Linkage disequilibrium.

We consider first genetic markers of two alleles in diploid case. Then the allelic marker has two levels "+" and "-", and the genotype marker has three levels "+", "+" and "-".

1: Allelic linkage disequilibrium (LDE) is based on the alele frequencies p_+ and p_- . For any two fixed locuses denote p_{xy} is the frequency of the variant x at the first locus and variant y at the second one. In these notations we have the following frequency table:

Table 1.

Locus 1\Locus 2	"+"	"一"	Total
"+"	p_{++}	p_{+-}	p_{+ullet}
	p_{-+}	$p_{}$	$p_{-\bullet}$
Total	p_{ullet+}	p_{ullet-}	1

Introduce the coefficient $D = p_{++} - p_{\bullet +} p_{+\bullet}$, which is the covariance between the two random variables taking values 0 under + variant and 1 under - variant (or vice versa).

There are two ways to determine the allelic LDE coefficients:

$$r = \frac{D}{\sqrt{p_{+\bullet}(1 - p_{+\bullet})p_{\bullet+}(1 - p_{\bullet+})}}$$

and r^2 is commonly used, and

$$D' = |D|/D_{\max},$$

where

$$D_{\max} = \begin{cases} \min(p_{+\bullet}p_{\bullet+}, p_{-\bullet}p_{\bullet-}), \text{ under } D < 0\\ \min(p_{+\bullet}p_{\bullet-}, p_{-\bullet}p_{\bullet+}), \text{ under } D > 0. \end{cases}$$

We are using the signed version of the D' coefficient

$$D_s' = D/D_{\text{max}}$$

(or the r coefficient) to measure allelic LDE in two locuses.

2: Composite LDE. In the diploid organisms all the genome variants in two locuses (haplotypes) are collected in the following table:

Table 2.

Locus 1\Locus 2	"++"	"+-"	"-+"	""	Total
"++"	p_{++++}	p_{+++-}°	p_{++-+}°	p_{++}	$p_{++\bullet}$
"+-"	p_{+-++}°	p_{+-+-}°	p_{++}°	p_{+}°	$p_{+-ullet}$
"-+"	p_{-+++}°	p_{-++-}°	p_{-+-+}°	p_{-+}°	$p_{-+\bullet}$
""	p_{++}	p_{+-}°	p_{+}°	$p_{}$	p_{\bullet}
Total	$p_{ullet++}$	$p_{ullet+-}$	p_{ullet+}	p_{ullet}	1

After unification cells with identical combination we obtain 10-cells table:

Table 3.

Locus $1\setminus \text{Locus } 2$	"++"	"+-"	"-+"	""	Total
"++"	p_{++++}	p_{+}	++-	p_{++}	$p_{++\bullet}$
"+-"	p_{+-++}	p_{+-+-}	p_{++}	p_{+}	$p_{+-ullet}$
""	p_{++}	p_{-}	-+-	p	p_{\bullet}
Total	$p_{ullet++}$	p_{ullet}	+-	p_{ullet}	1

were $p_{ijks} = 2p_{ijks}^{\circ} = 2p_{ijsk}^{\circ} = 2p_{jiks}^{\circ}$.

The haploid (gametic) part of the LDE: $D_g = p_g - p_{+\bullet}p_{\bullet+}$, where

$$p_q = p_{++++} + p_{+++-}/2 + p_{+-++}/2 + (p_{+-+-} + p_{+--+})/4.$$

The diploid (non gametic) part LDE: $D_d = p_d - p_{+\bullet}p_{\bullet+}$ linkage disequilibrium, where

$$p_d = p_{++++} + p_{+++-}/2 + p_{+-++}/2 + p_{+-+-}/2$$

The composite LDE:

$$\Delta = D_a + D_d = p_a + p_d - 2p_{+\bullet}p_{\bullet+}.$$

If genotypes are known only the composite LDE cannot be obtained. Then one use the within chromosome equilibrium $p_{+-+-} = p_{+--+}$. Under the within chromosome equilibrium $\Delta = 2D_g$. The composite linkage disequilibrium correlation is defined as follows:

$$r = \frac{\Delta}{\sqrt{(p_{+\bullet}p_{-\bullet} + D_1)(p_{\bullet+}p_{\bullet-} + D_2)}},$$

where $D_1 = HWD_1 = p_{++\bullet} - p_{+\bullet}^2$, $D_2 = HWD_2 = p_{\bullet++} - p_{\bullet+}^2$. Under within chromosome equilibrium assumption if to set

