Ecole Nationale Supérieure de Techniques Avancées Paris PRB202 - Martingales et Algorithmes Stochastiques PC2 - 25 novembre 2019

Exercice 1:

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes et identiquement distribuées, de carré intégrable telle que $\mathbb{E}[X_1] = 0$, $\mathbb{E}[X_1^2] = \sigma^2$.

Notons $\mathcal{F}_0 = \{\emptyset, \Omega\}$ et $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$, pour tout $n \ge 1$.

On pose $S_0 = 0$, $S_n = X_1 + \cdots + X_n$, pour tout $n \ge 1$.

- 1. Montrer que $\mathcal{F}_n = \sigma(S_1, \dots, S_n)$, pour tout $n \geq 1$.
- 2. Démontrer que $(S_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ martingale.
- 3. Prouver que $(S_n^2 n \sigma^2)_{n \in \mathbb{N}}$ est une martingale relativement à la filtration $(\mathcal{F}_n)_{n \in \mathbb{N}}$.
- 4. Supposons maintenant que la variable aléatoire $\exp(\alpha X_1)$ soit intégrable pour un certain réel $\alpha > 0$ et notons ϕ la transformée de Laplace de la loi de X_1 .

Montrer que le processus $(Y_n)_{n\geq 1}$ défini par : $Y_n = \phi(\alpha)^{-n} \exp(\alpha S_n)$, pour tout $n\geq 1$ est une $(\mathcal{F}_n)_{n\geq 1}$ -martingale.

Explicitez le résultat obtenu lorsque X_1 suit une loi gaussienne centrée réduite.

Exercice 2:

Soit $(X_n)_{n\in\mathbb{N}}$ une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -sur-martingale et définissons $\mathcal{G}_n = \sigma(X_0, \dots, X_n)$, pour tout $n \in \mathbb{N}$. Montrer que $(X_n)_{n\in\mathbb{N}}$ est également une sur-martingale relativement à $(\mathcal{G}_n)_{n\in\mathbb{N}}$.

Exercice 3:

Soit $(X_n)_{n\in\mathbb{N}}$ une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - sur-martingale telle que $\mathbb{E}[X_n]$ soit constante pour tout $n\in\mathbb{N}$. Démontrer que $(X_n)_{n\in\mathbb{N}}$ est en fait une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - martingale.

Exercice 4:

Soit $(X_n)_{n\in\mathbb{N}}$ et $(Y_n)_{n\in\mathbb{N}}$ deux $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingales de carré intégrable définies sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$.

1. Montrer que pour tout $(m, n) \in \mathbb{N}^2$ tels que $m \leq n$,

$$\mathbb{E}[X_m Y_n | \mathcal{F}_m] = X_m Y_m$$
, p.s. et $\mathbb{E}[Y_m X_n | \mathcal{F}_m] = Y_m X_m$, p.s..

2. En-déduire que pour tout entier naturel $n \ge 1$,

$$\mathbb{E}[X_n Y_n] - \mathbb{E}[X_0 Y_0] = \sum_{k=1}^n \mathbb{E}[(X_k - X_{k-1})(Y_k - Y_{k-1})].$$

- 3. Démontrer que $\operatorname{Var}(X_n) = \operatorname{Var}(X_0) + \sum_{k=1}^n \operatorname{Var}(X_k X_{k-1})$, quel que soit $n \ge 1$.
- 4. Prouver que les variables aléatoires X_0 , $X_k X_{k-1}$, $k \ge 1$ sont deux à deux orthogonales dans $\mathbb{L}^2(\Omega, \mathcal{F}, \mathbb{P})$.

Exercice 5:

Soit $(X_n)_{n\in\mathbb{N}}$ une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ - sous-martingale telle que pour tout $n\in\mathbb{N}$, $X_n>0$.

- 1. Montrer que $C_n = \prod_{k=0}^{n-1} \frac{\mathbb{E}[X_{k+1}|\mathcal{F}_k]}{X_k}$, $n \geq 1$ avec $C_0 = 1$ définit l'unique processus croissant prévisible tel que $\left(\frac{X_n}{C_n}\right)_{n\in\mathbb{N}}$ soit une martingale relativement à la filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$.
- 2. Etant donnée $(M_n)_{n\in\mathbb{N}}$ une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ martingale telle que pour tout $n\in\mathbb{N}$, $\mathbb{E}[e^{M_n}]<+\infty$. Déduire de la question précédente qu'il existe un unique processus croissant prévisible $(C_n')_{n\in\mathbb{N}}$ tel que $(e^{M_n-C_n'})_{n\in\mathbb{N}}$ soit une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ martingale avec $C_0'=0$ et $C_n'=\sum_{k=0}^{n-1}\ln(\mathbb{E}[e^{M_{k+1}-M_k}|\mathcal{F}_k])$, pour tout $n\geq 1$.

