# **Data Mining**

Assignment 2

# **Data Exploration and Preprocessing**

Aya Lotfy Saeed 4

**Dahlia Chehata 27** 

## **Table of contents**

| Dataset investigation                                                                                     | 3          |
|-----------------------------------------------------------------------------------------------------------|------------|
| number of readings and attributes                                                                         | 3          |
| classes                                                                                                   | 3          |
| data description                                                                                          | 4          |
| dataset information                                                                                       | 4          |
| Dataset visualisation                                                                                     | 5          |
| Boxplot                                                                                                   | 5          |
| plots for each class                                                                                      | 6          |
| Data exploration                                                                                          | 8          |
| Pearson's correlation                                                                                     | 8          |
| matrix                                                                                                    | 8          |
| visualisation                                                                                             | 9          |
| covariance matrix                                                                                         | 9          |
| matrix                                                                                                    | 9          |
| visualisation                                                                                             | 10         |
| What is the relation between the covariance matrix of the dataset and the Pears correlation matrix of it? | on's<br>10 |
| Histograms                                                                                                | 11         |
| Histograms for each class                                                                                 | 11         |
| bins 5, 10, 12                                                                                            | 14         |
| Preprocessing                                                                                             | 17         |
| Normalization                                                                                             | 17         |
| Min-max scaler                                                                                            | 17         |
| Z-score normalization                                                                                     | 18         |
| Dimensionality reduction                                                                                  | 19         |
| Feature Projection                                                                                        | 19         |
| Feature selection                                                                                         | 23         |

# **Dataset investigation**

The dataset used is the combination of the files :segmentation.data and segmentation.test

### number of readings and attributes

- the data file consists of 210 instances (rows) and 19 features/attributes (columns)
- the test file consists of 2100 instances (rows) with 19 features/attributes (columns)
- o the merged data consists of 2310 instances (rows) with 20 features (columns)

#### classes

- The class column has no header. We add a name to it and reset the index to be a zero based index
- The different class values are (['BRICKFACE', 'SKY', 'FOLIAGE', 'CEMENT', 'WINDOW', 'PATH', 'GRASS'])
- each unique value in class has 330 instances



### data description

| x - DataFrame |               |                |                |                 |                 |            |          |            |              |               |             | - 0          | X       |
|---------------|---------------|----------------|----------------|-----------------|-----------------|------------|----------|------------|--------------|---------------|-------------|--------------|---------|
| Index         | ION-CENTROID- | ION-CENTROID-F | GION-PIXEL-COU | ORT-LINE-DENSIT | ORT-LINE-DENSIT | VEDGE-MEAN | VEDGE-SD | HEDGE-MEAN | HEDGE-SD     | NTENSITY-MEAN | RAWRED-MEAN | RAWBLUE-MEAN | N ₹AWGF |
| count         | 2310          | 2310           | 2310           | 2310            | 2310            | 2310       | 2310     | 2310       | 2310         | 2310          | 2310        | 2310         | 2310    |
| mean          | 124.914       | 123.417        | 9              | 0.0143338       | 0.0047138       | 1.89394    | 5.70932  | 2.42472    | 8.24369      | 37.0516       | 32.8213     | 44.1879      | 34.14   |
| std           | 72.9565       | 57.4839        | 0              | 0.0401541       | 0.0242343       | 2.69891    | 44.8465  | 3.61008    | 58.8115      | 38.1764       | 35.0368     | 43.5275      | 36.36   |
| min           | 1             | 11             | 9              | 0               | 0               | 0          | 0        | 0          | -1.58946e-08 | 0             | 0           | 0            | 0       |
| 25%           | 62            | 81             | 9              | 0               | 0               | 0.722222   | 0.355555 | 0.77778    | 0.421637     | 7.2963        | 7           | 9.55556      | 6.027   |
| 50%           | 121           | 122            | 9              | 0               | 0               | 1.22222    | 0.833333 | 1.44444    | 0.962963     | 21.5926       | 19.5556     | 27.6667      | 20.33   |
| 75%           | 189           | 172            | 9              | 0               | 0               | 2.16667    | 1.80637  | 2.55556    | 2.18327      | 53.213        | 47.3333     | 64.8889      | 46.5    |
| max           | 254           | 251            | 9              | 0.333333        | 0.222222        | 29.2222    | 991.718  | 44.7222    | 1386.33      | 143.444       | 137.111     | 150.889      | 142.5   |

