THINGS TO REMEMBER: RESULT -1

- STOKEMEMBER:

 LT 1

 SAMPLE—SPACE: The set of all possible outcomes of an experiment is called the SAMPLE—SPACE(s).

 EVENT: A sub set of sample—space is called an EVENT.

 COMPLEMENT OF AN EVENTA: The set of all out comes which are in S but not in A is called the COMPLEMENT OF THE EVENT A DENOTED BY A OR A.

 COMPOUND EVENT: If A & B are two given events then A B is called Compound EVENT and is denoted by A B or AB or A B.

 MUTUALLY EXCLUSIVE EVENTS: Two events are said to be MUTUALLY EXCLUSIVE (or disjoint or incompatible) if the occurrence of one precludes (rules out) the simultaneous occurrence of the other. If A & B are two mutually exclusive events then P(A & B) = 0.

 EQUALLY LIKELY EVENTS: Events are said to be EQUALLY LIKELY when each event is as likely to occur as any other event.
- EXHAUSTIVE EVENTS: Events A,B,C...... L are said to be EXHAUSTIVE EVENTS if no event outside this set can result as an outcome of an experiment. For example, if A & B are two events defined on a sample of the events defined on the e space S, then A & B are exhaustive $\Rightarrow A \cup B = S \Rightarrow P(A \cup B) = 1$.
- space S, then A & B are exhaustive $\Rightarrow A \cup B = S \Rightarrow P(A \cup B) = 1$.

 CLASSICAL DEF. OF PROBABILITY: If n represents the total number of equally likely, mutually exclusive and exhaustive outcomes of an experiment and m of them are favourable to the happening of the event A, then the probability of happening of the event A is given by P(A) = m/n. (viii) event A, then the probability of happening of the event A is given by P(A) = m/n.
- Note: **(1)** $0 \le P(A) \le 1$
 - $P(A) + P(\overline{A}) = 1$, Where $\overline{A} = \text{Not } A$. **(2)**
 - If x cases are favourable to A & y cases are favourable to \overline{A} then P(A) =
 - We say that **Odds** In **Favour Of A** are x: y & odds against A are y: x

Comparative study of Equally likely, Mutually Exclusive and Exhaustive events.

⊃ KESU (γ) (i)		as sat of all possible outcomes of an experim	ant is sall	ad tha C	SERVE CENTRAL	
∑ (ii)	SAMPLE—SPACE: The set of all possible outcomes of an experiment is called the SAMPLE—SPACE(s).					
ω (iii)	EVENT: A sub set of sample—space is called an EVENT.					
Ç ^(m)	COMPLEMENT OF AN EVENT A: The set of all out comes which are in S but not in A is					
<u>a</u>	the COMPLEMENT	OF THE EVENT A DENOTED BY \overline{A} OR A^c .			_	
₹(iv)	Compound Event: If A & B are two given events then $A \cap B$ is called Compound Even is denoted by $A \cap B$ or $A \otimes B$.					
≶ (v) ⊗	w) MUTUALLY EXCLUSIVE EVENTS: Two events are said to be MUTUALLY EXCLUSIVE (or discompatible) if the occurrence of one precludes (rules out) the simultaneous occurrence of the A & B are two mutually exclusive events then $P(A \& B) = 0$.					
(vi)	EQUALLY LIKELY EVENTS: Events are said to be EQUALLY LIKELY when each event is as likely as any other event.					
S (vii)	EXHAUSTIVE EVENTS set can result as an of space S, then A &	s: Events A,B,CL are said to be Exha outcome of an experiment. For example, if A &B are exhaustive $\Rightarrow A \cup B = S \Rightarrow P(A \cup B)$	kB are tw			
www.TekoClasses.com & www.Maths.	CLASSICAL DEF. OF and exhaustive out event A, then the (1) $0 \le P(A)$	PROBABILITY: If n represents the total number comes of an experiment and m of them are probability of happening of the event A is ≤ 1	favourab	ole to the	happening of t	
'	$(2) \qquad P(A) + P$	$\overline{\Lambda}$) = 1 Where $\overline{\Lambda}$ = Not Λ				
⋛	(3) If x cases a	re favourable to A & y cases are favourable	to $\overline{\Lambda}$ the	en P(Δ) –	x and	
≶	(3) If X cases a	v y cases are lavourable	to A th	M1 (A) =	$\frac{1}{(x+y)}$ and	
<	$P(A) = \frac{1}{(x)}$	$\frac{y}{y}$ We say that ODDS IN FAVOUR OF A an	e x: y &	odds aga	ainst A are y: x	
i Comm		$\frac{y}{(y)}$ We say that ODDS In FAVOUR OF A an available likely. Muctually Evaluative and Ex			ninst A are y: x	
S Comp	parative study of E	qually likely , Mutually Exclusive and Ex	chaustive	e events.		
de Exicomp					ninst A are y: x Exhaustive	
Composition 1. The	parative study of E	qually likely , Mutually Exclusive and Ex	chaustive	e events.		
Composition of the composition o	parative study of Experiment	qually likely, Mutually Exclusive and Ex Events A: throwing an odd face {1, 3, 5}	chaustive E/L	e events. M/E	Exhaustive	
Package from website. 1. The same of the	parative study of Experiment arowing of a die ball is drawn from urn containing 2W, a and 4G balls arowing a pair of	qually likely, Mutually Exclusive and ExEvents A: throwing an odd face {1, 3, 5} B: throwing a composite face {4,. 6} E ₁ : getting a W ball E ₂ : getting a R ball	chaustive E/L No	e events. M/E Yes	Exhaustive No	
A Package from webs 1. The same of the sam	parative study of Experiment arowing of a die ball is drawn from urn containing 2W, a and 4G balls arowing a pair of	Events A: throwing an odd face {1, 3, 5} B: throwing a composite face {4,. 6} E ₁ : getting a W ball E ₂ : getting a R ball E ₃ : getting a G ball A: throwing a doublet {11, 22, 33, 44, 55, 66} B: throwing a total of 10 or more	E/L No No	e events. M/E Yes Yes	Exhaustive No Yes	
> 4. Fr	ball is drawn from urn containing 2W, and 4G balls arowing a pair of ce om a well shuffled ck of cards a card is awn	Events A: throwing an odd face {1, 3, 5} B: throwing a composite face {4,. 6} E ₁ : getting a W ball E ₂ : getting a R ball E ₃ : getting a G ball A: throwing a doublet {11, 22, 33, 44, 55, 66} B: throwing a total of 10 or more {46, 64, 55, 56, 65, 66} E ₁ : getting a heart E ₂ : getting a spade E ₃ : getting a diamond	E/L No No Yes	e events. M/E Yes Yes	Exhaustive No Yes	
> 4. Fr	barative study of Experiment arowing of a die ball is drawn from urn containing 2W, a and 4G balls arowing a pair of the ce om a well shuffled the ck of cards a card is awn om a well shuffled the ck of cards a card is awn ULT - 2	Events A: throwing an odd face {1, 3, 5} B: throwing a composite face {4,. 6} E ₁ : getting a W ball E ₂ : getting a R ball E ₃ : getting a G ball A: throwing a doublet {11, 22, 33, 44, 55, 66} B: throwing a total of 10 or more {46, 64, 55, 56, 65, 66} E ₁ : getting a heart E ₂ : getting a spade E ₃ : getting a club A = getting a heart B = getting a face card	E/L No No Yes	Yes No Yes	Exhaustive No Yes No Yes	
4. From pa dra dra dra dra dra dra dra dra dra dr	barative study of Experiment arowing of a die ball is drawn from urn containing 2W, and 4G balls arowing a pair of ce om a well shuffled ck of cards a card is awn om a well shuffled ck of cards a card is awn JLT - 2 AUB = A+B = A c	Events A: throwing an odd face {1, 3, 5} B: throwing a composite face {4, 6} E ₁ : getting a W ball E ₂ : getting a R ball E ₃ : getting a G ball A: throwing a doublet {11, 22, 33, 44, 55, 66} B: throwing a total of 10 or more {46, 64, 55, 56, 65, 66} E ₁ : getting a heart E ₂ : getting a spade E ₃ : getting a diamond E ₄ : getting a club A = getting a heart B = getting a face card or B denotes occurrence of at least at this A & B: (See fig.1)	E/L No No Yes	Yes No Yes	Exhaustive No Yes No Yes	

