Datenstrukturen und effiziente Algorithmen

Markus Vieth

David Klopp

5. Februar 2016

Vorwort

Dieses Skript basiert auf unserer Mitschrift der Vorlesung Datenstrukturen und effiziente Algorithmen (DSeA) im WS 2015/16 an der JGU Mainz (Dozent: Prof. Dr. E. Schömer). Es handelt sich nicht um eine offizielle Veröffentlichung der Universität. Wir übernehmen keine Gewähr für die Fehlerfreiheit und Vollständigkeit des Skripts. Fehler können unter Github gemeldet werden.

Inhaltsverzeichnis

V	orwor	t		iii
1	Vorl	esung		1
	1.1	Edmo	nds-Karp Algorithmus	1
		1.1.1	Lemma:	1
		1.1.2	Beweis durch Widerspruch	1
		1.1.3	Lemma	2
		1.1.4	Beweis	2
		1.1.5	Laufzeitanalyse von Edmonds-Karp Algorithmus	3
	1.2	Algori	ithmus von Dinic	3
		1.2.1	Sperrfluss (blocking flow)	3
2	Vorl	esung		4
	2.1	Defini	tion: Sperrfluss	4
		2.1.1	Pseudo-Code	4
		2.1.2	Begründung zur Laufzeit	5
	2.2	Maxm	nimum Matching als Flussproblem	5
		2.2.1	Flussnetzwerke mit Einheitskapazität	5
3	Vorl	esung		7
		3.0.1	Laufzeit für Dinic-Algo. bei Flussnetzwerken mit Einheitskapazität	7
		3.0.2	Finden Knotendisjunkter Wege	8
		3.0.3	Ergänzung zum Paper	

Abbildung 1.1: Wiederholung

1.1 Edmonds-Karp Algorithmus

$$G = (V, E)$$
 , $c : R \to \mathbb{R}_0^+$, $G_F = (V, E_f)$, $G_f^L = (V, E_f^L)$

```
1 f = 0;  
while(\exists p \leadsto t \in G_f^L = (V, E_f^L)) { sei c_{min}(\mathbf{p}) die kleinste Restkapazität auf p  
f(u,v) = \begin{cases} f(u,v) + c_{min}(p) & \text{falls } (u,v) \in p \\ f(u,v) - c_{min}(p) & \text{falls } (v,u) \in p \end{cases} }
```

 $\delta_f(s,v)$ die kleinste Zahl von Kanten, die in G_f^L benötigt werden, um von s nach v zu gelangen.

1.1.1 Lemma:

Im Verlauf des Edmonds-Karp Algorithmus gilt:

$$\delta_{f'}(s, v) \ge \delta_f(s, v)$$

wobei der Fluss f' durch eine Flussverbesserung aus f hervorgegangen ist.

1.1.2 Beweis durch Widerspruch

Annamhe

$$\exists v \in V : \delta_{f'}(s, v) < \delta_f(s, v)$$
 (**)

sei v so gewählt, dass $\delta_{f'}(s, v)$ minimal. Sei $s \leadsto u \to v$ ein kürzester Weg in $G_{f'}^L$.

$$\delta_f(s, u) < \delta_{f'}(s, u) = \delta_{f'}(s, v) - 1 \qquad (*)$$

Behauptung

$$(u,v) \notin E_f^L$$

Beweis durch Widerspruch

$$\delta_f(s,v) \leq {}^{\mathrm{I}}\delta_f(s,u) + 1 \leq {}^{\mathrm{II}}\delta_{f'}(s,v) \not\downarrow \mathrm{zu} \ (**)$$

$$\Rightarrow (u, v) \notin E_f^L \text{ aber } (u, v) \in E_{f'}^L$$

Abbildung 1.2

d.h. Bei der Flussverbesserung von f zu f^\prime wurde die Kante (v,u) benutzt in G_f^L

$$\delta_f(s, u) = \delta_f(s, v) + 1$$

$$\stackrel{(**)}{>} \delta_{f'}(s, v) + 1$$

$$\stackrel{(*)}{\geq} \delta_f(s, u) + 2$$

q.e.d.

1.1.3 Lemma

Eine kante (u,v) kann un den Level-Rest-Netzwerken höchstens $\frac{|V|}{2}$ mal saturiert werden und damit temporär aus dem jeweiligen Rest-Netzwerk verschwinden

1.1.4 Beweis

$$\delta_f(s, v) = \delta_f(s, u) + 1$$

$$\delta_{f'}(s, v) = \delta_{f'}(s, u) - 1$$

$$\delta_f(s, u) = \delta_f(s, v) - 1 \le \delta_{f'}(s, v) - 1 = \delta_{f'}(s, u) - 2$$

$$\Rightarrow \delta_{f'}(s, u) \ge \delta_f(s, u) + 2$$

q.e.d.

