## AI 1103 - Assignment 2

## T. Rohan CS20BTECH11064

Download all python codes from

https://github.com/rohanthota/Assignment\_2/codes /Assignment\_2.py

and latex codes from

https://github.com/rohanthota/Assignment\_2/ Assignment 2.tex

## Question

A box contains 5 red marbles, 8 white marbles and 4 green marbles. One marble is taken out of the box at random. What is the probability that the marble taken out will be

- 1) red?
- 2) white?
- 3) not green?

## Solution

Total number of marbles = 5 + 8 + 4 = 17 marbles.

Here, we define random variable  $X \in \{0, 1, 2\}$  Where,

X = 0 refers to the case of picking a red marble

X = 1 refers to the case of picking a white marble

X = 2 refers to the case of picking a green marble

1) The probability that a red marble was picked, can also be written as Pr(X = 0)

Pr (X = 0) = 
$$\frac{\text{no. of red marbles}}{\text{total no. of marbles}} = \frac{5}{17}$$
  
∴ Pr (X = 0) =  $\frac{5}{17}$  = 0.29412 (0.0.1)

2) The probability that a white marble was picked, can be written as Pr(X = 1)

$$Pr(X = 1) = \frac{\text{no. of white marbles}}{\text{total no. of marbles}} = \frac{8}{17}$$
$$\therefore Pr(X = 1) = \frac{8}{17} = 0.47059 \quad (0.0.2)$$

3) The probability that the marble picked was not green can be written as  $Pr(X \neq 2)$ .

(0.0.3)

We know that  $Pr(X \neq 2) + Pr(X = 2) = 1$ . (0.0.4)

(because they are complimentary events.)

$$Pr(X = 2) = \frac{\text{no. of green marbles}}{\text{total no. of marbles}} = \frac{4}{17}.$$

$$\implies Pr(X = 2) = \frac{4}{17} = 0.23529$$

$$\implies Pr(X \neq 2) = 1 - Pr(X = 2) = 0.76471$$

$$\therefore Pr(X \neq 2) = 0.76471 \quad (0.0.5)$$

TABLES AND GRAPHS

| Conditions | X = 0    | X = 1    | X ≠ 2    |
|------------|----------|----------|----------|
| Pr(X)      | <u>5</u> | <u>8</u> | 13<br>17 |

TABLE 3: Values of theoretical probabilities

| Conditions | X = 0  | X = 1  | X ≠ 2  |
|------------|--------|--------|--------|
| Pr(X)      | 0.2937 | 0.4710 | 0.7647 |

TABLE 3: Probability values after simulations

Drawing the comparison graph with ages on x-axis, probabilities on y-axis, blue bar representing simulations and orange bar representing theoretical value, we get

