ANÁLISE DE VALOR

Susana Nicola ISEP Instituto Superior de Engenharia do Porto INESC-TEC

METHODS

Susana Nicola ISEP Instituto Superior de Engenharia do Porto GECAD Knowledge Engineering and Decision Support Research Center

Métodos analíticos de tratamento da informação

- Teoria dos conjuntos aproximativos
 - TCA (SLOWINSKI et al., 1995, 1996)
- Teoria dos conjuntos nebulosos (Zadeh) Fuzzy Set Theory
- Teoria dos jogos
- Apoio Multicritério Multi-criteria decision analysis:
 - > AHP (Analytic hierarchy process)
 - MACBETH (Measuring attractiveness by a categorical based evaluation technique)
 - PROMETEE (Preference ranking organization method for enrichment evaluations)
 - ELECTRE (Elimination et choix traduisant la réalité)

MÉTODO DE ANÁLISE HIERARQUICA

Susana Nicola ISEP Instituto Superior de Engenharia do Porto INESC-TEC

Multi-criteria decision analysis Métodos Multicritério

- Um método de decisão multicritério recorre a técnicas numéricas que auxiliam os decisores a escolher uma opção de um conjunto discreto de alternativas. Este processo é efetuado com base no cruzamento das alternativas com os critérios existentes.
- Os métodos de apoio à decisão multicritério (AMD) permite a priorização de alternativas numa situação de critérios conflituosos, procurando satisfazer as restrições, com objectivos conflituantes, ou seja, uma solução de compromisso. Assim sendo, o AMD pode fornecer métodos para o apoio à negociação e/ou decisão em grupo (Buchanan & Gardiner, 2003).

- ➤ Um dos principais métodos desenvolvidos no ambiente das Decisões Multicritério Discretas é o Método de Análise Hierárquica (AHP-*Analytic Hierarchy Process*), criado pelo professor Thoma L. Saaty em 1980.
- Este método permite o uso de critérios qualitativos bem como quantitativos no processo de avaliação.
- A idéia principal deste método é dividir o problema de decisão em níveis hierárquicos, facilitando, assim, sua compreensão e avaliação.

Método Análise Hierárquica (AHP)-Versões

- Método AHP Clássico.
- Método AHP Multiplicativo (Lootsma)
- Método AHP Referenciado (Watson e Freeling)
- Método AHP B-G (*Belton e Gear*)
- Método FUZZY AHP

Divisão hierarquica

Matriz de comparação par a par

$$A = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} 1 & a_{12} & \cdots & a_{1n} \\ 1/a_{12} & 1 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 1/a_{1n} & 1/a_{2n} & \cdots & 1 \end{bmatrix} \quad i = 1, 2, \dots, n; \quad j = 1, 2, \dots, n$$

Os elementos a_{ij} indicam o julgamento do par de critérios (C_i, C_j) e α o valor da intensidade de importância. Saaty (1991) definiu as seguintes regras para cada elemento a_{ij} da matriz:

- Se $a_{ij}=\alpha$, então $a_{ij}=\frac{1}{\alpha}$, $\alpha\neq 0$
- Se a C_i se atribui igual importância relativa a C_j , então $a_{ij}=1$, $a_{ji}=1$ e $a_{ii}=1$ \forall_i .

Matriz normalizada

Para cada entrada a_{ij} , calcula-se a matriz normalizada. O cálculo compreende o somatório dos elementos de cada coluna e a divisão de cada coluna pelo respetivo somatório. A matriz que resulta do processo é denominada de matriz normalizada, a qual é definida da seguinte forma:

$$A' = \left[a'_{ij}\right] = \frac{a_{ij}}{\sum_{k=1}^{n} a_{ik}} \text{ para } 1 \le i \le n \text{ e } 1 \le j \le n$$

Matriz do vetor prioridades – Cálculo das prioridades globais

O peso composto é dado por:

$$C = [c_d]$$
, para $1 \le d \le n$ onde $c_d = \sum_{t=1}^{nt} W_t \times \prod_{l=1}^{nl-1} W_l$

Onde, nt é o número de nodos terminal na hierarquia para a alternativa d , nl o número

de níveis da hierarquia e t denota o nó "folha" na hierarquia correspondente à alternativa d e a

sequência $t, nl-1, nl-2, \ldots$, denota o caminho na hierarquia desde a alternativa d até a raiz.

