

Content

- Data Preparation and Cleaning
- ☐ Train Validation Split 70-30
- EDA on Training Data
- Feature Engineering
- Model Building
- Predicting and Model Evaluation

Data Preparation and Cleaning

Import and inspect dataset

Shape of dataset: (1000,40)

```
RangeIndex: 1000 entries, 0 to 999
Data columns (total 40 columns):
# Column
                                Non-Null Count Dtype
    -----
    months_as_customer
                                1000 non-null
                                               int64
                                1000 non-null
    policy number
                                1000 non-null
                                               int64
   policy bind date
                                1000 non-null
                                               object
    policy state
                                1000 non-null
                                1000 non-null
   policy csl
                                               object
6 policy deductable
                                1000 non-null
   policy_annual_premium
                                1000 non-null
                                               float64
8 umbrella_limit
                                1000 non-null
                                               int64
9 insured zip
                                1000 non-null
                                               int64
10 insured sex
                                1000 non-null
                                               object
11 insured education level
                                1000 non-null
                                               object
12 insured occupation
                                1000 non-null
                                               object
13 insured hobbies
                                1000 non-null
14 insured relationship
                                1000 non-null
                                               object
15 capital-gains
                                1000 non-null
                                               int64
16 capital-loss
                                1000 non-null
17 incident date
                                1000 non-null
                                               object
18 incident_type
                                1000 non-null
                                               object
19 collision_type
                                1000 non-null
                                               object
20 incident severity
                                1000 non-null
                                               object
21 authorities contacted
                                909 non-null
                                               object
22 incident state
                                1000 non-null
                                               object
23 incident city
                                1000 non-null
                                               object
24 incident location
                                1000 non-null
25 incident hour of the day
                                1000 non-null
26 number of vehicles involved
                               1000 non-null
                                               int64
                                1000 non-null
27 property_damage
                                               object
28 bodily injuries
                                1000 non-null
29 witnesses
                                1000 non-null
                                               int64
30 police report available
                                1000 non-null
31 total claim amount
                                1000 non-null
                                               int64
32 injury claim
                                1000 non-null
33 property claim
                                               int64
                                1000 non-null
34 vehicle claim
                                1000 non-null
35 auto make
                                1000 non-null
36 auto model
                                1000 non-null
                                               object
37 auto year
                                1000 non-null
                                               int64
38 fraud_reported
                                1000 non-null
                                               object
39 c39
                                0 non-null
                                               float64
dtypes: float64(2), int64(17), object(21)
memory usage: 312.6+ KB
```

Data Preparation and Cleaning

Since nulls in authorities_contacted account for around 10% (91 rows), hence replaced them with 'Unknown' prevents potential data loss ____

authorities_contacted
Police 292
Fire 223
Other 198
Ambulance 196
Unknown 91

Name: count, dtype: int64

_c39 contains only null values, so it was dropped from the dataset.

Redundant features like policy_number, insured_zip, insured_hobbies, and incident_location were dropped from the dataset.

Data Preparation and Cleaning

policy_bind_date	object	Corrected the data type from object to datetime64[ns]	policy_bind_date	datetime64[ns]
incident_date	object	,	incident_date	datetime64[ns]

Train Validation Split


```
# Put all the feature variables in X
X = df.drop('fraud_reported', axis=1)
# Put the target variable in y
y= df['fraud_reported']
Dependent variable
```

```
# Split the dataset into 70% train and 30% validation and use stratification on the target variable
X_train, X_test, y_train, y_test = train_test_split (X, y, train_size=0.7] random_state=42 )
# Reset index for all train and test sets
X_train.shape,y_train.shape,X_test.shape,y_test.shape

((700, 32), (700,), (300, 32), (300,))

Train size = 70%
Test size = 30%
```


EDA on Numerical features

1.0

'umbrella_limit','capital-gains','capital-loss' are highly skewed toward zero, so they were deleted.

'policy_deductable', 'number_of_vehicles_involved', 'bodily_injuries', 'witnesses', 'combined_limit', 'single_limit' were initially marked as numerical, but since they exhibit categorical behavior, they were converted to object type.

'incident_hour_of_the_day', 'total_claim_amount', 'injury_claim', 'property_claim', 'age_of_vehicle', 'age' features are distributed across ranges, and to simplify analysis, these ranges have been grouped.

