A Distributed Hash Table for Shared Memory

Wytse Oortwijn

Formal Methods and Tools, University of Twente

August 31, 2015

Table of Contents

- 1 Introduction
- 2 Contribution 1: Resolving Hash Collisions
- 3 Contribution 2: Hiding Latency
- 4 Experimental Evaluation
- 5 Conclusion

Table of Contents

- 1 Introduction
- 2 Contribution 1: Resolving Hash Collisions
- 3 Contribution 2: Hiding Latency
- 4 Experimental Evaluation
- 5 Conclusion

Main challenge

Building a fast and CPU-efficient shared hash table:

- Minimal latency
- Minimal memory overhead
- Not relying on CPU-polling

Main challenge

Building a fast and CPU-efficient shared hash table:

- Minimal latency
- Minimal memory overhead
- Not relying on CPU-polling

Many use cases in HPC

- Parallel graph searching
- Distributed model checking

Main challenge

Building a fast and CPU-efficient shared hash table:

- Minimal latency
- Minimal memory overhead
- Not relying on CPU-polling

Many use cases in HPC

- Parallel graph searching
- Distributed model checking

Distributed (LAN) vs Parallel

- Cheaper scalability
- Unlimited scalability, but

Main challenge

Building a fast and CPU-efficient shared hash table:

- Minimal latency
- Minimal memory overhead
- Not relying on CPU-polling

Many use cases in HPC

- Parallel graph searching
- Distributed model checking

Distributed (LAN) vs Parallel

- Cheaper scalability
- Unlimited scalability, but
- Performance overhead!

Main challenge

Building a fast and CPU-efficient shared hash table:

- Minimal latency
- Minimal memory overhead
- Not relying on CPU-polling

Many use cases in HPC

- Parallel graph searching
- Distributed model checking

Distributed (LAN) vs Parallel

- Cheaper scalability
- Unlimited scalability, but
- Performance overhead!

Efficient distributed processing

Specialized algorithms and data structures needed!

Main challenge

Building a fast and CPU-efficient shared hash table:

- Minimal latency
- Minimal memory overhead
- Not relying on CPU-polling

Many use cases in HPC

- Parallel graph searching
- Distributed model checking

Distributed (LAN) vs Parallel

- Cheaper scalability
- Unlimited scalability, but
- Performance overhead!

Efficient distributed processing

Specialized algorithms and data structures needed!

■ Contribution: Reducing roundtrips while CPU-efficient

High-performance Networking

Infiniband hardware

Specialized hardware used to construct high-performance networks:

- Comparable in price to Ethernet
- Supports bandwidths up to 100 Gb/s
- Direct access to memory via PCI-E bus

High-performance Networking

Infiniband hardware

Specialized hardware used to construct high-performance networks:

- Comparable in price to Ethernet
- Supports bandwidths up to 100 Gb/s
- Direct access to memory via PCI-E bus

RDMA: Remote Direct Memory Access

Directly access to remote memory without invoking remote CPUs

- Zero-copy networking
- Kernel bypassing
- No participation from remote CPUs

High-performance Networking

Infiniband hardware

Specialized hardware used to construct high-performance networks:

- Comparable in price to Ethernet
- Supports bandwidths up to 100 Gb/s
- Direct access to memory via PCI-E bus

RDMA: Remote Direct Memory Access

Directly access to remote memory without invoking remote CPUs

- Zero-copy networking
- Kernel bypassing
- No participation from remote CPUs

Performance: one-sided RDMA vs TCP

Roundtrips latency: $< 3\mu s$ (Infiniband) vs $60\mu s$ (traditional Ethernet)

Hash Table: Challenges

Notation: Hash table

 $T = \langle b_0, \dots, b_{n-1} \rangle$ as a sequence of buckets b_i , where:

- n the hash table size and m the number of used entries
- $\alpha = \frac{m}{n}$ the load factor

Hash Table: Challenges

Notation: Hash table

 $T = \langle b_0, \dots, b_{n-1} \rangle$ as a sequence of buckets b_i , where:

- n the hash table size and m the number of used entries
- $\alpha = \frac{m}{n}$ the load factor

Operation: only find-or-put(d)

Takes a data element d as parameter, and:

- if $d \in T$, return found
- if $d \notin T$, insert d and return inserted
- if $d \notin T$ and d cannot be inserted, return full

Hash Table: Challenges

Notation: Hash table

 $T = \langle b_0, \dots, b_{n-1} \rangle$ as a sequence of buckets b_i , where:

- n the hash table size and m the number of used entries
- $\alpha = \frac{m}{n}$ the load factor

Operation: only find-or-put(d)

Takes a data element d as parameter, and:

- if $d \in T$, return found
- if $d \notin T$, insert d and return inserted
- if $d \notin T$ and d cannot be inserted, return full

Design: Challenges

- How to *distribute* and access $T = \langle b_0, \dots, b_{n-1} \rangle$ efficiently?
- How to *design* find-or-put to perform efficiently?

