DANISH METEOROLOGICAL INSTITUTE TECHNICAL REPORT 04-14

Magnetic Results 2003

Brorfelde, Qeqertarsuaq, Qaanaaq and Narsarsuaq Observatories

COPENHAGEN 2004

DMI Technical Report 04-14

Compiled by Børge Pedersen

ISSN 1399-1388 (Online)

The address for the observatories is:

Danish Meteorological Institute Solar-Terrestrial Physics Division Lyngbyvej 100 DK-2100 Copenhagen Denmark

Phone +45 39 15 74 75 Fax +45 39 15 74 60

E-mail <u>or@dmi.dk</u>

Internet http://www.dmi.dk

Cover: The observatory building at Qaanaaq (Thule). To the right the variometer hut, in the middle the recording hut and to the left the absolute hut. The huts are connected by covered corridors.

i

PREFACE

As shown in the tables and on the map below the Danish Meteorological Institute (DMI) operates four permanent geomagnetic observatories in Denmark and Greenland, namely Brorfelde, Qeqertarsuaq (formerly Godhavn), Qaanaaq (formerly Thule) and Narsarsuaq, and further also two magnetometer chains in Greenland. The chain on the west coast consists of the three permanent observatories and a number of variation stations, while the east coast chain consists of five variation stations. Together with Space Physics Research Laboratory (SPRL) of University of Michigan, USA, DMI also operates a Magnetometer Array on the Greenland Ice Cap (MAGIC). The variation stations are without absolute control.

This yearbook presents the result of the geomagnetic measurements carried out at the four permanent observatories during 2003. The yearbook has been compiled by Børge Pedersen.

The yearbook is divided in eight sections. **Section I** describes the instrumentation and methods of data reduction and distribution used for all four observatories, while the **sections II-V** describes what is relevant for each individual observatory, such as observatory description, diary, tables of adopted baseline values, tables of monthly mean values, and tables and plots of annual mean values. Maps of the magnetic declination for Denmark, Faeroe Islands and Greenland are shown in **section VII**; crustal anomalies in **section VII** and in **section VIII** the following plots are presented: plots of observed and adopted baseline values, plots of differences between observed and calculated absolute values D, H and Z, and plots of hourly and daily mean values of X, Y and Z.

Danish Meteorological Institute Solar-Terrestrial Physics Division February 2004

TABLE 1. Permanent	Geomagnetic	Observatories O	perated by DMI.

Observatory	IAGA-	Geographic Coordinates			Geoma	agnetic	Invariant
	code					inates ¹	Latitude ²
		°N	$^{\circ}\mathrm{W}$	°E	°N	°E	°N
Qaanaaq	THL	77.47	69.23	290.77	87.92	14.28	85.21
Qeqertarsuaq	GDH	69.25	53.53	306.47	78.77	34.36	75.79
Narsarsuaq	NAQ	61.16	45.44	314.56	70.09	38.63	66.50
Brorfelde	BFE	55.63		11.67	55.45	98.66	

TABLE 2. Greenland West Coast Geomagnetic Variation Stations Operated by DMI.

Station	Acronym	Geographic Coordinates		Geoma Coordi	- ,	Invariant Latitude ²	
		°N	°W	°E	°N	°E	°N
Savissivik	SVS	76.02	65.10	294.90	86.26	24.80	83.46
Kullorsuaq	KUV	74.57	57.18	302.82	84.14	40.46	81.08
Upernavik	UPN	72.78	56.15	303.85	82.38	36.52	79.36
Uummannaq	UMQ	70.68	52.13	307.87	79.97	39.30	76.87
Attu	ATU	67.93	53.57	306.43	77.51	32.52	74.56
Kangerlussuaq	STF	67.02	50.72	309.28	76.34	36.09	73.21
Maniitsoq	SKT	65.42	52.90	307.10	75.01	31.03	72.07
Nuuk	GHB	64.17	51.73	308.27	73.68	31.80	70.66
Paamiut	FHB	62.00	49.68	310.32	71.36	33.25	68.15

TABLE 3. Greenland East Coast Geomagnetic Variation Stations Operated by DMI.

Station	Acronym	Geographic Coordinates			agnetic linates ¹	Invariant Latitude ²	
		°N	$^{\circ}\mathrm{W}$	°E	°N	°E	°N
Nord	NRD	81.60	16.67	343.33	81.12	129.27	81.05
Danmarkshavn	DMH	76.77	18.63	341.37	79.20	102.91	77.29
Daneborg	DNB	74.30	20.22	339.78	77.78	92.54	75.26
Illoqqortoormiut	SCO	70.48	21.97	338.03	75.06	80.84	71.82
Tasiilaq	AMK	65.60	37.63	322.37	73.31	53.48	69.49

TABLE 4. MAGIC Stations on the Greenland Ice Cap Operated by DMI and SPRL.

Station	Acronym	Geographic Coordinates			Geoma Coord	Invariant Latitude ²	
		°N	$^{\circ}\mathrm{W}$	°E	°N	°E	°N
GISP	MCG	72.60	38.35	321.65	79.68	66.29	76.36
Raven Skiway	MCR	66.48	46.29	313.71	75.31	42.28	71.91

¹The geomagnetic coordinates are based on the IGRF 2000.0 magnetic field model in which the geomagnetic north pole position is 79.5°N, 288.4°E.

 $^{^2\}mbox{Based}$ on the IGRF 2000.0 magnetic field $\,$ model, Epoch 2000.0 and a height of 105 km.

Map of the Geomagnetic Observatories and Variation Stations

NOTE: The invariant latitudes (INVL) are based on the IGRF2000 model (Epoch 2000.0) and a height of 105 Km

Table of Contents

SEC	TION I:	Instrumentation and data handling	1
1.	Continuou	s recording of field variations	1
2.	Reduction	formulas	5
3.	Absolute n	neasurements	6
	3.1.	Introduction	6
	3.2.	Instrumentation	6
	3.3.	Azimuth marks for observation of the magnetic declination	8
	3.4.	Measurement and calculation	9
4.	Data proce	essing	10
	4.1.	Fluxgate variometer measurements. Summary	10
	4.2.	Data processing on a daily basis	11
	4.3.	Data processing on a monthly basis	11
	4.4.	Annual data processing	12
5.	Accuracy of	of data	13
6.	Presentation	on of results	13
7.	Data distri	bution and availability	14
8.	References	5	15
SEC	TION II:	Brorfelde Geomagnetic Observatory 2003	17
SEC	TION III:	Qeqertarsuaq (Godhavn) Geomagnetic Observatory 2003	29
SEC	TION IV:	Qaanaaq (Thule) Geomagnetic Observatory 2003	43
SEC	TION V:	Narsarsuaq Geomagnetic Observatory 2003	53
SEC	TION VI:	Maps of the Magnetic Declination	63
SEC	TION VII:	Crustal annomalies	69
SEC	TION VIII:	Annual plots	71

SECTION I

Instrumentation and data handling.

1. CONTINUOUS RECORDING OF FIELD VARIATIONS.

Continuous recording of the magnetic field variations were performed by means of two digital variometer systems, a primary one and a supplementary one. The main parts of the two independent variometer systems are a tri-axial fluxgate magnetometer and a data logger, which is based on a single-board personal computer. The magnetometers and the data loggers are manufactured by DMI. The PC data logger (PCD) converts the analogue output from the magnetometers to digital values and writes them on ZIP disks. Temperatures measured in the environment of the sensors and data loggers as well as outdoor temperatures are normally also recorded. As the values written on the ZIP disk can only be accessed after computer processing at the DMI, both variometer systems are equipped with a printer for hard copy of the recorded data during times when absolute measurements are made. As monitor for the observatory staff, real-time magnetograms are displayed on a graphics screen. The data logger offers the possibility for remote control as well as data transfer from an observatory to the DMI via the public telephone network. The units in the primary variometer system (except for the peripherals: printer and graphics screen) are all supplied from an Uninterruptible Power Supply (UPS) which has internal batteries capable of powering the system for a couple of hours in the event of mains failure. The units in the supplementary variometer system are all mains powered without standby battery supply. The PC-clock, though, ensures correct time after power failures. In this way, although no data are recorded during power failures, the data will be properly timed, when power is restored. The fluxgate sensors and electronics of the two variometer systems are placed in the variometer house which is heated by means of thermostatically controlled non-magnetic electric heaters. The data loggers, printers and the graphics screens are all placed in the electronics house.

The instrumentation of the variometer systems are shown in table 1 and 2, while block diagrams of the systems are shown in figure 1.

The fluxgate magnetometer is model FGE, versions D and E designed at the laboratory of the Solar-Terrestrial Physics Division, and consists of a sensing head with three sensors mounted orthogonally to each other, and an electronic unit. The fluxgate sensors are mounted in groves milled in a precision machined marble cube in order to provide accurate and stable sensor alignment. The marble cube is suspended by two crossed phosphor-bronze bands, working as a Cardan's suspension in order to overcome the difficulty with tilting pillars which causes much trouble by baseline drift, cf. reference 6. The three fluxgate sensors are oriented so that they record H_N and H_E and I_R , where I_R and I_R are the magnetic north and east components respectively. This orientation has been chosen because setting up the magnetometers is easy, but also in order to keep the continuity from the photographic recordings. The fluxgate magnetometers are regarded as digital variometers the output of which is referred to the main pillar of the observatory by means of absolute measurements.

Description of the magnetometers is given in the references 1 and 2.

Analogue output	±10 V
Dynamic range	
Resolution	
Version D	0.2 nT
Version E	0.1 nT
Compensation:	
Range	64000 nT
Steps	128 nT
Misalignment of sensor axis	< 2 mrad (7 min. of arc)
Long time drift	<3 nT/year
Temperature coefficients:	
Sensor	< 0.2 nT/°C
Electronics	< 0.1 nT/°C
Resolution of temperature	0.1 °C
Bandpass	DC to 1 Hz
Band suspended sensor:	
Range of compensation	±0.5°
Factor of compensation	> 1000
Dimensions and weights:	
Band suspended sensor	25×25×55 cm ³ ; 20 kg
Electronics	13×7×22 cm ³ ; 1.0 kg
Power requirements	220 VAC, 2W
Operating temperature	0 to +40 °C

Figure 1.
Block diagram of the variometer systems.

	TABLE 1. Primary variometer systems 2003								
Station Period		Fluxgate magnetometer		Data logger					
	Model	Sensitivity	Model	A/D- converter	Reso- lution	Recorded data			
BFE	JAN 01 -DEC 31	FGE, v.D band-suspen- ded cube	400 nT/V	PCD,v.7.0	16 bits	1/8 nT	20 sec. mean values 1 sec. spot values		
GDH	JAN 01 -DEC 31	FGE, v.E band-suspen- ded cube	400 nT/V	PCD,v.7.0	16 bits	1/8 nT	20 sec. mean values 1 sec. spot values		
THL	JAN 01 -DEC 31	FGE, v.D band-suspen- ded cube	400 nT/V	PCD,v.7.0	16 bits	1/8 nT	20 sec. mean values 1 sec. spot values		
NAQ	JAN 01 -DEC 31	FGE, v.E band-suspen- ded cube	400 nT/V	PCD,v.7.0	16 bits	1/8 nT	20 sec. mean values 1 sec. spot values		

	TABLE 2. Supplementary variometer systems 2003									
	Fluxgate magi	netometer		Г	Oata logge	r				
Station	Period	Model	Sensitivity	Model	A/D- converter	Reso- lution	Recorded data			
BFE	JAN 01 -DEC 31	FGE, v.E band-suspen- ded cube	400 nT/V	PCD,v.7.0	16 bits	1/8 nT	20 sec. mean values 1 sec. spot values			
GDH	JAN 01 -DEC 31	FGE, v.E band-suspen- ded cube	400 nT/V	PCD,v.7.0	16 bits	1/8 nT	20 sec. mean values 1 sec. spot values			
THL	JAN 01 -DEC 31	FGE, v.D band-suspen- ded cube	400 nT/V	PCD,v.7.0	16 bits	1/8 nT	20 sec. mean values 1 sec. spot values			
NAQ	JAN 01 -DEC 31	FGE, v.E band-suspen- ded cube	400 nT/V	PCD,v.7.0	16 bits	1/8 nT	20 sec. mean values 1 sec. spot values			

2. REDUCTION FORMULAS.

The following reduction formulas, which are independent of the sensor orientation relative to the magnetic meridian, have been used, cf. Appendix A in the yearbook for 1991 (Data Report 92-3)

$$H = \sqrt{\left(H_0 + S_{HN} \times \Delta H_N\right)^2 + \left(S_{HE} \times \Delta H_E\right)^2}$$

$$D = D_0 + \arctan \left[\frac{S_{HE} \times \Delta H_E}{H_0 + S_{HN} \times \Delta H_N} \right]$$

$$Z = Z_0 + S_z \times \Delta Z$$

The used notation means

 H_0 D_0 Z_0 baseline values.

 $\Delta H_N \Delta H_E \Delta Z$ the digital values recorded by the data logger

 S_{HN} S_{HE} S_Z scale values.

The scale values are normally calibrated so that $S_{HN} = S_{HE} = S_Z$

The scale value of the recorded data (raw data) is 1/8 nT/LSB as shown in table 1 and 2. LSB means Least Significant Bit. When the data are reformatted to our standard data format, all scale values are converted to 1/4 nT/LSB.

There are no temperature terms in the formulas, partly because the fluxgate magnetometers of DMI design have very small temperature coefficients, and partly because the temperature of the variometer house is kept stable.

3. ABSOLUTE MEASUREMENTS.

3.1. Introduction.

Absolute measurements were carried out on a regular basis by means of a DI-fluxgate magnetometer (DI-flux) for measuring the angles D and I, and a Proton Precession Magnetometer (PPM) for measuring the total field intensity F. The absolute values H and Z are then derived from

$$H = F \cos I$$
$$Z = F \sin I$$

where H, Z and F are field values at the time of the I measurement. Baseline values H_0 , D_0 and Z_0 necessary for calibration of the variometer systems were calculated by means of the reductions formulas shown in chapter 2, and running plots kept. Two DI-flux measurements were on the average made once a week on the same day at all observatories.

At Brorfelde the Proton Vector Magnetometer measurements which earlier were used as an independent control of the *H* and *Z* values obtained by the DI-flux/PPM measurements were not continued in 2003.

3.2. Instrumentation.

3.2.1. The DI-fluxgate magnetometer, DI-flux.

The DI-flux consists of a non-magnetic geodetic theodolite from ZEISS and a fluxgate magnetometer manufactured at DMI. The sensor of the magnetometer is fixed in a block of plexiglas, which provides adequate mechanical protection, and mounted on top of the telescope with the positive direction of the magnetic axis almost parallel to the sighting direction of the telescope. The output from the sensor is displayed on a digital voltmeter in nT with a resolution of 0.1 nT and a dynamic range of ± 200 nT. The DI-flux is used as a null-detector as described in reference 7. In order to find the zero positions in a quick and easy way, the magnetometer is equipped with a sound signal, which keeps silent when the output from the sensor is within 0 ± 70 nT.

The theodolite used is either type 010B or 020B. Type 010B was introduced in BFE in 1986 and at the Greenlandic observatories in 1988/89. Type 020B was introduced in NAQ in September 2001 to be used in routine measurements instead of type 010B because it is more convenient to handle for the two observers, cf. Section V.

Both theodolites have centesimal circle graduation, i.e. 400 grades in a circle. In modern usage, the *grade* is referred to as the *gon* (from Greek: *gonia*, angle). Subdivision by 10^3 gives the *milligon* (mgon). The relation between the centesimal and the sexagesimal units is (exact): 1 gon = 0.9° .

TABLE 3 Circle reading						
Theodolite	Reading principle	Mean directional accuracy				
010B	Optical micrometer reading	±0.3 mgon (±1'')				
020B	Optical scale reading	±1 mgon (±3'')				

The DI-flux is considered an absolute instrument, which means that the angles measured by the instrument do not deviate from the true values D and I. This is achieved by using an observation procedure which eliminates the unknown parameters such as sensor offset, collimation angles, and theodolite errors. The accuracy of the measurements of the angles D and I has been treated by O. Rasmussen and B. Pedersen, cf. reference 5. The theory of the DI-flux has been carefully treated by E. Kring Lauridsen, cf. reference 3.

3.2.2. The Proton Precession Magnetometer, PPM.

At the observatories in Greenland absolute measurements of the total intensity F was made by means of the proton precession magnetometer, type 105 from EDA, which measures F with a resolution of 0.1 nT and an absolute accuracy of 0.1 nT.

At Brorfelde the measurements of F were made by an Overhauser magnetometer type GSM-19 from GEM Systems having 0.01 nT resolution and 0.2 nT absolute accuracy. The PPM 880B from ELSEC was not used in 2003.

The frequency of the time base in the proton precession magnetometers has been determined from time to time by means of a frequency standard, and it was found that all the PPM's except for GSM-19 needed corrections. These corrections $\Delta F_{electronics}$ are since January 01 1992 based on the most recent value of the proton gyromagnetic ratio recommended by CODATA¹

$$\gamma_p = 2.67515255(81) \times 10^8 \, \text{rad/(T} \times \text{s})$$

as decided at the IAGA Working Group V-1 meeting on August 19th, 1991 during the IUGG General Assembly in Vienna.

In connection with a re-examination of pillar differences and gradients in the absolute house at Brorfelde, Kring Lauridsen found that the sensor of the ELSEC proton precession magnetometer was magnetic, cf. Brorfelde yearbook 1988-89 (Technical Report 91-3). This permanent magnetism causes small corrections, ΔF_{sensor} , in H and Z. See also Wienert, reference 4 page 113.

The formula for F measured by the PPM is therefore

$$F = F_{PPM} + \Delta F_{PPM}$$
 where $\Delta F_{PPM} = \Delta F_{electronics} + \Delta F_{sensor}$

¹CODATA is the Committee on Data for Science and Technology of the International Counsil for Scientific Unions.