$$\xi_1 = \begin{cases} -1, & \text{if genotype is "++"}, \\ 0, & \text{if genotype is "+-"}, \\ 1, & \text{if genotype is "---"}, \end{cases} \text{ and } \xi_2 = \begin{cases} -1, & \text{if genotype is "++"}, \\ 0, & \text{if genotype is "+--"}, \\ 1, & \text{if genotype is "---"}, \end{cases}$$

then $\Delta = \mathbf{cov}(\xi_A, \xi_B)$ and $r = \mathbf{corr}(\xi_A, \xi_B)$.

3: Allelic LDE and maximum likelihood method. If we have haplotype data from diploid organism we can easily specify frequencies of allelelic variants in Table 1 from the count table

Table 5.

Locus 1\Locus 2	"++"	"+-"	"-+"	""	Total
"++"	n_{++++}	n_{+}	++-	n_{++}	$n_{++\bullet}$
"+-"	n_{+-++}	n_{+-+-}	n_{++}	n_{+}	$n_{+-\bullet}$
""	n_{++}	n_{-}	-+-	n	n_{\bullet}
Total	$n_{\bullet++}$	n_{ullet}	+-	n_{\bullet}	\overline{n}

Then the corresponding allelic counts are given in the following table

Table 6.

and, taking account of the 2n total number of gametes, the corresponding frequencies are following:

Table 7.

Locus 1\Locus 2
 "+"
 "-"

 "+"

$$p_{++++} + p_{+++-}/2 + p_{+-++}/2 + p_{+-+-}/2$$
 $p_{++--} + p_{+++-}/2 + p_{+--+}/2 + p_{+---}/2$

 "-"
 $p_{--++} + p_{+-++}/2 + p_{+--+}/2 + p_{----}/2$
 $p_{---} + p_{--+-}/2 + p_{+---}/2 + p_{+---}/2$

In the case of genotypes we have only $n_{+-+-} + n_{+--+}$ instead of n_{+-+-} and n_{+--+} . One can simplify the parametrzation

Table 8.

and join the observed counts to $n_{++}^*, n_{+-}^*, n_{-+}^*, n_{--}^*, n_{+-+-}^*$, where

$$\begin{split} n_{++}^* &= 2n_{++++} + n_{+++-} + n_{+-++}; \\ n_{+-}^* &= 2n_{++--} + n_{+++-} + n_{+---}; \\ n_{-+}^* &= 2n_{--++} + n_{+-++} + n_{--+-}; \\ n_{--}^* &= 2n_{----} + n_{--+-} + n_{+---}; \\ n_{+-+-}^* &= 2(n_{+-+-} + n_{+--+}) \end{split}$$

and $n_{++}^* + n_{+-}^* + n_{-+}^* + n_{--}^* + n_{+-+-}^* = 2n$. The obtaind statistical model is overparametrized; one can use the follofing relations $p_{+-+-} = p_{++}p_{--}$ and $p_{+--+} = p_{+-}p_{-+}$ (local Hardy–Weinberg equilibrium in some sense). Then, the log liklihood function in the model can be written as follows:

$$LL(\vec{p}^*|\vec{n}^*) = n_{++}^* \log p_{++}^* + n_{+-}^* \log p_{+-}^* + n_{-+}^* \log p_{-+}^* + n_{--}^* \log p_{--}^* + n_{+-+-}^* \log (p_{++}^* p_{--}^* + p_{+-}^* p_{+-}^*).$$

$$(A)$$

The maximum likelihood can be obtained using the EM-algorithm based on the full likelihood, which is unobserved:

$$LL^{\circ}(\vec{p}|\vec{n}) = n_{++}^{*} \log p_{++}^{*} + n_{+-}^{*} \log p_{+-}^{*} + n_{-+}^{*} \log p_{-+}^{*} + n_{--}^{*} \log p_{--}^{*} + 2n_{+-+-}(\log p_{++} + \log p_{--}) + 2n_{+-+-}(\log p_{+-} + \log p_{+-}).$$