RESULT – 2

$$P(A.\overline{B}) + P(\overline{A}.B) + P(A.B) = 1 - P(\overline{A}.\overline{B})$$

FRE! Opposite of "atleast A or B" is NIETHER A NOR B

i.e.
$$A + B = 1 - (A \text{ or } B) = \overline{A} \cap \overline{B}$$

For any two events A & B, P(exactly one of A, B occurs)

$$= P(A \cap \overline{B}) + P(B \cap \overline{A}) = P(A) + P(B) = 2$$

$$= P(A \cup B) - P(A \cap B) = P(A^{c} \cup B^{c}) - P(A^{c} \cap B^{c})$$

If A & B are any two events $P(A \cap B) = P(A) \cdot P(B/A) = P(B) \cdot P(A/B)$, Where P(B/A) means conditional probability of B given A & P(A/B) means conditional probability of A given B. (This can 0 98930 58881, WhatsApp Number 9009

DE MORGAN'S LAW: – If A & B are two subsets of a universal set U, then

(a)
$$(A \cup B)^c = A^c \cap B^c$$
 &

(b)
$$(A \cap B)^c = A^c \cup B$$

$$(\mathbf{vii}) \quad \mathbf{A} \cup (\mathbf{B} \cap \mathbf{C}) = (\mathbf{A} \cup \mathbf{B}) \cap (\mathbf{A} \cup \mathbf{C}) \quad \& \quad \mathbf{A} \cap (\mathbf{B} \cup \mathbf{C}) = (\mathbf{A} \cap \mathbf{B}) \cup (\mathbf{A} \cap \mathbf{C})$$

(i)
$$P(A \text{ or } B \text{ or } C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A) + P(A \cap B \cap C)$$

i) P (at least two of A,B,C occur) =

$$P(B \cap C) + P(C \cap A) +$$

$$P(A \cap B) - 2P(A \cap B \cap C)$$

(iii)
$$P(\text{exactly two of A,B,C occur}) = P(B \cap C) + P(C \cap A) + P(A \cap B) - 3P(A \cap B \cap C)$$

page 21 of 37

ď

$$P(A) + P(B) + P(C) - 2P(B \cap C) - 2P(C \cap A) - 2P(A \cap B) + 3P(A \cap B)$$

: (0755) 32 00 000, If three events A, B and C are pair wise mutually exclusive then they must be mutually exclusive. i.e $P(A \cap B) = P(B \cap C) = P(C \cap A) = 0 \implies P(A \cap B \cap C) = 0$. However the converse of this is not true.

INDEPENDENT EVENTS: Two events A&B are said to be independent if occurence or non occurence of one does not effect the probability of the occurrence or non occurrence of other.

Sir), Bhopa.l If the occurence of one event affects the probability of the occurence of the other event then the events are said to be **DEPENDENT** or **CONTINGENT**. For two independent events

A and B: $P(A \cap B) = P(A)$. P(B). Often this is taken as the definition of independent events.

Three events A, B & C are independent if & only if all the following conditions hold;

$$P(A \cap B) = P(A)$$
 $P(B)$ $P(B)$ $P(C)$

$$P(A \cap B) = P(A) \cdot P(B)$$
; $P(B \cap C) = P(B) \cdot P(C)$

$$P(C \cap A) = P(C) \cdot P(A)$$
 & $P(A \cap B \cap C) = P(A) \cdot P(B) \cdot P(C)$

$$P(r) = {}^{n}C_{r}p^{r}q^{n-r}$$
 where : $p = \text{probability of success in a single trial}$

Similarly for n events $A_1, A_2, A_3, \dots A_n$ to be independent, the number of these conditions is equal to ${}^n c_2 + {}^n c_3 + \dots + {}^n c_n = 2^n - n - 1$.

The probability of getting exactly r success in n independent trials is given by $P(r) = {}^n C_1 p^r q^{n-r}$ where : p = probability of success in a single trial. q = probability of failure in a single trial. note: p + q = 1.

Note: Independent events are not in general mutually exclusive & vice versa.

Mutually exclusiveness can be used when the events are taken from the same experiment & independence can be used when the events are taken from different experiments.

