Choosing among regularized estimators in empirical economics

Alberto Abadie Maximilian Kasy

January 5, 2018

Introduction

- Many applied settings: Estimation of a large number of parameters.
 - Teacher effects, worker and firm effects, judge effects ...
 - Estimation of treatment effects for many subgroups
 - Prediction with many covariates
- Two key ingredients to avoid over-fitting:
 - Regularized estimation (shrinkage)
 - Data-driven choices of regularization parameters (tuning)
- Questions in practice:
 - What kind of regularization should we choose? What features of the data generating process matter for this choice?
 - When do cross-validation or SURE work for tuning?
- We compare risk functions to answer these questions.
 (Not average (Bayes) risk or worst case risk!)

Recommendations for empirical researchers

- Use regularization / shrinkage when you have many parameters of interest, and high variance (overfitting) is a concern.
- Pick a regularization method appropriate for your application:
 - Ridge: Smoothly distributed true effects, no special role of zero
 - Pre-testing: Many zeros, non-zeros well separated
 - Lasso: Robust choice, especially for series regression / prediction
- Ouse CV or SURE in high dimensional settings, when number of observations ≫ number of parameters.

Outline

- Stylized setting: Estimation of many means
- A useful family of examples: Spike and normal DGP
 - Comparing mean squared error as a function of parameters
- Empirical applications
 - Neighborhood effects (Chetty and Hendren, 2015)
 - Arms trading event study (DellaVigna and La Ferrara, 2010)
 - Nonparametric Mincer equation (Belloni and Chernozhukov, 2011)
- Monte Carlo Simulations
- Time permitting: Uniform loss consistency of tuning methods (our main theoretical contribution)

Stylized setting: Estimation of many means

- Observe *n* random variables $X_1, ..., X_n$ with means $\mu_1, ..., \mu_n$.
- Many applications: X_i equal to OLS estimated coefficients.
- Componentwise estimators: $\widehat{\mu}_i = m(X_i, \lambda)$, where $m: \mathbb{R} \times [0, \infty] \mapsto \mathbb{R}$ and λ may depend on (X_1, \dots, X_n) .
- Examples: Ridge, Lasso, Pretest.

Loss and risk

- Compound squared error **loss**: $L(\widehat{\mu}, \mu) = \frac{1}{n} \sum_{i} (\widehat{\mu}_{i} \mu_{i})^{2}$
- Empirical Bayes **risk**: $\mu_1, ..., \mu_n$ as **random effects**, $(X_i, \mu_i) \sim \pi$,

$$\bar{R}(m(\cdot,\lambda),\pi) = E_{\pi}[(m(X_i,\lambda) - \mu_i)^2].$$

Conditional expectation:

$$\bar{m}_{\pi}^*(x) = E_{\pi}[\mu | X = x]$$

• **Theorem**: The empirical Bayes risk of $m(\cdot, \lambda)$ can be written as

$$\bar{R} = const. + E_{\pi} \left[(m(X, \lambda) - \bar{m}_{\pi}^*(X))^2 \right].$$

• \Rightarrow Performance of estimator $m(\cdot,\lambda)$ depends on how closely it approximates $\bar{m}_{\pi}^*(\cdot)$.

A useful family of examples: Spike and normal DGP

- Assume $X_i \sim N(\mu_i, 1)$.
- Distribution of μ_i across i:

$$\begin{array}{ll} \text{Fraction } p & \mu_i = 0 \\ \text{Fraction } 1 - p & \mu_i \sim \textit{N}(\mu_0, \sigma_0^2) \end{array}$$

- Covers many interesting settings:
 - p = 0: smooth distribution of true parameters
 - $p\gg 0$, μ_0 or σ_0^2 large: sparsity, non-zeros well separated
- Consider ridge, lasso, pre-test, optimal shrinkage function.
- Assume λ is chosen optimally (will return to that).

