Számítógép-hálózatok

2-3. Fizikai réteg

Tartalom

- A fizikai réteg feladata
- Vezetékes átviteli közegek
- Vezeték nélküli adatátvitel
- Digitális kommunikáció alapjai
- Példák fizikai rétegek megvalósítására

Ismétlés: réteges szerkezet

A fizikai réteg

- Erre a rétegre épül a többi
- A fizikai réteg tulajdonságai alapvetően meghatározzák a hálózat teljesítőképességét
- A réteg feladata:
 - Küldjünk (digitális) biteket ...
 - ... valamilyen fizikai (analóg) jel segítségével

Ezt nevezzük modulációnak

Alkalmazási réteg
Szállítási réteg
Hálózati réteg
Adatkapcsolati réteg
Fizikai réteg

5

4

3

2

Vezetékes átviteli közegek

- Mágneses adathordozók
- Sodrott érpár
- Koaxiális kábel
- Elektromos hálózat (pl. 230V) vezetékei
- Üvegszálak

Mágneses adathordozók

- Mágneses vagy szilárdtest (SSD) tároló
- Adatszállítás gyakori módja
 - Adathordozóra írás
 - Az adathordozó elszállítás a rendeltetési helyre
 - Az adat beolvasása
- Nagyon költséghatékony
 - Nagy sávszélesség
 - Alacsony költség
- "Soha ne becsüld le egy olyan furgon sávszélességét, amely kazettákkal telepakolva száguld az autópályán!"

Mágneses adathordozók (2)

Gyakorlati példa:

- Ultrium kazettákat (800GB) használunk
- Egy 60cm x 60cm x 60cm dobozba 1000db elfér
 - -800TB = 6400Tb
- Futárszolgálat egy nap alatt bárhova elviszi
 - -1 nap = 24h = 86400s
- Sávszélesség: 6400Tb/86400s = 74Gb/s
- Ezzel nem tudnak a hálózatok versenyezni
- Az adatkésleltetés viszont nagyon nagy

Sodrott érpár

Cat 3-Cat 6-ig

Cat 5e kábel:

- Szigetelt érpárok finoman sodorva
- Négy ilyen érpár egy közös műanyag köpenyben

Cat 7:

• Érpárok külön-külön árnyékolva és a teljes köteg is árnyékolt

RJ-45 csatlakozó

Koaxiális kábel

A koaxiális kábel (koax) felépítése

Csatlakozók koaxiális kábelekhez

Elektromos hálózati kábelek

A meglévő elektromos hálózati kábelezést használjuk Nem ideális: nem erre tervezték Működés:

- Az elektromos hálózat 50Hz-es váltóáramú
- A jeleket magasabb frekvenciával kódoljuk és ráültetjük a vezetékre
- Egy másik konnektorban a nagyfrekvenciás összetevőket leválasztva a jel dekódolható

Akár néhányszor 100Mb/s sebességtartományig jól működik

Üvegszálak (1)

- Hatalmas sávszélesség
- Költséges
- Felhasználási területek
 - Gerinchálózatok, nagy távolságú adatátvitel
 - Nagy sebességű LAN-ok
 - Nagysebességű Internet-elérés
- Komponensek:
 - Fényforrás, átviteli közeg, detektor

Üvegszálak (2)

Egy kis fizika:

- (a) Egy üvegszál belsejében a fénysugár három különböző szögben érkezik az üveg és a levegő határához. A harmadik esetben visszaverődik.
- (b) Teljes belső visszaverődés miatt a fénysugár az üvegszálon belül marad

Ha az üvegszál vastag, akkor több fénysugár is haladhat egyszerre az üvegszálban (b)-hez hasonlóan, különböző szögekben visszaverődve. Ez a **többmódusú** üvegszál.

