-從古典密碼學到現代密碼學

資訊安全人才培育計畫

Hacking Weekend MyFirstCTF Training

現代落場快速入門篇

Ron Rivest, Adi Shamir, and Leonard Adleman

現代密碼

本次課程將提到紅色部分[推薦你閱讀此書]

第I部密碼

第1章 進入密碼的世界

第2章 密碼的歷史

第3章 對稱式密碼(共用金鑰密碼)

第4章 區塊加密的模式

第5章 公開金鑰密碼系統

第6章 混合型密碼系統

第Ⅱ部認證

第7章 單向雜湊函數(HASH)

第8章 訊息認證碼(MAC)

第9章 數位簽章

第10章 憑證

第Ⅲ部金鑰、亂數、應用技術

第11章 金鑰

第12章 亂數

第13章 PGP

第14章 SSL/TLS

第15章 密碼技術與現實社會

Modern Cipher@openssl 本課程將主要以openssl來示範現代密碼的加解密 OpenSSLhttps://zh.wikipedia.org/wiki/OpenSSL

首頁

分類索引

特色內容

新聞動態

近期變更

隨機條目

說明

說明

維基社群 方針與指引

70 KI 94 JE 71

互助客棧 知識問答

字詞轉換

IRC即時聊天

聯絡我們

關於維基百科

條目 討論 台灣正體▼ 汉 漢

△沒有登入 對話 貢獻 建立帳號 登入

中文维基百科條目協作計劃專了已建立,數如報名參與!

[開閉]

Q

OpenSSL [編輯]

维基百科,自由的百科全書

在電腦網路上,OpenSSL是一個開放原始碼的軟體函式庫套件,應用程式可以使用這個套件來進行安全通訊,避免竊聽,同時確認另一端連線者的身分。這個套件廣泛被應用在網際網路的網頁伺服器上。

其主要函式庫是以C語言所寫成,實作了基本的加密功能,實作了SSL與TLS協定。OpenSSL可以運行在絕大多數類Unix作業系統上(包括Solaris,Linux,Mac OS X與各種版本的開放原始碼BSD作業系統),OpenVMS與 Microsoft Windows。它也提供了一個移植版本,可以在IBMi(OS/400)上運作。

雖然此軟體是開放原始碼的,但其授權書條款與GPL有衝突之處,故GPL軟體使用OpenSSL時(如Wget)必須對OpenSSL給予例外。

目錄 [隱藏]

OpenSSL

搜尋維基百科

開發者 OpenSSL專案

穩定版本 1.1.0f (2017年5月25日,4個月前^[1]) [±]

作業系統 跨平台

類型 安全性加密函式庫

授權條款 OpenSSL授權條款(類Apache授

權)

網站 www.openssl.org@

原始碼庫 github.com/openssl/openssl/

Modern Cipher@openssl 本課程將主要以openssl來示範現代密碼的加解密

https://www.openssl.org/

https://github.com/openssl/openssl

OpenSSL is a robust, commercial-grade, and full-featured toolkit for the Transport Layer Security (TLS) and Secure Sockets Layer (SSL) protocols.

It is also a general-purpose cryptography library.


```
OVERVIEW
The OpenSSL toolkit includes:
libssl (with platform specific naming):
    Provides the client and server-side implementations for SSLv3 and TLS.
libcrypto (with platform specific naming):
    Provides general cryptographic and X.509 support needed by SSL/TLS but
    not logically part of it.
openss1:
    A command line tool that can be used for:
       Creation of key parameters
       Creation of X.509 certificates, CSRs and CRLs
       Calculation of message digests
       Encryption and decryption
       SSL/TLS client and server tests
       Handling of S/MIME signed or encrypted mail
       And more ...
```

現代密碼學:第一種分類

根據type of key的分類

https://en.wikipedia.org/wiki/Outline of cryptography

https://en.wikipedia.org/wiki/Cipher

對稱式密碼 symmetric key algorithms Private-key cryptography

加密與解密 都是使用同一把key 非對稱式密碼 asymmetric key algorithms Public-key cryptography

stream ciphers

Advanced Encryption Standard (Rijndael)

RSA - factoring(質因數分解)

El Gamal – discrete logarithm Elliptic curve cryptography – (discrete logarithm variant)

