Graphentheoretische Konzepte und Algorithmen

Thema 0
Motivation und Organisation der LV

Julia Padberg

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Übersicht über VL 1

- Vorstellung dieser LV
- Organisatorisches
- Praktikumsaufgaben
- Grundbegriffe von Graphen

Inhalt dieser LV

- Graphentheoretische Grundbegriffe, Wege, Kreise, Zusammenhang
- Färbungen und Überdeckungen
- Bäume, Wälder
- Suchstrategien, Kürzeste Wege, Flüsse und Strömungen
- Matchings, Routing, Planare Graphen
- Graphtransformationen
- Grundlegende Eigenschaften von Petri-Netzen

Lernziele

- Kennen lernen von in praktischen Anwendung erfolgreichen graphentheoretischen Modellierungsparadigmen und Formalismen
- Kenntnis und Verständnis der grundlegenden Konzepte, Formalismen und Notationen sowie der wichtigsten Algorithmen
- Fähigkeit zum eigenständigen Modellieren und Lösen von praxisorientierten Problemen mit graphentheoretischen Methoden
- Fähigkeit zum eigenständigen Modellieren, einfachen Analyse und einem Redesign von nebenläufigen Prozessen mittels Petri-Netzen

Arbeitsaufwand in diesem Semester

Laut Modulhandbuch Vorlesung = 48h Praktika = 16h **Eigenstudium = 116h**

also 7.25 h in der Woche für

Praktikumsaufgaben und Theorieaufgaben

Selbststudium

Hinweis zu den Folien

- Die Folien sind kein vollständiges Skript und genügen normalerweise nicht zur Prüfungsvorbereitung oder als Nachschlagewerk!
- Lieber Bücher lesen!!!
- Bemerkung am Rande: Diese Folien sind zum großen Teil aus Folien/Skripten anderer Kollegen (auch anderer Hochschulen) zusammengestellt!

HOME @ EMIL

(IN/PDB) Graphentheoretische Konzepte und Algorithmen https://www.elearning.haw-hamburg.de/course/view.php?id=34958

- Schlüssel für's Praktikum in StlSys angemeldete : StlSys
- Schlüssel für Wiederholer mit PVL: WDHmitPVL
- alle anderen: gast

Selbststudium

Literatur: https://www.elearning.haw-hamburg.de/course/view.php?id=34958

- Ch. Klauck, Ch. Maas. Graphentheorie und Operations Research
- R. Diestel. Graphentheorie
- S.O. Krumke, H. Noltemeier. Graphentheoretische Konzepte und Algorithmen
- M.Aigner, Graphentheorie : Eine Einführung aus dem 4-Farben Problem Springer Spektrum, 2015
- H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph Transformation
- M. van Steen, Graph Theory and Complex Networks: An Introduction
- Skript Graphersetzungssysteme, A. Habel
- Petrinetzskript, J. Padberg
- Skript Algorithmen auf Graphen, Hans-Jörg Kreowski

Padberg (HAW Hamburg) BAI3-GKA

7

$Plan: \ {\it https://www.elearning.haw-hamburg.de/course/view.php?id=34958}$

KW	Datum	GKAP01-03	GKAP04-05	Datum	GKA	
	IMO	1102 8:30-11:45	1002 12:30-15:45	МІ	8:15-11:30	
12	18.3.			20.3.	VL1 Org, Einführung	
13	25.3.			27.3.	VL2 Grundbegriffe	
14	1.4	PR 1 G1		3.4.	VL3 Optimale Wege	
15	8.4.	PR1 G2	PR1 G5	10.4	VL4 Planare Graphen und Färbungen	
16	15.4.	PR1 G3	PR1 G4	17.4.	VL5 Bäume und Wälder	
17	22.4.	Ostermontag		24.4.	VL6 Flüsse	
18	29.4.	PR 1 G1	PR1 G5	1.5.	Tag der Arbeit	
19	6.5.	PR2 G2		8.5.	VL7 Touren	
20		Ferien				
21	20.5.	UE1	PR1 G4	22.5.	VL8 Graphtransformation	
22	27.5.	PR2 G3		29.5.	VL9 Graphgrammatiken	
23	3.6.	PR3 G1		5.6.	VL10 Petrinetze	
24	10.6.	am DI, den 11.6. PR3 G2	am DI, den 11.6. PR1 G5	12.6.	VL11 Probeklausur	
25	17.6.	PR3 G3	PR1 G4	19.6.	VL12 Zusammenfassung	
26	24.6.		·	26.6.	UE2 Klausurvorbereitung	
27/28	Klausuren					