^IDreiecksungleichung

IIwegen (*)

Abbildung 1.3

1.1.5 Laufzeitanalyse von Edmonds-Karp Algorithmus

Bei jeder Flussverbesserung wird mindestens eine Kante saturiert. Jede einzelne Kante kann aber höchstens $\frac{|V|}{2}$ mal saturiert werden.

- \Rightarrow Es gibt höchstens $\mathcal{O}(|E|\cdot |V|)$ viele Flussverbesserungen, Jede Flussverbesserung kann in $\mathcal{O}(|E|)$ ausgeführt werden.
- \Rightarrow Gesamtlaufzeit: $\mathcal{O}(|E|^2 \cdot |V|)$

1.2 Algorithmus von Dinic

1.2.1 Sperrfluss (blocking flow)

$$G_f^L = (V, E_f^L)$$

Wir konstruieren einen Sperrfluss g für einen Graphen H, indem wir wiederholt entlang von (s,t)-Pfaden Fluss von s nach t transportieren.

Bevor wir diesen Prozess wiederholen, löschen wir saturierte Kanten aus H. Läuft man bei der Wegesuche in eine Sackgasse, so muss diese aus H entfernt werden, damit man zu einem späteren Zeitpunkt nicht wieder in diese Sackgasse gerät.

Ziel Algorithmus zur Sperrflussberechnung in Zeit $O(|V| \cdot |E|)$

2.1 Definition: Sperrfluss

$$G = (V, E)$$
 $g: E \to \mathbb{R}^+$ ein Fluss

Auf jedem s-t-Pfad gibt es eine saturierte Kante $(u,v) \in E$, d.h. g(u,v) = c(u,v)

Achtung Wir betrachten hierbei <u>nicht</u> die Kantenmenge E_f des Restnetzwerkes.

Es gilt: $\delta_{f'}(s,v) \geq \delta_f(s,v)$, wobei f' aus f durch eine Flusserhöhung hervorgegangen ist. Für den Dinic-Algorihtmus gilt darüber hinaus, dass $\delta_{f'}(s,t) \geq \delta_f(s,t) + 1$ wobei f' aus f durch eine Flussverbesserung mittels eines Sperrflusses g hervorgegangen ist.

Beweisidee

Konsequenz Im Dinic-Algorithmus genügt es, |V| Sperrfluss-Berechnungen durchzuführen.

Ziel Sperrfluss in Zeit $O(|V| \cdot |E|)$ berechnen.

Gesamtlaufzeit Dinic
$$\hspace{.5in} \mathfrak{O}(|V|^2 \cdot |E|)$$
 vs. Edmonds-Karp
$$\hspace{.5in} \mathfrak{O}(|V| \cdot |E|^2)$$
 (Sleator & Tarjan :
$$\hspace{.5in} \mathfrak{O}(|V| \cdot |E| \cdot \log |V|))$$

2.1.1 Pseudo-Code

```
\begin{array}{lll} 1 & {\rm H} = G_f^{\rm L}; \\ 2 & {\rm stack} \; {\rm P}; \\ 3 & {\rm P.push(s)}; \\ 4 & {\rm g} = 0; \\ 5 & {\rm while(true)} \; \{ \\ 6 & {\rm u} = {\rm P.top()}; \\ 7 & {\rm if} \; (\exists \; ({\rm u}, \; {\rm v}) \in {\rm H}) \; \{ \\ 8 & {\rm P.push(v)}; \\ 9 & {\rm if} \; ({\rm v} \neq {\rm t}) \; {\rm continue}; \end{array}
```

```
10
              //v = 7, d.h. flussverbessernder s-t-Pfad gefunden
              c_{min} = \min_{(\mathbf{u}, \mathbf{v}) \in P} \{ c_f(\mathbf{u}, \mathbf{v}) - g(\mathbf{u}, \mathbf{v}) \}
11
              forall (u,v) \in P {
12
                   g(u, v) = g(u, v)+c_{min};
13
14
                   if (g(u, v) == c_f(u, v))
15
                        lösche (u, v) \in H;
16
              P.clear();
17
18
              P.push(s);
19
              continue;
20
          } //end if
21
          //Sackgasse
22
          lösche alle zu u inzidenten Kanten aus H;
23
         P.pop();
24
          if (u == s)
25
              break;
    } //end while
```

2.1.2 Begründung zur Laufzeit

Jeder s-t-Pfad wird in Zeit $\mathcal{O}(|V|)$ gefunden. Danach wird mindestens eine Kante aus H entfernt, weil sie saturiert wird. Jede kante kann höchstens einmal als Sackgasse betreten werden, weil sie anschließend gelöscht wird.

