

Университет ИТМО

Факультет программной инженерии и компьютерной техники

Разработка мобильных приложений Проект SmartHouse

Студенты: Гиниятуллин Арслан Рафаилович Р33121

Сущенко Роман Витальевич Р33131 Гиря Максим Дмитриевич Р33131 Тороев Канатбек Бакытбекович Р33131

Преподаватель: Ключев Аркадий Олегович

Содержание

1	Введение	1
	1.1 Актуальность работы	1
	1.2 Цель работы	2
	1.3 Задачи	
2	Техническое задание	2
	2.1 Введение	2
	2.2 Назначение разработки	2
	2.3 Требования к программе или программному изделию	3
	2.3.1 Функциональные требования	3
	2.3.2 Нефункциональные требования	5
3	Архитектура проекта	6
	3.1 Дизайн системы	6
	3.2 Диаграммы последовательности	7
4	Используемые технологии	9
5	Заключение	9
6	Список используемой литературы	9

1 Введение

Система умного дома **SmartHouse** представляет собой комплекс технологических решений, направленных на обеспечение комфорта, безопасности и энергоэффективности в современном жилище. В последнее десятилетие интерес к умным домам значительно возрос благодаря развитию Интернета вещей (IoT), усовершенствованию беспроводных технологий и доступности интеллектуальных устройств.

1.1 Актуальность работы

Современный образ жизни ставит перед нами множество задач, требующих эффективного использования времени и ресурсов. В условиях урбанизации и нескончаемых деловых обязанностей важно обеспечить максимальный комфорт и безопасность в доме при минимальных усилиях. Система SmartHouse предоставляет возможность автоматизации повседневных операций и задач, таких как управление освещением, климат-контролем, охраной и множеством других бытовых процессов. Крупные компании (Яндекс, Сбер Девайсы, Аррle, Xiaomi) уже заметили этот рынок и предлагают свои решения: Умный дом с Алисой, Xiaomi Mi Home.

Актуальность системы умного дома подтверждается следующими аргументами:

- 1. **Рост числа подключенных устройств:** По данным аналитических компаний, количество ІоТ-устройств в мире продолжает стремительно расти, и к 2025 году их число превысит 75 миллиардов. Умные дома становятся частью повседневной жизни, интегрируя множество устройств в единую управляемую систему.
- 2. **Повышенные требования к безопасности:** С увеличением тревожности по поводу безопасности жилья возрастает спрос на системы видеонаблюдения, сигнализации и датчиков утечки. **SmartHouse** обеспечивает многоуровневую защиту, помогая пользователям чувствовать себя в безопасности.
- 3. Энергоэффективность и экологическая осознанность: В условиях роста стоимости энергоресурсов и изменения климата становится все более важным снижать энергопотребление. Система умного дома позволяет оптимизировать использование энергии, экономя ресурсы и снижая экологический след.

- 4. Высокие ожидания потребителей: Современные пользователи уже привыкли к удобству и простоте использования интеллектуальных устройств. Они ожидают, что дом также станет "умным предоставляя функции автоматизированного управления освещением, климатом, безопасностью и другими аспектами быта.
- 5. Удобство и качество жизни: Современные решения для умного дома не только делают жизнь удобнее, но и улучшают ее качество. Автоматизация рутинных задач освобождает время для более важных дел и повышения общего уровня комфорта.
- 6. **Развитие экосистем:** Интеграция с платформами таких крупных игроков рынка, как *Google Home, Apple HomeKit и Amazon Alexa, Яндекс Алиса* делает управление домом более удобным и функциональным.

1.2 Цель работы

Основная цель разработки и внедрения системы умного дома **SmartHouse** - это создание комфортной, безопасной и энергоэффективной среды проживания. Данная цель достигается за счет использования современных технологий и интеграции различных интеллектуальных устройств в единую управляемую экосистему.

