See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/230894149

Substituted thiazoles VII. Synthesis and antitumor activity of certain 2-(substituted amino)-4-phenyl-1,3-thiazole analogs. Bioorg Med Chem Lett

ARTICLE in BIOORGANIC & MEDICINAL CHEMISTRY LETTERS · SEPTEMBER 2012

Impact Factor: 2.42 · DOI: 10.1016/j.bmcl.2012.08.095 · Source: PubMed

CITATIONS READS

4 AUTHORS:

20

Ghada Hassan

Mansoura University

28 PUBLICATIONS 177 CITATIONS

SEE PROFILE

Fatmah A M Al-Omary

King Saud University

21 PUBLICATIONS 186 CITATIONS

SEE PROFILE

130

Shahenda El-Messery

Mansoura University

14 PUBLICATIONS 108 CITATIONS

SEE PROFILE

Hussein El-Subbagh

Mansoura University

139 PUBLICATIONS 1,403 CITATIONS

SEE PROFILE

FISEVIER

Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

Substituted thiazoles VII. Synthesis and antitumor activity of certain 2-(substituted amino)-4-phenyl-1,3-thiazole analogs

Ghada S. Hassan a,b, Shahenda M. El-Messery c, Fatmah A. M. Al-Omary a, Hussein I. El-Subbagh d,*

- ^a Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
- ^b Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt
- ^c Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt
- ^d Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University, 12311 Cairo, Egypt

ARTICLE INFO

Article history: Received 12 June 2012 Revised 20 August 2012 Accepted 24 August 2012 Available online 3 September 2012

Keywords: Synthesis Antitumor screening Substituted-1,3-thiazole

ABSTRACT

A novel series of 2-acetamido- or 2-propanamido-4-(4-substituted phenyl)-1,3-thiazoles (11-34) was designed and synthesized. Compounds were subjected to National Cancer Institute (NCI) in vitro assessment for their antitumor activity, at a single dose of 10 μ M. Most of the investigated compounds exhibited broad-spectrum antitumor activity. Compounds 19 and 28 believed to be the most active members in this study, with MG-MID GI₅₀, TGI, and LC₅₀ values of 2.8, 11.4, 44.7; and 3.3, 13.1, 46.8, respectively. Compounds 19 and 28 proved to be nine and sevenfold more active than the standard antitumor drug 5-FU, respectively.

© 2012 Elsevier Ltd. All rights reserved.

Thiazole containing heterocyclic compounds attracted the interest of medicinal chemists due to their synthetic feasibility and their incorporation into variety of therapeutically active agents. They represent a wide range of biological potencies including antibacterial, antifungal, anti-HIV, antihypertension, antiinflammatory, anticancer, anticonvulsant, and antidepressant. ¹⁻⁶ Meanwhile, DNA is one of the major targets of anticancer drugs

since the development of the nitrogen mustards. Targeting DNA of tumor cells has been one of the most effective clinical strategies for many DNA intercalators such as groove binders and anticancer antibiotics.^{7–10} In addition, mechanisms of 1,3-thiazole and related heterocycles antitumor activity may be associated with the affinity to anticancer biotargets, such as phosphatase of a regenerating liver (PRL-3),^{11,12} non-membrane protein tyrosine phosphatase

Chart 1. Structures of netropsin (1), thia-netropsin (2), and some literature thiazole antitumor agents (3-5).

E-mail address: subbagh@yahoo.com (H.I. El-Subbagh).

^{*} Corresponding author.

Scheme 1. Synthesis of the target compounds 11-34.

(SHP-2),¹³ JNK-stimulating phosphatase-1 (JSP-1),¹⁴ tumor necrosis factor TNFa,¹⁵ antiapoptotic biocomplex Bcl-XL-BH3,¹⁶ integrin avb3,¹⁷ etc. Necroptosis inhibitors have been recently identified among 1,3-thiazole related compounds.¹⁸ On the other hand benzothiazole ring belongs to the privilleged scaffolds in modern medicinal chemistry¹⁹ particularly in discovering of new anticancer agents. Various benzothiazole derivatives were proposed as inhibitors of fatty acid amide hydrolase (FAAH),²⁰ Raf kinase (Raf-1)²¹ and B-cell lymphoma protein BCL-2.²²

The clinical efficacy of the groove binders tiazofurin, distamycin, netropsin (1), thia-netropsin (2), and bleomycin pointed out the importance of the 1,3-thiazole moieties and their contribution to enhance the antitumor activity, Chart 1, $^{23-32}$ The antitumor activity of 2, 4-disubstituted 1,3-thiazole analogs was reported and well documented. $^{33-40}$ Many substituted thiazole analogs were prepared and screened for their antitumor activity, most of them proved to possess promising activity against numerous tumor cell lines. Certain 1,3-thiazole containing derivatives (3–5, Chart 1) proved to be effective antitumor agents with GI_{50} range of $0.08-2.9~\mu M.^{35-39}$

In view of these facts, an efficient and reproducible synthesis of some 2-(substituted amino)-4-phenyl-1,3-thiazole derivatives has been developed recently in our laboratory as structurally related analogs of the previously mentioned groove binding agents. Those 4-phenyl-1,3-thiazole analogs displayed a broad range of cancer in vitro growth inhibition according to the pattern generated in the NCI-60 cell line screening assay. The finding that aromatic substitution at position 4- of the 1,3-thiazole ring contribute to the antitumor activity encouraged further investigation; some new 2-amino-4-(4-substituted phenyl)-1,3-thiazole analogs bearing 4-chloro-, 4-bromo- or 4-methyl-phenyl moieties, were synthesized to explore the electronic effect of such substituent on

the antitumor activity. The 2-amino function of the 4-(4-substituted phenyl)-1,3-thiazoles was also acylated with aliphatic acid chlorides of various length to produce 2-acetamido- or 2-propanamido-analogs fitted at the terminal end with variety of secondary amines as an attempt for isosteric simulation of the amidine and the guanidine functions of netropsin (1) with the hope to locate new lead compound(s). The synthesized compounds (Scheme 1, Table 1) were subjected to the NCI in vitro disease-oriented human cells screening panel assay,^{41–43} to evaluate the effect of this structural alterations on the antitumor activity. The synthesis of compounds 11, 20 and 29 were previously reported.⁴⁴

