7 端口 USB HUB 控制器芯片 CH338

手册 版本: 1.1

https://wch.cn

1、概述

CH338 是符合 USB2. 0 协议规范的 7 端口 USB HUB 控制器芯片,上行端口支持 USB2. 0 高速和全速,下行端口支持 USB2. 0 高速 480Mbps、全速 12Mbps 和低速 1. 5Mbps。不但支持低成本的 STT 模式(单个 TT 分时调度 7 个下行端口),还支持高性能的 MTT 模式(7 个 TT 各对应 1 个端口,并发处理)。部分型号除了 HUB 控制器功能之外,还支持 PD 功能。

工业级设计,外围精简,可应用于计算机和工控机主板、外设、嵌入式系统等。 下图为 CH338 的系统框图。

图 1-1 系统框图

上图是 HUB 控制器系统内部结构框图。HUB 控制器主要包括三大模块: Repeater、TT 和控制器。 控制器类似 MCU 处理器,用于全局管理和控制。当上行端口与下行端口速度一致时,路由逻辑会将端 口连接至 Repeater,当上行端口与下行端口速度不一致时,路由逻辑会将端口连接至 TT。

TT 分为单个 TT 和多个 TT 两种,即 STT 和 MTT, STT 是单个 TT 核分时调度处理 USB 主机下发至 所有下行端口的事务,MTT 指多个 TT 并行,是 7 个 TT 核分别对应并实时处理一个下行端口的事务,因此 MTT 可以为各下行端口的接入设备提供更满的带宽,更好的支持多端口大数据量的并发传输。 注:

USPORT Transceiver: 上行端口收发器 PHY;

DSPORT Transceiver: 下行端口收发器 PHY;

REPEATER: HUB 中继器:

TT: 处理转换器。

2、特点

- 7 口 USB 集线器,提供 7 个 USB2. 0 下行端口,向下兼容 USB1. 1 协议规范
- 支持各端口独立电源控制或 GANG 整体联动电源控制
- 支持各端口独立过流检测或 GANG 整体过流检测
- 支持高性能的 MTT 模式,为每个端口提供独立 TT 实现满带宽并发传输,总带宽是 STT 的 7 倍
- 支持端口状态 LED 指示灯
- 可通过外部 EEPROM 或内部 EEPROM 配置是否支持复合设备、不可移除设备、自定义 VID、PID、端口配置和 USB 厂商、产品、序列号字符串描述符等
- 可通过 SMBus 接口配置芯片相关参数
- 内置信息存储器,针对行业特殊需求可批量定制厂商或产品信息及配置
- 自研的专用 USB PHY, 低功耗技术, 支持自供电或总线供电
- 可通过 1/0 引脚配置自供电或总线供电模式等功能
- 提供晶体振荡器,内置电容,支持外部时钟输入,内置 PLL 为 USB PHY 提供 480MHz 时钟
- 部分应用场合可支持免晶振模式,节省外置晶体及电容
- 上行端口内置 1.5KΩ上拉电阻,下行端口内置 USB Host 主机所需下拉电阻,外围精简
- 部分型号内置 LDO 线性降压调节器,可将 USB 总线电源电压转换为芯片的 3.3V 工作电源
- USB 接口引脚具有 6KV 增强 ESD 性能, Class 3A
- 工业级温度范围: -40~85℃
- 提供 QFN64、LQFP48、QFN32 等多种小体积、低成本、易加工的封装形式

夜「「回族空亏功能刈几						
型号功能	CH338X	CH338L	CH338F			
TT 模式	MTT	MTT	MTT			
过流检测	独立/GANG	GANG 模式	GANG 模式			
电源控制	独立/GANG	GANG 模式	GANG 模式			
LED 指示灯	7+4	15	×			
I/0 引脚配置 供电模式	√	×	×			
I/0 引脚配置 不可移除设备	√	√	×			
外部/内部 EEPROM 提供配置信息	√	√	√			
SMBus 接口 配置信息	4	√	√			
定制配置信息	√	√	√			
上行口交换功能	×	×	√			
延长/隔离功能	×	×	√			
Type-C/PD	×	×	√			
芯片供电	单 3. 3V	单 3. 3V 或单 5V	单 3. 3V			

表 1-1 同簇型号功能对比

3、封装

表 3-1 封装说明

封装形式	塑体尺寸	引脚间距		封装说明	订货型号
QFN64X9	9*9mm	0. 5mm	19.7mil	四边无引线 64 脚	CH338X
LQFP48	7*7mm	0. 5mm	19.7mil	标准 LQFP48 脚贴片	CH338L
QFN32	4*4mm	0. 4mm	15.7mil	四边无引线 32 脚	CH338F

