

AD AO 61084 NUSC Technical Report 5807

DIC FILE COPY

LEVELT

NUSC Technical Report 5807

Range Propagation Equations For the Approximate Fields Within a Conducting Slab

> Peter R. Bannister René L. Dube Submarine Electromagnetic Systems Department

2 October 1978

NUSC

NAVAL UNDERWATER SYSTEMS CENTER Newport,Rhode Island • New London,Connecticut

Approved for public release; distribution unlimited.

78 10 27 082

PREFACE

This report was prepared under NUSC Project No. A-532-24, Principal Investigator, P. R. Bannister (Code 341). Naval Industrial funding was received from the David W. Taylor Naval Ship Research and Development Center, W. J. Andahazy, Project Director. The sponsor was the Naval Sea Systems Command, Project Program Manager, W. L. Welsh (SEA-03424).

The Technical Reviewer for this report was J. Tennyson (Code 3403).

REVIEWED AND APPROVED: 2 October 1978

John Merrill
Head: Submarine Electromagnetic
Systems Department

The authors of this report are located at the New London Laboratory, Naval Underwater Systems Center, New London, Connecticut 06320

READ INSTRUCTIONS
BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER TR 5807 TITLE (and SubHele) S. TYPE OF REPORT & PERIOD COVERED QUASI-STATIC RANGE PROPAGATION EQUATIONS FOR THE APPROXIMATE FIELDS WITHIN A CONDUCTING SLAB 6. PERFORMING ORG. REPORT NUMBER . AUTHORA CONTRACT OR GRANT NUMBER(+) Peter R. Bannister Rene L. Dube PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Naval Underwater Systems Center New London Laboratory A-532-24 New London, CT 06320 11. CONTROLLING OFFICE NAME AND ADDRESS REPORT DATE Naval Sea Systems Center (SEA-03424) October 1978 Washington, DC 20362 NUMBER OF PAGES 14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) 18. SECURITY CLASS. (of this report) UNCLASSIFIED ... 52-TR-5807 DECLASSIFICATION DOWNGRADING 6. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Horizontal Magnetic Dipole (HMD) Conducting Slabs Finitely Conducting Earth-Image Image Theory Long Horizontal Line Scurce Antenna Theory Techniques Norizontal Electric Dipole (HED) Modified Image Theory (cont d) 20. ABSTRACT (Continue on reverse side if necessary and identify by block member) Approximate expressions for the ac quasi-static fields produced by electric and magnetic dipole antennas located within a conducting slab have been derived by employing finitely conducting earth-image theory techniques. Asymptotic results have also been obtained by applying the quasi-near approximation to the basic Sommerfeld integrals. The resulting approximations are shown herein to agree closely with previously derived numerical integration results. The reresulting expressions are particularly applicable to short range electromag-

DD 1 JAN 73 1473

netic propagation in a shallow sea.

405 928

xet

19. (Cont'd)

Quasi-Near Range Quasi-Static Range Quasi-Static Range Subsurface-to-Subsurface Propagation Vertical Electric Dipole (VED) Vertical Magnetic Dipole (VMD)

MEESEIGE to	A MARKETONE
6770	The tests X
-	Buff Section (
BLANDOUNCES	
METH ICATION	
87	
	N/AVAILABILITY COOR
DISTRIBUTIO	
DISTRIBUTIO	A/AVAILABILITY COOK
DISTRIBUTIO	A/AVAILABILITY COOK

TABLE OF CONTENTS

	Page
LIST OF ILLUSTRATIONS	11
all of Industrial Color of the	•••
INTRODUCTION	1
MODIFIED FINITELY-CONDUCTING, EARTH-IMAGE THEORY TECHNIQUES	2
DERIVATION OF THE CONDUCTING SLAB FIELD-COMPONENT EXPRESSIONS	
FOR THE GENERAL QUASI-STATIC RANGE	3
Horizontal Electric Dipole (HED)	4
Horizontal Magnetic Dipole (HMD)	6
Vertical Electric Dipole (VED)	7
Vertical Magnetic Dipole (VMD)	8
DERIVATION OF THE CONDUCTING SLAB FIELD-COMPONENT EXPRESSIONS	
FOR THE QUASI-NEAR RANGE	9
Long Horizontal Line Source/Antenna	9
Horizontal Electric Dipole (HED) Antenna	12
Horizontal Magnetic Dipole (HMD) Antenna	13
Vertical Magnetic Dipole (VMD) Antenna	13
DISCUSSION	14
CONCLUSIONS	15
REFERENCES	23

LIST OF ILLUSTRATIONS

Figure					Page
1	Conducting Slab Geometry	 •			17
2	Comparison of Modified Image Theory, Asymptotic and Weaver's Result for the Ep Component .				18
3	Comparison of Modified Image Theory, Asymptotic and Weaver's Result for the E& Component .		•		19
4	Comparison of Modified Image Theory, Asymptotic and Weaver's Result for the Hp Component .				20
5	Comparison of Modified Image Theory, Asymptotic and Weaver's Result for the Ho Component .			1.5	21
6	Comparison of Modified Image Theory, Asymptotic and Weaver's Result for the H _z Component .				21

QUASI-STATIC RANGE PROPAGATION EQUATIONS FOR THE APPROXIMATE FIELDS WITHIN A CONDUCTING SLAB

INTRODUCTION

During the last several years, considerable interest has developed in determining the quasi-static field components of antennas located above, or buried within, the earth's surface. Quasi-static range is defined as the range of transmission where the measurement distance is much less than a free-space wavelength. Quasi-static range results are useful for submarine radio communication and detection; they also have applications in locating buried miners and help geophysicists determine the electrical properties of the earth.

For the semi-infinite conducting medium case (i.e., air, single layered earth), some work has been done to determine the quasi-static fields produced by various subsurface sources when the measurement distance is comparable to the earth skin depth. 1-6 (Most of these results are summarized by Kraichman. 7) However, the field strength expressions are very complex because they involve products of modified Bessel functions of different argument. Recently, by using finitely conducting earth-image theory techniques, we derived approximate expressions for the general quasi-static range electromagnetic fields (in air and in earth) produced by various subsurface antennas. 8 Some numerical calculations have also been provided. 9

These investigations revealed that when the source is not buried too far from the surface of the conducting half-space, the resultant electromagnetic field is significantly different from that obtained in an infinite conducting medium. Therefore, if the conductor is two-layered, the lower interface must likewise affect the field (especially if the upper layer in which the source is located is not too deep). For example, if the transmitting antenna is situated in a shallow sea, the theory for a uniform conducting half-space would not accurately describe the field at the sea bottom. This observation is also true at the surface of the sea if the sea depth (ℓ_1) is less than approximately one skin depth.

Weaver has evaluated the exact Sommerfeld integral expressions and obtained numerical results for the quasi-static fields produced by horizontal and vertical electric dipole (HED and VED) antennas located in the upper layer of a two-layer conducting half-space. Numerical results for the quasi-static fields produced in the sea by a vertical magnetic dipole (VMD) for various values of sea bottom conductivity have been obtained by Coggon and Morrison. O

This report employs finitely conducting earth-image theory techniques to derive approximate expressions for the general ac quasi-static range electromagnetic fields produced by various subsurface dipole antennas, which include the HED, VED, VMD, and horizontal magnetic dipole (HMD) types, each of which is located in the upper layer of a two-layer conducting earth. For mathematical convenience, consider the conductivity of the bottom layer as being equal to zero. Thus, the problem is reduced to calculating the fields in a conducting slab. Treating the bottom layer conductivity as equal to zero is not

that restrictive; in many practical cases, the conductivity of the upper layer (σ_1) is much greater than the conductivity of the bottom layer (σ_2) , particularly in the sea-to-sea bed case. Therefore, this assumption limits the results to measurement distances (ρ) of approximately $\delta_2/5$, where δ_2 is the skin depth in the bottom layer. For example, at a frequency of 1 Hz, if σ_1 = 4 S/m (sea) and σ_2 = 10^{-2} S/m (sea bed), then $\delta_1 \sim 250$ m and $\delta_2 \sim 5$ km. Therefore, for this example, the results should be valid to a measurement distance of approximately 1 km. Furthermore, if the conductivity of the sea bed is 10^{-4} S/m ($\delta_2 \sim 50$ km), the results should be valid to a measurement distance of approximately 10 km.

For the purpose of this report, all four sources are located at depth h (h \geq 0) with respect to a cylindrical coordinate system (ρ , ϕ ,z) and are assumed to carry a constant current, I. The VED and HED antennas (of infinitesimal length £) are oriented in the z and x directions, respectively. The axes of the VMD and HMD antennas (of infinitesimal area A) are oriented in the z and y directions, respectively. Free space occupies the regions z < 0 and z > £1, whereas the conducting slab occupies the region 0 < z < £1 (see figure 1).* Displacement currents are neglected in both the slab and the air. The magnetic permeability of the conducting slab is assumed to equal μ_0 , the permeability of free space. Meter-kilogram-second (mks) units are employed and a suppressed time factor of exp (iwt) is assumed.

MODIFIED FINITELY-CONDUCTING, EARTH-IMAGE THEORY TECHNIQUES

In the semi-infinite conducting medium, where both the source and receiving antennas are located above the earth's surface (z,h < 0) (see figure 1), the quasi-static range ($\gamma_0 \sim 0$) integrals are of the type that can not be evaluated analytically throughout the quasi-static range, 1 that is

$$I_1 \sim \int_0^\infty \left(\frac{u-\lambda}{u+\lambda}\right) e^{\lambda(z+h)} J_0(\lambda\rho) d\lambda,$$
 (1)

where

$$\gamma_0 = i\omega(\mu_0 \varepsilon_0)^{1/2} \sim 0 \text{ (air)},$$

$$\gamma \sim (i\omega\mu_0 \sigma)^{1/2} \text{ (earth)},$$

$$u = (\lambda^2 + \gamma^2)^{1/2}, \text{ and}$$

 $_{\rm J}$ ($\lambda\rho)$ = Bessel function of the first kind, order zero, and argument $\lambda\rho.$

^{*}Figures 1 through 6 are presented at the end of the text.

Physically, the essence of the finitely conducting earth-image theory technique is to replace the finitely conducting earth with a perfectly conducting earth located at the (complex) depth d/2, where d = $2/\gamma$ = δ (1-i). Analytically, this corresponds to replacing the algebraic reflection coefficient $(u-\lambda)/(u+\lambda)$ in the exact integral equations by exp $(-\lambda d)$, where λ is the variable of integration. Once this is accomplished, (1) can be readily evaluated. For antennas located at, or above, the earth's surface, the general image theory approximation is valid throughout the quasi-static range. 11,12

When the source and receiving antennas are located below the earth's surface (z, h > 0) (see figure 1), the quasi-static range integrals to be evaluated are of the form¹⁻⁶,8

$$I_2 \sim \int_0^\infty \left(\frac{u-\lambda}{u+\lambda}\right) e^{-u(z+h)} J_0(\lambda\rho) d\lambda$$
 (2)

Integrals of this type can, and have, been evaluated analytically throughout the quasi-static range. 1-6 However, the resulting expressions are very complex because they involve products of modified Bessel functions of different argument. Therefore, we let 8

$$e^{-u(z+h)} \sim e^{-\gamma a(z+h)} e^{-\gamma b(z+h)}.$$
 (3)

where

a = 0 and b = 1 for
$$R_1/\delta \ll 1$$
 $\left[R_1 = \sqrt{\rho^2 + (z+h)^2}\right]$,
a = 0.4 and b = 0.96 for R_1/δ less than approximately 1,
a = 0.96 and b = 0.4 for R_1/δ between approximately 1 and 10, and
a = 1 and b = 0 for $\rho > 3(z+h)$.

Substituting (3) into (2) and substituting $\exp(-\lambda d)$ for $(u-\lambda)/(u+\lambda)$ results in

$$I_2 \sim e^{-\gamma a(z+h)} \int_0^\infty e^{-\lambda \left[d+b(z+h)\right]} J_0(\lambda \rho) d\lambda, \qquad (4)$$

which can be readily evaluated throughout the quasi-static range.

DERIVATION OF THE CONDUCTING SLAB FIELD-COMPONENT EXPRESSIONS FOR THE GENERAL QUASI-STATIC RANGE

Because we have already derived the general quasi-static range subsurface-to-subsurface field-component expressions for the semi-infinite medium case, we can employ these results and the method of images to derive approximate expressions for the ac quasi-static fields within a conducting slab. In this situation, the multiple image pattern is an infinite array that supplements the original dipole exactly as the images of a physical object located between two plane mirrors appear to be an infinite array of that object.

