

Ceci n'est pas une pipe.

Representament → Interpretant

Ludwig Josef Johann Wittgenstein

/ˈvɪtgənʃtaɪn, -staɪn/ 1889 –1951 Austrian-British Philosopher

Skeptical of a completely formal theory of meaning definitions for each word

"the meaning of a word is its use in the language" - Philosophical Investigations.

Token → Relations with other Tokens → Meaning

Lexical Semantics

- Wordforms Antonyms Connotations - Similar Tokens (Word Similarity) Related Tokens (Word Relatedness)
- Distribution (co-occurrences)

No Vector Representation

Not very helpful to machines

An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition

DANIEL JURAFSKY & JAMES H. MARTIN

Vector Semantics & Embeddings

CH06

Distributional Hypothesis

Words that occur in similar contexts tend to have similar meanings. Meaning difference corresponds to difference in environments.

Joos, M. (1950). Description of language design. JASA, 22, 701–708. Harris, Z. S. (1954). Distributional structure. Word, 10, 146–162. Firth, J. R. (1957). A synopsis of linguistic theory 1930–1955.

Vector Semantics

Applications

Document Classification Input vector to LR > 50m > 10m User Classification? Movie Classification? Music Classification?

Vector Semantic Similarity/Distance

- Similarity = Distance
 - Minkowski Distance

Applications

- Document Clustering
- User Clustering?
- Information Retrieval
 - Query-based:

Search Engines (Document Recommendation)

- 0-query-based (RecSys):
 - Friend Recommendation?
 - Movie Recommendation?
 - Music Recommendation?

Word2Vec Learning Word Representations

Word2Vec as LR for w_i

Extreme Distributional Semantics: Bigrams $w_i w_{i+1}$ are semantically similar \rightarrow Same Class (+) $w_i w_{i+2}$ are not semantically similar \rightarrow Different Class (-)

 $P(+|w_iw_{i+1}) = sigmoid[Vw_i:Vw_{i+1}][Weights] = 1.0$ $P(-|w_iw_{i+2}) = 1-P(+|w_iw_{i+2}) = 1 - sigmoid[Vw_i:Vw_{i+2}][Weights] = 1.0$ if we fix $Vw_i \rightarrow [Weights]$ of Vw_i

Word2Vec as LR for w_i

Extreme Distributional Semantics: Bigrams $w_j w_{j+1}$ are semantically similar \rightarrow Same Class (+) $w_j w_{j+2}$ are not semantically similar \rightarrow Different Class (-)

$$P(+|w_jw_{j+1}) = \text{sigmoid}[Vw_j:Vw_{j+1}][\text{Weights}] = 1.0$$

$$P(-|w_jw_{j+2}) = 1-P(+|w_jw_{j+2}) = 1 - \text{sigmoid}[Vw_j:Vw_{j+2}][\text{Weights}] = 1.0$$
if we fix $Vw_j \rightarrow [\text{Weights}]$ of Vw_j

Word2Vec as LR

What can we tell about the [Weights]?

Word2Vec as LR

 $Vw_j \propto Vw_j$

[Weights] of Vw_i • [Weights] of Vw_j

What can we tell about the cosine of [Weights]?

Figure 6.12 The skip-gram model tries to shift embeddings so the target embeddings (here for *apricot*) are closer to (have a higher dot product with) context embeddings for nearby words (here *jam*) and further from (have a lower dot product with) context embeddings for words that don't occur nearby (here *aardvark*).

Is it possible to use only one matrix?

Given a context: ... [tablespoon of apricot jam, a] ... Choose a word as target word t: apricot Choose others as context word c_i : jam, tablespoon

Estimate d-dimensional vectors for t and all c_i Such that they are close to each other in d-dimensional space $d \ll |Vocabs|$ or |Documents|

Close
$$V_t$$
 and $V_{c_i} \rightarrow V_t \cdot V_c > 0 \rightarrow \sigma(V_t \cdot V_{c_i}) = \frac{1}{1 + e^{-(V_w \cdot V_{c_i})}}$

Given a context: ... [tablespoon of apricot jam, a] ... Choose a word as target word t: apricot Choose random word n; from out of context: car, phone, ...

Estimate d-dimensional vectors for t and all n_i Such that they are $\frac{\text{far}}{\text{d}}$ from each other in d-dimensional space $\frac{\text{d}}{\text{d}}$ (Vocabs) or |Documents|

distant
$$V_t$$
 and $V_{n_i} \rightarrow V_t \cdot V_{n_i} < 0$

$$V_t \cdot V_{n_i} > 0 \rightarrow \sigma(V_t \cdot V_{n_i}) = \frac{1}{1 + e^{-(V_t \cdot V_{n_i})}}$$

Independent Assumption: P(x,y) = p(x)p(y)

Parameters
Element of Matrices
Vectors of Words

How many?

Figure 6.12 The skip-gram model tries to shift embeddings so the target embeddings (here for *apricot*) are closer to (have a higher dot product with) context embeddings for nearby words (here *jam*) and further from (have a lower dot product with) context embeddings for words that don't occur nearby (here *aardvark*).

Tomas Mikolov

Senior Researcher, CIIRC CTU Verified email at fb.com

Artificial Intelligence Machine Learning Language Modeling Natural Language Processing

TITLE	CITED BY	YEAR
Distributed representations of words and phrases and their compositionality T Mikolov, LSutskever, K Chen, GS Corrado, J Dean Neural information processing systems	32433	2013
Efficient estimation of word representations in vector space T Mikolov, K Chen, G Corrado, J Dean arXiv preprint arXiv:1301.3781	27631	2013
Distributed representations of sentences and documents Q Le, T Mikolov International conference on machine learning, 1188-1196	9054	2014

Cited by		VIEW ALL
	All	Since 2017
Citations	113645	98036
h-index	46	44
i10-index	82	72
		23000
	٠Н	17250
	ш	11500
-11	ш	5750
2015 2016 2017	2018 2019 202	20 2021 2022 0

✓ FOLLOW

- Context Window? Longer vs.-Shorter?
- **Deterministic?** Any runs of training ended with same set of vectors?
- Transformation? rotation, flips, shear (skew), ...
- Which signifier:
 - 1. [cat], [miu], [image_of_cat], [ascii_cat],
 - 2. Count-based: [tf], [tf-idf], ...
 - 3. Learning methods: [word2vec]

Fasttext (https://fasttext.cc)

- Word Vector Learning on Subwords
 - Char-level context

 - Inar-level context
 <natural>
 <natural>
 - c=2:<na, at, tu, ur, ra, al>
 $V_{natural} = AVG(V_{bigram-chars}) = \frac{1}{6}(V_{na} + V_{at} + \cdots)$

Piotr Bojanowski, Edouard Grave, Armand Joulin, Tomas Mikolov; Enriching Word Vectors with Subword Information. Transactions of the Association for Computational Linguistics 2017; 5 135–146. doi: https://doi.org/10.1162/tacl_a_00051

1) ~ V

Word2Vec as MF

Global Vectors (GloVe)

- Local Context + Global Context
 - Positive Point-wise Mutual Information (PPMI)

$$\hat{J} = \sum_{i,j} f(X_{ij}) (w_i^T \tilde{w}_j - \log X_{ij})^2$$

Read at Home

Pre-trained Word Vectors

Available in genism python library:

- conceptnet-numberbatch-17-06-300 (1917247 records): ConceptNet Numberbatch consists of state...
- fasttext-wiki-news-subwords-300 (999999 records): 1 million word vectors trained on Wikipe...
- glove-twitter-100 (1193514 records): Pre-trained vectors based on (2B) tweets,...
- glove-twitter-200 (1193514 records): Pre-trained vectors based on 2B tweets, ...
- glove-twitter-25 (1193514 records): Pre-trained vectors based on 2B tweets, ...
- glove-twitter-50 (1193514 records): Pre-trained vectors based on 2B tweets, ...
- glove-wiki-gigaword-100 (400000 records): Pre-trained vectors based on Wikipedia 2...
 - glove-wiki-gigaword-200 (400000 records): Pre-trained vectors based on Wikipedia 2...
- glove-wiki-gigaword-300 (400000 records): Pre-trained vectors based on Wikipedia 2...
- glove-wiki-gigaword-50 (400000 records): Pre-trained vectors based on Wikipedia 2...
- word2vec-google-news-300 (3000000 records): Pre-trained vectors trained on a part of...
- word2vec-ruscorpora-300 (184973 records): Word2vec Continuous Skipgram vectors tra...

Vector Semantics Vector Space Transformation Linear Algebra

Hierarchy of mathematical spaces.

Normed vector spaces are a superset of inner product spaces and a subset of metric spaces, which in turn is a subset of topological vector space.

https://www.youtube.com/watch?v=Dmc3mQ87GiQ

Linguistic

→ Geometric

Linguistic ↔ Geometric Analogy

Figure 6.15 The parallelogram model for analogy problems (Rumelhart and Abrahamson, 1973): the location of vine can be found by subtracting apple from tree and adding grape.

a to b is the same as c to?

Movement

Temporality (How?)

Figure 6.14 A t-SNE visualization of the semantic change of 3 words in English using word2vec vectors. The modern sense of each word, and the grey context words, are computed from the most recent (modern) time-point embedding space. Earlier points are computed from earlier historical embedding spaces. The visualizations show the changes in the word *gay* from meanings related to "cheerful" or "frolicsome" to referring to homosexuality, the development of the modern "transmission" sense of *broadcast* from its original sense of sowing seeds, and the pejoration of the word *awful* as it shifted from meaning "full of awe" to meaning "terrible or appalling" (Hamilton et al., 2016b).

Biases

Inherent/Latent/Hidden Distribution

- (sare, mom, nurse), (mr., ahmed, doctor, president)
- (drug, mexican), (education, usa, canada)
- (flowers, pleasant, {European-American}), (insects, ugly, {African-American})

Debiasing

- Gender-base: [he] remains masculine, [she] remains feminine, but [nurse],[doctor],[president] becomes neutral

Study of Bias in History

Evaluation

Intrinsic

- No Context: just pair of words
 - WordSim-353
 - -\SimLex-999
- With Context:
 - Stanford Contextual Word Similarity (SCWS) (Huang et al., 2012) and the
 - Word-in-Context (WiC) (Pilehvar and Camacho-Collados, 2019)

Extrinsic:

- Improve the performance of underlying task
 - Information Retrieval (IR), Document Classification, Sentiment Analysis, ...

CROSS-LINGUAL WORD EMBEDDINGS

Words from two or more languages are represented in the same shared low-dimensional vector space. Level of supervision:

- sentence-level: Machine Translation (MT) Corpora
- document-level: Wikipedia
- word-level: Bilingual Dictionaries
- unsupervised: Distribution of words in monolingual corpora in a bilingual dictionary

How to learn representation for:

- Character (autocorrection)
- Sentence/Paragraph/Documents (Doc2Vec)
 - AVG is predefined function over the constituent words
 - Let's learn the aggregation function from data!

aneson Loc Tusex Jec Auxicz Jec Auxicz Jec