

Dinâmica e distribuição das populações

Resumo

População é o conjunto de indivíduos de uma mesma espécie que vivem e ocupam uma mesma área ao mesmo tempo. O tamanho populacional equivale ao número de indivíduos de uma população, enquanto a densidade populacional pode variar de acordo com as alterações do meio, e é determinada pela seguinte

fórmula: $D = \frac{N}{S}$, onde D = densidade; N = número de indivíduos da população; <math>S = unidade de área ou de volume.

Os principais fatores que modificam esta densidade são a imigração (novos indivíduos chegam na população), a emigração (os indivíduos saem da população), a natalidade (indivíduos que nascem em uma população) e mortalidade (número de indivíduos que morre em uma população).

A imigração (I) e a natalidade (N) aumentam a densidade populacional, enquanto a emigração (E) e a mortalidade (M) diminuem a densidade.

N+I = M+E \rightarrow ESTABILIDADE N+I > M+E \rightarrow CRESCIMENTO N+I < M+E \rightarrow DIMINUIÇÃO

O potencial biótico é a capacidade de uma população para crescer em condições favoráveis, ou seja, é a capacidade dos seres vivos se multiplicarem através da reprodução. Já a resistência do meio é o conjunto de fatores que limitam o crescimento populacional, impedindo um crescimento exponencial da população, e geram como consequências a competição, o parasitismo e o predatismo.

Chamamos de princípio de Gause, ou princípio da exclusão competitiva, quando duas espécies compartilham nichos ecológicos semelhantes, por causa dos recursos limitados, e competem entre si.

Quer ver este material pelo Dex? Clique aqui

Exercícios

- 1. O aumento das infestações por cupins em casas e prédios pode ser resultante da ação do homem sobre o ambiente e das características biológicas desses animais.
 - A combinação de fatores que melhor explica esse aumento de infestações nas cidades é:
 - a) facilidade de reprodução e organização dos indivíduos em diferentes castas.
 - b) eliminação de predadores e maior número de machos reprodutores na colônia.
 - c) disponibilidade de alimento e facilidade para instalação de novas colônias.
 - d) presença de numerosos indivíduos operários e maior proteção do ninho.
- 2. A partir da contagem de indivíduos de uma população experimental de protozoários, durante determinado tempo, obtiveram-se os pontos e a curva média registrados no gráfico abaixo. Tal gráfico permite avaliar a capacidade limite do ambiente, ou seja, sua carga biótica máxima. De acordo com o gráfico:

- a) a capacidade limite do ambiente cresceu até o dia 6.
- b) a capacidade limite do ambiente foi alcançada somente após o dia 20.
- **c)** a taxa de mortalidade superou a de natalidade até o ponto em que a capacidade limite do ambiente foi alcançada.
- d) a capacidade limite do ambiente aumentou com o aumento da população.
- e) o tamanho da população ficou próximo da capacidade limite do ambiente entre os dias 8 e 20.

3. As figuras abaixo mostram o crescimento populacional, ao longo do tempo, de duas espécies de Paramecium cultivadas isoladamente e em conjunto. Os resultados desse experimento embasaram o que é conhecido como Princípio de Gause.

Disponivel em: http://nossomeioporinteiro.wordpress.com/tag/comunidades/>.

Considere o tipo de relação ecológica entre essas duas espécies e indique a afirmação correta.

- a) A espécie P. aurelia é predadora de P. caudatum.
- b) P. aurelia exclui P. caudatum por competição intraespecífica.
- c) P. aurelia e P. caudatum utilizam recursos diferentes.
- d) P. aurelia exclui P. caudatum por parasitismo.
- e) P. aurelia exclui P. caudatum por competição interespecífica.
- **4.** No estudo da dinâmica das populações naturais, entre os fatores demográficos que regulam o crescimento populacional podemos citar natalidade, mortalidade, imigração e emigração. Considerando as associações abaixo:
 - I. Natalidade + imigração = mortalidade + emigração.
 - II. Natalidade + imigração > mortalidade + emigração.
 - III. Natalidade + imigração < mortalidade + emigração.