PGAS: Partitioned Global Address Space

Details

Assuming *N* participating threads:

PGAS: Partitioned Global Address Space

Details

Assuming *N* participating threads:

■ **PGAS:** shared + distributed memory model

PGAS: Partitioned Global Address Space

Details

Assuming *N* participating threads:

- **PGAS**: shared + distributed memory model
- **Hybrid PGAS:** PGAS + message passing (dashed edges)

Table of Contents

- 1 Introduction
- 2 Contribution 1: Resolving Hash Collisions
- 3 Contribution 2: Hiding Latency
- 4 Experimental Evaluation
- 5 Conclusion

Efficiency: Resolving Hash Collisions

Occurs when h(x) = h(y) for data elements $x \neq y$

Efficiency of find-or-put depends on hashing strategy!

Efficiency: Resolving Hash Collisions

Occurs when h(x) = h(y) for data elements $x \neq y$

Efficiency of find-or-put depends on hashing strategy!

Existing Work

- Pilaf, 2014 (Cuckoo)
- Nessie, 2014 (Cuckoo)
- FaRM, 2014 (Hopscotch)
- HERD, 2014 (CPU-intensive)

Efficiency: Resolving Hash Collisions

Occurs when h(x) = h(y) for data elements $x \neq y$

Efficiency of find-or-put depends on hashing strategy!

Existing Work

- Pilaf, 2014 (Cuckoo)
- Nessie, 2014 (Cuckoo)
- FaRM, 2014 (Hopscotch)
- HERD, 2014 (CPU-intensive)

Contributions

Existing implementations either:

- Require *more* roundtrips
- Require *locking* schemes
- Are CPU-intensive

Efficiency: Resolving Hash Collisions

Occurs when h(x) = h(y) for data elements $x \neq y$

Efficiency of find-or-put depends on hashing strategy!

Existing Work

- Pilaf, 2014 (Cuckoo)
- Nessie, 2014 (Cuckoo)
- FaRM, 2014 (Hopscotch)
- HERD, 2014 (CPU-intensive)

Contributions

Existing implementations either:

- Require *more* roundtrips
- Require *locking* schemes
- Are CPU-intensive

Best strategy for find-or-put

Which strategy requires the least number of roundtrips?

Chained Hashing

- + Theoretical comp. $\Theta(1+\alpha)$
- Dynamic mem. management
- Storing pointers

Chained Hashing

- + Theoretical comp. $\Theta(1+\alpha)$
- Dynamic mem. management
- Storing pointers

Cuckoo Hashing

- + Uses *k* hash functions
- Lookups require k roundtrips
- Relocations require locks

Chained Hashing

- + Theoretical comp. $\Theta(1+\alpha)$
- Dynamic mem. management
- Storing pointers

Hopscotch Hashing

- + Using neighbourhoods
- + Lookups require 1 roundtrip
- Relocations require locks

Cuckoo Hashing

- + Uses *k* hash functions
- Lookups require k roundtrips
- Relocations require locks

Chained Hashing

- + Theoretical comp. $\Theta(1+\alpha)$
- Dynamic mem. management
- Storing pointers

Hopscotch Hashing

- Using neighbourhoods
- + Lookups require 1 roundtrip
- Relocations require locks

Cuckoo Hashing

- + Uses *k* hash functions
- Lookups require k roundtrips
- Relocations require locks

Linear Probing

- + Buckets are consecutive
- + No locking or relocations
- Roundtrips for lookups?

Chained Hashing

- + Theoretical comp. $\Theta(1+\alpha)$
- Dynamic mem. management
- Storing pointers

Hopscotch Hashing

- + Using neighbourhoods
- + Lookups require 1 roundtrip
- Relocations require locks

Cuckoo Hashing

- + Uses *k* hash functions
- Lookups require k roundtrips
- Relocations require locks

Linear Probing

- + Buckets are consecutive
- + No locking or relocations
- Roundtrips for lookups?

Linear Probing versus Hopscotch

- Due to Hopscotch invariant, lookups may be more expensive, but
- Inserts are arguably cheaper (amortized complexity)

