Wireless Local Area Networks (WLANs) based on IEEE 802.11 Standard aka Wi-Fi

Wireless Local Area Networks (WLANs)

- Offers clear benefits over wired LANs:
 - Avoid the inconvenience and cost of running cables
 - Flexible network connectivity: get connectivity where desired instead of having to connect at locations wired network allows
- IEEE 802.11 has become the de facto standard for WLANs
 - Survived the competition from other proposed WLAN technologies and standards (e.g., HiperLAN)
- Now WLANs are synonymous with 802.11 based WLANs (also called Wi-Fi)
 - Wi-Fi is to wireless LANs as Ethernet is to wired LANs

The Success of Wi-Fi

Contributing factors:

- Operation in license exempt (unlicensed) spectrum bands → no barrier to deployment
- Continually evolving standards aimed at higher data rates and enhanced functionality
- Low cost commodity hardware from reaching economies of scale

(Partial) History of 802.11 WLANs

1985

• US Federal Communications Commission (FCC) allowed unlicensed use of ISM bands

1997

• First version of 802.11 standard published

1999

- 802.11b and 802.11a amendments supporting higher data rates up to 54Mbps
- Wi-Fi Alliance formed to certify interoperability between IEEE 802.11 devices from different manufacturers

2003

• 802.11g amendment using 802.11a OFDM PHY and supporting up to 54Mbps data rates

2007

• 802.11-2007 (a new release of the standard) that includes amendments a, b, d, e, g, h, i & j

2009

 802.11n amendment with high throughput improvements via MIMO, channel bonding and frame aggregation

2012

• 802.11-2012 (a new release of the standard) that includes amendments k, n, p, r, s, u, v, w, y and z

- 802.11ac amendment with very high throughput enhancements including multi-user MIMO
- 802.11af amendment supporting operation in Television White Spaces (TVWS)

Systems Architecture

Useful 802.11 Links

- Get latest 802.11 standards via:
 - http://standards.ieee.org/about/get/802/802.11.html
- Official IEEE 802.11 working group project timelines:
 - http://grouper.ieee.org/groups/802/11/Reports/802.11
 Timelines.htm

IEEE 802.11 Standard Overview

- Defines multiple physical layers (PHYs) and a common medium access control (MAC) layer for WLANs
- Member of IEEE 802 family of local area networking (LAN) and metropolitan area networking (MAN) standards
 - Inherits the 802 reference model and 48-bit universal addressing scheme

802.11 in the TCP/IP Internet Protocol Stack

application

transport

network

link

physical

802.2 logical link control (LLC)

802.11 MAC

802.11 PHYs

A Typical Implementation of 802.11 Network Interface

802.11 Medium Access Control (MAC) Overview

- 802.11 adopted the distributed MAC protocol based on carrier sense multiple access (CSMA) from Ethernet (the wired counterpart of 802.11)
 - listen/sense medium (carrier) and transmit if idle
- Ethernet uses a CSMA variant called *CSMA with collision detection (CSMA/CD)*
 - Each Ethernet device can receive its own transmission and detect collisions
 - Upon collision detection: stop transmission → random backoff → retry

802.11 Medium Access Control (MAC) Overview

- 802.11 uses a different variant called *CSMA* with collision avoidance (*CSMA*/*CA*)
 - Coz half-duplex wireless interfaces do not allow receiving one's own transmission
- Idea: be conservative in attempting a transmission
 - 802.11 devices on finding a busy medium defer by different randomly chosen periods (counting down only when medium is idle)

Overview of 802.11 Physical Layers (PHYs)

	802.11 (1997)	802.11b (1999)	802.11a (1999)	802.11g (2003)	802.11 n (2009)	802.11ac (2013)
PHY technology	IR, FHSS and DSSS in 2.4 GHz	DSSS/CCK	OFDM	OFDM & DSSS/CC K	SDM/OFDM	SDM/OFDM and MU- MIMO
Data rates (Mbps)	1, 2	1, 2, 5.5, 11	6-54	1-54	6.5-600	6.5-6933.3
Frequency band (GHz)	2.4	2.4	5	2.4	2.4 and 5	5
Channel widths (MHz)	25	25	20	25	20 and 40	20, 40, 80 and 160

Key

IR: Infrared

FHSS: Frequency Hopping Spread Spectrum

DSSS: Direct Sequence Spread Spectrum

CCK: Complementary Code Keying

OFDM: Orthogonal Frequency Division

Multiplexing

SDM: Spatial Division Multiplexing

MU-MIMO: Multi-User MIMO

Exponentially Increasing 802.11 PHY Data Rates

802.11 Network Architecture

- Individual 802.11 devices referred to as **stations**
- Basic building block: basic service set (BSS)
 - Essentially, a set of stations

