This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WORLD INTELLECTUAL PROPERTY ORGANIZATION

International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION

(51) International Patent Classification 5:

A1

(11) International Publication Number:

WO 93/15193

C12N 15/00, C12Q 1/70 C07K 15/00

(43) International Publication Date:

5 August 1993 (05.08.93)

(21) International Application Number:

PCT/US93/00907

(22) International Filing Date:

29 January 1993 (29.01.93)

(30) Priority data:

07/830,024

31 January 1992 (31.01.92)

(71) Applicant: ABBOTT LABORATORIES [US/US]; CHAD 377/AP6D-2, One Abbott Park Road, Abbott Park, IL 60064-3500 (US).

(72) Inventors: CASEY, James, M.; 4110 Bayside Ct., Apt. 2C, Zion, IL 60099 (US). BODE, Suzanne, L.; 9744 West 16th Street, Zion, IL 60099 (US). ZECK, Billy, J.; 34108 Homestead Road, Gurnee, IL 60031 (US). YAMAGU-CHI, Julie; 3034 W. Jerome, Chicago, IL 60645 (US). FRAIL, Donald, E.; 436 E. Sunnyside Ave., Liberty-ville, IL 60048 (US). DESAI, Suresh, M.; 1408 Amy Lane, Liberty-ville, IL 60048 (US). DEVARE, Sushil, G.; 2492 Farnsworth Lane, Northbrook, IL 60062 (US).

(74) Agents: GORMAN, Edward, H., Jr. et al.; Abbott Laboratories, Chad 0377/AP6D-2, One Abbott Park Road, Abbott Park, IL 60064-3500 (US).

(81) Designated States: AU, CA, JP, KR, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

(54) Title: MAMMALIAN EXPRESSION SYSTEMS FOR HCV PROTEINS

(57) Abstract

Mammalian expression systems for the production of HCV proteins. Such expression systems provide high yields of HCV proteins, and enable the development of diagnostic and therapeutic reagents which contain glycosylated structural antigens and also allow for the isolation of the HCV etiological agent.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
BB	Harbados	GB '	United Kingdom	NL	Netherlands
BE	Belgium	GN	Guinea	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
		HU	Hungary	PL	Poland
BC	Bulgaria	IE	Ireland	PT	Portugal
BJ	Benin	IT.	Italy	RO	Romania
BR	Brazil	JP	lapan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan .
CF	Central African Republic	N.F	of Korea	SE	Sweden
CC	(,oulo	KR	Republic of Korea	SK	Slovak Republic
CH	Switzerland		Kazakhstan	SN	Senegal
CI	('ôte d'Ivoire	K2		SU	Soviet Union
CM	Cameroun	u	Liechtenstein	TD	('had
cs	Czechoslovakia -	LK	Sri I anka	TC	Togo
CZ	Czech Republik	LU	Luxembourg	UA	Ukraine
DE	Germany	MC	Monaco	US	United States of America
DK	Denmark	MC	Madagascar		Viet Nam
ES	Spain	MI.	Mali	VN	Vita Nam
FI	Finland	MN	Mongolia		

10

15

20

25

30

3.5

MAMMALIAN EXPRESSION SYSTEMS FOR HCV PROTEINS

Background of the Invention

This invention relates generally to Hepatitis C Virus (HCV), and more particularly, relates to mammalian expression systems capable of generating HCV proteins and uses of these proteins.

Descriptions of Hepatitis diseases causing jaundice and icterus have been known to man since antiquity. Viral hepatitis is now known to include a group of viral agents with distinctive viral organization protein structure and mode of replication, causing hepatitis with different degrees of severity of hepatic damage through different routes of transmission. Acute viral hepatitis is clinically diagnosed by well-defined patient symptoms including jaundice, hepatic tenderness and an elevated level of liver transaminases such as Aspartate Transaminase and Alanine Transaminase.

Serological assays currently are employed to further distinguish between Hepatitis-A and Hepatitis-B. Non-A Non-B Hepatitis (NANBH) is a term first used in 1975 that described cases of post-transfusion hepatitis not caused by either Hepatitis A Virus or Hepatitis B Virus. Feinstone et al., New Engl. J. Med. 292:454-457 (1975). The diagnosis of NANBH has been made primarily by means of exclusion on the basis of serological analysis for the presence of Hepatitis A and Hepatitis B. NANBH is responsible for about 90% of the cases of post-transfusion hepatitis. Hollinger et al. in N. R. Rose et al., eds., Manual of Clinical Immunology, American Society for Microbiology, Washington, D. C., 558-572 (1986).

Attempts to identify the NANBH virus by virtue of genomic similarity to one of the known hepatitis viruses have failed thus far, suggesting that NANBH has a distinctive genomic organization and structure. Fowler et al., <u>J. Med. Virol.</u> 12:205-213 (1983), and Weiner et al., <u>J. Med. Virol.</u> 21:239-247 (1987). Progress in developing assays to detect antibodies specific for NANBH has been hampered by difficulties encountered in identifying antigens associated with the virus. Wards et al., U. S. Patent No. 4,870,076; Wards et al., <u>Proc. Natl. Acad. Sci.</u> 83:6608-6612 (1986); Ohori et al., <u>J. Med. Virol.</u> 12:161-178 (1983); Bradly et al., <u>Proc. Natl. Acad. Sci.</u> 84:6277-6281 (1987); Akatsuka et al., <u>J. Med. Virol.</u> 20:43-56 (1986).

In May of 1988, a collaborative effort of Chiron Corporation with the Centers for Disease Control resulted in the identification of a putative NANB agent, Hepatitis C Virus (HCV). M. Houghton et al. cloned and expressed in <u>E. coli</u> a NANB

10

15

20

25

30

35

3.

agent obtained from the infectious plasma of a chimp. Cuo et al., Science 244:359-361 (1989); Choo et al., Science 244:362-364 (1989). CDNA sequences from HCV were identified which encode antigens that react immunologically with antibodies present in a majority of the patients clinically diagnosed with NANBH. Based on the information available and on the molecular structure of HCV, the genetic makeup of the virus consists of single stranded linear RNA (positive strand) of molecular weight approximately 9.5 kb, and possessing one continuous translational open reading frame. J. A. Cuthbert, Amer. J. Med. Sci. 299:346-355 (1990). It is a small enveloped virus resembling the Flaviviruses. Investigators have made attempts to identify the NANB agent by ultrastructural changes in hepatocytes in infected individuals. H, Gupta, Liver 8:111-115 (1988); D.W. Bradly J. Virol. Methods 10:307-319 (1985). Similar ultrastructural changes in hepatocytes as well as PCR amplified HCV RNA sequences have been detected in NANBH patients as well as in chimps experimentally infected with infectious HCV plasma. T. Shimizu et al., Proc. Natl. Acad. Sci. 87:6441-6444 (1990).

Considerable serological evidence has been found to implicate HCV as the etiological agent for post-transfusion NANBH. H. Alter et al., N. Eng. J. Med. 321:1494-1500 (1989); Estaben et al., The Lancet: Aug. 5:294-296 (1989); C. Van Der Poel et al., The Lancet Aug. 5:297-298 (1989); G. Sbolli, J. Med. Virol. 30:230-232 (1990); M. Makris et al., The Lancet 335:1117-1119 (1990). Although the detection of HCV antibodies eliminates 70 to 80% of NANBH infected blood from the blood supply system, the antibodies apparently are readily detected during the chronic state of the disease, while only 60% of the samples from the acute NANBH stage are HCV antibody positive. H. Alter et al., New Eng. J. Med. 321:1994-1500 (1989). The prolonged interval between exposure to HCV and antibody detection, and the lack of adequate information regarding the profile of immune response to various structural and non-structural proteins raises questions regarding the infectious state of the patient in the latent and antibody negative phase during NANBH infection.

Since discovery of the putative HCV etiological agent as discussed supra, investigators have attempted to express the putative HCV proteins in human expression systems and also to isolate the virus. To date, no report has been published in which HCV has been expressed efficiently in mammalian expression systems, and the virus has not been propagated in tissue culture systems.

Therefore, there is a need for the development of assay reagents and assay systems to identify acute infection and viremia which may be present, and not currently detected by commercially-available assays. These tools are needed to

10

15

20

25

30

35

help distinguish between acute and persistent, on-going and/or chronic infection from those likely to be resolved, and to define the prognostic course of NANBH infection, in order to develop preventive and/or therapeutic strategies. Also, the expression systems that allow for secretion of these glycosylated antigens would be helpful to purify and manufacture diagnostic and therapeutic reagents.

Summary Of The Invention

This invention provides novel mammalian expression systems that are capable of generating high levels of expressed proteins of HCV. In particular, full-length structural fragments of HCV are expressed as a fusion with the Amyloid Precursor Protein (APP) or Human Growth Hormone (HGH) secretion signal. These unique expression systems allow for the production of high levels of HCV proteins, contributing to the proper processing, gycolsylation and folding of the viral protein(s) in the system. In particular, the present invention provides the plasmids pHCV-162, pHCV-167, pHCV-168, pHCV-169 and pHCV-170. The APP-HCV-E2 fusion proteins expressed by mammalian expression vectors pHCV-162 and pHCV-167 also are included. Further, HGH-HCV-E2 fusion proteins expressed by a mammalian expression vectors pHCV-168, pHCV-169 and pHCV-170 are provided.

The present invention also provides a method for detecting HCV antigen or antibody in a test sample suspected of containg HCV antigen or antibody, wherein the improvement comprises contacting the test sample with a glycosylated HCV antigen produced in a mammalian expression system. Also provided is a method for detecting HCV antigen or antibody in a test sample suspected of containg HCV antigen or antibody, wherein the improvement comprises contacting the test sample with aan antibody produced by using a glycosylated HCV antigen produced in a mammalian expression system. The antibody can be monoclonal or polyclonal.

The present invention further provides a test kit for detecting the presence of HCV antigen or HCV antigen in a test sample suspected of containing said HCV antigen or antibody, comprising a container containing a glycosylated HCV antigen produced in a mammalian expression system. The test kit also can include an antibody produced by using a glycosylated HCV antigen produced in a mammalian expression system. Another test kit provided by the present invention comprises a container containing an antibody produced by using a glycosylated HCV antigen produced in a mammalian expression system. The antibody provided by the test kits can be monoclonal or polyclonal.

15

20

30

35

1

Brief Description of the Drawings

Figure 1 presents a sch matic representation of the strategy employed to generate and assemble HCV genomic clones.

Figure 2 presents a schematic representation of the location and amino acid composition of the APP-HCV-E2 fusion proteins expressed by the mammalian expression vectors pHCV-162 and pHCV-167.

Figure 3 presents a schematic representation of the mammalian expression vector pRC/CMV.

Figure 4 presents the RIPA results obtained for the APP-HCV-E2 fusion protein expressed by pHCV-162 in HEK-293 cells using HCV antibody positive human sera.

Figure 5 presents the RIPA results obtained for the APP-HCV-E2 fusion protein expressed by pHCV-162 in HEK-293 cells using rabbit polyclonal sera directed against synthetic peptides.

Figure 6 presents the RIPA results obtained for the APP-HCV-E2 fusion protein expressed by pHCV-167 in HEK-293 cells using HCV antibody positive human sera.

Figure 7 presents the Endoglycosidase-H digestion of the immunoprecipitated APP-HCV-E2 fusion proteins expressed by pHCV-162 and pHCV-167 in HEK-293 cells.

Figure 8 presents the RIPA results obtained when American HCV antibody positive sera were screened against the APP-HCV-E2 fusion protein expressed by pHCV-162 in HEK-293 cells.

Figure 9 presents the RIPA results obtained when the sera from Japenese volunteer blood donors were screened against the APP-HCV-E2 fusion protein expressed by pHCV-162 in HEK-293 cells.

Figure 10 presents the RIPA results obtained when the sera from Japanese volunteer blood donors were screened against the APP-HCV-E2 fusion protein expressed by pHCV-162 in HEK-293 cells.

Figure 11 presents a schematic representation of the mammalian expression vector pCDNA-I.

Figure 12 presents a schematic representation of the location and amino acid composition of the HGH-HCV-E1 fusion protein expressed by the mammalian expression vector pHCV-168.

Figure 13 presents a schematic representation of the location and amino acid composition of the HGH-HCV-E2 fusion proteins expressed by the mammalian expression vectors pHCV-169 and pHCV-170.

10

15

20

25

30

35

Figure 14 presents the RIPA results obtained when HCV E2 antibody positive sera were screened against the HGH-HCV-E1 fusion protein expressed by pHCV-168 in HEK-293 cells.

Figure 15 presents the RIPA results obtained when HCV E2 antibody positive sera were screened against the HGH-HCV-E2 fusion proteins expressed by pHCV-169 and pHCV-170 in HEK-293 cells.

Detailed Description of the Invention

The present invention provides full-length genomic clones useful in a variety of aspects. Such full-length genomic clones can allow culture of the HCV virus which in turn is useful for a variety of purposes. Successful culture of the HCV virus can allow for the development of viral replication inhibitors, viral proteins for diagnostic applications, viral proteins for therapeutics, and specifically structural viral antigens, including, for example, HCV putative envelope, HCV putative E1 and HCV putative E2 fragments.

Cell lines which can be used for viral replication are numerous, and include (but are not limited to), for example, primary hepatocytes, permanent or semi-permanent hepatocytes, cultures transfected with transforming viruses or transforming genes. Especially useful cell lines could include, for example, permanent hepatocyte cultures that continuously express any of several heterologous RNA polymerase genes to amplify HCV RNA sequences under the control of these specific RNA polymerase sequences.

Sources of HCV viral sequences encoding structural antigens include putative core, putative E1 and putative E2 fragments. Expression can be performed in both prokaryotic and eukaryotic systems. The expression of HCV proteins in mammalian expression systems allows for glycosylated proteins such as the E1 and E2 proteins, to be produced. These glycosylated proteins have diagnostic utility in a variety of aspects, including, for example, assay systems for screening and prognostic applications. The mammalian expression of HCV viral proteins allows for inhibitor studies including elucidation of specific viral attachment sites or sequences and/or viral receptors on susceptible cell types, for example, liver cells and the like.

The procurement of specific expression clones developed as described herein in mammalian expression systems provides antigens for diagnostic assays which can determine the stage of HCV infection, such as, for example, acute versus on-going or persistent infections, and/or recent infection versus past exposure. These specific expression clones also provide prognostic markers for resolution of disease such as to distinguish resolution of disease from chronic hepatitis caused by HCV. It is

10

15

20

25

30

35

contemplated that earlier seroconversion to glycosylated structural antigens possibly may be detected by using proteins produced in these mammalian expression systems. Antibodies, both monoclonal and polyclonal, also may be produced from the proteins derived from these mammalian expression systems which then in turn may be used for diagnostic, prognostic and therapeutic applications. Also, reagents produced from these novel expression systems described herein may be useful in the characterization and or isolation of other infectious agents.

Proteins produced from these mammalian expression systems, as well as reagents produced from these proteins, can be placed into appropriate container and packaged as test kits for convenience in performing assays. Other aspects of the present invention include a polypeptide comprising an HCV epitope attached to a solid phase and an antibody to an HCV epitope attached to a solid phase. Also included are methods for producing a polypeptide containing an HCV epitope comprising incubating host cells transformed with a mammalian expression vector containing a sequence encoding a polypeptide containing an HCV epitope under conditions which allow expression of the polypeptide, and a polypeptide containing an HCV epitope produced by this method.

The present invention provides assays which utilize the recombinant or synthetic polypeptides provided by the invention, as well as the antibodies described herein in various formats, any of which may employ a signal generating compound in the assay. Assays which do not utilize signal generating compounds to provide a means of detection also are provided. All of the assays described generally detect either antigen or antibody, or both, and include contacting a test sample with at least one reagent provided herein to form at least one antigen/antibody complex and detecting the presence of the complex. These assays are described in detail herein.

Vaccines for treatment of HCV infection comprising an immunogenic peptide obtained from a mammalian expression system containing an HCV epitope, or an inactivated preparation of HCV, or an attenuated preparation of HCV also are included in the present invention. Also included in the present invention is a method for producing antibodies to HCV comprising administering to an individual an isolated immunogenic polypeptide containing an HCV epitope in an amount sufficient to produce an immune response in the inoculated individual.

Also provided by the present invention is a tissue culture grown cell infected with HCV.

The term "antibody containing body component" (or test sample) refers to a component of an individual's body which is the source of the antibodies of interest. These components are well known in the art. These samples include biological

15

20

25

30

35

samples which can be tested by the methods of the present invention described herein and include human and animal body fluids such as whole blood, serum, plasma, cerebrospinal fluid, urine, lymph fluids, and various external sections of the respiratory, intestinal and genitourinary tracts, tears, saliva, milk, white blood cells, myelomas and the like, biological fluids such as cell culture supernatants, fixed tissue specimens and fixed cell specimens.

After preparing recombinant proteins, as described by the present invention, the recombinant proteins can be used to develop unique assays as described herein to detect either the presence of antigen or antibody to HCV. These compositions also can be used to develop monoclonal and/or polyclonal antibodies with a specific recombinant protein which specifically binds to the immunological epitope of HCV which is desired by the routineer. Also, it is contemplated that at least one recombinant protein of the invention can be used to develop vaccines by following methods known in the art.

It is contemplated that the reagent employed for the assay can be provided in the form of a kit with one or more containers such as vials or bottles, with each container containing a separate reagent such as a monoclonal antibody, or a cocktail of monoclonal antibodies, or a polypeptide (either recombinant or synthetic) employed in the assay.

"Solid phases" ("solid supports") are known to those in the art and include the walls of wells of a reaction tray, test tubes, polystyrene beads, magnetic beads, nitrocellulose strips, membranes, microparticles such as latex particles, and others. The "solid phase" is not critical and can be selected by one skilled in the art. Thus, latex particles, microparticles, magnetic or non-magnetic beads, membranes, plastic tubes, walls of microtiter wells, glass or silicon chips and sheep red blood cells are all suitable examples. Suitable methods for immobilizing peptides on solid phases include ionic, hydrophobic, covalent interactions and the like. A "solid phase", as used herein, refers to any material which is insoluble, or can be made insoluble by a subsequent reaction. The solid phase can be chosen for its intrinsic ability to attract and immobilize the capture reagent. Alternatively, the solid phase can retain an additional receptor which has the ability to attract and immobilize the capture reagent. The additional receptor can include a charged substance that is oppositely charged with respect to the capture reagent itself or to a charged substance conjugated to the capture reagent. As yet another alternative, the receptor molecule can be any specific binding member which is immobilized upon (attached to) the solid phase and which has the ability to immobilize the capture reagent through a specific binding reaction. The receptor molecule enables

10

15

20

25

30

35

the indirect binding of the capture reagent to a solid phase material before the performance of the assay or during the performance of the assay. The solid phase thus can be a plastic, derivatized plastic, magnetic or non-magnetic metal, glass or silicon surface of a test tube, microtiter well, sheet, bead, microparticle, chip, and other configurations known to those of ordinary skill in the art.

It is contemplated and within the scope of the invention that the solid phase also can comprise any suitable porous material with sufficient porosity to allow access by detection antibodies and a suitable surface affinity to bind antigens. Microporous structures are generally preferred, but materials with gel structure in the hydrated state may be used as well. Such useful solid supports include:

natural polymeric carbohydrates and their synthetically modified, crosslinked or substituted derivatives, such as agar, agarose, cross-linked alginic acid, substituted and cross-linked guar gums, cellulose esters, especially with nitric acid and carboxylic acids, mixed cellulose esters, and cellulose ethers; natural polymers containing nitrogen, such as proteins and derivatives, including crosslinked or modified gelatins; natural hydrocarbon polymers, such as latex and rubber; synthetic polymers which may be prepared with suitably porous structures, such as vinyl polymers, including polyethylene, polypropylene, polystyrene, polyvinylchloride, polyvinylacetate and its partially hydrolyzed derivatives, polyacrylamides, polymethacrylates, copolymers and terpolymers of the above polycondensates, such as polyesters, polyamides, and other polymers, such as polyurethanes or polyepoxides; porous inorganic materials such as sulfates or carbonates of alkaline earth metals and magnesium, including barium sulfate, calcium sulfate, calcium carbonate, silicates of alkali and alkaline earth metals, aluminum and magnesium; and aluminum or silicon oxides or hydrates, such as clays, alumina, talc, kaolin, zeolite, silica gel, or glass (these materials may be used as filters with the above polymeric materials); and mixtures or copolymers of the above classes, such as graft copolymers obtained by initializing polymerization of synthetic polymers on a pre-existing natural polymer. All of these materials may be used in suitable shapes, such as films, sheets, or plates, or they may be coated onto or bonded or laminated to appropriate inert carriers, such as paper, glass, plastic films, or fabrics.

The porous structure of nitrocellulose has excellent absorption and adsorption qualities for a wide variety of reagents including monoclonal antibodies. Nylon also possesses similar characteristics and also is suitable. It is contemplated that such porous solid supports described hereinabove are preferably in the form of sheets of thickness from about 0.01 to 0.5 mm, preferably about 0.1 mm. The pore

WO 93/15193 PCT/US93/00907

10

15

20

25

30

35

9

size may vary within wide limits, and is preferably from about 0.025 to 15 microns, especially from about 0.15 to 15 microns. The surfaces of such supports may be activated by chemical processes which cause covalent linkage of the antigen or antibody to the support. The irreversible binding of the antigen or antibody is obtained, however, in general, by adsorption on the porous material by poorly understood hydrophobic forces. Suitable solid supports also are described in U.S. Patent Application Serial No. 227,272.

The "indicator reagent "comprises a "signal generating compound" (label) which is capable of generating a measurable signal detectable by external means conjugated (attached) to a specific binding member for HCV. "Specific binding member" as used herein means a member of a specific binding pair. That is, two different molecules where one of the molecules through chemical or physical means specifically binds to the second molecule. In addition to being an antibody member of a specific binding pair for HCV, the indicator reagent also can be a member of any specific binding pair, including either hapten-anti-hapten systems such as biotin or anti-biotin, avidin or biotin, a carbohydrate or a lectin, a complementary nucleotide sequence, an effector or a receptor molecule, an enzyme cofactor and an enzyme, an enzyme inhibitor or an enzyme, and the like. An immunoreactive specific binding member can be an antibody, an antigen, or an antibody/antigen complex that is capable of binding either to HCV as in a sandwich assay, to the capture reagent as in a competitive assay, or to the ancillary specific binding member as in an indirect assay.

The various "signal generating compounds" (labels) contemplated include chromogens, catalysts such as enzymes, luminescent compounds such as fluorescein and rhodamine, chemiluminescent compounds, radioactive elements, and direct visual labels. Examples of enzymes include alkaline phosphatase, horseradish peroxidase, beta-galactosidase, and the like. The selection of a particular label is not critical, but it will be capable of producing a signal either by itself or in conjunction with one or more additional substances.

The various "signal generating compounds" (labels) contemplated include chromogens, catalysts such as enzymes, luminescent compounds such as fluorescein and rhodamine, chemiluminescent compounds such as acridinium, phenanthridinium and dioxetane compounds, radioactive elements, and direct visual labels. Examples of enzymes include alkaline phosphatase, horseradish peroxidase, beta-galactosidase, and the like. The selection of a particular label is not critical, but it will be capable of producing a signal either by itself or in conjunction with one or more additional substances.

15

20

25

30

35

Other embodiments which utilize various other solid phases also are contemplated and are within the scope of this invention. For example, ion capture procedures for immobilizing an immobilizable reaction complex with a negatively charged polymer, described in co-pending U. S. Patent Application Serial No. 150,278 corresponding to EP publication 0326100, and U. S. Patent Application Serial No. 375,029 (EP publication no. 0406473) both of which enjoy common ownership and are incorporated herein by reference, can be employed according to the present invention to effect a fast solution-phase immunochemical reaction. An immobilizable immune complex is separated from the rest of the reaction mixture by ionic interactions between the negatively charged poly-anion/immune complex and the previously treated, positively charged porous matrix and detected by using various signal generating systems previously described, including those described in chemiluminescent signal measurements as described in co-pending U.S. Patent Application Serial No.921,979 corresponding to EPO Publication No. 0 273,115, which enjoys common ownership and which is incorporated herein by reference.

Also, the methods of the present invention can be adapted for use in systems which utilize microparticle technology including in automated and semi-automated systems wherein the solid phase comprises a microparticle. Such systems include those described in pending U. S. Patent Applications 425,651 and 425,643, which correspond to published EPO applications Nos. EP 0 425 633 and EP 0 424 634, respectively, which are incorporated herein by reference.

The use of scanning probe microscopy (SPM) for immunoassays also is a technology to which the monoclonal antibodies of the present invention are easily adaptable. In scanning probe microscopy, in particular in atomic force microscopy, the capture phase, for example, at least one of the monoclonal antibodies of the invention, is adhered to a solid phase and a scanning probe microscope is utilized to detect antigen/antibody complexes which may be present on the surface of the solid phase. The use of scanning tunnelling microscopy eliminates the need for labels which normally must be utilized in many immunoassay systems to detect antigen/antibody complexes. Such a system is described in pending U. S. patent application Serial No. 662,147, which enjoys common ownership and is incorporated herein by reference.

The use of SPM to monitor specific binding reactions can occur in many ways. In one embodiment, one member of a specific binding partner (analyte specific substance which is the monoclonal antibody of the invention) is attached to a surface suitable for scanning. The attachment of the analyte specific substance may be by adsorption to a test piece which comprises a solid phase of a plastic or

15

20

25

30

35

metal surface, following methods known to those of ordinary skill in the art. Or, covalent attachment of a specific binding partner (analyte specific substance) to a test piece which test piece comprises a solid phase of derivatized plastic, metal, silicon, or glass may be utilized. Covalent attachment methods are known to those skilled in the art and include a variety of means to irreversibly link specific binding partners to the test piece. If the test piece is silicon or glass, the surface must be activated prior to attaching the specific binding partner. Activated silane compounds such as triethoxy amino propyl silane (available from Sigma Chemical Co., St. Louis, MO), triethoxy vinyl silane (Aldrich Chemical Co., Milwaukee, WI), and (3-mercapto-propyl)-trimethoxy silane (Sigma Chemical Co., St. Louis, MO) can be used to introduce reactive groups such as amino-, vinyl, and thiol, respectively. Such activated surfaces can be used to link the binding partner directly (in the cases of amino or thiol) or the activated surface can be further reacted with linkers such as glutaraldehyde, bis (succinimidyl) suberate, SPPD 9 succinimidyl 3-[2-pyridyldithio] propionate), SMCC (succinimidyl-4-[Nmaleimidomethyl] cyclohexane-1-carboxylate), SIAB (succinimidyl [4iodoacetyl] aminobenzoate), and SMPB (succinimidyl 4-[1-maleimidophenyl] butyrate) to separate the binding partner from the surface. The vinyl group can be oxidized to provide a means for covalent attachment. It also can be used as an anchor for the polymerization of various polymers such as poly acrylic acid, which can provide multiple attachment points for specific binding partners. The amino surface can be reacted with oxidized dextrans of various molecular weights to provide hydrophilic linkers of different size and capacity. Examples of oxidizable dextrans include Dextran T-40 (molecular weight 40,000 daltons), Dextran T-110 (molecular weight 110,000 daltons), Dextran T-500 (molecular weight 500,000 daltons), Dextran T-2M (molecular weight 2,000,000 daltons) (all of which are available from Pharmacia, LOCATION), or Ficoli (molecular weight 70,000 daltons (available from Sigma Chemical Co., St. Louis, MO). Also, polyelectrolyte interactions may be used to immobilize a specific binding partner on a surface of a test piece by using techniques and chemistries described by pending U. S. Patent applications Serial No. 150,278, filed January 29, 1988, and Serial No. 375,029, filed July 7, 1989, each of which enjoys common ownership and each of which is incorporated herein by reference. The preferred method of attachment is by covalent means. Following attachment of a specific binding member, the surface may be further treated with materials such as serum, proteins, or other blocking agents to minimize non-specific binding. The surface also may be scanned either at the site of manufacture or point of use to verify its suitability for assay

10

15

20

25

30

35

purposes. The scanning process is not anticipated to alter the specific binding properties of the test piece.

