PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2001-201704

(43) Date of publication of application: 27.07.2001

(51) Int.Cl.

G02B 26/10 B41J 2/44

(21) Application number : 2000- (71) Applicant : RICOH CO LTD

013351

(22) Date of filing: 21.01.2000 (72) Inventor: ITABASHI AKIHISA

(54) OPTICAL SCANNER

(a)

ize a high-quality picture of an output a synchronous detection for detecting smission for image forming and the output control not superpose on each crease of the number of components or

1 is constituted by mounting on the array 22 on which a plurality of 22-1 to 22-4 are juxtaposed and a he back light. A feedback circuit 25 f the emitted flux FB1-FB4 of a o as to maintain a regular fixed value e photodiode 23. The feedback circuit A<Tm.t in that case. T is 60/(R.n) ation (RPM) of a rotating polygon reflective surface of the rotating erall time (sec) for one scanning, m is ing sources, and t is the necessary rolling the light quantity to a ing the light quantity of the luminous mitting source.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-201704 (P2001-201704A)

(43)公開日 平成13年7月27日(2001.7.27)

(51) Int.Cl.7	酸別記号	F I	デ-73-1°(参考)
G 0 2 B 26/10		C 0 2 B 26/10	B 2C362
			Z 2H045
B41J 2/44		B41J 3/00	D

審査請求 未請求 請求項の数6 〇L (全 7 頁)

		普公開水 未開水 請求項の数6 〇L (全 7 貝)
(21)出寫番号	特顧2000-13351(P2000-13351)	(71)出顕人 000006747
		株式会社リコー
(22) 出顧日	平成12年1月21日(2000.1.21)	東京都大田区中馬込1 厂目3番6号
		(72)発明者 板橋 彰久
		東京都大田区中馬込1 「目3番6号 株式
		会社リコー内
		Fターム(参考) 2C362 AA14 AA15 AA16 AA53 AA54
		AA56 AA59 AA61 BA56 BA60
		BA67 BA69 DA09
		2H045 AA01 BA23 BA32 CA68 CA88
		CB22 CB42

(54) 【発明の名称】 光走査装置

(57)【要約】

【課題】 部品点数の増大等を招くことなく、画像形成のための信号発信開始タイミングを検出するための同期 検知のタイミングと発光出力制御のタイミングとが重な らないようにして出力画像の高画質化を図る。

【解決手段】 光源ユニット1は、複数の半導体レーザ 素子22-1~22-4を並設してなる半導体レーザアレー22と、背面光を検出するフォトダイオード23とを1つのステム24上に搭載してなる。フィードバック回路25は、フォトダイオード23の出力に応じて、半導体レーザ素子の射出光東FB1~FB4の光量を一定の正規の値に保つべく制御する。その際、フィードバック回路25は、A < Tー m・tを満足するように制御する。T=60/(R·n) (sec)、R:回転多面鏡5の回転数(RPM)、n:回転多面鏡5の反射面数、A:1回の走査の所要時間(sec)、m:発光源の数、t:1つの発光源から射出された光東の光量を検出し、その光量を所定の値に制御し終わるまでに必要な時間(sec)である。

【特許請求の範囲】

【請求項1】 複数の発光源から射出した光束を、回転 多面鏡により佴向し、複数の光スポットとして被走査面 上を走査する光走査装置において、

前記複数の発光源から射出された各光束の光量を検出する光量検出手段と、

当該光量検出手段による検出値に応じて、前記複数の発 光源から射出する光束の光量を各々制御する制御手段と を備え、

 $A < T - m \cdot t$

を満足することを特徴とする光走査装置。ただし、

 $T = 60 / (R \cdot n) \text{ (sec)}$

R:回転多面鏡の回転数 (RPM)

n:回転多面鏡の反射面数

A:被走査面上の走査開始から走査終了までの所要時間 (sec)

m:発光源の数

t:1つの発光源から射出された光束の光量を検出し、 その光量を所定の値に制御し終わるまでに必要な時間 (sec)

