# CPT Violation in $\phi \to K^0 \overline{K}^0$ Can we study it in LHCb?

Sonja Bartkowski Supervisors: Giulio Dujany & George Lafferty In collaboration with Lorenzo Capriotti, Jonathan Harrison, Wojciech Krzemien, Jeroen Van Tilburg, & Wojciech Wislicki

September 1, 2015









#### Who I am

- Master student at the TU Dortmund, Germany
- Last summer:
  - Bachelor thesis with ATLAS (top physics)
  - Quantum information processing summer school
- This fall:
  - Start of my master thesis (ATLAS exotics)
- This summer:







And of course the project I am about to show you!

$$\left|\phi\right\rangle \rightarrow\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle \left|\overline{K}^{0}\right\rangle -\left|\overline{K}^{0}\right\rangle \left|K^{0}\right\rangle \right)=\frac{N}{\sqrt{2}}\left(\left|K_{\mathcal{S}}\right\rangle \left|K_{\mathcal{L}}\right\rangle -\left|K_{\mathcal{L}}\right\rangle \left|K_{\mathcal{S}}\right\rangle \right)$$

- $\blacksquare$   $K_S$  and  $K_L$  are not CP eigenstates
- $K_L \to \pi^+\pi^-$  as well as  $K_S \to \pi^+\pi^-$ ,  $\mathcal{BR}(K_L \to \pi^+\pi^-) \sim 2 \cdot 10^{-3}$
- Interference in decay intensity:

$$I(t_1, t_2) \propto e^{-\Gamma_L t_1 - \Gamma_S t_2} + e^{-\Gamma_S t_1 - \Gamma_L t_2} - 2e^{-\frac{1}{2}(\Gamma_S + \Gamma_L)(t_1 + t_2)} \cos(\Delta m (t_1 - t_2))$$

$$\left|\phi\right\rangle \rightarrow\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle \left|\overline{K}^{0}\right\rangle -\left|\overline{K}^{0}\right\rangle \left|K^{0}\right\rangle \right)=\frac{N}{\sqrt{2}}\left(\left|K_{\mathcal{S}}\right\rangle \left|K_{\mathcal{L}}\right\rangle -\left|K_{\mathcal{L}}\right\rangle \left|K_{\mathcal{S}}\right\rangle \right)$$

- $\blacksquare$   $K_S$  and  $K_L$  are not CP eigenstates
- $K_L \to \pi^+\pi^-$  as well as  $K_S \to \pi^+\pi^-$ ,  $\mathcal{BR}(K_L \to \pi^+\pi^-) \sim 2 \cdot 10^{-3}$
- Interference in decay intensity:

$$I(t_1, t_2) \propto e^{-\Gamma_L t_1 - \Gamma_S t_2} + e^{-\Gamma_S t_1 - \Gamma_L t_2} - 2e^{-\frac{1}{2}(\Gamma_S + \Gamma_L)(t_1 + t_2)} \cos(\Delta m (t_1 - t_2))$$

$$\left|\phi\right\rangle \rightarrow\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle \left|\overline{K}^{0}\right\rangle -\left|\overline{K}^{0}\right\rangle \left|K^{0}\right\rangle \right)=\frac{N}{\sqrt{2}}\left(\left|K_{S}\right\rangle \left|K_{L}\right\rangle -\left|K_{L}\right\rangle \left|K_{S}\right\rangle \right)$$

- $\blacksquare$   $K_S$  and  $K_L$  are not CP eigenstates
- $K_L \to \pi^+\pi^-$  as well as  $K_S \to \pi^+\pi^-$ ,  $\mathcal{BR}(K_L \to \pi^+\pi^-) \sim 2 \cdot 10^{-3}$
- Interference in decay intensity:

$$I(t_1, t_2) \propto e^{-\Gamma_L t_1 - \Gamma_S t_2} + e^{-\Gamma_S t_1 - \Gamma_L t_2} - 2(1 - \zeta_{SL})e^{-\frac{1}{2}(\Gamma_S + \Gamma_L)(t_1 + t_2)}\cos(\Delta m(t_1 - t_2))$$

Intrinsical violation of CPT introduces decoherence term.

Intrinsical violation of CPT introduces decoherence term.<sup>1</sup>

$$egin{aligned} I(t_1,t_2) \propto & e^{-\Gamma_L t_1 - \Gamma_S t_2} + e^{-\Gamma_S t_1 - \Gamma_L t_2} \ & -2(1-\zeta_{SL})e^{-rac{1}{2}(\Gamma_S + \Gamma_L)(t_1 + t_2)}\cos\left(\Delta m(t_1 - t_2)
ight) \end{aligned}$$



[CPT and Quantum Mechanics Tests with Kaons, J. Bernabeu et al., arXiv:hep-ph/0607322]  $\Rightarrow$  Excess of  $4\pi$  decays for small  $\Delta t$ 

<sup>&</sup>lt;sup>1</sup>There are different decoherence models, but we will stick with this one for now for the sake of simplicity.

