α) Η υπερβολή C έχει κέντρο το (0,0) και εστίες στον άξονα xx', οπότε θα έχει ασύμπτωτες της μορφής $y=\frac{\beta}{\alpha}x$, $y=-\frac{\beta}{\alpha}x$. Αφού το ορθογώνιο βάσης είναι τετράγωνο, συμπεραίνουμε ότι $\alpha=\beta$ δηλαδή είναι ισοσκελής υπερβολή. Συνεπώς i. οι εξισώσεις των ασυμπτώτων της υπερβολής C είναι y=x, y=-x.

ii. για την εκκεντρότητα ε της C ισχύει ότι $\varepsilon^2=1+\left(\frac{\beta}{\alpha}\right)^2=1+1=2$ και επειδή $\varepsilon>0$ έχουμε τελικά ότι $\varepsilon=\sqrt{2}$.

β) Αφού η (ζ) είναι παράλληλη σε κάποια εκ των ασύμπτωτων της C, θα έχει εξίσωση της μορφής $y=x+\kappa$ ή $y=-x+\kappa$ με $\kappa\neq 0$. Η ισοσκελής υπερβολή C θα έχει εξίσωση της μορφής $x^2-y^2=\alpha^2$. Αφού διέρχεται από το σημείο (2,0) έχουμε ότι $2^2-0^2=\alpha^2 \Leftrightarrow 4=\alpha^2 \stackrel{\alpha>0}{\Leftrightarrow} \alpha=2$.

Το πλήθος των κοινών σημείων της C και της ευθείας (ζ) είναι ίδιο με το πλήθος των λύσεων καθενός από τα συστήματα $\begin{cases} x^2-y^2=4\\ v=x+\kappa \end{cases}$ και $\begin{cases} x^2-y^2=4\\ v=-x+\kappa \end{cases}$.

Λύνουμε το 1ο σύστημα με αντικατάσταση της 2ης εξίσωσης στην 1η και έχουμε :

$$x^{2} - (x + \kappa)^{2} = 4 \Leftrightarrow x^{2} - x^{2} - 2x\kappa - \kappa^{2} = 4 \Leftrightarrow -2x\kappa = 4 + \kappa^{2} \Leftrightarrow x = -\frac{4 + \kappa^{2}}{2\kappa}$$

και από τη 2η εξίσωση έχουμε ότι $y = -\frac{4 + \kappa^2}{2\kappa} + \kappa$

Ομοίως λύνουμε το 2ο σύστημα με αντικατάσταση της 2ης εξίσωσης στην 1η και έχουμε :

$$x^{2} - (-x + \kappa)^{2} = 4 \Leftrightarrow x^{2} - x^{2} + 2x\kappa - \kappa^{2} = 4 \Leftrightarrow 2x\kappa = 4 + \kappa^{2} \Leftrightarrow x = \frac{4 + \kappa^{2}}{2\kappa}$$

και από τη 2η εξίσωση έχουμε ότι $y = -\frac{4 + \kappa^2}{2\kappa} + \kappa$

- i. Σε κάθε περίπτωση το σύστημα έχει μοναδική λύση που σημαίνει ότι η (ζ) έχει ένα μόνο κοινό σημείο με την C.
- ii. Επειδή σε κάθε περίπτωση η μοναδική λύση του συστήματος προέκυψε από εξίσωση 1ου βαθμού και όχι από 2ου με διακρίνουσα 0, η ευθεία (ζ) δεν είναι

εφαπτόμενη της C. Απλά την τέμνει σε ένα σημείο χωρίς όμως το σημείο αυτό να είναι σημείο επαφής . Δηλαδή η (ζ) διαπερνά τη C.

Σημείωση: το παραπάνω συμπέρασμα ισχύει για κάθε υπερβολή και ευθεία παράλληλη σε κάποια από τις ασύμπτωτες και όχι μόνο για τις ισοσκελείς.