ARITHMETIC Chapter 12

5th of Secondary

Y+X=

ADICION Y SUSTRACCION EN LOS NUMEROS NATURALES

MARCO TEORICO

Resuelva la siguiente operación

$$1+1+4+8+9+27+16+64+\cdots+100+1000$$

En cuanto tiempo puedes resolverlo.

cuadrados consecutivos

$$\frac{10(11)(21)}{6} = 385$$

cubos consecutivos

$$\left(\frac{10(11)}{2}\right)^2 = 3025$$

$$385 + 3025 = 3410$$

ADICIÓN

$$S = a + b$$

En otras bases

Orden 1
$$(1+5+6) = 12 = 1 \times 7 + 5$$

Orden 2
$$(1+4+4+1) = 10 = 0 \times 7 + 3$$

Orden 3
$$(1+2+3+5) = 11 = 1 \times 7 + 4$$

Formula General de la suma de términos de una progresión Aritmética

$$S = a_1 + a_2 + a_3 + \dots + a_n$$

n: numero de términos

$$n = \frac{a_n - a_1}{r} + 1$$

$$S = \left(\frac{a_n + a_1}{2}\right)n$$

Ejm

$$S = 19 + 25 + 31 + \dots + 193$$

$$n = \frac{193 - 19}{6} + 1 = 45$$

$$S = (\frac{193+19}{2})30 = 3180$$

Formula notables (Z^+)

Suma de primeros números enteros positivos

$$S = 1 + 2 + 3 + \cdots + \underline{n}$$

Último término

$$S = \frac{n(n+1)}{2}$$

Ejm
$$S = 1 + 2 + 3 + \dots + 45$$
 $n = 45$

$$S = \frac{45(46)}{2} = 1035$$

B Suma de los primeros números pares

$$S = 2 + 4 + 6 + \dots + (2n)$$

$$S = n(n+1)$$

Último término

Ejm
$$S = 2 + 4 + 6 + \dots + 64$$

 $2n = 64$
 $n = 32$
 $S = 32(33) = 1056$

$$S = 1 + 3 + 5 + \dots + (2n - 1)$$

$$S = n^2$$
 Último término

Ejm
$$S = 1 + 3 + 5 + \dots + 59$$

 $(2n - 1) = 59$
 $n = 30$
 $S = 30^2 = 900$

<u>Suma de los primeros</u> números al cuadrado

$$S = 1^2 + 2^2 + 3^2 + \dots + \underline{n}^2$$

$$S = \frac{n(n+1)(2n+1)}{6}$$

Último término

Ejm
$$S = 1^2 + 2^2 + 3^2 + \dots + 22^2$$

$$n^2 = 22^2$$

$$n = 22$$

$$S = \frac{22(23)(45)}{6} = 3795$$

<u>Suma de los primeros</u> números al cubo

$$S = 1^3 + 2^3 + 3^3 + \dots + n^3$$

$$S = \left[\frac{n(n+1)}{2}\right]^2$$
 Último término

$$S = 1^3 + 2^3 + 3^3 + \dots + 12^3$$

$$n^3 = 12^3$$

$$n = 12$$

$$S = \left[\frac{12(13)}{2} \right]^2 = 6084$$

SUSTRACCIÓN

Es la operación inversa a la adición, dados dos números enteros llamados minuendo (M) y sustraendo (S), nos permite encontrar un tercer número llamado diferencia (D).

En otras bases

$$65 - 38 = 27$$

$$M - S = D$$

Orden 1
$$(8+2)-6=4$$

Orden 2 $(8+5)-7=6$
Orden 3 $4-3=1$

Propiedades

Suma de los términos

Resta notable

> En la siguiente sustracción

$$83 - 49 = 34$$

> Si sumamos los términos

$$83 + 49 + 34 = 166 = 2(83)$$

➤En general:

$$M + S + D = 2M$$

$$634_{(7)}$$
 $436_{(7)}$
 $165_{(7)}$

$$4+5=9=10-1 \land 1+5=6=7-1$$

➤ En general:

$$\overline{abc}_{(n)} - \overline{cba}_{(n)} = \overline{xyz}_{(n)}$$

$$x + z = y = n - 1$$
$$a - c = x + 1$$

Complemento aritmético (CA)

Ejm 1

$$CA(51) = 100 - 51 = 49$$

Luego:

$$CA(N)_{(n)} = 100 \dots 0_{(n)} - N_{(n)}$$
"K" ceros

K = cantidad de cifras de N

METODO PRÁCTICO

$$CA(2\ 3\ 4\ 7) = 7653$$

$$CA(34571_{(8)}) = 43207$$

La suma de los tres términos de una sustracción es 1486. Si el sustraendo es el CA del minuendo, determine la suma de las cifras de la diferencia.