#### dataset information

```
In [52]: display (dataset.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2310 entries, 0 to 2309
Data columns (total 20 columns):
                          2310 non-null object
class
REGION-CENTROID-COL
                           2310 non-null float64
REGION-CENTROID-ROW 2310 non-null float64
REGION-PIXEL-COUNT 2310 non-null int64
SHORT-LINE-DENSITY-5 2310 non-null float64
SHORT-LINE-DENSITY-2 2310 non-null float64
VEDGE-MEAN
                           2310 non-null float64
VEDGE-SD
                           2310 non-null float64
HEDGE-MEAN
                           2310 non-null float64
                           2310 non-null float64
HEDGE-SD
                           2310 non-null float64
INTENSITY-MEAN
RAWRED-MEAN
                           2310 non-null float64
                          2310 non-null float64
2310 non-null float64
2310 non-null float64
RAWBLUE-MEAN
RAWGREEN-MEAN
EXRED-MEAN
                           2310 non-null float64
EXBLUE-MEAN
EXGREEN-MEAN
                           2310 non-null float64
VALUE-MEAN
                           2310 non-null float64
SATURATION-MEAN
                           2310 non-null float64
HUE-MEAN
                            2310 non-null float64
dtypes: float64(18), int64(1), object(1)
memory usage: 361.0+ KB
None
```

### Dataset visualisation

Boxplot



#### Observations:

- The dataset attributes are different in ranges
- REGION-CENTROID-COL have a normal distribution and no outliers
- REGION-PIXEL-COUNT has a zero standard deviation because it has fixed value
   9. (redundant dimension to be removed).
- SHORT-LINE-DENSITY-5 and SHORT-LINE-DENSITY-2 has a small standard deviation
- VEDGE-MEAN and HEDGE-MEAN have outliers that affects mean and standard deviation.
- HEDGE-SD and VEDGE-SD have very large outliers

#### Conclusion

- The data needs to be normalized
- Outliers need to be removed
- Redundant attributes need to be removed

