Data Exploration using Burro

Ted Laderas

2020-04-28

Learning Objectives for This Session

- 1. *Understand* the purpose of exploratory data analysis (EDA)
- 2. Learn how to do EDA using burro
- 3. Answer questions about associations between variables.

Our Overall Goal

- Predict 30 day readmission in our patients
- Select appropriate variables in the data to include in our model
- Understand what our variables mean
- Understand interactions between variables
- Output: List of potential variables to add to our model

What is Exploratory Data Analysis?

- Pioneered by John Tukey
- Detective work on your data
- An attitude towards data, not just techniques
- 'Find patterns, reveal structure, and make tenative model assessments (Behrens)'

Remember

"Exploratory data analysis can never be the whole story, but nothing else can serve as the foundation stone."

• John Tukey, Exploratory Data Analysis

Why Data Exploration?

• Need to be aware of issues in the data!

Why Visualization?

Let's look first

- Visualization is a gateway
- Understand the issues, not focus on coding right now
- Build your foundation, then start getting technical

Burro

burro is a data explorer package we'll use to examine issues in our dataset. It opens up a dataset and lets us explore different aspects of it:

- Missing data
- Associations
- Correlations

If you're interested in it, you can see more about it here: http://laderast.github.io/burro

We'll be using the website version of burro.

Workflow for selecting variables

Ultimately, in our EDA, we want to make some decisions about which variables we think are useful in predicting cardiovascular disease:

- 1. **Missingness**: are there too many missing cases in our variable?
- 2. **Usefulness**: is there an association or correlation with our outcome?
- 3. **Association:** How associated is our variable with other variables in the model? Should we choose one or the other?
- 4. **Clinical/domain specific considerations**: How were the data collected? Does that affect our measurement?

Let's go to https://bit.ly/hip_dw

The Overview Panel

knitr::include_graphics("images/sample_image.png")

Some Questions for the Overview Panel (5-10 minutes)

As a group, take a look at the following questions and attempt to answer them from the overview panel.

As you do, take a note of which tab (Visual Summary, Tabular Summary, and Data Dictionary) you found the information in.

Be sure to use your post-it notes if you're confused or need help!

Questions

- 1. How big is the dataset? (how many rows?)
- 2. How many categorical variables (also called factors) are there in our dataset?
- 3. How many missing readmit30 cases (coded as NA) are there?
- 4. What is the mean age for the dataset? Is it what you expected?

Google Sheet Link

https://bit.ly/hip_sheet

The Category Panel

knitr::include_graphics("images/ace.png")

Some Questions for the Category Panel (5-10 minutes)

Again, answer these as a group!

- 1. How many categories are there for outcome?
- 2. Are the proportions of readmit30 balanced across admit_source?
- 3. If you are older, are you more likely to have had myocardial_complications?
- 4. Is the proportion of missing data for readmit30 balanced across outcome categories?

The Continuous Panel

knitr::include_graphics("images/bmi_vs_neck.png")

Some Questions for the Continuous Panel (5-10 minutes)

- 1. Describe the distribution of age in our patients.
- 2. Is age evenly distributed across readmiy? If not, how are they distributed?
- 3. Are age and length_of_stay correlated? Are you surprised?
- 4. Should we include both age and myocardial_complications in our dataset?

Missingness

- 1. What variables have missing data?
- 2. Is the missingness correlated for any two variables?
- 3. How will we deal with this?

Some thoughts on variable selection

Including some variables as predictors when they are interacting can affect the predictive power of their variables.

We'll test these next time.

• Age and Myocardial Infarction

For next time

Select your predictor covariates of readmit30

We'll build predictive models of the dataset.

Congratulations

You are now a full fledged data explorer!

Overall

- Data exploration is fun and detective work
- Be curious! Start with a question
- Assess the impact of adding your covariate to the model
 - Does the distribution look like other populations?
 - Is it associated with your outcome?
 - Is it associated with other variables?
 - Is the data missing in a suspicious way?