Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Departamento de Sistemas e Computação

Disciplina: FMCC I Professor: Eanes Torres

Lista de Exercícios 1

1. Considere que p, q e r são proposições:

p: Ursos-cinzentos são vistos na área.

q: Fazer caminhada na trilha é seguro.

r: As bagas estão maduras ao longo da trilha.

Escreva estas proposições usando p, q, r e conectivos lógicos.

- (a) As bagas estão maduras ao longo da trilha, mas os ursos cinzentos não são vistos na área.
- (b) Ursos-cinzentos não são vistos na área e fazer caminhada na trilha é seguro, mas as bagas estão maduras ao longo da trilha.
- (c) Se as bagas estão maduras ao longo da trilha, fazer caminhada na trilha é seguro se e somente se ursos cinzentos não forem vistos na trilha.
- (d) Não é seguro caminhar na trilha, mas os ursos cinzentos não foram vistos na área e as bagas estão maduras ao longo da trilha.
- (e) Para fazer uma caminhada segura na trilha, é necessário, mas não suficiente, que as bagas não estejam maduras ao longo da trilha e que os ursos cinzentos não sejam vistos na área.
- (f) Fazer caminhada na trilha não é seguro sempre que ursos cinzentos são vistos na área e bagas maduras estão ao longo da trilha.
- 2. Aladdin encontra dois baús A e B em uma caverna. Ele sabe que eles contém ou um tesouro ou uma armadilha fatal.
 - (a) No baú A está escrito: "Pelo menos um dos dois baús contém um tesouro."
 - (b) No baú B está escrito: "No A existe uma armadilha fatal."

Aladdin sabe que ambos estam mentindo, ou ambos falam a verdade. Ele pode escolher um baú com certeza de encontrar um tesouro? Se esse for o caso, qual ele deveria abrir?

- 3. Um jornal publicou a seguinte manchete: "Toda Agência do Banco do Brasil tem déficit de funcionários." Diante de tal inverdade, o jornal se viu obrigado a retratar-se, publicando uma negação de tal manchete. Redija a sentença que expressaria de maneira correta a negação da manchete publicada.
- 4. Qual(is) das sentenças proposicionais abaixo é(são) equivalência(s) lógica(s)? Expresse por tabela verdade.

I.
$$P \wedge (P \vee Q) \leftrightarrow P$$
.

II.
$$\neg (P \land Q) \leftrightarrow \neg P \lor \neg Q$$
.

III.
$$P \wedge (Q \vee R) \leftrightarrow (P \wedge Q) \vee (P \wedge R)$$
.

- 5. Diversas negativas são dadas para cada uma das seguintes afirmações. Quais são as certas? *Mais de uma resposta é válida.
 - 1. A resposta é 2 ou 3.
 - (a) Nem 2 nem 3 são a resposta.
 - (b) A resposta não é 2 ou não é 3.
 - (c) A resposta não é 2 e não é 3.
 - 2. Pepinos são verdes e têm sementes.
 - (a) Pepinos não são verdes e não têm sementes.
 - (b) Pepinos não são verdes ou não têm sementes.
 - (c) Pepino são verdes e não têm sementes.
 - 3. 2 < 7 e 3 é impar.
 - (a) 2 > 7 e 3 é par.
 - (b) $2 \ge 7 e 3 é par$.
 - (c) $2 \ge 7$ ou 3 é impar.
 - (d) $2 \ge 7$ ou 3 é par.
- 6. Dada as proposições p e q , construa as tabelas-verdade para os argumentos seguintes e cheque que são tautologias.
 - (a) $p \vee \neg p$
 - (b) $\neg(\neg p) \leftrightarrow p$
 - (c) $p \wedge q \rightarrow q$
 - (d) $p \to p \lor q$
 - (e) $\neg (p \lor q) \leftrightarrow \neg p \land \neg q$
 - (f) $p \lor p \leftrightarrow p$
- 7. Construa tabelas-verdade para os argumentos a seguir. Se houver tautologia comente abaixo.
 - (a) $(A \to B) \leftrightarrow \neg A \lor B$
 - (b) $(A \wedge B) \vee C \rightarrow A \wedge (B \vee C)$
- 8. Mostre que cada uma das declarações condicionais abaixo é uma tautologia, usando tabelas-verdade.
 - (a) $(P \wedge Q) \to P$
 - (b) $P \to (P \lor Q)$
 - (c) $\neg P \rightarrow (P \rightarrow Q)$
 - (d) $(P \wedge Q) \rightarrow (P \rightarrow Q)$
- 9. Quais dessas fórmulas estão bem formadas?
 - (a) $\vee pq$
 - (b) $(\neg(p \longrightarrow (q \land p)))$
 - (c) $(\neg(p \longrightarrow (q \equiv p)))$

