Universidade Federal do Rio Grande do Sul Instituto de Informática Organização de Computadores Aula 24 Microcontroladores INF01113 - Organização de Computadores

Microcontroladores

- 1. Introdução
- 2. Memória interna
- 3. Portas de entrada e saída
- 4. Conversor analógico-digital
- 5. Módulo PWM
- 6. Watchdog Timer
- 7. Interface serial

Microcontrolador 8051 Microcontroladores PIC

INF01113 - Organização de Compu

1. Introdução

- Microcontrolador = microcomputador de um único chip ao qual são adicionados elementos para uso industrial
 - periféricos especializados para aplicações de automação e controle memória RAM e ROM internas
- Periféricos e memórias incorporados na pastilha reduzem a necessidade de circuitos externos
- Conjunto de instruções (usualmente CISC) também dedicado a aplicações de automação e controle
- Sistemas de automação têm geralmente as seguintes características:
 - sistemas embarcados em algum produto
 - programação fixa
 - programas simples
 - pouca exigência de desempenho

Introdução

- Várias combinações de periféricos são oferecidas caracterizando o que se conhece por família de um microcontrolador
- · Periféricos comumente encontrados:
 - portas de entrada/saída bits, vetores de bits
 - contadores/temporizadores
 - interfaces seriais
 - unidades PWM
 - temporizadores do tipo watchdog
 - conversores A/D
 - unidades detectoras e geradoras de eventos

INF01113 - Organização de Computadores

Introdução

- · Microcontroladores podem ser caracterizados como:
 - genéricos
 - específicos
 - controle de um display de cristal líquido
 - · controle de vídeo
 - · controle de barramento
- A escolha de um microcontrolador é baseada na aplicação e no custo (eventualmente também desempenho, potência)
- Microcontrolador escolhido deve requerer o menor número de periféricos externos possível e o menor esforço de programação (conjunto adequado de instruções)

INF01113 - Organização de Computadores

2. Memória interna

- Muitas aplicações de controle precisam de programas pequenos e operam sobre pequenos volumes de dados
- memórias RAM e ROM internas
- · Tipos de memórias utilizadas
 - RAM memória volátil
 - ROM memória não-volátil, pode ser gravada apenas uma vez
 - EPROM memória não-volátil, é gravada eletricamente e apagada expondo uma janela à luz ultravioleta por alguns minutos
 - EEPROM/FLASH memória não volátil, pode ser gravada e apagada eletricamente
 - para o apagamento e gravação é necessária a utilização de tensões especiais, diferentes das normalmente utilizadas para a leitura

INF01113 - Organização de Computadores

EEPROM x FLASH

- Memória EEPROM: pode-se realizar o apagamento seletivo de apenas um byte
- Memória FLASH: só pode ser apagada em blocos
 - o tamanho de cada bloco varia de acordo com o modelo e/ou fabricante
- O preço da produção da memória EEPROM é um pouco mais elevado do que a memória FLASH
- Portanto a memória FLASH é uma alternativa mais econômica

INF01113 - Organização de Computadore

3. Portas de entrada e saída

- As portas de entrada e saída de um microcontrolador são utilizadas para interface com o processo físico sendo controlado
 - pode-se utilizar o microcontrolador de forma a acionar chaves, ler sensores de luminosidade, etc.
 pode-se receber informações e controlar qualquer processo que possa
- ser representado por níveis discretos de tensão

 Sinais de interface do microcontrolador operam com níveis de
- tensão padronizados – portas que operam sobre dois valores 0 e 1 (desligado e ligado)
 - portas que operam sobre valores de 8 (ou 16) bits
- Deve-se adaptar estes sinais a outros níveis de tensão e a outras grandezas (temperaturas, velocidades, etc.) com a utilização de transdutores e de conversores A/D e D/A

