第一章 离散时间系统变换域分析

1.1 离散时间傅里叶变换

内容提要

- □ 离散时间傅里叶变换
- □ DTFT 性质与定理

□ 基本序列 DTFT

定义 1.1 (**离散时间傅里叶变换**) DTFT/ 离散时间傅立叶变换¹, 应用与非周期信号以及傅里叶频谱的关系。

正变换:

$$DTFT[x(n)] = X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

反变换:

$$DTFT^{-1}[X(e^{j\omega})] = x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

DTFT 将离散的序列变换到了一个连续的函数,对于非周期序列可以收敛,是一个关于 ω 的周期函数。

在 MATLAB 中, sinc(x) 表示 sin(x)/x

在反变换中,隐藏了关于信号分解的含义:

$$x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$
$$= \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} X(e^{jk\Delta\omega}) e^{jk\Delta\omega n} \Delta\omega$$

其中关于 n 的只有一项,将频谱的面积乘以对应离散时刻的分量。

1.1.1 基本序列的 DTFT

单位冲激序列:

$$\delta(n) \xrightarrow{\mathrm{DTFT}} 1$$

单位常数序列:

$$1 \xrightarrow{\text{DTFT}} \sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2k\pi)$$

单位阶跃序列:

$$u(n) \xrightarrow{\text{DTFT}} \frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{\infty} = \sum_{k = -\infty}^{\infty} \pi \delta(\omega + 2k\pi)$$

¹DFT 是离散傅里叶变换,切勿混淆

单位指数序列:

$$e^{j\omega_0 n} \xrightarrow{\text{DTFT}} \sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2k\pi)$$

矩形窗序列:

$$G_N(n) \xrightarrow{\mathrm{DTFT}} \frac{\sin(\omega N/2)}{\sin(\omega/2)} e^{-j\frac{(N-1)\omega}{2}}$$

理想低通滤波器,截止频率为 ω_c

$$H_d(e^{j\omega}) = \begin{cases} e^{-j\omega\alpha}, -\omega_c \le \omega \le \omega_c \\ 0, -\pi < \omega < -\omega_c \text{ or } \omega_c < \omega < \pi \end{cases}$$

反变换:

$$h_d(n) = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{-j\omega\alpha} e^{j\omega n} d\omega = \frac{\omega_c}{\pi} \cdot \frac{\sin(\omega_c(n-\alpha))}{\omega_c(n-\alpha)}$$

1.1.2 DTFT 主要性质以及定理

- 线性
- 时序频移导致频域调制: n 在频域只是一个相位系数
- 时域调制导致频域平移
- 时域反褶导致频域反褶
- 时域共轭导致频域共轭以及反褶
- 时域相乘形成频域卷积:

$$x(n)h(n) \xrightarrow{\text{DTFT}} \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) H(e^{j(\omega-\theta)}) d\theta$$

• 时域卷积导致频域相乘:

$$x(n) \otimes h(n) \xrightarrow{\mathrm{DTFT}} X(e^{j\omega})H(e^{i\omega})$$

• 线性保泛变换/帕塞瓦尔定理:

$$\sum_{n=-\infty}^{\infty} x(n)y^*(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})Y^*(e^{j\omega})d\omega$$
$$\sum_{n=-\infty}^{\infty} |x(n)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})d\omega|$$

1.1.3 DTFT 对称性

定义1.2(对称序列) 共轭对称序列:

$$x_e(n) = x_e^*(-n)$$

共轭反对称序列:

$$x_o(n) = -x_o^*(-n)$$

虚实部以及幅相满足:

$$\operatorname{Re}\left[x_e(n)\right] = \operatorname{Re}\left[x_e(-n)\right]$$

$$\operatorname{Im}\left[x_e(n)\right] = -\operatorname{Im}\left[x_e(-n)\right]$$

$$\operatorname{Re}\left[x_o(n)\right] = -\operatorname{Re}\left[x_o(-n)\right]$$

$$\operatorname{Im}\left[x_o(n)\right] = \operatorname{Im}\left[x_o(-n)\right]$$

$$|x_e(n)| = |x_e(-n)|$$

$$\operatorname{Arg}[x_e(n)] = -\operatorname{Arg}[x_e(-n)]$$
(1.1)

$$|x_o(n)| = |x_o(-n)|$$

$$\operatorname{Arg}[x_o(n)] = \pi - \operatorname{Arg}[x_o(-n)]$$
(1.2)

进行引申,可以将一个序列进行分解,得到一个对称以及一个反对称序列:

$$x(n) = x_e(n) + x_o(n)$$

$$x_e(n) = \frac{1}{2} [x(n) + x^*(-n)]$$

$$x_o(n) = \frac{1}{2} [x(n) - x^*(-n)]$$
(1.3)

