Sliding Window

Contenu.

Traitement d'erreurs au niveau des unités de données:

- Contexte, ARQ.
- Protocoles élémentaires.
- Fenêtre d'anticipation (ou fenêtre glissante, «sliding window»).
- Gestion des retransmissions.
- Considérations de performance.

Scénarios ARQ.

Automatic Repeat Request (ARQ).

Concept de base de ARQ

- l'émetteur attend l'acquittement d'une unité de données émise avant de continuer à émettre
- si après un certain temps (timeout) il n'y a toujours pas d'acquittement, l'émetteur retransmet l'unité de données
- les numéros de séquence sont requis pour permettre la détection de duplications
- ce concept de base de ARQ est appelé protocole «Envoyer et Attendre»

Évaluation

- avantage: seul des numéros de séquence binaire sont requis (0/1)
- désavantage: effort supplémentaire à cause des acquittements
- variante : superposer les acquittements aux unités de données à envoyer (piggybacking)

Protocoles élémentaires.

Protocole utopique

Protocoles élémentaires (II).

Procédure simple pour la régulation du flux

Protocoles élémentaires (III).

Protocole "envoyer et attendre"

sans numérotation

Protocoles élémentaires (IV).

Perte d'acquittements

Protocoles élémentaires (v).

Protocole "envoyer et attendre"

avec numérotation des unités de données

Protocoles élémentaires (VI).

Mauvais réglage du temporisateur (timer)

Protocoles élémentaires (suite).

Protocole "envoyer et attendre"

avec numérotation des unités de données et des acquittements

Fenêtre d'anticipation (Sliding Window)

Émetteur

- W_S Taille fenêtre d'émission nombre maximum d'acquittements manquants
- V(S) Variable d'émission numéro de séquence de la prochaine unité de données à émettre
- V(Q) ou V(A) Variable
 d'acquittements
 numéro de séquence de la prochaine
 unité de données à être acquittée

Récepteur

- W_R Taille fenêtre de réception nombre maximum d'unité de données qui sont sauvée même lors qu'elles arrivent hors séquence
- V(R) Variable de réception numéro de séquence de la prochaine unité de donnée attendue en séquence
- V(H) Highest Expected State numéro de séquence le plus élevé qui sera accepté et placé dans une mémoire tampon

Fenêtre d'anticipation (II).

M – Numéro de séquence maximal

sa valeur dépend du nombre de bit à disposition M=2ⁿ

Exemple:

- n = 3 d'où $M = 2^3$
- $W_S = 4$

Questions:

- Si V(Q)=1 et V(S)=3, peut-on émettre ?
 Si oui, combien d'unités de données?
- Si V(Q)=1 et V(S)=5, peut-on émettre ?
 Si oui, combien d'unités de données?

Protocoles à fenêtre d'anticipation (I).

Anticipation des acquittements

Téléinformatique 2- Slinding Window / 14

Ph. Joye – J. Robadey / 2017

Protocoles à fenêtre d'anticipation (II).

Protocoles à fenêtre d'anticipation (III).

Encapsulation des acquittements

Variantes ARQ.

Rejet simple (Go-Back-N)

- l'émetteur peut envoyer N unités de données (N spécifié séparément).
- le récepteur acquitte les unités de données reçus correctement
- variantes en cas d'erreurs (données manquantes ou erronées)
 - passive: retransmission déclenchée par temporisateur
 - active: retransmission déclenchée par acquittement spécial (REJ ou NACK)
- L'émetteur retransmet toutes les unités de données (max. N) en démarrant avec la première unité qui n'est pas encore acquittée (dans le cas d'un timeout) ou acquitté négativement
- requiert pas de place mémoire sur le récepteur

Rejet sélectif (Sliding Window)

- variante redéfinie du rejet simple
 - la sauvegarde d'unités de données reçues hors séquence permet d'assurer la remise en séquence sans retransmission
 - requiert de la place mémoire
- seul les unités de données manquantes ou erronées sont retransmises

Gestion des retransmissions.

Gestion passive des retransmissions par rejet simple ("go back N")

Gestion des retransmissions (II).

Gestion active des retransmissions par rejet simple ("go back N")

Gestion des retransmissions (III).

Gestion des retransmissions par rejet sélectif (SREJ)

Taille maximale des fenêtres.

Tailles des fenêtres limitées pour le rejet sélectif

Performance de ARQ (I).

Attendre et émettre

- les performances dépendent de l'overhead (entête et acquittement)
- T_x = temps pour:
 - − e − entête (header)
 - d données
 - -a acquittement
 - − p − propagation du signal
- Rendement U:

$$U = \frac{T_d}{T_e + T_d + T_a + 2T_p}$$

$$T_x = \frac{l_x}{\dot{D}}$$

- normalisation par T_d :
 - c.-à-d. division des deux côtés par $T_d = l_d/D$ \rightarrow multiplication par D/l_d

$$U = \frac{1}{1 + \frac{l_e}{l_d} + \frac{l_a}{l_d} + 2 \cdot \frac{T_p \cdot \dot{D}}{l_d}} = \frac{l_d}{l_d + l_e + l_a + 2 \cdot T_p \cdot \dot{D}}$$

Performance de ARQ (II).

Fenêtre glissante

- hypothèse: sans erreurs / sans retransmissions
- $F_{max} = T_X / T_Y \cong$ nombre max. d'unités de données émises avant la réception du premier acquittement

$$\frac{T_X}{T_Y} = \frac{l_d + l_e + l_a + 2T_p \cdot \dot{D}}{l_d + l_e}$$
$$= 1 + \frac{l_a + 2T_p \cdot \dot{D}}{l_d + l_e}$$

 si la fenêtre d'émission est trop petite → émetteur doit attendre les acquittements

$$if W_s \ge \frac{T_X}{T_Y}$$

if
$$W_s < \frac{T_X}{T_Y}$$

$$U = \frac{W_s \cdot T_d}{W_s \cdot (T_d + T_e)} = \frac{l_d}{l_d + l_e} = \frac{1}{1 + \frac{l_e}{l_d}}$$

$$U = \frac{W_s \cdot l_d}{l_d + l_e + l_a + 2 \cdot T_p \cdot \dot{D}}$$