Best estimator

Applications

Neighborhood effects:

The effect of location during childhood on adult income (Chetty and Hendren, 2015)

Arms trading event study:

Changes in the stock prices of arms manufacturers following changes in the intensity of conflicts in countries under arms trade embargoes (DellaVigna and La Ferrara, 2010)

Nonparametric Mincer equation:

A nonparametric regression equation of log wages on education and potential experience (Belloni and Chernozhukov, 2011)

Estimated Risk

- Stein's unbiased risk estimate \widehat{R}
- ullet at the optimized tuning parameter $\widehat{\lambda}^*$
- for each application and estimator considered.

	n		Ridge	Lasso	Pre-test
location effects	595	R	0.29	0.32	0.41
		$\widehat{\pmb{\lambda}}^*$	2.44	1.34	5.00
arms trade	214	R	0.50	0.06	-0.02
		$\widehat{\pmb{\lambda}}^*$	0.98	1.50	2.38
returns to education	65	R	1.00	0.84	0.93
		$\widehat{\lambda}^*$	0.01	0.59	1.14

Neighborhood effects: SURE estimates

Neighborhood effects: shrinkage estimators

Arms event study: SURE estimates

Arms event study: shrinkage estimators

Mincer regression: SURE estimates

Mincer regression: shrinkage estimators

Monte Carlo simulations

- Spike and normal DGP
- Number of parameters n = 50,200,1000
- λ chosen using SURE, CV with 4,20 folds
- Relative performance: As predicted.
- Also compare to NPEB estimator of Koenker and Mizera (2014), based on estimating m_{π}^* .

Table: Average Compound Loss Across 1000 Simulations with N=50

			SURE			Cross-Validation $(k=4)$				Cro	NPEB		
p	μ_0	σ_0	ridge	lasso	pretest	ridge	lasso	pretest		ridge	lasso	pretest	
0.00	0	2	0.80	0.89	1.02	0.83	0.90	1.12		0.81	0.88	1.12	0.94
0.00	0	6	0.97	0.99	1.01	0.97	0.99	1.05		0.97	0.99	1.07	1.21
0.00	2	2	0.89	0.96	1.01	0.90	0.95	1.06		0.89	0.95	1.09	0.93
0.00	2	6	0.97	0.99	1.01	0.99	1.00	1.06		0.97	0.98	1.07	1.21
0.00	4	2	0.95	1.00	1.01	0.95	0.99	1.02		0.95	1.00	1.04	0.93
0.00	4	6	0.99	1.00	1.02	0.99	1.00	1.05		0.99	1.00	1.07	1.21
0.50	0	2	0.67	0.64	0.94	0.69	0.64	0.96		0.67	0.62	0.90	0.69
0.50	0	6	0.95	0.80	0.90	0.95	0.79	0.87		0.96	0.78	0.84	0.84
0.50	2	2	0.80	0.72	0.96	0.82	0.72	0.96		0.81	0.72	0.93	0.73
0.50	2	6	0.96	0.80	0.92	0.95	0.77	0.83		0.95	0.78	0.82	0.86
0.50	4	2	0.91	0.82	0.95	0.92	0.81	0.90		0.92	0.81	0.87	0.75
0.50	4	6	0.97	0.81	0.93	0.97	0.79	0.83		0.96	0.78	0.79	0.85
0.95	0	2	0.18	0.15	0.17	0.17	0.12	0.15		0.18	0.13	0.19	0.17
0.95	0	6	0.49	0.21	0.16	0.51	0.19	0.16		0.49	0.19	0.19	0.16
0.95	2	2	0.26	0.17	0.18	0.27	0.16	0.18		0.27	0.17	0.23	0.17
0.95	2	6	0.53	0.21	0.15	0.53	0.19	0.15		0.53	0.20	0.18	0.16
0.95	4	2	0.44	0.21	0.18	0.45	0.20	0.18		0.45	0.20	0.22	0.18
0.95	4	6	0.57	0.21	0.15	0.58	0.19	0.14		0.57	0.20	0.18	0.16

