Přenos dat, počítačové sítě a protokoly

Architektura směrovačů

Ing. Petr Matoušek, Ph.D., M.A.

Fakulta informačních technologií VUT v Brně

matousp@fit.vutbr.cz

Obsah přednášky

- Základní popis směrovače
 - Činnost
 - Rozdělení směrovačů
 - Architektura
 - Zpracování paketu
- Přepínání paketů ve směrovači
 - Softwarové přepínání
 - Rychlé přepínání
 - Expresní přepínání
- Přehled architektur směrovačů
- Otázky a úkoly
- 6 Literatura

Základní operace ve směrovači:

- Směrování (routing)
- Přepínání paketů (packet forwarding)

Směrovací tabulka (routing table)

- IP prefix cílové sítě × sousední uzel (next hop)
- Optimalizovaná pro výpočet dynamických změn v topologii

Přepínací tabulka (forwarding table)

- IP prefix × výstupní rozhraní × L2 adresy (výstupní rozhraní + sousední uzel)
- Optimalizovaná pro vyhledání cílové adresy

Routing Table

IP prefix	Next hop
10.5.0.0/16	192.168.2.254
10.15.0.0/16	104.17.2.1
88.0.0.0/8	129.1.1.1

Forwarding Table

IP prefix	Interface	dst MAC address	src MAC address	
10.5.0.0/16	eth0	00:0F:1F:CC:F3:06	B8:6B:23:EA:FC:20	
10.15.0.0/16	eth1	01:12:11:A0:17:A0	00:16:17:E1:28:5F	
88.0.0.0/8	eth2	01:3F:04:10:03:15	00:1B:63:8A:DB:1A	

- Jak se vytvoří směrovací tabulka?
- Jak je implementována?
- Jak se vytvoří přepínací tabulka?
- Proč obsahuje dvě MAC adresy?

Zpracování IP datagramu ve směrovači (viz RFC 1812 [1])

Co patří mezi základní operace?

- Validace hlavičky L3
 - Formát, verze, délka
- Kontrola hodnoty TTL a její dekrementace
- Přepočítání kontrolního součtu
- Zpracování rozšířených voleb IP protokolu
 - Timestamp, record route, strict source route
- Vyhledání cesty (next-hop) na základě adresy
 - Lokální doručení, unicast, multicast
- Fragmentace a defragmentace IP datagramů
 - Pokud MTU_{in} < MTU_{out}
- Zpracování zpráv ICMP a IGMP

Zpracování IP datagramu ve směrovači (viz RFC 1812 [1])

Co patří mezi pokročilé operace?

- Dynamické směrování
 - Implementace směrovacích protokolů
 - Udržování sousedství (keep-alive)
 - Aktualizace směrovací a přepínací tabulky
- Filtrování paketů (ACL)
- Překlad NAT
 - Přepisování položek v hlavičce paketu
 - Udržování tabulky spojení
- Tunelování provozu
 - Zapouzdřování a vypouzdřování dat
 - GRE, IPSec, apod.
- Klasifikace dat, priorititizace provozu
- Správa zařízení
 - Konfigurace (např. DHCP, TFTP)
 - Monitorování zařízení (např. SNMP)

Páteřní směrovač (Core Router)

- Součást páteřních sítí poskytovatelů internetového připojení (ISP)
- Vysoce agregovaný přenos
 - Propojení tisíců menších sítí
- Vyžadována vysoká rychlost přepínání
 - Rychlost přepínání závisí na době vyhledání ve FIB
 - Využití technik typu CEF (Cisco Express Forwarding)
 - Optimalizace vyhledávání cesty: algoritmy LPM (Longest Prefix Match)
 - Hardwarová akcelerace zpracování dat (ASIC, FPGA)
- Důraz na spolehlivost
 - Redundance zařízení (high-availability)
 - Zálohování napájení, přepínacího pole, modulů pro zpracování

- Řada Cisco CRS (Carrier Routing System), přepínání 1,12 12,8 Tb/s
- Juniper, T Series, přepínání 800 Gb/s 3.84 Tb/s

Hraniční směrovač (Edge Router)

- Připojuje zákaznické sítě směrem k ISP
- Vyžaduje velké přenosové pásmo pro připojení k ISP
 - Agregace zákaznického provozu z různých přistupových technologií
 - WAN technologie: Ethernet, optika, kabelový modem, xDSL, FTTH
- Podpora přístupových technologií
 - PPTP, PPPoE, L2TP, IPSEC VPN
 - IP/MPLS, ATM/Frame Relay, OC-48, SONET
 - Velký počet přístupových portů (modulů) pro různé L2 technologie

- Cisco 7000, 12000, Cisco ASR (Aggregation Services Routers) 9000, 12000 přepínání 2,5 – 200 Gb/s
- Juniper, MX Series (Universal Edge Routers), přepínání 20 160 Gb/s

Podnikový směrovač (Enterprise Router)

- Lze využít také páteřní a distribuční L3 přepínače (Core and Distribution Switches)
- Propojuje koncové systémy v podnikových sítích
- Vyžaduje velké množství portů na rychlostech 1 až 10 GbE
- Modulární a rozšiřitelné řešení
- Podpora QoS
- Efektivní přenos multicastu a broadcastu
- Bezpečnost
 - Filtrování
 - VPN sítě
 - VLAN sítě

- Cisco Catalyst 6800 přepínání 720 Gb/s 11.4 Tb/s
- Juniper, EX Series, přepínání 40 Gb/s 12.4 Tb/s

Domácí směrovač (SOHO Router)

- Zařízení pro připojení uživatele či domácnosti
- Menší počet portů (8, 12, 16), rychlost 1 Gb/s
- Připojení do WAN sítě: Ethernet, kabelový modem, xDSL, ISDN
- Připojení do LAN sítě: Ethernet, WiFi 802.11a/b/g/n, RJ-11, USB
- Důraz na cenu, proprietární řešení
- Softwarová implementace, linuxové jádro, nízká propustnost
- Omezené možnosti konfigurace
 - Přístup k zařízení, filtrovací pravidla
 - Podpora DHCP, NAT, směrování RIP
 - Malá podpora vzdálené správy (SNMP, NetFlow)

- Asus, Linksys, Belkin
- Mikrotic, Turris

Architektura směrovače

Funkční části směrovače

Funkční části směrovače

- Síťové rozhraní (Network Interface)
 - Obsahuje více vstupních/výstupních portů
 - Odstraní zapouzdření L2
 - Předá hlavičku L3 přepínacímu modulu
 - Uloží paket do paměti
 - Zapouzdří odchozí pakety
- Řízení přepínání (Forwarding Engine, FE)
 - Dostane hlavičku L3 ze síťového rozhraní
 - Určí výstupní rozhraní podle informace ve FIB
 - Provádí klasifikace paketů pro podporu QoS na výstupu
- Správce front (Queue Manager)
 - Ukládá pakety do vyrovnávací paměti, pokud je výstupní port obsazen
 - ullet Spravuje výstupní frontu o různé typy výstupních front
 - Při zaplnění fronty vybírá a zahazuje pakety podle definované politiky

Funkční části směrovače

- Správce provozu (Traffic Manager)
 - Prioritizuje a reguluje výstupní provoz podle požadavků QoS
 - Omezuje či ořezává výstupní provoz (shaping, policing)
- Propojovací deska, sběrnice (Backplane)
 - Propojuje síťové rozhraní
 - Vytváří sdílené (shared) či přepínané (switched) propojení
 - Rychlost přepínání odpovídá přenosovému pásmu všech rozhraní
- Řídící procesor pro směrování (Route Control Processor)
 - Implementuje směrování na obecném CPU
 - Zpracovává směrovací informace: aktualizace, udržuje sousedství
 - Obsluhuje směrovací tabulku
 - Přenáší data do přepínací tabulky
 - Zpracovává pakety, které nelze směrovat pomocí FIB
 - Vytváří chybové zprávy ICMP

