Name:

Show all work clearly and in order. Please box your answers. 10 minutes.

1. Find the area of the region bounded by $y = x^2$ and $y = 2 - x^2$.

points of interaction: $x^2 = 2 - x^2$

$$2x^{2} = 2$$

$$x^{2} = 1$$

$$x = \pm \sqrt{1} = \pm 1$$

which function is above the other?

at
$$x=0$$
: $(0)^2 = 0$
 $z=(0)^2 = 2$ so $z=x$ is above x^2
on $[-1,1]$

Integrate:
$$\int_{-1}^{1} [(2-x^2)-x^2] dx = \int_{-1}^{1} [2-2x^2] dx$$

$$= 2 \int_{-1}^{1} (1 - x^2) dx = 2 \left[x - \frac{x^3}{3} \right]_{-1}^{1} = 2 \left(\left(1 - \frac{1^3}{3} \right) - \left((-1) - \frac{(-1)^3}{3} \right) \right) = \boxed{\frac{8}{3}}$$

2. Find the area of the region bounded by $x = y^2$, x = 1 and $0 \le y \le 2$.

SOLUTION 1: (Integration with respect to y):

$$A = \int_{0}^{1} (1 - y^{2}) dy + \int_{1}^{2} (y^{2} - 1) dy$$

$$= \left[y - \frac{y^{3}}{3} \right]_{0}^{1} + \left[\frac{y^{3}}{3} - y \right]_{1}^{2}$$

$$= \left(\left(1 - \frac{1}{3} \right) - 0 \right) + \left(\left(\frac{2^{3}}{3} - 2 \right) - \left(\frac{1}{3} - 1 \right) \right)$$

$$= \left[2 \right]$$

SOLUTION 2: (Integration with respect to X)

$$A = \int_{0}^{1} \sqrt{x} \, dx + \int_{1}^{4} (2 - \sqrt{x}) \, dx$$

$$= \left[\frac{x^{3/2}}{3/2} \right]_{0}^{4} + \left[2x - \frac{x^{3/2}}{3/2} \right]_{1}^{4}$$

$$= \left(\left(\frac{1}{3/2} - 0 \right) \right) + \left(\left(2 \cdot 4 - \frac{y^{3/2}}{3/2} \right) - \left(2 - \frac{1}{3/2} \right) \right)$$

$$= \left[2 \right]_{0}^{4}$$