

fakultät für informatik

Master-Thesis

Convolutional Neural Networks auf Graphrepräsentationen von Bildern

> Matthias Fey 21. Februar 2017

Gutachter:

Prof. Dr. Heinrich Müller M.Sc. Jan Eric Lenssen

Lehrstuhl Informatik VII Graphische Systeme TU Dortmund

Inhaltsverzeichnis

1.	Gedachter Inhalt	1
2.	Einleitung	3
3.	Grundlagen	5
	3.1. Matrizen und Tensoren	5
	3.2. Graphentheorie	5
4.	Graphrepräsentationen von Bildern	7
5.	Räumliche Graphentheorie	9
	5.1. Patchy-SAN	10
6.	Spektrale Graphentheorie	11
	6.1. Spectral Graph Domain	12
	6.2. Diskrete Fourier Transformation	13
	6.3. Faltung	13
	6.3.1. Faltung in CNNs	13
	6.3.2. Faltung auf Graphen	14
	6.3.3. Offene Fragen	14
	6.3.4. Beispiel	14
	6.4. Chebyshev Polynome	15
	6.5. Probleme	15
	6.6. Pfadlänge	15
7.	Graph Convolutional Networks	17
	7.1. Erweiterung für mehrere Kantenattribute	17
	7.1.1. Übertragung auf räumlich eingebettete Graphen	18
	7.2. Tschebyschow-Polynome	20
	7.2.1. Eigenschaften	20
	7.3. Pooling-Ebene	21
	7.3.1. Clustering von Graphen	21
	7.3.2 Pooling-Operation	22

Inhaltsverzeichnis

A. Weitere Informationen	23
Symbolverzeichnis	25
Abbildungsverzeichnis	27
Algorithmenverzeichnis	29
Literaturverzeichnis	31

1. Gedachter Inhalt

Einleitung: Motivation Aufbau der Arbeit

Grundlagen: Graphen, insbesondere planare Graphen Mathematische Notationen: Vektor, Matrix, Tensor Neuronale Netze (Was ist ein CNN, wie ist der Convolution Operator definiert, nicht lineare Aktivierungsfunktion)

Graphrepräsentationen von Bildern Grid Superpixel Superpixelalgorithmen Merkmalextraktion (Momente) Merkmalselektion (Cov, PCA)

Lernen auf Graphen: Stand der Forschung: Spatial vs Spectral

Spatial: Patchy Zentralität Canonical Labeling Übertragung auf planare Graphen <- EI-GENER ANTEIL (z.B. Grid Spiral) Komplexität Vorteile (einfache Architektur)/Nachteile (keine direkte Nachbarschaftsberücksichtigung möglich, keine Graph Coarsening möglich, Vorverarbeitung ist recht teuer und muss Preprocessed werden weil man das nicht über Matrixoperationen ausdrücken kann)

Spectral: Laplacian, Fourier Transformation GCN und kGCN (weisfeiler Lehman) Übertragung auf planare Graphen (Adjazenzpartitionierung) <- EIGENER ANTEIL Pooling/Coarsening Komplexität Vorteile (z.B. Nachbarschaftsberücksichtigung/keine Ordnung nötig)/Nachteile (rotationsinvariant)

Deep Learning auf variabler Input-Menge (SPP)

Augmentierung von Graphen (ist das überhaupt möglich)

Realisierung (Experimente) und Evaluation Adam-Optimizer Sparse Tensors Vorstellung Datensätze (MNIST, PascalVOC, CIFAR-10, ImageNet) Tensorflow Dropout L2-Regularisierung

Zusammenfassung und Ausblick

2. Einleitung

 $\mathbb R$ und $\mathbb N$ sind mathematische Symbole [?].

3. Grundlagen

3.1. Matrizen und Tensoren

3.2. Graphentheorie

Graph Tupel $G = (\mathcal{V}, \mathcal{E})$

$$\mathcal{V} = \{v_i\}_{i=1}^n$$

$$|V| = n < \infty$$

Merkmalsfunktion $f_G \colon \mathcal{V} \to \mathbb{R}^m$

wenn nicht explizit aufgeführt, dann bla bla wir $f_G \colon \mathcal{V} \to \mathbb{R}$

Umschreibung in Tensor/Dense Matrix

$$\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$$

Falls $(u, v) \in \mathcal{E}$, dann sind u und v adjazent und wir schreiben dann $u \sim v$