Infrastructure BSS

- Special station called access point (AP)
 manages the BSS and connects with other infrastructure BSSs and network infrastructure via a distributed system (DS)
- Extended service set (ESS): a set of infrastructure BSSs interconnected by DS
 - Stations within an ESS can address directly at the MAC layer

802.11 WLAN Deployment Scenarios (1)

• Home scenario

 Single BSS, but there can be several other nearby similar BSSs that can cause interference

802.11 WLAN Deployment Scenarios (2)

- Enterprise wireless access scenario
 - ESS with multipleBSSs

802.11 WLAN Deployment Scenarios (3)

- Hotspots: airports, coffee shops, hotels, libraries, WLAN deployments in public areas of cities by municipalities
 - Can be indoor or outdoor

stitute for Computing ystems Architecture

802.11 WLAN Deployment Scenarios (4)

- City-wide / Community / neighbourhood mesh networks
 - Essentially, *multihop* version of infrastructure WLAN
- Long-distance Wi-Fi for enabling low cost
 Internet access in rural and developing regions

Independent BSS (IBSS)

• Stand-alone BSS in which stations form an ad-hoc network, independent of any network infrastructure

chool of Informatics
stitute for Computing
ystems Architecture

Wi-Fi Direct (1)

- Developed by the Wi-Fi alliance for direct communication between Wi-Fi devices
 - Could be achieved via IBSS in 802.11 standard
 - But Wi-Fi direct aims to achieve this in a form that is similar to that of commonly used infrastructure BSS
- Wi-Fi Direct operation:
 - One device takes the role of group owner (GO), similar to that of AP
 - Rest of the devices associate with GO as they would with an AP

Wi-Fi Direct (2)

- Differences with infrastructure BSS in vanilla 802.11:
 - GO does not provide access to a distribution system
 - GO can be mobile, battery operated device and can enter a low power sleep state when idle
- Wi-Fi Direct standard
 - Builds on the 802.11 specification
 - Additional protocols for:
 - device discovery
 - ➤ group owner election
 - ➤ protocol for absence from session channel (to save power, for example)

802.11a/b/g Channels (UK)

- Both 2.4GHz and 5GHz bands used by 802.11 are unlicensed (license-exempt)
 - 2.4GHz band used for 802.11b/g relatively more crowded whereas shorter range in 5GHz 802.11a bands (recall: increase in free-space loss by 6dB when frequency is doubled) 2.4 GHz ISM

Source: Kawade-Hodgkinson'o7

Transmit Spectrum Mask

To limit power leakage into adjacent channels

Transmit spectrum mask for 802.11a

802.11b

- Based on Direct Sequence Spread Spectrum (DSSS)
- Like CDMA but with common chipping sequence (spreading code) for all users

Bit-rate (Mbps)	Modulation and coding rate (R)	Data bits per symbol ^b
1	BPSK, R=1/11	1
2	QPSK, R=1/11	2
5.5	CCK^{a} , $R=4/8$	1
11	CCK, R=4/8	2

^a Complementary Code Keying

^b Symbol (chipping) rate is 1 Mega symbols(11 Mega chips) per second

802.11a/g

- Based on OFDM (Orthogonal Frequency Division Multiplexing), which is more spectrally efficient and robust to multipath fading
- Total 52 subcarriers for a 20MHz channel
 - 48 subcarriers used for data and the remaining 4 are pilot subcarriers for synchronization

802.11a/g Bit-Rates

	Bit-rate (Mbps)	Modulation and coding rate (R)	-	Coded bits per symbol	Data bits per symbol ^b
(6	BPSK, $R=1/2$	1	48	24
(9	BPSK, R=3/4	1	48	36
	12	QPSK, R=1/2	2	96	48
	18	QPSK, $R=3/4$	2	96	72
	24	16-QAM, R=1/2	4	192	96
	36	16-QAM, R=3/4	4	192	144
	48	64-QAM, R=2/3	6	288	192
	54	64-QAM, R=3/4	6	288	216

^a Coded bits per sub-carrier is dependent on the modulation scheme used (BPSK, QPSK, 16-QAM, or 64-QAM).

