#### 1

# ASSIGNMENT: GATE 2013 CY: CHEMISTRY

## EE25BTECH11039 - Manupati Manideep

Q.1 - Q. 25 CARRY ONE MARK EACH.

| 1) The point group                                                                                                                                                              | p symmetry of $CH_2=C=$                                                                                                                                                                                                                                                           | CH <sub>2</sub> is                                                                                                   |                                                                                                                                                                                                                    |                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| a) $C_{2h}$                                                                                                                                                                     | b) $D_{2h}$                                                                                                                                                                                                                                                                       | c) $C_{2v}$                                                                                                          | d) $D_{2d}$                                                                                                                                                                                                        |                                                 |
| energies $E_1$ and                                                                                                                                                              | d $E_2$ respectively, for the exact ground state energy                                                                                                                                                                                                                           | e microscopic particle in                                                                                            | (GATE CY-20) $+ c_2 x^2 (a - x)^2$ give ground so a 1-D box by using the variationship between $E_0$ , $E_1$ and $E_2$ in                                                                                          | tate<br>tion                                    |
| d) $E_0 < E_2 < E_3$                                                                                                                                                            |                                                                                                                                                                                                                                                                                   |                                                                                                                      | (GATE CY-20                                                                                                                                                                                                        | )13)                                            |
| dissociation end 4) A 2 L vessel co gas at 27°C. A bar. 5) Consider the re towards the for a) increasing th b) decreasing th c) decreasing th d) increasing th d) increasing th | ergy of $H_2$ is eV. ontaining 2 g of $H_2$ gas at ssuming ideal behavior of eaction $2 C(s) + O_2(g) \rightleftharpoons$ ward direction by e amount of carbon in the volume of the system, he pressure of the system the temperature of the system be the electrolyte $M_2X$ ion | t $27^{\circ}C$ is connected to a 2 of $H_2$ and $CO_2$ , the partia $\Rightarrow 2CO(g)$ at equilibrium the system. | eV and -31.7 eV, respectively. GATE CY-20 L vessel containing 176 g of Cal pressure of $H_2$ at equilibrium (GATE CY-20 m. The equilibrium can be shift (GATE CY-20 $X^{2-}$ . The solubility product (Keelated by | O13)<br>CO <sub>2</sub><br>m is<br>O13)<br>fted |
| a) $K_{sp} = S^2 \gamma_{\pm}^2$<br>b) $K_{sp} = S^3 \gamma_{\pm}^3$<br>c) $K_{sp} = 4S^3 \gamma_{\pm}^2$<br>d) $K_{sp} = 4S^3 \gamma_{\pm}^3$                                  |                                                                                                                                                                                                                                                                                   |                                                                                                                      | (GATE CY-20 dy state approximation to [Q],                                                                                                                                                                         |                                                 |
|                                                                                                                                                                                 | [], [Q] and [R] with time                                                                                                                                                                                                                                                         |                                                                                                                      | iy state approximation to [Q],                                                                                                                                                                                     | шс                                              |
| (b) (b)                                                                                                                                                                         | (R)                                                                                                                                                                                                                                                                               | [b] (o)                                                                                                              | R                                                                                                                                                                                                                  |                                                 |





- 8) At 273 K and 10 bar, the Langmuir adsorption of a gas on a solid surface gave the fraction of surface coverage as 0.01. The Langmuir adsorption isotherm constant is \_\_\_\_\_ bar<sup>-1</sup>. (Give the answer to the third decir (GATE CY-2013)
- 9) Conversion of boron trifluoride to tetrafluoroborate accompanies
  - a) increase in symmetry and bond elongation
  - b) increase in symmetry and bond contraction
  - c) decrease in symmetry and bond contraction
  - d) decrease in symmetry and bond elongation

(GATE CY-2013)

- 10) The correct statement with respect to the bonding of the ligands, Me<sub>3</sub>N and Me<sub>3</sub>P with the metal ions Be<sup>2+</sup> and Pd<sup>2+</sup> is,
  - a) the ligands bind equally strong with both the metal ions as they are dicationic
  - b) the ligands bind equally strong with both the metal ions as both the ligands are pyramidal c) the binding is stronger for Me<sub>3</sub>N with Be<sup>2+</sup> and Me<sub>3</sub>P with Pd<sup>2+</sup> d) the binding is stronger for Me<sub>3</sub>N with Pd<sup>2+</sup> and Me<sub>3</sub>P with Be<sup>2+</sup> (GATE CY

(GATE CY-2013)

- 11) A crystal has the lattice parameters  $a \neq b \neq c$  and  $\alpha = \beta = \gamma = 90^{\circ}$ . The crystal system is
  - a) tetragonal
  - b) monoclinic
  - c) cubic
  - d) orthorhombic

(GATECY - 2013)

- 12) The by-product formed in the characteristic reaction of  $(CO)_5$ Cr=C(OMe)(Me) with MeNH<sub>2</sub> is
  - a) CO
  - b) MeOH
  - c) MeCHO
  - d) MeCONH<sub>2</sub>

(GATECY - 2013)

- 13) The catalyst and co-catalyst used in the Wacker process, respectively, are
  - a) PdCl<sub>2</sub> and Cu
  - b) CuCl<sub>2</sub> and [PdCl<sub>4</sub>]<sup>2-</sup>
  - c) Pd and CuCl

PdCl<sub>4</sub> <sup>2-</sup> and CuCl<sub>2</sub>

(GATECY - 2013)

- 14) Oxymyoglobin  $Mb(O_2)$  and oxyhemoglobin  $Hb(O_2)_4$ , respectively, are
  - a) paramagnetic and paramagnetic
  - b) diamagnetic and diamagnetic
  - c) paramagnetic and diamagnetic
  - d) diamagnetic and paramagnetic

(GATECY - 2013)

15) Hapticity of cycloheptatriene in  $Mo(C_7H_8)(CO)_3$  is (GATECY - 2013)

16) The number of oxygen molecule(s) that a molecule of hemerythrin can transport is \_\_\_\_\_.

$$(GATECY - 2013)$$

17) The maximum number of stereoisomers possible for the compound given below is

(GATECY - 2013)

18) The correct sequence of the amino acids present in the tripeptide given below is

- a) Val-Ser-Thr
- b) Val-Thr-Ser
- c) Leu-Ser-Thr
- d) Leu-Thr-Ser

(GATECY - 2013)

- 19) Among the compounds given in the options A-D, the one that can be used as a formyl anion equivalent (in the presence of a strong base) is
  - a) ethylene
  - b) nitroethane
  - c) 1,3-dithiane
  - d) 1,4-dithiane

(GATECY - 2013)

20) The major product formed in the reaction given below is



21) The major product formed in the reaction given below is

a) 
$$COOH$$
  $COOH_2$   $COOH_2$ 

22) The pericyclic reaction given below is an example of

$$\Delta$$

1,3 -sigmatropic shift

1,5 -sigmatropic shift

3,5 -sigmatropic shift

3,3 -sigmatropic shift

(GATE CY-2013)

23) The major product formed in the reaction of quinoline with potassium amide (KNH<sub>2</sub>) in liquid ammonia is

d)

(GATE CY-2013)

- 24) The number of signals that appear in the proton decoupled  $^{13}C$  NMR spectrum of benzonitrile (C<sub>7</sub>H<sub>5</sub>N) is \_\_\_\_\_. (GATE CY-2013)
- 25) Among the compounds given in the options A-D, the one that exhibits a sharp band at around 3300 cm<sup>-1</sup> in the IR spectrum is
  - a) 1,2-butadiene

c) 1-butyne

b) 1,3-butadiene

d) 2-butyne

(GATE CY-2013)

#### Q. 26 to Q. 55 carry two marks each.

26) In the metathesis reaction given below, 4.32 g of the compound X was treated with 822 mg of the catalyst Y to yield 2.63 g of the product Z. The mol% of the catalyst used in this reaction is \_\_\_\_\_. [Atomic weights of Ru=101; P=31; Cl=35.51].