TABLE 4 Adopted PPM corrections valid for 2003								
observatory	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
BFE	GEM GSM-19	0.0 nT	0.0 nT	0.0 nT				
	ELSEC 880B	0.5 nT	-0.2 nT	0.3 nT				
GDH	EDA 105	-0.5 nT	0.0 nT	-0.5 nT				
THL	EDA 105	-0.5 nT	0.0 nT	-0.5 nT				
NAQ	EDA 105	-0.5 nT	0.0 nT	-0.5 nT				

3.2.3. The Proton Vector Magnetometer, PVM.

The measurements with the PVM at Brorfelde were not continued in 2003 as mentioned in chapter 3.1. The stationary vertical coil at pillar G is now used only for calibration purposes. Description of the coil is given in the Brorfelde yearbook for 1984.

3.3. Azimuth marks used for observation of the magnetic declination.

TABLE 5 Azimuth marks valid for 2003								
observatory	mark	azimuth	distance	remarks				
BFE, pillar G	M1*)	188°31.90'	106.5 meters	target plate				
(main absolute pillar)	M3	358°47.45°	86.0 meters	target plate				
BFE, pillar A	M2	348°52.15'	88.5 meters	target plate				
	M3	358°47.75°	80.0 meters	target plate				
BFE, pillar X	M1*)	189°01.1'	90 meters	target plate				
GDH	M1*)	55°44.0'	400 meters	vertical cliff				
	M2	56°50.2'	100 meters	target plate				
THL	M2	110°07.0'	135 meters	target plate				
NAQ	M4	337°42.5'	250 meters	ionosonde transmitter mast				
	M5	337°17.3'	about 3 km	sheep stable				
	M6*)	263°35.7'	about 6 km	mountain peak				

^{*)} main azimuth marks

3.4. Measurement and calculation.

At the observatories in Greenland D and I are measured by means of the DI-fluxgate magnetometer on the single pillar in the absolute house, while F is measured by the EDA proton precession magnetometer, the sensor of which is put up on a pillar at some distance from the absolute pillar, cf. reference 8. The site difference in F, ΔF_{pillar} between the two pillars has been measured, which enable the F measurements to be reduced to the absolute pillar:

$$F_{abs.pillar} = (F_{PPM} + \Delta F_{PPM}) + \Delta F_{pillar}$$

The values of D, I and F are thus obtained at the absolute pillar, and the calculated values of H and Z are also referred to that point, the observatory standard reference point, i.e. equal to the height of the tilting axis of the DI-theodolite above pillar surface (= 22.5 cm).

TABLE 6 ΔF _{pillar} valid for 2003					
observatory	$\Delta F_{ m pillar}$				
GDH	24.0 nT				
THL	7.9 nT				
NAQ	8.5 nT				

When the theodolite 020B was introduced in Narsarsuaq in September 2001 (cf. chapter 3.2.1) it was found by comparison measurements that

$$H_{010B} = H_{020B} - 1 \,\text{nT}$$
 and $Z_{010B} = Z_{020B} + 0.2 \,\text{nT}$

These corrections are due to an error in the I measurements which again probably is due to an eccentricity error of the vertical circle which is not compensated for by the reading method (optical scale reading). We thus have a correction ΔI_{020B} to the I measurements done by 020B

$$I = I_{010B} = I_{020B} + \Delta I_{020B} \qquad \text{where} \qquad \Delta I_{020B} = -\sin I \frac{\Delta H}{F} + \cos I \frac{\Delta Z}{F}$$

Using mean values for *I* and *F* we found that

$$\Delta I_{020B} = -\sin 76.8^{\circ} \frac{-1}{54700} + \cos 76.8^{\circ} \frac{0.2}{54700} = 4 \text{ arc seconds}$$

At Brorfelde the routine DI-flux measurements were made on pillar A, while supplementary measurements were made on both pillar A and pillar G in order to determine the pillar differences ΔD_{pillar} and ΔI_{pillar} to be added to the measurements on pillar A in order to refer the measurements to the observatory standard reference point on pillar G. As the total intensity F is measured on pillar G no pillar difference in F, ΔF_{pillar} is needed

TABLE 7 Pillar differences at BFE 2003				
$\Delta \mathrm{D}_{\mathrm{pillar}}$	0.40'			
ΔI_{pillar}	-0.05'			

The measurements of F must further refer to the time of the I measurements with the DI-flux. As the proton precession magnetometer is manually operated, the measurements of F must be performed before or after the DI-flux measurements. In order to refer the measurements of F to the time of the I measurements, a time difference in F, ΔF_{time} is therefore needed

$$F_{{\it I-measurement}} = F_{{\it PPM-measurement}} + \Delta F_{{\it time}}$$

Calculation of the DI-flux and PPM measurements gives primarily the absolute values of the magnetic elements DIFHZ, and subsequent, by using the reduction formulas shown in chapter 2, the baseline values H_0 , D_0 and Z_0 necessary for calibration of the variometer systems. Also the DI-flux constants, i.e. sensor offset S_0 and the sensor misalignment angles ("collimation" angles) δ and ε , are calculated regularly as they serve as checking quantities of the measuring procedures for D and I. For easier comparison, it is convenient to convert the angular values for δ and ε to nT by multiplication with the normalizing factors H and Z.

4. DATA PROCESSING.

4.1. Fluxgate variometer measurements. Summary.

The three sensors of the fluxgate magnetometer are oriented so that they record H_N and H_E and Z, where H_N and H_E are the magnetic north and east components respectively. The analogue outputs of the magnetometer (± 10 V) are input to a 16-bit A/D-converter in the data logger where the ± 10 V are converted to ± 4096 nT with a resolution of 0.125 nT. Three analogue inputs are used for recording of 1-second spot values of the fluxgate output, while three other channels are used for recording 20-second mean values of the same output. In addition three inputs are sampled once every hour to record temperatures. The recorded data are written on ZIP disks once every hour. The disks from the primary variometer system are sent by mail once every three month to DMI, while the supplementary disk are sent once every month.

4.2. Data processing on a daily basis.

Every night a data collecting PC at the DMI retrieves the 20-second mean values from the previous UT day from the primary observatory PC data loggers via the public telephone network. The transferred 20-second data ("Magnetometer chain data") are then converted to our standard data format (GADF) and organizes in files, each file containing all stations in the magnetometer chains for one UT day.

Filtered 1-minute values ("Yearbook data") are then calculated from the 20-second mean values and organized in files, each file containing one month of data per observatory. The calculated 1-minute values are centred on the minute and four 20-second samples, two before the minute and two after the minute are used to calculate one filtered 1-minute value. The two samples closest to the minute are given a weight of 3 and the two other samples are given a weight of 1 in the filtered values.

The 1-minute data are then plotted on paper in magnetogram format (ΔH_N , ΔH_E and ΔZ) where after the data are converted to Intermagnet ASCII format (X,Y,Z) using provisional baseline values and then sent by E-mail to the Geomagnetic Information Nodes (GINs) in Ottawa, Edinburgh and Kyoto. The 1-minute data from Narsarsuaq are also sent to the WDC for Geomagnetism in Kyoto to be used in preparation of the real time AE-index.

Provisional 1-minute values of the Polar Cap Geomagnetic Activity Index, PC-index (cf. the observatory yearbook 1992) based on THL data are also calculated and plotted on paper on a daily basis and sent to the WDC's in Copenhagen and Kyoto.

The plots (magnetograms and PC-index) are checked every morning and put up on a notice-board for display.

4.3. Data processing on a monthly basis.

When the data diskettes from the supplementary observatory PC data loggers are received at DMI filtered 1-minute values ("Supplementary yearbook data") are then calculated from the 20-second mean values and organized in files as described above.

At the end of each month a list of missing values in the primary 1-minute data is printed and these, gaps are if possible, replaced by data from the supplementary recorder. Hard copies of plots in magnetogram format (*HDZ*) based on provisional baseline values are then generated. These plots are used as an extra check of the data, i.e. if there are erroneous data samples which show up as transient spikes on the plots, the data are plotted on a graphics screen in magnetogram format and the spikes are erased

Using provisional baseline values the final 1-minute raw data (ΔH_N , ΔH_E and ΔZ) in the standard data format GADF are then converted to a provisional 1-month file containing 1-minute data (XYZ) in the Intermagnet CD-ROM binary data format. This file are divided in day-long records, each record containing 1-minute values, hourly mean values and daily mean values for the day in question.

- The hourly mean values, centred on the UT half-hour, are calculated from the 1-minute values. As decided on August 27 2001 at the IAGA Division V Business Meeting in Hanoi, Vietnam the hourly mean values are not calculated if more than 6 1-minute values within an hour are missing.
- The daily mean values are calculated from the hourly mean values. The daily means are not calculated if any of the hourly mean values for the day are missing. This rule may be found in the WDC format description for hourly mean values.

The file containing data from Narsarsuaq are sent once a month to the WDC for Geomagnetism in Kyoto to be used in preparation of the AE-index.

The file containing data from THL are used to calculate provisional 1-month files containing 1-minute and 15-minute values of the Polar Cap Geomagnetic Activity Index, PC-index. The files are sent to the WDC's in Copenhagen and Kyoto.

K-indices from Brorfelde are calculated and sent by E-mail twice a month to GFZ in Potsdam, Germany. The *K*-index is used in the preparation of K_p -indices published by the International Association of Geomagnetism and Aeronomy (IAGA). The lower limit for K = 9 at BFE is 600 nT.

4.4. Annual data processing.

At the end of the year when final baseline values have been adopted the twelve 1-month files from each observatory containing the final 1-minute raw data (ΔH_N , ΔH_E and ΔZ) in the standard data format GADF are converted to final 1-month files containing 1-minute data (XYZ) in the Intermagnet CD-ROM binary data format. The data are then checked by calculating the differences between the weekly absolute measurements of DHZ and the corresponding final 1-minute values calculated from variometer output and adopted baseline values. Another check is plotting the hourly mean values and the daily mean values.

The data files are then sent to Intermagnet to be published on the annual CD-ROM and to the WDC in Copenhagen to be published in the WDC data formats through the WDC system.

Monthly and annual mean values of *XYZ* and the derived values *DFHI* are calculated and sent to IPGP in Paris and the WDC in Edinburgh respectively to be used in modelling work.

- Monthly mean values are calculated as the mean of available hourly mean values for the month.
- Annual mean values are calculated as the mean of available hourly mean values for the year.

Finally adopted 1-month files containing 1-minute and 15-minute values of the PC-index are calculated and sent to the WDC's in Copenhagen and Kyoto.

5. ACCURACY OF DATA.

Assuming uncertainties equivalent to 1 nT (or better) in D and I, and better than 1 nT in F, in the absolute measurements, the uncertainty in the adopted baseline values as well as in the final one-minute values in magnetic units, is estimated to be less than 2 nT in Greenland (quiet conditions), and less than 1 nT at Brorfelde.

6. PRESENTATION OF RESULTS.

In this yearbook the following data are organised by observatory in the sections II-V:

- Tables of adopted baseline values.
- Tables of monthly and annual mean values of all geomagnetic elements.
- Plots of the annual mean values and annual changes of D, H and Z.

while the following plots are presented in section VIII:

- Plots of observed and adopted baseline values.
- Plots of differences between observed and calculated absolute values.
- Plots of hourly and daily mean values of X, Y and Z.

The final baseline values presented in section II-V are adopted by a graphical smoothing process as described in section VIII.

Monthly mean values and **Annual mean values** of the magnetic elements for All Days, Quiet Days and Disturbed Days are tabulated in the sections II-V.

In the case of Brorfelde, annual mean values (All Days) from Rude Skov are also tabulated.

In the case of Narsarsuaq we have not calculated annual means for the period 1968-82. Instead QWD ("Quiet Winter Days") values are calculated from field values (*DHZ*) determined at night time hours of very quiet winter days (December and January).

Declination and inclination are expressed in degrees and decimal minutes, while the units of all the other elements are nanoTeslas (nT). In the tables of annual mean values for THL and GDH the decimal minutes are rounded to the equivalent of 1 nT, i.e. to the nearest minute or half-minute respectively.

Plots of annual mean values (All Days) of the magnetic elements *DHZ*, and of first differences of the annual means, i.e. secular variation at the observatories, are also presented. For Narsarsuaq plots of Quiet Winter Days 1968-84 are also presented together with plots of All Days.

7. DATA DISTRIBUTION AND AVAILABILITY.

Preliminary one-minute digital data from all four observatories are sent by E-mail on a daily basis to the INTERMAGNET Geomagnetic Information Nodes (GINs) in Ottawa, Canada, in Edinburgh, Scotland, and in Kyoto, Japan. These data are available through Internet:

http://www.intermagnet.org

Final digital one-minute values and hourly mean values are available through the World Data Center for Geomagnetism, Copenhagen:

http://www.dmi.dk/projects/wdcc1/

The final data are also published on http://www.intermagnet.org and on the annual INTER-MAGNET CD-ROM

To be used in modelling work, monthly mean values are sent to IPGP in Paris. Accessible through Internet:

http://beaufix.ipgp.jussieu.fr/rech/mag/

Annual means are sent to the WDC for Geomagnetism, Edinburgh, also to be used in modelling work. Accessible through Internet:

http://www.geomag.bgs.ac.uk/gifs/annual means.shtml

PC-indices based on Thule data are published through the WDCs for Geomagnetism, Copenhagen, Denmark and Kyoto, Japan. Accessible through Internet:

http://www.dmi.dk/projects/wdcc1/pcn/pcn.html

One-minute digital data from Narsarsuaq are sent daily and once a month to the WDC for Geomagnetism, Kyoto, Japan. The data are used in preparation of the AE-index. Accessible through Internet:

http://swdcdb.kugi.kyoto-u.ac.jp/

K-indices from Brorfelde are sent by E-mail twice a month to GFZ in Potsdam, Germany. The K-index is used in the preparation of K_p -indices published by the International Association of Geomagnetism and Aeronomy (IAGA). The lower limit for K = 9 at BFE is 600 nT.

http://www.gfz-potsdam.de/pb2/pb23/GeoMag/niemegk/kp index/

Momentary values from Brorfelde at 02 UT on 10 quiet days per month selected by G. Schulz at the magnetic observatory in Wingst are used for comparisons between observatories all over Europe.

8. REFERENCES.

1. O. Rasmussen: Improvements in Fluxgate Magnetometers at Danish Meteorological Institute's Magnetic Observatories.

Proceedings of the International Workshop on Geomagnetic Observatory Data Acquisition and Processing. Geophysical Publications No. 15. Finnish Meteorological Institute 1990.

- 2. E. Kring Lauridsen, O. Rasmussen: Experience with Band Suspended Fluxgate Sensors. Tecnical Report 90-10. Danish Meteorological Institute 1990.
- 3. E. Kring Lauridsen: Experiences with the DI-fluxgate Magnetometer Inclusive Theory of the Instrument and Comparison with other Methods.

 Geophysical Papers R-71. Danish Meteorological Institute 1985.
- 4. K. A. Wienert: Notes on Geomagnetic Observatory and Survey Practice. Earth Sciences 5. UNESCO 1970.
- 5. O. Rasmussen and B. Pedersen: D&I Fluxgate Measurements at the Danish Magnetic Observatories.

Proceedings of the VIIth Workshop on Geomagnetic Observatory Instruments, Data Acquisition and Processing at the Adolf Schmidt-Observatory for Geomagnetism Niemegk, Germany. Scientific Technical Report STR98/21. GeoForschungsZentrum Potsdam 1998.

- 6. Thule Geophysical Observatory, Magnetic Results 1985-1990.
 Data Report 92-4. Danish Meteorological Institute 1992.
- 7. Magnetic Results 1994. Brorfelde, Godhavn, Thule and Narsarsuaq observatories Data Report 95-1. Danish Meteorological Institute 1995.
- 8. Magnetic Results 1997. Brorfelde, Qeqertarsuaq, Qaanaaq and Narsarsuaq observatories Data Report 98-1. Danish Meteorological Institute 1998.

SECTION II

Brorfelde Geomagnetic Observatory 2003.

OBSERVATORY DETAILS.

The Danish main geomagnetic observatory Brorfelde was established in 1978 by the Danish Meteorological Institute as a successor to the observatory at Rude Skov which suffered from disturbances from electric trains. The observatory is situated on a hilltop near the small village Brorfelde about 60 km West of Copenhagen. The protected area which has been put at the disposal of DMI by the University of Copenhagen is the triangular eastern part of the 45 ha area used by the University of Copenhagen.

The observatory consists of 4 houses: An office and guest house (52 m^2) , an absolute house (48 m^2) , an electronics house (32 m^2) and a vaiometer house (30 m^2) . Further description of the new observatory and its location is given in the observatory yearbook for 1984 as well as the background for the removal.

The following coordinates etc. are valid for the observatory:

Acronym (IAGA-code)	BFE
Elevation (top of absolute pillar)	80 m
Geographic latitude	55°37.5'N
Geographic longitude	11°40.3'E
Geomagnetic latitude	55.45°N
Geomagnetic longitude	98.66°E

The geomagnetic coordinates are based on the IGRF 2000.0 magnetic field model in which the geomagnetic north pole position is 79.5°N, 288.4°E.

STAFF.

The routine absolute measurements were made by Mr. Henrik Schwartz who also supervised the buildings and the equipment.

DIARY.

APR	08	From April 08 to 11 the temperature in the variometer house raised to approximately
		44 °C due to a defective thermostat. The thermostat was replaced on April 11. This
		accident caused baseline jumps as shown in the tables below.

JUL 23 The frequency of the time base in the Overhauser magnetometer type GSM-19 from GEM Systems was checked by means of a frequency standard, and it was found that it did not need correction, cf. chapter 3.2.2 in section I.

On the same day the azimuth of mark 3, which was replaced in December 2002 was checked by means of angular differences to the two other azimuth marks. No change in the azimuth of mark 3 was found.

OCT-NOV From the beginning of October to the middle of November the door and three windows of the absolute house were renewed. When the windows were first mounted they showed to be magnetic so the absolute measurements on October 10 were cancelled. When this artificial magnetism were removed the absolute measurements were resumed.

In the same period one window of the electronics house was renewed and the door of the office house was repaired.

During June to September the outside of the absolute house and the electronics house was painted and the areas around the observatory buildings were maintained.

DATA LOSS.

