Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

L5 – Bayes Classifiers (cont'd)

Summary of Dichotomy (Two-Class) Hypothesis Tests

Bayes least error rate

Bayes least cosed WeChat edu_assist_pro

$$l(x) = \frac{p(x | \omega_1)}{p(x | \omega_2)} \quad \begin{cases} \omega_1 & \lambda - \lambda \\ \omega_2 & \omega_2 \end{cases}$$

Summary of Dichotomy Hypothesis Tests

Neyman-Pearson

$$\frac{p(x|\omega_1)}{p(x|\omega_2)} \frac{\text{Assignment Project Exam Help}}{\mu} \int p(x|\omega_2) d^n x = \mathcal{E}_0$$

$$\text{https://eduassistproggithub.io/}$$

Add WeChat edu_assist_pro

Minimax

$$\frac{p(x|\omega_1)}{p(x|\omega_2)} \stackrel{\omega_1}{\underset{\omega_2}{\gtrless}} \eta \text{ the shold such that } \mathcal{E}_1 = \mathcal{E}_2$$

Multi-Hypotheses

Suppose there are L classes ω_1 , ..., ω_L and decision costs λ_{ij} for choosing i when j is true. Then the minimal cost decision rule is Help

pick
$$\omega_k$$
 wher https://edia8sistprogrithu $\sum_{i=1}^{L} i \mathcal{N}_{ij} p(\omega_j \mid x)$

When
$$\lambda_{ii} = 0$$
 and $\frac{\partial}{\partial t_{ij}} = 0$ when $\frac{\partial}{\partial t_{ij}} = 0$ and $\frac{\partial}{\partial t_{ij}} = 0$ when $\frac{\partial}{\partial t_{ij}} = 0$ and $\frac{\partial}{\partial t_{ij}} = 0$ when $\frac{\partial}{\partial t_{ij}} = 0$ and $\frac{\partial}{\partial t_{ij}} = 0$ when $\frac{\partial}{\partial t_{ij}} = 0$ and $\frac{\partial}{\partial t_{ij}} = 0$ when $\frac{\partial}{\partial t_{ij}} = 0$ and $\frac{\partial}{\partial t_{ij}} = 0$ when $\frac{\partial}{\partial t_{ij}} = 0$ and $\frac{\partial}{\partial t_{ij}} = 0$ when $\frac{\partial}{\partial t_{ij}} = 0$ and $\frac{\partial}{\partial t_{ij}} = 0$ and $\frac{\partial}{\partial t_{ij}} = 0$ when $\frac{\partial}{\partial t_{ij}} = 0$ and $\frac{\partial}{\partial t_{ij}} = 0$ when $\frac{\partial}{\partial t_{ij}} = 0$ and $\frac{\partial}{\partial t_{ij}} = 0$ when $\frac{\partial}{\partial t_{ij}} = 0$ and $\frac{\partial}{\partial t_{ij}} = 0$ when $\frac{\partial}{\partial t_{ij}} = 0$ and $\frac{\partial}{\partial t_{ij}} = 0$ when $\frac{\partial}{\partial t_{ij}} = 0$ and $\frac{\partial}{\partial t_{$

the cost is just the average error rate, and the decision rule is

$$\operatorname{pick} \, \omega_{\mathsf{k}} \qquad k = \underset{i}{\operatorname{arg\,max}} \, p(\omega_i \mid x)$$

For a 2-class, least error rate problem, when the posteriors are close to 0.5, the error rate will be large

$$\mathcal{E}(x) = \min_{i} \left(p(\omega_i \mid x) \right)$$

One might want to establish a window for rejection within which we refuse to make a judgment Project Exam Help

Reject rate
$$\operatorname{Prob}(x \in L(t)) = \int_{L(t)} p(x) d^n$$

Error rate $\mathcal{E} = \int_{\overline{L}(t)} \min \left[p(\omega_1|x), p(\omega_2|x) \right] p(x) d^n x$

Error rate

$$\mathcal{E} = \int_{\overline{L}(t)} \min \underset{\mathbf{Assignment Project Exam Help}}{\mathbf{Assignment Project Exam Help}}$$

$$= \int_{\overline{L}(t)} \min [P_1 \mathbf{hthos:} //\mathbf{edBassistpoo.github.io}/\mathbf{E}_1 + P_2 \mathbf{E}_2$$

$$- \underset{\mathbf{P}_1}{\mathbf{Add WeChat edu_assist_pro}}$$

$$- \underset{\mathbf{P}_2}{\mathbf{p}(\mathbf{x}|\omega_2)}$$

$$- \underset{\mathbf{L}(t)}{\mathbf{x}}$$

- Reject option lowers error rate by refusing to make decisions on feature values x where the error rate is high (near the crossing of the posterior curves).
- A larger reject region (smaller t) lowers the error, and increases the rate at which we refuse to make a decision.

