Hoofdstuk 2 – Kinetica van een puntmassa: kracht en versnelling

K. Henrioulle

Overzicht H1 t.e.m. H8

2.1 De tweede bewegingswet van Newton

Bewegingsvergelijking

$$\mathbf{F} = m\mathbf{a} \tag{2.1}$$

2.1.1 Gravitatiewet van Newton

$$F = G \frac{m_1 m_2}{r^2} \tag{2.2}$$

F = aantrekkingskracht die de twee deeltjes op elkaar uitoefenen

G = gravitatieconstante; proefondervindelijk is vastgesteld dat deze gelijk is aan

 $G = 66,73(10^{-12}) \text{ m}^3/(\text{kg} \cdot \text{s}^2)$

 $m_1, m_2 = \text{massa van de beide deeltjes}$

r =afstand tussen de massamiddelpunten van beide deeltjes

2.1.1 Gravitatiewet van Newton

$$W = mg (N) (g = 9.81 \text{ m/s}^2)$$
 (2.3)

Fig. 2.1

2.2.1 Inertiaal referentiestelsel

Fig. 2.3

2.3 Bewegingsvergelijking voor een stelsel van puntmassa's

Massamiddelpunt:
$$r_g = \frac{\sum m_i r_i}{m}$$

$$\Sigma \mathbf{F} = m\mathbf{a}_G$$

 Besluit: behandel voorwerp bestaande uit meerdere puntmassa's m_i als één puntmassa m en pas bewegingsvergelijking toe.

K. Henrioulle

$$\Sigma F_x = ma_x$$

$$\Sigma F_y = ma_y$$

$$\Sigma F_z = ma_z$$

Fig. 2.5

- Voorbeeld 1
- Gevraagd: bewegingsvergelijkingen opstellen van de kist. Kabel trekt kist over wrijvingsloos oppervlak

Hulpmiddel: vrijlichaamsschema (VLS)

Schema van allekrachtvectoren enversnellingsvectoren op de puntmassa

Stap 1: onderdeel isoleren

Stap 2 : grenzen identificeren

- Stap 3 : krachten identificeren
 - Beweging die geblokkeerd of aangestuurd wordt: reactiekracht

Beweging \leftarrow aangestuurd door motor = reactiekracht F_M

Beweging geblokkeerd = verticale reactiekracht F_N normaalkracht normaal = loodrecht op contactoppervlak

Beweging niet geblokkeerd = geen horizontale reactiekracht

- Stap 3 : krachten identificeren
 - Beweging die geblokkeerd of aangestuurd wordt: reactiekracht

Noteer: onbekende kracht : kies een zin voor de kracht.

Juiste zin gekozen: einduitkomst is positief. Foute zin gekozen: einduitkomst is negatief

Stap 3 : krachten identificeren

 Gewicht W: <u>altijd</u> naar middelpunt van de aarde gericht

- Stap 4 : schema van versnelling
 - In apart kinematisch schema

 Stap 5 : opstellen en oplossen bewegingsvergelijkingen

$$\vec{F} = m\vec{a} \implies \begin{bmatrix} F_x = ma_x \\ F_y = ma_y \\ F_z = ma_z \end{bmatrix} \implies \begin{bmatrix} -F_M = m_k(-a_k) \\ +F_N - W = 0 \\ 0 = 0 \end{bmatrix} \implies \begin{bmatrix} a_k = \frac{F_M}{m_k} \\ F_N = W \end{bmatrix}$$

Getalvoorbeeld stel $F_M = 10N$, $m_k = 20$ kg

$$\vec{F} = m\vec{a} \Rightarrow \begin{bmatrix} a_k = \frac{F_M}{m_k} = \frac{10}{20} = +0.5m/s & \text{Positieve uitkomst} = \text{versnelling of kracht werkt zoals pijl op schema} \\ F_N = W = 20.9,81 = +196,2N & \text{versnelling naar links}, F_N \text{ naar boven} \end{bmatrix}$$

Noteer

- Vrijlichaamsschema moet volledig correct zijn
- Versnellingen moeten op vrijlichaamsschema of kinetisch schema getekend zijn
- Assenkruis is verplicht
- Indien niet voldaan max 2/10 op een oefening.

