大学物理 I 模拟试卷 3 (2023 版)

一、单选题

1、半径为R的"无限长"均匀带电圆柱体的静电场中各点的电场强度的大小E与距轴线的距离r的关系曲线为:

Γ 1

2、充了电的平行板电容器两极板(看作很大的平板)间的静电作用力 F 与两极板间的电压 U 的 关系是:

(A) $F \propto U$.

(B) $F \propto 1/U$.

(C) $F \propto 1/U^2$.

(D) $F \propto U^2$.

[]

3、A、B 为两导体大平板,面积均为 S,平行放置,如图所示. A 板带电荷+ Q_1 ,B 板带电荷+ Q_2 ,如果使 B 板接地,则 AB 间电场强度的大小 E 为

B 似帝电荷+ Q_2 ,如果使 B 似接地,则 AB 间电场强度的人小 E N) $\dfrac{Q_1}{2arepsilon_0 S}$. (B) $\dfrac{Q_1-Q_2}{2arepsilon_0 S}$.

(C) $\frac{Q_1}{\varepsilon_0 S}$

(D) $\frac{Q_1 + Q_2}{2\varepsilon_0 S}.$

٦

- $4 \times C_1$ 和 C_2 两空气电容器并联起来接上电源充电. 然后将电源断开,再把一电介质板插入 C_1 中,如图所示,则
- (A) C_1 和 C_2 极板上电荷都不变.
- (B) C_1 极板上电荷增大, C_2 极板上电荷不变.
- (C) C_1 极板上电荷增大, C_2 极板上电荷减少.
- (D) C_1 极板上电荷减少, C_2 极板上电荷增大.

5、 电流由长直导线 1 沿平行 bc 边方向经过 a 点流入由电阻均匀的导线构成的正三角形线框,由 b 点流出,经长直导线 2 沿 cb 延长线方向返回电源(如图). 已知直导线上的电流为 I,三角框的每一边长为 I. 若载流导线 1、2 和三角框中的电流在三角框中心 O 点产生的磁感强度分别用 \bar{B}_1 、 \bar{B}_2 和 \bar{B}_3 表示,则 O 点的磁感强度大小

- (B) B = 0, $\exists \beta \vec{B}_1 + \vec{B}_2 = 0$, $B_3 = 0$.
- (C) $B\neq 0$,因为虽然 $\bar{B}_1+\bar{B}_2=0$,但 $B_3\neq 0$.
- (D) $B \neq 0$,因为虽然 $B_3 = 0$,但 $\vec{B}_1 + \vec{B}_2 \neq 0$.

_

6、 如图所示,矩形区域为均匀稳恒磁场,半圆形 闭合导线回路在纸面内绕轴 O 作逆时针方向匀角速 转动, O 点是圆心且恰好落在磁场的边缘上, 半圆 形闭合导线完全在磁场外时开始计时. 图(A)—(D) 的 ε -t 函数图象中哪一条属于半圆形导线回路中产 生的感应电动势?

Γ 7

7、 如图, 一导体棒 ab 在均匀磁场中沿金属导轨向右作匀速运动, 磁场方向垂直导轨所在平 面. 若导轨电阻忽略不计,并设铁芯磁导率为常数,则达到稳定 后在电容器的 M 极板上

- (B) 带有一定量的负电荷.
- (C) 带有越来越多的正电荷.
- (D) 带有越来越多的负电荷.

- 8、有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为 r_1 和 r_2 .管内充满均匀介质, 其磁导率分别为 μ 1 和 μ 2. 设 r_1 : r_2 =1:2, μ 1: μ 2:1, 当将两只螺线管串联在电路中通电稳定 后,其自感系数之比 $L_1:L_2$ 与磁能之比 $W_{m1}:W_{m2}$ 分别为:
 - (A) $L_1: L_2=1:1$, $W_{m1}: W_{m2}=1:1$.
 - (B) $L_1: L_2=1:2$, $W_{m1}: W_{m2}=1:1$.
 - (C) $L_1: L_2=1:2$, $W_{m1}: W_{m2}=1:2$.
 - (D) $L_1: L_2=2:1$, $W_{m1}: W_{m2}=2:1$.

