Оценката Ви ще е равна на 2+ броя точки, които получите. Време за работа: 3 часа. Успех. Ще считаме, че навсякъде работим върху вероятностно пространство $(\Omega, \mathcal{F}, \mathbb{P})$.

Ако имате нужда, може да използвате, че $1^2 + 2^2 + \cdots + n^2 = n(n+1)(2n+1)/6$.

Задача 1. Да предположим, че всяка секунда стреличка попада в случайно квадратче на решетката по-долу.

- (0.5 т.) Колко е очакваното време докато във всяко квадратче има поне по една стреличка?
- \bullet (0.3 т.) Колко е очакваното време до първия момент, в който има две стрелички в някое от квадратчетата?
- (0.2 т.) Можете ли да обобщите, ако решетката е $n \times n$?

Задача 2. Нека (X_1,\ldots,X_n) е случайна пермутация на числата от множеството $\{1,2,\ldots,n\}$ и $S=X_1+\cdots+X_n.$

- 1. (0.1 т.) Намерете $\mathbb{E}S$ и DS.
- 2. (0.1 т.) Докажете, че за две случайни величини X и Y е изпълнено D(X+Y) = DX+DY+2Cov(X,Y).
- 3. (0.4 т.) Изразете $\mathbb{E}S$ чрез $\mathbb{E}X_i$. Намерете $\mathbb{E}X_i$, $\mathbb{E}X_i^2$ и DX_i за всяко i.
- 4. (0.4 т.) Изразете DS чрез DX_i и $Cov(X_i,X_j)$. Намерете $Cov(X_i,X_j)$ за всеки i,j.

Задача 3. Нека $U_1, V_1, U_2, V_2, \dots$ са независими U(0,1) сл. вел и нека $M_i = \max(U_i, V_i)$.

- (0.75 т.) Намерете $D(M_1 + \cdots + M_n)$ за всяко n;
- (0.25 т.) Дайте приближение за разпределението на $M_1 + \cdots + M_n$ за големи n.

Задача 4. 1. (0.5 т.) Нека X_1, \ldots, X_n са независими еднакво разпределени сл. вел. с плътност $f_X(x) = c/x^4$ за x>1 и 0 иначе. Ако $S_n=X_1+\cdots+X_n$, намерете константите a,b и c, така че $(S_n-a)/b$ е близко до стандартно нормално разпредление, като обосновете отговора си.

2. (0.5 т.) Нека X_1, \dots, X_{40} са независими Poi(10) сл. вел. Намерете константа a, такава че $X_1 + \dots + X_{40} \in (a, \infty)$ с вероятност поне 99%.