Table: Average Compound Loss Across 1000 Simulations with N = 200

			SURE			Cross-Validation $(k=4)$			Cross-Validation $(k = 20)$					NPEB
p	μ_0	σ_0	ridge	lasso	pretest	ridge	lasso	pretest		ridge	lasso	pretest		
0.00	0	2	0.80	0.87	1.01	0.82	0.88	1.04		0.80	0.87	1.04		0.86
0.00	0	6	0.98	0.99	1.01	0.98	0.99	1.02		0.98	0.99	1.03		1.09
0.00	2	2	0.89	0.95	1.00	0.90	0.95	1.02		0.89	0.94	1.03		0.86
0.00	2	6	0.98	1.00	1.01	0.98	0.99	1.02		0.98	0.99	1.03		1.10
0.00	4	2	0.95	1.00	1.00	0.96	1.00	1.01		0.95	1.00	1.02		0.86
0.00	4	6	0.98	0.99	1.01	0.98	0.99	1.01		0.99	0.99	1.03		1.09
0.50	0	2	0.67	0.61	0.90	0.69	0.62	0.93		0.67	0.61	0.90		0.63
0.50	0	6	0.94	0.77	0.86	0.95	0.76	0.82		0.95	0.77	0.83		0.77
0.50	2	2	0.80	0.70	0.94	0.82	0.71	0.93		0.80	0.69	0.91		0.65
0.50	2	6	0.95	0.78	0.88	0.96	0.78	0.83		0.95	0.77	0.82		0.77
0.50	4	2	0.91	0.80	0.94	0.92	0.81	0.87		0.91	0.80	0.87		0.67
0.50	4	6	0.96	0.79	0.92	0.97	0.79	0.81		0.97	0.78	0.80		0.76
0.95	0	2	0.17	0.12	0.14	0.17	0.12	0.14		0.17	0.12	0.15		0.12
0.95	0	6	0.61	0.18	0.14	0.62	0.18	0.14		0.61	0.18	0.14		0.14
0.95	2	2	0.28	0.16	0.17	0.29	0.16	0.18		0.28	0.15	0.17		0.14
0.95	2	6	0.63	0.19	0.14	0.64	0.19	0.14		0.63	0.18	0.14		0.13
0.95	4	2	0.49	0.20	0.17	0.50	0.20	0.17		0.48	0.19	0.17		0.14
0.95	4	6	0.68	0.19	0.13	0.70	0.19	0.13		0.67	0.19	0.14		0.13

Table: Average Compound Loss Across 1000 Simulations with N = 1000

				SURE		Cross-Validation $(k=4)$			Cro	NPEB		
p	μ_0	σ_0	ridge	lasso	pretest	ridge	lasso	pretest	ridge	lasso	pretest	
0.00	0	2	0.80	0.87	1.01	0.81	0.87	1.01	0.80	0.86	1.01	0.82
0.00	0	6	0.97	0.98	1.00	0.98	0.98	1.00	0.97	0.98	1.01	1.02
0.00	2	2	0.89	0.94	1.00	0.90	0.95	1.00	0.89	0.94	1.01	0.82
0.00	2	6	0.97	0.98	1.00	0.98	0.99	1.00	0.97	0.98	1.01	1.02
0.00	4	2	0.95	1.00	1.00	0.96	1.00	1.00	0.95	0.99	1.00	0.82
0.00	4	6	0.98	0.99	1.00	0.98	0.99	1.00	0.98	0.99	1.01	1.02
0.50	0	2	0.67	0.60	0.87	0.68	0.61	0.90	0.67	0.60	0.87	0.60
0.50	0	6	0.95	0.77	0.81	0.95	0.77	0.82	0.95	0.76	0.81	0.72
0.50	2	2	0.80	0.70	0.90	0.81	0.71	0.90	0.80	0.69	0.89	0.62
0.50	2	6	0.95	0.77	0.80	0.96	0.78	0.81	0.95	0.77	0.80	0.71
0.50	4	2	0.91	0.80	0.87	0.92	0.80	0.84	0.91	0.80	0.84	0.63
0.50	4	6	0.96	0.78	0.87	0.97	0.78	0.79	0.96	0.78	0.78	0.70
0.95	0	2	0.17	0.11	0.14	0.17	0.12	0.14	0.17	0.11	0.14	0.11
0.95	0	6	0.63	0.18	0.13	0.65	0.18	0.14	0.64	0.17	0.14	0.12
0.95	2	2	0.28	0.15	0.16	0.29	0.15	0.18	0.29	0.14	0.17	0.12
0.95	2	6	0.66	0.18	0.13	0.67	0.18	0.14	0.66	0.18	0.13	0.12
0.95	4	2	0.50	0.19	0.16	0.51	0.19	0.17	0.50	0.19	0.16	0.12
0.95	4	6	0.72	0.18	0.13	0.73	0.19	0.13	0.71	0.18	0.13	0.12

Some theory: Estimating λ

- Can we consistently estimate the optimal λ^* , and do almost as well as if we knew it?
- Answer: Yes, for large *n*, suitably bounded moments.
- We show this for two methods:
 - Stein's Unbiased Risk Estimate (SURE) (requires normality)
 - ② Cross-validation (CV) (requires panel data)

Uniform loss consistency

Shorthand notation for loss:

$$L_n(\lambda) = \frac{1}{n} \sum_i (m(X_i, \lambda) - \mu_i)^2$$

Definition:

Uniform loss consistency of $m(.,\hat{\lambda})$ for $m(.,\bar{\lambda}^*)$:

$$\sup_{\pi} P_{\pi} \left(\left| L_{n}(\widehat{\lambda}) - L_{n}(\overline{\lambda}^{*}) \right| > \varepsilon \right) \to 0$$

• as $n \to \infty$ for all $\varepsilon > 0$, where

$$P_i \sim^{iid} \pi$$
.

