(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-260999 (P2000-260999A)

(43)公開日 平成12年9月22日(2000.9.22)

(51) Int.Cl.7	1	此別記号	FΙ		テーマコード(参考)
H01L	29/786		H01L	29/78	618B
	27/12			27/12	E
	51/00			29/28	

審査請求 有 請求項の数11 OL (全 8 頁)

(21)出顧番号 特顧2000-50047(P2000-50047)	
------------------------------------	--

(22)出願日 平成12年2月25日(2000.2.25)

(31)優先權主張番号 09/261515

(32) 優先日 平成11年3月3日(1999.3.3)

(33)優先権主張国 米国(US)

(71)出願人 390009531

インターナショナル・ビジネス・マシーン

ズ・コーポレーション

INTERNATIONAL BUSIN ESS MASCHINES CORPO

RATION

アメリカ合衆国10504、ニューヨーク州

アーモンク (番地なし)

(74)代理人 100086243

弁理士 坂口 博 (外1名)

最終頁に続く

(54) 【発明の名称】 半導体チャネルとして有機/無機混成材料を有する薄膜トランジスタ

(57)【要約】

【課題】 半導体チャネルとして有機/無機混成材料を 使用する改良型FET構造を提供すること。

【解決手段】 本発明によるFET構造は、デバイスのソース電極34とドレーン電極36の間に半導体チャネルとして有機/無機混成材料32を使用する。有機/無機材料は、無機の結晶性固体と有機材料の利点を兼ね備える。無機成分は拡張された無機の一次元、二次元または三次元ネットワークを形成して、無機の結晶性固体の高いキャリア移動度特性を提供する。有機成分はこれらの材料の自己アセンブリを促進し、スピン・コーティング、浸漬コーティング、熱蒸着などの簡単な低温処理条件で材料を付着できるようにする。また有機成分は、無機成分の次元および無機ユニット間の電子結合を定義することにより無機骨格の電子特性を調整するのにも使用される。

1

【特許請求の範囲】

【請求項1】ソース領域およびドレーン領域と、

半導体の有機/無機混成材料を含み、前記ソース領域と 前記ドレーン領域の間を延びるチャネル層と、

前記チャネル層に隣接して間隔をあけて配設されたゲー ト領域と、

前記ゲート領域と前記ソース領域、前記ドレーン領域お よび前記チャネル層との間の電気絶縁層とを備える電界 効果トランジスタ。

【請求項2】前記ソース領域、前記チャネル層および前 10 記ドレーン領域が基板の表面上に配設され、前記電気絶 縁層が前記チャネル層の上に配設されて前記ソース領域 から前記ドレーン領域に延び、前記ゲート領域が前記電 気絶縁層の上に配設される、請求項1に記載の電界効果 トランジスタ。

【請求項3】前記ゲート領域がゲート層として基板の表 面上に配設され、前記電気絶縁層が前記ゲート層上に配 設され、前記ソース領域、前記チャネル層および前記ド レーン領域が前記電気絶縁層上に配設される、請求項1 に記載の電界効果トランジスタ。

【請求項4】前記有機/無機混成材料が分子レベルで混 合された有機成分要素と無機成分要素から構成される材 料であり、(i)前記材料が各有機成分要素と各無機成 分要素の比がほぼ一定であるという特徴を有し、(i

- i) 少なくとも1つの成分要素が半導体であり、(ii
- i) 有機成分要素と無機成分要素が、自己アセンブリし て予測可能な配列にすることのできる力を有する、請求 項1に記載の電界効果トランジスタ。

【請求項5】前記半導体の有機/無機混成材料が、ペロ 項1に記載の電界効果トランジスタ。

【請求項6】前配半導体の有機/無機混成材料が、アル キルモノアンモニウム・カチオンを含む、請求項5に記 載の電界効果トランジスタ。

【請求項7】前記半導体の有機/無機混成材料がヨウ化 フェネチルアンモニウムスズである(PEA)、Snl。 である、請求項5に記載の電界効果トランジスタ。

【請求項8】前配半導体の有機/無機混成材料が、アル キルジアンモニウム・カチオンを含む、請求項5に記載 の電界効果トランジスタ。

【請求項9】前記半導体の有機/無機混成材料が、半導 体材料としてBDASnI、(ヨウ化ブチルジアンモニ ウムスズ)である、請求項8に記載の電界効果トランジ スタ。

