Student Information

Full Name: Musa Alper Yaman

Id Number: 2581155

Answer 1

a)

We can calculate confidence interval for population mean by using the formula:

Confidence interval =
$$\bar{x} \pm z_{\frac{\alpha}{2}}(\frac{\sigma}{\sqrt{n}})$$

Where, $\bar{x} = \text{Sample mean}$, n = Sample size, $\sigma = \text{Standard derivation}$, z = Critical value. To calculate sample mean we can use:

$$\bar{x} = \frac{(x_1 + x_2 + \dots + x_n)}{n}$$

$$\bar{x} = \frac{6.4 + 9.5 + 8.2 + 10.2 + 7.6 + 11.1 + 8.7 + 7.3 + 9.1}{9}$$

$$\bar{x} \cong 8.678$$

To calculate α and Critical value:

$$(1 - \alpha) = 0.95 \implies \alpha = 0.05 \implies \frac{\alpha}{2} = 0.025$$

$$q_{0.025} = -z_{0.025} \cong -1.960$$

$$q_{0.975} = z_{0.025} \cong 1.960$$

It is given that standard derivation $\sigma = 2.7$. Calculate the interval by inserting the values:

Confidence interval =
$$\left(8.678 - 1.960\left(\frac{2.7}{9}\right), 8.678 + 1.960\left(\frac{2.7}{9}\right)\right)$$

 $\cong (6.914, 10.442)$

b)

We can use the following formula to find minimum value of sample size:

$$n \ge \left(\frac{z_{\frac{\alpha}{2}}\sigma}{\Delta}\right)^2$$

From the first part we know, z = 1.96, in the question given $\sigma = 2.7, \Delta = 1.25$, insert the values to find n:

$$n \ge \left(\frac{1.96 \cdot 2.7}{1.25}\right)^2$$
$$n = \left(\frac{5.292}{1.25}\right)^2$$
$$n = (4.233)^2$$
$$n \ge 17.923$$

We can say that n is minimum 18.

Answer 2

a)

Null hypothesis (H_0) = The average monthly revenue of the store is the same as last year ($\mu = 20000$)

Alternative hypothesis (H_A) = The average monthly revenue of the store have changed from the last year $(\mu \neq 20000)$

As a result Mecnun's claim is null hypothesis.

b)

Population standard derivation is given and sample size is large (n = 50), so we can use z-test:

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

Insert the given values, sample mean $\bar{x}=22000$, last years average $\mu=20000$, population standard derivation $\sigma=3000$, sample size n=50:

$$z = \frac{22000 - 20000}{\frac{3000}{\sqrt{50}}} = \frac{2000}{\frac{600}{\sqrt{2}}} = \frac{2000}{300\sqrt{2}} \approx 4.714$$

By using Standard normal distribution table, we found that critical z-value for %5 level of significance is ± 1.96 since calculated z value (4.713) is greater than critical z-value (1.96), we can reject null hypothesis and claim that the average monthly revenue has changed compared to the last year.

c)

From the previous parts, we found that $z \cong 4.714$. We can calculate the p value by using the formula:

$$P = P\{Z \ge Z_{obs}\}\$$

$$P = P\{Z \ge Z_{4.713}\}\$$

$$P = 1 - \phi(4.713)$$

We can use Octave online to calculate $1 - \phi(4.713)$:

```
octave:2> 1-normcdf(4.731)
ans = 1.1171e-06
```

As we calculated, P is almost 0. So there is almost no probability that observing a z is greater than 4.71. We can say that the average monthly revenue has increased compared to the last year.

 \mathbf{d}

We can conduct a hypothesis test:

- Null Hypothesis (H_0) = The average revenue of Leyla and Mecnun's store is less than or equal to the competitor's store.
- Alternative Hypothesis (H_0) = The average revenue of Leyla and Mecnun's store is higher than the competitor store.

Parameters are:

- Leyla and Mecnun's store's this year average revenue: $\bar{x}_1 = 22000$
- Leyla and Mecnun's store's this year standard derivation: $\sigma_1 = 3000$
- Competitor's store's average revenue: $\bar{x_2} = 24000$
- Competitor's store's standard derivation: $\sigma_2 = 4000$
- Leyla and Mecnun's store sample size: $n_1 = 50$
- Competitor's store sample size: $n_2 = 40$
- level of significance: $\alpha = 0.01$

We will use z-test to compare means of them:

$$z = \frac{(\bar{x_1} - \bar{x_2})}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

$$z = \frac{(22000 - 24000)}{\sqrt{\frac{3000^2}{50} + \frac{4000^2}{40}}}$$

$$z = \frac{-2000}{\sqrt{\frac{9000000}{50} + \frac{16000000^2}{40}}}$$

$$z = \frac{-2000}{\sqrt{180000 + 400000}}$$

$$z = \frac{-2000}{761.57}$$

$$z \cong -2.626$$

For $\alpha = 0.01$ the z value is equals to 2.33.

$$z = -2.63 < 2.33$$

Since calculated z value is smaller than the z value for $\alpha = 0.01$, we accept the null hypothesis. As a result, we cannot claim that average monthly revenue of Leyla and Mecnun's store is higher than competitor's store's average revenue.

Answer 3

To determine if there is a significant association between gender and coffee preference, we can use Chi-square test of independence.

The hypothesis for the chi-square test is:

- Null Hypothesis (H_0) = There is no association between gender and coffee preference
- Alternative Hypothesis (H_0) = There is an association between gender and coffee preference

Then, we should calculate Expected Value:

$$\label{eq:expected_value} \text{Expected Value} = \frac{\text{Row Total} \cdot \text{Column Total}}{\text{Overall Total}}$$

By using Expected Value formula we cant construct Expected frequency table:

	Black Coffee	Coffee with Milk	Coffee with Sugar	Total
Male	52	16	32	100
Female	17	63	20	100
Total	69	79	52	200

Table 1: Contingency table showing the relationship between gender and coffee preference.

	Black Coffee	Coffee with Milk	Coffee with Sugar	Total
Male	34.5	39.5	26	100
Female	34.5	39.5	26	100
Total	69	79	52	200

Table 2: Expected Frequency Table

Now, we will use Chi-square test, where O = Observed Frequency, E = Expected Frequency:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

$$\chi^2 = \frac{(52-34.5)^2}{34.5} + \frac{(16-39.5)^2}{39.5} + \frac{(32-26)^2}{26} + \frac{(17-34.5)^2}{34.5} + \frac{(63-39.5)^2}{39.5} + \frac{(20-26)^2}{26}$$

$$\chi^2 = \frac{306.25}{34.5} + \frac{552.25}{39.5} + \frac{36}{26} + \frac{306.25}{34.5} + \frac{552.25}{39.5} + \frac{36}{26}$$

$$\chi \cong 6.96$$

Calculate $df = (\text{number of rows - 1}) \cdot (\text{number of columns - 1})$:

$$df = (3-1) \cdot (2-1) = 2$$

For df=2 and $\alpha=2$, the Chi-square value is approximately 5.991 (By chi-square distribution table).

As a result, $\chi > 6.991$, so we can reject null hypothesis. Thus, there is a significant association between gender and coffee preference.