1. Suppose that $x, y \in G$ and that $x^{34} = y$, and $x^{99} = 1$

$$gcd(34,99) = 1$$

$$99 = 2 \cdot 34 + 31$$

$$34 = 1 \cdot 31 + 3 \Rightarrow 1 = 11 \cdot 99 - 32 \cdot 34$$

$$31 = 10 \cdot 3 + 1$$

So,
$$34(-32) + 99(11) = 1$$

So,
$$x = x^1 = x^{34(-32) + 99(11)} = (x^{34})^{-32} = y^{-32} \cdot 1 = y^{-32}$$

We can generalize, if $x^a = y$ and $x^b = 1$

Let 1 = gcd(a, b), choose integers r, s with

$$ra + sb = d$$

So,
$$x = (x^a)^r (x^b)^s = y^r$$

2. Suppose a group G contains an element a with $a^6=1$

So,
$$a^6=1$$
 and for any k with $\gcd(6,k)=1$

So, there are integeres r,s such that 6r+ks=1

So,
$$a^1 = a^{6r+ks} = (a^6)^r \cdot (a^s)^k = (a^s)^k$$

Therefore, $b = a^s$

3. $C_6 = \{1, a, a^2, a^3, a^4, a^5\}$ Aut $(C_6) = \{\text{Identity}, \phi(a) \mapsto a^5\}$

1) Case: $\phi(a) = 1$

Then,
$$\phi(a^n) = \phi(a)^n = 1$$

Ouch! not in $Aut(C_6)$

2) Case: $\phi(a) = a$

Identity!

Trivially in $Aut(C_6)$

3) Case: $\phi(a) = a^2$

$$\phi(1) = 1, \phi(a) = a^2, \phi(a^2) = a^4, \phi(a^3) = 1, \phi(a^4) = a^2, \phi(a^5) = a^4$$

Ouch! not in $Aut(C_6)$

4) Case: $\phi(a) = a^3$

$$\phi(1) = 1, \phi(a) = a^3, \phi(a^2) = 1, \phi(a^3) = a^3, \phi(a^4) = 1, \phi(a^5) = a^3$$

Ouch! not in $Aut(C_6)$

5) Case: $\phi(a) = a^4$

$$\phi(1) = 1, \phi(a) = a^4, \phi(a^2) = a^2, \phi(a^3) = 1, \phi(a^4) = a^4, \phi(a^5) = a^2$$

Ouch! not in $Aut(C_6)$

6) Case: $\phi(a) = a^5$

$$\phi(1) = 1, \phi(a) = a^5, \phi(a^2) = a^4, \phi(a^3) = a^3, \phi(a^4) = a^2, \phi(a^5) = a^4$$

Aha! in $Aut(C_6)$

4. (a)
$$1 \cdot g = g \cdot 1 = g \Rightarrow 1 \in Z(G)$$

Suppose that
$$x, y \in Z(G)$$

then,
$$xg = gx$$
, for all $g \in G$

similarly,
$$yg = gy$$
, for all $g \in G$

(b) so,
$$(xy)g = x(yg) = x(gy) = (xg)y = (gx)y = g(xy)$$

so, $(xy)g = g(xy) \Rightarrow xy \in Z(G)$

(c)
$$x^{-1}xg = x^{-1}gx$$

$$g = x^{-1}gx$$

$$gx^{-1} = x^{-1}g \Rightarrow x^{-1} \in Z(G)$$