1a Paper 2 Structures - Examples paper 3 - Deflection: Crib

FBP:
$$V_{A}=450 \text{ N}$$
 Cut where dip is known: Take noments @ cut:

HATA $\frac{3000}{300}=300 \text{ N}$ Cut where dip is known: Take noments @ cut:

 $\frac{1.9m}{30}$ $\frac{1.9m}{30}$ $\frac{1.9m}{300}$ $\frac{1.9m}{300}$

Cable length
$$\approx 5 = 2(\frac{1}{2}) + \frac{4}{3} \frac{1^2}{(\frac{1}{2})} = \frac{90.122 \text{ m}}{}$$

$$ZM_{\bullet} \Rightarrow 500(66) + 960(45) - V_{A}'(90) = 0$$

$$V_{A}' = 783.3 \text{ N}$$

$$\Sigma F_{\bullet} \rightarrow V_{B}' = 616.7 \text{ N}$$

$$2 M_{cn} + -D = (763.3)(30) + H'(2.15) + 300(15) = 0$$

 $H' = 8840 N$

Cut @ midspan:

$$X^{\prime}$$
 X^{\prime}
 $X^{$

(2)

Overall equilibre: moments about A

Torol reaction at $A = \sqrt{\left\{ (2\omega L)^2 + \left(\frac{5}{6} \frac{\omega L^2}{h} \right)^2 \right\}}$ = $\omega L \left\{ 4 + \frac{25}{36} \left(\frac{L}{h} \right)^2 \right\}^{\frac{1}{2}}$

Equilibri of segment OX: manets about X)

$$Ty - 4x \cdot 2y_2 - 4x^2 \cdot 2y_3 = 0$$

$$y = \frac{1}{7} \cdot \frac{4x^2}{6} (3 + 2x_2)$$

$$y = \frac{1}{5} \cdot (\frac{2}{5})^2 (3 + 2x_2)$$

(b)
$$\delta CH = 0$$
 (c) $\delta CV = 50mm$

(4)

33 25
41 8 17
Diplocement
diogram
115 mm f

(6) (a) Use symmetry, IT remain vertical.

ر بالمحاصر المحاصر		V 1 16240	in ver	
	Box	Face	Ex	taria
	AK JD	0	0	·
	A3	- W/2	-1)
	BK	+ W/VZ	+1	
	BC	- W/2	- {	WL
	CK	- W/2	- 1	AE
	KJ	+ 4/2	+ = 1	
	CJ	+ 4/02	+1	
	60	- W	-1]	

Displacement diagram on night. Start at D, J.
Vertical deflection of J. relative to A

is 6-83 WL/AE

(b) The length ax = 2.06 WL/AE is the shortening of the gap AC

(7)

Real compatible set of joint displacements and bar extensions

Vittual equilibrium set of joint boads and bar tensions

BAR	Real e mm	Virtual T#	TE mm
AB	15	0	0
BC	-20	0	0
AD	-30	0	0
CD	-30	-1	30
AC	-10	12	-1012
		Στ° =	(30-10 VZ)mm

1.
$$\delta_{CH} = (30-10\sqrt{2})mm$$
 ... $\delta_{CH} = 15.9 mm$

(8)

Real compatible set: displacements of, extensions e (due to load wat J)

Virtual equilibrium set (cleverly chosen)
Load P# at C, bor tension T*

BAR	Loud W	1 at J	Load P= lat C	
	Tension T	Extension a X WLIAE	Tension T*	T*e XWLIAE
22	0	0	0	0
AK	0	0	0	0
AB	-1/2	-1/2	-314	3)8
BK	1/2	1	3/2/2	3/2/2
8C	-1/2	-1/2	-314	318
ck	-1/2	-1/2	-3/4	318
KJ	1/2	1/2	314	3/8
c2	11/2	1	-1/2/2	-112/2
CD	-1	-1	-1/2	1/2
HG	0	0	0	0
Fq	-112	-1/2	-114	118
FH	1/12	1	1/2/2	1/2/2
EF	-1/2	-1/2	-1/4	118
EH	-1/2	-1/2	-114	118
HJ	1/2	1/2	1/4	118
EJ	11/2	1	1/2/2	112/2
DE	-1	-1	-1/2	115
ZT*= (3+12)WL/AE				

Virtual Work: 1 x Sev = & T *e

Real Equilib. Set

Virtual Compat set

For a small rigid body rotation through angle of about G. V.W. eqn reduces to

 $\sum P. g = 0$ since bor extensions = 0

Similarly rotation about A, or vertical translation, gives

(P)

Real Equilib. Set

Virtual Compact Set

To find TJH, consider virtual set caused by wit extension e# = 1 of bar JH.

From geometry, 6 = e = 1

Applying EP. 5 = E Tex; Vq. 6 = Tope+

(10)

extensions (mm)

tensions

Real compatible set of joint displacements of and extensions e (mm) Virtual equilibrium set of wit horizontal load P#=1 at c and virtual tensions T#

Bar	Real	Virtual T*	Temm
AÞ	17	3 13/4	46.0
BD	14	-515/4	-39.1
CD	-33	12	-46.7
DF	25	0	0
CF	-41	0	0
n n number of the state of the			

ITE = - 398 mm

$$\frac{1}{1000} \cdot \frac{1}{1000} = \frac{1}{1000} \frac{1$$

(11) (a)

Compatible real set of displacements 5 and extensions e (due to Load shown). From Paper 2 question 10

Virtual equilibrium set with vertical load P# = 1 at C.

BAR	Real e × WL AE	virtual tension T*	T*e × WLIAE
AB	-2	- 1/12	V2
DE	-2	-11/2	V2
BC	-1	-1/2	1/2
cD.	-1	-112	112
HA	1	1/2	1/2
FE	1	1/2	112
HG	1	I The second of	
9F	1	1	1
BH	0	vot vesas ag	Ø
HC	0	17	0
cq	0	•	0
CF	0	· · ·	0
DF	O	м	0

ET = (4+2/2)WL/AE

(P)

Use superposition to split the load into a symmetric load (i) plus an anti-symmetric load (ii).

Because the Structure has mirror symmetry about line CG and loading in case (ii) is anti-symmetric about CG it follows that the vertical displacement of C caused by load case (ii) is zero.

The vertical displacement of C caused by load case (i) is found from past (a) of the question above as

Scv = 7 (4+2 \(\overline{2} \) WL | AF

(12)

Use virtual work:

real extensions

invented virtual forces (+1 at B

virtual wak: $1.8 = \frac{1}{\sqrt{3}}.e$ $\delta = e/\sqrt{3}$

Alternatively: we a displacement diagram

Dobviously goes e to the right. Guen that Floer
ust move at all:

Displacement of B term out to be parallel to FB or requires, to initial guest about F was convect. Measure to to obtain $\delta = e/\sqrt{3}$ as above.