

SEQUENCE LISTING (1) GENERAL INFORMATION: (i) APPLICANT: Le, Junming Vilcek, Jan 5 Daddona, Peter E. Ghrayeb, John Knight, David M. Siegel, Scott A. (ii) TITLE OF INVENTION: MONOCLONAL AND CHIMERIC ANTIBODIES 10 SPECIFIC FOR HUMAN TUMOR NECROSIS FACTOR (iii) NUMBER OF SEQUENCES: 5 (iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Browdy and Neimark (B) STREET: 419 Seventh Street, N.W. 15 (C) CITY: Washington (D) STATE: D.C. (E) COUNTRY: USA (F) ZIP: 20004 20 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, 25 Version #1.25 (vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER:(B) FILING DATE: (C) CLASSIFICATION: 30 (vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 07/670,827 (B) FILING DATE: 18-MAR-1991 (ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: 202-628-5197 35 (B) TELEFAX: 202-737-3528 (2) INFORMATION FOR SEQ ID NO:1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 157 amino acids (B) TYPE: amino acid 40 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1: Val Arg Ser Ser Ser Arg Thr Pro Ser Asp Lys Pro Val Ala His Val 45 Val Ala Asn Pro Gln Ala Glu Gly Gln Leu Gln Trp Leu Asn Arg Arg

Ala Asn Ala Leu Leu Ala Asn Gly Val Glu Leu Arg Asp Asn Gln Leu
35 40 45

		Val	. Val 50	Pro	Ser	Glu	Gly	Leu 55	Tyr	Leu	Ile	Tyr	Ser 60	Glr.	ı Val	l Leu	Phe
		Lys 65	Gly	Gln	Gly	Сув	Pro 70	Ser	Thr	His	Val	Leu 75	Let	ı Thr	Hi	s Thr	Ile 80
5		Ser	Arg	Ile	Ala	Val 85	Ser	Туг	Gln	Thr	Lys 90	Val	Asr	ı Lev	ı Leı	Ser 95	Ala
		Ile	Lys	Ser	Pro 100		Gln	Arg	g Glu	Thr 105		Glu	Gl	/ Ala	Gl:	ı Ala	Lys
10		Pro	Trp	Tyr 115		Pro	Ile	туг	Leu 120	-	Gly	Val	Phe	125		ı Glu	Lys
		Gly	130	_	Leu	Ser	Ala	135		Asn	Arg	Pro	140	_	Let	qaA ı	Phe
		Ala 145		Ser	Gly	Gln	Val 150	_	Phe	Gly	Ile	Ile 155		a Leu	1		
15	(2)	INFC	RMAT	ION	FOR	SEQ	ID N	10:2:									
20		(i)	(A (B (C	UENC) LE) TY) ST	NGTH PE: RAND	: 32 nucl EDNE	1 ba eic SS:	se p acid sing	airs l								
20		(ii)		ECUL													
		(ix)	A)	TURE) NA) LO	ME/K			21									
25		(xi)	SEQ	UENC	E DE	SCRI	PTIC	N: S	EQ I	D NO	:2:						
		ATC Ile															48
30		AGA Arg															96
		CAC His															144
35		TAT Tyr 50															192
40		GGA Gly															240
		GAT Asp															288

I:\gkt\app\vilcek3b.ap! September 11, 1992

	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO : 3	:								
5			(i) :	(B)	LEI TYI	CHAI NGTH PE: 6	: 10 amin	7 am:	ino a id		5						
		(:	ii) 1	MOLE	CULE	TYPI	E: p	rote:	in								
10		(:	xi) :	SEQUI	ENCE	DESC	CRIP'	rion	: SE	Q ID	NO:	3:					
	Asp 1	Ile	Leu	Leu	Thr 5	Gln	Ser	Pro	Ala	Ile 10	Leu	Ser	Val	Ser	Pro 15	Gly	
	Glu	Arg	Val	Ser 20	Phe	Ser	Сув	Arg	Ala 25	Ser	Gln	Phe	Val	Gly 30	Ser	Ser	
15	Ile	His	Trp 35	Tyr	Gln	Gln	Arg	Thr 40	Asn	Gly	Ser	Pro	Arg 45	Leu	Leu	Ile	
	Lys	Tyr 50	Ala	Ser	Glu	Ser	Met 55	Ser	Gly	Ile	Pro	Ser 60	Arg	Phe	Ser	Gly	
20	Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Ser	Ile 75	Asn	Thr	Val	Glu	Ser 80	
	Glu	Asp	Ile	Ala	Asp 85	Tyr	Tyr	Сув	Gln	Gln 90		His	Ser	Trp	Pro 95	Phe	
	Thr	Phe	Gly	Ser 100	Gly	Thr	Asn	Leu	Glu 105	Val	Lys						
25	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO:4	:								
30		(i)	(1	QUENCA) LIB) TY	ENGTI (PE : [RANI	i: 35	57 ba leic SSS:	ase p acio sino	pairs i	3							
30		(11)		D) T(LECUI													
		(/	, 110.		<i></i>		CDIG	•									
		(ix)	(2	ATURI A) NI B) L(AME/F			357									
35		(xi)) SE(QUENC	CE DE	SCR	[PTIC	ON: S	SEQ 1	D NO):4:						
				CTT Leu													48
40				CTC Leu 20													96

