基礎数学	\Box	뱯	三十 作文
	-	ΙЯΙ	ATT SET

学籍番号 氏名			W	
	学籍番号	W - 100 - 100	氏名	

注意 (1) 解を導きだす経過をできるだけ丁寧に記述すること。説明が不十分な場合は減点する

- (2) 字が粗暴な解答も減点の対象とする.
- (3) 途中退席は 認めない。試験時間終了まで十分見直しをすること。
- (4) 答案は 6月 10日 (木) に返却する.答案を受け取らず放置している者は 単位修得の意志がないもの と見なす.

(2010.6.8 担当:佐藤)

1 次の各問に答えなさい。(各5点)

(1) 60 と 72 の最小公倍数を求めなさい

$$62 = 2^{2} \times 3 \times 5^{1}$$

$$72 = 2^{3} \times 3^{9} \times 5^{\circ}$$

(2) 循環小数 2.36 を有理数 $\frac{m}{n}$ (ただし、m,n は最大公約数が 1 の整数) の形に直しなさい。

$$A = \frac{234}{99} = \frac{26}{11}$$

(3) $|\sqrt{2}-1|-|\sqrt{2}-2|$ を計算しなさい。

- { (+)3}-3

$$:. |\sqrt{2} - 1| - |\sqrt{2} - 2| = (\sqrt{2} - 1) - (-1) (\sqrt{2} - 2) = (3) 2\sqrt{2} - 3$$

2 次の値を求めなさい(指数や累乗根記号を用いないで表しなさい).(各6点)

3 次の各間に答えなさい。(各6点)

(1) $2x^3 - 5x^2 - 4x + 3$ を因数分解しなさい.

f(-1)=のでするか了 fmの(メ+1)で割り切める。(因数定理)

$$\begin{array}{r}
22^{2} - 7x + 3 \\
9(+4) 2x^{3} - 5x^{2} - 4x + 3 \\
2x^{3} + 2x^{2} \\
-7x^{2} - 4x \\
-7x^{2} - 7x \\
3x + 3 \\
3x + 3
\end{array}$$

$$\therefore fm = (x+1)(2x^2-7a+3)$$

$$= (x+1)(2x-1)(x-3)$$

(2) f(x) を $g(x) = x^2 - 2x + 4$ で割ったときの商が q(x) = 2x + 1 で余りが r(x) = 3x - 1 であったとする.この ときの f(x) を求めなさい.

$$+m_1 = 9m_1 \times 9m_1 + h(x)$$

$$= (x^2 - 2x + 4)(2x + 1) + 3x - 1$$

$$= 2x^3 + x^2 - 4x^2 - 2x + 8x + 4 + 3x - 1$$

$$= 2x^3 - 3x^2 + 9x + 3$$

(3) $4x^4 - 5x^3 - 2x^2 - 6$ を x + 1 で割った余りを求めなさい。

$$+m_1 = 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$$

 $= 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$
 $= 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$
 $= 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$
 $= 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$
 $= 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$
 $= 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$
 $= 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$
 $= 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$
 $= 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$
 $= 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$
 $= 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$
 $= 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$
 $= 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$
 $= 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$
 $= 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$
 $= 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$
 $= 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$
 $= 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$
 $= 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$
 $= 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$
 $= 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$
 $= 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$
 $= 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$
 $= 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$
 $= 4x^4 - 5x^3 - 2x^2 - 6 \times x(x)$

基礎数学 中間試験 [2 枚目]

学籍番号 氏名

- 4 2次関数 $f(x) = x^2 4x + 2$ について以下の問に答えなさい。
 - (1) y = f(x) のグラフの概形を描きなさい。(7 点)

$$J = \chi^2 - 4\chi + 2$$

= $(\chi - 2)^2 - 2$
 $J_{1}, \chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}, \chi_{5}, \chi_{7}, \chi_{7}$

(2,-2), 下に台で、4・7方は2である

(2) y = f(x) のグラフと x 軸との交点の座標 (x 座標) を求めなさい。(6点)

(3) f(x) > -1 となる x の範囲を求めなさい。(6点)

$$9^{2}-4x+2>-1$$
 $\Rightarrow x^{2}-4x+3>0$
 $\Rightarrow (9(-1)(9(-3)>0)$
 $(12)^{1}$

2 ≠ √2

(3) q < 1, 3c x

5 次の各間に答えなさい.

(2) $\sin\theta = -\frac{\sqrt{3}}{2}$ となる θ を 1 つ答えなさい。 ただし、単位はラジアンとする。 (6 点)

のは -- 宝元 -元 会元 三元 行と

(3) $\sin \varphi = \frac{1}{4}$ を満たす φ (ただし、 $\frac{\pi}{2} < \varphi < \pi$) に対し、 $\cos \varphi$ の値を求めなさい。(6 点)

$$sin^2 y + aoo^2 y = 1$$
 37 $(= 2 : 7)^2 = \frac{\pi}{2} < y < 7$ $coo y < 0$

0 2:2° - < 4 < T 3 7

: coo 9 = ± 15 = ± 15

(4) $\frac{\pi}{4} + \frac{\pi}{6} = \frac{5\pi}{12}$ を利用して、 $\sin\left(\frac{5\pi}{12}\right)$ を求めなさい。(6 点)

加法定理工

$$\sin \frac{1}{12}\pi^{2} \sin \left(\frac{\pi}{4} + \frac{\pi}{6}\right) = \sin \frac{\pi}{4} \cos \frac{\pi}{6} + \sin \frac{\pi}{4} \cos \frac{\pi}{6}$$

$$= \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} + \frac{1}{2} \times \frac{\sqrt{2}}{2}$$

$$= \frac{\sqrt{8} + \sqrt{2}}{4}$$
(4) $\frac{\sqrt{6} + \sqrt{2}}{4}$

(5) $y = -\cos x$ のグラフの概形を描きなさい。ただし、x 軸との交点を少なくとも 2 つ、最大値と最小値とそのと きのxの値をそれぞれ1つずつ明記しなさい。(7点)

(2010.6.8 担当:佐藤)