Minimizing estimated risk

• Estimate λ^* by minimizing estimated risk:

$$\widehat{\lambda}^* = \underset{\lambda}{\operatorname{argmin}} \ \widehat{R}(\lambda)$$

- Different estimators $\widehat{R}(\lambda)$ of risk: CV, SURE
- Theorem: Regularization using SURE or CV is uniformly loss consistent
 as n → ∞ in the random effects setting under some regularity conditions.
- Contrast with Leeb and Pötscher (2006)! (fixed dimension of parameter vector)
- Key ingredient: uniform laws of larger numbers to get convergence of $L_n(\lambda)$, $\widehat{R}(\lambda)$.

Thank you!

Bonus material

Componentwise estimators

• Ridge:

$$m_R(x,\lambda) = \operatorname*{argmin}_{c \in \mathbb{R}} \left((x-c)^2 + \lambda c^2 \right)$$

= $\frac{1}{1+\lambda} x$.

Lasso:

$$m_L(x,\lambda) = \underset{c \in \mathbb{R}}{\operatorname{argmin}} \left((x-c)^2 + 2\lambda |c| \right)$$
$$= \mathbf{1}(x < -\lambda)(x+\lambda) + \mathbf{1}(x > \lambda)(x-\lambda).$$

• Pre-test:

$$m_{PT}(x,\lambda) = \mathbf{1}(|x| > \lambda)x.$$

Connection to linear regression and prediction

• Normal linear regression model:

$$Y|\mathbf{W} \sim N(\mathbf{W}'\beta, \sigma^2).$$

- Sample W_1, \ldots, W_n . Let $\Omega = \frac{1}{N} \sum_{j=1}^{N} W_j W_j'$.
- Draw new value of covariates from sample for prediction.
- Expected squared prediction error

$$\widetilde{R} = E\left[(Y - W\widehat{\beta})^2 \right] = \operatorname{tr}\left(\mathbf{\Omega} \cdot E[(\widehat{\beta} - \beta)(\widehat{\beta} - \beta)'] \right) + \sigma^2.$$

- Orthogonalize: Let $\mu = \mathbf{\Omega}^{1/2} \boldsymbol{\beta}$, $\mathbf{X} = \mathbf{\Omega}^{1/2} \widehat{\boldsymbol{\beta}}^{OLS}$, $\widehat{\mu}_i = m(X_i, \lambda)$.
- Then

$$\boldsymbol{X} \sim N\left(\mu, \frac{\sigma^2}{N} \boldsymbol{I}_n\right),$$

and

$$\tilde{R} = E\left[\sum_{i}(\widehat{\mu}_{i} - \mu_{i})^{2}\right] + E[\varepsilon^{2}].$$

Spike-and-normal: Optimal shrinkage function

Assume

- μ_1, \ldots, μ_n are drawn independently from a distribution with probability mass p at zero, and normal with mean μ_0 and variance σ_0^2 elsewhere.
- Conditional on μ_i , X_i follows a normal distribution with mean μ_i and variance σ^2 .
- Then, the optimal shrinkage function is:

$$m_{\pi}^*(x) = \frac{(1-\rho)\frac{1}{\sqrt{\sigma_0^2 + \sigma^2}}\phi\left(\frac{x - \mu_0}{\sqrt{\sigma_0^2 + \sigma^2}}\right)\frac{\mu_0\sigma^2 + x\sigma_0^2}{\sigma_0^2 + \sigma^2}}{\rho\frac{1}{\sigma}\phi\left(\frac{x}{\sigma}\right) + (1-\rho)\frac{1}{\sqrt{\sigma_0^2 + \sigma^2}}\phi\left(\frac{x - \mu_0}{\sqrt{\sigma_0^2 + \sigma^2}}\right)}.$$

Two methods to estimate risk

Stein's Unbiased Risk Estimate (SURE) Requires normality of X_i.

