Politecnico di Milano – Facoltà di Ingegneria Industriale e dell'Informazione – A.A. 2019/2020 Corso di Laurea in Ingegneria Fisica Preappello di Analisi III, 15 gennaio 2020 – Prof. I. FRAGALÀ

ESERCIZIO 1. (8 punti) [fornire le risposte con una breve giustificazione]

Si consideri la successione di funzioni

$$f_k(x) = ke^{-k|x|}, \quad x \in \mathbb{R}$$

- (a) Stabilire se la successione converge in $L^1(\mathbb{R})$; in caso affermativo, determinarne il limite.
- (b) Stabilire se la successione converge in $\mathcal{D}'(\mathbb{R})$; in caso affermativo, determinarne il limite.

Soluzione.

(a) La successione non converge in $L^1(\mathbb{R})$. Infatti essa converge a zero puntualmente quasi ovunque (in ogni $x \neq 0$) alla funzione identicamente nulla, che quindi è l'unico possibile limite in $L^1(\mathbb{R})$. D'altra parte, si ha tramite cambio di variabile (e tenendo conto che f_k è pari)

$$\int_{\mathbb{R}} |f_k| = 2 \int_0^{+\infty} f_k = 2 \int_0^{+\infty} e^{-y} \, dy = 2 \not\to 0.$$

(b) Per ogni funzione test $\varphi \in \mathcal{D}(\mathbb{R})$, si ha

$$\int_{\mathbb{R}} f_k \varphi = k \int_{\mathbb{R}} e^{-k|x|} \varphi(x) \, dx = \int_{\mathbb{R}} e^{-|y|} \varphi\left(\frac{y}{k}\right) dy \to \varphi(0) \int_{\mathbb{R}} e^{-|y|} = 2\varphi(0)$$

(dove il passaggio al limite segue dal teorema di convergenza dominata). Pertanto $f_k \to 2\delta_0$ in $\mathcal{D}'(\mathbb{R})$.

ESERCIZIO 2. (8 punti) [fornire le risposte con una breve giustificazione]

Sia

$$u(x) := x^2 e^{7x} H(-x), \qquad x \in \mathbb{R},$$

dove H è la funzione di Heavyside.

- (a) Calcolare la trasformata di Fourier di u.
- (b) Stabilire, giustificando la risposta, se $u \in \mathcal{S}'(\mathbb{R})$.

Soluzione.

(a) Si ha $u(x) = x^2 v(x)$, con $v(x) := e^{7x} H(-x)$. Pertanto $\mathcal{F}(u) = i^2 \frac{d^2}{d\xi^2} \mathcal{F}(v)$. Quest'ultima trasformata si calcola in modo diretto:

$$\mathcal{F}(v)(\xi) = \int_{\mathbb{R}} v(x)e^{-i\xi x} dx = \int_{-\infty}^{0} e^{(7-i\xi)x} dx = \frac{1}{7-i\xi},$$

da cui

$$\mathcal{F}(u) = 2(7 - i\xi)^{-3}$$
.

(b) Si', poiché $u \in L^1(\mathbb{R}) \subset \mathcal{S}'(\mathbb{R})$.

ESERCIZIO 3. (8 punti) [fornire le risposte con una giustificazione dettagliata]

Calcolare l'integrale $I = \int_{\gamma} (\frac{1}{z} + \frac{1}{\cos(z)} + \frac{\sin(z)}{z} + e^{(1/z^2)}) dz$, dove γ è la circonferenza unitaria di centro z = 0, percorsa una sola volta in senso orario.

Soluzione.

Occorre considerare solo le singolarità interne a γ , infatti per quelle esterne l'indice di γ è nullo e non danno contributo nel calcolo dell'integrale.

- $\frac{1}{z}$ ha in z = 0 un polo semplice con residuo 1;
- $\frac{1}{\cos(z)}$ ha in $z=(2k+1)\pi/2, \ k\in\mathbb{Z}$ poli semplici ma esterni a $\gamma;$
- $\frac{\sin(z)}{z}$ ha in z=0 una singolarità eliminabile dunque il residuo è nullo;
- \bullet $e^{(1/z^2)}$ ha in z=0 una singolarità essenziale ma, essendo funzione pari, avrà nel corrispondente svilupppo di Laurent solo potenze pare e dunque residuo nullo.

In conclusione
$$I = -2\pi i \text{Res}\left(\frac{1}{z}, 0\right) = -2\pi i.$$

TEORIA. (7 punti) [fornire le rispondere in modo coinciso e rigoroso]

- (a) Enunciare il teorema di rappresentazione di Riesz.
- (b) Caratterizzare il duale topologico di $L^2(0,1)$.
- (c) Dato $p \in (1, +\infty)$, fornire un esempio di funzionale lineare continuo su $L^p(0, 1)$, e quindi fornire una plausibile congettura per l'identificazione del duale topologico di $L^p(0, 1)$.