# Comparison of two approaches

### Prompt $\phi$

high production cross section



lower rate ( $\sim$ 1%)

 possibly better handle on background rejection





- First study on the prompt  $\phi$  approach
- Compare with D<sub>S</sub> approach

## **Terminology**

Signal: Excess of  $\phi \rightarrow$  2 neutral kaons

 $\rightarrow \pi^+\pi^-\pi^+\pi^-$  for  $\Delta t$  small due to

6/15

CPT violation

SM background: Resulting from CPV,

 $\phi \rightarrow K_L K_S \rightarrow \pi^+ \pi^- \pi^+ \pi^-$ 

Regeneration background: Regeneration  $K_L \to K_S$  in material

Combinatoric background: Prompt kaons and pions

#### Selection

 $\blacksquare$  Stripping for the prompt  $\phi$  approach already existed



#### Selection

- Developed selection for  $D_S \to \phi \pi$ 
  - Cuts on the mass regions of  $\phi$  and  $D_S$
  - Cuts on the  $\chi^2$  of the impact parameter of  $\phi$  to exclude prompt  $\phi$





## **Efficiencies**

|                                                                                               | Prompt $\phi$                                   | $D_{	extsf{s}} 	o \phi \pi$                         |  |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|--|
| Cross section (14 TeV), LHCb acceptance                                                       | (3516 μb                                        | (388 μb)                                            |  |
| Branching fractions                                                                           | 34.2%                                           | 4.5% · 34.2%                                        |  |
| Fiducial cuts efficiency                                                                      | 2.5%                                            | 7.0%                                                |  |
| Prob. $K_{\rm s}K_{\rm s} 	o 4\pi,$ exactly 1 (2) decays inside bp                            | 15.1% ( 2.8% )                                  |                                                     |  |
| Prob. $K_{s}K_{L} \rightarrow 4\pi$ (CPV), exactly 1 (2) decays inside bp                     | $3.98 \cdot 10^{-7} \ (4.99 \cdot 10^{-10})$    |                                                     |  |
| Upper limit KLOE prob. $K_sK_L \rightarrow 4\pi$ (CPV + CPTV), exactly 1 (2) decays inside bp | $5.13 \cdot 10^{-7} (1.64 \cdot 10^{-8})$       |                                                     |  |
| Reconstruction & selection efficiency                                                         | 7.9% ( 7.6% )                                   | 1.4% ( 4.2%)                                        |  |
| L0 efficiency                                                                                 | 16.1% ( 18.6% )                                 | 22.4% ( 18.2% )                                     |  |
| LT1 efficiency                                                                                | 13.7% ( 16.7% )                                 | 45.5% ( 25.0% )                                     |  |
| HLT2 efficiency                                                                               | 65.6% ( 100.0% )                                | 75.0% ( 100.0% )                                    |  |
| Total efficiency SM background                                                                | $4.39 \cdot 10^{-5} \ (\ 5.85 \cdot 10^{-5}\ )$ | 1.02 · 10 <sup>-4</sup> ( 1.32 · 10 <sup>-4</sup> ) |  |
| Expected events SM background / $fb^{-1}$                                                     | $(21 (3.51 \cdot 10^{-2}))$                     | $(2.43 \cdot 10^{-1} (3.94 \cdot 10^{-4}))$         |  |
| Upper limit for signal (KLOE)                                                                 | 27 ( 1.15 )                                     | $3.13 \cdot 10^{-1} \ (\ 1.29 \cdot 10^{-2}\ )$     |  |
| Background (data 2012) / fb <sup>-1</sup>                                                     | 163110 ( 29120 )                                | (1170 ( 6100 )                                      |  |

#### **Efficiencies**

#### Conclusion:

- Background dominates over signal for both approaches
- For the  $D_S$  approach, both signal and background rate go down by two orders of magnitude compared to the prompt  $\phi$  approach
  - There is no big improvement in the signal to background ratio

# Feasibility study for prompt $\phi$

Studies of minimum bias Monte Carlo suggest that 80% background is prompt  $K_S$ 

- this background is irreducible
- $I(t_1,t_2) \propto e^{-\Gamma_S t_1} e^{-\Gamma_S t_2}$

Toy study with RooFit!

- decay intensity
- momentum distribution
- 1 kaon decaying inside beampipe
- regeneration not taken into account

But first: Studying resolution for toy study

#### Time resolution



Resolution of the core of the distribution is a few ps  $\Rightarrow$  5 ps binning in toy study

# Feasibility study for prompt $\phi$



# Feasibility study for prompt $\phi$

- Using optimistic signal to background ratio of 4 · 10<sup>-4</sup>
- RooStats profile likelihood calculator
- Fitted with square root of luminosity



For KLOE limit  $\zeta_{SL} = 0.098 \\ \downarrow \downarrow \\ \int L \ dt \approx 275 \ \text{fb}^{-1}, \\ \text{extrapolated} \\ \text{from fit}$ 

## Summary

- Selection for  $D_S \to \phi \pi$  implemented
- Compared the prompt  $\phi$  and the  $D_S$  approach
  - For both strategies, the background dominates.
- The time resolution is a few ps
- Performed a toy study for the prompt  $\phi$  approach to estimate limits we can set on CPTV

After my studies, the prospects for this analysis look bleak.

