P(x)= -(1-1(x))

2008-1 Cálculo I -A-Lista 10

Universidade Federal Fluminense

LISTA 10 - 2008-1

Funções inversas Teorema da Função Inversa

Funções trigonométricas inversas

Universitate

EGM - Instituto de Matemática

GMA - Departamento de Matemática Aplicada

1. Seja
$$f(x) = \frac{1}{x} - x^3, \quad x > 0.$$

(b) Calcule $f^{-1}(0) = (f^{-1})'(0)$;

(c) Determine a equação da reta tangente ao gráfico de f^{-1} no ponto $(0, f^{-1}(0))$. Z. Sendo f uma função invertível, derivável, tal que f(1)=2, f(2)=7, f'(1)=3 e f'(2)=4, calcule f(1)=1

9 3. Seja
$$f(x) = \begin{cases} 1 - x^2, & x > 0 \end{cases}$$
Resolva as equações dos exercícios 4. a 11.

1. $\sin x = \frac{\sqrt{3}}{2}$
6. $\sin x = -\frac{1}{2}$
7. $\cos x = 0$
9. $\tan x = 1$
10. $\tan x = -1$
11. $\sin x = -1$
12. $\sin x = 0$
13. $\sin x = -1$
14. $\cos x = -1$
15. $\cos x = 0$
16. $\cos x = -1$
17. $\cos x = -1$

Nos exercícios 12. a 19. encontre o valor de x.

Nos exercícios 12. a 19. encontre o valor de
$$\frac{1}{x}$$

12. $x = \arcsin \frac{\sqrt{3}}{2}$

14. $x = \arcsin \left(-\frac{1}{2}\right)$

16. $x = \arctan 0$

17. $x = \arctan 1$

18. $x = \arctan -1$

19. $x = \arccos -2$

Deduza as fórmulas dos exercícios 20. a 22.
$$20. \ \operatorname{arcsec} x - \operatorname{arccos} \frac{1}{x} = 0 \qquad 21. \ (\operatorname{arctan} x)' = \frac{1}{1+x^2}$$

Nos exercícios 23. e 24. derive a função.

23.
$$f(x) = \arcsin^3((x+1)^2) + \arccos\frac{1}{\sqrt{x^2+1}}$$

24.
$$g(x) = \arctan \sqrt{\frac{1 - \cos x}{1 + \cos x}}$$

Nos exercícios 25. e $\,$ 26. encontre y', se y=y(x) é definida implicitamente pela equação dada.

25.
$$x \arctan y = x^2 + y^2$$
 26. $\arcsin (xy) = x + y$

Nos exercícios 27. a 29. verifique a igualdade.

27.
$$\frac{d}{dx}\left(\frac{x^3}{3}\arcsin x + \frac{x^2+2}{9}\sqrt{1-x^2}\right) = x^2 \arcsin x$$

28.
$$\frac{d}{dx}\left(\arctan\frac{x}{1+\sqrt{1-x^2}}\right) = \frac{1}{2\sqrt{1-x^2}}$$

$$29. \ \frac{d}{dx} \left(\arctan \frac{2 \tan x}{1 - \tan^2 x} \right) = 2$$

30. Seja
$$f(x) = 2(x^2 + 1) \arctan x, x \in \mathbb{R}$$
.

(a) Mostre que f é invertível;

(b) Verifique que
$$f(-1) = -\pi$$
 e calcule $(f^{-1})'(-\pi)$;

(a) Verifique que
$$f(-1) = -\pi$$
 e carcule (1^{-1}) , $(-\pi)$,

Cálculo I -A-Lista 10

2008-1

RESPOSTAS

1. (a) Como
$$f'(x) = -\frac{1+3x^4}{x^2} < 0$$
 em $(0, \infty)$,

 f satisfaz as hipóteses do TFI
(teorema da função inversa).
Logo f é invertível em $(0, \infty)$;

Logo
$$f \in \text{invertives ear} (4)$$

(b) $f^{-1}(0) = 1 = (f^{-1})'(0) = -1/4;$

$$(c) x + 4y = 4$$

2.
$$\frac{1}{3}$$
3. $(f^{-1})'(x) = \begin{cases} \frac{-1}{3\sqrt[3]{(1-x)^2}}, & x > 1\\ \frac{-1}{2\sqrt{1-x}}, & x < 1 \end{cases}$

4.
$$x = \frac{\pi}{3} + 2k\pi$$
 ou $x = \frac{2\pi}{3} + 2k\pi, k \in \mathbb{Z}$

5.
$$x = \frac{\pi}{2} + k\pi$$
, $k \in \mathbb{Z}$

5.
$$x = \frac{\pi}{2} + k\pi$$
, $k \in \mathbb{Z}$
6. $x = -\frac{\pi}{6} + 2k\pi$ ou $x = -\frac{5\pi}{6} + 2k\pi$, $k \in \mathbb{Z}$

