VE281

Data Structures and Algorithms

Dynamic Programming: Knapsack Problem

- You have a set of n items, each with a weight w_i and a value p_i .
- ullet You also have a knapsack with a weight capacity ${\cal C}$.
- How will you choose items to put into the knapsack to maximize the total value?

• We assume W_i , C are positive integers.

Mathematic Formulation

• Let $x_i = 1$ when item i is selected and $x_i = 0$ when item i is not selected.

- The problem is the following optimization problem:
 - Maximize $\sum_{i=1}^{n} p_i x_i$
 - Subject to $\sum_{i=1}^{n} w_i x_i \leq C$ and $x_i \in \{0,1\}$ for all i.

A Brute-Force Solution

- Enumerate all the combinations of $(x_1, x_2, ..., x_n)$ with $x_i \in \{0,1\}$
- Discard combinations for which $\sum_{i=1}^{n} w_i x_i > C$
- For the remaining combinations, find the one that $\max \sum_{i=1}^{n} p_i x_i$.
- What is the time complexity?
 - Since there are 2^n combinations to consider, the time complexity is $\Omega(2^n)$.

A Greedy Solution

- We select items one by one to put into the knapsack.
- Each item is selected using a **greedy** criterion.
- Once an item is selected, it will not be removed from the knapsack later on.
- Possible greedy criterion:
 - Choose items in decreasing order of values p_i .
 - Choose items in decreasing order of relative values p_i/w_i .

However, greedy solution may not be the optimal.

A Greedy Solution

- Greedy attempt 1: Select items in decreasing order of values
- Example: n = 3, C = 7 $(w_1, p_1) = (7, 10), (w_2, p_2) = (3, 8), (w_3, p_3) = (2, 6)$
- Only item 1 will be selected.
 - Total value is 10.
- However, this is not optimal.
 - We can put item 2 and 3 together into the knapsack, which gives a total value of 14.

A Greedy Solution

- Greedy attempt 2: Select items in decreasing order of average values p_i/w_i .
- Example: n = 2, C = 7 $(w_1, p_1) = (1, 10), (w_2, p_2) = (7, 20)$
- Only item 1 will be selected.
 - Total value is 10.
- However, this is not optimal.
 - If we choose item 2, this is a better choice.

- Can we apply **dynamic programming** to solve the knapsack problem?
- Let us consider the following problem:
 - Given i items with weights as W_1, \ldots, W_i and values as p_1, \ldots, p_i and a knapsack with weight capacity j, choose items to put into the knapsack to maximize the total values.
 - ullet Define the above problem as Q_{ij} and the maximal value as m_{ij} .
 - Our original problem is Q_{nC} .

- A mathematic formulation of Q_{ij} :
 - Maximize $\sum_{k=1}^{i} p_k x_k$
 - Subject to $\sum_{k=1}^{i} w_k x_k \leq j$ and $x_k \in \{0,1\}$ for all $1 \leq k \leq i$.
- Does Q_{ij} exhibit optimal substructure, i.e., does the optimal solution to Q_{ij} contain within it optimal solutions to subproblems?

Optimal Substructure

- Let $x_1 = a_1, ..., x_i = a_i$ be an optimal solution to the problem Q_{ij} .
- If $a_i = 0$, then $x_1 = a_1, ..., x_{i-1} = a_{i-1}$ is an optimal solution to the problem $Q_{(i-1)j}$.
 - Why?
- If $a_i = 1$, then $x_1 = a_1, ..., x_{i-1} = a_{i-1}$ is an optimal solution to the problem $Q_{(i-1)(j-w_i)}$.
 - Why?

- Since we don't know whether a_i should be 0 or 1, we need to solve both subproblems $Q_{(i-1)j}$ and $Q_{(i-1)(j-w_i)}$.
- If we have solved the subproblems $Q_{(i-1)j}$ and $Q_{(i-1)(j-w_i)}$ and obtained the maximal values as $m_{(i-1)j}$ and $m_{(i-1)(j-w_i)}$, we can obtain the maximal value for Q_{ij} as
 - $m_{ij} = \max\{m_{(i-1)j}, m_{(i-1)(j-w_i)} + p_i\}$

Recursion Tree

- The recursion tree is a binary tree. It contains $O(2^n)$ subproblems.
- However, the subproblems may overlap depending on the values of $W_1, W_2, ..., W_n$.

