analysis, is popular for multiple-class classification. So we do not go into the details of multiple-class logistic regression here, but simply note that such an approach is possible, and that software for it is available in R.

Linear Discriminant Analysis 4.4

Logistic regression involves directly modeling Pr(Y = k|X = x) using the logistic function, given by (4.7) for the case of two response classes. In statistical jargon, we model the conditional distribution of the response Y, given the predictor(s) X. We now consider an alternative and less direct approach to estimating these probabilities. In this alternative approach, we model the distribution of the predictors X separately in each of the response classes (i.e. given Y), and then use Bayes' theorem to flip these around into estimates for Pr(Y = k | X = x). When these distributions are assumed to be normal, it turns out that the model is very similar in form to logistic regression.

Why do we need another method, when we have logistic regression? There are several reasons:

- When the classes are well-separated, the parameter estimates for the logistic regression model are surprisingly unstable. Linear discriminant analysis does not suffer from this problem.
- If n is small and the distribution of the predictors X is approximately normal in each of the classes, the linear discriminant model is again more stable than the logistic regression model.
- As mentioned in Section 4.3.5, linear discriminant analysis is popular when we have more than two response classes.

Using Bayes' Theorem for Classification

Suppose that we wish to classify an observation into one of K classes, where $K \geq 2$. In other words, the qualitative response variable Y can take on K possible distinct and unordered values. Let π_k represent the overall or prior probability that a randomly chosen observation comes from the kth class; this is the probability that a given observation is associated with the kth category of the response variable Y. Let $f_k(X) \equiv \Pr(X = x | Y = k)$ denote the density function of X for an observation that comes from the kth class. In other words, $f_k(x)$ is relatively large if there is a high probability that function an observation in the kth class has $X \approx x$, and $f_k(x)$ is small if it is very

unlikely that an observation in the kth class has $X \approx x$. Then Bayes' theorem states that

Bayes' theorem

$$\Pr(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}.$$
 (4.10)

In accordance with our earlier notation, we will use the abbreviation $p_k(X)$ = $\Pr(Y = k|X)$. This suggests that instead of directly computing $p_k(X)$ as in Section 4.3.1, we can simply plug in estimates of π_k and $f_k(X)$ into (4.10). In general, estimating π_k is easy if we have a random sample of Ys from the population: we simply compute the fraction of the training observations that belong to the kth class. However, estimating $f_k(X)$ tends to be more challenging, unless we assume some simple forms for these densities. We refer to $p_k(x)$ as the posterior probability that an observation X = x belongs to the kth class. That is, it is the probability that the observation belongs to the kth class, given the predictor value for that observation.

posterior

We know from Chapter 2 that the Bayes classifier, which classifies an observation to the class for which $p_k(X)$ is largest, has the lowest possible error rate out of all classifiers. (This is of course only true if the terms in (4.10) are all correctly specified.) Therefore, if we can find a way to estimate $f_k(X)$, then we can develop a classifier that approximates the Bayes classifier. Such an approach is the topic of the following sections.

4.4.2 Linear Discriminant Analysis for p = 1

For now, assume that p = 1—that is, we have only one predictor. We would like to obtain an estimate for $f_k(x)$ that we can plug into (4.10) in order to estimate $p_k(x)$. We will then classify an observation to the class for which $p_k(x)$ is greatest. In order to estimate $f_k(x)$, we will first make some assumptions about its form.