4. Conversor analógico-digital

- Quando uma aplicação trabalha com sinais contínuos (analógicos), um conversor analógico-digital deve ser utilizado
- Conversor tem como entrada um sinal de tensão analógico (valor dentro de uma escala de —X a +Y Volts) e converte este valor analógico para um valor digital
- A conversão é realizada em intervalos regulares (na taxa de amostragem) ou pré-determinados
- Assim, um sinal contínuo passa a ser representado por um conjunto de valores discretos

INF01113 - Organização de Computadores

Conversor analógico-digital

- O sinal de entrada será convertido para um valor dentro de uma escala cujo valor máximo será igual a 2^N -1, onde N é o número de bits da representação
- Ex.: representando em 8 bits uma variável com intervalo de valores entre 0 e 1000 unidades
 - conversor A/D converte valores da variável para escala de 0 a 5 V
 - valor da variável = 1000 será representado por 255
 - valor da variável = 500 será representado por 127 ou 128

INF01113 - Organização de Computadores

Conversor analógico-digital

- · Exemplo de aplicação: Termômetro digital
- Nesta aplicação pode-se observar a redução no sistema com a integração dos periféricos ao microcontrolador
- Somente o sensor e o display ficam fora do chip

INF01113 - Organização de Computadores

5. Módulo PWM

- A finalidade deste componente é realizar uma conversão digitalanalógico
- Um módulo PWM (Pulse Width Modulation) gera em sua saída um sinal que é uma onda retangular
- Este sinal tem período fixo e a largura de pulso (ou seja, o tempo que a saída fica em valor alto) é variável e proporcional ao valor de entrada
- Com isto, tem-se na saída um sinal cujo valor médio é proporcional ao valor de entrada do módulo
- · Este sinal passa por um filtro passa-baixas
 - componente eletrônico que elimina as altas freqüências, ou variações rápidas de um sinal

INF01113 - Organização de Computadores

Módulo PWM

 Este é um dos métodos mais simples (basta gerar uma seqüencia de pulsos) de conversão digital-analógico, mas que tem uma velocidade baixa de conversão

INF01113 - Organização de Computadores

Módulo PWM

• Aplicação: controle do brilho de um LED

6. Watchdog Timer

- O watchdog timer é um contador cuja finalidade é resetar o microcontrolador
- Isto deve ser feito quando ocorre uma situação não prevista e o software "tranca" em uma situação qualquer
- Este temporizador é inicializado com um valor inicial e decrementa automaticamente, sem a intervenção do processador
- No momento em que a contagem chega a zero, o microcontrolador
- é reinicializado
 A contagem deve ser reiniciada regularmente pelo programa, para que o microcontrolador mantenha seu funcionamento
- Com isso, o sistema que emprega o microcontrolador fica menos vulnerável a falhas na execução do software

INF01113 - Organização de Computadores

7. Interface serial

- A interface serial tem por objetivo possibilitar a comunicação entre o microcontrolador e outros dispositivos
 - comunicação ocorre através do envio sucessivo de bits, seguindo um determinado padrão
- Com este dispositivo, o microcontrolador pode ser utilizado para adicionar inteligência a um sensor (ou seja, realiza processamento no local onde está o sensor)
 - sensor inteligente pode fazer parte de um sistema com processamento distribuído, realizando comunicação com um sistema central de supervisão
- Outra possibilidade é realizar a atualização do próprio programa do microcontrolador, desde que este não esteja gravado em ROM
 - uma parte fixa do programa encarrega-se de receber a atualização através da porta serial e substituir parte do conteúdo da memória

INF01113 - Organização de Computadores

Microcontrolador 8051

- 1. Introdução
- 2. Organização do processador
- 3. Organização de memória
- 4. Modos de endereçamento
- 5. Conjunto de instruções
- 6. Portas de entrada e saída
- 7. Temporizadores/Contadores 8. Controlador de interrupções
- 9. Interface serial