6.
$$x = -\frac{1}{6}$$

7. $x = \pi + 2k\pi$, $k \in \mathbb{Z}$

8.
$$x = 2k\pi$$
, $k \in \mathbb{Z}$

$$9. \ x = \frac{\pi}{4} + k\pi, \ k \in \mathbb{Z}$$

10.
$$x = -\frac{\pi}{4} + k\pi, \ k \in \mathbb{Z}$$

10.
$$x = -\frac{\pi}{4} + k\pi$$
, $k \in \mathbb{Z}$
11. $x = \frac{2\pi}{3} + 2k\pi$ ou $x = -\frac{2\pi}{3} + 2k\pi$, $k \in \mathbb{Z}$

12.
$$x = \frac{1}{2}$$

13.
$$x = \frac{\pi}{2}$$

14.
$$x = -\frac{\pi}{6}$$

16.
$$x = 0$$

17.
$$x = \frac{\pi}{4}$$

18.
$$x = -\frac{\pi}{4}$$

$$x = \frac{2\pi}{3}$$

- 20. Sabemos que $y = \operatorname{arcsec} x \Leftrightarrow \sec y = x$, $0 \le y < \frac{\pi}{2}$ ou $\frac{\pi}{2} < y \le \pi \Leftrightarrow \frac{1}{\cos y} = x$, $0 \le y < \frac{\pi}{2}$ ou $\frac{\pi}{2} < y \le \pi \Leftrightarrow 1$ $\frac{1}{x}=\cos y$. Substituindo a primeira e a última relação na equação dada, obtemos $y-\arccos\left(\cos y\right)=y-y=0$.
- 22. Sabemos que $y= \operatorname{arcsen} x \Leftrightarrow \operatorname{sen} y = x, \ -\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$. Por outro lado, $\cos y = \pm \sqrt{1-\operatorname{sen}^2 y}$, mas no intervalo considerado $\cos y \geq 0$, logo $\cos (\operatorname{arcsen} x) = \cos y = \sqrt{1-\operatorname{sen}^2 y} = \sqrt{1-x^2}$.

considerado
$$\cos y \ge 0$$
, logo $\cos \left(\operatorname{arcsen} x \right) = \cos y - \sqrt{1 - x^2 + 1}$
23. $f'(x) = 3 \operatorname{arcsen}^2 \left((x+1)^2 \right) \frac{2(x+1)}{\sqrt{1 - (x+1)^4}} + \frac{-1}{\sqrt{1 - \frac{1}{x^2 + 1}}} \cdot \frac{-1}{2} \left(x^2 + 1 \right)^{-\frac{3}{2}} (2x) = 2x$

$$= \frac{6(x+1)\arcsin^2((x+1)^2)}{\sqrt{1-(x+1)^4}} + \frac{x}{(x^2+1)\sqrt{x^2}}$$

$$= \frac{6(x+1)\operatorname{arcsen}^{2}((x+1)^{2})}{\sqrt{1-(x+1)^{4}}} + \frac{x}{(x^{2}+1)\sqrt{x^{2}}}$$

$$24. \ \ g'(x) = \frac{1}{1+\frac{1-\cos x}{1+\cos x}} \times \frac{1}{2\sqrt{\frac{1-\cos x}{1+\cos x}}} \times \frac{(1+\cos x)(\sin x) - (1-\cos x)(-\sin x)}{(1+\cos x)^{2}} = \frac{\sin x}{2|\sin x|}$$

25.
$$\frac{dy}{dx} = \frac{(1+y^2)(2x - \arctan y)}{x - 2y(1+y^2)} = \frac{(1+y^2)(x^2 - y^2)}{x^2 - 2xy(1+y^2)}$$

26.
$$\frac{dy}{dx} = \frac{\sqrt{1 - x^2 y^2} - y}{x - \sqrt{1 - x^2 y^2}}$$

30. (a) $f'(x) = 2 + 4x \arctan x \neq 0$ pois (i) f'(0) = 2; (ii) $x > 0 \Rightarrow \arctan x > 0 \Rightarrow x \arctan x > 0 \Rightarrow f'(x) > 2$ $\Rightarrow f'(x) > 0$; (iii) $x < 0 \Rightarrow \arctan x < 0 \Rightarrow x \arctan x > 0 \Rightarrow f'(x) > 0$. Logo aplicando o Teorema da Função Inversa, f possui inversa f^{-1} . (b) $f(-1)=4\arctan(-1)=-\pi; \quad (f^{-1})'(-\pi)=\frac{1}{2+\pi}$.

