

ROLAMENTO AUTOCOMPENSADOR DE ROLOS

Rolamento 22208 E - Exemplo do catálogo SKF 5000 E - June 2003

$$d = 40 \, \mathbf{mm}$$

$$d \coloneqq 40 \ mm$$
 $d \coloneqq \frac{d}{mm} = 40$

$$D = 80 \, mm$$

$$D \coloneqq 80 \ mm \qquad \qquad D \coloneqq \frac{D}{mm} = 80$$

$$B \coloneqq 23 \, \, \mathbf{mm}$$

$$B \coloneqq 23 \ mm$$
 $B \coloneqq \frac{B}{mm} = 23$

$$n \coloneqq 1780 \cdot \frac{1}{min} \qquad n \coloneqq n \cdot min = 1780$$

$$n \coloneqq n \cdot min = 1780$$

$$F_r = 2.99 \text{ kN}$$
 $F_r = \frac{F_r}{N} = 2990$

$$F_a = 0.10 \ kN \qquad F_a = \frac{F_a}{N} = 100$$

Lubrificação por banho de óleo

CÁLCULOS

Viscosidade na temperatura de trabalho de 40°C

$$v = 68 \frac{mm^2}{s}$$

$$v := 68 \frac{mm^2}{s} \qquad v := v \cdot \frac{s}{mm^2} = 68$$

MOMENTO DE ATRITO DE ROLAGEM

Diâmetro médio

$$d_m = \frac{d+D}{2} = 60$$

Fator de redução do aquecimento por cisalhamento na entrada

$$\phi_{ish} \coloneqq \frac{1}{1 + 1.84 \cdot 10^{-9} \cdot (n \cdot d_m)^{1.28} \cdot v^{0.64}} = 0.93$$

Constante de esgotamento/reabastecimento cinemático

$$K_{rs} = 3 \cdot 10^{-8}$$

Constante geométrica relacionada ao tipo de rolamento

$$K_{\mathbf{z}} = 5.5$$

$$K_Z \coloneqq 5.5$$
 $K_L \coloneqq 0.8$

EXEMPLO 4 - Rolamento autocompensador de rolos 22208 E "O modelo SKF para cálculo do momento de atrito"

		Tabela 5	
Constantes geométricas K _Z e K _L			
Tipo de rolamento	0011544	stantes métricas K _L	
Rolamentos rígidos de esferas			
– uma e duas carreiras	3,1	-	
Rolamentos de esferas de contato angular			
– uma carreira	4,4	-	
 de duas carreiras de quatro pontos de contato 	3,1 3,1	_	
Rolamentos autocompensadores de esferas	4,8	-	
Rolamentos de rolos cilíndricos – com gaiola	5,1	0,65	
– número máximo de rolos	6,2	0,7	
Rolamentos de rolos cônicos	6	0,7	
Rolamentos autocompensadores de rolos	5,5	0,8	

Fator de redução por esgotamento/reasbastecimento cinemático

$$\phi_{rs} \coloneqq \frac{1}{e^{\left(K_{rs} \cdot v \cdot n \cdot (d+D) \cdot \sqrt[2]{\frac{K_Z}{2 \cdot (D-d)}}\right)}} = 0.9$$

Variável geométrica para momentos de atrito

Para rolamentos autocompensadores de rolos

$$G_{m.e} = R_1 d_m^{1,85} (F_r + R_2 F_a)^{0,54}$$
 $G_{m.l} = R_3 d_m^{2,3} (F_r + R_4 F_a)^{0,31}$
quando $G_{rr.e} < G_{rr.l}$
 $G_m = G_{rr.e}$
caso contrário
 $G_m = G_{rr.l}$

Constantes geome	étricas para momen	itos de atri	to rolante e desl	izante de	rolamentos auto	compensa	dores de rolos	Tabela 3
Séries de rolamentos	Constantes geométricas para momentos de atrito			momentos de atrito deslizante				
	R ₁	R ₂	R ₃	R ₄	S ₁	S ₂	53	54
213 E. 222 E	1.6 × 10 ⁻⁶	5.84	2.81 × 10 ⁻⁶	5.8	3.62 × 10 ⁻³	508	8.8 × 10 ⁻³	117

