Reacciones Químicas

- Son cambios que experimentan las sustancias, de los cuales resultan sustancias con propiedades físicas y químicas diferentes.
- Estos cambios ocurren por reagrupamiento o redistribución de los átomos del sistema.
- Las sustancias iniciales o reactivos dan lugar a la formación de otras sustancias llamadas productos.

Reacciones Químicas

- Se producen rupturas y nuevas uniones químicas.
- No se producen modificaciones en el núcleo del átomo, por lo que no es posible que un elemento se transforme en otro elemento.

Representación de Reacciones Químicas

Mediante una ecuación química.

$$2 A + B_2 \longrightarrow 2 AB$$

- Ley de la conservación de la materia o de Lavoisier: "En un sistema cerrado en el que se produce una reacción química, la masa total se mantiene constante".
- Uso de coeficientes estequiométricos.

Representación de Reacciones Químicas

Tipos de Reacciones

• Irreversibles: transcurren en un solo sentido.

$$Fe_2O_{3(s)} + 2AI_{(s)} \longrightarrow AI_2O_{3(s)} + 2Fe_{(s)}$$

Tipos de Reacciones

 Reversibles: por la reacción de productos se vuelven a formar las sustancias reactantes (equilibrio).

$$I_{2 (g)} + H_{2 (g)} \longrightarrow 2 HI_{(g)}$$

CLASIFICACIÓN DE LAS REACCIONES

Reacciones Exotérmicas

Transcurren con desprendimiento de calor.

$$Fe_2O_{3(s)} + 2AI_{(s)} \longrightarrow AI_2O_{3(s)} + 2Fe_{(s)} + calor$$

Reacción de Descomposición/Endotérmica

$$2 \text{ KClO}_{3 (s)} + \text{ calor} \longrightarrow 2 \text{ KCl}_{(s)} + 3 O_2^{\dagger}$$

Reacción de Combinación

Dos o más sustancias se combinan para formar un solo producto.

$$2 Ca_{(S)} + O_{2(g)} \longrightarrow 2 CaO_{(S)}$$

Reacción de Descomposición

Una sustancia sufre una reacción para producir dos o más sustancias distintas.

$$2 \text{ NaN}_{3 \text{ (s)}} \longrightarrow 2 \text{ Na}_{(\text{S})} + 3 \text{ N}_{2 \text{ (g)}}$$

Reacción de desplazamiento

 Una sustancia simple reacciona con un compuesto desplazando uno de los componentes y uniéndose al resto.

Tabla de potenciales de oxidación

Li-K-Ca-Na-Mg-Al-Zn-Cr-Fe-Ni-Sn-H-Cu-Hg-Ag-Au

Reacción de desplazamiento

Desplazamiento de halógenos.

$$Cl_{2(g)} + 2 KBr_{(ac)} \longrightarrow 2 KCl_{(ac)} + Br_{2(g)}$$

Serie de actividad (como agentes oxidantes)

Reacción de doble desplazamiento

Dos sustancias reaccionan para dar otras dos sustancias de estructura similar.

$$Pb(NO_3)_{2 (ac)} + 2KI_{(ac)} \longrightarrow PbI_2 \downarrow + 2KNO_{3 (ac)}$$

Reacción de doble desplazamiento

Solubilidad de sales y ácidos inorgánicos en agua

Volatilidad de ácidos

Solubilidad de sales

```
NO<sub>3</sub><sup>-</sup> y acetatos: todos solubles.
```

Cl⁻, Br⁻, l⁻: todos solubles. Excepto: Ag⁺, Pb²⁺, Hg₂²⁺ y Cu⁺.

SO₄²⁻: todos solubles. Poco solubles: Ca²⁺, Ag⁺ y Hg²⁺.

Insolubles: Ba²⁺, Sr²⁺ y Pb²⁺.

S²⁻: todos insolubles. Excepto: Na⁺, Li⁺, K⁺, NH₄⁺, Ca²⁺, Sr²⁺ y
Ba²⁺.

CO₃²⁻ y PO₄³⁻: todos insolubles. Excepto: Na⁺, Li⁺, K⁺ y NH₄⁺.

Reacción de doble desplazamiento

```
SAL 1 + BASE 1 SAL 2 + BASE 2

Los productos obtenidos: Solubilidad

| Solubilidad |
| Volatilidad
```

Solubilidad de sales y bases inorgánicas en agua

Solubilidad de bases

Solubles: Na⁺, Li⁺, K⁺, NH₄⁺.
Poco solubles Ca²⁺, Ag⁺ y Hg²⁺.
El resto son insolubles.

Reacción de Neutralización

Unión del H⁺ proveniente del ácido con el OH⁻ de la base produciendo agua.

Reacción de Neutralización

- Óxido básico + Ácido
 — Sal + Agua
 (Sal: anión del ácido + catión metálico)
- Óxido ácido + Hidróxido Sal + Agua
 (Sal: anión del no metal + catión metálico)
- Óxido básico + Óxido ácido Sal (sal: anión del no metal + catión metálico)

Reacción de Combustión

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$$

Combustión completa

Combustión incompleta: C, CO, se indicará en el ejercicio.

Reacción de Óxido Reducción

Se produce una transferencia de electrones (e-) entre los reactivos.

$$Zn_{(s)} + CuSO_{4 (ac)} \longrightarrow Cu_{(s)} + ZnSO_{4 (ac)}$$

Reacción de Óxido Reducción

Cambio en el número de oxidación de las especies

- Aumenta: de 0 a +2
 Oxidación de la especie Zn
 Zn_(s) → Zn²⁺_(ac)
- Disminuye: de +2 a 0
 Reducción de la especie Cu
 Cu²⁺_(ac) → Cu_(s)

Ecuaciones Iónicas

- Sustancias iónicas se disocian en agua (solución acuosa).
- Cada uno de los iones se comporta como una partícula independiente.

$$NaOH_{(ac)} + HCI_{(ac)} \longrightarrow NaCI_{(ac)} + H_2O_{(l)}$$
 $Na^{+}_{(ac)} + OH^{-}_{(ac)} + H^{+}_{(ac)} + CI^{-}_{(ac)} \longrightarrow Na^{+}_{(ac)} + CI^{-}_{(ac)} + H_2O_{(l)}$