TRƯỜNG ĐẠI HỌC CẦN THƠ KHOA SƯ PHẠM BỘ MÔN SỬ PHẠM TOÁN HỌC

Bài tập nhóm **GIẢI TÍCH SỐ**

Nhóm 3

Nguyễn Ngọc Đăng Duy	B1700014
Lê Hữu Kiệt	B1700024
Phan Thanh Tâm	B1700038
Nguyễn Hiếu Thanh	B1700039

Chương 1

Số gần đúng và sai số

Bài 1. Xác định sai số tuyệt đối giới hạn của số xấp xỉ sau:

$$c = 1,3241; \ \Delta_c = 0,23.10^{-2}$$

Giải

Sai số tuyệt đối giới hạn: $\Delta_c = 0,23.10^{-2}$.

Sai số tương đối giới hạn: $\delta_c = \frac{\Delta_c}{|a|} = 0,00173702893.$

Bài 2. Xác định các chữ số đáng tin và đáng nghi trong trường hợp:

$$b = 0,2351; \ \Delta_b = 0,5.10^{-3}$$

Giải

Ta có $\Delta_b = 0, 5.10^{-3}$.

Dễ thấy $0, 5.10^{-4} \leq \Delta_b \leq 0, 5.10^{-3}$ nên các chữ số 0, 2, 3, 5 là các chữ số đáng tin; chữ số 1 là chữ số đáng nghi.

Bài 3. Xác định các chữ số đáng tin và đáng nghi trong trường hợp:

$$c = 0,2164; \delta_c = 0,5.10^{-3}$$

Giải

Ta có $\delta_c = \frac{\Delta_c}{|c|} \Rightarrow \Delta_c = \delta_c. |c| = 0, 5.10^{-3}.0, 2164 = 0, 0001082 = 0, 1082.10^{-3}.$

Để thấy $0,5.10^{-4} \leqslant \Delta_c \leqslant 0,5.10^{-3}$ nên các chữ số 0,2,1,6 là đáng tin; chữ số 4 là đáng nghi

Bài 4. Tìm sai số tuyệt đối giới hạn và sai số tương đối giới hạn của hàm số:

$$y = (1 + abc)^{\alpha}$$

biết a = 2, 13; b = 4, 39; c = 0, 72.

Giải

Ta có: $a=2, 13\pm 0, 5.10^{-2}$, $b=4, 39\pm 0, 5.10^{-2}, \, c=0, 72\pm 0, 5.10^{-2}$

Lại có:
$$\begin{cases} y_a' = \alpha.bc.(1+abc)^{\alpha-1} \\ y_b' = \alpha.ac.(1+abc)^{\alpha-1} \\ y_c' = \alpha.ab.(1+abc)^{\alpha-1} \end{cases}.$$

Sai số tuyệt đối giới han của hàm số là:

$$\Delta_y = |y_a'| \cdot \Delta_a + |y_b'| \cdot \Delta_b + |y'c| \cdot \Delta_c$$

$$= 3,1608.\alpha.7,732504^{\alpha-1} + 9,3507.\alpha.7,732504^{\alpha-1} + 1,5336.\alpha.7,732504^{\alpha-1}$$

$$= \alpha.7,732504^{\alpha-1}.14,0451$$

$$= \alpha.7,732504^{\alpha}.1,816371514$$

Sai số tương đối giới hạn của hàm số là

$$\delta_y = \frac{\Delta_y}{|y|} = \frac{\alpha.7,732504^{\alpha}.1,816371514}{(1+2,13.4,39.0,72)^{\alpha}} = \alpha.1,816371514$$

Chương 2

Lý thuyết nội suy

Câu 1. Tìm đa thức nội suy Larange của hàm số y = f(x) cho bằng bảng sau:

x	321	322,8	324,2	325
y	2,50651	2,50893	2,51081	2,51188

x	-2	1	3	4	7
y	12	37	51	67	127

và tính gần đúng giá trị f(323, 5).

và tính gần đúng giá trị f(5,1).

Giải

d) Ta có:

$$y_0.L_0(x) = 2,50651 \cdot \frac{(x - 322, 8)(x - 324, 2)(x - 325)}{(321 - 322, 8)(321 - 324, 2)(321 - 325)}$$

$$= \frac{250651}{100000} \cdot \frac{-25}{576} \left(x^3 - \frac{4862}{5} x^2 + \frac{7879661}{25} x - 34053968 \right)$$

$$= \frac{1420849532687}{384000} - \frac{1973417683019}{57600000} x + \frac{6767577}{64000} x^2 - \frac{250651}{2304000} x^3$$

Thay x = 323, 5, ta được $y_0.L_0(323, 5) = -0,07996027$

$$y_1.L_1(x) = 2,50893 \cdot \frac{(x-321)(x-324,2)(x-325)}{(322,8-321)(322,8-324,2)(322,8-325)}$$
$$= -\frac{188572098741}{12320} + \frac{6247598101}{44000}x - \frac{1756251}{4000}x^2 + \frac{27877}{61600}x^3$$

Thay x = 323, 5, ta được $y_1.L_1(323, 5) = 1,18794034$

$$y_2.L_2(x) = 2,51081 \cdot \frac{(x-321)(x-322,8)(x-325)}{(324,2-321)(324,2-322,8)(324,2-325)}$$
$$= \frac{845543137491}{35840} - \frac{56108317827}{256000}x + \frac{43437013}{64000}x^2 - \frac{251081}{358400}x^3$$

Thay x = 323, 5, ta được $y_2.L_2(323, 5) = 1,83897216$

$$y_3.L_3(x) = 2,51188 \cdot \frac{(x-321)(x-322,8)(x-324,2)}{(325-321)(325-322,8)(325-324,2)}$$
$$= -\frac{26369413998039}{2200000} + \frac{490348427793}{4400000}x - \frac{690767}{2000}x^2 + \frac{62797}{176000}x^3$$

Thay x = 323, 5, ta được $y_3.L_3(323, 5) = -0,43708139$

Do đó ta có đa thức nội suy Larange có dạng:

$$P(x) = y_0.L_0(x) + y_1.L_1(x) + y_2.L_2(x) + y_3.L_3(x)$$

$$= \frac{6766686623}{369600000} - \frac{47439221}{316800000}x + \frac{3}{6400}x^2 - \frac{43}{88704000}x^3$$

và

$$L(323,5) = y_0.L_0(323,5) + y_1.L_1(323,5) + y_2.L_2(323,5) + y_3.L_3(323,5)$$

= 2.50987084

Vậy giá trị gần đúng của f(323,5) là $P(323,5)\approx 2,50987084$ e) Ta có:

$$y_0 L_0(x) = 12 \cdot \frac{(x-1)(x-3)(x-4)(x-7)}{(-2-1)(-2-3)(-2-4)(-2-7)}$$
$$= \frac{56}{45} - \frac{58}{27}x + \frac{10}{9}x^2 - \frac{2}{9}x^3 + \frac{2}{135}x^4$$

$$y_1 L_1(x) = 37 \cdot \frac{(x+2)(x-3)(x-4)(x-7)}{(1+2)(1-3)(1-4)(1-7)}$$
$$= \frac{518}{9} - \frac{703}{54}x - \frac{407}{36}x^2 + \frac{37}{9}x^3 - \frac{37}{108}x^4$$

$$y_2 L_2(x) = 51 \cdot \frac{(x+2)(x-1)(x-4)(x-7)}{(3+2)(3-1)(3-4)(3-7)}$$
$$= -\frac{357}{5} + \frac{255}{4}x + \frac{153}{8}x^2 - \frac{51}{4}x^3 + \frac{51}{40}x^4$$

$$y_3 L_3(x) = 67 \cdot \frac{(x+2)(x-1)(x-3)(x-7)}{(4+2)(4-1)(4-3)(4-7)}$$
$$= \frac{469}{9} - \frac{2747}{54}x - \frac{67}{6}x^2 + \frac{67}{6}x^3 - \frac{67}{54}x^4$$

$$y_4 L_4(x) = 127 \cdot \frac{(x+2)(x-1)(x-3)(x-4)}{(7+2)(7-1)(7-3)(7-4)}$$
$$= -\frac{127}{27} + \frac{1651}{324}x + \frac{127}{216}x^2 - \frac{127}{108}x^3 + \frac{127}{648}x^4$$

Do đó ta có đa thức nội suy Larange có dạng:

$$P(x) = y_0.L_0(x) + y_1.L_1(x) + y_2.L_2(x) + y_3.L_3(x)$$

$$= \frac{4699}{135} + \frac{455}{162}x - \frac{89}{54}x^2 + \frac{61}{54}x^3 - \frac{79}{810}x^4$$

và giá trị gần đúng của f(5,1) là $P(5,1) \approx 90,1281$.

Câu 2b. Tìm đa thức nội suy Newton của hàm số y = f(x) được cho bằng bảng sau:

\overline{x}	-0,35	-0, 1	0, 15	0,4	0,65
y	0,387322	0,762616	1,501553	2,956482	5,821162

và tính gần đúng giá trị f(0,55).

Giải

Ta có bảng tỉ sai phân như sau:

x_i	y_i	TSP cấp 1	TSP cấp 2	TSP cấp 3	TSP cấp 4
-0,35	0,387322				
		1,501176			
-0, 1	0,762616		2,909144		
		2,955748		3,758389	
0, 15	1,501553		5,727936		3,641707
		5,819716		7,400096	
0, 4	2,956482		11,278008		
		11,45872			
0,65	5,821162				

Đa thức nội suy Newton:

$$f(x) = 0,387323 + 1,501176(x + 0,35) + 2,909144(x + 035)(x + 0,1) + 3,758389(x + 0,35)(x + 0,1)(x - 0,15) + 3,641707(x + 0,35)(x + 0,1)(x - 0,15)(x - 0,4)$$

Khi đó, ta tính được f(0,55) = 4,447517528.

