

Jonathan Williams, Zhongyi Zhang, Stevan Zlojutro

Business Problem & Objective

- Data competition hosted by CrowdANALYTIX and sponsored by Tennis Australia
- Seeking an automatic solution for identifying point-ending shots in tennis through the use of tracking data
- Current system uses manual coding and subjective decision-making which could include inconsistencies from one coder to the next
- Potential to provide more accurate point-ending classifications

Our Data

Focus on classifying point-ending shots in tennis: Winners, Forced Errors, and Unforced Errors

Data Dictionary defined 25 features

Overview

- Men's and women's data sets
- Player and ball tracking data for the penultimate (second-to-last) shot and final shot of a rally

Player Tracking Data

- Speed
- On-court coordinate position at time of shots
 - 2D coordinates of player position
- Distance travelled to hit final shot

Ball Tracking Data

- Type of shot hit
- Speed
- Net clearance
- On-court coordinate location
 - 2D coordinates of ball position

Our Data

Data Assumptions

- Almost equal distribution of outcomes
- Misclassifications in the data due to technological tracking errors and missed calls (6% of entire data set)

	Winner (W)	Forced Error (FE)	Unforced Error (UE)	Counts	What?	Why?
Over/In	3263	266	245	3774	Should always be a Winner (W)	Last shot wins point
Over/Out	28	1803	1630	3461	Should always be an Error (either FE or UE)	Last shot does not win point
Net/In	58	1306	1245	2609	By dictionary, should be an Error (either FE or UE)	Does not get to other side of court
Net/Out	3	81	72	156	By dictionary, should be an Error (either FE or UE)	Does not get to other side of court
	3352	3456	3192			

- Treated men's and women's data as one data set
 - Originally provided separately

Data Properties & Initial Visualization

- Categorical data (total of 8 e.g. shot type, in/out of court, serving player)
- Continuous data (total of 17 e.g. on-court player position, ball position)

Feature Engineering

Learned that this was a feature engineering problem

Feature Engineering

Data Inaccuracies Features (1st try)

- Over In
- Over Out
- Net In
- Net Out

Euclidean Distance Features (1st try)

- PlayerDistanceStart
- PlayerDistance End

Error Shot Differentiation Features (1st try)

- RushedShot
- FloppedShot

Gender Error Shot Differentiation Features (2nd try)

- Men Speed
- Women Speed
- Men Previous
 Distance from Sideline
- Women PreviousDistance from Sideline
- Men Opponent Depth
- Women OpponentDepth
- Men Player Distance Travelled
- Women PlayerDistance Travelled

Feature Engineering

Data Transformations

- Dummy Variables for Categorical Variables
- Feature Variables
- Scaled Data
- Explored Second-Order Polynomial Interactions

Model Performance

		Base Model Original Dataset		Final Model with FE	
	Models	Test	Train	Test	Train
1	Random Forest Classifier	0.7665	0.7749	0.8325	0.8339
2	Ada Boost Classifier	0.7625	0.7626	0.8070	0.8156
3	Gradient Boost Classifier	0.8490	0.9923	0.8545	0.9903
4	XGBoost Classifier	0.8585	0.8834	0.8375	0.8741
5	SVC + Poly Kernel	0.8215	0.8620	0.8590	0.9060
6	SVC + RBF Kernel	0.8370	0.8720	0.8660	0.9053
7	K-Nearest Neighbors	0.7660	1.0000	0.8340	1.0000
8	Soft Voting Ensemble	0.8580	0.8884	0.8605	0.9545

Model Feature Importance

XGBoost Classifier - Confussion Matrix on Train Data Mean Accuracy Score: 0.874125

GradientBoostingClassifier - Model 4 Feature Importance (Top 5)

Ideas for Further Exploration

- Since feature interaction played a role in the model performance, incorporating shap
 Python package might provide more insights
- Began exploring using Recursive Neural Network
- Could use a more robust Ensemble technique other than Voting, such as Stacking
 - The Hands-On Machine Learning book recommends a package called Brew
 - Brew is deprecated and no longer supported
 - Began looking at a package called DESlib
- Use Patsy as it appeared to be a fairly robust package that could be used for Feature Engineering
- Discuss data inaccuracies and possible methods for improvement with Tennis Australia
- Would like to have used interactions, but each model fit took about 20 minutes