注: 优选 CH338F, 体积小; CH338X 和 CH338L 侧重于 PCB 兼容。 0#引脚是 QFN 封装的底板, 是必要连接。

4、引脚

表 4-1 引脚定义

表 4-1 引用		4 + 1	71817	3/ T-1	
	(同名引脚可:		引脚	类型	功能描述
CH338X	CH338L	CH338F	名称		
58	29	6	DMU	USB	上行端口 USB2. 0 信号线 D-
59	30	7	DPU	USB	上行端口 USB2. 0 信号线 D+
1	18	11	DM1	USB	1#下行端口 USB 信号线 D-
2	19	12	DP1	USB	1#下行端口 USB 信号线 D+
3	16	13	DM2	USB	2#下行端口 USB 信号线 D-
4	17	14	DP2	USB	2#下行端口 USB 信号线 D+
6	13	31	DM3	USB	3#下行端口 USB 信号线 D-
7	14	32	DP3	USB	3#下行端口 USB 信号线 D+
8	11	29	DM4	USB	4#下行端口 USB 信号线 D-
9	12	30	DP4	USB	4#下行端口 USB 信号线 D+
11	32	15	DM5	USB	5#下行端口 USB 信号线 D-
12	33	16	DP5	USB	5#下行端口 USB 信号线 D+
53	34	1	DM6	USB	6#下行端口 USB 信号线 D-
54	35	2	DP6	USB	6#下行端口 USB 信号线 D+
55	37	3	DM7	USB	7#下行端口 USB 信号线 D-
56	38	4	DP7	USB	7#下行端口 USB 信号线 D+
61	22	9	ΧI	I	晶体振荡器输入端,接外部晶体一端
60	23	8	X0	0	晶体振荡器反相输出端,接外部晶体另一端
40	40	20	DEOET#	<i>-</i>	外部复位输入,内置上拉电阻,低电平有效,
43	40	20	RESET#	51	不使用时建议完全悬空
_	8	_	V _{DD5}	Р	LDO 电源输入,5V 或 3.3V,外接 1uF 或更大电容
_	9	_	V _{DD33}	Р	LDO 电源输出,3.3V,外接 1uF 或更大退耦电容
5、57	20、36	5、19	V _{DD33}	Р	模拟电源输入, 3.3V, 外接 1uF 退耦电容
52、64	15、31	_	V _{DD33}	Р	辅助电源输入, 3.3V, 外接 1uF 或 0.1uF 退耦电容
24、46	42	_	V _{DD33}	Р	I/0 电源输入,3.3V,外接 1uF 或 0.1uF 退耦电容
62	25	10	AV _{DDK}	Р	1. 2V 内核电源,外接 1uF 或 0. 1uF 退耦电容
25	6	28	DV _{DDK}	Р	1. 2V 内核电源,外接 0. 1uF 退耦电容
0	10、24	0	GND	Р	公共接地端,必须连接 GND
63	27、39	_	GND	Р	公共接地端,可选连接
20			01/01/04#	<i>-</i> 1	下行端口1过流检测输入引脚,低电平过流
28	_	_	0VCUR1#	51	整体模式下行端口过流检测输入引脚,低电平过流
27	_	_	0VCUR2#	51	下行端口2过流检测输入引脚,低电平过流
22	-	_	0VCUR3#	I	下行端口3过流检测输入引脚,低电平过流
21	_	_	0VCUR4#	I	下行端口4过流检测输入引脚,低电平过流
35	_	_	0VCUR5#	I	下行端口5过流检测输入引脚,低电平过流
38	_	_	0VCUR6#	ı	下行端口6过流检测输入引脚,低电平过流
37	_	_	0VCUR7#	ı	下行端口7过流检测输入引脚,低电平过流
_	_	22	0VCUR#	51	整体模式下行端口过流检测输入引脚,低电平过流
-	45	_	0VCUR1234#	51	下行端口 1/2/3/4 过流检测输入引脚,低电平过流
_	43	_	0VCUR567#	51	下行端口 5/6/7 过流检测输入引脚,低电平过流
20			DWD EN4	0	下行端口1电源输出控制引脚,高电平开启
29	_	_	PWREN1	0	整体模式下行端口电源输出控制引脚,高电平开启
26	_	_	PWREN2	0	下行端口2电源输出控制引脚,高电平开启
23	_	_	PWREN3	0	下行端口3电源输出控制引脚,高电平开启
20	_	_	PWREN4	0	下行端口 4 电源输出控制引脚,高电平开启

30	_	_	PWREN5	0	下行端口 5 电源输出控制引脚,高电平开启
39	_	_	PWREN6	0	下行端口6电源输出控制引脚,高电平开启
36	_	_	PWREN7	0	下行端口7电源输出控制引脚,高电平开启
					
_	44	21	PWREN#	0	整体模式下行端口电源输出控制引脚,低电平开启
51	3	_	LED_A1/ LED1	0	LED_A1: 下行端口 1 正常状态指示信号 LED1: 下行端口 1 状态指示信号
49	4	_	LED_A2/ LED2	0	LED_A2: 下行端口 2 正常状态指示信号 LED2: 下行端口 2 状态指示信号
47	5	_	LED_A3/ LED2	0	LED_A3: 下行端口 3 正常状态指示信号 LED3: 下行端口 3 状态指示信号
33	7	_	LED_A4/ LED4	0	LED_A4: 下行端口 4 正常状态指示信号 LED4: 下行端口 4 状态指示信号
31	48	_	LED_A5/ LED5	0	LED_A5: 下行端口 5 正常状态指示信号 LED5: 下行端口 5 状态指示信号
17	47	_	LED_A6/ LED6	0	LED_A6: 下行端口 6 正常状态指示信号 LED6: 下行端口 6 状态指示信号
15	46	_	LED_A7/ LED7	0	LED_A7: 下行端口 7 正常状态指示信号 LED7: 下行端口 7 状态指示信号
_	1	_	LED_DRV/ SMB_EN	1/0	LED_DRV: LED 指示灯驱动控制信号 SMB_EN: 在复位期间作为配置引脚,用于配置 12C 模式或 SMBus 模式,悬空或高电平为 12C 模式,低 电平为 SMBus 模式,内置上拉电阻。
50	_	_	LED_B1	0	LED_B1: 下行端口 1 异常状态指示信号
48	_	_	LED_B2	0	LED_B2: 下行端口 2 异常状态指示信号
34	_	-	LED_B3/ GANG_EN	1/0	LED_B3: 下行端口 2 异常状态指示信号 GANG_EN: 在复位期间作为配置引脚,用于配置整体模式或独立模式,悬空或高电平为独立模式,低电平为整体模式,内置上拉电阻。
18	_	_	LED_B5	0	LED_B5: 下行端口 5 异常状态指示信号
45	-	-	SUSP/ PSELF	1/0	SUSP: SUSPEND 睡眠状态输出引脚,高电平指示睡眠态,低电平指示正常态; PSELF: 在复位期间作为配置引脚,用于配置供电模式,悬空或高电平为自供电模式,低电平为总线供电模式,内置上拉电阻。
13			CFG2	ı	CH338X 芯片功能配置引脚 2
42			HS_S/ CFG1	1/0	CH338X 芯片功能配置引脚 1 HS_S: 上行口速度状态输出引脚,高电平指示 USB 高速,低电平指示 USB 全速; 在复位期间作为配置引脚,配合 CFG2 和 CGFO 进行 功能配置
41			CFG0	I	CH338X 芯片功能配置引脚 0
44	41	_	VBUS_DET	51	USB 总线 VBUS 状态检测输入,内置下拉电阻
41	3	18	SCL/ SMBCLK	0	SCL: 在复位期间为 EEPROM 时钟信号线输出 SMBCLK: SMBus 总线时钟信号线
40	2	17	SDA/ SMBDAT	1/0	SDA: 在复位期间为 EEPROM 双向数据信号线 SMBDAT: SMBus 总线数据信号线
_	_	25	CC1	1/0	PD 协议通信引脚 CC1, 用于连接适配器
_	_	26	CC2	1/0	PD 协议通信引脚 CC2, 用于连接适配器
-	_	24	CC3	1/0	PD 协议通信引脚 CC3, 用于连接手机/电脑

-	_	27	CC3_CTL	0	CC3_CTL: PD 协议通信引脚 CC3 控制引脚
-	_	23	PWR_CTL/ CFG	1/0	PD 协议通信电源控制引脚 CFG: 在复位期间作为配置引脚,通过不同的电阻配 置不同的工作参数。
10、14、16、 19、32	21、26、28	-	NC		空脚或保留引脚,禁止连接

注 1: 引脚类型缩写解释:

I=3.3V 信号输入; 0=3.3V 信号输出;

51=额定 3.3V 信号输入;支持 5V 耐压; P=电源或地。

5、功能说明

5.1 过流检测和电源控制

5.1.1 过流检测

CH338X 支持两种过流保护模式:独立过流模式和整体过流模式, CH338L 和 CH338F 支持整体过流模式, 如表 5-1 所示。

11 12 12 17 17 17 17 17 17 17 17 17 17 17 17 17						
芯片型号	过流配置	过流模式	过流检测的采样引脚	参考图		
CH338X	EEPROM 默认配置/ GANG_EN=高电平	独立过流	OVCUR1#, OVCUR2#, OVCUR3#, OVCUR4#, OVCUR5#, OVCUR6#, OVCUR7#	图 5-1		
ОПЭЗОХ	EEPROM 非默认配置/ GANG_EN=低电平	整体过流	0VCUR1#	图 5-2		
CH338L	_	整体过流	OVCUR1234#, OVCUR567#	图 5-2		
CH338F	-	整体过流	OVCUR#	图 5-2		

表 5-1 过流保护控制说明

5.1.2 电源控制

CH338X 支持两种电源控制模式:独立电源控制模式和整体电源控制模式,CH338L 和 CH338F 支持整体电源控制模式,如表 5-2 所示。

K o Z · Clinita in de vi						
芯片型号	电源控制配置	电源控制	过流电源控制引脚	参考图		
CH338X	EEPROM 默认配置/ GANG_EN=高电平	独立控制	PWREN1, PWREN2, PWREN3, PWREN4, PWREN5, PWREN6, PWREN7 注: 高电平开启	图 5-1		
	EEPROM 非默认配置/ GANG_EN=低电平	整体控制	PWREN1 注:高电平开启	图 5-2		
CH338L/ CH338F	_	整体控制	PWREN# 注:低电平开启	图 5-2		

表 5-2 电源控制说明

5.1.3 独立过流检测和独立电源控制

图 5-1 CH338X 独立过流检测和独立电源控制

上图中, V_{BUSI} 一 V_{BUSI} 分别连接下行端口 1-7 的 V_{BUS} 电源引脚。U4~U10 为 USB 限流配电开关芯片,内部集成了过流检测,用于 V_{BUS} 电源分配管理。在 5V 没有外部供电的应用中,建议通过 ISET 外接电阻将限流设置在 1A 以下甚至 500mA。U4~U10 的 FLAG 引脚是开漏输出,需要分别通过电阻上拉。默认配置下 $0C_LEVEL=0$,CH338 芯片的 0VCUR#引脚提供内置的弱上拉电流,所以可省掉电阻 R16、R18、R20、R22、R24、R26 和 R28。如果使用的电源开关芯片控制引脚是高电平有效,则需要对 PWREN 引脚进行极性调换,CH338X 芯片的过流检测引脚 <math>(0VCURx)、下行端口电源控制引脚 (PWRENx) 和指示灯引脚 (LEDx) 均支持通过配置引脚或 EEPROM 配置极性。

5.1.4 整体过流检测和整体电源控制

图 5-2 整体过流检测和独立电源控制

U5 为 USB 限流电源开关芯片,例如 CH217 芯片或类似功能的芯片。默认配置下可以省掉 R11。C14 的容量可以根据需要选择。V_{BUS-ALL} 同时连接下行端口 1-7 的 V_{BUS} 电源引脚。U5 的限流设置值需考虑 7 个下行端口及是否自供电。

5.2 复位

芯片内嵌有上电复位模块,一般情况下,无需外部提供复位信号。同时也提供了外部复位输入引脚 RESET#,该引脚内置有上拉电阻。

5.2.1 上电复位

当电源上电时,芯片内部 POR 上电复位模块会产生上电复位时序,并延时 Trpor 约 25mS 以等待电源稳定。在运行过程中,当电源电压低于 V_{1vr}时,芯片内部 LVR 低压复位模块会产生低压复位直到电压回升,并延时以等待电源稳定。下图 5-3 为上电复位过程以及低压复位过程。

5.2.2 外部复位

外部复位输入引脚 RESET#已内置约 40K Ω上拉电阻,如果外部需要对芯片进行复位,那么可以将

该引脚驱动为低电平,驱动内阻建议不大于 1KΩ,复位的低电平脉宽需要大于 4uS。

5.3 LED 指示灯

根据 USB2. 0 协议规范,CH338 提供了下行端口状态 LED 指示灯控制引脚,端口对应的绿灯亮起表明端口状态正常,绿灯熄灭表明端口无设备或挂起 Suspend,端口对应的红灯亮起表明端口异常。

5.3.1 CH338L的15灯应用

下图为CH338L完整15灯模式应用示意图,其中LED1-7分别为端口1-7的正常状态指示灯(绿灯),点亮表明端口有设备插入且端口正常,熄灭表明端口无设备或挂起Suspend。LED8-14分别为端口1-7的异常状态指示灯(红灯),点亮表明端口异常,比如过流。LED15为HUB工作指示灯,点亮表明HUB正常,熄灭表明HUB挂起。

图 5-4 CH338L 完整 15 灯模式应用示意图

5.3.2 CH338X 的 11 灯应用

图 5-5 为 CH338X 11 灯模式应用示意图,其中 LED1-7 分别为端口 1-7 的正常状态指示灯(绿灯),点亮表明端口有设备插入且端口正常,熄灭表明端口无设备或挂起 Suspend。LED8-11 分别为端口 1、2、3 和 5 的异常状态指示灯(红灯),点亮表明端口异常,比如过流。

LED1 LED8 3V3 Green Red LED2 LED9 LED B2 Green Red .ED10 LED B3 Green Red LED11 LED B5 Green Green Green

图 5-5 CH338X 11 灯模式应用示意图

5.4 1/0 功能配置

CH338的部分功能可以通过3种方式进行配置:内置或外置EEPROM、SMBus接口和配置引脚。EEPROM的参数配置功能优先级高于引脚配置功能。配置引脚一般为复用引脚,在复位期间作为配置引脚,复位完成之后,再切换到对应的功能引脚。

芯片型号 お片型号	PIN13	PIN42	PIN41	功能描述		
心万至亏 	CFG2	CFG1	CFG0	切能畑处		
	0	0	0	内部 EEPROM 配置参数功能使能复位期间其它功能配置引脚使能HUB 自供电模式		
	0		1	内部 EEPROM 配置参数功能使能 SMBus 接口使能 复位期间其它功能配置引脚禁止 HUB 自供电模式		
CH338X	0	1	0	内部 EEPROM 配置参数功能使能 复位期间其它功能配置引脚使能 USB 总线供电模式		
	0	1	1	内部 EEPROM 配置参数功能禁止 12C 接口使能 复位期间其它功能配置引脚禁止 HUB 自供电模式		
	1	0	0	内部 EEPROM 配置参数功能使能		
	1	0	1	复位期间其它功能配置引脚禁止		
	1	1	0	HUB 自供电模式		
	1	1	1	内部 EEPROM 配置参数功能使能		

表 5-3 CH338X 主要配置引脚说明

	复位期间其它功能配置引脚禁止
	整体电源控制、整体过流检测
	HUB 自供电模式

表 5-4 CH338X 辅助配置引脚说明

芯片型号	功能配置		引脚状态。	及功能配置描述	
		PIN40	PIN45	功能说明	
		SDA/SMBDAT	SUSP/PSELF	为能成功	
	 设备移除功能配置	0	0	所有端口为可移除设备	
	设备移际切能配直	0	1	端口1为不可移除设备	
		1	0	端口 1/2 为不可移除设备	
		1	1	端口 1/2/3 为不可移除设备	
		PIN34		功能说明	
	电流过流、电源控制模式配置	GANG_EN		り配成が	
		0	整体模式(整体过流、整体控制)		
		1	独立模式(独立过流、独立控制)		
CH338X		PIN49	功能说明		
UISSON	电源控制引脚极性	LED_A2			
	配置	0	低电平有效		
		1	高电平有效		
		PIN47	功能说明		
	过流检测引脚极性	LED_A3			
	配置	0	高电平有效(OC_LEVEL=1)	
		1	低电平有效(OC_LEVEL=0)	
		PIN33		Th 台	
	LED 指示灯引脚极	LED_A4		功能说明	
	性配置	0	高电平有效		
		1	低电平有效		

