AD

CHARACTERIZATION OF CONUS AND SAUDI ARABIAN FINE-GRAINED SOIL SAMPLES

INTERIM REPORT BFLRF No. 294

Ву

G.B. Bessee

Belvoir Fuels and Lubricants Research Facility (SwRI)
Southwest Research Institute
San Antonio, Texas

and

K.B. Kohl Southwest Research Institute San Antonio, Texas

Under Contract to

U.S. Army Belvoir Research, Development and Engineering Center Logistics Equipment Directorate Fort Belvoir, Virginia

Contract No. DAAK70-92-C-0059

Approved for public release; distribution unlimited

October 1993

94 2 01 16 4

94-03348

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DTIC Availability Notice

Qualified requestors may obtain copies of this report from the Defense Technical Information Center, Cameron Station, Alexandria, Virginia 22314.

Disposition Instructions

Destroy this report when no longer needed. Do not return it to the originator.

		REPORT I	OCUMENTATIO	N PAGE			Form Approved OMB No. 0704-0188			
	ECURITY CLAS	SIFICATION		1b. RESTRICTIVE MARKINGS						
	sified			None						
N/A	CLASSIFICATIO	N AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT						
2b. DECLASSII N/A		VNGRADING SCHEDU		 Approved for public release; distribution unlimited 						
4. PERFORMIN	IG ORGANIZAT	ION REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION RE	PORT NU	MBER(S)			
	No. 294									
	_	ORGANIZATION nd Lubricants	6b. OFFICE SYMBOL (if applicable)	7a. NAME OF M	ONITORING ORGAN	IZATION				
Rese	arch Faci	lity (SwRI)	(ii spincege)							
	City, State, an			7b. ADDRESS (Ci	ty, State, and ZIP C	ode)				
	est kesea: rawer 285	rch Institute								
		xas 78228-0510	1	Ī						
			8b. OFFICE SYMBOL	9 PROCUREMEN	T INSTRUMENT IDE	NTIEKATI	ON MUMBER			
ORGANIZA Resear	TON U.S. ch. Devel	NSORING Army Belvoir opment and	(If applicable)		7-C-0043; WD					
Engine	ering cen	ter	SATBE-FLF	DAAK70-9	2-C-0059; WD	11				
8c ADDRESS (City, State, and	ZIP Code)		10. SOURCE OF	UNDING NUMBERS					
Fort B	oluoir V	irginia 22060-	5606	PROGRAM ELEMENT NO.	PROJECT NO. 1L263001	TASK NO.	WORK UNIT			
FOIL D	ervoir, v.	IIgiliia 22000-	5000	63001	D150	07 (2				
11. TITLE (Incl	ude Security C	lassification)		03001	D130	07 (2	-/			
Charact	erization of	CONUS and Sau	ıdi Arabian Fine-G	rained Soil San	nples (U)					
12. PERSONAL					·-····································					
		and Kohl, Kar								
13a. TYPE OF Interi		13b. TIME CO	92 to Sep 93	14. DATE OF REPO			PAGE COUNT			
16. SUPPLEME			10 305 30	1993 Octo	Der		79			
Permissi	on for the pu	blication herein of	Sadtler Standard Spries, Division of Bio-	ectra® has been Rad Laboratorie	granted, and all is, Inc.	rights are	•			
17.	COSATI	CODES	18. SUBJECT TERMS (Continue on revers	e if necessary and	identify b	y black number)			
FIELD	GROUP	SUB-GROUP	Soil		Miner		position			
				ze Distributi			gularity			
19 ARSTRACT	(Continue on	common of passenger	Elemental A		Filtr	ation	(Cont'd)			
Soil sar samples Arabian using pa size dis	nples were were obta samples warticle size	collected from vined from U.S. ere obtained from distributions, elevere also determine	various geographic military installation the deserts surroumental analysis, need for a simulate om the worldwide s	al areas in the ns where off-re ounding Riyadh nineral compos d fuel cell duri	oad maneuvers . The soil sam ition, and parti ng intermittent	are co ples we cle ang and co	nducted. Saudi ere characterized ularity. Particle ntinuous mixing			
20. DISTRIBUT	ON/AVAILABI	LITY OF ABSTRACT		21 ARSTRACT CE	CURITY CLASSIFICAT	NON				
☑ UNCLASS	IFIED/UNLIMIT	ED SAME AS RE	T. DTIC USERS	Unclassi						
22a. NAME OF Mr. T.	RESPONSIBLE C. Bowen	INDIVIDUAL			include Area Code)		CE SYMBOL CBE-FLF			

18. SUBJECT TERMS

Test Dusts Off-Road Military Bases

EXECUTIVE SUMMARY

<u>Problems and Objectives</u>: The previous manufacturer of test dust used in fuel filtration evaluations has ceased production of the standard test dust. The lack of this standard dust has disrupted fuel, oil, and air filtration testing. Although another manufacturer has begun production of similar test dusts, the new test dusts are different enough to prevent comparison with the test data derived from use of the previous test dust. The objective of this program was to characterize various fine-grain soil samples collected from the continental United States (CONUS) and from Saudi Arabia to determine if the test dust specification requires modification to ensure that the test dust composition resembles naturally occurring soils in significant aspects.

<u>Importance of Project</u>: Fuel filtration requirements are changing due to new engine designs that require higher injection pressures and lower emission standards. Test dusts for evaluating these filters have changed, and there is a need for filtration testing standardization among government and industry.

<u>Technical Approach</u>: Soil samples were obtained from various CONUS military installations at which wheeled and tracked vehicles operate. Samples were also retrieved from the deserts in Saudi Arabia during Operation Desert Shield/Storm. Particle size distribution, elemental analysis, mineral composition, and particle angularity were determined. These results were then compared with characteristics of reference test dust materials.

Accomplishments: Soil samples from CONUS and Saudi Arabia were compared to standard filtration test dusts. This comparison revealed that the standard test dusts failed to agree with the particle size distribution or composition of the sands sampled in this limited survey.

Military Impact: The samples obtained for the study were collected at off-road sites where heavy equipment, i.e., tanks, armored personnel carriers, refueling tankers, etc., travel. These samples give an initial view of the sand and dust that military and off-road vehicle filtration systems encounter in this type of environment. From this investigation, filtration design and selection can be performed more intelligently.

FOREWORD/ACKNOWLEDGMENTS

This work was performed by the Belvoir Fuels and Lubricants Research Facility (BFLRF) at Southwest Research Institute (SwRI), San Antonio, Texas, under Contract No. DAAK70-92-0059 for the period 24 July 1992 through 30 September 1993. Work was funded by the U.S. Army Belvoir Research, Development and Engineering Center (Belvoir RDE Center), Fort Belvoir, Virginia, with Mr. T.C. Bowen, SATBE-FL, serving as contracting officer's representative and Mr. M.E. LePera, SATBE-FL, serving as technical monitor.

Special acknowledgments are given to Mr. G.L. Phillips for fabrication of the test stand; Mr. R.E. Grinstead for performing the particle size characterizations; and Ms. Jagruti Patel for performing the infrared analyses. The special efforts of Ms. L.A. Pierce of the BFLRF document processing group and Mr. J.W. Pryor of the SwRI editorial group are also appreciated.

TABLE OF CONTENTS

Section	Ī		Page
I.	INT	RODUCTION	1
II.	BAC	CKGROUND	1
III.	APF	PROACH	4
IV.	PRC	OCEDURES AND RESULTS	6
	A.	Particle Size Distribution	6
		 Distribution Determination Airborne Soil Sampling 	6 9
	B. C.	Elemental Analysis	11 12
		 Infrared Spectroscopy Description and Characterization by Microphotography 	12 24
	D. E.	Scanning Electron Microscope Characterization Simulated Fuel Tank Demonstration	29 32
		 Static Demonstration Dynamic Demonstration 	33 33
V.	CON	ICLUSIONS AND RECOMMENDATIONS	36
VI.	REF	ERENCES	37
VII.	GLC	OSSARY	38
VIII.	ACR	CONYMS AND ABBREVIATIONS	42
APPEN	DIC	es e	
	A. B.	Soil Sample FTIR Spectra	43 67

LIST OF ILLUSTRATIONS

Figure		Page
1	Filter Data for HMMWV Filter With Constant Flow	
	and PTI SAE Fine Test Dust	2
2	Filter Data for HMMWV Filter Graded Flow	
	and PTI SAE Fine Test Dust	
3	Military Base Locations	
4	Filter Efficiency Test Stand	
5	Airborne Soil Sample, Camp Pendleton, CA	
6	Airborne Soil Sample, Camp Pendleton, CA	10
7	Standard Infrared Spectrum for Montmorillonite (Clay)	16
8	Standard Infrared Spectrum for Kaolinite	17
9	Standard Infrared Spectrum for Quartz	18
10	Standard Infrared Spectrum for Calcite	19
11	Standard Infrared Spectrum for Aragonite	20
12	Standard Infrared Spectrum for Talc	21
13	Standard Infrared Spectrum for Dolomite	22
14	Two-Dimensional Sphericity and Roundness of Grains (7)	23
15	High Calcium, Saudi Arabia 1	30
16	Magnesium Silicate, Saudi Arabia 5	30
17	High Silica, Ft. Stewart, GA, (Range 18553)	31
18	High Silica, PTI Fine Test Dust	31
19	Simulated Fuel Tank Design	32
20	Static Particle Size Distribution	33
21	Particle Size Distribution After 1 Hour With Continuous Agitation	34
22	Particle Size Distribution for 7 Hours With Continuous Agitation	34
23	Static Versus Dynamic Particle Size Distribution Comparison at 5 Hours	35

LIST OF TABLES

<u> Fable</u>		Page
1	Participating Military Installations	4
2	Particle Size Distribution of Soil Samples	8
3	Particle Size Distribution as a Function of Height	10
4	Weight Percentages of Total Airborne Dust Taken From	
	Camp Pendleton, CA	11
5	Chemical Analysis of Typical AC Fine Test Dust	12
6	Elemental Composition of Soil Samples	13
7	Calculated Oxide Weight Percentages	14
8	Sand Shape Descriptions	24
9	Soil Groupings According to Elemental Analysis	29

I. INTRODUCTION

New engine designs, higher injection pressures, and more stringent emissions requirements are changing the fuel system filtration requirements for today's vehicles. The fuel filtration system must remove particles and water from the fuel for the engine to remain in good condition. This report focuses on the particulate aspects of fuel filtration. Particle size distributions, elemental analysis, infrared spectra, and particle angularities are determined for various soils obtained from military bases in the continental United States (CONUS) and from Saudi Arabia during Operation Desert Shield/Storm. With the fluctuating parameters ongoing in the filtration industry, it was felt that this would be an opportune time to reevaluate the industry's test dust requirements. From this information, the filtration industry should obtain a better understanding of the filtration requirements and test dust needed to properly evaluate new filters.

