MIT OpenCourseWare http://ocw.mit.edu

18.01 Single Variable Calculus Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

 $\begin{array}{l}
\boxed{1 \text{ a)}} \cos 2x = \cos^2 x - \sin^2 x \\
= (1 - \sin^2 x) - \sin^2 x \\
= 1 - 2 \sin^2 x \\
\int \sin^2 x \, dx = \int (1 - \cos 2x) \, dx \\
= \frac{x}{2} - \frac{\sin^2 2x}{4} + c
\end{array}$

b) $D(x \ln x) = \ln x + x \cdot \frac{1}{x}$ = $\ln x + 1$

By horizontal slices, calculate voi. of top half + double it) $= \int_{0}^{1} \pi x^{2} dy = \pi \int_{0}^{1} (1-y^{4}) dy$ $= \pi (y-y^{5}) = \pi \cdot \frac{4}{5}$ By cylindrical shells: $y = (1-x^{2})^{\frac{1}{4}}$ $= \int_{0}^{1} 2\pi x \cdot (1-x^{2})^{\frac{1}{4}}$ $= -\frac{4\pi}{5} (1-x^{2})^{\frac{1}{4}} = \frac{4\pi}{5}$ i. Volume is $\frac{8\pi}{5} = \frac{8\cdot(3\cdot14)}{5} > \frac{25}{5}$ 5 cubic feet is not enough.

[3] a) $F(x) = \int_0^x t^2 e^{-t^2} dt$; $F(x) = x^2 e^{x^2}$ (second find thm) b) F' = 0 when x = 0; otherwise F(x) > 0. Thus F is increasing, so x = 0 is a point of horiz. inflection (not a max or min) c) $u = t^2$: $\int_0^9 u e^{-t^2} du = \int_0^3 t e^{-t^2} 2t dt$ $= 2 \cdot F(3)$ d) $e^{-t^2} \le 1$ $\therefore \int_0^x t^2 e^{-t^2} dt \le \int_0^x t^2 dt = \frac{x^3}{3}$.

Area of slice at x A) $\pi y^2 = \pi x$ Average area = $\frac{1}{a} \int \pi x d$ $= \frac{1}{a} \pi x^2 \int_{0}^{a}$

Therefore

average area = $\frac{\pi a}{2}$ which is the area of the slice at $x_0=a/2$ (ha(finary) $\pi \cdot (\sqrt{x_0})^2 = \frac{\pi a}{2} \implies x_0 = a/2$

5 1 8 15 22 29

a) by trapezoidal rule: Total # hits $\approx (\frac{3}{2} + 2 + 0 + 1 + \frac{3}{2}) 7 = 6.7$

b) by Simpson's rule:

Total # Lily $\approx (3+4.2+2.0+4.1+3).14$ = $\frac{18}{6}.14 = 42$

10 In an infinitesimal time internal dt at time t,

C = $2 - \frac{1}{10}t$ flow rate = $t^2(10-t)^2 \cdot 10^4$ concentration at time t over time into pool pool surface slope = $-\frac{1}{10}$ (cc/hour) is (100 cm)²

in ant entities from the total that

Total and \$\frac{10-t}{10^2}\cdot{10^4}\cdot (2-\frac{1}{6})\cdot di

Total and \$\frac{10^4}{10^4}\cdot (10-t)^2\cdot (2-\frac{1}{6})\cdot dt

For Dt calculation:

replace dt by Dt in \$\text{manograms}

while \$\text{man}\$ ap \$\frac{1}{10^4}t^2\cdot (10-t)^2\cdot (2-t)/10\rangle and pass to 1000 time that given.