Various other assay formats may be used, including "sandwich" immunoassays and competitive probe assays. For example, the monoclonal antibodies produced from the proteins of the present invention can be employed in various assay systems to determine the presence, if any, of HCV proteins in a test sample. Fragments of these monoclonal antibodies provided also may be used. For example, in a first assay format, a polyclonal or monoclonal anti-HCV antibody or fragment thereof, or a combination of these antibodies, which has been coated on a solid phase, is contacted with a test sample which may contain HCV proteins, to form a mixture. This mixture is incubated for a time and under conditions sufficient to form antigen/antibody complexes. Then, an indicator reagent comprising a monoclonal or a polyclonal antibody or a fragment thereof, which specifically binds to the HCV fragment, or a combination of these antibodies, to which a signal generating compound has been attached, is contacted with the antigen/antibody complexes to form a second mixture. This second mixture then is incubated for a time and under conditions sufficient to form antibody/antigen/antibody complexes. The presence of HCV antigen present in the test sample and captured on the solid phase, if any, is determined by detecting the measurable signal generated by the signal generating compound. The amount of HCV antigen present in the test sample is proportional to the signal generated.

Alternatively, a polycional or monoclonal anti-HCV antibody or fragment thereof, or a combination of these antibodies which is bound to a solid support, the test sample and an indicator reagent comprising a monoclonal or polycional antibody or fragments thereof, which specifically binds to HCV antigen, or a combination of these antibodies to which a signal generating compound is attached, are contacted to form a mixture. This mixture is incubated for a time and under conditions sufficient to form antibody/antigen/antibody complexes. The presence, if any, of HCV proteins present in the test sample and captured on the solid phase is determined by detecting the measurable signal generated by the signal generating compound. The amount of HCV proteins present in the test sample is proportional to the signal generated.

In another alternate assay format, one or a combination of one or more monoclonal antibodies of the invention can be employed as a competitive probe for the detection of antibodies to HCV protein. For example, HCV proteins, either alone or in combination, can be coated on a solid phase. A test sample suspected of containing antibody to HCV antigen then is incubated with an indicator reagent

WO 93/15193

- 10

15

20

25

35

comprising a signal generating compound and at least one monoclonal antibody of the invention for a time and under conditions sufficient to form antigen/antibody complexes of either the test sample and indicator reagent to the solid phase or the indicator reagent to the solid phase. The reduction in binding of the monoclonal antibody to the solid phase can be quantitatively measured. A measurable reduction in the signal compared to the signal generated from a confirmed negative NANB hepatitis test sample indicates the presence of anti-HCV antibody in the test sample.

In yet another detection method, each of the monoclonal antibodies of the present invention can be employed in the detection of HCV antigens in fixed tissue sections, as well as fixed cells by immunohistochemical analysis.

In addition, these monoclonal antibodies can be bound to matrices similar to CNBr-activated Sepharose and used for the affinity purification of specific HCV proteins from cell cultures, or biological tissues such as blood and liver.

The monoclonal antibodies of the invention can also be used for the generation of chimeric antibodies for therapeutic use, or other similar applications.

The monoclonal antibodies or fragments thereof can be provided individually to detect HCV antigens. Combinations of the monoclonal antibodies (and fragments thereof) provided herein also may be used together as components in a mixture or "cocktail" of at least one anti-HCV antibody of the invention with antibodies to other HCV regions, each having different binding specificities. Thus, this cocktail can include the monoclonal antibodies of the invention which are directed to HCV proteins and other monoclonal antibodies to other antigenic determinants of the HCV genome.

The polyclonal antibody or fragment thereof which can be used in the assay formats should specifically bind to a specific HCV region or other HCV proteins used in the assay. The polyclonal antibody used preferably is of mammalian origin; human, goat, rabbit or sheep anti-HCV polyclonal antibody can be used. Most preferably, the polyclonal antibody is rabbit polyclonal anti-HCV antibody. The polyclonal antibodies used in the assays can be used either alone or as a cocktail of polyclonal antibodies. Since the cocktails used in the assay formats are comprised of either monoclonal antibodies or polyclonal antibodies having different HCV specificity, they would be useful for diagnosis, evaluation and prognosis of HCV infection, as well as for studying HCV protein differentiation and specificity.

In another assay format, the presence of antibody and/or antigen to HCV can be detected in a simultaneous assay, as follows. A test sample is simultaneously contacted with a capture reagent of a first analyte, wherein said capture reagent

10

15

20

25

30

35

comprises a first binding member specific for a first analyte attached to a solid phase and a capture reagent for a second analyte, wherein said capture reagent comprises a first binding member for a second analyte attached to a second solid phase, to thereby form a mixture. This mixture is incubated for a time and under conditions sufficient to form capture reagent/first analyte and capture reagent/second analyte complexes. These so-formed complexes then are contacted with an indicator reagent comprising a member of a binding pair specific for the first analyte labelled with a signal generating compound and an indicator reagent comprising a member of a binding pair specific for the second analyte labelled with a signal generating compound to form a second mixture. This second mixture is incubated for a time and under conditions sufficient to form capture reagent/first analyte/indicator reagent complexes and capture reagent/second analyte/indicator reagent complexes. The presence of one or more analytes is determined by detecting a signal generated in connection with the complexes formed on either or both solid phases as an indication of the presence of one or more analytes in the test sample. In this assay format, proteins derived from human expression systems may be utilized as well as monoclonal antibodies produced from the proteins derived from the mammalian expression systems as disclosed herein. Such assay systems are described in greater detail in pending U.S. Patent Application Serial No. 07/574,821 entitled Simultaneous Assay for Detecting One Or More Analytes, filed August 29, 1990, which enjoys common ownership and is incorporated herein by reference.

In yet other assay formats, recombinant proteins may be utilized to detect the presence of anti-HCV in test samples. For example, a test sample is incubated with a solid phase to which at least one recombinant protein has been attached. These are reacted for a time and under conditions sufficient to form antigen/antibody complexes. Following incubation, the antigen/antibody complex is detected. Indicator reagents may be used to facilitate detection, depending upon the assay system chosen. In another assay format, a test sample is contacted with a solid phase to which a recombinant protein produced as described herein is attached and also is contacted with a monoclonal or polyclonal antibody specific for the protein, which preferably has been labelled with an indicator reagent. After incubation for a time and under conditions sufficient for antibody/antigen complexes to form, the solid phase is separated from the free phase, and the label is detected in either the solid or free phase as an indication of the presence of HCV antibody. Other assay formats utilizing the proteins of the present invention are contemplated. These include contacting a test sample with a solid phase to which at

least one recombinant protein produced in the mammalian expression system has been attached, incubating the solid phase and test sample for a time and under conditions sufficient to form antigen/antibody complexes, and then contacting the solid phase with a labelled recombinant antigen. Assays such as this and others are described in pending U.S. Patent Application Serial No. 07/787,710, which enjoys common ownership and is incorporated herein by reference.

5

10

15

20

25

30

35

While the present invention discloses the preference for the use of solid phases, it is contemplated that the proteins of the present invention can be utilized in non-solid phase assay systems. These assay systems are known to those skilled in the art, and are considered to be within the scope of the present invention.

The present invention will now be described by way of examples, which are meant to illustrate, but not to limit, the spirit and scope of the invention.

EXAMPLES

Example 1: Generation of HCV Genomic Clones

RNA isolated from the serum or plasma of a chimpanzee (designated as "CO") experimentally infected with HCV, or an HCV seropositive human patient (designated as "LG") was transcribed to cDNA using reverse transcriptase employing either random hexamer primers or specific anti-sense primers derived. from the prototype HCV-1 sequence. The sequence has been reported by Choo et al. (Choo et al., Proc. Nat'l. Acad. Sci. USA 88:2451-2455 [1991], and is available through GenBank data base, Accession No. M62321). This cDNA then was amplified using PCR and AmpliTag® DNA polymerase (available in the Gene Amp Kit® from Perkin Elmer Cetus, Norwalk, Conneticut 06859) employing either a second sense primer located approximately 1000-2000 nucleotides upstream of the specific antisense primer or a pair of sense and antisense primers flanking a 1000-2000 nucleotide fragment of HCV. After 25 to 35 cycles of amplification following standard procedures known in the art, an aliquot of this reaction mixture was subjected to nested PCR (or "PCR-2"), wherein a pair of sense and antisense primers located internal to the original pair of PCR primers was employed to further amplify HCV gene segments in quantities sufficient for analysis and subcloning, utilizing endonuclease recognition sequences present in the second set of PCR primers. In this manner, seven adjacent HCV DNA fragments were generated which then could be assembled using the generic cloning strategy presented and described in FIGURE 1. The location of the specific primers used in this manner are presented in Table 1 and are numbered according to the HCV-1 sequence reported by Choo et al (GenBank data base, Accession No. M62321). Prior to

15

20

25

30

35

assembly, the DNA sequence of each of the individual fragments was determined and translated into the genomic amino acid sequences presented in SEQUENCE ID. NO. 1 and 2, respectively, for CO and LG, respectively. Comparison of the genomic polypeptide of CO with that of HCV-1 demonstrated 98 amino acid differences. Comparison of the genomic polypeptide of CO with that of LG, demonstrated 150 amino acid differences. Comparison of the genomic polypeptide of LG with that of HCV-1 demonstrated 134 amino acid differences.

Example 2. Expression of the HCV E2 Protein As A Fusion With The Amyloid Precursor Protein (APP)

The HCV E2 protein from CO developed as described in Example 1 was expressed as a fusion with the Amyloid Precursor Protein (APP). APP has been described by Kang et al., Nature 325:733-736 (1987). Briefly, HCV amino acids 384-749 of the CO isolate were used to replace the majority of the APP coding sequence as demonstrated in FIGURE 2. A HindIII-Styl DNA fragment representing the amino-terminal 66 amino acids and a Bglll-Xbal fragment representing the carboxyl-terminal 105 amino acids of APP were ligated to a PCR derived HCV fragment from CO representing HCV amino acids 384-749 containing Styl and Bglll restriction sites on its 5' and 3' ends, respectively. This APP-HCV-E2 fusion gene cassette then was cloned into the commercially available mammalian expression vector pRC/CMV shown in FIGURE 3, (available from Invitrogen, San Diego, CA) at the unique HindIII and Xbal sites. After transformation into E. coli DH5a, a clone designated pHCV-162 was isolated, which placed the expression of the APP-HCV-E2 fusion gene cassette under control of the strong CMV promotor. The complete nucleotide sequence of the mammalian expression vector pHCV-162 is presented in SQUENCE ID. NO. 3. Translation of nucleotides 922 through 2535 results in the complete amino acid sequence of the APP-HCV-E2 fusion protein expressed by pHCV-162 as presented in SEQUENCE ID. NO. 4.

A primary Human Embryonic Kidney (HEK) cell line transformed with human adenovirus type 5, designated as HEK-293, was used for all transfections and expression analyses. HEK-293 cells were maintained in Minimum Essential Medium (MEM) which was supplemented with 10% fetal calf serum (FCS), penicillin and streptomycin.

Approximately 20 µg of purified DNA from pHCV-162 was transfected into HEK-293 cells using the modified calcium phosphate protocol as reported by Chen et al., Molecular and Cellular Biology 7(8):2745-2752 (1987). The calcium-phosphate-DNA solution was incubated on the HEK-293 cells for about 15 to 24

15

20

25

30

35

hours. The solution was removed, the cells were washed twice with MEM media, and then the cells were incubated in MEM media for an additional 24 to 48 hours. In order to analyze protein expression, the transfected cells were metabolically labelled with 100 μCi/ml S-35 methionine and cysteine for 12 to 18 hours. The culture media was removed and stored, and the cells were washed in MEM media and then lysed in phosphate buffered saline (PBS) containing 1% Triton X-100® (available from Sigma Chemical Co., St. Louis, MO), 0.1% sodium dodecyl sulfate (SDS), and 0.5% deoxychloate, designated as PBS-TDS. This cell lysate then was frozen at -70°C for 2 to 24 hours, thawed on ice and then clarified by centrifugation at 50,000 x g force for one hour at 4°C. Standard radioimmunoprecipitation assays (RIPAs) then were conducted on those labelled cell lysates and/or culture medias. Briefly, labelled cell lysates and/or culture medias were incubated with 2 to 5 µl of specific sera at 4°C for one hour. Protein-A sepharose then was added and the samples were further incubated for one hour at 4°C with agitation. The samples were then centrifuged and the pellets washed several times with PBS-TDS buffer. Proteins recovered by immunoprecipitation were eluted by heating in an electrophoresis sample buffer (50 mM Tris-HCl, pH 6.8, 100 mM dithiothreitol [DTT], 2% SDS, 0.1% bromophenol blue, and 10% glycerol) for five minutes at 95°C. The eluted proteins then were separated by SDS polyacrylamide gels which were subsequently treated with a fluorographic reagent such as Enlightening® (available from NEN [DuPont], Boston, MA), dried under vacuum and exposed to x-ray film at -70°C with intensifying screens. FIGURE 4 presents a RIPA analysis of pHCV-162 transfected HEK cell lysate precipitated with normal human sera (NHS), a monoclonal antibody directed against APP sequences which were replaced in this construct (MAB), and an HCV antibody positive human sera (#25). Also presented in FIGURE 4 is the culture media (supernatant) precipitated with the same HCV antibody positive human sera (#25). From FIGURE 4, it can be discerned that while only low levels of an HCV specific protein of approximately 75K daltons is detected in the culture media of HEK-293 cells transfected with pHCV-162, high levels of intracellular protein expression of the APP-HCV-E2 fusion protein of approximately 70K datons is evident.

In order to further characterize this APP-HCV-E2 fusion protein, rabbit polyclonal antibody raised against synthetic peptides were used in a similar RIPA, the results of which are illustrated in FIGURE 5. As can be discerned from this Figure, normal rabbit serum (NRS) does not precipitate the 70K dalton protein while rabbit sera raised against HCV amino acids 509-551 (6512), HCV amino

10

20

25

30

35

acids 380-436 (6521), and APP amino acids 45-62 (anti- N-terminus) are highly specific for the 70K dalton APP-HCV-E2 fusion protein.

In order to enhance secretion of this APP-HCV-E2 fusion protein, another clone was generated which fused only the amino-terminal 66 amino acids of APP, which contain the putative secretion signal sequences to the HCV-E2 sequences. In addition, a strongly hydrophobic sequence at the carboxyl-terminal end of the HCV-E2 sequence which was identified as a potential transmembrane spanning region was deleted. The resulting clone was designated as pHCV-167 and is schematically illustrated in FIGURE 2. The complete nucleotide sequence of the mammalian expression vector pHCV-167 is presented inSEQUENCE ID. NO. 5 Translation of nucleotides 922 through 2025 results in the complete amino acid sequence of the APP-HCV-E2 fusion protein expressed by pHCV-167 as presented in SEQUENCE ID. NO. 6. Purified DNA of pHCV-167 was transfected into HEK-293 cells and analyzed by RIPA and polyacrylamide SDS gels as described previously herein. FIGURE 6 presents the results in which a normal human serum sample (NHS) failed to recognize the APP-HCV-E2 fusion protein present in either the cell lysate or the cell supernatant of HEK-293 cells transfected with pHCV-167. The positive control HCV serum sample (#25), however, precipitated an approximately 65K dalton APP-HCV-E2 fusion protein present in the cell lysate of HEK-293 cells transfected with pHCV-167. In addition, substantial quantities of secreted APP-HCV-E2 protein of approximately 70K daltons was precipitated from the culture media by serum #25.

Digestion with Endoglycosidase-H (Endo-H) was conducted to ascertain the extent and composition of N-linked glycosylation in the APP-HCV E2 fusion proteins expressed by pHCV-167and pHCV-162 in HEK-293 cells. Briefly, multiple aliquots of labelled cell lysates from pHCV-162 and pHCV-167 transfected HEK-293 cells were precipitated with human serum #50 which contained antibody to HCV E2 as previously described. The Protein-A sepharose pellet containing the immunoprecipitated protein-antibody complex was then resuspended in buffer (75mM sodium acetate, 0.05% SDS) containing or not containing 0.05 units per ml of Endo-H (Sigma). Digestions were performed at 37°C for 12 to 18 hours and all samples were analyzed by polyacrylamide SDS gels as previously described. FIGURE 7 presents the results of Endo-H digestion. Carbon-14 labelled molecular weight standards (MW) (obtained from Amersham, Arlington Heights, IL) are common on all gels and represent 200K, 92.5K, 69K, 46K, 30K and 14. 3K daltons, respectively. Normal human serum (NHS) does not immunoprecipitate the APP-HCV-E2 fusion protein expressed by either pHCV-162 or pHCV-167, while

10

15

20

25

30

35

human serum positive for HCV E2 antibody (#50) readily detects the 72K dalton APP-HCV-E2 fusion protein in pHCV-162 and the 65K dalton APP-HCV E2 fusion protein in pHCV-167. Incubation of these immunoprecipitated proteins in the absence of Endo-H (#50 -Endo-H) does not significantly affect the quantity or mobility of either pHCV-162 or pHCV-167 expressed proteins. Incubation in the presence of Endo-H (#50 +Endo-H), however, drastically reduces the mobility of the proteins expressed by pHCV-162 and pHCV-167, producing a heterogenous size distribution. The predicted molecular weight of the non-glycosylated polypeptide backbone of pHCV-162 is approximately 59K daltons. Endo-H treatment of pHCV-162 lowers the mobility to a minimum of approximately 44K daltons, indicating that the APP-HCV-E2 fusion protein produced by pHCV-162 is proteolytically cleaved at the carboxyl-terminal end. A size of approximately 44K daltons is consistent with cleavage at or near HCV amino acid 720. Similarly, Endo-H treatment of pHCV-167 lowers the mobility to a minimum of approximately 41K daltons, which compares favorably with the predicted molecular weight of approximately 40K daltons for the intact APP-HCV-E2 fusion protein expressed by pHCV-167.

Example 3 Detection of HCV E2 Antibodies

Radio-immunoprecipitation assay (RIPA) and polyacrylamide SDS gel analysis previously described was used to screen numerous serum samples for the presence of antibody directed against HCV E2 epitopes. HEK-293 cells transfected with pHCV-162 were metabolically labelled and cell lysates prepared as previously described. In addition to RIPA analysis, all serum samples were screened for the presence of antibodies directed against specific HCV recombinant antigens representing distinct areas of the HCV genome using the Abbott Matrix[®] System. (available from Abbott Laboratories, Abbott Park, IL 60064, U.S. No. Patent 5,075,077). In the Matrix data presented in Tables 2 through 7, C100 yeast represents the NS4 region containing HCV amino acids 1569-1930, C100 E.coli represents HCV amino acids 1676-1930, NS3 represents HCV amino acids 1192-1457, and CORE represents HCV amino acids 1-150.

FIGURE 8 presents a representative RIPA result obtained using pHCV-162 cell lysate to screen HCV antibody positive American blood donors and transfusion recipients. Table 2 summarizes the antibody profile of these various American blood samples, with seven of seventeen (41%) samples demonstrating HCV E2 antibody. Genomic variability in the E2 region has been demonstrated between different HCV isolates, particularly in geographically distinct isolates which may

15

20

25

30

35

lead to differences in antibody respones. We therefore screened twenty-six Japanese volunteer blood donors and twenty Spanish hemodialysis patients previously shown to contain HCV antibody for the presence of specific antibody to the APP-HCV E2 fusion protein expressed by pHCV-162. Figures 9 and 10 present the RIPA analysis on twenty-six Japanese volunteer blood donors. Positive control human sera (#50) and molecular weight standards (MW) appear in both figures in which the specific immunoprecipitation of the approximately 72K dalton APP-HCV-E2 fusion protein is demonstrated for several of the serum samples tested. Table 3 presents both the APP-HCV-E2 RIPA and Abbott Matrix® results summarizing the antibody profiles of each of the twenty-six Japanese samples tested. Table 4 presents similar data for the twenty Spanish hemodialysis patients tested. Table 5 summarizes the RIPA results obtained using pHCV-162 to detect HCV E2 specific antibody in these various samples. Eighteen of twenty-six (69%) Japanese volunteers blood donors, fourteen of twenty (70%) Spanish hemodialysis patients, and seven of seventeen (41%) American blood donors or transfusion recipients demonstrated a specific antibody response against the HCV E2 fusion protein. The broad immunoreactivity demonstrated by the APP-HCV-E2 fusion protein expressed by pHCV-162 suggests the recognition of conserved epitopes within HCV E2.

Serial bleeds from five transfusion recipients which seroconverted to HCV antibody were also screened using the APP-HCV-E2 fusion protein expressed by pHCV-162. This analysis was conducted to ascertain the time interval after exposure to HCV at which E2 specific antibodies can be detected. Table 6 presents one such patient (AN) who seroconverted to NS3 at 154 days post transfusion (DPT). Antibodies to HCV E2 were not detected by RIPA until 271 DPT. Table 7 presents another such patient (WA), who seroconverted to CORE somewhere before 76 DPT and was positive for HCV E2 antibodies on the next available bleed date (103 DPT). Table 8 summarizes the serological results obtained from these five transfusion recipients indicating (a) some general antibody profile at seroconversion (AB Status); (b) the days post transfusion at which an ELISA test would most likely detect HCV antibody (2.0 GEN); (c) the samples in which HCV E2 antibody was detected by RIPA (E2 AB Status); and (d) the time interval covered by the bleed dates tested (Samples Tested). The results indicate that antibody to HCV E2, as detected in the RIPA procedure described here, appears after seroconversion to at least one other HCV marker (CORE, NS3, C100, etc.) and is persistent in nature once it appears. In addition, the absence of antibody to the structural gene CORE appears highly correlated with the absence of detectable antibody to E2,

another putative structural antigen. Further work is ongoing to correlate the presence or absence of HCV gene specific antibodies with progression of disease and/or time interval since exposure to HCV viral antigens.

Example 4 Expression of HCV E1 and E2 Using Human Growth Hormone Secretion Signal

HCV DNA fragments representing HCV E1 (HCV amino acids 192 to 384) and HCV E2 (HCV amino acids 384-750 and 384-684) were generated from the CO isolate using PCR as described in Example 2. An Eco RI restriction site was used to 10 attach a synthetic oligonucleotide encoding the Human Growth Hormone (HGH) secretion signal (Blak et al, Oncogene, 3 129-136, 1988) at the 5' end of these HCV sequence. The resulting fragment was then cloned into the commercially available mammalian expression vector pCDNA-I, (available from Invitrogen, San Diego, California) illustrated in FIGURE 11. Upon transformation into <u>E. coli</u> MC1061/P3, the resulting clones place the expression of the cloned sequence under control of the strong CMV promoter. Following the above outlined methods, a clone capable of expressing HCV-E1 (HCV amino acids 192-384) employing the HGH secretion signal at the extreme amino-terminal end was isolated. The clone was designated pHCV-168 and is schematically illustrated in FIGURE 12. Similarly, 20 clones capable of expressing HCV E2 (HCV amino acids 384-750 or 384-684) exmploying the HGH secretion signal were isolated, designated pHCV-169 and pHVC-170 respectively and illustrated in FIGURE 13. The complete nucleotide sequence of the mammalian expression vectors pHCV-168, pHCV-169, and pHCV-170 are presented in Sequence ID. NO. 7, 9, and 11 respectively. Translation of 25 nucleotides 2227 through 2913 results in the complete amino acic sequence of the HGH-HCV-E1 fusion protein expressed by pHCV-168 as presented in Sequence ID. NO. 8. Translation of nucleotides 2227 through 3426 results in the complete amino acic sequence of the HGH-HCV-E2 fusion protein expressed by pHCV-169 as presented in Sequence ID. NO. 10. Translation of nucleotides 2227 through 3228 30 results in the complete amino acic sequence of the HGH-HCV-E2 fusion protein expressed by pHCV-170 as presented in Sequence ID. NO. 12. Purified DNA from pHCV-168, pHCV-169, and pHCV-170 was transfected into HEK-293 cells which were then metabolically labelled, cell lysates prepared, and RIPA analysis performed as described previously herein. Seven sera samples previously shown to contain antibodies to the APP-HCV-E2 fusion protein expressed by pHCV-162 were 35 screened against the labelled cell lysates of pHCV-168, pHCV-169, and pHCV-170. Figure 14 presents the RIPA analysis for pHCV-168 and demonstrated that five

20

25

30

35

sera containing HCV E2 antibodies also contain HCV E1 antibodies directed against as approximately 33K dalton HGH-HCV-E1 fusion protein (#25, #50, 121, 503, and 728), while two other sera do not contain those antibodies (476 and 505). Figure 15 presents the RIPA results obtained when the same sera indicated above were screened against the labelled cell lysates of either pHCV-169 or pHCV-170. All seven HCV E1 antibody positive sera detected two protein species of approximately 70K and 75K daltons in cells transfected with pHCV-168. These two different HGH-HCV-E2 protein species could result from incomplete proteolytic cleavage of the HCV E2 sequence at the carboxyl-terminal end (at or near HCV amino acid 720) or from differences in carbohydrate processing between the two species. All seven HCV E2 antibody positive sera detected a single protein species of approximately 62K daltons for the HGH-HCV-E2 fusion protein expressed by pHCV-170. Table 9 summarizes the serological profile of six of the seven HCV E2 antibody positive sera screened against the HGH-HCV-E1 fusion protein expressed by pHCV-170. Further work is ongoing to correlate the presence or absence of HCV gene specific antibodies with progression of disease and/or time interval since exposure to HCV viral antigens.

Clones pHCV-167 and pHCV-162 have been deposited at the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland, 20852, as of January 17, 1992 under the terms of the Budapest Treaty, and accorded the following ATCC Designation Numbers: Clone pHCV-167 was accorded ATCC deposit number 68893 and clone pHCV-162 was accorded ATCC deposit number 68894. Clones pHCV-168, pHCV-169 and pHCV-170 have been deposited at the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland, 20852, as of January 26, 1993 under the terms of the Budapest Treaty, and accorded the following ATCC Designation Numbers: Clone pHCV-168 was accorded ATCC deposit number 69228, clone pHCV-169 was accorded ATCC deposit number 69229 and clone pHCV-170 was accorded ATCC deposit number 69230. The designated deposits will be maintained for a period of thirty (30) years from the date of deposit, or for five (5) years after the last request for the deposit; or for the enforceable life of the U.S. patent, whichever is longer. These deposits and other deposited materials mentioned herein are intended for convenience only, and are not required to practice the invention in view of the descriptions herein. The HCV cDNA sequences in all of the deposited materials are incorporated herein by reference.

Other variations of applications of the use of the proteins and mammalian expression systems provided herein will be apparent to those skilled in the art.

Accordingly, the invention is intended to be limited only in accordance with the appended claims.