Sequential Hypothesis Tests

Have sequence of observations

$$X_1, X_2, \dots, X_n$$

assumed to be independent and identically distributed (i.i.d.). May be from a timeseries, e.g. speech segments, manufacturing problem of the control of the

Each sequence https://eduassistpro.github.io/

Suppose we want to continue to ation from this sequence until we have enough edu_assistnakeQ decision -- e.g. maybe we have a old to overcome.

It seems clear that if we make many measurements (e.g. on consecutive items in a manufacturing production run) that we'll improve our classification results.

Sequential Hypothesis Tests

- log likelihood ratio

$$H(x_1, x_2,...,x_m) \equiv -\ln \frac{p(x_1, x_2,...,x_m | \omega_1)}{p(x_1, x_2,...,x_m | \omega_2)}$$
Assignment Project Exam Help

https://eduassistpro.github.io/ $h(x_i)$

How does H hehave relativedu_assist's look at its mean and variance

$$E[H | \omega_i] = m E[h | \omega_i] \equiv m \mu_i$$

$$var[H | \omega_i] = var \left[\sum_{i=1}^m h(x_i) | \omega_i \right] = m var[h | \omega_i] \equiv m \sigma_i^2$$

Sequential Hypothesis Test

Conditional mean

$$\mu_{i} \equiv E[h \mid \omega_{i}] \equiv \int -\ln\left(\frac{p(x \mid \omega_{1})}{p(x \mid \omega_{2})}\right) p(x \mid \omega_{i}) d^{n}x$$

Assignment Project Exam Help Can bound μ_i even for arbitrary density by appeal to the inequality In z <=https://eduassistpro.github.io/

Add We that
$$e^{\frac{p(x|\omega_2)}{h}}$$
 $e^{\frac{p(x|\omega_2)}{h}}$ $e^{\frac{p(x|\omega_2)}{h}}$ $e^{\frac{p(x|\omega_2)}{h}}$ $e^{\frac{p(x|\omega_2)}{h}}$

$$\leq \int \left[\frac{p(x \mid \omega_2)}{p(x \mid \omega_1)} - 1 \right] p(x \mid \omega_1) d^n x = 1 - 1 = 0$$

So
$$\mu_1 \le 0$$

Similarly, $\mu_2 \ge 0$.

Sequential Hypothesis Test

A convenient measure of separation between the two classes is

$$\frac{E[H \mid \omega_2] - E[H \mid \omega_1]}{\sqrt{\operatorname{var}[H \mid \omega_2] + \operatorname{var}[H \mid \omega_1]}} = \sqrt{m} \frac{\mu_2 - \mu_1}{\sqrt{\sigma_1^2 + \sigma_2^2}} \longrightarrow$$

Separation increases with increasing number of observations as $m^{1/2}$.

Sequential Hypothesis Tests

m=1 m=10 m=50

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Wald Test for Sequential Observations

$$H_m \equiv \sum_{k=1}^m h(x_k) \qquad E[H \mid \omega_1] = m \mu_1 < 0$$

Assignment Project Exam Help

Terminate se swhen H reaches some https://eduassistpro.grthub.io/

And WeChat edu_assist_pro

or

$$H_m \geq b \quad choose \quad \omega_2$$

otherwise, continue gathering measurements.

Wald Test

- Wald showed that
 - Error rates: When h(x) is small

https://eduassistpro.github.io/

$$A \equiv e^{-a}, B \equiv e^{-b}$$

Add WeChat edu_assist_pro

Average sequence lengt hreshold
 is

$$E[m \mid \omega_1] = \frac{a(1 - \mathcal{E}_1) + b \mathcal{E}_1}{\mu_1}$$
$$E[m \mid \omega_2] = \frac{a \mathcal{E}_2 + b(1 - \mathcal{E}_2)}{\mu_2}$$

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro