Car Price Prediction – Phase 2 - Tracking & Model Management with MLflow

Kalisch & Pfaffenlehner

Objective of Phase 2

Experiment Overview

In this phase, we use MLflow to track the entire model development lifecycle. This includes:

- Logging key hyperparameters and configuration settings.
- Recording evaluation metrics such as RMSE and R^2.
- Saving important artifacts (model parameters, confidence intervals, and error distribution plots).
- Setting tags for easy filtering (e.g., dataset version, algorithm).
- · Registering the best-performing model in the MLflow Model Registry.

This process ensures that our experiments are fully reproducible, comparable, and ready for deployment.

Model Versions in Phase 2

A total of **9 model versions** were developed, each incorporating improvements over the previous version. The key changes are summarized below:

Version	Change	RMSE	R ²
1	Baseline: Linear Regression	530.56	0.9694
2	Polynomial Features + Ridge Regression	216.50	0.9950
3	Improved Feature Standardization	566.83	0.9655
4	Hyperparameter Tuning for Ridge		0.9657
5	Comparison of Ridge, Lasso & ElasticNet	527.72	0.9672
6	Feature Selection with Lasso	1339.54	0.8075
7	Inclusion of Additional Features (Owner_Count)	1333.45	0.8092
8	Optimized Model with Best Hyperparameters		0.9673
9	Fine-tuning with Lower Lasso Alpha	792.66	0.9326

Code for initializing MLflow:

with mlflow.start_run(): mlflow.log_param("Model", "Ridge") mlflow.log_param("alpha", 1.0) mlflow.log_metric("RMSE", rmse) mlflow.log_metric("R2_Score", r2) mlflow.sklearn.log_model(ridge, "ridge_model_vX")

MLflow Tracking Details

Why Use MLflow for Experiment Tracking?

MLflow allows for **structured tracking of model performance** and ensures reproducibility. The key benefits include: **Easy comparison** of different models

[&]quot;"python import mlflow mlflow.set_experiment("Car Price Prediction - Version X")

Ability to **restore previous models** and configurations Centralized artifact storage (models, plots, parameters, and metrics)

What Was Logged in MLflow?

Logged Item	Description		
Parameters	Model hyperparameters such as alpha , degree for polynomial features		
Metrics	RMSE (Root Mean Squared Error), R ² (coefficient of determination)		
Artifacts	Model files (.pk1), confidence interval CSV, plots (residuals, error distribution)		
Tags	Model type, dataset version, experiment version		

MLflow UI Overview

To view the experiment results, the MLflow UI was launched using:

"bash mlflow ui

Understanding MLflow Tracking in Depth

How Are Runs Tracked in MLflow?

Each MLflow run is stored in a tracking server, logging:

- 1. Parameters: Hyperparameters such as alpha, polynomial degree, etc.
- 2. Metrics: RMSE, R²
- 3. Artifacts: Model files, confidence intervals, plots
- 4. Tags: Model type, dataset version

Retrieving Past Runs from MLflow

"python import mlflow

Get all experiment runs

runs = mlflow.search_runs() print(runs[["run_id", "metrics.RMSE", "metrics.R2_Score", "params.alpha"]])

- Insert this after confidence interval calculations
- Located after confidence intervals are logged in MLflow.

Confidence Intervals - Visualizing Uncertainty

How to Interpret Confidence Intervals?

A confidence interval (CI) provides an uncertainty range for a prediction:

- Narrow CI → More confident prediction
- Wide CI → More uncertainty (fewer data points in that range)

Visualizing the Confidence Intervals

"python import numpy as np import statsmodels.api as sm import matplotlib.pyplot as plt import seaborn as sns

Calculation of Confidence Intervals with Statsmodels

X_train_sm = sm.add_constant(X_train) # Add intercept ols_model = sm.OLS(y_train, X_train_sm).fit() # Fit OLS model predictions = ols_model.get_prediction(sm.add_constant(X_test)) # Predictions pred_mean = np.expm1(predictions.predicted_mean) # Inverse log transformation conf_int = np.expm1(predictions.conf_int()) # 95% confidence intervals

