Задание 2

Энергии и термы атомов и молекул

- 1. Энергии колебательных уровней двухатомной молекулы с учетом ангармонизма:
- записать выражение с учетом ангармонизма,
- найти энергию возбуждения из основного колебательного состояния в первое [см $^{-1}$] на примере молекулы HCl:

круговая частота $2\pi v = 5.6 \times 10^{14} \text{ c}^{-1}$, константа ангармонизма $x_e = 0.02$.

- 2. Вращательные уровни энергии двухатомной молекулы:
- записать выражение, указать смысл параметров,
- найти характерный масштаб расстояний между соседними уровнями [см-1] на примере молекулы N_2 : вращательная постоянная $B=2.0~{\rm cm}^{-1}$.
- 3. Для двухатомной молекулы с массами ядер m_1 и m_2 найти температуру, при которой средняя кинетическая энергия поступательного движения равна энергии возбуждения вращательного уровня с J = 5, посчитать на примере молекулы CO (межъядерное расстояние d = 0.113 нм).
- 4. Длины волн двух соседних линий в чисто вращательном спектре λ_1 и λ_2 [мкм]. На примере молекулы HCl ($\lambda_1 = 117$ мкм и $\lambda_2 = 156$ мкм) найти вращательную постоянную B [см⁻¹] и определить, между какими уровнями происходят переходы с λ_1 и λ_2 .

Спектроскопия поглощения

- 5. Через кювету с газом двухатомных молекул пропускают монохроматический лазерный пучок, длина волны которого настроена на колебательно-вращательный переход с сечением поглощения $\sigma = 10^{-18}$ см². Для молекул с колебательной частотой v = 1000 см⁻¹ и вращательной постоянной B = 1.5 см⁻¹ для нижнего уровня с v = 0, J = 15 оценить:
- долю молекул на этом уровне при температуре 300 К,
- коэффициент поглощения газа при давлении 20 мбар,
- мощность лазерного излучения, прошедшего кювету длиной 15 см, при падающей мощности 50 мВт.

Спектроскопия возбуждения флуоресценции

6. Сфокусированный лазерный пучок диаметром 0.5 мм с мощностью 1 мВт (длина волны 620 нм) по нормали пересекает молекулярный пучок диаметром 1 мм. Поглощающие молекулы (сечение поглощения $\sigma = 10^{-16}$ см²) движутся со средней скоростью $5 \cdot 10^4$ см/с, а плотность потока молекул равна 10^{12} мол/(с·см²). Излучение флуоресценции молекул собирается из области пересечения пучков объемом $2 \cdot 10^{-4}$ см³, которая отображается с помощью линзы диаметром 50 мм, расположенной на расстоянии 100 мм от этой области, на фотокатод с квантовой эффективностью 20%.

Пренебрегая процессами тушения флуоресценции, оценить скорость счета фотоэлектронов ФЭУ.

Фотоакустическая спектроскопия

7. Лазерное излучение мощностью 1 Вт периодически, в течение 10^{-2} с, направляется в кювету с газом длиной 10 см и объемом 50 см³, с плотностью числа поглощающих молекул (сечение поглощения $\sigma = 10^{-16}$ см²) $2.5 \cdot 10^{14}$ см³. Молекулы имеют 3 поступательных и 3 вращательных степени свободы. Пренебрегая излучательными переходами, оценить амплитуды прироста давления в кювете и сигнала микрофона при чувствительности микрофона 10 мB/\Pia .

Спектроскопия комбинационного рассеяния (КР)

8. Непрерывное возбуждающее лазерное излучение $\lambda = 515$ нм, мощность 5 Вт (Ar⁺-лазер) фокусируется в рассеивающий объем 1 мм²×5 мм. Сечение комбинационного рассеяния детектируемых молекул $\sigma = 10^{-30}$ см².

Эффективность сбора сдвинутого по частоте рассеиваемого излучения на ФЭУ - 15%, квантовая эффективность фотокатода ФЭУ - 20%, темновой ток ФЭУ - 10 фотоэлектр/с. Оценить минимально обнаружимую концентрацию детектируемых молекул [мол/см³], положив минимальное отношение сигнал/шум равным 2.

9. КР возбуждают в образце с числом 10^{22} КР-активных молекул в объеме $1 \text{ мм}^2 \times 5 \text{ мм}$ непрерывным лазерным излучением: $\lambda = 488 \text{ нм}$, мощность 8 Br (Ar⁺-лазер). Сечение комбинационного рассеяния молекул $\sigma = 10^{-29} \text{ см}^2$, частота КР-активного колебания 1500 см^{-1} , поглощения возбуждающего и рассеянного излучения молекулами нет. Оценить выделяемую в объеме образца тепловую мощность [Bt].

Спектроскопия когерентного антистоксова рассеяния света (КАРС)

10. В схеме неколлинеарного КАРС расстояние между пучками накачки диаметром 4 мм на фокусирующей линзе с f = 200 мм составляет 16 мм.

Оценить продольное и поперечное пространственное разрешение (характерные размеры области зондирования).