الدورة الإستثنائية للعام 2008	امتحانات الشهادة الثانوية العامة	وزارة التربية والتعليم العالي
,	الفرع: علوم الحياة	المديرية العامة للتربية
	, -	دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الفيزياء المدة ساعتان	

Cette épreuve est formée de trois exercices répartis sur trois pages numérotées de 1 à 3. L'usage d'une calculatrice non programmable est autorisé.

Premier exercice (7 points)

Oscillateur mécanique

Un ressort à spires non jointives, de raideur k = 10 N/m et d'axe horizontal, est fixé par une de ses extrémités à un obstacle fixe ; l'autre extrémité est accrochée à un palet

M de masse m = 100 g. Le centre d'inertie G de M peut se déplacer, sans frottement, sur un axe x'x d'origine O et de vecteur unitaire \vec{i} .

Le plan horizontal qui passe par G est considéré comme niveau de référence de l'énergie potentielle de pesanteur.

 \hat{A} l'instant $t_0 = 0$, le palet M, initialement au repos en O, est heurté par un autre palet M', de masse

$$m' = \frac{m}{2}$$
, animé d'une vitesse $\overrightarrow{V'} = -V' \, \overrightarrow{i} \, (V' > 0)$. Après la collision, le palet M' rebondit sur M avec la

vitesse $\overrightarrow{V_1}$ et le palet M, lancé avec une vitesse $\overrightarrow{V_0} = V_0 \vec{i}$, effectue des oscillations d'amplitude constante $X_m = 10$ cm.

- 1) Donner le signe de V_0 .
- 2) Soient x et v respectivement l'abscisse et la valeur algébrique de la vitesse de G à un instant t après la collision.
 - a) Écrire, en fonction de x, m, k et v, l'expression de l'énergie mécanique du système (M, ressort, Terre) à l'instant t.
 - b) Établir l'équation différentielle du second ordre en x qui régit le mouvement de M.
 - c) La solution de cette équation différentielle est de la forme $x = A\sin(\omega_0 t + \phi)$. Déterminer les valeurs des constantes positives A, ω_0 et ϕ .
 - d) En déduire que la valeur de la vitesse V_0 de M, juste après la collision, est 1 m/s.
- 3) Sachant que la collision entre M' et M est supposée parfaitement élastique, déterminer :
 - a) la valeur V' de la vitesse de M' avant la collision ;
 - **b)** la vitesse $\overrightarrow{V_1}$ de M' juste après la collision.

Deuxième exercice (7 points)

Détermination de la capacité d'un condensateur

Dans le but de déterminer la capacité C d'un condensateur, on le branche en série avec un conducteur ohmique de résistance $R=10\sqrt{2}~\Omega$ aux bornes d'un générateur basses fréquences (G) délivrant entre ses bornes une tension alternative sinusoïdale $u_G=U_m$ cos ωt .

Le circuit ainsi constitué est alors parcouru par un courant alternatif sinusoïdal d'intensité i (Fig1). Prendre $\sqrt{2} = 1.4$ et $0.32\pi = 1$.

- 1) Reproduire le schéma de la figure (1), et indiquer les branchements d'un oscilloscope permettant de visualiser les tensions u_G = u_{AM} aux bornes du générateur et u_R = u_{DM} aux bornes du conducteur ohmique.
- 2) Laquelle des deux tensions, u_G ou u_R, représente l'image de l'intensité i ? Justifier la réponse.
- 3) Dans la figure 2, l'oscillogramme (1) représente l'évolution de la tension u_G au cours du temps.
 - a) Préciser, en le justifiant, laquelle des tensions, u_G ou u_R , est en avance sur l'autre.
 - **b)** Déterminer le déphasage entre les tensions u_G et u_R.
- 4) À partir des oscillogrammes de la figure 2, déterminer la pulsation ω , la valeur maximale U_m de la tension u_G et la valeur maximale I_m de l'intensité i.

Sensibilité horizontale : 5 ms/div.

Sensibilité verticale pour les deux voies : 1 V/div.

- 5) a) Écrire, l'expression de i en fonction du temps t.
 - **b)** Déduire l'expression de la tension $u_C = u_{AD}$ aux bornes du condensateur en fonction de C et t.
- 6) En appliquant la loi d'additivité des tensions et en donnant à t une valeur particulière, déterminer la valeur de C.

Figure 2

Troisième exercice (6 points)

Interférences lumineuses

On considère le dispositif des fentes de Young constitué de deux fentes très fines F_1 et F_2 , parallèles et distantes de a=1 mm, d'un écran d'observation (E) disposé parallèlement au plan des fentes à une distance D=2 m du milieu I de F_1F_2 et d'une fente fine F, équidistante de F_1 et F_2 , située sur la droite (Δ) dont l'intersection avec (E) est le point O.

 $\begin{array}{c|c}
 & F & I \\
\hline
 & (\Delta) & F_2 \\
\hline
\end{array}$ (E)

M
O

Le but de l'exercice est d'étudier la figure d'interférences observée sur l'écran (E) dans des situations différentes.

A – Première situation

La fente F est éclairée par une lumière monochromatique de longueur d'onde dans l'air $\lambda=0.64~\mu m$.

- 1) Décrire la figure d'interférences observée sur (E).
- 2) On considère un point M sur l'écran à la distance d_1 de F_1 et d_2 de F_2 .

Préciser la nature de la frange qui se forme en M dans chacun des cas suivants :

- **a)** $d_2 d_1 = 0$;
- **b)** $d_2 d_1 = 1,28 \mu m$;
- c) $d_2 d_1 = 0.96 \mu m$.
- 3) On fait subir à F une translation le long de (Δ) . On remarque que les franges d'interférences conservent leurs positions. Expliquer pourquoi.
- 4) On fait subir à F une translation perpendiculaire à (Δ) du côté de F_2 . On remarque que la frange centrale se déplace. Dans quel sens et pourquoi ?

B – Deuxième situation

La fente F est éclairée maintenant par une lumière blanche.

- 1) On observe au point O une frange blanche. Justifier.
- 2) Préciser la couleur de la frange brillante la plus proche de la frange brillante centrale.

C – Troisième situation

On considère deux lampes (L_1) et (L_2) émettant des radiations de même longueur d'onde. On éclaire F_1 avec (L_1) et F_2 avec (L_2) . On remarque que, dans ce cas, le système des franges d'interférences n'apparait pas sur l'écran (E). Pourquoi ?