

# Systèmes robotisés intelligents Smart Robotic Systems

## **Sensors and Variables Estimation**

Gilles TAGNE

# Sensors and variables estimation



- ✓ Sensors for mobile robots
- √ Variables estimation
- ✓ Multi-sensor fusion

www.isen.fr

2



- Proprioceptive sensors: provide information on the internal state of the robot
- Exteroceptive sensors: provide information on the state of the environment















- Passive sensors
- Active sensors

- Analog sensors
- Digital sensors
- Logic sensors
- Smart sensors













# Sensors for mobile robots Classification example



| General Classification<br>(typical use)                                                                | Sensor<br>Sensor System                                             | PC: Propriocep. EC: Exteroceptive | P:<br>Passive<br>A:<br>Active |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------|-------------------------------|
| Wheel/motor sensors<br>(wheel/motor speed and posi-<br>tion)                                           | Brush Encoders                                                      | PC                                | P                             |
|                                                                                                        | Potentiometers                                                      | PC                                | P                             |
|                                                                                                        | Synchros, Resolvers                                                 | PC                                | A                             |
|                                                                                                        | Optical Encoders                                                    | PC                                | A                             |
|                                                                                                        | Magnetic Encoders                                                   | PC                                | A                             |
|                                                                                                        | Inductive Encoders                                                  | PC                                | A                             |
|                                                                                                        | Capacitive Encoders                                                 | PC                                | A                             |
| Heading sensors<br>(orientation of the robot in rela-<br>tion to a fixed reference frame)              | Compass                                                             | EC                                | P                             |
|                                                                                                        | Gyroscopes                                                          | PC                                | P                             |
|                                                                                                        | Inclinometers                                                       | EC                                | P/A                           |
| Ground based beacons<br>(localization in a fixed reference<br>frame)                                   | GPS                                                                 | EC                                | A                             |
|                                                                                                        | Active optical or RF beacons                                        | EC                                | A                             |
|                                                                                                        | Active ultrasonic beacons                                           | EC                                | A                             |
|                                                                                                        | Reflective beacons                                                  | EC                                | A                             |
| Active ranging<br>(reflectivity, time-of-flight and<br>geometric triangulation)                        | Reflectivity sensors                                                | EC                                | A                             |
|                                                                                                        | Ultrasonic sensor                                                   | EC                                | A                             |
|                                                                                                        | Laser rangefinder                                                   | EC                                | A                             |
|                                                                                                        | Optical triangulation (1D)                                          | EC                                | A                             |
|                                                                                                        | Structured light (2D)                                               | EC                                | A                             |
| Motion/speed sensors<br>(speed relative to fixed or mov-<br>ing objects)                               | Doppler radar                                                       | EC                                | A                             |
|                                                                                                        | Doppler sound                                                       | EC                                | A                             |
| Vision-based sensors<br>(visual ranging, whole-image<br>analysis, segmentation, object<br>recognition) | CCD/CMOS camera(s) Visual ranging packages Object tracking packages | EC                                | P                             |



## **Odometry**

Measurement of wheel speed rotation Estimation of the robot's displacement Distance traveled



Advantages: low cost, precision

Drawbacks: Sliding of the wheel, Drift over time



## **Inertial systems**

Gyrometer: Measurement of orientation; angular velocity

Accelerometer: Measurement of accelerations

**Magnetometer:** Magnetic field measurement

Compass: Orientation to Magnetic North



Advantages: Good dynamics, precision

**Drawbacks:** Drift over time



# **GNSS\*** sensors: **GPS** (Global Positioning System)

Measuring the absolute position of a point in a fixed landmark (the center of the earth)
3 Signals needed (4 more robust)
Outdoor Navigation
Useful for spot recalculations
DGPS: Precision centimeter

Advantages: No drift

**Drawbacks:** Low frequency <5Hz (typically 1Hz),

unavailability of satellite signals

\*Global Navigation Satellite System

IHz),



#### **Ultrasonic telemeter**

Proximity and distance measurement Sound waves that reflect on the obstacles



Advantages: precision

**Drawbacks:** Maximum

frequency of measurements,

cone angle of opening







#### Radar

Distance and Speed measurement

Advantages: Low cost, Highly industrialized Drawbacks: Sound waves carried by air therefore unusable at high speed, Aerodynamic effects that destroy the ultrasonic signal, Absorption of sound waves by certain materials

applications: parking assistance



#### Infrared telemeter

Proximity and distance measurement





**Advantages:** Measurement frequency, precision **Drawbacks:** Low distances <5m (Typically <2m)



## Laser telemeter (LIDAR)

Active Perception
Precise distance measurements
Cartography and localization

#### Example (characteristics):

Angle d'ouverture Résolution angulaire

Temps de réponse (fonction de la résolution)
Résolution
Erreur systématique
Erreur statistique
Classe d'équipement laser
Températures de fonctionnement
Distance maximale de mesure
Interface
Taux de transmission
Consommation
Poids
Dimensions  $(L \times l \times h)$ 

