Distributionally Robust Optimization: Theory and Applications

Speaker: Jie Wang

August 1, 2020

Outline

- Distributionally Robust Optimization
 - Tractable formulation, history, theory
- A Recent Application in Adaptive Recoding
 - Tractable formulation
- A Recent Application in Off-policy Policy Evaluation
 - Tractable formulation, theory, extensions
- Summary

The talk involves contributions from (in random order): Rui Gao, Hongyuan Zha, Xinyun Chen, Shenghao Yang, Zhiyuan Jia, Hoover H. F. Yin

Backgroud about Distributionally Robust Optimization: Tractable Formulation and Statistics

Introduction to Stochastic Optimization

Consider the *stochastic optimization problem* as follows:

$$\mathsf{maximize}_{x \in \mathcal{X}} \qquad \mathbb{E}_{\zeta \sim \mathbb{P}}[h(x,\zeta)] \tag{1}$$

with \mathcal{X} being convex.

Applications:

Supply Chain Mgmt.

Portfolio Mgmt.

Machine Learning

Introduction to Stochastic Optimization

Consider the *stochastic optimization problem* as follows:

$$\text{maximize}_{x \in \mathcal{X}} \qquad \mathbb{E}_{\zeta \sim \mathbb{P}}[h(x, \zeta)] \tag{2}$$

with ${\mathcal X}$ being convex.

- Prospective
 - expected value is a good measure of performance;
 - simply solve by sample average approximation (SAA).
- Challenge
 - difficult to know the exact distribution of ζ;
 - SAA may result in sub-optimal solutions;
 - solution can be risky even know the distribution.

Stochastic Optimization with Noises

Adversarial attacks for classification problem 1:

x
"panda"
57.7% confidence

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode"
8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"

99.3 % confidence

Picture for Gibbon

Testing Errors for Supervised Learning

Consider the supervised learning problem:

$$\min_{f \in \mathcal{F}} \ \mathbb{E}_{(x,y) \sim \mathbb{P}_{\mathsf{true}}} [\ell(f(x),y)]$$

People tackle this problem by the SAA approach:

$$\min_{\theta \in \Theta} \mathbb{E}_{(x,y) \sim \hat{\mathbb{P}}_n} [\ell(f_{\theta}(x), y)], \quad \text{where } \hat{\mathbb{P}}_n = \frac{1}{n} \sum_{i=1}^n \delta_{(x_i, y_i)}.$$

Decomposition of errors in machine learning 2:

$$\mbox{Testing Error} = \left\{ \begin{array}{l} \mbox{Distributional Uncertainty (Variance)} \\ \mbox{Representation Error} \\ \mbox{Optimization Error} \end{array} \right.$$

Motivation for DRO: Distributional Uncertainty

Poor performance of SAA: with high probability,

$$\left|\mathbb{E}_{\zeta \sim \mathbb{P}_{\mathsf{true}}}[h(x,\zeta)] - \frac{1}{n} \sum_{i=1}^n h(x,\zeta_i)\right| \leq O\left(\sqrt{\frac{\mathsf{Var}[h(x,\zeta)]}{n}}\right).$$

 Distributional Uncertainty: Exact distribution of the random variables is difficult to obtain, but observed samples and other statistical information is available.

How to develop an algorithm that cooperates the distributional uncertainty?

Distributionally Robust Optimization

Distributionally Robust Optimization (DRO) model:

$$\mathsf{maximize}_{x \in \mathcal{X}} \quad \min_{\mathbb{P} \in \mathcal{D}} \ \mathbb{E}_{\zeta \sim \mathbb{P}}[h(x, \zeta)]$$

where $\ensuremath{\mathcal{D}}$ denotes a collection of distributions. We call it the ambiguity set.

Guidance for choosing \mathcal{D} :

- Tractability (fast algorithm available);
- Statistical Theoretical Guarantees;
- Numerical Performance (compared with the becnmark cases, such as SAA).

