50.040 Natural Language Processing

Lu, Wei

Tasks in NLP

Sequence Labeling

Structured Space S_i

Structured Prediction Model M_ℓ

 $\mathsf{M}_\ell:{\mathcal{S}}_i o{\mathcal{S}}_o$

Structured Space \mathcal{S}_o

HMM vs MEMM

Maximum Entropy Markov Model (McCallum et al., 2000)

$$p(y_1,\ldots,y_n\mid x_1,\ldots,x_n)=\prod_{i=1}^n p(y_i\mid x_i,y_{i-1})$$

$$p^*(oldsymbol{y}|oldsymbol{x}) = \max_{p(oldsymbol{y}|oldsymbol{x})} \mathcal{H}(p(oldsymbol{y}|oldsymbol{x}))$$

$$\max_{p(oldsymbol{y}|oldsymbol{x})} \mathcal{H}(p(oldsymbol{y}|oldsymbol{x}))$$
 subject to:

1. It has to be a valid probability distribution:

$$\sum_{m{y}} p(m{y}|m{x}) = 1$$

2. While we prefer a flat/uniform distribution, we shall respect the empirical features that we observed:

$$\mathbf{E}_{p(oldsymbol{y}|oldsymbol{x})}[f_k(oldsymbol{x},oldsymbol{y})] = \mathbf{E}_{\hat{p}(oldsymbol{y}|oldsymbol{x})}[f_k(oldsymbol{x},oldsymbol{y})]$$

The distribution we are looking for

The empirical distribution

$$p(oldsymbol{y} \mid oldsymbol{x}_i) = rac{\exp(\mathbf{f}(oldsymbol{x}_i, oldsymbol{y}) \cdot oldsymbol{ heta})}{\sum_{oldsymbol{y'}} \exp(\mathbf{f}(oldsymbol{x}_i, oldsymbol{y'}) \cdot oldsymbol{ heta})}$$

$$egin{aligned} \min_{p(oldsymbol{y} | oldsymbol{x}_i)} \max_{oldsymbol{ heta}} - \mathcal{H}(p(oldsymbol{y} | oldsymbol{x}_i)) \ - \sum_{k=1}^K oldsymbol{\lambda}_k \left(\mathbf{E}_{p(oldsymbol{y} | oldsymbol{x}_i)} [f_k(oldsymbol{x}_i, oldsymbol{y})] - f_k(oldsymbol{x}_i, oldsymbol{y}_i)
ight) \ - \lambda_0 igg(\sum_{oldsymbol{y}} p(oldsymbol{y} | oldsymbol{x}) - 1 igg) \end{aligned}$$

$$\min_{m{ heta}} - \sum_i \log p(m{y}_i \mid m{x}_i)$$

Consider the interaction
$$\lim_{m{ heta}} -\sum_{i} \log p(m{y}_i \mid m{x}_i)$$
 $\sum_{j=1}^{j} \frac{\partial \log p(m{y}_i \mid m{x}_i)}{\partial \lambda_k} = \frac{\partial \log \sum_{m{y}'} \exp(\mathbf{f}(m{x}_i, m{y}') \cdot m{ heta})}{\partial \lambda_k} - f_k(m{x}_i, m{y}_i)$ $\sum_{m{y}'} \frac{\partial \log \sum_{m{y}'} \exp(\mathbf{f}(m{x}_i, m{y}') \cdot m{ heta})}{\partial \lambda_k} = \frac{1}{Z} \cdot \frac{\partial \sum_{m{y}'} \exp(\mathbf{f}(m{x}_i, m{y}') \cdot m{ heta})}{\partial \lambda_k}$ $\sum_{m{y}'} \frac{\partial \exp(\mathbf{f}(m{x}_i, m{y}') \cdot m{ heta})}{\partial \lambda_k}$ $\sum_{m{y}'} \frac{\partial \exp(\mathbf{f}(m{x}_i, m{y}') \cdot m{ heta})}{\partial \lambda_k}$ $\sum_{m{y}'} \frac{\exp(\mathbf{f}(m{x}_i, m{y}') \cdot m{ heta})}{\partial \lambda_k}$ $\sum_{m{y}'} \frac{\exp(\mathbf{f}(m{x}_i, m{y}') \cdot m{ heta})}{\partial \lambda_k}$ $\sum_{m{y}'} \frac{\exp(\mathbf{f}(m{x}_i, m{y}') \cdot m{ heta})}{\partial \lambda_k}$

$$\min_{m{ heta}} - \sum_i \log p(m{y}_i \mid m{x}_i)$$

$$rac{\partial -\log p(oldsymbol{y}_i|oldsymbol{x}_i)}{\partial \lambda_k} = rac{\partial \log \sum_{oldsymbol{y'}} \exp(\mathbf{f}(oldsymbol{x}_i,oldsymbol{y'}) \cdot oldsymbol{ heta})}{\partial \lambda_k} - f_k(oldsymbol{x}_i,oldsymbol{y}_i)$$

= ...

$$=\mathbf{E}_{p(oldsymbol{y}'|oldsymbol{x}_i)}[f_k(oldsymbol{x}_i,oldsymbol{y}')]-f_k(oldsymbol{x}_i,oldsymbol{y}_i)$$

Setting this to zero is exactly one of the two constraints in the optimization problem!

$$\min_{m{ heta}} - \sum_i \log p(m{y}_i \mid m{x}_i)$$

$$rac{\partial -\log p(oldsymbol{y}_i|oldsymbol{x}_i)}{\partial \lambda_k} = rac{\partial \log \sum_{oldsymbol{y'}} \exp(\mathbf{f}(oldsymbol{x}_i,oldsymbol{y'}) \cdot oldsymbol{ heta})}{\partial \lambda_k} - f_k(oldsymbol{x}_i,oldsymbol{y}_i)$$

= . . .

$$=\mathbf{E}_{p(oldsymbol{y}'|oldsymbol{x}_i)}[f_k(oldsymbol{x}_i,oldsymbol{y}')]-f_k(oldsymbol{x}_i,oldsymbol{y}_i)$$

We can then use (batch) stochastic gradient descent to optimize the objective!

Maximum Entropy Markov Model

$$p(y_1,\ldots,y_n\mid x_1,\ldots,x_n)=\prod_{i=1}^n p(y_i\mid x_i,y_{i-1})$$

Each term is a locally trained Maximum Entropy classifier!

Maximum Entropy Markov Model **One Theoretical Limitation**

$$p(y_1,\ldots,y_n\mid x_1,\ldots,x_n)=\prod_{i=1}^n p(y_i\mid x_i,y_{i-1})$$

The model predicts one tag at a time (i.e., performs local normalization). Since we are modeling sequences, is it possible to predict a complete sequence at a time (i.e., perform global normalization)?

$$p(y_1,.\boldsymbol{y}_{\cdot},y_n\mid x_1,.\boldsymbol{x}_{\cdot},x_n)$$

$$p(y_1, \mathbf{y}, y_n \mid x_1, \mathbf{x}, x_n) \ p(\mathbf{y} \mid \mathbf{x}) \propto \exp(\mathbf{f}(\mathbf{x}, \mathbf{y}) \cdot \boldsymbol{\theta})$$

Conditional Random Fields (Lafferty et al., 2001)

Let's now try to model complete sequences

This is now a complete word sequence

$$p(oldsymbol{y} \mid oldsymbol{x}) = rac{\exp(\mathbf{f}(oldsymbol{x}, oldsymbol{y}) \cdot oldsymbol{ heta})}{\sum_{oldsymbol{y}'} \exp(\mathbf{f}(oldsymbol{x}, oldsymbol{y}') \cdot oldsymbol{ heta})}$$

This is now a complete tag sequence

Can we calculate the denominator efficiently?