Ha az üvegszál vékony (átmérő = néhány hullámhossznyi), akkor nincs visszaverődés, a fénysugár egyenes vonalban terjed. Ez az **egymódusú** üvegszál. Drága, de nagy távolságra is jó. (100km erősítés nélkül, 100Gb/s sebességgel)

12

Üvegszálak (3)

- Fény továbbítása üvegszálon
 - A fényerősség csillapítása az üvegszálban
 - A fény hullámhosszától függ
 - Csillapítás: bemenő és kimenő jel teljesítményének hányadosa
 - dB/km-ben adjuk meg
 - Pl. ha 3 km alatt felére csökken a teljesítmény, akkor a csillapítás

$$\frac{10\log_{10}1/2}{3km} = -\frac{3dB}{3km} = 1dB/km$$

Üvegszálak (4)

Jelenleg 3 hullámhossz-tartományt használnak.

A fény csillapítása az üvegszálon a hullámhossz függvényében:

Üvegszálak (5)

Az üvegszálak kialakítása

Mag átmérője:

Többmódusú szál: 50μm
Egymódusú szál: 8-10μm

SC konnektor

Üvegszálak csatlakoztatása:

- Csatlakozóval: 10-20% veszteség
- Mechanikus illesztés
 (szögre vágás és egymásra nyomás): 10% veszteség
- Hegesztés: nagyon kis veszteség

Üvegszálak (6)

Kétféle **fényforrás**t alkalmaznak üvegszálas kommunikációban

- LED
- Félvezető lézer

Jellemző	LED	Félvezető lézer
Adatsebesség	Kicsi	Nagy
Üvegszál típusa	Többmódusú	Többmódusú vagy egymódusú
Távolság	Kicsi	Nagy
Élettartam	Hosszú	Rōvid
Hőmérs éklet-érzé kenység	Kicsi	Jelentős
Ár	Olcsó	Drága

A LED és a félvezető lézeres fényforrások összehasonlítása

A detektor egy fotodióda

- Fény hatására elektromos jelet ad
- Késleltetése kb. 1ns, ezért a max. 1Gb/s sebesség

Üvegszálak (7)

- Az üvegszál előnyei a rézvezetékkel szemben
 - Nagyobb sávszélesség
 - Kicsi a csillapítása, ritkán kell erősítő (üsz: 30km, réz: 5km)
 - Nem érzékeny áramimpulzusokra, elektromágneses zavarokra
 - Nem érzékeny korrodáló hatású vegyületekre
 - Vékony és könnyű
 - Nehéz megcsapolni
- Az üvegszál hátrányai a rézvezetékkel szemben
 - Kevéssé ismert technológia, speciális szaktudást igényel
 - Könnyen megsérül, ha túlságosan meghajlítják

Vezeték nélküli adatátvitel

- Elektromágneses spektrum
- Modulációs technikák
- A digitális kommunikáció alapjai

Az elektromágneses spektrum

• Frekvencia: f

Hullámhossz: λ

 $\lambda f = c$

Fénysebesség: c

Modulációs technikák

Alapvető modulációk:

- Amplitúdó
- Frekvencia
- Fázis

- Sok modulációs technika keskeny frekvenciasávot használ ($\frac{\Delta f}{f} \ll 1$)
- Más technikák széles sávot használnak
 - frekvenciaugrásos szórt spektrumú (Frequency Hopping Spread Spectrum, FHSS) - Bluetooth
 - közvetlen sorozatú szórt spektrum (Direct Sequence Spread Spectrum, DSSS – 802.11.b, GPS
 - UWB (Ultra-WideBand ultraszéles sáv) WPAN

Szélessávú modulációs technikák

UWB nagyon alacsony jelszintet produkál egy adott frekvencián, "elfér a többi jel alatt" (underlay)

A jelterjedés jellemzői (1)

- Egyszerű csatornamodell:
 - Terjedési késleltetés
 - Mennyi ideig tart az út az adótól a vevőig
 - Mértékegység: másodperc (s)
 - Sebesség
 - Milyen gyorsan adunk
 - Mértékegység: bit/s

A jelterjedés jellemzői (1)

