

Национальный исследовательский университет ИТМО (Университет ИТМО)

Факультет систем управления и робототехники

Дисциплина: Теория автоматического управления Отчет по лабораторной работе №6.

«Устойчивость систем с запаздыванием» Вариант 20

> Студент: Евстигнеев Д.М. Группа: R33423 Преподаватель: Парамонов А.В.

Санкт-Петербург 2021-2022

• Цель работы

Анализ устойчивости замкнутых линейных систем с запаздыванием.

• Ход работы

No	a_2	a_1	a_0	b_1	b_0
20	1	9	7	4	6

Система без запаздывания:

$$y'' + 9y' + 7y = 4u' + 6u$$

ПФ разомкнутой системы:

$$W(s) = K * \frac{4s + 6}{s^2 + 9s + 7}$$

ПФ замкнутой системы:

$$W(s) = K * \frac{4s+6}{s^2+9s+7+4s+6} = K * \frac{4s+6}{s^2+13s+13}$$

Частотная ПФ разомкнутой системы:

$$W(j\omega) = K * \frac{4wj + 6}{-\omega^2 + 9\omega j + 7}$$

$$= K * \frac{30\omega^2 + 42}{\omega^4 + 67\omega^2 + 49} - K * \frac{j(4\omega^3 + 26\omega)}{\omega^4 + 67\omega^2 + 49}$$

АЧХ разомкнутой системы:

$$A(\omega) = K * \sqrt{\left(\frac{30\omega^2 + 42}{\omega^4 + 67\omega^2 + 49}\right)^2 + \left(\frac{4\omega^3 + 26\omega}{\omega^4 + 67\omega^2 + 49}\right)^2}$$

ФЧХ разомкнутой системы:

$$\phi(\omega) = -arctg\left(\frac{4\omega^3 + 26\omega}{30\omega^2 + 42}\right)$$

К=1

АЧХ и ФЧХ:

Запас устойчивости по фазе и амплитуде, критическое значение запаздывания:

Field A	Value
→ GainMargin	[]
GMFrequency	[]
H Phase Margin	[]
PMFrequency	[]
🚻 DelayMargin	[]
→ DMFrequency	[]
✓ Stable	1

Как мы видим, все искомые значения равны бесконечности.

K=5 АЧХ и ФЧХ:

3

4

5

-1.5

Запас устойчивости по фазе и амплитуде, критическое значение запаздывания:

Field 📤	Value
□ GainMargin	[]
→ GMFrequency	[]
Hase Margin	111.9663
PMFrequency	18.3173
elayMargin DelayMargin	0.1067
■ DMFrequency	18.3173
✓ Stable	1

Запас устойчивости по фазе = 111.9663 Запас устойчивости по амплитуде = ∞ Критическое значение запаздывания = 0.1067

K=10 АЧХ и ФЧХ:

АФЧХ:

ЛАФЧХ:

Запас устойчивости по фазе и амплитуде, критическое значение запаздывания:

Field 📤	Value
□ GainMargin	[]
→ GMFrequency	[]
Hase Margin	100.8009
PMFrequency	39.1831
elayMargin	0.0449
→ DMFrequency	39.1831
✓ Stable	1

Запас устойчивости по фазе = 100.8009 Запас устойчивости по амплитуде = ∞ Критическое значение запаздывания = 0.0449

График:

Формируем передаточную функцию разомкнутой и замкнутой системы с запаздыванием:

ПФ разомкнутой системы:

$$W(s) = K * \frac{4s + 6}{s^2 + 9s + 7} * e^{-\tau s}$$

ПФ замкнутой системы:

$$W(s) = K * \frac{(4s+6)e^{-\tau s}}{s^2 + 9s + 7 + (4s+6)e^{-\tau s}}$$

 $\tau = 1$ АЧХ и ФЧХ:

Запас устойчивости по фазе и амплитуде, критическое значение запаздывания:

→ GainMargin	1x48 double
GMFrequency	1x48 double
PhaseMargin	[]
PMFrequency	[]
DelayMargin	[]
DMFrequency	[]
✓ Stable	1
s.GainMargin	
1	
1 1.9539	

Field 📤

Value

Запас устойчивости по фазе = ∞ Запас устойчивости по амплитуде = 1.9539 Критическое значение запаздывания = ∞

 $\tau = 5$ АЧХ и ФЧХ:

ЛАФЧХ:

Запас устойчивости по фазе и амплитуде, критическое значение запаздывания:

Запас устойчивости по фазе = ∞ Запас устойчивости по амплитуде = 1.3116 Критическое значение запаздывания = ∞

График:

 $\tau = 10$ АЧХ и ФЧХ:

АФЧХ:

ЛАФЧХ:

Запас устойчивости по фазе и амплитуде, критическое значение запаздывания:

Field A	Value
□ GainMargin	1x42 double
GMFrequency	1x42 double
H Phase Margin	[]
PMFrequency	[]
🛨 Delay Margin	[]
→ DMFrequency	[]
✓ Stable	1

	s.GainMargir
	1
1	1.2115

Запас устойчивости по фазе = ∞
Запас устойчивости по амплитуде = 1.2115
Критическое значение запаздывания = ∞

Выведем аналитически зависимость критического запаздывания от коэффициента усиления для заданной системы:

Амплитуда системы с запаздыванием при критических значениях коэффициента усиления и запаздывания равна единице, получаем:

$$A(\omega) = K * \sqrt{\left(\frac{30\omega^2 + 42}{\omega^4 + 67\omega^2 + 49}\right)^2 + \left(\frac{4\omega^3 + 26\omega}{\omega^4 + 67\omega^2 + 49}\right)^2} = 1$$

$$K = \frac{1}{\sqrt{\left(\frac{30\omega^2 + 42}{\omega^4 + 67\omega^2 + 49}\right)^2 + \left(\frac{4\omega^3 + 26\omega}{\omega^4 + 67\omega^2 + 49}\right)^2}}$$

Input interpretation

solve
$$k = \frac{1}{\sqrt{\left(\frac{30 \, w^2 + 42}{w^4 + 67 \, w^2 + 49}\right)^2 + \left(\frac{4 \, w^3 + 26 \, w}{w^4 + 67 \, w^2 + 49}\right)^2}}$$
 for w

Results

Approximate fo

$$w = -\frac{\sqrt{16k^2 - \sqrt{256k^4 - 2000k^2 + 4293} - 67}}{\sqrt{2}}$$

$$w = \frac{\sqrt{16k^2 - \sqrt{256k^4 - 2000k^2 + 4293} - 67}}{\sqrt{2}}$$

$$w = -\frac{\sqrt{16k^2 + \sqrt{256k^4 - 2000k^2 + 4293} - 67}}{\sqrt{2}}$$

$$w = \frac{\sqrt{16k^2 + \sqrt{256k^4 - 2000k^2 + 4293} - 67}}{\sqrt{2}}$$

Выберем уравнение с положительной w, с максимальным диапазоном решений в области действительных значений. В моем случае это уравнение 4.

$$\tau_{cr} = \frac{\pi + \phi(\omega)}{w} \; , \qquad w = \frac{\pi - arctg\left(\frac{4\omega^3 + 26\omega}{30\omega^2 + 42}\right)}{\tau_{cr}}$$

Подставим найденную зависимость частоты от коэффициента усиления в уравнение зависимости запаздывания от частоты, чтобы найти аналитическую зависимость запаздывания от коэффициента усиления:

Input interpretation
$$t = \frac{\pi - \tan^{-1}(\frac{4w^3 + 26w}{30w^2 + 42})}{w} \text{ where } w = \frac{\sqrt{16k^2 + \sqrt{256k^4 - 2000k^2 + 4293} - 67}}{\sqrt{2}}$$
Result
$$t = \left(\sqrt{2}\left(\pi - \tan^{-1}\left(\left(\sqrt{2}\left(16k^2 + \sqrt{256k^4 - 2000k^2 + 4293} - 67\right)^{3/2} + 13\sqrt{2}\sqrt{16k^2 + \sqrt{256k^4 - 2000k^2 + 4293} - 67}\right)\right) + \left(15\left(16k^2 + \sqrt{256k^4 - 2000k^2 + 4293} - 67\right) + 42\right)\right)\right) / \left(16k^2 + \sqrt{256k^4 - 2000k^2 + 4293} - 67\right) + 42\right)$$

Построим график зависимости критического запаздывания от коэффициента усиления и определить область устойчивости:

Вывод: В ходе выполнения данной работы был произведен анализ устойчивости замкнутых линейных систем с запаздыванием. Были найдены критические значения запаздывания и коэффициента усиления при различных значениях τ и K. Помимо этого, была получена зависимость критического запаздывания от коэффициента усиления, найдена область устойчивости.