

Incorporating nutrient flow into overland flow and groundwater models to better predict ecological response across large scales Todd Steissberg (Todd.E.Steissberg@usace.army.mil, 530-574-5572), Billy Johnson, John Kucharski, Kervi Ramos, Charles Downer, Nawa Pradhan, Zhonglong Zhang (PSU), Lora Johnson

Problem Statement

Current models cannot simulate nutrient flow across watershed scales, which prevents accurate prediction of how native and nuisance species will spatially distribute themselves across a landscape. Objective: Incorporate nutrient flow into the Gridded Surface Sub-surface Hydrologic Analysis (GSSHA) model and couple the nutrient model with ERDC's multi-species vegetation model.

Technical Approach

Phase I. Water quality simulation capabilities (GSSHA-WQ)

- Complete/extend existing water temperature simulation capabilities in GSSHA for overland flow (runoff) & streams
 - Temperature controls water quality kinetics rates
- Link in-stream nutrient kinetics with GSSHA
 - Nutrient Simulation Module (NSM) provides kinetics
- Develop overland and sub-surface nutrient models

Technical Approach Cont'd

Phase II. Integrated nutrient & vegetation simulation capabilities

- Link the GSSHA-WQ with ERDC's multi-species vegetation model for aquatic plants
- Link the GSSHA-WQ with ERDC's multi-species vegetation model for terrestrial plants

Schedule

- Award contracts; initiate water temperature & nutrient simulation capability development, Q4/FY20
- Complete water temperature development, Q1/FY21
 - Deliverables: model and technical note
- Develop nutrient simulation capabilities, Q4/FY21
 - Deliverables: GSSHA-WQ model (model, visualization, user interface, and database) & 4 technical notes
- Link GSSHA-WQ with aquatic plants model, Q4/FY22
 - Deliverables: Integrated model & 4 technical notes
- Link GSSHA-WQ with terrestrial plants model, Q4/FY23
 - Deliverables: Final integrated nutrient-vegetation model
 & 4 technical notes

ANSRP Ecological Modeling Congressional Interest

Incorporating nutrient flow into overland flow and groundwater models to better predict ecological response across large scales

Todd Steissberg

Forecasting Project Hurdles

- Data exchange between models
- Observed data for calibration/validation (flow, water quality, and vegetation)
 - Use existing data, but may require travel in FY22-23

Value statement for USACE operations

Integrating nutrient flow with multi-species vegetation models will enable accurate simulation of native and nuisance species distribution across watersheds.

Deliverables by Year

- FY20: Contracts awarded, WQ development initiated
- FY21: GSSHA-WQ model capable of simulating overland and stream water temperature and nutrient flow; 4 technical notes
- FY22: GSSHA-WQ linked with aquatic plants model; 4 technical notes
- FY23: GSSHA-WQ linked with terrestrial plants model; final product; 4 technical notes

	Qtr1	Qtr2	Qtr3	Qtr4
FY20	0	25	125	150
FY21	75	75	75	75
FY22	75	75	75	75