History of DRO

- DRO is first introduced in the context of inventory control problem with a single random demand variable³.
- DRO with moment bounds⁴:

$$\mathcal{D} = \left\{ \mathbb{P} \middle| \begin{array}{l} (\mathbb{E}_{\mathbb{P}}[\zeta] - \mu_0)^T \Sigma_0^{-1} (\mathbb{E}_{\mathbb{P}}[\zeta] - \mu_0) \leq \gamma_1 \\ \mathbb{E}_{\mathbb{P}}[(\zeta - \mu_0)(\zeta - \mu_0)^T] \leq \gamma_2 \Sigma_0 \end{array} \right\}$$

DRO with KL-divergence/f-divergence balls⁵:

$$\mathcal{D} = \left\{ \mathbb{P} \middle| \mathcal{D}(\mathbb{P} || \hat{\mathbb{P}}_n) \leq \gamma \right\},\,$$

where $D(\cdot, \cdot)$ can be the KL-divergence metric, or f-divergence metric.

Likelihood Approach

³Scarf, H. (1958) A Min-Max Solution of an Inventory Problem.

⁴Erick Delage, Y. (2008) Distributionally Robust Optimization under Moment Uncertainty with Application to Data-Driven Problems

⁵Duchi (2016), Statistics of Robust Optimization: A Generalized Empirical Advanced Empirical Control of Cont

Introduction to Wasserstein Distance

We set the ambiguity set to be

$$\mathcal{D} = \left\{ \mathbb{P} : W(\mathbb{P}, \hat{\mathbb{P}}_n) \leq \delta \right\}$$

where $W(\cdot, \cdot)$ refers to the Wasserstein metric:

$$W(\mathbb{P},\mathbb{Q}) = \sup_{g \in \mathsf{Lip}_1} \left| \int g(x) d\mathbb{P}(x) - \int g(x) d\mathbb{Q}(x) \right|$$

- Wasserstein distance is a two-sample formula, and for its approximation, we need samples from both ℙ and ℚ.
- If one of $\mathbb P$ or $\mathbb Q$ is given in an explicit density form, the Wasserstein distance is not convenient to use.

Comparison of Different Probability Metrics

• f-divergence is a two-density formula:

$$D_f(P||Q) = \int_{\Omega} f(dP/dQ)dQ;$$

• Wasserstein distance is a two-sample formula:

$$W(\mathbb{P},\mathbb{Q}) = \sup_{g \in \mathsf{Lip}_1} \left| \int g(x) d\mathbb{P}(x) - \int g(x) d\mathbb{Q}(x) \right|.$$

Stein discrepancy is a one-sample-one-density formula:

$$S(p,q) = \sup_{f \in \mathcal{F}} \left| \int \mathcal{A}_p[f(x)] dq(x) \right|$$

Introduction to Wasserstein Distance

By the duality theory in LP,

$$W(\mathbb{P},\mathbb{Q}) = \inf \left\{ \mathbb{E}_{\pi}[\|\zeta_1 - \zeta_2\|] : \begin{array}{l} \pi \text{ is a distribution of } \zeta_1 \text{ and } \zeta_2 \\ \text{with marginals } \mathbb{P} \text{ and } \mathbb{Q} \end{array} \right\}.$$

Statistics Properties for DRO with Wasserstein Distance

Theorem 1

Consider the DRO problem

$$\hat{x}_n = \underset{x \in \mathcal{X}}{\operatorname{arg max}} \quad \min_{\mathbb{P} \in \mathcal{D}_n} \ \mathbb{E}_{\zeta \sim \mathbb{P}}[h(x, \zeta)]$$

with $\mathcal{D}_n = \{\mathbb{P} : W(\mathbb{P}, \hat{\mathbb{P}}_n) \leq \delta_n\}, \ \delta_n = O(1/\sqrt{n}),$ the following properties hold:

- Asymptotic guarantee: $\mathbb{P}^{\infty}(\lim_{n\to\infty}\hat{x}_n=x^*)=1$;
- Finite-sample guarantee: with high probability, $(R_{\text{robust}} R_{\text{true}})_+ = O(1/n)$;
- Tractability: DRO is in the same complexity class as SAA.

