DSCI 101 Midterm Exam

(!) This is a preview of the published version of the quiz

Started: Jun 21 at 6:41pm

Quiz Instructions

Exam rules:

- You may access any course material, including slides, demos, notes, and lab assignments.
- You may access other related books or reference material you can find.
- You may also passively use the internet. You may search the internet for material, but you cannot post a question and ask for help, including ChatGPT or other AI tools for help.
- · Your timer will start once you click Take the Quiz.

You are working on a project to understand the compensation level of government employees in Texas. You have the following overarching questions:

- What is the median salary of full-time government employees in recent years?
- How does the median salary differ based on various factors, such as demographics, job types, employment experiences, etc?

To help answer these questions, you discovered this data set of compensation for Texas state employees published online (government employees' salary is public information). For your convenience, here is a snapshot of the data file in a CSV file:

Each row in this data is one Texas state employee compensation record in the year 2023, and columns include variables whose names are mostly self-explanatory. Here are some important variables:

- NAME: the organization name which the employee belongs to
- · LASTNAME, FIRSTNAME, and MI: name of the employee
- JC TITLE: job title
- RACE and SEX: basic demographic info of the employee
- EMPTYPE: employment type as classified/unclassified/regular/temporary etc.
- HIREDT: month/day/year of hire
- RATE: hourly rate if available
- HRSWKD: number of hours worked per week

6/21/24, 6:41 PM Quiz: DSCI 101 Midterm Exam

MONTHLY: monthly compensation
ANNUAL: annual compensation
:: Question 1 4 pts
Finding this data set is corresponding to which stage of the data science pipeline?
Tilluling this data set is somesponding to which stage of the data science pipeline:
Data wrangling and exploration.
Cormulate guartiana and identify or collect data
Formulate questions and identify or collect data.
Modeling and model validation.
Interpret and communicate results.
::
Question 2.4 pts
Suppose this data set includes ALL Texas state employees currently employed, and you start your question:
 What is the median salary of full-time Texas state employees in 2023?
What type of data science questions is this?
Descriptive and exploratory.
None of them.
Predictive and decision-making.

O Inferential

Inferential and causal.

Question 3 4 pts

Suppose this data set only includes a SAMPLE of Texas state employees currently employed, and you start your question:

• What is an estimated range of the median salary of full-time Texas state employees in 2023?

What type of data science questions is this?

 \bigcirc

Descriptive and exploratory.

 \bigcirc

Predictive and decision-making.

 \bigcirc

None of them.

0

Inferential and causal.

Question 4 4 pts

You started data wrangling and exploration to help answer some of your questions. Which of the following lines of code will read this **2023-07-01.csv** file into Python Pandas and save it as a dataframe named **tx_salary**?

 \bigcirc

tx_salary = pd.read_csv("2023-07-01.csv")

 \bigcirc

pd.read_csv("2023-07-01.csv")

 \bigcirc

tx_salary = pd.read_csv(2023-07-01.csv)

tx_salary == pd.read_csv("2023-07-01.csv")

Question 5 4 pts

Now that you have read in the data and saved this dataframe named tx_salary, what does the following two lines of Python code returns?

- 1. type(tx_salary)
- 2. type("tx_salary")

0

1 returns dataframe, and 2 returns error message.

 \bigcirc

1 returns dataframe, and 2 returns string.

0

Both return dataframe.

0

Both return error message.

Question 6 4 pts

Which of the following df.method allows you to see all the column names and their corresponding data types in Python, an output looks like this:

	•
AGY	int64
NAME	object
LASTNAME	object
FIRSTNAME	object
MI	object
JOBCLASS	object
JC TITLE	object
RACE	object
SEX	object
EMPTYPE	object
HIREDT	object
RATE	float64
HRSWKD	float64
MONTHLY	float64
ANNUAL	float64

C

tx_salary.astype

0

tx_salary.dtypes

tx_salary.shape

 \bigcirc

tx_salary.columns

Question 7 4 pts

Based on the previous question, what is the data type for the column *HIREDT*?

 \bigcirc

Float numbers

 \bigcirc

Pandas datetime.