Gewichtsfunktion $w: \mathcal{V} \times \mathcal{V} \to \mathbb{R}_+$

ungewichtet: $w: \mathcal{V} \times \mathcal{V} \rightarrow \{0, 1\}$

Falls $(u, v) \notin \mathcal{E}$, dann w(u, v) = 0

Im ungewichteten Fall ist Gewichtsfunktion implizit durch \mathcal{E} gegeben

ungerichtet: $u \sim v$ genau dann, wenn $v \sim u$ und

$$w(u,v) = w(v,u) \tag{3.1}$$

Fordern wir für den Verlauf dieser Arbeit (also keine gerichteten Graphen)

Als Schleife wird eine Kante bezeichnet, die einen Knoten mit sich selbst verbindet, d.h. w(v,v) > 0. Ein Graph ohne Schleifen wird schleifenloser Graph genannt. Für den weiteren Verlauf dieser Arbeit fordern wir schleifenlose Graphen.

Adjazenz
matrix $\mathbf{A} \in \mathbb{R}_+^{n \times n}$ eines Graphen Gmi
t $\mathbf{A}_{ij} = w(v_i, v_j)$

Wir sagen ein Knoten v_i hat Position i in **A**. Umschreibung in Sparse Matrix/Tensor

G ist eindeutig definiert durch **A** und f_G .

Der Grad eines Knotens v ist die Anzahl der Knoten, die adjazent zu ihm sind, d.h.

$$\deg\left(v\right) = \sum_{v \sim u} 1\tag{3.2}$$

3. Grundlagen

Im Falle von gewichteten Graphen wird der Grad eines Knotens von v auch oft über

$$d(v_i) = \sum_{j} \mathbf{A}_{ij} \tag{3.3}$$

definiert. Die unterschiedliche Notation macht deutlich, wann wir welchen Grad eines Knotens meinen.

Die Gradmatrix $\mathbf{D} \in \mathbb{R}_+^{n \times n}$ eines Graphen G ist definiert als Diagonalmatrix

$$\mathbf{D} = \operatorname{diag}\left(\left[d\left(v_{1}\right), \dots, d\left(v_{n}\right)\right]\right) \tag{3.4}$$

Umschreibung in Sparse Matrix/Tensor

Ein Knoten $v \in \mathcal{V}$ eines Graphen G heißt genau dann isoliert, wenn d(v) = 0. Ein Graph ist verbunden, falls er keinen isolierten Knoten besitzt. Für den weiteren Verlauf dieser Arbeit fordern wir, dass G verbunden ist.

Ein Graph heißt k-regulär falls $\deg(v_i) = k$ für alle $1, \ldots, n$. Ein ebener Graph ist eine konkrete Darstellung eines Graphen auf der zweidimensionalen Ebene \mathbb{R}^2 . Jedem Knoten v ist eine Positionsfunktion $p \colon \mathcal{V} \to \mathbb{R}^2$ zugeordnet, die die Position eines Knotens auf der Ebene eindeutig definiert.

Ein Weg ist eine Folge von Knoten $(v_{x(1)}, v_{x(2)}, \dots, v_{x(s)})$, sodass $v_{x(i)} \sim v_{x(i+1)}$ für alle $1 \leq i < s$ mit Länge s, wobei $x \colon \{1, \dots, n\} \to \{1, \dots, n\}$ eine Permutation auf der Anzahl der Knoten.

Ein Pfad ist ein Weg, sodass $v_i \neq v_{i+1}$. Im Kontext von schleifenlosen Graphen sind die Begriffe Weg und Pfad äquivalent. Wir schreiben s(u,v) einer Funktion $s: \mathcal{V} \times \mathcal{V} \to \mathbb{N}$ für die Länge des kürzesten Pfades von u nach v.

In Graphen mit *Mehrfachkanten*, auch *Multigraphen* genannt, können zwei Knoten durch mehrere Kanten verbunden sein. Multigraphen lassen sich als Tensor über einen Vektor von Adjazenzmatrizen $[\mathbf{A}_1, \dots, \mathbf{A}_m] \in \mathbb{R}_+^{m \times n \times n}$ schreiben.

4. Graphrepräsentationen von Bildern

planarer Graph (MUSS NICHT UNBEDINGT SEIN), gegenbeispiel, ist aber auch egal

5. Räumliche Graphentheorie

Isomorphismus, Automorphismus, Canonical Labeling Labeling $\,$ Node Partitions

5. Räumliche Graphentheorie

5.1. Patchy-SAN

6. Spektrale Graphentheorie

- Spektrum eines Graphen zur Untersuchung seiner Eigenschaften
- algebraische oder spektrale Graphentheorie genannt
- als Spektrum eines Graphen bezeichnet man die (nach Größe geordnete) Folge der Eigenwerte λ seiner Adjazenzmatrix, d.h. $A \cdot x = \lambda x$ (x Eigenvektoren)

Algebraische Methoden sind sehr effektiv bei Graphen, die regulär und symmetrisch sind. Als *Schleife* wird in der Graphentheorie eine Kante bezeichnet, die einen Knoten mit sich selbst verbindet. Ein Graph ohne Schleifen wird *schleifenloser* Graph genannt.