II. BACKGROUND

The U.S. Army encountered numerous fuel system and engine problems during Operation Desert Shield/Storm.(1)* Many of these problems were caused by ingestion of soil into these systems. Inspection of fuel pumps on the High-Mobility Multipurpose Wheeled Vehicle (HMMWV) and Commercial Utility Cargo Vehicle (CUCV) revealed gross quantities of soil. As shown in Fig. 1, the HMMWV filter has excellent efficiency when tested under laboratory conditions. However, when the test conditions are designed to simulate real-life conditions, i.e., vibration and start/stop cycles, Fig. 2 illustrates why the fuel pumps were full of soil. Work performed by Onion and others has shown that the most damaging particles range in size from 5 to 20 micrometers and that less than 5 grams of abrasive of the size and composition found in many vehicle fuel systems can wear out an injection pump.(2)

Obviously, these filters failed to protect the military equipment as expected. In response to this lack of protection, the question arose, "How are military fuel filters qualified?" An investigation into the filtration requirements for military vehicles revealed that no military specification for

^{*} Underscored number in parentheses refers to references at the end of this report.

Figure 1. Filter data for HMMWV filter with constant flow and PTI SAE fine test dust

Figure 2. Filter data for HMMWV filter with graded flow and PTI SAE fine test dust

qualifying fuel filters for vehicle use currently exists. The standard practice for filter selection has been to use filters similar to those in the military inventory or the filter supplied by the engine manufacturer. However, each engine and filter manufacturer has its own method for qualifying fuel filters. Therefore, varying degrees of quality are produced. The lack of a standardized test method and procedure occurs both in the United States and in the European community.(3)

To complicate these issues, the only previous producer (AC Rochester) of test dust is no longer producing test dust. Although another manufacturer (Powder Technology, Inc.) is now producing filter test dust, the new test dust does not have the same particle size distribution as the test dust previously produced.

III. APPROACH

Representatives at various CONUS military installations were contacted to obtain off-road soil samples from those areas in which wheeled and tracked vehicles operated. Also, five additional samples were obtained from Saudi Arabia during Operation Desert Shield/Storm. The military bases and locations are shown in TABLE 1 and Fig. 3, respectively. The installation number in TABLE 1 corresponds to the number in Fig. 3.

TABLE 1. Participating Military Installations

Installation No.	Installation	No. of Samples				
1	Fort Bliss, TX	1				
2	Fort Hood, TX	1				
3	Fort Stewart, GA	5				
4	Fort Polk, LA	1				
5	Fort McClellan, AL	1				
6	Yuma Proving Ground, AZ	1				
7	Fort Irwin, CA	1				
8	Camp Pendleton, CA	1				
9	Twentynine Palms, CA	1				

Figure 3. Military base locations

AC Fine and Coarse Test Dust and PTI Fine and Coarse Test Dust were analyzed for reference and comparison. In addition, airborne dust was sampled from 0.9 to 3 meters (3 to 10 feet) at 0.3-meter (1-foot) increments at Camp Pendleton, CA.

IV. PROCEDURES AND RESULTS

The soil analyses included: 1) particle size distribution, 2) elemental analysis by X-ray fluorescence, 3) mineral characterization by infrared spectroscopy, and 4) size and angularity characterization using a Scanning Electron Microscope (SEM).

A. Particle Size Distribution

The particle size distribution was determined using an on-line particle analyzer. The system used for this analysis contains two sensors and counters and is commonly used for filter efficiency testing, which requires simultaneous sampling upstream and downstream of the test filter. The dual-sensor counter simultaneously controls both light-blocking laser diode sensors.

1. Distribution Determination

The test fluid used for these analyses was Viscor L4264V91 fluid. The test fluid was first prefiltered through a 2-micrometer cleanup filter until the fluid contained less than 10 counts/milliliter at 10 micrometers. Since the dust samples were obtained from the natural environment, many of the samples contained stones, sticks, and other debris. In order to remove this debris, all samples were passed through a No. 200 mesh sieve.

As defined by the American Society for Testing and Materials (ASTM) D 2487-90, "Standard Test Method for Classification of Soils for Engineering Purposes," soils which pass a No. 200 (75 micrometer) U.S. standard sieve are classified as fine-grain soils. This fine-grain soil consists of silts and clays. Sands are defined as particles of rocks that will pass a No. 4 (4.75 mm) sieve and be retained on a No. 200 sieve. Silts are nonplastic or very slightly plastic and exhibit little

or no strength when air dry. Silts will cause abrasive wear in a vehicle system. Clays can be made to exhibit plasticity within a range of water contents and exhibit considerable strength when air dry. Clays will tend to plug filters due to its tendency to agglomerate. (4) The collected soil samples are technically "sands," but since this survey is only interested in the samples which pass a No. 200 sieve, the samples will be referred to as fine-grain soils or soils.

A weighed amount of soil was placed into a small container of measured test fluid, sonicated for 2 minutes, and then placed into a known volume of clean test fluid in the test stand (Fig. 4). The contaminated test fluid was circulated through the test stand for approximately 10 minutes to allow the system to equilibrate. The particle size distribution was measured for 1-minute intervals, every other minute, for ten measurements. This procedure was repeated three times, each time after the test fluid was cleaned and treated with fresh soil samples.

The results of the tests, ranging from 4 to 20 micrometers in size, were averaged and reported in counts per mL based on one milligram of test dust per liter of test fluid, as per ISO 4402,

Figure 4. Filter efficiency test stand

"Hydraulic Fluid Power-Calibration of Automatic-Count Instruments for Particles Suspended in Liquids-Method Using Classified AC Fine Test Dust Contaminant." The particle size distributions are shown in TABLE 2.

The generated AC Fine Test Dust (ACFID) distribution was compared to the ISO 4402 specification to confirm validation of the particle counter.

TABLE 2. Particle Size Distribution of Soil Samples

		Particle Size, micrometers									
Sample No.*	Location	4	5	_6_	7		9_	10	15	20	
1	Ft. McClellan, AL	1,020	823	694	552	414	317	247	83.6	36.0	
2	Twentynine Palms, CA Fuel Debris	1,014	588	423	294	203	152	120	53.7	33 <i>.</i> 4	
3	PTI Fine Test Dust	1,002	707	557	421	294	210	163	58.7	30.2	
4	AC Fine Test Dust	751	579	467	357	262	199	156	56.0	25.A	
5	Pt. Stewart, GA Fuel Debris	705	497	430	348	278	230	196	107	62.2	
6	Saudi Arabia 5	609	399	323	254	197	161	135	71.2	44.8	
7	Saudi Arabia 1	581	426	343	265	200	159	130	57.2	30.3	
8	Ft. Polk, LA	567	418	343	271	208	165	136	59.A	31.6	
9	Yuma Proving Ground, AZ	561	364	280	206	148	117	90.0	37 <i>.</i> 5	20.7	
10	Saudi Arabia 2	560	426	359	289	227	183	153	67.2	34.3	
11	Ft. Hood, TX	517	377	309	243	186	149	123	57.6	32.1	
12	AC Coarse Test Dust	504	353	283	218	164	128	103	41.4	20.3	
13	PTI Coarse Test Dust	491	354	285	222	167	127	105	40.7	20.8	
14	Ft. Stewart, GA Red Cloud	337	278	237	195	156	128	107	48.3	25.6	
15	Ft. Irwin, CA	332	231	184	143	110	89.0	74.2	35 <i>A</i>	19.6	
16	Camp Pendleton, CA	330	222	178	139	107	87.9	74.2	47.3	23.0	
17	Ft. Stewart, GA M1A1 Air Filter Debris	325	250	218	185	155	132	115	62.0	36.7	
18	Saudi Arabia 4	325	250	218	185	155	132	115	62.0	36.7	
19	Ft. Bliss, TX	239	132	100	74.5	57.2	43.7	35.8	16.5	9.8	
20	Saudi Arabia 3	233	141	111	83.9	65.3	53.5	44.7	23.7	15.2	
21	Ft. Stewart, GA	176	135	113	93.3	76.7	64.4	55.3	27.4	15.5	
22	Ft. Stewart, GA Range 18553	154	116	97.0	78.0	62.5	52.6	45.4	25.0	13.7	

^{*} The sample number designates each sample in subsequent tables.

2. Airborne Soil Sampling

A 3-meter (10-foot) pole with sampling containers was placed next to a dirt road traversed by U.S. Marine Corp Light Armored Vehicles (LAVs). The sampling containers were placed on the pole 0.9 meter (3 feet) from the bottom and at 0.3-meter (1-foot) intervals. Samples were collected, SEM micrographs were taken (Figs. 5 and 6), and particle size distributions were determined (TABLE 3).

The samples taken from the 3-meter (10-foot) container consisted of dust, leaves, sticks, and insects. The weight percentage, as a function of height, of the total dust samples collected are shown in TABLE 4.

The increase in mass at 1.5 meters (5 feet) is assumed to be a result of the air currents generated by the vehicles. This irregularity in the data agrees with the 1.5-meter (5-foot) particle size

Figure 5. Airborne soil sample, Camp Pendleton, CA

Figure 6. Airborne soil sample, Camp Pendleton, CA

TABLE 3. Particle Size Distribution as a Function of Height

Particle Size,	micrometers
----------------	-------------

Meters (feet)	4	5	6	7	8	9_	10	15	20
0.0 (0)	330	222	178	139	107	87.9	74.2	47.3	23.0
0.9 (3)	435	278	222	173	134	109	92.5	48.9	29.9
1.2 (4)	434	285	229	179	140	115	97.1	51.9	31.8
1.5 (5)	493	322	257	199	153	124	103	52	30.6
1.8 (6)	498	329	264	206	159	128	107	54.4	32.7
2.1* (7)	476	307	246	191	148	121	101	53.6	32.6
2.4* (8)	491	318	253	197	152	124	104	55.1	33.€
2.7* (9)	514	348	280	217	166	134	112	55.6	32.8
3.0 (10)	†	†	†	†	†	†	†	†	†

^{*} Only enough sample for one particle size distribution determination.

