

Introduction to

Algorithm Design and Analysis

[20] NP Complete Problems 2

Yu Huang

http://cs.nju.edu.cn/yuhuang Institute of Computer Software Nanjing University

In the Last Class...

- Decision Problem
- The Class P
- The Class NP

In This Class

- Reduction between problems
- NP-Complete Problems
 - No known polynomial time algorithm
 - Computationally related by reduction
- Other advanced topics
 - Advanced algorithms
 - Advanced computation models

Reduction

The correct answer for P on x is yes if and only if the correct answer for Q on T(x) is yes.

NP-complete Problems

• A problem Q is \mathcal{NP} -hard if every problem P in \mathcal{NP} is reducible to Q, that is $P \leq_P Q$.

(which means that Q is at least as hard as any problem in \mathcal{NP})

• A problem Q is NP-complete if it is in NP and is NP-hard.

(which means that *Q* is at most as hard as to be solved by a polynomially bounded nondeterministic algorithm)

An Example of NP-hard problem

- Halt problem: Given an arbitrary deterministic algorithm *A* and an input *I*, does *A* with input *I* ever terminate?
 - o A well-known **undecidable** problem, of course not in \mathcal{NP} .
 - o Satisfiability problem is reducible to it.
 - Construct an algorithm A whose input is a propositional formula X. If X has n variables then A tries out all 2^n possible truth assignments and verifies if X is satisfiable. If it is satisfiable then A stops. Otherwise, A enters an infinite loop.
 - So, *A* halts on *X* iff. *X* is satisfiable.

More Undecidable Problems

Arithmetical SAT

$$x^3yz + 2y^4z^2 - 7xy^5z = 6$$

The tiling problem

P and MP - Revisited

- Intuition implies that MP is a much larger set than
 P.
 - No one problem in MP has been proved not in P.
- If any \mathcal{NP} -completed problem is in \mathcal{P} , then $\mathcal{NP} = \mathcal{P}$.
 - \circ Which means that every problems in \mathcal{NP} can be reducible to a problem in \mathcal{P} !
 - Much more questionable

P and MP - Revisited

Procedure for NP-Completeness

- Knowledge: P is NPC
- Task: to prove that Q is NPC
- Approach: to reduce P to Q
 - For any $R \in \mathbb{NP}$, $R \leq_P P$
 - Show $P \leq_P Q$
 - Then $R \leq_P Q$, by transitivity of reductions
 - Done. Q is NP-complete (given that Q has been proven in NP)

First Known MPC Problem

- Cook's theorem:
 - o The SAT problem is NP-complete.
- Reduction as tool for proving NPcompleteness
 - o Since *CNF-SAT* is known to be *NP*-hard, then all the problems, to which *CNF-SAT* is reducible, are also *NP*-hard. So, the formidable task of proving *NP*-complete is transformed into relatively easy task of proving of being in *NP*.

Proof of Cook's Theorem

COOK, S. 1971.

The complexity of theorem-proving procedures.

In

Conference Record of

3rd Annual ACM Symposium on Theory of Computing.

ACM New York, pp. 151–158.

Stephen Arthur Cook: b.1939 in Buffalo, NY. Ph.D of Harvard. Professor of Toronto Univ. 1982 Turing Award winner. The Turing Award lecture: "An Overview of Computational Complexity", CACM, June 1983, pp.400-8

Satisfiability Problem

CNF

- o A literal is a Boolean variable or a negated Boolean variable, as x or \bar{x}
- A clause is several literals connected with \vee s, as $x_1 \vee \overline{x_2}$
- o A CNF formula is several clause connected with ∧ s

CNF-SAT problem

 \circ Is a given CNF formula satisfiable, i.e. taking the value TRUE on some assignments for all x_i .

A special case: 3-SAT

o 3-SAT: each clause can contain at most 3 literals

Proving NPC by Reduction

- The *CNF-SAT* problem is *NP-*complete.
- Prove problem Q is NP-complete, given a problem P known to be NP-complete
 - o For all R ∈ **NP**, R≤ $_{P}P$;
 - Show $P \leq_{P} Q$;
 - By transitivity of reduction, for all $R \in NP$, $R \leq_P Q$;
 - o So, Q is *NP*-hard;
 - If *Q* is in *NP* as well, then *Q* is *NP*-complete.

