141 final_EDA

Ang Li

2023-05-20

Load the data set

```
data = read.csv("final.csv")
#View(data)
library("ggplot2")
library("dplyr")
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library("tm")
## Loading required package: NLP
## Attaching package: 'NLP'
## The following object is masked from 'package:ggplot2':
##
##
       annotate
library("SnowballC")
library("wordcloud")
```

Loading required package: RColorBrewer

```
library("RColorBrewer")
library("syuzhet")
library("ggplot2")
```

EDA

The number of reviews before and after covid

Number of Reviews Before and After COVID

Course rating based on south and north campus

```
summary_stats <- data %>%
  group_by(division) %>%
  summarise(mean_overall = mean(Overall, na.rm = TRUE),
            median_overall = median(Overall, na.rm = TRUE),
            min_overall = min(Overall, na.rm = TRUE),
            max_overall = max(Overall, na.rm = TRUE),
            mean_easiness = mean(Easiness, na.rm = TRUE),
            median_easiness = median(Easiness, na.rm = TRUE),
            min easiness = min(Easiness, na.rm = TRUE),
            max_easiness = max(Easiness, na.rm = TRUE),
            mean clarity = mean(Clarity, na.rm = TRUE),
            median_clarity = median(Clarity, na.rm = TRUE),
            min_clarity = min(Clarity, na.rm = TRUE),
            max_clarity = max(Clarity, na.rm = TRUE),
            mean workload = mean(Workload, na.rm = TRUE),
            median_workload = median(Workload, na.rm = TRUE),
            min_workload = min(Workload, na.rm = TRUE),
            max_workload = max(Workload, na.rm = TRUE),
            mean_helpfulness = mean(Helpfulness, na.rm = TRUE),
            median_helpfulness = median(Helpfulness, na.rm = TRUE),
            min_helpfulness = min(Helpfulness, na.rm = TRUE),
            max_helpfulness = max(Helpfulness, na.rm = TRUE))
# Print the summary statistics
transposed_stats <- t(summary_stats)</pre>
# Convert the transposed data frame to an xtable object
table obj <- xtable::xtable(transposed stats)</pre>
# Print the table
#print(table obj)
```

% latex table generated in R 4.2.1 by xtable 1.8-4 package % Fri Jun 2 21:25:29 2023

Overall

1	2
north	south
3.752039	3.471436
3.8	3.5
1	1
5	5
2.781739	2.546778
2.7	2.5
1	1
5	5
3.681305	3.399485
3.8	3.5
1	1
5	5
2.706349	2.586271
2.6	2.5
1	1
5	5
3.743536	3.544944
3.8	3.7
1	1
5	5
	north 3.752039 3.8 1 5 2.781739 2.7 1 5 3.681305 3.8 1 5 2.706349 2.6 1 5 3.743536 3.8 1

Distribution of Course Ratings by Division

Easiness

Distribution of Easiness by Division

Clarity

Workload

Distribution of Workload by Division

Helpfulness

Overall

Distribution of Overall by Division

Grade Vs. Division

"Review" Text Mining

```
# choose the upper division course
course_upper <- data %>%
  filter(as.numeric(gsub("[^0-9]", "", Course.Code)) > 100)

# division = south
south_course_upper <- course_upper %>%
  filter(division == "south")

north_course_upper <- course_upper %>%
  filter(division == "north")
```

For division == "south"

```
review_south = south_course_upper$Review.Text
TextDoc <- Corpus(VectorSource(review_south))
#Replacing "/", "@" and "/" with space
toSpace <- content_transformer(function (x , pattern ) gsub(pattern, " ", x))
TextDoc <- tm_map(TextDoc, toSpace, "/")</pre>
```

Warning in tm_map.SimpleCorpus(TextDoc, toSpace, "/"): transformation drops

The scale for sentiment scores using the syuzhet method is decimal and ranges from -1(indicating most negative) to +1(indicating most positive). Note that the summary statistics of the suyzhet vector of south and north show a median value of 3.15 and 3.85, which are above zero and can be interpreted as the overall average sentiment across all the responses are positive.