对应的频谱:

$$X(e^{j\omega}) = X_e(e^{j\omega}) + X_o(e^{j\omega})$$

$$X_e(e^{j\omega}) = \frac{1}{2} \left[X(e^{j\omega}) + X^*(e^{-j\omega}) \right]$$

$$X_o(e^{j\omega}) = \frac{1}{2} \left[X(e^{j\omega}) - X^*(e^{-j\omega}) \right]$$
(1.4)

DTFT[
$$x_e(n)$$
] = $\frac{1}{2} [X(e^{j\omega}) + X^*(e^{j\omega})] = \text{Re} [X(e^{j\omega})]$
DTFT[$x_o(n)$] = $\frac{1}{2} [X(e^{j\omega}) - X^*(e^{j\omega})] = j \text{Im} [X(e^{j\omega})]$ (1.5)

推论:实序列傅立叶变换是共轭对称的,即实部是偶对称,虚部是奇对称;幅度是 偶对称,幅角是奇对称。

1.2 Z变换及其反变换

定义 1.3 (z 变换)

$$X(z) = \sum_{n = -\infty}^{\infty} x(n)z^{-n}$$

称 x(n) 为 x(n) 的 Z 变换,可以记为:

$$\mathscr{Z}[x(n)] = X(z)$$

注意, 幂级数收敛时变换才有意义, 需要标注收敛域。

由于存在衰减,可以变换的范围比 DTFT 更大,存在 Z 变换不一定存在 DTFT。 Z 变换的充分必要条件是级数绝对可和。

1.2.1 收敛域

对于有限长的序列,只要每一项有界,那么级数收敛,且至少包括有限的 z 平面(不包括 z=0)。对与和原点关系进行判断。

右边序列(向右趋近无穷),存在一个最小的收敛半径,半径之外全部收敛。无左半轴分量,为因果序列。

左边序列,存在一个最大的半径,之内全部收敛。无右半轴分量,为反因果序列。 双边序列若收敛,必在环状区域收敛。

需要注意,不同的序列其 Z 变换的数学表达式可以完全一致。因此需要给出对应的 收敛区间。

1.2.2 性质

- 线性: 时域不重合时收敛域为交集, 其他情况可能消减零极点产生扩大现象。
- 序列移位
- 尺度变化
- 线性加权/Z 域求导

$$Z[nx(n)] = -z \frac{dX(z)}{dz} \quad R_{x-} < |z| < R_{x+}$$
 (1.6)

$$Z[n^{m}x(n)] = \left(-z\frac{d}{dz}\right)^{m}[X(z)] \quad R_{x-} < |z| < R_{x+}$$
 (1.7)

- 共轭序列
- 序列反褶

$$Z[x(-n)] = X\left(\frac{1}{z}\right) \quad R_{x+}^{-1} < |z| < R_{x-}^{-1}$$
(1.8)

• 初值定理(因果序列):

for
$$x(n)=x(n)u(n)$$
 get $\lim_{z\to\infty}X(z)=x(0)$

• 终值定理:

$$\lim_{z \to 1} (z - 1)X(z) = \lim_{n \to \infty} x(n)$$

• 时域卷积

$$y(n) = x(n) \otimes h(n)$$
$$Y(z) = \mathscr{Z}[y(n)] = X(z)H(z)$$

Z 域复卷积

$$y(n) = x(n)h(n)$$

$$Y(z) = \frac{1}{2\pi j} \oint_c X(\frac{z}{v})H(v)v^{-1}dv = \frac{1}{2\pi j} \oint_c X)v_H(\frac{z}{v})v^{-1}dv$$
where $R_{x-}R_{h-} < |z| < R_{x+}R_{h+}$

• 周期卷积:将复卷积转换为数学形式明显的形式(围线积分半径固定)

$$v = \rho e^{j\theta}, z = r e^{j\omega}$$

$$Y(r e^{j\omega}) = \frac{1}{2\pi i} \oint_{c} H(\rho e^{j\theta}) X(\frac{r}{\rho} e^{j(\omega - \theta)}) \frac{\mathrm{d}(\rho e^{j\theta})}{\rho e^{j\theta}}$$

• 帕塞瓦尔定理

$$\sum_{n=-\infty}^{\infty} |x(n)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$$

1.2.3 Z 反变换

定义1.4(Z反变换) 从给定的 Z 变换及其收敛域中还原处原始序列的过程叫做 Z 反变换。

$$x(n) = \mathscr{Z}^{-1}[X(z)]$$

实质是求X(z)的幂级数展开,通常使用长除法,部分分式,留数(危险积分法)。

部分分式法

在实际应用中,一般 X(z) 是 z 的有理分式也就是

$$X(z) = \frac{B(z)}{A(z)}$$
, where A and B are polynomials

那么可以展开为

$$X(z) = \sum_{i} X_i(z)$$

$$x(n) = \sum_{i} \mathscr{Z}^{-1}[X_i(z)]$$

- 1.3 系统函数与频率相应
- 1.4 LTI 系统的幅相分析