### Supplemental Slides of Ch22

Sungjin Im 4/5/2023

#### Assumptions: Consider vertices in alphabetical order

Visit neighbors in alphabetical order





## Assumptions: Consider vertices in alphabetical order Visit neighbors in alphabetical order



White: not visited Grey: visited, but not "done" Black: done (needs to pull back)

Time 1

We increment the clock when a node's color changes







































#### Time Stamp on Each Node

White: not visited
Grey: visited, but not "done"
Black: done (needs to pull back)



#### Time Stamp on Each Node

White: not visited
Grey: visited, but not "done"
Black: done (needs to pull back)



Nodes + red edges form a depth-first-tree (DFT)
There can be multiple DFTs, so a depth-first-forest (DFF).

### Let's Rearrange the Nodes



Do you see that for any pair of intervals, they are either disjoint, or one contains the other?

### Let's Rearrange the Nodes



(u, v) is

Tree Edge: if in DF Forest

Forward Edge: if non-tree & v is u's descendant

Back Edge: if u is v's descendant

Cross Edge: otherwise

### Let's Rearrange the Nodes



(u, v) is

Tree Edge: if in DF Forest

Forward Edge: if non-tree & v is u's descendant

Back Edge: if u is v's descendant

Cross Edge: otherwise

### If Input was the Following:



### Then, the resulting DFF is:



### After rearranging:



Cross Edge: otherwise

### Parenthesis Theorem (Theorem 22.7)

- After running DFS, for any u, v in V, exactly one of the following three holds:
  - [u.d, u.f] and [v.d, v.f] are entirely disjoint
    - Neither u nor v is a descendant of the other in DFF
  - [u.d, u.f] is contained in [v.d, v.f]
    - u is a descendant of v in a DFT
  - [v.d, v.f] is contained in [u.d, u.f]
    - v is a descendant of u in a DFT

u.d: u's discover time; u.f: u's finish time.

### White Path Theorem (Theorem 22.9)

In the DFF, v is a descendant of u iff at time u.d (u's discover time),
 there is a path from u to v consisting entirely of white vertices

### Three Applications

• How to determine if G has a cycle or not.

Topological Sort

Finding Strongly Connected Components

### How to determine if G has a cycle or not

• Lemma 22.11. A directed graph G is acyclic if and only if a depth-first search of G yields no back edge.

- Proof.
- -> Back edge implies a cycle
- <- Use the white-path theorem

# Algorithm for Computing SCCs (Illustration and Intuitions)

# Input Graph



# Desired Output

{A, C}, {E, G}, {B, D}, {F, I, H}



### Note: Component Graph



# Input Graph



## Algo: 1. Run DFS



Here, we considered vertices in alphabetical order when staring DFTs. Also considered each vertex's neighbors in alphabetical order.

### Algo: 2. Reverse Edge Directions



Blue: original directions Red: reverse directions

Algo: 3. Run DFS considering vertices in decreasing order of their finish time to start new DFTs



#### Algo: 4. Output the vertices in each DFT as a SCC



{A, C}, {E, G}, {B, D}, {F, I, H}

## But why does the algorithm work?

 Let's first see the DFT including the vertex with the max finish time forms a SCC.

We will then repeat this argument.

Let's first see the DFT including the vertex forms a SCC.



#### What if we run DFS without reversing edges?



Let's see what happens if we reverse edge directions



Let's first see the DFT including the vertex forms a SCC.

Let's see what happens if we reverse edge directions



E and G still reachable from each other (in both graphs G and  $G^T$ ).

F, H, I reachable from E in G, but not in  $G^T$  (otherwise, E, F, I, H must be in the same SCC)

Let's first see the DFT including the vertex forms a SCC.

So, after step 2, we obtain the first DFT in Step 3, which



## But why does the algorithm work?

 Let's first see the DFT including the vertex with the max finish time forms a SCC.

We will then repeat this argument.

We will then repeat this argument.



We will then repeat this argument.



Suppose that in Step 1 we had started from H when starting 2<sup>nd</sup> DFT. Then, the vertex with the largest finish time still would be the same. By repeating the previous argument, we would get a SCC {F, H, I}. We repeat the same argument until we get all SCCs.