## Projet 7: Détectez les Bad Buzz grâce au Deep Learning

Xiaofan LEI



## Ordre du jour

- Contexte
- Jeu de données
- Prétraitement du texte
- Trois approches
  - approche "API sur étagère"
  - approche "Modèle sur mesure simple"
  - approche "Modèle sur mesure avancé"
- Déploiement du modèle
- Démonstration
- Conclusion

## Contexte

### Demande initiale

 Préparer un prototype fonctionnel du modèle pour détecter les bad buzz sur les réseaux sociaux suite à la demande de "Air Paradis"

### Scope du projet

- approche "API sur étagère"
- approche "Modèle sur mesure simple"
- approche "Modèle sur mesure avancé"

## Jeu de données

- Open-source Sentiment140:
  - 1,6 million tweets
  - Deux polarités basée sur les emoticons

```
df_tweets.polarity.value_counts()

0 800000
4 800000
Name: polarity, dtype: int64
```

Jeu de données d'entrainement : 1120 tweets (et 480 pour le test)

```
df_tweet.polarity.value_counts()

0 811
4 789
Name: polarity, dtype: int64

training size: 1120
testing size: 480
```

## Pre-traitement du texte

Dans le cadre du projet, chaque tweet est analysé indépendamment en suivant les étapes ci-dessous:

- Suppression des mots non informatifs
  - Suppression des hashtags, liens, mails, chiffres, ponctuations
- Mettre toutes les lettres en minuscule
- Corriger les fautes d'orthographe
- Lemmatisation / stemmisation

## Autres pistes pour améliorer la performance :

- La mise en relation avec l'auteur
- L'association avec des évènements
- Etiquetage des tweets en « initial » ou « réponse »

# O API sur étagère

## Azure cognitives service

### Résultat de requête

| 0    | negative | 0.0  | 0.0  | 1.0  |
|------|----------|------|------|------|
| 1    | negative | 0.0  | 0.0  | 1.0  |
| 2    | neutral  | 0.04 | 0.92 | 0.04 |
| 3    | neutral  | 0.08 | 0.82 | 0.1  |
| 4    | neutral  | 0.02 | 0.97 | 0.01 |
|      |          |      |      |      |
| 1595 | negative | 0.44 | 0.02 | 0.54 |
| 1596 | positive | 1.0  | 0.0  | 0.0  |
| 1597 | negative | 0.0  | 0.01 | 0.99 |
| 1598 | positive | 0.54 | 0.36 | 0.1  |
| 1599 | negative | 0.02 | 0.0  | 0.98 |
|      |          |      |      |      |

sentiment positive\_score neutral\_score negative\_score



positive negative 326 158 mixed

1600 rows × 4 columns

Gratuit pour moins de 5000 d'enregistrement de texte par mois

De 0.0 à 0.5 millions d'enregistrements de texte - 0,8998 € par

Enregistrements de texte 10.0M+ - 0,2250 € par

1 000 enregistrements texte

#### **Tarification**



### Un exemple





## Modèles sur mesure simple

## Avec Jupyter notebook





## Avec Azure Designer



## Avec Azure automated ML

| Algorithm name                           | Explained Accuracy ↓ |                                                  | Sampling Submitted time |                                                    | Duration                 | Hyperparameter                                                                    |  |
|------------------------------------------|----------------------|--------------------------------------------------|-------------------------|----------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------|--|
| MaxAbsScaler, ExtremeRandomTrees         | View explanation     | 0.70313                                          | 100.00 %                | 4 mars 2022 12:38                                  | 23s                      | bootstrap : true   class_weight : ba                                              |  |
| StandardScalerWrapper, XGBoostClassifier |                      | 0.68750                                          | 100.00 %                | 4 mars 2022 12:46                                  | 1m 5s                    | booster : gbtree colsample_bytre                                                  |  |
| SparseNormalizer, LightGBM               |                      | 0.67969                                          | 100.00 %                | 4 mars 2022 12:38                                  | 23s                      | boosting_type : gbdt                                                              |  |
| MaxAbsScaler, LogisticRegression         |                      | 0.67188                                          | 100.00 %                | 4 mars 2022 12:45                                  | 1m 1s                    | C: 0.2682695795279725   class_w ···                                               |  |
| MaxAbsScaler, LogisticRegression         |                      | 0.66406                                          | 100.00 %                | 4 mars 2022 12:47                                  | 1m 16s                   | C: 109.85411419875572   class_w ···                                               |  |
| MaxAbsScaler, LogisticRegression         | Model performance    | Dataset explorer                                 | Aggregate feature imp   | ortance Individual feature importance              |                          |                                                                                   |  |
| MaxAbsScaler, LogisticRegression         |                      | al datapoint by clicking<br>ataset cohort to exp |                         | atterplot to view its local feature importance val | ues below and feature va | lues in the panel on the right.                                                   |  |
| MaxAbsScaler, LogisticRegression         | Select a a           | ataset conort to exp                             | 7.11 0010               |                                                    |                          |                                                                                   |  |
| MaxAbsScaler, XGBoostClassifier          | ratio 42             |                                                  |                         |                                                    | *                        | D 1 1 1 1 1 1 0 0 5 1 5 1                                                         |  |
|                                          | Pin semboro Code     | •                                                | •                       |                                                    |                          | Probability: 0: 0,54501  tweet: but i dont wanna straighten my hair Row index: 62 |  |
|                                          | tweet                | •                                                | • • • •                 |                                                    |                          | •                                                                                 |  |

