

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Cornélio Procópio

CONTEÚDO DA AULA

DIMENSIONAMENTO BÁSICO DE ENGRENAGENS

- 1. EC Engrenagens Cônica
- 2. Dimensionamento pelo critério de desgaste e flexão do dente
- 3. ECSF Engrenagens de Coroa e Sem Fim

- As engrenagens cônicas de dentes possuem as seguintes retos características:
- São utilizadas em eixos reversos.
- A relação de transmissão máxima que deve ser utilizada é 1:6.

Critério de Desgaste

• Conicidade da engrenagem relativa ao primitivo - Para δ =90°

$$tg\delta_2 = \frac{Z_2}{Z_1}$$

$$\delta_1 = 90 - \delta_2$$

Conicidade da engrenagem relativa ao primitivo

$$\tan \delta_2 = \frac{\sin \delta}{\cos \delta + Z_1/Z_2}$$

$$\delta_1 = 90 - \delta_2$$

Critério de Desgaste

Torque no Pinhão

$$M_T = \frac{30000 \, P}{\pi} [N.mm]$$

Relação de Transmissão

$$i = \frac{Z_2}{Z_1}$$

Critério de Desgaste

Fator de Durabilidade

$$W = \frac{60n_p h}{10^6}$$

Cálculo de Pressão admissível

$$P_{adm} = \frac{0,487HB}{w^{1/6}}$$

Fator de Características elásticas (f)

Fator de características elásticas (f), para ângulo de pressão $\alpha = 20^{\circ}$

MATERIAL	E [Gpa]	FATOR (f)
Pinhão de aço	E = 210	1512
Coroa de aço	E = 210	1312
Pinhão de aço	E = 210	1234
Coroa de FoFo	E = 105	1234
Pinhão de FoFo	E = 105	1069
Coroa de FoFo	E = 105	1069

Volume mínimo do Pinhão

$$b \cdot d_{m_1}^2 = 0.2 \cdot f^2 \cdot \frac{M_T \cdot \cos \delta_1}{P_{adm}^2} \cdot \frac{i^2 + 1}{i^2}$$

Módulo de Engrenamento

$$b_1 d_{m1}^2 = x e$$

$$\frac{b_1}{d_{m1}} = y$$

ENGRENAGEM BIAPOIADA b/d_o ≤ 1,2

ENGRENAGEM EM BALANÇO b/d ≤ 0,75

Módulo Médio

$$m_m = \frac{d_{m1}}{Z_1}$$

Módulo do Engrenamento (Ferramenta)

$$m_n = \frac{m_m}{0.8}$$

Recalculo Módulo Médio

$$m_{m(r)} = 0.8 m_{no}$$

Normatizar o módulo do engrenamento.

Módulo (mm)	Incremento (mm)
0,3 a 1,0	0,10
1,0 a 4,0	0,25
4,0 a 7,0	0,50
7,0 a 16,0	1,00
16,0 a 24,0	2,00
24,0 a 45,0	3,00
45,0 a 75,0	5,00

Recálculo do diâmetro médio

$$d_{m1(r)} = Z_1 m_{m(r)}$$

Largura da Engrenagem

$$b_1 = \frac{x}{d_{m1(r)}^2}$$

Critério Resistência à Flexão no Pé do Dente

Somente o dimensionamento ao critério de desgaste é insuficiente para projetar a engrenagem. É necessário que seja verificada a resistência à flexão no pé do dente. A engrenagem estará apta a suportar os esforços da transmissão quando a tensão atuante no pé do dente for menor ou igual à tensão admissível do material indicado.

Força Tangencial

$$F_T = \frac{2M_T}{d_{m1}}[N]$$

Fator de forma (q)

Para encontrar o fator de forma, é utilizada a mesma tabela das ECDR, porém com o número de dentes equivalentes:

$$Z_e = \frac{Z_1}{\cos \delta_1}$$

Fator de serviço (e)

Serviços leves e = 1,75; Serviços normais e = 1,5; Serviços pesados e = 1,25;

Engrenamento Externo								
nº de dentes	10	11	12	13	14	15	16	
fator q	5,2	4,9	4,5	4,3	4,1	3,9	3,7	
nº de dentes	17	18	21	24	28	34	40	
fator q	3,6	3,5	3,3	3,2	3,1	3,0	2,9	
nº de dentes	50	65	80	100				
fator q	2,8	2,7	2,6	2,5				
Engrenameno Interno								
nº de dentes	20	24	30	38	50	70	100	200
fator q	1,7	1,8	1,9	2,0	2,1	2,2	2,3	2,4