The synthesized compounds **11–34** were subjected to the National Cancer Institute (NCI) in vitro disease-oriented human cells screening panel assay for in vitro antitumor activity. A single dose (10 µM) of the test compounds were used in the full NCI 60 cell lines panel assay which includes nine tumor subpanels namely; Leukemia, Non-small cell lung, Colon, CNS, Melanoma, Ovarian, Renal, Prostate, and Breast cancer cells. He data reported as mean-graph of the percent growth of the treated cells, and presented as percentage growth inhibition (GI%) caused by the test compounds (Table 2).

In the present investigation, most of the tested compounds showed broad spectrum antitumor activity. Compounds **24**, **31**, and **34** displayed modest potency against the tested tumor cell lines and considered to be the least effective members. Concerning activity toward individual cell lines, compound **19** proved to be lethal to Non-small cell lung cancer cell line HOP-92, Renal cancer RXF 393, and Breast cancer MDA-MB-468; while compound **28** proved to be lethal to Non-small cell lung cancer cell line NCI-H23, Renal cancer TK-10, and Breast cancer MDA-MB-468. Colon cancer cell line HT29 proved to be sensitive toward compound **14** with GI value of 80.4%, while Leukemia cell lines CCRF-CEM,

Table 1 Physicochemical properties of the newly synthesized compounds **9–34**

Br Cl
$$H_3$$
C H_3 C H_3 C H_3 C H_4 C H_2 D H_4 C H

18-25

27-34

Compound R n Solvent Yield (%) Mp °C Molecular formulae 9 Cl 1 Ethanol 66 89-92 C₁1H₀BrClN₂OS 10 Cl 2 Ethanol 60 180-2 C₁2H₀BrClN₂OS 11 Morpholine 1 Ethanol 59 115-8 C₁2H₀BrN₃O₂S 12 Morpholine 2 Ethanol 68 162-4 C₁5H₀BrN₃O₂S 13 N-Methylpiperazine 1 Ethanol 73 153-5 C₁6H₁BrN₃O₂S 14 N-Methylpiperazine 2 - 62 Oil C₁7H₂BrN₄OS 15 N-Phenylpiperazine 2 - 62 Oil C₁7H₂BrN₄OS 16 N-Phenylpiperazine 2 Ethanol 67 76-78 C₂2H₂₂BrN₄OS 18 Cl 1 Ethanol 64 169-71 C₁H₆B Cl¬N₂OS 20 Morpholine 1 Ethanol 65 132-5 C₁H₀H₂GlN₂OS					_				
The color	Compound	R	n	Solvent	Yield (%)	Mp °C	Molecular formulae		
11 Morpholine 1 Ethanol 59 115-8 C18H16BRN302S 12 Morpholine 2 Ethanol 68 162-4 C16H18BRN302S 13 N-Methylpiperazine 1 Ethanol 73 153-5 C16H18BRN302S 14 N-Methylpiperazine 2 - 62 0il C17H21BRN40S 15 N-Phenylpiperazine 1 Ethylacetate 82 144-7 C21H21BRN40S 16 N-Phenylpiperazine 2 Ethanol 67 76-78 C22H21BRN40S 18 Cl 1 Ethanol 64 169-71 C11H8 C12N20S 19 Cl 2 Ethanol 65 132-5 C18H16ClN302S 20 Morpholine 1 Ethanol 59 146-8 C18H1sClN302S 21 Morpholine 2 Ethanol 70 140-2 C16H1sClN302S 22 N-Methylpiperazine 2 Ethanol 71 142-5 C21H21ClN40S	9	Cl	1	Ethanol	66	89-92	C ₁₁ H ₈ BrClN ₂ OS		
12 Morpholine 2 Ethanol 68 162-4 C ₁₆ H ₁₈ BrN ₃ O ₂ S 13 N-Methylpiperazine 1 Ethanol 73 153-5 C ₁₆ H ₁₉ BrN ₄ OS 14 N-Methylpiperazine 2 - 62 0il C ₁₇ H ₂₁ BrN ₄ OS 15 N-Phenylpiperazine 1 Ethylacetate 82 144-7 C ₂₁ H ₂₁ BrN ₄ OS 16 N-Phenylpiperazine 2 Ethanol 67 76-78 C ₂₂ H ₂₂ BrN ₄ OS 18 Cl 1 Ethanol 64 169-71 C ₁₁ H ₈ Cl ₂ N ₂ OS 19 Cl 2 Ethylacetate 55 164-6 C ₁₂ H ₁₀ Cl ₂ N ₂ OS 20 Morpholine 1 Ethanol 65 132-5 C ₁₅ H ₁₆ ClN ₃ O ₂ S 21 Morpholine 2 Ethanol 59 146-8 C ₁₆ H ₁₉ ClN ₄ OS 22 P.Methylpiperazine 1 Ethanol 70 140-2 C ₁₆ H ₁₉ ClN ₄ OS 23 N-Phenylpiperazine 2 Ethanol </td <td>10</td> <td>Cl</td> <td>2</td> <td>Ethanol</td> <td>60</td> <td>180-2</td> <td>C₁₂H₁₀BrClN₂OS</td>	10	Cl	2	Ethanol	60	180-2	C ₁₂ H ₁₀ BrClN ₂ OS		
