Gestió i Processament de Transaccions: planificacions

Gestió i Administració de Bases de Dades. Grau en Enginyeria Informàtica

Oriol Ramos Terrades
Carles Sánchez Ramos

Departament de Ciències de la Computació

Continguts

- Sequenciable per conflictes
- Seqüenciable per vista.
- Graf de precedència.

Sequencialitat: planificació

Objectiu: entendre quines planificacions concurrents són equivalents a execucions seqüencials

SEQÜENCIALITAT: Assegura consistència si la planificació triada és equivalent (té el mateix efecte) que una planificació seqüencial.

Problemes de concurrència:

- Pèrdua d'actualització
- Lectura bruta

Sequencialitat: exemple d'execució sequencial

t	T 1	<i>T2</i>	X	Y	N	M
1	read_item(X)		90	50	3	2
2	X := X - N		90	50	3	2
3	write_item(X)		87	50	3	2
4	read_item(Y)		87	50	3	2
5	$\lambda := \lambda + N$		87	50	3	2
6	write_item(Y)		87	53	3	2
7	commit()		87	53	3	2
8		read_item(X)	87	53	3	2
9		X := X + M	87	53	3	2
10		write_item(X)	89	53	3	2
11		commit()	89	53	3	2

Opció fàcil, poc òptima.

t	T 1	<i>T2</i>	X	Y	N	M
1		read_item(X)	90	50	3	2
2		X := X + M	90	50	3	2
3		write_item(X)	92	50	3	2
4		commit()	92	50	3	2
5	read_item(X)		92	50	3	2
6	X := X - N		92	50	3	2
7	write_item(X)		89	50	3	2
8	read_item(Y)		87	50	3	2
9	A := A + M		87	50	3	2
10	write_item(Y)		89	53	3	2
11	commit()		89	53	3	2

Prob. Concurrència: pèrdua d'actualització

Operació d'actualització no finalitzada.

$$\begin{array}{ccc}
T_1 & T_2 \\
90 \rightarrow 87 \rightarrow 89
\end{array}$$

$$T_2$$
 T_1

$$90 \rightarrow 92 \rightarrow 89$$

t	T1	T2	X	Υ	N	М	X(T1)	X(T2)
1	read_item(X)		90	50	3	2	90	
2	X:=X-N		90	50	3	2	87	
3		read_item(X)	90	50	3	2	87	90
4		X:=X+M	90	50	3	2	87	92
5	write_item(X)		87	50	3	2	87	92
6	read_item(Y)		87	50	3	2	87	92
7		write_item(X)	92					92
8	Y:=Y+N							
9	write_item(Y)							

Prob. Concurrència: lectura bruta

Actualització temporal.

t	<i>T</i> 1	<i>T2</i>
1	read_item(X)	
2	X := X - N	
3	write_item(X)	
4		read_item(X)
5		X := X + M
6		write_item(X)
7	rollback()	←

Si T1 falla, cal recuperar el valor X anterior a l'actualització de T1, però T2 ja ha llegit el valor X canviat per T1.

Sequencialitat: planificació de transaccions

Planificació $S: I_1, I_2 \dots I_m$: Seqüència d'operacions de diferents transaccions $T_1 \dots T_r$ amb 2 dues restriccions:

- 1. Operacions de la transacció T_i estan ordenades
- 2. Operacions de la transacció T_i poden interpolar-se amb les de T_i

Operacions d'una transacció:

- r (read) $r_n(X)$: Llegir item X de transacció n
- w (write) wn(Y): Escriure item Y de transacció n
- c (commit) cn: Confirmar transacció n
- *a* (rollback) *an*: Avortar transacció *n*

Planificació de transaccions: exemple

S1: r1(X), r2(X), w1(X), r1(Y), w2(X), c2, w1(Y), c1;

	PLANIFICACIÓ S1				
t	<i>T</i> 1	<i>T2</i>			
1	read_item(X)				
2	X := X - N				
3		read_item(X)			
4		X := X + M			
5	write_item(X)				
6	read_item(Y)				
7		write_item(X)			
8		commit()			
9	Y := Y + N				
10	write_item(Y)				
11	commit()				

Planificació de transaccions: seqüencial

Si per totes les transaccions T_i de S, les operacions d'una transacció s'executen consecutivament sense que s'interpolin les operacions de l'altra transacció.