Câu 3b. Tìm đa thức nội suy Newton tiến và lùi của hàm số y=f(x) được cho bằng bảng sau:

\boldsymbol{x}	1,9	2,1	2,3	2,5	2,7
\overline{y}	11,18	14,78	17,89	23,52	28,56

và tính gần đúng giá trị f(2,37).

Giải

Ta có bảng sai phân:

x_i	y_i	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$
1,9	11,18				
		3,6			
2,1	14,78		-0,49		
		3,11		3,01	
2,3	17,89		2,52		-6,12
		5,63		-3,11	
2,5	23,52		-0,59		
		5,04			·

x_i	y_i	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$
2,7	28,56				

Do đó:

Da thức nội suy Newton dạng tiến là:

$$P_t(x) = 11, 18 + 18(x - 1, 9) - \frac{49}{8}(x - 1, 9)(x - 2, 1) + \frac{1505}{24}(x - 1, 9)(x - 2, 1)(x - 2, 3) - \frac{1275}{8}(x - 1, 9)(x - 2, 1)(x - 2, 3)(x - 2, 3)(x - 2, 5)$$

và Đa thức nội suy Newton dạng lùi là:

$$P_l(x) = 28,56 + 25,2(x-2,7) - \frac{59}{8}(x-2,7)(x-2,5) - \frac{1555}{24}(x-2,7)(x-2,5)(x-2,3) - \frac{1275}{8}(x-2,7)(x-2,5)(x-2,3)(x-2,1)$$

Khi đó ta tính được các giá trị:

$$f_t(2,37) \approx P_t(2,37) = 19,60382028$$
 và $f_l(2,37) \approx P_l(2,37) = 19,63382028$

Câu 5b. Tính gần đúng tổng sau:

$$S_n = 1^2 + 4^2 + 7^2 + \ldots + (3n+1)^2$$

biết S_n là một đa thức bậc ba.

Giải

Ta có bảng sau:

n	S_n	Δy	$\Delta^2 y$	$\Delta^3 y$
0	1			
		16		
1	17		33	
		49		18
2	66		51	
		100		
3	166			

Áp dụng công thức nội suy Newton dạng tiến ta tìm được:

$$S_n = 1 + 16n + \frac{33}{2}n(n-1) + 3n(n-1)(n-2)$$

Câu 8c. Cho bảng giá trị:

x	2	4	6	8	10	12
$f(x_i)$	7,32	8,24	9,2	10,19	11,01	12,05

Tìm hàm xấp xỉ bằng phương pháp bình phương bé nhất biết quan hệ giữa x và y=f(x) là:

$$y = ax^b$$
.

Giải

Ta có $y = ax^b \Leftrightarrow \ln y = \ln (ax^b) = \ln a + b \ln x$.

Đặt $Y = \ln y$, $X = \ln x$, A = b, $B = \ln a$, ta có Y = AX + B.

Ta lập bảng:

	x_i	y_i	$X_i = \ln x_i$	$Y_i = \ln y_i$	X^2	XY
	2	7,32	0,693147	1,99061	0,480453	1,379785
	4	8,24	1,386294	2,109	1,921811	2,923694
	6	9,2	1,791759	2,219203	3,2104	3,976277
	8	10,19	2,079442	2,321407	4,324079	4,827231
	10	11,01	2,302585	2,398804	5,301898	5,52345
	12	12,05	2,484907	2,489065	6,174763	6,185095
\sum	42	58,01	10,738134	13,528089	21,413404	24,815532

Vậy hệ số A, B được xác định bởi hệ phương trình sau:

$$\begin{cases} 10,738134A + 6B = 13,528089 \\ 21,413404A + 10,738134B = 24,815532 \end{cases}$$

Giải hệ phương trình ta nhận được: $\begin{cases} A = 0,275320 \\ B = 1,761945 \end{cases}$, từ đó: $\begin{cases} a = e^B = 5,823754 \\ b = A = 0,275320 \end{cases}$

Vây $y = 5,823754x^{0,275320}$.

Câu 9a. Cho bảng giá trị:

x_i	19	22	25	28	32	35
$f(x_i)$	0,66	0,367	0,223	0,14	0,084	0,06

Tìm hàm xấp xỉ bằng phương pháp bình phương b
é nhất biết quan hệ giữa x và y=f(x) là:

$$y = ax^2 + bx + c$$

Giải

Ta có bảng số liệu sau:

x_i	y_i	x_i^2	x_iy_i	x_i^3	x_i^4	$x_i^2 y_i$
19	0,66	361	12,54	6859	130321	238,26
22	0,367	484	8,074	10648	234256	177,628
25	0,223	625	5,575	15625	390625	139,375
28	0,14	784	3,92	21952	614656	109,76
32	0,084	1024	2,688	32768	1048576	86,016

	x_i	y_i	x_i^2	x_iy_i	x_i^3	x_i^4	$x_i^2 y_i$
	35	0,06	1225	2,1	42875	1500625	73,5
\sum	161	1,534	4503	34,897	130727	3919059	824,539

a, b, c thỏa mãn hệ phương trình:

$$\begin{cases} 3919059a + 130727b + 4503c &= 824,539 \\ 130727a + 4503b + 161c &= 34,897 \Leftrightarrow \begin{cases} a = 3,202 \cdot 10^{-3} \\ b = -0,207577 \\ c = 3,422690 \end{cases}$$

Vậy $f(x) = 3,202 \cdot 10^{-3}x^2 - 0,207577x + 3,422690.$

Câu 10e. Cho bảng giá trị:

x_i	0	1	2	3	4	5	6	7
$f(x_i)$	1,4	1,3	1,4	1,1	1,3	1,8	1,6	2,3

Tìm hàm xấp xỉ bằng phương pháp bình phương bé nhất biết quan hệ giữa x và y=f(x) là:

$$y = e^{ax+b}$$

Giải

Ta có $y = e^{ax+b} \Leftrightarrow \ln y = ax + b$.

Đặt $Y = \ln y$ ta được hàm Y = ax + b.

Ta có bảng số liệu sau:

x_i	y_i	$Y_i = \ln y_i$	x_i^2	x_iY_i
0	1,4	0,336472	0	0
1	1,3	0,262364	1	0,262364
2	1,4	0,336472	4	0,672944
3	1,1	0,09531	9	0,28593
4	1,3	0,262364	16	1,049456
5	1,8	0,587787	25	2,938935
6	1,6	0,470004	36	2,820024
7	2,3	0,832909	49	5,830363
$\sum 28$	12,2	3,183682	140	13,860016

Từ đó ta có hệ phương trình:

$$\begin{cases} 140a + 28b &= 13,86002 \\ 28a + 8b &= 3,183683 \end{cases} \Leftrightarrow \begin{cases} a &= 0,064694 \\ b &= 0,171533 \end{cases}.$$

Vậy Y = 0,064694x + 0,171533.

Từ đó ta có $y = e^{0.064694x + 0.171533}$.

Chương 3

Tính gần đúng đạo hàm và tích phân

Bài 1. Bằng phương pháp hình thang và Simpson 1/3, với n=10, tính gần đúng và đánh giá sai số các tích phân sau:

b)
$$I = \int_{0}^{\pi} \sin x dx$$
 f) $I = \int_{2}^{4} \frac{1}{(x-1)^{2}} dx$ d) $I = \int_{0}^{6} \frac{1}{x^{2}+1} dx$ j) $I = \int_{0.1}^{1.1} \frac{1}{(1+4x)^{2}} dx$

Giải

b) * Công thức Simpson 1/3

$$h = \frac{\pi - 0}{10} = \frac{\pi}{10}$$
. Ta có bảng sau:

i	x_i	y_i	$=f(x_i)$	$=\sin x$
0	0	0		
1	$\frac{\pi}{10}$		0,3090	
2	$\frac{\pi}{5}$			0,5878
3	$\frac{3\pi}{10}$		0,8090	
4	$\frac{2\pi}{5}$			0,9511
5	$\frac{\pi}{2}$		1	
6	$\frac{3\pi}{5}$			0,9511
7	$\frac{7\pi}{10}$		0,8090	
8	$\frac{4\pi}{5}$			0,5878
9	$\frac{9\pi}{10}$		0,3090	
10	π	0		

Theo công thức Simpson 1/3, ta có:

$$I_S \approx \frac{\pi}{30} \cdot [0 + 4.3, 2361 + 2.3, 0777] \approx 2,000105435$$

Đánh giá sai số:

$$|I - I_S| \le \frac{\max\limits_{0 \le x \le \pi} |f^{(4)}(x)|}{180} (\pi - 0) h^4 = \frac{1}{180} . \pi . \left(\frac{\pi}{10}\right)^4 \approx 0,00017$$

★ Công thức hình thang

Ta có
$$h = \frac{\pi - 0}{10} = \frac{\pi}{10}$$

Ta được bảng sau:

x_i	y_i	$= f(x_i) = \sin x$
0	0	
$\frac{\pi}{10}$		0,3090
$\frac{\pi}{5}$		0,5878
$\frac{3\pi}{10}$		0,8090
$\frac{2\pi}{5}$		0,9511
$\frac{\pi}{2}$		1
$\frac{3\pi}{5}$		0,9511
$\frac{7\pi}{10}$		0,8090
$\frac{4\pi}{5}$		0,5878
$\frac{9\pi}{10}$		0,3090
1	0	
	0	6,3138

