

UNIVERSITY OF NEW BRUNSWICK DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 2214

Digital Logic Design

L-21 Flip-Flops

Fall 2022

Outline

- * Master-slave D flip-flops
- * Edge-triggered D flip-flops
- Additional features of D flip-flops
- ☀ T flip-flop
- * JK Flip flops
- * Flip-flops in VHDL

Summary of previous lecture

* Basic memory elements

- Basic SR latch:
 - Can store 1-bit of information but ...
 - ► Limited by asynchronous outputs
 - S = R = 1 can't occur otherwise Qa ≠ Qb

- ▶ Include a clock terminal to synchronize the output but...
- S = R = 1 can't occur otherwise Qa ≠ Qb
- ▶ Asynchronous output while CLK = 1

Gated D latch:

- ► Provide complemented outputs at any time
- ► S = R = 1 problem solved with a not gate
- ► Asynchronous out while CLK = 1 is not solved

Master-Slave D flip-flops

- * To solve the clock synchronism problem of the latches
 - Need to device circuits that ...
 - ▶ Can memorize digital information
 - Provide complemented outputs and...
 - Work synchronously with the CLK signal at all time
- * Master slave flip-flops were conceived to overcome this limitation!

- Two D latches governed by level edge resulting in edge control
 - Can be positive or negative clock edges
 - > Figure corresponds to a Master-Slave active with negative clock edge

Master-Slave D flip-flops

From Fundamentals of Digital Logic with VHDL Design 2nd Ed. Stephen Brown, Zvonko Vranesic; McGraw-Hill, 2005

- * Master latch changes when the clock changes to '1'
- Slave changes when clock is '0'
- * The output of circuit changes with negative clock edge
 - The NOT gate guarantees edge synchronous behavior
 - Provide half of CLK to allow the output change

$Q_n \overline{Q}_n$
0 1
1 0
$Q_{n-1} \overline{Q}_{n-1}$
$Q_{n-1} \overline{Q}_{n-1}$

* Flip-flops are **edge sensitive** rather that level sensitive

Characteristic table

Positive edge D flip-flops

- Similar to a Master-slave flip-flop but with additional logic to ensure the output of the flip-flop will change with the positive edge of the clock signal
 - Show an optimized NAND gate implementation

From Fundamentals of Digital Logic with VHDL Design 2nd Ed. Stephen Brown, Zvonko Vranesic; McGraw-Hill, 2005

* After CLK changes to 1, any change in D will not affect Q. Why?

Edge-triggered D flip-flops

Circuit

- * After CLK changes to 1, $P_1 = \overline{D}$ and $P_2 = D$
- * Any change in D will not affect Q because:
 - If before: D = 1 \rightarrow P₁ = 0 and P₂ = 1 D \rightarrow 0 while P₁=0, P₂ = 1 regardless of D

- P₃ and P₄ must be stable when CLK ↑
- T_{SU} (stability of D value before CLK changes) of the F-F configuration is determined by the delay introduced by gates 4 and 1 when the signal propagates from input D to P₃
 - ► Longest data path
- T_H (hold time) is determined by gate 3
 - ▶ Once P₂ is stable, a change in D no longer matters

Level sensitive vs. edge-triggered D flip-flops

A comparison between the two types of flip-flops and the D latch...

From Fundamentals of Digital Logic with VHDL Design 2nd Ed. Stephen Brown, Zvonko Vranesic; McGraw-Hill, 2005

Observation

- Any input change in D, is reflected in the output Q_a because it is level sensitive
- The output Q_b will reflect the state of input D with positive clock edge
- The output Q_c will reflect the state of input D with negative clock edge

Clear and preset features of D flip-flops

- * The clear/preset input is used to set/reset the output of the flip-flop
 - Activated preset → sets Q = 1
 - Activated clear → reset Q = 0
- Feature is important for many applications i.e. counters requiring resetting/presetting values

- * Observation
 - Cr and Pr are active low
 - Cr and Pr can't be active at the same time
 - Cr and Pr are level sensitive
 - Cr-Pr can be converted to edge sensitive

D flip-flops with clock enable

 Clock enable input allows preserving certain output state for a period of time determined by the enable pin

* Observation

- The circuit does not control the clock
- D input is controlled instead
- $E_N = 1$, $Q_{N+1} = D$ with CLK \uparrow

- ▶ Achieved Q with a feedback of Q_N
- Both Cr and Pr inputs are applicable here (synchronous or asynchronous)

T flip-flop

- * A special type of flip-flop that is also made by adding logic to a D flip-flop
- * It toggles the outputs with the active edge of the clock

* Observation

- Output Q is toggled with T = 1 and a positive edge of the clock
- Output Q does not change with T = 0
- Both Cr and Pr inputs are applicable here too (synchronous or asynchronous)

From Fundamentals of Digital Logic with VHDL Design 2nd Ed. Stephen Brown, Zvonko Vranesic; McGraw-Hill, 2005

J-K flip-flop

- * Similar to T F-F but they have 2 control inputs J and K
- * Combine the characteristics of the D and T F-Fs
- * Edge sensitive device
- * The equation describing D is: $D = J\overline{Q} + \overline{K}Q$

CLK	J	K	Qn	$\overline{Q}_{\mathrm{n}}$		
1	0	0	Q_{n-1}	\overline{Q}_{n-1}		
1	0	1	0	1		D
1	1	0	1	0		D-FF
↑	1	1	\overline{Q}_{n-1}	Q_{n-1}	\Longrightarrow	T-FF
0	Χ	Χ	Q_{n-1}	\overline{Q}_{n-1}		
1	Χ	Χ	Q _{n-1}	\overline{Q}_{n-1}		

