CENG 280

- DFA
- DFA semanttics

An FSA

- has a finite number of states (fixed internal memory)
- has a reading head
- reads symbols from input tape

An FSA

- has a finite number of states (fixed internal memory)
- has a reading head
- reads symbols from input tape

FSA working principle

- a- starts from the leftmost position
 - 1- reads a symbol
 - 2- updates the internal state according to the input read and the current state,
 - 3- moves reading head one position to the right
- b- repeats steps 1-3 until the end of the input string is reached
- c- accepts or rejects the input

Definition (Deterministic finite state automaton)

Deterministic finite state automaton is a quintuple $M = (K, \Sigma, \delta, s, F)$, where

- K is a finite set of states,
- Σ is an alphabet,
- $s \in K$ is the initial state,
- $F \subseteq K$ is the set of final states, and
- $\delta: K \times \Sigma \to K$ is the transition function.

Definition (Deterministic finite state automaton)

Deterministic finite state automaton is a quintuple $M = (K, \Sigma, \delta, s, F)$, where

- K is a finite set of states,
- Σ is an alphabet,
- $s \in K$ is the initial state,
- $F \subseteq K$ is the set of final states, and
- $\delta: K \times \Sigma \to K$ is the transition function.

 $\delta(q,\sigma)$ is the state that the machine transitions to when it reads σ at state q.

Definition (Deterministic finite state automaton)

Deterministic finite state automaton is a quintuple $M = (K, \Sigma, \delta, s, F)$, where

- K is a finite set of states,
- Σ is an alphabet,
- $s \in K$ is the initial state,
- $F \subseteq K$ is the set of final states, and
- $\delta: K \times \Sigma \to K$ is the transition function.

 $\delta(q,\sigma)$ is the state that the machine transitions to when it reads σ at state q.

Example

Consider languages $L_1 = \{w \in \{a, b\}^* \mid w \text{ has even number of b'} s\}$, $L_2 = \{w \in \{a, b\}^* \mid w \text{ includes } aa \text{ as a substring.}\}$.

$$M = (K, \Sigma, \delta, s, F)$$

$$M = (K, \Sigma, \delta, s, F)$$

• The **configuration** of the machine is the current state and the unread part of the input string, i.e., a configuration is an element of $K \times \Sigma^*$.

$$M = (K, \Sigma, \delta, s, F)$$

- The **configuration** of the machine is the current state and the unread part of the input string, i.e., a configuration is an element of $K \times \Sigma^*$.
- The binary \vdash_M (yields) relation holds between two configurations of M if and only if the machine can pass from one configuration to another one as a result of a single move.

$$M = (K, \Sigma, \delta, s, F)$$

- The **configuration** of the machine is the current state and the unread part of the input string, i.e., a configuration is an element of $K \times \Sigma^*$.
- The binary ⊢_M (yields) relation holds between two configurations of M if and only if the machine can pass from one configuration to another one as a result of a single move.
- Let (q, w) and (q', w') be two configurations of M. Then $(q, w) \vdash_M (q', w')$ if and only if w = aw' for some $a \in \Sigma$ and $q' = \delta(q, a)$.

$$M = (K, \Sigma, \delta, s, F)$$

- The **configuration** of the machine is the current state and the unread part of the input string, i.e., a configuration is an element of $K \times \Sigma^*$.
- The binary ⊢_M (yields) relation holds between two configurations of M if and only if the machine can pass from one configuration to another one as a result of a single move.
- Let (q, w) and (q', w') be two configurations of M. Then $(q, w) \vdash_M (q', w')$ if and only if w = aw' for some $a \in \Sigma$ and $q' = \delta(q, a)$.
- $(q, w) \vdash_M (q', w')$ reads (q, w) yields (q', w') in one step.

$$M = (K, \Sigma, \delta, s, F)$$

- The **configuration** of the machine is the current state and the unread part of the input string, i.e., a configuration is an element of $K \times \Sigma^*$.
- The binary ⊢_M (yields) relation holds between two configurations of M if and only if the machine can pass from one configuration to another one as a result of a single move.
- Let (q, w) and (q', w') be two configurations of M. Then $(q, w) \vdash_M (q', w')$ if and only if w = aw' for some $a \in \Sigma$ and $q' = \delta(q, a)$.
- $(q, w) \vdash_M (q', w')$ reads (q, w) yields (q', w') in one step.
- Note that \vdash_M is a function from $K \times \Sigma^+$ to $K \times \Sigma^*$, hence, for every configuration except (q, e) there exists a uniquely determined next configuration.

$$M = (K, \Sigma, \delta, s, F)$$

 $(q,w)dash_M(q',w')$ if and only if w=aw' for some $a\in\Sigma$ and $q'=\delta(q,a)$

$$M = (K, \Sigma, \delta, s, F)$$

 $(q,w)dash_M(q',w')$ if and only if w=aw' for some $a\in\Sigma$ and $q'=\delta(q,a)$