TABLE 1

5

	PCR-1 I	PRIMERS	PCR-2 PRIMERS		
FRAGMENT	SENSE	ANTISENSE	SENSE	ANTISENSE	
1	1-17	1376-1400	14-31	1344-1364	
2	1320-1344	2332-2357	1357-1377	2309-2327	
3	2288-2312	3245-3269	2322-2337	3224-3242	
4	3178-3195	5303-5321	3232-3252	5266-5289	
5	5229-5249	6977-6996	5273-5292	6940-6962	
6	6907-6925	8221-8240	6934-6954	8193-8216	
7	8175-8194	9385-9401	8199-8225	9363-9387	

TABLE 2
AMERICAN HCV POSITIVE SERA

10

SAMPLE	C100 YEAST S/CO	C100 ECOLT S/CO	NS3 S/CO	COPE S/CO	E2 RIPA
22	0.31	1.09	1.72	284.36	+
32	0.02	0.10	7.95	331.67	-
35	0.43	0.68	54.61	2.81	-
37	136.24	144.29	104.13	245.38	+
50	101.04	133.69	163.65	263.72	+
108	39.07	34.55	108.79	260.47	•
121	1.28	4.77	172.65	291.82	+
128	0.06	0.06	0.87	298.49	•
129	0.00	0.02	107.11	0.00	-
142	8.45	8.88	73.93	2.32	-
156	0.45	0.14	0.67	161.84	-
163	1.99	3.26	11.32	24.36	-
МІ	89.9	118.1	242.6	120.4	-
ΚE	167.2	250.9	0.8	0.3	-
WA	164.4	203.3	223.9	160.9	+
PA	50.6	78.8	103.8	78.0	+
AN	224.8	287.8	509.9	198.8	+

TABLE 3

JAPANESE HCV POSITIVE POSITIVE BLOOD DONORS

5	SAMPLE	C100 YEAST S/CO	C100 ECOLT S/CO	NS3 S/CO	COPE S/CO	E2 RIPA
	410	86.33	93.59	9.68	257.82	+
	435	0.18	0.18	0.69	39.25	+
	441	0.20	0.09	0.17	6.51	-
	476	0.37	1.29	144.66	302.35	+
	496	39.06	37.95	2.78	319.99	-
	560	1.08	0.68	3.28	26.59	•
	589	0.06	1.28	117.82	224.23	+
	620	0.17	1.37	163.41	256.64	+
	622	123.46	162.54	154.67	243.44	+
	623	23.46	26.55	143.72	277.24	+
	633	0.01	0.43	161.84	264.02	+
	639	1.40	2.23	12.15	289.80	+
	641	0.01	0.08	8.65	275.00	+
	648	-0.00	0.03	0.79	282.64	+
	649	97.00	127.36	147.46	194.73	+
	657	4.12	6.33	141.04	256.57	+
	666	0.14	0.24	5.90	60.82	•
	673	72.64	90.11	45.31	317.66	+
	677	0.05	0.23	2.55	99.67	•
	694	86.72	87.18	45.43	248.80	+
	696	0.02	-0.02	0.26	12.55	•
	706	17.02	12.96	153.77	266.87	+
	717	0.04	0.02	0.15	10.46	-
	728	-0.01	0.26	90.37	246.30	+
	740	0.02	0.10	0.25	46.27	•
	743	1.95	1.56	133.23	254.25	+

PCT/US93/00907

25

TABLE 4 SPANISH HEMODIALYSIS PATIENTS

SAMPLE	C100 YEAST S/CO	C100 ECOLT S/CO	NS3 S/CO	COPE S/CO	E2 RIPA
1	0.0	0.3	188.6	-0.0	•
2	129.3	142.8	165.4	201.0	+
3	113.7	128.5	154.5	283.3	+
5	130.6	143.8	133.4	186.1	+
6	56.2	63.4	93.6	32.0	+
7	0.0	0.2	72.1	211.5	+
8	156.7	171.9	155.1	227.0	+
9	65.3	78.9	76.1	102.6	+
10	136.7	149.3	129.4	190.2	+
11	0.0	0.7	155.7	272.4	+
12	1.0	1.9	143.6	210.6	+
13	0.0	0.3	111.2	91.1	•
14	1.1	3.1	94.7	214.8	•
15	45.9	66.1	106.3	168.2	+
16	36.3	68.8	149.3	0.1	•
17	121.0	129.9	113.4	227.8	+
18	64.8	99.7	138.9	0.2	•
19	25.6	34.1	157.4	254.9	+
20	104.9	125.1	126.8	218.3	+
21	48.1	68.5	0.8	49.4	-

TABLE 5
ANTIBODY RESPONSE TO HCV PROTEINS

10		ANTIBOD	r hearoivae	10 rov rno	10140		
••		C100 YEAST S/CO	C100 E. COLI S/CO	NS3 S/CO	COPE S/C0	E2 RIPA	
	AMERICAN BLOOD DONORS	11/17	12/17	14/17	15/17	7/17	
	SPANISH HEMODIALYSIS PATIENTS	16/20	16/20	19/20	17/20	14/20	
	JAPANESE BLOOD DONORS	12/26	14/26	20/26	26/26	18/26	

TABLE 6
HUMAN TRANSFUSION RECIPIENT (AN)

5	DAYS POST TRANS	C100 YEAST S/CO	C100 E.COLI S/CO	NS3 S/CO	COPE S/C0	E2 RIPA
	29	1.8	1.9	8.9	1.1	-
	57	0.4	0.3	1.2	0.4	•
	88	0.3	0.3	0.4	0.7	-
	116	0.1	0.2	0.5	0.2	•
	154	0.3	0.7	65.3	0.8	-
	179	18.0	21.5	445.6	1.5	•
	271	257.4	347.2	538.0	3.1	+
	376	240.0	382.5	513.5	139.2	+
	742	292.9	283.7	505.3	198.1	+
	1105	282.1	353.9	456.1	202.2	+
	1489	224.8	287.8	509.9	198.8	+

TABLE 7
HUMAN TRANSFUSION RECIPIENT (WA)

DAYS C100 C100 E2 E. COLI COPE ! NS3 YEAST POST RIPA S/C0 **TRANS** S/CO_ S/CO S/CO 0.1 0.6 0.4 1.2 43 72.7 0.9 76 0.1 0.1 184.4 1.4 103 0.0 0.6 208.7 1.9 3.7 3.7 118 98.9 12.3 178.0 83.8 145 134.3 185.2 158 142.1 173.8 223.9 160.9 203.3 164.4 174

10

27

TABLE 8
HUMAN TRANSFUSION RECIPIENTS

	ABSTATUS	2.0 GEN	E2 AB STATUS	SAMPLES TESTED
MI	STRONG RESPONSE	78 DPT	NEG.	1-178 DPT
ΚE	EARLY C100	103 DPT	NEG.	1-166 DPT
WA	EARLY CORE	76 DPT	POS. 103-173 DPT	1-173 DPT
PA	EARLY C100	127 DPT	POS. 1491-3644 DPT	1-3644 DPT
AN	EARLY 33C	179 DPT	POS. 271-1489 DPT	1-1489 DPT

5

TABLE 9
SELECTED HCV E2 ANTIBODY POSITIVE SAMPLES

•			C100			
		C100 YEAST	C100 E.COLI	NS3	COFE .	E2
10	SAMPLE	S/CO_	S/CO	S/CO_	S/C0	RIPA
	50	101.04	133.69	163.65	263.72	+
	121	1.28	4.77	172.65	291.82	+
	503	113.7	128.5	154.5	283.3	+
	505	130.6	143.8	133.4	186.1	•
	476	0.37	1.29	144.66	302.35	-
	728	-0.0 <u>1</u>	0.26	90.37	246.30	+

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: CASEY, JAMES M.
 BODE, SUZANNE L.
 ZECK, BILLY J.
 YAMAGUCHI, JULIE
 FRAIL, DONALD E.
 DESAI, SURESH M.
 DEVARE, SUSHIL G.
 - (ii) TITLE OF INVENTION: MAMMALIAN EXPRESSION SYSTEMS FOR HCV PROTEINS
 - (iii) NUMBER OF SEQUENCES: 12
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: ABBOTT LABORATORIES D377/AP6D
 - (B) STREET: ONE ABBOTT PARK ROAD
 - (C) CITY: ABBOTT PARK
 - (D) STATE: IL
 - (E) COUNTRY: USA
 - (F) ZIP: 60064-3500
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: POREMBSKI, PRISCILLA E.
 - (B) REGISTRATION NUMBER: 33,207
 - (C) REFERENCE/DOCKET NUMBER: 5131.PC.01
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 708-937-6365
 - (B) TELEFAX: 708-937-9556
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3011 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn

Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val Gly 25

Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Leu Gly Val Arg Ala

Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro 55

Ile Pro Lys Ala Arg Arg Pro Glu Gly Arg Thr Trp Ala Gln Pro Gly 70

Tyr Prc Trp Pro Leu Tyr Gly Asn Glu Gly Cys Gly Trp Ala Gly Trp

Leu Lei Ser Pro Arg Gly Ser Arg Pro Ser Trp Gly Pro Thr Asp Pro 105

Arg Arg Arg Ser Arg Asn Leu Gly Lys Val Ile Asp Thr Leu Thr Cys 115

Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala Pro Leu 135

Gly Gly Ala Ala Arg Ala Leu Ala His Gly Val Arg Val Leu Glu Asp 150 155

Gly Val Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile 165

Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser Ala Tyr 180 185

Gln Val Arg Asn Ser Ser Gly Leu Tyr His Val Thr Asn Asp Cys Pro 200

Asn Ser Ser Ile Val Tyr Glu Ala Ala Asp Ala Ile Leu His Thr Pro 210 215

Gly Cys Val Pro Cys Val Arg Glu Gly Asn Ala Ser Arg Cys Trp Val 225

Ala Val Thr Pro Thr Val Ala Thr Arg Asp Gly Lys Leu Pro Thr Thr 250

Gln Leu Arg Arg His Ile Asp Leu Leu Val Gly Ser Ala Thr Leu Cys

260 265 270

Ser Ala Leu Tyr Val Gly Asp Leu Cys Gly Ser Val Phe Leu Val Gly 275 280 285

Gln Leu Phe Thr Phe Ser Pro Arg Arg His Trp Thr Thr Gln Asp Cys 290 295 300

Asn Cys Ser Ile Tyr Pro Gly His Ile Thr Gly His Arg Met Ala Trp 305 310 315 320

Asp Met Met Met Asn Trp Ser Pro Thr Ala Ala Leu Val Val Ala Gln 325 330 335

Leu Leu Arg Ile Pro Gln Ala Ile Leu Asp Met Ile Ala Gly Ala His 340 345 350

Trp Gly Val Leu Ala Gly Ile Ala Tyr Phe Ser Met Val Gly Asn Trp 355 360 365

Ala Lys Val Leu Val Val Leu Leu Leu Phe Ala Gly Val Asp Ala Glu 370 375 380

Thr His Val Thr Gly Gly Ser Ala Gly His Thr Thr Ala Gly Leu Val 385 390 395 400

Arg Leu Leu Ser Pro Gly Ala Lys Gln Asn Ile Gln Leu Ile Asn Thr 405 410 415

Asn Gly Ser Trp His Ile Asn Ser Thr Ala Leu Asn Cys Asn Glu Ser 420 425 430

Leu Asn Thr Gly Trp Leu Ala Gly Leu Phe Tyr His His Lys Phe Asn 435 440 445

Ser Ser Gly Cys Pro Glu Arg Leu Ala Ser Cys Arg Arg Leu Thr Asp 450 455 460

Phe Ala Gln Gly Gly Pro Ile Ser Tyr Ala Asn Gly Ser Gly Leu 465 470 475 480

Asp Glu Arg Pro Tyr Cys Trp His Tyr Pro Pro Arg Pro Cys Gly Ile 485 490 495

Val Pro Ala Lys Ser Val Cys Gly Pro Val Tyr Cys Phe Thr Pro Ser 500 505 510

Pro Val Val Val Gly Thr Thr Asp Arg Ser Gly Ala Pro Thr Tyr Ser 515 520 525

Trp Gly Ala Asn Asp Thr Asp Val Phe Val Leu Asn Asn Thr Arg Pro 530 535 540

Pro Leu Gly Asn Trp Phe Gly Cys Thr Trp Met Asn Ser Thr Gly Phe 545 550 555 560

Thr Lys Val Cys Gly Ala Pro Pro Cys Val Ile Gly Gly Val Gly Asn 570 Asn Thr Leu Leu Cys Pro Thr Asp Cys Phe Arg Lys His Pro Glu Ala 585 580 Thr Tyr Ser Arg Cys Gly Ser Gly Pro Trp Ile Thr Pro Arg Cys Met 600 Val Asp Tyr Pro Tyr Arg Leu Trp His Tyr Pro Cys Thr Ile Asn Tyr 615 . Thr Ile Phe Lys Val Arg Met Tyr Val Gly Gly Val Glu His Arg Leu 635 630 Glu Ala Ala Cys Asn Trp Thr Arg Gly Glu Arg Cys Asp Leu Glu Asp 645 Arg Asp Arg Ser Glu Leu Ser Pro Leu Leu Leu Ser Thr Thr Gln Trp 665 Gln Val Leu Pro Cys Ser Phe Thr Thr Leu Pro Ala Leu Ser Thr Gly 680 Leu Ile His Leu His Gln Asn Ile Val Asp Val Gln Tyr Leu Tyr Gly 690 695 Val Gly Ser Ser Ile Ala Ser Trp Ala Ile Lys Trp Glu Tyr Val Val 715 Leu Leu Phe Leu Leu Leu Ala Asp Ala Arg Val Cys Ser Cys Leu Trp 725 730 Met Met Leu Leu Ile Ser Gln Ala Glu Ala Ala Leu Glu Asn Leu Val 745 740 Ile Leu Asn Ala Ala Ser Leu Ala Gly Thr His Gly Phe Val Ser Phe 760 Leu Val Phe Phe Cys Phe Ala Trp Tyr Leu Lys Gly Arg Trp Val Pro 770 775 Gly Ala Ala Tyr Ala Leu Tyr Gly Ile Trp Pro Leu Leu Leu Leu 790 795 785 Leu Ala Leu Pro Gln Arg Ala Tyr Ala Leu Asp Thr Glu Val Ala Ala 810 Ser Cys Gly Gly Val Val Leu Val Gly Leu Met Ala Leu Thr Leu Ser 825 Pro Tyr Tyr Lys Arg Tyr Ile Ser Trp Cys Met Trp Trp Leu Gln Tyr

840

835

- Phe Leu Thr Arg Val Glu Ala Gln Leu His Val Trp Val Pro Pro Leu 850 855 860
- Asn Val Arg Gly Gly Arg Asp Ala Val Ile Leu Leu Met Cys Ala Val 865 870 875 880
- His Pro Thr Leu Val Phe Asp Ile Thr Lys Leu Leu Leu Ala Ile Phe 885 890 895
- Gly Pro Leu Trp Ile Leu Gln Ala Ser Leu Leu Lys Val Pro Tyr Phe 900 905 910
- Val Arg Val Gln Gly Leu Leu Arg Ile Cys Ala Leu Ala Arg Lys Ile 915 920 925
- Ala Gly Gly His Tyr Val Gln Met Ile Phe Ile Lys Leu Gly Ala Leu 930 935 940
- Thr Gly Thr Tyr Val Tyr Asn His Leu Thr Pro Leu Arg Asp Trp Ala 945 950 955 960
- His Asn Gly Leu Arg Asp Leu Ala Val Ala Val Glu Pro Val Val Phe 965 970 975
- Ser Arg Met Glu Thr Lys Leu Ile Thr Trp Gly Ala Asp Thr Ala Ala 980 985 990
- Cys Gly Asp Ile Ile Asn Gly Leu Pro Val Ser Ala Arg Arg Gly Gln 995 1000 1005
- Glu Ile Leu Leu Gly Pro Ala Asp Gly Met Val Ser Lys Gly Trp Arg 1010 1015 1020
- Leu Leu Ala Pro Ile Thr Ala Tyr Ala Gln Gln Thr Arg Gly Leu Leu 1025 1030 1035 1040
- Gly Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val Glu 1045 1050 1055
- Gly Glu Val Gln Ile Val Ser Thr Ala Thr Gln Thr Phe Leu Ala Thr 1060 1065 1070
- Cys Ile Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Thr Arg
- Thr Ile Ala Ser Pro Lys Gly Pro Val Ile Gln Met Tyr Thr Asn Val 1090 1095 1100
- Asp Gln Asp Leu Val Gly Trp Pro Ala Pro Gln Gly Ser Arg Ser Leu 1105 1110 1115 1120
- Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg His 1125 1130 1135
- Ala Asp Val Ile Pro Val Arg Arg Gln Gly Asp Ser Arg Gly Ser Leu

Leu Ser Pro Arg Pro Ile Ser Tyr Leu Lys Gly Ser Ser Gly Gly Pro Leu Leu Cys Pro Ala Gly His Ala Val Gly Leu Phe Arg Ala Ala Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Ile Pro Val Glu Asn Leu Glu Thr Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Ser Pro Pro Ala Val Pro Gln Ser Phe Gln Val Ala His Leu His Ala Pro Thr Gly Ser Gly Lys Ser Thr Lys Val Pro Ala Ala Tyr Ala Ala Gln Gly Tyr Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly Phe Gly Ala Tyr Met Ser Lys Ala His Gly Val Asp Pro Asn Ile Arg Thr Gly Val Arg Thr Ile Thr Thr Gly Ser Pro Ile Thr Tyr Ser Thr Tyr Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp Ile Ile Ile Cys Asp Glu Cys His Ser Thr Asp Ala Thr Ser Ile Leu Gly Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu Val Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His Pro Asn Ile Glu Glu Val Ala Leu Ser Thr Thr Gly Glu Ile Pro Phe Tyr Gly Lys Ala Ile Pro Leu Glu Val Ile Lys Gly Gly Arg His Leu Ile Phe Cys His Ser Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu Val

Ala Leu Gly Ile Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val Ser

Val Ile Pro Ala Ser Gly Asp Val Val Val Ser Thr Asp Ala Leu

- Met Thr Gly Phe Thr Gly Asp Phe Asp Pro Val Ile Asp Cys Asn Thr . 1445 . 1450 . 1455
- Cys Val Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile 1460 1465 1470
- Glu Thr Thr Leu Pro Gln Asp Ala Val Ser Arg Thr Gln Arg Arg 1475 1480 1485
- Gly Arg Thr Gly Arg Gly Lys Pro Gly Ile Tyr Arg Phe Val Ala Pro 1490 1495 1500
- Gly Glu Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu Cys 1505 1510 1515 1520
- Tyr Asp Ala Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr Thr 1525 1530 1535
- Val Arg Leu Arg Ala Tyr Met Asn Thr Pro Gly Leu Pro Val Cys Gln 1540 1545 1550
- Asp His Leu Glu Phe Trp Glu Gly Val Phe Thr Gly Leu Thr His Ile 1555 1560 1565
- Asp Ala His Phe Leu Ser Gln Thr Lys Gln Ser Gly Glu Asn Phe Pro 1570 1575 1580
- Tyr Leu Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Gln Ala Pro 1585 1590 1595 1600
- Pro Pro Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys Pro 1605 1610 1615
- Thr Leu His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val Gln 1620 1625 1630
- Asn Glu Ile Thr Leu Thr His Pro Val Thr Lys Tyr Ile Met Thr Cys 1635 1640 1645
- Met Ser Ala Asn Pro Glu Val Val Thr Ser Thr Trp Val Leu Val Gly 1650 1655 1660
- Gly Val Leu Ala Ala Leu Ala Ala Tyr Cys Leu Ser Thr Gly Cys Val 1665 1670 1675 1680
- Val Ile Val Gly Arg Ile Val Leu Ser Gly Lys Pro Ala Ile Ile Pro 1685 1690 1695
- Asp Arg Glu Val Leu Tyr Gln Glu Phe Asp Glu Met Glu Glu Cys Ser 1700 1705 1710
- Gln His Leu Pro Tyr Ile Glu Gln Gly Met Met Leu Ala Glu Gln Phe 1715 1720 1725

- Lys Gln Glu Ala Leu Gly Leu Leu Gln Thr Ala Ser Arg Gln Ala Glu 1730 1735 1740
- Val Ile Thr Pro Ala Val Gln Thr Asn Trp Gln Lys Leu Glu Ala Phe 1745 1750 1755 1760
- Trp Ala Lys His Met Trp Asn Phe Ile Ser Gly Thr Gln Tyr Leu Ala 1765 1770 1775
- Gly Leu Ser Thr Leu Pro Gly Asn Pro Ala Ile Ala Ser Leu Met Ala 1780 1785 1790
- Phe Thr Ala Ala Val Thr Ser Pro Leu Thr Thr Ser Gln Thr Leu Leu 1795 1800 1805
- Phe Asn Ile Leu Gly Gly Trp Val Ala Ala Gln Leu Ala Ala Pro Gly 1810 1815 1820
- Ala Ala Thr Ala Phe Val Gly Ala Gly Leu Ala Gly Ala Ala Ile Gly 1825 1830 1835 1840
- Ser Val Gly Leu Gly Lys Val Leu Val Asp Ile Leu Ala Gly Tyr Gly 1845 1850 1855
- Ala Gly Val Ala Gly Ala Leu Val Ala Phe Lys Ile Met Ser Gly Glu 1860 1865 1870
- Val Pro Ser Thr Glu Asp Leu Val Asn Leu Leu Pro Ala Ile Leu Ser 1875 1880 1885
- Pro Gly Ala Leu Val Val Gly Val Val Cys Ala Ala Ile Leu Arg Arg 1890 1895 1900
- His Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu Ile 1905 1910 1915 1920
- Ala Phe Ala Ser Arg Gly Asn His Val Ser Pro Thr His Tyr Val Pro 1925 1930 1935
- Glu Ser Asp Ala Ala Ala Arg Val Thr Ala Ile Leu Ser Asn Leu Thr 1940 1945 1950
- Val Thr Gln Leu Leu Arg Arg Leu His Gln Trp Ile Gly Ser Glu Cys 1955 1960 1965
- Thr Thr Pro Cys Ser Gly Ser Trp Leu Arg Asp Ile Trp Asp Trp Ile 1970 1975 1980
- Cys Glu Val Leu Ser Asp Phe Lys Thr Trp Leu Lys Ala Lys Leu Met 1985 1990 1995 2000
- Pro Gln Leu Pro Gly Ile Pro Phe Val Ser Cys Gln Arg Gly Tyr Arg 2005 2010 2015
- Gly Val Trp Arg Gly Asp Gly Ile Met His Thr Arg Cys His Cys Gly

2020	2025	2030

- Ala Glu Ile Thr Gly His Val Lys Asn Gly Thr Met Arg Ile Val Gly 2035 2040 2045
- Pro Arg Thr Cys Arg Asn Met Trp Ser Gly Thr Phe Pro Ile Asn Ala 2050 2055 2060
- Tyr Thr Thr Gly Pro Cys Thr Pro Leu Pro Ala Pro Asn Tyr Lys Phe 2065 2070 2075 2080
- Ala Leu Trp Arg Val Ser Ala Glu Glu Tyr Val Glu Ile Arg Val 2085 2090 2095
- Gly Asp Phe His Tyr Val Ser Gly Met Thr Thr Asp Asn Leu Lys Cys 2100 2105 2110
- Pro Cys Gln Ile Pro Ser Pro Glu Phe Phe Thr Glu Leu Asp Gly Val 2115 2120 2125
- Arg Leu His Arg Phe Ala Pro Pro Cys Lys Pro Leu Leu Arg Glu Glu 2130 2135 2140
- Val Ser Phe Arg Val Gly Leu His Glu Tyr Pro Val Gly Ser Gln Leu 2145 2150 2155 2166
- Pro Cys Glu Pro Glu Pro Asp Val Ala Val Leu Thr Ser Met Leu Thr 2165 2170 2175
- Asp Pro Ser His Ile Thr Ala Glu Ala Ala Gly Arg Arg Leu Ala Arg 2180 2185 2190
- Gly Ser Pro Pro Ser Met Ala Ser Ser Ser Ala Ser Gln Leu Ser Ala 2195 2200 2205
- Pro Ser Leu Lys Ala Thr Cys Thr Thr Asn His Asp Ser Pro Asp Ala 2210 2215 2220
- Clu Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu Met Gly Gly Asn 2225 2230 2235 2240
- Ile Thr Arg Val Glu Ser Glu Asn Lys Val Val Ile Leu Asp Ser Phe 2245 2250 2255
- Asp Pro Leu Val Ala Glu Glu Asp Glu Arg Glu Val Ser Val Pro Ala 2260 2265 2270
- Glu Ile Leu Arg Lys Ser Gln Arg Phe Ala Arg Ala Leu Pro Val Trp 2275 2280 2285
- Ala Arg Pro Asp Tyr Asn Pro Pro Leu Ile Glu Thr Trp Lys Glu Pro 2290 2295 2300
- Asp Tyr Glu Pro Pro Val Val His Gly Cys Pro Leu Pro Pro Pro Arg 2305 2310 2315 2320

- Ser Pro Pro Val Pro Pro Pro Arg Lys Lys Arg Thr Val Val Leu Thr 2325 2330 2335
- Glu Ser Thr Leu Ser Thr Ala Leu Ala Glu Leu Ala Thr Lys Ser Phe 2340 2345 2350
- Gly Ser Ser Ser Thr Ser Gly Ile Thr Gly Asp Asn Thr Thr Thr Ser 2355 2360 2365
- Ser Glu Pro Ala Pro Ser Gly Cys Pro Pro Asp Ser Asp Val Glu Ser 2370 2375 2380
- Tyr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly Asp Pro Asp Phe 2385 2390 2395 2400
- Ser Asp Gly Ser Trp Ser Thr Val Ser Ser Gly Ala Asp Thr Glu Asp 2405 2410 2415
- Val Val Cys Cys Ser Met Ser Tyr Ser Trp Thr Gly Ala Leu Val Thr 2420 2425 2430
- Pro Cys Ala Ala Glu Glu Gln Lys Leu Pro Ile Asn Ala Leu Ser Asn 2435 2440 2445
- Ser Leu Leu Arg His His Asn Leu Val Tyr Ser Thr Thr Ser Arg Ser 2450 2455 2460
- Ala Cys Gln Arg Gln Lys Lys Val Thr Phe Asp Arg Leu Gln Val Leu 2465 2470 2475 2480
- Asp Ser His Tyr Gln Asp Val Leu Lys Glu Val Lys Ala Ala Ala Ser 2485 2490 2495
- Arg Val Lys Ala Asn Leu Leu Ser Val Glu Glu Ala Cys Ser Leu Thr 2500 2505 2510
- Pro Pro His Ser Ala Lys Ser Lys Phe Gly Tyr Gly Ala Lys Asp Val 2515 2520 2525
- Arg Cys His Ala Arg Lys Ala Val Ala His Ile Asn Ser Val Trp Lys 2530 2535 2540
- Asp Leu Leu Glu Asp Ser Val Thr Pro Ile Asp Thr Thr Ile Met Ala 2545 2550 2555 2560
- Lys Asn Glu Val Phe Cys Val Gln Pro Glu Lys Gly Gly Arg Lys Pro 2565 2570 2575
- Ala Arg Leu Ile Val Phe Pro Asp Leu Gly Val Arg Val Cys Glu Lys 2580 2585 2590
- Met Ala Leu Tyr Asp Val Val Ser Lys Leu Pro Leu Ala Val Met Gly 2595 2600 2605