^b The data bits per symbol is determined by the rate of the convolutional code. **250,000 symbols per second** across 48 subcarriers (that together make up a symbol)

Role of Bit-Rate and Frame Length Selection for Efficient *and* Reliable Transmission

• Recall:

- Throughput = bit-rate * (1-FER) = bit-rate * $(1-BER)^L$, where L is the frame length
- Higher bit-rates require higher SNR to keep BER under a desirable threshold (e.g., 10⁻⁵)
- But channel (and hence, channel quality metrics such as SNR) are time varying
- So need to adapt bit-rate with SNR (or other easily measurable channel quality metrics at transmitter side such as FER)

Adaptive Bit-Rate Selection (or simply, Rate Adaptation)

- Mechanism not specified in standard, instead left to vendor/user discretion
- Issues:
 - Channel quality measurement
 - Responsiveness in dynamic environments
 - Separating channel induced losses from collision/interference losses
 - Because rate adaptation appropriate only for channel losses

- 1. SNR decreases (e.g., as node moves away from AP),BER increases
- 2. When BER becomes too high, switch to lower bitrate but with lower BER

802.11 Multiple Access Overview

- Core mechanism is distributed and based on contention based random access
 - Called Distributed Coordination Function (DCF)
- Collision detection (CD) at transmitter as in Ethernet (or 802.3) not possible due to half-duplex radios and receiverside interference
 - Need acknowledgement (ACK) from receiver; missing ACK used to infer collisions and other types of frame losses (e.g., channel induced bit errors)
 - Need to transmit collided frames in entirety
- So adopt a collision avoidance approach
 - Specifically, carrier sense multiple access with collision avoidance (CSMA/CA)
 - Still bears similarity with Ethernet's CSMA/CD approach due to use of CSMA and exponential backoff (upon frame transmission failure)

802.11 Multiple Access Ingredients

CSMA

- Sense if medium idle (e.g., via signal energy detection)
 - ➤ This physical carrier sensing referred to as Clear Channel Assessment (CCA) in 802.11

Collision avoidance via:

- Random backoffs
- Inter frame spaces (IFSs)
- Virtual carrier sensing using Network Allocation Vector (NAV) to complement physical carrier sensing (CCA)
- (Optional) RTS/CTS mechanism to mitigate hidden terminal problem

• Loss recovery / reliability via:

- Receiver ACKs for successful frame transmissions
- Failed frames retransmitted with exponential backoffs
- Multiple physical layer bit-rates, each using different modulation and coding scheme (MCS)
- Option of frame fragmentation for shorter sized frames

Inter Frame Spaces for *Prioritised* Channel Access

Data

- Short inter-frame space (SIFS) = aSIFSTime = 16µs with 802.11a/g/n/ac PHYs
- Slot time = aSlotTime = 9μs with 802.11a/g/n/ac PHYs
- PCF IFS (PIFS) = aSIFSTime + aSlotTime
- DCF IFS (DIFS) = aSIFSTime + 2*aSlotTime

802.11 CSMA/CA Protocol

- I. When a station has a frame to transmit:
 - 1. If medium busy, then choose a random backoff counter between o and CW (initially, CW_{min}) slots; $CW_{min} = 15$ with 802.11a/g/n/ac PHYs
 - a. Random backoff counter counts down to zero only during idle slots (i.e., medium idle for DIFS period); pauses otherwise. When counter reaches o, then transmit frame
 - 2. Else: if medium stays idle for another DIFS period, then transmit frame
- II. On the receiver side:
 - If frame received correctly then transmit ACK after SIFS period
- III. If no ACK received at transmitter then:
 - a. Double the backoff interval CW unless CW = CW_{max} (1023 with 802.11a/g/n/ac PHYs) \leftarrow exponential backoff
 - b. Attempt a retransmission by following <u>step 1.a</u> until frame transmission successful or max. retransmission limit reached
- IV. If ACK received at transmitter and has another frame to transmit, then follow step 1 regardless of medium busy or idle (i.e., random backoff, countdown and transmit)

Note that ACK frames use a lower PHY data rate compared to the corresponding data frame for extra reliability

802.11 CSMA/CA Protocol Illustrated

Virtual Carrier Sensing

- Via a "virtual medium busy timer" variable called Network Allocation Vector (NAV) maintained independently and internally at each node (AP or station)
- Every node's NAV keeps track its notion of medium usage by looking at the value of duration field in overheard frames (even those not destined to it)
- Non-zero NAV is taken to mean medium is busy regardless of what physical carrier sensing (CCA) sees
 - Can be seen as MAC level carrier sensing
- E.g.,
 - Upon hearing a DATA frame, NAV extended (at least) till the time required for completion of ACK transmission corresponding to the DATA frame
 - As a result, each hearing node (not just the intended receiver) considers the medium to be busy even if it does not hear the following ACK frame