Learning in CRF

$$p(\boldsymbol{y} \mid \boldsymbol{x}) = rac{\exp(\mathbf{f}(\boldsymbol{x}, \boldsymbol{y}) \cdot \boldsymbol{ heta})}{\sum_{\boldsymbol{y'}} \exp(\mathbf{f}(\boldsymbol{x}, \boldsymbol{y'}) \cdot \boldsymbol{ heta})}$$

$$\min_{m{ heta}} - \sum_i \log p(m{y}_i \mid m{x}_i)$$

$$rac{\partial -\log p(oldsymbol{y}_i|oldsymbol{x}_i)}{\partial \lambda_k} = \mathbf{E}_{p(oldsymbol{y}'|oldsymbol{x}_i)}[f_k(oldsymbol{x}_i,oldsymbol{y}')] - f_k(oldsymbol{x}_i,oldsymbol{y}_i)$$

Hmm... there are exponentially many possible y' here, we shall find a way to calculate this term efficiently!

$$\mathbf{E}_{p(oldsymbol{y}'|oldsymbol{x}_i)}[f_k(oldsymbol{x}_i,oldsymbol{y}')]$$

$$f_{918}(oldsymbol{x}_i,oldsymbol{y}') = \ \sum_j \llbracket j ext{-th tag is "N" and } (j+1) ext{-th tag is "V"}
rbracket$$

$$\mathbf{E}_{p(oldsymbol{y}'|oldsymbol{x}_i)}[f_k(oldsymbol{x}_i,oldsymbol{y}')]$$

$$f_{918}(oldsymbol{x}_i,oldsymbol{y}') = \ \sum_j \llbracket j ext{-th tag is "N" and } (j+1) ext{-th tag is "V"}
rbracket$$

$$\mathbf{E}_{p(oldsymbol{y}'|oldsymbol{x}_i)}[f_k(oldsymbol{x}_i,oldsymbol{y}')]$$

$$m{p(y'|x_i)} \quad f_{918}(m{x}_i,m{y'})$$
 $m{y'}$ A A A A A A 0.001 0 \cdots A N V N V 0.007 2 A N V D N 0.002 1 $m{x}_i$ Fruit flies like a banana

$$\mathbf{E}_{p(oldsymbol{y}'|oldsymbol{x}_i)}[f_k(oldsymbol{x}_i,oldsymbol{y}')]$$

However, it is not feasible to enumerate all the $oldsymbol{y'}$ sequences. Why?

$$\mathbf{E}_{p(oldsymbol{y}'|oldsymbol{x}_i)}[f_k(oldsymbol{x}_i,oldsymbol{y}')]$$

Hold on a second... isn't this the same as what we did in HMM for calculating the expected counts for transitions?

$$\mathbf{E}_{p(oldsymbol{y}'|oldsymbol{x}_i)}[f_k(oldsymbol{x}_i,oldsymbol{y}')]$$

Hold on a second... isn't this the same as what HMM for calculating the expected co Forward-backward algorithm!

$$\mathbf{E}_{p(oldsymbol{y}'|oldsymbol{x}_i)}[f_k(oldsymbol{x}_i,oldsymbol{y}')]$$

$$f_{102}(oldsymbol{x}_i,oldsymbol{y}') = \ \sum_j \llbracket j ext{-th word is "a" and } j ext{-th tag is "D"}
rbracket$$

V like

N banana

$$\mathbf{E}_{p(oldsymbol{y}'|oldsymbol{x}_i)}[f_k(oldsymbol{x}_i,oldsymbol{y}')]$$

$$f_{102}(oldsymbol{x}_i,oldsymbol{y}') = \ \sum_j \llbracket j ext{-th word is "a" and } j ext{-th tag is "D"}
rbracket$$

\boldsymbol{y}'	A	A	A	A	A
$oldsymbol{x}_i$	Fruit	flies	like	а	banana

$$\mathbf{E}_{p(oldsymbol{y}'|oldsymbol{x}_i)}[f_k(oldsymbol{x}_i,oldsymbol{y}')]$$

$$f_{1782}(m{x}_i,m{y}') = \ \sum_j \llbracket j ext{-th word is "flies" and } j ext{-th tag is "N"} \ ext{and } (j+1) ext{-th tag is "V"}
bracket$$

