CONTRÔLE DU 19 NOVEMBRE 2022

Corrigé

Les documents, calculatrices et objets connectés ne sont pas autorisés. Toute réponse doit être justifiée

Exercice 1. Soit $(E, \|\cdot\|)$ un espace vectoriel normé complet, on rappelle que $\mathcal{L}(E)$, l'espace vectoriel des applications linéaires continues de E dans E muni de la norme $\|\cdot\|$ subordonnée à $\|\cdot\|$ est aussi complet.

(1) Montrer que

$$\forall f, g \in \mathcal{L}(E), |||f \circ g||| \le |||f||| \cdot |||g|||.$$

Soit $v \in E$. On a

$$||f \circ g(v)|| = ||f(g(v))|| \le |||f||| \, ||g(v)|| \le (|||f||| \cdot |||g|||) \, ||v||,$$

d'où on trouve la propriété sous-multiplicative de $\|\cdot\|$ souhaitée.

Si $f \in \mathcal{L}(E)$, on convient de noter $f^n = f \circ f \circ \cdots \circ f$.

(2) Si $f \in \mathcal{L}(E)$, montrer que la série de terme général $\frac{1}{n!}f^n$ est convergente dans $\mathcal{L}(E)$. On montrera que la série en question est absolument convergente : comme $(\mathcal{L}(E), \|\|\cdot\|\|)$ est complet, on en déduira que la série $\sum_n \frac{1}{n!} f^n$ est convergente. Il nous suffit donc montrer que la série de terme général $\frac{1}{n!} \|\|f^n\|\|$ converge. Par sous-multiplicativité, on a que $\frac{1}{n!} \|\|f^n\|\| \le \frac{1}{n!} \|\|f\|\|^n$.

Donc la série dé terme général $\frac{1}{n!} \| f^n \|$ converge si la série $\phi := \sum_{n=0}^{+\infty} \frac{1}{n!} z^n$ converge, où $z = \| f \|$.

Mais le rayon de convergence de ϕ est $+\infty$ (il s'agit de la série de Taylor de l'exponentielle), donc ϕ converge, comme souhaité.

Exercice 2. Soit f l'application de \mathbb{R}^2 dans \mathbb{R} définie par f(0,0)=0 et pour tout $(x,y)\in\mathbb{R}^2\setminus\{(0,0)\}$ par

$$f(x,y) = \frac{x^3 + 3xy^2}{x^2 + 6y^2}.$$

- (1) Montrer que f est différentiable en tout point de $\mathbb{R}^2\setminus\{(0,0)\}$. La fonction f est le rapport de deux fonctions polynomiales, $f(x,y)=\frac{P(x,y)}{Q(x,y)}$. Les fonctions polynomiales sont différentiables en tout \mathbb{R}^2 . De plus, l'application polynomiale Q ne s'annule que en (x,y)=(0,0). Donc f est le rapport de deux fonctions différentiables, avec celle au dénominateur qui ne s'annule pas dans l'ouvert $\mathbb{R}^2\setminus\{(0,0)\}$. Elle est donc différentiable en $\mathbb{R}^2\setminus\{(0,0)\}$.
- (2) Montrer que f est continue en (0,0). Pour montrer la continuité en 0, il suffit montrer que

$$\lim_{\substack{\|(x,y)\|\to 0\\ (x,y)\neq (0,0)}} |f(x,y)| = 0,$$

où $\|\cdot\|$ est n'importe quelle norme sur \mathbb{R}^2 , par exemple la norme euclidienne. On remarque que $x^2+6y^2\geq x^2+y^2=\|(x,y)\|^2$. De façon similaire, $|x^3+3xy^2|\leq |x|(x^2+3y^2)\leq 3\|(x,y)\|^3$. On en déduit que $|f(x,y)|\leq 3\|(x,y)\|$, et on conclut que la limite pour $\|(x,y)\|\to 0$ est 0 par le lemme des gendarmes.