Sei d_v der Grad eines Knotens v eines Graphen G. Der Laplacian \mathcal{L} eines Graphen ohne Schleifen und Mehrfachkanten ist definiert als

$$\mathcal{L}(u,v) = \begin{cases} d_v, & \text{wenn } u = v, \\ -1, & \text{wenn } u \text{ } undv \text{ adjazent}, \\ 0, & \text{sonst.} \end{cases}$$
 (6.1)

Der Graph Laplacian ist eine Generalisierung des Laplacian auf einem Gitter.

Damit ist $\mathcal{L} = D - A$. \mathcal{L} kann normalisiert werden über $\mathcal{L}_{norm} = T^{-\frac{1}{2}}LT^{-\frac{1}{2}}$, wobei T die Diagonalmatrix beschreibt mit $T(v,v) = d_v$. Für einen isolierten Knoten v, d.h. $d_v = 0$, gilt die Konvention $T^{-1}(v,v) = 0$. Ebenso lässt sich \mathcal{L}_{norm} definieren als

$$\mathcal{L}_{\text{norm}}(u, v) = \begin{cases} 1, & \text{wenn } u = v \text{ und } d_v \neq 0, \\ -\frac{1}{\sqrt{d_u d_v}}, & \text{wenn } u \text{ und } v \text{ adjazent,} \\ 0, & \text{sonst.} \end{cases}$$
(6.2)

Der normalisierte Laplacian ist immer noch symmtrisch!

Wenn G k-regulär ist, d.h. $T = \operatorname{diag}(k)$, dann gilt $\mathcal{L}_{\text{norm}} = I - \frac{1}{k}A$.

Da \mathcal{L} symmetrisch ist, sind seine Eigenwerte alle ≥ 0 (d.h. \mathcal{L} ist positiv-semidefinit). Jede Reihen- und Spaltensumme von \mathcal{L} ist 0.

Einem gewichtetem ungerichterem Graph G kann eine Gewichtsfunktion $w: V \times V \to \mathbb{R}$ zugeschrieben werden, sodass w(u,v) = w(v,u) und $w(u,v) \geq 0$. Falls $\{u,v\} \notin \mathcal{E}$, dann w(u,v) = 0. Damit sind ungewichtete Graphen nur ein Spezialfall bei dem alle Gewichte 0 oder 1 sind. Der Grad d_v eines Knoten v ist dann definiert als

$$d_v = \sum_{u} w(u, v). \tag{6.3}$$

Dann gilt

$$\mathcal{L} = \begin{cases}
1 - \frac{w(v, v)}{d_v}, & \text{wenn } u = v \text{ und } d_v \neq 0, \\
-\frac{w(u, v)}{\sqrt{d_u d_v}}, & \text{wenn } u \text{ und } v \text{ adjazent,} \\
0, & \text{sonst.}
\end{cases}$$
(6.4)

Bemerke, dass hier Schleifen nicht explizit ausgeschlossen werden!

Eine Verschrumpfung eines Graphen G kann beschrieben werden über zwei verschiedene Knoten u und v zu einem neuen Knoten v^* mit

$$w(x, v^*) = w(x, u) + w(x, v)$$
(6.5)

und

$$w(v^*, v^*) = w(u, u) + w(v, v) + 2w(u, v)$$
(6.6)

Mit $\lambda_G := \lambda_1$ für einen Graphen G, gilt für einen Graphen H der aus G verkleinert wurde

$$\lambda_G \le \lambda_H \tag{6.7}$$

6.1. Spectral Graph Domain

- Spectral Graph Domain: Der Raum der Eigenfunktionen von $\mathcal L$
- Analogon (Nachbildung) einer Fourier-Transformation von Funktionen auf gewichteten Graphen

Eine beliebige Funktion $f:V\to\mathbb{R}$ kann als ein Vektor in \mathbb{R}^n gesehen werden. Dies impliziert eine Ordnung auf den Knoten. Wir schreiben $f\in\mathbb{R}^n$ für Funktionen auf den Knoten eines Graphen und f(m) für den Wert des mten Knoten.

Dann gilt für eine beliebige Funktion $f \in \mathbb{R}^n$

$$\mathcal{L}f(x) = \sum_{x \mid y} w(x, y) \cdot (f(x) - f(y)) \tag{6.8}$$

wobei die Summe über x y die Summierung über alle Knoten y beschreibt, die adjazent zu x sind.

