数字逻辑设计

高翠芸 School of Computer Science gaocuiyun@hit.edu.cn

Unit 4 卡诺图 Karnaugh Maps

- 开关函数的最简形式
- 多变量卡诺图
- 填写卡诺图
- 卡诺图化简法

函数的最简形式

When a function is realized using **AND** and **OR** gates, the cost of realizing the function is directly related to the number of gates and gate inputs used.

开关函数的最简形式

$$F = \sum_{XYZ} (1,5,7) = x' y' z + xy' z + xyz$$

$$F = (x' y' z + xy' z) + xyz = y' z + xyz$$

$$F = (y'+xy)z = (y'+x)z$$

开关函数的最简形式

一个最简表达式中

- ① 逻辑门的数量最少
- ② 逻辑门的输入个数最少

与最小项(最大项)表达式不同

- 最简表达式不一定是唯一的.
- 但最简表达式的实现代价是相同的(逻辑门的 数量相同、输入变量的个数相同)

卡诺图 Karnaugh Maps

- 开关函数的最简形式
- 多变量卡诺图
- 填写卡诺图
- 卡诺图化简法

逻辑函数的表达方式之一

■化简三变量或者四变量的逻辑函数时,卡诺图特别有用!

卡诺图的性质

- 卡诺图通常为正方形或矩形均匀分成2ⁿ个小格,每个小格代表一个最小项。
- 单元格对应的最小项按格雷码摆放
- 任何两个相邻单元格对应的最小项只有一个变量取值不同
 - 1. 两变量 K. Map

$$F=f(AB)$$

三变量卡诺图

F=f(ABC)

BC	00	01	11	10
0	0	1	3	2
1	4	5	7	6

四变量卡诺图

F=f(ABCD)	AB	00	01	11	10
	00	0	1	3	2
	01	4	5	7	6
	11	12	13	15	14
	10	8	9	11	10

五变量卡诺图

F=f(ABCDE)

CI		001	Λ11	010	110	111	101	100
AB	000	001	011	010	110	111	101	100
00	0	1	3	2	6	7	5	4
01	8	9	11	10	14	15	13	12
11	24	25	27	26	30	31	29	28
10	16	17	19	18	22	23	21	20
	<u> </u>						•	•

卡诺图的特征

卡诺图上几何相邻的最小项逻辑上也相邻。

• 逻辑相邻—两个最小项中只有一个变量出现的形式不同

卡诺图 Karnaugh Maps

- 开关函数的最简形式
- 多变量卡诺图
- 填写卡诺图
- 卡诺图化简法

填写卡诺图

① 已知真值表

Truth Table

AB C	F
000	0 🇸
001	0 🏑
010	0 ✓
011	1√
100	0 √
101	1√
110	1./
111	1√

- ② 已知标准与或式:与项是最小项时,按最小项编号的位置直接填入。
- ③ 已知标准或与式

$$F = \Sigma m(3,5,6,7)$$

$$F = \Pi M(0, 1, 2, 4)$$

填写卡诺图

Example 1. F=AB+BC+AC

$$= AB(C+\overline{C})+BC(A+\overline{A})+AC(B+\overline{B})$$

$$= ABC+AB\bar{C}+ABC+\bar{A}BC+ABC+A\bar{B}C$$

7 6 7 3 7 5

BC	00	01	11	10	
0	0	0	1	0	
1	0	1	1	1	

Example 2.
$$F = (\overline{A \oplus B}) (C + \overline{D})$$

 $= \overline{A \oplus B} + (\overline{C + D})$
 $= \overline{A B} + AB + \overline{C D}$
 $\overline{A B} = \underbrace{0000}_{0} + \underbrace{0001}_{1} + \underbrace{0010}_{2} + \underbrace{0011}_{3}$
 $AB = \underbrace{1100}_{12} + \underbrace{1101}_{13} + \underbrace{1110}_{14} + \underbrace{1111}_{15}$
 $\overline{C D} = \underbrace{0000}_{0} + \underbrace{0100}_{4} + \underbrace{1000}_{8} + \underbrace{1100}_{12}$
 $AB = \underbrace{0000}_{11} + \underbrace{111}_{12} + \underbrace{1100}_{12}$
 $AB = \underbrace{0000}_{11} + \underbrace{111}_{12} + \underbrace{111}_{12} + \underbrace{111}_{12}$

Example 3. $\mathbf{F} = \mathbf{A} \oplus \mathbf{C} \cdot \mathbf{\overline{B}} (\mathbf{A}\mathbf{\overline{C}}\mathbf{\overline{D}} + \mathbf{\overline{A}}\mathbf{C}\mathbf{\overline{D}})$

