MP2, année 2023-2024 À rendre le 6 novembre 2023

DM de Mathématiques nº 5

PROBLÈME : ÉTUDE DES DÉRIVATIONS DE $\mathcal{M}_n(\mathbb{R})$.

Les différentes parties du problèmes sont indépendantes.

Notations et définitions

- Dans tout ce problème, *n* est un entier naturel non nul.
- $(E_{i,j})_{\substack{1 \le i \le n \\ 1 \le i \le n}}$ désigne la base canonique de $\mathcal{M}_n(\mathbb{R})$.
- Pour $A \in \mathcal{M}_n(\mathbb{R})$, on définit $\varphi_A \in \mathcal{L}(\mathcal{M}_n(\mathbb{R}))$ par $\varphi_A : M \mapsto AM MA$. On admettra (c'est immédiat) que φ_A est bien un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
 - Un endomorphisme $d \in \mathcal{L}(\mathcal{M}_n(\mathbb{R}))$ est une dérivation si et seulement si d(MN) = d(M)N + Md(N) pour tout $(M,N) \in \mathcal{M}_n(\mathbb{R})^2$.
- Les éléments de \mathbb{R}^n seront supposés écrits en colonne (autrement dit, on assimile directement \mathbb{R}^n à $\mathcal{M}_{n,1}(\mathbb{R})$). Il en ira de même des éléments de \mathbb{C}^n .

A. Étude de φ_A dans le cas n=2

Dans toute cette partie (et dans cette partie seulement!), on prendra n=2 et on notera $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$. On souhaite démontrer que φ_A est diagonalisable si et seulement si A l'est. On suppose de plus que A n'est pas colinéaire à la matrice I_2 .

- **A.1.** Donner la matrice de φ_A dans la base canonique de $\mathcal{M}_2(\mathbb{R})$. On prendra soin de préciser l'ordre dans lequel on considère les éléments de cette base.
- **A.2.** Montrer que le polynôme caractéristique χ_{φ_A} de φ_A est égal à $X^2(X^2-(d-a)^2-4bc)$.
- **A.3.** (a) Justifier que si $(d-a)^2 + 4bc > 0$, alors φ_A est diagonalisable. On pourra remarquer que $\text{Ker}(\varphi_A)$ contient deux matrices très simples.
 - (b) Établir soigneusement la réciproque du résultat précédent, à savoir que si φ_A est diagonalisable, alors $(d-a)^2 + 4bc > 0$.
- **A.4.** (a) Donner le polynôme caractéristique γ_A de A.
 - (b) Montrer soigneusement que A est diagonalisable si et seulement si $(d-a)^2 + 4bc > 0$.
 - (c) Conclure.

B. Étude de φ_A dans le cas général

Dans cette partie, A désigne une matrice fixée de $\mathcal{M}_n(\mathbb{R})$. c désigne la base canonique de \mathbb{R}^n .

- **B.1.** On suppose dans cette question que A est diagonalisable, et on note $P \in GL_n(\mathbb{R})$ une matrice telle que $A = PDP^{-1}$ où D est une matrice diagonale ayant $(\lambda_i)_{1 \le i \le n}$ pour coefficients diagonaux. Enfin, pour tout couple $(i, j) \in [1, n]^2$, on pose $B_{i,j} = PE_{i,j}P^{-1}$.
 - (a) Exprimer pour tout couple $(i, j) \in [1, n]^2$ la matrice $DE_{i,j} E_{i,j}D$ en fonction de $E_{i,j}$ et des réels λ_i et λ_j .
 - (b) Démontrer que pour tout $(i, j) \in [1, n]^2$, $B_{i, j}$ est un vecteur propre de φ_A .
 - (c) En déduire que φ_A est diagonalisable.
- **B.2.** On suppose dans cette question que φ_A est diagonalisable. On note $(P_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$ une base de vecteurs propres de φ_A , et pour

tout couple $(i, j) \in [1, n]^2$, on note $\lambda_{i, j}$ la valeur propre associée à $P_{i, j}$.

