Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет компьютерных систем и сетей

Кафедра информатики

Дисциплина: Математика. Математический анализ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к курсовой работе на тему

НЕПРЕРЫВНАЯ ЗАВИСИМОСТЬ РЕШЕНИЯ ЗАДАЧИ КОШИ ОТ НАЧАЛЬНЫХ УСЛОВИЙ ДЛЯ НОРМАЛЬНОЙ СИСТЕМЫ

БГУИР КП 1-40 04 01

Студент гр.153501 Тимофеев К. А.

Руководитель: канд. ф.-м. н., доцент Анисимов В. Я.

СОДЕРЖАНИЕ

введение	4
1 НАЗВАНИЕ ГЛАВЫ	5
1.1 Название подглавы	Error! Bookmark not defined.
2 НАЗВАНИЕ ГЛАВЫ	7
3 НАЗВАНИЕ ГЛАВЫ	8
ЗАКЛЮЧЕНИЕ	9
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	310

План

Введение — 1,5 СТР:

- актуальность темы (почему ЭТА тема?)
- степень разработанности проблемы (обзор литературных источников. Какие авторы занимались вопросом)
- цель работы (изучить НЕПРЕРЫВНАЯ ЗАВИСИМОСТЬ РЕШЕНИЯ ЗАДАЧИ КОШИ ОТ НАЧАЛЬНЫХ УСЛОВИЙ ДЛЯ НОРМАЛЬНОЙ СИСТЕМЫ, рассмотреть примеры демонстрирующие особенности темы)
- задачи (количество задач равно количеству параграфов/пунктов содержания/главной части работы):

Глава 1 (вся необходимая теория)

Глава 2 (изучение темы на примерах для обрисовки общей картины)

Глава 3 (частные случаи (с комплексными числами, в случае невыполнения условий теорме и тд))

Заключение под стражу на срок 8 лет

аргументированные выводы

итог работы, выводы из каждой главы

ВВЕДЕНИЕ

Целью данной работы является изучение непрерывной зависимости решения задачи Коши от начальных условий для нормальной системы.

Для этого были рассмотрены теория систем ДУ, понятие нормальной системы дифференциальных уравнений, ее свойства и геометрический смысл, метод исключения решения систем дифференциальных уравнений, постановка задачи Коши для нормальной системы дифференциальных уравнений, теоремы о существовании и единственности её решения, теорема о корректности задачи Коши для нормальной системы, а так же теоремы о непрерывной зависимости решения задачи Коши для нормальной системы от начальных условий. Была рассмотрена связь между непрерывной зависимостью от начальных условий и корректностью задачи Коши.

При помощи системы компьютерной алгебры Maple были решены задачи, демонстрирующие справедливость теорем, а также изучающие случаи, выходящие за область применения этих утверждений.

Изученные материалы приведены в разделе "Список источников".

1 Аналитический обзор

1.1 Нормальные системы дифференциальных уравнений

Нормальной системой п дифференциальных уравнений первого порядка с неизвестными функциями $y_1(x), y_2(x), ..., y_n(x)$ называется система (1)

$$\begin{cases} y_1' = f_2(x, y_1, ..., y_n); \\ y_2' = f_2(x, y_1, ..., y_n); \\ \\ y_n' = f_n(x, y_1, ..., y_n); \end{cases}$$

где функции fi, i = 1,2, ... n, определены в некоторой (n+1)-мерной области D переменных x, y1, ..., yn.

Решением системы на интервале (a, b) называется совокупность n функций y1 = y1(x), y2=y2(x), ..., yn=yn(x), непрерывно дифференцируемых на (a, b) и удовлетворяющих системе.

