Lecture 2 Deep Feedforward Networks

课程: 机器学习与深度学习

Three Steps for Deep Learning

Deep Learning is as simple as linear model.....

Overview

- Model Architectures
 - Artificial neurons
 - Activation function and saturation
 - Feedforward neural nets
- How to train a neural net
 - Loss Function Design
 - Optimization
 - Gradient Descent and Stochastic Gradient Descent
 - Back-propagation
 - Advanced Training tips

The Perceptron

- Invented in 1954 by Frank Rosenblatt
- Inspired by neurobiology

Artificial Neuron

- Each neuron is a very simple function
- Pre-activation: $z(x) = \sum_i w_i x_i + b = w^T x + b$
- Output activation: $a(x) = f(z(x)) = f(w^T x + b)$

 $f(\cdot)$: nonlinear activation function

w: weight

b: bias term

Artificial Neuron

Output activation

$$a(x) = f(z(x)) = f(w^T x + b)$$

Range is determined by $g(\cdot)$

(from Pascal Vincent's slides)

Bias only changes the position of the riff

Activation Function

- Linear activation function
- Sigmoid activation function
- Hyperbolic tangent activation function
- Rectified linear (ReLU) activation function
- Softmax activation function

Non-linear activation function, frequently used in deep neural networks.

Linear Activation Function

- No input squashing
- No nonlinear transformation

$$f(z) = z$$

- Why non-linearity?
 - Without non-linearity, deep neural networks work the same as linear transform
 - $W_1(W_2, x) = (W_1W_2)x = Wx$
 - With non-linearity, networks with more layers can approximate more complex function

Sigmoid Activation Function

- Squashes the neuron's output to (0,1)
- Bounded
- Strictly increasing

$$f(z) = \sigma(z) \stackrel{\text{def}}{=} \frac{1}{1 + \exp(-z)}$$

Hyperbolic Tangent ("tanh") Function

- Squashes the neuron's output to (-1,1)
- Can be positive or negative
- Bounded
- Strictly increasing

$$f(z) = \tanh(z) \stackrel{\text{def}}{=} \frac{\exp(2z) - 1}{\exp(2z) + 1}$$

Rectified Linear Activation Function (ReLU)

- Tends to produce units with sparse activities
- No upper-bound
- Increasing

$$f(z) = \operatorname{reclin}(z) \stackrel{\text{def}}{=} \max(z, 0)$$

- Shift ReLU: max(-1, z)
- Leaky ReLU: max(0.1z, z)
- Parameter ReLU: $max(\mu z, z)$

• Maxout: $\max(w_1^T z + b_1, w_2^T z + b_2)$

Softmax Activation Function

- In multi-class classification (C classes), we need to
 - generate multiple output: $\mathbf{z} \in \mathbb{R}^{C}$ (in vector form)
 - estimate the conditional probability of each class:

$$p(y = i | \mathbf{z}) = \frac{\exp z_i}{\sum_c \exp z_c}$$

- Strictly positive
- Sum up to one

$$\mathbf{f}(\mathbf{z}) = \operatorname{softmax}(\mathbf{z}) = \left[\frac{\exp z_1}{\sum_c \exp z_c} ... \frac{\exp z_C}{\sum_c \exp z_c} \right]^T$$

Capacities of a Single Neuron

Solve linearly separable problems

Capacities of a Single Neuron

• Can't solve linearly inseparable problems

How to implement XOR?

Input		Output
Α	В	Output
0	0	0
0	1	1
1	0	1
1	1	0

$$A XOR B = AB' + A'B$$

Multiple operations can produce more complicate output

Neural Network

Different connection leads to different network structures

Network parameter θ : all the weights and biases in the "neurons"

Multilayer Feedforward Neural Networks

- Each neuron in one layer has directed connections to the neurons of the subsequent layer
- Information propagates from input x to output f(x), through many hidden layers

Expressions of Multi-Layer Neural Network

Continuous function w/ 2 layers

Continuous function w/ 3 layers

Multiple layers enhance the model expression -> the model can approximate more complex functions

Setting the Number of Neuros and Layers

- More neuros = more capacity
- More layers = more capacity

Fully Connect Feedforward Network

Example Application

Input

x_1 x_2 x_{256} x_{256}

 $Ink \rightarrow 1$

No ink $\rightarrow 0$

Output

Example Application

Handwriting Digit Recognition

Example Application

You need to decide the network structure to let a good function in your function set.

