Квадратичные формы

Метод полных квадратов

Это видеофрагмент с доской, слайдов здесь нет:)

Краткий план:

• Симметричная матрица и собственные числа.

Краткий план:

- Симметричная матрица и собственные числа.
- Диагонализация квадратичной формы.

Всегда диагонализуема!

Утверждение

Если A — симметричная матрица, $A^T = A$, то у неё всегда найдётся ровно n действительных собственных чисел λ_i

Всегда диагонализуема!

Утверждение

Если A — симметричная матрица, $A^T = A$, то у неё всегда найдётся ровно n действительных собственных чисел λ_i и ровно n линейно независимых ортогональных собственных векторов.

Всегда диагонализуема!

Утверждение

Если A — симметричная матрица, $A^T = A$, то у неё всегда найдётся ровно n действительных собственных чисел λ_i и ровно n линейно независимых ортогональных собственных векторов.

Следствие

У симметричной A можно найти n ортогональных собственных векторов единичной длины.

Симметричная матрица A всегда диагонализуема!

Векторы $\mathbf{v}_1, ..., \mathbf{v}_n$ — ортогональные и единичной длины.

$$P = \begin{pmatrix} | & | \\ \mathbf{v}_1 \dots \mathbf{v}_n \\ | & | \end{pmatrix}$$

Векторы $\mathbf{v}_1, ..., \mathbf{v}_n$ — ортогональные и единичной длины.

$$P = \begin{pmatrix} | & | \\ \mathbf{v}_1 \dots \mathbf{v}_n \\ | & | \end{pmatrix} \quad P^T = \begin{pmatrix} -- & \mathbf{v}_1 -- \\ & \vdots \\ -- & \mathbf{v}_n -- \end{pmatrix}$$

Векторы $\mathbf{v}_1,...,\mathbf{v}_n$ — ортогональные и единичной длины.

$$P = \begin{pmatrix} | & & | \\ \mathbf{v}_1 \ \dots \ \mathbf{v}_n \\ | & & | \end{pmatrix} \quad P^T = \begin{pmatrix} --- & \mathbf{v}_1 & --- \\ & \vdots & \\ --- & \mathbf{v}_n & --- \end{pmatrix}$$

$$P^T P = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 1 \end{pmatrix} = \mathbf{I}$$

Векторы $\mathbf{v}_1, ..., \mathbf{v}_n$ — ортогональные и единичной длины.

$$P = \begin{pmatrix} | & & | \\ \mathbf{v}_1 \ \dots \ \mathbf{v}_n \\ | & & | \end{pmatrix} \quad P^T = \begin{pmatrix} --- & \mathbf{v}_1 & --- \\ & \vdots & \\ --- & \mathbf{v}_n & --- \end{pmatrix}$$

$$P^T P = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 1 \end{pmatrix} = \mathbf{I}$$

$$P^T = P^{-1}$$

Утвеждение

Квадратичная форма $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ с симметричной A представима в виде

$$f(\mathbf{x}) = \mathbf{x}^T P D P^{-1} \mathbf{x},$$

где D — диагональная матрица из собственных чисел матрицы A, а P — матрица из линейно независимых собственных векторов матрицы A.

Утвеждение

Квадратичная форма $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ с симметричной A представима в виде

$$f(\mathbf{x}) = \mathbf{x}^T P D P^{-1} \mathbf{x},$$

где D — диагональная матрица из собственных чисел матрицы A, а P — матрица из линейно независимых собственных векторов матрицы A.

Утвеждение

Всегда можно выбрать ортогональные собственные векторы A единичной длины, при этом представление примет вид:

$$f(\mathbf{x}) = \mathbf{x}^T P D P^T \mathbf{x} = (P^T \mathbf{x})^T D (P^T \mathbf{x}),$$

Утвеждение

Всегда можно выбрать ортогональные собственные векторы единичной длины, при этом представление примет вид:

$$f(\mathbf{x}) = \mathbf{x}^T P D P^T \mathbf{x} = (P^T \mathbf{x})^T D (P^T \mathbf{x}),$$

где D — диагональная матрица из собственных чисел матрицы A, а P — матрица из собственных векторов матрицы A.

