โจทย์พี่พีทมีลิขสิทธิ์ ห้ามนำส่วนหนึ่งส่วนใดไปดัดแปลง หรือ ใช้งานต่อ โดยเด็ดขาด

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

โจทย์ชุดที่สามสิบสอง วันเสาร์ที่ 11 กันยายน พ.ศ. 2564 จำนวน 3 ข้อ

ที่	เนื้อหา	โจทย์
1.	Sliding Window algorithm จำนวน 3 ข้อ	1. เสียงแห่งความเงียบงัน (Silent Sound)
		2. ส่งกระแสไฟฟ้า (Electricity TOI8)
		3. พิสัยพิเศษ (Range Special)

1. เรื่อง Sliding Window algorithm จำนวน 3 ข้อ

1. เสียงแห่งความเงียบงัน (Silent Sound)

ที่มา: โจทย์ใหม่ PeaTT~

ในการอัดเสียงแบบดิจิตัล เสียงจะถูกเก็บอยู่ในรูปแบบลำดับของตัวเลขที่ใช้แทนความกดดันของอากาศที่ถูกวัดอย่าง ต่อเนื่อง ต่อหนึ่งหน่วยเวลา ในอัตราที่ค่อนข้างเร็ว แต่ละครั้งของการวัด ค่าของความกดดันของอากาศจะถูกเก็บไว้ เรียกค่านั้นว่า ค่าแซมเปิ้ล

ขั้นตอนที่สำคัญในการประมวลผลทางเสียงคือการแตกเสียงที่อัดมาให้เป็นส่วน ๆ โดยแต่ละส่วนจะเป็นช่วงที่มีเสียง และ แต่ละส่วนจะถูกคั่นด้วยช่วงที่ไม่มีเสียง เพื่อเป็นการหลีกเลี่ยงอุบัติเหตุในการแตกเสียงเป็นส่วนจำนวนมากหรือน้อยเกินไป ช่วงเงียบ จะถูกนิยามเป็นลำดับของค่าแซมเปิ้ล m จำนวน (ความแตกต่างของค่าแซมเปิ้ลที่มากที่สุดกับค่าแซมเปิ้ลที่น้อยที่สุดไม่เกินค่าขีด แบ่ง c ซึ่งค่านี้มีอีกความหมายหนึ่งคือ ค่าระดับของสัญญาณรบกวนที่ยอมได้มากที่สุด ในสัญญาณเสียงช่วงที่เป็นช่วงเงียบ)

<u>งานของคณ</u>

จงเขียนโปรแกรมเพื่อตรวจจับความเงียบ เมื่อโจทย์กำหนดค่าแซมเปิ้ล n จำนวน รวมทั้งกำหนดค่าของ m และ c มาให้ ข้อมูลนำเข้า

บรรทัดแรก แสดงเลขจำนวนเต็ม 3 จำนวน ซึ่งคือ จำนวนของค่าแซมเปิ้ล n (1 <= n <= 1,000,000); ความยาวของ ลำดับที่เป็นของช่วงความเงียบ m (1 <= m <= 10,000); และ ค่าขีดแบ่ง c (0 <= c <= 10,000)

บรรทัดที่สอง แสดงค่าของแซมเปิ้ล n จำนวนเป็นค่าจำนวนเต็ม n ค่า a_i (0 <= a_i <= 1,000,000; 1 <= i <= n) คั่นด้วย หนึ่งเว้นวรรค

<u>ข้อมูลส่งออก</u>

แต่ละบรรทัดแสดงถึงค่า i ที่ทำให้ ค่ามากที่สุดของ a_i ถึง a_{i+m-1} ลบด้วย ค่าน้อยที่สุดของ a_i ถึง a_{i+m-1} น้อยกว่าหรือเท่ากับ ค่าขีดแบ่ง c โดยค่าดังกล่าวจะถูกแสดงจากค่าน้อยไปมากหนึ่งค่าต่อบรรทัด ในกรณีที่ไม่มีช่วงความเงียบในลำดับที่กำหนดในข้อมูล นำเข้าให้แสดงคำว่า NONE

