1

SEQUENCE LISTING

<110> Pecker, Iris Vlodavsky , Israel Feinstein, Elena

<120> POLYNUCLEOTIDE ENCODING A POLYPEPTIDE HAVING HEPARANASE ACTIVITY AND EXPRESSION OF SAME IN GENETICALLY MODIFIED CELLS

<130> 01/22603

<150> US 08/922,170

<151> 1997-09-02

<150> US 09/109,386

<151> 1998-07-10

<150> PCT/US98/17954

<151> 1998-08-31

<160> 47

<170> PatentIn version 3.1

<210> 1

<211> 27

<212> DNA

<213> Artificial sequence

<220>

<223> synthetic oligonucleotide

<400> 1

ccatcctaat acgactcact atagggc

27

<210> 2

<211> 24

<212> DNA

<213> Artificial sequence

<220>

<223> synthetic oligonucleotide

<400> 2

gtagtgatgc catgtaactg aatc

24

<210> 3

<211> 23

<212> DNA

<213> Artificial sequence

<220>

<223> synthetic oligonucleotide

<400> 3

actcactata gggctcgagc ggc

23

<210> 4

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> synthetic oligonucleotide

<400> 4

gcatcttagc cgtctttctt cg

22

<210> 5

<211> <212> <213>	15 DNA Artificial sequence	
<220> <223>	synthetic oligonucleotide	
<400> ttttt	5 tttt ttttt	15
<210> <211> <212>	DNA	
<213>	Artificial sequence	
<220> <223>	synthetic oligonucleotide	
<400> ttcgat	6 tccca agaaggaatc aac	23
<210><211>		
<212>	DNA Artificial sequence	
<220> <223>	1 1 1 0 0 t i d 0	
<400>	gatgc catgtaactg aatc	24
gtagt	gatge caegeauces and a	
<210>	· 8	
<211><212>		
	Homo sapiens	
<400>	> 8	
Tyr (Gly Pro Asp Val Gly Gln Pro Arg 5	
<210 <211		
<212 <213	> DNA > Homo sapiens	
		60
ctag	agettt egaeteteeg etgegeggea getggegggg ggageageea ggtgageeea	
	gctgct gcgctcgaag cctgcgctgc cgccgccgct gatgctgctg ctcctggggc	120
	gggtcc cctctccct ggcgccctgc cccgacctgc gcaagcacag gacgtcgtgg	180
	ggactt cttcacccag gagccgctgc acctggtgag cccctcgttc ctgtccgtca	240
	tgacge caacetggee aeggaceege ggtteeteat eeteetgggt teteeaaage	300
	gtacett ggecagagge ttgteteetg egtacetgag gtttggtgge accaagacag	360
	tcctaat tttcgatccc aagaaggaat caacctttga agagagaagt tactggcaat	420
ctc	aagtcaa ccaggatatt tgcaaatatg gatccatccc tcctgatgtg gaggagaagt	480
	ggttgga atggccctac caggagcaat tgctactccg agaacactac cagaaaaagt	540
	agaacag cacctactca agaagctctg tagatgtgct atacactttt gcaaactgct	600
	gactgga cttgatcttt ggcctaaatg cgttattaag aacagcagat ttgcagtgga	660

acagttctaa	tgctcagttg	ctcctggact	actgctcttc	caaggggtat	aacatttctt	720
	caatgaacct					780
	agaagattat					840
	ctatggtcct					900
	gaaggctggt					960
	gactgctacc					1020
	gcaaaaagtt					1080
	aacaagctct					1140
	tatgtggctg					1200
	agtattcttt					1260
	ttattggcta					1320
	gcaaggttca					1380
					ctccataacg	1440
					aaataccttc	1500
					ggtctaactc	1560
					cggccaggaa	1620
					gccaaagttg	1680
•	ctgaaaataa					1721

<210> 10

<211> 543

<212> PRT

<213> Homo sapiens

<400> 10

Met Leu Leu Arg Ser Lys Pro Ala Leu Pro Pro Pro Leu Met Leu Leu 1 5 10 15

Leu Leu Gly Pro Leu Gly Pro Leu Ser Pro Gly Ala Leu Pro Arg Pro 20 25 30

Ala Gln Ala Gln Asp Val Val Asp Leu Asp Phe Phe Thr Gln Glu Pro 35

Leu His Leu Val Ser Pro Ser Phe Leu Ser Val Thr Ile Asp Ala Asn 50 55 60

Leu Ala Thr Asp Pro Arg Phe Leu Ile Leu Leu Gly Ser Pro Lys Leu 65 70 75 80

Arg Thr Leu Ala Arg Gly Leu Ser Pro Ala Tyr Leu Arg Phe Gly Gly 85 90 95

Thr Lys Thr Asp Phe Leu Ile Phe Asp Pro Lys Lys Glu Ser Thr Phe 100 100 105 110

Glu Glu Arg Ser Tyr Trp Gln Ser Gln Val Asn Gln Asp Ile Cys Lys 115 120 125

Tyr Gly Ser Ile Pro Pro Asp Val Glu Glu Lys Leu Arg Leu Glu Trp 130

Pro Tyr Gln Glu Gln Leu Leu Arg Glu His Tyr Gln Lys Lys Phe 145 150 155 160

Lys Asn Ser Thr Tyr Ser Arg Ser Ser Val Asp Val Leu Tyr Thr Phe 165 170 175

Ala Asn Cys Ser Gly Leu Asp Leu Ile Phe Gly Leu Asn Ala Leu Leu 180 185 190

Arg Thr Ala Asp Leu Gln Trp Asn Ser Ser Asn Ala Gln Leu Leu Leu 195 200 205

Asp Tyr Cys Ser Ser Lys Gly Tyr Asn Ile Ser Trp Glu Leu Gly Asn 210 215 220

Glu Pro Asn Ser Phe Leu Lys Lys Ala Asp Ile Phe Ile Asn Gly Ser 225 230 235

Gln Leu Gly Glu Asp Tyr Ile Gln Leu His Lys Leu Leu Arg Lys Ser 245 250 255

Thr Phe Lys Asn Ala Lys Leu Tyr Gly Pro Asp Val Gly Gln Pro Arg 260 265 270

Arg Lys Thr Ala Lys Met Leu Lys Ser Phe Leu Lys Ala Gly Gly Glu 275

Val Ile Asp Ser Val Thr Trp His His Tyr Tyr Leu Asn Gly Arg Thr 290 295 300

Ala Thr Arg Glu Asp Phe Leu Asn Pro Asp Val Leu Asp Ile Phe Ile 305 310 315

Ser Ser Val Gln Lys Val Phe Gln Val Val Glu Ser Thr Arg Pro Gly 325 330 335

Lys Lys Val Trp Leu Gly Glu Thr Ser Ser Ala Tyr Gly Gly Gly Ala 340

Pro Leu Leu Ser Asp Thr Phe Ala Ala Gly Phe Met Trp Leu Asp Lys 355

Leu Gly Leu Ser Ala Arg Met Gly Ile Glu Val Val Met Arg Gln Val 370 380

Phe Phe Gly Ala Gly Asn Tyr His Leu Val Asp Glu Asn Phe Asp Pro 385 390 395

Leu	Pro	Asp	Tyr	Trp 405	Leu	Ser	Leu	Leu	Phe 410	Lys	Lys	Leu	Val	Gly 415	Thr	
Lys	Val	Leu	Met 420	Ala	Ser	Val	Gln	Gly 425	Ser	Lys	Arg	Arg	Lys 430	Leu	Arg	
Val	Tyr	Leu 435	His	Cys	Thr	Asn	Thr 440	Asp	Asn	Pro	Arg	Tyr 445	Lys	Glu	Gly	
Asp	Leu 450	Thr	Leu	Туr	Ala	Ile 455	Asn	Leu	His	Asn	Val 460	Thr	Lys	Tyr	Leu	
Arg 465	Leu	Pro	Tyr	Pro	Phe 470	Ser	Asn	Lys	Gln	Val 475	Asp	Lys	Tyr	Leu	Leu 480	
Arg	Pro	Leu	Gly	Pro 485		Gly	Leu	Leu	Ser 490	Lys	Ser	Val	Gln	Leu 495	Asn	
Gly	Leu	Thr	Leu 500		Met	Val	Asp	Asp 505	Gln	Thr	Leu	Pro	Pro 510	Leu	Met	
Glu	Lys	Pro 515		Arg	, Pro	Gly	Ser 520	Ser	Leu	ı Gly	, Leu	Pro 525	Ala	Phe	e Ser	
Tyr	Ser 530		Phe	val	Ile	Arg 535	Asr	n Ala	Lys	s Val	L Ala 540	a Ala	a Cys	s Ile	÷	
<21	.0> .1> .2>	11 1721 DNA Homo	l o sag	piens	s											
<22 <22		CDS (63) (:	1691)											
<4	00>	11				_ •		a	at aa	caaa	a aa	adca	acca	aat	gagccc	a 60
	atg Met	cta	cta	cac	tcg Ser	aaσ	cct	aca	ctq	ccg	ccg	ccg	ctg	atg	gagccc ctg Leu 15	107
ct Le	1 g ct u Le	c ct u Le	g gg u Gl	g cc y Pr 20	o Le	g gg u Gl	t cc y Pr	c ct	c tc u Se 25	c cc	t gg	jc gc y Al	c ct a Le	g co u Pr 30	c cga	155
cc Pr	t go	g ca a Gl	a go n Al 35	a ca a Gl	ia da	c gt p Va	c gt l Va	g ga al As 40	c ct	g qa	ıc tt sp Ph	c tt ne Ph	c ac ne Th 45	II GI	ig gag n Glu	203
cc Pr	g ct	g ca u Hi 50	ıc ct .s Le	a at	g ag al Se	c cc r Pr	c to	g tt	c ct	g to eu Se	ec gt	c ac al Th 60	IL TI	t ga Le As	ac gcc sp Ala	251
aa As	ic ct sn Le	ig go eu Al	rc ac	eg ga nr As	ac co sp Pi	eg cg co Ai	rg Pl	cc ct ne Le	cc at	ic ct le Le	to of eu Le 7!	eu G.	gt to ly Se	ct co er P:	ca aag ro Lys	299
ct Le	- t- 0/	~t- 3/	cc ti	tg go	cc aq	ra do	re ti	tg to	ct co er P:	ct go	cg to	ac c yr L	tg a eu A	gg t rg P	tt ggt he Gly	347

80					85					90					,	95		
	acc Thr	aag Lys	aca Thr	gac Asp 100	ttc Phe	cta Leu	att Ile	ttc Phe	gat Asp 105	ccc Pro	aag Lys	aa Ly	g g s G	 .	cca Ser	acc Thr		395
ttt Phe	gaa Glu	gag Glu	aga Arg 115	agt Ser	tac Tyr	tgg Trp	caa Gln	tct Ser 120	caa Gln	gtc Val	aac Asr	ca Gl	.11 7	at 6 .sp : 25	att Ile	tgc Cys		443
aaa Lys	tat Tyr	gga Gly 130	tcc Ser	atc Ile	cct Pro	cct Pro	gat Asp 135	gtg Val	gag Glu	gag Glu	aaq Lys	tt Le 14	u r	gg	ttg Leu	gaa Glu	i L	491
tgg Trp	ccc Pro 145	tac Tyr	cag Gln	gag Glu	caa Gln	ttg Leu 150	cta Leu	ctc Leu	cga Arg	gaa Glu	cac Hi:	2 1	ac c yr G	ag Sln	aaa Lys	aag Lys	J	539
ttc Phe 160	aag Lys	aac Asn	agc Ser	acc Thr	tac Tyr 165	tca Ser	aga Arg	agc Ser	tct Ser	gta Val 170	L AS	t gi p Va	tg d	cta Leu	tac Tyr	act Thi	-	587
ttt Phe	gca Ala	aac Asn	tgc Cys	tca Ser 180	Gly	ctg Leu	gac Asp	ttg Leu	ato Ile 185	Pne	gg e Gl	y L	ta a eu <i>l</i>	aat Asn	gcg Ala 190	tta Lei	a u	635
tta Leu	aga Arg	aca Thr	gca Ala 195	Asp	ttg Leu	cag Gln	tgg Trp	aac Asn 200	Ser	tci Se:	t aa r As	t g n A	ıa '	cag Gln 205	ttg Leu	cte Le	c u	683
ctg Leu	gac Asp	tac Tyr 210	Cys	tct Ser	tcc Ser	aag Lys	999 Gly 215	туг	aac Ası	at n Il	t to e Se	:т т	gg rp 20	gaa Glu	cta Leu	gg Gl	С У	731
aat Asn	gaa Glu 225	Pro	aac Asr	agt Sei	tto Phe	ctt Leu 230	Lys	aaq Lys	g gct s Ala	t ga a As	t at p II 23	.e r	tc he	atc Ile	aat Asn	gg Gl	À à	779
tcç Ser 240	Glr	g tta 1 Lei	a gga ı Gly	a gaa / Glu	a gat ı Ası 24!	tat Tyr	att	caa Gli	a tte	g ca u Hi 25	э г	aa o ys I	tt	cta Leu	aga Arg	aa Ly 25	•	827
tco Ser	aco Thi	tto r Pho	c aaa e Lya	a aat s Ast 26	n Ala	a aaa a Lys	a cto s Lei	ta ı Ty	t gg r Gl 26	À br	t ga	at (gtt Val	ggt Gly	Glr 270		et co	875
cg: Ar	a aga g Ara	a aa g Ly	g ac s Th 27	r Al	t aa a Ly	g ato s Me	g cto	g aa u Ly 28	s se	c tt	cc ne L	tg a	aag Lys	gct Ala 285	. 01	gg / G3	ga Ly	923
ga Gl	a gt u Va	g at 1 I1 29	e As	t tc p Se	a gt r Va	t ac 1 Th	a tg r Tr 29	ь ні	t ca s Hi	s T	ac t yr T	λr	ttg Leu 300	aat Asr	gga Gl	a co y A:	gg rg	971
ac Th	t gc r Al 30	a Th	c ag r Ar	g ga g Gl	a ga u As	t tt p Ph 31	e Le	a aa u As	c co n Pi	ct ga	sp v	ta al 15	ttg Leu	gad	at Il	t t e P	tt he	1019
at I1 32	e Se	a to r Se	t gt er Vä	g ca il Gl	a aa n Ly 32	a gt vs Va ?5	t tt 1 Ph	c ca le Gl	ig gt .n Va	at v	tt g al G 30	gag Slu	agc Ser	acc Th:	c ag r Ar	9 -	ct ro 35	1067
G]	ıc aa .y Ly	ig aa 7s Ly	ag gt 7s Va	c to	p Le	a gg eu Gl	ıa ga .y Gl	ia ac .u Ti	ir S	gc t er S 45	ct q er <i>I</i>	jca Ala	tat Tyr	gg Gl	a gg y Gl 35	y 0	ga ly	1115
go Al	eg co La Pi	cc to	eu Le	ta to eu So 55	cc ga er A	ac ac sp Ti	cc tt ir Pl	ne A.	ca g la A 60	ct g la G	gc f	ttt Phe	atg Met	tg Tr 36	P He	g g eu A	at Asp	1163
a a	aa ti ys Lo	eu G	gc c ly L 70	tg t eu S	ca g er A	cc co la A	rg M	tg g et G 75	ga a ly I	ta q le 0	gaa Glu	gtg Val	gte Val 380	L MC	g aç	cg (caa Gln	1211

<u>.</u>-

gta ttc ttt gga gca gga aac tac cat tta gtg gat gaa aac ttc gat Val Phe Phe Gly Ala Gly Asn Tyr His Leu Val Asp Glu Asn Phe Asp 385 390 395	1259
cct tta cct gat tat tgg cta tct ctt ctg ttc aag aaa ttg gtg ggc Pro Leu Pro Asp Tyr Trp Leu Ser Leu Leu Phe Lys Lys Leu Val Gly 400 405 410	1307
acc aag gtg tta atg gca agc gtg caa ggt tca aag aga agg aag ctt Thr Lys Val Leu Met Ala Ser Val Gln Gly Ser Lys Arg Arg Lys Leu 420 425 430	1355
cga gta tac ctt cat tgc aca aac act gac aat cca agg tat aaa gaa Arg Val Tyr Leu His Cys Thr Asn Thr Asp Asn Pro Arg Tyr Lys Glu 435	1403
gga gat tta act ctg tat gcc ata aac ctc cat aac gtc acc aag tac Gly Asp Leu Thr Leu Tyr Ala Ile Asn Leu His Asn Val Thr Lys Tyr 450 455 460	1451
ttg cgg tta ccc tat cct ttt tct aac aag caa gtg gat aaa tac ctt Leu Arg Leu Pro Tyr Pro Phe Ser Asn Lys Gln Val Asp Lys Tyr Leu 465 470 475	1499
cta aga cct ttg gga cct cat gga tta ctt tcc aaa tct gtc caa ctc Leu Arg Pro Leu Gly Pro His Gly Leu Leu Ser Lys Ser Val Gln Leu 480 495	1547
aat ggt cta act cta aag atg gtg gat gat caa acc ttg cca cct tta Asn Gly Leu Thr Leu Lys Met Val Asp Asp Gln Thr Leu Pro Pro Leu 500 505	1595
atg gaa aaa cct ctc cgg cca gga agt tca ctg ggc ttg cca gct ttc Met Glu Lys Pro Leu Arg Pro Gly Ser Ser Leu Gly Leu Pro Ala Phe 515 520	1643
tca tat agt ttt ttt gtg ata aga aat gcc aaa gtt gct gct tgc atc Ser Tyr Ser Phe Phe Val Ile Arg Asn Ala Lys Val Ala Ala Cys Ile 530 535	1691
tgaaaataaa atatactagt cctgacactg	1721
<210> 12 <211> 824 <212> DNA <213> Mus musculus	
<400> 12 ctggcaagaa ggtctggttg ggagagacga gctcagctta cggtggcggt gcacccttgc	60
tgtccaacac ctttgcagct ggctttatgt ggctggataa attgggcctg tcagcccaga	120
tgggcataga agtcgtgatg aggcaggtgt tcttcggagc aggcaactac cacttagtgg	180
atgaaaactt tgagccttta cctgattact ggctctctct tctgttcaag aaactggtag	240
gtcccagggt gttactgtca agagtgaaag gcccagacag gagcaaactc cgagtgtatc	300
tccactgcac taacgtctat cacccacgat atcaggaagg agatctaact ctgtatgtcc	360
tgaacctcca taatgtcacc aagcacttga aggtaccgcc tccgttgttc aggaaaccag	420
tggatacgta ccttctgaag ccttcggggc cggatggatt actttccaaa tctgtccaac	
tgaacggtca aattctgaag atggtggatg agcagaccct gccagctttg acagaaaaac	
ctctccccgc aggaagtgca ctaagcctgc ctgccttttc ctatggtttt tttgtcataa	
gaaatgccaa aatcgctgct tgtatatgaa aataaaaggc atacggtacc cctgagacaa	
aagccgaggg gggtgttatt cataaaacaa aaccctagtt taggaggcca cctccttgcc	720

