This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

THIS PAGE BLANK (USPTO)

BUNDESREPUBLIK **DEUTSCHLAND**

ntschrift [®] DE 42 01 652 C 2

(5) Int. Cl.⁶: H01F7/18 F 16 K 31/06 F15B 13/044

DEUTSCHES PATENTAMT Aktenzeich n:

(43)

P 42 01 652.5-33

Anmeldetag: 22. 1.92

Offenlegungstag: 29. 7.93

Veröffentlichungstag der Patenterteilung:

6.11.97

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

Mannesmann Rexroth GmbH, 97816 Lohr, DE

(74) Vertreter:

Wagner, K., Dipl.-Ing.; Geyer, U., Dipl.-Phys. Dr. rer. nat., Pat.-Anwälte, 80538 München

(72) Erfinder:

Dantigraber, Jörg, 97816 Lohr, DE; Feuser, Alfred, Dr., 97816 Lohr, DE; Kunkel, Helmut, 97859 Wiesthal, DE; Schäffer, Rudolf, 97828 Marktheidenfeld, DE

Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> 39 27 972 A1 DE 38 24 526 A1 DE 31 12 280 A1 DE 30 03 506 A1 EP 02 12 462 A2 EP 01 72 712 A2 SU 12 95 458 A1

SCHMITT, A.: Der Hydraulik-Trainer, Lehr- und Informationsbuch über die Hydraulik. 2. Aufl. 11.80, Herausg.: G.L. Rexroth GmbH, S.145; DE-Buch: »Optoelektronik«, W. Schmidt, O. Feustel, Vogel-Verlag, 1975, S. 164-165;

(A) Proportionalventil mit Ansteuerschaltung und Netzspannungsbetrieb

(5) Proportionalventil, dessen Ausgangsgröße proportional einem elektrischen Eingangssignal ist, wobei das Proportionalventil durch einen eine Magnetspule aufweisenden Proportionalmagneten betätigt ist, der spannungs- oder stromproportional durch ein Steuersignal angesteuert werden kann, wobei die Magnetspule des Proportionalmagneten direkt mit der gleichgerichteten Netzspannung beaufschlagt wird, und eine Ansteuerschaltung (60) sicherstellt, daß die Magnetspule nicht überlastet wird, insbesondere deren maximal zulässiger Stromwert nicht überschritten wird, und wobei die Ansteuerschaltung (60) ein pulsbreiten-moduliertes Ansteuersignal (k) bereitstellt.

Beschr

Die vorliegende Erfindung bezieht sich auf ein Pro-

portionalventil.

Proportional-Wegeventile werden in großem Umfang in der Technik eingesetzt und haben grundsätzlich die gleiche Funktion wie Servoventile. Proporti nal-Wegeventile haben nicht die hohe Genauigkeit und benötigen höhere Eingangsleistungen (10-100 W) sind dafür aber billiger und robuster. Üblicherweise wird der 10 bzw. die Magnet(e) eines Proportionalventils von einem meist getakteten Regelverstärker versorgt, der von einem zumeist 24 V liefernden Netzteil gespeist wird. Vergleiche dazu beispielsweise SCHMITT, A. Der Hydraulik-Trainer, Lehr- und Informationsbuch über die Hy- 15 draulik. 2. Aufl. 11.80, Herausg.: G. L. Rexroth GmbH, S. 145. Nachdem der Proportionalmagnet durch seine Spule eine Induktivität besitzt, ergibt sich nur ein langsamer Stromaufbau im Magneten und somit auch eine langsame Betätigung des zugehörigen Ventils. Besonders bei 20 der Schaltung gemäß Fig. 7. Proportionalmagneten mit niedrigem Widerstand ergibt sich ferner eine hohe Belastung des Netzteils.

Der Erfindung liegt die Aufgabe zugrunde, ein Proportionalventil anzugeben, das bei verbessertem Wirkungsgrad baulich vereinfacht realisiert werden kann.

Zur Lösung dieser Aufgabe werden die im Anspruch

1 genannten Maßnahmen vorgesehen.

