

CRICOS PROVIDER 00123M

School of Computer Science

COMP SCI 1103/2103 Algorithm Design & Data Structure Complexity – Other notations than Big-O

adelaide.edu.au seek LIGHT

Overview

- Summary on Linked lists
- Continue with the topic of complexity
 - More formal definitions and notations!

Summary on Linked lists

- We learned situations where array is not a good choice for representing lists
- We defined linked lists and learned a few methods for doing operations on linked lists

Arrays:

- Add at the end if enough space: O(1)
- Due to fixed size, adding a new item at the end may take O(n)
- Direct access to items by index number :O(1)
- Shifts data when an item is added in the middle of the list or deleted from it: O(n)

• Linked Lists:

- Dynamically grows or shrinks: add and remove take O(1)
- No direct access by index number; Links should be followed: O(n)
- Adding and removing items from the middle of the list include search: O(n), but not as costly as shifting the data

Review on Big O

- Big O is an upper bound on complexity
- How to find out if f(n) is in O(g(n))
 - Formal definition
 - $\lim f(n)/g(n) < \infty$
 - There exists positive c and n_o such that:
 - $f(n) \le c*g(n) \text{ for all } n \ge n_0$
 - With some practice you will be able to tell this without much effort.
 But if we asked you for a proof, then go with the formal definition.
- Log
 - $\ \log n < \log^2 n < \log^3 n < < n^{0.001} < n^{0.01} < n^{0.1} < n < n \log n$
 - How about log n²?

Big Omega $[\Omega(g(n))]$

- $f(n) = \Omega(g(n))$ if there exist positive constants c and n_o such that f(n) >= c*g(n) when $n>= n_o$.
- Can we say if f(n) = O(g(n)) then $g(n) = \Omega(f(n))$?
- We represent lower bounds with Big Omega
- Examples:
 - $o.5*n = \Omega(n)$?
 - $n^2 = \Omega(n)$?
 - $-\log n = \Omega(n)$?

Big Theta $[\Theta(g(n))]$

- $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.
- This is the tight bound.
- Examples:
 - $-2n=\Theta(n)$?
 - $n \log n = \Theta(n)$?
 - $-\log n = \Theta(n)$?

General Rules

Some mathematical background is required for analyzing computational complexity

Rule 1. If
$$f_1(n) = O(g_1(n))$$
 and $f_2(n) = O(g_2(n))$, then

1.
$$f_1(n) + f_2(n) =$$

 $O(g_1(n)+g_2(n)) = O(\max(g_1(n),g_2(n)))$

2.
$$f_1(n) * f_2(n) =$$

 $O(g_1(n) * g_2(n)))$

Rule 2. If f(n) is a polynomial of degree k, then $f(n) = \Theta(n^k)$

Rule 3. if $f(n)=n^{(1/k)}$ then $f(n)=\Omega(\log n)$ for any constant k.

Little o [o(g(n))]

- f(n) = o(g(n)) if for *all* constants c there exists an n_o such that f(n) < c*g(n) when $n>n_o$.
 - In other words, $\lim (f(n)/g(n))=0$ when n goes towards infinity
- Example:
 - n = o(n)?
 - $n = o(n^2)$?
- If f(n) = o(g(n)) as $n \rightarrow infinity$, then g(n) is growing much much faster than f(n).
 - The growth of f(n) is nothing when you compare it to g(n)
- Can we say if f(n)=o(g(n)) then f(n)=O(g(n))?
- Don't confuse big-Oh and little-oh
 - Big-Oh allows the possibility of the same growth rate.

Summary on these notations

- Big-Oh: f(n)=O(g(n))
 - Means f(n) is bounded ABOVE by g(n)
- Big Omega (Ω) : $f(n) = \Omega(g(n))$
 - Means f(n) is bounded BELOW by g(n)
- Big Theta (Θ): f(n)=O(g(n)), $f(n)=\Omega(g(n))$
 - Means f(n) is bounded above and below by g(n).
 - g(n) is a tight upper and lower bound. It's hard to find.
 - Polynomials with degree k: $O(n^k)$ and $\Omega(n^k) => \Theta(n^k)$
- Little o: f(n)=o(g(n))
 - Gives an upper bound
 - Stronger than Big O (g(n) grows much faster than f(n))
 - Does not allow the possibility of the same growth rate