•

.

gagttccaga gcttcgggag ggtggggtac acttcagtat tacattcagt gtggtgttct 780 824 ctctaagaag aatactgcag gtggtgacag ttaatagcac tgtg <210> 13 <211> 1899 DNA <212> <213> Homo sapiens <400> 13 gggaaagcga gcaaggaagt aggagagagc cgggcaggcg gggcggggtt ggattgggag 60 cagtgggagg gatgcagaag aggagtggga gggatggagg gcgcagtggg aggggtgagg 120 aggcgtaacg gggcggagga aaggagaaaa gggcgctggg gctcggcggg aggaagtgct 180 agageteteg aeteteeget gegeggeage tggegggggg ageageeagg tgageecaag 240 atgctgctgc gctcgaagcc tgcgctgccg ccgccgctga tgctgctgct cctggggccg 300 360 ctgggtcccc tctcccctgg cgccctgccc cgacctgcgc aagcacagga cgtcgtggac ctggacttct tcacccagga gccgctgcac ctggtgagcc cctcgttcct gtccgtcacc 420 attgacgcca acctggccac ggacccgcgg ttcctcatcc tcctgggttc tccaaagctt 480 540 cgtaccttgg ccagaggctt gtctcctgcg tacctgaggt ttggtggcac caagacagac ttcctaattt tcgatcccaa gaaggaatca acctttgaag agagaagtta ctggcaatct 600 caagtcaacc aggatatttg caaatatgga tccatccctc ctgatgtgga ggagaagtta 660 cggttggaat ggccctacca ggagcaattg ctactccgag aacactacca gaaaaagttc 720 780 aagaacagca cctactcaag aagctctgta gatgtgctat acacttttgc aaactgctca ggactggact tgatctttgg cctaaatgcg ttattaagaa cagcagattt gcagtggaac 840 900 agttctaatg ctcagttgct cctggactac tgctcttcca aggggtataa catttcttgg gaactaggca atgaacctaa cagtttcctt aagaaggctg atattttcat caatgggtcg 960 cagttaggag aagattatat tcaattgcat aaacttctaa gaaagtccac cttcaaaaat 1020 gcaaaactct atggtcctga tgttggtcag cctcgaagaa agacggctaa gatgctgaag agcttcctga aggctggtgg agaagtgatt gattcagtta catggcatca ctactatttg 1140 1200 aatggacgga ctgctaccag ggaagatttt ctaaaccctg atgtattgga catttttatt tcatctgtgc aaaaagtttt ccaggtggtt gagagcacca ggcctggcaa gaaggtctgg 1260 ttaggagaaa caagctctgc atatggaggc ggagcgccct tgctatccga cacctttgca 1320 gctggcttta tgtggctgga taaattgggc ctgtcagccc gaatgggaat agaagtggtg 1380 1440 atgaggcaag tattctttgg agcaggaaac taccatttag tggatgaaaa cttcgatcct ttacctgatt attggctatc tcttctgttc aagaaattgg tgggcaccaa ggtgttaatg 1500 gcaagcgtgc aaggttcaaa gagaaggaag cttcgagtat accttcattg cacaaacact 1560 1620 gacaatccaa ggtataaaga aggagattta actctgtatg ccataaacct ccataacgtc 1680 accaagtact tgcggttacc ctatcctttt tctaacaagc aagtggataa ataccttcta agacctttgg gacctcatgg attactttcc aaatctgtcc aactcaatgg tctaactcta 1740 aagatggtgg atgatcaaac cttgccacct ttaatggaaa aacctctccg gccaggaagt 1800 tcactgggct tgccagcttt ctcatatagt ttttttgtga taagaaatgc caaagttgct 1860 gcttgcatct gaaaataaaa tatactagtc ctgacactg

<210><211><211><212><213>	59 PF	92 RT	sapi	ens											
<400>	14	1													
Met G 1	Glu (Gly		Val 5	Gly (Gly	Val	Arg	Arg 10	Arg	Asn (Gly A	Ala	Glu 15	Glu
Arg F	Arg l	Lys	Gly 20	Arg	Trp (Gly	Ser	Ala 25	Gly	Gly	Ser i	Ala	Arg 30	Ala	Leu
Asp S		Pro 35	Leu	Arg	Gly	Ser	Trp 40	Arg	Gly	Glu	Gln	Pro 45	Gly	Glu	Pro
Lys I	Met 50	Leu	Leu	Arg	Ser	Lys 55	Pro	Ala	Leu	Pro	Pro 60	Pro	Leu	Met	Leu
Leu 65	Leu	Leu	Gly	Pro	Leu 70	Gly	Pro	Leu	Ser	Pro 75	Gly	Ala	Leu	Pro	Arg 80
Pro	Ala	Gln	Ala	Gln 85	Asp	Val	Val	Asp	Leu 90	Asp	Phe	Phe	Thr	Gln 95	Glu
Pro	Leu	His	Leu 100	Val	Ser	Pro	Ser	Phe 105	Leu	Ser	Val	Thr	Ile 110	Asp	Ala
Asn	Leu	Ala 115		Asp	Pro	Arg	Phe 120	Leu	Ile	Leu	Leu	Gly 125	Ser	Pro	Lys
Leu	Arg 130	Thr	Leu	Ala	Arg	Gly 135	Leu	Ser	Pro) Ala	Tyr 140	Leu	Arg	Phe	Gly
Gly 145	Thr	Lys	s Thr	Asp	Phe 150	Leu	ılle	. Phe	e Asp	Pro 155	Lys	Lys	Glu	Ser	Thr 160
Phe	Glu	Glu	ı Arg	g Ser 165		Trp	Glr	ı Sei	Glr 170	n Val	. Asn	Gln	Asp	175	Cys
Lys	Tyr	Gl	y Sei 180		e Pro	Pro	o Asp	o Va. 18	l Gli 5	u Glu	ı Lys	Leu	Arg 190	J Leu	ı Glu
Trp	Pro	ту 19		n Glı	ı Glr	ı Lei	u Lei 20	u Le [.] O	u Ar	g Glı	u His	туг 205	Glr	ı Lys	s Lys
Phe	Lys		n Se	r Th	r Tyı	Se:	r Ar 5	g Se	r Se	r Va	l Asp 220	o Val	L Le	а Ту	r Thr

Leu Arg Thr Ala Asp Leu Gln Trp Asn Ser Ser Asn Ala Gln Leu Leu

Phe Ala Asn Cys Ser Gly Leu Asp Leu Ile Phe Gly Leu Asn Ala Leu

245 250 255

Leu Asp Tyr Cys Ser Ser Lys Gly Tyr Asn Ile Ser Trp Glu Leu Gly 260 265 270

Asn Glu Pro Asn Ser Phe Leu Lys Lys Ala Asp Ile Phe Ile Asn Gly 275 280 285

Ser Gln Leu Gly Glu Asp Tyr Ile Gln Leu His Lys Leu Leu Arg Lys 290 295 300

Ser Thr Phe Lys Asn Ala Lys Leu Tyr Gly Pro Asp Val Gly Gln Pro 305 310 315

Arg Arg Lys Thr Ala Lys Met Leu Lys Ser Phe Leu Lys Ala Gly Gly 325

Glu Val Ile Asp Ser Val Thr Trp His His Tyr Tyr Leu Asn Gly Arg 340 345

Thr Ala Thr Arg Glu Asp Phe Leu Asn Pro Asp Val Leu Asp Ile Phe 355

Ile Ser Ser Val Gln Lys Val Phe Gln Val Val Glu Ser Thr Arg Pro 370 375 380

Gly Lys Lys Val Trp Leu Gly Glu Thr Ser Ser Ala Tyr Gly Gly 385 390 395

Ala Pro Leu Leu Ser Asp Thr Phe Ala Ala Gly Phe Met Trp Leu Asp 405

Lys Leu Gly Leu Ser Ala Arg Met Gly Ile Glu Val Val Met Arg Gln 420 425 430

Val Phe Phe Gly Ala Gly Asn Tyr His Leu Val Asp Glu Asn Phe Asp 435

Pro Leu Pro Asp Tyr Trp Leu Ser Leu Leu Phe Lys Lys Leu Val Gly 450

Thr Lys Val Leu Met Ala Ser Val Gln Gly Ser Lys Arg Arg Lys Leu 475 480

Arg Val Tyr Leu His Cys Thr Asn Thr Asp Asn Pro Arg Tyr Lys Glu 485

Gly Asp Leu Thr Leu Tyr Ala Ile Asn Leu His Asn Val Thr Lys Tyr 500 505 510

Leu Arg Leu Pro Tyr Pro Phe Ser Asn Lys Gln Val Asp Lys Tyr Leu 515

Leu Arg Pro Leu Gly Pro His Gly Leu Leu Ser Lys Ser Val Gln Leu 530

Asn G	.ı r	O. T	hr T	Au I	ve M	et V	al A	sp A	az.	Sln T	hr L	eu P	ro P	ro L	eu	
545	эту т	.eu 1	III T	5	50	CC V	u	.op -	101	555				5	60	
Met (Glu I	ys F		eu A 65	rg P	ro G	ly S	er S	Ser 1 570	Leu G	Sly I	eu P	ro A 5	la P 75	he	
Ser 5	Tyr S		he E	he V	al I	le A	irg A	Asn 7 885	Ala :	Lys \	/al /	Ala A 5	la C 90	ys I	le	
<2103 <2113 <2123 <2133	> 19 > D	5 899 NA omo s	sapie	ens												
<220 <221 <222 <223	> C	DS 94).	. (18)	69)												
<400 ggga	> 1	5 ga g	caag	gaag	t ago	gaga	gagc	cgg	gcag	igcg	gggc	gggg ¹	tt g	gatte	gggag	60
									ato	g gag : Glu	ggc	gca	gtg	gga	ggg	114
gtg Val	agg Arg	agg Arg 10	cgt Arg	aac Asn	ggg :	Ala	gag Glu 15	gaa Glu	agg Arg	aga Arg	aaa Lys	ggg Gly 20	cgc Arg	tgg (ggc Gly	162
tcg Ser	gcg Ala 25	gga Gly	gga Gly	agt Ser	Ala	aga Arg 30	gct Ala	ctc Leu	gac Asp	tct Ser	ccg Pro 35	ctg Leu	cgc Arg	ggc Gly	agc Ser	210
tgg Trp 40	cgg Arg	ggg Gly	gag Glu	cag Gln	cca Pro 45	ggt Gly	gag Glu	ccc Pro	aag Lys	atg Met 50	ctg Leu	ctg Leu	cgc Arg	tcg Ser	aag Lys 55	258
cct Pro	gcg Ala	ctg Leu	ccg Pro	ccg Pro 60	ccg Pro	ctg Leu	atg Met	ctg Leu	ctg Leu 65	ctc Leu	ctg Leu	ggg Gly	ccg Pro	ctg Leu 70	ggt Gly	306
ccc Pro	ctc Leu	tcc Ser	cct Pro 75	ggc Gly	gcc Ala	ctg Leu	ccc Pro	cga Arg 80	cct Pro	gcg Ala	caa Gln	gca Ala	cag Gln 85	gac Asp	gtc Val	354
gtg Val	gac Asp	ctg Leu 90	gac Asp	ttc Phe	ttc Phe	acc Thr	cag Gln 95	gag Glu	ccg Pro	ctg Leu	cac His	ctg Leu 100	gtg Val	agc Ser	ccc Pro	402
tcg Ser	ttc Phe 105	Leu	tcc Ser	gtc Val	acc Thr	att Ile 110	gac Asp	gcc Ala	aac Asn	ctg Leu	gcc Ala 115	acg Thr	gac Asp	ccg Pro	cgg Arg	450
tto Phe 120	Leu	atc Ile	ctc Leu	ctg Leu	ggt Gly 125	tct Ser	cca Pro	aag Lys	g ctt s Lev	cgt Arg 130	Thr	ttg Leu	gcc Ala	aga Arg	ggc Gly 135	498
ttg Lev	g tct 1 Ser	cct Pro	gcg Ala	tac Tyr 140	Leu	agg Arg	ttt Phe	ggt Gl	gg0 Gly 145	c acc y Thr	aag Lys	aca Thr	gac Asp	ttc Phe 150	Ten	546
att Ile	tto e Phe	c gat e Asp	ccc Pro 155	Lys	aag Lys	gaa Glu	tca Ser	aco Thi	r Ph	t gaa e Glu	ı gaçı ı Glı	aga Arg	agt Ser 165	TÀT	tgg Trp	594
caa Gl:	a tci n Se:	t caa r Glr	a gto n Val	aac Asr	cag Gln	gat Asp	att Ile	tge Cy:	c aa s Ly	a tat s Ty	gga Gly	a tcc / Ser	ato Ile	cct Pro	cct Pro	642

		170					175					180				
gat Asp	gtg Val 185	gag Glu	gag Glu	aag Lys	Leu .	cgg Arg 190	ttg Leu	gaa Glu	tgg Trp	Pro	tac Tyr 195	cag Gln	gag Glu	caa Gln	ttg Leu	690
cta Leu 200	ctc Leu	cga Arg	gaa Glu	cac His	tac Tyr 205	cag Gln	aaa Lys	aag Lys	Phe	aag Lys 210	aac Asn	agc Ser	acc Thr	tac Tyr	tca Ser 215	738
aga Arg	agc Ser	tct Ser	gta Val	gat Asp 220	gtg Val	cta Leu	tac Tyr	Thr	ttt Phe 225	gca Ala	aac Asn	tgc Cys	tca Ser	gga Gly 230	ctg Leu	786
gac Asp	ttg Leu	atc Ile	ttt Phe 235	ggc Gly	cta Leu	aat Asn	gcg Ala	tta Leu 240	tta Leu	aga Arg	aca Thr	gca Ala	gat Asp 245	ttg Leu	cag Gln	834
tgg Trp	aac Asn	agt Ser 250	tct Ser	aat Asn	gct Ala	cag Gln	ttg Leu 255	ctc Leu	ctg Leu	gac Asp	tac Tyr	tgc Cys 260	tct Ser	tcc Ser	aag Lys	882
Gly	tat Tyr 265	Asn	att Ile	tct Ser	tgg Trp	gaa Glu 270	cta Leu	ggc Gly	aat Asn	gaa Glu	cct Pro 275	aac Asn	agt Ser	ttc Phe	ctt Leu	930
aag Lys 280	Lys	gct Ala	gat Asp	att Ile	ttc Phe 285	atc Ile	aat Asn	ggg Gly	tcg Ser	cag Gln 290	tta Leu	gga Gly	gaa Glu	gat Asp	tat Tyr 295	978
att Ile	caa Gln	ttg Leu	cat His	aaa Lys 300	Leu	cta Leu	aga Arg	aag Lys	tcc Ser 305	acc Thr	ttc Phe	aaa Lys	aat Asn	gca Ala 310	aaa Lys	1026
ctc Leu	tat Tyr	ggt Gly	cct Pro 315	Asp	gtt Val	ggt Gly	cag Gln	cct Pro 320	cga Arg	aga Arg	aag Lys	acg Thr	gct Ala 325	aag Lys	atg Met	1074
ctg Leu	aag Lys	ago Ser 330	Phe	ctg Leu	aag Lys	gct Ala	ggt Gly 335	Gly	gaa Glu	gtg Val	att	gat Asp 340	Ser	gtt Val	aca Thr	1122
tg <u>c</u> Trp	cat His	His	tac Tyr	tat Tyr	ttg Leu	aat Asn 350	Gly	cgg Arg	act Thr	gct Ala	acc Thr 355	Arg	gaa Glu	gat Asp	ttt Phe	1170
cta Lei 360	ı Asr	c cct	gat Asp	gta Val	ttg Leu 365	Asp	att	ttt Phe	att	tca Ser 370	Ser	gtg Val	caa Gln	aaa Lys	gtt Val 375	1218
tto Phe	c caq e Gli	g gto n Val	g gtt L Val	gag 1 Glu 380	ı Ser	acc Thr	agg Arg	g cct g Pro	ggc Gly 385	, Lys	g aag S Lys	g gto s Val	tgg Trp	tta Lei 390	a gga ı Gly O	1266
ga: Gl:	a acau	a ag r Se	c tct r Se: 39!	r Ala	a tat a Tyr	gga Gly	ggo Gl	gga Gly 400	7 Ala	g cco	tto Lei	g cta ı Lev	a tco a Sea 405	ASI	c acc p Thr	1314
tt Ph	t gc e Al	a gc a Al 41	a Gl	c ttt y Phe	t ato	g tgg Trp	g cto Lev 415	ı Asp	aaa Lys	a tto	g ggo	c cto y Lei 420	ı Sei	a gco	c cga a Arg	1362
at Me	g gg t Gl 42	y Il	a ga e Gl	a gto u Val	g gto l Val	g ato 1 Met 430	c Ar	g caa g Glr	a gta n Val	a tto L Pho	e Ph	e GI	a gca y Ala	a gg a Gl	a aac y Asn	1410
ta Ty 44	r Hi	t tt s Le	a gt u Va	g ga 1 As	t gaa p Gl: 44	u As:	c tte n Ph	c gat e Asj	t cc	t tt o Le 45	u Pr	t ga o As	t ta p Ty	t tg r Tr	g cta p Leu 455	
to Se	t ct r Le	t ct u Le	g tt u Ph	c aa e Ly 46	s Ly	a tt s Le	g gt u Va	g gg	c ac y Th 46	r Ly	g gt s Va	g tt l Le	a at u Me	g gc t Al 47	a agc a Ser	1506