[†] Insufficient sample to perform a particle size distribution.

TABLE 4. Weight Percentages of Total Airborne Dust Taken From Camp Pendleton, CA

Height, m (ft)	Percentage, wt%
0.9 (3)	20.8
1.2 (4)	14.5
1.5 (5)	18.4
1.8 (6)	13.5
2.1 (7)	10.7
2.4 (8)	9.4
2.7 (9)	9.7
3.0 (10)	3.0

distribution in TABLE 3. It should be noted that the body of the LAV also stands approximately 1.5 meters (5 ft) from the ground. Figs. 5 and 6 illustrate some of the unique shapes and angularities found in fresh fractures. These fractures appear to be caused by a crushing action.

B. <u>Elemental Analysis</u>

The typical chemical composition of the AC Fine Test Dust (ACFTD) is shown in TABLE 5.(5) Compositions of the soil samples collected in this study were determined using a Kevex Model 770 energy-dispersive X-ray fluorescence analyzer with a Quantum thin-film detector window. Each sample was prepared as a loose powder in a disposable sample cup with a prolene film, and standard comparisons were based on elemental oxides. The elemental compositions and oxide weight comparisons of the samples collected are shown in TABLES 6 and 7, respectively.

Common mineral compositions may be expressed in oxide weight percents. Quartz, for example, is 100 percent SiO₂. Talc would be described as 63.5 percent SiO₂ and 31.7 percent MgO, with the remainder being water. Calcite or aragonite would be 56 percent CaO and 44 percent CO₂, and kaolinite clay would be 46.5 percent SiO₂, 39.5 percent Al₂O₃, and the remainder water.

TABLE 5. Chemical Analysis of Typical AC Fine Test Dust

Component	wt%				
SiO ₂	65 to 76				
Al_2O_3	11 to 17				
Fe ₂ O ₃	2.5 to 5.0				
Na ₂ O	2 to 4				
CaO	3 to 6				
MgO	0.5 to 1.5				
TiO ₂	0.5 to 1.0				
V_2O_3	0.10				
ZrO	0.10				
BaO	0.10				
Loss on Ignition	2 to 4				

The AC Fine Test Dust would consist of a blend of quartz and clay minerals, using these compositions. It would contain little or no calcium- or magnesium-containing minerals. Mineral compositions of the sands collected at the various locations are discussed in the captions of the microphotographs of the samples.

C. <u>Mineral Characterization</u>

1. Infrared Spectroscopy

Mineral types included in the soils observed include clays, quartz, calcium carbonate, and talc. Figs. 7 through 13 include reference spectra for the pure materials and spectra obtained from size segregated samples of soils from test locations. All soil sample infrared spectra are found in Appendix A. Infrared spectra were obtained by depositing fine particle portions of samples suspended in chloroform onto a horizontal attenuated total reflectance (ATR) cell on a Fourier Transform Infrared (FTIR) spectrophotometer. The deposit was allowed to dry completely, then analysis was performed. (6) Absorbances were compared with reference spectra of minerals.

TABLE 6. Elemental Composition of Soil Samples, wt%

ਬ	ł	:	;	:	t	1	:	ł	:	:	:	:	:	:	;	1	:	;	:	:	1	0.7
Ba	i	:	8.0	9.0	:	0.7	:	:	0.1	:	:	0.7	0.3	:	0.4	0.4	i	:	4.0	:	:	:
7	ł	:	9.0	0.2	:	0.2	6.0	0.7	0.7	0.1	0.1	0.2	0.1	6.0	0.2	0.4	6.0	0.7	9.0	0.5	1.4	1.6
2	ł	i	0.5	0.2	:	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	:	0.2	0.3	ł	0.3	0.1	0.1	;	1
&	ŀ	1.4	;	;	9.0	:	:	i	i	:	:	:	:	:	:	:	;	:	:	:	:	:
5	1	12.3	:	:	0.0	:	:	;	:	:	:	;	:	:	i	:	:	:	:	:	:	:
2	3.4	2.1	9.6	3.0	3.6	4.0	3.1	2.4	3.4	1.1	6.0	2.8	3.1	1.0	3.3	11.8	2.4	2.1	2.5	2.8	1.4	0.1
F	0.3	0.5	1.0	0.3	0.1	:	0.7	0.3	0.3	0.1	0.1	0.3	0.3	0.5	0.3	6.0	9.0	0.4	4.0	0.5	6.0	9.0
5	2.0	7.1	4.2	1.3	0.3	6.9	8.0	5.4	3.5	10.6	8.2	2.8	1.9	;	2.0	5.2	0.1	5.5	4.2	6.4	0.7	:
×	0.2	:	3.6	1.5	0.7	0.1	0.5	0.7	0.1	0.2	0.7	3.7	1.5	:	1.1	1.3	0.1	0.2	1.1	9.0	0.1	0.1
ರ	ł	5.6	:	:	:	0.4	:	:	i	;	i	:	:	:	i	:	;	0.5	:	i	;	:
Mg	*;	:	:	:	:	27.6	:	:	7.0	:	:	:	:	:	:	:	:	10.9	:	8.0		1
S	0.1	8. 3	:	:	0.1	1.1	;	0.7	:	;	0.7	ţ	:	:	:	ı	:	1.3	:	0.1	:	•
હ	23.2	8.0	30.8	28.9	43.5	11.2	13.8	16.4	17.2	6.3	9.5	31.0	25.8	33.5	21.2	19.4	27.5	12.6	17.0	16.1	28.6	27.8
z	10.5	:	10.2	12.7	i	1.8	3.9	8.6	10.5	7.8	2.0	10.1	5.9	10.0	11.4	7.0	14.1	8.9	7.8	8.0	3.0	11.5
Sample No.		7	ĸ	4	S	9	7	œ	0	01	11	12	13	14	15	16	17	18	19	8	21	ជ

* No element found or below the detection limit of the instrument.

 TABLE 7. Calculated Oxide Weight Percentages

Sample								
No.	Al ₂ O ₃	SiO ₂	MgO	CaO	TiO ₂	Fe ₂ O ₃	ZrO	BaO
1	19.8	49.6	*	2.8	0.5	4.9		
2		1.7		9.9	0.8	3.0		
3	19.3	65.9		5.9	1.7	13.7	0.7	0.9
4	24.0	61.8		1.8	0.5	4.3	0.2	0.4
5		93.1		0.4	0.2	5.1		
6	3.4	24.0	45.8	9.7		0.6	0.2	0.2
7	7.3	29.5		11.2	1.2	4.4	1.1	
8	18.5	35.1		7.6	0.5	3.4	0.8	
9	19.8	36.8	11.6	4.9	0.5	4.9	0.2	0.1
10	5.3	13.5		14.8	0.2	1.6	0.1	
11	9.4	20.3		11.5	0.2	1.3	0.1	••
12	19.1	66.3		3.9	0.5	4.0	0.2	0.8
13	11.1	55.2		2.7	0.5	4.4	0.1	0.3
14	18.9	71.7			0.8	1.4	1.1	••
15	21.5	45.4		2.8	0.5	4.7	0.2	0.4
16	13.2	41.5		7.3	1.5	16.9	0.5	0.4
17	26.6	58.8		0.1	1.0	3.4	1.1	
18	12.8	27.0	18.1	7.7	0.7	3.0	0.2	
19	14.7	36.4		5.9	0.7	3.6	0.7	0.4
20	17.0	34.4	13.3	9.0	0.8	4.0	0.6	
21	5.7	61.2		0.3	1.5	2.0	1.6	
22	21.7	59.5	-		1.0	1.4	1.9	

Absorbance bands indicative of mineral composition include the following:

Mineral Species	Wavenumbers
Calcium carbonate, CaCO ₃	1,425; 871; 710
Dolomite, CaMg(CO ₂) ₂	1,440; 879; 725
Quartz, SiO ₂	1,090; 799; 699
Kaolinite, Al ₂ Si ₂ O ₅ (OH) ₄	1,100; 1,030; 910; 699
Montmorillonite, (Na, Ca, Al, Mg) ₂ Si ₄ O ₁₀ (OH) ₂	1,040; 910
Talc, 3MgO 4SiO ₂ H ₂ O	1,010; 660

^{*} No oxide found in the sample.

A brief description of mineral composition and morphology of sands is provided below.

In general, sandy areas are produced by mechanical accumulations of minerals and rock fragments. The particles in these areas are products of surface weathering and erosion, and they consist of the disintegrated and decomposed debris of older rocks, transported and deposited by water, ice, or air. They are appropriately termed detrital or epiclastic materials. Most consist of quartz and silicate minerals such as clays. Influences of source and transportation are important in these deposits. Where erosion is slow, a residual blanket of thoroughly weathered material—a mature soil—accumulates over parent rock, and effects of climate may have more influence than even the composition of the parent rock on the character of the weathered product.

Where erosion is rapid, rock waste may be removed as soon as it is loosened from the bedrock, and little decomposition may occur before the material is carried away. Under such conditions, the mineral composition of detrital materials approximates that of the parent rock, and unstable minerals are to be expected.

During actual transportation, chemical changes in detrital sediments are negligible, but two very important physical effects are produced. Individual particles are generally altered in size, shape, and roundness by the abrasion and fracturing that result from rubbing and repeated impact of the particles on each other and on bedrock. Also, selective transportation, or sorting, affects the total aggregate of grains, so that particles tend to be segregated according to size, shape, and density.

The effect of these processes on the material is most clearly visible in the texture features, but is also evident in the mineral composition. When, in a sediment of particles of varied size, the sand is segregated from the clay, as commonly happens in natural sorting, the resulting deposits are mineralogically as well as texturally distinct. The clay material contains a relative concentration of clay minerals (kaolinite, montmorillonite, and illite), together with other micaceous minerals such as sericite and chlorite, whereas the sand is composed largely of quartz, with or without feldspars, ferromagnesium silicates, and rock fragments. Extensive well-sorted sands are most commonly deposited in terrestrial areas of drifting sand, or shallow parts of the sea and beaches, where the sand is continuously washed by wind or wave currents.