Worse-case expectation problem:

$$\sup_{\mathbb{P}\in\mathcal{D}_n}\mathbb{E}_{\zeta\sim\mathbb{P}}[\ell(\zeta)],$$

where

$$\mathcal{D}_n = \{ \mathbb{P} : W(\mathbb{P}, \hat{\mathbb{P}}_n) \leq \delta_n \}$$

with

$$W(\mathbb{P},\mathbb{Q}) = \inf \left\{ \mathbb{E}_{\pi}[\|\zeta_1 - \zeta_2\|] : \begin{array}{l} \pi \text{ is a distribution of } \zeta_1 \text{ and } \zeta_2 \\ \text{with marginals } \mathbb{P} \text{ and } \mathbb{Q} \end{array} \right\}.$$

Reformulation:

$$\sup_{\Gamma,\mathbb{P}} \quad \int \ell(\zeta) d\mathbb{P}(\zeta)$$
 subject to
$$\iint \|\zeta - \zeta'\| \Gamma(d\zeta, d\zeta') \leq \delta_n$$

$$\Gamma \text{ is a joint distribution of } \zeta, \zeta',$$
 with marginals \mathbb{P} and $\hat{\mathbb{P}}_n$, respectively

Decompose Γ into $\frac{1}{n}\sum_{i=1}^{n}\delta_{\zeta_{i}}\otimes\mathbb{P}_{i}$:

$$\sup_{\mathbb{P}_{i},i=1,2,\dots,n} \quad \frac{1}{n} \sum_{i=1}^{n} \int \ell(\zeta) d\mathbb{P}_{i}(\zeta)$$
 subject to
$$\frac{1}{n} \sum_{i=1}^{n} \int \|\zeta - \hat{\zeta}_{i}\| d\mathbb{P}_{i}(\zeta) \leq \delta_{n}$$

Apply the duality theory in linear programming:

$$\inf_{\lambda \geq 0} \quad \lambda \delta_n + \frac{1}{n} \sum_{i=1}^n \sup_{\zeta} \left(\ell(\zeta) - \lambda \|\zeta - \hat{\zeta}_i\| \right).$$

When combining with the outer minimization over $x \in \mathcal{X}$,

$$\inf_{x \in \mathcal{X}, \lambda \geq 0} \lambda \delta_n + \frac{1}{n} \sum_{i=1}^n \sup_{\zeta} \left(h(x, \zeta) - \lambda \|\zeta - \hat{\zeta}_i\| \right).$$

- Finite convex program;
- Problem size grows polynomially in input data;
- resulting problem is in the same complexity class as SAA.

DRO with Wasserstein Distance for Logistic Regression

• Consider the feature-label training dataset $\{(\xi_i, \lambda_i)\}_{i=1}^n$ generated from \mathbb{P} , and consider the logistic regression:

$$\min_{x} \frac{1}{n} \sum_{i=1}^{n} \ell(x, \xi_i, \lambda_i), \quad \text{where } \ell(x, \xi, \lambda) = \log(1 + e^{-\lambda x^T \xi}).$$

DRO suggests solving the problem

$$\min_{\mathbf{X}} \sup_{\mathbb{P} \in \mathcal{D}_n} \mathbb{E}_{\mathbb{P}}[\ell(\mathbf{X}, \xi, \lambda)].$$

 When labels are assumed to be error-free, DRO reduces to the regularized logistic regression:

$$\min_{x} \frac{1}{N} \sum_{i=1}^{N} \ell(x, \xi_i, \lambda_i) + C \cdot ||x||_*.$$

Performance of DRO in Supervised Learning

Performance of DRO in Medical Application

Substantial noise reduction

Ref: Filtered Back Projection reconstructions of noise-free data

FBP: FBP reconstructions of noisy data

TV: TV-based reconstruction DL: Dictionary Learning-based

reconstruction

DL+DRO: DL+DRO to encourage low-

rankness and robustness

Summary of DRO with Wasserstein Distance

 The DRO model gives a solution with statistical guarantees better than SAA approach. The ambiguity set for possible distributions can be constructed from historical training data.