HORIZONTAL ELECTRIC DIPOLE (HED)

The HED equations can easily be derived from equations (64) through (69) of an earlier report. 8 They are

$$E_{\rho} \sim \frac{18 \cos \phi}{4\pi\sigma} \sum_{n=0}^{\infty} \epsilon_{n} \left\{ \frac{e^{-\gamma R_{ON}}}{e^{R_{ON}}} \left[\left(\frac{3_{\rho}^{2}}{R_{ON}^{2}} - 1 \right) \left(1 + \gamma R_{ON} \right) - \gamma^{2} x_{1}^{2} \right] - \frac{e^{-\gamma R_{1N}}}{R_{1N}^{3}} \left[\left(\frac{3_{\rho}^{2}}{R_{1N}^{2}} - 1 \right) \left(1 + \gamma R_{1N} \right) - \gamma^{2} x_{2}^{2} \right]$$

$$+ \frac{2e^{-\gamma A X_{2}}}{A_{1N}^{3}} \left[1 + b - \frac{3b^{3} x_{2}^{2}}{A_{1N}^{2}} - \gamma ab x_{2} \right] \right\},$$

$$E_{\phi} \sim \frac{18 \sin \phi}{4\pi\sigma} \sum_{n=0}^{\infty} \epsilon_{n} \left\{ \frac{e^{-\gamma R_{ON}}}{R_{ON}^{3}} \left[1 + \gamma R_{ON} + \gamma^{2} R_{ON}^{2} \right] - \gamma ab x_{2} \right]$$

$$- \frac{e^{-\gamma R_{1N}}}{R_{1N}^{3}} \left[1 + \gamma R_{1N} + \gamma^{2} R_{1N}^{2} \right]$$

$$+ \frac{2e^{-\gamma A X_{2}}}{A_{1N}^{2}} \left[1 + \frac{2A_{1N}^{2}}{d^{2}} \left(1 - \frac{A_{1N}}{A_{2N}} \right) \right] \right\},$$

$$E_{Z} \sim \frac{18 \cos \phi}{4\pi\sigma} \sum_{n=0}^{\infty} \rho \epsilon_{n} \left[\frac{x_{1}}{R_{ON}^{5}} \left(3 + 3\gamma R_{0N} + \gamma^{2} R_{1N}^{2} \right) e^{-\gamma R_{0N}} + \frac{x_{2}}{R_{1N}^{5}} \left(3 + 3\gamma R_{1N} + \gamma^{2} R_{1N}^{2} \right) e^{-\gamma R_{1N}} \right],$$

$$+ \frac{x_{2}}{R_{1N}^{5}} \left(3 + 3\gamma R_{1N} + \gamma^{2} R_{1N}^{2} \right) e^{-\gamma R_{1N}} \right],$$

$$(7)$$

$$H_{\rho} \sim -\frac{\text{If } \sin \phi}{4\pi} \sum_{n=0}^{\infty} \varepsilon_{n} \left\{ \left[\frac{d+bX_{2}}{\rho^{2}A_{2N}} - \frac{bX_{2}}{\rho^{2}A_{1N}} \right] e^{-\gamma aX_{2}} \right.$$

$$+\frac{x_1}{R_{ON}^3}\left(1+\gamma R_{ON}\right)e^{-\gamma R_{ON}}+\frac{(d+bx_2)}{A_{2N}^3}e^{-\gamma ax_2}$$
 (8)

$$H_{\phi} \sim -\frac{1\ell \cos \phi}{4\pi} \sum_{n=0}^{\infty} \epsilon_n \begin{cases} \frac{x_1}{R_{ON}^3} & \left(1 + \gamma R_{ON}\right) e^{-\gamma R_{ON}} \end{cases}$$

$$+\frac{x_{2}}{R_{1N}^{3}}\left(1+YR_{1N}\right)e^{-YR_{1N}}-\frac{e^{-YaX_{2}}}{\rho^{2}}\left[\frac{d+bx_{2}}{A_{2N}}-\frac{bx_{2}}{A_{1N}}\right], \qquad (9)$$

$$\mathbf{H}_{Z} \sim \frac{\text{If sin } \phi}{4\pi} \sum_{n=0}^{\infty} \rho \varepsilon_{n} \left\{ \frac{\frac{e^{-\gamma} R_{ON}}{e^{3}}}{R_{ON}^{3}} \left(1 + \gamma R_{ON}\right) - \frac{\frac{e^{-\gamma} R_{1N}}{e^{3}}}{R_{1N}^{3}} \left(1 + \gamma R_{1N}\right) \right\}$$

$$+ e^{-\gamma a \chi_2} \left[\frac{1}{\frac{1}{3}} - \frac{1}{\frac{1}{3}} \right], \qquad (10)$$

where

$$X_1 = 2n\ell_1 + z - h,$$

$$X_2 = 2n\ell_1 + z + h,$$

$$R_{ON}^2 = \rho^2 + x_1^2$$

$$R_{1N}^{2} = \rho^{2} + X_{2}^{2},$$
 $A_{1N}^{2} = \rho^{2} + b^{2}X_{2}^{2},$
 $A_{2N}^{2} = \rho^{2} + (d + bX_{2})^{2}, \text{ and}$
 $\epsilon_{0} = 1, \epsilon_{n} = 2, n = 1, 2, 3, ...$

HORIZONTAL MAGNETIC DIPOLE (HMD)

The HMD equations can be derived from equations (76) through (81) of an earlier report. 8 They are

$$\begin{split} E_{\rho} &\sim -\frac{i\omega\mu_{0}IA \cos\phi}{4\pi} \sum_{n=0}^{\infty} \varepsilon_{n} \left\{ \frac{\chi_{1}}{R_{ON}^{3}} - \left(1 + \gamma R_{ON}\right) e^{-\gamma R_{ON}} - \frac{\chi_{2}}{R_{1N}^{2}} \left(1 + \gamma R_{1N}\right) e^{-\gamma R_{1N}} + \frac{e^{-\gamma a \chi_{2}}}{\rho^{2}} \left[\frac{d + b \chi_{2}}{A_{2N}} - \frac{b \chi_{2}}{A_{1N}} \right] \right\}, \quad (11) \\ E_{\phi} &\sim -\frac{i\omega\mu_{0}IA \sin\phi}{4\pi} \sum_{n=0}^{\infty} \varepsilon_{n} \left\{ -\frac{\chi_{1}}{R_{ON}^{3}} \left(1 + \gamma R_{ON}\right) e^{-\gamma R_{ON}} + \frac{(d + b \chi_{2})}{A_{2N}^{3}} e^{-\gamma a \chi_{2}} + \frac{e^{-\gamma a \chi_{2}}}{\rho^{2}} \left[\frac{d + b \chi_{2}}{A_{2N}^{2}} - \frac{b \chi_{2}}{A_{1N}} \right] \right\}, \quad (12) \\ E_{z} &\sim \frac{i\omega\mu_{0}IA \cos\phi}{4\pi} \sum_{n=0}^{\infty} \rho \varepsilon_{n} \left[\frac{e^{-\gamma R_{ON}}}{R_{ON}^{3}} - \left(1 + \gamma R_{ON}\right) - \frac{e^{-\gamma R_{1N}}}{R_{1N}^{3}} - \left(1 + \gamma R_{1N}\right) \right], \quad (13) \end{split}$$

$$H_{\rho} \sim -\frac{IA \sin \phi}{4\pi} \sum_{n=0}^{\infty} \epsilon_{n} \left\{ \frac{e^{-\gamma R_{ON}}}{R_{ON}^{3}} \left[\left(1 - \frac{3^{2}_{\rho}}{R_{ON}^{2}} \right) 1 + \gamma R_{ON} + \gamma^{2} \chi_{1}^{2} \right] - \frac{e^{-\gamma R_{1N}}}{R_{1N}^{3}} \left[\left(1 - \frac{3^{2}_{\rho}}{R_{1N}^{2}} \right) \left(1 + \gamma R_{1N} \right) + \gamma^{2} \chi_{2}^{2} \right] + e^{-\gamma a \chi_{2}} \left[\frac{1}{A_{1N}^{3}} \left(1 - \frac{3^{2}_{\rho}}{A_{1N}^{2}} \right) + \frac{1}{A_{2N}^{3}} \left(1 - \frac{3^{2}_{\rho}}{A_{2N}^{2}} \right) \right] , \qquad (14)$$

$$H_{\phi} \sim -\frac{IA \cos \phi}{4\pi} \sum_{n=0}^{\infty} \epsilon_{n} \left[\frac{e^{-\gamma R_{ON}}}{R_{ON}^{3}} \left(1 + \gamma R_{ON} + \gamma^{2} R_{ON}^{2} \right) \right]$$

$$-\frac{e^{-\gamma R_{1N}}}{R_{1N}^3}\left(1+\gamma R_{1N}+\gamma^2 R_{1N}^2\right)+e^{-\gamma a X_2}\left(\frac{1}{A_{1N}^3}+\frac{1}{A_{2N}^3}\right),\qquad (15)$$

and

$$H_{z} \sim \frac{\text{IA sin } \phi}{4\pi} \sum_{n=0}^{\infty} \rho \epsilon_{n} \left[-\frac{x_{1}}{R_{ON}^{5}} \left(3 + 3 \gamma R_{ON} + \gamma^{2} R_{ON}^{2} \right) e^{-\gamma R_{ON}} \right] + \frac{3(d + bx_{2})}{A_{2N}^{5}} e^{-\gamma ax_{2}} . \tag{16}$$

VERTICAL ELECTRIC DIPOLE (VED)

The VED equations can be derived from equations (73) through (75) of an earlier report.⁸ They are

$$E_{\rho} \sim \frac{IR}{4\pi\sigma} \sum_{n=0}^{\infty} \rho \epsilon_{n} \left[\frac{X_{1}}{R_{ON}^{5}} \left(3 + 3YR_{ON} + \gamma^{2}R_{ON}^{2} \right) \right] e^{-YR_{ON}}$$

$$-\frac{x_2}{R_{1N}^5}\left(3+3YR_{1N}+\gamma^2R_{1N}^2\right)e^{-YR_{1N}}\right),$$
 (17)

$$E_{z} \sim -\frac{I\ell}{4\pi\sigma} \sum_{n=0}^{\infty} \epsilon_{n} \left\{ \frac{e^{-\gamma R_{ON}}}{e^{3}} \left[\left(1 - \frac{3x_{1}^{2}}{R_{ON}^{2}}\right) \left(1 + \gamma R_{ON}\right) + \gamma^{2}\rho^{2} \right] \right\}$$

$$-\frac{e^{-\gamma R_{1N}}}{R_{1N}^3} \left[\left(1 - \frac{3X_2^2}{R_{1N}^2} \right) \left(1 + \gamma R_{1N} \right) + \gamma^2 \rho^2 \right] \right\} , \qquad (18)$$

and

$$H_{\phi} \sim \frac{1\ell}{4\pi} \sum_{n=0}^{\infty} \rho \epsilon_{n} \left[\frac{e^{-\gamma R_{ON}}}{R_{ON}^{3}} \left(1 + \gamma R_{ON} \right) - \frac{e^{-\gamma R_{1N}}}{R_{1N}^{3}} \left(1 + \gamma R_{1N} \right) \right]. \tag{19}$$

It should be noted that (17), (18), and (19) are identical to Weaver's results.6

VERTICAL MAGNETIC DIPOLE (VMD) ANTENNA

The VMD equations can be derived from equations (70), (71), and (72) of an earlier report.⁸ They are

$$E_{\phi} \sim -\frac{i\omega\mu_{0}}{4\pi} \sum_{n=0}^{\infty} \rho \varepsilon_{n} \begin{cases} \frac{e^{-\gamma R_{ON}}}{R_{ON}^{3}} \left(1 + \gamma R_{ON}\right) - \frac{e^{-\gamma R_{1N}}}{R_{1N}^{3}} \left(1 + \gamma R_{1N}\right) \end{cases}$$

$$+ e^{\frac{1}{2} - \gamma a X_2} \left[\frac{1}{A_{1N}^3 - A_{2N}^3} \right]$$
 (20)

$$H_{\rho} \sim -\frac{1A}{4\pi} \sum_{n=0}^{\infty} \rho \epsilon_n \left[\frac{x_1}{R_{ON}^5} \left(3 + 3YR_{ON} + \gamma^2 R_{ON}^2 \right) e^{-YR_{ON}} \right]$$

$$+\frac{3(d+bX_2)}{A_{2N}^5} e^{-\gamma aX_2}$$
, (21)

and

$$H_{z} \sim -\frac{1}{4\pi} \sum_{n=0}^{\infty} \epsilon_{n} \left[\frac{e^{-YR_{ON}}}{R_{ON}^{3}} \left\{ \left[1 - \frac{3X_{1}^{2}}{R_{ON}^{2}} \right] \left(1 + YR_{ON} \right) + Y^{2} \rho^{2} \right\} \right]$$

$$- \frac{e^{-YR_{1N}}}{R_{1N}^{3}} \left\{ \left[1 - \frac{3X_{2}^{2}}{R_{1N}^{2}} \right] \left(1 + YR_{1N} \right) + Y^{2} \rho^{2} \right\}$$

$$+ e^{-Y_{a}X_{2}} \left\{ \frac{1}{A_{1N}^{3}} \left[1 - \frac{3b^{2}X_{2}^{2}}{A_{1N}^{2}} \right] - \frac{1}{A_{2N}^{3}} \left[1 - \frac{3(d - bX_{2})^{2}}{A_{2N}^{2}} \right] \right\} \right\}.$$
 (22)

DERIVATION OF THE CONDUCTING SLAB FIELD-COMPONENT EXPRESSIONS FOR THE QUASI-NEAR RANGE

Quasi-near range is defined as the asymptotic part of the quasi-static range, i.e., where the measurement distance (ρ) is much greater than a skin depth in the conducting medium and much greater than the depth of burial of the transmitting and receiving antennas. Generally, ρ must be greater than 3δ and 3(z+h). For the conducting slab case, ρ should also be greater than $3\ell_1$. However, as we shall see later, the requirement that $\rho \geq 2\delta$ and $\rho \geq 2\ell_1$ may be sufficient for most cases.

The quasi-near range approximation is setting the function $u=\sqrt{\lambda^2+\gamma^2}$ in the exact integral expressions equal to γ , which is the propagation constant in the conducting medium.

LONG HORIZONTAL LINE SOURCE/ANTENNA

For a long horizontal line source antenna, oriented in the x-direction, the electric field within a conducting slab may be written exactly as (for z > h)

$$E_{\chi} = -\frac{i\omega\mu_{0}I}{2\pi} \int_{0}^{\infty} \frac{F(\lambda)}{u} \cos \lambda y \, d\lambda, \qquad (23)$$

whe re

$$\frac{F(\lambda)}{u} = \frac{\left(e^{uh} + R_g e^{-uh}\right)\left(e^{-uz} + R_g e^{-u(2\ell_1 - z)}\right)}{u\left(1 - R_g^2 e^{-2u\ell_1}\right)},$$
 (24)

TR 5807

$$R_{\mathbf{g}} = \frac{\mathbf{u} - \mathbf{u}_{\mathbf{o}}}{\mathbf{u} + \mathbf{u}_{\mathbf{o}}}, \text{ and}$$
 (25)

$$u_0 = \sqrt{\lambda^2 + \gamma_0^2} \sim \lambda$$
 for the quasi-static range.

The magnetic fields within the conducting slab may be determined from

$$H_{Y} = -\frac{1}{i\omega\mu_{0}} \frac{\partial E_{X}}{\partial z} \text{ and } H_{Z} = \frac{1}{i\omega\mu_{0}} \frac{\partial E_{X}}{\partial y}$$
 (26)

Application of the quasi-static ($\gamma_0 \sim 0$) and quasi-near ($u \sim \gamma$) approximations to (24) and (25) results in

$$\frac{F(\lambda)}{u} \sim \frac{2\left[\cosh \gamma h + \frac{\lambda}{\gamma} \sinh \gamma h\right] \left[\cosh \gamma (\ell_1 - z) + \frac{\lambda}{\gamma} \sinh \gamma (\ell_1 - z)\right]}{\left(\gamma \sinh \gamma \ell_1 \left[1 + \frac{2\lambda}{\gamma} \coth \gamma \ell_1\right]\right)} (27)$$

If the slab is not too thin, the denominator of (27) may be approximated as

$$\frac{1}{\gamma \sinh \gamma \ell_1 \left[1 + \frac{2\lambda}{\gamma} \coth \gamma \ell_1\right]} \sim \frac{1}{\gamma \sinh \gamma \ell_1} \left[1 - \frac{2\lambda}{\gamma} \coth \gamma \ell_1\right]. \quad (28)$$

Substituting (27) and (28) into (23) and (26), and noting that 13

$$\int_{0}^{\infty} \cos \lambda y \, d\lambda = 0 \tag{29}$$

and

$$\int_{0}^{\infty} \lambda \cos \lambda y \, d\lambda = -\frac{1}{2} \tag{30}$$

results in

$$E_{\chi} \sim \left[-\frac{I}{\pi\sigma y^2}\right] \left[Q^2\right] \left[\Lambda(z,h)\right],$$
 (31)

$$H_{Y} \sim \left[\frac{I}{\pi \gamma y^{2}}\right] \left[Q\right] \left[B(z,h)\right],$$
 (32)

and

$$H_Z \sim \left[\frac{2I}{\pi \gamma y}\right] \left[Q^2\right] \left[A(z,h)\right]$$
 (33)

Equations (31), (32), and (33) are each divided into three parts. The first is the quasi-near range field-component expression valid at the surface of a semi-infinite conducting half-space. The second is the familiar planewave correction factor employed to account for the presence of stratification in the earth. For $\sigma_1 \gg \sigma_2$,

$$Q \sim \coth \gamma \ell_1$$
 (34)

The third part accounts for the burial depth of the transmitting and receiving antennas. For the conducting slab situation when z is greater than h,

$$A(z,h) \sim \frac{2 \cosh \gamma h \cosh \gamma (\ell_1 - z)}{\cosh \gamma \ell_1} = \frac{\sinh \gamma (\ell_1 + h - z)}{\sinh \gamma \ell_1 \coth^2 \gamma \ell_1}$$
(35)

and

$$B(z,h) \sim \frac{\cosh \gamma(\ell_1 + h - z)}{\cosh \gamma \ell_1} - \frac{2 \cosh \gamma h \sinh \gamma(\ell_1 - z)}{\sinh \gamma \ell_1} . \quad (36)$$

When h is greater than z, the resulting expressions are

$$A(z,h) \approx \frac{2 \cosh \gamma z \cosh \gamma (\ell_1 - h)}{\cosh \gamma \ell_1} - \frac{\sinh \gamma (\ell_1 + z - h)}{\sinh \gamma \ell_1 \coth^2 \gamma \ell_1}$$
(37)

and

$$B(z,h) \sim \frac{2 \sinh \gamma z \cosh \gamma (\ell_1 - h)}{\sinh \gamma \ell_1} - \frac{\cosh \gamma (\ell_1 + z - h)}{\cosh \gamma \ell_1} . \quad (38)$$

It should be noted that

$$\frac{\partial}{\partial z}$$
 A(z,h) $\sim \frac{\gamma}{Q}$ B(z,h) (39)

and

$$\frac{\partial}{\partial z}$$
 B(z,h) \sim YQ A(z,h) . (40)