• \vdash_M^* is the **reflexive transitive closure** of \vdash_M .

$$M = (K, \Sigma, \delta, s, F)$$

 $(q,w) \vdash_{M} (q',w')$ if and only if w = aw' for some $a \in \Sigma$ and $q' = \delta(q,a)$

- \vdash_M^* is the **reflexive transitive closure** of \vdash_M .
- $(q, w) \vdash_{M}^{\star} (q', w')$ reads (q, w) yields (q', w').

$$M = (K, \Sigma, \delta, s, F)$$

 $(q,w) \vdash_M (q',w')$ if and only if w = aw' for some $a \in \Sigma$ and $q' = \delta(q,a)$

- \vdash_M^* is the **reflexive transitive closure** of \vdash_M .
- $(q, w) \vdash_{M}^{\star} (q', w')$ reads (q, w) yields (q', w').
- A string $w \in \Sigma^*$ is **accepted** by M if and only if $(s, w) \vdash_M^* (f, e)$ for some $f \in F$.

$$M = (K, \Sigma, \delta, s, F)$$

 $(q,w)\vdash_M (q',w')$ if and only if w=aw' for some $a\in \Sigma$ and $q'=\delta(q,a)$

- \vdash_M^* is the **reflexive transitive closure** of \vdash_M .
- $(q, w) \vdash_{M}^{\star} (q', w')$ reads (q, w) yields (q', w').
- A string $w \in \Sigma^*$ is **accepted** by M if and only if $(s, w) \vdash_M^* (f, e)$ for some $f \in F$.
- The **language** of M, L(M), is the set of strings accepted by M.

$$M = (K, \Sigma, \delta, s, F)$$

 $(q,w) \vdash_M (q',w')$ if and only if w = aw' for some $a \in \Sigma$ and $q' = \delta(q,a)$

- \vdash_M^* is the **reflexive transitive closure** of \vdash_M .
- $(q, w) \vdash_{M}^{\star} (q', w')$ reads (q, w) yields (q', w').
- A string $w \in \Sigma^*$ is **accepted** by M if and only if $(s, w) \vdash_M^* (f, e)$ for some $f \in F$.
- The **language** of M, L(M), is the set of strings accepted by M.
- In tabular representation, the transition function is shown with a table.

$$M = (K, \Sigma, \delta, s, F)$$

 $(q,w)\vdash_M (q',w')$ if and only if w=aw' for some $a\in \Sigma$ and $q'=\delta(q,a)$

- \vdash_M^* is the **reflexive transitive closure** of \vdash_M .
- $(q, w) \vdash_{M}^{\star} (q', w')$ reads (q, w) yields (q', w').
- A string $w \in \Sigma^*$ is **accepted** by M if and only if $(s, w) \vdash_M^* (f, e)$ for some $f \in F$.
- The **language** of M, L(M), is the set of strings accepted by M.
- In tabular representation, the transition function is shown with a table.
- In state diagram representation (a directed graph), the states are shown with nodes and the edges represent the transitions. There is a transition from node q to q' labeled with a if $q' = \delta(q, a)$.

Example

Construct a DFA accepting

 $L = \{w \in \{a,b\}^* \mid \text{ each } a \text{ is immediately preceded by a } b\}$

Example

Construct a DFA accepting

 $L = \{w \in \{a, b\}^* \mid \text{ each } a \text{ is immediately preceded by a } b\}$

Example

Construct a DFA accepting

 $L = \{w \in \{a, b\}^* \mid w \text{ does not have } aa \text{ as a substring } \}$

Example

Construct a DFA accepting

 $L = \{w \in \{a,b\}^{\star} \mid \text{ each } a \text{ is immediately preceded by a } b\}$

Example

Construct a DFA accepting

 $L = \{w \in \{a,b\}^* \mid w \text{ does not have } aa \text{ as a substring } \}$

Example

Construct a DFA M with $L(M) = \emptyset$.

Example

Construct a DFA accepting

 $L = \{w \in \{a, b\}^* \mid \text{ each } a \text{ is immediately preceded by a } b\}$

Example

Construct a DFA accepting

 $L = \{w \in \{a, b\}^* \mid w \text{ does not have } aa \text{ as a substring } \}$

Example

Construct a DFA M with $L(M) = \emptyset$.

Example

When $e \in L(M)$?

Example

Construct M with $\Sigma = \{\}$ and $L(M) \neq \emptyset$

Example

Construct M with $\Sigma = \{\}$ and $L(M) \neq \emptyset$

Example

 $\Sigma = \{a, b\}$. $K = \{q_0, q_1\}$. How many different automata can one define?

Example

Construct M with $\Sigma = \{\}$ and $L(M) \neq \emptyset$

Example

 $\Sigma = \{a,b\}$. $K = \{q_0,q_1\}$. How many different automata can one define?

Example

Construct a DFA M such that

 $L(M) = \{w \in \{a, b\}^* \mid w$ contains even number of substrings $ba\}$