Liaison chimique

TD n°1

	1. Formules	s de Lewis
SCl ₂ , SiBr ₄ , H ₂ Se, N	le de Lewis des molécules suiva NI ₃ , H ₂ O ₂ (peroxyde), CH ₃ OCH ₃ ,	antes (en précisant le nombre de liaisons σ et π): , N ₂ H ₂ , COCl ₂ , SiO ₂ , C ₂ H ₃ Cl, HCO ₂ H, H ₂ CO, AlCl ₃ , SO ₄ (en respectant la règle de l'octet).
	2. L'oz	zone
-	ır la molécule d'ozone (O ₃) les dif elles éventuellement portées par	fférentes structures de Lewis possibles. Indiquer les
	-O) = 1,28 Å) et l'énergie de forn	s, calculer la longueur de la liaison O-O (expérimen- nation d'une molécule d'ozone (expérimentalement
c. En déduire la	structure la plus probable pour (O ₃ .
On donne :		
	$d(OO_{simple}) = 1,46 \text{ Å}$ $E(OO_{simple}) = -146 \text{ kJ.mol}^{-1}$	$d(OO_{double}) = 1,20 \text{ Å}$ $E(OO_{double}) = -469 \text{ kJ.mol}^{-1}$
	3. Dioxyde c	de carbone
_	mol $^{-1}$. L'énergie de formation d'u	CO_2 sachant que l'énergie de formation expérimen- une double liaison C=O est de -173 kcal.mol $^{-1}$.
La avenamina d	-	amine
•	a pour formule H ₂ NCN. es formules mésomères pour cett	te molécule.
_		

- **b.** Déterminer la géométrie de ces formes limites (formule VSEPR), représenter les dans l'espace.
- **c.** Expérimentalement, on note seulement une faible pyramidalisation du groupement amino, ainsi qu'une faible barrière d'inversion. Que pouvez vous en conclure?

1. VSEPR_

- **a.** Déterminer la géométrie des molécules suivantes dans le cadre de la VSEPR en précisant la formule $AX_nE_m: NH_4^+$, $GaCl_3$, H_3O^+ , PF_2^+ , KrF_2 , H_2CO , CH_3CI , AsF_5 , CH_3NH_2 , CH_3COCH_3 .
- **b.** Écrire les structures de Lewis des composés suivants : SNF₃, POF₃ et SiF₄. Laquelle de ces molécules a un moment dipolaire nul?
- **c.** Attribuer à chacun des angles F-Si-F, F-P-F et F-S-F dans les molécules précédentes, sa valeur à prendre parmi les valeurs suivantes : 98°, 102° et 109°.

2. Orbitales hybrides

Déterminer le mode d'hybridation des atomes dans les molécules suivantes et donner une représentation de ces molécules en utilisant le modèle des orbitales atomiques hybrides : CH₃CN, H₂CO.

3. Acide nitrique et acide carbonique _____

L'acide nitrique HNO₃ réagit avec l'eau suivant la réaction :

$$HNO_3 + H_2O \longrightarrow H_3O^+ + NO_3^-$$
.

Le même phénomène se produit pour l'acide carbonique H₂CO₃ en deux étapes :

$$H_2CO_3 + H_2O \longrightarrow H_3O^+ + HCO_3^-$$

$$HCO_3^- + H_2O \longrightarrow H_3O^+ + CO_3^{2-}$$
.

- **a.** Donner les différentes formules mésomères en indiquant les charges formelles pour les deux acides et les deux ions (nitrate et carbonate).
- b. Que peut on en déduire pour les longueurs de liaisons NO et CO dans ces composés?
- c. Donner les géométries prédites dans le cadre de la VSEPR.

4. VSEPR et électronégativité _____

- a. Déterminer la géométrie des molécules suivantes : IF, IF₃, IF₅ et IF₇.
- b. Calculer l'électronégativité de l'iode dans chacun des fluorures sachant que leurs énergies de liaison (de la liaison I-F) valent respectivement 231, 268, 272 et 278 kJ.mol⁻¹.

On rappelle la relation existant entre les énergies de liaison et les électronégativités de Pauling :

$$\Delta H(A - B) = \frac{1}{2}(\Delta H(A - A) + \Delta H(B - B)) + 96,5(\chi_A - \chi_B)^2$$

Dans cette formule les énergies de liaison doivent être exprimées en kJ mol-1. Les énergies de liaison de F_2 et I_2 valent respectivement 155 et 149 kJ.mol⁻¹, l'électronégativité du fluor étant χ_F = 3,98.

c. Comment varie l'électronégativité calculée avec l'état d'oxydation de l'iode? Ce résultat était-il prévisible? Le fait d'attribuer une électronégativité fixe à l'iode est-il justifié?

_____1. Recouvrement _____

Représenter l'évolution qualitative du recouvrement de deux OA $2p_{\sigma}$ en fonction de la distance entre les noyaux.

_____ 2. Énergie de liaison _____

On considère la molécule HeH⁻. Tracer son diagramme énergétique.

Évaluer son énergie électronique de liaison.

Montrer que cette molécule n'est pas stable vis-à-vis de la dissociation.

