ON THE NUMBER OF WORDS IN THE LANGUAGE $\{w \in \Sigma^* \mid w = w^R\}^2$

R. KEMP

Fachbereich 20 (Informatik), Johann Wolfgang Goethe Universität, 6000 Frankfurt a.M., Federal Republic of Germany

Received 29 September 1980

Let S be the set of all palindromes over Σ^* . It is well known, that the language S^2 is an ultralinear, inherently ambiguous context-free language. In this paper we derive an explicit expression for the number of words of length n in S^2 . Furthermore, we show, that for $\operatorname{card}(\Sigma) > 1$ the asymptotical density of the language S^2 is zero and that, in the average, each word w of length n in S^2 has exactly one factorization into two palindromes for large n; the variance is zero for large n. Finally, we compute an expression for the structure-generating-function $T(S^2; z)$ of the language S^2 ; it remains the open problem, if $T(S^2; z)$ is a transcendental or an algebraic function.

1. Introduction

Let Σ^* be the free monoid generated by a fixed alphabet Σ and let $S \subseteq \Sigma^*$ be the formal language defined by $S := \{w \in \Sigma^* \mid w = w^R\}$, where w^R is the reversal of the word w. Thus, S is the set of all palindromes over Σ^* . In [4, 5], Crestin introduced the language $S^2 = SS$ and he showed that S^2 is an ultralinear, inherently ambiguous context-free language if $card(\Sigma) > 1$.

In [2], Berstel introduced the notion of the asymptotical density d(L) of a formal language $L \subseteq \Sigma^*$. If d(L) exists, this number is defined by $d(L) = \lim_{n\to\infty} (d_n(L)/d_n(\Sigma^*))$, where $d_n(F) = \operatorname{card}\{w \in \Sigma^* \mid w \in F \setminus \Sigma^* \Sigma^{n+1}\}$ for $F \subseteq \Sigma^*$. Berstel showed in his paper that d(L) is rational if L is regular, and that d(L) is algebraic if L is an unambiguous context-free language. Using the notion of the structure-generating-function T(L;z) of a formal language $L \subseteq \Sigma^*$ (see [7]) which is defined by $T(L;z) = \sum_{n\geq 0} \operatorname{card}(L \cap \Sigma^n)z^n$, Berstel has implicitly shown in his paper that the fact T(L;z) is an algebraic (resp. a rational) function' implies d(L) is an algebraic (resp. a rational) number', provided that d(L) exists. It was an open problem, if there are inherently ambiguous context-free languages with a transcendental asymptotical density. Recently, the author has given the first example of such a language with a non-algebraic asymptotical density and a non-algebraic structure-generating-function [6]. In search of such an example, Berstel had proposed to regard the language S^2 .

In this paper, we shall derive several enumeration results describing the distribution of the number of words of length n in the language S^2 . Among other things, we shall compute the structure-generating-function $T(S^2; z)$ and the 0012-365X/82/0000-0000/\$02.75 © 1982 North-Holland

asymptotical density $d(S^2)$. The author is, however, unable to decide if $T(S^2; z)$ is a transcendental or an algebraic function.

2. Preliminaries

Let $\Sigma^+ = \Sigma^* \setminus \{\varepsilon\}$, where ε is the identity in the monoid Σ^* . The length of $w \in \Sigma^*$ is denoted by l(w). As usual, a word $w \in \Sigma^*$ is said to be *primitive* if $w = v^n$, $v \in \Sigma^*$, $n \in \mathbb{N}_0$ implies w = v. The set of all primitive words in Σ^* is denoted by PRIM(Σ). Two words $w, v \in \Sigma^*$ are said to be *conjugates* if there exist $\alpha, \beta \in \Sigma^*$ and $p, q \in \mathbb{N}_0$ such that $w = (\alpha\beta)^p$ and $v = (\beta\alpha)^q$. In this case, we write $w \sim v$. The following lemma is shown in [4].

Lemma 1. Let $w \in \Sigma^+$, $v \in \Sigma^*$ and $w \sim v$. There is exactly one quadruple $(\alpha, \beta, u, m) \in \Sigma^* \times \Sigma^+ \times \mathbb{N} \times \mathbb{N}_0$ with $w = (\alpha \beta)^n$, $v = (\beta \alpha)^m$ and $\alpha \beta \in PRIM(\Sigma)$.

