Class 5: Data Viz with ggplot

AE Pasquinelli

R has lots of ways to make figures and graphs in particular. One that comes with R out of the box is called "base" $\bf R$ - the plot() function.

cars

speed	dist
4	2
4	10
7	4
7	22
8	16
9	10
10	18
10	26
10	34
11	17
11	28
12	14
12	20
12	24
12	28
13	26
13	34
13	34
13	46
14	26
14	36
14	60
14	80
15	20
15	26
15	54
	4 4 7 7 8 9 10 10 11 12 12 12 12 13 13 13 14 14 14 14 15 15

```
27
      16
           32
      16
          40
28
29
      17
           32
30
      17
           40
31
      17
           50
32
      18
           42
          56
33
      18
34
      18
          76
35
      18
          84
36
      19
          36
37
      19
          46
38
      19
           68
          32
39
      20
40
      20
          48
41
      20
          52
42
      20
          56
43
      20
          64
44
      22
           66
45
      23
          54
46
      24
          70
47
      24
          92
48
      24
          93
49
      24 120
          85
50
      25
```

plot(cars)

A very popular package in this area is called **ggplot2**. Before I can use any add on package like this I must install it with the install.packages("ggplot") command/function

Then use the package I need to load it with a library(ggplot2) call.

```
library(ggplot2)
ggplot(cars) +
aes(x=speed, y=dist) + geom_point()
```


Every ggplot has at least 3 layers - **data** (data.frame with the numbers or stuff you want to plot) - **aes**thetics (mapping of your data columns to your plot) - geoms (there are tons of these, basics are geom_point(), geom_line(), geom_col()

For "simple" plots like this one base R code will be much shorter than ggplot code. Lets fit a line and show it on plot

```
ggplot(cars) +
aes(x=speed, y=dist) + geom_point() +
geom_smooth()
```

 $[\]ensuremath{\tt `geom_smooth()`}$ using method = 'loess' and formula = 'y ~ x'

head(mtcars)

	mpg	cyl	disp	hp	drat	wt	qsec	٧s	\mathtt{am}	gear	carb
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

Make me a ggplot of the mtcars data set using mpg vs disp and set the size of the points to the hp.

```
ggplot(mtcars) + aes(x=mpg, y=disp, col=am, size=hp) + geom_point()
```


ggplot(mtcars) + aes(x=mpg, y=disp, size=hp) + geom_point(col="blue")

 $\# comment \ ggplot(mtcars) + aes(x=mpg, \ y=disp, \ col=am, \ labels=rownames, \ size=hp) + geom_point() + facet_wrap(\sim am)$

```
library(ggrepel)
ggplot(mtcars) + aes(x=mpg, y=disp, col=am, label=rownames(mtcars)) + geom_point() + facet_w
```


url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>

```
Gene Condition1 Condition2 State
1 A4GNT -3.6808610 -3.4401355 unchanging
2 AAAS 4.5479580 4.3864126 unchanging
3 AASDH 3.7190695 3.4787276 unchanging
4 AATF 5.0784720 5.0151916 unchanging
5 AATK 0.4711421 0.5598642 unchanging
6 AB015752.4 -3.6808610 -3.5921390 unchanging
```

##Gene expression list

```
url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>
```

```
Gene Condition1 Condition2 State
1 A4GNT -3.6808610 -3.4401355 unchanging
2 AAAS 4.5479580 4.3864126 unchanging
3 AASDH 3.7190695 3.4787276 unchanging
4 AATF 5.0784720 5.0151916 unchanging
5 AATK 0.4711421 0.5598642 unchanging
6 AB015752.4 -3.6808610 -3.5921390 unchanging
```

```
nrow(genes)
```

[1] 5196

There are nrow(genes) genes in this dataset.

```
unique(genes$State)
```

```
[1] "unchanging" "up" "down"
```

The table function is a super useful utility to tell me how many entries of each type there are

```
table(genes$State)/ nrow(genes) * 100
```

```
down unchanging up
1.385681 96.170131 2.444188
```

```
round(table(genes$State) / nrow(genes), 3)
```

```
down unchanging up 0.014 0.962 0.024
```

The functions nrow(), ncol(), and table() are ones I want you to know

```
ggplot(genes) + aes(x=Condition1, y=Condition2) + geom_point()
```



```
p <- ggplot(genes) +
    aes(x=Condition1, y=Condition2, col=State) +
    geom_point()
p</pre>
```


p + scale_colour_manual(values=c("blue","gray","red"))

Gene Expression


```
ggplot(mtcars) + aes(mpg, disp) + geom_point()
```


ggsave("myplot.pdf")

Saving 5.5×3.5 in image

Key points

Multi-plot