

درس: مبادئ في المنطق

J عبارة _ دالة عبارية _ المكممات:

PROPOSITION : عبارة

<u>A.</u> تعریف:

كل نص رياضية يحمل معنى ويكون صحيحا وإما خاطئا (أحدهما فقط) يسمى عبارة ونرمز لها ب q أو q أو r. .صحيحة وإما خاطئة فهو . \mathbf{F} و \mathbf{F} . و العبارة. صحيحة نرمز لذلك ب: 1 أو \mathbf{V} . خاطئة نرمز لذلك ب: 0 أو

B. مثال:

من بين الكتابات الآتية .حدد العبارات ثم قيمة حقيقة كل عبارة:

جواب: عبارة V "3 عدد فردى ".

جواب: عبارة F " 8=3+6"

יי n(n+1) من n(n+1) يقبل القسمة على 3" جواب : ليست بعبارة n

جواب: ليست بعبارة " $x \in \mathbb{R}/x+3=0$ "

المجموع عدد زوجي وعدد فردي هو عدد فردي ال

. جدول قيم حقيقة عبارة .

 \mathbf{F} عبارة ما \mathbf{p} قيمة حقيقتها \mathbf{V} و إما

ونلخص ذلك بالجدول التالي. ويسمى جدول قيم حقيقة عبارة.

FORMES PROPOSITIONNELLES: دالة عبارية. 02

A. تعریف:

كل نص رياضي يحتوي على متغير أو عدة متغيرات تنتمي إلى مجموعة Е حيث يصبح عبارة كلما عوضنا المتغير بعنصر من Е يسمى دالة عبارية و نرمز للدالة العبارية بA(x,y) او A(x,y) أو A(x,y) أو P(x,y)

<u>.B</u> مثال

نعتبر الدالتين العبارتين التاليتين:

" $x^2 + 2xy + y^2 = (x + y)^2 : \mathbb{R}$ کی x و y من x : A(x,y)

QUANTIFICATEURS:المكممات.

 \mathbf{E} دالة عبارية معرفة على مجموعة $\mathbf{A}(\mathbf{x})$

- العبارة : " يوجد x من E حيث A(x) " . نرمز لها ب: " $\exists x \in E/A(x)$ " . تقرأ يوجد على الأقل x من E تعني : يوجد Eعلى الأقل عنصر x من E يحقق A(x). الرمز E يسمى المكمم الكونى.
- العبارة : " لكل x من E حيث A(x) " . نرمز لها ب: " $\forall x \in E/A(x)$ " . تقرأ مهما كان x من E لدينا A(x) تعني: أن Eجميع عناصر x من E تحقق A(x). الرمز \forall يسمى المكمم الكوني.

B. ملاحظات:

- نفى المكمم ∀ هو المكمم ∃.
- نفى المكمم ∃ هو المكمم ∀.

درس: مبادئ في المنطق درس رق

- كل دالة عبارية تحتوي على عدة مكممات. تغير ترتيب المكممات
 أـ ليس له أهمية و لا يغير المعنى إذا كانت من نفس النوع.
 - ب له أهمية و يغير المعنى إذا لم تكن من نفس النوع.
 - مه توضيح لذلك:

 $y > x : يوجد و من <math>\mathbb{Z}$ (y = x + 1 هي صحيحة (ليكن x من \mathbb{Z} يوجد y من \mathbb{Z} (يمكن أن نأخذ y = x + 1 هي صحيحة (ليكن x من x وهذا غير وهذا غير x عناصر x من x وهذا غير مكن العبارة : x = y هي صحيحة لأن العنصر x = y في صحيحة لأن العنصر x = y ممكن للعنصر x = y .

