Temporal Walk Based Centrality Metric for Graph Streams

Ferenc Béres Eötvös Loránd University Róbert Pálovics Stanford University András A. Benczúr Hungarian Academy of Sciences

DYNAMIC GRAPHS

- Edge stream: (u,v,t) triplets, link occurred from u to v at time t
- Directed edges can be activated multiple times, no deletion

TEMPORAL KATZ CENTRALITY

- Centrality measure for dynamic graphs
- Extension of Katz-index to temporally changing networks
- Online updateable from the edge stream

DEFINITION

- $\varphi(\tau)$: time decay function, e.g. $\varphi(\tau) = \beta \exp(-c\tau)$
- Time-respective walk: $t_1 < t_2 < t_3 < ... < t_i \le t$

$$\Phi(z,t) := \prod_{i=1}^{j} \varphi(t_{i+1} - t_i); t_{j+1} = t$$

- $r_u(t)$: temporal Katz centrality score of node u at time t
- Weighted sum of time-respective walks ending at node *u*

$$r_u(t) := \sum_{v \text{ temporal paths } z} \Phi(z, t)$$

CONVERGENCE THEOREM

Sample a sequence of T edges from E. With $\varphi(\tau) = \beta \exp(-c\tau)$,

$$\lim_{T \to \infty} \vec{\text{TemporalKatz}} = \mathbf{1} \cdot \sum_{k} A^{k} \left(\frac{\beta}{|E|} \right)^{k} \left(\frac{1}{e^{c} - 1} \right)^{k}$$

ONLINE UPDATE FORMULA

- E(t): multi set of edges activated before time t
- r_{v} : temporal Katz centrality score of node v
- w_{vv} : weight over edge vu
- t_{vu} : last edge activation time of edge vu
- *r*,*w* and *t* are online updated from the edge stream

• More efficient update if $\varphi(\tau_1 + \tau_2) = \varphi(\tau_1) \varphi(\tau_2)$ e.g. exponential

TWITTER DATASETS

- Tweets from Roland-Garros and US Open 2017
- Mention network: nodes are accounts, edges are mentions
 - RG17: 336,234 edges; 78,095 nodes; 19 days
 - UO17: 482,061 edges; 106,920 nodes; 21 days
- We assigned tennis players to Twitter accounts
- Nodes of the network are temporally labeled
 - e.g. RG17 semi final day (June 9) at 12:00

Rank	Node (Twitter account)	Label
1	@rolandgarros	0
2	@stanwawrinka	1
3	@andy_murray	1
4	@Simona_Halep	0
5	@RafaelNadal	1
6	@ThiemDomi	1
7	@TimeaOfficial	0
8	@AnaIvanovic	0
9	@rohanbopanna	0
10	@WTA	0

MEASUREMENT

- Central node prediction in temporally evolving networks
- Goal: predict list of players who play on a given day
- Evaluation by

$$NDCG = \frac{1}{IDCG} \sum_{i=1}^{\infty} \frac{rel(i)}{\log_2(i+1)},$$

- ranking is based on network centrality
- rel(i) = 1 if node i is related to a player who participated on the given day and 0 otherwise

• Temporal Katz centrality outperforms baselines on both data

UO17	RG17
0.321	0.342
0.321	0.346
0.319	0.333
0.325	0.349
0.187	0.195
0.353	0.359
0.370	0.368
	0.321 0.321 0.319 0.325 0.187 0.353

