Lecture 10: Single-Cell RNA Sequencing BIOINF3005/7160: Transcriptomics Applications

Dr Stephen Pederson

Bioinformatics Hub, The University of Adelaide

May 25th, 2020

Background

scRNA Protocols

Cell Isolation Sequencing Protocols

Data Analysis

Pre-Processing
Clustering
DE Analysis
Trajectory Analysis

Spatial Transcriptomics

Protocol:

Data Analys 0 000 00

patial Transcriptomics

Background

- scRNA-Seq is the 'latest and greatest' transcriptomic technique
- Previously all our analysis involved multiple cells per sample
- All were combined during tissue extraction, library preparation etc.
- Most experiments have **highly** heterogeneous cell populations, e.g.

- scRNA-Seq is the 'latest and greatest' transcriptomic technique
- Previously all our analysis involved multiple cells per sample
- All were combined during tissue extraction, library preparation etc.
- Most experiments have **highly** heterogeneous cell populations, e.g.
 - Different regions of the brain contain highly specialised cells
 - The immune system is highly complex
 - Cancer samples have both infiltrating and tumour cells

- If a gene is increased 2-fold in expression:
 - Is this 2-fold in 100% of cells?
 - Or is it 4-fold in 50% of cells?
 - Or is it down 2-fold in 25% and up 8-fold in 25% and unchanged in 50%?
- Changes in gene expression can be highly specific to individual cell-types
- In general, determining heterogeneity of our samples is challenging

- The most intuitive solution is to obtain RNA from each cell and sequence
- Reality is much trickier than this

- The most intuitive solution is to obtain RNA from each cell and sequence
- Reality is much trickier than this
- How do we characterise which cell is which cell-type?
- How do we capture as many transcripts from each cell as we can?
 - Missing values are a huge issue in scRNA-seq
- How do we compare within the same cell-types between experimental groups?
 - E.g., treated and untreated cell types may not be assigned to the same cluster/cell-type

Background

Workflow Outline

Motivation

- Bulk RNA-Seq is primarily focussed on differentially expressed (DE) genes
- scRNA-Seq focusses on identifying cell-types within a sample
- How do we discriminate between different cell-types and different cell-states?
- What is the most intelligent approach for identifying DE genes
 - Is it between clusters/cell-types ⇒ marker genes
 - Is it between the same cell-types under differing treatments/cell-states?

Data Analysis o ooo oo

scRNA Protocols

Isolating Individual Cells

- Early protocols used a dilution series or manual isolation with a microscope (micromanipulation)
- Laser Capture Micro-dissection (LCM)
- Fluorescence-Activated Cell Sorting (FACS)
 - Labelled antibodies to specific surface markers
 - MACS is a magnetic-based approach
- Microfluidics/Droplet-based approaches

- Integrated Fluidic Circuit (IFC) chips
 - Most common is the Fluidigm C1
- Deliver tiny volumes into 'reaction chambers'
- Early chips had 96 chambers ⇒ multiple chips / experiment
- Recent chips handle ${\sim}800$ cells

00000000000

Droplet-based Approaches

Droplet-based Approaches

Flow rate is modelled as a Poisson process to minimise doublets

Sequencing Overview

- Individual cells are isolated ⇒ how do we sequence?
- Need a method to track which reads come from which cell
- Sequencing is performed on a standard Illumina machine, i.e. multiplexed
- Each cell is essentially an individual library prep
 - Barcodes / UMIs are used for cell / molecule identification
- ullet For bulk RNA-Seq we need $0.1-1\mu {
 m g}$ of RNA $(10^5-10^6 {
 m pg})$
 - An individual cell contains 1-50pg

SMART¹-Seq (C1)

- 1. All reagents are in the IFC reaction chambers
- 2. Cells are lysed
- 3. polyA RNA reverse transcribed into full length cDNA
 - oligo(dT) priming and template switching
- 4. 12-18 PCR cycles
- 5. cDNA fragmentation and Adapter ligation