Voorbeeld 2 : Auto versnelt

Voorbeeld 2 : Auto versnelt

▶ UHASS

KŲ LEŲVEN

- 2. Zelfde grootte maar tegengesteld
- 3. Enkel zichtbaar als delen uit elkaar worden gehaald

Voorbeeld 2.3

De bagagekar A op de foto heeft een gewicht van 450 kg en trekt een kar B met een gewicht van 275 kg en een kar C met een gewicht van 160 kg. Gedurende een korte tijd is de wrijvingskracht op de wielen van de trekker $F_A = (200t)$ N, waarbij t de tijd is in seconden. Bepaal de snelheid van de trekker na 2 seconden als deze vanuit stilstand vertrekt. Hoe groot is de horizontale kracht op de koppeling tussen de trekker en kar B op dat ogenblik? Verwaarloos de afmetingen van de trekker en de karren.

Voorbeeld 2.3

Bewegingsvergelijking We hoeven alleen de beweging zontale richting te bekijken.

$$\pm \Sigma F_x = ma_x;$$
 $200t = (450 + 275 + 160)(9.1)a$ $a = 0.0230t$

 Tijdsafhankelijke kracht = tijdsafhankelijke versnelling

• Kracht T in koppeling = interne kracht.

Interne kracht zichtbaar maken = snede

maken!

450 (9,81)N

Voorbeeld 3: Teken het VLS van de kist

Voorbeeld 3: Teken het VLS van de kist

op een wrijvingsloze helling

VLS

Kin. schema

 $a_P = 6 \text{ m/s}^2$

Optie 1

Voorbeeld 3: Teken het VLS van de kist

3 kabels, in elke kabel een andere kabelkracht F_1 F_2 F_3

Wrijving

Voorbeeld 2.1

De kist van 50 kg in fig. 2.6a staat op een horizontaal vlak waarvan de kinetische wrijvingscoëfficiënt $\mu_k = 0,3$ is. Bepaal de snelheid van de kist 3 s nadat zij vanuit stilstand is gaan bewegen, als de kist niet kantelt wanneer deze een trekkracht van 400 N ondergaat.

Voorbeeld 2.4

Een gladde mof C met een massa van 2 kg, zie fig. 2.9a, is bevestigd aan een veer met een stijfheid k = 3 N/m en een rustlengte van 0,75 m. De mof wordt vanuit stilstand bij A losgelaten. Bepaal de versnelling en de normaalkracht van de stang op de mof op het ogenblik dat y = 1 m.

Voorbeeld 2.5

Blok A in fig. 2.10a heeft een massa van 100 kg en wordt uit stilstand losgelaten. Bepaal de snelheid van het blok B met een massa van 20 kg na 2 s. Verwaarloos de massa van de katrollen en het touw.

Voorbeeld 2.5

Katrolvergelijkingen:

$$2\Delta s_A + \Delta s_B = 0$$
$$2v_A + v_B = 0$$
$$2a_A + a_B = 0$$

$$a_A = \frac{-a_B}{2}$$
 Vb
$$a_B = 0.2m/s^2$$

$$a_A = -0.1m/s^2$$

Voorbeeld 2.5

Zelfde pijlen voor a_A en a_B behouden in vrijlichaamsschema !!!

2.5 Bewegingsvergelijkingen: normale en tangentiële coördinaten

$$\Sigma F_t = ma_t$$

$$\Sigma F_n = ma_n$$

$$\Sigma F_b = 0$$

2.5 Bewegingsvergelijkingen: normale en tangentiële coördinaten

Voorbeeld 2.9

De skateboarder in fig. 2.15*a* heeft een massa van 60 kg en rijdt omlaag over de cirkelvormige baan. Hij begint vanuit stilstand als $\theta = 0^{\circ}$. Bepaal de grootte van de normale reactie die de baan op hem uitoefent als $\theta = 60^{\circ}$. Verwaarloos zijn afmetingen bij de berekening.

