Variational Inference

CS772A: Probabilistic Machine Learning
Piyush Rai

Variational Inference (VI)

lacktriangle Assume a latent variable model with data $oldsymbol{\mathcal{D}}$ and latent variables $oldsymbol{Z}$

lacktriangle A simple setting might look something like this $egin{align*} \phi \\ \hline \phi \\ \hline \end{array}$

This setting is just one example. VI is applicable in more general and more complex probabilistic models with and without latent variables

- Assume the likelihood is $p(\mathcal{D}|\mathbf{Z},\Theta)$ and prior is $p(\mathbf{Z}|\Theta)$. Want posterior over \mathbf{Z}
- ullet $\Theta = (\theta, \phi)$ denotes the other parameters that define the likelihood and the prior
- For now, assume Θ is known and only Z is unknown (the Θ unknown case later)
- Assume CP $p(Z|D, \Theta)$ is intractable

Variational Inference (VI)

lacktriangle Assuming $p(Z|\mathcal{D},\Theta)$ is intractable, VI approximates it by a distr $q(Z|\phi)$ or $q_{\phi}(Z)$

Find the optimal ϕ which makes our approximation $q(\mathbf{Z}|\phi)$ as closed to the true as possible to the true posterior $p(\mathbf{Z}|\mathbf{D})$

Kullback Leibler divergence $\mathrm{KL}[q||p]$ between q and p

Also possible to use KL[p||q] or divergences other than KL

$$\phi^* = \operatorname{argmin}_{\phi} \operatorname{KL}[q_{\phi}(\mathbf{Z})||p(\mathbf{Z}|\mathcal{D},\Theta)]$$

 $q_{m{\phi}}$ defines a class of distributions parametrized by ${m{\phi}}$ sometimes called "variational parameters"

Name "variational" comes from
Physics and refers to problems
where we are optimizing functions
of distributions (here the function is
the KL divergence)

Variational Inference (VI)

■ The optimization problem

$$\begin{split} \phi^* &= \operatorname{argmin}_{\phi} \operatorname{KL}[q_{\phi}(\boldsymbol{Z})||p(\boldsymbol{Z}|\boldsymbol{\mathcal{D}},\boldsymbol{\Theta})] \\ &= \operatorname{argmin}_{\phi} \mathbb{E}_{q_{\phi}(\boldsymbol{Z})} \left[\log q_{\phi}(\boldsymbol{Z}) - \log \frac{p(\boldsymbol{\mathcal{D}}|\boldsymbol{Z},\boldsymbol{\Theta})p(\boldsymbol{Z}|\boldsymbol{\Theta})}{p(\boldsymbol{\mathcal{D}}|\boldsymbol{\Theta})} \right] \\ &= \operatorname{argmin}_{\phi} \mathbb{E}_{q_{\phi}(\boldsymbol{Z})} [\log q_{\phi}(\boldsymbol{Z}) - \log p(\boldsymbol{\mathcal{D}}|\boldsymbol{Z},\boldsymbol{\Theta}) - \log p(\boldsymbol{Z}|\boldsymbol{\Theta})] + \log p(\boldsymbol{\mathcal{D}}|\boldsymbol{\Theta}) \end{split}$$

■ Since $\log p(\mathcal{D}|\Theta)$ is independent of ϕ , the optimization problem becomes

$$\phi^* = \operatorname{argmin}_{\phi} \mathbb{E}_{q_{\phi}(\boldsymbol{Z})} \left[\log q_{\phi}(\boldsymbol{Z}) - \log p(\boldsymbol{\mathcal{D}}|\boldsymbol{\mathcal{Z}}, \boldsymbol{\Theta}) - \log p(\boldsymbol{\mathcal{Z}}|\boldsymbol{\Theta}) \right]$$

$$\phi^* = \operatorname{argmin}_{\phi} \mathbb{E}_{q_{\phi}(\boldsymbol{Z})} \left[\log q_{\phi}(\boldsymbol{Z}) - \log p(\boldsymbol{\mathcal{D}}, \boldsymbol{\mathcal{Z}}|\boldsymbol{\Theta}) \right]$$

$$\phi^* = \operatorname{argmax}_{\phi} \mathbb{E}_{q_{\phi}(\mathbf{Z})} [\log p(\mathbf{D}, \mathbf{Z} | \Theta) - \log q_{\phi}(\mathbf{Z})] = \operatorname{argmax} \mathcal{L}(\phi, \Theta)$$