Tensão máxima atuante no pé do dente

$$\sigma_{m\acute{a}x} = \frac{F_T.q}{b.m_m.e} \le \sigma_{mat}$$

MATERIAL	$MP_a (N/mm^2)$
FoFo cinzento	40
FoFo nodular	80
Aço fundido	90
SAE 1010/1020	90
SAE 1040/1050	120
SAE 4320/4340	170
SAE 8620/8640	200
Mat. Sintético - Resinas	35

Denominação	Símbolo	Fórmula
Número de dentes	Z ₁	$Z_1 = d_{o_1}/m$
Módulo	m	$m = t_o / \pi$
Módulo médio	m _m	$m_{m} = \frac{d_{m}}{z} = \frac{R_{a} - b/2}{R_{a}} \cdot m \text{ ou}$ $m_{m} = 0.8 \text{ m}$
Passo	t _o	$t_o = m \cdot \pi$
Espessura no primitivo	s,	S _o = t _o /2 com folga de flanco nula
Vão entre os dentes no primitivo	ℓ ₀	ℓ _o = t _o /2 com folga de flanco nula
Diâmetro primitivo	d _{o,}	$d_{o_1} = m \cdot Z_1$
Diâmetro primitivo médio	d _m ,	$d_{m_1} = d_{o_1} = b \cdot sen \delta_1 e d_{m_2} = d_{m_1} \cdot \iota$
Altura comum do dente	h	h = 2 ⋅ m

Denominação	Símbolo	Fórmula	
Altura da cabeça do dente	h _k	$h_k = m$	
Altura do pé do dente	. h _t	h _f = 1,1 a 1,3·m	
Altura total do dente	h _z	h _z = 2,1 a 2,3·m	
Folga na cabeça	S _k	S _k = 0,1 a 0,3·m	
Diâmetro externo ou de cabeça	d _{k 1(2)}	$d_{k_1} = d_{o_1} + 2 \cdot m \cdot \cos \delta 1$ $d_{k_1} = m \cdot (Z_1 + 2\cos \delta 1)$ $d_{k_2} = d_{o_2} + 2 \cdot m \cdot \cos \delta 2$ $d_{k_3} = m \cdot (Z_2 + 2\cos \delta 2)$ $para \delta = 90^\circ; \cos \delta 2 = \sin \delta$	

Denominação	Símbolo	Fórmula
Ângulo de pressão	α_{o}	α _e = 20° norma DIN 867
Abertura angular entre eixos	δ	$\delta = \delta_1 + \delta_2$
Conicidade de engrenagem relativa no primitivo	δ ₁₍₂₎	$tg\delta_2 = \frac{sen\delta}{\cos\delta + Z_1/Z_2} para \delta = 90^\circ,$ $\delta_1 = \delta - \delta_2 \qquad tg\delta_2 = \frac{Z_2}{Z_1} = i$
Conicidade de engrenagem relativa no diâmetro externo	δK ₁₍₂₎	$\delta_{k_1} = \delta_1 + k$ em que $\lg k = \frac{h_k}{R_a} = \frac{m}{R_a}$ para $\delta = 90^\circ$ $\lg k = \sqrt{\frac{4}{Z_1^2 + Z_2^2}}$

Denominação	Símbolo	Fórmula
Geratriz relativa no diâmetro primitivo	R _a	$R_a = \frac{d_{o_1}}{2 \cdot \text{sen} \delta_1}$ $\text{para } \delta = 90^\circ$ $R_a = m \cdot \sqrt{\frac{Z_1^2 + Z_2^2}{4}}$ $R_a = d_{o_1} \cdot \sqrt{\frac{1 + i^2}{4}}$
Geratriz relativa no diâmetro primitivo médio	R _m	$R_m = d_{m_i} \sqrt{\frac{1+\iota^2}{4}} \text{para } \alpha = 90^\circ$
Largura do dente	ь	b≤⅓R _e ≤8-m

