Ficha 1- Noções básicas de topologia na recta real.

(indicações de resolução e correcções)

Exercício 1

Determine o interior, exterior, a fronteira dos seguintes subconjuntos de \mathbb{R} :

- (a) $A =]-1, \sqrt{2}]$
- (b) $B = \{e^{-n} : n \in \mathbb{N}\} \cup \{(1 + \frac{3}{n})^n : n \in \mathbb{N}\}$
- (c) $C =]0,1[\cap \mathbb{Q}]$

(d)
$$D = \left\{ \frac{1}{n + \sqrt{n}} : n \in \mathbb{N} \right\} \cap \mathbb{Q}$$

Indicações:

(b) O conjunto B é a união do conjunto de termos de duas sucessões estritamente monótonas convergindo para 0 e e^3 respectivamente. Não possui pontos interiores pois todos os seus elementos são pontos isolados. Temos

$$Fr(B) = B \cup \{0, e^3\}$$

(c) C não possui pontos interiores. Com efeito, fixado um número real r, qualquer vizinhança $]r-\epsilon,r+\epsilon[$ de r contem números racionais e irracionais distintos de r. Por outro lado, podemos concluir deste argumento que

$$Fr(C) = [0, 1]$$

Finalmente, resulta da decomposição

$$\mathbb{R} = int(C) \cup Fr(C) \cup Ext(C)$$

que
$$Ext(C) =]-\infty, 0[\cup]1, +\infty[.$$

(d) (um pouco mais difícil...) O conjunto D é constituído por números da forma $\frac{1}{n+\sqrt{n}}$ em que n é natural e que também são racionais. Para tal, é necessário e suficiente que n seja um quadrado perfeito, ou seja, $n=m^2$ em que $m\in\mathbb{N}$. Assim,

$$D = \left\{ \frac{1}{m^2 + m} : m \in \mathbb{N} \right\}$$

O seu interior é vazio e temos

$$Fr(D) = D \cup \{0\}$$

(note que D é composto pelos termos de uma sucessão que converge para 0 por valores diferentes de 0).

Exercício 2

(a) Considere a função real de variável real

$$f(x) = \ln(-x^2 + 2x)$$

e seja D o seu domínio, isto é o maior subconjunto de $\mathbb R$ em que podemos definir a expressão f. Verifique que D é um conjunto limitado e determine o seu infímo e o seu supremo. Indique se D possui mínimo ou máximo.

(b) Mesma questão para a função

$$g(x) = \sqrt[6]{\pi^2 - x^2} \cdot \tan(x)$$

Indicações:

Justique que $D_f = \{x : -x^2 + 2x > 0\} =]0, 2[$ e que $D_g = [-\pi, \pi] \setminus \{-\frac{\pi}{2}, \frac{\pi}{2}\}.$

Exercício 3

- (a) Considere o conjunto de números reais $A = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$ (conjunto dos termos da sucessão $u_n = 1/n$). Verifique que $1 \in A$ mas que 1 não é ponto de acumulação de A. Justifique que 0, embora não pertencendo a A, é ponto de acumulação de A.
 - (b) Determine o derivado dos conjuntos considerados no Exercício 1.

Indicações:

Para verificar que 1 não é ponto de acumulação de A considere, por exemplo, a vizinhança $V_{1/3}(1)$, que não contem qualquer elemento de A distinto do próprio 1. Para verificar que 0 é ponto de acumulação, observe que, dado $\epsilon > 0$, existe $n \in \mathbb{N}$ tal que $0 < n^{-1} < \epsilon$ pelo que $V_{\epsilon}(0) \cap A \neq \emptyset$.

Exercício 4

Seja X um subconjunto de \mathbb{R} . Das seguintes afirmações indique, justificando, quais são verdadeiras (recordamos que para mostrar que uma afirmação é falsa deve ser exibido um contra-exemplo).

- (a) Se $x \in Fr(X)$ então $x \in X'$.
- (b) Se x é ponto isolado de X então $x \in Fr(X)$.
- (c) Fr(Ext(X)) = Fr(Int(X)) = Fr(X).
- (d) Se X é fechado então X não é aberto.
- (e) X' é um conjunto fechado.

Indicações:

(a), (c) e (d) são falsas (considere respectivamente: $X = \{0\}$; $X = \mathbb{Q}$; $X = \mathbb{R}$).

Pode provar (e) começando por verificar que, se $x \in \mathbb{R} \setminus (X')$, então existe uma vizinhança $V = |x - \epsilon, x + \epsilon|$ tal que

$$(V \setminus \{x\}) \cap X = \emptyset$$

Conclua que $\mathbb{R}\setminus(X')$ é aberto (e que, portanto, X' é fechado).

Exercício 5

Considere os conjuntos

$$A = \left\{ x \in \mathbb{R} : \frac{\ln(x^2 + 1)}{x^2 - 16} \ge 0 \right\} \quad \text{e} \quad B = \left\{ x \in \mathbb{R} : |x^2 - 18| \le 18 \right\}$$

- (a) Exprima A e B sob a forma de união de intervalos.
- (b) Determine a aderência de $A\cap B$. Indique justificando se $A\cap B$ tem infímo, mínimo, supremo e máximo.

Indicações:

Note que
$$A=]-\infty, -4[\cup\{0\}\cup]4, +\infty[$$
 e que $B=[-6,6].$

Exercício 6

Se possível, dê um exemplo de um subconjunto X de \mathbb{R} tal que:

- (a) int(X) =]0,1[e $X' = [0,1] \cup \{e\}$
- (b) $Ext(X) =]-\infty, 0[$ e $int(X) = \emptyset$
- (c) $X' = \mathbb{Z}$
- (d) X' =]0,1[
- (e) Fr(X) = [0, 1]

Indicações:

- (c) Considere $X = \left\{ k + \frac{1}{n} : k \in \mathbb{Z}, n \in \mathbb{N} \right\};$
- (d) Impossível (tenha em conta a alínea (e) do exercício 4).
- (e) $X = [0, 1] \cap \mathbb{Q}$

Exercício 7

Seja D o domínio da função

$$f(x) = \frac{\sqrt{2 - x^2} \cdot \ln(x + 1)}{\sin(x)}$$

e seja A o conjunto dos termos da sucessão $u_n = \frac{4}{3} \cdot \cos(n\pi) + \frac{1}{n}$. Escreva D como uma união de intervalos e determine os pontos de acumulação de $A \cup D$.

Indicações: Comece por verificar que $D=]-1,\sqrt{2}]\backslash\{0\}$ e que o conjunto dos termos da sucessão "acumula-se" nos pontos $-\frac{4}{3}$ e $\frac{4}{3}$.

Problema 8

Considere a função contínua $f:]0, +\infty[\mapsto \mathbb{R},$

$$f(x) = \frac{\sin(x)}{x}$$

Mostre que o contradomínio de f é um intervalo limitado que não é aberto nem fechado.

Indicações: Comece por justificar que f(x) < 1 para todo o x > 0 e que 1 é o supremo do contradomínio de f (utilize para tal o limite notável da função seno e uma majoração clássica). Argumente que f tem mínimo m no intervalo $[\pi, 2\pi]$ e que, de facto, m é o mínimo absoluto desta função em $]0, +\infty[$. Conclua que o contradomínio de f é o intervalo [m, 1[.