CLAIMS

What is claimed:

1. A method of fabricating a semiconductor device, having an interim reduced-oxygen copper-zinc (Cu-Zn) alloy thin film formed on a copper (Cu) surface by electroplating the Cu surface in a chemical solution, comprising the steps of: providing a semiconductor substrate having a Cu surface formed in a via; providing a chemical solution;

electroplating the Cu surface in the chemical solution, thereby forming an interim Cu-Zn alloy thin film on the Cu surface;

rinsing the interim Cu-Zn alloy thin film in a solvent;

drying the interim Cu-Zn alloy thin film under a gaseous flow;

annealing the interim Cu-Zn alloy thin film formed on the Cu surface, thereby forming an interim reduced-oxygen Cu-Zn alloy thin film;

filling the via with Cu on the interim reduced-oxygen Cu-Zn alloy thin film, thereby forming a Cu-fill;

annealing the Cu-fill, the interim reduced-oxygen Cu-Zn alloy thin film and the Cu surface;

planarizing the Cu-fill, the interim reduced-oxygen Cu-Zn alloy thin film and the Cu surface, thereby forming a dual-inlaid interconnect structure; and completing formation of the semiconductor device.

2. A method, as recited in Claim 1, wherein the chemical solution is nontoxic and aqueous, and wherein the chemical solution comprises:

at least one zinc (Zn) ion source for providing a plurality of Zn ions; at least one copper (Cu) ion source for providing a plurality of Cu ions; at least one complexing agent for complexing the plurality of Cu ions; at least one pH adjuster;

at least one wetting agent for stabilizing the chemical solution, all being dissolved in a volume of deionized (DI) water.

5

10

15

5

5

5

5

- 3. A method, as recited in Claim 2, wherein the at least one zinc (Zn) ion source comprises at least one zinc salt selected from a group consisting essentially of zinc acetate ((CH₃CO₂)₂Zn), zinc bromide (ZnBr₂), zinc carbonate hydroxide (ZnCO₃·2Zn(OH)₂), zinc dichloride (ZnCl₂), zinc citrate ((O₂CCH₂C(OH)(CO₂)CH₂CO₂)₂Zn₃), zinc iodide (ZnI₂), zinc L-lactate ((CH₃CH(OH)CO₂)₂Zn), zinc nitrate (Zn(NO₃)₂), zinc stearate (CH₃(CH₂)₁₆CO₂)₂Zn), zinc sulfate (ZnSO₄), zinc sulfide (ZnS), zinc sulfite (ZnSO₃), and their hydrates.
- 4. A method, as recited in Claim 2, wherein the at least one copper (Cu) ion source comprises at least one copper salt selected from a group consisting essentially of copper(I) acetate (CH₃CO₂Cu), copper(II) acetate ((CH₃CO₂)₂Cu), copper(I) bromide (CuBr), copper(II) bromide (CuBr₂), copper(II) hydroxide (Cu(OH)₂), copper(II) hydroxide phosphate (Cu₂(OH)PO₄), copper(I) iodide (CuI), copper(II) nitrate ((CuNO₃)₂), copper(II) sulfate (CuSO₄), copper(I) sulfide (Cu₂S), copper(II) sulfide (CuS), copper(II) tartrate ((CH(OH)CO₂)₂Cu), and their hydrates.
 - 5. A method, as recited in Claim 1, wherein said electroplating step comprises an electroplating apparatus, and wherein said electroplating apparatus comprises:
 - (a) a cathode-wafer;
 - (b) an anode;
 - (c) an electroplating vessel; and
 - (d) a voltage source.

5

5

5

5

- 6. A method, as recited in Claim 5, wherein the cathode-wafer comprises the Cu surface, and wherein the anode comprises at least one material selected from a group consisting essentially of copper (Cu), a copper-platinum alloy (Cu-Pt), titanium (Ti), platinum (Pt), a titanium-platinum alloy (Ti-Pt), an anodized copper-zinc alloy (Cu-Zn, i.e., brass), a platinized titanium (Pt/Ti), and a platinized copper-zinc (Pt/Cu-Zn, i.e., platinized brass).
 - 7. A method, as recited in Claim 1,
 wherein said semiconductor substrate further comprises a barrier layer formed in
 the via under said Cu surface, and
 wherein the barrier layer comprises at least one material selected from a group
 consisting essentially of titanium silicon nitride (Ti_xSi_yN_z), tantalum nitride
 (TaN), and tungsten nitride (W_xN_y)
 - 8. A method, as recited in Claim 7,
 wherein said semiconductor substrate further comprises an underlayer formed on the barrier layer,
 wherein said underlayer comprises at least one material selected from a group consisting essentially of tin (Sn) and palladium (Pd), and
 wherein said Cu surface is formed over said barrier layer and on said underlayer.
 - A method, as recited in Claim 8,
 wherein said underlayer comprises a thickness range of approximately 15 Å to
 approximately 50 Å,
 wherein said barrier layer comprises a thickness range of approximately 10 Å to
 approximately 30 Å,
 wherein said Cu surface comprises a thickness range of approximately 30 Å to
 approximately 100 Å, and
 - wherein said interim Cu-Zn alloy thin film comprises a thickness range of approximately 100 Å to approximately 300 Å.

