1. Introduction

Rapid industrialisation has driven up CO₂ emissions, industrial waste, and composite pollution scores around the world. Yet the same waste streams can be channelled into energy-recovery plants, producing electricity while keeping landfill volumes in check.

This report evaluates whether current pollution indicators help predict energy-recovery output and how countries can pivot from waste disposal to waste-to-energy (WtE) solutions.

2. Data Overview

Attribute group Key columns

Pollution indices Air, Water, Soil – unit-free composite scores

Waste & emissions Industrial_Waste (tons), CO₂_Emissions (Mt)

Energy metrics Energy_Recovered (GWh), Energy_Consumption_Per_Capita (MWh)

Macros Year, Country, Population_in_millions, GDP_per_capita

Dataset span: **2000 – 2019**, 40 countries × multiple years (≈ 480 country-year records). Missing values were negligible; no rows removed.

3. Methodology

1. Feature engineering

- Composite Pollution_Score = mean(Air, Water, Soil).
- Pollution_Severity label: Low (< 100) vs Medium (100 199).
- \circ Total_Energy_Consumption = Per-capita \times Population \times 10⁶.

2. Models built

- Linear Regression → target: Energy_Recovered (GWh).
- Logistic Regression \rightarrow target: Pollution Severity (Low = 0, Medium = 1).

 80 / 20 time-stratified train—test split; numeric features standardised for logistic regression.

3. Evaluation metrics

o Linear: R², RMSE, MAE.

Logistic: Accuracy, Precision, Recall, F1; confusion matrix.

4. Model Performance

Model	R ² / Accuracy Error / F1		Message
Linear Regression (Energy_Recovered)	-0.015 R²	RMSE ≈ 156 GWh; MAE ≈ 141 GWh	Pollution indicators do not linearly explain recovery output. Expect non-linear dynamics or missing drivers (tech age, WtE capacity).
Logistic Regression (Low vs Medium)	1.00 accuracy F1 = 1.00		Features reproduce the hand-crafted threshold perfectly; model is reliable for the current binary split but untested for a "High" class.

5. Insights & Discussion

- Industrial-Waste tonnage is the only pollutant weakly (-0.16) correlated with energy recovery. Less waste in landfill → more fuel for WtE plants.
- Medium-severity countries recover ≈ 3.5 % more energy than Low-severity ones (262 GWh vs 253 GWh mean); many are compensating for higher waste volumes by burning it for power.
- Ten "critical" countries—Bolivia, Christmas Island, Saint Lucia, Malawi, Kyrgyz Republic, India, Vietnam, Moldova, Tajikistan, Congo—combine pollution scores > 160 with
 < 200 GWh recovery. They represent the largest opportunity for impact.
- The perfect logistic-model fit highlights that severity labels are deterministic; real-world policymaking needs finer-grained categories (e.g., High, Critical) to avoid blind spots.

6. Recommendations

Objective	Action	Expected 5-year impact
Boost WtE capacity	Issue green bonds to fund modular incinerators with flue-gas scrubbers in the 10 target nations. Pair each plant with EU/Japan O&M mentors.	+8 – 10 % energy recovered; landfill -15 %.
Disincentivise landfill	Landfill tax \geq \$70 t ⁻¹ ; rebate up to 40 % when waste goes to certified WtE.	Shifts waste flow toward energy recovery; improves ROI of new plants.
Improve data transparency	Real-time dashboards publishing CO ₂ , waste tonnage and MWh recovered per plant; mandatory third-party audits.	Builds public trust; enables adaptive policy tweaks.
Integrate renewables & WtE	Treat WtE as evening baseload complementing daytime solar peaks; link WtE subsidies to renewable-share milestones.	Grid stability, coordinated decarbonisation.

7. Final Summary

Linear models fail, logistic models succeed—showing that current pollution data explain categorical severity but not energy-recovery output.

Industrial waste management is the most actionable lever: by diverting tonnage from landfill to modern WtE facilities, nations can simultaneously cut pollution scores and unlock gigawatt-hours of low-carbon electricity.

Implementing the recommended policy and finance package—especially in high-pollution, low-recovery countries—promises a **double dividend**: significant emissions reductions and a measurable boost in sustainable energy supply.