4

1	1.	A system comprising:	
2		an execution pipeline;	
3		a power delivery unit to provide power to the execution pipeline at a specified	
4		operating point;	
5		a digital throttle to estimate a power state, responsive to activity of the execution	
6		pipeline and the specified operating state, and to trigger a change in the operating state,	
7		responsive to the estimated power state reaching a first threshold.	
1	2.	The system of claim 1, wherein the power delivery unit includes a clock gating circuit to	
2	control power delivery to one or more units of the execution pipeline.		
1	3.	The system of claim 2, wherein the digital throttle comprises an activity monitor to	
2	estimate an activity level responsive to a signal from the clock gating circuit, the activity monitor		
3	including a scaling unit to adjust the estimated activity level, responsive to the current operating		
4	point	:	
1	4.	The system of claim 3, wherein the scaling unit includes:	
2		a look-up table to store scaling factors for a plurality of operating points; and	
3		a multiplier to multiply the estimated activity level by the scaling factor	

associated with the current operating point.

1	5.	The system of claim 3, wherein the monitor unit further comprises.
2		a plurality of weight units, each weight unit being associated with one of the units
3		of the execution pipeline; and
4		an adder to receive a first or second value from each weight unit, responsive to the
5		signal from the clock gating circuit.
1	6 .	An apparatus comprising:
2		an execution pipeline including one or more units to execute an instruction at a
3		current operating point;
4		a gate unit to indicate an activity state for the one or more units;
5		an activity monitor to estimate an activity level for the processor, responsive to
6		the gate unit and the current operating point; and
7		a throttle circuit to adjust the operating point, responsive to a power state
8		determined from the estimated activity level reaching a first threshold.
1	7.	The system of claim 1, wherein the activity monitor includes:
2		a look-up table to store scaling factors corresponding to a plurality of operating
3		points; and

a scaling unit to adjust the activity level according to a scaling factor appropriate 4 for the specified operating point. 5 The system of claim 7, further comprising a conversion circuit to determine a power state 1 8. from the adjusted activity level. 2 The system of claim 8, wherein the conversion circuit compares the adjusted activity 9. 1 level with a threshold level and stores the difference in an accumulator. The system of claim 9, wherein the conversion unit scales the threshold level responsive 10. to the current operating point. A processor comprising: 11. an execution pipeline; 2 a clock gating circuit to control power delivery to one or more units of the 3 execution pipeline; 4 a monitor unit to estimate an activity level of the execution pipeline, responsive to 5 a status signal from the clock gating circuit; 6 a scaling unit to adjust the estimated activity level, responsive to an operating 7

8

point of the processor; and

- a threshold comparator to determine if the scaled, estimated activity level meets a

 first threshold level.
- 1 12. The processor of claim 11, wherein the scaling unit includes a look-up table and a
- 2 multiplier, the look-up table to provide a scale factor to the multiplier, responsive to the
- 3 operating point of the processor.
- 1 13. The processor of claim 12, wherein the operating point of the processor is specified by a voltage and a frequency.
 - 1 14. The processor of claim 11, further comprising an accumulator to increment a stored value 2 by a difference between the scaled, estimated activity and the first threshold if the scaled activity 3 exceeds the first threshold.
 - 1 15. The processor of claim 14, further comprising a comparator to compare the stored value
 - 2 with a second threshold and to assert a power-reduction signal if the stored value reaches the
 - 3 second threshold value.
 - 1 16. The processor of claim 11, wherein the activity monitor includes an adder having one or
 - 2 more weighted inputs, each input associated with the one or more pipeline units, respectively.

- 1 17. The processor of claim 16, wherein the status signal comprises one or more status signals
- 2 associated with the one or more pipeline units, respectively.
 - 18. The processor of claim 17, wherein the adder sums a first or a second value from each of the weighted inputs, responsive to a state of the associated status signal
 - 19. A method for controlling power consumption in a processor comprising:
 - monitoring activity states for pipeline units of the processor;
 - estimating a power state for the processor using the monitored activity states and
- an operating point of the processor;
 - comparing the estimated power state with a threshold value; and
- adjusting the operating point of the processor if the estimated power state exceeds
- 7 the threshold value.
- 1 20. The method of claim 19, wherein estimating the power state comprises:
- determining an activity level from the monitored activity states;
- scaling the activity level according to the operating point;
- 4 normalizing the scaled activity level relative to a first threshold; and
- accumulating the normalized, scaled activity level for a series of clock intervals.

- 1 21. The method of claim 19, wherein monitoring activity states comprises monitoring status
- 2 signals provided by gate units associated with the pipeline units of the processor.
- 1 22. The method of claim 19, wherein each gate unit controls a clock signal to activate its
- 2 associated pipeline unit as it is needed.
- 1 23. The method of claim 22, wherein adjusting the operating point of the processor comprises 2 adjusting a frequency of the clock signal.
- 1 24. The method of claim 23, wherein adjusting the operating point further comprises 2 adjusting a voltage of the clock signal.
 - 1 25. The method of claim 19, wherein estimating the activity level comprises:
- adding a first or a second weight value to a sum, responsive to a pipeline unit
- being in a first or a second activity state, respectively; and
- scaling the sum by a factor associated with the current operating point.
- 1 26. The method of claim 25, wherein estimating the activity level further comprising adding
- 2 a weight to the sum to represent pipeline units that operate in a single activity state.

1	27.	A computer system comprising:
2		a memory system to store instructions for execution;
3		an instruction execution pipeline including a plurality of units to execute the
4		instructions;
5		a power deliver system to deliver power to the execution pipeline at a current
6		operating point;
7		an activity monitor to estimate an activity level for the execution pipeline at the
8		current operating point; and
9		a throttle circuit to adjust the current operating point, responsive to a power state
10		determined from the activity level falling outside a specified range.
1	28.	The computer system of claim 27, wherein the power delivery system includes plural gar

- l gate units, each gate unit to indicate a first or second activity state for a unit of the execution pipeline,
- according to the unit's being activate or inactive in a clock interval. 3
- The computer system of claim 28, wherein activity monitor includes an adder to add a 29. 1
- 2 first or a second weight to the activity level, responsive to the gate unit indicating a first or
- second state for its associated pipeline unit in the clock interval. 3
- 30. The system of claim 29, wherein the activity monitor further includes a scale unit to scale 1
- the activity level for the clock interval according to the current operating point of the processor. 2

P12492