Die vorliegende Erfindung sieht somit vor, den Proportionalmagneten direkt mit der gleichgerichteten Netzspannung - also einer Gleichspannung in der 30 Größenordnung von 250 V - zu beaufschlagen und zu betätigen, was den Vorteil hat, daß der Proportionalmagnet schneller anspricht. So kann die Eigenfrequenz des Proportionalmagnetventils von ursprünglich etwa 100 Hz auf 400 Hz gebracht werden. Außerdem kann 35 auf das 24 V Netzteil verzichtet werden.

Während es also beim Betreiben eines Proportionalmagneten mit 24 V zur gewünschten Betätigung des Ventils bis zu beispielsweise 5 msec dauern kann, wird durch das Anlegen der gleichgerichteten wesentlich hö- 40 heren Netzspannung direkt an den Elektromagneten eine wesentlich kürzere Ansprechzeit beispielsweise in

der Größenordnung von 1,25 msec erreicht.

Der durch die gleichgerichtete Netzspannung direkt betätigte Proportionalmagnet kann vorzugsweise der 45 gleiche Proportionalmagnet sein, wie der, der sonst durch die niedrigeren Gleichspannungen von beispielsweise üblicherweise 24 V betätigt wird. Die Erfindung sieht dabei vor, daß der durch die Spule des Proportionalmagneten fließende Strom immer unter dem maxi- 50 mal zulässigen Wert von beispielsweise 3 A liegt. Dies geschieht dadurch, daß man die verhältnismäßig hohe gleichgerichtete Netzspannung entsprechend kurz anlegt und immer dann wieder abschaltet, wenn die Belastungsgrenze des Proportionalmagneten erreicht wird.

Bevorzugte Ausgestaltungen der Erfindung ergeben

sich aus den Patentansprüchen.

Es sei noch bemerkt, daß es aus DE 30 03 506 A1 für Hubmagnete bekannt ist, eine eine einmalige Auslösung eines Schnellschlußventils bewirkende Ansteuerungs- 60 schaltung vorzusehen. Dabei wird im Schaltzeitpunkt an die Magnetspule des Hubmagneten eine Gleichspannung in der Größenordnung von 270 V über eine Kondensatorkaskade angelegt.

Weitere Vorteile, Ziele und Einzelheiten der Erfin- 65 dung ergeben sich aus der Beschreibung von Ausführungsbeispielen anhand der Zeichnung. In der Zeich-

nung zeigt:

der erfindungsgemäßen Ansteue-Fig. 1 ein Scha rung eines Propor almagneten;

Fig. 2 ein Schaltbild einer herkömmlichen Ansteue-

rung eines Proportionalmagneten;

Fig. 3 ein Schaltbild, welches ine getaktete Endstufe veranschaulicht wie sie beim Stand der Technik und im Prinzip auch bei der Erfindung anwendbar ist;

Fig. 4 und 5 eine Veranschaulichung der Arbeitsweise

der Schaltung gemäß Fig. 3;

Fig. 6 ein Schaltbild einer konkreten Ansteuerschaltung für einen Proportionalmagneten des Standes der Technik, wie dies in Fig. 2 allgemein dargestellt ist;

Fig. 7 ein Prinzipschaltbild einer Ansteuerschaltung für einen Proportionalmagneten gemäß der Erfindung;

Fig. 8 eine bevorzugte Ausgestaltung der Ansteuerschaltung gemäß Fig. 7;

Fig. 9 eine spezielle Ausgestaltung eines Teils der Fig. 8;

Fig. 10a-10f eine konkrete bevorzugte Ausführung

Fig. 11 und 12 graphische Darstellungen der Arbeitsweisen gemäß der Erfindung und gemäß dem Stand der

Fig. 2 zeigt eine Ansteuerschaltung 2 für einen Ma-25 gneten 1, der insbesondere ein Proportionalmagnet eines (nicht gezeigten) Proportional-Wegeventils ist. Der Ansteuerschaltung 2 wird ein Soll-Signal S zugeführt. Entsprechend diesem Soll-Signal S verschiebt der Anker des Magneten 1 den Kolben eines Ventils, beispielsweise eines Proportionalwegeventils mehr oder weniger. Die Ansteuerschaltung 2 wird von einem Netzteil 3 mit einer Gleichspannung von 24 V beliefert, die sowohl zur Versorgung der Komponenten der Ansteuerschaltung 2 als auch dazu dient um an den Magneten 1 angelegt zu werden. Das Netzteil 3 liegt an der Netzspannung, die beispielsweise 220 V beträgt.

