Quantum Computing - MCQs

1. In quantum computing, what is the basic unit of information?

a) Gigab) Qubitc) Bitd) Byte

	Answer: Qubit		
2.	What do we call the pieces of information in a quantum computer? a) Bits b) Qubits c) Bytes d) Qubytes Answer: B		
3.	When the information is between 0 and 1 in a quantum computer, what do we call this?		
	 a) Superposition b) Same position c) Ordinary position d) Different position 		
	Answer: A		
	Quantum computers are very good at dealing with a) Clarity b) Certainty c) Uncertainty d) Reliability Answer: C		
5.	What does 'entanglement' mean? a) Two particles are different b) Two particles are separate c) Two particles are independent d) Two particles are connected		
I	Answer: D		
6.	What can quantum computers be used for? a) Artificial Intelligence b) Simulations/Predictions c) Both (A) and (B) d) Google Docs and Slides		
Answer: C			
7.	When the two members of a Qubit pair exist in a single quantum state, it is known as		
	a) Entanglement		
	b) Engagement		
	c) Superposition		

d) None of the Above Answer: A 8. Quantum computing is relatively than classical computing. a) Faster b) Slower c) Average d) None of the Above Answer: A			
 9. Qubit stands for a) Quality bits b) Question bit c) Quantum gates d) Quantum bit Answer: D 			
 10. A qubit is aquantum-mechanical system. a) One-state b) Two-state c) Three-state d) Four-state 			
Answer: B			
 11. The set of vectors and set of scalars which follow the same properties follows vector space is said be a. Basis b. Dimension c. Hilbert space d. Orthogonal state 	ed by linear		
Answer: C			
 12. It is the process of replacing ith row of the matrix by ith column, then it is sa a. Conjugate Matrix b. Transpose Matrix c. Identity Matrix d. Hermitian Operator 	id to be		
Answer: B			
 13. The operators change with time while the state vectors remain constant, the to be a. Schrodinger representation b. Heisenberg representation c. Interaction representation d. None of the above Answer: B	en it is said		

- 14. The operators remain constant while the state vectors change with time, then it is said to be
 - a. Schrodinger representation
 - b. Heisenberg representation
 - c. Interaction representation
 - d. None of the above

Answer: A

- 15. The diagonal entries of a Hermitian matrix must be
 - a. Complex conjugate
 - b. Real
 - c. Both real & Complex conjugate
 - d. None of the above

Answer: B

- 16. The eigen value of a Hermitian matrix must be
 - a. Complex conjugate
 - b. Real
 - c. Both real & Complex conjugate
 - d. None of the above

Answer: B

- 17. What is a vector space?
 - a. A space consisting of only vectors
 - b. A set of vectors closed under addition and scalar multiplication
 - c. A space that includes both vectors and scalars
 - d. A space that is always three-dimensional

Answer: b. A set of vectors closed under addition and scalar multiplication

- 18. What is the dimension of a vector space?
 - a. The size or length of a vector
 - b. The number of vectors in the space
 - c. The maximum number of linearly independent vectors that span the space
 - d. The number of elements in the basis of the space

Ans: c. The maximum number of linearly independent vectors that span the space

- 19. What is the span of a set of vectors?
 - a. The set of all vectors in the vector space
 - b. The linear combination of all vectors in the set
 - c. The set of vectors that are orthogonal to the given set
 - d. The set of vectors that are linearly independent

Answer: b. The linear combination of all vectors in the set

- 20. In a finite-dimensional vector space, what is the maximum number of linearly independent vectors a basis can have?
 - a. 0
 - b. 1
 - c. The dimension of the vector space
 - d. The size of the vector space

Answer: c. The dimension of the vector space

- 21. Moore's Law originally stated that the number of transistors on a microchip would double approximately every:
 - a. 6 months
 - b. 1 year
 - c. 2 years
 - d. 5 years

Answer: c. 2 years

- 22. What fundamental technology trend enabled the continuation of Moore's Law for several decades?
 - a. Miniaturization of transistors
 - b. Increase in clock speed
 - c. Expansion of data storage
 - d. Advancements in software algorithms

Answer: a. Miniaturization of transistors

- 23. Which component of a computer is primarily affected by Moore's Law?
 - a. Central Processing Unit (CPU)
 - b. Random Access Memory (RAM)
 - c. Hard Disk Drive (HDD)
 - d. Graphics Processing Unit (GPU)

Answer: a. Central Processing Unit (CPU)

- 24. What is one of the main factors contributing to the end of Moore's Law?
 - a. Decreased demand for computing power
 - b. Physical limits of miniaturization
 - c. Lack of innovation in software development
 - d. Increasing costs of semiconductor production

Answer: b. Physical limits of miniaturization

- 25. Which alternative approaches are being explored to extend computing power beyond the limits of Moore's Law?
 - a. Quantum computing
 - b. Neuromorphic computing
 - c. Optical computing
 - d. All of these

