Week 7 — Resampling, Smoothing splines and GAM

ISLR Chapter 5 (Monday)

Question 1: Please answer Question 5 (The first of the "Applied questions) on page 198 of ISLR

ISLR Chapter 7 (Wednesday)

We will be working with temperature data for California. Here is some climate data from California weather stations.

```
d <- read.csv("temperature.csv")</pre>
head(d)
##
                      NAME
                               LONG
                                       LAT ALT JAN FEB MAR APR MAY
       ID
## 1 19303 PARKER-RESERVOIR -114.166 34.283 225 11.9 14.8 17.8 21.9 26.8
## 2 19335
            IRON-MOUNTAIN -115.133 34.133 281 12.2 14.8 17.5 21.6 26.4
## 3 19343 EAGLE-MOUNTAIN -115.450 33.800 297 12.6 15.2 17.7 21.6 26.1
## 4 19347 MITCHELL-CAVERNS -115.533 34.933 1326 7.8 9.4 10.9 14.8 19.6
## 5 19348
           MOUNTAIN-PASS -115.533 35.466 1442 3.9 5.8 8.1 11.9 16.7
## 6 19349 EL-CENTRO-2-SSW -115.566 32.766
                                            -9 12.6 14.9 17.2 20.3 24.7
     JUN JUL AUG SEP OCT NOV DEC
## 1 32.1 35.2 34.3 30.8 24.6 17.2 12.2
## 2 31.7 34.9 33.8 30.0 23.9 17.0 12.3
## 3 31.4 34.2 33.4 30.0 24.2 17.5 13.0
## 4 25.1 28.2 27.0 23.6 18.4 12.0 8.1
## 5 22.6 26.3 25.0 21.1 15.0 8.7 4.2
## 6 29.5 32.9 32.7 29.3 23.6 16.9 12.5
d$temp <- rowMeans(d[, c(6:17)])</pre>
plot(sort(d$temp), ylab=expression('Annual average temperature ( '~degree~'C )'),
     las=1, xlab='Stations')
```


We can make a simple (and illegible) map of the values

```
library(raster)
CA <- shapefile("counties_2000.shp")
plot(CA, border='gray')
text(d[,3:4], labels=round(d$temp), cex=.5, col='red')</pre>
```


Or map this via spplot, for easy color-coding. In this case we need to first make a SpatialPointsDataFrame. To do so, we can either use the formula notation, or use the SpatialPoints function. I use the SpatialPoints function here.

```
dsp <- SpatialPoints(d[,3:4], proj4string=CRS("+proj=longlat +datum=NAD83"))
dsp

## class : SpatialPoints

## features : 302

## extent : -124.233, -114.166, 32.57, 41.966 (xmin, xmax, ymin, ymax)

## crs : +proj=longlat +datum=NAD83 +ellps=GRS80 +towgs84=0,0,0</pre>
```

Combine the SpatialPoints with its data.frame.

```
dsp <- SpatialPointsDataFrame(dsp, d)</pre>
dsp
               : \ Spatial Points Data Frame
## class
               : 302
## features
## extent
               : -124.233, -114.166, 32.57, 41.966 (xmin, xmax, ymin, ymax)
## crs
               : +proj=longlat +datum=NAD83 +ellps=GRS80 +towgs84=0,0,0
## variables
               : 18
                                                          LAT, ALT, JAN, FEB, MAR, APR, MAY,
## names
                    ID,
                                       NAME,
                                                 LONG,
## min values
              : 19303, ADIN-RANGER-STATION, -124.233, 32.57, -59, -3.8, -2.5, -1.9, 0.9, 5.1, 9.9,
## max values : 24549,
                               YUMA ARIZONA, -114.166, 41.966, 2438, 14.7, 16, 19.3, 24, 29.3, 34.6,
```

And now plot

NULL model

A *null model* to explain the variation in temperature data could take the mean annual temperature across the stations would be a good estimator of temperature at any location. I first compute that value, and then compute the difference between that value and the observed values. And I make a map of the differences.

unexplained variation

[-10.56, -6.529 (-6.529, -2.498 (-2.498, 1.534] (1.534, 5.566] (5.566, 9.597]

This does not look very good. There are large differences, and they are strongly spatially structured (autocorrelated). Let's define an RMSE function and compute RMSE for the null-model (on the training data in this case).

```
RMSE <- function(observed, predicted) {
   sqrt(mean((predicted - observed)^2, na.rm=TRUE))
}

RMSE(tavg, dsp$temp)
## [1] 3.722373</pre>
```

As the NULL-model does not look good, let's see if we can improve upon it.