 $oldsymbol{y}'$ $oldsymbol{\mathtt{A}}$ $oldsymbol{x}_i$ Fruit

N V
flies like

banana

N

$$\mathbf{E}_{p(oldsymbol{y}'|oldsymbol{x}_i)}[f_k(oldsymbol{x}_i,oldsymbol{y}')]$$

$$f_{1782}(oldsymbol{x}_i,oldsymbol{y}') = \ \sum_j \llbracket j ext{-th word is "flies" and } j ext{-th tag is "N"} \ ext{and } (j+1) ext{-th tag is "V"}
bracket$$

\boldsymbol{y}'	N	A	N	V	V
$oldsymbol{x}_i$	Fruit	flies	like	a	banana

$$\mathbf{E}_{p(oldsymbol{y}'|oldsymbol{x}_i)}ig[f_kig(oldsymbol{x}_i,oldsymbol{y}'ig)] \ f_{102}(oldsymbol{x}_i,oldsymbol{y}'ig) = \ \sum_j \llbracket j\text{-th word is "a" and } j\text{-th tag is "D"}
brace \ f_{918}(oldsymbol{x}_i,oldsymbol{y}'ig) = \ \sum_j \llbracket j\text{-th tag is "N" and } (j+1)\text{-th tag is "V"}
brace \ f_{1782}(oldsymbol{x}_i,oldsymbol{y}'ig) = \ \sum_j \llbracket j\text{-th word is "flies" and } j\text{-th tag is "N" and } (j+1)\text{-th tag is "V"}
brace \ oldsymbol{v} \ oldsymbol{V} \ oldsymbol{V} \ oldsymbol{j} \ Fruit \qquad flies \qquad like \qquad a \qquad banana$$

 $oldsymbol{x}_i$ Fruit

We shall define *local* features so as to apply efficient dynamic programming algorithms for calculating expected feature counts!

Learning in CRF

$$p(oldsymbol{y} \mid oldsymbol{x}) = rac{\exp(\mathbf{f}(oldsymbol{x}, oldsymbol{y}) \cdot oldsymbol{ heta})}{\sum_{oldsymbol{y'}} \exp(\mathbf{f}(oldsymbol{x}, oldsymbol{y'}) \cdot oldsymbol{ heta})}$$

$$\min_{m{ heta}} - \sum_i \log p(m{y}_i \mid m{x}_i)$$

$$rac{\partial -\log p(oldsymbol{y}_i|oldsymbol{x}_i)}{\partial oldsymbol{ heta}_k} = \mathbf{E}_{p(oldsymbol{y}'|oldsymbol{x}_i)}[f_k(oldsymbol{x}_i,oldsymbol{y}')] - f_k(oldsymbol{x}_i,oldsymbol{y}_i)$$

Forward-backward algorithm

Decoding in CRF

$$p(oldsymbol{y} \mid oldsymbol{x}) = rac{\exp(\mathbf{f}(oldsymbol{x}, oldsymbol{y}) \cdot oldsymbol{ heta})}{\sum_{oldsymbol{y'}} \exp(\mathbf{f}(oldsymbol{x}, oldsymbol{y'}) \cdot oldsymbol{ heta})}$$

$$oldsymbol{y^*} = rg \max_{oldsymbol{y}} \log p(oldsymbol{y} \mid oldsymbol{x}^{(new)})$$
 $= rg \max_{oldsymbol{y}} \mathbf{f}(oldsymbol{x}^{(new)}, oldsymbol{y}) \cdot oldsymbol{ heta}$

A new input sentence

Viterbi algorithm!

Viterbi algorithm!

CRF Objective Function

ational

CRF

It is OK for you to think of the model as something like:

Although it actually looks something like this:

Discriminative Models Probabilistic vs Non-Probabilistic

Probabilistic	Non-Probabilistic
Logistic regression	Perceptron
Softmax regression	Support vector machines

Is it possible to train a discriminative model for sequence labeling with a non-probabilisitc model such as Perceptron?

Invented more than 50 years ago. Still popular today due to its simplicity!

