

General information

Designation

2024

Condition O (Annealed)
UNS number A92024

EN AW-2024 (EN AW-AI Cu4Mg1)

EN number 3.1355

Typical uses

Screw machine products, aircraft applications, weapons manufacture, light beams, sports equipment.

Composition overview

Compositional summary

Al91-95 / Cu3.8-4.9 / Mg1.2-1.8 / Mn0.3-0.9 (impurities: Fe<0.5, Si<0.5, Zn<0.25, Ti<0.15, Cr<0.1, Other<0.15)

Material family

Base material

Metal (non-ferrous)

Al (Aluminum)

Composition det	ail (metals	, ceramics	and g	lasses)
Al (aluminum)				* 00 0

AI (aluminum)	* 90.8	-	94.7	%
Cr (chromium)	0	-	0.1	%
Cu (copper)	3.8	-	4.9	%
Fe (iron)	0	-	0.5	%
Mg (magnesium)	1.2	-	1.8	%
Mn (manganese)	0.3	-	0.9	%
Si (silicon)	0	-	0.5	%
Ti (titanium)	0	-	0.15	%
Zn (zinc)	0	-	0.25	%
Other	0	-	0.15	%

Price

Price * 1.06 - 1.17 USD/lb

Physical properties

Density 0.099 - 0.101 lb/in^3

Mechanical properties

10.6	-	11.2	10^6 psi
10.3	-	11.5	ksi
25.5	-	28.1	ksi
18.5	-	21.5	% strain
* 10.3	-	11.5	ksi
* 10.6	-	11.2	10^6 psi
10.3	-	11.5	ksi
3.77	-	4.06	10^6 psi
9.86	-	10.9	10^6 psi
0.325	-	0.335	
41			
52.3	-	57.8	HV
* 5.67	-	6.24	ksi
* 4.44	-	5.33	ksi
	10.3 25.5 18.5 * 10.3 * 10.6 10.3 3.77 9.86 0.325 41 52.3 * 5.67	10.3 - 25.5 - 18.5 - * 10.3 - * 10.6 - 10.3 - 3.77 - 9.86 - 0.325 - 41 52.3 - * 5.67 -	10.3 - 11.5 25.5 - 28.1 18.5 - 21.5 * 10.3 - 11.5 * 10.6 - 11.2 10.3 - 11.5 3.77 - 4.06 9.86 - 10.9 0.325 - 0.335 41 52.3 - 57.8 * 5.67 - 6.24

Parameters: Stress Ratio = 0, Number of Cycles = 1e7cycles

Stress Ratio=0

Mechanical loss coefficient (tan delta)	* 1e-4 -	0.002
---	----------	-------

Impact & fracture properties

Fracture toughness 33.7	- 35.	.5 ksi.in^0.5
-------------------------	-------	---------------

Thermal properties

Melting point	932	-	1.18e3	°F
Maximum service temperature	338	-	392	°F
Minimum service temperature	-459			°F
Thermal conductivity	109	-	114	BTU.ft/hr.ft^2.°F
Specific heat capacity	0.205	-	0.213	BTU/lb.°F
Thermal expansion coefficient	12.5	-	13.2	µstrain/°F
Latent heat of fusion	165	-	169	BTU/lb

Electrical properties

Electrical resistivity	3.6	-	3.8	µohm.cm
Galvanic potential	* -0.78	_	-0.7	V

Optical properties

Transparency Opaque

Magnetic properties

Magnetic type Non-magnetic

Bio-data

RoHS (EU) compliant grades?

Food contact

Yes

Processing properties

Metal castingUnsuitableMetal cold formingAcceptableMetal hot formingLimited useMetal press formingAcceptableMetal deep drawingLimited use

Durability

Water (fresh) Excellent Water (salt) Acceptable Weak acids Excellent Strong acids Excellent Weak alkalis Acceptable Strong alkalis Unacceptable Organic solvents Excellent Oxidation at 500C Unacceptable UV radiation (sunlight) Excellent Flammability Non-flammable

Primary production energy, CO2 and water

Embodied energy, primary production	* 7.95e4	-	8.77e4	BTU/lb
CO2 footprint, primary production	* 12.4	-	13.7	lb/lb
NOx creation	* 0.0748	-	0.0827	lb/lb
SOx creation	* 0.128	-	0.141	lb/lb
Water usage	* 3.04e4	-	3.38e4	in^3/lb

