In [4]:

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import confusion_matrix,ConfusionMatrixDisplay,classification_report,a
from sklearn.preprocessing import LabelEncoder
```

In [2]:

```
data = pd.read_csv(r'C:\Users\Shrushti\Desktop\Iris.csv')
```

In [3]:

data.head()

Out[3]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

In [5]:

data.describe()

Out[5]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

```
In [6]:
```

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):
     Column
 #
                    Non-Null Count
                                     Dtype
 0
     Ιd
                    150 non-null
                                     int64
 1
     SepalLengthCm 150 non-null
                                     float64
 2
     SepalWidthCm
                    150 non-null
                                     float64
 3
     PetalLengthCm 150 non-null
                                     float64
 4
     PetalWidthCm
                    150 non-null
                                     float64
 5
     Species
                    150 non-null
                                     object
dtypes: float64(4), int64(1), object(1)
memory usage: 7.2+ KB
In [7]:
data.shape
Out[7]:
(150, 6)
In [8]:
data.isnull().sum()
Out[8]:
Ιd
                 0
SepalLengthCm
                 0
SepalWidthCm
                 0
                 0
PetalLengthCm
PetalWidthCm
                 0
Species
                 a
dtype: int64
In [9]:
x = data.iloc[:,1:5]
y = data.iloc[:,5:]
In [10]:
encode = LabelEncoder()
y = encode.fit_transform(y)
C:\Users\Shrushti\anaconda3\lib\site-packages\sklearn\utils\validation.py:6
3: DataConversionWarning: A column-vector y was passed when a 1d array was e
xpected. Please change the shape of y to (n_samples, ), for example using ra
vel().
  return f(*args, **kwargs)
In [11]:
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.3,random_state = 0)
```

In [12]:

```
naive_bayes = GaussianNB()
naive_bayes.fit(x_train,y_train)
pred = naive_bayes.predict(x_test)
```

In [13]:

pred

Out[13]:

```
array([2, 1, 0, 2, 0, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 0, 2, 2, 1, 0, 1, 1, 1, 2, 0, 2, 0, 0])
```

In [14]:

y_test

Out[14]:

```
array([2, 1, 0, 2, 0, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 0, 2, 2, 1, 0, 1, 1, 1, 2, 0, 2, 0, 0])
```

In [15]:

```
matrix = confusion_matrix(y_test,pred,labels = naive_bayes.classes_)
print(matrix)

tp, fn, fp, tn = confusion_matrix(y_test,pred,labels=[1,0]).reshape(-1)
```

```
[[16 0 0]
[ 0 18 0]
[ 0 0 11]]
```

In [16]:

print(classification_report(y_test,pred))

	precision	recall	f1-score	support
0	1.00	1.00	1.00	16
1	1.00	1.00	1.00	18
2	1.00	1.00	1.00	11
accuracy			1.00	45
macro avg	1.00	1.00	1.00	45
weighted avg	1.00	1.00	1.00	45

In [17]:

```
print('\nAccuracy: {:.2f}'.format(accuracy_score(y_test,pred)))
print('Error Rate: ',(fp+fn)/(tp+tn+fn+fp))
print('Sensitivity (Recall or True positive rate) :',tp/(tp+fn))
print('Specificity (True negative rate) :',tn/(fp+tn))
print('Precision (Positive predictive value) :',tp/(tp+fp))
print('False Positive Rate :',fp/(tn+fp))
```

Accuracy: 1.00
Error Rate: 0.0
Sensitivity (Recall or True positive rate) : 1.0
Specificity (True negative rate) : 1.0
Precision (Positive predictive value) : 1.0
False Positive Rate : 0.0

In []: