Universidad Nacional de Río Negro - Profesorados de Física y Química

Física I A Guía 02 - Energía

Asorey - Cutsaimanis

2016

1. Cuentas

Repase, rehaga y verifique todas las cuentas y cálculos parciales realizados en clase.

2. Energía potencial gravitatoria

a) La energía potencial gravitatoria entre dos cuerpos de masas m_1 y m_2 separados por una distancia r está dada por:

$$E_g = -\frac{G m_1 m_2}{r}.$$

De esta forma, la energía potencial gravitatoria de un cuerpo de masa m sobre la superficie de un planeta de masa M y radio R es:

$$E_g = -\frac{GMm}{R}.$$

Verifique que al elevar ese cuerpo a una altura h sobre la superficie del planeta, la variación de la energía potencial gravitatoria es:

$$\Delta E_g = GMm \left(\frac{1}{R} - \frac{1}{R+h}\right).$$

b) Calcule la energía potencial para un astronauta ($m=70\,\mathrm{kg}$) en órbita a una altura $h=350\,\mathrm{km}$. Luego, compare ese valor con el obtenido de la expresión aproximada $\Delta E_g=mg\,h$.

3. Esquiadores.

Se prepara una pista en el cerro Catedral a $h_i = 2400 \, \mathrm{m} \, \mathrm{s.n.m.}$ alisada para pista de bajada hasta la base ($h_f = 1030 \, \mathrm{m} \, \mathrm{s.n.m}$) Un esquiador se propone superar el récord mundial, actualmente de 251,4 km h⁻¹. Usando argumentos de conservación de la energía, y despreciando todo efecto de rozamiento, diga si esto es posible, y calcule cuál es la velocidad máxima que podría alcanzarse. ¿Depende de la masa del esquiador? Justifique.

4. Fútbol.

Un nene que vive en el último piso del Bariloche Center ($h=30\,\mathrm{m}$) se va a jugar al fútbol. Al llegar a la planta baja se da cuenta que no trajo su pelota ($m=400\,\mathrm{g}$). Llama por celular a su padre para que le arroje la pelota por la ventana.

- a) ¿Cuál es la variación de la energía potencial entre el techo y la base del edificio?
- b) Determine la variación de la energía cinética y la velocidad de la pelota cuando esta llega al piso.

5. Impacto.

La extinción de los dinosaurios al final del período Jurásico es atribuida al impacto de un cometa o meteorito de dimensiones considerables. Imagine entonces que un cometa esférico de radio $r=5\,\mathrm{km}$ y densidad media $d=5\,\mathrm{g\,cm^{-3}}$ se acerca a la Tierra desde el infinito. Entonces,

- *a*) Calcule la masa m_c del cometa.
- b) Calcule la energía cinética y la velocidad al momento del impacto.
- c) Exprese la energía liberada en el impacto en megatones, teniendo en cuenta que $1 \, \text{Mton} = 4,184 \times 10^{15} \, \text{J}.$
- d) Si debido a la interacción atmosférica el satélite se divide en dos partes de masas $m_1=0.7m_c$ y $m_2=0.3m_c$. Calcule la energía cinética y la velocidad de cada parte al momento del impacto. ¿Dependerá el resultado de la altura a la cual el cometa se parta? Justifique.

6. Rebotes.

Una pelota de goma de masa $m = 2.0 \,\mathrm{kg}$ es lanzada hacia arriba en forma vertical. La velocidad inicial es de $v = 5 \,\mathrm{m \, s^{-1}}$.

- a) Calcule la altura máxima que alcanza la pelota en su trayectoria;
- b) suponiendo que no hay pérdidas de energía debidas al rozamiento, calcule la velocidad al momento del impacto y la altura alcanzada luego del rebote.
- c) Suponga que, a diferencia del punto anterior, como consecuencia del rebote un 20% de la energía mecánica se transforma en calor y sonido. Calcule la altura que alcanzará la pelota luego de tres choques contra el piso.