Figure 7. Standard infrared spectrum for montmorillonite (clay)

Figure 8. Standard infrared spectrum for kaolinite

Figure 9. Standard infrared spectrum for quartz

Figure 10. Standard infrared spectrum for calcite

Figure 11. Standard infrared spectrum for aragonite

Figure 12. Standard infrared spectrum for talc

Figure 13. Standard infrared spectrum for dolomite

The effectiveness of abrasion in rounding grains is a function of mode and distance of transportation and also of size and kind of grains. It is greatest on the larger and softer grains, and is increased with distance of transportation. Crushing action on sediments will yield much more angular, sharp-cornered particles (Figs. 5 and 6), than will wind or water transport. Clastic grains are described in terms of particle diameter, sphericity and roundness.(7)

Fig. 14 illustrates the particle shape designations for grains, and TABLE 8, size designations. These terms are used to describe the particles shown in the electron microscopic photographs of the various sand locations used for this study.

Rock-forming minerals may be classified into general stability series to express resistance to destruction by normal processes, but the series varies with climatic conditions. Calcite, for example, is readily dissolved by surface solutions during weathering in warm humic regions where vegetation is abundant, but it is not so easily dissolved in arid regions where vegetation is scarce. Among the clay minerals formed by weathering, kaolinite is generally stable under

Figure 14. Two-dimensional sphericity and roundness of grains (7)

TABLE 8. Sand Shape Descriptions

Shape	Description	
Angular	All corners sharp, having radius of curvature equal to zero; surface not abraded.	
Subangular	Corners not sharp, but have very small radius of curvature; most of surface not abraded.	
Subrounded	Corners very noticeably rounded, but surface not abraded.	
Rounded	Entire surface is abraded; radius of curvature of the sharpest edges is about equal to radius of maximum inscribed circle. (7)	

acid conditions, and montmorillonite under alkaline conditions. The most common detrital constituents are clay minerals, quartz, chert, muscovite, tourmaline, zircon, rutile, brookite, and anatase. Locally, some less common constituents may be so concentrated as to become principal components in particular deposits, such as gypsum, talc, or anhydrite.(7)

2. Description and Characterization by Microphotography

A combination characterization of the soil samples describing size, shape, and morphology from each location is presented below:

• Fort McClellan, AL

Grains are mainly equidimensional and range from angular to subangular. Particle sizes range from 5 to less than 3 micrometers. Infrared data are consistent with clay and carbonate minerals.

• Twentynine Palms, CA, Fuel Cell Debris

The fuel cell debris obtained from a stored military vehicle comprised mostly organic materials, rust, and fuel oxidation products. Very few sand particles were found in this sample.

PTI Fine Test Dust

Grains range from 10 to 1 micrometers, with equidimensional and elongated, angular to subangular shapes. Infrared data shows largely clay composition, with a small quantity of carbonate minerals.

AC Fine Test Dust

Grains range from 10 to less than one micrometer, with shapes from angular to subangular. Infrared spectrum is consistent with large quantities of clay, with small quantities of quartz and carbonate minerals.

• Fort Stewart, GA, Fuel Cell Debris

Insufficient sample to perform these analyses.

• Saudi Arabia 5 (AL-19625-X)

Grains are tabular, foliated in appearance, with vaguely hexagonal outlines. These particles are 10 micrometers or less and are rounded to subrounded in shape. Infrared data are consistent with largely carbonate minerals, with some talc present.

• Saudi Arabia 1 (AL-19535-X)

Grains are large, approximately 100 micrometers, and consistently elongated and angular-shaped. Infrared data show bands consistent with a largely dolomite and lesser amounts of clay mineral composition.

Fort Polk, LA

Grains are largely subrounded, equidimensional tabular or foliated shapes, 10 micrometers or smaller. Infrared data show a composition consistent with a mixture of clay and carbonate minerals.

Yuma Proving Ground, AZ

Grains range from 100 to less than 10 micrometers in size, with varying shapes including equidimensional angular particles and equidimensional subrounded particles, which differ in thickness and roundness. Infrared data show a composition consistent with a talc, clay, and carbonate mixture.

• Saudi Arabia 2 (AL-19536-X)

Grains show sizes from 10 to 2 micrometers, with equidimensional and elongated subangular particles, tabular, with delicate foliated structure observed. Infrared spectrum is consistent with calcium carbonate minerals, with lesser amounts of clay minerals.

• Fort Hood, TX, South Range

Grains are foliated, equidimensional, subangular, of approximately 10 micrometers. Infrared data show a large amount of carbonated minerals, with lesser amounts of clay minerals.

AC Coarse Test Dust

Grains are angular, equidimensional particles with slightly foliated appearance. Infrared spectrum is consistent with large quantities of clay combined with small amounts of quartz and carbonate minerals.

PTI Coarse Test Dust

Grains range from 60 to 3 micrometers, equidimensional with angular to subangular shapes. Infrared data show largely clay minerals, with small amounts of carbonate and some quartz minerals.

• Fort Stewart, GA, Red Cloud

Large foliated subrounded tabular grains of approximately 100 micrometers, with smaller 10-micrometer angular grains showing conchoidal fractures. Infrared data are consistent with quartz and clay minerals.

• Fort Irwin, CA, National Training Center (NTC)

Grains range from 100 micrometers, equidimensional, subrounded and flat, to 3- to 20-micrometer elongated, angular grains with conchoidal fractures. Infrared data are consistent with quartz and clay composition, with small amounts of carbonate minerals.

• Camp Pendleton, CA

Grains vary in size, but include elongated and equidimensional angular particles from 1 to 20 micrometers. Many grains show conchoidal fractures. Infrared data show only quartz absorbances, but oxide information and crystals indicate some calcite and clay particles.

• Fort Stewart, GA, Air Filter Debris

Larger grains of 100-micrometer size appear angular and smooth, while smaller, 10-micrometer particles have a crumbly appearance. Infrared data are consistent with clay minerals.

• Saudi Arabia 4 (AL-19624-X)

This sand sample shows large quantities of very fine, less than 2-micrometer grains of equidimensional angular form, with some larger 10-micrometer grains. The infrared spectrum is consistent with a mixture of aragonite and talc minerals.

• Fort Bliss, TX

Grains are divided between equidimensional 100-micrometer grains, subangular and smaller elongated, angular grains of 10 to 1 micrometer. Infrared data are consistent with clay and carbonate minerals.

• Saudi Arabia 3 (AL-19623-X)

Grains show a large variation in size, with less than 10-micrometer elongated, angular particles and up to 100-micrometer equidimensional, subrounded particles of layered appearance. Infrared spectrum is consistent with a talc and carbonate mixture.

Fort Stewart, GA

Grains from 100 to 2 micrometers, angular, elongated, and equidimensional. Infrared data are consistent with a mixture of quartz and clay minerals.

• Fort Stewart, GA, Range 18553

Elongated, angular grains showing conchoidal fracture as seen in quartz minerals, along with large hexagonal particles showing some foliation. Infrared data show bands for silica as well as clay silicate minerals.

The soil samples fall into three elemental composition groupings. These groupings are shown in TABLE 9.

TABLE 9. Soil Groupings According to Elemental Analysis

High Calcium,

no Magnesium Silicate

Saudi Arabia 1

Saudi Arabia 2

Ft. Hood, TX

Camp Pendleton, CA

Ft. Polk, LA

Magnesium Silicate

Saudi Arabia 3

Saudi Arabia 4

Saudi Arabia 5

Yuma Proving Ground, AZ

High Silica

Ft. Stewart, GA, Red Cloud

Ft. Stewart, GA, Air Filter Debris

Ft. Stewart, GA, Range 18553

Ft. Stewart, GA

Ft. Irwin, CA

Ft. McClellan, AL

AC Fine Test Dust

AC Coarse Test Dust

PTI Fine Test Dust

PTI Coarse Test Dust

D. Scanning Electron Microscope Characterization

Scanning electron microscope (SEM) photographs of all samples were taken, and Figs. 15 through 18 illustrate the different families of sand particles. Fig. 15 illustrates the family of soils containing a high calcium content (Saudi Arabia 1); Fig. 16 illustrates the magnesium silicate family (Saudi Arabia 5); and Fig. 17 illustrates the high silica content family [Ft. Stewart, GA, (Range 18553)]. Notice the large quartz particle in the bottom left corner of the photograph. Fig. 18 illustrates standardized, high silica test dust. The sample in this microphotograph is PTI Fine Test Dust. Other test dusts have similar shapes. Figs. 17 and 18 compare two soils that have the same elemental composition but different shapes and angularities. Additional SEM microphotographs are presented in Appendix B.

Figure 15. High calcium, Saudi Arabia 1

Figure 16. Magnesium silicate, Saudi Arabia 5

Figure 17. High silica, Ft. Stewart, GA (Range 18553)

Figure 18. High silica, PTI fine test dust

E. Simulated Fuel Tank Demonstration

A simulated fuel tank demonstration was designed to determine the particle size distribution using typical fuel system parameters, Fig. 19. A 19-liter (5-gallon) can was filled with 15 liters (4 gallons) of test fluid (Viscor L4264V91) and 76 milligrams PTI Fine Test Dust (approximately 5 mg/L). The demonstration incorporated a closed system, with bypass and flow from the particle counter, returned to the top of the "fuel tank." This system simulates the return flow in a typical diesel engine. The pick-up line was placed 5 cm. (2 in.) from the bottom of the tank. Two tests were conducted:

1) The particulate debris was dispersed and the particle size distribution was determined without any agitation, except return flow. Data were recorded at 0, 1, 3, 5, and 8 hours.

Figure 19. Simulated fuel tank design

2) The particle debris was dispers: I and the particle size distribution was determined with continuous return flow. Data were recorded every 15 minutes for 7 hours.

1. Static Demonstration

The particle size distributions for each sampling period are shown in Fig. 20. As expected, the larger particles (>20 micrometers) settled very rapidly, while the <10 micrometer particles stayed in suspension.

2. Dynamic Demonstration

The particle size distributions for various sampling periods are shown in Figs. 21 and 22. In Fig. 21, the distributions are shown for the first hour of the test. After a rapid decrease in concentration of particles, the system appeared to approach equilibrium. However, the concentration of particles less than 10 micrometers are being resuspended with the return flow

Figure 20. Static particle size distribution

Figure 21. Particle size distribution after 1 hour with continuous agitation

Figure 22. Particle size distribution for 7 hours with continuous agitation

agitation, while particles greater than 10 micrometers continue to settle to the bottom of the fuel tank. Fig. 22 displays the distributions at 1-hour intervals for the 7-hour test. The 4-micrometer particles continue to be resuspended with the return flow agitation; however, after approximately 6 hours, the return flow agitation no longer can suspend the greater than 6-micrometer particles.

Fig. 23 shows the comparison between static and dynamic flow conditions after 5 hours. Even though there is a large difference between the two tests for the smaller particles, particles greater than 15 micrometers have settled to the bottom of the fuel tank for both conditions. This pattern indicates that, under sormal driving conditions, particles greater than 15 micrometers will tend to remain on the bottom of the fuel tank, and will generally not encounter the filtration system.

Figure 23. Static versus dynamic particle size distribution comparison at 5 hours

V. CONCLUSIONS AND RECOMMENDATIONS

This study indicated that soil from around the world varied widely in particle size distribution, composition, morphology, and angularity. Soils examined in this limited survey generally fell into three families: 1) high calcium, no magnesium silicate; 2) magnesium silicate; and 3) high silica. Only a limited amount of the sand samples matched standardized test dust compositions. It is recommended that further research be performed to determine if the sand samples examined differ with a larger population and to determine if different sand compositions have an adverse effect on filtration systems and other engine components. In addition, further studies need to identify the particle size distribution that fuel filters will encounter during normal operation. As illustrated in the fuel cell demonstrations, most particles larger than 15 micrometers settle to the bottom of the fuel cell. Particles greater than 20 micrometers create particle counting problems with keeping these particles suspended. It is felt that this size particle should not be incorporated into filtration test dusts. It is recommended that test dusts with particles ranging from 0 to 10 or 0 to 15 micrometers be evaluated for fuel filtration test dusts.

VI. REFERENCES

- 1. Fuels and Lubricants Quarterly Report, U.S. Army Belvoir Research, Development and Engineering Center, Fort Belvoir, VA, June 1992.
- 2. Onion, G., "Diesel Fuel Contamination and the Design and Application of Filters and Water Separators," Filtration and Separation, November/December 1965.
- 3. Bessee, G.B., "Military Vehicle/Equipment Fuel Filter Qualification Methodology," Status Report, August 1991-August 1992, prepared by Belvoir Fuels and Lubricants Research Facility (SwRI), Southwest Research Institute, San Antonio, TX, August 1992.
- 4. 1991 American Society for Testing and Materials, Section 4, Volume 04.08, D 2487, "Standard Test Method for Classification of Soils for Engineering Purposes."
- 5. Society of Automotive Engineers J806, "Oil Filter Test Procedure-June 1983," Warrendale, PA.
- 6. Sadtler Research Laboratories, Division of Bio-Rad Laboratories, "Infrared Spectra of Minerals," 1982.
- 7. Williams, H., Turner, F., and Gilbert, C.M., Petrography: An Introduction to the Study of Rocks in Thin Sections, W.H. Freeman and Company, San Francisco, CA, 1954.
- 8. Hurlburt, C.S., Dana's Manual of Mineralogy, Wiley and Sons, New York, 18th Edition, 1971.

VII. GLOSSARY

AC fine test dust A fine siliceous test dust that has a known particle size distribution as

specified by the manufacturer.

Airborne dust Sand carried by or through the air; supported only by aerodynamic

forces; aloft or flying.

Angularity The quality or condition of having or forming sharp corners.

Anhydrite Calcium sulfate, usually associated with gypsum, to which it alters.

Differs from gypsum in being harder and lacking water of

crystallization.

Brookite Titanium dioxide. Identical in composition with rutile, but occurs in

brown translucent orthorhombic crystals.

Calcite Hexagonal (rhombohedral) calcium carbonate.

Chert A dense cryptocrystalline rock; composed mineralogically of

chalcedony (microcrystalline fibrous silica, and microfibrous amorphous silica or opal) and cryptocrystalline quartz; with a tough, splintery to conchoidal fracture and having numerous colors: white, gray, green,

blue, pink, red, yellow, brown, or black.

Chlorite A silicate of aluminum with ferrous iron and magnesium and

chemically combined water, characterized by the green color common

with silicates in which ferrous iron is prominent.

Clastic A descriptive term applied to rock formed from fragments of other

rocks.

Clay An earthy deposit of extremely fine texture that is usually plastic when

wet, and becomes hard and stone-like on being heated to redness. Chemically, it is characterized by containing hydrous silicates of alumina in considerable quantity, with feldspars and other silicates and quartz, and variable amounts of carbonates and ferruginous and organic matter. A portion of the constituents is generally in the colloidal state, and then acts as a lubricant to the grains and flakes of noncolloidal

material.

Conchoidal A material that produces smooth convexities or concavities, like those

of a clamshell, when fractured.

Detrital rock

A rock made up of the debris of other rock.

Epiclastic

An adjective applied to clastic rocks formed by surface agencies. A general term applicable to several grades or types.

Feldspar

A general name for a group of abundant rock-forming minerals, the names and compositions of which are as follows: Orthoclase, a monoclinic potassium-aluminum silicate; varities are known as adularia and sanidine. Microcline, a triclinic variety of the same composition as orthoclase. Anorthoclase, a triclinic feldspar containing both sodium and potassium. Plagioclase feldspar are a subgroup of tricliic minerals, at one end of which is albite, a sodium-aluminum silicate, and at the other end anorthite, a calcium-aluminum silicate. Hyalophane is a monoclinic form containing barium and calcium. Feldspar is found in practically all igneous rocks.

Ferromagnesium

In petrology, containing iron and magnesium. Applied to certain dark silicate minerals, especially amphibole, pyroxene, biotite, and olivine, and other igneous rocks containing them as dominant constituents.

Filtration system

A system used to separate solid particles, impurities, from a liquid or gas by passing it through a porous substance.

Fine-grained soils

Silts and clays that have 50 percent or more pass the No. 200 sieve.

Foliated

A splitting into leaflike layers.

Gypsum

Hydrous calcium sulphate. Alabaster is a fine-grained compact variety, white, shade, or tinted. Gypsite is an incoherent mass of very small gypsum crystals or particles, and has a soft, earthy appearance; contains various impurities, generally silica or clay. Satin spar is a fibrous variety with a pearly, opalescent appearance. Selenite is a variety that occurs in distinct crystals or in broad folia. Some crystals are 3 or 4 feet long and clear thoughout.

Humic

Of, pertaining to, or derived from humus.

Humus

A dark brown substance, formed usually in soil, due to the partial decomposition of vegetal matter; the organic portion of the soil.

Illite

A general term for the clay-mineral constituent of araillaceous sediments belonging to the micagroup. Occurs in micaceous particles less than 1 micrometer. Gray, light green, or yellowish brown. A silicate of potassium, aluminum, iron, and magnesium, with water.

Kaolinite

The hydrated silicate of alumina, which is the base of clays and which gives them plasticity. When kaolinite is mingled with varying amounts

of comminuted quartz, and yields a pure white clay, the mixture is kaolin.

Mica A hydrous silicate having a very fine basal cleavage that renders it

capable of being split into thin, tough, transparent plates. The most

common varieties are muscovite and biotite.

Micaceous Characteristic of, pertaining to, or containing mica.

Montmorillonite Very soft and tender, clay-like. Luster feeble. Color white or grayish

to rose-red and bluish; also pistachio green.

Muscovite Potash-bearing, white mica.

PTI test dust Replacement for AC Test Dust, the standardized test dust used for

filtration evaluation.

Quartz Crystallized silicon dioxide. Amethyst is a variety of the well known

amethystine color. Aventurine is a quartz spangled with scales of mica, hematite, or other minerals. False topaz or citrine is a yellow quartz. Rock crystal is a watery clear variety. Rose quartz is a pink variety.

Rutilated quartz contains needles of rutile.

Rutile Titanium dioxide, tetragonal. Crystals are commonly prismatic,

vertically striated or furrowed; often slender acicular. Occasionally

compact, massive.

Sericite A more or less fibrous form of muscovite (potash mica), often resulting

from the alteration of feldspar.

Silicate A salt or ester of any of the silicic acids. In mineralogical chemistry,

the silicates are of great importance, forming by far the largest group

of minerals.

Silt Soil passing a No. 200 (75 micrometer) U.S. standard sieve that is

nonplastic or very slightly plastic and that exhibits little or no strength

when air dry.

Sonicate Mixing, using the energy produced by sound waves.

Talc A hydrous silicate of alumina, magnesia, and iron. Hardness of 1, feels

greasy, and structure usually foliated.

Tourmaline A complex aluminum silicate of hexagonal crystallization containing

boron and, in some varieties, lithium and other elements. It occurs in

long, usually striated prisms in ancient crystalline rocks.

