Seminar 7 Integrale de suprafață. Formule integrale

Integrale de suprafață

Integralele de suprafață sînt analogul celor curbilinii, dar, în locul unei curbe în lungul căreia se face integrarea, ne vom baza pe o suprafață din \mathbb{R}^3 .

Tot ca în cazul integralelor curbilinii, integralele de suprafață sînt de două tipuri.

Integrala de suprafață de speța întîi are forma și se calculează după formula:

$$\iint_{\Sigma} \mathcal{F}(x,y,z) d\sigma = \iint_{D} \mathcal{F}(x(u,v),y(u,v),z(u,v)) \sqrt{EG-F^{2}} du dv,$$

unde Σ este suprafața pe care integrăm, care devine domeniul D după aplicarea formulei, cu elementul de arie d σ , care devine dudv, fiecare dintre cele trei coordonate x, y, z fiind parametrizate după u si v, iar coeficienții E, F, G se calculează astfel:

$$E = \left(\frac{\partial x}{\partial u}\right)^{2} + \left(\frac{\partial y}{\partial u}\right)^{2} + \left(\frac{\partial z}{\partial u}\right)^{2}$$

$$F = \frac{\partial x}{\partial u} \cdot \frac{\partial x}{\partial v} + \frac{\partial y}{\partial u} \cdot \frac{\partial y}{\partial v} + \frac{\partial z}{\partial u} \cdot \frac{\partial z}{\partial v}$$

$$G = \left(\frac{\partial x}{\partial v}\right)^{2} + \left(\frac{\partial y}{\partial v}\right)^{2} + \left(\frac{\partial z}{\partial v}\right)^{2}.$$

O definiție alternativă este următoarea. Fie $\Phi:D\to\mathbb{R}^3$ o pînză parametrizată și fie $\Sigma=\Phi(D)$ imaginea ei, iar $F:U\to\mathbb{R}$ o funcție continuă pe imaginea pînzei. Integrala de suprafață a lui F pe Σ este, prin definiție:

$$\int_{\Sigma} F(x,y,z) d\sigma = \iint_{D} F(\Phi(u,v)) \cdot \left| \left| \frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v} \right| \right| du dv.$$

Într-un caz particular, în care suprafața regulată Σ este dată sub o formă explicită z = f(x,y), cu $f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$, atunci formula se simplifică și devine:

$$\iint_{\Sigma} \mathcal{F}(x,y,z) d\sigma = \iint_{D} \mathcal{F}(x,y,f(x,y)) \sqrt{1+p^2+q^2} dx dy,$$

unde coeficienții au forma simplificată:

$$p = \frac{\partial z}{\partial x}, \quad q = \frac{\partial z}{\partial y}.$$

Alte cazuri particulare sînt:

- (a) Pentru F = 1, obţinem aria suprafeței Σ ;
- (b) Dacă $F\geqslant 0$ este densitatea unei plăci Σ , atunci *masa ei* se calculează prin $M=\int_{\Sigma}Fd\sigma$, iar *coordonatele centrului de greutate*: $x_i^G=\frac{1}{M}\int_{\Sigma}x_iFd\sigma$.

Într-o **interpretare vectorială**, putem considera \vec{F} un cîmp vectorial, atunci *fluxul* său prin suprafața Σ este dat de o integrală de suprafață de prima speță, cu forma:

$$\iint_{\Sigma} \vec{F} \cdot \vec{n} d\sigma,$$

unde \vec{n} este vectorul normal la suprafață, calculat prin $\vec{n} = \frac{\nabla F}{||\nabla F||}$, iar d σ este elementul de suprafață.

Dacă avem cîmpul vectorial dat parametric, atunci formula pentru flux devine:

$$\Phi_{\Sigma}(\vec{\mathsf{F}}) = \iint_{\mathcal{D}} \mathsf{F}(\mathsf{x}(\mathsf{u},\mathsf{v}),\mathsf{y}(\mathsf{u},\mathsf{v}),\mathsf{z}(\mathsf{u},\mathsf{v})) \cdot (\vec{\mathsf{T}}_{\mathsf{u}} \times \vec{\mathsf{T}}_{\mathsf{v}}) d\mathsf{S},$$

unde \vec{T}_u , \vec{T}_v sînt vectorii tangenți după cele două direcții, calculați ca derivatele parțiale F_u și F_v , iar dS este elementul de arie, adică dudv.

Pentru integralele de suprafață de speța a doua, considerăm o 2-formă diferențială:

$$\omega = Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy$$

și luăm o pînză parametrizată:

$$\Phi: D \to \mathbb{R}^3$$
, $\Phi(u, v) = (X(u, v), Y(u, v), Z(u, v))$.

