Review and Summary

Dr. Qiuzhuang Sun STAT3023

Moment generating functions (MGF)

The MGF $M_X(t) = E[\exp(tX)]$ encodes the sequence of moments $E[X^r]$, r = 1, 2, ...

- The MGF is defined provided the above expectation exists for t in some open interval containing zero
- $\bullet \ M_X^{(r)}(0) = E[X^r]$
- If the MGFs for X and Y exist, and $M_X(t) = M_Y(t)$, then X and Y have the same distribution
- Let $Z=X_1+\cdots+X_n$ with X_1,\ldots,X_n independent. We have $M_Z(t)=\prod_{i=1}^n M_{X_i}(t)$
- Assume the MGF of X is $M_X(t)$. Then Z=aX+b has MGF $M_Z(t)=e^{tb}M_X(at)$

Multivariate distributions

- Two continuous random variables X,Y are independent iff there exist functions g(x),h(y) so that $f_{X,Y}(x,y)=g(x)h(y)$
- Computing mean and variance by conditioning:
 - E[Y] = E[E[Y|X]]
 - Var(X) = E[Var(X|Y)] + Var(E[X|Y])
- How to find the marginal distribution of a hierarchical model
 - The above formulas are useful
 - Use MGF or compute the marginal distribution directly
- If (X,Y) follows a bivariate normal distribution
 - Marginal distribution is normal
 - Conditional distribution (Y|X) is normal
 - Zero correlation implies independence for bivariate normal distributions

Transformation of random variables

• For monotone function g, let Y = g(X). Then

$$f_X(y) = f_X(g^{-1}(y)) \left| \frac{dg^{-1}(y)}{dy} \right|$$

• Let $U = h_1(X, Y)$ and $V = h_2(X, Y)$. If the transformation between (X, Y) and (U, V) is one-to-one, then

$$f_{U,V}(u,v) = f_{X,Y}(h_1(u,v), h_2(u,v)) |\det(J)|,$$

where

$$J = \begin{bmatrix} \frac{\partial h_1}{\partial u} & \frac{\partial h_1}{\partial v} \\ \frac{\partial h_2}{\partial u} & \frac{\partial h_2}{\partial v} \end{bmatrix}$$

Transformation of random variables

- Samples from normal random variables: let X_1, \ldots, X_n be iid random variables from $N(\mu, \sigma^2)$
 - The sample mean $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \sim N(\mu, \frac{\sigma^2}{n})$
 - \bar{X}_n and sample variance $s_n^2 = \sum_{i=1}^n (X_i \bar{X})^2/(n-1)$ are independent
 - $\bullet \quad \frac{(n-1)s_n^2}{\sigma^2} \sim \chi_{n-1}^2$
- Let $Z \sim N(0,1)$ and $V \sim \chi_d^2$ be independent random variables. Then

$$T = \frac{Z}{\sqrt{V/d}} \sim t_d,$$

the *t*-distribution with *d* degrees of freedom

Exponential family

The exponential family has PDF or PMF

$$f(x|\theta) = h(x) \exp\left(\sum_{i=1}^{k} w_i(\theta) t_i(x) - A(\theta)\right), \quad x \in \mathbb{R}$$

- Let d be the number of elements in θ . If d = k, the PDF or PMF belongs to a full exponential family; if d < k, it belongs to the curved exponential family.
- Examples: Poisson, binomial with known n, normal...

The canonical form is

$$f(x|\theta) = h(x) \exp\left(\sum_{i=1}^{k} \eta_i t_i(x) - A^*(\eta)\right), \ \eta = (\eta_1, \dots, \eta_k)$$