عثال 2:

. $F = \{2,4,6\}$ و $E = \{1,3,5\}$:

. y=x+1 و هي تقرئ " لكل عنصر x من E ؛ يمكن أن نجد عنصر x من x=x+1 . و هي تقرئ " لكل عنصر x من x=x+1 . ويمكن تحقق من ذلك بسهولة .

y = x + 1 ولكن العبارة: y = x + 1 وهي تقرئ " يوجد عنصر y = x + 1 وهي تقرئ " يوجد عنصر y = x + 1 وهذا غير ممكن لأي قيمة تعطى لy = x + 1 وهذا غير ممكن لأي قيمة تعطى ل

- ا نكتب ما يلي: (نفس الشيء للرمز ∃)
- $\forall (x,y) \in E \times F : \forall x,y \in E \rightarrow \forall x \in E, \forall y \in E \rightarrow \{x \in E, \forall y \in$
- $. \forall (x,y) \in E \times F$ أو ب $\forall x,y \in E \rightarrow \forall x \in E, \forall x \in E$ -
 - . E من $\mathbf{E}: \mathbf{X} = \mathbf{E}$ من عنصر وحيد $\mathbf{X} = \mathbf{E}$

П. العمليات على العبارات: (الروابط المنطقية) connecteurs

.01 نفي عبارة:

A. تعریف:

 $\mathbf{q}=\mathbf{p}$ او أيضا و $\mathbf{q}=\mathbf{p}$ أو أيضا و $\mathbf{q}=\mathbf{p}$ أو أيضا و $\mathbf{q}=\mathbf{p}$ أو أيضا و $\mathbf{q}=\mathbf{q}$

<u>B</u>. جدول قيم حقيقة نفي عبارة:

p	_ p =] p
1	0
0	1

<u>.C</u> خاصية :

= p = p : عبارة الدينا p

عطف عبارتين: (العطف المنطقي) connjection

A. تعریف:

.02

عطف عبارتين q و q هو العبارة r التي تكون صحيحة إذا و فقط إذا كانت: q و q صحيحتين في نفس الوقت . $r=p\land q$ و ونرمز لها ب: q و q و أيضا r=q أو أيضا r=q .

\mathbf{B}_{\bullet} جدول قيم حقيقة $\mathbf{p} \wedge \mathbf{q}$:

<u>.C</u>

p " 2 عدد زوجي " q " 6 يقبل القسمة على 3 "

عطف العبارتين هو العبارة:

p	q	peq
1	1	1
1	0	0
0	1	0
0	0	0

درس : مبادئ في المنطق درس

p و q " 2 عدد زوجي و 6 يقبل القسمة على 3 "

D. خاصية:

p و p و r ثلاث عبارات:

- العطف تبادلي: p و q = p و q.
- ${f p}$ و ${f q}$ و ${f r}$ و ${f p}$ و ${f q}$

disjonction (الفصل المنطقي) فصل عبارتين : (الفصل المنطقي) .03

<u>A.</u> تعریف:

فصل عبارتين \mathbf{q} و \mathbf{p} هو العبارة \mathbf{r} التي تكون خاطئة فقط إذا كانت \mathbf{p} و \mathbf{p} خاطئتين في نفس الوقت.

 $r = p \lor q$ أو p = r أو أيضا $p \lor q = r$.

<u>B.</u> تمرین

 $\overline{p} \wedge \overline{q}$ ثم $\overline{p \vee q}$ قارن (a

<u>.C</u> خاصية :

p و p و r ثلاث عبارات:

- الفصل تبادلي: p أو q = p أو q
- الفصل تجمعي: (r) أو (q) أو (q) أو (p) أو (p). لهذا يجوز كتابة كلتا العبارتين على الشكل الآتي (q) أو (q) أو (q) الفصل توزعي على العطف:
 - توزیعیة علی الیمین: (r) و (q) و (q) و (q)
 - ${\bf p}$ او ${\bf q}$ و ${\bf p}$ او ${\bf q}$ و ${\bf p}$ او ${\bf p}$ او ${\bf p}$ او ${\bf p}$
 - العطف توزعي على الفصل نعوض مكان (أو) ب (و) ثم مكان (و) ب أو.

<u>.D</u> قانوني موركن – LOIS DE MORGAN -

- $oldsymbol{q}$ نفي العطف: $\overline{\mathbf{q}} \vee \overline{\mathbf{q}} = \overline{\mathbf{p}} \wedge \overline{\mathbf{q}}$ ($\wedge = \mathfrak{e}$) ؛ ($\vee = \mathfrak{e}$
 - p ∨ q = p ∧ q : نفي الفصل

implication : استلزام عبارتین

<u>A.</u> تعریف:

q استلزام عبارتین q ثم q في هذا الترتیب هو العبارة التي يرمز لها ب: q أو q ، و تكون خاطئة فقط عندما تكون q صحیحة و q خاطئة . و نرمز لها كذلك ب: q q .

