Capstone

Deisgn2

Environment Sound Classification with CNN

발 표 자 강 명 훈

KYUNG HEE UNIVERSITY

CONTENTS

01

연구 배경

- 주제 변천사
- 연구 주제
- 관련 연구

02

연구 과정

- 데이터 수집
- 모델 훈련

03

연구 결과

- -Train 별 그래프
- 모델 정확도
- 최적의 모델 구조

04

연구 한계점

- 실제 검증
- 결과 원인 분석

05

결론

- 연구 의의

- 추후 연구

KYUNG HEE UNIVERSITY

1.연구 배경

주제 변천사

Multiple Speaker Recognition Application with CNN

Gender Sound Classification with CNN

Environment Sound Classification with CNN

" 연구 주제 "

CNN을 이용 한 Environment Sound Classification

Mel Spectrogram과 CNN을 이용하여 장소를 구분 할 수 있는 Model 구현

기존 연구와 차이

• 단일 Sound가 아닌 복합 Sound에서 Classification 실험

연구 목표

Classification 정확도 80% 이상

관련 연구 1

ESC: Dataset for Environmental Sound Classification

- Common Environmental Sound
- ESC-10, ESC-50
- Zero-Crossing Rate, MFCC
- HUMAN, K-NN, Random Forest, SVM

관련 연구 2

Performance Comparison of Acoustic Features for Sound Classification on Ubiquitous Environment

Fig. 1. Converted acoustic features (clockwise from right-top to left-top: Contrast, Chroma, Tonal Centroids, STFT, MFCC, Mel-spectrum)

Fig. 2. Training model

- Mel-Spec, MFCC, STFT, Contrast, Chroma, Tonal Centroids
- Freefield1010: 86%, Urban Sound 8K dataset: 78%

2.연구 과정

데이터 수집 및 가공

```
from pydub import AudioSegment
def cutaudio(inputfile, label, maxtime, start point):
   t1 = start point
   t2 = t1+5
   max_time = t1 + maxtime
   while t1<max time:
       #in pydub use ms second so multiple 1000
       st1 = t1*1000
       et2 = t2*1000
       newAudio = AudioSegment.from_wav(inputfile)
       newAudio = newAudio[st1:et2]
       number = t1/5
       name = str(number)+label
       newAudio.export('audio8/'+name+'.wav', format="wav")
       t1 = t1+5
       t2 = t1+5
```

- 주변 환경 직접 녹음
- Online Data Sound DB
- Sound Duration: 5 Sec
- Sound Rate: 44100hz

데이터 분류

- 5가지 Category: Nature, Loud, Music, Quiet, ETC
- 15가지 Sub Class

Nature	Loud	Music	Quiet	ETC
Mountain	Factory	Music Concert	Home	Road
Sea	Airport	Classic Concert	Office	Lecture
Cave	Harbor	Club	Library	Cafe

모델 훈련

- 음원 파일 -> Mel Spectrogram 변환
- Train 90%, Validation 10%, Test 10%
- Model의 Accuracy, Loss 확인
- 신뢰도가 낮다고 판단되면 Data Set 추가 및 모델 변경

3.연구 결과

Result3 P Model

```
model = Sequential()
# add layers
model.add(Conv2D(64, kernel_size=3, activation="relu", input_shape=(SPEC_H, SPEC_W, 1)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, kernel_size=3, activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(256, kernel_size=3, activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(256, kernel_size=3, activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(256, activation = 'relu'))
model.add(Dropout(0.5))
model.add(Dense(128, activation = 'relu'))
model.add(Dense(15, activation="softmax"))
# compile the model
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
# Training and Evaluation of the model
hist = model.fit(train_x, train_y, batch_size = 30 ,epochs=30,validation_split=0.1)
```

Result1

Categories: 3 Classes: 9 Sample Count: 960

- 모델의 신뢰도 확인이 어려움
- 더 많은 데이터를 이용 하여 모델을 비교하기로 결정

Result 2

Categories: 5 Classes: 15 Sample Count: 2974

 Train1 보다 더 좋은 형태 확인

· 좀 더 객관화 시키기 위 해 데이터를 추가하기로 결정

Result 3

Categories: 5 Classes: 15 Sample Count: 6000

- Train2 보다 더 좋은 형태 확인
- 모델의 구조적 변경 시 점이라 판단

Model Evaluate

Train 4에서 가장 좋은 결과

Model	Train Evaluate	Test Evaluate
Train1(960)	0.926	0.932
Train2(2974)	0.987	0.984
Train3(6000)	0.983	0.962
Train4(6000)	0.992	0.985
Train5(6000)	0.987	0.972

Model Architecture

4.연구 한계점

연구 검증1

- 만든 모델이 실제로 잘 작동하는지를 테스트
- Train, Val, Test에 쓰이지 않은 전혀 새로운 데이터로 Test

Model Valid Accuracy

Valid Count	Category Accuracy	Class Accuracy
33	72%	55%
45	71%	53%
100	65%	52%
150	66%	49%

검증 결과 분석

Category Accuracy

Category	Category Accuracy	Class Accuracy
Nature	73%	66%
Loud	46%	40%
Music	93%	76%
Quiet	63%	20%
ETC	56%	43%

- 정확도가 좋은 경우는 명확한 중심 Feature 존재
- 너무 많은 Feature가 결합된 장소의 경우 판별을 제대로 하지 못함
- Train에 이용된 데이터가 완벽한 객관적 지표가 아님

5.결론

연구 의의

- 목표한 Accuracy를 달성하지는 못했지만 여러 복합적인 Sound가 섞여 있는 환경에서도 구분이 가능 할 수 있다는 가능성을 발견
- Category와 같은 명확하고 공통적인 Feature를 특정 할 수 있다면 Environmental Sound Classification이 이루어질 수 있을 것으로 기대

추후 연구 방향

- 일반화 성능을 위해서 더 많은 데이터 수집
- 분류를 위한 명확한 Environmental Sound Class 정의
- Mel Spectrogram 말고도 다른 음성 Feature를 이용하여 연구
- Mobile, IOT와 연계하여 확장된 Application 개발

THANK YOU

발 표 자 강 명 훈