(2)	10%) Let $S = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$ be a subset of the vector space \mathbb{R}^3 . Prove that S is	s
	inearly independent.	

(7) (4%) Prove or disprove that the product of two matrices always has rank equal to the lesser of the ranks of the two matrices.

(25%) Let T be the linear operator on \mathbb{R}^2 defined by $T(x_1, x_2) = (-x_1, x_1)$.

- (a) What is $[T]_{\alpha}$? Her α is the standard ordered basis for \mathbb{R}^2 .
- (b) What is $[T]_{\beta}$? Here $\beta = \{(1,2), (1,-1)\}.$

Let I be the identity transformation from \mathbb{R}^2 to \mathbb{R}^2 , i.e., $I(x_1,x_2)=(x_1,x_2)$.

- (c) What is $[I]_{\alpha}^{\beta}$?
- (d) Let A be an n × n matrix. Then A is invertible if there exists an n × n matrix B such that AB = BA = I. Prove that if A is invertible, then B, described as above, is unique. (Such B is to be denoted by A⁻¹).
- (e) Find a 2×2 matrix Q such that $Q^{-1}[T]_{\alpha}Q = [T]_{\beta}$. (Hint: T = I(TI).)

Let $T: P_2(\mathbb{R}) \to \mathbb{R}^3$ be the linear transformation defined by $T(a+bx+cx^2)=(a+b,c,a-b)$. Let β and γ be the standard ordered bases of $P_2(\mathbb{R})$ and \mathbb{R}^3 , respectively. Compute $[U]_{\beta}^{\gamma}$.

(15%) Assume matrix
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
, and $|A| = -5$. Find

- (1) |3A| (3分); (2) $|A^{-1}|$ (3分); (3) $|2A^{-1}|$ (4) $|(2A)^{-1}|$ (3分); (5) $\begin{bmatrix} a & g & d \\ b & h & e \\ c & i & f \end{bmatrix}$ (3分)

(5%) Find the projection matrix
$$P$$
 onto the column space of $A = \begin{bmatrix} 1 & 0 \\ 3 & 0 \\ 0 & -1 \\ 0 & -3 \end{bmatrix}$.

(12%) Find the minimal polynomial of the matrix

$$A = \left(\begin{array}{ccc} 0 & -1 & 1 \\ 1 & 2 & -1 \\ 1 & 1 & 0 \end{array}\right).$$

- (5) Assume that $A \in \mathbb{R}^{m \times n}$
- a. Let $x \in \mathbb{R}^n$, show that if $(A^T A)x = 0$, then Ax = 0. (10 points)
- b. Show that Rank $(A^T A) = \text{Rank } A$. (10 points)

Which of the following statements are true?

- (A) tr(AB) = tr(A)tr(B)
- (B) rank(A) = rank(A'A)
- (C) det(cA) = c det(A)
- (D) If $A^2 = A$, then the eigenvalues of A have to be 1, where A is an $n \times n$ matrix over real numbers.
- (E) If the columns of A are linearly independent, then the rows of A are also linearly independent, where A is an $n \times n$ matrix.

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and A be its standard matrix, that is, $T\vec{x} = A\vec{x}$ for each $\vec{x} \in \mathbb{R}^n$. Please show that the range of T is just the column space of A. (10%)

Let

$$A = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 2 & 1 \\ -1 & -1 & 1 \end{bmatrix}$$

- (a) (5%) Find the rank of A.
- (b) (5%) Find the nullspace of A.

(10 pts) Let u and v be two orthogonal unit vectors.

- (a) (5 pts) Compute the inner product of u + v and u v.
- (b) (5 pts) Find the length of u v.

Let A,B,C are $n \times n$ matrices and BA=CA. Show that if det(A) \neq 0, then B=C. (7%)

If a linear transformation from a vector space V to another vector space W is one-to-one, which of the following statements is/are true?

- (A) It is onto;
- (B) $\dim(V) = \dim(W)$;
- (C) The null space of this transformation contains only the zero vector;
- (D) It is invertible;
- (E) All of the above.

Determine whether the two matrices below are similar to each other. Give your reasons.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & 2 \end{bmatrix} , \quad B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

(20%) Let
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix}$$
. Find (1) the characteristic polynomial (5 分);

- (2) eignevalues and associated eignevectors (10 分);
- (3) Find the transformation matrix P and diagonal matrix D such that $P^{-1}AP = D$ (5 分).