Элементы функционального анализа

Определение 1. Линейное пространство V называется **евклидовым**, если каждой паре векторов \vec{x} и \vec{y} из пространства V поставлено в соответствие действительное число, обозначаемое (\vec{x}, \vec{y}) и удовлетворяющее следующим аксиомам:

- 1) $(\vec{x}, \vec{x}) \ge 0, \forall \vec{x} \in V$, и $(\vec{x}, \vec{x}) = 0 \Leftrightarrow \vec{x} = \vec{0}$;
- 2) $(\vec{x}, \vec{y}) = (\vec{y}, \vec{x}), \forall \vec{x}, \vec{y} \in V$;
- 3) $(\vec{x}_1 \oplus \vec{x}_2, \vec{y}) = (\vec{x}_1, \vec{y}) + (\vec{x}_2, \vec{y}), \forall \vec{x}_1, \vec{x}_2, \vec{y} \in V;$
- 4) $(\alpha \otimes \vec{x}, \vec{y}) = \alpha \cdot (\vec{x}, \vec{y}), \forall \alpha \in R, \forall \vec{x}, \vec{y} \in V$.

Введенная операция называется **скалярным умножением векторов**, число (\vec{x}, \vec{y}) – **скалярным произведением векторов** \vec{x} и \vec{y} , а число (\vec{x}, \vec{x}) – **скалярным квадратом вектора** \vec{x} и обозначается \vec{x}^2 .

Замечание. Если хотя бы один из векторов \vec{x} , \vec{y} является нулевым, то их скалярное произведение равно нулю, то есть $(\vec{0}, \vec{y}) = 0, \forall \vec{y} \in V$.

Действительно, применяя свойство 4 линейного пространства, а затем аксиому 4 евклидова пространства, имеем

$$(\vec{0}, \vec{y}) = (0 \otimes \vec{x}, \vec{y}) = 0 \cdot (\vec{x}, \vec{y}) = 0, \forall \vec{x}, \vec{y} \in V.$$

Определение 2. Если n-мерное линейное пространство является евклидовым, то оно называется евклидовым n-мерным пространством, а базис линейного пространства — базисом евклидова пространства.

Примеры евклидовых пространств.

- **1.** Пространство E^3 свободных векторов, в котором скалярное произведение векторов $\vec{x} = (x_1, x_2, x_3)$ и $\vec{y} = (y_1, y_2, y_3)$ определяется равенством $(\vec{x}, \vec{y}) = x_1 y_1 + x_2 y_2 + x_3 y_3$.
- **2.** Пространство E^n свободных векторов, в котором скалярное произведение векторов $\vec{x} = (x_1, x_2, ..., x_n)$ и $\vec{y} = (y_1, y_2, ..., y_n)$ определяется по формуле $(\vec{x}, \vec{y}) = \sum_{i=1}^n x_i y_i$.
- **3.** Пространство действительных матриц размера $n \times 1$, в котором скалярное произведение матриц $X = (x_1, x_2, ..., x_n)^T$ и $Y = (y_1, y_2, ..., y_n)^T$ определяется равенством $(X, Y) = \sum_{i=1}^n x_i y_i$.
- **4.** Пространство C[a;b] непрерывных на отрезке [a;b] функций, в котором скалярное произведение функций f(x) и $\varphi(x)$ определяется по формуле $(f(x),\varphi(x))=\int\limits_a^b f(x)\varphi(x)\,dx$ (иногда его

вводят по формуле $(f, \varphi) = \int\limits_a^b \rho(x) f(x) \varphi(x) dx$, где $\rho(x) > 0$, $\forall x \in [a,b]$, – весовая функция). Линейное пространство $L = \{f(x), \varphi(x), \ldots\}$ всех непрерывных на отрезке [a;b] функций образует бесконечномерное евклидово пространство и обозначается E_{∞} .

Пример 1.

Выясните, является ли пространство R^2 евклидовым пространством, если каждой паре векторов $\vec{x} = (x_1; x_2)$ и $\vec{y} = (y_1; y_2)$ поставлено в соответствие число (\vec{x}, \vec{y}) :

a)
$$(\vec{x}, \vec{y}) = 2x_1y_1 + 7x_1y_2 + 3x_2y_1 + x_2y_2$$
; 6) $(\vec{x}, \vec{y}) = 2x_1y_1 + x_1y_2 + x_2y_1 + 3x_2y_2$.

