西安交通大学 软件学院

操作系统原理

Operating System Principle

田丽华

7-2 死锁的必要条件

死锁的原因

Deadlock Necessary Conditions 死锁的必要条件

Deadlock can arise if four conditions hold simultaneously.

(四个条件同时出现,死锁将会发生)

- Hold and wait: a process holding at least one resource is waiting to acquire additional resources held by other processes.

(占有并等待:一个至少持有一个资源的进程等待获得额外的由其他 进程所持有的资源)(请求与保持)

Deadlock Necessary Conditions 死锁的必要条件

- No preemption: a resource can be released only voluntarily by the process holding it, after that process has completed its task.

 (不可抢占: 一个资源只有当持有它的进程完成任务后,自由的释放) (非剥夺)
- Circular wait: there exists a set $\{P_0, P_1, ..., P_0\}$ of waiting processes such that P_0 is waiting for a resource that is held by P_1 , P_1 is waiting for a resource that is held by P_2 , ..., P_{n-1} is waiting for a resource that is held by P_n , and P_0 is waiting for a resource that is held by P_0 .

 (循环等待: 等待资源的进程之间存在环)

System Model

系统模型

- Resource types (资源类型) $R_1, R_2, ..., R_m$ CPU cycles, memory space, I/O devices

 (CPU周期, 内存空间, I/O设备)
- Each resource type R_i has W_i instances.

(每一种资源R;有W;种实例)

• Process Pi (进程Pi)

Resource-Allocation Graph 资源分配图

A set of vertices V and a set of edges E. (一组顶点的集合V和边的集合E)

- V is partitioned into two types: (V被分为两个部分)
 - $P = \{P_1, P_2, ..., P_n\}$, the set consisting of all the processes in the system. (P: 含有系统中全部的进程)
 - $R = \{R_1, R_2, ..., R_m\}$, the set consisting of all resource types in the system. (R: 含有 系统中全部的资源)
- request edge directed edge $P_i \to R_j$ (请求边: 直接 $P_i \to R_j$)
- assignment edge directed edge $R_i \to P_i$ 分配边: $R_i \to P_i$)

Resource-Allocation Graph

资源分配图

· Process进程

· Resource Type with 4 instances有四个实例的资源类型

 P_i requests instance of R_j (P_i 请求一个 R_j 的实例)

 P_i is holding an instance of R_j (P_i 持有一个 R_j 的实例)

 R_{j}

 R_i

Example of a Resource Allocation Graph

资源分配图的例子

Basic Facts 基本事实

If graph contains no cycles ⇒ no deadlock. (如果图没有环,那么不会有死锁)

If graph contains a cycle ⇒ (如果图有环)

- if only one instance per resource type, then deadlock. (如果每一种资源类型只有一个实例,那么死锁发生)
- if several instances per resource type, possibility of deadlock. (如果每种资源类型有多个实例,可能死锁)

Resource Allocation Graph With A Deadlock

Resource Allocation Graph With A Cycle But No Deadlock