Утвеждение

Всегда можно выбрать ортогональные собственные векторы единичной длины, при этом представление примет вид:

$$f(\mathbf{x}) = \mathbf{x}^T P D P^T \mathbf{x} = (P^T \mathbf{x})^T D (P^T \mathbf{x}),$$

где D — диагональная матрица из собственных чисел матрицы A, а P — матрица из собственных векторов матрицы A.

$$f(\mathbf{x}) = (P^T \mathbf{x})^T D(P^T \mathbf{x}) = \mathbf{y}^T D \mathbf{y} =$$
$$= \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$$

Утвеждение

Всегда можно выбрать ортогональные собственные векторы единичной длины, при этом представление примет вид:

$$f(\mathbf{x}) = \mathbf{x}^T P D P^T \mathbf{x} = (P^T \mathbf{x})^T D (P^T \mathbf{x}),$$

где D — диагональная матрица из собственных чисел матрицы A, а P — матрица из собственных векторов матрицы A.

$$\begin{split} f(\mathbf{x}) &= (P^T \mathbf{x})^T D (P^T \mathbf{x}) = \mathbf{y}^T D \mathbf{y} = \\ &= \lambda_1 y_1^2 + \lambda_2 y_2^2 + \ldots + \lambda_n y_n^2 \end{split}$$

Это просто удачная замена переменных $\mathbf{y} = P^T \mathbf{x}!$

Пример,
$$f(\mathbf{x}) = 5y_1^2 + 6y_2^2 - 9y_3^2$$
.

Пример,
$$f(\mathbf{x}) = 5y_1^2 + 6y_2^2 - 9y_3^2$$
.

Квадратичная форма f неопределена.

Пример,
$$f(\mathbf{x}) = 5y_1^2 + 6y_2^2 - 9y_3^2$$
.

Квадратичная форма f неопределена.

Утверждение

Квадратичная форма

$$f(\mathbf{x}) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \ldots + \lambda_n y_n^2$$

является...

Пример,
$$f(\mathbf{x}) = 5y_1^2 + 6y_2^2 - 9y_3^2$$
.

Квадратичная форма f неопределена.

Утверждение

Квадратичная форма

$$f(\mathbf{x}) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \ldots + \lambda_n y_n^2$$

является...

положительно определённой, если все $\lambda_i>0$.

Пример,
$$f(\mathbf{x}) = 5y_1^2 + 6y_2^2 - 9y_3^2$$
.

Квадратичная форма f неопределена.

Утверждение

Квадратичная форма

$$f(\mathbf{x}) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \ldots + \lambda_n y_n^2$$

является...

положительно определённой, если все $\lambda_i>0$.

отрицательно определённой, если все $\lambda_i < 0$.

Пример,
$$f(\mathbf{x}) = 5y_1^2 + 6y_2^2 - 9y_3^2$$
.

Квадратичная форма f неопределена.

Утверждение

Квадратичная форма

$$f(\mathbf{x}) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \ldots + \lambda_n y_n^2$$

является...

положительно определённой, если все $\lambda_i>0$.

отрицательно определённой, если все $\lambda_i < 0$.

положительно полуопределённой, если все $\lambda_i \geq 0$.

Пример,
$$f(\mathbf{x}) = 5y_1^2 + 6y_2^2 - 9y_3^2$$
.

Квадратичная форма f неопределена.

Утверждение

Квадратичная форма

$$f(\mathbf{x}) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \ldots + \lambda_n y_n^2$$

является...

положительно определённой, если все $\lambda_i>0$.

отрицательно определённой, если все $\lambda_i < 0$.

положительно полуопределённой, если все $\lambda_i \geq 0$.

отрицательно полуопределённой, если все $\lambda_i \leq 0$.

Пример,
$$f(\mathbf{x}) = 5y_1^2 + 6y_2^2 - 9y_3^2$$
.

Квадратичная форма f неопределена.

Утверждение

Квадратичная форма

$$f(\mathbf{x}) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \ldots + \lambda_n y_n^2$$

является...

положительно определённой, если все $\lambda_i>0$.

отрицательно определённой, если все $\lambda_i < 0$.

положительно полуопределённой, если все $\lambda_i \geq 0$.

отрицательно полуопределённой, если все $\lambda_i \leq 0$.

