Mecanismos de QoS

Mecanismos de QoS

- Classificação: Qualquer mecanismo de QoS orientado à classe tem de suportar algum tipo de classificação
- Marcação: Utilizado para marcar os pacotes baseado na classificação, medição, ou ambos
- Gestão de Congestão: Cada interface deve ter um mecanismo de queuing para prioritizar a transmissão de pacotes
- Controlo de Congestão: Utilizado para descartar pacotes proactivamente para evitar congestão futura na rede
- Policing e Shaping: Utilizado para limitar um débito baseado numa medição (o tráfego em excesso pode ser descartado, marcado ou atrasado)
- Eficiência da ligação: Utilizado para melhorar a eficiência da largura de banda através de compressão, fragmentação e interleaving

Classificação

- Classificar é identificar e separar o tráfego em diferentes classes
- O tráfego pode ser classificado de várias formas: endereço IP fonte/destino, portos fonte/destino, protocolo, IP Precedence, DSCP, et cetera

Marcação

 A marcação, também conhecido por coloração, é a acção de marcar cada pacote como parte de uma classe de tráfego, de forma a que os pacotes pertencentes a essa mesma classe sejam rapidamente identificados em qualquer ponto da rede

Gestão da Congestão

- A gestão de congestão faz uso da marcação em cada pacote para determinar em que fila de espera (queue) o colocar
- A gestão de congestão faz uso de mecanismos de queuing sofisticados, como o WFQ e o LLQ, para garantir que os pacotes sensíveis a atraso e jitter são tratados de uma forma que se coadune com os seus requisitos

Controlo da Congestão

- O controlo de congestão pode levar a que sejam descartados pacotes aleatoriamente em determinadas queues, quando determinados limites configurados foram atingidos
- Ao descartar pacotes tentamos evitar bottlenecks na rede
- Tecnologias: Random Early Detection e Weighted Random Early Detection

Policing

 O policing descarta ou marca pacotes quando um limite pré-definido é atingido

Shaping

 O shaping faz queuing de pacotes quando um limite pré-definido é atingido

Compressão

 A compressão do cabeçalho pode reduzir drasticamente o overhead associado com o transporte de voz

Fragmentação e Interleaving

- Sem a fragmentação e interleaving, o tráfego sensível a atrasos pode ser atrasado por pacotes de grande dimensão que não carecem de necessidades tão estritas
- A fragmentação de pacotes parte os pacotes grandes e coloca os pacotes sensíveis a atrasos entre estes fragmentos

Aplicar QoS nos interfaces

Marcação

Codificação DSCP

- Campo DiffServ: O octeto ToS no cabeçalho IPv4 ou o octeto Traffic Class no cabeçalho IPv6, quando interpretado de acordo com a definição fornecida pela RFC 2474
- DSCP: Os primeiros 6 bits do campo DiffServ, utilizado para seleccionar um PHB (método de queuing e encaminhamento)

Co-existência: IP Precedence e DSCP

- O DiffServ assegura backward-compatibility com um esquema de IP Precedence implementado numa rede
- O IP Precedence define um valor de DSCP na forma xxx000. A estes valores de DSCP chamamos Class-Selector Code Points
- Pacotes com DSCP = 11000 (equivalente a IP Precedence = 110) têm tratamento preferencial (scheduling, queuing, et cetera) a pacotes com DSCP = 10000 (equivalente a IP Precedence = 100)

Classificação

- Componente do QoS que reconhece e faz a distinção entre diferentes diferentes fluxos de tráfego
- Funcionalidade base de todas as políticas de QoS: sem a classificação todos os pacotes são tratados da mesma forma

Marcação

- Funcionalidade do QoS que "colora" os pacotes (ou as tramas) de forma a poderem ser distinguidos entre si pelas outras funcionalidades de QoS
- Marcações comummente utilizadas: CoS (802.1p), DSCP e IP Precedence

L2 – Ethernet 802.1Q Class of Service

- Especificação IEEE
- Campo de prioridade 802.1p, também chamado CoS
- Suporta até 8 Classes de Serviço
- Focado no suporte de QoS em LANs e portos 802.1Q
- Preservado na LAN e não end-to-end

CoS	Application				
7	Reserved				
6	Reserved				
5	Voice Bearer				
4	Videoconferencing				
3	Call-Signaling				
2	High-Priority Data				
1	Medium-Priority Data				
0	Best-Effort Data				

L2 – Frame Relay / ATM QoS

Frame Relay Frame

- Os equipamentos DTE frame-relay podem marcar o bit DE (Discard Eligibility) para, caso exista congestão, preterir estes pacotes quando comparando com os pacotes com DE = 0
- É preservado na rede frame-relay

ATM UNI cell

- O bit do CLP (Cell Loss Priority) indica que uma célula deve ser descartada se encontra comgestão na rede
- É preservado na rede ATM

L2 – MPLS Experimental Bits

- O MPLS utiliza um cabeçalho de 32 bits que é introduzido entre os cabeçalhos L2 e L3
- Suporta até 8 classes
- O IP Precedence ou DSCP não são directamente visíveis aos routers que fazem o switching de labels MPLS
- Por defeito, o Cisco IOS copia os 3 bits mais significativos L3 para os EXP bits
- É preservado na rede MPLS

EXP	Application (DSCP)				
7	Reserved CS7				
6	Reserved CS6				
5	EF				
4	AF4x				
3	AF3x				
2	AF2x				
1	AF1x				
0	Default 8				

L3 – IP Precedence e DSCP

- IP Precedence: Os 3 bits mais singificativos do ToS são designados IP Precedence os outros bits não são utilizados
- DiffServ: Os 6 bits mais singificativos do ToS são designados DSCP os 2 bits restantes são utilizados para flow-control
- O DSCP é backward compatible com o IP Precedence

Mapear o CoS com L3 QoS

Classe de Tráfego QoS

- Uma classe de tráfego é um grupo lógico de pacotes IP que devem receber o mesmo tipo de tratamento do ponto de vista de QoS
- Uma Classe de Tráfego pode ser, por exemplo:
 - Utilizador único: Endereço MAC, endereço IP
 - Departamento, Cliente: Subnet, interface
 - Aplicações: Portos, URL

Como pode uma Classe de Tráfego ser utilizada para implementar uma política de QoS?

Principios Gerais das Políticas de QoS

- Identificar as aplicações através dos seus requisitos de rede mais elementares
- Evitar o over-engineering. Não utilizar mais de 11 classes de tráfego, nem menos de 4/5
- Não assignar mais de 3 aplicações para as classes Mission-Critical ou Transactional
- Utilizar políticas pró-activas de QoS
- Procurar obter validação Executiva do ranking das aplicações antes da implementação das políticas de QoS na rede

Modelo de Expansão das Classes

Exemplo de Classes de Tráfego L2/L3

Application	L3 Classification			L2
Application	IPP	PHB	DSCP	CoS
Routing	6	CS6	48	6
Voice	5	EF	46	5
Video Conferencing	4	AF41	34	4
Streaming Video	4	CS4	32	4
Mission-Critical Data	3	AF31*	26	3
Call Signaling	3	C\$3*	24	3
Transactional Data	2	AF21	18	2
Network Management	2	CS2	16	2
Bulk Data	1	AF11	10	1
Scavenger	1	CS1	8	1
Best Effort	0	0	0	0