REGRESIA LINIARĂ MULTIPLĂ

TEMATICA C6

- 1. Estimarea indicatorilor de corelație
- 2. Raportul de determinație ajustat
- 3. Testarea indicatorilor de corelație
- 4. Testarea influenței marginale a unei variabile
- 5. Utilitatea modelului de regresie cu variabile standardizate Exemple

Pentru un *model de regresie liniară multiplă*, pot fi determinati următorii coeficienți de corelație:

- coeficienți de corelație simplă între variabila dependentă și fiecare variabilă independentă (coeficienți bivariați r_{YX});
 - coeficienți de corelație parțială $(r_{YX_1.X_2}; r_{YX_2.X_1}...)$
- coeficientul de corelație multiplă (r) și coeficientul de determinație multiplă (R^2) .

Coeficienți de corelație bivariată (r_{yxi})

Pentru un model liniar de forma:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \varepsilon_i$$

există trei coeficienți de corelație bivariată:

$$r_{y1} = \frac{n\sum_{i} x_{1i} y_{i} - \sum_{i} x_{1i} \sum_{i} y_{i}}{\sqrt{[n\sum_{i} x_{1i}^{2} - (\sum_{i} x_{1i})^{2}][n\sum_{i} y_{i}^{2} - (\sum_{i} y_{i})^{2}]}}$$

$$r_{y2} = \frac{n\sum_{i} x_{2i} y_{i} - \sum_{i} x_{2i} \sum_{i} y_{i}}{\sqrt{[n\sum_{i} x_{2i}^{2} - (\sum_{i} x_{2i})^{2}][n\sum_{i} y_{i}^{2} - (\sum_{i} y_{i})^{2}]}}$$

$$r_{12} = \frac{n\sum_{i} x_{1i} x_{2i} - \sum_{i} x_{1i} \sum_{i} x_{2i}}{\sqrt{[n\sum_{i} x_{1i}^{2} - (\sum_{i} x_{1i})^{2}][n\sum_{i} x_{2i}^{2} - (\sum_{i} x_{2i})^{2}]}}$$

Coeficienți de corelație si de determinatie parțială

... și trei *coeficienți de corelație parțială* calculați cu ajutorul coeficienților de corelație bivariată:

$$r_{y1.2} = \frac{r_{y1} - r_{y2}r_{12}}{\sqrt{(1 - r_{y2}^2)(1 - r_{12}^2)}} \qquad r_{12.y} = \frac{r_{12} - r_{y1}r_{y2}}{\sqrt{(1 - r_{y1}^2)(1 - r_{y2}^2)}} \qquad r_{y2.1} = \frac{r_{y2} - r_{y1}r_{12}}{\sqrt{(1 - r_{y1}^2)(1 - r_{12}^2)}}$$

Corelația parțială $(r_{y1.2})$ măsoară dependența partiala dintre doua variabile $(y \text{ si } x_1)$, considerând influența celeilalte variabile din model (x_2) constantă, atat in raport cu variabila dependenta (r_{y2}) cat si in raport cu variabila independenta (r_{12}) .

Coeficientul de determinație parțială ($r^2_{y_1,2}$) măsoară cat la suta din variatia lui Y a ramas neexplicata din modelul dintre Y si X_2 si este eplicata prein introducerea in model a variabilei X_1 .

În funcție de numărul variabilelor a căror influență este izolata, coeficienții de corelație parțială pot fi **de ordinul întâi** (pentru o variabilă izolată), de **ordinul doi** (pentru două variabile) etc.

Coeficientul de corelație multiplă (r)

Coeficientul de corelație multiplă (r) se calculează numai pentru modelele multiple liniare și se exprimă cu ajutorul coeficienților de corelație simplă dintre variabilele perechi.

