Modular Forms Modulo 2:

Governing Fields for the Hecke Algebra

Paul Dubois

University College of London

March 25, 2020

Modular Forms

Complex vector space of modular forms of weight n: M_n

For
$$f \in M_n$$
: $f(z) = \sum_{n=0}^{\infty} c(n)q^n$ with $q^n = e^{2\pi i n z}$

Reduction Modulo 2

$$\left\{f \in M_n \mid f = \sum_{n \in \mathbb{N}} c(n)q^n \text{ s.t. } c(n) \in \mathbb{N} \right\}$$

$$\parallel$$

$$\mathbb{F}_2 \left[\Delta, E_2, E_3\right]$$

$$\overline{\Delta} \leadsto \Delta$$

$$\overline{E_2} \leadsto 1$$

$$\overline{E_3} \leadsto 1$$

 $\overline{M_n} \rightsquigarrow \mathbb{F}_2[\Delta]$

Modular Forms Modulo 2

$$\mathcal{F} = \left\langle \Delta^k \mid k \text{ odd} \right\rangle = \left\langle \Delta, \Delta^3, \Delta^5, \dots \right\rangle.$$

$$\Delta(q) = q \prod_{n=1}^{\infty} (1 - q^n)^{24}$$

$$= \sum_{n=0}^{\infty} \tau(n) q^n$$

$$\equiv \sum_{n=0}^{\infty} q^{(2m+1)^2} \mod 2$$

Hecke Operators

With

$$f(q) = \sum_{n \in \mathbb{N}} c(n)q^n$$

We define

$$\overline{T_m}|f(q)=\sum_{n\in\mathbb{N}}\gamma(n)q^n$$

Where

$$\gamma(n) = \sum_{a|(n,m), a \ge 1} a^{2k-1} c\left(\frac{mn}{a^2}\right)$$

Hecke Operators Modulo 2

With

$$f(q) = \sum_{n \in \mathbb{N}} c(n)q^n$$

We define

$$\overline{T_p}|f(q) = \sum_{n \in \mathbb{N}} \gamma(n)q^n$$

Where

$$\gamma(n) = \begin{cases} c(np) & \text{if } p \nmid n \\ c(np) + c(n/p) & \text{if } p \mid n \end{cases} \text{ and } p \text{ an odd prime.}$$

Examples

	Δ^1	Δ^3	Δ^5	Δ^7	Δ^9	Δ^{11}	Δ^{13}
T_3	0	Δ	0	Δ^5	Δ^3	Δ^9	Δ^7
T_5	0	0	Δ	Δ^3	0	0	Δ^9
T_7	0	0	0	Δ	0	0	Δ^3
T_{11}	I	Δ	0	Δ^5	Δ^3	$\Delta + \Delta^9$	Δ^7
T_{13}	0	0	Δ	Δ^3	0		$\Delta + \Delta^9$
T_{17}	0	0	0	0		Δ^3	Δ^5
T_{19}	0	Δ	0	Δ^5	Δ^3	$\Delta + \Delta^9$	Δ^7

$$f = \Delta^{k}$$
 $T_{p}|f = \Delta^{m} + \dots$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$= q^{k} + \dots \longrightarrow T_{p}|f = q^{m} + \dots$$

The Hecke Algebra

$$A = \mathbb{F}_2 [T_3, T_5, T_7, T_{11}, T_{13}, \dots]$$

$$= \mathbb{F}_2 [T_p \mid p \in \mathbb{P}]$$

$$A = \mathbb{F}_2 [[T_3, T_5]]$$

$$T_p = \sum_{i+j>1} a_{ij}(p) T_3^i T_5^j$$

Examples

$$x = T_3 y = T_5$$
i.e. $x^a y^b = T_3^a T_5^b$

$$T_3 = x^1 y^0 = x$$

$$T_5 = x^0 y^1 = y$$

$$T_7 = x^1 y^1 + x^3 y^1 + x^3 y^3 + x^5 y^1 + x^1 y^7 + x^1 y^9 + x^7 y^3 + x^7 y^5 + x^9 y^3 + x^{11} y^1 + x^3 y^{11} + x^5 y^9 + x^{13} y^1 + x^3 y^{13} + x^5 y^{11} + x^9 y^7 + x^{11} y^5 + x^{13} y^3 + x^3 y^{15} + x^7 y^{11} + x^9 y^9 + x^{13} y^5 + x^{15} y^3 + \dots$$

$$T_{11} = x^1 y^0 + x^1 y^2 + x^3 y^0 + x^1 y^4 + x^3 y^2 + x^5 y^0 + x^1 y^6 + x^3 y^4 + x^7 y^2 + x^1 y^{10} + x^3 y^8 + x^7 y^4 + x^9 y^2 + x^{11} y^2 + x^3 y^{12} + x^3 y^8 + x^7 y^4 + x^9 y^2 + x^{11} y^2 + x^3 y^{12} + x^3 y^8 + x^7 y^4 + x^9 y^2 + x^{11} y^2 + x^3 y^{12} + x^3 y^8 + x^7 y^4 + x^9 y^2 + x^{11} y^2 + x^3 y^{12} + x^3 y^8 + x^7 y^4 + x^9 y^2 + x^{11} y^2 + x^3 y^{12} + x^3 y^8 + x^7 y^4 + x^9 y^2 + x^{11} y^2 + x^3 y^{12} + x^3 y^8 + x^7 y^4 + x^9 y^2 + x^{11} y^2 + x^3 y^{12} + x^3 y^8 + x^7 y^4 + x^9 y^2 + x^{11} y^2 + x^3 y^{12} + x^3 y^8 + x^7 y^4 + x^9 y^2 + x^{11} y^2 + x^3 y^{12} + x^3 y^8 + x^7 y^$$

 $x^{5}v^{10} + x^{7}v^{8} + x^{11}v^{4} + x^{13}v^{2} + x^{9}v^{8} + x^{17}v^{0} + \dots$

Dirichlet Density Theorem

Intuition: Animation

(see https://pauldubois98.github.io/DirichletDensityTheoremAnimation/)

Theorem (Dirichlet's Density Theorem)

Let $n \in \mathbb{N}^*$, $a \in \mathbb{N}$ such that $\gcd(a, n) = 1$. If $S = \{p \in \mathbb{P} \mid p \equiv a \mod n\}$, then S has density $1/\varphi(n)$.

