Ch7. Sampling Distributions

In the past several chapters, we studied *populations* and the *parameters* that describe them. These populations were either discrete or continuous, and we used *probability* as a tool for determining how likely certain sample outcomes might be. In this chapter, our focus changes as we begin to study *samples* and the *statistics* that describe them. These sample statistics are used to make inferences about the corresponding population parameters. This chapter involves <u>sampling</u> and <u>sampling</u> distributions, which describe the behavior of sample statistics in repeated sampling.

윤 연 옥

Introduction

- **Parameters** are numerical descriptive measures for populations.
 - For the normal distribution, the location and shape are described by μ and σ .
 - For a binomial distribution consisting of n trials, the location and shape are determined by p.
- Often the values of parameters that specify the exact form of a distribution are unknown.
- You must rely on the sample to learn about these parameters.

Sampling

Examples:

- A pollster is sure that the responses to his "agree/disagree" question will follow a binomial distribution, but *p*, the proportion of those who "agree" in the population, is unknown.
- An agronomist believes that the yield per acre of a variety of wheat is approximately normally distributed, but the mean μ and the standard deviation σ of the yields are unknown.
- ✓ If you want the sample to provide reliable information about the population, you must select your sample in a certain way!

Simple Random Sampling

- The sampling plan or experimental design determines the amount of information you can extract, and often allows you to measure the reliability of your inference.
- Simple random sampling is a method of sampling that allows each possible sample of size *n* an equal probability of being selected.

Example

- suppose you want to select a sample of size n=2 from a population containing N= 4 objects.
- If the four objects are x_1, x_2, x_3, x_4 , there are six distinct pairs could be selected.
- If the sample of n=2 observations is selected so that each of these six samples has the same chance of selection, given by 1/6

: resulting sample is called a simple random sample

(or a random sample.)

Sample	Observations in Sample
1	X ₁ , X ₂
2	X1, X3
3	X_1, X_4
4	X ₂ , X ₂
5	X_2, X_4
6	X_3, X_4

How to select random sample? Use random number(Table10 of Appendix I)

Example)

A computer database at a downtown law firm contains files for N=1000 clients.

The firm wants to select n=5 files for review.

Select a simple random sample of five files from this database.

Sol) Select first three digits from Table 10 of Appendix I

The random number 001 corresponds to file #1, and the last file, #1000 corresponds to the random number 000. For example, select files corresponding to #816, #309, #763, #78, #61

■ Table 10 Random Numbers

						Column					
Line	1	2	3	4	5	6	7	8	9	10	11
1	10480	15011	01536	02011	81647	91646	69179	14194	62590	36207	20969
2	22368	46573	25595	85393	30995	89198	27982	53402	93965	34095	52666
3	24130	48360	22527	97265	76393	64809	15179	24830	49340	32081	30680
4	42167	93093	06243	61680	07856	16376	39440	53537	71341	57004	00849
5	37570	39975	81837	16656	06121	91782	60468	81305	49684	60672	14110

Types of Samples

- 1. Observational studies: The data existed before you decided to study it.
 - ✓ Usually occur in sample survey
- Frequently occurring problems
 - ✓ **Nonresponse:** Are the responses biased because only opinionated people responded?
 - ✓ **Undercoverage:** Are certain segments of the population systematically excluded? Ex) telephone survey
 - ✓ **Wording bias:** The question may be too complicated or poorly worded.
- **2. Experimentation:** The data are generated by imposing an experimental condition or treatment on the experimental units.
 - ✓ **Hypothetical populations** can make random sampling difficult.
 - ✓ Samples must sometimes be chosen so that the experimenter believes they are **representative** of the whole population.
 - ✓ Selecting a simple random sample is more difficult.

Other Sampling Methods

- There are several other sampling plans that still involve **randomization**:
- **1. Stratified random sample:** Divide the population into subpopulations or **strata** and select a simple random sample from each strata.
- 2. Cluster sample: Divide the population into subgroups called clusters; select a simple random sample of clusters and take a census of every element in the cluster.
- 3.1-in-k systematic sample: Randomly select one of the first k elements in an ordered population, and then select every k-th element thereafter.

♦ Example

- Divide California into counties and take a simple random sample within each county. : stratified
- Divide a city into city blocks, choose a simple random sample of 10 city blocks, and interview all who live there. : cluster
- Choose an entry at random from the phone book, and select every 50th number thereafter. : 1-in-50 systematic

Non-Random Sampling Methods

- There are several other sampling plans that do not involve randomization.
- They should NOT be used for statistical inference!
- 1. Convenience sample: A sample that can be taken easily without random selection.
 - ex) People walking by on the street
- 2. Judgment sample: The sampler decides who will and won't be included in the sample.
 - ex) teacher select a student who represent the class
- **3. Quota sample**: The makeup of the sample must reflect the makeup of the population on some selected characteristic.
 - ex) Race, ethnic origin, gender, etc.