The expectation step is based on

$$\begin{split} E_{\vec{p}_0^*}(LL(\vec{p}|\vec{n})|\vec{n}^*) &= n_{++}^* \log p_{++}^* + n_{+-}^* \log p_{+-}^* + n_{-+}^* \log p_{-+}^* + n_{--}^* \log p_{--}^* \\ &+ n_{+-+-}^* \frac{p_{0++}^* p_{0--}^*}{p_{0++}^* p_{0--}^* + p_{0+-}^* p_{0-+}^*} (\log p_{++}^* + \log p_{--}^*) \\ &+ n_{+-+-}^* \frac{p_{0+-}^* p_{0-+}^*}{p_{0++}^* p_{0--}^* + p_{0--}^*} (\log p_{+-}^* + \log p_{+-}^*). \end{split}$$

The algorithm:

- (i). One should start from some $\vec{p}^{*(0)}$ such that $LL(\vec{p}|\vec{n}^*)$; set $p_{++}^{()}$ and set n=0
- (ii) Loop while $\delta \geq \delta_0$; for k-th iteration E-step: Calculate the expected counts

$$\begin{split} n_{++}^{(k)} &= n_{++}^* + n_{+-+-}^* \frac{p_{++}^{(k)} p_{--}^{(k)}}{p_{++}^{(k)} p_{--}^{(k)}} & n_{--}^{(k)} &= n_{--}^* + n_{+-+-}^* \frac{p_{++}^{(k)} p_{--}^{(k)}}{p_{++}^{(k)} p_{--}^{(k)}} \\ n_{+-}^{(k)} &= n_{+-}^* + n_{+-+-}^* \frac{p_{+-}^{(k)} p_{-+}^{(k)}}{p_{++}^{(k)} p_{-+}^{(k)}} & n_{-+}^{(k)} &= n_{-+}^* + n_{+-+-}^* \frac{p_{+-}^{(k)} p_{-+}^{(k)}}{p_{++}^{(k)} p_{--}^{(k)}} \\ n_{+-}^{(k)} &= n_{+-}^* + n_{+-+-}^* \frac{p_{+-}^{(k)} p_{--}^{(k)}}{p_{++}^{(k)} p_{--}^{(k)}} & n_{-+}^{(k)} &= n_{-+}^* + n_{+-+-}^* \frac{p_{+-}^{(k)} p_{--}^{(k)}}{p_{++}^{(k)} p_{--}^{(k)}} \end{split}$$

M-step: The expected likelihood

$$E_{\vec{p}^{\,(k)}}(LL(\vec{p}|\vec{n})|\vec{n}^*) = n_{++}^{(k)}\log p_{++}^* + n_{+-}^{(k)}\log p_{+-}^* + n_{-+}^{(k)}\log p_{-+}^* + n_{--}^{(k)}\log p_{--}^*$$

is maximized by

$$p_{++}^{(k+1)} = n_{++}^{(k)}/n_{\bullet}^{(k)}, \quad p_{+-}^{(k+1)} = n_{+-}^{(k)}/n_{\bullet}^{(k)}, \quad p_{-+}^{(k+1)} = n_{-+}^{(k)}/n_{\bullet}^{(k)}, \quad p_{--}^{(k+1)} = n_{--}^{(k)}/n_{\bullet}^{(k)},$$

where $n_{\bullet}^{(k)} = n_{++}^* + n_{+-}^* + n_{-+}^* + n_{--}^* + 2n_{+-+-}^*$. Calculate $\delta(normally, \delta > 0)$:

$$\delta = LL(\vec{p}^{(k+1)}|\vec{n}^*) - LL(\vec{p}^{(k)}|\vec{n}^*),$$

where LL is calculated by formula (A).

(iii). If the loop was stopped at K-th iteration one use the following table instead of Table 1 to obtain D.

Table 9.

Locus $1 \setminus \text{Locus } 2$	"+"	"_"	Total
"+"	$p_{++}^{(K)} + p_{++}^{(K)} p_{}^{(K)} / 2$	$p_{+-}^{(K)} + p_{+-}^{(K)} p_{-+}^{(K)} / 2$	$p_{+\bullet}^{(K)} + p^{(K)}$
"_"	$p_{-+}^{(K)} + p_{+-}^{(K)} p_{-+}^{(K)} / 2$	$p_{}^{(K)} + p_{++}^{(K)} p_{}^{(K)} / 2$	$p_{-\bullet} + p^{(K)}$
Total	$p_{\bullet+} + p^{(K)}$	$p_{\bullet-} + p^{(K)}$	1

where $P^{(K)} = (p_{++}^{(K)} p_{--}^{(K)} + p_{++}^{(K)} p_{--}^{(K)})/2$.