

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
21. Juli 2005 (21.07.2005)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2005/066643 A1

(51) Internationale Patentklassifikation⁷: **G01R 21/133**

(21) Internationales Aktenzeichen: PCT/EP2004/012879

(22) Internationales Anmeldedatum:
12. November 2004 (12.11.2004)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
10361664.0 30. Dezember 2003 (30.12.2003) DE

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): **AUSTRIAMICROSYSTEMS AG [AT/AT]**; Schloss Premstätten, A-8141 Unterpremstätten (AT).

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): **FRITZ, Gerhard [AT/AT]**; Eisengasse 14, A-8020 Graz (AT). **SCHMALZL, Erwin [AT/AT]**; Lange Gasse 15, A-8010 Graz (AT).

(74) Anwalt: **EPPING HERMANN FISCHER PATENTANWALTSGESELLSCHAFT MBH**; Ridlerstr. 55, 80339 München (DE).

(81) Bestimmungsstaaten (*soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,

[Fortsetzung auf der nächsten Seite]

(54) Title: ENERGY METERING SYSTEM

(54) Bezeichnung: ENERGIEZÄHLERANORDNUNG

(57) Abstract: The invention relates to an energy metering system comprising two inputs (1, 2) to which electric voltage (V) and current (I) dependent signals are transmitted. Said signals are digitised in analog-to-digital converters and linked to each other. In order to correct phase deviations producible by signal (12, 14) injecting means, a phase evaluation unit (9) is connected to the inputs (1, 2) of the energy metering system and controls a phase correction unit (6) at the output of the analog-to-digital converter (4), thereby making it possible to easily carry out a cost-effective compensation of phase errors in such a way that is possible to carry out a galvanic separation avoiding errors of measurement at the input. The inventive energy metering system is particularly suitable for implementing in integrated circuit engineering.

(57) Zusammenfassung: Es ist eine Energiezähleranordnung mit zwei Eingängen (1, 2) angegeben, an denen Signale zugeführt werden, welche von einer elektrischen Spannung (V) und einem elektrischen Strom (I) abhängig sind. Diese werden in Analog-Digital-Wandlern (3, 4) digitalisiert und miteinander verknüpft. Zur Korrektur von Phasenabweichungen, welche

[Fortsetzung auf der nächsten Seite]

WO 2005/066643 A1

MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(84) **Bestimmungsstaaten** (*soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart*): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LU, MC, NL, PL,

durch Mittel zur Einkopplung der Signale (12, 14) verursacht werden können, ist ein Phasenauswertungsblock (9) mit den Eingängen (1, 2) der Energiezähleranordnung gekoppelt. Der Phasenauswertungs-block (9) steuert einen Phasenkorrekturblock (6) am Ausgang eines Analog-/Digital-Wandlers (4) an. Hierdurch ist mit ge-ringem Aufwand eine kostengünstige Kompensation von Phasen-fehlern möglich, so daß bei Vermeidung von Meßfehlern eine galvanische Trennung am Eingang möglich ist. Die beschriebene Energiezähleranordnung ist besonders zur Implementierung in integrierter Schaltungstechnik geeignet.

Beschreibung

Energiezähleranordnung

Die vorliegende Erfindung betrifft eine Energiezähleranordnung.

Energiezähler dienen zur Erfassung von verbrauchter oder erzeugter elektrischer Energie. Solche Energiezähler werden auch als Stromzähler oder Kilowattstundenzähler bezeichnet.

Bei elektronisch arbeitenden Energiezählern werden normalerweise Spannung und Strom erfaßt, digitalisiert und miteinander multipliziert. Nach der Multiplikation steht die momentane elektrische Leistung bereit. Integriert oder akkumuliert man diese elektrische Leistung über der Zeit, so erhält man ein Signal, welches ein Maß für die in einem bestimmten Zeitintervall erzeugte oder verbrauchte elektrische Energie ist.

Um zu elektrischer Spannung und elektrischem Strom proportionale Signale zu erhalten, können Spannungsteiler, Spannungswandler, Stromwandler oder andere Mittel zur Signalauskopplung verwendet werden.

