Machine Learning models overview

1. Supervised Learning

In supervised learning, the model learns from labeled data (input-output pairs) to make predictions or classify new data. The main tasks are **classification** and **regression**.

Key Tasks:

- Classification: Predicting discrete classes or labels (e.g., spam or not spam).
- **Regression**: Predicting continuous values (e.g., housing prices).

Example Models:

1. **Linear Regression** (Regression Task):

- Predicts a continuous output based on the linear relationship between input features and the target variable.
- Example: Predicting aircraft fuel consumption based on altitude, speed, and weather conditions.

2. Logistic Regression (Classification Task):

- o A binary classification model that estimates the probability of a class label.
- o Example: Classifying whether a satellite signal indicates a fault (yes/no).

3. Support Vector Machines (SVM):

- Used for both classification and regression by finding a hyperplane that best separates different classes.
- o Example: Classifying images from satellite data (e.g., land vs. water).

4. Decision Trees:

- o A tree-based model that makes decisions by splitting the data based on features.
- Example: Diagnosing aircraft component failures based on sensor readings.

5. Random Forest (Ensemble Learning):

- A collection of decision trees used for more robust predictions through bagging.
- Example: Predicting aircraft engine maintenance needs by combining multiple decision trees trained on historical data.

6. Neural Networks:

 Feedforward neural networks are flexible models for both classification and regression. Example: Predicting aircraft flight delays based on complex factors like weather, route, and air traffic.

2. Unsupervised Learning

Unsupervised learning models learn patterns in data without explicit labels. The model attempts to find structure in the data, often used for **clustering** and **dimensionality reduction** tasks.

Key Tasks:

- **Clustering**: Grouping similar data points together (e.g., customer segmentation).
- **Dimensionality Reduction**: Reducing the number of features in the data.

Example Models:

1. K-Means Clustering:

- o Groups data points into K clusters based on feature similarity.
- Example: Grouping different regions in satellite imagery based on terrain type (forest, desert, water).

2. Hierarchical Clustering:

- o Builds a hierarchy of clusters based on distance between data points.
- o Example: Grouping different flight routes based on patterns in flight data.

3. Principal Component Analysis (PCA):

- Reduces the dimensionality of the data by finding principal components that capture the most variance.
- Example: Reducing the complexity of aircraft sensor data to extract the most important features.

4. Autoencoders (Neural Network for Dimensionality Reduction):

- An unsupervised neural network that compresses data and reconstructs it, often used for anomaly detection.
- Example: Detecting anomalies in satellite communication systems by learning a normal pattern of behavior.