Espaces euclidiens, formes bilinéaires et quadratiques

Les exercices ou les questions marqués d'une étoile ne sont pas prioritaires.

Norme Euclidienne

Dans ces exercices, les normes considérées sont des normes euclidiennes.

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien. Démontrer que deux vecteurs u et v de E qui satisfont ||u - v|| = ||u + v|| sont orthogonaux.

I dei: traver un relation (dans le cours) qui relie llutoll, blu-oll et (u,v) on utilise directement la formule de Polarisation.

 $\|u+v\|^2 - \|u-v\|^2 = \|y\|^2 + \|v\|^2 + 2 < u, \sigma >$ $-\|y\|^2 - \|v\|^2 + 2 < u, \sigma >$ = 4 < 4,0>

Ainsi: Kuzoll = lla-oll

Année 2020-2021

Soit u un vecteur d'un espace euclidien E. Déterminer l'ensemble $\{x\in$ Exercice 2. $E \mid \langle x, x - u \rangle = 0$. Indication: faire un dessin dans le cas $E = \mathbb{R}^2$.

I die: das R

on recoment le cerde : le lieu géauchique des solutions et le ce de de centre u et de rayon

que C = d x E (< x, x - n > = 0 }

Soit $x \in E$ ty $||x - \frac{u}{2}||^2 = ||\frac{u}{2}||^2$

$$\|x - \frac{u}{2}\|^2 = \|\frac{u}{2}\|^2$$

(a)
$$||x||^2 + ||x||^2 - 2 < \alpha, \frac{\pi}{2} > = ||x||^2$$

$$(=) \qquad \langle x, x \rangle - \langle x, u \rangle = 0$$

$$\langle x, x_- u \rangle = 0$$

Exercice 3. Soit E un espace vectoriel euclidien. On définit l'application : (Inversion)

$$i(u) = \begin{cases} \frac{u}{\|u\|^2} & \text{si } u \neq 0\\ 0 & \text{si } u = 0 \end{cases}$$

- 1. Montrer que i est une involution (i.e. i(i(u)) = u pour tout $u \in E \setminus \{0\}$) et déterminer les points fixes de i (i.e. les $u \in E$ tels que i(u) = u).
- 2. Vérifier que pour tout $u, v \in E \setminus \{0\}$ on a $||i(u) i(v)|| = \frac{||u v||}{||u|| ||v||}$.
- 3. On considère le cas où $E = \mathbb{R}^2$. Déterminer l'image par i:
 - (a) d'une droite qui passe par 0.
 - (b) d'un cercle passant par 0,
 - (c) d'une droite affine ne passant pas par 0,

revague: . i ensie le cade unité sur lui ven i envie la boule onerte united sur son complehentano , i envois le conflictaire de le bule met mitée su le bale aut uité.

1) Manter que ioi = id. (involution)

Nerague: dans \mathbb{R} : $n \mapsto j\frac{1}{n}$ si $x \neq 0$

n is n (idetité) est me involution

, das R. (x) - (x) mydine

 $a = i \circ i (0) = i (i (0)) = i (0) = 0$

 $\alpha \qquad i\left(i\left(a\right)\right) = i\left(\frac{a}{\|a\|^2}\right) = \frac{u/\|a\|^2}{\|a\|^2}$

 $= \frac{u/uu^2}{u^2/uuu^4} = u$

* Les part fixes de i: (le parts ty
$$u = i(\omega)$$
)