13 N-Methylpiperazine 1 Ethanol 73 153-5 C ₁₆ H ₁₉ BrN ₄ OS 14 N-Methylpiperazine 2 - 62 Oil C ₁₇ H ₂₁ BrN ₄ OS 15 N-Phenylpiperazine 1 Ethylacetate 82 144-7 C ₂₁ H ₂₁ BrN ₄ OS 16 N-Phenylpiperazine 2 Ethanol 67 76-78 C ₂₂ H ₂₃ BrN ₄ OS 18 Cl 1 Ethanol 64 169-71 C ₁₁ H ₈ Cl ₃ N ₂ OS 19 Cl 2 Ethanol 64 169-71 C ₁₁ H ₈ Cl ₃ N ₂ OS 20 Morpholine 1 Ethanol 65 132-5 C ₁₅ H ₁₆ ClN ₂ O ₂ S 21 Morpholine 2 Ethanol 59 146-8 C ₁₆ H ₁₉ ClN ₄ OS 22 Ethanol 70 140-2 C ₁₆ H ₁₉ ClN ₄ OS 23 N-Methylpiperazine 1 Ethanol 71 142-5 C ₂₁ H ₂₁ ClN ₄ OS 24 N-Phenylpiperazine 2 Ethanol 70 165-7	11	Morpholine	1	Ethanol	59	115-8	$C_{15}H_{16}BrN_3O_2S$		
14 N-Methylpiperazine 2 — 62 Oil C ₁ H ₂₁ BrN ₄ OS 15 N-Phenylpiperazine 1 Ethylacetate 82 144-7 C ₂₁ H ₂₁ BrN ₄ OS 16 N-Phenylpiperazine 2 Ethanol 67 76-78 C ₂₂ H ₂₃ BrN ₄ OS 18 Cl 1 Ethanol 64 169-71 C ₁₁ H ₈ Cl ₂ N ₂ OS 19 Cl 2 Ethylacetate 55 164-6 C ₁₂ H ₁₀ Cl ₂ N ₂ OS 20 Morpholine 1 Ethanol 65 132-5 C ₁₅ H ₁₆ ClN ₃ O ₂ S 21 Morpholine 2 Ethanol 59 146-8 C ₁₆ H ₁₈ ClN ₃ O ₂ S 21 N-Methylpiperazine 1 Ethanol 70 140-2 C ₁₆ H ₁₉ ClN ₄ OS 22 Ethanol 70 140-2 C ₁₆ H ₁₉ ClN ₄ OS 23 N-Phenylpiperazine 1 Ethanol 71 142-5 C ₂₁ H ₂₁ ClN ₄ OS 25 N-Phenylpiperazine 2 Ethylacetate 73 181-3 </td <td>12</td> <td>Morpholine</td> <td>2</td> <td>Ethanol</td> <td>68</td> <td>162-4</td> <td>$C_{16}H_{18}BrN_3O_2S$</td>	12	Morpholine	2	Ethanol	68	162-4	$C_{16}H_{18}BrN_3O_2S$		
15 N-Phenylpiperazine 1 Ethylacetate 82 144-7 C ₂₁ H ₂₁ BrN ₄ OS 16 N-Phenylpiperazine 2 Ethanol 67 76-78 C ₂₂ H ₂₃ BrN ₄ OS 18 Cl 1 Ethanol 64 169-71 C ₁₁ H ₈ Cl ₂ N ₂ OS 19 Cl 2 Ethylacetate 55 164-6 C ₁₂ H ₁₆ Cl ₂ N ₂ OS 20 Morpholine 1 Ethanol 65 132-5 C ₁₅ H ₁₆ Cl ₁ N ₂ OS 21 Morpholine 2 Ethanol 59 146-8 C ₁₆ H ₁₈ ClN ₃ O ₂ S 22 N-Methylpiperazine 1 Ethanol 70 140-2 C ₁₆ H ₁₈ ClN ₃ O ₂ S 23 N-Methylpiperazine 2 Ethanol 68 128-30 C ₁₇ H ₂₁ ClN ₄ OS 24 N-Phenylpiperazine 1 Ethanol 71 142-5 C ₂₁ H ₂₁ ClN ₄ OS 25 N-Phenylpiperazine 2 Ethylacetate 73 181-3 C ₂₂ H ₂₂ ClN ₄ OS 26 Cl 1	13	N-Methylpiperazine	1	Ethanol	73	153-5	C ₁₆ H ₁₉ BrN ₄ OS		
16 N-Phenylpiperazine 2 Ethanol 67 76-78 C22H23BrN4OS 18 Cl 1 Ethanol 64 169-71 C11H8 Cl2N2OS 19 Cl 2 Ethylacetate 55 164-6 C12H10Cl2N2OS 20 Morpholine 1 Ethanol 65 132-5 C15H16ClN3O2S 21 Morpholine 2 Ethanol 59 146-8 C16H18ClN3O2S 22 N-Methylpiperazine 1 Ethanol 70 140-2 C16H19ClN4OS 23 N-Methylpiperazine 2 Ethanol 68 128-30 C17H21ClN4OS 24 N-Phenylpiperazine 1 Ethanol 71 142-5 C21H21ClN4OS 25 N-Phenylpiperazine 2 Ethylacetate 73 181-3 C22H23ClN4OS 27 Cl 1 Ethanol 70 165-7 C12H11ClN2OS 28 Cl 2 Ethanol 73 151-3 C13H13ClN2OS <	14	N-Methylpiperazine	2	_	62	Oil	C ₁₇ H ₂₁ BrN ₄ OS		
18 Cl 1 Ethanol 64 169-71 C ₁₁ H ₈ Cl ₂ N ₂ OS 19 Cl 2 Ethylacetate 55 164-6 C ₁₂ H ₁₀ Cl ₂ N ₂ OS 20 Morpholine 1 Ethanol 65 132-5 C ₁₅ H ₁₆ ClN ₃ O ₂ S 21 Morpholine 2 Ethanol 59 146-8 C ₁₆ H ₁₈ ClN ₃ O ₂ S 22 N-Methylpiperazine 1 Ethanol 70 140-2 C ₁₆ H ₁₉ ClN ₄ OS 23 N-Methylpiperazine 2 Ethanol 68 128-30 C ₁₇ H ₂₁ ClN ₄ OS 24 N-Phenylpiperazine 1 Ethanol 71 142-5 C ₂₁ H ₂₁ ClN ₄ OS 25 N-Phenylpiperazine 2 Ethylacetate 73 181-3 C ₂₂ H ₂₃ ClN ₄ OS 27 Cl 1 Ethanol 70 165-7 C ₁₂ H ₁₁ ClN ₂ OS 28 Cl 2 Ethanol 73 151-3 C ₁₃ H ₁₃ ClN ₂ OS 29 Morpholine 1 Ethylacetate 73	15	N-Phenylpiperazine	1	Ethylacetate	82	144-7	C ₂₁ H ₂₁ BrN ₄ OS		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	N-Phenylpiperazine	2	Ethanol	67	76-78	C ₂₂ H ₂₃ BrN ₄ OS		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	Cl	1	Ethanol	64	169-71	$C_{11}H_8$ Cl_2N_2OS		
21 Morpholine 2 Ethanol 59 $146-8$ $C_{16}H_{18}Cln_3O_2S$ 22 N-Methylpiperazine 1 Ethanol 70 $140-2$ $C_{16}H_{19}Cln_4OS$ 23 N-Methylpiperazine 2 Ethanol 68 $128-30$ $C_{17}H_{21}Cln_4OS$ 24 N-Phenylpiperazine 1 Ethanol 71 $142-5$ $C_{21}H_{21}Cln_4OS$ 25 N-Phenylpiperazine 2 Ethylacetate 73 $181-3$ $C_{22}H_{23}Cln_4OS$ 27 Cl 1 Ethanol 70 $165-7$ $C_{12}H_{11}Cln_2OS$ 28 Cl 2 Ethanol 73 $151-3$ $C_{13}H_{13}Cln_2OS$ 29 Morpholine 1 Ethylacetate 73 $144-6$ $C_{16}H_{19}N_3O_2S$ 30 Morpholine 2 Ethanol 61 $159-60$ $C_{17}H_{21}N_3O_2S$ 31 N-Methylpiperazine 1 Ethanol 64 $166-9$ $C_{17}H_{22}N_4OS$ 32 N-Methylpiperazine 2 Ethylacetate 78 $155-7$ $C_{18}H_{24}N_4OS$ <	19	Cl	2	Ethylacetate	55	164-6	$C_{12}H_{10}Cl_2N_2OS$		
22 N -Methylpiperazine 1 Ethanol 70 $140-2$ $C_{16}H_{19}ClN_4OS$ 23 N -Methylpiperazine 2 Ethanol 68 $128-30$ $C_{17}H_{21}ClN_4OS$ 24 N -Phenylpiperazine 1 Ethanol 71 $142-5$ $C_{21}H_{21}ClN_4OS$ 25 N -Phenylpiperazine 2 Ethylacetate 73 $181-3$ $C_{22}H_{23}ClN_4OS$ 27 Cl 1 Ethanol 70 $165-7$ $C_{12}H_{11}ClN_2OS$ 28 Cl 2 Ethanol 73 $151-3$ $C_{13}H_{13}ClN_2OS$ 29 Morpholine 1 Ethylacetate 73 $144-6$ $C_{16}H_{19}N_3O_2S$ 30 Morpholine 2 Ethanol 61 $159-60$ $C_{17}H_{21}N_3O_2S$ 31 N -Methylpiperazine 1 Ethanol 64 $166-9$ $C_{17}H_{22}N_4OS$ 32 N -Methylpiperazine 2 Ethylacetate 78 $155-7$ $C_{18}H_{24}N_4OS$ 33 N -Phenylpiperazine 1 Ethanol 72 $151-4$ $C_{22}H$	20	Morpholine	1	Ethanol	65	132-5	$C_{15}H_{16}CIN_3O_2S$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21	Morpholine	2	Ethanol	59	146-8	$C_{16}H_{18}CIN_3O_2S$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22	N-Methylpiperazine	1	Ethanol	70	140-2	C ₁₆ H ₁₉ CIN ₄ OS		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23	N-Methylpiperazine	2	Ethanol	68	128-30	C ₁₇ H ₂₁ CIN ₄ OS		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24	N-Phenylpiperazine	1	Ethanol	71	142-5	$C_{21}H_{21}CIN_4OS$		
28 Cl 2 Ethanol 73 151-3 $C_{13}H_{13}Cln_2OS$ 29 Morpholine 1 Ethylacetate 73 144-6 $C_{16}H_{19}N_3O_2S$ 30 Morpholine 2 Ethanol 61 159-60 $C_{17}H_{21}N_3O_2S$ 31 N-Methylpiperazine 1 Ethanol 64 166-9 $C_{17}H_{22}N_4OS$ 32 N-Methylpiperazine 2 Ethylacetate 78 155-7 $C_{18}H_{24}N_4OS$ 33 N-Phenylpiperazine 1 Ethanol 72 151-4 $C_{22}H_{24}N_4OS$	25	N-Phenylpiperazine	2	Ethylacetate	73	181-3	C ₂₂ H ₂₃ CIN ₄ OS		
29 Morpholine 1 Ethylacetate 73 144-6 $C_{15}H_{19}N_{3}O_{2}S$ 30 Morpholine 2 Ethanol 61 159-60 $C_{17}H_{21}N_{3}O_{2}S$ 31 N-Methylpiperazine 1 Ethanol 64 166-9 $C_{17}H_{22}N_{4}OS$ 32 N-Methylpiperazine 2 Ethylacetate 78 155-7 $C_{18}H_{24}N_{4}OS$ 33 N-Phenylpiperazine 1 Ethanol 72 151-4 $C_{22}H_{24}N_{4}OS$	27	Cl	1	Ethanol	70	165-7	$C_{12}H_{11}CIN_2OS$		
30 Morpholine 2 Ethanol 61 159-60 $C_{17}H_{21}N_3O_2S$ 31 N-Methylpiperazine 1 Ethanol 64 166-9 $C_{17}H_{22}N_4OS$ 32 N-Methylpiperazine 2 Ethylacetate 78 155-7 $C_{18}H_{24}N_4OS$ 33 N-Phenylpiperazine 1 Ethanol 72 151-4 $C_{22}H_{24}N_4OS$	28	Cl	2	Ethanol	73	151-3	C ₁₃ H ₁₃ CIN ₂ OS		
31 N -Methylpiperazine 1 Ethanol 64 166-9 $C_{17}H_{22}N_4OS$ 32 N -Methylpiperazine 2 Ethylacetate 78 155-7 $C_{18}H_{24}N_4OS$ 33 N -Phenylpiperazine 1 Ethanol 72 151-4 $C_{22}H_{24}N_4OS$	29	Morpholine	1	Ethylacetate	73	144-6	$C_{16}H_{19}N_3O_2S$		
32 N-Methylpiperazine 2 Ethylacetate 78 155-7 C ₁₈ H ₂₄ N ₄ OS 33 N-Phenylpiperazine 1 Ethanol 72 151-4 C ₂₂ H ₂₄ N ₄ OS	30	Morpholine	2	Ethanol	61	159-60	$C_{17}H_{21}N_3O_2S$		
33 <i>N</i> -Phenylpiperazine 1 Ethanol 72 151–4 C ₂₂ H ₂₄ N ₄ OS	31	N-Methylpiperazine	1	Ethanol	64	166-9	$C_{17}H_{22}N_4OS$		
211	32	N-Methylpiperazine	2	Ethylacetate	78	155-7	$C_{18}H_{24}N_4OS$		
34 N-Phenylpiperazine 2 Ethanol 70 134-6 $C_{23}H_{26}N_4OS$	33	N-Phenylpiperazine	1	Ethanol	72	151-4	$C_{22}H_{24}N_4OS$		
	34	N-Phenylpiperazine	2	Ethanol	70	134-6	$C_{23}H_{26}N_4OS$		

