CHAPTER 5: LOGIC CIRCUITS

I. HALF ADDER

The half adder: to add 2 least significant bits (LSB) we do not need a carry input from a previous stage. >> We only need a half adder this will have two inputs A_0 , B_0 and two outputs S_0 and C_0

$\mathbf{A_0}$	\mathbf{B}_{0}	S_0	C_0
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

S₀: sum out C₀: carry out

The **logic** equations are:

$$S0 = \overline{A_0}B_0 + A_0\overline{B_0} = A \oplus B > (XOR \ Gate)$$

 $C0 = A_0B_0 > (AND \ Gate)$

The **logic diagram** can also be expressed as follows:

II. FULL ADDER

a. Using normal method

For all other bits (except the LSB) a half adder **will not** suffice because there **may be a carry input** from a previous stage.

A full adder has 3 inputs: A_K , B_K , C_{K-1} AND 2 OUTPUTS: S_K , C_K C_{K-1} = carry in from the **previous** stage C_K = carry out to the **next** stage

$\mathbf{A}_{\mathbf{k}}$	$\mathbf{B}_{\mathbf{k}}$	C_{k-1}	S_k	$\mathbf{C}_{\mathbf{k}}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

The **logic** equations are:

$$S_{K} = \bar{A}_{K} \bar{B}_{K} C_{K-1} + \bar{A}_{K} B_{K} \bar{C}_{K-1} + A_{K} \bar{B}_{K} \bar{C}_{K-1} + A_{K} B_{K} C_{K-1}$$

$$C_{K} = \bar{A}_{K} B_{K} C_{K-1} + A_{K} \bar{B}_{K} C_{K-1} + A_{K} B_{K} C_{K-1} + A_{K} B_{K} \bar{C}_{K-1}$$

K-MAP FOR SK:

No simplification possible

k-map for C_K

$$C_K = B_K C_{K-1} + A_K C_{K-1} + A_K C_{K-1}$$

The **logic** diagram for a **full adder** is:

b. Full adder using half adders

One half adder adds \mathbf{A}_K to \mathbf{B}_K to give an intermediate sum S'_K and carry C'_K . Another half adder adds S'_K and C_{K-1} to give the final sum S_K and another intermediate carry C''_K

there will be a final carry if either C'_K or C''_K are "1"

Remember the Boolean operation for **half adder**:

$$S'_{K} = A_{K} \bigoplus B_{K}$$

$$C'_{K} = A_{K}B_{K}$$

For full adder:

$$S_K = A_K \bigoplus B_K \bigoplus C_{K-1}$$

$$C_K = A_K B_K + C_{K-1} (A_K \bigoplus B_K)$$

PROOF:

$$S_{K} = \overline{A}_{K}\overline{B}_{K}C_{K-1} + \overline{A}_{K}B_{K}\overline{C}_{K-1} + A_{K}\overline{B}_{K}\overline{C}_{K-1} + A_{K}B_{K}C_{K-1}$$

$$= C_{K-1}(\overline{A}_{K}\overline{B}_{K} + A_{K}B_{K}) + \overline{C}_{K-1}(\overline{A}_{K}B_{K} + A_{K}\overline{B}_{K})$$

$$= C_{K-1}(\overline{A}_{K} \oplus B_{K}) + \overline{C}_{K-1}(A_{K} \oplus B_{K})$$

$$= A_{K} \oplus B_{K} \oplus C_{K-1}$$

$$C_{K} = \overline{A}_{K}B_{K}C_{K-1} + A_{K}\overline{B}_{K}C_{K-1} + A_{K}B_{K}\overline{C}_{K-1} + A_{K}B_{K}C_{K-1}$$

$$= A_{K}B_{K}(C_{K-1} + \overline{C}_{K-1}) + C_{K-1}(\overline{A}_{K}B_{K} + A_{K}\overline{B}_{K})$$

$$= A_{K}B_{K} + C_{K-1}(A_{K} \oplus B_{K})$$

III. THE PARALLEL ADDER:

Also called ripple carry adder used to add **two n-bit** numbers. it consists of n full adders where the carry output of each stage is the carry in of the next stage.

Example: 4-bit parallel adder add A₃A₂A₁A₀ AND B₃B₂B₁B₀

 $C_3 = 1 >>>$ over flow

E.G.
$$A = 1010$$
 (10₁₀)
 $B = 1001$ (9₁₀)
Overflow \leftarrow (1)0011 \longrightarrow 3₁₀