Clustering of Analogies for Inter-Language Similarities Software project - Final presentation

Justine Diliberto, Cindy Pereira, Anna Nikiforovskaja

Université de Lorraine, IDMC

03.02.2022

Summary

- Subject
- 2 Language classification research
- First transfers
- Language analyses
- Language comparisons
- Definitive transfers
- Website

Subject

Aim of this project: Finding language similarities using...

- Morphological rules
- Analogies
- Clustering

```
cat : cats :: dog : dogs
```

Figure: Positive analogy

```
cat : dogs != cats : dog
```

Figure: Negative analogy

Dataset

SIGMORPHON 2020 shared task

- Task 0: Typologically Diverse Morphological Inflection
- Task 1: Multilingual Grapheme-to-Phoneme
- Task 2: Unsupervised Morphological Paradigm Completion
- 90 languages:
 - <lemma inflected_form features>
 - (respect respected V.PTCP;PST)

Language classification research

Different approaches:

- Lexico-statistical
 - Hierarchy of Indo-European languages
 - Analysis of lexical data (basic vocabulary)
- Computational
 - Dependencies
 - n-grams
- Phonetics, genetics, archaeology

First transfers

Issues and solutions:

- Dataset size influences performance
- Balanced training fixed
- Introduced f-score for better results representation

First transfers: F-score explanation

$$F = \frac{2 \cdot a_{\mathsf{pos}} \cdot a_{\mathsf{neg}}}{a_{\mathsf{pos}} + a_{\mathsf{neg}}}$$

F – the final score of the model on the language, $a_{\rm pos}$ – accuracy of predicting positive analogies (a ratio of correct answers on positive analogies), $a_{\rm neg}$ – accuracy on negative analogies.

- Germanic family
 - English
 - German
 - Swedish
- Uralic family
 - Finnish
 - Karelian
- Oto-Manguean family
 - Mezquital Otomi

- Germanic family
 - English
 - German
 - Swedish
- Uralic family
 - Finnish
 - Karelian
- Oto-Manguean family
 - Mezquital Otomi

- Germanic family
 - English
 - German
 - Swedish
- Uralic family
 - Finnish
 - Karelian
- Oto-Manguean family
 - Mezquital Otomi

Language	#Inflections
English	5
Mezquital Otomi	18
Swedish	34
German	35
Finnish	91
Karelian	161

Table: Number of different inflections per language

Language comparisons

Close language pairs:

- Finnish & Karelian
 - 51 similar inflections
 - indicative present 1st person sg: -"n" vs -"an"
 - 29 exact
- English & Swedish
 - some similar inflections
 - past participle: -"ed" / -"en" / irreg vs -"ed" / -"en"
 - 1 exact
- German & Finnish + Karelian
 - some similar inflections
 - nominative and accusative sg: same inflected form

Language comparisons

Far language pairs:

- English & German
- English & Finnish
- English & Karelian
- Swedish & Finnish
- Swedish & Karelian

Very far language pairs:

Mezquital Otomi & the rest

Partial transfer performance

English (eng), German (deu), Swedish (swe), Finnish (fin), Karelian (krl), and Mezquital Otomi (ote)

Transfer analysis: expected

- Finnish and Karelian transfer really well corresponds to rule analysis
- Karelian transfers well on all languages except for Otomi - highest number of different inflection rules
- Mezquital Otomi transfers poorly with every language – furthest language group

Transfer analysis: unexpected

- German doesn't transfer well with itself, but approximately same results in transfer from German to other languages
- English transfers better with Finnish and Karelian than with German or Swedish – unexpected, different groups
- Swedish also transfers better to Finnish and Karelian, than to its group

Website

Functionality:

- Show extracted rules
- Show exact rules
- Show transfer results
- Show well performing analogies

Why:

- For better results representation
- Easier rule comparison

Used microframework Flask.

Rules format

Rules are in JSON format:

Comparison based on tags sets

Website architecture

Demonstration time!

Conclusion

- Morphological rules have been studied
- Language similarity has been computed
- A website is available to display results

To continue:

- Further research about some results
- Add other languages

Thanks

Thank you for your attention!

Thanks

Thank you for your attention!