【請求項10】前記電界効果トランジスタがフレキシブ ル材料の基板上に形成されている、請求項1に記載の電 界効果トランジスタ。

【請求項11】前記電界効果トランジスタがプラスチッ ク材料の基板上に形成されている、請求項1に記載の電 界効果トランジスタ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、薄膜電界効果トラ ンジスタ構造に関し、さらに詳細には、内部の半導体チ ャネルとして有機/無機混成材料を使用するトランジス タ構造に関する。

2

[0002]

【従来の技術】TFTとして知られる薄膜トランジスタ は、電子回路中で、特にアクティブ・マトリックス液晶 ディスプレイなどの大面積の応用例で、スイッチング素 子として広く使用されている。TFTは、電界効果トラ ンジスタ(FET)の一例である。最もよく知られてい るFETはMOSFET(金属酸化膜半導体FET)で あって、高速電子応用例用の今日の通常のスイッチング 素子である。MOSFETは特にSiOz/バルクSi トランジスタのことを言うが、より一般的な金属 - 絶縁 体ー半導体の組合せがMISFETとして知られてい る。TFTは、能動的半導体層が薄膜として付着された MISFETである。

【0003】現在、大部分の装置内のTFTは、アモル ファス・シリコンを半導体として使用して作成されてい る。アモルファス・シリコンは、結晶シリコンの安価な 代替物、すなわち大面積の応用例で使用されるトランジ スタのコストを低減するための必要な条件を提供する。 アモルファス・シリコンは、その移動度が~10-1cm ¹/V secで、結晶シリコンの移動度の15,00 0分の1なので、その応用例は比較的低速の装置に限ら れる。アモルファス・シリコンの付着は結晶シリコンよ り安価であるが、アモルファス・シリコンの付着には、 ブスカイト結晶構造を有する無機成分要素を含む、請求 30 プラズマ強化化学的気相付着など高コストのプロセスが 必要である。

> 【0004】最近、TFT用の可能性ある半導体成分と して有機半導体が注目を浴びている。例えば「Thin-Lay er Field Effect Transistors With MIS Structure Who se Insulator and Semiconductor Are Made of Organic Materials」と題するガーニア(Garnier)他の米国特 許第5347144号を参照のこと。有機材料(例えば 小分子(small molecules)、短鎖オリゴマーおよびボ リマー)は、溶液からのスピン・コーティングまたは浸 40 漬コーティング、熱蒸着、スクリーン印刷などの方法に よる処理がより簡単であるので、TFT構造用の無機材 料のより安価な代替物となる。しかし、有機材料の移動 度が改善されてきたものの、なお低く、アモルファス・ シリコンに近い移動度を有するのは最良の材料だけであ

> 【0005】有機半導体は、従来のアモルファス・シリ コンより安価であり、付着し易い。とのような有機材料 は、小分子 (例えばペンタセン、金属フタロシアニ ン)、短鎖オリゴマー (例えばn=3~8のn-チオフ 50 ェン)、または長鎖ポリマー(例えばポリアルキルチオ

フェンまたはポリフェニレンビニレン) である。共役と して知られている隣接する多重結合した原子間の原子軌 道の重なり合いによって、分子、オリゴマーおよびボリ マーに沿って電荷の移動が可能になる。隣接する分子間 の分子軌道の重なり合いによって、分子間の電荷移動が 可能になる。

【0006】小分子または短鎖オリゴマーの薄膜は、有 機材料としては最も高い移動度を示す。このような高移 動度を示す小分子または短鎖オリゴマーは、熱蒸着によ って付着され、高度に規則的に配列された薄膜として付 10 着される。との薄膜内の高度の規則配列は、軌道の重な り合い、したがって隣接する分子間の電荷の移動をもた らす。長鎖ポリマーは、可溶性が大きく、スピン・コー ティングや浸漬コーティングなど低コストの技術で付着 できるので有利であるが、配列がより不規則なので移動 度はより低い。