تقرأ: p تستلزم p أو أيضا: إذا كان p فإن p.

... جدول قیم حقیقة استلزام عبارتین:

<u>C</u> مفردات

نعتبر الاستلزام p ⇒ q.

- العبارة p تسمى معطيات الاستلزام.
- العبارة q تسمى نتيجة الاستلزام.
- . الاستلزام : $\mathbf{p} \Rightarrow \mathbf{q}$ يسمى الاستلزام المباشر .
- الاستلزام: $\mathbf{q} \Rightarrow \mathbf{p}$ يسمى الاستلزام العكسي .

p	q	p⇒q
1	1	1
1	0	0
0	1	1
0	0	1

درس رقم

درس : مبادئ في المنطق

 $\mathbf{p} \Rightarrow \mathbf{q}$ يسمى الاستلزام المضاد للعكس ل $\mathbf{p} \Rightarrow \mathbf{p}$.

.D خاصية :

p و p و r ثلاث عبارات

- $lackbr{0}$ الاستلزام متعدي: $(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$ و $(p \Rightarrow q)$
 - نفي الاستلزام: \overline{q} و $\overline{q} = \overline{p \Rightarrow q} = \overline{q}$.

équivalence:تكافؤ عبارتين.

<u>A</u>. تعریف:

العبارة " $(p \Rightarrow q)$ و $(p \Rightarrow q)$ "تسمى تكافؤ العبارتين $p \Rightarrow q$ هي صحيحة فقط عندما تكون ل $p \Rightarrow q$ و $p \Rightarrow q$ العبارة " $p \Rightarrow q$.

و تقرأ: p تكافئ q. أو أيضا: p تعني q. أو أيضا: p إذا و فقط إذا كان q.

... جدول قیم حقیقة تكافؤ عبارتین هو:

p	q	p⇔q
1	1	1
1	0	0
0	1	0
0	0	1

<u>.C</u> خاصية :

p و p و r ثلاث عبارات

- $(\mathbf{p} \Leftrightarrow \mathbf{q}) = (\mathbf{q} \Leftrightarrow \mathbf{p}) = \mathbf{q}$ التكافؤ تبادلي
- التكافئ متعدي $(p \Leftrightarrow p) \Rightarrow (p \Leftrightarrow p)$ و $(p \Leftrightarrow p)$

lois logiques: القوانين المنطقية

<u>A.</u> تعریف:

كل عبارة مكونة من عدة عبارات مرتبطة فيما بينها بالروابط المنطقية و تكون صحيحة مهما كانت قيم حقيقة هذه العبارات المكونة لها ، فهي تسمى قانون منطقي.

B. أمثلة:

- قانوني موركان
- جميع الخاصيات التي سبق ذكرها في العمليات المنطقية.
 (مثال : التبادلية التجمعية التعدى....)

IV. أنواع الاستدلالات الرياضية: IV.

PAR CONTRE EXEMPLE : الاستدلال بالمثال المضاد.

<u>A.</u> تعریف:

لكي نبرهن على أن العبارة " $\forall x \in E, A(x)$ " خاطئة يكفي أن نبرهن أن نفيها " $\exists x \in E, \overline{A(x)}$ " عبارة صحيحة . و هذا النوع من الاستدلال يسمى الاستدلال بالمثال المضاد.

<u>B</u>. مثال:

درس : مبادئ في المنطق

جواب: نعطى مثال مضاد:

لدينا : $\sqrt{2}$ و $\sqrt{2}$ عددان اللاجذريان ولكن مجموعهما هو $\sqrt{2} + \left(-\sqrt{2}\right) = 0$ ليس بعدد اللاجذري بل هو عدد طبيعي.