 $^{^{\}rm a}$ Analysed for C,H,N; results were within $\pm\,0.4\%$ of the theoretical values for the given formulae.

9-16

 $\label{eq:Table 2} \textbf{Percentage growth inhibition (GI\%) of in vitro subpanel tumor cell lines at 10 μM concentration of compounds $\textbf{11}$-$\textbf{34}$}$

Subpanel tumor cell lines	1	14	15	19	23	24	25	28	31	33	34
Leukemia											
CCRF-CEM	15.3	24.9	22.2	88.3	18.3	_	16.3	88.3	_	13.4	_
HL-60(TB)	12.6	37.7	27.1	28.5	20.6	_	19.6	41.4	_	_	_
K-562	25.1	52.4	70.7	63.0	22.4	_	21.6	21.1	11.4	_	_
MOLT-4	33.2	38.1	47.6	61.3	51.8	_	36.3	43.3	13.4	23.7	14.9
RPMI-8226	28.9	30.5	33.6	92.8	17.6	_	25.4	80.9	_	_	_
SR	_	_	_	77.7	_	_	_	88.5	_	_	_
Non-small cell lung cancer											
A549/ATCC	10.3	22.2	30.8	39.9	_	_	12.0	77.3	_	31.4	23.8
EKVX	19.5	10.8	26.7	29.6	11.9	_	_	50.3	_	32.5	16.6
HOP-62	10.9	25.0	_	49.0	19.7	12.7	_	16.2	_	_	_
HOP-92	_	42.7	_	L	42.2	60.2	23.7	50.5	_	_	10.2
NCI-H226	14.5	19.1	20.2	51.0	28.0	_	14.1	22.0	_	_	_
NCI-H23	13.9	26.0	22.5	29.0	11.2	_	13.7	L	_	18.9	14.5
NCI-322M	11.1	17.2	20.5	16.9	_	_	27.8	55.9	_	21.4	15.6
NCI-H522	28.2	28.5	34.5	95.6	31.1	_	18.7	41.0	_	_	_
Colon cancer											
HCC-2998	_	_	21.0	15.8	13.3	_	_	22.5	_	15.2	_
HCT-116	10.7	42.5	33.1	79.3	13.3	16.4	19.4	46.2	_	_	_
HCT-15	_	42.6	26.1	61.4	18.1	_	_	25.9	_	10.6	_
HT29	10.8	80.4	37.7	78.0	23.8	_	18.6	21.0	_	_	_
KM12	_	_	_	43.8	_	_	_	82.4	_	_	_
SW-620	_	_	_	76.0	_	_	_	65.2	_	_	_
CNS cancer											
SF-268	_	12.8	17.0	51.7	14.2	_	_	46.3	_	13.9	_
SF-295	14.4	14.4	20.9	29.8	_	_	24.2	30.2	_	27.3	_
SF-539	_	31.4	_	94.6	14.8	_	_	25.2	_	_	_
SNB-19	10.5	20.9	23.9	26.2	19.7	_	_	73.1	_	_	_
SNB-75	29.8	47.9	17.9	58.8	26.8	_	14.9	34.6	42.2	12.1	_
U251	_	33.6	_	55.4	16.5	_	_	48.5		_ `	_

Table 2 (continued)