【0007】有機材料は、熱蒸着、スピン・コーティン グ、浸漬コーティングなどのより安価で、容易な付着技 術でTFT用の半導体を付着する可能性を開くが、それ でもなお、移動度は所望の値より低い。典型的な移動度 20 は、小分子/短鎖オリゴマーでは、10-3~10-1cm ³/V secであり、長鎖ポリマーでは、10⁻³~1 0-2 cm2/V secである。報告されている最も高 い移動度は、ペンタセンの薄膜の0.7cm¹/V s e c、およびジヘキシルーα-セキシチオフェンの薄膜 の $0.13 \text{ cm}^2/V$ secである。単結晶の α -セ キシチオフェンで測定されたO.3cm²/V sec の移動度が、この材料の移動度の上限である。有機半導 体の移動度はアモルファス・シリコンの移動度に匹敵す る。

【0008】有機/無機混成材料は、有機成分要素と無 機成分要素の有用な特性を単一材料内で兼ね備える明確 なクラスの材料である。このクラスの材料のいくつか は、半導体特性を示す。この説明では、有機/無機混成 材料は、分子レベルで混合された有機成分要素および無 機成分要素から構成される材料であり、(i)その材料 が各有機成分要素と各無機成分要素の比がほぼ一定であ るという特徴を有し、(ii)少なくとも1つの成分要 素が半導体であり、(iii)有機成分要素と無機成分 要素が自己アセンブリして予測可能な配列にすることが 40 できる力を有するものである。

【0009】有機/無機混成材料の一例は、有機/無機 ベロブスカイト構造の形態を取る。層状ベロブスカイト は、当然、頂点を共有する金属ハロゲン化物八面体の二 次元半導体層と有機層が交互に重なった量子井戸構造を 形成する。

【0010】とのような有機/無機混成材料を作成する には、スピン・コーティング技術が適している。という のは、多数の有機/無機ペロブスカイトが通常の水性ま

て、高品質で、高度に配向した層状ペロブスカイト薄膜 が得られる。また真空蒸発技術を使用して、層状ペロブ スカイトの膜を成長させる。同時係属の、「Single-Sou rce Thermal AblationMethod for Depositing Organic-Inorganic Hybrid Films」という名称の米国特許出願第 09/192130号(1998年11月13日出願) と「Two-StepDipping Technique for the Preparation of Organic-Inorganic Perovskite Thin Films」という 名称の米国特許第5871579号は、本出願と同じ譲 受人に譲渡されており、有機/無機混成材料のための代 替付着方法を記述している。

[0011]

【発明が解決しようとする課題】したがって本発明の目 的は、半導体チャネルとして有機/無機混成材料を使用 する改良型FET構造を提供することである。

【0012】本発明の他の目的は、低コストで加工でき る改良型FET構造を提供することである。

[0013]

【課題を解決するための手段】本発明によるFET構造 は、デバイスのソース電極とドレーン電極の間に半導体 チャネルとして有機/無機混成材料を使用する。この有 機/無機材料は、無機の結晶性固体と有機材料の利点を 兼ね備える。無機成分要素は拡張された無機の一次元、 二次元または三次元ネットワークを形成して、無機の結 晶性固体の高いキャリア移動度特性を提供する。有機成 分要素はこれらの材料の自己アセンブリを促進し、スピ ン・コーティング、浸漬コーティング、熱蒸着などの簡 単な低温処理条件で材料を付着できるようにする。また 有機成分要素は、無機成分要素の次元および無機ユニッ ト間の電子結合を定義することにより無機フレームワー クの電子特性を調整するのに使用される。

[0014]

