Contents

Complejidad de Edmonds-Karp	1
Teorema de Edmonds-Karp	1
Lados críticos	1
distancias	
	3
Notación	
	3
Es decir,	
Definición	4
Observación trivial:	4
Lema de las distancias	4
Existencia de flujos maximales	4

Complejidad de Edmonds-Karp

Teorema de Edmonds-Karp

La complejidad del algoritmo de Edmonds-Karp es $\mathcal{O}(nm2)$

Lados críticos

Definición

Diremos que un llado $-\to xy$ se vuelve crítico durante la construcción de uno de los flujos intermedios (digamos, fk+1) si para la construcción de fk+1 pasa una de las dos cosas siguientes:

1 Se usa el lado en forma forward, saturandolo (es decir

$$\frac{f_k(\overrightarrow{xy}) < c(\overrightarrow{xy})}{f_{k+1}(\overrightarrow{xy}) = c(\overrightarrow{xy})}$$

fk(
$$-\to xy$$
) < c($-\to xy$), pero luego fk+1($-\to xy$) = c($-\to xy$))

2 O se usa el lado en forma backward, vaciandolo (es decir

$$fk(-\rightarrow xy) > 0$$
 pero $fk+1(-\rightarrow xy) = 0$).

distancias

Definición

Dados vértices x, z y flujo f definimos a la distancia entre x y z relativa a f como la longitud del menor f-camino aumentante entre x y z, si es que existe tal camino, o infinito si no existe o 0 si x = z. La denotaremos como df(x, z).

Notación

Dado un vértice x denotamos

$$d_k(x) = d_{f_k}(s, x)$$

$$dk(x) = dfk(s, x)$$

у

$$b_k(x) = d_{f_k}(x,t).$$

$$bk(x) = dfk(x, t).$$

Es decir,

dk(x)es la longitud del menor f
k-camino aumentante entre syxyb
k $\!(x)$ es la longitud del menor f
k-camino aumentante entre xyt.

Definición

Dado un flujo f y un vértice x, diremos que un vértice z es un vécino fFF de x si pasa alguna de las siguientes condiciones:

$$\overrightarrow{xz} \in E \text{ y } f(\overrightarrow{xz}) < c(\overrightarrow{xz}) \text{ o:}$$

$$- \rightarrow xz \in E \ y \ f(\ - \rightarrow xz \) < c(\ - \rightarrow xz \)$$
 o:

$$\overrightarrow{zx} \in E \text{ y } f(\overrightarrow{zx}) > 0.$$

$$- \rightarrow zx \in E \ y \ f(- \rightarrow zx) > 0.$$

Observación trivial:

Si z es un fkFF vécino de x, entonces $dk(z) \le dk(x) + 1$

Lema de las distancias

Las distancias definidas anteriormente no disminuyen a medida que k crece.

$$d_k(x) \leq d_{k+1}(x)$$
 y $b_k(x) \leq b_{k+1}(x) \forall x$

Es decir, $dk(x) \le dk+1(x)$ y $bk(x) \le bk+1(x) \forall x$

Existencia de flujos maximales

Dado que hemos probado que Edmonds-Karp siempre termina, y dado que produce un flujo maximal,

entonces tambien hemos probado que en todo network siempre existe al menos un flujo maximal.