Institut Supérieur d'Informatique et de Mathématiques **Devoir Surveille** Classe: L1 Info A.U.: 2020/2021 Matière: Logique Formelle Durée: 1H 00 Enseignant: Sakka Rouis Taoufik Nombre Total de Pages: 3 Documents Autorisés: Non Nom et Prénom: **Exercice 1 : (2+2 p)** Question 1 : Dans chacun des cas ci-dessous dire si les affirmations sont des propositions ? A: "la présente affirmation est fausse" B: "2 plus 3 font 5" C: " π est compris entre 4 et 5" D:"tout nombre réel strictement négatif n'est pas un carré" **Question 2**: En notant p et q les affirmations suivantes : p = "Jean est fort en maths" q = "Jean est fort en chimie" Représenter les affirmations qui suivent sous forme symbolique, à l'aide des lettres p et q et des connecteurs \neg , \land , \lor , \rightarrow . A: "Jean n'est fort ni en maths ni en chimie" B: "Jean est fort en maths s'il est fort en chimie" C: "Jean est fort en maths ou il est à la fois fort en chimie et faible en maths" D :"Jean est fort en chimie et en maths ou il est fort en chimie et faible en maths" Exercice 2: (3 p) Soient A et B deux formes propositionnelles définies comme suit : $A = (p \land q) \rightarrow r$ $B = (p \to r) \land (q \to r)$ Vérifier si la forme A à pour conséquence la forme B ou non. В p q $p \rightarrow r$ $q \rightarrow r$ $p \wedge q$

Exercice 3:(3p)

Montrer que la formule suivante est ou non une tautologie ? Si non déduire une représentation en forme normale disjonctive (FND) équivalente.

$$(p \land q) \to ((q \lor r) \to (p \to r))$$

	1	ı	ı		I		T
p	q	r	$p \wedge q$	$q \vee r$	$p \rightarrow r$	$(q \lor r) \to (p \to r)$	$(p \land q) \to ((q \lor r) \to (p \to r))$

......

Exercice 4 : (8 P)

1/ Utiliser la méthode des arbres pour montrer que les formules A et B suivantes sont ou non des tautologies ?

 $A:(p\vee q) \leftrightarrow (\neg q \rightarrow p)$

B: $(p \land (\neg q)) \lor (p \land q)$

2/Déterminer, par la méthode des arbres, si la forme propositionnelle C a pour conséquence la forme propositionnelle D :

 $C: (p \vee q) \to r$

 $D:(p \mathop{\rightarrow} r) \lor (q \mathop{\rightarrow} r)$

Exercice 5:(4 P)

En utilisant les tableaux de Karnaugh, déterminer une formule en FND équivalente à la formule T représentée par le tableau suivant :

Т		a b					
		0 0	0 1	11	10		
	0 0	0	0	0	1		
c d	0 1	0	0	1	1		
Cu	11	1	1	1	1		
	10	1	0	0	1		