Assinale a alternativa cuja(s) associação(ões) leva(m) ao crescimento populacional:

- a) Apenas I.
- b) Apenas II.
- c) Apenas III.
- d) lell.
- e) I, II e III.

5. Traíras são predadoras naturais dos lambaris. Acompanhou-se, em uma pequena lagoa, a evolução da densidade populacional dessas duas espécies de peixes. Tais populações, inicialmente em equilíbrio, sofreram notáveis alterações após o início da pesca predatória da traíra, na mesma lagoa. Esse fato pode ser observado no gráfico abaixo, em que a curva 1 representa a variação da densidade populacional da traíra.

A curva que representa a variação da densidade populacional de lambaris é a de número:

- a)
- b) 3
- c) 4
- 5 d)
- 6. Um biólogo anotou as taxas de natalidade, mortalidade, imigração e emigração de quatro populações nos anos de 2004, 2005 e 2006. Com os dados obtidos, montou os gráficos a seguir, que representam as taxas de crescimento dessas populações. Numere a coluna da direita, indicando a que população está correlacionado cada um dos gráficos.

_					
1.		2004	2005	2006	
	Taxa de Natalidade	25	24	26	
	Taxa de Mortalidade	12	10	14	
	lmigração	15	18	16	
	Emigração	9	11	8	

2.		2004	2005	2006
	Taxa de Natalidade	20	22	24
	Taxa de Mortalidade	15	14	12
	lmigração	14	15	17
	Emigração	9	13	9

3.		2004	2005	2006
	Taxa de Natalidade	18	19	21
	Taxa de Mortalidade	12	15	14
	lmigração	12	14	13
	Emigração	8	11	5

-					
4.		2004	2005	2006	
	Taxa de Natalidade	15	16	13	
	Taxa de Mortalidade	8	11	9	
	lmigração	7	9	6	
	Emigração	4	3	3	

Assinale a alternativa que apresenta a numeração correta da coluna da direita, de cima para baixo.

- 2 1 3 4. a)
- 1 2 3 4. b)
- 4 2 1 3. c)
- 1 4 2 3.
- 3-1-2-4

7. Em um experimento, populações de tamanho conhecido de duas espécies de insetos (A e B) foram colocadas cada uma em um recipiente diferente (recipientes 1 e 2). Em um terceiro recipiente (recipiente 3), ambas as espécies foram colocadas juntas.

Durante certo tempo, foram feitas contagens do número de indivíduos em cada recipiente e os resultados representados nos gráficos.

A partir desses resultados, pode-se concluir que

- a) a espécie A se beneficia da interação com a espécie B.
- **b)** o crescimento populacional da espécie A independe da presença de B.
- c) a espécie B depende da espécie A para manter constante o número de indivíduos.
- d) a espécie B tem melhor desempenho quando em competição com a espécie A.
- **e)** o número de indivíduos de ambas se mantém constante ao longo do tempo quando as duas populações se desenvolvem separadamente.

8. Os gráficos abaixo foram construídos com base em dados obtidos por diferentes pesquisadores, em estudos sobre crescimento populacional, considerando diferentes espécies de animais, inclusive o homem. Nos dois casos mostrados nos gráficos, para efeito de simplificação, faz-se referência ao tempo, apenas sob o ponto de vista numérico. Com base nesses gráficos, pode-se afirmar que:

- a) Na natureza, a fase de equilíbrio do crescimento populacional, indicada em D, na figura (1), ocorre em função da resistência ambiental.
- **b)** O crescimento real de uma população não controlada depende de seu potencial biótico, como indicado em B, na figura (1).
- **c)** A população indicada no gráfico (2) sofreu uma maior ação da resistência ambiental no tempo de 0 a 80 do que no tempo de 100 a 120.
- **d)** Apenas os microorganismos que vivem livres na natureza têm padrão de crescimento populacional como ilustrado no gráfico (2).
- e) A densidade de uma população mantida em laboratório, em condições ideais, deve obedecer à curva descrita no gráfico (1).

9. A taxa de crescimento de uma população depende de inúmeros fatores, tais como: número de indivíduos, taxa de mortalidade, taxa de natalidade, emigração, imigração, competição e outros fatores ligados ao potencial biótico da espécie e à capacidade de suporte do ambiente em unidade de tempo. O gráfico abaixo representa, de forma hipotética, a taxa de crescimento populacional em decorrência do tempo, da espécie Columba picazuro (asa branca), ave ocorrente na caatinga nordestina.