A:
$$r_1(X)$$
, $w_1(X)$, $r_1(Y)$, $w_1(Y)$, $v_2(X)$, $v_2(X)$, $v_2(X)$

t	T 1	<i>T2</i>
1	read_item(X)	
2	X := X - M	
3	write_item(X)	
4	read_item(Y)	
5	A := A + M	
6	write_item(Y)	
7	commit()	
8		<pre>read_item(X)</pre>
9		X := X + M
10		write_item(X)
11		commit()

Planificació de transaccions: seqüencial

A, B planificacions sequencials:

	PLANIFICACIÓ A				
t	<i>T1</i>	<i>T</i> 2			
1	read_item(X)				
2	X := X - N				
3	write_item(X)				
4	read_item(Y)				
5	$\lambda:=\lambda+N$				
6	write_item(Y)				
7	commit()				
8		read_item(X)			
9		X := X + M			
10		write_item(X)			
11		commit()			

	PLANIFICACIÓ B				
t	T1	T2			
1		read_item(X)			
2		X := X + M			
3		write_item(X)			
4		commit()			
5	read_item(X)				
6	X := X - M				
7	write_item(X)				
8	read_item(Y)				
9	$\lambda := \lambda + M$				
10	write_item(Y)				
11	commit()				

- Sols hi ha una transacció activa en cada instant. No importa l'ordre execució.
- **PROBLEMA:** Limiten la concurrència, baix aprofitament CPU en operacions E/S.

Planificacions sequencials: exemple

	PLANIFICACIÓ A					
t	<i>T1</i>	<i>T2</i>	X	Y	N	M
1	read_item(X)		90	50	3	2
2	X := X - N		90	50	3	2
3	write_item(X)		87	50	3	2
4	read_item(Y)		87	50	3	2
5	A := A + M		87	50	3	2
6	write_item(Y)		87	53	3	2
7	commit()		87	53	3	2
8		read_item(X)	87	53	3	2
9		X := X + M	87	53	3	2
10		write_item(X)	89	53	3	2
11		commit()	89	53	3	2

	P	LANIFICACIÓ B				
t	<i>T1</i>	<i>T</i> 2	X	Y	N	M
1		read_item(X)	90	50	3	2
2		X := X + M	90	50	3	2
3		write_item(X)	92	50	3	2
4		commit()	92	50	3	2
5	read_item(X)		92	50	3	2
6	X := X - N		92	50	3	2
7	write_item(X)		89	50	3	2
8	read_item(Y)		87	50	3	2
9	A := A + M		87	50	3	2
10	write_item(Y)		89	53	3	2
11	commit()		89	53	3	2

Mateix resultat final.

Planificacions no següencials

C, D no seqüencials:

	PLANIFICACIÓ C				
t	<i>T1</i>	<i>T2</i>			
1	read_item(X)				
2	X := X - N				
3		read_item(X)			
4		X := X + M			
5	write_item(X)				
6	read_item(Y)				
7		write_item(X)			
8		commit()			
9	$\lambda := \lambda + N$				
10	write_item(Y)				
11	commit()				

	PLANIFICACIÓ D				
t	<i>T1</i>	<i>T</i> 2			
1	read_item(X)				
2	X := X - N				
3	write_item(X)				
4		read_item(X)			
5		X := X + M			
6		write_item(X)			
7		commit()			
8	read_item(Y)				
9	Y := Y + N				
10	write_item(Y)				
11	commit()				

- S'interpolen operacions de diferents transaccions.
- Millor aprofitament CPU.
- PROBLEMA: Poden donar incorrectes per la concurrència.

Planificacions no sequencials: no consistents

Exemple C: X=90, Y=50, N=3, M=2:

	PLANIFICACIÓ C							
t	T 1	<i>T</i> 2	X	Y	N	M	<i>X(T1)</i>	X(T2)
1	read_item(X)		90	50	3	2	90	
2	X := X - M		90	50	3	2	87	
3		read_item(X)	90	50	3	2	87	90
4		X := X + M	90	50	3	2	87	92
5	write_item(X)		87	50	3	2	87	92
6	read_item(Y)		87	50	3	2	87	92
7		write_item(X)	92	50	3	2	87	92
8		commit()	92	50	3	2	87	92
9	A := A + M		92	50	3	2	87	92
10	write_item(Y)		92	53	3	2	87	92
11	commit()		92	53	3	2	87	92

C no consistent: T2 llegeix valor X abans que T1 l'hagi actualitzat. Resultat no coincideix amb planificacions seqüencials A, B.

