

课程 > Unit 5: Continuous... > Lec. 10: Conditioni... > 13. Exercise: Stick-...

13. Exercise: Stick-breaking

Exercise: Stick-breaking

3/3 points (graded)

Consider the same stick-breaking problem as in the previous clip, and let $\ell=1$. Recall that $f_{X,Y}(x,y)=1/x$ when $0\leq y\leq x\leq 1$.

a) Conditioned on Y=2/3, the conditional PDF of X is nonzero when $a \leq x \leq b$. Find a and b.

$$a = \boxed{2/3}$$

Answer: 0.66667

$$b = \boxed{1}$$

✓ Answer: 1

b) On the range found in part (a), the conditional PDF $f_{X|Y}(x\,|\,2/3)$ is of the form cx^d for some constants \boldsymbol{c} and \boldsymbol{d} . Find \boldsymbol{d} .

$$d = \boxed{-1}$$

Solution:

- a) Since the joint PDF is nonzero only for $0 \le y \le x \le 1$, it follows that given that Y = 2/3, Xranges on the interval [2/3, 1].
- b) As a function of \boldsymbol{x} , the conditional PDF has the same functional form (within a normalizing constant) as the joint PDF, and so it is of the form c/x, from which we conclude that d=-1.

To add up so that other learners can benefit, to find \emph{c} ; after having found \emph{d} , all you need is to write the integral,

$$\int_{2/3}^1 cx^d \; dx = 1 \implies c = rac{1}{\int_{2/3}^1 x^d \; dx}.$$

Answers are displayed within the problem

 $\frac{1}{x_{1}}(x_{2}y)dx = \int_{\frac{\pi}{2}}^{1} \frac{1}{x_{2}}dx = \frac{7}{2}n - \frac{1}{2}n$ $= \frac{7}{2}n + \frac{1}{2} = \frac{1}{2}n +$ 讨论

Topic: Unit 5 / Lec. 10 / 13. Exercise: Stick-breaking

for part b: is fX Y(x y) uniform right?	+
question posted about 22 hours ago by chechir out the answer doesn't make sense if it is x^d I'm watching the video and doing a similar calculation than the one made by the professor in minute 1.46 for $fY X(y x)$. But replacing the conditioned variable with 2/3 The result should be just a constant right?	•
比帕对所有人可见。 添加回复	2 responses
markweitzman (Community TA) about 22 hours ago	+
Remember how the joint probability scales when it is conditioned. Alternatively consider using formula: $f_{X,Y}(x,y)=f_{X Y}(x,y)\cdot f_Y(y)$.	; trie
添加评论	//
e_kizildag (Staff) about 21 hours ago	•
As Mark suggested, recall that $f_{X,Y}(x,y)=f_{X Y}(x y)f_Y(y)$. Plug in $Y=2/3$, and note which which of a variable is $f_Y(2/3)$? (namely, is it a constant, or depends on x , or something else?) Fixehere, you should be able to see how the shape of $f_{X Y}$ is connected to the shape of $f_{X,Y}$.	
It would be extremely helpful if the answer contained a more accurate description of the process. The explanation here makes me think that I'm missing one step, but I can't figure out which one.	•••
g <u>ra_vel</u> 在about 19 hours ago前发表	
oh, I see. many thanks! I think there's still some key concept that is taking me a while to assimilate	
<u>chechir</u> 在about 19 hours ago前发表	
添加评论	

显示所有的回复