Astfel, în cazul corelației dintre o *variabilă rezultativă Y* și două *variabile independente* X_1, X_2 , la nivelul unui eșantion, **coeficientul de corelație multiplă**, notat cu **r**, se calculează după relația:

$$r = \sqrt{\frac{r_{y1}^2 + r_{y2}^2 - 2r_{y1}r_{y2}r_{12}}{1 - r_{12}^2}} \Leftrightarrow$$

$$r = \sqrt{r_{y1}^2 + (1 - r_{y1}^2)r_{y2.1}} \Leftrightarrow r = \sqrt{r_{y2}^2 + (1 - r_{y2}^2)r_{y1.2}}$$

Coeficientul de corelație multiplă (r) este un indicator care masoara intensitatea legaturii dintre variabila dependenta si toate variabilele independete cuprinse in model.

Raportul de determinație și raportul de corelație multiplă

Parametri

$$\eta^{2} = \frac{\sum_{i} (y_{x_{i}} - \overline{y})^{2}}{\sum_{i} (y_{i} - \overline{y})^{2}} = \frac{V_{E}}{V_{T}} = 1 - \frac{V_{R}}{V_{T}} \implies \eta = \sqrt{\eta^{2}}$$

Estimatori

$$\hat{\eta}^2 = \frac{\hat{V}_E}{\hat{V}_T} = 1 - \frac{\hat{V}_R}{\hat{V}_T} = 1 - \frac{\sum_{i} \mathcal{E}_i^2}{\sum_{i} (y_i - \overline{y})^2} \implies \hat{\eta} = \sqrt{\hat{\eta}^2}$$

Estimaţiile

$$R^{2} = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum_{i}^{\infty} e_{i}^{2}}{\sum_{i}^{\infty} (y_{i} - \overline{y})^{2}} = R = \sqrt{R^{2}}$$

Estimatorul ajustat a raportului de determinatie

Adjusted R square

$$\overline{R}^{2} = 1 - \frac{RMS}{TMS} = 1 - \frac{\frac{RSS}{n-k}}{\frac{TSS}{n-1}} = 1 - \frac{RSS}{TSS} = 1 - (1 - R^{2}) \frac{n-1}{n-k}$$

$$R^{2} = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS} = > \frac{RSS}{TSS} = 1 - R^{2}$$

Se observă că $\overline{R}^2 < R^2$ pentru k>1.

8. Testarea indicatorilor de corelaţie

Raportul de determinație si raportul de corelatie se testează cu testul F după algoritmul prezentat la modelul liniar simplu, ținând cont de faptul că k=p+1 reprezintă numărul parametrilor din noul model ($F_{th}=F_{\alpha,\,k-1,\,n-k}$)

Coeficienții de corelație se testează cu ajutorul testului t după algoritmul prezentat la modelul liniar simplu, ținând cont de faptul că $\mathbf{k=p+1}$ reprezintă numărul parametrilor din noul model ($\mathbf{t_{th}} = \mathbf{t_{\alpha/2, n-k}}$)

Testarea influenței marginale a unei variabile independente, nou introduse in model, asupra variabilei dependente

(Metoda intrarilor)

$$y_i = \beta_0 + \beta_1 x_{1i} + \epsilon_i (old) \xrightarrow{+x_{2i}} y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \epsilon_i (new)$$

1. Formularea ipotezelor

H_o: variabila independentă nou introdusă în model nu are o influență semnificativă asupra variației variabilei dependente

H₁: variabila independentă nou introdusă în model are o influență semnificativă asupra variației variabilei dependente

2. Fixarea pragului de semnificație α =0,05

3. Alegerea statisticii test

$$F_{\text{calc}} = \frac{\hat{V}_{E_{\text{new}}} - \hat{V}_{E_{\text{old}}}}{\hat{V}_{R_{\text{new}}}} \cdot \frac{n - k_{\text{new}}}{k_{\text{new}} - k_{\text{old}}} = \frac{\hat{\eta}^2_{\text{new}} - \hat{\eta}^2_{\text{old}}}{1 - \hat{\eta}^2_{\text{new}}} \cdot \frac{n - k_{\text{new}}}{k_{\text{new}} - k_{\text{old}}}$$

