1. Simplify each of the following expressions:

(a)
$$\frac{\left(\frac{5^5}{(5^{-2})^2}\right)}{\left(\frac{5^7}{(5^2)^3}\right)}$$
;

(a)
$$\frac{\left(\frac{5^5}{(5^{-2})^2}\right)}{\left(\frac{5^7}{(5^{23})}\right)}$$
; (b) $\frac{a^{5x+3y}(b^x/a^x)^3}{(b^{2y-3x})^2(a^yb^x)^4}$; (c) $\frac{(e^{\frac{5}{3}})^6}{\sqrt{e^{0.2}}}$

(c)
$$\frac{(e^{\frac{5}{3}})^6}{\sqrt{e^{0.2}}}$$
.

2. Solve each equation for x:

(a)
$$\frac{3^{x-4} 3^{2x+5}}{3^{2x}} = 9;$$

(b)
$$\frac{8(2^{2x-1})^2}{4^3(2^{-5x})} = 16$$

(a)
$$\frac{3^{x-4} 3^{2x+5}}{3^{2x}} = 9;$$
 (b) $\frac{8(2^{2x-1})^2}{4^3(2^{-5x})} = 16;$ (c) $e^{7-2x}(e^{x-1})^3 = \frac{e^{3x}}{\sqrt{e^4}}.$

3. The population of a certain city is given by $N = 100,000 e^{0.02t}$, where t is measured in years from some initial date.

Find the population after one year, five years, ten years, fifty years.

4. Write each of the following logarithmic equations using powers:

(a)
$$\log_2 32 = 5$$

$$(b)\log_3 x = 4$$

(c)
$$\log_4(x^2 - 1) = 0$$
.

5. Write each of the following exponential equations using logs:

(a)
$$6^3 = 216$$

(b)
$$7^x = 343$$

(b)
$$7^x = 343$$
 (c) $9^{x^2-4} = 1$.

6. Simplify each of the following expressions:

(a)
$$\log_2 16 + \log_2 \frac{1}{4} - \log_2 8$$
; (b) $9^{\log_3(1/9)}$; (c) $3^{4 \log_3 \sqrt{3}}$; (d) $\log_{100} 1000$;

(b)
$$9^{\log_3(1/9)}$$
;

(c)
$$3^{4 \log_3 \sqrt{3}}$$
;

(e)
$$\ln(e^3) - e^{\ln 2}$$
.

7. Solve each equation for x: (a) $\log_2(x+6) = 3$; (b) $\log_3(x+7) - \log_3(x+1) = 1$;

(b)
$$\log_3(x+7) - \log_3(x+1) = 1$$

(c)
$$\ln(e^{2x}) = 16$$
; (d) $e^{\ln(x+4)} = 3x$.

(d)
$$e^{\ln(x+4)} = 3x$$