MeO 
$$X$$
  $CI \ PR_3 \ Ph$   $PR_3$   $Y$   $Z$   $(R = cyclohexyl)$ 

(GATE CY-2013)

27) An organic compound Q exhibited the following spectral data:

IR: 1760 cm<sup>-1</sup>

<sup>1</sup>H NMR:  $\delta$  (*ppm*): 7.2 (1*H*, *d*, *J* = 16.0*Hz*), 5.1 (1*H*, *m*), 2.1 (3*H*, *s*), 1.8 (3*H*, *d*, *J* = 7.0*Hz*)

<sup>13</sup>C NMR:  $\delta$  (*ppm*): 170 (carbonyl carbon).

Compound Q is

(GATE CY-2013)

28) The major product formed in the Beckmann rearrangement of the compound given below is

29) The major product formed in the reaction given below is

(GATE CY-2013)

30) The major product formed in the reaction given below is

(GATE CY-2013)

31) The major product(s) formed in the reaction sequence given below is(are)

c)

d)

(GATE CY-2013)

32) Match the compounds in column I with the photochemical reactions that they can undergo given in column II.

| Column I      | Column II                              |
|---------------|----------------------------------------|
| (i) . O       | (p) oxa-di-π-methane rearrangement     |
| (ii)          | (q) Paterno-Buchi reaction             |
| O<br>Me<br>Me | (r) intramolecular [2+2]-cycloaddition |
|               | (s) photoenolisation                   |

- a) (i)-(q); (ii)-(s); (iii)-(p)
- b) (*i*)-(*r*); (*ii*)-(*p*); (*iii*)-(*s*)
- c) (i)-(p); (ii)-(r); (iii)-(q)
- d) (i)-(r); (ii)-(s); (iii)-(p)

(GATE CY-2013)

- 33)  $e^{-2x^2}$  is an eigen function of the operator  $\left(\frac{d^2}{dx^2} 16x^2\right)$ . The corresponding eigen value is
  - a) +4

b) -4

c) +2

d) -2

(GATE CY-2013)

- 34) The infrared spectrum of HCl gas shows an absorption band centered at 2885 cm<sup>-1</sup>. The zero point energy of HCl molecule under harmonic oscillator approximation is
  - a)  $2.8665 \times 10^{-22} \text{ J}$ b)  $2.8665 \times 10^{-20} \text{ J}$

c)  $5.7330 \times 10^{-22}$  J d)  $5.7330 \times 10^{-20}$  J

(GATE CY-2013)

- 35) For the reaction  $X_2O_4(1) \longrightarrow 2 XO_2(g)$  at 298 K, given the values,  $\Delta U = 9 \text{ kJ}$  and  $\Delta S = 84 \text{ J K}^{-1}$ ,  $\Delta G$  is
  - a) -11.08 kJ

c) -13.55 kJ

b) +11.08 kJ

d) +13.55 kJ

(GATE CY-2013)