Решение.

a) Пусть
$$\vec{x} = (x_1; x_2), \ \vec{y} = (y_1; y_2), \ (\vec{x}, \vec{y}) = 2x_1y_1 + 7x_1y_2 + 3x_2y_1 + x_2y_2.$$

Вычислим (\vec{x}, \vec{x}) и проверим, верно ли $(\vec{x}, \vec{x}) \ge 0$, $\forall \vec{x} \in R^2$. Получим $(\vec{x}, \vec{x}) = 2x_1^2 + 10x_1x_2 + x_2^2$.

Так как существует вектор, например, $\vec{x}_0 = (1;-1) \in R^2$, такой, что $(\vec{x}_0,\vec{x}_0) = 2 \cdot 1^2 + 10 \cdot 1 \cdot (-1) + (-1)^2 = -7 < 0$, то первая аксиома выполняется не для всех $\vec{x} \in R^2$.

Значит, число (\vec{x}, \vec{y}) не является скалярным произведением векторов в пространстве R^2 , поэтому R^2 с указанной операцией евклидовым пространством не является.

- б) Покажем, что число (\vec{x}, \vec{y}) удовлетворяет четырем аксиомам.
- 1) По правилу $(\vec{x}, \vec{y}) = 2x_1y_1 + x_1y_2 + x_2y_1 + 3x_2y_2$ найдем (\vec{x}, \vec{x}) :

$$(\vec{x},\vec{x}) = 2x_1^2 + 2x_1x_2 + 3x_2^2 = x_1^2 + x_1^2 + 2x_1x_2 + x_2^2 + 2x_2^2 = x_1^2 + (x_1 + x_2)^2 + 2x_2^2 \ge 0, \forall \vec{x} = (x_1; x_2) \in \mathbb{R}^2$$

При этом
$$(\vec{x}, \vec{x}) = 0 \Leftrightarrow {x_1}^2 + (x_1 + x_2)^2 + 2{x_2}^2 = 0 \Leftrightarrow \begin{cases} x_1 = 0, \\ x_1 + x_2 = 0, \Leftrightarrow x_1 = x_2 = 0 \Leftrightarrow \vec{x} = \vec{0}. \\ x_2 = 0, \end{cases}$$

2) Найдем и сравним (\vec{x}, \vec{y}) и (\vec{y}, \vec{x}) , получим

$$(\vec{x}, \vec{y}) = 2x_1y_1 + x_1y_2 + x_2y_1 + 3x_2y_2, \ (\vec{y}, \vec{x}) = 2y_1x_1 + y_1x_2 + y_2x_1 + 3y_2x_2.$$

Так как $(\vec{x}, \vec{y}) = (\vec{y}, \vec{x}), \forall \vec{x}, \vec{y} \in \mathbb{R}^2$, то вторая аксиома выполняется.

3) Пусть $\vec{z} = (z_1; z_2)$ – произвольный вектор пространства R^2 . Найдем $(\vec{x} + \vec{y}, \vec{z}), (\vec{x}, \vec{z}), (\vec{y}, \vec{z})$. Учитывая, что $\vec{x} + \vec{y} = (x_1 + y_1, x_2 + y_2)$, получим

$$(\vec{x} + \vec{y}, \vec{z}) = 2(x_1 + y_1) \cdot z_1 + (x_1 + y_1) \cdot z_2 + (x_2 + y_2) \cdot z_1 + 3(x_2 + y_2) \cdot z_2,$$

$$(\vec{x}, \vec{z}) = 2x_1z_1 + x_1z_2 + x_2z_1 + 3x_2z_2,$$

$$(\vec{y}, \vec{z}) = 2y_1z_1 + y_1z_2 + y_2z_1 + 3y_2z_2.$$

Тогда $(\vec{x} + \vec{y}, \vec{z}) = (\vec{x}, \vec{z}) + (\vec{y}, \vec{z}), \forall \vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^2$, то есть аксиома 3 выполняется.

4) Найдем $(\lambda \vec{x}, \vec{y})$ и $\lambda(\vec{x}, \vec{y})$. Учитывая, что $\lambda \vec{x} = (\lambda x_1; \lambda x_2)$, получим

$$(\lambda \vec{x}, \vec{y}) = 2(\lambda x_1)y_1 + (\lambda x_1)y_2 + (\lambda x_2)y_1 + 3(\lambda x_2)y_2 = \lambda \cdot (2x_1y_1 + x_1y_2 + x_2y_1 + 3x_2y_2) = \lambda \cdot (\vec{x}, \vec{y}), \forall \vec{x}, \vec{y} \in R^2.$$
 Значит, аксиома 4 выполняется.

Следовательно, пространство R^2 становится евклидовым пространством после определения в нем операции скалярного умножения векторов по правилу $(\vec{x}, \vec{y}) = 2x_1y_1 + 7x_1y_2 + 3x_2y_1 + x_2y_2$.

