Universität Augsburg Lehrstuhl für Algebra und Zahlentheorie Prof. Marc Nieper-Wißkirchen Ingo Blechschmidt

Übungsblatt 13 zur Algebra II

Abgabe bis 28. Januar 2014, 17:00 Uhr

Aufgabe 1. (2+2+2) Vervollkommnung von Ringen

Sei R ein kommutativer Ring positiver Charakteristik p. Der $inverse\ Limes\ E := \varprojlim_{i \in \mathbb{N}} R^{p^i}$ ist die Menge aller Folgen (x_0, x_1, x_2, \ldots) mit $x_i \in R$ und $x_{i+1}^p = x_i$ für alle $i \in \mathbb{N}$. Durch gliedweise Addition und Multiplikation wird E zu einem kommutativen Ring, genannt $Vervollkommnung\ von\ R$.

- a) Zeige explizit, dass jedes Element aus E eine p-te Wurzel besitzt.
- b) Sei R sogar ein Körper. Zeige, dass E vermöge der kanonischen Abbildung $(x_0, x_1, \ldots) \mapsto x_0$ zu einem vollkommenen Unterkörper von R wird.
- c) Sei weiterhin R ein Körper. Zeige, dass E kanonisch isomorph zum Unterring all derjenigen Elemente von R ist, die für jedes n eine p^n -te Wurzel besitzen.

Aufgabe 2. (2+2) Primkörper und Vollkommenheit in positiver Charakteristik Sei K ein Körper positiver Charakteristik p.

- a) Zeige, dass der Primkörper von K der kleinste Unterkörper von K ist.
- b) Zeige, dass K genau dann vollkommen ist, wenn der Frobenius ein Isomorphismus von K auf sich selbst ist.

Aufgabe 3. (2+2) Unterkörper endlicher Körper

- a) Gibt es in einem Körper mit 27 Elementen einen Unterkörper mit neun Elementen?
- b) Sei K ein Körper mit 25 Elementen. Zeige, dass in K eine Quadratwurzel von 2 existiert. Gib einen Erzeuger der multiplikativen Gruppe von K in der Form $a+b\sqrt{2}$ mit $a,b\in\mathbb{F}_5$ an.

Aufgabe 4. (2+4) Automorphismen endlicher Körper

Sei $q = p^n$ eine Primzahlpotenz.

- a) Was ist $(X^{q^d} X) : (X^q X)$?
- b) Sei L ein Körper mit q^d Elementen und K sein Unterkörper mit q Elementen. Zeige, dass $\mathrm{Aut}_K(L)$ von Frobⁿ erzeugt wird und d Elemente besitzt.