LT - 5: Baye's Theorem Or Total Probability Theorem:

If an event A can occur only with one of the n mutually exclusive and exhaustive events $B_1, B_2, \dots B_n$ & the probabilities $P(A/B_1)$, $P(A/B_2)$ $P(A/B_n)$ are known then, $P(B_1/A) = \frac{P(B_1).P(A/B_1)}{\sum_{i=1}^n P(B_i).P(A/B_i)}$ Excessful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

$$P(B_{1}/A) = \frac{P(B_{i}).P(A/B_{i})}{\sum_{i=1}^{n} P(B_{i}).P(A/B_{i})}$$

. 자

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com **PROOF:**

The events A occurs with one of the n mutually exclusive & exhaustive events B₁,B₂,B₃,......B_n $A = AB_1 + AB_2 + AB_3 + \dots + AB_n$

$$P(A) = P(AB_1) + P(AB_2) + \dots + P(AB_n) = \sum_{i=1}^{n} P(AB_i)$$

Note: A = event what we have; B_2 , B_3 , B_n are alternative event. $B_1 \equiv \text{event what we want}$;

$$P(AB_{i}) = P(A) \cdot P(B_{i}/A) = P(B_{i}) \cdot P(A/B_{i})$$

$$P(B_{i}/A) = \frac{P(B_{i}) \cdot P(A/B_{i})}{P(A)} = \frac{P(B_{i}) \cdot P(A/B_{i})}{\sum_{i=1}^{n} P(AB_{i})}$$

$$P(B_i / A) = \frac{P(B_i) \cdot P(A / B_i)}{\sum P(B_i) \cdot P(A / B_i)}$$

If p_1 and p_2 are the probabilities of speaking the truth of two independent witnesses A and B then

P (their combined statement is true) =
$$\frac{p_1 p_2}{p_1 p_2 + (1 - p_1)(1 - p_2)}$$

0 98930 58881, WhatsApp Number 9009 260 559. In this case it has been assumed that we have no knowledge of the event except the statement made by A and B.

However if p is the probability of the happening of the event before their statement then

P (their combined statement is true) =
$$\frac{p p_1 p_2}{p p_1 p_2 + (1-p)(1-p_1)(1-p_2)}$$

Here it has been assumed that the statement given by all the independent witnesses can be given in two ways only, so that if all the witnesses tell falsehoods they agree in telling the same falsehood.

If this is not the case and c is the chance of their coincidence testimony then the

Pr. that the statement is true = $P p_1 p_2$

Pr. that the statement is false = (1-p).c $(1-p_1)(1-p_2)$

Sir), Bhopa.I Phone: (0755) 32 00 000, However chance of coincidence testimony is taken only if the joint statement is not contradicted by any witness.

- A Probability Distribution spells out how a total probability of 1 is distributed over several values of a random variable.
- Mean of any probability distribution of a random variable is given by:

$$\mu = \frac{\sum p_i x_i}{\sum p_i} = \sum p_i x_i \quad (\text{Since } \Sigma p_i = 1)$$

Variance of a random variable is given by, $\sigma^2 = \sum (x_i - \mu)^2$. p

$$\sigma^2 = \sum p_i x_i^2 - \mu^2$$
 (Note that $SD = +\sqrt{\sigma^2}$)

$$expectations = pM$$

™ RESULT - 8: GEOMETRICAL APPLICATIONS:

(i) Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

- Let a die be weighted so that the probability of a number appearing when the die is tossed is proportional of the that number. Find the probability that to that number. Find the probability that,
 - An even or a prime number appears

(ii) An odd prime number appears

- An even composite number appears (iii)
- (iv) An odd composite number appears.

Teko Classes,

- Numbers are selected at random, one at a time, from the two digit numbers 00, 01, 02,, 99 with replacement. An event E occurs if & only if the product of the two digits of a selected number is 18. If four numbers are selected, find the probability that the event E occurs at least 3 times.
- In a box, there are 8 alphabets cards with the letters: S, S, A, A, A, H, H, H. Find the probability that the word 'ASH' will form if:
- the three cards are drawn one by one & placed on the table in the same order that they are drawn.
 - the three cards are drawn simultaneously.
- hatsApp Number There are 2 groups of subjects one of which consists of 5 science subjects & 3 engg. subjects & other consists of 3 science & 5 engg. subjects. An unbiased die is cast. If the number 3 or 5 turns up a subject is selected at random from first group, otherwise the subject is selected from 2^{nd} group. Find the \ge probability that an engg. subject is selected.
- A pair of fair dice is tossed. Find the probability that the maximum of the two numbers is greater than 4. \otimes
 - In a building programme the event that all the materials will be delivered at the correct time E(M) = 0.8 and E(M) = 0.8 and E(M) = 0.8 and E(M) = 0.8. For E(M) = 0.8, find E(M) = 0.8, find the probability that the building programme will E(M) = 0.8. For E(M) = 0.8, find the probability that the building programme will E(M) = 0.8.
- In a given race, the odds in favour of four horses A, B, C & D are 1:3, 1:4, 1:5 and 1:6 respectively. \circ Assuming that a dead heat is impossible, find the chance that one of them wins the race.
- FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com & com & www.MathsBySuhag.com & com & www.MathsBySuhag.com & com & A covered basket of flowers has some lilies and roses. In search of rose, Sweety and Shweta alternately pick up a flower from the basket but puts it back if it is not a rose. Sweety is 3 times more likely to be the first one to pick a rose. If sweety begin this 'rose hunt' and if there are 60 lilies in the basket, find the number of roses in the basket.
- Least number of times must a fair die be tossed in order to have a probability of at least 91/216, of getting atleast one six.
 - Suppose the probability for A to win a game against B is 0.4. If A has an option of playing either a "BEST OF THREE GAMES" or a "BEST OF 5 GAMES" match against B, which option should A choose of that the probability of his winning the match is higher? (No game ends in a draw).

 A room has three electric lamps. From a collection of 10 electric bulbs of which 6 are good 3 are a collected at 100 days.
 - selected at random & put in the lamps. Find the probability that the room is lighted.
- selected at random & put in the lamps. Find the probability that the room is lighted.

 A bomber wants to destroy a bridge. Two bombs are sufficient to destroy it.

 If four bombs are dropped, what is the probability that it is destroyed, if the chance of a bomb hitting the
- The chance of one event happening is the square of the chance of a 2^{nd} event, but odds against the first $\frac{1}{100}$ are the cubes of the odds against the 2^{nd} . Find the chances of each. (assume that both events are neither $\frac{1}{2}$) sure nor impossible).
- A box contains 5 radio tubes of which 2 are defective. The tubes are tested one after the other until the 2 defective tubes are discovered. Find the probability that the process stopped on the
- Anand plays with Karpov 3 games of chess. The probability that he wins a game is 0.5, looses with probability 0.3 and ties with probability 0.2. If he plays 3 games then find the probability that he atleast two games.
- of hitting the plane at first, second, third & fourth shots are 0.4, 0.3, 0.2 & 0.1 respectively. What is the probability that the gun hits the plane.