## Summary

- Selection for  $D_S \to \phi \pi$  implemented
- Compared the prompt  $\phi$  and the  $D_S$  approach
  - For both strategies, the background dominates.
- The time resolution is a few ps
- Performed a toy study for the prompt  $\phi$  approach to estimate limits we can set on CPTV

After my studies, the prospects for this analysis look bleak.

# Thank you for your attention!

# **BACKUP**

## Toy study

- Generated toy data as the weighted sum of two distributions in decay times:
  - 1. Combinatoric background of prompt  $K_S$  with decay intensity

$$I(t_1, t_2) \propto e^{-\Gamma_S t_1} e^{-\Gamma_S t_2}$$

2. SM background with decay intensity

$$I(t_1, t_2) \propto e^{-\Gamma_L t_1 - \Gamma_S t_2} + e^{-\Gamma_S t_1 - \Gamma_L t_2}$$
  
-  $2e^{-\frac{1}{2}(\Gamma_S + \Gamma_L)(t_1 + t_2)} \cos(\Delta m(t_1 - t_2))$ 

- Ratio of SM background to combinatoric background from efficiency study
- Fitted to

$$I(t_1, t_2) \propto e^{-\Gamma_L t_1 - \Gamma_S t_2} + e^{-\Gamma_S t_1 - \Gamma_L t_2} - 2(1 - \zeta_{SL})e^{-\frac{1}{2}(\Gamma_S + \Gamma_L)(t_1 + t_2)}\cos(\Delta m(t_1 - t_2))$$

17 / 15

Derived limit on  $\zeta_{SI}$  from fit result

# Selection - prompt $\phi$

#### Prompt $\phi$ production

- Stripping PhiToKSKS\_PhiToKsKsLine
  - $\pi$  TRGHOSTPROB < 0.35 P > 2.GeV MIPCHI2DV(PRIMARY) > 9.
  - K<sub>S</sub> ADMASS('KS0') < 35.MeV VFASPF(VCHI2) < 25.
    - LL or LD combinations \*) APT > 400 MeV VFASPF(VCHI2/VDOF) < 6 MIPCHI2DV(PRIMARY) < 9 M < 1100 MeV</p>
- 1010 MeV <phi\_M< 1030 MeV
- \*) because of regeneration, KLOE follows the same approach

## Selection - $D_s \rightarrow \phi \pi$

 Selection (inspired by PhiToKSKS\_PhiToKsKsLine and other charm lines) on CHARMCOMPLETEEVENT.DST

- $\pi(K_S)$  PT > 150 MeV BPVIPCHI2() > 1.0 TRCHI2DOF < 5 TRGHOSTPROB < 0.3
  - $K_S$  ADMASS('KS0') < 35 MeV VFASPF(VCHI2) < 2. PT > 200 MeV BPVVD > 10.0 mm BPVVDCHI2 > 100 VFASPF(VCHI2PDOF) < 10 BPVDIRA > 0.999

- LL or LD combinations ADMASS('phi(1020)')<70 MeV VFASPF(VCHI2/VDOF) < 6 APT > 400 MeV
- $\pi(D_S)$  TRGHOSTPROB < 0.35 P > 2 GeV MIPCHI2DV(PRIMARY) > 9
  - $D_S$  ADMASS('D\_s+') < 150MeV (BPVVDCHI2 > 16.0) or (BPVLTIME() > 0.150 ps) VFASPF(VCHI2/VDOF) < 25.0
- 1010 MeV<phi\_M<1030 MeV & 1955 MeV<Ds\_M<1985 MeV</p>
- IPCHI2 ≥ 15, (possible to tighten cut if more MC statistics available)

## Backgrounds

Estimates from minimum bias MC (42 M events). The number in brackets is the number of background events with physical  $K_s$ .

| Background category                | prompt $\phi$ | $D_{\mathcal{S}}  ightarrow \phi \pi$ |
|------------------------------------|---------------|---------------------------------------|
| light flavour                      | 17(17)        | 0                                     |
| $b\overline{b}$                    | 1(1)          | 0                                     |
| different PV                       | 3(2)          | 0                                     |
| physical bkg, partl. reconstructed | 1(1)          | 1(1)                                  |
| ghosts                             | 0             | 1(0)                                  |
| total                              | 21(20)        | 2(1)                                  |

Remaining background for prompt  $\phi$  is mostly irreducible.

# Terminology



#### Time resolution

