Week 7: Performance metrics

Week 6 review: Clustering

- What type of machine learning is this (supervised, unsupervised, reinforcement)?
- What is the typical kmeans algorithm?

 - _
- What can we do to reduce runtime if our data has too many features?
- How is HCA different from kmeans?
 - -

Week 6 review: Clustering

- What type of machine learning is this (supervised, unsupervised, reinforcement)?
 - unsupervised
- What is the typical kmeans algorithm?
 - 1. Pick cluster centers (kmeans++)
 - 2. Calculate distance from all points to all cluster centers
 - 3. Assign points to nearest cluster
 - 4. Calculate centroid of each cluster
 - Repeat 3 and 4 until assignments don't change
- What can we do to reduce runtime if our data has too many features?
 - Use PCA to reduce dimensions of features
- How is HCA different from kmeans?
 - HCA starts either as individual points or as one big cluster (agglomerative or divisive)
 - With agglomerative, uses point-point or cluster-cluster distances to group points/clusters into bigger clusters
 - 3 linkages: single, complete, average

Week 6 review quiz

- Cluster the data from auto.dt.nona.csv (week 2 content / data)
- Find the optimal number of clusters with the elbow plot and explain the scree plot
- Plot the mpg vs displacement, and color points by cluster
- If you have time, calculate some summary stats of the different clusters and compare/discuss
- Also could try scaling the data and comparing clusters to unscaled
- Drop assignment under assignments in "Week 6 review quiz: K-means clustering" folder, a .R file is sufficient

Regression performance metrics

What have we used so far?

Regression performance metrics

- What have we used so far?
 - Mainly root-mean-square error (RMSE) and R^2, which are good

$$RMSE = \sqrt{\frac{\sum_{i}^{n} (y_{i} - \hat{y}_{i})^{2}}{n}}$$

$$R^{2} = 1 - SSE/SST = 1 - \frac{\sum_{i}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i}^{n} (y_{i} - \bar{y})^{2}}$$

Regression metrics

- Mean absolute error (MAE)
- Mean absolute percentage error (MAPE):
- Root-mean-square-log error (RMSLE)
- Can take other transforms of RMSE or MAE
 - e.g. inverse hyperbolic tangent (arctan); like log but can handle 0 and negative values

$$MAE = \frac{\sum_{i} |y_i - \hat{y}_i|}{n}$$

$$MAPE = \frac{\sum_{i} |(y_i - \hat{y}_i)/y_i|}{n}$$

$$RMSLE = \sqrt{\frac{\sum_{i}^{n} (\log(y_i+1) - \log(\hat{y}_i+1))^2}{n}}$$

Classification performance metrics

What have we used so far?

Classification performance metrics

- What have we used so far?
 - Accuracy (ok)
 - Confusion matrix

Other classification metrics

 $logloss = \frac{-1}{N} \sum_{i=1}^{N} \sum_{j=1}^{M} y_{ij} \log(\hat{p}_{ij})$

- Recall
- Precision
- F1
- Log loss
 - N = number of samples
 - M = number of classes
 - $-y_{ij}$ = binary indicator of class label
 - $-p_{ij}$ = model probability of class j for sample I
 - What are some problems with log loss?

Other classification metrics

- Recall
- Precision
- F1
- Log loss
 - N = number of samples
 - M = number of classes
 - $y_{ij} = binary indicator of class label$
 - p_{ij} = model probability of class j for sample I
 - What are some problems with log loss?
 - No differentiation between false positives/false negatives
 - · High penalty for low probability of correct class, highly non-linear penalty with increasing probability
 - No penalty for class label (y_{ij}) of 0, even if model is predicting significant probability for that class

$$logloss = \frac{-1}{N} \sum_{i=1}^{N} \sum_{j=1}^{M} y_{ij} \log(\hat{p}_{ij})$$

Confusion matrix

- When do we want to avoid
 - false negatives?
 - false positive?