Planificacions no sequencials: consistents

Exemple D:

X=90, Y=50, N=3, M=2:

		PLANIFICACIÓ D				
t	<i>T</i> 1	<i>T</i> 2	X	Y	N	M
1	read_item(X)		90	50	3	2
2	X := X - N		90	50	3	2
3	write_item(X)		87	50	3	2
4		read_item(X)	87	50	3	2
5		X := X + M	87	50	3	2
6		write_item(X)	89	50	3	2
7		commit()	89	50	3	2
8	<pre>read_item(Y)</pre>		89	50	3	2
9	A := A + M		89	50	3	2
10	write_item(Y)		89	53	3	2
11	commit()		89	53	3	2

D consistent: Resultat final igual que planificacions seqüencials A i B.

Planificació de transaccions

- No totes les planificacions porten a un estat consistent.
- Donat un conjunt de transaccions, combinant operacions hi ha moltes planificacions possibles, unes porten a un estat consistent a la BD, altres no.
- El SGBD ha d'assegurar que la planificació que decideixi porti a un estat consistent.

Sequencialitat i sequenciable

- Sequencialitat (o serialització): Donada una planificació P, buscar una planificació sequencial equivalent.
- Seqüenciable: una planificació és seqüenciable si existeix una planificació seqüencial equivalent.
- Per entendre les planificacions que asseguren consistència, i les que no, s'ha d'analitzar dues operacions:
 - read_item(Q) r(Q)
 - write item(Q) w(Q).
- Diferents tipus d'equivalència entre planificacions:
 - Sequencialitat per conflictes
 - Sequencialitat per vistes

- Suposem una planificació S que conté les instruccions I_i , I_j pertanyents a les transaccions T_i , T_j .
- Tenint en compte les operacions llegir (r(Q)) un element Q o escriure (w(Q)), es poden considerar quatre casos de possible conflicte:
 - 1. $I_i = r(Q)$, $I_j = r(Q)$: No hi ha conflicte.
 - 2. $I_i = r(Q)$, $I_j = w(Q)$: Si I_i s'executa abans que I_j el primer no llegeix el valor del segon. Conflicte.
 - 3. $I_i = w(Q)$, $I_j = r(Q)$: Conflicte.
 - 4. $I_i = w(Q)$, $I_j = w(Q)$: Conflicte.

Donada una planificació S

$$S: I_1, I_2 ... I_n$$

- Dues operacions I_i , I_j (i <> j) d'una planificació entren en **conflicte** si es satisfan tres condicions:
 - Pertanyen a transaccions diferents.
 - Accedeixen al mateix element de dades X.
 - Almenys una de les dues operacions és w(X).

Donades, dues transaccions

- $T1: r_1(X), w_1(X)$
- $T2: r_2(X), w_2(X),$

les operacions en conflicte són:

- $r_1(X) w_2(X)$
- $r_2(X) w_1(X)$
- $w_1(X) w_2(X)$

	r1(X)	w1(X)	r2(X)	w2(X)	r1(Y)
r1(X)		No	No	Si	No
wI(X)	No		Si	Si	No
r2(X)	No	Si		No	No
w2(X)	Si	Si	No		No
r1(Y)	No	No	No	No	

Sequencialible per conflicte: exemple

	PLANIFICACIÓ D					
t	T 1	<i>T</i> 2				
1	read_item(X)					
2	X := X - N					
3	write_item(X)					
4		read_item(X)				
5		X := X + M				
6		write_item(X)				
7		commit()				
8	read_item(Y)					
9	$\lambda := \lambda + M$					
10	write_item(Y)					
11	commit()					

	PLANIFICACIÓ D'					
t	<i>T1</i>	<i>T</i> 2				
1	read_item(X)					
2	X := X - N					
3	<pre>write_item(X)</pre>					
4		read_item(X)				
5		X := X + M				
6	read_item(Y)					
7		<pre>write_item(X)</pre>				
8		commit()				
9	A := A + M					
10	<pre>write_item(Y)</pre>					
11	commit()					

- Operació $w_1(X)$ en conflicte amb $r_2(X)$.
- Operació $w_2(X)$ no en conflicte amb $r_1(Y) \rightarrow INTERCANVI$

Donada una planificació P

Si dues operacions I_i , I_j (I_i de T_l , I_j de T_l) no estan en conflicte, es pot canviar l'ordre de les dues obtenint una nova planificació S equivalent a P.

