

MRT Technology (Suzhou) Co., Ltd

Phone: +86-512-66308358 Fax: +86-512-66308368 www.mrt-cert.com

Report No.: 1501RSU00407 Report Version: Issue Date: 03-13-2015

RF Exposure Evaluation Declaration

FCC ID: 2AC9MADTRAN424RG

APPLICANT: Wuxi MitraStar Technology Co., Ltd

Application Type: Certification

Product: Indoor GPON HGU

Model No.: 424RG

Trademark: ADTRAN

FCC Classification: Digital Transmission System (DTS)

Unlicensed National Information Infrastructure (UNII)

Reviewed By : Robin Wu)

Approved By : Marlinchen

(Marlin Chen)

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

FCC ID: 2AC9MADTRAN424RG

Page Number: 1 of 8

Revision History

Report No.	Version	Description	Issue Date
1501RSU00407	Rev. 01	Initial report	03-13-2015

1. PRODUCT INFORMATION

1.1. Equipment Description

Product Name	Indoor GPON HGU
Model No.	424RG
Frequency Range	For 2.4GHz Band:
	802.11b/g/n-HT20:
	2412 ~ 2462MHz
	802.11n-HT40:
	2422 ~ 2452MHz
	For 5GHz Band:
	For 802.11a/n-HT20:
	5180~5320MHz, 5500~5700MHz, 5745~5825MHz
	For 802.11ac-VHT20:
	5180~5320MHz, 5500~5720MHz, 5745~5825MHz
	For 802.11n-HT40:
	5190~5310MHz, 5510~5670MHz, 5755~5795MHz
	For 802.11ac-VHT40:
	5190~5310MHz, 5510~5710MHz, 5755~5795MHz
	For 802.11ac-VHT80:
	5210MHz, 5290MHz, 5530MHz, 5610MHz, 5690MHz, 5775MHz
Type of Modulation	802.11b: DSSS
	802.11g/a/n/ac: OFDM
Maximum Average Output Power	For 2.4GHz Band:
	802.11b: 23.37dBm
	802.11g: 23.35dBm
	802.11n-HT20: 26.11dBm
	802.11n-HT40: 23.46dBm
	For 5GHz Band:
	802.11a: 27.16dBm
	802.11n-HT20: 27.06dBm
	802.11n-HT40: 27.04dBm
	802.11ac-VHT20: 27.19dBm
	802.11ac-VHT40: 27.20dBm
	802.11ac-VHT80: 25.01dBm

1.2. Antenna Description

Antenna	Frequency	T _X Paths	Directional Gain (dBi)		
Type Band (GHz)			Non Beam Forming	Beam Forming	
	2.4	2	1.90		
	5.2	4	2.17	8.04	
PCB Antenna	5.3	4	2.03	7.78	
, witorina	5.6	4	2.55	8.38	
	5.8	4	2.70	8.70	

Note:

- 1. Transmit at 2.4GHz support two antennas, and support four antennas at 5GHz transmit.
- 2. The EUT working on Beam Forming mode, and the Beam Forming support 802.11n/ac, not include 802.11a.
- 3. Correlated signals include, but are not limited to, signals transmitted in any of the following modes:
 - Any transmit Beam Forming mode, whether fixed or adaptive (e.g., phased array modes, closed loop MIMO modes, Transmitter Adaptive Antenna modes, Maximum Ratio Transmission (MRT) modes, and Statistical Eigen Beam Forming (EBF) modes).
- 4. Unequal antenna gains, with equal transmit powers. For antenna gains given by G₁, G₂, ..., G_N dBi
 - transmit signals are correlated, then
 - Directional gain = 10 log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})²/N_{ANT}] dBi [Note the "20"s in the denominator of each exponent and the square of the sum of terms; the object is to combine the signal levels coherently.]

2. RF Exposure Evaluation

2.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Average Time (Minutes)
	(A) Limits for	Occupational/ Contr	ol Exposures	
300-1500			f/300	6
1500-100,000			5	6
(B) Limits for General Population/ Uncontrolled Exposures				
300-1500			f/1500	6
1500-100,000			1	30

f= Frequency in MHz

Calculation Formula: $Pd = (Pout*G)/(4*pi*r^2)$

Where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

r = distance between observation point and center of the radiator in cm

Pd is the limit of MPE, 1mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

2.2. Test Result of RF Exposure Evaluation

Product	Indoor GPON HGU
Test Item	RF Exposure Evaluation

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 1.90dBi for 2.4GHz, 8.04dBi for 5.2GHz, 7.78dBi for 5.3GHz, 8.38dBi for 5.6GHz and 2.70dBi for 8.70GHz in logarithm scale.

For 2.4GHz ISM Band:

Test Mode	Frequency Band	Maximum Average	Power Density at	Limit
	(MHz)	Output Power	R = 20 cm	(mW/cm ²)
		(dBm)	(mW/cm ²)	
802.11b	2412 ~ 2462	23.37	0.0669	1
802.11g	2412 ~ 2462	23.35	0.0666	1
802.11n-HT20	2412 ~ 2462	26.11	0.1258	1
802.11n-HT40	2422 ~ 2452	23.46	0.0683	1

For 5GHz UNII Band:

Test Mode	Frequency Band (MHz)	Maximum Average Output Power (dBm)	Power Density at $R = 20 \text{ cm}$ (mW/cm^2)	Limit (mW/cm²)
	5180 ~ 5240	23.77	0.0781	1
000 44	5260 ~ 5320	20.74	0.0376	1
802.11a	5500 ~ 5700	21.27	0.0479	1
	5725 ~ 5825	27.16	0.7669	1
	5180 ~ 5240	23.67	0.2949	1
802.11n-HT20	5260 ~ 5320	20.72	0.1408	1
802.11N-H120	5500 ~ 5700	21.16	0.1789	1
	5725 ~ 5825	27.06	0.7494	1
802.11n-HT40	5190 ~ 5230	24.15	0.3294	1
	5270 ~ 5310	20.96	0.1488	1
	5510 ~ 5670	21.48	0.1926	1
	5755 ~ 5795	27.04	0.7460	1

000 44 - 1/1/1700	5180 ~ 5240	23.69	0.2963	1
	5260 ~ 5320	20.81	0.1438	1
802.11ac-VHT20	5500 ~ 5720	21.28	0.1840	1
	5725 ~ 5825	27.19	0.7722	1
	5190 ~ 5230	24.03	0.3204	1
	5270 ~ 5310	20.94	0.1482	1
802.11ac-VHT40	5510 ~ 5710	21.52	0.1944	1
	5755 ~ 5795	27.20	0.7740	1
802.11ac-VHT80	5210	15.98	0.0502	1
	5290	18.29	0.0805	1
	5530 ~ 5690	20.62	0.1580	1
	5775	25.01	0.4674	1

Report No.: 1501RSU00407

CONCULISON:

Both of the WLAN 2.4GHz Band and WLAN 5GHz Band can transmit simultaneously. Therefore, the Max Power Density at R (20 cm) = $0.1258 \text{mW/cm}^2 + 0.7740 \text{mW/cm}^2 = 0.8998 \text{mW/cm}^2 < 1 \text{mW/cm}^2$.

So the EUT complies with the requirement.