Now, let ${}^+S^2 = S^2 \setminus \{\varepsilon\}$, ${}^+S = S \setminus \{\varepsilon\}$ and $w \in {}^+S^2$. The tupel (f, g) is called a factorization of w if w = fg with $f \in S$ and $g \in {}^+S$. The number of all factorizations of $w \in {}^+S^2$ is denoted by F(w). We have $F(w) \ge 1$ for all $w \in {}^+S^2$ by definition. The following lemma is a direct implication of [5, Lemma 4.2] and [4, Corollary 2.2.3].

Lemma 2. Let $n \in \mathbb{N}$, $w \in PRIM(\Sigma)$ and $w^n \in {}^+S^2$. We have for all $m \in \mathbb{N}$:

- (a) $w^m \in {}^+S^2$ and
- (b) $F(w^m) = m$.

Now, let $S_k = \{w \in {}^+S^2 \mid F(w) = k\}$ be the set of all words in ${}^+S^2$ having exactly k factorizations. We prove the following:

Lemma 3. The set S_1 is a subset of $PRIM(\Sigma)$.

Proof. Let $u \in S_1$. There is exactly one factorization (f, g) of u. We have u = fg and $u^R = gf$ and therefore $u \sim u^R$. By Lemma 1 there is exactly one quadruple $(\alpha, \beta, p, q) \in \Sigma^* \times \Sigma^+ \times \mathbb{N} \times \mathbb{N}_0$ with $u = (\alpha \beta)^q$, $u^R = (\beta \alpha)^p$ and $\alpha \beta \in PRIM(\Sigma)$. Using Lemma 2 with m = 1 we obtain $q = F((\alpha \beta)^q) = F(u) = 1$. Hence, $u = \alpha \beta \in Prim(\Sigma)$. This completes the proof.

The preceding lemmata enable us to give a characterization of ${}^+S^2$.

Theorem 1. Let $n, d \in \mathbb{N}$ with $d \mid n$. We have:

$$^+S^2 \cap \Sigma^n = \bigcup_{d \mid n} \{ u^d \mid u \in S_1 \cap \Sigma^{n/d} \}.$$

Proof. (a) Let $w \in {}^+S^2 \cap \Sigma^n$. There is at least one factorization (f, g) of w. Since w = fg and $w^R = gf$, we have $w \sim w^R$. Using Lemma 1 there is exactly one quadruple $(\alpha, \beta, p, q) \in \Sigma^* \times \Sigma^+ \times \mathbb{N} \times \mathbb{N}_0$ with $w = (\alpha \beta)^p$, $w^R = (\beta \alpha)^q$ and $\alpha \beta \in PRIM(\Sigma)$. By Lemma 2 we obtain $(\alpha \beta)^m \in {}^+S^2$ and $F((\alpha \beta)^m) = m$ for all $m \in \mathbb{N}$. Choosing m = 1 we get $\alpha \beta \in {}^+S^2$ and $F(\alpha \beta) = 1$. Hence, $\alpha \beta \in S_1$. Since l(w) = n and $w = (\alpha \beta)^p$, we have further $p \mid n$. Therefore, $w \in \{u^P \mid u \in S_1 \cap \Sigma^{n/p}\}$ with $p \mid n$.

(b) Let $w \in \{u^d \mid u \in S_1 \cap \Sigma^{n/d}\}$ where $d \mid n$, that is $w = u^d$ for some $u \in S_1 \cap \Sigma^{n/d}$. There is exactly one factorization (f, g) of u. Choose a := f and $b := g(fg)^{d-1}$. A simple calculation shows that $ab = u^d = w \neq \varepsilon$, $a^R = a$ and $b^R = b$. Hence, $w \in {}^+S^2$. Furthermore, l(w) = dl(u) = d(n/d) = n. Therefore, $w \in {}^+S^2 \cap \Sigma^n$.

This completes the proof of Theorem 1.

