รายวิชา 09131201 ระเบียบวิธีเชิงตัวเลขทางด้านคอมพิวเตอร์ (Numerical Methods for Computers) บทที่ 2 รากของสมการ (Root Finding)

ผศ.ดร.วงศ์วิศรุต เขื่องสตุ่ง

สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี

Outline

บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข

- 2.1 บทนำ
- 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- 2.4 ระเบียบวิธีการวางตัวผิดที่ (False position method)
- 2.5 ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- 2.7 ระเบียบวิธีเซแคนต์ (Secant Method)

Table of Contents

บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข

Table of Contents

บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข

- 2.1 บทน้ำ
- 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- 2.4 ระเบียบวิธีการวางตัวผิดที่ (False position method)
- 2.5 ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- 2.7 ระเบียบวิธีเซแคนต์ (Secant Method)

Outline

บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข

- 2.1 บทน้ำ
- 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- 2.4 ระเบียบวิธีการวางตัวผิดที่ (False position method)
- 2.5 ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- 2.7 ระเบียบวิธีเซแคนต์ (Secant Method)

บทนำ

การศึกษาทางวิทยาศาสตร์และวิศวกรรมศาสตร์ มักจะพบปัญหาที่เกิดขึ้น บ่อยคือ การหาราก (Roots of equation) ของสมการในรูปแบบ

$$f(x) = 0$$

พิจารณาฟังก์ชันหนึ่งตัวแปร y=f(x) การหารากของสมการ หรือคำตอบ (ผลเฉลย) ของสมการ คือค่าของ x ที่ทำให้ y=f(x)=0 เช่น สมการของ ฟังก์ $f(x)=ax^2+bx+c=0$ โดยที่ a,b และ c เป็นค่าคงที่ ดังนั้น รากของสมการนี้คือ

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

ตัวอย่างที่ 2.1 จงหารากของสมการ $f(x) = x^2 + x - 2 = 0$

รูปที่ 1: กราฟของสมการ $f(x)=x^2+x-2=0$

บทน้ำ

สำหรับระเบียบวิธีการหาค่ารากของสมการ สามารถแบ่งประเภทเป็น 2 ประเภทดังนี้

- ▶ ระเบียบวิธีแบบกำหนดขอบเขต (Bracketing method)
- ▶ ระเบียบวิธีแบบเปิด (Open method)

ระเบียบวิธีแบบกำหนดขอบเขต (Bracketing method)

ระเบียบวิธีแบบกำหนดขอบเขต (Bracketing method)

ระเบียบวิธีแบบกำหนดขอบเขตเป็นวีธีที่รู้ว่า คำตอบจะต้องอยู่ในช่วงใดช่วง หนึ่งของค่า x จึงทำการกำหนดค่าเริ่มต้นสองค่า คร่อมรากใดรากหนึ่งของ สมการ ซึ่งจะเป็นขอบเขตของช่วงที่จะหารากของสมการ วิธีแบบกำหนด ขอบเขต จะกล่าวถึงในหัวข้อนี้คือ

- 1. ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- 2. ระเบียบวิธีการวางตัวผิดที่ (False position method)

ระเบียบวิธีแบบเปิด (Open method)

ระเบียบวิธีแบบเปิด (Open method)

การหาค่ารากของวิธีนี้ต้อง กำหนดค่าเดาเริ่มต้นในการคำนวณ 1 ค่าหรือ มากกว่า 1 ค่า โดยไม่จำเป็นต้องคร่อมรากใดรากหนึ่งของสมการ วิธีแบบ เปิด จะกล่าวถึงในหัวข้อนี้คือ

- 1. ระเบียบวิธีทำซ้ำด้วยจุดตรึง (Fixed Point Iteration Method)
- 2. ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- 3. ระเบียบวิธีเซแคนต์ (Secant Method)

Outline

บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข

- 2.1 บทน้ำ
- 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- 2.4 ระเบียบวิธีการวางตัวผิดที่ (False position method)
- 2.5 ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- 2.7 ระเบียบวิธีเซแคนต์ (Secant Method)

ระเบียบวิธีเชิงกราฟเป็นวิธีอย่างง่ายในการหาค่าประมาณของรากของ สมการ f(x)=0 โดยการเขียนกราฟของฟังก์ชันและจะสังเกตเห็นว่า กราฟ ของฟังก์ชันตัดกับแกน x ที่จุดใด จุดนั้น คือ **รากของสมการ (Roots of equation)** นั่นคือ จุด x ที่ทำให้ f(x)=0 แสดงได้ดังรูป 2

รูปที่ 2: กราฟของฟังก์ชันที่มีรากของสมการ 1 ราก

รากของสมการอาจจะมีได้มากกว่าหนึ่งค่า แสดงได้ดังรูป 3

รูปที่ 3: กราฟของฟังก์ชันที่มีรากของสมการหลายราก

ตัวอย่างที่ 2.2 จงหารากของสมการต่อไปนี้

$$f(x) = \frac{668.06}{x} (1 - e^{-0.20.146843x}) - 40 \tag{2.1}$$

ในช่วง [4,20] โดยระเบียบวิธีเชิงกราฟ

วิธีทำ แทนค่า x ที่อยู่ช่วง [4,20] ในสมการที่ (2.1) จะได้ผลลัพธ์ดังตาราง ที่ 1

\boldsymbol{x}	f(x)		
4	34.190		
8	17.712		
12	6.114		
16	-2.230		
20	-8.368		

ตาราง 1: แสดงการประมาณค่ารากของสมการ $\mathit{f}(x) = \tfrac{668.06}{x}(1-e^{-0.20.146843x}) - 40$

รูปที่ 4: กราฟแสดงการประมาณค่ารากของสมการได้เท่ากับ 14.75

จากตารางที่ (2.1) และรูปที่ (4) พบว่า เส้นโค้ง f(x) ตัดแกน x ระหว่าง 12 และ 16 (เครื่องหมายของฟังก์ชันต่างกัน) ดังนั้น รากของสมการมีค่าเท่ากับ 14.75