Subpanel tumor cell lines	1	14	15	19	23	24	25	28	31	33	34
Melanoma											
LOX IMVI	_	31.8	11.6	43.1	12.8	_	_	45.1	_	17.2	_
MALME-3M	12.4	24.6	13.8	44	15.4	_	_	29.1	_	_	12.1
M14	_	33.7	15.7	44.7	15.2	_	_	56.1	_	_	_
MDA-MB-435	_	50.6	23.9	68.1	15.4	_	_	36.9	_	17.6	_
SK-MEL-2	_	_	14.5	72.7	_	_	_	54.2	_	_	_
SK-MEL-28	_	23.4	_	21.2	_	_	_	31.0	_	_	_
SK-MEL-5	23.7	76.2	39.4	46.8	46.1	11.7	10.1	16.6	_	27.6	_
UACC-257	_	36.4	13.7	43.0	_	_	_	41.3	_	_	_
UACC-62	29.0	71.6	40.1	38.7	15.0	20.3	20.5	41.8	_	23.6	16.3
Ovarian cancer											
IGORV1	17.4	20.4	34.3	48.9	18.4	10.4	_	63.1	_	33.8	14.9
OVCAR-3	_	_	_	89.8	_	_	_	45.3	_	_	_
OVCAR-4	_	_	_	16.4	_	_	_	81.5	_	28.1	11.1
OVCAR-5	_	15.6	_	35.7	_	_	_	29.3	_	_	_
OVCAR-8	_	_	11.9	52.8	15.6	_	_	60.6	_	_	_
NCI/ADR-RES	17.0	22.9	30.9	51.2	21.9	_	_	55.8	_	21.0	_
SK-OV-3	_	_	_	25.7	_	_	_	63.0	_	_	_
Renal cancer											
ACHN	_	15.9	15.7	39.2	_	_	_	45.1	_	_	_
CAKI-1	28.9	30.2	33.5	52.5	24.2	_	_	55.6	12.0	24.6	14.1
RXF 393	_	38.1	13.6	L	47.4	_	_	43.8	_	_	_
SN12C	_	31.9	23.7	48.3	32.9	_	11.9	33.2	10.4	17.0	_
TK-10	_	22.5	28.3	_	20.2	_	_	L	_	_	_
UO-31	30.6	50.8	54.6	70.1	48.6	34.4	38.6	61.3	19.9	48.2	41.2
Prostate cancer											
PC-3	17.8	24.6	28.5	59.7	15.3	21.1	12.0	69.5	_	31.1	16.1
Breast cancer											
MCF7	13.7	28.8	41.2	55.8	28	_	10.9	65.9	12.7	20.9	_
MDA-MB-231/ATCC	23.4	64.3	22.2	44.6	25.6	_	_	53.5	34.2	_	_
BT-549	12.9	32.5	13.6	89.9	29.1	_	_	72.3	12.8	_	_
T-47D	25.2	34.9	41.8	52.1	28.8	19.0	_	55.2	_	20.8	_
MDA-MB-468	25.7	48.7	55.6	L	62.8	_	_	L	_	23.1	_

Prominent GI values are bolded.

-, GI <10%; L, compound proved lethal to the cancer cell line.

RPMI-8226; proved to be sensitive toward compound **19** with GI values of 88.3 and 92.8% and **28** with GI values of 88.3 and 80.9%, respectively. Compound **19** exhibited remarkable activity against Non-small cell lung cancer cell line NCI-H522, CNS cancer SF-539; Ovarian cancer OVCAR-3; Breast cancer BT-549 with GI values of 95.6, 94.6, 89.8, 89.9%, respectively (Fig. 1 and Table 2).

Compounds **19** and **28** proved to be the most active member of this study. They passed the primary anticancer assay at an arbi-

trary concentration of $10 \,\mu\text{M}$. Consequently, those active compounds were carried over and tested against a panel of 60 different tumor cell lines at a 5-log dose range. Three response parameters, GI_{50} , TGI, and IC_{50} were monitored for each cell line, using the known drug 5-Fluorouracil (5-FU) as a positive control. Compound **19** proved to be ninefold more active than 5-FU, with MG-MID GI_{50} , TGI, and IC_{50} values of 2.8, II.4, II.4,

Figure 1. Percentage growth inhibition (GI%) of in vitro subpanel tumor cell lines at 10 µM concentration of compounds 19, 28.

Figure 2. Compounds 19, 28 median growth inhibitory (GI_{50} , μM), Total growth inhibitory (TGI, μM) and median lethal (LC_{50} , μM) concentrations of in vitro subpanel tumor cell lines.

Figure 3. Full panel mean-graph midpoint (μM) of compounds 19, 28 in comparison with 5-FU.

Table 3 Compounds 19, 28 median growth inhibitory (GI_{50} , μM), total growth inhibitory (TGI, μM) and median lethal (LC_{50} , μM) concentrations of in vitro subpanel tumor cell lines

Compound	Activity	I	II	III	IV	V	VI	VII	VIII	IX	MG-MID ^a
19	GI ₅₀	2.2	6.1	3.9	3.1	3.2	4.1	1.7	2.8	2.4	2.8
	TGI	8.9	19.0	13.5	14.7	13.1	21.8	7.9	13.8	8.8	11.4
	LC ₅₀	90.2	51.5	44	50.9	47.6	67	32.1	42.2	55.9	44.7
28	GI_{50}	2.0	6.3	3.2	4.8	4.2	4.8	2.8	3.8	3.3	3.3
	TGI	21.5	20.3	11.9	17.6	13.4	31.3	12.5	16.8	32.3	13.1
	LC ₅₀	b	61.5	39.2	50.2	44.3	61.1	39.3	63.4	62.1	46.8
5-FU	GI_{50}	15.1	b	8.4	72.1	70.6	61.4	45.6	22.7	76.4	22.6
	TGI	b	b	b	b	b	b	b	b	b	b
	LC ₅₀	b	b	b	b	b	b	b	b	b	b

I, leukemia; II, non-small cell lung cancer; III, colon cancer; IV, CNS cancer; V, melanoma; VI, ovarian cancer; VII, renal cancer; VIII, prostate cancer; IX, breast cancer.

than 5-FU, with MG-MID GI $_{50}$, TGI, and LC $_{50}$ values of 3.3, 13.1, 46.8 μ M, respectively (Figs. 2 and 3, Table 3).

