Physics 2: Advanced PHYC10002

Edward Wang

Semester 2, 2025

Contents

1 Electricity 1

1 Electricity

Definition 1. Electrostatics concerns forces between charges at rest.

Theorem 1 (Coulomb's law). The electrostatic force experienced by a charge q_1 in the vicinity of another charge q_2 is equal to

$$\mathbf{F}_1 = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{|\mathbf{r}_{12}|^2} \hat{\mathbf{r}}_{12},$$

where $\varepsilon_0 \approx 8.85 \times 10^{-12} \, \mathrm{C}^2 \, \mathrm{N}^{-1} \, \mathrm{m}^{-2}$.

Definition 2 (Coulomb's constant). Coulomb's law is sometimes written as

$$\mathbf{F}_1 = k_e \frac{q_1 q_2}{|\mathbf{r}_{12}|^2} \hat{\mathbf{r}}_{12},$$

where $k_e \approx 8.99 \times 10^9 \,\mathrm{N}\,\mathrm{m}^2/\mathrm{C}^2$.

Remark 1. The electromagnetic force at a nuclear scale is far stronger than the gravitational force. Consider an electron and a proton about 10^{-10} m apart. Given that $8.99 \times 10^9 \,\mathrm{N}\,\mathrm{m}^2/\mathrm{C}^2$, $G \approx 6.67 \times 10^{-11} \,\mathrm{m}^3\,\mathrm{kg}^{-1}\,\mathrm{s}^{-2}$, $m_e \approx 9.1 \times 10^{-31}\,\mathrm{kg}$, $m_p \approx 1.6 \times 10^{-27}\,\mathrm{kg}$, and $e \approx 1.6 \times 10^{-19}\,\mathrm{C}$, we would have

$$|\mathbf{F}_E| = k_e \frac{q_1 q_2}{r^2} \approx 2.3 \times 10^8 \gg 9.7 \times 10^{-48} \approx G \frac{m_1 m_2}{r^2} = |\mathbf{F}_g|.$$

It should also be noted that the strong nuclear force, the force of the gluons binding the quarks together within nucleons, is far stronger than the electromagnetic force.