

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Addiese: COMMISSIONER FOR PATENTS P O Box 1450 Alexandra, Virginia 22313-1450 www.wepto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/532,438	12/28/2005	Kevin David Potter	127723-1005	9117
32914 7590 06/10/2008 GARDERE WYNNE SEWELL LLP			EXAMINER	
INTELLECTUAL PROPERTY SECTION			BLOOM, NATHAN J	
3000 THANKSGIVING TOWER 1601 ELM ST			ART UNIT	PAPER NUMBER
DALLAS, TX 75201-4761			2624	
			MAIL DATE	DELIVERY MODE
			06/10/2008	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/532 438 POTTER ET AL. Office Action Summary Examiner Art Unit NATHAN BLOOM 2624 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 15 February 2008. 2a) ☐ This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 61-89 is/are pending in the application. 4a) Of the above claim(s) 65.73-76, and 78-89 is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 61-64,66-72 and 77 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abevance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s)

1) Notice of References Cited (PTO-892)

Paper No(s)/Mail Date 02/06/2006.

2) Notice of Draftsperson's Patent Drawing Review (PTO-948)

Interview Summary (PTO-413)
 Paper No(s)/Mail Date.

6) Other:

5) Notice of Informal Patent Application

Art Unit: 2624

3

DETAILED ACTION

Applicants' response to the last Office Action, filed on February 15th, 2008 has been entered and made of record.

Election/Restrictions

- 1. Claims 65, 76, and 78-89 are withdrawn from further consideration pursuant to 37 CFR 1.142(b), as being drawn to a nonelected invention, there being no allowable generic or linking claim. Applicant timely traversed the restriction (election) requirement in the reply filed on 02/15/2008.
- Although claim 76 was left out of the list of claims in the restriction requirement, it is 2 clearly directed towards a non-elected species (embodiment requiring 3-D correlation). Therefore, claim 76 has been withdrawn since it belongs to a non-elected species.

Claim Rejections - 35 USC § 112

- The following is a quotation of the second paragraph of 35 U.S.C. 112: The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.
- Claim 68 rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing 4. to particularly point out and distinctly claim the subject matter which applicant regards as the invention

Claim 68 incorporates the method of claim 61 twice, once as a parent claim and the second time as further defining what the method of determining the feature is. This double incorporation of claim 61 makes it unclear as to how claim 61 is incorporated or modifies the method of claim 68. For example: Does claim 68 fully incorporate the

Art Unit: 2624

method of claim 61? Is claim 68 only incorporating the positional determination steps? Please amend claim 68 to further clarify how the metes and bounds of claim 68 are affected by the incorporation of claim 61.

Claim Rejections - 35 USC § 103

- The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all
 obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- Claims 61 and 67-72 are rejected under 35 U.S.C. 103(a) as being unpatentable over
 Trew (US 5280530) in further view of Hu (US 6483538).

Instant claim 61: A method for determining coordinates of a feature comprising:

providing a first image including the feature, the first image comprising a plurality of pixels; [Trew teaches in column 2 line 20-37, column 3 lines 65+, and column 4 lines 20-65 the use of an initial template image including the desired feature.]

determining a first estimate of coordinates of the feature to within a fraction of a pixel;

[Trew further teaches in the sections referred to above the determination of the coordinates of a feature in a series of images, but does not teach a method of correlation wherein coordinates are determined with subpixel precision. However, Hu teaches in column 2 lines 31-65 the correlation of a pair of images obtained from a test video and captured video by correlation of the images. Furthermore, Hu teaches in column 3 lines 5-20 the measurement of a fractional

Art Unit: 2624

pixel position and the shifting of the position to a "nearest integer pixel". Although, Hu does not clearly state that the initial measurement is to a fraction of a pixel it is implied by the phrase "nearest integer pixel shift" which implies that a measurement of pixel position to a fraction of a pixel value was taken, else it would not be necessary to shift the pixel position to the "nearest integer pixel" and would simply be stated as an integer pixel shift. It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the correlation method taught by Trew with the teachings of Hu to increase the accuracy of the positional measurement. Thus Trew in view of Hu has taught the subpixel positioning of a feature within an image using correlation.]

translating the feature by a pixel translation value, wherein the sum of the pixel fraction and pixel translation value is an integer value; [Hu teaches in lines 5-20 of column 3 the shift of the measured pixel position to the nearest integer pixel position using the "nearest integer pixel position shift". Thus the shift referred to by Hu is the total shift value that translates the measured fractional pixel value to a "nearest integer pixel", but Hu does not explicitly teach the summation of a translation value to the fractional pixel position measured. However, in order to end up with a shift to a "nearest integer pixel" the fractional value needs to be mathematically manipulated in order to determine the nearest integer value. Examiner takes official notice that one of ordinary skill in the art would have recognized that only a finite number of solutions exist for moving the fractional value to the nearest integer value. The known solutions are rounding the fractional value or adding (or subtracting "add a negative value") the difference value between the fractional value and its nearest integer value. Thus it has been established that Hu teaches shifting of the pixel value to the "nearest integer" and that there are only a finite number

Art Unit: 2624

of solutions for adjusting a fractional value to its closest integer value. A person of ordinary skill in the art at the time of the invention would have had good reason to pursue the known options of shifting to the closest integer value given the teachings of Hu. Furthermore, it would have required no more than "ordinary skill and common sense," to sum the fractional value with a difference value that is equal to the distance between the fractional value and its closest integer value.]

determining a second estimate of coordinates of the translated feature to within a fraction of a pixel; and [Hu teaches in column 3 lines 21-44 the determination of an additional fractional estimate of coordinates using the translated image.]

summing the pixel fractions of the first estimate with the second estimate to derive a refined estimate of coordinates. [See Hu lines 30-32 of and 38-40 of column 3 ($X_{\Delta}+X_f=first$ estimate + second estimate).]

Instant claim 67: The method according to claim 61, wherein the translating step, second determining step and summing step are repeated at least once. [Hu in column 3 lines 20-45 iterates the algorithm a specified number of iterations and checks the measured value with a noise value.]

Instant claim 68: The method of claim 61, wherein the method provides for measuring dimensional changes in an object, wherein measuring dimensional changes in the object include:

capturing at least one first image and at least one second image in accordance with the method of claim 61; and [Trew has taught the capturing of a series of image as well as the feature positioning in the sections referred to above.]

comparing the determined positions of the object to determine dimensional changes.

[Trew teaches the measurement of the displacement of the features in column 2 lines 30-40.]

Instant claim 69: An apparatus for determining a position of an object comprising:

an image capture device arranged to provide a captured image encompassing the object, the captured image comprising a plurality of pixels; and [Trew in lines 45-55 of column 5 describes a camera for capturing the images containing the feature to be tracked.]

an image processor arranged to receive the captured image and determine the position of the object by executing the method of claim 61. [Trew in lines 45-55 further describes a means for performing the processing, but does disclose the specific means. However, Hu in figure 1 and column 2 lines 30-50 discloses a video processor for performing the video processing method.]

Instant claim 70: The apparatus according to claim 69 further comprising:

a monitor arranged to receive and display the captured image; and [Trew teaches a display means for displaying the images in column 6 lines 25-35.]

an object selection means arranged to select a further object within the displayed image and to identify the further object to the image processor. [Trew teaches in column 6 lines 55 the selection (tracing of feature to be used as template) of the template by automatic or manual

Art Unit: 2624

means. Furthermore, Tracing as taught by Trew must be done on a displayed image, and thus

Trew teaches a selection means wherein the object is selected within the displayed image.

Instant claim 71: An apparatus for determining a position of an object comprising:

an image capture device arranged to sequentially provide a plurality of captured images of an object, each captured image comprising a plurality of pixels; and [Trew in lines 45-55 of column 5 describes a camera for capturing a series of images containing the feature to be tracked.]

an image processor arranged to sequentially receive the plurality of captured images and determine the position of the object from the plurality of captured images by executing the method of claim 61; and [Trew in lines 45-55 further describes a means for performing the processing, but does disclose the specific means. However, Hu in figure 1 and column 2 lines 30-50 discloses a video processor for performing the video processing method.]

a position comparator arranged to compare the determined position of the object for the plurality of captured images and identify whether the determined position changes in the plurality of captured images. [Trew teaches the measurement of the displacement of the features in column 2 lines 30-40.]

Instant claim 72: The apparatus according to claim 71 further arranged to determine the change in the determined position, the change selected from the group consisting of magnitude, direction, and combinations thereof. [Trew teaches the measurement of the displacement

Art Unit: 2624

(displacement is magnitude of positional change, but also includes directional information for tracking) of the features in column 2 lines 30-40.]