- (d) $(\neg(\longrightarrow (q \lor p)))$
- (e) $(p \land \neg q) \lor (q \longrightarrow r)$
- (f) $p \neg r$
- 10. Seja A= "Aldo é italiano" e B= "Bob é inglês". Dê a formalização proposicional para as seguintes frases :
 - (a) "Aldo não é italiano"
 - (b) "Aldo é italiano enquanto Bob é inglês"
 - (c) "Se Aldo é italiano, então Bob não é inglês"
 - (d) "Aldo é italiano ou se Aldo não é italiano, então Bob é inglês"
 - (e) "Aldo é italiano e Bob é inglês, ou nem Aldo é italiano nem Bob é inglês"
- 11. Apresente o converso, o contrapositivo e o inverso de cada sentença condicional a seguir:
 - (a) Se nevar hoje, eu esquiarei amanhã.
 - (b) Eu venho à aula, se houver prova.
- 12. Chama-se tautologia à proposição composta que possui valor lógico verdadeiro, quaisquer que sejam os valores lógicos das proposições que a compõem. Sejam p e q proposições simples e $\neg p$ e $\neg q$ as suas respectivas negações. Em cada uma das alternativas abaixo, há uma proposição composta, formada por p e q. Qual corresponde a uma tautologia?
 - (a) $p \wedge q$
 - (b) $p \wedge \neg q$
 - (c) $(p \land q) \to (\neg p \land q)$
 - (d) $(p \lor q) \to (p \land q)$
 - (e) $(p \land q) \to (p \land q)$
- 13. Usando lógica proposicional e regras de inferência, prove que os argumentos abaixo são válidos.
 - (a) $(P \longrightarrow Q) \land (\neg P \longrightarrow Q) \longrightarrow Q$
 - (b) $(R \land (\neg F \lor N)) \land \neg N \land (\neg E \longrightarrow F) \longrightarrow (E \land R)$
- 14. Sejam as seguintes proposições P: Carlos fala francês, Q: Carlos fala inglês e R: Carlos fala alemão. Dada a seguinte proposição: É falso que Carlos fala inglês ou alemão, mas que não fala francês. Redija de maneira correta a proposição acima para a linguagem simbólica.
- 15. Explique, sem usar a tabela verdade, porque $(p \lor \neg q) \land (q \lor \neg r) \land (r \lor \neg p)$ é verdade quando p, q e r têm o mesmo valor lógico e falso de outra maneira.

Soluções

1. (a)
$$r \wedge \neg p$$
 (b) $\neg p \wedge q \wedge r$ (c) $r \rightarrow (q \leftrightarrow \neg p)$ (d) $\neg p \wedge \neg q \wedge r$ (e) $(q \rightarrow (\neg p \wedge \neg r)) \wedge \neg ((\neg p \wedge \neg r) \rightarrow q)$ (f) $(p \wedge r) \rightarrow \neg q$

- 2. Aladdin pode abrir o baú B com certeza de encontrar o tesouro.
- 3. Para negar a manchete, basta encontrarmos uma agência que não tem déficit de funcionários. Ou seja, a sentença seria: "Alguma Agência do Banco do Brasil não tem déficit de funcionários."
- 4. Todas as sentenças são verdadeiras. Pode-se resolver esta questão fazendo as tabelas-verdades para todas as possibilidades de P, Q e R e verificar a tautologia entre as expressões da esquerda ou da direita.
- 5. (1) A e C estão corretas. (2) B está correta. (3) D está correta.