ตัวอย่างที่ 2.3

จงหารากของสมการ $\sin(10x) + \cos(3x) = 0$ ในช่วง [0,5] โดยระเบียบ วิธีเชิงกราฟ (Graphical Method)

วิธีทำ จากสมการ $\sin(10x)+\cos(3x)=0$ ในช่วง [0,5] สามารถเขียน กราฟได้ดังรูปที่ 5 ซึ่งพบว่า มีรากของสมการหลายรากที่อยู่ในช่วง [0,5] ถ้า พิจารณาช่วง [3,5] จะได้รากของสมการซึ่งแสดงได้ดังรูปที่ 6 และพิจาณา ช่วง [4.2,4.3] จะได้รากของสมการซึ่งแสดงได้ดังรูปที่ 7

รูปที่ 5: กราฟของสมการ $\sin(10x) + \cos(3x) = 0$ ในช่วง [0,5]

รูปที่ 6: กราฟของสมการ $\sin(10x) + \cos(3x) = 0$ ในช่วง [3,5] (ตัวอย่างที่ 2.3)

รูปที่ 7: กราฟของสมการ $\sin(10x) + \cos(3x) = 0$ ในช่วง [3,5] (ตัวอย่างที่ 2.3)

Outline

บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข

- 2.1 บทน้ำ
- 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- 2.4 ระเบียบวิธีการวางตัวผิดที่ (False position method)
- 2.5 ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- 2.7 ระเบียบวิธีเซแคนต์ (Secant Method)

▶ วิธีแบ่งครึ่งช่วง (Bisection method) เป็นวิธีหาค่ารากของ สมการทั้งเชิงเส้น และไม่เชิงเส้น ซึ่งวิธีแบ่งครึ่งช่วงนี้เป็นวิธีที่รู้ว่า คำ ตอบจะต้องอยู่ในช่วงใดช่วงหนึ่งของค่า x จึงทำการกำหนดค่าเริ่มต้น สองค่า โดยคร่อมรากใดรากหนึ่งของสมการ แล้วทำการแบ่งครึ่งช่วง เพื่อหารากของสมการ ซึ่งจะต้องเลือกช่วงที่ค่าฟังก์ชันมีเครื่องหมาย ตรงข้ามกันเสมอ

▶ กำหนดให้ f(x) เป็นฟังก์ชันต่อเนื่องในช่วง x_l ถึง x_u โดยที่ $f(x_l)$ และ $f(x_u)$ มีเครื่องหมายตรงกันข้าม หรือเมื่อ $f(x_l)f(x_u) < 0$ แล้วจะมีค่า รากของสมการอย่างน้อยที่สุด 1 ค่า อยู่ระหว่าง x_l ถึง x_u แสดงดังรูป ที่ 8

รูปที่ 8: ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)

ขั้นตอนวิธีของระเบียบวิธีการแบ่งครึ่งช่วง

- 1. เลือก x_l และ x_u โดยที่ $f(x_l)$ และ $f(x_u)$ มีเครื่องหมายตรงกันข้าม หรือเมื่อ $f(x_l)f(x_n) < 0$
- 2. ประมาณค่ารากของสมการ x_r โดย

$$x_r = \frac{x_l + x_u}{2}$$

- 3. ตรวจสอบเงื่อนไข ต่อไปนี้
 - ightharpoonup ถ้า $f(x_l)f(x_r) < 0$ แล้ว รากอยู่ในช่วง (x_l, x_r) ดังนั้น กำหนดให้ $x_u = x_r$ และกลับไปยังขั้นตอนที่ 2
 - lacktriangle ถ้า $f(x_l)f(x_r)>0$ แล้ว รากอยู่ในช่วง (x_r,x_u) ดังนั้น กำหนดให้ $x_l=x_r$ และกลับไปยังขั้นตอนที่ 2 lacktriangle ถ้า $f(x_l)f(x_r)=0$ แล้ว x_r เป็นรากของสมการ และออกจากการ

กำหนดให้ x_0, x_1, x_2, \dots มีค่าเท่ากับ x_r ในแต่ละรอบของการทำซ้ำ จะเห็น ได้ว่า ค่าของ x_r ในแต่ละรอบจะเลื่อนเข้าใกล้รากของสมการ แสดงดังรูปที่ 9

รูปที่ 9: การหาคำตอบของสมการ f(x) ด้วยระเบียบวิธีการแบ่งครึ่งช่วง

ในปัญหาทางปฏิบัติ ค่ารากของสมการที่ได้จากการคำนวณอาจจะไม่ใช่คำ ตอบที่แท้จริง (exact) จึงไม่สอดคล้องกับเงื่อนไข $f(x_l)f(x_r)=0$ ในกรณี เช่นนี้ เราจำเป็นต้องนำค่าคลาดเคลื่อน (ε) มาเป็นเกณฑ์ตรวจสอบว่า ราก ของสมการที่ได้ลู่เข้าสู่คำตอบที่แท้จริงหรือไม่ โดยพิจารณาร้อยละของค่า คลาดเคลื่อนเปรียบเทียบกับค่าประมาณ : ε_a ซึ่งนิยามดังนี้

$$\varepsilon_a = \frac{|x_r^{\text{New}} - x_r^{\text{Old}}|}{|x_r^{\text{New}}|} \times 100\%$$
 (2.2)

ตัวอย่างที่ 2.4

จงหารากของสมการ $x^5+x^3+x^2-1=0$ ในช่วง [0,1] โดยระเบียบวิธี การแบ่งครึ่งช่วง (Bisection method) เมื่อร้อยละของค่าคลาดเคลื่อน เปรียบเทียบกับค่าประมาณต้องน้อยกว่า 0.1%

i	x_l	x_u	x_r	ε_a
1	0.0000000000	1.00000000000	0.50000000000	
2	0.5000000000	1.00000000000	0.7500000000	33.3333333333
3	0.5000000000	0.75000000000	0.6250000000	20.00000000000
4	0.6250000000	0.75000000000	0.6875000000	9.0909090909
5	0.6875000000	0.75000000000	0.7187500000	4.3478260870
6	0.6875000000	0.7187500000	0.7031250000	2.222222222
7	0.6875000000	0.7031250000	0.6953125000	1.1235955056
8	0.6953125000	0.7031250000	0.6992187500	0.5586592179
9	0.6992187500	0.7031250000	0.7011718750	0.2785515320
10	0.6992187500	0.7011718750	0.7001953125	0.1394700139
11	0.6992187500	0.7001953125	0.6997070312	0.0697836778