4. Calcularea statisticii test

$$F_{\text{calc}} = \frac{\text{ESS}_{\text{new}} - \text{ESS}_{\text{old}}}{RSS_{new}} \cdot \frac{n - k_{new}}{k_{new} - k_{old}} = \frac{R^2_{new} - R^2_{old}}{1 - R^2_{new}} \cdot \frac{n - k_{new}}{k_{new} - k_{old}}$$

5. Criterii de decizie:

Dacă
$$F_{calc} \le F_{\alpha, k_{new}-k_{old}, n-k_{new}} =>$$
nu respingem H_o (AH $_o$) cu o prob. de 1-α. Dacă $F_{calc} > F_{\alpha, k_{new}-k_{old}, n-k_{new}} =>$ se respinge H_o (RH $_o$) cu un risc asumat α.

Testarea influenței marginale a unei variabile independente, excluse din model, asupra variabilei dependente

(Metoda iesirilor)

$$y_{i} = \beta_{0} + \beta_{1}x_{1i} + \beta_{2}x_{2i} + \varepsilon_{i} \ (old) \xrightarrow{-x_{2i}} y_{i} = \beta_{0} + \beta_{1}x_{1i} + \varepsilon_{i} \ (new)$$

1. Formularea ipotezelor

H_o: variabila independentă nou scoasa din model nu are o influență semnificativă asupra variației variabilei dependente

H₁: variabila independentă nou scoasă din model are o influență semnificativă asupra variației variabilei dependente

2. Fixarea pragului de semnificație α=0,05

3. Alegerea statisticii test

$$F_{\text{calc}} = \frac{\hat{V}_{E_{old}} - \hat{V}_{E_{new}}}{\hat{V}_{R_{old}}} \cdot \frac{n - k_{old}}{k_{old} - k_{new}} = \frac{\hat{\eta}^{2}_{old} - \hat{\eta}^{2}_{new}}{1 - \hat{\eta}^{2}_{old}} \cdot \frac{n - k_{old}}{k_{old} - k_{new}}$$

4. Calcularea statisticii test

$$F_{\text{calc}} = \frac{\text{ESS}_{\text{old}} - \text{ESS}_{\text{new}}}{RSS_{old}} \cdot \frac{n - k_{old}}{k_{old} - k_{\text{new}}} = \frac{R^2_{old} - R^2_{new}}{1 - R^2_{old}} \cdot \frac{n - k_{old}}{k_{old} - k_{\text{new}}}$$

5. Criterii de decizie:

Dacă
$$F_{calc} \le F_{\alpha, k_{new}-k_{old}, n-k_{new}} =>$$
nu respingem H_o (A H_o) cu o prob. de 1- α . Dacă $F_{calc} > F_{\alpha, k_{new}-k_{old}, n-k_{new}} =>$ se respinge H_o (R H_o) cu un risc asumat α .

Utilitatea modelului de regresie cu variabile standardizate

Modelul liniar multiplu cu variabile standardizate permite compararea coeficienților de regresie din model; fiecare coeficient arătând impactul partial al variației cu o unitate a variabilei independente standardizate asupra variabilei dependente standardizate.

Valoarea coeficientilor de regresie din modelul standardizat se interpreteaza ca abateri standard pentru variabila dependenta.

Aceasta este o modalitate de ierarhizare a variabilelor dependente în funcție de importanța lor în model.

Cel mai mare coeficient in valoare absoluta indica cea mai mare influenta asupra variabilei dependente, iar semnul coeficientului arata sensul acestei influente.

