5

Claims

1. A method to treat conditions characterized by enhanced p38-α activity and/or enhanced TGF-β activity, which method comprises administering to a subject in need of such treatment a compound of the formula:

$$Z_{1}^{6} \xrightarrow{Z^{5}} B \qquad Z^{3}$$

$$Z_{2}^{7} \xrightarrow{Z^{8}} N \qquad R^{3}$$

$$(1)$$

or the pharmaceutically acceptable salts thereof

wherein R³ is a noninterfering substituent;

each Z is CR² or N, wherein no more than two Z positions in ring A are N, and wherein two adjacent Z positions in ring A cannot be N;

each R² is independently a noninterfering substituent;

L is a linker;

n is 0 or 1; and

Ar' is the residue of a cyclic aliphatic, cyclic heteroaliphatic, aromatic or heteroaromatic moiety optionally substituted with 1-3 noninterfering substituents.

- 2. The method of claim 1 wherein said condition is a proinflammation response or a fibroproliferative response or both.
- 3. The method of claim 2 wherein said proinflammation response is multiple sclerosis, IBD, rheumatoid arthritis, rheumatoid spondylitis, osteoarthritis, gouty arthritis, other arthritic conditions, sepsis, septic shock, endotoxic shock, Gram-negative sepsis, toxic shock syndrome, asthma, adult respiratory distress syndrome, stroke, reperfusion injury. CNS injury, psoriasis, restenosis, cerebral malaria, chronic pulmonary inflammatory

disease, silicosis, pulmonary sarcosis, a bone resorption disease, graft-versus-host reaction, Crohn's Disease, ulcerative colitis, or pyresis.

- 4. The method of claim 2 wherein said fibroproliferative response is associated with a renal disorder, a vascular disorder, a fibrosis, an autoimmune disorder, an eye disease, excessive scarring, a neurological condition, myelofibrosis, tissue thickening, nasal polyposis, a polyp, liver cirrhosis, or osteoporosis.
- 5. The method of claim 4 wherein said renal disorder, is glomerulonephritis, diabetic nephropathy, renal interstitial fibrosis, renal fibrosis in transplant patients receiving cyclosporin, and HIV-associated nephropathy; and

wherein said vascular disorder is progressive systemic sclerosis, polymyositis, scleroderma, dermatomyositis, eosinophilic fascitis, morphea, or Raynaud's syndrome; and

wherein said fibrosis is associated with adult respiratory distress syndrome, idiopathic pulmonary fibrosis, interstitial pulmonary fibrosis, cardiac fibrosis, keloid formation, or hypertrophic scarring; and

wherein said autoimmune disorder is systemic lupus erythematosus, scleroderma, or rheumatoid arthritis; and

wherein said eye disease is retinal detachment, cataracts, or glaucoma; and wherein said neurological condition is CNS injury, Alzheimer's disease, or Parkinson's disease.

- 6. The method of claim 1 wherein R³ is a hydrocarbyl residue (1-20C) containing 0-5 heteroatoms selected from O, S and N.
- 7. The method of claim 6 wherein R³ is alkyl, aryl, arylalkyl, heteroalkyl, heteroaryl, or heteroarylalkyl, each unsubstituted or substituted with 1-3 substituents.

25.

10

15

- 8. The method of claim 7 wherein said substituents are independently selected from the group consisting of halo, OR, NR₂, SR, -SOR, -SO₂R, -OCOR, -NRCOR, -NRCOR, -NRCOR₂, -NRCOOR, -NRSO₂R, -OCONR₂, RCO, -COOR, -SO₃R, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or alkyl (1-4C) and with respect to any aryl or heteroaryl moiety, said group further including alkyl (1-6C).
- 9. The method of claim 1 wherein said substituents on substituted Ar' are independently selected from the group consisting of optionally substituted alkyl, alkenyl, alkynyl, aryl, alkylaryl, aroyl, N-aryl, NH-alkylaryl, NH-aroyl, halo, OR, NR₂, SR, -SOR, -SO₂R, -OCOR, -NRCOR, -NRCONR₂, -NRCOOR, -NRSOR, -NRSO₂R, -OCONR₂, RCO, -COOR, -SO₃R, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or alkyl (1-4C),

and wherein any aryl or aroyl groups on said substituents may be further substituted by alkyl, alkenyl, alkynyl, halo, OR, NR₂, SR, -SOR, -SO₂R, -OCOR, -NRCOR, -NRCONR₂, -NRCOOR, -NRSOR, -NRSO₂R, -OCONR₂, RCO, -COOR, -SO₃R, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or alkyl (1-4C).

