Vision in Human and Machine

Part 5 Principles of Object Representation in the Brain

Heiko Wersing

Honda Research Institute Europe GmbH

Object Representation in the Brain 1

Experimental techniques

- Invasive
 - Lesion studies
 - Single-cell recording
 - Multi-electrode arrays
 - Optical imaging

Experimental techniques

- Non-invasive
 - Computer tomography (CT)
 - Density computation based on several X-ray scan slices
 - Positron emission tomography (PET)
 - Radiaoctive isotope is taken up after injection
 - Positron emissions are registered → Measure of local neural activity
 - Functional magnetic resonance imagery (FMRI)
 - Spin polarization in strong magnetic field
 - Fine spatial resolution
 - Low temporal resolution

Object Representation in the Brain 3

Time course of visual object processing Motor command Categorical judgments, 140-190 ms Simple visual forms decision making MC edges, corners 120-160 ms 100-130 ms PFC 40-60 ms 30-50 ms LGN 60-80 ms 50-70 ms Retina 70-90 ms Intermediate visual 20-40 ms forms, feature AIT groups, etc. 80-100 ms High level object descriptions, faces, objects ➤ To spinal cord ____160-220 ms To finger muscle 180-260 ms

Properties of Human Object Perception

Recognition is fast

Object Representation in the Brain 5

Processing hierarchy in the ventral pathway Complexity Latency RF size ΤE 80-100 ms 2.5°-70° TEO 70-90 ms 2°-25° 60-80 ms 1°-20° 50-70 ms 0.5°-4° **V**1 40-60 ms 0.5°-1.5°

Object Representation in the Brain 7

Simplification procedure for optimal features (Tanaka 1990)

Features in IT (and V4)

Response to simplified stimuli (Kobatake and Tanaka 1994)

Object Representation in the Brain 9

Features in IT - Pattern Specifity

Features in IT - Orientation Selectivity

Figure 5. Timing of responses of eight TE cells for the stinculus orientation.

Object Representation in the Brain 11

Features in IT - Size Tuning

Face cells

Object Representation in the Brain 13

Columnar Tuning in Area TE

Wang, Tanaka, & Tanifuji (1996)

Overall Columnar Organization in Area TE

Object Representation in the Brain 15

Psychophysical evidence for view-based object representation

Logothetis, Pauls, Buelthoff, & Poggio (1994)

Generating an invariant representation

 Summation over view-tuned neurons

Object Representation in the Brain 19

Columnar representation

Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns.

Tsunoda, Yamane, Nishizaki, and Tanifuji. Nature Neuroscience (2001)

Light absorption imaging technique

Stimulus Examples

Object Representation in the Brain 21

Compositionality

Matching IT response between human and monkey

- Kriegeskorte, Mur, Ruff, Kiani, Bodurka, Esetky, Tanaka, & Bandettini. Neuron (2008)
 - 92 colorful stumulus images
 - Extracellular recording of 674 IT neurons in 2 macaque monkeys
 - High resolution fMRI within a 5cm thick slab of IT for 4 humans voxels 2 x 2 x2 mm \rightarrow Includes IT and early visual cortex
 - One of the few studies to systematically compare between human and monkey
 - Qualitative very different type of data
 - Interesting analogies were found

Similarity of monkey IT response and human IT fMRI

(Kriegeskorte et al. 2008)

Object Representation in the Brain 25

Hierarchical Cluster Analysis

Grandmother cells revisited

- Quiroga, Reddy, Kreiman, Koch, & Fried "Invariant visual representations by single neurons in the human brain". Nature (2005).
 - Recording in the mediotemporal lobe of human epilepsy patients
 - Systematic bootstrapping search procedure to identify invariant responses

Object Representation in the Brain 29

Jennifer Aniston (Grandmother) Neuron

a 32 29 5 4 31 30 28 7 6 6 67

43 44 45 33 36 37 38 25 22 21

72 8 1 2 57 18 26 85 65 87

