📊 Project Summary for Final ML/Al Capstone Project with Berkely Hass

Shan Gao

Problem Statement

What problem are you trying to solve? What larger issues do the problem address?

Business goal: Use ML classification techniques to predict which 311 cases are most likely to be overdue.

Business outcome: Transform 311 operations from broad, generalized efforts to highly targeted and efficient operations.

See the readme for more details

Outcomes/Predictions

What prediction(s) are you trying to make? Identify applicable predictor (X) and/or target (y) variables

As Step #1 describes, predict if a new 311 call is prone to be overdue.

Label/Target Variable: 'is overdue'

Predictors: from +100 raw features to 30 selected features for final modeling

Data Acquisition

Where are you sourcing your data from? What is the dimension? Any missing values?

Variable	Value
Data Source	3 data sources
Rows	163545
Columns	30 (Final)
Missing Values Present	0%
Imbalanced?	Yes

Major Actions and Challenges:

Clean 3 data sources:

Study and solve the unit of analysis issue across the data sources

Data Preparation

What do you need to do your data in order to run your model and achieve your outcomes?

EDA: Descriptive analysis and plotting of variables, i.e., bar charts, histograms, boxplots, correlation Parallel Categories Plot. Cumulation

Outcome: dropping any insignificant variables.

Preprocessing Techniques:

K-mean cluster, NLP text analysis, Feature Engineering: Encoding, Binning, scaling, etc.

Modeling

What models are appropriate to use given your outcomes?

Modeling: Start with Random Forest to help identify important features and feature importance analysis

Modeling for All: (RF), (LR), (KNN), (DT), and (SVM)

Separate Modeling for 4 neighborhood clusters: 5 classifiers listed above. **Model Tuning and Selection**: Grid Search and 5-fold Cross-Validation

Outcome(Best Models): K-nearest neighbor (all using accuracy) and Logistic(Neighborhood cluster using AUC)

Model Evaluation

How did you evaluate your model's performance? Results?

A table listing the following criteria:

Classifier name, optimal threshold, accuracy, precision, recall, F1-Scire, Auc-Roc, computing time, and Hypermeter for the best model.

A ROC curve plot for all classifiers explored