

Skript Operatoralgebren

Mitschrift der Vorlesung "Operatoralgebren" von Prof. Dr. Wilhelm Winter

Jannes Bantje

3. November 2015

Aktuelle Version verfügbar bei

GitHub

https://github.com/JaMeZ-B/latex-wwu

✓

GitHub ist eine Internetplattform, auf der viele OpenSource-Projekte gehostet werden. Diese Plattform nutzen wir zur Zusammenarbeit, also findet man hier neben den PDFs auch die TFX-Dateien. Außerdem ist über diese Plattform auch direktes Mitarbeiten möglich, siehe nächste Seite.

Sciebo die Campuscloud

https://uni-muenster.sciebo.de/public.php?service=files&t=965ae79080a473eb5b6d927d7d8b0462

Sciebo ist ein Dropbox-Ersatz der Hochschulen in NRW, der von der Uni Münster in leitender Position auf Basis der OpenSource-Software Owncloud aufgebaut wurde. Wenn man auf den Link klickt, kann man die Freigabe zum eigenen Speicher hinzufügen und hat dann immer automatisch die aktuellste Version.

Bittorrent Sync B6WH2DISQ5QVYIRYIEZSF4ZR2IDVKPN3I

BTSync ist ein peer-to-peer Dateisynchronisations-Tool. Dabei werden die Dateien nur auf den Computern der Teilnehmer an einer Freigabe gespeichert. Ein RasPi ist permanent online, sodass stets die aktuellste Version verfügbar ist. Clients ☑ gibt es für jedes Betriebssystem. Zugang ist über das obige "Secret" bzw. den QR-Code möglich.

Vorlesungshomepage

https://wwwmath.uni-muenster.de/u/wilhelm.winter/wwinter/operatoralgebren.html Hier ist ein Link zur offiziellen Vorlesungshomepage.

Vorwort — Mitarbeit am Skript

Dieses Dokument ist eine Mitschrift aus der Vorlesung "Operatoralgebren, WiSe 2015", gelesen von Prof. Dr. Wilhelm Winter. Der Inhalt entspricht weitestgehend dem Tafelanschrieb. Für die Korrektheit des Inhalts übernehme ich keinerlei Garantie! Für Bemerkungen und Korrekturen – und seien es nur Rechtschreibfehler – bin ich sehr dankbar. Korrekturen lassen sich prinzipiell auf drei Wegen einreichen:

- ▶ Direktes Mitarbeiten am Skript: Den Quellcode poste ich auf GitHub (siehe oben), also stehen vielfältige Möglichkeiten der Zusammenarbeit zur Verfügung: Zum Beispiel durch Kommentare am Code über die Website und die Kombination Fork + Pull Request. Wer sich verdient macht oder ein Skript zu einer Vorlesung, die ich nicht besuche, beisteuern will, dem gewähre ich gerne auch Schreibzugriff.
 - Beachten sollte man dabei, dass dazu ein Account bei github.com notwendig ist, der allerdings ohne Angabe von persönlichen Daten angelegt werden kann. Wer bei GitHub (bzw. dem zugrunde liegenden Open-Source-Programm "git") verständlicherweise Hilfe beim Einstieg braucht, dem helfe ich gerne weiter. Es gibt aber auch zahlreiche empfehlenswerte Tutorials im Internet.¹
- ▶ *Indirektes* Mitarbeiten: T_EX-Dateien per Mail verschicken.
 - Dies ist nur dann sinnvoll, wenn man einen ganzen Abschnitt ändern möchte (zB. einen alternativen Beweis geben), da ich die Änderungen dann per Hand einbauen muss! Ich freue mich aber auch über solche Beiträge!

Anmerkung

Innerhalb dieser Mitschrift wird man öfter den Ausdruck "Warum?" finden. Dies sind vom Dozenten bewusst weggelassene Details, die zu verstärktem Mitdenken beim Lesen animieren sollen. Oftmals sind dies schon aus vorherigen Semestern bekannte Sachverhalte. Nur an wenigen Stellen habe ich die fehlenden Details hinzugefügt.

 $^{^1\,}zB.\ https://try.github.io/levels/1/challenges/1{\hbox{$\sc C}}, ist auf Englisch, aber dafür interaktives \ Learning By Doing \ Auf Control of the control$

Inhaltsverzeichnis

1 Spektraltheorie in Banachalgebren	1
2 C*-Algebren und Funktionalkalkül	6
Index	A
Abbildungsverzeichnis	В
Todo list	В

IV

1 Spektraltheorie in Banachalgebren

- **1.1 Definition.** Eine *Banachalgebra* ist eine vollständige normierte Algebra. Für die Multiplikation gilt also $\|ab\| \le \|a\| \cdot \|b\|$ Wir betrachten in dieser Vorlesung fast ausschließlich Algebren über \mathbb{C} . Eine Banachalgebra heißt *unital*, falls sie ein Einselement $\mathbb{1}$ mit $\|\mathbb{1}\| = 1$ enthält.
- **1.2 Definition**. Für eine unitale C-Algebra A setzen wir

$$Inv(A) := \{ \alpha \in A \text{ invertierbar} \}$$
$$\sigma(\alpha) := \sigma_A(\alpha) := \{ \lambda \in \mathbb{C} \mid \lambda \cdot \mathbb{1} - \alpha \notin Inv(A) \}$$

 $\sigma(a)$ heißt *Spektrum* von a.

das Vorzeichen der Differenz spielt für die Definition der Menge keine Rolle

1.3 Bemerkung. Sei A wie oben und $a, b \in A$. Dann gilt

$$1 - ab \in Inv(A) \iff 1 - ba \in Inv(A)$$

Beweis: Durch simples Nachrechnen verifiziert man, dass $(1-ba)^{-1} = 1+b(1-ab)^{-1}a$ gilt. \Box

1.4 Scitz. Sei A eine unitale \mathbb{C} -Algebra und $\alpha \in A$ mit $\sigma(\alpha) \neq \emptyset$. Sei weiter $\mathfrak{p} \in \mathbb{C}[Z]$ ein Polynom. Dann gilt

$$\sigma(p(a)) = p(\sigma(a))$$

Beweis: Die Aussage ist trivial, falls $\mathfrak p$ konstant ist. Sei also $\mathfrak p$ nicht konstant. Zu $\mathfrak \mu \in \mathbb C$ existieren $\lambda_0, \ldots, \lambda_n \in \mathbb C$ mit $\lambda_0 \neq 0$ und $\mathfrak p(z) - \mathfrak \mu = \lambda_0 \cdot (z - \lambda_1) \cdot \ldots \cdot (z - \lambda_n)$, also

$$p(\alpha) - \mu = \lambda_0 \cdot (\alpha - \lambda_1) \cdot \ldots \cdot (\alpha - \lambda_n)$$

