МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механики

Направление подготовки: «Прикладная математика и информатика» Магистерская программа: «Вычислительные методы и суперкомпьютерные технологии»

Образовательный курс «Методы глубокого обучения для решения задач компьютерного зрения»

ОТЧЕТ

по лабораторной работе №3

«Разработка сверточной нейронной сети с помощью библиотеки MXNet»

Выполнили:

студенты группы 381603м4 Кривоносов Михаил Герасимов Дмитрий Уваров Денис

Оглавление

Цель работы	3
Задачи	3
Тренировочные и тестовые данные	4
Схемы конфигураций сетей	5
Выволы	8

Цель работы

Построить архитектуру сверточной нейронной которая позволила бы решать практическую задачу с высоким показателем качества.

Задачи

- 1) Разработать нескольких архитектур сверточных нейронных сетей, который обрабатывается библиотекой MXNet.
- 2) Обучить и провести тестирование нейронных сетей

Тренировочные и тестовые данные

Для предварительной обработки данных использован скриптовый язык Python. Реализован скрипт, в котором начальный трехмерный массив данных преобразуется в хронологическую развертку для каждого пикселя с учетом его окрестности (поле 5×5, элементы, выходящие за пределы исходного поля, отождествляем с нулем), тем самым для каждого пикселя получаем трехмерную подматрицу размера 5×5×300. Тем самым получается выборка из 262144 элементов, где в качестве каждого элемента указанная подматрица.

Затем данные случайным образом делятся на обучающую и тестовую выборки в отношении 67% к 33%. Так как полученная выборка достаточно большого объёма, то необходимо уменьшить размер выборки вдвое. Полученные массивы X_{train} , X_{test} , y_{train} , y_{test} передаются в нейронной сети для дальнейшей работы с ними.

Размер исходных данных: трёхмерная матрица размером $512 \times 512 \times 300$.

Схемы конфигураций сетей

Рассмотрим три различных конфигурации сверточной нейронной сети. Коэффициент скорости обучения $\eta=0.007$

1. Первая конфигурация

Рисунок 1. Схема нейронной сети

В качестве функции потерь используется LogisticLoss

Результат обучения:

Рисунок 2. График значения точности в зависимости от номера эпохи

2. Вторая конфигурация.

Рисунок 3. Схема нейронной сети

В качестве функции потерь используется LogisticLoss

Результат обучения:

Рисунок 4. Схема нейронной сети

3. Третья конфигурация.

Рисунок 5. Схема нейронной сети

В качестве функции потерь используется HingeLoss

Результат обучения:

Рисунок 6. График значения точности в зависимости от номера эпохи

Выводы

Применение сверточных нейронных сетей на выбранных входных данных не дало прироста точности, по сравнению с полностью связной нейронной сетью. С ростом числа эпох точность увеличивается.