

WHAT IS CLAIMED IS:

- 1 1. A method of representing performance of a drug candidate, the
2 method comprising:
 - 3 receiving raw data generated by a model of drug candidate behavior, the
4 raw data comprising index information, treatment scenario input information types, and
5 corresponding output performance information types;
 - 6 extracting the index information from the raw data;
 - 7 referencing the extracted index information to generate a metadata file, a
8 structure of the metadata file explicitly reflecting a hierarchical structure of the model;
 - 9 referencing the metadata file to convert the raw data file into a binary file,
10 the metadata file explicitly identifying locations of treatment scenario information types
11 and the output performance information types within the binary file;
 - 12 generating a user interface from the metadata file, the interface comprising
13 a menu of input variables;
 - 14 presenting the menu to a user;
 - 15 receiving a user-selected input at the interface;
 - 16 causing the interface to reference the metadata file and the binary file to
17 identify a subset of the binary file relevant to the user-selected input; and
 - 18 presenting the data subset in one of a select type of presentation formats at
19 the interface.
- 1 2. The method of claim 1 wherein the data subset represents a clinical
2 effect.
- 1 3. The method of claim 1 wherein the data subset represents a
2 likelihood of a clinical effect lying within a range of user-defined value.
- 1 4. The method of claim 1 wherein the data subset represents a value of
2 an independent variable required for a clinical effect to one of attain, exceed, and equal a
3 user-defined value.
- 1 5. The method of claim 1 wherein the data subset represents a value of
2 an independent variable required for a clinical effect to fall one of within, above, and
3 below a user-defined range of values.

1 6. The method of claim 1 wherein the presentation format comprises a
2 table.

1 7. The method of claim 1 wherein the presentation format comprises a
2 matrix of tables.

1 8. The method of claim 1 wherein the presentation format comprises a
2 plot.

1 9. The method of claim 1 wherein the presentation format comprises a
2 matrix of plots.

1 10. The method of claim 1 wherein the data subset represents a contrast
2 between output corresponding to two controllable variable input scenarios.

1 11. The method of claim 10 wherein the data subset represents a
2 contrast between output corresponding to a first controllable variable input scenario
3 featuring the drug candidate, and a second controllable variable input scenario featuring a
4 competitor of the drug candidate.

1 12. The method of claim 10 wherein the contrast represents one of a
2 difference, a ratio, and a log ratio.

1 13. The method of claim 1 wherein the menu of input variables is
2 selected from the group consisting of an endpoint, a controllable variable, and an
3 uncontrollable variable.

1 14. The method of claim 13 wherein endpoint is based upon a clinically
2 measured value.

1 15. The method of claim 13 wherein the controllable variable is
2 selected from the group comprising drug candidate identity, drug candidate dose,
3 frequency of administration of drug candidate, and formulation of the drug candidate.

1 16. The method of claim 13 wherein the uncontrollable variable
2 comprises a patient attribute selected from the group consisting of age, gender, body
3 weight, and disease state.

1 17. The method of claim 13 wherein the uncontrollable variable
2 comprises a model assumption.

1 18. The method of claim 1 wherein the raw data comprises a file
2 organized according to explicit index values, and the metadata file encodes the explicit
3 index values into a structure.

1 19. The method of claim 18 wherein the raw data comprises multiple
2 files.

1 20. The method of claim 18 wherein the raw data is converted into the
2 single binary file organized to match the encoded structure.

1 21. The method of claim 18 wherein the raw data is converted into
2 multiple binary files organized to match the encoded structure.

1 22. The method of claim 18 wherein the explicit index values are
2 encoded into an ordered tree structure.

1 23. The method of claim 22 wherein the binary file comprises an n-
2 dimensional structure having a geometry matching the tree structure.

1 24. The method of claim 1 wherein the menu comprises text from the
2 Metadata file.

1 25. The method of claim 1 further comprising drafting an additional
2 conversion routine configured to recognize the raw data structure, and to transform the
3 raw data into a standard metadata file format.

1 26. A computer system comprising a processor and a memory storing
2 code to operate the processor, the code comprising,

3 a parser module configured to receive raw data output by a model of drug
4 candidate behavior, and to generate a metadata file encoding outputs and related inputs of
5 the model based upon index information extracted from the raw data;

6 a data transfer module configured to convert the raw data into a binary file
7 organized to match a structure encoded in the metadata file; and

8 a graphic user interface configured to present a menu of input variables to a
9 user, to receive inputs selected by the user, to reference the metadata file and the binary
10 file to identify a subset of the binary file relevant to the selected inputs, and to present the
11 data subset in one of a select type of presentation format.

1 27. The computer system of claim 26 wherein the raw data comprises:
2 an index file having row vectors including a row number, the row vectors
3 describing unique modeling input scenarios, and
4 a simulation output file comprising columns of number distributions
5 produced by the model when run through a simulation process utilizing the specific input
6 scenario, a column number corresponding to the row number; and wherein,
7 the metadata file is organized according to a tree structure, and the binary
8 file is organized into an n-dimensional structure whose geometry matches the tree
9 structure.

1 28. The computer system of claim 26 wherein the parser module further
2 comprises a conversion routine configured to recognize a format of the model, and to
3 transform the raw data into a standard format of the metadata file.