 $180^{\circ}$   $0, 25 - 0, 5 - 1^{\circ}$  13 - 26 - 52 ms 10 mm  $\pm 15 mm$  5 mm classe 1  $0^{\circ} C \cdots + 50^{\circ} C$  80 m RS-422 et RS-232 9, 6 - 19, 2 - 38, 4 - 500 kBaud 20 W 4, 5 kg  $156 \times 155 \times 210 mm$ 

Télémètre













## Cameras (Vision)

2D / 3D vision

Monovision color / grayscale

**Omnidirectional** vision

**Stereovision**: Gives a depth image (3D measurement)

Infrared vision: Pixels that react to heat sources or night vision





- "eye to hand" "Caméra deportée"
- " eye in hand " " Caméra embarquée "



## **Cameras: Other vision systems**

**Kinect** (structured light): pixel image and depth image. **TOF camera** (Time Of Flight)





Cameras detecting color and depth Microphone with voice recognition Motorized sensor for tracking movements



## **Cameras (Vision systems)**







#### **Advantages:**

- Allows to recognize the type of obstacle
- Allows to track a specific target
- Gives a lot of information about the near environment of the robot

#### **Drawbacks:**

- Calculation time of the algorithms
- False detections

## Classification example:

| General Classification<br>(typical use)                                                                | Sensor<br>Sensor System                                             | PC: Propriocep. EC: Exteroceptive | P:<br>Passive<br>A:<br>Active |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------|-------------------------------|
| Wheel/motor sensors<br>(wheel/motor speed and posi-<br>tion)                                           | Brush Encoders                                                      | PC                                | P                             |
|                                                                                                        | Potentiometers                                                      | PC                                | P                             |
|                                                                                                        | Synchros, Resolvers                                                 | PC                                | A                             |
|                                                                                                        | Optical Encoders                                                    | PC                                | A                             |
|                                                                                                        | Magnetic Encoders                                                   | PC                                | A<br>A<br>A                   |
|                                                                                                        | Inductive Encoders                                                  | PC                                | A                             |
|                                                                                                        | Capacitive Encoders                                                 | PC                                | A                             |
| Heading sensors<br>(orientation of the robot in rela-<br>tion to a fixed reference frame)              | Compass                                                             | EC                                | P                             |
|                                                                                                        | Gyroscopes                                                          | PC                                | P                             |
|                                                                                                        | Inclinometers                                                       | EC                                | P/A                           |
| Ground based beacons<br>(localization in a fixed reference<br>frame)                                   | GPS                                                                 | EC                                | A                             |
|                                                                                                        | Active optical or RF beacons                                        | EC                                | A                             |
|                                                                                                        | Active ultrasonic beacons                                           | EC                                | A<br>A<br>A                   |
|                                                                                                        | Reflective beacons                                                  | EC                                | A                             |
| Active ranging<br>(reflectivity, time-of-flight and<br>geometric triangulation)                        | Reflectivity sensors                                                | EC                                | A                             |
|                                                                                                        | Ultrasonic sensor                                                   | EC                                | A                             |
|                                                                                                        | Laser rangefinder                                                   | EC                                | A                             |
|                                                                                                        | Optical triangulation (1D)                                          | EC                                | A                             |
|                                                                                                        | Structured light (2D)                                               | EC                                | A                             |
| Motion/speed sensors<br>(speed relative to fixed or mov-<br>ing objects)                               | Doppler radar                                                       | EC                                | A                             |
|                                                                                                        | Doppler sound                                                       | EC                                | A                             |
| Vision-based sensors<br>(visual ranging, whole-image<br>analysis, segmentation, object<br>recognition) | CCD/CMOS camera(s) Visual ranging packages Object tracking packages | EC                                | P                             |



- Analog sensors
- Digital sensors
- Logic sensors

**Exercise**: Build an array sensors of the following robots:

- Pepper
- ISEN Mobile robot

www.isen.fr

16

### Variables estimation



## Why?

- Impossibility to measure
- Very expensive sensor
- Very noisy data

#### How to estimate?

- By developing an oservator
- By filtering the data (Kalman filter)
- Combining or merging many information

#### Variables estimation



#### Before estimating a variable:

- Assumptions to verify
- The initial conditions
- The impact of the estimation on the behavior of the robot

#### Variable estimaion example:

Wheel speed by odometry



#### Multi-sensor fusion



#### Purposes of data fusion:

- More robust estimate
- Get new information
- Analysis of the robot near environment
- Planning for future actions

### Data fusion example:

- Odometry + GPS: Robust localization
- Camera + US + Lidar: Development of the robot dynamic local map

#### Multi-sensor fusion



#### Data fusion Methods:

- Probability theory
- Theory of possibility
- Theory of fuzzy sets (fuzzy logic)
- Theory of belief functions
- Decision trees
- Rule bases
- Nearest neighbors
- Neural networks
- Bayesian networks
- Markov chains