Denominação	Simbolo	Fórmula
Número de dentes equivalente	Z _{*1(2)}	$Z_{e_1} = \frac{Z_1}{\cos \delta_1}$ e $Z_{e_2} = \frac{Z_2}{\cos \delta_2}$ para $\delta = 90^\circ$, $Z_{e_2} = Z_{e_1} \cdot \tau^2$
Raio primitivo da engrenagem equivalente	Г _{е 1(2)}	$\mathbf{r}_{e_i} = \frac{d_{o_i}}{2\cos\delta_1}$
Relação de multiplicação	i.	$1 = \frac{Z_2}{Z_1} = \frac{d_{o_2}}{d_{o_1}} = \frac{n_1}{n_2} = \frac{\operatorname{sen} \delta_2}{\operatorname{sen} \delta_1}$ $\operatorname{para} \ \delta = 90^{\circ}$ $1 = \operatorname{tg} \delta_2$

EXEMPLO 1

Dimensionar o par de engrenagens cônicas 1 e 2 da transmissão representada na figura abaixo. O acionamento da transmissão será por meio de motor elétrico, trifásico, assíncrono CA, com potência P=18,5kW e rotação n=880rpm.

O material das engrenagens é o SAE 8640, a dureza prevista é 58 HRC, defasagem entre os eixos 90° e a vida útil do par especificada em \rightarrow 10.000 h. Características de serviço: serviço normal "e"=1,5

, ,

Considere:

 $Z_1 = 25 dentes(pinhão);$

 $Z_2 = 75 dentes(coroa);$

 $\alpha_{n_0} = 20^{\circ}$ (ângulo de pressão);

 $\frac{b_1}{d_{m_1}} = 0,5$ (relação largura e diametro);

Desprezar as perdas na transmissão.

- a) O cruzamento dos eixos da coroa com o do sem fim é de 90° (na maioria dos casos).
- b) A relação de transmissão pode atingir em um único estágio até 1:100. Quanto menor a relação de transmissão, maior o número de entradas do sem fim.
- c) O rendimento diminui à medida que a relação de transmissão aumenta.
- d) São mais econômicas do que às engrenagens cilíndricas e cônicas.

Denominação	Símbolo
Módulo	m
Passo do sem fim	t
Módulo normal	m _n
Passo normal	t _n
Ângulo da hélice	λ
Número de dentes da coroa	Z _c
Número de entradas do sem fim	n _{esr}
Avanço do sem fim	н
Diâmetro primitivo do sem fim	d _{osf}
Diâmetro primitivo da coroa	d _{oc}
Altura da cabeça do dente	h _k
Altura do pé do dente	h

Os redutores de parafuso sem fim são constantemente utilizados em: guindastes, máquinas têxteis, pórticos, furadeiras radiais, plaina limadora, mesa de fresadoras, comando de leme de navios, pontes rolantes, elevadores, etc.

As grandezas máximas atingidas até hoje, são:

- Rotação do sem fim: 40000RPM;
- Velocidade periférica: 70m/s;
- Torque: 700000Nm;
- Força tangencial: 800kN;
- Potência: 1030kW.

Reversibilidade

- Nas altas reduções, a rosca possui um único filete, que torna o mecanismo irreversível, isto é, sempre a rosca será a motora.
- Para que haja a reversão, é necessário que o ângulo seja igual ou maior que o ângulo de atrito dos filetes.

Há três tipos de perfil de dentes:

- Cicloidal;
- Trapezoidal e;
- Envolvente.

Materiais Utilizados

Parafuso:

 Aços de baixo e médio Carbono (1010, 1020, 1045 e 1050) com têmpera e revenimento.

Coroa:

• Utiliza-se bronze fundido em areia, em coquilhas e centrifugados.

Pressão de Contato do Sem Fim

Material		Velocidade de Deslizamento (m/s)				
Parafuso Sem	0,5	0,5 – 1,0	2,0 – 3,0	4,0	6,0	
Fim	Pressão Admissível 🕳 [N/mm²]					
ABNT 1020	200	160	90	_	-	
Cementado		120				
ABNT 1045	180	150	70	180	120	
Temperado		110	220			

Pressão de Contato do Sem Fim

	Dureza do Parafuso Sem Fim			
Material	HRC < 45 φ _ε [N/mm²]	HCR ≥ 45 c _c [N/mm²]		
Bronze Fundido em Areia SAE-65	130	150		
Bronze Fundido em Coquilha SAE-65	190	210		
Bronze Centrifugado DIN BZ 12	210	250		

Número de entradas do Sem Fim

A relação de transmissão pode ocorre em uma faixa de:

• $10 \le i \le 100$

É recomendado utilizar as seguintes relações:

- $i \le 30$ (utilizar 3 a 4 entradas)
- i > 30 (utilizar 1 a 2 entradas)