Hydrocarbon fluid used to simulate automotive fluids. Used commonly in filtration testing. Viscor L4264V91

Zirconium silicate. Zircon

VIII. ACRONYMS AND ABBREVIATIONS

ACFTD - Air Cleaner Fine Test Dust produced by AC Rochester

ACCTD - Air Cleaner Coarse Test Dust produced by AC Rochester

ATR - Attenuated Total Reflectance

BFLRF - Belvoir Fuels and Lubricants Research Facility (SwRI)

Belvoir RDE Center - U.S. Army Belvoir Research, Development and Engineering Center

CONUS - Continental United States

CUCV - Commercial Utility Cargo Vehicle

FTIR - Fourier Transform Infrared Spectrophotometer HMMWV - High Mobility Multipurpose Wheeled Vehicle

LAV - U.S. Marines Light Armored Vehicle
PTI - Powder Technology Incorporated
SEM - Scanning Electron Microscope
SwRI - Southwest Research Institute

APPENDIX A Soil Sample FTIR Spectra

Figure A-2. Twentynine Palms, CA, infrared spectrum

Figure A-3. PTI fine test dust infrared spectrum

Figure A-6. Saudi Arabia 1 infrared spectrum

Figure A-8. Yuma Proving Ground, AZ, infrared spectrum

Figure A-13. Ft. Stewart, GA, Red Cloud, infrared spectrum

Figure A-18. Ft. Bliss, TX, infrared spectrum

Figure A-19. Saudi Arabia 3 infrared spectrum

APPENDIX B Soil Sample SEM Microphotographs

Figure B-1. Saudi Arabia 1

Figure B-2. Saudi Arabia 1

Figure B-3. Saudi Arabia 2

Figure B-4. Saudi Arabia 5

Figure B-5. Fort Irwin, CA (National Training Center)

Figure B-6. Fort Stewart, GA

Figure B-7. Fort Stewart, GA, Red Cloud

Figure B-8. PTI fine test dust

Figure B-9. Twentynine Palms, CA, fuel debris

Figure B-10. Camp Pendleton, CA

Figure B-11. Camp Pendleton, CA, airborne dust

Figure B-12. Camp Pendleton, CA, airborne dust

DISTRIBUTION LIST

Department of Defense

DEFENSE ADVANCED RSCH PROJECTS AGY

DEFENSE TECHNICAL INFORMATION CTR

DEFENSE TECHNICAL INFORMATION CTR		DEFENSE ADVANCED RSCH PROJECTS AGY	
CAMERON STATION	12	DEFENSE SCIENCES OFFICE	1
ALEXANDRIA VA 22314		3701 NORTH FAIRFAX DRIVE ARLINGTON VA 22203-1714	
	Department (of the Army	
CDR		DIRECTOR	
US ARMY BELVOIR RESEARCH,		US ARMY MATERIEL SYSTEMS ANALYSIS	
DEVELOPMENT AND ENGINEERING CTR		ACTIVITY	
ATTN: SATBE-FL	10	ATTN: AMXSY-CM (MR NIEMEYER)	1
PORT BELVOIR VA 22060-5606		AMOUSY-CR	1
		ABERDEEN PROVING GROUND MD	
HQ, DEPT OF THE ARMY	•	21005-5006	
ATTN: DALO-TSE (COL KABOT) WASHINGTON DC 20310-0561	1	CDR	
WASHINGTON DC 20310-0061		US ARMY NATICK RDAE CENTER	
CDR		ATTN: SATNC-US (MR SIEGEL)	1
US ARMY MATERIEL COMMAND		SATNC-UE (MR CALLIGEROS)	i
ATTN: AMCRD-S	1	NATICK MA 01760-5020	-
5001 EISENHOWER AVENUE			
ALEXANDRIA VA 22333-0001		CDR	
		US ARMY RESEARCH OFFICE	
PROJ MGR, LIGHT ARMORED VEHICLE	_	ATTN: SLCRO-EG (DR MANN)	1
ATTN: AMCPM-LAV-E (MR DANSBURY)	1	RSCH TRIANGLE PARK NC 27709-2211	
US ARMY TANK-AUTOMOTIVE COMMAND		CDR	
WARREN MI 48397-5000		US ARMY POREIGN SCIENCE & TECH CTR	
CDR		ATTN: AIAST-RA-ST3 (MR BUSI)	1
US ARMY TANK-AUTOMOTIVE COMMAND		220-7TH STREET NE	•
ATTN: AMSTA-R (DR MCCLELLAND)	1	CHARLOTTESVILLE VA 22901	
AMSTA-RG (DR MUNT)	1		
AMSTA-RGP (MR HNATCZUK)	1	PROJECT MANAGER	
AMSTA-RGR (DR BRYZIK)	1	PETROLEUM & WATER LOGISTICS	
AMSTA-MT (MR GLADIEUX)	1	ATIN: AMCPM-PWL	1
AMSTA-MTC (MR GAGLIO)	1	4300 GOODFELLOW BLVD	
AMSTA-MC (MR POTTER) AMSTA-MV (MR ROBERTS)	1	ST LOUIS MO 63120-1798	
AMSTA-RS (DR PARKER)	1	CDR	
AMSTA-ZT	i	US ARMY PETROLEUM CENTER	
AMCPM-M113 (LTC DAVENPORT)	ĩ	ATTN: SATPC-Q (MR ASHBROOK)	1
AMCPM-M9 (COL SMITH)	1	NEW CUMBERLAND PA 17070-5008	_
AMCPM-CE (LTC MCCANN)	1	,	
AMCPM-WF (MR MARTIN)	1	CDR	
WARREN MI 48397-5000		US ARMY COLD REGION TEST CENTER	
		ATTN: STECR-TA	1
DIRECTOR		APO SEATTLE WA 98733	
US ARMY RESEARCH LAB ATTN: AMSRL-CP-PW	1	CDR	
ATTN: AMERICA: F-PW ADELPHI MD 20783-1145		US ARMY RSCH, DEV & STDZN GROUP (UK)	
ADELY III BID 20/85-1143		ATIN: AMXSN-UK-RA	
DIRECTOR		(DR REICHENBACH)	1
US ARMY RESEARCH LAB		BOX 65	-
ATTN: AMSRL-VP, MAIL STOP 77-12	1	FPO NEW YORK 09510-1500	
nasa lewis research ctr			
CLEVELAND, OH 44135		CDR	
		US ARMY COMBAT SYS TEST ACTY	_
CDR		ATTN: STECS-EN-T	1
US ARMY MISSILE COMMAND	1	ABERDEEN PROVING GROUND MD 21005-5059	
ATTN: AMSMI-U REDSTONE ARSENAL AL 35898-5243	1	619U0*JUJ7	
TOTALAIN UMBINUT UT 33616.3763			