неопределённой, если найдётся $\lambda_i>0$ и $\lambda_i<0$.

Утверждение

Для симметричной матрицы A, $A^T = A$, собственные вектора, соответствующие разным λ , ортогональны.

Утверждение

Для симметричной матрицы A, $A^T = A$, собственные вектора, соответствующие разным λ , ортогональны.

Доказательство

K примеру, $A\mathbf{x} = 5\mathbf{x}$ и $A\mathbf{y} = 7\mathbf{y}$.

Утверждение

Для симметричной матрицы A, $A^T = A$, собственные вектора, соответствующие разным λ , ортогональны.

Доказательство

K примеру,
$$A\mathbf{x} = 5\mathbf{x}$$
 и $A\mathbf{y} = 7\mathbf{y}$.

$$\langle A\mathbf{x}, \mathbf{y} \rangle = \langle 5\mathbf{x}, \mathbf{y} \rangle = 5\langle \mathbf{x}, \mathbf{y} \rangle$$

Утверждение

Для симметричной матрицы A, $A^T = A$, собственные вектора, соответствующие разным λ , ортогональны.

Доказательство

K примеру,
$$A\mathbf{x} = 5\mathbf{x}$$
 и $A\mathbf{y} = 7\mathbf{y}$.

$$\langle A\mathbf{x}, \mathbf{y} \rangle = \langle 5\mathbf{x}, \mathbf{y} \rangle = 5\langle \mathbf{x}, \mathbf{y} \rangle$$

$$\langle \mathbf{x}, A\mathbf{y} \rangle = \langle \mathbf{x}, 7\mathbf{y} \rangle = 7\langle \mathbf{x}, \mathbf{y} \rangle$$

Утверждение

Для симметричной матрицы A, $A^T = A$, собственные вектора, соответствующие разным λ , ортогональны.

Доказательство

K примеру,
$$A\mathbf{x} = 5\mathbf{x}$$
 и $A\mathbf{y} = 7\mathbf{y}$.

$$\langle A\mathbf{x}, \mathbf{y} \rangle = \langle 5\mathbf{x}, \mathbf{y} \rangle = 5\langle \mathbf{x}, \mathbf{y} \rangle$$

 $\langle \mathbf{x}, A\mathbf{y} \rangle = \langle \mathbf{x}, 7\mathbf{y} \rangle = 7\langle \mathbf{x}, \mathbf{y} \rangle$
 $\langle A\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, A^T\mathbf{y} \rangle = \langle \mathbf{x}, A\mathbf{y} \rangle$

Утверждение

Для симметричной матрицы A, $A^T = A$, собственные вектора, соответствующие разным λ , ортогональны.

Доказательство

K примеру, $A\mathbf{x} = 5\mathbf{x}$ и $A\mathbf{y} = 7\mathbf{y}$.

$$\langle A\mathbf{x}, \mathbf{y} \rangle = \langle 5\mathbf{x}, \mathbf{y} \rangle = 5\langle \mathbf{x}, \mathbf{y} \rangle$$

 $\langle \mathbf{x}, A\mathbf{y} \rangle = \langle \mathbf{x}, 7\mathbf{y} \rangle = 7\langle \mathbf{x}, \mathbf{y} \rangle$
 $\langle A\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, A^T\mathbf{y} \rangle = \langle \mathbf{x}, A\mathbf{y} \rangle$

Равенство возможно, только если $\mathbf{x} \perp \mathbf{y}$:

$$5\langle \mathbf{x}, \mathbf{y} \rangle = 7\langle \mathbf{x}, \mathbf{y} \rangle$$

Критерий Сильвестра

Краткий план:

• Критерий Сильвестра.

Краткий план:

- Критерий Сильвестра.
- Расширенный критерий Сильвестра.

Обозначение

Будем вычёркивать из матрицы A строки и столбцы так, чтобы остались строки и столбцы с одинаковыми номерами.

Обозначение

Будем вычёркивать из матрицы A строки и столбцы так, чтобы остались строки и столбцы с одинаковыми номерами. Скажем, оставим в матрице A только 2-ю и 4-ю строки и 2-й и 4-й столбцы.