Droplet-based Methods

- Popularised by the 10X Genomics Chromium System
- Each gel bead contains the reagents
 - 30nt poly(dT) primer with 16nt 10x Barcode, 12nt UMI²
- Illumina primers and restriction enzymes added later

10X Chromium Protocol

Barcoded, full-length cDNA is pooled then PCR amplified

10X Chromium Protocol

Barcoded, full-length cDNA is pooled then PCR amplified

10X Chromium Protocol

- Only R2 contains the sequence information
- Only the 3' end is sequenced
- ullet Each template RNA should have one UMI \implies PCR duplicates can be identified

Other Variations

CITE-Seq³

- Prior to sorting cells can be 'labelled' with antibody-oligo complexes
- Oligos allow additional recognition of surface proteins
- On cell lysis these oligos are amplified along with RNA

Other Variations

SPLIT-Seq⁴

- Cells are split into pools and fixed
- One barcode/pool
- Multiple rounds of pooling and barcoding
- All amplification is in situ
- Able to be applied to single nuclei

Comparison of Methods

Protocol	C1 (SMART-Seq)	SMART-Seq2	Chromium	SPLIT-Seq
Platform	Microfluidics	Plate-based	Droplet	Plate-based
Transcript	Full-length	Full-length	3'-end	3'-end
Cells	$10^2 - 10^3$	$10^2 - 10^3$	$10^3 - 10^4$	$10^3 - 10^5$
Reads/Cell	106	10^{6}	$10^4 - 10^5$	10^{4}

Technical Challenges

How to detect intact/viable cells, free RNA etc

0000000000

- How to ensure only single cells captured, i.e. no doublets
- Unbiased of sampling of RNA molecules (e.g. PCR impacts) and individual cells
 - Large numbers of zero counts for expressed genes
 - Lack of evidence for expression \neq evidence for lack of expression
- Efficiency of cell capture (\sim 50% for 10X)
- How to deal with batch effects
 - Cells from each treatment group are always processed separately

scRNA Protocols 0 000000 Data Analysis

OOO

Transcriptomics

Data Analysis

Automated Pipelines

- Most pre-processing for 10X data is performed using CellRanger
- Handles demultiplexing, alignment (STAR) and quantification (using UMIs)
 - Full-length transcript methods can utilise kallisto/salmon
- We end up with a feature-barcode matrix
 - A barcode represents an individual cell (or a set of reactions)
 - A feature is commonly thought of as a gene in scRNA-Seq
 - Other single-cell approaches (e.g. scATAC-Seq) are not gene focussed
- Similar to counts from bulk RNA-Seq but with many more columns

Filtering

- We need to keep the high quality cells and discard the dubious cells, such as:
 - 1. Low/High read numbers (library sizes)
 - 2. Low feature/gene numbers
 - 3. High proportions of mitochondrial RNA \implies cells broken prior to lysis

Filtering

- We need to keep the high quality cells and discard the dubious cells, such as:
 - 1. Low/High read numbers (library sizes)
 - 2. Low feature/gene numbers
 - 3. High proportions of mitochondrial RNA \implies cells broken prior to lysis
- ullet Also need a method for considering each gene as detectable (Average Counts >1)

Normalisation

- Cell-specific offsets are once again calculated
 - Each cell is it's own source of variability
- Methods such as TMM are heavily influenced by the large numbers of zero counts
- Pooling and deconvolution:
 - 1. Perform rudimentary clustering of cells
 - 2. Normalise across all clusters (TMM assumes most genes are not DE)
 - 3. Deconvolute cells and normalisation factors
- Calculate log-transformed, normalised expression values

Clustering

- A key process is grouping similar cells with each other \implies identifying cell-types
- To speed this up, we often choose the most highly variable genes (HVGs)
- Perform dimensional reduction:
 - PCA
 - tSNE (t-Distributed Stochastic Neighbour Embedding)
 - UMAP (Uniform Manifold Approximation and Projection)

Data Analysis 0000

Clustering

Spatial Transcriptomics