gtg Val	caa Gln	ggt Gly	tca Ser 475	aag Lys	aga Arg	agg Arg	aag Lys	ctt Leu 480	cga Arg	gta Val	tac Tyr	ctt Leu	cat His 485	tgc Cys	aca Thr	1554
aac Asn	act Thr	gac Asp 490	aat Asn	cca Pro	agg Arg	tat Tyr	aaa Lys 495	gaa Glu	gga Gly	gat Asp	tta Leu	act Thr 500	ctg Leu	tat Tyr	gcc Ala	1602
ata Ile	aac Asn 505	ctc Leu	cat His	aac Asn	gtc Val	acc Thr 510	aag Lys	tac Tyr	ttg Leu	cgg Arg	tta Leu 515	ccc Pro	tat Tyr	cct Pro	ttt Phe	1650
tct Ser 520	aac Asn	aag Lys	caa Gln	gtg Val	gat Asp 525	aaa Lys	tac Tyr	ctt Leu	cta Leu	aga Arg 530	cct Pro	ttg Leu	gga Gly	cct Pro	cat His 535	1698
gga Gly	tta Leu	ctt Leu	tcc Ser	aaa Lys 540	tct Ser	gtc Val	caa Gln	ctc Leu	aat Asn 545	GLY	cta Leu	act Thr	cta Leu	aag Lys 550	atg Met	1746
gtg Val	gat Asp	gat Asp	caa Gln 555	Thr	ttg Leu	cca Pro	cct Pro	tta Leu 560	Met	gaa Glu	aaa Lys	cct Pro	ctc Leu 565	ALG	cca Pro	1794
gga Gly	agt Ser	tca Ser 570	Leu	ggc Gly	ttg Leu	cca Pro	gct Ala 575	Phe	tca Ser	tat Tyr	agt Ser	ttt Phe 580	Pne	gtg Val	ata Ile	1842
aga Arg	aat Asn 585	Ala	aaa Lys	gtt Val	gct Ala	gct Ala 590	Суз	ato	tga e	ıaaat	aaa	atat	acta	ıgt		1889
cct	gaca															1899
<21 <21 <21 <21	1>	16 594 DNA Homo	o sag	oiens	5											
< 4 (00>	16	aaa:	2000	ata (at ca:	acaa	30 G	aaac.	taata	a tto	gtct	taat	gag	aagttga	60
															ggccaga	120
															agatttt	180
															tgaatac	240
															ggatctg	300
															agcctgg	360
															aggcctc	420
															ttcgtaa	480
															ggcaggc	540
									gato							594
<2 <2 <2 <2		DNA Art	ific			ience		ide								
	100> ccca	17 ggag	c ago	cagca	atca	g										21

<210>	18	
<211>		
<212>	DNA Artificial sequence	
<213>	Artificial Sequence	
<220>		
<223>	synthetic oligonucleotide	
<400>	18	
	cgag cgcagcagca t	21
<210>	19	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
	synthetic oligonucleotide	
.400>	10	
<400>	cgac tcactatagg gc	22
gcaaca	legue coustagy y	
<210>	20 19	
<211> <212>	DNA	
	Artificial sequence	
.000		
<220>	synthetic oligonucleotide	
1220	3	
<400>		19
actata	agggc acgcgtggt	
<210>		
<211> <212>		
	Artificial sequence	
	-	
<220>		
<223>	synthetic oligonucleotide	
<400>		21
cttgg	getea eetggetget e	21
<210>	22	
<211>		
	DNA Artificial sequence	
<2132	Altificial Sequence	
<220>		
<223>	synthetic oligonucleotide	
<400>	. 22	
	etgtag atgtgctata cac	23
-		
<210>	> 23	
	> 22	
	> DNA	
<213	> Artificial sequence	
<220	>	
	> synthetic oligonucleotide	
- 400	. 22	
	> 23 cttagc cgtctttctt cg	22
ع د م د		

<210>	24	
<211>		
<212>	Artificial sequence	
(213)		
<220>		
<223>	synthetic oligonucleotide	
4400>	2.4	
<400>	ccag gtgagcccaa gat	23
gagcag	cag gegageeeda gae	
<210>	25	
<211>	23	
	DNA	
<213>	Artificial sequence	
<220>		
	synthetic oligonucleotide	
<400>		23
ttcgat	ccca agaaggaatc aac	
<210>	26	
<211>	23	
<212>		
<213>	Artificial sequence	
<220>		
	synthetic oligonucleotide	
1220		
<400>		23
agctct	gtag atgtgctata cac	23
<210>	27	
<211>		
<212>		
<213>	Artificial sequence	
<220>	synthetic oligonucleotide	
<223>	Synthetic Offgondercottae	
<400>	27	0.4
	tgcaa gcagcaactt tggc	24
4010N		
<210> <211>		
<212>		
	Artificial sequence	
<220>		
<223>	synthetic oligonucleotide	
<400>	28	
	ttagc cgtctttctt cg	22
-		
<210> <211>		
	DNA	
	Artificial sequence	
— — — *		
<220>		
<223>	synthetic oligonucleotide	
<400>	. 29	
	gatgc catgtaactg aatc	24

	30 22 DNA Artificial sequence	
<220> <223>	synthetic oligonucleotide	
<400> aggcac	30 ccta gagatgttcc ag	22
<210> <211> <212> <213>		
<220> <223>	synthetic oligonucleotide	
<400> gaagat	31 ttct gtttccatga cgtg	24
<210> <211> <212> <213>	25	
<220> <223>	synthetic oligonucleotide	
<400> ccaca	32 ctgaa tgtaatactg aagtg	25
<220> <223>	synthetic oligonucleotide	
<400> cgaag	etctg gaactcggca ag	22
<220 <223	> synthetic oligonucleotide	
	> 34 gctgca aaggtgttgg ac	22
<211 <212	> 35 > 23 > DNA > Artificial sequence	
<220 <223	> > synthetic oligonucleotide	
	> 35 cctgcc tcatcacgac ttc	23

<210> 36

<211>	22	
<212>		
<213>	Artificial sequence	
<220>		
<223>	synthetic oligonucleotide	
<400>	36	
	ctgg cgtcgatggt ga	22
<210>	37	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
	synthetic oligonucleotide	
<400>	ggtg atggacagga ac	22
gregar	ggtg attggattagga at	
<210>	38	
<211> <212>	22 DNA	
	Artificial sequence	
<220>		
<223>	synthetic oligonucleotide	
<400>	38	
	cgac tcactatagg gc	22
<210>	39	
<211>	·	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	synthetic oligonucleotide	
<400>		19
actata	gggc acgcgtggt	
<210>		
<211> <212>		
	Artificial sequence	
<220>	synthetic oligonucleotide	
\223/	Synthetic Offgondercottae	
<400>	40	0.7
ccatco	ctaat acgactcact atagggc	27
<210>	41	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	synthetic oligonucleotide ·	
<400>	41	
	tata gggctcgagc ggc	23
<210>	42	
<210>		
	•	

<212> DNA <213> Homo sapiens

<400> 42 ggatcttggc tcactgcaat ctctgcctcc catgcaattc ttatgcatca gcctcctgag 60 tagcttggat tataggtctg cgccaccact cctggctaca ccatgttgcc caggctggtc 120 ttgaactctt gggctctagt gatccacccg ccttggcctc ccaaagtgct gggattacag 180 gtgtgagcca tcacacccgg ccccccgttt ccatattagt aactcacatg tagaccacaa 240 ggatgcacta tttagaaaac ttgcaatggt ccacttttca aatcacccaa acatgttaaa 300 gaaattggta tgactgggca tggcacagtg gctcatgcct gcaatcctag cattttgtga 360 ggctgagacg ggcagatcac gaggtcagga gattgagacc atcctgacag acatggtgaa 420 atcccatctc tactaaaaat acaaaacaat tagccggggg tgatggcagg cccctgtagt 480 cccagctact cgggaggctg aggcaggaga atggcgtgaa tccaggaggc agagcttgca 540 gtgagccgag atggtgccac tgcactccag cctgggcgac agagcgagac tccgtctcaa 600 aaaaaaaaaa aaagaaagaa attggtatga ctgttgactc acaacaggag tcaggggcat 660 ggggtggggt gtaagattaa tgtcatgaca aatgtggaaa agaaacttct gtttttccaa 720 ctccacgtct gctaccatat tattacactc ttctggtagt gtggtgttta tgtgtgaatt 780 ttttttcata tgtatacagt aattgtagga tatgaacctg attctagttg caaaactcac 840 tatgagctta gcttttaagt tgcttaagaa taggtagatc tatgcaaata atgataatta 900 ttattattat tttaagagag ggtctcactt tgtcacccag gctggagtgc agtggtgtga 960 ttaagggtca ctgcaacctc cacctcccag gctcaaataa acctcccacc tcagcctccc 1020 cagtagctgg aaccacaggc acgggccacc acgcctggct aattttttgt atttttgta 1080 gagatggggt ttcatcatgt tgcccaggct gttcttgaat tcctcggctc aagcaatcct 1140 1200 cccaccttgg cctcccaaaa tgctggcatc acaggcatga tggcatcact ggcatcacat accatgcctg gcctgattta tgcaaattag atatgcattt caaaataatc tatttttatt 1260 tgttgcctta ttggtggtac aatctcaagt ggaaaaatct aagggttttg gtgttatttg cttactcaac caatatttat tagactctta ctaagcacca acatgatcac atgcctgagc 1380 1440 tatggctagc atagcgtgtg agacaaactt aatctctgtt ttggtggagc atataatcta gtagatgaag ccaatgttga gcaacatcac aatactaaca aattgaggat gctacgagag 1500 tgtctaacaa attgaggatg ctacgagagt gtctaacaaa ttgaggatgc tatgagagtg 1560 tgtcatggag agctgcctgg agattgagag aaagcttcct tgagggaagt tacatttcag 1620 ctgaaacaca ctgccatctg ctcgaggttt tgtaactgca ttcacatccc gattctgaca 1680 cttcacatcc cgattctgac acttcaccca gttactgtct cagagcttgg gtccgcatgt 1740 gtaaaacaag gacagtatgc acttggcagg gttgtgagaa gggaagagaa cacaagtaaa 1800 gcacctgtat caggcataca gtaggcacta agcgtgcgat gcttgctatg attatacatc 1860 agtgtaagca tcaaggaaaa gctgaagaaa agtctgacca acagcgaaag ataaatgcgc 1920 agaggagaaa tttggcaaag gctccaaatt caggggcagt ccgtactcta cactttgtat 1980 gggggcttca ggtcctgagt tccagacatt ggagcaacta accctttaag attgctaaat 2040 attgtcttaa tgagaagttg ataaagaatt ttgggtggtt gatctctttc cagctgcagt 2100

