Problemas Integrales de linea

Cristopher Morales Ubal e-mail: c.m.ubal@gmail.com

Problemas

- 1. Calcule la integral de linea $\int_{\gamma} (x\sqrt{x^2-y^2})ds$, siendo γ la curva de ecuación $(x^2+y^2)^2=4(x^2-y^2)$, $x\geq 0$.
- 2. Un alambre ocupa la parte de la espiral $r=e^{\theta},\,0\leq\theta\leq2\pi.$ En el punto (r,θ) la temperatura es r. Encontrar la temperatura promedio del alambre.
- 3. Considerar la curva γ , expresada en coordenadas cilindricas por las ecuaciones $r=\theta$ y z=r; con $0\leq\theta\leq 2\pi$. Calcular

 $\int_{\gamma} z ds$

- 4. Considerar la curva γ expresada e coordenadas cilindricas como $r = e^{\theta}$ y z = r desde el punto (1,0,1) hasta el punto $(-e^{\pi},0,e^{\pi})$. Si la densidad de masa es inversamente proporcional al cuadrado de la distancia al origen, calcule la masa.
- 5. Calcule

$$\int_{\gamma} x dx + dy + y dz$$

donde γ es la intersección entre el plano z=3+2y y el paraboloide $2z=x^2+y^2+6$, y la curva está orientada de manera tal que su proyección sobre el plano xy se recorre en sentido contrario a las agujas del reloj.

6. Calcule

$$\int_{\gamma} \sqrt{2y^2 + z^2} ds$$

siendo γ la intersección entre las superficies S_1 y S_2 dadas por:

$$S_1 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = a^2, a > 0\}, S_2 = \{(x, y, z) \in \mathbb{R}^3 : x = y, a > 0\}$$

7. Sea γ la curva intersección entre el plano x+z=1 y el elipsoide $x^2+2y^2+z^2=1$, orientada de manera que su proyección sobre el plano xy se recorre en sentido antihorario. calcule

$$\oint_{\gamma} \frac{1}{2} y^2 dx + z dy + x dz$$

8. calcular

$$\int_{\gamma} \vec{F} \cdot d\vec{r}$$

donde $\vec{F}(x,y,z)=(z,x,y)$ y γ la curva de intersección del paraboloide $z=x^2+y^2$ con el plano z=2x, orientada en el sentido de las manecillas del reloj mirada desde el origen.

9. Calcular

$$\int_{(4,3)}^{(-3,4)} \frac{y^2}{\left(x^2 + y^2\right)^{3/2}} dx - \frac{xy}{\left(x^2 + y^2\right)^{3/2}} dy$$

10. Sea

$$\vec{F}(x, y, z) = (y^2 \cos x + z^3, 2y \sin x - 4, 3xz^2 + 2z)$$

(a) Muestre que \vec{F} es conservativo.

- (b) Encuentre un potencial escalar para \vec{F}
- (c) Calcule

$$\int_{\gamma} \vec{F} \cdot d\alpha$$

donde γ es la curva que consta del arco $y=x^2, z=0$ del origen al punto (1,1,0) junto con el segmento de recta (1,1,0) al punto (0,0,1).

11. Calcule

$$\int_C (3x^2y - x) dx + (x^3 - 2y) dy$$

Donde $C: x = \sin^3 t, \ y = t - \cos^2 t, \ 0 \le t \le \frac{\pi}{2}$

12. Sea $\gamma = \gamma_1 + \gamma_2$, donde γ_1 corresponde a la parte superior $(y \ge 0)$ de la Astroide $x^{2/3} + y^{2/3} = 1$: γ_2 es el segmento de recta que une los puntos (-1,0) y (0,-1). γ se recorre en sentido positivo. Calcular:

$$\int_{\gamma} \frac{2xydx + \left(y^2 - x^2\right)dy}{\left(x^2 + y^2\right)^2}$$

13. Sean $u, v: U \subseteq \mathbb{R}^2 \to \mathbb{R}$ de clase C^1 . Dada una curva $\gamma \subseteq U$ suave a tramos se define:

$$\int_{\gamma} u dv = \int_{\gamma} u v_x dx + v u_y dy$$

Sean $f, g: U \subseteq \mathbb{R}^2 \to \mathbb{R}$ funciones de clase C^1 y $\gamma \subseteq U \subseteq$ suave a tramos, cerrada y que no contiene ceros de f. demuestre que

$$\oint_{\gamma} \frac{dg}{f} = \oint_{\gamma} \frac{g}{f^2} df$$

14. Sea ζ la curva $r = 2sen(\theta)$, recorrida en sentido positivo. Calcular:

$$\int_{\mathcal{L}} \left(x^2 + arctg\left(y \right) \right) dy - \left(y - x^3 \right) dx$$

15. Calcule la integral de linea

$$\int_{\gamma} \left(2xe^{x^2 + 2y^2} - y \right) dx + \left(4ye^{x^2 + 2y^2} + x^2 \right) dy$$

donde γ es el arco de la curva $y=2-x^2$ que va desde el punto (1,1) hasta el punto (-1,1)

16. Calcular la integral de linea

$$\int_{\gamma} \left(\cos \left(\frac{\pi y}{2} \right) + x^2 \right) dx + \left(4x^3 \left(y - 1 \right)^4 + \frac{\pi}{2} \left(\pi - x \right) \operatorname{sen} \left(\frac{\pi y}{2} \right) \right) dy$$

Donde γ es el arco de circunferencia $x^2 + (y-1)^2 = 1$ que va desde el origen de coordenadas al punto (0,2) por el primer cuadrante (orientado positivamente).

17. Sea γ la curva formada por al union de la parte superior de la semicircunferencia de radio 1, centrada en el origen y con extremos en los puntos O(1,0) y P(-1,0), y los segmentos de recta \overline{PQ} , \overline{QR} y \overline{RS} con Q(-1,-1), R(0,2) y S(1,-1). Sea $\vec{\alpha}$ una parametrización de la curva γ recorrida positivamente. Calcule

$$\int_{\gamma} \vec{F} \cdot d\alpha$$

Con
$$\vec{F} = (2(y^3 - 1) + y^2, 6xy^2 + 3x^2y^2)$$

Soluciones

Problemas

- 1. $\frac{16\sqrt{2}}{3}$
- $2. \ \frac{e^{4\pi} 1}{2\left(e^{2\pi} 1\right)}$
- 3. $\frac{1}{3} \left(\left(2 + 4\pi^2 \right)^{3/2} 2^{3/2} \right)$
- 4. $\frac{k\sqrt{3}}{2}(1-e^{-\pi})$
- 5. 0
- 6. $2\pi a^2$
- 7. $-\frac{\pi}{4}$
- 8. $-\pi$
- 9. $-\frac{7}{5}$
- 10. (a) prueba
 - (b) $g(x, y, z) = y^2 \sin x + xz^3 + z^2 4y$
 - (c)
- 11. $\frac{\pi}{2} \frac{\pi^2}{2} + \frac{1}{2}$
- 12. 1
- 13. demostración
- 14. π
- 15. $\frac{10}{3}$
- 16. $\frac{35\pi}{32}$
- 17. $\frac{1}{3}$