## 1.

A compound having the formula:

**CLAIMS** 

5

ũ

<u>[</u>10

wherein A is a  $C_{1-6}$  saturated or  $C_{2-6}$  unsaturated hydrocarbon skeleton, said skeleton being unsubstituted or having between 1 and 10 substituents, inclusive, independently selected from cyano, halo, azido, oxo, and  $Q_1$ ;

each  $Q_1$  is independently selected from  $OR_1$ ,  $SR_1$ ,  $SO_2R_1$ ,  $OSO_2R_1$ ,  $NR_2R_1$ ,  $NR_2(CO)R_1$ ,  $NR_2(CO)(CO)R_1$ ,  $NR_4(CO)NR_2R_1$ ,  $NR_2(CO)OR_1$ ,  $(CO)OR_1$ ,  $O(CO)R_1$ ,  $O(CO)NR_2R_1$ , and  $O(CO)NR_2R_1$ ;

each of  $R_1$ ,  $R_2$ ,  $R_4$ ,  $R_5$ , and  $R_6$  is independently selected from H,  $C_{1-6}$  alkyl,  $C_{1-6}$  haloalkyl,  $C_{1-6}$  hydroxyalkyl,  $C_{1-6}$  aminoalkyl,  $C_{6-10}$  aryl,  $C_{6-10}$  haloaryl,  $C_{6-10}$  hydroxyaryl,  $C_{1-3}$  alkoxy- $C_6$  aryl,  $C_{6-10}$  aryl- $C_{1-6}$  alkyl- $C_{1-6}$  alkyl- $C_{6-10}$  aryl,  $C_{6-10}$  haloaryl- $C_{1-6}$  alkyl- $C_{1-6}$  alkyl- $C_{1-3}$  alkoxy- $C_6$  aryl)- $C_{1-3}$  alkyl,  $C_{2-9}$  heterocyclic radical,  $C_{2-9}$  heterocyclic radical- $C_{1-6}$  alkyl,  $C_{2-9}$  heteroaryl, and  $C_{2-9}$  heteroaryl- $C_{1-6}$  alkyl;

each of D and D' is independently selected from  $R_3$  and  $OR_3$ , wherein  $R_3$  is H,  $C_{1-3}$  alkyl, or  $C_{1-3}$  haloalkyl;

n is 0 or 1;

E is R<sub>5</sub> or OR<sub>5</sub>;

G is O, S, CH<sub>2</sub>, or NR<sub>6</sub>;

each of J and J' is independently H,  $C_{1-6}$  alkoxy, or  $C_{1-6}$  alkyl; or J and J' taken together are =CH<sub>2</sub> or -O-(straight or branched  $C_{1-5}$  alkylene)-O-;

Q is  $C_{1-3}$  alkyl;

T is ethylene or ethenylene, optionally substituted with (CO)OR<sub>7</sub>, where  $R_7$  is H or  $C_{1-6}$  alkyl;

each of U and U' is independently H,  $C_{1-6}$  alkoxy, or  $C_{1-6}$  alkyl; or U and U' taken together are =CH<sub>2</sub> or -O-(straight or branched  $C_{1-5}$  alkylene)-O-;

X is H or  $C_{1-6}$  alkoxy;

each of Y and Y' is independently H or  $C_{1-6}$  alkoxy; or Y and Y' taken together are =0, = $CH_2$ , or -O-(straight or branched  $C_{1-5}$  alkylene)-O-; and

each of Z and Z' is independently H or  $C_{1-6}$  alkoxy; or Z and Z' taken together are =0,

25

30



- The compound of claim 1, wherein n is 0. 2.
- The compound of claim 1, wherein each of D and D' is independently selected 3. from  $R_3$ ,  $C_{1,3}$  alkoxy, and  $C_{1,3}$  haloalkyloxy.
- The compound of claim 1, wherein R<sub>5</sub> is selected from H, C<sub>1.6</sub> alkyl, C<sub>1.6</sub> haloalkyl, C<sub>1.7</sub> 4.  $_{6}$  hydroxyalkyl,  $C_{1-6}$  aminoalkyl,  $C_{6-10}$  aryl,  $C_{6-10}$  haloaryl,  $C_{6-10}$  hydroxyaryl,  $C_{1-3}$  alkoxy- $C_{6}$ 10 aryl,  $C_{6-10}$  aryl- $C_{1-6}$  alkyl,  $C_{1-6}$  alkyl- $C_{6-10}$  aryl,  $C_{6-10}$  haloaryl- $C_{1-6}$  alkyl,  $C_{1-6}$  alkyl- $C_{6-10}$ haloaryl, ( $C_{1-3}$  alkoxy- $C_6$  aryl)- $C_{1-3}$  alkyl,  $C_{2-9}$  heterocyclic radical,  $C_{2-9}$  heterocyclic radical- $C_{1-6}$ alkyl,  $C_{2.9}$  heteroaryl, and  $C_{2.9}$  heteroaryl- $C_{1.6}$  alkyl.
- 15 5. The compound of claim 1, wherein A comprises a C<sub>1.6</sub> saturated or C<sub>2.6</sub> unsaturated hydrocarbon skeleton, said skeleton having at least one substituent selected from cyano, halo, azido, oxo, and Q<sub>1</sub>;

each Q<sub>1</sub> is independently selected from OR<sub>1</sub>, SR<sub>1</sub>, SO<sub>2</sub>R<sub>1</sub>, OSO<sub>2</sub>R<sub>1</sub>, NR<sub>2</sub>R<sub>1</sub>,  $NR_2(CO)R_1$ , and  $O(CO)NR_2R_1$ ;

n is 0;

5

m

G is O;

J and J' taken together are  $=CH_2$ ;

Q is methyl;

T is ethylene;

U and U' taken together are  $=CH_2$ ;

X is H;

each of Y and Y' is H; and

Z and Z' taken together are =0 or  $=CH_2$ .