|     | temperature (80°C) an                                                                                                                                                  | d at 1 bar pressure is                                      | kJ.                                                    | to the vapor state at its b<br>(GATE CY-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2013)                           |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|     | The moment of inerti partition function at 50                                                                                                                          | a of a homonuclear 00 K is                                  | diatomic molecule is                                   | $7.5 \times 10^{-45} \text{ kg m}^2$ . Its rota<br>(GATE CY-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2013)                           |
| 38) | For a reaction of the ty                                                                                                                                               | pe $X \stackrel{k_1}{\rightleftharpoons} Y$ , the correct i | ate expression is $([X]_0a$                            | ind[X] correspond to the concentration of the con | entrationsofXa                   |
|     | a) $-\frac{d[X]}{dt} = k_1[X]_0 - (k_1)$<br>b) $-\frac{d[X]}{dt} = (k_1 + k_2)[X]$<br>c) $-\frac{d[X]}{dt} = (k_1 + k_2)[X]$<br>d) $-\frac{d[X]}{dt} = (k_1 - k_2)[X]$ | KZ                                                          |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |
| 20) | TTI                                                                                                                                                                    | 1 0                                                         |                                                        | (GATE CY-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2013)                            |
| 39) | The temperature deper                                                                                                                                                  | _                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |
|     |                                                                                                                                                                        | $q_{ m translation} \propto T^3$                            |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |
|     |                                                                                                                                                                        |                                                             | (linearmolecule)                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |
|     |                                                                                                                                                                        |                                                             | <sup>/2</sup> (non – linearmolecus                     | le)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |
|     |                                                                                                                                                                        | $q_{ m vibration} \propto T^0$                              |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |
|     | According to the conv<br>Arrhenius pre-exponent<br>linear molecule + line                                                                                              | itial factor for a reacti                                   | on of the type given be                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of the                           |
|     | a) $T^{-1}$                                                                                                                                                            | b) <i>T</i> <sup>0</sup>                                    | c) $T^1$                                               | d) $T^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |
| 40) | Decarbonylation reaction $Y = [\text{cis-}(\text{CH}_3) \text{Mn}]^{1}$<br>products $(X : Y : Z)$ in                                                                   | $^{3}CO$ (CO) <sub>4</sub> ]; $Z = [t$                      | $n(^{13}CO)(CO)_4$ ] yields rans- $(CH_3) Mn(^{13}CO)$ | (GATE CY-<br>X, Y and Z, where $X = [(C \cdot (CO)_4]]$ . The molar ratio of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $H3)\operatorname{Mn}(CO)_{5}];$ |
|     | a) 1:1:1                                                                                                                                                               | b) 1:2:1                                                    | c) 1:1:2                                               | d) 2:1:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |
|     |                                                                                                                                                                        |                                                             |                                                        | (GATE CY-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2013)                            |
| 41) | According to polyhedr                                                                                                                                                  | al electron count rule                                      | the structure of $Rh_6$ (6)                            | $(CO)_{16}$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
|     | a) closo                                                                                                                                                               | b) nido                                                     | c) arachno                                             | d) hypho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |
|     |                                                                                                                                                                        |                                                             |                                                        | (GATE CY-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2013)                           |
| 42) | The increasing order of a) CuCl; NaCl; NaF b) NaF; NaCl; CuCl c) NaF; CuCl; NaCl d) CuCl; NaF; NaCl                                                                    | of melting points of th                                     | e halides NaCl, CuCl a                                 | and NaF is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |
|     | ,                                                                                                                                                                      |                                                             |                                                        | (GATE CY-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2013)                           |
|     | The correct electronic Xe $4f^7$ and 7.9 BM Xe $4f^7$ and 8.9 BM Xe $4f^65d^1$ and 7.9 BM Rn $5f^7$ and 7.9 BM                                                         |                                                             | n only magnetic mome                                   | nt of Gd <sup>3+</sup> (at. no. 64) are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |

|                                                                                                                                                                             |                                                                                  |                        | 9                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------|
| a) [Ca(H2O) <sub>6</sub> ] <sup>2+</sup><br>b) [Mn(H2O) <sub>6</sub> ] <sup>2+</sup><br>c) [V(H2O) <sub>6</sub> ] <sup>2+</sup><br>d) [Cr(H2O) <sub>6</sub> ] <sup>2+</sup> |                                                                                  |                        | highest enthalpy of hydration is (GATE CY-2013)                                          |
|                                                                                                                                                                             | zes in face-centered cub<br>stact distance in the latt                           |                        | parameter of 4.20 Å. The shortest                                                        |
| <ul><li>a) 4.20 Å</li><li>b) 2.97 Å</li></ul>                                                                                                                               |                                                                                  | c) 2.42 Å<br>d) 2.10 Å |                                                                                          |
|                                                                                                                                                                             | Cu <sup>2+</sup> andCd <sup>2+</sup> ) is achiev<br>ntials<br>ents<br>potentials |                        | (GATE CY-2013) F Cu <sup>2+</sup> and Cd <sup>2+</sup> in a given mixture (GATE CY-2013) |
| 47) The ground state                                                                                                                                                        | term of $[Ni(H2O)_6]^{2+}$                                                       | is                     | (GAIL C1-2013)                                                                           |
| a) ${}^3T_{1g}$                                                                                                                                                             | b) $^3T_{2g}$                                                                    | c) ${}^{3}A_{2g}$      | d) ${}^4T_{1g}$ (GATE CY-2013)                                                           |
| N,N-Dimethylforma                                                                                                                                                           | Questions 48 and 49: mide ( <i>DMF</i> ) gives different                         | 1                      | for the methyl protons when its <sup>1</sup> H                                           |
| NMR spectrum is reco                                                                                                                                                        | orded at different tempe                                                         | ratures.               |                                                                                          |

48) Match the patterns of the NMR signals given in column I with temperatures given in the column II.

| I                                                                       | II                  |
|-------------------------------------------------------------------------|---------------------|
| (i) Two singlets, for three protons each, at $\delta$ 2.87 and 2.97 ppm | (x) 25°C            |
| (ii) One sharp singlet for six protons at $\delta$ 2.92 ppm             | (y) 120°C           |
| (iii) One broad signal for six protons                                  | (z) $150^{\circ}$ C |

- a) (i)-(x); (ii)-(y); (iii)-(z)
- b) (i)-(x); (ii)-(z); (iii)-(y)
- c) (i)-(z); (ii)-(x); (iii)-(y)
- d) (i)-(z); (ii)-(y); (iii)-(x)

(GATE CY-2013)

49) Based on the above data, the calculated difference in the frequencies of the two methyl singlets, if the spectrum is recorded on a 300 MHz spectrometer, is \_\_\_\_\_ Hz. (GATE CY-2013)

#### Common Data for Questions 50 and 51:

Heating a mixture of ammonium chloride and sodium tetrahydridoborate gives one liquid product(X), along with other products, under ambient conditions.

- 50) Compound X is
  - a)  $NH_4[BH_4]$

- b)  $[(NH3)_2BH_2][BH_4]$
- c)  $N_3B_3H_6$
- d)  $N_3B_3H_{12}$

- 51) Compound X is an example of
  - a) ionic liquid
  - b) saturated heterocycle
  - c) molecular cage
  - d) unsaturated heterocycle

(GATE CY-2013)

#### Linked Answer Questions

#### Statement for Linked Answer Questions 52 and 53:

52) The major product X formed in the reaction given below is

(GATE CY-2013)

53) Oxidation of the product X, obtained in the above reaction, with active manganese dioxide, followed by acidic hydrolysis gives



#### Statement for Linked Answer Questions 54 and 55:

The standard half-cell reduction potential of  $Fe^{3+}(aq)$  | Fe is -0.036 V and that of  $OH^{-}(aq)$  | Fe (*OH*)  $_{3}(s)$  | Fe is -0.786 V.

