

DET

Department of Electronics and Telecommunications

Oscillatori a Rilassamento

Oscillatore

Oscillatore: circuito *autonomo*: non presenta un punto di funzionamento a riposo stabile e, in assenza di ingressi esterni fornisce un'uscita variabile nel tempo.

Si differenziano in base alla forma d'onda:

- Sinusoidali
- Ad onda quadra e/o triangolare
- Caotici (forma d'onda limitata non periodica)

Oscillatori nei Sistemi Elettronici

Schema a blocchi funzionale semplificato

Oscillatore a Rilassamento (I)

Esempio di applicazione dei comparatori con isteresi.

Introducendo una rete di retroazione **RC** in un **comparatore invertente con isteresi** si ottiene un circuito instabile, in grado di generare un'onda quadra

Oscillatore a Rilassamento (II)

Ipotesi:

- -comparatore invertente con isteresi e soglie $0 < V_{S2} < V_{S1} < V_{DD}$
- Livelli logici dell'uscita: stato alto $V_{OH} = V_{DD}$, stato basso $V_{OL} = 0V$. Trascuriamo gli effetti di carico

Oscillatore a Rilassamento (III)

Analisi in DC (???)

In un ipotetico punto di funzionamento stabile in continua il comparatore dovrebbe essere allo stato alto o allo stato basso

Ipotesi:

Comparatore allo stato alto $\rightarrow V_{OUT} = V_{DD}$

In continua il condensatore equivale ad un circuito aperto, quindi $V_C = V_{DD}$

Ma per $V_C = V_{DD} > V_{S1}$ il comparatore invertente sarebbe allo stato basso, in contraddizione con l'ipotesi!

Oscillatore a Rilassamento (IV)

Analisi in DC (???)

In un ipotetico punto di funzionamento stabile il comparatore dovrebbe essere allo stato alto o allo stato basso

Ipotesi:

Comparatore allo stato basso $\rightarrow V_{OUT} = 0$

In continua il condensatore equivale ad un circuito aperto, quindi $V_C = V_{OUT} = 0$

Ma per $V_C = 0 < V_{S2}$ il comparatore invertente sarebbe allo stato alto, in contraddizione con l'ipotesi!

Il circuito non presenta punti di funzionamento stabili

Che cosa succede in pratica?

Oscillatore a Rilassamento - Analisi nel dominio del tempo (I)

- Condizione iniziale il condensatore C è inizialmente scarico: $v_C(0) = 0$ V

- Essendo $v_C = v_{in} = 0 \text{V} < V_{\text{S2}}$ l'uscita del comparatore è inizialmente allo **stato alto**

Il condensatore è caricato dall'uscita attraverso R. L'andamento di $v_{\mathcal{C}}$ si può ricavare studiando un

transitorio in circuito RC del primo ordine

$$v_C(t) = [v_C(0) - v_C(\infty)]e^{-\frac{t}{\tau}} + v_C(\infty)$$
$$v_C(0) = V_{OL} \qquad v_C(\infty) = V_{OH}$$

$$\tau = RC$$

Oscillatore a Rilassamento - Analisi nel dominio del tempo (II)

stato alto: $v_{out} = V_{OH}$

transitorio in circuito RC del primo ordine

$$v_C(t) = V_{OH} \left(1 - e^{-\frac{t}{\tau}} \right)$$

Oscillatore a Rilassamento - Analisi nel dominio del tempo (III)

stato alto: $v_{out} = V_{OH}$

l'analisi è valida solo fino a $t=T_1$ quando l'ingresso raggiunge V_{S1}

$$V_{OH}\left(1 - e^{-\frac{T_1}{\tau}}\right) = V_{S1}$$

$$T_1 = \tau \log \frac{V_{OH}}{V_{OH} - V_{S1}}$$

$$v_C(t) = V_{OH} \left(1 - e^{-\frac{t}{\tau}}\right) \text{ per } 0 < t < T_1$$

Oscillatore a Rilassamento - Analisi nel dominio del tempo (IV)

quando la tensione d'ingresso raggiunge V_{S1} l'uscita del comparatore commuta a V_{OL}

