Teoria dos Grafos Percursos em Grafos

Paulo Henrique Ribeiro Gabriel

Faculdade de Computação Universidade Federal de Uberlândia

2019/1

Definição (Passeio)

Um passeio em um grafo G é uma sequência v_1, v_2, \ldots, v_k de vértices de G tal que $v_i v_{i+1} \in E(G)$, para todo $1 \le i \le k$

• O comprimento deste passeio é k-1

Definição (Trilha)

Uma trilha em um grafo simples G é um passeio v_1,v_2,\ldots,v_k tal que v_iv_{i+1} é distinta para todo $1\leq i\leq k$

Definição (Caminho)

Um caminho em um grafo simples G é uma trilha v_1, v_2, \ldots, v_k tal que v_i é distinto para todo $1 \le i \le k$

ullet Um grafo que consiste em caminho com n vértices é denotado por P_n

Definição (Passeio Fechado)

Um passeio $v_1, v_2, \dots, v_k, v_{k+1}$ é fechado se $v_{k+1} = v_1$

Definição (Ciclo)

- Um ciclo (ou circuito) é uma trilha fechada
- Um ciclo é simples se é um caminho fechado
- \bullet Um grafo que consiste em um ciclo simples em n vértices é denotado por C_n

Em Resumo...

Tipo	Permite repetir		Sempre	
	vértices?	arestas?	Fechado?	
Passeio	✓	✓	_	\rightarrow
Trilha	✓	-	-	200
Circuito/ Ciclo	✓	-	✓	
Caminho	-	-	-	$\sim\sim$
Ciclo Simples	-	-	✓	\sim

Definição (Distância)

A distância entre $v, w \in V(G)$, denotado por d(v, w), é o menor k para o qual existe um caminho v, \ldots, w de comprimento k-1

Grafos Conexos

Definição (Grafo Conexo)

Um grafo G é conexo se existe um caminho entre quaisquer $v,w\in V(G)$; caso contrário, é desconexo

Grafos Conexos

Definição (Componente Conexa)

- Seja $V\subseteq V(G)$ um conjunto maximal tal que G[V] é conexo; chamamos G[V] de componente conexo de G
- O número de componentes conexos de um grafo G é denotado por $\omega(G)$

Grafos Conexos

Observação

Um conjunto é dito maximal em relação a uma propriedade quando não existe outro conjunto com mais elementos que ele, em relação à mesma propriedade.

Um Primeiro Teorema

Teorema (König¹, 1931)

Um grafo G é bipartido se, e somente se, G não contém um ciclo de comprimento ímpar.

¹König, D. (1931), "Gráfok és mátrixok", Matematikai és Fizikai Lapok, 38: 116–119

Demonstração I

Condição necessária: G é bipartido, então G não contém ciclo de comprimento ímpar

- ullet Seja G um grafo bipartido
- Sejam X e Y duas partições de V(G) tais que $V(G) = X \cup Y$ e $X \cap Y = \varnothing$
- Além disso, para todo $e \in E(G), e = xy$, onde $x \in X$ e $y \in Y$
- ullet Se G não possui ciclos, vale a ida
- Considere, então, que exista (ao menos) um ciclo $C=v_1,v_2,\ldots,v_k,v_1$ em G de comprimento ímpar

Demonstração II

ullet Sem perda de generalidade, podemos definir que $v_1 \in X, v_2 \in Y, \dots$

$$v_i \in \begin{cases} X \text{, se } i \text{ \'e impar} \\ Y \text{, se } i \text{ \'e par} \end{cases}$$

- Como C tem comprimento ímpar, então k é ímpar
- Disso, segue que $v_1, v_k \in X$ e, assim, $v_k v_1 \in E(G)$. Absurdo, pois o grafo é bipartido
- ullet Portanto, G não tem ciclos de comprimento ímpar

Demonstração III

Condição suficiente: Se G não contém ciclos de comprimento ímpar, então G é bipartido

- ullet Seja G um grafo conexo sem ciclos de comprimento ímpar
- Seja $v \in V(G)$ e sejam duas partições X e Y tais que:
 - $\blacktriangleright \ X = \{x \in V(G) \ | \ d(v,x) \not\in \mathsf{par}\}$
 - $Y = \{ y \in V(G) \mid d(v, y) \text{ \'e impar} \}$
- Naturalmente, $X \cup Y = V(H)$ e $X \cap Y = \emptyset$
- Precisamos mostrar que qualquer $e \in E(G)$ é da forma $e = xy, x \in X, y \in Y$
- Se $x, y \in X$, queremos demonstrar que $xy \notin X$
- Sejam
 - $ightharpoonup P = v, \dots, x$ o caminho mais curto entre v e x
 - $Q = v, \dots, y$ o caminho mais curto entre v e y
- ullet Como $x,y\in X$, então P e Q possuem a mesma paridade

Demonstração IV

- Seja w o último vértice comum de P e Q; assim, w divide cada caminho em duas partições:
 - $P = P_1 P_2$ tal que $P_1 = v, \dots w, P_2 = w, \dots x$
 - $Q = Q_1 Q_2$ tal que $Q_1 = v, ..., w, Q_2 = w, ..., y$
- ullet Como P e Q são os caminhos mais curtos, segue que $|P_1|=|Q_1|$
- ullet Então, P_2 e Q_2 possuem a mesma paridade
- ullet Então, o caminho x,\ldots,w,\ldots,y possui comprimento $|P_2|+|Q_2|$ que é par
- Agora, se $xy \in E(G)$, então o caminho x,\dots,w,\dots,y,x possui comprimento ímpar. Absurdo, pois nossa suposição é que não existem ciclos de comprimento ímpar
- Logo, $xy \notin X$
- ullet Portanto, G é bipartido
- A demonstração para $x,y \in Y$ segue o mesmo princípio

Observação

- \bullet Caso G seja desconexo, então todo ciclo de G está contido em um de seus componentes conexos
- Assim, é suficiente demonstrar o teorema para grafos conexos

Créditos

Parte deste material foi baseada nas notas de aula do Prof. Fabiano Oliveira.

A demonstração do Teorema de König foi desenvolvida com base na videoaula da Profa. Sarada Herke, disponível em https://youtu.be/YiGFhWxtHjQ (acesso em 02/04/2019).