Suppose we assume that $f_k(x)$ is normal or Gaussian. In the onedimensional setting, the normal density takes the form

normal Gaussian

$$f_k(x) = \frac{1}{\sqrt{2\pi}\sigma_k} \exp\left(-\frac{1}{2\sigma_k^2}(x-\mu_k)^2\right),\tag{4.11}$$

where μ_k and σ_k^2 are the mean and variance parameters for the kth class. For now, let us further assume that $\sigma_1^2 = \ldots = \sigma_K^2$: that is, there is a shared variance term across all K classes, which for simplicity we can denote by σ^2 . Plugging (4.11) into (4.10), we find that

$$p_k(x) = \frac{\pi_k \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_k)^2\right)}{\sum_{l=1}^K \pi_l \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_l)^2\right)}.$$
 (4.12)

(Note that in (4.12), π_k denotes the prior probability that an observation belongs to the kth class, not to be confused with $\pi \approx 3.14159$, the mathematical constant.) The Bayes classifier involves assigning an observation

FIGURE 4.4. Left: Two one-dimensional normal density functions are shown. The dashed vertical line represents the Bayes decision boundary. Right: 20 observations were drawn from each of the two classes, and are shown as histograms. The Bayes decision boundary is again shown as a dashed vertical line. The solid vertical line represents the LDA decision boundary estimated from the training data.

X = x to the class for which (4.12) is largest. Taking the log of (4.12) and rearranging the terms, it is not hard to show that this is equivalent to assigning the observation to the class for which

$$\delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$
(4.13)

is largest. For instance, if K=2 and $\pi_1=\pi_2$, then the Bayes classifier assigns an observation to class 1 if $2x(\mu_1-\mu_2)>\mu_1^2-\mu_2^2$, and to class 2 otherwise. In this case, the Bayes decision boundary corresponds to the point where

$$x = \frac{\mu_1^2 - \mu_2^2}{2(\mu_1 - \mu_2)} = \frac{\mu_1 + \mu_2}{2}.$$
 (4.14)

An example is shown in the left-hand panel of Figure 4.4. The two normal density functions that are displayed, $f_1(x)$ and $f_2(x)$, represent two distinct classes. The mean and variance parameters for the two density functions are $\mu_1 = -1.25$, $\mu_2 = 1.25$, and $\sigma_1^2 = \sigma_2^2 = 1$. The two densities overlap, and so given that X = x, there is some uncertainty about the class to which the observation belongs. If we assume that an observation is equally likely to come from either class—that is, $\pi_1 = \pi_2 = 0.5$ —then by inspection of (4.14), we see that the Bayes classifier assigns the observation to class 1 if x < 0 and class 2 otherwise. Note that in this case, we can compute the Bayes classifier because we know that X is drawn from a Gaussian distribution within each class, and we know all of the parameters involved. In a real-life situation, we are not able to calculate the Bayes classifier.

In practice, even if we are quite certain of our assumption that X is drawn from a Gaussian distribution within each class, we still have to estimate the parameters $\mu_1, \ldots, \mu_K, \pi_1, \ldots, \pi_K$, and σ^2 . The *linear discriminant*

analysis (LDA) method approximates the Bayes classifier by plugging estimates for π_k , μ_k , and σ^2 into (4.13). In particular, the following estimates are used:

linear discriminant analysis

$$\hat{\mu}_{k} = \frac{1}{n_{k}} \sum_{i:y_{i}=k} x_{i}$$

$$\hat{\sigma}^{2} = \frac{1}{n-K} \sum_{k=1}^{K} \sum_{i:y_{i}=k} (x_{i} - \hat{\mu}_{k})^{2}$$
(4.15)

where n is the total number of training observations, and n_k is the number of training observations in the kth class. The estimate for μ_k is simply the average of all the training observations from the kth class, while $\hat{\sigma}^2$ can be seen as a weighted average of the sample variances for each of the K classes. Sometimes we have knowledge of the class membership probabilities π_1, \ldots, π_K , which can be used directly. In the absence of any additional information, LDA estimates π_k using the proportion of the training observations that belong to the kth class. In other words,

$$\hat{\pi}_k = n_k/n. \tag{4.16}$$

The LDA classifier plugs the estimates given in (4.15) and (4.16) into (4.13), and assigns an observation X = x to the class for which

$$\hat{\delta}_k(x) = x \cdot \frac{\hat{\mu}_k}{\hat{\sigma}^2} - \frac{\hat{\mu}_k^2}{2\hat{\sigma}^2} + \log(\hat{\pi}_k)$$
(4.17)

is largest. The word *linear* in the classifier's name stems from the fact that the discriminant functions $\hat{\delta}_k(x)$ in (4.17) are linear functions of x (as opposed to a more complex function of x).