Dynamic Programming Algorithm

- We use a tabular, bottom-up approach.
- We will calculate all m_{ij} for $1 \le i \le n$ and $0 \le j \le C$ by applying the recursive relation:

$$m_{ij} = \max\{m_{(i-1)j}, m_{(i-1)(j-w_i)} + p_i\}$$

- In the initial round, we compute m_{10} , m_{11} , ..., m_{1C} .
- In the second round, we compute m_{20}, \dots, m_{2C} .
 - They depend on m_{10} , m_{11} , ..., m_{1C} .
- In the third round, we compute m_{30} , ..., m_{3C} .
 - They depend on m_{20} , ..., m_{2C} .
- So on and so forth.

Dynamic Programming Algorithm

- In the initial round, we compute m_{10} , m_{11} , ..., m_{1C} .
 - If $j < w_1$, we cannot put item 1 into the knapsack. Thus, $m_{1j} = 0$.
 - Otherwise, $m_{1j} = p_1$.
- In the subsequent rounds for computing m_{i0} , m_{i1} , ..., m_{iC} .
 - If $j < w_i$, we cannot put item i into the knapsack. Thus, $m_{ij} = m_{(i-1)j}$.
 - Otherwise, $m_{ij} = \max\{m_{(i-1)j}, m_{(i-1)(j-w_i)} + p_i\}$.

Example

•
$$n = 5, C = 8, (w_1, p_1) = (2,3), (w_2, p_2) = (6,9),$$

 $(w_3, p_3) = (5,10), (w_4, p_4) = (3,8), (w_5, p_5) = (4,9)$

m	ij					j				
		0	1	2	3	4	5	6	7	8
	1									
	2									
i	3									
	4									
	5									

If
$$j < w_1, m_{1j} = 0$$
. Otherwise, $m_{1j} = p_1$

Example

•
$$n = 5, C = 8, (w_1, p_1) = (2,3), (w_2, p_2) = (6,9),$$

 $(w_3, p_3) = (5,10), (w_4, p_4) = (3,8), (w_5, p_5) = (4,9)$

m	ij					j				
		0	1	2	3	4	5	6	7	8
	1	0	0	3	3	3	3	3	3	3
	2									
i	3									
	4									
	5									

If
$$j < w_1, m_{1j} = 0$$
. Otherwise, $m_{1j} = p_1$

Example

•
$$n = 5$$
, $C = 8$, $(w_1, p_1) = (2,3)$, $(w_2, p_2) = (6,9)$, $(w_3, p_3) = (5,10)$, $(w_4, p_4) = (3,8)$, $(w_5, p_5) = (4,9)$

m	ij					j				
		0	1	2	3	4	5	6	7	8
	1	0	0	3	3	3	3	3	3	3
	2									
i	3									
	4									
	5									

If
$$j < w_2, m_{2j} = m_{1j}$$
.

Otherwise,
$$m_{2j} = \max\{m_{1j}, m_{1(j-w_2)} + p_2\}$$

Example

•
$$n = 5, C = 8, (w_1, p_1) = (2,3), (w_2, p_2) = (6,9),$$

 $(w_3, p_3) = (5,10), (w_4, p_4) = (3,8), (w_5, p_5) = (4,9)$

m	ij					j				
		0	1	2	3	4	5	6	7	8
	1	0	0	3	3	3	3	3	3	3
	2	0	0	3	3	3	3	9	9	12
i	3									
	4									
	5									

If
$$j < w_2, m_{2j} = m_{1j}$$
.

Otherwise, $m_{2j} = \max\{m_{1j}, m_{1(j-w_2)} + p_2\}$

Example

•
$$n = 5, C = 8, (w_1, p_1) = (2,3), (w_2, p_2) = (6,9),$$

 $(w_3, p_3) = (5,10), (w_4, p_4) = (3,8), (w_5, p_5) = (4,9)$

m	ij					j				
		0	1	2	3	4	5	6	7	8
	1	0	0	3	3	3	3	3	3	3
	2	0	0	3	3	3	3	9	9	12
i	3									
	4									
	5									

If
$$j < w_3, m_{3j} = m_{2j}$$
.

