(104031) אינפי 1מ' | תרגול 7 - יוליה

שם: איל שטיין ו ת"ז: 208622142

November 14, 2022

נושאי השיעור: גבול סדרת הממוצעים (ממוצע הנדסי, חשבוני והרמוני)

תרגיל 1.

- ($L\in\mathbb{R}$ או $L=\pm\infty$ כאשר כאשר $\lim_{n o\infty}a_n=L$ כלומר (כלומר במובן הרחב המתכנסת המתכנסת -
- גם מתכנסת) גם a_n במילים אחרות, הוכיחו (במילים $b_n=\frac{a_1+a_2+...+a_n}{n}$ באשר באשר $\lim_{n\to\infty}b_n=L$ כאשר צ"ל:

L=0 נוכיח עבור

$$\lim_{n o\infty}\left(rac{a_1+a_2+\ldots+a_n}{n}
ight)=0$$
 אז $\lim_{n o\infty}a_n=0$ צ"ל: אם

הוכחה

- $.\left|\frac{a_1+a_2+\ldots+a_n}{n}-0\right|<\varepsilon$ מתקיים n>N כך שלכל N נחפש . $\varepsilon>0$ יהי יהי
 - $\lim_{n\to\infty}a_n=0$ על פי הנתון •

$$|a_n-0|<rac{arepsilon}{2} מתקיים $n>N_1$ כך שלכל -$$

: נבחן את הביטוי

$$\frac{|a_1 + a_2 + \ldots + a_{N_1} + a_{N+1} + \ldots a_n|}{n}$$

- לפי אי שוויון המשולש מתקיים:

$$\frac{|a_1 + a_2 + \ldots + a_{N_1} + a_{N+1} + \ldots a_n|}{n} \leq \underbrace{\frac{(1)}{|a_1 + a_2 + \ldots + a_{N_1}|}}_{(1)} + \underbrace{\frac{(2)}{|a_{N+1} + \ldots a_n|}}_{n}$$

$$\frac{|a_{N+1}+...a_n|}{n}$$
 (2) $\frac{\left|a_1+a_2+...+a_{N_1}\right|}{n}(1)$: נסמן

- arepsilon באופן בין (2), (2) איי שוויון איי שוויון פין arepsilon באופן arepsilon
- $(a_1+a_2+\ldots+a_{N_1})$ כל איברי הסדרה שב(2), כלומר $(a_{N+1}+a_{N+1}+\ldots a_n)$, באים בסדרה אחרי האיברים ב(1), כלומר $(a_1+a_2+\ldots a_{N+1}+a_{N+1}+\ldots a_n)$
 - $|a_n|<rac{arepsilon}{2}<arepsilon$ מתקיים $n>N_1$ שלכל הראנו הראנו הראנו י
 - : לכן מתקיים בפרט עבור (1)

$$|a_1 + a_2 + \ldots + a_{N_1}| < \frac{\varepsilon}{2} \cdot (N_1)$$

וגם בפרט עבור (2):

$$\left|a_{(N_1+1)}+\ldots a_n\right|<\frac{\varepsilon}{2}\cdot(n-N_1)$$

- .(2) נבחן את ביטוי
- * לפי "אי שוויון המשולש" מתקיים בו:

$$\frac{|a_{N+1} + \dots a_n|}{n} \le \frac{|a_{N+1}| + \dots + |a_n|}{n}$$

: ונקבל $\left|a_{(N_1+1)}+\dots a_n
ight|<rac{arepsilon}{2}\cdot(n-N_1)$, ונקבל את אי השוויון שראינו למעלה, \star

$$\frac{|a_{N+1}| + \ldots + |a_n|}{n} < \frac{1}{n} \cdot \frac{\varepsilon (n - N_1)}{2} < \frac{\varepsilon}{2} < \varepsilon$$

- :(1) נבחן את ביטוי
- $\frac{\left|a_1+a_2+\ldots+a_{N_1}\right|}{n}$: ביטוי איברים ממספר ממספר מורכב *
 - ולכן $c \in \mathbb{R}$ ולכן ניתן לומר שהוא שווה למספר קבוע .

$$\lim_{n \to \infty} \frac{c}{n} = \lim_{n \to \infty} \frac{|a_1 + a_2 + \ldots + a_{N_1}|}{n} = c \cdot \lim_{n \to \infty} \frac{1}{n} = 0$$

