TDM

Jeffrey A. Thompson

Greene Lab, Geisel School of Medicine, Dartmouth College

July 7, 2015

1 Training Distribution Matching

To perform the TDM transformation you need to have a reference dataset and a target dataset. The reference dataset should be from microarray expression experiments and the target dataset should be from RNA-seq. The target dataset will be transformed to have similar characteristics to the reference.

As an example, the TDM package contains some sample data. These data can be loaded as follows:

```
data(meta)
data(tcga)
```

The data are loaded into variables **meta** and **tcga**. Here is a summary of their characteristics:

```
summary(as.vector(as.matrix(meta)))
      Min. 1st Qu.
                    Median
                               Mean 3rd Qu.
                                                Max.
                              8.006
##
     4.776
             6.804
                     7.774
                                      8.966
                                              14.880
summary(as.vector(as.matrix(tcga)))
                                                             Max.
##
        Min.
               1st Qu.
                           Median
                                               3rd Qu.
                                        Mean
                                               1702.0 2066000.0
              184.8
                            613.6
                                      2143.0
```

If we simply scaled the TCGA data to be in the same range, the distribution would be quite different:

```
load_it("scales")
tcga_vec = rescale(as.vector(as.matrix(tcga)), to=c(min(meta), max(meta)))
summary(tcga_vec)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.776 4.776 4.779 4.786 4.784 14.880
```

One might try log transforming the RNA-seq data, but this also is unsatisfactory:

```
load_it("data.table")
tcga_log = log_transform_p1(data.table(cbind(gene=rownames(tcga), tcga)))
summary(as.vector(data.matrix(tcga_log[,2:ncol(tcga_log),with=F])))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 7.537 9.263 8.999 10.730 20.980
```

If we TDM transform the data, the results appear to be much improved:

```
tcga_tdm = tdm_transform(ref_data = data.table(cbind(gene=rownames(meta), meta)),
target_data = data.table(cbind(gene=rownames(tcga), tcga)))
summary(as.vector(data.matrix(tcga_tdm[,2:ncol(tcga_tdm),with=F])))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.776 5.766 7.338 7.448 8.793 14.880
```

Finally, here is a plot comparing the distributions of the reference data, the scaled data, the log transformed data, and the TDM transformed data:

Log, and TDM Transformation to the Reference Distribution META TCGA-SCALED TCGA-LOG TCGA-TDM 0.4 10.4 -

10

Log2 of Expression Value

0

5

Comparison of Scaling,

Figure 1: TDM brings the sample RNA-seq data closest to the reference distribution. Log2 transformation creates a left-skewed distribution that is not typical of microarray data, making comparison between the datasets difficult, while simple scaling creates a right-skewed distribution.

15

20