Bei vielen Anwendungen ist es erforderlich, zumindest in einem der beiden Kanäle zur Erfassung von Spannung und Strom eine galvanische Trennung vorzusehen. Eine solche galvanische Trennung der Stromkreise stellt beispielsweise ein Transformatormotor bereit.

Problematisch bei derartigen Transformatoren ist jedoch die von der induktiven Kopplung des Transformators verursachte Phasenverschiebung. Die Phasenverschiebung ergibt sich zum

einen zwischen dem Ausgangssignal und dem Eingangssignal des Transformators. Zum anderen ergibt sich die Phasenverschiebung aber auch zwischen dem den Strom und dem die Spannung repräsentierenden Signal. Dadurch werden jedoch unerwünschte Meßfehler bei der Multiplikation von Spannung und Strom verursacht. Zu beachten ist hierbei, daß Spannung und Strom meist nicht als Gleichsignale, sondern vielmehr als Wechselstromsignale mit mehr oder weniger harmonischer Signalform vorliegen.

Die beschriebene Problematik wird noch zusätzlich dadurch verschärft, daß selbst dann, wenn in Spannungs- und Strom-Meßkanal jeweils ein transformatorischer Übertrager eingesetzt wird, dennoch eine nicht vorhersehbare Phasenverschiebung zwischen beiden Eingangskanälen durch Fertigungstoleranzen, Temperatureffekte, Alterungseffekte oder anderes verursacht werden kann.

Zur Korrektur der beschriebenen, unerwünschten Phasenverschiebung könnten beispielsweise RC-Netzwerke, welche Widerstände und Kondensatoren umfassen, verwendet werden. Diese müssen jedoch normalerweise als zusätzliche externe Komponenten ausgeführt werden und können normalerweise mit Nachteil nicht integriert werden. Zudem wird die Problematik der fertigungs- und temperaturbedingten Toleranzen dadurch nicht grundsätzlich gelöst.

Aufgabe der vorliegenden Erfindung ist es, eine mit geringem Aufwand integrierbare Energiezähleranordnung zu schaffen, bei der die Spannung und/oder der Strom mit galvanischer Trennung erfaßt werden können, ohne daß dadurch Meßfehler entstehen.

Erfnungsgemäß wird die Aufgabe gelöst durch eine Energiezähleranordnung, aufweisend

- einen ersten Eingang zum Zuführen eines von einer Spannung abgeleiteten Signals, an den ein erster Analog/Digital-Wandler angeschlossen ist, einen zweiten Eingang zum Zuführen eines von einem Strom abgeleiteten Signals, an den ein zweiter Analog/Digital-Wandler angeschlossen ist,
- einen Multiplizierer, der die Ausgänge der beiden Analog/Digital-Wandler miteinander verknüpft,
- einen Phasenauswertungsblock mit zwei Eingängen, die mit dem ersten und dem zweiten Eingang der Energiezähleranordnung zur Messung einer Phasenabweichung gekoppelt sind, und mit einem Ausgang, der mit einem Phasenkorrekturblock gekoppelt ist, und
- den Phasenkorrekturblock, der an einen Ausgang eines der beiden Analog/Digital-Wandler gekoppelt ist, ausgelegt zur Korrektur der Phasenabweichung des digitalisierten, von einem Strom oder einer Spannung abgeleiteten Signals.

Gemäß dem vorgeschlagenen Prinzip wird eine Phasenverschiebung zwischen dem Eingang der Energiezähleranordnung, an dem ein von einer elektrischen Spannung abgeleitetes Signal zugeführt wird, und demjenigen Eingang der Energiezähleranordnung, an dem ein von einem elektrischen Strom abgeleitetes Signal zugeführt wird, erfaßt und kompensiert. Die Signaleingänge zum Zuführen des von der Spannung abgeleiteten Signals und des von dem Strom abgeleiteten Signals können auch als Eingangskanäle, nämlich Spannungskanal und Stromkanal, bezeichnet werden.