2160 ttagcgtatg ctgaggccag atttttcaa gcaaaagtaa aatacctgag aaactgcctg gccagaggac aatcagattt tggctggctc aagtgacaag caagtgttta taagctagat 2220 2280 gggagaggaa gggatgaata ctccattgga ggttttactc gagggtcaga gggatacccg gcgccatcag aatgggatct gggagtcgga aacgctgggt tcccacgaga gcgcgcagaa 2340 2400 cacgtgcgtc aggaagcctg gtccgggatg cccagcgctg ctccccgggc gctcctcccc 2460 gggcgctcct ccccaggcct cccgggcgct tggatcccgg ccatctccgc accettcaag tgggtgtggg tgatttcgta agtgaacgtg accgccaccg aggggaaagc gagcaaggaa 2520 2580 gtaggagaga gccgggcagg cggggcgggg ttggattggg agcagtggga gggatgcaga 2640 agaggagtgg gagggatgga gggcgcagtg ggaggggtga ggaggcgtaa cggggcggag 2700 gaaaggagaa aagggcgctg gggctcggcg ggaggaagtg ctagagctct cgactctccg 2760 ctgcgcggca gctggcgggg ggagcagcca ggtgagccca agatgctgct gcgctcgaag cctgcgctgc cgccgccgct gatgctgctg ctcctggggc cgctgggtcc cctctcccct 2820 ggcgccctgc cccgacctgc gcaagcacag gacgtcgtgg acctggactt cttcacccag 2880 gagccgctgc acctggtgag cccctcgttc ctgtccgtca ccattgacgc caacctggcc 2940 acggaccege ggtteeteat ecteetgggg taagegeeag ecteetggte etgteeeett 3000 3060 tectgteete etgaeaceta tgtetgeece geeagegget eteettett tgegeggaaa caacttcaca ccggaacctc cccgcctgtc tctccccacc ccacttcccg cctctcattc 3120 tccctctccc tcccttactc tcagacccca aaccgctttt tggggggtat catttaaaaa 3180 3240 atagatttag gggttacaag tgcagttctg ttccatgggt atattgcatt gtggtggcat ctgggctctt agtgtaactg tcacccgaat gttgtacatt gtatctaata ggtaatttct 3300 cateceteat eceteteca eceteceace ttttggagte tecagtgtet actattecae 3360 3420 taagtccatg tgtacacatt gtttagcgcc cactctaaat gagccttttt gtttcattca ttctgtaagt gttgaatagg caccacctaa ggtcaggtat aagtggaaat ttgaaaaaga 3480 aactgcccac ttgccccagt acttccctag ccaagaggag ggaaaccagg caggtgcacc 3540 3600 tgaaggcctg tgagtgcttg atttgctgtg cagtgtagga caagtaagat tgtgcatagc 3660 tcttttcttt tttttttta ggcagatgaa aagggcgtca cagaacagga ataaaaatct 3720 aaatattcaa taaatgagac ctaggagact actgcagtga cttacaaagt cctaataaaa 3780 3840 agatgtctct ccaaaatggg gctgcaaaat gtggtgctgc cttatcagct ctaagttttt 3900 teettacetg agaaagaagg aacetgatge aggtteaggg eteetgeece atgaatgeag 3960 gctgactcca agatggggag ctacagggac aatcccaggt cttctaggcc tcttatttag gccctgggag cctccagaga tggccacatc ttgaccagcc cagatagagg gaaagatcac 4020 cattatctca cctctgtgtc aaatacctag atgctgtcct ccctgagccc acactatagt 4080 4140 tgccagcgct aatttaatgg gtagtgtact ggttaagaga tggacagacc atcctggctt gactctcagc tctggcaaag atgagtgact tggtttttcc atatctcttg gccacaccaa 4200 ccttgatttc ttcagctgta gaatggaatt tctcaagctt gcctcaagga ttattgcccg 4260 aggatttgat gatatggtaa gagcttctca gtgtttgacc catagtaagt gtttgacgtt 4320 tcaaacgaat tgtttctttc taggacatgg tgagcatttg gtagccattc accggttttc 4380 tgtttctttg gatcatagtt aacctctcct tttccttctg gcactacaat tttctggtgg 4440 4500 ggaagaatcc ttactttctg cccttcccct taaggatagg aagctgatac taggcagcaa 4560 ctagttgggg gataggaaga ttgttccaga gaaatgctga accatagggc tccagatcac 4620 aggaccccag tcttagcttg ctggggtgtg gggtgggggg gggcggttac tgaacatggg 4680 tatgaagtag atgtccattt actgaaatgt gaggacctga ggcctcttct attgctgtag 4740 ccagcatatt ccccaacctc tccccaagaa aggacagatg ggggttcccc cctggagtaa caggtccaaa agaaaaaaca tacagtggga cttccaggat ctgggcctga tcacccagca 4800 4860 gtcaagctcc ccgcaattga ctaacacccc cctaacacgt agaaattcca atctgcaatt 4920 tagtgaggat gataccttta ttcttcttaa atacatctct tcatttccca gagcaccctt 4980 ttttcccctc ctctgcacct ttttgttaaa gactggagta taatgaaata ccaagagagc 5040 ataacatgtg atacataaaa cttttttct ggtttacaaa acagttcatt cttgtccata 5100 cgtgcttctc tccaaggctg gctgctgtct gttccagccc gcttcgcttg gagaggccat 5160 ctgccatacc tgctccccag acgcatcgac aagcacaccc agagtgttat ctgctaagac 5220 ctaaaagagg gaggaacccc ctctcctcat ctaagaccta gcttctaaat tagagtgtga 5280 gggtccatct ccccaggagg ggcacagggc ccaaacagcc cagccatctc agaagacaac 5340 actaagcttt gtaggggtcc acagtagagg agagtaagac gcctgttgtt taatttatta cagttcctca aaagtgaaga tgtgtgggcg ggatggcaag agctgagcag acgaaagctg 5400 aaggaataag gaaagagagg aggacacaaa cagctgacac ttcctcagtt cttgtcattt 5460 5520 gcctggccct gttctaagca ccttctaggt attaatccat ttagtcttgg ctacaacact gtgagtaact agttttgtca cccccatttt aaaaatgaag aaagtgaggc tcagggaggt 5580 taagtaactt ggccacagtt tgaaactaga ctctgatcac atgagataat agtgcccata 5640 aaaagggaaa gcagattata ttttttaaag gaaagagagt aggatatggt agaaaaagat 5700 tgtttggaaa ggaattgaga gattgatata atgaaaagaa gcattcacat gagagtaaca 5820 gtatcagggc ccaaaccttc atctaaggta cttcaaagag gcctaagcaa acttagtcac 5880 tggcgtggtt ctagtctcca tgatggcaaa tacattgtgt acagcccaac tccacacaa acttaaatac caatgataga gcaatctaaa atttgaaaga aaaaatcttt caatttgtcg 5940 tcttcccaga gggacttaat caagaaacca atcaaaatac ttcctaagcc taactgtgtg 6000 6060 gtgggcctca tatgcaaggt catatgtaat tttaaatttt ctagtagcca tattaaaaag 6120 gtaaaaagaa acaagtgaaa ttaattttaa taattttatt tagttcaata gatccaaaat 6180 gttttctcag catgtaatca atataaaaat attaatgagg tatttattat tccttttctc 6240 6300 aaaccaagtc tattctataa tctggcgtgt attatttaca gcacttctca gactatattt ctttctttct tttttttc cgagacaatt ttgctcttgt cacccaagct agagtacaat 6360 6420 ggcgttacct cggctcactg caacctccgc ctcccgggtt caagttattc tcctgcctca gtctcccaag tagctgggac tagaggcatg caccaccacg cctggctaat tgtgtatttt 6480 tagtagagac agggtttcac catgttggcc aggctaatct caaactcctg agctcaggtg 6540 atatgcccac ctcggcctcc caaagtgttg ggattacagg cgtgagccac tgcacccggc 6600 ctcagattaa ctatatttca agcgttcagt agccacatgt agctagtgct atggtagtgg 6660 6720 acagtacaga totgcattto aattaagaca ogtatacaag catagttoac taatgcaogg 6780 taaaaaaaag tatagtgctg agtcggtggt agaaatccta aatactgcag agcaaaagtg 6840 gtacgaacag caatctcagt gataatgcaa ccatgcttgc ttttcattgc aatttgctta ttttccttca gcaaagttca tccatttttg ccaattcaat aaatatttac tgataaaaac 6900 tttcaatatt agattcttgc atcttcatag acagagttgc ttttcacatt tagaaaatta 6960 cttatcaatg ttaaacacac gttttgataa ccagtgttgg aaagaggtgc agactcccca 7020 7080 tgtgcctatt gatggcagaa atattcacag ccaaagggaa acaaagggct ggggacaatc acacacctca tgtctcctaa ctcctgggaa gtgctgtccc tctgattgag ctcttattat 7140 tgccttcccc actaaccctg tccactgtgc cctggagccc tttgcagggt tacctgctct 7200 gtcctcctca cagaatatct cctctacctc cttgtccaag ctacaacttg gctattctct 7260 7320 gatgacactg tcttccctgt agcccttttg agtaatggct gcatattctc ccatagtcca gttcttttcc tgttctccag tctggcttct ggatgacagc ccactagttt gaactccata 7380 ctgctatagt tcaagtccct tttgacttgt taccttgggc aaattacctc cttttgttca 7440 ggttccttgt ttgtaaaatg acgataataa tgccatttgc ttcagtgggt tattttgaaa 7500 ttgagtgaaa gaaggcgggt agcttcccta cacgctcagt gtagactagc ctgatgtgca 7560 ttacgggtga tgccatgact cagtgtgttt tcctcatctc cacatctggc tctcatccag 7620 tgctcctgct tacggcactc tgtccccctc ttacttactc ccccttatta actgaagact 7680 ggcactgatc tcacagtttc ctctccactt cctagtctca ccatcatcct agatgacttc 7740 aagtcaccta gataaactgt ctcagtttct tcactcacat ttttttataa cagataatgt 7800 tacactcaag ttgtaacaga accagcttat ccagctcatg aaatgtatgc atttcatctc 7860 aactctgtat tcagtgacat cctgtgggta tctggaaatc agccatggtg agaatattta 7920 ccatggaaat tggcaaatac taaaaagcag agcacctttt tttctgagag ccagaccata 7980 gctcttctac tccatagcac ccatcataac aatttttaaa tacctccact gaacagcttc 8040 ttcctctctc tacttcttcc atatctgatt tgagcttctt aatttatcat gtgaaccact 8100 cttgtaataa taaccccaaa tccctgttcc attgttcttc ctgctaaaat actaaacctg 8160 gtttagtcca accatatttt ctctctttgg aatctacagg gtggcccaaa aacctggaaa 8220 tggaaaaata ttacttatta attttaatgt atattaataa gccattttaa tgcttcattt 8280 ccagtctcag tggccaccct gtatagctgg gctattgagc tcttgcggga ggagggagtg 8340 gacagtetee cagecacaca gactgatgtt geaceaaaca ttttttaget tecagaette 8400 cctggccctt agtgttaccc ttaactctcc atttctctgc ctttcacatt ctctactttt 8460 taaaaatctc tgactccacc ttcaccttat cattcttagc acatgaccat acttctgctt 8520 cccaaagaaa atgagcaatt acttcctttt ccttttcctc ctgtcatcaa atctgcagac 8580 atgtcatgcc taagtccagc tttcctcctt tctctgatct cagtctgctt cttccatttc 8640 tgccctgaat cccgtcccct ccccaacccc caaggacttc gctctatcag tcacctcttc 8700 8760 cctctcctgt atcttcaact cctcccattt tactggcttc ttcctcaagc ctttccccaa 8820 gcctttccca tctcaattac ctcctcgcac atgcctctgc agaaaccacc ccgtttcttc cctccctcg gcagcctgtt cttcctgttc tgccctcatg atggcaccat cattgtgtca 8880 8940 ctaaaatcaa tctctccgac atcatcaatg gccttccttt gttgggaaac ctaataaaca 9000 ctttatctta tttggtcttt gttatgggtt gaatgaggtt accccgaaat ccatattaga agtoctaaco cocagtacot cagaatgtga otttatttgg gaatagggto attgcagacg 9060 ttattagtta ggatgaggtc atactggaat gtgatgggct gcttatctaa tatgactgat 9120 gtccttataa caaggagaaa tttggagaca gacacgcaca tagggagaat accatgtgat 9180 gacaggagtt atggagttgg agtcaaaaag ctatgggaac ttaggagaaa gacctggaac 9240 aaatcctttc ctgcgcctag agagggagta tggccctgcc actaccttga attcaacgtt 9300 toggotttto aaaactgtaa gacaatacat ttotgttgtt caaaccaatt agtttgcagt 9360 actotgogac tgcagcocta acaaactaat acagtotott ggaggcattt ggcaaggttg 9420 acaatggaag cactttctta cccctttagg tctgtcgcct ttcttgttgg ggggtgtttt 9480 9540 ctaacaattc ctctccatct ctctctctct agtttgtctt aaacattggt gttcttcaga cttctgacct aggccttctt ttcacttcac atattcccct gggtggtctc acccacttcc 9600 agaaattact taaattactg ctcatgcagt actgtgctgg aaactgttta acaactggct 9660 ctctgggaag aggggagact ggttgatggt ttttgctgat ttctgtggtg taaatactcc 9720 ctccatggcc aattccaaac tgccaacagt ttaacaactg gctcacaaat tttctccaaa 9780 tttaacattt ggctttcaca ggccaacaac gtggtacagc caactccagc acacctctgc 9840 9900 9960 gccccctttt tttccttaac aaactgctct agaaatagaa tagctgaagc ttcttttatg cattcatctg ttatttccat gtcactgtgg tggtgggatt atttttcctt tattttctt 10020 gtatatggtt gaaatactgt acctttgatc agttttagtt ttatggcatg ttttgcaccc atattaaatc tagtttttgt cagagggcgt caatattatt ttctcaaaac aagaaaatat 10140 ttcattgcaa aggagacaaa caaaaaggtc cttaatacca aaactttgaa atgtgatttc 10200 ttgtacttgg cagtgtccaa gtggtaaacc caaacagtat tgggttttca ttttgttcag 10260 gaaagtettt gtetggeage gaettaeeet tacateagge gggeettget eatteattea 10320 cttaagtatt tattaaacac cagcggtgtg ccaagtactt atctaggtat cgggtagatt 10380 ctgataagtc agtcaggtcc ctgctctcag ggagcttgca gcagagatgg gggctgcaat 10440 agagagtaag ccaaggaaat gaaaaaggaa gttgatttca gagagtgatg aatgctatga 10500 agaaaatgaa ggcagcgcag tgtgatggag agtgacccaa ggtggtacag tttgtacctc 10560 taaggaccag actgtgaccc aggtcactca cagatgcccg tcatgtgatg ccacagcaac 10620 ttttccaggt gctcgtttcc tcccacttcc cagtctcttg cccagccgcg actgcttaca 10680 aatacagcta gaggaatcta aatgaggttc ctctatcatc aaacccaatc aaaatgccaa 10740 ggaacagaat cagtgcctgg ctgaaggcag tggaacaggg ccagcctgga gtggttctct 10800 ctgaggaagt tcctcatctt ggttttaggg ccataccttg tgacctgtga gctaggggtt 10860