【請求項2】 複数の発光源から射出した光束を、回転 多面鏡により偏向し、複数の光スポットとして被走査面 上を走査する光走査装置において、

前記複数の発光源から射出された各光束の光量を検出する光量検出手段と、

当該光量検出手段による検出値に応じて、前記複数の発 光源から射出する光束の光量を各々制御する制御手段と を備え、

 $R \cdot m \cdot t < 0.036 \text{ n } 4-0.89 \text{ n } 3+8.35 \text{ n } 2-37.1 \text{ n } +7$

を満足することを特徴とする光走査装置。

【請求項3】 前記複数の発光源および前記光量検出手段として、

複数のレーザ発光源を並設してなる半導体レーザアレーと、各レーザ発光源の発光出力を検出するフォトダイオードとを、1つのレーザステム上に搭載してなる光源ユニットを用いたことを特徴とする請求項1または2記載の光走査装置。

【請求項4】 前記制御手段は、1つの発光源の発光量を制御している間は、他の発光源は消灯もしくは所定の光量以下で点灯させることを特徴とする請求項1~3のいずれか1項記載の光走査装置。

【請求項5】 前記制御手段は、各発光源の光量制御を 非画像形成期間内に行うことを特徴とする請求項1~4 のいずれか1項記載の光走査装置。

【請求項6】 前記制御手段は、各発光源の光量制御を各発光源を選択的に点灯させつつ行うことを特徴とする請求項5記載の光走査装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本願発明は、レーザプリンタやレーザ複写機など電子写真プロセスにより画像を形成する画像形成装置に搭載される光書込装置に関し、特に複数の発光源を備え、各発光源から射出された光束を、回転多面鏡により偏向し、複数の光スポットとして被走査面上を走査する光走査装置に関するものである。

[0002] 【従来の技術】レーザプリンタ、デジタル複写機の普及 に伴い、出力スピードの高速化が望まれてきており、回 転多面鏡の回転数を高速化するのみならず、光源である 半導体レーザをマルチビーム化した光走査装置が採用さ れるようになった。しかし、半導体レーザから射出され る発光量は、レーザ索子に流れる電流の大小や周囲温度 や素子自体の温度の変化に大きく影響される。そこで、 発光出力モニタ用の光量センサを用いて各発光源の発光 量をモニタし、フィードバック回路により発光量を制御 している。従来この種の技術として、以下に挙げる公報 記載のものが知られている。特公平7-12709号公 報記載の技術は、半導体レーザアレーを用いた光走査装 置において、複数の発光源からの射出光の光強度を、時 分割方式で個々に検出することにより、発光源の数より も少数の光量センサを用いて検出可能とし、それぞれの 検出信号を各発光源ごとに設定した基準値と比較し、そ の結果に応じて、各発光源の光強度を所定の強度に制御 するものである。特開平7-235715号公報記載の 技術は、半導体レーザアレーを用いた光走査装置におい て、各発光源を選択的に順次点灯させることにより、複 数の発光源からの射出光の光強度を一つの光量センサを 用いて検出し、光量センサから順次出力される検出信号 に応じて、各発光源の光強度を所定の強度に制御するも のである。特開平7-199096号公報記載の技術 は、基本的には上記二つの公報記載のものと同じであ り、光量センサからの出力信号をもとに各発光源への電 流供給源を制御することにより、半導体レーザアレーの 各発光源の発光量の制御を行い、1つの発光源の発光量 を制御している間は、他の発光源は消灯または所定の光 量で点灯させるというものである。上記何れの公報に記 載の技術も、半導体レーザアレーを用いた場合の各発光 源の光量制御に関するものである。これらの従来技術に よれば、各発光源を各々独立に発光させて、光量センサ により光量を検出し、各発光源の発光量が各々所定の大 きさを保つように、各発光源に与えられる駆動電流の値 をそれぞれ独立に制御することが可能である。

[0003]

【発明が解決しようとする課題】しかし、各発光源の光量制御は、画像形成動作を行っていない期間内に行う必要がある。にもかかわらず、上記従来の技術においては、各発光源の量制御に要する時間について全く考慮がなされていない。発光源の数が増えるに従い、各発光源の光量の検出、制御にかかる時間は長くなり、画像書込

