COMS 230: Discrete Computational Structures

Homework # 4

Larisa Andrews

October 4, 2017

1. Question 1

```
Assume we have sets A,B,C A=(a,b,c)\;,\;B=(d,e,f)\;,\;C=(g,h,i) Then B\cap C= Then A\cup (B\cap C)=(a,b,c) Then A\cup B=(a,b,c,d,e,f) and A\cup C=(a,b,c,g,h,i) Then (A\cup B)\cap (A\cup C)=(a,b,c) Since (a,b,c)=(a,b,c) then A\cup (B\cap C)=(A\cup B)\cap (A\cup C)
```

2. Question 2

$$A \cup U = U$$

$$A \cup U \text{ can be expressed like } (x|(x \in A) \lor (x \in U))$$
 then since we know $x \in U$, $(x|(x \in A) \lor T)$ then $(x|T) = U$
$$A \cap \emptyset = \emptyset$$

$$A \cap \emptyset \text{ can be expressed like } (x|(x \in A) \land (x \in \emptyset))$$
 then since we know $x \notin \emptyset$, $(x|(x \in A) \land F)$ then $(x|F) = \emptyset$

3. Question 3

a) Counter Example: let A=(2,3,4), B=(0,1,2), c=(0,1,3,4) then $A\cup C=(0,1,2,3,4)$ and $B\cup C=(0,1,2,3,4)$ so $A\cup C=B\cup C$ but $A\neq B$ a) Counter Example: let A=(2,4,6,8), B=(0,2,4,6), c=(2,4,6) then $A\cap C=(2,4,6)$ and $B\cap C=(2,4,6)$ so $A\cap C=B\cap C$ but $A\neq B$

4. Question 4

Suppose
$$A \cup C = B \cup C \land A \cap C = B \cap C \rightarrow A \neq B$$

let $x \in A \land x \notin B \land x \in C$
then $x \in (A \cup C = B \cup C)$ so that $x \in A \land x \notin B \land x \in C$
then $x \in (A \cap C = B \cap C)$ so that $x \in A \land x \in C \land x \notin B$ but by def of intersection $x \in B$ which is a contradiction.
So therefore $A \cup C = B \cup C \land A \cap C = B \cap C \rightarrow A = B$

5. Question 5

$$S = A \cup (B \cap C), T = (A \cup B) \cap (A \cup C)$$

$$S \subseteq T \text{ if } x \in S \wedge x \in T$$
 Lets assume $x \in S \wedge x \notin T$ then $x \in S = A \cup (B \cap C)$ and $x \notin T = (A \cup B) \cap (A \cup C)$ Since by the assoc. law $T = A \cup (B \cap C)$ then $x \in T$ which is a contradiction so $x \in S \wedge x \in T$ So $S \subseteq T$

6. Question 6

F is one to one because
$$F(m,n) = F(x,y)$$

so $m+n=x+y, m-n=x-y$
by adding the equations together we get
 $2m=2x \to m=x$ then substitute that in for m
 $(x)-n=x-y \to -n=-y \to n=y$
so $m=x, n=y$
F is not onto because the inverse function
 $(n-m, m+n)$ does not map to all real numbers.

7. Question 7

F is one to one because F(m,n) = F(x,y)so m + n = x + y

then if we assume m+n is some real number m and x+y is a real number x then m=x

F is onto because the inverse function n - m = x where x is any real number that the function maps to.