30

【発明の実施の形態】本発明は、薄膜FET内の半導体 チャネルとして有機/無機混成材料を使用する。有機材 料および無機材料の分子スケールの複合物を含む有機/ 無機混成材料は、アモルファス・シリコンより潜在的に 高いキャリア移動度を提供するが、安価で簡単に付着で きる。無機成分要素は結晶の無機半導体の高移動度特性 を提供し、有機成分要素は溶液または気相からの材料の 自己アセンブリに寄与する。スピン・コーティング、浸 漬コーティングまたは熱蒸着の技術を含めていくつかの 技術によって、有機/無機混成材料を付着することがで きる。有機半導体では、とれらの方法は大面積の用途向 けの低コストかつ大面積の付着の要件と整合する。また これらの付着技術の低温処理条件により、フレキシブル な応用例のためにこれらの材料をプラスチック基板上に 付着することが可能になる。一般に、有機半導体材料用 に提唱されたすべての応用例で、有機/無機混成材料を 代用することができる。加工しやすさに加えて、これら たは有機溶媒中に可溶だからである。この方法を使用し 50 の材料の移動度が潜在的により高いため、アモルファス

・シリコンまたは有機半導体を用いて現在可能な速度よ り高速のデバイスにそれらの適用を拡張することができ る。

【0015】本発明は、能動的半導体層として有機/無機混成材料を有する薄膜FETを備える。図1は、三次元ペロブスカイト構造であるABX,に基づく有機/無機混成材料10の一例を示す。ペロブスカイト構造は頂点を共有するBX。八面体12を含む。各八面体12は、頂点の6個のXアニオンおよび中心の1個のBカチオンによって定義される(結晶概略図18を参照)。A 10カチオンは、八面体12の大きな格子間隙中に位置する。

【0016】ペロブスカイトの<100>または<11 0>面に沿って、n層の厚い「カット」(n=1~無限 大)を行うことによって、三次元ペロブスカイト構造に 基づく層状無機化合物を可視化することができる。有機 /無機混成材料では、ペロブスカイト薄板のアニオン性 無機BX。八面体は、交互の層を形成しAカチオン格子 間位置にあるカチオン性有機分子20によって電荷平衡 (IV族A)の遷移金属および希土類元素、X=ハロゲ ン(CI、BrまたはI)、およびA=有機モノアンモ ニウムまたはジアンモニウム・カチオンが含まれる。ア ルキルモノアンモニウム・カチオンまたはアルキルジア ンモニウム・カチオンのような有機モノアンモニウムま たはジアンモニウム・カチオンは、アルカンなどの脂肪 族、または提供した例にあるような芳香族でよい。他の 芳香族分子としては複素環式分子が含まれる。これらの 有機分子は、やはり提供した例にあるような絶縁体、ま たはオリゴチオフェンなどの半導体でよい。

【0017】無機成分要素をなす無機ペロブスカイト薄板12および有機成分要素をなす有機層20は、強いイオン結合および水素結合によって結合される。イオン結合には、特有の化学量論量を有する有機/無機化合物および明確な結晶位置にある有機分子が必要である。有機層と無機層の間の結合により、これらの混成材料が結晶性薄膜として付着し、または単一結晶として成長する。【0018】図2は、TFTデバイス構造内に付着された有機/無機混成材料のヨウ化フェネチルアンモニウムスズ(PEA)、Snl,のX線回折パターンである。

(001) 反射だけが存在することは、有機および無機 薄板が半導体基板に平行(またはその構造の c 軸が垂 直) になった配向性に優れた結晶薄膜として、その材料 が付着することを実証している。

【0019】上述の有機/無機ペロブスカイトならびに その他の有機/無機混成材料は、無機の結晶半導体の利 点と有機材料の利点を兼ね備える。無機成分要素は、拡 張された無機の一次元、二次元または三次元ネットワー クを形成して、無機の結晶性固体の高いキャリア移動度 特性を潜在的に提供する。有機成分要素はこれらの材料 50