Max Clique Problem is NP

```
void nondeteClique(graph G; int n, k)

set S=\phi;

for int i=1 to k do

int t=\text{genCertif}();

if t\in S then return;

S=S\cup\{t\};

for all pairs (i,j) with i,j in S and i\neq j do

if (i,j) is not an edge of G

then return;

Output("yes");
```

So, we have an algorithm for the maximal clique problem with the complexity of $O(n+k^2)=O(n^2)$

CNF-SAT to Clique

- Let $\phi = C_1 \wedge C_2 \wedge ... \wedge C_k$ be a formula in CNF-3 with k clauses. For r = 1, 2, ..., k, each clause $C_r = (l_1^r \vee l_2^r \vee l_3^r)$, l_i^r is x_i or $-x_i$, any of the variables in the formula.
- A graph can be constructed as follows. For each C_r , create a triple of vertices v_1^r , v_2^r and v_3^r , and create edges between v_i^r and v_j^s if and only if:
 - o they are in different triples, i.e. $r \neq s$, and
 - they do not correspond to the literals negating each other

(Note: there is no edges within one triple)

3-CNF Graph

$$\phi = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_3)$$

Two of satisfying assignments:

$$x_1=1/0$$
, $x_2=0$; $x_3=1$, or $x_1=1$, $x_2=1/0$, $x_3=1$

For corresponding clique, pick one "true" literal from each triple

Clique Problem is NP-Complete

- ϕ , with k clauses, is satisfiable iff. The graph G has a clique of size k.
- **Proof**: ⇒
 - \circ Suppose that ϕ has a satisfying assignment.
 - Then there is at least one "true" literal in each clause. Picking such a literal from each clause, their corresponding vertices in *G* can be proved to be a clique, since any two of them are in different triples and cannot be complements to each other(they are both true).

18

Known NP-Complete Problems

- Garey & Johnson: Computer and Intractability: A Guide to the Theory of NP-Completeness, Freeman, 1979
 - About 300 problems, grouped in 12 categories:
- 1. Graph Theory 2. Network Design 3. Set and Partition
- 4. Storing and Retrieving 5. Sorting and Scheduling
- 6. Mathematical Planning 7. Algebra and Number Theory
- 8. Games and Puzzles 9. Logic
- 10. Automata and Theory of Languages
- 11. Optimization of Programs 12. Miscellaneous

Advanced Topics

Solving hard problems

- Approximate algorithms
- Randomized algorithms

Solving more complex problems

- Online algorithms
- External memory models
- Distributed computation models

20

Approximation

- Make modifications on the problem
 - Restrictions on the input
 - Change the criteria for the output
 - Find new abstractions for a practical situation
- Find approximate solution
 - o Algorithm
 - o Bound of the errors

Bin Packing Problem

Suppose we have

• An unlimited number of bins each of capacity one, and n objects with sizes $s_1, s_2, ..., s_n$ where $0 < s_i \le 1$ (s_i are rational numbers)

Optimization problem

- o Determine the smallest number of bins into which the objects can be packets (and find an optimal packing).
- Bin packing is a NPC problem

Feasible Solution

Set of feasible solutions

- o For any given input $I=\{s_1,s_2,...,s_n\}$, the feasible solution set, FS(I) is the set of all **valid packing** using any number of bins.
- o In other words, that is the set of all partitions of I into disjoint subsets $T_1, T_2, ..., T_p$, for some p, such that the total of the s_i in any subset is at most 1.

Optimal Solution

- In the bin packing problem, the optimization parameter is the number of bins used.
 - o For any given input I and a feasible solution x, val(I,x) is the value of the optimization parameter.
 - For a given input I, the optimum value, $opt(I)=min\{val(I,x) \mid x \in FS(I)\}$
- An optimal solution for *I* is a feasible solution which achieves the optimum value.

Approximate Algorithm

- An approximation algorithm A for a problem
 - Polynomial-time algorithm that, when given input I, output an element of FS(I).
- Quality of an approximation algorithm.

$$r_{A}(I) = \frac{val(I, A(I))}{opt(I)} \text{ or } r_{A}(I) = \frac{opt(I)}{val(I, A(I))}$$

- \circ RA(m) = max {r_A(I) | I such that opt(I)=m}
- Bounded RA(m)
 - o For an approximation algorithm, we hope the value of RA(m) is bounded by small constants.

First Fit Decreasing - FFD

- The strategy: packing the largest as possible
- Example: S=(0.8, 0.5, 0.4, 0.4, 0.3, 0.2, 0.2, 0.2)

This is **NOT** an optimal solution!