### plots for each class





# Data exploration

# • Pearson's correlation

matrix

| Index                    | ION-CENTROID-0 | ION-CENTROID-F | GION-PIXEL-COU | ORT-LINE-DENSIT | ORT-LINE-DENSIT | VEDGE-MEAN  | VEDGE-SD    | HEDGE-MEAN | HEDGE-SD     | NTENSITY-MEAN | RAWRED-MEAN | RAWBLUE-MEAN | <b>LAWGR</b> |
|--------------------------|----------------|----------------|----------------|-----------------|-----------------|-------------|-------------|------------|--------------|---------------|-------------|--------------|--------------|
| REGION-<br>CENTROID-COL  | 1              | 0.0267683      | nan            | -0.0519617      | -0.0159643      | -0.0113042  | 0.0219603   | -0.0189142 | -0.00193879  | 0.0589574     | 0.054673    | 0.0581691    | 0.063        |
| REGION-<br>CENTROID-ROW  | 0.0267683      | 1              | nan            | 0.0648913       | 0.0418694       | 0.0261463   | -0.053578   | 0.105223   | -0.0210774   | -0.46524      | -0.468009   | -0.481521    | -0.43        |
| REGION-PIXEL-<br>COUNT   | nan            | nan            | nan            | nan             | nan             | nan         | nan         | nan        | nan          | nan           | nan         | nan          | nan          |
| SHORT-LINE-<br>DENSITY-5 | -0.0519617     | 0.0648913      | nan            | 1               | -0.00902435     | -0.0202057  | -0.0327814  | -0.0212863 | -0.0379961   | -0.0182106    | -0.0167553  | -0.0213921   | -0.01        |
| SHORT-LINE-<br>DENSITY-2 | -0.0159643     | 0.0418694      | nan            | -0.00902435     | 1               | 0.262575    | 0.193728    | 0.303182   | 0.243155     | -0.00691096   | -0.0124706  | 0.00307818   | -0.01        |
| VEDGE-MEAN               | -0.0113042     | 0.0261463      | nan            | -0.0202057      | 0.262575        | 1           | 0.637452    | 0.559491   | 0.488347     | 0.0051292     | -0.00548196 | 0.0204975    | -0.00        |
| VEDGE-SD                 | 0.0219603      | -0.053578      | nan            | -0.0327814      | 0.193728        | 0.637452    | 1           | 0.471016   | 0.703049     | 0.00300641    | -0.00213776 | 0.00678241   | 0.003        |
| HEDGE-MEAN               | -0.0189142     | 0.105223       | nan            | -0.0212863      | 0.303182        | 0.559491    | 0.471016    | 1          | 0.668179     | 0.0339725     | 0.0260589   | 0.0438457    | 0.029        |
| HEDGE-SD                 | -0.00193879    | -0.0210774     | nan            | -0.0379961      | 0.243155        | 0.488347    | 0.703049    | 0.668179   | 1            | 0.013518      | 0.00853753  | 0.0168992    | 0.014        |
| INTENSITY-<br>MEAN       | 0.0589574      | -0.46524       | nan            | -0.0182106      | -0.00691096     | 0.0051292   | 0.00300641  | 0.0339725  | 0.013518     | 1             | 0.998112    | 0.995809     | 0.995        |
| RAWRED-MEAN              | 0.054673       | -0.468009      | nan            | -0.0167553      | -0.0124706      | -0.00548196 | -0.00213776 | 0.0260589  | 0.00853753   | 0.998112      | 1           | 0.990813     | 0.994        |
| RAWBLUE-MEAN             | 0.0581691      | -0.481521      | nan            | -0.0213921      | 0.00307818      | 0.0204975   | 0.00678241  | 0.0438457  | 0.0168992    | 0.995809      | 0.990813    | 1            | 0.984        |
| RAWGREEN-MEAN            | 0.0633807      | -0.437971      | nan            | -0.0156042      | -0.013435       | -0.00309891 | 0.00340993  | 0.0294059  | 0.014121     | 0.995842      | 0.994056    | 0.984659     | 1            |
| EXRED-MEAN               | -0.0868165     | 0.353175       | nan            | 0.0280127       | -0.0448293      | -0.100457   | -0.0491233  | -0.0994335 | -0.0561856   | -0.830261     | -0.794457   | -0.855058    | -0.82        |
| EXBLUE-MEAN              | 0.0430985      | -0.490219      | nan            | -0.036164       | 0.0609787       | 0.106744    | 0.0276592   | 0.0937381  | 0.0336465    | 0.792257      | 0.76997     | 0.844741     | 0.742        |
| EXGREEN-MEAN             | 0.0140351      | 0.476421       | nan            | 0.0331823       | -0.0583623      | -0.0801201  | 0.00239638  | -0.0591112 | -0.000666109 | -0.509756     | -0.507899   | -0.573816    | -0.42        |
| VALUE-MEAN               | 0.0601893      | -0.458388      | nan            | -0.0158859      | -0.000145206    | 0.0181477   | 0.00480412  | 0.0422324  | 0.0148579    | 0.997385      | 0.992062    | 0.998644     | 0.990        |
| SATURATION-<br>MEAN      | -0.108214      | 0.0815563      | nan            | -0.0432207      | 0.0162084       | -0.0648269  | 0.0023061   | -0.125955  | -0.0241491   | -0.60829      | -0.616928   | -0.595166    | -0.60        |
| HUE-MEAN                 | 0.0392985      | 0.59293        | nan            | 0.112989        | -0.0829386      | -0.0979591  | -0.0615915  | -0.0938031 | -0.0699882   | -0.329845     | -0.328574   | -0.384925    | -0.26        |