Com base na análise do gráfico e nos conhecimentos sobre crescimento populacional, identifique as afirmativas corretas sobre a população de C. picazuro:

- Terá a taxa de natalidade reduzida, quando o número de indivíduos se aproximar da capacidade de suporte.
- II. Aumentará independentemente dos efeitos da disponibilidade de alimentos, abrigo e nidação.
- III. Tenderá ao equilíbrio, quando a capacidade de suporte for igual ao número de indivíduos.
- IV. Diminuirá com o aumento da emigração e com a redução da taxa de natalidade.
- V. Aumentará de forma constante e diretamente proporcional ao tempo.

A seguência correta de afirmativas verdadeiras e falsa é

- a) VVFFV
- b) FVFFV
- c) VFVFF
- d) VFVVF
- e) VVVFF
- 10. Com a introdução de uma espécie A de peixe em um lago onde normalmente ela não ocorre, o equilíbrio das populações de peixes ali existentes poderá ser alterado. Sobre esse fato considere as afirmações seguintes:
 - I. O equilíbrio poderá ser alterado se houver competição por alimento.
 - II. O equilíbrio poderá ser alterado se a espécie for predadora dos peixes nativos.
 - **III.** O equilíbrio poderá ser alterado se espécie introduzida apresentar altas taxas de reprodução e cuidado com a prole.
 - IV. A espécie A morrerá, pois espécies introduzidas não conseguem sobreviver em ambientes que não sejam os seus.

Sobre as afirmações anteriores, assinale a alternativa correta.

- a) Somente a II está correta.
- b) Somente a IV está correta.
- c) Somente a I e a IV estão corretas.
- d) Somente a II e a III estão corretas.
- e) Somente a I, a II e a III estão corretas.

Gabarito

1. c

A disponibilidade de alimento juntamente com a capacidade de sobrevivência em ambientes urbanos permite que a população destes animais crescerem.

2. E

Entre os dias 8 e 20 a população permaneceu de forma estável, ou seja, a população chegou na capacidade limite do ambiente.

3. E

O terceiro gráfico mostra que quando cultivadas juntas, a P. aurelia exclui P. caudatum por competição interespecífica, onde P. aurelia possui elevada densidade, enquanto que P. caudatum tem sua densidade bastante reduzida.

4. B

Com a natalidade e imigração maiores que a mortalidade e emigração, a população vai aumentar ao longo do tempo, pois se nasce mais que morre e entra mais indivíduos em um dado local do que sai.

5. D

Como a população de traíras foi reduzida, a predação exercida sobre a população de lambaris também foi e isso permitiu um crescimento populacional de lambaris na região.

6. E

Comparando os fatores que aumentam a população (imigração e natalidade) com os que diminuem a população (mortalidade e emigração), podemos ver que no gráfico 3 a população decresceu no ano de 2005 e aumentou logo em 2006. Já o gráfico 1 mostra que teve um grande aumento da população em 2005 e decresceu em 2006. O a população 2 se manteve estável entre 2004 e 2005, pois as taxas se equipararam, tendo um aumento subsequente em 2006 da população. Por fim, a população 4 teve um sensível aumento em 2005 e logo em seguida teve um decréscimo em 2006.

7. D

A competição entre espécies acaba limitando o crescimento principalmente da espécie menos adaptada, podendo leva-la a diminuição do crescimento populacional.

8. A

A resistência ambiental irá "frear" o crescimento populacional quando atingir a capacidade de suporte do ambiente. Assim, a população tenderá a se tornar constante, não tendo um crescimento e nem diminuição da população grandes.

9. D

A afirmativa II está falsa porque os efeitos da disponibilidade de alimentos, abrigo e nidação conferem resistência ao aumento de uma dada população. A afirmativa IV está errada porque ao longo do tempo a população não aumentará, mas tenderá a ficar constante.

10. E

A afirmativa IV está errada, pois muitas espécies exóticas conseguem sobreviver em alterar a comunidade local.