• Q: How many layers? How many neurons for each layer?

Trial and Error

+

Intuition

- Q: Can the structure be automatically determined?
 - E.g. Evolutionary Artificial Neural Networks
- Q: Can we design the network structure?

Convolutional Neural Network (CNN)

 b_i^l : bias for neuron i at layer l

$$b^l = \left| egin{array}{c} dots \ b^l_i \ dots \end{array}
ight|$$

bias of all neurons at each layer→ a vector

Notation Summary

```
a_i^l: output of a neuron w_{ij}^l: a weight a^l: output vector of a layer w^l: a weight matrix z_i^l: input of activation z_i^l: input vector of activation z^l: a bias vector function for a layer
```

Neural Network Formulation

 $f: \mathbb{R}^N \to \mathbb{R}^M$

Fully connected feedforward network

Three Steps for Deep Learning

Function = model parameters

Forward propagation

$$y = f(x) = \sigma(W^L \cdots \sigma(W^2 \sigma(W^1 x + b^1) + b^2) \dots + b^L)$$

Different parameters W and $b \rightarrow$ different functions

Formal definition:

$$f(x;\theta); \ \theta = \{W^1, b^1, W^2, b^2, \dots, W^L, b^L\}$$

Pick a function f = pick a set of model parameters θ

Training

• Empirical risk minimization $J(\theta)$

$$\arg\min_{\pmb{\theta}} \frac{1}{T} \sum_{t} l(f(\mathbf{x}^{(t)}; \pmb{\theta}), y^{(t)}) + \lambda \Omega(\pmb{\theta})$$
 Loss function Regularizer

- Learning is cast as optimization
 - Find a model parameter set that minimize $J(\theta)$
 - Loss function can sometimes be viewed as a surrogate for what we want to optimize

Loss Function

- In discriminative model (判別模型), model y|x.
- Learning the maximum likelihood, equivalently the cross entropy between training data and model distribution:

$$l(\theta) = -E_{x,y\sim \text{Data}}\log p(y|x)$$

• The specific form of loss function depends on the model distribution $p(\cdot)$

Loss Functions

- Loss function evaluates the performance of our model, it is chosen according to the output units
 - Normal: $\hat{y} = \mathbf{w}^T \mathbf{x} + b$
 - Bernoulli: $\hat{y} = \sigma(\mathbf{w}^T \mathbf{x} + b)$
 - Multinomial: $\hat{y} = \operatorname{softmax}(W^T x + b)$
- Consider regularization $\Omega(\theta)$
- Equivalent form of Loss function: $J = l(y, \hat{y}) + \lambda \Omega(\theta)$

Frequently Used Loss Functions

• Square loss

$$l(y, \hat{y}) = (y - \hat{y})^2$$

Hinge loss

$$l(y, \hat{y}) = \max(0, 1 - \hat{y} y)$$

Logistic loss

$$l(y, \hat{y}) = \log(1 + \exp(-\hat{y}y))$$

Cross entropy loss

$$l(y, \hat{y}) = -y \log \hat{y} + (1 - y) \log(1 - \hat{y})$$

How to Train Multilayer Neural Nets?

- Learning is reduced to optimization.
 - Given a loss function $J(\theta)$ and several parameter sets
 - Find a model parameter set that minimize $J(\theta)$

Overview

- Model Architectures
 - Artificial neurons
 - Activation function and saturation
 - Feedforward neural nets
- How to train a neural net
 - Loss Function Design
 - Optimization
 - Gradient Descent and Stochastic Gradient Descent
 - Backward propagation

Assume that θ has only one variable

Assume that θ has only one variable

Revisit Neural Network Formulation

$$y = f(x) = \sigma(W^{L} \cdots \sigma(W^{2} \sigma(W^{1} x + b^{1}) + b^{2}) \dots + b^{L})$$

