Set 2 Homework, Analysis of Algorithms

Jay R Bolton

May 6, 2012

- P 52: 3.1-1, 3.1-2
- P 60: 3.2-1, 3.2-2 and Problems: 3-1, 3-3, 3-4
- P 107 Problems: 4-1, 4-2, 4-4

Chapter 3

3.1-1 Prove: $max(f(n), g(n)) = \Theta(f(n) + g(n))$

By theorem 3.1, in order for a func to be big-Theta, it should be both big-O and big-Omega.

$$\begin{split} \mathcal{O}: \\ & \max(f(n),g(n)) \leq f(n) + g(n) \\ & \max(f(n),g(n)) = O(f(n) + g(n)) \\ & \Omega: \\ & 2*\max(f(n),g(n)) >= f(n) + g(n) \\ & \max(f(n),g(n)) >= f(n) + g(n) * 1/2 \\ & \max(f(n),g(n)) = \Omega(f(n) + g(n)) \end{split}$$

3.1-2 Prove: $(n+a)^b = Theta(n^b)$

Similarly to 3.1-1, we need to prove that the RHS is both big-O and big-Omega of the LHS.

```
\mathcal{O}: Show: (n+a)^b \leq n^b * c for some constant c Where: b > 0 Cases: a \leq 0: (n-a))^b < n^b (n-a))^b = O(n^b) a > 0: n+a \leq n*a (n+a)^b \leq (n*a)^b = n^b*a^b (n+a)^b \leq n^b*a^b with constant a^b for a > 0
```

$$\begin{split} \Omega: \\ a &\geq 0: \\ (n+a) &\geq n \\ (n+a)^b &\geq n^b \\ (n+a)^b &= \Omega(n^b) \\ a &< 0: \\ (n-a) &\geq n \cdot -a \\ (n-a)^b &\geq (n \cdot -a)^b \\ (n-a)^b &\geq n^b \cdot -a^b \\ (n-a)^b &= \mathcal{O}(n^b) \end{split}$$
 with constant a^b for $a < 0$

3.2-1

Show:

If f(n) and g(n) are monotonically increasing, then so are:

$$f(n) + g(n)$$
:

$$f(n) \leq f(m)$$

$$g(n) \le g(m)$$

$$f(n) + g(n) \le f(m) + g(m)$$

$$f(g(n))$$
:

$$f(n) \le f(m)$$

$$g(n) \le g(m)$$

$$f(g(n)) \le f(g(m))$$

* Let:
$$g(n) = p$$
 and $g(m) = q$

- * We know that $p \leq q$ because it was stated that $g(n) \leq g(m)$
- * We already said $f(n) \leq f(m)$ for all $n \leq m$, and that $p \leq q$
- * Thus $f(p) \le f(q)$, that is $f(g(n)) \le f(g(m))$

Show:

If f(n) and g(n) are nonnegative, then:

 $f(n) \cdot g(n)$ is monotonically increasing

Definitions:

- $*f(n) \leq f(m)$ for all $n \leq m$
- $*g(n) \leq g(m)$ for all $n \leq m$
- *f(n) > 0 forall n
- *g(n) > 0 forall n

Conclusions:

* Since f(n) and g(n) are monotonically increasing and only positive, then they will only be positively increasing.

$$*f(n) \cdot g(n) \le f(m) \cdot g(m)$$
 for all $n \le m$

* This holds true because increasing positive integers multiplied will still be increasing.

3.2-2

$$a^{log(b,c)} = c^{log(b,a)}$$

I assume we can use the equations above this one.

$$Definition: q = b^y <=> log(b, q) = y$$

$$a^{\log(b,c)} = c^{\log(b,a)}$$

$$= log(c, a^{log(b,c)}) = log(b, a)$$

$$= log(b, c) * log(c, a) = log(b, a)$$

$$= log(c, a) = log(b, a)/log(b, c)$$

$$= log(c, a) = log(c, a)$$

This used equations on p56 above the equation we proved.

- **3-1** The following is a lemma that I'll use for this problem:
 - **a.** Prove: $k \ge d \to p(n) = \mathcal{O}(n^k)$

$$Show: \sum_{i=0}^{d} a_i n^i \le c \cdot n^k$$
 for some constant c

Let
$$a_m = max(a_i)$$

$$\sum_{i=0}^{d} a_i n^i \le (a_m d) \cdot n^d \le (a_m d) \cdot n^k$$

$$\sum_{i=0}^{d} a_i n^i = \mathcal{O}(n^k)$$

with constant $(a_m \cdot d)$

b. Prove: $k \leq d \rightarrow p(n) = \Omega(n^k)$

Show:
$$\sum_{i=0}^{d} a_i n^i \ge c \cdot n^k$$
 with some constant c

$$\sum_{i=0}^{d} a_i n^i \ge n^d \ge n^k$$

$$\sum_{i=0}^{d} a_i n^i = \Omega(n^k)$$

with constant 1

c. Prove: $k = d \rightarrow p(n) = \Theta(n^k)$

See proof in (a) and (b); by Theorem 3.1, n^d is also Θ .

