Math 628: Functions of Complex Variables

Darshan Patel

Spring 2018

Contents

1	Lecture 1	2
2	Lecture 2	4
3	Lecture 3	7
4	Lecture 4	11
5	Lecture 5	14
6	Lecture 6	16
7	Lecture 7	18
8	Lecture 8	21
9	Lecture 9	22
10	Lecture 10	26
11	Lecture 11	28
12	Lecture 12	32
13	Lecture 13	36
14	Lecture 14	40
15	Lecture 15	43
16	Midterm Practice Questions	43
17	Lecture 16	49
18	Lecture 17	51

19 Lecture 18	53
20 Lecture 19	56
21 Lecture 20	58
22 Lecture 21	61
23 Lecture 22	62
24 Lecture 23	64
25 Lecture 24	66
26 Lecture 25	68
27 Lecture 26	70

1 Lecture 1

Let a + bi where $a, b \in \mathbb{R}$ and $i^2 + 1 = 0$. Let $z_1 = a_1 + b_1i$ and $z_2 = a_2 + b_2i$. Then

$$z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i$$

a is the real part $(a = \text{Re}\{z\})$ and b is the imaginary part $(b = \text{Im}\{z\})$.

$$z_1 - z_2 = (a_1 - a_2) + (b_1 - b_2)i$$

$$z_1 z_2 = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1)i$$

Let z = a + bi, its complex conjugate is $\overline{z} = a - bi$.

Modulus: $|z| = \sqrt{a^2 + b^2}$, $|z|^2 = a^2 + b^2$

$$z \cong z = a^2 + b^2 = |z|^2$$

$$\frac{1}{3+4i} = \frac{1}{3+4i} \cdot \frac{3-4i}{3-4i} = \frac{3-4i}{25} = \frac{3}{25} + \frac{-4}{25}i$$

Note: 0 = 0 + 0i

For $a, b \neq 0$,

$$\frac{1}{z} = \frac{1}{a+bi} = \frac{1}{a+bi} \cdot \frac{a-bi}{a-bi} = \frac{a-bi}{a^2+b^2} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i$$

 $\frac{1}{z}$ is well defined if and only if $z \neq 0$ $(a, b \neq 0)$.

$$z \cdot \frac{1}{z} = (a+bi)(\frac{a-bi}{a^2+b^2}) = \frac{a^2+b^2}{a^2+b^2} = 1$$

$$\frac{z_1}{z_2} = \frac{a_1 + b_1 i}{a_2 + b_2 i} = \frac{a_1 + b_1 i}{a_2 + b_2 i} \cdot \frac{a_2 - b_2 i}{a_2 - b_2 i} = \frac{a_1 a_2 + b_1 b_2}{a_2^2 + b_2^2} + \frac{a_2 b_1 - a_1 b_2}{a_2^2 + b_2^2} i$$

Let z = a + bi and $\overline{z} = a - bi$. Then $z + \overline{z} = 2a$

$$\operatorname{Re}\{z\} = a = \frac{1}{2}(z + \overline{z})$$

Furthermore, $z - \overline{z} = 2bi$

$$\operatorname{Im}\{z\} = b = \frac{1}{2i}(z - \overline{z})$$
$$a^2 \le a^2 + b^2 \to a \le \sqrt{a^2 + b^2}$$
$$\operatorname{Re}\{z\} \le |z| \quad \operatorname{Im}\{z\} \le |z|$$

Note that if $z_1 = a_1 + b_1 i$ and $z_2 = a_2 + b_2 i$,

$$|z_1 z_2| = |z_1||z_2|$$

$$\overline{z_1 z_2} = (a_1 a_2 - b_1 b_2) - (a_1 b_2 + a_2 b_1)i$$

$$\overline{z_1 z_2} = \overline{z_1 z_2} = (a_1 - b_1 i)(a_2 - b_2 i) = (a_1 a_2 - b_1 b_2) - (a_1 b_2 + a_2 b_1)i$$

$$(\overline{z_1})(\overline{z_2}) = (a_1 - b_1 i)(a_2 - b_2 i)$$

Similarly, $\overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{z_1}{z_2}}$.

$$|z_1 z_2|^2 = (z_1 z_2)|(z_1 z_2)|$$

$$= z_1 z_2|z_1||z_2|$$

$$= z_1|z_1|z_2|z_2|$$

$$= |z_1|^2|z_2|^2$$

$$|z_1 z_2|^2 = |z_1||z_2|$$

Note:

$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$

$$z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i \to \overline{z_1 + z_2} = (a_1 + a_2) - (b_1 + b_2)i$$

$$\overline{z_1} + \overline{z_2} = (a_1 - b_1i) + (a_2 - b_2i) = (a_1 + a_2) - (b_1 + b_2)i$$

Therefore

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

Note:
$$\overline{(\overline{z})} = z$$
 and $|z| = |\overline{z}|$.

Preface:
$$\operatorname{Re}\{z\} = \frac{1}{2}(z+\overline{z}) \to 2\operatorname{Re}\{z_1\overline{z_2}\} = z_1\overline{z_2} + \overline{(z_1\overline{z_2})} = z_1\overline{z_2} + \overline{z_1}z_2$$

$$|z_{1} + z_{2}|^{2} = (z_{1} + z_{2})\overline{(z_{1} + z_{2})}$$

$$= (z_{1} + z_{2})(\overline{z_{1}} + \overline{z_{2}})$$

$$= z_{1}\overline{z_{1}} + z_{2}\overline{z_{2}} + z_{1}\overline{z_{2}} + \overline{z_{1}}z_{2} = |z_{1}|^{2} + |z_{2}|^{2} + 2\operatorname{Re}\{z_{1}\overline{z_{2}}\}$$

$$< |z_{1}|^{2} + |z_{2}|^{2} + 2|z_{1}\overline{z_{2}}|$$

Hence

$$|z_1 + z_2|^2 \le |z_1|^2 + |z_2|^2 + 2|z_1||z_2|$$

Furthermore,

$$|z_1 + z_2|^2 \le (|z_1| + |z_2|)^2 \to |z_1 + z_2| \le |z_1| + |z_2|$$

Prove: $|z_1 + z_2|^2 = |z_1 - z_2|^2 = 2|z_1|^2 + 2|z_2|^2$.

$$|z_{1} + z_{2}|^{2} + |z_{1} - z_{2}|^{2} = (z_{1} + z_{2})\overline{(z_{1} + z_{2})} + (z_{1} - z_{2})\overline{(z_{1} - z_{2})}$$

$$= (z_{1} + z_{2})(\overline{z_{1}} + \overline{z_{2}}) + (z_{1} - z_{2})(\overline{z_{1}} - \overline{z_{2}})$$

$$= z_{1}\overline{z_{1}} + z_{2}\overline{z_{2}} + \overline{z_{2}}z_{1} + z_{1}\overline{z_{1}} + z_{2}\overline{z_{2}} - z_{1}\overline{z_{2}} - z_{2}\overline{z_{1}}$$

$$= |z_{1}|^{2} + |z_{1}|^{2} + |z_{2}|^{2} + |z_{2}|^{2}$$

$$= 2(|z_{1}|^{2} + |z_{2}|^{2})$$

Suppose $|z_1| < 1$ and $|z_2| < 1$. Prove $\left| \frac{z_1 - z_2}{1 - z_1 \overline{z_2}} \right| < 1$ and $\left| \frac{z_1 - z_2}{1 - z_1 \overline{z_2}} \right| = 1$ if either $|z_1| = 1$ or $|z_2| = 1$.

$$\left| \frac{z_1 - z_2}{1 - z_1 \overline{z_2}} \right|^2 < 1$$

$$|z_1 - z_2|^2 < |1 - z_1 \overline{z_2}|^2$$

$$0 < |1 - z_1 \overline{z_2}|^2 - |z_1 - z_2|^2$$

$$= (1 - z_1 \overline{z_2})(1 - \overline{z_1}z_2) - (z_1 - z_2)(\overline{z_1} - \overline{z_2})$$

$$= 1 - z_1 \overline{z_2} - \overline{z_1}z_2 + z_1 \overline{z_1}z_2 \overline{z_2} - z_1 \overline{z_1} - z_2 \overline{z_2} + z_1 \overline{z_2} + \overline{z_1}z_2$$

$$= 1 - |z_1|^2 - |z_2|^2 + |z_1|^2 |z_2|^2$$

$$= (1 - |z_1|^2)(1 - |z_2|^2)$$

 $0 < (1 - |z_1|^2)(1 - |z_2|^2)$

because both $|z_1| < 1$ and $|z_2| < 1$

If either $|z_1| = 1$ or $|z_2| = 1$, then

$$(1 - |z_1|^2)(1 - |z_2|^2) = 0 \to \left| \frac{z_1 - z_2}{1 - z_1 \overline{z_2}} \right| = 1$$

2 Lecture 2

Prove that $||z_1| - |z_2|| \le |z_1 - z_2|$.

$$|z_1| = |z_1 - z_2 + z_2| \le |z_1 - z_2| + |z_2| \to |z_1| - |z_2| \le |z_1 - z_2|$$

$$|z_2| = |z_2 - z_1 + z_1| \le |z_2 - z_1| + |z_1| \to |z_2| - |z_1| \le |z_1 - z_2|$$

$$||z_1| - |z_2|| \le |z_1 - z_2|$$

Let X be a nonempty set. A map $d: X \times X \to \mathbb{R}$ is called a metric on X if

- 1. $d(x,y) \ge 0 \ \forall x,y \in X$
- $2. d(x,y) = 0 \iff x = y$
- 3. $d(x,y) = d(y,x) \forall x, y \in \mathbb{R}$
- 4. $d(x,z) \le d(x,y) + d(y,z), x, y, z \in X$

If so, then (X, d) is called a metric space.

Let \mathbb{C} be the set of all complex numbers. Define $d(z_1, z_2) = |z_1 - z_2|$ where $z_1, z_2 \in \mathbb{C}$.

1.
$$|z_1 - z_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \ge 0$$
 and $|z_1 - z_2| = 0 \iff z_1 - z_2 = 0 \iff z_1 = z_2$

- 2. $|z_1 z_2| = |z_2 z_1|$
- 3. $|z_1 z_3| = |z_1 z_2 + z_2 z_3| \le |z_1 z_2| + |z_2 z_3|$ Hence $d(z_1, z_3) \le d(z_1, z_2) + d(z_2, z_3)$

Therefore $(\mathbb{C}, |\cdot|)$ is a metric space.

A complex number is an ordered pair of real numbers z = (a, b) where $a = \text{Re}\{z\}$ and $b = \text{Im}\{z\}$. We say (a, 0) is purely real and (0, b) is purely imaginary. Note that i = (0, 1).

Let $z_1 = (a_1, b_1)$ and $z_2 = (a_2, b_2)$. Then

$$z_1 + z_2 = (a_1 + a_2, b_1 + b_2)$$

For each z = (a, b), $\exists -z = (-a, -b)$ such that z + (-z) = 0.

Note: 0 = (0, 0) and 1 = (1, 0).

 $\forall z_1, z_2 \in \mathbb{C}, z_1 + z_2 \in \mathbb{C}.$

 $\forall z_1, z_2, z_3 \in \mathbb{C}, (z_1 + z_2) + z_3 = z_1 + (z_2 + z_3).$

 $\forall z_1, z_2 \in \mathbb{C}, z_1 + z_2 = z_2 + z_1.$

 $\exists 0 \in \mathbb{C} \text{ such that } z1 = 1z = z \forall z \in \mathbb{C}.$

For each $z \in \mathbb{C}$ such that $z \neq 0, \exists z^{-1} \in \mathbb{C}$ such that $zz^{-1} = 1$.

If $z \neq 0$ then $(a, b) \neq 0$ and so $a \neq 0$ and $b \neq 0$.

If z = (a, b) where $z \neq 0$, then $z^{-1} = \frac{1}{z} = \left(\frac{a}{a^2 + b^2}, -\frac{b}{a^2 + b^2}\right)$. Therefore $zz^{-1} = (1, 0)$. $(C/\{0\}, \cdot)$ is an abelian group.

$$z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3$$

The set of all complex numbers $(\mathbb{C}, +, \cdot)$ is a field.

We write z = (a, b) as z = a + bi where $i^2 = -1$.

There exists a 1-1 correspondence between all points on the plane and the set of all complex numbers (seen as ordered pairs of real numbers).

By \mathbb{C} , we denote the complex plane where the real axis is horizontal and the imaginary

axis is vertical. By Δ , we denote the open unit disc = $\{z \in \mathbb{C} | |z| < 1\}$. By $\hat{\mathbb{C}}$, we denote $\mathbb{C} \bigcup \{\infty\}$, a Riemann sphere.

Note that \mathcal{U} is the upper half plane $=z\in\mathbb{C}:\operatorname{Im}\{z\}>0.$

Associated to each complex number z=(a,b) there exists a complex conjugate $\overline{z}=(a,-b)$ and its modulus $|z|=\sqrt{a^2+b^2}$.

Describe the set of points:

1.
$$|z+2| = |z-1|$$

$$|z + 2|^{2} = |z - 1|^{2}$$

$$z = x + yi$$

$$|(x + z) + yi|^{2} = |(x - 1) + yi|^{2}$$

$$(x + 2)^{2} + y^{2} = (x - 1)^{2} + y^{2}$$

$$(x + 2)^{2} = (x - 1)^{2}$$

$$x = -\frac{1}{2}$$

2.
$$|z - 1| = \text{Re}\{z\} + 1$$

$$\sqrt{(x-1)^2 + y^2} = x + 1$$
$$(x-1)^2 + y^2 = (x+1)^2$$
$$y^2 = 4x$$

- 3. $Re\{z\} \ge 4$, this is $x \ge 4$
- 4. |z-i| < 2, this is a open disc of radius 2

5.
$$|z-1| = |z+i|$$

$$(x-1)^{2} + y^{2} = x^{2} + (y+1)^{2}$$
$$y = -x$$

- 6. $|z| \ge 6$, this is the region outside of an open disc of radius 6
- 7. |z| = a, a circle of radius a and centered at the origin
- 8. |z| < a, an open disk of radius a
- 9. $|z| \le a$, a closed disk of radius a

10.
$$|z| = \text{Re}\{z\} + 2$$

$$\sqrt{x^2 + y^2} = x^2 + 2$$
$$x^2 + y^2 = (x^2 + 2)^2$$
$$y^2 = 4x + 4$$

11. |z-1+i|=3, this is a circle with center (1,-1) and radius 3

Let z = (x, y) be a point in a plane with length r and angle θ to the real axis. Then

$$r = |z| = \sqrt{x^2 + y^2}$$

$$\cos \theta = \frac{x}{r} \to x = r \cos \theta$$

$$\sin \theta = \frac{y}{r} \to y = r \sin \theta$$

$$z = x + yi = r(\cos \theta + i \sin \theta)$$

Let a unit surface be represented as follows: $\hat{S} = \{x \in \mathbb{C} : |z| = 1\} = \cos \theta + i \sin \theta$.

$$e^{i\theta} = \cos \theta + i \sin \theta$$
$$z = x + yi = r(\cos \theta + i \sin \theta) = re^{i\theta}$$

3 Lecture 3

Let $\frac{x-yi}{x+yi}=a+bi$. Prove that $a^2+b^2=1$. Let z=x+yi and $\alpha=a+bi$.

$$\frac{\overline{z}}{z} = \alpha$$

$$\overline{\alpha} = \frac{\overline{z}}{\left(\frac{\overline{z}}{z}\right)}$$

$$= \frac{z}{\overline{z}}$$

$$\alpha \overline{\alpha} = \frac{\overline{z}}{z} \cdot \frac{z}{\overline{z}}$$

$$= 1$$

$$|\alpha|^2 = 1$$

$$a^2 + b^2 = 1$$

Let z = a + bi. Define $\psi(z) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.

• $\psi(z+w) = \psi(z) + \psi(w)$ Let w = x + yi and z = a + bi.

$$\psi(w) = \begin{bmatrix} x & -y \\ y & x \end{bmatrix}$$

$$\psi(z+w) = \psi((a+x) + (b+y)i)$$

$$= \begin{bmatrix} a+x & -b-y \\ b+y & a+x \end{bmatrix}$$

$$= \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} x & -y \\ y & x \end{bmatrix}$$

$$= \psi(z) + \psi(w)$$

$$\bullet \ \psi(zw) = \psi(z)\psi(w)$$

$$zw = (ax - by) + (bx + ay)i$$

$$\psi(zw) = \begin{bmatrix} ax - by & -bx - ay \\ bx + ay & ax - by \end{bmatrix}$$

$$\psi(z)\psi(w) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} x & -y \\ y & x \end{bmatrix}$$

$$= \begin{bmatrix} ax - by & -bx - ay \\ bx + ay & ax - by \end{bmatrix}$$

$$= \psi(zw)$$

- $\bullet \ \psi(1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- $\psi(\lambda z) = \lambda \psi(z)$ if λ is real

$$\lambda z = \lambda a + \lambda bi$$

$$\psi(\lambda z) = \begin{bmatrix} \lambda a & -\lambda b \\ \lambda b & \lambda a \end{bmatrix}$$

$$= \lambda \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

$$= \lambda \psi(z)$$

•
$$\psi(\overline{z}) = (\psi(z))^T$$

$$\psi(z) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$
$$\overline{z} = a - bi$$
$$\psi(\overline{z}) = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$
$$= (\psi(z))^T$$

•
$$\psi\left(\frac{1}{z}\right) = (\psi(z))^{-1}$$

$$z = a + bi$$

$$\frac{1}{z} = \frac{a - bi}{a^2 + b^2}$$

$$\psi\left(\frac{1}{z}\right) = \frac{1}{a^2 + b^2} \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

$$\psi(z) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

$$(\psi(z))^{-1} = \frac{1}{a^2 + b^2} \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

$$= \psi\left(\frac{1}{z}\right) \text{ if } z \neq 0$$

• z is real $\iff \psi(z) = (\psi(z))^T$

$$\psi(z) = (\psi(z))^{T}$$

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

$$-b = b$$

$$b = 0$$

$$z \text{ is real}$$

• $|z|=1\iff \psi(z)$ is orthogonal. (Matrix A is orthogonal if $A^T=A^{-1}\iff AA^T=AA^{-1}=I$)

$$z = a + bi$$

$$|z| = a^{2} + b^{2} = 1$$

$$\psi(z) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

If $\psi(z)$ is orthogonal

$$(\psi(z))^{-1} = (\psi(z))^{T}$$

$$\frac{1}{a^{2} + b^{2}} \begin{bmatrix} a & b \\ -b & a \end{bmatrix} = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

$$a^{2} + b^{2} = 1$$

$$|z| = 1$$

Let $\varphi : \mathbb{C} \to \Lambda$ where $\Lambda = \left\{ \begin{bmatrix} a & -b \\ b & a \end{bmatrix} : a, b \in \mathbb{R} \right\}$ and $\psi(z) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.

- $\psi(z+w) = \psi(z) + \psi(w)$
- $\psi(zq) = \psi(z)\psi(w)$
- $\bullet \ \psi(1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- $\bullet \ \psi(0) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
- $\psi(z^{-1}) = (\psi(z))^{-1}$ if $z \neq 0$

Let $r = 1 \ (|z| = 1)$.

$$(\cos \theta + i \sin \theta)^{2} = (\cos^{2} \theta - \sin^{2} \theta) + i(2 \sin \theta \cos \theta)$$

$$= \cos 2\theta + i \sin 2\theta$$

$$(\cos \theta + i \sin \theta)^{3} = (\cos \theta + i \sin \theta)^{2} (\cos \theta + i \sin \theta)$$

$$= (\cos 2\theta + i \sin 2\theta) (\cos \theta + i \sin \theta)$$

$$= (\cos 2\theta \cos \theta - \sin 2\theta \sin \theta) + i(\sin 2\theta \cos \theta + \cos 2\theta \sin \theta)$$

$$= \cos(2\theta + \theta) + i \sin(2\theta + \theta)$$

$$= \cos 3\theta + i \sin 3\theta$$

De Moivre's Theorem:

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

where n is a postive integer.

Suppose n is a positive integer.

$$(\cos \theta + i \sin \theta)^{-n} = \frac{1}{(\cos \theta + i \sin \theta)^n}$$
$$= \frac{1}{\cos n\theta + i \sin n\theta}$$
$$= \cos n\theta - i \sin n\theta$$
$$= \cos(-n\theta) + i \sin(-n\theta)$$

Hence,

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta \forall n \in \mathcal{Z}$$

Let n be a positive integer. The set of all values of $(\cos \theta + i \sin \theta)^{\frac{1}{n}}$ is

$$\left\{\cos\left(\frac{\theta+2\pi k}{n}\right)+i\sin\left(\frac{\theta+2\pi k}{n}\right)\right\}$$
 where $k=0,1,2,\ldots,n-1$

Let $z^n = 1$ where n is a positive integer.

$$1 = \cos 0 + i \sin 0 \ (\theta = 0)$$

All roots of $z^n = 1$ are given by

$$\cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right)$$
 where $k = 0, 1, 2, \dots, n-1$

When k = 0, $\cos 0 + i \sin 0 = 1$.

When
$$k = 1$$
, let $w = \cos\left(\frac{2\pi}{n}\right) + i\sin\left(\frac{2\pi}{n}\right)$.

When k=2,

$$\cos\left(\frac{4\pi}{n}\right) + i\sin\left(\frac{4\pi}{n}\right) = w^2$$

Hence, all n^{th} (distinct) roots of $z^n = 1$ are given by $1, w, w^2, \dots, w^{n-1}$ where $w = \cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right)$. Thus the n^{th} roots of unity form a geometric series.

