Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° semestre 2020

Ayudantía 10

23 de Abril

MAT1106 - Introducción al Cálculo

- 1) Escriba que significa que x_n sea decreciente y su negación.
- 2) (*I6 2018*) Considere $x_n = \frac{n!}{n^n}$.
 - a) Demuestre que

$$\frac{x_{n+1}}{x_n} \le \frac{1}{2}$$

b) Demuestre que

$$0 \le x_n \le \frac{1}{2^{n-1}}$$

para todo $n \in \mathbb{N}$.

- 3) ¿Es $x_n = \sqrt[n]{n!}$ monótona?
- 4) Para a > 0, se define la función

$$f(x) = x^3 - 2$$
 y $g_a(x) = a^3 - 2 + 3a^2(x - a)$.

Sea x_n una sucesión tal que $x_1 = 2$ y x_{n+1} cumpla

$$g_{x_n}(x_{n+1}) = 0.$$

a) Muestre que

$$f(x) - g_a(x) = (x + 2a)(x - a)^2$$

y concluya que $f(x) \ge g_a(x)$ cuando $x \ge 0$.

- b) Escriba x_{n+1} en función de x_n .
- c) Muestre que $x_n > 0$ para todo $n \in \mathbb{N}$.
- d) Use las partes anteriores para mostrar que $x_n^3 \geq 2$ para todo n natural.
- e) Pruebe que esta sucesión es monótona.