(7) I trative ideas for experior less experiences / experi

In all that fallows, we will look @ real, this contestions exist.

Suppose we have a matrix
$$A$$
; let's construct
the scalar function $\mathbb{R}^n \to \mathbb{R}$
 $\Gamma(x) = \frac{x^T A x}{x^T x}$ $\Gamma(x)$ is called the
Rayleigh Quotient

If X is an eigenvector with eigenvalue A there $\Gamma(X) = A$.

What happens when x is close to being an eigenvector?

Let's calculate
$$\nabla \Gamma$$

$$\nabla \Gamma = \begin{pmatrix} \frac{\partial r}{\partial x_1} \\ \frac{\partial r}{\partial x_2} \end{pmatrix} \qquad \text{if } x^T = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}$$

$$\frac{\partial \Gamma}{\partial x_1} = \frac{\partial}{\partial x_1} \begin{pmatrix} \frac{\sum_{i=1}^{N} x_i^2 & Q_{ijk} \times x_k}{\sum_{i=1}^{N} x_i^2} \\ \frac{\sum_{i=1}^{N} x_i^2}{\sum_{i=1}^{N} x_i^2} \end{pmatrix}$$

$$= \frac{1}{x^T x} \begin{pmatrix} \sum_{i=1}^{N} a_{ik} \times x_i + \sum_{i=1}^{N} x_i^2 a_{ij}^2 \\ \frac{x^T x_i}{(x^T x_i)^3} \cdot 2x_i \end{pmatrix}$$

$$= \frac{1}{x^T x_i} \begin{pmatrix} \sum_{i=1}^{N} a_{ik} \times x_i + \sum_{i=1}^{N} x_i^2 a_{ij}^2 \\ \frac{x^T x_i}{(x^T x_i)^3} \cdot 2x_i \end{pmatrix}$$

$$= \frac{1}{x^T x} \cdot \left[2 (Ax)i - 2 \frac{x^T Ax}{x^T x} xi \right]$$

$$\nabla r = \frac{2}{X^T X} \left[AX - r(X)X \right]$$

If
$$X$$
 is an eigenvector $AX = \Gamma(X)X = AX$
80 $\nabla \Gamma = 0$

Consepuence

Consider the Taylor expansion of r(x) near the Stationery pt.

$$r(x) - \lambda = r(x) - r(q) = (x-q) - \nabla r |_{q} + O(||x-q||)^{2}$$

If
$$x$$
 is an "estimate" of q then $r(x)$ is a quadratically accurate estimate of the eigenvalue λ .

The Power iteration

of the (unknown) expensectors of A.

$$V^{(0)} = a_1 q_1 + a_2 q_2 + \cdots + a_n q_n$$

(et
$$V^{(i)} = AV^{(0)} = a_i \lambda_i q_i + \dots$$
 and $a_n q_n$

so that
$$V^{(k)} = \alpha_1 \lambda_1^{k} q_1 + \dots + \alpha_n \lambda_n q_n$$

=) if λ_1^{n} is the largest eigenvalue, then $V^{(k)}$ is

gethy closer and doser to ail high

The difference between $V^{(k)}$ and q_i is $O(\left|\frac{\lambda_i}{\lambda_i}\right|^k)$ where λ_i is the second torpool Evalue.

This method would provide a way of getting the evector corresponding to the largest evalue.

Problem. We want all the evalues.

The convergence is story of 2; is not v. large.

@ Invose Theration

The invase electron method care solve both

Idea. Fr any per where per is not an Evalue of A than

- . The Evectors of A are the Evectors of $(A-\mu I)^{-1}$

Proof let $\forall j$ be an Evector of A with Evalue $\forall j$ then $\forall j' = A_j \forall j'$ $(A - \mu I) \forall j' = A_j - \mu \forall j I$ $= (A_j - \mu j) \forall j$

$$\Rightarrow \qquad \underline{V}_{0}^{\prime} = (A - \mu I)^{-1} (\lambda_{0}^{\prime} - \mu_{0}^{\prime}) \underline{V}_{0}^{\prime}$$

$$\Rightarrow \frac{1}{\lambda_i^2 - \mu_i^2} \frac{V_i}{V_i} = \left(A - \mu I\right)^{-1} \frac{V_i}{V_i}$$

Now suppose μ is close to a certain Evalue λ_i than $\frac{1}{\lambda_i^2 - \mu}$ targer than $\frac{1}{\lambda_k^2 - \mu}$ for all other evalues $\lambda_k \neq \lambda_i$.

country the power extration on (A-pet) country the chosen to converge to any vi provided per is chosen chose to 2.j.

The iterations will be fast provided per is v. close to 2;

Combining the Rayleigh quotient method &

Rayleger quotient starting from a vector close to q;

Invose method Starting from aerolive Clos to
Ai trids a better approximation
to 9;

Idea: Combine them!

better
approximate
value of 2;

evector 9;

Rayleigh quotient

Rayleigh quotient iteration algorithm (starting with A in Hescenberg form)

Start with
$$\int V^{(0)} = \alpha$$
 vector with senit norm
$$A^{(0)} = V^{(0)} T A V^{(0)}$$

2 for k=1, ---

Solve
$$(A - A^{(k-1)}I)W = V^{(k-1)}$$
using method desired ceptuivalent to apply $(A - A^{(k-1)}I)^{-1}$
to $V^{(k-1)}$

. Set
$$V^{(k)} = \frac{W}{\|W\|}$$
 and one it as next guess vector

$$A^{(k)} = V^{(k)T}AV^{(k)} \leftarrow \text{next-struft is } V^{(k)}$$

$$R.Q \text{ of vector } V^{(k)}$$

Note

- . The convergence of this appointhm is prenomenally fast.
- The alposition converges to the Elector Closest In derection to 100. To find the others, start with other 1000 on the unit supersharee.
- The appointment is of course much faster if

 A is put in Hessenberg form first; since this assume real & symmetric, It is actually midiaponal
 - Note that E-vectors of H & Eventors of A so if we want the E-vectors of A we need to keep the information on the Hessenberg transformation to transform the E-vectors of H back into the E-vectors of A. In practice, thus is raisely done...