表 5-5 CH338L 配置引脚说明

芯片型号	功能配置	引脚状态及功能配置描述					
		PIN46	PIN47		가수나가 때		
		LED7	LED6		功能说明		
	下行端口使	0	0	下行	端口 4、3、2、1 使能		
	能配置	1	0	下行	端口 5、4、3、2、1 使能		
		0	1	下行	端口 6、5、4、3、2、1 使能		
	1	1	下行	端口 7、6、5、4、3、2、1 使能			
	UNSSEI	PIN7	PIN5	PIN4	功能说明		
CH338L		LED4	LED3	LED2	נהייות אין נפי		
OHOUL		1	1	1	所有端口为可移除设备		
		1	1	0	端口 2 为不可移除设备		
	设备移除功	1	0	1	端口3、2为不可移除设备		
	能配置	1	0	0	端口 3、2、1 为不可移除设备		
		0	1	1	端口 4、3、2、1 为不可移除设备		
		0	1	0	端口 5、4、3、2、1 为不可移除设备		
		0	0	1	端口 6、5、4、3、2、1 为不可移除设备		
		0	0	0	端口 7、6、5、4、3、2、1 为不可移除设备		

及50010381 配直升牌优势								
芯片型号	功能配置	引脚	状态及功能配置描述					
		PIN23 PWR_CTL/CFG	功能说明					
		对地接 15kΩ 电阻	使能 I2C 接口,可外置 EEPROM					
	CH338F 设备移除功能配置	对地接 9.1kΩ 电阻	使能 SMBus 接口					
			使能上行口和下行PORT1口交换功能					
			以及使能 SMBus 接口, 通过 SMBus 接					
CH338F		对地接 3.9kΩ 电阻	口写偏移地址为 0xFF 的寄存器控制,					
			写入 0xC0 控制切换, 写入 0x80 不切					
			换,写入其他值无效					
			使能上行口和下行 PORT1 口交换功					
		对地接 2kΩ 电阻	能,通过 SDA 引脚控制,悬空或上拉					
			不切换,输入低电平控制切换					
		对地接 820Ω 电阻	使能 2 线延长、隔离功能					

表 5-6 CH338F 配置引脚说明

5.5 EEPROM 配置接口

CH338 提供两线 I2C 接口与外部 EEPROM 存储芯片通信, EEPROM 芯片地址为 0, EEPROM 中存储有自定义的厂商 ID、产品 ID、USB 字符串描述符和功能配置等信息。SCL 引脚输出时钟频率约为 100KHz, SDA 引脚已内置上拉电阻以支持开漏双向数据通讯,无需外部上拉电阻。

图 5-6 外部 EEPROM 连接示意图

CH338 内置信息存储器,针对行业特殊需求可以代替外部 EEPROM 批量定制厂商或产品信息及配置,例如设置下行端口个数,设置下行端口的设备不可移除特性等。

5.6 SMBus 配置接口

CH338 提供两线 SMBus 从机接口与外部主控芯片通信, SMBus 接口包含 SMCLK 和 SMDAT 两个引脚,通信地址为 0x2C,支持块读和块写操作,每块最多为 32 个字节。外部主控可以通过 SMBus 接口对芯片内置的 EEPROM 进行读写操作。图 5-7 为块读示意图,图 5-8 为块写示意图。

5.7 EEPROM 配置

CH338 支持从外部或内部 EEPROM 中加载厂商识别码 VID、产品识别码 PID、USB 字符串描述符和功能配置等配置信息,如果 EEPROM 中的信息无效,则自动装载默认配置信息。表 5-7 为 EEPROM 具体配置信息描述。

耒	5-7	内置/	小署	FFPROM	配置信息
w	0 ,		'1 💻		

偏移地址	参数简称	5-7 内直/外直 EEPROM 配直信息 参数说明	默认值		
00h	VID_L	厂商识别码 VID 的低字节	86h		
01h	VID_H	厂商识别码 VID 的高字节	1Ah		
02h	DID I	产品识别码 PID 的低字节	9Eh 或		
UZN	PID_L	CH338 系列为 9Eh, CH339 系列为 9Fh	9Fh		
03h	PID_H	产品识别码 PID 的高字节	80h		
04h	bcdDevice L	bcdDevice 低字节,用于指示芯片封装型号	跟随		
0411	bcdbevice_L	固定,不可修改	型号		
05h	bcdDevice H	bcdDevice 高字节,用于指示芯片版本	跟随		
USH	рсареутсе_п	固定,不可修改	型号		
		功能性配置字节 1			
		Bit7: 供电模式选择;			
		0: 总线供电模式(默认);			
		1: 自供电模式;			
		Bit6: 保留;			
		Bit5: 高速模式禁止控制;			
		0: 高速模式使能(默认);			
	Fun_Cfg1	1: 高速模式禁止;			
		Bit4: STT 和 MTT 模式选择;	跟随		
06h		0: STT 模式;	型号		
		1: MTT 模式(默认);	土力		
		Bit3: 保留;			
		Bit2-1:端口过流功能控制;			
		00:整体过流控制;			
		01: 独立过流控制;			
		1x: 不支持过流控制;			
		Bit0: 端口电源控制;			
		0:整体电源控制;			
		1: 独立电源控制;			
		功能性配置字节 2			
	Fun_Cfg2	Bit7: 保留;	20h		
07h		Bit6: 保留;			
		Bit5: 保留;			
		Bit4: 保留;			

