King Saud University College of Computer and Information Sciences Computer Science Department

Computer Science Department

Course Code:	CSC 339	
Course Title:	Theory of Computation	
Semester:	2 nd (1443)	/
Exercises Cover Sheet:	Homework#1	,
Due-Date :	Thursday 24 March 11:59	

Name ID

Course Learning Outcomes		Relevant Question No	Full Mark	Student Mark
CLO 1	Identify regular and non-regular languages (K1)	Part 1	3	
CLO 2	Identify decidable and non-decidable, NP-complete, and reducible problems (K1)			
CLO 3	Produce computing-based solutions using regular expressions, and context free grammar (K2)	Part 2	4	
CLO 4	Design different machine models (DFA, NFA, PDA, TM) (S1)	Part 3	3	
CLO 5	Evaluate the language accepted by a machine, a regular expression, and a context free grammar (S1)			
CLO 6	Evaluate the time and space complexity of a Turing machine (S1)			

Question 1

Prove that $L = \{w \in \{0,1\}^* \text{ and } w \text{ has more 1's than 0's }\}$ is not a regular language using the pumping lemma.
Assume that L
Since L is an, we can use the pumping lemma.
Let m be
Pick a string w such that $w \in L$ and length
We choose w=
We can write w =
such that: xy
y
Complete the prove:

Question 2

a. Answer each part for the following context-free grammar G.

$$R \rightarrow XRX \mid S$$

$$S \rightarrow aTb \mid bTa$$

$$T \rightarrow XTX \mid X \mid \lambda$$

$$X \rightarrow a \mid b$$

- 1. What are the variables of G?
- 2. What are the terminals of G?
- 3. Which is the start variable of G?
- 4. Give three strings in L(G).
- 5. Give three strings *not* in L(G).
- 6. True or False: $T \Rightarrow * aba$.
- 7. True or False: $T \Rightarrow aba$.
- 8. True or False:T⇒T.
- 9. True or False: $T \Rightarrow^* T$.
- 10. True or False: $XXX \Rightarrow^* aba$.
- 11. True or False: $X \Rightarrow^*$ aba.
- 12. True or False: $T \Rightarrow^* XX$.
- 13. True or False: $T \Rightarrow^* XXX$.
- 14. True or False: $S \Rightarrow^* \varepsilon$.
- 15. Give a description in English of L(G).
- b. Construct a CFG to generate the following languages over $\Sigma = \{0,1\}$:
 - 1. $L=\{w | w \text{ contains at least three } 1s\}$
 - 2. $L=\{0^{2n}1^n \mid n>0\}$
- c. Give a CFG that generates the same language as the regular expression $(\mathbf{a} + \mathbf{b})^*(\mathbf{a}^* + (\mathbf{ba})^*)$

Question 3

Design push-down automaton that recognises the following languages.

- $\begin{array}{ll} a. & L1{=}\{a^nba^n\mid n\geq 0\}\\ b. & L2{=}\{\ a^{2n}b^{3n}\mid n\geq 0\ \}\\ c. & L3{=}\{\ a^ib^jc^k\mid i,j,\,k\geq 0\ and\ i+j=k\ \}\\ \end{array}$