Angenommen G ist als ein reguläres Gitter definiert der Breite und Höhe M Dann hat ein Knoten $v_{x,y}$ genau 4 Nachbarn mit Kantengewicht $\frac{1}{(\delta w)^2}$, bei dem δw die euklidsche Distanz zwischen zwei Gitterpunkten beschreibt.

Für eine Funktion $f: M \times M \to \mathbb{R}$ gilt dann:

$$\mathcal{L}f(x,y) = \frac{4f(x,y) - f(x+1,y) - f(x-1,y) - f(x,y+1) - f(x,y-1)}{(\delta w)^2}$$
(6.9)

Damit kann ein Signal f mit der Multiplikation mit \mathcal{L} als eine Weiterpropagation von f unter der Berücksichtigung der lokalen Nachbarn verstanden werden (5-point Stencil, d.h. $\mathcal{L}f \approx -\nabla^2 f$).

6.2. Diskrete Fourier Transformation

 \mathcal{L} besitzt genau n orthogonal zueinander stehende Eigenvektoren $\{u_l\}_{l=1}^n \in \mathbb{R}^n$. Eigenvektoren u_i sind auf 1 normiert, d.h. $||u_i||_2 = 1$. Diese werden auch Graph Fourier Modes genannt. Diesen sind Eigenwete $\{\lambda_l\}_{l=1}^n \in \mathbb{R}$ zugeordnet, die die "Frequenzen" bzw. das Spektrum des Graphen beschreiben oder visuell betrachtet die Ausdehnung des Raumes, den die Eigenvektoren aufspannen. Bemerke dass $\lambda_0 = 0$, da für den Eigenvektor $\vec{u_0} = (1, 1, \dots, 1)^T$ gilt, dass $\mathcal{L}\vec{u_0} = 0$. \mathcal{L} ist diagonalisierbar über $\mathcal{L} = U\Lambda U^T$, wobei $U = [u_1, \dots, u_n] \in \mathbb{R}^{n \times n}$ die Fourier Basis und $\Lambda = \text{diag}([\lambda_0, \dots, \lambda_n]) \in \mathbb{R}^{n \times n}$. Die Fourier Transformation eines Signals $x \in \mathbb{R}^n$ ist dann definiert als $\hat{x} = U^T x$ und die Inverse als $x = U\hat{x}$.

6.3. Faltung

Wir suchen einen Operator $x *_G g$, der eine Faltung zweier Eingangssignale x, g zu einem Ausgangssignal umleitet. x beschreibt dabei die Knotenattribute und g die Gewichte.

6.3.1. Faltung in CNNs

In der Funktionalanalysis beschreibt die Faltung einen mathematischen Operator, der für zwei Funktion f und g eine dirtte Funktion f * g liefert. Die Faltung kann als ein Produkt von Funktionen vertanden werden.

Anschaulich ist (f * g)(x) der gewichtete Mittelwert von f, wobei die Gewichtung durch g gegeben ist.

Angenommen wir wollen über einer Matrix mit einem Filter falten. Sei unsere Eingangsmatrix 3×4 und unsere Filtergröße 2×2 .

Dann gilt zum Beispiel für den Faltungsoperator * in einem Convolutional Neural Network:

$$\begin{pmatrix} 1 & 2 & 3 & 1 \\ 4 & 5 & 6 & 1 \\ 7 & 8 & 9 & 1 \end{pmatrix} * \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 12 & 16 & 11 \\ 24 & 28 & 17 \end{pmatrix}$$
 (6.10)

6. Spektrale Graphentheorie

 $f: 3 \times 4 \to \mathbb{R}$ und $g: 2 \ times 2 \to \mathbb{R}$, dann ist * definiert als

$$(f * g)(x,y) = \sum_{x_i \in [x,x+1]y_i \in [y,y+1]} f(x_i,y_i)g(x-x_i,y-y_i)$$
(6.11)

6.3.2. Faltung auf Graphen

Da wir keinen Translationsoperator auf der Domäne der Knoten x beschreiben können, müssen wir unseren Faltungsoperator in der Fourier-Domäne beschreiben. Dafür wandeln wir unsere Knotenmenge x zuerst in \hat{x} um.