INF01113 - Organização de Computadores

1. Introdução

- · O microcontrolador 8051BH é composto de:
 - um microprocessador de 8 bits
 - arquitetura CISC
 - · baseado em acumulador
 - memórias de programa e de dados separadas
 - 4 portas de entrada/saída
 - memórias ROM/RAM internas
 - interface serial full duplex
 controlador de interrupcões
 - 2 temporizadores / contadores

INF01113 - Organização de Computadores

2. Organização do processador Estradas esternas de clorás dos Contadores (3) e Externas (2) ROM RAM Timer 0 Timer 1 Interrupções Internas (3) e Externas (2) Contradores ROM Portas de Entradas Saida Portas Serial Porta Serial RAFO1113 - Organização de Computadores

3. Organização de memória

- Memória de instruções
 - a memória de instruções tem uma parte inferior que pode ser a ROM interna ou uma memória externa
 - o sinal PSEN seleciona a memória externa
- · Memória de dados interna
 - 128 bytes de RAM interna (4 bancos de 8 registradores de 8 bits + 16 registradores endereçados a bit + RAM normal)
 - registradores especiais (acima de 80H)

INF01113 - Organização de Computadore:

4. Modos de endereçamento

Modo de endereçamento	Operandos (Registradores e Memória)		
Endereçamento Imediato	Memória de Programa		
Por Registrador	R0-R7 e		
	ACC (A), B, C (carry-bit) e DPTR		
Direto	Os 128 bytes menos significativos da RAM Interna e		
	Registradores de Funções Especiais		
Indireto por Registrador	RAM interna (@R0, @R1 e SP) e		
	Memória de Dados Externa (@R0, @R1 e @DPTR)		
Registrador Base mais indireto indexado por	Memória de Programa (@DPTR+A e @PC+A)		
registrador			

INF01113 - Organização de Computadore

5. Conjunto de instruções

Instrução	C	o v	A C
A D D	X	X	X
ADDC	X	X	X
SUBB	X	X	X
MUL	0	X	
DIV	0	X	
D A	X		
RRC	X		
RLC	X		
SETB C	1		
CLR C	0		
C P L C	X		
ANL C,bit	X		
ANLC,/bit	X		
ORLC,bit	X		
ORLC,/bit	X		
MOVC,bit	X		Ī
MOVC,/bit	X	1	
CJNE	X		

6. Portas de entrada e saída

- O 8051BH possui quatro portas de entrada/saída
- As portas 0 e 2 são usadas como barramento de dados e de endereços no caso de acesso à memória externa
- A porta 3 pode ter os seus 8 pinos utilizados individualmente para:
 - controle da interface serial recepção de interrupções externas

 - recepção de relógio externo para os temporizadores controle da memória externa

7. Temporizadores/Contadores

- O 8051 possui 2 Temporizadores/Contadores (T/C) internos, programáveis e com capacidade de operarem independentemente da CPU
- Podem ser habilitados ou desabilitados por software ou por hardware
- São 2 os registradores que comandam a programação dos T/C:
 - TCON
 - TMOD

INF01113 - Organização de Computadore:

8. Controlador de interrupções

- Existe um controlador dedicado para o atendimento de interrupções
- As interrupções são vetoradas, com vetor fixo na memória de programa
- Existem 5 fontes de interrupção:
 - Duas externas através da porta 3
 Duas externas através da porta 3
 Duas associadas com o overflow dos dois temporizadores
 Uma associada com a interface serial
- O 8051 não possui interrupções por software

INF01113 - Organização de Computadores

9. Interface serial

- Interface serial do tipo full-
- Dados podem ser transmitidos e recebidos ao mesmo tempo
- Funciona através dos pinos 0 e 1 da porta número 3
- Possui um registrador para paralelização dos dados recebidos
- Escrever em SBUF = carregar o registrador de transmissão
- Ler de SBUF = acessar um registrador de recepção fisicamente separado

INF01113 - Organização de Comp