Mit der vorgeschlagenen Messung und Kompensation der Phasenverschiebung zwischen beiden Kanälen ist es mit Vorteil möglich, die Kanäle voneinander und/oder zumindest einen Eingang

von der Energiezähleranordnung galvanisch zu isolieren. Durch den Abgleich der Phasenverschiebung werden Meßfehler der Anordnung vermieden. Dabei sind mit Vorteil keinerlei externe Kompensationsnetzwerke wie Widerstands-Kapazitätsnetzwerke zur Phasenverschiebung erforderlich.

Der Phasenauswertungsblock sowie der Phasenkorrekturblock bewirken mit Vorteil ohne externe Komponenten eine sogenannte On-Chip-Phasenkorrektur der Energiezähleranordnung.

Beispielsweise kann in einer Kalibrier-Betriebsart die Phasenabweichung zwischen beiden Eingangskanälen dadurch gemessen werden, daß ein identisches Eingangssignal an beide Eingänge angelegt wird. Bevorzugt wird ein Sinus-Signal an beide Eingänge der Energiezähleranordnung in der Kalibrier-Betriebsart angelegt.

Dabei können mit Vorteil beispielsweise die Null-Durchgänge beider Signale mit dem Phasenauswertungsblock verglichen werden. Somit ist es möglich, den relativen zeitlichen Abstand der Null-Durchgänge voneinander zu bestimmen. Die Berechnung des Phasenunterschieds aus dem zeitlichen Abstand der Null-Durchgänge der beiden Signale kann mit Vorteil beispielsweise durch eine Logik-Einheit in dem Phasenauswertungsblock bewirkt werden. Mit der ermittelten Phasendifferenz ist es anschließend problemlos möglich, in einem der beiden Kanäle eine Korrektur genau dieser Phasendifferenz durchzuführen.

Der Phasenkorrekturwert kann mit Vorteil im Phasenauswertungsblock abgespeichert werden, damit der Korrekturwert auch nach der Kalibrier-Betriebsart in einem Normalbetrieb zur Verfügung steht.

Dadurch, daß zur Phasenkorrektur keine externen Bauteile benötigt werden, ist die Implementierung der vorgeschlagenen Energiezähleranordnung mit Vorteil sehr kostengünstig möglich. Daher ist die vorgeschlagene, integrierbare Energiezähleranordnung besonders gut für eine Massenherstellung geeignet.

Ein zusätzlicher Vorteil ist dadurch gegeben, daß die Zeit, die zur Kalibrierung der Energiezähleranordnung nach dem vorgeschlagenen Prinzip benötigt wird, besonders gering ist. Prinzipiell kann der Phasenunterschied zwischen den beiden Eingangskanälen innerhalb lediglich einer Periodendauer des Eingangssignals bestimmt werden. Die Periodendauer kann dabei in einfacher Weise aus dem Kehrwert der jeweiligen Signalfrequenz berechnet werden. Die Signalfrequenz bei Energiezählern beträgt üblicherweise 50 Hertz oder 60 Hertz, je nach nationaler Standardisierung.

Gemäß dem vorgeschlagenen Prinzip wird eine Phasenabweichung zwischen den als Analogsignale vorliegenden Eingangssignalen der Energiezähleranordnung erfaßt. Die Korrektur des Phasenfehlers erfolgt hingegen im Bereich der digitalen Signalverarbeitung, nämlich nach der Analog-/Digital-Wandlung der Eingangssignale.

Um eine besonders schnelle Ermittlung der Phasenabweichung zwischen den Eingangskanälen der Energiezähleranordnung zu erzielen, ist es vorteilhaft, den Takteingang des Phasenauswertungsblocks mit den Takteingängen der Analog-/Digital-Wandler zu verbinden und so für die Phasenauswertung das Taktsignal der Analog-/Digital-Wandler mit zu verwenden, das ohnehin zum Betrieb der Energiezähleranordnung benötigt wird.

