B1班 情報通信プロジェクト実験マルチメディア情報検索 16173009林田和磨 16173064伊藤光太郎 18273002 平尾礼央 18273003 伊藤広樹

実験目的 背景

「誰の顔が一番芸能人に似ているか?」という疑問や、「顔をパスワードとして利用したい」といった要求に答えるシステムを開発する。代表的なパター ン識別手法を学びながら、高速で認識率の良いアルゴリズムを作成する。本実験では、与えられた20人×10枚の画像から、入力された画像がどの人物であ るかを分類するシステムを開発する。

『情報プロジェクト:マルチメディア情報検索』配布資料より抜粋

システムの概要

前処理

顔のトリミングとサイズの統一化

- 背景による誤識別を防止
- 比較のため、ピクセル数を合わせる

輝度値の調整

- 部屋の明るさによる誤識別を防止
- 明るい画像は暗くなる
- 暗い画像は明るくなる

特徵抽出

顔の部位検出

- 眉、目、鼻、口、顎の輪郭を検出
- それぞれの距離と大きさを特徴量とした。

2次元離散コサイン変換(DCT)

- Canny法で顔の輪郭を検出
- DCTの低周波成分抽出

HOG特徴量

ピクセル単位の勾配を抽出

識別部

単純マッチング

• 特徴量(またはピクセル)を単純比較 し、最も距離が近いものに分類

K最近傍法(knn)

• 入力データと距離が近いk個の 多数決で分類する

部分空間法 入力ベクトル

入力画像と類似度が最も高いクラス

ニューラルネットワーク

• 特徴量を入力し、中間層で特徴の 重みを学習させ、分類結果を出力 する

畳み込みニューラルネットワーク

画像を入力データとし、畳み込み層、 プーリング層、全結合層に分けて画像 の特徴を抽出、学習をし、分類を行う

LightGBM

- ・ 複数の決定木を学習し、合成する 勾配ブースティング手法の一つ
- 決定木を用いて分類を行う

実験結果

に分類する

	ピクセル マッチング	単純 マッチング	K-NN(5)	部分空間法	Neural Network	CNN	LightGBM
各部位の 大きさと位置	1	53.44	48.28	43.1	50	1	39.66
Cannyあり DCT15	53.44	82.76	74.14	67.24	72.41	65.52	48.28
Cannyなし DCT15		51.72	44.83	50	56.9		50
HOG8		72.41	68.97	41.38	62.07		43.1
HOG16		75.86	75.86	62.07	70.69		48.28

- DCT結果を用いた単純マッチングの正答率が82.76%で最も高くなった。
- 次にHOG特徴量を用いた単純マッチング、K-NN、NNのような順番になった。
- この結果からDCTの低周波成分を特徴量とする手法とHOG特徴量が有効であること が分かった。
- また、部分空間法やCNN、LightGBMが有効ではなかった理由として、学習データ が少なく、十分に汎化できなかったためであると考えられる。

未登録画像の処理

実際の顔認識システムでは、分類だけでなく、データベースに無い顔画像が入力 された場合、未登録の人物として除外(リジェクト)する必要がある。今回開発した システムでは、データベースの画像との一致度が閾値未満であれば除外するとい う処理を適用した。確実にリジェクトを確実に成功させるためには、正しい結果 のものも除外しなければならなかった。上記の正答率が最も高かった手法でリ ジェクトを確実に成功させた時の正答率は50%程度であった。

GUI

- PyQtを用いてGUIを作成
- 各手法について、GUIを用いて検証できる
- 入力するcsvファイルは特徴量と解を記入
- 正答率を計算し、表示

まとめ

- 正答率:最も正答率が高い手法で82.76%を達成
- 除外処理:全ての未登録画像を除外した場合、正答率50%を達成
- GUI: 検証に利用できるGUIを作成