Final report: Particle swarm network simulation

Course Modeling Abstractions for Embedded/Networked Systems (CSE5309)

InstructorFei MiaoDateSpring 2022StudentLynn Pepin

NetID tmp13009, 2079724

Due: May 7th

Basic functionality

The goal is to simulate a discrete-time network wireless physical-level mesh network. The network has N particles in a swarm communicating over k channels.

This simulation is implemented using Python3, numpy, and PyGame¹, the latter of which is used for rendering the simulation.

Appendix A: Particle movement patterns

The N particles are spawned at random at radius $\mathcal{N}(\mu = 100, \sigma = 10)$ and angle $\mathcal{U}(2\pi)$ from center. The particles do not collide with one another and obey basic Newtonian physics.

The particles move according to a system of differential equations:

$$\frac{d\theta}{dt} = \frac{\pi}{r * *2}$$

$$\frac{dr}{dt} = \frac{(100 - x)^3}{100000}$$

Appendix B: Table of notation

 (r, θ) Polar coordinates in (meters, radians)

(x, y) Cartesian coordinates, in meters

 $n \in N$ Node index

 $k \in K$ Channel index

 $^{^{1}\}mathrm{https://www.pygame.org/}$

\overline{t}	Time in seconds
Δt	Simulation timestep

The goal of this system is to simulate the physical layer of a wireless mesh network in order to measure its raw throughput. The network is composed of N nodes, operating as a swarm

This system simulates the motion of N massless particles, communicating over a wireless system with K channels