1

對稱式密碼 symmetric key algorithms Private-key cryptography

Xor cipher
DES
Triple DES
AES

對稱式密碼 symmetric key algorithms Private-key cryptography

使用XOR 邏輯運算建構簡易的密碼(容易被破)

Boolean exclusive-OR operation

A	В	A AND B	A OR B	A ⊕ B	(A ⊕ B) ⊕ B	(A ⊕ B) ⊕ A
0	0	0	0	0		
0	1	0	1	1		
1	0	0	1	1		
1	1	1	1	0		

NOT Instruction:

0-1

1→0

危險的對稱式密碼::XOR ciphers

python實作

bin(0b1111 ^ 0b1111)

a=**0b**010101110110100101101101101001 k=**0b**111100111111001111110011 bin(a^k)

$$a = 3$$
 $b = 4$

使用XOR運算時做兩整數互換

a = 4 b = 3

危險的對稱式密碼:: XOR cipher https://en.wikipedia.org/wiki/XOR cipher

"wiki" → (01010111 01101001 01101011 01101001 in 8-bit ASCII)

python實作

g XOR (i.e. using the same key for xor operation on the whole data) cipher is therefore sometimes used for hiding inf here no particular security is required.

作業解答 >>> a ^= b >>> b ^= a >>> a ^= b

資料加密標準

https://zh.wikipedia.org/wiki/資料加密標準

DES::Data Encryption Standard

DES對稱演算法的主要架構:

- ➤ DES是一種**對稱密鑰加** 密塊密碼(Block cipher) 演算法
- ▶ 1976年被**美國聯邦政 府國家標準局(NIST)**確 定為聯邦資料處理標 準 (FIPS),隨後在國際上廣泛流傳。

同學可以了解基本架構,更多細節可上大學再學習更多,可以先學習使用openssl來實作加解密!

資料加密標準 DES::Data Encryption Standard

- ▶ 一回合的輸入分成左右兩邊。
- ➤ 右邊直接輸出成「右」。
- ▶ 將右帶入回合函數f
- ▶ **回合函數f**使用**右**及**子金鑰**,計算 出隨機位元串。
- ➤ 將得到的位元串與左進行 XOR 運 算後,得到的結果成為加密後左。

資料加密標準 DES::Data Encryption Standard

Feistel 架構

回合之間左右交換

回合之間左右交換

最終回合左右不交換

右

輸入

子金鑰1

回合函數

輸出

把 1回合的 Feistel 網路輸出,再次放入相同子金鑰的 Feistel 網路中,不論回合函數 f是哪種函數,都會正確恢復原狀

回合

三重DES(Triple-DES)

https://zh.wikipedia.org/wiki/三重資料加密演算法

三重資料加密演算法 |Triple Data Encryption Algorithm |TDEA Triple DEA|3DES|Triple DES 是一種對稱密鑰加密塊密碼

對每個資料塊應用三次資料加密 標準(DES)演算法。

由於電腦運算能力的增強,原版 DES密碼的金鑰長度變得容易被 暴力破解

3DES是設計用來提供一種相對簡單的方法,通過增加DES的金鑰長度來避免類似的攻擊,而不是設計一種全新的塊密碼演算法。

三重DES(Triple-DES)

https://zh.wikipedia.org/wiki/三重資料加密演算法

三重DES(Triple-DES)

https://zh.wikipedia.org/wiki/三重資料加密演算法

DES/3DES加解密using openss

列出 OpenSSL 提供 的對稱式加解密演 算法	openssl enc –h 注意輸出顯示中的Cipher Types
使用 DES 加密	openssl des -in file -out file.des 執行後,OpenSSL 會提示使用者由鍵盤上輸入加密之密碼,如下: enter des-cbc encryption password: 需要注意的是,為了安全性,此時不管鍵盤輸入什麼,畫面上都不會出現任何字元,否則若旁人經過時,可能會故意或不經意的記下你的密碼。直到輸入完成後,按下鍵盤上的 "Enter" 鍵即可。 OpenSSL 會再一次要求使用者輸入一次相同的密碼 加密的檔案將以 file.des 的名稱存在於磁碟中。
使用 DES 解密	openssl des -d -in file.des -out file 執行後,OpenSSL 會提示使用者由鍵盤上輸入加密之密碼,如下: enter des-cbc encryption password: 需要注意的是,為了安全性,此時不管鍵盤輸入什麼,畫面上都不會出現任何字元,否則若旁人經過時,可能會故意或不經意的記下你的密碼。直到輸入完成後,按下鍵盤上的 "Enter" 鍵即可。此時若使用者輸入了正確的密碼,就會成功將 file.des 解密之檔案,以 file 的檔案名稱存在於磁碟上。