 In a batch of 10 articles, 4 articles are defeating.
- If more than 2 articles in this batch are defective, the whole batch is rejected Find the probability that ≥ the batch will be rejected.
- Given $P(A \cup B) = 5/6$; P(AB) = 1/3; $P(\overline{B}) = 1/2$. Determine P(A) & P(B). Hence show that the events A & B are independent.

0 98930 58881

Three shots are fired independently at a target in succession. The probabilities that the target is hit in the first shot is 1/2, in the second 2/3 and in the third shot is 3/4. In case of exactly one hit, the probability of destroying the target is 1/3 and in the case of exactly two hits, 7/11 and in the case of three hits is $\frac{6}{10}$ Three shots are fired independently at a target in succession. The probabilities that the target is hit in the

- In a game of chance each player throws two unbiased dice and scores the difference between the larger and smaller number which arise. Two players compete and one or the other wins if and only if he scores at least 4 more than his opponent. Find the probability that neither player wins.
 - A certain drug, manufactured by a Company is tested chemically for its toxic nature. Let the event "THE DRUG IS TOXIC" be denoted by H & the event "THE CHEMICAL TEST REVEALS THAT THE DRUG

is Toxic' be denoted by S. Let P(H) = a, $P(S/H) = P(\overline{S}/\overline{H}) = 1 - a$. Then show that the probability that the drug is not toxic given that the chemical test reveals that it is toxic, is free from 'a'.

- A plane is landing. If the weather is favourable, the pilot landing the plane can see the runway. In this case the probability of a safe landing is p₁. If there is a low cloud ceiling, the pilot has to make a blind landing by instruments. The reliability (the probability of failure free functioning) of the instruments needed for a blind landing is P. If the blind landing instruments function normally, the plane makes a safe landing with the same probability p₁ as in the case of a visual landing. If the blind landing instruments fail, then the pilot may make \(\bigsigma \) a safe landing with probability $p_2 < p_1$. Compute the probability of a safe landing if it is known that in K \geq percent of the cases there is a low cloud ceiling. Also find the probability that the pilot used the blind landing a instrument, if the plane landed safely.
- A train consists of n carriages, each of which may have a defect with probability p. All the carriages are inspected, independently of one another, by two inspectors; the first detects defects (if any) with probability p_1 , & the second with probability p_2 . If none of the carriages is found to have a defect, the train departs. Find the probability of the event; "THE TRAIN DEPARTS WITH ATLEAST ONE DEFECTIVE CARRIAGE".

 A is a set containing n distinct elements. A non-zero subset P of A is chosen at random. The set A
 - is reconstructed by replacing the elements of P. A non-zero subset Q of A is again chosen at random. Find the probability that P & Q have no common elements.

 In a multiple choice question there are five alternative answers of which one or more than one is correct. A
- FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com In a multiple choice question there are five alternative answers of which one or more than one is correct. A candidate will get marks on the question only if he ticks the correct answers. The candidate ticks the answers at random. If the probability of the candidate getting marks on the question is to be greater than or equal to 1/3 find the least number of chances he should be allowed.
 - n people are asked a question successively in a random order & exactly 2 of the n people know the answer:
 - If n > 5, find the probability that the first four of those asked do not know the answer.

$$\left[\frac{2(n-r)}{n(n-1)} \right]$$
, if $1 < r < n$.

- If n > 5, find the probability that the first four of those asked do not know the answer. Show that the probability that the r^{th} person asked is the first person to know the answer is: $\begin{bmatrix} \frac{2(n-r)}{n(n-1)} \end{bmatrix}, & \text{if } 1 < r < n.$ A box contains three coins two of them are fair and one two headed. A coin is selected at random and tossed. If the head appears the coin is tossed again, if a tail appears, then another coin is selected from the provision points and tossed. Bhopa.l the remaining coins and tossed.
- Find the probability that head appears twice.
- If the same coin is tossed twice, find the probability that it is two headed coin.
- Find the probability that tail appears twice.
 - The ratio of the number of trucks along a highway, on which a petrol pump is located, to the number of cars running along the same highway is 3:2. It is known that an average of one truck in thirty trucks and two cars in fifty cars stop at the petrol pump to be filled up with the fuel. If a vehicle stops at the petrol pump to be filled up with the fuel, find the probability that it is a car.
- A batch of fifty radio sets was purchased from three different companies A, B and C. Eighteen of them 2 were manufactured by A, twenty of them by B and the rest were manufactured by C.
 - The companies A and C produce excellent quality radio sets with probability equal to 0.9; B produces the same with the probability equal to 0.6.
 - What is the probability of the event that the excellent quality radio set chosen at random is manufactured by the company B?

 The contents of three urns 1, 2 & 3 are as follows:

 1 W, 2 R, 3B balls
 2 W, 3 R, 1B balls
 3 W, 1 R, 2B balls

 An urn is chosen at random & from it two balls are drawn at random & are found to be

"1 RED & 1 WHITE". Find the probability that they came from the 2nd urn.

Suppose that there are 5 red points and 4 blue points on a circle. Let $\frac{m}{n}$ be the probability that a convex polygon whose vertices are among the 9 points has at least one blue vertex where m and n are relatively