6.a)	p	$\neg p$	$p \vee \neg p$	b)	p	$\neg(\neg p)$	$\neg(\neg p) \leftrightarrow p$	c)	$p \mid$	q	$p \wedge q$	$p \wedge q \to q$
	Τ	F	Т		T	Τ	Τ		Γ	Τ	Τ	Τ
	Τ	F	T	1	Τ	${ m T}$	${ m T}$	r	Γ	F	F	${ m T}$
	F	Τ	T		F	\mathbf{F}	${ m T}$	-	F	Τ	\mathbf{F}	${ m T}$
	F	Τ	Т		F	F	${ m T}$		F	F	\mathbf{F}	Τ

f)	p	$p \lor p$	$p \vee p \leftrightarrow p$
	Т	Τ	Τ
	\mathbf{T}	Τ	${ m T}$
	\mathbf{F}	F	${ m T}$
	F	F	${ m T}$

Tautologia

b)	A	В	$\mid C \mid$	$A \wedge B$	$\mid (A \land B) \lor C$	$\mid B \lor C$	$A \land (B \lor C)$	$(A \land B) \lor C \to A \land (B \lor C)$
-	Τ	Т	Т	Т	Т	Т	Τ	Т
	Τ	Т	F	Τ	Γ	Γ	${ m T}$	${ m T}$
	Τ	F	Γ	F	Γ	T	${ m T}$	${ m T}$
	Τ	F	F	F	F	F	F	${ m T}$
	F	Τ	$\mid T \mid$	F	Γ	T	F	F
	F	Т	F	F	F	T	F	${ m T}$
	F	F	$\mid T \mid$	F	Γ	T	F	F
	F	F	F	F	F	F	F	${ m T}$

8.a)	Р	Q	$(P \land Q)$	$\mid (P \land Q) \to P$	b)	Р	Q	$(P \land Q)$	$P \to (P \wedge Q)$
	Τ	Т	Т	T		Т	Т	Τ	T
	Τ	F	F	m T		Τ	F	F	${ m T}$
	F	Т	F	Γ		F	Т	F	${ m T}$
	F	F	F	m T		F	F	F	${ m T}$

- 10. (a) $\neg A$
- (b) $A \wedge B$
- (c) $A \longrightarrow \neg B$
- (d) $A \lor (\neg A \longrightarrow B)$
- (e) $(A \wedge B) \vee (\neg A \wedge \neg B)$

11.(a) Converso: "Esquiarei amanhã se nevar hoje."

Contrapositivo: "Se eu não esquiar amanhã, então não terá nevado hoje."

Inverso: "Se não nevar hoje, então não esquiarei amanhã."

(b) Converso: "Se eu vir à aula, então terá prova."

Contrapositivo: "Se eu não vir à aula, então não terá prova."

Inverso: "Se não tiver prova, então eu não venho à aula."

12. (e).

13.(a)

1. $P \longrightarrow Q$ Hipótese

```
2. \neg P \longrightarrow Q
                      Hipótese
3. \neg Q \longrightarrow \neg P
                       1, Contraposição
4. \neg Q \longrightarrow Q
                      2,3, Silogismo Hipotético
                   4, Condicional
5. \neg(\neg Q) \lor Q
6. Q \vee Q 5, Dupla negação
7. Q
           6, Auto-referência
(b)
1. (R \wedge (\neg F \vee N))
                             Hipótese
2. \neg N
              Hipótese
3. \neg E \longrightarrow F
                      Hipótese
       1, Simplificação
4. R
5. \neg F \lor N
                    1, Simplificação
6. N \vee \neg F
                   5, Comutatividade
             2,6, Silogismo Disjuntivo
8. \neg F \longrightarrow \neg(\neg E)
                            3, Contraposição
9. \neg(\neg E)
                  7,8, Modus Ponens
10. E
             9, Dupla negação
11. E \wedge R
                  4,10, Conjunção
```

14.
$$\neg (Q \lor R) \neg P$$

15. Primeiro: (p $\lor \neg$ q) é verdade se e somente p ou \neg q foram verdadeiros, o que quer dizer que temos as seguintes possibilidades: p e \neg q verdadeiros; p verdadeiro e \neg q falso; ou p falso e \neg q verdadeiro. Mas note que de p e \neg q forem falsos, a proposição será falsa. Trocando \neg q por q, teremos verdade quando: p for verdadeiro e q falso; p e q verdadeiros; mas se p for falso e q verdadeiro, a proposição será falsa, pois p e \neg q serão falsos. Logo, quando p e q têm o mesmo valor, a proposição (p $\lor \neg$ q) sempre será verdadeira, mas quando eles têm valores diferentes, nem sempre a proposição será verdadeira. A mesma lógica se segue nas outras 2 composições. Por fim, como as 3 proposições estão ligadas pelo símbolo \land , se todas as 3 proposições forem verdadeiras, a proposição composta também será verdadeira.