Exponential family

Let
$$T(x)=[t_1(x),\dots,t_k(x)]^{ op}$$
. Assume $X\sim f(x|\theta)$. Then we have
$$E[T(X)]=\frac{\partial A^*}{\partial \pmb{\eta}^{ op}};$$

$$Var(T(X)) = \frac{\partial^2 A^*}{\partial \eta \partial \eta^\top};$$

$$\log M_{T(X)}(s) = A^*(s+\eta) - A^*(\eta)$$

Sufficiency

- A statistic $T = T(X_1, ..., X_n)$ is a sufficient statistic for θ if the conditional distribution of $\mathbf X$ given the value of T does not depend on θ
- Factorization theorem: T is a sufficient statistic for θ iff the likelihood function is written in the following form:

$$L(\theta; \mathbf{X}) = g(T(\mathbf{X}; \theta))h(\mathbf{X})$$

For exponential family with PDF or PMF

$$f(x|\theta) = h(x) \exp\left(\sum_{i=1}^{k} w_i(\theta)t_i(x) - A(\theta)\right),$$

a sufficient statistic for θ is $\left[\sum_{i=1}^n t_1(X_i), \ldots, \sum_{i=1}^n t_k(X_i)\right]$

7

Unbiasedness, consistency, and efficiency

- $\hat{\theta}$ is consistent for θ if $\lim_{n\to\infty} P(|\hat{\theta}-\theta|\geq \varepsilon)=0$
- $\hat{\theta}$ is unbiased for θ if $Bias(\hat{\theta}) = E[\hat{\theta}] \theta = 0$
- The mean squared error of $\hat{\theta}$, $\mathrm{MSE}(\hat{\theta}) = E[(\hat{\theta} \theta)^2]$, can be decomposed into

$$MSE(\hat{\theta}) = Var(\hat{\theta}) + (Bias(\hat{\theta}))^2$$

• Let $W(\mathbf{X})$ be an estimator and $f(x;\theta)$ be the PDF of each iid random variable. Under some regularity conditions,

$$\operatorname{Var}(W(X)) \ge \frac{\left\{\frac{\partial}{\partial \theta} E_{\theta}[W(X)]\right\}^{2}}{\operatorname{Var}\left(\frac{\partial}{\partial \theta} \log(f(X;\theta))\right)},$$

which is known to be the Cramer-Rao Lower Bound (CRLB)

Unbiasedness, consistency, and efficiency

The CRLB is attained iff

$$\frac{\partial}{\partial \theta} \log(f(\mathbf{X}; \theta)) = C_{\theta}(W(\mathbf{X}) - E[W(\mathbf{X})])$$

- Rao-Blackwell Theorem: Let $\hat{\theta}_1$ be an unbiased estimator for θ , and T be a sufficient statistic for θ . Then $\hat{\theta}_2 = E[\hat{\theta}_1|T]$ is unbiased for θ and uniformly more efficient than $\hat{\theta}_1$
- For all the unbiased estimators, the one having the minimum variance is called the minimum variance unbiased estimator (MVUE)
- For the full exponential family, any function of a sufficient statistic T is the MVUE for its expected value

- (i) Simple vs. simple
 - The NP lemma guarantees the existence of the most power test, where the test statistic is the likelihood ratio $Y = f_1(\mathbf{X})/f_0(\mathbf{X}) \text{ with critical region } \{\mathbf{X}: f_1(\mathbf{X})/f_0(\mathbf{X}) \geq y_\alpha\},$ where y_α is chosen such that $P_0(Y \geq y_\alpha) = \alpha$
 - Generalising to discrete distribution
 - Test function $\delta(\mathbf{X}) \in [0,1]$
 - Randomised test

$$\delta(\mathbf{X}) = \begin{cases} 1, & \frac{f_1(\mathbf{X})}{f_0(\mathbf{X})} > y_{\alpha} \\ \gamma, & \frac{f_1(\mathbf{X})}{f_0(\mathbf{X})} = y_{\alpha} \\ 0, & \frac{f_1(\mathbf{X})}{f_0(\mathbf{X})} < y_{\alpha} \end{cases}$$