G	et S	olution of These Packages $\&$ Learn by \lor	ideo Tutorials (on www.MathsBySuhag.com	of 37
⊂		(A) $P(E F) + P(\overline{E} F) = 1$	(B) $P(E F) + F$	$P(E \mid \overline{F}) = 1$	27 0
com & www.MathsBySuhag.com		(A) $P(E F) + P(\overline{E} F) = 1$ (C) $P(\overline{E} F) + P(E \overline{F}) = 1$ There are 4 machines & it is known that exactly	(D) $P(E \overline{F}) +$	$P(\overline{E} \mid \overline{F}) = 1$	Je.
Ö _(iv)		There are 4 machines & it is known that exactly	y 2 of them are fau	alty. They are tested, one by one, in a	Sac
ପ୍ର		random order till both the faulty machines are	e identified. Ther	n the probability that only 2 tests are	:
C		needed is:			6
5		(A) 1/3 (B) 1/6	(C) 1/2	(D) 1/4	r 9009 260 559
$\mathfrak{O}^{(\Lambda)}$		If E & F are events with $P(E) \le P(F)$ & $P(E \cap E)$	(F) > 0, then:		0
n		(A) occurrence of $E \Rightarrow$ occurrence of F			26
S		(B) occurrence of $F \Rightarrow$ occurrence of E			60
글		(C) non-occurrence of $E \Rightarrow \text{non-occurren}$	ice of F		90
<u>@</u> ∵		(D) none of the above implications holds.	C C		e
≥ (V1)		A fair coin is tossed repeatedly. If tail appe	ars on first four	tosses, then the probability of head	dr.
⋛		A fair coin is tossed repeatedly. If tail appearing on fifth toss equals: (A) 1/2 (B) 1/32	(C) 31/32	(D) 1/5	Ę
≶∩.	1	3 players A, B & C toss a coin cyclically in tha	(C) 31/32	(D) 1/3 (D) 1/3 (D) 1/3 (D) 1/3 (D) 1/3	مَ
> 4.	т .	shows. Let p be the probability that the coin	n shows a head	Let a B & v he respectively the	Ϋ́
×		probabilities that A, B and C gets the first he	ead Prove that		Ħ
Ξ		$\beta = (1 - p)\alpha$. Determine α , β & γ (in terms of	of n).	[JEE '98, 8]	Ÿ
SO.:	5	- 1 - 00 · · · · · · · · · · · · · · · · ·	O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
(i		probability that the equation will have equal roo	ots.	[REE '98, 6]	31
ΰQ.6	5(a)	If the integers m and n are chosen at random be	etween 1 and 100,	then the probability that a number of	38
(S)	` ,	the form $7^{m} + 7^{n}$ is divisible by 5 equals			5
ă		(A) 1 (B) 1	(0) $\frac{1}{2}$	\sim 1	330
<u>.</u>		$(A) \frac{1}{4}$ $(B) \frac{7}{7}$	$(C) - \frac{1}{8}$	(D) $\frac{1}{49}$	986
9	(b)	The probability that a student passes in Mathem	atics, Physics and	Chemistry are m, p and c respectively.	Ô
Φ		Of these subjects, the student has a 75% chanc	e of passing in at	least one, a 50% chance of passing in	Ċ,
		at least two, and a 40% chance of passing in exa	actiy two, which c	of the following relations are true?	8
⋛		Each co-efficient in the equation $ax^2 + bx + c = probability that the equation will have equal roo If the integers m and n are chosen at random be the form 7^m + 7^n is divisible by 5 equals (A) \frac{1}{4} (B) \frac{1}{7} The probability that a student passes in Mathem Of these subjects, the student has a 75% chance at least two, and a 40% chance of passing in example (A) p + m + c = \frac{19}{20} (B) p + m + c = \frac{27}{20} Eight players P_1, P_2, P_3,P_8 play a knock P_1 and P_2 play, the player P_3 will win if 1 < 1. Assum$	(C) $pmc = \frac{1}{1}$	(D) pmc = $\frac{1}{2}$	8
≶	(a)	Fight players P. D. D. P. playe knock	10	It is known that who power the players	2
>	(0)	P_i and P_i play, the player P_i will win if $i < j$. Assum	ning that the playe	rs are paired at random in each round	33
.; '		what is the probability that the player P_4 reache			
≝o.′	7	Four cards are drawn from a pack of 52 playing	cards. Find the p	robability (correct upto two places of	<u>.</u>
SC S		decimals) of drawing exactly one pair.		[REE'99, 6]	(I)
rom website:	3	A coin has probability 'p' of showing head v probability that no two (or more) consecutive h	when tossed. It is	tossed 'n' times. Let p _n denote the	Ğ
>		probability that no two (or more) consecutive h	eads occur. Prove	e that,	P
Ε	_	$p_1 = 1$, $p_2 = 1 - p^2$ & $p_n = (1 - p) p$ A and B are two independent events. The pro	$p_{n-1} + p(1-p)p$	p_{n-2} , for all $n \ge 3$.	<u>—</u>
O 0.9)	A and B are two independent events. The pro	bability that both	occur simultaneously is 1/6 and the	dc
<u></u> —	10	probability that neither occurs is 1/3. Find the pr Two cards are drawn at random from a pack of	obabilities of occu	rance of the events A and B separately.	3
ම Q.1	10	Two cards are drawn at random from a pack of	of playing cards. F	find the probability that one card is a	Ĺ.
\mathfrak{g}^{\vee_1}		heart and the other is an ace. An urn contains 'm' white and 'n' black balls. Ab	all ic drawn at rand	[REE '2001 (Mains), 3]	Sir),
<u>ن</u> ک		with K additional balls of the same colour as the			
מ		What is the probability that the ball drawn now		wii. 11 oan is again arawn at fandoin.	ď
_	(b)	An unbiased die, with faces numbered 1, 2, 3, 4,	5. 6 is thrown n ti	mes and the list of n numbers showing	တ်
ਰ	(-)	up is noted. What is the probability that among	the numbers 1, 2,	3, 4, 5, 6, only three numbers appear	Ø
₽		up is noted. What is the probability that among in the list.		[JEE '2001 (Mains), $5+5$]	Ä.
ን _{Q.1}	12	A box contains N coins, m of which are fair an	d the rest are bias	ed. The probability of getting a head	꼿
D		when a fair coin is tossed is 1/2, while it is 2/3 wl	hen a biased coin is	s tossed. A coin is drawn from the box	ď
Ö		at random and is tossed twice. The first time it sl probability that the coin drawn is fair? A person takes three tests in succession. The	hows head and the	e second time it shows tail. What is the	ag
Ē 🧎	10/	probability that the coin drawn is fair?	1 1 22 61 61	[JEE '2002 (mains)]	чh
≥Q.J	13(a	A person takes three tests in succession. The	probability of his	s passing the first test is p, that of his	S
9		passing each successive test is p or p/2 accord	ling as ne passes of	or rails in the preceding one. He gets	hs
	(h)	selected provided he passes at least two tests. I In a combat, A targets B, and both B and Ct	orget A. The prob	abilities of A. R. Chitting their targets	at
ㅐ	(b)	are 2/3 1/2 and 1/3 respectively. They shoot sit	multaneously and	A is hit Find the probability that R hits	<u>.</u>
KEE Download Study Package tr		his target whereas C does not.		JEE' 2003. Mains-2 + 2 out of 601	ses
	14(a)	Three distinct numbers are selected from first	100 natural numb	pers. The probability that all the three	386
	\- · ·	numbers are divisible by 2 and 3 is		<u>,</u>	$\ddot{\circ}$
	Suc	are 2/3, 1/2 and 1/3 respectively. They shoot sin his target whereas C does not. Three distinct numbers are selected from first numbers are divisible by 2 and 3 is Cessful People Replace the words like; "wish", "try	" & "should" with "	I Will". Ineffective People don't.	Š