Summary of DRO with Wasserstein Distance

- The DRO model gives a solution with statistical guarantees better than SAA approach. The ambiguity set for possible distributions can be constructed from historical training data.
- The DRO model are tractable, and sometimes with the same complexity class as SAA.

Summary of DRO with Wasserstein Distance

- The DRO model gives a solution with statistical guarantees better than SAA approach. The ambiguity set for possible distributions can be constructed from historical training data.
- The DRO model are tractable, and sometimes with the same complexity class as SAA.
- This approach in standard stochastic optimization is well-understood for utilizing the data uncertainty. We wish to extend its applicability into more general optimization problems, such as semi-supervised learning, reinforcement learning, etc.

Related References

- Tractability of DRO model:
 - Distributionally Robust Stochastic Optimization with Wasserstein Distance, 2016.
 - Data-driven Robust Optimization with Known Marginal Distributions, 2017.
- Statistical Propeties of DRO model:
 - Wasserstein distributionally robust optimization: Theory and applications in machine learning, 2019.
- Applications of DRO model in supervised learning:
 - Distributionally robust logistic regression
 - Robust Wasserstein profile inference and applications to machine learning
- Introductory Videos about DRO: https://www.youtube.com/watch?v=b4IJENGAeEA

Application of Distributionally Robust Optimization in Adaptive Network Coding

Introduction to Adaptive Network Coding

 The adpative recoding scheme suffices to solve the following optimization problem:

$$\max_{t_r \geq 0, \forall r \in [M]} \quad \sum_{r=0}^M h_r E_r(t_r)$$
 subject to $\quad \sum_{r=0}^M h_r t_r \leq t_{\mathsf{avg}}$

where $\{h_r\}_{r\in[M]}$, t_{avg} are parameters of this problem.

• The function $E_r(t)$ is a concave, monotone increasing function:

$$E_r(t) = \sum_{i=0}^t \Pr\left(\sum_{j=1}^t Z_j = i\right) \sum_{j=0}^{\min\{i,r\}} j\zeta_j^{i,r}, \quad t \in \mathbb{N},$$

and for $t \in \mathbb{R}$, $E_r(t) = \epsilon E_r(\lfloor t \rfloor + 1) + (1 - \epsilon) E_r(\lfloor t \rfloor)$.

Properties of the Optimization Problem

Properties of the Optimization Problem

$$\max_{t_r \geq 0, \forall r \in [M]} \quad \sum_{r=0}^M h_r E_r(t_r)$$
 subject to $\sum_{r=0}^M h_r t_r \leq t_{\mathsf{avg}}$

- At optimality the inequality constraint is tight;
- At optimality all except one $t_r, r \in [M]$ are integers.
- To solve the problem from primal, a greedy algorithm similar to bin-packing can be developed:

$$\begin{array}{ll} \text{minimize} & \sum_{j \in J} x_j \\ \text{subject to} & \sum_{j \in J} a_j x_j \geq n \end{array}$$

Solving the Optimization from Duality

$$\max_{t_r \geq 0, \forall r \in [M]} \quad \sum_{r=0}^M h_r E_r(t_r)$$
 subject to $\sum_{r=0}^M h_r t_r \leq t_{\text{avg}}$

The dual is a one-dimensional convex programming problem:

$$\min_{\lambda \geq 0} \lambda t_{\text{avg}} + \sum_{r \in [M]} h_r \sup_{t_r \geq 0} \left(E_r(t_r) - \lambda t_r \right).$$

Dual sub-gradient? Cannot gurantee convergence.

Solving the Optimization from Duality

$$\max_{t_r \geq 0, \forall r \in [M]} \quad \sum_{r=0}^M h_r E_r(t_r)$$
 subject to $\sum_{r=0}^M h_r t_r \leq t_{\mathsf{avg}}$

The dual is a one-dimensional convex programming problem:

$$\min_{\lambda \geq 0} \lambda t_{\text{avg}} + \sum_{r \in [M]} h_r \sup_{t_r \geq 0} \left(E_r(t_r) - \lambda t_r \right).$$

- Dual sub-gradient? Cannot gurantee convergence.
- Bisection algorithm, with each step solving for the inner supremum problem at optimality.