Fig. 1 veranschaulicht das erfindungsgemäße Prinzip. Hier wird der Proportionalmagnet 1 durch eine Ansteuerschaltung 4 in der Weise betrieben, daß entsprechend dem zugeführten Soll-Wert S zur Verschiebung des Ventilkolbens durch den Magneten 1 bewirkt wird, wobei an diesen die Netzspannung von 220 V (oder 110 V) sozusagen direkt angelegt werden kann. Konkret gesprochen wird die gleichgerichtete Netzspannung an den Magneten angelegt, wobei in der Ansteuerschaltung 4 Schaltungen vorgesehen sind, die eine Überla-

stung des Magneten 1 unmöglich machen.

Bevor auf die konkretere Ausgestaltung (Fig. 7 und 8) der erfindungsgemäßen Ansteuerschaltung nach Fig. 1 eingegangen wird, sei zunächst anhand der Fig. 3 bis 6 Stand der Technik erläutert.

Aus der DE 38 24 526 A1 ist es bekannt eine getaktete Endstufe gemäß Fig. 3 einzusetzen. Man erkennt in Fig. 3 wiederum den Magneten 1 und sieht, daß die Ansteuerschaltung 2 einen Stromregler 6, einen Taktgenerator 7, ein Spannungs-/Stromwandler 8 und parallel zum Magneten 1 geschaltet eine Diode 9 aufweist. Aus den Fig. 4 und 5 ergibt sich ohne weiteres die Arbeitsweise der Ansteuerschaltung gemäß Fig. 3.

Fig. 6 zeigt nun ein Proportional-Wegeventil 10, das durch zwei Magnete A und B angesteuert werden kann. Die Ansteuerschaltung oder der Proportionalverstärker 2 befinden sich hier auf einer Schaltungskarte, wobei sich die Funktion dieses Proportionalverstärkers 2 wie

folgt darstellt.

Aus dem Verbrauchernetz mit 220 V/380 V wird über Transformatoren mit Gleichrichter (nicht gezeigt) die Versorgungsspannung UV der Proportionalverstärker3

karte 11 erzeugt.

An den Klemmen 22ac (+) und 28ac (0 V) wird die Versorgungs-Spannung UV angelegt. Auf der Verstärkerkarte 11 wird diese Versorgungsspannung UV geglättet und aus dieser eine stabilisierte Spannung von ±9V gebildet. Die stabilisierte Spannung ±9 V dient

a) für Versorgung der externen Potentiometer bzw. der internen Potentiometer abgreifbar an 26a +9 V und an 24a -9V.

b) für die Versorgung der internen Operationsverstärker.

Auf der Verstärkerkarte sitzen 4 Potentiometer zur Sollwerteinstellung P1 bis P4 (13). Um eine Sollwert- 15 spannung einzustellen müssen die 4 Sollwerteingänge Klemme 20c, 20a, 14a, 14c mit der stabilisierten Spannung +9 V Klemme 26a oder -9V Klemme 24a verbunden werden. Werden die Sollwerteingänge auf +9 V gelegt, so wird der Magnet A aktiv. Der Magnet A liegt 20 an den Klemmen 2a und 32a. Werden die Sollwerteingänge auf -9V gelegt, so wird der Magnet B aktiv. Der Magnet B liegt auf den Klemmen 2c und 32c. Die eingestellten Sollwertspannungen P1 ... P4 werden über die Relais 12 abgerufen. Sie liegen an den Klemmen 12c, 12a, 16a, 16c an. Die Abrufspannung der Relais kann an 24c abgegriffen werden und über potentialfreie Kontakte auf die Relaiseingänge 12c, 12a, 16a, 16c gelegt werden. Bei Abruf der Sollwertpotentiometer P1 bis P4 wird am Eingang des Rampenbildners 50 ein Sprungsig- 30 nal erzeugt. Der Rampenbildner 50 bildet aus einem sprunghaft ansteigenden Eingangssignal ein langsam ansteigendes Ausgangssignal. Die Anstiegszeit (Steilheit) des Ausgangssignals ist über das Potentiometer PS (Rampenzeit) einstellbar. Die angegebene Rampenzeit 35 von maximal 5 sek. kann nur über den vollen Spannungsbereich (von 0V bis ±6V, gemessen an den Sollwert-Meßbuchsen) erreicht werden. Eine Sollwertspannung von ±9 V am Eingang ergibt eine Spannung von ±6 V an den Sollwert-Meßbuchsen. Wird ein kleinerer 40 Sollwert als ±9 V auf den Eingang des Rampenbildners 50 geschaltet, so verkürzt sich die Rampenzeit.