Which variables are most significant affecting overall rating

Method 1

StandingF

-0.3209

```
## Ordinal regression
library(MASS)
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
       select
## remove rows with no grade
data <- data[!is.na(data$Grade) & data$Grade != "", ]</pre>
data$Overall_factor <- factor(data$Overall)</pre>
## keep grades into whole categories
grade_ranges <- list(A = c("A+", "A", "A-"),
                     B = c("B+", "B", "B-"),
                     C = c("C+", "C", "C-"),
                     D = c("D+", "D", "D-"))
data$Standing <- data$Grade
for (category in names(grade ranges)) {
  grade_range <- grade_ranges[[category]]</pre>
  data$Standing[data$Grade %in% grade_range] <- category</pre>
}
ordinal_reg <- polr(Overall_factor ~ Standing + Easiness + Clarity + Workload + Helpfulness + division,
summary(ordinal_reg)
## Re-fitting to get Hessian
## Call:
## polr(formula = Overall_factor ~ Standing + Easiness + Clarity +
##
       Workload + Helpfulness + division, data = data)
##
## Coefficients:
##
                   Value Std. Error t value
## StandingB
                  0.1091
                            0.05165 2.1121
## StandingC
                 -0.3834
                            0.11012 -3.4812
## StandingD
                 -0.5371
                            1.00928 -0.5322
## StandingDR
                 -0.9943
                            0.36386 -2.7325
```