の自己アセンブリを促進する。これにより、スピン・コ ーティング、浸漬コーティング、熱蒸着などの簡単な低

温処理条件で材料が付着できるようになる。有機成分要素はまた無機成分要素の次元および無機ユニット間の電子結合を定義することにより無機フレームワークの電子

特性を調整するのに使用される。

【0020】図3は、典型的なTFTデバイス構造30の断面図を示す。TFT30は有機/無機混成材料層32を含む。層32は有機/無機ペロブスカイトであり、ソース電極34とドレーン電極36の間で半導体チャネルとして働く。X線回折で見られる材料の配向性は、二次元無機薄板12がソース電極34とドレーン電極36の間の電気的接続を提供するようなものである。有機/無機半導体のコンダクタンスは、SiO₂薄膜などの電気絶縁層38を横切って、(縮退ドープされたn++シリコン層などの)ゲート電極40によって変調される。これらはすべて基板42によって支持される。

無機 B X_s 八面体は、交互の層を形成し A カチオン格子 間位置にあるカチオン性有機分子 2 0 によって電荷平衡 付着の前または後に、有機/無機混成材料 3 2 を付着する。 これらの材料の例には、B = グルーブ 1 4 20 ることができる。 金属付着後に有機/無機混成材料 3 2 を付着すると、その材料がメタライゼーション中に、損ン(C 1 、D 1 または D 1 、および D 1 とは D 1 を被る可能性がある高温への露出が低減される。

【0022】図3は典型的なFET構造の配列を示すが、本発明の範囲内で代替構造も企図される。代替FE T構造のそれぞれの要素を示し、図3と同じ参照番号を付した図4を参照する。代替基板は、フレキシブルな装置を組み立てるために使用されるボリイミドやボリカーボネートなどのブラスチックを含む。このような配列では、パターン化された金属ゲート電極を、シャドー・マ30 スクを介してまたはフォトリソグラフィによって基板上に付着する。その後、ゲート絶縁体を、それだけには限らないが、スピン・コーティング、化学的気相付着、スパッタリングまたは真空蒸着を含む様々な方法の1つによって付着する。その後、有機/無機混成材料、およびソース電極とドレーン電極を上述のように付着する。

【0023】有機/無機混成材料 (PEA) 2 S n I で 作成されたTFTの所望の電界変調されたコンダクタンスおよび電流飽和度を示す予備データを図5に示す。測定したデバイスでは、厚さ5000AのSiO2ゲート 酸化物上に約100Aの (PEA) 2 S n I 1 層をアセトニトリルからスピン・コーティングした。半導体チャネルを、長さ70μm、幅1500μmのA u電極によって画定した。一般に、Au、Pd、Ptなど仕事関数の高い金属が、この有機/無機混成材料に対する「良好な」オーム接点を形成する。 (PEA) 2 S n I 1 は、半導体層中で正孔を移動させるので、「pータイプ」材料である。半導体チャネル(I。)中を流れる電流が負のゲート・バイアス(V。)およびソースードレーン電圧(Vas)と共に増加するので、このことは明白である。

図6は、能動的半導体材料として有機/無機混成材料

(PEA)、Sn I.を備え、これまでに得られた最良の 特性を示すTFTのI。。とV。。の関係をプロットしたグ ラフである。

【0024】図7は、能動的半導体材料としてアルキル ジアンモニウム・カチオンを含有する有機/無機混成材 料(すなわち、BDASnI、(ヨウ化ブチルジアンモ ニウムスズ))を有するTFTのIosとVosの関係をブ ロットしたグラフである。

[0025] 0. 06~0. 25cm²/V sec@ 移動度は予想される真性値より低いが、既にアモルファ 10 ネチルアンモニウムの不在下で同じ混合溶媒ですすぎ洗 ス・シリコンおよび最良の有機半導体の移動度に匹敵す る。具体的には、これらの移動度はスピン・コーティン グされた有機半導体より高い。このようなより高い真性 移動度が達成可能であると予想される。電界効果移動度 は測定されていないが、ホール効果移動度に関する報告 では、その範囲が約1~100cm²/V secであ る。ホール移動度と電界効果移動度の関係は複雑である が、極めて簡単な理論では、それらは比例すると予想さ れる。したがって、これらの高いホール効果移動度は、 アモルファス・シリコンの移動度を超える同様に高い電 20 る材料を設計することができる。有機/無機混成材料の 界効果移動度が達成できることを示唆している。有機/ 無機混成材料は、高移動度が期待できるのに加えて、無 機固体に関する通常の処理技術より安価な処理技術によ って付着することができる。その技術には、スピン・コ ーティング、浸漬コーティングおよび熱蒸着が含まれ る.