Обозначение

Будем вычёркивать из матрицы A строки и столбцы так, чтобы остались строки и столбцы с одинаковыми номерами.

Скажем, оставим в матрице A только 2-ю и 4-ю строки и 2-й и 4-й столбцы.

Определитель полученной подматрицы обозначим m_{24} .

Обозначение

Будем вычёркивать из матрицы A строки и столбцы так, чтобы остались строки и столбцы с одинаковыми номерами.

Скажем, оставим в матрице A только 2-ю и 4-ю строки и 2-й и 4-й столбцы.

Определитель полученной подматрицы обозначим m_{24} . Пример.

$$A = \begin{pmatrix} 5 & 2 & 3 & -1 \\ 2 & 6 & 2 & 1 \\ 3 & 2 & 9 & 5 \\ -1 & 1 & 5 & 8 \end{pmatrix}, \ m_{24} = \begin{vmatrix} 6 & 1 \\ 1 & 8 \end{vmatrix} = 47.$$

Названия миноров

Определения

В матрице A вычеркнули несколько строк и столбцов так, что остались строки и столбцы с одинаковыми номерами.

Определитель полученной подматрицы называется главным минором.

Названия миноров

Определения

В матрице A вычеркнули несколько строк и столбцов так, что остались строки и столбцы с одинаковыми номерами.

Определитель полученной подматрицы называется главным минором.

Определения

В матрице A вычеркнули несколько строк и столбцов так, что остались строки и столбцы с номерами 1, 2, ..., k.

Определитель полученной подматрицы называется угловым минором.

Названия миноров

Определения

В матрице A вычеркнули несколько строк и столбцов так, что остались строки и столбцы с одинаковыми номерами.

Определитель полученной подматрицы называется главным минором.

Определения

В матрице A вычеркнули несколько строк и столбцов так, что остались строки и столбцы с номерами 1, 2, ..., k.

Определитель полученной подматрицы называется угловым минором.

Определение

Порядком минора называется число строк (или столбцов) в соответствующей подматрице.

Критерий Сильвестра

Утверждение

Симметричная матрица A является положительно определённой, если и только если

$$m_1 > 0$$
, $m_{12} > 0$, $m_{123} > 0$, $m_{1234} > 0$, ...

Критерий Сильвестра

Утверждение

Симметричная матрица A является положительно определённой, если и только если

$$m_1 > 0$$
, $m_{12} > 0$, $m_{123} > 0$, $m_{1234} > 0$, ...

Пример.

$$A = \begin{pmatrix} 5 & 2 & 3 \\ 2 & 6 & 2 \\ 3 & 2 & 9 \end{pmatrix}$$

$$m_1 = 5, \ m_{12} = \begin{vmatrix} 5 & 2 \\ 2 & 6 \end{vmatrix} = 26, \ m_{123} = \begin{vmatrix} 5 & 2 & 3 \\ 2 & 6 & 2 \\ 3 & 2 & 9 \end{vmatrix} = 184$$

Утверждение

Если помножить на (-1) все элементы матрицы A размера $n \times n$, то определитель матрица $A\dots$

Утверждение

Если помножить на (-1) все элементы матрицы A размера $n \times n$, то определитель матрица $A\dots$

поменяет знак, если n — нечётное;

Утверждение

Если помножить на (-1) все элементы матрицы A размера $n \times n$, то определитель матрица $A \dots$

поменяет знак, если n — нечётное;

сохранит знак, если n — чётное.

Утверждение

Если помножить на (-1) все элементы матрицы A размера $n \times n$, то определитель матрица $A \dots$

поменяет знак, если n — нечётное;

сохранит знак, если n — чётное.

Легко получим критерий отрицательной определённости!

