NATURAL DEDUCTION RULES FOR QUANTFICATIONAL LOGIC

DIAGRAMMATIC SUMMARY OF RULES USED IN IFL2

Variables and parameters

In the syntax adopted in *IFL2*, the variables that can occur quantified, like the 'x' in ' $\forall x (Fx \to Gx)$ ', cannot also appear free, not bound by a quantifier. So when we want to instantiate the universal quantification, we must either use a proper name, as in ' $(Fm \to Gm)$ ', or use a parameter or dummy name, as in ' $(Fa \to Ga)$ '. Dummy names and proper names behave in just the the same way syntactically: the difference is in their semantic role. So for us, *terms* include proper names and dummy names, but not bound variables.

Rules for quantifiers (to be added to the rules for propositional logic)

$$(\forall \mathbf{E}) \quad \vdots \quad (\exists \mathbf{I}) \quad \vdots \quad \exists \xi \alpha(\xi)$$

$$\alpha(\tau) \quad \exists \xi \alpha(\xi)$$

$$(\forall \mathbf{I}) \quad \vdots \quad (\exists \mathbf{E}) \quad \underline{\alpha(\delta)}$$

$$\vdots \quad \underline{\alpha(\delta)}$$

In all these rules, $\alpha(\tau)$ or $\alpha(\delta)$ is an instance of the corresponding quantified wff; τ can be any kind of term, but δ must be a dummy name.

The following restrictions must be observed on the dummy names δ :

For $(\forall I)$, δ must not appear in any live assumption for $\alpha(\delta)$ or in the conclusion $\forall \xi \alpha(\xi)$.

For $(\exists E)$, δ must be new to the proof and must not appear in the conclusion γ .

 $Rules\ for\ identity$

$$\tau_1 = \tau_2 \text{ or } \tau_2 = \tau_1$$

$$\vdots$$

$$(=E) \qquad \alpha(\tau_1)$$

$$\vdots$$

$$\alpha(\tau_2)$$

The τ s can be any terms. $\alpha(\tau_2)$ is the result of replacing some or all occurrences of τ_1 in $\alpha(\tau_1)$ by τ_2 .