Classification Metrics

Week 05 - Day 02

Logistic Regression Summary

 $1/(1 + e^{**}-(b0 + b1*x1 + ... + bn*xn))$

f(features) = probability, [0,1]

(using logistic function)

g(probability) \rightarrow {0,1}

(using cutoff, e.g 0.5)

Confusion Matrix

Let's focus on binary classification

Type I error (false positive)

Type II error (false negative)

PREDICTED

	Negative	Positive
Negative	40	10
Positive	5	45

REAL

PREDICTED

	Negative	Positive
Negative	TN	FP
Positive	FN	TP

REAL

Cutoffs and Predictions

Different cutoffs → different predictions

Р		
0.3		
0.45		
0.55		
0.65		
0.72		

Р	Prediction w/cutoff 0.5	
0.3	negative	
0.45	negative	
0.55	positive	
0.65	positive	
0.72	positive	

Р	Prediction w/cutoff 0.5	Prediction w/cutoff 0.4	
0.3	negative	negative	
0.45	negative	positive	
0.55	positive	positive	
0.65	positive	positive	
0.72	positive	positive	

Р	Prediction w/cutoff 0.5	Prediction w/cutoff 0.4	Prediction w/cutoff 0.6
0.3	negative	negative	negative
0.45	negative	positive	negative
0.55	positive	positive	negative
0.65	positive	positive	positive
0.72	positive	positive	positive

Precision and Recall

Information Retrieval

R

Machine Learning

PREDICTED

Neg Pos

Neg 850 50

Pos 10 990

Recall

% of positive real values I can "recall"

(i.e. correctly predict as positive)

Query + Corpus of documents

How many documents can I correctly

retrieve?

Recall = TP/(FN+TP) = TP / REAL_POS_VALUES

PREDICTED

Precision

How many positive test are

really positive?

Query + Corpus of documents

How many documents are really "interesting", out of the ones I'm showing?

Precision = TP/(FP+TP) = TP / POSITIVE_TESTS

Recall and Precision are percentages

([0, 1], [0%, 100%])

Is recall==100% good?

PREDICTED

	Negative	Positive
Negative	0	100
Positive	0	100

REAL

Is precision==100% good?

PREDICTED

	Negative	Positive
Negative	100	0
Positive	99	1

REAL

Precision 14/55 Recall

Different cutoffs

Different predictions

Different precisions & recalls

Models comparison

recall

Precision/Recall = Yin & Yang

Finding the "best" precision/recall

Business decision

Disease: which one is better?

PREDICTED

PREDICTED

	Neg	Pos
Neg	800	200
Pos	200	800

	Neg	Pos
Neg	998	2
Pos	400	600

Giving a loan: which one is better?

PREDICTED

PREDICTED

	Neg	Pos
Neg	800	200
Pos	200	800

	Neg	Pos
Neg	998	2
Pos	400	600

F1-score = $2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$

Specificity and Sensitivity

Used in Medicine

- Sensitivity
 - Recall!
 - True positive rate
 - TP / REAL_POSITIVE
- Specificity:
 - True negative rate
 - TN / REAL_NEGATIVE

Specificity = TN/(TN+FP) = TN / REAL_NEGATIVE

PREDICTED

		Neg	Pos
REAL	Neg	TN	FP
	Pos	FN	TP

False positive rate

ROC and AUC

ROC CURVE

Area Under the (Roc) Curve = AUC

rate

AUC = AUC (blue) / ALL THE AREA (yellow)

"Cutoff - agnostic" Metrics

Р	Prediction w/cutoff 0.5	Prediction w/cutoff 0.4	Prediction w/cutoff 0.6
0.3			
0.45			
0.55			
0.65			
0.72			

- Related to a single cutoff
 - Precision / recall
 - Specificity / sensitivity

- "Cutoff-Agnostic":
 - AUC

AUC works even if your dataset is unbalanced!

Summary

Different cutoffs = different predictions

- Different cutoffs = different predictions
- Best cutoff = business problem

- Different cutoffs = different predictions
- Best cutoff = business problem
- Precision/Recall ML

- Different cutoffs = different predictions
- Best cutoff = business problem
- Precision/Recall ML
- Sensitivity/specificity Medicine

- Different cutoffs = different predictions
- Best cutoff = business problem
- Precision/Recall ML
- Sensitivity/specificity Medicine
- Roc curve

- Different cutoffs = different predictions
- Best cutoff = business problem
- Precision/Recall ML
- Sensitivity/specificity Medicine
- Roc curve
- AUC cutoff-agnostic and good for unbalanced datasets