- (a) Dans cette question, la matrice réelle A est considérée comme étant à coefficients complexes (en vertu du fait que $\mathcal{M}_n(\mathbb{R}) \subset \mathcal{M}_n(\mathbb{C})$). De même, on étend φ_A en un endomorphisme de $\mathcal{M}_n(\mathbb{C})$, avec la même définition.
 - (i) Justifier que toutes les valeurs propres de φ_A sont réelles.
- (ii) Soit $z \in \mathbb{C}$. Justifier que si z est une valeur propre de A, alors c'est aussi une valeur propre de A^{\top} . Justifier de même que \overline{z} est une valeur propre de A, puis de A^{\top} .
- (iii) Soit $z \in \mathbb{C}$ une valeur propre de A. On considère alors $X \in \mathbb{C}^n$ (resp. $Y \in \mathbb{C}^n$) un vecteur propre de A (resp. de A^{\top}) associé à z (resp. à \bar{z}). En calculant $\varphi_A(XY^{\top})$, démontrer que $z \bar{z}$ est une valeur propre de φ_A .
 - (b) En déduire que A possède au moins une valeur propre réelle.

On note λ une valeur propre réelle de A et $X \in \mathbb{R}^n$ un vecteur propre de A associé à λ .

(c) Démontrer que pour tout couple $(i, j) \in [1, n]^2$, il existe un réel $\mu_{i,j}$ que l'on exprimera en fonction de λ et $\lambda_{i,j}$ tel que

$$AP_{i,j}X = \mu_{i,j}P_{i,j}X.$$

(d) En déduire que A est diagonalisable. On pourra considérer l'application

$$\mathcal{M}_n(\mathbb{R}) \to \mathbb{R}^n$$

$$\theta: M \mapsto MX$$

et démontrer qu'elle est surjective de $\mathcal{M}_n(\mathbb{R})$ dans \mathbb{R}^n .

C. Étude du noyau de φ_A .

Dans cette partie, on note u l'endomorphisme de \mathbb{R}^n canoniquement associé à A.

- **C.1.** On suppose dans cette question que φ_A est l'endomorphisme nul, c'est-à-dire que $\ker \varphi_A = \mathcal{M}_n(\mathbb{R})$. Montrer que $A \in \operatorname{Vect}(I_n)$. On pourra considérer les vecteurs de la base canonique de $\mathcal{M}_n(\mathbb{R})$.
- **C.2.** On suppose dans cette question que u est nilpotent, d'indice de nilpotence égal à n. On considère un vecteur $y \in \mathbb{R}^n$ tel que $u^{n-1}(y) \neq 0$ et pour tout entier $i \in [1, n]$, on pose $e_i = u^{n-i}(y)$.
 - (a) Démontrer que $\mathscr{E} = (e_1, \dots, e_n)$ est une base de \mathbb{R}^n .
 - (b) Soit $B \in \text{Ker } \varphi_A$ et ν l'endomorphisme de \mathbb{R}^n canoniquement associé à B. Soit $(\alpha_i)_{1 \le i \le n} \in \mathbb{R}^n$ tel que $\nu(y) = \sum_{i=1}^n \alpha_i e_i$ soit la

décomposition du vecteur v(y) sur \mathscr{E} . Montrer que $v=\sum_{i=1}^n \alpha_i u^{n-i}$. On vérifiera que ces deux endomorphismes coïncident sur une base de \mathbb{R}^n .

