Optimisation devoir 2 Synthèse robuste d'antennes

Quentin Laurent

Nicolas Stevens

14 novembre 2014

On étudie le problème d'optimisation qui consiste à optimiser le diagramme $D(\theta)$ d'une antenne. Il s'agit de trouver les coefficients d'amplification x_i des N anneaux de l'antenne qui satisfassent aux conditions de diagramme unitaire (dans l'intervalle $\mathcal{P} = [\theta_P, 90^\circ]$) ou nul (dans l'intervalle $\mathcal{S} = [0^\circ, \theta_S]$).

1 Formulation linéaire

1.1 Modèle

On peut formuler le programme d'optimisation comme suit :

$$\min_{\sigma} \epsilon \tag{1}$$

$$|D(\theta) - 1| \le \epsilon \tag{2}$$

$$|D(\theta)| \le \epsilon \tag{3}$$

$$\epsilon > 0$$
 (4)

avec
$$D(\theta) = \sum_{i=1}^{N} x_i d_i(\theta)$$
 et $d_i(\theta) = \int_0^{2\pi} cos(2\pi r_i cos(\theta) cos(\phi)) d\phi$ (5)

Le problème posé présente un désavantage majeur : il est soumis à une infinité de contraintes (3).

Pour pallier à ce problème, nous échantillonnons le problème par rapport à θ . Les contraintes du problèmes ne s'appliquant que dans $P = [\theta_P \ 90^\circ]$ et $S = [0^\circ \ \theta_S]$, nous échantillonnons seulement dans ces deux ensembles. Nous avons ainsi un nombre fini de contraintes. Afin de n'obtenir que des contraintes linéaires, nous transformons chaque contrainte faisant intervenir une valeur absolue en deux contraintes linéaires. Le problème devient alors :

$$\min_{x_i,\epsilon} \epsilon$$

$$D(\theta) - 1 \le \epsilon \tag{6}$$

$$-D(\theta) + 1 \le \epsilon \qquad \forall \theta \in \mathcal{P}_e \tag{7}$$

$$D(\theta) \le \epsilon \tag{8}$$

$$-D(\theta) \le \epsilon \qquad \forall \theta \in \mathcal{S}_e \tag{9}$$

avec
$$D(\theta) = \sum_{i=1}^{N} x_i d_i(\theta)$$
 et $d_i(\theta) = \int_0^{2\pi} cos(2\pi r_i cos(\theta) cos(\phi)) d\phi$ (10)

 $\mathcal{P}_e = \{p_0, p_1, ..., p_{Np}\}$ et $\mathcal{S}_e = \{s_0, s_1, ..., s_{Ns}\}$ sont les ensembles des échantillons dans \mathcal{P} et \mathcal{S} . Deux points consécutifs sont séparés par une distance maximale de h.

Cette formulation est bien évidemment une formulation approchée de notre problème initial puisque des

points entre les échantillons pourront ne pas satisfaire les contraintes de diagramme unitaire ou nul. Cependant le non-respect de ces contraintes peut être quantifié. En effet, d'après les définitions des $d_i(\theta)$, la valeur absolue de la dérivée de ceux-ci ne peut pas dépasser π . Ce qui signifie que le dépassement de l'erreur de diagramme est au maximum $\sum |x_i\pi h|$. Il nous suffit alors de choisir un h adapté au niveau de précision que nous voulons atteindre.

Notons que lors de l'implémentation de notre modèle, nous faisons une deuxième approximation en calculant les diagrammes $d_i(\theta)$. Comme l'intégrale de l'équation (5) n'est pas calculable analytiquement (il s'agit d'une fonction de Bessel), nous la calculons numériquement au moyen d'une somme de Rieman dans notre code Ampl. Todo: Expliquer notre choix de h, trouver une meilleure borne?, résoudre en ampl