Solve $z^8 = 1$.

$$w = \cos\left(\frac{2\pi}{8}\right) + i\sin\left(\frac{2\pi}{8}\right) = \cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$$

$$w^{2} = \cos\left(\frac{4\pi}{8}\right) + i\sin\left(\frac{4\pi}{8}\right) = \cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right) = i$$

$$w^{3} = \cos\left(\frac{6\pi}{8}\right) + i\sin\left(\frac{6\pi}{8}\right) = \cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$$

$$w^{4} = \cos\left(\pi\right) + i\sin\left(\pi\right) = -1$$

$$w^{5} = \cos\left(\frac{10\pi}{8}\right) + i\sin\left(\frac{10\pi}{8}\right) = \cos\left(\frac{5\pi}{4}\right) + i\sin\left(\frac{5\pi}{4}\right) = -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i$$

$$w^{6} = \cos\left(\frac{12\pi}{8}\right) + i\sin\left(\frac{12\pi}{8}\right) = \cos\left(\frac{3\pi}{2}\right) + i\sin\left(\frac{3\pi}{2}\right) = -i$$

$$w^{7} = \cos\left(\frac{14\pi}{8}\right) + i\sin\left(\frac{14\pi}{8}\right) = \cos\left(\frac{7\pi}{4}\right) + i\sin\left(\frac{7\pi}{4}\right) = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i$$

Let $z = r(\cos \theta + i \sin \theta)$. Then

$$z^n = r^n(\cos n\theta + i\sin n\theta) \ \forall n \in \mathcal{Z}$$

and

$$z^{\frac{m}{n}} = r^{\frac{m}{n}} \left(\cos \left(\frac{\theta + 2\pi k}{n} \right) + i \sin \left(\frac{\theta + 2\pi k}{n} \right) \right)^m \text{ where } k = 0, 1, 2, \dots, n - 1$$

4 Lecture 4

Let $z = x + yi = r(\cos \theta + i \sin \theta)$ where arg $z = \theta + 2\pi n$. The principal argument is defined as follows

$$-\pi < \text{Arg } z \le \pi$$

and $\arg z = \operatorname{Arg} z + 2\pi n, n \in \mathcal{Z}.$

Express -1 - i in terms of $\cos \theta$ and $\sin \theta$.

$$-1 - i = r \cos \theta + ir \sin \theta$$

$$r \cos \theta = -1$$

$$r \sin \theta = -1$$

$$r^2 = 2 \to r = \sqrt{2}$$

$$\cos \theta = -\frac{1}{\sqrt{2}}$$

$$\sin \theta = -\frac{1}{\sqrt{2}}$$

$$\operatorname{Arg} z = -\frac{3\pi}{4}$$

$$z = \sqrt{2} \left(\cos \left(-\frac{3\pi}{4}\right) + i \sin \left(-\frac{3\pi}{4}\right)\right)$$

Evaluate
$$(1 - \sqrt{3}i)^{\frac{1}{2}}$$
.

$$r\cos\theta = 1$$

$$r\sin\theta = -\sqrt{3}$$

$$r^2 = 4 \rightarrow r = 2$$

$$\cos\theta = \frac{1}{2}$$

$$\sin\theta = -\frac{\sqrt{3}}{2}$$

$$\theta = -\frac{\pi}{3}$$

$$z = 2\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right)$$

$$z^{\frac{1}{2}} = 2^{\frac{1}{2}}\left(\cos\left(\frac{-\frac{\pi}{3} + 2\pi k}{2}\right) + i\sin\left(\frac{-\frac{\pi}{3} + 2\pi k}{2}\right)\right) \quad k = 0, 1$$
For $k = 0$, $\sqrt{2}\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right) = \sqrt{2}\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right) = \frac{\sqrt{3}}{\sqrt{2}} - \frac{1}{\sqrt{2}}i$
For $k = 1$, $\sqrt{2}\left(\cos\left(\frac{5\pi}{6}\right) + i\sin\left(\frac{5\pi}{6}\right)\right) = -\frac{\sqrt{3}}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$

Evaluate $(-8 - 8\sqrt{3}i)^{\frac{1}{4}}$.

$$r\cos\theta = -8$$

$$r\sin\theta = -8\sqrt{3}$$

$$r^2 = 64 + 64(3) = 256 \to r = 16$$

$$\cos\theta = -\frac{8}{16} = -\frac{1}{2}$$

$$\sin\theta = -\frac{8}{16\sqrt{3}} = -\frac{1}{2\sqrt{3}}$$

$$\theta = -\frac{2\pi}{3}$$

$$z = 16\left(\cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right)\right)$$

$$z^{\frac{1}{4}} = 2\left(\cos\left(\frac{-\frac{2\pi}{3} + 2\pi k}{4}\right) + i\sin\left(\frac{-\frac{2\pi}{3} + 2\pi k}{4}\right)\right) \quad k = 0, 1, 2, 3$$
For $k = 0, 2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right) = 2\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right) = \sqrt{3} - i$
For $k = 1, 2\left(\cos\left(\pi\right) + i\sin\left(\pi\right)3\right) = 2\left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right) = 1 + \sqrt{3}i$
For $k = 2, 2\left(\cos\left(\frac{5\pi}{6}\right) + i\sin\left(\frac{5\pi}{6}\right)\right) = 2\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = -\sqrt{3} + i$
For $k = 3, 2\left(\cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3}\right)\right) = 2\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = -1 - \sqrt{3}i$

Express $\cos 3\theta$ and $\sin 3\theta$ in terms of $\cos \theta$ and $\sin \theta$ using De Moivre's Theorem.

$$(\cos \theta + i \sin \theta)^{3} = \cos 3\theta + i \sin 3\theta$$

$$\cos^{3} \theta - i \sin^{3} \theta + 3i \sin \theta \cos^{2} \theta - 3 \cos \theta \sin^{2} \theta = \cos 3\theta + i \sin 3\theta$$

$$(\cos^{3} \theta - 3 \cos \theta \sin^{2} \theta) + i(3 \sin \theta \cos^{2} \theta - \sin^{3} \theta) = \cos 3\theta + i \sin 3\theta$$

$$\cos 3\theta = \cos^{3} \theta - 3 \cos \theta \sin^{2} \theta$$

$$\sin 3\theta = 3 \sin \theta \cos^{2} \theta - \sin^{3} \theta$$

Let w = f(z) = f(x + yi).

We say $\lim_{z\to z_0} f(z) = L$ if: Given $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(z) - L| < \varepsilon$ whenever $0 < |z - z_0| < \delta$.

Properties

- $\lim_{z \to z_0} [f(z) \pm g(z)] = \lim_{z \to z_0} f(z) \pm \lim_{z \to z_0} g(z)$
- $\lim_{z \to z_0} f(z)g(z) = \lim_{z \to z_0} f(z) \lim_{z \to z_0} g(z)$
- $\lim_{z\to z_0} \frac{f(z)}{g(z)} = \frac{\lim_{z\to z_0} f(z)}{\lim_{z\to z_0} g(z)}$ provided $\lim_{z\to z_0} g(z) \neq 0$
- $\lim_{z\to z_0} \lambda g(z) = \lambda \lim_{z\to z_0} g(z)$

A function w = f(z) is continuous at z_0 if $\lim_{z \to z_0} f(z) = f(z_0)$. That is, given $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(z) - f(z_0)| < \varepsilon$ for all $|z - z_0| < \delta$.

Lemma: Suppose f is continuous on a disk $D(a,r) = \{z : |z-a| < r\}$ and $f(a) \neq 0$ (|f(a)| > 0). Then there exists $\delta > 0$ such that $|f(z)| \neq 0$ for all $z \in D(a, \delta)$.

Proof: Choose $\varepsilon = \frac{1}{2}|f(a)|$; Then $\varepsilon > 0$. There exists $\delta > 0$ such that $|f(z) - f(a)| < \frac{1}{2}|f(a)|$ for all $|z - a| < \delta$. Then $||f(z)| - |f(a)|| \le |f(z) - f(a)|$. So for all $|z - a| < \delta$, we have $||f(z)| - |f(a)|| < \frac{|f(a)|}{2}$. Therefore

$$-\frac{1}{2}|f(a)| < |f(z)| - |f(a)| < \frac{1}{2}|f(a)|$$

Hence for all $|z-a| < \delta$, $|f(z)| > \frac{1}{2}|f(a)| > 0$. Therefore there exists $B(a, \delta) = |z-a| < \delta$ such that $f(z) \neq 0$.

A sequence $z_n \to z_0$ means that given $\varepsilon > 0$, there exists a positive integer N such that $|z_n - z_0| < \varepsilon$ for all $n \ge N$. Then $\{z_n\}$ converges to z_0 .

A sequence $\{z_n\}$ is said to be Cauchy if given $\varepsilon > 0$, there exists a positive integer N such that $|z_m - z_n| < \varepsilon$ for all m, n > N.

A sequence $\{z_n\} \in \mathbb{C}$ is convergence $\iff \{z_n\}$ is Cauchy. In other words, $(C, |\cdot|)$ is a complete metric space.

5 Lecture 5

Definition 5.1. Let \mathbb{C} be a complex plane and let $a \in \mathbb{C}$. If $\delta > 0$, then a neighborhood N or N_{δ} around a is defined as follows

$$N(a,\delta) = N_{\delta}(a) = \left\{ z : |z - a| < \delta \right\}$$

Definition 5.2. Let $G \subseteq \mathbb{C}$. A point $x_0 \in G$ is called an interior point if there exists $\delta > 0$ such that $N_{\delta}(x_0) \subseteq G$.

Definition 5.3. A set $G \subseteq \mathbb{C}$ is called an open set if each point of G is an interior point.

Note: $N_{\delta}(a)$ and \mathbb{C} are open sets.

Definition 5.4. Let $F \in \mathbb{C}$ and $x_0 \in \mathbb{C}$. Then x_0 is a limit point of F if for every $\delta > 0$, $N_{\delta}(x_0) \cap F/\{x_0\} \neq 0$. In other words, every neighborhood of x_0 must contain a point in F distinct from x_0 .

Definition 5.5. A set $F \subseteq \mathbb{C}$ is called a closed set if every limit point of F belongs to F.

Definition 5.6. Let $F \subseteq \mathbb{C}$ and $z_0 \in \mathbb{C}$. Then z_0 is called a boundary point of F is for every $\delta > 0$, $N_{\delta}(z_0) \cap \neq 0$ and $N_{\delta}(z_0) \cap F^C \neq 0$.

Definition 5.7. The set of all boundary points of F is called the boundary of F and is written as ∂F .

Facts:

- A set G is open \iff G^c is closed.
- An arbitrary union of open sets is open. In other words, if $\{G_i\}_{i\in I}$ each G_i open, then $\bigcup_i G_i$ is open.
- A finite intersection of open sets is open. In other words, if G_1, \ldots, G_n are open, then $\bigcap_{i=1}^{n} G_i$ is open.
- A finite union of closed sets is closed. In other words, if F_1, \ldots, F_n are closed, then $\bigcup_{i=1}^{n} F_i$ is closed.
- An arbitrary intersection of closed sets is closed. In other words, if $\{F_i\}_{i\in I}$ each F_i closed, then $\bigcap_i F_i$ is closed.

Definition 5.8. Let $K \subseteq \mathbb{C}$. A family G of open sets, G_i , $G = \{G_i\}$ is called an open covering of K if $K = \bigcup_i G_i$.

Definition 5.9. A set $K \subseteq \mathbb{C}$ is called compact if every open covering admits a finite subcovering. In other words, if $G = \{G_i\}$ is any open covering of K, then there exists $G_1, \ldots, G_n \in G$ such that $K = \bigcup_{i=1}^n G_i$.

Theorem 5.1. A set $K \subseteq \mathbb{C}$ in compact $\iff K$ is closed and bounded.

Definition 5.10. A set K is called bounded if there exists R > 0 such that $K \subseteq N(0, R)$, or $K \subseteq \{z : |z| \le R\}$.

Definition 5.11. Let S be a bounded set of real numbers. Then

$$\sup S = \text{lub } S = \lambda$$

This means that $x \leq \lambda$ for all $x \in S$ and given any $\varepsilon > 0$, there exists $t \in S$ such that $t - \varepsilon < t < \lambda$.

Definition 5.12. Let S be a bounded set of real numbers. Then

$$\inf S = \text{glb } S = \eta$$

This means that $\eta \leq x$ for all $x \in S$ and given any $\varepsilon > 0$, there exists $p \in S$ such that $\eta .$

Theorem 5.2. Let $K \subseteq \mathbb{C}$. If $f: K \to \mathbb{C}$ is continuous and K is compact, then there exists R > 0 such that $|f(z)| \le R$ for all $z \in K$. Furthermore, there exists $z_1, z_2 \in K$ such that $|f(z_1)| = \sup_{z \in K} |f(z)|$ and $|f(z_2)| = \inf_{z \in K} |f(z)|$,

Definition 5.13. Let $F \subseteq \mathbb{C}$. Then the derived set F' (of F) is the set of all limit points of F.

Note: The closure of F is written as $\overline{F} = F \bigcup F'$.

Definition 5.14. A set F is dense in \mathbb{C} if $\overline{F} = \emptyset$. In other words, given any $z \in \mathbb{C}$, every neighborhood $N_{\delta}(z)$ must intersect F.

Definition 5.15. Let X be a metric space and $K \subseteq X$. Let $x_0 \in K$. Then

$$d(x_0, K) = \inf \left\{ d(x_0, x) : x \in K \right\}$$

and

diam
$$K = \sup \{ d(x_1, x_2) : x_1, x_2 \in K \}$$

Let X be a metric space and $F, K \subseteq X$ such that F is compact and K is closed. If $F \cap K = \emptyset$, prove that d(F, K) > 0.

Note: $d(F, K) = \inf \{ d(x, y) : x \in F, y \in K \}$. Let $K = \{ (x, y) : x \in \mathbb{R}, y = 0 \}$ and $F = \{ (x, y) : x \in \mathbb{R}, y \in \mathbb{R}, y = e^x \}$. Then K, F are closed. K is not compact. Furthermore, $K \cap F = \emptyset$ but $d(K, F) \not> 0$.

Definition 5.16. Let $S \subseteq \mathbb{C}$ and $x_0 \in \overline{S}$. Then there exists a sequence $z_i \in S$ such that $z_n \to z_0$.

Definition 5.17. Let X be a metric space. If $X = S_1 \bigcup S_2$ where $S_1, S_2 \neq \emptyset$, both S_1, S_2 are open and $S_1 \cap S_2 = \emptyset$, then X is not connected.

Fact: A metric space X is connected if otherwise. In other words, X is connected if there exists no separation of X.

Fact: Equivalently, X is connected \iff the only subsets of X that are both open and closed are \emptyset and X.

Fact: $S \subseteq \mathbb{R}^1$ is connected $\iff S$ is an interval.

Theorem 5.3. If $S \subseteq \mathbb{C}$ is connected, then given any two points $z_1, z_2 \in \mathbb{C}$, there exists a polygon joining z_1, z_2 that is contained in S.

Corollary: If $S \subseteq \mathbb{C}$ is connected and open, then any two points in S can be joined by a polygon whose segments are parallel to the real or imaginary axis.

Definition 5.18. If $K \subseteq \mathbb{C}$ is compact and $f: K \to \mathbb{C}$ is continuous, then f(K) is compact.

Definition 5.19. If $K \subseteq \mathbb{C}$ is connected and $f: K \to \mathbb{C}$ is continuous, then f(K) is connected.

Definition 5.20. A region $\Omega \subseteq \mathbb{C}$ is a connected open set. In other words, Ω is a region $\iff \Omega \subseteq \mathbb{C}$, Ω is open, Ω is connected.

6 Lecture 6

Example Problems:

- $\{z: 0 < |z| \le 1\}$: not open, not closed, not compact, connected
- $\{z: 1 \leq \text{Re}\{z\} \leq 2\}$: not open, closed, not compact, connected
- $\{z : \text{Im}\{z\} > 2\}$: open, not closed, not compact, connected
- $\{z: 1 \le z \le 2\}$: not open, closed, compact, connected
- $\{z: -2 < \text{Re}\{z\} \le 2\}$: not open, not closed, not compact, connected
- $\{z: |z| \leq 3 \text{ and } |\text{Re}\{z\}| \geq 1\}$: not open, closed, compact, not connected
- $\{z : |\text{Re}\{z\}| \ge 1\}$: not open, closed, compact, not connected
- $\{z: |z| \geq 5 \text{ and } |\text{Im}\{z\}| \geq 1\}$: not open, closed, compact, not connected

Definition 6.1. Simply Connected Example: $\mathbb{C}/\{z : \text{Re}\{z\} \leq 0 \text{ and } \text{Im}\{z\} = 0\}$

Every simply connected region is homomorphic to $\Delta = \{z : |z| < 1\}$.

Let X be a metric space, $A \subset A$ and $x \in X$. Then define d(x, A) as follows:

$$d(x,A) = \inf \left\{ d(x,A) : a \in A \right\}$$

Properties

- $d(x,a) = d(x,\overline{A})$ Pf: Let $A \subseteq \overline{A}$. then $d(x,\overline{A}) \leq d(x,A)$. Let $\varepsilon > 0$. There exists $y \in \overline{A}$ such that $d(x,\overline{A}) \geq d(x,y) - \frac{\varepsilon}{2}$ and there exists $a \in A$ such that $s(x,a) < \frac{\varepsilon}{2}$. Then $|d(x,y) - d(x,a)| \leq d(x,a) < \frac{\varepsilon}{2}$. In particular, $d(x,y) > d(x,a) - \frac{\varepsilon}{2}$. Therefore $d(x,\overline{A}) \geq d(x,a) - \varepsilon$. Hence $d(x,\overline{A}) \geq d(x,A)$. Expression $d(x,\overline{A}) \geq d(x,A)$. Thens $d(x,A) = d(x,\overline{A})$.
- $d(x,A) = 0 \iff x \in \overline{A}$ Pf: Forward, let $x \in \overline{A}$. Then $d(x,A) = d(x,\overline{A}) = 0$. Now suppose d(x,A) = 0. For any $x \in \overline{A}$, there exists a sequence $\{a_n\}$ in A such that $d(x,S) = \lim d(x,a_n)$. Since d(x,A) = 0, then $\lim d(x,a_n) = 0$. Therefore $x = \lim a_n$ and thus $x \in \overline{A}$.
- $|d(x, A) d(y, A)| \le d(x, y)$ for all $x, y \in X$. Pf: Let $a \in A$. Then $d(x, a) \le d(x, y) + d(y, a)$. This means that

$$d(x,A) \le \inf \left\{ d(x,a) : a \in A \right\} \le \inf \left\{ d(x,y) + d(y,a) \right\} \le d(x,y) + \inf \left\{ d(y,a) \right\}$$

Therefore

$$d(x, A) \le d(x, y) + d(y, A)$$

So

$$d(x,A) - d(y,A) \le d(x,y)$$

Hence

$$|d(x,A) - d(y,A)| \le d(x,y)$$

Let K be compact and $f: K \to \mathbb{R}$ be continuous. There exists m, M such that $m \le |f(x)|M$ for all $x \in K$. Furthermore, there exists $a, b \in K$ such that f(a) = m and f(b) = M. Corollary: Let $A \subseteq K$. Let f(x) = d(x, A) for all $x \in X$ be continuous. If $K \subseteq X$ and K is compact and $x \in X$, there exists $y \in K$ such that d(x, y) = d(x, K). Let $A, B \subseteq X$. Then

$$d(A,B) = \inf \left\{ d(a,b) : a \in A, b \in B \right\}$$

Theorem 6.1. If A and B are disjoint sets in X with B closed and A compact, then d(A, B) > 0.

Proof. Define $f: X \to \mathbb{R}$ as f(x) = d(x, B). Claim: f(a) > 0 for each $a \in A$ because $A \cap B = \emptyset$ and B closed. A is compact therefore there exists $a \in A$ such that $f(a) = \inf \{f(x) : x \in A\}$. Therefore

$$0 < \inf \left\{ f(x) : x \in A \right\} = d(A, B)$$

Let Ω be a connected and open set. Let $G \subseteq \mathbb{C}$ be open. Then f is continuous on G if and only if whenever $z_n \to z_0$ in G, $f(z_n) \to f(z_0)$. By continuous at z_0 , we mean that given $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(z) - f(z_0)| < \varepsilon$ for all $|z - z_0| < \delta$.

Let $z_n \to z_0$. Then given $\delta > 0$, there exists N > 0 such that $|z_n - z_0| < \delta$ for all $n \ge N$. Therefore for all $n \ge N$, $|f(z_n) - f(z_0)| < \varepsilon$ and thus $f(z_n) \to f(z_0)$.

Suppose $z_n \to z_0$. Let $\varepsilon > 0$. Then there exists N > 0 such that $|f(z_n) - f(z_0)| < \varepsilon$ for all $n \ge N$. For this, $\varepsilon > 0$, then there exists M > 0 such that $|z_n - z_0| < \varepsilon$ for all $n \ge M$. Choose $\tilde{M} > \max \{M, N\}$. Then for $\varepsilon > 0$, there exists $\delta > 0$ ($\delta = \varepsilon$) such that $|f(z) - f(z_0)| < \varepsilon$ for all $|z - z_0| < \delta$. Then $|f(z_n) - f(z_0)| < \varepsilon$ and $|z_n - z_0| < \varepsilon$ for all $n > \tilde{M}$.

7 Lecture 7

Homomorphic/ Analytic Functions: Let G be a nonempty open set \mathbb{C} . Let $f: G \to \mathbb{C}$ and $z \in G$. We say that f has a derivative at z, written as f'(z) if the following exists

$$\lim_{h \to \infty} \frac{f(z+h) - f(z)}{h} = f'(z)$$

We say that f is holomorphic in G if f'(z) exists at each $z \in G$.

The set of all homomorphic functions in G is denoted by $\mathcal{O}(G)$. It is a ring with respect to + and \cdot . In other words, if $f, g \in \mathcal{O}(G)$, then

- $f + g \in \mathcal{O}(G)$
- $f \cdot g \in \mathcal{O}(G)$
- $\lambda f \in \mathcal{O}(G)$ where λ is a constant
- $\frac{f}{g} \in \mathcal{O}(G)$ if $g \neq 0$

Let $\mathfrak{G}(G)$ denote the set of all continuous functions in G.

Lemma: If $f \in \mathcal{O}(G)$, then $f \in \mathfrak{G}$.

Proof: The following exists: $f'(z) = \lim_{h\to\infty} \frac{f(z+h)-f(z)}{h}$. So then,

$$\lim_{h \to \infty} f(z+h) - f(z) = \lim_{h \to \infty} \left(\frac{f(z+h) - f(z)}{h} \right) \cdot h$$

$$= f'(z) \cdot \lim_{h \to \infty} h$$

$$= 0$$

$$f \in \mathfrak{G}(G)$$

Cauchy-Riemann Equations: Let w = f(z) where z = x + iy and w = u + iv. So then u + iv = f(x + iy). Let $z \in G$ where G is an open set in \mathbb{C} .

Theorem 7.1. If f is holomorphic in G, then the Cauchy Riemann equations hold in G; in other words, $u_x = v_y$ and $u_y = -v_x$.

Proof. Let $f \in \mathcal{O}(G)$. Then f'(z) exists for all $z \in G$, or $f'(z) = \lim_{h \to \infty} \frac{f(z+h)-f(z)}{h}$ exists for each $z \in G$. This means, given $z \in G$, f'(z) exists and the limit (f'(z)) is independent of how $h \to 0$. So we first let $h \to 0$ through purely real values:

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

$$= \lim_{h \to 0} \frac{u(x+h,y) + iv(x+h,y) - u(x,y) - iv(x,y)}{h}$$

$$= \lim_{h \to 0} \frac{u(x+h,y) - u(x,y)}{h} + i\lim_{h \to 0} \frac{v(x+h,y) - v(x,y)}{h}$$

$$= \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}$$

Now let $h \to 0$ through purely imaginary values, in other words, $ih \to 0$:

$$f'(z) = \lim_{h \to 0} \frac{f(z+ih) - f(z)}{h}$$

$$= \lim_{h \to 0} \frac{u(x,y+h) + iv(x,y+h) - u(x,y) - iv(x,y)}{ih}$$

$$= \lim_{h \to 0} \frac{-iu(x,y+h) + v(x,y+h) + iu(x,y) - v(x,y)}{h}$$

$$= \lim_{h \to 0} \frac{v(x,y+h) - v(x,y)}{h} - i\lim_{h \to 0} \frac{u(x,y+h) - u(x,y)}{h}$$

$$= \frac{\partial v}{\partial y} - i\frac{\partial u}{\partial y}$$

Since f'(z) is independent of the way it tends to zero, we that have $f'(z) = u_x + iv_x = v_y - u_y$. Equating real and imaginary parts, we get

$$u_x = v_y$$
$$u_y = -v_x$$

Theorem 7.2. If w = f(z) is holomorphic on G where w = u + iv and z = x + iy, then $u_x = v_y$ and $u_y = -v_x$ for all $z = (x, y) \in G$. Furthermore, since $f'(z) = u_x + iv_x$ and $|f'(z)|^2 = u_x^2 + v_x^2 = u_y^2 + v_y^2 = u_x v_y - u_y v_x$,

$$|f'(z)|^2 = \det \begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix}$$

Let Ω be a region and $f \subseteq \mathcal{O}(\Omega)$.

- If f'(z) = 0 for all $z \in \Omega$, then f is a constant. Proof: If $f'(z) = u_x + iv_x = v_y - iu_y = 0$, then $u_x = v_x = 0$ and $u_y = v_y = 0$. Consider u(x, y). If $u_x = u_y = 0$, then $u(x, y) = k_1$, a constant. Consider v(x, y). If $v_x = v_y = 0$, then $v(x, y) = k_2$, a constant. Hence $f'(z) = k_1 + ik_2$, which itself is a constant.
- If |f(z)| is constant for all $z \in \Omega$, then f is constant in Ω . Proof: Let f = u + iv and $|f|^2 = u^2 + v^2 = \text{constant}$. Then the derivative with respect to x gives $2uu_x + 2vv_x = 0$ and the derivative with respect to y gives $2uu_y + 2vv_y = 0$. Multiply the first equation by v and the second equation by u to get

$$v(uu_x + vv_x) = uvu_x + v^2v_x = 0$$

$$u(uu_y + vv_y) = u^2u_y + uvv_y = 0$$

$$uvu_x + v^2v_x = u^2u_y + uvv_y$$

$$uvu_x - v^2u_y = 0$$

$$uvu_x + u^2u_y = 0$$

Then $u_x(u^2 + v^2) = 0$ and so $u_y = 0$ and similarly, $u_x = 0$. By the C-R equations, $v_x = 0$ and $v_y = 0$. Thus we find that $u_x = u_y = 0$ and so u(x, y) is constant and $v_x = v_y = 0$ and v(x, y) is constant. Therefore f = u + iv is a constant.