When z = h = 0 or l_1 ,

$$A(z,h) \sim 2 - \tanh^2 \gamma \ell_1 \sim 1 \text{ for } |\gamma \ell_1| > 1$$
 (41)

and B(z,h) $\sim \pm 1$. Furthermore, when $|\gamma \ell_1| > 2\sqrt{2} (\ell_1/\delta > 2)$ and $\ell_1 > 2(z + h)$,

$$A(z,h) \sim B(z,h) \sim e^{-Y(z+h)}$$
 (42)

If h = 0 and z = 11,

$$A(z,h) \sim 2B(z,h) \sim \frac{2}{\cosh \gamma \ell_1}$$
, (43)

which is identical to von Aulock's result. (See chapter 4, p. 14 of Kraichman and Bannister.) Furthermore, if h = 0 and ℓ_1/δ > 2, then

$$A(z,h) \sim 2e^{-\gamma \ell_1} \left[2 \cosh \gamma (\ell_1 - z) - \sinh \gamma (\ell_1 - z) \right]$$
 (44)

and

$$B(z,h) \sim 2e^{-\gamma \ell_1} \left[\cosh \gamma(\ell_1 - z) - 2 \sinh \gamma(\ell_1 - z) \right], \qquad (45)$$

which is identical to von Aulock's result. 15 (Also, see chapter 4, p. 13 in Kraichman. 7)

HORIZONTAL ELECTRIC DIPOLE (HED) ANTENNA

By following the same procedure outlined in the derivation of the equations for the long horizontal line source antenna, the quasi-near range HED antenna field-component expressions, which are valid within the conducting slab, may readily be determined. They are

$$E_{\rho} \sim \frac{I\ell \cos \phi}{2\pi\sigma\rho^3} Q^2 A(z,h) , \qquad (46)$$

$$E_{\phi} \sim \frac{I \ell \sin \phi}{\pi g o^3} Q^2 A(z,h) , \qquad (47)$$

$$H_{\rho} \sim \frac{I\ell \sin \phi}{\pi v o^3} Q B(z,h) , \qquad (49)$$

$$H_{\phi} \sim -\frac{12 \cos \phi}{2\pi v_0} Q B(z,h) , \qquad (50)$$

and

$$H_Z \sim \frac{31\ell \sin \phi}{2\pi y \rho} Q^2 A(z,h)$$
 (51)

When h = 0 and $z = \ell_1$, the HED antenna expressions reduce to the results previously derived by Bannister. 17

HORIZONTAL MAGNETIC DIPOLE (HMD) ANTENNA

By employing Maxwell's equations and the reciprocity theorem, we see that the quasi-near range HMD antenna field component expressions, which are valid within the conducting slab, may readily be determined from the HED antenna expressions. They are

$$E_{\rho} \sim \frac{i\omega\mu_{0}^{IA} \cos \phi}{2\pi\gamma\rho^{3}} Q B(h,z) , \qquad (52)$$

$$E_{\phi} \sim \frac{i\omega\mu}{\sigma} \frac{IA \sin \phi}{\sigma} Q B(h,z) , \qquad (53)$$

$$E_z \sim 0$$
 , (54)

$$H_{\rho} \sim \frac{IA \sin \phi}{\pi \rho^3} \frac{Q}{\gamma} \frac{\partial B(h,z)}{\partial z}$$
, (55)

$$H_{\phi} \sim -\frac{IA \cos \phi}{2\pi o^3} \frac{Q}{\gamma} \frac{\partial B(h,z)}{\partial z} , \qquad (56)$$

and

$$H_z \sim \frac{3IA \sin \phi}{2\pi v o} Q B(h,z) , \qquad (57)$$

where B(h,z) = B(z,h), with h and z interchanged. That is,

$$B(h,z) \sim \frac{\cosh \gamma(\ell_1 + z - h)}{\cosh \gamma \ell_1} - \frac{2 \cosh \gamma z \sinh \gamma(\ell_1 - h)}{\sinh \gamma \ell_1} . \quad (58)$$

Furthermore,

$$\frac{Q}{\gamma} \frac{\partial B(h,z)}{\partial z} \sim \frac{\sinh \gamma(\ell_1 + z - h)}{\sinh \gamma \ell_1} - \frac{2 \sinh \gamma z \sinh \gamma(\ell_1 - h)}{\sinh \gamma \ell_1 \tanh \gamma \ell_1}. \quad (59)$$

VERTICAL MAGNETIC DIPOLE (VMD) ANTENNA

By employing Maxwell's equations and the reciprocity theorem, we see that the quasi-near range VMD antenna field-component expressions, which are

valid within the conducting slab, may easily be determined from the HED antenna expressions. They are

$$E_{\phi} \sim -\frac{31A}{2\pi\sigma\rho} Q^2 A(h,z)$$
 (60)

$$H_{\rho} \sim -\frac{31A}{2\pi\gamma\rho^4} Q B(h,z) , \qquad (61)$$

and

$$H_z \sim -\frac{91A}{2\pi v} Q^2 A(h,z)$$
, (62)

where A(h,z) = A(z,h), with z and h interchanged. That is,

$$A(h,z) \sim \frac{2 \cosh \gamma z \cosh(\ell_1 - h)}{\cosh \gamma \ell_1} - \frac{\sinh \gamma(\ell_1 + z - h)}{\sinh \gamma \ell_1 \coth^2 \gamma \ell_1} . \tag{63}$$

DISCUSSION

It would be of interest to compare the results derived in this report with some known results. Figures 2 through 6 show comparisons of modified image theory, quasi-near (asymptotic) theory, and Weaver's numerical integration results for the electric and magnetic fields at the surface (z = 0) of a one-skin-depth-thick (ℓ_1 = δ) conducting slab produced by an HED located in the middle of the slab (h/ δ = 0.5). The normalized amplitude of each component (E´ or H´) is given by

$$H' = \frac{4\pi\delta^2 H}{I\ell \begin{pmatrix} \sin \phi \\ \cos \phi \end{pmatrix}} \text{ and } E' = \frac{4\pi\sigma\delta^3 E}{I\ell \begin{pmatrix} \sin \phi \\ \cos \phi \end{pmatrix}}.$$
 (64)

Two values of a and b are considered for the modified image theory plots. The a=0.4 and b=0.96 results should be valid in situations close to the source, and the a=0.96 and b=0.4 results should be valid at further distances. In each of these cases, only five terms of the infinite summation were needed for 1 percent accuracy.

As Weaver has indicated, 6 this particular model possesses symmetry about the plane z = h. When z = h, all components that vary as B(z,h) equal zero. Furthermore, if z = 0 or ℓ_1 , all components that vary as A(z,h) are equal, whereas all components that vary as B(z,h) are equal and opposite.