Chebotarev Density Theorem

[to write]

Frobenian Maps

[definition]

The maps a_{ij}

$$T_p = \sum_{i+j\geq 1} a_{ij}(p) T_3^i T_5^j$$

$$a_{ij}:p\mapsto a_{ij}(p)$$

Known Governing Fields

$$egin{aligned} M_{01} &= \mathbb{Q}\left(\zeta_8
ight) \ M_{02} &= \mathbb{Q}\left(\zeta_8, \sqrt[4]{2}
ight) \ M_{11} &= \mathbb{Q}\left(\zeta_8, \sqrt{\zeta_8}
ight) = \mathbb{Q}\left(\zeta_{16}
ight) \ M_{02} &= \mathbb{Q}\left(\zeta_8, \sqrt{1+i}
ight) \ M_{01} &= \mathbb{Q}\left(\zeta_8
ight) \end{aligned}$$

Potential New Governing Fields

$$M_{03} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt[4]{2}, \sqrt{\alpha}\right)$$

where:

$$\alpha = -\frac{3136435454775881\sqrt[4]{2}}{562949953421312} + \frac{4208721080340285\sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^{3}}{562949953421312} + \frac{3582104167901087}{281474976710656}$$

Potential New Governing Fields

$$M_{05} \stackrel{?}{=} \mathbb{Q}\left(\zeta_8, \sqrt[4]{2}, \sqrt{\alpha}, \sqrt{\beta}\right)$$

where:

$$\alpha = -\frac{3136435454775881\sqrt[4]{2}}{562949953421312} + \frac{4208721080340285\sqrt{2}}{2251799813685248} + \frac{3672578267558083 \cdot \sqrt[4]{2}^3}{562949953421312} + \frac{3582104167901087}{281474976710656}$$

and

$$\beta = -\frac{8282936156772053\alpha^{\frac{13}{2}}}{1125899906842624} - \frac{1240182980093567\alpha^{6}}{562949953421312} \\ -\frac{336382584949535\alpha^{\frac{9}{2}}}{2199023255552} - \frac{6445823996745319\alpha^{4}}{140737488355328}$$

Governing Fields Extension Graph

Governing Groups

$$G_{01} \cong D_4 \cong C_2 \times C_2$$
 $G_{10} \cong D_4 \cong C_2 \times C_2$
 $G_{02} \cong D_8$ $G_{20} \cong D_8$
 $G_{03} \cong D_{16}$ $G_{30} \cong D_{16}$
 $G_{04} \cong D_{16}$ $G_{40} \cong D_{16}$
 $G_{05} \cong D_{32}$ $G_{50} \cong D_{32}$
 $G_{06} \cong D_{32}$ $G_{60} \cong D_{32}$
 $G_{07} \cong D_{32}$ $G_{70} \cong D_{32}$

Governing Groups Extension Graph

Diagonal Governing Groups

Conjecture (Diagonal Governing Groups Conjecture)

For all $k \in \mathbb{N}^*$, there exists a field M_{0k} such that M_{0k} is a governing field for a_{0k} , and $G_{0k} = Gal(M_{0k}/\mathbb{Q})$ is dihedral. For all $k \in \mathbb{N}^*$, there exists a field M_{k0} such that M_{k0} is a governing field for a_{k0} , and G_{k0} is dihedral.

Moreover $M_{k0} \neq M_{0k}$ in general, but $G_{k0} \cong G_{0k}$.

Thank you

Extra Slides

Computations Results

Dirichlet Density Theorem Animation

add some useful links?

Subspaces of Modular Forms Modulo 2

$$\begin{split} \mathcal{F}_1 &= \left\langle \Delta^k \mid k = 1 \bmod 8 \right\rangle = \left\langle \Delta^1, \Delta^9, \Delta^{17}, \Delta^{25}, \dots \right\rangle, \\ \mathcal{F}_3 &= \left\langle \Delta^k \mid k = 3 \bmod 8 \right\rangle = \left\langle \Delta^3, \Delta^{11}, \Delta^{19}, \Delta^{27}, \dots \right\rangle, \\ \mathcal{F}_5 &= \left\langle \Delta^k \mid k = 5 \bmod 8 \right\rangle = \left\langle \Delta^5, \Delta^{13}, \Delta^{21}, \Delta^{29}, \dots \right\rangle, \\ \mathcal{F}_7 &= \left\langle \Delta^k \mid k = 7 \bmod 8 \right\rangle = \left\langle \Delta^7, \Delta^{15}, \Delta^{23}, \Delta^{31}, \dots \right\rangle. \\ \mathcal{F} &= \mathcal{F}_1 \oplus \mathcal{F}_3 \oplus \mathcal{F}_5 \oplus \mathcal{F}_7. \end{split}$$