G	Set S	olution of These Pa	ckages & Learn by V	ideo Tutorials on w	ww.MathsBySuhag.com (D) $\frac{4}{1155}$ (C) \leq P (C), where C is an event	f 37
Ε		(A) $\frac{4}{27}$	(B) $\frac{4}{37}$	(C) $\frac{4}{-7}$	(D) $\frac{4}{1155}$	280
8	(b)	25 If A and B are indeper	35dent events, prove that	$P(A \cup B) \cdot P(A' \cap B)$	(1155) S') \leq P (C), where C is an event	age
ag		defined that exactly on	e of A of B occurs.		by one without replacement of	
L		which atleast 4 balls ar	e white. Find the probab	ility that in the next two	draws exactly one white ball is	26
$\overset{>}{\sim}$.15(a	drawn (leave the answ A six faced fair dice is	er in terms of ⁿ C _r). thrown until 1 comes, th	en the probability that 1	[JEE 2004, $3+2+4$] comes in even number of trials	60 9
SE,		is (A) 5/11	(B) 5/6	(C) 6/11	(D) 1/6	
ath	(1.)	· /	,	. ,	1 3 2 1	er 90
∑.	(b)	A person goes to office	e either by car, scooter, l	ous or train probability	of which being $\frac{1}{7}$, $\frac{3}{7}$, $\frac{2}{7}$ and $\frac{1}{7}$	Number 9009
≸		- '			er, bus or train is $\frac{2}{9}$, $\frac{1}{9}$, $\frac{4}{9}$ and $\frac{1}{9}$	
≯ ~×		respectively. Given tha	t he reached office in tim	e, then what is the prob	ability that he travelled by a car. [JEE 2005 (Mains), 2]	sApk
æ		C	4:)		[022 2002 (174118), 2]	NhatsApp
8		Comprehension (3 quantum There are <i>n</i> urns each continuous contin	containing $n \perp 1$ halle enc	h that the i^{th} urn contain	as <i>i</i> white balls and $(n+1-i)$ red	_
es.		balls. Let u _i be the even	t of selecting i^{th} urn, $i = 1$	$1, 2, 3, \dots, n$ and w den	otes the event of getting a white	3881
SSO	.16(a	i) If $P(u_i) \propto i$ where $i = 1$	1, 2, 3,, n then Lim	P(w) is equal to		30 28
www.TekoClasses.com & www.MathsBySuhag.com		(A) 1	n→∞ (B) 2/3	(C) 3/4	otes the event of getting a white (D) 1/4	3893
8	(b)					\circ
. <u>T</u> e	(0)	$\frac{1}{2}$	1	n (G)	m 1	000
\geqslant		$(A) {n+1}$	(B) ${n+1}$	(C) ${n+1}$	(D) $\frac{1}{2}$	00
≶	(c)	If n is even and E deno	otes the event of choosi	ng even numbered urn	(D) $\frac{1}{2}$ (P(u _i) = $\frac{1}{n}$), then the value of (B) $\frac{1}{n+1}$ [IEF 2006, 5 marks each]	5) 32
<u>.</u> .		P(w/E), is)75£
ebsite:		$(\Delta) \frac{n+2}{n}$	(B) $n+2$	(C) $\frac{n}{}$	(B) 1	e : (
We		2n+1			n+1 [JEE 2006, 5 marks each]	hon
E		7	ANSWE		[a.F
Package from we			EXER	CISE-1		hop
go Oge	1.	(i) $\frac{20}{100}$ (ii) $\frac{8}{100}$ (iii) $\frac{100}{100}$	$\frac{1}{2}$ (iv) 0 Q 2. 97/(2	Q 3. (i) 3/56	(ii) 9/28	ir), B
S S		21 (21 (21)				S.
уğ ОД	4. 1	3/24	Q 5. 5/9	Q 6. P(F/M) Q 9. 3	$=\frac{13}{16}$; $P(F/\overline{M}) = \frac{1}{4}$	<u>~</u>
ر ج	10. 3	19/420 best of 3 games	Q 8. 120	•	0 10 1 1	a (S
ot o	10.	best of 3 games (i) 1/10, (ii) 3/10, (iii) 2	Q 11. $\frac{29}{30}$	Q 12. $\frac{328}{625}$	Q 13. $\frac{1}{9}$, $\frac{1}{3}$	ariy
gQ Qg	14. (17.	1) 1/10, (II) 3/10, (III) 2 19/42	\mathbf{Q} 18. $P(A) = 2/3$, $P(A) = 2/3$	\mathbf{Q} 15. $1/2$	Q 16. 0.6976 Q 19. 1/2	자 자
<u>8</u> 0	20 4	107/576	Q 21. Both are equally	likely 0.22 (i)	$\frac{125}{16^3}$; (ii) $\frac{63}{64}$	hag
Š	20.	19/42 407/576 101/1326		11KC1y Q 22. (1)	16 ³ , (h) 64	Sul
\triangle_0	23.	101/1326	Q 24. $\frac{^{24}\text{C}_2}{^{64}\text{C}_2}$ or $\frac{23}{168}$			aths
ЩО	25. I	ndependent in (a) and n	ot independent in (b)	Q 26. $P_1 = 1/2$	$^{\prime}2 \cdot P_{2} = 3/4$, X
\propto				Q 28. $\left(\frac{5}{6} + \frac{1}{6}\right)^{\frac{1}{2}}$	2	Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopa.l Ph
\mathbf{Q} 27. $(1-p)^{n-1}$. $[p_o(1-p) + np(1-p_0)]$ \mathbf{Q} 28. $\left(\frac{3}{6} + \frac{1}{6}\right)$					Cla	
	Suc	cessful People Replace t	he words like; "wish", "try	" & "should" with "I Will"	'. Ineffective People don't.	-eko
						_

Get Solution

Q 29.
$$\frac{481}{5^8}$$
, $\frac{4\sqrt{5}}{5^8}$

$$7/9\%$$
, 44%, (c) $9/44 \approx 20.45\%$

Q 3.
$$\frac{5}{8}$$

Q 5.
$$P(\overline{H}/S) = 1/2$$

Q 7.
$$1 - [1-p(1-p_1)(1-p_2)]^n$$

Q 8.
$$(3^{n}-2^{n+1}+1)/(4^{n}-2^{n+1}+1)$$

$$\sum_{n=0}^{\infty} \mathbf{Q} \mathbf{10.} (\mathbf{a}) \frac{(n-4)(n-5)}{n((n-1))}$$

