Principles of Databases Entity-Relational Data Modeling

David Sinclair

Definitions Examples

Introduction to ER Modeling

- An Entity-Relationship Model (ERM) is an abstract and conceptual representation of data.
- ER modeling is a DB method used to produce a type of conceptual schema of a system.
- The diagrams produced are called ER diagrams.
- ER Model is used to interpret, specify and document requirements for databases irrespective of the DBMS being used.
- Sequence: Conceptual Data Model (ER diagrams) o Logical Data Model ($relational \ model$) o Physical Design

ER Definitions

- Entity (Instance):
 - An entity is an instance of a physical object in the world.
 - Entity Class: A group of objects of the same type.
 - e.g. Entity Class: Students Entities: John, Mary Students
- Attributes:
 - Properties of entities that describe their characteristics.
 - Types:
 - Simple: An attribute that is not divisible, e.g. Age Age
 - Composite: An attribute comprising of several simple attributes, e.g. address Address House No.
 - Multiple: An attribute that can multiple values for the same entity, e.g. phone number phone no.

Definitions Examples

ER Definitions (2)

• Key: An attribute that uniquely identifies an entity.

- Value Set or domain: Each simple attribute has a range of values that may be assigned to that attribute for each individual entity., e.g. Age = integer, range[18,...85]
- Relationships:
 - 1. Relationship are bi-directional, they can be phrased both ways.
 - 2. Degree:
 - binary involving two entities.
 - ternary involving three entities.
 - 3. Cardinality: Defines how many entities are involved in a relationship.
 - 4. Relationships may have properties (attributes).
 - 5. Relationships can be recursive.

ER Definitions (3)

Definitions Examples

ER Definitions (4)

Keys and Key Attributes

- Super-Key: A set of attributes that uniquely identifies a row.
 - For the SP table this would be {S#,P#,QTY} or {S#,P#}
- Candidate Key: (Irreducible) combination of attributes which uniquely identifies each row.
 - For the SP table this is {S#, P#}
- Primary Key: One of the candidate keys.
- Alternate Key: One of the candidate keys not chosen as the primary key.
- Foreign Key: A (combination of) attribute(s) in one relation whose value(s) are required to be equal in the primary key of another relation.

_ >			
S#	SName	Status	City
S1	Smith	20	Paris
S2	Jones	10	Paris
S3	Blake	30	Rome

Р				
P#	PName	Colour	Weight	City
P1	Nut	Red	12	Dublin
P2	Bolt	Green	17	Paris
P3	Screw	Blue	27	Rome
P4	Screw	Red	14	Dublin

SP		
S#	P#	QTY
S1	P1	300
S1	P2	200
S1	P3	400
S2	P1	300
S2	P2	400
S3	P2	200

Definitions Examples

ER Example 1

A student has a student number (identifying), a name, an address (with house number, street and city) and several phone numbers.

Cardinality Questions

Definitions Examples

More ER Definitions

• Weak Entity: An entity that cannot be identified by its attributes alone.

- *ID-Dependent Entity*: A special case of a weak entity that includes the entity ID it depends on.
 - An apartment in a building block
 - Block: Identifier BldgName, Apartment: Identifier {BldgName, ApartNo}
- *Derived Attribute*: An attribute whose values are generated from another attribute.
 - AccountBalance = TotalCredit TotalDebit

More ER Definitions (2)

- Total/Partial Participation:
 - Partial: An entity's existence does not require the existence of the associated entity in the relationship.
 - Employee Entity doesn't require the existence of the Dependent entity.
 - *Total*: An entity's existence requires the existence of the associated entity.
 - Doesn't have to be a Weak Entity to require Total Participation.
 - Employee work on a Project is a total relation on both sides.

Definitions Examples

ER Example 2: A Hospital Case

Patients are treated in a single ward by doctors assigned to them. Usually each patient will be assigned to a single doctor, but in rare cases they will have two. Healthcare assistants also attend to the patients, a number of these are associated to each ward.

ER Example 3: Football Club

A football club has a name and a ground and is made up of players. A player can play for only one club and a manager, represented by his name, manages a club. A footballer has a registration number, name and age. A club manager also buys players. Each club plays against each other club in the league and matches have a date, venue and score.

Definitions Examples

ER Example 4: Bus Company

A bus company owns a number of buses. Each bus is allocated to a particular route, although some routes may have several buses. Each route passes through a number of towns. One or more drivers are allocated to each stage of a route, which corresponds to a journey through some or all of the towns on a route. Some of the towns have a garage where buses are kept. Each of the buses is identified by a registration number and can carry different numbers of passengers, since the vehicles vary in size and can be single or double decked. Each route is identified by a route number and information is available on the average number of passengers carries per day for each route. Drivers have an employee number, name address, and sometimes a telephone number.

ER Example 4: Bus Company (2)

- **Entities** and the *Relationships* (including cardinality):
 - Each bus is allocated to a particular route, although some routes may have several buses.
 - Bus Route (m:1) is serviced by
 - One or more drivers are allocated to each stage of a route, which corresponds to a journey through some or all of the towns on a route.
 - Driver Stage (m:1) is allocated
 - Route Stage (1:n) comprises
 - Each route passes through a number of towns.
 - Stage Towns (m:n) passes through
 - Route Towns (m:n) passes through
 - Some of the towns have a garage where buses are kept.
 - Garage Town (1:1) located in
 - Garage Bus (1:n) is garaged

Definitions Examples

ER Example 4: Bus Company (3)

- Attributes (key attributes)
 - Bus (reg_num, make, size, deck, num_pass)
 - Route (route_num,avg_pass)
 - Driver (emp_num, name, address, tel_num)
 - Town (name)
 - Stage (stage_num)
 - Garage (name, address)

ER Example 4: Bus Company (4)

Definitions Examples

ER Example 5: University Database

A lecturer, identified by his or her staff number, name and room number, is responsible for organising a number of course modules. Each module has a unique code and also a name. Each course module can involve a number of lecturers who deliver part of it. A module is composed of a series of lecturers and because of economic constraints and common sense, sometimes lectures on a given topic can be part of more than one module. A lecture has a time, room and date, and is delivered by a lecturer and a lecturer may deliver more than one lecture. Students, identified by a name and a number, can attend lectures and a student must be registered for a number of modules. We also store the date on which the student first registered for that module. Finally, a lecturer act as a tutor for a number of students and each student only has one tutor.

ER Example 5: University Database (2)

- Entities and their Attributes (key)
 - Lecturer (staff_num, name, office)
 - Student (number, name)
 - Module (code, name)
 - Lecture (room, date, time)
- Relationships and their cardinalities
 - A lecturer is responsible for organising a number of course modules.
 - Lecturer Module (1:n) is responsible for
 - Each course module can involve a number of lecturers who deliver part of it.
 - Lecturer Module (m:n) lectures
 - A module is composed of a series of lectures and because of economic constraints and common sense, sometimes lectures on a given topic can be part of more than one module.
 - Module Lecture (m:n) is part of

Definitions Examples

ER Example 5: University Database (3)

- Relationships and their cardinalities (continued)
 - A lecture is delivered by a lecturer and a lecturer may deliver more than one lecture.
 - Lecturer Lecture (1:n) delivers
 - Students can attend lectures
 - Student Lecture (m:n) attend
 - and a student must be registered for a number of modules.
 - **Student Modules** (m:n) *registers* (Attribute: date)
 - a lecturer act as a tutor for a number of students and each student only has one tutor.
 - Lecturer Student (1:n) tutors

ER Example 5: University Database (4)

