

NBD Homework 1

Group: Erlang

Dario Baraghini Michelanhelo Saveriano Paolo Falcone Nicola Calabrese

April 2021

Assignment 1-Part 1

As we can see from the figures above ,the best method is the BFS which has a complexity measure of (|N| + |E|) where |N| denotes the number of nodes and |E| the number of edges in the graph. BFS is followed by eigenvalues of the Laplacian matrix which has a complexity of $O(n^3)$, practically it can be reduced to $O(n^{2.376})$. The worst between the three is the irreducibility method ,which also has the highest complexity measure $(O(n^3))$ and, as it is shown in the plot, it has the highest variability ,displayed in the blue area.

For an Erdös-Rényi graph the probability that it is connected $(p_c(G))$ tends to 1 really quickly, when p is above a certain threshold $\tilde{t} = 0.098$ the graph is connected with probability equal to 1.

For r-regular graphs instead we have two very different situations. When r = 2, $P_c(G)$ is a decreasing function that tends asymptotically to 0. With r = 2 the graph can't keep up with the creation of new nodes and maintain its connectivity while with an r = 8 instead even with the increasing number of nodes our graph is able to stay connected.

Assignment 1-Part 2

1. Equaling the number of resources (N,S,L) for Fat-tree and Jellyfish topology we obtain that r, the number of switch port in Jellyfish,is:

$$\begin{cases} S_j = S_F = \frac{5}{4}n^2 \\ N_j = N_F \Rightarrow (n-r)S_j = \frac{n^3}{4} \Rightarrow (n-r)\frac{5}{4}n^2 = \frac{n^3}{4} \Rightarrow 5n - 5r = n \Rightarrow r = \frac{4}{5}n \\ L_j = L_F \Rightarrow \frac{S_j r}{2} = \frac{n^3}{2} \Rightarrow \frac{5}{4}n^2 r = n^3 \Rightarrow r = \frac{4}{5}n \end{cases}$$

2. For an all-to-all traffic matrix each server communicates with every other server, implying that the number of flows generated is equal to $\nu_f = \frac{n^3(n^3-4)}{16}$. Given this fact and knowing that the number of links between severs is $l = \frac{3}{4}n^3$ the formula for the upper bound of TH is:

$$TH \le \frac{l}{\overline{h}\nu_f} = \frac{12}{\overline{h}(n^3 - 4)}$$

3. The mean shortest path lengths for server-to-server paths is

 $\overline{h} = \frac{2(\#servers \; in \; the \; same \; rack) + 4(\#servers \; in \; the \; same \; pod) + 6(\#servers \; of \; different \; pods)}{total \; number \; of \; servers - 1}$

$$\overline{h} = \frac{6n^3 - 2n^2 - 4n - 8}{n^3 - 4}$$

n	N	S	L	$TH_{Fat-Tree}$	$TH_{Jellyfish}$
20	2000	500	4000	$2,5*10^{-4}$	$5,2*10^{-4}$
30	6750	1125	13500	$7.5 * 10^{-5}$	$1,5*10^{-4}$
40	16000	2000	32000	$3.15 * 10^{-5}$	$6,4*10^{-5}$
50	31250	3125	62500	$1.61*10^{-5}$	$3,2*10^{-5}$
60	54000	4500	108000	$9.31 * 10^{-6}$	$1,9*10^{-5}$

Table 1: Summary Table

As we expected the throughput for the Fat-Tree is much smaller than the one of Jellyfish due to the fact that the mean shortest path between servers \overline{h} has proven to be smaller for the Jellyfish configuration.