Confusion matrix

- When do we want to avoid
 - false negatives?
 - Cancer (or other disease) detection
 - false positive?
 - Marketing
 - Harsh treatments
 - e.g. chemotherapy for cance

Recall/precision/F1

- Recall TP / (TP + FN)
 - TP / all actual positives
- Precision TP / (TP + FP)
 - TP / all predicted positive
- F1 = 2 * Pr * Re / (Pr + Re)

Clustering performance metrics

 What did we use for determining goodness of kmeans clustering?

Clustering performance metrics

- What did we use for determining goodness of kmeans clustering?
 - Within sum of squares (WSS)
 - Silhouette score

What are models we can use for regression?

What are models we can use for regression?

- Linear/polynomial fits
- KNN
- Forest methods (random forest, xgboost, etc)
- Neural networks
- SVMs

Models for classification?

Models for classification?

- KNN
- Logistic regression
- Forest models (random forest, xgboost, etc)
- Neural nets
- SVMs
- Naive Bayes

ROC curve & AUC

- ROC receiver operating characteristic
- AUC area under the curve
 - 1 means perfect classification, random guessing is the diagonal line (area of 0.5).

ROC curve & AUC

- Generate ROC curve by taking every prediction and setting threshold equal to that value
- roc.auc.demo.R under week 7

Predicted	Actual
0.15	0
0.23	1
0.45	0
0.55	1
0.67	0
0.88	1
0.97	1

Comparing models

- Train on the same training set, evaluate on the same testing set
- Alternatively (probably better), use cross-validation, and train/evaluate models on the same splits
- Use the same metrics to compare them, of course
- Pick a metric that makes sense
 - For detecting a disease, maybe recall matters most, because we always want to be able to detect the disease. So optimize the model choice for that.

Ensembling models

- We can combine predictions from models to get an averaged prediction
 - Less bias like with random forests vs decision trees
- We could also take the predictions from multiple models, and feed them into another model...and do this with lots of variations
- Related: mixture of experts: https://en.wikipedia.org/wiki/Mixture_of_experts

https://blogs.sas.com/content/subconsciousmusings/2017/05/18/stacked-ensemble-models-windata-science-competitions/

Demo (heart disease dataset)

- model.comparison.demo.R
- Compare different models' performance on the same train/test splits
- Procedure (one way to do it):
 - Optimize model hyperparameters with cross-validation
 - Fit model to full train set
 - Score/compare models on test set
 - Get accuracy, ROC curves/AUC score
 - Plot ROC curves
- Ensembling averaging models

Neural Nets in R

- Keras also available in R:
 - https://keras.rstudio.com/
- No major difference in performance expected between R and Python for this, because Keras should be using C libraries to do the computations.

Exercise (pair)

- Try 3 different types of models to make classification predictions on the bank marketing dataset (in week 4 content)
 - Try some different hyperparameters in an effort to get the best predictions from each model
 - Don't use more than 3 models, because fitting the other models is the individual part of the assignment
- Calculate the AUC score as a comparison, and at least 2 other metrics (could be accuracy, F1 score, precision, recall, etc)
 - Compare the models' performance on the same train/test splits
- Plot the ROC curve from the best model, choose what you think the best threshold value is for making predictions
- Discuss the results in a .Rmd and post the .Rmd/exported PDF to the week 7 discussion

Rest of exercise (solo)

- Use at least 2 other models (that you haven't tried yet) on the dataset and compare to your existing results.
 - Try some different hyperparameters for these to try to get the best result
- Ensemble (average) some or all of the models
 - You can also train a model to take in the predictions of all the other models and output a final prediction
- Post as as response to your first post
- Optional extra: make a profit curve and find the optimum prediction threshold and model with the profit curve
 - Assume a profit of \$4 for a TP and -\$5 for a FP as in the book example here (pg 212):
 - https://drive.google.com/file/d/0B1cm3fV8cnJwNDJFNmx2a2RBaTg/view
 - Also assume unlimited resources (no cost constraint)
 - If there was a cost constraint (choose a value), what would the optimum model and profit be?