MATH 2111 Matrix Algebra and Applications

Homework-8: Due 11/17/2022 at 11:59pm HKT

1. (1 point) Determine if λ is an eigenvalue of the matrix A.

$$?1. A = \begin{bmatrix} -6 & -1 \\ 2 & -9 \end{bmatrix} and \lambda = -8$$

$$?2. A = \begin{bmatrix} 9 & -14 \\ 7 & -12 \end{bmatrix} and \lambda = -5$$

$$?3. A = \begin{bmatrix} 0 & -1 \\ 6 & -5 \end{bmatrix} and \lambda = -8$$

Correct Answers:

- YES
- YES
- NO
- **2.** (1 point) Determine if v is an eigenvector of the matrix A.

? 1.
$$A = \begin{bmatrix} -7 & 9 \\ -12 & 14 \end{bmatrix}$$
, $v = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$

 ? 2. $A = \begin{bmatrix} 15 & -14 \\ 21 & -20 \end{bmatrix}$, $v = \begin{bmatrix} 7 \\ 4 \end{bmatrix}$

 ? 3. $A = \begin{bmatrix} 26 & -12 \\ 40 & -18 \end{bmatrix}$, $v = \begin{bmatrix} 3 \\ -3 \end{bmatrix}$

Correct Answers:

- YES
- NO
- NO
- **3.** (1 point) If $\vec{v}_1 = \begin{bmatrix} 1 \\ -5 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$ are eigenvectors of a matrix A corresponding to the eigenvalues $\lambda_1 = 1$ and $\lambda_2 = -5$, respectively,

then
$$A(\vec{v}_1 + \vec{v}_2) = \begin{bmatrix} & & \\ & & \end{bmatrix}$$

and $A(3\vec{v}_1) = \begin{bmatrix} & & \\ & & \end{bmatrix}$

Correct Answers:

$$\begin{bmatrix} -19 \\ -5 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ -15 \end{bmatrix}$$

4. (1 point) Supppose A is an invertible $n \times n$ matrix and \vec{v} is an eigenvector of A with associated eigenvalue 8. Convince yourself that \vec{v} is an eigenvector of the following matrices, and find the associated eigenvalues.

- (1) The matrix A^7 has an eigenvalue _____.
- (2) The matrix A^{-1} has an eigenvalue _____.
- (3) The matrix $A + 7I_n$ has an eigenvalue _____.
- (4) The matrix 4A has an eigenvalue _____.

Correct Answers:

- 8^7
- 1/8
- 8+7
- 4*8

5. (1 point) Let
$$A = \begin{bmatrix} -3 & 7 \\ 3 & k \end{bmatrix}$$

For A to have 0 as an eigenvalue, k must be ____

Correct Answers:

- -7
- **6.** (1 point) Find the eigenvalues of A, given that $A = \begin{bmatrix} 7 & 3 & 12 \\ 6 & 4 & 12 \\ 3 & 3 & 8 \end{bmatrix}$

and its eigenvectors are
$$v_1 = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix}$$
 and

$$v_3 = \left[\begin{array}{c} -2 \\ -2 \\ 1 \end{array} \right].$$

The corresponding eigenvalues are $\lambda_1 = \underline{\hspace{1cm}}, \ \lambda_2 = \underline{\hspace{1cm}}$ and $\lambda_2 = \underline{\hspace{1cm}}$.

Correct Answers:

- −2
- 1
- 4
- 7. (2 points) Find the eigenvalues $\lambda_1<\lambda_2<\lambda_3$ and corresponding eigenvectors of the matrix

$$A = \left[\begin{array}{rrr} -4 & 20 & 132 \\ 0 & 0 & -20 \\ 0 & 0 & 4 \end{array} \right].$$

The eigenvalue $\lambda_1 =$ corresponds to the eigenvector $\begin{bmatrix} & & \\ & & \end{bmatrix}$

The eigenvalue $\lambda_2 =$ corresponds to the eigenvector

The eigenvalue $\lambda_3 =$ corresponds to the eigenvector

Correct Answers:

- 0
- $\begin{bmatrix} -5 \\ -1 \\ 0 \end{bmatrix}$
- $\begin{bmatrix} 4 \\ -5 \end{bmatrix}$

8. (2 points) Given that the matrix A has eigenvalues $\lambda_1 = 3$ with corresponding eigenvector $\vec{v}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\lambda_2 = 1$ with corresponding eigenvector $\vec{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, find A.

$$A = \begin{bmatrix} --- \\ --- \end{bmatrix}$$

$$Correct Answers:$$

$$\left[\begin{array}{cc} -3 & 2 \\ -12 & 7 \end{array}\right]$$

9. (2 points) The matrix

$$A = \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ -5 & -5 & -5 \end{bmatrix}$$

has two real eigenvalues, one of multiplicity 1 and one of multiplicity 2. Find the eigenvalues and a basis for each eigenspace.

The eigenvalue λ_1 is ____ and a basis for its associated eigenspace is $\left\{ \begin{bmatrix} - \\ - \end{bmatrix} \right\}$.

The eigenvalue λ_2 is ____ and a basis for its associated eigenspace is $\left\{ \begin{array}{c|c} - \\ - \end{array} \right\}, \begin{bmatrix} - \\ - \end{array} \right\}$. Correct Answers.

10. (2 points) A, P and D are $n \times n$ matrices.

Check the true statements below:

- A. If A is invertible, then A is diagonalizable.
- B. If A is diagonalizable, then A has n distinct eigenval-
- \bullet C. If AP = PD, with D diagonal, then the nonzero columns of P must be eigenvectors of A.
- D. A is diagonalizable if A has n distinct eigenvectors.

Correct Answers:

C

11. (3 points) Let

$$A = \left[\begin{array}{rrr} -3 & -1 & -4 \\ 0 & 2 & 0 \\ 2 & 1 & 3 \end{array} \right].$$

If possible, find an invertible matrix P so that $D = P^{-1}AP$ is a diagonal matrix. If it is not possible, enter the identity matrix for P and the matrix A for D. You must enter a number in every answer blank for the answer evaluator to work properly.

$$P = \begin{bmatrix} - & - & - \\ - & - & - \\ - & - & - \end{bmatrix}.$$

$$D = \begin{bmatrix} - & - & - \\ - & - & - \\ - & - & - \end{bmatrix}.$$

Is A diagonalizable over \mathbb{R} ?

- choose
- diagonalizable
- not diagonalizable

Be sure you can explain why or why not.

Correct Answers:

$$\begin{bmatrix} -1 & -1 & -2 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]$$

• diagonalizable

12. (3 points) Let

$$M = \left[\begin{array}{cc} 4 & 2 \\ -4 & -2 \end{array} \right].$$

Find formulas for the entries of M^n , where n is a positive integer.

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

$$M^n = \left[egin{array}{cccc} & & & & - \\ & & & & & - \end{array}
ight]$$

Correct Answers:

$$\begin{bmatrix} 2*2^n & 1*2^n \\ (-2)*2^n & -2^n \end{bmatrix}$$