Damit gilt: $p(a) - \mu$ ist genau dann invertierbar, wenn $a - \lambda_1, \dots, a - \lambda_n$ invertierbar sind. Also

$$\begin{split} \mu \in \sigma \big(p(\alpha) \big) &\iff \lambda_i \in \sigma(\alpha) \text{ ist für ein } i \in \{1, \dots, n\} \\ &\iff p(\lambda) - \mu = 0 \text{ für ein } \lambda \in \sigma(\alpha) \\ &\iff p(\lambda) = \mu \text{ für ein } \lambda \in \sigma(\alpha) \end{split}$$

Somit folgt dann $\sigma(p(a)) = p(\sigma(a))$.

1.5 Satz. Sei A eine unitale Banachalgebra und $a \in A$. Falls ||a|| < 1, so ist 1 - a invertierbar und

$$(\mathbb{1}-\alpha)^{-1} = \sum_{n=0}^{\infty} \alpha^n$$
 (Neumannsche Reihe)

Beweis: Die Folge der Partialsummen $\left(\sum_{n=0}^k \mathfrak{a}^n\right)_{k\in\mathbb{N}}\subset A$ ist eine Cauchyfolge (warum?), sodass wegen Vollständigkeit die unendliche Summe existiert. Es gilt dann

$$(\mathbb{1} - a) \left(\sum_{n=0}^{\infty} a^n \right) \xleftarrow{k \to \infty} (\mathbb{1} - a) \left(\sum_{n=0}^{k} a^n \right) = \mathbb{1} - a^{k+1} \xrightarrow{k \to \infty} \mathbb{1}$$

Die Summe ist also ein Rechtsinverses. Genauso folgt, dass sie auch ein Linksinverses ist. \Box

1.6 Korollar. Für jede unitale Banachalgebra A ist $Inv(A) \subset A$ offen.

Beweis: Falls $a \in \text{Inv}(A)$ und $\|b - a\| < \|a^{-1}\|^{-1}$, so gilt $\|ba^{-1} - 1\| \le \|b - a\| \cdot \|a^{-1}\| < 1$. Also ist auch $-(1 - (ba^{-1} - 1)) = ba^{-1}$ invertierbar nach Satz 1.5 und damit auch $b \in \text{Inv}(A)$, denn b ist ein Linksinverses für $a^{-1}(ba^{-1})^{-1} \in \text{Inv}(A)$.

1.7 Definition. Sei A eine unitale Banachalgebra. Für $a \in A$ definieren wir den *Spektralradius* durch

$$r(\alpha) := \sup_{\lambda \in \sigma(\alpha)} |\lambda|$$

1.8 Proposition. Seien $a \in A$ wie oben. Dann ist das Spektrum $\sigma(a)$ kompakt und $r(a) \leq ||a||$.

Beweis: Angenommen $|\lambda| > \|\alpha\|$, dann gilt $\|\lambda^{-1}\alpha\| < 1$, also ist $\mathbb{1} - \lambda^{-1}\alpha$ invertierbar nach Satz 1.5 und damit auch $\lambda - \alpha \iff \lambda \notin \sigma(\alpha)$. Insgesamt folgt, dass $r(\alpha) \leqslant \|\alpha\|$ ist. Es ist $\mathbb{C} \setminus \sigma(\alpha) \subset \mathbb{C}$ offen, da $\operatorname{Inv}(A) \subset A$ offen ist. Damit muss $\sigma(\alpha)$ nach Heine-Borel kompakt sein.

1.9 Scitz. Sei A eine unitale Banachalgebra. Für jedes $a \in A$ ist $\sigma(a)$ nichtleer.

Beweis: Falls $|\lambda| > \|a\|$, so existiert $(1 - \lambda^{-1}a)^{-1}$ und $(\lambda - a)^{-1}$ mit der gleichen Begründung wie eben. Es gilt dann

$$(\lambda - \alpha)^{-1} = \lambda^{-1} \left(1 - \lambda^{-1} \alpha \right)^{-1} \stackrel{1.5}{=} \lambda^{-1} \left(\sum_{n=0}^{\infty} \lambda^{-n} \alpha^n \right)$$

und weiter

$$\|(\lambda - \alpha)^{-1}\| \leqslant |\lambda^{-1}| \cdot \sum_{n=0}^{\infty} (|\lambda^{-1}| \cdot \|\alpha\|)^n \xrightarrow{|\lambda| \to \infty} 0$$
 [*]

da man die Summe als geometrische Reihe mit 2 abschätzen kann, falls $|\lambda|>2\cdot\|\alpha\|$ ist. Sei nun $\lambda_0\in\mathbb{C}\setminus\sigma(\alpha)$ und $|\lambda-\lambda_0|<\|(\alpha-\lambda_0)^{-1}\|^{-1}$. Dann gilt

$$\|(\lambda-\lambda_0)(\alpha-\lambda_0)^{-1}\|\leqslant |\lambda-\lambda_0|\cdot \|(\alpha-\lambda_0)^{-1}\|<1$$

Also ist wieder nach Satz 1.5 $\left(\mathbb{1}-(\lambda-\lambda_0)(\alpha-\lambda_0)^{-1}\right)^{-1}=\sum_{n=0}^{\infty}(\lambda-\lambda_0)^n(\alpha-\lambda_0)^n$ und

$$\begin{split} -\sum_{n=0}^{\infty} (\lambda-\lambda_0)^n (\alpha-\lambda_0)^{-(n+1)} &= (\alpha-\lambda_0)^{-1} \big((\lambda-\lambda_0)(\alpha-\lambda_0)^{-1} - \mathbb{1} \big)^{-1} \\ &= \Big((\lambda-\lambda_0) \underbrace{(\alpha-\lambda_0)^{-1} (\alpha-\lambda_0)}_{=\mathbb{1}} - (\alpha-\lambda_0) \Big)^{-1} = (\lambda-\alpha)^{-1} \end{split}$$

