4.9 Πολλαπλασιαστές Lagrange

Θα ασχοληθούμε με το πρόβλημα εύρεσης μέγιστου/ελαχίστου συνάρτησης z=f(x,y) υπό την συνθήκη g(x,y)=0.

Παράδειγμα

Εύρεση ελάχιστου εμβαδού επιφάνειας κουτιού με δοσμένο όγκο.

Θεώρημα

Έστω f(x,y), g(x,y) συναρτήσεις με συνεχείς μερικές παραγώγους σε ανοικτό σύνολο που περιέχει την καμπύλη g(x,y)=0 έτσι ώστε $\nabla g\neq \vec{0}$ στο σύνολο αυτό. Αν η f έχει τοπικό ακρότατο σε σημείο (x_0,y_0) της καμπύλης g(x,y)=0 τότε,

$$\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$$

για κάποιο $\lambda \in \mathbb{R}$.

- Γεωμετρικά, το θεώρημα συνεπάγεται ότι τα $\nabla f(x_0, y_0)$, $\nabla g(x_0, y_0)$ είναι παράλληλα.
- Το λ λέγεται πολλαπλασιαστής Lagrange.

Απόδειξη

Να βρεθεί σε ποιά σημεία του κύκλου $x^2+y^2=1$ λαμβάνει μέγιστη κι ελάχιστη τιμή η συνάρτηση f(x,y)=xy.

Να βρεθεί σε ποιά σημεία του κύκλου $x^2+y^2=1$ λαμβάνει μέγιστη κι ελάχιστη τιμή η συνάρτηση f(x,y)=xy.

Να βρεθεί ορθογώνιο με δοσμένη περίμετρο p και μέγιστο εμβαδό.

Οι πολλαπλασιαστές Lagrange εφαρμόζονται και σε συναρτήσεις τριών μεταβλητών.

Θεώρημα

Έστω f(x,y,z), g(x,y,z) συναρτήσεις με συνεχείς μερικές παραγώγους σε ανοικτό σύνολο που περιέχει την επιφάνεια g(x,y,z)=0 έτσι ώστε $\nabla g\neq \vec{0}$ στο σύνολο αυτό. Αν η f έχει τοπικό ακρότατο σε σημείο (x_0,y_0,z_0) της επιφάνειας g(x,y,z)=0 τότε,

$$\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0)$$

για κάποιο $\lambda \in \mathbb{R}$.

Να βρεθούν τα σημεία της σφαίρας $x^2+y^2+z^2=36$ με μέγιστη κι ελάχιστη απόσταση από το σημείο (1,2,2).

Να βρεθούν τα σημεία της σφαίρας $x^2+y^2+z^2=36$ με μέγιστη κι ελάχιστη απόσταση από το σημείο (1,2,2).

Να βρεθούν οι διαστάσεις ορθογωνίου κουτιού χωρίς καπάκι με όγκο $32\,cm^3$ με ελάχιστο εμβαδόν επιφάνειας.

Να βρεθούν οι διαστάσεις ορθογωνίου κουτιού χωρίς καπάκι με όγκο $32\,cm^3$ με ελάχιστο εμβαδόν επιφάνειας.