 \bigcirc

Integer numbers.

 \bigcirc

String or mixed type.

Question 8 4 pts

Suppose the data only includes those who are currently employed. Which is the correct code to find the record of TX governor in the data, shown as the row below?

- 1. tx_salary["JC TITLE"]=="GOVERNOR"
- 2. tx_salary[tx_salary["JC TITLE"]=="GOVERNOR"]

AGY	NAME	LASTNAME	FIRSTNAME	MI	JOBCLASS	JC TITLE	RACE	SEX	EMPTYPE	HIREDT	RATE	HRSWKD	MONTHLY	ANNUAL
301	OFFICE OF THE GOVERNOR	ABBOTT	GREGORY	W	G030	GOVERNOR	WHITE	MALE	ERF - EXEMPT REGULAR FULL- TIME	01/20/15	0.0	40.0	12812.5	153750.0

	_
	$\overline{}$
()
_	_

Both 1 and 2.

 \bigcirc

Neither 1 or 2.

0

2 only.

 \bigcirc

1 only.

Question 9 4 pts

How to sort the data by annual salary so that the highest ones are on top? See the top 3 highest annual salaries in the data below:

AGY	NAME	LASTNAME	FIRSTNAME	MI	JOBCLASS	JC TITLE	RACE	SEX	EMPTYPE	HIREDT	RATE	HRSWKD	MONTHLY	ANNUAL
323	TEACHER RETIREMENT SYSTEM	AUBY	JASE	R	C204	CHIEF INVESTMENT OFFICER	WHITE	MALE	ERF - EXEMPT REGULAR FULL- TIME	11/09/09	0.0	40.0	54166.66	649999.92
542	CANCER PREVENTION AND RESEARCH INSTITUTE OF TEXAS	LE BEAU	MICHELLE	NaN	C542	CHIEF SCIENTIFIC OFFICER	WHITE	FEMALE	ERF - EXEMPT REGULAR FULL- TIME	10/11/21	0.0	40.0	50737.50	608850.00
323	TEACHER RETIREMENT SYSTEM	GUTHRIE	BRIAN	K	E176	EXECUTIVE DIRECTOR	WHITE	MALE	ERF - EXEMPT REGULAR FULL- TIME	10/01/08	0.0	40.0	41666.66	499999.92

 \bigcirc

tx_salary.sort_values('ANNUAL', ascending=False)

0

tx_salary.sort_values('ANNUAL', ascending=True)

tx_salary.sort_index('ANNUAL', ascending=False) tx_salary.sort_index(ascending=False) Question 10 4 pts Suppose a string method str.contains('substring') will return True if the substring can be matched in the input string, otherwise returns False. For example: my str = ['DSCI101midterm exam', 'is', 'so much', 'fun'] my str.str.contains('exam') returns [True, False, False, False] What does the following line of code return? tx_salary[tx_salary['JC TITLE'].str.contains('ACTUARY')]['ANNUAL'].mean() One row with all columns. One column with some rows. One column with all rows. One number. Question 11 4 pts What does the following cell of code return?

 \bigcirc

Empty dataframe with only column names but no rows.

 \bigcirc

Rows where hours worked per week is more than 40 hours.

 \bigcirc

Annual salary number for rows where hours worked per week is less than 40 hours.

 \bigcirc

Rows where hours worked per week is less than 40 hours.

Question 12 4 pts

You try the following code, and see the output below:

```
tx_salary_ft = tx_salary[tx_salary['HRSWKD']>=40]
tx_salary_ft_20 = tx_salary_ft[tx_salary_ft['HIREDT']>='1/1/20']
tx_salary_ft_20
```

