ET4171 Processor Design Project

LEON3 processor optimization

Henrique Dantas

Luca Feltrin

Delft University of Technology

June 19, 2013

Table of contents

Objectives

Multiplier

Divider

Synthesis Results

Benchmarks Scores

Conclusion

Further Improvements

Objectives

- Target: Embedded applications
 - $\hfill\Box$ Compound metric: P×BS
- Poor Mul/Div execution time
 - $\hfill\Box$ Implementation with different algorithms

Multiplier: Wallace Tree

Algorithm:

- 1. Initial ANDing between inputs.
- 2. Reduce tree using Full Adders and Half Adders.
- 3. Add the two remaining numbers with a traditional adder.

Pros and Cons

Pros

- Speed improvement.
- Regular structure.

Cons

- Resource usage is high.
- Signifcant Area footprint.
- Increase in power.

Implementation Details

- 3 Input Signals:RST, CLK and MULI
- 1 Output Signal:MULO
- 4 generics: infer, multype, pipe and mac

Constants used: WallaceTree (3D logic vector), stages, FA, HA, CIN

and RE.

Implementation Details II

For negative operation - Alternative Baugh Wooley Negate AND operations (when includes MSD from op1 or op2 but not both) Add a constant vector at the end.

Implementation Details III

Feed inputs to FOR-GENERATES (with IF-GENERATES) IF holdn is HIGH update Add the two final numbers with Baugh-Wooley vector (for signed operations) (ready and nready are not used). Update MULO.(result/ICC).

Divider: Which algorithm?

Repeated Multiplication Fast Area

Reciprocation Fast Area

Array Divider No control on physical placing

Radix >8 Fast Area

Radix-4 Good compromise

Execution time $\approx \frac{1}{2}$ of the baseline

Divider II

Divider III

Dvider IV

- Signed division (signed p-d plot) vs. Unsigned division (half p-d plot) + 1 cycle for sign
 - □ No area differences but 1 more cycle delay: signed Division

Divider V

Baseline vs. Radix-4: 19 cycles vs 36

Synthesis Results

	Baseline	Div	Div&Mul
Clock freq. [MHz])	80.522	80.535	40.197
Slices	9904	10479	11886
LUTs	16889	17865	20469
Quiescent power [W]	2.467	2.468	2.511
Dynamic power [W]	0.721	0.743	0.832
Total power [W]	3.188	3.211	3.343
P/f [W/MHz]	0.03959	0.03987	0.08317

Benchmarks Scores

	Baseline	Modified
Stanford [s]	2.30	2.21
Whetstone [s]	116.2	112.08
Gmpbench Multiply [Op/ s]	781	914
Gmpbench Divide [Op/ s]	15876	19205
Gmpbench RSA [Op/ s]	5123	5353
Division [s]	8.06	7.31
Mibench JPEG (average) [s]	23.215	21.76
SSD [s]	10.59	8.60
Total [s]	219.28	206.92

Conclusion - Comparison with Matrics (Div)

	Baseline	Modified	Improvements
Α	2.68	2.83	-5.8%
D	1.24	1.24	-
P	3.19	3.21	-0.7%
BS	2.19	2.13	2.7%
$A \times D$	3.33	3.52	-5.8%
$\mathtt{A}{\times}\mathtt{BS}$	5.88	6.05	-2.9%
$P{\times}D$	3.96	3.99	-0.7%
$\text{P}{\times}\text{BS}$	6.69	6.85	2.08%

Conclusion II - Comparison with Matrics (Div & Mul)

	Baseline	Modified	Improvements
A	2.68	3.24	-21%
D	1.24	2.49	-100%
P	3.19	3.34	-5.0%
BS	2.19	2.07	6%
$A \times D$	3.33	8.05	-142%
$\mathtt{A}{\times}\mathtt{BS}$	5.88	6.69	-14%
$P{\times}D$	3.96	8.32	-100%
$P{\times}BS$	6.69	6.92	1%

Further Improvements

- Cache size
 - □ More power consumption, need to determine actual miss rate
- Branch prediction
 - □ Now: Static prediction, only slight advantage, power consumption
- Out of Order Execution
 - □ Radical change of the integer unit, improved execution time