COM 205 - Digital Logic Design Boolean Algebra and Logic Gates -VI

Assist. Prof. Özge ÖZTİMUR KARADAĞ ALKÜ

Last Week

• Implementation of the function in a standard form is said to be a twolevel implementation

a.
$$F=B'D'+B'C'+A'C'D$$

b.
$$F=(A'+B')(C'+D')(B'+D)$$

Last Week..

- Two Level implementations:
 - NOR
 - NAND

Last Week..

Rules for NAND and NOR Implementations

	Function to be simplified	Standard form to be used	How to obtain	Implementation	#levels for F
а	F	SOP	Grouping of 1s in map	NAND	2
b	F'	SOP	Grouping of 0s in map	NAND	3
С	F	POS	Complement of F' in (b)	NOR	2
d	F'	POS	Complement of F in (a)	NOR	3

Other Two Level Implementations

- Gate types: AND, OR, NOR, NAND
- Using one type of gate in the first level and one type of gate in the second level, it is possible to form 16 combinations.
- Among those combinations, ones which have the standard form are as follows:

AND-OR

OR-AND

NAND-NAND

NOR-NOR

• NOR-OR

NAND-AND

• OR-AND

AND-NOR

AND-OR-INVERT Implementation

- AND-NOR, NAND-AND
- F=(AB+CD+E)'

- Complement of the function can be represented in sum of products form by using 0s in the diagram.
- F' is implemented in AND-OR form (Sum of products)
- F' forms F by the invert operator in the end.

OR-AND-INVERT Implementation

- OR-NAND and NOR-OR forms both implement OR-AND-INVERT operation.
- F=[(A+B)(C+D)E]'

- OR-AND-INVERT requires a product of sums representation
- Simplify F' in product of sums form
- Obtain F by inverting F'.

Equivalent Fo	orms	Implements the function	Simplify F' into	To get an output of
AND-NOR	NAND-AND	AND-OR-INVERT	Sum of products form by combining 0s in the map	F
OR-NAND	NOR-OR	OR-AND-INVERT	Product of sums form by combining 1s in the map and then complementing	F

• Ex: $F(x,y,z)=\sum (0,6)$ implement the function with the four 2 level forms.

	00	01	11	10
0	1	0	0	0
1	0	0	0	1

AND-OR-INVERT?

• Ex: $F(x,y,z) = \sum_{i=0}^{\infty} (0,6)$

	00	01	11	10
0	1	0	0	0
1	0	0	0	1

OR-AND-INVERT?

- F=x'y'z'+xyz' (using 1s in the diagram)
- F'=[(x+y+z)(x'+y'+z)]'

DON'T CARE CONDITIONS

- Upto now, it is assumed that the minterms which are not equal to 1 are equal to 0. In practice, in some applications the function is not specified for certain combinations of variables.
- Ex: Four bit Binary code for the decimal digits has six combinations that are not used and are considered to be unspecified.
- Functions that have unspecified outputs for some input combinations are called incompletely specified functions.
- In most applications, we simply don't care what value is assumed by the function for the unspecified minterms.
- For this reason, those minterms are called don't care conditions.
- These conditions are represented with X's in the diagram. X can take value either 0 or 1.

- Ex. Don't care conditions $d(w,x,y,z)=\sum (0,2,5)$
- $F(w,x,y,z)=\sum (1,3,7,11,15)$ Simplify the function:

	00	01	11	10	•
00	Χ	1	1	Χ	
01		Х	1		
11			1		F
10			1		

F=yz+w'x'
F=
$$\sum$$
(0,1,2,3,7,11,15)

F=yz+w'z
F=
$$\sum$$
(1,3,5,7,11,15)

To represent the function in product of sums form:

$$F=z(w'+y)=\sum (1,3,5,7,11,15)$$

Exercise

 Find all prime implicants for the following Boolean function and determine which are essential?

• $F(A,B,C,D)=\sum (0,2,3,5,7,8,10,11,14,15)$

	00	01	11	10
00	1		1	1
01		1	1	
11			1	1
10	1		1	1

- Prime implicants: B'D', B'C, CD, AC, A'BD
- Essential: B'D', AC, A'BD
- Non-essential: CD, B'C
- F= B'D'+AC+A'BD +CD
- F= B'D'+AC+A'BD+ B'C

Exercise

- Find all prime implicants for the following Boolean function and determine which are essential?
- $F(A,B,C,D)=\sum (0,2,3,5,7,8,10,11,14,15)$

	00	01	11	10
00	1		1	1
01		1	1	
11			1	1
10	1		1	1

- Essential: B'D', AC, A'BD
- Non-essential: CD, B'C
- F=B'D'+AC+A'BD+(CD or B'C)

• Simplify the following Boolean Function, Express the simplified function in sum of minterms form.

•
$$F(A,B,C,D)=\sum (0,6,8,13,14)$$

•
$$d(A,B,C,D)=\sum (2,4,10)$$

•	F=A	BC'	D+B'	D'+	CD'
---	-----	-----	------	-----	-----

•
$$F=\sum(0,2,6,8,10,13,14)$$

	00	01	11	10
00	1			Χ
01	Х			1
11		1		1
10	1			Χ

• Simplify the following Boolean Function, Express the simplified function in sum of minterms form.

•
$$F(A,B,C,D)=\sum (0,6,8,13,14)$$

•
$$d(A,B,C,D)=\sum (2,4,10)$$

•
$$F=\sum(0,2,6,8,10,13,14)$$

	00	01	11	10
00	1			X
01	Х			1
11		1		1
10	1			Χ

- Implement the following Boolean function F, using two-level forms of logic NAND-AND, AND-NOR, OR-NAND, NOR-OR
- $F(A,B,C,D)=\prod (1,2,3,5,6,7,13,15)$

	00	01	11	10
00	1			
01	1			
11	1			1
10	1	1	1	1

• F=C'D'+AB'+AD'

F=C'D'+AB'+AD' F'=(C'D')'(AB')'(AD')' NAND-AND

AND-NOR

F'=[C'D'+AB'+AD']'
AND-NOR

• F=C'D'+AB'+AD'

	00	01	11	10
00	1			
01	1			
11	1			1
10	1	1	1	1

OR-NAND?

NOR-OR?