RTS/CTS Mechanism

- Optional, to mitigate hidden terminal problem
- Leverages NAVs

- Idea: use short control frames, request-to-send (RTS) and clear to send (CTS), upfront to reserve the medium around transmitter *and* receiver for the ensuing data frame transmission
- Example in above figure:
 - A wants to transmit frame to B; C within range of A (and possibly B) but
 D only within range of B

 Institute for Computing
 Systems Architecture

RTS/CTS frames can also experience collisions; dealt the same way as with DATA frames

RTS/CTS Mechanism: Discussion

- Not found to be very useful in practice
 - Not helpful for shorter frames or AP frames
 - Does not help with exposed terminals
- Physical/virtual carrier sensing can largely prevent potential hidden terminal collisions; besides, unsuccessful transmitters are automatically slowed down with basic CSMA/CA because of stop-and-wait ARQ mechanism with exponential backoffs
- So additional benefit from using RTS/CTS for hidden terminals marginal, especially when considering the extra delay and handshake overhead

Institute for Computing Systems Architecture

Extended Inter-Frame Space (EIFS)

- Another mechanism to protect against hidden nodes
- EIFS = aSIFSTime + ACKTxTime + DIFS
 where ACKTxTime is the time required to transmit an ACK at the
 lowest mandatory PHY data rate

Finding, joining and leaving a BSS

- Scanning for a station to discover a BSS and its attributes
 - 1. Passive
 - 2. Active
- (Re-/Dis-)Association
 - By associating with an AP, a station becomes a member of the BSS represented by the AP
 - By disassociating, it leaves the BSS
 - In an ESS with multiple BSSs, a station can move from one BSS and reassociate with another BSS

Beacons

- Each AP periodically broadcasts beacon frames, typically every 100ms
- Each beacon carries regulatory info, capability info, and info for managing the BSS:
 - Network/ESS identifier (SSID)
 - AP/BSS identifier (BSSID)
 - Country code info
 - Maximum allowable transmit power
 - Allowed channels
 - time reference
 - time till next beacon
 - bit-rates supported
 - security settings
 - power-saving capabilities

Target Beacon Transmission Time (TBTT)

- Beacons scheduled every TBTT
- Actual transmission time of beacons depends on whether channel is idle at scheduled time

AP and Station Channel Assignment

- Each AP operates on a channel in a band (e.g., 2.4GHz, 5GHz)
- The channel used by an AP depends on its hardware capability and channel assignment procedure in use (default setting, manual configuration, automatic and adaptive channel selection)
- Channel used by a station implicitly chosen depending on the AP it associates with
- Neighboring APs (and their associated stations) could interfere with each other depending on their channels of operation

Passive Scanning

- A station looks for beacon transmissions in *all* channels, by repeating the following process:
 - dwelling for some time in each channel, then switching to another channel
- Passive (receive only) operation
- Compatible with all regulatory domains
- May need to follow it up with active scanning if additional info required

Active Scanning

- Actively probe for a BSS using Probe Request and Probe Response messages
- A station transmits Probe Request frames on each of the channels it is seeking a BSS, including the following addresses in the request:
 - SSID: specific or wild card
 - BSSID: specific or wild card
 - Destination Address (DA): broadcast MAC address (FF:FF:FF:FF:FF)
- AP receiving a Probe Request responds with a Probe Response if its SSID and BSSID match with that in request
- Multiple APs may respond to a Probe Request

802.11 Association

- Note that scanning (passive or active) may lead to discovery of one or more APs (BSSs)
- AP selection problem: selecting an AP if more than one discovered
 - AP selection mechanism left unspecified in the standard
 - Could be based on signal strength, load, etc.
- Before a station can send/receive data, it must:
 - Associate with the selected AP
 - Then get an IP address (in the associated AP's subnet), typically via DHCP

Scanning + Association Illustrated

Passive Scanning:

- Beacon frames sent periodically from APs
- (2) Association Request frame sent from H1 to selected AP
- (3) Association Response frame sent from Selected AP to H1

Active Scanning:

- (1) Probe Request frame broadcast from H1
- (2) Probe response frames sent from APs
- (3) Association Request frame sent from H1 to selected AP
- (4) Association Response frame sent from Selected AP to H1