Rendimentos

 Os rendimentos podem ser aproximados dependendo do número de entradas do sem fim:

Número de Entradas do Sem Fim	Rendimento Aproximado	
1	0,7 - 0,75	
2	0,75-0,82	
3 a 4	0,82 - 0,92	

Dimensionamento

- O dimensionamento sempre é realizado na coroa, já que o sem fim sempre terá uma resistência maior, dada a solicitação menos contundente nos filetes da rosca.
- Torque no Parafuso sem fim

$$M_T = \frac{30000 \, P}{\pi} [N.mm]$$

Relação de Transmissão

$$i = \frac{n_{sf}}{n_c}$$

Número de dentes da coroa

$$Z_o = n_{est}.i$$

Pressão máxima de contato (σ_{mc})

Número de ciclos de carga:

$$n_{ci} = 60h.n_c.n_{ev}$$

Fator de Atuação de Carga K

$$k = \sqrt[8]{\frac{10^7}{n_{ci}}}$$

Cálculo da Pressão de Contato

$$\sigma_{mc} = \sigma_c . k$$

	Dureza do Paraíuso Sem Fim			
Material	HRC < 45 ♂ [N/mm²]	HCR ≥ 45 σ _c [N/mm²]		
Bronze Fundido em Areia SAE-65	130	150		
Bronze Fundido em Coquilha SAE-65	190	210		
Bronze Centrifugado DIN BZ 12	210	250		

Características do parafuso sem fim

• Ângulo de atrito "p"

$$tg(p) = \frac{tg\lambda}{\eta} - tg\lambda$$

Número de módulos do diâmetro primitivo do sem fim (q*)

$$q^* = \frac{n_{esf}}{tg\lambda}$$

Distância entre Centros

Torque na coroa

$$M_{Tc} = M_{Tsf}.i.\eta$$

Cálculo da Distância entre Centros

$$C = \left(\frac{Z_c}{q^*} + 1\right).2,17.^{3} \left(\frac{54}{\frac{Z_c}{q^*}.\sigma_{mc}}\right)^{2}.M_{Tc}.k_ck_d$$

Fator de Concentração de Carga k_c

- $k_c = 1$ para carga normal
- $k_c = 2$ para serviço pesado

Fator Dinâmico de Carga k_d

- $k_d = 1 \ a \ 1,1 \ para \ v_{coroa} < 3m/s$
- $k_d = 1.1 a 1.2 \text{ para } v_{coroa} \ge 3m/s$

Módulo do Engrenamento

$$r_{osf} + r_{oc} = C$$

$$\frac{mq^*}{2} + \frac{m \cdot Z_c}{2} = C$$

Diâmetro primitivo da Coroa

$$d_{oc} = m.Z_c$$

Diâmetro primitivo do sem fim

$$d_{osf} = m.q^*$$

Recálculo do centro a centro

$$C_r = r_{osf} + r_{oc}$$

Velocidade de deslizamento do sem fim

$$v_{desl} = \frac{\pi.d_{osf}.n_{sf}}{60000.\cos\lambda}$$

Velocidade periférica da coroa

$$v_{pc} = \frac{\pi . d_{oc}. n_c}{60000}$$

Comprimento do sem fim

$$l_{sf} = 2(1 + \sqrt{Z_c})m$$

Comprimento mínimo do sem fim

$$l_m = 10.m$$

Critério Resistência à Flexão no Pé do Dente

 Somente o dimensionamento ao critério de desgaste é insuficiente para projetar a engrenagem. É necessário que seja verificada a resistência à flexão no pé do dente. A engrenagem estará apta a suportar os esforços da transmissão quando a tensão atuante no pé do dente for menor ou igual à tensão admissível do material indicado.

Força Tangencial

$$F_T = \frac{2M_{Tc}}{d_{oc}}[N]$$

Fator de forma (q)

Para encontrar o fator de forma, é utilizada a mesma tabela das ECDR, porém com o número de dentes equivalentes:

$$Z_e = \frac{Z_c}{(\cos \lambda)^3}$$

• Fator de serviço (e)

Serviços leves e = 1,5; Serviços normais e = 1; Serviços pesados e = 0,8;

Engrenamento Externo								
nº de dentes	10	11	12	13	14	15	16	
fator q	5,2	4,9	4,5	4,3	4,1	3,9	3,7	
nº de dentes	17	18	21	24	28	34	40	
fator q	3,6	3,5	3,3	3,2	3,1	3,0	2,9	
nº de dentes	50	65	80	100				
fator q	2,8	2,7	2,6	2,5				
Engrenameno Interno								
nº de dentes	20	24	30	38	50	70	100	200
fator q	1,7	1,8	1,9	2,0	2,1	2,2	2,3	2,4

• Fator de correção de hélice φ_r .

