## **Chapter 6. Classification and Prediction**

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Rule-based classification
- Classification by back propagation

- Support Vector Machines (SVM)
- Associative classification
- Lazy learners (or learning from your neighbors)
- Other classification methods
- Prediction
- Accuracy and error measures
- Ensemble methods
- Model selection
- Summary



# **Bayesian Classification: Why?**

### A statistical classifier:

- performs probabilistic prediction, i.e., predicts the membership probabilities for different classes
- Foundation: Based on Bayes' theorem

### Performance:

 A simple naïve Bayesian classifier has comparable performance with decision trees and neural network classifiers

# **Bayesian Classification: Why?**

### Incremental:

- Each training example can incrementally increase/decrease the probability that a hypothesis is correct
- Prior knowledge can be combined with observed data, rather than training from the scratch

# **Bayesian Theorem: Basics**

- Let X be a data sample (evidence) whose class label is unknown
- Let H be a hypothesis that X belongs to a class C
- Classification
  - to determine P(H|X), the probability that the hypothesis holds when the observed data sample X is given

# **Bayesian Theorem: Basics**

- P(H) (prior probability)
  - The initial probability (independent of a specific X)
  - E.g., X will buy computer, regardless of age, income, ...
- P(X)
  - The probability that sample data is observed
- P(X|H) (posteriori probability)
  - The probability of observing the sample X, given that the hypothesis holds
  - E.g., Given that X will buy computer, the prob. that X is 31..40, medium income

# **Bayesian Theorem**

- Conditional probability
  - $P(H|X) = P(H \cap X) / P(X)$
  - $P(X|H) = P(H \cap X) / P(H)$
  - $P(H \cap X) = P(H|X) * P(X) = P(X|H) * P(H)$
- Given training data X, posteriori probability of a hypothesis H, P(H|X), follows the Bayes theorem

$$P(H \mid \mathbf{X}) = \frac{P(\mathbf{X} \mid H)P(H)}{P(\mathbf{X})}$$



# **Bayesian Theorem**

 Given training data X, posteriori probability of a hypothesis H, P(H|X), follows the Bayes theorem

$$P(H \mid \mathbf{X}) = \frac{P(\mathbf{X} \mid H)P(H)}{P(\mathbf{X})}$$

- Informally, this can be written as
  likelihood = posteriori \* prior / evidence
- Predicts **X** belongs to  $C_i$  iff the probability  $P(C_i|\mathbf{X})$  is the highest among all the  $P(C_k|X)$  for all the k classes
- Practical difficulty: require initial knowledge of many probabilities, significant computational cost



# **Towards Naïve Bayesian Classifier**

- Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n-D attribute vector  $\mathbf{X} = (x_1, x_2, ..., x_n)$
- Suppose there are m classes C<sub>1</sub>, C<sub>2</sub>, ..., C<sub>m</sub>.
- Classification is to derive the maximum posteriori, i.e., the maximum P(C<sub>i</sub>|X)
- This can be derived from Bayes' theorem

$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

Since P(X) is constant for all classes, only

$$P(C_i|\mathbf{X}) = P(\mathbf{X}|C_i)P(C_i)$$

needs to be maximized



# **Derivation of Naïve Bayes Classifier**

- A simplified assumption:
  - attributes are conditionally independent (i.e., no dependence relation between attributes):

$$P(\mathbf{X}|C_i) = \prod_{k=1}^{n} P(x_k | C_i) = P(x_1 | C_i) \times P(x_2 | C_i) \times ... \times P(x_n | C_i)$$

 This greatly reduces the computation cost: Only counts the class distribution



# **Derivation of Naïve Bayes Classifier**

$$P(\mathbf{X}|C_i) = \prod_{k=1}^{n} P(x_k | C_i) = P(x_1 | C_i) \times P(x_2 | C_i) \times ... \times P(x_n | C_i)$$

- If  $A_k$  is categorical,  $P(x_k|C_i)$  is the # of tuples in  $C_i$  having value  $x_k$  for  $A_k$  divided by  $|C_{i,D}|$  (# of tuples of  $C_i$  in D)
- If  $A_k$  is continuous-valued,  $P(x_k|C_i)$  is usually computed based on Gaussian distribution with a mean  $\mu$  and standard deviation  $\sigma$   $g(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

and 
$$P(\mathbf{x}_k | \mathbf{C}_i)$$
 is  $P(\mathbf{X} | C_i) = g(x_k, \mu_{C_i}, \sigma_{C_i})$ 



## Naïve Bayesian Classifier: Training Dataset

#### Class:

C1:buys\_computer = 'yes'

C2:buys\_computer = 'no'

#### Data sample

X = (age <=30,
Income = medium,
Student = yes
Credit\_rating = Fair)</pre>

| age  | income | <mark>student</mark> | redit_rating | _com |
|------|--------|----------------------|--------------|------|
| <=30 | high   | no                   | fair         | no   |
| <=30 | high   | no                   | excellent    | no   |
| 3140 | high   | no                   | fair         | yes  |
| >40  | medium | no                   | fair         | yes  |
| >40  | low    | yes                  | fair         | yes  |
| >40  | low    | yes                  | excellent    | no   |
| 3140 | low    | yes                  | excellent    | yes  |
| <=30 | medium | no                   | fair         | no   |
| <=30 | low    | yes                  | fair         | yes  |
| >40  | medium | yes                  | fair         | yes  |
| <=30 | medium | yes                  | excellent    | yes  |
| 3140 | medium | no                   | excellent    | yes  |
| 3140 | high   | yes                  | fair         | yes  |
| >40  | medium | no                   | excellent    | no   |