Der Phasenauswertungsblock umfaßt mit Vorteil Mittel zum dauerhaften Speichern eines Phasenkorrekturwertes. Das Mittel zum dauerhaften Speichern eines Phasenkorrekturwertes ist bevorzugt als nicht-flüchtiger Speicher, beispielsweise als EEPROM, ausgebildet.

Durch das dauerhafte Speichern des Phasenkorrekturwertes steht der in einer Kalibrierbetriebsart ermittelte Phasenkorrekturwert auch noch nach einem Aus- und Wiedereinschalten der Energiezähleranordnung zur Verfügung.

Zur Signalaufbereitung der dem Phasenauswertungsblock zuführenden Eingangssignale ist es vorteilhaft, je einen begrenzenden Verstärker vorzusehen, der den ersten Eingang und den zweiten Eingang der Energiezähleranordnung mit zugeordneten Eingängen des Phasenauswertungsblocks koppelt.

Die Analog-/Digital-Wandler sind mit Vorteil jeweils als Sigma-Delta-Wandler oder als Sigma-Delta-Modulator ausgebildet. Dadurch ist eine Abtastung der Eingangssignale, die von Spannung und Strom abgeleitet sind, mit hoher Auflösung bei guter Integrierbarkeit möglich.

Am Ausgang des Multiplizierers ist mit Vorteil ein Integrator vorgesehen, der das vom Multiplizierer bereitgestellte Signal integriert. Der Integrator kann mit Vorteil als Akkumulator ausgebildet sein.

Der Integrator ist mit Vorteil so ausgelegt, daß er das vom Multiplizierer bereitgestellte Signal, welches die momentane elektrische Leistung repräsentiert, zu einem Signal integriert, welches ein Maß für die verbrauchte oder erzeugte elektrische Energie ist.

Weiter bevorzugt sind der erste und der zweite Analog-/Digital-Wandler, der Phasenkorrekturblock und der Phasenauswertungsblock in integrierter Schaltungstechnik ausgebildet. Auch die begrenzenden Verstärker, die Sigma-Delta-Wandler sowie weitere Funktionsblöcke und/oder Bauteile in der Signalverarbeitungskette der Energiezähleranordnung können, soweit vorhanden, mit Vorteil in integrierter Schaltungstechnik ausgebildet sein. Die Energiezähleranordnung kann mit Vorteil in einem einzigen integrierten Halbleiterschaltkreis implementiert sein.

Am ersten Eingang der Energiezähleranordnung und/oder am zweiten Eingang der Energiezähleranordnung kann mit Vorteil der Ausgang eines Übertragers angeschlossen sein, der eine galvanische Trennung bewirkt. Ein derartiger, nicht-galvanischer Übertrager kann mit Vorteil ein Transfomator sein.

Die verhältnismäßig großen Phasenabweichungen derartiger Kopplglieder, welche eine galvanische Trennung der Eingänge bewirken, können mit dem vorgeschlagenen Prinzip in besonders einfacher und wirkungsvoller sowie hochgenauer Weise kompensiert werden.

Bevorzugt ist ein Mittel zur Erzeugung eines Testsignals vorgesehen, das mit dem ersten und dem zweiten Eingang der Energiezähleranordnung gekoppelt ist.

Soweit Einkoppelglieder vorgesehen sind, wie beispielsweise transformatorische Übertrager, ist das Mittel zur Erzeugung des Testsignals mit Vorteil so ausgebildet, daß das Testsignal am Eingang des Übertragers bzw. Einkoppelgliedes einge-

speist wird. Dabei kann es vorteilhaft sein, eine Umschaltbarkeit der Eingänge zwischen einer Nutzsignalbetriebsart und einer Kalibrierbetriebsart, in der die Eingänge mit dem Mittel zur Erzeugung des Testsignals verbunden sind, vorzusehen.

Das Mittel zur Erzeugung des Testsignals kann mit Vorteil in einer Kalibrierbetriebsart aktivierbar sein, während es in der Normal-Betriebsart, das heißt in dem eigentlichen Energie-Meßbetrieb, deaktiviert werden kann.

Weitere Einzelheiten und vorteilhafte Ausgestaltungen des vorgeschlagenen Prinzips sind Gegenstand der Unteransprüche.

