ARITHMETIC Chapter 2

MOTIVATING STRATEGY

¿ SERA LO MISMO?

Un

Una caja con un solo cerillo

Si retiro el cerillo

HELICO THEORY

Ejemplo:

 $A = \{x / x \text{ es una vocal}\}$

B = {fresa, pera, manzana,...}

RELACIÓN DE PERTENENCIA

Ejemplo: En el conjunto

 $Q = \{a; e; i; o; u\}$, se observa

✓ a ∈ Q
✓ 5 ∉ Q

CARDINAL DE UN CONJUNTO

Ejemplo:

 $A = \{x / x \text{ es una vocal}\}$

n(A) = |A| = #(A) = 5

DETERMINACION DE UN CONJUNTO

Por comprensión

$$M = \{x + 1 / x \in Z + \land 3 \le x < 7\}$$

Por extensión

$$M = \{4; 5; 6; 7\}$$

HELICO THEORY

CLASES DE CONJUNTOS

Conjunto finito

M = {los días de la semana}

$$n(M) = 7$$

Conjunto infinito

R = {los números pares}

$$n(R) = \dots$$
?

RELACIONES ENTRE CONJUNTOS

Inclusión o subconjunto

Simbólicamente:

$$A \subset B \longrightarrow x \in A \longrightarrow x \in B$$

Conjuntos Iguales

Simbólicamente:

$$A = B \rightarrow A \subset B \land B \subset A$$

Ejemplo:

Si los conjuntos A y B son iguales $A = \{y + 3; 13\}$ $B = \{x - 5; 17\}$

Conjuntos comparables

Simbólicamente:

A comp B \rightarrow A \subset B \vee B \subset A

Conjuntos disjuntos

Ejemplo:

 $P = \{x / x \text{ es un felino}\}\$ $Q = \{x / x \text{ es un ave}\}$

HELICO THEORY

CONJUNTOS NOTABLES

CONJUNTO UNIVERSAL (U)

Ejemplo: M = {Los felinos}

 $N = \{Los aves\}$

U = {Conjunto de los animales}

CONJUNTO VACÍO (Ø)

Notación:

CONJUNTO UNITARIO

Ejemplo:

$$\checkmark A = \{m\}$$

$$\checkmark$$
 B = {13; 13; 13}

CONJUNTO POTENCIA (P(A))

$$n[P(A)] = 2^{n(A)}$$

Ejemplo:

$$Si A = \{1; 2; 3\}$$

$$n(A) = 3$$

$$n[P(A)] = 2^{n(A)} = 2^3 = 8$$

Los cuales son

$$P(A) = \{\{1\}; \{2\}; \{3\}; \{1; 2\}; \{1; 3\}; \{2; 3\}; \{1; 2; 3\}; \emptyset\}$$

Los subconjuntos propios de A serían : 7

Indique verdadero (V) o falso (F) respecto al conjunto

$$A = \{2; 3; \{4\}\}$$

Resolución:

- 2 **∈** A
- 3 **∉** A
- {4} ∈ A

- {2; 3} **⊂** A
- {4} **⊂** A

A

La relación de pertenencia (∈) es de elemento a conjunto, mientras que la de inclusión (⊂) es de subconjunto a conjunto

Un conjunto de 6 elementos, ¿cuántos subconjuntos tiene?

$$n[P(A)] = 2^6$$

= 64

Resolución:

Recordando:

Dado un conjunto "A" el conjunto potencia de "A" es la familia de subconjuntos de "A" y se denota como P(A)

Rpta: Tiene 64 subconjuntos

$$n(A) = 6$$

$$n(A) = 6$$
 \rightarrow $n[P(A)] = 2^{n(A)}$

Halle el número de subconjuntos del conjunto.

$$A = \{ x^2 + 1 / x \in Z ; -3 < x \le 4 \}$$

Resolución:

hallamos los valores q toma x

$$x^{2} + 1 = 5$$
 2 1 2 5 10 17
 $A = \{ ; ; ; ; ; \}$

los elementos del conjunto

$$A = \{1; 2; 5; 10; 17\}$$

$$n(A) = 5$$

> por lo tanto:

$$n[P(A)] = 2^{n(A)}$$

$$= 2^5$$

$$= 32$$

Rpta: Tiene 32 subconjuntos

¿Cuántos <u>subconjuntos ternarios</u> posee un conjunto de 8 elementos?

$$C_3^8 = \frac{5! x 6 x 7 x 8}{5! x 6}$$

$$= \frac{51 \times 6 \times 7 \times 8}{51 \times 6}$$

Resolución:

Si tiene 8 elementos ¿cuántos subconjuntos de 3 elementos se formarán?

$$C_3^8 = \frac{8!}{5! \times 3!}$$

Rpta: 56 subconjuntos ternarios

¿Cuántos subconjuntos propios tiene el conjunto formado por las letras de la palabra alabanza? > por lo tanto

 N° subcon propios = n[P(A)] -1

$$= 2^{n(A)} - 1$$

$$= 2^5 -1$$

Resolución:

Sea el conjunto A, donde los elementos son todas las letras de la palabra alabanza

$$A = \{a; l; a; b; a; n; z; a\}$$

$$A = \{a; l; b; n; z\} \Rightarrow n(A) = 5$$

Rpta: Tiene 31 subconjuntos PROPIOS

Dados los conjuntos

$$A = \{x / x \in \mathbb{N}; 12 < x \le 20\}$$

 $B = \{y / y \in \mathbb{Z}; 8 < y < 9\}$
Efectúe $E = [n(A)]^{n(B)}$

Resolución:

EL CONJUNTO A ESTA DADO POR COMPRENSION

$$A = \{x / x \in \mathbb{N} ; 12 < x \le 20 \}$$

 \rightarrow hallamos los valores q toma x x = 13; 14; 15; 16; 17; 18; 19; 20

$$A = \{13; 14; \dots; 19; 20\}$$

$$n(A) = 5$$

DE LA MISMA FORMA PARA EL CONJUNTO B

B = {
$$y / y \in \mathbb{Z}$$
; 8 < $y \le 9$ }

> se observa que y no toma ningún valor entero

$$B = \{\} = \phi \mid n(B) = 0$$

por lo tanto :

$$[n(A)]^{n(B)} = 5^0 = 1$$

Si los conjuntos:

$$A = \{a + b; 19\}$$
 y
 $B = \{a.b; 84\}$ son
unitarios, calcule $a - b$.
(Dato: $a > b$)

Resolución:

Si los conjuntos A y B son Unitarios entonces A y B poseen un solo elemento respectivamente hallamos los valores que toma a y

$$A = \{a + b; 19\}$$

a +b= 19

12 7

$$B = \{a.b; 84\}$$

por lo tanto:

$$a - b = 12 - 7 = 5$$

5

8

Luisa. experimentada juguera del Mercado Central. todas las mañanas se dirige a su puesto para preparar los jugos a sus clientes que esperan con ansias sus servicios. Si Luisa dispone de 8 frutas distintas, ¿cuántos jugos surtidos diferentes se pueden preparar con estas frutas?

Resolución:

Sea F el conjunto formado por las frutas: fresa,pera,manzana,uva,Kiwi, durazno, tuna y naranja

$$F = \{f; p; m; u; k; d; t; n\} \rightarrow n(F) = 8$$

todo jugo surtido, tiene por lo menos 2 frutas en su preparación, por lo tanto:

Nº de jugos surtidos =
$$2^{n(A)}$$
-1-8

↓ Jugos solos

$$= 2^8 - 1 - 8 = 247$$

Rpta: 247 Jugos surtidos

