

Al Helps Diagnose Infectious Disease Tetanus With a Cheap Wearable Monitor

Ping Lu¹, Louise Thwaites², David A. Clifton¹ ¹University of Oxford, UK ² Oxford University Clinical Research Unit, Vietnam

Introduction

Infectious Disease Tetanus

The symptoms start around 4 to 21 days after infection.

- Stiffness in your jaw muscles
- Painful muscle spasms
- A high temperature
- Sweating
- A rapid heartbeat

Our work aims to use AI to classify the severity level with low-cost wearable monitors

Patients with mild tetanus can go home. Severe cases need to stay in hospital for treatment.

- Help low- and middle- income countries like Vietnam
- Highly valuable for inexperienced or overloaded staff

Methods

3rd Approach

2D-WinSpatt-Net: A Dual Spatial Self-Attention Vision Transformer Boosts Classification of Tetanus Severity for Patients Wearing ECG Sensors in Low-and Middle-Income Countries

- 1 lead low-cost ECG can be used to diagnose tetanus
- Fast triage of tetanus patients using 20-second time series images of ECG signals

An example of tetanus ECG and continuous wavelet transform (CWT): (a) Tetanus ECG in 5-s; (b) The CWT related to (a).

1st Approach

2D-CNN + Channel-wise Attention

Lu et al. Sensors 2022

2nd Approach 2D-CNN-Transformer/8

4th Approach

1D-Vision Transformer

Results

1D-CNN

Lu et al. IEEE TBME 2022

0.89+0.01

0.73±0.05

0.86+0.02

0.74±0.08

Lu et al. BioMedInformatics 2024

2D-CNN + Channel-wise Attention

2D-CNN-Transformer/8						
مشاشتشاشات						
ABB						
05/795/900/74						

	60 second window length Log-Spectrogram						
Method	F1 score	precision	recall	specificity	accuracy	AUC	
2D-CNN	0.61±0.14	0.68±0.07	0.57±0.19	0.85±0.02	0.75±0.07	0.72±0.09	
2D-CNN + Dual Attention	0.65 ± 0.19	0.71 ± 0.17	0.61 ± 0.21	0.86 ± 0.09	0.76 ± 0.11	0.74±0.13	
2D-CNN + Channel-wise Attention	0.79 ± 0.03	0.78±0.08	0.82 ± 0.05	0.85 ± 0.08	0.84±0.04	0.84±0.03	
2D-CNN-Transformer/8	0.82 ± 0.03	0.94 ± 0.03	0.73 ± 0.07	0.97 ± 0.02	0.88 ± 0.01	0.85±0.03	
Proposed 2D-WinSpatt-Net	0.75 ± 0.05	0.81 ± 0.02	0.70 ± 0.07	0.91±0.00	0.83 ± 0.03	0.80±0.04 2nd Approach	
20 second window length CWT							

0.75+0.04

0.77±0.25

 0.70 ± 0.13

Swin Transformer V2
Proposed 2D-WinSpatt-Net 0.83±0.03 0.88±0.00 0.97±0.01 0.96±0.01 0.92±0.02 0.93±0.01 0.90±0.00 3rd Approach 0.85±0.01 F1 score precision recall Method specificity accuracy AUC

0.93+0.01

0.61±0.05

Dr Ping Lu Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford Oxford OX3 7DQ, UK

ping.lu@eng.ox.ac.uk http://www.ibme.ox.ac.uk

0.65±0.14

Visual explanations of important areas in the generated image for tetanus severity classification