Uni.lu HPC School 2019

PS5c: Scalable Science III: GPU programming

Uni.lu High Performance Computing (HPC) Team

Dr. F. Pinel

University of Luxembourg (UL), Luxembourg http://hpc.uni.lu

Latest versions available on Github:

UL HPC tutorials:

UL HPC School:

PS5c tutorial sources:

https://github.com/ULHPC/tutorials

http://hpc.uni.lu/hpc-school/

ulhpc-tutorials.rtfd.io/en/latest/gpu/

2019

Objectives of this session

- Minimum CUDA knowledge to start development
 - $\hookrightarrow \ \, \text{Unified Memory, single GPU}$
- Performance improvement
 - \hookrightarrow profiling
- On the iris cluster

Out of scope (but useful)

- Error handling
- Streams
- Multi-GPU
- Fine-tuning memory access

Software overview

GPU Computing Applications											
Libraries and Middleware											
cuDNN TensorRT	cuFFT, cuBLAS, cuRAND, cuSPARSE		CULA MAGMA		Thrust NPP	VSIPL, SVM, OpenCurrent		PhysX, OptiX, iRay		MATLAB Mathematica	
Programming Languages											
С	C++		Fortran		Java, Python, Wrappers		DirectCompute		Directives (e.g., OpenACC)		
CUDA-enabled NVIDIA GPUs											
Turing Architecture (Compute capabilities 7.x)		DRIVE/JETSON AGX Xavier		Ge	GeForce 2000 Series		Quadro RTX Series		Tesla T Series		
Volta Architecture (Compute capabilities 7.x)		DRIVE/JETSON AGX Xavier						Т	Tesla V Series		
Pascal Architecture (Compute capabilities 6.x)		Tegra X2		Ge	GeForce 1000 Series		Quadro P Series		Т	Tesla P Series	
Maxwell Architecture (Compute capabilities 5.x)		Tegra X1		Ge	GeForce 900 Series		Quadro M Series		Т	Tesla M Series	
Kepler Architecture (Compute capabilities 3.x)		Tegra K1			Force 700 Serie Force 600 Serie		Quadro K Series		Т	Tesla K Series	
		EMBEDDED		COI	CONSUMER DESKTOP, LAPTOP		PROFESSIONAL WORKSTATION			DATA CENTER	

Figure: Nvidia Programming guide

Hardware/Software overview

Figure: Nvidia Programming guide

Questions?

http://hpc.uni.lu

High Performance Computing @ uni.lu

Prof. Pascal Bouvry Dr. Sebastien Varrette Valentin Plugaru Sarah Peter Hyacinthe Cartiaux Clement Parisot Dr. Fréderic Pinel

Dr. Emmanuel Kieffer

University of Luxembourg, Belval Campus

Maison du Nombre, 4th floor 2, avenue de l'Université L-4365 Esch-sur-Alzette mail: hpc@uni.lu