:מתקיים $n>N_2$ כך שלכל קיים $\varepsilon>0$ ולכל ולכל אמתכנסת לכן אלכל \star

$$0 \le \frac{c}{n} < \frac{\varepsilon}{2}$$

- $n>N_1$ באשר (2) קטן הפיטוי מספר (2) ביטוי מספר מאר האינו מספר מאר מספר מאר האינו מספר (1) פאשר $rac{arepsilon}{2}$
 - * הם שני חלקים של אותו ביטוי ולכן אפשר לחבר את שניהם ביחד
 - עבור n>N לכל $N=max\left\{ N_{1},N_{2}
 ight\}$ יעבור י

$$\left| \frac{a_1 + a_2 + \ldots + a_n}{n} - 0 \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

 $\lim_{n \to \infty} \left(rac{a_1 + a_2 + \ldots + a_n}{n}
ight) = 0$ אז $\lim_{n \to \infty} a_n = 0$ שאם • dorcia, הוכחנו

 ${\cal L}=0$ עד כאן הוכחה למקרה שבו

 $L \neq 0$ הוכחה שנייה: נבחן מקרה בו

$$.c_n = (a_n - L)$$
 נגדיר •

$$\lim_{n\to\infty} (a_n - L) = \overbrace{\left(\lim_{n\to\infty} a_n\right)}^{=L} - L = 0$$

* כלומר,

$$\lim_{n \to \infty} c_n = \lim_{n \to \infty} \left(a_n - L \right) = 0$$

 $\lim_{n \to \infty} \left(\frac{c_1 + c_2 + \ldots + c_n}{n} \right) = 0$ אז $\lim_{n \to \infty} c_n = 0$ בהוכחה הקודמת ראינו אינו אלכן:

$$\lim_{n \to \infty} \left(\frac{c_1 + c_2 + \ldots + c_n}{n} \right) = 0$$

:נקבל בחזרה את $c_n=(a_n-L)$ את בחזרה ינציב י

$$= \lim_{n \to \infty} \frac{(a_1 - L) + (a_2 - L) + \ldots + (a_n - L)}{n}$$

: נפתח את הסוגריםי ונקבץ את כל ה-L לצד ימין

$$= \lim_{n \to \infty} \frac{(a_1 + a_2 + \ldots + a_n) - n \cdot L}{n}$$
$$= \lim_{n \to \infty} \frac{(a_1 + a_2 + \ldots + a_n)}{n} - L = 0$$

 $\lim_{n \to \infty} a_n = L$ אז $\lim_{n \to \infty} \left(a_n - b_n
ight) = 0$ ו- $\lim_{n \to \infty} b_n = L$ אז טענת עזר: אם

• מתקיימים:

$$\lim_{n o \infty} L = L$$
 .1

$$\lim_{n\to\infty} \left(\frac{(a_1+a_2+\ldots+a_n)}{n} - L \right) = 0 .2$$

 $\lim_{n \to \infty} rac{a_1 + a_2 + \ldots + a_n}{n} = L$ -שבון גבולות מתקיים - לכן לפי טענת העזר ממשפטי -

 $\lim_{n \to \infty} \left(rac{a_1 + a_2 + \ldots + a_n}{n}
ight) = L$ אז $\lim_{n \to \infty} a_n = L$ שאם • dording for the dording of the dording for the dording for the dording for the dording of the dording for the d

תרגיל 2.

 $L\in\mathbb{R}$ תהי a_n סדרה חיובית כך ש $a_n=L$, $\lim_{n\to\infty}a_n=L$ סדרה חיובית מונית $\lim_{n\to\infty}\frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+\ldots+\frac{1}{a_n}}=L$ הוכיחו כי $\lim_{n\to\infty}\sqrt[n]{a_1\cdot a_2\cdot\ldots\cdot a_n}=L$ הוכחה.

 $(L \neq 0$ וכל עוד $\lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{L}$ אז $\lim_{n \to \infty} a_n = L$ כל עוד • • לפי משפטי חשבון גבולות, אם

$$\lim_{n\to\infty}\left(\frac{\frac{1}{a_1}+\frac{1}{a_2}+\ldots+\frac{1}{a_n}}{n}\right)=\frac{\lim\limits_{n\to\infty}\frac{1}{a_n}}{n}=\frac{L\cdot n}{n}=L\ ,$$
לכן,
$$\lim_{n\to\infty}\left(\frac{1}{\frac{1}{a_1}+\frac{1}{a_2}+\ldots+\frac{1}{a_n}}{n}\right)=L\$$
ובאותה דרך גם L