Indice de consistência

$$IC = \frac{\lambda_{max} - n}{n - 1}$$

n é a ordem da matriz e λ_{max} é o maior valor próprio da matriz de comparação par a par.

Rácio de consistência

$$RC = \frac{IC}{IR}$$

IC é o Índice de Consistência e IR é o Índice Aleatório.

TABELA - Valores de IR para matrizes quadradas

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0.00	0.00	0.58	0.90	1.12	1.24	1.32	1.41	1.45	1.49	1.51	1.48	1.56	1.57	1.59

Problem

Que tipo de carro devo comprar?

Factors/Critera

- Quais os fatores a considerar ?
 - Estilo
 - Confiabilidade
 - Consumo

Decision

Making Process

- Como fazer a decisão?
- Comparação par a par:
 - Estilo versus Confiabilidade
 - Confiabilidade versus Consumo
 - Estilo versus Consumo

Alternatives

- Que alternativas devo escolher?
 - Baseado nos *inputs* do utilizador, os resultados são baseados de acordo com a importância dada a cada critério relativamente a outro critério. A ordem de preferência é criada e depois analisada de acordo com cada alternativa: Car1; Car2; Car3; Car4.

È importante que na estruturação dos critérios exista uma homogeneidade entre os critérios do mesmo nível, ou seja, os critérios devem possuir o mesmo nível de importância, possibilitando que sejam comparados entre si.

- Fase 1 Construção da árvore hierarquica de decisão : Definir o problema e estruturar em diagrama hierarquico. Esta fase consiste na decomposição do problema/decisão em uma hierarquia, composta, no mínimo, de um objetivo, critérios e alternativas.
- Fase 2: Comparação das alternativas e critérios. A segunda fase consiste em estabelecer prioridades entre os elementos para cada nível da hierarquia, por meio de uma *matriz de comparação*.
 - O primeiro ponto a ser considerado é a determinação de uma escala de valores para comparação, que não deve exceder um total de nove fatores, a fim de se manter a matriz consistente.
 - Assim, Saaty definiu uma *Escala Fundamental*.

Nivel de importância	Definição	Explicação
1	Igual importânica	As duas atividades contribuem igualmente para o objetivo
3	Fraca importância	A experiência e o julgamento favorecem levemente uma atividade em relação à outra
5	Forte importância	A experiência e o julgamento favorecem fortemente uma atividade em relação à outra
7	Muito forte importância	Uma atividade é muito fortemente favorecida em relação a outra
9	Importância absoluta	A evidência favorece uma atividade em relação a outra com o mais alto grau de certeza
2,4,6,8	Valores intermediários	Quando se procura uma condição de compromisso entre duas definições

Escala fundamental - Níveis de importância de comparações (Satty, 1991)

Fase 3 - Prioridade relativa de cada critério :

Para obter a prioridade relativa de cada critério é necessário:

- a) <u>Prioridades das alternativas</u> relativamente a cada critério; Peso de cada critério relativamente à meta/ objectivo
 - b) <u>Normalizar os valores da matriz de comparações</u> (matriz A) tem por objetivo igualar todos os critérios a uma mesma unidade, para isto cada valor da matriz é dividido pelo total da sua respectiva coluna.
 - c) <u>Obter o vetor de prioridades</u> tem por objetivo identificar a ordem de importância de cada critério, para isto é calculado a média aritmética dos valores de cada linha da matriz normalizada obtida no item anterior.

Fase 4 - Avaliar a consistência das prioridades relativas :

- A próxima etapa é calcular a Razão de Consistência (RC) para medir o quanto os julgamentos foram consistentes em relação a grandes amostras de juízos completamente aleatórios.
- As avaliações do método AHP são baseadas no pressuposto de que o decisor é racional, isto é, se A é preferido a B e B é preferível a C, então A é preferido a C.