Das Ausgangssignal des Rampenbildners 50 geht auf den Summierer 51 und auf den Sprungfunktionsbildner 52. Der Sprungfunktionsbildner 52 erzeugt an seinem 45 Ausgang eine Sprungfunktion, die im Summierer 51 auf das Ausgangssignal des Rampenbildners 50 aufaddiert wird. Die Sprungfunktion wird zum schnellen Durchfahren der Nullüberdeckung des Ventils 10 benötigt.

Dieser Sprung wird bei kleinen Sollwertspannungen 50 (kleiner 100 mV) unwirksam. Steigt die Sollwertspannung auf einen höheren Wert an, gibt der Sprungfunktionsbildner 52 ein konstantes Signal ab.

Das Ausgangssignal des Summierers 51 wird als Sollwert dem PID-Regler 58 zugeführt.

Der Oszillator 54 wandelt ein Gleichspannungssignal in eine Wechselspannung (Frequenz 2,5 kHz) um. Dieses Signal wirkt auf den induktiven Weggeber 55.

Der Weggeber 55 verändert in Abhängigkeit von der Stellung des Ventilkolbens die Wechselspannung. Das 60 Wechselspannungssignal wird vom Demodulator 56 in ein Gleichspannungssignal zurückgeführt.

Der Anpaßverstärker 57 verstärkt die Gleichspannung auf eine maximale Spannung von ±6 V (max. Kolbenhub). Das Ausgangssignal des Anpaßverstärkers 57 wird als Istwert dem PID-Regler 58 zugeführt.

Der PID-Regler 58 ist speziell auf den Ventiltyp optimiert. Er gibt in Abhängigkeit von dem Unterschied

zwischen Soll- ungewert ein Signal ab. Dieses Ausgangssignal steuert die Endstufe 59 des Verstärkers.

Fig. 7 zeigt eine erfindungsgemäße Ansteuerschaltung 60 für einen Proportionalmagneten 1. Der Elektromagnet 1 betätigt mit seinem Stößel ein Proportionalventil 10. Die Ansteuerschaltung weist einen Str mregler 61 auf, der ein Stellsignal G beispielsweise ein Spannungssignal an eine Signalverarbeitungsschaltung 62 liefert. Das Ausgangssignal der Signalverarbeitungsschaltung 62 ist mit K bezeichnet und wird in eine Netzspannungsschaltung 63 eingegeben um diese zu veranlassen ein dem Ausgangssignal K entsprechendes Ausgangssignal L an den Proportionalelektromagneten 1 anzulegen. Erfindungsgemäß ist das Ausgangssignal L unmittelbar aus der Netzspannung vorzugsweise durch Gleichrichtung gebildet und wird auch in der Größenordnung der Netzspannung an den Elektromagneten 1 angelegt. Vorzugsweise ist die Signalverarbeitungsschaltung 62 derart ausgelegt, daß die zur Verfügung stehende gleichgerichtete Netzspannung immer nur kurze Zeit an den Elektromagneten 1 angelegt wird, wodurch der im Elektromagneten 1 fließende Strom auf einem zulässigen Niveau gehalten wird. Dies ist ohne weiteres möglich, da beim Anlegen der Spannung an den Elektromagneten 1 der Strom nach einer E-Funktion ansteigt und somit zu einem Zeitpunkt abgeschaltet werden muß, wo die Belastung zu groß wird. Vergleiche dazu die Fig. 11 und 12 wo dieser Vorgang im Vergleich mit dem Stand der Technik dargestellt ist.

