A Zonotopal Interpretation of Power in Weighted Voting Systems

Catherine Stenson, Juniata College

Party	No. of seats
Kadima	28
Likud - Ahi	27
Yisrael Beytenu	15
Labor	13
Shas	11
United Torah Judaism	5
(6 other parties	
with 4 or fewer seats)	

Table: Current seats in the Israeli Knesset. A coalition of 60 is needed to form a government.

Definition

A weighted voting system $[q; v_1, v_2, \ldots, v_n]$ has n players P_1, P_2, \ldots, P_n . Player P_i has v_i votes $(v_1 \geq v_2 \geq \cdots \geq v_n \geq 0)$, and the number of votes needed to pass a measure is q, the quota.

In addition,

- $q > \frac{v_1 + v_2 + \cdots + v_n}{2}$
- $q \le v_2 + v_3 + \cdots + v_n$ (no veto power.)

As a consequence, no player can pass a measure alone.

A set of players that can pass a measure is a *winning coalition*; a set of players that cannot pass a measure is a *losing coalition*.

Definition

A player P_i is *critical* to a winning coalition if that coalition would lose without P_i .

Example

[103; 76, 51, 42, 36] $\{P_1, P_3, P_4\}$ is a winning coalition since $76 + 42 + 36 = 154 \ge 103$.

- P_1 is critical, since $\{P_3, P_4\}$ is a losing coalition.
- P_3 is not critical, since $\{P_1, P_4\}$ is a winning coalition.
- P_4 is not critical, since $\{P_1, P_3\}$ is a winning coalition.

Definition

The Banzhaf Power Index of a player P_i is

$$BPI(P_i) = \frac{\# \text{ of times } P_i \text{ is critical}}{\text{total } \# \text{ of critical instances for all players}}$$

Example [103; 76, 51, 42, 36]

Winning Coalitions	Critical Players
$\{P_1, P_2, P_3, P_4\}$	None
$\{P_1, P_2, P_3\}$	P_1
$\{P_1, P_2, P_4\}$	P_1
$\{P_1, P_3, P_4\}$	P_1
$\{P_2, P_3, P_4\}$	P_2, P_3, P_4
$\{P_1,P_2\}$	P_1, P_2
$\{P_1, P_3\}$	P_{1}, P_{3}
$\{P_1,P_4\}$	P_1, P_4

There are 12 critical instances in all, 6 for player P_1 and 2 each for the other players. The Banzhaf Power Distribution is (1/2, 1/6, 1/6, 1/6).

Slices of Cubes

Let $C \subseteq \{P_1, P_2, \dots P_n\}$ be a coalition of players. Define a vector $x_C = [x_1, x_2, \dots, x_n]$ by $x_i = 1$ if $P_i \in C$ and $x_i = 0$ if $P_i \notin C$. (This is a vertex of the *n*-cube.)

Let $v = [v_1, v_2, \dots, v_n]$ be the vector of the players' votes. Then C is a winning coalition if and only if $x_C \cdot v \ge q$, where q is the quota.

The hyperplane $x \cdot v = q$ slices the cube, separating the winning coalitions from the losing coalitions.

Loosening the Quota Restrictions

If some voters have already made a commitment, we're on a face of the cube. The quota restrictions may no longer hold. (Example: Sandra Day O'Connor)

Definition

A function f is a positive threshold function defined on the vertices of the n-cube if there is a vector v with $v_i \ge 0$ for $1 \le i \le n$ and a $q \ge 0$ such that f(x) = 1 if $x \cdot v \ge q$ and f(x) = 0 if $x \cdot v < q$. If we allow $v_i < 0$, we just have a threshold function.

Two (positive) threshold functions f and g are equivalent if f(x) = g(x) for all x.

Example

[3;2,2,2] and [4;2,2,2] are equivalent.

