Table of Contents

- 1. Overview
- 2. Class Declaration
- 3. Primary Responsibilities
- 4. Core Fields and Properties
 - 4.1 References and Geometry
 - 4.2 Wheel State and Alignment
 - 4.3 Friction and Slip Tracking
 - 4.4 Audio and Particles
 - 4.5 Traction Helpers and Deflation
 - 4.6 Ackerman Steering
- 5. Initialization and Setup
 - 5.1 Awake()
 - 5.2 OnEnable()
- 6. Update and FixedUpdate Logic
 - 6.1 Wheel Alignment in Update()
 - 6.2 Friction, Slip, and Collisions in FixedUpdate()
- 7. Friction and Slip Methods
 - 7.1 Ground Material Detection
 - 7.2 Applying Engine Torque, Steering, and Braking
 - 7.3 Skid Marks, Particles, and Audio
 - 7.4 Drift Logic
- 8. Deflation Handling
- 9. Ackerman Steering (Optional)
- 10. Events and Deactivation
- 11. Usage and Best Practices
- 12. Summary

1. Overview

RCC_WheelCollider is a wrapper around Unity's WheelCollider in Realistic Car Controller (RCC). It handles:

- Wheel alignment (spinning the visual mesh).
- Friction (forward/sideways slip, traction, drift).
- Skid logic (particles, audio, marks).
- Brake, handbrake, and engine torque applications.
- Damage, deflation (flat tires).
- Ackerman steering angles for front wheels.

Used by RCC_CarControllerV4 to integrate each physical wheel with advanced RCC features.

2. Class Declaration

```
[RequireComponent(typeof(WheelCollider))]
public class RCC_WheelCollider : RCC_Core {
    // Implementation details...
}
```

- Inherits from RCC_Core, giving it access to shared resources (e.g., ground materials, settings).
- Requires a WheelCollider component on the same GameObject.

3. Primary Responsibilities

- 1. **Aligning** the wheel mesh to the **WheelCollider**'s position and rotation each frame.
- 2. **Applying** brake torque, motor torque, or steering angles from RCC CarControllerV4.
- 3. **Detecting slip** to play skid sounds, spawn particles, and draw skidmarks.
- 4. Friction logic for drifting, traction helper, and dynamic friction curves.
- 5. **Deflating/Inflating** tires if needed.
- 6. **Ackerman** steering for realistic front wheel geometry.

4. Core Fields and Properties

4.1 References and Geometry

- public WheelCollider WheelCollider: The underlying Unity WheelCollider.
- public Rigidbody Rigid: The parent vehicle's rigidbody (from CarController.Rigid).
- public Transform wheelModel: Mesh transform for visual alignment.

4.2 Wheel State and Alignment

 public bool isGrounded: Whether the wheel is on the ground (from GetGroundHit).

- public bool alignWheel = true: If true, automatically aligns wheelModel each frame.
- public float wheelWidth, wheelOffset: Basic geometry parameters.
- [Range(-5f, 5f)] public float camber, caster, toe: Visual angles for wheel tilt.

4.3 Friction and Slip Tracking

- wheelHit: A WheelHit struct from WheelCollider.GetGroundHit.
- public float wheelSlipAmountForward, wheelSlipAmountSideways: Slip values.
- public float totalSlip: Combined slip.
- forwardFrictionCurve, sidewaysFrictionCurve: Active friction curves.
- forwardFrictionCurve_Org, sidewaysFrictionCurve_Org: Original friction curves for reference.

4.4 Audio and Particles

- private AudioSource audioSource: For skid sounds.
- public List<ParticleSystem> allWheelParticles: One particle system
 per ground material.
- Optionally spawns **deflation** particles if tire goes flat.

4.5 Traction Helpers and Deflation

- public float tractionHelpedSidewaysStiffness = 1f: Extra factor for traction helper or ESP.
- public bool deflated: Tire is currently deflated.
- **public float deflateRadiusMultiplier** = **0.8f**: Wheel radius shrinks on deflation.
- public float deflatedStiffnessMultiplier = 0.5f: Reduces friction curves if deflated.

4.6 Ackerman Steering

- public float ackermanWheelBase = 2.55f, ackermanTrackWidth =
 1.5f, ackermanSteerReference = 6f
- Used to compute left/right steering angles for better cornering geometry.

5. Initialization and Setup

5.1 Awake()

- Resizes wheel mass if Settings.useFixedWheelColliders is true (scales with the parent rigidbody mass).
- Creates a pivot transform around wheelModel for correct spinning.
- Applies friction curves from the RCC settings or the vehicle's override.
- Creates an AudioSource for skid SFX and spawns ParticleSystems for each ground material.

5.2 OnEnable()

- Subscribes to RCC_SceneManager.OnBehaviorChanged to refresh friction on global changes.
- Resets slip, bump, and audio volumes.
- Resets motor/brake torque to zero.