ตาราง 2: แสดงการคำนวณหาค่ารากของสมการในตัวอย่างที่ 2.4 ด้วยระเบียบวิธี แบ่งครึ่งช่วง

รูปที่ 10: กราฟของฟังก์ชัน $\mathit{f}(x) = x^5 + x^3 + x^2 - 1$

ตัวอย่างที่ 2.5

จงหารากของสมการ $x^2+3x-9=0$ ในช่วง [-1,7] โดยระเบียบวิธีการ แบ่งครึ่งช่วง (Bisection method) กำหนดร้อยละของค่าคลาดเคลื่อน เปรียบเทียบกับค่าประมาณต้องน้อยกว่า 5%

วิธีทำ กำหนดให้ $f(x)=x^2+3x-9$ โดยใช้กระบวนการระเบียบวิธีการ แบ่งครึ่งช่วง แสดงค่าของ $x_l,\ x_u$ และ x_r ได้ดังตารางที่ 3 พร้อมทั้งกราฟ ของฟังก์ชัน $f(x)=x^2+3x-9$ แสดงได้ดังรูปที่ 11 ดังนั้นรากของสมการ คือ 1.5625000000

i	x_l	x_u	x_r	ε_a
1	-1.0000000000	7.0000000000	3.0000000000	
2	-1.00000000000	3.00000000000	1.0000000000	200.00000000000
3	1.0000000000	3.00000000000	2.00000000000	50.00000000000
4	1.0000000000	2.00000000000	1.50000000000	33.333333333
5	1.5000000000	2.00000000000	1.7500000000	14.2857142857
6	1.5000000000	1.7500000000	1.6250000000	7.6923076923
7	1.50000000000	1.6250000000	1.5625000000	4.0000000000

ตาราง 3: แสดงการคำนวณหาค่ารากของสมการในตัวอย่างที่ 2.5 ด้วยระเบียบวิธี แบ่งครึ่งช่วง

รูปที่ 11: กราฟของฟังก์ชัน $f(x) = x^2 + 3x - 9$

Outline

บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข

บทที่ 2 รากของสมการ (Root Finding)

- 2.1 บทน้ำ
- 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- 2.4 ระเบียบวิธีการวางตัวผิดที่ (False position method)
- 2.5 ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- 2.7 ระเบียบวิธีเซแคนต์ (Secant Method)

ระเบียบวิธีการวางตัวผิดที่ (False position method) จะคำนวณราก ของสมการจากความสัมพันธ์ทางเรขาคณิตของรูปสามเหลี่ยมที่เกิดขึ้นจาก การลากเส้นตรงเชื่อมระหว่างจุด $(x_l,f(x_l))$ และ $(x_u,f(x_u))$ กับแกน x แทนการแบ่งครึ่งช่วงปิด [a,b] ดังรูปที่ 12

รูปที่ 12: False position method

พิจารณาจากรูปที่ 12 และใช้กฎของสามเหลี่ยมคล้าย จะได้

$$\frac{f(x_l)}{x_r - x_l} = \frac{f(x_u)}{x_r - x_u} \tag{2.3}$$

ดังนั้น สูตรการหาค่ารากของระเบียบวิธีการวางตัวผิดที่ คือ

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$
 (2.4)

ขั้นตอนวิธีของระเบียบวิธีการวางตัวผิดที่ (False position method)

- 1. เลือก x_l และ x_u โดยที่ $f(x_l)$ และ $f(x_u)$ มีเครื่องหมายตรงกันข้าม หรือเมื่อ $f(x_l)f(x_n) < 0$
- 2. ประมาณค่ารากของสมการ x_r โดย

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

- 3. ตรวจสอบเงื่อนไข ต่อไปนี้
 - $\mathbf{3.1}$ ถ้า $f(x_l)f(x_r) < 0$ แล้ว รากอยู่ในช่วง (x_l,x_r) ดังนั้น กำหนดให้ $x_u = x_r$ และกลับไปยังขั้นตอนที่ 2
 - 3.2 ถ้า $f(x_l)f(x_r)>0$ แล้ว รากอยู่ในช่วง (x_r,x_u) ดังนั้น กำหนดให้ $x_l=x_r$ และกลับไปยังขั้นตอนที่ 2 3.3 ถ้า $f(x_l)f(x_r)=0$ แล้ว x_r เป็นรากของสมการ และออกจากการ

์ ตัวอย่างที่ 2.6

จงหารากของสมการ $x^5+x^3+x^2-1=0$ ในช่วง [0,1] โดยระเบียบวิธี การวางตัวผิดที่ (False position method) กำหนดร้อยละของค่าคลาด เคลื่อนเปรียบเทียบกับค่าประมาณต้องน้อยกว่า 0.1%

i	x_l	x_u	x_r	ε_a
1	0.00000000000	1.00000000000	0.3333333333	
2	0.3333333333	1.00000000000	0.5317919075	37.3188405797
3	0.5317919075	1.00000000000	0.6290354316	15.4591489095
4	0.6290354316	1.00000000000	0.6712659174	6.2911708683
5	0.6712659174	1.00000000000	0.6884979332	2.5028420491
6	0.6884979332	1.00000000000	0.6953367364	0.9835239343
7	0.6953367364	1.00000000000	0.6980198915	0.3843952188
8	0.6980198915	1.0000000000	0.6990678088	0.1499020904
9	0.6990678088	1.0000000000	0.6994763428	0.0584057023