* $u = 0$ $\Rightarrow i(\omega) = 0$ et l'aignine est un pt fixe

* $u \neq 0$ $\Rightarrow i(\omega) = \frac{u}{|u|u^2} = u$

* $u \neq 0$ $\Rightarrow i(\omega) = \frac{u}{|u|u^2} = u$

* $u \neq 0$ $\Rightarrow \frac{|u|u^2}{|u|u^2} = u$

* $u \neq 0$ $\Rightarrow \frac{|u|u^2}{|u|u^2} = 0$

* $u \neq 0$ $\Rightarrow \frac{|u|u^2}{|u|u^2} = 0$

* $u \neq 0$ $\Rightarrow \frac{1}{|u|u^2} = 1$

* $u \neq 0$ $\Rightarrow \frac{1}{|u|u^2} = 1$

* $u \neq 0$ $\Rightarrow \frac{1}{|u|u^2} = 0$

* $u \neq 0$ $\Rightarrow 0$ $\Rightarrow 0$ $\Rightarrow 0$

and $\|i(u)-i(\sigma)\| < \|u-\sigma\|$

5. IINII, IIVII >1

contaction

3)
$$E = \mathbb{R}^{\nu}$$

- a) Sint $\varnothing = Vect du \gamma$ avec $u \in \mathbb{R}^2 \setminus \mathcal{L}(0) \gamma$. L'image $i(\varnothing)$ de \varnothing par i st \varnothing
 - [c] Sat $v \in i(\emptyset)$; il existe $u \in \emptyset$, tq $i(u) = \sigma$. Or v et u sent vlinéaie et $v \in \emptyset$.
 - [3] Soit $u \in \mathbb{R}$, als i(u) zor satisfact i(v) = i(i(u)) = u et par colivianté $u \in \mathfrak{C}(0X)$.

Etant donnée une Drate \emptyset , il existe un vector $n \in \mathbb{R}^2$ $\emptyset = \int n \in \mathbb{R}^2 \setminus (m, m-n) = 0$ (*)

on va montre que l'inage de & (donte affive) par i est u aude de dianète i(n).

D'apris l'exercice 2, n a:

$$C = \{ y \in \mathbb{R}^{2} \mid \|y - \frac{i(n)}{2}\| = \|\frac{i(n)}{2}\| \}$$

$$= \{ y \in \mathbb{R} \mid \langle i(n) - y, y \rangle = 0 \}$$

Sat $y = i(x) \in C$.

$$\frac{\sqrt{2}}{||x||^2} = \frac{\sqrt{2}}{||x||^2} = \frac{\sqrt{2}}{||x||^2} = \frac{\sqrt{2}}{||x||^2}$$

$$\frac{||x||^2}{||x||^2} = \frac{||x||^2}{||x||^2} \times \frac{||x||^2}{||x||^2} \times \frac{||x||^2}{||x||^2} = 0$$

$$\frac{ssi}{||xy|^2 ||m||^2} \left(\langle m, x_n \rangle \right) = 0 \quad (4)$$

$$ssi \quad \times \in \emptyset.$$

2 Formes quadratiques

Dans tous les exercices de cette partie, on précisera le signe (positif, négatif ou aucun des deux) de chaque forme quadratique.

Exercice 4. Mettre les formes quadratiques suivantes sous forme de sommes et de différences de carrés de formes linéaires indépendantes :

1. $q(x,y) = x^2 + y^2 - 3xy$

ni vécative:

- 2. $q(x, y, z) = 2x^2 2y^2 6z^2 + 3xy 4xz + 7yz$
- 3. q(x, y, z, t) = xy + yz + zt + tx

i)
$$q: \mathbb{R}^{\ell} \longrightarrow \mathbb{R}$$
 stue fore quodatique de matile $(\frac{x}{3}) \mapsto 1n^2 \cdot 15^2 - 3 \times 5$

$$M = (\frac{1}{3} - \frac{1}{3})$$

$$q(x,y) = \left[x^2 - \frac{1}{2} \times (\frac{3}{2}y) + (\frac{3}{2}y)^2\right] - \frac{5}{4}y^2 + y^2$$

$$= \left[x - \frac{3}{2}y\right]^2 - \left[\frac{15}{2}y\right]^2$$

on pose $\ell_1(\frac{x}{3}) = x - \frac{3}{2}y = \langle (\frac{x}{3}), (\frac{1}{2}y) \rangle \Rightarrow u_1 = \langle \frac{1}{2}y \rangle$

$$\ell_2(\frac{x}{3}) = \frac{\sqrt{5}}{2}y = \langle (\frac{x}{3}), (\frac{5}{2}y) \rangle \Rightarrow u_2 = \langle \frac{5}{2}y \rangle$$
on a be u_1 if u_2 qui facet we faille libre (liebaent independent).