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
7 2 0	2
0 1 1 2 3 2 2	6

++++++++++++++++

โจทย์พี่พีทมีลิขสิทธิ์ ห้ามนำส่วนหนึ่งส่วนใดไปดัดแปลง หรือ ใช้งานต่อ โดยเด็ดขาด

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

2. ส่งกระแสไฟฟ้า (Electricity TOI8)

. ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 8 ณ ศูนย์ สอวน. ม.ศิลปากร

ในการส่งกระแสไฟฟ้าจากต้นทางไปถึงปลายทางเมื่อไฟฟ้าเดินทางผ่านสายไฟ แรงดันไฟฟ้าจะลดลงไปเรื่อย ๆ ทำให้ต้องมี การตั้งสถานีเปลี่ยนแรงดันไฟฟ้าเพื่อเพิ่มแรงดันให้อยู่ในเกณฑ์ที่กำหนด แต่การเลือกตำแหน่งที่ตั้งสถานีเปลี่ยนแรงดันไฟฟ้าไม่ใช่ เรื่องที่ง่ายนัก เพราะการไฟฟ้าต้องซื้อที่ดินสำหรับตั้งสถานีและราคาที่ดินแต่ละแปลงก็แตกต่างกันไป

กำหนดให้การไฟฟ้าจ่ายกระแสไฟฟ้าโดยเริ่มจากที่ดินแปลงหมายเลข 1 และกระแสไฟถูกส่งผ่านต่อไปยังแปลงหมายเลข 2, 3, 4 ไปเรื่อย ๆ จนถึงปลายทางคือที่ดินแปลงหมายเลข N โดยที่ดินเหล่านี้เรียงต่อกันเป็นเส้นตรงตามลำดับหมายเลขจากน้อยไป มาก ซึ่งในทีนี้หมายเลข 1 คือที่ดินแปลงเริ่มต้น และหมายเลข N คือที่ดินแปลงปลายทาง

นิยาม ระยะห่างระหว่างสถานีเปลี่ยนแรงดันไฟฟ้าสองแห่งที่อยู่บนที่ดินแปลงหมายเลข a และ b คือ b-a โดยที่ b > a กำหนดเพิ่มเติมว่าสถานีสองแห่งที่ส่งไฟฟ้าถึงกันโดยตรง (คือไม่มีสถานีอื่นมาคั่น) ต้องมีระยะห่างกันไม่เกิน k แปลง นั่นคือ b-a<=k และหากการไฟฟ้าต้องการสร้างสถานีในที่ดินแปลงใดก็จะต้องซื้อที่ดินแปลงนั้น สำหรับราคาที่ดินของแปลงหมายเลข 1, 2, ..., N คือ P 1, P 2, ..., P N ตามลำดับ

จงเขียนโปรแกรมที่มีประสิทธิภาพในการหาค่าใช้จ่ายรวมที่น้อยที่สุดในการซื้อที่ดินเพื่อตั้งสถานีทั้งหมดสำหรับการส่ง กระแสไฟฟ้าจากที่ดินแปลงหมายเลข 1 ไปถึงแปลงหมายเลข N เมื่อกำหนดให้การไฟฟ้าต้องตั้งสถานีในแปลงหมายเลข 1 และ หมายเลข N เสมอ

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก ระบุจำนวนแปลงที่ดิน (N) ที่กระแสไฟจะถูกส่งผ่าน โดยที่ 2 <= N <= 500,000

บรรทัดที่สอง ระบุค่า k แทนระยะห่างซึ่งเป็นจำนวนแปลงที่มากที่สุดระหว่างสถานีสองแห่งที่สามารถส่งไฟฟ้าถึงกันได้ โดยตรง โดยที่ 1 <= k < N และ k <= 20,000

บรรทัดที่สาม ประกอบด้วยเลขจำนวนเต็ม N จำนวน คั่นด้วยช่องว่าง เลขเหล่านี้แทนราคาที่ดินของแต่ละแปลงคือ P_1, P 2, ..., P N ตามลำดับ โดยที่ 1 <= P i <= 2,000