ตาราง 4: แสดงการคำนวณหาค่ารากสมการในตัวอย่างที่ 2.6 ด้วยระเบียบวิธีการ วางตัวฝืดที่ (False position method)

ตัวอย่างที่ 2.7

จงหารากของสมการ $x^2+3x-9=0$ ในช่วง [-1,5] โดยระเบียบวิธีการ วางตัวผิดที่ กำหนดค่าคลาดเคลื่อนเปรียบเทียบกับค่าประมาณต้องน้อยกว่า 5%

กำหนดให้ $f(x)=x^2+3x-9$ โดยใช้กระบวนการระเบียบวิธีการวางตัวผิด ที่ แสดงค่าของ x_l x_u และ x_r ได้ดังตารางที่ 5 ดังนั้นรากของสมการ คือ 1.8376686475

i	x_l	x_u	x_r	ε_a
1	-1.0000000000	5.0000000000	0.5714285714	
2	0.5714285714	5.00000000000	1.3833333333	58.6919104991
3	1.3833333333	5.00000000000	1.6962699822	18.4485165794
4	1.6962699822	5.00000000000	1.8028943030	5.9140638789
5	1.8028943030	5.00000000000	1.8376686475	1.8923076540

ตาราง 5: แสดงการคำนวณหาค่ารากของสมการในตัวอย่างที่ 2.7 ด้วยระเบียบวิธี การวางตัวผิดที่

ข้อสังเกต 2.1

จากตัวอย่าง 2.5 และ ตัวอย่าง 2.7 พบว่า ระเบียบวิธีการวางตัวผิดที่ลู่ เข้าหารากของสมการได้เร็วกว่าระเบียบวิธีการแบ่งครึ่งช่วง เมื่อเทียบจำนวน รอบของการทำซ้ำ โดยที่ค่าคลาดเคลื่อนเปรียบเทียบกับค่าประมาณต้อง น้อยกว่า 5% $(\varepsilon_a < 5\%)$

ถึงแม้ว่าระเบียบวิธีการวางตัวผิดที่ดูเหมือนจะเป็นวิธีแบบกำหนดขอบเขตที่ ลู่เข้าหารากของสมการได้รวดเร็ว แต่ก็มีบางกรณีที่วิธีนี้ก็ทำงานได้ไม่ดี ซึ่งมี บางกรณีที่ระเบียบวิธีการแบ่งครึ่งช่วงให้ผลลัพธ์ที่ดีกว่า ดังตัวอย่างต่อไปนี้ ตัวอย่างที่ 2.8

จงหารากของสมการ $f(x)=x^{10}-1$ ในช่วง [0,1.3] โดยระเบียบวิธีการ แบ่งครึ่งช่วง และระเบียบวิธีการวางตัวผิดที่

- ▶ กำหนดให้ $f(x) = x^{10} 1$ โดยใช้ระเบียบวิธีการแบ่งครึ่งช่วง จะได้ ผลลัพธ์ดังตารางที่ 6 และระเบียบวิธีการวางตัวผิดที่ จะได้ผลลัพธ์ดังตารางที่ 7
- > จากตารางที่ 6 พบว่า เมื่อทำซ้ำรอบที่ 5 ค่า ε_a มีค่าเท่ากับ 0.468750 % ในขณะที่ระเบียบวิธีการวางตัวผิดที่ เมื่อทำซ้ำรอบที่ 5 ค่า ε_a มีค่า เท่ากับ 52.741685 ซึ่งแสดงดังตารางที่ 7
- ดังนั้นจะเห็นได้ว่า ระเบียบวิธีการแบ่งครึ่งช่วงลู่เข้าหารากของสมการ ได้เร็วกว่าระเบียบวิธีการวางตัวผิดที่

i	x_l	x_u	x_r	ε_a	$arepsilon_t$
0	0.000000	1.300000	0.650000	100.000000	35.000000
1	0.650000	1.300000	0.975000	33.333333	2.500000
2	0.975000	1.300000	1.137500	14.285714	13.750000
3	0.975000	1.137500	1.056250	7.692308	5.625000
4	0.975000	1.056250	1.015625	4.000000	1.562500
5	0.975000	1.015625	0.995313	2.040816	0.468750

ตาราง 6: แสดงการคำนวณหาค่ารากของสมการในตัวอย่างที่ 2.8 ด้วยระเบียบวิธี การแบ่งครึ่งช่วง (Bisection method)

i	x_l	x_u	x_r	ε_a	$arepsilon_t$
0	0.000000	1.300000	0.094300	100.000000	90.570040
1	0.094300	1.300000	0.181759	48.118299	81.824113
2	0.181759	1.300000	0.262874	30.857040	73.712599
3	0.262874	1.300000	0.338105	22.250800	66.189490
4	0.338105	1.300000	0.407878	17.106298	59.212208
5	0.407878	1.300000	0.472583	13.691820	52.741685

ตาราง 7: แสดงการคำนวณหาค่ารากสมการในตัวอย่างที่ 2.8 ด้วยระเบียบวิธีการ วางตัวผิดที่ (False position method)

รูปที่ 13: แสดงการลู่เข้าสู่ค่ารากของามการของระเบียบวิธีการวางตัวผิดที่ (False position method) ของตัวอย่างที่ 2.8

แบบฝึกหัด 2.1

- 1. จงหาค่ารากของสมุการต่อไปนี้ โดยใช้ระเบียบวิธีแบ่งครึ่งช่วง เมื่อร้อย ละของค่าคลาดเคลื่อนที่ยอมรับได้ต้องน้อยกว่า 0.05% กำหนด ทศนิยม 3 ตำแหน่ง
 - 1.1 $x^2 4x + 9 = 0$
 - $1.2 \ x^3 + x^2 1 = 0$
 - $1.3 \ 5x \log_{10} x 6 = 0$
 - 1.4 $x^2 + x \cos x = 0$
- 2. จงหาค่ารากของสมการต่อไปนี้ โดยใช้ระเบียบวิธีวางผิดที่ เมื่อร้อยละ ของค่าคลาดเคลื่อนที่ยอมรับได้ต้องน้อยกว่า 0.05% กำหนดทศนิยม 3 ตำแหน่ง
 - $2.1 \ x^3 + x^2 + x + 7 = 0$
 - $2.2 \ x^3 x 4 = 0$
 - $2.3 \ x = 3x^{-x}$
 - $2.4 x \tan x + 1 = 0$
- 3. จากแบบฝึกหัดข้อที่ 1 จงเขียนภาษาโปรแกรมไพธอนเพื่อหาค่าราก ของสมการ
- 4. จากแบบฝึกหัดข้อที่ 2 จงเขียนภาษาโปรแกรมไพธอนเพื่อหาค่าราก ของสมการ

