Fixed Time-Step Numerical Sequence Learning

•••

Online Encyclopedia of Integer Sequences (OEIS)

Project Overview

Recurrent Neural Networks (RNNs) can learn from arbitrary length inputs to model subsequent values.

Consider prediction at specific time-step.

Predict 10th sequence value in subset of OEIS. Multiple approaches.

Applications - stock market price on specified date, booking curve projection etc.

Data

Online Encyclopedia of Integer Sequences (OEIS), 350,000 + seqs.

1000 sequences sampled with first 10 values between 0 and 100.

Not drawn from underlying distribution, but some apparent structure.

Experimental Setup

Method 1:

Train - 700 seqs., val. - 200 seqs., test - 100 seqs.

From 1st - 9th seq. values, learn 10th seq. value.

Method 2:

Use all 1000 seqs. Train - from 1st - 7th seq. values, learn 8th seq. value.

Val - from 1st - 8th seq values, learn 9th seq. value.

Test - same as before.

Model Architecture

Simple RNNs as sequence are short.

Keras implementation - fully connected.

Hyperparameter tuning: 10, 20, 50, 100, 200, 500 units.

Mean absolute error loss, early-stopping to prevent overfitting.

Results

Method 1

Units	Mean Absolute Error (Validation)
10	5.396
20	5.199
50	4.901
100	4.661
200	4.921
500	4.556

Method 2

Units	Mean Absolute Error (Validation)
10	6.161
20	5.119
50	5.332
100	4,635
200	4.706
500	4.531

Method	Mean Absolute Error (Test)
Benchmark	5.270
1	3.440
2	5.444

Key Takeaways (for OEIS)

Fitting to 10th sequence value leads to better generalizability across sequences. Even with only 1000 sampled sequences.

Next step -consider other / larger samples of sequences or different time-steps. Expand to different data sets.