Exercice 6:

- 1. Soit X une variable aléatoire intégrable définie sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ et \mathcal{G} et \mathcal{H} , deux sous-tribus de \mathcal{F} . On suppose que les tribus \mathcal{H} et $\sigma(\sigma(X), \mathcal{G})$ sont indépendantes. Montrer que : $\mathbb{E}[X|\sigma(\mathcal{G},\mathcal{H})] = \mathbb{E}[X|\mathcal{G}]$, p.s. .
- 2. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles, indépendantes, de même loi et intégrables.
 - (a) Comparer les lois des couples $(X_1, X_1 + X_2)$ et $(X_2, X_1 + X_2)$.
 - (b) En-déduire que :

$$\mathbb{E}[X_1|X_1+X_2] = \mathbb{E}[X_2|X_1+X_2] = \frac{X_1+X_2}{2}$$
, p.s. .

- (c) On pose $S_0=0$, $S_n=X_1+\cdots+X_n$, $T_n=\frac{S_n}{n}$, $\mathcal{F}_n=\sigma(S_n,S_{n+1},S_{n+2},\cdots)$, pour tout $n\geq 1$. Démontrer que pour tout $k\in\mathbb{N}$ tel que $1\leq k\leq n$, $\mathbb{E}[X_k|S_n]=\mathbb{E}[X_1|S_n]$, p.s. .
- (d) En-déduire que $\mathbb{E}[X_1|S_n]=T_n$, p.s., quel que soit $n\geq 1$.
- (e) En utilisant la question 1., prouver alors que pour tout $n \ge 1$, $\mathbb{E}[X_1 | \mathcal{F}_n] = T_n$, p.s..
- (f) Montrer enfin que : $\mathbb{E}[T_n|\mathcal{F}_{n+1}] = T_{n+1}$, p.s., quel que soit $n \geq 1$. $(T_n)_{n\geq 1}$ est appelée une martingale inverse ou rétrograde.

Exercice 7:

Soit G une variable aléatoire géométrique définie sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$. G est alors à valeurs dans \mathbb{N} et $\mathbb{P}(G = k) = p(1-p)^k$, $k \in \mathbb{N}$, où $p \in]0,1[$. Désignons par \mathcal{F}_n , la plus petite sous-tribu sur (Ω, \mathcal{F}) qui rend mesurable la variable aléatoire $G \wedge n$, $n \in \mathbb{N}$.

- 1. Montrer que pour tout $n \ge 1$, $\mathcal{F}_n = \sigma(\{G = 0\}, \{G = 1\}, \dots, \{G = n 1\}, \{G \ge n\})$.
- 2. Prouver que la famille de tribus $(\mathcal{F}_n)_{n\geq 1}$ est une filtration sur Ω .
- 3. Démontrer que, pour tout $n \ge 1$, $\mathbb{E}[\mathbf{1}_{\{G > n+1\}} | \mathcal{F}_n] = (1-p)\mathbf{1}_{\{G > n\}}$, p.s..
- 4. En-déduire que : $\mathbb{E}[G \wedge (n+1)|\mathcal{F}_n] = G \wedge n + (1-p)\mathbf{1}_{\{G \geq n\}}$, p.s., quel que soit $n \geq 1$.
- 5. Pour quelle valeur du paramètre réel α le processus $(X_n)_{n\geq 1}$ défini par :

$$X_n = \alpha(G \wedge n) + \mathbf{1}_{\{G \geq n\}}, n \geq 1,$$

est-il une martingale par rapport à la filtration $(\mathcal{F}_n)_{n>1}$?

- 6. En prenant pour α la valeur trouvée à la question précédente, calculer l'espérance conditionnelle $\mathbb{E}[(X_{n+1}-X_n)^2|\mathcal{F}_n]$.
- 7. En-déduire que $(X_n^2 \alpha(G \wedge (n-1)))_{n\geq 1}$ est une $(\mathcal{F}_n)_{n\geq 1}$ -martingale.