เฉลยแบบฝึกหัด

- 1. 1.1 2.706
 - 1.2 0.755
 - 1.3 2.741
 - $1.4 \ 0.550$
- 2. 2.1 2.105
 - 2.2 1.796
 - 2.3 1.0499
 - 2.4 2.798

Outline

บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข

บทที่ 2 รากของสมการ (Root Finding)

- 2.1 บทน้ำ
- 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- 2.4 ระเบียบวิธีการวางตัวผิดที่ (False position method)
- 2.5 ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- 2.7 ระเบียบวิธีเซแคนต์ (Secant Method)

การหาคำตอบของสมการ f(x)=0 โดยระเบียบวิธีทำซ้ำแบบจุดตรึงอย่าง ง่ายนี้อันดับแรกจะต้องแปลง สมการดังกล่าวให้อยู่ในรูป

$$x = g(x) \tag{2.5}$$

โดยมีสมบัติว่า สำหรับค่า x ใดๆ ถ้า x=g(x) แล้วจะต้องได้ว่า f(x)=0 ตัวอย่างเช่น

$$x^3 + x^2 - 2 = 0$$

สามารถเขียนได้หลายรูปแบบ เช่น

$$x = \sqrt{\frac{2}{1+x}}, \quad x = \sqrt{2-x^3}, \quad x = (2-x^2)^{1/3}$$

ซึ่งสามารถหาค่ารากของสมการได้

กำหนดให้ x_0 เป็นค่ารากโดยประมาณของสมการ 2.5 แล้วแทนค่า x_0 ใน สมการ 2.5 จะได้การประมาณค่าครั้งที่ 1 ดังนี้

$$x_1 = g(x_0)$$

ในทำนองเดียวกันกับสมการข้างต้น จะได้

$$x_2 = g(x_1), x_3 = g(x_2), ..., x_{i+1} = g(x_i)$$

เมื่อ $i = 1, 2, 3, \dots$

รูปแบบทั่วไปของระเบียบวิธีทำซ้ำแบบจุดตรึง คือ

$$x_{i+1} = g(x_i) \tag{2.6}$$

สำหรับ i=1,2,3,...และค่าคลาดเคลื่อน จะพิจารณาจาก

$$\varepsilon_a = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| \times 100\%$$

โดยที่ $|arepsilon_a|<arepsilon_s$

ขั้นตอนระเบียบวิธีทำซ้ำแบบจุดตรึง

- 1. แปลงสมการ f(x)=0 ให้อยู่ในรูป x=g(x)
- $\mathbf{2}$. เลือกค่าเริ่มต้น x_0
- 3. คำนวณหาค่า $x_{i+1} = g(x_i)$
- 4. นำค่า x_{i+1} ที่ได้ในขั้นตอนที่ 2 มาคำนวณหาค่า

$$\varepsilon_a = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| \times 100\%$$

และตรวจสอบกับเงื่อนไข $|\varepsilon_a|<\varepsilon_s$ ถ้าไม่เป็นไปตามเงื่อนไขให้กลับไป ทำขั้นตอน 3 ใหม่ แต่ถ้าเป็นไปตามเงื่อนไข $|\varepsilon_a|<\varepsilon_s$ สรุปได้ว่าค่า x_{i+1} คือค่ารากของสมการที่ต้องการ

์ ตัวอย่างที่ 2.9

จงหารากของสมการ $f(x)=e^{-x}-x$ โดยระเบียบวิธีทำซ้ำแบบจุดตรึงอย่าง ง่าย (Simple Fixed-point Iteration Method) ต้องการความถูกต้อง อย่างน้อยที่สุดในตำแหน่งที่ 3 และกำหนดให้ค่าเริ่มต้น $x_0=0$ (ค่าจริง = 0.56714329)

i	x_i	ε_a	$arepsilon_t$
0	0	-	100.00000000
1	1.00000000	100.00000000	76.32228356
2	0.36787944	171.82818285	35.13465686
3	0.69220063	46.85363946	22.05039533
4	0.50047350	38.30914659	11.75536952
5	0.60624354	17.44678968	6.89424450
:	:	:	:
12	0.56641473	0.35556841	0.12846081
13	0.56755664	0.20119652	0.07288234
14	0.56690891	0.11425564	0.04132608
15	0.56727623	0.06475157	0.02344067
16	0.56706790	0.03673877	0.01329322

ตาราง 8: แสดงค่าจากการคำนวณของการกระทำซ้ำด้วยระเบียบวิธีทำซ้ำแบบจุด ตรึงของตัวอย่างที่ 2.9

รูปที่ 14: แสดงค่าจากการคำนวณของการกระทำซ้ำด้วยระเบียบวิธีทำซ้ำแบบจุด ตรึงของตัวอย่างที่ 2.9

รูปที่ 15: แสดงค่าคลาดเคลื่อน (ε_a) จากการคำนวณของการกระทำซ้ำด้วย ระเบียบวิธีทำซ้ำแบบจุดตรึงของตัวอย่างที่ 2.9

รูปที่ 16: แสดงค่าคลาดเคลื่อน (ε_t) จากการคำนวณของการกระทำซ้ำด้วย ระเบียบวิธีทำซ้ำแบบจุดตรึงของตัวอย่างที่ 2.9