【0026】ペロブスカイト構造を有する有機/無機混 成材料層を形成する1つの方法として、上記米国特許第 5871579号に示された方法を使用することができ る。例えば、ヨウ化ブチルジアンモニウムスズおよびヨ 30 ネル層に隣接して間隔をあけて配設されたゲート領域 ウ化フェネチルアンモニウムスズは、Snl、フィルム を有機ヨウ化アンモニウム溶液に浸漬することによっ て、以下のように形成できる。

【0027】真空室を使用して、Snl、膜の真空蒸着 を行った。SnⅠ、粉末を石英るつぼ内に装入し、上記 室内に置き、系を約4×10-1Torrのベース圧力に 減圧した後に蒸着を開始した。ヨウ化金属が蒸発し、室 温に保持された基板上に付着し、付着中に約1×10~ Torrの圧力を達成した。典型的には、この付着中に 付着速度を60~70Å/minの範囲に保持した。 【0028】浸漬によって上記膜を調製するために、選 択した時間の間、Snl、薄膜を所望の有機ヨウ化アン モニウムを含有する溶液中に浸した。これにより、Pb I,をペロブスカイト化合物に転化させる反応が生じ

【0029】ヨウ化プチルジアンモニウムスズ:Snl ュ膜をまず、体積比1:16(1:16、 v/v)の2 ブロパノール/トルエンに溶かした70mM(ミリモ ル)のヨウ化ブチルアンモニウムの溶液中に2秒間浸 し、その後トルエンですすぎ洗い、不透明な赤褐色の膜 50

を得た。これは、366mmの携帯用ライトから励起さ せると僅かに橙色の光を発した。

【0030】ヨウ化フェネチルアンモニウムスズ:Sn I,膜をまず、2-プロパノール/トルエン(体積比 1:16) に溶かした中のヨウ化フェネチルアンモニウ ムの飽和溶液中に3秒間浸漬し、その後それを溶液から 取り出して、窒素雰囲気中で乾燥させることにより、ヨ ウ化フェネチルアンモニウムスズの膜を調製した。との 手順を2回繰り返し、その結果得られた膜をヨウ化フェ った。その結果得られた膜は、赤褐色であり透明でなか った。

【0031】化学的性質によって有機/無機混成材料の 電子特性を調整することができる。有機/無機混成材料 として使用可能な広範囲の有機および無機成分がある。 この応用例の唯一の要件は、有機成分と無機成分の一方 または両方が半導体であることである。化学的性質、結 晶構造、無機成分の次元、ならびに有機成分の長さと化 学的官能性を選択することによって、所望の特性を有す 化学的性質のフレキシビリティを使用して、相補型論理 回路に望ましいn型およびp型の移動材料、および常時 オンのTFTまたは常時オフのTFTを作成することが できる。

【0032】まとめとして、本発明の構成に関して以下 の事項を開示する。

【0033】(1)ソース領域およびドレーン領域と、 半導体の有機/無機混成材料を含み、前記ソース領域と 前記ドレーン領域の間を延びるチャネル層と、前記チャ と、前記ゲート領域と前記ソース領域、前記ドレーン領 域および前記チャネル層との間の電気絶縁層とを備える 電界効果トランジスタ。

- (2) 前記ソース領域、前記チャネル層および前記ドレ ーン領域が基板の表面上に配設され、前記電気絶縁層が 前記チャネル層の上に配設されて前記ソース領域から前 記ドレーン領域に延び、前記ゲート領域が前記電気絶縁 層の上に配設される、上記(1)に記載の電界効果トラ ンジスタ。
- 40 (3)前記ゲート領域がゲート層として基板の表面上に 配設され、前記電気絶縁層が前記ゲート層上に配設さ れ、前記ソース領域、前記チャネル層および前記ドレー ン領域が前記電気絶縁層上に配設される、上記(1)に 記載の電界効果トランジスタ。
 - (4) 前記有機/無機混成材料が分子レベルで混合され た有機成分要素と無機成分要素から構成される材料であ り、(i)前記材料が各有機成分要素と各無機成分要素 の比がほぼ一定であるという特徴を有し、(ii)少な くとも1つの成分要素が半導体であり、(i i i) 有機 成分要素と無機成分要素が、自己アセンブリして予測可