Für ein stetiges Funktional $\varphi \in A^*$ erhalten wir

$$\phi\big((\lambda-\alpha)^{-1}\big) = \sum_{n=0}^{\infty} -\phi\Big((\alpha-\lambda_0)^{-(n+1)}\Big) \cdot (\lambda-\lambda_0)^n$$

falls $|\lambda-\lambda_0|<\|(\alpha-\lambda_0)^{-1}\|^{-1}$. Daher ist $\lambda\mapsto\phi\big((\lambda-\alpha)^{-1}\big)$ holomorph auf $\mathbb{C}\setminus\sigma(\alpha)$. Falls $\sigma(\alpha)=\emptyset$, so ist $\lambda\mapsto\phi\big((\lambda-\alpha)^{-1}\big)$ ganz, d.h. holomorph auf ganz \mathbb{C} . Wegen [*] und dem Satz von Liouville¹ ist dann $\phi\big((\lambda-\alpha)^{-1}\big)=0$ für alle $\lambda\in\mathbb{C}$. Aber $\phi\in A^*$ war beliebig, und wegen Hahn-Banach gilt $(\lambda-\alpha)^{-1}=0$. Dies ist ein Widerspruch.

¹ siehe https://de.wikipedia.org/wiki/Satz_von_Liouville_%28Funktionentheorie%29

1.10 Satz. Sei A eine unitale Banachalgebra. Für $a \in A$ gilt dann

$$r(a) = \lim_{n \to \infty} \|a^n\|^{\frac{1}{n}}$$

Beweis: Sei $\varphi \in A^*$ ein stetiges Funktional. Wir haben im Beweis von Satz 1.9 gesehen, dass die Zuordnung $\lambda \mapsto \phi \left((\lambda - \alpha)^{-1} \right)$ analytisch ist für $\lambda \notin \sigma(\alpha)$. Insbesondere gilt dies für $|\lambda| > r(\alpha)$. Dann ist auch $\lambda \mapsto \phi \left((\lambda^{-1} - \alpha)^{-1} \right)$ analytisch für $0 < |\lambda| < 1/r(\alpha)$, ebenso $\lambda \mapsto \phi \left((\mathbb{1} - \lambda \alpha)^{-1} \right)$. Die Singularität bei 0 ist hebbar, also definiert $f(\lambda) := \phi \left((\mathbb{1} - \lambda \alpha)^{-1} \right)$ eine analytische Funktion für $|\lambda| < 1/r(\alpha)$. Dann existiert eine Folge $(\alpha_n)_{n \in \mathbb{N}} \subset \mathbb{C}$ mit $f(\lambda) = \sum_{n=0}^{\infty} \alpha_n \cdot \lambda^n$ für $|\lambda| < 1/r(\alpha)$. Die Konvergenz ist absolut und gleichmäßig, also gilt insbesondere $|\alpha_n \cdot \lambda^n| \xrightarrow{n \to \infty} 0$. Falls andererseits $|\lambda| < 1/\|\alpha\| \le 1/r(\alpha)$ ist, so gilt

$$f(\lambda) = \phi \left((\mathbb{1} - \lambda \cdot \alpha)^{-1} \right) \stackrel{1.5}{=} \phi \left(\sum_{n=0}^{\infty} (\lambda \cdot \alpha)^n \right) = \sum_{n=0}^{\infty} \phi \left((\lambda \cdot \alpha)^n \right) = \sum_{n=0}^{\infty} \phi(\alpha^n) \cdot \lambda^n$$

also $\alpha_n = \phi(\mathfrak{a}^n)$ für $n \in \mathbb{N}$. Es gilt $\phi(\mathfrak{a}^n) \cdot \lambda^n \xrightarrow{n \to \infty} 0$. Aber $\phi \in A^*$ war beliebig, also ist für jedes $\phi \in A^*$ die Folge $(\phi(\lambda^n \mathfrak{a}^n))_{\mathbb{N}} = (\phi(\mathfrak{a}^n) \cdot \lambda^n)_{n \in \mathbb{N}}$ beschränkt für $|\lambda| < 1/r(\mathfrak{a})$. Nach dem Prinzip der gleichmäßigen Beschränktheit ist dann $(\lambda^n \mathfrak{a}^n)_{n \in \mathbb{N}}$ beschränkt für jedes λ

mit $|\lambda| < 1/r(\alpha)$. Damit existiert für $0 < |\lambda| < 1/r(\alpha)$ ein $M \geqslant 0$ mit $\|\lambda^n \alpha^n\| \leqslant M$, $n \in \mathbb{N}$, also

$$\|a^n\|^{1/n} \leqslant \frac{M^{1/n}}{|\lambda|} \xrightarrow{n \to \infty} \frac{1}{|\lambda|}$$

Es folgt $\limsup_n \|\alpha^n\|^{1/n} \leqslant r(\alpha)$. Falls $\lambda \in \sigma(\alpha)$, so gilt nach Satz 1.4 $\lambda^n \in \sigma(\alpha^n)$ und wegen Proposition 1.8 $|\lambda^n| \leqslant \|\alpha^n\|$, also $|\lambda| \leqslant \|\alpha^n\|^{1/n}$ und es folgt insgesamt

$$r(\alpha)\leqslant \inf_n \lVert \alpha^n\rVert^{1/n}\leqslant \liminf_n \lVert \alpha^n\rVert^{1/n}\leqslant \limsup_n \lVert \alpha^n\rVert^{1/n}\leqslant r(\alpha)$$

und damit $\lim_{n} \|a^{n}\|^{1/n} = r(a)$, woraus die Behauptung folgt.

1.11 Proposition. Sei A eine abelsche unitale Banachalgebra. Falls A einfach² ist, so ist $A \cong \mathbb{C}$.

Beweis: Sei $a \in A$, $\alpha \in \sigma(a)$. Dann ist $J := \overline{(a - \alpha \cdot 1) \cdot A} \triangleleft A$ ein abgeschlossenes Ideal. Für jedes $b \in A$ ist $(a - \alpha)b$ nicht invertierbar. Damit folgt dann $\|(a - \alpha)b - \mathbb{1}\| \geqslant 1$ für jedes $b \in A$ nach Satz 1.5. Damit ist auch $\operatorname{dist}((\mathfrak{a}-\alpha\cdot\mathbb{1})\cdot A,\mathbb{1})\geqslant 1$, also $\mathbb{1}\notin J$ und damit $J\neq A$. Da A einfach ist, folgt $J = \{0\}$, also muss $\alpha - \alpha \cdot 1 = 0$ und weiter $\alpha \in \mathbb{C} \cdot 1$ gelten. Damit ist $A = \mathbb{C} \cdot 1 \cong \mathbb{C}$.

