

Stream Reasoning For Linked Data

M. Balduini, J-P Calbimonte, O. Corcho, D. Dell'Aglio, E. Della Valle, and J.Z. Pan http://streamreasoning.org/sr4ld2013

Wrap-up and conclusions

Emanuele Della Valle emanuele.dellavalle@polimi.it http://emanueledellavalle.org

Share, Remix, Reuse — Legally

- This work is licensed under the Creative Commons Attribution 3.0 Unported License.
- Your are free:
 - to Share to copy, distribute and transmit the work
 - **to Remix** to adapt the work
- Under the following conditions
 - (i) Attribution You must attribute the work by inserting
 - "[source http://streamreasoning.org/sr4ld2013]" at the end of each reused slide
 - a credits slide stating
 - These slides are partially based on "Streaming Reasoning for Linked Data 2013" by M. Balduini, J-P Calbimonte, O. Corcho, D. Dell'Aglio, E. Della Valle, and J.Z. Pan http://streamreasoning.org/sr4ld2013
- To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/

Agenda

- Revisiting the research challenges
 - Relation with DSMSs and CEPs
 - Reasoning on RDF streams
 - Dealing with incomplete & noisy data
 - Engineering Stream Reasoning Applications
- What's next?
- More on Stream Reasoning at ISWC 2013

Research Challenges

- Relation with DSMSs and CEPs
 - Just as RDF relates to data-base systems?
- Data types and query languages for semantic streams
 - Just RDF and SPARQL but with continuous semantics?
- Reasoning on Streams
 - Theory: formal semantics
 - Efficiency
 - Scalability and approximation
- Dealing with incomplete & noisy data
 - Even more than on the current Web of Data
- Distributed and parallel processing
 - Streams are parallel in nature, data stream sources are distributed, ...
- Engineering Stream Reasoning Applications
 - Development Environment
 - Integration with other technologies
 - Benchmarks as rigorous means for comparison

Relation with DSMSs and CEPs

Achievement

Somehow just as RDF, SPARQL, and OWL relate to data-base systems

DB → Semantic Web	DSMS/CEP → Semantic Web	
Relational data → RDF	Data streams → RDF Streams	
SQL → SPARQL	CQL/EPL/ → C-SPARQL/EP-SPARQL/	
Schema → OWL	Schema → OWL	

- But with some differences
 - Queries are registered → opportunity for query optimizations
 - Many application requires a network of queries → opportunity for inter-query optimizations

Issues

- It is time to bring Stream Reasoning to the Web
 - Volatile URIs
 - Serialization of RDF streams
 - Protocols: HTTP, Web sockets

Data types for semantic streams - Achievements

- RDF streams introduced as new data type in the Semantic Web and Linked Data research
- W3C RDF stream processor **community group started** to jointly work out a recommendation in 2014
 - http://www.w3.org/community/rsp/

Data types for semantic streams - Issues

- Multiple notions of RDF stream proposed
 - Ordered sequence (implicit timestamp)
 - One timestamp per triple (point in time semantics)
 - Two timestamps per triple (interval base semantics)
- Comparison between existing approaches

System	Data item	Time model	# of timestamps
INSTANS	triple	Implicit	0
C-SPARQL	triple	Point in time	1
SPARQL _{stream}	triple	Point in time	1
CQELS	triple	Point in time	1
Sparkwave	triple	Point in time	1
Streaming Linked Data	RDF graph	Point in time	1
ETALIS	triple	Interval	2

 More investigation is required to agree on an RDF stream model

- Languages for continuous querying of and event processing on RDF streams proposed
- Window base selection outperforms filter base selection
- Dynamic optimization of query plans and incremental evaluation is possible
- Multiple RDF stream processor **prototypes** implemented and deployed
- W3C RDF stream processor **community group started** to jointly work out a recommendation in 2014
 - http://www.w3.org/community/rsp/

Revisiting the research challenges Query languages for semantic streams - Issues

- Different syntax for S2R operator
- Semantics of query languages is similar, but not identical
- Lack of R2S operator in some cases
- Different support for time-aware operators

Revisiting the research challenges Query languages for semantic streams - Issues

Comparison between existing approaches

System	S2R	R2R	Time-aware	R2S
INSTANS	Based on time events	SPARQL update	Based on time events	Ins only
C-SPARQL Engine	Logical and triple-based	SPARQL 1.1 query	timestamp function	Batch only
SPARQL _{stream}	Logical and triple-based	SPARQL 1.1 query	no	Ins, batch, del
CQELS	Logical and triple-based	SPARQL 1.1 query	no	Ins only
Sparkwave	Logical	SPARQL 1.0	no	Ins only
Streaming Linked Data	Logical and graph-based	SPARQL 1.1	no	Batch only
ETALIS	no	SPARQL 1.0	SEQ, PAR, AND, OR, DURING, STARTS, EQUALS, NOT, MEETS, FINISHES	Ins only

Is it time to converge on a standard?