Intervals of missing primary variometer data were, if possible, replaced by data from the supplementary recorder. After supplementation the following 1-minute data are still missing:

APR	04	06:16 – 06:16 UT.	Change of ZIP disk.
APR	11	09:08 - 09:25 UT	Magnetic tools near the fluxgate sensors due to exchange of
			the thermostat.
SEP	23	14:01 - 14:23 UT	Power failure.

OBSERVED AND ADOPTED BASELINE VALUES.

Tables of adopted baseline values are shown below, while graphs of the observed and adopted baseline values are shown in section VIII.

Adopted baseline values for the primary variometer system.

Interval beginning		ginning	H_0	D_0	Z_0	
JAN	01	00:00 UT	16969.0 nT	0°25.7'	46429.5 nT	
JAN	28	00:00 UT	16968.5 nT	0°25.8'		
FEB	18	00:00 UT		0°25.9'		
APR	08	21:00 UT	not adopted	not adopted	not adopted	
APR	12	00:00 UT	16970.0 nT	0°27.0'	46427.0 nT	
MAY	01	00:00 UT			46427.5 nT	
MAY	13	00:00 UT	16969.5 nT			
MAY	20	00:00 UT		0°26.8'	46428.0 nT	
JUN	01	00:00 UT		0°26.7'		
JUN	09	00:00 UT		0°26.6'	46428.5 nT	
JUL	01	00:00 UT	16970.0 nT			
JUL	15	00:00 UT		0°26.5'	46429.0 nT	
AUG	06	00:00 UT			46429.5 nT	
AUG	18	00:00 UT		0°26.4'		
OCT	06	00:00 UT			46429.0 nT	
OCT	16	00:00 UT			46428.5 nT	
DEC	09	00:00 UT			46428.0 nT	
DEC	21	00:00 UT	16969.5 nT		46427.5 nT	

Adopted baseline values for the supplementary variometer system.

Interv	al beg	inning	H_0	D_0	Z_0
JAN	01	00:00 UT	17065.0 nT	0°25.7'	46391.0 nT
JAN	21	00:00 UT	17064.0 nT	0°25.6'	
MAR	01	00:00 UT			46390.5 nT
MAR	16	00:00 UT	17064.5 nT		
APR	09	03:00 UT	17064.0 nT	0°25.8'	46391.0 nT
APR	09	12:00 UT	17063.0 nT	0°26.0'	46391.5 nT
APR	10	00:00 UT	17062.5 nT	0°25.2'	
APR	10	15:00 UT	17062.0 nT	0°26.5'	46392.0 nT
APR	11	09:00 UT	17063.0 nT	0°26.0'	46391.0 nT
APR	11	15:00 UT	17064.0 nT	0°25.8'	46390.0 nT
JUN	01	00:00 UT	17065.0 nT	0°25.9'	
JUN	10	00:00 UT		0°26.0'	
JUN	16	00:00 UT			46389.5 nT
JUN	25	00:00 UT		0°26.1'	
JUL	15	00:00 UT	17066.0 nT		
AUG	01	00:00 UT		0°26.2'	46389.0 nT
AUG	12	00:00 UT	17066.5 nT	0°26.4'	
SEP	01	00:00 UT			46388.5 nT
OCT	16	00:00 UT		0°26.3'	
NOV	01	00:00 UT	17065.5 nT		
NOV	26	00:00 UT	17064.5 nT		46389.5 nT
DEC	01	00:00 UT	17064.0 nT	0°26.1'	
DEC	16	00:00 UT	17063.0 nT		

Monthly Mean	Values, A	Il Davs.	Ouiet Davs	and Disturb	ed Davs.

Year		D		I	H	X	Y	Z	F	*	ELE
2003	0	,	0	'	nT	nT	nT	nT	nT		
JAN	0	56.9	69	48.6	17147	17145	284	46632	49685	A	DHZ
FEB	0	58.1	69	48.8	17146	17144	290	46635	49687	A	DHZ
MAR	0	58.8	69	48.9	17146	17143	293	46636	49688	A	DHZ
APR	0	58.9	69	48.8	17148	17145	294	46639	49691	A	DHZ
MAY	0	59.9	69	48.7	17150	17147	299	46641	49694	A	DHZ
JUN	1	00.1	69	48.8	17153	17150	300	46651	49704	A	DHZ
JUL	1	00.9	69	48.8	17152	17149	304	46652	49705	A	DHZ
AUG	1	02.0	69	49.3	17147	17144	309	46657	49708	Α	DHZ
SEP	1	02.2	69	49.4	17146	17143	310	46659	49710	Α	DHZ
OCT	1	04.2	69	50.4	17131	17128	320	46663	49708	Α	DHZ
NOV	1	04.8	69	50.6	17135	17132	323	46680	49726	Α	DHZ
DEC	1	04.4	69	49.7	17147	17144	321	46674	49724	Α	DHZ
WINTER	1	01.0	69	49.4	17144	17141	304	46655	49705	Α	DHZ
EQUINOX	1	01.0	69	49.3	17143	17140	304	46649	49699	Α	DHZ
SUMMER	1	00.7	69	48.9	17151	17148	303	46650	49703	Α	DHZ
YEAR	1	01.0	69	49.2	17146	17143	304	46652	49703	A	DHZ
JAN	0	55.9	69	48.3	17152	17150	279	46631	49686	Q	DHZ
FEB	0	57.5	69	48.2	17154	17152	287	46631	49686	Q	DHZ
MAR	0	58.1	69	48.3	17153	17151	290	46636	49691	Q	DHZ
APR	0	58.3	69	48.4	17153	17151	291	46640	49694	Q	DHZ
MAY	0	58.9	69	48.2	17158	17155	294	46640	49696	Q	DHZ
JUN	1	00.3	69	48.3	17159	17156	301	46650	49706	Q	DHZ
JUL	1	00.7	69	48.3	17159	17156	303	46650	49706	Q	DHZ
AUG	1	01.1	69	48.8	17155	17152	305	46657	49711	Q	DHZ
SEP	1	01.7	69	49.1	17151	17148	308	46659	49711	Q	DHZ
OCT	1	02.1	69	48.9	17153	17150	310	46659	49712	Q	DHZ
NOV	1	03.5	69	49.5	17150	17147	317	46675	49726	Q	DHZ
DEC	1	03.5	69	49.0	17156	17153	317	46672	49725	Q	DHZ
WINTER	1	00.1	69	48.7	17154	17151	300	46652	49706	Q	DHZ
EQUINOX	1	00.1	69	48.7	17153	17150	300	46648	49702	Q	DHZ
SUMMER	1	00.3	69	48.4	17158	17155	301	46649	49704	Q	DHZ
YEAR	1	00.1	69	48.6	17155	17152	300	46650	49704	Q	DHZ
JAN	0	57.8	69	49.2	17139	17137	288	46633	49683	D	DHZ
FEB	1	00.2	69	49.7	17134	17131	300	46639	49687	D	DHZ
MAR	1	00.6	69	49.8	17133	17130	302	46641	49688	D	DHZ
APR	0	59.8	69	49.3	17140	17137	298	46638	49688	D	DHZ
MAY	1	01.6	69	49.3	17141	17138	307	46640	49690	D	DHZ
JUN	1	00.4	69	49.5	17140	17137	301	46647	49696	D	DHZ
JUL	1	01.0	69	49.6	17140	17137	304	46653	49702	D	DHZ
AUG	1	03.0	69	50.5	17131	17128	314	46664	49709	D	DHZ
SEP	1	03.2	69	50.4	17131	17128	315	46663	49708	D	DHZ
OCT	1	10.7	69	54.5	17067	17063	351	46658	49681	D	DHZ
NOV	1	06.1	69	51.6	17122	17119	329	46687	49728	D	DHZ
DEC	1	05.2	69	50.6	17135	17132	325	46679	49725	D	DHZ
WINTER	1	02.2	69	50.2	17133	17130	310	46659	49705	D	DHZ
EQUINOX	1	03.5	69	51.0	17118	17115	316	46650	49692	D	DHZ
SUMMER	1	01.6	69	49.7	17138	17135	307	46651	49699	D	DHZ
YEAR	1	02.4	69	50.3	17129	17126	311	46653	49698	D	DHZ

^{*}A = All days *Q = Q-days *D = D-days ELE = Elements recorded

ANNUAL MEAN VALUES.

In the following two tables the observatory means of the magnetic elements in Denmark since 1891 are presented. In the first table the annual means are shown for the two old observatories Copenhagen (COP) and Rude Skov (RSV) for the period 1891-1980. The second table shows the means for Brorfelde since 1980.

Annual Mean	Values.	Copenhagen an	d Rude Skov	1891-1980.	All Days.
I IIIII WOOL I'L COOL	, errered	Coperina Seri ari	W ILWWO DILO	10/1 1/00g	1 111 100, 500

YEAR	D	I	Н	X	Y	Z	F	*	ELE
	0 1	0 1	nT	nT	nT	nT	nT		
1891.5	348 54.3	69 04.6	17198	16877	-3310	44982	48158	С	DHZ
1892.5	349 01.0	69 05.3	17206	16891	-3278	45030	48205	C	DHZ
1893.5	349 07.2	69 03.8	17234	16924	-3253	45045	48229	C	DHZ
1894.5	349 13.6	69 02.4	17250	16946	-3224	45032	48223	C	DHZ
1895.5	349 19.6	69 00.0	17277	16978	-3200	45010	48212	C	DHZ
1896.5	349 25.4	68 58.0	17299	17005	-3175	44988	48199	C	DHZ
1897.5	349 30.5	68 55.5	17327	17037	-3155	44964	48187	C	DHZ
1898.5	349 35.2	68 53.8	17344	17058	-3135	44941	48172	C	DHZ
1899.5	349 39.2	68 51.7	17367	17085	-3119	44918	48158	C	DHZ
1900.5	349 42.8	68 49.6	17390	17110	-3105	44895	48145	C	DHZ
1901.5	349 45.7	68 47.6	17411	17134	-3095	44872	48131	C	DHZ
1902.5	349 48.5	68 46.2	17423	17148	-3083	44850	48115	C	DHZ
1903.5	349 51.5	68 45.1	17431	17159	-3069	44826	48096	C	DHZ
1904.5	349 55.3	68 44.2	17434	17165	-3051	44802	48075	C	DHZ
1905.5	350 00.1	68 43.7	17432	17167	-3027	44778	48051	C	DHZ
1906.5	350 05.5	68 43.4	17427	17167	-2999	44752	48025	C	DHZ
1907.5	350 11.8	68 43.2	17420	17166	-2966	44727	48000	A	DHZ
1908.5	350 18.5	68 43.5	17403	17155	-2930	44694	47963	A	DHZ
1909.5	350 25.7	68 43.9	17386	17144	-2891	44666	47930	A	DHZ
1910.5	350 32.9	68 44.2	17375	17139	-2853	44648	47910	A	DHZ
1911.5	350 41.2	68 44.8	17359	17130	-2809	44631	47888	A	DHZ
1912.5	350 49.4	68 45.4	17342	17120	-2766	44610	47862	A	DHZ
1913.5	350 58.1	68 46.6	17319	17104	-2719	44597	47842	A	DHZ
1914.5	351 08.0	68 48.2	17293	17086	-2665	44592	47828	A	DHZ
1915.5	351 17.3	68 50.6	17257	17058	-2614	44591	47814	A	DHZ
1916.5	351 27.0	68 52.7	17229	17038	-2561	44599	47811	A	DHZ
1917.5	351 35.6	68 54.8	17198	17013	-2514	44599	47800	A	DHZ
1918.5	351 44.5	68 56.5	17167	16989	-2466	44587	47778	A	DHZ
1919.5	351 54.2	68 58.2	17144	16973	-2415	44592	47774	A	DHZ
1920.5	352 04.4	68 59.7	17124	16960	-2361	44596	47771	A	DHZ
1921.5	352 14.8	69 01.2	17105	16949	-2308	44607	47774	A	DHZ
1922.5	352 26.2	69 02.6	17087	16938	-2249	44615	47775	A	DHZ
1923.5	352 37.4	69 03.6	17073	16932	-2192	44615	47770	A	DHZ
1924.5	352 49.6	69 05.1	17053	16920	-2129	44621	47769	A	DHZ
1925.5	353 02.3	69 07.2	17025	16899	-2064	44631	47768	A	DHZ
1926.5	353 14.8	69 10.0	16992	16874	-1998	44654	47778	A	DHZ
1927.5	353 26.6	69 11.6	16974	16863	-1938	44670	47786	A	DHZ
1928.5	353 38.0	69 13.9	16948	16843	-1879	44691	47797	A	DHZ
1929.5	353 49.0	69 16.2	16924	16826	-1823	44718	47813	A	DHZ
1930.5	353 59.6	69 19.0	16893	16800	-1768	44747	47830	A	DHZ
					-,00				

continues...

Annual Mean Values, Copenhagen and Rude Skov, continued.

YEAR	D	I	Н	X	Y	Z	F	*	ELE
	0 '	0 '	nT	nT	nT	nT	nT		
1931.5	354 09.6	69 20.5	16879	16791	-1717	44767	47843	A	DHZ
1932.5	354 20.1	69 23.1	16855	16773	-1664	44805	47870	A	DHZ
1933.5	354 30.4	69 25.0	16839	16762	-1612	44838	47896	A	DHZ
1934.5	354 40.7	69 26.9	16824	16751	-1560	44875	47925	A	DHZ
1935.5	354 51.2	69 29.6	16804	16736	-1507	44927	47967	A	DHZ
1936.5	355 01.1	69 31.9	16786	16723	-1458	44972	48003	A	DHZ
1937.5	355 10.7	69 34.4	16767	16708	-1409	45022	48043	A	DHZ
1938.5	355 19.7	69 36.7	16752	16696	-1364	45071	48084	A	DHZ
1939.5	355 28.5	69 38.2	16745	16693	-1321	45113	48120	A	DHZ
1940.5	355 37.2	69 39.8	16739	16690	-1278	45162	48164	A	DHZ
1941.5	355 45.9	69 41.5	16730	16684	-1235	45207	48203	A	DHZ
1942.5	355 53.4	69 42.5	16727	16684	-1199	45240	48233	A	DHZ
1943.5	356 01.5	69 44.4	16714	16674	-1159	45281	48267	A	DHZ
1944.5	356 09.0	69 45.6	16710	16672	-1122	45318	48301	A	DHZ
1945.5	356 16.5	69 46.9	16701	16666	-1085	45349	48327	A	DHZ
1946.5	356 25.2	69 49.3	16680	16647	-1042	45386	48354	A	DHZ
1947.5	356 32.9	69 50.3	16677	16647	-1004	45419 45435	48384 48399	A	DHZ DHZ
1948.5 1949.5	356 40.3 356 47.8	69 50.7 69 51.5	16676 16675	16648 16649	-968 -932	45465	48399 48426	A A	DHZ
1949.5 1950.5	356 55.2	69 51.3	16685	16661	-932 -896	45498	48461	A A	DHZ
1950.5	350 33.2 357 02.7	69 52.0	16692	16670	-890 -860	45498 45529	48492	A A	DHZ
1951.5	357 02.7	69 52.0	16701	16681	-800 -827	45554	48519	A	DHZ
1952.5	357 16.2	69 51.5	16713	16694	-827 -796	45568	48536	A	DHZ
1955.5	357 10.2	69 51.1	16726	16708	-790 -767	45586	48558	A	DHZ
1955.5	357 28.4	69 51.3	16733	16717	-738	45616	48588	A	DHZ
1956.5	357 34.2	69 52.4	16732	16717	-709	45657	48626	A	DHZ
1957.5	357 39.0	69 52.6	16738	16724	-686	45683	48653	A	DHZ
1958.5	357 43.1	69 52.5	16749	16736	-667	45707	48679	A	DHZ
1959.5	357 47.3	69 52.6	16759	16747	-647	45737	48711	A	DHZ
1960.5	357 51.6	69 52.6	16771	16759	-626	45772	48748	A	DHZ
1961.5	357 55.2	69 51.7	16794	16783	-610	45798	48780	A	DHZ
1962.5	357 59.2	69 50.8	16814	16804	-591	45815	48803	A	DHZ
1963.5	358 03.0	69 50.5	16825	16815	-573	45833	48824	A	DHZ
1964.5	358 05.6	69 49.8	16841	16832	-560	45847	48842	A	DHZ
1965.5	358 08.4	69 49.1	16859	16850	-547	45867	48867	A	DHZ
1966.5	358 11.3	69 49.0	16868	16860	-533	45887	48889	A	DHZ
1967.5	358 13.8	69 49.0	16878	16870	-521	45914	48918	A	DHZ
1968.5	358 15.2	69 48.4	16895	16887	-515	45937	48945	A	DHZ
1969.5	358 16.2	69 47.7	16917	16909	-511	45966	48980	A	DHZ
1970.5	358 17.5	69 47.2	16936	16928	-505	45997	49016	A	DHZ
1971.5	358 19.1	69 46.1	16963	16956	-498	46025	49051	A	DHZ
1972.5	358 21.8	69 45.5	16985	16978	-485	46059	49091	A	DHZ
1973.5	358 25.1	69 45.0	17006	17000	-469	46096	49133	A	DHZ
1974.5	358 30.1	69 44.9	17021	17015	-445	46133	49173	A	DHZ
1975.5	358 34.5	69 44.4	17041	17036	-424	46168	49213	A	DHZ
1976.5	358 40.3	69 44.2	17058	17053	-395	46204	49252	A	DHZ
1977.5	358 46.4	69 43.9	17071	17067	-365	46226	49277	A	DHZ
1978.5	358 54.0	69 44.8	17071	17068	-328	46266	49315	A	DHZ
1979.5	359 01.2	69 44.9	17077	17075	-292	46286	49336	A	DHZ
1980.5	359 08.4	69 45.2	17078	17076	-256	46300	49349	A	DHZ

⁼ The values from 1891 to 1906 are calculated from the old Copenhagen observatory and transformed to RSV values, as described in the observatory yearbook "Rude Skov, Magnetic Results 1980. Copenhagen 1983".

^{*}A = All days. ELE = Elements recorded.

