

Algoritmia Avanzada

Sesión 6

Single-Source Shortest Path Algorithms

Yoan Pinzón, PhD

Universidad Nacional de Colombia http://disi.unal.edu.co/~ypinzon/2019762/

© 2012

Session 6

- Shortest Paths
 - - ♦ The Dijkstra's Algorithm
 - ♦ The Bellmand-Ford Algorithm

Single-Source Shortest Paths (SSSP)

Compute the shortest paths, that is, paths with the smallest total weight, from s to all other vertices.

- G = (V, E): directed graph; n = |V|, m = |E|
- w(u,v): the weight of edge (u,v)
- $s \in V$: the source vertex

The Dijkstra's Algorithm

by Edsger Wybe Dijkstra, 1959

Dijkstra's algorithm solves the SSSP problem for the case in which all edge weights are nonnegative.

▶ Pseudo-code:

```
\mathrm{DIJKSTRA}(G,w,s)
           for each vertex v \in V[G]
                 \begin{array}{c} \operatorname{do} \ d[v] \leftarrow \infty \\ \pi[v] \leftarrow \operatorname{NIL} \end{array}
          S \leftarrow \emptyset
        Q \leftarrow V[G]
        while Q \neq \emptyset
 8
                 do u \leftarrow \text{Extract-Min}(Q)
                        S \leftarrow S \cup \{u\}
                        for each vertex v \in Adj[u]
10
                              do Relax(u, v, w)
11
Relax(u, v, w)
          if d[v] > d[u] + w(u, v)
then d[v] \leftarrow d[u] + w(u, v)
                        \pi[v] \leftarrow u
```

▶ Time Complexity: $O(m \log n)$

The Dijkstra's Algorithm

Time Complexity Analysis

lines 1-6 takes $\Theta(n)$. For each edge (u,v), $\operatorname{ReLax}(u,v)$ is performed exactly once. Note that $n-1 \leq m \leq n(n-1)$, so $m=\Omega(n)$ and $m=O(n^2)$. We can implement Q in two ways:

1) Q implemented as unordered list:

- One Extract-Min(Q): O(n), all of them $O(n^2)$
- One Relax(u,v): O(1), all of them O(m)
- The total running time: $\Theta(n) + O(n^2) + O(m) = O(n^2)$

2) Q implemented as a heap:

- One Extract-Min(Q): $O(\log n)$, all of them $O(n \log n)$
- One Relax(u,v): $O(\log n)$ (since may involve one Decrease-Key operation), all of them $O(m\log n)$
- The total running time: $\Theta(n) + O(n \log n) + O(m \log n) = O(m \log n)$

The Dijkstra's Algorithm Example

Find the SSSP for the following graph.

0) $Q = \{s, u, v, x, y\}, S = \{\}$

 $egin{array}{cccc} s & 0/0 \ u & \infty/0 \ v & \infty/0 \ x & \infty/0 \ y & \infty/0 \end{array}$

- **0)** $Q = \{s, u, v, x, y\}, S = \{\}$ pickup s
- **1)** $Q = \{u, v, x, y\}, S = \{s\}$

Yoan Pinzón

- **0)** $Q = \{s, u, v, x, y\}, S = \{\}$ pickup s
- 1) $Q = \{u, v, x, y\}, S = \{s\}$ pickup x
- **2)** $Q = \{u, v, y\}, S = \{s, x\}$

- **0)** $Q = \{s, u, v, x, y\}, S = \{\}$ pickup s
- 1) $Q = \{u, v, x, y\}, S = \{s\}$ pickup x
- 2) $Q = \{u, v, y\}, S = \{s, x\}$ pickup y
- **3)** $Q = \{u, v\}, S = \{s, x, y\}$

- **0)** $Q = \{s, u, v, x, y\}, S = \{\}$ pickup s
- 1) $Q = \{u, v, x, y\}, S = \{s\}$ pickup x
- 2) $Q = \{u, v, y\}, S = \{s, x\}$ pickup y
- 3) $Q = \{u, v\}, S = \{s, x, y\}$ pickup u
- **4)** $Q = \{v\}, S = \{s, x, y, u\}$

- **0)** $Q = \{s, u, v, x, y\}, S = \{\}$ pickup s
- 1) $Q = \{u, v, x, y\}, S = \{s\}$ pickup x
- 2) $Q = \{u, v, y\}, S = \{s, x\}$ pickup y
- 3) $Q = \{u, v\}, S = \{s, x, y\}$ pickup u
- **4)** $Q = \{v\}, S = \{s, x, y, u\}$ pickup v
- **5)** $Q=\{\}, S=\{s,x,y,u,v\}$