Γ 7

9、 在圆柱形空间内有一磁感强度为 \vec{B} 的均匀磁场,如图所示, \vec{B} 的大小 以速率 dB/dt 变化. 有一长度为 l_0 的金属棒先后放在磁场的两个不同位置 1(ab)和 2(a'b'),则金属棒在这两个位置时棒内的感应电动势的大小关系 为

- (A) $\varepsilon_{i2} = \varepsilon_{i1} \neq 0$.
- (B) $\varepsilon_{i2} > \varepsilon_{i1}$.
- (C) $\varepsilon_{i2} < \varepsilon_{i1}$.
- (D) $\varepsilon_{i2} = \varepsilon_{i1} = 0$.
- ٦

二 填空题

- 1、把一个均匀带有电荷+Q 的球形肥皂泡由半径 r_1 吹胀到 r_2 ,则半径为 $R(r_1 < R < r_2)$ 的球面上 任一点的场强大小E由变为 ; 电势U由 (选无穷远处为电势零点)。 变为
- 2、图示为某静电场的等势面图,在图中画出该电场的电 场线.

3、一平行板电容器,充电后切断 电介质.此时两极板间的电场强度				
4、一均匀极化的电介质斜柱体, 其方向平行于斜柱体轴线,与端面 A、 B 两端面上和侧面			C A	$\overbrace{\theta}^{n}_{A}$
C 上的束缚电荷面密度分别为 σ_A'	=	_'		
$\sigma_{\scriptscriptstyle B}^{\prime}\!=\!$	$\sigma_C' = \underline{\hspace{1cm}}$			
5 、如图,一个均匀磁场 $ar{B}$ 只存在	E于垂直于图面的 P =	平面右侧, $ec{B}$ f	的方向	<i>P</i>
垂直于图面向里. 一质量为 m、 同图面内与界面 P 成某一角度. 则则则为为 的圆周运动. 如则则成的平面区域的面积为 S,那么	那么粒子在从磁场中 果 $q > 0$ 时,粒子在	中射出前是做= 磁场中的路径-	与边界	\times \times \bar{B} \times
域的面积是	3.4 × 0 时, 次 頃任·	马 <i>过</i> 乔园 <u>从</u> 们	I III I I I	
6、一个半径为 R、面电荷密度为	ρσ 的均匀带电圆盘	,以角速度 ω	绕过圆心且垂直	L盘面的轴线
AA'旋转; 今将其放入磁感强度	为 $ar{B}$ 的均匀外磁场中	$^{_{1}}ar{B}$ 的方向垂直	重于轴线 AA'. 7	生距盘心为 r
处取一宽为 dr 的圆环,则圆环内小为,圆盘,			_,该电流环所受 ·	È 磁力矩的大
7、一无限长载流直导线,通有电	流 I,弯成如图形状	. 设各线段皆		
在纸面内,则 P 点磁感强度 \bar{B} 的	大小为	·	$ \begin{array}{c c} & & \\ & & \\ & & \\ & & \\ & & P \end{array} $	
8、图示为三种不同的磁介质的 $B = \mu_0 H$ 的关系. 说明 $a \times b \times A$ 系曲线:			BN	_a
/IN-t-		V - 11 /15		b_
a 代表 b 代表		关系曲线. 关系曲线.		C
c 代表		大乐四线· 关系曲线.	0	$\xrightarrow{-c}_H$

三、计算题

1、如图所示,三个"无限长"的同轴导体圆柱面 A、B 和 C,半 径分别为 R_a 、 R_b 、 R_c . 圆柱面 B 上带电荷,A 和 C 都接地. 求 B 的内表面上电荷线密度 λ_1 和外表面上电荷线密度 λ_2 之比值 λ_1/λ_2 .

2、两金属球的半径之比为 1:4, 带等量的同号电荷. 当两者的距离远大于两球半径时, 有一定的电势能. 若将两球接触一下再移回原处, 则电势能变为原来的多少倍?

3、一根半径为R 的长直导线载有电流I,作一宽为R、长为I 的假想平面S,如图所示。若假想平面S 可在导线直径与轴OO' 所确定的平面内离开OO' 轴移动至远处。试求当通过S 面的磁通量最大时S 平面的位置(设直导线内电流分布是均匀的)。

4、如图所示,在纸面所在的平面内有一载有电流 I 的无限长直导线,其旁另有一边长为 I 的等边三角形线圈 ACD. 该线圈的 AC 边与长直导线距离最近且相互平行. 今使线圈 ACD 在纸面内以匀速 \bar{v} 远离长直导线运动,且 \bar{v} 与长直导线相垂直. 求当线圈 AC 边与长直导线相距 a 时,线圈 ACD 内的动生电动势 a.