- Ser Ser Tyr Gly Phe Gln Tyr Ser Pro Gly Gln Arg Val Glu Phe Leu 2610 2615 2620
- Val Gln Ala Trp Lys Ser Lys Lys Thr Pro Met Gly Phe Ser Tyr Asp 2625 2630 2635 2640
- Thr Arg Cys Phe Asp Ser Thr Val Thr Glu Ser Asp Ile Arg Thr Glu 2645 2650 2655
- Glu Ala Ile Tyr Gln Cys Cys Asp Leu Asp Pro Gln Ala Arg Val Ala 2660 2665 2670
- Ile Lys Ser Leu Thr Glu Arg Leu Tyr Val Gly Gly Pro Leu Thr Asn 2675 2680 2685
- Ser Arg Gly Glu Asn Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val 2690 2695 2700
- Leu Thr Thr Ser Cys Gly Aşn Thr Leu Thr Cys Tyr Ile Lys Ala Arg 2705 2710 2715 2720
- Ala Ala Cys Arg Ala Ala Gly Leu Gln Asp Arg Thr Met Leu Val Cys 2725 2730 2735
- Gly Asp Asp Leu Val Val Ile Cys Glu Ser Ala Gly Val Gln Glu Asp 2740 2745 2750
- Ala Ala Ser Leu Arg Ala Phe Thr Glu Ala Met Thr Arg Tyr Ser Ala 2755 2760 2765
- Pro Pro Gly Asp Pro Pro Gln Pro Glu Tyr Asp Leu Glu Leu Ile Thr 2770 2775 2780
- Ser Cys Ser Ser Asn Val Ser Val Ala His Asp Gly Ala Gly Lys Arg 2785 2790 2795 2800
- Val Tyr Tyr Leu Thr Arg Asp Pro Thr Thr Pro Leu Ala Arg Ala Ala 2805 2810 2815
- Trp Glu Thr Ala Arg His Thr Pro Val Asn Ser Trp Leu Gly Asn Ile 2820 2825 2830
- Ile Met Phe Ala Pro Thr Leu Trp Ala Arg Met Ile Leu Met Thr His 2835 2840 2845
- Phe Phe Ser Val Leu Ile Ala Arg Asp Gln Phe Glu Gln Ala Leu Asn 2850 2855 2860
- Cys Glu Ile Tyr Gly Ala Cys Tyr Ser Ile Glu Pro Leu Asp Leu Pro 2865 2870 2875 2880
- Pro Ile Ile Gln Arg Leu His Gly Leu Ser Ala Phe Ser Leu His Ser 2885 2890 2895
- Tyr Ser Pro Gly Glu Ile Asn Arg Val Ala Ala Cys Leu Arg Lys Leu

2900

2905

2910

Gly Val Pro Pro Leu Arg Ala Trp Lys His Arg Ala Arg Ser Val Arg 2915 2920 2925

Ala Arg Leu Leu Ser Arg Gly Gly Arg Ala Ala Ile Cys Gly Lys Tyr 2930 2935 2940

Leu Phe Asn Trp Ala Val Arg Thr Lys Pro Lys Leu Thr Pro Ile Ala 2945 2950 2955 2960

Ala Ala Gly Arg Leu Asp Leu Ser Gly Trp Phe Thr Ala Gly Tyr Ser 2965 2970 2975

Gly Gly Asp Ile Tyr His Ser Val Ser His Ala Arg Pro Arg Trp Ser 2980 2985 2990

Trp Phe Cys Leu Leu Leu Leu Ala Ala Gly Val Gly Ile Tyr Leu Leu 2995 3000 3005

Pro Asn Arg 3010

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3011 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION SEQ ID NO:2:

Met Ser Thr Asn Pro Lys iro Gln Arg Lys Thr Lys Arg Asn Thr Asn 1 5 10 15

Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gln Ile Val Gly 20 25 30

Gly Val Tyr Leu Leu Pro Arg Gly Pro Arg Leu Gly Val Arg Ala 35 40 45

Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro 50 55 60

Ile Pro Lys Ala Arg Arg Pro Glu Gly Arg Thr Trp Ala Gin Pro Gly 65 70 75 80

Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Cys Gly Trp Ala Gly Trp

- Leu Leu Ser Pro Arg Gly Ser Arg Pro Ser Trp Gly Pro Thr Asp Pro
 100 105 110
- Arg Arg Ser Arg Asn Leu Gly Lys Val Ile Asp Thr Leu Thr Cys
 115 120 125
- Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala Pro Leu 130 135 140
- Gly Gly Ala Ala Arg Ala Leu Ala His Gly Val Arg Val Leu Glu Asp 145 150 155 160
- Gly Val Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile 165 170 175
- Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Val Pro Ala Ser Ala Tyr 180 185 190
- Gln Val Arg Asn Ser Ser Gly Leu Tyr His Val Thr Asn Asp Cys Pro 195 200 205
- Asn Ser Ser Ile Val Tyr Glu Thr Ala Asp Thr Ile Leu His Ser Pro 210 215 220
- Gly Cys Val Pro Cys Val Arg Glu Gly Asn Thr Ser Lys Cys Trp Val 225 230 235 240
- Ala Val Ala Pro Thr Val Thr Thr Arg Asp Gly Lys Leu Pro Ser Thr 245 250 255
- Gln Leu Arg Arg His Ile Asp Leu Leu Val Gly Ser Ala Thr Leu Cys 260 265 270
- Ser Ala Leu Tyr Val Gly Asp Leu Cys Gly Ser Val Phe Leu Val Ser 275 280 285
- Gln Leu Phe Thr Phe Ser Pro Arg Arg His Trp Thr Thr Gln Asp Cys 290 295 300
- Asn Cys Ser Ile Tyr Pro Gly His Ile Thr Gly His Arg Met Ala Trp 305 310 315 320
- Asp Met Met Met Asn Trp Ser Pro Thr Thr Ala Leu Val Val Ala Gln 325 330 335
- Leu Leu Arg Ile Pro Gln Ala Ile Leu Asp Met Ile Ala Gly Ala His 340 345 350
- Trp Gly Val Leu Ala Gly Ile Ala Tyr Phe Ser Met Val Gly Asn Trp 355 360 365
- Ala Lys Val Leu Val Val Leu Leu Leu Phe Ser Gly Val Asp Ala Ala 370 375 380
- Thr Tyr Thr Thr Gly Gly Ser Val Ala Arg Thr Thr His Gly Leu Ser

385					390					395					400
Ser	Leu	Phe	Ser	Gln 405	Gly	Ala	Lys	Gln	Asn 410	Ile	Gln	Leu	Ile	Asn 415	Thr
Asn	Gly	Ser	Trp 420	His	Ile	Asn	Arg	Thr 425	Ala	Leu	Asn	Суѕ	Asn 430	Ala	Ser
Leu	Asp	Thr 435	Gly	Trp	Val	Ala	Gly 440	Leu	Phe	Tyr	Tyr	His 445	Lys	Phe	Asn
Ser	Ser 450	Gly	Cys	Pro	Glu	Arg 455	Met	Ala	Ser	Cys	Arg 460	Pro	Leu	Ala	Asp
Phe 465	Asp.	Gln	Gly	Trp	Gly 470	Pro	Ile	Ser	Tyr	Thr 475	Asn	Gly	Ser	Gly	Pro 480
Glu	His	Arg	Pro	Tyr 485	Суз	Trp	His	Tyr	Pro 490	Pro	Lys	Pro	Cys	Gly 495	Ile
Val	Pro	Ala	Gln 500	Ser	Val	Cys	Gly	Pro 505	Val	Tyr	Cys	Phe	Thr 510	Pro	Ser
Pro	Val	Val 515	Val	Gly	Thr ·	Thr	Asp 520	Lys	Ser	Gly	Ala	Pro 525	Thr	Tyr	Thr
Trp	Gly 530	Ser	Asn	Asp	Thr	Asp 535	Val	Phe	Val	Leu	Asn 540	Asn	Thr	Arg	Pro
Pro 545	Pro	Gly	Asn	Trp	Phe 550	Gly	Cys	Thr	Trp	Met 555	Asn	Ser	Ser	Gly	Phe 560
Thr	Lys	Val	Суз	Gly 565	Ala	Pro	Pro	Cys	Val 570	Ile	Gly	Gly	Ala	Gly 575	Asn
Asn	Thr	Leu	His 580	Cys	Pro	Thr	Asp	Cys 585	Phe	Arg	Lys	His	Pro 590	Glu	Ala
Thr	Tyr	Ser 595	Arg	Cys	Gly	Ser	Gly 600	Pro	Trp	Ile	Thr	Pro 605	Arg	Cys	Leu
Val	His 610	Tyr	Pro	Tyr	Arg	Leu 615	Trp	His	Tyr	Pro	Cys 620	Thr	Ile	Asn	Tyr
Thr 625	Leu	Phe	Lys	Val	Arg 630	Met	Tyr	Val	Gly	Gly 635	Val	Glu	His	Arg	Leu 640
Glu	Val	Ala	Cys	Asn 645		Thr	Arg	Gly	Glu 650		Суз	Asp	Leu	Asp 655	Asp
Arg	Asp	Arg	Ser 660	Glu	Leu	Ser	Pro	Leu 665		Leu	Ser	Thr	Thr 670		Trp
Gln	Val	Leu 675	Pro	Cys	Ser	Phe	Thr		Leu	Pro	Ala	Leu 685		Thr	Gly

Leu	Ile 690	His	Leu	His		Asn 695	Ile	Val	Asp	Va1	Gln 700	Tyr	Leu	Tyr	Gly
Val 705	Gly	Ser	Ser	Ile	Val 710	Ser	Trp	Ala	Ile	Lys 715	Trp	Glu	Tyr	Val	Ile 720
Leu	Leu	Phe	Leu	Leu 725	Leu	Ala	Asp	Ala	Arg 730	Ile	Cys	Ser	Cys	Leu 735	Trp
Met	Met	Leu	Leu 740	Ile	Ser	Gln	Ala	Glu 745	Ala	Ala	Leu	Glu	Asn 750	Leu	Val
Leu	Leu	Asn 755	Ala	Ala	Ser	Leu	Ala 760	Gly	Thr	His	Gly	Leu 765	Val	Ser	Phe
Leu	Val 770	Phe	Phe	Cys	Phe	Ala 775	Trp	Tyr	Leu	Lys	Gly 780	Lys	Trp	Val	Pro
Gly 785	Val	Ala	Tyr	Ala	Phe 790	Tyr	Gly	Met	Trp	Pro 795	Phe	Leu	Leu	Leu	Leu 800
Leu	Ala	Leu	Pro	Gln 805	Arg	Ala	Tyr	Ala	Leu 810	Asp	Thr	Glu	Met	Ala 815	Ala
Ser	Cys	Gly	Gly 820	Val	Val	Leu	Val	Gly 825	Leu	Met	Ala	Leu	Thr 830	Leu	Ser
Pro	His	Tyr 835		Arg	Tyr	Ile	Cys 840	Trp	Cys	Val	Trp	Trp 845	Leu	Gln	Tyr
Phe	Leu 850		Arg	Ala	Glu	Ala 855		Leu	His	Gly	Trp 860		Pro	Pro	Leu
Asn 865		Arg	Gly	Gly	Arg 870		Ala	Val	Ile	Leu 875	Leu	Met	Cys	Val	Val 880
His	Pro	Ala	Leu	Val 885		Asp	Ile	Thr	Eys 890	: Leu	. Leu	Leu	Ala	Val 895	Leu
Gly	Pro	Leu	Trp		e Leu	Gln	Thr	Ser 905		ı Lev	ı Lys	Val	910	Tyr	Phe
Va]	. Arg	y Val		Gly	, Leu	Leu	920		е Суз	a Ala	a Lev	925		, Lys	Met
Ala	Gly 93(/ His	ту1	r Val	Glr 935		: Va	l Thi	r Ile	e Lys 94(: Gly	/ Ala	. Leu
Ala 949		, Thi	r Tyi	r Vai	1 Tyr 950		n His	s Le	ı Thi	95	o Lei	ı Ar	j Ası	o Tr	960
His	s Ası	n Gl	y Lei	1 Ar) Le	u Ala	a Va	1 Ala 97	a Va O	l Gl	ı Pr	o Va	1 Va:	l Phe

- Ser Gln Met Glu Thr Lys Leu Ile Thr Trp Gly Ala Asp Thr Ala Ala 980 985 990
- Cys Gly Asp Ile Ile Asn Gly Leu Pro Val Ser Ala Arg Arg Gly Arg 995 1000 1005
- Glu Ile Leu Leu Gly Pro Ala Asp Gly Met Val Ser Lys Gly Trp Arg 1010 1015 1020
- Leu Leu Ala Pro Ile Thr Ala Tyr Ala Gln Gln Thr Arg Gly Leu Leu 1025 1030 1035 1040
- Gly Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val Glu 1045 1050 1055
- Gly Glu Val Gln Ile Val Ser Thr Ala Ala Gln Thr Phe Leu Ala Thr 1060 1065 1070
- Cys Ile Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Thr Arg 1075 1080 1085
- Thr Ile Ala Ser Pro Lys Gly Pro Val Ile Gln Met Tyr Thr Asn Val
- Asp Arg Asp Leu Val Gly Trp Pro Ala Pro Gln Gly Ala Arg Ser Leu 1105 1110 1115 1120
- Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg His 1125 1130 1135
- Ala Asp Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser Leu 1140 1145 1150
- Leu Ser Pro Arg Pro Ile Ser Tyr Leu Lys Gly Ser Ser Gly Gly Pro
- Leu Leu Cys Pro Ala Gly His Ala Val Gly Ile Phe Arg Ala Ala Val 1170 1175 1180
- Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Ile Pro Val Glu Ser 1185 1190 1195 1200
- Leu Glu Thr Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Ser Pro 1205 1210 1215
- Pro Ala Val Pro Gln Ser Phe Gln Val Ala His Leu His Ala Pro Thr 1220 1225 1230
- Gly Ser Gly Lys Ser Thr Lys Val Pro Ala Ala Tyr Ala Ala Gln Gly
 1235 1240 1245
- Tyr Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly Phe 1250 1255 1260
- Gly Ala Tyr Met Ser Lys Ala His Gly Ile Asp Pro Asn Ile Arg Thr

1265					1270	i				1275	,			:	1280
Gly	Val	Arg	Thr	Ile 1285		Thr	Gly	Ser	Pro 1290	Ile	Thr	Tyr	Ser	Thr 1295	Tyr
Gly	Lys	Phe	Leu 1300		Asp	Gly	Gly	Cys 1305	Ser	Gly	Gly	Ala	Tyr 1310	Asp	Ile
Ile	Ile	Cys 1315		Glu	Cys	His	Ser 1320	Thr	Asp	Ala	Thr	Ser 1325	Ile	Leu	Gly
Ile	Gly 1330		Val	Leu	Asp	Gln 133		Glu	Thr	Ala	Gly 1340	Ala	Arg	Leu	Val
Val 1345		Ala	Thr	Ala	Thr 1350		Pro	Gly	Ser	Val 135	Thr 5	Val	Pro	His	Pro 1360
Asn	Ile	Glu	Glu	Val 136		Leu	Ser	Thr	Thr 137	Gly 0	Glu	Ile	Pro	Phe 1375	Tyr
Gly	Lys	Ala	Ile 138		Leu	Glu	Ala	Ile 138	Lys 5	Gly	Gly	Arg	His 139	Leu 0	Ile
Phe	Cys	His 139		Lys	Lys	Lys	Cys 140		Glu	Leu	Ala	Ala 140	Lys 5	Leu	Val
Thr	Leu 141		Ile	Asn	Ala	Val 141		Tyr	Tyr	Arg	Gly 142	Leu 0	Asp	Val	Ser
Val 142		Pro	Thr	Ser	Gly 143		Val	. Val	. Val	Val 143	Ala 5	Thr	Asp	Ala	Leu 1440
Met	Thr	Gly	Phe	Thr 144		Asp	Phe	a Asp	Ser 145	Val	. Ile	Asp	Cys	Asn 145	Thr 5
Cys	Val	Thr	Glr 146		. Val	. Ası	Phe	Ser 146	Leu 55	ı Asp	Pro	Thr	Phe 147	Thr	Ile
Glu	Thr	Thr 147		. Lev	ı Pro	Gl:	n Ası 148		a Val	l Sei	Arg	Thr 148	Glr 5	a Arg	Arg
Gly	Arg		c Gly	y Aro	Gly	/ Ly:		o Gly	/ Ile	e Ty	r Arg 150	g Ph∈ 00	·Val	l Ala	Pro
Gly 150		a Arg	g Pro	o Sei	r Gly 15		t Ph	e Ası	p Sei	r Se:	r Val 15	l Let	ı Cys	s Glu	Cys 1520
Tyr	: As <u>r</u>	Al	a Gly	y Cy: 15:		a Tr	р Ту	r Gl	u Le:	u Th	r Pro	o Ala	a Gl	u Thr 153	Thr
Va]	Arg	J Le	u Ar		а Ту	r Me	t As	n Th	r Pr 45	o Gl	y Lei	u Pro	o Va 15	1 Cy: 50	Gln
Asp	Hi:	s Le		u Ph	e Tr	p Gl	u Gl 15	y Va 60	l Ph	e Th	r Gl	y Le [.] 15	u Th 65	r His	s Ile

- Asp Ala His Phe Leu Ser Gln Thr Lys Gln Ser Gly Glu Asn Leu Pro 1570 1575 1580 .
- Tyr Leu Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Gln Ala Pro 1585 1590 1595 1600
- Pro Pro Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys Pro 1605 1610 1615
- Thr Leu His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val Gln 1620 1625 1630
- Asn Glu Val Thr Leu Thr His Pro Ile Thr Lys Tyr Ile Met Thr Cys 1635 1640 1645
- Met Ser Ala Asp Leu Glu Val Val Thr Ser Thr Trp Val Leu Val Gly 1650 1655 1660
- Gly Val Leu Ala Ala Leu Ala Ala Tyr Cys Leu Ser Thr Gly Cys Val 1665 1670 1675 1680
- Val Ile Val Gly Arg Ile Val Leu Ser Gly Lys Pro Ala Ile Ile Pro 1685 1690 1695
- Asp Arg Glu Val Leu Tyr Arg Glu Phe Asp Glu Met Glu Glu Cys Ser 1700 1705 1710
- Gln His Leu Pro Tyr Ile Glu Gln Gly Met Met Leu Ala Glu Gln Phe 1715 1720 1725
- Lys Gln Lys Ala Leu Gly Leu Leu Gln Thr Ala Ser His Gln Ala Glu 1730 1735 1740
- Val Ile Ala Pro Ala Val Gln Thr Asn Trp Gln Arg Leu Glu Thr Phe 1745 1750 1755 176
- Trp Ala Lys His Met Trp Asn Phe Ile Ser Gly Ile Gln Tyr Leu Ala 1765 1770 1775
- Gly Leu Ser Thr Leu Pro Gly Asn Pro Ala Ile Ala Ser Leu Met Ala 1780 1785 1790
- Phe Thr Ala Ala Val Thr Ser Pro Leu Thr Thr Ser Gln Thr Leu Leu 1795 1800 1805
- Phe Asn Ile Leu Gly Gly Trp Val Ala Ala Gln Leu Ala Ala Pro Ser 1810 1815 1820
- Ala Ala Thr Ala Phe Vai Gly Ala Gly Leu Ala Gly Ala Ala Ile Gly 1825 1830 1835 1840
- Ser Val Gly Leu Gly Lys Val Leu Val Asp Ile Leu Ala Gly Tyr Gly 1845 1850 1855

- Ala Gly Val Ala Gly Ala Leu Val Ala Phe Lys Ile Met Ser Gly Glu 1860 1865 1870
- Val Pro Ser Thr Glu Asp Leu Val Asn Leu Leu Pro Ala Ile Leu Ser 1875 1880 1885
- Pro Gly Ala Leu Val Val Gly Val Val Cys Ala Ala Ile Leu Arg Arg 1890 1895 1900
- His Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu Ile 1905 1910 1915 1920
- Ala Phe Ala Ser Arg Gly Asn His Val Ser Pro Thr His Tyr Val Pro 1925 1930 1935
- Gly Ser Asp Ala Ala Ala Arg Val Thr Ala Ile Leu Ser Ser Leu Thr 1940 1945 1950
- Val Thr Gln Leu Leu Arg Arg Leu His Gln Trp Val Ser Ser Glu Cys 1955 1960 1965
- Thr Thr Pro Cys Ser Gly Ser Trp Leu Arg Asp Ile Trp Asp Trp Ile 1970 1975 1980
- Cys Glu Val Leu Ser Asp Phe Lys Thr Trp Leu Lys Ala Lys Leu Met 1985 1990 1995 2000
- Pro Gln Leu Pro Gly Ile Pro Phe Val Ser Cys Gln Arg Gly Tyr Lys 2005 2010 2015
- Gly Val Trp Arg Gly Asp Gly Ile Met His Thr Arg Cys His Cys Gly 2020 2025 2030
- Ala Glu Ile Ala Gly His Val Lys Asn Gly Thr Met Arg Ile Val Gly 2035 2040 2045
- Pro Lys Thr Cys Arg Asn Met Trp Ser Gly Thr Phe Pro Ile Asn Ala 2050 2055 2060
- Tyr Thr Thr Gly Pro Cys Thr Pro Leu Pro Ala Pro Asn Tyr Lys Phe 2065 2070 2075 2080
- Ala Leu Trp Arg Val Ser Ala Glu Glu Tyr Val Glu Ile Arg Gln Val 2085 2090 2095
- Gly Asp Phe His Tyr Val Thr Gly Met Thr Ala Asp Asn Leu Lys Cys 2100 2105 2110
- Pro Cys Gln Val Pro Ser Pro Glu Phe Phe Thr Glu Leu Asp Gly Val 2115 2120 2125
- Arg Leu His Arg Phe Ala Pro Pro Cys Lys Pro Leu Leu Arg Asp Glu 2130 2135 2140
- Val Ser Phe Arg Val Gly Leu His Asp Tyr Pro Val Gly Ser Gln Leu

2145	•				2150)				2155	•				2160
Pro	Cys	Glu	Pro	Glu 2165		Asp	Val	Ala	Val 2170		Thr	Ser	Met	Leu 2175	
Asp	Pro	Ser	His 2180		Thr	Ala	Glu	Thr 2185		Gly	Arg	Arg	Leu 2190	Ala	Arg
Gly	Ser	Pro 2195		Ser	Met	Ala	Ser 2200		Ser	Ala	Ser	Gln 2205		Ser	Ala
Pro	Ser 2210		Lys	Ala	Thr	Cys 2215		Thr	Asn	His	Asp 2220		Pro	Asp	Ala
Glu 2225		Leu	Glu	Ala	Asn 2230		Leu	Trp	Arg	Gln 2235		Met	Gly	Gly	Asn 2240
Ile	Thr	Arg	Val	Glu 2245		Glu	Asn	Lys ·	Val 2250		Val	Leu	Asp	Ser 2255	
Asp	Pro	Leu	Val 2260		Glu	Glu	Asp	Glu 2265		Glu	Val	Ser	Val 2270	Pro	Ala
Glu	Ile	Leu 227		Lys	Ser	Arg	Arg 2280		Ala	Gln	Ala	Leu 2285		Ser	Trp
Ala	Arg 2290		Asp	Tyr	Asn	Pro 2295		Leu	Leu	Glu	Thr 2300		Lys	Lys	Pro
Asp 230	_	Glu	Pro	Pro	Val 231		His	Gly	Cys	Pro 231		Pro	Pro	Pro	Gln 2320
Ser	Pro	Pro	Val	Pro 2325		Pro	Arg	Lys	Lys 233		Thr	Val	Val	Leu 2335	
Glu	Ser	Thr	Val 2340		Ser	Ala	Leu	Ala 234		Leu	Ala	Thr	Lys 2350	Ser	Phe
Gly	Ser	Ser 235		Thr	Ser	Gly	Ile 236		Gly	Asp	Asn	Thr 236		Thr	Ser
Ser	Glu 237		Ala	Pro	Ser	Val 237		Pro	Pro	Asp	Ser 238		Ala	Glu	Ser
Tyr 238		Ser	Met	Pro	Pro 239		Glu	Gly	Glu	Pro 239		Asp	Pro	Asp	Leu 2400
Ser	Asp	Gly	Ser	Trp 240		Thr	Val	Ser	Ser 241		Ala	Asp	Thr	Glu 241	
Val	Val	Cys	Cys 242		Met	Ser	Tyr	Ser 242		Thr	Gly	Ala	Leu 243	Ile O	Thr
Pro	Cys	Ala 243		Glu	Glu	Gln	Lys 244		Pro	Ile	Asn	Ala 244		Ser	Asn

- Ser Leu Leu Arg His His Asn Leu Val Tyr Ser Thr Thr Ser Arg Asn 2450 2455 2460
- Ala Cys Leu Arg Gln Lys Lys Val Thr Phe Asp Arg Leu Gln Val Leu 2465 2470 2475 2486
- Asp Asn His Tyr Gln Asp Val Leu Lys Glu Val Lys Ala Ala Ala Ser 2485 2490 2495
- Lys Val Lys Ala Asn Leu Leu Ser Val Glu Glu Ala Cys Ser Leu Thr 2500 2505 2510
- Pro Pro His Ser Ala Arg Ser Lys Phe Gly Tyr Gly Ala Lys Asp Val 2515 2520 2525
- Arg Cys His Ala Arg Lys Ala Val Ser His Ile Asn Ser Val Trp Lys 2530 2535 2540
- Asp Leu Leu Glu Asp Ser Val Thr Pro Ile Asp Thr Thr Ile Met Ala 2545 2550 2555 2560
- Lys Asn Glu Val Phe Cys Val Gln Pro Glu Lys Gly Gly Arg Lys Pro 2565 2570 2575
- Ala Arg Leu Ile Val Phe Pro Asp Leu Gly Val Arg Val Cys Glu Lys 2580 2585 2590
- Met Ala Leu Tyr Asp Val Val Ser Lys Leu Pro Leu Ala Val Met Gly 2595 2600 2605
- Ser Ser Tyr Gly Phe Gln Tyr Ser Pro Gly Gln Arg Val Glu Phe Leu 2610 2615 2620
- Val Gln Ala Trp Lys Ser Lys Lys Thr Pro Met Gly Phe Ser Tyr Asp 2625 2630 2635 2640
- Thr Arg Cys Phe Asp Ser Thr Val Thr Glu Ser Asp Ile Arg Thr Glu 2645 2650 2655
- Glu Ala Ile Tyr Gln Cys Cys Asp Leu Asp Pro Gln Ala Arg Val Ala 2660 2665 2670
- Ile Lys Ser Leu Thr Glu Arg Leu Tyr Val Gly Gly Pro Leu Thr Asn 2675 2680 2685
- Ser Arg Gly Glu Asn Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val 2690 2695 2700
- Leu Thr Thr Ser Cys Gly Asn Thr Leu Thr Cys Tyr Ile Lys Ala Arg 2705 2710 2715 2720
- Ala Ala Cys Arg Ala Ala Gly Leu Gln Asp Cys Thr Met Leu Val Cys 2725 2730 2735

- Gly Asp Asp Leu Val Val Ile Cys Glu Ser Gln Gly Val Gln Glu Asp 2740 2745 2750
- Ala Ala Ser Leu Arg Ala Phe Thr Glu Ala Met Thr Arg Tyr Ser Ala 2755 2760 2765
- Pro Pro Gly Asp Pro Pro Gln Pro Glu Tyr Asp Leu Glu Leu Ile Thr 2770 2775 2780
- Pro Cys Ser Ser Asn Val Ser Val Ala His Asp Gly Ala Gly Lys Arg 2785 2790 2795 2800
- Val Tyr Tyr Leu Thr Arg Asp Pro Thr Thr Pro Leu Ala Arg Ala Ala 2805 2810 2815
- Trp Glu Thr Ala Arg His Thr Pro Val Asn Ser Trp Leu Gly Asn Ile 2820 2825 2830
- Ile Met Phe Ala Pro Thr Leu Trp Ala Arg Met Ile Leu Met Thr His 2835 2840 2845
- Phe Phe Ser Val Leu Ile Ala Arg Asp Gln Leu Glu Gln Ala Leu Asp 2850 2855 2860
- Cys Glu Ile Tyr Gly Ala Cys Tyr Ser Ile Glu Pro Leu Asp Leu Pro 2865 2870 2875 2880
- Pro Ile Ile Gln Arg Leu His Gly Leu Ser Ala Phe Ser Leu His Ser 2885 2890 2895
- Tyr Ser Pro Gly Glu Ile Asn Arg Val Ala Ala Cys Leu Arg Lys Leu 2900 2905 2910
- Gly Val Pro Pro Leu Arg Ala Trp Arg His Arg Ala Arg Ser Val Arg 2915 2920 2925
- Ala Arg Leu Leu Ser Arg Gly Gly Arg Ala Ala Ile Cys Gly Lys Tyr 2930 2935 2940
- Leu Phe Asn Trp Ala Val Arg Thr Lys Leu Lys Leu Thr Pro Ile Ala 2945 2950 2955 2960
- Ala Ala Gly Gln Leu Asp Leu Ser Gly Trp Phe Thr Ala Gly Tyr Gly 2965 2970 2975
- Gly Gly Asp Ile Tyr His Ser Val Ser Arg Ala Arg Pro Arg Trp Phe 2980 2985 2990
- Trp Phe Cys Leu Leu Leu Leu Ala Ala Gly Val Gly Ile Tyr Leu Leu 2995 3000 3005
- Pro Asn Arg 3010
- (2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7298 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: circular