1.2 Analyse des résultats

La figure 1a donne une illustration des diagrammes optimaux obtenus pour certains paramètres. On constate que lorsque θ_P et θ_S deviennent proches, le ϵ croit. On remarque également que tous les points $\in \mathcal{S}$ ou $\in \mathcal{P}$ sont bien compris entre les bornes fixées par ϵ ; et ce malgré que nous ayons discrétisé le problème et que nous n'ayons donc pas imposer cette contrainte pour tous les points. Cela confirme l'idée que l'approximation faite est acceptable. Définissons l'erreur du diagramme $D(\theta)$ comme suit :

$$err = \int_{\mathcal{S}} |D(\theta)| d\theta + \int_{\mathcal{P}} |D(\theta) - 1| d\theta.$$
 (11)

On obtient 0.0209 (en bleu) et 0.1151 (vert) comme erreur pour les diagrammes de la figure 1a. Pour les xperturbés, on obtient comme erreur moyenne 6.5605 pour les diagrammes de la figure 1b et 64.6476 pour les diagrammes de la figure 1b.

(a) Diagramme optimal $D(\theta)$ de l'antenne composé de 40 anneaux, pour $r_i = i/10$. En bleu pour $\theta_P = 50^{\circ}$ et $\theta_S=40^\circ$; en vert pour $\theta_P=47^\circ$ et (b) Diagramme optimal $D(\theta)$ de l'an- $\theta_S=43^{\circ}$. En rouge, les bornes du ϵ tenne composé de 40 anneaux, pour optimal trouvé (en bleu 2.4%, en vert $r_i = i/10$, $\theta_P = 50^{\circ}$ et $\theta_S = 40^{\circ}$ avec 11.9%).

un vecteur x perturbé ($\tau = 0.01$).

(c) Diagramme optimal $D(\theta)$ de l'antenne composé de 40 anneaux, pour $r_i = i/10, \, \theta_P = 50^{\circ} \text{ et } \theta_S = 40^{\circ} \text{ avec}$ un vecteur x perturbé ($\tau = 0.001$).

Figure 1

1.3 Analyse de la robustesse

En pratique, l'implémentation des x_i n'est pas réalise parfaitement. On a plutôt $\hat{x}_i = x_i(1+\xi_i)$ où les erreurs ξ_i se situent dans un intervalle $[-\tau, \tau]$.

Reprenons le modèle linéaire précédent et appliquons-lui des erreurs xi_i de l'ordre de $\tau = 0.001$ et $\tau = 0.01$. On obtient les graphes aux figures 1b et 1c. On a donc une solution très sensible aux perturbations. Une valeur des erreurs sont données aux tableau récapitulatif 1. Ce tableau nous donne aussi une indication sur l'ordre de grandeur des x_i . Ils sont très élevé dans notre cas. Intuitivement, un grand x_i positif vient compenser un grand x_i négatif... dés qu'on perturbe ces valeurs des x, on a directement de grandes erreurs. On peut supposer qu'on modèle plus robuste consisterait à réduire ces valeurs ces x_i .

2 Première formulation robuste

2.1 Modèle

Afin de prendre en compte les erreurs sur les facteurs d'amplification x_i , nous utilisons les valeurs maximales des variations possibles de $\hat{D(\theta)}$ sur un intervalle.

$$|D(\hat{\theta})| = |\sum_{i=1}^{n} x_i (1 + \xi_i) d_i(\theta)| \le |\sum_{i=1}^{n} x_i d_i(\theta)| + |\sum_{i=1}^{n} x_i \xi_i d_i(\theta)| \le |D(\theta)| + \sum_{i=1}^{n} |\tau x_i d_i(\theta)|$$
(12)

