Buck Converter Theory

<u>Introductio</u>n

A Buck Converter, also known as a step-down converter, is a DC-to-DC power converter that steps down the input voltage to a lower output voltage while stepping up the current. The main components of a buck converter are:

- 1. **Inductor (L):** Smoothens the current supplied to the load and stores energy during the switch ON state.
- 2. Switch (usually a MOSFET): Controls the flow of current from the input source.
- 3. **Diode (D):** Provides a path for inductor current when the switch is OFF, ensuring continuous load current.
- 4. Capacitor (C): Reduces voltage ripples and stabilizes the output voltage.

Working Principle

The operation of the buck converter can be divided into two main states:

1. Switch ON (0<t<DT):

- The MOSFET conducts, allowing current to flow from the source through the inductor to the load.
- The inductor stores energy, and the capacitor helps stabilize the output voltage.

2. Switch OFF (DT<t<T):

- The MOSFET turns OFF, and the inductor releases its stored energy to the load via the diode.
- The capacitor continues to provide current to the load, maintaining a stable output voltage.

Circuit

Switch ON: Switch OFF:

By volt-sec balance: $\int V_L dt = 0$

For
$$0 \le t \le DT$$
, $V_L = V_S - V_O$

For
$$\underline{DT \le t \le T}$$
, $V_L = -V_0$

So,

$$\Rightarrow (V_S - V_O) \times DT + (-V_O) \times (T - DT) = 0$$

$$\Rightarrow V_S DT = V_O T$$

$$\therefore V_O = DV_S$$
Here, $D \le 1$, so $V_O < V_S$ always.

By ampere-sec balance: $\int i_c dt = 0$

For
$$\underline{0 \le t \le DT}$$
, $i_c = i_L - i_o$

For
$$\underline{\text{DT} \leq t \leq T}$$
, $i_c = i_L - i_o$

So,
$$\Rightarrow (i_L - i_o) \times DT + (i_L - i_o)(T - DT) = 0$$

$$\Rightarrow (i_L - i_o)T = 0$$

$$\therefore i_L = i_o$$
 Since, $i_o = \frac{V_o}{R} = \frac{DV_s}{R}$, so $i_L = \frac{DV_s}{R}$

Note: This i_L is the average inductor current. So, $i_L = i_L(avg)$.

Some Important Parameter

- > Ripple in Inductor Current: $\Delta i_L = \frac{D(1-D)V_S}{fL}$
- > RMS Inductor Current: $i_L(rms) = \sqrt{i_L^2 + \left(\frac{\Delta i_L}{2\sqrt{3}}\right)^2}$
- \triangleright Source Current: $i_s(avg) = Di_o$
- Switch or MosFET Current: $i_{sw}(avg) = Di_L$ and $i_{sw}(rms) = \sqrt{D}i_L(rms)$ and this works only for time 0 to DT.
- ightharpoonup Diode Current: $i_D(avg)=(1-D)i_L$ and $i_D(rms)=\sqrt{(1-D)}i_L(rms)$ and works only for time DT to T.
- ightharpoonup Ripple in Output Voltage: $\Delta V_o = \frac{D(1-D)V_s}{8f^2LC}$
- ightharpoonup Critical Inductance: $L_c = \frac{(1-D)R}{2f}$
- ightharpoonup Critical Capacitance: $C_c = \frac{1}{8fR}$

Efficiency and Losses

Buck converter efficiency (η) is the ratio of output power (P_{out}) to input power (Pin):

$$\eta = \frac{P_{\text{out}}}{P_{in}}$$

Losses in a buck converter can be minimized through proper design and component selection. Key types of losses include:

- Conduction Losses: Caused by resistance in the inductor, switch (MOSFET), and diode. Choosing components with low resistance reduces these losses.
- Switching Losses: Occur during MOSFET state transitions between ON and OFF. Optimizing switching frequency and using MOSFETs with low on-state resistance helps minimize these.
- Diode Forward Voltage Drop Losses: When the diode conducts during the switch OFF state, its forward voltage drop leads to power loss. Using Schottky diodes with lower forward voltage reduces these losses.
- Magnetic Core Losses: Energy dissipates as heat in the inductor's core due to the alternating magnetic field. Selecting suitable core materials and optimizing design helps reduce these.
- Capacitor Losses: Result from the Equivalent Series Resistance (ESR) of the output capacitor. Low-ESR capacitors reduce these losses and enhance efficiency.

Applications

Buck converters are widely used in applications where stepping down the voltage is required:

- Power Supplies: Provide stable lower output voltages for devices like smartphones, laptops, and microcontrollers.
- Battery Management Systems: Regulate voltage levels to safely charge batteries or power circuits.
- LED Drivers: Maintain consistent LED illumination in lighting systems by stepping down voltage while regulating current.
- Automotive Systems: Step down battery voltage for components like infotainment systems, sensors, and lighting.
- Telecommunications: Power low-voltage circuits in RF transmitters, base stations, and communication systems.
- > Renewable Energy Systems: Step down solar or wind-generated voltage to match the required levels for storage or load.