Corollary 1. Each word $w \in {}^+S^2 \cap \Sigma^*$ has exactly one representation of the form $w = u^d$ with $u \in S_1 \cap \Sigma^{n/d}$ and $d \mid n$. Furthermore, F(w) = d.

Proof. Theorem 1 shows that each $w \in {}^+S^2 \cap \Sigma^n$ has at least one such representation. Assume $w = u^d = y^t$ with $u \in S_1 \cap \Sigma^{n/d}$, $y \in S_1 \cap \Sigma^{n/t}$, $d \mid n$ and $t \mid n$. We have $u, y \in PRIM(\Sigma)$ by Lemma 3. Using Lemma 2 we get $F(w) = F(u^d) = d$ and $F(w) = F(y^t) = t$ and therefore d = t which implies l(u) = l(y). Generally, xz = rs with l(x) = l(r) and $x, z, r, s \in \Sigma^*$ implies x = r and z = s (see [8]). Choosing x := u, $z := u^{d-1}$, r := y and $s := y^{d-1}$, we obtain u = y. An application of Lemma 2(b) leads immediately to F(w) = d.

3. Enumeration results

This section is devoted to the computation of the number of words of length n in S^2 .

Lemma 4.

$$\operatorname{card}(^+S^2\cap\Sigma^n)=\sum_{d\mid n}\operatorname{card}(S_1\cap\Sigma^d) \text{ for } n\geq 1.$$

Proof. By Theorem 1 and Corollary 1 we have:

$$\operatorname{card}({}^+S^2\cap\Sigma^n)=\sum_{d\mid n}\sum_{u\in S_1\cap\Sigma^{n/d}}\operatorname{card}(u^d)=\sum_{d\mid n}\operatorname{card}(S_1\cap\Sigma^{n/d}).$$

This expression is equivalent to our statement.

By Corollary 1, $w \in S_k \cap \Sigma^n$ has exactly one representation of the form $w = u^k$

with $u \in S_1 \cap \Sigma^{n/k}$ and $n \mid k$. Hence, we further have:

Lemma 5.

$$\operatorname{card}(S_k \cap \Sigma^n) = \begin{cases} 0 & \text{if } k \not \mid n, \\ \operatorname{card}(S_1 \cap \Sigma^{n/k}) & \text{if } k \mid n. \end{cases}$$

In other words, the number of words of length n in ${}^+S^2$ with k factorizations is equal to the number of words of length n/k in ${}^+S^2$ with one factorization.

Lemma 6. Let $a \in \mathbb{N}$ and let $R_a : \mathbb{N} \to \mathbb{N}$ be the arithmetical function defined by $R_a(n) = \frac{1}{4}n \ a^{n/2}((1+\sqrt{a})^2+(-1)^n(1-\sqrt{a})^2)$. We have for $n \ge 1$;

$$R_{\operatorname{card}(\Sigma)}(n) = \sum_{d \mid n} \frac{n}{d} \operatorname{card}(S_1 \cap \Sigma^d).$$

Proof. Note that $R_a(n) \in \mathbb{N}$ for $a, n \in \mathbb{N}$. Let c be a new symbol not in Σ , $B := \Sigma \cup \{c\}$ and $S^2 := Sc^+S$. Obviously, $h(S^2) = {}^+S^2$ where $h : (B^*, \cdot) \to (\Sigma^*, \cdot)$ is the monoid homomorphism defined by h(a) = a if $a \in \Sigma$, and $h(c) = \varepsilon$ if a = c. It is not hard to see that for $w \in {}^+S^2$ there are exactly F(w) words $w_i \in S^2$ with $h(w_i) = w$, $1 \le i \le F(w)$, because for each factorization (f, g) of w there is exactly one corresponding word $f : c \in S^2$. By Corollary 1, each $w \in {}^+S^2 \cap \Sigma^n$ has a unique representation of the form $w = u^d$ with $d \mid n$ and $u \in S_1 \cap \Sigma^{n/d}$; we obtain then F(w) = d. Therefore

$$\operatorname{Card}(S^2 \cap B^{n+1}) = \sum_{w \in {}^+S^2 \cap \Sigma^n} F(w) = \sum_{d \mid n} \sum_{u \in S_1 \cap \Sigma^{n/d}} F(u^d)$$
$$= \sum_{d \mid n} d \operatorname{card}(S_1 \cap \Sigma^{n/d}) = \sum_{d \mid n} \frac{n}{d} \operatorname{card}(S_1 \cap \Sigma^d).$$

