max. 100	Min. 100		Max. 5
	lones sulfúricos (SO42-ppm)	Max. 50	Mas de 50 y menos de 300	Min 300	Max. 5
Calidad	lones de Cloro (CI-ppm)	Max. 50	Mas de 50 y menos de 300	Min. 300	Max. 5
Necesidad de usar inhibidor de corrosión		No necesita usarlos	Use	Use	No necesita usarlos

^{*} Use el comprobador de agua (799-202-7001) para investigar la calidad del agua procedente de tuberías de agua procedente de ríos o pozos.

Reponga el inhibidor de corrosión cada 1000 horas y siempre que cambie el refrigerante

MANTENIMIENTO DEL INHIBIDOR DE CORROSION

Ejemplos de problemas

Ejemplos donde no se usa un inhibidor de corrosión y donde no se hace el mantenimiento adecuado.

Corrosión sobre toda la superficie de la camisa del cilindro

Picaduras en una camisa de cilindro

Impelente de bomba corroido

Camisa de cilindro con escamas adheridas

Corrosión entre el hierro fundido de la superficie superior del bloque del motor

12 Abril, 2000