0.48

0.52

Probability: 0

0.54



## Modèles sur mesure avancés

## Word embedding



le contexte des mots n'est pas maintenu







Des représentations numériques similaires pour des mots similaires

- word2vec :
  - crée un certain nombre de paires de mots (une variable indépendante et dépendante) en fonction de la taille de la fenêtre
  - minimise la perte de prédiction des mots cibles étant donné les mots de contexte.
- GLOVE:
  - construit une matrice de cooccurrence
  - factorise cette matrice pour obtenir une représentation de dimension inférieure

génère de meilleures incorporations de mots pour les mots rares, ou même des mots non vus

FastText : utilise des caractères n-grammes comme la plus petite unité

## Réseaux de neurones (avant 2018)

### **Apprentissage**

### le Réseau neuronal convolutif (CNN)

particulièrement utilisé afin de classifier des images.



## Les réseaux de neurones récurrents (RNN)

Prend en compte l'ordre des mots,

l'information se perd au fur à mesure (vanishing gradients) ne peut pas paralléliser les calculs.

LSTM (Long Short-Term Memory) : crée une mémoire via un système de portes (gates) et d'états.

GRU (Gated Recurrent Unit): une variante plus simple de LSTM



# Transformers (à partir de 2018)

## Transformers: modèles séquence à séquence (seq2seq)

- Attention : mesure à quel point deux éléments de deux séquences sont liés
- Multi-head Attention: a pour but d'avoir plusieurs « sousespaces de représentation » qui empêchent que la représentation soit totalement biaisée si une couche d'attention l'est.
- Position représentation : stock l'importance de l'ordre des mots dans les vecteurs

### BERT : Bidirectional Encoder Representations from Transformers

- Proposé par Google Al fin 2018,
- Plus performant, plus rapide dans l'apprentissage.
- Une fois pré-entraîné, peut être entraîné en mode incrémental pour spécialiser le modèle rapidement et avec peu de données
- Multi-tâches



From "Attention Is All You Need" by Vaswani et al.

## Résultats de Deep learning

Accuracy global / IoU sur les sentiments négatifs

|      | Keras em | phedding | Fasttest embedding<br>pre-entrainé |         |  |
|------|----------|----------|------------------------------------|---------|--|
|      | accuracy | loU (0)  | accuracy                           | loU (0) |  |
| CNN  | 65%      | 52,91%   | ·                                  | ` ,     |  |
| LSTM |          |          | 71%                                | 52,91%  |  |

<sup>\*</sup>iou = true\_positives / (true\_positives + false\_positives + false\_negatives)

### Comparaison avec BERT

|                    | Accuracy | loU    | Temps<br>d'apprenti<br>ssage |   |
|--------------------|----------|--------|------------------------------|---|
| fasttext +<br>LSTM | 73,33%   | 52,91% | 3min 7s                      | 4 |
| BERT               | 77.81%   | 66.82% | 58min 21s                    |   |