Fyzické části směrovače

Fyzické části směrovače

- Modul fyzického rozhraní (Port Card)
 - Implementuje síťové rozhraní: Ethernet, SONET, xDSL
 - Provádí operace nad L2: zapouzdřování, vypouzdřování
 - Udržuje statistiky o odchozím a příchozím provozu
- Síťový modul (Line Card)
 - Obsahuje přepínání, správu front a správu provozu
 - Obsahuje paměť pro uložení zpracovaných paketů
 - Analyzuje hlavičku IP, vyhledává výstupní rozhraní
 - Připojen k základní desce (backplane)
- Přepínací pole (Switching Fabrics)
 - Přenáší pakety ze vstupního rozhraní na výstupní
 - Páteřní směrovače obsahující více modulů přepínacího pole
- Modul pro směrování (Route Processor Card)
 - Implementace funkcí směrování a správy zařízení
 - Běžící procesy pro směrování a správu
 - Obsahuje obecný proces se specializovaným OS a velkou paměť

Control Plane and Data Plane

Ingress interface number Ingress interface type Ingress L2 information Dest_MAC address Source MAC address L3 information Dest, IP address Source IP address Protocol type DSCP (QoS) Dest. port (TCP/UDP) Source port (TCP/UDP) Packet context

Kontext paketu

- Datová struktura obsahující informace o zpracovávaném paketu
- Vybrané hlavičky L2-L4, informace o rozhraních, ukazatel do paměti
- Kontext se vytvoří při vstupu paketu do zařízení
- Během zpracování paketu na směrovači se doplňují další položky
- Kontext se předává mezi moduly směrovače
- Po doplnění směrovacích informací je paket přenesen ze vstupního bufferu na výstupní síťové rozhraní

Fáze zpracování

- Paket přijde na síťové rozhraní
 - Síťové karta zpracuje L2 rámec, zkontroluje FCS
 - Vytvoří kontext paketu: vloží L2 zdrojovou a cílovou adresu
 - Zpracování hlavičky L3: typ protokolu, kontrolní součet, TTL
 - Doplnění kontextu o informace L3: IP adresy, typ protokolu, DSCP + porty
- Zpracování v přepínacím modulu
 - Vyhledání cesty v přepínací tabulce: next hop + výstupní rozhraní
 - Doplnění dalších informací do kontextu paketu
 - ullet Paket ulože do vyrovnávací paměti ightarrow adresa vložena do kontextu
- 3 Přeposlání kontextu propojovací deskou
 - Paket i kontext přeneseny na výstupní rozhraní
- Co se stane, když některá z výše uvedených fází skončí neúspěšně?
- Co může být příčinou neúspěšného zpracování?
- Předpokládejme, že fáze 1 až 3 proběhly úspěšně ...

Full Packet Context

Plný kontext

- Kontext doplněn o výstupní informace
- Základní deska přenese paket i kontext na výstupní rozhraní
- Kontext obsahuje adresu uložení paketu v paměti
- Zpracování paketu předáno správci front
- \Rightarrow Další zpracování probíhá už na výstupní síťové kartě

- 4 Zpracování správcem front
 - Podle priority v kontextu paketu je paket vložen do příslušné výstupní fronty
 - Obsluha fronty podle daného plánovacího algoritmu
- 5 Předání kontextu správci provozu
 - Kontrola omezení rychlosti (shaping) dle kontextu
 - Překročení rychlost: zahození či zpomalení
- 6 Výstupní síťové rozhraní
 - L3: aktualizace TTL, přepočítání kontrolního součtu
 - L2: přidání hlavičky, výpočet CRC
 - Odeslání paketu (zapsání na výstupní médium)
 - Jaké mohou být příčiny zahození paketu ve fázích 4 6?

Rychlá cesta a pomalá cesta

Rychlá cesta a pomalá cesta (Fast Path and Slow Path)

- Dva způsoby zpracování paketů ve směrovači
- Rychlá cesta (data plane) vs. pomalá cesta (control plane)

Rychlá cesta

Časově kritické operace

- Zpracování v hardware v síťové modulu (data plane)
- Toto zpracování se týká většiny paketů
 - Potřeba optimalizovat a urychlit průchod paketu zařízením
 - Využití obvodů ASIC na síťovém modulu
- Zpracování hlavičky IP
 - Kontrola verze, délky paketu, TTL, přepočítání kotrolního součtu
- Přeposlání paketu
 - Lokální uložení, přeposlání na jeden port (unicast) či více portů (multicast)
- Klasifikace paketu na základě informací z hlavičky
 - Optimalizované datové struktury pro rychlé uložení a vyhledání
- Uložení do front, plánování
 - Různé typy front, různé typy obsluhy