discriminant function

The right-hand panel of Figure 4.4 displays a histogram of a random sample of 20 observations from each class. To implement LDA, we began by estimating π_k , μ_k , and σ^2 using (4.15) and (4.16). We then computed the decision boundary, shown as a black solid line, that results from assigning an observation to the class for which (4.17) is largest. All points to the left of this line will be assigned to the green class, while points to the right of this line are assigned to the purple class. In this case, since $n_1 = n_2 = 20$, we have $\hat{\pi}_1 = \hat{\pi}_2$. As a result, the decision boundary corresponds to the midpoint between the sample means for the two classes, $(\hat{\mu}_1 + \hat{\mu}_2)/2$. The figure indicates that the LDA decision boundary is slightly to the left of the optimal Bayes decision boundary, which instead equals $(\mu_1 + \mu_2)/2 =$ 0. How well does the LDA classifier perform on this data? Since this is simulated data, we can generate a large number of test observations in order to compute the Bayes error rate and the LDA test error rate. These are 10.6% and 11.1%, respectively. In other words, the LDA classifier's error rate is only 0.5 % above the smallest possible error rate! This indicates that LDA is performing pretty well on this data set.

FIGURE 4.5. Two multivariate Gaussian density functions are shown, with p=2. Left: The two predictors are uncorrelated. Right: The two variables have a correlation of 0.7.

To reiterate, the LDA classifier results from assuming that the observations within each class come from a normal distribution with a class-specific mean vector and a common variance σ^2 , and plugging estimates for these parameters into the Bayes classifier. In Section 4.4.4, we will consider a less stringent set of assumptions, by allowing the observations in the kth class to have a class-specific variance, σ_k^2 .

Linear Discriminant Analysis for p > 1

We now extend the LDA classifier to the case of multiple predictors. To do this, we will assume that $X = (X_1, X_2, \dots, X_p)$ is drawn from a multivariate Gaussian (or multivariate normal) distribution, with a class-specific mean vector and a common covariance matrix. We begin with a brief review Gaussian of such a distribution.

The multivariate Gaussian distribution assumes that each individual predictor follows a one-dimensional normal distribution, as in (4.11), with some correlation between each pair of predictors. Two examples of multivariate Gaussian distributions with p=2 are shown in Figure 4.5. The height of the surface at any particular point represents the probability that both X_1 and X_2 fall in a small region around that point. In either panel, if the surface is cut along the X_1 axis or along the X_2 axis, the resulting cross-section will have the shape of a one-dimensional normal distribution. The left-hand panel of Figure 4.5 illustrates an example in which $Var(X_1) = Var(X_2)$ and $Cor(X_1, X_2) = 0$; this surface has a characteristic bell shape. However, the bell shape will be distorted if the predictors are correlated or have unequal variances, as is illustrated in the right-hand panel of Figure 4.5. In this situation, the base of the bell will have an elliptical, rather than circular,

FIGURE 4.6. An example with three classes. The observations from each class are drawn from a multivariate Gaussian distribution with p=2, with a class-specific mean vector and a common covariance matrix. Left: Ellipses that contain 95 % of the probability for each of the three classes are shown. The dashed lines are the Bayes decision boundaries. Right: 20 observations were generated from each class, and the corresponding LDA decision boundaries are indicated using solid black lines. The Bayes decision boundaries are once again shown as dashed lines.

shape. To indicate that a p-dimensional random variable X has a multivariate Gaussian distribution, we write $X \sim N(\mu, \Sigma)$. Here $E(X) = \mu$ is the mean of X (a vector with p components), and $Cov(X) = \Sigma$ is the $p \times p$ covariance matrix of X. Formally, the multivariate Gaussian density is defined as

$$f(x) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \mathbf{\Sigma}^{-1}(x-\mu)\right).$$
 (4.18)