gccagtccct gacatttcta ctgaggactc gcctgtctat attcccggcc tgtatgtgtc 10920 tcctgagttc cagacacaca gggcgaagcg cctgatggat ggaagtatgt tttttggtgt 10980 tccattggta tctcaaattc tacaaaactt agtgcccctt ctcctccctg ttcctcccca 11040 tottcagtct atcacctgtt cotcatocag caaatgatat taccatotto caaggagett 11100 cccaggagta atccttgact cctcctcaac atccaattaa taatcaaatc taggccaggt 11160 acaatagctc acgcctataa tcccagcact ttgggaggct gaggcaggtg gatcatttga 11220 ggccaggagt tcaagaccag cctggccaac aaggtgaaac ctgtctcatt taaaaaaagt 11280 tattttaaaa actcaaatct attatttcta cctctaagtg tgtcttgaat ttatccatct 11340 ctctccatct ctgagctgtt accttacctc agtccatcac gttttgtcta cgttaacatg 11400 accagagtct tgttcttagt ctggtgaggt cactccagct gcttcagatc cttccatggc 11460 tcaccgttgc cctcatataa agttggcact cctggacatg tggcttacgg ggccctccgt 11520 gatgtggccc tatttgcttc tccattctgt tctctcccag cctctctgcc cccatctcta 11580 ggcaccaacc acaccettet getegteaat ggtgccaget tetettetat etetggtett 11640 tggacagact tttcccttca cctggaatgc tttcttcaat cctaccccac tctctttaat 11700 ctagataagg tttattcttt ttgaatgtct agcagtgaaa ccatttcccc tgaaaaacct 11760 tctctaacca accccctacc ctcagcccaa ggtctagatt aggagtccct ctgaatgttt 11820 ccatagcatt tttaaagaat tgcctattta cttgttcgta tctatcacta aactacaaat 11880 tgtatgagaa cagccactat ctctgcctgg ttcaccattc atctccagca actagcataa 11940 tgcctggcag agtcagcctg caacaaatat ttgttgaata aattaacaga tggctttatc 12000 tccttaagta aatcttgctt ttttcaccta ttaaaacaga cgcacaggcc aggtgtggtg 12060 gcccatgcct gtaatcccag cactttggca ggctgaggtg ggcggatcac ctgaggtcag 12120 gagttcaaga ccagcctggc caacatggtg aaaccccatc tctaataaaa atacaaaaat 12180 tagctgggca tggtgggg tgcgtatagt cccagctact agggaggctg aggcaagaga 12240 atcgcttgaa cccaggaggc agaggtggca gtgagccgag atcatgccac tgtactccag 12300 cctggatgac agagaccetg teteaaaaca cacacacaca cacacacaca cacacaca 12360 cacacacaca cacacacac aagttgtata atttaaaata taacgtgctt gttatggaac 12420 acttgtaaaa tacaggaaag taatgaaaaa gtctaccatc tagctcacca cataatgacc 12480 attgctatca tcctggcata attctctcct gtatataaat atatattctt ttattgttaa 12540 aattacacta tgagtactat ttatttattt tactgtggca aaatgcgcaa aacataaaat 12600 cttgccattt taaggtatgc agtttggtgc attcaccaca ctcacattgt tgtgcaaata 12660 tcaccactat ctatctcaga acttcttcgt cttcccaaac tgaaactctg tacccattaa 12720 acaatagtgc atcctctgtt ttcccctccc tacaatttat ttttatttgg gtttgtacca 12780 aactgaaaat agctgcttct tccttactta gttcagatta gcatttccat ttatttagcc 12840 gtggttttga ggatgccatg acagatgcca tccttcctag agctctttgg ggctgtcagg 12900 tatttcagtc agggtgaatt cgggttgata acattttaaa atctcacttt attctgaggt 12960 tcctagtgtc agagcccacc gtatttttag ggactcccaa gttacaaaca aaaatatggt 13020 gaggaggaat cactgaagtt ttaacacaag agacttacat tttgttcaat ttctatcttt 13080 tagtttattt cctaagcata aagaaatact ttgaaaattt tacatagcat tatacatatt 13140 taattaagca tgagcacatc ttaaaacttt aaattttaga tcagatcttt aattcctagg 13200 atattaagag gtactggcaa tttggccagg tgtggtggtt cacgcctata atcccaacac 13260 tttgggaggg tgaagtgggc gaattgctag agcccaggag gtggaggctg caatggcctg 13320 agatcacgcc atcgtactcc agcctggatg atgagaatga aatcctgtct caaaaaaaa 13380 aaaaaaaaa aaaagaagaa gaagaagtat tggcaatcag tgctccagga ataatttcct 13440 gacttgaaat aaacctacat gtagacaaac taattaggcc attccaagag ttgctagcat 13500 tggtttaata tgttttcaga gcattccagg aagcagtgtg gccagcattg catgtttgat 13560 acttcagaaa tgtatgacag gtgtttctct tacccaggtc ttctgttttc ttagttttgc 13620 tcatgtaaat atttatgaac atcctcatct ttttgaggga agggattata gatcattcta 13680 attccatttt ctagcatttg gtaccattct aagcacatga taggcaccca tttggagcat 13740 ttttggcttg acagaatatg catttagaat tgttcaaatt agaggtgtca gtgatgggaa 13800 ttagaatact atataattct aagtcatttg acttaaatac aaaagaatga ttttccttgg 13860 tggggaatgg tgaagggagg caggagttaa gaagaggaga agagatccta agtcatttat 13920 aaacttctct ggaaagacag gtgtgtgaag actttttaaa aagtcattca ccaaattgtg 13980 tgtgtgtgt tgtgtgtt ttaaatagac tttattttt agagcagttt taggttcaca 14040 gcaaaattga atgcaaggac agagatttcc cataaacccc ctgcccacac acatgcatag 14100 cctccctcat tatcaacatc cccaccagag aggtgtttgt tctagttgat gaacctacac 14160 tgacacatca ttatcaccca aagtccatag ttcacggcag ggttcactgt cggtgtacat 14220 tctatgggtt tgagcaaatg tataatgaca tgtatccacc attatagtaa catacagagt 14280 attttcagtg ccctgcaaat cccctgttct ccacctattc atccctccct ctctgcattt 14340 ccaccccag cccctggtaa ccgctgatct ttttactgtc ccatagtttc ggacgatcta 14400 tttttcagac agacacagag ctgtctttcc cttagtttct attctatcat ttctttctcc ccatccatca taaaaggcta tgagtttttt ttaagtgttg aacaccatcc tacttgtcaa 14520 gttaaaacat aagctcctgg ctgggtacag tggctcatgc ctgtaatctc agcattttgg 14580 gaggctgtgg cagaagcatc acttgaagcc agaagtttga gaccagcctg ggcaacatag 14640 cacacacaca cacaaaaaca agctcttgcc agaattagag ctacaaattg ccctcaggtt 14760 cctagaagat cagtccttca attagattca gattgagatg cttcctcttt taaacaatga 14820 ttccctttct atcatgccca ataagaaaac aaataaaaat taaacaatac tgcctgtaat 14880 ctcagctacc caggaggcag aagcagaact gcttcaaccc ggcaagcaga agttgcagtg 14940 aagtgagatc gcgccactgc actccagcct gggaaacaga gcaagattct gtctcaaaaa 15000 caaaacaatg tgatttcctc ctctaagtcc tgcacaggga aatgttaaga aataggtcca 15060 ccaggaaaga aggaagtaag aatgtttgac tagattgtct tggaaaaaat agttatactt 15120 tettgettgt etteetaaca gtteteeaaa gettegtaee ttggeeagag gettgtetee 15180 tgcgtacctg aggtttggtg gcaccaagac agacttccta attttcgatc ccaagaagga 15240 atcaaccttt gaagagagaa gttactggca atctcaagtc aaccagggtg aaaattttta 15300 aagattcact ctatatttta attaacgtca gtccgtcatg agaatgcttt gagaaaactg 15360 ttatttctca cacctaacaa ttaatgagat taacttcctc tcccctcatc tgacctgtgg 15420 aggaatctga acaagaggag gaggcagtgg gcaggtttcc ttatcatgat gtttgtcatg 15480 ttcagtgtga ggcctcacaa aaaaaaaaa aaaaaaaaa ggcgtcctgg atataactga 15540 gagctcattg tacagtaaat attaataaaa cagtgattgt agctgaagga tagaactgct 15600 tggagggagc aagtgggtag aatcgcgtca aactaaagag catttctagc caaagacaca 15660 atgatagatt gaaggatatt tattctaaat atagaatatg ggtgaacgag atctgtggac 15720 ttctgggctc caacgttaga ttctgatttt agcaagcttg tcaggggatt ctgatattga 15780 aaggetgtgg cetteacetg agaaacetge eetaggggge catgaaaatt tgteetgtet 15840 ttcagaagtg ctatcagaca tcaaatggaa gttaaatcgt atcttaacaa ttactaggat 15900 gggcgcagtg actcacacct gtaatcccaa cactttggga ggctgaggca ggaggatcac 15960 ttgagcccag gagttcggga ccagcctggg caacatagag agacgttgtc tctattttt 16020 aataatttaa agagaaaaaa atactgaaaa tattgtatac accactgaat tataataatg 16080 tgtatataat gtatatattc attatgagga atatttgatt atttcatata ttatatcttt 16140 tccttctgtt tattttatcc agttatgaag tatttagaac aattcatcag taattggggc 16200 taaattgaca gaatagtaat cagagaaaat agaaaaagac agatgggtta tctttgaata 16260 ccaggttgga gttgtttatg ggtttgtttt ttgttttggg ggcgtttttt tagacagagt 16320 cccactctgt tgcccaggct ggagtgcagt ggcacaagca tggcccactg catccttgac 16380 ctcttgggct caagcaatct tcccacctta gcctcctgag tagctgggac cacaggtgca 16440 tgtcaccaca cccagctaat tttttattt tttgtagaga cagtctttct atgttatcca 16500 ggctgatctc aaactcctgc actcaagtga tccccctgcc ttggcgtccc aaagtattgg 16560 gattataggc atagccacca cacccaacct agtttctatt tagacttggc cctttcccac 16620 cagtcatttg tgtccaaaag atctcataaa tgtagacagg aaactgtcct ttgctcatca 16680 gttttcttca tcctgtgtct agggggatgg tcggtggggg aaactggggt tatgcaagtt 16740 cctctgaaac atcctctgtg agcccaggga tggatgaggc accagccgcc agcgagtcag 16800 tgtgcagctt tccagaaagg aagtcatcag ccagtcagcc ggccctggca gccagcaccc 16860 ggcaaccctg ctgtcttgtg ataaagaaat ggtctgcctg acaggatggt gtggattttt 16920 ctttttctt tttttttt ttgagacagg gtctggctct gtcgcccagg ctggagtgca 16980 atggcgggat cttggctcac tgcagcctct gcctcccagg ctcaaggcat cctcccacct 17040 cggtctcccg agtagctggg accacaggca cacaccacca cgcccaacta agttttcgta 17100 tttttagtag aggcagggtt ttactatgtt gtccaggcta gtctcaaact cctgagctca 17160 agctatccat ctgccttggc ctcccaaaga gctggaatta caagcgtgag ccactgtgcc 17220 tgaccagggt ggatttttc aagtgcacat gttgtggtcc cagaagctct gatggtacca 17280 aattccaagc gaaaaaagt caatggttcc cacccatcct acctcccatg atggcaagag 17340 gaaatcacca cactgcagat acagtccatg taaaacaaat tgctatggat tttgaaagtg 17400 aaccttaaga gaactgcact atgttttctt cattagagtt ctctggtaat ttccagcttt 17460 ttttttttt tttttagac agtgtctcgc tttgtcgccc agtgtcaccc aggctggagt 17520 gcagtgacgt gatctcggct cactgcaacc tccgcctcgt gggttgaagt gattctcctg 17580 cctcagcctc ctgagtagct gtattttagt agagacgagg tttcaccatt tggccaggct 17640 ggtctcgaac tcctgacctc aagtgattcg cccatctcag cctcccaaag tgctgggatt 17700 acaggtgtga gccactgcac ccggccagta atttcaagct tctgaggagc cctttgaatt 17760 gttaaataac ttgtagctat gtccaacata tccatgttca gtgtatgttc gatatttctt 17820 aggaaacctg cccttggttg ttttctttgt ggtaattcat gagccggcaa atttgacatg 17880 tgttacagaa tatacctttt ctctgctctc ctacctcata accagaactt aattatcctg 17940 ctttagtcac ataaatagct aactaaataa atatatgaga tttcagtctg ctcactgtga 18000 aaatagacct tctaaatgat ctcttccact tgcagatatt tgcaaatatg gatccatccc 18060 tcctgatgtg gaggagaagt tacggttgga atggccctac caggagcaat tgctactccg 18120 agaacactac cagaaaaagt tcaagaacag cacctactca agtaagaaat gaaaggcacc 18180 ctagagatgt tccagcccca aagatatttg aataggttgg actcgggcac caatctagca 18240 agtcctacgg aagttgtata aagctgaaaa tactgaagca tttcccaaat gggaaatcct 18300 aaactcaaaa cttgcttttt ggtttttttg tttgtttgtt ttttcttcat ctgacattgc 18360 ttagtagtca cagaatgaaa gataaatcaa tcattcatga tctaacaatg accttcagtg 18420 ctctaaaaaa ctacggagtc aaggaaaaca tgaatatatt cctcatgtaa aattaaaata 18480 cagacatata aagggcaaaa catgaacatc attcatacct tgaggtccgt ccccctccca 18540 gaaataaccc ccagtatgcc ttggtttaga gcattaagca ggagggccct gagtcactcc 18600 agacagtett gaccaccaag cagcattete tttttgttte etetgtgget tttgcaaaca 18660 cagggctage teagetacee attagtatgt ttteagteae taaaacagte tteeagtett 18720 caaattagga tgacattgtc acatggggct ttaaagcaag tgaaacaagg aacccccttt 18780 ttttttttt ttgagatgga atctcactct tgtcgcccag cctggagtgc aatggcgcaa 18840 tettggetea etgeaacete caecteceag gtteaagaga tteteetgee ttageeteet 18900 attcattatg aggaatattt gattattcag ttcctgtagg gtaaagatat tacccccgat 18960 catattattg attattgagt agctgagatt acaggtgcct gccaccacga ccggctaatt 19020 ttttgtattt tttagtagag acagggtttc accatgttgg ccaggctcca ggctcgtctc 19080 gaactcctga cctcaggtga tccacccacc tcagcctccc aaagttctgg gattacaggc 19140 gtgagccacc actcctggcc acaatccttt tttaactatg aaatatattt ttatctgaag 19200 tttgatgttt atacccaact gagggatgat gttcccatat ctcagttaaa gaaataacct 19260 gctcagatac ttcaagctct tcttttgact tttgaaaata aatgatcttg aagttactat 19320 actttgtttg ggttagttaa cattatttaa agtatattat tttaattaat tatctttgta 19380 agattttact gtatactacc tggagttcaa tgtatcagat ggatttcaaa tttatgtaca 19440 ttttttatgt atatggtaca gaaaaaatg tgatccataa gaaatcagaa aatagcgcat 19500 atgctaatag ctaatgttgt cctctaaaaa acttatttt gcatttttaa gagggggata 19560 tactctgaca ctttaataag tgtaattaat tattgactgg aatttggcat gaggcagggc 19620 catttcagat cccattaaag gaatgacaca taccagagaa ccacagaagt aaggccacat 19680 ttgtaataaa tcattatagc tctgctagga gaagacccag ttgtattagg taattaatgg 19740 atttgctctt aaaacacatg tcccggaaga tataggtgag tcttgggggg ccgcattaaa 19800 cattatacca atgtatctta catttctaag aaagttttac tactttacag gatctttctg 19860 19920 ttaccaaaat ggaaggtttc caactccagg acttggcttt catagttcct acaccagggg aaatgccttc ctttgctaac tatgcaacca ggttagttag tgtaagtcca gccaccctgt 19980 tggcaatgct aaaaggtaca acaaacacag aattttattt gcatttgtaa acatttgatt 20040 totggotoga aattttoagt tttoatgggo acgtoatgga aacagaaato ttotgtgttt agtttgggca cctactcatt gtagtgacaa atatttcaga agccaatagg ggattccaca 20160 20220 aattgttctg aacctgtggc tgagactggt aatggctgag tgacatgggg acataccaca aaagaagagg tagcaaaagg ctgctgagat aaggacatgt tcattgctta gctagtggcc 20280 tgcaccctta aaacacatgt cccaggctgg gtgctgtggc tcacgcctgt aatcccagca 20340 20400 ctttgggagg ctgaggcggg tggattacct gaggtcagga gttcgagacc aacctggcca 20460 acatagtgaa acctcatttc tactaaaaat acaaaaatta gccaggcatg gtggcgggcg 20520 cctgtagtcc cagctactca ggaggcaggc aggagaatta cttgaatctg ggaggcagag 20580 gttgtggtga gccgagattg cgccaccgca cgctagcctg ggcgacaaag tgagactctg 20640 tatcccagaa gatacaggta agttttctaa cacaggtcct cttgtatggt gcgttccact, 20700 taagtagaag atgacaaaaa catttgtcat gagaatatag actcacattt taaacctgtt 20760 20820 tgagcaggaa aaggaagcaa tgttacagat gtaattctgg gtgtgactgc agaaaggatg 20880 actocottat taaagtagto atcotgagtg agotaactot ttgtacttoc tottotocto ctgttcccct catcacccca ttcttccgtt gcctacaccc aggcccacat tggatgctga 20940 catagactta catggtacag tccaagggaa agatctgcca tttttttcaa tgtgtcatct 21000 tggttatctt cattccaagg atctctccac tctttataca gtaagagatg agagtctgga 21060 aaggattggg aataagataa tgaattgtaa gttttaaatt gttcttcgta ttttggggaa 21120 ggagtaggct aggtggtcct tctgttttt ttttgttttt tttttaaag tagatgtggc 21180 cagacgtggt ggctcacgcc tgtaatccca gcactttgag aggctgaggc aggtggatca 21240 cttgatgtca ggagttcaag accagcctgg ccaacacagt gaaaccccgt ctttactaaa 21300 aatacaaaaa ctagccgggc ttggtggcgt ccacctgtag tcccagctac tgcagaggtg 21360 gaggcaggag aatcacttga acccgggagg tggaggttgc agtgagccaa gatcatgcca gaaaaaaaga atggatttga actcagtcgt caatagcctc tattccagga gatgttacag 21540 ttgattatgt tatagggggt gtataataga atttcgagct atgtaaattc caagtgcatt 21660 tggaagaatg aagaaatgga ggaagggtaa agtatgagtg caagcattcc aggttttttg aaaatgctat aatctttgtt cagggctagt acaaagtgct atttagctgt aagggttttt 21720 tgtgatttac agacagtttt cacatgtgtc atttcaacct tggttttatg gcgaaggcat 21780 gtgatggtgc ttgtcccagg actttagatc catatctgag gttcctgtcg ggcaaagata 21840 ttacccctga tcatattata gtctataagt gggagagttg tgcctggagc tcaagtctta 21900 tgatttctga tccagggcac ttcctacaac atgattttgc aatataaaag cctataatgt 21960 gtgactaaag caggtcactc accccttgta acagactcta gtaatggtac tgccaccaaa cggctgcgtg atattgggca aagacttacc ttatttgaat ctcagtttcc tcctagaaaa 22080 atgagggtgg aggttaagca taggctgatg atcctaaagc ctccatactg ccctaaactg 22140 tggctctaag atccagtaga atgctgggtc acaggactct agggagcttt tcaaacccaa atgtctgtca ttccttgatg gtaggcagca gtttatggaa gtgggcgaca cagcaaatat caaaatacct aaagcagctt gcaagagttg tttctgccta gtggtcttta tagttaatat 22320 taaatagtta atttttttt tttttgagac agagtcttgc tctgttaccc aggctgcagt 22380 gcagtggcac aatctcggct cactgcaacc tccacctccc gggtttgagc aattctgtct 22440 cagcctccca agtagctggg actacaggtg catgccactg cacccagcta atttttgtat 22500 ttttagtaga gacggggttt caccatattg ggcaggctgg tctcgaactc ttgacctcag 22560 gtgatccacc tgcctcagcc tcccaaagtg ctgggattac aggcatgagc cactgcaccc 22620 agcttaaata gctaatattt aatattattc tatagttatt caagtaattc aggccaaaga 22680 cttagaaaca aaacaaaaag ccacttttaa ggagaaaggg tgtaagtttg ccagatagat 22740 agagatettt etttttaae tacaagagtt eaggaatgaa ttaetettta aeaaaegaet 22800 atagatatac atgaaaattg gaaggactta ttatgcatat gataatcaat ttaaagacaa 22860 cacttaaaat tatattgttg ccactctcaa aaagtggtaa tagaacagct aatggtttaa 22920 22980 aaagcagagt acagaagttc ccaaacttat ggcaccttaa tatcgcagaa aactttttaa 23040 agcatgccta ggccacaaaa aatacctgta ttttgattat taaattgtaa ggtctacaca acctaatagt aataggtcca atagtaatgc tgtccaatag atgttgatgt ttttttcctt 23100 gcaaacttaa aagatcctac agtgcctctg taaatagcac tgcctggtta gagttgaatt 23160 tcagataaat aattttttc atgttaatta tttttctttt ctttactttt ttttttgttt 23220 ttttgttttt ttgtttttt ttttgagaca gggtctcatt ctgttgccca ggctgctgtg 23280 caatggcatg atcatggctc actgcagcct tgacctccct gggctcaggt gatcctccca 23340 cctcagcctc ccaagtagct agctgggact acaggtgctt accatcatgc ccggctaatt 23400 tttgtgtttt ttgtagagat gtggttttgc catgttgccc aggctggtct tgaactcctg 23460 ggctcaagtg atccgcccgc ctcggcctcc caaagtgcta ggatgacagg catgagccac 23520 tgcacctggc ccctgggcga agtatttctt aatggttaca taggacatac actaaacatt 23580 atttattgtc tatatgaagt tcaagtttaa ctaggtgccc tgcactttta gttgctaaat 23640 cctgtagctg tacccatgca ttcactggtg ctccccagct tgccttgcac agagtttgga 23700 aaccatagtc ctataactct aggccaattt tttaatgtaa aatttgattc attttaaatt 23760 aataaataat aacaggaatt tttttaaaaa ttgttttaaa tataattaaa attatcaaaa tattttttaa ctgaacttgt gactagagat atttagatta tgaagagtgg ggtttatgct 23880 aactaatgac agtctggcta tgcatgtgga gcactgagct ataaattgtg gcttccccaa 23940 ttctcctgat gtcacttgaa caaaacctaa gtgtcagacc agagcttctg gtatcttcca 24000 tgggatttca ttcaacagct ggagcaaatg aagtcagatt gattttttt aatttgtcca 24060 attttgttgt ctcaaaaaca taattataat catttattag aactagaatt tcttcagttt 24120 aacaacagaa atagttattc attatgaaaa gcgaatctgg aggccttcat tgtggtgcca 24180 atctaaccat taaattgtga cgtttttctt ttaggaagct ctgtagatgt gctatacact 24240 tttgcaaact gctcaggact ggacttgatc tttggcctaa atgcgttatt aagaacagca 24300 24360 gatttgcagt ggaacagttc taatgctcag ttgctcctgg actactgctc ttccaagggg tataacattt cttgggaact aggcaatggt gagtacccca gggaacaatt cattaataag 24480 gagattcccc actagcatta tttcttttct tttcttttc ttttcttttt gagacagagt ctcgcactgc tgcccaggct ggagtgcagt ggcgccacct cggctcactt gaagetetge eteccaaaac gecattetee tgeeteagee teeegagtag etgggaetae 24600 aggcacccgc caccgcgccc ggctaatttt ttttttttt tttttttt tttttttca 24660 24720 tttttagtag agacggggtt tcaccgtgtt agccaggatg gtcttgatct cctgacctcg tgatctgccc tcctcggcct cccaaagtgc tgggattaca ggcgtgagcc accaggcccg 24780 24840 gctagcatta tttcttatga cactttttt ttttttttga gacggagtct cgctctgtcg cccaggctgg agtgcagtgg cgccatctcg gctcactgca agctccacct cccaggttca 24960 cgccattctc ctgcctcagc ctcccgagta gctgggacta cacgcacccg ccaccacgcc cggctaattt ttttgtattt ttagtagaga cggggtttca ccgtgttagc caggatggtc 25020 25080 totatatect gaccecatga tetgecegee teggeeteee aaagtggtgg gattacagge 25140 gtgagccact gcgcccggcc aacactcttt ttattattag caaatatact tctgcctggg 25200 cacattettg caagtgetea acaatgeaae ttttggaagt geatgtggea gaaaeteetg 25260 ctgtatttat tccagaacct attattgcta atcccagttt atgttacatt tgaagtgaga accagttgga gccagcaacg ttcccagctc caaagttccc ttgagatttt cagaatcact 25320 taaccctatt atgcttggca acctggactc agcaaaactg ggaagtcagc agtttgtttt 25380 atteatecet teettetea gttteteaaa tgtgteagtt aateteagta acceeattge 25440 aacettcatt acetgeecaa geggtetaga acttgeeagt atagaateet aegtgggtea 25500 agetectgae tgteteette tteaetettt ttttgeaaag aaettgtaaa ttttaaetat 25560 aagtattcat gattcgccac atttattcaa aacatagagt gctttttcca catatcagcc 25620 aatggaaata aggattaaat gggaaatgaa atgtagtaat aggataagca caagtcttct 25680 tcctgctcaa acttttttt tttttttt cagacaagat cttgctctgt tacccaggct ggagtgcagt ggcgtgttca tagctcaatg taacctccaa ctcctgggct catgcaatct 25800 ctcacacctc agccccctga ttagctagga ctacactatg cctagccaat ttttttctt 25860 ttgtctggtt gtgttgccca ggctgtctcg atctcctggc ctcaagtaat cctcctgcct cggccttcta aagtgctggg attataggca tgagccactg tgcccggtct caaacctttt tttccaaagt aaatgaagtt attagatatg gaatatagtc tagttcccag atatccatat ccattggttt attaccctca ttattaactt caaattgttt aatagaccct catatctcag 26100 ttatacagtt aaaatttttg ttttgttttt ctggagtatc ttatttataa ctatgagttt 26160 tactttactt atttattta ttttttgaga cagacgcttg ctctgtcact caggctggag 26220 tgcggttgcg tgatcatggc tcactatggc ctcgaccttc tgggctcaag tgatcctctc 26280 cctcagcctc ccaagctgag actacaggca tgcaccacca catctagcta attttttt 26340 26400 ttccccatgg aacaaggctt tactatgtta cccagagtgg tctcaaactc ctggcctcag gggatcctcc tgtctcagcc taccaaaatg ctgggattac aggcatgagc catagcgcca 26460 gacctggttt tacttttctt gactttgaat tacaagtttt tgtaatttgg aaaatgtttt 26520 gttgctttta aatactgctg tatgtttgct tttaaataca acatttctcg atatatatt 26580 tgagaattgc tgtctttcag aacctaacag tttccttaag aaggctgata ttttcatcaa 26640 tgggtcgcag ttaggagaag attttattca attgcataaa cttctaagaa agtccacctt 26700 caaaaatgca aaactctatg gtcctgatgt tggtcagcct cgaagaaaga cggctaagat 26760 gctgaagagg taggaactag aggatgcaga atcactttac ttttcttctt tttccttttg 26820 agacagagtc tcactctgtc agccagactg gagtgcagtg gtacaatcat ggctcactgc 26880 aacttcgacc tcccaggctc aagcaatcct cccatctcag tcccacaaat agctgggact 26940 acaggtgcac atcaccacac ctggctactt taaaaaaatt tttttgtaga gatggggtct 27000 ccctgtgttg cccaggctgg tctcttgaat tcctgtgctc aagccatcct tccacctcag 27060 cctcccagag tgccaggatt acaggcatga gccaccacac ccagccacca cttttcttaa 27120 aaaaaaaaaa agattetete tggtagacaa teeteaatag teeacatgtt attaaacaat 27180 ctgctgcctg aatacatgat ttaccaaaaa aaggaaattt tgacgggttc agaatatcaa 27240 gggatctgag gcaaatgtca cctatgataa aatttgctat caaaattagg aagtttgtgt 27300 ttacctgatc ctaaagcagt aaccagccca tttctaggga ataaaactct catgcgtata 27360 ttgtgcatat atatgtatta tatgactgag tgataataaa attttttttc tagcttcctg 27420 aaggctggtg gagaagtgat tgattcagtt acatggcatc agtaagtatg tctcctattc 27480 ttaatactag gaaagtaagg ctagctttat ttattaccta gtattcaaaa agttagttca 27540 tttaactgcc aattgactgc agttcaaata agaaacaaat agtgtctcaa gtagcactgt 27600 actccaattt taatattaat aaaaaaaatt ttaagttatt ttaaataatg tagtggtttc 27660 tataaagatc actttataca gaagaacagt gccaattaac ccatggaaca tataagtagc 27720 taaaaccaat tgcttgccaa agaaccagta acccaggagt acatgtcctt gccactgtgt 27780 tttttcaaga cagagtaact gatttctagt tacttgcata gaatggactc ctcctcataa 27840 ctcccttcca tcttggtctt tccctagtag aacttctacc tttttttagt aacaggtgag 27900 tgggagaggt aagaaggaga ataaggtcag caattaacct aaaagcagaa agtaaaattt 27960 qttatttttt ttctgaatat tttctgtgta atttagctac tatttgaatg gacggactgc 28020 taccagggaa gattttctaa accctgatgt attggacatt tttatttcat ctgtgcaaaa 28080 agttttccag gtaatagtct ttttaaactt tttaatgtaa aaccagaatc cttattttat 28140 agtctagcta gttctaaatt ctataggtat gtatatttac atgtttttct aattttagag 28200 aacaagcact atgacttatc cactgttagt tttcccctta gcattgggtc ttaccccatg 28260 tacgtgatta gaaatttgaa atatttccaa tagcctttag tagaattaac tcacatagat gataagaatg ggttggttca cttcatgttc cttccacagc ctactatttc aataaaagaa 28380 agtttcccaa gacctaaatg actatgaaca tattttataa ctatatagga ggggtgggtc 28440 taggaataca aagttttgaa tgctgttaat cttcaacacc acagttgaaa ccacaggtca 28500 gcttttttgc aattaccatg gatacttttc tgttctatag gtggttgaga gcaccaggcc 28560 tggcaagaag gtctggttag gagaaacaag ctctgcatat ggaggcggag cgcccttgct 28620 atccgacacc tttgcagctg gctttatgtg agtgaagcag cgctggcctt aggggtcaga 28680 gtgcagctct tctccatcct tctattctgc tgaaatagct ccccagccaa aaagcagatc 28740 aaagaccgtt tcagtggctg agccccaaaa ttcatgccag attttgcaag aaaatgattt 28800 actaaagctt gagggacatc tttaacaagt gttccaaatt aatcactata aggatgaatt 28860 gtttcagaaa ttttggcctt taattatggc ccataaatat gtcaagtagt ccttactcta 28920 aagaagtaca ctgtaaaaga atgcatatag ccggatatgg tagttccctg taatcccaat 28980 actttgggag gccaaggtgg gaggattgct tgagcccagg agtttgaggc tgcagtgagt 29040 tatgatggtg ccactgcact ctagactggg caacagagtg agactgtctt ttttttccc 29100 ctctgtcacc cagactggag ggcagtggca cgatctcacc tcactgcaac ctctgcctcc 29160 29220 cggattgaag cgattctcct gcctcagcgt cctgagtagc tgggactaca ggagtatcac cgcactgggc taatttttgt atttttagta gagacggggt tttgacatgt tgcccaggct 29280 ggtctgaaac ccatgagctc aagtgatctg cctacctcag ccttccaaaa tgctgggatt 29340 29400 ttagagcata ttacagcttt gtctctcagg aggatactta gtgtatgtag ctataattca 29460 tagattccca agaagtttag agcctaaagt atgaggtccc accagagggg ctatcattaa 29520 atttaaagat ttgttaaatc atctcattgt ccaacaccac aaacttgatt gctttaaaat 29580 actggtttag ttacatttag taactctatt agtgctttta atctatactg ctatatcctc 29640 acattgagat ttttttctt ttctctcca tcttcattct tttttctctc atcctcattc 29700 ttataagcct agaatacatc acaaatcctt tatgcccatg gaagcaagag gaataaagaa 29760 tggagatgtt tgttttgcca ttaactaaag atctggggtg tcggggagaa gggggataga 29820 gaaggagaag tgggaagagg tgtccataat agcttaggtg caattctgct tattttacat 29880 tttacccccg ctgactgcca ctttttcttc agccctcaca cattgtttgt gcagggacct 29940 cataggacca ggaattgtct atagaggtgg gaatttgtct caccctgaaa gggatacctc 30000 tagcatggta atagtcttct aggatttgtt atcatatgga aagatgtaaa gggagggatt ctgctgctgc tgctgctgct gcatgcagtt gccatttcat ttaaatgact tatttataat 30120 tgatgacact tttctggctt cctgttaatt cctccctcaa agatcaataa accagaacca 30180 ggcatggtgg catgcacttg tggtcctgta accacccaac aggttcacct tgcctgctgt 30240 ctagatagag ccaattatca agacagggga attgcaaagg agaaagagta atttatgcag 30300 agccagctgt gcaggagacc agagttttat tattactcaa atcagtctcc ccgaacattc 30360 gaggatcaga gcttttaagg ataatttggc cggtaggggc ttaggaagtg gagagtgctg 30420 gttggtcagg ttggagatgg aatcacaggg agtggaagtg aggttttctt gctgtcttct 30480 gttcctggat gggatggcag aactggttgg gccagattac cggtctgggt ggtctcaaat 30540 gatccaccca gttcagggtc tgcaagatat ctcaagcact gatcttaggt tttacaacag tgatgttatc cccaggaaca atttggggag gttcagactc ttggagccag aggctgcatt 30660 atccctaaac cgtaatctct aatgttgtag ctaatttgtt agtcctgcaa aggtagactt 30720 gtccccaggc aagaaggggg tcttttcaga aaagggctat tatcattttt gtttcagagt 30780 caaaccatga actgaatttc ttcccaaagt tagttcagcc tacacccagg aatgaagaag 30840 30900 gacagettaa aggttagaag caagatggag teaatgaggt etgatetett teaetgteat aatttcctca gttataattt ttgcaaaggc ggtttcagtc ccagctactt gggaggctga 30960 gacaggagga ttaatggagc ccaggagttt gaggttgcag agagctatga tcacgccact 31020 gcactccagc ctgggtgaca gagtgagacc ctgtctctaa ataaataaat aagtaaataa 31080 ataaatacat aaataaaatc aagatggtgt gcaattagaa ttgagcgatt ttgtttccaa 31140 acctcaagaa agcttggtct tgctctgtcc caggtggctg gataaattgg gcctgtcagc 31200 ccgaatggga atagaagtgg tgatgaggca agtattcttt ggagcaggaa actaccattt 31260 agtggatgaa aacttcgatc ctttacctgt aagtgaccat tattttccta attctagtgg 31320 31380 agtagattaa agtcaactca ggacctctgg tgttaacctc ctatgaacag tcagtcctct cagtaactag ccaaatcatg agatgatgaa ttagaaggag ccttagatag catccaatct aacatttttt tgtgtgtttg aagagaagaa atcaagagct aggaataact ttttaaaggt 31500 aagccatttg cagtatagtg tggattttgt ttaaaagggg ataatttgaa attttatgac 31560 tcattataca agacaaaata agttggattt tcaaatgttt tacaaagtaa atcaaagtta 31620 taattgccta cagtacgcaa agcttcaaaa cattttttat gttatgaaat tgtaatttat 31680 ttaaccttaa aatgagccag taccatgtgt ttgcttaaaa atctcatgct aagaatttac 31740 tatgttgtta ataatcttca agatatttat gaataaagtc ttatttctaa tccttcctcc 31800 aactgtatct ggtgctaaat caggaaatgt ttcttcccaa aaagcctcgt ggaagatctg 31860 tatgtctaaa tatatgtcag ggataataca gatgtagccc tgcgaagcat gaccttgatt 31920 tttatagtct aaaatgtcat ttgcagatat ctattttcta agaataattc ctaaaagaat tatttgaatg ttgtaggaaa gctaagaaat tttgcaaaga gcgtacgtga aaatataagc 32040 taggettttg tggtttgtgg atagaettee caacaaaatt getttttate tatagtgate 32100 caagettgtg gaacatatta gteatetttt tttagaaaat tettagaaaa gtgatettge 32160 aaaaatggaa tttatctttc cccaagtata ttctgtcatg tatagagtta aactaagcat 32220 agtaatttca ccagacaaac attcaaaatc tactcctgac ctttttatct catccaaatt 32280 ttcccagggc ccagacataa acctttgcct tacgaactct ttgtatatgc actaaatatg cttctccttc aaggttctca gtcagctaga aaaatgtgca agagtaaatg gtacccttct cacttgtaga tccaagagaa ttagacttaa actcactcta catgtctgtg actttatttt atttgcatga cagtcctgtg aggtggcaag gcaggtatct tggatccatt ttttagataa ggaagttcaa attgagaaga ggttgcatga tttacaggaa gccatactgt agtcctatgt tactcttaaa aatcccattc aaatcctgct tctgaggcct gcatactttc taccctacca gtcattgacc catgcttatg tctcctttga aaacattgat tccactcttg tctccagtga 32700 aaaagtggaa tttaagcaga gaaacaaaag ccatttgtct tgttaagtct actttccctc 32760 ttttaaaaat tgatacaagg tcttactgta ttgtgcaggc tggtctcaaa ctcctgggct 32880 caagtgatca teceaectea geeteecagt gttgggatta cageatgaae cattgtgeee 32940 accaccgatc cgcagttttt taagaaaaac ttttactata gaaaatttta atcatataca 33000 aaatacagag gaaagtatat gaacccactt taggagacta gaatatgcca ccccaaaata 33060 33120 tgccactttg gcataaggat tatttcgagc taaaggcaac tgggaagaaa cacatagaag 33180 aaaagttctc tgtccttctc catttgccta aaagcaggac atgaatctta aaagtccccc tccttccctt tctaccagga aaaacaagag ttaatcactg aagataactt cagaccctta tcagtgtaga gatggcacta gaagaatcta tattacatac tcatttattt tccttcccac 33300 aacttgccac cccagagact aaaaatcctt ttcctttgtc atgtctcttg tccaaaaatt 33360 tgctctataa gctggagttc taagccacct ctttgagaat tacttgttcc ctggtatttt 33420 33480 ctgttaacat acatgtatta atatacatgt taacaagctt ctgtttgttt ttctcctgtt ttctgtcttg ttacagaggt ccatcccaac taagaactaa agagtaggag gaaaatataa tttcctcctg catactttga tcttgtttaa tccgtaaccc ttcccacttt tcacctccta 33600 cctattagat tactttgaag caaatttcag atatattact ttatctataa atatttcagt 33660 atgtgctagg tgtggtggct cacacctgta atcccaacac tttgggaagc tgaggcagga 33720 33780 ggatcacttg agcccaggag ttcaagacca gctacggcaa caaaaaatca aaaacttatc tgggcatggt ggcacatgcc tgtggtccca gctacatgag aggctgaggc aggaggatcg 33840 ctttagccca ggaggttgag gctgcagtaa gctgcattca caccactgca ctccagcctg 33900 ggtgacagag taagaccatg tctcaaaaaa atacatattt tagtatgtat cctttttgta 33960 aaaacacaat acttttatca tactttaaat aataacaata attccttagt atcaccaaat 34020 attttgtcag tgtctcacat tttccttatt gtctaaaata ttgttgatag ttattcaaat 34080 cagaatccaa acaaggtcca tatattacat ttggttgaca agtctcttaa gtttgttcat 34140 ctttaagttc ttcctccctc tctttcatct cttgtaattt attaatgtga aaaaacaggt 34200 aatttgttct atagtatttc ctacattata gagtttgcta catttattcc ctatgatatc 34260 atttagcatg ttcctctgtc ccctgtgttt cctgtaaact ggtagttata cctagaagct 34320 tgagtttatt caggttttta attgtatttt ttttgcaaga attctttatt atctgcttct 34380 ggaagcacag aatgtctggt tgtgtctggt tttgatcttg acagctactg atgaccattg 34440 gattttttta actgttattt tgagacagtg tctcatttcg tttcccaggc tggagtgcag tggcacaatc acggctcact gcagccttga cctcctggga tcaggtgatc ttctcacctc 34620 agcctcctgg gtacctggaa ctacaggtgc acaccaccac acctggctaa ttttttgtat 34680 tttgtgtaca gaaggggttt catcatgttt cccagactgg tcttgaactc ctgggttcaa 34740 gtgatctacc cacttcagct tcccaaaatc ctgggattac actttggcca ccgtgcctgg cctaaatgaa attatttgtc tctaaacaga cagaagtttt actttaaaaa tttgtctttg aattottgga tgaacaataa ccaagaatac ttaaactotg atcattottg acagatatoo 35040 cctacaggct atggcctttt gaattgtgtc ctccagtgat aaaaagcagc aagcacgata ctgctctcag attcatggtg gtcacatgtg aggtgaaaaa aaaaaaaaag atgaatccta 35100 tttaaatgcc cccaggataa cagtgatact ctttgtagga taactatttg cttgccactg 35160 35220 gtttcattaa ataaggacat aagtaaagat ctatttttgt ctctttctcc ccaaccacca 35280 caactaggat tattggctat ctcttctgtt caagaaattg gtgggcacca aggtgttaat 35340 ggcaagcgtg caaggttcaa agagaaggaa gcttcgagta taccttcatt gcacaaacac 35400 tgacaagtaa gtatgaaaca caccetttae caateateaa gttttagtgg gtaageetgt aactttactc aaacaccctg ttgcatgtgt ctatacattg cataagtata ggcagttgca 35520 ttttgttgtt gttgtttttt gagacggggc ctcgctcgtc acccaggctg gagtgcagtg 35580 gtgcaatctc agctcactgc aacctccgcc tcccgggttc aagtgattct tgaagaggag 35640 35700 aacaataata acaacaatat tattttcaaa agttgtgacc gcagtttctg gagttgagaa gacatcgaga tttttgtagc ctcatactct tgctttaggt agcaaaaaat gttcctaaat 35760 35820 ctcaggaata ttctctagat aggtttcaat ctatcattcc tgataagatg atgctgaaat actaattcta gccaaaaaag accagctacc atttccgatt gttggggact gggaactctg 35880 gatagtgagg accccagtag gaagtagcga ggggaatggt ttgaatggat aaattcataa 35940 aaaatgtcag tagatttaat tttcttatac atttcagtct ttttataagg ctaggaaaag 36000 cccctgtttt tatggtttat aatttgaatt cacatgaacc cacaaaattt gccttttacc 36060 ttcctatgtc tgaaaatgga tagtctggct ggcctcttaa caacccagct ggcagagctg 36120 36180 tgaggatctc agtgtgctct agcccagaca ttggtagcat gaacggcaac atttttaatt gtgttttcaa aataggagca cactagcggt ctaaaacgat cataaaagaa ggatactaag 36240 agggcccact gtcattatgg atcctaatac ttaggatgca ttatggattg tcattatgga 36300 tactaatact taggatcaca tttgtaattg agtttttaat tgcttaaatt agatacatat ttctattaag ttaacctctt tgcttttagt ccaaggtata aagaaggaga tttaactctg 36420 tatgccataa acctccataa tgtcaccaag tacttgcggt taccctatcc tttttctaac 36480 aagcaagtgg ataaatacct tctaagacct ttgggacctc atggattact ttccaagtaa 36540 gtaattttcc ttgttcattc caaactttca ataaatttat tggtgtttat cagaatagag 36600 agtttggaca gggagcaaaa gacaaagtca actatatcaa gttctaataa ttcttaatat 36660 tcaggaaatt tatgtatgaa tacttactaa tatgagtata actcatccta agagtctaaa 36720 gcaaaaggat gtgaacacaa actagcagtt atcttagaga ataagtttgc atttcaaaat aacttgacat atcaagatcc actcaacgca tttaaattat ttactctaaa aagacataat tcttggtaac acattcacta aagcaaaata tacctttata taattgctat caaaggtatg tgggttggta taaaatatca taccatgtga gatcagtgtg attcctttac agcattaatt tttattggtt agagtaagaa aaagaatagc tagagtatat ttcttaagta gattctcata cactttggtt tcaaaaacca attattgact acatcttata aaagcctgta ttcaatggag tgccaaaaaa tgactatgag tcttaaagag ttaggcatat aaatatttta aggtttctgt 37140 tcaatgtatg ttggaaggag ttcctttctc atgactattc tcatattgga gcataaaaag 37200 agtttacagg cttggcgcag tggctcatgc ctgtaatccc aatactttgg gaagctgaag 37260 caggcagatc acttcagccc aggagtttga gaccagcctg ggcaatatgg caaaactctc 37320 tctacaaaat ataccaaaat tagccaggcg tggtggtgca tgcctgtagt cccagctact tgggaagctg aggtgggagg attgcttgag cccagggggg tcatggctgc agtgagctgt 37440 gatggtgcct ctgtcaccca gcctgggtga cagagtgaga ccctgtctca aaaaaataaa 37500 taaataaaaa ttaagagttt acaaaattct caccatctcc tcccatcttt gcaaatgcca 37560 37620 cataagtgat gtgttccagg actattagcc tcggaacctg aggcagtaca gtaagcacgc tttctccaaa gtcctgtccc ccacagacaa acattattta cactgggtac tgctctttta 37680 ttttttcccc tctatgcttt attttactat aactataatc atataacatg taataggaaa 37740 aaggcagggt cgggggagag atccagaagt cttcccaaga gcctttccaa catagcctct 37800 gtagacattt tttcttctt ctttttttt tttttttt ttctgagaca gagtctcact 37920 ctgttgtcca ggctagagtg cagtggcgtg atctaggctc actgcaacct ccgcctcctg ggttcaagca atteteceae eteageetee etagtagetg ggattagagg catgeateae 37980 cacgcctggc taatttttgt atttttagta gagatgaggt ttcaccatgt gggccaggct 38040 ggtcttgaac tcctgacctc aagtgatcca cctgccttag cctcccaaag tgctaggatt 38100 acacgagtga gccaccgtgc cctgccccta ttacattctg atcacacatt tcatgtttta 38160 taattggaaa actggtgaaa ttatagacaa tgttttgttc ccctaaattc tctttgatga 38220 gtatatatta cttacactct tctgtcttta aaattttgca aaatagtatc ctagataagt 38280 38340 ttatgagtgc acagtctgta cgcttactca tattaatgac ctcggagagt taaacaacag tcacctttaa aaattattac tatcattatc attatttttg aggcgggggt ctcattctgt 38400 ctcccaggct ggagagtagt ggtgcggtca cagctcactg cagccaccgc tacctgggct 38460 caagtgatcc ttcctcctca gccttctgag tagctgagac cacaggctta tgctaccaca 38520 cctggctaat tttttaactt tttgtagaga cgatgtctca ttatgttgcc caggctggtc 38580 tcaaactcct aagctcaagt gatcttcctc agcctcccaa agtgctggga ttacaggcat 38640 gaaaaactgc acccagccct aaaaattatt agggtcctgc atagtaagac tttaataaat 38700 atttaaatga acatctggtt tttttaaaaa aaaaatagag acaaggtctc actatattgc 38760 ccaagetggt ctcgaactcc tggactcacg caatcctgct gccttagccg cccaaagtgc 38820 tgggattaca ggcatgaccc acctcatctg ggctgagtga acatatttt aacataaagg 38880 ccgtatttta tatttatctc atacattttg cccagcatcc ccatttccgc cgaatctgtt 38940 gcttgctaat tccttccagc ttcatttcat ctgaaatttg acaaacatct tctatttctt tgtcgtcatg ttattgactt cagaatataa aataaaacac tatacccaaa ttaaacccca 39060 ccctcattgc ccagcctgat gtgaaaataa tcagcataca ttaagcttac ccttgatata tgtgtagcat cttttagata aatatacagc tgattaagca atatagcctg atggtataat atcttgccca tgtacctcat cttatctcca gcaggattaa ttcacagtga tcagatttac ctttaaactt tgtagcaaaa tatcctctcc aaaagcatat ctaaaacttt tgtgtgtact 39300 cttgcaagtt tcttaatttc atgcagaaca ggctcttacc actgttagct ggagatattt 39360 tcaagaccta tttttgtttg tggtttcctg atgatggtca tggcatttcc cccttcactc 39420 catctaaaaa ttgaggtgat acaggctttt aaacaaaacc aactcatata gactgagtac 39480 aactgcaatg caggcatgct aacctctgct acaatcatgg gcgtgctatt gatatgtctt 39540 39600 aagttacaga acacagggct gagcgtctca ttaggtcaaa atgtaaacca gtttttctgc tcactgatgc ttaatgagga cagggtgtga gagatttctt taaggaaaac aaatatataa 39660 taatgctaca tggaaaaata tctaacatta gagaattaag taaataaact aatatactca 39720 caccatggaa tcttgtgcag acattaaaat tatgtagtgg atggatgttt aatggtgtga 39780 gaaaaagtta ggatgtgctg gggtgggggg aagaatcaag ttttaagaaa atacagtata 39840 cccatactta agtaaaaaaa aaaaaaaagg tatgtacagt catgtgttgc ttaatgatgg 39900 ggatacattc cgagaaatgt gtcgataggt gatttcatcc ttgtgtgaac atcatagagt 39960 40020 gaacttacac aaacctagat ggtctagcct actatgtatc taggctatat gactagcctg 40080 ttgctcctag gctacaaacc tgtaaagcat gttactgtag cgaatataca aatacttaac acaatggcaa gctatcattg tgttaagtag ttgtgtatct aaacatatct aaaacataga 40140 40200 aaactaatgt gttgtgctac aatgttacaa tgactatgac attgctaggc aataggaatt ataattttat ccttttatgg aaccacactt atatatgcgg tccatggtgg accaaaacat 40260 ccttatgtgg catatgactg tatacatgta cacaaaaaat agatgaaaga atgaatatac 40320 atcaaaatat ttaaaatggt tataatgact taggttactt ttatttatct tagtaataat 40380 aatgatgata gataatactt ttatagtgtt tactatataa aagacactgt tataagtgtt 40440 ctacatactt tacatgtatt acctaaatga tataaatata actctgacag taactaatct 40500 tatacgttct cttttctttt tttttttt cttttttag acagaatctt gctctaccag 40560 gctggagtgc agggtgcaat ctcggctcac tgcaacctcc gcctcccagg ttcaaacgat 40620 tctcatgtct cagcctcctg agtagctggg actacaggca cacaccacca tgcccggcta 40680 atttttgtat ttttgggtag agatggagtt ttgccatgtt ggccaggctg atcttgaact cctggcctca agtgatctgc ctgcctcagc ctcccaaagt gctgggatta caggtgtgaa 40800 ccactgtgct cggcctaatc ttacaagttt tcaatattta aagagtgcta actttgttga 40860 caatataaaa catatttgag aaaaagagat ataagcatct tatttagaat tatgaaaata 40920 tcaatagacc tacagccgac taaagctttt cttcataagc tcttgcctat attgattcgc 40980 tcctgtgaat atgcattaat ttgatttaaa taataagtat gtataagaaa taacactttt 41040 ccttaatttt taagaacgtt caacagtttt taatttgaat tccaatagtg aaatacatag 41100 aaaatataaa attttctgta gtttagccaa attgtttttg tttcaccaca gcattctacc 41160 aaaatttctt aataacagta agaaaatgaa tgcatacctc ctgcagggag aggggagtta 41220 ggcagtttat gggcatagtt acaagtgaga aatttcattg gctaccattt acgctaaatt 41280 cataaaaact gcattcaatt ctatatatct attttcttta cataaaaaag gtttcaatta 41340 ttggccatta aataaaatag ccaccattcc agaagttgtg tcatgtttat cctttttata 41400 ccaccatcat attgcctatt atatagattg tgtgtgttcc attttctgta atgggccaga 41460 cagtaagtat ttctggcttt ggagtccata tggtctctat cataactact catctctgcc