Il condensatore resta carico a V_{S1}

Oscillatore a Rilassamento - Analisi nel dominio del tempo (V)

stato basso: $v_{out} = V_{OL}$

transitorio in circuito RC del primo ordine

$$v_C(T_1) = V_{S1} \ v_C(\infty) = V_{OL} \tau = RC$$

$$v_C(t) = (V_{S1} - V_{OL})e^{-\frac{t - T_1}{\tau}} + V_{OL}, T_1 < t < T_2$$

Oscillatore a Rilassamento - Analisi nel dominio del tempo (VI)

stato basso: $v_{out} = V_{OL}$

l'analisi è valida solo fino a $t=T_2$ quando la tensione d'ingresso raggiunge V_{S2}

$$(V_{S1} - V_{OL})e^{-\frac{T_2 - T_1}{\tau}} + V_{OL} = V_{S2}$$

$$T_2 - T_1 = \tau \log \frac{V_{S1} - V_{OL}}{V_{S2} - V_{OL}}$$

$$v_C(t) = (V_{S1} - V_{OL})e^{-\frac{t - T_1}{\tau}} + V_{OL}, T_1 < t < T_2$$

Oscillatore a Rilassamento - Analisi nel dominio del tempo (VII)

stato basso: $v_{out} = V_{OL}$

quando la tensione d'ingresso raggiunge V_{S2} l'uscita del comparatore commuta a V_{OH}

Il condensatore resta carico a V_{S2}

Oscillatore a Rilassamento - Analisi nel dominio del tempo (VIII)

stato alto: $v_{out} = V_{OH}$

quando l'ingresso raggiunge V_{S2} l'uscita commuta a V_{OH}

transitorio in circuito RC del primo ordine

$$v_C(T_2) = V_{S2}$$
 $v_C(\infty) = V_{OH}$ $\tau = RC$

$$v_C(t) = (V_{S2} - V_{OH})e^{-\frac{t - T_2}{\tau}} + V_{OH}$$

0.5

Time, [ms]

0.6

0.7

0.8

0.9

0.4

0.1

0.2

0.3

Oscillatore a Rilassamento – Frequenza e Duty Cycle (I)

Si alternano periodicamente fasi: T_H : comparatore allo **stato alto**, il condensatore C **si carica** T_L : comparatore allo **stato basso**, il condensatore C **si scarica**

L'uscita del comparatore è un'onda quadra

Calcoliamo la frequenza
$$f = \frac{1}{T} = \frac{1}{T_H + T_L}$$
 e duty cycle $D = \frac{T_H}{T}$

Oscillatore a Rilassamento – Frequenza e Duty Cycle (II)

$$T_L = \tau \log \frac{V_{OL} - V_{S1}}{V_{OL} - V_{S2}}$$

$$T_H = \tau \log \frac{V_{OH} - V_{S2}}{V_{OH} - V_{S1}}$$

$$T = \frac{1}{f} = T_H + T_L = \tau \log \left(\frac{V_{OH} - V_{S2}}{V_{OH} - V_{S1}} \frac{V_{OL} - V_{S1}}{V_{OL} - V_{S2}} \right) \qquad D = \frac{\log \frac{V_{OH} - V_{S1}}{V_{OH} - V_{S2}}}{\log \left(\frac{V_{OH} - V_{S2}}{V_{OH} - V_{S2}} \frac{V_{OL} - V_{S1}}{V_{OH} - V_{S2}} \right)}$$

$$D = \frac{\log \frac{V_{OH} - V_{S1}}{V_{OH} - V_{S2}}}{\log \left(\frac{V_{OH} - V_{S2}V_{OL} - V_{S1}}{V_{OH} - V_{S1}V_{OL} - V_{S2}}\right)}$$

Oscillatore a Rilassamento – Frequenza e Duty Cycle (III)

Analisi nel dominio del tempo

Se le soglie sono simmetriche rispetto a $V_M = \frac{V_{OH} + V_{OL}}{2}$

$$V_M - V_{OL} = V_{OH} - V_M \rightarrow V_{OL} = 2V_M - V_{OH}$$

 $V_M - V_{S2} = V_{S1} - V_M \rightarrow V_{S2} = 2V_M - V_{S1}$

$$T_L = \tau \log \frac{V_{OH} + V_{S1}}{V_{OH} - V_{S1}}$$

$$T_{H} = \tau \log \frac{V_{OH} + V_{S1}}{V_{OH} - V_{S1}} = T_{L}$$

$$T = \frac{1}{f} = 2\tau \log \frac{V_{OH} + V_{S1}}{V_{OH} - V_{S1}} \qquad D = 0.5$$

Oscillatore ad Onda Quadra e Triangolare: schema a blocchi (I)

- Il comparatore invertente con isteresi ha soglie S1 e S2, uscita +1 allo stato alto e -1 allo stato basso
- Assumiamo che l'uscita del comparatore y sia alta (costante positiva +1): allora, l'uscita x dell'integratore è una rampa crescente.
- Quando l'uscita x dell'integratore raggiunge la soglia S1, il comparatore commuta

