

Group 1

AMII Students Spring 2023 Session

Cailenys Leslie

Clinton Boyda

AMII Machine Learning Technician

Group 1 Capstone Presentation

Project Objective

Find the best machine learning model that predicts the optimal price of a rental property to maximize revenue.

Business Case

Attract more Airbnb hosts and help them decide whether to invest in a property.

Success Criteria

Data Science Life Cycle

1 Data
Collection

3 DataVisualization

5 Model Evaluation

Exploratory Data Analysis

2 DataPreprocessing

4 Model Building

Data Collection

1.0 Merging Data

Data Science Life Cycle

1 Data
Collection

3 DataVisualization

5 Model Evaluation

Feature Engineering

DataPreprocessing

4 Model Building

Data Preprocessing

2.0 Keep only Valid Data

x Zero Price x Zero Availability x Extreme Values

Data Cleaning

2.1 Extreme Values

Data Science Life Cycle

1 Data Collection 3 Data Visualization Evaluation

Feature
2 Data Correlation 4 Model

Data Exploration

3.0 Neighbourhood Locations

neighbourhood_group
Manhattan
Brooklyn
Queens
Staten Island
Bronx

Data Visualizations

3.1 Correlations with Price

Data Visualization

3.2 Property vs Pricing

Data Science Life Cycle

1 Data Collection 3 Data 5 Model Evaluation
Regression

2 Data 4 Model Preprocessing Building

4.0 Model Building

Feature selection

Model Pipeline

Performance evaluation

4.1 Model Pipeline

4.2 Feature selection

	Model_Name	y_train	y_test
1	Ridge()	64.2%	63.7%
4	SVR()	68.1%	63.5%
7	LinearRegression()	64.3%	63.1%
5	LinearSVR()	63.4%	62.5%
6	GradientBoostingRegressor()	63.4%	62.0%
3	RandomForestRegressor(random_state=0)	76.9%	61.3%
2	DecisionTreeRegressor(random_state=0)	78.2%	56.0%
0	KNeighborsRegressor()	65.9%	55.1%

	Model_Name	y_train	y_test
6	GradientBoostingRegressor()	57.8%	56.6%
1	Ridge()	54.5%	56.0%
7	LinearRegression()	54.5%	56.0%
4	SVR()	56.6%	55.8%
5	LinearSVR()	54.1%	55.1%
3	RandomForestRegressor(random_state=0)	60.8%	55.0%
2	DecisionTreeRegressor(random_state=0)	61.2%	53.4%
0	KNeighborsRegressor()	55.0%	50.4%

Before feature selection

After feature selection

4.3 Performance evaluation

4.3 Performance evaluation

4.3 Performance evaluation

	mean_test_score	std_test_score	rank_test_score
Linear regression	0.542763	0.013050	3
Ridge regression	0.542815	0.013000	2
Gradient boosting regressor	0.562364	0.012964	1

Minimal improvements with hyperparameter tuning.

Data Science Life Cycle

1 Data 3 Data 5 Model Evaluation

2 Data 4 Model

Accuracy

Model Evaluation

5.0 Performance Results

Model Name

Ridge Regression Accuracy

56%

Model Evaluation

5.1 Actual vs Predicted

Wrap-up: Analysis Limitations

1 Regionally Specific

3 Sampling bias

Trendline have limitation

4 Limited variables

Include additional Features

Pursue Additional ML Models

Expand Profit Prediction Potential

Airbnb your home

Tree houses

Business Summary:

- Smart Pricing Improvement
- Pilot Program
- Uber Surge Pricing Equivalencies

Questions?

Optimal Model Selection

ML Insights

RECORDS: ~8k FEATURES: 8

Merged **Features**

RECORDS: ~28k FEATURES: 4

Pipeline Result with Neighbourhood feature

	Model_Name	y_train	y_test
4	SVR()	68.1%	63.5%
7	LinearRegression()	64.3%	63.1%
6	GradientBoostingRegressor()	63.4%	61.9%
3	RandomForestRegressor(random_state=0)	76.9%	61.3%
2	DecisionTreeRegressor(random_state=0)	78.2%	56.0%
0	KNeighborsRegressor()	65.9%	55.1%
1	KNeighborsRegressor(weights='distance')	74.7%	54.2%
5	AdaBoostRegressor()	47.8%	46.9%