$_$ 3. Évaluation de eta $_$

Évaluer en eV la valeur de β pour la molécule H_2 (hypothèse S=0).

On donne:

$$E_{liaison totale} = -432 \text{ kJ.mol}^{-1}$$

$$d_{HH} = 0.74 \text{ Å}$$

1 hartree =
$$2623.8 \text{ kJ.mol}^{-1} = 27.21 \text{ eV}$$

1 bohr =
$$0.529 \text{ Å}$$

_____ 4. HeH⁺ _____

Un calcul réalisé sur l'ion HeH⁺ aboutit aux expressions suivantes pour les OM :

$$\phi = 0.877 \times 1s_{He} + 0.202 \times 1s_{H}$$

 $\phi^* = -0.798 \times 1s_{He} + 1.168 \times 1s_{H}$

- a. Justifier la taille relative des coefficients dans les deux OM.
- **b.** Les expressions sont normalisées. En déduire la valeur du recouvrement entre 1s_H et 1s_{He}.
- **c.** Vérifier par le calcul que les OM sont orthogonales.
- **d.** Calculer les charges atomiques nettes.

1. Énergie de dissociation

- a. Tracer pour la molécule F₂ son diagramme énergétique dans le cadre de la théorie des OM.
- **b.** Déterminer sa configuration électronique fondamentale.
- c. En déduire un schéma de Lewis pour F₂.
- d. La molécule est-elle diamagnétique ou paramagnétique?
- e. On ionise la molécule F2. Quelle sera la molécule qui possède la plus grande énergie de dissociation, F_2 ou F_2^+ ? Justifier à l'aide des indices de liaisons.

2. NO

Un calcul précis sur NO aboutit au diagramme énergétique joint.

- a. Identifier chacune des OM de ce diagramme.
- b. Déduisez-en le nombre et la nature des liaisons dans le monoxyde d'azote ainsi que ses propriétés magnétiques.
- c. Expérimentalement on note l'évolution suivante des longueurs de liaisons :
 - d(NO⁺)=1,06 Å,
 - d(NO)=1,15 Å,
 - d(NO⁻)=1,27 Å.

Justifier ces résultats par le calcul des indices de liaisons.

E = -1.1597 Hartree

3. H₄ linéaire _____

On cherche à construire le diagramme qualitatif de H₄ linéaire suivant la fragmentation suivante :

 $H \cdot \cdot \cdot \cdot \cdot \cdot H + H - H \rightarrow H - H - H$

Indiquer à l'aide de schémas, les interactions susceptibles de donner des recouvrements non-nuls entre les OM des deux fragments. En déduire le diagramme qualitatif de H4, en précisant les plans nodaux et la symétrie des différentes OM.

oxdot Étude du système π d'ions plans triangulaires de formule AE $_3$ _______

- **a.** À partir du diagramme d'orbitales moléculaires (OM) qualitatif de H_3 de géométrie triangulaire équilatérale, et compte tenu de la similitude entre le recouvrement de 2 OA s et de 2 OA p_{π} , donner le diagramme d'OM du système π de la molécule E_3 dont les atomes E du groupe principal forment également un triangle équilatéral.
- **b.** Donner le compte d'électrons π favorable pour une telle espèce.

On considère le système moléculaire plan AE_3 où A est localisé au centre du triangle équilatéral E_3 . On s'intéresse au système π de cet arrangement moléculaire où E est plus électronégatif que A.

- **c.** L'interaction de A avec E3 étant considérée, donner l'énergie des OM de fragment.
- **d.** A l'aide de la symétrie, analyser les recouvrements entre OM de fragment. Quel problème se pose alors? Sachant que les expressions mathématiques des 2 OM π anti-liantes de E₃ sont $(1/\sqrt{6}) \times (2 \times p_{\pi 1} p_{\pi 2} p_{\pi 3})$ et $(1/\sqrt{2}) \times (p_{\pi 2} p_{\pi 3})$, montrer à l'aide d'une analyse qualitative ou par le calcul des intégrales de recouvrement entre OM de fragment, que ce problème peut être simplifié.
- **e.** Construire le diagramme qualitatif du système π de AE₃. Donner le caractère liant, non-liant ou anti-liant de chaque OM. Quel est le compte d'électrons π favorable pour un tel système?
- f. Le composé de l'état solide Ca₃BN3 est composé d'anions plans triangulaires BN₃ isolés présentant la géométrie considérée précédemment. On peut considérer une interaction de type ionique entre les alcalino-terreux et l'unité BN₃, et donc une donation complète des électrons de valence des alcalino-terreux vers les unités BN₃. En déduire la charge de BN₃. Celle-ci correspond-elle au compte d'électrons π favorable pour une telle géométrie?
- g. Les composés Ca_2KBN_3 et Ca_2YBN_3 présentent une structure similaire à celle de Ca_3BN_3 . Si on admet, comme pour le calcium, une donation complète des électrons de valence des atomes de potassium et d'yttrium, et que seul le système π de BN_3 est affecté, que dire de l'évolution des distances B-N des unités BN_3 dans ces 2 composés?