Claims 62-64, 66, and 77 are rejected under 35 U.S.C. 103(a) as being unpatentable over
 Trew in view of Hu as applied to claim 61 above, and further in view of Pankratov (US 6208769).

Instant claim 62: The method according to claim 61, wherein each of the first and second determining steps comprise:

correlating the feature and the image using a predetermined correlation function to determine coordinates of the feature to the nearest pixel; [As per the rejection of claim 61 Trew in view of Hu has taught the use of a correlation function to determine the coordinates of a feature with sub-pixel accuracy.]

evaluating the correlation function at a plurality of pixel positions in the neighborhood of the determined coordinates to provide a plurality of values; [Hu teaches in lines 35-45 of column 3 the further correlation of the image to determine the fractional pixel shift, but does not limit the correlation to pixels in the neighborhood of the determined coordinates. However, in calculating the correlation values of the image as a whole Hu also teaches the evaluation of correlation values within the neighborhood of the coordinates since they are included within the image being evaluated by the correlation function.]

fitting the plurality of values to a further function; and [Hu does not teach fitting the result (often referred to as score) of the correlation function to an equation or surface.

Art Unit: 2624

However, as is evidenced by the teachings of Pankratov the fitting of correlation functions to surfaces for the purpose of subpixel measurement was known to one of ordinary skill in the art (see column 3 lines 32-52 of Pankratov). It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the correlation method of Hu to more accurately determine the subpixel positioning using the fitting and determining method taught by Pankratov.]

differentiating the further function to determine its turning point, whereby coordinates corresponding to the turning point provide coordinates of the feature. [Pankratov teaches the determination of the maximums (turning point) by differentiating the function and determining the points that make the functions equal to zero (see column 3 lines 42-45 of Pankratov).]

Instant claim 63: The method according to claim 62, wherein the correlation function is evaluated at a plurality of sub-pixel positions. [Pankratov teaches the evaluation of the function at regular intervals (column 5 lines 8-12 and figure 6 – points J, I, G, and H).]

Instant claim 64: The method according to claim 63, wherein the sub-pixel positions are closer in proximity to the determined coordinates than the pixel positions. [See figure 6 (Pankratov) points J, I, G, and H are closer to O (determined coordinates) than the pixel positions (points A, M, E, and D).]

Instant claim 66: The method according to claims 62, wherein the predetermined correlation function is a normalized greyscale correlation function. [Pankratov teaches normalized

Art Unit: 2624

correlation in lines 65+ of column 3. The normalized correlation is a shorthand reference to normalized greyscale correlation.]

Instant claim 77: A method for determining coordinates of a feature comprising:

providing at least one image including the feature, the at least one image comprising a plurality of pixels; [See the rejection of claim 61.]

correlating the feature and the at least one image using a predetermined correlation function to determine coordinates of the feature to the nearest pixel; [See the rejection of claim 62.]

evaluating the correlation function at a plurality of sub-pixel positions in the neighborhood of the determined coordinates to provide a plurality of values and fitting the plurality of values to a further function; and [See the rejection of claims 62-63.]

differentiating the further function to determine its maximum, whereby coordinates corresponding to the maximum are coordinates of the feature to within a fraction of a pixel. [See the rejection of claim 62 wherein the maxima occur at points when the differentiated function is zero (Pankratov).]

Conclusion

 The prior art made of record and not relied upon is considered pertinent to applicant's disclosure. Dai et. al., US 2004/0179738 – correlation method wherein an integer pixel shift is performed and then subpixel modeling.

- Shimoni, US 2004/0146183 find correlation maxima to integer pixel locations.
- Lee and Sefcik, US 6961481 correlation method wherein two fractional pixel shifts are performed in series.
- Stone et. al., US 6628845 subpixel registration technique utilizing coarse to fine methodology.
- Geshel et. al., US 2003/0228050 integer and subpixel shifting based on displacement vector measured during correlation.
- Jones and Nahum, US 7085431 spatial translation of image by integer multiple of pixel spacing.
- Shiba, US 6356300 translation with sub-pixel precision, but no integer pixel shifts.

Contact Information

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Nathan Bloom whose telephone number is 571-272-9321. The examiner can normally be reached on Monday through Friday from 8:30 am to 5:00 pm (EST).

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Mehta Bhavesh, can be reached on 571-272-7453. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Application/Control Number: 10/532,438 Page 12

Art Unit: 2624

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

NB /Brian Q Le/ Primary Examiner, Art Unit 2624