خلاصة: مجموع عددين اللاجذريين ليس دائما بعدد اللاجذري.

par équivalence successives: الاستدلال باستعمال التكافؤات المتتالية. 02

A. خاصية:

و \mathbf{p}_1 و \mathbf{p}_2 و \mathbf{p}_3 و \mathbf{p}_3 و \mathbf{p}_4

إذا كانت التكافؤات التالية $q\Leftrightarrow p_1$ ، $p_2\Leftrightarrow p_1$ ، $p_2\Leftrightarrow p_1$ ، و باذا كانت التكافؤات التالية $q\Leftrightarrow p$

B. مثال:

 $a^2 + b^2 = 2ab \Leftrightarrow a = b$ ين: \mathbb{R} من a = b

 $a^2 + b^2 = 2ab \Leftrightarrow a^2 + b^2 - 2ab = 0$ جواب: لدينا:

 $\Leftrightarrow (a-b)^2 = 0$

 $\Leftrightarrow a-b=0$

 $\Leftrightarrow a = b$

 $a^2 + b^2 = 2ab \Leftrightarrow a = b$ خلاصة:

déductif: الاستدلال الاستنتاجي. 03

إذا كان الاستلزام $p \Rightarrow q$ صحيح و p صحيح و أو p كمعطى في تمرين) فإن p صحيحة (نستنتج p). الاستدلال باستعمال هذا النوع يسمى الاستدلال بالاستنتاج.

<u>.B</u>

مثال1:

 $. \forall a,b > 0, \sqrt{ab} \le \frac{a+b}{2}$ -1

. $\forall x > 0, 2\sqrt{x} \le 1 + x$ أن: 2- استنتج أن

 $\forall x, y > 0, 4\sqrt{xy} \le (1+x)(1+y)$ -3

مثال2:

(x-1)(x+3):

 $x \in \mathbb{R} / x^2 + 2|x| - 3 = 0$ حل المعادلة: $x \in \mathbb{R} / x^2 + 2x - 3 = 0$ استنتج حلول المعادلة: $x \in \mathbb{R} / x^2 + 2x - 3 = 0$

contraposé . الاستلزام المضاد للعكس:

A. خاصية:

فانون منطقي.
$$\left(\mathbf{p} \Rightarrow \mathbf{q}\right) \Leftrightarrow \left(\mathbf{q} \Rightarrow \mathbf{p}\right)$$

بدل من أن نبرهن على صحة الاستلزام $p \Rightarrow q$ نبرهن على صحة الاستلزام $q \Rightarrow p = q$ وبالتالي الاستلزام $p \Rightarrow q$ المطلوب اثباته يصبح صحيح. و هذا النوع من الاستدلال (أو البرهان) المستعمل يسمى الاستدلال المضاد للعكس.

درس: مبادئ في المنطق درس رق

الصفحه

<u>.C</u>

$$\forall x,y \in \left]2,+\infty\right[, x \neq y \Rightarrow x^2 - 4x \neq y^2 - 4y\right]$$
بین آن:

جواب:

 $\forall x,y\in]2,+\infty[$, $x^2-4x=y^2-4y\Rightarrow x=y$ نستدل على ذلك باستعمال الاستدلال المضاد للعكس؛ أي نبر هن على:

$$x^2 - 4x = y^2 - 4y$$
 ليكن x و y من $[2,+\infty]$ من $[x^2 - 4x = y^2 - 4y]$

$$x^{2}-4x = y^{2}-4y \Rightarrow x^{2}-4x+4 = y^{2}-4y+4$$

$$\Rightarrow (x-2)^{2} = (y-2)^{2}$$

$$\Rightarrow x-2 = y-2 \text{ if } x-2 = -(y-2)$$

$$\Rightarrow x = y \text{ if } x+y-4 = 0$$

$$\Rightarrow x = y$$

x+y-4>0 فير ممكن لأن: x+y-4>0 و x+y>4 أي x+y-4=0

ومنه: $x^2 - 4x = y^2 - 4y \Rightarrow x = y$. صحیح. و بالتالی الاستلزام

المضاد للعكس له: $y \Rightarrow x^2 - 4x \neq y^2 - 4y$ يصبح صحيح.

 $\forall x,y \in \left] 2,+\infty\right[\ ,x \neq y \Rightarrow x^2-4x \neq y^2-4y$ خلاصة:

PAR DISJONCTION DES CAS :الاستدلال بفصل الحالات.

A. خاصية:

p و p و r ثلاث عبارات.

العبارة $[p\Leftrightarrow q]$ و $[p\Leftrightarrow q]\Leftrightarrow [p\Rightarrow q]$ هي قانون منطقي .