Pomalá cesta

Časově nekritické operace

- Pakety částečně zpracovány v hardwaru
- Většina zpracování probíhá v softwaru (control plane)
- Zpracování ARP
 - Zjištění výstupní adresy L2: první paket, ostatní pakety
 - Je možné implementovat i na kartě či v procesoru
- Fragmentace a defragmentace
 - Procházející fragmentované pakety nejsou sestaveny
 - Sestavení vyžaduje přeskládání a detekci ztracených fragmentů (drahé)
- Pokročilé zpracování IP datagramu
 - Zdrojové směrování, zaznamenávní cesty
 - Generování zpráv ICMP
- Správa a monitorování sítě (např. SNMP)
- Zpracování směrovacích informací

Přepínání paketů (Packet Forwarding)

Přepínání paketů z jednoho rozhraní na druhé na základě směrovacích informací je jedna z nejdůležitějších funkcí směrovače.

Proces přepínání paketů zahrnuje:

- 1 zjištění, zda cíl cesty paketu je dosažitelný,
- 2 vyhledání nejbližšího uzlu na cestě (next-hop) a určení výstupního rozhraní,
- 3 vyhledání informací pro vytvoření L2 hlavičky paketu na výstupu.
- ⇒ Každý z těchto kroků je kritický pro úspěšné odeslání paketu.

Způsoby přepínání paketu

- 1) Softwarové přepínání (Process Switching)
- 2) Rychlé přepínání (Fast Switching)
- 3) Expresní přepínání CEF (Cisco Express Forwarding)

- Pro každý paket se hledá cesta ve směrovací tabulce a určuje se MAC adresa cíle.
- Směrovač využívá standardní mechanismus přepíná procesů v OS.

Route Processor

- 1/O procesor detekuje paket na vstupním médiu. Přenese ho do vstupního bufferu.
- 1/O procesor vygeneruje přerušení. Během přerušení určí centrální procesor typ paketu a zkopíruje ho do centrální paměti.
- Centrální plánovač zjistí, že ve vstupní frontě je paket. Naplánuje jeho další zpracování procesem ip_input.

- Proces pro zpracování vyhledá ve směrovací tabulce další uzel (next hop) a výstupní rozhraní. V paměti ARP cache vyhledá MAC adresu dalšího uzlu.
- 5 Přepíše L2 hlavičku paketu a umístí paket do výstupní fronty na výstupním portu.
- Paket vložen do fronty na výstupním portu.
- I/O procesor detekuje paket ve vysílací frontě. Zapíše ho na síťové médium.

Vyvažování zátěže (load balancing) při softwarovém přepínání

- Vyvažování v případě více cest ve směrovací tabulce probíhá po paketech.
- Pakety jsou automaticky rozděleny podle metriky (ceny) každé cesty.

Příklad: klienti ze sítě 10.1.1.0/24 přistupují na server 10.1.4.42.

- Dle ceny linky se vypočítá čítač sdílení zátěže (load share counter).
- Cesta se vybírá podle poměru čítače.

Rychlé přepínání (Fast Switching)

- Využívá vyrovnávací paměť route cache s předpočítanou L2 hlavičkou.
- První paket toku se přepíná softwarově. Další pakety toku jdou rychlou cestou.

Rychlé přepínání (Fast Switching)

Vlastnosti rychlé paměti cache (Fast Cache)

- ullet Paměť původně implementována pomocí hešovací tabulky o problém kolizí.
- Novější implementace využívají prefixového binárního stromu 2-way radix tree

Inserting 2, 7 and 10

- Kompaktní varianta stromu prefixů trie
- Počet potomků vnitřních uzlů \leq základ (radix) r.
- Pokud uzel má pouze jeden list, připojí se list k předchozímu uzlu (redukce prostoru).
- Hrany mohou obsahovat posloupnost bitů.
- Záznamy vkládány do paměti cache při přepínání paketu.
- Rekurzivní odkazy se vyhodnotí před vložením záznamu do tabulky.
- Neexistuje synchronizace mezi směrovací tabulkou, ARP cache a Fast cache.
- Záznam se zneplatní při změně ARP cache či směrovací tabulky.
- Při zaplnění paměti nad určitou mez se začnou záznamy náhodně zahazovat.

