KEB-45250 Numerical Techniques for Process Modeling Exercise 6 - Fluid flow 22.02.2018

Antti Mikkonen

Introduction

Today we will practice basic CFD software usage. We will be using Fluent but most CFD programs work the same way.

The first problem is about as simple as a CFD problem gets and provided with minimal guidance. Ask for help.

The second problem is a classical tutorial case provided by EDR&Medeso. It comes with a complete step-by-step guide.

Problem 1

Consider a straight pipe with length L=0.5m and diameter d=0.02m. The inlet velocity is V=5m/s. Fluid density $\rho=1kg/m^3$ and kinematic viscosity $\nu=0.01m^2/s$.

Calculate pressure drop using Fluent and compare the result with an correlation based solution (maybe with Python)

$$\Delta p = \frac{1}{2} f \rho V^2 \frac{L}{d}$$

$$f = \frac{64}{\text{Re}}$$
(1)

Check Reynolds number. Do you need a turbulence model?

In Fluent use a area averaged surface monitor to calculate the pressure drop.

The mesh is provided with name pipe.unv in POP. To import it: File->Import->I-deas Universal. Remember to use a axisymmetric simulation.

Visualize your results with contour plots.

Try changing the discretization methods. Does the solution change? Why/why not?

After validating your model for pressure drop, try adding a heat equation to your solution. Set wall temperature $T_w = 0K$ and inlet temperature $T_i = 100K$ for nice visualization. Use heat conductivity k = 0.01W/mK and heat capacity $c_p = 1000J/kgK$. Note that the temperature acts as a passive scalar in our incompressible simulation.

Add a mass flow rate averaged temperature for outlet.

Visualize your results with contour plots.

Problem 2

Complete the WS09_Vortex_Shedding from the Fluent_QUICKSTART_2_days_17.0_v1-trainee/Day 2/workshop_input_files/Fluent provided by EDR&Medeso. The files are available in 0_siirto directory in O: drive.

Cylinder in cross flow is one of the classics example cases. The tutorial contains many unnecessarily advanced features for us, but is still suitable.

Extra 1

Try the other tutorials. Try adapting them to something that interest you. It is very difficult to teach how to do CFD. One must learn by experience.