Die Erfindung wird nachfolgend an einem Ausführungsbeispiel anhand der Figur näher erläutert.

Es zeigt:

die Figur ein Blockschaltbild eines Ausführungsbeispiels der vorgeschlagenen Energiezähleranordnung.

Die Figur zeigt eine Energiezähleranordnung mit einem ersten Eingang 1 und einem zweiten Eingang 2. Der erste Eingang 1 ist ausgelegt zum Zuführen eines von einer elektrischen Spannung V abgeleiteten Signals. Der zweite Eingang 2 ist ausgelegt zum Zuführen eines von einem elektrischen Strom I abgeleiteten Signals. Dabei sind die elektrische Spannung V und der elektrische Strom U auf das gleiche Signal bezogen. An den ersten Eingang 1 ist der Eingang eines ersten Analog-/Digital-Wandlers 3 angeschlossen. An den zweiten Eingang 2 ist der Eingang eines zweiten Analog-/Digital-Wandlers 4 angeschlossen. Die Analog-/Digital-Wandler 3, 4 sind jeweils als Sigma-Delta-Modulator ausgeführt. Der Ausgang des ersten Ana-

log-/Digital-Wandlers 3 ist über ein erstes digitales Filter 5 mit dem Eingang eines Multiplizierers 7 verbunden. Der Ausgang des zweiten Analog-/Digital-Wandlers 4 ist über ein zweites digitales Filter 6 mit einem weiteren Eingang des Multiplizierers 7 verbunden. Das zweite digitale Filter 6 umfaßt einen Phasenkorrekturblock. An den Ausgang des Multiplizierers 7 ist ein Integrator 8 angeschlossen, der ein an seinem Eingang anliegendes Signal, welches ein Maß für die momentane elektrische Leistung P ist, in ein Signal konvertiert, welches die elektrische Energie E repräsentiert. Weiterhin ist ein Phasenauswertungsblock 9 mit einem ersten Eingang und einem zweiten Eingang vorgesehen. Mit je einem begrenzenden Verstärker 10, 11 sind der erste Eingang und der zweite Eingang 1, 2 der Energiezähleranordnung mit den Eingängen des Phasenauswertungsblockes 9 verbunden.

Der Phasenauswertungsblock 9 umfaßt einen nicht-flüchtigen Speicher 17, in dem die gemessene Phasenabweichung oder der zugehörige Korrekturwert dauerhaft gespeichert werden können.

Zur Auskopplung der elektrischen Spannung ist ein Spannungssteiler 12 vorgesehen, dessen Ausgang mit dem ersten Eingang der Energiezähleranordnung verbunden ist und dessen Eingang einen Spannungseingang 13 zur Zuführung der elektrischen Spannung bildet. Zur Auskopplung des elektrischen Stroms ist ein Transformator 14 vorgesehen, der zwischen einem Stromeingang 15 und den zweiten Eingang 2 der Energiezähleranordnung geschaltet ist. Der Transformator 14 stellt eine galvanische Entkopplung zwischen dem Stromeingang 15 und dem zweiten Eingang 2 bereit.

An den Spannungseingang 13 und den Stromeingang 15 ist der Ausgang eines Testsignalgenerators 16 angeschlossen. Der

Testsignalgenerator 16 stellt ein harmonisches, beispielsweise sinusförmiges Signal mit einer Nennfrequenz von 50 oder 60 Hertz bereit.

Durch den Spannungsteiler 12 und den Transformator 14 ergeben sich für die beiden Eingangskanäle des Energiezählers unterschiedliche Phasenverschiebungen. Von besonderer Bedeutung ist der relative Phasenunterschied $\Delta\phi$ zwischen den beiden Eingangskanälen an den Eingängen 1, 2 der Energiezähleranordnung. Diese Phasenabweichung $\Delta\phi$ wird mit dem Phasenauswertungsblock 9 ermittelt. Dies erfolgt in einer Kalibrier-Betriebsart dadurch, daß der Testsignalgenerator 16 aktiviert wird und demnach an dem Spannungseingang 13 und dem Stromeingang 15 jeweils ein phasengleiches, sinusförmiges Signal einspeist. Dieses Signal erfährt in dem Spannungsteiler 12 und dem Transformator 14 eine unterschiedliche Phasenverschiebung.