Rychlé přepínání (Fast Switching)

Vyvažování zátěže (load balancing) při přepínání pomocí paměti Fast cache

• Vyvažování zátěže není po paketech, protože směrování je odděleno od přepínání.

Příklad: klienti ze sítě 10.1.1.0/24 přistupují na server 10.1.4.42.

- Dochází k vyvažování zátěže podle adresy cíle (destination-based).
- Vyvažování je nedeterministické. ⇒ Lze řešit pomocí expresního přepínání CEF.

Expresní přepínání CEF (Cisco Express Forwarding)

Omezení rychlého přepínání (Fast Switching)

- Fast cache neumožňuje vložit masku → problém u překrývající se záznamů.
- Změny v ARP tabulce způsobují zneplatnění záznamů ve Fast cache.
- První paket se vždy zpracovává softwarově.
- Nedostatečné vyvažování zátěže.

Nevadí u běžných podnikových směrovačů ⇒ kritické pro páteřní směrovače.

Požadavky na páteřní směrovače

- Extrémně velké směrovací tabulky (sta tisíce záznamů)
 - → Potřebujeme efektivní datovou strukturu pro uložení směrovací tabulky.
- Dochází k častým změnám ve směrovacích tabulkách, což vede k zneplatnění záznamů ve Fast cache a výpadkům ve vyhledávání.
 - → Potřebujeme oddělit směrování a přepínání.
- Velká režie softwarového přepínání
 - → Zkusme předpočítat tabulku pro přepínání předtím, než přijdou pakety.

Expresní přepínání CEF (Cisco Express Forwarding)

Tabulka CEF

- Vytváří se dynamicky na základě směrovací tabulky.
- Optimalizována pro vyhledávání pomocí 256-ární struktury trie (256-way mtrie).
- Každý uzel může mít až 256 potomků reprezentující další byte adresy IPv4.
- List obsahuje ukazatel do tabulky sousedů (Adjacency Table).

Expresní přepínání CEF (Cisco Express Forwarding)

Tabulka sousedů (Adjacency Table)

- Obsahuje data pro vytváření L2 hlaviček pro přímo připojené sousedy:
 - MAC adresu cíle (next-hop), MAC adresu zdroje, číslo IP protokolu a další
- Vytváří se na základě ARP tabulky, mapovací tabulky Frame Relay, apod.
- Typy záznamů v tabulce sousedů:
 - Předpočítané hlavičky přímo připojených sousedů.
 - Nekompletní L2 hlavičky → vyžadují dotaz ARP.
 - Pakety určené pro softwarové zpracování.

Příklad: MAC DST = 0008 A37F CB7C, MAC SRC = 0008 A378 BDFF, IP Proto = 0800

```
Router-2# show adjacency internal
Protocol Interface
                                    Address
            Ethernet0/0
                              172.18.114.1 (23)
ΤP
                              280 packets, 20738 bytes
                              0008A3FCB7C00503EFA37800800
                              ARP
                                           04 - 02 - 58
                              Epoch: 0
                              Fast adjacency disabled
                              TP direct enabled
                              IP mtu 1500 (0x0)
                              Adjacency pointer 0x816BFC20, refCount 23
                              Connection ID 0x00000
                              Bucket 205
```

Expresní přepínání CEF (Cisco Express Forwarding)

Průběh expresního přepínání CEF

- Podle směrovací tabulky se předpočítá tabulka CEF a tabulka sousedů.
- V tabulce CEF se vyhledá pro daný cíl ukazatel na záznam v tabulce sousedů.
- V tabulce sousedů se vyhledá předkompilovaná hlavička I 2
 - Paket se předá na výstupní rozhraní.