attgtagctt aaagattatc taggtcaaat gcctaagtga tatagtgttg aaatacaagt 41580 tatataatat aggctgccac aaaaaaaat ttatttggtc taaaaaagat ttcatgactt 41640 ttgtagcagc atgggtgggg catgcaccac ttggttaact cggtgtatct ttctcctttg 41700 cagatctgtc caactcaatg gtctaactct aaagatggtg gatgatcaaa ccttgccacc 41760 tttaatggaa aaacctctcc ggccaggaag ttcactgggc ttgccagctt tctcatatag 41820 tttttttgtg ataagaaatg ccaaagttgc tgcttgcatc tgaaaataaa atatactagt 41880 41940 gcagatacct tgcaaagcaa ctagtgggtg cttgagagac actgggacac tgtcagtgct 42000 agatttagca cagtattttg atctcgctag gtagaacact gctaataata atagctaata 42060 ataccttgtt ccaaatactg cttagcattt tgcatgtttt acttttatct aaagttttgt 42120 tttgttttat tatttattta tttatttatt ttgagacaga atctctctct gtcacccagg 42180 ctggagtgcc atggtgcgat cttggctcac tgcaacttta agcaattctc ctgcctcagc 42240 ttcctgagta gctgggatta taggcgtgtg ccaccacgcc cagctacttt ctatattttt 42300 tgtagagatg gagtttcgcc atattggcca agctggtctc gaactcctgt cctcgaactc 42360 ctgtcctcaa gtgatccacc cgcctcagcc tctcaaagtg ctgggattac aggtgtgagc 42420 caccacaccc agcagtgttt tatttttgag acagggtatc attctgttgc ccaggcttga 42480 gtgcagtggt gcaatcatag atcactgcag ccttttaact cctgggctca agtcatcctc 42540 ctgcttagcc tcccaagtag ctaggaccac agacacatgc catcacactt ggctattttt 42600 aaaaaatttt ttgtagagat ggggtctcgc tatgttaccc aaactggtcc tgaactcctg 42660 gactcaattg atcctcccac cttggccttc caggtgctgg gatttctttg ggagtacagc 42720 atggtacagc aggagatcat ttgatgttac ctctgtgcag tgttgctagt cagcgaaaga 42780 ctataatacc tgtggggaca gcgattagcc accacaacca gtctttattt aaagttatta 42840 aaaatggctg ggcgcagtgg ctcacacctg taatcctagc actttgggag gccgaggcag 42900 atggatcacc tgacgtgagg aatttgagac cagcctggcc aacatggtga aaccccatct 42960 ctactaaaaa atacaaaaat tagctgggtg tggtcctgta gtcccagcta cttgggaggc 43020 tggggcagga gaattacttg aacccaggag gcagaggttg cagtgagccg agattgtgcc 43080 actgcactcc agcctgggtg acagagagag attccatctc aaaaaaacaa gttattaaaa 43140 atgtatatga atgctcctaa tatggtcagg aagcaaggaa gcgaaggata tattatgagt 43200 tttaagaagg tgcttagctg tatatttatc tttcaaaatg tattagaaga ttttagaatt 43260 ctttccttca tgtgccatct ctacaggcac ccatcagaaa aagcatactg ccgttaccgt 43320 gaaactggtt gtaaaagaga aactatctat ttgcacctta aaagacagct agattttgct 43380 gattttcttc tttcggtttt ctttgtcagc aataatatgt gagaggacag attgttagat 43440 atgatagtat aaaaaatggt taatgacaat tcagaggcga ggagattctg taaacttaaa 43500 attactataa atgaaattga tttgtcaaga ggataaattt tagaaaacac ccaatacctt 43560 ataactgtct gttaatgctt gctttttctc tacctttctt ccttgtttca gttgggaagc ttttggctgc aagtaacaga aactcctaat tcaaatggct taagcaataa ggaaatgtat 43680 attoccacat aactagacgt tcaaacaggc caggctccag cacttcagta cgtcaccagg 43800 gatctgggtt cttcccagct ctctgctctg ccatctttag cgctggcttc attctcagac 43860 tctggtagca tgatggctgt agctgtttca tgggcccctt caaacctcat agcaaccaga 43920 ggaagaaaat gagccatttt ttgagtctcc ttcatagact tgaataactc tttttcagag cttctcacag caaacctctc ctcatgtctc ctcatgtctt attgttcaga aatgggtaat 43980 gtggccattt caccagtcac tgccaacaac aacgaggttc ctataattgt ctctgagtaa 44040 ccctttggaa tggagaggt gttggtcagt ctacaaactg aacactgcag ttctgcgctt tttaccagtg aaaaaatgta attattttcc cctcttaagg attaatattc ttcaaatgta 44160 tgcctgttat ggatatagta tctttaaaat tttttatttt aatagcttta ggggtacaca 44220 ctttttgctt acaggggtga attgtgtagt ggtgaagact cggcttttaa tgtacttgtc acctgagtga tgtacattgt acccaatagg taatttttca tccattaccc tccttccgcc ctcttccctt ctgagtctcc aacatccctt ataccactgt gtatgttctt gtgtacctac 44400 agctaagctt ccacttataa gtgagaacat gcagtatttg gttttccatt cctgagttac ttcccttagg ataacagccc ccagttccgt ccaagttgct gcaaaataca ttattcttct 44520 ttatggctga gtaatagtcc atggtacata tataccacat tttctttatc cacttatcag 44580 ttgatggaca cttaggttaa ttccattcaa tttcattcaa tttaagtata tttgtaagga 44640 gctaaagctg aaaattaaat tttagatctt tcaatactct taaattttat atgtaagtgg 44700 tttttatatt ttcacatttg aaataaagta atttttataa ccttgatatt gtatgactat 44760 tottttagta atgtaaagco tacagactoo tacatttgga accactagtg tgttgtttca 44820 44848 ccccttgtta tactatcagg atcctcga <210> 43 2396