$$\begin{split} \widehat{R}(\lambda) &= \frac{1}{n} \sum_{i} (m(X_{i}, \lambda) - X_{i})^{2} + penalty - 1 \\ penalty &= \begin{cases} Ridge : & \frac{2}{1 + \lambda} \\ Lasso : & 2P_{n}(|X| > \lambda) \\ Pre-test : & 2P_{n}(|X| > \lambda) + 2\lambda \cdot (\widehat{f}(-\lambda) + \widehat{f}(\lambda)) \end{cases} \end{split}$$

② Cross validation (CV) Requires multiple observations X_{ii} for μ_i .

$$\widehat{R}(\lambda) = \frac{1}{kn} \sum_{i=1}^{n} \sum_{j=1}^{k} (m(\overline{X}_{i,-j}, \lambda) - X_{ij})^{2}$$

$$\overline{X}_{i,-j} = leave-one-out-mean.$$

Comparison with Leeb and Pötscher (2006)

• Leeb and Pötscher (2006): We observe a $(k \times 1)$ vector

$$\boldsymbol{X}_n \sim N(\mu_n, \boldsymbol{I}_k/n)$$

and aim to estimate the normalized risk $nE|\|\boldsymbol{m}_n(\boldsymbol{X}_n) - \boldsymbol{\mu}_n\|^2$. Reparameterize, $\boldsymbol{Y}_n = \sqrt{n}\boldsymbol{X}_n$ and consider $\boldsymbol{\mu}_n = \boldsymbol{h}/\sqrt{n}$, then

$$\boldsymbol{Y}_n \sim N(\boldsymbol{h}, \boldsymbol{I}_k)$$

and the problem is invariant in n.

This article:

$$(X_i, \mu_i) \sim \pi$$

where π may change with n.

As *n* increases we learn risk.

The NPEB estimator of Koenker and Mizera (2014)

Nonparametric Maximum Likelihood:

$$\max_{G \in \mathscr{G}} \sum_{i=1}^{n} \log \left(\int \varphi(X_i - \mu) dG(\mu) \right),$$

where \mathscr{G} is the family of all distribution functions.

- The solution, \widehat{G} , is given by a discrete distribution supported at m points v_1, \ldots, v_m with frequencies f_1, \ldots, f_m (with $m \le n$).
- Then, construct an estimator of

$$m_{\pi}^*(x) = E_{\pi}[\mu | X = x]$$

by plugin-in \widehat{G} for G in the formula for $E_{\pi}[\mu|X=x]$:

$$\widehat{m}_{\pi}^*(x) = \sum_{j=1}^m v_j \varphi(x - v_j) f_j / \sum_{j=1}^m \varphi(x - v_j) f_j.$$

Uniform loss consistency

Assume

$$\sup_{\pi \in \mathscr{Q}} P_{\pi} \left(\sup_{\lambda \in [0,\infty]} \left| L_n(\lambda) - \bar{R}_{\pi}(\lambda) \right| > \varepsilon \right) \to 0, \quad \forall \varepsilon > 0. \quad (1)$$

• Assume there are functions, $\bar{r}_{\pi}(\lambda)$, \bar{v}_{π} , and $r_{n}(\lambda)$ (of (π, λ) , π , and $(\{X_{i}\}_{i=1}^{n}, \lambda)$, respectively) such that $\bar{R}_{\pi}(\lambda) = \bar{r}_{\pi}(\lambda) + \bar{v}_{\pi}$, and

$$\sup_{\pi \in \mathscr{Q}} P_{\pi} \left(\sup_{\lambda \in [0,\infty]} \left| r_n(\lambda) - \bar{r}_{\pi}(\lambda) \right| > \varepsilon \right) \to 0, \quad \forall \varepsilon > 0. \quad (2)$$

• Theorem: Under these assumptions,

$$\sup_{\pi \in \mathscr{Q}} P_{\pi} \left(\left| L_{n}(\widehat{\lambda}_{n}) - \inf_{\lambda \in [0,\infty]} L_{n}(\lambda) \right| > \varepsilon \right) \to 0, \quad \forall \varepsilon > 0, \quad (3)$$

where $\widehat{\lambda}_n = \operatorname{argmin}_{\lambda \in [0,\infty]} r_n(\lambda)$.

Uniform loss consistency

• We prove that equation (1) holds for ridge, lasso, and pretest, under mild regularity conditions, in particular

$$\sup_{\pi \in \mathscr{D}} E_{\pi}[X^4] < \infty.$$

- To satisfy equation (2) we use two popular estimators of risk:
 - SURE: Requires Normality of $X_i | \mu_i$.
 - CV: Requires repeated observations of $X_i | \mu_i$.
- Uniform risk consistency holds also under the same conditions.