

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02215 - Estatística Geral 2 - 2020/1

Plano Aula 02

Markus Stein

Variáveis Aleatórias (v.a.) - (Capítulo 10, Livro Bussab e Morettin)

Qual a população em estudo?

Exemplo 1: X (PIB do Brasil), $X \in \mathbb{R}$, $X \sim Normal(\mu, \sigma^2)$. $E(X) = \mu$.

Exemplo 2: X (avaliação do governo, positiva ou negativa), $X \in \{0,1\}$, $X \sim Bernoulli(\pi)$. $E(X) = \pi$.

Exemplo 3: Y (consumo) e X (renda), $E(Y) = \alpha + \beta X$.

- População \Rightarrow parâmetros $(\mu, \sigma^2, \pi, ...)$
 - finita (censo) versus infinita (modelos = distribuições de probabilidade).
 - -X é uma v.a. de interesse, e assumiremos $X \sim f(x;\theta)$.
- Amostra \rightarrow estatísticas $(\overline{X}, S^2, p, ...)$
 - Toda a estatística é uma v.a.!!!

Amostragem - Como obter amostras?

Principais tipos de amostragem

- Probabilística versus não porbabilística;
- Com e sem reposição.

Amostra aleatória simples (a.a.s.) = v.a. idependentes e identicamente distribuídas (i.i.d.)

- sorteio aleatório × geração de números (pseudo) aleatórios;
 - tabela de números aleatórios(?)
- Importante!!! Daqui por diante supomos a.a.s. em todos os problemas(?).

Definição **A.A.S**: Seja X_1, X_2, \ldots, X_n uma a.a.s. de tamanho n de $X \sim f(x; \theta)$, então $X_1 \sim f(x; \theta)$, ..., $X_n \sim f(x; \theta)$ e X_i e X_j são independentes para todo $i \neq j$.

Qual o tamanho ideal de amostra?

Veremos critérios para calcular tamanhos de amostras ao longo da dsiciplina.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

 $\rm MAT02215$ - Estatística Geral 2 - 2020/1

Ler slides da aula 2			
Fazer exercícios lista 1-1	L		