 $\lim_{n o \infty} rac{1}{a_n} = \infty$ ולכן ו $\lim_{n o \infty} a_n = 0$, נקבל ,L = 0

$$\lim_{n o \infty} rac{rac{1}{a_1} + rac{1}{a_2} + \ldots + rac{1}{a_n}}{n} = \overbrace{ egin{matrix} n & 1 \ n & - \ n \end{matrix} }^{n & times} = \infty$$
 ולכן $-$

$$\lim_{n \to \infty} \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} = \underbrace{\frac{n}{\lim_{n \to \infty} \frac{1}{a_n}}}_{n \ times}$$

$$=\lim_{n\to\infty}\frac{1}{\infty}=0$$

- $\lim_{n \to \infty} rac{n}{rac{1}{a_1} + rac{1}{a_2} + \ldots + rac{1}{a_n}} = L$ אז מתקיים או $\lim_{n \to \infty} a_n = L$ כך ש $L \in \mathbb{R}^-$ סדרה חיובית ו
 - $\lim_{n \to \infty} \sqrt[n]{a_1 \cdot a_2 \cdot \ldots \cdot a_n} = L$ לפי אי שוויון הממוצעים ומשפט הסנדוויץ אפשר להסיק •

 $\lim_{n \to \infty} rac{1+\sqrt{2}+\sqrt[3]{3}+\sqrt[n]{n}}{n}$: את הגבול את חשבו את פיתרון:

 $a_n \in \mathbb{N}$ ונקבל שלכל $a_n = \sqrt[n]{n}$ נגדיר •

$$\frac{1+\sqrt{2}+\sqrt[3]{3}+\sqrt[n]{n}}{n} = \frac{a_1+a_2+\ldots+a_n}{n}$$

.1- שואפת גם הסדרה הנתונה לפי הטענה שהוכחנו על גבול הממוצעים הסדרה הנתונה אם הואפת לפי הטענה שואפת לפי הממוצעים מכיוון ש

(הוכחנו בהרצאה) $\lim_{n \to \infty} \sqrt[n]{a_n} = L$ אז $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L$ סדרה חיובית כך ש סדרה חיובית a_n סדרה הקרוב: תהי

משפט. מבחן המנה:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L$$
 ע כך חיובית חיובית a_n

$$\lim_{n \to \infty} a_n = 0$$
 אז $0 \le L < 1$ אם .1

$$\lim_{n o\infty}a_n=\infty$$
 אם $L>1$ אם .2

אז מידע נותן אז המבחן אז
$$L=1$$
 אז .3

." $\lim_{n \to \infty} \sqrt[n]{a_n} = L$ ש כדרה חיובית מבחן השורש. אותו דבר, רק עם "תהי a_n סדרה חיובית אותו דבר, רק עם

תרגיל 4.

$$\lim_{n o\infty}rac{c^n}{n!}$$
 יהי $c>0$. צ"ל: חשבו $c>0$

$$0 < a_n = \frac{c^n}{n!}$$
 נסמן •

. תמיד חיובית a_n הסדרה מכיוון המנה במבחן במבחן – ניתן להשתמש במבחן המנה

$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \left(\frac{c^{n+1}}{(n+1)!} \cdot \frac{n!}{c^n} \right) = 0 < 1 \bullet$$

 $\lim_{n o \infty} rac{c^n}{n!} = 0 = \lim_{n o \infty} a_n$ ולכן לפי מבחן המנה מתקיים 0 < 1

.q>0 , $k\in\mathbb{N}$ יהי .c>0 יהי .t>0

: נגדיר

$$a_n = n^k \cdot q^n$$
 .1

$$a_n > 0$$
 .2

 $a_n>0$ נשתמש במבחן השורש: • מכיוון

$$\sqrt[n]{a_n} = \sqrt[n]{n^k} \cdot q = \left(\sqrt[n]{n}\right)^k \cdot q$$

: נמצא את הגבול

$$\lim_{n\to\infty} \sqrt[n]{a_n} = \overbrace{\lim_{n\to\infty} \left(\sqrt[n]{n}\right)^k}^{=1} \cdot \overbrace{\lim_{n\to\infty} q}^{=q}$$

. בגלל אי שוויון הממוצעים $\lim_{n \to \infty} \left(\sqrt[n]{n} \right)^k = 1$ –

$$\lim_{n\to\infty} \sqrt[n]{a_n} = q$$

• לפי מבחן השורש יוצא ש:

$$\lim_{n \to \infty} a_n = \begin{cases} 0 & 0 < q < 1\\ \infty & q \ge 1 \end{cases}$$

 $\lim_{n \to \infty} n^k \cdot 1 = \infty$ אז q = 1 -