Strategic Recycling of Critical Raw Materials

Hassan Benchekroun¹, Miao Dai², Francesco Ricci ³

¹McGill University and CIREQ

²Vrije Universiteit Amsterdam and Tinbergen Institute

³University of Montpellier and Center for Environmental Economics – Montpellier(CEE-M)

26th Annual Conference of the European Trade Study Group (ETSG) Milan, September 12, 2025

MOTIVATION: CONTEXT

INTRODUCTION

- ► Critical raw materials' (CRM) prospective role for digital, military and energy transition industries
- ▶ Policymakers' focus on dependence from foreign suppliers
- ▶ Politically determined shocks in commodity markets at the center stage in economics: Oil shocks vs CRM shocks
 - ≃ widely traded commodities in global market; upstream large firms and upfront investments; long-term contracts with sovereign governments; fiscal revenues
 - ≠ oil & gas mainly energy inputs with pervasive impacts; minerals affect specific sectors and products;
 - \neq minerals embedded in traded manufactured products \Rightarrow minerals recoverable from end-of-life products

MOTIVATION: CONTEXT II AND QUESTIONS

► European Union's "open strategic autonomy" objective:

THE EQUILIBRIUM

▶ 2024 CRM Act targets: 25% from recycling by 2030;

Introduction 000

MOTIVATION: CONTEXT II AND QUESTIONS

- ► European Union's "open strategic autonomy" objective:
 - ▶ 2024 CRM Act targets: 25% from recycling by 2030;
- ▶ **Question 1**: Could governments subsidize recycling not for environmental concern but for strategic trade purposes, with the sole aim of ensuring a trade advantage to their national firms?
- ▶ Question 2: Could importing material-intensive goods, despite their negative perception, actually be beneficial by creating a large reservoir for recycling?
- ▶ **Question 3**: If so, how much subsidy should governments target for recycling?

RELATED LITERATURE

Introduction

- Strategic trade policy:
 - ► Competing in third country: Brander and Spencer (1985), Dixit and Grossman (1986), Eaton and Grossman (1986), etc
 - ► Competing in reciprocal markets: Brander (1981), Brander and Spencer (1984), Dixit (1984, 1988), Collie (1991), etc
- Trade and recycling:
 - ▶ Sugeta and Shinkuma (2012), Sugiyama and Koonsed (2019), Egger and Keuschnigg (2024), etc
- Strategic green technology investment with spillover under emission taxation:
 - ▶ Ulph(1996), Poyago-Theotoky (2007), etc

OUR APPROACH

INTRODUCTION

- 1. Extend the strategic trade model à la Dixit (1984) to include material inputs sector with specific technology on recycling:
 - \blacktriangleright Focus on a 2 × 2 × 2 setting with two countries, two markets (output and input) and two inputs (virgin and recycled)
 - Economies of scale in recycling on local consumption
- 2. Model a two-stage policy game:
 - ▶ Stage 1: The government moves first by choosing the recycling subsidy to maximize the country's welfare
 - ▶ Stage 2: Firms take the announced policy as given and make their production decisions to maximize their profits
- 3. Characterize the equilibrium under different scenarios:
 - Laissez-faire, first-best allocations
 - Cooperative and non-cooperative policies

INTRODUCTION

- ▶ A homogeneous **traded** final good, produced by two firms, one located in Home and the other in Foreign(*)
- ▶ Firms compete à la Cournot and do not incur any transport costs in supplying either market
- ► Total domestic output: domestic sales + exports to foreign

$$H: z = q + x$$

 $F: z^* = q^* + x^*$

▶ Domestic demand for final good is linear:

$$H: P(q, x^*) = A - (q + x^*)$$

 $F: P^*(q^*, x) = A^* - (q^* + x)$

FINAL GOOD TECHNOLOGY

INTRODUCTION

Final production z requires inputs from virgin materials v, and recycled materials r, according to a linear technology:

$$H: z=q+x=v+r$$

 $F: z^*=q^*+x^*=v^*+r^*$

- Transform one unit of material input into one unit of output
- Virgin and recycled materials are perfect substitutes
- Only domestic material inputs can be employed
- ▶ No scarcity of virgin resources
- No market for end-of-life products and waste
- Same value as inputs

$$p_v = p_r \equiv p_m, \quad p_v^* = p_r^* \equiv p_m^*$$

Material Inputs Technology

INTRODUCTION

- Perfectly competitive virgin and recycling industries
- ► Cost of supplying virgin materials:

$$H: \quad C_v(v) = rac{\lambda}{2}v^2 \ F: \quad C_v^*(v^*) = rac{\lambda^*}{2}(v^*)^2$$

Cost of supplying recycled materials:

$$H: C_r(r) = \frac{\gamma}{2}r^2 + [\beta - b(q + x^*)]r$$

$$F: C_r^*(r^*) = \frac{\gamma^*}{2}(r^*)^2 + [\beta^* - b^*(q^* + x)]r^*$$

where b measures economies of scale in recycling depending on local consumption (size of disposed end-of-life products).

MATERIAL INPUTS MARKETS

Introduction

larger scale of local waste

recycled materials

MATERIAL INPUTS MARKETS

Introduction

MULTIPLIER EFFECT OF RECYCLING SUBSIDIES

Laissez faire equilibrium.

Subsidy to recycling

Introduction

MULTIPLIER EFFECT OF RECYCLING SUBSIDIES

Laissez faire equilibrium.