■ Note that $\mathcal{L}(\phi, \Theta) \leq \log p(\mathcal{D}|\Theta)$ and is called "Evidence Lower Bound" (ELBO)

The ELBO

■ The ELBO is defined as

$$\mathcal{L}(\phi, \Theta) = \mathbb{E}_{q_{\phi}(\mathbf{Z})} \left[\log p(\mathbf{D}, \mathbf{Z}|\Theta) - \log q_{\phi}(\mathbf{Z}) \right]$$
$$= \mathbb{E}_{q_{\phi}(\mathbf{Z})} \left[\log p(\mathbf{D}, \mathbf{Z}|\Theta) \right] + \mathbb{H}[q_{\phi}(\mathbf{Z})]$$

- Thus maximizing the ELBO w.r.t. ϕ gives us a $q_{\phi}(Z)$ which
 - Maximizes the expected joint probability of data and latent variables
 - Has a high entropy
- We can also write the ELBO as follows

$$\mathcal{L}(\phi, \Theta) = \mathbb{E}_{q_{\phi}(\mathbf{Z})}[\log p(\mathbf{D}|\mathbf{Z}, \Theta)] - \text{KL}[q_{\phi}(\mathbf{Z})||p(\mathbf{Z}|\Theta)]$$

- Thus maximizing the ELBO w.r.t. ϕ will give us a $q_{\phi}(Z)$ which
 - Explains the data \mathcal{D} well, i.e., gives it large expected probability $\mathbb{E}_q[\log p(\mathcal{D}|\mathbf{Z},\Theta)]$
 - Is close to the prior $p(\mathbf{Z})$, i.e. is simple/regularized (small $\mathrm{KL}[q_{\phi}(\mathbf{Z})||p(\mathbf{Z}|\Theta))$

Maximizing the ELBO

Unknown Θ case later

lacktriangle We need to maximize the ELBO w.r.t. $oldsymbol{\phi}$ (for now, assuming $oldsymbol{\Theta}$ is known)

$$\mathcal{L}(\phi, \Theta) = \mathbb{E}_{q_{\phi}(\mathbf{Z})}[\log p(\mathbf{D}|\mathbf{Z}, \Theta)] - \text{KL}[q_{\phi}(\mathbf{Z})||p(\mathbf{Z}|\Theta)]$$

- The general approach to maximize ELBO is based on gradient-based methods
 - Assume some suitable/convenient form for $q_{\phi}(\mathbf{Z})$, e.g., $\mathcal{N}(\mathbf{Z}|\mu,\Sigma)$ so $\phi=(\mu,\Sigma)$
 - lacktriangle Maximize the ELBO w.r.t. $oldsymbol{\phi}$ using gradient ascent

$$\phi_{t+1} = \phi_t + \eta_t \, \nabla_{\phi_t} \mathcal{L}(\phi, \Theta)$$

- lacktriangle Note: Expectations in ELBO and ELBO's gradients w.r.t. $oldsymbol{\phi}$ may not be easy
 - Will see methods to handle such issues later
 - Assuming simple forms for $q_{\phi}(\mathbf{Z})$ also helps (we can use random variable transformation methods to transform the simple form to more expressive ones will see later)

A Simple Illustration for VI

Assume a simple likelihood model

$$p(\mathbf{D}|\mathbf{z}) = \prod_{n=1}^{N} \mathcal{N}(\mathbf{x}_{n}|\mathbf{z}, \mathbf{\Sigma}) \propto \mathcal{N}(\overline{\mathbf{x}}|\mathbf{z}, \frac{1}{N}\mathbf{\Sigma})$$

- lacktriangle Suppose we want to estimate the posterior of the mean z
- Assuming a Gaussian prior on z and assuming Σ is known, the posterior can be computed analytically (because of conjugacy)
- Let's still try VI to see how well it does
- Figure shows VI result for three Gaussian forms for q(z)
 - lacktriangle Low-rank: $q(z) = \mathcal{N}(z|\mu_z, \Sigma_z)$ where $\Sigma_z = LL^{\mathsf{T}}$
 - Full-rank: $q(z) = \mathcal{N}(z|\mu_z, \Sigma_z)$ with no constraint on Σ_z
 - lacktriangle Mean-field: $q(z)=q(z_1)q(z_2)=\mathcal{N}ig(z_1ig|\mu_{z_1},\sigma_{z_1}^2ig)\,\mathcal{N}ig(z_2ig|\mu_{z_2},\sigma_{z_2}^2ig)$

Detour

Transformed random variable

A one-to-one transformation function

- Consider a scalar transformation of a scalar random variable u as $\theta = T(u)$
- lacktriangle Probability distributions of random variables u and heta are related as

$$p(\theta) = p(u) \left| \frac{du}{d\theta} \right|$$

■ Similarly, for multivariate random variables (of same size) related as $\theta = T(u)$

$$p(m{ heta}) = p(m{u}) \left| \det \left(\frac{\partial m{u}}{\partial m{ heta}} \right) \right|^{\text{Absolute value of the determinant of the Jacobian (note that } m{u} = T^{-1}(m{ heta})}$$

• We can use such transformations for VI by using a simple distribution for $q(\mathbf{Z})$ and then transform it to a more expressive/appropriate distribution (more on this later)

Mean-Field VI

- A special way to maximize the ELBO is via the mean-field approximation
- Doesn't require specifying the form of $q(\mathbf{Z}|\phi)$ or computing ELBO's gradients
- lacktriangle The idea: Assumes unknowns $oldsymbol{Z}$ can be partitioned into $oldsymbol{M}$ groups $oldsymbol{Z_1, Z_2, \ldots, Z_M}$, s.t.,

As a shorthand, often written as
$$q = \prod_{i=1}^{M} q_i$$
 where $q_i = q(Z_i|\phi_i)$ $q(Z|\phi) = \prod_{i=1}^{M} q(Z_i|\phi_i)$ For models with local conjugacy, it becomes super easy!

- lacktriangle Learning the optimal $q(\pmb{Z}|\pmb{\phi})$ reduces to learning the optimal q_1,q_2,\ldots,q_M
- Can select groupsbased on model's structure, e.g., in Bayesian neural net for regression

$$p(\pmb{w}|\pmb{X},\pmb{y},\lambda,eta)pprox q(\pmb{w}|\pmb{\phi})=\prod_{\ell=1}^Lq(\pmb{w}^{(\ell)}|\pmb{\phi}_\ell)$$
 Assuming a network with L layers, mean-field across layers

- Mean-field has limitations. Factorized form ignores the correlations among unknowns
 - Variants such as "structured mean-field" exist where some correlations can be modeled

Deriving Mean-Field VI Updates

Writing this is the same as $\operatorname{argmax}_{\phi} \mathcal{L}(\phi, \Theta)$. We are just writing optimization w.r.t. q directly

- With $q = \prod_{i=1}^{M} q_i$, what's the optimal q_i when we do $\underset{q}{\operatorname{argmax}} \mathcal{L}(q)$?
- Note that under this mean-field assumption, the ELBO simplifies to

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left[\frac{p(\mathbf{D}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \right] d\mathbf{Z} = \int \prod_{i} q_{i} \left[\log p(\mathbf{D}, \mathbf{Z}|\Theta) - \sum_{i} \log q_{i} \right] d\mathbf{Z}$$

■ Suppose we wish to find the optimal q_i given all other q_i 's $(i \neq j)$ as fixed, then

$$\mathcal{L}(q) = \int q_{j} \left[\int \log p(\mathbf{D}, \mathbf{Z}|\Theta) \prod_{i \neq j} q_{i} dZ_{i} \right] dZ_{j} - \int q_{j} \log q_{j} dZ_{j} + \text{const w.r.t. } q_{j}$$

$$= \int q_{j} \log \hat{p}(\mathbf{D}, Z_{j}|\Theta) dZ_{j} - \int q_{j} \log q_{j} Z_{j}$$

$$= -\text{KL}(q_{j}||\hat{p}) \log \hat{p}(\mathbf{D}, Z_{j}|\Theta) = \mathbb{E}_{i \neq j} [\log p(\mathbf{D}, \mathbf{Z}|\Theta)] + \text{const}$$

$$q_{j}^{*} = \frac{\exp(\mathbb{E}_{i \neq j} [\log p(\mathbf{D}, \mathbf{Z}|\Theta)])}{\int \exp(\mathbb{E}_{i \neq j} [\log p(\mathbf{D}, \mathbf{Z}|\Theta)] dZ_{j}}$$

■ Thus $q_j^* = \operatorname{argmax}_{q_j} \mathcal{L}(q) = \operatorname{argmin}_{q_i} \operatorname{KL}(q_j || \hat{p}) = \hat{p}(\mathcal{D}, Z_j | \Theta)$