Do đó giá trị gần đúng của tích phân đã cho là:

$$I_T \approx \frac{\pi}{2.10}.(0 + 2.6, 3138) \approx 1,9835$$

* Đánh giá sai số: Ta có $M = \max_{0 \le x \le \pi} |f''(x)| = 1$ và $\bar{I} = 1,98$

nên
$$|I_T - \bar{I}| \le \frac{M}{12} \cdot (\pi - 0) \cdot \left(\frac{\pi}{10}\right)^2 \approx 0,026$$

và
$$|I_T - \bar{I}| = 3, 5.10^{-3}$$

Do đó
$$|I - \bar{I}| \leq |I - I_T| + |I_T - \bar{I}| \leq 0,0295.$$

d) * Công thức Simpson 1/3

Ta có
$$h = \frac{6-0}{10} = \frac{3}{5}$$

Ta có bảng sau:

i	x_i	$y_i = .$	$f(x_i) = \frac{1}{x}$	$\frac{1}{c^2+1}$
0	0	1		
1	0,6		0,7353	
2	1, 2			0,4098
3	1,8		0,2358	
4	2, 4			0,1479
5	3		0, 1	
6	3,6			0,0716
7	4, 2		0,0536	
8	4,8			0,0416
9	5,4		0,0332	
10	6	0,0270		

Theo công thức Simpson 1/3, ta có:

$$I_S \approx \frac{1}{5} \cdot [1,0270 + 4.1,1579 + 2.0,6980] \approx 1,410973$$

Đánh giá sai số:

$$|I - I_S| \le \frac{\max_{0 \le x \le 6} |f^{(4)}(x)|}{180} (6 - 0) h^4 = \frac{24}{180} \cdot 6 \cdot \left(\frac{3}{5}\right)^4 = 0,10368$$

⋆ Công thức hình thang

Ta có $h = \frac{6-0}{10} = \frac{3}{5}$ Ta có bảng sau:

i	x_i	$y_i =$	$f(x_i) = \frac{1}{x^2 + 1}$
0	0	1	
1	0,6		$\frac{25}{34}$
2	1,2		$\frac{25}{61}$
3	1,8		$\frac{25}{106}$
4	2,4		$\frac{25}{169}$
5	3		$\frac{1}{10}$
6	3,6		$\frac{25}{349}$
7	4, 2		$\frac{25}{466}$
8	4,8		$\frac{25}{601}$

	i	x_i	$y_i = f(x_i) = \frac{1}{x^2 + 1}$		
!	9	5,4		$\frac{25}{754}$	
1	0	6	$\frac{1}{37}$		
			$\frac{38}{37}$	$\frac{11967477}{6543383}$	

Do đó giá trị gần đúng của tích phân đã cho là:

$$I_T \approx \frac{6-0}{2.10} \cdot (\frac{38}{37} + 2 \cdot \frac{11967477}{6543383}) = 1,40547$$

* Đánh giá sai số Ta có $M = \max_{0 \leqslant 6} |f''(x)| = 2$ và $\bar{I} = 1,41$

nên
$$|I_T - \bar{I}| \leqslant \frac{M}{12}.(6 - 0).\left(\frac{3}{5}\right)^2 = 0,36$$

và
$$|I_T - \bar{I}| = 4,53.10^{-3}$$

Do đó
$$|I - \bar{I}| \leq |I - I_T| + |I_T - \bar{I}| \leq 0,364653.$$

Do đó
$$|I - \bar{I}| \le |I - I_T| + |I_T - \bar{I}| \le 0,364653.$$

f) Ta có $h = \frac{b - a}{n} = \frac{4 - 2}{10} = 0,2$ và $f(x) = \frac{1}{(x - 1)^2}$

⋆ Công thức hình thang

Ta có bảng sau:

x_i	$y_i =$	$f\left(x_{i}\right) = \frac{1}{\left(x_{i} - 1\right)^{2}}$
2,0	1	
2, 2		$\frac{25}{36}$
2,4		$\frac{25}{49}$
2,6		$\frac{25}{64}$
2,6		$\frac{25}{81}$
3,0		$\frac{1}{4}$
3, 2		$\frac{25}{121}$
3,4		$\frac{25}{144}$
3,6		$\frac{25}{169}$
3,8		$\frac{25}{196}$

x_i	$y_i =$	$f\left(x_{i}\right) = \frac{1}{\left(x_{i}-1\right)^{2}}$
4,0	$\frac{1}{9}$	
	$\frac{10}{9}$	2,809618197

Vậy theo công thức hình thang ta tính được giá trị gần đúng của tích phân là:

$$I \approx \int_{2}^{4} \frac{1}{(x-1)^{2}} dx = \frac{4-2}{2(10)} \left(\frac{10}{9} + 2(2,809618197) \right) = 0,6730347505$$

Nếu làm tròn đến năm chữ số thập phân thì $I_T=0,67303.$

Đánh giá sai số theo công thức tích phân, ta có:

$$f'(x) = -\frac{2}{(x-1)^3}; \quad f''(x) = \frac{6}{(x-1)^4}$$

Do hàm f''nghịch biến trên đoạn [2;4]nên $M=\max_{2\leqslant x\leqslant 4}|f''(x)|=|f''\left(2\right)|=6.$

Nên
$$|I - I_T| \le \frac{6}{12} (4 - 2) (0, 2)^2 = 0,04.$$

Và
$$|I_T - \overline{I}| = 4,7505.10^{-6}$$

Do đó
$$|I - \overline{I}| \le |I - I_T| + |I_T - \overline{I}| = 0.04 + 4.7505.10^{-6}$$
.

 \star Áp dụng công thức Simpson 1/3

Ta có bảng:

i	x_i	$f\left(x_{i}\right) = \frac{1}{\left(x_{i} - 1\right)^{2}}$			
0	2,0	1			
1	2, 2		$\frac{25}{36}$		
2	2,4			$\frac{25}{49}$	
3	2,6		$\frac{25}{64}$		
4	2,8			$\frac{25}{81}$	
5	3,0		$\frac{1}{4}$		
6	3, 2			$\frac{25}{121}$	
7	3,4		$\frac{25}{144}$		

,	i	x_i	$f\left(x_{i}\right) = \frac{1}{\left(x_{i} - 1\right)^{2}}$		
8	8	3,6			$\frac{25}{169}$
(9	3,8		$\frac{25}{196}$	
1	.0	4,0	$\frac{1}{9}$		
			$\frac{10}{9}$	1,636231576	1,173386621

Áp dụng công thức Simpson 1/3 ta tính gần đúng tích phân là:

$$I_S = \int_{2}^{4} \frac{1}{(x-1)^2} dx \approx \frac{0.2}{3} \left[\frac{10}{9} + 4(1,6366231576) + 2(1,173386621) \right] = 0,6668540438$$

Nếu lấy 5 chữ số thập phân, khi đó $\overline{I}=0,66685$. Nên $\left|I_S-\overline{I}\right|=4.0438\times 10^{-6}$ Đánh giá sai số theo công thức, ta có:

$$f^{(3)}(x) = \frac{24}{(x-1)^5}; \quad f^{(4)}(x) = \frac{120}{(x-1)^6}$$

Do $f^{(4)}(x)$ là hàm nghịch biến trên đoạn [2;4] nên $M = \max_{2 \leqslant x \leqslant 4} \left| f^{(4)}(x) \right| = \left| f^{(4)}(2) \right| = 120$

Do đó
$$|I - I_S| \le \frac{120}{180} \times (4 - 2) \times (0, 2)^4 = 0,05(3)$$

Vậy
$$|I - \overline{I}| \le |I - I_S| + |I_S - \overline{I}| = 0,05(3) - 4.0438 \times 10^{-6}$$

Bài 5. Tính gần đúng tích phân $I=\int\limits_{-0,8}^{0,8}\frac{\sin^2x}{\sqrt{1-\cos x}}\mathrm{d}x$ bằng công thức Simpson với

n=16 và đánh giá sai số của kết quả vừa nhận được.

Giải

Ta có
$$h = \frac{0.8 - (-0.8)}{16} = 0.1.$$

Ta lập được bảng sau:

i	x_i	$y_i = f(x_i) = \frac{\sin^2 x}{\sqrt{1 - \cos x}}$		
0	-0, 8	0,934411509		
1	-0, 7		0,85582621	
2	-0,6			0,762860112
3	-0, 5		0,656932407	
4	-0, 4			0,539742953
5	-0, 3		0,413235796	
6	-0, 2			0,279557228

i	x_i	$y_i = f(x_i) = \frac{\sin^2 x}{\sqrt{1 - \cos x}}$		
7	-0, 1		0,141009326	
8	0,001			0,001414213
9	0, 1		0,141009326	
10	0, 2			0,279557228
11	0, 3		0,413235796	
12	0, 4			0,539742953
13	0, 5		0,656932407	
14	0,6			0,762860112
15	0,7		0,85582621	
16	0,8	0,934411509		
		1,868823017	4,134007477	3,165734799

Theo công thức Simpson 1/3, ta có:

$$I_S \approx \frac{0,1}{3} \cdot [1,868823017 + 4.4,134007477 + 2.3,165734799] \approx 0,824544084$$

* Đánh giá sai số:

$$|I - I_S| \le \frac{\max\limits_{-0.8 \le x \le 0.8} |f^{(4)}(x)|}{180} (0.8 + 0.8) h^4 = \frac{3.35366}{180} \cdot 1, 6 \cdot (0.1)^4 \approx 1.98103 \cdot 10^{-6}$$

j) Ta có
$$h = \frac{1, 1 - 0, 1}{10} = 0, 1$$
 và $g(x) = \frac{1}{\left(1 + 4x\right)^2}$

Ta tìm được các đạo hàm của g(x):

$$g'(x) = -\frac{8}{(1+4x)^3}; \quad g''(x) = \frac{96}{(1+4x)^4}; \quad g^{(3)(x)} = -\frac{1536}{(1+4x)^5}; \quad g^{(4)}(x) = \frac{30720}{(1+4x)^6}$$

★ Công thức hình thang

Ta có bảng giá trị:

	x_i	$y_i = g(x_i) =$	$\frac{1}{(1+4x_i)^2}$
0	0,1	$\frac{25}{49}$	
1	0, 2		$\frac{25}{81}$
2	0.3		$\frac{25}{121}$
3	0,4		$\frac{25}{169}$
4	0,5		$\frac{1}{9}$

	x_i	$y_i = g(x_i) =$	$\frac{1}{(1+4x_i)^2}$
5	0,6		$\frac{25}{289}$
6	0,7		$\frac{25}{361}$
7	0,8		$\frac{25}{441}$
8	0,9		$\frac{25}{529}$
9	1,0		$\frac{1}{25}$
10	1,1	$\frac{25}{729}$	
		0,5444976344	1,03399924

Vậy theo công thức hình thang, giá trị gần đúng của tích phân cần tìm là:

$$I_T = \int_{0,1}^{1,1} g(x) dx \approx \frac{0,1}{2} [0,5444976344 + 2(1,03399924)] = 0,1306248057$$

Nếu làm tròn đến năm chữ số thập phân thì $\overline{I} = 0,13062$.

