Eksamen på Økonomistudiet vinteren 2019-20

Sandsynlighedsteori og Statistik

2. årsprøve

14. februar, 2020

(3-timers prøve med hjælpemidler)

Dette eksamenssæt består af 4 sider inkl. denne forside. Til dette eksamenssæt hører 0 bilag.

Syg under eksamen:

Bliver du syg under selve eksamen på Peter Bangs Vej, skal du

- kontakte en eksamensvagt for at få hjælp til registreringen i systemet som syg og til at aflevere blankt.
- forlade eksamen
- kontakte din læge og indsende lægeerklæring til Det Samfundsvidenskabelige Fakultet senest 5 dage efter eksamensdagen.

Pas på, du ikke begår eksamenssnyd!

Det er eksamenssnyd, hvis du under prøven

- Bruger hjælpemidler, der ikke er tilladt
- Kommunikerer med andre eller på anden måde modtager hjælp fra andre
- Kopierer andres tekster uden at sætte citationstegn eller kildehenvise, så det ser ud som om det er din egen tekst
- Bruger andres idéer eller tanker uden at kildehenvise, så det ser ud som om det er din egen idé eller dine egne tanker
- Eller hvis du på anden måde overtræder de regler, der gælder for prøven

Du kan læse mere om reglerne for eksamenssnyd på Din Uddannelsesside og i Rammestudieordningens afs. 4.12.

Opgaven består af tre delopgaver, som alle skal besvares. De tre opgaver kan regnes uafhængigt af hinanden. Opgave 1 og 2 indgår tilsammen med samme vægt som opgave 3.

Opgave 1

Vi får angivet den simultane sandsynlighedsfunktion for to stokastiske variable, $X \in \{0, 1\}$ og $Y \in \{1, 2\}$ i nedenstående tabel.

Tabel 1: Simultan Sandsynlighedsfunktion, p(x, y).

	X = 0	X = 1	
Y=1	0.47	0.18	0.65
Y=2	0.09	0.26	0.35
	0.56	0.44	1

- 1. Beregn $\mathbb{E}(Y|X=0)$.
- 2. Beregn $\mathbb{E}(Y)$ og $\mathbb{E}(X)$.
- 3. Beregn Var(Y).
- 4. Beregn Cov(X, Y).

Opgave 2

Betragt to stokastiske variable $X \in \mathbb{R}$ og $Y \in \mathbb{R}$, som vi antager er bivariat Normalfordelt med middelværdier $\mathbb{E}[X] = \mu_X$ og $\mathbb{E}[Y] = \mu_Y$, varianser $Var(X) = \sigma_X^2$ og $Var(Y) = \sigma_Y^2$, samt covarians $Cov(X,Y) = \sigma_{X,Y}$.

- 1. Lad M = 1 + 2X 3Y. Hvad er middelværdien, $\mathbb{E}[M]$, og variansen af M, Var(M), og hvilken fordeling følger M?
- 2. Hvis $\mu_X=0.1, \ \mu_Y=0.5, \ \sigma_X^2=0.2, \ \sigma_Y^2=0.5$ og $\sigma_{X,Y}=0.1,$ hvad er så den betingede middelværdi af Y givet X er $0, \ \mathbb{E}[Y|X=0]$
- 3. Forklar hvorfor $\mathbb{E}[Y|X=0] < \mathbb{E}[Y]$ i spørgsmålet ovenover.
- 4. Lad $Z = \exp(X)$. Hvad er tæthedsfunktionen for Z?

Opgave 3

Vi er blevet kontaktet af et stor dansk el-selskab, der ønsker at analysere deres kunders daglige el-forbrug. De har til det formål indsamlet data for n=178 kunder's daglige el-forbrug som en andel af kundens samlede forbrug i alt den dag. Vi lader $Y_i \in (0,1)$ angive el-forbrugs andelen for kunde i. El-selskabet oplyser, at den gennemsnitlige log-forbrugsandel i deres data er $\frac{1}{178} \sum_{i=1}^{178} \log(y_i) = -0.3634$. Til at udføre vores analyse vil vi antage at forbrugsandelen følger tæthedsfunktionen

$$p(y) = [\exp(\theta) + 1]y^{\exp(\theta)}, y \in (0, 1)$$

som vi kalder den modificerede beta-fordeling

$$Y_i \sim \text{ModBeta}(\theta)$$

for alle i. Vi antager at alle forbrugernes el-forbrugs andele er uafhængige.

- 1. Opskriv likelihood bidragene for hver kunde, $\ell(\theta|y_i)$, log-likelihood bidragene for hver kunde og log-likelihood funktionen.
- 2. Angiv første ordens betingelsen (FOC) for maksimering af log-likelihood funktionen og udled maximum likelihood estimatoren, $\hat{\theta}_Y = \hat{\theta}(Y_1, \dots, Y_{178})$ for den givne model. Brug derefter information givet i opgaveteksten til at beregne estimatet, $\hat{\theta}_y = \hat{\theta}(y_1, \dots, y_{178})$, for de n = 178 observationer, vi har fået givet.
- 3. Angiv bidraget fra hver kunde til Hesse-matricen og beregn variansen på estimatoren fundet i forrige spørgsmål, $Var(\hat{\theta}_Y)$.
 - **Brug** at vi får at vide, at informationen er $I(\theta) \approx 0.4055$.
- Følgende STATA-kode er blevet kørt og har genereret outputtet herunder mlexp(log(exp({theta}) + 1) + exp({theta})*log(y))
 Vi ser, at estimatet er θ̂_y = 0.560 og standard afvigelsen er se(θ̂_Y) = 0.1177.
 Brug den estimerede model til at beregne, hvad sandsynligheden er for, at en tilfældig kunde's elforbrug højest udgør halvdelen af kunden's samlede forbrug, P(Y_i ≤ 0.5).

Maximum likeliho Log likelihood =	 	Number o	f obs	=	178
·	Std. Err.		2 - 10		· · · · · -
/theta	0.1177402				

5. Vi får nu oplyst, at virksomheden ønsker at undersøge, om forbruget er forskelligt i weekenden i forhold til hverdagene. Til det formål har el-selskabet registreret hvilken dag på ugen, forbrugsandelen er registreret. Vi vil lade $D_i = 1$ angive at forbruget er foretaget en weekend og $D_i = 0$ ellers. Vi har nu oplysninger om både forbrugsandelen og ugedagen, $\{y_i, d_i\}_{i=1}^{178}$. Vi er nu interesseret i den betingede model

$$Y_i|D_i \sim \text{ModBeta}(\theta + \delta D_i).$$

Opskriv log-likelihood funktionen for den betingede model.

- 6. Hvad siger det om el-forbruget, hvis $\delta \neq 0$?
- Angiv hvordan STATA-koden fra tidligere kunne ændres for at estimere den betingede model.
- 8. Vi får nu følgende estimations-output fra STATA ved estimation af den betingede model ovenover. Test om der er en signifikant forskel på el-forbrugsandele på tværs af weekend og hverdage.

Vær præcis med hypoteser, teststørrelse og kritisk værdi.

Maximum likeli Log likelihood				Number	of obs	=	178
 		Std. Err.					
/theta	0.31883		1.67	0.095	-0.054 -0.012	19649	0.6926248 0.9356984