ข้อสังเกต 2.2

- > ระเบียบวิธีทำซ้ำแบบจุดตรึงเป็นการจัดสมการให้อยู่ในรูป x=g(x) โดยทั่วไปสามารถจัดรูปสมการ x=g(x) ได้หลายรูปแบบ เช่น กำหนดให้ $f(x)=x^2-4x+6$ จัดรูปจะได้ $x=\frac{x^2+6}{4}$ หรือ $x=\sqrt{4x-6}$ จะเห็นได้ว่า g(x) มีหลายฟังก์ชัน
- lacktriangle ซึ่งจะทราบได้อย่างไรว่าจะเลือกฟังก์ชันใดในการหาค่ารากของสมการ ด้วยวิธีทำซ้ำอย่างง่ายที่จะให้ค่าผลลัพธ์ลู่เข้า ดังนั้น จำเป็นต้อง พิจารณาเงื่อนไขที่จะให้ค่าผลลัพธ์ลู่เข้าสู่รากของสมการ โดยเงื่อนไขดัง กล่าวคือ |g'(x)| < 1
- lacktriangle ดังนั้น จะสามารถเลือกฟังก์ชันใดก็ได้ที่จะให้ค่าผลลัพธ์ลู่เข้าเสมอ เมื่อ |g'(x)| < 1

ตัวอย่างที่ 2.10 จากตัวอย่างที่ 2.9 นั่นคือ $g(x)=e^{-x}$ จะได้

$$g'(x) = -e^{-x}$$

สำหรับ $x\in [0,1]$ จะได้ |g'(x)|<1 ดังนั้น $g(x)=e^{-x}$ สำหรับ $x\in [0,1]$ ให้ค่าผลลัพธ์ลู่เข้าเสมอ

สำหรับการหาคำตอบของสมการ f(x)=0 โดยระเบียบวิธีเชิงกราฟสองเส้น นี้ อันดับแรกจะต้องแปลง สมการดังกล่าวให้อยู่ในรูป

$$f_1(x) = f_2(x)$$

ดังนั้นในการพิจารณากราฟจะมี 2 สมการ คือ

$$y_1 = f_1(x)$$
 และ $y_2 = f_2(x)$

โดยการสร้างกราฟของฟังก์ชัน y_1 และ y_2 ซึ่งอาศัยหลักการที่กราฟของ ฟังก์ชันสองฟังก์ชันตัดกัน ตรงบริเวณจุดตัดกันของกราฟ คือ ค่ารากของ สมการ ซึ่งเราจะเรียกวิธีนี้ว่า **วิธีเชิงกราฟสองเส้น (The Two-Curve Graphical Method)**

ตัวอย่างที่ 2.11จงหารากของสมการ $e^{-x}-x=0$ โดยใช้วิธีเชิงกราฟสองเส้น

\boldsymbol{x}	$f_1(x)$	$f_2(x)$
0	0	1.00000000
0.2	0.2	0.81873075
0.4	0.4	0.67032005
0.6	0.6	0.54881164
0.8	0.8	0.44932896
1	1	0.36787944

ตาราง 9: แสดงค่าจากการคำนวณด้วยวิธีเชิงกราฟสองเส้นของตัวอย่างที่ 2.9

รูปที่ 17: กราฟแสดงการหาค่ารากของสมการ $e^{-x}-x=0$

Outline

บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข

บทที่ 2 รากของสมการ (Root Finding)

- 2.1 บทน้ำ
- 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- 2.4 ระเบียบวิธีการวางตัวผิดที่ (False position method)
- 2.5 ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- 2.7 ระเบียบวิธีเซแคนต์ (Secant Method)

ระเบียบวิธีนี้จะกำหนดค่าเริ่มต้นเพียงค่าเดียวเพื่อที่จะหาค่ารากของสมการ นั่นคือ ถ้า x_i เป็นค่าเริ่มต้นของการประมาณค่ารากของสมการ แล้วสมการ เส้นสัมผัสที่จุด $(x_i,f(x_i))$ จะตัดแกน x ที่จุด x_{i+1} โดยจุดดังกล่าวจะ เป็นการประมาณค่ารากของสมการที่ถูกปรับปรุงให้ดีขึ้นจากจุดเดิม ดังรูปที่ 18

รูปที่ 18: กราฟแสดงการประมาณค่ารากของสมการโดยอาศัยความชั้น

จากรูปที่ 18 พิจารณาความชั้น ของฟังก์ชั้นที่จุด $(x_i,\mathit{f}(x_i))$ จะได้

$$f'(x_i) = \frac{f(x_i) - 0}{x_i - x_{i+1}}$$

เพราะฉะนั้น รูปแบบทั่วไปคือ

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} \tag{2.7}$$

ซึ่งสมการ (2.7) เรียกว่า **สูตรนิวตันราฟสัน (Newton-Raphson** formula)

ขั้นตอนระเบียบวิธีนิวตันราฟสัน

- 1. หาฟังก์ชันที่ต้องการหาค่ารากของสมการจาก f(x)=0
- $\mathbf{2}$. เลือกค่าเริ่มต้น x_0
- 3. คำนวณหาค่า $x_{i+1} = x_i \frac{f(x_i)}{f'(x_i)}$
- 4. นำค่า x_{i+1} ที่ได้ในขั้นตอนที่ 2 มาคำนวณหาค่า

$$\varepsilon_a = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| \times 100\%$$

และตรวจสอบกับเงื่อนไข $|\varepsilon_a|<\varepsilon_s$ ถ้าไม่เป็นไปตามเงื่อนไขให้กลับไป ทำขั้นตอน 3 ใหม่ แต่ถ้าเป็นไปตามเงื่อนไข $|\varepsilon_a|<\varepsilon_s$ สรุปได้ว่าค่า x_{i+1} คือค่ารากของสมการที่ต้องการ