能な配列にすることのできる力を有する、上記(1)に 記載の電界効果トランジスタ。

- (5)前記半導体の有機/無機混成材料が、ペロブスカイト結晶構造を有する無機成分要素を含む、上記(1) に記載の電界効果トランジスタ。
- (6)前記半導体の有機/無機混成材料が、アルキルモノアンモニウム・カチオンを含む、上記(5)に記載の電界効果トランジスタ。
- (7)前記半導体の有機/無機混成材料がヨウ化フェネチルアンモニウムスズである(PEA), Sn I. である、上記(5)に記載の電界効果トランジスタ。
- (8)前記半導体の有機/無機混成材料が、アルキルジアンモニウム・カチオンを含む、上記(5)に記載の電界効果トランジスタ。
- (9)前配半導体の有機/無機混成材料が、半導体材料 としてBDASnI。(ヨウ化ブチルジアンモニウムス ズ)である、上記(8)に記載の電界効果トランジス タ。
- (10)前記電界効果トランジスタがフレキシブル材料 の基板上に形成されている、上記(1)に記載の電界効 20 果トランジスタ。
- (11)前記電界効果トランジスタがプラスチック材料の基板上に形成されている、上記(1)に記載の電界効果トランジスタ。

【図面の簡単な説明】

【図1】この場合はペロブスカイト構造に基づく、有機 /無機混成材料の一例の構造を示す図である。

【図2】TFTデバイス構造内にスピン・コーティング によって付着されたヨウ化フェネチルアンモニウムスズ*

- * (PEA), Sn I, 膜のX線回折パターンを示す図である。
 - 【図3】半導体チャネルとして有機/無機混成材料を組み込んだ第1のTFT構造の断面図である。
 - 【図4】半導体チャネルとして有機/無機混成材料を組み込んだ第2のTFT構造の断面図である。
 - 【図5】能動的半導体材料として有機/無機混成材料 (PEA),SnI,を有するTFTのI,sとV,sの関係 を示すグラフである。
- 10 【図6】能動的半導体材料として有機/無機混成材料 (PEA), SnI, を有し、とれまでに得られた最良の特性を示す TFT OI os EV os O 関係を示す グラフである。

【図7】能動的半導体材料としてアルキルジアンモニウム・カチオン(すなわち、BDASnI、(ヨウ化ブチル・ジアンモニウムスズ))を含有する有機/無機混成材料を有するTFTのI。sとVosの関係を示すグラフである。

【符号の説明】

- 0 10 有機/無機混成材料
 - 12 BX,八面体
 - 20 カチオンの有機分子
 - 30 TFTデバイス構造
 - 32 有機/無機混成材料層
 - 34 ソース電極
 - 36 ドレーン電極
 - 38 電気絶縁層
 - 40 ゲート電極
 - 42 基板

【図2】

[図3]

【図4】

フロントページの続き

(72)発明者 コンスタンティノス・ホンドルディス アメリカ合衆国10603 ニューヨーク州ノ ース・ホワイト・プレーンズ ネザーモン ト・アベニュー 113

(72)発明者 クリストス・ディー・デミィトラコプロス アメリカ合衆国10604 ニューヨーク州ウ エスト・ハリソン レーク・ストリート・ イースト 791

(72)発明者 シェリー・アール・カガン アメリカ合衆国10562 ニューヨーク州オ シニング リンカーン・ドライブ 32 (72)発明者 ヨアンニス・キミシス アメリカ合衆国11040 ニューヨーク州ニ ュー・ハイド・パーク レーク・ドライブ

(72)発明者 デービット・ビー・ミツィ アメリカ合衆国10514 ニューヨーク州チ ャパクア スプリング・レーン 58