Reassociation and Disassociation

Reassociation

- Happens when:
 - ➤ Station moves to a new BSS served by an AP different from the one it is associated with
 - ➤ To change attributes of station association such as station capability info
- Initiated by station (Reassociation Request to AP seeking a Reassociation Response)

Disassociation

- When leaving the network or loss of communication
- Explicitly performed (by either AP or station) by sending
 Disassociation frame and seeking acknowledgement
- Implicitly via timeout at AP

802.11 Mobility Support

802.11 Mobility Within Same Subnet (Intra-ESS)

- H1 remains in same IP subnet: IP address can remain same
- Switch: H1 associated with which AP?
 - self-learning: switch will see incoming frames from H1 and "remember" which switch port can be used to reach H1

802.11 Authentication

- Establish the identity of the station before it is allowed to communicate
- Broadly speaking, two authentication methods:
 - 1. Open system authentication (*prior* to Association)
 - Station joining the BSS sends an Authentication frame requesting open system authentication
 - AP responds with an Authentication frame with status "success"
 - 2. Shared key authentication
 - Initially, Wired Equivalent Privacy (WEP) which was found to be insecure in 2001
 - Currently used approach from the 802.111 (WPA2) amendment from 2004
 - ☐ Authentication *after* Association

Authentication and Association Process Illustrated

802.1X Authentication

- Station to access a BSS authenticates with an authentication server (AS) using extensible authentication protocol (EAP)
 - AS may be co-located with AP or on a separately located server
- Multiple options for the authentication method:
 - EAP-Transport Layer Security (EAP-TLS) often used
 - Lightweight Extensible Authentication Protocol (LEAP)
 - EAP-MD5

802.11i Operation

- Following Association Request/Response exchange:
 - AP sends an EAP Request challenging the station to identify itself
 - Station responds with an EAP Response that is forwarded to the AS
 - EAP authentication exchange between station and AS via AP to mutually authenticate each other and derive a Master Key (MK) known to both
 - ➤ A second key called **Pairwise Master Key (PMK)** is generated from MK
 - On successful authentication of station:
 - ➤ AS informs this to AP along with PMK
 - ➤ AP then forwards EAP-Success to station → AP and station mutually authenticated and have a shared key
 - If authentication fails:
 - ➤ AS informs the AP which sends an EAP-Failure message to station followed by Disassociation frame

Transient Keys

- Data frames are encrypted using transient keys, regenerated using PMK periodically (typically, every 24 hours)
- **Pairwise transient key (PTK)** to protect traffic between AP and station
- Group transient key (GTK) to protect broadcast and multicast traffic from AP

Transient Key Generation

- Four/two-way handshake for station and AP to derive PTK/GTK
 - Key Message 1 (AP to station): station derives PTK using ANonce from AP + locally generated SNonce + knowledge of PMK
 - Key Message 2 (station to AP):
 - ➤ AP derives PTK using SNonce from station + previously locally generated ANonce + knowledge of PMK
 - ➤ AP confirms that station knows PTK using the message integrity check (MIC) in message generated using PTK by station
 - Key Message 3 (AP to station): GTK encrypted using PTK + MIC sent to station
 - Key Message 4 (station to AP): confirms receipt of GTK and authentication of AP

MAC and PHY Data Units

- Service Data Unit (SDU) refers to data transferred between layers
 - MAC SDU (MSDU)
 - PHY SDU (PSDU)
- Protocol Data Unit (PDU)
 refers to data exchanged by
 peer entities of the same
 layer
 - MAC PDU (MPDU) = MAC
 header + MSDU + trailer
 (frame check sequence) =
 PSDU
 - PHY PDU (PPDU) = Preamble+ PHY header + PSDU

MAC Frame Format

B0	B1	B2	B3	B4	B7	B8	B9	B10	B11	B12	B13	B14	B15	
Proto Vers		Ту	pe	Sub	type	To DS	From DS	More Frag	Retry	Pwr Mgt	More Data	Protected Frame	Order	Frame Control field