Q 12.
$$\frac{4}{9}$$

Q.13
$$\frac{4}{13}$$

Q.17
$$\frac{11}{663}$$

Q 18. (a)
$$\frac{(5n-3)}{(9n-3)}$$
 (b) $\frac{5}{16}$

Q 20.
$$n = 3$$

Q 22.
$$\frac{K n M + L m N}{M N (K + L)}$$

Q.25
$$\frac{3}{4(2^n-1)}$$

Q.2
$$[1 - (7/10)^7 - {}^7C_1(3/10)(7/10)^6]/1 - (7/10)^7$$

Q.9
$$\frac{1}{2} \& \frac{1}{3}$$
 or $\frac{1}{3} \& \frac{1}{2}$

(a)
$$\frac{m}{m+n}$$
; (b) $\frac{{}^{6}C_{3}(3^{n}-3.2^{n}+3)}{6^{n}}$

$$\mathbf{Q.12} \quad \frac{9\mathbf{m}}{\mathbf{m} + 8\mathbf{N}}$$

(a)
$$p^2(2-p)$$
; (b) $1/2$

Q.14 (a) D, (c)
$$\frac{{}^{12}C_{2}{}^{6}C_{4}{}^{10}C_{1}{}^{2}C_{1}{}^{+12}C_{1}{}^{6}C_{5}{}^{11}C_{1}{}^{1}C_{1}}{{}^{12}C_{2}{}^{12}C_{2}{}^{6}C_{4}{}^{+12}C_{1}{}^{6}C_{5}{}^{+12}C_{0}{}^{6}C_{6}}$$

(a) A, (b)
$$\frac{1}{7}$$

EXERCISE-4

- If A, B, C are 3 events, then the probability that exactly 2 of them occur is given by:
 - $P(A \cap B) + P(B \cap C) + P(C \cap A) 2P(A \cap B \cap C)$ $P(A \cap B) + P(B \cap C) + P(C \cap A) 3P(A \cap B \cap C)$
 - $P(A) + P(B) + P(C) P(A \cap B) P(B \cap C) P(C \cap A) + P(A \cap B \cap C)$

page 30 of 37

559.

Teko

(D) none of these In a series of 3 independent trials the probability of exactly 2 success is 12 times as large as the probability of 3 successes. The probability of a success in each trial is:

(A) 1/5 (B) 2/5 (C) 3/5 (D) 4/5There are two urns. There are m white & n black balls in the first urn and p white & q black balls in the second urn. One ball is taken from the first urn & placed into the second. Now, the probability of drawing a white ball from the second urn is:

(A) $\frac{pm+(p+1)n}{(m+n)(p+q+1)}$ (B) $\frac{(p+1)m+pn}{(m+n)(p+q+1)}$ (C) $\frac{qm+(q+1)n}{(m+n)(p+q+1)}$ (D) $\frac{(q+1)m+qn}{(m+n)(p+q+1)}$ Odd W It turns up head, a ball is drawn from Box-I, else a ball is drawn from Box-II. Find the probability of event 'ball drawn is from Box-I, if it is red'.

(A) $\frac{12}{17}$ (B) $\frac{10}{17}$ (C) $\frac{17}{20}$ (D) $\frac{3}{5}$ A local post office is to send M telegrams which are distributed at random over N communication channels, (N > M). Each telegram is sent over any channel with equal probability. Chance that not more than one telegram will be sent over each channel is: more than one telegram will be sent over each channel is: 98930

 $^{N}C_{M}$. N! M^N

 ${}^{1}C_{M} \cdot M!$

A mapping is selected at random from all the mappings defined on the set A consisting of three 0 distinct elements. The probability that the mapping selected is one to one is:
(A) 1/9
(B) 1/3
(C) 1/4
(D) 2/9

(D) 2/9 À bag contains 7 tickets marked with the numbers 0, 1, 2, 3, 4, 5, 6 respectively. A ticket is drawn & replaced. Then the chance that after 4 drawings the sum of the numbers drawn is 8 is:

(B) 149/2401 (C) 3/49 (D) none

A biased coin with probability p, 0 of heads is tossed until a head appears for the first time. If the probability that the number of tosses required is even is 2/5, then p equals

(C) 2/5 (B) 2/3 (D) 3/5

(A) 1/3 (B) 2/3 (C) 2/5 (D) 3/5
If 4 whole numbers taken at random are multiplied together, then the chance that the last digit in the 9

(A) 16/625 (B) 4/125 (C) 8/81 (D) none A letter is known to have come either from "KRISHNAGIRI" or "DHARMAPURI". On the post mark only

Phone the two consecutive letters "RI" are visible. Then the chance that it came from Krishnagiri is: (B) 2/3 Bhopa.l

are the probabilities of three mutually exclusive events then the set of all Sir)

Let p be the probability that a man aged x years will die in a year time. The probability that out of 'n' men A_1 , A_2 , A_3 ,....., A_n each aged 'x' years. A_1 will die & will be the first to die is:

Kariya (S. n n n 5 girls and 10 boys sit at random in a row having 15 chairs numbered as 1 to 15, then the probability that end seats are occupied by the girls and between any two girls an odd number of boys sit is:

(A) $\frac{20 \times 10 \times 30}{15!}$ (B) $\frac{10 \times 10 \times 30}{15!}$ (C) $\frac{20 \times 10! \times 30}{15!}$ (D) $\frac{10 \times 10! \times 5!}{25!}$ By Two dice are rolled simultaneously. The probability that the sum of the two numbers on the top faces will be at least 10 is:

(A) 1/6 (B) 1/12 (C) 1/18 (D) none

There are 4 urns. The first urn contains 1 white & 1 black ball, the second urn contains 2 white & 3 black balls, the third urn contains 3 white & 5 black balls & the fourth urn contains 2.

balls. The selection of each urn is not equally likely. The probability of selecting if (i = 1, 2, 3, 4). If we randomly select one of the urns & draw a ball, then the probability of ball being of

