

Lycée BILLES Bilingual Lycee of Excellence in Sciences

Lycée Bilingue d'Excellence pour les Sciences

TS1/Logarithme népérien / Compléments

Exercice 1:

Calculer la limite de f à droite en 1 :

a.
$$f(x)=(x-1)\ln(x-1)$$
; b. $f(x)=\ln(x-1)+\frac{1}{x-1}$;

c.
$$f(x) = \ln(x-1) + \frac{2x-3}{x-1}$$
.

Exercice 2:

Calculer la limite de f en 0:

a.
$$f(x) = \frac{\ln(1+x^2)}{x^2}$$
; b. $f(x) = \frac{\ln(1+3x)}{x}$;
c. $f(x) = \frac{\ln(1-x)}{x}$; d. $f(x) = \frac{\ln(1-2x)}{x}$

Exercice 3:

3. Calculer la limite de f en $+\infty$ et en $-\infty$:

a.
$$f(x) = x \ln \left(1 - \frac{1}{x+2}\right)$$
.
b. $f(x) = (x-1) \ln \left(1 + \frac{2}{x-3}\right)$.

c.
$$f(x) = x \ln \left(\frac{x+1}{x-1} \right)$$
.

Étudier la continuité et la dérivabilité de f définie sur $[0,+\infty[$, puis calculer f'(x) pour tout de D_f ':

1.
$$f(x)=x^2(2\ln x-1)$$
 si $x\neq 0$ et $f(0)=0$

2.
$$f(x) = \frac{\ln x}{x - \ln x}$$
 si $x \ne 0$ et $f(0) = -1$:

3.
$$f(x) = \frac{\ln(1+x^2)}{x}$$
 si $x \neq 0$ et $f(0) = 0$

4.
$$f(x) = \frac{x^2 \ln x}{1+x}$$
 si $x \neq 0$ et $f(0) = 0$.

Exercice 5

Soit g la fonction définie par : $g(x) = x^2-2 + \ln x$.

- 1.a) Montrer que l'équation g(x) = 0 admet une solution unique α .
- b) Donner un encadrement d'amplitude 10⁻¹.
- c) Déterminer le signe de g(x) suivant les valeurs de x.
- 2. Soit f la fonction définie par $f(x) = \frac{x^2 + 1 \ln x}{x}$.
- a) Déterminer le sens de variation de f.
- b) Montrer que $f(\alpha) = 2\alpha \frac{1}{\alpha}$
- c) Dresser le tableau de variation de f.

Exercice 6

Soit f la fonction définie par

$$f(x) = x+4 + \ln\left|\frac{x-2}{x+2}\right|$$
 et C_f sa courbe représentative

dans un plan muni d'un repère orthonormal (O,\vec{i},\vec{j}) .

- 1. Étudier les variations de f puis dresser son tableau de variation.
- 2.a)Montrer que Cf admet trois asymptotes dont 1'une (Δ) d'équation y = x+4.
- b) Préciser la position de C_f par rapport à (Δ) .
- 3. Montrer que l'intersection de C_f avec l'axe des ordonnées est centre de symétrie de C_f.

- 4. Construire C_f.
- 5. Soit k un réel. Étudier suivant les valeurs de k, le nombre de points d'intersection de Cf et de la droite (D) d'équation y = x + k.

Exercice 7

On considère la fonction f définie par $f(x) = \frac{\ln x}{x}$.

Soit (C) la courbe représentative de f dans un repère orthonormal.

Déterminer les abscisses x₁, x₂, x₃, x₄ des points

 M_1 , M_2 , M, M_4 tels que:

M₁: intersection de (C) et de l'axe des abscisses ;

M₂: point de (C) où la tangente à (C) passe par l'origine du repère ;

M₃ :point de (C) où la tangente à (C) est parallèle à l'axe des abscisses;

M₄: en x₄ la dérivée seconde de f s'annule.

Démontrer que les nombres x_1 , x_2 , x_3 , x_4 sont quatre termes consécutifs d'une suite géométrique.

Exercice 8

1. Montrer pour tout x > 0:

$$\frac{1}{x+1} \le \ln(x+1) - \ln x \le \frac{1}{x}$$

2. Soit (u_n) la suite définie par :

$$u_n = \frac{1}{n+1} + \frac{1}{n+2} \dots + \frac{1}{2n} ; n \ge 1$$

a. Montrer que pour tout $n \ge 1$:

$$\ln\left(\frac{2n+1}{n+1}\right) \le u_n \le \ln 2$$

b. En déduire que la suite est convergente et déterminer sa limite.

Exercice 9

Soit f la fonction définie par $f(x) = \frac{2}{x} + \ln x$ et (u_n) la suite définie par $u_0 = \frac{3}{2}$ et $u_{n+1} = f(u_n)$, $n \in IN$.

- 1. Etudier les variations de f puis dresser son tableau de variation.
- 2. Montrer que $f\left(\left[\frac{3}{2},2\right]\right) \subset \left[\frac{3}{2},2\right]$.
- 3. Montrer que $\forall x \in \left[\frac{3}{2}, 2\right] |f'(x)| \le \frac{2}{9}$.
- 4. a. Montrer l'équation x^2 -xlnx-1=1 admet une solution unique α et que $\alpha \in \left[\frac{3}{2}, 2\right]$.
 - b. Montrer que α est solution de l'équation f(x) = x.
- 5. Montrer pour tout $n \in IN$:

a.
$$\frac{3}{2} \le u_n \le 2$$
; b. $|u_{n+1} - \alpha| \le \frac{2}{9} |u_n - \alpha|$

b.
$$|u_n - \alpha| \le \left(\frac{2}{9}\right)^n$$

- 6. En déduire la limite de (u_n).
- 7. Trouver n pour que u_n soit une valeur approchée de α à 10^{-3} près.