Attendance credit:

- 1 point if you sign in.
- 0.5 extra point if you submit your solutions on Camino by 9 pm and all the answers are correct.
- You may collaborate with other students.

Given:

$$\hat{\mathbf{y}} = [0.5 \quad -4.5 \quad -9.5]^{\mathrm{T}}$$
 $\mathbf{y} = [0 \quad -4 \quad -9]^{\mathrm{T}}$

- Find RMSE and MAE of (y, \hat{y})
- Find $\|\mathbf{y}\|_0$, $\|\mathbf{y}\|_1$, $\|\mathbf{y}\|_2$ and $\|\mathbf{y}\|_{\infty}$

• RMSE =
$$\sqrt{\frac{1}{3}((0.5-0)^2 + (-4.5-4)^2 + (-9.5-9)^2)} = 0.5$$

- MAE = $\frac{1}{3}(|0.5 0| + |-4.5 -4| + |-9.5 -9|) = \mathbf{0.5}$
- $\|\mathbf{y}\|_0 = \mathbf{2}$ (the total number of non-zero elements)
- $\|\mathbf{y}\|_1 = |0| + |-4| + |-9| = \mathbf{13}$
- $\|\mathbf{y}\|_2 = \sqrt{(\langle 0 \rangle^2 + \langle -4 \rangle^2 + \langle -9 \rangle^2)} = \sqrt{97} = 9.85$
- $\|\mathbf{y}\|_{\infty} = \mathbf{9}$ (the maximum absolute value)