Sedmá přednáška

NAIL062 Výroková a predikátová logika

Jakub Bulín (KTIML MFF UK) Zimní semestr 2023

Sedmá přednáška

Program

- podstruktury, expanze, redukty
- extenze teorií, extenze o definice
- definovatelnost a databázové dotazy
- vztah výrokové a predikátové logiky

Materiály

Zápisky z přednášky, Sekce 6.6-6.9 z Kapitoly 6

6.6 Podstruktura, expanze, redukt

Podstruktura

- podstruktura zobecňuje podgrupu, podprostor vektorového prostoru, (indukovaný) podgraf: na podmnožině B univerza vytvoříme strukturu, která "zdědí" relace, funkce a konstanty
- B musí být uzavřená na všechny funkce (vč. konstant)

Struktura $\mathcal{B} = \langle \mathcal{B}, \mathcal{R}^{\mathcal{B}}, \mathcal{F}^{\mathcal{B}} \rangle$ je (indukovaná) podstruktura struktury $\mathcal{A} = \langle \mathcal{A}, \mathcal{R}^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}} \rangle$ (v též signatuře $\langle \mathcal{R}, \mathcal{F} \rangle$), značíme $\mathcal{B} \subseteq \mathcal{A}$, jestliže:

- ∅ ≠ B ⊆ A
- $R^{\mathcal{B}}=R^{\mathcal{A}}\cap B^{\operatorname{ar}(\mathrm{R})}$ pro každý relační symbol $R\in\mathcal{R}$
- $f^{\mathcal{B}} = f^{\mathcal{A}} \cap (B^{\operatorname{ar}(f)} \times B)$ pro každý funkční symbol $f \in \mathcal{F}$, tj. $f^{\mathcal{B}}$ je restrikce $f^{\mathcal{A}}$ na množinu B, a výstupy jsou všechny z B

speciálně, pro konstantní symbol $c \in \mathcal{F}$ máme $c^{\mathcal{B}} = c^{\mathcal{A}} \in \mathcal{B}$

Restrikce na podmnožinu, příklady

Množina $C \subseteq A$ je uzavřená na funkci $f: A^n \to A$, pokud $f(x_1, \ldots, x_n) \in C$ pro všechna $x_i \in C$.

Pozorování: Množina $\emptyset \neq C \subseteq A$ je univerzem podstruktury, právě když je uzavřená na všechny funkce struktury \mathcal{A} (včetně konstant). V tom případě je to restrikce \mathcal{A} na množinu C, značíme $\mathcal{A} \upharpoonright C$.

- $\begin{array}{c} \blacksquare & \underline{\mathbb{N}} = \langle \mathbb{N}, +, \cdot, 0 \rangle \text{ je podstrukturou obou těchto struktur, platí:} \\ \underline{\mathbb{N}} = \underline{\mathbb{Q}} \upharpoonright \mathbb{N} = \underline{\mathbb{Z}} \upharpoonright \mathbb{N} \\ \end{array}$
- Množina $\{k \in \mathbb{Z} \mid k \le 0\}$ není univerzem podstruktury $\underline{\mathbb{Z}}$ ani \mathbb{Q} , není uzavřená na násobení.

Platnost v podstruktuře (pro otevřené formule je zachována)

Pozorování: Je-li $\mathcal{B}\subseteq\mathcal{A}$, φ otevřená formule, a $e\colon \mathsf{Var}\to \mathcal{B}$, potom platí: $\mathcal{B}\models\varphi[e]$ právě když $\mathcal{A}\models\varphi[e]$.

Důkaz: Snadno indukcí dle struktury φ , pro atomickou zřejmé. \square

Důsledek: Otevřená formule platí ve struktuře \mathcal{A} , právě když platí v každé podstruktuře $\mathcal{B} \subseteq \mathcal{A}$.

Teorie T je otevřená, jsou-li všechny její axiomy otevřené formule.

Důsledek: Modely otevřené teorie jsou uzavřené na podstruktury, tj. každá podstruktura modelu této teorie je také její model.

- Teorie grafů je otevřená. Podstruktura grafu je také graf: (indukovaný) podgraf. Stejně podgrupy, Booleovy podalgebry.
- Teorie těles není otevřená. Později ukážeme, že ani otevřeně axiomatizovatelná (kvantifikátoru v axiomu o existenci inverzního prvku se nezbavíme). Podstruktura tělesa ℚ na množině ℤ, ℚ ↑ ℤ, není těleso. (Je to tzv. okruh.)

Generovaná podstruktura (zobecníme lineární obal vektorů)

Co když podmnožina univerza není uzavřená? Vezmeme její uzávěr.

Mějme $\mathcal{A}=\langle A,\mathcal{R}^{\mathcal{A}},\mathcal{F}^{\mathcal{A}}\rangle$ a $\emptyset\neq X\subseteq A$. Buď $B\subseteq A$ nejmenší podmnožina, která obsahuje X a je uzavřená na všechny funkce \mathcal{A} (tj. obsahuje i všechny konstanty). Potom podstruktura $\mathcal{A}\upharpoonright B$ je generovaná X, značíme ji $\mathcal{A}\langle X\rangle$.