(3) Montrer que f admet des dérivées directionnelles en (0,0) suivant toute direction. Considérons la dérivée directionnelle lelong la direction $v=(a,b)\in\mathbb{R}^2\setminus\{(0,0)\}$. Il faut donc calculer la dérivée en 0 de la fonction $g:\mathbb{R}\to\mathbb{R}$ définie par $t\mapsto f(ta,tb)$. Par calcul directe, on a que $g(t)=\frac{a^3+3ab^2}{a^2+6b^2}t$ pour tout $t\in\mathbb{R}$. On en déduit que

$$\frac{\partial f}{\partial (a,b)}(0) = \frac{a^3 + 3ab^2}{a^2 + 6b^2}.$$

(4) f est-elle différentiable en (0,0)?

On montre que f n'est pas différentiable en (0,0). Supposons par l'absurde qu'elle l'est et notons par $L:=Df_{(0,0)}$ sa différentielle. Alors l'application qui a (a,b) associe $\frac{\partial f}{\partial(a,b)}(0)$ devrait etre linéaire (donnée par L agissant sur (a,b) vu comme vecteur colonne). Mais l'application $L:(a,b)\mapsto \frac{a^3+3ab^2}{a^2+6b^2}$ (pour $(a,b)\neq (0,0)$, et 0 si (a,b)=(0,0)) n'est pas linéaire (car, par exemple, L(1,0)=1, L(0,1)=0, mais $L(1,1)=\frac{4}{7}\neq 1=L(1,0)+L(0,1)$). On en conclut que f n'est pas différentiable en (0,0).

Exercice 3. Soient $n \in \mathbb{N}^*$ et $M_n(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices $n \times n$ à coefficients réels muni de la norme $\|\cdot\|_{\infty}$. Etant donnée une matrice A, on notera tA sa matrice transposée.

(1) Montrer l'application suivante est continue.

$$\begin{array}{ccc} f: & M_n(\mathbb{R}) & \longrightarrow & M_n(\mathbb{R}) \\ & A & \longmapsto & {}^t A.A \end{array}.$$

L'application f est continue si et seulement si $\pi_{i,j} \circ f$ est continue pour tout $i, j \in \{1, \ldots, n\}$, où $\pi_{i,j}$ est la fonction qui associe à toute matrice A son coefficient en position (i, j). Or, l'application $\pi_{i,j} \circ f$ est polynomiale (de degré 2) en les coefficients $(a_{h,k})$ de A. Explicitement,

$$\pi_{i,j} \circ f(A) = \sum_{k=1}^{n} a_{k,i} a_{k,j}.$$

On en déduit que $\pi_{i,j} \circ f$ est continue pour tout (i,j), et donc que f est continue.

(2) On rappelle qu'une matrice $A \in M_n(\mathbb{R})$ est orthogonale si ${}^tA.A = I_n$ où I_n désigne la matrice de l'identité. Montrer que l'ensemble O(n) des matrices orthogonales de $M_n(\mathbb{R})$ est une partie fermée de $M_n(\mathbb{R})$.

On peut décrire O(n) comme l'image réciproque par f de la matrice I_n . Comme f est continue et $\{I_n\}$ est fermé (en étant un point), on en déduit que $O(n) = f^{-1}(\{I_n\})$ est fermé.

(3) Montrer que le complémentaire de O(n) est dense dans $M_n(\mathbb{R})$. Il suffit montrer que pour tout $A \in O(n)$ il existe une suite $(A_k)_k$ telle que $A_k \to A$ et $A_k \notin O(n)$ pour tout k assez grand. Pour cela, soit $A_k = (1 + \frac{1}{k})A$ (avec $k \ge 1$). On a que $||A_k - A||_{\infty} = \frac{1}{k}||A||_{\infty} \to 0$ pour $k \to +\infty$. De plus,

$$f(A_k) = (1 + \frac{1}{k})^2 f(A) = (1 + \frac{1}{k})^2 I_n \neq I_n,$$

donc $A_k \notin O(n)$, comme souhaité.