Protocol Version subfield always set to oo

Frame Type and Subtypes

Type	Type description	Subtype	Subtype description		
00	Management	0000	Association Request		
		0001	Association Response		
		0010 Reassociation Request 0011 Reassociation Response			
		0100	Probe Request		
		0101	Probe Response		
		0110-0111	Reserved		
		1000	Beacon		
		1001	ATIM		
		1010	Disassociation		
		1011	Authentication		
		1100	Deauthentication		
		1101	Action		
		1110	Action No Ack		
		1111	Reserved		
01	Control	0100	Beamforming Report Poll		
		0101	VHT NDP Announcement		
		0111	Control Wrapper		
		1000 Block Ack Request			
		1001	Block Ack		
		1010	PS-Poll		
		1011	RTS		
		1100	CTS		
		1101	ACK		
		1110 CF-End			
		1111	CF-End + CF-Ack		
10	Data	0000	Data		
		0001	Data + CF-Ack		
		0010	Data + CF-Poll		
		0011	Data + CF-Ack + CF-Poll		
		0100	Null (no data)		
		0101	CF-Ack (no data)		
		0110	CF-Poll (no data)		
		0111	CF-Ack + CF-Poll (no data)		
		1000	QoS Data		
		1001	QoS Data + CF-Ack		
		1010	QoS Data + CF-Poll		
		1011	QoS Data + CF-Ack + CF-Poll		
		1100	QoS Null (no data)		
		1101	Reserved		
		1110	QoS CF-Poll (no data)		
		1111	QoS CF-Ack + CF-Poll (no data)		

To/From DS

From DS	To DS	Meaning		
0	0	Indicates:		
		 a data frame direct from one station to another within the same IBSS a data frame direct from one non-AP station to another non-AP station within the same BSS all management and control frames 		
0	1	A data frame destined for the distribution system (DS) or being sent by a station associated with an AP to the Port Access Entity in that AP		
1	0	A data frame exiting the DS or being sent by the Port Access Entity in an AP		
1		A data frame using the four-address format (not defined in the standard)		

Duration and Address Fields

- Duration/ID:
 - If less than 32,768 then interpreted as a duration in μs to update NAV
 - If the two high order bits are set in PS-Poll frame then low order 14 bits are interpreted as association identifier (AID)
- Address 1: receiver address, present in all frames
- Address 2: transmitter address, present in all frames except CTS and ACK
- Address 3: present in data and management frames
 - In data frame, dependent on To/From DS settings and MSDU/A-MSDU
 - In management frame, address 3 contains BSSID
- Address 4: present only in data frames and only when both From/To DS bits are set

A Use of "Address 3"

802.11/Wi-Fi frame

Fragmentation

 Allows a large MSDU to be divided into smaller data fragments, each encapsulated in a MPDU

 Individual MPDUs containing the fragments of a MSDU can be sent separately, or in a burst upon gaining access

to channel as shown here

MSDU is fragmented if it is

longer than dot11FragmentationThreshold

Sequence Control Field

- Duplicate detection via:
 - Sequence numbers for duplicate detection
 - > Start from o and are assigned from a modulo-4096 counter
 - Retry subfield
 - > Set to 1 in any data or management frame that is a retransmission
 - > Set to o in all other frames
 - Receiver uses this bit while eliminating duplicate frames
- When a MSDU is fragmented, MPDUs with fragments are given different fragment numbers in sequence starting from o but share the same sequence number
 - More Fragments subfield set to 1 in all data or management frames if another fragment to follow, otherwise set to o

Power Management

- 802.11 radio interface that is idle and listening consumes nearly as much power as when receiving and marginally lower than when it is transmitting
- Turning off the radio altogether leads to greater power savings
 - Which is essentially how stations can save power using 802.11 power management features
- Broadly speaking, a station can be in one of two modes:
 - Power Save (PS) mode: in this mode, a station alternates between
 Awake state and Doze (Sleep) state
 - Active mode (i.e., always awake)
- AP always in active mode
- A station indicates its mode to its AP via the "Pwr Mgt"
 bit in Frame Control field

Unicast Traffic and Traffic Indication Map (TIM)

- AP buffers frames addressed to stations in PS mode
- Traffic indication map (TIM) in every beacon frame used to indicate buffered traffic to a station in PS mode
 - TIM is a partial virtual bitmap: each bit represents a station on the BSS
 - A station identified in the TIM by the bit position indexed by its association ID (AID)
 - First bit (AID = o) used for group addressed (broadcast/multicast traffic)
- All stations in PS mode wake up periodically to receive beacon frames
- If a station has buffered frames waiting at the AP as indicated via TIM then
 - It remains awake and polls AP to receive one or more buffered frames ("More Data" bit in Frame Control field), then go back to doze state

Group Addressed Traffic and Delivery TIM (DTIM)

