Examen 2 - Operaciones matemáticas básicas

Solución

M. en C. Gustavo Contreras Mayén

3 de abril de 2014

Contenido

Dados los puntos

Calcula y en x=0 usando: a) el método de Neville y b) el método de Lagrange.

Dados los puntos

Calcula y en x=0 usando: a) el método de Neville y b) el método de Lagrange.

La raíz en ambos métodos, vale -6.0

Encontrar la raíz de y(x) a partir de los siguientes datos:

x	0	0.5	1	1.5	2	2.5
y	1.8421	2.4694	2.4921	1.9047	0.8509	-0.4112

Usando la interpolación de Lagrange sobre a) tres puntos, y b) sobre cuatro puntos vecinos más cercanos.

Resultado

La función y(x) del problema anterior, tiene un máximo en x=0.7679. Calcular el valor máximo con el método de interpolación de Neville usando cuatro puntos vecinos.

Resultado

La viscosidad cinemática μ_k del agua varía con la temperatura T de la siguiente manera:

$T(^{\circ}C)$	0	21.1	37.8	54.4	71.1	87.8	100
$\mu_k(10^{-3}m^2/s)$	1.79	1.13	0.696	0.519	0.338	0.321	0.296

Interpolar μ_k para $T=10^\circ, 30^\circ, 60^\circ$ y 90° .

Solución Problema 4

La siguiente tabla muesta como la densidad relativa ρ del aire varía con la altitud h. Calcula la densidad relativa del aire en $10.5~{\rm km}$.

h(km)	0	1.525	3.050	4.575	6.10	7.625	9.150
ρ	1	0.8617	0.7385	0.6292	0.5328	0.4481	0.3741

Solución Problema 5

Encuentra todas las raíces positivas de las siguientes ecuaciones mediante el método de bisección, con una tolerancia de 0.001.

$$\sin(x) - 0.3 \exp(x) = 0; x > 0$$

$$-x^3 + x + 1 = 0$$

$$16x^5 - 20x^3 + x^2 + 5x - 0.5 = 0$$

Inciso a) $\tan(x) - x + 1 = 0;$ $0 < x < 3\pi$

Inciso b) $\sin(x) - 0.3 \exp(x) = 0;$ x > 0

Inciso c) $-x^3 + x + 1 = 0$

Inciso d) $16x^5 - 20x^3 + x^2 + 5x - 0.5 = 0$

Determina las raíces de las siguientes ecuaciones mediante el método de la falsa posición modificada:

•
$$f(x) = 0.5 \exp(\frac{x}{3}) - \sin(x);$$
 $x > 0$

$$g(x) = \log(1+x) - x^2$$

$$(x) = \exp(x) - 5x^2$$

$$h(x) = x^3 + 2x - 1 = 0$$

•
$$f(x) = \sqrt{x+2}$$

Inciso b) $g(x) = \log(1+x) - x^2$

Inciso c) $f(x) = \exp(x) - 5x^2$

Inciso c) $f(x) = \exp(x) - 5x^2$

Inciso d) $h(x) = x^3 + 2x - 1 = 0$

Inciso e) $f(x) = \sqrt{x+2}$

Dado que ya conocen las raíces de las funciones, esperaríamos que reportaran un valor casi idéntico, y hasta con un error relativo.

Identifica el intervalo para las raíces de las siguientes ecuaciones y calcula despúes las raíces mediante el método de la secante, con una tolerancia de 0.001:

$$0.1x^3 - 5x^2 - x + 4 + \exp(-x) = 0$$

$$\ln(x) - 0.2x^2 + 1 = 0$$

$$x + \frac{1}{(x+3)x} = 0$$

Inciso a) $0.1x^3 - 5x^2 - x + 4 + \exp(-x) = 0$

Inciso a) $0.1x^3 - 5x^2 - x + 4 + \exp(-x) = 0$

Inciso b)

Inciso c)