Integrala pe suprafața orientată Σ a formei diferențiale ω este definită prin:

$$\int_{\Sigma} \omega = \iint_{D} \left((P \circ \Phi) \frac{D(Y, Z)}{D(u, v)} + (Q \circ \Phi) \frac{D(Z, X)}{D(u, v)} + (R \circ \Phi) \frac{D(X, Y)}{D(u, v)} \right) du dv,$$

unde $\frac{D(Y,Z)}{D(u,v)}$ etc. sînt jacobienii funcțiilor X, Y, Z în raport cu variabilele u, v.

Într-o formă simplificată, dacă privim $\vec{\pi} = \frac{\nabla \Phi}{||\nabla \Phi||}$, iar $\Phi = (X, Y, Z)$, atunci putem scrie:

$$\iint_{\Sigma} \omega = \iint_{D} \begin{vmatrix} P \circ \Phi & Q \circ \Phi & R \circ \Phi \\ X_{u} & Y_{u} & Z_{u} \\ X_{v} & Y_{v} & Z_{v} \end{vmatrix} du dv,$$

unde am folosit notația simplificată pentru derivate parțiale, i.e. $X_u = \frac{\partial X}{\partial u}$ etc.

2 Exercitii

1. În fiecare din exemplele următoare, considerăm:

$$D \ni (u,v) \mapsto \Phi(u,v) = (X(u,v),Y(u,v),Z(u,v)) \in \mathbb{R}^3$$

o pînză parametrizată. Să se calculeze vectorii tangenți la suprafață și versorul normalei la suprafață.

(a) *Sfera*: Fie R > 0 și $\Phi : [0, \pi] \times [0, 2\pi) \to \mathbb{R}^3$:

$$\Phi(\theta, \varphi) = (R \sin \theta \cos \varphi, R \sin \theta \sin \varphi, R \cos \theta);$$

(b) Paraboloidul: Fie $\alpha>0, h>0$ și $\Phi:[0,h]\times[0,2\pi)\to\mathbb{R}^3$:

$$\Phi(\mathfrak{u},\mathfrak{v}) = (\mathfrak{a}\mathfrak{u}\cos\mathfrak{v}, \mathfrak{a}\mathfrak{u}\sin\mathfrak{v}\mathfrak{u}^2);$$

(c) *Elipsoidul*: Fie a, b, c > 0 și Φ : $[0, \pi] \times [0, 2\pi) \to \mathbb{R}^3$:

$$\Phi(\theta, \varphi) = (a \sin \theta \cos \varphi, b \sin \theta \sin \varphi, c \cos \theta);$$

(d) *Conul*: Fie h > 0, $\Phi : [0, 2\pi) \times [0, h] \to \mathbb{R}^3$:

$$\Phi(\mathfrak{u},\mathfrak{v}) = (\mathfrak{v}\cos\mathfrak{u},\mathfrak{v}\sin\mathfrak{u},\mathfrak{v});$$

(e) Cilindrul: Fie $a > 0, 0 \leqslant h_1 \leqslant h_2, \Phi : [0, 2\pi) \times [h_1, h_2] \to \mathbb{R}^3$:

$$\Phi(\varphi, z) = (a\cos\varphi, a\sin\varphi, z);$$

(f) *Torul*: Fie 0 < a < b, $\Phi[0, 2\pi) \times [0, 2\pi) \to \mathbb{R}^3$:

$$\Phi(\mathfrak{u},\mathfrak{v}) = ((\mathfrak{a} + \mathfrak{b}\cos\mathfrak{u})\cos\mathfrak{v}, (\mathfrak{a} + \mathfrak{b}\cos\mathfrak{u})\sin\mathfrak{v}, \mathfrak{b}\sin\mathfrak{u}).$$

Indicație: Vectorii tangenți la suprafață sînt $\frac{\partial \Phi}{\partial u}$ și $\frac{\partial \Phi}{\partial v}$, iar versorul normalei este:

$$\frac{1}{\left|\left|\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial \nu}\right|\right|} \cdot \frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial \nu}.$$

- 2. Fie $\omega=\mathrm{Pdy}\wedge\mathrm{d}z+\mathrm{Qd}z\wedge\mathrm{d}x+\mathrm{Rd}x\wedge\mathrm{d}y$ o 2-formă diferențială, iar Σ , imaginea unei pînze parametrizate. Să se calculeze integrala de suprafață $\int_{\Sigma}\omega$ în cazurile:
- (a) $\omega = y dy \wedge dz + z dz \wedge dx + x dx \wedge dy$, unde:

$$\Sigma: \begin{cases} X(u,v) &= u\cos v \\ Y(u,v) &= u\sin v \\ Z(u,v) &= cv \end{cases}$$

cu domeniul $(u, v) \in [a, b] \times [0, 2\pi)$;