Wir definieren $*_G$ in der Fou
ier-Domäne als

$$x *_{G} g = U \cdot (U^{T} \cdot x \odot \hat{g})$$

$$(6.12)$$

wobei $\odot(A, B) = (a_{ij} \cdot b_{ij})$ die elementweise Multiplikation bzw. das *Hadamard-Produkt*. Das Hadamard-Produkt löst sich auf, wenn \hat{g} als eine Diagonalmatrix repräsentiert wird. Dann gilt

$$x *_{G} g = U \begin{pmatrix} \hat{g}(\lambda_{0}) & \cdots & 0 \\ 0 & \cdots & \hat{g}(\lambda_{n}) \end{pmatrix} U^{T} x = U \hat{g}(\Lambda) U^{T} x$$
 (6.13)

Dann beschreibt $\hat{g}(\Lambda) = \operatorname{diag}(\theta)$ eine Gewichtsfunktion mit n Variablen, $\theta \in \mathbb{R}^n$. Damit ist die Faltung bzw. die Gewichtung abhängig von der Input-Größe n, was extrem schlecht ist

6.3.3. Offene Fragen

- Wie erklärt sich noch einmal der normalisierte Laplacian?
- Warum wird \hat{q} als Diagonalmatrix repräsentiert?
- Wie kommt die Convolution zustande mit dem * Operator?
- Was passiert bei gerichteten Graphen???? Wir haben keinen symmetrischen und insbesondere keinen positiv definiten

6.3.4. Beispiel

Wir betrachten eine einfache 3×3 Adjazenzmatrix, d.h. $|\mathcal{V}| = n = 3$.

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \tag{6.14}$$

mit Diagonalmatrix D = diag(1, 2, 1).

Der Laplacian $\mathcal{L} = D - A$ ist dann

$$\mathcal{L} = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \tag{6.15}$$

Nun müssen die Eigenvektoren der Matrix und dessen Eigenwerte bestimmt werden, d.h. wir müssen das folgende Eigenwertproblem lösen

$$\mathcal{L} \cdot \vec{u} = \lambda \cdot \vec{u} \tag{6.16}$$

Wir erhalten 3 Eigenvektoren und Eigenwerte mit

$$\lambda_0 = 0, \vec{u}_0 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \approx \begin{pmatrix} 0.58\\0.58\\0.58 \end{pmatrix}, \lambda_1 = 1, \vec{u}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\0\\1 \end{pmatrix} \approx \begin{pmatrix} -0.71\\0\\0.71 \end{pmatrix}, \lambda_2 = 3, \vec{u}_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\-2\\1 \end{pmatrix} \approx \begin{pmatrix} 0.68\\0.71\\0.71 \end{pmatrix}$$
(6.17)

Dann sind U, Λ und U^T definiert als

$$U \approx \begin{pmatrix} 0.58 & -0.71 & 0.41 \\ 0.58 & 0 & -0.82 \\ 0.58 & 0.71 & 0.41 \end{pmatrix}, \Lambda = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}, U^T \approx \begin{pmatrix} 0.58 & 0.58 & 0.58 \\ -0.71 & 0 & 0.71 \\ 0.41 & -0.82 & 0.41 \end{pmatrix}$$
(6.18)

Angenommen wir haben ein Signal $x = (100, 10, 1)^T$, dann ist der Wert dieses Signals transformiert in die Fourier Domäne definiert als $\hat{x} \approx (64.09, -70.00, 33.07)^T$. Führen wir \hat{x} auf x mittels $U \cdot \hat{x}$ zurück, erhalten wir korrekterweise $x = (100, 10, 1)^T$.

Ich habe absolut keine Ahnung was diese Sachen aussagen sollen :D:D

6.4. Chebyshev Polynome

6.5. Probleme

Rotationsinvariant

6.6. Pfadlänge

wenn $d_G(m,n) > k$, dann $(L^k)_{m,n} = 0$ (normalisiert sowie unnormalisiert (siehe Wavelet Lemma 5.4))

7. Graph Convolutional Networks

$$H^{(l+1)} = f(H^{(l)}, A) \tag{7.1}$$

$$f(H^{(l)}, A) = \sigma(AH^{(l)}W^{(l)}) \tag{7.2}$$

$$D_{ii} = \sum_{i} A_{ij} \tag{7.3}$$

Für die Potenz $x \in \mathbb{R}$ einer Diagonalmatrix $D \in \mathbb{R}^{N \times N}$ gilt:

$$D^{x} = \begin{pmatrix} d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn} \end{pmatrix}^{x} = \begin{pmatrix} d_{11}^{x} & 0 & \cdots & 0 \\ 0 & d_{22}^{x} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn}^{x} \end{pmatrix}$$
(7.4)

7.1. Erweiterung für mehrere Kantenattribute

Graph Convolutional Networks berücksichtigen nur eine Adjazenzmatrix. Das bedeutet insbesondere, dass ein Graph nur über ein Kantenattribut verfügen kann. Das ist für ungewichtete Graphen die Markierung einer Kante $(a_{ij} \in \{0,1\})$ oder für gewichte Graphen das Gewicht einer Kante $(a_{ij} \in \mathbb{R}_+)$. Eine Menge von Kantenattributen kann über mehrere Adjazenzmatrizen definiert werden. Damit ist es ebenfalls möglich unterschiedliche Kanten für unterschiedliche Attribute zu definieren.