AGY	NAME	LASTNAME	FIRSTNAME	MI	JOBCLASS	JC TITLE	RACE	SEX	EMPTYPE	HIREDT	RATE
101	SENATE	HERNANDEZ	PETE	NaN	7103	LEG. SERVICE/MAINTENANCE	HISPANIC	MALE	URF - UNCLASSIFIED REGULAR FULL-TIME	10/19/22	0.0
696	TEXAS DEPARTMENT OF CRIMINAL JUSTICE	FORD	LISA	М	0156	ADMINISTRATIVE ASSISTANT IV	WHITE	FEMALE	CRF - CLASSIFIED REGULAR FULL-TIME	10/26/22	0.0
529	HEALTH AND HUMAN SERVICES COMMISSION	LIGGINS	DEMETRIA	S	1323	INSPECTOR III	BLACK	FEMALE	CRF - CLASSIFIED REGULAR FULL-TIME	12/07/22	0.0
101	SENATE	ALBERS	FRANCES	N	7104	LEGISLATIVE PROFESSIONAL	WHITE	FEMALE	URF - UNCLASSIFIED REGULAR FULL-TIME	10/01/14	0.0
101	SENATE	ALMAGUER	FRANK	NaN	7106	LEGISLATIVE PROTECTIVE SERVICE	HISPANIC	MALE	URF - UNCLASSIFIED REGULAR FULL-TIME	11/10/14	0.0

Notice the 4th and 5th rows showing here with a hire date before 1/1/20, why and what is wrong here?

The two conditions for filtering should be combined with | (logical operator OR).

The two conditions for filtering should be combined with & (logical operator AND).

'HIREDT' column is a string type in this case, so >= '1/1/20' does not compare dates correctly.

 \bigcirc

 \bigcirc

Need to filter on 'HIREDT' first, then filter on 'HRSWKD' second.

Question 13 4 pts

How to correctly filter on *HIREDT* column?

- 1. Use str.split to split the string by '/', extract the year and convert to integers.
- 2. Use pd.to datetime to convert the 'HIREDT' column to datetime type, then can extract year as integers.

Only.

 \bigcirc

Neither 1 or 2 will work.

) 2 and

2 only.

 \bigcirc

Either 1 or 2 could work.

Question 14 4 pts

Now suppose you have correctly filtered out all the full-time employees hired in 2020 or later and named this new dataframe as $tx_salary_ft_20$. Next you want to do a sanity check to understand the relation between columns MONTHLY and ANNUAL. What does the following code return?

np.sum(tx_salary_ft_20['MONTHLY']*12 == tx_salary_ft_20['ANNUAL'])

 \bigcirc

The number of rows whose annual salary is monthly salary times 12.

0

A dataframe with rows whose annual salary is monthly salary times 12.

 \bigcirc

The number of rows whose annual salary is NOT monthly salary times 12.

 \bigcirc

A dataframe with rows whose annual salary is NOT monthly salary times 12.

Question 15 4 pts

After investigating and reaching out to the data source, you come to the conclusion that the **ANNUAL** column is not to be trusted. Rather you will calculate the correct annual number by multiplying monthly salaries by 12, and save it as a column in **tx_salary_ft_20** as **ANNUAL CORRECT**. Which is the correct code to do this?

 \bigcirc

tx_salary_ft_20['ANNUAL_CORRECT'] = tx_salary_ft_20['MONTHLY']*12

 \bigcirc

tx_salary_ft_20['ANNUAL'] = tx_salary_ft_20['MONTHLY']*12

 \bigcirc

tx_salary_ft_20['ANNUAL_CORRECT'] = tx_salary_ft_20['MONTHLY']

0

none of them is correct, needs to use a for loop to calculate each monthly number times 12.

Question 16 4 pts

You want to check if there are any missing values in *tx_salary_ft_20*, if so, you want to find how many missing values are there in each column. Which of the following code will return this?

 \bigcirc

tx_salary_ft_20.isna()

 \mathcal{C}

tx_salary_ft_20[tx_salary_ft_20.isna()]

 \bigcirc

tx_salary_ft_20.isna().any()

tx_salary_ft_20.isna().sum()

Question 17 4 pts

It looks like there are no missing values except the column MI for the middle initial, which you don't really care about. Next, you want to create one data visualization to explore the distribution of the monthly salary. Which of the following plots is the best choice?

A histogram.

A bar plot.

A scatter plot.

A line plot.

Question 18 4 pts

Which is the correct code to generate this output where the **MONTHLY** column shows the median monthly salary for each race?