Transform and sample

Transformation

First, I transform the data to a planar CRS (Teale Albers in this case) to assure that the computations are OK. That is, we want to avoid interpreting angles as if they were planar coordinates.

Sampling for cross-validation

I assign the data to five bins to do five fold cross-validation.

```
# to always have the same random result, I set the seed.
set.seed(5162016)
library(dismo)
k <- kfold(dta)
table(k)
## k
## 1 2 3 4 5
## 60 61 60 61 60</pre>
```

To illustrate what I have done for one 'fold':

```
test <- dta[k==1, ]
train <- dta[k!=1, ]
plot(cata, col='light gray')
points(train, pch=20, col='blue')
points(test, pch=15, col='red')
legend('topright', c('model training', 'model testing'), pch=c(20, 15), col=c('blue', 'red'))</pre>
```


Linear model

First, fit a simple linear model. This is sometimes referred to as a 'trend surface' (see Chapter 9 in oSU). I get the coordinates (in Teale Albers) of the train data set and I combine these with the values of interest (temp).

```
df <- data.frame(coordinates(train), temp=train$temp)
colnames(df)[1:2] = c('x', 'y')</pre>
```

Then I fit a linear (regression) model to the data

```
m <- glm(temp ~ x+y, data=df)
summary(m)
##
## Call:
## qlm(formula = temp \sim x + y, data = df)
##
## Deviance Residuals:
##
    Min
                1Q
                    Median
                                  3Q
                                          Max
## -9.5810 -1.5613
                    0.1474
                             1.8181
                                       8.8619
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.390e+01 2.135e-01 65.073 < 2e-16 ***
               7.109e-07 1.521e-06
## x
                                     0.467
                                               0.641
              -8.675e-06 1.100e-06 -7.887 1.1e-13 ***
## y
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for gaussian family taken to be 8.236277)
##
##
      Null deviance: 3579.8 on 241 degrees of freedom
## Residual deviance: 1968.5 on 239 degrees of freedom
## AIC: 1202
##
## Number of Fisher Scoring iterations: 2
```

Question 2: Describe (in statistical terms) and explain (in physical terms) the results shown by summary (m)

Question 3: According to this model. How much does the temperature in California change if you travel 500 miles to the north (show the R code to compute that)

We can now estimate temperature values at any location with the predict function. For example for our hold-out (test) sample.

```
v <- data.frame(coordinates(test))
colnames(v)[1:2] = c('x', 'y')
p <- predict(m, v)
head(p)
## 1 2 3 4 5 6
## 18.67154 17.67720 17.39930 17.94395 16.28229 18.12864</pre>
```

And we can evaluate the results by comparing them with the known values for these locations.

```
# first the null model
RMSE(mean(train$temp), test$temp)
## [1] 3.179886
# now the linear model
RMSE(p, test$temp)
```


OK, now the same thing but k-(5)-fold:

```
r <- rep(NA,5)
for (i in 1:5) {
  test <- dta[k==i, ]
    train <- dta[k!=i, ]
  df <- data.frame(coordinates(train), temp=train$temp)
  m <- glm(temp ~ ., data=df)
  v <- data.frame(coordinates(test))
  p <- predict(m, v)
  r[i] <- RMSE(p, test$temp)
}
r
## [1] 2.848470 3.227967 2.675434 2.819683 2.757730
mean(r)
## [1] 2.865857</pre>
```

Question 4: Was it important to do 5-fold cross-validation, instead of a single 20-80 split?

The model is not great, but it did capture something, and it is better than the null model. We can also predict values for grid cells. I first create a raster with the extent of California, and with 10 km resolution (square) grid cells.

```
r <- raster(round(extent(cata)), res=10000, crs=TA)
```

I will show two ways to estimate the values for this raster. The 'hard' way:

```
# get the x coordinates
x <- init(r, v='x')
# set areas outside of CA to NA
x <- mask(x, cata)
# get the y coordinates
y <- init(r, v='y')
# combine the two variables (RasterLayers)
s <- stack(x,y)
names(s) <- c('x', 'y')</pre>
```

Now make a model with all data (no splits).

```
df <- data.frame(coordinates(dta), temp=dta$temp)
colnames(df)[1:2] = c('x', 'y')
m <- glm(temp ~ ., data=df)
# predict
trend <- predict(s, m)
plot(trend)</pre>
```


Instead of predict, we can use the interpolate function. That is a simpler approach as interpolate "knows" about needing to use coordinates.

```
z <- interpolate(r, m)
mask <- mask(z, cata)
zm <- mask(z, mask)
plot(zm)
contour(zm, add=TRUE)</pre>
```


Here is an alternative models with interaction terms. I am only using a single split (no k-fold) to not clutter the example too much.

```
df <- data.frame(coordinates(dta), temp=dta$temp)</pre>
colnames(df)[1:2] = c('x', 'y')
test <- df[k==1, ]
train <- df[k!=1, ]</pre>
m <- glm(temp ~ x*y, data=train)</pre>
summary(m)
##
## Call:
## glm(formula = temp \sim x * y, data = train)
##
## Deviance Residuals:
##
       Min
                 1Q
                      Median
                                    3Q
                                            Max
## -9.6890 -1.6651
                       0.0988
                                2.0840
                                         9.7998
##
## Coefficients:
                 Estimate Std. Error t value Pr(>/t/)
##
## (Intercept) 1.325e+01 2.864e-01 46.275 < 2e-16 ***
## x
               -2.845e-06 1.841e-06 -1.545 0.12371
               -9.210e-06 1.090e-06 -8.448 2.97e-15 ***
## y
## x:y
           -1.306e-11 3.969e-12 -3.290 0.00115 **
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for gaussian family taken to be 7.91116)
##
##
       Null deviance: 3579.8 on 241 degrees of freedom
## Residual deviance: 1882.9 on 238 degrees of freedom
## AIC: 1193.3
##
## Number of Fisher Scoring iterations: 2
AIC(m)
## [1] 1193.255
RMSE(predict(m, test), test$temp)
## [1] 2.591301
z <- interpolate(r, m)</pre>
zm <- mask(z, mask)</pre>
plot(zm)
contour(zm, add=TRUE)
```


A model with polynomial terms

```
m \leftarrow glm(temp \sim x + y + I(x^2) + I(y^2), data=df)
summary(m)
```

```
## Call:
## glm(formula = temp \sim x + y + I(x^2) + I(y^2), data = df)
## Deviance Residuals:
## Min 1Q Median 3Q
                                       Max
## -9.6891 -1.0553 0.0012 1.7994
                                    7.8593
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.340e+01 2.681e-01 49.986 < 2e-16 ***
## x
             -2.003e-06 1.389e-06 -1.443 0.15
## y
             -9.938e-06 9.116e-07 -10.903 < 2e-16 ***
             2.935e-11 3.480e-12 8.433 1.49e-15 ***
## I(x^2)
             -9.097e-12 2.221e-12 -4.095 5.44e-05 ***
## I(y^2)
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for gaussian family taken to be 6.592786)
## Null deviance: 4184.5 on 301 degrees of freedom
## Residual deviance: 1958.1 on 297 degrees of freedom
## AIC: 1433.6
## Number of Fisher Scoring iterations: 2
AIC(m)
## [1] 1433.562
RMSE(predict(m, test), test$temp)
## [1] 2.57128
z <- interpolate(r, m)</pre>
zm <- mask(z, mask)</pre>
plot(zm)
contour(zm, add=TRUE)
```