Критерий Сильвестра

Утверждение

Симметричная матрица A является отрицательно определённой, если и только если

$$m_1 < 0, m_{12} > 0, m_{123} < 0, m_{1234} > 0, \dots$$

Критерий Сильвестра

Утверждение

Симметричная матрица A является отрицательно определённой, если и только если

$$m_1 < 0, m_{12} > 0, m_{123} < 0, m_{1234} > 0, \dots$$

Пример.

$$B = \begin{pmatrix} -5 & -2 & -3 \\ -2 & -6 & -2 \\ -3 & -2 & -9 \end{pmatrix}$$

$$m_1 = -5, \ m_{12} = \begin{vmatrix} -5 & -2 \\ -2 & -6 \end{vmatrix} = 26, \ m_{123} = \begin{vmatrix} -5 & -2 & -3 \\ -2 & -6 & -2 \\ -3 & -2 & -9 \end{vmatrix} = -184$$

Утверждение

Симметричная матрица A является положительно полуопределённой, если и только если (для всех i, j, k, ...)

$$m_i \ge 0$$
, $m_{ij} \ge 0$, $m_{ijk} \ge 0$, $m_{ijkl} \ge 0$, ...

Утверждение

Симметричная матрица A является положительно полуопределённой, если и только если (для всех i, j, k, \ldots)

$$m_i \geq 0$$
 , $m_{ij} \geq 0$, $m_{ijk} \geq 0$, $m_{ijkl} \geq 0$, \dots

$$A = \begin{pmatrix} 4 & 6 \\ 6 & 9 \end{pmatrix}$$

$$m_1 = 4, \ m_2 = 9, \ m_{12} = \begin{vmatrix} 4 & 6 \\ 6 & 9 \end{vmatrix} = 0$$

Утверждение

Симметричная матрица A является отрицательно полуопределённой, если и только если (для всех i, j, k, ...)

$$m_i \leq 0$$
, $m_{ij} \geq 0$, $m_{ijk} \leq 0$, $m_{ijkl} \geq 0$, ...

Утверждение

Симметричная матрица A является отрицательно полуопределённой, если и только если (для всех i, j, k, \ldots)

$$m_i \leq 0$$
 , $m_{ij} \geq 0$, $m_{ijk} \leq 0$, $m_{ijkl} \geq 0$, \dots

$$A = \begin{pmatrix} -4 & 6 \\ 6 & -9 \end{pmatrix}$$

$$m_1 = -4, \ m_2 = -9, \ m_{12} = \begin{vmatrix} -4 & 6 \\ 6 & -9 \end{vmatrix} = 0$$

Утверждение

Квадратичная форма $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ является положительно определённой, если

Утверждение

Квадратичная форма $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ является положительно определённой, если

1. В любой точке $\mathbf{x} \neq \mathbf{0}$ она положительна, $f(\mathbf{x}) > 0$.

Утверждение

Квадратичная форма $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ является положительно определённой, если

- 1. В любой точке $\mathbf{x} \neq \mathbf{0}$ она положительна, $f(\mathbf{x}) > 0$.
- 2. Все собственные числа матрицы A положительны, $\lambda_i>0$.

Утверждение

Квадратичная форма $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ является положительно определённой, если

- 1. В любой точке $\mathbf{x} \neq \mathbf{0}$ она положительна, $f(\mathbf{x}) > 0$.
- 2. Все собственные числа матрицы A положительны, $\lambda_i>0$.
- 3. Все угловые миноры матрицы A положительны, $m_{12-k}>0.$

Утверждение

Квадратичная форма $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ является отрицательно определённой, если

Утверждение

Квадратичная форма $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ является отрицательно определённой, если

1. В любой точке $\mathbf{x} \neq \mathbf{0}$ она отрицательна, $f(\mathbf{x}) > 0$.

Утверждение

Квадратичная форма $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ является отрицательно определённой, если

- 1. В любой точке $\mathbf{x} \neq \mathbf{0}$ она отрицательна, $f(\mathbf{x}) > 0$.
- 2. Все собственные числа матрицы A отрицательны, $\lambda_i > 0$.

Утверждение

Квадратичная форма $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ является отрицательно определённой, если

- 1. В любой точке $\mathbf{x} \neq \mathbf{0}$ она отрицательна, $f(\mathbf{x}) > 0$.
- 2. Все собственные числа матрицы A отрицательны, $\lambda_i>0$.
- 3. Нечётные угловые миноры матрицы A отрицательны, а чётные положительны.

Утверждение

Квадратичная форма $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ является положительно полуопределённой (неотрицательно определённой), если

Утверждение

Квадратичная форма $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ является положительно полуопределённой (неотрицательно определённой), если

1. В любой точке ${\bf x}$ она неотрицательна, $f({\bf x}) \ge 0$.

