BÀI TẬP LẬP LICH

Bài 1: Chong trình máy tính.

Giả sử trong một phiên làm việc từ thời điểm 0 đến thời điểm T=8640000, một trung tâm tính toán phải thực hiện N chong trình, chong trình i thực hiện từ thời điểm A[i] đến thời điểm B[i], 0<=A[i]<=B[i]<T.

Cho trớc một đoạn thời gian (P1,Q1). Hãy xét xem liệu tại mọi thời điểm của đoạn đó luôn

có chong trình chạy hay không?

Cho trớc một đoạn thời gian (R1,S1). Hãy xét xem liệu tại mọi thời điểm của đoạn đó luôn không có chong trình nào chạy không?

Hãy tìm đoạn thời gian (P,Q) dài nhất sao cho tại mọi điểm của nó luôn có chơng trình chạy. Hãy tìm đoạn thời gian (R,S) dài nhất sao cho tại mọi thời điểm của nó đều không có chơng

trình nào chay.

Dữ liệu vào đọc cho bởi file CTMT.INP: dòng đầu ghi số nguyên dong N<=200. Dòng thứ

i+1 (1<=i<=N) ghi hai số nguyên không âm A[i] và B[i]. Dòng thứ N+2 ghi hai số nguyên không âm P1, Q1 (P1<=Q1). Dòng thứ N+3 ghi hai số nguyên không âm R1, S1 (R1<=S1).

Kết quả ghi ra file CTMT.OUT: dòng thứ nhất ghi 1 hoặc 0 tuỳ thuộc kết quả cụ thể (tìm đợc thì ghi số 1, không tìm đợc thì ghi số 0). Dòng thứ hai cũng ghi số 1 hoặc 0 theo ý nghĩa trên. Dòng thứ ba ghi hai số P, Q. Dòng thứ t ghi hai số R, S.

Ví dụ:

Bài 2: Xếp việc.

Cho N (2<=N<=200) công việc, mỗi công việc i phải làm trớc một số công việc nào đó trong N công việc này. Hãy xếp lịch thực hiện đủ N công việc.

Dự liệu vào file XEPVIEC.INP: Dòng đầu là số nguyên dong N. Các dòng tiếp theo thể hiện quan hệ thứ tự bộ phận: đầu dòng là số i, các số tiếp theo là j_{i1}, j_{i2}, ..., j_{in} thể hiện công việc i phải làm trớc các công việc j_{i1}, j_{i2}, ..., j_{in}

.

Kết quả file XEPVIEC.OUT: Một dòng N số hiệu các công việc đợc lần lợt thực hiện.

Ví du:

C .	C
CTMT.INP	CTMT.OUT
5	1
1000 10000	0
2000 30000	8000000 8500000
20000 100000	500001 7999999
200000 500000	
8000000 8500000	
1000 100000	
0 1000	
1000 100000	

XEPVIEC.INP	XEPVIEC.OUT
10	12794635810
1 2 3	
2 4 10	
3 5	
468	
5 8	
63	
795	
9 4 10	

Bài 3: Lập lịch gia công trên hai máy.

Một sản phẩm gồm N chi tiết, mỗi chi tiết phải gia công lần lợt trên hai máy A và B (A trớc, B sau). Thời gian thực hiện chi tiết i trên máy A là Ai, trên máy B là Bi (i=1,2,...,N). Hãy xếp lịch hoàn thành sản phẩm với thời gian ít nhất. In ra lịch và thời

gian hoàn thành.

Dữ liệu vào file LLGC2M.INP: Dòng đầu là số nguyên dơng N; N dòng tiếp theo: dòng i+1 là hai số Ai và Bi.

Kết quả ghi ra file LLGC2M.OUT: Dòng đầu là thời gian ít nhất thực hiện N công việc. Dòng thứ hai lần lợt ghi số hiệu của N công việc thực hiện theo lịch tối u.

Ví du:

LLGC2M.INP	LLGC2M.OUT
5	26
3 3	1 4 2 5 3
4 3	
6 2	
5 7	
63	

Bài 4: Lập lịch chia N việc cho M máy.

Cho N công việc, công việc i hoàn thành trong thời gian t_i. Các công việc đợc thực hiện trên M máy (công suất nh nhau, mỗi máy đều có thể thực hiện đợc công việc trong N công việc) mỗi công việc đợc làm liên tục trên một máy cho đến khi xong. Hãy tổ chức máy thực hiện đủ N công việc sao cho thời gian hoàn thành càng nhỏ càng tốt.

Dữ liệu vào file LLGCMM.INP: Dòng đầu là hai số N và M; Dòng tiếp theo là N số t₁,

 $t_2,...,t_N$

Kết quả ra file LLGCMM.OUT: Dòng đầu là thời gian hoàn thành N công việc; M dòng tiếp: dòng i+1 ghi số hiệu các công việc thực hiện trên máy i.

LLGCMM.INP	LLGCMM.OUT
6 3	8
258151	3
	2 1 4
	5 6

Bài 5: Lâp lịch thực hiện công việc.

Cho N công việc, với mỗi công việc cho biết tiền công thu đợc khi thực hiện công việc này, thời gian để hoàn thành, thời điểm cuối cùng phải kết thúc. Hãy xếp lịch thực hiện sao cho thu đợc

Dữ liêu vào file LLLV.INP: Dòng đầu là số nguyên N; N dòng sau, dòng thứ i+1 ghi 3 số tg, tdkt, gt tơng ứng là thời gian cần thiết để hoàn thành, thời điểm bắt buộc phải xong, giá trị tiền công

LLLV.INP

10

1 4 89

5 5 86

4 11 83

5 7 84

1 2 25

3 11 61

6 11 33

4 7 28

3 10 1

5 14 71

của công việc i.