Fase 4 - Avaliar a consistência das prioridades relativas :

- Se o RC é superior a 0,1 os julgamentos não são confiáveis porque estão demasiado perto para o conforto de aleatoriedade, neste caso os resultados obtidos não apresentam valores consistentes.
- Para calcular a Razão de Consistência (RC) é necessário primeiro obter o valor de λ_{max} que representa o maior valor próprio da matriz A, obtido a partir da seguinte equação: Ax = λ_{max} x

Fase 4 - Avaliar a consistência das prioridades relativas (continuação):

- Uma vez calculado λ_{max} , deve-se calcular o Índice de Consistência (IC) para logo calcular a Razão de Consistência (RC).

$$IC = \frac{\lambda_{max} - n}{n - 1}$$

Fase 4 - Avaliar a consistência das prioridades relativas (continuação):

- A Razão de Consistência (RC) é obtida pela fórmula:

$$RC = \frac{IC}{IR}$$

em que IR Índice aleatório referente a um grande número de comparações par a par efetuadas. Este é um *índice aleatório* calculado para matrizes quadradas de ordem *n* pelo Laboratório Nacional de Oak Ridge, nos EUA. A seguinte Tabela define os valores de IR em função do número de critérios:

Fase 4 - Avaliar a consistência das prioridades relativas (continuação):

TABELA - Valores de IR para matrizes quadradas de ordem n

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0.00	0.00	0.58	0.90	1.12	1.24	1.32	1.41	1.45	1.49	1.51	1.48	1.56	1.57	1.59

- ➤ Cada um dos números desta tabela é a média de ICs derivada de uma amostra de matrizes recíprocas selecionadas aleatoriamente usando a escala AHP.
- ➤ Um RC de 10% ou menos implica que o ajuste é pequeno em comparação com os valores atuais das entradas.
- ➤ Um RC tão alto como, digamos, 90% significaria que os julgamentos são praticamente emparelhados aleatoriamente e são completamente não confiáveis!

➤ Fase 5 - Construção da matriz de comparação paritária para cada critério, considerando cada uma das alternativas selecionadas :

Todos os procedimentos para a construção da matriz de comparação e para a determinação da prioridade relativa de cada critério devem ser feitos novamente, observando agora a importância relativa de cada uma das alternativas que compõem a estrutura hierárquica do problema em questão.

- Fase 6 Obter a prioridade composta para as alternativas :
 - Nesta última etapa, obtemos as prioridades compostas das alternativas, multiplicando os valores anteriores e os das prioridades relativas, obtidos no início do método, ou seja:

Fase 7 - Escolha da alternativa

AHP (Analytic hierarchy process) Exemplo

O Gonçalo está numa fase de escolha para comprar um novo carro. Após pesquisar nas lojas restaram 4 marcas de carro e três critérios de escolha.

Objetivo: Comprar um carro

Critérios: Estilo, Confiabilidade, Consumo

Alternativas: Carro 1, Carro 2, Carro 3, Carro 4

Fase 1: Construção da àrvore hierarquica de decisão

Fase 2: Comparação entre os elementos da hierarquia-

Considerando os 3 critérios da estrutura hierárquica (exemplo) foi desenvolvida a seguinte matriz de comparação para a par quadrada.

	Estilo	Confiabilidade	Consumo
Estilo	1	1/2	3
Confiabilidade	2	1	4
Consumo	1/3	1/4	1

O fator Confiabilidade é ligeiramente importante ao fator Estilo

Podemos escrever os valores desta tabela em forma de matriz:

$$A = \begin{bmatrix} 1 & \frac{1}{2} & 3 \\ 2 & 1 & 4 \\ \frac{1}{3} & \frac{1}{4} & 1 \end{bmatrix}$$

Fase 3: Prioridade relativa de cada critério

Normalizar os valores da matriz de comparações (matriz A) – tem por objetivo igualar todos os critérios a uma mesma unidade, para isto cada valor da matriz é dividido pelo total da sua respectiva coluna.

Matriz de Comparação dos critérios do Segundo Nível							
	Estilo	Consumo					
Estilo	1	1/2	3				
Confiabilidade	2	1	4				
Consumo	1/3	1/4	1				
Soma	10/3	7/4	8				

Matriz Normalizada dos critérios do Segundo Nível							
	Estilo Confiabilidade Consumo						
Estilo	3/10	2/7	3/8				
Confiabilidade	3/5	4/7	1/2				
Consumo	umo 1/10 1/7 1/8						

Fase 3: Prioridade relativa de cada critério

<u>Obter o vetor de prioridades</u> – tem por objetivo identificar a ordem de importância de cada critério, para isto é calculado a média aritmética dos valores de cada linha da matriz normalizada obtida no item anterior.