EDA on Categorical features

Plotting data for the column: insured_occupation

Plotting data for target in terms of total count

Plotting data for target in terms of percentage

Plotting data for the column: insured_relationship

fraud_reported

Plotting data for target in terms of percentage

Plotting data for the column: authorities_contacted Police 29%

Plotting data for the column: incident_state

NY

SC

28%

PA

29%
OH

11%
NC

total_claim_range

Plotting data for the column: injury_claim_range

Plotting data for target in terms of percentage

Fraudulent Claim Detection Report

Plotting data for the column: property_claim_range

property_claim_range

Plotting data for the column: age_of_vehicle_range

Plotting data for target in terms of percentage

Fraudulent Claim Detection Report

months_as_customer_range

Feature Engineering

policy_csl contains combined limits. To facilitate analysis, we'll split it into separate columns and drop policy csl feature

Subtracting auto_year from incident_year provides the age_of_vehicle at the time of the incident

Model Building

Class balance check

Import RandomOverSampler from imblearn library

Model Building

Dummy variable creation and scaling

```
# Identify the categorical columns for creating dummy variables
categorical_cols = X_resample_os.select_dtypes(include=['object','category']).columns.tolist()
print('categorical_cols', categorical_cols)
```

```
# Create dummy variables using the 'get_dummies' for categorical columns in training data
dummy = pd.get_dummies(X_resample_os[categorical_cols], columns=categorical_cols, drop_first=True).astype('int')

X_resample_os = pd.concat([X_resample_os, dummy], axis=1)

X_resample_os.drop(categorical_cols, axis=1, inplace=True)
```

```
# Import the necessary scaling tool from scikit-learn
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
# Scale the numeric features present in the training data
X_resample_os[Numerical_cols] = scaler.fit_transform(X_resample_os[Numerical_cols])
# Scale the numeric features present in the validation data
X_test[Numerical_cols] = scaler.fit_transform(X_test[Numerical_cols])
```


Feature selection

	Feature	Selected	Ranking
0	policy_annual_premium	True	1
1	policy_state_IN	True	1
2	policy_state_OH	True	1
4	policy_deductable_2000	True	1
6	insured_education_level_College	True	1
5	insured_sex_MALE	True	1
7	insured_education_level_High School	True	1
8	insured_education_level_JD	True	1
14	insured_occupation_exec-managerial	True	1
9	insured_education_level_MD	True	1
10	insured_education_level_Masters	True	1
12	insured_occupation_armed-forces	True	1
13	insured_occupation_craft-repair	True	1
19	insured_occupation_priv-house-serv	True	1
17	$insured_occupation_machine-op\text{-}inspct$	True	1
16	insured_occupation_handlers-cleaners	True	1
30	incident_type_Parked Car	True	1
25	insured_relationship_not-in-family	True	1
26	insured_relationship_other-relative	True	1
20	insured_occupation_prof-specialty	True	1

Best Logistic Regression Model

```
X_train_l = X_train[top_features]
X_train_l5 = sm.add_constant(X_train_l)
logm5 = sm.GLM(y_train,(sm.add_constant(X_train_l)),family = sm.families.Binomial())
logm5.fit().summary()
```

Dep. Variable:	ralized Linear Model fraud_reported	No. Obser		10	56		
Model:	GLM			10			
Model Family:	Binomial	Df Residuals:					
Link Function:		U	Scale:	1.0000			
	Logit						
Method:	IRLS		elihood:	-688.			
Date:	Sat, 14 Jun 2025		eviance:	1377			
Time:	18:18:41		on chi2:	1.08e+			
No. Iterations:		seudo R-s	qu. (CS):	0.090	26		
Covariance Type:	nonrobust						
		coef	std err	z	P > z	[0.025	0.975]
	cons	t -0.0093	0.064	-0.145	0.885	-0.136	0.117
pol	icy_annual_premiun	-0.1441	0.066	-2.190	0.029	-0.273	-0.015
	policy_state_IP	-0.0695	0.074	-0.939	0.348	-0.215	0.076
	policy_state_OF	0.0622	0.075	0.830	0.407	-0.085	0.209
pol	icy_deductable_200	0.0609	0.066	0.924	0.355	-0.068	0.190
insured_edu	cation_level_Colleg	e 0.1097	0.071	1.544	0.123	-0.030	0.249
	insured_sex_MAL	E 0.2484	0.066	3.788	0.000	0.120	0.377
insured_educatio	on_level_High Schoo	0.0665	0.073	0.913	0.361	-0.076	0.209
insured	d_education_level_JC	0.0833	0.073	1.144	0.253	-0.059	0.226
insured_occupat	ion_exec-manageria	0.1091	0.069	1.573	0.116	-0.027	0.245
insured	education_level_M[0.0501	0.072	0.693	0.488	-0.092	0.192
insured_occu	pation_armed-force	s 0.0490	0.066	0.741	0.459	-0.081	0.179
insured_occ	cupation_craft-repai	r 0.1532	0.069	2.227	0.026	0.018	0.288
insured_occupa	tion_priv-house-ser	· -0.2364	0.076	-3.129	0.002	-0.384	-0.088
incid	ent_type_Parked Ca	r -0.1985	0.074	-2.686	0.007	-0.343	-0.054
insured_relation	onship_not-in-famil	y 0.1349	0.068	1.988	0.047	0.002	0.268
insured_relatio	nship_other-relativ	e 0.2079	0.068	3.057	0.002	0.075	0.341
insured_occup	oation_prof-specialt	y -0.1385	0.069	-2.005	0.045	-0.274	-0.003
insur	red_occupation_sale	s 0.0473	0.067	0.702	0.482	-0.085	0.179
insured_occupa	tion_protective-ser	v -0.0560	0.067	-0.837	0.402	-0.187	0.075
insured_occupation	on_transport-moving	0.1062	0.067	1.580	0.114	-0.026	0.238
incident_type_Sir	ngle Vehicle Collision	0.2418	0.067	3.583	0.000	0.110	0.374