Определение 3. Непустое множество X элементов произвольной природы x, y, z, \ldots называется **метрическим пространством**, если любым двум элементам x и y из множества X ставится в соответствие действительное число $\rho(x,y)$, называемое расстоянием между x и y, удовлетворяющее следующим аксиомам:

- **1.** $\rho(x, y) \ge 0, \forall x, y \in X, \text{ if } \rho(x, y) = 0 \Leftrightarrow x = y$.
- **2.** $\rho(x, y) = \rho(y, x), \forall x, y \in X$.
- **3.** $\rho(x, y) \le \rho(x, z) + \rho(z, y), \forall x, y, z \in X$.

Примеры метрических пространств.

- **1.** Пространство действительных чисел R, в котором расстояние между числами x и y определяется по формуле $\rho(x,y) = |x-y|$.
- **2.** Пространство R^n свободных векторов, в котором расстояние между векторами $\vec{x} = (x_1, x_2, ..., x_n)$ и $\vec{y} = (y_1, y_2, ..., y_n)$ можно определить по одной из формул:

$$\rho_1(\vec{x}, \vec{y}) = \max_{1 \le i \le n} |x_i - y_i|$$
 (метрика Чебышева);

$$\rho_2(\vec{x}, \vec{y}) = \sum_{i=1}^n |x_i - y_i|; \quad \rho_3(\vec{x}, \vec{y}) = \sqrt{(\vec{x} - \vec{y}, \vec{x} - \vec{y})} = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}.$$

- **3.** Пространство матриц размерности $m \times n$, в котором расстояние между матрицами $A = (a_{ij})$ и $B = (b_{ij})$ можно определить по формуле $\rho(A,B) = \sqrt{\sum\limits_{i=1}^m \sum\limits_{j=1}^n \left(a_{ij} b_{ij}\right)^2}$.
- **4.** Пространство C[a;b] непрерывных на отрезке [a;b] функций, в котором расстояние между функциями f(x) и $\varphi(x)$ определяется по одной из формул $\rho(f(x),\varphi(x)) = \max_{[a;b]} |f(x) \varphi(x)|$;

$$\rho(f(x), \varphi(x)) = \int_{a}^{b} |f(x) - \varphi(x)| dx.$$

- **5.** Пространство $C^n[a;b]$ функций, имеющих на отрезке [a;b] непрерывные производные до n го порядка включительно, в котором расстояние между функциями f(x) и $\varphi(x)$ определяется как $\rho(f(x),\varphi(x)) = \max_{[a;b]}\{|f(x)-\varphi(x|,|f'(x)-\varphi'(x|,...,|f^{(n)}(x)-\varphi^{(n)}(x|)\}.$
- **6.** Пространство l_2 , в котором расстояние между последовательностями (x_n) и (y_n) определяется по одной из формул $\rho_1(x_n,y_n) = \max_{1 \le n < \infty} |x_n-y_n|$; $\rho_2(x_n,y_n) = \sum_{n=1}^{\infty} |x_n-y_n|$; $\rho_3(x_n,y_n) = \sqrt{\sum_{n=1}^{\infty} (x_n-y_n)^2}$.
- **7. Метрика Хэмминга.** Информация, передаваемая по каналам связи с одного компьютера на другой, обычно записывается в виде вектора $\vec{x}(x_1, x_2, ..., x_n)$, где x_i равно либо 0, либо 1. Рассмотрим линейное пространство L_n векторов \vec{x} над полем $F_2(0;1)$ двух чисел 0 и 1. Операции \oplus и \otimes в этом поле таковы:

$$0 \oplus 0 = 0,$$
 $0 \otimes 0 = 0,$
 $0 \oplus 1 = 1,$ $1 \otimes 0 = 0,$
 $1 \oplus 0 = 1,$ $0 \otimes 1 = 0,$
 $1 \oplus 1 = 0,$ $1 \otimes 1 = 1.$

В роли числа, противоположного к 1, выступает снова 1.

Это алгебра выключателя света: если дважды повторить операцию «включить», то сначала свет зажжется, а потом выключится. Например, $\vec{x}(0,1,0,0,0,0,0,1)$ — вектор из L_8 , а $\vec{x}(1,0,1,1)$ — вектор из L_4 . Расстояние между \vec{x} и \vec{y} , обозначаемое $\rho(\vec{x},\vec{y}) = \text{dist}(\vec{x},\vec{y})$ и равное числу разниц в координатах векторов \vec{x} и \vec{y} , называется **метрикой Хэмминга.** Можно убедиться, что все аксиомы метрического пространства выполняются.

