Nonparametric Bayesian Modeling

Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

April 10, 2018

Motivation: Mixture Models

Suppose each observation is generated from a mixture model

$$oldsymbol{z}_n \sim \operatorname{multinoulli}(\pi) \ oldsymbol{x}_n \sim \mathcal{N}(\mu_{oldsymbol{z}_n}, \Sigma_{oldsymbol{z}_n})$$

- How to learn K, i.e., the number of clusters for such a mixture model?
- Need to model/prior for $\mathbf{Z} = [\mathbf{z}_1, \dots, \mathbf{z}_N]$ that allows number of clusters to be unbounded

Motivation: Latent Feature Models

ullet Suppose each observation is a subset sum of K latent features

$$z_{nk} \sim \operatorname{Bernoulli}(\pi_k)$$
 $k = 1, ..., K$
 $x_n = \sum_{k=1}^K z_{nk} a_k + \epsilon_n = \mathbf{A} z_n + \epsilon_n$

This can also be seen as a form of matrix factorization with one matrices being binary

- How to learn K, i.e., the number of latent features (i.e., number of columns/rows in \mathbf{Z}/\mathbf{A})?
- Need to model/prior for Z that allows number of columns in Z to remain unbounded

Motivation: Matrix Factorization

ullet Consider the following singular value decomposition model for an N imes M matrix ${f X}$

$$\mathbf{X} = \sum_{k=1}^{K} \lambda_k \mathbf{u}_k \mathbf{v}_k^{\top} + \mathbf{E} = \mathbf{U} \Lambda \mathbf{V}^{\top} + \mathbf{E}$$

where $\boldsymbol{u}_k \in \mathbb{R}^N$ and $\boldsymbol{v}_k \in \mathbb{R}^M$, Λ is a $K \times K$ diagonal matrix

- This is basically a weighted sum of rank-1 matrices
- How to learn K, i.e., the "rank" of the above factorization?
- Need a model/prior for Λ that allows the size of Λ to be unbounded

Nonparametric Bayesian Modeling

- Enables constructing models that do not have an a priori fixed size
- Nonparametric does not mean no parameters
 - Instead, have a possibly infinite (unbounded) number of parameters
 - Note: We've already seen Gaussian Processes which is a nonparametric Bayesian model
- Usually constructed via one of the following ways
 - Take a finite model (e.g., a finite mixture model) and consider its "infinite limit"
 - Have a model that allows very large number of parameters but has a "shrinkage" effect, e.g.,

$$\mathbf{X} = \sum_{k=1}^K \lambda_k \mathbf{u}_k \mathbf{v}_k^{ op} + \mathbf{E}$$
 $\lambda_k o 0$ as $k o \infty$

We will look at some examples of both these approaches

Being Nonparametric by taking Infinite Limit of Finite Models

Finite Mixture Model

- ullet Data $old X = [old z_1, \dots, old z_N]$, cluster assignments $old Z = [old z_1, \dots, old z_N]$, old K clusters
- Denote the mixing proportion by a vector $\boldsymbol{\pi} = [\pi_1, \dots, \pi_K], \; \sum_{k=1}^K \pi_k = 1$

$$p(\boldsymbol{\pi}|\alpha) = \text{Dirichlet}(\frac{\alpha}{K}, \frac{\alpha}{K}, \dots, \frac{\alpha}{K})$$

$$p(\boldsymbol{z}_n|\pi) = \prod_{k=1}^K \pi_k^{z_{nk}}$$

$$p(\boldsymbol{X}|\boldsymbol{\pi}) = \prod_{n=1}^N \sum_{k=1}^K \pi_k p(\boldsymbol{x}_n|\boldsymbol{z}_n = k)$$

• Integrating out π , the marginal prior probability of cluster assignments **Z**

$$p(\mathbf{Z}|\alpha) = \int p(\mathbf{Z}|\pi)p(\pi|\alpha)d\pi = \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)} \frac{\prod_{k=1}^K \Gamma(m_k + \frac{\alpha}{K})}{\Gamma(\frac{\alpha}{K})^K} \qquad \text{(verify)}$$

where $m_k = \text{no.}$ of points with $z_n = k$

Finite Mixture Model

• What is the prior $p(\mathbf{z}_n|\mathbf{Z}_{-n},\alpha)$, i.e., the dist. of \mathbf{z}_n given cluster assignment \mathbf{Z}_{-n} of other points?

$$p(\mathbf{z}_n|\mathbf{Z}_{-n},\alpha) = \frac{p(\mathbf{z}_n,\mathbf{Z}_{-n}|\alpha)}{p(\mathbf{Z}_{-n}|\alpha)} = \frac{p(\mathbf{Z}|\alpha)}{p(\mathbf{Z}_{-n}|\alpha)}$$