	Feature	VIF
2	policy_state_OH	1.36
1	policy_state_IN	1.33
6	insured_education_level_High School	1.29
9	insured_education_level_MD	1.27
7	insured_education_level_JD	1.26
4	insured_education_level_College	1.23
8	insured_occupation_exec-managerial	1.16
19	insured_occupation_transport-moving	1.12
17	insured_occupation_sales	1.12
11	insured_occupation_craft-repair	1.12
16	insured_occupation_prof-specialty	1.12
15	insured_relationship_other-relative	1.12
14	insured_relationship_not-in-family	1.12
20	incident_type_Single Vehicle Collision	1.11
10	insured_occupation_armed-forces	1.10
18	insured_occupation_protective-serv	1.10
13	incident_type_Parked Car	1.09
12	insured_occupation_priv-house-serv	1.07
0	policy_annual_premium	1.05
3	policy_deductable_2000	1.05
5	insured_sex_MALE	1.04

y_train_pred_final['Predicted'] = y_train_pred_final.Prdicted_Prob.map(lambda x: 1 if x > 0.5 else 0)

[322, 211] [185, 348]

Metrics	value	Remarks
accuracy	0.628517824	62.85%
sensitivity/Recall	0.652908068	65.3% of actual positives were correctly predicted
specificity	0.60412758	60.4% of actual negatives were correctly predicted
Precision	0.62254025	62.2% of predicted positives were correct
f1_score	0.637362637	Balance between precision and recall


```
numbers = [float(x)/10 for x in range(10)]
for i in numbers:
    y_train_pred_final[i] = y_train_pred_final.Prdicted_Prob.map(lambda x: 1 if x > i else 0)
```

	Actual	Prdicted_Prob	Predicted	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0	0.313163	0	1	1	1	1	0	0	0	0	0	0
1	0	0.578618	1	1	1	1	1	1	1	0	0	0	0
2	1	0.569165	1	1	1	1	1	1	1	0	0	0	0
3	0	0.582130	1	1	1	1	1	1	1	0	0	0	0
4	0	0.294940	0	1	1	1	0	0	0	0	0	0	0

	prob	accuracy	sensi	speci
0.0	0.0	0.500000	1.000000	0.000000
0.1	0.1	0.500938	0.996248	0.005629
0.2	0.2	0.517824	0.986867	0.048780
0.3	0.3	0.556285	0.939962	0.172608
0.4	0.4	0.593809	0.848030	0.339587
0.5	0.5	0.628518	0.652908	0.604128
0.6	0.6	0.590994	0.354597	0.827392
0.7	0.7	0.542214	0.114447	0.969981
0.8	0.8	0.504690	0.011257	0.998124
0.9	0.9	0.500000	0.000000	1.000000

Create a column for final prediction based on the optimal cutoff
y_train_pred_final['Optimal_Predicted'] = y_train_pred_final.Prdicted_Prob.map(lambda x: 1 if x > 0.45 else 0)

Metrics	value	Remarks
accuracy	0.614446529	61.44%
sensitivity/Recall	0.772983114	77.3% of actual positives were correctly predicted
specificity	0.455909944	45.6% of actual negatives were correctly predicted
Precision	0.586894587	58.7% of predicted positives were correct
f1_score	0.667206478	Balance between precision and recall

precision-recall curve

Model Building: Random forest

Build a base random forest model
rf = RandomForestClassifier(n_estimators=100, max_depth=4, max_features=5,random_state=100,oob_score=True)
rf.fit(X_train,y_train)