Main Challenge for SAA

$$\max_{t_r \geq 0, orall r \in [M]} \quad \sum_{r=0}^M h_r E_r(t_r)$$
 \sup subject to $\sum_{r=0}^M h_r t_r \leq t_{avg}$

• $\{h_r\}$ denotes the rank distribution. But we cannot obtain the exact distribution, but only some samples $\{r_i\}_{i=1}^N$.

$$\max_{t_r \geq 0, orall r \in [M]} \quad \sum_{r=0}^M \hat{h}_r E_r(t_r)$$
 subject to $\sum_{r=0}^M \hat{h}_r t_r \leq t_{\mathsf{avg}}$

Main Challenge for SAA

$$\max_{t_r \geq 0, orall r \in [M]} \quad \sum_{r=0}^M h_r E_r(t_r)$$
 subject to $\sum_{r=0}^M h_r t_r \leq t_{ ext{avg}}$

• $\{h_r\}$ denotes the rank distribution. But we cannot obtain the exact distribution, but only some samples $\{r_i\}_{i=1}^N$.

$$\max_{t_r \geq 0, \forall r \in [M]} \quad \sum_{r=0}^M \hat{h}_r E_r(t_r)$$
 subject to $\sum_{r=0}^M \hat{h}_r t_r \leq t_{\mathsf{avg}}$

• Optimizer's curse: Solution to SAA may even not be feasible in the original problem.

DRO formulation for Adaptive Network Coding

$$\max_{\{t_r\}_{r\in[M]}\geq 0} \min_{\mathbf{h}:W(\mathbf{h},\hat{\mathbf{h}})\leq arepsilon_1} \mathbb{E}_{r\sim\mathbf{h}}[\mathcal{E}_r(t_r)] \ ext{Subject to} \quad \sup_{\mathbf{h}:W(\mathbf{h},\hat{\mathbf{h}})\leq arepsilon_2} \mathbb{E}_{r\sim\mathbf{h}}[t_r] \leq t_{\mathsf{avg}}.$$

where $W(\cdot, \cdot)$ is a Wasserstein metric:

$$W(\mu, \nu) = \min_{\gamma \in \Gamma(\mu, \nu)} \int_{\mathcal{M} \times \mathcal{M}} c(x, y) d\gamma(x, y).$$

- The objective is to pick the decision variable to optimize for the "worse-case" distribution;
- The constraint is to ensure the obtained solution is feasible in the underlying problem.

Tractable formulation for DRO problem

$$\begin{split} \max_{\{t_r\}_{r\in[M]}\in\mathcal{T}} \left\{ \min_{\mathbf{h}:W(\mathbf{h},\hat{\mathbf{h}})\leq\varepsilon_1} \mathbb{E}_{r\sim\mathbf{h}}[E_r(t_r)] \right\} \\ \text{where} \quad & \mathcal{T} = \left\{ \{t_r\}_{r\in[M]}: \ t_r\geq 0, \sup_{\mathbf{h}:W(\mathbf{h},\hat{\mathbf{h}})\leq\varepsilon_2} \mathbb{E}_{r\sim\mathbf{h}}[t_r] \leq t_{\text{avg}} \right\}. \end{split}$$

Reformulation about the Objective Function

$$\min_{\mathbf{h}: W(\mathbf{h}, \hat{\mathbf{h}}) \leq \varepsilon_1} \mathbb{E}_{r \sim \mathbf{h}}[E_r(t_r)] = \sup_{\lambda_1 \geq 0} \left\{ -\lambda_1 \varepsilon_1 + \frac{1}{N} \sum_{i \in [N]} \inf_{r \in [M]} \left(E_r(t_r) + \lambda_1 c(r, \hat{r}_i) \right) \right\}$$

Reformulation about the Constraint

By the standard duality result,

$$\sup_{\mathbf{h}: \textit{W}(\mathbf{h}, \hat{\mathbf{h}}) \leq \varepsilon_2} \mathbb{E}_{r \sim \mathbf{h}}[\textit{t}_r] = \inf_{\lambda_2 \geq 0} \ \lambda_2 \varepsilon_2 + \frac{1}{\textit{N}} \sum_{i \in [\textit{N}]} \sup_{r \in [\textit{M}]} \bigg(\textit{t}_r - \lambda_2 \textit{c}(r, \hat{\textit{r}}_i) \bigg).$$