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 922..2532

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GACGGATCGG	GAGATCTCCC	GATCCCCTAT	GGTCGACTCT	CAGTACAATC	TGCTCTGATG	60
CCGCATAGTT	AAGCCAGTAT	CTGCTCCCTG	CTTGTGTGTT	GGAGGTCGCT	GAGTAGTGCG	120
CGAGCAAAAT	TTAAGCTACA	ACAAGGCAAG	GCTTGACCGA	CAATTGCATG	AAGAATCTGC	180
ITAGGGTTAG	GCGTTTTGCG	CTGCTTCGCC	ATGTACGGGC	CAGATATACG	CGTTGACATT	240
GATTATTGAC	TAGTTATTAA	TAGTAATCA	TTACGGGGTC	ATTAGTTCAT	AGCCCATATA	300
TGGAGTTCCG	CGTTACATAA	CTTACGGTA	ATGGCCCGCC	TGGCTGACCG	CCCAACGACC	360
CCCGCCCATT	GACGTCAATA	ATGACGTATO	TTCCCATAGT	AACGCCAATA	GGGACTTTCC	420
ATTGACGTCA	ATGGGTGGAC	: TATTTACGG	AAACTGCCCA	CTTGGCAGTA	CATCAAGTGT	480
ATCATATGCC	AAGTACGCCC	CCTATTGAC	TCAATGACGG	TAAATGGCCC	GCCTGGCATT	540
ATGCCCAGTA	CATGACCTTA	TGGGACTTT	CTACTTGGCA	GTACATCTAC	GTATTAGTCA	600
T CGCTATTAC	CATGGTGATG	CGGTTTTGG	AGTACATCAA	TGGGCGTGGA	TAGCGGTTTG	660
ACTCACGGGG	ATTTCCAAGT	CTCCACCCC	A TTGACGTCAA	TGGGAGTTTG	TTTTGGCACC	720
AAAATCAACG	GGACTTTCC	A AAATGTCGT	A ACAACTCCGC	CCCATTGACG	CAAATGGGCG	780
GTAGGCGTGT	ACGGTGGGAC	GTCTATATA	A GCAGAGCTCT	CTGGCTAACT	AGAGAACCCA	840
CTGCTTAACT	GGCTTATCG	A AATTAATAC	G ACTCACTATA	A GGGAGACCGG	AAGCTTTGCT	900
CTAGACTGGA	ATTCGGGCG			G GCA CTG CT		951
		Met Leu 1	_	ı Ala Leu Le 5	u Leu Leu 10	
GCC GCC TG	G ACG GCT (CGG GCG CTG	GAG GTA CC	C ACT GAT GG	T AAT GCT	999
Ala Ala Tr	p Thr Ala	Arg Ala Leu	Glu Val Pro	o Thr Asp Gl	y Asn Ala	
	15		20		25	

GGC Gly	CTG Leu	CTG Leu	GCT Ala 30	GAA Glu	CCC Pro	CAG Gln	ATT Ile	GCC Ala 35	ATG Met	TTC Phe	TGT Cys	Gly	AGA Arg 40	CTG Leu	AAC Asn	1047
ATG Met	CAC His	ATG Met 45	AAT Asn	GTC Val	CAG Gln	AAT Asn	GGG Gly 50	AAG Lys	TGG Trp	GAT Asp	TCA Ser	GAT Asp 55	CCA Pro	TCA Ser	GGG Gly	1095
ACC Thr	AAA Lys 60	ACC Thr	TGC Cys	ATT Ile	GAT Asp	ACC Thr 65	AAG Lys	GAA Glu	ACC Thr	CAC His	GTC Val 70	ACC Thr	GGG Gly	GGA Gly	AGT Ser	1143
GCC Ala 75	GGC Gly	CAC His	ACC Thr	ACG Thr	GCT Ala 80	GGG Gly	CTT Leu	GTT Val	CGT Arg	CTC Leu 85	CTT Leu	TCA Ser	CCA Pro	GGC Gly	GCC Ala 90	1191
AAG Lys	CAG Gln	AAC Asn	ATC Ile	CAA Gln 95	CTG Leu	ATC Ile	AAC Asn	ACC Thr	AAC Asn 100	GGC Gly	AGT Ser	TGG Trp	CAC His	ATC Ile 105	AAT Asn	1239
AGC Ser	ACG Thr	GCC Ala	TTG Leu 110	AAC Asn	TGC Cys	AAT Asn	GAA Glu	AGC Ser 115	CTT Leu	AAC Asn	ACC Thr	GGC Gly	TGG Trp 120	TTA Leu	GCA Ala	1287
GGG Gly	CTC Leu	TTC Phe 125	TAT Tyr	CAC His	CAC His	AAA Lys	TTC Phe 130	AAC Asn	TCT	TCA Ser	GGT Gly	TGT Cys 135	CCT Pro	GAG Glu	AGG Arg	1335
TTG Leu	GCC Ala 140	Ser	TGC Cys	CGA Arg	CGC	CTT Leu 145	ACC Thr	GAT Asp	TTT Phe	GCC Ala	CAG Gln 150	Gly	GGG	GGT	CCT Pro	1383
	Ser					Ser					Arg				TGG Trp 170	1431
CAC His	TAC Tyr	CCT Pro	CCA Pro	AGA Arg	Pro	TCI Cys	GGC Gly	ATT	GTG Val	Pro	GCA Ala	AAG Lys	AGC Sei	GTG Val 185		.1479
GGC Gly	CCG Pro	GTA Val	TAT Tyr 190	Cys	TTC Phe	ACI Thr	CCC Pro	AGC Ser 195	Pro	GTG Val	GTC Val	GTC Val	GG# Gly 200	Thr	ACC Thr	1527
			Gly					Sei) Ası		GAT Asp	1575
GTC Val	TTT Phe 220	Va]	CTI Leu	AA(Asi	AAC n Asi	225	: Arg	g CCI	A CCC	CTC Lev	GG(1 Gl) 23(Ası	r TG(n Tri	TTC Phe	GGT Gly	1623
TGC Cys 235	Thi	TG(ATC Met	AA G Asi	TCI n Sei 240	Thi	r GGI	A TTO	C ACC	2 AAA r Lys 245	ya.	G TGO 1 Cy:	GG Gly	A GCC	CCC Pro 250	1671

CCT Pro	TCT Cys	GTC Val	ATC Ile	GGA Gly 255	GGG Gly	GTG Val	GGC Gly	AAC Asn	AAC Asn 260	ACC Thr	TTG Leu	CTC Leu	TGC Cys	CCC Pro 265	ACT Thr	1719
GAT Asp	TGC Cys	TTC Phe	CGC Arg 270	AAG Lys	CAT His	CCG Pro	GAA Glu	GCC Ala 275	ACA Thr	TAC Tyr	TCT Ser	CGG Arg	TGC Cys 280	GGC Gly	TCC Ser	1767
GGT Gly	CCC Pro	TGG Trp 285	ATT Ile	ACA Thr	CCC Pro	AGG Arg	TGC Cys 290	ATG Met	GTC Val	GAC Asp	TAC Tyr	CCG Pro 295	TAT Tyr	AGG Arg	CTT Leu	1815
TGG Trp	CAC His 300	TAT Tyr	CCT Pro	TGT Cys	ACC Thr	ATC Ile 305	AAT Asn	TAC Tyr	ACC Thr	ATA Ile	TTC Phe 310	AAA Lys	GTC Val	AGG Arg	ATG Met	1863
TAC Tyr 315	GTG Val	GGA Gly	GGG Gly	GTC Val	GAG Glu 320	CAC His	AGG Arg	CTG Leu	GAA Glu	GCG Ala 325	GCC Ala	TGC Cys	AAC Asn	TGG Trp	ACG Thr 330	1911
CGG Arg	GGC Gly	GAA Glu	CGC Arg	TGT Cys 335	Asp	CTG Leu	GAA Glu	GAC Asp	AGG Arg 340	GAC Asp	AGG Arg	TCC Ser	GAG Glu	CTC Leu 345	AGC Ser	1959
CCG Pro	TTA Leu	CTG Leu	CTG Leu 350	TCC Ser	ACC Thr	ACG Thr	CAG Gln	TGG Trp 355	CAG Gln	GTC Val	CTT Leu	CCG Pro	TGT Cys 360	TCT	TTC Phe	2007
ACG Thr	ACC Thr	CTG Leu 365	Pro	GCC Ala	TTG Leu	TCC Ser	ACC Thr 370	GGC Gly	CTC Leu	ATC Ile	CAC His	CTC Leu 375	His	CAG Gln	AAC Asn	2055
ATT Ile	GTG Val 380	Asp	GTG Val	CAG Gln	TAC Tyr	TTG Leu 385	Tyr	GGG	GTA Val	GGG	TCA Ser 390	Ser	: ATC	GCG Ala	TCC Ser	2103
TGG Trp 395	Ala	ATT	AAG Lys	TGG Trp	GAG Glu 400	Tyr	GAC Asp	GTI Val	CTC Leu	CTG Leu 405	Phe	CTI Lev	CTG Leu	CTI Lev	GCA Ala 410	2151
GAC Asp	GCG	CGC Arg	GT¶	TGC Cys 415	Ser	TGC Cys	TTC Lev	TGC Trp	ATG Met 420	Met	TTA Leu	CTO	ATA	TCC Ser 425	CAA Gln	2199
GCG Ala	GAC Glu	GCC Alā	GCT Ala 430	. Leu	GAC 1 Glu	ATC	TC1	GAZ Glu 435	ı Val	AAC Lys	ATC Met	GA? : Ası	GC# Ala 440	Gli	A TTC 1 Phe	2247
CGA Arg	CAT His	GAC Asp 449	Se	A GG1 r Gl3	A TAT	GA#	A GT7 1 Val 450	l His	r CAT	CAZ Gli	AAA Lys	A TTO	u Val	TTY L Ph	TTT Phe	2295
GCA Ala	GAI	A GA 1 Asj	r GTV o Va	G GG! 1 Gly	TTC y Se	A AAC r Ası	AAI 1 Ly:	A GG	r GCZ y Ala	A ATO	C AT	r GG e Gl	A CTO	C AT	G GTG t Val	2343

465 470 460 GGC GGT GTT GTC ATA GCG ACA GTG ATC GTC ATC ACC TTG GTG ATG CTG 2391 Gly Gly Val Val Ile Ala Thr Val Ile Val Ile Thr Leu Val Met Leu AAG AAA CAG TAC ACA TCC ATT CAT CAT GGT GTG GTG GAG GTT GAC 2439 Lys Lys Lys Gln Tyr Thr Ser Ile His His Gly Val Val Glu Val Asp 500 495 GCC GCT GTC ACC CCA GAG GAG CGC CAC CTG TCC AAG ATG CAG CAG AAC 2487 Ala Ala Val Thr Pro Glu Glu Arg His Leu Ser Lys Met Gln Gln Asn 510 GGC TAC GAA AAT CCA ACC TAC AAG TTC TIT GAG CAG ATG CAG AAC 2532 Gly Tyr Glu Asn Pro Thr Tyr Lys Phe Phe Glu Gln Met Gln Asn 525 TAGACCCCCG CCACAGCAGC CTCTGAAGTT GGACAGCAAA ACCATTGCTT CACTACCCAT 2592 2652 CGGTGTCCAT TTATAGAATA ATGTGGGAAG AAACAACCC GTTTTATGAT TTACTCATTA TCGCCTTTTG ACAGCTGTGC TGTAACACAA GTAGATGCCT GAACTTGAAT TAATCCACAC 2712 ATCAGTATTG TATTCTATCT CTCTTTACAT TTTGGTCTCT ATACTACATT ATTAATGGGT 2772 TTTGTGTACT GTAAAGAATT TAGCTGTATC AAACTAGTGC ATGAATAGGC CGCTCGAGCA 2832 2892 TGCATCTAGA GGGCCCTATT CTATAGTGTC ACCTAAATGC TCGCTGATCA GCCTCGACTG TGCCTTCTAG TTGCCAGCCA TCTGTTGTTT GCCCCTCCCC CGTGCCTTCC TTGACCCTGG 2952 AAGGTGCCAC TCCCACTGTC CTTTCCTAAT AAAATGAGGA AATTGCATCG CATTGTCTGA 3012 GTAGGTGTCA TTCTATTCTG GGGGGTGGGG TGGGGCAGGA CAGCAAGGGG GAGGATTGGG 3072 AAGACAATAG CAGGCATGCT GGGGATGCGG TGGGCTCTAT GGAACCAGCT GGGGCTCGAG 3132 GGGGGATCCC CACGCGCCCT GTAGCGGCGC ATTAAGCGCG GCGGGTGTGG TGGTTACGCG 3192 CAGCGTGACC GCTACACTTG CCAGCGCCCT AGCGCCCGCT CCTTTCGCTT TCTTCCCTTC 3252 CTTTCTCGCC ACGTTCGCCG GCTTTCCCCG TCAAGCTCTA AATCGGGGCA TCCCTTTAGG 3312 GTTCCGATTT AGTGCTTTAC GGCACCTCGA CCCCAAAAAA CTTGATTAGG GTGATGGTTC 3372 ACGTAGTGGG CCATCGCCCT GATAGACGGT TTTTCGCCTT TACTGAGCAC TCTTTAATAG 3432 TGGACTCTTG TTCCAAACTG GAACAACACT CAACCCTATC TCGGTCTATT CTTTTGATTT 3492 ATAAGATTTC CATCGCCATG TAAAAGTGTT ACAATTAGCA TTAAATTACT TCTTTATATG 3552 CTACTATTCT TTTGGCTTCG TTCACGGGGT GGGTACCGAG CTCGAATTCT GTGGAATGTG 3612 TGTCAGTTAG GGTGTGGAAA GTCCCCAGGC TCCCCAGGCA GGCAGAAGTA TGCAAAGCAT 3672 .

GCATCTCAAT I	AGTCAGCAA	CCAGGTGTGG	AAAGTCCCCA	GGCTCCCCAG	CAGGCAGAAG	3732
TATGCAAAGC A	ATGCATCTCA	ATTAGTCAGC	AACCATAGTC	CCGCCCCTAA	CTCCGCCCAT	3792
CCCGCCCTA A	ACTCCGCCCA	GTTCCGCCCA	TTCTCCGCCC	CATGGCTGAC	TAATTTTTTT	3852
TATTTATGCA G	BAGGCCGAGG	CCGCCTCGGC	CTCTGAGCTA	TTCCAGAAGT	AGTGAGGAGG	3912
CTTTTTTGGA (GCCTAGGCT	TTTGCAAAAA	GCTCCCGGGA	GCTTGGATAT	CCATTTTCGG	3972
ATCTGATCAA (GAGACAGGAT	GAGGATCGTT	TCGCATGATT	GAACAAGATG	GATTGCACGC	4032
AGGTTCTCCG (CCCCTTCCC	TGGAGAGGCT	ATTCGGCTAT	GACTGGGCAC	AACAGACAAT	4092
CGGCTGCTCT (GATGCCGCCG	TGTTCCGGCT	GTCAGCGCAG	GGGCGCCCGG	TTCTTTTTGT	4152
CAAGACCGAC (CTGTCCGGTG	CCCTGAATGA	ACTGCAGGAC	GAGGCAGCGC	GGCTATCGTG	4212
GCTGGCCACG	ACGGGCGTTC	CTTGCGCAGC	TGTGCTCGAC	GTTGTCACTG	AAGCGGGAAG	4272
GGACTGGCTG	CTATTGGGCG	AAGTGCCGGG	GCAGGATCTC	CTGTCATCTC	ACCTTGCTCC	4332
TGCCGAGAAA	GTATCCATCA	TGGCTGATGC	AATGCGGCGG	CTGCATACGC	TTGATCCGGC	4392
TACCTGCCCA	TTCGACCACC	AAGCGAAACA	TCGCATCGAG	CGAGCACGTA	CTCGGATGGA	4452
AGCCGGTCTT	GTCGATCAGG	ATGATCTGGA	CGAAGAGCAT	CAGGGGCTCG	CGCCAGCCGA	4512
ACTGTTCGCC	AGGCTCAAGG	CGCGCATGCC	CGACGCGAG	GATCTCGTCG	TGACCCATGG	4572
CGATGCCTGC	TTGCCGAATA	TCATGGTGGA	AAATGGCCGC	TTTTCTGGAT	TCATCGACTG	4632
TGGCCGGCTG	GGTGTGGCGG	ACCGCTATCA	GGACATAGCG	TTGGCTACCC	GTGATATTGC	4692
TGAAGAGCTT	GGCGGCGAAT	GGGCTGACCG	CTTCCTCGTG	CTTTACGGT	TCGCCGCTCC	4752
CGATTCGCAG	CGCATCGCCT	TCTATCGCCT	TCTTGACGAG	TTCTTCTGAG	G CGGGACTCTG	4812
GGGTTCGAAA	TGACCGACCA	AGCGACGCCC	AACCTGCCAT	CACGAGATT	r CGATTCCACC	4872
GCCGCCTTCT	ATGAAAGGTT	GGGCTTCGG	ATCGTTTTC	GGGACGCCG	G CTGGATGATC	4932
CTCCAGCGCG	GGGATCTCAT	GCTGGAGTT	TTCGCCCACC	CCAACTIGT	T TATTGCAGCT	4992
TATAATGGTT	ACAAATAAAG	CAATAGCAT	ACAAATTTC	A CAAATAAAG	C ATTTTTTCA	5052
CTGCATTCTA	GTTGTGGTTT	GTCCAAACT	ATCAATGTA	r cttatcatg	T CTGGATCCCG	5112
TCGACCTCGA	GAGCTTGGCG	TAATCATGG	r catagetgt	T TCCTGTGTG	A AATTGTTATC	5172
CGCTCACAAT	TCCACACAA	ATACGAGCC	G GAAGCATAA	A GTGTAAAGC	C TGGGGTGCCT	5232
እ አጥር አርጥር አ ር	ርጥል እርጥር እር ፤	ላ ጥጥ ል አጥጥር ርርና	T TGCGCTCAC	T GCCCGCTTI	C CAGTCGGGAA	5292

				~~~~	COMMITTEE COM N	E2E2
	CCAGCTGCAT					53,52
TTGGGCGCTC	TTCCGCTTCC	TCGCTCACTG	ACTCGCTGCG	CTCGGTCGTT	CGGCTGCGGC	5412
GAGCGGTATC	AGCTCACTCA	AAGGCGGTAA	TACGGTTATC	CACAGAATCA	GGGGATAACG	5472
CAGGAAAGAA	CATGTGAGCA	AAAGGCCAGC	AAAAGGCCAG	GAACCGTAAA	AAGGCCGCGT	5532
TGCTGGCGTT	TTTCCATAGG	CTCCGCCCCC	CTGACGAGCA	TCACAAAAAT	CGACGCTCAA	5592
GTCAGAGGTG	GCGAAACCCG	ACAGGACTAT	AAAGATACCA	GGCGTTTCCC	CCTGGAAGCT	5652
CCCTCGTGCG	CTCTCCTGTT	CCGACCCTGC	CGCTTACCGG	ATACCTGTCC	GCCTTTCTCC	5712
CTTCGGGAAG	CGTGGCGCTT	TCTCAATGCT	CACGCTGTAG	GTATCTCAGT	TCGGTGTAGG	5772
TCGTTCGCTC	CAAGCTGGGC	TGTGTGCACG	AACCCCCCGT	TCAGCCCGAC	CGCTGCGCCT	5832
TATCCGGTAA	CTATCGTCTT	GAGTCCAACC	CGGTAAGACA	CGACTTATCG	CCACTGGCAG	5892
CAGCCACTGG	TAACAGGATT	AGCAGAGCGA	GGTATGTAGG	CGGTGCTACA	GAGTTCTTGA	5952
AGTGGTGGCC	TAACTACGGC	TACACTAGAA	GGACAGTATT	TGGTATCTGC	GCTCTGCTGA	6012
AGCCAGTTAC	CTTCGGAAAA	AGAGTTGGTA	GCTCTTGATC	CGGCAAACAA	ACCACCGCTG	6072
GTAGCGGTGG	TTTTTTTTTTT	TGCAAGCAGC	AGATTACGCG	CAGAAAAAA	GGATCTCAAG	6132
AAGATCCTTT	GATCTTTTCT	ACGGGGTCTG	ACGCTCAGTG	GAACGAAAAC	TCACGTTAAG	6192
GGATTTTGGT	CATGAGATTA	TCAAAAAGGA	TCTTCACCTA	GATCCTTTTA	TAAAAATTAA	6252
GAAGTTTTAA	ATCAATCTAA	AGTATATATG	AGTAAACTTG	GTCTGACAGT	TACCAATGCT	6312
TAATCAGTGA	GGCACCTATC	TCAGCGATCT	GTCTATTTCG	TTCATCCATA	GTTGCCTGAC	6372
TCCCCGTCGT	GTAGATAACT	ACGATACGGG	AGGGCTTACC	ATCTGGCCCC	AGTGCTGCAA	6432
TGATACCGCG	AGACCCACGC	TCACCGGCTC	CAGATTTATC	AGCAATAAAC	CAGCCAGCCG	649
GAAGGGCCGA	GCGCAGAAGT	GGTCCTGCAA	CTTTATCCGC	CTCCATCCAG	TCTATTAATT	655
GTTGCCGGGA	AGCTAGAGTA	AGTAGTTCGC	CAGTTAATAG	TTTGCGCAAC	GTTGTTGCCA	661
TTGCTACAGG	CATCGTGGTG	TCACGCTCGT	CGTTTGGTAT	GGCTTCATTC	AGCTCCGGTT	667
CCCAACGATC	AAGGCGAGTT	ACATGATCCC	CCATGTTGTG	CAAAAAAGCG	GTTAGCTCCT	673
TCGGTCCTCC	GATCGTTGTC	AGAAGTAAGT	TGGCCGCAGT	GTTATCACTC	ATGGTTATGG	679
CAGCACTGCA	TAATTCTCTT	ACTGTCATGC	CATCCGTAAG	ATGCTTTTCT	GTGACTGGTG	685
AGTACTCAAC	CAAGTCATTC	TGAGAATAGI	GTATGCGGCG	ACCGAGTTGC	TCTTGCCCGG	691
CGTCAATACG	GGATAATACC	GCGCCACATA	GCAGAACTTT	AAAAGTGCTC	ATCATTGGAA	697

AACG'	TTCT.	rc G	GGCC	AAA	A CTC	TCA	AGGA	TCTT	PACCG	CT G	TTG	CATC	C A	GTTC(	GATGT
AACC	CACT	CG T	GCACO	CAA	TGA	TCTI	CAG	CATO	TTT	AC T	TTC	CCAC	GC G	TTTC.	IGGGT
GAGC.	AAAA	AC AG	GGAAC	GCA	CAA A	CCC	GCAA	AAA	AGGG#	TA	AGGG	CGA	CA C	GGAA	ATGTT
GAAT	ACTC:	AT A	CTCT	CCT.	r TT	CAA?	TTAT	ATTO	BAAGO	CAT T	TAT	AGG	T T	ATTG"	ICTCA
TGAG	CGGA'	TA C	ATAT:	rtga	A TG1	'ATT	TAGA	AAA	ATAAI	ACA Z	ATA	GGG.	et c	CGCG	CACAT
TTCC	CCGA	AA A	GTGC	CACC'	T GAG	CGTC									
(2)	INFO														
	(	i) S			CHAR GTH:			ICS:	cids						
					E: al										
	(i	i) M	OLEC	ULE	TYPE	: pr	otei	n							
	•	-						SEQ	ID:	NO:4	:				
Mot		-	-					Leu				Trp	Thr	Ala	Arg
1	Dea	110	<u>ur</u>	5					10			_		15	
Ala	Leu	Glu	Val 20	Pro	Thr	Asp	Gly	Asn 25	Ala	Gly	Leu	Leu	Ala 30	Glu	Pro
Gln	Ile	Ala 35	Met	Phe	Cys	Gly	Arg 40	Leu	Asn	Met	His	Met 45	Asn	Val	Gln
Asn	Gly 50	Lys	Trp	Asp	Ser	Asp 55	Pro	Ser	Gly	Thr	Lys	Thr	Cys	Ile	Asp
Thr 65	Lys	Glu	Thr	His	Val 70	Thr	Gly	Gly	Ser	Ala 75	Gly	His	Thr	Thr	Ala 80
Gly	Leu	Val	Arg	Leu 85	Leu	Ser	Pro	Gly	Ala 90	Lys	Gln	Asn	Ile	Gln 95	Leu
Ile	Asn	Thr	Asn 100	Gly	Ser	Trp	His	Ile 105	Asn	Ser	Thr	Ala	Leu 110	Asn	Cys
Asn	Glu	Ser 115	Leu	Asn	Thr	Gly	Trp 120	Leu	Ala	Gly	Leu	Phe 125	Tyr	His	His
Lys	Phe 130		Ser	Ser	Gly	Cys 135		Glu	Arg	Leu	Ala 140	Ser	Cys	Arg	Arg
Leu 145		Asp	Phe	Ala	Gln 150		Gly	Gly	Pro	Ile		Tyr	Ala	Asn	Gly 160

Ser	Gly	Leu	Asp	Glu 165	Arg	Pro	Tyr	CÀa	Trp 170	His	Tyr	Pro	Pro	Arg 175	Pro
Cys	Gly	Ile	Val 180	Pro	Ala	Lys	Ser	Val 185	Cys	Gly	Pro	Val	Tyr 190	Cys	Phe
Thr	Pro	Ser 195	Pro	Val	Val	Val	Gly 200	Thr	Thr	Asp	Arg	Ser 205	Gly	Ala	Pro
Thr	Tyr 210	Ser	Trp	Gly	Ala	Asn 215	Asp	Thr	Asp	Val	Phe 220	Val	Leu	Asn	Asn
Thr 225	Arg	Pro	Pro	Leu	Gly 230	Asn	Trp	Phe	Gly	Cys 235	Thr	Trp	Met	Asn	Ser 240
Thr	Gly	Phe	Thr	Lys 245	Val	Cys	Gly	Ala	Pro 250	Pro	Cys	Val	Ile	Gly 255	Gly
Val	Gly	Asn	Asn 260	Thr	Leu	Leu	Cys	Pro 265	Thr	Asp	Cys	Phe	Arg 270	Lys	His
Pro	Glu	Ala 275	Thr	Tyr	Ser	Arg	Cys 280	Gly	Ser	Gly	Pro	Trp 285	Ile	Thr	Pro
Arg	Cys 290	Met	Val	Asp	Tyr	Pro 295	Tyr	Arg	Leu	Trp	His 300	Tyr	Pro	Cys	Thr
Ile 305	Asn	Tyr	Thr	Ile	Phe 310	Lys	Val	Arg	Met	Tyr 315	Val	Gly	Gly	Val	Glu 320
His	Arg	Leu	Glu	Ala 325	Ala	Cys	Asn	Trp	Thr 330	Arg	Gly	Glu	Arg	Cys 335	Asp
Leu	Glu	Asp	Arg 340	Asp	Arg	Ser	Glu	Leu 345	Ser	Pro	Leu	Leu	Leu 350	Ser	Thr
Thr	Gln	Trp 355	Gln	Val	Leu	Pro	Cys 360	Ser	Phe	Thr	Thr	Leu 365	Pro	Ala	Leu
Ser	Thr 370	Gly	Leu	Ile	His	Leu 375	His	Gln	Asn	Ile	Val 380	Asp	Val	Gln	Tyr
Leu 385	Tyr	Gly	Val	Gly	Ser 390	Ser	Ile	Ala	Ser	Trp 395	Ala	Ile	Lys	Trp	Glu 400
Tyr	Asp	Val	Leu	Leu 405		Leu	Leu	Leu	Ala 410	Asp	Ala	Arg	Val	Cys 415	Ser
Cys	Leu	Trp	Met 420	Met	Leu	Leu	Ile	Ser 425	Gln	Ala	Glu	Ala	Ala 430	Leu	Glu
Ile	Ser	Glu 435	Val	Lys	Met	Asp	Ala 440		Phe	Arg	His	Asp 445		Gly	Tyr
Glu	Val	His	His	Gln	Lys	Leu	Val	Phe	Phe	Ala	Glu	Asp	Val	Gly	Ser