### visualisation



# covariance matrix

matrix

| Index                  | ION-CENTROID-0 | ION-CENTROID-F | GION-PIXEL-COU | ORT-LINE-DENSIT | ORT-LINE-DENSIT | VEDGE-MEAN  | VEDGE-SD   | HEDGE-MEAN  | HEDGE-SD   | NTENSITY-MEAN | RAWRED-MEAN | RAWBLUE-MEAN | V |
|------------------------|----------------|----------------|----------------|-----------------|-----------------|-------------|------------|-------------|------------|---------------|-------------|--------------|---|
| EGION-<br>ENTROID-COL  | 5322.66        | 112.262        | 0              | -0.152222       | -0.0282257      | -2.22583    | 71.8508    | -4.98161    | -8.31874   | 164.209       | 139.753     | 184.723      | 1 |
| EGION-<br>ENTROID-ROW  | 112.262        | 3304.39        | 0              | 0.149783        | 0.0583275       | 4.05643     | -138.121   | 21.8359     | -71.2565   | -1020.98      | -942.593    | -1204.83     |   |
| EGION-PIXEL-<br>OUNT   | 0              | 0              | 0              | 0               | 0               | 0           | 0          | 0           | 0          | 0             | 0           | 0            |   |
| HORT-LINE-<br>ENSITY-5 | -0.152222      | 0.149783       | 0              | 0.00161235      | -8.78166e-06    | -0.00218974 | -0.0590317 | -0.00308566 | -0.0897287 | -0.0279157    | -0.0235725  | -0.0373893   |   |
| HORT-LINE-<br>ENSITY-2 | -0.0282257     | 0.0583275      | 0              | -8.78166e-06    | 0.000587302     | 0.0171741   | 0.210548   | 0.0265247   | 0.346558   | -0.00639388   | -0.0105887  | 0.00324704   |   |
| EDGE-MEAN              | -2.22583       | 4.05643        | 0              | -0.00218974     | 0.0171741       | 7.2841      | 77.1549    | 5.45128     | 77.5139    | 0.528485      | -0.51838    | 2.40798      |   |
| EDGE - SD              | 71.8508        | -138.121       | 0              | -0.0590317      | 0.210548        | 77.1549     | 2011.2     | 76.2572     | 1854.28    | 5.14721       | -3.35901    | 13.2396      |   |
| EDGE-MEAN              | -4.98161       | 21.8359        | 0              | -0.00308566     | 0.0265247       | 5.45128     | 76.2572    | 13.0327     | 141.864    | 4.6821        | 3.29607     | 6.88981      |   |
| EDGE-SD                | -8.31874       | -71.2565       | 0              | -0.0897287      | 0.346558        | 77.5139     | 1854.28    | 141.864     | 3458.79    | 30.3509       | 17.5921     | 43.2605      |   |
| NTENSITY-<br>EAN       | 164.209        | -1020.98       | 0              | -0.0279157      | -0.00639388     | 0.528485    | 5.14721    | 4.6821      | 30.3509    | 1457.44       | 1335.05     | 1654.76      |   |
| AWRED-MEAN             | 139.753        | -942.593       | 0              | -0.0235725      | -0.0105887      | -0.51838    | -3.35901   | 3.29607     | 17.5921    | 1335.05       | 1227.58     | 1511.05      |   |
| AWBLUE-MEAN            | 184.723        | -1204.83       | 0              | -0.0373893      | 0.00324704      | 2.40798     | 13.2396    | 6.88981     | 43.2605    | 1654.76       | 1511.05     | 1894.64      |   |
| AWGREEN-MEAN           | 168.152        | -915.53        | 0              | -0.0227852      | -0.01184        | -0.304143   | 5.56103    | 3.86041     | 30.2001    | 1382.5        | 1266.53     | 1558.58      |   |
| XRED-MEAN              | -73.3683       | 235.168        | 0              | 0.0130295       | -0.0125845      | -3.1406     | -25.5187   | -4.15807    | -38.2763   | -367.157      | -322.431    | -431.123     |   |
| XBLUE-MEAN             | 61.54          | -551.527       | 0              | -0.0284209      | 0.0289228       | 5.63848     | 24.2772    | 6.62315     | 38.7288    | 591.96        | 527.994     | 719.645      |   |
| KGREEN-MEAN            | 11.8283        | 316.359        | 0              | 0.0153915       | -0.0163383      | -2.49789    | 1.24144    | -2.46507    | -0.452533  | -224.802      | -205.563    | -288.522     |   |
| ALUE-MEAN              | 188.478        | -1130.98       | 0              | -0.0273791      | -0.00015104     | 2.10227     | 9.2474     | 6.54395     | 37.5056    | 1634.31       | 1491.9      | 1865.74      |   |
| ATURATION-<br>EAN      | -1.80249       | 1.07035        | 0              | -0.000396228    | 8.96796e-05     | -0.0399454  | 0.0236118  | -0.103814   | -0.324256  | -5.30187      | -4.93495    | -5.9146      |   |
| UE-MEAN                | 4.43061        | 52.671         | 0              | 0.00701116      | -0.00310606     | -0.40856    | -4.26846   | -0.523308   | -6.36077   | -19.4593      | -17.7901    | -25.8918     |   |