* Đánh giá sai số theo công thức tích phân:

Ta có
$$M = \max_{0,1 \le x \le 1,1} |g''(x)| = |g''(1,1)| = 0,1129005854.$$

Nên
$$|I - I_T| \le \frac{M}{12} (1, 1 - 0, 1) (0, 1)^2 = 9,408382116.10^{-5}.$$

và $|I_T - \overline{I}| = 4,8075.10^{-6}.$

Do đó
$$\left|I - \overline{I}\right| \le |I - I_T| + \left|I_T - \overline{I}\right| \le 9,408382116.10^{-5} + 4,8075.10^{-6}$$
.

Chương 4

Giải gần đúng phương trình đại số và siêu việt

Bài 2. Dùng phương pháp lặp đơn, hãy tìm nghiệm của các phương trình:

- c) $x \sin x = 0.25$ với sai số 10^{-2} trong khoảng phân lý nghiệm (1, 1, 5).
- f) $2^x 5x 3 = 0$ với sai số 10^{-4} trong khoảng phân ly nghiệm (4; 5).
- i) $(x-1)^2 = \frac{1}{2}e^x$ với sai số 10^{-2} trong khoảng phân ly nghiệm (0;0,5).
- j) $x = \ln x + 3$ với sai số 10^{-3} trong khoảng phân ly nghiệm (4; 5)

Giải

- c) Đặt $f(x) = x \sin x 0,25$. Ta có:
 - f(x) liên tục trên khoảng (1; 1, 5).
 - $f'(x) = 1 \cos x > 0$, $\forall x \in (1, 1, 5)$ nên hàm số đồng biến trên đoạn (1, 1, 5).
 - f(1) = 0.7325, f(1,5) = 1.2238, suy ra f(1) f(1,5) > 0.

Từ đây ta suy ra hàm số vô nghiệm trên đoạn (1; 1, 5).

- f) Đặt $f(x) = 2^x 5x 3$. Ta có:
 - f(x) liên tục trên khoảng (4;5).
 - f(4) f(5) < 0.
 - $f'(x) = 2^x \ln 2 5 > 0, \forall x \in (4; 5).$

Do đó: phương trình f(x) = 0 có một nghiệm trên khoảng (4; 5).

Do f'(x) > 0 nên ta đặt $\varphi(x) = x - \frac{f(x)}{M}$. Trong đó:

$$M \ge \max_{x \in (4;5)} |f'(x)| \approx 17,1807$$

Chọn
$$M = 17, 1807$$
, suy ra $\varphi(x) = x - \frac{f(x)}{17, 1807} = \frac{-2^x + 22, 1807x + 3}{17, 1807}$.

Ta có
$$\varphi'(x) = \frac{-2^x \ln 2 + 22,1807}{17,1807}$$
 và $\max_{x \in (4;5)} |\varphi'(x)| < |\varphi'(4)| = 0,6455.$

Chọn L = 0,6455.

Chọn $x_0 = 4, 7$, ta có xấp xỉ nghiệm trong bảng sau:

n	$x_n = \varphi\left(x_{n-1}\right)$	$ x_n - x* \le 1,82087 x_n - x_{n-1} $
1	4,72956	0,05382
2	4,73641	0,01247
3	4,73791	0,02731
4	4,73822	0,00056
5	4,73829	0,00013
6	4,73831	0,00004

Vậy $x^* \approx x_6 = 4,73831.$

i) Đặt
$$f(x)=(x-1)^2-\frac{1}{2}e^x=0$$
, ta có:
$$f'(x)=2(x-1)-\frac{1}{2}e^x<0 \forall x\in(0;0,5)$$

$$f(0)=\frac{1}{2}$$

$$f(0,5)=\frac{1}{4}-\frac{1}{2}.e^{\frac{1}{2}}$$

Từ đây ta có f(0).f(0,5)<0 và f(x) đơn điệu giảm trên khoảng (0;0,5) nên phương trình f(x)=0 có duy nhất nghiệm trên khoảng (0;0,5)

Phương trình đã cho tương đương với

$$x = 1 - \sqrt{\frac{e^x}{2}}$$

Đặt
$$\varphi(x) = 1 - \sqrt{\frac{e^x}{2}}$$
, ta có:

$$\varphi'(x) = -\sqrt{\frac{e^x}{8}}$$

$$\max_{x \in [0;0,5]} |\varphi'(x)| \approx 0,45397$$

Do đó $|x_n - x^*| \le 0,83140|x_n - x_{n-1}|$ Chọn x = 0,1, ta có xấp xỉ nghiệm của phương trình được cho trong bảng sau:

n	$x_n = \varphi(x_{n-1})$	$0,83140 x_n - x_{n-1} $
1	0,25664	0,13023
2	0, 19608	0,05035
3	0,22006	0,01994
2	0,21065	$0,78210.10^{-2}$

Vậy nghiệm của phương trình đã cho với sai số 10^{-2} trong khoảng phân ly nghiệm (0;0,5) là $x\approx 0,21065$.

j) Đặt $f(x) = x - \ln x - 3$, ta có:

$$f'(x) = 1 - \frac{1}{x} > 0 \ \forall x \in (4; 5)$$
$$f''(x) = -\frac{1}{x^2}$$
$$f(4) = 1 - \ln 4$$
$$f(5) = 2 - \ln 5$$

Từ đây ta có f(4).f(5) < 0 và f(x) đơn điệu tăng trên khoảng (4;5) nên phương trình f(x) = 0 có duy nhất nghiệm trên khoảng (4;5).

Đặt $\varphi(x) = \ln x + 3$, ta có:

$$\varphi'(x) = \frac{1}{x}; \quad \max_{x \in [4;5]} |\varphi'(x)| = 0,25$$

Do đó
$$|x_n - x^*| \le \frac{1}{3} |x_n - x_{n-1}|$$

Chọn x = 4, 1, ta có xấp xỉ nghiệm của phương trình được cho trong bảng sau:

n	$x_n = \varphi(x_{n-1})$	$\frac{1}{3} x_n - x_{n-1} $
1	4,41099	0,10366
2	4, 48410	0,02437
3	4,50054	$0,54797.10^{-2}$
4	4,50420	$0,12198.10^{-2}$
5	4,50500	$0,27092.10^{-3}$

Vậy nghiệm của phương trình đã cho với sai số 10^{-3} trong khoảng phân ly nghiệm (4; 5) là $x\approx 4,50500.$

Chương 5

Giải tích số trong đại số tuyến tính

Bài 3 Giải hệ phương trình Ax = b bằng phương pháp lặp đơn với sai số 10^{-3} :

d)
$$A = \begin{pmatrix} 10,9 & 1,2 & 2,1 & 0,9 \\ 1,2 & 11,2 & 1,5 & 2,5 \\ 2,1 & 1,5 & 9,8 & 1,3 \\ 0,9 & 2,5 & 1,3 & 21,1 \end{pmatrix}, b = \begin{pmatrix} -7 \\ 5,3 \\ 10,3 \\ 24,6 \end{pmatrix}$$

e)
$$A = \begin{pmatrix} 20,9 & 1,2 & 2,1 & 0,9 \\ 1,2 & 21,2 & 1,5 & 2,5 \\ 2,1 & 1,5 & 19,8 & 1,3 \\ 0,9 & 2,5 & 1,3 & 32,1 \end{pmatrix}, b = \begin{pmatrix} -7 \\ 5,3 \\ 10,3 \\ 24,6 \end{pmatrix}$$

f)
$$A = \begin{pmatrix} 1 & 2 & 3 & 14 \\ 3 & -2 & 18 & 4 \\ 22 & 1 & -4 & 7 \\ 4 & 21 & -8 & -4 \end{pmatrix}$$
, $b = \begin{pmatrix} 20 \\ 26 \\ 10 \\ 2 \end{pmatrix}$

Giải

d) Ta có bảng sau:

	i=1	i=2	i=3	i=4
$ a_{ii} $	10,9	11,2	9,8	21,1
$\sum_{j=1, j \neq i}^{4} a_{ij} $	4,2	5,2	4,9	4,7

Từ đây suy ra hệ phương trình Ax = b có thể đưa về dạng x = Bx + g sao cho $||B||_{\infty} < 1$.

Từ đây suy ra hệ phương trình
$$Ax=b$$
 có thể đưa về dạng $x=Bx+g$ sao cho $\|B\|_{\infty}<1$. Ta tìm được ma trận B và g như sau:
$$B=\begin{pmatrix} 0 & -0,110091743119266 & -0,192660550458716 & -0,0825688073394495 \\ -0,107142857142857 & 0 & -0,133928571428571 & -0,223214285714286 \\ -0,214285714285714 & -0,153061224489796 & 0 & -0,13265306122449 \\ -0,042654028436019 & -0,118483412322275 & -0,0616113744075829 & 0 \end{pmatrix}$$

$$g=\begin{pmatrix} -0,642201834862385 \\ 0,473214285714286 \\ 1,05102040816327 \\ 1,16587677725118 \end{pmatrix}$$

$$g = \begin{pmatrix} -0,642201834862385 \\ 0,473214285714286 \\ 1,05102040816327 \\ 1,16587677725118 \end{pmatrix}$$

Xét $||B||_{\infty} = \max_{1 \le i \le 4} \sum_{i=1}^{4} ||b_{ij}|| = 0, 5 < 1$ nên ma trận B thỏa điều kiện hội tụ.

