AE 737: Mechanics of Damage Tolerance

Lecture 19 - Cycle Counting

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

April 9, 2019

schedule

- 9 Apr Boeing Method, HW7 Due
- 11 Apr Crack Retardation
- 16 Apr Exam Review, HW8 Due
- 18 Apr Exam 2

outline

- cycle counting
- crack growth retardation
- finite element techniques

cycle counting

cycle counting

- As illustrated in our previous example, cycle counting method can make a difference for variable amplitude loads
- Two common methods for cycle counting that give similar results are known as the "rainflow" and "range-pair" methods
- ASTM E1049-85 "Standard Practices for Cycle Counting in Fatigue Analysis"

rain-flow method

- 1. Rearrange the history to start with the highest peak or lowest valley
- 2. Imagine rain flowing down the slope until the next reversal, check if the drips over the edge would catch another section of roof
- 3. Once you have reached the farthest point, reverse direction and follow the water to the other edge, count this as one cycle
- 4. Consider all parts that have touched the path of water "erased" and repeat

rain-flow method

range-pair method

- 1. Read next peak or valley. Y is the first range, X is the second range
- 2. If X < Y advance points
- 3. If $X \ge Y$, count Y as 1 cycle and discard both points in Y, go to 1
- 4. Remaining cycles are counted backwards from end of history

range-pair

cycle counting example

- Use the rain-flow method to count cycles
- Use the range-pair method to count cycles

crack growth retardation

crack growth retardation

- When an overload is applied, the plastic zone is larger
- This zone has residual compressive stresses, which slow crack growth until the crack grows beyond this over-sized plastic zone

crack growth retardation

- We will discuss three retardation models, but no model has been shown to be perfect in all cases
- The Wheeler method reduces da/dN, the Willenborg model reduces ΔK , and the Closure model increases R (increases σ_{min})

wheeler retardation

- As long as crack is within overload plastic zone, we scale da/dN by some ϕ $(a_i + r_{pi}) = (a_{ol} + r_{pol})$
- And ϕ is given by

$$\phi_i = \left[rac{r_{pi}}{a_{ol} + r_{pol} - a_i}
ight]^m$$

• and the constant, *m* is to be determined experimentally

wheeler example

- (p. 340), A wide edge-cracked panel (β = 1.22) has an initial crack length of 0.3 inches. Use p = 3.5, m_T = 32 and q = 0.6 to grow a crack for two load cases. Use the Wheeler retardation model with m = 1.43, a plane stress plastic zone, and σ_{YS} = 68 ksi.
- Case 1: σ_{max} = 18 ksi and σ_{min} = 3.6 ksi for 12,000 cycles

wheeler example (cont)

• Case 2: σ_{max} = 18 ksi and σ_{min} = 3.6 ksi for 6,000 cycles, followed by one cycle of σ_{max} = 27 ksi and σ_{min} = 5.4 ksi, followed by another 6,000 cycles of σ_{max} = 18 ksi and σ_{min} = 3.6 ksi.

willenborg retardation

- Once again, we consider that retardation occurs when $(a_i + r_{pi}) = (a_{ol} + r_{pol})$
- Willenborg assumes that the residual compressive stress in the plastic zone creates an effective, $K_{max,\,eff}$, where $K_{max,\,eff}=K_{max}-K_{comp}$
- The effective stress intensity factor is given by

$$K_{max,eff} = K_{max,i} - \left[K_{max,OL} \sqrt{1 - rac{\Delta a_i}{r_{pol}}} - K_{max,i}
ight] .$$

gallagher and hughes correction

- Galagher and Hughes observed that the Willenborg model stops cracks when they still propagate
- They proposed a correction to the model

$$K_{max,eff} = K_{max,i} - \phi_i \left[K_{max,OL} \sqrt{1 - rac{\Delta a_i}{r_{pol}}} - K_{max,i}
ight].$$

gallagher and hughes correction

• And the correction factor, ϕ_i is given by

$$\phi_i rac{1-K_{TH}/K_{max,i}}{s_{ol}-1}$$

willenborg example

• Consider the Wheeler example problem with Willenborg parameters of S_{ol} = 2.3 and K_{TH} = 1 ksi.

closure model

- Once again, we consider that retardation occurs when $(a_i + r_{pi}) = (a_{ol} + r_{pol})$
- Within the overloaded plastic zone, the opening stress required can be expressed as $\sigma_{OP} = \sigma_{max}(1 (1 C_{fO})(1 + 0.6R)(1 R))$

closure model

• Commonly this is expressed using the Closure Factor, C_f

$$C_f = rac{\sigma_{OP}}{\sigma_{max}} = (1 - (1 - C_{f0})(1 + 0.6R)(1 - R))$$

• Where C_{fo} is the value of the Closure Factor at R = o

closure model

- When using the closure model, we replace R with C_f
- If the model we are using is in terms of ΔK we will also need to use $\Delta K = (1 C_f)K_{max}$

closure example

• Consider the Wheeler/Willenborg example problem with Closure parameters of $C_{f0} = 0.3$ and $C_f = 0.3728$

under-loads

- We might expect a compressive "underload" to accelerate crack growth
- This effect is not usually modeled for a few reasons
 - 1. Compressive underloads are uncommon in airframes
 - 2. The acceleration effect is minimal
 - 3. Analysis is generally adjusted with experimental data, so acceleration can be built in to current model
 - 4. Structures with large compressive loads are not generally subject to crack propagation problems

finite element techniques

finite element methods in fracture

- Direct method (use near-tip stress field)
 - Requires very fine mesh near the tip to be accurate
 - Can be made feasible with specialty elements
- Crack closure method
 - An energy based method
 - Calculate energy to close crack one element away from crack tip
 - Can have a courser mesh than direct method

fea in fracture

- Cohesive elements
 - Specialty elements act like an adhesive between two materials
 - Used to model crack propagation when crack path (and material behavior) are known
- XFEM
 - eXtended Finite Element Method
 - Can predict crack growth in any direction
 - Adds "phantom" cracks in all elements

direct method

We already know that the stress field near the crack tip is

$$\sigma_{yy} = rac{K_I}{\sqrt{2\pi x}}$$

- We can solve this for K_I and we should (in theory) be able to calculate K_I
- We will get a unique K_I value for every point (x) along crack plane
- For this method to be accurate, we need to capture the singularity at crack tip
- This requires a very fine mesh (computationally expensive)
- Alternatively, many FE packages include "singularity" elements which allow coarse(r) mesh

modeling tips

- Use symmetry in your model to reduce node count
- Center-crack can be modeled using on 1/4 of the model
- Use biased node seeding (more nodes near tip)

symmetry

symmetry

analyzing results

- If our results are accurate, we should be able to calculate the same K_I at any point
- To ensure convergence, we plot the calculated K_I vs. x (distance from crack tip)
- In the region where this plot is a horizontal line, we consider a converged K_I

analyzing results

It is also possible to consider the crack opening displacement

$$u_y = rac{K_I(\kappa+1)}{4
u\pi}\sqrt{-2\pi x}$$

• Where κ is to easily differentiate between plane stress and plane strain

$$\kappa = 3 - 4
u \qquad ext{(plane strain)}
onumber \ \kappa = rac{3 -
u}{1 +
u} \qquad ext{(plane stress)}$$

• The displacement method is generally more accurate in Finite Elements

stress results

displacement results