CTOP .		HQ, US ARMY ARMOR CENTER	
CDR US ARMY YUMA PROVING GROUND		ATIN: ATSB-CD-ML	1
ATTN: STEYP-MT-TL-M	1	ATSB-TSM-T	i
YUMA AZ 85364-9103	-	PORT KNOX KY 40121	_
CDR		DOD PROJ MOR, MOBILE ELECTRIC POWER	
CONSTRUCTION ENG RSCH LAB	•	US ARMY TROOP SUPPORT COMMAND ATTN: AMCPM-MEP-TM (MR WADSI)	1
ATTN: CECER-EN P O BOX 9005	1	7500 BACKLICK ROAD	
CHAMPAIGN IL 61826-9005		SPRINGFIELD VA 22150	
PROGM EXEC OFF, COMBAT SUPPORT		CDR	
PM LIGHT TACTICAL VEHICLES,	_	US ARMY QUARTERMASTER SCHOOL	
ATTN: SFAE-CS-TVL	1	ATTN: ATSM-CDM (MR C PARENT) PORT LEE VA 23801	1
PM MEDIUM TACTICAL VEHICLES, ATTN: SFAE-CS-TVM	1	PORT LEE VA 25001	
PM HEAVY TACTICAL VEHICLES.	•	CDR	
ATIN: SFAE-CS-TVH	1	US ARMY COMBINED ARMS & SUPPT CMD AND	
US ARMY TANK-AUTOMOTIVE COMMAND		PT LEE	
WARREN MI 48397-5000		ATIN: ATCL-CD	1
		ATCL-MS	1
PROGM EXEC OFF, CLOSE COMBAT	•	PORT LEE VA 23801-6000	
APEO SYSTEMS, ATTN: SFAE-ASM-S PM ABRAMS, ATTN: SFAE-ASM-AB	1 1	CDR	
PM BFVS. ATTN: SFAE-ASM-BV	i	US ARMY ENGINEER SCHOOL	
PM IMP REC VEH, ATTN: SFAE-ASM-CMV	ī	ATTN: ATSE-CD	1
US ARMY TANK-AUTOMOTIVE COMMAND		FORT LEONARD WOOD MO 65473-5000	
WARREN MI 48397-5000			
***		CDR	
HQ US ARMY TRAINING & DOCTRINE CMD		US ARMY RESEARCH LABORATORY VEHICLE PROPULSION DIRECTORATE	
ATTN: ATCD-SL-5	1	ATTN: AMSRL-VP, DR ROBERT BILL	1
ATCD-W (MR WILSON)	i	21000 BROOKPARK ROAD	_
PORT MONROE VA 23651-5000		CLEVELAND OH 44135	
	Department of	of the Navy	
OFFICE OF CHIEF OF NAVAL RESEARCH	Department o	•	
OFFICE OF CHIEF OF NAVAL RESEARCH ATTN: OCNR-12E (DR ROBERTS)	Department o	US MARINE CORP LIAISON ATTN: USMC-LNO (MAJ OTTO)	1
	•	US MARINE CORP LIAISON	1
ATTN: OCNR-12E (DR ROBERTS) ARLINGTON VA 22217-5000	•	US MARINE CORP LIAISON ATTN: USMC-LNO (MAJ OTTO) US ARMY TANK-AUTOMOTIVE COMMAND (TACOM)	1
ATTN: OCNR-12E (DR ROBERTS) ARLINGTON VA 22217-5000 CDR	•	US MARINE CORP LIAISON ATTN: USMC-LNO (MAJ OTTO) US ARMY TANK-AUTOMOTIVE COMMAND	1
ATTN: OCNR-12E (DR ROBERTS) ARLINGTON VA 22217-5000 CDR DAVID TAYLOR RESEARCH CENTER	1	US MARINE CORP LIAISON ATTN: USMC-LNO (MAJ OTTO) US ARMY TANK-AUTOMOTIVE COMMAND (TACOM) WARREN MI 48397-5000	1
ATTN: OCNR-12E (DR ROBERTS) ARLINGTON VA 22217-5000 CDR DAVID TAYLOR RESEARCH CENTER ATTN: CODE 2759 (MR STRUCKO)	•	US MARINE CORP LIAISON ATTN: USMC-LNO (MAJ OTTO) US ARMY TANK-AUTOMOTIVE COMMAND (TACOM) WARREN MI 48397-5000 DEPUTY COMMANDING GENERAL	1
ATTN: OCNR-12E (DR ROBERTS) ARLINGTON VA 22217-5000 CDR DAVID TAYLOR RESEARCH CENTER	1	US MARINE CORP LIAISON ATTN: USMC-LNO (MAJ OTTO) US ARMY TANK-AUTOMOTIVE COMMAND (TACOM) WARREN MI 48397-5000 DEPUTY COMMANDING GENERAL USMC RD&A COMMAND	1
ATTN: OCNR-12E (DR ROBERTS) ARLINGTON VA 22217-5000 CDR DAVID TAYLOR RESEARCH CENTER ATTN: CODE 2759 (MR STRUCKO)	1	US MARINE CORP LIAISON ATTN: USMC-LNO (MAJ OTTO) US ARMY TANK-AUTOMOTIVE COMMAND (TACOM) WARREN MI 48397-5000 DEPUTY COMMANDING GENERAL	1
ATTN: OCNR-12E (DR ROBERTS) ARLINGTON VA 22217-5000 CDR DAVID TAYLOR RESEARCH CENTER ATTN: CODE 2759 (MR STRUCKO) ANNAPOLIS MD 21402-5067 DEPARTMENT OF THE NAVY HQ, US MARINE CORPS	1	US MARINE CORP LIAISON ATTN: USMC-LNO (MAJ OTTO) US ARMY TANK-AUTOMOTIVE COMMAND (TACOM) WARREN MI 48397-5000 DEPUTY COMMANDING GENERAL USMC RD&A COMMAND ATTN: PM GND WEAPONS (CB6T), LTC VARELLA SSEA (LTC PHILLIPS)	
ATTN: OCNR-12E (DR ROBERTS) ARLINGTON VA 22217-5000 CDR DAVID TAYLOR RESEARCH CENTER ATTN: CODE 2759 (MR STRUCKO) ANNAPOLIS MD 21402-5067 DEPARTMENT OF THE NAVY HQ, US MARINE CORPS ATTN: LPP-2 (MAI TALLERI)	1	US MARINE CORP LIAISON ATTN: USMC-LNO (MAJ OTTO) US ARMY TANK-AUTOMOTIVE COMMAND (TACOM) WARREN MI 48397-5000 DEPUTY COMMANDING GENERAL USMC RD&A COMMAND ATTN: PM GND WEAPONS (CB6T), LTC VARELLA	1
ATTN: OCNR-12E (DR ROBERTS) ARLINGTON VA 22217-5000 CDR DAVID TAYLOR RESEARCH CENTER ATTN: CODE 2759 (MR STRUCKO) ANNAPOLIS MD 21402-5067 DEPARTMENT OF THE NAVY HQ, US MARINE CORPS	1	US MARINE CORP LIAISON ATTN: USMC-LNO (MAJ OTTO) US ARMY TANK-AUTOMOTIVE COMMAND (TACOM) WARREN MI 48397-5000 DEPUTY COMMANDING GENERAL USMC RD&A COMMAND ATTN: PM GND WEAPONS (CB6T), LTC VARELLA SSEA (LTC PHILLIPS)	1
ATTN: OCNR-12E (DR ROBERTS) ARLINGTON VA 22217-5000 CDR DAVID TAYLOR RESEARCH CENTER ATTN: CODE 2759 (MR STRUCKO) ANNAPOLIS MD 21402-5067 DEPARTMENT OF THE NAVY HQ, US MARINE CORPS ATTN: LPP-2 (MAI TALLERI) WASHINGTON DC 20380	1	US MARINE CORP LIAISON ATTN: USMC-LNO (MAJ OTTO) US ARMY TANK-AUTOMOTIVE COMMAND (TACOM) WARREN MI 48397-5000 DEPUTY COMMANDING GENERAL USMC RD&A COMMAND ATTN: PM GND WEAPONS (CB6T), LTC VARELLA SSEA (LTC PHILLIPS) QUANTICO VA 22134-5080	1
ATTN: OCNR-12E (DR ROBERTS) ARLINGTON VA 22217-5000 CDR DAVID TAYLOR RESEARCH CENTER ATTN: CODE 2759 (MR STRUCKO) ANNAPOLIS MD 21402-5067 DEPARTMENT OF THE NAVY HQ, US MARINE CORPS ATTN: LPP-2 (MAI TALLERI) WASHINGTON DC 20380	1	US MARINE CORP LIAISON ATTN: USMC-LNO (MAJ OTTO) US ARMY TANK-AUTOMOTIVE COMMAND (TACOM) WARREN MI 48397-5000 DEPUTY COMMANDING GENERAL USMC RD&A COMMAND ATTN: PM GND WEAPONS (CB6T), LTC VARELLA SSEA (LTC PHILLIPS) QUANTICO VA 22134-5080	1
ATTN: OCNR-12E (DR ROBERTS) ARLINGTON VA 22217-5000 CDR DAVID TAYLOR RESEARCH CENTER ATTN: CODE 2759 (MR STRUCKO) ANNAPOLIS MD 21402-5067 DEPARTMENT OF THE NAVY HQ. US MARINE CORPS ATTN: LPP-2 (MAI TALLERI) WASHINGTON DC 20380 CDR	1	US MARINE CORP LIAISON ATTN: USMC-LNO (MAJ OTTO) US ARMY TANK-AUTOMOTIVE COMMAND (TACOM) WARREN MI 48397-5000 DEPUTY COMMANDING GENERAL USMC RD&A COMMAND ATTN: PM GND WEAPONS (CB6T), LTC VARELLA SSEA (LTC PHILLIPS) QUANTICO VA 22134-5080 SHE Air Force CDR	1
ATTN: OCNR-12E (DR ROBERTS) ARLINGTON VA 22217-5000 CDR DAVID TAYLOR RESEARCH CENTER ATTN: CODE 2759 (MR STRUCKO) ANNAPOLIS MD 21402-5067 DEPARTMENT OF THE NAVY HQ. US MARINE CORPS ATTN: LPP-2 (MAI TALLERI) WASHINGTON DC 20380 CDR SAN ANTONIO AIR LOGISTICS CTR	1 1 Department of t	US MARINE CORP LIAISON ATTN: USMC-LNO (MAJ OTTO) US ARMY TANK-AUTOMOTIVE COMMAND (TACOM) WARREN MI 48397-5000 DEPUTY COMMANDING GENERAL USMC RD&A COMMAND ATTN: PM GND WEAPONS (CB6T), LTC VARELLA SSEA (LTC PHILLIPS) QUANTICO VA 22134-5080 CDR WARNER ROBINS AIR LOGISTIC CTR	1 1
ATTN: OCNR-12E (DR ROBERTS) ARLINGTON VA 22217-5000 CDR DAVID TAYLOR RESEARCH CENTER ATTN: CODE 2759 (MR STRUCKO) ANNAPOLIS MD 21402-5067 DEPARTMENT OF THE NAVY HQ, US MARINE CORPS ATTN: LPP-2 (MAI TALLERI) WASHINGTON DC 20380 CDR SAN ANTONIO AIR LOGISTICS CTR ATTN: SAALC/SFT (MR MAKRIS)	1 1 Department of t	US MARINE CORP LIAISON ATTN: USMC-LNO (MAJ OTTO) US ARMY TANK-AUTOMOTIVE COMMAND (TACOM) WARREN MI 48397-5000 DEPUTY COMMANDING GENERAL USMC RD&A COMMAND ATTN: PM GND WEAPONS (CB6T), LTC VARELLA SSEA (LTC PHILLIPS) QUANTICO VA 22134-5080 CDR WARNER ROBINS AIR LOGISTIC CTR ATTN: WRALC/LVR-1 (MR PERAZZOLA)	1
ATTN: OCNR-12E (DR ROBERTS) ARLINGTON VA 22217-5000 CDR DAVID TAYLOR RESEARCH CENTER ATTN: CODE 2759 (MR STRUCKO) ANNAPOLIS MD 21402-5067 DEPARTMENT OF THE NAVY HQ, US MARINE CORPS ATTN: LPP-2 (MAI TALLERI) WASHINGTON DC 20380 CDR SAN ANTONIO AIR LOGISTICS CTR ATTN: SAALC/SPT (MR MAKRIS) SAALC/LDPE (MR ELLIOT)	1 1 Department of t	US MARINE CORP LIAISON ATTN: USMC-LNO (MAJ OTTO) US ARMY TANK-AUTOMOTIVE COMMAND (TACOM) WARREN MI 48397-5000 DEPUTY COMMANDING GENERAL USMC RD&A COMMAND ATTN: PM GND WEAPONS (CB6T), LTC VARELLA SSEA (LTC PHILLIPS) QUANTICO VA 22134-5080 CDR WARNER ROBINS AIR LOGISTIC CTR	1 1