	使用 OpenSSL 的 Triple DES 加解密		
使用 Triple DES加密	openssl des3 -in file -out file.des3		
使用 Triple DES 解密	openssl des3 -d -in file.des3 -out file		

https://www.openfoundry.org/tech-column/8609

2

非對稱式密碼

asymmetric key algorithms

Public-key cryptography

RSA

ElGamal

https://en.wikipedia.org/wiki/Public-key_cryptography

elliptic curve techniques

非對稱式密碼 asymmetric key algorithms Public-key cryptography

https://en.wikipedia.org/wiki/Public-key_cryptography

非對稱式密碼 asymmetric key algorithms Public-key cryptography

RSA加密演算法-维基百科

Encryption

cipher = (message)e mod n

Decryption

message- (cipher)d mod n

x mod y means the remainder of x divided by y

(d,n)

https://www.slideshare.net/shafaan/public-key-cryptography-and-rsa

非對稱式密碼 asymmetric key algorithms Public-key cryptography

Key Generation

- Generate two large prime numbers, p and q
- 2. Let n = pq
- 3. Let $m = \phi(n) = (p-1)(q-1)$
- Choose a small number e, co prime to m, with GCD (φ(n), e)= 1; 1<e<φ(n)
- Find d, such that de mod φ(n) = 1
 Publish e and n as the public key.
 Keep d and m as the secret key.

RSA加密演算法-维基百科

https://www.slideshare.net/shafaan/public-key-cryptography-and-rsa

非對稱式密碼 asymmetric key algorithms Public-key cryptography

Key generation(產生key pair)

- (1)Select primes p=17, q=11
- (2)Compute n=pq=187
- (3)Compute $\phi(n)=(p-1)(q-1)=160$
- (4)Select e=7 \rightarrow GCD(7,160)=1
- (5) Compute d: $d=23 \rightarrow 7*23 \mod 160=1$

(use the extended Euclid's algorithm)

公鑰pub={e,n}={7,187}

私鑰pri={d,n}={23,187}

明文M=88

加密(Encrypt): 88^7mod 187

88^7mod 187 = 11(密文C)

解密Decrypt C=11: 11^23mod 187

M=11^23 mod 187=88

Key Generation

- Generate two large prime numbers, p and q
- 2. Let n = pq
- 3. Let $m = \phi(n) = (p-1)(q-1)$
- Choose a small number e, co prime to m, with GCD (φ(n), e)= 1; 1<e<φ(n)
- Find d, such that de mod φ(n) = 1
 Publish e and n as the public key.
 Keep d and m as the secret key.

Encryption

cipher = (message) mod n

Decryption

message- (cipher)d mod n

不同的非對稱式密碼各有其安全性基礎...... RSA非對稱式密碼的安全::質因數分解[15=5*3]

http://www.ruanyifeng.com/blog/2013/07/rsa_algorithm_part_two.html

RSA加解密using openss

openssl genrsa -out private.pem

預設會產生長度為 512 bit 的私鑰

openssl genrsa -out private.pem 1024

產生 1024 bit 長度的私鑰

- > 愈長的私鑰被破解的機率愈低
- ▶ 但使用加密與解密的時間也會愈長

使用 RSA 私鑰 產生相對應的 公鑰	openssl rsa -in private.pem -out public.pem -outform PEM —pubout -out" 參數指定產生的公鑰檔案名稱 "-outform" 參數指定公鑰的輸出格式 "-pubout" 參數結尾 執行後,OpenSSL 會產生 public.pem 的檔案在磁碟中
使用公鑰 加密檔案	Openssi rsauti -encrypt -inkey public.pem -pubin -in file -out file.rsa "-inkey" 參數指定密鑰檔案,"-pubin" 參數將公鑰產生於加密檔案中, "-in" 參數指定欲加密的檔案,以及 "-out" 參數指定加密後的檔案名稱 執行後,OpenSSL 會產生 file.rsa 的檔案在磁碟中。 RSA 非對稱式加解密演算法因為先天的限制,無法加密過大的檔案
使用 私鑰解密檔案	openssl rsautl -decrypt -inkey private.pem -in file.rsa -out file