\underline{B} مصطلح:

للاستدلال على $q \Rightarrow q$ ثم $p \Rightarrow q$ ثم $p \Rightarrow q$ ثم $p \Rightarrow q$ ثم النوع من الاستدلال على $q \Rightarrow q$ ثم محيحين هذا النوع من الاستدلال يسمى الاستدلال بفصل الحالات. RAISONNEMENT PAR DISJONCTION DES CAS

 $x \in \mathbb{R}$: |x+1| + 2x = 0 مثال: حل المعادلة: C

 $x\in]-\infty,-1]\cup [-1,+\infty[:|x+1|+2x=0]$ الشكل التالي: $x\in]-\infty,-1]$

حالة 1: [x ∈]-∞,-1]

$$|x+1|+2x=0 \Leftrightarrow -(x+1)+2x=0$$

$$\Leftrightarrow x-1=0$$

$$\Leftrightarrow x = 1 \notin]-\infty, -1]$$

$$S_1 = \emptyset$$
: ومنه

د x ∈ [-1,+∞[:2 حالة 2:

$$S_2 = \left\{-\frac{1}{3}\right\} : 0 \Leftrightarrow |x+1| + 2x = 0 \Leftrightarrow (x+1) + 2x = 0 \Leftrightarrow 3x + 1 = 0 \Leftrightarrow x = -\frac{1}{3} \in [-1, +\infty[$$

$$\mathbf{S} = \mathbf{S}_1 \cup \mathbf{S}_2 = \left\{-\frac{1}{3}\right\}$$
خلاصة: مجموعة حلول المعادلة:

الصفحة

PAR ABSURDE .الاستدلال بالخلف.

<u>A.</u> خاصية:

العبارة $\, \mathbf{p} \Leftarrow \left[egin{array}{c} - \ \mathbf{q} & \mathbf{q} \end{array}
ight) \Leftrightarrow \overline{\mathbf{p}} \, \left] \,$ هي قانون منطقي .

الاستدلال باستعمال هذا النوع من الاستدلال يسمى الاستدلال بالخلف.

<u>B.</u> ملاحظة: لكي نستدل على صحة عبارة

1. p هي إحدى المعطيات. (p هي عبارة صحيحة)

 $\overline{\mathbf{q}}$ نفترض أن: \mathbf{q} خاطئة (أي $\overline{\mathbf{q}}$ صحيحة)

هذا الافتراض يؤدي للحصول على \overline{p} عبارة صحيحة و بالتالي نحصل على \overline{p} و p عبارتين صحيحتين و هذا غير ممكن.

محیح. ومنه q صحیحة. فول ما افترضناه q خاطئة q کان غیر صحیح. ومنه q صحیحة.

<u>.C</u>

s = r + i عدد جذري و i عدد اللاجذري. و r + i عدد

بين أن : 8 مجموع عدد جذري و عدد اللاجذري هو عدد اللاجذري .

جواب:

نفترض أن $_{\mathbf{S}}$ عدد جذري.

لدينا : s-r=i و منه s-r=i وبالتالي s-r=sعدد جذري (لإن فرق عددين جذريين هو عدد جذري) ومنه: s=r+i

ومنه: i عدد اللاجذري و i عدد جذري. وهذا غير ممكن.

إذن ما افترضناه i عدد جذري كان خاطئا و الصحيح هو i عدد اللاجذري.

par récurrence . الاستدلال بالترجع.

A. خاصية:

عدد صحيح طبيعي معلوم. \mathbf{n}_0

. $n \ge n_0$ دالة عبارية لمتغير صحيح طبيعي P(n)

إذا كان:

 $\mathbf{n} = \mathbf{n}_0$ صحيحة من أجل P(n) (1

.(N من $n \geq n_0$ کیل محیح لکل $P(n) \Rightarrow P(n+1)$). (2

 $\mathbf{n} \geq \mathbf{n}_0$ محيحة لكل \mathbf{n} من \mathbf{n} حيث $\mathbf{P}(\mathbf{n})$: فإن

أو أيضا : العبارة " $\forall n \geq n_0 \ \left(n \in \mathbb{N}\right), P(n)$ " صحيحة.

