实验报告

一. 实验题目:

高速缓存的性能分析与优化

二. 实验内容:

模拟一级高速缓存,尝试调整参数,收集数据,比较不同容量和不同相联度 Cache 的 3C 失效率。

三. 实验环境:

GEM5 (也可自行选择其他工具仿真,或者自己设计仿真)

〈 〉 ⚠ Home gem5 configs learning_gem5 newcache ▼ (□ 🖽 ▼ 🗏 🗕 🗆 😢

- 四. 实验设计
 - 1.一级 cache 的模拟

我们直接在 gem5 现成的二级 cache 架构进行修改,文件地址为 gem5/configs/learning_gem5/part1,将 part1 文件中的内容直接复制到一新建文件下,对该目录下的二级 cache 架构进行修改,从而避免修改源文件, 将该目录下的 two_level.py 文件内容进行修改,将二级 cache 改为一级,具体如下图

2.加入所需要的测试程序(我的是数据量为 200 的冒泡排序)

将加载好的二进制文件加载在如下位置

3.修改 caches.py 文件的 cache 的容量和相联度,记录不命中率 执行 build/X86/gem5.opt ./configs/learning_gem5/newcache/one_level_cache.py 不命中率记录在 gem5/m5out/start.txt 文档

五. 运行过程截图

六. 实验结论

E	F	G	Н	I
cache容量\相联度	1	2	4	8
1kB	0. 044099	0.038099	0.033664	0.034038
2kB	0. 023589	0.021053	0.020085	0.017965
4kB	0.014546	0.011754	0.009672	0.008465
8kB	0.009554	0.007661	0.006756	0.005377
16kB	0.007672	0.007065	0.006202	0.005489
32kB	0.006998	0.006113	0.005896	0.005002
64kB	0.006621	0.005516	0.005571	0.005484
128kB	0.006074	0.005195	0.004908	0.004954

我们可以得出如下结论:

- (1) 当 cache 容量相同时,相联度越高,不命中率会越低
- (2) 相联度相同时, cache 容量越大, 不命中率越低
- (3) cache 容量相同时,相联度大于 4 之后,不命中率变化变得不太明显

七. 实验感想

这里可以写实验过程中遇到的困难、如何调试,也可以写实验感想。随意发挥。