

Mechanical System Dynamics

- Experimental modal analysis (Part 2)

Binbin Liu

Tel: 02 2399 8467

Email: binbin.liu@polimi.it

Objectives

Compute the natural frequencies and the mode shapes of the freefree beam already considered in Part 1, by means of the analytical model of a slender beam.

Compare the results with the experimental ones obtained in Part 1.

Contents:

- Data of the tested structure (geometry and material properties)
- Analytical solution for free-free beam (to be computed)

Free-free beam

Standing wave solution

$$w(x,t) = (A\cos\gamma x + B\sin\gamma x + C\cosh\gamma x + D\sinh\gamma x)\cos(\omega t + \varphi)$$

where $\gamma^4 = \frac{m\omega^2}{EJ}$

$$m, E, J, A, B, C, D$$
?

Tested structure: beam

Test object: an aluminium beam with the following parameters

Parameter	symbol	unit	value
Lenght	L	mm	1200
Thickness	h	mm	8
Width	b	mm	40
Density	ho	${ m kg/m^3}$	2700
Young's Modulus	E	GPa	68

Tested structure: beam

Aluminum beam with rectangular constant cross-section

The moment of inertia of a rectangle with respect to an axis passing through its centroid, is given by the following expression:

$$J = \frac{bh^3}{12}$$

where *b* is the rectangle width, and specifically its dimension parallel to the axis, and *h* is the height (more specifically, the dimension perpendicular to the axis).

Analytical solution of the free-free beam

$$w(x,t) = (A\cos\gamma x + B\sin\gamma x + C\cosh\gamma x + D\sinh\gamma x)\cos(\omega t + \varphi)$$
 where $\gamma^4 = \frac{m\omega^2}{EI}$

Boundary conditions (4 BCs)

- 2) ..
- 3) ..

Matrix formulation

$$[H(\omega)] \underline{X} = \underline{0} \qquad \underline{X} = \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix}$$

¿mecc

Solution of the characteristic equation $\det [H(\omega)] = 0 \rightarrow \omega_i$ Mode shape computation:

$$\det [H(\omega)] = 0 \rightarrow \omega_i$$

$$\omega_i \to [H(\omega_i)] \underline{X}^{(i)} = \underline{0}$$

arbitrary chose $A_1^{(i)} = 1$, use ω_i obtained above to evaluate the following equation

$$\begin{bmatrix} \frac{1st \ row}{N(wi)} & \frac{1}{A(wi)} \end{bmatrix} \begin{bmatrix} 1 \\ \frac{1}{A(wi)} \end{bmatrix} = 0$$

$$\underline{\hat{X}}^{(i)} = -[\widehat{H}(\omega_i)]^{-1}\underline{N}(\omega_i)$$

In Matlab A^ (-1) is equivalent to inv (A)

$$\underline{X}^{(i)} = \begin{bmatrix} A^{(i)} \\ B^{(i)} \\ C^{(i)} \\ D^{(i)} \end{bmatrix} = \begin{bmatrix} 1 \\ \underline{\hat{X}}^{(i)} \end{bmatrix}$$

Plot the analytical mode shapes with the associated natural frequencies

Analytical solution of the free-free beam

Comparison with the experimental results (a common normalization is recommended for the visualization of the analytical and experimental comparison)

symbol	x [mm]
A1	105
A2	415
A3	600

Assignment (Part 2/2)

- Identification of the natural frequencies and mode shapes by the analytical solution
- 2) Comparison of the Analytical vs Experimental modes (first 5 modes)

Briefly describe the procedure followed for computing the natural frequencies and mode shapes and plot a diagram showing the comparison between the experimental and computed mode shapes.

Assignment (Part 1/2)

Single-mode identification (up to **5-th** mode)

- 1) Identification of the natural frequencies
- Identification of the damping ratio by the "half-power points" method
- 3) Identification of the damping ratio by the "slope of the phase diagram" method

Prepare a short report including the identification results for **at least one** test configuration among DH1, DH2, and RH1.

Collect the results in table form (for each accelerometer A1, A2, A3). Short comments on the results.

One single report for Part 1 + Part 2.