

无线 DAP 调试下载器

用户手册

V2.0

关注塔克创新微信公众号, 获取更新资讯

烟台塔克电子科技有限公司

版权声明

本手册版权归属塔克创新所有,并保留一切权力,受法律保护。非经(书面形式)同意,任何单位及个人不得擅自摘录或修改本手册部分或全部内容,违者我们将追究其法律责任。

版本说明

版本	日期	内容说明
V1.0	2023/10/10	第一次发布
V2.0	2024/08/10	版本更新,适配新的硬件

塔克媒体

塔克官网	www.xtark.cn
淘宝店铺	https://xtark.taobao.com
塔克哔哩	https://space.bilibili.com/511052131
销售邮箱	sales@xtark.cn

本手册介绍 OpenCTR 控制器配套的 DAP 无线调试下载器的使用。无线调试器近期进行了升级,主要修改内容如下。

- 1、外观全新升级,更酷炫更耐用。上下保护板升级为更坚固的黑色 PCB 材质,镂空灯光效果,外观更酷炫,具有清晰的丝印标识,使用更方便。
- 2、新款由原来的 ESP32-S3 芯片升级为乐鑫官方 ESP32-S3 模组,无线性能指标更好,可靠性更好。
 - 3、优化按键设计,改为底部直立按键,修复旧款侧边按键用力过大容易损坏的问题。
 - 4、新旧两款无线调试器通用,可以互相作为发射或接收端,无缝切换。

1. 产品说明

1.1. 产品介绍

塔克 DAP 高速无线调试器是基于 cmsis-dap 的无线高速调试器,即插即用,速度快,支持虚拟串口。可对 30m 范围内的目标进行程序烧录和调试,在某些有线仿真器不便调试的场景,如目标始终处于移动状态(飞行器、小车、机器人等),目标已经组装成产品形态,并且已安装在墙上或者高处等。此时使用无线调试器能较好的解决这些场景下调试问题,有效提高研发效率。

无线性能大约是常见的有线 FS+HID 的 DAP 的两倍,甚至接近有线 STLink V2。通信距离可以达到 30 米以上。除了无线模式外,也可以调到有线模式。

一套无线调试器分为发送端和接收端,两端软硬件完全一致,可以通过按键设置模式。 配对之后可以即插即用,无需安装驱动(win10 及以上),与常规 DAP 一样,支持对 ARM 单片机(如 STM32、GD32 等)进行调试,支持 SWD 和 JTAG,支持硬件复位和软件复位,支持虚拟串口。

单个仿真器也可作为有线仿真器使用,下载速度是无线仿真器的两倍,可通过按键设置。

1.2. 产品特点

产品具有如下特点:

- 使用极简,PC 端无需安装额外软件,只需将发射机和接收器分别上电,等待连接成功,即可开始调试。
- ▶ 支持 SWD 协议,典型的基于 ARM Cortex-M 系列芯片均支持 SWD 调试,常见的芯片如 STM32 系列,GD32 系列,ATMEL-SAM 系列,NORDIC-NRF51/52 系列,NXP-LPC 系列等芯片均支持 SWD 调试下载。
- > 支持 JTAG 协议,配合开源调试器 OpenOCD 可支持全球范围内几乎所有 SoC 芯片的调试,如 ARM Cortex-A 系列、DSP、FPGA、MIPS 等,因为 SWD 协议只是 ARM 自己定义的私有协议,而 JTAG 则是国际 IEEE 1149 标准。
- > 支持虚拟串口。
- ▶ 接收机支持向目标板供电(5V、3.3V),以及从目标板取电(5V、3.3V)两种方式进行工作
- ▶ 支持 MDK/IAR/OpenOCD,支持 Windows/Linux/Mac 下进行调试开发
- ▶ 软件基于 CMSIS-DAP 实现,使用 USB HID 协议,无需安装驱动即可下载调试

1.3. 使用场景

传统的移动智能小车、机器人、飞行器调试,需要将机器人拿到开发电脑旁连接调试器进行代码更新。使用特别不方便,尤其是体型较大的机器人。使用无线调试器,再也无需搬动机器人或追着小车跑,远程即可更新代码,并且支持无线串口通信,方便进行小车 Log 打印、数据调试、参数远程设置等操作。性能可以和有线调试器媲美,机器人调试利器。

塔克创新旗下的 ROS 机器人、智能小车、平衡小车等产品,均可配套使用,给用户带来极佳的开发调试体验。

1.4. 接口定义

调试器接口定义如下图所示,电路板上也有清晰的丝印。

2. 使用说明

2.1. 特别说明

重要事情强调,该产品开发环境有一定要求,DMK 版本需要 5.29 以上,IAR 版本需要 8.32 以上,否则不可用。重要事情说三遍!重要事情说三遍!重要事情说三遍!