On the other hand, we have

$$\operatorname{card}(S^2 \cap B^{n+1}) = \sum_{0 \le k \le n} \operatorname{card}(S \cap \Sigma^k) \operatorname{card}({}^+S \cap \Sigma^{n-k}).$$

Now, it can be easily shown, that the number of palindromes of length m over Σ^* is given by

$$\operatorname{card}(S \cap \Sigma^m) = \operatorname{card}(\Sigma)^{\lfloor (m+1)/2 \rfloor}.$$

Using this result, we obtain finally, by an elementary computation,

$$\operatorname{card}(S^2 \cap B^{n+1}) = \sum_{0 \le k \le n-1} \operatorname{card}(\Sigma)^{\lfloor (k+1)/2 \rfloor + \lfloor (n-k+1)/2 \rfloor}$$
$$= R_{\operatorname{card}(\Sigma)}(n),$$

where $R_{card(\Sigma)}$ is the function defined in our lemma. This completes the proof.

For sake of convenience, henceforth we use the notation f * g for the Dirichlet convolution of two arithmetical functions f, g (see [1]), that is h = f * g stands for $h(n) = \sum_{d \mid n} f(d) g(n/d)$. The ordinary product fg of two arithmetical functions f and g is defined by the usual formula (fg)(n) = f(n)(g(n)). Furthermore, let u(n) be the arithmetical function such that u(n) = 1 for all $n \in \mathbb{N}$, N(n) be the function such that N(n) = n for all $n \in \mathbb{N}$, N(n) = n for all $n \in \mathbb{N}$, where $\delta_{n,i}$ is Kronecker's symbol, $\alpha_i(n)$ be the Möbius function and $\alpha_i(n)$ be Euler's totient function [1]. We now prove the following:

Theorem 2. The number of words of length n in the language S^2 is given by $card(S^2 \cap \Sigma^n) = 1$ for n = 0 and by

$$\operatorname{card}(S^2 \cap \Sigma^n) = \sum_{d \mid n} \varphi^{-1}(d) R_{\operatorname{curd}(\Sigma)}(n/d)$$

for $n \ge 1$. Here, $R_{\text{card}(\Sigma)}$ is the function given in Lemma 6 and φ^{-1} is the Dirichlet inverse of Euler's totient function given by

$$\varphi^{-1}(1) = 1$$
, $\varphi^{-1}(n) = \prod_{\substack{p \mid n \\ p \text{ prime}}} (1-p) \text{ for } n \ge 2$.

Proof. The case $\operatorname{card}(S^2 \cap \Sigma^0) = 1$ is obvious. Now, let $n \ge 1$. With the notation $H(n) := \operatorname{card}(^+S^2 \cap \Sigma^n)$ and $L_k(n) := \operatorname{card}(S_k \cap \Sigma^n)$ Lemmas 4 and 6 can be stated in the form: $H = u * L_1$ and $R_{\operatorname{card}(\Sigma)} = N * L_1$. Since * is associative and the Dirichlet inverse φ^{-1} exists, we can make the following computation:

$$H = u * L_1$$
 (by Lemma 4),
 $= u * L_1 * I$ (since $f * I = I * f = f$ for any f)
 $= u * L_{1_1} * \varphi * \varphi^{-1}$ (since $f * f^{-1} = f^{-1} * f = I$ if f^{-1} exists),
 $= u * \varphi^{-1} * L_1 * N * \mu$ (since * is commutative and $\varphi = N * \mu$,
 $= [1, p. 29]$),
 $= \mu * u * \varphi^{-1} * R_{card(\Sigma)}$ (since * is commutative and Lemma 6),
 $= I * \varphi^{-1} * R_{card(\Sigma)}$ (since $I = \mu * u$, (see [1, p. 31]),
 $= \varphi^{-1} * R_{card(\Sigma)}$.

Hence, $H = \varphi^{-1} * R_{card(\Sigma)}$. This relation is equivalent to our statement.