EXEMPLUL 1:

Var. dependenta:

Salariul

Var. independente (predictori):

Nr. de ani de pregatire, Vechimea in munca

Model Summary

					Change Statistics				
			Adjusted	Std. Error of	R Square				
Model	R	R Square	R Square	the Estimate	Change	F Change	df1	df2	Sig. F Change
1	,910 ^a	,829	,807	285,65322	,829	38,718	2	16	,000

a. Predictors: (Constant), Nr. ani pregatire, Vechime in munca (ani)

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	6318646	2	3159323,188	38,718	,000 ^a
	Residual	1305564	16	81597,759		
	Total	7624211	18			

a. Predictors: (Constant), Nr. ani pregatire, Vechime in munca (ani)

Coefficientsa

		_	lardized cients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	-545,101	224,894		-2,424	,028
	Vechime in munca (ani)	84,315	25,550	,443	3,300	,005
	Nr. ani pregatire	85,298	20,394	,562	4,182	,001

a. Dependent Variable: Salariul (RON)

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,910 ^a	,829	,807	285,65322

a. Predictors: (Constant), Nr. ani pregatire, Vechime in munca (ani)

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	6318646	2	3159323,188	38,718	,000 ^a
	Residual	1305564	16	81597,759		
	Total	7624211	18			

a. Predictors: (Constant), Nr. ani pregatire, Vechime in munca (ani)

b. Dependent Variable: Salariul (RON)

Coefficientsa

		Unstandardized Coefficients		Standardized Coefficients				Correlations	
Model		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part
1	(Constant)	-545,101	224,894		-2,424	,028			
	Vechime in munca (ani)	84,315	25,550	,443	3,300	,005	,801	,636	,341
	Nr. ani pregatire	85,298	20,394	,562	4,182	,001	,844	,723	,433

a. Dependent Variable: Salariul (RON)

Corelatii bivariate și partiale

Correlations

		Salariul (RON)	Vechime in munca (ani)	Nr. ani pregatire
Salariul (RON)	Pearson Correlation	1	.801**	.844**
	Sig. (2-tailed)		.000	.000
	N	19	19	19
Vechime in munca (ani)	Pearson Correlation	.801**	1	.637**
	Sig. (2-tailed)	.000		.003
	N	19	19	19
Nr. ani pregatire	Pearson Correlation	.844**	.637**	1
	Sig. (2-tailed)	.000	.003	
	N	19	19	19

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlations

Control Variables			Salariul (RON)	Vechime in munca (ani)
Nr. ani pregatire	Salariul (RON)	Correlation	1.000	.636
		Significance (2-tailed)	•0	.005
		df	0	16
	Vechime in munca (ani)	Correlation	.636	1.000
		Significance (2-tailed)	.005	Į.
		df	16	0

Correlations Correlations

Control Variable	S	Vechime in munca (ani)	Nr. ani pregalire	
Salariul (RON)	Yachima in munca (ani)	Correlation	1.000	- 120
		Significance (2-tailed)		.635
		df	0	1.5
	Nr. ani pregatire	Correlation	120	1.000
		Significance (2-tailed)	.635	
		df	16	D

Control Variables			Nr. ani pregatire	Salariul (RON)	
Vechime in munca (ani)	Nr. ani pregalire	Correlation Significance (2-tailed)	1.000	.723	
		of of	0	16	
	Salanul (RON)	Correlation	.723	1.000	
		Significance (2-failed)	.081	41	
		Cf .	16	0	

EXEMPLUL 2:

Var. dependenta:

Greutate(kg)

Var. independente:

Inaltime (cm), Consum zilnic paine(g)

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.772ª	.596	.577	4.86988

a. Predictors: (Constant), PAINE/zi(g), INALTIMEA (CM)

b. Dependent Variable: GREUTATEA (KG)

ANOVA^a

Model	2	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1471.049	2	735.525	31.014	.000b
	Residual	996.062	42	23.716		
	Total	2467.111	44			

a. Dependent Variable: GREUTATEA (KG)

b. Predictors: (Constant), PAINE/zi(g), INALTIMEA (CM)

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		si s	Correlations		
Model		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part
1	(Constant)	-67.093	16.372		-4.098	.000			38
	INALTIMEA (CM)	.729	.099	.726	7.388	.000	.741	.752	.724
	PAINE/zi(g)	.012	.006	.218	2.221	.032	.268	.324	.218

a. Dependent Variable: GREUTATEA (KG)