1.3 Задачи

Для достижения поставленной цели необходимо выполнить следующие задачи:

- 1. **Разработка пользовательского приложения для управления умным домом:** Создать удобное и функциональное приложение, которое позволит пользователям максимально комфортно управлять различными интеллектуальными устройствами. Программное обеспечение должно обеспечивать интеграцию всех устройств и надежную работу системы, отвечая основной цели проекта создания комфортной и энергоэффективной среды проживания.
- 2. **Изучение и выбор технологий и протоколов:** Провести анализ доступных технологий и протоколов, которые обеспечат наибольшую совместимость с широким спектром устройств. Это поддержит цель создания безопасной и энергоэффективной экосистемы умного дома, упрощая процесс внедрения для пользователей.
- 3. **Разработка расширяемой и гибкой системы:** Обеспечить возможность легкого добавления новых устройств и функциональных возможностей без необходимости пересмотра всей системы. Это соответствует цели проекта по созданию удобной и комфортной среды, позволяя пользователям адаптировать умный дом под свои индивидуальные нужды и предпочтения.
- 4. Обеспечение безопасности и конфиденциальности: Разработать и внедрить надежные механизмы защиты данных пользователей и системы от несанкционированного доступа. Эта задача непосредственно направлена на достижение цели создания безопасной среды проживания, гарантируя пользователям защиту их данных и устройств в системе умного дома.

2 Техническое задание

2.1 Введение

В данном этапе представлено техническое задание на разработку *IoT* системы **SmartHouse**, предназначенной для создание комфортной, безопасной и энергоэффективной среды проживания. Включены ключевые требования и спецификации, которые необходимо учесть в процессе разработки.

2.2 Назначение разработки

Цель разработки системы **SmartHouse** является обеспечение безопасности на территории завода путем реализации функций контроля и оповещения о несанкционированных проникновениях, пожарах, утечках воды и иных опасных ситуациях. Система также предназначена для мониторинга доступа в помещения и управления оперативными данными.

2.3 Требования к программе или программному изделию

2.3.1 Функциональные требования

$N_{\overline{0}}$	Требования	Приоритет	Трудоемкость
1	Система пожарной сигнализации должна автоматически вы-	must	8 члвк/ час
	зывать пожарных и отправлять уведомление пользователю ($+$		
	включать сигнализацию) при возгорании или задымлении в		
	помещении (повышении температуры или уровня дыма)		
2	Система должна обнаруживать и регистрировать движения в	must	6 члвк/ час
	зоне видимости камер, сохраняя данные для удаленного до-		
	ступа		
3	Система интеграции с дверьми и окнами должна регистриро-	must	8 члвк/ час
	вать (+ включать сигнализацию) несанкционированное про-		
	никновение и отправлять уведомление пользователю и/или		
	вызывать полицию		
4	Система должна предоставлять удаленный просмотр видео с	must	3 члвк/ час
	камер наблюдения через приложение		
5	Система может предоставлять автоматическое резервное ко-	could	5 члвк/ час
	пирование и восстановление для сохранения настроек системы		
	безопасности и важной информации в случае сбоев		
6	Система должна предоставлять защиту от протечек с возмож-	must	6 члвк/ час
	ностью автоматического перекрытия подачи воды и уведомле-		
	нием пользователя при обнаружении утечки		
7	Система должна предоставлять контроль доступа с использо-	must	6 члвк/ час
	ванием персональных кодов для безопасного и удобного входа		
	и выхода из дома		

Таблица 1: Требования к безопасности системы SmartHouse

№	Требования	Приоритетность	Трудоемкость
1	Система должна позволять пользователю	must	8 члвк/ час
	отслеживать потребление всех его датчиков		
2	Система должна позволять пользователю	must	8 члвк/ час
	настроить уведомление о высоком энерго-		
	потреблении		
3	Система должна автоматически регулиро-	must	16 члвк/ час
	вать температуру в доме с помощью датчи-		
	KOB		
4	Система должна переводить датчики в ре-	could	16 члвк/ час
	жим энергосбережения, или выключать их,		
	если они не используются		
5	Система должна автоматически регулиро-	must	8 члвк/ час
	вать включение или выключение света в за-		
	висимости от датчика движения		