<u>B.</u> ملحوظة:

عند استعمال البرهان بالترجع نتبع المراحل التالية:

<u>.</u> المرحلة 1:

نتحقق بأن: P(n) صحيحة للرتبة الأولى $n=n_0$ أي P(n) صحيحة)

2. المرحلة 2:

نفترض بأن: (P(n صحيحة إلى الرتبة n.

و هذا الافتراض يسمى معطيات الترجع.

3. المرحلة 3:

 $\cdot n+1$ صحيحة للرتبة P(n) نبين أن: العلاقة

درس: مبادئ في المنطق درس رق

 $\mathbf{n}^3 - \mathbf{n}$ مثال: بین بالترجع : لکل \mathbf{n} من \mathbf{N} ؛ \mathbf{S} تقسم \mathbf{C}

 $0^3-0=0$ نتحقق أن : العلاقة صحيحة ل n=0 . لدينا 3 تقسم

نفترض أن العلاقة صحيحة إلى \mathbf{n} أي $\mathbf{3}$ تقسم $\mathbf{n}^3-\mathbf{n}$ هي صحيحة.

 $\left(n+1 \right)^{3} - \left(n+1 \right)$ نبين أن العلاقة صحيحة لn+1 . أي 3 تقسم

المطلوب منك أن تبين ذلك.

$oxed{D}$ الرمز $oxed{\sum}$ و $oxed{D}$.

€ الرمز .

. i نرمز للمجموع التالي : $\sum_{i=1}^{i=n} a_i + a_1 + a_2 + a_3 + \cdots + a_n$ ويمكن استعمال المجموع التالي : نرمز للمجموع التالي المجموع التالي :

n مثال n مثال n مثال n مثال n د د n مثال n د د n مثال n مثال n مثال n د د n

(المجموع متكون من n+1 حدد) . $1+3+5+\cdots+\left(2n+1\right)=\sum_{i=0}^{i=n}\left(2i+1\right):2$ مثال 2

خاصیات:

$$. \sum_{j=0}^{j=n} \left(a_j + b_j \right) = \sum_{j=0}^{j=n} a_j + \sum_{j=0}^{j=n} b_j = \sum_{k=0}^{k=n} a_k + \sum_{k=0}^{k=n} b_k . 1$$

. (لأن المجموع متكون من $a_j = c$ عدد تابة) $\sum_{j=1}^{j=n} (a_j + c) = \sum_{j=1}^{j=n} a_j + nc$.2

لم الرمز ∏.

. i نرمز للجداء التالي : $\prod_{j=1}^{j=n} a_j + a_1 \times a_2 \times a_3 \times \cdots \times a_n$ ويمكن استعمال الجداء التالي نرمز للجداء التالي المن المناسبة في المناسبة في

(الجداء متكون من n عامل) . $2 \times 4 \times 6 \times \cdots \times 2n = \prod_{k=1}^{k=n} 2k$: 1 مثال

(الجداء متكون من n+1 عامل) . $1 \times 3 \times 5 \times \cdots \times \left(2n+1\right) = \prod_{i=1}^{i=n} \left(2i+1\right) : 2$ مثال عامل

خاصیات:

$$\sum_{j=0}^{j=n} \left(a_j + b_j \right) = \prod_{j=0}^{j=n} a_j \times \prod_{j=0}^{j=n} b_j = \prod_{k=0}^{k=n} a_k \times \prod_{k=0}^{k=n} b_k \quad .3$$

. (لأن الجداء متكون من $a_j = c$ عدد تابة) $\prod_{j=1}^{j=n} (ca_j) = c^n \prod_{j=1}^{j=n} a_j$. 4

<u>م</u> تمارین:

ىدى أن .

.
$$\forall n \in \mathbb{N}^* : 1 + 2 + 3 + \dots + n = \sum_{i=1}^{i=n} i = \frac{n(n+1)}{2}$$
 .1

.
$$\forall n \in \mathbb{N}^* : 1^2 + 2^2 + 3^2 + \dots + n^2 = \sum_{i=1}^{i=n} i^2 = \frac{n(n+1)(2n+1)}{6}$$
 .2

.
$$\forall n \in \mathbb{N}^* : 1^3 + 2^3 + 3^3 + \dots + n^3 = \sum_{i=1}^{i=n} i^3 = \left\lceil \frac{n(n+1)}{2} \right\rceil^2$$
 .3