Proof by Induction

Induction

- Often in mathematics or computer science, we need to prove a relationship involving some number n:
 - $S_n = f(n)$ where:
 - S_n represents the left-hand-side of the relationship and where
 - f(n), some polynomial function of n, represents the righthand side.
- Induction allows us to prove our relationship using two steps:
 - Base case
 - Inductive step

Base case

- If, for example, we want to prove $S_n = f(n)$ for all positive n, then we should choose for our base case n=0 or perhaps n=1.
- We simply verify that the relationship holds in the base case.

Inductive step

- If, for example, we want to prove $S_n = f(n)$ for all positive n, then we assume that $S_n = f(n)$ and then, using that as a relationship as if it were fact, we show that $S_{n+1} = f(n+1)$.
- Our ability to prove the inductive step will depend on our knowledge of the behavior of S_n .

The proof

• If we confirm the base case (n=0) and we confirm the inductive step such that if the relationship is true for n, it is true for n+1, then we can combine these "facts" and assert that the relationship is *true for all positive integers*.

A simple example

- We will prove a formula for the sum of all integers 1 through n.
- Relationship to prove: $S_n = n(n+1)/2$
- Base case (n=1): 1 = 1(2)/2 (confirmed)
- Inductive step: $S_{n+1} S_n = n+1$ (by definition of S_n)
 - Using the given relationship, we have:
 - \mathbf{S}_{n+1} $\mathbf{S}_n = (n+1)(n+2)/2$ n(n+1)/2 = (n+1)/2 * (n+2-n)
 - $S_{n+1} S_n = n+1$
 - *QED*, 证毕, इति सिद्धम