MONTHLY

RACE

AM INDIAN	3816.650
ASIAN	5100.000
BLACK	3748.000
HISPANIC	3750.000
OTHER	3649.830
WHITE	3946.845

tx_salary_ft_20[['MONTHLY', 'RACE']].groupby('RACE').median()

tx_salary_ft_20[['MONTHLY', 'RACE']].groupby('RACE').mean()

tx_salary_ft_20[['MONTHLY', 'RACE']].groupby('MONTHLY').mean()

tx_salary_ft_20[['MONTHLY', 'RACE']].groupby('MONTHLY').median()

Question 19 4 pts

Which is the correct code to generate this exact output to show the median monthly salary for each race and gender?

SEX	FEMALE	MALE
RACE		
AM INDIAN	3816.65	3881.13
ASIAN	5205.74	4748.95
BLACK	3670.64	3776.91
HISPANIC	3602.00	3776.91
OTHER	3574.18	3776.91
WHITE	3843.18	4002.89

This is real data! Good job, Asian females:)

tx_salary_ft_20.pivot_table(index='RACE', columns='SEX', values='MONTHLY', aggfunc='median')

tx_salary_ft_20.pivot_table(index='SEX', columns='RACE', values='MONTHLY', aggfunc='median')

tx_salary_ft_20.pivot_table(index='RACE', columns='SEX', values='median', aggfunc='MONTHLY')

tx_salary_ft_20.pivot_table(index='RACE', columns='SEX', values='MONTHLY', aggfunc='mean')

Question 20 4 pts

The dataframe *tx_salary_ft* includes all the full-time employees that work for at least 40 hours per week, with the hire date back to several decades. To explore the median income by year, you want to add a new column in *tx_salary_ft* named *HIREYR* to code the year as integers correctly. Which is the correct code do this?

```
tx_salary_ft['HIREYR'] = tx_salary['HIREDT'].str.split('/')

tx_salary_ft['HIREYR'] = pd.to_datetime(tx_salary['HIREDT'])

tx_salary_ft['HIREYR'] = pd.to_datetime(tx_salary['HIREDT']).dt.year

pd.to_datetime(tx_salary['HIREDT']).dt.year

:::
```

Question 21 4 pts

You decide to only look at the salary for employees hired in 2000 and later. So you create a new data frame by filtering on the hire year between 2000 to 2023, named *tx_salary_ft_yr*. You want to look at this trend by year and compare male and female employees, a plot looks like this:

Which is the correct code to create this plot (you can ignore adding title and label details)?

tx_salary_ft_yr.pivot_table(index='HIREYR', columns='SEX', values='MONTHLY', aggfunc='median').plot();

```
C
tx_salary_ft_yr.pivot_table(index= 'SEX', columns='HIREYR', values='MONTHLY', aggfunc='median').plot();
C
tx_salary_ft_df[['SEX', 'HIREYR', 'MONTHLY']].groupby('HIREYR').median().plot();
Ctx_salary_ft_df[['SEX', 'HIREYR', 'MONTHLY']].groupby('SEX').median().plot();
```

Question 22 4 pts

How would you find the top 10 TX government organizations that pay the highest average monthly salary? See the results below.

MONTHLY

NAME

TEXAS PERMANENT SCHOOL FUND CORPORATION	13003.836979
COMPTROLLER OF PUBLIC ACCOUNTS, JUDICIARY SECTION	12898.633505
TREASURY SAFEKEEPING TRUST COMPANY	10633.872073
CANCER PREVENTION AND RESEARCH INSTITUTE OF TEXAS	10307.882000
FIFTH COURT OF APPEALS DISTRICT	9765.014255
TENTH COURT OF APPEALS DISTRICT	9695.005000
TWELFTH COURT OF APPEALS DISTRICT	9604.923636
FOURTEENTH COURT OF APPEALS DISTRICT	9583.593784
SIXTH COURT OF APPEALS DISTRICT	9471.692727
FIRST COURT OF APPEALS DISTRICT	9367.909459

```
color="block" color="blo
```

Question 23 4 pts

You would like to create a function for visualization. In particular, you would like to pick any demographic group (race and sex), and then look at the median salary for different hire years as a line plot. For example, if you pick black females, your function would create a plot like below:

In addition to the dataframe, what would be some important inputs for your function?