Partial Regression Plot

Partial Regression Plot

Dependent Variable: GREUTATEA (KG)

Correlations

Control Varia	ables		INALTIMEA (CM)	GREUTATEA (KG)	PAINE/zi(g)
none a	INALTIMEA (CM)	Correlation	1,000	741	.068
		Significance (2-tailed)		.000	.658
		df	0	43	43
	GREUTATEA (KG)	Correlation	.741	1.000.	.268
		Significance (2-tailed)	.000		.076
		df	43	0	43
	PAINE/2f(g)	Correlation	.089	.268	1.000
		Significance (2-tailed)	.658	.076	line activity
		df	43	43	0
PAINE(z)(g)	INALTIMEA (CM)	Correlation	1,000	752	
		Significance (2-tailed)		.000	
		df	0	42	
	GREUTATEA (KG)	Correlation	.752	1.000	
		Significance (2-tailed)	.000		İ
		df	42	0	

a. Cells contain zero-order (Pearson) correlations.

Correlations

Control Variables			GREUTATEA (KG)	PAINE/zi(g)	INALTIMEA (CM)
-none- ^a	GREUTATEA (KG)	Correlation	1.000	.268	.741
		Significance (2-tailed)		.076	.000
		df	0	43	43
	PAINE/zi(g)	Correlation	.268	1.000	.068
		Significance (2-tailed)	.076		.658
		df	43	0	43
	INALTIMEA (CM)	Correlation	.741	.068	1.000
		Significance (2-tailed)	.000	.658	
		df	43	43	0
INALTIMEA (CM)	GREUTATEA (KG)	Correlation	1.000	.324	
		Significance (2-tailed)	¥3	.032	
		df	0	42	
	PAINE/zi(g)	Correlation	.324	1.000	
		Significance (2-tailed)	.032		
		df	42	0	

a. Cells contain zero-order (Pearson) correlations.

EXEMPLUL 3

Y: Nota examen Econometrie

X1: Nota examen Matematica

X2: Nota examen Statistica

$Model \, Summary^c$

					Change Statistics					
		R	Adjusted	Std. Error	R Square	${f F}$			Sig. F	
Model	R	Square	R Square	of the Estimate	Change	Change	df1	df2	Change	
1	.863ª	·745	.716	.8943	.745	26.241	1	9	.001	
2	.898 ^b	.806	.757	.8276	.061	2.509	1	8	.152	

ANOVA^a

M	Iodel	Sum of Squares	df	Mean Square	${f F}$	Sig.
1	Regression	20.985	1	20.985	26.241	.001 ^b
	Residual	7.197	9	.800		
	Total	28.182	10			
2	Regression	22.703	2	11.351	16.575	.001 ^c
	Residual	5.479	8	.685		
	Total	28.182	10			

a. Dependent Variable: ECONOMETRIE

b. Predictors: (Constant), MATE

 $c.\ Predictors:\ (Constant),\ MATE,\ STAT$

Coefficients^a

		Unstandardize d Coefficients		Standardize d Coefficients			Correlations		
Model		В	Std. Error	Beta	t	Sig.	Zero- order	Partial	Part
1	(Constant)	2.167	1.033		2.098	.065			
	MATE	.685	.134	.863	5.123	.001	.863	.863	.863
2	(Constant)	1.604	1.020		1.573	.154			
	MATE	.442	.197	·557	2.245	.055	.863	.622	.350
	STAT	.307	.194	.393	1.584	.152	.827	.489	.247

a. Dependent Variable: ECONOMETRIE

Correlations

ľy2.1 ECONOM MATE (X1) STAT (X2) **(Y)** MATE (X1) Pearson Correlation .778* .863* Sig. (2-tailed) .005 .001 11 11 STAT (X2) .778^{*} Pearson Correlation .827 Sig. (2-tailed) .002 .005 11 **ECONOMETRI** Pearson Correlation .863^{*} .827 Sig. (2-tailed) **E (Y)** .001 .002 11

^{**.} Correlation is significant at the 0.01 level (2-tailed).