Processing energy, CO2 footprint & water				
Rough rolling, forging energy	* 859	-	949	BTU/lb
Rough rolling, forging CO2	* 0.15	-	0.166	lb/lb
Rough rolling, forging water	* 66.7	-	99.9	in^3/lb
Extrusion, foil rolling energy	* 1.59e3	-	1.76e3	BTU/lb
Extrusion, foil rolling CO2	* 0.278	-	0.308	lb/lb
Extrusion, foil rolling water	* 86.9	-	130	in^3/lb
Wire drawing energy	* 5.64e3	-	6.24e3	BTU/lb
Wire drawing CO2	* 0.985	-	1.09	lb/lb
Wire drawing water	* 137	-	205	in^3/lb
Metal powder forming energy	* 8.7e3	-	9.62e3	BTU/lb
Metal powder forming CO2	* 1.62	-	1.79	lb/lb
Metal powder forming water	* 611	-	916	in^3/lb
Vaporization energy	* 6.66e6	-	7.37e6	BTU/lb
Vaporization CO2	* 1.16e3	-	1.28e3	lb/lb
Vaporization water	* 1.79e5	-	2.68e5	in^3/lb
Coarse machining energy (per unit wt removed)	* 315	-	348	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.0549	-	0.0607	lb/lb
Fine machining energy (per unit wt removed)	* 1.31e3	-	1.45e3	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.228	-	0.252	lb/lb
Grinding energy (per unit wt removed)	* 2.41e3	-	2.67e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.421	-	0.465	lb/lb
Non-conventional machining energy (per unit wt removed)	* 6.66e4	-	7.37e4	BTU/lb
Non-conventional machining CO2 (per unit wt removed)	* 11.6	-	12.8	lb/lb

Recycling and end of life

Recycle	✓			
Embodied energy, recycling	* 1.36e4	-	1.5e4	BTU/lb
CO2 footprint, recycling	* 2.49	-	2.75	lb/lb
Recycle fraction in current supply	40.5	-	44.7	%
Downcycle	✓			
Combust for energy recovery	×			
Landfill	✓			
Biodegrade	×			
Possible substitutes for principal component				

Copper can replace aluminum in electrical applications; magnesium, titanium, and steel can substitute for aluminum in structural and ground transportation uses. Composites, wood, and steel can substitute for aluminum in construction. Glass, plastics, paper, and steel can substitute for aluminum in packaging.

Geo-economic data for principal component

Principal component Aluminum Typical exploited ore grade 30.4 33.6 % 25 % Minimum economic ore grade 39 Abundance in Earth's crust 8.2e4 ppm Abundance in seawater 5e-4 0.005 ppm Annual world production 4.34e7 ton/yr Reserves 4.67e10 -5.16e10 l. ton

Main mining areas (metric tonnes per year)

Argentina, 460e3 Australia, 1.75e6 Bahrain, 900e3 Brazil, 1.33e6 Canada, 2,9e6 China, 21.5e6 Germany, 400e3 Iceland, 825e3 India, 1.7e6 Mozambique, 560e3 Norway, 1.2e6 Qatar, 600e3 Russia, 3.95e6 South Africa, 820e3 United Arab Emirates, 1.8e6 United States, 1.95e6 Other countries, 4.65e6

Eco-indicators for principal component

Eco-indicator 95 354 millipoints/lb Eco-indicator 99 322 millipoints/lb

Notes

Other notes

Prices of Aluminum alloys fluctuate greatly and are dependent on batch size, unit size, forming methods, etc.

Keywords

AVIONAL, Alcan Alluminio SpA (ITALY); AVIONAL, Aluminium Walzwerke Singen GmbH (GERMANY); ALUDUR 570, German manufacture (Germany); LENNEDUR, Westfalische Leichmetallwerke GmbH (GERMANY); CHITONAL-24, Alcan Alluminio SpA (ITALY); CHITONAL-24, Alumix S.P.A. (ITALY); AK 24, Otto Fuchs Metallwerke (GERMANY); AK 25, Otto Fuchs Metallwerke (GERMANY); ALCAN GB-24S, British Alcan Aluminium plc (UK); AK 15, Otto Fuchs Metallwerke (GERMANY);

Standards with similar compositions

The following information is taken from ASM AlloyFinder 3 - see link to References table for further information.

CSA HA.4 0.2024 (ON Canada)

CSA HA.4 2024Alclad (ON Canada)

CSA HA.5 0.2024 (ON Canada)

CSA HA.6 0.2024 (ON Canada)

CSA HA.7 0.2024 (ON Canada)

ISO: Al-Cu4Mg1 UK (BS): 2L97

UK (BS Pre-1980): n/a USA (UNS): A92024 Germany (W.-Nr): 3.1355 Germany (DIN): AICuMg2

France: A-U4G1 Italy (UNI): 9002/4

Links

ProcessUniverse

Producers

Reference

Shape