Figures 2 and 3 show horizontal electric field comparisons of the modified image theory, asymptotic theory, and numerical integration results. We can see from figure 2 that, for the E\$\beta\$ component, the modified image theory a = 0.4 and b = 0.96 curve agrees well with the numerical integration results throughout the range of \$\rho/\delta\$ considered (0 < \$\rho/\delta < 3\$). However, we observe that beyond approximately 1.25 skin depths, the (simple form) asymptotic theory agrees more closely.

We can see from figure 3 that, for the E ϕ component, the modified image theory a = 0.4 and b = 0.96 curve agrees well with the numerical integration results for $0 \le \rho/\delta \le 0.75$, while the a = 0.96 and b = 0.4 curve more closely agrees for 0.75 < $\rho/\delta \le 3$. Beyond approximately 2 skin depths, the asymptotic theory provides the better fit to the numerical integration data.

Figures 4, 5, and 6 show the magnetic field comparisons of the modified image theory, asymptotic theory, and numerical integration results. We see from figure 4 that, for the Ho component, the a = 0.4 and b = 0.96 curve agrees very closely with the numerical integration results for $\rho/\delta \leq 0.5$, but only moderately so for $\rho/\delta > 0.5$. The a = 0.96 and b = 0.4 curve is in good agreement beyond 1.5 skin depths, while the asymptotic theory curve provides the best fit beyond 2.5 skin depths.

In figure 5, we can see that, for the H ϕ component, the modified image theory a = 0.4 and b = 0.96 curve agrees very closely with the numerical integration results to $\rho/\delta \sim 2$. Beyond that, the asymptotic theory curve provides the best fit.

In figure 6, we can see that, for the Hz component, the modified image theory, a = 0.4 and b = 0.96 curve agrees very well with the numerical integration results for $\rho/\delta < 1$. Beyond $\rho/\delta = 1$, the a = 0.96 and b = 0.4 curve agrees more closely. For $\rho/\delta > 2$, the asymptotic theory curve also agrees well with the numerical integration results.

Thus, it appears that the (simple form) asymptotic theory will provide results of sufficient accuracy when the measurement distance is greater than 2 skin depths and greater than twice the slab depth (i.e., $\rho/\delta > 2$ and $\rho/\ell_1 > 2$).

CONCLUSIONS

Approximate expressions for both the general ac quasi-static and quasinear fields produced by electric and magnetic dipole antennas located within a conducting slab have been derived by employing finitely conducting earthimage theory techniques and by applying the quasi-near approximation to the basic Sommerfeld integrals.

We have demonstrated that the resultant approximations very closely agree with previously derived numerical integration results. In particular, it appears that the (simple form) asymptotic theory will provide sufficiently accurate results when the measurement distance is greater than 2 skin depths and greater than twice the slab depth.

Although displacement currents in the conducting slab have been ignored in the analysis, they can be included by simply replacing σ with σ + i ω c in the field strength equations, providing $|\gamma^2| >> |\gamma_0|^2$. The resultant expressions are applicable to short range electromagnetic propagation in a shallow sea.

Figure 1. Conducting Slab Geometry

Figure 2. Comparison of Modified Image Theory, Asymptotic Theory, and Weaver's Result for the F_ρ Component

Figure 3. Comparison of Modified Image Theory, Asymptotic Theory, and Weaver's Result for the $E_{\hat{\varphi}}$ Component

Figure 4. Comparison of Modified Image Theory, Asymptotic Theory, and Weaver's Result for the H $_{\rho}^{\star}$ Component

Figure 5. Comparison of Modified Image Theory, Asymptotic Theory, and Weaver's Result for the H Component

Figure 6. Comparison of Modified Image Theory, Asymptotic Theory, and Weaver's Result for the H_z Component

REFERENCES

- 1. J. R. Wait, "The Electromagnetic Fields of a Horizontal Dipole in the Presence of a Conducting Half-Space," Canadian Journal of Physics, vol. 39, 1961, pp. 1017-1028.
- 2. J. R. Wait and L. L. Campbell, "The Fields of an Electric Dipole in a Semi-Infinite Conducting Medium," <u>Journal of Geophysical Research</u>, vol. 58, 1953, pp. 21-28.
- 3. J. R. Wait and L. L. Campbell, "The Fields of an Oscillating Magnetic Dipole Immersed in a Semi-Infinite Conducting Medium,"

 Journal of Geophysical Research, vol. 58, no. 2, 1953, pp. 167-178.
- 4. A. K. Sinha and P. K. Bhattacharya, "Vertical Magnetic Dipole Buried Inside a Homogeneous Earth", Radio Science, vol. 1, no. 3, 1966, pp. 379-395.
- P. R. Bannister and W. C. Hart, Quasi-Static Fields of Dipole Antennas Below the Earth's Surface, NUSL Technical Report 870, 11 April 1968.
- 6. J. T. Weaver, "The Quasi-Static Field of an Electric Dipole Embedded in a Two-Layer Conducting Half-Space, "Canadian Journal of Physics, vol. 45, 1967, pp. 1981-2002.
- 7. M. B. Kraichman, Handbook of Electromagnetic Propagation in Conducting Media, U.S. Government Printing Office, Washington, DC, 1970 (second edition, 1976).
- 8. P. R. Bannister and R. L. Dube, Modified Image Theory Quasi-Static Range Subsurface-to-Subsurface and Subsurface-to-Air Propagation Equations, NUSC Technical Report 5647, Naval Underwater Systems Center, New London, CT, 12 October 1977.
- 9. P. R. Bannister and R. L. Dube, <u>Numerical Results for Modified Image</u>
 Theory Quasi-Static Range Subsurface-to-Subsurface and Subsurface-toAir Propagation, NUSC Technical Report 5775, Naval Underwater System
 Center, New London, CT, 7 December 1977.
- 10. J. H. Coggon and H. F. Morrison, "Electromagnetic Investigation of the Sea Floor," Geophysics, vol. 35, no. 3, 1970, pp. 476-489.
- 11. P. R. Bannister, The Image Theory Quasi-Static Fields of Antennas
 Above the Earth's Surface, NUSL Technical Report 1061, Naval Underwater System Center, New London, CT, 29 December 1969.