Gradient Descent for Neural Network

$$y = f(x) = \sigma(W^L \cdots \sigma(W^2 \sigma(W^1 x + b^1) + b^2) \dots + b^L)$$

$$\theta = \left\{ W^1, b^1, W^2, b^2, \cdots W^L, b^L \right\}$$

$$W^l = \begin{bmatrix} w_{11}^l & w_{12}^l & \cdots \\ w_{21}^l & w_{22}^l & \cdots \\ \vdots & \ddots & \end{bmatrix} b^l = \begin{bmatrix} \vdots \\ b_i^l \\ \vdots \end{bmatrix}$$

$$VJ(\theta) = \begin{bmatrix} \frac{\partial}{\partial J(\theta)} \\ \frac{\partial J(\theta)}{\partial w_{ij}^l} \\ \vdots \\ \frac{\partial J(\theta)}{\partial b_i^l} \end{bmatrix}$$

$$Algorithm$$
Initialization: start at θ^0 while $(\theta^{(i+1)} \neq \theta^i)$ {
$$compute gradient at θ^i update parameters
$$\theta^{i+1} \leftarrow \theta^i - \eta \nabla_{\theta} J(\theta^i)$$
}
}$$

Algorithm Initialization: start at θ^0 while $(\theta^{(i+1)} \neq \theta^i)$ compute gradient at θ^i update parameters $\theta^{i+1} \leftarrow \theta^i - \eta \nabla_{\theta} J(\theta^i)$

Simple Case

$$y = f(x; \theta) = \sigma(Wx + b)$$

$$\theta = \{W, b\} = \{w_1, w_2, b\}$$

$\nabla_{\theta} J(\theta) = \begin{bmatrix} \frac{\partial J(\theta)}{\partial w_1} \\ \frac{\partial J(\theta)}{\partial w_2} \\ \frac{\partial J(\theta)}{\partial h} \end{bmatrix}$

Algorithm

Initialization: start at θ^0 while $(\theta^{(i+1)} \neq \theta^i)$ {

compute gradient at θ^i update parameters

$$\theta^{i+1} \leftarrow \theta^i - \eta \nabla_\theta J(\theta^i)$$

$$\begin{bmatrix} w_1^{i+1} \\ w_2^{i+1} \\ b^{i+1} \end{bmatrix} = \begin{bmatrix} w_1^i \\ w_2^i \\ b^i \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial J(\theta^i)}{\partial w_1} \\ \frac{\partial J(\theta^i)}{\partial w_2} \\ \frac{\partial J(\theta^i)}{\partial b} \end{bmatrix}$$

To compute the Gradients

• If square loss

- $\hat{y} = \sigma(Wx + b) = \sigma(w_1x_1 + w_2x_2 + b)$
- $J(\theta) = (\sigma(Wx + b) y)^2$
- $\bullet \frac{\partial J(\theta)}{\partial w_1} = 2(\sigma(Wx+b) y) \Big(1 \sigma(Wx+b)\Big) \sigma(Wx+b) x_1$
- $\bullet \frac{\partial J(\theta)}{\partial w_2} = 2(\sigma(Wx+b) y)(1 \sigma(Wx+b))\sigma(Wx+b)x_2$
- $\frac{\partial J(\theta)}{\partial b} = 2(\sigma(Wx+b) y)(1 \sigma(Wx+b))\sigma(Wx+b)$

Algorithm

Initialization: start at θ^0 while $(\theta^{(i+1)} \neq \theta^i)$ {compute gradient at θ^i update parameters $\theta^{i+1} \leftarrow \theta^i - \eta \nabla_{\theta} I(\theta^i)$

Gradient Descent for Neural Network

$$y = f(x) = \sigma(W^L \cdots \sigma(W^2 \sigma(W^1 x + b^1) + b^2) \dots + b^L)$$

$$\theta = \left\{ W^1, b^1, W^2, b^2, \cdots W^L, b^L \right\}$$

$$W^l = \begin{bmatrix} w^l_{11} & w^l_{12} & \cdots \\ w^l_{21} & w^l_{22} & \cdots \\ \vdots & \ddots & \end{bmatrix} b^l = \begin{bmatrix} \vdots \\ b^l_i \\ \vdots \end{bmatrix}$$