Obtém-se por meio do ângulo de inclinação de hélice β_o

$oldsymbol{arphi}$ r	1,00	1,20	1,28	1,35	1,36
eta o	0°	5°	10°	15° a 25°	25° a 45°

Largura útil da coroa

$$b_c = 2.m. \sqrt{\frac{d_{osf} + 1}{m}}$$

Tensão máxima atuante no pé do dente

$$\sigma_{m\acute{a}x} = \frac{F_T.q}{b.m_n.e.\varphi_r} \leq \sigma_{mat}$$

Materiais	Tensão Admissível [N/mm²]
Bronze fundido em areia SAE 65	30 a 40
Bronze fundido em coquilha SAE 65	40 a 60
Bronze centrifugado DIN BZ 124	45 a 65

Denominação	Símbolo	Fórmula
Módulo	m	$m = t/\pi$
Passo do sem fim	t	t=mπ
Módulo normal	m _n	$m_n = m \cdot \cos \lambda$
Passo normal	t _n	$t_n = m_n \cdot \pi$
Ângulo da hélice	λ	$tg\lambda = \frac{m \cdot n_{esf}}{d_{ksf}}$
Número de dentes da coroa	Z _c	$Z_c = \frac{d_{oc}}{m}$
Número de entradas do sem fim	n _{esr}	$n_{est} = \frac{H}{t}$
Avanço do sem film	н	$H = n_{est} \cdot t$
Diâmetro primitivo do sem fim	d _{osf}	$d_{osf} = \frac{m_n \cdot n_{osf}}{sen\lambda}$
Diâmetro primitivo da coroa	d _{oc}	$d_{\infty} = m \cdot Z_{C}$
Altura da cabeça do dente	h _k	$\lambda < 15^{\circ} h_k = m$ $\lambda \ge 15^{\circ} h_k = m_n$
Altura do pé do dente	h	$λ < 15^{\circ} h_{f} = 1,2m$ $λ \ge 15^{\circ} h_{f} = 1,2m_{g}$

Denominação	Símbolo	Fórmula	
Altura total do dente	h	λ < 15°h = 2,2m $λ \ge 15$ °h = 2,2m	
Diâmetro externo do sem fim	$\mathbf{d}_{\mathrm{lest}}$	$d_{ksf} = d_{osf} + 2hk$	
Diâmetro interno ou diâmetro do pé do sem fim	dfst	d _{fsf} = d _{osf} – 2hf	
Diârnetro externo da coroa (aprox.)	d _{kc}	$D_{kc} = d_{ke} + m$	
Diâmetro da cabeça da coroa (externo)	d _{ke}	d _{ke} = d _{oc} + 2hk	
Diâmetro interno da coroa	d _{fc}	$d_{fc} = d_{oc} - 2hf$	
Largura útil da coroa	Ь	$b = 2m\sqrt{\frac{d_{ost}}{m} + 1}$	

Denominação	Símbolo	Fórmula
Largura da coroa	bo	bo ≅ b + m
Comprimento do sem fim	é	$\ell = 2(1 + \sqrt{Z_c}) m$
Comprimento min. do sem fim	$\ell_{\rm min}$	ℓ _{min} ≥ 10 · m
Relação de transmissão	I	$i = \frac{n_{sf}}{n_c}$
Distância entre centro	С	$C = \frac{d_{osf} + d_{oc}}{2}$

EXEMPLO 2

Dimensionar uma transmissão coroa/parafuso sem fim com as seguintes características. O parafuso será acionado por um motor elétrico com potência N = 22kW e rotação n =

1140 rpm. A rotação do eixo de saída será 60 rpm;

Características do parafuso:

Material ABNT 1045;

Número de entradas nesf = 3;

Dureza superficial: 50 HRC;

Ângulo de inclinação da hélice 17°.

Característica da coroa:

Material bronze SAE65 fundido em coquilha.

Característica da transmissão:

Duração 10000h; Serviço Normal;

Rendimento da transmissão 0,92;

Eixos cruzados a 90°, 1 engrenamento por volta.