Утверждение

Квадратичная форма $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ является положительно полуопределённой (неотрицательно определённой), если

- 1. В любой точке ${\bf x}$ она неотрицательна, $f({\bf x}) \ge 0$.
- 2. Все собственные числа матрицы A неотрицательны, $\lambda_i \geq 0$.

Утверждение

Квадратичная форма $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ является положительно полуопределённой (неотрицательно определённой), если

- 1. В любой точке ${\bf x}$ она неотрицательна, $f({\bf x}) \ge 0$.
- 2. Все собственные числа матрицы A неотрицательны, $\lambda_i \geq 0$.
- 3. Все главные миноры матрицы A неотрицательны.

Утверждение

Квадратичная форма $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ является отрицательно полуопределённой (неположительно определённой), если

Утверждение

Квадратичная форма $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ является отрицательно полуопределённой (неположительно определённой), если

1. В любой точке ${\bf x}$ она неположительна, $f({\bf x}) \le 0$.

Утверждение

Квадратичная форма $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ является отрицательно полуопределённой (неположительно определённой), если

- 1. В любой точке ${\bf x}$ она неположительна, $f({\bf x}) \leq 0$.
- 2. Все собственные числа матрицы A неположительны, $\lambda_i \leq 0$.

Утверждение

Квадратичная форма $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ является отрицательно полуопределённой (неположительно определённой), если

- 1. В любой точке ${\bf x}$ она неположительна, $f({\bf x}) \leq 0$.
- 2. Все собственные числа матрицы A неположительны, $\lambda_i \leq 0.$
- 3. Нечётные главные миноры матрицы A неположительны, а чётные неотрицательны.

Расширенный критерий Сильвестра: пример

Это видеофрагмент с доской, слайдов здесь нет:)

Матрица Грамма

Краткий план:

• Матрица Грама.

Краткий план:

- Матрица Грама.
- Матрица Грама и проекция.

Краткий план:

- Матрица Грама.
- Матрица Грама и проекция.
- Ортогональный базис.

Матрица Грама

Определение

Возьмём векторы $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ из \mathbb{R}^n . Матрица их попарных скалярных произведений называется матрицей Грама,

$$M = \begin{pmatrix} \langle \mathbf{x}_1, \mathbf{x}_1 \rangle & \langle \mathbf{x}_1, \mathbf{x}_2 \rangle & \dots & \langle \mathbf{x}_1, \mathbf{x}_k \rangle \\ \langle \mathbf{x}_2, \mathbf{x}_1 \rangle & \langle \mathbf{x}_2, \mathbf{x}_2 \rangle & \dots & \langle \mathbf{x}_2, \mathbf{x}_k \rangle \\ \dots & \dots & \dots & \dots \\ \langle \mathbf{x}_k, \mathbf{x}_1 \rangle & \langle \mathbf{x}_k, \mathbf{x}_2 \rangle & \dots & \langle \mathbf{x}_k, \mathbf{x}_k \rangle \end{pmatrix} = X^T X$$

Матрица Грама

Определение

Возьмём векторы $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ из \mathbb{R}^n . Матрица их попарных скалярных произведений называется матрицей Грама,

$$M = \begin{pmatrix} \langle \mathbf{x}_1, \mathbf{x}_1 \rangle & \langle \mathbf{x}_1, \mathbf{x}_2 \rangle & \dots & \langle \mathbf{x}_1, \mathbf{x}_k \rangle \\ \langle \mathbf{x}_2, \mathbf{x}_1 \rangle & \langle \mathbf{x}_2, \mathbf{x}_2 \rangle & \dots & \langle \mathbf{x}_2, \mathbf{x}_k \rangle \\ \dots & \dots & \dots & \dots \\ \langle \mathbf{x}_k, \mathbf{x}_1 \rangle & \langle \mathbf{x}_k, \mathbf{x}_2 \rangle & \dots & \langle \mathbf{x}_k, \mathbf{x}_k \rangle \end{pmatrix} = X^T X$$

А определитель этой матрицы называется определителем Грама, $G = \det M$.

Свойства матрицы Грама

Утверждение

Векторы $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ линейно независимы если и только если определитель Грама отличен от нуля, $G \neq 0$.