信号の発信開始タイミングをとるための同期検知信号を 得なければならないタイミングと重なり合ってしまうと いう可能性が発生する。本願発明は、このような従来の 技術の不具合に鑑み創案されたものであり、以下の課題 を解決することにより、装置構成の複雑化、部品点数の 増大等を招くことなく、出力画像の高画質化を図るもの である。請求項1記載の発明は、回転多面鏡の1つの偏 向反射面が1回走査するのにかかる時間(回転多面鏡の 1回転に掛かる時間を偏向反射面の数で割った値)と、 1回の走査に掛かる時間(画像形成領域における走査開 始から走査終了迄に掛かる時間)と、複数の発光源の数 と、複数の発光源のうちの1つの発光源の発光出力を制 御する際に、発光出力が所定の値になるように制御し終 わるまでに必要な時間、との関係を明確にすることによ り、画像形成のための信号発信開始タイミングを検出す るための同期検知のタイミングと発光出力制御のタイミ ングとが重ならないようにできる光走査装置を提供する ことを課題とする。また、請求項2記載の発明は、回転 多面鏡の回転数と、回転多面鏡の反射面の数と、複数の 発光源の数と、複数の発光源のうちの1つの発光源の発 光出力を制御する際に、発光出力が所定の値になるよう に制御し終わるまでに必要な時間、との関係を数値化 し、より明確にすることにより、画像形成のための信号 発信開始タイミングを検出するための同期検知のタイミ ングと発光出力制御のタイミングとが重ならないように できる光走査装置を提供することを課題とする。また、 請求項3記載の発明は、請求項1または2の光走査装置 を、小型かつシンプルな構成で実現することを課題とす る。また、請求項4記載の発明は、請求項1~3のいず れか1項記載の光走査装置において、発光源の立ち上が り時間を急峻にし、かつ安定させることを課題とする。 また、請求項5記載の発明は、請求項1~4のいずれか 1項記載の光走査装置において、画像形成のための信号 発信開始タイミングを検出するための同期検知のタイミ ングと、発光出力制御のタイミングが重ならないように することを課題とする。また、請求項6記載の発明は、 請求項5項記載の光走査装置において、より木目細か に、環境変動による発光源の発光出力の変動を補正する ことができるようにすることを課題とする。

[0004]

【課題を解決するための手段】上記課題を解消するために、請求項1記載の発明では、複数の発光源から射出した光束を、回転多面鏡により偏向し、複数の光スポットとして被走査面上を走査する光走査装置において、前記複数の発光源から射出された各光束の光量を検出する光量検出手段と、当該光量検出手段による検出値に応じて、前記複数の発光源から射出する光束の光量を各々制御する制御手段とを備え、

 $A < T - m \cdot t$

を満足することを特徴とする。ただし、

 $T = 60/(R \cdot n) \text{ (sec)},$

R:回転多面鏡の回転数 (RPM)、

n:回転多面鏡の反射面数、

A:被走査面上の走査開始から走査終了までの所要時間 (sec)、

m:発光源の数、

t:1つの発光源から射出された光束の光量を検出し、 その光量を所定の値に制御し終わるまでに必要な時間 (sec)、

である。また、請求項2記載の発明では、複数の発光源から射出した光束を、回転多面鏡により偏向し、複数の光スポットとして被走査面上を走査する光走査装置において、前記複数の発光源から射出された各光束の光量を検出する光量検出手段と、当該光量検出手段による検出値に応じて、前記複数の発光源から射出する光束の光量を各々制御する制御手段とを備え、

 $R \cdot m \cdot t < 0.036 \text{ n } 4 - 0.89 \text{ n } 3 + 8.35 \text{ n } 2 - 37.1 \text{ n } + 7$