Deriving Mean-Field VI Updates

lacktriangle So we saw that the optimal q_i when doing mean-field VI is

$$q_j^*(\mathbf{Z}_j) = \frac{\exp(\mathbb{E}_{i \neq j}[\log p(\mathbf{D}, \mathbf{Z}|\Theta)])}{\int \exp(\mathbb{E}_{i \neq j}[\log p(\mathbf{D}, \mathbf{Z}|\Theta)] d\mathbf{Z}_j}$$

- Note: Can often just compute the numerator and recognize denominator by inspection
- Important: For locally conj models, $q_j^*(\mathbf{Z}_j)$ will have the same form as prior $p(\mathbf{Z}_j|\Theta)$
 - Only the distribution parameters will be different
- Important: For estimating q_j the required expectation depends on other $\{q_i\}_{i\neq j}$
 - Thus we use an alternating update scheme for these
- Guaranteed to converge (to a local optima)
 - We are basically solving a sequence of concave maximization problems
 - Reason: $\mathcal{L}(q) = \int q_j \log \hat{p}(\mathbf{D}, Z_j | \Theta) Z_j \int q_j \log q_j Z_j$ is concave in q_j

The Mean-Field VI Algorithm

- Also known as Co-ordinate Ascent Variational Inference (CAVI) Algorithm
- Input: Model in form of priors and likelihood, or joint $p(\mathcal{D}, Z|\Theta)$, Data \mathcal{D}
- lacksquare Output: A variational distribution $q(\pmb{Z}) = \prod_{j=1}^M q_j(\pmb{Z}_j)$
- Initialize: Variational distributions $q_j(\mathbf{Z}_j)$, j=1,2,...M
- While the ELBO has not converged
 - For each j = 1,2, ...M, set

$$q_j(\mathbf{Z}_j) \propto \exp(\mathbb{E}_{i \neq j}[\log p(\mathbf{D}, \mathbf{Z}|\mathbf{\Theta})])$$

- lacktriangle Compute ELBO $\mathcal{L}(q) = \mathbb{E}_q[\log p(\mathcal{D}, \mathbf{Z}|\Theta)] \mathbb{E}_q[\log q(\mathbf{Z})]$
- ullet NOTE: We can also use mean-field assumption for q(Z) and optimize the ELBO using gradient based methods if we don't have local conjugacy

VI and Convergence

- VI is guaranteed to converge to a local optima (just like EM)
- Therefore proper initialization is important (just like EM)
 - Can sometimes run multiple times with different initializations and choose the best run

- ELBO increases monotonically with iterations
 - Can thus monitor the ELBO to assess convergence

ELBO for Model Selection

- Recall that ELBO is a <u>lower bound</u> on log of model evidence $\log p(X|m)$
- lacktriangle Can compute ELBO for each model m and choose the one with largest ELBO

Some criticism since we are using a lower-bound but often works well in practice

VI might <u>under-estimate</u> posterior's variance

■ Recall that VI approximates a posterior p by finding q that minimizes $\mathrm{KL}(q||p)$

$$KL(q||p) = -\int q(\mathbf{Z})\log\left\{\frac{p(\mathbf{Z}|\mathcal{D})}{q(\mathbf{Z})}\right\}d\mathbf{Z}$$

- $lackbox{\bf q}({m Z})$ will be small where $p({m Z}|{m \mathcal D})$ is small otherwise KL will blow up
- Thus $q(\mathbf{Z})$ avoids low-probability regions of the true posterior

■ Some methods, e.g., Expectation Propagation (EP), can avoid this behavior

Variational EM

- If the parameters Θ are also unknown then we can use variational EM (VEM)
- VEM is the same as EM except the E step uses VI to approximate the CP of Z
- VEM alternates between the following two steps
 - lacktriangle Maximize the ELBO w.r.t. $oldsymbol{\phi}$ (gives the variational approximation $q(oldsymbol{Z})$ of CP of $oldsymbol{Z}$)

$$\phi^{(t)} = \operatorname{argmax}_{\phi} \mathbb{E}_{q_{\phi}(\mathbf{Z})} \left[\log p(\mathbf{D}, \mathbf{Z} | \Theta^{(t-1)}) - \log q_{\phi}(\mathbf{Z}) \right]$$

