Computer Architecture

Dr. RAJIB MALL

Professor

Department Of Computer Science & Engineering

IIT Kharagpur.

About Myself

· Name: RAJIB MALL

- B.E., M.E., Ph.D. from Indian Institute of Science, Bangalore
- Worked with Motorola (India)
 - Senior engineer and later project manager
- Shifted to IIT, Kharagpur in 1994
 - Currently Professor, CSE Dept.

Introduction

- In a first level architecture course --- we first study Von Neumann type of computers:
 - An instruction is fetched, analyzed, processed, next instruction fetched, analyzed, processed, and so on
- Ground reality now OfCourse is very different...
- Even the cheapest desktop/laptop/server is:
 - Multicore
 - Superscalar
 - Hyperthreaded
 - GPU
 - Speculative execution
 - etc... etc...

John Luis von Neumann³

Von Neumann Stored Program Computers: 1944

• In older days, "programming" involved flipping switches for every instruction.

- Memory stored only data.
- Around 1944, John von Neumann and others got the idea:
 - Encode instructions in a format that could be stored in memory just like data.
 - The processor would interpret and execute the instructions stored in the memory.
 - Fetch, decode, and execute cycle...

Grading

• Quizzes every 2 or 3 lectures (Best 75%): 100%

• Class Interactions --- 5%

Text Book

Decimal term	Abbreviation	Value	Binary term	Abbreviation	Value	% Larger
kilobyte	KB	10³	kibibyte	KiB	210	2%
megabyte	MB	10 ⁶	mebibyte	MiB	220	5%
gigabyte	GB	10 ⁹	gibibyte	GiB	230	7%
terabyte	TB	1012	tebibyte	TiB	240	10%
petabyte	PB	10 ¹⁵	pebibyte	PiB	250	13%
exabyte	EB	1018	exbibyte	EiB	260	15%
zettabyte	ZB	1021	zebibyte	ZiB	270	18%
yottabyte	YB	10 ²⁴	yobibyte	YïB	280	21%

The Computer Revolution

- Progress in computer technology
 - Captured by Moore's Law
- · Has made novel applications feasible
 - Computers in automobiles
 - Cell phones
 - Human genome project
 - World Wide Web
 - -6Search Engines, etc.

Classes of Computers

Personal computers

- General purpose, variety of applications
- Subject to cost/performance tradeoff

Servers

- Network based
- High storage, performance, reliability
- Range from small servers to building sized

Classes of Computers

Supercomputers

- High-end scientific and engineering calculations

- Highest capability but represent a small fraction of the overall completer market

Embedded computers

- Computer hidden as a part of a system
- Stringent power/performance/cost constraints

The PostPC Era

Moore's Law

- Computer performance increase over time is captured by Moore's Law (1965):
 - Number of transistors per square inch roughly doubles every eighteen months.
 - Later in 1975 he revised the time to 24 months
- · Moore's law is not exactly a law:
 - But, has held good for over 55 years.

Moore's Law

Gordon Moore (co-founder of Intel) predicted in 1965:

"Transistor density of minimum cost semiconductor chips would double roughly every 18 months."

Transistor density is correlated to processing speed.

Moore's Law: it has worked for a long time.

Trends Related to Moore's Law

Cont...

- · Processor performance:
 - Twice as fast after every 2 years (roughly).
- · Memory capacity:
 - Twice as much after every 18 months (roughly).

Interpreting Moore's Law

- Moore's law is not about just the density of transistors on a chip that can be achieved:
 - But about the density of transistors at which the cost per transistor is the lowest.
- As more transistors are made on a chip:
 - The cost to make each transistor reduces.
 - But the chance that the chip will not work due to a defect rises.
- Moore speculated 1965 that there is a transistor density or complexity:
 - At which "the minimum cost" is achieved.

Integrated Circuits: Costs

Final test yield: Fraction of packaged dies which pass the final testing state.

IC Manufacturing Process

· Yield: proportion of working dies per wafer

8" MIPS64 Wafer (564 Dies)

Drawing single-crystal Si ingot from furnace....

Then, slice into wafers and pattern it...

Integrated Circuits Costs

Final test yield: Fraction of packaged dies which pass the final testing stage

Die yield: Fraction of good dies on a wafer

Mask Layers: Each IC is manufactured with 10 -15 mask layers.

- •First half-dozen or so layers define transistors
- Other half-dozen or so define Interconnect

Number of Transistors in ICs

Processor Performance Improvements

Where From Have the Performance Improvements Come?

Technology

- More transistors per chip
- Faster logic

Processor Organization

- Effective and deep pipelines
- Parallel execution units

• Instruction Set Architecture

- Reduced Instruction Set Computers (RISC)
- Multimedia extensions
- Explicit parallelism

Compiler technology

- Finding more parallelism in code
- Greater levels of optimization

How Did Processor Performance Improve?

• Till 1980s, most performance improvements came from innovative manufacturing technologies: MAD A PRINTED IN 1980 A PRI

- VLSI
- Reduction in feature size
- Improvements due to innovating manufacturing technologies have slowed down since 1980s:
 - Smaller feature size gives rise to increased resistance, capacitance, propagation delays and leakage.
 - Larger power dissipation.

What is the power consumption of core i7 processor?

Roughly 100 watts when in use and 40 watts idle...

IC Power Consumption Trends

Power Consumption in a Processor

- Power=Dynamic power + Leakage power
- Dynamic power = Number of transistors x capacitance x voltage² x frequency
- Leakage power is rising and will soon match dynamic power.

	Pentium	P-Pro	P-II	P-III	P-4
Year	1993	95	97	99	2000
Transistors	3.1M	5.5M	7.5M	9. 5 M	42M
Clock Speed	60M	200M	300M	500M	1.5 <i>G</i>