Revisiting the research challenges Query languages for semantic streams - Issues

The existing engines

- adopts different architectural choices and it is still unclear when each choice is best
 - C-SPARQL, ETALIS, SPARQL_{stream} are wrappers for existing systems thus they are more reliable and maintainable
 - CQELS, Streaming Linked Data, INSTANS, Sparkwave are native implementations, thus they are more efficient and offer optimizations not possible in the other system
- They have different operational semantics
 - for more information check out the ISWC 2013 evaluation track for "On Correctness in RDF stream processor benchmarking" by Daniele Dell'Aglio, Jean-Paul Calbimonte, Marco Balduini, Oscar Corcho and Emanuele Della Valle

Reasoning on Streams - Achievements

- Stream Reasoning research field is getting momentum
- Efficient continuous reasoning algorithm on RDF streams for RDFS, RDFS++, EL++, Answer Set Programming were proposed
- Multiple Stream Reasoning proofs of concept were implemented

Reasoning on Streams - Issues

Issues

- Theory still largely based on one-time semantics
 - Continuous reasoning for the following topics requires more investigations
 - Continuous conjuctive queries under OWL2QL entailment regime
 - Union of Continuous conjuctive queries under OWL2QL entailment regime
 - Continuous queries including negation (in all its possible forms)
 - Continuous recursive querying under expressive entailment regimes
 - Modelling in the ontology aggregates and functions
 - Logic based time-management
 - More expressive specification, e.g., calendar algebra
 - Windows that logically resize at runtime
- Lack of prototypes that go beyond proof of concept
- Explore more reasoning form beyond Q/A

Dealing with incomplete & noisy data

- Data streams are incomplete and noisy!
- Achievements
 - Reasoning can help dealing with incompleteness
 - Initial works on inductive stream reasoning explored relation learning as a way to cope with those problematic aspects
- Issues
 - More research required!

Distributed and parallel processing

- Data streams are parallel and distributed in nature!
- Achievements
 - Proof of concept implemented on S4 and Storm
- Issues
 - More research required!

Engineering Stream Reasoning Applications

- Achievements
 - Deployments for
 - semantic sensor networks
 - social media analytics
 - City Data Fusion
 - Multiple benchmarks proposed
- Issues
 - It is still unclear when and where it is convenient to adopt Stream Reasoning solutions
 - Benchmarks too focused on throughput; correctness and memory allocation cost, too

Data types and query languages for semantic streams

 Notion of RDF stream 	-	•)
--	---	-----

- Languages for continuous querying
 :-)
- Prototypes:-)
- Standardization :-)

Reasoning on RDF streams

- Theory :-
- Algorithms :-)
- Prototypes:-(

Dealing with incomplete & noisy data

- Theory :-
- Algorithms :-
- Prototypes:-(

Engineering Stream Reasoning Applications

- Deployments
- Benchmarks
 :-

What's next? order matters!

Observation: order reflects recency, relevance, trustability ...

	Combinations	Continuous top-k Q/A	Order-aware reasoning
Relevance Trustability, et		Top-k Q/A	Top-k Reasoning
Types of	Recency	DSMS/CEP	Stream reasoning
Indexes		Traditional solutions	Scalable reasoning
002		No	Yes
	Semantic Technologies		

Emanuele Della Valle, Stefan Schlobach, Markus Krötzsch, Alessandro Bozzon, Stefano Ceri, lan Horrocks: **Order matters! Harnessing a world of orderings for reasoning over massive data**. Semantic Web 4(2): 219-231 (2013)

More on Stream Reasoning at ISWC 2013

- Tuesday Afternoon OrdRing 2013
 - 2nd International Workshop on Ordering and Reasoning
 - Open Door Meeting of the W3C RDF Stream Processing Community Group
- Wednesday Evening Poster session
 - M. Balduini et al. A Restful Interface for RDF Stream Processors
 - L. Fischer et al. *Network-Aware Workload Scheduling for Scalable Linked Data Stream Processing*
- Thursday 11:00-12:40 Track on Streams
 - M. Balduini et al. Social listening of City Scale Events using the Streaming Linked Data Framework
 - D. Le Phuoc et al. Elastic and scalable processing of Linked Stream Data in the Cloud
 - S. Tallevi-Diotallevi et al. Real-time Urban Monitoring in Dublin using Semantic and Stream Technologies
 - D. Dell'Aglio et al. In Correctness in RDF stream processor benchmarking
 - D. Gerber et al. Real-time RDF extraction from unstructured data streams

Stream Reasoning For Linked Data

M. Balduini, J-P Calbimonte, O. Corcho, D. Dell'Aglio, E. Della Valle, and J.Z. Pan http://streamreasoning.org/sr4ld2013

Wrap-up and conclusions

Emanuele Della Valle emanuele.dellavalle@polimi.it http://emanueledellavalle.org