Counting Weighted Voting Systems

- There is only one three-player weighted voting system. Its Banzhaf Power Distribution is (1/3, 1/3, 1/3).
- There are five different four-player weighted voting systems. (Tolle)
- There are 36 different five-player weighted voting systems, two of which have the same Banzhaf Power Distribution. (Gay, Harris, Tolle)
- There are 446 different six-player weighted voting systems. (Cuttler, DeGuire, and Rowell)

Different (but not original) Approach: Count threshold functions by counting regions in a hyperplane arrangement.

Recall: Two threshold functions are equivalent if they have the same winning and losing coalitions.

Example

In a five-player game, $\{P_1, P_3, P_4\}$ wins $\iff v_1 + v_3 + v_4 \ge q$ $\iff [q, v_1, v_2, v_3, v_4, v_5]$ is on the positive side of the hyperplane $-q + v_1 + v_3 + v_4 = 0$.

Plan: Count the regions in the hyperplane arrangement with the 2^n hyperplanes $-q + \sum_{P_i \in C} v_i = 0$, where C is a coalition of players.

Figure: Hyperplane arrangement for 1-player threshold functions.

Current State of the Problem:

Current State of the Problem:

Despair. (Aichholzer and Aurenhammer, Bokowski et al., da Silva)

Current State of the Problem:

Despair. (Aichholzer and Aurenhammer, Bokowski et al., da Silva)

To count these regions, we need to know the affine dependencies of the vertices of the n-cube.

Good News: The Dual Zonotope and the BPI

Vertex Coordinates	Banzhaf Power Distribution
n = 3	
(0,2,2,2)	$\frac{1}{6}(2,2,2)$
(0,4,0,0)	$\frac{1}{4}(4,0,0)$
n = 4	
(6,0,0,0,0)	$\frac{1}{12}(3,3,3,3)$
(0, 4, 4, 4, 0)	$\frac{1}{12}(4,4,4,0)$
(0,6,2,2,2)	$\frac{1}{12}(6,2,2,2)$
(4, 2, 2, 0, 0)	$\frac{1}{12}(4,4,2,2)$
(2,4,2,2,0)	$\frac{1}{12}(5,3,3,1)$

Theorem

Let Z be the zonotope dual to the hyperplane arrangement of threshold functions. If $(y_0, y_1, y_2, \dots, y_n)$ is a vertex of Z corresponding to a positive threshold function, then the vector of critical instances for $P_1, P_2, \dots P_n$ is

$$(y_1 + \frac{y_0}{2}, y_2 + \frac{y_0}{2}, \dots, y_n + \frac{y_0}{2}).$$

New Question: What happens to the Banzhaf Power Distribution when you fix the v_i but change the quota?

Figure: The relationship of the 5 different 4-player WVS (Buckley).

Theorem

Let $p_1, p_2, ..., p_k$ be points in n-space. The vertices of the projection of the k-permutahedron by the matrix $[p_1, p_2, ..., p_k]$ correspond to the orderings of these points by sweeping a hyperplane through them.

Application: Let the points be the vertices x_C of the *n*-cube. Let v be the vector of voting weights. Order the points according to the value of $x_C \cdot v$. We get all possible orderings by projecting the 2^n -permutahedron. Pick out the orderings that start with $[0,0,\ldots,0]$ and end with $[1,1,\ldots,1]$.

Current and Future Work

- Cutting down the size of some computations in polymake.
- Interpretation of WVS and BPI in terms of slices of cubes.
- Connect the vertex orderings back to the BPI.
- Ojha: Zaslavsky and symmetry.
- Other measures of power, especially Shapley-Shubik.

Some sources:

- John Banzhaf, "Weighted Voting Doesn't Work," Rutgers Law Review (1965).
- Elise Buckley, "An Exploration of the Application of the Banzhaf Power Index to Weighted Voting Systems," submitted to the Rose-Hulman Undergraduate Mathematics Journal.
- John Tolle, "Power Distribution in Four-Player Weighted Voting Systems," *Mathematics Magazine* (2003).