Let's understand it a little better...

$$\hat{y} \leftarrow rg \max_{y} y(oldsymbol{x}_i \cdot oldsymbol{ heta} + heta_0)$$
 $\hat{y} \leftarrow \operatorname{sign}(oldsymbol{x}_i \cdot oldsymbol{ heta} + heta_0)$
 $\operatorname{if} \hat{y}
eq y_i ext{ then}$
 $oldsymbol{ heta} \leftarrow oldsymbol{ heta} + y_i oldsymbol{x}_i$
 $oldsymbol{ heta} \leftarrow oldsymbol{ heta} + y_i oldsymbol{x}_i$
 $oldsymbol{ heta} \leftarrow oldsymbol{ heta} + y_i oldsymbol{x}_i$

$$egin{aligned} \hat{y} \leftarrow rg \max_y y(oldsymbol{x}_i \cdot oldsymbol{ heta} + heta_0) \ ext{if } \hat{y}
eq y_i ext{ then} \ oldsymbol{ heta} \leftarrow oldsymbol{ heta} + y_i oldsymbol{x}_i \ heta_0 \leftarrow oldsymbol{ heta}_0 + y_i \end{aligned}$$

$$\hat{y} \leftarrow rg \max_y \left(egin{array}{c} y oldsymbol{x_i}/2 \ y/2 \end{array}
ight) \cdot \left(egin{array}{c} oldsymbol{ heta} \ heta_0 \end{array}
ight)$$

$$\hat{y} \leftarrow rg \max_{y} y(\mathbf{x}_i \cdot \mathbf{\theta} + \theta_0)$$

if $\hat{y} \neq y_i$ then

$$oldsymbol{ heta} \leftarrow oldsymbol{ heta} + y_i oldsymbol{x}_i$$

$$\theta_0 \leftarrow \theta_0 + y_i$$

$$\left(egin{array}{c} oldsymbol{ heta} \ heta_0 \end{array}
ight)$$
 \leftarrow $\left(egin{array}{c} oldsymbol{ heta} \ heta_0 \end{array}
ight)$ $+$ $\left(egin{array}{c} y_i oldsymbol{x}_i \ y_i \end{array}
ight)$

$$egin{aligned} \hat{y} \leftarrow rg \max_y \left(egin{array}{c} y oldsymbol{x}_i/2 \ y/2 \end{array}
ight) \cdot \left(oldsymbol{ heta} oldsymbol{ heta} \ heta_0 \end{array}
ight) \ ext{if } \hat{y}
eq y_i ext{ then} \ \left(egin{array}{c} oldsymbol{ heta} \ heta_0 \end{array}
ight) \leftarrow \left(egin{array}{c} oldsymbol{ heta} \ heta_0 \end{array}
ight) + \left(egin{array}{c} y_i oldsymbol{x}_i \ heta_0 \end{array}
ight) \end{aligned}$$

Perceptron

Perceptron

$$egin{aligned} \hat{y} \leftarrow rg \max_y \mathbf{f}(m{x}_i,y) \cdot m{ heta}' \ & ext{if } \hat{y}
eq y_i ext{ then} \ m{ heta}' \leftarrow m{ heta}' + \mathbf{f}(m{x}_i,y_i) - \mathbf{f}(m{x}_i,\hat{y}) \end{aligned}$$

This allows us to make a generalization for the variable $oldsymbol{y}$: from a binary output to a structured output

Structured Perceptron (Collins, 1999)

This is a structure now!

The space of structures
given x_i

$$\hat{m{y}}_i \leftarrow rg \max_{m{y} \in \mathbf{GEN}(m{x}_i)} \mathbf{f}(m{x}_i, m{y}) \cdot m{ heta}$$

$$\text{if } \hat{\boldsymbol{y}}_i \neq \boldsymbol{y}_i \text{ then }$$

$$oldsymbol{ heta} \leftarrow oldsymbol{ heta} + \mathbf{f}(oldsymbol{x}_i, oldsymbol{y}_i) - \mathbf{f}(oldsymbol{x}_i, \hat{oldsymbol{y}}_i)$$

