Supplementary Exercise

Finding Local Extrema

Find all local extrema, and saddle points of the given functions.

1.
$$f(x,y) = x^2 + xy + y^2 + 3x - 3y + 4$$

2.
$$f(x, y) = 4xy - x^4 - y^4$$

3.
$$f(x, y) = \frac{1}{x^2 + y^2 - 1}$$

4.
$$f(x, y) = y \sin x$$

5.
$$f(x, y) = \frac{1}{x} + xy + \frac{1}{y}$$

Finding Absolute Extrema

Find the absolute extrema of the functions on the given domain.

- 6. $f(x, y) = x^2 + y^2$ on the closed triangular plate bounded by the lines x = 0, y = 0, y + 2x = 2 in the first quadrant
- 7. $f(x, y) = 48xy 32x^3 24y^2$ on the rectangular plate $0 \le x \le 1, 0 \le y \le 1$

Lagrange Method

- 8. Find the points on the ellipse $x^2 + 2y^2 = 1$ where f(x, y) = xy has its extreme value.
- 9. Find he points on the curve $x^2y=2$ nearest the origin.
- 10. Find the radius and height of the open right circular cylinder of largest surface area that can be inscribed in a sphere of radius α . What is the largest surface area?
- 11. A closed rectangular box is to have volume $V cm^3$. The cost of the material used in the box is $a cents/cm^2$ for top and bottom, $b cents/cm^2$ for front and back, and $c cents/cm^2$ for the remaining sides. What dimensions minimize the total cost of materials?