HINWEISE zum Praktikum

Praktikum

- Gruppenaufteilung:
- 2 Studierende in einem Team
- 3 Praktikumsaufgaben im Netz unter

https://www.elearning.haw-hamburg.de/course/view.php?id=34958

Abgabe:

- Vorstellung Ihrer Lösung
 - 2 mal (Stuctured Walk-Trough)
 - 1 mal Vorstellung im kleinen Kreis, Team, Herr Oelker und Frau Padberg
- jedes Mal schriftliche Erläuterung Ihrer Lösung (Lösungsdokumentation) etwa 4-7 Seiten
 - Algorithmus
 - Datenstrukturen
 - Implementierung
 - Umsetzung der Aspekte der Implementierung
 - umfassende Dokumentation der Testfälle
- 2 Übungen
 - Lösung der Hausaufgaben vor Übung 1
 - Übung 2 als Klausurvorbereitung

PVL

- ANWESENDHEITSPFLICHT
- PVL-Bedingungen
 - VOR dem Praktikumstermin:
 - Aufgabe fertig bearbeiten
 - Abgabe der Lösungsdokumentation vor dem Praktikum
 - Während des Praktikums:
 - Vorstellung Ihrer Lösung
 - KEINE Nachbearbeitung!!!!
 Falls Sie Schwierigkeiten haben, melden Sie sich bitte rechtzeitig (ca 1 Woche vorher).
 - Anwesenheitspflicht (gesamte Praktikumszeit!)
 - Erfolgreiche Bearbeitung aller Praktikumsaufgaben
 - Einhaltung aller Termine

Erfolgreiche Bearbeitung der Praktikumsaufgaben:

- eine korrekte und möglichst effiziente Implementierung in Java, die der vorgegeben formalen Beschreibung entspricht,
- die Kommentierung der zentralen Eigenschaften/Ereignisse etc. im Code,
- hinreichende Testfälle in JUnit und ihre Kommentierung und
- eine ausführliche schriftliche Vorstellung
- Erfolgreiche Vorstellung der Aufgabe im Praktikum

Praktikumsaufgaben

- Programmiersprache Java
- Themenschwerpunkte siehe Aufgabenstellung
- Teams (je zwei) verantwortlich für den gesamten Code der Aufgabe: Architektur, Programmcode und Tests müssen gut (frei) erklärbar sein (nicht z.B. durch ablesen der Kommentare / Dokumentation)
- Jede Implementierung soll durch umfassende JUnit-Tests getestet werden.

Praktikumsaufgaben

https://www.elearning.haw-hamburg.de/course/view.php?id=34958

- 1. Visualisierung, Speicherung und Traversierung von Graphen
- 2. Berechnung des Spannbaums
- 3. Eulerkreise

Umfang der Praktikumsarbeiten

Idee des Structured Walk-Through

- Sie implementieren und üben Sich dabei weiter in Java
- Sie lernen Ihren Kode vorzustellen
- Sie sollen Ihre eigenen Entwurfsentscheidungen treffen & begründen können

Richtwert (Modulhandbuch) 25 Stunden pro Person

- Wenn Sie nach 10 Stunden nicht schon gut fortgeschritten sind, lassen Sie sich von uns (Padberg, Oelker) helfen.
- Wenn Sie nach 2 Stunden fertig sind, fragen Sie nach, vielleicht haben Sie was falsch verstanden.

BAI3-GKA 15 Padberg (HAW Hamburg)

Arbeitsumgebung

vorgeschrieben

- Eclipse als Arbeitsumgebung
- JUnit für die Tests

optional Graph ADT

- GraphStream
- GraphViz
- JUNG
- JavaSwing
- MXGraph
- oder andere

Speicherung

Graphen sind über Dateien (*.graph) zu speichern oder zu lesen. Dabei ist folgendes Format zu verwenden:

```
["#directed;"]
node1,[":"attr1],[","node2,[" :"attr2],[" ("edge")"],[" :: "weight]];

node1, node2 und edge sind Zeichenketten
attr1, attr2 und weight sind Zahlen
```

Beispiel:

```
v1, v2;
v2, v3;
v4:
```

Beispiel:

```
#directed;
a,b (e1);
a,a (e2);
a,b (e3);
```

Beispiel:

```
Hamburg, Bremen :: 123;
Hamburg, Berlin :: 289;
```

Beispiel:

```
#directed;
v1,v2;
v2,v3 :: 44;
```