Университет ИТМО

Факультет Программной Инженерии и Компьютерных Техники

Лабораторная работа №5

Вариант № 15

Выполнила: Студент группы Р3213 Юсупова Алиса Ильясовна Преподаватель:

Преподаватель практики

Цель лабораторной работы: решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.

Лабораторная работа состоит из двух частей: вычислительной и программной. № варианта задания лабораторной работы определяется как номер в списке группы согласно ИСУ.

Для исследования использовать:

- многочлен Лагранжа;
- многочлен Ньютона;
- многочлен Гаусса.

Обязательное задание (до 80 баллов)

Вычислительная реализация задачи:

- 1. Выбрать из табл. 1 заданную по варианту таблицу y = f(x) (таблица 1.1 таблица 1.5);
- 2. Построить таблицу конечных разностей для заданной таблицы. Таблицу отразить в отчете;
- 3. Вычислить значения функции для аргумента X_1 (см. табл.1), используя первую или вторую интерполяционную формулу Ньютона. Обратить внимание какой конкретно формулой необходимо воспользоваться;
- 4. Вычислить значения функции для аргумента X_2 (см. табл. 1), используя первую или вторую интерполяционную формулу Гаусса. Обратить внимание какой конкретно формулой необходимо воспользоваться;
- 5. Подробные вычисления привести в отчете.

Программная реализация задачи:

- 1. Исходные данные задаются тремя способами:
- а) в виде набора данных (таблицы x,y), пользователь вводит значения с клавиатуры;
- b) в виде сформированных в файле данных (подготовить не менее трех тестовых вариантов);
- с) на основе выбранной функции, из тех, которые предлагает программа, например, $\sin x$. Пользователь выбирает уравнение, исследуемый интервал и количество точек на интервале (не менее двух функций).
- 2. Сформировать и вывести таблицу конечных разностей;
- Вычислить приближенное значение функции для заданного значения аргумента, введенного с клавиатуры, указанными методами (см. табл. 2). Сравнить полученные значения;
- Построить графики заданной функции с отмеченными узлами интерполяции и интерполяционного многочлена Ньютона/Гаусса (разными цветами);

Необязательное задание (до 20 баллов)

- 1. Реализовать в программе вычисление значения функции для заданного значения аргумента, введенного с клавиатуры, используя схемы Стирлинга;
- 2. Реализовать в программе вычисление значения функции для заданного значения аргумента, введенного с клавиатуры, используя схемы Бесселя.

	X	у	№ варианта	X_1	X ₂
	2,10	3,7587	5	2,112	2,205
Ś	2,15	4,1861	10	2,355	2,254
a 1.	2,20	4,9218	15	2,114	2,216
Таблица 1.5	2,25	5,3487	20	2,359	2,259
абл	2,30	5,9275	25	2,128	2,232
T	2,35	6,4193	30	2,352	2,284
	2,40	7,0839	35	2,147	2,247

Методы для реализации в программе:

- 1 Многочлен Лагранжа,
- 2 Многочлен Ньютона с разделенными разностями,
- 3 Многочлен Ньютона с конечными разностями,
- 4 Многочлен Гаусса.

1	/ /
15	1, 2, 3

Вычислительная часть:

Таблица конечных разностей

n	n	X	у	Δ^1y	Δ^2y	Δ^3y	Δ^4y	Δ^5y	Δ^6y
-3	0	2.10	3.7587	0.4274	0.3083	-0.6171	1.0778	-1.774	2.9757
-2	1	2.15	4.1861	0.7357	-0.3088	0.4607	-0.6996	1.1983	
-1	2	2.20	4.9218	0.4269	0.1519	-0.2389	0,4987		
0	3	2.25	5.3487	0,5788	-0.087	0.2598			
1	4	2.30	5.9275	0.4918	0.1728				
2	5	2.35	6.4193	0.6644					
3	6	2.40	7.0839						

Вычислить значения функций для аргумента x1, используя первую/вторую интерполяционную формула Ньютона.

х1 = 2.114 в левой половине отрезка => первая интерполяционная формула

$$N_n(x) = yi + t\Delta^1 y + \frac{t(t-1)}{2!} \Delta^2 y + \dots + \frac{t(t-1)\dots(t-n+1)}{n!} * \Delta^1 yi$$
$$t = \frac{x - xn}{h} = \frac{2.114 - 2.10}{0.05} = 0.28$$

$$y(2.114) = 3.7587 + 0.28 * 0.4274 + \frac{0.28 * (0.28 - 1)}{2} 0.3083 + \frac{0.28 * (0.28 - 1) * (0.28 - 2)}{6} * (-0.6171)$$

$$+ \frac{0.28 * (0.28 - 1) * (0.28 - 2) * (0.28 - 3)}{24} * 1.0778$$

$$+ \frac{0.28 * (0.28 - 1) * (0.28 - 2) * (0.28 - 3) * (0.28 - 4)}{120} * (-1.774)$$

$$+ \frac{0.28 * (0.28 - 1) * (0.28 - 2) * (0.28 - 3) * (0.28 - 4) * (0.28 - 5)}{720} * 2.9757 = 3.65$$

Вычислить значения функции для аргумента x2, используя первую/вторую интерполяционную формулу Гаусса.

x2 = 2.216; a = 2.25; x < a = > вторая интерполяционная формула Гаусса

$$Pn(x) = y0 + t\Delta^{1}y(-1) + \frac{t(t+1)}{2!}\Delta^{2}y(-1) + \frac{t(t-1)(t+1)}{3!}\Delta^{3}y(-2) + \frac{t(t-1)(t+1)(t+2)}{3!}\Delta^{4}y(-2) + \cdots + \frac{(t+n-1)\dots(t-n+1)}{(2n-1)!}\Delta^{2n-1}y(-n) + \frac{t(t+n)(t+n-1)\dots(t-n-1)}{2n!}\Delta^{2n}y(-n)$$

$$t = \frac{x-xn}{h} = \frac{2.216-2.10}{0.05} = 2.32$$

$$y(2.216) = 5.3487 + 2.32 * 0.4269 + \frac{(2.32+1)*2.32}{2} * 0.1519 + \frac{(2.32+1)*2.32*(2.32-1)}{6} * 0.4607 + \frac{(2.32+2)*(2.32+1)*2.32*(2.32-1)}{24} * (-0.6996)$$

$$+ \frac{(2.32+2)*(2.32+1)*2.32*(2.32-1)}{120} * (-0.6996)$$

$$+ \frac{(2.32+3)(2.32+2)*(2.32+1)*2.32*(2.32-1)*(2.32-2)}{120} * (-1.7774)$$

$$+ \frac{(2.32+3)(2.32+2)*(2.32+1)*2.32*(2.32-1)*(2.32-2)}{720} * 2.9757 = 5.06$$

Программная реализация:

См. приложение

Вывод: Я решила задачу интерполяции, нашла значение функции при заданных значениях аргумента, отличных от узловых точек и реализовала методы на языке Python.