SUNRISE EDUCATION CENTRE

An Institute for 9th – 12th MATHEMATICS (Basic/Standard, Core/Applied) -By Er. Mohit Nariyani.

Worksheet - I Chapter-6 <u>Triangles</u>

- 1. A vertical pole of length 20 m casts a shadow 10 m long on the ground and at the same time a tower casts a shadow 50 m long, then the height of the tower
- 2. In triangle ABC, DE | BC and $\frac{AD}{DB} = \frac{3}{5}$. If AC = 4.8 cm, find AE.
- 3. Find the value of x for which DE | AB in the given Figure.

- 4. Complete the sentence: Two polygons of the same number of sides are similar if......
- 5. In triangle ABC, DE||BC $\frac{AD}{DB} = \frac{AE}{EC}$ and \angle AED = \angle ABC. Show that AB = AC.
- 6. If a line intersects sides AB and AC of a \triangle ABC at D and E resp. and is parallel to BC, prove that $\frac{AD}{AB} = \frac{AE}{AC}$.
- 7. D is a point on the side BC of a triangle ABC such that \angle ADC = \angle BAC. Show that CA² = CB. CD
- 8. If \triangle ABC and \triangle DEF are similar such that 2AB = DE and BC = 8 cm, then find EF.
- 9. If AD and PM are medians of triangles ABC and PQR, where Δ ABC ~ Δ PQR, prove that $\frac{AB}{PQ} = \frac{AD}{PM}$
- 10. A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.
- 11. State and prove Basic proportionality theorem(Thales Theorem).
- 12. State and prove converse of Basic proportionality theorem.
- 13. In the given figure, DE||AC and $\frac{BE}{EC} = \frac{BC}{CP}$, prove that DC||AP.

14. In the given figure, XZ is parallel to BC. AZ = 3 cm, ZC = 2 cm, BM = 3cm and MC=5cm. Find the length of XY.

15. In the given figure, CD is the perpendicular bisector of AB. EF is perpendicular to CD. AE intersects CD at G. Prove that $\frac{CF}{CD} = \frac{FG}{DG}$

16. In the given figure ABCD is a parallelogram. BE bisects CD at M and intersects AC at L. prove that EL =2BL $\stackrel{E}{\triangleright}$

SUNRISE EDUCATION CENTRE

An Institute for 9th – 12th MATHEMATICS (Basic/Standard, Core/Applied) -By Er. Mohit Nariyani

- 17. Prove that the internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle.(Angle-Bisector Theorem)
- 18. In the given figure, PA, QB and RC are perpendicular to AC.

 If AP = x, QB = z, RC = y, AB = a and BC = b, show that $\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$
- 19. CD and GH are respectively the bisectors of \angle ACB and \angle EGF such that D and H lie on sides AB and FE of \triangle ABC and \triangle EFG respectively. If \triangle ABC \sim \triangle FEG, Show that:
 - (a) ΔADC~ ΔFHG
- (b)ΔBCD~ΔEGH
- $(c) \frac{CD}{GH} = \frac{AC}{FG}$
- 20. In a ΔABC, let P and Q be points on AB and AC respectively such that PQ||BC. Prove that the median AD bisects PQ.
- 21. In given figure E is a point on side CB produced of an isoceles triangle ABC with AB=AC. IF AB \perp BC and EF \perp AC , prove that $\Delta ABD \sim \Delta ECF$

- 22. In given figure, DEFG is a square and $\angle BAC = 90^{\circ}$. Prove that
 - (a) ΔAGF~ ΔDBG
- (b) ΔAGF~ ΔEFC
- (c) $\Delta DBG \sim \Delta EFC$
- (d) $DE^2 = BD \times EC$

23. Two right triangles ABC and DBC are drawn on the same hypotenuse BC and on the same side of BC. IF AC and BD interscets at P.

Prove that: $AP \times PC = BP \times PD$

- 24. In given Fig., two chords AB and CD of a circle intersect each other at the point P (when produced) outside the circle. Prove that:
 - (a) ΔPAC~ ΔPDB

(b)
$$PA \times PB = PC \times PD$$

25. In given Fig., two chords AB and CD intersect each other at the point P. Prove that : (a) $\Delta PAC \sim \Delta PDB$ (b) $PA \times PB = PC \times PD$