$$VJ(\theta) = \begin{bmatrix} \frac{\partial J(\theta)}{\partial w^l_{ij}} \\ \frac{\partial J(\theta)}{\partial b^l_i} \end{bmatrix}$$

$$VJ(\theta) = \begin{bmatrix} \frac{\partial J(\theta)}{\partial b^l_i} \\ \frac{\partial J(\theta)}{\partial b^l_i} \end{bmatrix}$$

$$VJ(\theta) = \begin{bmatrix} \frac{\partial J(\theta)}{\partial b^l_i} \\ \frac{\partial J(\theta)}{\partial b^l_i} \\ \frac{\partial J(\theta)}{\partial b^l_i} \end{bmatrix}$$

$$VJ(\theta) = \begin{bmatrix} \frac{\partial J(\theta)}{\partial b^l_i} \\ \frac{\partial J(\theta)}{\partial b$$

Algorithm

```
Initialization: start at \theta^0
while (\theta^{(i+1)} \neq \theta^i)
      compute gradient at \theta^i
      update parameters
    \theta^{i+1} \leftarrow \theta^i - \eta \nabla_\theta J(\theta^i)
```

Gradient Computation: Sigmoid Unit

$$f(z) = \sigma(z), \ f'(z) = \sigma(z)(1$$

Gradient Computation: Tanh Unit

- $f(z) = \tanh(z) = 2\sigma(2z) 1$ 1 and $\tanh'(z) = 1 - f(z)^2$
- tanh(z) approximates linear function when z is small
- Often it is preferable to sigmoid in feedforward neural nets (zero-centered)
- Problem: still kill gradient when saturated ☺

Gradient Computation: ReLU

•
$$f(z) = \max_{1, z \ge 0} (z, 0)$$

 $f'(z) = \begin{cases} 1, z \ge 0 \\ 0, \text{ o. w.} \end{cases}$

- Models are easier to optimize if their behavior is close to linear
- Converge much faster than sigmoid and tanh in practice (6x faster)
- Not differentiable at z = 0, but it is not a problem in practice
- Not zero-centered
- Fragile during training and can "die"

[Krizhevsky et al., 2012]

Gradient Computation: Leaky ReLU

•
$$f(a) = \max(z, 0.01z)$$

 $f'(a) = \begin{cases} 1, z \ge 0 \\ 0.01, \text{ o. w.} \end{cases}$

- Will not die
- Parametric ReLU

•
$$f(z) = \max(z, \mu z)$$

•
$$f'(z) = \begin{cases} 1, z \ge 0 \\ \mu, o. w. \end{cases}$$

• Update μ through backpropagation

[Mass et al., 2013] [He et al., 2015]

Gradient Computation: Exponential Linear Unit (ELU)

•
$$f(z) = \begin{cases} z, z \ge 0 \\ \mu(e^z - 1) \end{cases}$$

•
$$f'(z) = \begin{cases} 1, z \ge 0 \\ \mu e^z, o. w. \end{cases}$$

- All benefit of ReLU
- Almost zero-centered
- Compute exp() ⊗

Gradient Computation: Maxout

- $\bullet f(z) = \max(w_1 z + b_1, w_2 z + b_2)$
- Generalization of Leaky ReLU and ReLU
- Double the number of parameters

Softmax

• Cross-entropy:

$$H(p,q) = -\sum_{x} p(x) \log(q(x))$$

• In multiclass classification, y-th

$$\mathbf{y} = [0,0,0,...,0,1,0,0,...0]^T \in \mathbb{R}^C$$

Then

$$J = H(\mathbf{y}, \mathbf{h}) = -\log h_y$$
 where $h_i = f_i(\mathbf{z}) = \frac{\exp(z_i)}{\sum_c^C \exp(z_c)} = P(y = i | \mathbf{z}), 1 \le i \le C.$

Softmax

•
$$\nabla_{\mathbf{h}} J = [0, ..., 0, -h_y, 0, ..., 0]^T$$

•
$$\nabla_{\mathbf{z}} J = \left(\frac{\partial \mathbf{h}}{\partial \mathbf{z}}\right)^T \nabla_{\mathbf{h}} J = -\frac{1}{h_y} \nabla h_y(\mathbf{z}) = -(\mathbf{e}_y - \mathbf{h})$$

In Practice

- For forward nn
 - Use ReLU, be careful with the learning rate
 - Tryout Leaky ReLU, ELU and Maxout
 - Tryout Tanh with low expectation
 - Never use sigmoid

Gradient Descent for Neural Network

$$y = f(x) = \sigma(W^L \cdots \sigma(W^2 \sigma(W^1 x + b^1) + b^2) \dots + b^L)$$

$$\theta = \left\{ W^1, b^1, W^2, b^2, \cdots W^L, b^L \right\}$$

$$W^l = \begin{bmatrix} w^l_{11} & w^l_{12} & \cdots \\ w^l_{21} & w^l_{22} & \cdots \\ \vdots & \ddots & \end{bmatrix} b^l = \begin{bmatrix} \vdots \\ b^l_i \\ \vdots \end{bmatrix}$$

$$\nabla J(\theta) = \begin{bmatrix} \cdots, \frac{\partial J(\theta)}{\partial w^l_{ij}}, \cdots, \frac{\partial J(\theta)}{\partial b^l_i}, \cdots \end{bmatrix}^T$$

$$Algorithm$$
Initialization: start at θ^0 while $(\theta^{(i+1)} \neq \theta^i)$ {
$$compute gradient at θ^i update parameters
$$\theta^{i+1} \leftarrow \theta^i - \eta \nabla_{\theta} J(\theta^i)$$$$

To compute the gradients of millions of parameters efficiently, we use **backpropagation**.

Gradient Descent Issue

- After see all training samples, the model can be updated slowly.
- It is too expensive to compute the full gradient

Thus, we have stochastic gradient descent (SGD)

Stochastic Gradient Descent

For t = 1,2,3,... (epoch means one pass over the full training set)

```
sample i \in \{1, 2, ..., n\}

\mathbf{s} = \nabla l(f(\mathbf{x}^{(i)}, \boldsymbol{\theta}^{(t)}), y^{(i)}) + \lambda \nabla \Omega(\boldsymbol{\theta}^{(t)})

\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta \cdot \mathbf{s}
```

• Computing stochastic gradient is much cheaper than full gradient

Gradient Descent v.s. SGD

Gradient Descent

Update after seeing all examples

1.5 1.4 See all 1.3 examples 1.2 1.1 1.0 0.9 0.8 -0.10.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Stochastic Gradient Descent

If there are 20 examples, update 20 times in one epoch.

SGD approaches to the target point faster than gradient descent

Mini-Batch SGD

```
Algorithm 8.1 Stochastic gradient descent (SGD) update at training iteration k
```

Require: Learning rate ϵ_k .

Require: Initial parameter θ

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient estimate: $\hat{\boldsymbol{g}} \leftarrow +\frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon \hat{\boldsymbol{g}}$

end while

Handwriting Digit Classification

Training speed: mini-batch > SGD > Gradient Descent

Big Issue: Local Optima

- Neural networks has no guarantee for obtaining global optimal solution
- Saddle points

Advanced practical tips (to be presented in the last lecture)

Summary: How to Train Multilayer Neural Nets?

- Define the loss function l(,) properly
- A procedure to compute loss l(,) (forward propagation)
- A procedure to compute gradient $\nabla l(,)$ (back propagation)
- Regularizer and its gradient $\Omega(,)$ and $\nabla\Omega(,)$
- Perform gradient based optimization method

Forward/Backward Propagation

```
class ComputationalGraph(object):
   # . . .
   def forward(inputs):
        # 1. [pass inputs to input gates...]
        # 2. forward the computational graph:
        for gate in self.graph.nodes_topologically_sorted():
            gate.forward()
        return loss # the final gate in the graph outputs the loss
    def backward():
        for gate in reversed(self.graph.nodes topologically sorted()):
            gate.backward() # little piece of backprop (chain rule applied)
        return inputs gradients
```

Overview

- Model Architectures
 - Artificial neurons
 - Activation function and saturation
 - Feedforward neural nets
- How to train a neural net
 - Loss Function Design
 - Optimization
 - Gradient Descent and Stochastic Gradient Descent
 - Back-propagation