Here la autation du coux $(c_1t) = (1,1)$ et quist ui positive

$$q(n_1g,2) = 2\left[n^2 + \frac{2}{2}n\left(\frac{3}{2}y - 2z\right)\right] - 2g^2 - 6z^2 + 7yz$$

$$= 2\left[n + \frac{3}{4}y - z\right]^2 - \frac{1}{2}\left(\frac{3}{2}y - 2z\right)^2 - 2y^2 - 6z^2 + 7yz$$

$$q'(y,t) = -\frac{25}{8}y^{2} - 8z^{2} + 10yz$$

$$= -\frac{25}{8} \left[y^{2} + 1y \left(-\frac{40}{25}z \right) \right] - 8z^{2}$$

$$= -\frac{25}{8} \left[y - \frac{8}{5}z \right]^{2} + \frac{25}{8} \times \frac{8^{2}}{5^{2}}z^{2} - 8z^{2}$$

$$= -\frac{27}{8} \left[y - \frac{8}{5}z \right]^{2}$$

$$q(x,y,z) = 2(x+\frac{3}{4}y-z)^2-\frac{25}{8}(y-\frac{8}{5}z)^2$$

et la souffit de 2 itapes par écir le faire quad que some de caries de fores liciones i dépendents.

La rigreture de 9 est (1,1). 9 n'est ni pos ni reg.

Déterminer si les formes quadratiques suivantes sont sous forme de sommes et de différences de carrés de formes linéaires indépendantes (sinon les y mettre) :

1.
$$q(x,y) = 9\left(\frac{x+2y}{2}\right)^2 + \left(\frac{x-3y}{2}\right)^2$$

2.
$$q(x,y,z) = (x-6y+4z)^2 - (y-4z)^2 + 2z^2$$

3.
$$q(x,y) = (x+y)^2 - (x-y)^2 + x^2 + 2y^2$$

3.
$$q(x,y) = (x+y)^2 - (x-y)^2 + x^2 + 2y^2$$

4. $q(x,y,z) = (x+y+z)^2 + (-x+y+z)^2 - x^2$

 $1) \quad q(x,y) = 3\left(\frac{\pi}{2} + y\right)^2 + \left(\frac{\pi}{2} - \frac{3}{2}y\right)^2$

) A faire et vette son for de ceré de fre livier indépendate

$$\begin{array}{ll}
m & pote \\
\ell_1 & (n, y) = \frac{\pi}{2} + y = \langle \begin{pmatrix} 1/2 \\ 1 \end{pmatrix}, \begin{pmatrix} 2/3 \\ 3 \end{pmatrix} \rangle & u_1 = \begin{pmatrix} 1/2 \\ 1 \end{pmatrix} \\
\ell_2 & (-3/2) = \frac{\pi}{2} - \frac{3}{2}y = \langle \begin{pmatrix} 1/2 \\ -3/2 \end{pmatrix}, \begin{pmatrix} 2/3 \\ 3/2 \end{pmatrix} \rangle & u_2 = \begin{pmatrix} 1/2 \\ -3/2 \end{pmatrix}
\end{array}$$

det $\binom{1/2}{1-36} \neq 0$. les vecteurs u_7 et u_2 sont libres et q

est be son face de some / diff de caris de fons livinie indipe . Mete.

Ainsi la signature de 9 (2,0) et

2)
$$q(n_1y_1z) = (n_16y_14z)^2 - (y_14z) + 2(z)^2$$

$$w_1 = \begin{pmatrix} 1 \\ -4 \end{pmatrix} \qquad \qquad u_2 = \begin{pmatrix} 0 \\ 1 \\ -4 \end{pmatrix}$$

 $u_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

u,,uz,uz favent me base de R3 et sot bie sons faire de some / diff de carés de fours livines indipe . Mete.