DNA

<213> Homo sapiens

<400> 43 60 tttctagttg cttttagcca atgtcggatc aggtttttca agcgacaaag agatactgag atcctgggca gaggacatcc tagctcggtc agatttgggc aggctcaagt gaccagtgtc 120 ttaaggcaga agggagtcgg ggtagggtct ggctgaaccc tcaaccgggg cttttaactc 180 agggtctagt cctggcgcca aatggatggg acctagaaaa ggtgacagag tgcgcaggac 240 300 accaggaage tggteceace eetgegegge teeegggege teeeteeca ggeeteegag gatcttggat tctggccacc tccgcaccct ttggatgggt gtggatgatt tcaaaagtgg 360 420 480 cggggagggg agggcgctag ggagggactc ccgggagggg tgggagggat ggagcgctgt gggagggtac tgagtcctgg cgccagaggc gaagcaggac cggttgcagg gggcttgagc 540 600 cagcgcgccg gctgccccag ctctcccggc agcgggcggt ccagccaggt gggatgctga ggctgctgct gctgtggctc tgggggccgc tcggtgccct ggcccagggc gcccccgcgg 660 720 ggaccgcgcc gaccgacgac gtggtagact tggagtttta caccaagcgg ccgctccgaa 780 gcgtgagtcc ctcgttcctg tccatcacca tcgacgccag cctggccacc gacccgcgct

		+	atactataaa	tagaggetta	totoctacat	840
	cctgggctct					900
	tggcggcaca					
	aagaagttac					960
cggtctctgc	tgcggtgttg	aggaaactcc	aggtggaatg	gcccttccag	gagctgttgc	1020
tgctccgaga	gcagtaccaa	aaggagttca	agaacagcac	ctactcaaga	agctcagtgg	1080
acatgctcta	cagttttgcc	aagtgctcgg	ggttagacct	gatctttggt	ctaaatgcgt	1140
tactacgaac	cccagactta	cggtggaaca	gctccaacgc	ccagcttctc	cttgactact	1200
gctcttccaa	gggttataac	atctcctggg	aactgggcaa	tgagcccaac	agtttctgga	1260
agaaagctca	cattctcatc	gatgggttgc	agttaggaga	agactttgtg	gagttgcata	1320
	aaggtcagct					1380
	gacagttaaa					1440
	atggcatcac					1500
	tgcgctggac					1560
	acctggcaag					1620
	gctgtccaac					1680
	ı gatgggcata					1740
					cttctgttca	1800
					aggagcaaac	1860
					ggagatctaa	1920
					g cctccgttgt	1980
					a ttactttcca	2040
					c ctgccagctt	2100
					t tootatggtt	2160
					g gcatacggta	2220
					g tttaggaggc	2280
					t attacattca	2340
	t ctctctaag					2396
2-2-23-2						