It follows that Hence, \mathcal{T} can be reformulated as

$$\mathcal{T} = \left\{ \{t_r\}_{r \in [M]} : \ t_r \ge 0, \sup_{\mathbf{h}: W(\mathbf{h}, \hat{\mathbf{h}}) \le \varepsilon_2} \mathbb{E}_{r \sim \mathbf{h}}[t_r] \le t_{\mathsf{avg}} \right\}$$

$$= \left\{ \{t_r\}_{r \in [M]} : \ t_r \ge 0, \right.$$

$$\lambda_2 \varepsilon_2 + \frac{1}{N} \sum_{i \in [N]} \sup_{r \in [M]} \left(t_r - \lambda_2 c(r, \hat{r}_i) \right) \le t_{\mathsf{avg}} \text{for some } \lambda_2 \ge 0 \right\}$$

Tractable formulation for DRO problem

The original DRO problem admits the following tractable formulation:

$$\max_{\substack{t_r \geq 0, \ r \in [M] \\ \lambda_1 \geq 0, \lambda_2 \geq 0}} -\lambda_1 \varepsilon_1 + \frac{1}{N} \sum_{i \in [M]} \inf_{r \in [M]} \left(E_r(t_r) + \lambda_1 c(r, \hat{r}_i) \right)$$
s.t.
$$\lambda_2 \varepsilon_2 + \frac{1}{N} \sum_{i \in [M]} \sup_{r \in [M]} \left(t_r - \lambda_2 c(r, \hat{r}_i) \right) \leq t_{\text{avg}}$$

- At optimality, is the solution still be almost deterministic?
- How to develop algorithm to solve this problem efficiently?

Application of Distributionally Robust Optimization in Off-policy Policy Evaluation

Introduction to OPPE

- Data: MDP trajectories collected under behavior policy π_b ;
- Question: What would be the expected reward under target policy π ?

(a) Unmanned Data Collection

(b) Artwork Optimization at Netflix

MDP Introducttion

A MDP Environment:

$$\langle \mathcal{S}, \mathcal{A}, P, R, \gamma, d_0 \rangle$$
;

• Expected reward:

$$R_{\pi} := \lim_{T o \infty} rac{\mathbb{E}\left[\sum_{t=0}^{T} \gamma^t r_t
ight]}{\sum_{t=0}^{T} \gamma^t}$$

 Average visitation distribution:

$$extbf{ extit{d}}_{\pi}(extbf{ extit{s}}) = \lim_{ extbf{ extit{T}}
ightarrow \infty} rac{\sum_{t=0}^{ extit{T}} \gamma^t extbf{ extit{d}}_{\pi,t}(extbf{ extit{s}})}{\sum_{t=0}^{ extit{T}} \gamma^t}.$$

It follows that

$$R_{\pi} = \mathbb{E}_{(s,a) \sim d_{\pi}} \left[r(s,a) \right] = \sum d_{\pi}(s) \pi(a \mid s) r(s,a).$$

Introduction to OPPE

The expected reward R_{π} can be expressed in the expectation form

$$egin{aligned} R_{\pi} &= \mathbb{E}_{(s,a) \sim d_{\pi}} \left[r(s,a)
ight] = \sum_{s,a} d_{\pi}(s) \pi(a \mid s) r(s,a) \ &= \mathbb{E}_{(s,a) \sim d_{\pi_b}} \left[w(s) eta(s,a) r(s,a)
ight], \end{aligned}$$

where $d_{\pi}(s, a) := d_{\pi}(s)\pi(a \mid s)$, and ω denotes the marginalized importance ratio:

$$w(s) := \frac{d_{\pi}(s)}{d_{\pi_b}(s)}, \quad \beta(s,a) := \frac{\pi(a \mid s)}{\pi_b(a \mid s)}.$$

Historial data $\{(s_t^i, a_t^i, (s')_t^i)_{t=0}^T\}_{i=1}^N$ induced by the behavior policy π_b is available.