- If Re $\{f\}$ is a constant, then f is a constant. Proof: Let f = u + iv. Then Re $\{f\} = u$, a constant. Furthermore, $u_x = u_y = 0$. By C-R equations, $u_x = v_y = 0$ and $u_y = -v_x = 0$. So $u_x = u_y = v_x = v_y = 0$. Therefore f is a constant.
- If $\text{Im}\{f\}$ is a constant, then f is a constant. Proof: Let f = u + iv. Then $\text{Im}\{f\} = v$, a constant. Furthermore, $v_x = v_y = 0$. By C-R equations, $v_x = -u_y = 0$ and $v_y = u_x = 0$. So $u_x = u_y = v_x = v_y = 0$. Therefore f is a constant.
- If Arg(f(x)) is a constant, then f is a constant. Proof: Let f = u + iv. Then $Arg(f) = \theta$ is a constant. Hence $\tan \theta = \tan \frac{v}{u}$ is a constant. So we have u = kv for some constant k. Then $u - kv = Re\{(1 + ki)f\}$. Check:

$$(1+ki)(u+vi) = (u-kv) + (ku+v)i \to u - kv = \text{Re}\{(1+ki)f\}$$

Then $Re\{(1+ki)f\} = 0$. Therefore (1+ki)f is a constant and so f is a constant.

• If $f \in \mathcal{O}(\Omega)$ nd $\overline{f} \in \mathcal{O}(\Omega)$, then f is a constant on Ω . Proof: Let f = u + iv and $\overline{f} = u - iv = p + iq$. If $\overline{f} \in \mathcal{O}(\Omega)$, then if p = u and q = v, $p_x = q_y$ and $p_y = -q_x$. Therefore since $p_x = q_y$, $u_x = -v_y$. Since $p_y = -q_x$, $u_y = v_x$. Henceforth, $u_x = v_y = -v_y$ and so $v_y = 0$. Also, $v_x = u_y = -v_x$ and so $v_x = 0$. Hence v(x,y) is a constant. By the same logic, since $u_x = v_y = 0$ and $u_y = -v_x = 0$, u(x,y) is constant. Thus f is a constant.

8 Lecture 8

Note that if f is continuous on [a, b] and differentiable on (a, b), there exists a < c < b such that

$$f'(v) = \frac{f(b) - f(a)}{b - a} \to f(a + h) - f(a) = hf'(a + t)$$

where |t| < |h|.

Theorem 8.1. Let f = u(x, y) + iv(x, y) be holomorphic on an open set $G \subseteq \mathbb{C}$. Then the Cauchy-Riemann equations hold

$$u_x = v_y$$
 and $u_y = -v_x$

Theorem 8.2. Let u(x,y) and v(x,y) have continuous first partial derivatives on a region Ω such that the Cauchy-Riemann equations are satisfied. Then the function f(z) = u(x,y) + iv(x,y) is holomorphic in Ω .

Proof. To show that $\lim_{h\to 0} \frac{f(z+h)-f(z)}{h}$ exists, let z=x+yi and h=s+ti.

$$\frac{f(z+h) - f(z)}{h} = \frac{u(x+s, y+t) - u(x, y) + iv(x+s, y+t) - iv(x, y)}{s+ti}$$
(1)

Now

$$u(x+s,y+t) - u(x,y) = [u(x+s,y+t) - u(x,y+t)] + [u(x,y+t) - u(x,y)]$$

By the Mean Value Theorem, there exists s_1 and t_1 such that $|s_1| < |s|$ and $|t_1| < |s|$ so that

$$u(x+s, y+t) - u(x, y+t) = su_x(x+s_1, y+t) \quad (2a)$$

where $|s_1| < |s|$, and

$$u(x, y + t) - u(x, y) = tu_y(x, y + t_1)$$
 (2b)

where $|t_1| < |t|$.

Define

$$\varphi(s,t) = [u(x+s,y+t) - u(x,y)] - [su_x(x,y) - tu_y(x,y)]$$

Then

$$\frac{\varphi(s,t)}{s+ti} = \frac{su_x(x+s_1,y+t) + tu_y(x,y+t_1) - su_x(x,y) - tu_y(x,y)}{s+ti} \\
= \frac{s(u_x(x+s_1,y+t) + tu_y(x,y+t_1))}{s+ti} + \frac{t(u_y(x,y+t_1) - u_y(x,y))}{s+ti} \quad (3)$$

Claim: $\lim_{s+ti\to 0} \frac{\varphi(s,t)}{s+ti} = 0$ because $|s| \le |s+ti|$, $|t| \le |s+ti|$, $|s_1| \le |s|$ and $|t_1| \le |t|$ and u_x and u_y are continuous. Hence

$$u(x+s, y+t) - u(x, y) = su_x + tu_y + \varphi(s, t)$$

where

$$\lim_{s+ti} \frac{\varphi(s,t)}{s+ti} = 0 \quad (4)$$

Similarly,

$$v(x+s, y+t) - v(x, y) = sv_x + tv_y + \psi(s, t)$$

where

$$\lim_{s+ti} \frac{\psi(s,t)}{s+ti} = 0 \quad (5)$$

By (1), (4) and (5),

$$\begin{split} \lim_{h \to 0} \frac{f(z+h) - f(z)}{h} &= \lim_{s+ti \to 0} \frac{su_x + tu_y + \varphi(s,t)}{s+ti} + i \lim_{s+ti \to 0} \frac{sv_x + tv_y + \psi(s,t)}{s+ti} \\ &= \lim_{s+ti \to 0} \frac{su_x - tv_x + \varphi(s,t)}{s+ti} + i \lim_{s+ti \to 0} \frac{sv_x + tu_x + \psi(s,t)}{s+ti} \\ &= \lim_{s+ti \to 0} \frac{s(u_x + iv_x) + ti(u_x + iv_x)}{s+ti} + \lim_{s+ti \to 0} \frac{sv_x + tu_x + \psi(s,t)}{s+ti} \\ &= \lim_{s+ti \to 0} \frac{(s+ti)(u_x + iv_x) + ti(u_x + v_x)}{s+ti} + \lim_{s+ti \to 0} \frac{\varphi(s,t)}{s+ti} + \lim_{s+ti \to 0} \frac{\psi(s,t)}{s+ti} \\ &= \lim_{s+ti \to 0} \frac{(s+ti)(u_x + iv_x)}{s+ti} \\ &= u_x + iv_x \\ f'(z) &= u_x + iv_x \end{split}$$

Summary of Theorem 1 and 2: Suppose u(x,y) and v(x,y) are 2 real-valued functions with continuous first partial derivatives on a region Ω , a connected open subset of the complex plane. Then the complex-valued function f(z) = u(x,y) + iv(x,y) is holomorphic in Ω if and only if the Cauchy-Riemann equations hold in Ω :

$$u_x = v_y$$
 and $u_y = -v_x$

Furthermore,

$$f'(z) = u_x + iv_x$$

9 Lecture 9

Let U be an open set in \mathbb{C} . Let $f \in \mathcal{O}(U)$ and $g \in \mathcal{O}(U)$. Then if $f + g \in \mathcal{O}(U)$, $fg \in \mathcal{O}(U)$ and $\lambda_1 f + \lambda_2 g \in \mathcal{O}(U)$ (where $\lambda_1, \lambda_2 \in \mathbb{C}$), then $\mathcal{O}(U)$ is a ring.

Theorem 9.1. If $f \in \mathcal{O}(U)$ and if $f(U) \in U$, $4g \in \mathcal{O}(U)$ and $h = g \cdot f$, then $h \in \mathcal{O}(U)$ and

$$h'(z) = g'(f(z))f(z) \ \forall z \in U$$

Proof. Fix $z_0 \in U$. Let w = f(z) and so $w_0 = f(z_0)$. To show $h'(z_0) = g'(f(z_0)) \cdot f'(z_0)$, we have

$$f(z) - f(z_0) = (f'(z_0) + \varepsilon(z))(z - z_0)$$

where $\varepsilon(z) \to 0$ as $z \to z_0$ and

$$g(w) - g(w_0) = (g'(w_0) + \eta(f(w)))(w - w_0)$$

where $\eta(w) \to 0$ as $w \to w_0$. Then

$$g(f(z)) - f(f(z_0)) = (g'(f(z_0)) + \eta(f(z)))(f(z) - f(z_0))$$

$$h(z) - h(z_0) = (g'(f(z_0)) + \eta(f(z)))(f(z) - f(z_0)))$$

$$= (g'(f(z_0)) + \eta(f(z)))(f'(z_0) + \varepsilon(z))(z - z_0)$$

So

$$\frac{h(z) - h(z_0)}{z - z_0} = (g'(f(z_0)) + \eta(f(z)))(f'(z_0) + \varepsilon(z))$$

for all $z \neq z_0$. Since $f \in \mathcal{O}(U)$, f is continuous on U. So as $z \to z_0$, we have $f(z) \to f(z_0)$. This means $w \to w_0$. So taking limits,

$$\lim_{z \to z_0} \frac{h(z) - h(z_0)}{z - z_0} = g'(f(z_0)) \cdot f'(z_0)$$
$$h'(z_0) = g'(f(z_0)) \cdot f'(z_0)$$

and since $z_0 \in U$ is arbitrary in $\mathcal{O}(U)$,

$$h'(z) = g'(f(z)) \cdot f'(z)$$

for all $z \in U$.

Let u(x,y) be a real valued function on U, an open set in $\mathbb C$ such that u(x,y) has continuous second partials and

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \forall (x, y) \in U$$

then u(x,y) is harmonic on U.

If $f \in \mathcal{O}(\Omega)$, then all of its higher-order derivatives exist and are holomorphic.

Suppose f = u + iv is holomorphic in a region Ω . Claim: Both u and v are harmonic in Ω .

Proof. Let $f \in \mathcal{O}(\Omega)$, by the above property, u and v both have continuous second partials

on Ω . Furthermore,

$$\begin{split} \frac{\partial u}{\partial x} &= \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} &= -\frac{\partial v}{\partial x} \\ \frac{\partial^2 u}{\partial x^2} &= \frac{\partial}{\partial x} \left(\frac{\partial v}{\partial y} \right) = \frac{\partial^2 v}{\partial x \partial y} \\ \frac{\partial^2 u}{\partial y^2} &= \frac{\partial}{\partial y} \left(-\frac{\partial v}{\partial x} \right) = -\frac{\partial^2 v}{\partial y \partial x} \\ \frac{\partial^2 u}{\partial x^2} &+ \frac{\partial^2 u}{\partial y 2} &= \frac{\partial^2 v}{\partial x \partial y} - \frac{\partial^2 v}{\partial y \partial x} = 0 \end{split}$$

because the second partial derivatives of u(x, y) are continuous. Hence u(x, y) is harmonic. Similarly,

$$\frac{\partial^2 v}{\partial x^2} = -\frac{\partial}{\partial x} \left(\frac{\partial u}{\partial y} \right) = -\frac{\partial^2 u}{\partial x \partial y}$$
$$\frac{\partial^2 v}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial^2 u}{\partial y \partial x}$$
$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

Hence

and so v(x, y) is harmonic.

Theorem 9.2. The real and imaginary parts of a holomorphic function on a region are harmonic.

Suppose u(x,y) is harmonic on an open set $U \subseteq \mathbb{C}$. If there exists a harmonic function $v(x,y) \in U$ such that f(z) = u(x,y) + iv(x,y) is holomorphic on U, then v(x,y) is a harmonic conjugate of u(x,y).

Let $u(x,y) = x^3 - 3xy^2 + y$. Determine if u(x,y) is harmonic and if so, find its harmonic conjugate.

$$u_x = 3x^2 - 3y^2$$

$$u_{xx} = 6x$$

$$u_y = -6xy + 1$$

$$u_{yy} = -6x$$

$$u_{xx} + u_{yy} = 0$$

Since u(x, y) have continuous second partials, then u(x, y) is harmonic on \mathbb{C} . Suppose v(x, y) is its harmonic conjunate. Then f = u + iv is holomorphic. Then

$$u_x = v_y$$
 and $u_y = -v_x$

This means

$$v_x = -u_y = 6xy - 1$$

$$\frac{\partial v}{\partial x} = 6xy - 1$$

$$v(x, y) = 3x^2y - x + \varphi(y)$$

$$v_y = 3x^2 + \varphi'(y) = 3x^2 - 3y^2$$

$$\varphi'(y) = -3y^2$$

$$\varphi(y) = -y^3 + k$$

$$v(x, y) = 3x^2y - x - y^2 + k$$

Let Ω be a region. Propositions:

1. Any two harmonic conjugates must differ by a constant.

Proof: Let u(x, y) be harmonic on Ω . Suppose v(x, y) and V(x, y) are two harmonic conjugates of u(x, y). Then u + iv and u + iV are both holomorphic on Ω . By Cauchy-Riemann equations, this means

$$u_x = v_y$$
 and $u_y = -v_x$
 $u_x = V_y$ and $u_y = -V_x$

So
$$\frac{\partial V}{\partial x} = \frac{\partial v}{\partial x}$$
 and $\frac{\partial V}{\partial y} = \frac{\partial v}{\partial y}$. Therefore $V_x - v_x = 0$ and $V_y - v_y = 0$. Then $V(x, y) - v(x, y) = \text{constant}$.

2. Suppose v is a harmonic conjugate of u in Ω . Then -u is a harmonic conjugate of v in Ω .

Proof: v is a harmonic conjugate of u in Ω . Then f = u + iv is holomorphic in Ω . So v - iu = -if, which is also holomorphic in Ω . Therefore -u is a harmonic conjugate of v.

3. If u is a harmonic conjugate of v and v is a harmonic conjugate of u, then both u and v must be constants.

Proof: Let f = u + iv be holomorphic in Ω . Then g = v - iu is holomorphic in Ω . Then -ig = u - iv is holomorphic; this is \overline{f} . Therefore f and \overline{f} are both holomorphic in Ω . Then f is a constant and so u and v are constants.

Let Ω be a region. Suppose v is a harmonic conjugate of u in Ω . Show that uv is a harmonic function on Ω .

Proof. Let f = u + iv be holomorphic in Ω . Then g = v - iu is also holomorphic in Ω .

$$fg = (u+iv)(v-iu) = (uv+uv) + i(v^2 - u^2) = 2uv + i(v^2 - u^2)$$

Therefore 2uv is harmonic and so uv is harmonic.

Since real and imaginary parts of a holomorphic function for a region are harmonic, the real part of a holomorphic function is harmonic. \Box

10 Lecture 10

Let z = x + iy and $\overline{z} = x - iy$. Then

$$x = \frac{1}{2}(x + \overline{z})$$

$$iy = \frac{1}{2}(z - \overline{z})$$

$$y = -\frac{i}{2}(z - \overline{z})$$

$$\frac{\partial x}{\partial z} = \frac{\partial x}{\partial \overline{z}}$$

$$= \frac{1}{2}$$

$$\frac{\partial y}{\partial z} = -\frac{i}{2}$$

$$\frac{\partial y}{\partial \overline{z}} = \frac{i}{2}$$

Let f(x, y) exist. Then

$$\frac{\partial f}{\partial z} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial z} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial z} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right)$$
$$\frac{\partial f}{\partial \overline{z}} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \overline{z}} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \overline{z}} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right)$$

Define the operators ∂ and $\overline{\partial}$ as follows:

$$\partial = \frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$$
$$\overline{\partial} = \frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$$

Let f = u(x, y) + iv(x, y). Then

$$\frac{\partial f}{\partial x} = \frac{1}{2} \left(\left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \right) - i \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} \right) \right)$$

$$= \frac{1}{2} \left((u_x + v_x) - i (v_y - u_y) \right)$$

$$\frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left(\left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \right) + i \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} \right) \right)$$

$$= \frac{1}{2} \left((u_x + v_x) + i (u_y + v_y) \right)$$

Suppose f is holomorphic. Then $u_x = v_y$ and $u_y = -v_x$. Then

$$\frac{\partial f}{\partial z} = \frac{1}{2}(u_x + i2u_x) = u_x + iv$$

and

$$\frac{\partial f}{\partial \overline{z}} = 0$$

Summary: Suppose f=u(x,y)+iv(x,y) where u and v have continuous first partials. Then f is holomorphic if and only if $u_x=v_y$ and $u_y=-v_x$. Equivalently, $\frac{\partial f}{\partial z}=f'(z)$ and $\frac{\partial \overline{z}}{\overline{z}}=0$. Thus $\frac{\partial}{\partial \overline{z}}=0$ if and only if $u_x=v_y$ and $u_y=-v_x$. Hence f(z) is a holomorphic function.

Properties:

1. ∂ and $\overline{\partial}$ are \mathbb{C} -linear maps for which product and quotient rules apply

$$2. \ \overline{\partial}f = \overline{(\partial \overline{f})}$$

3.
$$\overline{\partial f} = \overline{(\partial f)}$$

4. Let $f \in \mathcal{O}(\Omega)$ and so $\overline{\partial} f = 0$ and $\partial f = f'$. Let $\overline{f} \in \mathcal{O}(\Omega)$ and so $\overline{\partial} \overline{f} = 0$ and $\partial f = 0$ and $\overline{f}' = (\overline{\partial} f)$. Then $\partial f = \overline{\partial} f = 0$ and so f is a constant.

A series $\{z_n\}$ is said to converge if and only if $\operatorname{Re}\{z_n\}$ and $\operatorname{Im}\{z_n\}$ converges. A power series is of the format $\sum_{n=0}^{\infty} a_n z^n$ where $a_n \in \mathbb{C}$ and $n \geq 0$.

Lemma: There exists $0 \le R \le \infty$ such that if $z \in \mathbb{C}$ and |z| < R, then $\sum a_n z^n$ converges.

Lemma: If $\sum a_n z^n$ has a radius of convergence R, then so does the derived series $\sum_{n=1}^{\infty} n a_n z^{n-1}$. Lemma: If $a, b \in \mathbb{C}$ and $|a| < \rho$, $|b| < \rho$, then

$$\left| b^k - a^k \right| \le k\rho^{k-1} |b - a| \quad \forall k \ge 0$$

Proof:

$$b^{k} - a^{k} = (b - a)(b^{k-1} + b^{k-2}a^{2} + b^{k-3}a^{3} + \dots + a^{k-1})$$

$$= (b - a)\sum_{j=0}^{k-1} a^{j}b^{k-1-j}$$

$$|b^{k} - a^{k}| \le |b - a|\sum_{j=0}^{k-1} \rho^{j}\rho^{k-1-j}$$

$$|b^{k} - a^{k}| \le |b - a|\sum_{j=0}^{k-1} \rho^{k-1}$$

So

$$|b^k - a^k| \le |b - a|kp^{k-1}$$

Theorem 10.1. Let $\sum a_n z^n$ have a radius of convergence $R \geq 0$ and let $D(0,R) = \{z \in \mathbb{C} : |z| < R\}$. Then the function $f(z) = \sum a_n z^n$ is holomorphic to D(0,R) and for all $z \in D(0,R)$, $f'(z) = \sum n a_n z^{n-1}$.

Proof. Define $g(x) = \sum_{n=1}^{\infty} n a_n z^{n-1}$ where |z| < R. Fix z_0 with $|z_0| < R$. Choose ρ such that $|z_0| < \rho < R$. Assume $z \neq z_0$ and $|z| < \rho$. Then

$$\frac{f(z) - f(z_0)}{z - z_0} - g(z_0) = \sum_{n=2}^{\infty} a_n \left(\frac{z_n - z_0^n}{z - z_0} - nz_0^{n-1} \right)$$

Consider:

$$\left| \frac{z^n - z_0^n}{z - z_0} - n z_0^{n-1} \right| = \left| \sum_{k=0}^{n-1} (z^k z_0^{n-1-k} - z_0^{n-1}) \right|$$

$$\leq \sum_{k=0}^{n-1} |z_0|^{n-1-k} |z^k - z_0^k|$$

$$\leq \sum_{k=0}^{n-1} \rho^{n-1-k} k \rho^{k-1} |z - z_0|$$

$$= |z - z_0| \rho^{n-2} \sum_{k=0}^{n-1} k$$

Hence

$$\left| \frac{f(z) - f(z_0)}{z - z_0} - g(z_0) \right| \le |z - z_0| \sum_{n=2}^{\infty} |a_n| \rho^{n-2} \frac{n(n-1)}{2}$$

Claim: $\left|\frac{f(z)-f(z_0)}{z-z_0}-g(z_0)\right|\to 0$ as $z\to z_0$. Proof: If $\sum_{n=0}^\infty a_nz^n$ converges in |z|< R, then $\sum_{n=1}^\infty na_nz^{n-1}$ converges in |z|< R. Therefore $\sum_{n=2}^\infty n(n-1)a_nz^{n-2}$ converges in |z|< R. Hence $\sum_{n=2}^\infty n(n-1)|a_n||z|^{n-2}$ converges in |z|< R. Thus $\sum_{n=2}^\infty n(n-1)|a_n|\rho^{n-2}$ converges in |z|< R.

Hence

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = g(z_0)$$

or $f'(z_0) = g(z_0)$ and since z_0 is arbitrary in D(0, R), we are done.

11 Lecture 11

Let the following be Riemann surfaces:

- $\bullet \ \Delta = \left\{ z \in \mathbb{C} : |z| < 1 \right\}$
- $\mathcal{U} = \left\{ z \in \mathbb{C} : \operatorname{Im}\{z\} > 0 \right\}$
- $\hat{\mathbb{C}} = \mathbb{C} \bigcup \left\{ \infty \right\}$ Riemann sphere

The Riemann sphere is a "one point" compactification:

$$\hat{\mathbb{C}}:\mathbb{C}\bigcup\left\{ \infty\right\}$$

of \mathbb{C} . It is given the Hausdorff topology such that $V \subseteq \mathbb{C}$ is open if and only if

- $V \cap \mathbb{C}$ is open
- if $\infty \in V$, then $\hat{\mathbb{C}}$ V is compact in \mathbb{C}

Let S^2 be defined as follows:

$$S^{2} = \left\{ \vec{x} \in \mathbb{R}^{3} : \vec{x} = (x_{1}, x_{2}, x_{3}), x_{1}^{2} + x_{2}^{2} + x_{3}^{2} = 1 \right\}$$

Theorem 11.1. The stereographic function $f: S^2 \to \hat{\mathbb{C}}$, defined by

$$f(\vec{x}) = \begin{cases} \infty & \text{if } \vec{x} = (0, 0, 1) \\ \frac{x_1 + ix_2}{1 - x^3} \in \mathbb{C} & \text{if } \vec{x} \neq (0, 0, 1) \end{cases}$$

is a homomorphism.

Proof. Consider S^2 $\{(0,0,1)\}$. Function f is continuous on S^2 $\{(0,0,1)\}$.

$$|f(\vec{x})|^2 = \frac{x_1^2}{(1-x_3)^2} + \frac{x_2^2}{(1-x_3)^2} = \frac{x_1^2 + x_2^2}{(1-x_3)^2} = \frac{1-x_3^2}{(1-x_3)^2} = \frac{1+x_3}{1-x_3}$$

So $|f(\vec{x})| \to \infty$ as $\vec{x} \to (0,0,1)$. Here f is continuous on all of S^2 . Let $f(\vec{x}) = z \in \mathbb{C}$. Then

$$|\vec{z}|^2 = |f(\vec{x})|^2 = \frac{1+x_3}{1-x_3}$$

Then

$$x_3 = \frac{|z|^2 - 1}{|z|^2 + 1}$$

Let $z = \frac{x_1 + ix_2}{1 - x_3}$ or $(1 - x_3)z = x_1 + ix_2$. Substitute z = x + iy. Then

$$(1 - x_3)(x + iy) = x_1 + ix_2$$
$$x(1 - x_3) + iy(1 - x_3) = x_1 + ix_2$$

Therefore

$$x = \frac{x_1}{1 - x_3} = \frac{x_1}{1 - \left(\frac{|z|^2 - 1}{|z|^2 + 1}\right)} = \frac{x_1(|z|^2 + 1)}{2}$$
$$iy = \frac{x_2}{1 - x_3}$$

Here

$$x_1 = \frac{2\operatorname{Re}\{z\}}{1+|z|^2} \text{ and } x_2 = \frac{2\operatorname{Im}\{z\}}{1+|z|^2}$$

Then

$$f^{-1}(z) = \begin{cases} (0,0,1) & \text{if } z = \infty \\ \left(\frac{2\operatorname{Re}\{z\}}{1+|z|^2}, \frac{2\operatorname{Im}\{z\}}{1+|z|^2}, \frac{|z|^2-1}{|z|^2+1}\right) & \text{if } z \in \mathbb{C} \end{cases}$$

Clearly f^{-1} is continuous on \mathbb{C} . If $|z| \to \infty$, then $\frac{|z|^2 - 1}{|z|^2 + 1} \to 1$ and so $f^{-1}(z) \to (0, 0, 1)$ as $z \to \infty$. Thus f^{-1} is continuous on all of $\hat{\mathbb{C}}$.

