

PV Power Plant Data Analysis and Performance Normalization

Rabin Dhakal

PhD Candidate

Department of Mechanical Engineering

Texas Tech University

Outline

- Introduction/Background
- Objectives
- Data Exploration & Analysis
- Filtering
- Developing Models
- Interpretation
- Future Works

Introduction/Background

Solar Resource Data and Modelling

- Historical long-term data for site selection
- Prediction of output power for design and financing
- Real-time measurement and forecasting for plant and grid operation

Meteorology

- Meteorology can falsely mask or emphasis trends
- It would be useful if we had same weather

Objectives

- To conduct exploratory data analysis of solar PV power plant and model plant performance using meteorological variables
 - Find physically impossible/unlikely) data points
 - Design filter
 - Check data quality issues
 - Observe the design, rating and performance.
 - Explore future research opportunities

Data types & NaNs

DatetimeIndex: 1337487 entries, 2016-01-01 07:24:00-07:00 to 2020-12-31 16:45:00-07:00 Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	Ambient Temperature (C)	1337487 non-null	float64
1	Wind Speed (m/s)	1337487 non-null	float64
2	POA Irradiance (w/m^2)	1329517 non-null	float64
3	Power (kw)	1329531 non-null	object
dtyn	es: float64(3), object(1)		

	No of NaNs	Consecutive NaNs?	Both NaNs ?	NaNs alone ?
POA Irradiance	7970	7	7932	38
Power	7956	7		24

Use of Moving Average Method to Fill NaNs values as 99 % of POA Irradiance and Power are null at same time

- Negative value of wind speed is physically impossible. It can be zero but not below that.
- Negative value of POA Irradiance is also not possible.
- Power also cannot be negative. (Negative power meaning power is drawn from battery. However, PV plant should have electrical system to prevent this.

• Physically Impossible Negative Values

	No of -ve value	Other features also -ve?
Wind Speed	17	No
POA Irradiance	12	No
Power	47883 (14 values < -1)	No

• Seems power measuring instrument doesn't give good reading when the plant is about to start producing power in the morning and in the evening after it about to stop producing power

- Good correlation of Power with POA irradiance
- We can fit linear model (R² = 0.90)

Filter Design I

 Filtering Negative Wind Speed using Persistence Model

Filter Design II

Filter Design III

Other data issues & Filtering

• It is clearly seen that the PV power plant is not producing energy for 9 days from April 20th to April 28 of 2020.

•

- So, we can replace it by using POA Irradiance data like Filter design III
- However, we should investigate in detail about the cause.

Other data issues & Filtering

- POA Irradiance for 7 days cannot be constant
- It can be replaced by using power

	count	mean	std	min	25%	50%	75%	max
Ambient Temperature (C)	5085.0	15.343889	4.482094	2.798603	12.412933	16.172625	18.912327	22.832796
Wind Speed (m/s)	5085.0	4.016026	2.872170	0.199602	1.797912	2.997993	6.190864	15.896758
POA Irradiance (w/m^2)	5085.0	527.000000	0.000000	527.000000	527.000000	527.000000	527.000000	527.000000
Power (kw)	5085.0	1469.695644	858.995473	1.542992	596.239082	1690.962458	2305.685610	2312.886007

Filtering Issues

 No linear relationship when there is less amount of power production i.e smaller than 100 kW

Other Data Issues

07/01/22

16

Other Data Issues

• It is seen that the power produced for 15 days form 16th Oct to 29th Oct of the year 2018 is lower than other days.

er (kw)	Power (k	POA Irradiance (w/m^2)	Wind Speed (m/s)	Ambient Temperature (C)	
000000	9132.0000	9132.000000	9132.000000	9132.000000	count
)98878	815.0988	522.410732	3.261355	17.221796	mean
389199	507.3891	298.351579	2.511559	5.235884	std
37126	0.5371	2.801524	0.000000	4.191915	min
310737	356.3107	235.191832	1.597893	13.014186	25%
339502	993.8395	670.574639	2.498122	18.100684	50%
146204	1151.4462	771.417087	4.005762	21.489092	75%
133237	2311.4332	1071.076406	15.204024	28.296380	max
.8	356 993 1151	235.191832 670.574639 771.417087	1.597893 2.498122 4.005762	13.014186 18.100684 21.489092	25% 50% 75%

Possible Causes of Data Quality Issues

- Extrapolated by human
- Weather conditions like rain, cloudy days, snowfall on PV array
- Extreme weather condition like high wind speed than normal, much colder than other years for a day
- Issues on Pyranometer (About 8000 POA Irradiation values are zero)

Meteorological Normalization

Effect of Meteorology

- Meteorological variables has a strong influence on the performance of PV power plant
 - Irradiance effect the power produced
 - Ambient temperature effect the efficiency of PV module
- Interdependencies of meteorological variables.
- Better to account all available meteorological variables

Source: Choi et al 2014

Source: Bhattacharya et al 2014

Model Development

- Model is developed using the 5 years historical solar power and meteorological parameters
- Different types of model could be used including multiple linear regression, neural networks etc.
- However, regression tree approach is used here

Why Decision Trees – Modelling Benefits

Can model nonlinear relationships Can take account of complex interactions

Can model abrupt changes

Good treatment of missing data

Modelling Approach

- Simplified model with wind speed, wind direction and ambient temperature
 - Aim to predict power production
- Interpretation
 - Output looks like a 'tree'
 - Actual model are considerably more complex

Modelling Parameters

Normalizing the predictor in range of 0 to 1

Train-Test split : 70/30

Hyperparameter Tuning

Maximum depth: 2, 5, 7 and 8 (optimum result at 7)

Result

Insight on PV Plant

Insight on PV Plant

Insight on PV Power Plant

Assuming 24.5 % as Capacity Factor 1 MW Plant produce 2146 MWh

Plant Capacity 2.75 MW

Year	Mean Power Production (kW)	Energy Production MWh per year
2016	1379.74	6159.40
2017	1382.07	6156.39
2018	1279.23	5698.23
2019	1264.77	5633.82
2020	1316.36	5876.25

Future Works

- Optimization of the Data Filtration Techniques
- Comparative analysis with at least three other plants at different geo-location
- Normalizing performance using other techniques and compare performance.

References

- 1. Lovrić, Mario, et al. "Machine Learning and Meteorological Normalization for Assessment of Particulate Matter Changes during the COVID-19 Lockdown in Zagreb, Croatia." *International Journal of Environmental Research and Public Health* 19.11 (2022): 6937.
- 2. David Carslaw, "Meteorological Normalisation Accounting for meteorology in trends", LAQN Seminar, King's College London 24th April 2009.

Thank You

?