Signature de q est (2,1). 9 n'est mi par mi

3) La décomposition compette 4 tens le conés de fanc linéair. Or q: R' > R, lo 4 fancs liéair out due vécessaience t l'évo

Ainsi, il fant déveloper l'expression le q et expliquer l'algo de Gauss:

$$q(x,y) = (x+y)^{2} - (x-y)^{2} + x^{2} + 2y^{2}$$

$$= x^{2} + 4xy + 2y^{2}$$

$$= t(x+2y)^{2} - 2y^{2} = t(2+2y)^{2} - (52y)^{2}$$

les faire sur li livaent i dépendente det (d 1 0) +0. For motivielle: $q(x,y) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 1 & 2 & x \\ 2 & 2 & y \end{pmatrix}$

$$q(x,y) = \begin{pmatrix} x & y \end{pmatrix} \quad \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

$$= \begin{pmatrix} n & y \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} n & y \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 52 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 52 \end{pmatrix} \begin{pmatrix} 3 \\ 0 & 52 \end{pmatrix}$$

$$= \begin{pmatrix} a & y \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 52 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 52 \end{pmatrix}$$

$$= \begin{pmatrix} a & y \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 52 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 52 \end{pmatrix}$$

$$= \begin{pmatrix} a & y \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 52 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 52 \end{pmatrix}$$

$$= \begin{pmatrix} a & y \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 52 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 52 \end{pmatrix}$$

$$= \begin{pmatrix} a & y \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 52 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 52 \end{pmatrix}$$

$$= \begin{pmatrix} a & y \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 52 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 52 \end{pmatrix}$$

$$= \begin{pmatrix} a & y \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 52 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 52 \end{pmatrix}$$

$$= \begin{pmatrix} a & y \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 52 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 52 \end{pmatrix}$$

$$= \begin{pmatrix} a & y \\ 0 & -1 \end{pmatrix} \begin{pmatrix}$$

4) Attention, qu'est pos sons faire de camies de faire lineaire indépendante...

En effet, $u_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $u_3 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ sat $u_4 = 2u_3 + u_4$

Il faut dévelige: et aplique l'algo de Gauss:

$$g(n,y,z) = \lambda (y+z)^2 + x^2$$

- 9 est his printive (ie + (3/ER3 9(2,5 x) >20).
- · 9 n'st ps définée! 9 (0,1,-1) = 0

Déterminer si les formes quadratiques suivantes sont définies et positives

- 1. $q(x,y) = (1 \lambda)x^2 + 2\mu xy + (1 + \lambda)y^2$ où $\lambda, \mu \in \mathbb{R}$,
- 2. $q(x, y, z) = x^2 + y^2 + 2z(x\cos\alpha + y\sin\alpha)$ où $\alpha \in \mathbb{R}$.

Hint: utilise Syrster!

1) 9: R2 -> R

$$q(x,y) = (1-1)x^{2} + 2\mu xy + (1+1)y^{2}$$

$$= (x y) {\binom{1-1}{\mu} \binom{\mu}{5}} {\binom{k}{5}}$$

le ontère de Sylverte

et

$$\Delta_2 = \det D = (1-1)(1+1) - \mu^2$$

$$= 1 - 1^2 - \mu^2$$

q at def. pos

soi \$ >0 it \$, >0

55 1.1 >0 et 1. (14 pc) >0

500 171 et (1+1) < 1

(1'+ p') < 1 (le vert on le dosin)

Exercice 7. (Décomposition dans différentes bases) Soit la forme quadratique $q(x_1, x_2) = 3(x_1^2 + x_2^2) + 2x_1x_2$ définie pour tout $(x_1, x_2) \in \mathbb{R}^2$. On note A la matrice de q dans la base canonique.