Sampling Distributions

- Numerical descriptive measures calculated from the sample are called **statistics**.
- Statistics vary from sample to sample and hence are random variables.
- The probability distributions for statistics are called **sampling distributions**.
- In repeated sampling, they tell us what values of the statistics can occur and how often each value occurs.

Definition: The **sampling distribution of a statistic** is the probability distribution for the possible values of the statistic that results when random samples of size *n* are repeatedly drawn from the population.

Sampling Distributions

Example

<u>Population:</u> 3, 5, 2, 1

Draw samples of size n = 3 without replacement

Possible samples	\bar{x}
3, 5, 2	10/3=3.33
3, 5, 1	9/3=3
3, 2, 1	6/3=2
5, 2, 1	8/3=2.67

Each value of \bar{x} is equally likely, with probability 1/4

Example

• A population consists of N=5 numbers: 3, 6, 9, 12, 15. If a random sample of size n=3 is selected without replacement, find the sampling distributions for the sample mean \bar{x} and the sample median m.

$$\mu = \frac{3+6+9+12+15}{5} = 9$$
 and median M=9

• $\binom{5}{3}$ = 10 possible random samples of size n=3 and each is equally likely, with probability 1/10.

Sampling Distributions for (a) the Sample Mean and (b) the Sample Median

Sample	Sample Values	\bar{x}	m
1	3, 6, 9	6	6
2	3, 6, 12	7	6
3	3, 6, 15	8	6
4	3, 9, 12	8	9
5	3, 9, 15	9	9
6	3, 12, 15	10	12
7	6, 9, 12	9	9
8	6, 9, 15	10	9
9	6, 12, 15	11	12
10	9, 12, 15	12	12

(a)	X	$p(\overline{x})$	(b)	m	p(m)
	6	.1		6	.3
	7	.1		9	.4
	8	.2		12	.3
	9	.2			
	10	.2			
	11	.1			
	12	.1			

• Probability histograms for the sampling distributions of the sample mean, \bar{x} , and the sample median, m

Sampling Distributions

- Sampling distributions for statistics can be
 - ✓ Approximated with simulation techniques
 - ✓ Derived using mathematical theorems
 - The Central Limit Theorem is one such theorem.

Central Limit Theorem:

If random samples of n observations are drawn from a nonnormal population with finite μ and standard deviation σ , then, when n is large, the sampling distribution of the sample mean \bar{x} is approximately normally distributed, with mean μ and standard deviation σ/\sqrt{n} . The approximation becomes more accurate as n becomes large.

Example

(1) Toss a fair die n = 1 time. The distribution of x the number on the upper face is flat or **uniform.**

$$\mu = \sum xp(x)$$

$$= 1(\frac{1}{6}) + 2(\frac{1}{6}) + \dots + 6(\frac{1}{6}) = 3.5$$

$$\sigma = \sqrt{\sum (x - \mu)^2 p(x)} = 1.71$$

(2) Toss a fair die n = 2 times. The distribution of x the average number on the two upper faces is **mound-shaped**.

Sums of the Upper Faces of Two Dice

	First Die					
Second Die	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Sampling distribution of \bar{x}

x	$p(\bar{x})$	\bar{x}	$p(\bar{x})$
2/2 = 1	1/36	8/2=4	5/36
3/2 = 1.5	2/36	9/2 = 4.5	4/36
4/2 = 2	3/36	10/2 = 5	3/36
5/2 = 2.5	4/36	11/2 = 5.5	2/36
6/2=3	5/36	12/6=6	1/36
7/2 = 3.5	6/36	1	

Mean : $\mu = 3.5$

$$\sigma/\sqrt{2} = 1.71/\sqrt{2} = 1.21$$

Mean : $\mu = 3.5$

Std Dev:
$$\sigma/\sqrt{3} = 1.71/\sqrt{3} = .987$$

As n gets larger, the shape of \overline{x} distribution is normally distributed

Why is this important?

- The Central Limit Theorem also implies that the sum of n measurements ($\sum x_i$) is approximately normal with mean $n\mu$ and standard deviation $\sigma\sqrt{n}$.
- Many statistics that are used for statistical inference are sums or averages of sample measurements.
- When *n* is large, these statistics will have approximately **normal** distributions.
- This will allow us to describe their behavior and evaluate the reliability of our inferences.

How large is large?

- If the population is **normal**, then the sampling distribution of \bar{x} will also be normal, no matter what the sample size
- When the sample population is approximately **symmetric**, the distribution becomes approximately normal for relatively small values of *n*.
- When the sample population is **skewed**, the sample size must be **at least 30** before the sampling distribution of \bar{x} becomes approximately normal.

The Sampling Distribution of the Sample Mean

- A random sample of size n is selected from a population with mean μ and standard deviation σ .
- The sampling distribution of the sample mean \bar{x} will have mean μ and standard deviation σ/\sqrt{n} .
- If the original population is **normal**, the sampling distribution will be normal for any sample size.
- If the original population is **nonnormal**, the sampling distribution will be normal when *n* is large.
- ✓ The standard deviation of \overline{x} is referred to as the standard error of the mean($SE(\overline{x})$).