Answer: d. All of these

 26. What is the fundamental unit of information in quantum computing? a. Bit b. Byte c. Qubit d. Quantum gate
Answer: c. Qubit
 27. In classical computing, information is processed using bits. What are the two possible values for a classical bit? a. 0 and 1 b. True and False c1 and 1 d. Red and Blue
Answer: a. 0 and 1
28. Which property allows qubits to represent multiple states simultaneously in quantum computing? a. Superposition b. Entanglement c. Interference d. Tunnelling Answer: a. Superposition
 29. In a CNOT gate, you create a(n) with two qubits. a. Superposition b. Entangled state c. Bloch d. Hadamard Answer: b. Entangled state
 30. In a quantum circuit, this gate is used to place a qubit into superposition. a. Hadamard b. X-gate c. Bloch d. CNOT Answer: a. Hadamard
 31. This quantum gate acts on a single qubit and would most be similar to a traditional NOT gate. a. CNOT b. X-Gate c. Hadamard d. Deutsch Gate Answer: b. X-Gate

- 32. What is superposition in quantum computing?
 - a. A state in which a qubit can exist in multiple states simultaneously
 - b. The process of entangling multiple qubits
 - c. A gate used to manipulate qubits
 - d. A unit of quantum information

Answer: a. A state in which a qubit can exist in multiple states simultaneously

- 33. What happens to the entanglement of qubits when they are physically separated
 - a. The entanglement is lost
 - b. The entanglement remains intact
 - c. The entanglement becomes stronger
 - d. The entanglement becomes weaker

Answer: b. The entanglement remains intact

- 34. What is the purpose of quantum gates in quantum computing?
 - a. To entangle qubits
 - b. To collapse superposition
 - c. To manipulate qubits
 - d. To measure qubit states

Answer: c. To manipulate qubits

- 35. What does 'entanglement' mean?
 - a) Two particles are different
 - b) Two particles are separate
 - c) Two particles are independent
 - d) Two particles are connected

Answer: d) Two particles are connected

- 36. A qubit is a quantum-mechanical system.
 - a) One-state
 - b) Two-state
 - c) Three-state
 - d) Four-state

Answer: b) Two-state

- 37. What is the purpose of quantum gates in quantum computing?
 - a) To entangle qubits
 - b) To collapse superposition
 - c) To manipulate qubits
 - d) To measure qubit states

Answer : C) To manipulate qubits

a)	Clarity
b)	Certainty
c)	Uncertainty
d)	Reliability
	Answer: C) Uncertainty
39. Pa	uli's matrices are
a)	Unitary
b)	Reversible
c)	Both unitary and reversible
d)	None of the above
	Answer: (C)
40. If <	<0 0>=1 is called
	Normalized
	Orthogonal
	Hermitian
d)	Orthonormal
,	Answer: (a)
41. 0>	and $ 1\rangle$ are orthogonal if:
a)	They are perpendicular
	They are parallel
	Angle between them is 0
d)	Linearly independent
	Answer: (A)
42. In	a linear vector space, linearly dependent and linearly independent vectors are
a)	If all the scalars are equal to 0 and some scalars are not equal to 0.
b)	If some scalars are not equal to 0 and all the scalars are equal to 0.
c)	Both the case scalars are equal to 0
d)	Both the case scalars are not equal to 0.
	Answer: (B)
43. Ad	vantage of qubit over bit is,
	It works in spin up state
	It works in spin down state
	It also works in super posed state
	All the above
)	Answer: (C)
44. Ou	antum gates are unitary in nature. Because of,
a)	Superposed state
/	Spin up state
	Spin down state
	Normalization condition.

Answer: (D)

38. Quantum computers are very good at dealing with_____

45. Which quantum gate work as flip flop gate?

- a) Z gate
- b) Y gate
- c) X gate
- d) None of the above.

Answer: (X)

46. Which quantum gate can take the qubit to super posed state?

- a) X gate
- b) Y gate
- c) Z gate
- d) Hadamard gate

Answer: (D)

47. In $|\Psi\rangle = \alpha|0\rangle + \beta|1\rangle$, α , β represents,

- a) Ground state and excited state
- b) Probability density
- c) Probability amplitude
- d) All the above

Answer: (C)

48. In $|\Psi\rangle = \alpha|0\rangle + \beta|1\rangle$, if $\alpha=1$ then,

- a) Probability of finding the electron in the ground state is high
- b) Probability of finding the electron in the excited state is high
- c) Probability of finding the electron in the superposed state is high
- d) None of the above

Answer: (A)

49. In $|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$, if $\beta = 1$ then,

- a) Probability of finding the electron in the ground state is high
- b) Probability of finding the electron in the excited state is high
- c) Probability of finding the electron in the superposed state is high
- d) None of the above

Answer: (B)

50. In $|\Psi\rangle = \alpha|0\rangle + \beta|1\rangle$, if α and $\beta = \frac{1}{\sqrt{2}}$ then,

- a) Probability of finding the electron in the ground state is high
- b) Probability of finding the electron in the excited state is high
- c) Probability of finding the electron in the superposed state is high
- d) None of the above

Answer: (C)

* * * * * * * * *