

Department of Computer Science and Engineering International Institute of Information Technology, Naya Raipur Design and Analysis of Algorithms (Course Code: CSE201)

Time: 24:00 hrs (12 Weeks)

Lab Experiments

Maximum Marks: 300

Note: Implement the following Algorithms in C/C++/Java/Python and submit the same by Lab Record

- 1. DIVIDE-AND-CONQUER
 - 1.1 Binary Search (Recursive and Iterative)
 - 1.2 Merge Sort
 - 1.3 Quick Sort
 - 1.4 Given a sorted array of non-repeated integers A[1...n], n > 1 then check whether there is an index i for which A[i] = i. Give an algorithm that runs in O(logn) time

[40]

- 2. Divide-And-Conquer
 - 2.1 Strassen's Matrix Multiplication

[20]

- 3. MISCELLANEOUS EXAMPLES BASED ON DIVIDE AND CONQUER ALGORITHMS
 - 3.1 Given an array of n elements. Find whether there are two elements in the array such that their sum is equal to given element K or not? in O(nlogn) time.
 - 3.2 Given an array of n elements. Find whether there are three elements in the array such that their sum is equal to given element K or not? in $O(n^2)$ time.
 - 3.3 Let A and B be two arrays of n elements. Given a number K, draw an O(nlogn) time algorithm for determining whether there exists $a \in A$, $b \in B$ such that a+b=K or not?.
 - 3.4 Given an array of n elements, give an algorithm for checking whether there are any duplicate elements in the array or not? in O(nlogn) time.
 - 3.5 Given an array of n elements, give an algorithm for finding the element which appears maximum number of times in the array in O(nlogn) time.

[50]

- 4. Greedy Method
 - 4.1 Knapsack Problem
 - 4.2 Job sequencing with deadlines algorithm
 - 4.3 Prim's Algorithm for finding the minimal spanning trees
 - 4.4 Krushkal's Algorithm for finding the minimal spanning trees
 - 4.5 Dijkstra's Algorithm

[50]

- 5. Dynamic Programming
 - 5.1 Finding the optimal order of multiplying n matrices
 - 5.2 Construction of OBST
 - 5.3 0/1 Knapsack Problem
 - 5.4 All pairs shortest path problem

5.5 Traveling Salesmen Problem

- 6. Back Tracking
 - 6.1 Demonstrate N-Queens Problem
 - 6.2 Detecting Hamiltonian Cycle
 - 6.3 Demonstrate Graph Coloring Problem
 - 6.4 Demonstrate Sum of subsets Problem

[80]

[60]

Note: Every one has to submit the record (Indentation in the program is must) with detailed solution and it's worst case time complexity.

Expected Internal Evaluation Milestones

Week-III:	1.1, 1.4, 3.1
Week-IV:	3.2, 3.3, 3.4
Week-V:	3.5, 1.2, 1.3
Week-VI:	2.1
Week-VII:	4.1, 4.2
Week-VIII and Week-IX:	4.3, 4.4, 4.5
Week-X:	5.1, 5.2
Week-XI and Week XII:	5.3, 5.4, 5.5
Week-XIII and Week XIV:	6.1, 6.2, 6.3, 6.4

Student's name: End of Experiments