YEAR	D	I	H	X	Y	Z	F	*	ELE
	0 1	0 '	nT	nT	nT	nT	nT		
1980.5	0 38.2	0 15.3	-135	-131	194	265	201	J	DHZ
1980.5	358 30.2	69 29.9	17213	17207	-450	46035	49148	A	DHZ
1981.5	358 36.9	69 31.2	17204	17199	-416	46062	49170	A	DHZ
1982.5	358 44.0	69 32.4	17194	17190	-380	46087	49190	A	DHZ
1983.5	358 50.6	69 32.8	17194	17190	-347	46100	49202	A	DHZ
1984.5	358 57.0	69 33.7	17185	17182	-315	46116	49214	A	DHZ
1985.5	359 03.2	69 34.6	17178	17176	-284	46134	49228	A	DHZ
1986.5	359 09.3	69 36.1	17165	17163	-253	46158	49246	A	DHZ
1987.5	359 14.9	69 36.9	17160	17159	-225	46177	49262	A	DHZ
1988.5	359 20.7	69 38.6	17145	17144	-196	46209	49287	A	DHZ
1989.5	359 26.2	69 40.5	17129	17128	-168	46242	49313	A	DHZ
1990.5	359 30.8	69 41.2	17125	17124	-145	46263	49331	A	DHZ
1991.5	359 35.8	69 42.5	17115	17115	-120	46288	49351	A	DHZ
1992.5	359 40.7	69 42.7	17118	17118	-96	46304	49367	A	DHZ
1993.5	359 46.7	69 42.9	17121	17121	-66	46320	49383	A	DHZ
1994.5	359 53.8	69 43.6	17119	17119	-31	46346	49407	A	DHZ
1995.5	0 00.4	69 43.8	17125	17125	2	46368	49429	A	DHZ
1996.5	0 07.8	69 43.7	17133	17133	39	46389	49452	A	DHZ
1997.5	0 15.7	69 44.6	17132	17132	78	46422	49482	A	DHZ
1998.5	0 23.7	69 45.9	17126	17126	118	46462	49518	A	DHZ
1999.5	0 30.9	69 46.6	17129	17128	154	46496	49551	A	DHZ
2000.5	0 38.1	69 47.7	17127	17126	190	46536	49588	A	DHZ
2001.5	0 45.3	69 47.8	17136	17135	226	46569	49622	A	DHZ
2002.5	0 52.7	69 48.2	17145	17143	263	46607	49660	A	DHZ
2003.5	1 01.0	69 49.2	17146	17143	304	46652	49703	A	DHZ
1980.5	358 30.0	69 29.7	17216	17210	-451	46034	49148	Q	DHZ
1981.5	358 36.3	69 30.5	17212	17207	-419	46058	49169	Q	DHZ
1982.5	358 43.5	69 31.8	17202	17198	-383	46084	49190	Q Q	DHZ
1983.5	358 49.7	69 32.1	17204	17200	-352	46100	49206	Q	DHZ
1984.5	358 56.5	69 33.3	17191	17188	-318	46115	49215	Q	DHZ
1985.5	359 02.8	69 34.2	17184	17182	-286	46133	49229	Ò	DHZ
1986.5	359 08.8	69 35.6	17172	17170	-256	46157	49248	Q Q	DHZ
1987.5	359 14.6	69 36.6	17164	17163	-227	46176	49263	Q	DHZ
1988.5	359 20.2	69 38.1	17152	17151	-199	46206	49287	Q	DHZ
1989.5	359 25.4	69 39.8	17138	17137	-172	46239	49313	Q	DHZ
1990.5	359 30.1	69 40.6	17133	17132	-149	46259	49330	Q	DHZ
1991.5	359 35.1	69 41.8	17123	17123	-124	46283	49349	Q	DHZ
1992.5	359 40.1	69 42.1	17125	17125	-99	46300	49366	Q	DHZ
1993.5	359 46.2	69 42.4	17127	17127	-69	46318	49383	Q	DHZ
1994.5	359 53.0	69 43.0	17128	17128	-35	46344	49408	Q	DHZ
1995.5	359 59.8	69 43.3	17132	17132	-1	46366	49430	Q	DHZ
1996.5	0 07.2	69 43.5	17136	17136	36	46388	49452	Q	DHZ
1997.5	0 15.4	69 44.2	17137	17137	77	46421	49483	Q Q Q	DHZ
1998.5	0 23.3	69 45.5	17132	17132	116	46460	49518	Q	DHZ
1999.5	0 30.5	69 46.2	17134	17133	152	46494	49551	Q	DHZ
2000.5	0 37.7	69 47.1	17134	17133	188	46533	49587	Q	DHZ
2001.5	0 44.9	69 47.3	17143	17142	224	46566	49621	Q Q	DHZ
2002.5	0 52.1	69 47.7	17151	17149	260	46604	49660	Q	DHZ
2003.5	1 00.1	69 48.6	17155	17152	300	46650	49704	Q	DHZ

continues...

Annual Mea	n Volue	Rrorfolda	continued
Annuai wiea	m vaiues	s. prorieiae.	. conunuea.

YEAR	D	I	H	X	Y	Z	F	*	ELE
	0 !	0 '	nT	nT	nT	nT	nT		
1980.5	358 30.8	69 30.6	17204	17198	-446	46040	49149	D	DHZ
1981.5	358 37.5	69 32.0	17193	17188	-413	46068	49172	D	DHZ
1982.5	358 45.1	69 33.6	17177	17173	-374	46091	49172	D	DHZ
1983.5	358 51.6	69 33.7	17180	17177	-342	46100	49197	D	DHZ
1984.5	358 57.9	69 34.5	17173	17170	-310	46117	49211	D	DHZ
1985.5	359 04.0	69 35.2	17169	17167	-280	46135	49226	D	DHZ
1986.5	359 10.1	69 36.7	17155	17153	-249	46158	49243	Ď	DHZ
1987.5	359 15.3	69 37.4	17153	17152	-223	46180	49263	Ď	DHZ
1988.5	359 21.3	69 39.5	17134	17133	-193	46214	49288	Ď	DHZ
1989.5	359 27.8	69 41.9	17110	17109	-160	46249	49312	D	DHZ
1990.5	359 31.7	69 42.2	17112	17111	-141	46267	49330	D	DHZ
1991.5	359 36.9	69 43.9	17097	17097	-115	46298	49354	D	DHZ
1992.5	359 41.3	69 43.6	17105	17105	-93	46308	49366	D	DHZ
1993.5	359 47.5	69 43.7	17109	17109	-62	46322	49381	D	DHZ
1994.5	359 54.4	69 44.4	17108	17108	-28	46347	49404	D	DHZ
1995.5	0 01.2	69 44.3	17117	17117	6	46370	49428	D	DHZ
1996.5	0 08.4	69 44.1	17127	17127	42	46389	49450	D	DHZ
1997.5	0 16.3	69 45.2	17123	17123	81	46424	49481	D	DHZ
1998.5	0 24.5	69 46.9	17113	17113	122	46465	49516	D	DHZ
1999.5	0 31.7	69 47.3	17119	17118	158	46498	49549	D	DHZ
2000.5	0 39.4	69 48.7	17112	17111	196	46540	49586	D	DHZ
2001.5	0 46.4	69 48.9	17122	17120	231	46574	49621	D	DHZ
2002.5	0 53.4	69 48.9	17135	17133	266	46610	49660	D	DHZ
2003.5	1 02.4	69 50.3	17129	17126	311	46653	49698	D	DHZ

⁼ Site differences RSV-BFE calculated from the annual means 1980. A linear regression based on measurements during 1980-94 yields the following values of the field differences

$$D_{RSV} - D_{BFE} = 39 - 0.2 \times (t - 1980.0)$$
 minutes of arc

$$H_{RSV} - H_{BFE} = -136 - 0.7 \times (t - 1980.0) \text{ nT}$$

$$Z_{RSV} - Z_{BFE} = 265 \text{ nT}$$

cf. Appendix A in the observatory yearbook for 1994 (Reference 8 in Section I).

^{*}A = All days. *Q = Quiet days. *D = Disturbed days. ELE = Elements recorded

SECTION III

Qegertarsuaq (Godhavn) Geomagnetic Observatory 2003.

OBSERVATORY DETAILS.

A magnetic observatory was established in Qeqertarsuaq (Godhavn) in 1926 by the Danish Meteorological Institute. But due to artificial disturbances from the surrounding settlement it was getting more and more difficult to keep the observatory measurements at the wanted standard. During 1975 the observatory was therefore moved from the old position (69°14.4'N, 306°28.7'E) to a new site as shown in the table below. A detailed description of the observatory and its location during the first 50 years of operation is given in the observatory report for 1926. A description of the new observatory is given in the observatory yearbooks for 1976 and for 1985-90.

The following coordinates etc. are valid for the observatory:

Acronym (IAGA-code)	GDH
Elevation (top of absolute pillar)	24 m
Geographic latitude	69°15.1'N
Geographic longitude	306°28.0'E
Geographic longitude	53°32.0'W
Geomagnetic latitude	78.77°N
Geomagnetic longitude	34.36°E
Invariant geomagnetic latitude	75.79°N
Magnetic local noon	14 UT

The geomagnetic coordinates are based on the IGRF 2000.0 magnetic field model in which the geomagnetic north pole position is 79.5°N, 288.4°E.

The invariant geomagnetic latitude is based on the IGRF 2000.0 magnetic field model valid for Epoch 2000.0 and a height of 105 km.

STAFF.

The routine absolute measurements were made by Mr. Peter Graae who also supervised the buildings and the equipment.

DIARY.

During March 27-31 Mr. Lars Pedersen (DMI) visited the observatory in order to train the observer to make absolute measurements and calculations. During his stay the frequency of the time base in the proton precession magnetometer type 105 from EDA was checked by means of a frequency standard (March 27). Finally (also March 27) he replaced the batteries of the Uninterruptible Power Supply (UPS) for the primary variometer system.

DATA LOSS.

Missing primary variometer data (20:36 to 20:41 UT) on March 27 were replaced by data from the supplementary recorder. The 1-minute values thus became complete.

OBSERVED AND ADOPTED BASELINE VALUES.

Tables of adopted baseline values are shown below, while graphs of the observed and adopted baseline values are shown section VIII.

Adopted baseline values for the primary variometer system.

Interval begi	nning	H_0	D_0	Z_0
JAN 01	00:00 UT	8723.0 nT	319°12.3'	56136.0 nT
JAN 16	00:00 UT			56136.5 nT
FEB 14	00:00 UT	8722.0 nT		
MAR 26	00:00 UT	8722.5 nT		
APR 21	00:00 UT	8722.0 nT		56136.0 nT
MAY 16	00:00 UT	8721.5 nT		
JUN 01	00:00 UT			56135.5 nT
JUN 13	00:00 UT			56134.5 nT
JUL 01	00:00 UT		319°12.2'	56134.0 nT
AUG 21	00:00 UT	8722.5 nT		
SEP 21	00:00 UT			56134.5 nT
NOV 01	00:00 UT			56135.5 nT
DEC 01	00:00 UT		319°12.0'	56136.0 nT

Adopted baseline values for the supplementary variometer system.

Interval beg	inning	H_0	D_0	Z_0
JAN 01	00:00 UT	8560.5 nT	319°32.5'	55968.0 nT
FEB 06	00:00 UT		319°32.8'	55968.5 nT
APR 01	00:00 UT		319°33.2'	55968.0 nT
MAY 01	00:00 UT		319°32.6'	
JUN 11	00:00 UT			55967.0 nT
JUL 01	00:00 UT		319°32.8'	
AUG 01	00:00 UT	8560.0 nT		
SEP 01	00:00 UT		319°33.0'	
NOV 01	00:00 UT		319°32.7'	
NOV 21	00:00 UT			55967.5 nT

Monthly Mean	Values,	All Days,	Quiet Days	and Disturbed Days.

Year	D	I	Н	X	Y	Z	F	*	ELE
2003	0 !	0 '	nT	nT	nT	nT	nT		
JAN	320 02.5	81 10.7	8690	6661	-5581	55995	56665	A	DHZ
FEB	320 05.6	81 10.7	8690	6666	-5575	55996	56666	A	DHZ
MAR	320 09.9	81 10.5	8695	6677	-5570	56004	56675	A	DHZ
APR	320 14.7	81 09.7	8708	6695	-5569	56000	56673	Α	DHZ
MAY	320 18.2	81 08.9	8721	6710	-5570	55995	56670	A	DHZ
JUN	320 23.8	81 07.6	8743	6736	-5573	56001	56679	A	DHZ
JUL	320 25.5	81 07.9	8737	6734	-5566	55995	56672	A	DHZ
AUG	320 26.3	81 08.3	8730	6730	-5560	55990	56666	A	DHZ
SEP	320 28.1	81 09.0	8718	6724	-5549	55993	56668	A	DHZ
OCT	320 23.0	81 10.3	8698	6700	-5546	56005	56676	A	DHZ
NOV	320 26.5	81 11.1	8686	6697	-5532	56012	56682	A	DHZ
DEC	320 29.4	81 10.2	8698	6711	-5534	55999	56671	A	DHZ
WINTER	320 15.9	81 10.7	8692	6684	-5556 5550	56001	56671	A	DHZ
EQUINOX	320 19.1	81 09.9	8704	6699	-5558 5567	56000	56672	A	DHZ
SUMMER	320 23.4	81 08.2	8732 8709	6727	-5567 -5560	55995 55000	56672	A	DHZ DHZ
YEAR	320 19.5	81 09.6	8709	6703	-3300	55999	56672	A	DΠZ
JAN	320 02.9	81 09.7	8704	6672	-5589	55976	56649	Q	DHZ
FEB	320 09.0	81 09.4	8713	6689	-5583	55996	56670	Q	DHZ
MAR	320 10.3	81 09.0	8717	6694	-5583	55987	56661	Q	DHZ
APR	320 16.4	81 08.6	8724	6710	-5576	55993	56669	Q	DHZ
MAY	320 16.3	81 08.4	8727	6712	-5578	55988	56664	Q	DHZ
JUN	320 21.0	81 07.7	8737	6727	-5575	55978	56656	Q	DHZ
JUL	320 23.6	81 08.3	8728	6724	-5564	55979	56655	Q	DHZ
AUG	320 28.6	81 07.4	8742	6743	-5563	55972	56651	Q	DHZ
SEP	320 29.2	81 08.0	8734	6738	-5557	55986	56663	Q	DHZ
OCT	320 28.4	81 08.5	8725	6730	-5553	55984	56660	Q	DHZ
NOV	320 30.8	81 08.7	8721	6731	-5546	55986	56661	Q	DHZ
DEC	320 33.6	81 08.7	8722	6736	-5541	55981	56656	Q	DHZ
WINTER	320 19.0	81 09.1	8715	6707	-5565	55985	56659	Q	DHZ
EQUINOX	320 21.2	81 08.6	8725	6718	-5567	55988	56664	Q	DHZ
SUMMER	320 22.3	81 08.0	8733	6726	-5570 -5577	55979	56656	Q	DHZ
YEAR	320 20.9	81 08.6	8724	6717	-5567	55984	56660	Q	DHZ
JAN	320 04.5	81 11.9	8674	6652	-5567	56023	56691	D	DHZ
FEB	320 02.2	81 12.3	8667	6643	-5567	56021	56688	D	DHZ
MAR	320 09.4	81 11.6	8678	6663	-5560	56015	56683	D	DHZ
APR	320 10.3	81 11.2	8684	6669	-5562	56005	56674	D	DHZ
MAY	320 19.2	81 08.8	8724	6714	-5570	56004	56679	D	DHZ
JUN	320 23.6	81 08.4	8735	6730	-5569	56034	56711	D	DHZ
JUL	320 26.3	81 09.5	8715	6719	-5551 5540	56030	56704 56701	D	DHZ
AUG	320 32.1	81 08.6	8730	6740 6720	-5549	56025	56701	D	DHZ
SEP	320 32.6 320 01.1	81 10.2 81 15.5	8703 8617	6720	-5531 -5537	56025 56047	56697 56706	D	DHZ DHZ
OCT				6603	-5505			D	
NOV DEC	320 23.6 320 25.5	81 14.4 81 12.8	8635 8661	6653 6676	-5505 -5518	56044 56030	56705 56695	D D	DHZ DHZ
WINTER	320 25.5 320 14.0	81 12.8 81 12.9	8659	6656	-5518 -5539	56029	56694	D D	DHZ
EQUINOX	320 14.0	81 12.1	8671	6664	-5548	56029	56690	D	DHZ
SUMMER	320 15.5	81 08.8	8726	6726	-5559	56023	56698	D	DHZ
YEAR	320 23.0 320 17.5	81 11.2	8686	6682	-5549	56025	56694	D	DHZ
LLAN	340 11.3	01 11.2	0000	0002	-JJ + J	30023	30034	ע	עווע

^{*}A = All days *Q = Q-days *D = D-days ELE = Elements recorded

Annual Mean Values, All Days	Annual	Mean	Values,	All Days
------------------------------	--------	------	---------	----------

