BECA / Dr. Huson / Regents Prep: Graphs 20 November 2024

First and last name: Section:

3.6 Do Now: Graphing 3rd order polynomials

- 1. Graph the cubic function $f(x) = x^3 x^2 6x$ on the grid below.
 - (a) Mark and label the x-intercepts.
 - (b) Write the function in factored form.
 - (c) Mark and label the local maximum and minimum points.
 - (d) Characterize the end behavior of the function. Use the notation "as $x\to\pm\infty$ $y\to\pm\infty$ "

- 2. Find the value of each variable that makes the equation true.
 - (a) $5^2 \cdot 5^3 = 5^a$ a =

(d) $(4^3)^5 = 4^d$ d =

- (b) $\frac{3^7}{3^6} = 3^b$ b =

(e) $2^e = \frac{1}{2}$ $e = \frac{1}{2}$

- (c) $7^c = 1$ c =

(f) $3^4 \cdot f^4 = 15^4$ f =

- 3. Evaluate each expression.
 - (a) $\frac{1}{4} \cdot 24 =$

(c) $\frac{3}{5} \cdot 8 \cdot \frac{5}{3} =$

(b) $\frac{3}{2} \cdot 10 =$

- (d) $\frac{2}{3} \cdot \frac{5}{2} \cdot 9 =$
- 4. Rewrite each expression to a fractional exponent.
 - (a) $\sqrt[2]{5} =$

(c) $\sqrt[3]{5^2} =$

(b) $\frac{1}{\sqrt[2]{5}} =$

- (d) $\frac{1}{(\sqrt[4]{5})^3} =$
- 5. Rewrite each expression with fractional exponent as a radical.
 - (a) $5^{\frac{1}{3}} =$

(c) $5^{\frac{3}{2}} =$

(b) $5^{-\frac{1}{2}} =$

(d) $5^{-\frac{5}{3}} =$