#### visualisation



- What is the relation between the covariance matrix of the dataset and the Pearson's correlation matrix of it?
  - Correlation is a special case of covariance where the matrix is standardized
  - Both measures only linear relationship between two variables, i.e. when the correlation coefficient is zero, covariance is also zero.
  - A measure used to indicate the extent to which two random variables change in tandem is known as covariance. A measure used to represent how strongly two random variables are related known as correlation.
  - Covariance is a measure of correlation. On the contrary, correlation refers to the scaled form of covariance.
  - The value of correlation takes place between -1 and +1.
     Conversely, the value of covariance lies between -∞ and +∞
  - Correlation is dimensionless, i.e. it is a unit-free measure of the relationship between variables. Unlike covariance, where the value is obtained by the product of the units of the two variables.

$$r_{A,B} = \frac{Cov(A,B)}{\sigma_A \sigma_B}$$

# Histograms

o Histograms for each class







case: 5 bins







# Preprocessing

## Normalization

1. Min-max scaler

After the max-min normalization, all data are scaled to be in range from 0 to 1



| Index | ION-CENTROID- | ION-CENTROID-F | GION-PIXEL-COU | ORT-LINE-DENSIT | ORT-LINE-DENSIT | VEDGE-MEAN | VEDGE-SD    | HEDGE-MEAN | HEDGE-SD    | NTENSITY-MEAN | RAWRED-MEAN | RAWBLUE-MEAN | <b>LAWGR</b> |
|-------|---------------|----------------|----------------|-----------------|-----------------|------------|-------------|------------|-------------|---------------|-------------|--------------|--------------|
| count | 2310          | 2310           | 2310           | 2310            | 2310            | 2310       | 2310        | 2310       | 2310        | 2310          | 2310        | 2310         | 2310         |
| mean  | 0.489778      | 0.468405       | 0              | 0.0430014       | 0.0212121       | 0.0648116  | 0.005757    | 0.0542174  | 0.00594642  | 0.258299      | 0.239377    | 0.29285      | 0.239        |
| std   | 0.288366      | 0.239516       | 0              | 0.120462        | 0.109054        | 0.0923581  | 0.045221    | 0.0807224  | 0.0424225   | 0.266141      | 0.255536    | 0.288474     | 0.255        |
| min   | 0             | 0              | 0              | 0               | 0               | 0          | 0           | 0          | 0           | 0             | 0           | 0            | 0            |
| 25%   | 0.241107      | 0.291667       | 0              | 0               | 0               | 0.0247148  | 0.000358524 | 0.0173914  | 0.000304139 | 0.050865      | 0.0510535   | 0.0633284    | 0.042        |
| 50%   | 0.474308      | 0.4625         | 0              | 0               | 0               | 0.0418252  | 0.000840292 | 0.0322981  | 0.000694614 | 0.150529      | 0.142626    | 0.183358     | 0.142        |
| 75%   | 0.743083      | 0.670833       | 0              | 0               | 0               | 0.0741445  | 0.00182145  | 0.0571429  | 0.00157486  | 0.370966      | 0.345219    | 0.430044     | 0.326        |
| max   | 1             | 1              | 0              | 1               | 1               | 1          | 1           | 1          | 1           | 1             | 1           | 1            | 1            |

