

Universidade Federal do Rio Grande do Norte Centro de Tecnologia Departamento de Engenharia Elétrica ELE0519 - Laboratório de Circuitos Eletrônicos - 2019.2 Componentes: Bruno Matias e Levy Gabriel

Experimento: Gerador de onda triangular

1 Introdução

O presente relatório visa detalhar o experimento laboratorial realizado na disciplina laboratório de circuitos eletrônicos no dia 29 de outubro de 2019 no qual o assunto abordado é sobre gerador de onda triangular, que também é capaz de gerar uma onda quadrada em uma de suas saídas, valendo-se do uso de amplificadores operacionais (AMPOPS), mais especificamente os do circuito integrado (CI) LF353.

A prática possui o objetivo de identificar como as saídas se comportam e interagem entre si, bem como medir os valores de amplitude e frequência das ondas geradas e observar como eles se alteram ao alterar alguns dos componentes do circuito. O circuito a ser montado está apresentado na figura 1.

Figura 1: Gerador de onda quadrada e triangular $(R_1 = 12k\Omega, R_2 = R_3 = 8.2kK\Omega, R_4 = 560\Omega, C = 22nF)$.

Como circuitos geradores não possuem entradas para sinais externos, foi utilizada

apenas a fonte DC para alimentação dos circuitos integrados. O osciloscópio foi utilizado para comparar as formas de onda das saídas V_{o1} e V_{o2} .

2 Análise Teórica

Para analisar o circuito da figura 1 é necessário dividir a análise em duas partes. Primeiro analisando a saída do comparador não-inversor com histerese constituído pelo AMPOP A e depois a saída do circuito integrador ideal formado pelo AMPOP B.

2.1 Análise do comparador

A saída V_{oA} do AMPOP A só pode assumir os valores de saturação de $\pm 10V$. Porém a saída do comparador é obtida em V_{o1} , de forma que assumirá valores de acordo com os diodos Zeners ligados a esse nó, de forma que:

$$V_{o1} = \begin{cases} +3.4V, & V_{oA} = +10V \\ -3.4V, & V_{oA} = -10V \end{cases}$$
 (1)

Assim, para realizar a análise do comparador são necessárias as tensões V_A^+ e V_A^- . Elas podem ser equacionadas em 2 e 3.

$$V_A^+ = V_{o1} + (V_{o2} - V_{o1}) \times \frac{R_1}{R_1 + R_3}$$
 (2)

$$V_A^- = 0 (3)$$

Considerando a entrada do comparador como a saída V_{o2} do integrador, realiza-se as seguintes análise para obter a curva de transferência do comparador não-inversor.

 \bullet Para o caso $V_{o1} = 3.4 V,$ logo $V_A^+ < V_A^-$

$$V_{o2} < 2.32V$$
 (4)

• Para o caso $V_{o1} = -3.4V$, logo $V_A^+ < V_A^-$

$$V_{o2} > -2.32V (5)$$

Com esses valores, obtém-se a característica de transferência (CT) da figura 2.

Figura 2: Característica de transferência para o comparador não-inversor com histerese.

2.2 Análise do integrador

O integrador montado com o AMPOP B é ideal e possui uma saída que pode ser encontrada pela equação 6.

$$V_{o2} = -\frac{1}{R_2 C} \int V_{o1} dt \tag{6}$$

Como V_{o1} só pode assumir um valor constante (positivo ou negativo) para certo intervalo de tempo, a equação 6 pode ser desenvolvida fazendo-se a integração, obtendo-se a equação 7

$$V_{o2} = -\frac{V_{o1}}{R_2 C} \times t = m \times t \tag{7}$$

O coeficiente angular da função 7 indicará a inclinação da onda triangular gerada em V_{o2} . Esse coeficiente assumirá dois valores, dependendo do valor de V_{o1} , assim encontrando a relação obtida em 8.

$$m = -\frac{V_{o1}}{R_2 C} = \begin{cases} -18847 V s^{-1}, & V_{o1} = +3.4 V \\ 18847 V s^{-1}, & V_{o1} = -3.4 V \end{cases}$$
 (8)

2.3 Análise completa

Após obtida a CT do comparador não-inversor com histerese e o coeficiente angular da onda triangular obtida na saída, torna-se possível analisar as formas de onda, sendo uma onda quadrada em V_{o1} e uma triangular em V_{o2} , determinando a amplitude de cada uma, bem como a frequência.

A figura 3 mostra as formas de onda com as amplitudes que podem ser obtidas pela CT do comparador. Os limites verticais da CT indica os valores de amplitude que a onda quadrada possui, uma vez que ela é obtida na saída do comparador. Já a amplitude da onda triangular é definida pelos limites horizontais da CT, uma vez que esses valores são controlados pela saída do comparador.

Figura 3: Formas de onda triangular e quadrada obtidas no circuito.

Porém ainda fica a definir a frequência dos sinais, que pode ser facilmente encontrada com base no período da onda triangular e suas inclinações, que podem ser encontradas pela equação 8.