Knuth, 1997

The *expected* number of buckets to examine until the intended buckets is found is *at most*:

$$\frac{1}{2}\Big(1+\frac{1}{(1-\alpha)^2}\Big)$$

Knuth, 1997

The *expected* number of buckets to examine until the intended buckets is found is *at most*:

$$\frac{1}{2C}\Big(1+\frac{1}{(1-\alpha)^2}\Big)$$

Knuth, 1997

The *expected* number of buckets to examine until the intended buckets is found is *at most*:

$$\frac{1}{2C}\Big(1+\frac{1}{(1-\alpha)^2}\Big)$$

Efficiency bound

A chunk is *expected* to contain the intended bucket if:

$$\alpha \le 1 - \sqrt{\frac{1}{2C - 1}}$$

Knuth, 1997

The *expected* number of buckets to examine until the intended buckets is found is *at most*:

$$\frac{1}{2C}\Big(1+\frac{1}{(1-\alpha)^2}\Big)$$

Efficiency bound

A chunk is *expected* to contain the intended bucket if:

$$\alpha \le 1 - \sqrt{\frac{1}{2C - 1}}$$

Expected load-factor at which a chunk is full

Knuth, 1997

The *expected* number of buckets to examine until the intended buckets is found is *at most*:

$$\frac{1}{2C}\Big(1+\frac{1}{(1-\alpha)^2}\Big)$$

Efficiency bound

A chunk is *expected* to contain the intended bucket if:

$$\alpha \leq 1 - \sqrt{\frac{1}{2C - 1}}$$

Expected load-factor at which a chunk is full

Table of Contents

- 1 Introduction
- 2 Contribution 1: Resolving Hash Collisions
- 3 Contribution 2: Hiding Latency
- 4 Experimental Evaluation
- 5 Conclusion

Linear Probing: Hiding Latency

Contribution: Asynchronous queries

Before chunk iteration, first request the next chunk:

- Overlapping roundtrips with computational activity
- Find next chunk with quadratic probing to prevent clustering

Linear Probing: Hiding Latency

Contribution: Asynchronous queries

Before chunk iteration, first request the next chunk:

- Overlapping roundtrips with computational activity
- Find next chunk with *quadratic probing* to prevent clustering

Defining query-chunk(i, d)

Obtains the *i*-th chunk, starting from bucket $b_{h(d)}$

Returns a handle s

Linear Probing: Hiding Latency

Contribution: Asynchronous queries

Before chunk iteration, first request the next chunk:

- Overlapping roundtrips with computational activity
- Find next chunk with *quadratic probing* to prevent clustering

Defining query-chunk(i, d)

Obtains the *i*-th chunk, starting from bucket $b_{h(d)}$

Returns a handle s

Defining sync-chunk(s)

Takes a handle s as parameter, waits until the *corresponding* query has been completed.

Table of Contents

- 1 Introduction
- 2 Contribution 1: Resolving Hash Collisions
- 3 Contribution 2: Hiding Latency
- 4 Experimental Evaluation
- 5 Conclusion

Hash Table: Evaluation

Experimental Setup

All experiments have been perfored on the DAS-5 cluster:

- 66 machines
- 16 cores each (Intel E5-2630v3)
- 64 GB internal memory each
- connected via 48Gb/s Infiniband

Hash Table: Evaluation

Experimental Setup

All experiments have been perforned on the DAS-5 cluster:

- 66 machines
- 16 cores each (Intel E5-2630v3)
- 64 GB internal memory each
- connected via 48Gb/s Infiniband

Benchmarks

Under different workloads, we measured:

- Throughput of find-or-put
- Latency of find-or-put
- Roundtrips of find-or-put

Hash Table: Throughput

Total Throughput

Speedup

Hash Table: Throughput

Total Throughput

Speedup

Observations

- Throughputs up to 140×10^6 reached (66 machines)
- Remote speedup up to 110 obtained
- Local throughput of 495×10^6 reached (1 threads)

Hash Table: Latency

Hash Table: Latency

Local latency

Remote latency

Table of Contents

- 1 Introduction
- 2 Contribution 1: Resolving Hash Collisions
- 3 Contribution 2: Hiding Latency
- 4 Experimental Evaluation
- 5 Conclusion

Conclusions

General

- Minimizing roundtrips increases performance
- Overlapping queries reduces waiting-times and decreases latency
- Linear probing requires less roundtrips than Hopscotch and Cuckoo

Conclusions

General

- Minimizing roundtrips increases performance
- Overlapping queries reduces waiting-times and decreases latency
- Linear probing requires less roundtrips than Hopscotch and Cuckoo

Performance

- lacksquare find-or-put takes 4.5 μs on average with lpha= 0.9 and $\emph{C}=$ 64
- lacksquare Peak-throughput of 140×10^6 op/s obtained

Conclusions

General

- Minimizing roundtrips increases performance
- Overlapping queries reduces waiting-times and decreases latency
- Linear probing requires less roundtrips than Hopscotch and Cuckoo

Performance

- find-or-put takes 4.5 μs on average with lpha = 0.9 and C = 64
- lacksquare Peak-throughput of $140 imes 10^6$ op/s obtained

Performance Indication

- FaRM: Inserts take $\sim 35 \mu s$
- Pilaf: Operations take $\sim 30 \mu s$
- Nessie: Inserts take $\sim 25 \mu s$

