SLAM Demo

EDAA - GO6

João Martins Henrique Ribeiro — João Costa Tiago Duarte

Simultaneous Location And Mapping

 Goal – map an environment navigated by and autonomous vehicle, while simultaneously locating it in the map;

- Challenges:

- No access to pre-existing maps or external devices;
- Focus on sub-aquatic SLAM ⇒ difficult access and extra data noise;
- **Datasets** the group will have access to sonar data measured by CRAS.

Fig 1. UAV used to collect the datasets.

Pipeline

Pipeline

Data Preprocessing - Image Smoothing

- Use blurring to reduce noise
- Improves drastically edge detection
- Applied to polar coordinates

Fig 27. Dataset representation in Cartesian coordinates.

Fig 28. Gaussian filter

Fig 29. Median filter

Fig 30. Mean filter

Obstacle Detection - Simple threshold

- Calculate variation of intensities
- Define a threshold
 - Variations above that threshold approach
- Increased blur provides best results

Fig 23. Original Image

Fig 24. Scan with identified edges using simple threshold approach

Raycasting - Bresenham vs DDA

- Bresenham's line algorithm:
 - Travels in all axis at once
 - Handles diagonal transitions very well
 - Very accurate
- Digital Differential Analyzer (DDA)
 - Travels in only one axis at a time
 - Goes in the direction of the closest axis
 - May miss the target (see next slide)

Octomaps/Octrees In Our Project

- The octrees used in the max depth 16;
 - This depth leads to a $8^16-1 = 2.8147498e+14$ nodes.
- Resolution of 1 cm;
 - This resolution with the amount of nodes available lets up map a volume of 655 m³.
- The octomap will be probabilistic:
 - 3 types of cells: free, occupied, and unknown;
 - Each cell has a probability of being empty (**log-odds**)
 - > 0 more likely to be occupied
 - < 0 more likely to be empty</p>
 - Unknown cells are uninitialized

Fig 1. Example of octree storing occupied (black) and free (white) cells (Hornung et al.)

Probabilistic Mapping [1]

$$P(n|z_{1:t}) = \left[1 + \frac{1 - P(n|z_t)}{P(n|z_t)} \frac{1 - P(n|z_{1:t-1})}{P(n|z_{1:t-1})} \frac{P(n)}{1 - P(n)}\right]^{-1}$$

Fig 11. Probability update formula.

- Which can be converted to log-odds notation:
 - More efficient Reduces multiplications/divisions

$$L(n|z_{1:t}) = L(n|z_{1:t-1}) + L(n|z_t)$$
 $L(n) = log(\frac{F(n)}{1-n})$

Fig 12. Probability update formula in log-odds.

$$L(n) = log(\frac{P(n)}{1 - P(n)})$$

Fig 13. Log odds formula.

Octovis Exporting

- Exporting to <u>octovis</u> format;
- Allows visualization of results using the <u>octovis</u> tool;
- Implies some loss of information:
 - Node can only be full, empty, or unknown;
 - There's no distinction between stable and unstable nodes.
- Tool works well for the current use case, but has multiple problems that may prove disadvantageous in the future:
 - Clipping artifacts in dense areas;
 - Bugs on the controls;
 - Incorrect object culling when zoomed in (it can be impossible to observe small objects when the zoom level is close to the maximum).