2021/12/27 r10922171 陳嘉政 hw5

- 1. a. 因為 offset 為 4 bits,表示一個 block 大小為 2⁴ bytes,所以 block size = 16 bytes。
 - b. index bits 用來指出 cache 裡有多少個 blocks,所以共有 2⁶ = 64 個 blocks。
 - c. cache 中一個 block 包含 1 valid bit + 1 dirty bit + tag
 bits + block size(data size),而共有 64 個 blocks。所以
 cache 共有(1+1+22+(16*8))*64=152*64=9728
 bits。

d.

Address	Tag	Index	Offset	Hit/Miss
00	0x00	0x00	0x0	Miss
04	0x00	0x00	0x4	Hit
802	0x02	0x00	0x2	Miss
A66	0x02	0x26	0x6	Miss
4CFB	0x13	0x0F	ОхВ	Miss
A65	0x02	0x26	0x5	Hit
188	0x00	0x18	0x8	Miss
3705	0x0D	0x30	0x5	Miss

2. a. AMAT = Hit time + Miss rate * Miss penalty •

因為 L1 cache 的 hit time 決定 cycle time,所以 P 的 AMAT in cycles = (0.6 ns + 0.05 * 70 ns) / 0.6 ns = 6.83 cycles。

b. total CPI = base CPI + memory stall per instruction(extra CPI)。題目有說 30%的指令會存取 data memory,且所有指令都會存取 instruction memory,且 extra CPI = 平均一個指令存取 memory 次數 * Miss rate * Miss penalty,所以 extra CPI = 1 * 0.05 * (70 ns/ 0.6 ns) + 0.3 * 0.05 * (70 ns/ 0.6 ns) = 7.583。所以 total CPI = 1 + 7.583 = 8.583。

c. AMAT = hit time of L1 + global miss rate of L1 * miss penalty of L1 + global miss rate of L2 * miss penalty of L2 = $0.6 \text{ ns} + 0.05 * 5 \text{ ns} + 0.05 * 0.9 * 70 \text{ ns} = 4 \text{ ns} \circ 所以$ AMAT in cycles = 4 ns / $0.6 \text{ ns} = 6.66 \circ$

d. extra CPI = 平均一個指令存取 memory 次數 * (global miss rate of L1 * miss penalty of L1 in cycles + global miss rate of L2 * miss penalty of L2 in cycles) = 1.3 * (0.05 * (5 ns / 0.6 ns) + 0.05 * 0.9 * (70 ns/ 0.6 ns)) = 7.3658。所以

total CPI = 1 + 7.3658 = 8.3658 •

3. a. virtual address 可以切成:

Virtual page number Page offset

因為 page size 為 16KB,所以 page offset 有 14 bits。拿 virtual address bits – page offset 得 virtual page number bits,即 40 – 14 = 26,又 virtual page number 個數 = page entry 個數,所以 page entry 有 2²⁶ = 64M 個。
b. 一個程式需要 page entry 個數 * entry size = 64M * 4B = 256MB 的 memory 來放 page table,所以五個程式則需 5 * 256MB = 1280MB 的 memory。

c. two level page table 的 virtual address 可切成:

Level-1 index Level-2 index Page offset
題目有給 level-1 有 256 個 entry = 8 bits,加上 a.得到的
page offset = 14 bits,所以 level-2 有 18 bits,所以 level-2 每個 page table 大小為 2¹⁸ * 4B,又每個 level-1 entry
對應到一個 level-2 page table,所以共有 256 個 level-2
page table,大小共為 256 * 2¹⁸ * 4B = 256MB。

d. 題目提到每個程式用了一半的 virtual memory,表示 virtual page 大小只需一半,原本為 2²⁶,一半為 2²⁵,所

以占用的 page table size 為 2²⁵ * 4B = 128MB,而 level-2 page table 由(c.)得知一個為 1MB,所以需要 128 個,再加上 level-1 的一個 page table 大小為 256 * 4B = 1KB,所以一個程式最少需 1KB + 128MB 大小的 memory 來放page table,而 3 個程式就需 3 * (1KB + 128MB)這麼大。