The Black-Scholes Model

The Concepts Underlying Black-Scholes

- The option price and the stock price depend on the same underlying source of uncertainty
- We can form a portfolio consisting of the stock and the option which eliminates this source of uncertainty
- The portfolio is instantaneously riskless and must instantaneously earn the risk-free rate
- This leads to the Black-Scholes differential equation

Derivation of the Black-Scholes Differential Equation

$$\delta S = \mu S \, \delta t + \sigma S \, \delta z$$

$$\delta f = \left(\frac{\partial f}{\partial S} \mu S + \frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial S^2} \sigma^2 S^2\right) \delta t + \frac{\partial f}{\partial S} \sigma S \delta z$$

We set up a portfolio consisting of

-1: derivative

$$+\frac{\partial f}{\partial S}$$
: shares

Derivation of the Black-Scholes Differential Equation continued

The value of the portfolio Π is given by

$$\Pi = -f + \frac{\partial f}{\partial S}S$$

The change in its value in time δt is given by

$$\delta \Pi = -\delta f + \frac{\partial f}{\partial S} \delta S$$

The Derivation of the Black-Scholes Differential Equation continued

The return on the portfolio must be the risk - free rate. Hence

$$\delta \Pi = r \prod \delta t$$

We substitute for δf and δS in these equations to get the Black - Scholes differential equation :

$$\frac{\partial f}{\partial t} + rS \frac{\partial f}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} = rf$$

The Differential Equation

- Any security whose price is dependent on the stock price satisfies the differential equation
- The particular security being valued is determined by the boundary conditions of the differential equation
- Do you recognize this PDE?

Risk-Neutral Valuation

- The variable μ does not appear in the Black-Scholes equation
- The equation is independent of all variables affected by risk preference
- The solution to the differential equation is therefore the same in a risk-free world as it is in the real world
- This leads to the principle of risk-neutral valuation

Applying Risk-Neutral Valuation: Stochastic Simulation

- 1. Assume that the expected return from the stock price is the risk-free rate
- 2. Calculate the expected payoff from the option
- 3. Discount at the risk-free rate

Topic of Part II of this Course

Applying Risk-Neutral Valuation: Numerical Methods

- 1. Determine Boundary Conditions for Black-Scholes PDE
- 2. Discretize Black-Scholes PDE
- 3. Solve System of Equations Iteratively

Topic of Part III of this Course

Example: Pricing Forward Contracts using PDE

- Any security whose price is dependent on the stock price satisfies the differential equation
- In a forward contract the boundary condition is f = S K when t = T
- The solution to the equation is

$$f = S - K e^{-r(T-t)}$$

• At t = 0 the value of the forward contract is

$$f = S - K e^{-rT}$$

Example: Pricing Forward Contracts using Expectation in Risk-Neutral Measure

Valuation Formula

$$f = e^{-rT} E[(S_T - K)] = S_0 - Ke^{rT}$$

Recall From Binomial Tree Method

$$E[S_T] = pS_u + (1-p)S_d$$

$$E[S_T] = \frac{e^{rT} - d}{u - d} uS_o + \frac{u - e^{rT}}{u - d} dS_o$$

$$E[S_T] = e^{rT}S_0$$

The Stock Price Assumption

- Consider a stock whose price is S
- In a short period of time of length δt , the return on the stock is normally distributed:

$$\frac{\delta S}{S} \approx \phi \left(\mu \delta t, \sigma \sqrt{\delta t} \right)$$

where μ is expected return and σ is volatility

The Lognormal Property

It follows from this assumption that

$$\ln S_T - \ln S_0 \approx \phi \left[\left(\mu - \frac{\sigma^2}{2} \right) T, \sigma \sqrt{T} \right]$$

or

$$\ln S_T \approx \phi \left[\ln S_0 + \left(\mu - \frac{\sigma^2}{2} \right) T, \sigma \sqrt{T} \right]$$

• Since the logarithm of S_T is normal, S_T is lognormally distributed

The Lognormal Distribution

$$E(S_T) = S_0 e^{\mu T}$$

 $\text{var}(S_T) = S_0^2 e^{2\mu T} (e^{\sigma^2 T} - 1)$

The Black-Scholes Formulas

$$c = S_0 N(d_1) - K e^{-rT} N(d_2)$$

$$p = K e^{-rT} N(-d_2) - S_0 N(-d_1)$$
where
$$d_1 = \frac{\ln(S_0/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}}$$

$$d_2 = \frac{\ln(S_0/K) + (r - \sigma^2/2)T}{\sigma\sqrt{T}} = d_1 - \sigma\sqrt{T}$$

Input Black-Scholes Formula

Two types of input parameters are required for the Black-Scholes Formula:

- Option contract parameters
- Market parameters such as Volatility

The Volatility

- The volatility of an asset is the standard deviation of the continuously compounded rate of return in 1 year
- As an approximation it is the standard deviation of the percentage change in the asset price in 1 year

Estimating Volatility fromHistorical Data

- Take observations S_0, S_1, \ldots, S_n at intervals of τ years
- Calculate the continuously compounded return in each interval as:

$$u_i = \ln\left(\frac{S_i}{S_{i-1}}\right)$$

- Calculate the standard deviation, s, of the u_i 's
- the u_i 's

 The historical volatility estimate is: $\hat{\sigma} = \frac{s}{\sqrt{\tau}}$

Implied Volatility

- The implied volatility of an option is the volatility for which the Black-Scholes price equals the market price
- The is a one-to-one correspondence between prices and implied volatilities
- Traders and brokers often quote implied volatilities rather than dollar prices

The Volatility Smile for Foreign Currency Options

Implied Distribution for Foreign Currency Options

Both tails are heavier than the lognormal distribution

It is also "more peaked than the lognormal distribution