を満足することを特徴とする。また、請求項3記載の発 明では、請求項1または2記載の光走査装置において、 前記複数の発光源および前記光量検出手段として、複数 のレーザ発光源を並設してなる半導体レーザアレーと、 各レーザ発光源の発光出力を検出するフォトダイオード とを、1つのレーザステム上に搭載してなる光源ユニッ トを用いたことを特徴とする。また、請求項4記載の発 明では、請求項1~3のいずれか1項記載の光走査装置 は、前記制御手段は、1つの発光源の発光量を制御して いる間は、他の発光源は消灯もしくは所定の光量以下で 点灯させることを特徴とする。また、請求項5記載の発 明では、請求項1~4のいずれか1項記載の光走査装置 において、前記制御手段は、各発光源の光量制御を非画 像形成期間内に行うことを特徴とする。また、請求項6 記載の発明では、請求項5記載の光走査装置において、 前記制御手段は、各発光源の光量制御を各発光源を選択 的に点灯させつつ行うことを特徴とする。

【0005】

【発明の実施の形態】以下、図面を参照して本発明の実施の形態について説明する。図1(a)は本願発明の実施の形態の一例を示す走査光学系の全体構成図である。この光走査装置100は、光源ユニット1から出射された発散性の光束を、カップリングレンズ2を通して絞り3に導き、光束径を所定の径に規制した後、副走査方向に屈折力を有する線像結像光学系4を透過させて、等角速度で高速回転する回転多面鏡5に入射させ、回転に伴って角度が変化するミラー面5aで反射させることにより、主走査方向に偏向させて繰り返し走査するようになっている。回転多面鏡5で反射した光束は、fθレンズ(走査結像レンズ1)6、長尺レンズ(走査結像レンズ2)7および折り返しミラー8を介して、副走査方向に移動する被走査媒体である感光体ベルト9の表面(被走

査面) 9 a 上に走査される。このとき、出力すべき画像 に応じて光源ユニット1が強度変調されることにより、 点滅する光束によって感光体ベルト9の表面9aにドッ トパターンの形で出力画像の静電潜像が書き込まれる。 光源ユニット1は、各々独立に駆動される複数のレーザ 発光源を有している。したがって、感光体ベルト9上に 形成される結像スポットは、光源ユニット1から射出さ れる光束の数だけ形成され、その複数の結像スポットが 回転多面鏡5の回動に伴い、同時に感光体ベルト9上を 等速度的に走査する。光源ユニット1から射出される複 数の光束は、カップリングレンズ2により略平行光束化 されてもよいし、発散光束化、収束光束化されてもよ い。符号20は画像の先端合わせを行うために、感光体 ベルト9上に画像情報を書き出すのための信号発信開始 タイミングを検出するための同期検知系であり、同期検 知センサ12、同期検知センサ12に光束を導く結像素 子11およびミラー10で本例は構成されている。同期 検知センサ12は、PD(フォトダイオード)、CCD等 のラインセンサ等により構成され、同期検知センサ12 からの信号によって走査するレーザ光を図示しない検出 部において検出することにより同期をとっている。図1 (b) は光源ユニット1の構成例を示す斜視図である。 この光源ユニット1は、複数(この例では4個)の半導 体レーザ素子(レーザ発光源)22-1~22-4を並設し てなる半導体レーザアレー22と、各半導体レーザ素子 22-1~22-4の発光出力を検出する光量検出手段とし てのフォトダイオード23とを、1つのステム24上に 搭載してなる。半導体レーザ素子22-1~22-4はその 構造から素子の前後に発散性の光束を射出する。前方 (カップリングレンズ2側)への射出光束をFB1~F B4で示す。図示していないが後方への射出光束をBB 1~BB4とする。

【0006】半導体レーザアレー22から後方に射出さ れた光東BB1~BB4は、フォトダイオード23に受 光されパワー検出される。フォトダイオード23による 検出信号は制御手段であるフィードバック回路25に入 力される。フィードバック回路25は、フォトダイオー ド23による検出値に応じて、半導体レーザ素子22-1 ~22-4から射出する光束の光量を一定の正規の値に保 つべく、各半導体レーザ素子22-1~22-4に与える駆 動電流を制御している。これにより、感光体ベルト9上 に書き込まれる画像、ひいては画像形成装置により最終 的に出力される画像の高品質化が図られる。半導体レー ザ素子から射出される光量は、これに供給される電流の 大小や周囲温度や素子自体の温度の変化に大きく影響さ れるため、複数の半導体レーザ素子からなる光源を使用 する場合は、各半導体レーザ素子ごとに発光出力モニタ 用のフォトダイオードを設けることが望ましいといえ る。しかしながら、光源ユニット1は、図1(b)に示 したように、発光出力モニタ用のフォトダイオード23