- 20. The method of claim 9 wherein Ar' is phenyl, 2-, 3-, or 4-pyridyl, 2- or 4-pyrimidyl, indolyl, isoquinolyl, quinolyl, benzimidazolyl, benzotriazolyl, benzothiazolyl, benzofuranyl, pyridyl, thienyl, furyl, pyrrolyl, thiazolyl, oxazolyl, imidazolyl, or morpholinyl, all of which may optionally be substituted.
- 25. The method of claim 1 wherein each R² is independently a hydrocarbyl residue (1-20C) containing 0-5 heteroatoms selected from O, S and N.
 - 12. The method of claim 11 wherein each R² is independently H, alkyl, alkenyl, alkynyl, acyl or hetero-forms thereof or is aryl, arylalkyl, heteroalkyl, heteroaryl, or

heteroarylalkyl, each unsubstituted or substituted with 1-3 substituents selected independently from the group consisting of alkyl, alkenyl, alkynyl, aryl, alkylaryl, aroyl, N-aryl, NH-alkylaryl, NH-aroyl, halo, OR, NR₂, SR, -SOR, -SO₂R, -OCOR, -NRCOR, -NRCOR₂, -NRCOR₃, -NRSOR₄, -OCONR₂, RCO, -COOR, -SO₃R, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or alkyl (1-4C),

and wherein any aryl or aroyl groups on said substituents may be further substituted by alkyl, alkenyl, alkynyl, halo, OR, NR₂, SR, -SOR, -SO₂R, -OCOR, -NRCOR, -NRCONR₂, -NRCOOR, -NRSOR, -NRSO₂R, -OCONR₂, RCO, -COOR, -SO₃R, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or alkyl (1-4C), or

R₂ is selected from the group consisting of halo, OR, NR₂, SR, -SOR, -SO₂R, -OCOR, -NRCOR, -NRCONR₂, -NRCOOR, NRSOR, NRSO₂R, -OCONR₂, RCO, -COOR, -SO₃R, NRSOR, NRSO₂R, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or alkyl (1-4C).

15^{...}

20

10.

5.

- 13. The method of claim 11 wherein said substituents on R² are independently selected from the group consisting of R⁴, halo, OR⁴, NR⁴₂, SR⁴, -OOCR⁴, -NROCR⁴, -COOR⁴, R⁴CO, -CONR⁴₂, -SO₂NR⁴₂, CN, CF₃, and NO₂, wherein each R⁴ is independently H, or optionally substituted alkyl (1-6C), or optionally substituted arylalkyl (7-12C) and wherein two R⁴ or two substituents on said alkyl or arylalkyl taken together may form a fused aliphatic ring of 5-7 members.
- 14. The method of claim 1 wherein n is 0 or n is 1 and L is a bivalent residue that provides a distance of 2-8Å between ring B and Ar'.

25

15. The method of claim 14 wherein L is $S(CR_2^2)_m$, $-NR_1SO_2(CR_2^2)_1$, $SO_2(CR_2^2)_m$, $SO_2NR_1(CR_2^2)_1$, $NR_1CO(CR_2^2)_1$, $NR_2CO(CR_2^2)_1$, $O(CR_2^2)_2$, or $OCO(CR_2^2)_1$,

10

15

$$-N$$
 $(CR_2^2)_I$ Z $(CR_2^2)_I$

wherein Z is N or CH and wherein m is 0-4 and 1 is 0-3;