Таблица 2: Требования к энергосбережению системы SmartHouse

Nº	Требования	Приоритетность	Трудоемкость
1	Система должна позволять пользователю	must	20 члвк/ час
	создать аккаунт, указав электронную по-		
	чту, пароль, персональные данные (ФИО,		
	телефон)		
2	Система должна позволять пользователю	must	20 члвк/ час
	войти в аккаунт по логину+паролю		
3	Система должна позволять пользователю	could	40 члвк/ час
	изменить пароль при указании почты ис-		
	пользуя двуфакторную аунтификацию.		
4	Система должна позволять пользователю	could	30 члвк/час
	создать объект Семья, став при этом ее		
	Владельцем		
5	Система должна позволять пользователю	could	30 члвк/час
	получить ссылку для приглашения нового		
	участника в семью.		
6	Система должна позволять пользователю	should	10 члвк/час
	добавить объект Комната в Дом, указав ее		
	название.		
7	Система должна позволять пользователю	must	15 члвк/час
	включать/выключать Режим в Доме		
8	Система должна позволять пользователю	must	10 члвк/час
	включить/выключить Устройство в комна-		
	те.		
9	Система должна позволять пользовате-	should	15 члвк/час
	лю создать объект Комнатный Режим с		
	указанием названия и набора Настроек		
	Устройств находящихся в соответствующей		
	Комнате.		
10	Система должна позволять пользователю	must	30 члвк/час
	отображать/изменять текущую температу-		
	ру в комнатах.		

Таблица 3: Требования к комфорту системы SmartHouse

2.3.2 Нефункциональные требования

Nº	Требования	Описание
1	Производительность	Система должна выдерживать нагрузку 10
		запросов в секунду (10 RPS).
2	Надежность	Система должна иметь механизмы для
		обеспечения высокой надежности, включая
		резервирование данных.
3	Доступность	Система должна быть доступной не менее
		чем 99.99% времени.
4	Масштабируемость	Система должна быть легко масштабируе-
		мой для поддержки увеличивающейся на-
		грузки и новых пользователей.
5	Безопасность	Система должна обеспечивать безопасность
		данных пользователей и соответствовать
		современным стандартам защиты информа-
		ции.
6	Восстановление после сбоев	В случае сбоев система должна иметь сред-
		ства для быстрой и эффективной процеду-
		ры восстановления данных и сервисов.
7	Поддержка отказоустойчивости	Система должна включать механизмы от-
		казоустойчивости для минимизации воздей-
		ствия сбоев на пользователей.

Таблица 4: Нефункциональные требования к системе SmartHouse

3 Архитектура проекта

3.1 Дизайн системы

Рис. 1: Дизайн системы интеграций SmartHouse

3.2 Диаграммы последовательности

 $\mbox{Puc.}$ 2: Sequence-диаграмма backend'a

Puc. 3: Sequence-диаграмма события с сесноров

Рис. 4: ERD-диаграмма сущностей в БД

Рис. 5: (a) Страница входа (b) Главная странца (c) Страница устройств (d) Добавление дома

4 Используемые технологии

- 1. Backend:
 - (a) Kotlin
 - (b) Gradle
 - (c) Ktor
 - (d) Exposed
 - (e) Clickhouse
 - (f) PostgreSQL
 - (g) Redis
- 2. Frontend:
 - (a) Kotlin
 - (b) Jetpack Compose

5 Заключение

Разработка мобильного приложения для управления умным домом представляет собой важное направление в современных технологических инновациях. Наше приложение значительно упрощает процесс контроля над домашними системами, способствуя повышению комфорта и безопасности жильцов. Ключевыми факторами для успешного выхода нашего продукта на рынок умного дома и его долгосрочного успеха станут непрерывное совершенствование функционала, адаптация к быстро меняющимся технологическим трендам, а также активное принятие и анализ обратной связи от пользователей.

6 Список используемой литературы

Список литературы

[1] Использование диаграммы вариантов использования UML при проектировании программного обеспечения [Электронный ресурс] / Habr. URL: https://habr.com/ru/articles/566218, свободный (дата обращения: 05.03.2024).

- [2] Ликбез по корутинам Kotlin [Электронный ресурс] / Habr. URL: https://habr.com/ru/companies/otus/articles/766774 свободный (дата обращения: 10.03.2024)
- [3] Kotlin: взгляд изнутри преимущества, недостатки и особенности [Электронный ресурс] /Habr. URL: https://habr.com/ru/articles/752450/, свободный (дата обращения: 8.05.2023).