- 1. Vérifier que $a = (1,1)\frac{1}{\sqrt{2}}$ et $b = (1,-1)\frac{1}{\sqrt{2}}$ sont des vecteurs propres de A et qu'ils forment une base orthonormale de \mathbb{R}^2 . Écrire alors q sous forme de sommes et de différences de carrés de formes linéaires indépendantes.
- 2. En utilisant l'algorithme de Gauss : mettre q sous forme de sommes et de différences de carrés de formes linéaires indépendantes et écrire cette décomposition sous forme matricielle
- 3. En utilisant les deux questions précédentes, trouver d'autres représentations en sommes et différences de carrés de formes linéaires indépendantes.

$$q: \mathbb{R}^{2} \longrightarrow \mathbb{R}$$

$$q\binom{n_{1}}{n_{2}} = 3n_{1}^{2} + 3n_{2}^{2} + 2n_{3}n_{2}$$

$$= \binom{n_{1}}{n_{2}} \binom{3}{1} \binom{n_{3}}{n_{2}}$$

$$= \binom{n_{1}}{n_{2}} \binom{n_{3}}{n_{3}} \binom{n_{3}}{n_{2}}$$

$$Aa = \frac{1}{\sqrt{3}} {31 \choose 13} {11 \choose 1} = 4a \quad \text{if} \quad Ab = 2b$$

De plus an a
$$||a|| = ||b|| = 1$$
 et $(a, b) = \frac{1}{2}(11)(\frac{1}{-1}) = 0$

le vecteur a et 6 fauent une base orthonoire, posons alon

$$Q = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} = Q^{t}$$

on a
$$QQ^{\dagger} = QQ = Q^{\dagger}Q = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} -\alpha - \\ -b - \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a^{\dagger}a & a^{\dagger}b \\ a & b^{\dagger}b \end{pmatrix} = \begin{pmatrix} 11ab^{\dagger} & (a_{1}b) \\ (b_{1}a) & (b_{2}a) \end{pmatrix}$$

on part de diagonalises A:

$$A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$= Q \qquad \left(\begin{array}{cc} 4 & 0 \\ 0 & 2 \end{array}\right) \quad Q \in$$

ent dit:

$$q(x,y) = \frac{1}{2} \left[4(x+y)^2 + 2(x-y)^2 \right]$$

 $= 2(x+y)^2 + (x-y)^2$

En résuer, diagnaliser le native A, perst d'écri le force quand q come cerni de fore livinie indépendants.

e) on utilise la décemposition de Gausses

A faire
$$q(x,y) = \frac{3(x+\frac{4}{3})^2 + \frac{8}{3}y^2}{3}$$

Aiusi
$$A = \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} \sqrt{3} & 0 \\ \sqrt{5} & 2\sqrt{2} \\ \sqrt{5} & \sqrt{3} \end{pmatrix} \qquad \boxed{5} \begin{pmatrix} \sqrt{3} & \sqrt{5} \\ \sqrt{5} & \sqrt{5} \\ \sqrt{5} & \sqrt{5} \end{pmatrix}$$

$$= \begin{pmatrix} \sqrt{5} & 0 \\ \sqrt{5} & \sqrt{5} \\ \sqrt{5} & \sqrt{5} \end{pmatrix} \qquad \boxed{1} \quad 0 \qquad 2\sqrt{5} \qquad \boxed{1} \qquad 0$$

$$P = \begin{pmatrix} \sqrt{5} & 0 \\ \sqrt{5} & \sqrt{5} \\ \sqrt{5} &$$

Décomposition de Ganss, peret d'ém la notice A comme le podent de matrices transplaise (inferieur et sequieur) On pale de décomposition LU (L= lower U= yler).

$$A = P I d P^{\epsilon}$$

$$\Rightarrow A = P Q Q^{\epsilon} P^{\epsilon}$$

$$\Rightarrow A = P Q (P Q)^{t}$$

Avec
$$PQ = \begin{pmatrix} \sqrt{3} & 0 \\ \sqrt{3}/2 & 2\sqrt{2} \end{pmatrix}$$

$$= \begin{pmatrix} \sqrt{3} & \sqrt{3} \\ 1 & -1 \end{pmatrix} \frac{1}{\sqrt{2}}$$

$$= \begin{pmatrix} \sqrt{3} & \sqrt{3} \\ 1 & 2\sqrt{2} \end{pmatrix} \frac{1}{\sqrt{3}}$$