Forward v.s. Back Propagation

- In a feedforward neural network
 - forward propagation
 - from input x to output y information flows forward through the network
 - \circ during training, forward propagation can continue onward until it produces a scalar cost $J(\theta)$
 - back-propagation
 - allows the information from the cost to then <u>flow backwards</u> through the network, in order to compute the **gradient**
 - can be applied to any function

Chain Rule

$$\frac{\partial w}{\partial w} \to \Delta x \to \Delta y \to \Delta z$$

$$\frac{\partial z}{\partial w} = \frac{\partial z}{\partial y} \frac{\partial y}{\partial x} \frac{\partial x}{\partial w}$$

$$= f'(y)f'(x)f'(w)$$
forward propagation for loss (cost)
$$= f'(f(f(w)))f'(f(w))f'(w)$$
back-propagation for gradient

$$y = f(x) = \sigma(W^L \cdots \sigma(W^2 \sigma(W^1 x + b^1) + b^2) \cdots + b^L)$$

$$\theta = \left\{ W^1, b^1, W^2, b^2, \cdots W^L, b^L \right\}$$

$$W^l = \begin{bmatrix} w^l_{11} & w^l_{12} & \cdots \\ w^l_{21} & w^l_{22} & \cdots \end{bmatrix} b^l = \begin{bmatrix} \vdots \\ b^l_i \\ \vdots \end{bmatrix}$$

$$\left\{ \begin{array}{c} \text{Algorithm} \\ \text{Initialization: start at } \theta^0 \\ \text{while}(\theta^{(i+1)} \neq \theta^i) \\ \{ \\ \text{compute gradient at } \theta^i \\ \text{update parameters} \\ \} \end{array} \right.$$

$$\theta^{i+1} \leftarrow \theta^i - \eta \nabla_{\theta} J(\theta^i)$$

Algorithm Initialization: start at θ^0 while $(\theta^{(i+1)} \neq \theta^i)$ compute gradient at θ^i update parameters $\theta^{i+1} \leftarrow \theta^i - \eta \nabla_{\theta} J(\theta^i)$

$$\frac{\partial J(\theta)}{\partial w_{ij}^l}$$

$$\frac{\partial J(\theta)}{\partial w_{ij}^{l}} = \frac{\partial J(\theta)}{\partial z_{i}^{l}} \frac{\partial z_{i}^{l}}{\partial w_{ij}^{l}}$$

$$\frac{\partial z_i^l}{\partial w_{ij}^l} \ (l > 1)$$

$$z^{l} = W^{l} a^{l-1} + b^{l}$$

$$z^{l}_{i} = \sum_{j} w^{l}_{ij} a^{l-1}_{j} + b^{l}_{i}$$

$$\frac{\partial z_i^l}{\partial w_{ij}^l} = a_j^{l-1}$$

$$\frac{\partial z_i^l}{\partial w_{ij}^l} \quad (l=1)$$

$$\frac{\partial J(\theta)}{\partial w_{i,i}^l}$$

$$\frac{\partial J(\theta)}{\partial w_{ij}^l}$$

$$\frac{\partial J(\theta)}{\partial w_{ij}^l} = \frac{\partial J(\theta)}{\partial z_i^l} \frac{\partial z_i^l}{\partial w_{ij}^l}$$

$$\frac{\partial J(\theta)}{\partial z_i^l}$$

$$\frac{\partial J(\theta)}{\partial w_{ij}^l} = \frac{\partial J(\theta)}{\partial z_i^l} \frac{\partial z_i^l}{\partial w_{ij}^l}$$

 δ_i^l : the propagated gradient corresponding to the *l*-th layer

Idea: computing δ^l layer by layer (from δ^L to δ^1) is more efficient

$$\frac{\partial J(\theta)}{\partial z_i^l} = \delta_i^l$$

Idea: from L to 1

- (1) Initialization: compute δ^L
- (2) Compute δ^l based on δ^{l+1}

$$\frac{\partial J(\theta)}{\partial z_i^l} = \delta_i^l$$

Idea: from L to 1

- (1) Initialization: compute δ^L
- (2) Compute δ^l based on δ^{l+1}

$$\delta_i^L = \frac{\partial J}{\partial z_i^L} = \boxed{\frac{\partial J}{\partial y_i}} \frac{\partial y_i}{\partial z_i^L}$$