$$Show: \sum_{i=0}^d a_i n^i \ge c \cdot n^d \text{ with some constant c}$$

$$Also: \sum_{i=0}^d a_i n^i \le e \cdot n^d \text{ with some constant e}$$

$$\sum_{i=0}^d a_i n^i \le (a_m d) \cdot n^d$$

$$\sum_{i=0}^d a_i n^i \ge n^d$$

d. Prove: $k > d \rightarrow p(n) = o(n^k)$

Show:
$$\sum_{i=0}^{d} a_i n^i < c \cdot n^k \text{ with some constant } c$$
$$\sum_{i=0}^{d} a_i n^i \le (a_m d) \cdot n^d < (a_m d) \cdot n^k$$

e. Prove: $k < d \rightarrow p(n) = \omega(n^k)$

$$Show: \sum_{i=0}^{d} a_i n^i > c \cdot n^k$$
 with some constant c

$$\sum_{i=0}^{d} a_i n^i \ge n^d > n^k$$

3-3 From largest to smallest:

$$2^{2^n}$$
 $(n+1)!$
 $n!$
 e^n
 $n \cdot 2^n$
 2^n
 $(3/2)^n$
 $(lgn)^{lgn}$
 $(lgn)!$
 n^3
 n^2
 $nlgn, lg(n!)$
 n
 $2^{\sqrt{2lgn}}$
 $(lgn)^2$
 lgn
 \sqrt{lgn}
 $lglgn$
 $2^{lg \cdot n}$
 $(lgn)*$
 $n^{1/lgn}$

Some more of them may be in equivalence classes...

3-4 a. False by counterexample: n and n^2

b. False by counterexample: n and n^2

c. True: $f(n) \le g(n)$ and $lg(f(n)) \le lg(g(n))$

d. True: $f(n) \le g(n)$ and $2^{f(n)} \le 2^{g(n)}$

e. True: $f(n) \leq f(n)^2$

f. True by transpose symmetry.

g. False: $n^2 > c * (n/2)^2$

h. True:

$$f(n) + o(n) \le 2 \cdot f(n)$$

$$f(n) + o(n) \ge 1/2 \cdot f(n)$$

Chapter 4

4-1 I'll use master theorem on all of them (because it's quick/easy), except for the last.

a.

$$\begin{split} a &= 2 \\ b &= 2 \\ f(n) &= n^4 \\ f(n) &= \Omega(n^{\log_2^2 + e}) \\ 2 \cdot (n^4)/(2^4) &\leq c \cdot n^4 \\ T(n) &= \Theta(n^4) \end{split}$$

b.

$$\begin{split} a &= 1 \\ b &= 7/10 \\ f(n) &= n \\ f(n) &= \Omega(n^{\log_{7/10}^1 + e}) \\ e &= 1 \\ 1 \cdot (n)/(7/10) \leq c \cdot n \\ T(n) &= \Theta(n) \end{split}$$

c.

$$a = 16$$

$$b = 4$$

$$f(n) = n^{2}$$

$$f(n) = \Theta(n^{\log_{4}^{16}})$$

$$T(n) = \Theta(n^{2} lgn)$$

 $\mathbf{d}.$

$$\begin{aligned} a &= 7 \\ b &= 3 \\ f(n) &= n^2 \\ f(n) &= \Omega(n^{\log_3^7 + e}) \\ 7 \cdot (n^2)/(3^2) &\leq c \cdot n^2 \\ T(n) &= \Theta(n^2) \end{aligned}$$

e.

$$a = 7$$

$$b = 2$$

$$f(n) = n^{2}$$

$$f(n) = \mathcal{O}(n^{\log_{2}^{7} - e})$$

$$T(n) = \Theta(n^{\log_{2}^{7}})$$

f.

$$a = 2$$

$$b = 4$$

$$f(n) = \sqrt{n}$$

$$f(n) = \Theta(n^{\log_4^2})$$

$$T(n) = \Theta(n^{1/2} lgn)$$

g. This recurrence can be represented by the sum:

$$c \cdot \sum_{i=0}^{\lfloor n/2 \rfloor} n^2$$

$$= c \cdot \frac{(n^2/4+1)(n+1)}{6}$$

$$= c \cdot \frac{n^3/4+n^2/4+n+1}{6}$$

$$= c \cdot (n^3 \cdot 1/24+n^2 \cdot 1/24+n/6+1/6)$$

$$= \Theta(n^3)$$

- **4-2 a.** The recursive representation of the complexity of binary sort is: T(n) = T(n/2) + 1 For case 1, our complexity is T(lgn) by the master theorem. For case 2, our recurrence is T(n') = T(n'/2) + n and our complexity for this is T(nlgn). For case 3, our complexity is still T(nlgn).
 - **b.** For case 1, T(n) = 2T(n/2) + n which is $\Theta(nlgn)$ by the master theorem. For case 2, T(n') = 2T(n'/2) + 4n which is $\Theta(nlgn)$ by the master theorem. For case 3 T(n) = 2T(n/2) + 4n which is $\Theta(nlgn)$ by the master theorem.
- **4-4** Show: $\mathcal{F}(z) = z + z\mathcal{F}(z) + z^2\mathcal{F}z$

$$\mathcal{F}(z) = \sum_{i=0}^{\infty} \mathcal{F}_i z^i$$

$$= z + \sum_{i=2}^{\infty} (\mathcal{F}_{i-1} + \mathcal{F}_{i-2}) z^i$$

$$= z + \sum_{i=2}^{\infty} \mathcal{F}_{i-1} z^i + \sum_{i=2}^{\infty} \mathcal{F}_{i-2} z^i$$

$$= z + z \sum_{i=0}^{\infty} \mathcal{F}_i z^i + z^2 \sum_{i=0}^{\infty} \mathcal{F}_i z^i$$

$$= z + z \mathcal{F}(z) + z^2 \mathcal{F}(z)$$

Only had time to figure out the first part of this problem.