

วงจร (circuit)

วงจรดิจิทัลรับข้อมูลนำเข้าเป็นตัวแปร N ตัว เรียกเป็น X_1,X_1,\ldots,X_N จากนั้นให้ผลลัพธ์ Z

เราจะพิจารณาวงจรดังกล่าวเป็นฟังก์ชัน f คุณได้รับข้อกำหนดของวงจรเป็นการระบุผลลัพธ์ของข้อมูลนำเข้า แต่ละแบบจำนวน M ข้อ โดยข้อกำหนดข้อที่ i อยู่ในรูปแบบต่อไปนี้

$$V_{i,1}$$
 $V_{i,2}$ $V_{i,3}$ \cdots $V_{i,N}$ Z_i

โดยที่ $V_{i,j} \in \{0,1\}$ และ $Z_i \in \{0,1\}$ ซึ่งระบุว่า

$$f(V_{i,1}, V_{i,2}, V_{i,3}, \ldots, V_{i,N}) = Z_i,$$

หรือในอีกความหมายหนึ่งคือ ถ้า $X_j = V_{i,j}$ สำหรับทุก ๆ ค่า $1 \leq j \leq N$ วงจรจะต้องให้ผลลัพธ์เท่ากับ Z_i นั่นเอง

เราสามารถสร้างวงจรได้หลายรูปแบบผ่านทางเกทดิจิทัล แต่ในข้อนี้จะสนใจวงจรรูปแบบเฉพาะที่สร้างได้จาก OR gate และ AND gate ที่เขียนเป็นนิพจน์เชิงตรรกะในรูปแบบที่เรียกว่า sum of product นั่นคืออยู่ในรูปของการ OR กันของพจน์ที่เป็นการ AND กันของตัวแปร หรือ นิเสธ (NOT หรือเขียนแทนด้วย –) ของตัวแปร ยกตัวอย่างเช่น

$$(X_1 \wedge X_3) ee (X_2 \wedge X_4 \wedge
eg X_3 \wedge
eg X_6) ee (
eg X_2 \wedge
eg X_1)$$

เป้าหมายของเราคือได้วงจรที่มีขนาดเล็กที่สุด ในที่นี้ขนาดจะเท่ากับจำนวนเครื่องหมาย \wedge และ \vee ทั้งหมดที่คุณใช้ (ไม่นับ \neg)

พิจารณาตัวอย่างต่อไปนี้ ที่ N=2 สมมติว่ามีข้อกำหนด 3 ข้อดังนี้

ข้อที่	$V_{i,1}$	$V_{i,2}$	Z_i
1	0	0	0
2	1	0	1
3	0	1	1

สังเกตว่าไม่มีการกำหนดว่าผลลัพธ์เมื่อ $X_1=X_2=1$ ดังนั้นวงจรจะให้ผลลัพธ์เป็นอย่างไรก็ได้

วงจรที่ให้ผลลัพธ์สอดคล้องกับข้อกำหนดนี้มีเช่น

$$(X_1 \wedge
eg X_2) \vee (
eg X_1 \wedge X_2)$$

ซึ่งมีขนาดเท่ากับ 3 หน่วย และวงจร

$$(X_1)\vee (X_2)$$

ที่มีขนาดเท่ากับ 1 หน่วย

คุณต้องการหาวงจรที่มีขนาดน้อยที่สุด สำหรับข้อนี้เป็นโจทย์ output only กล่าวคือคุณจะได้รับแฟ้มข้อมูลนำเข้า จากนั้นคุณจะต้องสร้างผลลัพธ์สำหรับแต่ละข้อมูลทดสอบตามรายละเอียดที่จะได้กล่าวถัดไป