1.12 **Definition**. Sei A eine abelsche unitale Banachalgebra. Eine lineare, multiplikative, nicht verschwindende Abbildung $\chi: A \to \mathbb{C}$ heißt Charakter auf A. Es gilt dann $\chi(1) = 1$. Wir setzen $\Omega(A) := \{ \chi \mid \chi \text{ Charakter auf } A \}$ (*Charakterspektrum* oder einfach nur *Spektrum* von A).

Revision

- **1.13 Satz.** Sei A eine abelsche unitale Banachalgebra. Dann gilt
 - (i) Jeder Charakter auf A ist stetig mit Norm 1.
 - (ii) Die Abbildung $\chi \mapsto \ker \chi$ definiert eine Bijektion zwischen

$$\Omega(A) \to J_{\max} := \{J \mid J \subseteq A \text{ ist ein maximales Ideal}\}$$

Beweis:

² besitzt keine nichttrivialen Ideale

- (i) Sei $a \in A$ mit $\|a\| < 1$ und $\chi(a) = 1$. Setze $b = \sum_{n=1}^{\infty} a^n$, dann ist $1+b = \sum_{n=0}^{\infty} a^n = (1-a)^{-1}$. Also ist 1 = (1+b)(1-a) = 1+b-a-ab und damit ab+a = b. Es folgt $\chi(a)\chi(b)+\chi(a) = \chi(b)$. Dies ist ein Widerspruch. Also muss $\|\chi\| \leqslant 1$ sein. Mit $\chi(1) = 1$ folgt $\|\chi\| = 1$.
- (ii) Für jedes $\chi \in \Omega(A)$ ist $\ker \chi \lhd A$ ein Ideal. Weiter ist der Kern abgeschlossen in A, da χ stetig ist. Wir zeigen, dass $\ker \chi$ maximal ist. $\ker \chi \neq A$, denn $\chi \neq 0$. Falls $c \in A \setminus \ker \chi$, so gilt $\chi(c)^{-1} \cdot c 1 \in \ker \chi$. Also ist $\ker \chi + \mathbb{C} \cdot c = \ker \chi + \mathbb{C} \cdot 1 = A$, da $a \chi(a) \cdot 1 \in \ker \chi$ und damit $a = (a \chi(a) \cdot 1) + \chi(a) \cdot 1 \in \ker \chi + \mathbb{C} \cdot 1$. Damit ist der Kern von χ maximal.

Zur Injektivität: Es seien $\chi_1,\chi_2\in\Omega(A)$ mit $\ker\chi_1=\ker\chi_2$. Dann gilt für $\mathfrak{a}\in A$

$$\chi_1(\mathfrak{a}) - \chi_2(\mathfrak{a}) = \chi_1 \left(\underbrace{\mathfrak{a} - \chi_2(\mathfrak{a}) \cdot \mathbb{1}}_{\in \ker \chi_2 = \ker \chi_1}\right) = 0$$

Einsen auseinanderhalten Also ist $\chi_1=\chi_2$. Für die Surjektivität betrachten wir ein maximales, nichttriviales Ideal $J\subsetneq A$. Dann ist $\mathrm{dist}(J,1)=1$, denn $\mathring{B}_A(1,1)\subset\mathrm{Inv}(A)$ nach Satz 1.5. Dann ist $\mathbb{1}\notin\bar{J}\lhd A$. Da J maximal ist, folgt $J=\bar{J}$. Damit ist $^A/_J$ eine einfache, abelsche, unitale Banachalgebra. Mit Proposition 1.11 folgt $^A/_J\cong\mathbb{C}$. Damit ist $\chi\colon A\to A/_J\cong\mathbb{C}$ ein Charakter mit $\ker\chi=J$.

1.14 Sctz. Sei A eine abelsche unitale Banachalgebra. Für $\alpha \in A$ gilt $\sigma(\alpha) = \{\chi(\alpha) \mid \chi \in \Omega(A)\}$.

Beweis: Für $\lambda \in \sigma(\alpha)$ ist $J := (\alpha - \lambda)A \lhd A$ ein echtes Ideal, da $(\alpha - \lambda)$ nicht invertierbar ist. Nach dem Lemma von Zorn ist J in einem maximalen echten Ideal enthalten. Nach Satz 1.13 ist $J \subset \ker \chi$ für ein $\chi \in \Omega(A)$. Dann ist $\chi(\alpha - \lambda) = 0$ für einen Charakter χ und somit auch $\chi(\alpha) = \lambda$. Es gilt also $\sigma(\alpha) \subseteq \{\chi(\alpha) \mid \chi \in \Omega(A)\}$.

Für $\chi \in \Omega(A)$ gilt $a - \chi(a) \cdot \mathbb{1} \in \ker \chi$. Damit kann $a - \chi(a) \cdot \mathbb{1}$ nicht invertierbar sein. Also ist $\chi(a) \in \sigma(a)$ und es folgt die zweite Inklusion.

1.15 Satz. Sei A eine abelsche unitale Banachalgebra. Dann ist $\Omega(A)$ ein kompakter Hausdorffraum bezüglich der w^* -Topologie.

BEWEIS: Es ist $\Omega(A) \subset B^1(A^*)$, wobei die Einheitskugel ein kompakt und Hausdorffsch ist (bezüglich der w*-Topologie) nach Banach-Alaoglu und da der Raum lokalkonvex ist. Sei $\chi_{\gamma} \xrightarrow{w^*} \chi$ ein Netz. χ_{γ} ist multiplikativ für jedes γ und $\chi_{\gamma}(\mathbb{1}) = 1$. Damit gelten diese Eigenschaften auch für χ .

1.16 Definition. Sei A eine abelsche unitale Banachalgebra. $\Omega(A)$ mit der w*-Topologie heißt *Spektrum* von A. Für $a \in A$ definieren wir die *Gelfandtransformation* $\hat{a}: \Omega(A) \to \mathbb{C}$ durch $\hat{a}(\chi) = \chi(a)$.