Compounds of the present investigation belong to 2-amino-1,3-thiazole analogs, bearing either to 2-(substituted amino)acetamido- or 3-(substituted amino)propanamido-functions at position 2- and 4-bromo, 4-chloro or 4-methyl-phenyl at position 4. The ob-

tained results revealed that 2-chloro-*N*-[4-(4-substitutedphenyl)-1,3-thiazol-2-yl]-acetamides (**9**, **18**, and **27**) devoid of any antitumor potency. Displacement of the chlorine atom of 2-chloroacetamide function of **9**, **18**, and **27** with variety of secondary amines produced 2-substituted amino-acetamide analogs with variable potency. Only compounds bearing either morpholine, *N*-methyl-

^a Full panel mean-graph midpoint (μM).

 $^{^{\}text{b}}$ Compounds showed values >100 μM .

piperazine or *N*-phenyl-piperazine showed antitumor activity as exemplified by compounds **11**, **15**, **24**, **31** and **34**.

Replacement of the 2-chloroacetamide function of **18** and **27** by 3-chloro-propanamide produced compound **19** and compound **28**, respectively with broad spectrum antitumor activity. Displacement of the chlorine atom of 3-chloropropanamide function of **19** and **28** with variety of secondary amines produced 3-substituted amino-propanamide analogs with either abolished or diminished activity. Only compounds bearing *N*-methyl-piperazine or *N*-phenyl-piperazine proved to be active with diminished potency as shown in **14**, **23**, **25**, and **34**.

In general, the length of the carbon chain linking the 1,3-thiazole nucleus to the terminal secondary amines proved crucial and manipulates the antitumor activity. The propanamide three carbon lengths favor the activity (compounds **19** and **28**) rather than the acetamide two carbon lengths (compounds **18** and **27**). Also, it was proven that bearing either electron withdrawing (4-bromo- or 4-chloro-) or electron donating (4-methyl-) substituent at the 4-phenyl function did not affect the magnitude of antitumor potency of such analogs.

In conclusion, an interesting class of 1,3-thiazole analogs bearing 2-acylamino substituent with different carbon chain length and 4-(4-substitutedphenyl) was designed and synthesized. Antitumor evaluation indicated different pharmacological profiles of these new compounds which substantiate the merits of further exploration. Results revealed that the three carbon chain connecting the thiazole nucleus to the secondary amines has an impact on antitumor activity. 3-chloro-N-[4-(4-chlorophenyl)-1,3-thiazol-2-yl]propanamide (19)and 3-chloro-N-[4-(4-tolyl)-1,3-thiazol-2yl]propanamide (28), displayed broad-spectrum antitumor potency. Compound 19 proved to be ninefold more active than 5-FU, with MG-MID GI₅₀, TGI, and LC₅₀ values of 2.8, 11.4, 44.7, respectively; whereas Compound 28 proved to be sevenfold more active than 5-FU, with MG-MID GI₅₀, TGI, and LC₅₀ values of 3.3, 13.1, 46.8, respectively. The obtained antitumor potency using 4aromatic substituent on the 1.3-thiazole core could be considered as useful template for future development and further derivatization or modification to obtain more potent and selective antitumor agents.

Acknowledgements

Thanks are due to the NCI, Bethesda, MD, USA for performing the antitumor testing of the synthesized compounds.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.bmcl. 2012.08.095.

References and notes

- Ulusoy, N.; Kiraz, M.; Kucukbasmaci, O. Monatshefte fur chemie. 2002, 133, 1305.
- 2. Kaplancikli, Z. A.; Zitouni, G. T.; Revial, G.; Guven, K. Arch. pharm. Res. 2004, 27, 1081.
- Al-Saddi, M. S.; Faidallah, H. M.; Rostom, S. A. F. Arch. Pharm. Chem. Life Sci. 2008, 341, 424.