■ Maximize the ELBO w.r.t. Θ (gives us point estimate of Θ)

$$\begin{split} \Theta^{(t)} &= \operatorname{argmax}_{\Theta} \mathbb{E}_{q_{\phi^{(t)}}(\boldsymbol{Z})} \left[\log p(\boldsymbol{\mathcal{D}}, \boldsymbol{Z} | \boldsymbol{\Theta}) - \log q_{\phi^{(t)}}(\boldsymbol{Z}) \right] \\ &= \operatorname{argmax}_{\Theta} \mathbb{E}_{q_{\phi^{(t)}}(\boldsymbol{Z})} \left[\log p(\boldsymbol{\mathcal{D}}, \boldsymbol{Z} | \boldsymbol{\Theta}) \right] & \overset{\text{This looks very similar to the expected CLL with the CP replaced by its variational approximation} \end{split}$$

■ Note: If we want posterior for Θ as well, treat it similar to Z and apply variational approximation (instead of using VEM) if the posterior isn't tractable

Extra Slides - Mean-Field VI: A Simple Example

- Consider data $\mathbf{X} = \{x_1, x_2, ..., x_N\}$ from a one-dim Gaussian $\mathcal{N}(\mu, \tau^{-1})$
- lacktriangle Assume the following normal-gamma prior on μ and au

$$p(\mu|\tau) = \mathcal{N}(\mu|\mu_0, (\lambda_0\tau)^{-1})$$
 $p(\tau) = \mathsf{Gamma}(\tau|a_0, b_0)$

- Posterior is also normal-gamma due to the jointly conjugate prior
- Let's anyway verify this by trying mean-field VI for this model
- With mean-field assumption on the variational posterior $q(\mu,\tau)=q_{\mu}(\mu)q_{\tau}(\tau)$

$$\log q_{\mu}^{*}(\mu) = \mathbb{E}_{q_{\tau}}[\log p(\mathbf{X}, \mu, \tau)] + \text{const}$$
$$\log q_{\tau}^{*}(\tau) = \mathbb{E}_{q_{\mu}}[\log p(\mathbf{X}, \mu, \tau)] + \text{const}$$

■ In this example, the log-joint $\log p(\mathbf{X}, \mu, \tau) = \log p(\mathbf{X}|\mu, \tau) + \log p(\mu|\tau) + \log p(\tau)$. Thus

$$\log q_{\mu}^*(\mu) = \mathbb{E}_{q_{\tau}}[\log p(\mathbf{X}|\mu,\tau) + \log p(\mu|\tau)] + \text{const} \qquad \text{(only keeping terms that involve } \mu\text{)}$$

$$\log q_{\tau}^*(\tau) = \mathbb{E}_{q_{\mu}}[\log p(\mathbf{X}|\mu,\tau) + \log p(\mu|\tau) + \log p(\tau)] + \text{const}$$

Extra Slides - Mean-Field VI: A Simple Example

■ Substituting $p(\mathbf{X}|\mu,\tau) = \prod_{n=1}^{N} p(x_n|\mu,\tau)$ and $p(\mu|\tau)$, we get

$$\log q_{\mu}^{*}(\mu) = \mathbb{E}_{q_{\tau}}[\log p(\mathbf{X}|\mu,\tau) + \log p(\mu|\tau)] + \text{const}$$

$$= -\frac{\mathbb{E}_{q_{\tau}}[\tau]}{2} \left\{ \sum_{n=1}^{N} (x_{n} - \mu)^{2} + \lambda_{0}(\mu - \mu_{0})^{2} \right\} + \text{const}$$

• (Verify) The above is log of a Gaussian. This $q_{\mu}^* = \mathcal{N}(\mu | \mu_N, \lambda_N)$ with

$$\mu_{N}=rac{\lambda_{0}\mu_{0}+Nar{x}}{\lambda_{0}+N}$$
 and $\lambda_{N}=(\lambda_{0}+N)\mathbb{E}_{q_{ au}}[au]$ This update depends on $q_{ au}$

■ Proceeding in a similar way (verify), we can show that $q_{\tau}^* = \operatorname{Gamma}(\tau | a_N, b_N)$

$$a_N=a_0+rac{N+1}{2}$$
 and $b_N=b_0+rac{1}{2}\mathbb{E}_{q_\mu}\left[\sum_{n=1}^N(x_n-\mu)^2+\lambda_0(\mu-\mu_0)^2
ight]$ This update depends on q_μ

■ Note: Updates of q_{μ}^* and q_{τ}^* depend on each other (hence alternating updates needed)