Тема. Площа трапеції

Мета. Ознайомитися з формулами площі трикутника, вчитися розв'язувати задачі з даної теми.

Повторюємо

- Сформулюйте теорему Піфагора.
- Які властивості має трапеція та її елементи?
- Як можна знайти площу трапеції?

Виконайте вправи

Вписані та описані чотирикутники https://learningapps.org/watch?v=pxd603pvk16

Розв'язування задач

Задача 1

Знайдіть площу рівнобічної трапеції, якщо її основи дорівнюють $5~{\rm cm}$ та $17~{\rm cm}$, а периметр $42~{\rm cm}$.

Дано:

ABCD — трапеція;

BC = 5 cm:

AD = 17 cm;

 $P_{ABCD} = 42 \text{ cm}.$

Знайти: Sarcd.

Розв'язання

АВСD — рівнобічна трапеція, AB = CD. Оскільки $P_{ABCD} = 42$ см, то AB = CD = (42 - (17 + 5)) : 2 = 10 (см). Проведімо висоти BK та CF. BK \perp AD, CF \perp AD, отже, BK \parallel CF. KBCF — паралелограм. Тому BC = KF = 5 см. AK + FD = 17 - 5 = 12 (см). Оскільки AB = CD як бічні сторони трапеції, BK = CF — висоти трапеції та відстані між паралельними прямими BC та AD, то Δ ABK = Δ DCF за гіпотенузою та катетом. З рівності трикутників отримуємо: AK = FD = 12 : 2 = 6 (см). Маємо у Δ ABK: AB = 10 см, AK = 6 см, тоді BK = 8 см як сторони єгипетського трикутника. Площа трапеції:

$$S = \frac{AD + BC}{2} \cdot BK = \frac{17 + 5}{2} \cdot 8 = 88.$$

Відповідь: 88 см².

Задача 2

Діагоналі трапеції дорівнюють $30\ \mathrm{cm}$ і $40\ \mathrm{cm}$ і перетинаються під прямим кутом. Знайдіть площу трапеції.

Дано:

ABCD — трапеція;

AC і BD — її діагоналі;

AC⊥BD.

Знайти: S_{ABCD} .

Розв'язання

І спосіб

Нехай ABCD — трапеція, у якої AD II BC; AC \perp BD; AC = 30 см; BD = 40 см.

Площа трапеції ABCD дорівнює сумі площ трикутників ABC та ACD.

Позначмо висоту трикутника ABC як h_1 , а трикутника ADC як h_2 . Тоді

$$S_{ABCD} = \frac{1}{2} \cdot AC \cdot h_1 + \frac{1}{2} \cdot AC \cdot h_2 = \frac{1}{2} \cdot AC \cdot (h_1 + h_2) = \frac{1}{2} \cdot AC \cdot BD = \frac{$$

$$= \frac{1}{2} \cdot 30 \cdot 40 = 600 \, (\text{cm}^2).$$

II спосіб

Нехай ABCD — трапеція, у якої AD \parallel BC; AC \perp BD; AC = 30 см; BD = 40 см. Проведімо через вершину C пряму CF \parallel BD.

Тоді ∠ACF = 90° за побудовою.

 Δ ACF — прямокутний з гіпотенузою AF.

3 іншого боку, DBCF — паралелограм. Отримуємо:

DF = BC, CF = BD = 40 cm.

Трикутники ABC і DCF — рівновеликі, оскільки DF = BC, а висоти проведені до цих сторін, є висотами трапеції.

Одержали:
$$S_{ABCD} = S_{ACD} + S_{ABC} = S_{ACD} + S_{DCF} = S_{\Delta ACF}$$
 .

Тобто шукана площа трапеції дорівнює площі трикутника FCA, яка дорівнює півдобутку його катетів:

$$S = \frac{30 \cdot 40}{2} = 600 \ (cm^2).$$

Відповідь: 600 *см*².

Поміркуйте

Яку формулу можна скласти для обчислення площі прямокутної трапеції?

Домашнє завдання

Розв'язати задачі №3

Знайдіть площу трапеції ABCD(AB||DC), якщо її висота АК становить 8см, а менша основа AB—6см. Основа DC складається з трьох рівних відрізків DK,KL,LC.

Джерело

Всеукраїнська школа онлайн