1.17 Satz. Sei A eine abelsche unitale Banachalgebra. Dann ist $\hat{}: A \to C(\Omega(A))$, $\alpha \mapsto \hat{\alpha}$ ein normvermindernder Homomorphismus und $r(\alpha) = \|\hat{\alpha}\|_{\infty}$ für $\alpha \in A$. Weiter gilt $\sigma(\alpha) = \hat{\alpha}(\Omega(A))$.

Beweis: $\hat{a}: \Omega(A) \to \mathbb{C}$ ist stetig nach Definition der w*-Topologie: Für $U \subset \mathbb{C}$ offen ist

$$\hat{\alpha}^{-1}(U) = \left\{\chi \in \Omega(A) \ \middle| \ \hat{\alpha}(\chi) \in U \right\} = \left\{\chi \in \Omega(A) \ \middle| \ \chi(\alpha) \in U \right\} = \left\{\chi \in A^* \ \middle| \ \chi(\alpha) \in U \right\} \cap \Omega(A)$$

Die linke Menge des Schnitts ist gleich

$$\bigcup_{(\mu,\epsilon),B(\mu,\epsilon)\subset U} \bigl\{\phi\in A^*\ \big|\ |\phi(\alpha)-\mu|<\epsilon\bigr\}$$

und somit offen in A^* . Damit ist $\hat{\mathfrak{a}}^{-1}(U)$ offen in der Relativtopologie. Wir haben

$$\sigma(\alpha) \stackrel{1.14}{=} \{\chi(\alpha) \,|\, \chi \in \Omega(A)\} = \{\hat{\alpha}(\chi) \,|\, \chi \in \Omega(A)\} = \hat{\alpha}(\Omega(A))$$

Also

$$\|\alpha\| \overset{1.8}{\leqslant} r(\alpha) = \sup_{\lambda \in \sigma(\alpha)} |\lambda| = \sup_{\chi \in \Omega(A)} |\hat{a}(\chi)| = \|\hat{a}\|_{\infty} \qquad \qquad \Box$$

2 C*-Algebren und Funktionalkalkül

2.1 Definition. Eine Banachalgebra heißt *involutiv*, falls eine antilineare Abbildung $*: A \rightarrow A$ existiert mit

$$a^{**} = a$$
 $(ab)^* = b^*a^*$ $||a^*|| = ||a||$

- **2.2 Definition**. Eine C^* -Algebra ist eine involutive Banachalgebra mit $\|\alpha^*\alpha\| = \|\alpha\|^2$ für $\alpha \in A$.
- **2.3 Definition.** Sei A ein C*-Algebra. $a \in A$ heißt

$$\begin{cases} \text{ selbstadjungiert} & \text{falls } \alpha = \alpha^* \\ \text{normal} & \text{falls } \alpha\alpha^* = \alpha^*\alpha \\ \text{unitär} & \text{falls } \alpha\alpha^* = \alpha^*\alpha = \mathbb{1} \\ \text{Projektion} & \text{falls } \alpha = \alpha^* = \alpha^2 \\ \text{Isometrie} & \text{falls } \alpha^*\alpha = \mathbb{1} \end{cases}$$

Wo die Existenz eines Einselements nötig ist, fordern wir noch, dass A unital ist.

- **2.4 Definition**. Es seien A, B zwei C*-Algebren. Eine Abbildung π : A \to B heißt *-Homomorphismus, falls π linear, multiplikativ und *-erhaltend ist. π heißt *-Einbettung, falls π zusätzlich isometrisch ist.
- **2.5 Bemerkung.** Falls A eine (involutive) Banachalgebra ist, so ist $A \oplus \mathbb{C}$ mit offensichtlichen Vektorraumoperationen und $(a,\lambda) \cdot (b,\mu) = (ab + \mu a + \lambda b, \lambda \mu)$ sowie $(a,\lambda)^* = (a^*,\lambda)$ im involutiven Fall, Norm definiert wir durch $\|(a,\lambda)\| := \|a\|_A + |\lambda|$ eine unitale (involutive) Banachalgebra mit $\mathbb{1} = (0,1)$. $A \oplus \mathbb{C}$ ist jedoch keine C*-Algebra, auch wenn A eine C*-Algebra ist.
- **2.6 Scitz.** Sei A eine C^* -Algebra. Dann existiert eine unitale C^* -Algebra A^\sim mit einer isometrischen * -Einbettung $\iota\colon A\hookrightarrow A^\sim$, sodass $\iota(A)\lhd A^\sim$ ein Ideal ist mit

$$\widetilde{A_{\iota}(A)} \cong \begin{cases} 0, & \text{falls A unital} \\ \mathbb{C}, & \text{sonst} \end{cases}$$

Beweis: Für $\alpha \in A$ definieren wir $\iota(\alpha) \in \mathcal{B}(A)$, wobei $\mathcal{B}(A)$ die beschränkten Operatoren auf A aufgefasst als Banachraum sind, durch $\iota(\alpha)(b) = \alpha b$. Definiere $A^{\sim} := \iota(A) + \mathbb{C} \cdot \mathbb{1}_{\mathcal{B}(A)} \subset \mathcal{B}(A)$. Dann ist A^{\sim} eine unitale Algebra mit Involution

$$\left(\iota(\alpha) + \lambda \cdot \mathbb{1}_{\mathcal{B}(A)}\right)^* := \iota(\alpha^*) + \overline{\lambda} \cdot \mathbb{1}_{\mathcal{B}(A)}$$

Dass $\iota(A) \triangleleft A^{\sim}$ ein Ideal ist, ist klar. A^{\sim} ist normiert mittels der Operatornorm. Für $0 \neq \alpha \in A$ gilt

$$\begin{split} \|\alpha\|_{A} &= \frac{1}{\|\alpha\|_{A}} \|\alpha\alpha*\|_{A} = \|\alpha \bigg(\frac{1}{\|\alpha^{+}\|} \cdot \alpha^{*}\bigg)\|_{A} \leqslant \|\iota(\alpha) \bigg(\frac{1}{\|\alpha^{*}\|} \alpha^{*}\bigg)\|_{A} \\ &\leqslant \sup_{\|b\|_{A} \leqslant 1} \|\iota(\alpha)(b)\|_{A} = \|\iota(\alpha)\|_{\mathcal{B}(A)} \\ &= \sup_{\|b\|_{A} \leqslant 1} \|\alpha b\|_{A} \\ &\leqslant \|\alpha\|_{A} \end{split}$$