Theorem 3. The number of all words of length n in the language ${}^+S^2$ with k factorizations is given by

$$\operatorname{card}(S_k \cap \Sigma^n) = \begin{cases} 0 & \text{if } k \nmid n, \\ \sum_{d \mid (n/k)} \frac{n}{kd} \mu\left(\frac{n}{kd}\right) R_{\operatorname{card}(\Sigma)}(d) & \text{if } k \mid n. \end{cases}$$

Proof. Let again $H(n) = \operatorname{card}({}^+S^2 \cap \Sigma^n)$ and $L_k(n) = \operatorname{card}(S_k \cap \Sigma^n)$. We get:

$$L_1 = L_1 * I$$
 (since $f * I = I * f = f$ for any f)
 $= L_1 * \mu * u$ (since $I = \mu * u$, see [1, p. 31]),
 $= \mu * H$ (since * is commutative and Lemma 4)
 $= \mu * \varphi^{-1} * R_{card(\Sigma)}$ (by Theorem 2),
 $= \mu * \mu^{-1} * N^{-1} * R_{card(\Sigma)}$ (since $\varphi^{-1} = \mu^{-1} * N^{-1}$, see [1, p. 37]),
 $= I * \mu N * R_{card(\Sigma)}$ (since $\mu * \mu^{-1} = I$ and $N^{-1} = \mu N$,
see [1, p. 37]),
 $= \mu N * R_{card(\Sigma)}$.

Hence, $L_1 = \mu N * R_{card(\Sigma)}$. Now, an application of Lemma 5 leads directly to our statement.

By inspection of Theorems 1 and 2 we further obtain the following:

Corollary 2. Let p be a prime. We have

(a)
$$\operatorname{card}(S^2 \cap \Sigma^p) = \begin{cases} \operatorname{card}(\Sigma)^2 & \text{if } p = 2, \\ p \operatorname{card}(\Sigma)^{(p+1)/2} - (p-1)\operatorname{card}(\Sigma) & \text{if } p \neq 2; \end{cases}$$
(b) $\operatorname{card}(S_k \cap \Sigma^p) = \begin{cases} \operatorname{card}(\Sigma)^2 - \operatorname{card}(\Sigma) & \text{if } k = 1 \text{ and } p = 2, \\ p[\operatorname{card}(\Sigma)^{(p+1)/2} - \operatorname{card}(\Sigma)] & \text{if } k = 1 \text{ and } p \neq 2, \\ \operatorname{card}(\Sigma) & \text{if } k = p, \\ 0 & \text{otherwise.} \end{cases}$

Corollary 3. Let $card(\Sigma) \ge 2$. We have the asymptotic formula

$$\operatorname{card}(S^2 \cap \Sigma^n) = R_{\operatorname{card}(\Sigma)}(n)\Phi(n),$$

where $R_{\operatorname{card}(\Sigma)}$ is the function given in Lemma 6 and $\Phi(n)$ is given by $\Phi(n) = 1 + O(\sqrt{n} \operatorname{card}(\Sigma)^{-n/4})$.

Proof. Obviously, $R_a(n) \le \frac{1}{2}n(a+1)a^{n/2}$ for all $a \ge 0$ and $|\varphi^{-1}(n)| \le n$ for all $n \in \mathbb{N}$. Let d(n) be the number of all positive divisors of the natural number n. Since surely $d(n) = O(\sqrt{n})$, we can make the following estimations:

$$\left| \sum_{\substack{d \mid n \\ d \geqslant 2}} \varphi^{-1}(d) R_{\operatorname{card}(\Sigma)}(n/d) \right| \leq \sum_{\substack{d \mid n \\ d \geqslant 2}} |\varphi^{-1}(d)| R_{\operatorname{card}(\Sigma)}(n/d)$$

$$\leq \frac{1}{2} n (1 + \operatorname{card}(\Sigma)) \sum_{\substack{d \mid n \\ d \geqslant 2}} \operatorname{card}(\Sigma)^{n/2d}$$

$$\leq \frac{1}{2} n (1 + \operatorname{card}(\Sigma)) \operatorname{card}(\Sigma)^{n/4} [d(n) - 1]$$

$$= O(n \sqrt{n} \operatorname{card}(\Sigma)^{n/4}).$$

Since $\varphi^{-1}(1) = 1$ we obtain with Theorem 2,

$$\operatorname{card}({}^+S^2 \cap \Sigma^n) = R_{\operatorname{card}(\Sigma)}(n) + O(n\sqrt{n}\operatorname{card}(\Sigma)^{n/4}).$$

This relation is equivalent to our statement.