- Egyszerű csatornamodell
 - Terjedési késleltetés
 - Mennyi ideig tart az út az adótól a vevőig (D)
 - Mértékegység: másodperc (s)
 - Sebesség
 - Milyen gyorsan adunk (R)
 - Mértékegység: bit/s
- Üzenet késleltetése (L)
 - Adás ideje
 - Mennyi ideig tart az M bites üzenetet a csatornára tenni

$$T_A = M/R$$

Terjedési késleltetés egy H hosszú útvonalon (= terjedési késleltetés)

$$D \cong H/c$$
 (rádió), vagy $D \cong H/\left(\frac{2}{3}c\right)$ (vezeték)

– Üzenet késleltetése:

•
$$L = T_A + D = \frac{M}{R} + H/\left(\frac{2}{3}c\right)$$

Н

A jelterjedés jellemzői (2)

Példa: LAN

Kábel hossza: H=5kmSebesség: R=10Mb/sÜzenet hossza: 1500B

- Üzenet késleltetése (L)
 - Adás ideje

$$T_A = \frac{M}{R} = \frac{1500 \cdot 8 \ b}{10 \cdot 10^6 \frac{b}{s}} s = \frac{12 \cdot 10^3}{10 \cdot 10^6} s = 1.2ms$$

Terjedési késleltetés egy H hosszú útvonalon (= terjedési késleltetés)

$$D \cong \frac{H}{\left(\frac{2}{3}c\right)} = \frac{5 \cdot 10^3 m}{\frac{2}{3} \cdot 3 \cdot 10^8 \frac{m}{s}} = 2.5 \cdot 10^{-5} s = 25 \mu s$$

Üzenet késleltetése:

$$L = T_A + D = 1.225ms$$

A jelterjedés jellemzői (3)

A sávszélesség-késleltetés szorzat

- Az üzenetek egy része a véges sebesség miatt a csatornán van!
 - Elküldtük, de ...
 - ... még nem érkezett meg
- Hány üzenet lehet egyszerre a csatornán?
 - Ha a maximális sebesség (sávszélesség) R bit/s és
 - a késleltetés D, akkor
 - az úton lévő üzenetek száma:

 $R \cdot D$

- Ez a sávszélesség-késleltetés szorzat
 - Bitekben (esetlen üzenetek számában) mérjük
 - LAN-ok esetén alacsony érték, de nagy lehet egy gerincvonal esetén

A jelterjedés jellemzői (4)

A sávszélesség-késleltetés szorzat

- Példa: Optikai kábel
 - Kábel hossza: H=10.000km
 - Sebesség: R=100Mb/s

Mekkora a sávszélesség-késleltetés szorzat?

– Terjedési késleltetés a kábelben:

$$D \cong \frac{H}{\left(\frac{2}{3}c\right)} = \frac{10^7 m}{\frac{2}{3} \cdot 3 \cdot 10^8 \frac{m}{s}} = 50ms$$

A sávszélesség-késleltetés szorzat:

$$R \cdot D = 10^8 \frac{b}{s} \cdot 50 \cdot 10^{-3} s = 5 \cdot 10^6 b = 625 kB$$

A digitális kommunikáció alapjai

- Az adatátvitel elméleti alapjai
 - Fourier analízis
 - Sávkorlátozott jelek
- A csatorna maximális adatátviteli sebessége
- Digitális moduláció
- Multiplexelés

A szóhasználatról...

- Sávszélesség / informatikus értelmezés:
 - Maximális adatsebesség egy csatornán
 - Mértékegysége: bit/s
 - Pl.
 - Ha egy másodperc alatt 10Mbitet tudunk átvinni, akkor a sávszélesség 10Mbit/s
- Sávszélesség / villamosmérnök értelmezés:
 - Az átvihető frekvenciatartomány szélessége egy csatornán
 - Mértékegysége: Hz (1/s)
 - Pl.1.
 - ha egy csatornán 0Hz-től 15MHz tartományban lehet jeleket átvinni, akkor a csatorna sávszélessége 15MHz
 - Pl.2.
 - ha egy csatornán 1.1GHz-től 1.2GHz-ig lehet jeleket átvinni, akkor a sávszélesség 100MHz

Fourier analízis

- Egy jel (pl. feszültség) viselkedését matematikai függvényekkel modellezzük
- Fourier sor (periodikus g(t) jelre):

