Light Transport Techniques for Tensor Field Visualization

Sebastian Bek

Heidelberg University
Visual Computing Group (VCG)
Master's Thesis Presentation
Supervisors: Prof. Filip Sadlo, Dr. Susanne Krömker

18. Juli 2019

- Introduction
- 2 Fundamentals
- Method
- Results and Evaluation
- **6** Conclusion and Future Work

Outline

- Introduction
- 2 Fundamentals
- Method
- Results and Evaluation
- Conclusion and Future Work

Motivation

- visualization in general is needed to generate a more readable, explorable and intuitive representation
- tensor representations are needed to describe a directional distribution for each point in space, when:
 - e.g. for vector fields: to describe the directionally dependent spatial gradient called Jacobian-matrix,
 - e.g. for fluid and solid continuum mechanics: to describe a whole distribution of stresses
 - e.g. for DT-MRI: diffusion tensor magnetic resonance imaging: to describe the diffusion characteristics of water molecules within tissue

Objectives

 a light transport model (propagation scheme) following basic but crucial physical principles,

- application of this model for tensor field visualization interpreting tensors as light transmission properties,
- a FTLE (Finite-time Lyapunov exponents)-related approach called light transport gradient (LTG) for visualizing key structures, namely LCS (Lagrangian coherent structures) in 2D second-order tensor fields, and
- application of our approach to both synthetic and real data involving brain and heart datasets.

Related Work - Global Illumination Methods

- Discrete Ordinates Method: discretizes RTE in both spatial and angular domain
- Lattice-Boltzmann method: light propagation modeled as a diffusion process
- Light Propagation Volumes: light exchanged between neighboring cells and stored locally in capacities

Fig.: Light Propagation Volumes, Source: ①

Related Work - Symmetric Tensor Field Visualization

- Glyphs: represent anisotropy with shape and orientation
- Tensor Field Lines (TFLs): follow the eigenvector along tensor field lines
- Tensorlines: introduce artificial inertia on TFLs to increase stability
- HyperLIC: use Line Integral Convolution from Vector Field Visualization on TFLs
- FTLE: exploit the gradient of the flow map of TFLs to generate an FTLE field
- Scalar Measures: tensor magnitude, diffusivity, fractional anisotropy, anisotropy coefficients (measures)

Results and Evaluation

Related Work - Asymmetric Tensor Field Visualization

- Dual Eigenvectors:
- Pseudo Eigenvectors:
- Scalar Measures: tensor magnitude, tensor mode, isotropy index

Outline

- Introduction
- 2 Fundamentals
- Method
- Results and Evaluation
- **6** Conclusion and Future Work

Fundamentals

Important Terms

Results and Evaluation

prior (data) distribution : $p_{data} = p_z(z) \sim z$

generator function : $G(z, \theta_g)$ θ_g : generator parameters

discriminator function : $D(x, \theta_d)$ θ_d : discriminator parameters

whereas D(x) represents the propability that x is drawn from the training samples (prior data distribution) rather than p_{σ} .

Formal Definition

Two-Player Minimax (specific: zero-sum) game with value function V(G, D):

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_{z}(z)}[\log(1 - D(G(z))]$$

$$\Rightarrow \max_{G} V(D, G) = 0 \qquad \min_{G} V(D, G) = -\infty$$

outer loop: minimize V(D,G) for 1 step | inner loop: maximize V(D,G) for k steps

- \rightarrow prevents the network from overfitting the training data
- ightarrow stop when gradient of G is very small \Rightarrow slowly changing $(\ddot{G} \approx 0)$

Precautions

Introduction

Formal Definition

Results and Evaluation

Two-Player Minimax (specific: zero-sum) game with value function V(G, D):

$$\begin{split} \min_{D} \max_{G} V(D,G) &= \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_{z}(z)}[\log(1 - D(G(z))] \\ &\Rightarrow \max V(D,G) = 0 \qquad \quad \min V(D,G) = -\infty \end{split}$$

Caveat: Early Learning

- \rightarrow Gradients of G might be poor/vanishing:
- $\Rightarrow D$ can reject samples with high confidence (log(1 D(G(z))) saturates in this case)
- \Rightarrow instead of minimizing min log(1 D(G(z))), we can assign G to maximize $\log D(G(z)) \rightarrow \text{same fixed point of dynamics, but yields much stronger gradients}$

00000

Gradients

Discriminator Gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} [\log D(x^{(i)}) + \log(1 - D(x^{(i)}))]$$

Generator Gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m [\log(1 - D(x^{(i)}))]$$

- Introduction
- 2 Fundamentals
- Method
- Results and Evaluation
- Conclusion and Future Work

Architecture

Fig.: Visualization of Architecture (general/DCGAN), Source: (2)

Global Optimum

Global Optima

Discriminator Optimum:

$$D_{G}^{*}(\mathbf{x}) = rac{p_{data}(\mathbf{x})}{p_{data}(\mathbf{x}) + p_{g}(\mathbf{x})}$$

Generator Optimum:

$$p_g = p_{data} = p_z \Rightarrow D_G^*(\mathbf{x}) = \frac{p_{data}(\mathbf{x})}{p_{data}(\mathbf{x}) + p_{\sigma}(\mathbf{x})} = \frac{1}{2}$$

Convergence of the Algorithm

Adversarial Nets

Adversarial Nets represent a limited family of generative p_g distributions via the function $G(z, \theta_g)$ with p_g being indirectly optimized through optimization of θ_g . Lack of theoretical validity of multilayer perceptrons, but excellent performance in practice.