- AP also delivers group addressed (broadcast/multicast) traffic at predictable intervals to allow stations in PS mode to receive
- Delivery TIM (DTIM) in every nth beacon frame
 - Indicates group addressed traffic will be delivered immediately following the beacon with DTIM
- DTIM Count in a beacon frame indicates #beacons until next DTIM
 - DTIM Count = o in beacon frame with DTIM
 - All non-DTIM beacons have non-zero DTIM Count
- DTIM interval is the interval between beacons carrying DTIM
- Multiple buffered group addressed frames are delivered one after another using the "More Data" bit in a similar way to delivery of multiple buffered unicast frames

School of Informatics
Institute for Computing
Systems Architecture

802.11 PS Mode Illustrated

• In this example:

- DTIM Count = o in 1st Beacon
- DTIM Count = 2 in 2nd Beacon
- DTIM Count = $1 \text{ in } 3^{\text{rd}}$ Beacon
- DTIM Count = o in 4th Beacon

Automatic Power Save Delivery (APSD)

- Introduced in 802.11e amendment (2005)
- AP buffers frames until the station wakes up when it needs to send frames to the AP
- Allows more flexible and fine-grained sleep schedule
 - Works well for interactive applications like VoIP with bidirectional traffic pattern
 - A VoIP phone can send and receive frames every 20ms and sleep in between (instead of having to wake up at beacon frame arrival times, which are typically every 100ms)

WNM-Sleep Mode

- Introduced in 802.11u amendment (2011)
- Allows a station to miss DTIMs without missing associated group addressed traffic
- To support a station using this mode (indicated to AP via TFS request frame), AP converts group addressed frames to equivalent unicast frame addressed to that station

802.11 Power Management: Discussion

- Even if a station wakes up to receive every beacon, significant energy savings possible, especially when at times of no buffered traffic
 - E.g., ~250 microseconds (=0.25ms) wakeup period to receive beacon frames every beacon interval (typically 100ms) → sleep more than 99% of the time!
- Standard does not define which beacon frames a station should receive → even greater power savings can be achieved at the expense of increased latency

Enhanced Distributed Channel Access (EDCA)

- Introduced in 802.11e amendment (2005) to support prioritised Quality of Service (QoS)
- Defines four access categories (ACs) representing four different traffic types: background, best effort, video and voice traffic
- Other key new features introduced in 802.11e:
 - Transmit opportunity (TXOP) concept
 - QoS Data frame = regular Data frame + QoS Control field
 - Block acknowledgements

EDCA Schematic

• Each AC has:

- a logically separate
 queue at MAC layer
- different settings for access parameters (contention window, inter-frame space, etc.)

Priority	802.ID user priority	802.ID Designation	AC	Designation
Lowest	1	BK	AC BK	Background
	2	_	» —	
	0	BE	AC_BE	Best effort
	3	EE	_	
	4	CL	AC VI	Video
	5	VI		
Highest	6	VO	AC VO	Voice <u>rmatics</u>
	7	NC	- 100 Jan	omputing itecture

Transmit Opportunity (TXOP)

- A bounded period during which a station may transfer data of a particular traffic class (AC)
- Obtained using the access parameters of the traffic class (AC) that will use it
- Once obtained, station may continue to transmit and receive frames provided frame sequence duration does not exceed TXOP limit for that AC
- TXOP = o (the default prior to 8o2.11e) → after a transmission of MSDU or management frame, a station needs to compete again for channel access
- Collision detect via a short frame exchange (e.g., RTS/CTS) required at the beginning of TXOP

TXOP Illustrated

- TXOP promotes resource (air time) fairness
- Note that vanilla 802.11 fair in terms of transmission opportunities (throughput) even when links use multiple different PHY data rates

EDCA Access Parameters

• DIFS in the vanilla DCF protocol replaced by arbitration inter-frame space (AIFS):

AIFS [AC] = aSIFSTime + AIFSN [AC] * aSlotTime

AC	CWmin	CWmax	AIFSN	TXOP limit
AC_BK	31	1023	7	0
AC_BE	31	1023	3	0
AC VI	15	31	2	3.008 ms
AC VO	7	15	2	1.504 ms
legacy	15	1023	2	0

Block Acknowledgements

- Allows transfer of a block of frames that are together acknowledged with a single Block Acknowledgement (BA) frame instead of ACK for each individual frame
- Two options:
 - 1. Immediate block ACK: After sending a block of frames, *possibly* spanning multiple TXOPs, sender sends a block acknowledgement request (BAR) frame soliciting a block ack (BA) from receiver

Delayed block ACK: BAR sent in one TXOP and BA can come back in a separate, later TXOP
School of Informatics