Для удобства в дальнейшем будем записывать в векторном виде

$$y'(x) = f(x,y), \ \text{где} \ y(x) = (y1(x),\ y2(x),\ ...,\ yn(x))^T, \ y'(x) = (y1'(x),\ y2'(x),\ ...,\ yn'(x))^T, \ f(x,y) = (f1(x,y1,...,yn),\ ...,\ fn(x,y1,...,yn))^T$$

Пусть $y = (y1(x), y2(x), ..., yn(x))^T - решение системы на интервале (a,b).$ Графиком этого решения служит множество точек из D, определяемое равенством $G_v = \{x, y1(x), ..., yn(x) \mid x \ni (a,b)\}$. Множество G_v представляет собой параметрически заданную кривую параметра х Э (a,b) в (n+1)-мерной области переменных х, у1, ..., уп. Это кривая называется интегральной кривой системы (1). Решению $y = (y1(x), y2(x), ..., yn(x))^T$ показывает движение точки в nмерном пространстве переменных у1, у2, ..., уп. Это пространство называют оно называется фазовой плоскостью), а кривая, фазовым (при n= 2 описываемая нем движущейся точкой, -фазовой траекторией. Следовательно, фазовая траектория является проекцией интегральной кривой на п-мерное пространство переменных у1, у2, ..., уп. Фазовая траектория обладает таким свойством, что в момент времени х её составляющие скорости у1(х), ...

уп(х) равны значениям правых частей системы (1). 1.2 Метод исключений

Дифференциальное уравнение n-го порядка $y^{(n)} = f(x, y', y'', ..., y^{(n-1)})$ можно свести к системе дифференциальных уравнений. Положим y = y1, y' = y2,..., $y^{(n-1)} = yn$, $y^{(n)} = yn' = f(x,y1,y2, ..., yn)$. Т.о образом исходное уравнение эквивалентно нормальной системе дифференциальных уравнений. Решением такой системы будет вектор $y = (y(x), y'(x),..., y^{(n-1)}(x))$, где первая координатная функция y = y(x) является решением исходного дифференциального уравнения.

Выполнимой, но в определенных условиях, является и обратная задача. Пусть дана нормальная система дифференциальных уравнений вида (1). Дифференцируя по х получаем у1'' = F2(x,y1,...,yn) /* полноценно перенести выкладку*/ т.к. уі'=fi, I=1,2,...,n.

Продолжая этот процесс относительно у1' получим систему дифференциальных уравнений, в которой при определенных условиях можно выразить у1⁽ⁿ⁾ как функцию от $x, y', y'', ..., y^{(n-1)}$.

Преобразование нормальной системы п уравнений к дифференциальному уравненнию порядка п является основой метода исключений интегрирования систем дифференциальных уравнений.

2 НАЗВАНИЕ ГЛАВЫ

3 НАЗВАНИЕ ГЛАВЫ

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] Письменный, Д. Т. Конспект лекций по высшей математике : в 2 ч. Ч. 2 / Д. Т. Письменный. 10-е изд. М. : Айрис-пресс, 2014. 256 с. : ил.
- [2] Карпук, А. А. Высшая математика для технических университетов : дифференциальные уравнения / А. А. Карпук, В. Ф. Бондаренко, О. Ф. Борисенко. Минск : Харвест, 2010. 304 с.
- [3] Романко, В. К. Курс дифференциальных уравнений и вариационного исчисления: учебное пособие / В. К. Романко. 2-е изд. М.: Физматлит, 2001. 344 с.
- [4] Карташёв, А. П. Обыкновенные дифференциальные уравнения и основы вариационного исчисления : учебное пособие для вузов / А. П. Карташёв, Б. Л. Рождественский. 3-е изд., перераб. и доп. М. : Наука, 1986. 272 с. : ил.
- [5] Богданов Ю. С. Дифференциальные уравнения : учебное пособие для факультетов прикладной математики и механико-математических факультетов вузов / Ю. С. Богданов, Ю. Б. Сыроид. Минск : Вышэйшая школа, 1983. 239 с. : ил.
- [6] Понтрягин, Л. С. Обыкновенные дифференциальные уравнения : учебное пособие [доп. МО СССР] / Л. С. Понтрягин. 5-е изд. М. : Наука, 1982. 332 с.
- [7] Нефёдов Н. Н. Дифференциальные уравнения Задача Коши для нормальной системы ОДУ. ДУ n-го порядка [Электронный ресурс]. Режим доступа: https://www.youtube.com/watch?v=CSENh4N1rqQ&ab_channel=teach-in