Fig.: Visualization of distributions/mapping $z \rightarrow x$, Source: (3)

- Introduction
- Pundamentals
- Method
- Results and Evaluation
- **6** Conclusion and Future Work

Training

Introduction

Datasets

- MNIST
- TFD: toronto face database

• CIFAR-10 [21]

Experiments

Test scenario: Estimation of propability of "test set data" under (behind) $p_g \to \text{fit a}$ Gaussian Parzen window to the samples generated with G and report the log-likelihood considering test data samples obtaining variance σ from cross-validation with the test dataset.

Model	MNIST	TFD
DBN [3]	138 ± 2	1909 ± 66
Stacked CAE [3]	121 ± 1.6	2110 ± 50
Deep GSN [3]	214 ± 1.1	1890 ± 29
GAN	225 ± 2	2057 ± 26

Tab.: Log-likelihood estimates of p_g

Sampling from the Model - 1

Fig.: Visualization of Samples from the model, Source: (3)

Sampling from the Model - 2

MNIST dataset

MNIST digits linearly interpolated to evaluate diversity of generative distribution p_g of GAN approach..

11115555557779911111

Fig.: Linearly interpolating digits in z-space of G after training, Source: (3)

Application in Biomedical Image Analysis

Application Example: Skin Lesion Segmentation

- Generator G: Fully (de-)convolutional neural network to synthesize (generate) valid segmentation masks
- Discriminator D: another convolutional neural network to distinguish synthetic (fake) from real masks

Skin lesions 101

Fig.: Segmented Skin Lesions, Source: 1

22 / 29

¹https://suprememedical.com/Product/skin-lesion-guide

Benefits and Drawbacks

Advantages and Disadvantages Advantages Disadvantages no need for Markov Chains (MCMCno explicit representation of $p_{\sigma}(x)$ approaches) • D needs to be sufficiently synchronized training through standard backpropagation with G (D must stay inline) • incorporation of wide variety of func-→ avoidance of Helyetica scenario: tions possible \rightarrow applicability G collapsing too many latent z's (e.g. • able to represent sharp, degenerate random variables) to the same sample x, distributions leading to insufficient generative diversity

Tab.: Advantages and Disadvantages of GANs

Outline

- Introduction
- 2 Fundamentals
- Method
- Results and Evaluation
- **6** Conclusion and Future Work

Results and Evaluation

Summary

- GANs: new framework for estimating generative models defined by multilayer perceptrons (Convolutional Layers) trained by standard backpropagation → no need for any Markov chains (MCMC-approaches), which can have problems Mixing (Converging)
- Results Samples considered to be competitive with those of the state-of-the-art generative models
- Empirical Evaluation (Fitting a Gaussian Parzen window to measure distribution similarity of p_g as log-likelihood metric) indicates comparable scores than achieved for state-of-the-art methods like DBNs, Stacked CAE, GSN, Adversarial nets and comparable validity/representativity

Conclusion

• approach is, besides DGMs (directed graphical models), the only one, inducing no problems or further elaborations for sampling (generating samples) or training \rightarrow rather simple implementation

- experiments show comparable similarities against state-of-the-art methods in log-likelhood score and variance in matching the prior distribution p_z with the generative one (p_g) , but the method proposed is regarded to be more simple than others
- the synchronization of D is yet an effortful factor, since sufficient reasoning for the number of steps of the inner loop is needed to avoid the previously named "Helvetica scenario"!
- future applications might involve the synthetic generation of morphologically correct segmentation masks of seperatable objects, fake images (databases), keys/passwords (cryptography), image processing

Outlook

Straighforward extensions:

- Conditional generative Model $p(\mathbf{x}|c)$ w. adding condition c
- Learned approximate inference: Predict prior-z w. given latent x
- **1** Modeling of multiple Conditionals: $p(\mathbf{x}_S|\mathbf{x}_S')$
- Semi-Supervised Learning: Better Performance w. partially labeled training data
- Efficiency improvements: Better methods to coordinate G and D, better distributions to sample z from during training

Questions?

Sources and further reading

Literature

- O Goodfellow, lan, et al. "Generative adversarial nets."
- Izadi, Saeed & Mirikharaji, Zahra & Kawahara, Jeremy & Hamarneh, Ghassan. Generative adversarial networks to segment skin lesions.

Images

- https://www.sevendaysvt.com/vermont/ some-counterfeiters-still-do-it-old-school/Content?oid=3276910
- https://www.altoros.com/blog/the-diversity-of-tensorflow-wrappers
 -gpus-generative-adversarial-networks-etc/ &
 https://medium.freecodecamp.org/an-intuitive-introduction-to-generative
 -adversarial-networks-gans-7a2264a81394
- Goodfellow, lan. et al. "Generative adversarial nets."