

Hillard's Graph Complexity

• Calculation of metrics for frequent flyer example.

Reference: Robert Hillard. Information-Driven Business.
 Hoboken, New Jersey: John Wiley, 2010.

Hillard Metrics for the Frequent Flyer Model

- Order 11 the count of tables.
- Size 12 10 relationship types + 2 for supertype to subtype.
- Degree the number of edges per node. Examples...
 FrequentFlyerAccount 4
 FlightActivity 2
 Activity 4

Hillard Metrics for the Frequent Flyer Model

 Geodesic distance – minimum number of edges to connect a pair of nodes. Examples...
 FrequentFlyerAccount to Customer – 1
 FrequentFlyerAccount to FlightActivity – 2
 MonthlyStatement to Company – 4

Hillard Metrics for the Frequent Flyer Model

 Average degree FrequentFlyerAccount – 4, Customer – 1, Airline – 3, Airline Airline Partnership – 2, MonthlyStatement – 2, Activity – 4, AirlinePartnership – 1, Flight – 2, FlightActivity – 2, OtherActivity – 2, Company – 1 Average = 4+1+3+2+2+4+1+2+2+1 / 11 = 24/11 = 2.2

Geodesic Distance

	FFA	Cust	Aline	A_AP	MS	Act	AP	Flt	FA	OA	Cmp
FFA	XXX	1	1	2	1	1	3	2	2	2	3
Cust	1	XXX	2	3	2	2	4	3	3	3	4
Aline	1	2	XXX	1	2	2	2	1	2	3	4
A_AP	2	3	1	XXX	3	3	1	2	3	4	5
MS	1	2	2	3	XXX	1	4	3	2	2	3
Act	1	2	2	3	1	XXX	4	2	1	1	2
AP	3	4	2	1	4	4	XXX	3	4	5	6
Flt	2	3	1	2	3	2	3	XXX	1	3	4

Geodesic Distance

	FFA	Cust	Aline	A_AP	MS	Act	AP	Flt	FA	OA	Cmp
FA	2	3	2	3	2	1	4	1	XXX	2	3
OA	2	3	3	4	2	1	5	3	2	XXX	1
Cmp	3	4	4	5	3	2	6	4	3	1	XXX

Average Geodesic Distance

```
1+1+2+1+1+3+2+2+2+3+
2+3+2+2+4+3+3+3+4+
1+2+2+2+1+2+3+4+
3+3+1+2+3+4+5+
1+4+3+2+2+3+
4+2+1+1+2+
3+4+5+6+
1+3+4+
2+3+
1 = 139 / 55 = 2.5
```


Data Model Graph Assessment Criteria

- Average geodesic distance * Average degree / 3 <= 4
 The data model is relatively easy to read and navigate.
- 4 < Average geodesic distance * Average degree / 3 < 10.
 The data model is complex.
- 10 <= Average geodesic distance * Average degree / 3.
 The data model is effectively unworkable.