Als Beispiel sei erwähnt, daß ein üblicher Elektromagnet 1 mit nicht mehr als 3 A belastet werden darf. Die Signalverarbeitungsschaltung 62 wird dann derart ausgelegt, daß der Strom in der Spule des Elektromagneten 1 niemals mehr als 3 A oder 3,5 A übersteigt. Kurz vor Erreichen des Grenzwertes wird dann die Spannung einfach abgeschaltet.

Durch das Anlegen einer gegenüber den üblichen 24 V verhältnismäßig hohen Spannung von etwa 220 V erreicht man ein wesentlich schnelleres Ansprechen des Elektromagneten 1. Ferner kann auf diese Weise die Eigenfrequenz des Magnetventils von herkömmlicherweise 100 Hz auf ungefähr 400 Hz gesteigert werden.

Wie bei einer Regelung üblich wird der in den Elektromagneten 1 fließende Strom fortlaufend gemessen und das entsprechende Istwertsignal D wird mit einem Sollwertsignal verglichen. Sobald zwischen beiden, hervorgerufen durch eine Störgröße, ein Unterscheid auftritt, wird eine geeignete Verstellung vorgenommen, welche die Regelgröße und damit das Istwertsignal wieder mit dem Sollwertsignal in Übereinstimmung bringen soll. Der Stromregler 61 hat die Aufgabe eine Stellgröße in der Form eines Stellsignals G zu erzeugen.

Die Netzspannungsschaltung 63 weist vorzugsweise ein Transistormodul 64 und eine Gleichrichtungsschaltung 650 auf. An das Transistormodul wird über Leitungsmittel 66 eine Gleichspannung von beispielsweise 300 V angelegt. Diese verglichen mit 24 V verhältnismäßig hohe Gleichspannung wird über das Transistormodul 64 vorzugsweise getaktet derart angelegt, daß die mögliche Strombelastung des Elektromagneten 1 nicht überschritten wird. Vergleiche Fig. 11 und 12.

Fig. 8 zeigt eine bevorzugte Ausgestaltung des Ausführungsbeispiels gemäß Fig. 7. Speziell ist in Fig. 8 dargestellt, wie die Signalverarbeitungsschaltung 60 vorzugsweise aufgebaut sein kann. Zudem ist in Fig. 8 noch im einzelnen dargestellt wie das Istwertsignal D vorzugsweise erfaßt wird.

Zunächst sei auf die Signalverarbeitungsschaltung 60

eingegangen.

Das vom Stromregler 61 genererte Stellsignal G liegt vorzugsweise in der Form einer Spannung vor und es wird in eine Pulsbreiten-Modulationsschaltung 65 eingespeist. In der Pulsbreiten-M dulationsschaltung 65 wird die die Stellgröße betreffende Information in der Weise kodiert, wie dies in den Fig. 4 und 5 erläutert wurde. Die Pulsbreiten-Modulationsschaltung 65 gibt demgemäß ein impulsbr iten-moduliertes Stellsignal H ab. In einer Signalaufbereitungsschaltung 66 wird das 10 Signal H in ein Ausgangssignal I umgewandelt, welches aus vier impulsbreiten-modulierten Stellsignalen besteht. Diese vier impulsbreiten-modulierten Stellsignale sind in der noch zu beschreibenden Fig. 9 mit U+, U-, V+ und V- bezeichnet. Diese vier impulsbreiten-mo- 15 dulierten Stellsignale werden über einen Optokoppler 67 in ein Ausgangssignal K umgewandelt, welches seinerseits aus vier impulsbreiten-modulierten Steuersignalen besteht. Diese Steuersignale sind in Fig. 9 mit BU bzw. EU, BV bzw. EV, BX bzw. EX und BY bzw. EY 20 bezeichnet. Die Optokopplerschaltung 67 sieht eine galvanische Trennung zwischen den Signalen I und K vor. Das Signal K schaltet das Transistormodul 64 entsprechend der in seinen vier impulsbreiten-modulierten Signalen enthaltenen Information, d. h. der Größe des 25 Stellsignals.