EXEMPLO 4 - Rolamento autocompensador de rolos 22208 E "O modelo SKF para cálculo do momento de atrito"

$$R_4 := 1.6 \cdot 10^{-6}$$

$$R_2 = 5.84$$

$$R_1 = 1.6 \cdot 10^{-6}$$
 $R_2 = 5.84$ $R_3 = 2.81 \cdot 10^{-6}$

$$R_4 \coloneqq 5.8$$

$$S_1 := 3.62 \cdot 10^{-3}$$
 $S_2 := 508$ $S_3 := 8.8 \cdot 10^{-3}$

$$S_2 = 508$$

$$S_2 = 8.8 \cdot 10^{-3}$$

$$S_{\scriptscriptstyle A} \coloneqq 117$$

$$G_{rr.e} := R_1 \cdot d_m^{1.85} \cdot (F_r + R_2 \cdot F_a)^{0.54} = 0.258$$

$$G_{rr.l} := R_3 \cdot d_m^{2.3} \cdot (F_r + R_4 \cdot F_a)^{0.31} = 0.436$$

Como Grre < Grrl temos:

$$G_{rr} \coloneqq G_{rr} = 0.258$$

Momento de atrito de rolagem

$$M_{rr} := \phi_{rs} \cdot \phi_{ish} \cdot G_{rr} \cdot (v \cdot n)^{0.6} = 241$$
 $M_{rr} := M_{rr} \cdot N \cdot mm = 241 \ N \cdot mm$

$$M_{rr} := M_{rr} \cdot N \cdot mm = 241 \ N \cdot mm$$

Potência perdida por atrito de rolagem

$$P_{rr} = M_{rr} \cdot 2 \cdot \boldsymbol{\pi} \cdot \frac{n}{min} = 45 \ \boldsymbol{W}$$

MOMENTO DE ATRITO DESLIZANTE

Variável geométrica atrito deslizante

$$\begin{split} &G_{sl.e} = S_1 \, d_m^{-0.25} \, \big(F_r^4 + S_2 \, F_a^{-4} \big)^{1/3} \\ &G_{sl.l} = S_3 \, d_m^{-0.94} \, \big(F_r^3 + S_4 \, F_a^{-3} \big)^{1/3} \end{split}$$

quando G_{d e} < G_{el 1}

caso contrário

$$G_{sl} = G_{sl}$$

$$G_{sl.e} \coloneqq S_1 \cdot d_m^{} \cdot \left(F_r^{4} + S_2 \cdot F_a^{4}\right)^{\frac{1}{3}} = 434$$

$$G_{sl.l} \coloneqq S_3 \cdot d_m^{0.94} \cdot \left(F_r^3 + S_4 \cdot F_a^3\right)^{\frac{1}{3}} = 1237$$

Como Gsl.e < Gsl.l temos:

$$G_{sl} \coloneqq G_{sl,e} = 434$$

Fator de ponderação para o coeficiente de atrito deslizante

$$\phi_{bl} := \frac{1}{e^{2.6 \cdot 10^{-8} \cdot (n \cdot v)^{1.4} \cdot d_m}} = 1.408 \cdot 10^{-9}$$

Coeficiente de atrito deslizante para condição de filme completo

μEHL = coeficiente de atrito deslizante para condições de filme completo Valores para µEHL são:

- 0,02 para rolamentos de rolos cilíndricos
- 0,002 para rolamentos de rolos cônicos

Outros rolamentos

- 0,05 para lubrificação com óleos minerais
- 0,04 para lubrificação com óleos sintéticos
- 0,1 para lubrificação com fluidos de transmissão

$$\mu_{EHL} \coloneqq 0.05$$

Coeficiente que depende do aditivo acrescentado ao lubrificante

$$\mu_{bl}\!\coloneqq\!0.15$$

Coeficiente de atrito deslizante

$$\mu_{sl} := \phi_{bl} \cdot \mu_{bl} + (1 - \phi_{bl}) \cdot \mu_{EHL} = 0.05$$