Oscillatore ad Onda Quadra e Triangolare: schema a blocchi (II)

- Quando l'uscita x dell'integratore raggiunge la soglia S1, il comparatore commuta
- l'uscita del comparatore y diventa bassa (costante negativa -1): l'uscita x dell'integratore è una rampa decrescente.
- Quando x raggiunge la soglia S2, il comparatore ritorna allo stato alto

Oscillatore ad Onda Quadra e Triangolare: schema a blocchi (III)

- Quando l'uscita x dell'integratore raggiunge la soglia S1, il comparatore commuta
- l'uscita del comparatore y diventa bassa (costante negativa -1): l'uscita x dell'integratore è una rampa decrescente.
- Quando x raggiunge la soglia S2, il comparatore ritorna allo stato alto
- La sequenza si ripete periodicamente, così che x ha un andamento ad onda triangolare mentre y è un'onda quadra

Oscillatore ad Onda Quadra e Triangolare: circuito (I)

Possiamo utilizzare un integratore basato su operazionale ed un comparatore con isteresi

L'integratore basato su operazionale è già invertente, quindi il comparatore dovrà essere non-invertente

Oscillatore ad Onda Quadra e Triangolare: circuito (II)

 $V_{OH} = -V_{OL} = V_{AL}$

Oscillatore ad Onda Quadra e Triangolare: circuito (III)

Analisi nel dominio del tempo

Time, [ms]

In t=0 assumiamo $v_{\mathcal{C}}(0)=0$ (condensatore scarico) e comparatore allo stato alto

$$v_{sq}(t) = V_{OH} = V_{AL}$$
 $v_{tr}(t) = v_C(0) - \frac{1}{RC} \int_0^t V_{AL} dt' = v_C(0) - \frac{V_{AL}}{RC} t$

La tensione v_{tr} decresce linearmente con pendenza $-\frac{V_{AL}}{RC}$ fino a quando raggiunge $V_{S2}=-\frac{R_1}{R_2}V_{AL}$

Quando questo avviene, i.e. @ $T_0 = \frac{R_1}{R_2} RC$ il comparatore commuta allo stato basso.

Oscillatore ad Onda Quadra e Triangolare: circuito (IV)

Analisi nel dominio del tempo

Si alternano due modalità:

Il comparatore è allo **stato basso**, l'uscita è integrata dall'int. invertente $\rightarrow v_{tr}$ cresce fino a $V_{S1} = V_{AL} \frac{R_1}{R_2}$ Condizione di commutazione

$$v_{sq}(t) = V_{OL} = -V_{AI}$$

 $v_{tr}(t) = V_{S2} + \frac{V_{AL}}{P_{C}}t$

$$v_{tr}(T_H) = V_{S2} + \frac{V_{AL}}{RC}T_H = V_{S2}$$

$$v_{sq}(t) = V_{OL} = -V_{AL}$$

$$v_{tr}(t) = V_{S2} + \frac{V_{AL}}{RC}t$$
Condizione di commutazione
$$v_{tr}(T_H) = V_{S2} + \frac{V_{AL}}{RC}T_H = V_{S1} \implies T_H = RC \frac{V_{S1} - V_{S2}}{V_{AL}} = 2RC \frac{R_1}{R_2}$$

Il comparatore è allo **stato alto**, l'uscita è integrata dall'int. invertente $\rightarrow v_{tr}$ decresce fino a $V_{S2} = -V_{AL} \frac{R_1}{R_2}$

$$v_{sq}(t) = V_{OL} = +V_{AL}$$
$$v_{tr}(t) = V_{S1} - \frac{V_{AL}}{RC}t$$

$$v_{tr}(T_L) = V_{S1} - \frac{V_{AL}}{RC}T_L = V_{S2}$$

$$v_{sq}(t) = V_{OL} = +V_{AL}$$

$$v_{tr}(t) = V_{S1} - \frac{V_{AL}}{RC}t$$
Condizione di commutazione
$$v_{tr}(T_L) = V_{S1} - \frac{V_{AL}}{RC}T_L = V_{S2}$$

$$\Rightarrow T_L = RC \frac{V_{S1} - V_{S2}}{V_{AL}} = 2RC \frac{R_1}{R_2}$$

Oscillatore ad Onda Quadra e Triangolare: circuito (V)

Frequenza: $f = \frac{1}{T_H + T_L} = \frac{1}{4RC} \frac{R_2}{R_1}$

Duty Cycle: $D = \frac{T_1}{T} = 0.5$