Свойства матрицы Грама

Утверждение

Векторы $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ линейно независимы если и только если определитель Грама отличен от нуля, $G \neq 0$.

Утверждение

Матрица Грама положительно полуопределена.

Свойства матрицы Грама

Утверждение

Векторы $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ линейно независимы если и только если определитель Грама отличен от нуля, $G \neq 0$.

Утверждение

Матрица Грама положительно полуопределена.

Утверждение

Если $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n$ лежат в \mathbb{R}^n , то определитель Грама G равен квадрату объёма параллелепипеда, образованного векторами $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n$.

Положительная полуопределённость

Утверждение

Матрица Грама положительно полуопределена.

Положительная полуопределённость

Утверждение

Матрица Грама положительно полуопределена.

Доказательство

$$\mathbf{v}^T M \mathbf{v} = \sum_{ij} v_i v_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle = \sum_{ij} \langle v_i \mathbf{x}_i, v_j \mathbf{x}_j \rangle =$$

Положительная полуопределённость

Утверждение

Матрица Грама положительно полуопределена.

Доказательство

$$\begin{aligned} \mathbf{v}^T M \mathbf{v} &= \sum_{ij} v_i v_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle = \sum_{ij} \langle v_i \mathbf{x}_i, v_j \mathbf{x}_j \rangle = \\ &= \langle \sum_i v_i \mathbf{x}_i, \sum_j v_j \mathbf{x}_j \rangle = \langle \mathbf{a}, \mathbf{a} \rangle \geq 0 \end{aligned}$$

Хотим найти проекцию $\hat{\mathbf{y}}$ вектора \mathbf{y} на Span $\{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_k\}$.

Хотим найти проекцию $\hat{\mathbf{y}}$ вектора \mathbf{y} на Span $\{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_k\}$.

Проекция $\hat{\mathbf{y}}$ — линейная комбинация $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$,

$$\hat{\mathbf{y}} = v_1 \mathbf{x}_1 + \dots + v_k \mathbf{x}_k = X \mathbf{v}$$

Хотим найти проекцию $\hat{\mathbf{y}}$ вектора \mathbf{y} на Span $\{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_k\}$.

Проекция $\hat{\mathbf{y}}$ — линейная комбинация $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$,

$$\hat{\mathbf{y}} = v_1 \mathbf{x}_1 + \dots + v_k \mathbf{x}_k = X \mathbf{v}$$

Условия первого порядка:

$$X^T X \mathbf{v} = X^T y$$

Хотим найти проекцию $\hat{\mathbf{y}}$ вектора \mathbf{y} на Span $\{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_k\}$.

Проекция $\hat{\mathbf{y}}$ — линейная комбинация $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$,

$$\hat{\mathbf{y}} = v_1 \mathbf{x}_1 + \dots + v_k \mathbf{x}_k = X \mathbf{v}$$

Условия первого порядка:

$$X^T X \mathbf{v} = X^T y$$
 или $M \mathbf{v} = X^T y$

Хотим найти проекцию $\hat{\mathbf{y}}$ вектора \mathbf{y} на Span $\{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_k\}$.

Проекция $\hat{\mathbf{y}}$ — линейная комбинация $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$,

$$\hat{\mathbf{y}} = v_1 \mathbf{x}_1 + \dots + v_k \mathbf{x}_k = X \mathbf{v}$$

Условия первого порядка:

$$X^T X \mathbf{v} = X^T y$$
 или $M \mathbf{v} = X^T y$

$$\mathbf{v} = M^{-1}X^Ty.$$

Ортогональные вектора

Утверждение

Если векторы $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ ортогональны, то их матрица Грама — диагональная.

$$M = \begin{pmatrix} \langle \mathbf{x}_1, \mathbf{x}_1 \rangle & 0 & \dots & 0 \\ 0 & \langle \mathbf{x}_2, \mathbf{x}_2 \rangle & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \langle \mathbf{x}_k, \mathbf{x}_k \rangle \end{pmatrix}$$

Ортогонализация Грамма-Шмидта: пример

Это видеофрагмент с доской, слайдов здесь нет:)

Бонус: задача про переливание красок

Это видеофрагмент с доской, слайдов здесь нет:)