- Note that the above is a discrete distribution (z_n takes one of K possible values)
- Using $p(\mathbf{Z}|\alpha) = \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)} \frac{\prod_{k=1}^{K} \Gamma(m_k + \frac{\alpha}{K})}{\Gamma(\frac{\alpha}{K})^K}$ (and applying the same to get $p(\mathbf{Z}_{-n}|\alpha)$) we will have

$$\begin{split} p(\mathbf{z}_n = j | \mathbf{Z}_{-n}, \alpha) &= \frac{p(\mathbf{z}_n = j, \mathbf{Z}_{-n} | \alpha)}{p(\mathbf{Z}_{-n} | \alpha)} = \frac{\frac{\Gamma(\alpha)}{\Gamma(N + \alpha)} \frac{\Gamma(m_j + \frac{\alpha}{K}) \prod_{k \neq j} \Gamma(m_k + \frac{\alpha}{K})}{\Gamma(\frac{\alpha}{K})^K}}{\frac{\Gamma(\alpha)}{\Gamma(N - 1 + \alpha)} \frac{\Gamma(m_j - 1 + \frac{\alpha}{K}) \prod_{k \neq j} \Gamma(m_k + \frac{\alpha}{K})}{\Gamma(\frac{\alpha}{K})^K}} \\ &= \frac{m_{-n,j} + \frac{\alpha}{K}}{N - 1 + \alpha} \qquad (m_{-n,j} = m_j - 1 \text{ denotes no. of other examples in cluster } j) \end{split}$$

• Thus prior prob. of $z_n = j$ is prop. to $m_{-n,j}$, i.e., number of other examples assigned to cluster j (this is like a "rich gets richer" phenomenon; a popular cluster will attract more examples)

Taking the Infinite Limit..

- We saw that $p(\mathbf{z}_n = j | \mathbf{Z}_{-n}, \alpha) = \frac{m_{-n,j} + \frac{\alpha}{K}}{N-1+\alpha}$. What if $K \to \infty$?
- In that case, we will have $p(z_n = j | \mathbf{Z}_{-n}, \alpha) = \frac{m_{-n,j}}{N-1+\alpha}$
- Suppose only K_+ clusters are currently occupied (that have at least one data point)
- Total probability of data point n going to any of these K_+ clusters $=\sum_{j=1}^{K_+} \frac{m_{-n,j}}{N-1+\alpha} = \frac{N-1}{N-1+\alpha}$
- Probability of data point n going to a new (i.e., so far unoccupied) cluster $=\frac{\alpha}{N-1+\alpha}$
- Therefore in the limit of an unbounded number of clusters, we have

$$p(\boldsymbol{z}_n = j | \boldsymbol{\mathsf{Z}}_{-n}, \alpha) = \begin{cases} \frac{m_{-n,j}}{N-1+\alpha} & \text{(prob. of going to } j = 1, \dots, K_+) \\ \frac{\alpha}{N-1+\alpha} & \text{(prob. of creating a new cluster } K_+ + 1) \end{cases}$$

- ullet The above gives us a prior distribution for clustering with unbounded K
- ullet Note that the probability of starting a new cluster is proportional to Dirichlet hyperparam. lpha
 - ullet The hyperparam lpha can also be learned

A metaphor for the same: Chinese Restaurant Process (CRP)

- Consider a restaurant with infinite number of tables (each table denotes a cluster)
- Customer 1 sits at a randomly closen table (all tables are equivalent to begin with)
- Each subsequent customer n > 1 sits using the following scheme
 - Sits at an already occupied table k with probability $\frac{m_k}{n-1+\alpha}$
 - \bullet Sits at a new table with probability $\frac{\alpha}{n-1+\alpha}$

$$p(\pmb{z}_n=j|\pmb{z}_1,\pmb{z}_2,\ldots,\pmb{z}_{n-1},\alpha) = \begin{cases} \frac{m_{-n,j}}{n-1+\alpha} & \text{(for } j=1,\ldots,K_+) \\ \frac{\alpha}{n-1+\alpha} & \text{(create a new cluster } K_++1) \end{cases}$$

• The total number of occupied tables isn't fixed beforehand (connections to Dirichlet Processes)

Modeling Binary Matrices with Unbounded Number of Columns

• Recall the subset-sum problem

So how do we model binary matrices for which number of columns K is a priori unknown?

- A nonparam. Bayesian model called "Indian Buffet Process" (IBP) defines a prior for such matrices
- Just like CRP, the IBP is a metaphor to describe the process that generates such matrices
- Note: In some models, the number of rows can be unknown (and number of columns fixed)
 - The IBP model still applies (use IBP as the prior on the transpose of the matrix)

Modeling Binary Matrices with Finite Many Columns

• Consider the generative process of an $N \times K$ binary matrix Z

- \bullet Rows denote the N examples, columns denote the K latent features
- Assume $\pi_k \in (0,1)$ to be probability of latent feature k being 1

$$z_{nk} \sim \text{Bernoulli}(\pi_k), \quad \pi_k \sim \text{Beta}(\alpha/K, 1)$$

- Note: All z_{nk} 's are i.i.d. given π_k
- For this model, the conditional probability of $z_{nk} = 1$, given other entries in column k of **Z**

$$p(z_{nk}=1|oldsymbol{z}_{-n,k})=\int p(z_{nk}=1|\pi_k)p(\pi_k|oldsymbol{z}_{-n,k})=rac{m_{-n,k}+rac{lpha}{K}}{N+rac{lpha}{K}}$$
 (verify)

where $m_{-n,k} = \sum_{i \neq n} z_{ik}$ denotes how many other entries in column k are equal to 1