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

... ahol az együtthatók így számíthatók:

$$a_n = \frac{2}{T} \int_0^T g(t) \sin(2\pi n f t) dt \qquad b_n = \frac{2}{T} \int_0^T g(t) \cos(2\pi n f t) dt \qquad c = \frac{2}{T} \int_0^T g(t) dt$$

A jel modellezéséhez végtelen számú harmonikust használtunk

Sávkorlátozott jelek (1)

jel jel frekvencia

Csatorna sávszélességének hatása az jelge

Egy bináris jelforma és közelítése Fourier-sorokkal

Sávkorlátozott jelek (2)

Példa: vigyük át az előző példabeli bináris jelet egy telefonvonalon (BW=3000Hz) Használjunk különféle adatsebességeket (bs)

b/s	T (ms)	Alapharmonikus (Hz)	Elküldött harmonikusok száma	
300	26,67	37,5	80	
600	13,33	75	40	
1 200	6,67	150	20	
2 40 0	3,33	300	10	1
4800	1,67	600	5]
9600	0,83	1200	2	
19 200	0,42	2400	1	1
38 400	0,21	4800	0	

Minél nagyobb az adatsebesség, annál

- → nagyobb az alapharmonikus frekvenciája,
- → kevesebb harmonikust tud átvinni a csatorna
- → torzabb lesz az átvitt jel

A csatorna maximális adatsebessége (1) Zajmentes csatorna

- Nyquist tétele (mintavételi tétel)
 - Ha a jel sávszélessége kisebb B-nél, akkor másodpercenként 2B mintából a jel visszaállítható
 - Tehát nincs értelme több mintát venni, az sem tartalmaz több információt
- Ha a jelet V szintre kvantáljuk (tehát log₂ V bitet használunk), akkor a maximális adatsebesség:

$$2B \times \log_2 V \frac{bit}{s}$$

- PI.: bináris jel (V=2), B=3000Hz → max 6000b/s
- Ez csak zajmentes csatornára igaz!
 - Elvileg bármekkora lehet a sávszélesség, ha V-t növeljük
 - Ha zaj van jelen, akkor a kis különbségek elvesznek a zajban
 - A lehetséges jelszintek száma alacsonyabb. De mennyi?

A csatorna maximális adatsebessége (2) Zajos csatorna

Zajos csatorna esetén a Shannon formula igaz:

$$max.adatsebesség = B \times \log_2(1 + S/N) bit/s$$

- S/N: jel-zaj viszony
- PI.: ADSL vonal
 - $-B \cong 1MHz$ (letöltési oldal)
 - -S/N függ a távolságtól, 1-2km esetén $S/N \cong 40dB (= 10000)$
 - -Ekkor: $max.adatsebesség = 1MHz \times \log_2(10001) = 13Mbit/s$
 - Szolgáltatók 12Mbit/s-ot garantálnak

Digitális moduláció

Hogyan ábrázoljuk a biteket?

- Alapsávi átvitel
- Sávszélesség hatékony kihasználása
- Órajel visszaállítása
- Kiegyensúlyozott jelek
- Áteresztő sávú átvitel

Alapsávi átvitel

Vonali kódok: (a) a nyers bitek, (b) NRZ, (c) NRZI, (d) Manchester, (e) Bipoláris (AMI)

Sávszélesség hatékony kihasználása

- A sávszélesség sok esetben erősen korlátos
- Megoldás (lásd max. adatsebesség):
 - Használjunk több jelszintet!
 - Négy jelszint alkalmazásával egyszerre 2 bitet küldhetünk egyetlen szimbólummal
 - Működik, ha a vevőnél a jel elég erős ahhoz, hogy a 4 jelszint megkülönböztethető legyen (a jel-zaj viszony elég jó)
 - Adott adatsebességhez a jel változási sebessége fele lett, így a sávszélesség-igény csökkent ©
- Jelsebesség v. szimbólumsebesség (baud-rate):
 - a szimbólumok változási sebessége
- Adatsebesség (bit-rate):
 - Jelsebesség x szimbólumonkénti bitek száma