Ta có
$$\frac{\|B\|_{\infty}}{1-\|B\|_{\infty}}=1$$
 và chọn $x^{(0)}=g$, ta xây dựng dãy $\left\{x^{(k)}\right\}$ theo công thức $x^{(k+1)}=g$

 $Bx^{(k)}+g$, đồng thời đánh giá sai số của phương pháp, ta có kết quả sau:

k	$x^{(k)} = Bx^{(k-1)} + g$	$\ x^{(k)} - x^*\ _{\infty} = \frac{\ B\ _{\infty}}{1 - \ B\ _{\infty}} \ x^{(k)} - x^{(k-1)}\ _{\infty}$
1	$\begin{pmatrix} -0,993054045828079\\ 0,14101961129125\\ 0,961547205531943\\ 1,07244641736863 \end{pmatrix}$	0,350852210965694
2	$\begin{pmatrix} -0,931529765210858\\ 0,211448928863767\\ 1,09996976905335\\ 1,1322838031197 \end{pmatrix}$	0,138422563521411
3	$\begin{pmatrix} -0,970892720408834\\ 0,172961746149442\\ 1,0680683846522\\ 1,11278643444365 \end{pmatrix}$	0,0393629551979762
4	$\begin{pmatrix} -0,958899586619104\\ 0,185803803696713\\ 1,08498058457731\\ 1,12099100393111 \end{pmatrix}$	0,0169121999251123
5	$\begin{pmatrix} -0,964249146384074\\ 0,180422421182962\\ 1,07935664502496\\ 1,11791589378033 \end{pmatrix}$	0,00562393955235119
6	$\begin{pmatrix} -0,962319281135253\\ 0,182435203006485\\ 1,08173458303242\\ 1,11912817726331 \end{pmatrix}$	0,00237793800745756
7	$\begin{pmatrix} -0,963099103441544\\ 0,181639358897804\\ 1,08085214851347\\ 1,1186608714485 \end{pmatrix}$	0,000882434518947317

Vậy nghiệm của hệ phương trình là $x^* \approx x^{(7)}$ với sai số $\epsilon = 0,000882435 < 10^{-3}$. e) Ta có bảng sau:

	i=1	i=2	i=3	i=4
$ a_{ii} $	20,9	21,2	19,8	32,1
$\sum_{j=1, j\neq i}^{4} a_{ij} $	4,2	5,2	4,9	4,7

Từ đây suy ra hệ phương trình Ax = b có thể đưa về dạng x = Bx + g sao cho $||B||_{\infty} < 1$. Ta tìm được ma trận B và g như sau:

$$B = \begin{pmatrix} 0 & -0.0574162679425837 & -0.100478468899522 & -0.0430622009569378 \\ -0.0566037735849057 & 0 & -0.0707547169811321 & -0.117924528301887 \\ -0.106060606060606 & -0.07575757575758 & 0 & -0.0656565656565657 \\ -0.0280373831775701 & -0.0778816199376947 & -0.0404984423676012 & 0 \end{pmatrix}$$

$$g = \begin{pmatrix} -0.334928229665072 \\ 0.25 \\ 0.52020202020202 \\ 0.766355140186916 \end{pmatrix}$$

Xét $||B||_{\infty} = \max_{1 \leq i \leq 4} \sum_{j=1}^{4} ||b_{ij}|| = 0,247474747 < 1$ nên ma trận B thỏa điều kiện hội tụ. Ta có $\frac{||B||_{\infty}}{1 - ||B||_{\infty}} = 0,32885906$ và chọn $x^{(0)} = g$, ta xây dựng dãy $\{x^{(k)}\}$ theo công thức $x^{(k+1)} = Bx^{(k)} + g$, đồng thời đánh giá sai số của phương pháp, ta có kết quả sau:

k	$x^{(k)} = Bx^{(k-1)} + g$	$ x^{(k)} - x^* _{\infty} = \frac{ B _{\infty}}{1 - B _{\infty}} x^{(k)} - x^{(k-1)} _{\infty}$
1	$\begin{pmatrix} -0,434552338210166\\ 0,14177938654848\\ 0,486469070709781\\ 0,735207874779936 \end{pmatrix}$	0,0355893292558691
2	$\begin{pmatrix} -0,423608009552663\\ 0,153478278907438\\ 0,507278817838622\\ 0,747795602682095 \end{pmatrix}$	0,00684347388800811
3	$\begin{pmatrix} -0,426912703089183\\ 0,149901998962265\\ 0,504405309000642\\ 0,745734861312729 \end{pmatrix}$	0,00117609206250647
4	$\begin{pmatrix} -0,426329900614236\\ 0,150535383345483\\ 0,505162038299866\\ 0,746222415379245 \end{pmatrix}$	0,000248857286321837

Vậy nghiệm của hệ phương trình $x^* \approx x^{(4)}$ với sai số là $0,000248857 < 10^{-3}$. f) Ta có bảng sau:

		i = 1	i=2	i=3	i=4	
	$ a_i $	1	2	4	4	
j=	$\sum_{i=1, j\neq i}^{4} a_{ij} $	19	25	30	33	và

		j=1	j=2	j=3	j=4
	$ a_{jj} $	1	2	4	4
a	$\sum_{i=1, i \neq j}^{4} a_{ij} $	29	24	29	25

Do đó hệ phương trình vô nghiệm.

Bài 5 Giải gần đúng hệ phương trình Ax = b bằng phương phái Seidel với sai số 10^{-3} :

a)
$$A = \begin{pmatrix} 4 & 0.24 & -0.08 \\ 0.09 & 3 & -0.15 \\ 0.04 & -0.08 & 4 \end{pmatrix}$$
, $b = \begin{pmatrix} 8 \\ 9 \\ 20 \end{pmatrix}$

e)
$$A = \begin{pmatrix} 10 & -2 & -1 \\ -1 & 10 & -2 \\ -2 & -1 & 10 \end{pmatrix}$$
, $b = \begin{pmatrix} 3 \\ 13 \\ 26 \end{pmatrix}$

f)
$$A = \begin{pmatrix} 2 & -2 & 1 & 10 \\ 10 & -2 & -1 & 1 \\ 2 & 20 & -5 & -5 \\ 1 & 3 & 20 & -2 \end{pmatrix}$$
, $b = \begin{pmatrix} 10 \\ 10 \\ 20 \\ 20 \end{pmatrix}$

g)
$$A = \begin{pmatrix} 1 & -0.25 & -0.25 & 0 \\ -0.25 & 1 & 0 & -0.25 \\ -0.25 & 0 & 1 & -0.25 \\ 0 & -0.25 & -0.25 & 1 \end{pmatrix}, b = \begin{pmatrix} 50 \\ 50 \\ 25 \\ 25 \end{pmatrix}$$

Giải

a) Ta có bảng sau:

	i = 1	i=2	i=3
$ a_{ii} $	4	3	4
$\sum_{j=1, j \neq i}^{3} a_{ij} $	0,32	0,24	0,12

Từ đây suy ra hệ phương trình Ax = b có thể đưa về dạng x = Bx + g sao cho $||B||_{\infty} < 1$. Ta tìm được ma trận B và q như sau:

$$B = \begin{pmatrix} 0 & -0.06 & 0.02 \\ -0.03 & 0 & 0.05 \\ -0.01 & 0.02 & 0 \end{pmatrix}, g = \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix}$$

Ta có $\|B\|_{\infty} = 0,08 < 1$ nên ma trận B thỏa điều kiện hội tụ.

Ta lần lượt có các ma trận
$$U$$
 và L như sau:
$$U = \begin{pmatrix} 0 & 0 & 0 \\ -0.03 & 0 & 0 \\ -0.01 & 0.02 & 0 \end{pmatrix}, L = \begin{pmatrix} 0 & -0.06 & 0.02 \\ 0 & 0 & 0.05 \\ 0 & 0 & 0 \end{pmatrix}$$

Ta tiếp tục có:

	i = 1	i=2	i = 3
α_i	0,08	0,05	0
β_i	0	0,03	0,03
$\frac{\alpha_i}{1 - \beta_i}$	0,08	0,0515463917525773	0
λ		0,08	
$\frac{\lambda}{1-\lambda}$		0,0869565217391304	

Chọn $x^{(0)} = g$, và áp dụng công thức Seidel tính $x^{(k+1)} = (I - U)^{-1}(Lx^{(k)} + g)$ ta có được kết quả trong bảng sau:

k	$x^{(k)}$	Sai số
1	$\begin{pmatrix} 2\\3\\5 \end{pmatrix}$	0,0167304347826087
2	$ \begin{pmatrix} 1,92 \\ 3,1924 \\ 5,044648 \end{pmatrix} $	0,000926177391304343

Vậy hệ phương trình có nghiệm là $x^* \approx x^{(2)}$ với sai số là 0,000926177

e) Ta có bảng sau:

	i = 1	i=2	i=3
$ a_{ii} $	10	10	10
$\sum_{j=1, j \neq i}^{3} a_{ij} $	3	3	3

Từ đây suy ra hệ phương trình Ax=b có thể đưa về dạng x=Bx+g sao cho $\|B\|_{\infty}<1$. Ta tìm được ma trận B và g như sau:

$$B = \begin{pmatrix} 0 & 0, 2 & 0, 1 \\ 0, 1 & 0 & 0, 2 \\ 0, 2 & 0, 1 & 0 \end{pmatrix}, g = \begin{pmatrix} 0, 3 \\ 1, 3 \\ 2, 6 \end{pmatrix}$$

Ta có $\|B\|_{\infty}=0, 3<1$ nên ma trận B thỏa điều kiện hội tụ.

