Politechnika Wrocławska	Ćwiczenia laboratoryjne	
	Data wykonania ćwiczenia	Data oddania sprawozdania
	20.11.2019	21.11.2019
	Ćwiczenie 3	
Termin: Środa, 9:15	Stany nieustalone w obwodzie RLC – dobór parametrów symulacji	
	Autor	Kacper Borucki
	Nr indeksu	245365

1. Cel ćwiczenia

Celem ćwiczenia było określenie wartości wielkości charakteryzujących stan przejściowy w układzie RLC oraz zbadanie wpływu przyjętych parametrów symulacji na uzyskiwane wyniki.

2. Zakres ćwiczenia

- Zamodelowanie jednofazowego układu RLC o zadanych parametrach.
- Przeprowadzenie symulacji układu przy różnych czasach trwania symulacji, częstotliwościach próbkowania i krokach całkowania.
- Analiza uzyskanych wyników i wyciągnięcie wniosków.
- Analiza otrzymanych przebiegów oraz wyciągnięcie na tej podstawie wniosków.

3. Zadane parametry

- \bullet E =
- 130*V*
- $R_1 = 13\Omega$
- $R_2 = 0.6\Omega$
- $C = 7\mu F$
- $u_c(0) = 0$

- L = 60mH
- wyłącznik czasowy: $t_0 = 0$
- warunki początkowe: $i_L(0) = 0$;

4. Schemat symulowanego obwodu

5. Przebiegi

A) Symulacja przy $\Delta T=10^{-3}; f=1000 Hz$

Wykres 1: Przebieg napięcia

Wykres 2: Przebieg prądu na rezystorze

Wykres 3: Przebieg prądu w gałęzi LC

B) Symulacja przy $\Delta T=10^{-6}$; f=10kHz

Wykres 5: Przebieg prądu na rezystorze

Wykres 6: Przebieg prądu w gałęzi LC

C) Symulacja przy $\Delta T=10^{-6}; f=1kHz$

Wykres 7: Przebieg napięcia

Wykres 8: Przebieg prądu na rezystorze

Wykres 9: Przebieg prądu w gałęzi LC

D) Symulacja przy $\Delta T=10^{-6}$; f=100Hz Wykres 10: Przebieg napięcia

Wykres 11: Przebieg prądu na rezystorze

Wykres 12: Przebieg prądu w gałęzi LC

E) Symulacja przy $\Delta T=10^{-8}$; f=10kHz

Wykres 13: Przebieg napięcia

Wykres 14: Przebieg prądu na rezystorze

(file cw3.pl4; x-var t) c:XX0002-XX0001

Wykres 15: Przebieg prądu w gałęzi LC

6. Uwagi i wnioski

- Z przeprowadzonych symulacji jasno wynika, że im mniejszy parametr ΔT i im wyższa częstotliwość, tym dokładniejszy przebieg końcowy otrzymuje się na podstawie obliczeń przeprowadzanych przez program.
- Opisane wyżej zależności bardzo dobrze widać porównując przebiegi przy $\Delta T=10^{-3}s; f=1000 Hz$ oraz $\Delta T=10^{-6}s; f=10 kHz$. Choć różnice w przebiegu napięć oraz prądów na rezystorze pozostają pozornie niewielkie, przebiegi w gałęzi LC są w drugim przypadku zdecydowanie bardziej "zagęszczone". "Zagęszczenie" to wynika z większej ilości narysowanych punktów pomiarowych.
- Choć większa częstotliwość próbkowania oraz mniejszy krok całkowania pozwalają na uzyskanie dokładniejszych przebiegów, niekoniecznie wiążą się z tym same zalety. Symulacja prowadzona dla $\Delta T = 10^{-8} s$, f = 10 kHz, pomimo faktu że trwała najdłużej, ostatecznie została przerwana przez czasochłonność. Po kilku minutach obliczeń program wygenerował około 1,7 mln punktów pomiarowych, które pozwoliły na utworzenie przebiegu pierwszych 0,12 s symulacji (z założonych 3 s). Płynie z tego jasny wniosek, że zbyt duża dokładność symulacji jest niepraktyczna ze względu na bardzo długi czas prowadzenia obliczeń przez program i jest uzasadniona tylko w przypadku bardzo krótkich okresów symulowanych.