Final Project - Segment 2

By Pa Lor, Eric Sanders, and Sue Yang

https://github.com/yangsue47/School_Is_Cool

Impact of Environmental Factors on Student Test Scores

As the pandemic resides and schools return to some level of normalcy, academic performance data, specifically data on environmental factors contributing to a student's academic test scores, will be crucial for evaluating how to get students back on track academically.

The dataset used for this project was pulled from Kaggle and linked <u>here</u>.

Using a machine learning model, we will identify which features have the largest impact on predicting a student's growth in test scores.

Questions we hope to answer:

Based on environmental factors such as school setting, school type, teaching method, classroom size, and socio-economic status(indicated by lunch status), can we predict whether a student will have high or low growth in their test scores (pre-test compared to post-test scores)?

Which of the factors assess are the most important in determining a student's growth?

Data Exploration & Analysis Phase

- Very little cleaning was needed for our dataset.
- Descriptive statistics were generated to understand makeup of dataset. This was completed for the whole dataset and for each school setting (urban, suburban, and rural).

Data Exploration & Analysis Phase - cont'd

- To measure growth in test scores, we calculated % change in score from pre- to post-test. Then used that data to determine if a student experienced high or low growth.
- Based on the mean for % change in test scores (about 18.5), we decided to go with 18.5 points as our cut-off score for determining our high and low growth categories.

Machine Learning Model

Model Choice: Random Forest

Some limitations of our model choice includes:

- Small data set
- Training time and resource allocation (in the event of a large dataset)

Some benefits include:

- Feature importance ranking
- Works well with categorical & continuous variables
- Robust to outliers

Machine Learning Model - Continued

- Minimal preliminary data preprocessing needed
 - Creation of Low and High Growth groups for Y variable
 - Convert categorical features into numerical encoders
- X = school setting, school type, teaching method, number of students, gender, and lunch
- Y = Low or High Growth
- Balanced split between Low Growth and High Growth groups

Database Integration

Postgres SQL

Two Tables:

- 1) Student information
- 2) School information

Dashboard Blueprint

- Dashboard will be developed on Tableau and displayed as a webframe on a Heroku app.
- Interactive elements of our dashboard:
 - User selections for toggling on or off the different features of interest in our dataset:
 - School setting
 - Lunch status
 - School type
 - Teaching method

Exploratory Data Analysis

Exploratory Visualizations

Prototype Dashboard