10.

		wherein the annealing steps are performed in a temperature range of approximately
		150°C to approximately 450°C, and
		wherein the annealing steps are performed for a duration range of approximately
5		0.5 minutes to approximately 60 minutes.
	11.	A semiconductor device, having an interim reduced-oxygen copper-zinc (Cu-Zn)
		alloy thin film formed on a copper (Cu) surface by electroplating the Cu surface in
		a chemical solution, fabricated by a method comprising the steps of:
5		providing a semiconductor substrate having a Cu surface formed in a via;
		providing a chemical solution;
		electroplating the Cu surface in the chemical solution, thereby forming an interim
		Cu-Zn alloy thin film on the Cu surface;
		rinsing the interim Cu-Zn alloy thin film in a solvent;
10		drying the interim Cu-Zn alloy thin film under a gaseous flow;
		annealing the interim Cu-Zn alloy thin film formed on the Cu surface, thereby
		forming an interim reduced-oxygen Cu-Zn alloy thin film;
		filling the via with Cu on the interim reduced-oxygen Cu-Zn alloy thin film, thereby
		forming a Cu-fill;
15		annealing the Cu-fill, the interim reduced-oxygen Cu-Zn alloy thin film and the Cu
		surface;
		planarizing the Cu-fill, the interim reduced-oxygen Cu-Zn alloy thin film and the
		Cu surface, thereby forming a dual-inlaid interconnect structure; and

completing formation of the semiconductor device.

A method, as recited in Claim 1,

G0414

5

5

5

12. A device, as recited in Claim 11, wherein the chemical solution is nontoxic and aqueous, and wherein the chemical solution comprises:

at least one zinc (Zn) ion source for providing a plurality of Zn ions; at least one copper (Cu) ion source for providing a plurality of Cu ions; at least one complexing agent for complexing the plurality of Cu ions; at least one pH adjuster;

at least one wetting agent for stabilizing the chemical solution, all being dissolved in a volume of deionized (DI) water.

13. A device, as recited in Claim 12,

wherein the at least one zinc (Zn) ion source comprises at least one zinc salt selected from a group consisting essentially of zinc acetate ((CH₃CO₂)₂Zn), zinc bromide (ZnBr₂), zinc carbonate hydroxide (ZnCO₃·2Zn(OH)₂), zinc dichloride (ZnCl₂), zinc citrate ((O₂CCH₂C(OH)(CO₂)CH₂CO₂)₂Zn₃), zinc iodide (ZnI₂), zinc L-lactate ((CH₃CH(OH)CO₂)₂Zn), zinc nitrate (Zn(NO₃)₂), zinc stearate (CH₃(CH₂)₁₆CO₂)₂Zn), zinc sulfate (ZnSO₄), zinc sulfide (ZnS), zinc sulfite (ZnSO₃), and their hydrates.

14. A device, as recited in Claim 12,

wherein the at least one copper (Cu) ion source comprises at least one copper salt selected from a group consisting essentially of copper(I) acetate (CH₃CO₂Cu), copper(II) acetate ((CH₃CO₂)₂Cu), copper(I) bromide (CuBr), copper(II) bromide (CuBr₂), copper(II) hydroxide (Cu(OH)₂), copper(II) hydroxide phosphate (Cu₂(OH)PO₄), copper(I) iodide (CuI), copper(II) nitrate hydrate ((CuNO₃)₂), copper(II) sulfate (CuSO₄), copper(I) sulfide (Cu₂S), copper(II) sulfide (CuS), copper(II) tartrate ((CH(OH)CO₂)₂Cu), and their hydrates.

5

5

5

5

- 15. A device, as recited in Claim 11, wherein said electroplating step comprises using an electroplating apparatus, and wherein said electroplating apparatus comprises:
 - (a) a cathode-wafer;
 - (b) an anode;
 - (c) an electroplating vessel; and
 - (d) a voltage source.
- 16. A device, as recited in Claim 15,

wherein the cathode-wafer comprises the Cu surface, and

wherein the anode comprises at least one material selected from a group consisting essentially of copper (Cu), a copper-platinum alloy (Cu-Pt), titanium (Ti), platinum (Pt), a titanium-platinum alloy (Ti-Pt), anodized copper-zinc alloy (Cu-Zn, i.e., brass), and platinized titanium (Pt/Ti), and platinized copper-zinc (Pt/Cu-Zn, i.e., platinized brass).

- 17. A device, as recited in Claim 11,
 - wherein said semiconductor substrate further comprises a barrier layer formed in the via under said Cu surface, and
 - wherein the barrier layer comprises at least one material selected from a group consisting essentially of titanium silicon nitride (Ti_xSi_yN_z), tantalum nitride (TaN), and tungsten nitride (W_xN_y)
- 18. A device, as recited in Claim 17,
 - wherein said semiconductor substrate further comprises an underlayer formed on the barrier layer,
 - wherein said underlayer comprises at least one material selected from a group consisting essentially of tin (Sn) and palladium (Pd), and
 - wherein said Cu surface is formed over said barrier layer and on said underlayer.

	19.	A device, as recited in Claim 18,
		wherein said underlayer comprises a thickness range of approximately 15 Å to
		approximately 50 Å,
5		wherein said barrier layer comprises a thickness range of approximately 10 Å to
		approximately 30 Å,
		wherein said Cu surface comprises a thickness range of approximately 30 Å to
		approximately 100 Å, and
		wherein said interim Cu-Zn alloy thin film comprises a thickness range of
10		approximately 100 Å to approximately 300 Å.
	20.	A semiconductor device, having an interim reduced-oxygen copper-zinc alloy (Cu-
		Zn) thin film formed on a copper (Cu) surface, comprising:
		a semiconductor substrate having a via; and
		a dual-inlaid interconnect structure formed and disposed in said via, said
5		interconnect structure comprising:
	•	at least one Cu surface formed in said via;
		an interim reduced-oxygen Cu-Zn alloy thin film formed and disposed on the
		at least one Cu surface; and
		a Cu-fill formed and disposed on said interim reduced-oxygen Cu-Zn alloy thin
10		film