ACG TTC GGC TCG GGG ACA AAT TTG GAA GTA AAA Thr Phe Gly Ser Gly Thr Asn Leu Glu Val Lys

321

	TGG Trp	ATG Met	AAC Asn 35	TGG Trp	GTC Val	CGC Arg	CAG Gln	TCT Ser 40	CCA Pro	GAG Glu	AAG Lys	GGG Gly	CTT Leu 45	GAG Glu	TGG Trp	GTT Val	144
5		GAA Glu 50															192
		GTG Val															240
10		TAC Tyr															288
15		TGT Cys															336
		ACC Thr															357
	(2)	INFO	ORMA'	rion	FOR	SEQ	ID 1	10:5	:								
20			(i) S		SNCE			RIST			_						
				(B)	TYI TOI	PE: a	amino	ac	id	aCT G	•						
		(1	ii) r	(B) (D)	TY	PE: 6	amino SY:	o aci	id ar	xCT Cr	•						
25				(B) (D)	TYI TOI	PE: 6 POLOC TYPI	amino EY: E	o aci	id ar in			5:					
25	Glu 1		ci) S	(B) (D) MOLE(SEQUI	TYI TOI CULE	PE: 6 POLOG TYPI DESG	amino SY: 1 S: p:	o aci linea cotei	id ar in : SE(Q ID	NO:5		Gln	Pro	Gly 15	Gly	
25	1	(2	ci) S Lys	(B) (D) MOLE(SEQUE Leu	TYI TOI CULE ENCE Glu 5	PE: 6 POLOC TYPE DESC	amind FY: 1 E: pr CRIPT	o actions cotes TION:	id ar in : SE(Gly	Q ID Gly 10	NO:5	Val			15	_	
25 30	1 Ser	(2 Val	ci) s Lys Lys	(B) (D) MOLE(SEQUE Leu Leu 20	TYI TOI CULE SNCE Glu 5	PE: 6 POLOG TYPE DESG Glu Cys	amind GY: 1 G: pr CRIPT Ser Val	o actioned from the content of the c	id in : SE(Gly Ser 25	Q ID Gly 10 Gly	NO:5	Val Ile	Phe	Ser 30	15 Asn	His	
	1 Ser Trp	(z Val Met	tys Lys Asn 35	(B) (D) (OLE) (SEQUE Leu 20 Trp	TYII TOI TOI CULE SNCE Glu 5 Ser Val	PE: 6 POLOG TYPH DESG Glu Cys Arg	emind E: pr CRIPT Ser Val Gln	cotes rotes rION: Gly Ala Ser 40	id in : SEG Gly Ser 25 Pro	Gly Gly Gly Glu Ser	NO:S Leu Phe Lys	Val Ile Gly Thr	Phe Leu 45	Ser 30 Glu	15 Asn Trp	His Val	
	Ser Trp	Val Met Met	Lys Lys Asn 35	(B) (D) MOLE(SEQUE Leu 20 Trp Arg	TYII TOP TOP TOP SINCE Glu 5 Ser Val	PE: 6 POLOG TYPE DESG Glu Cys Arg	Ser Ser Ser Ser Ser Ser	Cotes	id in : SE(Gly Ser 25 Pro	Gly 10 Gly Glu Ser	NO:5 Leu Phe Lys Ala	Val Ile Gly Thr 60	Phe Leu 45 His	Ser 30 Glu Tyr	15 Asn Trp Ala	His Val Glu	
30	Ser Trp Ala Ser 65	Val Met Met Glu 50	Lys Lys Asn 35 Ile	(B) (D) (D) (OLE) (SEQUE Leu 20 Trp Arg Gly	TYII TOI TOI TOI TOI SINCE Glu 5 Ser Val Ser Arg	PE: 6 POLOC TYPE DESC Glu Cys Arg Lys Phe 70	Ser Val Ser Ser Thr	cotes	id in : SE(Gly Ser 25 Pro Asn Ser	Q ID Gly Gly Glu Ser Arg	NO:5 Leu Phe Lys Ala Asp 75	Val Ile Gly Thr 60 Asp	Phe Leu 45 His Ser	Ser 30 Glu Tyr Lys	15 Asn Trp Ala Ser	His Val Glu Ala 80	
30	Ser Trp Ala Ser 65 Val	Val Met Met Glu 50 Val	Lys Lys Asn 35 Ile Lys Lys	(B) (D) (OLE) (SEQUE Leu 20 Trp Arg Gly Gln	TYII TOI TOI CULE SNCE Glu 5 Ser Val Ser Arg Met 85	PE: 6 POLOC TYPE DESC Glu Cys Arg Lys Phe 70 Thr	Ser Val Ser 55 Thr	Content of the conten	id in : SEG Gly Ser 25 Pro Asn Ser	Gly Gly Glu Ser Arg Thr 90	NO:S Leu Phe Lys Ala Asp 75	Val Ile Gly Thr 60 Asp	Phe Leu 45 His Ser	Ser 30 Glu Tyr Lys Gly	Asn Trp Ala Ser Val	His Val Glu Ala 80 Tyr	