0.18958 -1.6927

```
## StandingI
                  -0.9735
                             0.14071 -6.9181
## StandingN/A
                   0.2253
                             0.04534 4.9689
## StandingNR
                  -0.5129
                             0.12317 -4.1642
## StandingP
                  -0.1329
                             0.07559 -1.7580
## StandingS
                   0.7638
                             0.46071 1.6578
## StandingU
                  -1.4662
                             0.17117 -8.5655
## Easiness
                   0.5455
                             0.03257 16.7489
## Clarity
                   2.6548
                             0.04115 64.5107
## Workload
                   0.2387
                             0.03448 6.9243
## Helpfulness
                   2.4477
                             0.04155 58.9022
## divisionsouth -0.2213
                             0.03192 -6.9345
##
## Intercepts:
##
           Value
                     Std. Error t value
## 1|1.2
             7.0521
                       0.1619
                                  43.5620
## 1.2|1.3
             7.6320
                       0.1504
                                  50.7523
## 1.3|1.4
             8.0085
                       0.1429
                                  56.0515
## 1.4|1.5
             8.7984
                       0.1337
                                  65.7877
                       0.1304
             9.3075
## 1.5|1.6
                                  71.3585
## 1.6|1.7
             9.5486
                       0.1290
                                 73.9944
## 1.7|1.8
             9.9996
                       0.1277
                                 78.3179
## 1.8|1.9
            10.2202
                       0.1273
                                  80.2771
## 1.9|2
            10.4269
                       0.1270
                                  82.0882
## 2|2.1
            11.2497
                       0.1259
                                  89.3724
## 2.1|2.2 11.5027
                       0.1256
                                  91.5813
## 2.2|2.3
            11.9328
                       0.1255
                                  95.0740
## 2.3|2.4
            13.0191
                       0.1264
                                 103.0292
## 2.4|2.5
            13.5983
                       0.1278
                                 106.3857
## 2.5|2.6
            14.0774
                       0.1294
                                 108.8131
## 2.6|2.7
            14.4618
                       0.1309
                                 110.4995
## 2.7|2.8
            15.1034
                       0.1340
                                 112.7377
## 2.8|2.9
            15.6903
                       0.1374
                                 114.1686
## 2.9|3
            16.1237
                       0.1401
                                 115.0523
## 3|3.1
            17.1679
                       0.1469
                                 116.9031
## 3.1|3.2
            17.7782
                       0.1505
                                 118.1301
## 3.2|3.3
            18.2446
                       0.1533
                                 119.0196
## 3.3|3.4
            18.8503
                       0.1567
                                 120.2593
## 3.4|3.5
            19.2014
                       0.1585
                                 121.1099
## 3.5|3.6
            19.7111
                       0.1611
                                 122.3495
            20.3257
## 3.6|3.7
                                 123.7033
                       0.1643
## 3.7|3.8
            20.9407
                       0.1678
                                 124.7998
## 3.8|3.9
            21.7827
                       0.1733
                                 125.6695
## 3.914
            22.0835
                       0.1755
                                 125.8173
## 4|4.1
            22.9708
                       0.1821
                                 126.1538
## 4.1|4.2
            23.3248
                       0.1845
                                 126.4221
## 4.2|4.3
            23.9773
                       0.1887
                                 127.0704
## 4.3|4.4
            24.5363
                       0.1919
                                 127.8623
## 4.4|4.5
            25.0664
                       0.1947
                                 128.7389
## 4.5|4.6
            25.8738
                       0.1992
                                 129.9045
## 4.6|4.7
            26.4845
                       0.2026
                                 130.7238
## 4.7|4.8
                       0.2062
                                 131.4509
            27.1077
## 4.8|4.9
            27.7713
                       0.2101
                                 132.1967
## 4.9|5
            28.1940
                       0.2123
                                 132.8312
##
```

```
## Residual Deviance: 74681.98
## ATC: 74791.98
## calculate the Z and P-value
coeffs <- coef(summary(ordinal_reg))</pre>
##
## Re-fitting to get Hessian
p <- pnorm(abs(coeffs[, "t value"]), lower.tail = FALSE) * 2</pre>
cbind(coeffs, "p value" = round(p,3))
##
                      Value Std. Error
                                            t value p value
## StandingB
                  0.1090854 0.05164787
                                          2.1120996
                                                      0.035
## StandingC
                 -0.3833627 0.11012353
                                                      0.000
                                         -3.4812063
## StandingD
                 -0.5371044 1.00928478
                                         -0.5321634
                                                      0.595
## StandingDR
                 -0.9942517 0.36386360
                                         -2.7324847
                                                      0.006
## StandingF
                 -0.3208868 0.18957545
                                         -1.6926601
                                                      0.091
## StandingI
                 -0.9734506 0.14071008
                                         -6.9181299
                                                      0.000
## StandingN/A
                  0.2253098 0.04534376
                                          4.9689255
                                                      0.000
## StandingNR
                 -0.5129170 0.12317309
                                        -4.1641967
                                                      0.000
## StandingP
                 -0.1328912 0.07559218
                                         -1.7580025
                                                      0.079
## StandingS
                  0.7637772 0.46070798
                                          1.6578337
                                                      0.097
## StandingU
                 -1.4661787 0.17117338
                                        -8.5654596
                                                      0.000
## Easiness
                  0.5454854 0.03256844
                                        16.7488952
                                                      0.000
## Clarity
                  2.6548224 0.04115321
                                         64.5107024
                                                      0.000
## Workload
                  0.2387385 0.03447839
                                          6.9242934
                                                      0.000
                                                      0.000
## Helpfulness
                  2.4476735 0.04155488
                                         58.9021893
## divisionsouth -0.2213296 0.03191701
                                         -6.9345342
                                                      0.000
## 1|1.2
                  7.0521225 0.16188702
                                         43.5620020
                                                      0.000
## 1.2|1.3
                  7.6320291 0.15037813
                                         50.7522532
                                                      0.000
## 1.3|1.4
                  8.0084909 0.14287748
                                         56.0514578
                                                      0.000
## 1.4|1.5
                  8.7984361 0.13373984
                                         65.7876966
                                                      0.000
                                         71.3584743
## 1.5|1.6
                  9.3074939 0.13043292
                                                      0.000
## 1.6|1.7
                  9.5486383 0.12904547
                                         73.9943696
                                                      0.000
## 1.7|1.8
                  9.9995561 0.12767908
                                         78.3178880
                                                      0.000
## 1.8|1.9
                 10.2202435 0.12731201
                                         80.2771329
                                                      0.000
## 1.9|2
                 10.4269060 0.12702069
                                         82.0882474
                                                      0.000
## 2|2.1
                 11.2496728 0.12587410
                                         89.3724170
                                                      0.000
## 2.1|2.2
                 11.5026913 0.12560089
                                         91.5812855
                                                      0.000
## 2.2|2.3
                 11.9328237 0.12551094
                                         95.0739760
                                                      0.000
## 2.3|2.4
                 13.0191022 0.12636325 103.0291850
                                                      0.000
## 2.4|2.5
                 13.5983218 0.12782094 106.3857099
                                                      0.000
## 2.5|2.6
                 14.0774362 0.12937263 108.8130938
                                                      0.000
## 2.6|2.7
                 14.4618297 0.13087693 110.4994602
                                                      0.000
## 2.7|2.8
                 15.1034333 0.13396972 112.7376650
                                                      0.000
## 2.8|2.9
                 15.6902536 0.13743051 114.1686343
                                                      0.000
## 2.9|3
                 16.1236807 0.14014225 115.0522500
                                                      0.000
## 3|3.1
                 17.1679423 0.14685620 116.9030799
                                                      0.000
## 3.1|3.2
                 17.7781642 0.15049649 118.1300908
                                                      0.000
## 3.2|3.3
                 18.2446461 0.15329111 119.0195933
                                                      0.000
## 3.3|3.4
                 18.8503348 0.15674746 120.2592703
                                                      0.000
```

