

Chemistry 2: 2nd Quarter LE CHATELIER'S PRINCIPLE

Group members: <u>Euan Margret A. Cantalejo</u> Section: Photon

> **Zeth Rishley Llanto** Date Performed: December 4, 2024

Date Submitted: December 12, 2024 John Kelly Yrogirog

POST-LABORATORY ACTIVITY

Part I. Acidified Chromate Solution

1. Write the chemical reaction at equilibrium.

$$2 \operatorname{CrO_4^{2-}}_{(aq)} + 2 \operatorname{H}^+_{(aq)} \implies \operatorname{Cr_2O_7^{2-}}_{(aq)} + \operatorname{H_2O}_{(l)}$$

2. Observations upon addition of HNO3.

Upon adding HNO₃ to the chromate solution, the color changes from yellow to orange-red.

- 3. In which direction (forward/reverse) did this stress cause the equilibrium system to shift? The addition of HNO₃ causes the equilibrium to shift to the right (forward direction) to reduce the stress of increased H⁺ concentration.
- 4. Which ion caused the shift? Explain.

The H⁺ ion is responsible for the shift. Based on Le Chatelier's principle, the system adjusts to counteract the increase in H⁺ by shifting the equilibrium to the right, forming more Cr₂O₇²⁻.

5. Observations upon addition of NaOH.

Adding sodium hydroxide (NaOH) increases the concentration of OH⁻ ions, which react with H⁺ ions to form water.

6. In which direction (forward/reverse) did this stress cause the equilibrium system to shift?

The addition of NaOH causes the equilibrium to shift to the left (reverse direction) to increase the H⁺ concentration by dissociating more Cr₂O₇²⁻ back into CrO₄²⁻ and H⁺ ions.

7. Which ion caused the shift? Explain.

The OH⁻ ion causes the shift. By reacting with H⁺ ions and reducing their concentration, the equilibrium shifts to the left to produce more H⁺ ions and restore balance.

Part II. Aqueous Ammonia Solution

1. Write the chemical reaction at equilibrium.

$$NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

2. Observations upon addition of NH4CI.

Upon adding NH₄Cl to the aqueous ammonia solution, the initial pink color fades to colorless.

3. In which direction (forward/reverse) did this stress cause the equilibrium system to shift?

The addition of NH₄Cl increased NH₄⁺ ions, shifting the equilibrium in the reverse direction as per Le Chatelier's Principle.

4. Which ion caused the shift? Explain.

The NH₄⁺ ion causes the shift. By increasing the concentration of NH₄⁺, the equilibrium system responds by favoring the reverse reaction, thus decreasing the concentration of OH⁻ and making the solution basic.

Postal address: Talaytay, Argao, 6021 Cebu, Philippines : (032) 485 1000 Tel. no. E-mail : ocd@cvisc.pshs.edu.ph Website

: http://cvisc.pshs.edu.ph