#### 2. Z-score normalization

All values almost have mean = 0, sd = 1. This is good for the normally distributed features.



The difference is that: the feature with high range will not dominate after normalization.

Z-score method preserves range (maximum and minimum) and introduces the dispersion of the serie (standard deviation / variance). If data follow a gaussian distribution, they are converted into a N(0,1) distribution and the comparison between series (probabilities calculation) will be easier.

### • Dimensionality reduction

1. Feature Projection

chosen components\_num = [1, 2, 4, 6, 8, 10, 13, 16, 19]

- [0.42341135]
- [ 0.42341135 0.16203649]
- [ 0.42341135 0.16203649 0.09959451 0.05857283]
- [0.42341135 0.16203649 0.09959451 0.05857283 0.05197997 0.05050372]
- [0.42341135 0.16203649 0.09959451 0.05857283 0.05197997 0.05050372 0.04041415 0.03120143]
- [0.42341135 0.16203649 0.09959451 0.05857283 0.05197997 0.05050372 0.04041415 0.03120143 0.02999802 0.02195028]
- [ 0.42341135 0.16203649 0.09959451 0.05857283 0.05197997 0.05050372 0.04041415 0.03120143 0.02999802 0.02195028 0.0142209 0.00993527 0.00616366]
- [ 4.23411347e-01 1.62036489e-01 9.95945088e-02 5.85728321e-02 5.19799667e-02 5.05037229e-02 4.04141498e-02 3.12014310e-02 2.99980217e-02 2.19502844e-02 1.42209011e-02 9.93526978e-03 6.16366453e-03 1.74116798e-05 1.58780274e-16 1.30219428e-16]
- [ 4.23411347e-01 1.62036489e-01 9.95945088e-02 5.85728321e-02 5.19799667e-02 5.05037229e-02 4.04141498e-02 3.12014310e-02 2.99980217e-02 2.19502844e-02 1.42209011e-02 9.93526978e-03 6.16366453e-03 1.74116798e-05 1.58780274e-16 1.30219428e-16 1.03964749e-16 9.55203032e-17 1.39078630e-34]

| index | captured variance | component number |
|-------|-------------------|------------------|
|       | sum               |                  |
| 0     | 0.423411          | 1                |
| 1     | 0.585448          | 2                |
| 2     | 0.743615          | 4                |
| 3     | 0.846099          | 6                |
| 4     | 0.917714          | 8                |
| 5     | 0.969663          | 10               |
| 6     | 0.999983          | 13               |
| 7     | 1.000000          | 16               |
| 8     | 1.000000          | 19               |

We notice that the last 3 components are nearly 1 so, we can take the first 14 components