A Möbius transformation is is a map $\varphi: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ given by

$$\varphi(z) = \frac{az+b}{cz+d}$$

where $z \in \hat{\mathbb{C}}$ and $ad - bc \neq 0$. If $c \neq 0$, $\varphi(\infty) = \frac{a}{c}$ and $\varphi(-\frac{d}{c}) = \infty$. If c = 0, $\varphi(\infty) = \infty$.

Lemma: Each Möbius transformation is continuous.

Proof. $\varphi | \mathbb{C} \left\{ \varphi^{-1}(\infty) \right\}$ is homomorphic and hence continuous. If c = 0,

$$\varphi(z) = \frac{az}{d} + \frac{b}{d} = \alpha z + \beta$$

where $\alpha \neq 0$ and $|\varphi(z)| \geq |\alpha||z| - |\beta| \to \infty$ as $|z| \to \infty$. Therefore φ is everywhere continuous. If $c \neq 0$, then

$$\varphi(z) - \frac{a}{c} = \frac{az+b}{cz+d} - \frac{a}{c} = \frac{bc-ad}{c(cz+d)} \rightarrow$$

so $|z| \to \infty$. Therefore $\varphi(z) \to \frac{a}{c}$ as $|z| \to \infty$. So φ is continuous at ∞ . Finally, as $z \to -\frac{d}{c}$, then $az + b \to \frac{bc - ad}{c} \neq 0$. So

$$\left| \frac{az+b}{cz+d} \right| \to \infty$$

and so φ is continuous at $-\frac{d}{c}$.

Theorem 11.2. The set \bigwedge of all Möbius transformation is a group of homeomorphisms of $\hat{\mathbb{C}}$ onto itself. Let general linear group $GL(2,\mathbb{C})$ be the group of all invertible 2×2 complex matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then the map $\Phi: GL(2,\mathbb{C}) \to \bigwedge$ given by

$$\Phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \frac{az+b}{cz+d}$$

is a surjective homomorphism.

Proof. Let $\varphi_1(z) = \frac{az+b}{cz+d}$ and $\varphi_2(z) = \frac{\alpha z+\beta}{\gamma z+\delta}$. Then

$$\varphi_1 \circ \varphi_2 = \varphi_1(\varphi_2(z)) \in \bigwedge$$

If $\varphi_1 \in \bigwedge$ and $\varphi_2 \in \bigwedge$, then $\varphi_1 \circ \varphi_2 \in \bigwedge$. If $\varphi_1, \varphi_2, \varphi_3 \in \bigwedge$, then

$$\varphi_1 \circ (\varphi_2 \circ \varphi_3) = (\varphi_1 \circ \varphi_2) \circ \varphi_3$$

$$\varphi(z) = z \in \bigwedge$$

If $\varphi(z) = w = \frac{az+b}{cz+d}$, then wcz + ws = az+b. This means z(wc-a) = b-wd. Hence

$$z = \frac{b - wd}{wc - a} = \frac{-dw + b}{cw - a}$$

Lastly, if $\varphi \in \bigwedge$ then $\varphi^{-1} \in \bigwedge$.

$$\varphi_{-1}(z) = \frac{-dz+b}{cz-a} = \frac{dz-b}{-cz+a} = \frac{dz-b}{a-cz}$$

Hence \bigwedge is a group.

To show if $A, B \in GL(2, \mathbb{C})$, show that $\Phi(AB) = \Phi(A)\Phi(B)$.

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 and $B = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$. Then

$$AB = \begin{bmatrix} a\alpha + b\gamma & a\beta + b\delta \\ c\alpha + d\gamma & d\beta + d\delta \end{bmatrix}$$

Then

$$\Phi(AB) = \frac{(a\alpha + b\gamma)z + (a\beta + b\delta)}{(c\alpha + d\gamma)z + (c\beta + d\delta)}$$

Now

$$\Phi(A) = \frac{az+b}{cz+d}$$
 and $\Phi(B) = \frac{\alpha z+\beta}{\gamma z+\delta}$

Then

$$\begin{split} \Phi(A) \circ \Phi(B) &= \varphi_1 \circ \varphi_2 \\ &= \varphi_1(\varphi_2(z)) \\ &= \frac{a\left(\frac{\alpha z + \beta}{\gamma z + \delta}\right) + b}{c\left(\frac{\alpha z + \beta}{\gamma z + \delta}\right) + d} \\ &= \frac{(a\alpha + b\gamma)z + (a\beta + b\delta)}{(c\alpha + d\gamma)z + (c\beta + d\delta)} \\ &= \Phi(A)\Phi(B) \end{split}$$

 Φ is obviously onto. For example, if $\Phi: GL(2,\mathbb{C}) \to \bigwedge$ and $\bigwedge = \frac{pz+q}{rz+s}$, then $GL(2,\mathbb{C}) = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$. Furthermore, the kernel of Φ is:

$$\operatorname{Ker} \Phi = \left\{ A \in GL(2, \mathbb{C}) : \Phi(A) = \operatorname{Id} \right\}$$

For Id to be in \bigwedge , it mush be the case that $\varphi(z)=\frac{az+b}{cz+d}=z$. This means $a=1,\ b=0,$ c=0 and d=1. This forms the matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. For 1 is arbitrary; all we need is a=d and b=c=0. Therefore $\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$, where $\lambda \in \mathbb{C}\left\{0\right\}$, will produce this result since if this is $G(2,\mathbb{C})$, then $\bigwedge = \frac{\lambda z}{\lambda} = z$. Hence

$$K = \text{Ker } \Phi = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$$

where
$$\lambda \in \mathbb{C} \left\{ 0 \right\} = \mathbb{C}^*$$
.

Composition of Transformations:

• Translation: s(z) = z + a

• Dilation: s(z) = az where $a \in \mathbb{R}$ and a > 0

• Rotation: $s(z) = e^{i\theta}z$

• Inversion: $s(z) = \frac{1}{z}$

Proposition: If $S \in \Lambda$, meaning if S is a Möbius transformation, then S is a composition of translations, dilations and inversions.

Proof. Step 1: Let c=0. Define $S(z)=\left(\frac{a}{d}\right)z+\left(\frac{b}{d}\right)$. Then

$$S_1(z) = \frac{a}{d}z$$

$$S_2(z) = z + \frac{b}{d}$$

$$S = S_2 \circ S_1$$

Step 2: If $c \neq 0$, then

$$S_3(z) = \frac{bc - ad}{c^2} z$$

$$S_4(z) = z + \frac{a}{c}$$

$$S = S_4 \circ S_3 \circ S_2 \circ S_1$$

12 Lecture 12

Let $\varphi(z) = \frac{az+b}{cz+d}$ be a Möbius transformation and $\varphi(z) = z$, then

$$cz^{2} + dz - az - b = 0$$
$$cz^{2} + z(d-a) - b = 0$$

which has at most 2 roots. Thus a Möbius transformation can have at most 2 fixed points unless $\varphi(z) = z$ for all $z \in \hat{\mathbb{C}}$.

Let z_1 , z_2 and z_3 be distinct points in $\hat{\mathbb{C}}$ and w_1 , w_2 and w_3 be distinct points in $\hat{\mathbb{C}}$. Suppose there exists two Möbius transformation T and S such that $T(z_i) = w_i$ and $S(T_i) = w_i$ for i = 1, 2, 3. Then

$$TS^{-1}(w_i) = w_i$$

for i = 1, 2, 3. Therefore

$$TS^{-1} = Id \text{ or } T = S$$

A Möbius transformation is uniquely determined by its action on 3 distinct points in $\hat{\mathbb{C}}$. Cross Ratio:

$$[z_1, z_2, z_3, z_4] = \frac{(z_1 - z_3)(z_2 - z_4)}{(z_1 - z_4)(z_2 - z_3)}$$

Suppose

$$S = [z, z_2, z_3, z_4] = \frac{(z - z_3)(z_2 - z_4)}{(z - z_4)(z_2 - z_3)}$$

This is a Möbius transformation if when $z=z_2$, then $S(z_2)=1$, if when $z=z_3$, then $S(z_3)=0$ and if when $z=z_4$, then $S(z_4)=\infty$. In other words, if $S(z_i)=w_i$, then z_2 and w_1 go to 1, z_3 and w_2 go to 0 and z_4 and w_3 go to ∞ .

Important Proposition: The cross ratio is invariance under Möbius transformation. That is, if z_1 , z_2 , z_3 , z_4 are distinct points in $\hat{\mathbb{C}}$, then

$$[z_1, z_2, z_3, z_4] = [T(z_1), T(z_2), T(z_3), T(z_4)]$$

where T is any Möbius transformation.

Proof. Let $S(z) = [z, z_2, z_3, z_4]$ and defined $M = ST^{-1}$. Let S map z_2 to 1, z_3 to 0 and z_4 to ∞ . This means $MT(z_2) = 1$, $MT(z_3) = 0$ and $MT(z_4) = \infty$. Then

$$M(z) = [z, T(z_2), T(z_3), T(z_4)]$$

or in other words,

$$ST^{-1}(z) = [z, T(z_2), T(z_3), T(z_4)]$$

for all $z \in \mathbb{C}$. In particular, if $z = T(z_1)$, then

$$ST^{-1}(T(z_1)) = [T(z_1), T(z_2), T(z_3), T(z_4)]$$

Hence

$$S(z_1) = [T(z_1), T(z_2), T(z_3), T(z_4)]$$

and so

$$[z_1, z_2, z_3, z_4] = [T(z_1), T(z_2), T(z_3), T(z_4)]$$

Proposition: If z_1 , z_2 and z_3 are distinct points in \mathbb{C} and w_1 , w_2 and w_3 are distinct points in \mathbb{C} , there exists a unique Möbius transformation such that $T(z_i) = w_i$ where i = 1, 2, 3.

Proof. Let $\varphi_1(z) = [z, z_1, z_2, z_3]$ and $\varphi_2(w) = [w, w_1, w_2, w_3]$. Then let z_1 and w_1 map to 1, z_2 and w_2 map to 0 and z_3 and w_3 map to ∞ . Define $T = \varphi_2^{-1} \circ \varphi_1$. Then

$$T(z_1) = \varphi_2^{-1}(\varphi_1(z_1)) = w_1$$

$$T(z_2) = \varphi_2^{-1}(\varphi_1(z_2)) = w_2$$

$$T(z_3) = \varphi_2^{-1}(\varphi_1(z_3)) = w_3$$

Let $w = \frac{az+b}{cz+d}$ be a Möbius transformation where $ad - bc \neq 0$. This means cwz + dw - az - b = 0 is of the form

$$Azw + Bz + Cw + D = 0$$

where A = c, B = -a, C = d and D = -b and so $AD - BC = -bc + ad \neq 0$. Claim:

$$[w, w_1, w_2, w_3] = [z, z_1, z_2, z_3]$$

is the Möbius transformation such that $w(z_i) = w_i$ for i = 1, 2, 3.

Proof. Given the identity above,

$$\frac{(w-w_2)(w_1-w_3)}{(w-w_3)(w_1-w_2)} = \frac{(z-z_2)(z_1-z_3)}{(z-z_3)(z_1-z_2)}$$
$$(w-w_2)(w_1-w_3)(z-z_3)(z_1-z_2) = (w-w_3)(w_1-w_2)(z-z_2)(z_1-z_3)$$

If $z = z_2$, then $w = w_2$. If $z = z_3$, then $w = w_3$. If $z = z_1$,

$$(w - w_1)(w_1 - w_3)(z_1 - z_3)(z_1 - z_2) = (w - w_3)(w_1 - w_2)(z_1 - z_2)(z_1 - z_3)$$

$$(w - w_1)(w_1 - w_3) = (w - w_3)(w_1 - w_2)$$

$$ww_1 - w_1w_2 - ww_3 + w_2w_3 = ww_1 - w_1w_3 - ww_2 + w_2w_3$$

$$-w_1w_2 - ww_3 = -w_1w_3 - ww_2$$

$$w(w_2 - w_3) = w_1(w_2 - w_3)$$

$$w = w_1$$

Find a Möbius transformation that maps $z_1=2,\ z_2=i,\ z_3=-2$ to $w_1=1,\ w_2=i,\ w_3=-1.$

$$[w, 1, i, -1] = [z, 2, i, -2]$$

This means

$$\frac{(w-i)(2)}{(w+1)(1-i)} = \frac{(z-1)(4)}{(z+2)(2-i)}$$

$$\frac{w-i}{(w+1)(1-i)} = \frac{2(z-1)}{(z+2)(2-i)}$$

$$\frac{w-i}{w+1-iw-i} = \frac{2z-2}{2z+4-iz-2i}$$

$$2wz + 4w - izw - 2wi - 2iz - 4i - 2 = 2zw + 2z - 2izw - 2iz - 2iw - 2i - 2w - 2i$$

$$4w - izw - 4i - z = 2z - 2izw - 2i - 2w$$

$$6w + izw = 3z + 2i$$

$$w = \frac{3z+2i}{iz+6}$$

Find a Möbius transformation that maps $z_1=1,\ z_2=0,\ z_3=-1$ to $w_1=i,\ w_2=\infty,\ w_3=1.$

$$[w, w_1, w_2, w_3] = [z, z_1, z_2, z_3]$$

 $[w, i, \infty, 1] = [z, 1, 0, -1]$

П

This means

$$\frac{(w-w_2)(w_1-w_3)}{(w-w_3)(w_1-w_2)} = \frac{(z-z_2)(z_1-z_3)}{(z-z_3)(z_1-z_2)}$$

If $w_2 = \infty$,

$$\frac{w_1 - w_3}{w - w_3} = \frac{(z - z_2)(z_1 - z_3)}{(z - z_3)(z_1 - z_2)}$$

Then

$$\frac{i-1}{w-1} = \frac{z(2)}{(z+1)(1)} = \frac{2z}{z+1}$$

$$iz - z + i - 1 = 2zw - 2z$$

$$2wz = z + iz + i - 1$$

$$w = \frac{z(1+i) + i - 1}{2z}$$

A circle in $\hat{\mathbb{C}}$ is a (closed) subset of $\hat{\mathbb{C}}$ which is either a circle in \mathbb{C} or else a set $L \cup \{\infty\}$ where L is a straight line in \mathbb{C} .

For example, $\hat{\mathbb{R}} : \mathbb{R} \bigcup \{\infty\}$ is a circle in $\hat{\mathbb{C}}$.

Lemma: If $\varphi \in \Lambda$, then $\varphi^{-1}(\hat{\mathbb{R}})$ is a circle in $\hat{\mathbb{C}}$.

Proof. Let $\varphi(z) = \frac{az+b}{cz+d}$. For $z \in \mathbb{C}$, $\varphi(z) \in \hat{\mathbb{R}}$ if and only if $(az+b)(\overline{cz}+\overline{d}) = (\overline{az}+\overline{b})(cz+d)$. So $\mathbb{C} \bigcup \varphi^{-1}(\hat{\mathbb{R}})$ is the set of all $z \in \mathbb{C}$ such that

$$(a\overline{c} - \overline{a}c)|z|^2 + (a\overline{d} - \overline{b}c)z + (b\overline{c} - d\overline{a}) + (b\overline{d} - \overline{b}d) = 0$$

If $a\overline{c} - \overline{a}c \neq 0$, then this becomes

$$|(a\overline{c} - \overline{a}c)z - (\overline{a}d - b\overline{c})|^2 = |ad - bc|^2$$

in \mathbb{C} which is a circle in \mathbb{C} .

If $a\bar{c} - \bar{a}c = 0$, then this defines a line in \mathbb{C} and so $\varphi^{-1}(\hat{\mathbb{R}}) = L \bigcup \{\infty\}$.

Lemma: If C is a circle in $\hat{\mathbb{C}}$, there exists $\varphi \in \bigwedge$ such that $\varphi(C) = \hat{\mathbb{R}}$.

Proof. Choose α , β and γ distinct points on C and define

$$\varphi(z) = \frac{(z - \alpha)(\beta - \gamma)}{(z - \gamma)(\alpha - \beta)}$$

If $\varphi(\alpha) = 0$, $\varphi(\beta) = 1$ and $\varphi(\gamma) = \infty$, then $\varphi^{-1}(\hat{\mathbb{R}})$ is a circle in $\hat{\mathbb{C}}$ through α, β, γ and the only such circle is C.

Theorem 12.1. If $\varphi \in \bigwedge$ and C is a circle in $\hat{\mathbb{C}}$, then are $\varphi^{-1}(C)$ and $\varphi(C)$.

Proof. Choose $\psi \in \bigwedge$ such that $\psi^{-1}(\hat{\mathbb{R}}) = C$. Then

$$\varphi^{-1}(C) = \varphi^{-1}(\psi^{-1}(\hat{\mathbb{R}})) = (\psi \circ \varphi)^{-1}(\hat{\mathbb{R}})$$

which is a circle in $\hat{\mathbb{C}}$. If so, then $\varphi^{-1} \in \bigwedge$ and so $\varphi(C) = (\varphi^{-1})^{-1}(C)$ is also a circle in $\hat{\mathbb{C}}$.

13 Lecture 13

Let

$$e^z = e^{x+iy} = e^x e^{iy} = e^x (\cos y + i \sin y)$$

Let

$$f(z) = e^z = e^x \cos y + ie^x \sin y = u(x, y) + iv(x, y)$$

This means $u(x,y) = e^x \cos y$ and $v(x,y) = e^x \sin y$.

All first partials are continuous

$$u_x = e^x \cos y = v_y$$

$$u_y = -e^x \sin y = -v_x$$

So the Cauchy-Riemann equations hold and hence $f(z)=e^z$ for all $z\in\mathbb{C}$ is holomorphic. Furthermore,

$$f'(z) = u_x + iv_x = e^x \cos y + 0e^x \sin y = e^x (\cos y + i \sin y) = e^z$$

Conclusion: The function $f(z) = e^z$ is holomorphic on \mathbb{C} and

$$\frac{d}{dz}d^z = e^z \quad \forall z \in \mathbb{C}$$

A function holomorphic on the entire complex plane is called an entire function. Note that

$$|z| = e^x = e^{\operatorname{Re}\{z\}}$$

Write $|e^{2z+i}|$ in terms of x and y.

$$e^{2z+i} = e^{2x+2iy+i} = e^{2x} + e^{i(2y+1)} \rightarrow |e^{2z+i}| = e^{2x}$$

Write $\left|e^{iz^2}\right|$ in terms of x and y.

$$e^{iz^2} = e^{i(x^2 - y^2 + 2ixy)} = e^{-2xy + i(x^2 - y^2)} \rightarrow \left| e^{iz^2} \right| = e^{-2xy}$$

Show that $\left|e^{z^2}\right| \le e^{|z|^2}$.

$$\begin{vmatrix} e^{z^2} \\ e^{|z|^2} = e^{\operatorname{Re}\{z^2\}} = e^{x^2 - y^2} \\ e^{|z|^2} = e^{x^2 + y^2} \\ e^{x^2 - y^2} \le e^{x^2 + y^2} \\ \left| e^{z^2} \right| \le e^{|z|^2}$$

Prove that $|e^{-2x}| \iff \operatorname{Re}\{z\} > 0$.

$$\left| e^{-2z} \right| = e^{\operatorname{Re}\{-2z\}}$$

= $e^{-2\operatorname{Re}\{z\}} \le 1$
 $-2\operatorname{Re}\{z\} < 0$
 $\operatorname{Re}\{z\} > 0$

Let f(z) = u(x,y) + iv(x,y) be holomorphic on a region Ω . Define $U(x,y) = e^{u(x,y)} \cos v(x,y)$ and $V(x,y) = e^{u(x,y)} \sin v(x,y)$. Show that U(x,y) and V(x,y) are harmonic. Define $F(z) = e^{f(z)}$ is which is holomorphic on Ω .

$$\begin{split} F(z) &= e^{f(z)} \\ &= e^{u(x,y) + iv(x,y)} \\ &= e^{u(x,y)} [\cos v(x,y) + i \sin v(x,y)] \\ &= e^{u(x,y)} \cos v(x,y) + i e^{u(x,y)} \sin v(x,y) \\ &= U(x,y) + i V(x,y) \end{split}$$

So $U(x,y) = \text{Re}\{F(z)\}$ and $V(x,y) = \text{Im}\{F(z)\}$ and so they are harmonic.

Define the following:

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

$$\frac{d}{dz} \sin z = \frac{ie^{iz} + ie^{iz}}{2} = \frac{e^{iz} + e^{-iz}}{2} = \cos z$$

$$\frac{d}{dz} \cos z = \frac{ie^{iz} - ie^{iz}}{2} = \frac{-e^{iz} + e^{-iz}}{2i} = -\left(\frac{e^{iz} - e^{-iz}}{2i}\right) = -\sin z$$

Note that

$$\cos z + i \sin z = \frac{e^{iz} + e^{-iz}}{2} + i \frac{e^{iz} - e^{-iz}}{2i} = e^{iz}$$

For $n \in \mathbb{Z}$,

$$e^{z+2\pi ni} = e^z e^{2\pi ni} = e^z$$

Therefore, e^z is a periodic function with period $2\pi ni$.