Órajel visszaállítása (1)

- A vevőnek tudnia kell, mikor ér véget egy szimbólum és mikor következik a következő
- NRZ esetén néha van változás, ehhez lehet egy helyi órát szinkronizálni
- De mi van, ha hosszú 1 vagy 0 sorozat jön?
- Megoldás:
 - Külön órajel vezeték ☺
 - Ügyes kódolás:
 - Manchester-kódolás
 - -Klasszikus Ethernet
 - -2x sávszélesség ⊗
 - Inverz NRZ
 - -USB
 - Sok nullára érzékeny
 - 4B/5B

Órajel visszaállítása (2)

- Minden 4 bites csoportnak feleltessünk meg egy 5 bites sorozatot
- Csak olyan kódokat használunk, amiben nincs 3 egymást követő 0
- 25% többlet (szemben a Manchester 100%-os többletével)

Data (4B)	Codeword (5B)	Data (4B)	Codeword (5B)
0000	11110	1000	10010
0001	01001	1001	10011
0010	10100	1010	10110
0011	10101	1011	10111
0100	01010	1100	11010
0101	01011	1101	11011
0110	01110	1110	11100
0111	01111	1111	11101

Kiegyensúlyozott jelek

- Kiegyensúlyozott jelek
 - A jel ugyanannyi ideig pozitív, mint negatív (rövid távon is)
 - Átlaga 0 (nincs DC komponense)
- Ilyen jeleknél könnyű a jelátmenetek meghatározása (órajel visszaállításához)
- Könnyű a vevők beállítása
- Egyszerű módszer:
 - A logikai 1-et két külön jelszinttel (+ és -) ábrázoljuk, a logikai 0-t pedig 0V-tal.
 - Ez a bipoláris kódolás

(b) NRZ

(e) Bipoláris kódolás [vagy alternáló jelinvertálás (Alternate Mark Inversion, AMI)]

Áteresztő sávú átvitel (1)

- Alapsávi átvitel
 - Jel: 0-tól B-ig
 - Sok esetben ez nem célszerű, vagy nem is lehetséges (pl. rádió)

- Áteresztő sávú átvitel
 - A jel sávszélessége B, de nem 0-tól kezdődik
 - Minden korábbi eredmény a maximális átviteli sebességre igaz itt is

Áteresztő sávú átvitel (2)

Főbb modulációs eljárások:

- Amplitúdóbillentyűzés (Amplitude Shift Keying)
- Frekvenciabillentyűzés (Frequency Shift Keying)
- Fázisbillentyűzés (Phase Shift Keying)

Fázisbillentyűzés:

- BPSK: 2 fázis (Bináris PSK)
- QPSK 4 fázis (kvadratúra PSK)

QAM

Kvadratúra amplitúdómoduláció

- (a) Bináris jel
- (b) ASK
- (c) FSK
- (d) BPSK

Áteresztő sávú átvitel (3)

Fázis- és amplitúdómoduláció kombinálható:

QAM: Kvadratúra amplitúdómoduláció

Áteresztő sávú átvitel (4)

Mely bitsorozatokat rendeljük a QAM szimbólumokhoz?

- Detektálásai hiba minél kevesebb bithibát okozzon
- Grey-kódolás: szomszédos szimbólum 1-1 bit távolságra vannak

1001 küldése esetén:

Pont	Dekódolt érték	Bithibák
Α	1101	0
В	110 <u>0</u>	1
C	1 <u>0</u> 01	1
D	11 <u>1</u> 1	1
E	<u>0</u> 101	1

Gray-kódolású QAM-16

Multiplexelés

A csatornákon egyszerre több jelet is továbbítunk

- Frekvenciaosztásos multiplexelés
- Időosztásos multiplexelés
- Kódosztásos multiplexelés
- Hullámhossz-osztásos multiplexelés

Frekvenciaosztásos multiplexelés (1)

Minden felhasználó saját frekvenciasávot kap

Pl. az FM rádió is ilyen elven működik

A tartománynak csak egy részét vesszük igénybe (védősáv), hogy a csatornák ne zavarják egymást