を1つしか搭載していないことが多い。そこで、発光出 カモニタ用のフォトダイオード23が1つの場合、図2 のタイミングチャートに示すように、1つの半導体レー ザ素子 (発光源) が点灯している場合は、他の半導体レ ーザ素子は消灯させる、もしくは被走査媒体を露光して も画像を形成しないレベルまで発光量を下げておき、順 番に半導体レーザ素子を点灯させ、その発光量を検出 し、発光源を駆動制御することにより、発光出力の制御 を行うようにしている。図2の例は、発光源の数が4個 の場合である。また、図2の例のように1回の走査の間 に各発光源の発光出力を検出し制御する代わりに、複数 回の走査毎に各発光源の発光出力を検出し制御するよう にしてもかまわない。しかし、複数回の走査毎に各発光 源の発光出力の制御を行う方式では、半導体レーザ素子 の数が増大するとそれぞれの半導体レーザ素子の制御の 間隔が広くなり、突発的に発生した異常に対する対応が 遅くなる。そのため、1回の走査の間に順番に各半導体 レーザ素子の発光出力を検出し制御する制御方法が望ま しい。その際、レーザ発振を開始する閾値ぎりぎりもし くはそれより若干低い値で各半導体レーザ素子に電流を 流してバイアスを掛けておき、各半導体レーザ素子に順 番に閾値以上の電流を流していくことにより、各半導体 レーザ素子の立ち上がり時間を急峻にしかつ安定にする ことができる。したがって、各半導体レーザ素子に流す 電流をわずかに増減させるだけで各半導体レーザ素子を 急峻かつ安定に点灯及び消灯させることができるので、 安定した高品質の画像が得られる。しかし、1回の走査 の間に複数の半導体レーザ素子の発光出力を順次制御す るようにした場合、1回の走査につき1つの半導体レー ザ素子の発光出力を制御する場合に対して、半導体レー ザ素子の数だけ余計に発光出力の制御に時間がかかるこ

【0007】図3に回転多面鏡の1つの反射面が走査に要する時間のタイミングチャートを示す。なお、図中の各記号は

t31:1つの偏向反射面が走査を開始するタイミング t32:同期検知センサが同期検知信号を発信するタイミ ング

t33: 画像情報の書き込み開始のタイミング t34: 画像情報の書き込み終了のタイミング

t35:1つの偏向反射面が走査を終了するタイミング T:1つの偏向反射面が1回走査するのに掛かる時間 (回転多面鏡が1回転する時間を反射面の数で割った 値:RPM)

B:非画像形成期間

C:非画像形成期間

である。回転多面鏡の1つの反射面に発光源からの光束が照射されている時間がT(t31~t35)であり、実際には回転多面鏡が1回転するのに要する時間を反射面数で割った値になる。この期間に同期検知、画像形成、及び各

発光源の発光出力の制御を行う。

図3におけるAの期間 が画像を形成する期間(t33~t34)であり、その直前のt3 2のタイミングで同期検知センサを光束が照射し、それ により同期検知センサから信号が発信され、画像情報の 書き出しタイミングをとっている。環境変動により光学 系が影響を受け、走査幅の伸び縮みが発生することを補 正するためには、図3では示していないが、画像情報の 書き込みが終わった後のt34~t35の間に同期検知を行う 第2の同期検知センサ及び検出部を設け、2つの同期検 知センサ間の走査時間を検知することにより、画像形成 情報を書き込んでいる時間の伸びや縮みを検出し、補正 を掛けるという制御を行えば走査幅は環境変動が発生し ても一定に保つことができる。各発光源の発光出力の制 御は、図3における『B+C』の非画像形成期間に行わ れる必要がある。さもなければ、複数の発光源の発光出 力を制御しているタイミングに、同期検知信号が発信さ れることになり問題となる。実際には画像書込が終了し た後の『C』と次の反射面における書込開始前の期間 **『B』を合わせた期間に行われる。1つの発光源の発光** 出力を制御するのに要する時間をもとすると、発光源の 数をmとするとき、『m・t』は『B+C』より小さく なる必要がある。

【0008】ここで、

R:回転多面鏡の回転数 (RPM)

n:回転多面鏡の反射面数

とするとき、

 $T = 60 / (R \cdot n) \text{ (sec)}$

が成り立つ。また、

K:非画像形成期間(sec)

A:被走査面上の走査開始から走査終了までの所要時間

(1回の走査の所要時間) (sec)

Rm (mm)	R s (0) (mm)	X (mm)	N	備考
∞	∞	24.		偏向反射面 _
-109.4	-109.4	12.4	1.82485	走査結像レンズ1
-102.1	∞	70.6		-
∞	-125.5	19.	1.60909	走査結像レンズ2
-206.	-36.6	257.6		-
-	_			被走查面
	∞ -109.4 -102.1 ∞	∞ ∞ -109.4 -109.4 -102.1 ∞ ∞ -125.5	∞ ∞ 24. -109.4 -109.4 12.4 -102.1 ∞ 70.6 ∞ -125.5 19.	∞ ∞ 24. -109.4 -109.4 12.4 1.82485 -102.1 ∞ 70.6 ∞ -125.5 19. 1.60909

(注1)使用波長は780nm

回転多面鏡5に入射する光束は反射面5 a近傍で副走査 方向に結像されており、主走査方向に関しては回転多面 鏡5への入射光は略平行光束となっている。この実施例 における光学系の全画角は6 4°である。収差図を図5 に示すが、良好に補正されている。なお、回転多面鏡5 は6面のもので検討した。8面の回転多面鏡を使用した 場合。

A/T = 0.71

となる。よって、@式より、

 $R \cdot n \cdot m \cdot t < 17.3$

m:発光源の数

t:1つの発光源から射出した光束の光量を検出し、その光量を所定の値に制御し終わるまでに必要な時間(sec)

とするとき、

が成り立つ。この条件を満足する時、画像形成の為の信号発信開始タイミングを検出するための同期検知のタイミングと、発光出力制御のタイミングが重ならないようにすることができる。さらに式を変形していくと A/T< 1-(m·t)/T= 1- R·n·m·t/60

ゆえに.

御のタイミングが重ならないようにする条件を得ることができる。なお、上記例では光源として半導体レーザアレーを用いた場合を示したが、通常の1ビームの半導体レーザを複数個組み合わせて光源部を構成してもよい。

[0009]

【表1】

【実施例】回転多面鏡(偏光器)から被走査面に至る光 学系のデータを下記の表1に示す。図5は当該光学系の 平面図である。なお、折り返しミラー8は省略してい る。

が得られる。

が得られ、
R·m·t < 2.17 — ⑤ (8面)
が得られる。また、6面の回転多面鏡を使用した場合、
A/T= 0.53
となる。よって、⑥式より、
R·n·m·t < 28
が得られ、
R·m·t < 4.67 — ⑥ (6面)

【0010】また、4面の回転多面鏡を使用した場合、

A/T = 0.356

となる。よって、四式より、

 $R \cdot n \cdot m \cdot t < 38.7$

が得られ、

 $R \cdot m \cdot t < 9.67 - 6$ (4面)

が得られる。また、2面の回転多面鏡を用いた場合、 A/T = 0.178

となる。よって、四式より、

 $R \cdot n \cdot m \cdot t < 49.3$

 $R \cdot m \cdot t < 0.036 \, n \, 4 - 0.89 \, n \, 3 + 8.35 \, n \, 2 - 37 \, n + 72$

が得られる。この関係を図6に示す。 6式の範囲以下の 値になるように各構成値を設定しておけば、画像形成の ための信号発信開始タイミングを検出するための同期検 知のタイミングと、発光出力制御のタイミングとが重な らないようにすることができる。なお、上記は半導体レ ーザアレーに関して述べてきたが、複数の半導体レーザ を組み合わせて構成した場合でも同様のことがいえる。

[0011] 【発明の効果】請求項1記載の発明では、回転多面鏡の

1つの偏向反射面が1回走査するのにかかる時間と、1 回の走査に掛かる時間と、複数の発光源の数と、複数の 発光源のうちの1つの発光源の発光出力を制御する際 に、発光出力が所定の値になるように制御し終わるまで に必要な時間、との関係を明確にしたことにより、画像 形成のための信号発信開始タイミングを検出するための 同期検知のタイミングと発光出力制御のタイミングとが 重ならないようにできる光走査装置を提供することがで きた。請求項2記載の発明では、回転多面鏡の回転数 と、回転多面鏡の反射面の数と、複数の発光源の数と、 複数の発光源のうちの1つの発光源の発光出力を制御す る際に、発光出力が所定の値になるように制御し終わる までに必要な時間、との関係を数値化し、より明確にし たことにより、画像形成のための信号発信開始タイミン グを検出するための同期検知のタイミングと発光出力制 御のタイミングとが重ならないようにできる光走査装置 を提供することができた。請求項3記載の発明では、複 数のレーザ発光源を並設してなる半導体レーザアレー と、各レーザ発光源の発光出力を検出するフォトダイオ ードとを、1つのレーザステム上に搭載してなる光源ユ ニットを用いたことにより、請求項1または2の光走査 装置を、小型かつシンプルな構成で実現することができ た。請求項4記載の発明では、請求項1~3のいずれか 1項記載の光走査装置において、1つの発光源の発光量 を制御している間は、他の発光源は消灯もしくは所定の 光量以下で点灯させるようにしたので、発光源の立ち上 がり時間を急峻にし、かつ安定化することができた。請 求項5記載の発明では、請求項1~4のいずれか1項記 載の光走査装置において、各発光源の光量制御を非画像 形成期間内に行うことにより、画像形成のための信号発 信開始タイミングを検出するための同期検知のタイミン が得られ、

 $R \cdot m \cdot t < 24.7 - 6$ (2面)

が得られる。の式の範囲以下の値になるように各構成値 を設定しておけば、画像形成のための信号発信開始タイ ミングを検出するための同期検知のタイミングと、発光 出力制御のタイミングとが重ならないようにすることが できる。以上の各実施例から R·m·t と 回転多面 鏡の面数nの関係を求めると

グと、発光出力制御のタイミングとがより確実に重なら ないようにすることができた。請求項6記載の発明で は、請求項5記載の光走査装置において、各発光源の光 量制御を各発光源を選択的に点灯させつつ行うことによ り、より木目細かに、環境変動による発光源の発光出力 の変動を補正することができるようになった。

【図面の簡単な説明】

【図1】(a)は本願発明の実施の形態の一例を示す走 査光学系の全体構成図、(b)は走査光学系の光源ユニ ットの構成例を示す斜視図である。

【図2】図1中に示す光源ユニットを構成する半導体レ ーザ素子の発光タイミングの説明図である。

【図3】回転多面鏡の1つの反射面が走査を開始し終了 するまでの間における各種タイミングの説明図である。

【図4】回転多面鏡から被走査面に至る光学系の平面図

【図5】(a)、(b)は図4に示す光学系の収差図で ある。

【図6】R·m·T(R:回転多面鏡の回転数(RPM)、 m:発光源の数、T= 60/(R·n)(sec))と回転 多面鏡との関係をグラフに示した図である。

【符号の説明】

1:光源ユニット

2:カップリングレンズ

3:絞り

4:線像結像光学系

5:回転多面鏡

5a:反射面

6: f θレンズ

7:長尺レンズ

8:折り返しミラー

9:感光体ベルト(被走査媒体)

9a:被走查面

12:同期検知センサ

22-1~22-4:半導体レーザ素子(発光源)

22:半導体レーザアレー

23:フォトダイオード(光量検出手段)

25:フィードバック回路(制御手段)

100: 光走查装置

FB1~FB4:射出光束