Second-order polynomials and interactions

```
m <- glm(temp ~ poly(x, 2, raw=TRUE) * poly(y, 2, raw=TRUE), data=df)
summary(m)
##
## Call:
## glm(formula = temp \sim poly(x, 2, raw = TRUE) * poly(y, 2, raw = TRUE),
##
       data = df
##
## Deviance Residuals:
##
       Min
                   1Q
                         Median
                                       3Q
                                                Max
## -10.4185
              -0.9676
                         0.1926
                                   1.4591
                                            10.8233
##
## Coefficients:
##
                                                     Estimate Std. Error
## (Intercept)
                                                    1.338e+01 3.014e-01
## poly(x, 2, raw = TRUE)1
                                                   -1.595e-05 2.719e-06
## poly(x, 2, raw = TRUE)2
                                                   -4.384e-11 1.162e-11
## poly(y, 2, raw = TRUE)1
                                                   -1.636e-05 1.353e-06
## poly(y, 2, raw = TRUE)2
                                                   -2.987e-11
                                                               4.383e-12
## poly(x, 2, raw = TRUE)1:poly(y, 2, raw = TRUE)1 -1.032e-10 1.596e-11
## poly(x, 2, raw = TRUE)2:poly(y, 2, raw = TRUE)1 -1.899e-16 3.735e-17
## poly(x, 2, raw = TRUE)1:poly(y, 2, raw = TRUE)2 -1.087e-16 2.224e-17
## poly(x, 2, raw = TRUE)2:poly(y, 2, raw = TRUE)2 -1.212e-22 5.460e-23
```

```
t value Pr(>|t|)
                                                    44.398 < 2e-16 ***
## (Intercept)
## poly(x, 2, raw = TRUE)1
                                                    -5.867 1.20e-08 ***
## poly(x, 2, raw = TRUE)2
                                                    -3.773 0.000195 ***
## poly(y, 2, raw = TRUE)1
                                                   -12.097 < 2e-16 ***
## poly(y, 2, raw = TRUE)2
                                                    -6.816 5.33e-11 ***
## poly(x, 2, raw = TRUE)1:poly(y, 2, raw = TRUE)1 -6.468 4.14e-10 ***
## poly(x, 2, raw = TRUE)2:poly(y, 2, raw = TRUE)1 -5.084 6.62e-07 ***
## poly(x, 2, raw = TRUE)1:poly(y, 2, raw = TRUE)2 -4.888 1.68e-06 ***
## poly(x, 2, raw = TRUE)2:poly(y, 2, raw = TRUE)2 -2.220 0.027215 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for gaussian family taken to be 5.78023)
##
##
      Null deviance: 4184.5 on 301 degrees of freedom
## Residual deviance: 1693.6 on 293 degrees of freedom
## AIC: 1397.7
## Number of Fisher Scoring iterations: 2
AIC(m)
## [1] 1397.744
RMSE(predict(m, test), test$temp)
## [1] 2.22646
z <- interpolate(r, m)</pre>
zm <- mask(z, mask)</pre>
plot(zm)
contour(zm, add=TRUE)
```


Question 5: What is the best model sofar? Why?

Question 6: Rerun the last model using (a) ridge regression, and (b) lasso regression. Show the changes in coefficients for three values of lambda; by finishing the code below

```
f <- temp ~ poly(x, 2, raw=TRUE) * poly(y, 2, raw=TRUE)
x <- model.matrix(f, df)
library(glmnet)
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following object is masked from 'package:spam':
##
## det
## Loading required package: foreach
## Loaded glmnet 2.0-16
g <- glmnet(x, df$temp)</pre>
```

Local regression

We can use the loess function, or the locfit library (And see the lab on GWR!)

```
m <- loess(temp ~ x + y, span=.2, data=train)
z <- interpolate(r, m)</pre>
```

```
zm <- mask(z, mask)
plot(zm)
contour(zm, add=TRUE)</pre>
```



```
RMSE(predict(m, test), test$temp)
## [1] 2.053495
```

Question 7: What does the the "span" argument represent?