(4) Quel est l'intérieur de O(n)?

L'intérieur de O(n) dans $M_n(\mathbb{R})$ est l'ensemble vide. En fait, si A est un point intérieur à O(n), alors il existe r > 0 tel que la boule centrée en A et de rayon r est contenue dans O(n). En particulier A n'appartient pas à l'adhérence du complémentaire de O(n) contre le point précédent qui montrait que $M_n(\mathbb{R}) \setminus O(n)$ est dense dans $M_n(\mathbb{R})$.

(J) Montrer que f est différentiable et donner sa différentielle.

Comme les applications polynomiales sont différentiables, le même argument dit que f est différentiable en tout point. Soit maintenant $A \in M_n(\mathbb{R})$. On calcule la différentielle en A en calculant la dérivée directionnelle lelong toute direction $H \in M_n(\mathbb{R})$. Pour cela, il faut calculer la dérivée en 0 de la fonction $s \mapsto f(A + sH)$. On a

$$f(A+sH) - f(A) = ({}^{t}A + s{}^{t}H)(A+sH) - {}^{t}AA = s({}^{t}HA + {}^{t}AH) + s^{2}({}^{t}HH).$$

On en déduit que $Df_A(H) = {}^tHA + {}^tAH$, et donc que Df_A est l'endomorphisme linéaire de M_n qui à H associe ${}^tHA + {}^tAH$.

Exercice 4. On note $E = \mathcal{C}([0,1],\mathbb{R})$ l'espace vectoriel réel des applications continues de [0,1] dans \mathbb{R} . On le munit de l'application $N: E \to \mathbb{R}$ définie par

$$\forall f \in E, N(f) = \max_{t \in [0,1]} |e^t f(t)|.$$

(1) Montrer que N est une norme.

Dans le texte, on a déjà que E est un espace vectoriel, et que N est à valeurs dans \mathbb{R} . Il faut montrer que N est positive et non-dégénérée, absolue-homogène, et satisfait la propriété triangulaire.

Comme $|e^t f(t)| \ge 0$ pour tout t, on en déduit que $N(f) \ge 0$ pour tout f. Supposons que N(f) = 0. Cela arrive si et seulement si $|e^t f(t)| = 0$ pour tout $t \in [0, 1]$. Comme $e^t \ne 0$ pour tout $t \in [0, 1]$, on en déduit que f(t) = 0 pour tout $t \in [0, 1]$, et donc que f = 0.

Soit maintenant $\lambda \in \mathbb{R}$. On a que $|e^t(\lambda f)(t)| = |e^t\lambda f(t)| = |\lambda||e^tf(t)|$. En prenant le max sur $t \in [0, 1]$, on en déduit que $N(\lambda f) = |\lambda|N(f)$.

Soient $f, g \in E$. Pour tout $t \in [0, 1]$, on a que $|e^t(f+g)(t)| = |e^t(f(t)+g(t))| \le |e^tf(t)| + |e^tg(t)|$. Mais alors

$$\begin{split} N(f+g) &= \max_{t \in [0,1]} \left| e^t (f+g)(t) \right| \leq \max_{t \in [0,1]} \left(\left| e^t f(t) \right| + \left| e^t g(t) \right| \right) \\ &\leq \max_{(s,t) \in [0,1]^2} \left(\left| e^s f(s) \right| + \left| e^t g(t) \right| \right) = \max_{s \in [0,1]} \left| e^s f(s) \right| + \max_{t \in [0,1]} \left| e^t g(s) \right| = N(f) + N(g). \end{split}$$

On définit l'application $F: E \to E$ qui à $f \in E$ associe F(f) définie par

$$\forall t \in [0, 1], F(f)(t) = \int_0^t e^{s-t} f(s) ds.$$

(2) Montrer que F est une application linéaire continue de (E, N) dans (E, N). Tout d'abord, on montre que F est linéaire. Soient $f, g \in E$ et $\lambda, \mu \in \mathbb{R}$. Alors pour tout $t \in [0, 1]$ on a que

$$F(\lambda f + \mu g)(t) = \int_0^t e^{s-t} (\lambda f + \mu g)(s) ds = \int_0^t e^{s-t} (\lambda f(s) + \mu g(s)) ds$$
$$= \lambda \int_0^t e^{s-t} f(s) ds + \mu \int_0^t e^{s-t} f(s) ds = (\lambda F(f) + \mu F(g))(t).$$

On en déduit que $F(\lambda f + \mu g) = \lambda F(f) + \mu F(g)$, et donc que F est linéaire.