(a) Az eredeti sávszélességek (b) A frekvenciában eltolt sávszélességek (c) A multiplexel csatorna

Frekvenciaosztásos multiplexelés (2)

FDM védősáv alkalmazása nélkül:

- A sávszűrőket úgy alakítjuk ki, hogy a többi sáv közepén az átvitel pontosan 0 legyen
- Ez az ortogonális frekvenciaosztásos multiplexelés (OFDM)
- Az alvivőket pontosan a sáv közepén mintavételezzük

Ortogonális frekvenciaosztásos multiplexelés. A sötét átviteli függvény mutatja az ${\sf f}_3$ frekvenciájú vevőhöz kapcsolódó szűrőt.

Időosztásos multiplexelés

Minden felhasználó időszeleteket kap

Időosztásos multiplexelés

Kódosztásos multiplexelés (1)

Code Division Multiplexing - CDMA

- A csatornákon egyszerre több jelet is továbbítunk, de
 - itt nincs frekvenciaosztás (ugyanabban a sávban)
 - itt nincs időosztás (egyszerre történik az adás).
 - Hogyan lehet megkülönböztetni a csatornákat?
 - Minden csatornának saját kódja van
- Minden bitet több töredékre (chip) osztunk.
 - Tipikusan 64 vagy 128 chip/bit (m), egy chip +1 vagy -1
- Ezek sorozata a töredékszekvencia (= kód)
 - Logikai 1 bit = töredékszekvencia (S).

• Pl.
$$S = (-1 + 1 - 1 + 1)$$
, itt $m = 4$.

– Logikai 0 bit = negált töredékszekvencia (\bar{S})

• Pl.
$$\bar{S} = (+1 - 1 + 1 - 1)$$

Kódosztásos multiplexelés (2)

- Szabályok a kód kiválasztására (Walsh-kód)
 - Minden $S \neq T$ kódpárra: $S \cdot T = \frac{1}{m} \sum_{i=1}^{m} S_i T_i = 0$.

• PI.:
$$S \cdot T = \frac{1}{4}(1+1-1-1) = 0$$

PI.

$$S = (-1 + 1 - 1 + 1)$$

 $T = (-1 + 1 + 1 - 1)$

- Minden S kódra $S \cdot S = \frac{1}{m} \sum_{i=1}^{m} S_i T_i = 1$ és $S \cdot \bar{S} = \frac{1}{m} \sum_{i=1}^{m} S_i T_i = -1$ • Pl.: $S \cdot S = \frac{1}{4} (1 + 1 + 1 + 1) = \frac{4}{4} = 1$, $S \cdot \bar{S} = \frac{1}{4} (-1 - 1 - 1 - 1) = \frac{-4}{4} = -1$
- Dekódolás
 - A vett jelsorozatot skalárisan szorozzuk a saját kóddal (S)
 - +1: logikai 1, -1: logikai 0, 0: nincs adás
 - PI. 3 állomás egyszerre ad
 - A: 1-et ad (A)
 - B: 0-et ad (\bar{B})
 - C: 1-et ad (C)
 - A vett jel: $A + \overline{B} + C$
 - A C adás dekódolása:

•
$$(A + \overline{B} + C) \cdot C = A \cdot C + \overline{B} \cdot C + C \cdot C = 0 + 0 + 1 = 1 \rightarrow logikai 1$$

– A B adás dekódolása:

•
$$(A + \overline{B} + C) \cdot B = A \cdot B + \overline{B} \cdot B + C \cdot B = 0 - 1 + 0 = -1 \Rightarrow$$
 logikai 0

Kódosztásos multiplexelés (3)

$$A = (-1 -1 -1 +1 +1 -1 +1 +1)$$

$$B = (-1 -1 +1 -1 +1 +1 +1 -1)$$

$$C = (-1 +1 -1 +1 +1 +1 -1 -1)$$

$$D = (-1 +1 -1 -1 -1 -1 +1 -1)$$
(a)

C adása:

