מעבדה 2. נושא: מטריצות מיוחדות

קבוצות יום **ב** - 09.11.20 קבוצה יום **ד** - 11.11.20 (הגשה בזוגות)

יש לקרוא היטב לפני תחילת העבודה<mark>!</mark>

מבוא:

מטריצה היא מבנה המכיל אוסף של מספרים. בדרך כלל כדי להחזיק m*n מספרים, נדרשת מטריצה בעלת **m** שורות ו **n** עמודות.

- m^* n מטריצה הוא מערך דו-מימדי בגודל המימוש הקלאסי של מטריצה הוא
 - הפעולות הבסיסיות הדרושות לעבודה עם מטריצה הן:
 - .(i, j) המחזירה איבר שנמצא במקום get(i,j).(1
- .x המעדכנת את האיבר הנמצא במקום (i, j) להיות $\mathbf{put}(\mathbf{i},\mathbf{j},\mathbf{x})$. (2
 - סיבוכיות הזמן של שתי פעולות אלה (O(1).

סיבוכיות המקום של המבנה (O(m*n).

אולם, כאשר מטריצה היא בעלת מבנה מיוחד, ניתן להציע מימוש חכם יותר וכך לשפר את הסיבוכיות.

מטרות:

במעבדה זו נכיר מימושים של מטריצה מיוחדת - מטריצה אלכסונית מסוג 2

תיאור: מטריצה ריבועית **n*n** בה הערכים <u>בכל אלכסון מסוג 2</u>שווים, נקראת מטריצה אלכסונית מסוג 2. למשל:

6534

5342

3427

4271

זו מטריצה אלכסונית מסוג 2 בגודל 4*4 . שים לב שמספר האלכסונים מסוג 2 במטריצה זו שווה ל 7.

- 1). **מימוש סטנדרטי**, באמצעות מערך דו-מימדי, מאפשר ביצוע פעולות בסיבוכיות:
 - .O(1) היא get(i,j) -
 - . כי צריך לעדכן את **כל** אברי האלסכון. O(n) היא put(i,j,x) -

. (2). נציע **מימוש חלופי** באמצעות **מערך חד-מימדי בגודל 2n-1**

נשים לב כי מספר האלכסונים השונים במערך עומד על 2n-1. לכל אלכסון נגדיר תא אחד במערך. למשל, עבור המטריצה המופיעה לעיל, נחזיק מערך בגודל 7 ובו האיברים:

6534271

- **.O(1)** היא get(i,j) –
- סיבוכיות put(i,j,x) היא –

כך שחסכנו גם במקום וגם בזמן! <u>המשימה היחידה היא לתרגם נכון את האינדקסים של</u> המטריצה הנתונה אל המטריצה החד-מימדית ובחזרה.

<u>רמז: חשוב מה מאפיין כל אלכסון מסוג 2 (התבונן באינדקסים: i i j).</u>

משימות המעבדה

משימה 1

כתוב <u>ממשק (interface)</u> בשם Matrix עם הפעולות הבאות והקבוע MAX_SIZE שערכו 100.

int getSize()

return the number of rows (=number of columns=N) of the matrix.

double get (int i, int j)

Precondition: $0 \le i, j \le N$.

Postcondition: returns the value of the element at the place (i,j).

void put(int i, int j, double x)

Precondition: $0 \le i,j \le n$

Postcondition: updates the value of the element at the place (i,j) to be equal to

Χ.

void transpose()

Precondition: None.

Postcondition: configure the matrix to be transpose matrix. Do it in O(1)!

void multByConstant (int C)

Precondition: C>0.

Postcondition: returns the matrix, in which every element is multiplied by

positive integer constant C. **Do it in O(1)!**

<u>משימה 2</u>

כתוב מחלקה בשם **DiagonalMatrix <u>המממשת</u>** את הממשק הנ"ל כמטריצה אלכסונית (כלומר, אם משנים איבר במטריצה, אז כל האיברים באותו אלכסון גם משתנים) ומכילה את הבנאים הבאים:

DiagonalMatrix(int size)

Precondition: size>0

Postcondition: Initializes a size*size diagonal matrix using an array of length

2*size-1.

DiagonalMatrix()

Initializes an MAX SIZE * MAX SIZE diagonal matrix

String toString()

Postcondition: Returns the matrix in its <u>natural N*N</u> form as a string (with \t between entries of the same row and \n between rows).

משימה 3

השתמש ב tokenizer וכתוב מחלקה בשם tokenizer התומכת בפעולות הבאות ובודקת את עבודתה של DiagonalMatrix:

פעולה	פקודה
x מעדכן איבר במקום (i,j) להיות	Put i j x
מחזיר ומדפיס איבר הנמצא במקום (i,j).	Get i j
מדפיס את המטריצה בתצוגה הרגילה	PrintM
C הכפל את כל אברי המטריצה ב	MultCons C
של מטריצה transpose של מטריצה	TransM
סיים את התוכנית	Quit

הגשת המעבדה:

Matrix.java, DiagonalMatrix.java, TestDiagMatrix.java יש להגיש 3 קבצים

ערעורים:

יש להפנות לד"ר תמר צמח בלבד ע"י שליחת מייל tamar.zemach@yahoo.com ע"י +ת.ז. של ממועד פרסום הציונים. בכותרת המייל יש לציין:"ערעור מעבדה מס' X ע"י +ת.ז. של הסטודנטים". יש לקחת בחשבון שבעת הערעור העבודה נבדקת מחדש וכתוצאה מהערעור ציון העבודה עלול להשתנות (יכול לעלות או לרדת). התשובה לערעור תהיה סופית ולא ניתנת לערעור נוסף.