# Naïve Bayesian Classifier: An Example

- P(C<sub>i</sub>): P(buys\_computer = "yes") = 9/14 = 0.643P(buys\_computer = "no") = 5/14 = 0.357
- Compute  $P(X|C_i)$  for each class

```
P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222

P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6

P(income = "medium" | buys_computer = "yes") = 4/9 = 0.444

P(income = "medium" | buys_computer = "no") = 2/5 = 0.4

P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667

P(student = "yes" | buys_computer = "no") = 1/5 = 0.2

P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667

P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4
```

X = (age <= 30, income = medium, student = yes, credit\_rating = fair)</p>

```
P(X|C_i): P(X|buys\_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044 P(X|buys\_computer = "no") = 0.6 x 0.4 x 0.2 x 0.4 = 0.019
```

 $P(X|C_i)*P(C_i): P(X|buys\_computer = "yes") * P(buys\_computer = "yes") = 0.028 P(X|buys\_computer = "no") * P(buys\_computer = "no") = 0.007$ 

Therefore, X belongs to class ("buys\_computer = yes")



# **Avoiding the 0-Probability Problem**

Naïve Bayesian prediction requires each conditional prob. be non-zero.
 Otherwise, the predicted prob. will be zero

$$P(X \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i)$$

- Ex. Suppose a dataset with 1000 tuples, income=low (0), income=medium (990), and income = high (10),
- Use the idea of Laplacian correction (or Laplacian estimator)
  - Adding 1 to each case
     Prob(income = low) = 1/1003
     Prob(income = medium) = 991/1003
     Prob(income = high) = 11/1003
  - The "corrected" prob. estimates are close to their "uncorrected" counterparts, not allowing zero probability

# **Naïve Bayesian Classifier: Comments**

- Advantages
  - Easy to implement
  - Good results obtained in most of the cases
- Disadvantages
  - Assumption: class conditional independence, therefore loss of accuracy
  - Practically, dependencies exist among variables
    - E.g., Patients' Profiles: age, family history; Symptoms: fever, cough; Disease: cold, lung cancer, diabetes
    - Dependencies among these cannot be modeled by Naïve Bayesian Classifier
- How to deal with these dependencies?
  - Bayesian Belief Networks (not dealt with here)

## **Chapter 6. Classification and Prediction**

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Rule-based classification
- Classification by back propagation

- Support Vector Machines (SVM)
- Associative classification
- Lazy learners (or learning from your neighbors)
- Other classification methods
- Prediction
- Accuracy and error measures
- Ensemble methods
- Model selection
- Summary



## **Using IF-THEN Rules for Classification**

- Represent the knowledge in the form of IF-THEN rules
  - R: IF age = youth AND student = yes
     THEN buys\_computer = yes
  - Rule antecedent/precondition vs. rule consequent
- Assessment of a rule R: coverage and accuracy (see Ex. 6.6)
  - $n_{covers} = \#$  of tuples *covered* by R
  - n<sub>correct</sub> = # of tuples correctly classified by R

$$coverage(R) = n_{covers}/|D|$$
 /\* D: training data set \*/

$$accuracy(R) = n_{correct} / n_{covers}$$



## **Using IF-THEN Rules for Classification**

- If more than one rule is triggered, need conflict resolution
  - Size ordering: assign the highest priority to the triggering rules that have the "toughest" requirement (i.e., with the most attribute test)
  - Class-based ordering: decreasing order of prevalence (frequency) or misclassification cost per class
  - Rule-based ordering (decision list): rules are organized into one long priority list
    - According to some measure of rule quality or by experts

### Rule Extraction from a Decision Tree



- Rules are easier to understand than a large tree
- One rule is created for each path from the root to a leaf
- Each attribute-value pair along a path forms a conjunction:
   the leaf holds the class prediction
- Rules are mutually exclusive and exhaustive



### Rule Extraction from a Decision Tree



Example: Rule extraction from our *buys\_computer* decision-tree

IF age = young AND student = no, THEN buys\_computer = no

IF age = young AND student = yes, THEN buys\_computer = yes

IF age = mid-age, THEN buys\_computer = yes

IF age = old AND credit\_rating = excellent, THEN buys\_computer = yes

IF age = young AND credit\_rating = fair, THEN buys\_computer = no

## **Chapter 6. Classification and Prediction**

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Rule-based classification
- Classification by back propagation

- Support Vector Machines (SVM)
- Associative classification
- Lazy learners (or learning from your neighbors)
- Other classification methods
- Prediction
- Accuracy and error measures
- Ensemble methods
- Model selection
- Summary



### **Associative Classification**

- Associative classification
  - Association rules are generated and analyzed for use in classification
  - Search for strong associations between frequent patterns (conjunctions of attribute-value pairs) and class labels
  - Classification: Based on evaluating a set of rules in the form of

$$P_1 \wedge p_2 \dots \wedge p_l \rightarrow A_{class} = C'' \text{ (conf, sup)}$$

- Why effective?
  - It explores highly confident associations among multiple attributes
    - May overcome some constraints introduced by decision-tree induction, which considers only one attribute at a time
  - In many studies, associative classification has been found to be more accurate than some traditional classification methods, such as C4.5

## **Chapter 6. Classification and Prediction**

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Rule-based classification
- Classification by back propagation

- Support Vector Machines (SVM)
- Associative classification
- Lazy learners (or learning from your neighbors)
- Other classification methods
- Prediction
- Accuracy and error measures
- Ensemble methods
- Model selection
- Summary