- Karpov, K. A.; Nazarenko, A. V.; Pekarevskii, B. V.; Potekhin, V. M. Russ. J. Appl. chem. 2001, 74, 998.
- 5. Baselt, T.; Rehse, K. Arch. der pharmazie. 2008, 24, 645.
- Karade, H. N.; Acharya, B. N.; Manisha, S.; Kaushik, M. P. Med. Chem. Res. 2008, 17, 19
- 7. Hurley, L. H. Nat. Rev. Cancer 2002, 2, 188.
- 8. Cai, X.; Gray, P. J., Jr.; Von Hoff, D. D. Cancer Treat. Rev. 2009, 35, 37.
- 9. Bailly, C.; Kénani, A.; Waring, M. J. Nucleic Acids Res. 1997, 25, 1516.
- 10. Yamamoto, K.; Kawanishi, S. Biochem. Biophys. Res. Commun. 1992, 183, 292.
- Ahn, J. H.; Kim, S. J.; Park, W. S.; Cho, S. Y.; Ha, J. D.; Kim, S. S.; Kang, S. K.; Jeong, D. G.; Jung, S.-K.; Lee, S.-H.; Kim, H. M.; Park, S. K.; Lee, K. H.; Lee, C. W.; Ryu, S. E.; Choi, J.-K. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 2996.
- Park, H.; Jung, S.-K.; Jeong, D. G.; Ryu, S. E.; Kim, S. J. Bioorg. Med. Chem. Lett. 2008, 18, 2250.
- Geronikaki, A.; Eleftheriou, P.; Vicini, P.; Alam, I.; Dixit, A.; Saxena, A. K. J. Med. Chem. 2008, 51, 5221.
- 14. Cutshall, N. S.; O'Day, C.; Prezhdo, M. Bioorg. Med. Chem. Lett. 2005, 15, 3374.
- Carter, P. H.; Scherle, P. A.; Muckelbauer, J. A.; Voss, M. E.; Liu, R.-Q.; Thompson, L. A.; Tebben, A. J.; Solomon, K. A.; Lo, Y. C.; Li, Z.; Strzemienski, P.; Yang, G.; Falahatpisheh, N.; Xu, M.; Wu, Z.; Farrow, N. A.; Ramnarayan, K.; Wang, J.; Rideout, D.; Yalamoori, V.; Domaille, P.; Underwood, D. J.; Trzaskos, J. M.; Friedman, S. M.; Newton, R. C.; Decicco, C. P. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 11879
- Degterev, A.; Lugovskoy, A.; Cardone, M.; Mulley, B.; Wagner, G.; Mitchison, T.; Yuan, I. Nat. Cell Biol. 2001, 3, 173.
- Dayam, R.; Aiello, F.; Deng, J.; Wu, Y.; Garofalo, A.; Chen, X.; Neamati, N. J. Med. Chem. 2006, 49, 4526.
- Zheng, W.; Degterev, A.; Hsu, E.; Yuan, J.; Yuan, C. Bioorg. Med. Chem. Lett. 2008, 18, 4932.
- Kok, S. H. L.; Gambari, R.; Chui, C. H.; Yuen, M. C. W.; Lin, E.; Wong, R. S. M.; Lau, F. Y.; Cheng, G. Y. M.; Lam, W. S.; Chan, S. H.; Lam, K. H.; Cheng, C. H.; Lai, P. B. S.; Yu, M. W. Y.; Cheung, F.; Tang, J. C. O.; Chan, A. S. C. *Bioorg. Med. Chem.* 2008, 16: 3626.
- Wang, X.; Sarris, K.; Kage, K.; Zhang, D.; Brown, S. P.; Kolasa, T.; Surowy, C.; El Kouhen, O. F.; Muchmore, S. W.; Brioni, J. D.; Stewart, A. O. J. Med. Chem. 2009, 52, 170.
- Song, E. Y.; Kaur, N.; Park, M.-Y.; Jin, Y.; Lee, K.; Kim, G.; Lee, K. Y.; Yang, J. S.;
 Shin, J. H.; Nam, K.-Y.; No, K. T.; Han, G. Eur. J. Med. Chem. 2008, 43, 1519.
- Zheng, C.-H.; Zhou, Y.-J.; Zhu, J.; Ji, H.-T.; Chen, J.; Li, Y.-W.; Sheng, C.-Q.; Lu, J.-G.; Jiang, J.-H.; Tang, H.; Song, Y.-L. Bioorg. Med. Chem. 2007, 15, 6407.
- 23. Chen, L.; Pankiewicz, K. W. Curr. Opin. Drug Discov. Devel. 2007, 10, 403.
- Popsavin, M.; Spaić, S.; Svircev, M.; Kojić, V.; Bogdanović, G.; Popsavin, V. Bioorg. Med. Chem. Lett. 2007, 1, 4123.
- Foy, W. O.; Lemka, T. L.; Williams, D. A. Principles of medicinal chemistry, 5th Edition; Williams and Wilkins: Media PA, USA, 2008.
- Wolter, F. E.; Molinari, L.; Socher, E. R.; Schneider, K.; Nicholson, G.; Beil, W.; Seitz, O.; Süssmuth, R. D. Bioorg. Med. Chem. Lett. 2009, 15, 3811.
- Silvermann, R. B. The organic chemistry of drug design and drug action; Academic Press: London, 1992. p 263.
- 28. Nelson, S. M.; Ferguson, L. R.; Denny, W. A. Mutat. Res. 2007, 1(623), 24.
- Plouvier, B.; Houssin, R.; Helbecque, N.; Colson, P.; Houssier, C.; Hénichart, J. P.; Bailly, C. Anticancer Drug Des. 1995, 10, 155.
- Delgado, J. N.; Remers, W. A. Textbook of organic medicinal and pharmaceutical chemistry, 10th Edition; Lippincott JB Co: PA, USA, 1998.
- Abraham, A. T.; Lin, J. J.; Newton, D. L.; Rybak, S.; Hecht, S. M. Chem. Biol. 2003, 10, 45.
- 10, 45.
 32. Da Rocha, A. B.; Lopes, R. M.; Schwartsmann, G. Curr. Opin. Pharmacol. **2001**, 1, 364.
- 33. Schnur, R. C.; Gallaschun, R. J.; Singleton, D. H. J. Med. Chem. **1975**, 1991, 34.
- Kumar, Y.; Green, R.; Barysko, K. Z.; Wise, D. S.; Wotring, L. L.; Townsend, L. B. J. Med. Chem. 1993, 36, 3843.
- 35. El-Subbagh, H. I.; El-Naggar, W. A.; Badria, F. A. Med. Chem. Res. **1994**, 3, 503.
- 36. El-Subbagh, H. I.; Al-Obaid, A. M. Eur. J. Med. Chem. 1996, 31, 1017.
- El-Subbagh, H. I.; Abadi, A. H.; Lehmann, J. Arch. Pharm. Pharm. Med. Chem. 1999, 332, 137.
- El-Subbagh, H. I.; Al-Khawad, I. E.; El-Bendary, E. R.; Al-Obaid, A. M. Saudi Pharm. J. 2001, 9, 14.
- Al-Omary, F. A.; Hassan, G. S.; El-Messery, S. M.; El-Subbagh, H. I. Eur. J. Med. Chem 2012 47 65
- El-Messery, S. M.; Hassan, G. S.; Al-Omary, F. A.; El-Subbagh, H. I. Eur. J. Med. Chem. 2012, 54, 615.
- 41. Grever, M. R.; Schepartz, S. A.; Chabner, B. A. Semin. Oncol. 1992, 19, 622.
- 42. Monks, A.; Scudiero, D.; Skehan, P. J. Natl Cancer Inst. 1991, 83, 757.
- 43. Boyd, M. R.; Paull, K. D. Drug Dev. Res. 1995, 34, 91.
- 44. Bhargava, P. N.; Hulganram, P.; Simgh, K. I. J. Indian Chem. Soc. 1962, 39, 396.