No primeiro semi-ciclo correspondente a T_1 o coeficiente angular é negativo, e no semiciclo correspondente a T_2 o coeficiente angular é positivo, assim, por meio da equação da reta em 9 pode-se obter ambos os valores, que somados geram o período total de ambas as ondas e quando invertidos indicam a frequência das ondas geradas.

$$\frac{\Delta V}{\Delta t} = m \tag{9}$$

• Para T_1

$$\frac{-2.32 - 2.32}{T_1} = -18847$$

$$T_1 = 0.2461ms \tag{10}$$

• Para T_2

$$\frac{2.32 - (-2.32)}{T_2} = 18847$$

$$T_2 = 0.2461ms \tag{11}$$

Com os valores obtidos nas equações 10 e 11, pode-se definir a frequência das ondas pela equação 12.

$$f = \frac{1}{T_1 + T_2} = 2032.52Hz \tag{12}$$

3 Resultados e discussão

Para encontrar todos os resultados necessários para comprovar a teoria, a prática foi dividida em algumas etapas, sendo elas:

- Com apoio do aporte teórico realizado durante a prática, foi montado o circuito da figura 1, e medidos os parâmetros de cada onda nos pontos V_{o1} e V_{o2} ;
- Após isso foi substituído a resistência R_3 de $8.2 \times 10^3 \Omega$, por um resistor de $4.7 \times 10^3 \Omega$ em série com um potenciômetro de $50 \times 10^3 \Omega$, verificando e discutindo os resultados encontrados.
- Por fim, foi devolvido o valor padrão de $8.2 \times 10^3 \Omega$ a R_3 e agora foi colocado o potenciômetro em série com R_2 , anotando e discutindo os resultados observados.

Antes dos circuitos serem montados, os diodos zeners foram testados separadamente para garantir que não estejam funcionando na região de ruptura. Só assim foi montado o circuito da figura 1.

Não foi possível a utilização do potenciômetro de $10 \times 10^3~\Omega$, pois o mesmo não havia em laboratório no momento da realização da prática, foi substituído por um potenciômetro por um de $50 \times 10^3~\Omega$.

Com a utilização do osciloscópio foram verificadas as formas de onda de V_{o1} e V_{o2} , espera-se que em V_{o1} seja uma onda quadrada, e que sua amplitude fique em torno de $\pm 3.4V$. Já espera-se que em V_{o2} seja uma onda triangular já que vamos integrar a saída quadrada de circuito comparador com histerese, e sua amplitude seja em torno de $\pm 2.32V$. A sua frequência gira em torno de 2.02 kHz

Figura 4: Formas de onda de V_{o1} (CH1) e V_{o2} (CH2) do gerador de onda triangular.

Podemos notar que pelos resultados encontrados acima, e considerando os erros associados a parte prática. Condizem bastante com o descrito na parte teórica.

Substituindo a resistência fixa de $8.2 \times 10^3~\Omega$, por uma resistência de $4.7 \times 10^3~\Omega$ em série com um potenciômetro de $50 \times 10^3~\Omega$, obtemos uma comparação máxima e mínima, de acordo com os valores máximo e mínimos do potenciômetro. O que é observado nas figuras abaixo.

Figura 5: Formas de ondas para V_{o1} e V_{o2} variando-se o novo R_3 .

Podemos perceber que ao variar o potenciômetro, muda-se a frequência e amplitude

da onda de forma proporcional de modo que a inclinação da onda triangular é sempre a mesma de forma que em todos os casos observados é possível observar esse efeito. Isso só é possível devido se mudarmos o valor da resistência R_3 iremos modificar o valor da amplitude da tensão V_{o2} , consequentemente, o valor da frequência de oscilação do sinal.

Já na configuração em que colocamos um potenciômetro de $50 \times 10^3~\Omega$ em série com R_2 , mantendo $R_3 = 8.2 \times 10^3~\Omega$, de modo a obter uma comparação máxima e mínima, de acordo com os valores máximo e mínimos do potenciômetro. Podemos observar essas mudação nas figuras a seguir.

Figura 6: Formas de ondas para V_{o1} e V_{o2} variando-se o novo R_2 .

Nota-se que ao variar o valor da resistência R_2 com o potenciômetro, vamos modificar o valor da inclinação da onda triangular V_{o2} , somente o valor da frequência de oscilação do sinal mudará, ou seja, o período da onda quadrada mudará, mas amplitude, tanto da onda quadrada quanto da triangular, não mudarão, como esperado na analise teórica.

4 Conclusões

A prática permitiu compreender o circuito gerador de onda triangular, uma categoria de circuitos geradores utilizando amplificadores operacionais, de modo a gerar uma onda triangular a partir de um circuito comparador não-inversor com histerese em cascata com um circuito integrador.

Podemos notar que os resultados obtidos na prática, no geral, estão de acordo com o que foi previsto na análise teórica, além de possibilitar a geração de uma onda quadrada na saída do comparador. Portanto, mesmo com as dificuldades impostas na análise teórica,

a prática permitiu-nos relacionar os conceitos aprendidos em sala com que realmente acontece em laboratório.

5 Anexos

Figura 7: Folha de cálculos da prática.