RandomForestClassifier RandomForestClassifier(max_depth=4, max_features=5, oob_score=True, random_state=100)

	features	lmp
36	incident_severity_Minor Damage	0.088142
37	incident_severity_Total Loss	0.057772
42	authorities_contacted_Unknown	0.036399
38	incident_severity_Trivial Damage	0.035396
0	policy_annual_premium	0.033319
35	collision_type_Unknown	0.024426
97	vehicle_claim_range_40k-60k	0.023208
27	insured_relationship_own-child	0.021713
26	insured_relationship_other-relative	0.020784
79	combined_limit_500	0.019508
5	insured_sex_MALE	0.019384
30	incident_type_Parked Car	0.019108
32	incident_type_Vehicle Theft	0.017087
19	insured_occupation_priv-house-serv	0.015043
100	property_claim_range_5k-10k	0.014860

Metrics	value	Remarks
accuracy	0.815196998	81.51%
sensitivity/Recall	0.791744841	79.17% of actual positives were correctly predicted
specificity	0.838649156	83.9% of actual negatives were correctly predicted
Precision	0.830708661	83.1% of predicted positives were correct
f1_score	0.810758886	Balance between precision and recall

```
# Use cross validation to check if the model is overfitting
cv_scores = cross_val_score(rf, X_train_rf, y_train, cv=5, scoring='accuracy')
print("Cross-Validation Accuracy Scores:", cv_scores)
print("Mean CV Accuracy:", cv_scores.mean())
```

Cross-Validation Accuracy Scores: [0.72897196 0.7370892 0.79342723 0.82629108 0.84507042]
Mean CV Accuracy: 0.7861699793778246

Training Accuracy 81.51% Mean Cross-Validation Accuracy 78.61%

The accuracy gap is just 2.9% — which is small and acceptable and model is NOT significantly overfitting

Model Building: Random forest

Hyperparameter Tuning

```
# Use grid search to find the best hyperparamter values
Classifier_rf = RandomForestClassifier(random_state=42, n_jobs=-1)
# Best Hyperparameters
params = {
    'max_depth': [1, 2, 5, 10, 20],
    'min_samples_leaf': [5, 10, 20, 50, 100],
    'max_features': [2,3,4],
    'n_estimators': [10, 30, 50, 100, 200]
}
```

```
# Building random forest model based on results of hyperparameter tuning
grid_search = GridSearchCV(estimator=Classifier_rf, param_grid= params,cv=4, n_jobs=-1, verbose=1, scoring='accuracy')
```


Metrics	value	Remarks
accuracy	0.873358349	87.30%
sensitivity/Recall	0.853658537	85.36% of actual positives were correctly predicted
specificity	0.889305816	88.9% of actual negatives were correctly predicted
Precision	0.885214008	88.5% of predicted positives were correct
f1_score	0.869149952	Balance between precision and recall

Model Evaluation

Logistic regression

Metrics	value	Remarks
accuracy	0.403333333	40.30%
sensitivity/Recall	0.75	75 % of actual positives were correctly predicted
specificity	0.277272727	27.7% of actual negatives were correctly predicted
Precision	0.273972603	27.4% of predicted positives were correct
f1_score	0.401337793	Balance between precision and recall

Random forest

Metrics	value	Remarks	
accuracy	0.773333333	77.30%	
sensitivity/Recall	0.75	75% of actual positives were correctly predicted	
specificity	0.8227	82.3% of actual negatives were correctly predicted	
Precision	0.5666	56.6% of predicted positives were correct	
f1_score	0.6	Balance between precision and recall	

Conclusion

Logistic regression

Metrics	Train Data	Test Data
Accuracy	0.6144	0.4033
Sensitivity/Recall	0.7730	0.7500
Specificity	0.4559	0.2773
Precision	0.5869	0.2740
f1_score	0.6672	0.4013

- ➤ The logistic regression model is overfitting performing reasonably well on the training data but very poorly on the test set.
- ➤ The recall remains high, which means the model still finds most positive cases, but it sacrifices precision and specificity, resulting in many false positives.
- ➤ Model is unreliable for deployment in its current form

Random forest:

Metrics	Train Data	Test Data
Accuracy	0.8734	0.7733
Sensitivity/Recall	0.8537	0.7500
Specificity	0.8893	0.8227
Precision	0.8852	0.5666
f1_score	0.8691	0.6000

- ➤ The Random Forest model demonstrates strong and well-rounded performance on both training and test datasets.
- ➤ It generalizes fairly well with a good balance of sensitivity (recall) and specificity, making it reliable for binary classification tasks.
- ➤ While test precision is lower, it's still usable but we may need to adjust thresholds depending on business needs (e.g., favoring precision over recall or vice versa).
- Overall, this model is a good candidate for deployment or further tuning.