2.2 Maxmimum Matching als Flussproblem

$$E \supseteq M^* = \{(u, v) \in E \cap V_1 \times V_2 \mid f(u, v) = 1\}$$
 F.F.-Laufzeit $\mathcal{O}(|f^*| \cdot |E|)$
$$= \mathcal{O}(|V| \cdot |E|)$$

|f| ist ganzzahlig = Kardinalität des maximum Matchings $|M^*|$

2.2.1 Flussnetzwerke mit Einheitskapazität (unit capacity network flow)

$$G = (V, E) \ c : E \to \{0, 1\}$$

Sperrfluss-Berechnung läuft in $\mathcal{O}(|E|)$, weil immer alle Kanten auf den flussverbessernden s-t-Pfaden gelöscht werden können.

Dinic: $O(|V| \cdot |E|)$

Satz

Mit Hilfe des Dinic-Algorithmus lässt sich ein Flussproblem mit Einheitskapazität in Zeit

$$\mathcal{O}\left(\min\left(|E|^{\frac{1}{2}},|V|^{\frac{2}{3}}\right)\right)$$

lösen.

Beweis

- 1. Fall Zeige, dass $2\cdot \sqrt{|E|}$ viele Sperrfluss-Berechnungen genügen.
 - 1. Phase Zuerst $\sqrt{|E|}$ Sperrfluss-Berechnungen. \Rightarrow Fluss f

$$\Rightarrow \delta_f(s,t) \ge \sqrt{|E|}$$

 \Rightarrow Schnitt zwischen zwei Levels L_i und L_{i+1} mit weniger als $\sqrt{|E|}$ Kanten.

Abbildung 2.3: $k \geq \sqrt{|E|}$

 $|f^*| \leq |f| + \sqrt{|E|}$, weil über diesen Schnitt zusätzlich zu f noch ein Fluss der Größe $\sqrt{|E|}$ möglich ist.

 \Rightarrow 2. Phase: Um von f zu f^* zu kommen, reichen weitere $\sqrt{|E|}$ viele Sperrfluss-Berechnungen aus.

3.0.1 Laufzeit für Dinic-Algorithmus bei Flussnetzwerken mit Einheitskapazität

$$\mathcal{O}\left(\min\left\{|E|^{\frac{1}{2}},|V|^{\frac{2}{3}}\right\}\cdot|E|\right)$$

2. Fall

1. Phase Führe $2 \cdot |V|^{\frac{2}{3}}$ Sperrflussberechnungen durch. $\Rightarrow \delta_f(s,t) > 2 \cdot |V|^{\frac{2}{3}}$

Abbildung 3.1: Schaubild

Behauptung

$$k = 2 \cdot |V|^{\frac{2}{3}}$$

$$\exists 0 < i < k: \quad |V_i| \le |V|^{\frac{1}{3}}$$

$$\quad \text{und} \ |V_{i+1}| \le |V|^{\frac{1}{3}}$$

Falls Behauptung gilt $\Rightarrow c_f(V_i, V_{i+1}) \leq \#$ Kanten über diesen Schnitt $\leq |V_i| \cdot |V_{i+1}| \leq |V|^{\frac{2}{3}}$. Maximaler Fluss $|f^*|$ ist vom aktuellen Fluss f, der sich nach der 1. Phase eingestellt hat höchstens noch $|V|^{\frac{2}{3}}$ entfernt. Deshalb genügen in der 2. Phase noch $|V|^{\frac{2}{3}}$ Sperrflussberechnungen um $|f^*|$ zu erreichen.

Beweis der Behauptung $<|V|^{\frac{2}{3}}$ Schichten haben $>|V|^{\frac{1}{3}}$ Knoten. Andernfalls gäbe es mehr als $|V|^{\frac{2}{3}} \cdot |V|^{\frac{1}{3}} = |V|$ viele Knoten.

Beweisidee Wir färben die Schichten weiß, welche weniger als $|V|^{\frac{1}{3}}$ Knoten haben und den Rest schwarz, da es mehr weiße als schwarze gibt, müssen 2 weiße aufeinander folgen.:

$$\underbrace{w \ s \ w \ s \ w \ s \dots w \ s}_{k}$$

 $> |V|^{\frac{2}{3}}$ Schichten haben $\leq |V|^{\frac{1}{3}}$ Knoten \Rightarrow es muss i geben, mit $|V_i| \cdot |V_{i+1}| \leq |V|^{\frac{1}{3}}$

q.e.d.

3.0.2 Finden Knotendisjunkter Wege

ldee Man Forme den Graphen wie folgt um:

3.0.3 Ergänzung zum Paper

$$pot_f(v) = \min \left(\sum_{(v,u) \in E} c(v,u) - f(v,u), \sum_{(u,v) \in E} c(u,v) - f(u,v) \right)$$

Abbildung 3.3

Abbildungsverzeichnis

1.1	Wiederholung	
1.2		4
1.3		,
2.3	$k \ge \sqrt{ E }$	(
3.1	Schaubild	,