R¹ is H, alkyl or arylalkyl where the aryl moiety may be substituted by 1-3 substituents selected independently from the group consisting of alkyl, alkenyl, alkynyl, aryl, alkylaryl, aroyl, N-aryl, NH-alkylaryl, NH-aroyl, halo, OR, NR₂, SR, -SOR, -SO₂R, -OCOR, -NRCOR, -NRCONR₂, -NRCOOR, -NRSOR, -NRSO₂R, -OCONR₂, RCO, -COOR, -SO₃R, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or alkyl (1-4C);

and wherein any aryl or aroyl groups on said substituents may be further substituted by alkyl, alkenyl, alkynyl, halo, OR, NR₂, SR, -SOR, -SO₂R, -OCOR, -NRCOR, -NRCONR₂, -NRCOOR, -NRSOR, -NRSO₂R, -OCONR₂, RCO, -COOR, -SO₃R, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or alkyl (1-4C); and

R² is as defined in claim 12.

- 16. The method of claim 1 wherein the compound of formula (1) is selected from the group consisting of compounds 1-87 herein.
- 17. The method of claim 1 wherein the compound of formula (1) is selected from the group consisting of compounds shown in Figures 1A-1C herein.
 - 18. A pharmaceutical composition for treating conditions characterized by enhanced p38-α activity and/or enhanced TGF-β activity which composition comprises a therapeutically effective amount of a compound of the formula

$$Z_{1}^{6}$$

$$Z_{2}^{7}$$

$$Z_{1}^{8}$$

$$Z_{1}^{8}$$

$$Z_{1}^{8}$$

$$Z_{1}^{3}$$

$$Z_{1}^{3}$$

$$Z_{2}^{3}$$

$$Z_{3}$$

$$Z_{1}^{3}$$

$$Z_{1}^{3}$$

$$Z_{2}^{3}$$

$$Z_{3}^{4}$$

$$Z_{1}^{3}$$

$$Z_{2}^{3}$$

$$Z_{3}^{4}$$

$$Z_{1}^{3}$$

$$Z_{2}^{3}$$

$$Z_{3}^{4}$$

$$Z_{4}^{3}$$

$$Z_{4}^{3}$$

$$Z_{1}^{3}$$

$$Z_{2}^{3}$$

$$Z_{3}^{4}$$

$$Z_{4}^{3}$$

$$Z_{4}^{3}$$

$$Z_{5}^{4}$$

$$Z_{7}^{4}$$

$$Z_{8}^{4}$$

$$Z_{1}^{4}$$

$$Z_{2}^{4}$$

$$Z_{3}^{4}$$

$$Z_{4}^{4}$$

$$Z_{4}^{4}$$

$$Z_{5}^{4}$$

$$Z_{5}^{4}$$

$$Z_{7}^{4}$$

$$Z_{7}^{4}$$

$$Z_{8}^{4}$$

$$Z_{8}^{4$$

or the pharmaceutically acceptable salts thereof

wherein R³ is a noninterfering substituent;

each Z is CR² or N, wherein no more than two Z positions in ring A are N, and wherein two adjacent Z positions in ring A cannot be N;

each R² is independently a noninterfering substituent;

L is a linker;*

n is 0 or 1; and

Ar' is the residue of a cyclic aliphatic, cyclic heteroaliphatic, aromatic or heteroaromatic moiety optionally substituted with 1-3 noninterfering substituents in admixture with at least one pharmaceutically acceptable excipient.