Seguint intercanvis $r_1(Y) \leftrightarrow r_2(X)$, $w_1(Y) \leftrightarrow w_2(X)$, etc.:

	PLANIFICACIÓ D'					
t	<i>T1</i>	<i>T</i> 2				
1	read_item(X)					
2	X := X - N					
3	write_item(X)					
4		read_item(X)				
5		X := X + M				
6	read_item(Y)					
7		write_item(X)				
8		commit()				
9	Y := Y + N					
10	write_item(Y)					
11	commit()					

PLANIFICACIÓ A					
<i>T1</i>	<i>T</i> 2				
read_item(X)					
X := X - N					
<pre>write_item(X)</pre>					
<pre>read_item(Y)</pre>					
$\lambda := \lambda + N$					
<pre>write_item(Y)</pre>					
commit()					
	read_item(X)				
	X := X + M				
	write_item(X)				
	commit()				
	<pre>rad_item(X) X:=X-N write_item(X) read_item(Y) Y:=Y+N write_item(Y)</pre>				

• Planificació D s'ha pogut transformar en A amb intercanvis d'operacions no conflictives: **equivalència per conflictes.**

Dues planificacions P, S **són equivalents per conflicte** si l'ordre de qualsevol parell I_i , I_j d'operacions en conflicte és el mateix en les dues planificacions.

Si dues operacions conflictives s'apliquen en ordre diferent en dues planificacions -> planificacions no equivalents per conflicte.

Exemples:

- P_1 : $r_1(X)$, $w_2(X)$;
- S1: w2(X), r1(X); P1, S1 no equivalents per conflicte
- P2: w1(X), r1(Y), w2(X);
- S2: w1(X), w2(X), r1(Y); P2, S2 equivalents per conflicte

Una planificació P és seqüenciable per conflicte si és equivalent per conflicte a alguna planificació seqüencial S.

Cal reordenar les operacions no conflictives de P per trobar la planificació equivalent sequencial S.

Sequenciable per conflicte: exemple I

	PLANIFICACIÓ D (seqüenciable per conflicte)					
P.	LANIFICACIO D (seque	nciable per conjucte)				
t	<i>T1</i>	<i>T2</i>				
1	read_item(X)					
2	X := X - N					
3	write_item(X)					
4		read_item(X)				
5		X := X + M				
6		<pre>write_item(X)</pre>				
7		commit()				
8	read_item(Y)					
9	$\lambda := \lambda + N$					
10	write_item(Y)					
11	commit()					

	PLANIFICACIÓ A (SEQÜENCIAL)					
t	<i>T1</i>	<i>T</i> 2				
1	read_item(X)					
2	X := X - N					
3	write_item(X)					
4	read_item(Y)					
5	X := X + M					
6	write_item(Y)					
7	commit()					
8		read_item(X)				
9		X := X + M				
10		write_item(X)				
11		commit()				

Planificació D equivalent a A:

- $r_2(X)$ llegeix X escrit per T_1 en ambdues planificacions.
- $r_1(Y), w_1(Y)$ no en conflicte amb $r_2(X), w_2(X) \rightarrow$ avançar $r_1(Y), w_1(Y)$ en D és A.

Sequenciable per conflicte: exemple II

	PLANIFICACIÓ C						
t	<i>T</i> 1	<i>T</i> 2	T				
1	read_item(X)		r1(X)				
2	X := X - N						
3		read_item(X)	r2(X)				
4		X := X + M					
5	write_item(X)		w1(X)				
6	read_item(Y)		r1(Y)				
7		write_item(X)	w2(X)				
8		commit()					
9	$\lambda := \lambda + N$						
10	write_item(Y)		w1(Y)				
11	commit()						

PLANIFICACIÓ A (SEQÜENCIAL)						
t	<i>T</i> 1	<i>T</i> 2	T			
1	read_item(X)		r1(X)			
2	X := X - N					
3	<pre>write_item(X)</pre>		w1 (X)			
4	read_item(Y)		r1(Y)			
5	$\lambda := \lambda + N$					
6	write_item(Y)		w1(Y)			
7	commit()					
8		read_item(X)	r2(X)			
9		X := X + M				
10		write_item(X)	w2 (X)			
11		commit()				

Planificació *C* no equivalent a *A*:

• $r_2(X)$, $w_1(X)$ en conflicte: no podem moure $r_2(X)$ avall sense canviar resultat.