## showing the matrix resultant after the PCA

| Index | 0          | 1          | 2         | 3         | 4          | 5          | 6          | 7         | 8        | 9           | 10          | 11          |     |
|-------|------------|------------|-----------|-----------|------------|------------|------------|-----------|----------|-------------|-------------|-------------|-----|
| 9     | -2.34101   | -0.568638  | -0.650548 | -0.477064 | -0.0547828 | -0.136842  | 0.012842   | -0.62045  | 0.276409 | 0.263032    | -0.284534   | -0.0399267  | -1  |
| 1     | -0.612479  | -0.191599  | -1.42468  | 0.624449  | -0.971095  | 0.178148   | -0.291384  | -0.656609 | 0.596323 | -0.00602486 | 0.327241    | -0.00252681 | -1  |
| 2     | -0.986023  | 0.04876    | -0.985904 | 0.647385  | -0.896088  | 0.293113   | -0.68396   | -0.65327  | 0.726483 | -0.0861032  | -0.0956005  | -0.060829   | - ( |
| 3     | -1.78441   | -0.21824   | -0.815338 | 0.692126  | -1.0088    | 0.378406   | -0.564007  | -1.03559  | 0.533698 | 0.11252     | -0.387638   | 0.0935647   | -1  |
| 4     | -0.840568  | -0.284457  | -0.870496 | 2.50717   | 0.477375   | -1.11299   | -0.0888781 | -0.778695 | 0.351134 | -0.0601369  | 0.0171944   | 0.107554    | -6  |
| 5     | -0.497166  | -0.0268167 | -1.14837  | 0.190721  | -0.512381  | -0.0191702 | -0.440232  | -0.619748 | 0.764301 | -0.0907055  | 0.101014    | -0.135551   | -6  |
| 5     | -0.616498  | 0.0286702  | -0.721122 | 1.99571   | 0.987315   | -1.40613   | -0.139021  | -0.186877 | 0.674429 | -0.231794   | -0.0196083  | -0.251919   | - 6 |
| 7     | -0.606379  | -0.345504  | -0.985121 | -0.466912 | 0.139852   | -0.240579  | -0.331362  | -0.687787 | 0.523784 | 0.144244    | 0.0124836   | -0.0631898  | -6  |
| В     | -0.556099  | -0.0993556 | -1.4741   | 0.489699  | -0.853301  | 0.0663909  | -0.261186  | -0.618027 | 0.706274 | -0.171118   | 0.324907    | 0.0338353   | - 6 |
| 9     | -0.920873  | -0.297635  | -1.42826  | 0.831645  | -1.24293   | 0.268776   | -0.190548  | -0.732222 | 0.706257 | -0.0779116  | 0.368993    | 0.0473832   | -6  |
| 10    | -1.15722   | -0.333159  | -0.996147 | 0.598124  | -0.889067  | 0.279689   | -0.521061  | -0.59979  | 0.835949 | 0.274237    | -0.101258   | -0.188172   | - 6 |
| 11    | -1.06347   | -0.0946611 | -0.529351 | 2.58179   | 0.414788   | -1.01566   | -0.28929   | -0.806169 | 0.39359  | -0.108707   | -0.13508    | 0.06411     | -6  |
| 12    | -0.985916  | -0.336779  | -0.550753 | 2.12227   | 0.81748    | -1.26563   | -0.0918333 | -0.818186 | 0.47142  | 0.0291417   | -0.12493    | -0.0276746  | - 6 |
| 13    | -1.21033   | -0.198951  | -1.05523  | 0.825672  | -1.16814   | 0.326482   | -0.487676  | -0.727645 | 0.963697 | 0.0178624   | -0.00487703 | -0.148549   | -6  |
| 14    | -0.717101  | -0.290457  | -0.793273 | 2.16101   | 0.751873   | -1.34338   | 0.023042   | -0.628421 | 0.643131 | -0.046785   | 0.00645112  | -0.142351   | - 6 |
| 15    | -0.425876  | -0.296811  | -1.03836  | -0.436665 | 0.151791   | -0.208142  | -0.377001  | -0.662763 | 0.387249 | 0.0892526   | 0.0760996   | 0.0520209   | -6  |
| 16    | -0.0626347 | -0.205131  | -1.27661  | -0.330228 | 0.0147155  | -0.248289  | -0.265724  | -0.58549  | 0.445431 | -0.069919   | 0.325137    | 0.0492806   | - 6 |
| 17    | -0.886784  | -0.387908  | -0.969632 | 0.141301  | -0.480332  | 0.0452911  | -0.390777  | -0.720113 | 0.745749 | 0.201338    | -0.0124774  | -0.0916619  | -6  |
| 18    | -1.16836   | 0.0186746  | -0.288599 | 2.069     | 0.952813   | -1.21371   | -0.388945  | -0.859736 | 0.327125 | -0.226374   | -0.341839   | 0.12225     | - 6 |
| 19    | -1.5681    | -0.386736  | -0.398264 | 2.18156   | 0.73347    | -1.23042   | -0.124791  | -0.995216 | 0.638688 | 0.0564065   | -0.394325   | -0.0724101  | - ( |
| 20    | -0.0685063 | 0.0718931  | -1.27563  | -0.214001 | -0.122107  | -0.237934  | -0.312053  | -0.526885 | 0.548046 | -0.353922   | 0.351167    | 0.0272227   | -1  |