### Fine-tuning

| Accuracy sur<br>la base de<br>validation | Couche d'embedding pre-entrainée | Taux<br>d'apprentissa<br>ge | Taux de<br>dropout | Cellules de<br>LSTM | Nombre<br>d'époque | Taille de<br>batch |
|------------------------------------------|----------------------------------|-----------------------------|--------------------|---------------------|--------------------|--------------------|
| 59,8%                                    | fasttext                         | 0,003                       | 0,3                | 14                  | 12                 | 19                 |
| 58,9%                                    | fasttext                         | 0,001                       | 0,4                | 14                  | 18                 | 12                 |
| 58,0%                                    | fasttext                         | 0,003                       | 0,3                | 15                  | 13                 | 17                 |
| 57,1%                                    | fasttext                         | 0,003                       | 0,3                | 17                  | 12                 | 16                 |
| 56,7%                                    | fasttext                         | 0,001                       | 0,5                | 6                   | 9                  | 8                  |
| 56,7%                                    | fasttext                         | 0,003                       | 0,3                | 14                  | 11                 | 20                 |
| 54,0%                                    | glove                            | 0,003                       | 0,3                | 7                   | 14                 | 30                 |
| 53,1%                                    | fasttext                         | 0,0003                      | 0,3                | 6                   | 17                 | 18                 |
| 53,1%                                    | fasttext                         | 0,001                       | 0,5                | 23                  | 11                 | 32                 |
| 52,7%                                    | fasttext                         | 0,003                       | 0,3                | 14                  | 12                 | 19                 |
| 52,2%                                    | glove                            | 0,003                       | 0,5                | 23                  | 9                  | 17                 |
| 51,8%                                    | glove                            | 0,0003                      | 0,5                | 16                  | 15                 | 30                 |
| 50,9%                                    | fasttext                         | 0,003                       | 0,3                | 18                  | 10                 | 17                 |
| 50,4%                                    | fasttext                         | 0,00003                     | 0,4                | 23                  | 10                 | 26                 |
| 50,4%                                    | fasttext                         | 0,003                       | 0,3                | 12                  | 14                 | 19                 |
| 49,1%                                    | fasttext                         | 0,003                       | 0,4                | 14                  | 14                 | 15                 |
| 48,7%                                    | fasttext                         | 0,0003                      | 0,3                | 7                   | 10                 | 32                 |
| 48,7%                                    | fasttext                         | 0,001                       | 0,4                | 15                  | 19                 | 8                  |
| 46,4%                                    | glove                            | 0,001                       | 0,5                | 11                  | 16                 | 15                 |
| 44,6%                                    | fasttext                         | 0,0001                      | 0,5                | 31                  | 18                 | 23                 |

# Entrainement du modèle BERT sur Azure (Optionnel)

- Connecter au Workspace
- Créer un calcul
  - Standard\_DS12\_v2 4 cores, 28GB RAM, 56GB storage

Memory optimized

Data manipulation and training on medium-sized datasets (1-10GB)

6 cores

\$0.47/hr

- Créer une expérimentation
- Récupérer les données d'entrainement
- Configurer un environnement avec les bibliothèques nécessaires
- Entrainer le modèle
  - Créer un répertoire d'entrainement
  - Créer un script pour exécuter l'entrainement
  - Lancer l'entrainement sur un cluster
  - Enregistrer le modèle après l'entrainement
- Enregistrer le modèle final dans le workspace

## Mise en production

- Etape 1 : Déployer le modèle en tant que web service
  - Créer le script de scoring : script pour interroger le modèle
  - Créer le fichier de configuration, surtout l'environnement dans lequel le script doit être exécuté
  - Déploiement dans ACI (Azure Container Instances)
  - Récupérer le endpoint http
- Etape 2 : Créer un site web avec Streamlit
  - Créer le script pour interagir avec le endpoint
  - Exécuter la commande pour lancer steamlit





## Conclusion

- Approche "API sur étagère"
  - Facile à mettre en place
  - Peu coûteux
  - Ne maitrise pas la technologie dernière
- Approche "Modèle sur mesure simple"
  - Relativement facile à mettre en place
  - La performance n'est pas au rendez-vous
- Approche "Modèle sur mesure avancé"
  - Performant
  - BERT peut répondre à nos besoins mais exigent vis-à-vis de l'architecture matérielle, même pour le fine-tuning et le déploiement

## Merci pour votre attention

- Pour plus de détail, veuillez consulter mon blog :
- https://medium.com/@lei.xiaofan/quick-start-building-sentiment-analysis-models-8c1e78c30b2c