Assignment 4

Wenhe Li wl1508

Problem 1

• 1

∘ a

Naive Nayes:

$$P(Y=1|X_1,...,X_p) = rac{P(Y=1)\prod_{i=1}^p P(X_i|Y=1)}{\sum_{j=0}^1 P(Y=j)\prod_{i=1}^p P(X_i|Y=1)}$$

Logistic Regression:

$$P(Y=1|X_1,...,X_p) = rac{1}{1 + exp(w_0 + \sum_{i=1}^p w_i X_i)}$$

b

Naive Bayes

$$lnrac{P(Y=1)}{P(Y=0)} + \sum_{i=1}^{p} lnrac{P(x_i|Y=1)}{P(x_i|Y=0)}$$

Logistic Regression:

$$w_0 + \sum_{i=1}^p w_i X_i$$

0 0

Naive Bayes: $P(X_i|Y=y)$ and P(Y=y)

Logistic Regression: the weight w

o d

Naive Bayes:

We just count the total number of elements and the number of elements that fit certain condition. Logistic Regression:

We use Maximize Conditional likelihood estimation to train on the whole dataset and get the Parameters $W = \langle w0 \dots wn \rangle$

• 2

Assume, $P(X_j=1|Y=1)=\theta_j$ and $P(X_i=1|Y=0)=\theta_i$, we can rewrite the classification for naive bayes by:

$$lnrac{P(Y=1)}{P(Y=0)} + \sum_{n=1}^{p} lnrac{ heta_{j}^{n}(1- heta_{j})^{1-n}}{ heta_{i}^{n}(1- heta_{i})^{1-n}} \Rightarrow w_{0} + \sum_{n=1}^{p} n(lnrac{ heta_{j}}{ heta_{i}}) + \sum_{i=1}^{p} (1-n)(lnrac{1- heta_{j}}{1- heta_{i}}) \ \Rightarrow w_{0} + \sum_{n=1}^{p} w_{n}X_{n} - \sum_{n=1}^{p} m_{n}(X_{n}-1)$$

Problem 2

• 1

∘ a

$$\frac{e^x}{1+e^x} = \frac{1}{\frac{1}{e^x}+1} = \frac{1}{e^{-x}+1}$$

o b

$$rac{e^{x_c}}{\sum_{c'=1}^C e^{x_{c'}}} \Rightarrow rac{e^{x_c} * e^{\delta}}{e^{\delta} * \sum_{c'=1}^C e^{x_{c'}}} \Rightarrow rac{e^{x_c+\delta}}{\sum_{c'=1}^C e^{x_{c'}+\delta}}$$

о **С**

For y = C:

$$P(y=C|x,W) = rac{e^{w_C^Tx}}{\sum_{c'=1}^{C-1} e^{w_{c'}^Tx} + e^{w_C^Tx}} = rac{1}{1 + \sum_{c'=1}^{C-1} e^{w_{c'}^Tx - w_C^Tx}} = rac{1}{1 + \sum_{c'=1}^{C-1} e^{w_{c'}^Tx - w_C^Tx}}$$

Similiarly, for y = c

$$P(y=c|x,W) = \frac{e^{w_c^Tx}}{\sum_{c'=1}^{C-1} e^{w_{c'}^Tx} + e^{w_C^Tx}} = \frac{e^{(w_c^T - w_C^T)x}}{1 + \sum_{c'=1}^{C-1} e^{w_{c'}^Tx - w_C^Tx}} = \frac{e^{v_c^Tx}}{1 + \sum_{c'=1}^{C-1} e^{v_{c'}^Tx}}$$

o d

We can siginificantly reduce the value for $v_{c'}^T x$ to avoid an overflow while calculation.

• 2

∘ a

- 1 By using log, we can avoid underflow from happening, if the likelihood is extremly small.
- 2 Also, in the calculation, we might encounter exp, which could lead to a overflow. By using log, can avoid it as well.

b

By applying a log on our function, we does not change the monotonicity of the function. Therefore, we can still get the classification surface.

 $\circ \,$ a We define $\delta(Y^l=c)=1$ and $\delta(Y^l
eq c)=0$

$$l(W) = ln \prod_{l=1}^n P(Y^l|X_l, W) = \sum_{l=1}^n ln P(Y^l|X_l, W) = \sum_{l=1}^n \sum_{c=1}^C \delta(Y^l = c) (w_c^T x - ln \sum_{c'=1}^C e^{w_{c'}^t x})$$

o b

$$g_c(W) = \sum_{l=1}^n \delta(Y^l = c) (x - rac{x e^{w_c^T x}}{\sum_{c'=1}^C e^{w_{c'}^T x}})$$

Problem 3

Threshold	Epoch	Batch	Init weight scale	Learning Rate	Training Error	Validation Error
30	100	50	.5	.01	5%	10%
25	200	100	.5	.75	.05%	2.4%
30	200	100	.5	.75	.05%	3.5%
25	200	100	.5	.75	.05%	2.4%
25	200	125	.5	.85	.025%	3.6%
25	300	100	.5	.75	.025%	1.9%
25	300	300	.5	.75	.075%	2.7%
25	300	150	.5	.75	.025%	3.5%
25	300	125	.5	.5	.075%	2.8%
27	300	100	.1	.75	.0%	2.5%
27	300	100	.01	.75	.0%	2.4%
27	300	100	.01	.85	.025%	3.2%
27	300	300	.10	.85	.05%	2.7%
27	300	500	.01	.99	.05%	2.6%
27	300	250	.0005	.95	.05%	3.1%
27	300	150	.0001	.9	.0%	2.3%
27	250	100	.009	.95	.05%	2.3%