58

460 455 450 Asn Lys Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala 470 Thr Val Ile Val Ile Thr Leu Val Met Leu Lys Lys Gln Tyr Thr 490 Ser Ile His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu 505 Glu Arg His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr 520 Tyr Lys Phe Phe Glu Gln Met Gln Asn 530 (2) INFORMATION FOR SEQ ID NO:5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7106 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: circular (ii) MOLECULE TYPE: DNA (genomic) (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 922..2022 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5: GACGGATCGG GAGATCTCCC GATCCCCTAT GGTCGACTCT CAGTACAATC TGCTCTGATG 60 CCGCATAGTT AAGCCAGTAT CTGCTCCCTG CTTGTGTGTT GGAGGTCGCT GAGTAGTGCG 120 CGAGCAAAAT TTAAGCTACA ACAAGGCAAG GCTTGACCGA CAATTGCATG AAGAATCTGC 180 TTAGGGTTAG GCGTTTTGCG CTGCTTCGCG ATGTACGGGC CAGATATACG CGTTGACATT 240 GATTATTGAC TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA 300 TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC 360 CCCGCCCATT GACGTCAATA ATGACGTATG TTCCCATAGT AACGCCAATA GGGACTTTCC 420 ATTGACGTCA ATGGGTGGAC TATTTACGGT AAACTGCCCA CTTGGCAGTA CATCAAGTGT 480 ATCATATGCC AAGTACGCCC CCTATTGACG TCAATGACGG TAAATGGCCC GCCTGGCATT 540

ATGCCCAGTA CATGACCTTA TGGGACTTTC CTACTTGGCA GTACATCTAC GTATTAGTCA

TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA TAGCGGTTTG	660
ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA TGGGAGTTTG TTTTGGCACC	720
AAAATCAACG GGACTTTCCA AAATGTCGTA ACAACTCCGC CCCATTGACG CAAATGGGCG	780
GTAGGCGTGT ACGGTGGGAG GTCTATATAA GCAGAGCTCT CTGGCTAACT AGAGAACCCA	840
CTGCTTAACT GGCTTATCGA AATTAATACG ACTCACTATA GGGAGACCGG AAGCTTTGCT	900
CTAGACTGGA ATTCGGGCGC G ATG CTG CCC GGT TTG GCA CTG CTC CTG CTG  Met Leu Pro Gly Leu Ala Leu Leu Leu  1 5 10	951
GCC GCC TGG ACG GCT CGG GCG CTG GAG GTA CCC ACT GAT GGT AAT GCT Ala Ala Trp Thr Ala Arg Ala Leu Glu Val Pro Thr Asp Gly Asn Ala 15 20 25	999
GGC CTG CTG GCT GAA CCC CAG ATT GCC ATG TTC TGT GGC AGA CTG AAC Gly Leu Leu Ala Glu Pro Gln Ile Ala Met Phe Cys Gly Arg Leu Asn 30 35 40	1047
ATG CAC ATG AAT GTC CAG AAT GGG AAG TGG GAT TCA GAT CCA TCA GGG Met His Met Asn Val Gln Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly 45 50 55	1095
ACC AAA ACC TGC ATT GAT ACC AAG GAA ACC CAC GTC ACC GGG GGA AGT Thr Lys Thr Cys Ile Asp Thr Lys Glu Thr His Val Thr Gly Gly Ser 60 65 70	1143
GCC GGC CAC ACC ACG GCT GGG CTT GTT CGT CTC CTT TCA CCA GGC GCC Ala Gly His Thr Thr Ala Gly Leu Val Arg Leu Leu Ser Pro Gly Ala 75 80 85 90	1191
AAG CAG AAC ATC CAA CTG ATC AAC ACC AAC GGC AGT TGG CAC ATC AAT Lys Gln Asn Ile Gln Leu Ile Asn Thr Asn Gly Ser Trp His Ile Asn 95 100 105	1239
AGC ACG GCC TTG AAC TGC AAT GAA AGC CTT AAC ACC GGC TGG TTA GCA Ser Thr Ala Leu Asn Cys Asn Glu Ser Leu Asn Thr Gly Trp Leu Ala 110 115 120	1287
GGG CTC TTC TAT CAC CAC AAA TTC AAC TCT TCA GGT TGT CCT GAG AGG Gly Leu Phe Tyr His His Lys Phe Asn Ser Ser Gly Cys Pro Glu Arg 125 130 135	1335
TTG GCC AGC TGC CGA CGC CTT ACC GAT TTT GCC CAG GGC GGG GGT CCT Leu Ala Ser Cys Arg Arg Leu Thr Asp Phe Ala Gln Gly Gly Pro 140 145 150	1383
ATC AGT TAC GCC AAC GGA AGC GGC CTC GAT GAA CGC CCC TAC TGC TGG  Ile S r Tyr Ala Asn Gly Ser Gly Leu Asp Glu Arg Pro Tyr Cys Trp  155 160 165 170	1431
CAC TAC CCT CCA AGA CCT TGT GGC ATT GTG CCC GCA AAG AGC GTG TGT	1479

I	lis	Tyr	Pro	Pro	Arg 175	Pro	Cys	Gly	Ile	Val 180	Pro	Ala	Lys	Ser	Val 185	Cys	
(	GC Gly	CCG Pro	GTA Val	TAT Tyr 190	TGC Cys	TTC Phe	ACT Thr	CCC Pro	AGC Ser 195	CCC Pro	GTG Val	GTG Val	GTG Val	GGA Gly 200	ACG Thr	ACC Thr	1527
1	GAC Asp	AGG Arg	TCG Ser 205	GGC Gly	GCG Ala	CCT Pro	ACC Thr	TAC Tyr 210	AGC Ser	TGG Trp	GGT Gly	GCA Ala	AAT Asn 215	GAT Asp	ACG Thr	GAT Asp	1575
,	GTC Val	TTT Phe 220	GTC Val	CTT Leu	AAC Asn	AAC Asn	ACC Thr 225	AGG Arg	CCA Pro	CCG Pro	CTG Leu	GGC Gly 230	AAT Asn	TGG Trp	TTC Phe	GGT Gly	1623
•														GGA Gly			1671
	CCT Pro	TGT Cys	GTC Val	ATC Ile	GGA Gly 255	GGG Gly	GTG Val	GGC Gly	AAC Asn	AAC Asn 260	ACC Thr	TTG Leu	CTC Leu	TGC Cys	CCC Pro 265	ACT Thr	1719
	GAT Asp	TGC Cys	TTC Phe	CGC Arg 270	Lys	CAT His	CCG Pro	GAA Glu	GCC Ala 275	ACA Thr	TAC Tyr	TCT Ser	CGG	TGC Cys 280	GGC Gly	TCC Ser	1767
	GGT Gly	CCC Pro	TGG Trp 285	Ile	ACA Thr	CCC Pro	AGG Arg	TGC Cys 290	ATG Met	GTC Val	GAC Asp	TAC Tyr	CCG Pro 295	TAT	AGG Arg	CTT Leu	1815
	TGG Trp	CAC His	Tyr	CCT	TGI Cys	ACC Thr	Ile 305	Asn	TAC Tyr	ACC Thr	ATA Ile	Phe	Lys	GTC Val	AGG Arg	ATG Met	1863
	TAC Tyr 315	Val	GGA Gly	GGG Gly	GTC Val	GAG Glu 320	His	AGG Arg	CTG Leu	GAA Glu	GCG Ala 325	Ala	TGC Cys	AAC Asn	TGG	ACG Thr 330	1911
•	CGG Arg	GGC	GAA	CGC Arg	TGI Cys 335	Asp	CTC Lev	GAA Glu	GAC Asp	AGG Arg 340	Asp	AGC Arg	TCC Ser	GAG Glu	CTC Lev 345	AGC Ser	1959
	CCG Pro	TTA Leu	CTC Lev	CTC Lev 350	ı Sei	ACC Thr	C ACC	G CAG	TGC Trp 355	Glr	GTC Val	CTI Let	r ccc	TGT Cys 360	Ser	TTC Phe	2007
			CTC Lev 365	ı Pro			GATC?	rctg	AAG	rgaac	TA <del>.</del>	GAT	GCAG:	AA TT	rccgi	ACATG	2062
	ACI	CAGO	SATA	TGA	AGTT	CAT (	CATC	AAAA	Y TA	GTG1	rrcr:	r TG	CAGA	AGAT	GTG	GTTCAA	2122
	ACA	AAG	STGC	AATO	CATTY	GGA (	CTCA!	rggT	GG G	CGGT	GTTG'	r ca	TAGC	GACA	GTG.	ATCGTCA	2182

TCACCTTGGT GATGCTGAAG AAGAAACAGT ACACATCCAT TCATCATGGT GTGGTGGAGG 2242 TTGACGCCGC TGTCACCCCA GAGGAGCGCC ACCTGTCCAA GATGCAGCAG AACGGCTACG 2302 AAAATCCAAC CTACAAGTTC TTTGAGCAGA TGCAGAACTA GACCCCCGCC ACAGCAGCCT 2362 CTGAAGTTGG ACAGCAAAAC CATTGCTTCA CTACCCATCG GTGTCCATTT ATAGAATAAT 2422 GTGGGAAGAA ACAAACCCGT TTTATGATTT ACTCATTATC GCCTTTTGAC AGCTGTGCTG 2482 TAACACAAGT AGATGCCTGA ACTTGAATTA ATCCACACAT CAGTAATGTA TTCTATCTCT 2542 CTTTACATTT TGGTCTCTAT ACTACATTAT TAATGGGTTT TGTGTACTGT AAAGAATTTA 2602 GCTGTATCAA ACTAGTGCAT GAATAGGCCG CTCGAGCATG CATCTAGAGG GCCCTATTCT ATAGTGTCAC CTAAATGCTC GCTGATCAGC CTCGACTGTG CCTTCTAGTT GCCAGCCATC 2722 TGTTGTTTGC CCCTCCCCG TGCCTTCCTT GACCCTGGAA GGTGCCACTC CCACTGTCCT 2782 TTCCTAATAA AATGAGGAAA TTGCATCGCA TTGTCTGAGT AGGTGTCATT CTATTCTGGG 2842 GGGTGGGGTG GGGCAGGACA GCAAGGGGGA GGATTGGGAA GACAATAGCA GGCATGCTGG 2902 GGATGCGGTG GGCTCTATGG AACCAGCTGG GGCTCGAGGG GGGATCCCCA CGCGCCCTGT 2962 AGCGGCGCAT TAAGCGCGGC GGGTGTGGTG GTTACGCGCA GCGTGACCGC TACACTTGCC 3022 AGCGCCCTAG CGCCCGCTCC TTTCGCTTTC TTCCCTTCCT TTCTCGCCAC GTTCGCCGGC 3082 TTTCCCCGTC AAGCTCTAAA TCGGGGCATC CCTTTAGGGT TCCGATTTAG TGCTTTACGG 3142 CACCTCGACC CCAAAAAACT TGATTAGGGT GATGGTTCAC GTAGTGGGCC ATCGCCCTGA 3202 TAGACGGTTT TTCGCCTTTA CTGAGCACTC TTTAATAGTG GACTCTTGTT CCAAACTGGA 3262 ACAACACTCA ACCCTATCTC GGTCTATTCT TTTGATTTAT AAGATTTCCA TCGCCATGTA 3322 AAAGTGTTAC AATTAGCATT AAATTACTTC TTTATATGCT ACTATTCTTT TGGCTTCGTT 3382 CACGGGGTGG GTACCGAGCT CGAATTCTGT GGAATGTGTG TCAGTTAGGG TGTGGAAAGT 3442 CCCCAGGCTC CCCAGGCAGG CAGAAGTATG CAAAGCATGC ATCTCAATTA GTCAGCAACC 3502 AGGTGTGGAA AGTCCCCAGG CTCCCCAGCA GGCAGAAGTA TGCAAAGCAT GCATCTCAAT 3562 TAGTCAGCAA CCATAGTCCC GCCCCTAACT CCGCCCATCC CGCCCCTAAC TCCGCCCAGT 3622 TCCGCCCATT CTCCGCCCCA TGGCTGACTA ATTTTTTTTA TTTATGCAGA GGCCGAGGCC 3682 GCCTCGGCCT CTGAGCTATT CCAGAAGTAG TGAGGAGGCT TTTTTGGAGG CCTAGGCTTT 3742 TGCAAAAAGC TCCCGGGAGC TTGGATATCC ATTTTCGGAT CTGATCAAGA GACAGGATGA 3802 GGATCGTTTC GCATGATTGA ACAAGATGGA TTGCACGCAG GTTCTCCGGC CGCTTGGGTG 3862

GAGAGGCTAT	TCGGCTATGA	CTGGGCACAA	CAGACAATCG	GCTGCTCTGA	TGCCGCCGTG	3922
TTCCGGCTGT	CAGCGCAGGG	GCGCCCCCTT	CTTTTTGTCA	AGACCGACCT	GTCCGGTGCC	3982
CTGAATGAAC	TGCAGGACGA	GGCAGCGCGG	CTATCGTGGC	TGGCCACGAC	GGGCGTTCCT	4042
TGCGCAGCTG	TGCTCGACGT	TGTCACTGAA	GCGGGAAGGG	ACTGGCTGCT	ATTGGGCGAA	4102
GTGCCGGGGC	AGGATCTCCT	GTCATCTCAC	CTTGCTCCTG	CCGAGAAAGT	ATCCATCATG	4162
GCTGATGCAA	TGCGGCGGCT	GCATACGCTT	GATCCGGCTA	CCTGCCCATT	CGACCACCAA	4222
GCGAAACATC	GCATCGAGCG	AGCACGTACT	CGGATGGAAG	CCGGTCTTGT	CGATCAGGAT	4282
GATCTGGACG	AAGAGCATCA	GGGGCTCGCG	CCAGCCGAAC	TGTTCGCCAG	GCTCAAGGCG	4342
CGCATGCCCG	ACGCCGAGGA	TCTCGTCGTG	ACCCATGGCG	ATGCCTGCTT	GCCGAATATC	4402
ATGGTGGAAA	ATGGCCGCTT	TTCTGGATTC	ATCGACTGTG	GCCGGCTGGG	TGTGGCGGAC	4462
CCCTATCAGG	ACATAGCGTT	GGCTACCCGT	GATATTGCTG	AAGAGCTTGG	CGGCGAATGG	4522
GCTGACCGCT	TCCTCGTGCT	TTACGGTATC	GCCGCTCCCG	ATTCGCAGCG	CATCGCCTTC	4582
TATCGCCTTC	TTGACGAGTT	CTTCTGAGCG	GGACTCTGGG	GTTCGAAATG	ACCGACCAAG	4642
CGACGCCCAA	CCTGCCATCA	CGAGATTTCG	ATTCCACCGC	CGCCTTCTAT	GAAAGGTTGG	4702
GCTTCGGAAT	CGTTTTCCGG	GACGCCGGCT	GGATGATCCT	CCAGCGCGGG	GATCTCATGC	4762
TGGAGTTCTT	CGCCCACCCC	AACTTGTTTA	TTGCAGCTTA	TAATGGTTAC	AAATAAAGCA	4822
ATAGCATCAC	AAATTTCACA	AATAAAGCAT	TTTTTTCACT	GCATTCTAGT	TGTGGTTTGT	4882
CCAAACTCAT	CAATGTATCT	TATCATGTCT	GGATCCCGTC	GACCTCGAGA	CCTTGGCGTA	4942
ATCATGGTCA	TAGCTGTTTC	CTGTGTGAAA	TTGTTATCCG	CTCACAATTC	CACACAACAT	5002
ACGAGCCGGA	AGCATAAAGT	GTAAAGCCTG	GGGTGCCTAA	TGAGTGAGCT	AACTCACATT	5062
AATTGCGTTG	CGCTCACTGC	CCGCTTTCCA	GTCGGGAAAC	CTGTCGTGCC	AGCTGCATTA	5122
ATGAATCGGC	CAACGCGCGG	GGAGAGGCGG	TTTGCGTATI	GGGCGCTCTT	CCCCTTCCTC	5182
GCTCACTGAC	TCGCTGCGCT	CGGTCGTTCG	GCTGCGGCGA	GCGGTATCAC	CTCACTCAAA	5242
GGCGGTAATA	. CGGTTATCC#	CAGAATCAGO	GGATAACGCA	GGAAAGAACA	A TGTGAGCAAA	5302
AGGCCAGCAA	AAGGCCAGG	A ACCGTAAAA	A GGCCGCGTTC	CTGGCGTTT	T TCCATAGGCT	5362
CCGCCCCCT	GACGAGCATO	ACAAAAATCO	ACGCTCAAGT	CAGAGGTGG	GAAACCCGAC	5422
AGGACTATAA	AGATACCAGO	G CGTTTCCCC:	TGGAAGCTC	CTCGTGCGC	r crccrgrrcc	5482

GACCCTGCCG	CTTACCGGAT	ACCTGTCCGC	CTTTCTCCCT	TCGGGAAGCG	TGGCGCTTTC	5542
TCAATGCTCA	CGCTGTAGGT	ATCTCAGTTC	GGTGTAGGTC	GTTCGCTCCA	AGCTGGGCTG	5602
TGTGCACGAA	CCCCCCTTC	AGCCCGACCG	CTGCGCCTTA	TCCGGTAACT	ATCGTCTTGA	5662
GTCCAACCCG	GTAAGACACG	ACTTATCGCC	ACTGGCAGCA	GCCACTGGTA	ACAGGATTAG	5722
CAGAGCGAGG	TATGTAGGCG	GTGCTACAGA	GTTCTTGAAG	TGGTGGCCTA	ACTACGGCTA	5782
CACTAGAAGG	ACAGTATTTG	GTATCTGCGC	TCTGCTGAAG	CCAGTTACCT	TCGGAAAAAG	5842
AGTTGGTAGC	TCTTGATCCG	GCAAACAAAC	CACCGCTGGT	AGCGGTGGTT	TTTTTGTTTG	5902
CAAGCAGCAG	ATTACGCGCA	GAAAAAAAGG	ATCTCAAGAA	GATCCTTTGA	TCTTTTCTAC	5962
GGGGTCTGAC	GCTCAGTGGA	ACGAAAACTC	ACGTTAAGGG	ATTTTGGTCA	TGAGATTATC	6022
AAAAAGGATC	TTCACCTAGA	TCCTTTTAAA	TTAAAAATGA	AGTTTTAAAT	CAATCTAAAG	6082
TATATATGAG	TAAACTTGGT	CTGACAGTTA	CCAATGCTTA	ATCAGTGAGG	CACCTATCTC	6142
AGCGATCTGT	CTATTTCGTT	CATCCATAGT	TGCCTGACTC	CCCGTCGTGT	AGATAACTAC	6202
GATACGGGAG	GGCTTACCAT	CTGGCCCCAG	TGCTGCAATG	ATACCGCGAG	ACCCACGCTC	6262
ACCGGCTCCA	GATTTATCAG	CAATAAACCA	GCCAGCCGGA	AGGCCGAGC	GCAGAAGTGG	6322
TCCTGCAACT	TTATCCGCCT	CCATCCAGTC	TATTAATTGT	TGCCGGGAAG	CTAGAGTAAG	6382
TAGTTCGCCA	GTTAATAGTT	TGCGCAACGT	TGTTGCCATT	GCTACAGGCA	TCGTGGTGTC	6442
ACGCTCGTCG	TTTGGTATGG	CTTCATTCAG	CTCCGGTTCC	CAACGATCAA	GGCGAGTTAC	6502
ATGATCCCCC	ATGTTGTGCA	AAAAAGCGGT	TAGCTCCTTC	GGTCCTCCGA	TCGTTGTCAG	6562
AAGTAAGTTG	GCCGCAGTGT	TATCACTCAT	GGTTATGGCA	. GCACTGCATA	ATTCTCTTAC	6622
TGTCATGCCA	TCCGTAAGAT	GCTTTTCTGI	GACTGGTGAG	TACTCAACCA	AGTCATTCTG	6682
AGAATAGTGT	ATGCGGCGAC	CGAGTTGCTC	TTGCCCGGCG	TCAATACGGG	ATAATACCGC	6742
GCCACATAGC	AGAACTTTAA	AAGTGCTCAT	CATTGGAAAA	CGTTCTTCGG	GGCGAAAACT	6802
CTCAAGGATC	TTACCGCTGT	TGAGATCCAG	TTCGATGTAA	CCCACTCGTG	CACCCAACTG	6862
ATCTTCAGCA	TCTTTTACTT	TCACCAGCG	TTCTGGGTGA	GCAAAAACAG	GAAGGCAAAA	6922
TGCCGCAAAA	AAGGGAATAA	GGGCGACACC	GAAATGTTGA	ATACTCATAC	TCTTCCTTTT	6982
TCAATATTAT	TGAAGCATTI	ATCAGGGTT	A TTGTCTCATO	G AGCGGATACA	A TATTTGAATG	7042
TATTTAGAAA	AATAAACAA	A TAGGGGTTC	GCGCACATTT	r CCCCGAAAAC	TGCCACCTGA	7102
CGTC						7106

- (2) INFORMATION FOR SEQ ID NO:6:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 367 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
- Met Leu Pro Gly Leu Ala Leu Leu Leu Leu Ala Ala Trp Thr Ala Arg

  1 5 10 15
- Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro 20 25 30
- Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
- Asn Gly Lys Trp Asp Ser Asp Prc Ser Gly Thr Lys Thr Cys Ile Asp 50 55 60
- Thr Lys Glu Thr His Val Thr Gly Gly Ser Ala Gly His Thr Thr Ala 65 70 75 80
- Gly Leu Val Arg Leu Leu Ser Pro Gly Ala Lys Gln Asn Ile Gln Leu 85 90 95
- Ile Asn Thr Asn Gly Ser Trp His Ile Asn Ser Thr Ala Leu Asn Cys 100 105 110
- Asn Glu Ser Leu Asn Thr Gly Trp Leu Ala Gly Leu Phe Tyr His His 115 120 125
- Lys Phe Asn Ser Ser Gly Cys Pro Glu Arg Leu Ala Ser Cys Arg Arg 130 135 140
- Leu Thr Asp Phe Ala Gln Gly Gly Gly Pro Ile Ser Tyr Ala Asn Gly 145 150 155 160
- Ser Gly Leu Asp Glu Arg Pro Tyr Cys Trp His Tyr Pro Pro Arg Pro 165 170 175
- Cys Gly Ile Val Pro Ala Lys Ser Val Cys Gly Pro Val Tyr Cys Phe 180 185 190
- Thr Pro Ser Pro Val Val Val Gly Thr Thr Asp Arg Ser Gly Ala Pro
- Thr Tyr Ser Trp Gly Ala Asn Asp Thr Asp Val Phe Val Leu Asn Asn 210 215 220

Thr 225	Arg	Pro	Pro	Leu	Gly 230	Asn	Trp	Phe	Gly	Cys 235	Thr	Trp	Met	Asn	Ser 240		
Thr	Gly	Phe	Thr	Lys 245	Val	Cys	Gly	Ala	Pro 250	Pro	Cys	Val	Il	Gly 255	Gly		
Val	Gly	Asn	Asn 260	Thr	Leu	Leu	Cys	Pro 265	Thr	Asp	Cys	Phe	Arg 270	Lys	His		
Pro	Glu	Ala 275	Thr	Tyr	Ser	Arg	Cys 280	Gly	Ser	Gly	Pro	Trp 285	Ile	Thr	Pro		
Arg	Cys 290	Met	Val	Asp	Tyr	Pro 295	Tyr	Arg	Leu	Trp	His 300	Tyr	Pro	Cys	Thr		
Ile 305	Asn	Tyr	Thr	Ile	Phe	Lys	Val	Arg	Met	Tyr 315	Val	Gly	Gly	Val	Glu 320		
His	Arg	Leu	Glu	Ala 325	Ala	Cys	Asn	Trp	Thr 330	Arg	Gly	Glu	Arg	Cys 335	Asp		
Leu	Glu	Asp	Arg 340		Arg	Ser	Glu	Leu 345		Pro	Leu	Leu	Leu 350	Ser	Thr		
Thr	Gln	Trp 355		Val	Leu	Pro	Cys 360	Ser	Phe	Thr	Thr	Leu 365		Ala			
(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:7	:									
	(i	· (	A) L B) T C) S	ENGT YPE: TRAN	H: 4 nuc	810 leic ESS:	ISTI base aci sin cula	pai d gle	rs								
	(ii	) MC	LECU	LE I	YPE:	DNA	. (ge	nomi	.c)								
	(ix	(		IAME/	KEY:		72	910									
	(xi	.) SE	QUEN	ICE I	ESCF	RIPTI	ON:	SEQ	ID 1	10:7:							
GCG	TAAT	CTG	CTGC	TTGC	CAA A	CAAA	AAAA	C CA	ACCGC	TACC	AGC	GGTC	GTT	TGTT	TGCCGG	6	50
ATC	AAGA	GCT	ACCA	ACTO	TT I	TTCC	GAAC	G TA	ACTO	GCTI	CAC	CAG	AGCG	CAG	ATACCAA	12	20
ATA	CTGT	CCT	TCT	AGTG?	TAG (	CGT	\GTT?	kG GC	CAC	CACT	CA?	AGAA(	CTCT	GTAC	CACCGC	18	80
CTA	CATA	CCT	CGCT	CTG	CTA A	TCCT	CTT	AC CA	AGTGO	CTG	TGC	CAG	rggc	GAT	AAGTCGT	24	40
GTC	TTAC	CGG	GTT	GAC	CA A	AGACO	ATAC	T T	ACCG	GATA	A GGC	CGCA	GCGG	TCG	GCTGAA	3 (	00

