ECE 1675/2570: Robotic Control (Spring 2022)

Module II: Control of Mobile Robots

Lecture 5: Locomotion; Mobile Robot Control Architecture

February 9, 2022

Zhi-Hong Mao Professor of ECE and Bioengineering University of Pittsburgh, Pittsburgh, PA

Outline

- Homework 3 (due Feb. 16)
- Locomotion
- · Mobile robot components
- · Behavior-based control of mobile robots
 - Go-to-goal behavior
 - Obstacle-avoidance behavior

2

Locomotion

- Introduction
 - Locomotion refers to the way a robot moves from place to place
 - In nature, movement requires significant "brain power"

3

- Introduction
 - Locomotion refers to the way a robot moves from place to place
 - In nature, movement requires significant "brain power
 - Moving the robot around becomes the first challenge for the robot "brains"—controllers
 - Effectors and actuators
 - Legs, for walking, crawling, climbing, jumping, etc.
 - · Wheels, for rolling
 - Arms, for swinging, crawling, climbing, etc.
 - · Wings, for flying
 - Flippers, for swimming

Note: Legged locomotion is more difficult than wheeled locomotion due to the challenge of stability and larger number of degrees of freedom.

Locomotion

- Introduction
- Stability
 - Static stability
 - A statically stable robot can stand still without falling over
 - The center of gravity of any body needs to be above polygon of support—the area that is covered by the ground points (legs or wheels)
 - · If the robot can walk while staying balanced at all times, we call this statically stable walking

Locomotion

- Stability

 - Dynamic stability
 - In dynamic stability, the body must actively balance or move to remain stable
 - A statically stable robot can use dynamically stable walking patterns, in order to be fast and efficient

- Introduction
- Stability
- · Moving and gaits
 - A gait is the particular way a robot moves, including the order in which it lifts and lowers its legs and places its feet on the ground
 - Desirable robot gaits have the following properties

Stability

Speed

• Energy efficiency

Robustness

• Simplicity

Note: Six-legged walking is highly robust and therefore common in nature and robotics

Locomotion

- Introduction
- Stability
- Moving and gaits
- · Wheels and steering
 - Wheels in robotics
 - Wheel-like structures are very rare in biological locomotion (but do appear in certain bacteria)
 - Because of their efficiency and comparative simplicity of control, wheels are the major choice of locomotion effector in robotics
 - Wheeled robots are usually designed to be statically stable, but they are not necessarily holonomic (meaning they cannot control all of their available degrees of freedom)

- Introduction
- Stability
- Moving and gaits

· Wheels and steering

- Wheels in robotics
- Wheel types
 - Standard wheel: two degrees of freedom; rotation around the wheel axle and the contact point
 - Castor wheel: two degrees of freedom; rotation around the wheel axle and an offset steering joint

Locomotion

- Introduction
- Stability
- Moving and gaits

· Wheels and steering

- Wheels in robotics
- Wheel types
 - Standard wheel
 - Castor wheel

11

Locomotion

- Introduction
- Stability
- Moving and gaits
- · Wheels and steering
 - Wheels in robotics
 - Wheel types
 - Standard wheel
 - Castor wheel
 - Swedish or Mecanum wheel
 - Ball or spherical wheel: realization technically difficult

- Introduction
- Stability
- Moving and gaits
- · Wheels and steering
 - Wheels in robotics
 - Wheel types
 - Wheel configurations
 - Maneuverability and "controllability"
 - There is generally an inverse correlation between maneuverability and "controllability" (e.g., controlling an omnidirectional robot for a specific direction of travel is more difficult and often less accurate when compared to less maneuverable designs)

CO		

- Introduction
- Stability
- Moving and gaits
- · Wheels and steering
 - Wheels in robotics
 - Wheel types
 - Wheel configurations
 - Maneuverability and "controllability"
 - Differential drive and differential steering
 - · The ability to drive wheels separately and independently, through the use of separate motors, is called a differential drive
 - · Being able to steer wheels independently is called differential steering