The number of words in $S^2 \cap \Sigma^n$ for some n and $card(\Sigma)$ is given in Table 1.

$\operatorname{card}(\Sigma)$					
n	1	2	3	4	5
0	1	1	1	1	1
1	i	2	3	4	5
2	1	4	9	16	25
3	1	8	21	40	65
4	1	16	57	136	265
5	1	32	123	304	605
6	1	52	279	880	2 125
7	1	100	549	1 768	4 345
8	1	160	1 209	4 936	14 665
9	1	260	2 127	9 112	27 965
10	1	424	4 689	25 216	93 025
20	1	30 136	2 356 737	52 402 336	585 842 065
30	1	1 469 632	860 825 439	8.052959968 ₁₀ 10	2.7465759771012

Table 1. The numbers $card(S^2 \cap \Sigma^n)$ for some n and some $card(\Sigma)$

4. Some statistical results

In this section, we shall compute the asymptotical density $d(S^2)$ of the language S^2 and the average number of factorizations of a word in S^2 .

Theorem 4. The asymptotical density $d(S^2)$ of the language S^2 over the alphabet Σ is given by

$$d(S^2) = \delta_{1, \operatorname{card}(\Sigma)}$$

where $\delta_{i,k}$ is Kronecker's symbol.

Proof. We consider the quotient $\rho_n(S^2) = \operatorname{card}(S^2 \cap \Sigma^n)/\operatorname{card}(\Sigma)^n$. First, let $\operatorname{card}(\Sigma) = 1$. In this case we have $R_{\operatorname{card}(\Sigma)} = n$ for all $n \in \mathbb{N}$. Since $\varphi^{-1} = \mu^{-1} * N^{-1}$ (see [1, p. 37]), we obtain further $N * \varphi^{-1} = \mu^{-1} = \mu$ (see [1, p. 31]). Hence with Theorem 2, $\operatorname{card}(S^2 \cap \Sigma^n) = u(n) = 1$ for all $n \in \mathbb{N}$. Therefore $\rho_n(S^2) = 1$ for all $n \in \mathbb{N}$.

Next, let $\operatorname{card}(\Sigma) \ge 2$. In this case we obtain with Corollary 3, $\rho_n(S^2) = O(n \operatorname{card}(\Sigma)^{-n/4})$. Therefore, $\eta = \lim_{n \to \infty} \rho_n(S^2) = \delta_{1,\operatorname{card}(\Sigma)}$. Now, the same calculation as in [6] shows that $d(S^2) = \eta$. This completes the proof of our theorem.

Assuming that all words of length n in S^2 are equally likely, the quotient $p(n, k) = \operatorname{card}(S_k \cap \Sigma^n)/\operatorname{card}(S^2 \cap \Sigma^n)$ is the probability that a word $w \in S^2$ of length n has exactly k factorizations. The sth moment about origin is defined by $m_s(n) = \sum_{1 \le k \le n} k^s p(n, k)$. We prove the following:

Lemma 7. The sth moment about origin is given by

$$m_s(n) = \left[\operatorname{card}(S^2 \cap \Sigma^n)\right]^{-1} \sum_{t \mid n} dJ_{s-1}(t) R_{\operatorname{card}(\Sigma)}(n/t)$$

where $R_{card(\Sigma)}$ is the function given in Lemma 6 and J_s is Jordan's totient function defined by

$$J_s(1) = 1$$
 and $J_s(n) = n^s \prod_{\substack{p \mid n \ p \text{ prime}}} (1 - p^{-s}).$