The Procedure

```
binpackFFD(S, n, bin) //bin is filled and output, object i is packed in bin[i]
  float[] used=new float[n+1]; //used[j] is the occupied space in bin j
  int i,j;
  <initialize all used entries to 0.0>
  <sort S into nonincreasing order> // in S after sorted
  for (i=1; i≤n; i++)
    for (j=1; j\len; j++)
       if (used[j]+S[i]≤1.0)
         bin[i]=j;
         used[j]+=S[i];
         break;
```


Small Objects in Extra Bins

- Problem formulation
 - o Let $S=\{s_1, s_2, ..., s_n\}$ be an input, in nonincreasing order
 - \circ Let opt(S) be the minimum number of bins for S.
- All of the objects placed by FFD in the extra bins have size at most 1/3.
- Let *i* be the index of the first object placed by FFD in bin *opt*(*S*)+1.
 - What we have to do for the proof is: $s_i \le 1/3$.

What about a s_i Larger than 1/3?

- [S is sorted] The $s_1, s_2, ..., s_{i-1}$ are all larger than 1/3.
- So, bin B_j for j=1,...,opt(S) contain at most 2 objects each.
- Then, for some $k \ge 0$, the first k bins contain one object each and the remaining opt(S)-k bins contain two each.
 - Proof: no situation (that is, some bin containing 2 objects has a smaller index than some bin containing only one object) as the following is possible

и
t

Then: we must have: t>v, $u>s_i$, so $v+s_i<1$, no extra bin is needed!

Considering S_i

Contradiction at Last!

- Any optimal solution use only opt(S) bins.
- However, there are *k* bins that do not contain any of the objects *k*+1, ..., *i*-1, *i*. *k*+1,..., *i*-1 must occupy *opt*(*S*)-*k* bins, with each bin containing 2.
- Since all objects down through to s_i are larger than 1/3, s_i can not fit in any of the opt(S)-k bins.
- So, extra bin needed, and contradiction.

Objected in Extra Bins Bounded

• For any input $S=\{s_1, s_2,...,s_n\}$, the number of objects placed by FFD in extra bins is at most opt(S)-1.

Since all the objects fit in
$$opt(S)$$
, $\sum_{i=1}^{n} S_i \leq opt(S)$.

Assuming that FFD puts opt(S) objects in extrabins,

and their sizes are
$$:t_1, t_2, \ldots, t_{opt(S)}$$
.

Let b_j be the final contents of bin B_j for $1 \le j \le opt(S)$.

Note $b_i + t_i > 1$, otherwise t_i should be put in B_i . So:

$$\sum_{i=1}^{n} S_{i} \geq \sum_{j=1}^{opt(S)} b_{j} + \sum_{j=1}^{opt(S)} t_{j} = \sum_{j=1}^{opt(S)} (b_{i} + t_{i}) > opt(S) ; Contradiction!$$

A Good Approximation

 Using FFD, the number of bins used is at most about 1/3 more than optimal value.

$$R_{FFD}(m) \le \frac{4}{3} + \frac{1}{3m}$$

FFD puts at most m-1 objects in extra bins, and the size of the m-1 object are at most 1/3 each, so, FFD uses at most $\lceil (m-1)/3 \rceil$ extra bins.

$$r_{FFD}(S) \le \frac{m + \left\lceil \frac{m-1}{3} \right\rceil}{m} \le 1 + \frac{m+1}{3m} \le \frac{4}{3} + \frac{1}{3m}$$

Average Performance is Much Better

Empirical Studies on large inputs.

- The number of extra bins are estimated by the amount of empty space in the packings produced by the algorithm.
- o It has been shown that for n objects with sizes uniformly distributed between zero and one, the expected amount of empty space in packings by FFD is approximately $0.3\sqrt{n}$.

Randomized Algorithm

Mote Carlo

- Always finish in time
- The answer may be incorrect

Las Vegas

- Always return the correct answer
- The running time varies a lot

Online Algorithm

The main difference

- Offline algorithm: you can obtain all your input in advance
- Online algorithm: you must cope with unpredictable inputs

How to analyze an online algorithm

 Competitive analysis: the performance of an online algorithm is compared to that of an optimal offline algorithm

Distributed Data

External memory model

Distributed Computation

Model of distributed computation

Thank you!

Q & A

Yu Huang

http://cs.nju.edu.cn/yuhuang