17

Locomotion

- Introduction Stability
- Moving and gaits
- · Wheels and steering
- - Navigation refers to the problem of moving the robot's whole body to various destinations
 - Main issues
 - Localization and map building: to figure out where the robot is relative to some model of the environment
 - · Path planning, also called trajectory planning: to search through all possible trajectories and evaluate them, in order to find one that will satisfy the requirements
 - Motion control: to get the robot to a particular location

nami'cs	40	follow	poth	planne
			_	

. 10-	~°~·	د ما	bot -	hara	de- 4	- 6	+-0
 >	4	de vae	tuate	.d •	stodor	are	ec.
	to	wo/	الا ب	44			
40	, t	أااس	path	place	~~~q		

- Body and dynamics
 - Model for a differential drive wheeled robot

19

Mobile robot components

- · Body and dynamics
 - Model for a differential drive wheeled robot

 $\dot{x} = \frac{R}{2}(v_r + v_l)\cos\phi$ $\dot{y} = \frac{R}{2}(v_r + v_l)\sin\phi$ $\dot{\phi} = \frac{R}{I}(v_r - v_l)$

20

State Space: x is function of (x, u)

Inputs are Ve and Ve (angular velocity at each wheel)

Mobile robot components

- · Body and dynamics
 - Model for a differential drive wheeled robot
 - The "unicycle" model

(x, y)

- It is not very natural to "think" in terms of wheel velocities
- Instead, go directly for translational velocity (ν) and angular velocity (ω)

 $\dot{x} = v \cos \phi$ $\dot{y} = v \sin \phi$ $\dot{\phi} = \omega$

21

Inputs: V, W

w: "heading's" angular velocity

- · Body and dynamics
 - Model for a differential drive wheeled robot
 - The "unicycle" model
 - It is not very natural to "think" in terms of wheel velocities
 - Instead, go directly for translational velocity (v) and angular velocity (ω)
 - *Idea of design:* design for the "unicycle" model and then implement the differential drive model

Mobile robot components

- Body and dynamics
- · Sensors, actuators, and power
 - State estimation
 - The state of the robot is $[x, y, \phi]^T$
 - Coupling of proprioceptive and exteroceptive sensors for state estimation
 - · Proprioceptive sensors
 - o Orientation: compass
 - $\circ \quad \text{Position: accelerometers, gyroscopes,}...$
 - Wheel encoders
 - · Exteroceptive sensors
 - o A "skirt" of range sensors: IR, ultra-sound, LIDAR, ...
 - Other standard exteroceptive sensors include vision, tactile, and "GPS"

23

Mobile robot components

- · Body and dynamics
- · Sensors, actuators, and power
 - State estimation
 - Example of proprioceptive sensing: wheel encoders
 - Wheel encoders give the distance moved by each wheel
 - Assume the wheels are following an arc (short time scale)

$$D_c = \frac{D_l + D_r}{2}$$

$$x' = x + D_c \cos(\phi)$$

$$y' = y + D_c \sin(\phi)$$

$$\phi' = \phi + \frac{D_r - D_l}{L}$$

- · Body and dynamics
- · Sensors, actuators, and power

 - Example of proprioceptive sensing: wheel encoders
 - Wheel encoders give the distance moved by each wheel
 - Assume the wheels are following an arc (short time scale)
 - · How do we know how far each wheel has moved?
 - \circ Assume each wheel has N "ticks" per revolution
 - o Most wheel encoders give the total tick count since the beginning

$$D_l = 2\pi R \frac{\Delta \text{tick}_l}{N}$$

$$D_r = 2\pi R \frac{\Delta \text{tick}_r}{N}$$

Mobile robot components

- · Body and dynamics
- · Sensors, actuators, and power

 - Example of proprioceptive sensing: wheel encoders
 - Wheel encoders give the distance moved by each wheel
 - Assume the wheels are following an arc (short time scale)
 - How do we know how far each wheel has moved?
 - A major issue: DRIFT!