0.000

19.2013593 0.15854492 121.1098993

3.4|3.5

```
## 3.5|3.6
                 19.7111412 0.16110525 122.3494670
                                                      0.000
## 3.6|3.7
                 20.3257041 0.16431012 123.7033018
                                                      0.000
                 20.9407001 0.16779435 124.7997949
## 3.7|3.8
                                                      0.000
                 21.7827379 0.17333350 125.6695241
## 3.8|3.9
                                                      0.000
## 3.9|4
                 22.0834879 0.17552034 125.8172549
                                                      0.000
## 4|4.1
                 22.9708141 0.18208579 126.1538006
                                                      0.000
## 4.1|4.2
                 23.3248235 0.18449962 126.4220690
                                                      0.000
## 4.2|4.3
                 23.9773443 0.18869333 127.0704418
                                                      0.000
## 4.3|4.4
                 24.5362919 0.19189615 127.8623477
                                                      0.000
## 4.4|4.5
                 25.0663627 0.19470701 128.7388821
                                                      0.000
## 4.5|4.6
                 25.8737719 0.19917539 129.9044625
                                                      0.000
## 4.6|4.7
                 26.4845301 0.20259907 130.7238455
                                                      0.000
## 4.7|4.8
                 27.1077186 0.20621936 131.4508919
                                                      0.000
## 4.8|4.9
                 27.7712748 0.21007536 132.1967273
                                                      0.000
## 4.9|5
                 28.1939901 0.21225425 132.8312176
                                                      0.000
```

Proportional odds ratios exp(coef(ordinal_reg))

```
##
       StandingB
                     StandingC
                                   StandingD
                                                 StandingDR
                                                                StandingF
##
       1.1152576
                     0.6815656
                                   0.5844381
                                                  0.3700002
                                                                0.7255054
       StandingI
                                  StandingNR
##
                   StandingN/A
                                                  StandingP
                                                                StandingS
                                   0.5987465
##
       0.3777772
                     1.2527107
                                                  0.8755603
                                                                2.1463682
##
       StandingU
                      Easiness
                                     Clarity
                                                   Workload
                                                              Helpfulness
##
       0.2308058
                     1.7254458
                                  14.2224597
                                                  1.2696464
                                                               11.5614173
## divisionsouth
##
       0.8014525
```

Clarity and Helpfulness are two most significant variables affecting overall rating.

Method 2

```
library(randomForest)
```

```
## randomForest 4.7-1.1

## Type rfNews() to see new features/changes/bug fixes.

##
## Attaching package: 'randomForest'

## The following object is masked from 'package:dplyr':
##
## combine

## The following object is masked from 'package:ggplot2':
##
## margin
```

```
#View(data_complete)
data_complete <- na.omit(data[, c("Overall_factor", "Standing", "Easiness", "Clarity", "Workload", "Help
data_complete <- data_complete[!is.na(data_complete$Overall_factor) & data_complete$Overall_factor != "
dependent_var <- data_complete$Overall</pre>
independent_vars <- data_complete[, c("Standing", "Easiness", "Clarity", "Workload", "Helpfulness", "di
rf1 <- randomForest(x = independent_vars, y = dependent_var, ntree = 1000, importance = TRUE)
print(importance(rf1))
##
                %IncMSE IncNodePurity
## Standing
               117.0153
                            208.41791
## Easiness
               112.9514
                           1198.80067
## Clarity
               136.0880
                           4804.74507
## Workload
               117.0198
                            843.17816
## Helpfulness 108.3818
                           4183.62698
## division
               122.5397
                             80.25874
varImpPlot(rf1, main = "Variable Importance Plot")
```