YEAR	D	I	H	X	Y	Z	F	*	ELE
	0 '	0 '	nT	nT	nT	nT	nT		
1926.5	301 15.0		8242	4276	-7046	55775		I	DHZ
1927.5	301 31.5	81 34.8	8255	4316	-7037	55764	56372	A	DHZ
1928.5	301 48.5	81 34.2	8252	4349	-7013	55686	56294	A	DHZ
1929.5	302 03.5	81 34.1	8243	4375	-6986	55604	56212	A	DHZ
1930.5	302 19.0	81 34.7	8227	4398	-6953	55564	56170	A	DHZ
1931.5	302 36.0	81 33.9	8228	4433	-6932	55484	56091	A	DHZ
1932.5	302 52.5	81 34.1	8218	4461	-6902	55442	56048	A	DHZ
1933.5	303 12.0	81 33.6	8219	4500	-6877	55389	55995	Α	DHZ
1934.5	303 29.5	81 33.8	8207	4529	-6844	55334	55939	A	DHZ
1935.5	303 46.0	81 34.2	8194	4554	-6812	55284	55888	A	DHZ
1936.5	304 02.5	81 34.1	8187	4583	-6784	55235	55838	A	DHZ
1937.5	304 19.5	81 34.1	8183	4614	-6758	55205	55808	Α	DHZ
1938.5	304 32.0	81 34.5	8174	4634	-6734	55193	55795	A	DHZ
1939.5	304 46.0	81 34.5	8171	4659	-6712	55171	55773	A	DHZ
1940.5	304 57.5	81 34.9	8163	4677	-6690	55162	55763	A	DHZ
1941.5	305 07.5	81 35.0	8162	4696	-6676	55158	55759	A	DHZ
1942.5	305 17.0	81 34.7	8163	4715	-6664	55131	55732	A	DHZ
1943.5	305 28.0	81 34.6	8163	4736	-6648	55127	55728	A	DHZ
1944.5	305 38.0	81 34.2	8166	4757	-6637	55103	55705	A	DHZ
1945.5	305 49.0	81 34.1	8166	4779	-6622	55085	55687	A	DHZ
1946.5	305 59.5	81 34.2	8163	4797	-6605	55085	55687	A	DHZ
1947.5	306 11.0	81 33.6	8171	4824	-6595	55067	55670	A	DHZ
1948.5	306 18.0	81 33.9	8166	4834	-6581	55072	55674	A	DHZ
1949.5	306 27.0	81 33.9	8167	4852	-6569	55072	55674	A	DHZ
1950.5	306 32.5	81 34.5	8161	4859	-6557	55103	55704	A	DHZ
1951.5	306 40.5	81 35.0	8158	4873	-6543	55135	55735	A	DHZ
1952.5	306 51.5	81 35.2	8160	4895	-6529	55166	55766	Α	DHZ
1953.5	307 01.0	81 34.3	8173	4921	-6526	55160	55762	Α	DHZ
1954.5	307 13.0	81 33.7	8184	4950	-6517	55165	55769	Α	DHZ
1955.5	307 22.5	81 33.7	8189	4971	-6508	55195	55799	Α	DHZ
1956.5	307 33.0	81 33.7	8194	4994	-6496	55236	55840	Α	DHZ
1957.5	307 38.5	81 34.5	8186	4999	-6482	55271	55874	Α	DHZ
1958.5	307 47.0	81 34.0	8199	5023	-6480	55306	55910	Α	DHZ
1959.5	307 55.5	81 34.2	8204	5042	-6471	55356	55961	Α	DHZ
1960.5	308 06.0	81 33.9	8216	5070	-6465	55408	56014	Α	DHZ
1961.5	308 14.5	81 34.1	8218	5087	-6454	55441	56047	A	DHZ
1962.5	308 22.0	81 34.2	8221	5103	-6446	55475	56081	Α	DHZ
1963.5	308 30.0	81 34.1	8231	5124	-6442	55523	56130	Α	DHZ
1964.5	308 36.0	81 33.6	8244	5143	-6443	55556	56164	A	DHZ
1965.5	308 43.0	81 33.0	8257	5165	-6443	55581	56191	A	DHZ
1966.5	308 49.0	81 33.0	8263	5180	-6438	55626	56236	A	DHZ
1967.5	308 54.0	81 33.1	8270	5193	-6436	55679	56290	A	DHZ
1968.5	308 59.0	81 33.0	8280	5209	-6436	55741	56353	A	DHZ
1969.5	309 05.0	81 32.7	8294	5229	-6438	55799	56412	A	DHZ

continues next page...

Annual Mean Values, All Day

YEAR	D	I	H	X	Y	Z	F	*	ELE
	0 '	0 !	nT	nT	nT	nT	nT		
1970.5	309 12.0	81 32.6	8307	5250	-6437	55871	56485	A	DHZ
1971.5	309 19.5	81 32.5	8318	5271	-6435	55939	56554	Α	DHZ
1972.5	309 29.0	81 31.8	8337	5301	-6435	55986	56603	A	DHZ
1973.5	309 41.5	81 31.6	8350	5333	-6425	56045	56664	A	DHZ
1974.5	309 56.0	81 31.2	8363	5368	-6413	56090	56710	A	DHZ
1975.5	310 13.5	81 29.7	8391	5419	-6407	56116	56740	A	DHZ
1976.0	-0 03.0	0 00.7	-53	-40	36	-275	-280	J	DHZ
1976.5	310 35.0	81 27.9	8465	5507	-6429	56403	57035	A	DHZ
1977.5	310 55.5	81 26.6	8487	5560	-6413	56403	57038	A	DHZ
1978.5	311 15.5	81 25.6	8505	5609	-6394	56410	57048	A	DHZ
1979.5	311 34.5	81 24.4	8522	5655	-6375	56390	57030	A	DHZ
1980.5	311 51.0	81 23.2	8537	5696	-6359	56362	57005	A	DHZ
1981.5	312 07.0	81 22.6	8547	5732	-6340	56359	57003	I	DHZ
1982.5	312 23.0	81 22.4	8548	5762	-6314	56348	56993	A	DHZ
1983.5	312 38.5	81 22.1	8551	5793	-6290	56327	56972	A	DHZ
1984.5	312 54.0	81 22.0	8549	5819	-6263	56308	56953	A	DHZ
1985.5	313 09.5	81 21.8	8549	5848	-6236	56279	56925	A	DHZ
1986.5	313 26.5	81 21.5	8550	5879	-6208	56258	56904	A	DHZ
1987.5	313 45.5	81 21.0	8554	5916	-6178	56229	56876	A	DHZ
1988.5	314 02.5	81 21.0	8552	5945	-6148	56215	56862	A	DHZ
1989.5	314 21.5	81 20.8	8554	5981	-6116	56205	56852	A	DHZ
1990.0	0.00	-0 00.2	6	4	-4	15	16	J	DHZ
1990.5	314 41.0	81 20.6	8552	6014	-6080	56172	56819	A	DHZ
1991.5	315 00.0	81 20.4	8553	6048	-6048	56158	56806	A	DHZ
1992.5	315 19.5	81 19.8	8561	6088	-6019	56144	56793	A	DHZ
1993.5	315 38.5	81 19.7	8561	6121	-5985	56126	56775	A	DHZ
1994.5	316 00.5	81 19.6	8562	6160	-5947	56124	56773	A	DHZ
1995.5	316 25.5	81 18.5	8576	6213	-5912	56096	56748	A	DHZ
1996.5	316 51.0	81 17.3	8592	6268	-5876	56069	56723	A	DHZ
1997.5	317 19.5	81 16.3	8606	6327	-5834	56051	56708	A	DHZ
1998.5	317 48.0	81 15.2	8622	6387	-5792	56045	56704	A	DHZ
1999.5	318 18.0	81 13.9	8643	6453	-5750	56031	56694	A	DHZ
2000.5	318 47.5	81 12.4	8665	6519	-5709	56019	56685	A	DHZ
2001.5	319 18.5	81 11.2	8682	6583	-5661	56003	56672	A	DHZ
2002.5	319 49.5	81 09.8	8704	6651	-5615	55991	56664	A	DHZ
2003.5	320 19.5	81 09.6	8709	6703	-5560	55999	56672	A	DHZ

^{*}A = All days

^{*}I = Incomplete:

^{1.} The annual means for 1926 are based on data from February to December for the magnetic elements *D*, *H*, *X* and *Y*, and June through December for *Z*. The values for *I* and *F* have been omitted from the list as the values for *H* and *Z* does not correspond to the same period.

^{2.} The annual means for 1981 are based on data from the periods JAN 01 - JUL 08 and NOV 03 - DEC 31.

^{*}J = Jumps:

^{1.} The jump in the values on 1976.0 is due to movement of the observatory during 1975.

^{2.} The jump on 1990.0 is due to the establishment of a new absolute pier during 1989.

REMARK: jump value = old site value - new site value.

ELE = Elements recorded.

Annual Mea	n Va	lues, (Quiet	Days.
-------------------	------	---------	--------------	-------

YEAR	D	I	Н	X	Y	Z	F	*	ELE
	0 1	0 !	nT	nT	nT	nT	nT		
1926.5	301 16.5		8253	4285	-7054	55770		I	DHZ
1927.5	301 32.5	81 34.1	8265	4324	-7044	55762	56371	Q	DHZ
1928.5	301 48.5	81 33.8	8260	4354	-7019	55685	56294	Q	DHZ
1929.5	302 04.5	81 33.5	8252	4382	-6992	55598	56207	Q	DHZ
1930.5	302 21.5	81 33.6	8243	4412	-6963	55548	56156	Q	DHZ
1931.5	302 38.0	81 33.2	8238	4442	-6938	55478	56086	Q	DHZ
1932.5	302 54.0	81 33.4	8228	4469	-6908	55432	56039	Q	DHZ
1933.5	303 12.5	81 33.1	8226	4505	-6883	55382	55990	Q	DHZ
1934.5	303 30.0	81 33.5	8211	4532	-6847	55327	55933	Q	DHZ
1935.5	303 46.5	81 33.7	8201	4559	-6817	55277	55882	Q	DHZ
1936.5	304 03.5	81 33.4	8198	4591	-6792	55232	55837	Q	DHZ
1937.5	304 20.0	81 33.7	8190	4619	-6763	55206	55810	Q	DHZ
1938.5	304 31.5	81 34.1	8180	4636	-6739	55184	55787	Q	DHZ
1939.5	304 47.5	81 33.8	8183	4669	-6720	55167	55771	Q	DHZ
1940.5	304 58.5	81 34.1	8176	4687	-6699	55153	55756	Q	DHZ
1941.5	305 08.5	81 34.2	8173	4704	-6683	55148	55750	Q	DHZ
1942.5	305 19.5	81 33.9	8175	4727	-6670	55123	55726	Q	DHZ
1943.5	305 29.0	81 33.8	8175	4745	-6657	55116	55719	Q	DHZ
1944.5	305 39.0	81 33.7	8174	4764	-6642	55095	55698	Q	DHZ
1945.5	305 50.0	81 33.4	8175	4786	-6628	55076	55679	Q	DHZ
1946.5	305 59.5	81 33.6	8173	4803	-6613	55077	55680	Q	DHZ
1947.5	306 07.5	81 33.6	8170	4817	-6599	55064	55667	Q	DHZ
1948.5	306 18.0	81 33.6	8171	4837	-6585	55067	55670	Q	DHZ
1949.5	306 26.0	81 33.5	8173	4854	-6576	55066	55669	Q	DHZ
1950.5	306 34.5	81 33.7	8174	4871	-6564	55096	55699	Q	DHZ
1951.5	306 40.5	81 34.3	8167	4878	-6550	55122	55724	Q	DHZ
1952.5	306 52.5	81 34.1	8174	4905	-6539	55148	55750	Q	DHZ
1953.5	307 01.5	81 33.7	8180	4926	-6531	55145	55748	Q	DHZ
1954.5	307 11.5	81 33.2	8191	4951	-6525	55157	55762	Q	DHZ
1955.5	307 22.5	81 33.1	8196	4975	-6513	55186	55791	Q	DHZ
1956.5	307 33.0	81 33.1	8203	4999	-6504	55228	55834	Q	DHZ
1957.5	307 39.5	81 33.7	8199	5009	-6491	55264	55869	Q	DHZ
1958.5	307 49.0	81 33.0	8216	5038	-6490	55301	55908	Q	DHZ
1959.5	307 54.0	81 33.7	8210	5043	-6478	55347	55953	Q	DHZ
1960.5	308 05.0	81 33.5	8222	5071	-6472	55401	56008	Q	DHZ
1961.5	308 13.5	81 33.7	8224	5089	-6461	55435	56042	Q	DHZ
1962.5	308 22.5	81 33.6	8231	5110	-6453	55471	56078	Q	DHZ
1963.5	308 30.0	81 33.4	8240	5130	-6449	55513	56121	Q	DHZ
1964.5	308 37.0	81 33.0	8253	5151	-6448	55552	56162	Q	DHZ
1965.5	308 43.0	81 32.7	8262	5168	-6446	55578	56189	Q	DHZ
1966.5	308 50.0	81 32.4	8274	5188	-6445	55623	56235	Q	DHZ
1967.5	308 55.0	81 32.4	8281	5202	-6443	55676	56288	Q	DHZ
1968.5	309 00.0	81 32.3	8291	5218	-6443	55735	56348	Q	DHZ
1969.5	309 06.0	81 32.2	8303	5237	-6444	55796	56410	Q	DHZ

continues next page...

Annual Mean Values, Quiet Days, continued	Annual Mean	Values,	Ouiet Days.	continued.
---	--------------------	---------	--------------------	------------

YEAR	D	I	Н	X	Y	Z	F	*	ELE
	0 '	0 '	nT	nT	nT	nT	nT		
1970.5	309 11.0	81 32.3	8310	5250	-6441	55863	56478	Q	DHZ
1971.5	309 20.0	81 31.9	8327	5278	-6441	55931	56547	Q	DHZ
1972.5	309 29.0	81 31.3	8345	5306	-6441	55983	56602	Q	DHZ
1973.5	309 43.0	81 30.7	8363	5344	-6433	56034	56655	Q	DHZ
1974.5	309 58.0	81 30.1	8379	5382	-6422	56077	56700	Q	DHZ
1975.5	310 15.0	81 28.9	8403	5429	-6413	56106	56732	Q	DHZ
1976.0	-0 03.0	0 00.7	-53	-40	36	-275	-280	Ĵ	DHZ
1976.5	310 36.0	81 27.2	8475	5515	-6435	56393	57026	Q	DHZ
1977.5	310 56.0	81 26.0	8495	5566	-6418	56394	57030	Q	DHZ
1978.5	311 16.0	81 25.0	8513	5615	-6399	56402	57041	Q	DHZ
1979.5	311 34.0	81 24.1	8527	5658	-6380	56388	57029	Q	DHZ
1980.5	311 51.0	81 22.9	8542	5699	-6363	56363	57007	Q	DHZ
1981.5	312 07.0	81 22.0	8558	5739	-6348	56360	57006	I	DHZ
1982.5	312 24.0	81 21.7	8558	5771	-6320	56337	56983	Q	DHZ
1983.5	312 41.0	81 21.0	8567	5808	-6298	56318	56966	Q	DHZ
1984.5	312 55.0	81 21.2	8561	5829	-6270	56299	56946	Q	DHZ
1985.5	313 10.0	81 20.9	8562	5857	-6245	56270	56918	Q	DHZ
1986.5	313 28.0	81 20.8	8560	5889	-6213	56249	56897	Q	DHZ
1987.5	313 45.0	81 20.5	8562	5921	-6185	56221	56869	Q	DHZ
1988.5	314 02.5	81 20.4	8561	5951	-6154	56209	56857	Q	DHZ
1989.5	314 23.0	81 20.1	8565	5991	-6121	56201	56850	Q	DHZ
1990.0	0.00	-0 00.2	6	4	-4	15	16	J	DHZ
1990.5	314 41.0	81 20.2	8558	6018	-6085	56166	56814	Q	DHZ
1991.5	314 59.0	81 20.0	8558	6050	-6053	56150	56798	Q	DHZ
1992.5	315 19.0	81 19.4	8567	6091	-6024	56139	56789	Q	DHZ
1993.5	315 40.0	81 18.9	8571	6131	-5990	56118	56769	Q	DHZ
1994.5	316 02.5	81 18.4	8579	6175	-5955	56110	56762	Q	DHZ
1995.5	316 25.5	81 17.6	8588	6222	-5920	56086	56740	Q	DHZ
1996.5	316 51.5	81 16.8	8599	6275	-5880	56065	56721	Q	DHZ
1997.5	317 19.0	81 15.8	8613	6332	-5839	56045	56703	Q	DHZ
1998.5	317 48.0	81 14.7	8631	6394	-5798	56041	56702	Q	DHZ
1999.5	318 18.5	81 13.5	8649	6458	-5753	56025	56689	Q	DHZ
2000.5	318 47.5	81 12.1	8670	6522	-5712	56013	56680	Q	DHZ
2001.5	319 19.0	81 10.7	8692	6591	-5666	56002	56672	Q	DHZ
2002.5	319 49.0	81 09.5	8709	6654	-5619	55985	56658	Q	DHZ
2003.5	320 21.0	81 08.6	8724	6717	-5567	55984	56660	Q	DHZ

Q = Quiet days

^{*}I = Incomplete:

^{1.} The annual means for 1926 are based on data from February to December for the magnetic elements *D*, *H*, *X* and *Y*, and June through December for *Z*. The values for *I* and *F* have been omitted from the list as the values for *H* and *Z* does not correspond to the same period.

^{2.} The annual means for 1981 are based on data from the periods JAN 01 - JUL 08 and NOV 03 - DEC 31.

^{*}J = Jumps:

^{1.} The jump in the values on 1976.0 is due to movement of the observatory during 1975.

^{2.} The jump on 1990.0 is due to the establishment of a new absolute pier during 1989.

REMARK: jump value = old site value - new site value.

ELE = Elements recorded.