ตัวอย่างที่ 2.12

จงหารากของสมการ $f(x)=e^{-x}-x$ โดยระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method) ต้องการความถูกต้องอย่างน้อยที่สุดในตำ แหน่งที่ 3 และกำหนดให้ค่าเริ่มต้น $x_0=0$ (ค่าจริง =0.56714329)

i	x_i	ε_a	$arepsilon_t$
0	0	-	100.00000000
1	0.50000000	100.00000000	11.83885822
2	0.56631100	11.70929098	0.14675071
3	0.56714317	0.14672871	0.00002203
4	0.56714329	0.00002211	0.00000007

ตาราง 10: แสดงค่าจากการคำนวณของการกระทำซ้ำด้วยระเบียบวิธีนิวตันราฟสัน ของตัวอย่างที่ 2.12

รูปที่ 19: แสดงค่าจากการคำนวณของการกระทำซ้ำด้วยระเบียบวิธีนิวตันราฟสัน ของตัวอย่างที่ 2.12

รูปที่ 20: แสดงค่าคลาดเคลื่อน (ε_a) จากการคำนวณของการกระทำซ้ำด้วย ระเบียบวิธีนิวตันราฟสันของตัวอย่างที่ 2.12

รูปที่ 21: แสดงค่าคลาดเคลื่อน (ε_t) จากการคำนวณของการกระทำซ้ำด้วย ระเบียบวิธีนิวตันราฟสันของตัวอย่างที่ 2.12

ตัวอย่างที่ 2.13

จงหารากของสมการ $e^x\sin(x)-1=0$ โดยระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method) กำหนดให้ค่าเริ่มต้น $x_0=0.5$ และ ต้องการความถูกต้องอย่างน้อยที่สุดในตำแหน่งที่ 3

i	x_i	ε_a
1	0.59366571	15.77751665
2	0.58854847	0.86946781
3	0.58853274	0.00267138

ตาราง 11: แสดงค่าจากการคำนวณของการกระทำซ้ำด้วยระเบียบวิธีนิวตันราฟสัน ของตัวอย่างที่ 2.13

รูปที่ 22: แสดงค่าจากการคำนวณของการกระทำซ้ำด้วยระเบียบวิธีนิวตันราฟสัน ของตัวอย่างที่ 2.13

รูปที่ 23: แสดงค่าคลาดเคลื่อน (ε_a) จากการคำนวณของการกระทำซ้ำด้วย ระเบียบวิธีนิวตันราฟสันของตัวอย่างที่ 2.13

แบบฝึกหัด 2.2

1. จงหาค่ารากของสมการต่อไปนี้ โดยใช้ระเบียบวิธีจุดตรึงอย่างง่าย เมื่อ ร้อยละของค่าคลาดเคลื่อนที่ยอมรับได้ต้องน้อยกว่า 0.05% กำหนด ทศนิยม 4 ตำแหน่ง

1.1
$$e^x = 3x$$

1.2 $x = \frac{1}{(x+1)^2}$
1.3 $1 + x^2 = x^3$
1.4 $x - \sin x = 0.5$

- 2. จงหาค่ารากของสมการต่อไปนี้ โดยใช้ระเบียบวิธีนิวตันราฟสัน เมื่อ ร้อยละของค่าคลาดเคลื่อนที่ยอมรับได้ต้องน้อยกว่า 0.05% กำหนด ทศนิยม 3 ตำแหน่ง
 - $2.1 \ x^{\sin 2} 4 = 0$
 - $2.2 \ e^x = 4x$
 - $2.3 \ x^3 5x + 3 = 0$
 - $2.4 ext{ } xe^x = \cos x$
- 3. จากแบบฝึกหัดข้อที่ 1 จงเขียนภาษาโปรแกรมไพธอนเพื่อหาค่าราก ของสมการ
- 4. จากแบบฝึกหัดข้อที่ 2 จงเขียนภาษาโปรแกรมไพธอนเพื่อหาค่าราก ของสมการ

เฉลยแบบฝึกหัด

- 1. 1.1 0.6190
 - 1.2 0.4656
 - 1.3 1.4660
 - 1.4 1.4970
- 2. 2.1 4.5932
 - 2.2 0.3574
 - $2.3 \ x_0 = 0.5, x_1 = 0.6470, x_2 = 0.65656, \dots$
 - $2.4 \ x_0 = 0.5, x_1 = 0.5180, x_2 = 0.5180, \dots$

Outline

บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข

บทที่ 2 รากของสมการ (Root Finding)

- 2.1 บทน้ำ
- 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- 2.4 ระเบียบวิธีการวางตัวผิดที่ (False position method)
- 2.5 ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- 2.7 ระเบียบวิธีเซแคนต์ (Secant Method)

จากระเบียบวิธีนิวตันราฟสัน นั่นคือ

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$
 (2.8)

จะเห็นได้ว่า ระเบียบวิธีนิวตันราฟสันต้องมีการหาอนุพันธ์ของฟังก์ชัน ซึ่งใน บางฟังก์ชันมีรูปแบบที่ซับซ้อนและหาอนุพันธ์ได้ลำบาก ทำให้การหาค่าราก ของสมการจะยุ่งยากมากขึ้น เพื่อหลีกเลี่ยงปัญหาดังกล่าว ระเบียบวิธี เซแคนต์ (Secant Method) จะแทนค่า $f'(x_i)$ ในสมการ (2.8) โดย การประมาณค่าที่สามารถคำนวณได้ง่ายขึ้น

เนื่องจาก อนุพันธ์ของฟังก์ชันนิยามโดย

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

สำหรับ h มีค่าน้อยมากๆ จะได้

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

โดยเฉพาะอย่างยิ่ง ถ้า $x=x_i$ และ $h=x_{i-1}-x_i$ จะได้

$$f'(x_i) \approx \frac{f(x_{i-1}) - f(x_i)}{x_{i-1} - x_i}$$
 (2.9)

แทนค่า (2.9) ใน (2.8) จะได้

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$
(2.10)

ซึ่งสมการ (2.10) เรียกว่า **สูตรเซแคนต์ (Secant formula)**

รูปที่ 24: กราฟแสดงการประมาณค่ารากของสมการโดยระเบียบวิธีเซแคนต์

ขั้นตอนระเบียบวิธีเซแคนต์ (Secant Method)