Kết quả ra file LLLV.OUT: Dòng đầu là tổng giá trị tiền công; Các dòng tiếp theo mỗi dòng ghi 4 số: i, T_1 , T_2 , gt tong ứng là số hiệu, thời điểm bắt đầu, thời điểm kết thúc, giá tri của công việc đợc chon.

Ví du:

Bài 6: Xếp lịch học tập:

Một anh sinh viên khoa công nghệ thông tin (do mải chơi lên lập trình cha tốt) đang băn khoăn không biết phải phân phối thời gian học N (N<=100) môn nh thế nào trong một khoảng thời gian còn lai là T. Mỗi môn học i có số học trình là Si. (Khi tính điểm tổng kết,

điểm thi một môn đợc nhân với số học trình Si của môn đó vì số học trình càng cao thì lợng kiến

thức đào tao của môn đó càng nhiều).

Kết quả của môn học tuỳ thuộc vào lợng thời gian anh ta dành cho môn đó. Anh ta không muốn thi lại bất cứ môn nào và muốn có điểm tổng kết cao nhất.

Hãy lập trình giúp anh sinh viên đó phân phối thời gian học các môn.

Dữ liệu vào file **Hoctrinh.inp**: Dòng đầu là hai số N và T; Dòng thứ hai là N số Si (1<=i<=N); N dòng tiếp theo: dòng thứ i trong N dòng này chứa 6 số thể hiện số giờ tối thiểu để anh ta đat đợc điểm lần lợt là 5 đến 10. Hoctrinh.inn Hoctrinh.out

Kết quả ra file Hoctrinh.out: Dòng đầu là tổng điểm của N môn (đã tính hệ số học trình); N dòng tiếp theo, dòng thứ i là thời gian mà anh ta đầu t cho môn thứ i.

Ví du:

110cu mii.mp	110cti iiiii.out
3 12	43
1 2 2	1
123456	5
123456	6
123456	

LLLV.OUT

<u> 329</u>

50125

1 1 2 89

3 2 6 83

66961

1091471

Bài 7: Điều đông nhân viên tiếp thi.

Một công ty hoạt động kinh doanh trên N vùng lãnh thổ đánh số từ 1 đến N. Biết chi phí đi lại giữa thành phố i và thành phố j là C[i,j] (C[i,j]<=300). Công ty cần điều động K nhân viên tiếp thị đang hoạt động ở K thành phố khác nhau trong N thành phố nói trên, mỗi nhân viên về công tác ở một trong K địa điểm mới này (2K<N<100).

Hãy tìm cách điều đông các nhân viên tiếp thi đến địa điểm hoạt đông mới sao cho tổng chi phí cho việc di chuyển chỗ làm việc của các nhân viên này là nhỏ nhất có thể.

Dữ liêu vào file DDNV.INP: Dòng đầu là hai số N và K cách nhau một dấu cách; N dòng tiếp theo, mỗi dòng chứa N số nguyên, dòng thứ i chứa chi phí đi lại từ thành phổ i đến các thành phố còn lai, qui ớc C[i,i]=0; Dòng tiếp theo chứa K số nguyên dong tơng ứng là chỉ số các địa điểm đang

hoạt động của K nhân viên tiếp thị; Dòng cuối cùng chứa K số nguyên dong tong ứng là chỉ số các địa điểm nơi cần điều động K nhân viên tiếp thị nói trên đến hoạt động.

Kết quả ra file DDNV.OUT: Dòng đầu chứa tổng chi phí theo cách điều động tìm đợc; Dòng thứ i trong số K dòng tiếp theo ghi cách di chuyển của nhân viên thứ i bắt đầu từ thành phố đang hoat đông đến địa điểm hoat đông mới của mình (có thể phải di chuyển qua một số thành phố trung gian) đới đang đãy có thứ tư các thành phố phải đi qua.

Ví du:

DDNV.INP **DDNV.OUT** 62 60 0 20 60 30 50 70 14 30 0 70 50 20 30 356 40 70 0 80 20 50 70 60 80 0 30 20 50 80 30 40 0 10 50 40 70 90 20 0 13 46

Bài 8: Nối dây liên lac.

Trong hội trợ triển lãm ngời ta cần thiết lập mạng liên lạc nội bộ cho tất cả các gian hàng triển lãm. Cho biết khoảng cách của các gian hàng hiện tại đợc biểu diễn bằng ma trận A[i,j] trong đó a[i,j]=a[j,i] là chiều dài đờng dây nối từ gian hàng i sang gian hàng j (a[i,j]=a[j,i]=0 nếu không cần nối từ i sang j).

Yêu cầu: Hãy viết chơng trình tính đô dài dây dẫn ngắn nhất có thể sao cho moi gian hàng

đều có thể liên lạc đợc với nhau trực tiếp hoặc thông qua các gian hàng trung gian khác.

Tên file chong trình: Noiday.pas.

Dữ liệu vào file **Noiday.inp**: Dòng đầu là N (N<=100) số gian hàng và N dòng tiếp theo là ma trân biểu diễn khoảng cách giữa các gian hàng cần hay không cần nối dây giữa các gian hàng.

Kết quả ra file Noiday.out: Dòng đầu là tổng chiều dài dây nối; Các dòng tiếp theo là phơng

án nối dây giữa các gian hàng. Ví dụ:

Noiday.inp	Noiday.out
4	4
0 1 5 2	3->4
1032	3->4 1->2
5 3 0 1	1->4
2210	