Esercizi Thevenin

Applicando il teorema di Thevenin calcolare la corrente ${\rm I}_3$ nella resistenza ${\rm R}_3$

 $[I_3=1,92 \text{ mA}]$

Applicando il teorema di Thevenin calcolare la corrente ${\rm I}_3$ nella resistenza ${\rm R}_3$

$$[I_3=5A]$$

Applicando il teorema di Thevenin calcolare la corrente $\rm I_3$ nella resistenza $\rm R_3$

$$[I_3=50 \text{ mA}]$$

Applicando il teorema di Thevenin calcolare la caduta di tensione V_{BO} sulla resistenza R_{O} . In un secondo tempo ai capi di R_{O} viene posta una resistenza R_{L} =6,6k Ω si trovi la nuova tensione V_{BO}

 $[V_{BO}=2,88 \text{ V}; V'_{BO}=2,15 \text{ V}]$

Calcolare la corrente che scorre in R_4

$$E_1$$
 = 100 V; R_1 = 10 Ω; R_2 = 20 Ω; R_3 = 5 Ω; R_4 = 30 Ω; R_5 = 15 Ω; E_2 = 80 V

$$R_1 = 4 \Omega$$

$$R_2 = 12 \Omega$$

$$R_3 = 6 \Omega$$

$$V_G = 24 V$$

Determinare i parametri dei bipoli equivalenti di Thévenin e Norton del bipolo A-B.

$$V_0 = 18 \text{ V}$$

$$R_{eq} = 9 \Omega$$

$$I_{cc} = 2 A$$

$$R_1 = 6 \Omega$$

$$R_2 = 2 \Omega$$

$$R_3 = 8 \Omega$$

$$I_G = 4 A$$

Determinare i parametri dei bipoli equivalenti di Thévenin e Norton del bipolo A-B.

$$V_0 = 12 \text{ V}$$

$$R_{eq} = 4 \Omega$$

$$I_{cc} = 3 A$$

$$R_1 = 20 \Omega$$

 $R_2 = 20 \Omega$
 $R_3 = 60 \Omega$
 $R_4 = 20 \Omega$
 $V_G = 100 V$

Determinare i parametri dei bipoli equivalenti di Thévenin e Norton del bipolo A-B.

$$V_0 = 25 \text{ V}$$

$$R_{eq} = 25 \Omega$$

$$I_{cc} = 1 A$$

$$R_1 = 20 \Omega$$

$$R_2 = 15 \Omega$$

$$R_3 = 10 \Omega$$

$$R_4 = 5 \Omega$$

$$I_G = 6 A$$

Determinare i parametri dei bipoli equivalenti di Thévenin e Norton del bipolo A-B.

$$V_0 = 6 V$$

$$R_{eq} = 12 \Omega$$

$$I_{cc} = 0.5 \text{ A}$$

Determinare i parametri dei bipoli equivalenti di Thévenin e Norton del bipolo A-B.

$$V_0 = 24 \text{ V} \qquad \qquad R_{eq} = 16 \Omega \qquad \qquad I_{cc} = 1.5 \text{ A}$$