Planificació de transaccions

- No totes les planificacions porten a un estat consistent.
- Donat un conjunt de transaccions, combinant operacions hi ha moltes planificacions possibles, unes porten a un estat consistent a la BD, altres no.
- El SGBD ha d'assegurar que la planificació que decideixi porti a un estat consistent.
- SEQÜENCIALITAT: Assegura consistència si la planificació triada és equivalent (té el mateix efecte) que una planificació seqüencial.

Dues planificacions P i S són **equivalents en vista** si compleixen les 3 condicions següents:

- 1. El mateix conjunt de transaccions i operacions estan incloses en P i S.
- 2. Per a qualsevol operació $r_i(Q)$ en T_i de P, si el valor Q llegit ha estat escrit per una operació $w_j(Q)$ de T_j , la mateixa condició s'ha de mantenir per $r_i(Q)$ en T_i de S.
- 3. Si l'operació $w_k(Y)$ de T_k és la darrera operació en escriure Y en P, llavors $w_k(Y)$ de T_k també ha de ser per S.

Equivalents en vista: si cada operació de lectura llegeix el mateix valor d'escriptura (tant a l'inici com al mig) en ambdues planificacions, el resultat final igual.

Una planificació S és **seqüenciable per vista** si la planificació és equivalent en vista una planificació seqüencial.

Sequenciable per vista i per conflicte són similars si es compleix la condició de **suposició d'escriptura restringida** en totes les transaccions d'una planificació:

- Tota operació $w_i(X)$ en T_i ve precedida d'una operació $r_i(X)$ en T_i .
- Valor escrit per $w_i(X)$ en T_i sols depèn del valor X llegit a $r_i(X)$: Nou valor X'=f(X) on X s'ha obtingut d'un $r_i(X)$.

Sequenciable per vista: exemple

	PL	ANIFICACIÓ A				
t	<i>T1</i>	<i>T</i> 2	X	Y	N	M
1	read_item(X)		90	50	3	2
2	X := X - N		90	50	3	2
3	write_item(X)		87	50	3	2
4	read_item(Y)		87	50	3	2
5	Y := Y + N		87	50	3	2
6	write_item(Y)		87	53	3	2
7	commit()		87	53	3	2
8		read_item(X)	87	53	3	2
9		X := X + M	87	53	3	2
10		write_item(X)	89	53	3	2
11		commit()	89	53	3	2

PLANIFICACIÓ B						
t	<i>T1</i>	<i>T</i> 2	X	Y	N	M
1		read_item(X)	90	50	3	2
2		X := X + M	90	50	3	2
3		write_item(X)	92	50	3	2
4		commit()	92	50	3	2
5	read_item(X)		92	50	3	2
6	X := X - N		92	50	3	2
7	write_item(X)		89	50	3	2
8	read_item(Y)		87	50	3	2
9	$\lambda := \lambda + N$		87	50	3	2
10	write_item(Y)		89	53	3	2
11	commit()		89	53	3	2

Planificacions A i B no equivalents per vista: $r_I(X)$ no llegeix els mateixos valors en A i B.

Sequenciable per vista: exemple

PLANIFICACIÓ G					
<i>T</i> 3	<i>T4</i>	T 5			
read_item(Q)					
Q:=Q+25					
	Q=25				
	write_item(Q)				
write_item(Q)					
		Q=50			
		write_item(Q)			

PLANIFICACIÓ H (seqüencial)					
<i>T</i> 3	T 4	T 5			
read_item(Q)					
Q:=Q+25					
write_item(Q)					
	Q=25				
	write_item(Q)				
		Q=50			
		write_item(Q)			

G i H equivalents per vista: $r_3(Q)$ llegeix el valor inicial de Q i T_5 escriu el valor final de Q en G i H.