Classical Approach to OPPE

In order to evaluate the reward for target policy π ,

$$R_{\pi} = \mathbb{E}_{(s,a) \sim d_{\pi_b}} [w(s)\beta(s,a)r(s,a)],$$

- Replace d_{πb} with its empirical distribution, based on historical data;
- Estimate $\{\omega(s)\}_s$ by making use of the stationary equation:

$$w(s')d_{\pi_b}(s') = (1-\gamma)d_0(s') + \gamma \sum_{s,a} d_{\pi_b}(s,a,s')\beta(s,a)w(s), \quad \forall s'.$$

Challenge for Estimating the Ratio

The importance ratio $\{\omega(s)\}_s$ satisfies the following stationary equation:

$$w(s')d_{\pi_b}(s') = (1-\gamma)d_0(s') + \gamma \sum_{s,a} d_{\pi_b}(s,a,s')\beta(s,a)w(s), \quad \forall s' \in \mathcal{S}.$$

- Challenge: Estimating $\{d_{\pi_b}(s, a, s')\}_{s,a,s'}$ based on historial data is not accurate;
- Rescue: Introduce the test function to reduce the variance.⁶ The stationary equation holds if and only if for any f,

$$\mathbb{E}_{(s,a,s')\sim d_{\pi_b}}[\omega(s')f(s')-\gamma\beta(s,a)\omega(s)f(s)]=(1-\gamma)\mathbb{E}_{s\sim d_0}[f(s)].$$

Giang, Liu. Breaking the Curse of Horizon: Infinite-Horizon Off-Policy

Distributionally Robust Approach to OPPE

We propose the following distributionally robust and optimistic formulation:

$$\begin{split} & \text{min/max}_{\textit{w},\mu} \quad \textit{R}_{\pi} := \sum_{\textit{s},\textit{a}} \mu(\textit{s}) \pi_{\textit{b}}(\textit{a} \mid \textit{s}) \textit{w}(\textit{s}) \beta(\textit{s},\textit{a}) \textit{r}(\textit{s},\textit{a}) \\ & \text{subject to} \quad \textit{w}(\textit{s}') \mu(\textit{s}') = (\textit{1} - \gamma) \textit{d}_{\textit{0}}(\textit{s}') \\ & \quad + \gamma \sum_{\textit{s},\textit{a}} \mu(\textit{s},\textit{a},\textit{s}') \beta(\textit{s},\textit{a}) \textit{w}(\textit{s}), \; \; \forall \textit{s}' \in \mathcal{S} \\ & \quad \mu \in \mathcal{P}. \end{split}$$

where μ is the estimate for the underlying distribution d_{π_b} , and

$$\mathcal{P} := \otimes_{\mathbf{s} \in \mathcal{S}} \mathcal{P}_{\mathbf{s}} := \otimes_{\mathbf{s} \in \mathcal{S}} \Big\{ \mu(\cdot, \cdot \mid \mathbf{s}) : \ oldsymbol{W} ig(\mu(\cdot, \cdot \mid \mathbf{s}), \hat{\mu}(\cdot, \cdot \mid \mathbf{s}) ig) \leq artheta_{\mathbf{s}} \Big\}$$

By the change of variable $\kappa(s) = \mu(s)w(s)$, the max-max problem can be equivalently formulated as:

$$\begin{aligned} \max_{\kappa,\mu} \quad & \sum_{s} \kappa(s) \sum_{a} \pi(a \mid s) r(s,a) \\ \text{subject to} \quad & \kappa(s') = (1-\gamma) d_0(s') \\ & \qquad \qquad + \gamma \sum_{s} \kappa(s) \bigg[\sum_{a} \frac{\mu(s,a,s')}{\mu(s)} \beta(s,a) \bigg], \ \, \forall s' \in \mathcal{S} \\ & \qquad \qquad \mu \in \mathcal{P} \end{aligned}$$