- * J-K F-F is versatile
 - * Behaves like a D-FF when J = D and $K = \overline{D}$
 - * Behaves as a T F-F if J=K=T
 - It toggles the output in every CLK ↑

Latches and flip-flops in VHDL

- * VHDL implementation of Latches and F-F is simple
- * Can be implemented with sequential assignment
 - IF and Case statements
- * Examples of implementations:
- Example 1: Code for a gated D latch

- Notice that when Clock = 1, any change in D will be reflected in Q
- * When clock = 0, Q will not change with a change in D

From Fundamentals of Digital Logic with VHDL Design 2nd Ed. Stephen Brown, Zvonko Vranesic: McGraw-Hill. 2005

```
LIBRARY ieee;
USE ieee.std logic 1164.all;
ENTITY GDlatch IS
   PORT (D, Clock: IN
                          STD LOGIC;
                    : OUT STD LOGIC);
END GDlatch;
ARCHITECTURE Behavior OF GDlatch IS
BEGIN
   PROCESS (Clock)
    BEGIN
       IF Clock = '1' THEN
           O \leq D:
       END IF:
    END PROCESS:
END Behavior:
```


Flip-flops in VHDL

* EXAMPLE 2: Code for a D flip-flop

```
LIBRARY ieee;
USE ieee.std logic 1164.all;
ENTITY flipflop IS
     PORT ( D, Clock : IN
                                  STD LOGIC;
                          : OUT
                                  STD LOGIC);
END flipflop;
ARCHITECTURE Behavior OF flipflop IS
BEGIN
     PROCESS (Clock, D)
     BEGIN
         IF rising edge(Clock) THEN
               O \leq D:
         END IF;
     END PROCESS;
                             From Fundamentals of Digital Logic with VHDL
                             Design 2nd Ed. Stephen Brown, Zvonko
END Behavior:
                             Vranesic; McGraw-Hill, 2005
```


- Rising_edge can also be implemented with (Clock'EVENT AND Clock = '1')
- Clock'EVENT is a VHDL construct called attribute
- It is a property of the object SIGNAL (Clock in this case)
- Clock'EVENT refers to any change in clock signal
- * Clock = '1' refers to positive clock edge
- * Falling_edge(Clock) or Clock'EVENT AND Clock = '0' refers to negative clock edge

Flip-flops in VHDL

* EXAMPLE 3: Code for a T flip-flop

```
LIBRARY ieee;
USE ieee.std logic 1164.all;
ENTITY flipflop IS
    PORT ( T, Clock : IN STD_LOGIC;
              Q, Qn : OUT STD LOGIC);
END flipflop;
ARCHITECTURE Behavior OF flipflop IS
SIGNAL Qt: STD LOGIC;
BEGIN
  PROCESS (Clock,T)
   BEGIN
       IF rising edge(Clock) AND T='1' THEN
        Qt \leq NOT(Qt);
       END IF;
   END PROCESS;
     Q \leq Qt;
                               From Fundamentals of Digital Logic with VHDL Design 2nd
     Qn \le NOT(Qt);
                               Ed. Stephen Brown, Zvonko Vranesic; McGraw-Hill, 2005
END Behavior;
```


Flip-flops in VHDL

* EXAMPLE 4: Code for a T flip-flop with synchronous clear and preset

```
LIBRARY ieee;
USE ieee.std logic 1164.all;
ENTITY Tflipflop IS
    PORT (T, Cr,Pr,clk : IN STD LOGIC ;
          Q, Qn : OUT STD LOGIC);
END Tflipflop;
ARCHITECTURE Behavior OF Tflipflop IS
SIGNAL Qt: STD LOGIC;
BEGIN
  PROCESS (clk,T, Cr, Pr)
   BEGIN
    IF rising edge(clk) THEN
       IF (Cr XOR Pr) = '1' THEN Qt \le Cr;
      ELSE Ot <= Ot XOR T;
      END IF;
    END IF;
   END PROCESS;
   Q \leq Qt; Qn \leq NOT(Qt);
 END Behavior;
```

Т	clk	Cr	Pr	Qn	$\overline{\overline{Q}}_n$
0	↑	1	1	Q _n -	1 Q n-1
1	\uparrow	1	1	Q _n .	1 Q n-1
Х	0	1	1	Q _n -	1 Q n-1
Х	1	1	1	Q _n	1 Q n-1
Х	\uparrow	0	1	0	1
Χ	\uparrow	1	0	1	0

Summary

- * Introduced
 - Master-slave and Edge-triggered D flip-flops
 - Additional features of D flip-flops: Clear, Preset and Enable
 - T and J-K flip-flops
- Revised VHDL implementation of flip-flops
- * Recommended study from the textbook
 - 1. Study solved problems 7.13 & 7.14
 - 2. Answer problems 7.1-7.12

Reference

- Fundamentals of Digital Logic with VHDL Design 2nd Edition Stephen Brown,
 Zvonko Vranesic; McGraw-Hill, 2005. Chapter 7, pp. 391-400
- Digital Design; Principles and Practices. Fourth Edition. John F. Wakerly,
 Prentice Hall, 2006. ISBN 0-13-186389-4. Chapter 7, pp. 532-542

Next lecture:

- Registers
 - ► Fundamentals of Digital Logic with VHDL Design 3/e, Stephen Brown, Zvonko Vranesic; McGraw-Hill, 2009. Chapter 7, pp. 398-406
 - ▶ Digital Design; Principles and Practices. Fourth Edition. John F. Wakerly, Prentice Hall, 2006. ISBN 0-13-186389-4. Chapter 7, pp. 710-720, 727-752