Annual Mean	Values, 1	Disturbed	l Days.
--------------------	-----------	-----------	---------

YEAR	D	I	H	X	Y	Z	F	*	ELE
	0 1	0 1	nT	nT	nT	nT	nT		
1926.5	301 10.0		8214	4251	-7028	55789		I	DHZ
1927.5	301 30.5	81 36.2	8233	4303	-7019	55775	56379	D	DHZ
1928.5	301 46.5	81 35.5	8233	4335	-6999	55695	56300	D	DHZ
1929.5	302 01.0	81 35.2	8225	4361	-6974	55615	56220	D	DHZ
1930.5	302 16.0	81 35.9	8211	4384	-6943	55589	56192	D	DHZ
1931.5	302 35.0	81 34.6	8218	4426	-6925	55494	56099	D	DHZ
1932.5	302 50.5	81 35.2	8203	4449	-6892	55459	56062	D	DHZ
1933.5	303 09.0	81 34.6	8203	4486	-6868	55397	56001	D	DHZ
1934.5	303 28.5	81 34.7	8194	4520	-6835	55346	55949	D	DHZ
1935.5	303 45.0	81 35.2	8179	4544	-6801	55296	55898	D	DHZ
1936.5	303 58.0	81 35.5	8167	4563	-6773	55246	55846	D	DHZ
1937.5	304 16.5	81 35.1	8168	4600	-6750	55209	55810	D	DHZ
1938.5	304 30.5	81 35.7	8157	4621	-6722	55206	55805	D	DHZ
1939.5	304 45.5	81 35.7	8154	4649	-6699	55184	55783	D	DHZ
1940.5	304 56.5	81 36.1	8147	4666	-6678	55179	55777	D	DHZ
1941.5	305 06.5	81 36.3	8144	4684	-6662	55180	55778	D	DHZ
1942.5	305 13.0	81 36.1	8141	4695	-6651	55147	55745	D	DHZ
1943.5	305 25.5	81 36.1	8142	4719	-6635	55149	55747	D	DHZ
1944.5	305 37.0	81 35.4	8149	4746	-6625	55120	55719	D	DHZ
1945.5	305 47.5	81 35.3	8148	4765	-6609	55103	55702	D	DHZ
1946.5	305 59.5	81 35.4	8146	4787	-6591	55097	55696	D	DHZ
1947.5	306 11.5	81 34.1	8164	4821	-6589	55078	55680	D	DHZ
1948.5	306 18.5	81 34.8	8154	4828	-6571	55090	55690	D	DHZ
1949.5	306 26.5	81 34.9	8153	4843	-6559	55087	55687	D	DHZ
1950.5	306 29.5	81 35.4	8149	4846	-6551	55120	55719	D	DHZ
1951.5	306 40.0	81 35.9	8147	4865	-6535	55156	55754	D	DHZ
1952.5	306 48.5	81 36.0	8136	4875	-6514	55192	55788	D	DHZ
1953.5	307 00.0	81 35.5	8158	4910	-6515	55188	55788	D	DHZ
1954.5	307 11.5	81 34.4	8174	4941	-6512	55181	55783	D	DHZ
1955.5	307 19.0	81 35.0	8170	4953	-6498	55213	55814	D	DHZ
1956.5	307 35.0	81 34.6	8183	4991	-6485	55257	55860	D	DHZ
1957.5	307 36.5	81 36.0	8165	4983	-6468	55291	55891	D	DHZ
1958.5	307 44.0	81 35.2	8182	5007	-6471	55320	55922	D	DHZ
1959.5	307 52.5	81 36.2	8175	5019	-6453	55379	55979	D	DHZ
1960.5	308 02.0	81 35.5	8194	5048	-6454	55429	56031	D	DHZ
1961.5	308 14.5	81 35.1	8205	5079	-6444	55459	56063	D	DHZ
1962.5	308 19.5	81 35.4	8203	5087	-6435	55485	56088	D	DHZ
1963.5	308 30.0	81 34.9	8220	5117	-6433	55547	56152	D	DHZ
1964.5	308 34.0	81 34.5	8230	5131	-6435	55563	56169	D	DHZ
1965.5	308 43.0	81 33.5	8250	5160	-6437	55593	56202	D	DHZ
1966.5	308 48.0	81 34.3	8245	5166	-6426	55641	56249	D	DHZ
1967.5	308 52.0	81 34.0	8257	5181	-6429	55694	56303	D	DHZ
1968.5	308 58.0	81 34.2	8264	5197	-6425	55762	56371	D	DHZ
1969.5	309 04.0	81 33.8	8278	5217	-6427	55814	56425	D	DHZ

continues next page...

minimum micum mucos Disturbed Dunis Continued	Annual Mean	Values, I	Disturbed Da	vs. continued
---	-------------	-----------	--------------	---------------

YEAR	D	I	Н	X	Y	Z	F	*	ELE
	0 1	0 '	nT	nT	nT	nT	nT		
1970.5	309 14.0	81 33.5	8294	5246	-6424	55886	56498	D	DHZ
1971.5	309 18.0	81 33.8	8300	5257	-6423	55955	56567	D	DHZ
1972.5	309 29.0	80 32.7	8324	5293	-6425	56003	56618	D	DHZ
1973.5	309 39.0	81 32.9	8331	5316	-6415	56065	56681	D	DHZ
1974.5	309 56.0	81 32.3	8348	5359	-6401	56111	56729	D	DHZ
1975.5	310 12.0	81 31.0	8372	5404	-6395	56135	56756	D	DHZ
1976.0	-0 03.0	0 00.7	-53	-40	36	-275	-280	J	DHZ
1976.5	310 33.0	81 29.4	8443	5489	-6415	56427	57055	D	DHZ
1977.5	310 54.0	81 27.8	8470	5546	-6402	56422	57054	D	DHZ
1978.5	311 17.0	81 26.5	8493	5604	-6382	56432	57068	D	DHZ
1979.5	311 34.0	81 25.3	8507	5644	-6365	56399	57037	D	DHZ
1980.5	311 51.0	81 24.2	8522	5686	-6348	56369	57010	D	DHZ
1981.5	312 06.0	81 24.1	8524	5715	-6325	56371	57012	I	DHZ
1982.5	312 23.0	81 23.7	8530	5750	-6301	56373	57015	D	DHZ
1983.5	312 37.0	81 23.7	8526	5773	-6274	56347	56988	D	DHZ
1984.5	312 52.0	81 23.7	8524	5799	-6248	56332	56973	D	DHZ
1985.5	313 08.0	81 23.3	8526	5829	-6222	56299	56941	D	DHZ
1986.5	313 24.0	81 22.9	8530	5861	-6198	56278	56921	D	DHZ
1987.5	313 45.0	81 22.1	8537	5903	-6167	56241	56885	D	DHZ
1988.5	314 02.5	81 22.2	8535	5933	-6135	56229	56873	D	DHZ
1989.5	314 19.0	81 22.2	8534	5962	-6106	56226	56870	D	DHZ
1990.0	0.00	-0 00.2	6	4	-4	15	16	J	DHZ
1990.5	314 42.5	81 21.8	8535	6004	-6066	56187	56832	D	DHZ
1991.5	315 01.0	81 21.8	8533	6035	-6032	56171	56815	D	DHZ
1992.5	315 22.5	81 20.7	8548	6084	-6005	56162	56809	D	DHZ
1993.5	315 36.0	81 21.4	8535	6098	-5971	56142	56787	D	DHZ
1994.5	315 58.0	81 21.4	8535	6136	-5933	56147	56792	D	DHZ
1995.5	316 24.0	81 19.7	8558	6197	-5902	56110	56759	D	DHZ
1996.5	316 49.5	81 18.2	8578	6256	-5869	56081	56733	D	DHZ
1997.5	317 17.5	81 17.5	8587	6310	-5824	56061	56715	D	DHZ
1998.5	317 49.0	81 16.2	8609	6379	-5781	56065	56722	D	DHZ
1999.5	318 18.0	81 14.9	8628	6442	-5740	56047	56707	D	DHZ
2000.5	318 47.0	81 13.3	8653	6509	-5702	56032	56696	D	DHZ
2001.5	319 16.5	81 12.3	8665	6567	-5653	56008	56674	D	DHZ
2002.5	319 49.5	81 10.8	8689	6639	-5606	56003	56673	D	DHZ
2003.5	320 17.5	81 11.2	8686	6682	-5549	56025	56694	D	DHZ

^{*}D = Disturbed days

^{*}I = Incomplete:

^{1.} The annual means for 1926 are based on data from February to December for the magnetic elements *D*, *H*, *X* and *Y*, and June through December for *Z*. The values for *I* and *F* have been omitted from the list as the values for *H* and *Z* does not correspond to the same period.

^{2.} The annual means for 1981 are based on data from the periods JAN 01 - JUL 08 and NOV 03 - DEC 31.

^{*}J = Jumps:

^{1.} The jump in the values on 1976.0 is due to movement of the observatory during 1975.

^{2.} The jump on 1990.0 is due to the establishment of a new absolute pier during 1989.

REMARK: jump value = old site value - new site value.

ELE = Elements recorded.

SECTION IV

Qaanaaq (Thule) Geomagnetic Observatory 2003.

OBSERVATORY DETAILS.

A magnetic observatory was established at Thule (76°32.3'N, 290°56.5'E) in January 1947 by the Danish Meteorological Institute. In August 1952 however, the magnetic recordings had to be discontinued due to artificial disturbances from the nearby air base. During 1955 the observatory was re-established at Qaanaaq (77°29'N, 290°50'E) and the geomagnetic observations were resumed in September 1955. A description of the observatory and its location is given in the observatory yearbooks for 1955-56 and for 1985-90.

The following coordinates etc. are valid for the observatory:

Acronym (IAGA-code)	THL
Elevation (top of absolute pillar)	57 m
Geographic latitude	77°28.2'N
Geographic longitude	290°46.4'E
Geographic longitude	69°13.6'W
Geomagnetic latitude	87.92°N
Geomagnetic longitude	14.28°E
Invariant geomagnetic latitude	85.21°N
Magnetic local noon	14 UT

The geomagnetic coordinates are based on the IGRF 2000.0 magnetic field model in which the geomagnetic north pole position is 79.5°N, 288.4°E.

The invariant geomagnetic latitude is based on the IGRF 2000.0 magnetic field model valid for Epoch 2000.0 and a height of 105 km.

STAFF.

The only person employed at the observatory during 2003 was Mr. Svend Erik Ascanius. During Mr. Ascanius vacation in June the observatory was supervised by Mr. K. Damgaard (DMI).

DIARY.

- JAN 21 The frequency of the time base in the proton precession magnetometer type 105 from EDA was checked by means of a frequency standard and it was found that the PPM needed correction, cf. chapter 3.2.2 in section I.
- MAR 21 An extra heater in the laboratory was turned off.
- MAR 29 Maintenance of power cables.
- JUL 21 The orientation of the primary variometer was adjusted according to the magnetic meridian.
- JUL 29 The orientation of the supplementary variometer was adjusted according to the magnetic meridian.
- JUL 29 In order to avoid high temperatures in the laboratory building due to direct sunshine heat protecting film was mounted on the window panes of the building.

The gap in the absolute measurements in June is due to Mr. Ascanius vacation.

DATA LOSS.

Intervals of missing primary variometer data were, if possible, replaced by data from the supplementary recorder. After supplementation the following 1-minute data are still missing:

MAR	29	18:10 – 18:12 UT	Maintenance of power cables.
JUN	11	00:00 – 23:59 UT	Data logger stopped due to printer malfunction.
JUN	12	00:00 - 01:24 UT	Data logger stopped due to printer malfunction.
JUL	01	18:01 – 18:20 UT	Data logger stopped due to printer malfunction.
JUL	21	12:53 – 12:56 UT	Adjustment of the sensor unit (see diary).
NOV	05	15:56 – 15:56 UT	Data logger rebooted.

OBSERVED AND ADOPTED BASELINE VALUES.

Tables of adopted baseline values are shown below, while graphs of the observed and adopted baseline values are shown in section VIII.

Adopted baseline values for the primary variometer system.

Interval begi	inning	H_0	D_0	Z_0
JAN 01	00:00 UT	3761.0 nT	294°10.0'	56160.5 nT
APR 16	00:00 UT		294°10.5'	
JUL 21	12:55 UT	3760.5 nT	301°12.5′	56162.0 nT
NOV 08	00:00 UT			56162.5 nT
NOV 23	00:00 UT		301°12.0'	
DEC 08	00:00 UT	3760.0 nT		

Adopted baseline values for the supplementary variometer system.

Interval beg	inning	H_0	D_0	Z_0
JAN 01	00:00 UT	3780.5 nT	294°07.5'	56124.0 nT
FEB 18	00:00 UT	3781.0 nT		
JUL 01	00:00 UT			56124.5 nT
JUL 29	13:30 UT		301°12.5′	
AUG 01	00:00 UT	3780.5 nT		
AUG 21	00:00 UT		301°13.0'	
OCT 16	00:00 UT			56124.0 nT
NOV 01	00:00 UT	3780.0 nT		
DEC 01	00:00 UT		301°12.5'	

Monthly Mean Values, All Days, Quiet Days and Disturbed Days.

Year	D			I	Н	X	Y	Z	F	*	ELE
2003	0	,	0	•	nT	nT	nT	nT	nT		
JAN	299	23.0	86	01.7	3911	1919	-3408	56331	56467	A	DHZ
FEB	299	27.8	86	01.8	3910	1923	-3404	56335	56470	A	DHZ
MAR	299	37.8	86	01.5	3914	1935	-3402	56332	56468	A	DHZ
APR		49.5	86	01.3	3917	1948	-3398	56324	56460	A	DHZ
MAY		57.3	86	00.7	3925	1960	-3401	56306	56443	A	DHZ
JUN		11.7	86	00.1	3935	1979	-3401	56286	56423	A	DHZ
JUL		10.6	86	00.2	3933	1977	-3400	56298	56435	A	DHZ
AUG		10.1	86	01.1	3920	1970	-3389	56314	56450	A	DHZ
SEP	300	13.0	86	01.3	3918	1972	-3386	56334	56470	A	DHZ
OCT	300	03.4	86	01.7	3913	1960	-3387	56362	56498	A	DHZ
NOV	300	11.9	86	01.5	3917	1970	-3385	56374	56510	A	DHZ
DEC	300	19.5	86	01.2	3922	1980	-3385	56356	56492	A	DHZ
WINTER	299	50.4	86	01.5	3915	1948	-3396	56349	56485	A	DHZ
EQUINOX	299	56.2	86	01.5	3915	1954	-3393	56338	56474	A	DHZ
SUMMER	300	06.9	86	00.5	3928	1971	-3398	56301	56438	A	DHZ
YEAR	299	58.4	86	01.2	3919	1958	-3395	56329	56465	A	DHZ
JAN		22.1	86	01.5	3913	1919	-3410	56320	56456	Q	DHZ
FEB	299	32.8	86	01.1	3920	1933	-3410	56321	56457	Q	DHZ
MAR	299	37.6	86	01.2	3918	1937	-3406	56318	56454	Q	DHZ
APR		50.0	86	01.0	3922	1951	-3402	56310	56446	Q	DHZ
MAY		53.0	86	00.3	3932	1959	-3409	56296	56433	Q	DHZ
JUN		06.4	86	00.8	3923	1968	-3394	56286	56423	Q	DHZ
JUL		11.2	86	00.5	3930	1976	-3397	56320	56457	Q	DHZ
AUG		11.3	86	01.4	3914	1968	-3383	56302	56438	Q	DHZ
SEP		13.7	86	00.7	3927	1977	-3393	56315	56452	Q	DHZ
OCT		12.3	86	01.0	3924	1974	-3391	56339	56475	Q	DHZ
NOV		15.6	86	00.8	3927	1979	-3392	56349	56486	Q	DHZ
DEC		25.4	86	00.7	3928	1989	-3387	56338	56475	Q	DHZ
WINTER		54.4	86	01.1	3921	1955	-3399	56332	56468	Q	DHZ
EQUINOX		58.6	86	00.9	3923	1960	-3398	56321	56457	Q	DHZ
SUMMER		05.6	86	00.7	3925	1968	-3396	56301	56438	Q	DHZ
YEAR	299	59.4	86	00.9	3923	1961	-3398	56318	56454	Q	DHZ
JAN		28.0	86	01.6	3913	1925	-3407	56350	56486	D	DHZ
FEB		24.1		02.2	3905	1917	-3402	56353	56488	D	DHZ
MAR		40.0	86	01.9	3909	1935	-3397	56344	56479	D	DHZ
APR		46.4	86	01.5	3915	1944	-3398	56341	56477	D	DHZ
MAY		58.7	86	01.0	3921	1959	-3396	56302	56438	D	DHZ
JUN		16.3	85	59.7	3944	1988	-3406	56316	56454	D	DHZ
JUL		18.6	86	00.9	3923	1980	-3387	56318	56454	D	DHZ
AUG		30.8	86	00.8	3923	1992	-3380	56298	56435	D	DHZ
SEP		21.3	86	01.3	3918	1980	-3381	56330		D	DHZ
OCT		25.6	86	03.1	3896	1914	-3393	56441	56575	D	DHZ
NOV		04.2	86	03.6	3884	1946	-3361	56395	56529	D	DHZ
DEC		15.6	86	02.2	3907	1969	-3375	56389	56524	D	DHZ
WINTER		47.9	86	02.4	3902	1939	-3386	56372	56507	D	DHZ
EQUINOX		48.3	86	02.0	3909	1943	-3392	56364		D	DHZ
SUMMER		16.4	86	00.6	3928	1980	-3392	56308	56445	D	DHZ
YEAR	299	57.6	86	01.7	3913	1954	-3390	56348	56484	D	DHZ

^{*}A = All days *Q = Q-days *D = D-days ELE = Elements recorded

Annual Mean Values, All Days	Annual	Mean	Values,	All	Days.
-------------------------------------	--------	------	---------	-----	-------