Matriz Normalizada dos critérios do Segundo Nível								
	Estilo	Confiabilidade	Consumo	Prioridade Relativa				
Estilo	3/10	2/7	3/8	0,3202				
Confiabilidade	3/5	4/7	1/2	0,5571				
Consumo	1/10	1/7	1/8	0,1226				

Vetor próprio

A partir dos resultados obtidos, o critério Confiabilidade aparece em primeiro lugar, seguido de Estilo e Consumo.

Fase 3: Prioridade relativa de cada critério – escrevendo o problema sob a forma de matrizes

Matriz de comparação dos critérios

Peso dos critérios

Estilo .32 Confiabilidade .56 Consumo .12

Fase 4: Avaliar a consistência das prioridades relativas

A próxima etapa é calcular a Razão de Consistência (RC) para medir o quanto os julgamentos foram consistentes em relação a grandes amostras de juízos completamente aleatórios.

λmax=average{0.96/0.32, 1.68/0.56, 0.37/0.12}=3.02 Valor próprio

O Indice de consistência IC é:

 $IC=(\lambda max-n)/(n-1)=(3.02-3)/(3-1)=0.015$

Fase 4: Avaliar a consistência das prioridades relativas

De acordo com a tabela

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0.00	0.00	0.58	0.90	1.12	1.24	1.32	1.41	1.45	1.49	1.51	1.48	1.56	1.57	1.59

No exemplo dado: RC=IC/0.58=0.015/0.58=0.02

0.02<0.1, podemos concluir que os valores das prioridades relativas do exemplo utilizado estão consistentes!

Critério - Estilo

	car1	car2	car3	car4
car1	1	1/4	4	1/6
car2	4	1	4	1/4
car3	1/4	1/4	1	$^{1}/_{5}$
car4	6	4	5	1

Vetor prioridade

0.13	_
0.24	
0.07	
0.56	_

Critério - Confiabilidade

	car1	car2	car3	car4
car1	1	2	5	1
	$^{1}/_{2}$	1	4	$^{1}/_{4}$
car2				. 1
car3	$^{1}/_{5}$	1/3	1	1/4
car4	1	1/2	4	1

Vetor prioridade

		_
	0.38	
	0.29	
	0.07	
	0.26	
_		_

Critério - Consumo

	Km/h	<u>Normalizado</u>
car1	34	.30
car2	27	.24
car3	24	.21
car4	28	.25

Fase 6: Obter a prioridade composta para as alternativas

Fase 7: Escolha da alternativa

$$\begin{bmatrix} .13 & .38 & .30 \\ .24 & .29 & .24 \\ .07 & .07 & .21 \\ .56 & .26 & .25 \end{bmatrix} \times \begin{bmatrix} .32 \\ .56 \\ .12 \end{bmatrix} = \begin{bmatrix} .29 \\ .27 \\ .08 \\ .35 \end{bmatrix}$$

A alternativa "Car4" aparece como a mais indicada para comprar um bom carro, em função dos critérios definidos e das suas respectivas importâncias.

Exercício

SEMPRANDAR – um exemplo

A SEMPRANDAR está em fase de escolha dum novo local para expansão das suas actividades.

Após um estudo inicial restaram três locais possíveis (L1, L2 e L3) e quatro critérios a ter em conta para a escolha:

- Preço da Propriedade
- Distância aos Fornecedores
- Qualidade dos Técnicos
- Custo do Trabalho.

Exercício

Exercício

Matriz de comparação

Comparações (par a par) dos critérios.

Critérios	Preço Prop.	Distância	Qual. Técnicos	Custo Trabalho
Preço Prop.	1	1/8	1/2	3
Distância	8	1	5	7
Qual. Técnicos	2	1/5	1	3
Custo Trabalho	1/3	1/7	1/3	1

Preço Prop.	L1	L2	L3
L1	1	4	2
L2	1/4	1	1/6
L3	1/2	6	1

Distância	L1	L2	L3
L1	1	5	1/4
L2	1/5	1	1/9
L3	4	9	1

Qual. Técnicos	L1	L2	L3
L1	1	1/4	1
L2	4	1	7
L3	1	1/7	1

Custo Trabalho	L1	L2	L3
L1	1	1/4	2
L2	4	1	5
L3	1/2	1/5	1