Thin plate splines

Now to thin-plate splines ($\sim n$ -dimensioal smooting splines). First fit the model.

```
library(fields)
tps <- Tps(train[, c('x', 'y')], train$temp)
## Warning:
## Grid searches over lambda (nugget and sill variances) with minima at the endpoints:
## (GCV) Generalized Cross-Validation
## minimum at right endpoint lambda = 9.606714e-07 (eff. df= 229.9 )
tps
## Call:
## Tps(x = train[, c("x", "y")], Y = train$temp)
##
## Number of Observations: 242</pre>
```

```
## Number of parameters in the null space 3
## Parameters for fixed spatial drift 3
## Model degrees of freedom:
                                   229.9
## Residual degrees of freedom:
                                  12.1
## GCV estimate for sigma:
                                  0.2831
## MLE for sigma:
                                   0.2578
## MLE for rho:
                                   69200
\#\# lambda
                                   9.6e-07
## User supplied rho
                                   NA
## User supplied sigma^2
                                   NA
## Summary of estimates:
##
               lambda
                        trA GCV shat -lnLike Prof converge
## GCV 9.606714e-07 229.90000 1.602401 0.2830549 536.8624
## GCV.model NA NA NA NA
                                                              NA
                                                     NA
                                                              NA
## GCV.one 9.606714e-07 229.90000 1.602401 0.2830549
                                                      NA
           NA
## RMSE
                                                     NA
                                                              NA
                          NA
                               NA NA
## pure error
                   NA
                            NA
                                   NA
                                           NA
                                                      NA
                                                              NA
## REML 2.973892e-04 69.19357 3.146969 1.4990581
                                                 507.1963
                                                               6
```

Now make a prediction for the raster cells.

```
ptps <- interpolate(r, tps)
ptps <- mask(ptps, mask)
plot(ptps)
contour(ptps, add=TRUE)</pre>
```


And predict to the test points.

```
pt <- predict(tps, test[, c('x', 'y')])
RMSE(pt, test$temp)
## [1] 2.167317</pre>
```

Now let's bring in elevation as a co-variable. First get and prepare the elevation data.

```
elv1 <- raster::getData('worldclim', res=0.5, var='alt', lon=-122, lat= 37)
elv2 <- raster::getData('worldclim', res=0.5, var='alt', lon=-120, lat= 37)
elv <- merge(elv1, elv2, overlap=FALSE)
telv <- projectRaster(elv, r)
celv <- mask(telv, mask)
names(celv) <- 'elevation'
plot(celv)</pre>
```


Extract elevation values for test and train points

```
train$elevation <- extract(celv, train[, 1:2])
test$elevation <- extract(celv, test[, 1:2])</pre>
```

There are a few points just outside this raster, that have NA values for elevation. I remove these for now.

```
train <- train[!is.na(train$elevation), ]
test <- test[!is.na(test$elevation), ]</pre>
```

Fit the model, now with an additional variable.

```
tps2 <- Tps(train[, c('x', 'y', 'elevation')], train$temp)
## Warning:
## Grid searches over lambda (nugget and sill variances) with minima at the endpoints:
## (GCV) Generalized Cross-Validation
## minimum at right endpoint lambda = 7.244989e-05 (eff. df= 221.35 )</pre>
```

And predict to grid cells.

```
ptps2 <- interpolate(celv, tps2, xy0nly=FALSE)
plot(ptps2)
contour(ptps2, add=TRUE)</pre>
```


Evaluate

```
pt2 <- predict(tps2, test[, c('x', 'y', 'elevation')])
RMSE(test$temp, pt2)
## [1] 1.762481</pre>
```

Question 8: What is a main reason that this the best prediction sofar?

General additive models

Here is a quick GAM example, using the mgcv package.

```
library(mgcv)
ga <- gam(temp ~ s(x) + s(y) + s(elevation), data=train)
x <- interpolate(celv, ga, xyOnly=FALSE)
plot(x)
contour(x, add=TRUE)</pre>
```



```
pg <- predict(ga, test)
RMSE(test$temp, pg)
## [1] 1.699617</pre>
```

To see the responses to the variables do

```
plot.gam(ga, pages=1)
```


Fitting gams is an art. Below is one example of what you might do for spatial interpolation.

Question 9: Use the help files to exaplin the model below. What do you think of it? Is it better or worse than the gam we did above?

ga2 <- gam(temp ~ te(x, y,
$$k=12$$
, $bs='ts'$) + s(elevation, $bs='ts'$), data=train)