Ta lần lượt có các ma trận U và L như sau:

$$U = \begin{pmatrix} 0 & 0 & 0 \\ 0, 1 & 0 & 0 \\ 0, 2 & 0, 1 & 0 \end{pmatrix}, L = \begin{pmatrix} 0 & 0, 2 & 0, 1 \\ 0 & 0 & 0, 2 \\ 0 & 0 & 0 \end{pmatrix}$$

Ta tiếp tục có:

	i=1	i = 2	i=3
α_i	0,3	0,2	0
β_i	0	0,1	0,3
$\frac{\alpha_i}{1 - \beta_i}$	0,3	0,22222222222222	0
λ		0,3	
$\frac{\lambda}{1-\lambda}$		0,428571428571429	

Chọn $x^{(0)}=g$, và áp dụng công thức Seidel tính $x^{(k+1)}=(I-U)^{-1}(Lx^{(k)}+g)$ ta có được kết quả trong bảng sau:

k	$x^{(k)}$	Sai số
1	$\begin{pmatrix} 0, 3 \\ 1, 3 \\ 2, 6 \end{pmatrix}$	0,258
2	$\begin{pmatrix} 0,82\\1,902\\2,9542 \end{pmatrix}$	0,06678
3	$\begin{pmatrix} 0,97582 \\ 1,988422 \\ 2,9940062 \end{pmatrix}$	0,00911357999999999
4	$\begin{pmatrix} 0,99962874622\\ 1,999816470262\\ 2,9999073962702 \end{pmatrix}$	0,00109016837999995
5	$\begin{pmatrix} 0,99995403367942 \\ 1,99997688262198 \\ 2,99998849499808 \end{pmatrix}$	0,000139408911180075

Vậy hệ phương trình có nghiệm là $x^* \approx x^{(5)}$ với sai số là 0,000139409.

f) Ta có bảng sau:

	i = 1	i=2	i = 3	i=4	
$ a_{ii} $	2	2	5	2	
$\sum_{j=1, j\neq i}^{4} a_{ij} $	13	12	27	24	và

	j=1	j=2	j=3	j=4
$ a_{jj} $	2	2	5	2
$\sum_{i=1, i \neq j}^{4} a_{ij} $	13	25	22	16

Từ đây ta suy ra hệ phương trình vô nghiệm.

g) Ta có bảng sau:

	i = 1	i=2	i = 3	i = 4
$ a_{ii} $	1	1	1	1
$\sum_{j=1, j \neq i}^{4} a_{ij} $	0,5	0,5	0,5	0,5

Từ đây suy ra hệ phương trình Ax=b có thể đưa về dạng x=Bx+g sao cho $\|B\|_{\infty}<1$. Ta tìm được ma trận B và g như sau:

$$B = \begin{pmatrix} 0 & 0.25 & 0.25 & 0\\ 0.25 & 0 & 0 & 0.25\\ 0.25 & 0 & 0 & 0.25\\ 0 & 0.25 & 0.25 & 0 \end{pmatrix}, g = \begin{pmatrix} 50\\ 50\\ 25\\ 25 \end{pmatrix}$$

Ta có $\|B\|_{\infty}=0, 5<1$ nên ma trận B thỏa điều kiện hội tụ.

Ta lần lượt có các ma trận U và L như sau:

$$U = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0,25 & 0 & 0 & 0 \\ 0,25 & 0 & 0 & 0 \\ 0 & 0,25 & 0,25 & 0 \end{pmatrix}, L = \begin{pmatrix} 0 & 0,25 & 0,25 & 0 \\ 0 & 0 & 0 & 0,25 \\ 0 & 0 & 0 & 0,25 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Ta tiếp tục có:

	i = 1	i = 2	i = 3	i=4			
α_i	0,5	0,25	0,25	0			
β_i	0	0,25	0,25	0,5			
$\frac{\alpha_i}{1 - \beta_i}$	0,5	0,3333333333333333	0,3333333333333333	0			
λ		0,5					
$\frac{\lambda}{1-\lambda}$		1					

Chọn $x^{(0)}=g$, và áp dụng công thức Seidel tính $x^{(k+1)}=(I-U)^{-1}(Lx^{(k)}+g)$ ta có được kết quả trong bảng sau:

k	$x^{(k)}$	Sai số
1	$\begin{pmatrix} 47,75\\ 59,4375\\ 34,4375\\ 48,46875 \end{pmatrix}$	64,4375
2	$ \begin{pmatrix} 73,46875\\ 80,484375\\ 55,484375\\ 58,9921875 \end{pmatrix} $	25,71875

k	$x^{(k)}$	Sai số
3	$\begin{pmatrix} 83,9921875 \\ 85,74609375 \\ 60,74609375 \\ 61,623046875 \end{pmatrix}$	10,5234375
4	$\begin{pmatrix} 86,623046875\\ 87,0615234375\\ 62,0615234375\\ 62,28076171875 \end{pmatrix}$	2,630859375
5	$\begin{pmatrix} 87,28076171875\\ 87,390380859375\\ 62,390380859375\\ 62,4451904296875 \end{pmatrix}$	0,65771484375
6	$\begin{pmatrix} 87,4451904296875\\ 87,4725952148437\\ 62,4725952148437\\ 62,4862976074218 \end{pmatrix}$	0,1644287109375
7	$\begin{pmatrix} 87, 4862976074218 \\ 87, 4931488037109 \\ 62, 4931488037109 \\ 62, 4965744018554 \end{pmatrix}$	0,041107177734375
8	(87, 4965744018554) 87, 4982872009277 62, 4982872009277 62, 4991436004638)	0,0102767944335937
9	$\begin{pmatrix} 87,4991436004638\\ 87,4995718002319\\ 62,4995718002319\\ 62,4997859001159 \end{pmatrix}$	0,00256919860839844
10	(87, 4997859001159) 87, 4998929500579 62, 4998929500579 62, 4999464750289)	0,000642299652099609

Vậy hệ phương trình có nghiệm $x^* \approx x^{(10)}$ với sai số 0,0006423.

Chương 6

Giải gần đúng phương trình vi phân thường

Câu 4. Tìm nghiệm gần đúng của các phương trình sau bằng phương pháp Euler:

a)
$$y' = 1 - y$$
, $y(0) = 0$, $h = 0.1$ trên đoạn $[0; 0.3]$.

b)
$$y' = \frac{y-x}{1+x}$$
, $y(0) = 1$, $h = 0.02$ trên đoạn $[0; 0.1]$.

c)
$$y' = 3x + \frac{1}{2}$$
, $y(0) = 1$, $h = 0.05$ trên đoạn $[0; 0.2]$.

d)
$$y' = x + y + xy$$
, $y(0) = 1$, $h = 0.02$ trên đoạn $[0; 0.1]$.

e)
$$y' = 1 + \ln(x + y), y(0) = 1, h = 0.1$$
 trên đoạn [0; 0.2].

f)
$$y' = (y+x)^2$$
, $y(0) = 1$, $h = 0.1$ trên đoạn $[0;1]$.

g)
$$y' = -5x^4y^2$$
, $y(0) = 1$, $h = 0.2$ trên đoạn $[0; 1]$.

Giải

c) $x_0 = 0$, $y_0 = 1$, h = 0.05, ta có bảng giá trị:

n	x_n	y_n	y_n (Euler cải tiến 1)	$y_n(\text{Euler cải tiến 2})$
0	0.0	1.0	1.0	1.0
1	0.05	1.05	1.051281	1.051313
2	0.1	1.102625	1.105444	1.105473
3	0.15	1.158256	1.162892	1.162879
4	0.2	1.217294	1.224049	1.223946

d) $x_0 = 0$, $y_0 = 0$, h = 0.2, ta có bảng giá trị:

	n	x_n	y_n	y_n (Euler cải tiến 1)	$y_n(\text{Euler cải tiến 2})$
	0	0.0	0.0	0.0	0.0
	1	0.1	0.1	0.095	0.095
Ī	2	0.2	0.19	0.180975	0.18075
	3	0.3	0.271	0.258782	0.258163

b) $x_0 = 0$, $y_0 = 1$, h = 0.02, ta có bảng giá trị:

n	x_n	y_n	y_n (Euler cải tiến 1)	$y_n(\text{Euler cải tiến 2})$
0	0.0	1.0	1.0	1.0
1	0.02	1.02	1.019802	1.019804
2	0.04	1.039608	1.039212	1.039218
3	0.06	1.058831	1.058237	1.058248
4	0.08	1.077677	1.076885	1.076904
5	0.1	1.096152	1.095162	1.09519

c) $x_0=0,\,y_0=1,\,h=0.05,$ ta có bảng giá trị:

n	x_n	y_n	y_n (Euler cải tiến 1)	$y_n(\text{Euler cải tiến 2})$
0	0.0	1.0	1.0	1.0
1	0.05	1.025	1.02875	1.02875
2	0.1	1.0575	1.065	1.065
3	0.15	1.0975	1.10875	1.10875
4	0.2	1.145	1.16	1.16

d) $x_0=0,\,y_0=1,\,h=0.02,\,{\rm ta}$ có bảng giá trị:

n	x_n	y_n	y_n (Euler cải tiến 1)	$y_n(\text{Euler cải tiến 2})$
0	0.0	1.0	1.0	1.0
1	0.02	1.02	1.020602	1.020604
2	0.04	1.041208	1.042445	1.042443
3	0.06	1.063665	1.065572	1.065559
4	0.08	1.087415	1.09003	1.089998
5	0.1	1.112503	1.115867	1.115807

e) $x_0=0,\,y_0=1,\,h=0.1,\,{\rm ta}$ có bảng giá trị:

n	x_n	y_n	y_n (Euler cải tiến 1)	$y_n(\text{Euler cải tiến 2})$
0	0.0	1.0	1.0	1.0
1	0.1	1.1	1.109531	1.109116
2	0.2	1.218232	1.237222	1.236081

f) $x_0=0,\,y_0=1,\,h=0.1$ ta có bảng giá trị:

n	x_n	y_n	y_n (Euler cải tiến 1)	$y_n(\text{Euler cải tiến 2})$
0	0.0	1.0	1.0	1.0
1	0.1	1.1	1.121	1.122
2	0.2	1.244	1.302048	1.300921
3	0.3	1.452514	1.579223	1.567124
4	0.4	1.759644	2.022661	1.974635
5	0.5	2.22605	2.787806	2.628147
6	0.6	2.969185	4.291918	3.754367
7	0.7	4.243093	8.059989	5.924101

	n	x_n	y_n	y_n (Euler cải tiến 1)	$y_n(\text{Euler cải tiến 2})$
	8	0.8	6.686511	24.054293	10.920429
	9	0.9	12.291295	335.318823	26.489364
ĺ	10	1.0	29.692322	3586457.107023	111.099159

g) $x_0 = 0$, $y_0 = 1$, h = 0.2 ta có bảng giá trị:

n	x_n	y_n	y_n (Euler cải tiến 1)	$y_n(\text{Euler cải tiến } 2)$
0	0.0	1.0	1.0	1.0
1	0.2	1.0	0.9999	0.9992
2	0.4	0.9984	0.991815	0.985642
3	0.6	0.972882	0.931885	0.911874
4	0.8	0.850216	0.747801	0.709949
5	1.0	0.554129	0.48468	0.453194

