Lab 3 Feature selection

Feature selection

- Feature Selection is the process of selecting a subset of relevant features for use in machine learning model building.
- It is not always the truth that the more data, the better the result will be.
- Including irrelevant features (the ones that are just unhelpful to the prediction) and redundant features (irrelevant in the presence of others) will only make the learning process overwhelmed and easy to cause overfitting.
- By employing feature selection, we can:
 - Simplify models: Leading to improved interpretability.
 - Reduce training time and computational cost.
 - Lower data collection costs.
 - Mitigate the curse of dimensionality.
 - Enhance generalization by reducing overfitting.

Machine Learning

Feature selection techniques

Feature selection methods

Machine Learning

Supervised Feature selection techniques

Filter methods	Wrapper methods	Embedded methods
Generic set of methods which do	Evaluates on a specific machine	Embeds (fix) features during
not incorporate a specific	learning algorithm to find	model building process. Feature
machine learning algorithm.	optimal features.	selection is done by observing
		each iteration of model training
		phase.
Much faster compared to	High computation time for a	Sits between Filter methods and
Wrapper methods in terms of	dataset with many features	Wrapper methods in terms of
time complexity		time complexity
Less prone to over-fitting	High chances of over-fitting	Generally used to reduce over-
	because it involves training of	fitting by penalizing the
	machine learning models with	coefficients of a model being too
	different combination of	large.
	features	
Examples – Correlation, Chi-	Examples - Forward Selection,	Examples - LASSO, Elastic Net,
Square test, ANOVA,	Backward elimination, Stepwise	Ridge Regression etc.
Information gain etc.	selection etc.	

Machine Learning