Постановка задачи:

Решить задачу целочисленного линейного программирования, используя 1 алгоритм Гомори

Задача: найти $\max x_1 + 2x_2$

$$\begin{cases} x_1 + 4x_2 \le 15 \\ 3x_1 + 2x_2 \le 11 \\ -x_1 + x_2 \le -1 \end{cases}$$

$$x_1, x_2 \in \mathbb{Z}^+$$

Алгоритм заключается в том, что сначала решим симплекс методом задачу линейного программирования, если решение не целочисленное, то будем уменьшать область поиска, добавив новое ограничение и снова решим ЗЛП симплекс методом, пока не получим оптимальное решение в целых числах.

Сделаем графики по условиям задачи

Зеленым треугольником выделена область, удовлетворяющая всем условиям, мы будем искать решение из этого треугольника.

Запишем все наши условия в столбцовую матрицу, где с помощью операций со столбцами будем приводить матрицу к нужному нам виду (элементы в 1 столбце должны быть положительными, а коэффициенты переменных целевой функции отрицательными). Матрицу такого вида будем называть оптимальной.

X₁ X₂

f	0	1	2
X ₁	0	1	0
X ₂	0	0	1
X3	15	-1	-4
X4	11	-3	-2
X5	-1	1	-1

На каждой итерации будем выбирать ведущий элемент. Будем выделять ведущий элемент красным цветом, также будем писать последовательность операций над столбцами.

\mathbf{x}_1	\mathbf{x}_2

			_
f	0	1	2
X ₁	0	1	0
X 2	0	0	1
X 3	15	-1	-4
X4	11	-3	-2
X5	-1	1	-1

1.
$$[2] * (-\frac{1}{3})$$

$$X_4$$
 X_2

f	$\frac{11}{3}$	$\frac{-1}{3}$	$\frac{4}{3}$
X ₁	$\frac{11}{3}$	$\frac{-1}{3}$	$\frac{-2}{3}$
X ₂	0	0	1
X ₃	$\frac{34}{3}$	$\frac{1}{3}$	$\frac{-10}{3}$
X4	0	1	0
X5	$\frac{8}{3}$	$\frac{-1}{3}$	$\frac{-5}{3}$

Матрица не оптимально, выбираем новый ведущий элемент.

 \mathbf{x}_2 X_4

f	$\frac{11}{3}$	$\frac{-1}{3}$	$\frac{4}{3}$
X ₁	11 3	$\frac{-1}{3}$	$\frac{-2}{3}$
X2	0	0	1
X 3	$\frac{34}{3}$	$\frac{1}{3}$	$\frac{-10}{3}$
X4	0	1	0
X5	$\frac{8}{3}$	$\frac{-1}{3}$	$\frac{-5}{3}$

- 1. $[3] * (-\frac{3}{5})$ 2. $[2] + [3] * \frac{1}{3}$ 3. $[1] [3] * \frac{8}{3}$

f	29 5	$\frac{-3}{5}$	$\frac{-4}{5}$
X ₁	13 5	<u>-1</u> 5	2 5
X 2	8 5	$\frac{-1}{5}$	$\frac{-3}{5}$
X 3	6	1	2
X4	0	1	0
X 5	0	0	1

Мы получили оптимальную матрицу, но для симплекса метода. То есть наша целевая функция выглядит следующим образом:

$$f = \frac{29}{5} - \frac{3}{5} x_4 - \frac{4}{5} x_5$$

Мы получили не целое решение, поэтому будем делать отсечения.

Сделаем преобразования в целевой функции.

$$f = \left\lfloor \frac{29}{5} \right\rfloor + \left\{ \frac{29}{5} \right\} + \left(\left\lfloor -\frac{3}{5} \right\rfloor + \left\{ -\frac{3}{5} \right\} \right) \, x_4 + \left(\left\lfloor -\frac{4}{5} \right\rfloor + \left\{ -\frac{4}{5} \right\} \right) \, x_5$$

Из такой записи можем получить отсечение:

$$S = \frac{4}{5} + \frac{2}{5}x_4 + \frac{1}{5}x_5 \ge 1$$

Из этого следует:

$$S = -\frac{1}{5} + \frac{2}{5}x_4 + \frac{1}{5}x_5 \ge 0$$

Желтым треугольником выделена отсечённая область.