④与项不是最小项的形式

与项不是最小项的形式,按邻接关系直接填入卡诺图。

例如: $P(A, B, C, D) = \overline{A}CD + ABD$

先填 $\overline{A}CD$, 这是 \overline{A} , 这是CD;

$$\overline{A} CD = \overline{A} (B + \overline{B}) CD$$
$$= \overline{A} BCD + \overline{A} \overline{B} CD$$

所以 $\overline{A}CD$ 处于第一第二行和第三列的交点上(二行一列)。

再填ABD, 这是AB, 这是D。

所以ABD处于第三行和第二、第 三列的交点上(一行二列)。

将逻辑表达式填入卡诺图

例:将逻辑式 $P=B\overline{C}+\overline{B}\overline{D}$ 填入卡诺图

先填 $B\overline{C}$, 这是B,这是 \overline{C} ;

 $B\overline{C}$ 这一与项处于第二、第三行和第一、第二列的交点处(二行二列)。

再填 \overline{BD} ,这是 \overline{B} ,这是 \overline{D} 。 \overline{BD} 这一与项处于第一、第四行和第一、第四列的交点处(二行二列)。

例:将逻辑式 $P = \overline{B}C + AB\overline{D}$ 填入卡诺图

Properties of K. maps

■基于卡诺图的逻辑运算

Properties of K. maps

Representation methods of logical function

K. map is an especially useful tool for simplifying and manipulating switching functions of three or four variables.

卡诺图 Karnaugh Maps

- 开关函数的最简形式
- 多变量卡诺图
- 填写卡诺图
- ▶ 卡诺图化简法

卡诺图化简法

■图形法化简逻辑函数

$$F(A,B,C) = \overline{A}BC + ABC = BC(\overline{A} + A) = BC$$

卡诺图化简法

从一个卡诺图中可以读取:

- 最简与或式(AND-OR)
- 最简或与式(OR-AND)
- 最简与或非式(AND-OR-NOT)

Step ①: 画圈

- a).将相邻为1的小方格圈在一起。 (小方格的个数必须为 2^m, m=0,1,2...)
- b).圈越大越好
- c).小方格可以重复使用

Adjacent:紧靠在一起的、行列首尾的、对称的 (本质上:满足格雷码特点)

B	C 00	01	11	10
0	0	0	1	0
1	0 (1		1
•				

	*			
AB C	D _00	01	11	10_
00	1	0	0	1
01	0	0	0	0
11	0	0	0	0_
10	1	0	0	1
•				

\C]				
AB	00	01	11	10
00	0	1	1	0
01 11	0	0	0	0
	0	0	0	0
10	0	1	1	0
•				

Step ②:每个圈代表一个与项

\C]	D			
AB	00	01	11	10
00	1	0	0	1
01	0	0	0	0
11	0	0	0	0_
10	1	0	0	1

AB	D 00	01	11	10
00	0	1	1	0
01	0	0	0	0
11	0	0	0	0
10	0	1	1	0
•				

Step ③: 将所有的与项相加

$$F = \overline{A}\overline{C} + AC + \overline{B}\overline{D}$$

The two minimum solutions For F

与最小项(最大项)表达式不同

- 最简表达式不一定是唯一的。
- 但最简表达式的实现代价是相同的(逻辑门的数量相同、输入变量的个数相同)

从卡诺图中读取:

■ 最简与或式(AND-OR)

- 最简或与式(OR-AND)
- 最简与或非式(AND-OR-NOT)

Step ①: **画 医**

- a).将相邻为0的小方格圈在一起。 (小方格的个数必须为 2^m, m=0,1,2...)
- b).圈越大越好
- c).小方格可以重复使用

Adjacent:紧靠在一起的、行列首尾的、对称的 (本质上:满足格雷码特点)

AB C	D 00	01	11	10
00	1	0	0	1
01	1	1	1	1
11	1	1_	1	1
10	1	0	0	1
•				•

Step ②: 每个圈代表一个和项

 观察
 Left 为
 变量取值不同——消去

AB C	D 00	01	11	10
00	1	0	0	1
01	1	1	1	1
11	1	1	1	1
10	1	0	0	1
•				

Step ③: 将所有的和项相乘

$$F = (A + C) \cdot (\overline{A} + \overline{C}) \cdot (B + D)$$

到目前哪里存在问题?

