Option Pricing Simulation et Monte Carlo

Suzie Grondin, Thomas Aujoux, Elena Loumagne

25/04/2023

- Présentation du Pricing Asian
- 2 Monte Carlo classique
- Multi Level Monte Carlo
- Quasi Monte Carlo
- 6 Résultats et conclusion
- **6** Question bonus

- Présentation du Pricing Asian

$$C = \mathbb{E}(e^{-rT}(\frac{1}{k}(\sum_{i=1}^k S(t_i) - K)^+))$$

ullet On considère un modèle CIR pour modéliser le processus S_t :

$$dS_t = \alpha(b - S_t)dt + \sigma\sqrt{S_t}dW_t \text{ avec } W_t \sim \mathcal{N}(0, dt)$$
 et $\alpha = 0.15, b = 0, \sigma = 0.2, T = 1, r = 0.05, K = 4,$
$$k = 20, t_i = i/20$$

Présentation du Pricing Asian

Utilisation de trois méthodes :

- Monte Carlo standard
- Multi-level Monte Carlo
- Quasi-Monte Carlo

Comparaison des méthodes en utilisant le CPU time et les MSE.

•000000

- 2 Monte Carlo classique

1. **Première étape :** modéliser le processus CIR S_t avec un pas de discrétisation de $\frac{1}{k} := \frac{1}{20}$ pour réaliser un total de k simulations au cours du temps T

Option Pricing

$$\frac{1}{k}\sum_{i=1}^k S(t_i)$$

3. **Troisième étape :** Simuler N échantillons de différents CIR, avec toujours le même pas de discrétisation

4. **Quatrième étape :** pour chaque échantillon, on calcule le payoff et la present value :

$$\textit{payoff} = \textit{max}(0, \tfrac{1}{k}(\sum_{i=1}^k S(t_i) - K))$$

$$PresentValue = e^{-rT} * payoff$$

Rappel : on veut calculer
$$C = \mathbb{E}(e^{-rT}(\frac{1}{k}(\sum_{i=1}^k S(t_i) - K)^+)) = \mathbb{E}(PresentValue)$$

Cinquième étape : Estimation de l'Asian Pricing

On effectue la moyenne des Present Value sur les N échantillons :

$$\hat{C} = \frac{1}{N} \sum_{i=1}^{N} PresentValue_i$$

$$\hat{C} \approx 0.66$$

000000

- 1 Présentation du Pricing Asian
- 2 Monte Carlo classique
- 3 Multi Level Monte Carlo
- 4 Quasi Monte Carlo
- 5 Résultats et conclusion
- 6 Question bonus

- \hat{P}_l la present value de l'action simulée par un modèle CIR avec un pas de discrétisation 2^{-l}
- N_I le nombre d'échantillons au niveau l

Pour un Monte Carlo de niveau L, on veut estimer Y par:

$$\hat{Y} = \sum_{l=0}^{L} \hat{Y}_{l}$$

avec:

$$\forall I > 0, \quad \hat{Y}_I = N_I^{-1} \sum_{i=1}^{N_I} (\hat{P}_I^{(i)} - \hat{P}_{I-1}^{(i)})$$

et

$$\hat{Y}_0 = N_0^{-1} \sum_{i=1}^{N_0} \hat{P_0}^{(i)}$$

Justification : Somme télescopique $\mathbb{E}[P_I] = \mathbb{E}[P_0] + \sum_{l=1}^{L} \mathbb{E}[P_l - P_{l-1}]$

• **Point clé** : la quantité $\hat{P}_{l}^{(i)} - \hat{P}_{l-1}^{(i)}$ est simulée grâce à deux approximations discrètes ayant des pas de discrétisation différents $(2^{-l}$ et $2^{-(l-1)})$ mais ayant le même mouvement Brownien

Option Pricing

- A ce stade, on peut déjà obtenir une estimation pour des tailles d'échantions N_I fixés et L fixé
- Pour que la méthode Multi Level fonctionne de manière optimale, il faut l'appliquer L et N_l optimaux
- Comment trouver L et N_I optimaux ?

- Voici l'algorithme pour trouver le L optimal et les N_l optimaux:
- 1. Commencer à L=0
- 2. Estimer V_I la variance de $\hat{P}_I^{(i)} \hat{P}_{I-1}^{(i)}$ (ou $\hat{P}_0^{(i)}$) pour $N_I =$ 10^{4}
- 3. Calculer la taille des échantillons optimaux pour I = 0, ..., Ldonnée par $N_I = \left[2\epsilon^{-2}\sqrt{V_I h_I} \sum_{l'=1}^L \sqrt{V_{l'}/h_{l'}} x\right],$ h_l représentant le pas de discrétisation
- 4. Pour chaque I, si le nouveau N_I calculé est supérieur à l'ancien, ajouter la difference entre ces deux échantillons simulations
- 5. Si $L \geq 2$, tester la condition de convergence suivante : $\hat{Y}_{L} - \frac{1}{2}\hat{Y}_{L-1} \le \frac{1}{\sqrt{2}}(2^2 - 1)\epsilon$
- 6. Si L < 2 ou la condition de convergence n'est pas respectée, L = L + 1 et retourner à l'étape 2. 4日 5 4 周 5 4 3 5 4 3 5 6 3

Résultats obtenus en fixant $\epsilon = 10^{-3}$

$$\hat{Y} \approx 0.66 \approx \hat{C}$$

L varie entre 3 et 4

- Quasi Monte Carlo

Générer le CIR :

$$dS_t = \alpha (b - S_t) dt + \sigma \sqrt{S_t} dW_t$$
 avec $W_t \sim \mathcal{N}(0, dt)$

avec W_t simulé selon la suite de SOBOL et la méthode d'inversion.

• Résultats :

On obtient des résultats similaires à ceux de Monte Carlo classique

Randomised Monte Carlo:

On obtient des résultats similaires à ceux de Monte Carlo classique

$$\hat{C} \approx 0.66$$

- 6 Résultats et conclusion

Comparaison des intervalles de confiances

$$MSE = \mathbb{E}[P_L] = \mathbb{E}[P_0] + \sum_{l=1}^{L} \mathbb{E}[P_l - P_{l-1}]$$

Nombre de simulations $\simeq 180000$

$$C \approx 0.66$$

	Valeurs des MSE
Ordinary	1.12*10(-6)
Randomised Quasi Monte Carlo	7.59*10(-6)
Multi-level Monte Carlo	3.13*10(-4)

Comparaison des CPU Times

Nombre de simulations $\simeq 180000$

	Valeurs des CPU Times
Ordinary	36 secondes
Randomised Quasi Monte Carlo	84 secondes
Multi-level Monte Carlo	6.9 secondes

- **6** Question bonus