0)
$$Q = \{s, u, v, x, y\}, S = \{\}$$
 pickup s

1)
$$Q = \{u, v, x, y\}, S = \{s\}$$
 pickup x

2)
$$Q = \{u, v, y\}, S = \{s, x\}$$
 pickup y

3)
$$Q = \{u, v\}, S = \{s, x, y\}$$
 pickup u

4)
$$Q = \{v\}, S = \{s, x, y, u\}$$
 pickup v

5)
$$Q=\{\}, S=\{s,x,y,u,v\}$$

$$d = \begin{bmatrix} s & u & v & x & y \\ 0 & 8 & 9 & 5 & 7 \end{bmatrix} \delta(s,u)$$

$$\pi = \begin{bmatrix} s & u & v & x & y \\ 0 & x & u & s & x \end{bmatrix} PARENT[u]$$

The Dijkstra's Algorithm Solution

The Bellman-Ford Algorithm

by Richard Ernest Bellman and Lester Randolph Ford, 1958

Bellman-Ford algorithm solves the SSSP problem for the general case in which edge weights may be negative.

▶ Pseudo-code:

```
Bellmand-Ford(G,w,s)

1 for each vertex v \in V[G]

2 do d[v] \leftarrow \infty

3 \pi[v] \leftarrow \text{NIL}

4 d[s] \leftarrow 0

5 for i \leftarrow 1 to n-1 do

6 for each edge (u,v) \in E do

7 Relax(u,v,w)

8 for each edge (u,v) \in E do

9 if d[v] > d[u] + w(u,v) then return FALSE return TRUE
```

▶ Time Complexity: $\Theta(mn)$

The Bellmand-Ford Algorithm Example

Find the SSSP for the following graph.

(u,v) (u,x) (u,y) (v,u) (x,v) (x,y) (y,v) (y,s) (s,u) (s,x)

 $egin{array}{cccc} & & \mathbf{0} \ s & & 0/0 \ u & & \infty/0 \ v & & \infty/0 \ x & & \infty/0 \ y & & \infty/0 \ \end{array}$

(u,v) (u,x) (u,y) (v,u) (x,v) (x,y) (y,v) (y,s) (s,u) (s,x)

```
egin{array}{ccccc} & {f 0} & {f 0} & {f 1} \ s & 0/0 & 0/0 \ u & \infty/0 & 6/s \ v & \infty/0 & \infty/0 \ x & \infty/0 & 7/s \ y & \infty/0 & \infty/0 \ \end{array}
```


edge order	(u, v) (u, x) (u, y) (v, u) (x, y) (y, v) (y, s) (s, u) (s, x)
------------	--

	0	1	2
s	0/0	0/0	0/0
u	$\infty/0$	6/s	6/s
v	$\infty/0$	$\infty/0$	4/x
\boldsymbol{x}	$\infty/0$	7/s	7/s
y	$\infty/0$	$\infty/0$	2/u

(u,v) (u,x) (u,y) (v,u) (x,v) (x,y) (y,v) (y,s) (s,u) (s,x)

	0	1	2	3
s	0/0	0/0	0/0	0/0
u	$\infty/0$	6/s	6/s	2/v
v	$\infty/0$	$\infty/0$	4/x	4/x
\boldsymbol{x}	$\infty/0$	7/s	7/s	7/s
y	$\infty/0$	$\infty/0$	2/u	2/u

(u,v) (u,x) (u,y) (v,u) (x,v) (x,y) (y,v) (y,s) (s,u) (s,x)	
---	--

	0	1	2	3	4
s	0/0	0/0	0/0	0/0	0/0
u	$\infty/0$	6/s	6/s	2/v	2/v
v	$\infty/0$	$\infty/0$	4/x	4/x	4/x
\boldsymbol{x}	$\infty/0$	7/s	7/s	7/s	7/s
y	$\infty/0$	$\infty/0$	2/u	2/u	-2/u

(u,v) (u,x) (u,y) (v,u) (x,v) (x,y) (y,v) (y,s) (s,u) (s,x)

$$d = \begin{bmatrix} s & u & v & x & y \\ 0 & 2 & 4 & 7 & -2 \end{bmatrix} \delta(s,u)$$

$$\pi = \begin{bmatrix} s & u & v & x & y \\ 0 & v & x & s & u \end{bmatrix} PARENT[u]$$

The Bellmand-Ford Algorithm Solution

The Bellman-Ford Algorithm returns TRUE in this example.