Finding Probabilities for the Sample Mean

• If the sampling distribution of \bar{x} is normal or approximately normal, *standardize or rescale* the interval of interest in terms of

$$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$

• Find the appropriate area using Normal table (Table 3 in Appendix).

Example: A random sample of size n = 16 from a normal distribution with $\mu = 10$ and $\sigma = 8$.

$$P(\bar{x} > 12) = P\left(z > \frac{12-10}{\frac{8}{\sqrt{16}}}\right)$$
$$= P(z > 1) = 1 - .8413 = .1587$$

Example

A soda filling machine is supposed to fill cans of soda with 12 fluid ounces. Suppose that the fills are actually normally distributed with a mean of 12.1 oz and a standard deviation of .2 oz. What is the probability that the average fill for a 6-pack of soda is less than 12 oz?

$$P(\bar{x} < 12) = P\left(z < \frac{12 - 12.1}{.2/\sqrt{6}}\right)$$
$$= P(z < -1.22) = .1112$$

The Sampling Distribution of the Sample Proportion

- The **Central Limit Theorem** can be used to conclude that the binomial random variable x is approximately normal when n is large, with mean np and standard deviation \sqrt{npq} .
- The sample proportion, $\hat{p} = \frac{x}{n}$ is simply a *rescaling* of the binomial random variable x, dividing it by n.
- From the Central Limit Theorem, the sampling distribution of \hat{p} will also be approximately normal, with a rescaled mean and standard deviation.

The Sampling Distribution of the Sample Proportion

- A random sample of size n is selected from a binomial population with parameter p.
- The sampling distribution of the sample proportion, $\hat{p} = \frac{x}{n}$

will have mean
$$p$$
 and standard deviation $\sqrt{\frac{pq}{n}}$

- If n is large, and p is not too close to zero or one, the sampling distribution of \hat{p} will be approximately normal.
 - ✓ The standard deviation of \hat{p} is referred as the Standard Error (SE) of \hat{p} .

Finding Probabilities for the Sample Proportion

• If the sampling distribution of \hat{p} is normal or approximately normal, *standardize or rescale* the interval of interest in terms of

$$z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}$$

- Find the appropriate area using Normal Table(Table3 in Appendix).
- ✓ Check np> 5 and nq> 5 for normal approximation!!

Example: A random sample of size n = 100 from a binomial population with p = .4.

$$P(\hat{p} > .5) \approx P\left(z > \frac{.5 - .4}{\sqrt{\frac{.4(.6)}{100}}}\right)$$
$$= P(z > 2.04) = 1 - .9793 = .0207$$

Example

The soda bottler in the previous example claims that only 5% of the soda cans are underfilled.

A quality control technician randomly samples 200 cans of soda. What is the probability that more than 10% of the cans are underfilled?

Sol) n = 200, Success: underfilled can, p = P(S) = .05, q = .95 np = 10 nq = 190: Ok to use the normal approximation.

$$P(\hat{p} > .10) \approx P\left(z > \frac{.10 - .05}{\sqrt{\frac{.05(.95)}{200}}}\right) = P(z > 3.24) = 1 - .9994 = .0006$$

✓ This would be very unusual, if indeed p=.05

I. Sampling Plans and Experimental Designs

- 1. Simple random sampling
 - a. Each possible sample is equally likely to occur.
 - b. Use a computer or a table of random numbers.
 - c. Problems are nonresponse, undercoverage, and wording bias.
- 2. Other sampling plans involving randomization
 - a. Stratified random sampling
 - b. Cluster sampling
 - c. Systematic 1-in-k sampling

3. Nonrandom sampling

- a. Convenience sampling
- b. Judgment sampling
- c. Quota sampling

II. Statistics and Sampling Distributions

- 1. Sampling distributions describe the possible values of a statistic and how often they occur in repeated sampling.
- 2. Sampling distributions can be derived mathematically, approximated empirically, or found using statistical theorems.
- 3. The Central Limit Theorem states that sums and averages of measurements from a nonnormal population with finite mean μ and standard deviation σ have approximately normal distributions for large samples of size n.

III. Sampling Distribution of the Sample Mean

- 1. When samples of size n are drawn from a normal population with mean μ and variance σ^2 , the sample mean \bar{x} has a normal distribution with mean μ and variance σ^2/n .
- 2. When samples of size n are drawn from a nonnormal population with mean μ and variance σ^2 , the Central Limit Theorem ensures that the sample mean \bar{x} will have an approximately normal distribution with mean μ and variance σ^2/n when n is large $(n \ge 30)$.
- 3. Probabilities involving the sample mean μ can be calculated by standardizing the value of \bar{x} using $z = \frac{\bar{x} \mu}{\sigma/\sqrt{n}}$

IV. Sampling Distribution of the Sample Proportion

- 1. When samples of size n are drawn from a binomial population with parameter p, the sample proportion \hat{p} will have an approximately normal distribution with mean p and variance pq/n as long as np > 5 and nq > 5.
- 2. Probabilities involving the sample proportion can be calculated by standardizing the value \hat{p} using

$$z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}$$