 $\frac{\partial J}{\partial y_i}$ depends on the loss function

$$\delta^L = \nabla J(y) \odot \nabla a(z^L)$$

$$\frac{\partial J(\theta)}{\partial z_i^l} = \delta_i^l$$

(1) Initialization: compute δ^L

(2) Compute δ^l based on δ^{l+1}

$$\frac{\partial J(\theta)}{\partial z_i^l} = \delta_i^l$$

- (1) Initialization: compute δ^L
- (2) Compute δ^l based on δ^{l+1}

$$\begin{split} \delta_i^l &= \frac{\partial a_i^l}{\partial z_i^l} \sum_k (\frac{\partial J}{\partial z_k^{l+1}} \frac{\partial z_k^{l+1}}{\partial a_i^l}) \\ &= \frac{\partial a_i^l}{\partial z_i^l} \sum_k \delta_k^{l+1} w_{ki}^{l+1} \\ &= \nabla a_i^l (z_i^l) \sum_k \delta_k^{l+1} w_{ki}^{l+1} \end{split}$$

$$\frac{\partial J(\theta)}{\partial z_i^l} = \delta_i^l$$

Rethink the propagation

$$\delta_i^l = \nabla a_i^l(z_i^l) \sum_k \delta_k^{l+1} w_{ki}^{l+1}$$

$$\frac{\partial J(\theta)}{\partial z_i^l} = \delta_i^l$$

$$\frac{\partial J(\theta)}{\partial w_{ij}^l} = \frac{\partial J(\theta)}{\partial z_i^l} \frac{\partial z_i^l}{\partial w_{ij}^l}$$

Idea: from L to 1

- (1) Initialization: compute δ^L
- (2) Compute δ^l based on δ^{l+1}

$$\delta^L = \nabla J(y) \odot \nabla a(z^L)$$

$$\delta^{l} = \nabla a(z^{l}) \odot (W^{l+1})^{T} \delta^{l+1}$$

$$\frac{\partial J(\theta)}{\partial w_{ij}^{l}} = \frac{\partial J(\theta)}{\partial z_{i}^{l}} \frac{\partial z_{i}^{l}}{\partial w_{ij}^{l}}$$

Backpropagation

$$\frac{\partial z_i^l}{\partial w_{ij}^l} = \begin{cases} a_j^{l-1}, l > 1\\ x_j, l = 1 \end{cases}$$

Forward Pass

$$z^{1} = W^{1}x + b^{1} a^{1} = \sigma(z^{1})$$

$$z^{l} = W^{l}a^{l-1} + b^{l} a^{l} = \sigma(z^{l})$$

Backpropagation

$$\frac{\partial J(\theta)}{\partial w_{ij}^l} = \frac{\partial J(\theta)}{\partial z_i^l} \frac{\partial z_i^l}{\partial w_{ij}^l}$$

$$\frac{\partial J(\theta)}{\partial z_i^l} = \delta_i^l$$

Backward Pass

$$\delta^{L} = \nabla J(y) \odot \nabla a(z^{L})$$

$$\delta^{L-1} = \nabla a(z^{l}) \odot (W^{l+1})^{T} \delta^{l+1}$$

$$\vdots$$

$$\delta^{l} = \nabla a(z^{l}) \odot (W^{l+1})^{T} \delta^{l+1}$$

$$\cdot$$

Reading Materials

• <u>Automatic Differentiation in Machine Learning: a Survey (2015)</u>

Summary: How to Train Multilayer Neural Nets?

- Define the loss function l(,) properly
- A procedure to compute loss l(,) (forward propagation)
- A procedure to compute gradient $\nabla l(,)$ (back propagation)
- Regularizer and its gradient $\Omega(,)$ and $\nabla\Omega(,)$
- Perform gradient based optimization method

Summary

- Model Architectures
 - Artificial neurons
 - Activation function and saturation
 - Feedforward neural nets
- How to train a neural net
 - Loss Function Design
 - Optimization
 - Gradient Descent and Stochastic Gradient Descent
 - Back-propagation