2.2. 设置说明

仿真器采用有线、无线发射端、无线接收端一体式设计,不同工作模式可通过机身按键调节,并且通过仿真器指示灯颜色支持当前工作模式。使用前请务必观察工作模式是否正确。如果不对,请先设置再使用。仿真器出厂设置,一般默认为有线模式。

STA指示灯可通过颜色显示工作模式

注: 出厂默认为有线模式

- 1、红色代表有线模式(USB)
- 2、蓝色代表无线发射端(Host)
- 3、绿色代表无线接收端(Slave)

2.2.1. 模式设置

长按按键 A, 直到指示灯变为黄色。短按按键 B, 根据指示灯颜色调节为需要的模式。如果需要将配置保存到 Flash 中,即下次上电保持当前配置,则长按按键 A, 直到指示灯变为黄色闪烁,再短按按键 A 退出;如果只是临时使用,不保存配置到 Flash,则直接短按按键 A 退出。

2.2.2. 无线模式对配

首先发射模块按住按键 B 上电,直到指示灯变为紫色再松手。接收模块按住 B 上电,它会在指示灯变紫后,瞬间两个模块分别变为主机(蓝色)和从机(绿色)。这时两端已经自动设置好通信的参数和模式,如果需要可以通过按键进行更改。完成后主机和从机需要重新上电即可使用。

2.2.3. 无线信道设置

在无线模式下,如需改变信道按照如下操作。长按按键 B,直到指示灯变为闪烁状态。此时闪烁颜色和次数,表示当前所属 WiFi 信道,绿色表示 1-5,红色表示 6-10,蓝色表示 11-13 信道。短按按键 B,选择目标信道后,长按按键 A,直到指示灯变为黄色闪烁,再短按按键 A 退出。

主机和从机需要分别设置成一样的信道才可以通信,完成后主机和从机需要重新上电。

2.3. 连接示意图

无线 DAP 调试下载器使用上和有线仿真器一样简单方便,无需使用上位机配置参数也无需安装驱动。无线传输模块使用 WiFi 模块 ESP32,发射功率较高,可有效保证传输速度和信号稳定性,连接框图如下图所示。

2.4. 接线说明

2.4.1. 通用接线说明

无线 DAP 调试下载器支持 JTAG 和 SWD 接口,假若您的调试目标为基于 Cortex-M 系列的 芯片,推荐使用 SWD 接口连接调试。SWD 协议只需要两根信号线 CLK 和 DIO 即可实现调试,在您的目标板上或许标记为 SWCLK 和 SWDIO,亦有可能标记为 TCK 和 TMS(实际上这是因为 SWD 接口复用了 JTAG 接口的引脚),此时您只需连接 GND、CLK、DIO、3.3V 即可实现调试。

2.4.2. OpenCTR 控制器接线说明

塔克 OpenCTR 控制器具有统一的调试接口,支持 SWD 调试、TTL 串口通信。接口定义如下图所示,控制板上具有清晰的引脚丝印标识。

针对 OpenCTR 控制器的使用,塔克制作了专用连接线,无需一根一根插线,使用很方便。无线调试器接收端通过 OpenCTR 控制器供电,采用 5V 供电。引脚连接图如下图所示。

连接效果如下图所示。

特别说明,注意线材有正反,不能插反,否则会造成仿真器损坏。黑色为 GND, 红色为 5V 电源线,插拔时请检查是否正确。

特别说明,如果将无线调试器作为有线调试器连接 OpenCTR 控制器使用时,请务必将红色的 5V 电源线断开,OpenCTR 不能从仿真器取电,否则会因为供电不足导致损坏。

2.5. 无线配置

无线的连接配置不需要安装额外的软件配置,您只需将发射机和接收机上电即可。将发射机和 PC 相接,上电后发射机会蓝灯常亮。将接收机和目标单板相接,目标板上电后发射机会绿灯常亮。此时无线连接建立之后即可按照有线的方式操作使用。

2.6. MDK 配置

将无线 DAP 发射机插入到 PC 的 USB 口中,若一切正常,则在设备管理器中会出现一个虚拟 串口和 USB-HID 设备,如图所示。

仿真器选择

在 Option -> Debug 一栏中选择 CMSIS-DAP Debugger

目标检测

在 Option -> Debug 菜单中点击 Settings 进入配置菜单,如图所示,假若仿真器已经正常连接,则在左侧窗口会识别出仿真器的相关信息,假若使用 SWD 接口进行调试烧录,则请将接口

配置成和左侧红框处一致。假若此时目标单板已经正常连接,则在右侧红框出会识别出目标单板的 相关信息。

复位设置

一般情况下,您或许希望烧写完芯片之后立即开始运行,我们的 DAP 仿真器经过软件定制, 支持复位后立即开始运行,您需要在 Debug 选项中进行配置,如图所示:

程序烧写

对于特定的目标芯片,您需要为其配置特定的烧写算法,以 stm32f10x 系列为例,如图所示:

3. 其它问题

Q: 可支持多少个无线仿真器同时使用, 互相之间是否会产生干扰? 支持, 可以设置不同的通信信道。

Q: 目前支持哪些芯片的调试烧录?

典型的使用场景为对单片机进行编程调试,理论上 Cortex-M 系列的内核均可以使用 DAP 进行烧录调试,典型的芯片如 STM32 全系列的芯片,GD32 全系列,nRF51/52 系列等,由于也支持 JTAG 协议,理论上可支持更多的芯片调试,如 ARM Cortex-A 系列,MIPS、DSP、FPGA等。

Q: 在 linux 下可以进行调试吗?

linux 下可以使用 openocd 配合 DAP 仿真器进行调试(windows 下亦可使用 openocd), openocd 是目前全世界最流行,最强大的开源调试器上位机,由于 openocd 是跨平台的,你也可以在 windows 下使用 openocd,通过编写适当的配置脚本,可以实现对芯片的调试、烧录等操作。由于涉及内容较多,更多说明请读者自行搜索,或者留言咨询。