Resolution:

Propiedad:

$$(M + S + D = 2.M)$$

$$M + S + D = 1486$$

 $2M = 1486$
 $M = 743$

S = CA(M) = CA(7 4 3)
S = 257
Pero:
$$M - S = D$$

 $743 - 257 = D = 486$
 $4 + 8 + 6 = 18$

18

RPTA:

Si:
$$\overline{1n1} + \overline{2n2} + \overline{3n3} + \dots + \overline{9n9} = \overline{ab4c}$$
, Calcule: $a + b$

Resolution:

Del dato tenemos:

1° orden:
$$1 + 2 + 3 + ... + 9 = 45$$

2° orden:
$$n + n + n + ... + n + 4 = ...4$$

9 sumandos

3° orden:
$$1 + 2 + 3 + ... + 9 = \overline{ah}$$

Piden:
$$a + b + c$$

∴ $4 + 5 + 5 = 14$

$$c = 5$$

$$9.n + 4 = ...4$$

$$9.n = ...0$$
 $n = 0$

$$\overline{ab} = 45$$

donde:
$$a = 4$$
 $b = 5$

Si:
$$\overline{abc} + \overline{cba} = 1392$$
, además $\overline{abc} - \overline{nm(2m)} = \overline{cba}$ Calcule $a + b^2 + c^3$.

Resolution:

Propiedad:

$$\frac{a b c}{c b a} - \frac{b a}{mn(2m)}$$

Donde:

$$n = 9$$

$$m + 2m = 9$$

$$\rightarrow m = 3$$

Del dato tenemos:

$$\frac{\overline{abc} + \overline{cba}}{abc} = 1392 + \overline{cba} = 396$$

2.
$$abc = 1788$$
 $a = 8$

$$abc = 894$$
 $b = 9$

$$c = 4$$

Piden:
$$a + b^2 + c^3$$

 $3 + 3 + 4^3 = 153$

RPTA:

153

Si el CA del numeral $\overline{a7b(b+2)} = \overline{(d-1)bcd}$; Determine a+b+c+d.

Resolution:

$$C.A(\overline{a7b(b+2)}) = \overline{(d-1)bcd}$$

Donde:

Martín y Lupe, hermanos y estudiantes de la academia Saco Oliveros juntaron sus propinas para comprarse una laptop; sobrándoles S/.1200. Si Martín quisiera comprarla solo, le faltaría S/.900 y si Lupe quisiera comprarla sola le faltaría una cantidad igual a la que tiene. ¿Cuánto cuesta la laptop?

Resolution:

Del dato tenemos:

sea **Pr** precio de la computadora

$$M + 900 = Pr$$

$$\rightarrow$$
 M = Pr - 900

además:

$$L + L = Pr$$

$$\rightarrow$$
 L = $\frac{Pr}{2}$

Dato: M + L = Pr + 1200 reemplazando:

$$(Pr - 900) + \frac{Pr}{2} = Pr + 1200$$

$$\Rightarrow \frac{Pr}{2} = 2100$$

$$\therefore Pr = 4200$$

RPTA:

S/.4200

Si: $\overline{APRA} + \overline{PPC} = \overline{CAOS}$, además P – A = 2, 0: cero, Calcule: C + A + R + P + A.

Resolution:

Del dato tenemos:

Donde:

Piden: C + A + R + P + A

$$\therefore$$
 6 + 5 + 2 + 7 + 5 = 25

25

En una conferencia de economía, se tiene que el número de varones es $\overline{aba}_{(n)}$ y la cantidad de mujeres $\overline{xx}_{(n)}$. Si el complemento del número de varones es igual al número de mujeres, y a.b = 56; halle el valor de a+b+x+n.

Resolution:

$$CA(\frac{n-|n-|n|}{aba}_{(n)}) = \overline{xx}_{(n)}$$

RPTA:

25