<210> 44

<211> 535 <212> PRT

<213> Homo sapiens

<400> 44

Met Leu Arg Leu Leu Leu Trp Leu Trp Gly Pro Leu Gly Ala Leu
1 5 10 15

Ala Gln Gly Ala Pro Ala Gly Thr Ala Pro Thr Asp Asp Val Val Asp 20 25 30

Leu Glu Phe Tyr Thr Lys Arg Pro Leu Arg Ser Val Ser Pro Ser Phe 35

Leu Ser Ile Thr Ile Asp Ala Ser Leu Ala Thr Asp Pro Arg Phe Leu 50 55 60

Thr Phe Leu Gly Ser Pro Arg Leu Arg Ala Leu Ala Arg Gly Leu Ser 70 75 80

Pro Ala Tyr Leu Arg Phe Gly Gly Thr Lys Thr Asp Phe Leu Ile Phe 85 90 95

Asp Pro Asp Lys Glu Pro Thr Ser Glu Glu Arg Ser Tyr Trp Lys Ser 100

Gln Val Asn His Asp Ile Cys Arg Ser Glu Pro Val Ser Ala Ala Val 115 120 125

Leu Arg Lys Leu Gln Val Glu Trp Pro Phe Gln Glu Leu Leu Leu 130 135 140

Arg Glu Gln Tyr Gln Lys Glu Phe Lys Asn Ser Thr Tyr Ser Arg Ser 145

Ser Val Asp Met Leu Tyr Ser Phe Ala Lys Cys Ser Gly Leu Asp Leu 165 170 175

Ile Phe Gly Leu Asn Ala Leu Leu Arg Thr Pro Asp Leu Arg Trp Asn 180

Ser Ser Asn Ala Gln Leu Leu Leu Asp Tyr Cys Ser Ser Lys Gly Tyr 195 200 205

Asn Ile Ser Trp Glu Leu Gly Asn Glu Pro Asn Ser Phe Trp Lys Lys 210 215

Ala His Ile Leu Ile Asp Gly Leu Gln Leu Gly Glu Asp Phe Val Glu 225 230 235

Leu His Lys Leu Gln Arg Ser Ala Phe Gln Asn Ala Lys Leu Tyr 245 250 255

Gly Pro Asp Ile Gly Gln Pro Arg Gly Lys Thr Val Lys Leu Leu Arg 260 265

Ser Phe Leu Lys Ala Gly Gly Glu Val Ile Asp Ser Leu Thr Trp His 275 280 285

His Tyr Tyr Leu Asn Gly Arg Ile Ala Thr Lys Glu Asp Phe Leu Ser 290 295 300

Ser Asp Ala Leu Asp Thr Phe Ile Leu Ser Val Gln Lys Ile Leu Lys 305 310 310

Val Thr Lys Glu Ile Thr Pro Gly Lys Lys Val Trp Leu Gly Glu Thr 325

Ser Ser Ala Tyr Gly Gly Gly Ala Pro Leu Leu Ser Asn Thr Phe Ala 345 340 Ala Gly Phe Met Trp Leu Asp Lys Leu Gly Leu Ser Ala Gln Met Gly 360 355 Ile Glu Val Val Met Arg Gln Val Phe Phe Gly Ala Gly Asn Tyr His 375 370 Leu Val Asp Glu Asn Phe Glu Pro Leu Pro Asp Tyr Trp Leu Ser Leu 395 390 385 Leu Phe Lys Lys Leu Val Gly Pro Arg Val Leu Leu Ser Arg Val Lys 415 410 405 Gly Pro Asp Arg Ser Lys Leu Arg Val Tyr Leu His Cys Thr Asn Val 430 425 420 Tyr His Pro Arg Tyr Gln Glu Gly Asp Leu Thr Leu Tyr Val Leu Asn 440 435 Leu His Asn Val Thr Lys His Leu Lys Val Pro Pro Pro Leu Phe Arg 455 450 Lys Pro Val Asp Thr Tyr Leu Leu Lys Pro Ser Gly Pro Asp Gly Leu 480 475 470 465 Leu Ser Lys Ser Val Gln Leu Asn Gly Gln Ile Leu Lys Met Val Asp 495 490 485 Glu Gln Thr Leu Pro Ala Leu Thr Glu Lys Pro Leu Pro Ala Gly Ser 510 505 500 Ala Leu Ser Leu Pro Ala Phe Ser Tyr Gly Phe Phe Val Ile Arg Asn 525 520 515 Ala Lys Ile Ala Ala Cys Ile 530 <210> 45 <211> 2396 <212> DNA <213> Homo sapiens <220> <221> CDS (594)..(2198)<222> <223> <400> 45 tttctagttg cttttagcca atgtcggatc aggtttttca agcgacaaag agatactgag 60 atcctgggca gaggacatcc tagctcggtc agatttgggc aggctcaagt gaccagtgtc 120 ttaaggcaga agggagtcgg ggtagggtct ggctgaaccc tcaaccgggg cttttaactc 180 agggtctagt cctggcgcca aatggatggg acctagaaaa ggtgacagag tgcgcaggac 240 accaggaage tggtcccacc cctgcgcggc tcccgggcgc tccctcccca ggcctccgag 300

	360
gatettggat tetggeeace teegeaceet ttggatgggt gtggatgatt teaaaagtgg	420
acgtgaccgc ggcggagggg aaagccagca cggaaatgaa agagagcgag gaggggaggg	
cggggagggg agggcgctag ggagggactc ccgggagggg tgggagggat ggagcgctgt	480
gggagggtac tgagtcctgg cgccagaggc gaagcaggac cggttgcagg gggcttgagc	540
cagcgcgccg gctgccccag ctctcccggc agcgggcggt ccagccaggt ggg atg Met 1	596
ctg agg ctg ctg ctg tgg ctc tgg ggg ccg ctc ggt gcc ctg gcc Leu Arg Leu Leu Leu Trp Leu Trp Gly Pro Leu Gly Ala Leu Ala 5	644
cag ggc gcc ccc gcg ggg acc gcg ccg acc gac ga	692
gag ttt tac acc aag cgg ccg ctc cga agc gtg agt ccc tcg ttc ctg Glu Phe Tyr Thr Lys Arg Pro Leu Arg Ser Val Ser Pro Ser Phe Leu 35 40	740
tcc atc acc atc gac gcc agc ctg gcc acc gac ccg cgc ttc ctc acc Ser Ile Thr Ile Asp Ala Ser Leu Ala Thr Asp Pro Arg Phe Leu Thr 50 55 60 65	788
ttc ctg ggc tct cca agg ctc cgt gct ctg gct aga ggc tta tct cct Phe Leu Gly Ser Pro Arg Leu Arg Ala Leu Ala Arg Gly Leu Ser Pro 70 75	836
gca tac ttg aga ttt ggc ggc aca aag act gac ttc ctt att ttt gat Ala Tyr Leu Arg Phe Gly Gly Thr Lys Thr Asp Phe Leu Ile Phe Asp 85	884
ccg gac aag gaa ccg act tcc gaa gaa aga agt tac tgg aaa tct caa Pro Asp Lys Glu Pro Thr Ser Glu Glu Arg Ser Tyr Trp Lys Ser Gln 100 105	932
gtc aac cat gat att tgc agg tct gag ccg gtc tct gct gcg gtg ttg Val Asn His Asp Ile Cys Arg Ser Glu Pro Val Ser Ala Ala Val Leu 115 120	980
agg aaa ctc cag gtg gaa tgg ccc ttc cag gag ctg ttg ctg ctc cga Arg Lys Leu Gln Val Glu Trp Pro Phe Gln Glu Leu Leu Leu Arg 130 135	1028
gag cag tac caa aag gag ttc aag aac agc acc tac tca aga agc tca Glu Gln Tyr Gln Lys Glu Phe Lys Asn Ser Thr Tyr Ser Arg Ser Ser 150 155 160	1076
gtg gac atg ctc tac agt ttt gcc aag tgc tcg ggg tta gac ctg atc Val Asp Met Leu Tyr Ser Phe Ala Lys Cys Ser Gly Leu Asp Leu Ile 165 170	1124
ttt ggt cta aat gcg tta cta cga acc cca gac tta cgg tgg aac agc Phe Gly Leu Asn Ala Leu Leu Arg Thr Pro Asp Leu Arg Trp Asn Ser 180 185 190	1172
tcc aac gcc cag ctt ctc ctt gac tac tgc tct tcc aag ggt tat aac Ser Asn Ala Gln Leu Leu Asp Tyr Cys Ser Ser Lys Gly Tyr Asn 195 200 205	1220
atc tcc tgg gaa ctg ggc aat gag ccc aac agt ttc tgg aag aaa gct Ile Ser Trp Glu Leu Gly Asn Glu Pro Asn Ser Phe Trp Lys Lys Ala 210 225	1268
cac att ctc atc gat ggg ttg cag tta gga gaa gac ttt gtg gag ttg His Ile Leu Ile Asp Gly Leu Gln Leu Gly Glu Asp Phe Val Glu Leu 230 235 240	1316

cat His	aaa Lys	ctt Leu	cta Leu 245	caa Gln	agg Arg	tca Ser	Ala	ttc Phe 250	caa Gln	aat Asn	gca Ala	aaa Lys	ctc Leu 255	tat Tyr	ggt Gly	1364
cct Pro	gac Asp	atc Ile 260	ggt Gly	cag Gln	cct Pro	cga Arg	ggg Gly 265	aag Lys	aca Thr	gtt Val	aaa Lys	ctg Leu 270	ctg Leu	agg Arg	agt Ser	1412
ttc Phe	ctg Leu 275	aag Lys	gct Ala	ggc Gly	gga Gly	gaa Glu 280	gtg Val	atc Ile	gac Asp	tct Ser	ctt Leu 285	aca Thr	tgg Trp	cat His	cac His	1460
tat Tyr 290	tac Tyr	ttg Leu	aat Asn	gga Gly	cgc Arg 295	atc Ile	gct Ala	acc Thr	aaa Lys	gaa Glu 300	gat Asp	ttt Phe	ctg Leu	agc Ser	tct Ser 305	1508
gat Asp	gcg Ala	ctg Leu	gac Asp	act Thr 310	ttt Phe	att Ile	ctc Leu	tct Ser	gtg Val 315	caa Gln	aaa Lys	att Ile	ctg Leu	aag Lys 320	gtc Val	1556
act Thr	aaa Lys	gag Glu	atc Ile 325	aca Thr	cct Pro	ggc Gly	aag Lys	aag Lys 330	gtc Val	tgg Trp	ttg Leu	gga Gly	gag Glu 335	acg Thr	agc Ser	1604
tca Ser	gct Ala	tac Tyr 340	ggt Gly	ggc Gly	ggt Gly	gca Ala	ccc Pro 345	ttg Leu	ctg Leu	tcc Ser	aac Asn	acc Thr 350	ttt Phe	gca Ala	gct Ala	1652
ggc Gly	ttt Phe 355	atg Met	tgg Trp	ctg Leu	gat Asp	aaa Lys 360	ttg Leu	ggc Gly	ctg Leu	tca Ser	gcc Ala 365	Gln	atg Met	ggc	ata Ile	1700
gaa Glu 370	gtc Val	gtg Val	atg Met	agg Arg	cag Gln 375	gtg Val	ttc Phe	ttc Phe	gga Gly	gca Ala 380	ggc Gly	aac Asn	tac Tyr	cac	tta Leu 385	1748
gtg Val	gat Asp	gaa Glu	aac Asn	ttt Phe 390	gag Glu	cct Pro	tta Leu	cct Pro	gat Asp 395	Tyr	tgg Trp	ctc Leu	tct Ser	ctt Leu 400	ctg Leu	1796
ttc Phe	aag Lys	aaa Lys	ctg Leu 405	Val	ggt Gly	ccc Pro	agg Arg	gtg Val 410	Leu	ctg Leu	tca Ser	aga Arg	gtg Val 415	Lys	ggc Gly	1844
cca Pro	.gac Asp	agg Arg 420	Ser	aaa Lys	ctc Leu	cga Arg	gtg Val 425	Tyr	ctc Leu	cac His	tgc Cys	act Thr 430	Asn	gto Val	tat Tyr	1892
cac His	cca Pro 435	Arg	tat Tyr	cag Gln	gaa Glu	gga Gly 440	Asp	cta Leu	act Thr	ctg Leu	tat Tyr 445	: Val	ctg Lev	aac Asn	ctc Leu	1940
cat His 450	Asn	gto Val	acc Thr	aag Lys	cac His 455	Leu	aag Lys	gta Val	ccg Pro	p cct Pro 460	Pro	y tto Lei	tto Phe	agg Arg	y aaa y Lys 465	1988
cca Pro	gtg Val	gat Asp	acg Thr	tac Tyr 470	Leu	ctg Lev	ı aag	cct Pro	tcg Ser 475	: Gl;	g cco	g gat o Asp	gga Gly	tta Lei 480	ctt Leu	2036
Ser	Lys	s Sei	val 485	Glr	ı Lev	ı Asr	ı Gly	7 Glr 490	ı Il∈	e Lei	а Гу	s Met	495	L Asp	gag Glu	2084
Glr	n Thi	500	ı Pro) Ala	a Lev	ı Thi	505	ı Lys	s Pro	o Lei	ı Pr	51	a Gl <u>y</u> O	y Se:	t gca r Ala	2132
cta Lev	a ago 1 Sei 51!	r Lei	g cct u Pro	c gcd	c ttt a Phe	t tco ser 520	r Ty	t ggi r Gl	t tti	t tti	t gte e Va 52	l Il	a aga	a aa g Asi	t gcc n Ala	2180
aaa	a ato	c gc	t gc	t tg	t ata	a tga	aaaa	taaa	agg	cata	cgg	tacc	cctg	ag		2228

Lys Ile Ala Ala 530	Cys Ile 535				
acaaaagccg aggg	gggtgt tattcataa	aa acaaaaccct	agtttaggag	gccacctcct	2288
tgccgagttc caga	gcttcg ggagggtg	gg gtacacttca	gtattacatt	cagtgtggtg	2348
ttctctctaa gaag	aatact gcaggtggt	g acagttaata	gcactgtg		2396
<210> 46 <211> 385 <212> DNA <213> Rattus n	orvegicus				
<400> 46 cggccgctgc tgct	gctgtg gctctgggg	gg cggctccgtg	ccctgaccca	aggcactccg	60
gcggggaccg cgcc	gaccaa agacgtggt	g gacttggagt	tttacaccaa	gaggctattc	120
caaagcgtga gtcc	ctcgtt cctgtccat	c accatcgacg	ccagtctggc	caccgaccct	180
cggttcctca cctt	cctgag ctctccacq	gg cttcgagccc	tgtctagagg	cttatctcct	240
gcgtacttga gatt	tggcgg caccaagad	ct gacttcctta	tttttgatcc	caacaacgaa	300
cccacctctg aaga	aagaag ttactggca	aa tctcaagaca	acaatgatat	ttgcgggtct	360
gaccgggtct ccgc	tgacgt gttga				385
<210> 47 <211> 541 <212> DNA <213> Rattus n <220> <221> misc_fea <222> (507)(
<211> 541 <212> DNA <213> Rattus n <220> <221> misc_fea	ture 507)				
<211> 541 <212> DNA <213> Rattus n <220> <221> misc_fea <222> (507)(<223> Any nucl	ture 507) eotide	sc tottaatcat	attagaggca	tttqtattca	60
<211> 541 <212> DNA <213> Rattus n <220> <221> misc_fea <222> (507)(<223> Any nucl <400> 47 aaatcaggac atat	ture 507) eotide ccttca cttatttgo				60 120
<211> 541 <212> DNA <213> Rattus n <220> <221> misc_fea <222> (507)(<223> Any nucl <400> 47 aaatcaggac atate tttttaataa ccct	ture 507) eotide ccttca cttatttgo caaaat agtgcatgo	ca aagtgctaag	cgtcatttgc	cacatggtgc	120
<211> 541 <212> DNA <213> Rattus n <220> <221> misc_fea <222> (507)(<223> Any nucl <400> 47 aaatcaggac atate tttttaataa ccct cattaactgt cacc	ture 507) eotide ccttca cttatttgo caaaat agtgcatgo acctgc agtggtcta	ca aagtgctaag ac ttagagaaca	cgtcatttgc ccgcactgga	cacatggtgc tgttaacact	
<211> 541 <212> DNA <213> Rattus n <220> <221> misc_fea <222> (507)(<223> Any nucl <400> 47 aaatcaggac atat tttttaataa ccct cattaactgt cacc gaagcgcgtg cccc	ture 507) eotide ccttca cttatttgc caaaat agtgcatgc acctgc agtggtcta gccctc ccgaggctc	ca aagtgctaag ac ttagagaaca ct ggatccagcg	cgtcatttgc ccgcactgga ttgaagcttg	cacatggtgc tgttaacact ccccgccctc	120 180
<211> 541 <212> DNA <213> Rattus n <220> <221> misc_fea <222> (507)(<223> Any nucl <400> 47 aaatcaggac atat ttttaataa ccct cattaactgt cacc gaagcgcgtg cccc ccgaggctct ggat	ture 507) eotide ccttca cttatttgo caaaat agtgcatgo acctgc agtggtcta	ca aagtgctaag ac ttagagaaca et ggatccagcg eg ccccgccctc	cgtcatttgc ccgcactgga ttgaagcttg ccgaggctct	cacatggtgc tgttaacact ccccgccctc ggagcttgct	120 180 240
<211> 541 <212> DNA <213> Rattus n <220> <221> misc_fea <222> (507)(<223> Any nucl <400> 47 aaatcaggac atat ttttaataa ccct cattaactgt cacc gaagcgcgtg cccc ccgaggctct ggat aaggagtccg ctcc	ture 507) eotide ccttca cttatttgc caaaat agtgcatgc acctgc agtggtcta gccctc ccgaggctc ccagca ctggagcat	ca aagtgctaag ac ttagagaaca et ggatccageg eg ccccgccctc et gcttattct	cgtcatttgc ccgcactgga ttgaagcttg ccgaggctct tatgaatgac	cacatggtgc tgttaacact ccccgccctc ggagcttgct acccctgacc	120 180 240 300
<211> 541 <212> DNA <213> Rattus n <220> <221> misc_fea <222> (507)(<223> Any nucl <400> 47 aaatcaggac atat ttttaataa ccct cattaactgt cacc gaagcgcgtg cccc ccgaggctct ggat aaggagtccg ctcc gctttcgtct cagg	ture 507) eotide ccttca cttatttgc caaaat agtgcatgc acctgc agtggtcta gccctc ccgaggctc ccagca ctggagcat	ca aagtgctaag ac ttagagaaca et ggatccageg eg ccccgccctc et gctttattct	cgtcatttgc ccgcactgga ttgaagcttg ccgaggctct tatgaatgac atacaagctg	cacatggtgc tgttaacact ccccgccctc ggagcttgct acccctgacc cgattttggc	120 180 240 300 360

С