YEAR	D	I	Н	X	Y	Z	F	*	ELE
	0 !	0 1	nT	nT	nT	nT	nT		
1956.5	280 04.0	85 49.3	4082	714	-4019	55870	56019	A	DHZ
1957.5	280 14.0	85 50.4	4068	723	-4003	55927	56075	A	DHZ
1958.5	280 27.0	85 51.0	4059	736	-3992	55949	56096	A	DHZ
1959.5	280 39.0	85 51.9	4048	748	-3978	55983	56129	A	DHZ
1960.5	280 53.0	85 52.6	4038	762	-3965	56014	56159	A	DHZ
1961.5	281 05.0	85 53.6	4025	774	-3950	56049	56193	A	DHZ
1962.5	281 14.0	85 54.0	4019	783	-3942	56074	56218	A	DHZ
1963.5	281 25.0	85 54.7	4010	794	-3931	56113	56256	A	DHZ
1964.5	281 33.0	85 55.2	4005	802	-3924	56149	56292	A	DHZ
1965.5	281 40.0	85 55.8	3998	808	-3915	56180	56322	A	DHZ
1966.5	281 44.0	85 56.6	3987	811	-3904	56225	56366	A	DHZ
1967.5	281 44.0	85 57.6	3975	808	-3892	56277	56417	A	DHZ
1968.5	281 49.0	85 58.2	3967	812	-3883	56318	56458	A	DHZ
1969.5	281 51.0	85 58.8	3960	813	-3876	56349	56488	A	DHZ
1970.5	281 53.0	85 59.6	3951	814	-3866	56412	56550	A	DHZ
1971.5	281 55.0	86 00.5	3941	814	-3856	56470	56607	A	DHZ
1972.5	282 07.0	86 00.9	3937	826	-3849	56513	56650	A	DHZ
1973.5	282 22.0	86 01.5	3931	842	-3840	56564	56700	A	DHZ
1974.5	282 42.0	86 02.0	3926	863	-3830	56621	56757	A	DHZ
1975.5	283 03.0	86 02.3	3923	886	-3822	56641	56777	A	DHZ
1976.5	283 34.0	86 02.4	3923	920	-3814	56663	56799	A	DHZ
1977.5	284 06.0	86 02.4	3924	956	-3806	56674	56810	A	DHZ
1978.5	284 35.0	86 02.5	3922	988	-3796	56684	56820	A	DHZ
1979.5	285 04.0	86 02.5	3921	1019	-3786	56671	56806	A	DHZ
1980.5	285 28.0	86 02.2	3925	1047	-3783	56649	56785	A	DHZ
1981.5	285 51.0	86 02.2	3924	1072	-3775	56631	56767	A	DHZ
1982.5	286 10.0	86 02.4	3919	1091	-3764	56622	56757	A	DHZ
1983.5	286 29.0	86 02.7	3913	1110	-3752	56593	56728	A	DHZ
1984.5	286 48.0	86 03.0	3906	1129	-3739	56567	56702	A	DHZ
1985.5	287 07.0	86 03.5	3896	1147	-3723	56538	56672	A	DHZ
1986.5	287 27.0	86 04.0	3885	1165	-3725	56506	56639	A	DHZ
1987.5	287 52.0	86 04.3	3877	1189	-3690	56464	56597	A	DHZ
1988.5	288 17.0	86 04.8	3868	1214	-3673	56448	56580	A	DHZ
1989.5	288 45.0	86 05.3	3859	1240	-3654	56433	56565	A	DHZ
1990.5	289 10.0	86 05.7	3850	1264	-3637	56410	56541	A	DHZ
1991.5	289 40.0	86 06.1	3843	1294	-3619	56389	56520	A	DHZ
1992.5	290 12.0	86 06.0	3842	1327	-3606	56362	56493	A	DHZ
1993.5	290 46.0	86 06.0	3842	1362	-3592	56344	56475	A	DHZ
1994.5	291 26.0	86 06.1	3840	1403	-3574	56342	56473	A	DHZ
1995.5	292 11.0	86 06.1	3838	1449	-3554	56321	56452	A	DHZ
1996.5	293 01.0	86 05.9	3840	1501	-3534	56302	56433	A	DHZ
1990.5	293 54.0	86 05.7	3843	1557	-3514	56295	56426	A	DHZ
1997.5	294 51.0	86 05.2	3852	1619	-3495	56297	56429	A	DHZ
1999.5	295 51.0	86 04.4	3864	1685	-34 <i>9</i> 3 -3477	56292	56424	A	DHZ
2000.5	296 50.0	86 03.6	3877	1750	-3460	56298	56431	A	DHZ
2000.5	290 50.0	86 02.6	3893	1821	-3441	56295	56429	A	DHZ
2001.5	298 57.0	86 01.8	3907	1891	-3441 -3419	56299	56434	A	DHZ
2002.5	299 58.0	86 01.8	3919	1958	-3419	56329	56465	A	DHZ
2003.3	277 30.0	00 01.2	3/1/	1/20	-5575	30347	20402	17	DIIL

*A = All daysELE = Elements recorded.

Annual Mean Values, Quiet Days	Annual	Mean	Values,	Quiet	Days.
---------------------------------------	--------	------	---------	-------	-------

°'°'nT nT nT nT r	69 Q	DHZ
	69 Q	DHZ
1956.5 280 02.0 85 48.9 4087 712 -4024 55862 560		
1957.5 280 14.0 85 50.0 4074 724 -4009 55921 5600	33 Q	DHZ
1958.5 280 27.0 85 50.4 4068 738 -4001 55935 5608		DHZ
1959.5 280 36.0 85 51.5 4054 746 -3985 55985 5613		DHZ
1960.5 280 56.0 85 52.1 4046 767 -3973 56005 5613	51 Q	DHZ
1961.5 281 03.0 85 53.2 4031 773 -3956 56043 5613		DHZ
1962.5 281 16.0 85 53.7 4024 786 -3946 56063 5620)/ Q	DHZ
1963.5 281 24.0 85 54.5 4014 793 -3935 56108 5625		DHZ
1964.5 281 34.0 85 54.9 4009 804 -3928 56142 5623	55 Q	DHZ
1965.5 281 39.0 85 55.6 4000 808 -3918 56178 5633 1066.5 281 46.0 85 56.1 2004 814 2010 56208 5633		DHZ
1966.5 281 46.0 85 56.1 3994 814 -3910 56208 563: 1967.5 281 44.0 85 57.2 3981 810 -3898 56267 5640		DHZ DHZ
1967.5 281 44.0 85 57.2 3981 810 -3898 56267 5640 1968.5 281 49.0 85 57.8 3974 814 -3890 56310 5640		DHZ
1908.5 281 49.0 85 57.8 3974 814 -3890 50310 504. 1969.5 281 50.0 85 58.5 3964 813 -3880 56341 5640		DHZ
1970.5 281 49.0 85 59.4 3954 810 -3870 56415 5655		DHZ
1971.5 281 55.0 86 00.2 3945 815 -3860 56461 5659		DHZ
1972.5 282 09.0 86 00.5 3943 830 -3855 56503 5664		DHZ
1973.5 282 22.0 86 01.1 3936 843 -3845 56549 5668		DHZ
1974.5 282 44.0 86 01.6 3931 866 -3834 56601 5673		DHZ
1975.5 283 04.0 86 02.0 3927 888 -3825 56636 567		DHZ
1976.5 283 35.0 86 02.1 3927 922 -3817 56651 5678	- 37 O	DHZ
1977.5 284 05.0 86 02.3 3925 955 -3807 56670 5680		DHZ
1978.5 284 36.0 86 02.2 3927 990 -3800 56674 568	0 0	DHZ
1979.5 285 03.0 86 02.2 3927 1020 -3792 56670 5680		DHZ
1980.5 285 27.0 86 02.0 3929 1047 -3787 56650 5678	36 Q	DHZ
1981.5 285 51.0 86 01.5 3934 1074 -3784 56619 5673	66 Q	DHZ
1982.5 286 11.0 86 02.2 3923 1093 -3768 56614 5673	50 Q	DHZ
1983.5 286 32.0 86 02.2 3920 1116 -3758 56581 567.	17 Q	DHZ
1984.5 286 50.0 86 02.6 3911 1133 -3743 56556 5669	91 Q	DHZ
1985.5 287 06.0 86 03.1 3901 1147 -3729 56524 5665		DHZ
1986.5 287 30.0 86 03.7 3889 1169 -3709 56494 5662		DHZ
1987.5 287 51.0 86 04.1 3880 1189 -3693 56460 5659		DHZ
1988.5 288 17.0 86 04.4 3873 1215 -3678 56443 565°		DHZ
1989.5 288 45.0 86 05.0 3863 1242 -3658 56425 5653	_	DHZ
1990.5 289 08.0 86 05.6 3853 1263 -3640 56413 5654	-	DHZ
1991.5 289 36.0 86 06.0 3845 1290 -3622 56394 5652		DHZ
1992.5 290 10.0 86 05.7 3848 1327 -3612 56361 5649		DHZ
1993.5 290 48.0 86 05.6 3847 1366 -3596 56334 5640		DHZ
1994.5 291 29.0 86 05.7 3844 1408 -3577 56325 564:		DHZ
1995.5 292 11.0 86 05.8 3842 1451 -3558 56312 564- 1996.5 293 03.0 86 05.6 3844 1505 -3537 56295 5642	-	DHZ DHZ
1996.5 293 03.0 86 05.6 3844 1505 -3537 56295 5642 1997.5 293 52.0 86 05.5 3846 1556 -3517 56291 5642	-	DHZ
	-	DHZ
1998.5 294 51.0 86 04.7 3858 1622 -3501 56286 564 1999.5 295 52.0 86 04.1 3869 1688 -3481 56287 5642	-	DHZ
2000.5 296 46.0 86 03.5 3880 1747 -3464 56300 564:		DHZ
2000.5 290 40.0 80 03.5 3880 1747 -3404 50500 504. 2001.5 297 56.0 86 02.0 3903 1828 -3448 56279 564		DHZ
2001.5 297 50.0 86 02.0 3903 1828 -3448 50279 504 2002.5 298 55.0 86 01.5 3911 1891 -3424 56295 5643		DHZ
2003.5 299 59.0 86 00.9 3923 1961 -3398 56318 564:		DHZ

*Q = Quiet days ELE = Elements recorded.

Annual Mean	Values,	Distur	bed Da	ys.
--------------------	---------	--------	--------	-----

YEAR	D	I	Н	X	Y	Z	F	*	ELE
	0 '	0 !	nT	nT	nT	nT	nT		
1956.5	280 11.0	85 49.5	4079	721	-4015	55878	56027	D	DHZ
1957.5	280 15.0	85 50.7	4064	723	-3999	55943	56090	D	DHZ
1958.5	280 26.0	85 51.5	4052	734	-3985	55965	56111	D	DHZ
1959.5	280 37.0	85 52.6	4038	744	-3969	56010	56155	D	DHZ
1960.5	280 49.0	85 53.3	4029	756	-3957	56039	56184	D	DHZ
1961.5	281 06.0	85 54.1	4016	773	-3941	56058	56202	D	DHZ
1962.5	281 11.0	85 54.5	4012	778	-3936	56085	56228	D	DHZ
1963.5	281 25.0	85 54.9	4008	793	-3929	56120	56263	D	DHZ
1964.5	281 32.0	85 55.5	4000	800	-3919	56157	56299	D	DHZ
1965.5	281 39.0	85 56.0	3995	807	-3913	56185	56327	D	DHZ
1966.5	281 42.0	85 57.5	3974	806	-3891	56236	56376	D	DHZ
1967.5	281 42.0	85 57.9	3971	805	-3888	56283	56423	D	DHZ
1968.5	281 51.0	85 58.7	3960	813	-3876	56328	56467	D	DHZ
1969.5	281 52.0	85 59.2	3954	813	-3869	56358	56497	D	DHZ
1970.5	281 58.0	86 00.0	3945	818	-3859	56417	56555	D	DHZ
1971.5	281 55.0	86 00.9	3935	813	-3850	56483	56620	D	DHZ
1972.5	282 08.0	86 01.1	3934	827	-3846	56523	56660	D	DHZ
1973.5	282 19.0	86 01.9	3925	837	-3835	56581	56717	D	DHZ
1974.5	282 43.0	86 02.5	3919	863	-3823	56632	56767	D	DHZ
1975.5	283 02.0	86 02.8	3915	883	-3814	56656	56791	D	DHZ
1976.5	283 34.0	86 02.7	3919	919	-3810	56681	56816	D	DHZ
1977.5	284 07.0	86 02.8	3918	956	-3800	56685	56820	D	DHZ
1978.5	284 40.0	86 02.8	3918	992	-3790	56693	56828	D	DHZ
1979.5	285 03.0	86 03.0	3914	1016	-3780	56682	56817	D	DHZ
1980.5	285 28.0	86 02.8	3916	1044	-3774	56663	56798	D	DHZ
1981.5	285 55.0	86 02.9	3913	1073	-3763	56644	56779	D	DHZ
1982.5	286 13.0	86 02.9	3912	1093	-3756	56631	56766	D	DHZ
1983.5	286 27.0	86 03.4	3902	1105	-3742	56617	56751	D	DHZ
1984.5	286 47.0	86 03.6	3898	1126	-3732	56586	56720	D	DHZ
1985.5	287 07.0	86 04.0	3888	1144	-3716	56556	56689	D	DHZ
1986.5	287 23.0	86 04.5	3879	1159	-3702	56529	56662	D	DHZ
1987.5 1988.5	287 52.0 288 18.0	86 04.7 86 05.5	3871 3858	1188 1211	-3684	56473 56462	56606 56594	D D	DHZ DHZ
1988.3 1989.5	288 43.0	86 05.6	3855	1211	-3663 -3651		56576	D D	DHZ
		86 05.8	3849			56445 56417	56548		DHZ
1990.5 1991.5	289 14.0 289 44.0	86 05.8 86 06.6	3849 3835	1268 1295	-3634 -3610	56417 56397	56527	D	DHZ
1991.5	290 18.0	86 06.5	3835	1330	-3597	56367	56497	D D	DHZ
1992.5	290 18.0	86 06.7	3832	1356	-3597 -3584	56369	56499	D	DHZ
1993.5	290 43.0	86 06.6	3833	1401	-3568	56361	56491	D	DHZ
1995.5	292 09.0	86 06.6	3833	1444	-3548	56332	56462	D	DHZ
1996.5	292 59.0	86 06.1	3837	1498	-3533	56312	56443	D	DHZ
1990.5	293 52.0	86 06.1	3837	1553	-3509	56308	56439	D	DHZ
1998.5	294 55.0	86 05.5	3846	1620	-3488	56303	56434	D	DHZ
1999.5	295 54.0	86 04.8	3858	1685	-3488 -3471	56301	56433	D	DHZ
2000.5	296 48.0	86 04.0	3872	1746	-3456	56308	56441	D	DHZ
2000.5	297 50.0	86 03.3	3883	1813	-3434	56313	56447	D	DHZ
2001.5	298 58.0	86 02.2	3901	1889	-3413	56307	56442	D	DHZ
2003.5	299 58.0	86 01.7	3913	1954	-3390	56348	56484	Ď	DHZ

*D = Disturbed days ELE = Elements recorded.

SECTION V

Narsarsuaq Geomagnetic Observatory 2003.

OBSERVATORY DETAILS.

A magnetic observatory was established at Narsarsuaq (61°11'N, 314°34'E) during 1967 by the Danish Meteorological Institute as a successor for the temporary IGY/IQSY-observatory at Qaqortoq (Julianehaab), 70 km SW of Narsarsuaq. A description of the observatory and its location is given in the observatory yearbooks for 1968-70, 1980-82 and for 1985-90.

The following coordinates etc. are valid for the observatory:

Acronym (IAGA-code)	NAQ
Elevation (top of absolute pillar)	4 m
Geographic latitude	61°09.6'N
Geographic longitude	314°33.5'E
Geographic longitude	45°26.5'W
Geomagnetic latitude	70.09°N
Geomagnetic longitude	38.63°E
Invariant geomagnetic latitude	66.50°N
Magnetic local noon	14 UT

The geomagnetic coordinates are based on the IGRF 2000.0 magnetic field model in which the geomagnetic north pole position is 79.5°N, 288.4°E.

The invariant geomagnetic latitude is based on the IGRF 2000.0 magnetic field model valid for Epoch 2000.0 and a height of 105 km.

STAFF.

Mr. Carl Plesner and Mr. Hans-Jørgen Roed Jensen from the Ice Patrol in Narsarsuaq alternated five weeks at a time in order to supervise the buildings and the equipment and to make absolute measurements and calculations.

DIARY.

During March 19-24 Mr. Lars Pedersen (DMI) visited the observatory in order to teach the new observer Mr. Hans-Jørgen Roed Jensen to make absolute measurements and calculations. During his stay the data logger and printer of the primary variometer system was replaced (March 19) as well as the frequency of the time base in the proton precession magnetometer type 105 from EDA was checked by means of a frequency standard (March 22). Finally a new non-magnetic lock was mounted on the door to the variometer house

DATA LOSS.

Intervals of missing primary variometer data were, if possible, replaced by data from the supplementary recorder. After supplementation the following 1-minute data are still missing:

JAN	01	00:00 – 00:00 UT	
FEB	15	11:59 – 11:59 UT	Data logger and printer malfunction.
FEB	15	12:02 – 12:03 UT	Data logger and printer malfunction.
FEB	15	13:02 – 13:02 UT	Data logger and printer malfunction.
MAR	19	18:01 – 18:02 UT	Data logger and printer replaced.
JUL	23	15:31 – 15:31 UT	Data logger rebooted.

OBSERVED AND ADOPTED BASELINE VALUES.

Tables of adopted baseline values are shown below, while graphs of the observed and adopted baseline values are shown in section VIII.

Adopted baseline values for the primary variometer system.

Interval be	ginning	H_0	D_0	Z_0
JAN 01	00:00 UT	12466.5 nT	333°45.5'	53186.0 nT
MAY 01	00:00 UT		333°45.3'	
JUL 01	00:00 UT			53185.0 nT
AUG 01	00:00 UT		333°45.1'	
OCT 01	00:00 UT		333°45.3'	
NOV 11	00:00 UT	12467.0 nT		53185.5 nT

Adopted baseline values for the supplementary variometer system.

Interval beg	inning	H_0	D_0	Z_0
JAN 01	00:00 UT	12542.5 nT	333°47.0'	53289.0 nT
FEB 20	00:00 UT	12544.0 nT		
MAR 01	00:00 UT		333°47.3'	53289.5 nT
MAY 01	00:00 UT		333°47.6'	53288.5 nT
MAY 16	00:00 UT	12543.0 nT		
JUN 10	00:00 UT		333°47.8'	
JUL 01	00:00 UT	12542.0 nT		53287.5 nT
AUG 01	00:00 UT			53287.0 nT
AUG 11	00:00 UT		333°47.6'	
NOV 11	00:00 UT	12542.5 nT	333°47.4'	53288.0 nT

Monthly Mean Values, All Days, Quiet Days and Disturbed Days.