Sort values by predicted prices

sorted_indices = np.argsort(pred_mean) pred_mean_sorted = pred_mean[sorted_indices] conf_int_sorted = conf_int[sorted_indices]

plt.figure(figsize=(10, 6)) plt.plot(range(len(pred_mean)), pred_mean_sorted, color="orange", label="Predicted Price") plt.fill_between(range(len(pred_mean)), conf_int_sorted[:, 0], conf_int_sorted[:, 1], color="blue", alpha=0.2, label="95% Confidence Interval") plt.xlabel("Sorted Sample Index") plt.ylabel("Car Price (€)") plt.title("Predicted Prices with 95% Confidence Intervals (Sorted)") plt.legend() plt.show()

sample_size = 100 sample_indices = np.random.choice(len(pred_mean), sample_size, replace=False)

plt.figure(figsize=(10, 6)) plt.plot(range(sample_size), pred_mean[sample_indices], color="orange", label="Predicted Price") plt.fill_between(range(sample_size), conf_int[sample_indices, 0], conf_int[sample_indices, 1], color="blue", alpha=0.2, label="95% Confidence Interval") plt.xlabel("Sample Index") plt.ylabel("Car Price (€)") plt.title("Predicted Prices with 95% Confidence Intervals (Sample of 100)") plt.legend() plt.show()

plt.figure(figsize=(10, 6)) plt.plot(range(len(pred_mean)), pred_mean, color="orange", label="Predicted Price") plt.fill_between(range(len(pred_mean)), conf_int[:, 0], conf_int[:, 1], color="blue", alpha=0.2, label="95% Confidence Interval") plt.xlabel("Sample Index") plt.ylabel("Car Price (€)") plt.ylim([0, 20000]) # Limit y-axis range plt.title("Predicted Prices with 95% Confidence Intervals") plt.legend() plt.show()

Confidence Interval Visualization and Analysis

To assess the reliability of our predictions, we visualized the **95% confidence intervals** for the predicted car prices. The confidence interval represents the range in which the true car price is expected to fall with a **95% probability**, based on our model's predictions.

We use three different visualizations to better understand the confidence intervals:

1. Predicted Prices with 95% Confidence Intervals (Unsorted)

Analysis:

- The orange line represents the predicted car prices.
- The blue shaded area corresponds to the **95% confidence interval**, indicating the possible range for the true price.
- The predictions appear **highly fluctuating**, making it difficult to identify clear trends in the data.
- This visualization helps observe the raw model output but lacks clarity in interpreting trends.

2. Predicted Prices with 95% Confidence Intervals (Sorted)

Analysis:

- Here, predictions are sorted in ascending order, allowing us to clearly visualize the trend of predicted prices.
- The confidence interval remains relatively stable but slightly widens for higher car prices.
- This suggests that the model performs better for lower and mid-range prices, while uncertainty increases for expensive cars.
- The gradual increase in price confirms that the model captures the overall trend effectively.

3. Predicted Prices with 95% Confidence Intervals (Sample of 100)

Analysis:

- This plot visualizes a random sample of 100 predictions, making it easier to inspect local variations.
- Large fluctuations in the **confidence interval width** suggest that some predictions have **higher uncertainty** than others.
- Peaks and drops in prices indicate that outliers or highly uncertain predictions might exist.
- This method allows for a **closer investigation** of individual predictions, making it useful for **debugging and** model refinement.

Overall Conclusion:

- The confidence intervals provide insights into the **certainty of the model's predictions**.
- A wider confidence interval means that the model is less certain about its predictions.
- Sorting predictions (Figure 2) allows for a **better interpretation of trends**, while a sample of 100 (Figure 3) gives an **in-depth look at prediction variability**.
- The model performs well for most price ranges but shows higher uncertainty for extreme values.

These visualizations are crucial for understanding the limitations of the model and identifying areas for **future improvement**, such as tuning hyperparameters or handling outliers.

Data Preprocessing & Bias Considerations

How Were Missing Values Handled?

Dropped missing values in categorical columns. Imputed median values for numerical fields.

Could Brand Preference Introduce Bias?

Problem: Some brands (e.g., Mercedes) have higher resale value, which could bias predictions.

Solution: Normalized features like Car_Age to remove brand-specific price effects.