Structured Perceptron

$$egin{aligned} \hat{m{y}}_i \leftarrow rg \max_{m{y} \in \mathbf{GEN}(m{x}_i)} \mathbf{f}(m{x}_i, m{y}) \cdot m{ heta} \ & ext{if } \hat{m{y}}_i
eq m{y}_i ext{ then} \ & m{ heta} \leftarrow m{ heta} + \mathbf{f}(m{x}_i, m{y}_i) - \mathbf{f}(m{x}_i, \hat{m{y}}_i) \end{aligned}$$

We shall make sure searching in the space defined by the $\mathbf{GEN}(\mathbf{x}_i)$ function is efficient.

Structured Perceptron

$$\hat{oldsymbol{y}}_i \leftarrow rg \max_{oldsymbol{y} \in \mathbf{GEN}(oldsymbol{x}_i)} \mathbf{f}(oldsymbol{x}_i, oldsymbol{y}) \cdot oldsymbol{ heta}$$

$$egin{aligned} & ext{if } \hat{m{y}}_i
eq m{y}_i ext{ then} \ &m{ heta} \leftarrow m{ heta} + \mathbf{f}(m{x}_i, m{y}_i) - \mathbf{f}(m{x}_i, \hat{m{y}}_i) \end{aligned}$$

This update rule is essentially stochastic gradient descent with learning rate 1!

What is the underlying objective function?

$$-\mathbf{f}(oldsymbol{x}_i, oldsymbol{y}_i) \cdot oldsymbol{ heta} + \max_{oldsymbol{y}} \left(\mathbf{f}(oldsymbol{x}_i, oldsymbol{y}) \cdot oldsymbol{ heta}
ight)$$

Structured Perceptron

$$\min_{\boldsymbol{\theta}} \sum_{i} \left(-\mathbf{f}(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}) \cdot \boldsymbol{\theta} + \log \sum_{\boldsymbol{y}} \exp \left(\mathbf{f}(\boldsymbol{x}_{i}, \boldsymbol{y}) \cdot \boldsymbol{\theta} \right) \right)$$

$$\min_{\boldsymbol{\theta}} \sum_{i} \left(-\mathbf{f}(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}) \cdot \boldsymbol{\theta} + \max_{\boldsymbol{y}} \left(\mathbf{f}(\boldsymbol{x}_{i}, \boldsymbol{y}) \cdot \boldsymbol{\theta} \right) \right)$$

$$A \qquad N \qquad V \qquad D \qquad N$$
Fruit flies like a banana

$$egin{aligned} \min_{m{ heta}} \sum_i \left(-\mathbf{f}(m{x}_i, m{y}_i) \cdot m{ heta} + oxed{\log \sum_{m{y}} \exp \left(\mathbf{f}(m{x}_i, m{y}) \cdot m{ heta}
ight)} \\ \min_{m{ heta}} \sum_i \left(-\mathbf{f}(m{x}_i, m{y}_i) \cdot m{ heta} + oxed{\max_{m{y}} \left(\mathbf{f}(m{x}_i, m{y}) \cdot m{ heta}
ight)} \end{aligned}
ight)$$

The difference!

$$egin{aligned} \min_{m{ heta}} \sum_i \left(-\mathbf{f}(m{x}_i, m{y}_i) \cdot m{ heta} + \log \sum_{m{y}} \exp\left(\mathbf{f}(m{x}_i, m{y}) \cdot m{ heta}
ight) \\ \min_{m{ heta}} \sum_i \left(-\mathbf{f}(m{x}_i, m{y}_i) \cdot m{ heta} + \max_{m{y}} \left(\mathbf{f}(m{x}_i, m{y}) \cdot m{ heta}
ight) \end{aligned}$$