ข้อมูลนำเข้า

แฟ้มข้อมูล imes imes . in จะระบุข้อมูลในกรณีทดสอบ $01, \dots, 10$ ในรูปแบบดังนี้

บรรทัดแรกระบุจำนวนเต็ม N และ M จากนั้นอีก M จะระบุข้อกำหนด โดยแต่ละบรรทัดระบุจำนวนเต็มอีก N+1 จำนวนที่มีค่าเป็น 0 หรือเป็น 1 กล่าวคือในบรรทัดที่ i สำหรับ $0 \leq i < M$ จะมีข้อมูลในรูปแบบ

$$V_{i,1}$$
 $V_{i,2}$ $V_{i,3}$ \cdots $V_{i,N}$ Z_i

แฟ้มข้อมูล imes imes imes imes imes imes imes imesเฟ้มข้อมูล imes ime

ข้อมูลส่งออก

บรรทัดแรกระบุจำนวนเต็ม K แทนจำนวนพจน์ที่เกิดจากการ AND กันของตัวแปรหรือนิเสธของตัวแปร จากนั้นอีก K บรรทัดจะระบุข้อมูลของแต่ละพจน์ดังนี้

จำนวนเต็มตัวแรก L ระบุจำนวนตัวแปรหรือนิเสธของตัวแปร จากนั้นถ้าจะมีจำนวนเต็มอีก L ตัวระบุตัวแปรหรือ นิเสธของตัวแปรในพจน์นั้น ถ้าจำนวนเต็มดังกล่าวเป็นจำนวนเต็มบวก i หมายความว่าในพจน์มีตัวแปร X_i ถ้าเป็น จำนวนเต็มลบ -i แสดงว่าในพจนต์มีนิเสธของตัวแปรคือ $\neg X_i$

เงื่อนไข

- $2 \le N \le 20$
- $1 \le M \le 10000$

ข้อมูลทดสอบ

จะมีข้อมูลทดสอบ 10 ชุดที่มีรายละเอียดดังนี้

ชุดที่	N	T
1	2	1
2	4	5
3	8	93
4	10	1238
5	12	1012
6	12	1789
7	15	2008
8	15	4649
9	20	835
10	20	3871

การให้คะแนน

จากตารางข้างต้นจะมีค่า T ของแต่ละชุดทดสอบอยู่ ซึ่งเป็นจำนวนเกทเป้าหมาย หากผู้เข้าแข่งขันใช้จำนวน AND และ OR gate รวมกัน S ครั้ง จะได้คะแนนดังนี้

เงื่อนไข	อัตราส่วนคะแนนที่ได้ต่อคะแนนเต็ม
$S \leq T$	1.0
S>T	$1.75^{\left(1-\left(\frac{S}{T}\right)^{0.75}\right)}$

ตัวอย่าง

จากตัวอย่างข้างต้น แฟ้มข้อมูลนำเข้าจะเป็นดังนี้

```
2 3
0 0 0
1 0 1
0 1 1
```

ข้อมูลส่งออกที่สอดคล้องกับนิพจน์ $(X_1 \wedge
eg X_2) ee (
eg X_1 \wedge X_2)$ คือ

```
2
2 1 -2
2 -1 2
```

วงจรนี้จะมีขนาดเท่ากับ 3 หน่วย และข้อมูลส่งออกที่สอดคล้องกับนิพจน์ $(X_1)ee (X_2)$ คือ

2 1 1 1 2

ซึ่งจะเป็นวงจรขนาด 1

เกรดเดอร์ตัวอย่าง

สำหรับข้อนี้ เกรดเดอร์ตัวอย่างจะมีชื่อว่า local checker.cpp

เกรดเดอร์ตัวอย่างจะรับข้อมูลชื่อแฟ้มข้อมูลทาง command line argument แล้วอ่านแฟ้มข้อมูลสองแฟ้มคือแฟ้ม ข้อมูลนำเข้า และแฟ้มข้อมูลส่งออกในรูปแบบตามด้านบน ถ้าวงจรทำงานได้ตามข้อกำหนดจะพิมพ์ขนาดของวงจร ถ้าไม่ได้จะพิมพ์ข้อผิดพลาด

วิธีการใช้งานเกรดเดอร์ตัวอย่าง:

- 1. ทำการคอมไพล์ไฟล์ local_checker.cpp ด้วยคำสั่ง g++ -std=c++11 -02
 local_checker.cpp -o local_checker
- 2. หากต้องการตรวจข้อมูลนำเข้า aaa.bbb และข้อมูลส่งออก ccc.ddd สามารถใช้คำสั่ง

หากผู้เข้าแข่งขันมีปัญหาในการใช้เกรดเดอร์ตัวอย่าง กรุณาแจ้งผู้คุมสอบ