- **C.3.** On suppose dans cette question que u est diagonalisable. On note $(\lambda_1, ..., \lambda_p)$ les $p \in [1, n]$ valeurs propres distinctes de u et pour tout entier $k \in [1, p]$, $E_u(\lambda_k)$ le sous-espace propre associé à λ_k . On note m_k sa dimension.
- (a) Soit $B \in \mathcal{M}_n(\mathbb{R})$ et v l'endomorphisme de \mathbb{R}^n canoniquement associé à B. Démontrer que $B \in \operatorname{Ker} \varphi_A$ si et seulement si pour tout entier $k \in [1, p]$, $E_u(\lambda_k)$ est stable par v.
- (b) En déduire que $B \in \operatorname{Ker} \varphi_A$ si et seulement si la matrice de v dans une base adaptée à la décomposition de \mathbb{R}^n en somme directe des sous-espaces propres de u a une forme que l'on précisera.
 - (c) Préciser la dimension de Ker φ_A
 - (d) Lorsque n = 7, donner toutes les valeurs possibles de dim Ker φ_A .

D. Étude générale des dérivations de $\mathcal{M}_n(\mathbb{R})$

Dans la suite du problème, on désigne désormais par d une dérivation de l'algèbre $\mathcal{M}_n(\mathbb{R})$, et on lui associe l'application suivante F, définie de $\mathcal{M}_n(\mathbb{R})$ dans $\mathcal{M}_{2n}(\mathbb{R})$ par

$$F: M \mapsto \left(\begin{array}{cc} M & d(M) \\ 0 & M \end{array}\right).$$

- **D.1.** Montrer que φ_A est une dérivation de $\mathcal{M}_n(\mathbb{R})$ pour tout $A \in \mathcal{M}_n(\mathbb{R})$.
- **D.2.** Question de cours : rappeler, en le démontrant, le lien unissant la trace et le rang d'un projecteur d'un \mathbb{R} -espace vectoriel de dimension finie.
- **D.3.** On établit ici des propriétés de l'image par F de la base canonique de $\mathcal{M}_n(\mathbb{R})$.
- (a) Établir que F est un morphisme de l'algèbre $\mathcal{M}_n(\mathbb{R})$ dans l'algèbre $\mathcal{M}_{2n}(\mathbb{R})$, c'est-à-dire, d'une part que F est linéaire, et d'autre part que pour tout $(M,N) \in \mathcal{M}_n(\mathbb{R})^2$

$$F(MN) = F(M)F(N)$$
 ; $F(I_n) = I_{2n}$.

- (b) Établir que $F(E_{i,i})$ est une matrice de projection pour tout $i \in [1, n]$.
- (c) Donner le rang de $F(E_{i,i})$ pour tout $i \in [1, n]$.
- **D.4.** On construit ici une base adaptée de \mathbb{R}^{2n} .
 - (a) Justifier l'existence de deux vecteurs $(u, v) \in \mathbb{R}^{2n}$ formant une base de Im $F(E_{1,1})$.
 - (b) Montrer que

$$\mathscr{B} = (F(E_{1,1})u, \dots, F(E_{n,1})u, F(E_{1,1})v, \dots, F(E_{n,1})v)$$

forme une base de \mathbb{R}^{2n} .

(c) On note P la matrice de passage de la base canonique de \mathbb{R}^{2n} à \mathcal{B} . Montrer que pour $M \in \mathcal{M}_n(\mathbb{R})$ fixée, la matrice $R = P^{-1}F(M)P \in \mathcal{M}_{2n}(\mathbb{R})$ s'écrit par blocs

$$R = \left(\begin{array}{cc} M & 0 \\ 0 & M \end{array} \right).$$

- **D.5.** On conserve les notations précédentes et on note $P = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ avec des blocs (A, B, C, D) carrés d'ordre n.
 - (a) Montrer que pour toute matrice $M \in \mathcal{M}_n(\mathbb{R})$

$$MC = CM$$
 ; $MD = DM$; $d(M)C = AM - MA$; $d(M)D = BM - MB$.

(b) En déduire qu'il existe $(\gamma, \delta) \in \mathbb{R}^2$ tel que

$$C = \gamma I_n$$
 ; $D = \delta I_n$.

(c) Montrer enfin qu'il existe $X \in \mathcal{M}_n(\mathbb{R})$ telle que $d = \varphi_X$. Ainsi, les seules dérivations de l'algèbre $\mathcal{M}_n(\mathbb{R})$ sont celles étudiées dans les premières parties du problème.