Пусть, например, \vec{x} (1,0,1,1), \vec{y} (0,1,1,0). У этих векторов одинаковы третьи координаты, а остальные различны. Поэтому $\operatorname{dist}(\vec{x},\vec{y})=3$. Если же \vec{x} (1,0,0,0,0,0,1,0), \vec{y} (0,1,1,0,0,1,0,1), то $\operatorname{dist}(\vec{x},\vec{y})=5$.

Определение 4. Множество $\{x: x \in X, \rho(x,x_0) < r\}$ называется открытым шаром $B(x_0,r)$ с центром в точке x_0 и с радиусом r или r – окрестностью точки x_0 .

Определение 5. Множество $A \subset X$ называется **открытым**, если для любого $x \in A$ существует радиус r > 0 такой, что $B(x,r) \subset A$.

Определение 6. Пусть $A \subset X$. Точка x называется **предельной точкой** множества A, если для любого r > 0 шар B(x,r) содержит хотя бы одну точку множества A, то есть существует последовательность $\{x_n\}$ элементов множества A, сходящаяся к x.

Определение 7. Пусть $A \subset X$ называется **замкнутым**, если оно содержит все свои предельные точки.

Теорема. Множество A открыто тогда и только тогда, когда его дополнение $X \setminus A$ замкнуто.

Каждая предельная точка множества A, которая не является его внутренней точкой, называется **граничной точкой** множества A. Она может не принадлежать множеству A.

Расстояние между множествами A и B определяется по формуле $\rho(A,B) = \inf_{\substack{x \in A \\ y \in B}} \rho(x,y)$.

Определение 8. Последовательность $\{x_n\}$ элементов метрического пространства (X, ρ) называется **фундаментальной**, если для любого $\varepsilon > 0$ существует номер $N = N(\varepsilon)$ такой, что при любых n, m > N выполнено неравенство $\rho(x_n, x_m) < \varepsilon$.

Теорема. Любая сходящаяся последовательность $\{x_n\}$ является фундаментальной последовательстью.

Определение 9. Метрическое пространство (X, ρ) называется **полным**, если в нем любая фундаментальная последовательность сходится к некоторому $x \in X$.

Примеры полных метрических пространств.

- **1.** Пространство действительных чисел R, в котором расстояние между числами x и y определяется по формуле $\rho(x,y) = |x-y|$.
- **2.** Пространство R^n свободных векторов, в котором расстояние между векторами $\vec{x} = (x_1, x_2, ..., x_n)$ и $\vec{y} = (y_1, y_2, ..., y_n)$ определяется по формуле

$$\rho_3(\vec{x}, \vec{y}) = \sqrt{(\vec{x} - \vec{y}, \vec{x} - \vec{y})} = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}.$$

- **3.** Пространство C[a;b] непрерывных на отрезке [a;b] функций, в котором расстояние между функциями f(x) и $\varphi(x)$ определяется по формуле $\rho(f(x),\varphi(x)) = \int\limits_{a}^{b} |f(x)-\varphi(x)| dx$.
 - **4.** Пространство $L_2[a;b]$ функций, интегрируемых с квадратом на отрезке [a;b].
 - **5.** Пространство l_2 последовательностей, для которых $\sum_{n=1}^{\infty} {x_n}^2 < +\infty$.

Пример пространства, которое не является метрическим.

Рассмотрим пример. Пусть $X=(0;+\infty)$, а метрика $\rho(x,y)=|x-y|$ — обычное расстояние между точками x и y на прямой. Рассмотрим последовательность $\{x_n\}, x_n=\frac{1}{n}, n\in N$. Указанная последовательность является фундаментальной, поскольку $\rho(x_n,y_m)=|x_n-y_m|=|\frac{1}{n}-\frac{1}{m}|\to 0$ при $n,m\to\infty$, но ее предел, равный нулю, не принадлежит множеству X. Следовательно, множество $X=(0;+\infty)$ не является полным с указанной метрикой.

Определение 10. Линейное пространство V называется нормированным, если каждому вектору $\vec{x} \in V$ поставлено в соответствие действительное число $\|\vec{x}\|$, называемое нормой вектора \vec{x} , удовлетворяющее аксиомам:

- **1.** $\|\vec{x}\| \ge 0, \forall \vec{x} \in V, \ \text{и} \ \|\vec{x}\| = 0 \iff \vec{x} = \vec{0};$
- **2.** $\|\alpha \otimes \vec{x}\| = |\alpha| \cdot \|\vec{x}\|, \forall \alpha \in R(C), \forall \vec{x} \in V;$
- **3.** $\|\vec{x} \oplus \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|, \forall \vec{x}, \vec{y} \in V.$

Примеры нормированных пространств.