Die relative Phasenabweichung $\Delta\phi$ an den Eingängen 1, 2 wird in dem Phasenauswertungsblock dadurch ermittelt, daß die Zeitspanne zwischen den Null-Durchgängen der beiden Signale an den Eingängen des Phasenauswertungsblockes erfaßt und in eine korrespondierende Phasenabweichung umgerechnet wird. Ein entsprechender Korrekturwert wird am Ausgang des Phasenauswertungsblockes abgegeben. Damit wird ein Phasenkorrekturblock im digitalen Filter 6 angesteuert, der den Phasenunterschied $\Delta\phi$ gerade ausgleicht. Die begrenzenden Verstärker 10, 11 verbessern dabei die Genauigkeit der Erkennung der Null-Durchgänge.

Die Kalibrierbetriebsart wird einmalig bei der Herstellung der Energiezähleranordnung aktiviert.

Mit dem vorgeschlagenen Prinzip wird eine automatische Phasenkorrektur für integrierte Energiezähleranordnungen bereitgestellt, welche vollständig integriert ist. Die vorgeschlagene Energiezähleranordnung zeichnet sich außerdem durch eine geringe Kalibrierzeit sowie geringe Kosten bei der Herstellung aus. Zudem ist eine galvanische Isolierung zumindest eines Kanals am Eingang der Energiezähleranordnung möglich, ohne daß dadurch Meßfehler auftreten. Die galvanische Isolierung ist besonders dann von hoher Bedeutung, wenn mehr als ein Kanal gemessen wird, wie bei elektrischen Energiezählern üblich.

Insbesondere kann eine Phasenverschiebung, welche von Transformatoren unvermeidbar verursacht wird, kompensiert werden. Dabei werden keine zusätzlichen externen Komponenten wie Widerstands-Kapazitätsnetzwerke zur Phasenkorrektur benötigt.

Durch den nicht-flüchtigen Speicher 17 steht der Phasenkorrekturwert auch noch dann bereit, wenn der Energiezähler abgeschaltet ist.

Da die Bestimmung der Phasenabweichung grundsätzlich innerhalb einer Periodendauer möglich ist, kann mit dem vorgeschlagenen Prinzip eine besonders schnelle Kalibrierung vorgenommen werden.

Der Phasenauswertungsblock 9 hat mit Vorteil einen Takteingang, der mit den Takteingängen der Sigma-Delta-Modulatoren 3, 4 verbunden ist. Dadurch können die Taktflanken zwischen zwei Null-Durchgängen an den Eingängen 1, 2 gezählt und so die Phasenabweichung in einfacher und genauer Weise ermittelt werden.

Gemäß dem vorgeschlagenen Prinzip wird im analogen Signalbereich eine Erfassung der relativen Phasenabweichung an den beiden Eingängen der Energiezähleranordnung durchgeführt. Die Korrektur der Phasenabweichung erfolgt jedoch in der digitalen Signalverarbeitung.

Patentansprüche

1. Energiezähleranordnung, aufweisend

- einen ersten Eingang (1) zum Zuführen eines von einer Spannung (V) abgeleiteten Signals, an den ein erster Analog/Digital-Wandler (3) angeschlossen ist,
- einen zweiten Eingang (2) zum Zuführen eines von einem Strom (I) abgeleiteten Signals, an den ein zweiter Analog/Digital-Wandler (4) angeschlossen ist,
- einen Multiplizierer (7), der die Ausgänge der beiden Analog/Digital-Wandler (3, 4) miteinander verknüpft,
- einen Phasenauswertungsblock (9) mit zwei Eingängen, die mit dem ersten und dem zweiten Eingang (1, 2) der Energiezähleranordnung zur Messung einer Phasenabweichung ($\Delta\phi$) gekoppelt sind, und mit einem Ausgang, der mit einem Phasenkorrekturblock (6) gekoppelt ist, und
- den Phasenkorrekturblock (6), der an einen Ausgang eines der beiden Analog/Digital-Wandler (4) gekoppelt ist, ausgelegt zur Korrektur der Phasenabweichung ($\Delta\phi$) des digitalisierten, von einem Strom (I) oder einer Spannung (V) abgeleiteten Signals.