(b) $\omega = x dy \wedge dz + y dz \wedge dx + z dx \wedge dy$, unde:

$$\Sigma : x^2 + y^2 + z^2 = R^2;$$

(c) $\omega = yzdy \wedge dz + zxdz \wedge dx + xydx \wedge dy$, unde:

$$\Sigma: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1;$$

(d) $\omega = x dy \wedge dz + y dz \wedge dx$, unde:

$$\Sigma : x^2 + y^2 = z^2, \quad z \in [1, 2];$$

(e) $\omega = (y+z)dy \wedge dz + (x+y)dx \wedge dy$, unde:

$$\Sigma : x^2 + y^2 = a^2, \quad a \in [0, 1]$$

3. Să se calculeze integrala de suprafață de prima speță:

$$\iint_{\Sigma} F(x, y, z) d\sigma$$

în următoarele cazuri:

(a)
$$F(x,y,z) = |xyz|$$
, $\text{iar } \Sigma : x^2 + y^2 = z^2, z \in [0,1]$;

(b)
$$F(x, y, z) = y\sqrt{z}$$
, iar $\Sigma : x^2 + y^2 = 6z$, $z \in [0, 2]$;

(c)
$$F(x,y,z) = z^2$$
, $\text{iar } \Sigma = \{(x,y,z) \mid z = \sqrt{x^2 + y^2}, x^2 + y^2 - 6y \le 0\}$.

- 4. Folosind integralele de suprafată, să se calculeze ariile suprafețelor:
- (a) sfera de rază R;
- (b) conul $z^2 = x^2 + y^2, z \in [0, h];$
- (c) paraboloidul $z = x^2 + y^2, z \in [0, h]$.
 - 5. Să se calculeze aria suprafeței Σ în următoarele cazuri:
- (a) $\Sigma: 2z = 4 x^2 y^2, z \in [0, 1];$
- (b) Σ este submulțimea de pe sfera $x^2+y^2+z^2=1$, situată în interiorul conului $x^2+y^2=z^2$;
- (c) Σ este submulțimea de pe sfera $x^2+y^2+z^2=R^2$, situată în interiorul cilindrului $x^2+y^2-Ry=0$;
- (d) Σ este submulțimea de pe paraboloidul $z=x^2+y^2$, situată în interiorul cilindrului $x^2+y^2=2y$.
 - 6. Să se calculeze fluxul cîmpului vectorial \vec{V} prin suprafața Σ în următoarele cazuri:
- (a) $\vec{V} = x\vec{i} + y\vec{j} + z\vec{k}$, iar $\Sigma : z^2 = x^2 + y^2$, cu $z \in [0, 1]$;
- (b) $\vec{V} = y\vec{i} + x\vec{j} + z^2\vec{k}$, iar $\Sigma : z = x^2 + y^2$, cu $z \in [0, 1]$;
- (c) $\vec{V} = \frac{1}{\sqrt{x^2 + y^2}} (y\vec{i} x\vec{j} + \vec{k})$, iar $\Sigma : z = 4 x^2 y^2$, $z \in [0, 1]$.

3 Formula Green-Riemann

Fie $(K, \partial K)$ un compact cu bord orientat inclus în \mathbb{R}^2 și considerăm o 1-formă diferențială de clasă \mathbb{C}^1 pe o vecinătate a lui K. Atunci are loc *formula Green-Riemann*:

$$\int_{\partial K} P dx + Q dy = \iint_K \Big(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \Big) dx dy.$$

O consecință imediată este o formulă pentru arie:

$$A(K) = \frac{1}{2} \int_{\partial K} x dy - y dx.$$

4 Formula Gauss-Ostrogradski

Considerăm K o mulțime compactă, cu bord orientat după normala exterioară. Atunci, pentru orice 2-formă diferențială:

$$\omega = Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy$$

de clasă C¹ pe o vecinătate a lui K are loc egalitatea:

$$\int_{\partial K} P dy \wedge dz + Q dz \wedge dx + R dx \wedge dy = \iiint_{K} \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} dx dy dz.$$

În notație vectorială, dacă $\vec{V} = P\vec{i} + Q\vec{j} + R\vec{k}$ este cîmpul vectorial asociat 2-formei diferențiale ω , atunci formula de mai sus poate fi scrisă:

$$\int_{\partial K} \vec{V} \cdot \vec{n} d\sigma = \iiint_{K} div \vec{V} dx dy dz,$$

unde \vec{n} este normala exterioară la ∂K . În membrul stîng avem fluxul cîmpului \vec{V} prin suprafața ∂K , motiv pentru care formula Gauss-Ostrogradski se mai numește *formula flux-divergență*.