- **1.** Пространство действительных R (комплексных C) чисел с нормой ||x|| = |x| (||z|| = |z|).
- **2.** Пространство R^n свободных векторов с нормой вектора $\vec{x} = (x_1, x_2, ..., x_n)$:

$$\|\vec{x}\|_1 = \max_{1 \le i \le n} |x_i|; \|\vec{x}\|_2 = \sum_{i=1}^n |x_i|; \|\vec{x}\|_3 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

3. Пространство C[a;b] непрерывных на отрезке [a;b] функций с нормой функции f(x) $||f(x)|| = \max_{[a;b]} |f(x)|$.

4. Пространство l_2 последовательностей с нормой вектора $\vec{x} = \{x_n\} \colon \|\vec{x}\| = \sqrt{\sum_{n=1}^{\infty} x_n^2}$.

В нормированном пространстве расстояние между вектора \vec{x} и \vec{y} в определяется по формуле $\rho(\vec{x},\vec{y}) = \|\vec{x} - \vec{y}\|$.

Неравенство Коши-Буняковского.

Для любых двух векторов \vec{x} и \vec{y} евклидова пространства справедливо неравенство

$$\left| (\vec{x}, \vec{y}) \right| \le \sqrt{(\vec{x}, \vec{x})} \cdot \sqrt{(\vec{y}, \vec{y})} \,. \tag{1}$$

Доказательство.

Если хотя бы один векторов \vec{x} , \vec{y} является нулевым, то неравенство (1) выполняется.

Пусть $\vec{x} \neq \vec{0}$, $\vec{y} \neq \vec{0}$. Рассмотрим вектор $\vec{z} = \vec{x} \oplus (\lambda \otimes \vec{y})$, где λ – любое действительное число. Найдем (\vec{z}, \vec{z}) . Учитывая, что $(\vec{z}, \vec{z}) \geq 0$, получим

$$(\vec{z}, \vec{z}) = (\vec{x} \oplus (\lambda \otimes \vec{y}), \vec{x} \oplus (\lambda \otimes \vec{y})) = (\vec{x}, \vec{x}) + 2\lambda(\vec{x}, \vec{y}) + \lambda^2(\vec{y}, \vec{y}) \ge 0.$$

Возьмем $\lambda = -\frac{(\vec{x}, \vec{y})}{(\vec{y}, \vec{y})}$. Тогда последнее неравенство примет вид

$$(\vec{x}, \vec{x}) - 2 \frac{(\vec{x}, \vec{y})}{(\vec{y}, \vec{y})} (\vec{x}, \vec{y}) + \frac{(\vec{x}, \vec{y})^2}{(\vec{y}, \vec{y})^2} (\vec{y}, \vec{y}) \ge 0 \Leftrightarrow (\vec{x}, \vec{x}) - \frac{(\vec{x}, \vec{y})^2}{(\vec{y}, \vec{y})} \ge 0 \Leftrightarrow (\vec{x}, \vec{y})^2 \le (\vec{x}, \vec{x}) \cdot (\vec{y}, \vec{y}) \Leftrightarrow \left| (\vec{x}, \vec{y}) \right| \le \sqrt{(\vec{x}, \vec{x})} \cdot \sqrt{(\vec{y}, \vec{y})}$$

Неравенство доказано.

Неравенство (1) называется **неравенством Коши–Буняковского** (О. Коши (1798–1857) – французский математик; В.Я. Буняковский (1804–1889) – русский математик).

Замечание. В пространстве \mathbb{R}^n неравенство Коши–Буняковского примет вид:

$$\left| \sum_{i=1}^{n} x_i y_i \right| \le \sqrt{\sum_{i=1}^{n} x_i^2} \cdot \sqrt{\sum_{i=1}^{n} y_i^2} \cdot$$

Из неравенства Коши–Буняковского для ненулевых векторов справедливо неравенство $\frac{\left|(\vec{x},\vec{y})\right|}{\left\|\vec{x}\right\|\cdot\left\|\vec{y}\right\|} \leq 1 \text{. Тогда } -1 \leq \frac{(\vec{x},\vec{y})}{\left\|\vec{x}\right\|\cdot\left\|\vec{y}\right\|} \leq 1 \text{.}$

Отсюда существует единственный угол $\varphi \in [0; \pi]$ такой, что

$$\cos \varphi = \frac{(\vec{x}, \vec{y})}{\|\vec{x}\| \cdot \|\vec{y}\|}.$$

2)

Определение 11. Углом между ненулевыми векторами евклидова пространства V называется угол φ , косинус которого определяется по формуле (2).