6. Update and FixedUpdate Logic

6.1 Wheel Alignment in Update()

• If alignWheel = true, calls **WheelAlign()** to set wheel mesh position/rotation from the physics wheel.

6.2 Friction, Slip, and Collisions in FixedUpdate()

- 1. Calculates approximate wheel speed from WheelCollider.rpm.
- 2. Re-checks if it can power or steer depending on the vehicle's drivetrain or overrides.
- 3. **GroundMaterial()**: identifies surface friction index.
- 4. Frictions(): updates friction curves based on slip, drift logic, or traction helper.
- 5. **TotalSlip()**: merges sideways + forward slip.
- 6. **SkidMarks()**: draws skid lines if totalSlip exceeds threshold.
- 7. Particles(): toggles dust/smoke for slip.
- 8. Audio(): plays skid audio, checks bumps.
- 9. CheckDeflate(): sees if tire is deflated or not.
- 10. **ESP()**: extra brake if under/over-steering with CarController.ESP.

7. Friction and Slip Methods

7.1 Ground Material Detection

• GroundMaterial():

- Uses WheelCollider.GetGroundHit() and checks sharedMaterial vs. GroundMaterials.frictions.
- o For **terrain**, tries to detect which splat index is under the wheel.
- Sets groundIndex used to pick friction slip thresholds, audio, and particles.

7.2 Applying Engine Torque, Steering, and Braking

- ApplyMotorTorque(float torque): Applies motor torque with TCS logic. If slip is too high, reduce torque.
- ApplySteering(float steerInput, float angle): Optionally uses an Ackerman formula for left/right wheels.
- ApplyBrakeTorque(float torque): If ABS is on, can cut brake torque if slip exceeds threshold.

7.3 Skid Marks, Particles, and Audio

- **SkidMarks()**: If slip > ground friction threshold, logs positions for the global RCC_SkidmarksManager.
- Particles(): Activates the matching ground material's ParticleSystem if slipping.
- Audio():
 - o Fades in skid sound based on slip magnitude.
 - Plays a bump sound if wheelHit force changes sharply.

7.4 Drift Logic

 If the selected RCC behavior uses drifting logic, Drift() function modifies friction curves to reduce lateral and forward friction. It can also add small sideways forces for a drifting feel (particularly for RWD wheels).

8. Deflation Handling

- deflated toggles if the tire is flat.
- Deflate(): sets WheelCollider.radius to defRadius *
 deflateRadiusMultiplier, triggers deflate audio and possibly a deflate particle
 effect.
- Inflate(): restores original radius, friction, and plays inflate audio.
- If deflated, friction is multiplied by deflatedStiffnessMultiplier.

9. Ackerman Steering (Optional)

- ApplySteering() can do basic ackerman if the wheel is on the left or right side.
- Uses ackermanWheelBase, ackermanTrackWidth, ackermanSteerReference to compute a correct turn angle difference between left and right wheels.

10. Events and Deactivation

- On behavior changes (RCC_SceneManager.OnBehaviorChanged), re-applies friction settings.
- OnDisable(): stops audio, resets slip, motor torque, brake torque, etc.

11. Usage and Best Practices

- Link each RCC_WheelCollider with a visual wheel (wheelModel) in the inspector.
- 2. **Pivot** the wheel model in the center for correct spinning (the script calls CreatePivotOfTheWheel() automatically).
- 3. **Ground Materials** must be set up in GroundMaterials.frictions for different surfaces (asphalt, grass, etc.).
- 4. **Terrain** detection is only used if the terrain is registered in RCC_SceneManager and RCC_SceneManager.terrainsInitialized = true.
- 5. **Deflation** is triggered if the ground material marks it as deflate or if manually calling Deflate().

6. Steering

If you want custom angles (not Ackerman), you can just set
 WheelCollider.steerAngle = angle.

7. Audio

 The skid audio is looped, volume changes with slip. Bump sounds are triggered on collisions in audioSource.

8. Performance

 Each wheel in FixedUpdate() does a linecast for ground materials, friction updates, etc. For many wheels or complex terrain, consider optimization.

9. **Drift**

• The Drift() method is quite simplified. You can further customize friction logic for different drift styles.

12. Summary

RCC_WheelCollider is a **comprehensive wheel script** in Realistic Car Controller. It handles:

- Alignment of the visual wheel mesh.
- Ground detection to pick friction, slip thresholds, and skid logic.
- Applying torque, brake, steering including advanced TCS/ABS/ESP.
- Skidmarks, particles, audio for slipping or drift scenarios.
- **Deflation** logic (flat tires) with radius changes and friction penalties.
- Ackerman steering for realistic front steering geometry.

It integrates seamlessly with RCC_CarControllerV4, providing each wheel the **simulation detail** needed for realistic driving experiences.