5 Formula lui Stokes

Fie Σ o suprafață cu bord, orientată și fie:

$$\alpha = Pdx + Qdy + Rdz$$

o 1-formă diferențială de clasă \mathcal{C}^1 pe o vecinătate a lui Σ . Atunci are loc formula:

$$\int_{\partial \Sigma} P dx + Q dy + R dz = \int_{\sigma} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy \wedge dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz \wedge dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \wedge dy.$$

În notație vectorială, dacă $\vec{V} = P\vec{i} + Q\vec{j} + R\vec{k}$ este cîmpul vectorial asociat formei diferențiale α , atunci formula lui Stokes se scrie:

$$\int_{\partial \Sigma} \vec{\mathbf{V}} \cdot d\vec{\mathbf{r}} = \int_{\Sigma} (\nabla \times \vec{\mathbf{V}}) \cdot \vec{\mathbf{n}} d\sigma,$$

unde $\nabla \times \vec{V} = \text{rot} \vec{V}$ se numește rotorul cîmpului vectorial \vec{V} , calculat cu ajutorul produsului vectorial.

6 Exerciții

- 1. Să se calculeze direct și folosind formula Green-Riemann integrala curbilinie $\int_{\Gamma} \alpha$ în următoarele cazuri:
- (a) $\alpha = y^2 dx + x dy$, unde Γ este pătratul cu vîrfurile A(0,0), B(2,0), C(2,2), D(0,2);
- (b) $\alpha = y dx + x^2 dy$, unde Γ este cercul cu centrul în origine și rază 2;
- (c) $\alpha = ydx xdy$, unde Γ este elipsa de semiaxe α și β și de centru δ .
 - 2. Să se calculeze integralele, direct, apoi aplicînd formula Green-Riemann:

(a)
$$\int_{\Gamma} e^{\frac{x^2}{a^2} + \frac{y^2}{b^2}} (-y dx + x dy), \text{ unde } \Gamma = \{(x, y) \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\};$$

(b) $\int_{\Gamma} xy dx + \frac{x^2}{2} dy$, unde Γ este obținută prin:

$$\Gamma=\{x^2+y^2=1, x\leqslant 0\leqslant y\}\cup \{x+y=-1, x,y\leqslant 0\}.$$

- 3. Să se calculeze circulația cîmpului vectorial \vec{V} pe curba Γ în cazurile:
- (a) $\vec{V} = y^2 \vec{i} + xy \vec{j}$, unde:

$$\Gamma = \{x^2 + y^2 = 1, y > 0\} \cup \{y = x^2 - 1, y \le 0\};$$

- (b) $\vec{V} = e^x \cos y \vec{i} e^x \sin y \vec{j}$, unde Γ este o curbă arbitrară din semiplanul superior, ce unește punctele A(1,0), B(-1,0), cu sensul de la A către B.
 - 4. Să se calculeze integrala de suprafață $\int_{\Sigma} \omega$ în următoarele cazuri:
- (a) $\omega = x^2 dy \wedge dz 2xy dz \wedge dx + z^3 dx \wedge dy$, iar mulţimea $\Sigma = \{x^2 + y^2 + z^2 = 9\}$;

(b) $\omega = yzdy \wedge dz - (x+z)dz \wedge dx + (x^2 + y^2 + 3z)dx \wedge dy$, iar mulţimea:

$$\Sigma = \{x^2 + y^2 = 4 - 2z, z \ge 1\} \cup \{x^2 + y^2 \le 4 - 2z, z = 1\};$$

(c) $\omega = x(z+3) dy \wedge dz + yz dz \wedge dx - (z+z^2) dx \wedge dy$, iar multimea:

$$\Sigma = \{x^2 + y^2 + z^2 = 1, z \geqslant 0\}.$$

5. Să se calculeze, folosind formula lui Stokes, integrala curbilinie $\int_{\Gamma} \alpha$, în următoarele cazuri:

- (a) $\alpha = (y-z)dx + (z-x)dy + (x-y)dz$, iar mulțimea $\Gamma: z = x^2 + y^2, z = 1$;
- (b) $\alpha = y dx + z dy + x dz$, iar mulţimea:

$$\Gamma: x^2 + y^2 + z^2 = 1$$
, $x + y + z = 0$.

6. Să se calculeze circulația cîmpului vectorial:

$$\vec{V} = (y^2 + z^2)\vec{i} + (x^2 + z^2)\vec{j} + (x^2 + y^2)\vec{k}$$

pe curba $\Gamma : x^2 + y^2 + z^2 = R^2$, ax + by + cz = 0.