Otherwise, $m_{3j} = \max\{m_{2j}, m_{2(j-w_3)} + p_3\}$

Example

•
$$n = 5, C = 8, (w_1, p_1) = (2,3), (w_2, p_2) = (6,9),$$

 $(w_3, p_3) = (5,10), (w_4, p_4) = (3,8), (w_5, p_5) = (4,9)$

m	Lij					j				
		O	1	2	3	4	5	6	7	8
	1	О	0	3	3	3	3	3	3	3
	2	О	0	3	3	3	3	9	9	12
i	3	0	0	3	3	3	10	10	13	13
	4									
	5									

If
$$j < w_3, m_{3j} = m_{2j}$$
.

Otherwise, $m_{3j} = \max\{m_{2j}, m_{2(j-w_3)} + p_3\}$

Example

•
$$n = 5, C = 8, (w_1, p_1) = (2,3), (w_2, p_2) = (6,9),$$

 $(w_3, p_3) = (5,10), (w_4, p_4) = (3,8), (w_5, p_5) = (4,9)$

m	ij					j				
		0	1	2	3	4	5	6	7	8
	1	0	0	3	3	3	3	3	3	3
	2	0	0	3	3	3	3	9	9	12
i	3	0	0	3	3	3	10	10	13	13
	4									
	5									

If
$$j < w_4, m_{4j} = m_{3j}$$
.

Otherwise, $m_{4j} = \max\{m_{3j}, m_{3(j-w_4)} + p_4\}$

Example

•
$$n = 5, C = 8, (w_1, p_1) = (2,3), (w_2, p_2) = (6,9),$$

 $(w_3, p_3) = (5,10), (w_4, p_4) = (3,8), (w_5, p_5) = (4,9)$

m	rij					J				
		0	1	2	3	4	5	6	7	8
	1	0	0	3	3	3	3	3	3	3
	2	0	0	3	3	3	3	9	9	12
i	3	0	0	3	3	3	10	10	13	13
	4	0	0	3	8	8	11	11	13	18
	5									

If
$$j < w_4, m_{4j} = m_{3j}$$
.

Otherwise, $m_{4j} = \max\{m_{3j}, m_{3(j-w_4)} + p_4\}$

Example

•
$$n = 5, C = 8, (w_1, p_1) = (2,3), (w_2, p_2) = (6,9),$$

 $(w_3, p_3) = (5,10), (w_4, p_4) = (3,8), (w_5, p_5) = (4,9)$

m_{ij}					j				
	O	1	2	3	4	5	6	7	8
1	0	0	3	3	3	3	3	3	3
2	0	0	3	3	3	3	9	9	12
i 3	0	0	3	3	3	10	10	13	13
4	0	0	3	8	8	11	11	13	18
5									

If
$$j < w_5, m_{5j} = m_{4j}$$
.

Otherwise, $m_{5i} = \max\{m_{4i}, m_{4(i-w_5)} + p_5\}$

Example

 m_{i} :

•
$$n = 5$$
, $C = 8$, $(w_1, p_1) = (2,3)$, $(w_2, p_2) = (6,9)$, $(w_3, p_3) = (5,10)$, $(w_4, p_4) = (3,8)$, $(w_5, p_5) = (4,9)$

m_{ij}					J				
	0	1	2	3	4	5	6	7	8
1	0	0	3	3	3	3	3	3	3
2	0	0	3	3	3	3	9	9	12
<i>i</i> 3	0	0	3	3	3	10	10	13	13
4	0	0	3	8	8	11	11	13	18
5	0	0	3	8	9	11	12	17	$\left(18\right)$

Optimal Value

If $j < w_5, m_{5j} = m_{4j}$.

Otherwise, $m_{5j} = \max\{m_{4j}, m_{4(j-w_5)} + p_5\}$

Constructing the Optimal Solution

- Given the table m_{ij} , we back track from m_{nC} .
- If $m_{ij} = m_{(i-1)j}$, we have $x_i = 0$ and we further check $m_{(i-1)j}$.
- Otherwise, we have $x_i = 1$ and we further check $m_{(i-1)(j-w_i)}$.
- Once $m_{ij} = 0$, we have $x_1 = \cdots = x_i = 0$.