Câu 5. Tìm nghiệm gần đúng của các phương trình sau bằng phương pháp Euler cải tiến:

a)
$$y' = \frac{y-x}{1+x}$$
, $y(0) = 1$, $h = 0.02$ trên đoạn $[0; 0.1]$.

b)
$$y' = 3x + \frac{1}{2}y$$
, $y(0) = 1$, $h = 0.05$ trên đoạn $[0; 0.2]$.

c)
$$y' = x^2 + y$$
, $y(0) = 1$, $h = 0.05$ trên đoạn $[0; 0.2]$.

d)
$$y' = 1 + y^2$$
, $y(0) = 0$, $h = 0.2$ trên đoạn $[0; 0.6]$.

Giải

- a) (Câu 4b)
- b) (Câu 4c)
- c) $x_0 = 0$, $y_0 = 1$, h = 0.05, ta có bảng giá trị:

n	x_n	y_n	y_n (Euler cải tiến 1)	$y_n(\text{Euler cải tiến 2})$
0	0.0	1.0	1.0	1.0
1	0.05	1.05	1.051281	1.051313
2	0.1	1.102625	1.105444	1.105473
3	0.15	1.158256	1.162892	1.162879
4	0.2	1.217294	1.224049	1.223946

d) $x_0 = 0$, $y_0 = 0$, h = 0.2, ta có bảng giá trị:

n	x_n	y_n	y_n (Euler cải tiến 1)	$y_n(\text{Euler cải tiến 2})$
0	0.0	0.0	0.0	0.0
1	0.2	0.2	0.202	0.204
2	0.4	0.408	0.420737	0.424808
3	0.6	0.641293	0.67872	0.68398

Câu 6. Tìm nghiệm gần đúng của các phương trình sau bằng phương pháp RK4:

a)
$$y'=2+\sqrt{xy},\,y(1)=1,\,h=0.2$$
trên đoạn $[0;2]$

b)
$$y' = \frac{y}{x} - y^2$$
, $y(1) = 1$, $h = 0.2$ trên đoạn [1; 2]

c)
$$y' = x - \sin y$$
, $y(0) = 0$, $h = 0.1$ trên đoạn $\left[0; \frac{\pi}{2}\right]$

d)
$$y' = x^2 + y^2$$
, $y(0) = 1$, $h = 0.1$ trên đoạn $[0; 1]$

e)
$$y' = x - \sqrt{y}, y(0) = 1, h = 0.2$$
 trên đoạn $[0; 1]$

Giải

a)
$$y' = 2 + \sqrt{xy}$$
, $y(1) = 1$, $h = 0.2$.

Ta có sơ đồ tính toán như sau:

n	x_o	y_o	$hf(x_n,y_n)$		
	1.0	1.0	0.6		
0	1.1	1.3	0.6392		
	1.1	1.3196	0.6410		
	1.2	1.6410	0.6807		
į	$J_1 = 1$.6401505	01121759		
	1.2	1.6402	0.6806		
1	1.3	1.9804	0.7209		
1	1.3	2.0006	0.7225		
	1.4	2.3627	0.7637		
y	$_{2}=2$.3620215	847729593		
	1.4	2.3620	0.7637		
2	1.5	2.7439	0.8057		
4	1.5	2.7649	0.8073		
	1.6	3.1693	0.8504		
į	$y_3 = 3$	3.1687160	03302697		
	1.6	3.1687	0.8503		
3	1.7	3.5939	0.8944		
0	1.7	3.6159	0.8959		
	1.8	4.0646	0.9410		
ī	$y_4 = 4$	$4.0\overline{640048}$	346121863		
	1.8	4.0640	0.9409		
4	1.9	4.5345	0.9870		
4	1.9	4.5575	0.9885		
	2.0	5.0525	1.0358		
ī	$y_5 = 5.051980957085838$				

Vậy nghiệm gần đúng của phương trình là $y_5=5.051980957085838. \label{eq:y5}$

b)
$$y' = \frac{y}{x} - y^2$$
, $y(1) = 1$, $h = 0.2$ trên đoạn [1; 2]

Ta lập được sơ đồ tính toán như sau:

n	x_o	y_o	$hf(x_n,y_n)$
	1.0	1.0	0.0000
0	1.1	1.0	-0.0182
U	1.1	0.9909	-0.0162
	1.2	0.9838	-0.0296
y	$r_1 = 0$.9836006	941450569
	1.2	0.9836	-0.0296
1	1.3	0.9688	-0.0387
1	1.3	0.9643	-0.0376
	1.4	0.9460	-0.0438
y	$t_2 = 0$.94593900	018738288
	1.4	0.9459	-0.0438
$ _{2}$	1.5	0.9240	-0.0476
	1.5	0.9222	-0.0471
	1.6	0.8988	-0.0492
y	$y_3 = 0$.8988702	115243877
	1.6	0.8989	-0.0492
3	1.7	0.8743	-0.0500
5	1.7	0.8739	-0.0499
	1.8	0.8489	-0.0498
į	$y_4 = 0$	$0.8\overline{490516}$	17841853
	1.8	0.8491	-0.0498
$\begin{vmatrix} 1 \end{vmatrix}$	1.9	0.8241	-0.0491
4	1.9	0.8245	-0.0492
	2.0	0.7999	-0.0480
y	$t_5 = 0$	$.79999\overline{61}$	579105562

Vậy nghiệm gần đúng của phương trình là $y_5=0.7999961579105562. \label{eq:y5}$

c)
$$y' = x - \sin y$$
, $y(0) = 0$, $h = 0.1$.

Ta lập được sơ đồ tính toán như sau:

n	x_o	y_o	$hf(x_n,y_n)$	
	0.0	0.0000	0.0000	
0	0.05	0.0000	0.0050	
	0.05	0.0025	0.0048	
	0.1	0.0048	0.0095	
y_1	= 0.00	04837500	380164618	
	0.1	0.0048	0.0095	
1	0.15	0.0096	0.0140	
1	0.15	0.0119	0.0138	
	0.2	0.0187	0.0181	
$y_2 = 0.018730933533350227$				
	0.2	0.0187	0.0181	

n	x_o	y_o	$hf(x_n, y_n)$
	0.25	0.0278	$\frac{nf(x_n, g_n)}{0.0222}$
	0.25	0.0298	0.0220
	0.3	0.0407	0.0259
210			363427004
y_3	$\frac{-0.04}{0.3}$	0.0408	0.0259
	0.35	0.0408	0.0296
3	0.35	0.0556	0.0290
	0.33	0.0330	0.0294
			0.0330 540590269
y_4			
	0.4	0.0703	0.0330
4	0.45	0.0868	0.0363
	0.45	0.0885	0.0362
	0.5	0.1065	0.0394
y_{ϵ}	<u> </u>		328749952
	0.5	0.1065	0.0394
5	0.55	0.1262	0.0424
	0.55	0.1278	0.0423
	0.6	0.1488	0.0452
y			39227904
	0.6	0.1489	0.0452
6	0.65	0.1714	0.0479
Ü	0.65	0.1728	0.0478
	0.7	0.1967	0.0505
y_7		96711145	95560976
	0.7	0.1967	0.0505
7	0.75	0.2219	0.0530
'	0.75	0.2232	0.0529
	0.8	0.2496	0.0553
y_8	$_{3} = 0.2$	49621262	239186969
	0.8	0.2496	0.0553
8	0.85	0.2773	0.0576
	0.85	0.2784	0.0575
	0.9	0.3071	0.0598
y	$y_9 = 0.3$	30717909	88049683
	0.9	0.3072	0.0598
9	0.95	0.3371	0.0619
9	0.95	0.3381	0.0618
	1.0	0.3690	0.0639
y_1	0 = 0.3	369046426	670522175
	1.0	0.3690	0.0639
10	1.05	0.4010	0.0660
10	1.05	0.4020	0.0659
	1.1	0.4349	0.0679
y_1	$\frac{1}{1} = 0.4$	134957562	238415795
911			

n	x_o	y_o	$hf(x_n,y_n)$	
	1.1	0.4350	0.0679	
11	1.15	0.4689	0.0698	
11	1.15	0.4699	0.0697	
	1.2	0.5047	0.0716	
y_1	$_{12} = 0.$	50472057	76597383	
	1.2	0.5047	0.0716	
12	1.25	0.5405	0.0735	
12	1.25	0.5415	0.0735	
	1.3	0.5782	0.0754	
y_1	$_{13}=0.6$	57821902	92422908	
	1.3	0.5782	0.0753	
13	1.35	0.6159	0.0772	
10	1.35	0.6168	0.0772	
	1.4	0.6554	0.0791	
y_1	$_{14} = 0.0$	65541444	39285761	
	1.4	0.6554	0.0791	
14	1.45	0.6949	0.0810	
14	1.45	0.6959	0.0809	
	1.5	0.7363	0.0828	
y	$y_{15} = 0.736349914185467$			

Vậy nghiệm gần đúng của phương trình đã cho là $y_{15}=0.736349914185467$. d) $y'=x^2+y^2,\,y(0)=1,\,h=0.1$.