Logo aplicando o Teorema da Função Inversa,
$$f$$
 proson (b) $f(-1) = 4 \arctan(-1) = -\pi$; $(f^{-1})'(-\pi) = \frac{1}{2+\pi}$

一种"
4) $v_{xy}(x) = \sqrt{37}$, $x = 17$ on $x = 37$
X= II + KII, KGZ ou X=317 + KB', KEZ
5) $cos(x)=0$. $x=Iau 3I$ 2 2
X= II+KIT, KEZ
6) bonx = -2 -6 ou 6 + 11+1/2 - 71+1 = 8 The ou o 411/3 X = -1 + 2KIT, ou x = -511 + 2KIT, KEZ
6 7) COSX = -1 TI = 101 TV -
$0 = x \text{ not } (8)$ $X = 2\pi K K \in \mathbb{Z}$ $1 = x \text{ not } (9)$
$x = \pi + \pi \times \pi \times$
$\frac{1}{4} = -2 + 8 \times (x) = -1$
kajoma X=# +2 Km , KEV

to as the new sea x 2 arosen x + x3. 1

Universidade Federal Fluminense UFF

EGM - Instituto de Matemática

GMA - Departamento de Matemática Aplicada

LISTA 8 - 2008-1

Aproximação linear

Diferencial

Derivada de ordem superior

- 1. Encontre a equação da reta que melhor aproxima o gráfico de $y=f(x)=x^{19/3}$ para valores de x próximos de -1. Usando a equação desta reta, encontre um valor aproximado para (-1,06)^{19/3}.
- 2. Calcule, por diferencial, o valor aproximado de:
- (a) $\sqrt{35,99}$
- (b) $\frac{1}{3.09}$
- 3. A altura e o raio de um cilindro reto são iguais, de modo que o volume desse cilindro é dado por V= πh^3 . O volume deve ser calculado com erro não maior que 1% em relação ao valor real. Determine, aproximadamente, o maior erro que pode ser tolerado na medida de h, expressando-o como porcentagem
- Calcule f" para a função do ex. 8. da Lista 7.
- Calcule f" para a função do ex. 10. da Lista 7.
- 6. Calcule f'', f''' e seus respectivos domínios para $f(x) = \begin{cases} x^2 \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$
- 7. Seja $h(x) = |x^2 4|, x \in \mathbb{R}.$
 - (a) Dê os pontos onde h é duas vezes diferenciável e determine h'(x) e h''(x);
 - (b) Esboce o gráfico de h.
- 8. Seja $y = u \cos^2 u^3$.
- (a) Calcule $\frac{dy}{du}$; (b) Se u = u(x), calcule $\frac{dy}{dx}$ e $\frac{d^2y}{dx^2}$.
- 9. Prove: se $y = \cos \sqrt{x} \sin \sqrt{x}$ então 4xy'' + 2y' + y = 0.
- 10. Considere $g(x) = \cos x \times f^2(x)$, onde $f: \mathbb{R} \longrightarrow \mathbb{R}$ é duas vezes diferenciável, f(0) = -1 e f'(0) = f''(0) = 2. Calcule g''(0).

RESPOSTAS

1. $y = \frac{19}{3}x + \frac{16}{3}$; valor aproximado = -1,38

- 2. (a) $\cong 5,9992$ (b) $\cong 0,3233$
- 2. (c) como $\cos\left(\frac{\pi}{3}\right)=\frac{1}{2}, \left(\frac{1}{2}\right)^{1/3}\cong 0,8333$, é uma aproximação grosseira, foi usado que $\frac{1}{2}$ está perto de 1;
- $\left(\frac{1}{2}\right)^{1/3}\cong 0$, 79375, é uma aproximação melhor, foi usado que $\frac{1}{2}$ está perto de 0, 512 = $(0,8)^3$
- 3. $\frac{1}{3}\%$ 4. $G''(r) = -\frac{16}{25}(2r+2)^{-9/5}$

- 5. Para $x \neq 0$, $f''(x) = \left(6x \frac{16}{x^7}\right) \sin\frac{1}{x^4} \frac{4}{x^3} \cos\frac{1}{x^4}$; $\not Bf''(0)$ pois f' não é contínua em x = 0. 6. dom $f'' = \text{dom } f''' = \mathbb{R} - \{0\};$ $\not \exists f''(0) \text{ pois } f' \text{ não \'e contínua em } x = 0 \in \not\exists f'''(0) \text{ pois } \not\exists f''(0);$ $f''(x) = \left(1 - \frac{1}{x^2}\right) \cos \frac{1}{x} + \frac{2}{x} \sin \frac{1}{x}; \quad f'''(x) = -\frac{1}{x^4} \sin \frac{1}{x}.$

7. (a)
$$h \in \text{duas vezes diferenciável para } \forall x \in \mathbb{R}; \ x \neq -2 \text{ e } x \neq 2;$$

$$h'(x) = (2x) \frac{x^2 - 4}{|x^2 - 4|} = \begin{cases} -2x & \text{se } -2 < x < 2 \\ 2x & \text{se } x < -2 \text{ ou } x > 2 \end{cases}$$

$$h''(x) = (2) \frac{x^2 - 4}{|x^2 - 4|} = \begin{cases} -2 & \text{se } -2 < x < 2 \\ 2 & \text{se } x < -2 \text{ ou } x > 2 \end{cases}$$

- (b) $\frac{dy}{dx} = \left(\cos^2 u^3 6u^3 \sin u^3 \cos u^3\right) \frac{du}{dx}$ 8. (a) $\frac{dy}{du} = \cos^2 u^3 - 6u^3 \sin u^3 \cos u^3$ $\frac{du}{du} = \cos^{2} u - \cos^{2} u \cos^{2}$
- 9. Basta calcular y' e y'', substituir na expressão do lado esquerdo da equação e verificar que se anula.