26

Mobile robot components

- · Body and dynamics
- · Sensors, actuators, and power

 - State estimationExample of proprioceptive sensing: wheel encoders
 - Example of exteroceptive sensing: disk abstraction
 - Assumption: instead of worrying about the resolution of the sensors, assume we know the distance and direction to all obstacles around us (that are close enough)

- Body and dynamics
- · Sensors, actuators, and power
 - State estimation
 - Example of proprioceptive sensing: wheel encoders
 - Example of exteroceptive sensing: disk abstraction
 - Assumption
 - Coordinates of the obstacles (if we know our own position and orientation)

 $x_i = x + d_i \cos(\phi_i + \phi)$ $y_i = y + d_i \sin(\phi_i + \phi)$ i = 1,2

Mobile robot components

- Body and dynamics
- · Sensors, actuators, and power
 - State estimation
 - Example of proprioceptive sensing: wheel encoders
 - Example of exteroceptive sensing: disk abstraction
 - Assumption
 - Coordinates of the obstacles
 - · A case study

Multi-robot rendezvous task (Li, Sun, and Yang, 2013)

29

Mobile robot components

- · Body and dynamics
- · Sensors, actuators, and power
 - State estimation
 - Example of proprioceptive sensing: wheel encoders
 - Example of exteroceptive sensing: disk abstraction
 - Actuation
 - Gearing
 - If the output gear is larger than the input gear, the torque increases but the speed decreases
 - If the output gear is smaller than the input gear, the torque decreases but the speed increases

- Body and dynamics
- · Sensors, actuators, and power

 - Example of proprioceptive sensing: wheel encoders
 - Example of exteroceptive sensing: disk abstraction
 - Actuation
 - Gearing
 - · Dynamics and time constant of a DC motor
 - · About model order reduction

 $u_{\rm A}(t) = {\rm L}\frac{di(t)}{dt} + {\rm R}i(t) + k_v \omega(t) \label{eq:uA}$ $k_a i(t) = J\dot{\omega}(t) + f\omega(t)$

Mobile robot components

- · Body and dynamics
- · Sensors, actuators, and power

 - Example of proprioceptive sensing: wheel encoders
 - Example of exteroceptive sensing: disk abstraction

 - Power management

32

Mobile robot components

- Body and dynamicsSensors, actuators, and power
- · Control architecture: behavior-based control
 - - The world is fundamentally unknown and changing
 - It does not make sense to over-plan
 - Key idea: develop a library of useful controllers (behaviors) and switch among controllers in response to environmental changes

Control Architectures;
Reactive Behavior-based
Deliberative Hybrid
Sell-barrier Hijoria

- · Body and dynamics
- · Sensors, actuators, and power
- · Control architecture: behavior-based control
 - Motivation
 - Behaviors
 - Go-to-goal behavior
 - · Avoid-obstacles behavior
 - · Follow-wall behavior
 - · Track-target behavior

Mobile robot components

- · Body and dynamics
- · Sensors, actuators, and power
- · Control architecture: behavior-based control
 - Motivation
 - Behaviors
 - Example of a behavior
 - · Assume we have a differential-drive wheeled mobile robot driving at a constant speed
 - · Want to drive in a desired heading

 $\dot{x} = v_0 \cos \phi$ $\dot{y} = v_0 \sin \phi$ $\dot{\phi} = \omega$

35

w (inget to plant)

itself

Mobile robot components

- Body and dynamics
- Sensors, actuators, and power
- · Control architecture: behavior-based control
 - Motivation
 - Behaviors
 - Example of a behavior
 - Assume we have a differential-drive wheeled mobile robot driving at a constant speed
 Want to drive in a desired heading

 - · Use PID control

$$r = \phi_d$$

$$e = \phi_d - \phi$$

$$\dot{\phi} = \omega$$

$$Or$$

$$\Omega(s) = (k_P + \frac{k_I}{s} + k_D s)E(s)$$

	_		_										
			5:										
	T(s)	= _	kls tkls	=	K (+K		(154	order	syst	em)			
		1.	* KIS										
		DC (-	١ (,	حوادد	ء >	with	(ه					
		ess	= 0 1/k					·					
		υ -	7.0										

- Body and dynamics
- Sensors, actuators, and power
- · Control architecture: behavior-based control
 - Motivation
 - Behaviors
 - Example of a behavior
 - Assume we have a differential-drive wheeled mobile robot driving at a constant speed
 - Want to drive in a desired heading.
 - · Use PID control

Caution: This typically will not work as we are dealing with angles!

$$\phi_d = 0$$
, $\phi = 100\pi$ \Rightarrow $e = -100\pi$

37

Robot may spin like crazy

Mobile robot components

- Body and dynamics
- · Sensors, actuators, and power
- · Control architecture: behavior-based control
 - Motivation
 - Behaviors
 - Example of a behavior
 - Assume we have a differential-drive wheeled mobile robot driving at a constant speed
 - Want to drive in a desired heading
 - · Use PID control

Caution: This typically will not work as we are dealing with angles!