Eine Menge von Adjazenzmatrizen $\mathcal{A} = \{A_1, A_2, \dots, A_m\}$ mit $A_i \in \mathbb{R}^{n \times n}$ beschreibt damit eine Menge von m Graphen über der gleichen Knotenmenge \mathcal{V} mit Kardinalität n.

 $\mathcal{A} \in \mathbb{R}^{m \times n \times n}$ kann zu einer zweidimensionalen Matrix $A \in \mathbb{R}^{m \cdot n \times n}$ geglättet werden.

Dann ist $A \cdot H^{(l)} \in \mathbb{R}^{m \cdot n \times d}$. Reshape zu $\mathbb{R}^{n \times m \cdot d}$ und Gewichtsmatrix $G \in \mathbb{R}^{m \cdot d \times x}$.

$$H^{(l+1)} = f(H^{(l)}, \tilde{\mathcal{A}}) = \sigma \left(\frac{1}{|\tilde{\mathcal{A}}|} \sum_{\tilde{A}_i \in \tilde{\mathcal{A}}} \tilde{D}_i^{-\frac{1}{2}} \tilde{A}_i \tilde{D}_i^{-\frac{1}{2}} H^{(l)} W_i^{(l)} \right)$$
(7.5)

 $\sigma(\cdot)$ kennzeichnet eine Aktivierungsfunktion wie zum Beispiel ReLU(\cdot) = max(0, \cdot).

7. Graph Convolutional Networks

Abbildung 7.1.: Aufteilung einer Adjazenzmatrix in vier räumlich eingebettete Bereiche.

7.1.1. Übertragung auf räumlich eingebettete Graphen

Graphknoten haben im Allgemeinen keine Position oder Lage im Raum. Knoten, die Regionen in einer vorhandenen Segmentierung darstellen, haben jedoch offensichtlich eine gewisse Lage im Raum, die zum Beispiel über das Zentrum der Region definiert werden kann. Diese Information ist vorhanden und wichtig und sollte demnach auch nicht verloren gehen. Anstatt diese lokal im Knoten zu speichern, bietet es sich eher an diese Information in den Kanten zu speichern um eine bessere Faltung zu garantieren. Die euklische Distanz zwischen zwei benacharten Regionszentren wahrt zwar die Information der Distanz zweier Knoten zueinander, verliert aber die Information der Position zweier Knoten zueinander. Es bietet sich daher an, die horizontalen und vertikalen Abstände in einer Koordinate an den Kanten zu speichern. Es ist zu beachten, dass wir dadurch zu einem gerichteten Graphen übergehen, bei dem jede Kante von v nach w auch eine Kante von w nach v besitzt.

Wir haben damit zwei Adjazenzmatrizen. Da Graph Convolutional Networks nicht mit negativen Gewichten funktionieren, müssen wir negative Koordinaten in eine weitere Adjazenzmatrix schreiben. Wir gelangen damit zu vier Adjazenzmatrizen, die die Verbindungen von einem Knoten beschreibt, die links, rechts, oben oder unten zu ihm liegen. Wir definieren diese Adjazenzmatrizen respektive als A_{links} , A_{rechts} , A_{oben} und A_{unten} (vgl. Abbildung 7.1). Falls eine Kante horizontal bzw. vertikal liegt, so definieren wir $a_{ij}=1$ respektive für beide "gegenüberliegenden" Adjazenzmatrizen.

Kantenattribute bzw. Positionen von Knoten sollten skalierungsinvariant gespeichert werden. Dafür werden die Abstände auf den Einheitskreis gemappt, wobei der Knoten mit

Abbildung 7.2.: Abbildung der lokalen Nachbarschaftsknoten auf den Einheitskreis.

der längsten Distanz zum Wurzelknoten genau auf dem Einheitskreis liegt (vgl. Abbildung 7.2).

