Paul Gustafson

Texas A&M University - Math 607 Instructor: Thomas Schlumprecht

HW 8

1 Let $f:[0,1]\to\mathbb{R}$ be integrable (with respect to Lebesgue measure) and nonnegative. Define

$$G_{-} = \{(x, y) : 0 \le x \le 1, 0 \le y \le f(x)\}.$$

Show that G_{-} is measurable in $\mathbb{R} \times \mathbb{R}$ and that

$$m(G_{-}) = \int_{0}^{1} f(x) dx.$$

Proof. Case f is simple. In standard form $f = \sum_{i=1}^{n} a_i \chi_{A_i}$. Hence $G_- = \bigcup_{i=1}^{n} A_i \times [0, a_i)$ is measurable. Since the $A_i \times [0, a_i)$ are disjoint we have $m(G_i) = \sum_i a_i m(A_i) = \int f \, dx$.

General case. There exists a sequence of simple functions $\phi_n \uparrow f$. Let $H_n = \{(x,y) : 0 \le x \le 1, 0 \le y \le \phi_n(x)\}$. Then by part (a), each H_n is measurable and $m(H_n) = \int \phi_n dx$. Hence $G_- = \bigcup_n H_n$ is measurable, and $m(G_-) = \lim_{n \to \infty} m(H_n) = \lim_{n \to \infty} \int \phi_n dx = \int f dx$, where the last equality follows from the MCT.

2 Let f be Lebesgue integrable on (0,1). For 0 < x < 1 define

$$g(x) = \int_{x}^{1} t^{-1} f(t) dt.$$

Prove that g is Lebesgue integrable on (0,1) and that

$$\int_0^1 g(x) \, dx = \int_0^1 f(x) \, dx.$$

[Hint: first prove the case where $f \geq 0$.]

Proof. Case $f \geq 0$

3 Let $\mathcal{M} = \mathcal{N} = \mathcal{B}_{[0,1]}$. Let μ be the Lebesgue measure on \mathcal{M} and ν be the counting measure on \mathcal{N} . Show that for $D = \{(x, x) : x \in [0, 1]\}$

- a) $D \in \mathcal{M} \otimes \mathcal{N}$.
- b) The numbers

$$\mu \otimes v(D), \int \int \chi_D d\mu d\nu$$
, and $\int \int \chi_D d\nu d\mu$

are all unequal.

c) Show that there is more than one measure π on \mathbb{R}^2 for which

$$\pi(A \times B) = \mu(A)\nu(B)$$
, whenever $A, B \in \mathcal{B}_{0}, 1$.

p4 Find a measurable function $f: \mathbb{R}^2 \to \mathbb{R}$ measurable so that

- a) $\int_{\mathbb{R}^2} |f(x,y)| dxdy = \infty$
- b) $\int_{\mathbb{R}} \int_{\mathbb{R}} f(x,y) dxdy$, and $\int_{\mathbb{R}} \int_{\mathbb{R}} f(x,y) dydx$ both exist but are unequal.

Proof. Let

$$a_{ij} = \begin{cases} 1 & j = i+1 \\ -1 & j = i-1 \\ 0 & \text{else} \end{cases}$$

Let $f(x) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{ij} \chi_{[i,i+1) \times [j,j+1)}$. Then

$$\int_{\mathbb{R}} \int_{\mathbb{R}} f(x, y) \, dx dy = \int_{\mathbb{R}} \left\{ \begin{array}{ll} 1 & 0 \le y < 1 \\ 0 & \text{else} \end{array} \right. dy = 1,$$

and

$$\int_{\mathbb{R}} \int_{\mathbb{R}} f(x,y) \, dy dx = \int_{\mathbb{R}} \left\{ \begin{array}{ll} -1 & 0 \leq x < 1 \\ 0 & \text{else} \end{array} \right. \, dx = -1.$$

5 Problem 49/Page 69. Prove Theorem 2.39 by using Theorem 2.37 and Proposition 2.12 together with the following lemmas.

a. If $E \in \mathcal{M} \times \mathcal{N}$ and $\mu \times \nu(E) = 0$, then $\nu(E_x) = \mu(E^y) = 0$ for a.e. x and y.

b. If f is \mathcal{L} -measurable and f=0 λ -a.e., then f_x and f^y are integrable for a.e. x and y, and $\int f_x d\nu = \int f^y d\mu = 0$ for a.e. x and y. (Here the completeness of μ and ν is needed.)

6 If $f \in L_1(\mathbb{R}^2)$ or $f \geq 0$ and mble and $c \in \mathbb{R} \setminus \{0\}$, then

$$\int f(cx, cy)dxdy = c^{-2} \int f(x, y)dxdy.$$

$$\int f(x+cy,cy)dxdy = \int f(x,y)dxdy.$$

7 Prove that for any $f \in L_1(\mathbb{R}^d)$ and any $\epsilon > 0$ there is a simple function

$$\phi = \sum_{j=1}^{n} \alpha_j \chi_{R_j},$$

where the R_j 's are products of intervals, and $\|\phi - f\|_1 \le \epsilon$.

Proof. Since there exist simple functions $0 \le |\phi_n| \le |f|$ with $\phi_n \to f$, by the DCT WLOG f is simple. Then if $f = \sum_i a_i \chi_{A_i}$ in standard form, it suffices to approximate each A_i by finite disjoint union of products of intervals.

Let A be a measurable set of finite measure in \mathbb{R}^d . By the outer regularity of Lebesgue measure, WLOG A is open. Let $E_n = \{x \in A : B_{1/n}(x) \in A\}$. Then since A is open, $A = \bigcup_{n=1}^{\infty} E_n$. Since (E_n) is increasing, we have $m(A) = \lim_{n \to \infty} m(E_n)$.

Let $\epsilon > 0$. Pick E_n such that $m(A \setminus E_n) < \epsilon$. Let \mathcal{Q} be the collection of all R^d cubes with half-open sides of length $\frac{1}{2\sqrt{3}n}$ and vertices at $\frac{1}{2\sqrt{3}n}\mathbb{Z}$ -lattice points.

Then \mathcal{Q} is a pairwise disjoint covering of R^d . Let $U = \bigcup \{Q \in \mathbb{Q} : Q \cap E_n \neq \emptyset\}$.

Then $E_n \subset U \subset A$, where the latter inclusion follows from the fact that the diameter of each cube is $\frac{1}{2n} < 1/n \le d(E_n, A^c)$.

diameter of each cube is $\frac{1}{2n} < 1/n \le d(E_n, A^c)$. Since U has finite measure, U is a finite disjoint union of products of intervals, and $m(A\Delta U) = m(A \setminus U) < \epsilon$.