INITIAL DISTRIBUTION LIST

Addressee	No. of Copies
ONR, Code 427, 483, 412-8, 480, 410, Earth Sciences	
Division (T. Quinn), 463	7
ONR Branch Office, Chicago (F. L. Dowling)	1
NRL, (J. Davis, W. Meyers, R. Dinger, F. Kelly), Code 645	1
(D. Forester), 6454 (J. Clement, E. Compy, P. Lubitz	
J. Schelleng)	9
NAVELECSYSCOMIQ, Code 03, PME-117, -117-21, -117-213,	
-117-213A, -117-215	6
NELC, (R. Moler, H. Hughes, R. Pappert, Code 3300)	4
NAVSURFWPNCEN, WR-43 (R. Brown, J. Cunningham, Jr., M. Kr	
NAVCOASTSYSLAB, Code 721 (C. Stewart), 773 (K. Allen), 79	
(M. Wynn, W. Wynn)	4
NAVSEC, Code 6157 B (C. Butler, G. Kahler, D. Muegge)	3
NAVFACENGSYSCOM, Code FPO-1C (W. Sherwood), -1C7 (R. McIn	
A. Sutherland)	3
NAVAIR, Code AIR-0632 B (L. Goertzen)	1
NAVAIRDEVCEN, Code 2022 (J. Duke, R. Gasser, E. Greeley,	
A. Ochadlick, L. Ott, W. Payton, W. Schmidt)	7
NAVSHIPYD PTSMH, Code 280 (B. Murdock)	1
AFWTF, Code O1A (CDR W. Danner), 32 (LT R. Elston), 412	
(P. Burton, R. Kirkpatrick)	4
NISC, Code 20 (G. Batts), 43 (J. Erdmann), OW17 (M. Koont	z) 3
NOSC, Code 407 (C. Ramstedt)	1
NAVPGSCOL, Code 06 (R. Fossum)	1
U.S. Naval Academy, Anna. (C. Schneider)	ī
CNO, Code OP-02, 03EG, -090, -23, -902, 941, -942U, 201,	
-953, -954, -96	11
CNM, Code MAT-00, -03L, -0302, -034, -03T (CAPT Walker),	
	1
SUBASE LANT	
DDC	12
NAVSUBSUPFACNLON	(1) (1) Str., 1 (5)
NAVWPNSCEN	
NAVSUBTRACENPAC	1
CIVENGRLAB	Ministration of Table
NAVSUBSCOL	The man 100
NAVWARCOL	in all the last
Engineering Societies Library	
United Engineering Center	
345 East 47th St.	
New York, NY 10017	1
Park March 1997	
GTE Sylvania	
(G. Pucillo, D. Esten, R. Warshawer, D. Boots, R. Row)	
Needham, MA 02194	5

INITIAL DISTRIBUTION LIST (Cont'd)

Addressee	No. of Copies
Lockheed (J. Reagan, W. Imhof, T. Larsen) Palo Alto, CA 94302	3
Lawrence Livermore Labs (J. Lytle, E. Miller) Livermore, CA	2
Univ. of Nebraska EE Dept. (E. Bahar) Lincoln, NB 68508	
NOAA (D. Barrick, R. Fitzgerrell, D. Grubb, J. Wait (ERL)) U.S. Dept. of Commerce	mega (184) Interaction (1919) de la Servicioni (1916) de la Interaction (1916)
Boulder, CO 80302 Newmont Exploration Ltd.	4
(A. Brant) Danbury, CT 06810	1
(J. Bridges, A. Valentino) Chicago, IL 60068 Stanford Univ.	2
Dept. of EE (F. Crawford) Stanford, CA 94305	1
Univ. of Colorado Dept. of EE (D. Chang) Boulder, CO 80302	AUG 1
Air Force Cambridge Research Lab (R. Fante) Bedford, MA 01730	MARKATER AN ARCHER 1 PM
Denver, CO 80225	nalynapisal nalyna ballas 1956 area 1 95
Colorado School of Mines Geophysics Dept. (G. Keller)	
Golden, CO 80401	435 , mad 1-se

INITIAL DISTRIBUTION LIST (Cont'd)

Addressee	No. of Copies
Univ. of Arizona Dept. of Mining & Geological Engineering (D. Hastings)	
Tuscon AZ 85721	NITELINGTH INDOCATORY (J. Mars. W. White. J. Ev.
Univ. of Michigan Radiation Lab (R. Hiatt) Ann Arbor, MI 48105	Telfo in pargation. delli ko "pini
U.S. Army Cold Regions Research & Eng. Lab	
(P. Hoekstra)	
Hanover, NH 03755	Sector of El (S. Woeke)
Univ. of Washington	
	sia 3 stannamento 11:00 10:00 ser morroscorio ven
Univ. of Wisconsin	
Dept. of EE (R. King)	Ginar Connel Se 1100
Madison, WI 53706	LATER BUILDING LEGISTER A LOSS
Univ. of Wyoming	
Dept. of EE (J. Lindsay, Jr.) Laramie, WY 82070	284 1 .09
taramie, wi 82070	
Univ. of Arizona	
College of Earth Sciences (L. Lepley) Tuscon, AZ 85719	ossitie et .i.
Tuscon, AZ 65719	J. I PILING P.S Bew 12862
Univ. of Illinois	
Dept. of EE (R. Mittra) Urbana, IL 61801	1
orband, in orbot	
Univ. of Kansas	
(R. Moore) Lawrence, KS 66044	Starsbold Dalebarator
	Stanford, CA 94505
Washington State Univ.	
Dept. of EE (R. Olsen) Pullman, WA 99163	803 1 315
Institute for Telecommunication Services U.S. Dept. of Commerce (R. Ott, D. D. Crombie)	
Boulder, CO 80302	1
North Carolina State Univ.	
EE Dept. (R. Rhodes)	
Raleigh, NC 27607	1

INITIAL DISTRIBUTION LIST (Cont'd)

Addressee	No. of Copies
Columbus, OH 43212	
MIT Lincoln Laboratory (J. Ruze, D. White, J. Evans, L. Ricardi) Lexington, MA 02137	TA industria
Univ. of Utah Dept. of Geological & Geophysical Sciences (S. Ward) Salt Lake City, UT 84112	t words and
Purdue Univ. School of EE (W. Weeks) Lafayette, IN 47907	
Wave Propagation Lab (G. Little) Boulder, CO 80302	od similar
Univ. of Pennsylvania Moore School of EE D2 (R. Showers)	
(W. Chambers, P. Gueschel, L. Hart, H. Ko) Silver Spring, MD 20910	4
J. P. Wikswo P.O. Box 12062 Acklen Station Nashville, TN 37212	1
A. C. Fraser-Smith Radioscience Laboratory Durand Bldg., Rm. 205	th thins, it is a second of Run (i) the second of Run (ii) the second of
R. C. Hanson Box 215	W. Shington 1 Ospt. of SE Pallson, MA