ร้อยละ 60 ของจำนวนข้อมูลเข้า จะมีค่า 2 <= N <= 10,000 และ 1<= k < N โดยที่ k <= 500

<u>ข้อมูลส่งออก</u>

จำนวนเต็มที่แสดงค่าใช้จ่ายที่น้อยที่สุดในการซื้อที่ดินเพื่อตั้งสถานีเปลี่ยนแรงดันไฟฟ้า โดยที่ค่าใช้จ่ายนี้รวมค่าที่ดินของ สถานี ณ ที่ดินแปลงหมายเลข 1 และหมายเลข N ด้วย

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
10	7
4	
2 1 4 3 2 1 5 1 2 3	

คำอธิบายตัวอย่างที่ 1

ค่าใช้จ่ายที่น้อยที่สุดได้มาจากการซื้อที่ดินแปลงหมายเลข 1, 2, 6 และ 10

+++++++++++++++++

โจทย์พี่พีทมีลิขสิทธิ์ ห้ามนำส่วนหนึ่งส่วนใดไปดัดแปลง หรือ ใช้งานต่อ โดยเด็ดขาด

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

3. พิสัยพิเศษ (Range Special)

ที่มา: โจทย์ใหม่ PeaTT~

เรามีลำดับของจำนวนเต็ม N จำนวน แทนด้วย a_1 , a_2 , ..., a_N เราต้องการทราบจำนวนของลำดับย่อย a_i , a_{i+1} , a_{i+2} , ..., a_j (ซึ่ง i<=j) ที่มีค่าพิสัยของลำดับย่อยเป็นจำนวนเต็มที่อยู่ในช่วง [p, q] ว่ามีกี่ลำดับย่อย

นิยาม พิสัยของลำดับจำนวนหนึ่ง ๆ คือผลต่างของค่าสูงสุดและต่ำสุดของลำดับดังกล่าว ดังนั้นพิสัยของลำดับย่อย a_i , a_{i+1} , a_{i+2} , ..., a_j ก็คือ $\max(a_i, a_{i+1}, a_{i+2}, ..., a_j)$ - $\min(a_i, a_{i+1}, a_{i+2}, ..., a_j)$

สมมติลำดับของจำนวนเต็ม 7 ตัวมี 1, 7, 4, 3, 9, 6, 8 พบว่าจะมีลำดับย่อยทั้งหมด 13 ลำดับย่อยที่มีค่าพิสัยอยู่ในช่วง ตั้งแต่ 4 ถึง 6 ได้แก่ 1-7-4-3, 1-7-4, 1-7, 7-4-3-9-6-8, 7-4-3-9-6, 7-4-3-9, 7-4-3, 4-3-9-6-8, 4-3-9-6, 4-3-9, 3-9-6-8, 3-9-6 และ 3-9

<u>งานของคูณ</u>

คุณจะต้องรับลำดับของจำนวนเต็ม แล้วหาว่ามีลำดับย่อยกี่ลำดับที่มีค่าพิสัยมากกว่าหรือเท่ากับ p และน้อยกว่าหรือ เท่ากับ q

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก มีจำนวนเต็มสามจำนวนคือ N, p, q บอกความยาวของลำดับจำนวนและช่วงพิสัยที่สนใจตามลำดับ (1 <= N <= 1,000,000 และ 0 <= p <= q <= 10,000,000)

อีก N บรรทัดถัดมา จะมีข้อมูลของจำนวนในลำดับ โดยข้อมูลในบรรทัดที่ i+1 จะมีจำนวนเต็ม a_i ซึ่งหมายถึงจำนวนที่ i ของลำดับ โดยที่ $0 <= a_i <= 10,000,000$

40% ของชุดข้อมูลทดสอบจะมีค่า N <= 1,000 และ

70% ของชุดข้อมูลทดสอบจะมีค่า N <= 100,000

<u>ข้อมูลส่งออก</u>

มีจำนวนเต็มจำนวนเดียว บอกจำนวนของลำดับย่อยที่มีค่าพิสัยอยู่ในช่วง [p, q]

<u>ตัวอย่</u>าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
1 4 6	13
1	
7	
4	
3	
9	
6	
8	