Et an peut veifier

$$q(x,y) = (x y) A (x) = (x y) PQ (PQ)^{e} (x)$$

$$= [(x y) PQ] [(x y) PQ]^{e}$$

$$= \frac{1}{2} \left(\sqrt{3} n + \frac{1 + 2\sqrt{2}}{\sqrt{3}} y \right)^{2} + \frac{1}{2} \left(\sqrt{3} n + \frac{1 - 2\sqrt{2}}{\sqrt{3}} y \right)^{2}$$

I du: on peut créen de venoclés décayestias en source de cavées de faire lucaies indépandantes à partir des + algo de décaujosition matricialle.

Exercice 8.* Soit ϕ la forme bilinéaire symétrique sur \mathbb{R}^3 définie par

$$\phi(x,y) = (x_1 - 2x_2)(y_1 - 2y_2) + x_2y_2 + (x_2 + x_3)(y_2 + y_3)$$

- 1. Vérifier que ϕ est un produit scalaire sur \mathbb{R}^3 et on note $\|\cdot\|$ la norme associée.
- 2. Soit i = (1, 0, 0), j = (0, 1, 0) et k = (0, 0, 1). Calculer

$$e_1 = \frac{i}{\|i\|}, \quad e_2 = \frac{j - \phi(e_1, j)e_1}{\|j - \phi(e_1, j)e_1\|}, \quad e_3 = \frac{k - \phi(e_1, k)e_1 - \phi(e_2, k)e_2}{\|k - \phi(e_1, k)e_1 - \phi(e_2, k)e_2\|}$$

- 3. Vérifier que (e_1, e_2, e_3) est une base orthonormale pour ϕ .
- 4. Déterminer (sans calcul) la matrice de ϕ dans la base (e_1, e_2, e_3) .

3 Pour aller plus loin

Exercice 9.* Soit $n \in \mathbb{N}$ et n > 2. La forme bilinéaire dont la matrice est

$$A = \frac{1}{2} \begin{pmatrix} 2(n-1) & -1 & \cdots & -1 \\ -1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & -1 \\ -1 & \cdots & -1 & 2(n-1) \end{pmatrix}$$

est-elle positive? définie?

Exercice 10.* (Identité du parallélogramme) Soit E un \mathbb{R} espace vectoriel de dimension finie. Soit $\|\cdot\|$ une norme sur E vérifiant l'identité du parallèlogramme, c'est-à-dire :

$$\forall (u, v) \in E^2, \ \|u + v\|^2 + \|u - v\|^2 = 2(\|u\|^2 + \|v\|^2).$$

On se propose de démontrer qu'une telle norme $\|\cdot\|$ est associée à un produit scalaire. On définit sur E^2 une application f par :

$$\forall (u, v) \in E^2, \ f(u, v) = \frac{1}{4}(\|u + v\|^2 - \|u - v\|^2).$$

- 1. Montrer que pour tout (u, v, w) de E^3 , on a : f(u + w, v) + f(u w, v) = 2f(u, v).
- 2. Montrer que pour tout (u, v) de E^2 , on a : f(2u, v) = 2f(u, v). 3. Montrer que pour tout (u, v) de E^2 et tout rationnel r, on a : f(ru, v) = rf(u, v). On admettra que pour tout réel λ et tout (u,v) de E^2 on a : $f(\lambda u,v) = \lambda f(u,v)$ (ce résultat provient de la continuité de f).
- 4. Montrer que pour tout (u, v, w) de E^3 , f(u, w) + f(v, w) = f(u + v, w).
- 5. Montrer que f est bilinéaire.
- 6. Montrer que $\|\cdot\|$ est une norme euclidienne.