Chapitre

Lentilles

5. Vergence d'une lentille

5.1. Lentille mince formée de 2 dioptres

Il y a une image intermédiaire entre les 2 dioptres. Il faut utiliser les relations de conjugaison pour chaque dioptre :

On a $\frac{n}{S_1A_{i,1}}-\frac{1}{S_1A_o}=V_1$ et $\frac{n}{S_2A_i}-\frac{1}{S_2A_{i,1}}=V_2$. En simplifiant dans le cadre des lentilles minces, S_1 et S_2 sont confondus et on a $\frac{1}{S_2A_i}+\frac{1}{S_2A_i}$ $\frac{1}{S_1 \overline{A}_o} = V$

On obtient finalement la relation de conjugaison des lentilles minces :

Théorème 1.1 : Relation de conjugaison des lentilles minces $\frac{1}{OA_i} - \frac{1}{OA_o} = V_1 + V_2 = V$

$$\frac{1}{OA_i} - \frac{1}{OA_0} = V_1 + V_2 = V_1$$

5. Éléments cardinaux d'une lentille

Centre optique

Le sommet et le centre optique sont confondus.

Théorème 2.1 : Distance focale image/objet

La distance focale de l'image est $\frac{1}{V}$. De plus, les distances focales objets et images sont opposées

On en déduit que les foyers sont symétriques par rapport à O. Enfin, dans le cas d'une lentielle de vergence positive, $O\bar{F}_i>0$ et $O\bar{F}_o<0$

5. Construction

5.3. Lentille convergente

La focale image est positive et la focale objet négative.

3 cas possibles:

- · OR-IR (quand l'objet est avant le foyer objet et avant la lentille)
- · OR-IV (quand l'objet est après le foyer objet mais avant la lentille)
- · OV IR

Cas impossible

On ne peut pas avoir une image virtuelle avec un objet virtuel.

5.3.2 entille divergente

La focale image est négative et la focale objet positive.

3 cas possibles:

- · OR-IV
- · OV-IR (quand l'objet est avant le foyer objet et après la lentille)
- · OV IO (quand l'objet est après le foyer objet et après la lentille)

Cas impossible

On ne peut pas avoir une image réelle avec un objet réel.

5.3. Foyers secondaires

Foyers secondaires

Des rayons arrivant parallèlement vont se croiser en un point, se trouvant sur le plan focal image, perpendiculaire à l'axe optique et passant par le foyer image. On a le même effet pour le foyer objet.

On utilise les mêmes règles de construction.