Institute for Computing Systems Architecture

802.11n

- Goal: achieving 100Mbps+ throughput above data link layer
- Key features:
 - Higher PHY data rates via:
 - ➤ Spatial division multiplexing (SDM) using MIMO
 - ▶40MHz operation
 - MAC efficiency improvement via:
 - >Frame aggregation
 - ➤ Block acknowledgement enhancement

MIMO and SDM

- Multiple input, multiple output (MIMO) system: transmitter with multiple antennas transmitting to a receiver with multiple receive antennas
 - Contrast with single input single output (SISO) system in which both transmitter and receiver have only one antenna
- Spatial division multiplexing (SDM): A MIMO system used to transmit independent data streams (or spatial streams) on different antennas
 - Spatial streams: streams of bits transmitted over separate spatial dimensions

School of Informatics Institute for Computing

- k spatial streams require k antennas
- NxN MIMO system has N Tx antennas and N Rx antennas

Other Enhancements in 802.11n

- Robustness improvements via:
 - Spatial diversity through the use of multiple antennas
 - Space-time block coding (STBC)
 - Fast link adaptation
 - Low density parity check (LDPC) codes
 - Transmit beamforming (TxBF)
- Other enhancements:
 - Shorter guard interval (GI)
 - Greenfield preamble
 - Reverse direction MAC protocol (subleasing TXOP)
 - Reduced inter-frame space (RIFS)

802.11n PHY Features

* 2 spatial streams mandatory for AP only

802.11n PHY Data Rates

MCS	Spatial	Modulation	Coding	20MHz	40MHz
Index	Streams	Scheme	Rate	w/ LGI	w/ LGI
0	1	BPSK	1/2	6.50	13.50
1	1	QPSK	1/2	13.00	27.00
2	1	QPSK	3/4	19.50	40.50
3	1	16-QAM	1/2	26.00	54.00
4	1	16-QAM	3/4	39.00	81.00
5	1	64-QAM	2/3	52.00	108.00
6	1	64-QAM	3/4	58.50	121.50
7	1	64-QAM	5/6	65.00	135.00
8	2	BPSK	1/2	13.00	27.00
9	2	QPSK	1/2	26.00	54.00
10	2	QPSK	3/4	39.00	81.00
11	2	16-QAM	1/2	52.00	108.00
12	2	16-QAM	3/4	78.00	162.00
13	2	64-QAM	2/3	104.00	216.00
14	2	64-QAM	3/4	117.00	243.00
15	2	64-QAM	5/6	130.00	270.00

ol of Informatics

802.11ac PHY Features

- 802.11ac Goals:
 - Single link throughput at least 500Mbps
 - Multi-station throughput of at least 1Gbps

802.11n and 802.11ac MAC Enhancements

802.11n Throughput without MAC Changes

• 3ms TXOP limit, block ack, 10% PER

Overhead Increase at Higher PHY Data Rates

 Relative preamble overhead for a 1500 byte frame at different PHY data rates

1%	//	6Mbps (20MHz, 1 x 1)
8%		54Mbps (20MHz, 1 x 1)
29%	130Mbps (20MHz, 2 x 2)	
45%	270Mbps (40MHz, 2 x 2)	
73% 540)Mbps (40MHz, 4 x 4)	

802.11n MAC Efficiency without MAC Changes

• 3ms TXOP limit, block ack, 10% PER

MAC Throughput Enhancements

802.11 Throughput with MAC Enhancements

• 3ms TXOP limit, block ack, 10% PER

MAC Efficiency with MAC Enhancements

• 3ms TXOP limit, block ack, 10% PER

802.11n Frame Aggregation

- Two types:
 - MSDU aggregation (A-MSDU) at the *top* of the MAC
 - MPDU aggregation (A-MPDU) at the bottom of the MAC
- In both cases, subframes must be destined to the same receiver and should belong to the same service category

Aggregate MSDU (A-MSDU)

- Multiple MSDUs from LLC aggregated and encapsulated within a single MPDU
- Maximum length = 3839/7935 bytes depending on receiver buffer size (4KB/8KB)

Aggregate MPDU (A-MPDU)

- Multiple MPDUs are aggregated together and encapsulated within a single PSDU (A-MPDU)
- Maximum A-MPDU length with 802.11n can be 8191; 16383; 32, 767, or 65,535 bytes

Need both A-MSDU and A-MPDU with 802.11ac

HT Control Field

• To carry .11n and .11ac specific information in MAC header