Taking the duality for the inner maximization problem, we have

$$egin{aligned} \mathsf{Max}_{\mu}\mathsf{Min}_{m{v}} & (\mathsf{1}-\gamma)\sum_{m{s}} v(m{s}) d_0(m{s}) \ & \mathsf{subject\ to} & v(m{s}) \geq \sum_{m{a}} \pi(m{a} \mid m{s}) r(m{s}, m{a}) \ & + \gamma \sum_{(m{a}, m{s}')} \mu(m{a}, m{s}' \mid m{s}) v(m{s}') eta(m{s}, m{a}), \quad orall m{s} \ & \mu \in \mathcal{P} \end{aligned}$$

Theorem 2: Refomulation of LP with contraction mapping constraints

Suppose that f is a component-wise non-decreasing contraction mapping with the unique fixed point x^* . The optimization problem

$$\max\left\{c^Tx: x\in\mathbb{R}^n_+, x\leq f(x)\right\}=c^Tx^*.$$

By making use of this technique result, the max-max problem can be reformulated as

$$\begin{split} \min_{V} \quad & (1-\gamma) \sum_{s} v(s) d_0(s) \\ \text{s.t.} \quad & v(s) \geq \sum_{a} \pi(a \mid s) r(s, a) + \gamma V(s), \ \forall s \in \mathcal{S}, \\ \text{where} \quad & V(s) := \max_{\mu(\cdot, \cdot \mid s) \in \mathcal{P}_s} \sum_{(a, s')} \mu(a, s' \mid s) v(s') \beta(s, a) \end{split}$$

At optimality the constraint is tight. The solution can be obtained by solving the fixed-point equation

$$v(s) = \sum_{a} \pi(a \mid s) r(s, a) + \gamma V(s), \ \forall s \in S.$$

Theoretical Gurantees for Robust OPPE

Lemma

Denote by \mathcal{T} the Bellman operator with the true conditional probability $d_{\pi_b}(a, s' \mid s)$:

$$\mathcal{T}[v](s) = \sum_{a} \pi(a \mid s) r(s, a) + \gamma \sum_{(a, s')} d_{\pi_b}(a, s' \mid s) v(s') \beta(s, a).$$

Denote by $\tilde{\mathcal{T}}$ a perturbation of \mathcal{T} so that $\tilde{\mathcal{T}}[v](s) = T[v](s) + \epsilon_v(s)$. Assume there exist $\epsilon = (\epsilon(s))_{s \in \mathcal{S}}$ such that $\epsilon_v(s) \leq \epsilon(s)$ for all $s \in \mathcal{S}$ and v. Let v^*, \tilde{v}^* be the solutions to the fixed point of \mathcal{T} and $\tilde{\mathcal{T}}$ respectively. Then

$$\tilde{\mathbf{v}}^* - \mathbf{v}^* \le (\mathbf{I} - \gamma \mathbf{P}^{true})^{-1} \epsilon,$$

where $P^{true} \in \mathcal{R}^{|\mathcal{S}| \times |\mathcal{S}|}$ is defined as $P^{true}_{s,s'} := \sum_{a} d_{\pi_b s}(a,s' \mid s) \beta(s,a)$, and the inequality is interpreted component-wise.

Theoretical Gurantees for Robust OPPE

Theorem 3: Non-asymptotic Confidence Bounds

With high probability,

$$R_{\text{optimistic}} - R_{\pi} \leq \frac{6}{n} \sum_{s \in \mathcal{S}, s' \in \mathcal{S}} (I - \gamma P^{\text{true}})_{s, s'}^{-1} d_0(s),$$

$$R_{\pi} - R_{\mathsf{robust}} \leq \frac{6}{n} \sum_{s \in \mathcal{S}, s' \in \mathcal{S}} (I - \gamma P^{\mathsf{true}})_{s, s'}^{-1} d_0(s).$$

Conclusion

- Powerful tool for stochastic optimization problems;
- Computationally tractable, elegant theoretical gurantees;
- Future work:
 - Extend its applicability into sequential decision problems, such as reinforcement learning, and Off-line Policy-improvement problem;
 - Incorporate model uncertainty to solve more problems in Network Coding;
 - Design more efficient algorithm to solve the problem faster