Für die Anwendung auf das Graph Convolutional Network müssen die Gewichte aller Adjazenzmatrizen $a_{xij} \in [0,1]$ invertiert werden, damit nähere Knoten einen größeren Einfluss haben. Ebenso müssen Self Loops für alle Knoten hinzugefügt werden. Wir definieren unsere Adjazenzmatrix $\tilde{A} \in \mathbb{R}^{N \times N}$ aus einer Adjazenzmatrix $A \in \mathbb{R}^{N \times N}$ dann über

$$\tilde{A}_{ij} = \begin{cases} 1, & \text{falls } i = j, \\ (a_{ij} + 1)^{-1}, & \text{falls } a_{ij} \neq 0, \\ 0, & \text{sonst.} \end{cases}$$
 (7.6)

Dann ist $\tilde{a}_{ij} \in [1, 0.5]$

Diagonalmatrix ist schwierig. Man will ja die Normalisierung damit $H^{(l)}$ nicht überskaliert. Ich würde auch die gewichtete Matrix normalisieren. Denke das macht Sinn. Dann fallen die Werte ab, wenn viele Knoten weit entfernt sind.

7.2. Tschebyschow-Polynome

- bisheriger Ansatz skaliert nicht gut für große Graphen
- schneller Algorithmus zur Approximation des Filters notwendig ⇒ Polynome niedriger Ordnung
- Größe des Filters soll unahängig zu den Daten sein
- approximiere $g(\mathcal{L})$ durch Polynom, dass rekursiv durch \mathcal{L} berechnet werden kann

Tschebyschow-Polynome (engl. Chebyshev) bezeichnen eine Menge von Polynomen $T_n(x): \mathbb{R} \to \mathbb{R}$ mit dem rekursiven Zusammenhang

$$T_n(x) = 2x \cdot T_{n-1}(x) - T_{n-2}(x) \tag{7.7}$$

mit $T_0(x) = 1$ und $T_1(x) = x$. Ein Tschebyschow-Polynom T_n ist ein Polynom n-ten Grads. Diese Polynome formen eine Orthogonalbasis

7.2.1. Eigenschaften

- Polynome formen eine Orthogonalbasis für $L^2\left([-1,1],\frac{d_x}{\sqrt{1-x^2}}\right)$, auch *Hilbertraum* genannt

recurrence tv

7.3. Pooling-Ebene

7.3.1. Clustering von Graphen

Pooling-Ebenen des Netzes sollen über das Clustering bzw. die logische Zusammenfassung von Knoten realisiert werden.

Anforderungen:

- mehrstufiges Clustering von Graphen für mehrere Pooling-Ebenen
- Reduzierung der Knotenanzahl soll den Blick auf einen Graphen bei unterschiedlichen Auflösungen zeigen
- Cluster-Algorithmen, die die Größe eines Graphen um den Faktor zwei für jede Anwendung reduzieren erlauben eine feine Kontrolle über die zu benutzenden Pooling-Größen.
- effiziente Approximation, da Graph-Clustering NP-schwer (vgl. 5)

Es existieren einige Cluster-Techniken auf Graphen wie das populäre spektrale Clustering [?].

Dieser erfüllt aber nicht die Voraussetzungen (warum nicht?). Stimmt doch garnicht!!

brauch ich garnicht

Defferrard et al. [2] benutzen für die Pooling-Ebene eines Netzes auf Graphen die Vergröberungsphase des mehrstufigen Cluster-Algorithmus Graclus [3]. Dabei wird der initiale Graph G_0 sukzessive in kleinere Graphen G_1, G_2, \ldots, G_m mit $|\mathcal{V}_0| > |\mathcal{V}_1| > \cdots > |\mathcal{V}_m|$ transformiert. Für die Transformation von einem Graphen G_i zu einem Graphen G_{i+1} mit kleinerer Knotenanzahl $|\mathcal{V}_{i+1}| < |\mathcal{V}_i|$ werden aus disjunkten Knotenuntermengen von \mathcal{V}_i Superknoten für \mathcal{V}_{i+1} gebildet.

Die Auswahl der Untermengen erfolgt gierig. Die Knoten des Graphen werden als unmarkiert initialisert und zufällig durchlaufen. Für jeden Knoten $v \in \mathcal{V}_i$, der noch unmarkiert ist, wird ein lokaler, ebenfalls noch unmarkierter, Nachbarschaftsknoten $u \in \mathcal{N}(v)$ nach einer zuvor definierten Strategie bestimmt und v sowie w zu einem Superknoten $v^* := \{v, w\} \in \mathcal{V}_{i+1}$ verschmelzt. Anschließend werden v und w markiert. Falls v keinen unmarkierten Nachbarn besitzt, wird v allein als Singleton-Superknoten $v^* := \{v\} \in \mathcal{V}_{i+1}$ deklariert und markiert [3].