• γ, y_{α} are chosen such that $E_{\theta_0}[\delta(\mathbf{X})] = \alpha$

- (ii) Simple vs. composite
 - Conditions for the existence of the UMP test for one-sided alternatives
 - Definition of the UMP test
 - Monotone likelihood ratio: (a) $f_{\theta_0} \neq f_{\theta_1}$ for any $\theta_0 < \theta_1$; (b) for any $\theta_0 < \theta_1$, $\frac{f_{\theta_1}(\mathbf{X})}{f_{\theta_0}(\mathbf{X})}$ is an increasing function of $T(\mathbf{X})$
 - $\bullet \ \ \mathsf{For} \ H_0: \theta = \theta_0, \ \check{H_1}: \theta > \theta_0,$

$$\delta(\mathbf{X}) = \begin{cases} 1, & T(\mathbf{X}) > C \\ \gamma, & T(\mathbf{X}) = C \\ 0, & T(\mathbf{X}) < C \end{cases}$$

• Special case: 1-parameter exponential family with sufficient statistic $T(\mathbf{X})$

- (ii) Simple vs. composite
 - Condition for the existence of a UMPU test for two-sided alternatives
 - Definition of a UMPU test
 - Special case: 1-parameter exponential family with sufficient statistic $T(\mathbf{X})$
 - GLRT for $H_0: \theta = \theta_0$ vs $H_1: \theta \in \Theta \setminus \{\theta_0\}$ with test statistic

$$\frac{\prod_{i=1}^n f_{\theta}(X_i)}{\prod_{i=1}^n f_{\theta_0}(X_i)} \quad \text{with } \hat{\theta} = \mathop{\arg\max}_{\theta \in \Theta} \prod_{i=1}^n f_{\theta}(X_i) \text{ being the MLE}$$

• Take L_n to be the logarithm of the test statistic, then $2L_n$ approximately follows χ_1^2 for large n (under "regular" models)

(iii) Composite vs. composite

- Consider $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$. If the family of distribution has monotone likelihood ratio, then the UMP test exists and is the same as testing $H_1: \theta = \theta_0$ vs $H_1: \theta > \theta_0$
- Similar for $H_0: \theta \geq \theta_0$ vs $H_1: \theta < \theta_0$
- Consider $H_0: \theta \leq \theta_1$ or $\theta \geq \theta_2$ (for some $\theta_1 < \theta_2$) vs $H_1: \theta_1 < \theta < \theta_2$. If the distribution of interest belongs to a 1-parameter exponential family, then the UMPU test exists
- GLRT has test statistic $\frac{\prod_{i=1}^n f_{\hat{\theta}}(X_i)}{\prod_{i=1}^n f_{\theta_0}(X_i)}$, where $\hat{\theta}$ is the MLE and $\hat{\theta}_0 = \arg\max_{\theta \in \Theta_0} \ell(\theta; \mathbf{X})$ is the "restricted" MLE under the null

Decision theory

Let $\mathbf{X} = (X_1, \dots, X_n)$ be iid from $f_{\theta}(\cdot)$ where θ is unknown to be estimated and f_{θ} belongs to a family of distribution \mathcal{F}

- Key definitions: decision, decision space, loss function $L(d(\mathbf{X})|\theta)$, risk $R(\theta|d) = E_{\theta}[L(d(\mathbf{X})|\theta)]$
- Overall risk: Bayes risk (w.r.t. weight function or prior $w(\theta)$) and maximum risk (over a subset of parameter space)
- Optimal decisions
 - Bayes risk: the optimal procedure is called the Bayes procedure, under
 - squared error loss
 - absolute error loss
 - 0-1 loss
 - discrete selection

(We need to first work out the posterior of θ)

Decision theory

- Optimal decisions
 - Maximum risk: the optimal procedure is called a minimax procedure
 - Finding minimax procedures:
 - Week 10 Theorem 1: by taking the limiting Bayes risk of a sequence of Bayes procedures
 - Week 10 Theorem 2: Bayes procedures with constant risk
- Asymptotic minimax procedures
 - AMLB theorem
 - Find the limiting (rescaled) risk of the Bayes procedure under uniform prior. In many cases, it is the same as that for Bayes procedure under flat prior
 - Check if the limiting (rescaled) risk is a continuous function of θ; if so, we can use the AMLB theorem to find a lower bound of the limiting maximum risk for any sequence of procedures
 - Show the procedures of interest exactly attains the lower bound