Year	D	I	Н	X	Y	Z	F	*	ELE
2003	o !	o !	nT	nT	nT	nT	nT		
JAN	332 35.3	76 42.7	12573	11161	-5788	53235	54699	A	DHZ
FEB	332 37.2	76 42.8	12570	11162	-5781	53230	54694	Α	DHZ
MAR	332 38.7	76 43.5	12559	11155	-5771	53233	54695	Α	DHZ
APR	332 40.9	76 44.0	12553	11153	-5761	53241	54701	Α	DHZ
MAY	332 43.4	76 43.7	12560	11163	-5756	53252	54713	Α	DHZ
JUN	332 45.3	76 44.2	12551	11159	-5746	53252	54711	Α	DHZ
JUL	332 47.3	76 43.5	12561	11171	-5744	53244	54706	Α	DHZ
AUG	332 48.2	76 43.5	12561	11172	-5741	53242	54704	Α	DHZ
SEP	332 50.7	76 43.2	12564	11179	-5734	53234	54697	Α	DHZ
OCT	332 49.4	76 43.8	12554	11168	-5734	53235	54695	Α	DHZ
NOV	332 52.8	76 42.5	12574	11192	-5732	53230	54695	Α	DHZ
DEC	332 55.1	76 41.4	12590	11210	-5732	53219	54688	Α	DHZ
WINTER	332 45.1	76 42.4	12577	11181	-5758	53229	54695	Α	DHZ
EQUINOX	332 45.0	76 43.6	12558	11164	-5750	53236	54697	Α	DHZ
SUMMER	332 45.9	76 43.8	12558	11166	-5747	53247	54708	Α	DHZ
YEAR	332 45.2	76 43.3	12564	11170	-5752	53237	54699	A	DHZ
JAN	332 35.8	76 41.9	12589	11176	-5794	53246	54714	Q	DHZ
FEB	332 37.6	76 43.2	12565	11158	-5777	53235	54698	Q	DHZ
MAR	332 38.9	76 42.2	12580	11174	-5780	53234	54700	Q	DHZ
APR	332 41.1	76 43.4	12563	11162	-5765	53243	54705	Q	DHZ
MAY	332 43.0	76 42.8	12570	11172	-5762	53234	54698	Q	DHZ
JUN	332 45.7	76 41.9	12585	11189	-5760	53232	54699	Q	DHZ
JUL	332 47.7	76 41.8	12586	11194	-5754	53231	54699	Q	DHZ
AUG	332 48.2	76 41.8	12588	11196	-5753	53232	54700	Q	DHZ
SEP	332 50.8	76 41.8	12586	11199	-5744	53230	54698	Q	DHZ
OCT	332 51.9	76 41.6	12590	11204	-5742	53228	54697	Q	DHZ
NOV	332 54.9	76 40.9	12602	11220	-5738	53238	54709	Q	DHZ
DEC	332 56.0	76 41.0	12599	11219	-5733	53227	54698	Q	DHZ
WINTER	332 45.9	76 41.7	12589	11193	-5761	53236	54704	Q	DHZ
EQUINOX	332 45.6	76 42.2	12580	11185	-5758	53234	54700	Q	DHZ
SUMMER	332 46.3	76 42.1	12582	11188	-5757	53232	54699	Q	DHZ
YEAR	332 45.9	76 42.0	12584	11189	-5759	53234	54701	Q	DHZ
JAN	332 35.6	76 45.2	12533	11126	-5769	53238	54693	D	DHZ
FEB	332 36.4	76 43.2	12560	11152	-5779	53217	54679	D	DHZ
MAR	332 39.4	76 44.0	12551	11149	-5765	53234	54694	D	DHZ
APR	332 38.9	76 44.2	12550	11147	-5766	53241	54700	D	DHZ
MAY	332 43.0	76 44.1	12557	11160	-5756	53262	54722	D	DHZ
JUN	332 44.7	76 47.5	12505	11117	-5727	53283	54731	D	DHZ
JUL	332 46.2	76 47.8	12497	11112	-5718	53264	54710	D	DHZ
AUG	332 47.4	76 47.5	12500	11117	-5716	53259	54706	D	DHZ
SEP	332 52.9	76 46.6	12514	11138	-5704	53255	54705	D	DHZ
OCT	332 40.3	76 48.7	12481	11088	-5730	53263	54706	D	DHZ
NOV	332 51.1	76 46.3	12509	11131	-5708	53216	54666	D	DHZ
DEC	332 53.0	76 43.6	12552	11172	-5721	53205	54665	D	DHZ
WINTER	332 44.0	76 44.6	12538	11145	-5744	53219	54676	D	DHZ
EQUINOX	332 42.9	76 45.9	12523	11130	-5741	53248	54701	D	DHZ
SUMMER	332 45.4	76 46.7	12515	11127	-5729	53267	54718	D	DHZ
YEAR	332 44.1	76 45.7	12526	11134	-5738	53245	54698	D	DHZ

^{*}A = All days *Q = Q-days *D = D-days

ELE = Elements recorded

Annual Mean Values, Quiet Winter Days, All Days, Q	Juiet Days and Disturbed Days.
--	---------------------------------------

YEAR	D	I	Н	X	Y	Z	F	*	ELE
	o !	0 1	nT	nT	nT	nT	nT		
1968.0	323 10.0	77 46.3	11617	9298	-6964	53600	54844	W	DHZ
1969.0	323 19.0	77 44.9	11652	9344	-6961	53656	54907	W	DHZ
1970.0	323 29.0	77 43.2	11692	9397	-6957	53713	54971	W	DHZ
1971.0	323 38.0	77 41.4	11733	9448	-6957	53767	55032	W	DHZ
1972.0	323 48.0	77 39.5	11775	9502	-6954	53815	55088	W	DHZ
1973.0	323 59.0	77 37.5	11816	9557	-6948	53856	55137	W	DHZ
1974.0	324 12.0	77 35.4	11859	9618	-6937	53890	55179	W	DHZ
1975.0	324 27.0	77 33.2	11900	9682	-6919	53912	55210	W	DHZ
1976.0	324 43.0	77 30.6	11942	9748	-6898	53914	55221	W	DHZ
1977.0	325 01.0	77 28.4	11978	9814	-6867	53907	55222	W	DHZ
1978.0	325 17.0	77 26.1	12012	9874	-6841	53895	55217	W	DHZ
1979.0	325 33.0	77 23.7	12048	9935	-6815	53877	55208	W	DHZ
1980.0	325 48.0	77 21.4	12078	9989	-6789	53845	55183	W	DHZ
1981.0	326 04.0	77 19.2	12108	10046	-6759	53818	55163	W	DHZ
1982.0	326 20.0	77 17.1	12138	10102	-6729	53793	55145	W	DHZ
1983.0	326 35.0	77 16.0	12153	10144	-6693	53780	55136	W	DHZ
1984.0	326 50.0	77 14.0	12178	10194	-6662	53746	55108	W	DHZ
1983.5	326 41.6	77 15.8	12152	10156	-6673	53764	55120	A	DHZ
1984.5	326 55.7	77 14.3	12171	10199	-6642	53736	55097	A	DHZ
1985.5	327 11.1	77 12.9	12187	10242	-6604	53706	55071	A	DHZ
1986.5	327 26.8	77 11.7	12201	10284	-6565	53679	55048	A	DHZ
1987.5	327 44.5	77 09.9	12223	10336	-6524	53647	55022	A	DHZ
1988.5	328 00.5	77 09.0	12235	10377	-6482	53633	55011	A	DHZ
1989.0	0 02.6	0 00.7	-4	2	10	30	28	J	DHZ
1989.5	328 13.8	77 07.2	12254	10418	-6452	53592	54975	A	DHZ
1990.5	328 29.9	77 05.9	12271	10463	-6412	53571	54959	A	DHZ
1991.5	328 45.6	77 04.9	12284	10503	-6371	53555	54946	A	DHZ
1992.5	329 01.3	77 03.4	12302	10547	-6332	53525	54920	A	DHZ
1993.5	329 17.9	77 01.6	12323	10596	-6292	53495	54896	A	DHZ
1994.0	0 00.0	0.00.0	-1	-1	0	-2	-3	J	DHZ
1994.5	329 34.3	77 00.7	12335	10636	-6247	53476	54880	A	DHZ
1995.5	329 53.6	76 58.3	12366	10698	-6203	53444	54856	A	DHZ
1996.5	330 13.6	76 56.0	12395	10759	-6155	53409	54828	A	DHZ
1997.5	330 33.9	76 54.0	12423	10819	-6105	53381	54807	A	DHZ
1998.5	330 55.6	76 52.2	12446	10878	-6048	53361	54793	A	DHZ
1999.5	331 17.3	76 50.2	12473	10939	-5992	53332	54771	A	DHZ
2000.5	331 39.0	76 48.4	12497	10998	-5934	53311	54756	A	DHZ
2001.5	332 01.3	76 46.1	12527	11063	-5877	53278	54731	A	DHZ
2002.5 2003.5	332 23.6 332 45.2	76 44.2 76 43.3	12553 12564	11124 11170	-5817 -5752	53254 53237	54714 54699	A A	DHZ DHZ
1983.5	326 42.3	77 15.1	12164	10167	-6677	53765	55124	Q	DHZ
1984.5	326 56.3	77 13.3	12186	10213	-6648	53734	55098	Q	DHZ
1985.5	327 11.6	77 12.0	12202	10256	-6611	53704	55073	Q	DHZ
1986.5	327 27.4	77 10.8	12215	10297	-6571	53676	55048	Q	DHZ
1987.5	327 44.9	77 09.4	12232	10345	-6527	53648	55025	Q	DHZ
1988.5	328 00.8	77 08.2	12246	10387	-6487	53631	55011	Q	DHZ
1989.0	0 02.6	0 00.7	-4	2	10	30	28	J	DHZ
1989.5	328 14.4	77 06.6	12263	10427	-6455	53591	54976	Q	DHZ

YEAR	D	I	Н	X	Y	Z	F	*	ELE
	o '	0 '	nT	nT	nT	nT	nT		
1990.5	328 30.0	77 05.3	12279	10470	-6416	53567	54956	Q	DHZ
1991.5	328 46.1	77 04.0	12297	10515	-6376	53551	54945	Q	DHZ
1992.5	329 01.6	77 02.7	12312	10556	-6336	53521	54919	Q	DHZ
1993.5	329 18.2	77 00.9	12335	10607	-6297	53491	54895	Q	DHZ
1994.0	0.00.0	0.00	-1	-1	0	-2	-3	J	DHZ
1994.5	329 35.4	76 59.2	12357	10657	-6255	53470	54879	Q	DHZ
1995.5	329 54.2	76 57.5	12380	10711	-6208	53443	54858	Q	DHZ
1996.5	330 13.6	76 55.5	12403	10766	-6159	53407	54828	Q	DHZ
1997.5	330 34.2	76 53.4	12431	10827	-6108	53380	54808	Q	DHZ
1998.5	330 55.5	76 51.6	12456	10886	-6053	53359	54793	Q	DHZ
1999.5	331 17.9	76 49.6	12483	10949	-5995	53330	54771	Q	DHZ
2000.5	331 39.3	76 47.8	12507	11007	-5938	53308	54755	Q	DHZ
2001.5	332 01.5	76 45.6	12535	11070	-5880	53278	54733	Q	DHZ
2002.5	332 23.7	76 43.6	12562	11132	-5821	53252	54714	Q	DHZ
2003.5	332 45.9	76 42.0	12584	11189	-5759	53234	54701	Q	DHZ
1983.5	326 40.4	77 17.7	12121	10128	-6659	53763	55112	D	DHZ
1984.5	326 54.6	77 16.5	12136	10168	-6626	53744	55097	D	DHZ
1985.5	327 10.1	77 14.7	12158	10216	-6592	53707	55066	D	DHZ
1986.5	327 25.6	77 13.7	12169	10255	-6552	53683	55045	D	DHZ
1987.5	327 43.9	77 11.0	12205	10320	-6516	53645	55016	D	DHZ
1988.5	327 59.5	77 10.9	12204	10349	-6469	53636	55007	D	DHZ
1989.0	0 02.6	0 00.7	-4	2	10	30	28	J	DHZ
1989.5	328 12.2	77 08.9	12228	10393	-6443	53598	54975	D	DHZ
1990.5	328 30.0	77 07.3	12249	10444	-6400	53577	54959	D	DHZ
1991.5	328 45.1	77 06.5	12258	10480	-6359	53560	54945	D	DHZ
1992.5	329 00.8	77 05.6	12268	10517	-6316	53539	54927	D	DHZ
1993.5	329 16.8	77 03.5	12295	10570	-6281	53502	54897	D	DHZ
1994.0	0.00.0	0.00	-1	-1	0	-2	-3	J	DHZ
1994.5	329 33.2	77 02.9	12300	10604	-6233	53481	54877	D	DHZ
1995.5	329 52.6	76 59.7	12344	10677	-6195	53445	54852	D	DHZ
1996.5	330 12.9	76 57.1	12378	10743	-6149	53411	54827	D	DHZ
1997.5	330 33.7	76 54.8	12409	10807	-6099	53382	54805	D	DHZ
1998.5	330 54.7	76 54.2	12416	10850	-6036	53371	54796	D	DHZ
1999.5	331 17.0	76 51.9	12446	10915	-5980	53336	54769	D	DHZ
2000.5	331 37.8	76 50.1	12472	10974	-5926	53317	54756	D	DHZ
2001.5	332 00.3	76 47.0	12512	11048	-5873	53276	54726	D	DHZ
2002.5	332 23.3	76 45.3	12536	11108	-5810	53256	54711	D	DHZ
2003.5	332 44.1	76 45.7	12526	11134	-5738	53245	54698	D	DHZ

^{*}W = Quiet winter days (QWD, cf. Section I, chapter 6)

The change happened between spring 1989 and autumn 1993. Why and when is unknown.

REMARK: jump value = old site value - new site value.

^{*}A = All days

^{*}Q = Quiet days

^{*}D = Disturbed days

^{*}J = Jumps:

^{1.} The jump in the values from 1988 to 1989 is due to establishment of a new absolute pillar during 1988.

^{2.} The jump in the values from 1993 to 1994 is due to a change in the difference ΔF between the PPM-pillar and the absolute pillar.

ELE = Elements recorded.

SECTION VI

Maps of the Magnetic Declination.

Isogonic maps for Denmark, Faeroe Islands and Greenland showing lines of equal magnetic declination based on the IGRF 2000 magnetic field model and valid for Epoch 2003.5 are shown on page 62, 63 and 64.

The measured secular variation of the magnetic declination, i.e. the annual change in D, valid for the Danish and Greenlandic observatories since 1950^1 , is shown on the graph on page 66. The data are first differences of the calculated annual means.

The predicted secular variation can also be calculated from the IGRF 2000 magnetic field model, and we find that it is 8 minutes of arc per year eastwards for Denmark, and 11 minutes of arc per year eastwards for Faeroe Islands.

The secular variation for Greenland is shown on the iso-variational map, or isoporic map, on page 65. The map is also based on the IGRF 2000 magnetic field model, and shows the lines of equal change in D (in minutes of arc per year) for the period 2000-2005.

¹The annual change i *D* for BFE and GDH since the start of the two observatories are shown on graphs i section II and III respectfully.

Denmark
Magnetic Declination 2003

Faeroe Islands Magnetic Declination 2003

Greenland

Magnetic Declination 2003

Greenland
Annual Change in Magnetic Declination 2000-2005

SECTION VII

Crustal Anomalies.

The crustal anomaly for each magnetic element is the difference between the Annual Mean (All Days) of the element and the IGRF2000 value at the location of the observatory with the secular variation model applied out to epoch 2003.5.

Crustal Anomalies valid for 2003.5								
Observatory	Epoch 2003.5	D (° ')	I (° ')	H (nT)	X (nT)	Y (nT)	Z (nT)	F (nT)
THL	2003 Annual Mean	299°58.0'	86°01.2'	3919	1958	-3395	56329	56465
	IGRF2000 for 2003.5	298°43.8'	85°53.4'	4037	1940	-3540	56232	56377
	Crustal Anomaly	1°14.2'	0°07.8'	-118	18	145	97	88
GDH	2003 Annual Mean	320°19.5'	81°09.6'	8709	6703	-5560	55999	56672
	IGRF2000 for 2003.5	320°15.6'	81°27.0'	8293	6377	-5301	55167	55787
	Crustal Anomaly	0°03.9'	-0°17.4'	416	326	-259	832	885
NAQ	2003 Annual Mean	332°45.2'	76°43.3'	12564	11170	-5752	53237	54699
	IGRF2000 for 2003.5	332°03.6'	76°13.2'	12930	11423	-6058	52730	54292
	Crustal Anomaly	0°41.6'	0°30.1'	-366	-253	306	507	407
BFE	2003 Annual Mean	1°01.0′	69°49.2'	17146	17143	304	46652	49703
	IGRF2000 for 2003.5	1°13.8'	69°55.8'	17080	17076	367	46748	49770
	Crustal Anomaly	-0°12.8'	-0°06.6'	66	67	-63	-96	-67

SECTION VIII

Annual plots.

In this section the following plots are presented:

- 1. Plots of observed and adopted baseline values.
- 2. Plots of differences between observed and calculated absolute values D, H and Z.
- 3. Plots of hourly and daily mean values of *X*, *Y* and *Z*.
- 1. In the plots the observed baseline values are shown as dots, while the solid lines which shift in steps are the final baseline values which are adopted by a graphical smoothing process, cf. Wienert (reference 4, page 176). Normally one value is adopted for at least the whole of one UT day except for known instrumental discontinuities. When adopting the final baseline values the absolute measurements immediately before the beginning and after the end of the year were used to ensure that unrealistic discontinuities are not introduced at the year boundaries. These measurements are not shown in the plots. Tables of adopted baseline values are presented in section II-V.
- **2.** The plots of the <u>differences between the observed and the calculated absolute values</u>, converted to nT, shows the differences between the weekly absolute measurements of *DHZ* and the corresponding final 1-minute values calculated from variometer output and adopted baseline values.
- The weekly absolute measurements are based on variometer spot values, while the final 1-minute values are filtered, cf. section I, chapter 4.
- **3.** The plots of <u>hourly and daily mean values</u> show a number of features of geomagnetic field variations, such as diurnal variation, seasonal changes in its magnitude, and periods of geomagnetic disturbance.

BFE - Hourly Mean Values

BFE - Hourly Mean Values

BFE - Hourly Mean Values

GDH - Hourly Mean Values

GDH - Hourly Mean Values

GDH - Hourly Mean Values

THL - Hourly Mean Values

THL - Hourly Mean Values

THL - Hourly Mean Values

NAQ - Hourly Mean Values

NAQ - Hourly Mean Values

NAQ - Hourly Mean Values

