Einheiten der Elektrodynamik

Lukas Prokop

10.12.30

I	Stromstärke	Ampere	A	A
Q	elektrische Ladung	Coulomb	C	$A \cdot s$
U	elektrische Spannung	Volt	V	$J/C = kg \cdot m^2 \cdot s^{-3} \cdot A^{-1}$
\mathbf{R}	elektrischer Widerstand	Ohm	Ω	$V/A = kg \cdot m^2 \cdot s^{-3} \cdot A^{-2}$
\mathbf{Z}	Impedanz	Ohm	Ω	$V/A = kg \cdot m^2 \cdot s^{-3} \cdot A^{-2}$
X	Blindwiderstand	Ohm	Ω	$V/A = kg \cdot m^2 \cdot s^{-3} \cdot A^{-2}$
ρ	spezifischer Widerstand	Ohm Meter	$\Omega \cdot m$	$kg \cdot m^3 \cdot s^{-3} \cdot A^{-2}$
P	Leistung	Watt	W	$V \cdot A = kg \cdot m^2 \cdot s^{-3}$
\mathbf{C}	elektrische Kapazität	Farad	F	$C/V = kg^{-1} \cdot m^{-2} \cdot A^2 \cdot s^4$
ε	Permittivität	Farad pro Meter	F/m	$kg^{-1} \cdot m^{-3} \cdot A^2 \cdot s^4$
χ_e	elektrische Suszeptibilität	(dimensionslos)	-	-
G	elektrischer Leitwert	Siemens	S	$\Omega^{-1} = kg^{-1} \cdot m^{-2} \cdot s^3 \cdot A^2$
Y	Admittanz	Siemens	S	$\Omega^{-1} = kg^{-1} \cdot m^{-2} \cdot s^3 \cdot A^2$
В	Blindleitwert	Siemens	S	$\Omega^{-1} = kg^{-1} \cdot m^{-2} \cdot s^3 \cdot A^2$
σ	elektrische Leitfähigkeit	Siemens pro Meter	S/m	$kg^{-1} \cdot m^{-3} \cdot s^3 \cdot A^2$
\mathbf{E}	elektrische Feldstärke	Volt pro Meter	V/m	$kg \cdot m \cdot s^{-3} \cdot A^{-1}$
Η	magnetische Feldstärke	Ampere pro Meter	A/m	$A \cdot m^{-1}$
Φ_m	magnetischer Fluss	Weber	Wb	$V \cdot s = kg \cdot m^2 \cdot s^{-2} \cdot A^{-1}$
В	Induktion	Tesla	T	$Wb/m^2 = kg \cdot s^{-2} \cdot A^{-1}$
L	Induktivität	Henry	H	$Wb/A = V \cdot s/A = kg \cdot m^2 \cdot s^{-2} \cdot A^{-2}$
μ	Permeabilität	Henry pro Meter	H/m	$kg \cdot m \cdot s^{-2} \cdot A^{-2}$

 ${\bf Wikipedia^1}$

¹http://de.wikipedia.org/wiki/Elektrodynamik