

ECE 425 Lab 2: CMOS Compound Gates

Authors:
Cody Reid
Ken Sutter
Phil Nevins
Daniel Anishchenko

Cell Description

A complementary metal-oxide-semiconductor (CMOS) compound gate is a fundamental building block in digital electronic circuits that serves a specific logic function by combining basic gates, typically NAND and NOR gates. They are implemented using CMOS technology. These compound gates are designed to provide efficient and optimized solutions for specific logic operations and are commonly used in the design of integrated circuits, such as microprocessors, memory chips, and various other digital devices.

Cell Symbol

Figure 1: Cell Symbol

Cell Truth Table

	CMOS Compound Gate Truth Table						
A (Input)	B (Input)	C (Input)	Y (Output)				
0	0	0	1				
0	0	1	1				
0	1	0	1				
0	1	1	1				
1	0	0	1				
1	0	1	1				
1	1	0	1				
1	1	1	0				

Cell Schematic Diagram

Figure 2: Cell Schematic

Cell Layout Diagram and Dimension

Transistor Dimensions						
Transistor Instance Number	Length (nm)	Width (nm)				
PMOS_VTL	50	315				
NMOS_VTL	50	225				

Fan Out 4 (Tuned using FO4)

Figure 3: FanOut 4 (Tuned DUT using FO4) DUT Test Bench

Figure 4: FanOut 4 (Tuned DUT using FO4) DUT Rise & Fall Time

Figure 5: FanOut 4 (Tuned DUT using FO4) DUT T_plh & T_phl

Fan Out 0

Figure 6: FanOut 0 DUT Test Bench

Figure 7: FanOut 0 DUT Rise & Fall Time

Figure 8: FanOut 0 DUT T_plh & T_phl

Fan Out 1 Basic Inverter Basic Inverter

Figure 9: FanOut 1 DUT Test Bench

Figure 10: FanOut 1 DUT Rise & Fall Time

Figure 11: FanOut 1 DUT T_plh & T_phl

Fan Out 2

Figure 12: FanOut 2 DUT Test Bench

Figure 13: FanOut 2 DUT Rise & Fall Time

Figure 14: FanOut 2 DUT T_plh & T_phl

Fan Out 8

Figure 15: FanOut 8 DUT Test Bench

Figure 16: FanOut 8 DUT Rise & Fall Time

Figure 17: FanOut 8 DUT T_plh & T_phl

Rise and Fall Times

Transistor Rise Time for CMOS Compound Gate

Input A: Output Rise Time Data t _r (ps)						
Input rise/fall	Output Load (FOx)					
time (ps)	0	1	2	4	8	
50	71.43	69.23	66.72	64.72	61.32	

Transistor Rise Time for CMOS Compound Gate

Input B: Output Rise Time Data t _r (ps)						
Input rise/fall time (ps)	Output Load (FOx)					
	0	1	2	4	8	
50	63.83	63.26	62.74	62.4	60.6	

Transistor Rise Time for CMOS Compound Gate

Input C: Output Rise Time Data t _r (ps)						
Input rise/fall time (ps)	Output Load (FOx)					
	0	1	2	4	8	
50	64.64	64.15	63.75	63.58	61.91	

Transistor Fall Time for CMOS Compound Gate

Input A: Output Fall Time Data t _f (ps)						
Input rise/fall	Output Load (FOx)					
time (ps)	0	1	2	4	8	
50	57.08	58.36	57.88	57.53	57.83	

Transistor Fall Time for CMOS Compound Gate

Input B: Output Fall Time Data t₅ (ps)						
Input rise/fall	Output Load (FOx)					
time (ps)	0	1	2	4	8	
50	55.09	56.32	55.81	55.25	55.29	

Transistor Fall Time for CMOS Compound Gate

Input C: Output Fall Time Data t _f (ps)						
Input rise/fall time (ps)	Output Load (FOx)					
	0	1	2	4	8	
50	54.99	56.22	55.74	55.16	55.21	

Propagation Delays (All screenshots are in Appendix A for the following Toggle A/B/C)

Data Worst Case Low to High Propagation Delay tp_{In} (ns) for CMOS Compound Gate