Die Optokopplerschaltung 67 dient ferner dazu durch eine Gegentakterzeugungsschaltung 69 und eine Übertragerschaltung 70 dem Signal K bzw. seinen vier impulsbreiten-modulierten Einzelsignalen eine Taktfre- 30

quenz aufzuprägen.

Zur galvanisch getrennten Istwerterfassung (vorzugsweise Stromistwerterfassung) ist ein Hallsensor oder ein Trennverstärker mit dem Magneten 1 verbunden, dessen Ausgangssignal A einer Offset-Abgleich- und Pegelanpassungsschaltung 73 zugeführt wird. Das Ausgangssignal D der Offset-Abgleich- und Pegelanpassungsschaltung schwankt dann um einen Nullpunkt beispielsweise zwischen 0 V und +2 V.

Fig. 9 veranschaulicht im einzelnen die Netzspan- 40 nungsgleichrichtungsspannung 650, die Optokopplerschaltung 67 und die Signalaufbereitungsschaltung 66. Man erkennt, daß die vier das Signal I bildenden Ausgangssignale jeweils einen Optokoppler IC1, IC2, IC3 und IC4 zugeführt werden. Die Gegentakterzeugung 69 45 ist mit den einzelnen Optokopplern über Übertrager verbunden. Die Ausgänge der Optokoppler IC1 bis IC4 liegen an den Steuereingängen von vier Transistoren T1, T2, T3 und T4. Entsprechend den vier durch die Optokoppler IC1, IC2, IC3 und IC4 angelegten impuls- 50 breiten-modulierten Signalen, die vorzugsweise Stromsignale sind, werden die Transistoren T1 bis T4 geschaltet, so daß diese über Ausgangsleitungen 75, 76 den Elektromagneten 1 erregen, und zwar mit einer vorzugsweise in der Größenordnung von ungefähr 300 V 55 Gleichspannung liegenden Spannung.

Die Fig. 10a-10f zeigen anhand eines Schaltbildes Einzelheiten der in den Fig. 8 und 9 gezeigten Schaltungen. Einer ins Detail gehenden Beschreibung dieser Schaltung wird nicht für notwendig erachtet, da alle 60 verwendeten Symbole herkömmlich und dem Fach-

mann ohne weiteres verständlich sind.

Patentansprüche

1. Proportionalventil, dessen Ausgangsgröße proportional einem elektrischen Eingangssignal ist, wobei das Proportionalventil durch einen eine Ma-

gnetspule autenden Proportionalmagneten betätigt ist, der spannungs- oder stromproportional durch ein Steuersignal angesteuert werden kann, wobei die Magnetspule des Proportionalmagneten direkt mit der gleichgerichteten Netzspannung beaufschlagt wird, und eine Ansteuerschaltung (60) sicherstellt, daß die Magnetspule nicht überlastet wird, insbesondere deren maximal zulässiger Stromwert nicht überschritten wird, und wobei die Ansteuerschaltung (60) ein pulsbreiten-moduliertes Ansteuersignal (k) bereitstellt.

2. Proportionalventil nach Anspruch 1, dadurch gekennzeichnet, daß die Ansteuerschaltung (60) einen mit der Magnetspule verbundenen Stromregler (61) aufweist, der ein Stellsignal (G) an eine Signalverarbeitungsschaltung (62) liefert, die ihrerseits eine Netzspannungsschaltung (63) veranlaßt, die gleichgerichtete Netzspannung an die Magnetspule anzulegen, und zwar für eine dem vom Stromregler (61) gelieferten Stellsignal (6) entsprechende

Zeit.

