Física Computacional Actividad 9

Solución numérica de ecuaciones diferenciales ordinarias.

Antonio José López Moreno 23 de Mayo de 2019

Introducción

En trabajo consiste en resolver un sitema de ecuaciones diferenciales que consiste en el movimiento de dos masas que se encuentras acopladas a tres resortes.

Ecuacioens de movimiento

Para la masa 1 la ecuación que describe su movimiento es la siguiente.

$$\ddot{x_1}m_1 = -\dot{x_1}b_1 - k_1(x_1 - L_1) - k_2(x_1 + L_2 - x_2)$$

Emplearemos el siguiente cambio de variable, para convertir la ecuación diferencial de segundo orden, en dos ecuaciones de primer orden.

$$y_1 = \dot{x_1}$$

Nuestra encuaciones resultantes para la masa 1 son las siguientes.

$$y_1 = \dot{x_1} \tag{1}$$

$$\dot{y}_1 = (-y_1b_1 - k_1(x_1 - L_1) - k_2(x_1 + L_2 - x_2))/m_1 \tag{2}$$

Para la masa 2 la ecaución que describe su movmiento es la siguiente.

$$\ddot{x}_2 m_2 = -\dot{x}_2 b_2 - k_3 (x_2 - L_2 - L_1) - k_2 (x_2 - L_2 - x_1)$$

Emplearemos el siguiente cambio de variable, para convertir la ecuación diferencial de segundo orden, en dos ecuaciones de primer orden.

$$y_2 = \dot{x_2}$$

Nuestra encuaciones resultantes para la masa 2 son las siguientes.

$$y_2 = \dot{x_2} \tag{3}$$

$$\dot{y}_2 = (-y_2b_2 - k_3(x_2 - L_2 - L_1) - k_2(x_2 - L_2 - x_1))/m_2 \tag{4}$$

Los valores de L_1 y L_2 son las distancias donde los resortes estan equilibrio inicialmente, respectivamente para m_1 y m_2 poniendo como nuestro valor cero la pared izquierda de la figura. Por otro lado x_1 y x_2 son las posiciones de m_1 y m_2 a partir de nuestro origen.

Función odeint de scipy

Para resolver nuestro sistemas de ecuacions diferenciales utilizaremos la funcion odeint de scipy, introduciendole las escauciones (1), (2), (3), (4).

Gráfica de posiciones cuando no hay fricción

Utilizaremos las siguientes condiciones iniciales, donde la fricción sera 0.

$$k_1 = k_2 = k_3 = 1$$

 $L_1 = L_2 = 1$
 $m_1 = m_2 = 1$
 $b_1 = b_2 = 0$

Figura 1: Caption

Gráfica de posiciones cuando hay fricción

Utilizaremos las siguientes condiciones iniciales, donde la fricción sera 0.

$$k_1 = k_2 = k_3 = 1$$
 $L_1 = L_2 = 1$
 $m_1 = m_2 = 1$
 $b_1 = 0.3$
 $b_2 = 0.7$

Figura 2: Caption