2. Energiezähleranordnung nach Anspruch 1,

dadurch gekennzeichnet, daß

der Phasenauswertungsblock (9) Mittel zum dauerhaften Speichern eines Phasenkorrekturwertes (17) umfaßt.

3. Energiezähleranordnung nach Anspruch 1 oder 2,

dadurch gekennzeichnet, daß

je ein begrenzender Verstärker (10, 11) vorgesehen ist, der je einen Eingang der Energiezähleranordnung (1, 2) mit je einem Eingang des Phasenauswertungsblocks (9) koppelt.

4. Energiezähleranordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß

der erste und der zweite Analog/Digital-Wandler (3, 4) jeweils als Sigma-Delta-Wandler ausgebildet sind.

5. Energiezähleranordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß

ein Integrator (8) vorgesehen ist, der dem Multiplizierer (7) nachgeschaltet ist.

6. Energiezähleranordnung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß

der erste und der zweite Analog/Digital-Wandler (3, 4), der Phasenkorrekturblock (6) und der Phasenauswertungsblock (9) in integrierter Schaltungstechnik ausgebildet sind.

7. Energiezähleranordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß

am ersten Eingang (1) und/oder am zweiten Eingang (2) ein nicht-galvanisch koppelnder Übertrager (14) zur Einkopplung des von einer Spannung (V) und/oder von einem Strom (I) abgeleiteten Signals angeschlossen ist.

8. Energiezähleranordnung nach Anspruch 7,

dadurch gekennzeichnet, daß

der nicht-galvanisch koppelnde Übertrager (14) als Transfomator ausgebildet ist.

9. Energiezähleranordnung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß

ein Mittel zur Erzeugung eines Testsignals (16) vorgesehen ist, das mit dem ersten und dem zweiten Eingang (1, 2) der Energiezähleranordnung gekoppelt ist.

1/1

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP2004/012879

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 G01R21/133

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 G01R

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC, IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>GB 2 319 345 A (* GEC METERS LIMITED; * ABB METERING SYSTEMS LIMITED) 20 May 1998 (1998-05-20) page 10, line 12 - page 11, line 14 figure 2 abstract</p> <p>-----</p> <p style="text-align: center;">-/-</p>	1-9

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

18 February 2005

Date of mailing of the international search report

28/02/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Lopez-Carrasco, A

INTERNATIONAL SEARCH REPORT

International Application No
T/EP2004/012879

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	NAGURA H ET AL: "Correction method for a single chip power meter" INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, 1994. IMTC/94. CONFERENCE PROCEEDINGS. 10TH ANNIVERSARY. ADVANCED TECHNOLOGIES IN I & M., 1994 IEEE HAMAMATSU, JAPAN 10-12 MAY 1994, NEW YORK, NY, USA, IEEE, 10 May 1994 (1994-05-10), pages 1313-1316, XP010121767 ISBN: 0-7803-1880-3 page 1314, column 1 - page 1315, column 2 figures 2,6 -----	4
A	US 2003/042886 A1 (GANDHI GULJEET S) 6 March 2003 (2003-03-06) paragraphs '0023!', '0030! claims 1,11 -----	1
A	US 6 373 415 B1 (KING ERIC T ET AL) 16 April 2002 (2002-04-16) figures -----	1
A	US 5 017 860 A (GERMER ET AL) 21 May 1991 (1991-05-21) columns 5,6 -----	1
A	US 6 377 037 B1 (BURNS GORDON R ET AL) 23 April 2002 (2002-04-23) column 5, paragraph 2 - paragraph 4 -----	1
A	US 4 408 283 A (KOVALCHIK ET AL) 4 October 1983 (1983-10-04) figure 2 -----	1