Strategien für die Nachbarschaftsauswahl basieren üblicherweise auf der Maximierung von w_{uv} oder $w_{uv} \left(\frac{1}{d_u} + \frac{1}{d_v}\right)$ (Normalized Cut).

erklären

Graclus reduziert die Knotenanzahl eines beliebigen Graphen näherungsweise um die Hälfte, d.h. $2 \cdot |\mathcal{V}_{i+1}| \approx |\mathcal{V}_i|$. Ausnahmen sind zum Beispiel Graphen $G = (\mathcal{V}, \mathcal{E})$ mit $\mathcal{E} = \emptyset$. In der Praxis zeigt sich jedoch, dass Graclus nur sehr wenige Singleton-Knoten generiert [2].

7. Graph Convolutional Networks

Nach der spektralen Graphentheorie [1] gilt für Kanten eines Graphen $G=(\mathcal{V},\mathcal{E})$ nach Verschmelzung von u und v zu v^*

$$w_{xv^*} = w_{xu} + w_{xv} (7.8)$$

$$w_{v^*v^*} = w_{uu} + w_{vv} + 2w_{uv} (7.9)$$

für einen Knoten $x \in \mathcal{V}$, $x \neq v^*$. Insbesondere gilt für einen Graphen H, der auf diese Weise konstruiert wurde, $\lambda_G \leq \lambda_H$, wobei λ_G , λ_H jeweils die ersten Eigenvektoren λ_1 von G respektive H [1].

Übertragung auf planare Graphen

- Mittelwert der Positionen wird gebildet (auch gewichtet über d_i ?)
- $\bullet \ \mathcal{E}_{v^*} = \mathcal{E}_u \cup \mathcal{E}_v$

7.3.2. Pooling-Operation

Anhand eines kleineren, vergröberten Graphen G_{i+1} und der eindeutigen Zuweisung von Knoten $u, v \in \mathcal{V}_i$ zu $v^* \in \mathcal{V}_{i+1}$ können nun die Pooling-Operation der Knotenattribute von \mathcal{V}_i zu \mathcal{V}_{i+1} definiert werden:

- Max-Pooling: $v^* := \max(u, v)$
- **L2-Pooling:** $v^* := ||u, v||_2$

e Kanten, chte werden erechnet!

A. Weitere Informationen

Symbolverzeichnis

- $\mathbb N$ Menge der natürlichen Zahlen. 3, 6
- \mathbb{R}_+ Menge der positiven reellen Zahlen inklusive Null. 5, 6, 17
- $\mathbb R\,$ Menge der reellen Zahlen. 3, 17

Abbildungsverzeichnis

7.1.	Aufteilung einer Adjazenzmatrix in vier räumlich eingebettete Bereiche	18
7.2.	Abbildung der lokalen Nachbarschaftsknoten auf den Einheitskreis	19

List of Algorithms

Literaturverzeichnis

- [1] Chung, F. R. K.: Spectral Graph Theory. American Mathematical Society, 1997.
- [2] Defferrard, M., X. Bresson und P. Vandergheynst: Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. CoRR, 2016.
- [3] DHILLON, I. S., Y. GUAN und B. KULIS: Weighted Graph Cuts Without Eigenvectors: A Multilvel Approach. IEEE, Seiten 1944–1957, 2007.

Eidesstattliche Versicherung

Name, Vorname	MatrNr.
Ich versichere hiermit an Eides statt, dass dem Titel	ich die vorliegende Bachelorarbeit/Masterarbeit* mit
angegebenen Quellen und Hilfsmittel benu	e Hilfe erbracht habe. Ich habe keine anderen als die utzt sowie wörtliche und sinngemäße Zitate kenntlich nnlicher Form noch keiner Prüfungsbehörde
Ort, Datum	Unterschrift
	*Nichtzutreffendes bitte streichen
Belehrung:	
Hochschulprüfungsordnung verstößt, hand einer Geldbuße von bis zu 50.000,00 € ge die Verfolgung und Ahndung von Ordnung	g über Prüfungsleistungen betreffende Regelung einer delt ordnungswidrig. Die Ordnungswidrigkeit kann mit ahndet werden. Zuständige Verwaltungsbehörde für swidrigkeiten ist der Kanzler/die Kanzlerin der le eines mehrfachen oder sonstigen schwerwiegender udem exmatrikuliert werden. (§ 63 Abs. 5
Die Abgabe einer falschen Versicherung a oder mit Geldstrafe bestraft.	n Eides statt wird mit Freiheitsstrafe bis zu 3 Jahren
	gfls. elektronische Vergleichswerkzeuge (wie z.B. die rdnungswidrigkeiten in Prüfungsverfahren nutzen.
Die oben stehende Belehrung habe ich zu	r Kenntnis genommen:
Ort, Datum	