Example of Constructing the Optimal Solution

•
$$n = 5, C = 8, (w_1, p_1) = (2,3), (w_2, p_2) = (6,9),$$

 $(w_3, p_3) = (5,10), (w_4, p_4) = (3,8), (w_5, p_5) = (4,9)$

m_{ij}					j				
-	0	1	2	3	4	5	6	7	8
1	0	0	3	3	3	3	3	3	3
2	0	0	3	3	3	3	9	9	12
i 3	0	0	3	3	3	10	10	13	13
4	0	0	3	8	8	11	11	13	18
5	0	0	3	8	9	11	12	17	18)

$$m_{58} = m_{48}$$

 $m_{58} = m_{48}$ $x_5 = 0$. Further check m_{48}

Example of Constructing the Optimal Solution

•
$$n = 5, C = 8, (w_1, p_1) = (2,3), (w_2, p_2) = (6,9),$$

 $(w_3, p_3) = (5,10), (w_4, p_4) = (3,8), (w_5, p_5) = (4,9)$

m_{ij}					J				
j	0	1	2	3	4	5	6	7	8
1	0	0	3	3	3	3	3	3	3
2	0	0	3	3	3	3	9	9	12
i 3	0	0	3	3	3	10	10	13	13
4	0	0	3	8	8	11	11	13	(18)
5	0	0	3	8	9	11	12	17	18

 $x_5 = 0$

$$m_{48} \neq m_{38}$$

$$m_{48} \neq m_{38}$$
 $x_4 = 1$. Further check $m_{3(8-w_4)} = m_{35}$

 $m \cdot \cdot$

Example of Constructing the Optimal Solution

•
$$n = 5, C = 8, (w_1, p_1) = (2,3), (w_2, p_2) = (6,9),$$

 $(w_3, p_3) = (5,10), (w_4, p_4) = (3,8), (w_5, p_5) = (4,9)$

III					J				
,	0	1	2	3	4	5	6	7	8
1	0	0	3	3	3	3	3	3	3
2	О	0	3	3	3	3	9	9	12
i 3	О	0	3	3	3	(10)	10	13	13
4	0	0	3	8	8	11	11	13	18
5	0	0	3	8	9	11	12	17	18

$$x_4 = 1$$
$$x_5 = 0$$

$$m_{35} \neq m_{25}$$

 $m_{35} \neq m_{25}$ \longrightarrow $x_3 = 1$. Further check $m_{2(5-w_3)} = m_{20}$

m:

Example of Constructing the Optimal Solution

•
$$n = 5, C = 8, (w_1, p_1) = (2,3), (w_2, p_2) = (6,9),$$

 $(w_3, p_3) = (5,10), (w_4, p_4) = (3,8), (w_5, p_5) = (4,9)$

m	ij					j				
		0	1	2	3	4	5	6	7	8
	1	0	0	3	3	3	3	3	3	3
	2	0	0	3	3	3	3	9	9	12
i	3	0	0	3	3	3	10	10	13	13
	4	0	0	3	8	8	11	11	13	18
	5	0	0	3	8	9	11	12	17	18

$$x_3 = 1$$
$$x_4 = 1$$
$$x_5 = 0$$

$$m_{20} = 0$$

$$m_{20} = 0$$
 $x_2 = x_1 = 0.$

Example of Constructing the Optimal Solution

•
$$n = 5, C = 8, (w_1, p_1) = (2,3), (w_2, p_2) = (6,9),$$

 $(w_3, p_3) = (5,10), (w_4, p_4) = (3,8), (w_5, p_5) = (4,9)$

m_{ij}					j				
	0	1	2	3	4	5	6	7	8
1	О	0	3	3	3	3	3	3	3
2	0	0	3	3	3	3	9	9	12
<i>i</i> 3	0	0	3	3	3	10	10	13	13
4	0	0	3	8	8	11	11	13	18
5	0	0	3	8	9	11	12	17	18

Optimal solution: $x_1 = 0$, $x_2 = 0$, $x_3 = 1$, $x_4 = 1$, $x_5 = 0$

Time Complexity

- Obtain the maximal total value:
 - Constructing the table m_{ij} of size $n \times (C+1)$.
 - Time complexity for calculating each entry is O(1).
 - Total time complexity is O(nC).
- Obtain the optimal solution:
 - \bullet O(n).

Summary

- Why dynamic-programming algorithm is suitable?
 - Optimal substructure.
 - Overlapping subproblems.
- How to design the dynamic-programming algorithm?
- 1. Characterize the structure of an optimal solution.
- 2. Recursively define the value of an optimal solution.
- 3. Compute the value of an optimal solution, typically in a **bottom-up** fashion.
- 4. Construct an optimal solution from computed information.