Proof. An application of Theorem 3 leads directly to

$$m_s(n)\operatorname{card}(S^2\cap\Sigma^n)=\sum_{k|n}k^s\sum_{d\mid(n/k)}\frac{n}{kd}\mu\left(\frac{n}{kd}\right)R_{\operatorname{card}(\Sigma)}(d).$$

A simple rearrangement of the terms on the right side yields to

$$m_s(n) \operatorname{card}(S^2 \cap \Sigma^n) = \sum_{d \mid n} \frac{n}{d} R_{\operatorname{card}(\Sigma)}(d) \sum_{k \mid (n/d)} \mu(k) \left(\frac{n}{k\ell'}\right)^{s-1}.$$

Now, Jordan's totient function has a representation of the form $J_s(n) = \sum_{k \nmid n} \mu(k) (n/k)^s$ (see [1, p. 48]). Using this relation we get our lemma.

Theorem 5. The sth moment about origin is asymptotically given by

$$m_s(n) = \begin{cases} n^s & \text{if } \operatorname{card}(\Sigma) = 1, \\ 1 + O(n^{\alpha} \operatorname{card}(\Sigma)^{-n/4}) & \text{if } \operatorname{card}(\Sigma) \ge 2 \end{cases}$$

where $\alpha = \max(\frac{1}{2}, s-1)$.

Proof. If $card(\Sigma) = 1$, then we have $R_{card(\Sigma)}(n) = n$ for all $n \in \mathbb{N}$. In this case we obtain with Lemma 7 and Theorem 2,

$$m_s(n) = \sum_{d \mid n} dJ_{s-1}(d) \frac{n}{d} = n^s$$

because in general $n' = \sum_{d|n} J_s(d)$ (see [1, p. 48]).

Now, let $card(\Sigma) \ge 2$. Since $J_s(n)$ and $R_{card(\Sigma)}(n)$ are always positive and

 $R_a(n) \le \frac{1}{2}n(a+1)a^{n/2}$ for $a \ge 0$, we can make the following estimations:

$$\left| \sum_{\substack{d \mid n \\ d \geqslant 2}} d J_{s-1}(d) R_{\operatorname{card}(\Sigma)}(n/d) \right| \leq \frac{1}{2} (1 + \operatorname{card}(\Sigma)) n \sum_{\substack{d \mid n \\ d \geqslant 2}} \operatorname{card}(\Sigma)^{n/2d} J_{s-1}(d)$$

$$\leq \frac{1}{2} (1 + \operatorname{card}(\Sigma)) n \operatorname{card}(\Sigma)^{n/4} [n^{s-1} - 1]$$

$$= O(n^{s} \operatorname{card}(\Sigma)^{n/4}).$$

Using this relation we obtain our statement by inspection of Lemma 7 and Corollary 3.

Since $m_1(n)$ is the average number of factorizations of a word $w \in S^2$ of length n and the variance $\sigma^2(n)$ is given by $\sigma^2(n) = m_2(n) - m_1^2(n)$, we obtain immediately:

Corollary 4. Assuming that all words of length n in S^2 are equally likely, the average number of factorizations of a word $w \in S^2 \cap \Sigma^n$ is asymptotically given by

$$m_1(n) = \begin{cases} n & \text{if } \operatorname{card}(\Sigma) = 1, \\ 1 + O(\sqrt{n} \operatorname{card}(\Sigma)^{-n/4}) & \text{if } \operatorname{card}(\Sigma) \ge 2. \end{cases}$$

The variance is asymptotically given by

$$\sigma^{2}(n) = \begin{cases} n(n-1) & \text{if } \operatorname{card}(\Sigma) = 1, \\ \operatorname{O}(n \operatorname{card}(\Sigma)^{-n/4}) & \text{if } \operatorname{card}(\Sigma) \geq 2. \end{cases}$$

Corollary 4 shows that in the average all words $w \in S^2$ have exactly one factorization into two palindromes provided that $\operatorname{card}(\Sigma) \ge 2$.