Запишем отсечение в нашу матрицу:

X₄ X₅

f	29 5	$\frac{-3}{5}$	$\frac{-4}{5}$
X ₁	13 5	$\frac{-1}{5}$	2 5
X ₂	8 5	$\frac{-1}{5}$	$\frac{-3}{5}$
X ₃	6	1	2
X4	0	1	0
X5	0	0	1

S	-1	2	1
	5	_ 5	- 5

Матрица вновь не оптимальна, будем повторять преобразования.

 X_4 X5

f	29 5	$\frac{-3}{5}$	$\frac{-4}{5}$
X ₁	13 5	$\frac{-1}{5}$	2 5
X ₂	8 5	$\frac{-1}{5}$	$\frac{-3}{5}$
X 3	6	1	2
X4	0	1	0
X ₅	0	0	1
S	$\frac{-1}{5}$	$\frac{2}{5}$	$\frac{1}{5}$

1.
$$[2] * \frac{5}{2}$$

2.
$$[1] + [2] * \frac{1}{5}$$

1.
$$[2] * \frac{5}{2}$$
2. $[1] + [2] * \frac{1}{5}$
3. $[3] - [2] * \frac{1}{5}$

f	$\frac{11}{2}$	$\frac{-3}{2}$	$\frac{-1}{2}$
X ₁	$\frac{5}{2}$	$\frac{-1}{1}$	$\frac{1}{2}$
X ₂	$\frac{3}{2}$	$\frac{-1}{2}$	$\frac{-1}{2}$
X 3	13 2	$\frac{5}{2}$	$\frac{3}{2}$
X4	$\frac{1}{2}$	$\frac{5}{2}$	$\frac{-1}{2}$
X5	0	0	1
S	0	1	0

Полученное решение также не является оптимальным для ЗЦЛП. Сделаем новое отсечение.

$$f = \frac{11}{2} - \frac{3}{2} x_4 - \frac{1}{2} x_5$$

$$f = \left\lfloor \frac{11}{2} \right\rfloor + \left\lbrace \frac{11}{2} \right\rbrace + \left(\left\lfloor -\frac{3}{2} \right\rfloor + \left\lbrace -\frac{3}{2} \right\rbrace \right) \, x_4 + \left(\left\lfloor -\frac{1}{2} \right\rfloor + \left\lbrace -\frac{1}{2} \right\rbrace \right) \, x_5$$

Из такой записи можем получить отсечение:

$$S = \frac{1}{2} + \frac{1}{2}x_4 + \frac{1}{2}x_5 \ge 1$$

Из этого следует:

$$S = -\frac{1}{2} + \frac{1}{2}x_4 + \frac{1}{2}x_5 \ge 0$$

Далее можно наглядно увидеть, что область поиска снова уменьшилась, поэтому мы будем повторять те же действия, но уже с другим отсечением.

X4 X5

f	$\frac{11}{2}$	$\frac{-3}{2}$	$\frac{-1}{2}$
X ₁	$\frac{5}{2}$	$\frac{-1}{1}$	$\frac{1}{2}$
X2	$\frac{3}{2}$	$\frac{-1}{2}$	$\frac{-1}{2}$
X 3	$\frac{13}{2}$	$\frac{5}{2}$	$\frac{3}{2}$
X4	$\frac{1}{2}$	5 2	$\frac{-1}{2}$
X 5	0	0	1
S	$\frac{-1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$

2.
$$[1] + [3] * \frac{1}{2}$$

1.
$$[3] * 2$$

2. $[1] + [3] * \frac{1}{2}$
3. $[1] - [3] * \frac{1}{2}$

X_4	٧r
/14	Δ.)

f	5	-1	-1
X ₁	3	-1	1
X ₂	1	0	-1
X 3	8	1	3
X4	0	3	-1
X 5	1	-1	2
S	0	0	1

Мы получили оптимальную матрицу для ЗЦЛП.

Ответ: $\max x_1 + 2x_2 = 5$