Subsidy to recycling $\Rightarrow \uparrow$ supply of $r \Rightarrow \uparrow$ supply of materials $\Rightarrow \uparrow$ material inputs used $\Rightarrow \uparrow$ final output

MULTIPLIER EFFECT OF RECYCLING SUBSIDIES

Laissez faire equilibrium.

Subsidy to recycling $\Rightarrow \uparrow$ supply of $r \Rightarrow \uparrow$ supply of materials

- $\Rightarrow \uparrow$ material inputs used $\Rightarrow \uparrow$ final output
- $\Rightarrow \uparrow$ end-of-life products waste $\Rightarrow \downarrow$ recycling cost $\Rightarrow \uparrow$ supply of materials ...

- ► Two market failures
 - (1) market power
 - (2) positive production externalities (economies of scale)

- ► A potential policy failure
 - (3) governments play a non-cooperative policy game in the aim of "stealing rents"
- Failures (1)+ (3) are considered in strategic trade literature

Market and Policy Failures

- Two market failures
 - (1) market power
 - (2) positive production externalities (economies of scale)
- A potential policy failure
 - (3) governments play a non-cooperative policy game in the aim of "stealing rents"
 - Failures (1)+ (3) are considered in strategic trade literature

Second best

INTRODUCTION

Relying exclusively on recycling subsidy does not allow to restore the first-best allocation.

- ▶ If the optimal total output is attained, the input ratio is suboptimal.
- If the optimal input ratio is attained, the total output is suboptimal.

A Two-stage Game

INTRODUCTION

- ▶ For given recycling policies (σ, σ^*) , solve the market equilibrium in each sector
- (C) Cooperative equilibrium: the world council of gov'ts sets a uniform σ
 - ▶ **Foresighted** gov'ts: aim at correcting both market failures
 - ▶ **Myopic** gov'ts (take the cost function of recycling as given): aimed at correcting only market power
- (NC) Non-cooperative policy equilibrium: each gov't chooses its σ taking as given the other country policy
 - ▶ **Foresighted** gov'ts: aim at correcting both market failures + stealing rents
 - ▶ **Myopic** gov'ts: correcting market power + stealing rents
 - ▶ Restrict analysis to configurations of parameters with interior solution and positive intercept of MC_r .

RESULTS I

INTRODUCTION

Compare the non-cooperative to the cooperative equilibrium in the case without positive production externality (b = 0)

Absent any environmental or resource concern,

RESULTS I

Introduction

Compare the non-cooperative to the cooperative equilibrium in the case without positive production externality (b = 0)

Absent any environmental or resource concern,

▶ Recycling subsidies allow to (partially) tackle market power

Results I

Introduction

Compare the non-cooperative to the cooperative equilibrium in the case without positive production externality (b = 0)

Strategic subsidies to recycling

Absent any environmental or resource concern, governments excessively subsidize recycling to boost the competitiveness of their national firm.

- ▶ Recycling subsidies allow to (partially) tackle market power
- ▶ Rent stealing motive makes recycling subsidies strategic complements

RESULTS II

Compare the **myopic non-cooperative** equilibrium to the **myopic cooperative** equilibrium (evaluated at laissez-faire)

THE EQUILIBRIUM

000000000

RESULTS II

INTRODUCTION

Compare the **myopic non-cooperative** equilibrium to the myopic cooperative equilibrium (evaluated at laissez-faire)

Economies of scale in recycling and loss from market power

- ► Even if governments **do not** take into account the feedback effect from increased output on the cost of recycling,
 - the stronger the externality,
 - the lower the production cost, the greater the marginal gain from correcting the market power distortion;
- ▶ The cooperative and noncooperative subsidies to recycling set by myopic governments are an increasing function of *b*.

Results I and II are based on market and policy failures: (1) and (3), similar to results in seminal papers on strategic trade theory.

RESULTS III

Introduction

Compare the **foresighted non-cooperative** equilibrium to the foresighted cooperative equilibrium

RESULTS III

INTRODUCTION

Compare the **foresighted non-cooperative** equilibrium to the **foresighted cooperative** equilibrium:

Subsidies to recycling can be insufficient or excessive

depending on the strength of the positive production externality

- ▶ Two countervailing forces: one due to rent stealing (excessive subsidies), the other due to the externality (insufficient subsidies).
- ▶ The subsidies to recycling set by foresighted noncooperative and cooperative governments are increasing functions of *b*.

RESULTS IV

Introduction

Compare the **myopic** versus the **foresighted** equilibrium

Compare the **myopic** versus the **foresighted** equilibrium

Economies of scale in recycling

- When governments take into account the feedback effect from increased output on the cost of recycling,
 - ▶ the stronger the externality,
 - ▶ the greater the marginal return on recycling subsidy in terms of reduced production cost.

RESULTS V

Introduction

 \Rightarrow Absent international cooperation, it may be preferable to have myopic policy making!

Conclusion

INTRODUCTION

- ► The positive production externality in recycling motivates targeted subsidies;
- ▶ Subsidies can be inefficiently large as long as their rationale lies in favouring the national firm;
- ▶ It may be socially preferable that governments ignore the externality affecting the recycling technology.

- ► Asymmetric and corner equilibrium
- ► Asymmetry in the cost of virgin resources
- ► Combination of policy instruments
- ► Exhaustible virgin resources → Dynamic game
- ► Trade in primary and secondary inputs