Logikai 1
$$S_1 = \overline{C}$$
 = $(-1 + 1 - 1 + 1 + 1 + 1 - 1 - 1)$
Logikai 1 $S_2 = \overline{B} + \overline{C}$ = $(-2 \ 0 \ 0 \ 0 + 2 + 2 \ 0 - 2)$
- $S_3 = \overline{A} + \overline{B}$ = $(0 \ 0 - 2 + 2 \ 0 - 2 \ 0 + 2)$
Logikai 1 $S_4 = \overline{A} + \overline{B} + \overline{C}$ = $(-1 + 1 - 3 + 3 + 1 - 1 - 1 + 1)$
Logikai 1 $S_5 = \overline{A} + \overline{B} + \overline{C} + \overline{D} = (-4 \ 0 - 2 \ 0 + 2 \ 0 + 2 - 2)$
Logikai 0 $S_6 = \overline{A} + \overline{B} + \overline{C} + \overline{D} = (-2 - 2 \ 0 - 2 \ 0 - 2 + 4 \ 0)$


```
\begin{array}{c} S_1 \bullet C = [1+1+1+1+1+1+1+1]/8 = 1 \\ S_2 \bullet C = [2+0+0+0+2+2+0+2]/8 = 1 \\ S_3 \bullet C = [0+0+2+2+0-2+0-2]/8 = 0 \\ S_4 \bullet C = [1+1+3+3+1-1+1-1]/8 = 1 \\ S_5 \bullet C = [4+0+2+0+2+0-2+2]/8 = 1 \\ S_6 \bullet C = [2-2+0-2+0-2-4+0]/8 = -1 \\ \end{array} \begin{array}{c} \text{Logikai 1} \\ \text{Logikai 0} \\ \text{Logikai 0} \end{array}
```

- (a) Töredékszekvenciák az A,B,C,D állomáshoz
- (b) A töredékszekvenciák időfüggvényei
- (c) Hat példa adás
- (d) A C állomás adásának dekódolása a hat példában

Hullámhossz-osztásos multiplexelés

Wavelength Division Multiplexing - WDMA Hasonló az FDM-hez, de üvegszálakra Különböző csatornáknak különböző a hullámhossza (színe) Hatalmas átviteli sebesség. Pl.:

- 64 csatorna
- Egyenként 40 Gb/s
- Összesen: 2.56 Tb/s

Példák

- Az előfizetői hurok
 - -(A)DSL
 - Kábelhálózat
 - Üvegszál
- Trönkök
 - -T1
 - -SONET

Digitális előfizető vonal (DSL)

Digital Subscriber Lines - DSL

A telefonvonalat (UTP) használja Az aszimmetrikus változat terjedt el

- ADSL
- Nagy letöltési sávszélesség
- Kis feltöltési sávszélesség
- A sebesség max. 12 Mb/s

ADSL2: OFDM, max. 1.1MHz

DSL-en elérhető adatsebesség Cat-3 UTP kábellel a távolság függvényében

216 csatorna

32 csatorna

Szélessávú Internet kábelhálózaton (1)

- Üvegszál-koax hibrid (Hybrid Fiber Coax - HFC)
 - Nagy távolságokon a csomópontig: üvegszál
 - Házakhoz: koax

(a) HFC:

- A koax-on osztozik több háztartás
- Egymással versengenek

(b) ADSL:

- Mindenkinek saját sávszélessége van
- Nincs versengés a szomszédokkal

Szélessávú Internet kábelhálózaton (2)

- FDM alkalmazása
 - Hagyományos TV
 - Aszimmetrikus adat:
 - Kis sávszélesség adat feltöltésre
 - Nagy sávszélesség adat letöltésre

Szélessávú Internet kábelhálózaton (3)