Get S	olution of These Pa white is:	ckages & Learn by V	/ideo Tutorials on wv	vw.MathsBySuhag.com	of 3'
Ē	569	27	8		31
E 00	(A) $\frac{303}{1496}$	(B) $\frac{27}{56}$	(C) $\frac{8}{73}$	(D) none of these	age
.16. 00 16.	2/3rd of the students in	a class are boys & the to a boy is 0.28. The pro	rest girls. It is known that obability that a student o	at probability of a girl getting a chosen at random will get a first	
Σ Σ) 17.	(A) 0.26 The contents of urn I a	(B) 0.265 nd II are as follows, and 5 black balls	(C) 0.27	(D) 0.275	260 559
Mathsby	Urn II: 3 white One urn is chosen at ra Again a ball is drawn frand as a result one ball urn was I.	e and 6 black balls andom and a ball is draw om the same urn, colour	black colour are noted.	d and replaced back to the urn. The process is repeated 4 times Find the probability the chosen	6006
	(A) $\frac{125}{287}$	(B) $\frac{64}{127}$	(C) $\frac{25}{287}$	(D) $\frac{79}{192}$	Nun
≥ 18. ×∕	The sides of a rectang likely. The chance that (A) 1/10	le are chosen at random the diagonal of the rect (B) 1/20	ı, each less than 10 cm, tangle is less than 10 cn (C) π/4	all such lengths being equally n is (D) π/8	sApp
E ^{19.} OO:		e quantities is equal to		t their product is not less than	, What
လ္သ	(A) $\frac{3}{4}$	(B) $\frac{1}{2}$	(C) $\frac{1}{4}$	(D) none of these	58881
9) 20. SS 21.	() () ()	· (D) 00 0(·	ger ends in the digit 6 is (C) 25 %	(B) 40 0/	30 28
	number' is	2	3	(D) 40 % ead and the die turns up an odd	9893
0 0 22.	(A) $\frac{1}{7}$ Expectation of D is	(B) $\frac{2}{7}$	(C) $\frac{3}{7}$	(D) $\frac{7}{7}$	0
	225	150	200	(D) 300	000
№ 23.	(A) $\frac{223}{7}$ For the three events A	(B) $\frac{130}{7}$ B & C. P(exactly one of	the events A or B occurs	7 = P(exactly one of the events	2 00
 >	B or C occurs) = P(ex simultaneously) = p ² , w C occurring is:	cactly one of the events where 0 < p < 1/2. Then the	s C or A occurs) = p & he probability of at least	P (all the three events occur one of the three events A, B & [IIT -1996]	0755) 3
ISQ	(A) $\frac{3p + 2p^2}{2}$	(B) $\frac{p + 3p^2}{4}$	(C) $\frac{p+3p^2}{2}$	(D) $\frac{3p + 2p^2}{4}$) : eu
¥ Part : (≥4. ⊝	In throwing a die let A b	an one options correc e the event 'coming up o nt 'coming up of a numb	f an odd number', B be tl	he event 'coming up of an even nt 'coming up of a number < 3',	a.I Pho
≒ (A)	A and B are mutually e	xclusive and exhautive m an exhautive system		utually exclusive and exhautive m an exhautive system	Bhop
დ _{25.}	Let $0 < P(A) < 1$, $0 < P(A) < P(B) < P(B)$	$P(B) < 1 & P(A \cup B) = P(A)$	(A) + P(B) – P(A). P(B), (B) P(A ^c \cup B ^c) = P(A ^c)	, then: + P(B ^c)	Sir),
<u>ပ</u> လ 26.	$(C) P((A \cup B)^c) = P(A^c)$ For any two events A &). P(B ^c) . B defined on a sample	(D) P(A/B) = P(A) space,		자
	(A) $P(A/B) \ge \frac{P(A/B)}{A}$	$\frac{A) + P(B) - 1}{P(B)}$, $P(B) \neq$	€ 0 is always true		a (S.
Ž Ž	(B) $P(A \cup \overline{B}) = P$	$(A) - P (A \cap B)$			Sariy
FKEE Download Study Package 75 76 76 77	(D) $P(A \cup B) = 1$	$P(A^c)$. $P(B^c)$, if A & B $P(A^c)$. $P(B^c)$, if A & E vents, then the probability	Bare independent Bare disjoint ty that none of them occ	curs is given by:	Teko Classes, Maths: Suhag R. Kariya (S.
Š N	(A) $P(\overline{A}) + P(B) +$	$-P(C) - P(A \cap B) - P(B)$	\cap C) – P(A \cap C) + P(A	\cap B \cap C)	Suh
Ó O	(B) $P(\overline{A}) + P(\overline{B})$	\ /			ths:
Ш			\cap C) + P(C \cap A) – P(A	∩ B ∩ C)	s, Ma
굿 노 _{28.}	,		$P(A \cap B) + P(B \cap C) +$	$P(C \cap A)$ ses either in tests I & II or tests	sse
	I & III. The probabilitie	s of the student passing	in the tests I, II & III are	p, q &	o Cli
Suc	cessful People Replace t	ne words like; "wish", "try	" & "should" with "I Will".	Ineffective People don't.	Tek

If n integers taken at random are multiplied together, show that the chance that the last digit of the product

A player tosses a coin and is to score one point for every head and 2 points if every tail turned up. σ He is to play until he reaches 'n'. If p_n is the chance of obtaining exactly 'n' crores, find p_n for Ω

n = 1, 2, 3, 4. Also show that $p_n = \frac{1}{2} (p_{n-1} + p_{n-2})$.

A lot contains 50 defective & 50 non defective bulbs. Two bulbs are drawn at random, one at a time, with replacement. The events A, B, C are defined as: [IIT - 1992]

A person has to go through three successive tests. Probability of his passing first exam is P. Probability of passing successive test is P or P/2 according as he passed the last test or not. He is selected if he & passes atleast two tests. Find the probability of his selection. [IIT - 2003]

Prove that P(A U B) P $(A \cap B) \le P(C)$ where A and B are independent events and P(C) is the probability of

respectively. Probability that he reaches office late, if he takes car, scooter, bus or K. Sir), Bhopa.l Phone: (0755) 32 00 000,

and $\frac{1}{9}$ respectively. Given that he reached office in time, then what is the probability TIIT - 20051

XERCISE.

260

eko Classes, Maths: Suhag R. Kariya (S. R.

- **10.** C **11.** B D 14.
- **18.** C **20.** D **21.** B
- 24. AC 25. CD 26. AC 27. CD **23.** A
- 29. AD

- **12.** $1 \{1 (1-p)^m\}^k$ **13.** $\frac{8-\pi}{16-\pi}$ **14.** $\frac{KnM + LmN}{MN (K + L)}$
- 18. (32/41) 19. 2.25 Rs **15.** 209/343 **16.** 1/5
- **20.** 11/50 **21.** (13/14)
- **23.** $p_1 = \frac{1}{2}$, $p_2 = \frac{3}{4}$, $p_3 = \frac{5}{8}$, $p_4 = \frac{11}{16}$
- **24.** (i) A, B, C are pairwise independent (ii) A, B, C are not independent
- **25.** 4/35

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.