LGGGGGGTTC GTGCACACAG CCCAGCTTGS AGCGAACGAC CTACACCGAA CTGAGATACC	360
TACAGCGTGA GCATTGAGAA AGCGCCACGC TTCCCGAAGG GAGAAAGGCG GACAGGTATC	420
CGGTAAGCGG CAGGGTCGGA ACAGGAGAGC GCACGAGGGA GCTTCCAGGG GGAAACGCCT	480
GGTATCTTTA TAGTCCTGTC GGGTTTCGCC ACCTCTGACT TGAGCGTCGA TTTTTGTGAT	540
GCTCGTCAGG GGGGCGGAGC CTATGGAAAA ACGCCAGCAA CGCAAGCTAG CTTCTAGCTA	600
GAAATTGTAA ACGTTAATAT TTTGTTAAAA TTCGCGTTAA ATTTTTGTTA AATCAGCTCA	660
TTTTTTAACC AATAGGCCGA AATCGGCAAA ATCCCTTATA AATCAAAAGA ATAGCCCGAG	720
ATAGGGTTGA GTGTTGTTCC AGTTTGGAAC AAGAGTCCAC TATTAAAGAA CGTGGACTCC	780
AACGTCAAAG GGCGAAAAAC CGTCTATCAG GGCGATGGCC GCCCACTACG TGAACCATCA	840
CCCAAATCAA GTTTTTTGGG GTCGAGGTGC CGTAAAGCAC TAAATCGGAA CCCTAAAGGG	900
AGCCCCCGAT TTAGAGCTTG ACGGGGAAAG CCGGCGAACG TGGCGAGAAA GGAAGGGAAG	960
AAAGCGAAAG GAGCGGCGC TAGGGCGCTG GCAAGTGTAG CGGTCACGCT GCGCGTAACC	1020
ACCACACCCG CCGCGCTTAA TGCGCCGCTA CAGGGCGCGT ACTATGGTTG CTTTGACGAG	1080
ACCGTATAAC GTGCTTTCCT CGTTGGAATC AGAGCGGGAG CTAAACAGGA GGCCGATTAA	1140
AGGGATTTTA GACAGGAACG GTACGCCAGC TGGATCACCG CGGTCTTTCT CAACGTAACA	1200
CTTTACAGCG GCGCGTCATT TGATATGATG CGCCCCGCTT CCCGATAAGG GAGCAGGCCA	1260
GTAAAAGCAT TACCCGTGGT GGGGTTCCCG AGCGGCCAAA GGGAGCAGAC TCTAAATCTG	1320
CCGTCATCGA CTTCGAAGGT TCGAATCCTT CCCCCACCAC CATCACTTTC AAAAGTCCGA	1380
AAGAATCTGC TCCCTGCTTG TGTGTTGGAG GTCGCTGAGT AGTGCGCGAG TAAAATTTAA	1440
AAGAATCTGC TCCCTGCTTG TGTGTTGGAG GTCGCTGAGT ACTGCCTTAG GGTTAGGCGT GCTACAACAA GGCAAGGCTT GACCGACAAT TGCATGAAGA ATCTGCTTAG GGTTAGGCGT	1500
	1560
TTTGCGCTGC TTCGCGATGT ACGGGCCAGA TATACGCGTT GACATTGATT ATTGACTAGT	1620
TATTAATAGT AATCAATTAC GGGGTCATTA GTTCATAGCC CATATATGGA GTTCCGCGTT	1680
ACATAACTTA CGGTAAATGG CCCGCCTGGC TGACCGCCCA ACGACCCCCG CCCATTGACG	1740
TCAATAATGA CGTATGTTCC CATAGTAACG CCAATAGGGA CTTTCCATTG ACGTCAATGG	1800
GTGGACTATT TACGGTAAAC TGCCCACTTG GCAGTACATC AAGTGTATCA TATGCCAAGT	1860
ACGCCCCCTA TTGACGTCAA TGACGGTAAA TGGCCCGCCT GGCATTATGC CCAGTACATG	1920
ACCTTATGGG ACTTTCCTAC TTGGCAGTAC ATCTACGTAT TAGTCATCGC TATTACCATG	1920
CTCATCCCT TOTALCCACTA CATCAATCGG CGTGGATAGC GGTTTGACTC ACGGGGATTT	7300

CCA	AGTCT	CC A	CCCC	ATTG	A CG	rcaa	TGGG	AGT	TTGT	TTT	GGCA	CCAA	AA T	CAAC	GGGAC	2040
TTT	CAAA	AT G	TCGT	AACA	A CT	CCGC	CCCA	TTG	ACGC	AAA	TGGG	CGGT.	AG G	CGTG	TACGG	2100
TGG	GAGGT	CT A	TATA	AGCA	G AG	CTCT	CTGG	СТА	ACTA	GAG	AACC	CACT	GC T	TAAC	TGGCT	2160
TAT	CGAAA	A TT.	ATAC	GACT	C AC	TATA	.GGGA	GAC	CGGA	AGC	TTGG	TACC	GA G	CTCG	GATCT	2220
GCC	ACC A	ATG G Met A	CA A la T	CA G	GA T	CA A er A 5	GA A rg T	CA T hr S	CA C er L	TG C eu L	TG C eu L 10	TG G eu A	CA T la P	TT G he G	GA ly	2268
CTG Leu 15	CTG Leu	TGT Cys	CTG Leu	CCA Pro	TGG Trp 20	CTG Leu	CAA Gln	GAA Glu	GGA Gly	TCA Ser 25	GCA Ala	GCA Ala	GCA Ala	GCA Ala	GCG Ala 30	2316
AAT Asn	TCG Ser	GAT Asp	CCC Pro	TAC Tyr 35	CAA Gln	GTG Val	CGC Arg	AAT Asn	TCC Ser 40	TCG Ser	GGG Gly	CTT Leu	TAC Tyr	CAT His 45	GTC Val	2364
ACC Thr	AAT Asn	GAT Asp	TGC Cys 50	CCT Pro	AAT Asn	TCG Ser	AGT Ser	ATT Ile 55	GTG Val	TAC Tyr	GAG Glu	GCG Ala	GCC Ala 60	GAT Asp	GCC Ala	2412
ATC Ile	CTA Leu	CAC His 65	ACT Thr	CCG Pro	GGG Gly	TGT Cys	GTC Val 70	CCT Pro	TGC Cys	GTT Val	CGC Arg	GAG Glu 75	GGT Gly	AAC Asn	GCC Ala	2460
TCG Ser	AGG Arg 80	TGT Cys	TGG Trp	GTG Val	GCG Ala	GTG Val 85	ACC Thr	CCC Pro	ACG Thr	GTG Val	GCC Ala 90	ACC Thr	AGG Arg	GAC Asp	GGC Gly	2508
AAA Lys 95	Leu	CCC Pro	ACA Thr	ACG Thr	CAG Gln 100	CTT Leu	CGA Arg	CGT Arg	CAT His	ATC Ile 105	GAT Asp	CTG Leu	CTC Leu	GTC Val	GGG Gly 110	2556
AGC Ser	GCC Ala	ACC Thr	CTC Leu	TGC Cys 115	TCG Ser	GCC Ala	CTC Leu	TAC Tyr	GTG Val 120	GGG Gly	GAC Asp	CTG Leu	TGC Cys	GGG Gly 125	TCT Ser	2604
GTC Val	TTT Phe	CTT Leu	GTT Val 130	GGT Gly	CAA Gln	CTG Leu	TTT Phe	ACC Thr 135	Phe	TCT Ser	CCC Pro	AGG Arg	CGC Arg 140	CAC His	TGG Trp	2652
ACC	ACG Thr	CAA Gln 145	Asp	TGC Cys	AAT Asn	TGT Cys	TCT Ser 150	Ile	TAT Tyr	CCC Pro	GGT GL	CAT His 155	Ile	ACG Thr	GGT Gly	2700
CAT His	CGT Arg 160	Met	GCA Ala	TGG Trp	GAT Asp	ATG Met	Met	ATG Met	AAC Asn	TGG	TCC Ser 170	Pro	ACG Thr	GCA Ala	GCG Ala	2748
TT( Let	G GTG	GTA Val	GCT Ala	CAG Gln	CTG Leu	CTC	CGG	ATO	CCA Pro	CAA Gln	GCC	ATC	TTC Leu	GAC Asp	ATG Met	2796

175 180		185	190	
ATC GCT GGT GCC CAC TGG Ile Ala Gly Ala His Trp 195	GGA GTC CTG GCG Gly Val Leu Ala 200	Gly Ile Ala Tyr P	TC TCC 2: The Ser 05	844
ATG GTG GGG AAC TGG GCG Met Val Gly Asn Trp Ala 210	AAG GTC CTG GTA Lys Val Leu Val 215	GTG CTG CTG CTA T Val Leu Leu Leu F 220	TT GCC 2 The Ala	892
GGC GTT GAC GCG GAG ATC Gly Val Asp Ala Glu Ile 225		TATTC TATAGTGTCA	2	940
CCTAAATGCT AGAGGATCTT	rgtgaaggaa ccttact	TTCT GTGGTGTGAC A	TAATTGGAC 3	000
AAACTACCTA CAGAGATTTA	AAGCTCTAAG GTAAATI	ATAA AATTTTTAAG TO	STATAATGT 3	060
GTTAAACTAC TGATTCTAAT	CTTTGTGTA TTTTAG	ATTC CAACCTATGG A	ACTGATGAA 3	120
TGGGAGCAGT GGTGGAATGC	CTTTAATGAG GAAAAC	CTGT TTTGCTCAGA A	GAAATGCCA 3	180
TCTAGTGATG ATGAGGCTAC	TGCTGACTCT CAACAT	ICTA CTCCTCCAAA A	AAGAAGAGA 3	240
AAGGTAGAAG ACCCCAAGGA	CTTTCCTTCA GAATTG	CTAA GTTTTTGAG T	CATGCTGTG 3	300
TTTAGTAATA GAACTCTTGC	TTGCTTTGCT ATTTAC.	ACCA CAAAGGAAAA A	GCTGCACTG 3	360
CTATACAAGA AAATTATGGA	AAAATATTCT GTAACC	TTTA TAAGTAGGCA T	AACAGTTAT 3	3420
AATCATAACA TACTGTTTTT	TCTTACTCCA CACAGG	CATA GAGTGTCTGC T	ATTAATAAC 3	3480
TATGCTCAAA AATTGTGTAC	CTTTAGCTTT TTAATT	TGTA AAGGGGTTAA T	AAGGAATAT	3540
TTGATGTATA GTGCCTTGAC	TAGAGATCAT AATCAG	CCAT ACCACATTTG T	AGAGGTTTT	3600
ACTTGCTTTA AAAAACCTCC	CACACCTCCC CCTGAA	CCTG AAACATAAAA T	GAATGCAAT	3660
TGTTGTTGTT AACTTGTTTA	TTGCAGCTTA TAATGG	TTAC AAATAAAGCA A	TAGCATCAC	3720
AAATTTCACA AATAAAGCAT				3780
CAATGTATCT TATCATGTCT	GGATCGATCC CGCCAT	GGTA TCAACGCCAT A	TTTCTATTT	3840
ACAGTAGGGA CCTCTTCGTT	GTGTAGGTAC CGCTGT	PATTC CTAGGGAAAT A	GTAGAGGCA	3900
CCTTGAACTG TCTGCATCAG	CCATATAGCC CCCGCT	CTTC GACTTACAAA (	CACAGGCACA	3960
GTACTGACAA ACCCATACAC		••		4020
CTCATTACAC CCTCCAAAGT				4080
CCAGATAAAA TAGCTTCTGC				4140
ATGAGGTCTA CTAGAATAGT				4200

CTTCAGAAGA TGGCGGAGGG CCTCCAACAC AGTAATTTTC CTCCCGACTC TTAAAATAGA 4260 AAATGTCAAG TCAGTTAAGC AGGAAGTGGA CTAACTGACG CAGCTGGCCG TGCGACATCC 4320 TCTTTTAATT AGTTGCTAGG CAACGCCCTC CAGAGGGCGT GTGGTTTTGC AAGAGGAAGC 4380 AAAAGCCTCT CCACCCAGGC CTAGAATGTT TCCACCCAAT CATTACTATG ACAACAGCTG 4440 TITITITIAG TATTAAGCAG AGGCCGGGGA CCCCTGGCCC GCTTACTCTG GAGAAAAAGA 4500 AGAGAGGCAT TGTAGAGGCT TCCAGAGGCA ACTTGTCAAA ACAGGACTGC TTCTATTTCT 4560 GTCACACTGT CTGGCCCTGT CACAAGGTCC AGCACCTCCA TACCCCCTTT AATAAGCAGT 4620 TTGGGAACGG GTGCGGGTCT TACTCCGCCC ATCCCGCCCC TAACTCCGCC CAGTTCCGCC 4680 CATTCTCCGC CCCATGGCTG ACTAATTTTT TTTATTTATG CAGAGGCCGA GGCCGCCTCG 4740 4800 GCCTCTGAGC TATTCCAGAA GTAGTGAGGA GGCTTTTTTG GAGGCCTAGG CTTTTGCAAA 4810 AAGCTAATTC

## (2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 228 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu

1 5 10 15

Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala Ala Ala Ala Ala Asn Ser 20 25 30

Asp Pro Tyr Gln Val Arg Asn Ser Ser Gly Leu Tyr His Val Thr Asn 35 40 45

Asp Cys Pro Asn Ser Ser Ile Val Tyr Glu Ala Ala Asp Ala Ile Leu 50 55 60

His Thr Pro Gly Cys Val Pro Cys Val Arg Glu Gly Asn Ala Ser Arg 65 70 75 80

Cys Trp Val Ala Val Thr Pro Thr Val Ala Thr Arg Asp Gly Lys Leu 85 90 95

Pro Thr Thr Gln Leu Arg Arg His Ile Asp Leu Leu Val Gly Ser Ala 100 105 110

Thr Leu Cys Ser Ala Leu Tyr Val Gly Asp Leu Cys Gly Ser Val Phe 120 115 Leu Val Gly Gln Leu Phe Thr Phe Ser Pro Arg Arg His Trp Thr Thr 135 Gln Asp Cys Asn Cys Ser Ile Tyr Pro Gly His Ile Thr Gly His Arg 155 150 Met Ala Trp Asp Met Met Met Asn Trp Ser Pro Thr Ala Ala Leu Val 170 Val Ala Gln Leu Leu Arg Ile Pro Gln Ala Ile Leu Asp Met Ile Ala 185 Gly Ala His Trp Gly Val Leu Ala Gly Ile Ala Tyr Phe Ser Met Val 200 Gly Asn Trp Ala Lys Val Leu Val Val Leu Leu Leu Phe Ala Gly Val 220 215 Asp Ala Glu Ile 225 (2) INFORMATION FOR SEQ ID NO:9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5323 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: circular (ii) MOLECULE TYPE: DNA (genomic) (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2227..3423 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9: GCGTAATCTG CTGCTTGCAA ACAAAAAAAC CACCGCTACC AGCGGTGGTT TGTTTGCCGG 60 ATCAAGAGCT ACCAACTCTT TTTCCGAAGG TAACTGGCTT CAGCAGAGCG CAGATACCAA 120 ATACTGTCCT TCTAGTGTAG CCGTAGTTAG GCCACCACTT CAAGAACTCT GTAGCACCGC 180 CTACATACCT CGCTCTGCTA ATCCTGTTAC CAGTGGCTGC TGCCAGTGGC GATAAGTCGT 240 GTCTTACCGG GTTGGACTCA AGACGATAGT TACCGGATAA GGCGCAGCGG TCGGGCTGAA 300

CGGGGGGTTC GTGCACACAG CCCAGCTTGG AGCGAACGAC CTACACCGAA CTGAGATACC

TACAGCGTGA GCATTGAGAA AGCGCCACGC TTCCCGAAGG GAGAAAGGCG GACAGGTATC 420 CGGTAAGCGG CAGGGTCGGA ACAGGAGAGC GCACGAGGGA GCTTCCAGGG GGAAACGCCT 480 GGTATCTTTA TAGTCCTGTC GGGTTTCGCC ACCTCTGACT TGAGCGTCGA TTTTTGTGAT 540 600 GCTCGTCAGG GGGGCGGAGC CTATGGAAAA ACGCCAGCAA CGCAAGCTAG CTTCTAGCTA GAAATTGTAA ACGTTAATAT TTTGTTAAAA TTCGCGTTAA ATTTTTGTTA AATCAGCTCA 660 TTTTTTAACC AATAGGCCGA AATCGGCAAA ATCCCTTATA AATCAAAAGA ATAGCCCGAG 720 780 ATAGGGTTGA GTGTTGTTCC AGTTTGGAAC AAGAGTCCAC TATTAAAGAA CGTGGACTCC AACGTCAAAG GGCGAAAAAC CGTCTATCAG GGCGATGGCC GCCCACTACG TGAACCATCA 840 CCCAAATCAA GTTTTTTGGG GTCGAGGTGC CGTAAAGCAC TAAATCGGAA CCCTAAAGGG 900 960 AAAGCGAAAG GAGCGGCGCC TAGGGCGCTG GCAAGTGTAG CGGTCACGCT GCGCGTAACC 1020 ACCACACCCG CCGCGCTTAA TGCGCCGCTA CAGGGCGCGT ACTATGGTTG CTTTGACGAG 1080 ACCGTATAAC GTGCTTTCCT CGTTGGAATC AGAGCGGGAG CTAAACAGGA GGCCGATTAA 1140 AGGGATTTTA GACAGGAACG GTACGCCAGC TGGATCACCG CGGTCTTTCT CAACGTAACA CTTTACAGCG GCGCGTCATT TGATATGATG CGCCCCGCTT CCCGATAAGG GAGCAGGCCA 1260 GTAAAAGCAT TACCCGTGGT GGGGTTCCCG AGCGGCCAAA GGGAGCAGAC TCTAAATCTG 1320 CCGTCATCGA CTTCGAAGGT TCGAATCCTT CCCCCACCAC CATCACTTTC AAAAGTCCGA 1380 AAGAATCTGC TCCCTGCTTG TGTGTTGGAG GTCGCTGAGT AGTGCGCGAG TAAAATTTAA 1440 GCTACAACAA GGCAAGGCTT GACCGACAAT TGCATGAAGA ATCTGCTTAG GGTTAGGCGT 1500 TTTGCGCTGC TTCGCGATGT ACGGGCCAGA TATACGCGTT GACATTGATT ATTGACTAGT 1560 TATTAATAGT AATCAATTAC GGGGTCATTA GTTCATAGCC CATATATGGA GTTCCGCGTT 1620 ACATAACTTA CGGTAAATGG CCCGCCTGGC TGACCGCCCA ACGACCCCCG CCCATTGACG 1680 TCAATAATGA CGTATGTTCC CATAGTAACG CCAATAGGGA CTTTCCATTG ACGTCAATGG 1740 GTGGACTATT TACGGTAAAC TGCCCACTTG GCAGTACATC AAGTGTATCA TATGCCAAGT 1800 ACGCCCCCTA TTGACGTCAA TGACGGTAAA TGGCCCGCCT GGCATTATGC CCAGTACATG 1860 ACCTTATGGG ACTTTCCTAC TTGGCAGTAC ATCTACGTAT TAGTCATCGC TATTACCATG 1920 GTGATGCGGT TTTGGCAGTA CATCAATGGG CGTGGATAGC GGTTTGACTC ACGGGGATTT 1980 CCAAGTCTCC ACCCCATTGA CGTCAATGGG AGTTTGTTTT GGCACCAAAA TCAACGGGAC 2040

TTTCCAAAAT GTCGTAACAA CTCCGCCCCA TTGACGCAAA TGGGCGGTAG GCGTGTACGG	2100
TGGGAGGTCT ATATAAGCAG AGCTCTCTGG CTAACTAGAG AACCCACTGC TTAACTGGCT	2160
TATCGAAATT AATACGACTC ACTATAGGGA GACCGGAAGC TTGGTACCGA GCTCGGATCT	2220
GCCACC ATG GCA ACA GGA TCA AGA ACA TCA CTG CTG CTG GCA TTT GGA Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly  1 5 10	2268
CTG CTG TGT CTG CCA TGG CTG CAA GAA GGA TCA GCA GCA GCA GCA GCA GCA Leu Leu Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala Ala Ala Ala Ala 15 20 25 30	2316
AAT TCA GAA ACC CAC GTC ACC GGG GGA AGT GCC GGC CAC ACC ACG GCT.  Asn Ser Glu Thr His Val Thr Gly Gly Ser Ala Gly His Thr Thr Ala  35 40 45	2364
GGG CTT GTT CGT CTC CTT TCA CCA GGC GCC AAG CAG AAC ATC CAA CTG Gly Leu Val Arg Leu Leu Ser Pro Gly Ala Lys Gln Asn Ile Gln Leu 50 55 60	2412
ATC AAC ACC AAC GGC AGT TGG CAC ATC AAT AGC ACG GCC TTG AAC TGC  Ile Asn Thr Asn Gly Ser Trp His Ile Asn Ser Thr Ala Leu Asn Cys  65 70 75	2460
AAT GAA AGC CTT AAC ACC GGC TGG TTA GCA GGG CTC TTC TAT CAC CAC Asn Glu Ser Leu Asn Thr Gly Trp Leu Ala Gly Leu Phe Tyr His His 80 85 90	2508
AAA TTC AAC TCT TCA GGT TGT CCT GAG AGG TTG GCC AGC TGC CGA CGC Lys Phe Asn Ser Ser Gly Cys Pro Glu Arg Leu Ala Ser Cys Arg Arg 95 100 105 110	2556
CTT ACC GAT TTT GCC CAG GGC GGG GGT CCT ATC AGT TAC GCC AAC GGA Leu Thr Asp Phe Ala Gln Gly Gly Gly Pro Ile Ser Tyr Ala Asn Gly 115 ' 120 125	2604
AGC GGC CTC GAT GAA CGC CCC TAC TGC TGG CAC TAC CCT CCA AGA CCT Ser Gly Leu Asp Glu Arg Pro Tyr Cys Trp His Tyr Pro Pro Arg Pro 130 135 140	2652
TGT GGC ATT GTG CCC GCA AAG AGC GTG TGT GGC CCG GTA TAT TGC TTC Cys Gly Ile Val Pro Ala Lys Ser Val Cys Gly Pro Val Tyr Cys Phe 145 150 155	2700
ACT CCC AGC CCC GTG GTG GTG GGA ACG ACC GAC AGG TCG GGC GCG CCT Thr Pro Ser Pro Val Val Val Gly Thr Thr Asp Arg Ser Gly Ala Pro 160 165 170	2748
ACC TAC AGC TGG GGT GCA AAT GAT ACG GAT GTC TTT GTC CTT AAC AAC Thr Tyr Ser Trp Gly Ala Asn Asp Thr Asp Val Phe Val Leu Asn Asn 175 180 185 190	2796

										TGC Cys						28	344
										CCT Pro						28	192
GTG Val										GAT Asp						29	40
										GGT Gly						29	88
										TGG Trp 265					_	30	36
										TAC Tyr						30	84
										CGG Arg						31	.32
										CCG Pro						31	.80
										ACG Thr						32	228
										ATT Ile 345						32	276
										TGG Trp						33	324
										GAC Asp						33	372
										GCG Ala					GAG Glu	34	120
AAC Asn	TAA	rcta(	GAG (	GCC	CTAT	TC T.	ATAG	TGTC.	A CC	TAAA'	ŢGCT	AGA	GGAT	CTT		34	473

IGTGAAGGAA CCTTACTTCT GTGGTGTGAC ATAATTGGAC AAACTACCTA CAGAGATTTA	3533
AAGCTCTAAG GTAAATATAA AATTTTTAAG TGTATAATGT GTTAAACTAC TGATTCTAAT	3593
TGTTTGTGTA TTTTAGATTC CAACCTATGG AACTGATGAA TGGGAGCAGT GGTGGAATGC	3653
CTTTAATGAG GAAAACCTGT TTTGCTCAGA AGAAATGCCA TCTAGTGATG ATGAGGCTAC	3713
TGCTGACTCT CAACATTCTA CTCCTCCAAA AAAGAAGAGA AAGGTAGAAG ACCCCAAGGA	3773
CTTTCCTTCA GAATTGCTAA GTTTTTTGAG TCATGCTGTG TTTAGTAATA GAACTCTTGC	3833
TTGCTTTGCT ATTTACACCA CAAAGGAAAA AGCTGCACTG CTATACAAGA AAATTATGGA	3893
AAAATATTCT GTAACCTTTA TAAGTAGGCA TAACAGTTAT AATCATAACA TACTGTTTTT	3953
TCTTACTCCA CACAGGCATA GAGTGTCTGC TATTAATAAC TATGCTCAAA AATTGTGTAC	4013
CTTTAGCTTT TTAATTTGTA AAGGGGTTAA TAAGGAATAT TTGATGTATA GTGCCTTGAC	4073
TAGAGATCAT AATCAGCCAT ACCACATTTG TAGAGGTTTT ACTTGCTTTA AAAAACCTCC	4133
CACACCTCCC CCTGAACCTG AAACATAAAA TGAATGCAAT TGTTGTTGTT AACTTGTTTA	4193
TTGCAGCTTA TAATGGTTAC AAATAAAGCA ATAGCATCAC AAATTTCACA AATAAAGCAT	4253
TTTTTTCACT GCATTCTAGT TGTGGTTTGT CCAAACTCAT CAATGTATCT TATCATGTCT	4313
GGATCGATCC CGCCATGGTA TCAACGCCAT ATTTCTATTT ACAGTAGGGA CCTCTTCGTT	4373
GTGTAGGTAC CGCTGTATTC CTAGGGAAAT AGTAGAGGCA CCTTGAACTG TCTGCATCAG	4433
CCATATAGCC CCCGCTGTTC GACTTACAAA CACAGGCACA GTACTGACAA ACCCATACAC	4493
CTCCTCTGAA ATACCCATAG TTGCTAGGGC TGTCTCCGAA CTCATTACAC CCTCCAAAGT	4553
CAGAGCTGTA ATTTCGCCAT CAAGGGCAGC GAGGGCTTCT CCAGATAAAA TAGCTTCTGC	4613
CGAGAGTCCC GTAAGGGTAG ACACTTCAGC TAATCCCTCG ATGAGGTCTA CTAGAATAGT	4673
CAGTGCGGCT CCCATTTTGA AAATTCACTT ACTTGATCAG CTTCAGAAGA TGGCGGAGGG	4733
CCTCCAACAC AGTAATTTTC CTCCCGACTC TTAAAATAGA AAATGTCAAG TCAGTTAAGC	4793
AGGAAGTGGA CTAACTGACG CAGCTGGCCG TGCGACATCC TCTTTTAATT AGTTGCTAGG	4853
CAACGCCCTC CAGAGGCGT GTGGTTTTGC AAGAGGAAGC AAAAGCCTCT CCACCCAGGC	4913
CTAGAATGTT TCCACCCAAT CATTACTATG ACAACAGCTG TTTTTTTTAG TATTAAGCAG	4973
AGGCCGGGGA CCCCTGGCCC GCTTACTCTG GAGAAAAAGA AGAGAGGCAT TGTAGAGGCT	5033
TCCAGAGGCA ACTIGICAAA ACAGGACIGC TICIATITCI GICACACIGI CIGGCCCIGI	5093

CACA	AGGT	CC A	GCAC	CTCC	A TA	cccc	CTTT	' AAT	AAGC	AGT	TTGG	GAAC	CGG (	GTGCG	GGTCI
TACT	CCGC	CC A	TCCC	GCCC	C TA	ACTO	CGCC	CAG	TTCC	:GCC	CATI	CTCC	GC (	CCCAI	GGCTG
ACTA	ATTI	TT I	TTAT	TATT	G CA	GAGG	CCGA	GGC	CGCC	TCG	GCCI	CTGA	rec :	rattc	CAGAA
GTAC	TGAG	GA C	GCTI	LILLL	'G GA	reecc	TAGG	CTI	TTGC	AAA	AAGC	TAAT	TC		
(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	10:10	:							
	(	(i) S	(A)	LEN TYPE TOP	IGTH : PE: &	399 mino	ami aci	.no a .d		1					٠
	( j	ii) N	OLEC	CULE	TYPE	E: pr	otei	.n							
	()	(i) S	EQUE	ENCE	DESC	RIPT	: NOI	SEÇ	) ID	NO:1	10:				
Met 1	Ala	Thr	Gly	Ser 5	Arg	Thr	Ser	Leu	Leu 10	Leu	Ala	Phe	Gly	Leu 15	Leu
Cys	Leu	Pro	Trp 20	Leu	Gln	Glu	Gly	Ser 25	Ala	Ala	Ala	Ala	Ala 30	Asn	Ser
Glu	Thr	His 35	Val	Thr	Gly	Gly	Ser 40	Ala	Gly	His	Thr	Thr 45	Ala	Gly	Leu
Val	Arg 50	Leu	Leu	Ser	Pro	Gly 55	Ala	Lys	Gln	Asn	Ile 60	Gln	Leu	Ile	Asn
Thr 65	Asn	Gly	Ser	Trp	His 70	Ile	Asn	Ser	Thr	Ala 75	Leu	Asn	Сув	Asn	Glu 80
Ser	Leu	Asn	Thr	Gly 85	Trp	Leu	Alā	Gly	Leu 90	Phe	Tyr	His	His	Lys 95	Phe
Asn	Ser	Ser	Gly 100	Cys	Pro	Glu	Arg	Leu 105	Ala	Ser	Cys	Arg	Arg 110	Leu	Thr
Asp	Phe	Ala 115	Gln	Gly	Gly	Gly	Pro 120	Ile	Ser	Tyr	Ala	Asn 125	Gly	Ser	Gly
Leu	Asp 130	Glu	Arg	Pro	Tyr	Cys 135	Trp	His	Tyr	Pro	Pro 140	Arg	Pro	Cys	Gly
Ile 145	Val	Pro	Ala	Lys	Ser 150	Val	Cys	Gly	Pro	Val 155	Tyr	Cys	Phe	Thr	Pro 160
Ser	Pro	Val	Val	Val 165	Gly	Thr	Thr	Asp	Arg 170	Ser	Gly	Ala	Pro	Thr 175	Tyr
Ser	Trp	Gly	Ala	Asn	Asp	Thr	Asp	Val	Phe	Val	Leu	Asn	Asn	Thr	Arg