3. Proportionalventil nach Anspruch 2, dadurch gekennzeichnet, daß die Netzspannungsschaltung (63) eine Gleichrichtungsschaltung (650) aufweist, sowie ein Transistormodul (64), welches durch di Signalverarbeitungsschaltung (62) derart gesteuert wird, daß die von der Gleichrichtungsschaltung (650) kommende gleichgerichtete Netzspannung für die gewünschten Zeiträume direkt an die Magnetspule angelegt wird.

4. Proportionalventil nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Signalverarbeitungsschaltung (62) eine Pulsbreiten-Modulationsschaltung (65) aufweist, um ein impulsbreiten-moduliertes Signal (H) zu erzeugen, welches nach weiterer Signalaufbereitung die Steuerung der Netz-

spannungsschaltung (63) bewirkt.

5. Proportionalventil nach Anspruch 4, dadurch gekennzeichnet, daß die Ansteuerschaltung (60) anschließend an die Pulsbreiten-Modulationsschaltung (65) eine Signalaufbereitungsschaltung (66) aufweist, welche aus dem impulsbreiten-modulierten Signal (H) vier impulsbreiten-modulierte Signale herstellt um diese zur Steuerung des Transistorsmoduls (64) zu verwenden, welches seinerseits vier Transistoren (T1 bis T4) aufweist.

6. Proportionalventil nach Anspruch 5, dadurch gekennzeichnet, daß die Ansteuerschaltung (60) eine Optokopplerschaltung (67) aufweist, welche eine galvanisch getrennte Signalübertragung zwischen der Signalaufbereitungsschaltung (66) und dem

Transistormodul (64) vorsieht.

7. Proportionalventil nach Anspruch 6, dadurch gekennzeichnet, daß die Optokopplerschaltung (67) mit Gegentaktübertragermitteln (69, 70) zur galvanisch getrennten Übertragung der Ansteuerleistung verbunden ist.

8. Proportionalventil nach einem der Ansprüche 1-7, dadurch gekennzeichnet, daß zur Bildung eines Strom-Istwertsignals eine Hallsensorschaltung

(72) mit der Magnetspule verbunden ist.

9. Proportionalventil nach Anspruch 8, dadurch gekennzeichnet, daß dem Hallsensor (72) eine Offset-Abgleich- und Pegelanpassungsschaltung (73) nachgeschaltet ist, um das Strom-Istwertsignal in einem um einen Nullpunkt schwankenden Bereich vorzusehen.

10. Proportionalventil nach Anspruch 8, dadurch

gekennzeichnet, daß ans eines Hallsensors zur Potentialtrennung ein Trennverstärker verwendet wird.

Hierzu 14 Seite(n) Zeichnungen

- L erseite -

.

dichungstag: 6. N vember 1997

Spulenstromregelung TTS/Blatt 2 Transistormodul

Fig. 10f

Hallsensorversorgungsspannung

Uvhall UHall - X3/9 Hallspannung

FIG 10e

Nummer: Int. C ichungstag: 6. November 1997

DE 42 01 652 C2 H01F 7/18

Spulenstromregelung TTS/Blatt 1 3×ZK8 432/503 alle Dioden BYS 21

Fig.10d

Fig.10c

Numm r: DE 42 01 652 C2
Int. CL6: H 01 F 7/18
Verice Lichungstag: 6. November 1997

Fig. 10b

Nummer:

DE 42 01 652 C2 H 01 F 7/18 dichungstag: 6. November 1997

Nummer: Int. Classichungstag:

DE 42 01 652 C2 H 01 F 7/18 6. Nov mber 1997

Fig. 5

Ansteuerelektronik für Proportionalventile

b) Endstufe teilweise ausgesteuert

Fläche entspricht Fläche,

daraus ergibt sich leff für den Magneten.

Die Pulsbreite (Einschaltdauer) ergibt als Fläche die Höhe des effektiven Ausgangswertes Fig. 4

Ansteuerelektronik für Proportionalventile

Fläche entspricht Fläche,

daraus ergibt sich leff für Magnetventil.

Die getaktete Spannung ergibt über den Widerstand des Magneten einen bestimmten Strom leff.