Also ist ι isometrisch. Es folgt, dass $\iota(A) \subset \mathcal{B}(A)$ abgeschlossen ist, da A vollständig ist. Weiter folgt, dass auch $A^{\sim} = \iota(A) + \mathbb{C} \cdot \mathbb{1}_{\mathcal{B}(A)}$ vollständig ist bezüglich $\|\cdot\|_{\mathcal{B}(A)}$. Wir zeigen nun, dass $\|\cdot\|_{\mathcal{B}(A)}$ eine C^* -Norm ist auf A^{\sim} :

$$\begin{split} \left\|\iota(\alpha) + \lambda \cdot \mathbb{1}_{\mathcal{B}(A)}\right\|_{\mathcal{B}(A)}^{2} &= \sup_{b \in A, \|b\| \leqslant 1} \|\alpha b + \lambda b\|_{A}^{2} \\ &= \sup_{b \in A, \|b\| \leqslant 1} \left\|(\alpha b + \lambda b)^{*}(\alpha b + \lambda b)\right\|_{A} \\ &= \sup_{b \in A, \|b\| \leqslant 1} \left\|b^{*}\alpha^{*}\alpha b + \lambda b^{*}\alpha^{+}b + \overline{\lambda}b^{*}\alpha b + |\lambda|^{2}b^{*}b\right\|_{A} \\ &\leqslant \sup_{b \in A, \|b\| \leqslant 1} \left\|\alpha^{*}\alpha b + \lambda \alpha^{*}b + \overline{\lambda}\alpha b + |\lambda|^{2}b\right\|_{A} \\ &\leqslant \sup_{b \in A, \|b\| \leqslant 1} \left\|\alpha^{*}\alpha b + \lambda \alpha^{*}b + \overline{\lambda}\alpha b + |\lambda|^{2}b\right\|_{A} \\ &= \left\|\iota(\alpha^{*}\alpha + \lambda \alpha^{*} + \overline{\lambda}\alpha) + |\lambda|^{2} \cdot \mathbb{1}_{\mathcal{B}(A)}\right\|_{\mathcal{B}(A)} \\ &= \left\|(\iota(\alpha) + \lambda \cdot \mathbb{1}_{\mathcal{B}(A)})^{*}(\iota(\alpha) + \lambda \cdot \mathbb{1}_{\mathcal{B}(A)})\right\|_{\mathcal{B}(A)} \\ &\leqslant \left\|(\iota(\alpha) + \lambda \cdot \mathbb{1}_{\mathcal{B}(A)})^{*}\|_{\mathcal{B}(A)}\right\|_{\mathcal{B}(A)} \|\iota(\alpha) + \lambda \cdot \mathbb{1}_{\mathcal{B}(A)}\|_{\mathcal{B}(A)} \end{split}$$

Es folgt, dass

$$\left\|\iota(\alpha) + \lambda \cdot \mathbb{1}_{\mathcal{B}(A)}\right\|_{\mathcal{B}(A)} \leqslant \left\|\left(\iota(\alpha) + \lambda \cdot \mathbb{1}_{\mathcal{B}(A)}\right)^*\right\|_{\mathcal{B}(A)} \leqslant \left\|\iota(\alpha) + \lambda \cdot \mathbb{1}_{\mathcal{B}(A)}\right\|_{\mathcal{B}(A)}$$

Damit folgt, dass [*] und [**] Gleichungen sind und $\|\cdot\|_{\mathcal{B}(A)}$ eine C*-Norm auf A^{\sim} ist. Da A unital ist, gilt $\iota(\mathbb{1}_A) = \mathbb{1}_{\mathcal{B}(A)}$ und somit $\iota(A) = A^{\sim}$. Ist A nicht unital, so ist $A^{\sim} \cong \iota(A) \oplus \mathbb{C}$ als Vektorräume und es muss $A^{\sim}/\iota(A) \cong \mathbb{C}$ gelten.

2.7 Bemerkung. Man definiert oft auch eine unitale C*-Algebra

$$A^+ := \begin{cases} A^{\sim}, & \text{falls A nicht unital} \\ A \oplus \mathbb{C}, & \text{falls A unital} \end{cases}$$

mit $\|(a,\lambda)\| := \max\{\|a\|_A, |\lambda|\}$. Dann ist in jedem Fall $A^+ \cong A \oplus \mathbb{C}$ als Vektorraum. A^+ lässt sich charakterisieren durch die universelle Eigenschaft:

$$A \longleftrightarrow A^{+}$$

wobei B eine unitale C*-Algebra ist und $A \to B$ ein *-Homomorphismus ist. Eine ähnliche Beschreibung für A^{\sim} ist möglich, aber etwas "subtiler".

2.8 Definition. Sei A eine nichtunitale C^* -Algebra. Für $a \in A$ setzen wir

$$\sigma(\alpha) := \sigma_{A^{\sim}}(\iota(\alpha))$$
 und $r(\alpha) := r_{A^{\sim}}(\iota(\alpha))$

Wieder schreiben wir $\Omega(A) = \{\chi : A \to \mathbb{C} \text{ Charaktere} \}$ und

$$J_{\max}(A) = \big\{J \ \big| \ J \lhd A \text{ echtes maximales abgeschlossenes Ideal} \big\}$$

Für A unital sind maximale Ideale automatisch abgeschlossen

2.9 Scitz. Sei A eine nichtunitale abelsche C*-Algebra. Dann ist $\Omega(A)$ ein lokalkompakter Hausdorffraum bezüglich der w*-Topologie. Für $\alpha \in A$ gilt $\sigma(\alpha) = \{\chi(\alpha) \mid \chi \in \Omega(A)\} \cup \{\emptyset\}$.