In the case of p > 1 predictors, the LDA classifier assumes that the observations in the kth class are drawn from a multivariate Gaussian distribution $N(\mu_k, \Sigma)$, where μ_k is a class-specific mean vector, and Σ is a covariance matrix that is common to all K classes. Plugging the density function for the kth class, $f_k(X = x)$, into (4.10) and performing a little bit of algebra reveals that the Bayes classifier assigns an observation X = x to the class for which

$$\delta_k(x) = x^T \mathbf{\Sigma}^{-1} \mu_k - \frac{1}{2} \mu_k^T \mathbf{\Sigma}^{-1} \mu_k + \log \pi_k$$
 (4.19)

is largest. This is the vector/matrix version of (4.13).

An example is shown in the left-hand panel of Figure 4.6. Three equally-sized Gaussian classes are shown with class-specific mean vectors and a common covariance matrix. The three ellipses represent regions that contain $95\,\%$ of the probability for each of the three classes. The dashed lines

are the Bayes decision boundaries. In other words, they represent the set of values x for which $\delta_k(x) = \delta_\ell(x)$; i.e.

$$x^{T} \mathbf{\Sigma}^{-1} \mu_{k} - \frac{1}{2} \mu_{k}^{T} \mathbf{\Sigma}^{-1} \mu_{k} = x^{T} \mathbf{\Sigma}^{-1} \mu_{l} - \frac{1}{2} \mu_{l}^{T} \mathbf{\Sigma}^{-1} \mu_{l}$$
 (4.20)

for $k \neq l$. (The $\log \pi_k$ term from (4.19) has disappeared because each of the three classes has the same number of training observations; i.e. π_k is the same for each class.) Note that there are three lines representing the Bayes decision boundaries because there are three pairs of classes among the three classes. That is, one Bayes decision boundary separates class 1 from class 2, one separates class 1 from class 3, and one separates class 2 from class 3. These three Bayes decision boundaries divide the predictor space into three regions. The Bayes classifier will classify an observation according to the region in which it is located.

Once again, we need to estimate the unknown parameters μ_1, \ldots, μ_K , π_1, \ldots, π_K , and Σ ; the formulas are similar to those used in the onedimensional case, given in (4.15). To assign a new observation X = x, LDA plugs these estimates into (4.19) and classifies to the class for which $\hat{\delta}_k(x)$ is largest. Note that in (4.19) $\delta_k(x)$ is a linear function of x; that is, the LDA decision rule depends on x only through a linear combination of its elements. Once again, this is the reason for the word *linear* in LDA.

In the right-hand panel of Figure 4.6, 20 observations drawn from each of the three classes are displayed, and the resulting LDA decision boundaries are shown as solid black lines. Overall, the LDA decision boundaries are pretty close to the Bayes decision boundaries, shown again as dashed lines. The test error rates for the Bayes and LDA classifiers are 0.0746 and 0.0770, respectively. This indicates that LDA is performing well on this data.

We can perform LDA on the **Default** data in order to predict whether or not an individual will default on the basis of credit card balance and student status. The LDA model fit to the 10,000 training samples results in a *training* error rate of 2.75 %. This sounds like a low error rate, but two caveats must be noted.

• First of all, training error rates will usually be lower than test error rates, which are the real quantity of interest. In other words, we might expect this classifier to perform worse if we use it to predict whether or not a new set of individuals will default. The reason is that we specifically adjust the parameters of our model to do well on the training data. The higher the ratio of parameters p to number of samples n, the more we expect this overfitting to play a role. For these data we don't expect this to be a problem, since p = 4 and n = 10,000.

overfitting

• Second, since only 3.33% of the individuals in the training sample defaulted, a simple but useless classifier that always predicts that