Fuzzy Model Reference Learning Control

ME 697Y

Andrew Manion

4/2/24

Linear Motion Control

- High-speed and high-accuracy required for modern mechanical systems like machine tools
- Can be realized using direct drive linear motors
- Challenge: uncertainties and nonlinearities have a significant effect on the load, making control difficult
- In literature, advanced control techniques like MRAC, H_{∞} , disturbance observer have been applied

Linear motor - linearmotiontips.com

Modeling

Simplified model of iron-core linear motor:

$$M_e \ddot{y} = u - B \dot{y} - F_{sc}(\dot{y}) - F_{cog}(y) + d(t)$$

Parameter uncertainty:

$$\begin{aligned} M_e &\in (0.025, 0.085), \\ B &\in (0.1, 0.35), \\ A_{sc} &\in (0.1, 0.15), \\ A_{cog1} &\in (0.01, 0.05), \\ A_{cog3} &\in (0.01, 0.05) \end{aligned}$$

where

y - position of the linear motor,

 M_e - equivalent inertia of linear motor plus load

u – control voltage applied to the driver

B – lumped viscous damping friction force

$$F_{sc}(\dot{y})$$
 - Coulomb friction
 $F_{sc}(\dot{y}) = A_{sc} \operatorname{sat}(k_f \dot{y})$

 $F_{cog}(y)$ – magnetic cogging force

$$F_{cog}(y) = A_{cog1} \sin\left(\frac{2\pi}{P}y\right) + A_{cog3} \sin\left(\frac{6\pi}{P}y\right)$$

d(t) - external disturbance forces

PID control of linear motor, d(t) = 0

 $K_p = 100, K_i = 10, K_d = 1$

PID control of linear motor, $d(t) = 1 + (-1)^{round(10sin(2t))}$

 $K_p = 100, K_i = 10, K_d = 1$

Model reference adaptive control (MRAC)

- MIT Rule
 - Adjust parameters such that the loss function

$$J(\theta) = \frac{1}{2}e^2, e = y - y_m$$
 is reduced.

- Requires parameter estimation (indirect)
 - $\dot{\theta} = -\Gamma \varphi e$
- $u = u_a + u_s$
 - u_a is model compensation
 - $lacktriangledown u_s$ is stabilizing feedback

Reference model: $2^{\rm nd}$ order system with $\omega_n=15$ and $\zeta=1$

MRAC, linear motor

MRAC, parameter set 2, $d(t) = 1 + (-1)^{round \left(10 sin(2t)\right)}$

Fuzzy model reference learning control (FMRLC)

- Fuzzy controller
- Fuzzy inverse model
 - Characterizes how to change the plant inputs to force the plant output to be as close as possible to reference model
 - Inputs are $y_e(kT)$ and $y_c(kT)$
 - Normalizing scaling factors: g_{ye}, g_{yc}, g_p
- $u(kT) = \underline{u}(kT) + p(kT)$
 - p(kT) from fuzzy inverse model shifts control action
 <u>u</u>(kT)from fuzzy controller alone

FMRLC architecture,

Layne, Jeffery R. and Passino, Kevin M. 'Fuzzy Model Reference Learning Control'. 1 Jan. 1996: 33 – 47.

Fuzzy controller and inverse model

Gaussian membership function, 4 rules each

Change in error

Error

Normalizing Scaling Factor Tuning

- Select g_e , g_c , g_u , g_{y_e} so that each universe of discourse is mapped to [-1,1]
- Choose $g_p = g_u$
- Assign numerical value 0 to g_{yc}
- Apply and step input and observe response
 - If unacceptable oscillations exist, increase g_{yc}
 - If output response is unable to "keep up" with reference model, decrease g_{vc}
 - If acceptable, design is completed

FMRLC architecture,

Layne, Jeffery R. and Passino, Kevin M. 'Fuzzy Model Reference Learning Control'. 1 Jan. 1996: 33 – 47.

FMRLC results vs. MRAC

FMRLC vs. MRAC for parameter set 2, $d(t) = 1 + (-1)^{round \left(10 sin(2t)\right)}$

Thank You

