МНОГОМЕРНЫЙ АЛГОРИТМ ОВЫПУКЛЕНИЯ РОЯ ТОЧЕК, НАХОДЯЩИХСЯ В НЕОБЩЕМ ПОЛОЖЕНИИ

Выполнил: студент гр. МЕНМ-280901 Корабельников А.А. Научный руководитель: к.ф.-м.н., доцент Кумков С.С

Институт естественных наук и математики

Екатеринбург, 2020

Постановка задачи

Требуется разработать алгоритм построения выпуклой оболочки многомерного роя точек, находящихся в необщем положении.

Необщее положение точек означает что в гиперплоскости евклидова пространства размерности n лежит больше чем n+1 точка.

Необщее положение точек

Проблемы:

- Требуется вычислять вершины (гипер)грани,
- Требуется вычислять *(гипер)рёбра* грани.

Мне не известны реализации алгоритмов овыпукления, работающих в многомерном пространстве в необщем положении.

Алгоритмы построения выпуклой оболочки в nD

Многие алгоритмы для случая плоскости имеют свои аналоги в 3D, но не в большей размерности. Библиотеки вычислительной

геометрии:

- CGAL
- LEDA

Основная проблема алгоритмов, нацеленных на общее положение — несимплициальные грани.

Алгоритмы овыпукления на плоскости

Существует множество алгоритмов овыпукления на плоскости:

- ullet Gift wrapping -O(nh)
- Graham scan $O(n \log n)$
- Quickhull $O(n \log n)$
- Divide and conquer $O(n \log n)$
- Monotone chain $O(n \log n)$
- Chan's algorithm $O(n \log n)$

Для развития был взят алгоритм заворачивания подарка, т.к. он менее всего использует специфику плоскости.

Конец построения

Алгорим Джарвиса при общем положении точек

Проблемы расширения:

- поиск первой грани;
- обход граней.

На этом этапе базис плоскости формируется из векторов базиса пространства.

Базис новой плоскости формируется из базиса ребра и вектора в точку.

Берем ребро грани

Находим базис ребра

Находим вектор базиса грани

Берем плоскость грани

Перебираем свободные точки

Ортонормируем вектор грани по базису ребра

Находим максимальный угол

Переходи выполнен

Обход граней

- Перебор ребер обход в ширину.
- Хранение информации о найденных гранях хеш-таблица.
- Хеш вычисляется на основе целых чисел, получаемых из коэффициентов уравнения плоскости грани.
 Возможны и другие алгоритмы хэширования граней: на основе точек вершин, на основе индексов точек вершин.

Порядок обхода

- берем необработанную грань;
- для каждого ребра выполняем переход на соседнюю грань;
- если найденная грань еще не обрабатывалась, добавляем в очередь.

Результат

Сложность — $O(n\cdot F\cdot d^2)$, где F — количество граней, n — количество точек, d^2 — порядок количества ребер у d-мерного симплекса.

Алгорим Джарвиса при необщем положении точек

Проблемы расширения:

- хранение выпуклой оболочки;
- построение грани;
- обход ребер.

Хранение выпуклой оболочки

Требования к хранению:

- нужно хранить ребра, которые в свою очередь могут быть многомерными несимплициальными многогранниками;
- необходимо хранить список соседних граней;
- нужно хранить информацию о плоскости грани.

Хранение выпуклой оболочки

Требования к хранению:

- нужно хранить ребра, которые в свою очередь могут быть многомерными несимплициальными многогранниками;
- необходимо хранить список соседних граней;
- нужно хранить информацию о плоскости грани.

Грань хранит:

- информацию плоскости: базис, уравнение плоскости;
- список соседних граней;
- структура грани:
 - Если R^d (d > 2), список ребер;
 - Если R^2 , список точек;

Проблема построения грани

Проблемы построения:

- априори невозможно указать, какие из точек, попавших в плоскость грани, являются ее вершинами;
- грани выпуклой оболочки могут содержать разное количество ребер.

Проблема построения грани

Проблемы построения:

- априори невозможно указать, какие из точек, попавших в плоскость грани, являются ее вершинами;
- грани выпуклой оболочки могут содержать разное количество ребер.

Решение — уход в аффинное подпространство плоскости грани и построение в нем выпуклой оболочки роя точек, попавших в эту плоскость.

Отдельное рассмотрение случая двумерного аффинного подпространства.

Найти плоскость грани

Вычислить нормаль плоскости

Найти точки и перевести в базис плоскости

Построить выпуклую оболочку

Найти и запомнить базисы ребер

Заменить точки выпуклой оболочки на исходные и пересчитать базисные векторы ребер в координаты исходного пространства. Добавить грань в очередь на обработку.

Корабельников А.А.

Если очередь граней на обработку пуста, остановить работу. Иначе взять грань из очереди.

Взять очередное ребро обрабатываемой грани.

Поочередно провести векторы к свободным точкам. Ортонормировать эти векторы на фоне базиса ребра (шаг процедуры Грама–Шмидта)

Корабельников А.А.

Найти вектор, образующий максимальный угол с вектором грани.

Плоскость грани найдена.

Определить нормаль плоскости. Построить хэш плоскости грани и проверить, обработана ли она уже. Если обработана, запомнить информацию о соседстве граней и перейти к

Корабельников А.А.

Найти точки, попавшие в плоскость грани. Если их d+1 штука, то грань симплициальная и не требует особой обработки. Иначе запустить рекурсивно алгоритм овыпукления Корабельников А.А.

Грань построена. Запомнить информацию о соседстве. Добавить в очередь на обработку.

Результат

Сложность — $O\left((hn)^{d-1}\right)$, где h — количество ребер, n — количество точек, d — размерность.

Тестовая реализация

Платформа -.Net Core. Язык - С#.

Пример работы алгоритма