Beweis: Für $\chi \in \Omega(A)$ sei $\hat{\chi}: A^{\sim} \to \mathbb{C}$ die eindeutig bestimmte, lineare, unitale Fortsetzung. Es gilt $\hat{\chi} \in \Omega(A^{\sim})$ und

$$\Omega(A^{\widetilde{\ }}) = \left\{\chi^{\widetilde{\ }} \ \middle| \ \chi \in \Omega(A)\right\} \cup \left\{\chi_{\infty}\right\}$$

wo $\chi_{\infty} \colon A^{\sim} \to {}^{A^{\sim}}/\iota(A) \cong \mathbb{C}$. $\Omega(A^{\sim})$ ist ein kompakter Hausdorffraum nach Satz 1.15, also muss der linke Teil der Vereinigung ein lokalkompakter Hausdorffraum sein. Man überprüft, dass $\chi \mapsto \chi^{\sim}$ ein Homöomorphismus $\Omega(A) \to \Omega(A^{\sim}) \setminus \{\chi_{\infty}\}$ bezüglich der w*-Topologie ist. Es gilt

$$\sigma(\alpha) := \sigma_{A^{\sim}} \big(\iota(\alpha) \big) = \big\{ \chi(\iota(\alpha)) \ \big| \ \chi \in \Omega(A^{\sim}) \big\} = \underbrace{\big\{ \chi(\iota(\alpha)) \ \big| \ \chi \in \Omega(A) \big\}}_{= \{\chi(\alpha) \mid \chi \in \Omega(A)\}} \cup \underbrace{\big\{ \chi_{\infty}(\iota(\alpha)) \big\}}_{= \{0\}} \quad \Box$$

- **2.10 Proposition**. Sei A eine C*-Algebra. Dann gilt
 - (i) Für eine Projektion $0 \neq p \in A$ gilt ||p|| = 1.
 - (ii) Ist $\mathbb{1} \in A$ und $\mathfrak{u} \in A$ unitär, dann ist $\|\mathfrak{u}\| = 1$ und $\sigma(\mathfrak{u}) \subset \mathbb{T}$.
- (iii) Für $a \in A_{\mathrm{s.a.}}$ ist $r(a) = \|a\|$ und $\sigma(a) \subset \mathbb{R}$.
- (iv) Für $a \in A$ beliebig gilt $||a|| = ||a^*a||^{1/2} = r(a^*a)^{1/2}$.

Beweis:

- (i) Es gilt $||p|| = ||p^*p|| = ||p||^2$ und somit muss ||p|| = 1 gelten.
- (ii) Es gilt $\|u\|^2 = \|u^*u\| = \|1\| = 1$, also $\|u\| = 1 = \|u^*\|$. Wenn $\lambda \in \sigma(u)$, dann gilt $\lambda \neq 0$ und es gilt $\lambda^{-1} \in \sigma(u^*)$. Da die Spektralradien von u und u^* kleiner gleich 1 sind, muss $|\lambda|, |\lambda^{-1}| \leqslant 1$ gelten, also $|\lambda| = 1$ und $\lambda \in \mathbb{T}$.
- (iii) Es gilt $\|\alpha^2\| = \|\alpha^*\alpha\| = \|\alpha\|^2$. Eine Induktion liefert $\|\alpha^{2^n}\| = \|\alpha\|^{2^n}$, also nach Satz 1.10

$$r(\mathfrak{a}) = \lim_{n \to \infty} \lVert \mathfrak{a}^n \rVert^{1/n} = \lim_{n \to \infty} \lVert \mathfrak{a}^{2^n} \rVert^{1/2^n} = \lVert \mathfrak{a} \rVert$$

Weiter existiert³ $e^{i\alpha} := \sum_{n=0}^{\infty} \frac{1}{n!} (i\alpha)^n \in A^{\sim}$ und ist unitär mit $\left(e^{i\alpha}\right)^* = e^{(i\alpha)^*} = e^{-i\alpha} = \left(e^{i\alpha}\right)^{-1}$, also ist $\sigma(e^{i\alpha}) \subset \mathbb{T}$ nach (ii). Falls $\lambda \in \sigma(\alpha)$, dann setze $b := \sum_{n=1}^{\infty} \frac{1}{n!} i^n (\alpha - \lambda)^{n-1}$. Dann gilt

$$(\alpha - \lambda)be^{i\lambda} = (e^{i(\alpha - \lambda)} - 1)e^{i\lambda} = e^{i\alpha} - e^{i\lambda}$$

Also ist $e^{i\lambda} \in \sigma(e^{i\alpha}) \subset \mathbb{T}$ und somit $\lambda \in \mathbb{R}$.

- (iv) Folgt aus (iii).
- **2.11 Korollar**. Es seien A und B zwei C*-Algebren und π : $A \to B$ ein *-Homomorphismus. Dann ist π kontraktiv. Die Aussage bleibt richtig, falls A nur eine involutive Banachalgebra ist.

Beweis: Wir dürfen π als unital annehmen (betrachte sonst $\pi^+\colon A^+\to B^\sim$). Für $d\in A$ gilt $\sigma_B\bigl(\pi(d)\bigr)\subset\sigma_A(d)$, alos $r_B\bigl(\pi(d)\bigr)\leqslant r_A(d)$. Für $a\in A$ gilt

$$\left\|\pi(\alpha)\right\|^2 = \left\|\pi(\alpha)^*\pi(\alpha)\right\| = \left\|\pi(\alpha^*\alpha)\right\| = r_B\left(\pi(\alpha^*\alpha)\right) \leqslant r_A(\alpha^*\alpha) = \left\|\alpha\right\|^2 \qquad \qquad \square$$

2.12 Korollar. Auf einer *-Algebra gibt es höchstens eine C*-Norm.

 $^{3 (}ia)^0 = 1_{A^{\sim}}$ falls A nicht unital

Beweis: Sei A eine *-Algebra mit C*-Normen $\|\cdot\|_1$ und $\|\cdot\|_2$. Wir bezeichnen die C*-Algebra entsprechend mit A_1 und A_2 . Sei $\pi_1 \colon A_1 \to A_2$ und $\pi_2 \colon A_2 \to A_1$ die Identitäten. Dann gilt

$$\|\mathbf{a}\|_1 = \|\pi_2(\mathbf{a})\|_1 \leqslant \|\mathbf{a}\|_2 = \|\pi_1(\mathbf{a})\|_2 \leqslant \|\mathbf{a}\|_1$$

2.13 Korollar. Sei A eine C*-Algebra und χ ein Charakter auf A. Dann gilt $\chi(\mathfrak{a}^*) = \overline{\chi(\mathfrak{a})}$ für $\mathfrak{a} \in A$, das heißt χ ist ein *-Homomorphismus.