The compound of claim 1, wherein each Q<sub>1</sub> is independently selected from OR<sub>1</sub>, SR<sub>2</sub>, 30 6. SO<sub>2</sub>R<sub>1</sub>, OSO<sub>2</sub>R<sub>1</sub>, NH(CO)R<sub>1</sub>, NH(CO)(CO)R<sub>1</sub>, and O(CO)NHR<sub>1</sub>;

each R<sub>1</sub> is independently selected from C<sub>1-6</sub> alkyl, C<sub>1-6</sub> haloalkyl, C<sub>6</sub> aryl, C<sub>6</sub> haloaryl,  $C_{1-3}$  alkoxy- $C_6$  aryl,  $C_6$  aryl- $C_{1-3}$  alkyl,  $C_{1-3}$  alkyl- $C_6$  aryl,  $C_6$  haloaryl- $C_{1-3}$  alkyl,  $C_{1-3}$  alkyl- $C_6$ haloaryl,  $(C_{1-3} \text{ alkoxy-} C_6 \text{ aryl})$ - $C_{1-3} \text{ alkyl}$ ,  $C_{2-9} \text{ heterocyclic radical}$ ,  $C_{2-9} \text{ heteroaryl}$ , and  $C_{2-9} \text{ heteroaryl}$ 

heteroaryl-C<sub>1.6</sub> alkyl; 35

one of D and D' is methyl or methoxy, and the other is H;

n is 0;

G is O;

J and J' taken together are  $=CH_2$ ;

40 Q is methyl;



- 7. The compound of claim 6, wherein A has at least one substituent selected from hydroxyl, amino, azido, halo, and oxo.
- 10 8. The compound of claim 7, wherein A comprises a saturated hydrocarbon skeleton having at least one substituent selected from hydroxyl, amino and azido.
  - 9. The compound of claim 8, wherein A has at least two substituents independently selected from hydroxyl, amino, and azido.
  - 10. The compound of claim 8, wherein A has at least two substituents independently selected from hydroxyl and amino.
  - 11. The compound of claim 8, wherein A has at least one hydroxyl substituent and at least one amino substituent.
  - 12. The compound of claim 8, wherein A has at least two hydroxyl substituents.
  - 13. The compound of claim 8, wherein A comprises a C<sub>2-4</sub> hydrocarbon skeleton.
  - 14. The compound of claim 8, wherein A comprises a C<sub>3</sub> hydrocarbon skeleton.
  - 15. The compound of claim 13, wherein A has an (S)-hydroxyl on the carbon atom alpha to the carbon atom linking A to the ring containing G.
  - 16. The compound of claim 6, wherein A comprises a  $C_{1-6}$  saturated hydrocarbon skeleton having at least one substituent selected from hydroxyl and cyano.
- 17. The compound of claim 6, wherein Q<sub>1</sub> is independently selected from OR<sub>1</sub>, SR<sub>1</sub>,

  SO<sub>2</sub>R<sub>1</sub>, and OSO<sub>2</sub>R<sub>1</sub> where each R<sub>1</sub> is independently selected from C<sub>1-6</sub> alkyl, C<sub>1-6</sub> haloalkyl, C<sub>6</sub> aryl, C<sub>6</sub> haloaryl, C<sub>1-3</sub> alkoxy-C<sub>6</sub> aryl, C<sub>6</sub> aryl-C<sub>1-3</sub> alkyl, C<sub>1-3</sub> alkyl-C<sub>6</sub> aryl, C<sub>6</sub> haloaryl-C<sub>1-3</sub> alkyl, C<sub>1-3</sub> alkyl-C<sub>6</sub> haloaryl, and (C<sub>1-3</sub> alkoxy-C<sub>6</sub> aryl)-C<sub>1-3</sub> alkyl.
  - 18. The compound of the following structure

5

15

30

25

19. The compound of the following structure

and pharmaceutically acceptable salts thereof.

- 20. A method for identifying an agent that induces a sustained mitotic block in a cell after transient exposure of said cell to said agent, said method comprising the steps of:
- (a) incubating a first cell sample with a predetermined concentration of a test compound for a time interval between that sufficient to empty the  $G_1$  population and that equivalent to one cell cycle;
  - (b) substantially separating said test compound from said first cell sample;
- (c) incubating said first sample in media free of said test compound for a time interval sufficient to allow at least 80% of the cells released from the mitotic block induced by a highly reversible mitotic inhibitor to complete mitosis and return to the  $G_1$  phase; and
  - (d) measuring the percentage of transiently-exposed cells from step (c) that have completed mitosis and returned to the  $G_1$  phase.
  - 21. The method of claim 20, further comprising the steps of:

5

10

- (e) incubating a second sample of cells with a concentration of said test compound less than or equal to that used in step (a) for a time interval between that sufficient to empty the  $G_1$  population and that equivalent to one cell cycle;
- (f) measuring the percentage of cells from step (e) that have completed mitosis and have returned to the  $G_1$  phase; and
  - (g) determining the relative reversibility of said test compound by relating the measurement of step (d) and the measurement of step (f).