ATTN: OCNR-12E (DR ROBERTS) ARLINGTON VA 22217-5000 CDR DAVID TAYLOR RESEARCH CENTER ATTN: CODE 2759 (MR STRUCKO) ANNAPOLIS MD 21402-5067 DEPARTMENT OF THE NAVY HQ, US MARINE CORPS ATTN: LPP-2 (MAI TALLERI) WASHINGTON DC 20380 CDR SAN ANTONIO AIR LOGISTICS CTR ATTN: SAALC/SFT (MR MAKRIS)	1 1 Department of t	US MARINE CORP LIAISON ATTN: USMC-LNO (MAJ OTTO) US ARMY TANK-AUTOMOTIVE COMMAND (TACOM) WARREN MI 48397-5000 DEPUTY COMMANDING GENERAL USMC RD&A COMMAND ATTN: PM GND WEAPONS (CB6T), LTC VARELLA SSEA (LTC PHILLIPS) QUANTICO VA 22134-5080 CDR WARNER ROBINS AIR LOGISTIC CTR ATTN: WRALC/LVR-1 (MR PERAZZOLA)	1 1
ATTN: OCNR-12E (DR ROBERTS) ARLINGTON VA 22217-5000 CDR DAVID TAYLOR RESEARCH CENTER ATTN: CODE 2759 (MR STRUCKO) ANNAPOLIS MD 21402-5067 DEPARTMENT OF THE NAVY HQ, US MARINE CORPS ATTN: LPP-2 (MAI TALLERI) WASHINGTON DC 20380 CDR SAN ANTONIO AIR LOGISTICS CTR ATTN: SAALC/SPT (MR MAKRIS) SAALC/LDPE (MR ELLIOT)	1 1 Department of t	US MARINE CORP LIAISON ATTN: USMC-LNO (MAJ OTTO) US ARMY TANK-AUTOMOTIVE COMMAND (TACOM) WARREN MI 48397-5000 DEPUTY COMMANDING GENERAL USMC RD&A COMMAND ATTN: PM GND WEAPONS (CB6T), LTC VARELLA SSEA (LTC PHILLIPS) QUANTICO VA 22134-5080 CDR WARNER ROBINS AIR LOGISTIC CTR ATTN: WRALC/LVR-1 (MR PERAZZOLA) ROBINS AIR PORCE BASE GA 31098	1 1
ATTN: OCNR-12E (DR ROBERTS) ARLINGTON VA 22217-5000 CDR DAVID TAYLOR RESEARCH CENTER ATTN: CODE 2759 (MR STRUCKO) ANNAPOLIS MD 21402-5067 DEPARTMENT OF THE NAVY HQ. US MARINE CORPS ATTN: LPP-2 (MAI TALLERI) WASHINGTON DC 20380 CDR SAN ANTONIO AIR LOGISTICS CTR ATTN: SAALC/SPT (MR MAKRIS) SAALC/LDPE (MR ELLIOT) KELLY AIR FORCE BASE TX 78241	1 1 Department of t	US MARINE CORP LIAISON ATTN: USMC-LNO (MAJ OTTO) US ARMY TANK-AUTOMOTIVE COMMAND (TACOM) WARREN MI 48397-5000 DEPUTY COMMANDING GENERAL USMC RD&A COMMAND ATTN: PM GND WEAPONS (CB6T), LTC VARELLA SSEA (LTC PHILLIPS) QUANTICO VA 22134-5080 CDR WARNER ROBINS AIR LOGISTIC CTR ATTN: WRALC/LVR-1 (MR PERAZZOLA) ROBINS AIR FORCE BASE GA 31098	1 1
ATTN: OCNR-12E (DR ROBERTS) ARLINGTON VA 22217-5000 CDR DAVID TAYLOR RESEARCH CENTER ATTN: CODE 2759 (MR STRUCKO) ANNAPOLIS MD 21402-5067 DEPARTMENT OF THE NAVY HQ. US MARINE CORPS ATTN: LPP-2 (MAI TALLERI) WASHINGTON DC 20380 CDR SAN ANTONIO AIR LOGISTICS CTR ATTN: SAALC/SPT (MR MAKRIS) SAALC/LDPE (MR ELLIOT) KELLY AIR FORCE BASE TX 78241 NATIONAL AERONAUTICS AND SPACE	1 1 Department of t	US MARINE CORP LIAISON ATTN: USMC-LNO (MAJ OTTO) US ARMY TANK-AUTOMOTIVE COMMAND (TACOM) WARREN MI 48397-5000 DEPUTY COMMANDING GENERAL USMC RD&A COMMAND ATTN: PM GND WEAPONS (CB6T), LTC VARELLA SSEA (LTC PHILLIPS) QUANTICO VA 22134-5080 CDR WARNER ROBINS AIR LOGISTIC CTR ATTN: WRALC/LVR-1 (MR PERAZZOLA) ROBINS AIR FORCE BASE GA 31098 INIZATIONS DEPARTMENT OF ENERGY	1 1
ATTN: OCNR-12E (DR ROBERTS) ARLINGTON VA 22217-5000 CDR DAVID TAYLOR RESEARCH CENTER ATTN: CODE 2759 (MR STRUCKO) ANNAPOLIS MD 21402-5067 DEPARTMENT OF THE NAVY HQ. US MARINE CORPS ATTN: LPP-2 (MAI TALLERI) WASHINGTON DC 20380 CDR SAN ANTONIO AIR LOGISTICS CTR ATTN: SAALC/SPT (MR MAKRIS) SAALC/LDPE (MR ELLIOT) KELLY AIR FORCE BASE TX 78241	1 1 Department of to 1 1 Other Organ	US MARINE CORP LIAISON ATTN: USMC-LNO (MAJ OTTO) US ARMY TANK-AUTOMOTIVE COMMAND (TACOM) WARREN MI 48397-5000 DEPUTY COMMANDING GENERAL USMC RD&A COMMAND ATTN: PM GND WEAPONS (CB6T), LTC VARELLA SSEA (LTC PHILLIPS) QUANTICO VA 22134-5080 CDR WARNER ROBINS AIR LOGISTIC CTR ATTN: WRALC/LVR-1 (MR PERAZZOLA) ROBINS AIR FORCE BASE GA 31098	1 1
ATTN: OCNR-12E (DR ROBERTS) ARLINGTON VA 22217-5000 CDR DAVID TAYLOR RESEARCH CENTER ATTN: CODE 2759 (MR STRUCKO) ANNAPOLIS MD 21402-5067 DEPARTMENT OF THE NAVY HQ. US MARINE CORPS ATTN: LPP-2 (MAI TALLERI) WASHINGTON DC 20380 CDR SAN ANTONIO AIR LOGISTICS CTR ATTN: SAALC/SPT (MR MAKRIS) SAALC/LDPE (MR ELLIOT) KELLY AIR FORCE BASE TX 78241 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION	1 1 Department of to 1 1 Other Organ	US MARINE CORP LIAISON ATTN: USMC-LNO (MAJ OTTO) US ARMY TANK-AUTOMOTIVE COMMAND (TACOM) WARREN MI 48397-5000 DEPUTY COMMANDING GENERAL USMC RD&A COMMAND ATTN: PM GND WEAPONS (CB6T), LTC VARELLA SSEA (LTC PHILLIPS) QUANTICO VA 22134-5080 CDR WARNER ROBINS AIR LOGISTIC CTR ATTN: WRALC/LVR-1 (MR PERAZZOLA) ROBINS AIR FORCE BASE GA 31098 DEPARTMENT OF ENERGY CE-151, ATTN: MR JOHN RUSSELL	1 1
ATTN: OCNR-12E (DR ROBERTS) ARLINGTON VA 22217-5000 CDR DAVID TAYLOR RESEARCH CENTER ATTN: CODE 2759 (MR STRUCKO) ANNAPOLIS MD 21402-5067 DEPARTMENT OF THE NAVY HQ. US MARINE CORPS ATTN: LPP-2 (MAI TALLERI) WASHINGTON DC 20380 CDR SAN ANTONIO AIR LOGISTICS CTR ATTN: SAALC/SPT (MR MAKRIS) SAALC/LDPE (MR ELLIOT) KELLY AIR FORCE BASE TX 78241 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LEWIS RESEARCH CENTER CLEVELAND OH 44135	1 1 Department of to 1 1 Other Organ	US MARINE CORP LIAISON ATTN: USMC-LNO (MAJ OTTO) US ARMY TANK-AUTOMOTIVE COMMAND (TACOM) WARREN MI 48397-5000 DEPUTY COMMANDING GENERAL USMC RD&A COMMAND ATTN: PM GND WEAPONS (CB6T), LTC VARELLA SSEA (LTC PHILLIPS) QUANTICO VA 22134-5080 CDR WARNER ROBINS AIR LOGISTIC CTR ATTN: WRALC/LVR-1 (MR PERAZZOLA) ROBINS AIR FORCE BASE GA 31098 DEPARTMENT OF ENERGY CE-151, ATTN: MR JOHN RUSSELL 1000 INDEPENDENCE AVE, SW	1 1
ATTN: OCNR-12E (DR ROBERTS) ARLINGTON VA 22217-5000 CDR DAVID TAYLOR RESEARCH CENTER ATTN: CODE 2759 (MR STRUCKO) ANNAPOLIS MD 21402-5067 DEPARTMENT OF THE NAVY HQ. US MARINE CORPS ATTN: LPP-2 (MAI TALLERI) WASHINGTON DC 20380 CDR SAN ANTONIO AIR LOGISTICS CTR ATTN: SAALC/SFT (MR MAKRIS) SAALC/LDPE (MR ELLIOT) KELLY AIR PORCE BASE TX 78241 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LEWIS RESEARCH CENTER CLEVELAND OH 44135 BFLRF No. 294	1 1 Department of to 1 1 Other Organ	US MARINE CORP LIAISON ATTN: USMC-LNO (MAJ OTTO) US ARMY TANK-AUTOMOTIVE COMMAND (TACOM) WARREN MI 48397-5000 DEPUTY COMMANDING GENERAL USMC RD&A COMMAND ATTN: PM GND WEAPONS (CB6T), LTC VARELLA SSEA (LTC PHILLIPS) QUANTICO VA 22134-5080 CDR WARNER ROBINS AIR LOGISTIC CTR ATTN: WRALC/LVR-1 (MR PERAZZOLA) ROBINS AIR FORCE BASE GA 31098 DEPARTMENT OF ENERGY CE-151, ATTN: MR JOHN RUSSELL 1000 INDEPENDENCE AVE, SW	1 1
ATTN: OCNR-12E (DR ROBERTS) ARLINGTON VA 22217-5000 CDR DAVID TAYLOR RESEARCH CENTER ATTN: CODE 2759 (MR STRUCKO) ANNAPOLIS MD 21402-5067 DEPARTMENT OF THE NAVY HQ. US MARINE CORPS ATTN: LPP-2 (MAI TALLERI) WASHINGTON DC 20380 CDR SAN ANTONIO AIR LOGISTICS CTR ATTN: SAALC/SPT (MR MAKRIS) SAALC/LDPE (MR ELLIOT) KELLY AIR FORCE BASE TX 78241 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LEWIS RESEARCH CENTER CLEVELAND OH 44135	1 1 Department of to 1 1 Other Organ	US MARINE CORP LIAISON ATTN: USMC-LNO (MAJ OTTO) US ARMY TANK-AUTOMOTIVE COMMAND (TACOM) WARREN MI 48397-5000 DEPUTY COMMANDING GENERAL USMC RD&A COMMAND ATTN: PM GND WEAPONS (CB6T), LTC VARELLA SSEA (LTC PHILLIPS) QUANTICO VA 22134-5080 CDR WARNER ROBINS AIR LOGISTIC CTR ATTN: WRALC/LVR-1 (MR PERAZZOLA) ROBINS AIR FORCE BASE GA 31098 DEPARTMENT OF ENERGY CE-151, ATTN: MR JOHN RUSSELL 1000 INDEPENDENCE AVE, SW	1 1