Note the following:

$$\sin(z_1 + z_2) = \sin z_1 \cos_2 + \sin z_2 \cos z_1$$
$$\cos(z_1 + z_2) = \cos z_1 \cos z_2 - \sin z_1 \sin z_2$$
$$\sin^2 z + \cos^2 z = 1$$

Hyperbolic functions:

$$\sinh x = \frac{e^x - e^{-x}}{2}$$
$$\cosh x = \frac{e^x + e^{-x}}{2}$$

Note the following:

$$\sin iy = \frac{e^{-y} - e^y}{2i} = i \sinh y$$
$$\cos iy = \cosh y$$

If so, then

$$\sin z = \sin(x + iy) = \sin x \cos iy + \cos x \sin iy = \sin x \cosh y + i \cos x \sinh y$$

Furthermore, let

$$|\sin x|^2 = \sin^2 x \cosh^2 y + \cos^2 y \sinh^2 x$$

Suppose

$$\cosh^2 x - \sinh^2 x = \frac{e^{2x} + e^{-2x} + 2 - e^{2x} - e^{-2x} + 2}{4} = 1$$

then

$$|\sin z|^2 = \sin^2 x (1 - \sinh^2 y) + (1 - \sin^2 x) \sinh^2 y = \sin^2 x + \sinh^2 y$$

Similarly,

$$\left|\cos z\right|^2 = \cos^2 x + \sinh^2 y$$

Facts:

$$\frac{d}{dz}\sinh z = \cosh z$$

$$\frac{d}{dz}\cosh z = \sinh z$$

$$\sin iy = i\sinh y$$

$$\cos iy = \cosh y$$

$$\cosh^2 x - \sinh^2 x = 1$$

Verify that $-i \sinh iz = \sin z$.

$$-i\sinh iz = -i\left(\frac{e^{iz} - e^{-iz}}{2}\right) = \left(\frac{e^{iz} - e^{-iz}}{2i}\right) = \sin z$$

Prove the following:

$$\sinh(z_1 + z_2) = \sinh z_1 \cosh z_2 + \cosh z_1 \sinh z_2$$

From the LHS:

$$\sinh(z_1 + z_2) = \frac{e^{z_1 + z_2} - e^{-i(z_1 + z_2)}}{2} = \frac{e^{z_1}e^{z_2} - e^{-z_1}e^{-z_2}}{2}$$

From the RHS:

$$\sinh z_1 \cosh z_2 + \cosh z_1 \sinh z_2 = \frac{e^{z_2} - e^{-z_1}}{2} \frac{e^{z_2} + e^{-z_2}}{2} + \frac{e^{z_1} + e^{-z_1}}{2} \frac{e^{z_2} - e^{-z_2}}{2}$$

Prove that $\sinh z = \sinh x \cos y + i \cosh x \sin y$.

$$\sinh z = \sinh(x + iy)$$

$$= \sinh x \cosh iy + \cosh x \sinh iy$$

$$= \sinh x \cos y + i \cosh x \sin y$$

Note that

$$|\sinh z|^2 = \sinh^2 x \cos^2 y + \cosh^2 x \sin^2 y$$

= $\sinh^2 x (1 - \sin^2 y) + (1 + \sinh^2 x) \sin^2 y$
= $\sinh^2 x + \sin^2 y$

Similarly,

$$\left|\cosh z\right|^2 = \sinh^2 x + \cos^2 y$$

where

$$\left|\cos z\right|^2 = \cos^2 x + \sinh^2 y$$

Cauchy Riemann Equations in Polar Form: Let $z=x+iy, \ x=r\cos\theta, \ {\rm and} \ y=r\sin\theta.$ Let w=f(z)=u(x,y)+iv(x,y). Then

$$\begin{split} \frac{\partial u}{\partial r} &= \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r} = \cos(\theta) u_x + \sin(\theta) u_y \\ \frac{\partial u}{\partial \theta} &= \frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r} = -r \sin(\theta) u_x + r \cos(\theta) u_y \\ \frac{\partial v}{\partial r} &= \frac{\partial v}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial r} = \cos(\theta) v_x + \sin(\theta) v_y \\ \frac{\partial v}{\partial \theta} &= \frac{\partial v}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial \theta} = -r \sin(\theta) v_x + r \cos(\theta) v_y \end{split}$$

The Cauchy Riemann Equations are as follows:

$$u_x = v_y$$

$$u_y = -v_x$$

$$ru_r = r\cos(\theta)u_x + r\sin(\theta)u_y = r\cos(\theta)v_y - r\sin(\theta)v_x = v_\theta$$

$$u_\theta = -r\sin(\theta)u_x + r\cos(\theta)u_y = -r\sin(\theta)v_y - r\cos(\theta)v_x = -rv_r$$

Therefore the Cauchy Riemann Equations are:

$$ru_r = v_\theta \qquad -rv_r = u_\theta$$

Furthermore,

$$f'(z) = u_r + iv_r$$

$$= \cos(\theta)u_x + \sin(\theta)u_y + i(\cos(\theta)v_x + \sin(\theta)v_y)$$

$$= u_x(\cos\theta + i\sin\theta) + iv_x(\cos\theta + i\sin\theta)$$

$$= e^{-i\theta}(u_x + iv_x)$$

$$f'(z) = e^{-i\theta}(u_r + iv_r)$$

Let f(z) = |z| be continuous. Show that $||z_n| - |z|| \le |z_n - z|$ if $z_n \to z$ and $|z_n| \to |z|$.

14 Lecture 14

Let $z=re^{i\theta}.$ Define $\Omega=\mathbb{C}/\Big\{z:z=x+iy:x\leq 0,y=0\Big\}.$

Problem: Suppose $z_n, z \in \Omega$ where $z_n = r_n e^{i\theta_n}$ and $z = r e^{i\theta}$ and $-\pi < \theta_n < \pi$ and $-\pi < \theta < \pi$. Provethat if $z_n \to z$, then $r_n \to r$ and $\theta_n \to \theta$.

Let Ω be a region. If there exists a function $f:\Omega\to\mathbb{C}$ such that f is continuous on Ω and $e^{f(z)}=z$ for all $z\in\Omega$, then f is called a branch of the logarithm $\log z$. Note that $0\notin\Omega$. Suppose f is a given branch and k is an integer. Let $g(z)=f(z)+2\pi ki$. Then

$$e^{g(z)} = e^{f(z)}e^{2\pi ki} = e^{f(z)} = z$$

Therefore g(z) is also a branch. Consequently, if f and g are branches of $\log z$, then

$$f(z) = g(z) + 2\pi ki$$

for some $k \in \mathbb{Z}$ where k depends on z.

Does the same k work for all $z \in \Omega$? Let $h(z) = \frac{f(z) - g(z)}{2\pi i}$. So h is continuous on Ω . Since Ω is connected and h is connected in connected on Ω , then g(z) is connected and hence a point. Therefore there exists $k \in \mathbb{Z}$ such that

$$f(z) + 2\pi ki = g(z) \quad \forall z \in \Omega$$

Proposition: If Ω is a region and f is a branch of $\log z$, then the totality of all branches of $\log z$ are

$$f(z) + 2\pi ki, \ k \in \mathbb{Z}$$

Now back to the problem. Let $\Omega = \mathbb{C}\left\{z: z = x + iy: x \leq 0, y = 0\right\}$. Seach $z \in \Omega$ can be written as $z = re^{i\theta}$ where $i\pi < \theta < \pi$. By the problem, $f(z) = \ln|r| + i\theta$ is a continuous function on Ω and

$$e^{f(z)} = e^{\ln|r| + i\theta} = e^{\ln r}e^{i\theta} = re^{i\theta} = z$$

Given a nonzero complex number z,

$$\log z = \ln r + i\theta$$

where $z = re^{i\theta}$ and $-\pi < \theta < \pi$. This is called the principal branch of $\log z$. The principal branch is written as $\log z$. So the general values of $\log z$ are:

$$\log(z) = \ln r + i\theta + 2n\pi i$$

where $n \in \mathbb{Z}$ and $-\pi < \theta < \pi$.

Note that

$$\log z = \ln r + i\theta$$

where r = |z|, $\theta = \arg z$ and $-\pi < \theta < \pi$.

If $z_n \to z$, to show that $f(z_n) \to f(z)$, show that $\ln |z_n| + i\theta_n \to \ln |z| + i\theta$.

Recall: Polar form of Cauchy Riemann Equations: If f(z) = u(x,y) + iv(x,y) and $x = r\cos\theta$ and $y = r\sin\theta$ then

$$ru_r = v_\theta$$

$$u_\theta = -rv_r$$

$$f'(z) = e^{i\theta}(u_r + iv_r)$$

Consider $f(z) = \log z = \ln r + i\theta$ where $z = re^{i\theta}$ and $-\pi < \theta < \pi$. Then

$$u(r, \theta) = \ln r$$

$$v(r, \theta) = \theta$$

$$u_r = \frac{1}{r}$$

$$v_{\theta} = 1$$

Therefore $ru_r = v_\theta$ and if $u_\theta = 0$ and $v_r = 0$, then $u_\theta = -rv_r$. Furthermore,

$$\frac{d}{dz}\log z = e^{-i\theta}(u_r + iv_r) = e^{-i\theta}\left(\frac{1}{r}\right) = \frac{1}{re^{i\theta}} = \frac{1}{z}$$

Conclusion: $\log z$ is a holomorphic function on $\Omega = \mathbb{C}/\Big\{z: z=x+iy: x\leq 0, y=0\Big\}$ and $\frac{d}{dz}\log z = \frac{1}{z}$ for all $z\in\Omega$.

When $z \neq 0$ and $z \in \mathbb{C}$,

$$z^c = e^{c \log z}$$

This gives the values of the principal value of z^c .

Find the principal value of $(1+i)^{1+i}$.

Let z = 1 + i.

$$z^z = e^{(1+i)\log(1+i)}$$

Let $z = 1 + i = r(\cos \theta + i \sin \theta)$. Then $1 = r \cos \theta$ and $1 = r \sin \theta$. Since $r^2 = 2$, $r = \sqrt{2}$. Therefore $\cos \theta = \frac{1}{\sqrt{2}}$ and $\sin \theta = \frac{1}{\sqrt{2}}$. So $\theta = \frac{\pi}{4}$. So

$$1 + i = \sqrt{2}e^{i\frac{\pi}{4}}$$

Then the principal branch is

$$\log(1+i) = \ln\sqrt{2} + i\frac{\pi}{4} = \frac{1}{2}\ln 2 + i\frac{\pi}{4}$$

Hence the principal value of $(1+i)^{1+i}$ is

$$e^{(1+i)(\ln\sqrt{2}+i\frac{\pi}{4})} = e^{\ln\sqrt{2}-\frac{\pi}{4}+i\ln\sqrt{2}+i\frac{\pi}{4}}$$
$$= e^{\ln\sqrt{2}-\frac{\pi}{4}}(\cos\left(\ln\sqrt{2}+\frac{\pi}{4}\right)+i\sin\left(\ln\sqrt{2}+\frac{\pi}{4}\right))$$

Find all values.

$$\log(1+i) = \ln\sqrt{2} + i\frac{\pi}{4} + 2n\pi i$$

Then

$$\begin{split} e^{(1+i)(\log(1+i))} &= e^{(1+i)[\ln\sqrt{2} + i(\frac{\pi}{4} + 2n\pi)]} \\ &= e^{\ln\sqrt{2} - (\frac{\pi}{4} + 2n\pi)} e^{i[\ln\sqrt{2} + \frac{\pi}{4} + 2n\pi]} \\ &= e^{\ln\sqrt{2} - (\frac{\pi}{4} + 2n\pi)} [\cos\left(\ln\sqrt{2} + \frac{\pi}{4} + 2n\pi\right) + i\sin\left(\ln\sqrt{2} + \frac{\pi}{4} + 2n\pi\right)] \end{split}$$

Find the principle value of i^i .

Let z=i and $z^z=i^i=e^{i\log i}$. Then $z=i=r(\cos\theta+i\sin\theta)$. So $r\cos\theta=0$ and $r\sin\theta=1$. Since $-\pi<\theta<\pi$ and $r^2=1$ and so r=1, $\cos\theta=0$ and $\sin\theta=1$ and hence $\theta=\frac{\pi}{2}$. So

$$i = e^{i\frac{\pi}{2}} = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2}$$

The principal branch is

$$\log i = \ln 1 + i\frac{\pi}{2} = i\frac{\pi}{2}$$

Therefore the principal value is

$$i^i = e^{i \log i} = e^{i(i\frac{\pi}{2})} = e^{-\frac{\pi}{2}}$$

Show that the principal value of $\left[\frac{e}{2}(-1-\sqrt{3}i)\right]^{3\pi i}$ is $-e^{2\pi^2}$.

$$-\frac{e}{2} - \frac{\sqrt{3}}{2}ei = r(\cos\theta + i\sin\theta)$$

Therefore $-\frac{e}{2} = r \cos \theta$ and $-\frac{\sqrt{3}}{2}e = r \sin \theta$. Since $r^2 = e^2$ and so r = 2, then $\cos \theta = -\frac{1}{2}$ and $\sin \theta = -\frac{\sqrt{3}}{2}$. Hence $\theta = -\frac{2\pi}{3}$. The principal branch is

$$\log z = lne - i\frac{2\pi}{3} = 1 - i\frac{2\pi}{3}$$

and the principal value is

$$e^{3\pi i(1-\frac{2\pi}{3}i)} = e^{3\pi i}e^{2\pi^2} = e^{2\pi^2}(\cos 3\pi + i\sin 3\pi) = -e^{2\pi^2}$$

Find the principal value of $(1-i)^{4i}$.

Let $z = 1 - i = r(\cos \theta + i \sin \theta)$. Then $1 = r \cos \theta$ and $-1 = r \sin \theta$. Since $r^2 = 2$, then $r = \sqrt{2}$ and so $\cos \theta = \frac{1}{\sqrt{2}}$ and $\sin \theta = -\frac{1}{\sqrt{2}}$ and hence $\theta = -\frac{\pi}{4}$. The principal branch is

$$\log(1-i) = \ln\sqrt{2} - i\frac{\pi}{4}$$

The principal value is

$$e^{4i(\ln \sqrt{2} - i\frac{\pi}{4})} = e^{\pi} e^{i4 \ln \sqrt{2}}$$

$$= e^{\pi i 4 \frac{1}{2} \ln 2}$$

$$= e^{\pi} e^{i2 \ln 2}$$

$$= e^{\pi} (\cos 2 \ln 2 + i \sin 2 \ln 2)$$

15 Lecture 15

Let $z_n = r_n e^{i\theta_n}$ and $z = r e^{i\theta}$ where $-\pi < \theta_n < \pi$ and $-\pi < \theta < \pi$. Prove that if $z_n \to z$, then $\theta_n \to \theta$ and $r_n \to r$.

Proof. If $z_n \to z$, then $|z_n| \to |z|$ because

$$||z_n| - |z|| \le |z_n - z| \to 0$$

and so $|z_n| \to |z|$. This means $r_n \to r$. If $z_n \to z$, then

$$r_n e^{i\theta_n} \to r e^{i\theta}$$

Since $r_n \to r$, then

$$\frac{r_n e^{i\theta_n}}{r_n} \to \frac{r e^{i\theta}}{r}$$
$$e^{i\theta_n} \to e^{i\theta}$$

Now if $\{\theta_n\}$ is a bounded sequence, then there exists a convergent subsequent $\theta_{n_j} \to \phi$. Then

$$e^{i\theta_{n_j}} \to e^{i\phi}$$

Let $e^{i\phi} = e^{i\theta}$
Then $e^{i(\phi-\theta)} = 1$

and so $\phi = \theta$. So $e^{i\theta_{n_j}} \to e^{i\theta}$. Claim: if $\{\theta_{n_k}\}$ is any subsequence of $\{\theta_n\}$, then $e^{i\theta_{n_k}} \to e^{i\theta}$. Suppose that $\theta_{n_k} \to \alpha$. Then $e^{i\theta_{n_k}} \to e^{i\alpha}$. Hence $e^{i\alpha} = e^{i\theta}$ or $\alpha = \theta$. Therefore $\theta_n \to \theta$.

16 Midterm Practice Questions

Theorems:

- 1. Let f be holomorphic in a region Ω . Then
 - if f'(z) = 0 for all $z \in \Omega$, then f is constant in Ω .
 - if |f(z)| is constant, then f is constant.
 - if $Re\{f(z)\}$ is constant, then f is constant.
 - if $\text{Im}\{f(z)\}$ is constant, then f is constant.
- 2. Let f be holomorphic in a region Ω . Then if \overline{f} is holomorphic in Ω , then f is constant in Ω .
- 3. Define the cross ratio of four points: z_1, z_2, z_3, z_4 as follows

$$[z_1, z_2, z_3, z_4] = \frac{(z_1 - z_3)(z_2 - z_4)}{(z_1 - z_4)(z_2 - z_3)}$$

Let

$$\varphi(z) = [z, z_1, z_2, z_3] = \frac{(z - z_2)(z_1 - z_3)}{(z - z_3)(z_1 - z_2)}$$

where $z_1 \to 1$, $z_2 \to 0$ and $z_3 \to \infty$. Prove that if T is a Möbius transformation and z_1, z_2, z_3, z_4 are distinct points in $\hat{\mathbb{C}}$, then

$$[z_1, z_2, z_3, z_4] = [T(z_1), T(z_2), T(z_3), T(z_4)]$$

Problems:

1. Suppose u(x,y) is a harmonic function on G. Define $f=u_x-iu_y$. Show that f is holomorphic on G.

Let $f = u_x - iu_y = U + iV$. Then $U = u_x = \frac{\partial u}{\partial x}$ and $V = -u_y = -\frac{\partial u}{\partial y}$. U and V have continuous first partials because u(x,y) is harmonic and so its second partials are all continuous. Now,

$$U_x = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial^2 u}{\partial x^2}$$

$$V_y = -\frac{\partial}{\partial y} \left(\frac{\partial u}{\partial y} \right) = -\frac{\partial^2 u}{\partial y^2}$$

$$U_y = \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial^2 u}{\partial y \partial x}$$

$$V_x = -\frac{\partial}{\partial x} \left(\frac{\partial u}{\partial y} \right) = -\frac{\partial u}{\partial x \partial y}$$

Since u(x,y) is harmonic, $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$ and so $u_y = -v_x$ and hence

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

Thus f is holomorphic on G.

2. Show that $u(x,y) = x^3 - 3xy^2$ is harmonic on \mathbb{C} and find the harmonic conjugates.

$$\frac{\partial u}{\partial x} = 3x^2 - 3y^2$$

$$\frac{\partial^2 u}{\partial x^2} = 6x$$

$$\frac{\partial u}{\partial y} = -6xy$$

$$\frac{\partial^2 u}{\partial y^2} = -6x$$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 6x - 6x = 0$$

Therefore $u(x,y) = x^3 - 3xy^2$ is harmonic. Furthermore, let v(x,y) be a harmonic conjugate of u. Then u + iv is holomorphic.

$$u_x = v_y$$

$$u_y = -v_x$$

$$v_x = -u_y = 6xy$$

$$v = \int 6xy \, dx = 3x^2y + h(y)$$

$$v_y = u_x = \frac{\partial v}{\partial y}$$

$$= 3x^2 + h'(y) = 3x^2 - 3y^2$$

$$h'(y) = -3y^2$$

$$h(y) = \int -3y^2 \, dy = -y^3 + k$$

$$v(x, y) = 3x^2y - y^3 + k$$

- 3. Find a Möbius transformation such that $f(z_i) = w_i$ where
 - $z_1 = -1$, $z_2 = 1$, $z_3 = 2$; $w_1 = 0$, $w_2 = -1$, $w_3 = -3$ $\frac{(w+1)(3)}{(w+3)(2)} = \frac{(z-1)(-3)}{(z-2)(-2)}$ $\frac{w+1}{w+3} = \frac{z-1}{2(z-2)}$ 2(z-2)(w+1) = (w+3)(z-1) 2[zw-2w+z-2] = wz+3z-w-3 wz-3w = z+1 $w = \frac{z+1}{z-3}$

•
$$z_1 = -1$$
, $z_2 = 1$, $z_3 = 2$; $w_1 = -3$, $w_2 = -1$, $w_3 - 0$

$$\frac{(w+1)(-3)}{(w-0)(-2)} = \frac{(z-1)(-3)}{(z-2)(-2)}$$

$$\frac{w+1}{w} = \frac{z-1}{z-2}$$

$$(w+1)(z-2) = w(z-1)$$

$$wz - 2w + z - 2 = wz - w$$

$$w = z - 2$$

•
$$z_1 = 0$$
, $z_2 = 1$, $z_3 = 2$; $w_1 = 0$, $w_2 = 1$, $w_3 = \infty$

If
$$w_3 = \infty$$
,
$$\frac{w - w_2}{w_1 - w_2} = \frac{(z - z_2)(z_1 - z_3)}{(z - z_3)(z_1 - z_2)}$$

$$\frac{w - 1}{-1} = \frac{(z - 1)(-2)}{(z - 2)(-1)}$$

$$(w - 1)(z - 2) = -2(z - 1)$$

$$wz - 2w - z + 2 = -2z + 2$$

$$w(z + 2) = -2$$

$$w = -\frac{z}{z - 2} = \frac{z}{2 - z}$$

• $z_1 = -i$, $z_2 = 0$, $z_3 = i$; $w_1 = -1$, $w_2 = i$, $w_3 = 1$

$$\frac{(w-i)(-2)}{(w-1)(-1-i)} = \frac{(z-0)(-i-i)}{(z-i)(-i-0)}$$

$$\frac{(w-i)(-2)}{(w-1)(-1-i)} = \frac{2z}{z-i}$$

$$\frac{-(w-i)}{(w-1)(-1-i)} = \frac{2}{z-i}$$

$$2(w-1)(-1-i) = -(w-i)(z-i)$$

$$z(-w-iw+1+i) = -zq - iqz + z + iz = -wz + iw + iz + 1$$

$$w = \frac{z-1}{iz+1}$$

• $z_1 = 1$, $z_2 = i$, $z_3 = -1$; $w_1 = 0$, $w_2 = 1$, $w_3 = \infty$

$$\frac{w-1}{-1} = 1 - w = \frac{(z-i)(2)}{(z+1)(1-i)} = \frac{2z-2i}{z+1-iz-i}$$

$$z+1-iz-i-wz-w+wiz+wi = 2z-2i$$

$$wi(z+1)-w(z+1) = z-1+iz-1 = (z-1) = i(z-1)$$

$$(wi-w)(z+1) = (z-1)(1+i)$$

$$w(i-1)(z+1) = (z-1)(1+i)$$

$$w = \frac{(z-1)(1+i)}{(z+1)(i-1)}$$

$$w = \frac{z(1+i)-(1+i)}{z(-1+i)-(1-i)}$$

4. Find the principal values of

•
$$\log(1+\sqrt{3}i)$$
 $1+\sqrt{3}i = r(\cos\theta+i\sin\theta)$
 $r\cos\theta = 1$
 $r\sin\theta = \sqrt{3}$
 $r^2 = 4 \to r = 2$
 $\cos\theta = \frac{1}{2}$
 $\sin\theta = \frac{\sqrt{3}}{2}$
 $\theta = \frac{\pi}{3}$
 $\log(1+\sqrt{3}i) = \ln 2 + i\frac{\pi}{3} + 2n\pi i$

• $(1-i)^{4i}$
 $(1-i)^{4i} = e^{4i\log(1-i)}$
 $1-i = r(\cos\theta+i\sin\theta)$
 $r\cos\theta = 1$
 $r\sin\theta = -1$
 $r^2 = 2 \to r = \sqrt{2}$
 $\cos\theta = \frac{1}{\sqrt{2}}$
 $\sin\theta = -\frac{1}{\sqrt{2}}$
 $\theta = -\frac{\pi}{4}$
 $\log(1-i) = \ln\sqrt{2} - \frac{\pi}{4}$
 $(1-i)^{4i} = e^{4i[\ln\sqrt{2}i^2]}$
 $= e^{\pi}e^{(2\ln 2)i}$
 $= e^{\pi}(\cos 2 \ln 2 + i\sin 2 \ln 2)$

•
$$(1+i)^i = e^{i\log(1+t)}$$

 $1+i = r(\cos\theta + i\sin\theta)$
 $r\cos\theta = 1$
 $r\sin\theta = 1$
 $r^2 = 2 \rightarrow r = \sqrt{2}$
 $\cos\theta = \frac{1}{\sqrt{2}}$
 $\sin\theta = \frac{1}{\sqrt{2}}$
 $\theta = \frac{\pi}{4}$
 $\log(1+i) = \ln\sqrt{2} + i\frac{\pi}{4}$
 $(1+i)^i = e^{i(\ln\sqrt{2} + i\frac{\pi}{4})}$
 $= e^{-\frac{\pi}{4}}(\cos\ln\sqrt{2} + i\sin\ln\sqrt{2})$

• $(1+i)^{1+i}$

$$(1+i)^{1+i} = e^{(1+i)\log(1+i)}$$

$$= e^{(1+i)(\ln\sqrt{2}+i\frac{\pi}{4})}$$

$$= e^{\ln\sqrt{2}-\frac{\pi}{4}}e^{i(\ln\sqrt{2}+\frac{\pi}{4})}$$

$$= e^{\ln\sqrt{2}-\frac{\pi}{4}}(\cos\left(\ln\sqrt{2}+\frac{\pi}{4}\right)+i\sin\left(\ln\sqrt{2}+\frac{\pi}{4}\right))$$

5. Find all values of $(-8 - 8\sqrt{3}i)^{\frac{1}{4}}$.

$$[r(\cos\theta + i\sin\theta)]^{\frac{1}{n}} = r^{\frac{1}{n}} \left[\cos\left(\frac{\theta + 2k\pi}{n}\right) + i\sin\left(\frac{\theta + 2k\pi}{n}\right) \right] \text{ where } k = 0, 1, 2, \dots, n-1$$

$$(-8 - 8\sqrt{3}i) = r(\cos\theta + i\sin\theta)$$

$$r\cos\theta = -8$$

$$r\sin\theta = -8\sqrt{3}$$

$$r^2 = 256 \rightarrow r = 16$$

$$\cos\theta = -\frac{1}{2}$$

$$\sin\theta = -\frac{\sqrt{3}}{2}$$

$$\theta = -\frac{2\pi}{3}$$

$$(-8 - 8\sqrt{3}i) = 16(\cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right))$$

$$[16(\cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right))]^{\frac{1}{4}} = 2[\cos\left(\frac{-\frac{2}{3}\pi + 2k\pi}{4}\right) + i\sin\left(\frac{-\frac{2\pi}{3} + 2k\pi}{4}\right)],$$
where $k = 0, 1, 2, 3$

17 Lecture **16**

Let a curve be defined as: $\gamma:[0,1]\to\mathbb{C}$, a continuous function where $\gamma(0)=$ initial point and $\gamma(1)=$ terminal point.