Např. pro
$$\mathbb{Q}=\langle\mathbb{Q},+,\cdot,0\rangle$$
 , $\underline{\mathbb{Z}}=\langle\mathbb{Z},+,\cdot,0\rangle$, $\underline{\mathbb{N}}=\langle\mathbb{N},+,\cdot,0\rangle$:

- $\bullet \quad \mathbb{Q}\langle\{1\}\rangle = \underline{\mathbb{N}}$
- $\bullet \quad \mathbb{Q}\langle\{-1\}\rangle = \underline{\mathbb{Z}}$
- $\underline{\mathbb{Q}}\langle\{2\}\rangle$ je podstruktura $\underline{\mathbb{N}}$ na množině všech sudých čísel

Pokud \mathcal{A} nemá žádné funkce (ani konstanty), např. graf či uspořádání, potom není čím generovat, a $\mathcal{A}\langle X\rangle=\mathcal{A}\upharpoonright X$.

Expanze a redukt

Mějme $L \subseteq L'$, L-strukturu \mathcal{A} a L'-strukturu \mathcal{A}' na stejné doméně. Je-li interpretace každého symbolu z L stejná v \mathcal{A} i v \mathcal{A}' , potom:

- \mathcal{A}' je expanze \mathcal{A} do \mathcal{L}' (\mathcal{L}' -expanze struktury \mathcal{A})
- A je redukt A' na L (L-redukt struktury A')

Například:

- Mějme grupu celých čísel $(\mathbb{Z}, +, -, 0)$. Potom:
 - struktura $\langle \mathbb{Z}, + \rangle$ je její redukt
 - struktura $\langle \mathbb{Z}, +, -, 0, \cdot, 1 \rangle$ (okruh celých čísel) je její expanze
- Mějme graf $\mathcal{G} = \langle G, E^{\mathcal{G}} \rangle$. Potom expanze \mathcal{G} o jména prvků (z množiny G) je struktura $\langle G, E^{G}, c_{v}^{\mathcal{G}} \rangle_{v \in G}$ v jazyce $\langle E, c_{v} \rangle_{v \in G}$, kde $c_{v}^{\mathcal{G}} = v$ pro všechny vrcholy $v \in G$.

Věta o konstantách

- splnit formuli s volnou proměnnou x je totéž, co splnit formuli, ve které je x nahrazena novým konstantním symbolem c
- proč: nový symbol lze v modelu interpretovat každým prvkem
- podobný trik využijeme v tablo metodě

Věta (O konstantách): Mějme L-formuli φ s volnými proměnnými x_1, \ldots, x_n . Označme jako L' rozšíření L o nové konstantní symboly c_1, \ldots, c_n a buď T' stejná teorie jako T, ale v jazyce L'. Potom:

$$T \models \varphi$$
 právě když $T' \models \varphi(x_1/c_1, \dots, x_n/c_n)$

Důkaz: stačí ukázat pro jednu volnou proměnnou, rozšířit indukcí

⇒ **Víme:** φ platí v každém modelu T. **Chceme:** $\varphi(x/c)$ platí v každém modelu T'. Mějme model $\mathcal{A}' \models T'$ a ohodnocení e: Var $\to \mathcal{A}'$ a ukažme, že $\mathcal{A}' \models \varphi(x/c)[e]$.

Pokračování důkazu

Buď \mathcal{A} redukt \mathcal{A}' na L ('zapomeneme' konstantu $c^{\mathcal{A}'}$). Všimněte si, že \mathcal{A} je model T (axiomy T=T' neobsahují nový symbol c). Dle předpokladu $\mathcal{A}\models\varphi$, tj. $\mathcal{A}\models\varphi[e']$ pro libovolné ohodnocení e', speciálně pro $e(x/c^{\mathcal{A}'})$ kde x ohodnotíme interpretací c v \mathcal{A}' .

Máme $\mathcal{A} \models \varphi[e(x/c^{\mathcal{A}'})]$, což ale znamená $\mathcal{A}' \models \varphi(x/c)[e]$.

 \leftarrow Víme: $\varphi(x/c)$ platí v každém modelu T'. Chceme: φ platí v každém modelu T. Zvolme $A \models T$ a ohodnocení $e \colon Var \to A$ a ukažme, že $A \models \varphi[e]$.

Buď \mathcal{A}' expanze \mathcal{A} do L', kde c interpretujeme jako $c^{\mathcal{A}'}=e(x)$. Dle předpokladu platí $\mathcal{A}'\models\varphi(x/c)[e']$ pro všechna ohodnocení e'. Tedy $\mathcal{A}'\models\varphi(x/c)[e]$, což znamená $\mathcal{A}'\models\varphi[e]$ $(e=e(x/c^{\mathcal{A}'})$, z toho plyne $\mathcal{A}'\models\varphi(x/c)[e]\Leftrightarrow\mathcal{A}'\models\varphi[e(x/c^{\mathcal{A}'})]\Leftrightarrow\mathcal{A}'\models\varphi[e])$.

Formule φ neobsahuje c (je nový), máme tedy i $\mathcal{A} \models \varphi[e]$.

С

6.7 Extenze teorií

Extenze teorie

Extenze teorie: sémantický popis

Definice relačního symbolu

Definice funkčního symbolu

Definice konstantního symbolu

Extenze o definice

6.8 Definovatelnost ve struktuře

Definovatelné množiny

Definovatelnost s parametry

Aplikace: databázové dotazy

6.9 Vztah výrokové a predikátové

logiky

Booleovy algebry

Vztah výrokové a predikátové logiky