- A 卡诺图基本概念
- B 卡诺图化简
- 之前的内容
- □ 讲解速度快
- E 讲解速度慢

卡诺图化简法

从卡诺图中读取

- 最简与或式(AND-OR)
- 最简或与式(OR-AND)

■ 最简与或非式(AND-OR-NOT)

如何从卡诺图读最简与或非式

Step ①:读 \overline{F} 的与或式

方法: 在F的卡诺图中圈0(或者在 \overline{F} 的卡诺图中圈1)

Step ②:对F求反

卡诺图中的几个概念

- 蕴含项 (implicant): 只包含1的矩形圈
- 主蕴含项/首要蕴含项(prime implicant): 扩展到最大的蕴含项
 - 函数所有的首要蕴含项都可以通过卡诺图 求得
 - 完全由无关项组成的首要蕴含项不可能成为最简结果的一部分
 - 最简积之和由某些首要蕴含项组成
 - 若含有非首要蕴含项,可能不是最简式

卡诺图中的几个概念——续

• 奇异"1"单元(Distinguished 1-cell):仅被单一首要蕴含项覆盖的输入组合

技巧: 圈卡诺图时,从合并奇异1单元开始

• 质主蕴含项 (Essential Prime implicant) /基本首要蕴含项: 覆盖一个或者多个奇异"1"单元的主蕴含项

进一步讨论——更多变量卡诺图

* 展开定理

一个n变量的逻辑函数可以对变量X_i展开为两个n-1 变量的逻辑函数

进一步讨论——更多变量卡诺图

$$\mathsf{F=f}(\mathsf{x}_1\mathsf{x}_2\mathsf{x}_3\mathsf{x}_4\mathsf{x}_5)$$

$\mathbf{x_4}\mathbf{x_5}$						
$\mathbf{X}_{2}\mathbf{X}_{3}$	00	01	11	10		
00	16	17	19	18		
01	20	21	23	22		
11	28	29	31	30		
10	24	25	27	26		
$x_1 = 1$						

$F = \Sigma m(0,1,4,5,6,11,12,14,16,20,22,28,30,31)$

Example **DEF** 000 <u>ABC</u> F=C'F'+B'CD'F+ ACD'F+ A'BD'EF' + A'BDE'F' + ABC'DE'

代数化简法优缺点

- 优点——
 - 不受变量数目的约束
 - 对公理、定理和规则十分熟练时, 化简较方便
- •缺点——
 - 技巧性强
 - 在很多情况下难以判断化简结果是否最简

卡诺图化简法

进一步讨论——

带无关项的卡诺图化简

Example

某单位三八节包场看电影,规定电影票只发给本单位的 女职工,写出满足上述条件的逻辑表达式。

A=1: 本单位 B=1: 女职工 C=1: 有电影票

A	В	C	\mathbf{F}
0	0	0	0
0	0	1	×
0	1	0	0
0	1	1	×
1	0	0	0
1	0	1	X
1	1	0	0
1	1	1	1

无关项——不存在的或无意义的取值组合

卡诺图化简时对无关项的处理:

- 口根据需要,无关项可1可0;
- 口满足圈中数量最多的前提,尽量利用无关项。

Example

输入信号X为 8421BCD码, 设计组合逻辑电路, 当 $X \ge 5$, 输出 F=1。

$$F=A+BD+BC$$

ABCD	F	ABCD	F
0 0 0 0	0	1000	1
0 0 0 1	0	1001	1
0 0 1 0	0	1010	X
0 0 1 1	0	1011	X
0 1 0 0	0	1 1 0 0	X
0 1 0 1	1	1 1 0 1	X
0 1 1 0	1	1 1 1 0	X
0 1 1 1	1	1 1 1 1	X

Example 设计一个能将4位二进制数转换为余3码的电路

二进制数	余三码	二进制数	余三码
WXYZ	ABCD	$\mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z}$	A B C D
0 0 0 0	0 0 1 1	1000	1011
0 0 0 1	0 1 0 0	1001	1100
0 0 1 0	0 1 0 1	1010	X
0 0 1 1	0 1 1 0	1011	X
0 1 0 0	0 1 1 1	1 1 0 0	X
0 1 0 1	1 0 0 0	1 1 0 1	X
0 1 1 0	1 0 0 1	1110	X
0 1 1 1	1010	1111	X

A:

$$A=W+XZ+XY$$

B:

$$B=\overline{X}Z+\overline{X}Y+X\overline{Y}\overline{Z}$$

C:

$$C=\overline{Y}\overline{Z}+YZ$$

D:

$$D=\overline{Z}$$

Unit 4 卡诺图 Karnaugh Maps

- 开关函数的最简形式
- 多变量卡诺图
- 填写卡诺图
- 卡诺图化简法

如何使逻辑表达式最简?

卡诺图具体步骤参见P111-112

首要蕴含项表(P136)
 假设某逻辑函数的表达式如6-2所示。
 经过化简后如6-3所示
 用表6-2和6-3得到最简积之和表达式