Variable Importance Plot

Question2

```
## Set higher than 4.0, the Overall is Good
#data$Overall = as.numeric(data$Overall)
data$Overall_category <- ifelse(data$Overall > 4.0, "Good", "Bad")
## choose the helpfulness and clarity are lower than 2.0
```

```
selected_rows <- data[data$Helpfulness <= 2.0 | data$Clarity <= 2.0, ]
#View(selected_rows)
data$Overall</pre>
```

```
##
          [1] \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 2.3 \ 2.3 \ 2.3 \ 2.3 \ 2.3 \ 5.0 \ 5.0 \ 5.0 \ 5.0 \ 4.8 \ 4.8
##
         ##
##
         ##
         ##
         [91] 4.2 4.2 4.5 4.5 3.8 3.8 3.8 3.8 3.8 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7
       [109] 3.7 3.7 3.7 3.7 3.7 3.7 3.7 2.0 2.0 2.0 2.0 2.0 1.0 3.0 3.0 1.0 3.6 3.6
##
       ##
       ##
##
       [163] 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 5.0 5.0 5.0 5.0 5.0 5.0 5.0
       [181] 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.5 4.5 4.6 4.6 4.6 4.6 4.6 4.6 4.6
##
##
       ##
##
       [253] 4.2 4.2 4.2 4.2 4.0 4.0 4.0 4.0 4.0 4.0 4.3 4.3 4.3 4.0 4.0 4.0 5.0
##
##
       ##
       [289] 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.5 3.5 3.5 3.3 3.3 3.3 3.3 3.3 3.3
       ##
##
       ##
##
       [361] 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 5.0 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
##
        [379] \ \ 3.0 \ \ 3.0 \ \ 3.0 \ \ 3.0 \ \ 3.0 \ \ 3.0 \ \ 2.7 \ \ 2.7 \ \ 2.7 \ \ 2.7 \ \ 2.7 \ \ 2.7 \ \ 2.7 \ \ 2.5 \ \ 2.5 
       ##
       ##
       [433] \ 5.0 \ 3.7 \ 3.7 \ 3.7 \ 5.0 \ 5.0 \ 4.7 \ 4.7 \ 4.7 \ 4.7 \ 4.7 \ 4.7 \ 5.0 \ 3.9 \ 3.9 \ 3.9 \ 3.9 \ 3.9
##
       [451] 3.9 3.9 3.9 3.9 4.0 3.8 3.8 3.8 3.8 5.0 1.0 3.2 3.2 3.2 3.2 3.2 3.2
##
##
       ##
       [487] \ 5.0 \ 5.0 \ 5.0 \ 4.8 \ 4.8 \ 4.8 \ 4.8 \ 4.8 \ 5.0 \ 4.8 \ 4.8 \ 4.8 \ 4.8 \ 5.0 \ 5.0
##
       ##
##
       [541] 4.5 4.5 4.5 4.5 4.6 4.6 4.6 4.6 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3
##
       ##
       ##
       ##
       ##
       [631] 3.8 3.8 3.8 3.8 3.8 4.7 4.7 4.7 3.3 3.3 3.3 3.0 3.0 2.9 2.9 2.9 2.9 2.9
        [649] \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2
##
       ##
        [685] \ \ 2.5 \ \ 2.5 \ \ 2.5 \ \ 2.8 \ \ 2.8 \ \ 2.8 \ \ 2.8 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2.9 \ \ 2
##
       [703] 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.0 2.0 2.0 5.0 5.0 3.8 3.8 3.8 3.8
##
       ##
       ##
##
       [775] 5.0 5.0 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 5.0 5.0 5.0 5.0 5.0 5.0 5.0
##
       ##
       [811] 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 3.3 3.3 3.3 3.3 3.3 3.3 4.1 4.1 4.1
       ##
##
       [847] 4.1 4.1 4.1 2.0 5.0 3.0 3.0 3.0 1.0 2.0 4.0 5.0 1.0 1.0 1.0 1.0 5.0
       [865] 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 2.0 4.0 4.0 4.0 2.8 2.8 2.8 2.8 2.8
##
```

```
## [15499] 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 3.0 3.0 3.0 3.0 3.7 3.7 3.7 1.0 3.8 3.8
## [15517] 3.8 3.8 5.0 5.0 2.5 2.5 1.0 1.0 1.0 4.0 3.0 3.0 3.5 3.5 5.0 2.0 4.0 5.0
## [15535] 5.0 4.8 4.8 4.8 4.8 4.8 3.7 3.7 3.7 4.9 4.9 4.9 4.9 4.9 4.9 4.9 5.0
## [15553] 5.0 4.0 4.0 4.0 2.0 3.8 3.8 3.8 3.8 3.8 5.0 1.0 1.0 5.0 5.0 5.0 5.0
## [15571] 5.0 5.0 5.0 1.0 4.7 4.7 4.7 1.0 3.5 3.5 3.5 3.5 3.7 3.7 3.7 4.2 4.2 4.2
## [15589] 4.2 4.0 4.0 4.0 4.0 4.0 5.0 5.0 3.5 3.5 3.7 3.7 3.7 5.0 4.3 4.3 4.3 3.0
## [15607] 1.0 3.0 3.0 3.0 3.0 2.5 2.5 2.5 2.5 5.0 4.8 4.8 4.8 4.8 5.0 5.0 1.0 5.0
## [15643] 4.8 4.8 4.8 4.8 4.8 5.0 5.0 5.0 5.0 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7
## [15661] 4.7 4.7 4.7 4.7 4.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.8 4.8 4.8
## [15769] 3.5 3.5 3.5 3.5 3.5 4.0 4.0 4.0 4.0 4.0 4.0 1.7 1.7 1.7 1.5 1.5 3.0 3.0
## [15787] 3.0 3.0 3.0 4.0 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 4.6 4.6 4.6 4.6 4.6
## [15841] 5.0 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 5.0 5.0 3.0 3.0 2.0 2.0 5.0 5.0
## [15859] 5.0 5.0 5.0 5.0 5.0 5.0
## use the logistic regression
library(stats)
library(sjPlot)
# Recode "Good" as 1 and "Bad" as 0
selected_rows$Overall_category <- ifelse(selected_rows$Overall_category == "Good", 1, 0)</pre>
#class(selected_rows$Overall_category)
## logistic regression
lg <- glm(Overall_category ~ Standing + Easiness + Clarity + Workload + Helpfulness + division, data =
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(lg)