Определение 12. Два вектора называются **ортогональными**, если их скалярное произведение равно нулю.

Нулевой вектор ортогонален любому другому вектору.

Определение 13. Система векторов $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n, n \ge 2$, в евклидовом пространстве называется **ортогональной**, если эти векторы попарно ортогональны, то есть $(\vec{x}_i, \vec{x}_j) = 0, \forall i \ne j; i, j, = 1, 2, ... n$.

Определение 14. Вектор \vec{x} называется **нормированным или единичным**, если $\|\vec{x}\| = 1$.

Если
$$\vec{x} \neq \vec{0}$$
, то существует два нормированных вектора $\vec{x}_1^0 = \frac{\vec{x}}{\|\vec{x}\|}$ и $\vec{x}_2^0 = -\frac{\vec{x}}{\|\vec{x}\|}$.

Нахождение для данного вектора нормированного вектора по указанным формулам называется **нормированием** данного **вектора**, а множитель $\mu = \pm \frac{1}{\|\vec{x}\|}$ — **нормирующим множителем**.

Определение 15. Система векторов $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n, n \ge 2$, в евклидовом пространстве называется **ортонормированной**, если она ортогональна и каждый вектор является нормированным, то есть

$$(\vec{x}_i, \vec{x}_j) = \begin{cases} 0, \forall i \neq j, \\ 1, \forall i = j, \end{cases} i, j, = 1, 2, \dots n.$$

Определение 16. Базис евклидова пространства называется ортогональным, если базисные векторы составляют ортогональную систему векторов.

Определение 17. Базис евклидова пространства называется ортонормированным, если базисные векторы составляют ортонормированную систему векторов.

Теорема. Ортогональная система ненулевых векторов линейно независима.

Доказательство.

Пусть $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n$ – ортогональная система ненулевых векторов.

Предположим, что система $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n$ линейно зависима. Тогда по определению существуют числа $\alpha_1, \alpha_2, ..., \alpha_n$, среди которых хотя бы одно не равно нулю, такие, что

$$(\alpha_1 \otimes \vec{x}_1) \oplus (\alpha_2 \otimes \vec{x}_2) \oplus \ldots \oplus (\alpha_n \otimes \vec{x}_n) = \vec{0}.$$

Пусть $\alpha_i \neq 0$. Тогда

$$(\vec{x}_i, (\alpha_1 \otimes \vec{x}_1) \oplus (\alpha_2 \otimes \vec{x}_2) \oplus \ldots \oplus (\alpha_n \otimes \vec{x}_n) = (\vec{x}_i, \vec{0}) \Leftrightarrow \alpha_1(\vec{x}_i, \vec{x}_1) + \ldots + \alpha_i(\vec{x}_i, \vec{x}_i) + \cdots + \alpha_n(\vec{x}_i, \vec{x}_n) = 0.$$

Так как данная система векторов ортогональна, то по определению $(\vec{x}_i, \vec{x}_j) = 0, \forall i \neq j$. Отсюда и в силу $\alpha_i \neq 0$ имеем

$$\alpha_1(\vec{x}_i, \vec{x}_1) + \ldots + \alpha_i(\vec{x}_i, \vec{x}_i) + \cdots + \alpha_n(\vec{x}_i, \vec{x}_n) = 0 \Leftrightarrow \alpha_i(\vec{x}_i, \vec{x}_i) = 0 \Leftrightarrow \|\vec{x}_i\| = 0 \Leftrightarrow \vec{x}_i = \vec{0}.$$

Получили противоречие тому, что данная система не содержит нулевые векторы. Значит, наше предположение не верно и система $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n$ линейно независима.

Теорема доказана.

Теорема (процесс ортогонализации Грама-Шмидта).

В любом n –мерном евклидовом пространстве, $n \ge 2$, существует ортонормированный базис. Доказательство.

Пусть $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n$ — некоторый базис данного n —мерного евклидова пространства.

Построим ортогональную систему векторов $\vec{y}_1, \vec{y}_2, ..., \vec{y}_n$ следующим образом.

Пусть $\vec{y}_1 = \vec{x}_1$. В качестве вектора \vec{y}_2 возьмем вектор

$$\vec{y}_2 = \vec{x}_2 + \lambda_1^2 \vec{y}_1,$$

где $\lambda_1^2 \in R$.