G sequenciable per vista al ser equivalent per vista a la planificació sequencial H.

Sequenciable per vista menys restrictiva que sequenciable per conflicte.

En sequenciable per vista, es poden fer escriptures cegues, (el valor escrit $w_i(Q)$ en T_i pot ser independent del valor que tingui, no depèn de $r_i(Q)$).

Exemple planificació $G: r_3(Q), w_4(Q), w_3(Q), w_5(Q), c_3, c_4, c_5;$

- $w_4(Q)$, $w_5(Q)$ són escriptures cegues.
- G seqüenciable per vista: equivalent per vista a planificació seqüencial H: $T_3, T_4, T_5 \rightarrow H$: $r_3(Q), w_3(Q), c_3, w_4(Q), c_4, w_5(Q), c_5$;
- G no sequenciable per conflicte: no és equivalent per conflicte a cap planificació sequencial. Si s'intercanvia canvia qualsevol $w_k(Q)$ s'altera el resultat.

Sequenciable per vista: resum

- Una planificació sequenciable per vista 🏵 sequenciable per conflicte.
- Tota planificació seqüenciable per conflicte \rightarrow seqüenciable per vista.

Sequencialitat: comprovació

Donada una planificació S, construir un **graf de precedència o de seqüencialitat**, definit com G=(N,E) on:

- Conjunt de nodes $N=\{T_1...T_n\}$ que són transaccions d'una planificació.
- Conjunt d'arcs dirigits $E = \{e_1...e_n\}$, un arc $T_j \rightarrow T_k$ quan una operació de T_j apareix abans que alguna operació de conflicte de T_k en la planificació.

Per a detectar sequencialitat de la planificació, cal verificar cicles del graf.

Sequencialitat: comprovació

Algorisme de comprovació de seqüencialitat d'una planificació $S = \{T_1...T_n\}$:

- 1. Per a cada transacció T_j en S es crea un node T_j en el graf.
- 2. Per a cada cas on T_j executi $r_j(X)$ després que T_i executi un $w_i(X)$, crear un arc dirigit $T_i \rightarrow T_j$
- 3. Per a cada cas on T_j executi $w_j(X)$ després que T_i executi un $r_i(X)$, crear un arc dirigit $T_i \rightarrow T_j$

Ti	Tj
write_item(X)	
	read_item(X)

Ti	Tj
read_item(X)	
	write_item(X)

Sequencialitat: comprovació

Algorisme comprovació de seqüencialitat d'una planificació $S = \{T_1...T_n\}$:

4. Per a cada cas on T_j executi $w_j(X)$ després que T_i executi un $w_i(X)$, crear un arc dirigit $T_i \rightarrow T_j$

Ti	Tj
write_item(X)	
	write_item(X)

4. La planificació S és seqüenciable

graf de precedència no té cicles.

Sequencialitat: comprovació

Un arc $T_i \rightarrow T_j$ significa que T_i ha d'executar-se abans que T_j en qualsevol planificació equivalent a S.

Si no hi ha cap cicle a l'arc: es pot trobar una planificació sequencial equivalent a S, ordenant d'aquesta forma les transaccions.

Si existeix un cicle, no existeix una única precedència, per tant no es pot trobar una planificació seqüencial equivalent -> Planificació no seqüenciable

Comprovació de seqüencialitat: exemple

PLANIFICACIÓ A (SEQÜENCIAL)						
t	<i>T1</i>	Arcs T1	<i>T</i> 2	Arcs T2		
1	read_item(X)	(2)				
2	X := X - N					
3	write_item(X)	(3),(1)				
4	read_item(Y)					
5	A := A + M					
6	<pre>write_item(Y)</pre>					
7	commit()					
8			read_item(X)	(1)		
9			X := X + M			
10		<pre>write_item(X) (3),</pre>		(3),(2)		
11			commit()			

Planificació seqüenciable

Comprovació de seqüencialitat: exemple II

PLANIFICACIÓ B (SEQÜENCIAL)						
t	T1	Arcs T1	<i>T</i> 2	Arcs T2		
1			read_item(X)	(2)		
2			X := X + M			
3			write_item(X)	(3),(1)		
4			commit()			
5	read_item(X)	(1)				
6	X := X - N					
7	write_item(X)	(3),(2)				
8	read_item(Y)					
9	$\lambda := \lambda + N$					
10	write_item(Y)					
11	commit()					

