Robustly account for informativeness n A BC Via inverse ML models.

2022-05

Yannik Schaelte^{1,2,3}, Jan Hasenauer^{1,2,3}

1: Helmholtz Center Munich, Institute of Computational Biology, 2: Technical University Munich, Center for Mathematics, 3: University Bonn, Faculty of Mathematics and Natural Sciences

Mini-Intro: ABC

- Parameter inference method that does't need to evaluate the likelihood function
- until N acceptances:
 - 1. sample parameters $\theta \sim \pi(\theta)$
 - 2. simulate data $y \sim \pi(y|\theta)$
 - 3. accept if $d(s(y), s(y_{\text{obs}})) < \varepsilon$
- often combined with an SMC scheme

The problem

- ABC easily gives bad results if summary statistics and distance are not properly calibrated
- ABC posteriors can look very different, depending on the **method**

Method: Robust adaptive distances

• Use robust norms with adaptive weights to normalize for scale and down-weight outliers

Method: Inverse ML models

• Idea: learn an inverse regression model s: $y \rightarrow \theta$

- use that model
 - to construct low-dimensional **summary statistics** ("Summarize all information of data on each parameter in a single value per parameter")
 - to define additional informativeness weights given via normalized sensitivities ("If the data were perturbed, how much would the optimal parameters change?")
- learn functions of parameters to capture **higher-order moments**, s: $y \rightarrow \lambda(\theta)$

Results

Robustness

the new robust adaptive distances **substantially** outperform established methods, on a variety of test problems with different model and data types

they reliably identify outliers and yield accurate fits with low bias and tight confidence intervals

Informativeness

established methods perform badly and can yield wrong interpretations;

only the **combination** of the new methods (accounting for informativeness; adaptive weighting; assessing higher-order moments)

allows to tackle more challenging problems

we are able to simultaneously robustly detect outliers and account for informativeness also on **complex** application problems (here: an agent-based model of tumor spheroid growth)

Further information

Robust adaptive distance functions for approximate Bayesian inference on outlier-corrupted data. Schälte et al., 2021

Informative and adaptive distances and summary statistics in sequential approximate Bayesian computation. Schälte et al., 2022

pyABC: Efficient and robust easy-to-use approximate Bayesian computation. Schälte et al., 2022