		D:+2 UID 目不目 0		
		Bit3: HUB 是否是 Compound Device;		
		0: 不是;		
		1: 是;		
		Bit2-0: 保留;		
		功能性配置字节 3		
		Bit7-4: 保留;		
		Bit3: 端口重映射功能控制;		
		0: 禁止(默认);	0.01	
08h	Fun_Cfg3	1: 使能;	00h	
		Bit2-1: 保留;		
		Bit0:字符串描述符使能控制;		
		0: 禁止(默认);		
		1: 使能;		
		下行端口设备是否可移除控制		
	Dev_	Bit7-1: 下行端口 7-1 的设备是否可移除		
09h	Removable	0: 可移除(默认);	00h	
		1: 不可移除;		
		Bit0: 保留, 必须为 0;		
		自供电模式下端口禁止		
		Bit7-1: 下行端口 7-1 是否禁止		
0 A h	Port_Dis_Sp	0: 使能(默认);	00h	
		1: 禁止;		
		Bit0: 保留, 必须为 0;		
		总线供电模式下端口禁止		
		Bit7-1: 下行端口 7-1 是否禁止		
0Bh	Port_Dis_Bp	0: 使能(默认);	00h	
		1: 禁止;		
		Bit0: 保留, 必须为 0;		
0Ch	MaxPwr_Sp	自供电模式下最大工作电流,单位为 2mA	01h	
0Dh	MaxPwr_Bp	总线供电模式下最大工作电流,单位为 2mA	64h	
0Eh	HubCurrent_Sp	自供电模式下 HUB 要求的最大电流	01h	
0Fh	HubCurrent_Bp	总线供电模式下 HUB 要求的最大电流	64h	
10h	Pwr_OnTime	下行端口上电到电源有效的延迟时间	32h	
11h	Language ID_H	语言 ID 高字节	00h	
12h	Language ID_L	语言 ID 低字节	00h	
13h	Vendor_StrLen	厂商字符串描述符长度	00h	
14h	Product_StrLen	产品字符串描述符长度	00h	
15h	SN_StrLen	序列号字符串描述符长度	00h	
16h-53h	Vendor String	厂商字符串描述符	00h	
1011 3311	vendor String	Unicode 码格式的厂商字符串描述符	OUT	
54h-91h	Product String	产品字符串描述符	006	
54n-91n	Product String	Unicode 码格式的产品字符串描述符	00h	
92h-CFh	Serial Number	序列号字符串描述符	00h	
7211-UF11	String	Unicode 码格式的序列号字符串描述符	UUI	
D0h	PortNum	 下行端口个数,有效范围:1−7	跟随	
	. 0. 0.1011	·	型号	
		USB 版本低字节		
D1h	bcdUSB_L	bcdUSB_L=0x00, USB2.00	00h	
]		bcdUSB_L=0x01, USB2. 01		
		bcdUSB_L=0x10, USB2.10		

		功能性配置字节 4 Bit7-2:保留,必须写 0 Bit1:强制下行端口为全速模式;	
D2h	F . 05.4	0: 高速模式(默认);	00h
	Fun_Cfg4	1:全速模式;	UUN
		Bit0: 指示灯功能使能配置;	
		0: 禁止(默认);	
		1: 使能;	
		功能性配置字节 5	
		Bit7: LED 指示灯极性配置; 0: 低电平有效(默认);	
		0: 版电十有效(為(以); 1: 高电平有效;	
		Bit6: 端口过流检测极性配置;	
D3h	Fun_Cfg5	0: 低电平有效(默认);	00h
	1 411_0 1 80	1: 高电平有效;	
		Bit5:端口电源控制极性配置;	
		0: 低电平有效(默认);	
		1: 高电平有效;	
		Bit4-0: 保留;	
D4-FAh	Reserved	保留	00h
		下行端口 1-2 重映射配置	
		Bit7-4:物理端口2重映射	
		0000:物理端口2禁止重映射;	
		0001: 物理端口2映射为逻辑端口1;	
		0010:物理端口2映射为逻辑端口2;	
		0011: 物理端口2映射为逻辑端口3;	
		0100: 物理端口2映射为逻辑端口4;	
		0101: 物理端口 2 映射为逻辑端口 5;	
		0110: 物理端口 2 映射为逻辑端口 6;	
EDI-	Port_Remap12	0111:物理端口2映射为逻辑端口7; 1000-1111:无效:	00h
FBh			UUN
		0000: 物理端口 1 禁止重映射;	
		0001: 物理端口 1 映射为逻辑端口 1;	
		0010: 物理端口 1 映射为逻辑端口 2;	
		0011: 物理端口 1 映射为逻辑端口 3;	
		0100: 物理端口 1 映射为逻辑端口 4;	
		0101: 物理端口 1 映射为逻辑端口 5;	
		0110:物理端口1映射为逻辑端口6;	
		0111: 物理端口1映射为逻辑端口7;	
		1000-1111: 无效;	
		下行端口 3-4 重映射配置	
	Port_Remap34	Bit7-4: 物理端口 4 重映射	
		0000: 物理端口 4 禁止重映射;	
		0001: 物理端口 4 映射为逻辑端口 1;	
FCh		0010: 物理端口 4 映射为逻辑端口 2;	00h
		0011: 物理端口 4 映射为逻辑端口 3;	
		0100: 物理端口 4 映射为逻辑端口 4;	
		0101: 物理端口 4 映射为逻辑端口 5;	
		0110:物理端口4映射为逻辑端口6;	