- 1. หาฟังก์ชันที่ต้องการหาค่ารากของสมการจาก f(x)=0
- 2. เลือกค่าเริ่มต้น x_0
- 3. คำนวณหาค่า $x_{i+1} = x_i \frac{f(x_i)(x_{i-1} x_i)}{f(x_{i-1}) f(x_i)}$
- 4. นำค่า x_{i+1} ที่ได้ในขั้นตอนที่ 2 มาคำนวณหาค่า

$$\varepsilon_a = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| \times 100\%$$

และตรวจสอบกับเงื่อนไข $|arepsilon_a|<arepsilon_s$ ถ้าไม่เป็นไปตามเงื่อนไขให้กลับไป ทำขั้นตอน 3 ใหม่ แต่ถ้าเป็นไปตามเงื่อนไข $|arepsilon_a|<arepsilon_s$ สรุปได้ว่าค่า x_{i+1} คือค่ารากของสมการที่ต้องการ

ตัวอย่างที่ 2.14

จงหารากของสมการ $f(x)=e^{-x}-x$ โดยระเบียบระเบียบวิธีเซแคนต์ (Secant Method) กำหนดให้ $\varepsilon_s=0.05\%$ และค่าเริ่มต้น $x_{-1}=0$ และ $x_0=1$ (ค่าจริง =0.56714329)

i	x_i	ε_a	ε_t
1	0.61269984	63.21205588	8.03263436
2	0.56383839	8.66586039	0.58272766
3	0.56717036	0.58747239	0.00477277
4	0.56714331	0.00476984	0.00000293

ตาราง 12: แสดงค่าจากการคำนวณของการกระทำซ้ำด้วยระเบียบวิธีเซแคนต์ของ ตัวอย่างที่ 2.14

รูปที่ 25: แสดงค่าจากการคำนวณของการกระทำซ้ำด้วยระเบียบวิธีเซแคนต์ของ ตัวอย่างที่ 2.14

รูปที่ 26: แสดงค่าคลาดเคลื่อน (ε_a) จากการคำนวณของการกระทำซ้ำด้วย ระเบียบวิธีเซแคนต์ของตัวอย่างที่ 2.14

รูปที่ 27: แสดงค่าคลาดเคลื่อน (ε_t) จากการคำนวณของการกระทำซ้ำด้วย ระเบียบวิธีเซแคนต์ของตัวอย่างที่ 2.14

Comparison of Convergence of the Secant and False-Position Techniques

ตัวอย่างที่ 2.15

จงหารากของสมการ $f(x)=\ln x$ โดยระเบียบวิธีเซแคนต์ และระเบียบวิธี วางตัวผิดที่ กำหนดให้ค่าเริ่มต้น $x_l=x_{i-1}=0.5$ และ $x_u=x_i=5$ วิธีทำ กำหนดให้ $f(x)=\ln x=0$ $x_l=x_{i-1}=0.5$ และ $x_u=x_i=5$ โดยใช้ระเบียบวิธีเซแคนต์ และระเบียบวิธีวางตัวผิดที่ สามารถหาค่ารากของ สมการได้ดังตารางที่ 13 และ 14 จะเห็นได้ว่า เมื่อใช้ระเบียบวิธีวางตัวผิดที่ ในการประมาณค่ารากของสมการจะลู่เข้าสู่คำตอบ ส่วนการคำนวณโดยใช้ ระเบียบวิธีเซแคนต์จะลู่ออกจากคำตอบ

Comparison of Convergence of the Secant and False-Position Techniques

i	x_i	$\varepsilon_a(\%)$	$\varepsilon_t(\%)$
1	1.85463498	0.61768790	85.46349805
2	1.21630782	0.19581989	21.63078185
3	1.05852096	0.05687262	5.85209625
4	1.01616935	0.01604002	1.61693498
5	1.00449491	0.00448483	0.44949065

ตาราง 13: แสดงค่าจากการคำนวณของการกระทำซ้ำด้วยระเบียบวิธีวางตัวผิดที่ ของตัวอย่างที่ 2.15

Comparison of Convergence of the Secant and False-Position Techniques

i	x_i	$\varepsilon_a(\%)$	$\varepsilon_t(\%)$
1	1.85463498	169.59482877	85.46349805
2	-0.10438079	-1876.79718477	110.43807924

ตาราง 14: แสดงค่าจากการคำนวณของการกระทำซ้ำด้วยระเบียบวิธีเซแคนต์ของ ตัวอย่างที่ 2.15

รูปที่ 28: การเปรียบเทียบร้อยละค่าคลาดเคลื่อนสัมพัทธ์ (ϵ_t) ของทุกระเบียบวิธี เพื่อหาค่ารากของ $f(x)=e^{-x}-x$

แบบฝึกหัด 2.3

- 1. จงหาค่ารากของสมการ $x^{2\cdot 2}=69$ ที่อยู่ในช่วง [5,8] โดยใช้ระเบียบ วิธีเซแคนต์ เมื่อร้อยละของค่าคลาดเคลื่อนที่ยอมรับได้ต้องน้อยกว่า 0.05%
- 2. จงหาค่ารากของฟังก์ชัน $f(x)=\cos x-x$ โดยใช้ระเบียบวิธีเซแคนต์ กำหนดค่าเริ่มต้น $x_{-1}=0.5$ และ $x_0=\pi/4$ เมื่อค่าคลาดเคลื่อน สัมบูรณ์ต้องน้อยกว่า 0.00000004
- 3. จากแบบฝึกหัดข้อที่ 1 จงเขียนภาษาโปรแกรมไพธอนเพื่อหาค่าราก ของสมการ
- 4. จากแบบฝึกหัดข้อที่ 2 จงเขียนภาษาโปรแกรมไพธอนเพื่อหาค่าราก ของสมการ

เฉลยแบบฝึกหัด

- 1. 6.85236.
- 2. 0.73908518