Solution: Ensure that $e \in (-\pi, \pi]$. Standard trick is to use atan2:

$$e' = \operatorname{atan2}(\sin(e), \cos(e)) \in (-\pi, \pi]$$

38

Go-to-goal behavior

· How to drive a robot to a goal location?

$$\dot{x} = v_0 \cos \phi$$

 $r = \phi_d$

$$\dot{y} = v_0 \sin\!\phi$$

 $e = \phi_d - \phi$

$$\dot{\phi} = \omega$$

 $\omega = PID(e')$

Start location: (x, y)Goal location: (x_g, y_g)

$$\phi_d = \arctan\left(\frac{y_g - y}{x_a - x}\right)$$

Go-to-goal behavior

- How to drive a robot to a goal location?
- Attempt 1

Didn't use arctan2 -> robot goes well past target

Not consistent with our estimation it doesn't know difference 0° -1 180°

Go-to-goal behavior

- How to drive a robot to a goal location?

Still not what we want

There is also an order loop that converts (x,y) = 0

Do is not unit step because it depends position of vobat on relative Od is a ramp

Go-to-goal behavior

- How to drive a robot to a goal location?
- Attempt 1
- Attempt 3

42

Error is getting smeller

Obstacle-avoidance behavior

- · How to avoid driving into obstacles?
 - We can use the same idea by defining a desired heading
 - · "Pure" avoidance

Obstacle-avoidance behavior

- · How to avoid driving into obstacles?
 - We can use the same idea by defining a desired heading
 - "Pure" avoidance
 - "Pure" go-to-goal

44

45

Obstacle-avoidance behavior

- · How to avoid driving into obstacles?
 - We can use the same idea by defining a desired heading

 - "Pure" avoidance
 "Pure" go-to-goal
 - Not "pure" but "blended" (choice of + or depends on direction to goal)

Sensor measures	both	goal and
obstacle - how		
Pobstacle and		

Obstacle-avoidance behavior

- · How to avoid driving into obstacles?
 - We can use the same idea by defining a desired heading
 - "Pure" avoidance
 - "Pure" go-to-goal
 - · Not "pure" but "blended"

46

Obstacle-avoidance behavior

- · How to avoid driving into obstacles?
- · Behavior coordination
 - The previous example illustrates two fundamentally different mechanisms for behavior coordination
 - · Arbitration (winner-takes-all, hard switches)
 - Fusion (blending, combining behaviors)
 - Both approaches have merit in different situations
 - Performance
 - Analysis
 - We will see how to design systematic behaviors and behavior coordination mechanisms in the following lectures of Module II

47

References (I)

- M. Egerstedt, Lecture Notes for Control of Mobile Robots, Georgia Institute of Technology, 2016.
- K. J. Astrom and R. M. Murray, Feedback Systems: An Introduction for Scientists and Engineers, 2010.
- M. Mataric, The Robotics Primer, The MIT Press, 2007.
- R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile Robots, The MIT Press, 2004.
- C. L. Phillips and R. D. Harbor, Feedback Control Systems, 4th Edition, Prentice Hall, 2000.
- X. Li, D. Sun, and J. Yang, "Preserving multirobot connectivity in rendezvous tasks in the presence of obstacles with bounded control input," IEEE Trans. Control Systems Technology 21(6), 2306-2314, Nov. 2013.
- https://42bots.com/tutorials/differential-steering-with-continuous-rotation-servosand-arduino/
- https://ecowellness.wordpress.com/2012/02/20/animal-tracking-part-2-common-gait-patterns/

References (II) https://en.wikipedia.org/wiki/Mecanum_wheel https://en.wikipedia.org/wiki/Rotating_locomotion_in_living_systems https://howbirdsthink.blogspot.com/2012/09/bird-brains-are-different.html https://mobilerobotguide.com/2018/04/10/power-management-for-autonomous-mobile-robots/ https://www.crazyengineers.com/threads/why-cant-the-spherical-wheels-beused-in-automobiles.71189 https://www.instructables.com/id/Making-a-Modular-Differential-Drive-Robot/