		0111: 物理端口 4 映射为逻辑端口 7;	
		1000-1111: 无效;	
		Bit3-0: 物理端口 3 重映射	
		0000: 物理端口3禁止重映射;	
		0001:物理端口3映射为逻辑端口1;	
		0010:物理端口3映射为逻辑端口2;	
		0011:物理端口3映射为逻辑端口3;	
		0100:物理端口 3 映射为逻辑端口 4;	
		0101:物理端口3映射为逻辑端口5;	
		0110: 物理端口3映射为逻辑端口6;	
		0111:物理端口3映射为逻辑端口7;	
		1000-1111: 无效;	
		下行端口 5-6 重映射配置	
		Bit7-4: 物理端口 6 重映射	
		0000: 物理端口 6 禁止重映射;	
		0001: 物理端口 6 映射为逻辑端口 1;	
		0010: 物理端口 6 映射为逻辑端口 2;	
		0011: 物理端口 6 映射为逻辑端口 3;	
		0100: 物理端口 6 映射为逻辑端口 4;	
		0100: 物理端口 6 映射为逻辑端口 5;	
		0110:物理端口6映射为逻辑端口6;	
	Port_Remap56	0111:物理端口6映射为逻辑端口7;	0.01
FDh		1000-1111: 无效;	00h
		Bit3-0: 物理端口 5 重映射	
		0000: 物理端口5禁止重映射;	
		0001:物理端口5映射为逻辑端口1;	
		0010:物理端口5映射为逻辑端口2;	
		0011:物理端口5映射为逻辑端口3;	
		0100:物理端口 5 映射为逻辑端口 4;	
		0101:物理端口5映射为逻辑端口5;	
		0110:物理端口5映射为逻辑端口6;	
		0111: 物理端口5映射为逻辑端口7;	
		1000-1111: 无效;	
		下行端口 7 重映射配置	
		Bit7-4: 物理端口 7 重映射	
		0000:物理端口7禁止重映射;	
	Port_Remap7	0001: 物理端口 7 映射为逻辑端口 1;	
FEh		0010: 物理端口 7 映射为逻辑端口 2;	
		0011: 物理端口 7 映射为逻辑端口 3;	
		0100: 物理端口 7 映射为逻辑端口 4;	00h
		0101: 物理端口 7 映射为逻辑端口 5;	
		0110: 物理端口 7 映射为逻辑端口 6;	
		0111: 物理端口 7 映射为逻辑端口 7;	
		1000-1111: 无效;	
		Bit3-0: 保留;	
FFh	Reserved	G K K K K K K K K K	00h
I I FII	Wesel Agg		OUN

5.8 总线供电与自供电

CH338 支持 USB 总线供电模式和自供电模式。总线供电来自 USB 上行端口,供电能力为 500mA 或

900mA、1.5A 等多种标准, USB 线材内阻损耗和 HUB 自身消耗会降低对下行端口的供电能力, 下行端口电压可能偏低。自供电通常来自外部电源端口, 取决于外部电源供电能力。

由于自供电与总线供电的电压难以完全相等,所以 HUB 需要避免两者直接短接而产生大电流。另外,当 USB 上行端口断电后, HUB 也要避免自供电的外部电源向 USB 总线及 USB 主机倒灌电流。

5.8.1 双向隔离示意

二极管 D1 和 D2 用于双向隔离 V_{BUS} 总线电源和 P6 端口外部供电,防止两个电源相互倒灌,采用大功率的肖特基二极管以降低自身压降,下行端口 V_{BUS} 得到 4. 7V 电压甚至更低,仅为示意。

图 5-9 肖特基二极管双向隔离 VBUS 和外部供电的示意图

5.8.2 实用的单隔离方案

理想二极管的功能是低压降单向导通, U3 用于防止 P6 端口的外部电源向上行端口 V_{BUS} 倒灌, 在 500mA 电流时, U3 的压降约为肖特基二极管压降的三分之一,下行端口 V_{BUS} 可以得到 4. 9V 电压。

图 5-10 理想二极管隔离 ٧ыѕ和外部供电的示意图

6、参数

6.1 绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
T _A	工作时的环境温度	-40	85	°C
TJ	结温度范围	-40	100	Ŋ
Ts	储存时的环境温度	-55	150	Ĵ
$V_{ exttt{DD5}}$	LDO 输入电源电压(Voos 引脚接电源,GND 引脚接地)	-0.4	5. 8	٧
V_{DD33}	工作电源电压(V _{DD33} 引脚接电源,GND 引脚接地)	-0.4	4. 0	٧
V 51	5V 耐压输入引脚上的电压	-0.4	5. 3	٧
$V_{\sf USB}$	USB 信号引脚上的电压	-0.4	V _{DD33} +0. 4	٧
$V_{ ext{GPIO}}$	其它(3.3V)输入或者输出引脚上的电压	-0.4	V _{DD33} +0. 4	٧
V _{ESDUSB}	USB 信号引脚上的 HBM 人体模型 ESD 耐压	6K		V
V _{ESDIO}	其他引脚上的 HBM 人体模型 ESD 耐压	2	K	٧

6.2 电气参数 (测试条件: Tホ=25°C, Vɒɒ=5V 或 Vɒɒз=3.3V)