 \bigcirc

Hire year.

No inputs needed.

monthly salary.

 \bigcirc

Race and sex.

Question 24 4 pts

You want to investigate which job title has the most unequal pay for sex. Your plan is to find the median monthly salary for different job titles for both male and female groups, then use the ratio of female/male salary as a measure for unequal pay. See some of the results below:

SEX	FEMALE	MALE	FEMALE/MALE
JC TITLE			
CHIEF INVESTMENT OFFICER	26666.67	54166.660	0.49
PROG III	4582.55	7100.000	0.65
INVESTMENT ANLYST I	4301.16	6666.670	0.65
DATA ARCHITECT II	9000.00	13716.000	0.66
ASSISTANT DIRECTOR	7813.80	11687.505	0.67
EMERG MGT PROGRAM COORD V	5565.00	7979.180	0.70
CHAPLAIN III	4735.26	6579.410	0.72
DOCUMENT SERVICES TECH II	2338.70	3260.495	0.72
ASSISTANT GENERAL COUNSEL	7800.00	10875.005	0.72
RECORDS ANALYST III	3652.99	4988.630	0.73

Please select the correct code below in the correct order to create this dataframe.

```
1. my_df = tx_salary_ft_df[ (tx_salary_ft_df['SEX'] == 'FEMALE' ) | (tx_salary_ft_df['SEX'] == 'MALE' )]
```

- 2. my_df.sort_values(by = 'FEMALE/MALE')
- 3. my_df = tx_salary_ft_df['SEX', 'MONTHLY']. groupby('SEX').meadian()
- 4. my_df = tx_salary_ft_df.pivot_table(index='JC TITLE', columns='SEX', values='MONTHLY', aggfunc='median')
- 5. my_df = tx_salary_ft_df['JC TITLE', 'MONTHLY']. groupby("JC TITLE',').meadian()
- 6. my_df['FEMALE/MALE'] = my_df['FEMALE'] / my_df['MALE']

 \circ

1 - 3 - 6 - 2

 \bigcirc

1 - 6 - 2

 \bigcirc

4 - 6 - 2

 \bigcirc

1 - 3 - 4 - 6 - 2

Question 25 4 pts

You further investigate the unequal pay issue by looking into the job title *CHIEF INVESTMENT OFFICER*, which has the most unequal pay between male and female employees. You use code to get all the employees with that particular job title, and see the results below:

	AGY	NAME	LASTNAME	FIRSTNAME	МІ	JOBCLASS	JC TITLE	RACE	SEX	EMPTYPE	HIREDT	RATE	HRSWKD	MONTHLY
17500	323	TEACHER RETIREMENT SYSTEM	AUBY	JASE	R	C204	CHIEF INVESTMENT OFFICER	WHITE	MALE	ERF - EXEMPT REGULAR FULL-TIME	11/09/09	0.0	40.0	54166.66
146219	930	TREASURY SAFEKEEPING TRUST COMPANY	ION	ANCA	М	1165	CHIEF INVESTMENT OFFICER	WHITE	FEMALE	URF - UNCLASSIFIED REGULAR FULL-TIME	08/24/05	0.0	40.0	26666.67

It turns out there are only two employees with that job title! Similarly, you looked up all the job titles listed in the Question above, and all of them have a small number of employees (mostly fewer than 20). You realized to better investigate gender unequal pay, you should focus on job titles that have a large number of employees. Which is the correct code to find a list of 50 job titles with the most number of employees?

```
top_title = tx_salary_ft['JC TITLE'].value_counts().sort_index().head(50)

top_title = tx_salary_ft['JC TITLE'].value_counts().head(50).index

top_title = tx_salary_ft['JC TITLE'].value_counts().sort_index()

top_title = tx_salary_ft['JC TITLE'].value_counts().index.head(20)
```

Not saved

Submit Quiz