On montre maintenant la continuité de F. On remarque que E a dimension infinie, et donc la réponse n'est pas triviale : F est continue si et seulement si

$$|||F|||_N := \sup_{N(f)=1} N(F(f)) < +\infty.$$

Or,

$$|F(f)(t)| = \left| \int_0^t e^{s-t} f(s) ds \right| = e^{-t} \left| \int_0^t e^s f(s) ds \right|$$

$$\leq e^{-t} \int_0^t e^s |f(s)| ds \leq e^{-t} t N(f).$$

On en déduit que

$$N(F(f)) = \max_{t \in [0,1]} e^t |F(f)(t)| \le \max_{t \in [0,1]} tN(f) = N(f).$$

Donc $|||F|||_N \le 1$ et F est continue.

(3) Calculer $||F||_N$ où $||\cdot||_N$ désigne la norme subordonnée à N. Dans le point précédent on a déjà montré que $||F||_N \le 1$. On va montrer que $||F||_N = 1$. Pour cela, on considère la fonction continue $f:[0,1]\to\mathbb{R}$ donnée par $f(t)=e^{-t}$. Dans ce cas on a $N(f)=\max_{t\in[0,1]}|e^tf(t)|=1$, et $F(f)(t)=\int_0^t e^{s-t}e^{-s}ds=te^t$, d'où N(F(f))=1. On en déduit $||F||_N\ge 1$ comme souhaité.

Exercice 5. Etant donné un réel $\alpha \in]\frac{1}{2},1[$, soit $f:\mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $f(x,y)=|xy|^{\alpha}$.

(1) Montrer que f est différentiable en (0,0). Indication : on pourra tirer de l'inégalité $(|x|-|y|)^2 \ge 0$ une majoration de |xy|. On remarque que la restriction de f sur les axes coordonnées est constante (nulle). On en déduit que, si f est différentiable en (0,0), sa différentielle en (0,0) doit etre nulle. Il suffit donc montrer que $\lim_{(x,y)\to(0,0)}\frac{|f(x,y)|}{||(x,y)||}=0$, où $\|\cdot\|$ est la norme euclidienne sur \mathbb{R}^2 . Par l'indication, on a que $2|xy| \le \|(x,y)\|^2$. En alternative, $|x| \le \sqrt{x^2+y^2}$ et de façon analogue $|y| \le \sqrt{x^2+y^2}$. Dan les deux cas, on en déduit que $|xy|^{\frac{1}{2}} \le \|(x,y)\|$. Donc

$$\frac{|f(x,y)|}{\|(x,y)\|} \le \|(x,y)\|^{\alpha - \frac{1}{2}}.$$

Ce dernier tend vers 0 car $\alpha > \frac{1}{2}$. On conclut par le lemme des gendarmes.

(2) Montrer que f n'est pas différentiable en (0,1).

Indication : on étudiera sa dérivée directionnelle dans la direction de l'axe des abscisses.

On a que

$$\left. \frac{\partial f}{\partial x}(0,1) = \left. \frac{d}{dt} f(t,1) \right|_{t=0} = \lim_{t \to 0} \frac{\left| t \right|^{\alpha}}{t}.$$

Pour t>0 on a que $\frac{|t|^{\alpha}}{t}=t^{\alpha-1}\to +\infty$, car $\alpha<1$. On en déduit que f n'admet pas la première dérivée partielle en (0,1), et donc elle n'est pa différentiable en (0,1).