名称	参数说明			最小值	典型值	最大值	单位
$V_{ exttt{DD5}}$	LDO 输入电源电压@VDD5		启用内部 LD0	3. 8	5. 0	5. 5	٧
V	LDO 输出电压@V _{DD33}		启用内部 LD0	3. 2	3. 3	3. 4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
V_{DD33}	外供 3. 3V 申	∃ <u>压</u> @V _{DD33}	无需内部 LD0	3. 2	3. 3	3. 4	V
I _{LDO}	内部电源调	节器 LD0 对外	3. 3V 负载能力			100	mA
		上行高速	7 个下行高速		140		mA
		上行高速	1 个下行高速		65		mA
		上行高速	7 个下行全速		50		mA
l _{cc}	工作电流	上行高速	1 个下行全速		49		mA
l cc	工作电流	上行全速	7个下行全速		34		mA
		上行全速	1 个下行全速		33		mA
		上行高速	下行无设备	0. 5		mA	
		上行全速	含 1.5KΩ上拉		0.5		IIIA
l _{SLP}	深度睡眠电源电流(不含 1.5KΩ上拉)				0. 28		mA
I SLP	或: 自身睡	眠电源电流(不接 USB 主机)		0. 20		ША
_V	低电平输入电压		标准 I/0 引脚	0		0. 8	V
V IL	100元 1 相)/(一	51 引脚	0		0. 8	V
V _{1H}	→号田平綱入田は		标准 Ⅰ/0 引脚	2. 0		V_{DD33}	V
VIH			51 引脚	2. 0		5. 0	V
V_{ILRST}	RESET#引脚的低电平输入		电压	0		0.8	V
V_{OL}	低电平输出电压		灌电流 5mA		0. 4	0. 6	V
V_{OH}	高电平输出电压		源电流 5mA	V _{DD33} -0. 6	V _{DD33} -0. 4		V
R _{PU}	上拉等效电阻			30	40	55	kΩ
R_{PD}	下拉等效电阻			30	40	55	kΩ
V _{Ivr}	电源低压复位的电压门限			2. 4	2. 9	3. 2	V

7、封装

说明:尺寸标注的单位是 mm (毫米)。 引脚中心间距是标称值,没有误差,除此之外的尺寸误差不大于±0.2mm。

7.1 QFN64X9

7. 2 LQFN48

7.3 QFN32

8、应用

8.1 简化应用, 总线供电

图 8-1 CH338F 总线供电简化示意图

上图中 P1-P7 为 HUB 的 7 个下行 USB 口, P8 为 HUB 的上行 USB 口。5V 与 V_{BUS} 之间的保险电阻 Fuse 可以改用 USB 限流电源开关芯片,保护响应更快,效果更好。注意,保险电阻和 USB 电源开关芯片可能不支持高温。

在下行端口 USB 设备带电热插拔的瞬间, 动态负载可能使 V_{BUS} 和 5V 电压瞬时跌落, 进而可能产生 LVR 低压复位, 从而出现整个 HUB 断开再连接的现象。改进方法: ①在规范允许范围内加大 5V 电源的电解电容(加大图示 C1 容量),缓解跌落; ②加大 HUB 芯片电源输入端的电容(加大图示 C12 容量,例如 22uF); ③增强 5V 供电能力或改为自供电,另外,提升 USB 线材质量也会改善供电能力。

8.2 简化应用,可外部供电

图 8-2 CH338F 自供电简化示意图

与图 8-1 的主要区别在于具有外部供电端口 P9, U5 是低压降理想二极管 CH213, 用于避免 P9 外部电源向上行端口 P8 的 V_{BUS_IN}倒灌,尤其是上行端口例如计算机关机而 P9 外部仍然供电时的情况。理论上 U5 可以换成肖特基二极管,但需要选择自身压降较低的器件,否则会降低下行端口 VBUS 的输出电压,在 300mA 负载电流时,肖特基二极管的压降约 0. 3V,理想二极管的压降约 0. 05V。

由于 P9 自身及外部电源通常没有负载, 所以一般不考虑 P8 向 P9 的倒灌。

低压降二极管 CH213 具有简单的过流和短路保护功能,且保护响应更快,从而可以替代并省掉图 8-1 中 5V 与 V_{BUS}之间的保险电阻 Fuse。P9 所接的外部电源自身需要有过流和短路保护能力,否则,需要在 P9 与 5V 之间加上保险电阻,或者在 5V 与 V_{BUS}之间加上 USB 限流电源开关芯片。

8.3 独立过流检测应用

下图为 HUB 各端口独立电源配电控制、独立过流检测的应用参考图,可以用于计算机和 HUB 集线器。图中 R17、R19、R21、R23、R25、R27 和 R29 根据电源供电能力设置限流门限,USB 限流电源开关芯片的 FLAG#引脚可以产生过流或过温报警信号通知 HUB 控制器及计算机,CH338 的 OVCUR#引脚已内置上拉电阻(默认 OC_LEVEL=0)。

P9 为外部自供电输入端口,当前图中 Type-C 接口,理想二极管 U11 用于避免外部供电向上行端口 USB 电源的倒灌。如果没有 P9 或者不考虑防倒灌,那么无需 U11。

设计 PCB 时需考虑实际工作电流承载能力, VBUS_IN、5V、VBUS*和 P9 及各端口 GND 走线路径的 PCB

尽可能宽, 如有过孔则建议多个并联。

建议 5V 加过压保护器件,建议所有 USB 信号加 ESD 保护器件,例如 CH412K,其 V∞应接 3.3V。 图 8-3 CH338X 独立过流检测应用图

8.4 整体过流检测应用

下图为 HUB 所有端口 GANG 电源配电控制和整体过流检测的应用参考图, CH217 是支持过流保护的 USB 配电开关芯片。

图 8-4 CH338F 整体过流检测应用图