- 54) For the determination of solubility product  $(K_{sp})$  of Fe  $(OH)_3$ , the appropriate cell representation and its emf are, respectively,
  - a) Fe | Fe  $(OH)_3(s)$  | OH<sup>-</sup>(aq) || Fe<sup>3+</sup>(aq) | Fe, -0.750 V
  - b) Fe  $|Fe^{3+}(aq)| OH^{-}(aq) |Fe(OH)_{3}(s)| Fe$ , -0.750 V
  - c) Fe | Fe  $(OH)_3$ (s) | OH<sup>-</sup>(aq) || Fe<sup>3+</sup>(aq) | Fe, +0.750 V
  - d)  $Fe | Fe^{3+}(aq) | OH^{-}(aq) | Fe (OH)_{3}(s) | Fe, -0.822 V$

(GATE CY-2013)

55) The value of  $\ln(K_{\rm sp})$  for Fe  $(OH)_3$  at 298 K is

a) -38.2

b) +87.6

c) -96.0

d) -87.6

(GATE CY-2013)

#### Q. 56 - Q. 60 carry one mark each.

56) If  $3 \le X \le 5$  and  $8 \le Y \le 11$  then which of the following options is TRUE?

- a)  $\frac{3}{5} \le \frac{X}{Y} \le \frac{8}{5}$
- b)  $\frac{3}{11} \le \frac{X}{Y} \le \frac{5}{8}$
- c)  $\frac{3}{11} \le \frac{x}{y} \le \frac{8}{5}$
- $d) \quad \frac{3}{5} \le \frac{X}{Y} \le \frac{8}{11}$

(GATE CY-2013)

57) The Headmaster \_\_\_\_\_\_ to speak to you.

Which of the following options is incorrect to complete the above sentence?

- a) is wanting
- b) wants
- c) want
- d) was wanting

(GATE CY-2013)

- 58) Mahatama Gandhi was known for his humility as
  - a) he played an important role in humiliating exit of British from India.
  - b) he worked for humanitarian causes.
  - c) he displayed modesty in his interactions.
  - d) he was a fine human being.

(GATE CY-2013)

59) All engineering students should learn mechanics, mathematics and how to do computation.

I II IV

Which of the above underlined parts of the sentence is not appropriate?

a) I

b) II

c) III

d) IV

(GATE CY-2013)

60) Select the pair that best expresses a relationship similar to that expressed in the pair:

water: pipe::

a) cart: road

b) electricity: wire

c) sea: beach

d) music: instrument

(GATE CY-2013)

#### Q.61 to Q.65 carry two marks each

- 61) Velocity of an object fired directly in upward direction is given by v = 80 32t, where t (*time*) is in seconds. When will the velocity be between 32 m/s and 64 m/s?
  - a) (1, 3/2)
  - b) (1/2, 1)
  - c) (1/2, 3/2)
  - d) (1,3)

(GATECY - 2013)

- 62) In a factory, two machines  $M_1$  and  $M_2$  manufacture 60% and 40% of the auto-components respectively. Out of the total production, 2% of  $M_1$  and 3% of  $M_2$  are found to be defective. If a randomly drawn auto-component from the combined lot is found defective, what is the probability that it was manufactured by  $M_2$ ?
  - a) 0.35
  - b) 0.45
  - c) 0.5
  - d) 0.4

(GATECY - 2013)

63) Following table gives data on tourists from different countries visiting India in the year 2011.

| Country   | Number of Tourists |
|-----------|--------------------|
| USA       | 2000               |
| England   | 3500               |
| Germany   | 1200               |
| Italy     | 1100               |
| Japan     | 2400               |
| Australia | 2300               |
| France    | 1000               |

Which two countries contributed to one third of the total number of tourists who visited India in 2011?

- a) USA and Japan
- b) USA and Australia
- c) England and France
- d) Japan and Australia

(GATECY - 2013)

- 64) If |-2x+9| = 3 then the possible value of  $|-x| x^2$  would be:
  - a) 30
  - b) -30
  - c) -42
  - d) 42

- 65) All professors are researchers. Some scientists are professors. Which of the given conclusions is logically valid and inferred from the above arguments:
  - a) All scientists are researchers
  - b) All professors are scientists
  - c) Some researchers are scientists
  - d) No conclusion follows

(GATECY - 2013)

### END OF THE QUESTION PAPER