Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

, © CKE 2013	UZUP	EŁNIA ZDAJĄCY	Miejsce
graficzny	KOD	PESEL	Miejsce na naklejkę z kodem
Układ			

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM PODSTAWOWY

CZĘŚĆ I

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zapisz w miejscu na to przeznaczonym przy każdym zadaniu.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 6. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków, schematu blokowego lub języka programowania, który wybrałeś/aś na egzamin.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

11 MAJA 2018

Godzina rozpoczęcia: 14:00

WYBRANE:						
(środowisko)						
(kompilator)						
(program użytkowy)						

Czas pracy: 75 minut

Liczba punktów do uzyskania: 20

MIN-P1 **1**P-182

Zadanie 1. Szyfr przestawieniowy

Rozważany w tym zadaniu szyfr przestawieniowy polega na przestawianiu sąsiadujących ze sobą znaków, tzn. pierwszego z drugim, trzeciego z czwartym, piątego z szóstym itd. Dla słów o nieparzystej liczbie znaków na koniec przestawiamy znak pierwszy z ostatnim.

Przykład:

Tekst jawny: FUNKCJA Szyfrogram: AFKNJCU

Zadanie 1.1. (0-2)

W tabeli zapisano zaszyfrowane słowa *s* o długości *n* znaków, do których zaszyfrowania użyto opisanej w treści zadania metody. Odszyfruj podane słowa.

n	Zaszyfrowane słowo s	Słowo jawne
12	OKFNGIRUCAAJ	
11	AKSNETALJCO	

Miejsce na obliczenia.

Zadanie 1.2. (0-5)

Zapisz w wybranej przez siebie notacji (lista kroków, schemat blokowy, wybrany język programowania) algorytm, który odszyfruje słowo, zaszyfrowane sposobem opisanym powyżej.

Algorytm może używać wyłącznie instrukcji sterujących, przypisań do zmiennych i zamiany dwóch elementów w tablicy. Zabronione są wszystkie funkcje biblioteczne dostępne w językach programowania.

Specyfikacja:

Dane:

n – liczba całkowita większa od 1

S[1..n] – zaszyfrowane słowo o długości n znaków, S[i] jest i-tym znakiem w tym

słowie

Wynik:

S[1..n] – odszyfrowane słowo

Przykład:

Dla n=7 i S=[AGAIDZW] wynikiem jest S=[GWIAZDA].

Algorytm

	Nr zadania	1.1.	1.2.
Wypełnia	Maks. liczba pkt.	2	5
egzaminator	Uzyskana liczba pkt.		

Zadanie 2. Tablica

Rozważ algorytm:

Dane:

dodatnia liczba całkowita

A[1..n] – tablica zawierająca n liczb całkowitych dodatnich

Wynik:

A[1..*n*] – tablica

dla
$$i=1,2,\ldots n-1$$
 wykonuj $m\leftarrow i$ dla $j=i+1,i+2\ldots n$ wykonuj (*) jeżeli $A[m]< A[j]$ $m\leftarrow j$ jeżeli $i\neq m$ $A[i]\leftrightarrow A[m]$

Uwaga: $x \leftrightarrow y$ oznacza instrukcję zamiany wartości zmiennych x i y.

Zadanie 2.1. (0-2)

Podaj, ile razy została wykonana instrukcja w wierszu oznaczonym (*) dla liczb elementów tablicy *A* podanych w tabeli.

n	Liczba wykonań instrukcji w wierszu oznaczonym (*)
3	
6	
k	

Miejsce na obliczenia.

Zadanie 2.2. (0-4)

Podaj w tabeli wyniki działania algorytmu dla podanej liczby n i tablicy A oraz liczbę wykonań instrukcji oznaczonej (**). Uzupełnij **opis wyniku w specyfikacji algorytmu**.

n	A	A	Liczba wykonań instrukcji zamiany
4	[3, 5, 2, 9]		
5	[2, 4, 4, 4, 4]		
6	[1, 2, 3, 4, 5, 6]		

Miejsce na obliczenia.

Zadanie 2.3. (0–2)

Podaj przykład zawartości 7-elementowej tablicy A, dla której instrukcja $A[i] \leftrightarrow A[m]$ zostanie wykonana dokładnie 5 razy.

1	. 1		•	1 /						
	n	pow	10	d7.						
$\mathbf{\mathcal{C}}$	u	$\rho \sigma w$	10	uz.	 • • • •	• • • •	 	 	 • • •	

Miejsce na obliczenia.

	Nr zadania	2.1.	2.2.	2.3
Wypełnia	Maks. liczba pkt.	2	4	2
egzaminator	Uzyskana liczba pkt.			

Zadanie 3. Test

W zadaniach od 3.1. do 3.5. zaznacz kółkiem jedną prawidłową odpowiedź. Jeżeli popełnisz błąd, skreśl błędną odpowiedź znakiem X i zaznacz kółkiem poprawną.

Zadanie 3.1. (0–1)

Format, w którym zapisywana jest grafika rastrowa, to

- A. wmf
- B. avi
- C. png
- **D.** mp4

Zadanie 3.2. (0-1)

W pliku graficznym zapisano bez użycia kompresji obrazek o rozmiarach 1280 na 720 pikseli z użyciem 24 bitów na kolor. Ten plik zajmuje na dysku

- A. 921 600 bitów.
- **B.** 2 764 800 bajtów.
- **C.** 176 947 kilobajtów.
- **D.** 24 megabajty.

Zadanie 3.3. (0–1)

 $10110_2 + 111100_2$ jest równe

- **A.** 111110₂
- **B.** 84₁₀
- C. 1010010₂
- **D.** 1248

Zadanie 3.4. (0–1)

Poniżej zapisano adresy IPv4 dla komputerów w sieci lokalnej w systemie dziesiętnym w punktach A, B i D oraz w systemie binarnym w punkcie C. Nieprawidłowym adresem IP jest

- **A.** 168.255.255.360
- **B.** 1.0.0.1
- **C.** 11000000.10101000.000000000.00000011
- **D.** 13.13.13.13

Zadanie 3.5. (0–1)

W komórce B2 wpisano formułę taką jak poniżej.

	А	В
1	średnia ocen	nagroda
2	4,5	=JEŻELI(A2>5;"tablet";JEŻELI(A2>4,5;"słuchawki";JEŻELI(A2>4;"książka";"brak nagrody")))

Wartość formuły w komórce B2 to

- A. tablet.
- **B.** słuchawki.
- C. książka.
- **D.** brak nagrody.

	Nr zadania	3.1.	3.2.	3.3.	3.4.	3.5.
Wypełnia	Maks. liczba pkt.	1	1	1	1	1
egzaminator	Uzyskana liczba pkt.					

BRUDNOPIS (nie podlega ocenie)