$$\mathcal{Y} = \{1, 3, 4, 8, 18\}$$

$$\log \sum_{y \in \mathcal{Y}} \exp(y) = ?$$
 $\max_{y \in \mathcal{Y}}(y) = ?$

$$\max_{y \in \mathcal{Y}}(y) = ?$$

$$egin{aligned} \min_{m{ heta}} \sum_i \left(-\mathbf{f}(m{x}_i, m{y}_i) \cdot m{ heta} + \log \sum_{m{y}} \exp\left(\mathbf{f}(m{x}_i, m{y}) \cdot m{ heta}
ight) \\ \min_{m{ heta}} \sum_i \left(-\mathbf{f}(m{x}_i, m{y}_i) \cdot m{ heta} + \max_{m{y}} \left(\mathbf{f}(m{x}_i, m{y}) \cdot m{ heta}
ight) \end{aligned}$$

$$\log \sum_{y \in \mathcal{Y}} \exp(y) = 18.0000465777..$$
 $\max_{y \in \mathcal{Y}}(y) = 18$

$$egin{aligned} \min_{m{ heta}} \sum_i \left(-\mathbf{f}(m{x}_i, m{y}_i) \cdot m{ heta} + \log \sum_{m{y}} \exp\left(\mathbf{f}(m{x}_i, m{y}) \cdot m{ heta}
ight) \\ \min_{m{ heta}} \sum_i \left(-\mathbf{f}(m{x}_i, m{y}_i) \cdot m{ heta} + \max_{m{y}} \left(\mathbf{f}(m{x}_i, m{y}) \cdot m{ heta}
ight) \end{aligned}$$

 $\log(\exp(a) + \exp(b))$

A "soft"/"smooth" version of max!

 $\max(a, b)$

$$\min_{\theta} \sum_{i} \left(-\mathbf{f}(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}) \cdot \boldsymbol{\theta} + \log \sum_{y} \exp \left(\mathbf{f}(\boldsymbol{x}_{i}, y) \cdot \boldsymbol{\theta} \right) \right)$$
 $\min_{\theta} \sum_{i} \left(-\mathbf{f}(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}) \cdot \boldsymbol{\theta} + \log \sum_{y} \exp \left(\mathbf{f}(\boldsymbol{x}_{i}, y) \cdot \boldsymbol{\theta} \right) \right)$
Both models are trying to adjust the model $\boldsymbol{\theta}$

Both models are trying to adjust the model $\boldsymbol{\theta}$

parameters such that the best path parameters such that parameters such that the best path parameters such that path parameters such path parameters such that path parameters s

Sequence Labeling

Model	Pros	Cons
Hidden Markov Model (HMM)	Probabilistic, efficient training	Unable to exploit linguistic features
Maximum Entropy Markov Model (MEMM)	Probabilistic, able to exploit features	Training is slower than HMM, local normalization
Conditional Random Fields (CRF)	Probabilistic, able to exploit features, global normalization	Training may be slower than MEMM
Structured Perceptron (SP)	Able to exploit features, performance comparable to CRF	Non-probabilistic

Semi-Markov CRF (Sarawagi & Cohen, 2005)

$$\min_{\boldsymbol{\theta}} \sum_{i} \left(-\mathbf{f}(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}) \cdot \boldsymbol{\theta} + \log \sum_{\boldsymbol{y}} \exp \left(\mathbf{f}(\boldsymbol{x}_{i}, \boldsymbol{y}) \cdot \boldsymbol{\theta} \right) \right)$$

Fruit flies like a banana

Structural SVM (Tsochantaridis et al., 2005)

$$\min_{\boldsymbol{\theta}} \sum_{i} \left(-\mathbf{f}(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}) \cdot \boldsymbol{\theta} + \max_{\boldsymbol{y}} \left(\Delta(\boldsymbol{y}_{i}, \boldsymbol{y}) + \mathbf{f}(\boldsymbol{x}_{i}, \boldsymbol{y}) \cdot \boldsymbol{\theta} \right) \right)$$

$$N \qquad N \qquad V \qquad D \qquad N$$

$$Fruit \qquad flies \qquad like \qquad a \qquad banana$$

Structured Prediction

Structured Space S_i

Structured Prediction Model M

 $\mathsf{M}:\mathcal{S}_i o\mathcal{S}_o$

Structured Space S_o

Tasks in NLP