Beweis: Sei $a \in A$, dann ist $a = \frac{1}{2}(a + a^*) + i \cdot \frac{1}{2i}(a - a^*) =: b + i \cdot c$ und b, c sind selbstadjungiert. Es gilt

$$\chi(b) \overset{2.9}{\in} \sigma(b) \overset{2.10(\text{iii})}{\subset} \mathbb{R} \quad \text{und} \quad \chi(c) \in \sigma(c) \subset \mathbb{R}$$
 Damit folgt $\chi(a^*) = \chi(b - i \cdot c) = \chi(b) - i \cdot \chi(c) = \overline{\chi(b) + i \cdot \chi(c)} = \overline{\chi(a)}.$

Wir erhalten eine Version von Satz 1.13 für nicht notwendigerweise unitale C*-Algebren:

- **2.14 Korollar.** Sei A eine abelsche C*-Algebra. Dann gilt
 - (i) Jeder Charakter $\chi: A \to \mathbb{C}$ ist stetig mit Norm ≤ 1 .
 - (ii) Die Abbildung $\chi \mapsto \ker \chi$ definiert eine Bijektion

$$\Omega(A) \to J_{\max} = \big\{ J \ \big| \ J \subsetneq A \text{ maximales, abgeschlossenes Ideal} \big\}$$

Beweis:

- (i) folgt aus Korollar 2.11 und Korollar 2.13 oder auch aus Satz 1.13 und Satz 2.6.
- (ii) Wir zeigen nur die Surjektivität: Sie $J \subsetneq A$ ein abgeschlossenes, maximales Ideal. Dann ist $J \subsetneq A^{\sim}$ ein abgeschlossenes Ideal.

$$J \subset A \cap \bigcap_{\substack{I \lhd A^{\sim} \max \\ J \subset I}} I \stackrel{1.13}{=} A \cap \bigcap_{\substack{\chi \in \Omega(A^{\sim}) \\ J \subset \ker \chi}} \ker \chi \stackrel{2.9}{=} A \cap \ker \chi_{\infty} \cap \bigcap_{\substack{\chi \in \Omega(A) \\ J \subset \ker \chi^{\sim}}} \ker \chi^{\sim}$$

Damit ist J enthalten im Schnitt über alle Kerne der $\chi \in \Omega(A)$, wobei $J \subset \ker \chi$. Damit ist $J \subset \ker \chi$ für ein $\chi \in \Omega(A)$ und da $\ker \chi \lhd A$ abgeschlossen und maximal ist, folgt $J = \ker \chi$. \square

2.15 Beispiel. (i) Sei $\mathcal H$ ein Hilbertraum. Dann ist $\mathcal B(\mathcal H)$ eine C^* -Algebra mit Operatornorm und Adjunktion: Für $T\in\mathcal B(\mathcal H)$ gilt

$$\|T\| = \sup\{|\langle \eta, T\xi \rangle| \mid \|\xi\|, \|\eta\| \le 1\}$$

also

$$\begin{split} \|T^*T\| &= \sup \bigl\{ |\langle \eta \,,\, T^*T\xi \rangle| \, \big| \, \|\xi\|, \|\eta\| \leqslant 1 \bigr\} \geqslant \sup \bigl\{ |\langle T\eta \,,\, T\eta \rangle| \, \big| \, \|\eta\| \leqslant 1 \bigr\} \\ &= \bigl(\sup \bigl\{ \|T\eta\| \, \big| \, \|\eta\| \leqslant 1 \bigr\} \bigr)^2 = \|T\|^2 \geqslant \|T^*T\| \end{split}$$

- (ii) Insbesondere ist $M_n:=M_n(\mathbb{C})=\mathfrak{B}(\mathbb{C}^n)$ eine C^* -Algebra für $n\in\mathbb{N}.$
- (iii) Jede abgeschlossene *-Unteralgebra von $\mathcal{B}(\mathcal{H})$ ist eine C*-Algebra, zum Beispiel $\mathcal{K}(\mathcal{H})$.

(iv) Sei X ein lokalkompakter Hausdorffraum. Dann ist $C_0(X)$ eine C^* -Algebra mit punktweisen Operationen, Involution $f^* = \bar{f}$ und der Supremumsnorm. Tatsächlich ist jede abelsche C^* -Algebra von dieser Form:

$$C_0(\Omega(A)) = C(\Omega(A)), falls A$$
unital

2.16 Satz (Gelfand). Sei $A \neq 0$ eine abelsche C^* -Algebra. Dann ist $\hat{}: A \to C_0(\Omega(A))$ ein isometrischer * -Isomorphismus.

Beweis: Betrachte $a\mapsto (\chi\mapsto \chi(a),\chi\in\Omega(A)\cup\{\chi_\infty\})$ in folgendem Diagramm

$$\begin{array}{l} A & \xrightarrow{\quad \quad \quad } \{f \in C(\Omega(A) \cup \{\chi_\infty\}) \mid f(\chi_\infty) = 0\} \\ \downarrow^{\iota} & \downarrow \\ A^{\sim} & \xrightarrow{\quad \quad } C\left(\Omega(A^{\sim})\right) = C\left(\left\{\chi^{\sim} \mid \chi \in \Omega(A)\right\} \cup \{\chi_\infty\}\right) \cong C\left(\Omega(A) \cup \{\chi_\infty\}\right) \end{array}$$

Die Gelfandtransformation ist ein *-Homomorphismus nach Korollar 2.13 und Satz 1.17. Weiter gilt

$$\left\|\boldsymbol{\alpha}\right\|^2 = \left\|\boldsymbol{\alpha}^*\boldsymbol{\alpha}\right\| \stackrel{2.10}{=} r(\boldsymbol{\alpha}^*\boldsymbol{\alpha}) \stackrel{1.17}{=} \left\|\widehat{\boldsymbol{\alpha}^*\boldsymbol{\alpha}}\right\|_{\infty} = \left\|\hat{\boldsymbol{\alpha}}^*\hat{\boldsymbol{\alpha}}\right\|_{\infty} = \left\|\hat{\boldsymbol{\alpha}}\hat{\boldsymbol{\alpha}}\right\|_{\infty} = \left\|\hat{\boldsymbol{\alpha}}\right\|^2_{\infty}$$

Damit ist $a \mapsto \hat{a}$ isometrisch.

Index

Die *Seitenzahlen* sind mit Hyperlinks versehen und somit anklickbar

Banachalgebra, 1

C*-Algebra, 6 Charakter, 3 Charakterspektrum, 3

einfach, 3

ganze Funktion, 2 Gelfandtransformation, 4

holomorph, 2

involutiv, 6

Neumannsche Reihe, 1

Spektralradius, 2 Spektrum, 1, 3 Charakterspektrum, 4

unital, 1

Index _____

Abbildungsverzeichnis

To-do's und andere Baustellen

Revision	3
Einsen auseinanderhalten	4

Abbildungsverzeichnis