RV COLLEGE OF ENGINEERING®

(An Autonomous Institution Affiliated to VTU)

IV Semester B. E. Examinations Sept/Oct – 2024

Common to CD/CY/CSE/ISE/AIML

DESIGN AND ANALYSIS OF ALGORITHMS

Time: 03 Hours

Instructions to candidates:

Maximum Marks: 100

 Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.

2. Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8, 9 and 10.

PART-A

M BT CO

1	1.	how do you determine whether an algorithm's performance is	00	0	
	1.2		02	2	1
		ALGORITHM F(n)			TEN HE
1000		// Computes n! recursively			
100		// Input: A non – negative integer n		45 4	
133		// Output: The value of n!			
1		if n = 0			
		return 1			
		else			
		return F(n-1) * n			
		Write the recurrence relation for the above algorithm by			
	1.3	considering basic operation. In the context of algorithm design, what specific technique does	02	2	2
	1.0	the binary search uses? What is the corresponding time		1	
		complexity of this algorithm?	02	1	
	1.4	Give example scenario where insertion sort exhibits its worst case	02	1	1
93		performance and its time complexity.	02	2	2
	1.5	State the purpose of the following:	02	1 2	2
W. H		i. Floyd algorithm			
		ii. Warshall Algorithm	02	1	2
1	.6	Differentiate Divide and Conquer and Transform and Conquer	02		2
	.7	ALGORITHM algo (n)	02	1 4	1
		sort the array A			
		$for i \leftarrow 0 \ to \ n-2 \ do$	11	1	
		if A[i] = A[i+1]	1		
	10	return false	100	10	
		return true.	135		
		Also identify the purpose of the above algorithm. Compute time			
			02		
	0	complexity assuming efficient sorting.	02		
1.	222	Explain how Dijkrasta's algorithm differ from Prim's algorithm	10000	- 2	1
1.9		Describe the concept of a state-space tree in the context of			
		Backtracking algorithm.	02	2 1	2
1.1	10	Construct Bad- Shift table and Good-Suffix table for the given			
	1	pattern RAORAR 2557	02	2 2	2 2

Write Insertion sort algorithm. Sort the given array using insertion sort and write the time complexity. Array: 5,4,10,1,6,2 OR Along with any example graph and DFS (Depth First Search) algorithm discuss one favored by the complexity of the c	
Consider the problem of computing min-max in an unsorted array. Algorithm A1 can compute in X comparisons using divide and conquer technique while Algorithm A2 can computer in Y comparisons by traversing the array linearly. Being a developer which algorithm would you choose to maximize efficiency? Illustrate your choice with an example. Write Insertion sort algorithm. Sort the given array using insertion sort and write the time complexity. Array: 5,4,10,1,6,2 OR Along with any example graph and DFS (Depth First Search) algorithm, discuss any four applications of DFS. Write the procedure to find topological order of the given graph using Source Vertex deletion method OR Along With any example graph and DFS (Depth First Search) algorithm, discuss any four applications of DFS. Write the procedure to find topological order of the given graph using Source Vertex deletion method	2 1
Along with any example graph and DFS (Depth First Search) algorithm, discuss any four applications of DFS. Write the procedure to find topological order of the given graph using Source Vertex deletion method A B C DACBGFE	2 2
algorithm, discuss any four applications of DFS. Write the procedure to find topological order of the given graph using Source Vertex deletion method A B C D D	2 2
DACBGFE DACBGFE	
	M Show
08	
	3 3
Design an algorithm to compute the mode of the list with O(nlogn) complexity using the presort method. The mode is the value that appears most frequently in the list. Discuss three variations of transform and conquer techniques. Discuss the Counting Sort algorithm and its time complexity. Show tracing for array: 94,73,26,11,05,77,31.	2 3
700 2	. 2
OR OX	
Deplatif the steps of Horspool algorithm in detail to seems to	2 2
Pattern Mind within the text (COMPITTER SCIENCE AND WOLL)	
ENGINEERING'. What are the key shifts and comparisons made	2
Construct a max heap and then use it to sort the list in descending order. Provide the implementation and detailed explanation of both the max heap construction and the heap sort process.	3 3
Construct a max heap and then use it to sort the list in descending order. Provide the implementation and detailed explanation of both the max heap construction and the heap sort process. Input: 1,4,2,6,5,17,13	3 3
Construct a max heap and then use it to sort the list in descending order. Provide the implementation and detailed explanation of both the max heap construction and the heap sort process. Input: 1,4,2,6,5,17,13.	3 3
Construct a max heap and then use it to sort the list in descending order. Provide the implementation and detailed explanation of both the max heap construction and the heap sort process. Input: 1,4,2,6,5,17,13	3 3

b Apply 0/1 Knapsack to find the maximum profit for the given	data					
C = 5. $Wi(Weight) 2 1 3 2$						
wt(weight) 2 1 3 2 Vi (Profit) 12 10 20 15		00				
15		08	3	3		
OR						
8 a Apply Prim's algorithm to find the Minimum Spanning T	Apply Prim's algorithm to find the Minimum Spanning Tree (MST)					
for the graph shown in 8a.	(MST)					
		16.1				
3/4/4/6						
6 5 7 5 5						
9 2 3						
			200			
Write the spanning tree after finding the MST		08	0			
Given the following set of characters and their frequencies	apply	08	3	2		
rumlan County to construct the Huffman Tree and determine	in the					
binary codes for each character: A= 8= 40 % > 0 · 4						
B= 2 - 100/						
C= 4= 20% -2						
D=3=15% >0.5 -=3=15% >0.5						
Show the step- by- step process of building the Huffman Tre						
provide the final Huffman codes for each character.	e and	08	3	2		
		00	3	2		
9 a Discuss the N-Queen problem, specifically for placing 4 quee	ns on					
a 4 x4 chessboard. Include a detailed explanation of the	state					
space tree used in the solution process. Give the count of promising nodes.	non-	08	3	2		
b Along with example problem, compare Backtracking and B	ranch	00	3	3		
and Bound design techniques		08	3	3	1	
			1.3			
OR		SAI B	-		-	
16 a How do decision trees represent the sequence of comparison	e and			-		
decisions made during "Finding the minimum of three numl					1	
Illustrate with an example.		08	3	4	1	
Discuss NP and NP- complete problems, providing a de	tailed	331	MA	1000	1	
explanation of their definitions, characteristics and significant	nce in	0.0			1	
problem solving		08	2	3		