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP2004/012879

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
GB 2319345	A	20-05-1998	NONE		
US 2003042886	A1	06-03-2003	WO US	03021279 A1 2004232904 A1	13-03-2003 25-11-2004
US 6373415	B1	16-04-2002	US US	6522982 B1 6304202 B1	18-02-2003 16-10-2001
US 5017860	A	21-05-1991	BR DE DE EP JP JP KR MX PH	8906150 A 68920984 D1 68920984 T2 0377282 A1 2189471 A 3045739 B2 134770 B1 172069 B 26790 A	31-07-1990 16-03-1995 06-07-1995 11-07-1990 25-07-1990 29-05-2000 30-04-1998 01-12-1993 13-10-1992
US 6377037	B1	23-04-2002	US US	6043642 A 6020734 A	28-03-2000 01-02-2000
US 4408283	A	04-10-1983	CA EP JP WO	1173157 A1 0081569 A1 58500873 T 8204324 A1	21-08-1984 22-06-1983 26-05-1983 09-12-1982

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2004/012879

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 7 G01R21/133

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 G01R

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, INSPEC, IBM-TDB

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	GB 2 319 345 A (* GEC METERS LIMITED; * ABB METERING SYSTEMS LIMITED) 20. Mai 1998 (1998-05-20) Seite 10, Zeile 12 – Seite 11, Zeile 14 Abbildung 2 Zusammenfassung ----- -/-/	1-9

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- ° Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
18. Februar 2005	28/02/2005
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Lopez-Carrasco, A

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

T/EP2004/012879

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	NAGURA H ET AL: "Correction method for a single chip power meter" INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, 1994. IMTC/94. CONFERENCE PROCEEDINGS. 10TH ANNIVERSARY. ADVANCED TECHNOLOGIES IN I & M., 1994 IEEE HAMAMATSU, JAPAN 10-12 MAY 1994, NEW YORK, NY, USA, IEEE, 10. Mai 1994 (1994-05-10), Seiten 1313-1316, XP010121767 ISBN: 0-7803-1880-3 Seite 1314, Spalte 1 - Seite 1315, Spalte 2 Abbildungen 2,6 -----	4
A	US 2003/042886 A1 (GANDHI GULJEET S) 6. März 2003 (2003-03-06) Absätze '0023!', '0030! Ansprüche 1,11 -----	1
A	US 6 373 415 B1 (KING ERIC T ET AL) 16. April 2002 (2002-04-16) Abbildungen -----	1
A	US 5 017 860 A (GERMER ET AL) 21. Mai 1991 (1991-05-21) Spalten 5,6 -----	1
A	US 6 377 037 B1 (BURNS GORDON R ET AL) 23. April 2002 (2002-04-23) Spalte 5, Absatz 2 - Absatz 4 -----	1
A	US 4 408 283 A (KOVALCHIK ET AL) 4. Oktober 1983 (1983-10-04) Abbildung 2 -----	1

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

DE/EP2004/012879

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
GB 2319345	A	20-05-1998	KEINE		
US 2003042886	A1	06-03-2003	WO US	03021279 A1 2004232904 A1	13-03-2003 25-11-2004
US 6373415	B1	16-04-2002	US	6522982 B1 6304202 B1	18-02-2003 16-10-2001
US 5017860	A	21-05-1991	BR DE DE EP JP JP KR MX PH	8906150 A 68920984 D1 68920984 T2 0377282 A1 2189471 A 3045739 B2 134770 B1 172069 B 26790 A	31-07-1990 16-03-1995 06-07-1995 11-07-1990 25-07-1990 29-05-2000 30-04-1998 01-12-1993 13-10-1992
US 6377037	B1	23-04-2002	US US	6043642 A 6020734 A	28-03-2000 01-02-2000
US 4408283	A	04-10-1983	CA EP JP WO	1173157 A1 0081569 A1 58500873 T 8204324 A1	21-08-1984 22-06-1983 26-05-1983 09-12-1982