CORING: Efficient tensor-based filter pruning

Van Tien PHAM¹ Yassine ZNIYED¹ Thanh Phuong NGUYEN¹

¹Université de Toulon, Aix Marseille Université, CNRS, LIS, UMR 7020, France

Overview

Problems

- Network Compression
- Structured Pruning
- Tensor Decomposition

Motivations

- Reduced Memory Footprint
- Faster Inference
- Lower Energy Consumption
- Ease of Deployment on Cloud and Edge
- Interpretability and Understanding
- Privacy and Security

Hypothesis for Network Pruning

- CNNs are over-parameterized
- Similar filters may generate duplicate features
- Redundancy can be compensated through fine-tuning

Research Gaps

- X Flatten 3-D tensor to 1-D vector
- Data-dependent
- Computationally expensive

Our Contributions

- Introducing tensor decompositions for filter pruning.
- Novel method to compute filters' similarity.
- Filter selection algorithm.
- Outstanding results.

Figure 1. for more infomation.

C RING Framework

Figure 2. The CORING approach for filter pruning in one layer, summarized in three steps.

Filter decomposition

• HOSVD of $\mathcal{T} \in \mathbb{R}^{N_1 \times N_2 \times N_3}$:

$$\mathcal{T} = \mathcal{S} \times_1 \mathbf{A} \times_2 \mathbf{B} \times_3 \mathbf{C} \triangleq [\mathbf{S}; \mathbf{A}, \mathbf{B}, \mathbf{C}].$$
 (1)

 $\{R_1, R_2, R_3\}$ forms the multilinear rank of \mathcal{T} .

Filter approximation:

$$\mathcal{F} \approx s \times_1 \mathbf{a} \times_2 \mathbf{b} \times_3 \mathbf{c} = [s; \mathbf{a}, \mathbf{b}, \mathbf{c}] \approx [\mathbf{a}, \mathbf{b}, \mathbf{c}],$$
 (2)

where $\mathbf{a} \in \mathbb{R}^{c_{l-1}}$, $\mathbf{b} \in \mathbb{R}^{h_l}$, $\mathbf{c} \in \mathbb{R}^{w_l}$, and scalar $s \in \mathbb{R}^{1 \times 1 \times 1}$.

Similarity measure

The distance between \mathcal{F}^i and \mathcal{F}^j :

$$d(\mathbf{\mathcal{F}}^i, \mathbf{\mathcal{F}}^j) = d([\mathbf{a}^i, \mathbf{b}^i, \mathbf{c}^i], [\mathbf{a}^j, \mathbf{b}^j, \mathbf{c}^j]) = \frac{d(\mathbf{a}^i, \mathbf{a}^j) + d(\mathbf{b}^i, \mathbf{b}^j) + d(\mathbf{c}^i, \mathbf{c}^j)}{3}$$
(3)

Metrics:

- Euclidean Distance
- Cosine Similarity
- Variance-Based Distance:

$$d_{VBD}(\mathcal{F}^{i}, \mathcal{F}^{j}) = \frac{\operatorname{Var}(\mathcal{F}^{i} - \mathcal{F}^{j})}{\operatorname{Var}(\mathcal{F}^{i}) + \operatorname{Var}(\mathcal{F}^{j})}$$
(4)

For a distance metric $d(\cdot, \cdot)$, a similarity matrix **S** of size $c \times c$ can be constructed such that $S_{ij} = d(\mathcal{F}^i, \mathcal{F}^j)$.

Filters selection algorithm

Require: Similarity matrix $S \in \mathbb{R}^{c \times c}$, filters $\mathcal{F}^1, \mathcal{F}^2, \dots, \mathcal{F}^c$, sparsity κ . Ensure: Selected filters $\mathcal{F}^{p_1}, \mathcal{F}^{p_2}, \dots, \mathcal{F}^{p_{\kappa}}$.

- for t = 1 to $c \kappa$ do
- Find the highest similarity: $(i, j) = \underset{(x,y)}{\operatorname{argmax}} S_{x,y}$
- if $\sum_{k=1}^{c} S_{i,k} \ge \sum_{k=1}^{c} S_{j,k}$ then
- Delete $oldsymbol{\mathcal{F}}^i$.
- : else
- Delete \mathcal{F}^{\jmath} .
- 7: **end if**
- Remove the row, column of the deleted filter from $m{S}$. end for

K-shots pruning strategy

Experiments

★ CORING ('23) - AutoBot ('23) - FPAC ('23) - FSM ('22) - DECORE ('22) - EZCrop ('22)
CHIP ('21) - GFBS ('21) - HRank ('20) - GAL ('19) - SSS ('18) - L1 ('17)

Figure 3. Comparison of pruning methods for VGG-16 on CIFAR-10.

Table 1. Pruning results of ResNet-50 on ImageNet

Model	Top-1	Top-5	Params (↓%)	FLOPs (↓%)
ResNet-50	76.15	92.87	25.50M(00)	4.09B(00)
DECORE-8 [1]	76.31	93.02	22.69M(11)	3.54B(13)
CHIP [3]	76.30	93.02	15.10M(41)	2.26B(45)
TPP [4]	76.44	N/A	N/A	2.74B(33)
CORING-V (Ours)	76.78	93.23	15.10M(41)	2.26B(45)
HRank-1 [2]	74.98	92.33	16.15M(37)	2.30B(44)
DECORE-6 [1]	74.58	92.18	14.10M(45)	2.36B(42)
CHIP [3]	76.15	92.91	14.23M(44)	2.10B(49)
CORING-C (Ours)	76.34	93.06	14.23M(44)	2.10B(49)
HRank-2 [2]		91.01	13.77M(46)	1.55B(62)
CHIP [3]		92.53	11.04M(57)	1.52B(63)
CORING-V (Ours)	75.55		11.04M(57)	1.52B(63)
HRank-3 [2]		89.58	8.27M(67)	0.98B(76)
DECORE-5 [1]		90.82	8.87M(65)	1.60B(61)
CHIP [3]		90.74	8.01M(69)	0.95B(77)
CORING-V (Ours)	73.99	91.71	8.01M(69)	0.95B(77)

- [1] M. Alwani, V. Madhavan, and Y. Wang. Decore: Deep compression with reinforcement learning. CVPR, 2022.
- [2] M. Lin, R. Ji, Y. Wang, Y. Zhang, B. Zhang, Y. Tian, and L. Shao. Hrank: Filter pruning using high-rank feature map. *CVPR*, 2020.
- [3] Y. Sui, M. Yin, Y. Xie, H. Phan, S. Zonouz, and B. Yuan. Chip: Channel independence-based pruning for compact neural networks. In *NeurIPS*, 2021
- [4] H. Wang and Y. Fu. Trainability preserving neural pruning. In *ICLR*, 2023.