Cautious label-wise ranking with constraint satisfaction

Sébastien Destercke, Yonatan Carlos Carranza Alarcon

DA2PL 2018

Some announcements: SUM 2019

When: 16-18 december 2019

Where: Compiègne

What: (scalable) undertainty management

 How: papers (long/short/abstracts) but also tutorials/surveys of particular areas

Where is Compiegne?

Our approach in a nutshell

What?

Cautious label-ranking by rank-wise decomposition

How?

- Rank-wise decomposition
- For each label, predict set of ranks using imprecise probabilities
- Use CSP to:
 - resolve inconsistencies
 - remove impossible assignments

Why?

- weak information in structured settings more prone to be of use
- few rank-wise approaches (except score-based) for this problem

Introduction and decomposition

Ranking data - preferences

To each instance *x* correspond an ordering over possible labels

Blog theme

A blog x can be about

Politic \succ Literature \succ Movies $\succ \dots$

Cutomer preferences

A customer x may prefer

White wine \succ Red wine \succ Beer $\succ \dots$

Classification problem/data

$$\mathcal{C} = \{\textbf{c}_1,\textbf{c}_2,\textbf{c}_3\}$$

X_1	X_2			Y
107.1	25	Blue	60	<i>C</i> ₃
-50	10	Red	40	C ₁
200.6	30	Blue	58	c_2
107.1	5	Blue Red Blue Green	60	C ₄

Label ranking problem/data

$$\mathcal{W} = \{\textit{w}_1, \textit{w}_2, \textit{w}_3\}$$

X_1	X_2	X_3	X_4	Y
107.1	25	Blue	60	$W_1 \succ W_3 \succ W_2$
-50	10	Red	40	$W_2 \succ W_1 \succ W_3$
200.6	30	Blue	58	$W_1 \succ W_2 \succ W_3$
107.1	5	Green	60	$w_1 \succ w_3 \succ w_2 w_2 \succ w_1 \succ w_3 w_1 \succ w_2 \succ w_3 w_3 \succ w_1 \succ w_2$

Potentially huge output space (K! with K labels) \rightarrow naive extension (one ranking=one class) doomed to fail

One solution: rank-wise decomposition

For each label, solve an ordinal regression problem

Predicting candidate ranks

Learning with IP: a crash course

Classical case:

- ullet input space ${\mathcal X}$ and output space ${\mathcal Y}$
- set $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$ of data
- given x, estimate P(y|x) using \mathcal{D}
- P(y|x) = information about y when observing x

However, estimate $\hat{P}(y|x)$ of P(y|x) can be pretty bad if

- data are noisy, missing, imprecise
- estimation is based on little data

Replace the estimate $\hat{P}(y|x)$ by **a set** \mathcal{P} of estimates

Ambiguity

$$P(\square|?) \in [0.49, 0.51]$$

 $P(\square|?) \in [0.49, 0.51]$

Lack of information

$$P(\square|?) \in [0, 0.7]$$

 $P(\square|?) \in [0.3, 1]$

Decision with probability sets

Probability sets

If $\ell_{\omega}: \mathcal{Y} \to \mathbb{R}$ loss function of choice $\omega \in \mathcal{Y}$, then

$$\omega \succeq \omega' \Leftrightarrow \inf_{P \in \mathcal{P}(y|x)} \mathbb{E}(\ell_{\omega'} - \ell_{\omega}) \ge 0 = \underline{\mathbb{E}}(\ell_{\omega'} - \ell_{\omega})$$
$$\Leftrightarrow \inf_{P \in \mathcal{P}(y|x)} \sum_{y \in \mathcal{Y}} P(y|x) \left(\ell_{\omega'}(y) - \ell_{\omega'}(y)\right) \ge 0$$

- \Rightarrow if insufficient information, we can have $\omega \not\succeq \omega'$ and $\omega' \not\succeq \omega$ That is, we can have $\underline{\mathbb{E}}(\ell_{\omega'} - \ell_{\omega}) < 0$ and $\underline{\mathbb{E}}(\ell_{\omega} - \ell_{\omega'}) < 0$
- \Rightarrow Possibly optimal decisions = maximal element(s) of \succeq

Our choice of ℓ , \mathcal{P}

What?

• $\ell = L_1$ norm between ranks, loss of predicting rank j if k is true

$$\ell_j(k) = |j - k|$$

• \mathcal{P} described by lower/upper cumulative distributions $\underline{F}, \overline{F}$

Why?

- prediction is guaranteed to be an "interval" of ranks (dedicated CSP models)
- it corresponds to the set of possible medians (very easy to get)

An example of rank prediction

Making a final cautious prediction

Inconsistency and assignment reductions

Inconsistency

Consider four labels $\lambda_1, \lambda_2, \lambda_3, \lambda_4$, then the predicted possible ranks

$$\hat{R}_1 = \{1,3\}, \hat{R}_2 = \{1,3\}, \hat{R}_3 = \{1,3\}, \hat{R}_4 = \{2,4\}$$

are inconsistent $\rightarrow \lambda_1, \lambda_2, \lambda_3$ should **all** take different values

Removal of impossible solutions

Consider the predictions

$$\hat{R}_1 = \{1,2\}, \hat{R}_2 = \{1,2,3\}, \hat{R}_3 = \{2\}, \hat{R}_4 = \{1,2,3,4\}.$$

As λ_3 has to take value 2, λ_1 has to take value $\{1\}, \dots$ until we get

$$\hat{R}_1' = \{1\}, \hat{R}_2' = \{3\}, \hat{R}_3' = \{2\}, \hat{R}_4' = \{4\}$$

Dealing with the issue: CSP modelling

- A possible assignment $\hat{R}_i \subseteq \{1, \dots, K\}$
- Need to find if each of them can take a different value
- Exactly what the all different constraint does in CSP
- So, just apply standard librairies

Bonus: if all \hat{R}_i intervals, efficient (polynomial) algorithms exist

Experiments

Setting

Material and method

- Classification and regression data sets turned into ranking
- Binary decomposition + Naive imprecise classifier

Measuring results quality

Completeness (CP)

Correctness (CR)

$$CP(\hat{R}) = \frac{k^2 - \sum_{i=1}^k |\hat{R}_i|}{k^2 - k}$$

Max if one ranking possible Min if all rankings possible

$$CR(\hat{R}) = 1 - \frac{\sum_{i=1}^{k} \min_{\hat{r}_i \in \hat{R}_i} |\hat{r}_i - r_i|}{0.5k^2}$$

Equivalent to Spearman footrule if one ranking predicted

An example of results

Why rank-wise approaches?

Yes, why?

 different expressiveness when it comes to represent partial predictions, e.g., the set-valued prediction

$$\{\lambda_1 \succ \lambda_2 \succ \lambda_3, \lambda_2 \succ \lambda_2 \succ \lambda_1\}$$

between three labels is perfectly representable by imprecise ranks, but not through pairwise information or partial orders (i.e., interval-valued scores)

 not (entirely) clear how to make score-based methods imprecise (IP-SVM?) + need to turn them into imprecise ranks?