Делимость-10. Сравнения по модулю и их свойства

Определение.

Будем говорить, что **числа а и в сравнимы по модулю т** и писать $a \equiv b \pmod{m}$ (или $a \equiv b$), если числа а и в дают одинаковые остатки при делении на m.

Замечание. Очевидно, что если число а дает при делении на т остаток r, то $a \equiv r \pmod{m}$.

- **1.** Верно ли, что $-17 \equiv 11 \pmod{7}$?
- **2.** Какой остаток при делении на 10 дает число a, если $a \equiv -8 \pmod{10}$?

Теорема (характеристическое свойство).

Числа а и b сравнимы по модулю m тогда и только тогда, когда их разность a-b делится на m.

Свойства сравнений по модулю

Теорема (рефлексивность).

Для любых $a \ u \ m \ a \equiv a \ (\text{mod } m)$.

Теорема (симметричность).

Eсли $a \equiv b \pmod{m}$, то и $b \equiv a \pmod{m}$.

Теорема (транзитивность).

Eсли $a \equiv b \pmod{m}$ и $b \equiv c \pmod{m}$, то $a \equiv c \pmod{m}$.

Замечание. Если какое-либо отношение является одновременно рефлексивным, симметричным и транзитивным, то его называют отношением эквива-лентности. Отношения эквивалентности играют важную роль в математике. Мы доказали, что сравнимость по модулю является отношением эквивалентности.

Теорема (алгебраическое сложение).

Сравнения по одному модулю можно складывать и вычитать, т. е. если $a \equiv b \pmod{m}$ и $c \equiv d \pmod{m}$, то $a \pm c \equiv b \pm d \pmod{m}$.

Теорема (умножение).

Сравнения по одному модулю можно перемножать, т.е. если $a \equiv b \pmod{m}$ $u \ c \equiv d \pmod{m}$, то $ac \equiv bd \pmod{m}$.

Теорема (возведение в степень).

Сравнения можно возводить в натуральную степень, т. е. если $a \equiv b \pmod{m}$ и n – натуральное число, то $a^n \equiv b^n \pmod{m}$.

Теорема (сокращение на число, взаимно простое с модулем).

Сравнения можно сокращать на число, взаимно простое с модулем, т. е. если $m\ u\ k$ – взаимно простые числа $u\ ka \equiv kb\ (\mathrm{mod}\ m),\ mo\ a \equiv b\ (\mathrm{mod}\ m).$

3. Решите сравнение $2n \equiv 6 \pmod{63}$.

Теорема (сокращение на общий множитель).

$$\Pi ycmb \quad ka \equiv kb \pmod{km}. \quad Tor \partial a$$
 $a \equiv b \pmod{m}.$

4. Решите сравнение $3n \equiv 21 \pmod{45}$.

Делимость-11. Применение сравнений по модулю

- 1. Найдите остаток от деления $2234 \cdot 2236 \cdot 2238 415 \cdot 411$ на 11.
- **2.** Найдите остаток от деления 14^{500} на 13.
- **3.** Найдите остаток от деления 64^{2013} на 9.
- **4.** Найдите остаток от деления 6^{100} на 7.
- **5.** Найдите остаток от деления 6^{101} на 7.
- **6.** Найдите остаток от деления $7^{1000} 5^{2013}$ на 3.
- 7. Найдите последнюю цифру числа $9^{15} \cdot 11^{27}$.
- **8.** Найдите две последние цифры числа 1999²⁰¹³.
- **9.** Найдите остаток от деления 3^{2001} на 7.
- **10.** Найдите последнюю цифру числа 3⁹⁹⁹.
- 11. Найдите последнюю цифру числа 77^{7777} .
- **12.** Найдите две последние цифры числа 16^{2000} .
- 13. Найдите остаток от деления $100^{1000} 30^{100}$ на 7.
- **14.** Докажите, что $11^{100} 1$ делится на 100.
- **15.** Докажите, что $23^{43} + 43^{23}$ делится на 66.
- **16.** Докажите, что если $a \neq b$, то $a^n b^n$ делится на a b при любом натуральном n.
- **17.** Докажите, что при любом натуральном n число $(2^n-1)^n-3$ делится на 2^n-3 .

- **18.** Докажите, что при нечетных n и m число $S = 1^n + 2^n + \ldots + (m-1)^n$ делится на m.
- 19. Докажите, что
 - а) $12^{2n+1} + 11^{n+2}$ делится на 133 при любом натуральном n;
 - б) $a^{2n+1} + (a-1)^{n+2}$ делится на $a^2 a + 1$ при любых натуральных a и n.

Задачи для самостоятельного решения

- **20.** Найдите остаток от деления $1999 \cdot 2000 \cdot 2001 + 2001^3$ на 7.
- **21.** Найдите остаток от деления 73^{100} на 8.
- **22.** Найдите остаток от деления 64^{2003} на 13.
- **23.** Найдите остаток от деления 5^{42} на 8.
- **24.** Найдите остаток от деления 4^{100} на 7.
- **25.** Найдите остаток от деления 2^{27} на 17.
- **26.** Найдите последнюю цифру числа 7^{250} .
- **27.** Найдите остаток от деления $4^{2003} + 19^{2004}$ на 5.
- **28.** Докажите, что $30^{99} + 61^{100}$ делится на 31.
- **29.** Докажите, что
 - а) если n нечетное число и $a+b\neq 0$, то a^n+b^n делится на a+b.
 - б) Докажите, что $48^{101} + 28^{101}$ делится на 76.
- **30.** Докажите, что $27^{111} + 25^{193}$ делится на 52.