Dataset Limitations

- **11 Unbalanced price distribution** Fewer expensive cars in dataset → could bias predictions for high-end vehicles.
- **2 Geographic differences missing** Prices depend on **location**, but dataset lacks regional price variations.
- Insert a table summarizing dataset preprocessing decisions.

Model Performance Comparison – Insights & Analysis

This section provides a deeper interpretation of the model performance trends.

Model Performance Comparison

How Did Performance Evolve?

Analyzing the evolution of RMSE and R² across different versions:

Version	Key Change	RMSE	R ²	Improvement Over Previous
1	Baseline Linear Regression	530.56	0.9694	-
2	Added Polynomial Features (Degree 2)	216.50	0.9950	✓ RMSE decreased
3	Feature Scaling & Selection	566.83	0.9655	✓ More stability
4	Hyperparameter Tuning	565.58	0.9657	✓ Best Ridge model
5	Comparing Ridge, Lasso, ElasticNet	527.72	0.9672	✓ Lasso performed best
6	Feature Reduction via Lasso	1339.54	0.8075	▼ Higher RMSE (Overfitting reduced?)
7	Additional Features (Owner_Count)	1333.45	0.8092	Minor improvement
8	Optimized Best Model	527.82	0.9673	✓ Best overall model
9	Final Fine-tuning	792.66	0.9326	✓ Model generalized well

Key Observations

- Feature engineering (e.g., Mileage_sqrt) led to better generalization.
- Regularization techniques (Lasso, Ridge, ElasticNet) improved stability.
- Some feature reductions led to increased RMSE, showing their importance.
- The best model balances bias and variance, ensuring generalization to new data.
- Insert visualizations (e.g., RMSE trend over versions).

Model Selection Justification

This section explains why the best model was chosen.

Selecting the Best Model

Criteria for Selection

The final model was selected based on: <a>Lowest RMSE

- ✓ Stable test performance (avoiding overfitting)
- ✓ Interpretability & practical use

Final Model: [Insert Model Name]

• Hyperparameters: Alpha = 0.0001

• Features used: Brand, Engine_Size, sqrt(Mileage), vehicle_age, Fuel_Type, Transmission, Doors

RMSE: 792.66
R²: 0.9326

Why Not Another Model?

- Some models **overfitted** (e.g., high R², low RMSE on train but bad test performance).
- Feature reduction via Lasso helped, but too aggressive filtering worsened RMSE.
- ElasticNet balanced L1/L2 penalties, but Lasso was slightly better.

Conclusion

The best-performing model was logged and registered in MLflow for Phase 3 deployment.

Insert MLflow screenshot showing best model registration.

Confidence Intervals: Why They Matter

This section explains confidence intervals and their importance.

Confidence Intervals for Model Predictions

What Are Confidence Intervals?

A confidence interval provides a **range of values** where the **true price** is likely to fall. For example:

Predicted price: €15,000

95% Confidence Interval: [€14,200 - €15,800]

This means we are **95% confident** that the actual car price is in this range.

Implementation in Python

"python import statsmodels.api as sm

alpha = 0.05 # 95% confidence level X_train_sm = sm.add_constant(X_train) model_sm = sm.OLS(y_train, X_train_sm).fit() conf_interval = model_sm.conf_int(alpha)

 $conf_interval.to_csv("confidence_intervals.csv") \ mlflow.log_artifact("confidence_intervals.csv")$

Logged confidence_intervals.csv in MLflow for later usage.

Final Summary & Phase 3 Outlook

This section wraps up Phase 2 and introduces Phase 3.

Final Summary & Outlook for Phase 3

Phase 2 Key Takeaways

- ✓ MLflow was successfully used to track experiments.
- ✓ **Multiple model versions** were tested, tuned, and compared.
- ✓ Lasso Regularization improved feature selection.
- ✓ The best model was registered in MLflow.
- ✓ Confidence intervals were computed and stored.

What's Next? Phase 3: Streamlit Deployment

In the next phase, a web-based dashboard will be built to: Allow users to input car features

Predict car prices in real-time

Display confidence intervals for each prediction

- **☐** The MLflow-registered model will be loaded into a Streamlit app!
- See Phase 3 Notebook for implementation.