Let a path be defined as: $\gamma:[,1]\to\mathbb{C}$ such that γ' is continuous and a closed path if $\gamma(0)=\gamma(1)$.

Let γ^* be the trace. Suppose f is a continuous complex-valued function on γ^* . Then

$$\int_{\gamma} f = \int_{\gamma} f(z) dz = \int_{0}^{1} f(\gamma(t)) \gamma'(t) dt$$

Suppose $\gamma:[0,2\pi]\to\mathbb{C}$ and $\gamma(t)=e^{it}$ and $f(z)=\frac{1}{z}$, where $z\neq 0$. Then $\gamma'(t)=ie^{it}$ and $dz=ie^{it}\,dt$. Then

$$\int_{\gamma} \frac{dz}{z} = \int_{0}^{2\pi} \frac{ie^{it}}{e^{it}} dt = i \int_{0}^{2\pi} dt = 2\pi i$$

Goal: Let f be holomorphic on a region that contains a disk $B(a,r) = \{z : |z-a| < r\}$. Let γ be the boundary. Then

$$f(a) = \frac{2\pi i}{\int_{\gamma}} \frac{f(z)}{z - a} dz$$

Let Ω be simply connected and $f \in \mathcal{O}(\Omega)$ and γ_1 and γ_2 be two boundaries. Then

$$\int_{\gamma_1} f = \int_{\gamma_2} f$$

Let Ω be simply connected and $f \in \mathcal{O}(\Omega)$. If γ is a closed path in Ω , then

$$\int_{\gamma} f = 0$$

Cauchy's Integral Formula:

$$f^{(n)}(a) = \frac{n!}{2\pi i} \int \frac{f(z)}{(z-a)^{n+1}} dz$$

Let γ be square such that $x=\pm 2$ and $y=\pm 2$ and γ is traversing counter-clockwise. Calculate $\int_{\gamma} \frac{e^{-z}}{z-\pi \frac{i}{2}} \, dz$.

Note that $f(z) = e^{iz}$. Therefore

$$\int_{\gamma} \frac{f(z)}{z - a} = 2\pi i \cdot f(a)$$

$$* = 2\pi i \cdot f(\frac{\pi i}{2})$$

$$= 2\pi i \cdot e^{-\frac{\pi}{2}i}$$

$$= 2\pi i \cdot -1$$

$$= -2\pi i$$

Calculate $\int_{\gamma} \frac{\cos z}{z(z^2+8)} dz$. Let $f(z) = \frac{\cos z}{z^2+8}$. Then

$$\int_{\gamma} \frac{f(z)}{z - 0} dz = 2\pi i \cdot f(0)$$
$$= 2\pi i \cdot \frac{1}{8}$$
$$= \frac{\pi i}{4}$$

Let $\gamma: |z-i| = 2$. Calculate $\int_{\gamma} \frac{dz}{z^2+4}$.

Note first that

$$\frac{1}{z^2+4} = \frac{1}{(z+2i)(z-2i)}$$

z-2i is not on the boundary. Let $f(z)=\frac{1}{z+2i}$. Then

$$\int_{\gamma} \frac{f(z)}{z - 2i} \, dz = 2\pi i \cdot f(2i) = 2\pi i (\frac{1}{4i}) = \frac{\pi}{2}$$

Calculate $\int_{\gamma} \frac{dz}{(z^2+4)^2}$. Note that

$$\frac{1}{(z^2+4)^2} = \frac{1}{(z-2i)^2(z+2i)^2}$$

Let $f(z) = \frac{1}{(z+2i)^2}$. Note that $f'(a) = \frac{1!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-a)^2} dz$, from Cauchy's Integral Formula. Hence, we'll need f'(z), which is $f'(z) = -\frac{z}{(z+2i)^2}$. Therefore

$$\int_{\gamma} \frac{dz}{(z^2+4)^2} = \int_{\gamma} \frac{f(z)}{(z-2i)^2} dz$$
$$= 2\pi i \cdot f'(2i)$$
$$= 2\pi i \cdot (\frac{-2}{-64i})$$
$$= \frac{\pi}{16}$$

Calculate $\int_{\gamma} \frac{e^z - e^{-z}}{z^4} dz$ where $\gamma : |z| = 4$.

Let $f(z) = e^{z} - e^{-z}$. Then $f'(z) = e^{z} + e^{-z}$, $f''(z) = e^{z} - e^{-z}$ and $f'''(z) = e^{z} + e^{-z}$. Therefore

$$\int_{\gamma} \frac{e^z - e^{-z}}{(z - 0)^4} dz = \int_{\gamma} \frac{f(z)}{(z - 0)^4} dz$$
$$= \frac{2\pi i}{3!} \cdot f'''(0)$$
$$= \frac{\pi i}{3} \cdot (1 + 1)$$
$$= \frac{2\pi i}{3}$$

Calculate $\int_{\gamma} \frac{z^3+2z}{(z-2)^3} dz$ where $\gamma:|z|=3$. Let $f(z)=z^3+2z$. Then $f'(z)=3z^2+2$ and f''(z)=6z. Hence

$$\int_{\gamma} \frac{z^3 + 2z}{(z - 2)^3} dz = \frac{2\pi i}{2!} \cdot f''(2) = \frac{2\pi i}{2} (12) = 12\pi i$$

Lecture 17 18

A curve in \mathbb{C} is a continuous map γ of $[\alpha, \beta]$ into \mathbb{C} . The parameter interval is $[\alpha, \beta]$. Let $\gamma^* = \{ \gamma(t) : \alpha \le t \le \beta \}$ where $\gamma(\alpha)$ is the initial point of γ and $\gamma(\beta)$ is the end point of γ . If $\gamma(\alpha) = \gamma(\beta)$ then γ is a closed curve.

A path is a piecewise C^1 curve, in other words, $\gamma: [\alpha, \beta] \to \mathbb{C}$ is continuous and there are infinitely many points. Let $\alpha = S_0 < S_1 < \cdots < S_n = \beta$ such that $\gamma[S_{j-1}, S_j]$ has a continuous derivative on the interval. However at the points S_1, \ldots, S_{n-1} , the left and right derivatives of δ may differ. Now suppose that δ is a path and f is a continuous function on γ^* . Then

$$\int_{\gamma} f(z) dz = \int_{\alpha}^{\beta} f(\gamma(t)) \gamma'(t) dt$$

Let φ be a continuous differentiable 1-1 map of $[\alpha_1,\beta_1]$ onto $[\alpha,\beta]$ such that $\varphi(\alpha_1)=\alpha$ and $\varphi(\beta_1) = \beta$. Let $\gamma_1 = \gamma \circ \varphi$. Then γ_1 is a path with parameter intervals $[\alpha_1, \beta_1]$ and

$$\int_{\gamma_1} f(z) dz = \int_{\alpha_1}^{\beta_1} f(\gamma_1(t)) \gamma_1' dt$$

But $\gamma_1'(t) = \gamma'(\varphi(t))\varphi'(t)$ and so

$$\int_{\gamma_1} f(z) dz = \int_{\alpha_1}^{\beta_1} f(\gamma(\varphi(t))) \gamma'(\varphi(t)) \varphi'(t) dt = \int_{\alpha}^{\beta} f(\varphi(s)) \gamma'(s) ds$$

Note that if $\gamma = \gamma_1 + \gamma_2$, then

$$\int_{\gamma_1 + \gamma_2} f(z) dz = \int_{\gamma_1} f(z) dz + \int_{\gamma_2} f(z) dz$$

Let [0,1] be the parameter interval of γ . Consider $\varphi_1(t) = \varphi(1-t)$ where $0 \le t \le 1$ and φ_1 is the opposite path of φ . Then

$$\int_{\gamma} f(z) \, dz = \int_{0}^{1} f(\varphi_{1}(t)) \gamma_{1}'(t) \, dt = -\int_{0}^{1} f(\gamma(1-t)) \gamma'(1-t) \, dt = -\int_{0}^{1} f(\gamma(s)) \gamma'(s) \, ds = -\int_{\gamma} f(z) \, dz$$

Hence

$$\int_{\gamma_1} f(z) dz = -\int_{\gamma} f(z) dz$$

Suppose $\int_{\gamma} f(z) dz = \int_{\alpha}^{\beta} f(\gamma(t)) \gamma'(t) dt$. Suppose $|f(z)| \leq M$ for all $z \in \gamma$. Then

$$\left| \int_{\gamma} f(z) dz \right| = \left| \int_{\alpha}^{\beta} f(\gamma(t)) \gamma'(t) dt \right|$$

$$\leq \int_{\alpha}^{\beta} |f(\gamma(t))| |\gamma'(t)| dt$$

$$\leq M \int_{\alpha}^{\beta} |\gamma'(t)| dt$$

$$\leq M L(\gamma)$$

where $L(\gamma)$ is the length of γ .

Recall: Cauchy's Integral Formula: Let $B(a,R) = \{z : |z-a| < R\}$. Then

$$f^{(n)}(a) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} dz$$

where $\gamma = \{z : |z - a| = R\}.$

Theorem 18.1. Cauchy's Estimate: Suppose $|f(z)| \leq M$ for all $z \in Ba, R$.

$$|f^{(n)}(a)| = \frac{n!}{2\pi i} \left| \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} dz \right| \le \frac{n!}{2\pi} M \cdot \frac{2\pi R}{R^{n+1}}$$

Hence, if f is holomorphic on a region containing $B(a,R) = \{z : |z-a| < R\}$ and $|f(z)| \le M$ on B(a,R), then

$$\frac{\left|f^{(n)}(a)\right|}{n!} \le \frac{M}{R^n}$$

Theorem 18.2. Liouville's Theorem: Every bounded entire function is a constant.

Proof. Let f be an entire function such that $|f(z)| \leq M$ for all $z \in \mathbb{C}$. Let $z_0 \in \mathbb{C}$ be an arbitrary point in \mathbb{C} and consider a disk of radius R centered at z_0 . By Cauchy's estimate, $|f'(z)| \leq \frac{M}{R}$. But R > 0 is arbitrary and hence f'(z) = 0. Since $z_0 \in \mathbb{C}$ is arbitrary, f'(z) = 0 for all $z \in \mathbb{C}$. Therefore f is constant.

A polynomial of degree $n \geq 0$ is of the form

$$f(z) = z^{n} + a_{n-1}z^{n-1} + a_{n-2}z^{n-2} + \dots + a_{0}$$

where $a_0, a_1, \ldots, a_{n-1} \in \mathbb{C}$.

Theorem 18.3. Fundamental Theorem of Algebra: If p(z) is a nonconstant polynomial, then there exists a complex number z such that p(z) = 0.

Proof. Let

$$p(z) = z_n + a_{n-1}z^{n-1} + a_{n-2}z^{n-2} + \dots + a_0 = z^n \left[1 + \frac{a_{n-1}}{z} + \frac{a_{n-2}}{z^2} + \dots + \frac{a_0}{z^n}\right]$$

be a nonconstant polynomial. Then $\lim_{z\to\infty}p(z)=\infty$. Suppose there exists no $z\in\mathbb{C}$ such that p(z)=0. Define $f(z)=\frac{1}{p(z)}$. Then f is an entire function. Furthermore, $\lim_{z\to\infty}f(z)=0$. So there exists N>0 such that |f(z)|<1 for all |z|>N. Now consider the closed disk $\overline{B(0,N)}=\left\{z:|z|\leq N\right\}$ which is compact. Since f is holomorphic, and therefore continuous on $\overline{B(0,N)}$, it must be bounded on $\overline{B(0,N)}$. In other words, there exists M>0 such that $|f(z)|\leq M$ for all z such that $|z|\leq N$. Thus f is a bounded entire function. By Liouville's theorem, f is a constant. Therefore p(z) is a constant which contradicts that p(z) is a nonconstant polynomial. Hence there exists $z\in\mathbb{C}$ such that p(z)=0.

19 Lecture 18

Let X be a set and $A \subseteq X$. Then we say A is dense in X which means that $\overline{A} = X$. That means, given any point $x \in X$, any neighborhood N(x) intersects A.

Consequences of Liouville's Theorem:

Theorem 19.1. The range of a nonconstant entire function is dense in the complex plane.

Proof. Let f be a nonconstant entire function. Suppose the range of f is not dense in \mathbb{C} . That means, there exists $z_0 \in \mathbb{C}$ and $\delta > 0$ such that $|f(z) - z_0| > \delta$. Let $g(z) = \frac{1}{f(z) - z_0}$. This is an entire function because $|f(z) - z_0| > \delta$. Furthermore

$$|g(z)| = \frac{1}{|f(z) - z_0|} < \frac{1}{\delta}$$

for all $z \in \mathbb{C}$. So then g is a bounded entire function. Hence by Liouville's theorem, g is constant. That means $f(z) - z_0$ is constant. But z_0 is constant as well and so f(z) is constant. Contradiction. Hence the range of f must be dense in \mathbb{C} .

Suppose f is an entire function such that $Re\{f\}$ is bounded above. Prove that f is a constant.

Proof. Suppose f is an entire function such that $\operatorname{Re}\{f\} \leq M$. Define $F = e^f$. F is an entire function and $|F| = |e^f| = e^{\operatorname{Re}\{f\}} \leq e^M$. So F is a bounded entire function. By Liouville's theorem, F is a constant. That means F'(z) = 0 for all $z \in \mathbb{C}$. Then $e^{f(z)}f'(z) = 0$. Hence f'(z) = 0 for all $z \in \mathbb{C}$. Therefore F is constant.

Suppose f is an entire function such that $\text{Im}\{f\}$ is bounded above. Prove that f is a constant.

Proof. Suppose f is an entire function such that $\text{Im}\{f\} \leq M$. Define $F = e^{-if}$. Then $|F| = \left| e^{-if} \right| = e^{\text{Im}\{f\}} \leq e^M$. So F is a bounded entire function. That means F is a constant. Then F'(z) = 0 for all $z \in \mathbb{C}$. Then $e^{-if}f'(z) = 0$. That is, f'(z) = 0 for all $z \in \mathbb{C}$ and so f is constant.

Suppose that f is an entire function such that $Re\{f\}$ is bounded below. Prove that f is a constant.

Proof. Suppose f is an entire function such that $\operatorname{Re}\{f\} \geq M$. That means, $M \leq \operatorname{Re}\{f\} \leq |f|$. So $|f| \geq M$. Let $g(z) = \frac{1}{f(z)}$. Then g is an entire function and $|g(z)| = \frac{1}{|f(z)|} \leq \frac{1}{M}$. Hence g is a bounded entire function. Hence g is a constant and so f is a constant. \square

Suppose f is an entire function such that |f(z)| > 1. Show that f is a constant.

Proof. Let $g(z) = \frac{1}{f(z)}$. Since |f(z)| > 1 for all $z \in \mathbb{C}$. g is an entire function. Furthermore, $|g(z)| = \frac{1}{|f(z)|} < 1$. So g is a bounded entire function. Hence g is a constant function and so f is a constant.

Theorem 19.2. Let U be an open set in \mathbb{C} and suppose $F \in \mathcal{O}(U)$ and F' is continuous in U. Then

$$\int_{\gamma} F'(z) \, dz = 0$$

for every closed path γ in U.

Proof. Let $[\alpha, \beta]$ be the parameter interval of γ .

$$\int_{\gamma} F'(z) dz = \int_{\alpha}^{\beta} F'(\gamma(t))\gamma'(t) dt = F(\gamma(\beta)) - F(\gamma(\alpha)) = 0$$

since $\gamma(\alpha) = \gamma(\beta)$.

Corollary: Since z^n is the derivative of $\frac{z^{n+1}}{n+1}$, for all integers $n \neq -1$, then

$$\int_{\gamma} z^n \, dz = 0$$

for any closed path γ if $n=0,1,2,\ldots$ and for those closed paths γ such that $0\not\in\gamma^*$ if $n=-2,-3,\ldots$

Proposition: If $\gamma:[0,1]\to\mathbb{C}$ is a closed smooth path and $a\not\in\gamma$, then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - a}$$

is an integer.

Proof. Define $g:[0,1]\to\mathbb{C}$ as follows:

$$g(t) = \int_0^t \frac{\gamma'(s)}{\gamma(s) - a} \, ds$$

Then g(0)=0 and $g(1)=\int_{\gamma}\frac{dz}{z-a}$. In addition, $g'(t)=\frac{\gamma'(t)}{\gamma(t)-a}$ for $0\leq t\leq 1$. Note

$$\frac{d}{dt}(e^{-g(t)}(\gamma(t) - a)) = -g'(t)e^{-g(t)}(\gamma(t) - a) + e^{-g(t)}\gamma'(t)
= -g'(t)e^{-g(t)}(\gamma(t) - a) + e^{-g(t)}(\gamma(t) - a)g'(t)
= 0$$

Hence $e^{-g(t)}(\gamma(t)-a)$ is a constant. Then

$$e^{-g(0)}(\gamma(0) - a) = e^{-g(1)}(\gamma(1) - a)$$

$$e^{-g(0)} = e^{-g(1)}$$

$$1 = e^{-g(1)}$$

$$= \frac{1}{e^{g(1)}}$$

$$e^{g(1)} = 1$$

Then $g(1) = 2\pi i k$ for some integer k and so

$$\frac{1}{2\pi i}g(1) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - a} = k$$

If γ is a closed path in \mathbb{C} and $\alpha \notin \gamma$, then

$$\operatorname{Ind}(\gamma, a) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - a}$$

is called the Index of a with respect to γ on the winding number of a with respect to γ .

20 Lecture 19

If $\{F_n\}$ is a sequenced compact set such that

$$F_n \geq F_{n+1}$$

for all $n \geq 1$ and $\lim_{n \to \infty} \operatorname{diam}(F_n) = 0$, then

$$\bigcap_{n=1}^{\infty} F_n$$

contains exactly 1 point. (Note: $\operatorname{diam}(S) = \sup_{x \in S, y \in S} d(x,y).)$

For any $a, b, c \in \mathbb{C}_i$ the triangle whose vertices are a, b, c is $\Delta = \Delta(a, b, c)$. Let $\partial \Delta$ be the boundary of Δ . For any function f continuous on $\partial \Delta$,

$$\int_{\partial \Delta} f(z) \, dz = \int_{[a,b]} f(z) \, dz + \int_{[b,c]} f(z) \, dz + \int_{[c,a]} f(z) \, dz$$

Theorem 20.1. Local Cauchy Theorem: If Δ is a triangle contained in a region Ω and if $f \in O(\Omega)$ (f is holomorphic), then

$$\int_{\partial \Delta} f(z) \, dz = 0$$

Proof. Let a', b', c' be the midpoints of [b, c], [c, a] and [a, b] respectively. Consider the four triangles

$$\Delta^{1} = \left\{a, c', b'\right\}$$

$$\Delta^{2} = \left\{b, a', c'\right\}$$

$$\Delta^{3} = \left\{c, b', a'\right\}$$

$$\Delta^{4} = \left\{a', b', c'\right\}$$

Put

$$J = \int_{\partial \Delta} f(z) dz = \sum_{i=1}^{4} \int_{\partial \Delta^{i}} f(z) dz$$

St least one of the triangles Δ^j must satisfy

$$\left| \int_{\partial \Lambda^j} f(z) \, dz \right| \ge \frac{|J|}{4}$$

Choose one of them and call it Δ_i . Repeat this process to form a sequence of triangles Δ_1 , Δ_2 , ... such that $\Delta_{n+1} \subseteq \Delta$. The lengths of $\partial \Delta_n = \frac{L}{2^n}$ where L is the length of the boundary of Δ , or $\int_{\partial \Delta} |dz|$ and Δ_n has diam $= \frac{D}{2^n}$ where $D = \operatorname{diam}(\Delta)$ and

$$\left| \int_{\partial \Delta_n} f(z) \, dz \right| \ge \frac{|J|}{4^n}$$

So $\bigcap_{n=1}^{\infty} \Delta_n = \{z_0\} \subseteq \Delta \subseteq \Omega$. Let $\varepsilon > 0$ be given. Choose r > 0 such that $B(z_0, r) \subseteq \Omega$. Note that

$$B(z_0, r) = \left\{ z : |z - z_0| < r \right\}$$

and

$$|f(z) - f(z_0) - f'(z_0)(z - z_0)| \le \varepsilon |z - z_0|$$

if $z \in B(z_0, r)$. Choose n so that $\Delta_n \subseteq B(z_0, r)$. Then

$$\left| \int_{\partial \Delta_n} f(z) \, dz \right| = \left| \int_{\partial \Delta_n} [f(z) - f(z_0) - f'(z)(z - z_0)] \, dz \right|$$

$$\leq \int_{\partial \Delta_n} |f(z) - f(z_0) - f'(z_0)(z - z_0)| \, |d_z|$$

$$\leq \varepsilon \int_{\partial \Delta_n} |z - z_0| \, |dz|$$

$$\leq \varepsilon \cdot \operatorname{diam}(\Delta_n) \int_{\partial \Delta_n} |dz|$$

$$\leq \varepsilon \cdot \operatorname{diam}(\Delta_n)(\operatorname{length of } \partial \Delta_n)$$

$$= \varepsilon \cdot \frac{D}{2^n} \cdot \frac{L}{2^n}$$

$$= \frac{\varepsilon DL}{4^n}$$

So

$$|J| \le 4^n \left| \int_{\partial \Delta_n} f(z) \, dz \right| \le 4^n \cdot \frac{\varepsilon DL}{4^n} = \varepsilon DL$$

Hence J=0.

Theorem 20.2. Let $\Delta \subseteq \Omega$ and let p be a point in Ω . Let f be continuous in Ω and holomorphic in $\Omega/\{p\}$. Then

$$\int_{\partial \Delta} f(z) \, dz = 0$$

Proof. There is nothing to prove if $p \in \Omega$ but $p \notin \Delta$. Case 1: $\Delta = \{p, b, c\}$ where p is a vertex. Let $\varepsilon > 0$ be given. Choose $x \in [p, b]$ and $y \in [p, c]$ so close to p such that

$$\left| \int_{\partial \left\{ p, x, y \right\}} f(z) \, dz \right| < \varepsilon$$

Now

$$\int_{\partial \Delta} f(z) dz = \int_{\partial \left\{p, x, y\right\}} f(z) dz + \int_{\partial \left\{x, b, y\right\}} f(z) dz + \int_{\partial \left\{b, c, y\right\}} f(z) dz$$

$$* = \int_{\partial \left\{p, x, y\right\}} f(z) dz$$

Case 2: If $p \in \Delta$ and p is not a vertex, then

$$\int_{\partial \Delta} f(z) dz = \int_{\partial \left\{a,b,c\right\}} f(z) dz + \int_{\partial \left\{a,b,p\right\}} f(z) dz + \int_{\partial \left\{b,c,p\right\}} f(z) dz = 0$$

21 Lecture 20

A set E is convex is it has the following geometric property: whenever $x \in E$, $y \in E$, and 0 < t < 1, the point

$$z_t = (1 - t)x + ty$$

also lies in E. As t runs from 0 to 1, one may visualized z_t as describing a straight line segment in V, from x to y. Convexity requires that E contains the segments between any two of its points.

Recall: If Ω is a region and $f \in O(\Omega)$ and f' is continuous in Ω , then

$$\int_{\gamma} f'(z) \, dz = 0$$

where γ is a closed path in Ω .

The region V is starlike with respect to the point z_0 if for every $z \in V$, the line segment $[z_0, z]$ is contained in V. The region V is starlike if it is starlike with respect to any point in V.

