Electsoche mistry
Area of chemistry which is concerned with interconversion of chemical and electrical Energy.
Electric conduction:
(A) Metallic conduction: - Conduction through metal
involves a direct flow of electron from one point to the other
Outermost e are from conduction bond and e are free to move.
B Electrolytic or lonic conduction: - conduction of Electric current by the movements of 9 on of the electrolyte. The movement of ion through molten Electrolytes or aq: solution of electrolytes eg: fonic salts, Strong/weak electrolytes.
#Information provided by measurement of conductivities of Solution #
① conducting or non-conducting → by conductivity of sol ⁿ Nature of Solution
(Non sucrose/vrea Econducting HCI, Nach conducting non-Electroytes Electroytes

© On the basis of high or low Electrical ______ Strong Ekctoolike Conductivity Electrolytes are classified as ______ weak Electrolyte

② Defer	smination of conductivity of given solution
	K = Cell Constant R solution
	Robution
3 cal	culation of molar conductivity
	$\Lambda = \frac{\omega_{o}}{C}$
# Elec	trochemical reaction # ⇒ chemical reaction occurring in Electrochemical cell
	→ involves transfer of electron → It is redox reaction
# Electro	odes# (11) cathode = Electrode at which reduction takes place (18)—Anode = Electrode at which oxidation takes place
	of electrochemical cell# (A) Electrolytic cell :- Non-spontaneous reaction (Electrolytic convert Electrical Energy -> chemical Energy. Anode (+) conthode (-)
(8)) Galvanic or voltaic cell: Spontaneous chemical reaction produce Electricity.
	→ Chemical Energy → Electrical Energy → Anode (-) cathode (+)

Galvanic or Voltaic Cell

Salt bridge 6- It is a U-shape tube containing a saturated solution of an inert Electrolyte such as KCI or NH4NO3 & 5% agar solution

Function of the salt bridge

i) It provides an electrical contact bether

two solution & complete the electrical

circuit

ii) It prevents mixing of two solution iii) It maintains electrical neutrality in

both the solution by transfer of for

#	Formation	or short not	ation of	galvanic cell	#
lines	placed at	rode os the fi the end of th	e Formula e	r short notat	ed by vertical
	(-)	left 2]	extre me (catho	$\begin{array}{c} \text{Right} \longrightarrow \\ \text{de} \)(+) \end{array}$	
② The adjesent	insoluble spe to the r	cies or gases netal electrod	are placed ' le	in the Interior	position
3 The	ag sol ⁿ at	Pons placed	at the mi	ddle of the	Cell Formula
4 s	ingle vertice any . It In	al Ifne betwe decates the d	en two pl irect (ontac	nases indicate t between th	s the phase em
	ouble vertic	le line be th bridge	tuoo sol ⁿ	indicates tha	t they axe
€ The also	additional	information	such as	Concentsation,	phases elc
(1) Sin	gle half cel	l is written	In the ore	ler	
	→ aq: s egs-	Tn (1m)	then o	iolide electrod	e
eg:- 0	Cella	envesentation			Agtim) Ag (s)
	C C	Mgcs M	g(im) 1 Agt	im) Ag cs)	6

		g substance is continuo e to be discarded on	
D	rawbaks of	fuel cell	
		z gas is hazardous f	preparation cost is hi
Ap		1 experimental basis in	
	(e) F	or electrical power in s	pare programe
	#	Electrochemical series	#
Sr. No.	Electrode	Reduction Half reaction Oxidising agent → Reducing agent	E ^o (volts)At 25
1	F · F ₂ Pt.	F ₂ + 2e → 2F ·	+2.87
2	Au + Au	Au + + e → Au	+1.68
3	Ce 4+, Ce 3+ Pt,	Ce 4++ e → Ce 3+	+1.61
4	Au ³⁺ Au	Au ³⁺ + 3 e ⁻ → Au	+1.50
5	CI- CI ₂ Pt	Cl ₂ + 2 e → 2Cl ·	+1.36
6	P1 ²⁺ P1	Pt ²⁺ +2e ⁺ → Pt	+1.20
7	Br· Br2 Pt	Br ₂ + 2 e → 2Br ~	+1.08
8	Hg ²⁺ Hg	Hg ²⁺ +2e ⁻ → Hg	+0.854
9	Ag ⁺ Ag	Ag + + e → Ag	+0.799
10	Нg ₂ ²⁺ Нg	$Hg_2^{2+} + 2e^- \rightarrow Hg_2$	+0.790
-11	Fe 3+, Fe 2+ Pt,	Fe ³⁺ + e ⁻ → Fe ²⁺	+0.771
12	1- 12(s) Pt	1 ₂ + 2 e → 21 -	+0.535
13	Cu ²⁺ Cu	Cu ²⁺ +2e ⁻ → Cu	+0.337
14	Pt Hg Hg ₂ Cl ₂ Cl	$Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-$	+0.242
15	Ag AgCl(s) Cl		+0.222
16	Cu2+ Cu+	Cu ²⁺ + e ⁻ → Cu ⁺	+0.153
17	Sn 4+,Sn 2+ Pt	Sn 4+ + 2 e - → Sn 2+	-0.15
18	H* H2 Pt	2 H + + 2 e · → H _{2(g)}	0.0 (Definition)
19	Рь2+ Рь	Pb ²⁺ +2e ⁻ → Pb	-0.126
20	Sn ²⁺ Sn	Sn ²⁺ +2e ⁻ → Sn	-0.136
21	Ni ²⁺ Ni	Ni ²⁺ +2 e ⁻ → Ni	-0.257
22	Co ²⁺ Co	Co2+ +2e → Co	-0.280
23	Cd2+ Cd	Cd ²⁺ +2e ⁻ → Cd	-0.403
24	Fe ²⁺ Fe	Fe ²⁺ +2e ⁻ → Fe	-0.440