7. Resortes

La energía potencial elástica está dada por:

$$E_e = \frac{1}{2}k(\Delta x)^2$$

donde k es la constante elástica del resorte y Δx representa a la variación de la longitud del resorte en condiciones de compresión o expansión. Imagine entonces que usted debe diseñar el sistema de protección de resortes de un ascensor en el Bariloche Center ($h=30,0\,\mathrm{m}$), y que los mismos pueden comprimirse un máximo de $0,5\,\mathrm{m}$. Sabiendo que la masa del ascensor y su carga es de $m=600\,\mathrm{kg}$,

- *a*) calcule la constante *k* del resorte;
- b) si el ascensor tiene un freno de seguridad capaz de transformar el 20 % de la energía cinética, calcule el k del resorte necesario en este caso;
- c) Rehaga los cálculos anteriores pero suponiendo que en lugar de un único gran resorte se disponen cuatro resortes más pequeños.

8. Pesos.

A partir de la definición de g,

$$g = \frac{GM}{R^2},$$

para un cuerpo esférico de masa M y radio R,

- *a*) calcule el valor de g y determine cuál es el peso de un cuerpo de masa $m = 70 \, \text{kg}$ en la Tierra, el Sol, Júpiter y la Luna;
- *b*) calcule a que altura *h* sobre la superficie de la Tierra, un cuerpo pesa la mitad respecto a su peso sobre la superficie terrestre.
- c) ¿Qué pasaría si realizamos el mismo cálculo en el planeta Marte?

9. Velocidad de escape

Se define como *velocidad de escape* a aquella velocidad v_c para la cual un cuerpo de masa m (cuerpo A) puede escapar de la atracción gravitatoria de otro cuerpo (cuerpo B).

Imaginemos que el cuerpo B es un planeta de radio R y masa M, y colocamos al cuerpo A sobre su superficie. Entonces,

- *a*) Obtenga una expresión para el cálculo de la velocidad de escape, y muestre que la misma es una propiedad inherente del planeta.
- b) Grafique la dependencia de la velocidad de escape como función:
 - del radio *R* del planeta.
 - de la masa *M* del planeta.
- c) Calcule el valor de la velocidad de escape sobre la superficie de
 - 1) la Tierra
 - 2) la Luna
 - 3) el Sol
 - 4) una pelota de fútbol de radio R = 12.5 cm y m = 0.4 kg
- *d*) Suponga que es posible variar a voluntad el radio terrestre R_{\oplus} . Calcule el valor de $R_{\oplus} \equiv R_c$ para el cual la velocidad de escape de la Tierra sea igual a la velocidad de la luz c.
- e) Libere su imaginación y responda: ¿Qué pasaría si, una vez alcanzado dicho radio crítico, aumentamos la masa de la Tierra?

10. El Principito

El Principito ($m=40\,\mathrm{kg}$) vive en un planeta pequeño, el asteroide B612. Supongamos que posee un radio $R=1\,\mathrm{km}$ con una densidad igual a la de la Tierra ($d=5,5\,\mathrm{g\,cm^{-3}}$). Calcule

- a) el valor de g y el peso del Principito en B612;
- b) si en la Tierra el Principito logra subir a una silla de $h=0.5\,\mathrm{m}$ de un salto, a que altura llegará con el mismo salto sobre la superficie de B612.
- c) la velocidad máxima a la cual el Principito puede caminar sin riesgo de abandonar el planeta para siempre

		Mercurio	Venus	Tierra	Marte	Júpiter	Saturno	Urano	Neptuno
Imagen							•		
Símbolo Astronómico		χ.	O+	Ф	ъ	ਰ	ů	€0	₽
Distancia media al Sol	Ē Š	57.909.175 0,38709893	108.208.930 0,72333199	149.597.870	227.936.640 1,52366231	778.412.010 5,20336301	1.426.725.400	2.870.972.200	4.498.252.900 30,06896348
Radio medio	km :T²	2.439,64 0,3825	6.051,59	6.378,15	3.397,00 0,53226	71.492,68	60.267,14	25.557,25 4,007	24.766,36
Superficie/Área	km² :T²	75.000.000	460.000.000	510.000.000	140.000.000	64.000.000.000	43.800.000.000	8.130.000.000	7.700.000.000
Volumen	km³ :T²	6,083×10 ¹⁰ 0,056	9,28×10 ¹¹ 0,87	1,083×10 ¹²	1,6318×10 ¹¹ 0,151	1,431×10 ¹⁵ 1.321,3	8,27×10 ¹⁴ 763,59	6,834×10 ¹³ 63,086	6,254×10 ¹³ 57,74
Masa	kg :T²	3,302×10 ²³ 0,055	4,8690×10 ²⁴ 0,815	5,9742×10 ²⁴	6,4191×10 ²³ 0,107	1,8987×10 ²⁷ 318	5,6851×10 ²⁶ 95	8,6849×10 ²⁵	1,0244×10 ²⁶
Densidad	g/cm ³	5,43	5,24	5,515	3,940	1,33	0,697	1,29	1,76
Gravedad Ecuatorial	m/s ²	3,70	8,87	9,81	3,71	23,12	8,96	8,69	11,00
Velocidad de escape	km/s	4,25	10,36	11,18	5,02	59,54	35,49	21,29	23,71
Periodo de rotación	dias ³	58,646225	-243,0187 ⁴	0,99726968	1,02595675	0,41354	0,44401	-0,718334	0,67125
Velocidad de rotación ecuatorial	km/s	0,0030	0,0018	0,4651	0,2408	12,5720	10,0179	2,5875	2,6869
Periodo orbital	años³	0,2408467	0,61519726	1,0000174	1,8808476	11,862615	29,447498	84,016846	164,79132
Velocidad orbital media	km/s	47,8725	35,0214	29,7859	24,1309	13,0697	9,6724	6,8352	5,4778
Excentricidad ⁵		0,20563069	0,00677323	0,01671022	0,09341233	0,04839266	0,05415060	0,04716771	0,00858587
Inclinación	O	7,00487	3,39471	0,00005	1,85061	1,30530	2,48446	0,76986	1,76917
Inclinación axial	O	0,0	177,3	23,45	25,19	3,12	26,73	92,86	29,58
Temperatura media en superficie	×	440	730	288/293	186 / 268	152	134	92	53
Temperatura media en superficie	O	166.85	456,85	14,85/19,85	-87,15/-5,15	-121,15	-139,15	-197,15	-220,15
Temperatura media del aire ⁶	×			288		165	135	92	73
Temperatura media del aire ⁶	O			14,85		-108,15	-138,15	-197,15	-200,15
Composición de la Atmósfera	g.	He Na⁺ P⁺	96% CO ₂ 3% N ₂ 0,1% H ₂ O 78% N ₂ 21% O ₂	78% N ₂ 21% O ₂ 1% Ar	95% CO ₂ 3% N ₂ 1,6% Ar	1% Ar 95% CO $_2$ 3% N $_2$ $1,6\%$ Ar 90% H $_2$ 10% He, trazas de CH $_4$ 96% H $_2$ 3% He 0.5% CH $_4$ 84% H $_2$ 14% He 2% CH $_4$ 75% H $_2$ 25% He 1% CH $_4$	96% H ₂ 3% He 0.5% CH ₄	84% H ₂ 14% He 2% CH ₄	75% H ₂ 25% He 1% CH ₄
Número de lunas conocidas	S	0	0	-	2	63	61	27	13
Anillos		N	No	No	No	S	is	is	ïS
Discriminante planetario ⁷		9,1×10 ⁴	1,35×10 ⁶	1,7×10 ⁶	1,8×10 ⁵	6,25×10 ⁵	1,9×10 ⁵	2,9×10 ⁴	2,4×10 ⁴