Pro Pro Leu Gly Asn Trp Phe Gly Cys Thr Trp Met Asn Ser Thr Gly 195 200 205

Phe Thr Lys Val Cys Gly Ala Pro Pro Cys Val Ile Gly Gly Val Gly 210 215 220

Asn Asn Thr Leu Leu Cys Pro Thr Asp Cys Phe Arg Lys His Pro Glu 225 230 235 240

Ala Thr Tyr Ser Arg Cys Gly Ser Gly Pro Trp Ile Thr Pro Arg Cys 245 250 255

Met Val Asp Tyr Pro Tyr Arg Leu Trp His Tyr Pro Cys Thr Ile Asn 260 265 270

Tyr Thr Ile Phe Lys Val Arg Met Tyr Val Gly Gly Val Glu His Arg 275 280 285

Leu Glu Ala Ala Cys Asn Trp Thr Arg Gly Glu Arg Cys Asp Leu Glu 290 295 300

Asp Arg Asp Arg Ser Glu Leu Ser Pro Leu Leu Ser Thr Thr Gln 305 310 315 320

Trp Gln Val Leu Pro Cys Ser Phe Thr Thr Leu Pro Ala Leu Ser Thr 325 330 335

Gly Leu Ile His Leu His Gln Asn Ile Val Asp Val Gln Tyr Leu Tyr 340 345 350

Gly Val Gly Ser Ser Ile Ala Ser Trp Ala Ile Lys Trp Glu Tyr Asp 355 360 365

Val Leu Leu Phe Leu Leu Leu Ala Asp Ala Arg Val Cys Ser Cys Leu 370 375 380

Trp Met Met Leu Leu Ile Ser Glm Ala Glu Ala Ala Leu Glu Asn 385 390 395

#### (2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 5125 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
  - (A) NAME/KEY: CDS
  - (B) LOCATION: 2227..3225

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

(XI) DDG	בסתוכם במונים		.g	,		
GCGTAATCTG C	TGCTTGCAA	ACAAAAAAAC	CACCGCTACC	AGCGGTGGTT	TGTTTGCCGG	60
ATCAAGAGCT A	ACCAACTCTT	TTTCCGAAGG	TAACTGGCTT	CAGCAGAGCG	CAGATACCAA	120
ATACTGTCCT 1	CTAGTGTAG	CCGTAGTTAG	GCCACCACTT	CAAGAACTCT	GTAGCACCGC	180
CTACATACCT (	GCTCTGCTA	ATCCTGTTAC	CAGTGGCTGC	TGCCAGTGGC	GATAAGTCGT	240
GTCTTACCGG C	GTTGGACTCA	AGACGATAGT	TACCGGATAA	GGCGCAGCGG	TCGGGCTGAA	300
CGGGGGTTC C	GTGCACACAG	CCCAGCTTGG	AGCGAACGAC	CTACACCGAA	CTGAGATACC	360
TACAGCGTGA (	CATTGAGAA	AGCGCCACGC	TTCCCGAAGG	GAGAAAGGCG	GACAGGTATC	420
CGGTAAGCGG (	CAGGGTCGGA	ACAGGAGAGC	GCACGAGGGA	GCTTCCAGGG	GGAAACGCCT	480
GGTATCTTTA 1	PAGTCCTGTC	GGGTTTCGCC	ACCTCTGACT	TGAGCGTCGA	TTTTTGTGAT	540
GCTCGTCAGG (	GGGCGGAGC	CTATGGAAAA	ACGCCAGCAA	CGCAAGCTAG	CTTCTAGCTA	600
GAAATTGTAA A	ACGTTAATAT	TTTGTTAAAA	TTCGCGTTAA	ATTTTTGTTA	AATCAGCTCA	660
TTTTTTAACC A	AATAGGCCGA	AATCGGCAAA	ATCCCTTATA	AATCAAAAGA	ATAGCCCGAG	720
ATAGGGTTGA (	GTGTTGTTCC	AGTTTGGAAC	AAGAGTCCAC	TATTAAAGAA	CGTGGACTCC	780
AACGTCAAAG (	GGCGAAAAAC	CGTCTATCAG	GGCGATGGCC	GCCCACTACG	TGAACCATCA	840
CCCAAATCAA (	CTTTTTTGGG	GTCGAGGTGC	CGTAAAGCAC	TAAATCGGAA	CCCTAAAGGG	900
AGCCCCCGAT '	ITAGAGCTTG	ACGGGGAAAG	CCGGCGAACG	TGGCGAGAAA	GGAAGGGAAG	960
AAAGCGAAAG (	GAGCGGGCGC	TAGGGCGCTG	GCAAGTGTAG	CGGTCACGCT	GCGCGTAACC	1020
ACCACACCCG (	CCGCGCTTAA	TGCGCCGCTA	CAGGCGCGT	ACTATGGTTG	CTTTGACGAG	1080
ACCGTATAAC	GTGCTTTCCT	CGTTGGAATC	AGAGCGGGAG	CTAAACAGGA	GGCCGATTAA	1140
AGGGATTTTA	GACAGGAACG	GTACGCCAGC	TGGATCACCG	CGGTCTTTCT	CAACGTAACA	1200
CTTTACAGCG	GCGCGTCATT	TGATATGATG	CGCCCCGCTT	CCCGATAAGG	GAGCAGGCCA	1260
GTAAAAGCAT '	TACCCGTGGT	GGGGTTCCCG	AGCGGCCAAA	GGGAGCAGAC	TCTAAATCTG	1320
CCGTCATCGA	CTTCGAAGGT	TCGAATCCTT	CCCCACCAC	CATCACTTTC	AAAAGTCCGA	1380
AAGAATCTGC '	TCCCTGCTTG	TGTGTTGGAG	GTCGCTGAGT	AGTGCGCGAG	ТААААТТТАА	1440
GCTACAACAA	GGCAAGGCTT	GACCGACAAT	TGCATGAAGA	ATCTGCTTAG	GGTTAGGCGT	1500
TTTGCGCTGC	TTCGCGATGT	ACGGGCCAGA	TATACGCGTT	GACATTGATT	ATTGACTAGT	1560

			13 CMMC	יאשאררר	בייתיים	ጥርርኔ ርጥ	TCCGCG	TT 1620
TATTAATAGT A								
ACATAACTTA C	GGTAAATGG	CCCCCCTGC	C TGAC	CGCCCA	ACGACC	CCCG CC	CATIGA	CG 1880
TCAATAATGA C	GTATGTTCC	CATAGTAA	CG CCAP	ATAGGGA	CTTTCC	CATTG AC	GTCAAT	GG 1740
GTGGACTATT T	'ACGGTAAAC	TGCCCACT	rg GCAC	STACATC	AAGTGT	TATCA TA	TGCCAA	GT 1800
ACGCCCCTA T	TGACGTCAA	TGACGGTA	A TGGC	CCCGCCT	GGCATT	TATGC CC	AGTACA	TG 1860
ACCTTATGGG A	CTTTCCTAC	TTGGCAGT	AC ATC	TACGTAT	TAGTC	ATCGC TA	TTACCA	TG 1920
GTGATGCGGT T	TTGGCAGTA	CATCAATG	GG CGT	GGATAGC	GGTTT	GACTC AC	GGGGAT	TT 1980
CCAAGTCTCC A	ACCCCATTGA	CGTCAATG	GG AGT	PTGTTTT	GGCAC	CAAAA TO	AACGGG	AC 2040
TTTCCAAAAT (	STCGTAACAA	CTCCGCCC	CA TIG	ACGCAAA	TGGGC	GGTAG GC	GTGTAC	2100
TGGGAGGTCT A	ATATAAGCAG	AGCTCTCT	GG CTA	ACTAGAG	AACCC	ACTGC T	TAACTGO	SCT 2160
TATCGAAATT A	ATACGACTO	ACTATAGG	GA GAC	CGGAAGC	TTGGT	ACCGA GO	TCGGAT	TCT 2220
GCCACC ATG	GCA ACA GO	GA TCA AGA	ACA T	CA CTG	CTG CT	G GCA T	MT GGA	2268
Met 1	Ala Thr Gl	ly Ser Arg 5	Thr S	er Leu	10	u Ala Fi	te Giy	
CTG CTG TGT	CTG CCA	IGG CTG CA	A GAA	GGA TCA	GCA G	CA GCA	GCA GCC	2316
Leu Leu Cys 15	Leu Pro	rrp Leu Gl 20	n Glu	Gly Ser 25	Ala A	la Ala	3	0
AAT TCA GAA	ACC CAC	GTC ACC GO	G GGA	AGT GCC	GGC C	AC ACC	ACG GC'	T 2364
Asn Ser Glu	Thr His '	Val Thr Gl	y Gly	Ser Ala	r GIÀ H	iis Thi	45	a.
GGG CTT GTT	CGT CTC	CTT TCA CO	A GGC	GCC AAG	CAG A	AC ATC	CAA CT	G 2412
Gly Leu Val	Arg Leu 50	Leu Ser Pi	co Gly 55	Ala Lys	s Gin A	esn lle	GIN Le	u
ATC AAC ACC	AAC GGC	AGT TGG C	AC ATC	AAT AGO	ACG C	CC TTG	AAC TG	C 2460
Ile Asn Thr			is Ile 70	Asn Sei	r Thr A	75	Asn Cy	
AAT GAA AGO	CTT AAC	ACC GGC T	GG TTA	GCA GG	G CTC !	TTC TAT	CAC CA	C 2508
Asn Glu Ser 80	Leu Asn	Thr Gly T 85	rp Leu	Ala Gly	y Leu ! 90	Phe Tyr	His Hi	. <b>S</b> .
AAA TTC AAG	TCT TCA	GGT TGT C	CT GAG	AGG TT	G GCC	AGC TGC	CGA CG	SC 2556
Lys Phe Asr	ser Ser	Gly Cys P 100	ro Glu	Arg Le	u Ala :	Ser Cys	Arg Ar	g
CTT ACC GAS	r TTT GCC	CAG GGC G	GG GGT	CCT AT	C AGT	TAC GCC	AAC GO	GA 2604
Leu Thr Asp	Phe Ala	Gln Gly G	ly Gly	Pro Il 120	e Ser	Tyr Ala	Asn G: 125	ſλ
AGC GGC CTG		CGC CCC T	AC TGC	TGG CA	C TAC	CCT CCA	AGA C	CT 2652

Ser	Gly	Leu	Asp 130	Glu	Arg	Pro	Tyr	Cys 135	Trp	His	Tyr	Pro	Pro 140	Arg	Pro	
														TGC Cys		2700
														GCG Ala		2748
														AAC Asn		2796
														AAC Asn 205		2844
														GGA Gly		2892
														AAG Lys		2940
														ACA Thr		2988
														TGT Cys		3036
					Phe					Tyr				GTC Val 285		3084
				Ala					Thr					Cys	GAT Asp	3132
			Arg					Leu					Leu		ACC Thr	3180
		Trp					Cys					Lev		GCC Ala		3225
TAA	TCTA	GAG	GGCC	CTAT	TC I	'ATAG	TGTC	A CC	TAAI	TGCI	' AGA	AGGAI	CTT	TGTG	AAGGAA	3285
CCT	TACT	TCT	GTGG	TGTG	SAC A	TAAT	TGGA	C A	ACT	ACCTA	CAC	SAGAT	TTA	AAGC	TCTAAG	3345

GTAAATATAA AATTTTTAAG TGTATAATGT GTTAAACTAC TGATTCTAAT TGTTTGTGTA	3405
TTTTAGATTC CAACCTATGG AACTGATGAA TGGGAGCAGT GGTGGAATGC CTTTAATGAG	3465
GAAAACCTGT TTTGCTCAGA AGAAATGCCA TCTAGTGATG ATGAGGCTAC TGCTGACTCT	3525
CAACATTCTA CTCCTCCAAA AAAGAAGAGA AAGGTAGAAG ACCCCAAGGA CTTTCCTTCA	3585
GAATTGCTAA GTTTTTTGAG TCATGCTGTG TTTAGTAATA GAACTCTTGC TTGCTTTGCT	3645
ATTTACACCA CAAAGGAAAA AGCTGCACTG CTATACAAGA AAATTATGGA AAAATATTCT	3705
GTAACCTTTA TAAGTAGGCA TAACAGTTAT AATCATAACA TACTGTTTTT TCTTACTCCA	3765
CACAGGCATA GAGTGTCTGC TATTAATAAC TATGCTCAAA AATTGTGTAC CTTTAGCTTT	3825
TTAATTTGTA AAGGGGTTAA TAAGGAATAT TTGATGTATA GTGCCTTGAC TAGAGATCAT	3885
AATCAGCCAT ACCACATTTG TAGAGGTTTT ACTTGCTTTA AAAAACCTCC CACACCTCCC	3945
CCTGAACCTG AAACATAAAA TGAATGCAAT TGTTGTTGTT AACTTGTTTA TTGCAGCTTA	4005
TAATGGTTAC AAATAAAGCA ATAGCATCAC AAATTTCACA AATAAAGCAT TTTTTTCACT	4065
GCATTCTAGT TGTGGTTTGT CCAAACTCAT CAATGTATCT TATCATGTCT GGATCGATCC	4125
CGCCATGGTA TCAACGCCAT ATTTCTATTT ACAGTAGGGA CCTCTTCGTT GTGTAGGTAC	4185
CGCTGTATTC CTAGGGAAAT AGTAGAGGCA CCTTGAACTG TCTGCATCAG CCATATAGCC	4245
CCCGCTGTTC GACTTACAAA CACAGGCACA GTACTGACAA ACCCATACAC CTCCTCTGAA	4305
ATACCCATAG TTGCTAGGGC TGTCTCCGAA CTCATTACAC CCTCCAAAGT CAGAGCTGTA	4365
ATTTCGCCAT CAAGGGCAGC GAGGGCTTCT CCAGATAAAA TAGCTTCTGC CGAGAGTCCC	4425
GTAAGGGTAG ACACTTCAGC TAATCCCTCG ATGAGGTCTA CTAGAATAGT CAGTGCGGCT	4485
CCCATTITGA AAATTCACTI ACTTGATCAG CTTCAGAAGA TGGCGGAGGG CCTCCAACAC	4545
AGTAATTTTC CTCCCGACTC TTAAAATAGA AAATGTCAAG TCAGTTAAGC AGGAAGTGGA	4605
CTAACTGACG CAGCTGGCCG TGCGACATCC TCTTTTAATT AGTTGCTAGG CAACGCCCTC	4665
CAGAGGCGT GTGGTTTTGC AAGAGGAAGC AAAAGCCTCT CCACCCAGGC CTAGAATGTT	4725
TCCACCCAAT CATTACTATG ACAACAGCTG TTTTTTTTAG TATTAAGCAG AGGCCGGGGA	4785
CCCCTGGCCC GCTTACTCTG GAGAAAAAGA AGAGAGGCAT TGTAGAGGCT TCCAGAGGCA	4845
ACTTGTCAAA ACAGGACTGC TTCTATTTCT GTCACACTGT CTGGCCCTGT CACAAGGTCC	4905
AGCACCTCCA TACCCCCTTT AATAAGCAGT TTGGGAACGG GTGCGGGTCT TACTCCGCCC	4965
ATCCCCCCC TAACTCCGCC CAGTTCCGCC CATTCTCCGC CCCATGGCTG ACTAATTTTT	

TTT	ATTT.	ATG (	CAGA	GCC	GA GO	GCCG	CCTC	G GCC	CTCT	GAGC	TAT	rcca	GAA (	GTAGʻ	TGAGGA
GGC'	GGCTTTTTTG GAGGCCTAGG CTTTTGCAAA AAGCTAATTC														
(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO:12	2:							
		(i) :	-					rics:							
			(B	TY!	PE: 8	amino	am: cac: linea		acıd	3					
	(	ii) I	·	-			rote								
	(:	xi):	SEQUI	ENCE	DES	CRIP	rion	: SE(	Q ID	NO:	12:				
Met 1	Ala	Thr	Gly	Ser 5	Arg	Thr	Ser	Leu	Leu 10	Leu	Ala	Phe	Gly	Leu 15	Leu
Cys	Leu	Pro	Trp 20	Leu	Gln	Glu	Gly	Ser 25	Ala	Ala	Ala	Ala	Ala 30	Asn	Ser
Glu	Thr	His 35	Val	Thr	Gly	Gly	Ser 40	Ala	Gly	His	Thr	Thr 45	Ala	Gly	Leu
Val	Arg 50	Leu	Leu	Ser	Pro	Gly 55	Ala	Lys	Gln	Asn	Ile 60	Gln	Leu	Ile	Asn
Thr 65	Asn	Gly	Ser	Trp	His 70	Ile	Asn	Ser	Thr	Ala 75	Leu	Asn	Cys	Asn	Glu 80
Ser	Leu	Asn	Thr	Gly 85	Trp	Leu	Ala	Gly	Leu 90	Phe	Tyr	His	His	Lys 95	Phe
Asn	Ser	Ser	Gly 100	Cys	Pro	Glu	Arg	Leu 105	Ala	Ser	Cys	Arg	Arg 110	Leu	Thr
Asp	Phe	Ala 115	Gln	Gly	Gly	Gly	Pro 120	Ile	Ser	Tyr	Ala	Asn 125	Gly	Ser	Gly
Leu	Asp 130	Glu	Arg	Pro	Tyr	Cys 135	Trp	His	Tyr	Pro	Pro 140	Arg	Pro	Cvs	Gly
Ile 145	Val	Pro	Ala	Lys	Ser 150	Val	Cys	Gly	Pro	Val 155	Tyr	Cys	Phe	Thr	Pro 160
Ser	Pro	Val	Val	Val 165	Gly	Thr	Thr	Asp	Arg 170	Ser	Gly	Ala	Pro	Thr 175	Tyr
Ser	Trp	Gly	Ala 180	Asn	Asp	Thr	Asp	Val 185	Phe	Val	Leu	Asn	Asn 190	Thr	Arg
Pro	Pro	Leu 195	Gly	Asn	Trp	Phe	Gly 200	C∵s	Thr	Trp	Met	Asn 205	Ser	Thr	Gly

Ph	Thr 210	Lys	Val	Cys	Gly	Ala 215	Prc	Pro	Cys	Val	Ile 220	Gly	Gly	Val	Gly
Asn 225	Asn	Thr	Leu	Leu	Cys 230	Pro	Thr	Asp	Cvs	Phe 235	Arg	Lys	His	Pro	Glu 240
Ala	Thr	Tyr	Ser	Arg 245	Cys	Gly	Ser	Gly	Pro 250	Trp	Ile	Thr	Pro	Arg 255	Cys
Met	Val	Asp	Tyr 260	Pro	Tyr	Arg	Leu	Trp 265	His	Tyr	Pro	Cys	Thr 270	Ile	Asn
Tyr	Thr	Ile 275	Phe	ŗā	Val	Arg	Met 280	Tyr	Val	Gly	Gly	Val 285	Glu	His	Arg
Leu	Glu 290	Ala	Ala	Cys	Asn	Trp 295	Thr	Arg	Gly	Glu	Arg 300	Cys	Asp	Leu	Glu
Asp 305	Arg	Asp	Arg	Ser	Glu 310	Leu	Ser	Pro	Leu	Leu 315	Leu	Ser	Thr	Thr	Gln 320
Trp	Gln	Val	Leu	Pro	Cys	Ser	Phe	Thr	Thr	Leu	Pro	Ala			

#### WHAT IS CLAIMED IS:

- 1. Plasmid pHCV-162.
- 2. Plasmid pHCV-167.
- 3. Plasmid pHCV-168.
- 5 4. Plasmid pHCV-169.
  - 5. Plasmid pHCV-170.
  - 6. APP-HCV-E2 fusion protein expressed by a mammalian expression vector pHCV-162.
- 7. APP-HCV-E2 fusion protein expressed by a mammalian expression vector pHCV-167.
  - 8. HGH-HCV-E2 fusion protein expressed by a mammalian expression vector pHCV-168.
  - 9. HGH-HCV-E2 fusion protein expressed by a mammalian expression vector pHCV-169.
- 15 10. HGH-HCV-E2 fusion protein expressed by a mammalian expression vector pHCV-170.
  - 11. A method for detecting HCV antigen or antibody in a test sample suspected of containg HCV antigen or antibody, wherein the improvement comprises contacting the test sample with a glycosylated HCV antigen produced in a mammalian expression system.
  - 12. A method for detecting HCV antigen or antibody in a test sample suspected of containg HCV antigen or antibody, wherein the improvement comprises contacting the test sample with aan antibody produced by using a glycosylated HCV antigen produced in a mammalian expression system.
- 25 13. The method of claim 12 wherein said antibody is a monoclonal antibody.
  - 14. The method of claim 12 wherein said antibody is a polyclonal antibody.
- 15. A test kit for detecting the presence of HCV antigen or HCV antigen30 in a test sample suspected of containing said HCV antigen or antibody, comprising:

a container containing a glycosylated HCV antigen produced in a mammalian expression system.

16. The test kit of claim 15 further comprising an antibody produced by using a glycosylated HCV antigen produced in a mammalian expression system.

17. A test kit for detecting the presence of HCV antigen or HCV antigen in a test sample suspected of containing said HCV antigen or HCV antibody, comprising:

a container containing an antibody produced by using a glycosylated HCV antigen produced in a mammalian expression system.

- 18. The test kit of claim 17 wherein said antibody is a polyclonal antibody.
- 19. The test kit of claim 17 wherein said antibody is a monoclonal antibody.







FIG.3



FIG. 4



FIG. 5





FIG. 6



FIG. 7



	ā.				
			0		MW
					#50
					410
			Ţ.		435
					441
					476
					496
					560
				•	589
					620
					622
					623
					633
					639
complete the state of the state		<b>*</b> 1 * 2			641
Marce					648
					649
			5		657
			•		666
					672

FIG. 9

SUBSTITUTE SHEET

8		Ĝ		MW
		:	٠	#50
				673
				677
				694
	***************************************			696
				706
				717
	•			728
•				740
				743
			•	

FIG. 10





SUBSTITUTE SHEET



SUBSTITUTE SHEET

という。

PHCV 169 LYSATE PHCV 170 LYSATE MW NHS 121 121 728 503 503 503 503

SUBSTITUTE SHEET

### INTERNATIONAL SEARCH REPORT

International application No.

	/0090

A. CLASSIFICATION OF SUBJECT MATTER  IPC(5) :C12N 15/00; C12Q 1/70; C07K 15/00  US CL :435/320.1, 5; 530/409  According to International Patent Classification (IPC) or to both national classification and IPC					
	DS SEARCHED ocumentation searched (classification system followed	hy alonification combols			
	435/320.1, 69.3, 5, 7.1; 530/350, 409	- 1			
Documentat	tion searched other than minimum documentation to the	extent that such documents are included in the fields searched			
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)  PIR, SWISS-PROT, GENESEQ, GENBANK, WPI, CA, MEDLINE, APS search terms: hepatitis C virus, HCV, fusion, amyloid precursor protein, human growth hormone, diagnos?, kit					
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages Relevant to claim No.			
Y	Proceedings of the National Academy of Sciences USA, Volume 88, issued March 1991. QL. Choo et al, "Genetic Organization and Diversity of the Hepatitis C Virus", pp. 2451-2455, see entire document.				
Y	Journal of General Virology, Volume 72, issued October 1991, D. Kremsdorf et al., "Partial Nucleotide Sequence Analysis of a French Hepatitis C Virus: Implications for HCV Variability in the E2/NS1 Protein", pp. 2557-2561, see entire document.				
X Further documents are listed in the continuation of Box C. See patent family annex.					
"A" doc	ecial extegories of cited documents: cument defining the general state of the art which is not considered be part of particular relevance	"T" inter document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention			
°E' car °L' doc cite spe	clier document published on or after the international filing date current which may throw doubts on priority claim(a) or which is ad to establish the publication date of another citation or other scial reason (as specified)	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone  "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is			
me	cument referring to an oral disclosure, use, exhibition or other ans	combined with one or more other such documents, such combination being obvious to a person skilled in the art  *&* document member of the same patent family			
the priority date claimed  Date of the actual completion of the international search  Date of mailing of the international search					
30 April·1	<u> </u>	11 MAY 1993			
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT		Authorized officer  D. BARND			
•	a, D.C. 20231	Telephone No. (703) 308-0196			

Form PCT/ISA/210 (second sheet)(July 1992)*

# INTERNATIONAL SEARCH REPORT

International application No. PCT/US93/00907

	tion). DOCUMENTS CONSIDERED TO BE RELEVANT  Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Category*	Journal of Virology, Volume 65, No. 3, issued March 1991, A. Takamizawa et al., "Structure and Organization of the Hepatitis C Virus Genome Isolated from Human Carriers", pp. 1105-1113, see entire document.	1-18
Y	Proceedings of the National Academy of Sciences USA, Volume 87, issued December 1990, N. Kato et al., "Molecular Cloning of the Human Hepatitis C Virus Genome from Japanese Patients with non-A, non-B Hepatitis", pp. 9524-9528, see entire document.	1-18
7	Journal of General Virology, Volume 72, issued November 1991, H. Okamoto et al., "Nucleotide Sequence of the Genomic RNA of Hepatitis C Virus Isolated from a Human Carrier: Comparison with Reported Isolates for Conserved and Divergent Regions", pp. 2697-2704, see entire document.	1-18
Y	Gene, Volume 105, No. 2, issued 1991, J. Li et al., "Two French Genotypes of Hepatitis C Virus: Homology of the Predominant Genotype with the Prototype American Strain", pp. 167-172, see entire document.	1-18
Y,P	US, A, 5,106,726 (Wang) 21 April 1992, see entire document.	1-18
Y	EP, A, 0,318,216 (Houghton et al) 31 May 1989, see entire document.	1-18
Y	EP, A, 0,388,232 (Houghton et al) 19 September 1990, see entire document.	1-18
Y	GB, A, 2,212,511 (Houghton et al) 26 July 1989, see entire document.	1-18
Y	Cell, Volume 57, No. 1, issued 07 April 1989, A. Weidemann et al., "Identification, Biogenesis, and Localization of Precursors of Alzheimer's Disease A4 Amyloid Protein", pp. 115-126, see entire document.	1,2,6,7,11-18
<b>Y</b> ;	The Journal of Biological Chemistry, Volume 266, No. 29, issued 15 October 1991, D. E. Lowery et al., "Alzheimer's Amyloid Precursor Protein Produced by Recombinant Baculovirus Expression", pp. 19842-19850, see entire document.	1,2,6,7,11-18
Y	Vaccine, Volume 9, No. 8, issued August 1991, M. Kit et al., "Bovine Herpesvirus-1 (Infectious Bovine Rhinotracheitis Virus)-Based Viral Vector which Expresses Foot-and-Mouth Disease Epitopes", pp. 564-572, see entire document.	3-5,8-18