#### Visualization:



The visualisations shows that the correlation between each 2 attributes is 0. So we have chosen the best uncorrelated features to avoid redundancy



#### 2. Feature selection 1.000 -0.5 0.998 0.8 0 0.0 0.996 1 0.5 0.994 2 0.4 1.0 3 0.992 0.2 1.5 0.990 0.0 5 2.0 0.988 -0.2 6 2.5 -0.5 0.0 0.5 1.0 2.0 0.986 1.00 1.00 k = 10 k = 140.75 0.75 0 0 0.50 0.50 2 0.25 0.25 4 -0.00 0.00 8 6 -0.25 -0.25 10 8 12 -0.50 -0.50 6 8 -0.75 -0.75 1.00 1.00 k = 16 k = 190.75 0.0 0.75 0 -2 2.5 0.50 0.50 4 5.0 0.25 0.25 6 7.5 8 0.00 0.00 10 12.5 -0.25 -0.25 12 15.0 14 -0.50 17.5

The first 5 attributes are very correlated as shown at k=4 and k=7 starting from index 1. Also the 3rd attribute appears only when k=19 which means that it is the worst attribute as we expected, due to the zero standard deviation.

-0.75

5.0

7.5 10.0 12.5 15.0 17.5

-0.75

10 12

#### K = 2





#### Correlation matrix

#### • K = 5

[[0.04311903 0.05357143 0.05081001 0.05154639 0.32532112] [0.0464756 0.06087663 0.05154639 0.05596466 0.35865966] [0.04260263 0.0551948 0.04786451 0.05007364 0.35169946]

...

[0.78156473 0.71022725 0.86450659 0.86450659 0.09970969] [0.76658921 0.71266236 0.84462441 0.84462441 0.11727551] [0.7384457 0.6712662 0.82768774 0.82768774 0.1120159 ]]

#### • k=9

...

[0.02916667 0.78156473 0.71022725 ... 0.38559321 0.86450659 0.09970969] [0.17916667 0.76658921 0.71266236 ... 0.29237287 0.84462441 0.11727551] [0.29166667 0.7384457 0.6712662 ... 0.30084744 0.82768774 0.1120159 ]]

#### k=19

[[0.5515873 0.475 0. ... 0.05154639 0.5456349 0.32532112]
[0.74206349 0.50833333 0. ... 0.05596466 0.53858024 0.35865966]
[0.41269841 0.533333333 0. ... 0.05007364 0.5326279 0.35169946]
...
[0.59920635 0.02916667 0. ... 0.86450659 0.2546684 0.09970969]
[0.32539683 0.17916667 0. ... 0.84462441 0.23450433 0.11727551]
[0.45238095 0.29166667 0. ... 0.82768774 0.26421982 0.1120159 ]]

High variance for larger k so the features.