- 19. The composition of claim 18 which further contains an additional therapeutic agent.
- 20. The composition of claim 19 wherein said additional therapeutic agent is a corticosteroid, a monoclonal antibody, or an inhibitor of cell division.
 - 21. A compound of the formula:

$$R^{1}N(CH_{2})_{n}-Ar$$

$$R^{2} \qquad \qquad N \qquad \qquad (1)$$

$$R^{3}$$

15·

5

10.

and the pharmaceutically acceptable salts thereof

wherein each R² is independently a noninterfering substituent; m is an integer of 0-4;

Z is CH;

R¹ is alkyl (1-6C) or arylalkyl optionally substituted on the aryl group with 1-3 substituents independently selected from alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, -SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C);

n is 0, 1 or 2; and

(a) Ar is phenyl, substituted with at least one group selected from the group consisting of optionally substituted alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C), or pyridyl, indolyl, or pyrimidyl, each optionally substituted with at least one group selected from the group consisting of optionally substituted alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C), and

R³ is a branched or cyclic alkyl group (5-7C) or is phenyl optionally substituted with 1-2 substituents which substituents are selected from the group consisting of alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, -SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); or

(b) Ar is phenyl, pyridyl, indolyl, or pyrimidyl, each optionally substituted with a group selected from the group consisting of optionally substituted alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); and

R³ is a branched or cyclic alkyl group (5-7C) or is phenyl substituted with 1-2 substituents which substituents are selected from the group consisting of alkyl (1-6C), halo, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, -SO₂NR₂, CN, and CF₃, wherein each R is independently H or lower alkyl (1-4C); or

25

10

15

20

25

(c) Ar is phenyl substituted with a group selected from the group consisting of optionally substituted NR₂, SR, -NROCR, RCO, -CONR₂, SO₂NR₂, CN, and CF₃, wherein each R is independently H or lower alkyl (1-4C); or pyridyl substituted with a group selected from the group consisting of optionally substituted alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); or indolyl or pyrimidyl, each optionally substituted with a group selected from the group consisting of optionally substituted alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); and

R³ is a branched or cyclic alkyl group (5-7C) or is phenyl optionally substituted with 1-2 substituents which substituents are selected from the group consisting of alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, -SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); or

(d) Ar is phenyl, pyridyl, indolyl, or pyrimidyl, each optionally substituted with a group selected from the group consisting of optionally substituted alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); and

R³ is a branched or cyclic alkyl group (5-7C) or is phenyl substituted with 1-2 substituents which substituents are selected from the group consisting of alkyl (1-6C), halo, OR, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, -SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C).

- 22. The compound of claim 1 which is selected from the group consisting of 2-phenyl-4-(4-pyridylamino)-quinazoline;
- 2-(2-bromophenyl)-4-(4-pyridylamino)-quinazoline;
- 2-(2-chlorophenyl)-4-(4-pyridylamino)-quinazoline;
- 2-(2-fluorophenyl)-4-(4-pyridylamino)-quinazoline;
- 2-(2-methylphenyl)-4-(4-pyridylamino)-quinazoline;
- 2-(4-fluorophenyl)-4-(4-pyridylamino)-quinazoline;

- 2-(3-methoxyanilyl)-4-(4-pyridylamino)-quinazoline,
- 2-(2,6-dichlorophenyl)-4-(4-pyridylamino)-quinazoline;
- 2-(2,6-dibromophenyl)-4-(4-pyridylamino)-quinazoline;
- 2-(2,6-difluorophenyl)-4-(4-pyridylamino)-quinazoline;
- 2-(2-fluorophenyl)-4-(4-pyridylamino)-6, 7-dimethoxyquinazoline;
- 2-(4-fluorophenyl)-4-(4-pyridylamino)-6, 7-dimethoxyquinazoline;
- 2-(2-fluorophenyl)-4-(4-pyridylamino)-6-nitroquinazoline;
- 2-(2-fluorophenyl)-4-(4-pyridylamino -6-aminoquinazoline;
- 2-(2-fluorophenyl)-4-(4-pyridylamino)-7-aminoquinazoline;
- 2-(2-fluorophenyl)-4-(4-pyridylamino)-6-(3-methoxybenzylamino)-quinazoline;
- 2-(2-fluorophenyl)-4-(4-pyridylamino)-6-(4-methoxybenzylamino)-quinazoline;
- 2-(2-fluorophenyl)-4-(4-pyridylamino)-6-(2-isobutylamino)-quinazoline; and
- 2-(2-fluorophenyl)-4-(4-pyridylamino)-6-(4-methylmercaptobenzylamino)-quinazoline.