Momento de atrito deslizante

$$M_{al} \coloneqq G_{al} \cdot \mu_{al} = 21.7$$

$$M_{sl} := G_{sl} \cdot \mu_{sl} = 21.7$$
 $M_{sl} := M_{sl} \cdot N \cdot mm = 22 N \cdot mm$

Potência perdida por atrito deslizante

$$P_{sl} := M_{sl} \cdot 2 \cdot \boldsymbol{\pi} \cdot \frac{n}{min} = 4 \ \boldsymbol{W}$$

MOMENTO DE ARRASTO

Nível de óleo

O exemplo adota
$$H = 2.5$$
 $x = \frac{H}{d_m} = 0.042$

Variavel VM

O exemplo toma o valor de VM do gráfico

$$V_M = 0.00003$$

VM pela equação desenvolvida no excel

$$x = H/dm < 0.2$$

$$V_{M1} := -20.42483661 \cdot x^6 + 8.76944908 \cdot x^5 - 1.61951589 \cdot x^4$$

$$V_{M2} = 0.18243803 \cdot x^3 - 0.00542042 \cdot x^2 + 0.00086623 \cdot x$$

$$V_{Mexcel} := V_{M1} + V_{M2} - 0.00000450 = 0.00003$$

Fator t

$$t \coloneqq 2 \cdot \operatorname{acos}\left(\frac{0.6 \cdot d_m - H}{0.6 \cdot d_m}\right) = 0.750 \qquad 0 \le t \le \pi$$

Fator ft

$$f_{t} = \begin{cases} \sin(0.5 t), & \text{quando } 0 \le t \le \pi \\ 1, & \text{quando } \pi < t < 2 \pi \end{cases}$$

$$f_{t} \coloneqq \sin(0.5 \cdot t) = 0.366$$

Fator fA

$$f_A = 0.05 \cdot \frac{K_Z \cdot (D+d)}{D-d} = 0.825$$

Constante relacionada ao corpo rolante

$$K_{roll} := \frac{K_L \cdot K_Z \cdot (d+D)}{D-d} \cdot 10^{-12} = 1.320 \cdot 10^{-11}$$

Fator RS

$$R_S = 0.36 \cdot d_m^2 \cdot (t - \sin(t)) \cdot f_A = 73.02$$

Momento de arrasto

$$M_{arrasto} \coloneqq 4 \cdot V_{M} \cdot K_{roll} \cdot d_{m}^{-5} \cdot n^{2} + 1.093 \cdot 10^{-7} \cdot n^{2} \cdot d_{m}^{-3} \cdot \left(\frac{n \cdot d_{m}^{-2} \cdot f_{t}}{v}\right)^{-1.379} \cdot R_{S}$$

$$M_{arrasto} = 6.9 \qquad M_{arrasto} := M_{arrasto} \cdot N \cdot mm = 6.9 N \cdot mm$$

Potência perdida por arrasto

$$P_{arrasto} := M_{arrasto} \cdot 2 \cdot \boldsymbol{\pi} \cdot \frac{n}{min} = 1.3 \ \boldsymbol{W}$$

Torque total perdido

$$M_T \!\coloneqq\! M_{arrasto} \!+\! M_{rr} \!+\! M_{sl} \!=\! 269 \; \textbf{\textit{N}} \!\cdot\! \textbf{\textit{mm}}$$

Potência perdida total

$$P_{pt} \coloneqq P_{rr} + P_{sl} + P_{arrasto} = 50 \ \mathbf{W}$$

$$P_{rr} = 44.8 \; W$$
 $M_{rr} = 240.5 \; N \cdot mm$

$$P_{sl}$$
 = 4.0 \boldsymbol{W} M_{sl} = 21.7 $\boldsymbol{N} \cdot \boldsymbol{mm}$

$$P_{arrasto} = 1.3 \; W$$
 $M_{arrasto} = 6.9 \; N \cdot mm$

Frictional moment Friction sources				Power loss		
Total	At start 20-30°C and zero speed	Rolling	Sliding	Seals	Drag loss	
М	M start	Мп	M sl	M seal	M drag	P loss
Nmm						W
266	65.1	240	21.7	0	4.05	50