Let P: If Sahil bowls, Saurabh hits a century and Q: If Raju bowls, Sahil gets out on first ball. Now if P is true and Q is false, then which of the following can be true?

- (A) Raju bowled and Sahil got out on first ball.
- (B) Raju did not bowled.
- (C) Sahil bowled and Saurabh hits a century.
- (D) Sahil bowled and Saurabh got out.

Let P: If Sahil bowls, Saurabh hits a century and Q: If Raju bowls, Sahil gets out on first ball. Now if P is true and Q is false, then which of the following can be true?

- (A) Raju bowled and Sahil got out on first ball.
- (B) Raju did not bowled.
- (C) Sahil bowled and Saurabh hits a century.
- (D) Sahil bowled and Saurabh got out.

Answer: (C)

The truth value '9 is prime then 3 is even' is

TRUE

FALSE

The truth value '9 is prime then 3 is even' is

TRUE

FALSE

Answer: TRUE.

Let P: We should be honest., Q: We should be dedicated., R: We should be overconfident. Then 'We should be honest or dedicated but not overconfident.' is best represented by?

- (A) \sim P \vee \sim Q \vee R.
- (B)P $\wedge \sim Q \wedge R$.
- (C)P \lor Q \land R.
- (D)P \lor Q $\land \sim$ R.

Let P: We should be honest., Q: We should be dedicated., R: We should be overconfident. Then 'We should be honest or dedicated but not overconfident.' is best represented by?

- (A) \sim P $\vee \sim$ Q \vee R.
- (B)P $\land \sim Q \land R$.
- (C)P \lor Q \land R.
- (D)P \lor Q $\land \sim$ R.

Answer: (D)

Topics of the day.....PROPOSITIONAL EQUIVALENCES???

- Tautology, Contradiction and Contingency
- Logical Equivalence
- De Morgan Law
- Quiz

Propositional Equivalences

Two logical statements are said to be equivalent if they have the same truth values in all cases.

Propositional Equivalences

Two logical statements are said to be equivalent if they have the same truth values in all cases.

This fact of logical equivalence helps us in proving a mathematical result by replacing one expression with another equivalent expression, without changing the truth value of the original compound statement.

Tautology, Contradiction and Contingency

Tautology: A compound proposition that is always true, no matter what the truth values of the propositional variable that occur in it, is called a *tautology*.

Tautology, Contradiction and Contingency

Tautology: A compound proposition that is always true, no matter what the truth values of the propositional variable that occur in it, is called a *tautology*.

Contradiction: A compound proposition that is always false is called a *contradiction*.

Tautology, Contradiction and Contingency

Tautology: A compound proposition that is always true, no matter what the truth values of the propositional variable that occur in it, is called a *tautology*.

Contradiction: A compound proposition that is always false is called a *contradiction*.

Contingency: A compound proposition that is neither a tautology nor a contradiction is called a *tautology*.

Example of Tautology and Contradiction

Example of Tautology and Contradiction

p	\sim p	$p \lor \sim \! p$	$p \wedge \sim \! p$	
Т	F	Т	F	
F	Т	Т	F	

p	q	p∨q	p∧q	
Т	Т	Т	Т	

p	q	p∨q	p∧q	
Т	Т	Т	Т	
Т	F	Т	F	

p	q	p∨q	p∧q	
Т	Т	Т	Т	
Т	F	Т	F	
F	Т	Т	F	

p	q	p∨q	p∧q	
Т	Т	Т	Т	
Т	F	Т	F	
F	Т	Т	F	
F	F	F	F	

Logical Equivalence

Definition 1: Compound propositions that have the same truth values in all possible cases are called logically equivalent.

Logical Equivalence

 $\begin{tabular}{ll} \textbf{Definition 1}: Compound propositions that have the same truth \\ \textbf{values in all possible cases are called logically equivalent}. \\ \end{tabular}$

Definition 2: The compound propositions p and q are called logically equivalent if $p \leftrightarrow q$ is a **tautology**.

Logical Equivalence

Definition 2: The compound propositions p and q are called logically equivalent if $p \leftrightarrow q$ is a **tautology**.

Notation: If the compound propositions p and q are logically equivalent, then, in notation form, we write $p \equiv q$.

Important Remark about Logical Equivalence

The symbol \equiv is not a logical connective, and p \equiv q is not a compound proposition. It implies that p \leftrightarrow q is a tautology.

