

Machine Learning: a Non-Technical Introduction

Antoine Rauzy
Antoine.Rauzy@ntnu.no

- Motivating (Toy) Example
- Classification
- Regression
- Clustering
- Discussion

Presentation

A contractor has 200 projects with the following pattern:

Performance indicators for tasks and projects:

- Competence in {Low, Medium, High}
- Durations of tasks A, B, C, and D

Objectives

What can we learn out of that? Can Machine Learning help us?

What Can We Learn?

Duration of task A: ~60 weeks Duration of task B: ~50 weeks Duration of task C: ~40 weeks Duration of task D: ~50 weeks

Total Duration = max(duration(A) + duration(C), duration(B) + duration(D))

Low competence : time wasted due to a bad coordination

High competence: time saved due to a good coordination

Medium competence: time neither wasted nor saved due to coordination

Objective: Predict project duration after completion of tasks A and B

- Motivating (Toy) Example
- Classification
- Regression
- Clustering
- Discussion

Classification

Expected duration: 100

labels

on-time: duration ≤ 115

delayed: $115 < duration \le 140$

failed: duration > 140

Competence	Competence Duration(A)		Label
medium	75	69	delayed
low	58	53	on-time
	•••		

Classification problem:

• Given the performance indicators of phase 1, i.e. competence and durations of tasks A and B, predict the class of the project (on-time, delayed, or failed)

Phase 1: Training

Training set

Competence	Competence Duration(A)		Label	
medium	75	69	delayed	
low	58	53	on-time	

Classification is a supervised learning problem: labels are known

Phase 2: Prediction

Test set

Competence Duration(A)		Duration(B)	Label	
medium	75	69	?	
low 58		53	?	

Performance

predicted classes

actual classes

	on-time		failed
on-time	8	3	3
delayed	6	5	0
failed	2	7	6

- Motivating (Toy) Example
- Classification
- Regression
- Clustering
- Discussion

Definition

Competence Duration(A)		Duration(B)	Reward
medium 75		69	138
low 58		53	112
	•••		

Regression problem:

• Given the performance indicators of phase 1, i.e. competence and durations of tasks A and B, predict the total duration

Phase 1: Training

Training set

Competence Duration(A)		Duration(B)	Reward	
medium	75	69	138	
low 58		53	112	

Regression is a supervised learning problem: rewards are known

Phase 2: Prediction

I(A)	I(B)
18.2	12.9
18.7	11.9
14.3	10.4
16	10.1
16.4	11.4

Prediction algorithm

I(P)
35
36.2
29.3
31.2
32

Performance

Actual values

Pred	licted	va	lues

Duration
137
141
84
121
92

Duration	
130	
130	
120	
126	
123	

 R^2

Mean absolute error: $\sum |p-a|$

Mean squared error: $\sum (p-a)^2$

- Motivating (Toy) Example
- Classification
- Regression
- Clustering
- Discussion

Definition

Competence	Duration task A	Duration task B	Duration task C	Duration task D	Total
medium	75	69	69	69	138
low	58	53	59	59	112
medium	58	60	63	63	123
low	61	80	93	93	173
high	62	55	43	43	98
high	50	70	55	55	125
medium	60	81	76	76	157
low	88	72	79	79	161
medium	51	53	57	57	110

Clustering problem:

• Can we group projects into clusters?

Unsupervised learning

- Motivating (Toy) Example
- Classification
- Regression
- Clustering
- Discussion

Conclusion

	Strengths	Weaknesses
Internal	 Easiness of implementation (no programming competences required) 	There must be something to learn?Data preprocessing
External	ResultsNew way of thinking	Availability of a lot of good dataPerformance

Specific issues:

- Time dependencies
- Accidents are non-deterministic