Graf

Planificació sequenciable

Comprovació de seqüencialitat: exemple III

PLANIFICACIÓ C *T1* T2Arcs T2 Arcs T1 read item(X) (1)2 X := X - N3 read item(X) (2) 4 X := X + Mwrite item(X) (2),(3) 5 read item(Y) 6 (1),(3) 7 write item(X) commit() 8 9 Y := Y + N10 write item(Y) 11 commit()

Graf

Planificació NO sequenciable

Comprovació de seqüencialitat: exemple IV

Graf

PLANIFICACIÓ D						
T	<i>T1</i>	Arcs T1	<i>T</i> 2	Arcs T2		
1	read_item(X)	(2)				
2	X := X - M					
3	write_item(X)	(3),(1)				
4			read_item(X)	(1)		
5			X := X + M			
6			write_item(X)	(3),(2)		
7			commit()			
8	read_item(Y)					
9	$\lambda := \lambda + M$					
10	write_item(Y)					
11	commit()					

Planificació seqüenciable, equivalent a planificació *A*

Comprovació de sequencialitat: exemple

	PLANIFICACIÓ E							
t	T1	Arcs T1	<i>T</i> 2	Arcs T2	<i>T</i> 3	Arcs T3		
1			read_item(Z)	(5)				
2			read_item(Y)					
3			write_item(Y)	(4),(1)				
4					read_item(Y)	(4)		
5					read_item(Z)			
6	read_item(X)							
7	write_item(X)	(2)						
8					write_item(Y)	(3)		
9					write_item(Z)	(5)		
10					commit()			
11			read_item(X)	(2)				
12	read_item(Y)	(3)						
13	write_item(Y)	(1)						
14	commit()							
15			write_item(X)					
16			commit()					

Graf

Planificació NO sequenciable Cicles:

- $T_1 \rightarrow T_2 \rightarrow T_1$
- $T_1 \rightarrow T_2 \rightarrow T_3 \rightarrow T_1$

Comprovació de seqüencialitat: exemple VI

PLANIFICACIÓ F							
t	T 1	Arcs T1	<i>T</i> 2	Arcs T2	<i>T</i> 3	Arcs T3	
1					read_item(Y)		
2					read_item(Z)		
3	read_item(X)						
4	write_item(X)	(1)					
5					write_item(Y)	(5) , (3)	
6					write_item(Z)	(4)	
7			read_item(Z)	(4)			
8	read_item(Y)	(3)					
9	write_item(Y)	(2)					
10			read_item(Y)	(5) , (2)			
11			<pre>write_item(Y)</pre>				
12			read_item(X)	(1)			
13			write_item(X)				

Graf

Planificació sequenciable Planificació sequencial equivalent:

•
$$T3 \rightarrow T1 \rightarrow T2$$

Usos de la seqüencialitat

Planificació sequenciable per conflicte és com dir que S és correcta, aprofitant concurrència operacions.

Planificació sequenciable $S \longrightarrow S$ sequencial.

En la pràctica, molt difícil trobar la sequencialitat d'una planificació. Criteris de planificació:

- Càrrega sistema
- Temps esperat transacció
- Prioritat transacció

Difícil preveure com s'interpolen operacions d'una planificació per a garantir sequencialitat.

Usos de la seqüencialitat

Comprovació a posteriori (transaccions s'executen en un ordre i si no es poden sequencialitzar, es cancel·len), és poc pràctic.

Metodologia SGBD comercials: Dissenyar protocols de concurrència que aplicats a transaccions garanteixen la sequencialitat de totes les planificacions on les transaccions participen. Difícil definir sequència estable transaccions a temps real (entrada contínua transaccions).

Usos de la seqüencialitat

Protocols de concurrència que garanteixen sequencialitat:

- Bloqueig a dues fases (utilitzada majoritàriament en SGBD)
- Ordenació per marca de temps
- Protocols multi-versió
- Protocols optimistes (certificació o validació)

En resum...

Planificacions en base a sequencialitat (per conflicte i per vista) i recuperabilitat garanteixen consistència BD.

Usos de la seqüencialitat