Expresní přepínání CEF (Cisco Express Forwarding)

Výhody mechanismu CEF

- Tabulka CEF předpočítána na základě směrovací tabulky a tabulky sousedů ještě před příchodem paketu → nedochází k softwarovému přepínání.
- Oddělení směrovacích informací od L2 dat \to nedochází ke stárnutí záznamů při expiraci záznamu v tabulce ARP.
- Změny ve směrovací tabulce či tabulce ARP se okamžitě propagují do tabulky CEF.
- ARP tabulka se synchronizuje se záznamy v tabulce sousedů.

Vyvažování zátěže

- Vyvažování lze provádět podle paketu nebo podle dvojice zdroj/cíl.
- Vyvažování podle dvojice zdrojová/cílová adresa:
 - Příslušný záznam v tabulce CEF ukazuje na tabulku Load Share.
 - Implementována jako hešovací tabulka podle cílové a zdrojové adresy.
 - Obsahuje ukazatele na paralelní cesty v tabulce sousedů.

Přehled architektur směrovačů

Architektury směrovačů podle způsobu přepínání paketů [2]

- Architektura se sdíleným procesorem (Shared CPU)
 - Varianta s vyrovnávací pamětí na kartě
- 2 Architektura s nezávislými moduly FE (Shared Forwarding Engine)
 - Varianta s přepínací směrnicí
- 3 Distribuovaná architektura (Shared Nothing)
- 4 Modulární architektura (Clustered Architecture)

1. Architektura se sdíleným procesorem

- Využívá softwarové přepínání → každý paket zpracován na CPU.
- Cykly CPU rozděleny mezi přeposílání, směrování a další operace.
- Sdílená sběrnice i procesor ⇒ levné, ale pomalé.

1. Architektura se sdíleným procesorem

- Varianta s pamětí cache na kartě \rightarrow synchronizace přepínacích tabulek.
- Síťová karta obsahuje FE pro zpracování hlaviček, paměť a přepínací tabulku.
- Rychlé přepínání (Fast Switching): první paket vs. další pakety.

2. Architektura s nezávislými moduly FE

- Přepínací moduly FE implementovány na speciálních kartách.
- Paralelní zpracování paketů, dvě sběrnice (sdílená a přepínaná).

2. Architektura s nezávislými moduly FE

Varianta s jednou přepínanou sběrnicí ⇒ vyšší propustnost.

3. Distribuovaná architektura (Shared Nothing)

- Veškeré zpracování paketu přeneseno do síťového modulu.
- ullet Oddělení procesu směrování a přepínání o využití technologie CEF.

3. Distribuovaná architektura (Shared Nothing)

• Příklad: Cisco 7500, Cisco 12000 (GSR, Gigabit Switch Router)

4. Modulární architektura (Clustered Architecture)

- Nezávislé moduly připojené k centrálnímu přepínači.
- Více přepínacích modulů, více směrovacích procesorů.
- Distribuované zpracování → dCEF (distributed CEF).

Otázky k opakování

- Vyjmenujte a stručně popište základní a pokročilé funkce směrovače?
- Popište základní stavební prvky (funkční moduly) směrovače?
- Co je to kontext paketu a k čemu se používá?
- Co jo rychlá a pomalá cesta při zpracování paketů ve směrovači? Popište průchod paketu pomalou a rychlou cestou a příklad zpracování.
- Popište softwarové přepínání na směrovači.
- Čím se liší rychlé přepínání (fast switching) a expresní přepínání (CEF) na směrovači?
- Popište průběh expresní přepínání paketů CEF ve směrovači. Jaké tabulky se používají, co obsahují a jak se aktualizují?
- Popište průchod paketu směrovačem u architektury se sdíleným procesorem, s nezávislými jednotkami FE a u distribuované architektury.

Literatura

[3] George Varghese.

- F. Baker. Requirements for IP Version 4 Routers. IETF RFC 1812, June 1995.
- [2] D. Medhi and K. Ramasamy. Network Routing. Algorithms, Protocols, and Architectures. Elsevier, Inc., 2007.
- Network Algorithmics.
 Elsevier, Inc., 2005.

 [4] Vijay Bollapragada, Curtis Murphy, a
- [4] Vijay Bollapragada, Curtis Murphy, and Russ White. Inside Cisco IOS Software Architecture. Cisco Press, 2000.