Data Worst Case High to Low Propagation Delay tp _{hl} (ps) (Toggle A)						
Input rise/fall time (ps)	Output Load (FOx)					
	0	1	2	4	8	
50	16.1357	17.8592	19.3115	22.5744	27.9575	

Data Worst Case High to Low Propagation Delay tph (ns) for CMOS Compound Gate

Data Worst Case Low to High Propagation Delay tp _{Ih} (ps) (Toggle A)						
Input rise/fall time (ps)	Output Load (FOx)					
	0	1	2	4	8	
50	18.5385	20.00098	21.3708	23.9702	28.8464	

Data Worst Case Low to High Propagation Delay tp_{lh} (ns) for CMOS Compound Gate

Data Worst Case High to Low Propagation Delay tp _{hl} (ps) (Toggle B)						
Input rise/fall time (ps)	Output Load (FOx)					
	0	1	2	4	8	
50	18.1912	19.7946	21.4903	24.4195	29.7625	

Data Worst Case High to Low Propagation Delay tph (ns) for CMOS Compound Gate

Data Worst Case Low to High Propagation Delay tp _{Ih} (ps) (Toggle B)						
Input rise/fall time (ps)	Output Load (FOx)					
	0	1	2	4	8	
50	22.674	23.9907	25.2506	27.5994	31.9826	

Propagation Delays

Data Worst Case Low to High Propagation Delay tp_{In} (ns) for CMOS Compound Gate

Data Worst Case High to Low Propagation Delay tp _{hl} (ps) (Toggle C)						
Input rise/fall time (ps)	Output Load (FOx)					
	0	1	2	4	8	
50	17.7636	19.1837	20.5897	23.2505	28.1625	

Data Worst Case High to Low Propagation Delay tph (ns) for CMOS Compound Gate

Data Worst Case Low to High Propagation Delay tp _{Ih} (ps) (Toggle C)						
Input rise/fall time (ps)	Output Load (FOx)					
	0	1	2	4	8	
50	25.8141	26.9835	27.9622	30.3912	34.4937	

 Table 7: CMOS Compound Gate width variation table

CMOS Compound Gate width variation table						
DUT		Rise/Fall and Delay Time (n)s				
W _p (nm)	W _n (nm)	T_r	T_f	T_{plh}	T_{phl}	
<mark>315</mark>	225	17.68	24.85	34.813	8.6423	
270	180	17.52	26.06	18.33	34.7	
360	270	17.85	23.93	10.395	31.722	

225	135	17.9	29.58	11.82	<mark>37.951</mark>

We chose Wp = 315nm and Wn = 225nm because it is within our specifications with faster times and smaller footprint compared to other footprints that are also within specification.

Wp = 360nm and Wn = 270nm is faster but it is also much larger. We would need to weigh the need for a faster Tp low to high or faster Tp high to low or size, and whichever of these characteristics is most important could change our selection. We made our decision in the context of needing the smallest size with the fastest Tp high to low time.

Conclusion

9) What is the role and responsibility of each member of your team? Who did what part of the lab? Please list the individual contribution to the lab.

Cody Reid

Worked on the Inverter and assisted with CMOS circuit debugging

Ken Sutter

Wrote the report and assisted in both circuits

Phil Nevins

Worked on the CMOS circuit

Daniel Anishchenko

Worked on boolean calculations and on the Compound Logic FET circuit

Appendix A

FO0

Transient Response Fri Dec 1 20:42:36 2023 1

Transient Response Fri Dec 1 21:03:38 2023 1

Transient Response Fri Dec 1 21:05:54 2023 1

Transient Response Fri Dec 1 21:16:12 2023 1

Transient Response Fri Dec 1 21:19:08 2023 1

Transient Response Fri Dec 1 21:21:17 2023 1

Transient Response Fri Dec 1 21:24:24 2023 1

FO4

Transient Response Fri Dec 1 21:28:27 2023 1

Transient Response Fri Dec 1 21:29:58 2023 1

Transient Response Fri Dec 1 21:33:24 2023 1

Transient Response Fri Dec 1 21:35:15 2023 1

Transient Response Fri Dec 1 21:37:01 2023 1