Theorem 21.1. Let V be a starlike region with respect to $z_0 \in V$. For any $p \in V$, if f is continuous in V and holomorphic in $V/\{p\}$, then

- 1. $\int_{\gamma} f(z) dz = 0$ for every closed path in V
- 2. f = F' for some $F \in O(V)$

Proof. Define $F: V \to \mathbb{C}$ by $F(z) = \int_{[z_0, z]} f(G) dG$. Since V is starlike with respect to z_0 , $\{z_0, z, z + h\} \subseteq V$ for all h sufficiently small. Then

$$F(z+h) - F(z) = \int_{[z_0, z+h]} f(G) dG - \int_{[z_0, z]} f(G) dG$$

But

$$\int_{[z_0,z]} f(G) dG + \int_{[z,z+h]} f(G) dG + \int_{[z+h,z_0]} f(G) dG = 0$$

So

$$F(z+h) - F(z) = \int_{[z,z+h]} f(G) dG$$

Now

$$\left| \frac{1}{h} (F(z+h) - F(z)) - f(z) \right| = \left| \frac{1}{h} \int_{[z,z+h]} f(G) - f(z) dG \right|$$

But

$$\left| \frac{1}{h} \int_{[z,z+h]} f(z) \, dG \right| = |f(z)| \frac{1}{|h|} \int_{[z,z+h]} |dG| = |f(z)|$$

So

$$\left| \frac{1}{h} \int_{[z,z+h]} f(G) - f(z) \, dG \right| \le \frac{1}{|h|} \int_{[z,z+h]} |f(G) - f(z)| \, |dG| \to 0$$

as $h \to 0$. Hence

$$\lim_{n \to \infty} \frac{f(z+h) - f(z)}{h} = f(z)$$

So F = O(V) and F' = f. Finally,

$$\int_{\gamma} F'(z) \, dz = 0$$

or

$$\int_{\gamma} f(z) \, dz = 0$$

Theorem 21.2. Cauchy's Integral Formula: Let z be a starlike region and $f \in O(V)$. If γ is a closed path in V and $z \in V/\{\gamma\}$, then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(G)}{G - z} dG = f(z) \operatorname{Ind}(\gamma, z)$$

Proof. Fix $p \in V/\gamma$. Define $g: V \to \mathbb{C}$ by $g(G) = \begin{cases} \frac{f(G) - f(p)}{G - p} & \text{if } G \neq p \\ f'(p) & \text{if } G = p \end{cases}$. Apply the above theorem to $g: \int_{\gamma} g(G) \, dG = 0$. That is,

$$\frac{1}{2\pi i} \int_{\gamma} g(G) \, dG = 0$$

or

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(G)}{G - p} dG = \frac{1}{2\pi i} f(p) \int_{\gamma} \frac{dG}{G - p} = f(p) \operatorname{Ind}(\gamma, p)$$

Special Case: If γ is a circle and $\operatorname{Ind}(\gamma, p) = 1$, then

$$f(p) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - p} \, dz$$

Corollary: Let $\Delta = \{z : |z| < 1\}$. If $f \in O(\Delta)$, then there exists a power series $\sum_{n=0}^{\infty} a_n z^n$ with radius of convergence ≥ 1 such that $f(z) = \sum_{n=0}^{\infty} a_n z^n$ for all $z \in \Delta$. Furthermore,

$$a_n = \frac{2\pi i}{\int_{|G|=r}} \frac{f(G)}{G^{n+1}} dG$$

if 0 < r < 1.

Proof. Suppose 0 < r < 1. Let $\gamma(t) = re^{2\pi it}$ for $0 \le t \le 1$. If |z| < r, then $\mathrm{Ind}(\gamma, z) = \mathrm{Ind}(\gamma, 0) = 1$. Now

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(G)}{G - z} dG = \frac{1}{2\pi i} \int_{\gamma} \frac{f(G)}{G} (1 - \frac{z}{G})^{-1} dG = \frac{1}{2\pi i} \int_{\gamma} \frac{f(G)}{G} (\sum_{n=0}^{\infty} \frac{z^n}{G^n}) dG = \sum_{n=0}^{\infty} a_n z^n$$

Hence

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(G)}{G^{n+1}} dG$$

This expression is valid for |z| < r. But $a_n = \frac{f^{(0)}}{n!}$. Hence

$$\int_{\mathcal{T}} \frac{f(G)}{G^{n+1}} dG = \frac{2\pi i}{n!} f^{(n)}(0)$$

Since $a_n = \frac{f^{(n)}(0)}{n!}$ is independent of r,

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

for all $z \in \Delta$.

Corollary: Let $D = D(a, r) = \{z : |z - a| < r\}$. If finO(D), then the Taylor series of f about a has radius of convergence $\geq r$ and converges to f in D.

Proof. Apply the above corollary to g(G) = f(a + rG) where $G \in \Delta$.

Corollary: If V is any region in \mathbb{C} and $f \in O(V)$, then $f' \in O(V)$.

Remark: If $f \in O(V)$, then all higher derivatives of f are holomorphic in V.

Corollary: If $f \in O(\Delta)$ and $|f()| \leq M$ for all $z \in \Delta$, then

$$\left| \frac{f^{(n)}(0)}{n!} \right| \le M$$

for all $n \geq 0$.

Proof. If 0 < r < 1,

$$\left| \frac{f^{(n)}(0)}{n!} \right| = |a_n| = \left| \frac{1}{2\pi i} \int_{|G| = r} \frac{f(G)}{G^{r+1}} dG \right| \le \frac{1}{2\pi} \frac{M}{r^{n+1}} \cdot 2\pi r \le \frac{M}{r^n}$$

Corollary: Cauchy's Estimate: If $f \in O(D(a,r))$ and $|f(z)| \leq M$ for all $z \in D(a,r)$, then

 $\left| f^{(n)}(a) \right| \le \frac{M}{r^n}$

for all $n \geq 0$.

Proof. Use the above corollary to g(G) = f(a + rG) for $G \in \Delta$ so that

$$g^{(n)}(G) = f^{(n)}(a+rG)r^n$$

Remark: Suppose f is an entire function. Then

$$f(z) = \sum_{n=0}^{\infty} a_n z^n = a_0 + a_1 z^1 + a_2 z^2 + \dots + a_n z^n + \dots$$

where

$$a_n = \frac{f^{(n)}(0)}{n!}$$

22 Lecture 21

Let f be holomorphic in a region Ω and $a \in \Omega$. There exists R > 0 such that

$$f(a) = \sum_{n=0}^{\infty} c_n (z - a)^n$$

where

$$c_n = \frac{f^{(n)}(a)}{n!}$$

Theorem 22.1. Let Ω be a region and let $f:\Omega\to\mathbb{C}$ be a holomorphic function. Then the following are equivalent.

- $f \equiv 0$
- There exists a point $a \in \Omega$ such that $f^{(n)}(a) = 0$ for all $n \ge 0$.
- $\{z \in \Omega : f(z) = 0\}$ has a limit point in Ω .

Proof. For $1 \to 2$: If f = 0, then all $f^{(n)}(a) = 0$ for any $n \ge 0$ and $a \in \Omega$. For $2 \to 3$, it is obvious. For $3 \to 2$: Let $Z = \{z \in \Omega : f(z) = 0\}$. Let a be a limit point of Z and $a \in \Omega$. There exists R > 0 such that $B(a,R) = \{z : |z-a| < R\} \subseteq \Omega$. Note that f(a) = 0 (by continuity of f). Suppose there exist an integer $n \ge 1$ such that $f(a) = f^1(a) = f^2(a) = \cdots = f^{n-1}(a) = 0$, but $f^n(a) \ne 0$. Then

$$f(z) = \sum_{k=n}^{\infty} a_k (z - a)^k$$

for |z-a| < R. Let $g(z) = \sum_{k=n}^{\infty} a_k (z-a)^{k-n}$ be holomorphic in B(a,R). Then $f(z) = (z-a)^n g(z)$. Note that $g(a) = a_n \neq 0$. This means there exists r > 0 such that $g(z) \neq 0$ for all |z-a| < r. Since a is a limit point of Z, the neighborhood B(a,R) cannot contain a point $b \in Z$ ($b \neq a$). This means f(b) = 0, or $f(b) = (b-a)^n g(b)$. Then g(b) = 0. Contradiction.

For $2 \to 1$: Let $A = \left\{ z \in \Omega : f^{(n)}(z) = 0 \forall n \geq 0 \right\}$. Claim: $A \neq \emptyset$. True because $a \in A$. Claim: A is closed. Let $z \in \overline{A}$. So there exists $z_0 \in A$ such that $z_k \to z$. Since each $f^{(n)}$ is continuous, it follows that $f^{(n)}(z) = \lim_{n \neq \infty} f^{(n)}(z_k) = 0$. So $z \in A$ and so A is closed. Claim: A is open. Let $a \in A$. There exists R > 0 such that $B(a, R) \subseteq \Omega$. Then $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ where $a_n = \frac{f^{(n)}(a)}{n!}$ for all |z - a| < R in B(a, R). But f(z) = 0 for each $n \geq 0$. So f(z) = 0 for all $z \in B(a, R)$. So $B(a, R) \subseteq A$ and so A is open. Finally, since $A \neq 0$ and is open and is closed and Ω is connected, $A = \Omega$.

Corollary: Suppose $f \in O(\Omega)$ and there exists $a \in \Omega$ such that f(z) = 0 for all $B(a, r) = \{z : |z - a| < r\}$. Then f(z) = 0 for all $z \in \Omega$. Proof: True because $3 \to 1$.

Corollary: Suppose $f, g \in O(\Omega)$ and $a \in \Omega$ such that f(z) = g(z) for all $z \in B(a, r) = \{z : |z - a| < r\}$. Then f(g) = g(z) for all $z \in \Omega$. Proof: Let h(z) = f(z) - g(z). Then $h \in O(\Omega)$ and by the above corollary, h(z) = 0 for all $z \in \Omega$. So f(z) = g(z) for all $z \in \Omega$.

Corollary: The zeros of a nonconstant holomorphic function on a region must be isolated. Proof: If $f \in O(\Omega)$ and if the zero set Z has a limit point in Ω , then $f \equiv 0$. This means that if $a \in \Omega$ such that f(a) = 0, there exists R > 0 such that $f(z) \neq 0$ for all 0 < |z - a| < R. Remark: A holomorphic function f is said to have a zero of order $n \geq 0$ if there exists a holomorphic function f and $f(z) = (z - a)^n f(z)$ where $f(z) \neq 0$ for all $f(z) = (z - a)^n f(z)$ where f(z) = 0 for all f(z) = 0 be a region. Let f(z) = 0 such that f(z) = 0. Show that either f(z) = 0 for

Let Ω be a region. Let $f, g \in O(\Omega)$ such that f(z)g(z) = 0. Show that either f(z) = 0 for all $z \in \Omega$ or g(z) = 0 for all $z \in \Omega$. Proof: Suppose $g(z) \neq 0$ for all $z \in \Omega$. This means there exists $a \in \Omega$ such that $g(a) \neq 0$. By the continuity of g, there exists $g(z) \neq 0$ for all $g(z) \neq 0$ for all g

23 Lecture 22

Suppose f,g are holomorphic on a region Ω such that $\overline{f}g$ is holomorphic. Show that either f is a constant or g(z)=0 for all $z\in\Omega$. Proof: Suppose $g(z)\neq0$ for all $z\in\Omega$, meaning $g\not\equiv0$, or there exists $a\in\Omega$ such that $g(a)\neq0$. By the continuity of g, there exists a neighborhood $B(a,r)=\left\{z:|z-a|< r\right\}$ such that $g(z)\neq0$ for all $z\in B(a,r)$. Let $\overline{f}g=h$ given that $h\in O(\Omega)$. Then $\overline{f}(z)=\frac{h(z)}{g(z)}$ for all $z\in B(a,r)$ because $g(z)\neq0$ for all $z\in B(a,r)$. Since h and g are both holomorphic and $g(z)\neq0$ in B(a,r), it follows that \overline{f} is holomorphic in B(a,r). Thus f and \overline{f} are both holomorphic in B(a,r) and so f is constant on B(a,r). Hence by the Identity Theorem, f is constant on Ω .

Let $\Delta = \{z : |z| < 1\}$. Suppose $f \in O(\Delta)$ and $g \in O(\Delta)$ and neither f and g have a zero in Δ . If $\frac{f'}{f}(\frac{1}{n}) = \frac{g'}{g}(\frac{1}{n})$, where $n = 1, 2, 3, \ldots$, find a simple relation between f and g. Proof: Define $h = \frac{f}{g}$. Since $f, g \in O(\Delta)$ and g has no zeros in Δ , $h \in O(\Delta)$. Then

$$h'(z) = \frac{f'(z)g(z) - f(z)g'(z)}{(g(z))^2}$$

for all $z \in \Delta$. By hypothesis, h'(z) = 0 for $z = \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$ So the zero set of h is $Z = \left\{\frac{1}{n}\right\}_{n=2}^{\infty}$ which has a limit point 0 in Δ . Hence by the Identity Theorem, h'(z) = 0 for all $z \in \Omega$. This implies $h'(z) = \lambda$, a constant, for all $z \in \Omega$ and so $f(z) = \lambda g(z)$ for all $z \in \Delta$. Let f be an entire function and suppose there exists a constant M and R > 0 and an integer $n \ge 1$ such that

$$|f(z)| \le M|z|^n$$

for all |z| > R. Show that f is a polynomial of degree $\leq n$. Proof: Since f is an entire function,

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

or

$$f(z) = f(0) + f'(0)z + \frac{f^2(0)}{2!}z^2 + \dots + \frac{f^n(0)}{n!}z^n + \dots$$

By Cauchy's estimate,

$$\frac{\left|f^{(k)}(0)\right|}{k!} \le \frac{Mr^n}{r^k}$$

if r > R. So for all k > n,

$$\frac{\left|f^{(n)}(0)\right|}{k!} \le \frac{M}{r^{k-n}}$$

where n is fixed and is true for all k > 0. Since r > R is arbitrary, it follows that $f^{(k)}(0) = 0$ for all k > n. Hence by the expansion of f(z), f is a polynomial of degree $\leq n$.

Let f be an entire function and $|f(z)| < 1 + |z|^{\frac{1}{2}}$ for all $z \in \mathbb{C}$. Show that f is a constant. Proof: If f is an entire function, then

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

or

$$f(z) = f(0) + f'(0)z + \frac{f^2(0)}{2!}z^2 + \dots + \frac{f^n(0)}{n!}z^n + \dots$$

for all $z \in \mathbb{C}$. Consider |z| = R. Then

$$|f(z)| < 1 + R^{\frac{1}{2}}$$

By Cauchy's estimate,

$$\frac{\left|f^{(n)}(0)\right|}{n!} \le \frac{1 + R^{\frac{1}{2}}}{R^n}$$

Since R > 0 can be arbitrary, it follows that $f^{(n)}(0) = 0$ for all $n \ge 1$. Hence f(z) = f(0) for all $z \in \mathbb{C}$ and so f is a constant.

24 Lecture 23

Let U be an open set. If $a \in U$ and $f \in O(U \setminus \{a\})$, then f is said to be an isolated singularity at the point a. If f can be so defined at a such that the external function is holomorphic in U, then the singularity is removable.

Theorem 24.1. Riemann's Removable Singularity Theorem: Suppose $f \in O(U \setminus \{a\})$ and f is bounded in $D'(a,r) = \{z : 0 < |z-a| < r\}$, for some r > 0; Then f has a removable singularity at a.

Proof. Define h(a) = 0 and $h(z) = (z - a)^2 f(z)$ in $U \setminus \{a\}$. Claim: $h \in O(U)$ and h'(a) = 0. Note that

$$h'(a) = \lim_{z \to z} \frac{h(z) - h(a)}{z - a} = \lim_{z \to a} \frac{(z - a)^2 f(z)}{z - a} = \lim_{z \to a} (z - a) f(a) = 0$$

because f is bounded in D'(a,r). Hence $h \in O(U)$ and h'(a) = 0. Now,

$$h(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$$

$$= c_0 + c_1 (z-a) + c_2 (z-a)^2 + \dots$$

$$h(a) = c_0 = 0$$

$$h'(z) = \sum_{n=0}^{\infty} n c_n (z-a)^{n-1}$$

$$= c_1 + 2(z-a)^n + \dots$$

$$h'(a) = c_1 = 0$$

Hence

$$h(z) = \sum_{n=2}^{\infty} c_n (z - a)^n$$

Therefore

$$f(z) = \sum_{n=0}^{\infty} c_{n+2} (z-a)^n$$

for all $z \in D(a,r)$. So $f \in O(D(a,r))$ and hence a is a removable singularity.

Theorem 24.2. If $a \in U$ and $f \in O(U \setminus \{a\})$, then one of the following three cases must occur:

- 1. f has a removable singularity at a
- 2. there exists complex numbers c_1, \ldots, c_m , where m is a positive integer and $c_m \neq 0$, such that $f(z) = \sum_{k=1}^{m} \frac{c_k}{(z-a)^k}$ has a removable singularity at a
- 3. if R > 0 and $D(a, R) \subseteq U$, then f(D'(a, R)) is dense in the complex plane

Remark: In case b, we say that f has a pole of order m at a. In case c, we say that f has an essential singularity at a. Case c means that for every complex number w, there exists a sequence such that $z_n \to a$ and $f(z_n) \to w$, as $n \to \infty$.

Conclusion: An isolated singularity is either a removable singularity, a pole, or an essential singularity.

Proof. Suppose (c) fails. Then there exists R > 0 and a complex number w such that $|f(z) - w| > \delta$ in D'(a, R) = D'. Let $g(z) = \frac{1}{f(z) - w}$ for $z \in D'$. Then $g \in O(D')$ and $|g| < \frac{1}{\delta}$. So by RRST, g extends to a holomorphic function in D.

Case 1: If $g(a) \neq 0$. then

$$f(z) = w + \frac{1}{g(z)}$$

and so $f(a) = w + \frac{1}{g(a)}$. Furthermore,

$$\lim_{z \to a} f(z) = w + \lim_{z \to a} \frac{1}{g(z)} = w + \frac{1}{g(a)}$$

This means f is continuous at a and so continuous on D(a,R) and so there exists some $0 < \rho < R$ such that f is bounded in $D(a,\rho)$ where $f(a) = w + \frac{1}{g(a)}$. Then by RRST, z = a is a removable singularity of f, which is (a).

Case 2: If g(a) = 0, suppose g has a zero of order $m \ge 1$ at z = a. Then $f(z) = (z-a)^m g_1(z)$, for all $z \in D$ where $g_1 \in O(D)$ and $g_1(a) \ne 0$. Next, observe that g_1 does not have any zero in D'. So g_1 has no zero in D. Let $h = \frac{1}{g_1}$ in D. Hence $h \in O(D)$ and h has no zero in D. So

$$f(z) - w + \frac{1}{(z-a)^m g_1(z)} = \frac{h(z)}{(z-a)^m}$$

or

$$f(z) = w + \frac{h(z)}{(z-a)^m}$$

where $z \in D'$. If

$$h(z) = \sum_{n=0}^{\infty} b_n (z - a)^n$$

for $z \in D$ and $b_0 \neq 0$, then

$$f(z) = w + \frac{b_1 + b_1(z-a) + b_2(z-a)^2 + \dots + b_m(z-a)^m + \dots}{(z-a)^m}$$

and so

$$f(a) = \frac{b_0}{(z-a)^m} + \frac{b_1}{(z-a)^{m-1}} + \dots + (b_m + w) + \dots$$

, where $c_k = b_{m-k}$ for k = 1, 2, ..., m. This is (b).

25 Lecture 24

Let $D(a,r) = \{z : |z-a| < r\}$. Let f be holomorphic in D(a,r). f is said o have a zero of order n at a if there exists a holomorphic function g in D(a,r) such that $f(z) = (z-a)^n g(z)$ and $g(a) \neq 0$.

Let $D'(a,r) = \{z : 0 < |z-a| < r\}$. Let f be holomorphic in D'(a,r). f is said to have a pole of order n at a if there exists a holomorphic function g in D(a,r) such that $f(z) = \frac{g(z)}{(z-a)^n}$ and $g(a) \neq 0$.

Laurent Series: Suppose f is holomorphic in the annulus $R_1 < |z - a| < R_2$ and let γ be any positively correlated circle centered at z_0 lying in the annulus. Then $|z - z_0| = r$ where $R_1 < r < R_2$. For each $R_1 < z < R_2$,

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$

where $R_1 < |z - z_0| < R_2$ and

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz$$
 where $n = 0, 1, 2, ...$
$$b_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - z_0)^{-n+1}} dz$$
 where $n = 1, 2, 3, ...$

In other words,

$$f(z) = \dots + \frac{b_2}{(z - z_0)^2} + \frac{b_1}{z - z_0} + a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots$$

Note:

- 1. If $b_0 = 0$ for all $n \ge 1$, $z = z_0$ is a removable singularity
- 2. If $b_i = 0$ for all i > n, $z = z_0$ is a pole of order n (A pole of order 1 is called a simple pole)
- 3. If $b_n \neq 0$ for infinitely many $n, z = z_0$ is an essential singularity

Theorem 25.1. Suppose $z=z_0$ is a pole of order n. Then the residue of f at z_0 is b_1 and

Res_{z=z_0} f(z) = b_1 =
$$\frac{1}{2\pi i} \int_{\gamma} f(z) dz$$

Suppose f has a pole of order 1. Then

$$f(z) = \frac{b_1}{z - z_0} + a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots$$

Let $g(z) = f(z)(z - z_0)$. Then

$$g(z) = b_1 + a_0(z - z_0) + a_1(z - z_0)^2 + a_2(z - z_0)^3 + \dots$$

Hence

$$f(z) = \frac{g(z)}{z - z_0}$$

and $g(z_0) = b_1$ and so

$$\underset{z=z=z_0}{\text{Res}} f(z) = g(z_0) = b_1$$

Suppose f has a pole of order 2. Then

$$f(z) = \frac{b_2}{(z - z_0)^2} + \frac{b_1}{z - z_0} + a_0 + a_1(z - z_0) + \dots$$

Let $g(z) = f(z)(z - z_0)^2$. Then

$$g(z) = b - 2 + b_1(z - z_0) + a_0(z - z_1^2 + \dots)$$

Hence

$$f(z) = \frac{g(z)}{(z - z_0)^2}$$

and $g(z_0) = b_1$ and so

$$\underset{z=z=z_0}{\text{Res}} f(z) = g(z_0) = b_1$$

Suppose f has a pole of order 3. Then

$$f(z) = \frac{b_3}{(z - z_0)^3} + \frac{b_2}{(z - z_0)^2} + \frac{b_1}{z - z_0} + a_0 + a_1(z - z_0) + \dots$$

Let $g(z) = f(z)(z - z_0)^3$. Then

$$g(z) = b_3 + b_2(z - z_0) + b_1(z - z_0)^2 + a_0(z - z_0)^3 + \dots$$

Then $f(z) = \frac{g(z)}{(z-z_0)^3}$. Now,

$$g'(z) = b_2 + 2b_1(z - z_0) + 3a_0(z - z_0)^2 + \dots$$

and

$$g''(z) = 2b_1 + 6a_0(z - z_0) + \dots$$

Hence $g''(z_0) = 2b_1$ and so

$$b_1 = \frac{g''(z_0)}{2}$$

Then

$$\operatorname{Res}_{z=z_0} f(z) = \frac{g''(z_0)}{2}$$

Rule:

Res
$$f(z) = \begin{cases} g(z_0) & \text{if } n = 1\\ \frac{g^{(n-1)}(z_0)}{(n-1)!} & \text{if } n > 1 \end{cases}$$

$$f(z) = \frac{g(z)}{(z - z_0)^n}$$

where g is holomorphic and $g(z_0) \neq 0$.

Suppose $f(z) = \frac{z^3 - 2z}{(z-i)^3}$. This is

$$f(z) = \frac{g(z)}{(z-i)^3}$$

where $g(z) = z^3 - 2z$. Then z = i is a pole of order 3 and

Res
$$f(z) = \frac{g''(z)}{2!} = \frac{6i}{2} = 3i$$

since

$$g'(z) = 3z^{2} - 2$$
$$g''(z) = 6z$$
$$q''(i) = 6i$$

Suppose $f(z) = (\frac{z}{2z+1})^3$. This is equivalent to

$$f(z) = \left(\frac{z}{2(z+\frac{1}{2})}\right)^3 = \frac{\frac{z^3}{8}}{(z-(-\frac{1}{2}))^3} = \frac{g(z)}{(z-(-\frac{1}{2}))^3}$$

Then $z = -\frac{1}{2}$ is a pole of order 3. Note that

$$g'(z) = \frac{3}{8}z^2$$

$$g''(z) = \frac{6}{8}z = \frac{3}{4}z$$

$$g''(-\frac{1}{2}) = \frac{3}{4}(-\frac{1}{2}) = -\frac{3}{8}$$

Then

$$\operatorname{Res}_{z=-\frac{1}{2}} f(z) = \frac{g''(-\frac{1}{2})}{2!} = \frac{-\frac{3}{8}}{2} = -\frac{3}{16}$$

26 Lecture 25

Laurent Series: Let $R_1 < |z - z_0| < R_2$. Let

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$

where

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz$$

for n = 0, 1, 2, ... and

$$b_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-z_0)^{-n+1}} dz$$

for $n = 1, 2, 3, \ldots$ In other words,

$$f(z) = \dots + \frac{b_1}{z - z_0} + a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots$$

Then

Res_{z=z_0} f(z) = b_1 =
$$\frac{1}{2\pi i} \int_{\gamma} f(z) dz$$

 $z=z_0$ is a pole if $f(z)=\frac{g(z)}{(z-z_0)^n}$ where g is a holomorphic in a neighborhood of z_0 and $g(z_0)\neq 0$.

If
$$n = 1$$
, $\underset{z=z_0}{\text{Res}} f(z) = g(z_0)$. If $n \ge 2$, $\underset{z=z_0}{\text{Res}} f(z) = \frac{g^{(n-1)}(z_0)}{(n-1)!}$.

Theorem 26.1. Cauchy's Residue Theorem: Let f be holomorphic except for some poles at z_1, \ldots, z_m . Then

$$\int_{\gamma} f(z) dz = \sum_{i=1}^{n} \int_{\gamma_i} f(z) dz = 2\pi i \cdot \text{(sum of the residuals)}$$

Evaluate:

$$\int_{\gamma} \frac{3z^3 + 2}{(z - 1)(z^2 + 9)} \, dz$$

where γ is the circle |z|=4 and γ is taken counterclockwise.

First note that

$$f(z) = \frac{3z^3 + 2}{(z - 1)(z - 3i)(z + 3i)}$$

That means the singularities are at z=1, z=3i and z=-3i, all of which are inside γ . At $z=1, f(z)=\frac{g(z)}{z-1}$ where $g(z)=\frac{3z^3-2}{z^2+9}$. This function is holomorphic in a small neighborhood of z=1. Then

Res_{z=1}
$$f(z) = g(1) = \frac{3(1)^3 + 2}{1+9} = \frac{5}{10} = \frac{1}{2}$$

At z=3i, $f(z)=\frac{\phi(z)}{z-3i}$ where $\phi(z)=\frac{3z^3+2}{(z-1)(z+3i)}$. This function is holomorphic in a small neighborhood of z=3i. Thus

$$\operatorname{Res}_{z=3i} f(z) = \frac{2 - 81i}{(-1 + 3i)(6i)} = \frac{81 - 2i}{6(-1 + 3i)} = \frac{(81 - 2i)(-1 - 3i)}{-6(10)} = \frac{-87 - 241i}{-60} = \frac{87 + 241i}{60}$$

At z=-3i, $f(z)=\frac{h(z)}{z+3i}$ where $h(z)=\frac{3z^3+2}{(z-1)(z-3i)}$. This function is holomorphic in a small neighborhood of z=-3i. Then

$$\operatorname{Res}_{z=-3i} f(z) = \frac{2+81i}{(-1-3i)(-6i)} = \frac{-81+2i}{(-1-3i)6} = \frac{75-245i}{60}$$

Then

$$\int_{\gamma} \frac{3z^3 + 2}{(z - 1)(z^2 + 9)} dz = 2\pi i (\frac{1}{2} + \frac{5}{4} + \frac{5}{4}) = 6\pi i$$

Evaluate

$$\int_{\gamma} \frac{dz}{z^3(z+4)}$$

where $\gamma: |z| = 2$ in the counterclockwise direction.

First, note that $f(z) = \frac{1}{z^3(z^2+4)}$. Inside γ , f has only one singularity, at z=0. Now let $f(z) = \frac{g(z)}{z^3}$ where $g(z) = \frac{1}{z+4}$. This function is holomorphic in a small neighborhood of z=0. Then

Res_{z=0}
$$f(z) = \frac{g''(0)}{2!} = \frac{1}{32} \cdot \frac{1}{2} = \frac{1}{64}$$

Therefore

$$\int_{\gamma} \frac{dz}{z^3(z+4)} = 2\pi i \cdot \frac{1}{64} = \frac{\pi}{32}i$$

Evaluate

$$\int_{\gamma} \frac{\cosh \pi z}{z(z^2 + 1)} \, dz$$

where $\gamma: |z|=2$ counterclockwise. Note that $\cosh z=\frac{e^z+e^{-z}}{2}$. Let $f(z)=\frac{\cosh \pi z}{z(z^2+1)}$. f has singularities at $z=0,\ z=i$ and z=-i.

At z=0, $g(z)=\frac{e^{\pi z}+e^{-\pi z}}{2(z^2+1)}$. Then $f(z)=\frac{g(z)}{2}$ which is holomorphic in a small neighborhood of z = 0. Then

Res
$$f(z) = g(0) = 1$$

At $z=i,\;\phi(z)=\frac{e^{\pi z}+e^{-\pi z}}{2z(z+i)}$. Then $f(z)=\frac{\phi(z)}{z-i}$ which is holomorphic in a neighborhood of z = i. Then

Res
$$f(z) = \phi(i) = \frac{-1-1}{2i(2i)} = \frac{-2}{-4} = \frac{1}{2}$$

At z = -i, $h(z) = \frac{e^{\pi z} + e^{-\pi z}}{1z(z-i)}$. Then $f(z) = \frac{h(z)}{2+i}$ which is holomorphic in a small neighborhood of z = -i. Then

$$\operatorname{Res}_{z=-i} f(z) = h(-i) = \frac{-1+-1}{(-2i)(-2i)} = \frac{-2}{-4} = \frac{1}{2}$$

Hence

$$\int_{\gamma} \frac{\cosh \pi z}{z(z^2+1)} dz = 2\pi i (1 + \frac{1}{2} + \frac{1}{2}) = 4\pi i$$

Lecture 26 27

Theorems:

• Liouville's Theorem: Every bounded entire function is a constant.

Proof. Let f be an entire function such that $|f(z)| \leq M$ for all $z \in \mathbb{C}$. Let $z_0 \in \mathbb{C}$ be an arbitrary point in \mathbb{C} and consider a disk of radius R centered at z_0 . By Cauchy's estimate, $|f'(z)| \leq \frac{M}{R}$. But R > 0 is arbitrary and hence f'(z) = 0. Since $z_0 \in \mathbb{C}$ is arbitrary, f'(z) = 0 for all $z \in \mathbb{C}$. Therefore f is constant.

A polynomial of degree $n \geq 0$ is of the form

$$f(z) = z^{n} + a_{n-1}z^{n-1} + a_{n-2}z^{n-2} + \dots + a_0$$

where $a_0, a_1, \ldots, a_{n-1} \in \mathbb{C}$.

• FTA (Fundamental Theorem of Algebra): If p(z) is a nonconstant polynomial, then there exists a complex number z such that p(z) = 0.

Proof. Let

$$p(z) = z_n + a_{n-1}z^{n-1} + a_{n-2}z^{n-2} + \dots + a_0 = z^n \left[1 + \frac{a_{n-1}}{z} + \frac{a_{n-2}}{z^2} + \dots + \frac{a_0}{z^n}\right]$$

be a nonconstant polynomial. Then $\lim_{z\to\infty}p(z)=\infty$. Suppose there exists no $z\in\mathbb{C}$ such that p(z)=0. Define $f(z)=\frac{1}{p(z)}$. Then f is an entire function. Furthermore, $\lim_{z\to\infty}f(z)=0$. So there exists N>0 such that |f(z)|<1 for all |z|>N. Now consider the closed disk $\overline{B(0,N)}=\left\{z:|z|\leq N\right\}$ which is compact. Since f is holomorphic, and therefore continuous on $\overline{B(0,N)}$, it must be bounded on $\overline{B(0,N)}$. In other words, there exists M>0 such that $|f(z)|\leq M$ for all z such that $|z|\leq N$. Thus f is a bounded entire function. By Louville's theorem, f is a constant. Therefore p(z) is a constant which contradicts that p(z) is a nonconstant polynomial. Hence there exists $z\in\mathbb{C}$ such that p(z)=0.

• RRST (Riemann's Removable Singularity Theorem): Suppose $f \in O(U \setminus \{a\})$ and f is bounded in $D'(a,r) = \{z : 0 < |z-a| < r\}$, for some r > 0; Then f has a removable singularity at a.

Proof. Define h(a) = 0 and $h(z) = (z - a)^2 f(z)$ in $U \setminus \{a\}$. Claim: $h \in O(U)$ and h'(a) = 0. Note that

$$h'(a) = \lim_{z \to z} \frac{h(z) - h(a)}{z - a} = \lim_{z \to a} \frac{(z - a)^2 f(z)}{z - a} = \lim_{z \to a} (z - a) f(a) = 0$$

because f is bounded in D'(a,r). Hence $h \in O(U)$ and h'(a) = 0. Now,

$$h(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$$

$$= c_0 + c_1 (z-a) + c_2 (z-a)^2 + \dots$$

$$h(a) = c_0 = 0$$

$$h'(z) = \sum_{n=0}^{\infty} n c_n (z-a)^{n-1}$$

$$= c_1 + 2(z-a)^n + \dots$$

$$h'(a) = c_1 = 0$$

Hence

$$h(z) = \sum_{n=2}^{\infty} c_n (z - a)^n$$

Therefore

$$f(z) = \sum_{n=0}^{\infty} c_{n+2} (z-a)^n$$

for all $z \in D(a,r)$. So $f \in O(D(a,r))$ and hence a is a removable singularity.

Problems:

• f is an entire function such that $Re\{f\} \leq M$. Show that f is a constant.

Proof. Suppose f is an entire function such that $\text{Re}\{f\} \leq M$. Define $F = e^f$. F is an entire function and $|F| = |e^f| = e^{\text{Re}\{f\}} \leq e^M$. So F is a bounded entire function. By Liouville's theorem, F is a constant. That means F'(z) = 0 for all $z \in \mathbb{C}$. Then $e^{f(z)}f'(z) = 0$. Hence f'(z) = 0 for all $z \in \mathbb{C}$. Therefore F is constant. \square

• f is an entire function such that $\text{Im}\{f\} \leq M$. Show that f is a constant.

Proof. Suppose f is an entire function such that $\mathrm{Im}\{f\} \leq M$. Define $F = e^{-if}$. Then $|F| = \left| e^{-if} \right| = e^{\mathrm{Im}\{f\}} \leq e^M$. So F is a bounded entire function. That means F is a constant. Then F'(z) = 0 for all $z \in \mathbb{C}$. Then $e^{-if}f'(z) = 0$. That is, f'(z) = 0 for all $z \in \mathbb{C}$ and so f is constant. \square

• f is an entire function. Suppose there exists a constant $M, R \ge 0$ and an integer $n \ge 1$ such that $|f(z)| \le M|z|^n$ for all |z| > R. Show that f is a polynomial of degree $\le n$.

Proof. Since f is an entire function,

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

or

$$f(z) = f(0) + f'(0)z + \frac{f^2(0)}{2!}z^2 + \dots + \frac{f^n(0)}{n!}z^n + \dots$$

By Cauchy's estimate,

$$\frac{\left|f^{(k)}(0)\right|}{k!} \le \frac{Mr^n}{r^k}$$

if r > R. So for all k > n,

$$\frac{\left|f^{(n)}(0)\right|}{k!} \le \frac{M}{r^{k-n}}$$

where n is fixed and is true for all k > 0. Since r > R is arbitrary, it follows that $f^{(k)}(0) = 0$ for all k > n. Hence by the expansion of f(z), f is a polynomial of degree $\leq n$.

• Let Ω be a region and $f, g \in O(\Omega)$ such that f(z)g(z) = 0 for all $z \in \Omega$. Show that either f(z) is a constant or g(z) = 0 for all $z \in \Omega$.

Proof. Suppose $g(z) \neq 0$ for all $z \in \Omega$. This means there exists $a \in \Omega$ such that $g(a) \neq 0$. By the continuity of g, there exists R > 0 such that $g(z) \neq 0$ for all $z \in B(a,R) = \{z : |z-a| < R\}$. This implies f(z) = 0 for all $z \in B(a,R)$. Hence by the Identity Theorem, f(z) = 0 for all $z \in \Omega$.

• Let Ω be a region and $f, g \in O(\Omega)$ such that $\overline{f}g \in O(\Omega)$. Show that either f(z) is a constant or g(z) = 0 for all $z \in \Omega$.

Proof. Suppose $g(z) \neq 0$ for all $z \in \Omega$, meaning $g \not\equiv 0$, or there exists $a \in \Omega$ such that $g(a) \neq 0$. By the continuity of g, there exists a neighborhood $B(a,r) = \left\{z : |z-a| < r\right\}$ such that $g(z) \neq 0$ for all $z \in B(a,r)$. Let $\overline{f}g = h$ given that $h \in O(\Omega)$. Then $\overline{f}(z) = \frac{h(z)}{g(z)}$ for all $z \in B(a,r)$ because $g(z) \neq 0$ for all $z \in B(a,r)$. Since h and g are both holomorphic and $g(z) \neq 0$ in g(a,r), it follows that g(a,r) is holomorphic in g(a,r). Thus g(a,r) and g(a,r) and so g(a,r) and so g(a,r). Hence by the Identity Theorem, g(a,r) is constant on g(a,r).

Note: Identity Theorem: Suppose $f, g \in O(\Omega)$ and $a \in \Omega$ such that f(z) = g(z) for all $z \in B(a,r) = \{z : |z-a| < r\}$. Then f(g) = g(z) for all $z \in \Omega$.

Cauchy's Integral Formula:

$$f^{(n)}(a) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} dz$$

• $\int_{\gamma} \frac{5z^2+2z+1}{(z-i)^3} dz$ in the region $\gamma: |z|=2$

$$\int_{\gamma} \frac{5z^2 + 2z + 1}{(z - i)^3} dz = \int_{\gamma} \frac{f(z)}{(z - i)^3} dz$$

$$f(z) = 5z^2 + 2z + 1$$

$$f'(z) = 10z$$

$$f''(z) = 10 \to f''(i) = 10$$

$$\int_{\gamma} \frac{5z^2 + 2z + 1}{(z - i)^3} dz = \frac{2\pi i}{2!} f''(i)$$

$$= \frac{2\pi i}{2} \cdot 10 = 10\pi i$$

• $\int_{\gamma} \frac{e^{2z} - e^{-2z}}{z^5} dz$ in the region $\gamma : |z| = 4$

$$\int_{\gamma} \frac{e^{2z} - e^{-2z}}{z^5} = \int_{\gamma} \frac{f(z)}{z^5} dz$$

$$f(z) = e^{2z} - e^{-2z}$$

$$f'(z) = 2e^{2z} + 2e^{-2z}$$

$$f''(z) = 4e^{2z} - 4e^{-2z}$$

$$f'''(z) = 8e^{2z} + 8e^{-2z}$$

$$f^4(z) = 16e^{2z} - 16e^{-2z}$$

$$f^5(z) = 32e^{2z} + 32e^{-2z} \to f^5(0) = 64$$

$$\int_{\gamma} \frac{e^{2z} - e^{-2z}}{z^5} = \frac{2\pi i}{5!} \cdot 64 = \frac{128}{120}\pi i = \frac{16}{15}\pi i$$

Cauchy's Residue Formula:

$$\operatorname{Res}_{z=z_0} f(z) = \begin{cases} g(z_0) & \text{if } n = 1\\ \frac{g^{(n-1)}(z_0)}{(n-1)!} & \text{if } n \ge 2 \end{cases}$$

• $\int_{\gamma} \frac{1-2z}{z(z-1)(z-3)}$ where $\gamma:|z|=2$. Inside γ , there are only two singularities, z=0 and z=1, both of order 1. At z=0, $f(z)=\frac{g(z)}{z}$ where $g(z)=\frac{1-2z}{(z-1)(z-3)}=\frac{1-2z}{z^2-4z+3}$, which is holomorphic in a small neighborhood of z=0. Then

$$\underset{z=0}{\text{Res}} = g(0) = \frac{1}{3}$$

At z = 1, $f(z) = \frac{\phi(z)}{z-1}$ where $\phi(z) = \frac{1-2z}{z(z-3)}$ which is holomorphic in a small neighborhood of z = 1. Then

Res
$$f(z) = \phi(1) = \frac{-1}{-2} = \frac{1}{2}$$

Therefore

$$\int_{\gamma} \frac{1 - 2z}{z(z - 1)(z - 3)} = 2\pi i (\frac{1}{3} + \frac{1}{2}) = \frac{5}{3}\pi i$$

• $\int_{\gamma} \frac{e^z}{z(z-2)^3} dz$ where $\gamma: |z|=3$. Inside γ , there are only two singularities, z=0 and z=2, of order 1 and 3 respectively. At z=0, $f(z)=\frac{g(z)}{z}$ where $g(z)=\frac{e^z}{(z-2)^3}$ which is holomorphic in a small neighborhood of z=0. Then

$$\operatorname{Res}_{z=0} f(z) = g(0) = -\frac{1}{8}$$

At $z=2, f(z)=\frac{\phi(z)}{(z-2)^3}$ where $\phi(z)=\frac{e^z}{z}$ which is holomorphic in a small neighborhood

of z = 2. Now

$$\phi(z) = \frac{e^z}{z}$$

$$\phi'(z) = \frac{ze^z - e^z}{z^2}$$

$$\phi''(z) = \frac{z^2(ze^z + e^z - e^z) - (ze^z - e^z)2z}{z^4}$$

$$\phi''(2) = \frac{4(2e^2) - 4(2e^2 - e^2)}{16} = \frac{4e^2}{16} = \frac{e^2}{4}$$

Therefore

Res
$$f(z) = \frac{\phi''(2)}{2!} = \frac{e^2}{8}$$

Furthermore,

$$\int_{\gamma} \frac{e^z}{z(z-2)^3} dz = 2\pi i \left(-\frac{1}{8} + \frac{e^2}{8}\right) = \left(\frac{e^2 - 1}{4}\right)\pi i$$

• $\int_{\gamma} \frac{\cos z}{z^2(z-\pi)^3} dz$ where $\gamma: |z|=4$. Inside γ , there are two singularities, z=0 and $z=\pi$, of order 1 and 2 respectively. At z=0, $f(z)=\frac{g(z)}{z^2}$ where $g(z)=\frac{\cos z}{(z-\pi)^3}$ which is holomorphic in a small neighborhood of z=0. Now

$$g'(z) = \frac{-(\sin z)(z-\pi)^3 - 3(\cos z)(z-\pi)^2}{(z-\pi)^4}$$

and

$$g'(0) = \frac{-3\pi^2}{\pi^6} = -\frac{3}{\pi^4}$$

Therefore

Res_{z=0}
$$f(z) = g'(0) = -\frac{3}{\pi^4}$$

At $z = \pi$, $f(z) = \frac{\phi(z)}{(z-\pi)^3}$ where $\phi(z) = \frac{\cos z}{z^2}$ which is holomorphic in a small neighborhood of $z = \pi$. Now

$$\phi(z) = \frac{\cos z}{z^2}$$

$$\phi'(z) = \frac{-z^2 \sin z - 2z \cos z}{z^4}$$

$$\phi''(z) = \frac{z^4 [(-z^2 \cos z - 2z \sin z) - (-2z \sin z + 2\cos z)] + 4z^3 (z^2 \sin z + 2z \cos z)}{z^8}$$

$$\phi''(z) = \frac{\pi^6 + 2\pi^4 - 8\pi^4}{\pi^8} = \frac{\pi^6 - 6\pi^4}{\pi^8} = \frac{\pi^2 - 6}{\pi^4}$$

Therefore

Res
$$f(z) = \frac{\phi''(\pi)}{2!} = \frac{\pi^2 - 6}{2\pi^4}$$

Furthermore,

$$\int_{\gamma} \frac{\cos z}{z^2 (z - \pi)^3} = 2\pi i \left(\frac{-3}{\pi^4} + \frac{\pi^2 - 6}{2\pi^4}\right) = 2\pi i \left(\frac{1}{2\pi^2}\right) = \frac{1}{\pi}$$

Laurent Series: Use the fact that

$$\frac{1}{1-z} = 1 + z + z^2 + z^3 + \dots$$

for |z| < 1. Find the Laurent expansion of the following in the given region

- $f(z) = \frac{1}{z^2(1-z)}$
 - 1. 0 < |z| < 1

$$f(z) = \frac{1}{z^2} \frac{1}{1-z}$$

$$= \frac{1}{z^2} (1+z+z^2+z^3+\cdots+z^n+\ldots)$$

$$= \frac{1}{z^2} + \frac{1}{z} + z + 1 + z^2 + \cdots + z^{n-2} + \ldots$$

$$= \frac{1}{z^2} + \frac{1}{z} + \sum_{n=0}^{\infty} z^n$$

2. $1 < |z| < \infty$

$$f(z) = \frac{1}{z^2(1-z)}$$

$$= \frac{1}{z^2 - z^3}$$

$$= \frac{1}{-z^3(1-\frac{1}{z})}$$

$$= -\frac{1}{z^3} \frac{1}{1-\frac{1}{z}}$$

$$= -\frac{1}{z^3} (1 + \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \dots + \frac{1}{z^n} + \dots)$$

$$= -\frac{1}{z^3} - \frac{1}{z^4} - \frac{1}{z^5} - \dots$$

$$= -\sum_{n=3}^{\infty} \frac{1}{z^n}$$

• $f(z) = -\frac{1}{(z-1)(z-2)}$ Note first that $f(z) = \frac{1}{z-1} - \frac{1}{z-2}$ by partial fraction decomposition.

1. |z| < 1

$$f(z) = \frac{1}{z-1} - \frac{1}{z-2}$$

$$= -\frac{1}{1-z} + \frac{1}{2-z}$$

$$= -\frac{1}{1-z} + \frac{1}{2(1-\frac{1}{z})}$$

$$= -(1+z+z^2+\cdots+z^n+\cdots) + \frac{1}{2}(1+\frac{z}{2}+(\frac{z}{2})^2+\cdots+(\frac{z}{2})^n+\cdots)$$

$$= \sum_{r=0}^{\infty} (\frac{1}{2^{n+1}}-1)z^n$$

2. 1 < |z| < 2

$$f(z) = \frac{1}{z(1 - \frac{1}{z})} + \frac{1}{2(1 - \frac{z}{2})}$$

$$= \frac{1}{z}(1 + \frac{1}{z} + \frac{1}{z^2} + \dots + \frac{1}{z^n} + \dots) + \frac{1}{2}(1 + \frac{z}{2} + (\frac{z}{2})^2 + \dots + (\frac{z}{2})^n + \dots)$$

$$= \sum_{n=0}^{\infty} \frac{1}{z^{n+1}} + \frac{1}{2} \sum_{n=0}^{\infty} \frac{2^n}{2^{n+1}}$$

3. |z| > 2

$$f(z) = \frac{1}{z - 1} - \frac{1}{z - 2}$$

$$= \frac{1}{z(1 - \frac{1}{z})} - \frac{1}{z(1 - \frac{2}{z})}$$

$$= \frac{1}{z}(1 + \frac{1}{z} + (\frac{1}{z})^2 + \dots + (\frac{1}{z})^n + \dots) - \frac{1}{z}(1 + \frac{2}{z} + (\frac{2}{z})^2 + \dots + (\frac{2}{z})^n + \dots)$$

$$= \sum_{n=0}^{\infty} \frac{1}{z^{n+1}} - \sum_{n=0}^{\infty} \frac{2^n}{z^{n+1}}$$

$$= \sum_{n=0}^{\infty} \frac{1 - 2^n}{z^{n+1}}$$