En imposant $|D(\theta)| + \sum_{i=1}^{n} |\tau x_i d_i(\theta)| \le \epsilon$ on est sur que $|D(\theta)| \le \epsilon$. On traduit de la même manière les contraintes sur \mathcal{P} comme $|D(\theta) - 1| + \sum_{i=1}^{n} |\tau x_i d_i(\theta)| \le \epsilon$. Pour notre problème échantillonné et linéaire, il nous faut donc introduire n variables v_i (associées à chaque θ échantillonné) correspondant aux valeurs absolues des $\tau d_i(\theta)$. On a alors le modèle :

$$|D(\theta)| + \sum_{i=1}^{n} v_i \le \epsilon \qquad \forall i \in \mathcal{S}$$
 (13)

$$|D(\theta) - 1| + \sum_{i=1}^{n} v_i \le \epsilon \qquad \forall i \in \mathcal{P}$$
 (14)

$$\tau x_i d_i(\theta) \le v_i \tag{15}$$

$$-\tau x_i d_i(\theta) < v_i \tag{16}$$

2.2 Analyse des résultats

Les figures 2a, 2b et 2c montrent les résultats obtenus pour différentes valeurs de τ (dans le modèle ainsi que dans les perturbations). Ici les x sont conçus pour mieux résister en cas de perturbations. Un récapitulatif des résultats pour les différents modèle est donné à la table 1. Notons que ces modèles sont bien plus performant que le modèle de base. En effet le ϵ augmente très peu 2% dans le modèle de base à 2.8% ou 3.3% dans le modèle robuste; tandis que la robustesse s'améliore nettement.

- Dans le cas $\tau=0.001$, on constate une augmentation du ϵ par rapport au modèle de base. Les erreurs pour les x_i perturbés sont cependant bien moindre. On constate également que les erreurs pour le modèle x_i perturbés avec une perturbation de l'ordre de $\tau=0.001$ ou de $\tau=0.01$ sont moindre que dans le modèle avec $\tau=0.01$. Mais malgré que les erreurs soient moindre que dans le modèle $\tau=0.01$ même dans le cas où les perturbations sont de l'ordre de $\tau=0.01$, on observe des dépassements pour certaines réalisation des ξ_i si on applique les perturbations de $\tau=0.01$. On constate que l'ordre de grandeur des x_i non-nuls est inférieur à celui du modèle de base ce qui confirme notre intuition comme quoi le modèle robuste a tendance à fournir des x_i plus petits.
- Dans le cas $\tau = 0.01$, on constate toujours une augmentation du ϵ par rapport au modèle de base et au modèle où $\tau = 0.001$. Les erreurs pour les x_i perturbés sont plus grande que dans le modèle $\tau = 0.001$ pour des perturbations de l'ordre de $\tau = 0.001$ et $\tau = 0.01$, mais le modèle ne présente jamais de dépassement. On constate que l'ordre de grandeur des x_i non-nuls est inférieur à celui du modèle $\tau = 0.001$, ce qui confirme encore notre intuition.

(a) $D(\theta)$ pour le modèle $\tau=0.01$ (en vert) et $\tau=0.001$ (en bleu) et x non-perturbé.

(b) $D(\theta)$ pour une perturbation de $\tau = 0.001$ sur les x (en vert pour un modèle de $\tau = 0.01$ en bleu pour $\tau = 0.001$).

(c) $D(\theta)$ pour une perturbation de $\tau=0.01$ sur les x (en vert pour un modèle de $\tau=0.01$ en bleu pour $\tau=0.001$).

FIGURE 2 – Les deux derniers graphes sont donnés pour une centaine de réalisations des ξ_i .

3 Seconde formulation robuste

				Erreurs pour:	
	ϵ	$\mathcal{O}(x_i) \ (x_i \neq 0)$	x_i	$x_i \text{ pert. } (\tau = 0.001)$	$x_i \text{ pert. } (\tau = 0.01)$
Modèle de base	2%	10^{3}	0.0185	5.3977	47.9054
Modèle robuste 1 ($\tau = 0.001$)	5.07%	10^{0}	0.0396	0.0396	0.0440
Modèle robuste 1 ($\tau = 0.01$)	6.80%	10^{-1}	0.0508	0.0508	0.0510

TABLE 1 – Récapitulatif des résultats des erreurs et de la borne maximal ϵ obtenus pour les différents modèles et les différents types de perturbations.