При любом λ_1^2 вектор \vec{y}_2 является ненулевым, так как \vec{x}_1, \vec{x}_2 линейно независимы. Подберем число λ_1^2 так, чтобы $(\vec{y}_1, \vec{y}_2) = 0$. Тогда

$$(\vec{y}_1, \vec{y}_2) = 0 \Leftrightarrow (\vec{y}_1, \vec{x}_2 + \lambda_1^2 \vec{y}_1) = 0 \Leftrightarrow (\vec{y}_1, \vec{x}_2) + \lambda_1^2 (\vec{y}_1, \vec{y}_1) = 0 \Leftrightarrow \lambda_1^2 = -\frac{(\vec{y}_1, \vec{x}_2)}{(\vec{y}_1, \vec{y}_1)}$$

В качестве вектора \vec{y}_3 возьмем вектор

$$\vec{y}_3 = \vec{x}_3 + \lambda_1^3 \vec{y}_1 + \lambda_2^3 \vec{y}_2$$

где $\lambda_1^3, \lambda_2^3 \in R$.

При любых λ_1^3, λ_2^3 вектор \vec{y}_3 является ненулевым, так как $\vec{x}_1, \vec{x}_2, \vec{x}_3$ линейно независимы. Подберем число λ_1^3 и λ_2^3 так, чтобы $(\vec{y}_1, \vec{y}_3) = 0$ и $(\vec{y}_2, \vec{y}_3) = 0$. Тогда

$$\begin{cases} (\vec{y}_1, \vec{y}_3) = 0 \Leftrightarrow (\vec{y}_1, \vec{x}_3 + \lambda_1^3 \vec{y}_1 + \lambda_2^3 \vec{y}_2) = 0 \Leftrightarrow (\vec{y}_1, \vec{x}_3) + \lambda_1^3 (\vec{y}_1, \vec{y}_1) + \lambda_2^3 (\vec{y}_1, \vec{y}_2) = 0, \\ (\vec{y}_2, \vec{y}_3) = 0 \Leftrightarrow (\vec{y}_2, \vec{x}_3 + \lambda_1^3 \vec{y}_1 + \lambda_2^3 \vec{y}_2) = 0 \Leftrightarrow (\vec{y}_2, \vec{x}_3) + \lambda_1^3 (\vec{y}_2, \vec{y}_1) + \lambda_2^3 (\vec{y}_2, \vec{y}_2) = 0. \end{cases}$$

Так как $(\vec{y}_1, \vec{y}_2) = (\vec{y}_2, \vec{y}_1) = 0$ и $(\vec{y}_1, \vec{y}_1) = (\vec{y}_2, \vec{y}_2) \neq 0$, то получим

$$\lambda_1^3 = -\frac{(\vec{y}_1, \vec{x}_3)}{(\vec{y}_1, \vec{y}_1)}, \quad \lambda_2^3 = -\frac{(\vec{y}_2, \vec{x}_3)}{(\vec{y}_2, \vec{y}_2)}.$$

Продолжая построение векторов аналогичным образом, получим

$$\vec{y}_i = \vec{x}_i + \lambda_1^i \vec{y}_1 + \lambda_2^i \vec{y}_2 + \ldots + \lambda_{i-1}^i \vec{y}_{i-1},$$

где
$$\lambda_j^i = -\frac{(\vec{y}_j, \vec{x}_i)}{(\vec{y}_j, \vec{y}_j)}, i = 1, 2, ..., n; j = 1, 2, ..., i-1.$$

Построенная система векторов $\vec{y}_1, \vec{y}_2, ..., \vec{y}_n$ является ортогональной. Пронормировав каждый вектор этой системы, получим ортонормированную систему векторов $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$, в которой

$$\vec{e}_i = \frac{\vec{y}_i}{\|\vec{y}_i\|}, i = 1, 2, ..., n.$$

Теорема доказана

Пример 2. В пространстве R^3 задан базис $\vec{x}_1 = (1;-1;1), \vec{x}_2 = (2;-3;4), \vec{x}_3 = (2;2;6)$. Постройте по данному базису ортонормированный.

Решение.

1. Построим сначала ортогональный базис $\vec{y}_1, \vec{y}_2, \vec{y}_3$.

Пусть $\vec{y}_1 = \vec{x}_1 = (1;-1;1)$.