Another Metaphor: Indian Buffet Process

- ullet For the finite K case, we saw that $p(z_{nk}=1|oldsymbol{z}_{-n,k})=rac{m_{-n,k}+rac{\kappa}{K}}{N+rac{\kappa}{K}}$
- As $K \to \infty$, we will have $p(z_{nk}=1|z_{-n,k})=\frac{m_{-n,k}}{N}$ and $p(z_{nk}=0|z_{-n,k})=\frac{N-m_{-n,k}}{N}$
- Note that this too exhibits a "rich-gets-richer" phenomenon (just like CRP)
- The Indian Buffet Process is a metaphor for this model. Assume a buffet with infinite dishes
 - Customer 1 selects $Poisson(\alpha)$ dishes
 - The *n*-th customer selects:
 - Each already selected dish k with probability $m_{-n,k}/n$ $(m_k$: how many previous customers before n selected dish k)
 - Poisson (α/n) new dishes (this can create new columns in **Z**)

• The above can be used as a prior for **Z**. Refer to (Griffiths and Ghahramani, 2011) for examples and other theoretical details of the model. Also has connections to Beta Processes

Being Nonparametric using Models that have a Shrinkage Effect

Nonparametric Mixture Models: Another Construction

• Consider a finite mixture model with K components with params $(\mu_k, \Sigma_k)_{k=1}^K$

$$egin{array}{c|c} G & \pi_1 & \pi_2 & \pi_3 & \pi_4 \ \hline & \phi_1 & \phi_2 \phi_3 & \phi_4 \ \hline \end{array}$$

• Denoting $(\mu_k, \Sigma_k) = \phi_k$, this mixture model can be expressed as

$$G = \sum_{k=1}^{K} \pi_k \delta_{\phi_k}$$

where π_k is the mixing proportion of component k and $\sum_{k=1}^K \pi_k = 1$

- In a Bayesian setting, we usually assume $[\pi_1, \dots, \pi_K] \sim \mathsf{Dirichlet}(\alpha/K, \dots, \alpha/K)$
- We can make it a nonparametric model by constructing an infinite length probability vector

$$\pi_1, \pi_2, \pi_3, \dots, \qquad \sum_{k=1}^{\infty} \pi_k = 1$$

• How to construct such an "infinite" length vector? Using an infinite dimensional Dirichlet?

Nonparametric Mixture Models via Stick-Breaking Process

• Assume a mixture distribution $G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$ and generate mixing proportions as

$$eta_k \sim ext{Beta}(1,lpha) \qquad k=1,\ldots,\infty$$
 $\pi_1 = eta_1, \quad \pi_k = eta_k \prod_{\ell=1}^{k-1} (1-eta_\ell) \qquad k=2,\ldots,\infty$

- Can show that $\sum_{k=1}^{\infty} \pi_k = 1$
- Each "location" ϕ_k can be drawn from an appropriate distribution $\phi_k \sim G_0$
- Therefore, a finite mixture model can be made nonparametric by replacing the Dirichlet prior on π in a mixture model by a stick-breaking process prior as defined above

Another Example: Multiplicative Gamma Process

Consider the following probabilistic version of SVD

$$\mathbf{X} = \sum_{k=1}^K \lambda_k \mathbf{u}_k \mathbf{v}_k^{\top} + \mathbf{E}$$

ullet Consider the following prior on the "singular values" λ_k

$$\begin{array}{lcl} \lambda_k & \sim & \mathcal{N}(\mathbf{0}, \tau_k^{-1}) \\ \\ \tau_k & = & \prod_{\ell=1}^k \delta_\ell \\ \\ \delta_\ell & \sim & \mathsf{Gamma}(\alpha, 1) \quad \mathsf{where} \ \alpha > 1 \end{array}$$

• Note that as k becomes large, τ_k gets larger and larger and λ_k shrinks to zero

[&]quot;Sparse Bayesian infinite factor models (Bhattacharya and Dunson, 2011)

Some Comments

- Nonparametric Bayesian models have been widely used in several applications
 - Clustering, dim-red, regression/classification, time-series models such as HMM, and many others
- Nonparametric Bayesian models are not the only way to learn the right model size
- Marginal likelihood $p(\mathcal{D}|\mathcal{M})$ can be used for model selection from a set of models $\{\mathcal{M}_i\}_{i=1}^L$
- Other criteria such as Akaike or Bayesian Information Criteria are also commonly used
 - Usually defined as a sum of negative log-lik. and model size (models with smaller values preferred)

$$AIC = 2k - 2 \times \text{log-lik}$$

 $BIC = k \log N - 2 \times \text{log-lik}$

where k denotes the number of parameters of the model, N denotes number of data points

- However, marginal likelihood, AIC/BIC, etc. try multiple models and then choose the best
- In contrast, NPBayes models learn a single model having an unbounded complexity
 - Also natural for streaming data where model selection is difficult/impractical to perform