Ta lập được sơ đồ tính toán như sau:

n	x_o	y_o	$hf(x_n,y_n)$	
	0. 0 000	1.0000	0.1000	
0	0.0500	1.0500	0.1105	
0	0.0500	1.0553	0.1116	
	0.1000	1.1116	0.1246	
	$y_1 = 1.1$	1146285617	787105	
	0.1000	1.1115	0.1245	
1	0.1500	1.1737	0.1400	
1	0.1500	1.1815	0.1418	
	0.2000	1.2533	0.1611	
	$y_2 = 1.2$	5301517460	035345	
	0.2000	1.2530	0.1610	
2	0.2500	1.3335	0.1841	
_	0.2500	1.3451	0.1872	
	0.3000	1.4402	0.2164	
$y_3 = 1.439665974547582$				
	0.3000	1.4397	0.2163	
3	0.3500	1.5478	0.2518	
"	0.3500	1.5656	0.2574	

n	x_o	y_o	$hf(x_n,y_n)$		
	0.4000	1.6970	0.3040		
	$y_4 = 1.0$	6960979037	22817		
	0.4000	1.6961	0.3037		
$\begin{vmatrix} 1 \end{vmatrix}$	0.4500	1.8479	0.3617		
4	0.4500	1.8770	0.3726		
	0.5000	2.0686	0.4529		
	$y_5 = 2.0$	0669610154	50312		
	0.5000	2.0670	0.4522		
5	0.5500	2.2931	0.5561		
)	0.5500	2.3450	0.5802		
	0.6000	2.6471	0.7367		
	$y_6 = 2.0$	6438601970	79332		
	0.6000	2.6439	0.7350		
6	0.6500	3.0114	0.9491		
	0.6500	3.1184	1.0147		
	0.7000	3.6586	1.3875		
	$y_7 = 3.6$	55220035878	842087		
	0.7000	3.6522	1.3829		
$\mid _{7}\mid$	0.7500	4.3436	1.9430		
'	0.7500	4.6237	2.1941		
	0.8000	5.8463	3.4819		
	$y_8 = 5.3$	8420133352	79946		
	0.8000	5.8420	3.4769		
8	0.8500	7.5805	5.8186		
	0.8500	8.7513	7.7308		
	0.9000	13.5728	18.5031		
	$y_9 = \overline{14}.$.0218200763	380461		
	0.9000	14.0218	19.7421		
$\mid _{9}\mid$	0.9500	23.8929	57.1773		
	0.9500	42.6105	181.6554		
	1.0000	195.6772	3829.0565		
	$y_{10} = 735.0991433436242$				

Vậy nghiệm gần đúng của phương trình đã cho là $y_{10}=735.0991433436242$. e) $y'=x-\sqrt{y},\ y(0)=1,\ h=0.2$.

Ta lập được sơ đồ tính toán như sau:

n	x_o	y_o	$hf(x_n,y_n)$		
	0.0000	1.0000	-0.2000		
0	0.1000	0.9000	-0.1697		
U	0.1000	0.9151	-0.1713		
	0.2000	0.8287	-0.1421		
$y_1 = 0.8293022416154283$					
	0.2000	0.8293	-0.1421		

n	x_o	y_o	$hf(x_n,y_n)$		
	0.3000	0.7582	-0.1142		
	0.3000	0.7722	-0.1158		
	0.4000	0.7135	-0.0889		
	$y_2 = 0.7$	71415419	659681		
	0.4000	0.7142	-0.0890		
14	0.5000	0.6696	-0.0637		
14	0.5000	0.6823	-0.0652		
	0.6000	0.6489	-0.0411		
	$y_3 = 0.64$	19509376	5790388		
	0.6000	0.6495	-0.0412		
3	0.7000	0.6289	-0.0186		
0	0.7000	0.6402	-0.0200		
	0.8000	0.6295	0.0013		
	$y_4 = 0.62$	29987245	7446561		
	0.8000	0.6300	0.0013		
4	0.9000	0.6306	0.0212		
4	0.9000	0.6406	0.0199		
	1.0000	0.6499	0.0388		
	$y_5 = 0.6503593651753093$				

Vậy ta có nghiệm gần đúng của phương trình đã cho là $y_5 = 0.6503593651753093$.

Câu 7. Tìm nghiệm gần đúng của các phương trình sau bằng phương pháp nội suy Adams và ngoại suy Adams tương ứng với k=4 và k=3 biết các giá trị đầu tiên được tìm bằng phương pháp RK4.

a)
$$y' = xy^3 - y$$
, $y(0) = 1$, $h = 0.1$ trên đoạn $[0; 1]$

b)
$$y^{\prime}=x-y,\,y(0)=1,\,h=0.1$$
trên đoạn $[0;1]$

c)
$$y' = 1 - x\sqrt[3]{y}, y(0) = 1, h = 0.5$$
 trên đoạn $[0; 5]$

d)
$$y' = y - x^2 + 1$$
, $y(0) = 0.5$, $h = 0.2$ trên đoạn $[0; 2]$

e)
$$y' = xe^{3x} - 2y$$
, $y(0) = 0$, $h = 0.2$ trên đoạn $[0; 1]$

Giải

a)
$$y' = xy^3 - y$$
, $y(0) = 1$, $h = 0.1$

 \star Phương pháp nội suy Adams

Ta lập được bảng tính toán nghiệm gần đúng theo phương pháp nội suy Adams với k=4 như sau:

i	x_i	Adams	RK4
4	0.4	0.704867563	0.704859905
5	0.5	0.651066638	0.651062961
6	0.6	0.601924692	0.601922792

i	x_i	Adams	RK4
7	0.7	0.556622667	0.556621625
8	0.8	0.514582197	0.514581597
9	0.9	0.475392441	0.475392079
10	1.0	0.438760084	0.438759854

* Phương pháp ngoại suy Adams

Ta lập được bảng tính toán nghiệm gần đúng theo phương pháp ngoại suy Adams với k=3 như sau:

i	x_i	Adams	RK4
4	0.4	0.705130139	0.704859905
5	0.5	0.651205954	0.651062961
6	0.6	0.602004109	0.601922792
7	0.7	0.556670805	0.556621625
8	0.8	0.514613013	0.514581597
9	0.9	0.475413151	0.475392079
10	1.0	0.438774587	0.438759854

b)
$$y' = x - y$$
, $y(0) = 1$, $h = 0.1$

\star Phương pháp nội suy Adams

Ta lập được bảng tính toán nghiệm gần đúng theo phương pháp nội suy Adams với k=4 như sau:

i	x_i	Adams	RK4
4	0.4	0.740640480	0.740640578
5	0.5	0.713061780	0.713061869
6	0.6	0.697623789	0.697623869
7	0.7	0.693171165	0.693171237
8	0.8	0.698658514	0.698658579
9	0.9	0.713139923	0.713139982
10	1.0	0.735759495	0.735759549

* Phương pháp ngoại suy Adams

Ta có:
$$y' = x - y$$
, $y(0) = 1$, $h = 0.1$

Ta lập được bảng tính toán nghiệm gần đúng theo phương pháp ngoại suy Adams với k=3 như sau:

i	x_i	Adams	RK4
4	0.4	0.740646198	0.740640578
5	0.5	0.713066954	0.713061869
6	0.6	0.697628470	0.697623869
7	0.7	0.693175401	0.693171237
8	0.8	0.698662347	0.698658579
9	0.9	0.713143391	0.713139982

i	x_i	Adams	RK4
10	1.0	0.735762633	0.735759549

d)
$$y' = y - x^2 + 1$$
, $y(0) = 0.5$, $h = 0.2$

⋆ Phương pháp nội suy Adams

Ta lập được bảng tính toán nghiệm gần đúng theo phương pháp nội suy Adams với k=3 như sau:

i	x_i	Adams	RK4
4	0.8	2.127205481	2.127202685
5	1.0	2.640824775	2.640822693
6	1.2	3.179895380	3.179894170
7	1.4	3.732340217	3.732340073
8	1.6	4.283408341	4.283409498
9	1.8	4.815082947	4.815085695
10	2.0	5.305358312	5.305363001

* Phương pháp ngoại suy Adams

Ta lập được bảng tính toán nghiệm gần đúng theo phương pháp ngoại suy Adams với k=4 như sau:

i	x_i	Adams	RK4
4	0.8	2.127289249	2.127202685
5	1.0	2.640927089	2.640822693
6	1.2	3.180020346	3.179894170
7	1.4	3.732492851	3.732340073
8	1.6	4.283594768	4.283409498
9	1.8	4.815310650	4.815085695
10	2.0	5.305636428	5.305363001

e)
$$y' = xe^{3x} - 2y$$
, $y(0) = 0$, $h = 0.2$

⋆ Phương pháp nội suy Adams

Ta lập được bảng tính toán nghiệm gần đúng theo phương pháp nội suy Adams với k=4 như sau:

i	x_i	Adams	RK4
4	0.8	1.332737617	1.332227617
5	1.0	3.222889913	3.221992603

* Phương pháp ngoại suy Adams

Ta lập được bảng tính toán nghiệm gần đúng theo phương pháp ngoại suy Adams với k=3 như sau:

i	x_i	Adams	RK4
4	0.8	1.296385456	1.332227617
5	1.0	3.149614338	3.221992603