 $\sim\!(p\vee q)$ and $\sim\!p\wedge\!\sim\!q$ are logically equivalent compound propositions. It can be proved with the help of a truth table as follows :

p	q	p∨q	$\sim\!\!(p\!\vee\!q)$	\sim p	\sim q	\sim p $\wedge\sim$ q
Т	Т	Т	F	F	F	F

p	q	p∨q	$\sim\!\!(p\!\vee\!q)$	\sim p	\sim q	\sim p $\wedge\sim$ q
Т	Т	Т	F	F	F	F
Т	F	Т	F	F	Т	F

p	q	p∨q	$\sim\!\!(p \!\lor\! q)$	\sim p	\sim q	\sim p $\wedge\sim$ q
Т	Т	Т	F	F	F	F
Т	F	Т	F	F	Т	F
F	Т	Т	F	Т	F	F

p	q	p∨q	$\sim\!\!(p \!\lor\! q)$	\sim p	\sim q	\sim p $\wedge\sim$ q
Т	Т	Т	F	F	F	F
Т	F	Т	F	F	Т	F
F	Т	Т	F	Т	F	F
F	F	F	Т	Т	Т	Т

Some important logical equivalence

Identity laws:	о∧Т≣р	p∨F≣p
D 1 11 1	V.T. T	· E - E
Domination laws:	p∀T≣T	p∧F≣F
Idempotent laws:	p∨p≡p	p∧p≡p
Double negation law:	~(~)p≡p	
Commutative laws:	p∨q≡q∨p	p∧q≡q∧p
Associative laws:	$(p \lor q) \lor r \equiv p \lor (q \lor q)$	$(p \land q) \land r \equiv p \land (q \land r)$

Some more . . .

Distributive

 $\textbf{laws} \hbox{:} \qquad (p \vee q) \wedge r \equiv (p \vee q) \wedge (p \vee r) \qquad (p \wedge q) \vee r \equiv (p \wedge q) \vee (p \wedge r)$

Absorption laws: $p\lor(p\land q)\equiv p$ $p\land(p\lor q)\equiv p$

Negation laws: $p \lor \sim p \equiv T$ $p \land \sim p \equiv F$

De Morgan laws has two logical equivalences, and the law is named after the English mathematician Augustus De Morgan, of the mid-nineteenth century.

De Morgan laws has two logical equivalences, and the law is named after the English mathematician Augustus De Morgan, of the mid-nineteenth century.

The statements of De Morgan laws are written as follows :

De Morgan laws has two logical equivalences, and the law is named after the English mathematician Augustus De Morgan, of the mid-nineteenth century.

The statements of De Morgan laws are written as follows :

First statement : $\sim (p \land q) \equiv \sim p \lor \sim q$

De Morgan laws has two logical equivalences, and the law is named after the English mathematician Augustus De Morgan, of the mid-nineteenth century.

The statements of De Morgan laws are written as follows :

First statement :
$$\sim (p \land q) \equiv \sim p \lor \sim q$$

Second statement :
$$\sim$$
(p \vee q) \equiv \sim p \wedge \sim q

The compound propositions p and q are logically equivalent if

- (A) $p \leftrightarrow q$ is a tautology.
- (B) $p\rightarrow q$ is a tautology.
- $(C)\sim(p\lor q)$ is a tautology
- (D) $\sim p \lor \sim q$ is a tautology.

The compound propositions p and q are logically equivalent if

- (A) $p \leftrightarrow q$ is a tautology.
- (B) $p\rightarrow q$ is a tautology.
- $(C)\sim(p\vee q)$ is a tautology
- (D) \sim p \vee \sim q is a tautology.

Answer: (A). From the definition of logical equivalence.

If p is any statement, then which of the following is a tautology?

- (A) $p \wedge F$.
- (B) $p \lor F$.
- $(\mathsf{C})\mathsf{p}\vee \sim \mathsf{p}.$
- (D) p∧T.

If p is any statement, then which of the following is a tautology?

- (A) $p \wedge F$.
- (B) $p \lor F$.
- $(C)p\vee \sim p.$
- (D) $p \wedge T$.

Answer: (C). Since $p \lor \sim p$ is always true.

If p is any statement, then which of the following is not a contradiction?

- (A) $p \wedge \sim p$.
- (B) $p \lor F$.
- (C) p∧F.
- (D) None of the above.

If p is any statement, then which of the following is not a contradiction?

- (A) $p \wedge \sim p$.
- (B) $p \lor F$.
- (C) p∧F.
- (D) None of the above.

Answer: (B). Since $p \lor F$ is NOT always false.

The compound proposition $p\rightarrow q$ is logically equivalent to

- (A) $\sim p \lor \sim q$.
- (B) $p \lor \sim q$.
- (C) \sim p \lor q.
- (D) \sim p \wedge q.

The compound proposition $p\rightarrow q$ is logically equivalent to

- (A) \sim p $\vee \sim$ q.
- (B) $p \lor \sim q$.
- (C) \sim p \vee q.
- (D) $\sim p \land q$.

Answer: (C). Since $(p \rightarrow q) \leftrightarrow (\sim p \lor q)$ is a tautology.