

University of Washington

BEE331 Lab 1.1

2301991 Jason Truong Henry Haight

1900585

supervised by Prof. Joseph Decuir

Characterising Diodes; I-V Curve Design Objective

In this lab, we introduce ourselves to the diode, we characterise its function by the I-V curve.

Circuit Design Outline

With a resistor of an arbitrary impedance greater than 50Ω ($R \ge 100\Omega$), and the natural impedance of the Function Generator in series ($R_{TOT} = R_{FG} + R \ge 150\Omega$), the (1N4148 silicon) diode is set in series to forward-bias from the function generator. Set the function generator @ f=1kHz and $V_P = 5V$.

Figure 1: Series R + Diode

(a) LTSpice + Rudimentary Schematic Seris RD (499 Ω) Circuit

(c) Series RD Circuit 100Ω

Descriptions of Measurements & Calculations

Analysis

• i. Describe how you measured I_D and V_D ?

At the node where R; $(R > 100\Omega)$ and the Diode; (D) meet, we denote this junction as V_{out} . We attach our Multimetre's positive lead (Red) to V_{out} , and attached our ground lead to the opposing node of the Diode; (D) - which should be grounded.

• ii. In this experiment how would you determine the value of $I_{D,max}$

$$I_D = I_S(e^{\frac{V_D}{V_T}} - 1)$$
; reference Figure 1b.

• iii. In the circuit, what limits I_D ?

The characteristics of the I-V curve of a diode has current I_D exponentially rise towards a cut-off at the threshold, towards the C.V.D @ V_D .

• iv. Explain why V_D does not change much while I_D can change a lot.

Given the equation of a Diode's characteristics of $I_D = I_S(e^{\frac{V_D}{V_T}} - 1)$. Putting the equation in reference to I_D is an exponential function, while V_D is a logarithmic function with a very slow rise time.

Figure 1: RD Circuit

Summary & Conclusions

Revealed in Figure RD-Circuit 1A & 1B, the generated oscilloscope readings of the two periodic function match the characteristics of the transfer function found in the transfer function. So the measurements do infact closely align.

Figure 2: Jason Truong Addendum

(a) Lab Design Calculations

$$I_D = I_S(e^{qV_D/NkT}-1)$$

Where,

I_D = Diode current in amps

 I_S = Saturation current in amps (typically 1 x 10⁻¹² amps)

e = Euler's constant (~ 2.718281828)

q = charge of election $(1.6 \times 10^{-19} \text{ coulombs})$

V_D = Voltage applied across diode in volts

N = "Nonideality" or "Emission" coefficient (typically between 1 and 2)

k = Boltzmann's constant (1.38 x 10⁻²³)

T = Junction Temperature in Kelvins

Bibliography

Cited:

- Lab 1 Manual
- Sedra, Adel, and Kenneth Smith. Microelectronic Circuits. S.L., Oxford Univ Press Us, 2019.
- "How Do You Calculate, a Silicon Junction Diode with N=1 Has v=0.7 v al I=1 MA. What Is the Voltage Drop at I=0.1 MA and I=10 MA.?" Quora, 2024, appliedmathematics.quora.com/How-to-calculate-A-silicon-junction-diode-with-n-1-has-v-0-7-V-al-I-1-mA-What-is-the-voltage-drop-at-I-0-1-mA-an?top_ans=223007030. Accessed 15 July 2024.

(a) Look at her, she's perfect.