- Kábelmodem:
 - FDM, 6MHz vagy 8MHz széles csatornákon
 - Letöltés:
 - QAM-64 vagy QAM-256 (kábelminőségtől függően)
 - Fix 204B hosszú csomagok (184 B hasznos). NINCS VERSENY
 - Feltöltés
 - Itt több a zaj, konzervatívabb kódolás: QPSK QAM-128
 - Szinkron mindegyik adó
 - Miniszeletek (minislot): 8 B. Egyik kijelölt szelet kérésre szolgál
 - Adásigény esetén a modem a méretnek megfelelő számú miniszeletet igényel
 - Fejállomás kijelöli a modem számára lefoglalt miniszeleteket, ezt nyugtában elküldi.
 - Egy kérő miniszelethez több modem is lehet rendelve, ilyenkor ütközés lehet
 - CDMA: nincs ütközés
 - ALOHA (időszeletelt, 2-es exponenciális visszalépéssel)

Kábel vagy ADSL?

Kábel:

- + koaxot használ a felhasználóig (jó sávszélesség)
- Az letöltött adat mindenkihez eljut (kevésbé biztonságos)
- A sávszélességen a felhasználók osztoznak (változhat)

• ADSL:

- + Minden felhasználónak dedikált sávszélesség
- + pont-pont kapcsolat, nincs adatszórás
- Csavart érpárt használ (kisebb sávszélesség)

Üvegszál a lakásig

Fiber to the Home (FttH)

Gigabites sávszélesség

Kb. 100 házanként 1 üvegszál kell

Egy letöltő hullámhossz

- Egyszerű: központból egyetlen jelfolyam (frekvenciavágó osztja szét)
- Titkosítás kell: mindenki mindenki adatát látja

Egy feltöltő hullámhossz

- TDM kell az egyes felhasználók között
- Eszköz időszeletet kér, központ időszeletet ad. Ekkor tölthet fel.

T-vivő (1)

Több hanghívás átvitele a trönkökön keresztül Digitális jelek multiplexelése:

- Minden hanghívás 8kHz frekvenciával mintavételezve, 8bit mintánként
- Egy T1 vivő 24 beszédcsatornát nyalábol össze
- 24x8bit+1 vezérlőbit = 193 bit $125\mu s$ -onként

Sebesség: 193 x 8000 = 1.544Mb/s (ebből 8kB/s jelzésre fordítódik)

T-vivő (2)

A T1 vivőt magasabb rendű vivőkké lehet multiplexelni Folyamokat "összefésüljük"

T1-T2: bájtonkéntFölötte: bitenként

Optikai hálózatok multiplexelése

Optikai (üvegszálas) adattovábbítás szabványai:

- Synchronous Optical Network (SONET)
- Synchronous Digital Hierarchy (SDH)

SONET keret: 810 B (9 x 90)

- Másodpercenként 9 x 90 x 8 x 8000 = 51.84 Mb/s (ebből felhasználói: 9x87x8x8000=50.112Mb/s)
- A kereteket folyamatosan adjuk (akkor is, ha nincs adat): szinkron
- A hasznos adat (SPE: Synchronous Payload Envelope) bárhol kezdődhet a keretben

Kapcsolási módok (1)

- (a) Vonalkapcsolás (vagy áramkörkapcsolás)
 - Pl.: hagyományos telefonhálózat
 - Összeköttetés létrehozása az adatok továbbítása előtt. Adatáramlás zökkenőmentes
- (b) Csomagkapcsolás
 - PI.: VOIP
 - Nincs ÖK létrehozás. Az útvonalválasztókban változó nagyságú késleltetés lehet

Kapcsolási módok (2)

Tulajdonság	Vonalkapcsolt	Csomagkapcsolt
Összeköttetés kiépítése	Szükséges	Nem szükséges
Dedikált fizikai útvonal	lgen	Nem
Minden csomag ugyanazon az útvonalon halad	lgen	Nem
A csomagok sorrendben érkeznek meg	lgen	Nem
Egy kapcsoló kiesése végzetes	lgen	Nem
Rendel kezésre ál ló sávszéle sség	Rögzített	Változó
A torlódások lehetséges ideje	Összeköttetés létesítésekor	Minden csomagnál
Veszhet kárba sávszélesség	lgen	Nem
Tárol-és-továbbít átvitel	Nem	Igen
Számlázás	Perc alapon	Csomag alapon