Положим $\vec{y}_2 = \vec{x}_2 + \lambda_1^2 \vec{y}_1$, где $\lambda_1^2 = -\frac{(\vec{y}_1, \vec{x}_2)}{(\vec{y}_1, \vec{y}_1)}$. Найдем λ_1^2 , получим

$$\lambda_1^2 = -\frac{(\vec{y}_1, \vec{x}_2)}{(\vec{y}_1, \vec{y}_1)} = -\frac{1 \cdot 2 + (-1) \cdot (-3) + 1 \cdot 4}{1^2 + (-1)^2 + 1^2} = -3.$$

Тогда

$$\vec{y}_2 = \vec{x}_2 + \lambda_1^2 \vec{y}_1 = (2; -3; 4) - 3 \cdot (1; -1; 1) = (2; -3; 4) - (3; -3; 3) = (-1; 0; 1).$$

Пусть теперь
$$\vec{y}_3 = \vec{x}_3 + \lambda_1^3 \vec{y}_1 + \lambda_2^3 \vec{y}_2$$
, где $\lambda_1^3 = -\frac{(\vec{y}_1, \vec{x}_3)}{(\vec{y}_1, \vec{y}_1)}$, $\lambda_2^3 = -\frac{(\vec{y}_2, \vec{x}_3)}{(\vec{y}_2, \vec{y}_2)}$.

Найдем λ_1^3, λ_2^3 :

$$\lambda_1^3 = -\frac{(\vec{y}_1, \vec{x}_3)}{(\vec{y}_1, \vec{y}_1)} = -\frac{1 \cdot 2 + (-1) \cdot 2 + 1 \cdot 6}{1^2 + (-1)^2 + 1^2} = -2,$$

$$\lambda_2^3 = -\frac{(\vec{y}_2, \vec{x}_3)}{(\vec{y}_2, \vec{y}_2)} = -\frac{(-1) \cdot 2 + 0 \cdot 2 + 1 \cdot 6}{(-1)^2 + 0^2 + 1^2} = -2.$$

Тогда

$$\vec{y}_3 = \vec{x}_3 + \lambda_1^3 \vec{y}_1 + \lambda_2^3 \vec{y}_2 = (2;2;6) - 2 \cdot (1;-1;1) - 2 \cdot (-1;0;1) = (2;4;2).$$

2. По ортогональному базису $\vec{y}_1, \vec{y}_2, \vec{y}_3$ построим ортонормированный базис $\vec{e}_1, \vec{e}_2, \vec{e}_3$.

Нормируя векторы $\vec{y}_1, \vec{y}_2, \vec{y}_3$, получим

$$\vec{e}_{1} = \frac{\vec{y}_{1}}{\|y_{1}\|} = \frac{(1;-1;1)}{\sqrt{1^{2} + (-1)^{2} + 1^{2}}} = \left(\frac{1}{\sqrt{3}}; -\frac{1}{\sqrt{3}}; \frac{1}{\sqrt{3}}\right), \ \vec{e}_{2} = \frac{\vec{y}_{2}}{\|y_{2}\|} = \frac{(-1;0;1)}{\sqrt{(-1)^{2} + 0^{2} + 1^{2}}} = \left(-\frac{1}{\sqrt{2}};0; \frac{1}{\sqrt{2}}\right),$$

$$\vec{e}_{3} = \frac{\vec{y}_{3}}{\|y_{3}\|} = \frac{(2;4;2)}{\sqrt{2^{2} + 4^{2} + 4^{2}}} = \left(\frac{1}{\sqrt{6}}; \frac{2}{\sqrt{6}}; \frac{1}{\sqrt{6}}\right).$$

Определение 18. Линейное пространство H называется **унитарным**, если каждой паре векторов \vec{x} и \vec{y} из пространства H поставлено в соответствие действительное или комплексное число , обозначаемое (\vec{x}, \vec{y}) и удовлетворяющее следующим аксиомам:

1)
$$(\vec{x}, \vec{x}) \ge 0, \forall \vec{x} \in H$$
, и $(\vec{x}, \vec{x}) = 0 \Leftrightarrow \vec{x} = \vec{0}$;

2)
$$(\vec{x}, \vec{y}) = \overline{(\vec{y}, \vec{x})}, \forall \vec{x}, \vec{y} \in H$$
;

3)
$$(\vec{x}_1 \oplus \vec{x}_2, \vec{y}) = (\vec{x}_1, \vec{y}) + (\vec{x}_2, \vec{y}), \forall \vec{x}_1, \vec{x}_2, \vec{y} \in H;$$

4)
$$(\alpha \otimes \vec{x}, \vec{y}) = \alpha \cdot (\vec{x}, \vec{y}), \forall \alpha \in C, \forall \vec{x}, \vec{y} \in H$$
.

Введенная операция называется **скалярным умножением векторов**, число (\vec{x}, \vec{y}) – **скалярным произведением векторов** \vec{x} и \vec{y} .

Определение 19. Полное унитарное пространство называется гильбертовым.