5. Concluding remarks

In this paper we have derived several enumeration results describing the distribution of the number of words of length n in the inherently ambiguous context-free language S^2 . Using Theorem 2 we can also compute the structure-generating-function $T(S^2; z)$; we obtain

$$T(S^2; z) = \sum_{n \ge 0} \operatorname{card}(S^2 \cap \Sigma^n) z^n$$
$$= 1 + \sum_{n \ge 1} z^n \sum_{d \mid n} \varphi^{-1}(d) R_{\operatorname{card}(\Sigma)}(n/d).$$

A simple rearrangement of the terms in the last sum shows that an equivalent expression is given by

$$T(S^2; z) = 1 + \sum_{j \ge 1} \varphi^{-1}(j) \sum_{\lambda \ge 1} R_{\operatorname{card}(\Sigma)}(\lambda) z^{\lambda j}.$$

Using the definition of $R_{\text{card}(\Sigma)}$ from Lemma 6, the second sum can be calculated explicitly for $|z| < \text{card}(\Sigma)^{-1/2}$; we get

$$T(S^{2}; z) = 1 + \frac{1}{4}\sqrt{\operatorname{card}(\Sigma)} \sum_{j=1}^{\infty} \varphi^{-1}(j)z^{j}$$

$$\times \left[\frac{(1 + \sqrt{\operatorname{card}(\Sigma)})^{2}}{(1 - \sqrt{\operatorname{card}(\Sigma)}z^{j})^{2}} - \frac{(1 - \sqrt{\operatorname{card}(\Sigma)})^{2}}{(1 + \sqrt{\operatorname{card}(\Sigma)}z^{j})^{2}} \right]$$

or, equivalently,

$$T(S^{2}; z) = 1 + \sum_{j \ge 1} \varphi^{-1}(j) \frac{\operatorname{card}(\Sigma) z^{j} (1 + z^{j}) (1 + \operatorname{card}(\Sigma) z^{j})}{(1 - \operatorname{card}(\Sigma) z^{2j})^{2}}$$

where $|z| < \operatorname{card}(\Sigma)^{-1/2}$.

If card $(\Sigma) = 1$, we obtain immediately for |z| < 1:

$$T(S^2; z) = 1 + \sum_{j \ge 1} \varphi^{-1}(j) \frac{z^j}{(1-z^i)^2} = \frac{1}{1-z},$$

because it is well known that the last sum is equal to z/(1-z) for |z|<1. In this case, we obtain the expected result that $T(S^2;z)$ is rational function. In the general case, that is for $\operatorname{card}(\Sigma)>1$, the author is unable to give a simple expression or a functional equation for $T(S^2;z)$. In order to prove that $T(S^2;z)$ is a transcendental function, it is sufficient to show, that there is no linear recurrence relation for the numbers $\operatorname{card}(S^2\cap\Sigma^n)$ with polynomials in n as coefficients, because such a recurrence always exists for the Taylor coefficients of any algebraic function [3].

It is not hard to show that there is no recurrence relation of the form $P(n) \operatorname{card}(S^2 \cap \Sigma^{n+1}) + Q(n) \operatorname{card}(S^2 \cap \Sigma^n) = T(n)$ where P(n), Q(n) and T(n) are polynomials in n, but it seems that there is no obvious generalization.

References

- [1] T.M. Apostol, Introduction to Analytic Number Theory (Springer, New York, 1976).
- [2] J. Berstel, Sur la densité asymptotique des langages formels, in: M. Nivat, Ed., Automata, Languages and Programming (North-Holland, Amsterdam, 1973) 345-358.
- [3] L. Comtet, Calcul pratique des coefficients de Taylor d'une fonction algébrique, Enseign Math. 10 (1964) 267-270.
- [4] J.P. Crestin, Sur un langage quasi-rationnel d'ambiguité inherénte non bornée, Thèse de 3° Cycle, Faculty of Science, University of Paris (1969).
- [5] J.P. Crestin, Un langage non ambigu dont le carré est d'ambiguité non bornée, in: M. Nivat, ed., Automata, Languages and Programming (North-Holland, Amsterdam, 1973) 377-390.
- [6] R. Kemp, A note on the density of inherently ambiguous context-free languages, Acta Inform. 14 (1980) 295-298.
- [7] W. Kuich, On the entropy of context-free languages Inform. and Control 16 (1970) 173-200.
- [8] F.W. Levi, On semigroups, Bull. Calcutta Math. Soc. 36 (1944) 144-146.