##
## Call:
## glm(formula = Overall_category ~ Standing + Easiness + Clarity +
##
    Workload + Helpfulness + division, family = binomial, data = selected_rows)
##
## Deviance Residuals:
##
                 Median
                           3Q
                                 Max
             1Q
                       0.00000
               -0.00001
                               2.98452
## -1.21801 -0.02595
##
## Coefficients:
             Estimate Std. Error z value Pr(>|z|)
##
                      7.9122 -2.468 0.01359 *
## (Intercept)
             -19.5270
## StandingB
             -16.3545 4842.2195
                           -0.003 0.99731
             -14.8778 9147.6096 -0.002 0.99870
## StandingC
## StandingDR
             -13.4733 16206.0966 -0.001 0.99934
## StandingF
             -13.7320 56188.1226
                           0.000 0.99981
```

```
## StandingI
                  -12.9821 32032.0166
                                       0.000 0.99968
## StandingN/A
                  -16.5609 3800.5430 -0.004 0.99652
                  -14.2042 13586.9598 -0.001 0.99917
## StandingNR
## StandingP
                  -18.9046 10501.6520 -0.002 0.99856
## StandingS
                  -10.8232 38930.1356
                                       0.000 0.99978
                   -8.8197 79462.0051
                                       0.000 0.99991
## StandingU
## Easiness
                    1.2051
                               0.6903
                                       1.746 0.08083 .
## Clarity
                    0.4621
                               2.7280
                                       0.169 0.86550
## Workload
                    0.5633
                               0.6864
                                        0.821 0.41179
## Helpfulness
                    2.5501
                               0.7905
                                        3.226 0.00126 **
## divisionsouth
                    1.1950
                               1.5282
                                       0.782 0.43424
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 73.816 on 1038
                                      degrees of freedom
                                      degrees of freedom
## Residual deviance: 24.575 on 1023
## AIC: 56.575
##
## Number of Fisher Scoring iterations: 22
odds ratio = exp(coef(lg))
print(odds_ratio)
##
     (Intercept)
                     StandingB
                                   StandingC
                                                StandingDR
                                                               StandingF
##
   3.307695e-09
                 7.894519e-08
                               3.456601e-07
                                             1.408015e-06
                                                           1.087076e-06
##
                  StandingN/A
                                 StandingNR
       StandingI
                                                 StandingP
                                                               StandingS
##
   2.301074e-06
                 6.422525e-08
                               6.779448e-07
                                             6.163376e-09
                                                           1.993166e-05
##
       StandingU
                     Easiness
                                    Clarity
                                                 Workload
                                                            Helpfulness
   1.477892e-04
                 3.337162e+00 1.587376e+00 1.756503e+00 1.280893e+01
## divisionsouth
  3.303507e+00
plot_model(lg)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
```

```
## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
## collapsing to unique 'x' values
```

Overall_category

rf_model <- randomForest(Overall_category ~ Standing + Easiness + Clarity + Workload + Helpfulness + di

Warning in randomForest.default(m, y, \dots): The response has five or fewer ## unique values. Are you sure you want to do regression?

print(importance(rf_model))

```
## IncNodePurity
## Standing 0.1247880
## Easiness 0.5953282
## Clarity 0.1419522
## Workload 0.5359244
## Helpfulness 2.4169149
## division 0.2257458
```

varImpPlot(rf_model, main = "Variable Importance Plot")

Variable Importance Plot

