

MASCOT: A Quantization Framework for Efficient Matrix Factorization in Recommender Systems

Yunyong Ko¹, Jae-Seo Yu¹, Hong-Kyun Bae¹, Yongjun Park¹, Dongwon Lee², and Sang-Wook Kim¹
Hanyang University, Republic of Korea¹
The Pennsylvania State University, PA, USA²

Table of Contents

- □ Background
 - Quantization & precision switching
 - Matrix factorization (MF)
- ☐ Proposed framework: MASCOT
 - Motivation
 - Strategy 1: *m*-quantization
 - Strategy 2: *g*-switching
- **□** Experiments
- □ Conclusions

Background

□ Quantization

- Converting the parameter value into a lower precision
 - □ Ex) FP32 (i.e., single precision) → FP16 (i.e., half precision)
- For improving the training performance of DNN models
 - ☐ To reduce the overhead of computing operations and the memory usage

Background

☐ Presicion switching

- The quantization error may result in degrading the model quality
 - ☐ Quantization error: the error caused by low precision
- Switching back the low precsion to high precision to prevent the loss of accuracy
 - □ i.e., FP16 (i.e., half precision) → FP32 (i.e., single precision)

Background

■ Matrix Factorization (MF)

- One of the popular *collaborative filtering* algorithms in recommender systems (RS)
- Aiming to obtain the latent matrices **P** and **Q** (satisfying $R \approx P \times Q^T$)

□ Challenge

■ The growing scale of users/items and model architectures can significantly slow down the training of MF models

Motivation

☐ Our question

■ "Can the proven quantization be adopted to improve the training of MF models in recommender systems?"

☐ Preliminary experiment with four RS datasets

■ SOTA quantization methods are *rarely effective* in MF model training

MPT: P. Micikevicius et al. Mixed precision training. In ICLR, 2018.

MuPPET: A. Rajagopal et al., MuPPET: A precision-switching strategy for quantised fixed-point training of CNNs. In ICML, 2020.

AFP: X. Zhang et al. Fixed-point back-propagation training. In *CVPR*, 2020.

Analysis on the Training of a MF Model

- ☐ Training of a MF model is much more *memory-intensive* than that of a DNN model (*Observation 1*)
 - Memory and computation costs of a MF model (vector dot product)
 - \square Memory cost (b * 2k) > Computation cost (b * k)
 - Little room for the performance improvement by the quantization

<Computational cost of a MF model>

Analysis on the Training of a DNN Model

☐ The DNN model training is *computation-intensive*

- Memory and computation costs of a convolution layer
 - \square Computation cost $(b*d^2*(n-d+1)^2)$ > Memory cost $(b*n^2+d^2)$
- The room for the performance improvement by the quantization is sufficient

<Computational cost of a convolution layer>

Unique Feature of Datasets in RS

☐ The datasets used in RS have a *power-law distribution*

- A majority of users/items have a small number of ratings
- A small number of users/items have a very large number of ratings

☐ The MF model training with SGD

- The update frequency for each latent vector depends on the number of ratings
 - ☐ The latent vectors of a few users/items with many ratings are updated *frequently*
 - ☐ The latent vectors of many users/items with few ratings are updated infrequently

Quantization Error of Each Latent Vector

- ☐ The scale of the gradient for each latent vector *varies*, depending on the number of ratinings
 - The scale of gradient tends to decrease as the model is trained more
- □ The quantization error of each user/item is *different* from each other, depending on the number of ratings (*Observation 2*)

Limitations of Existing Precision Switching

- □ Considering the quantization error for the entire model (i.e., not considering the difference among users/items)
 - The loss of accuracy
 - ☐ For users with many ratings, the precision switching is likely to be applied too late
 - The reduced training performance
 - ☐ For users with few ratings, the precision switching is likely to be applied *unnecessarily quickly*

Overview of The Proposed Framework (MASCOT)

- □ Quantization strategy for memory access (*m*-quantization)
 - Storing and managing the parameters of MF models in low precision
- ☐ Group-based precision switching strategy (*g*-switching)
 - Grouping users/items having a similar number of ratings
 - Applying precision switching in a group-wise manner

Strategy 1: m-quantization

☐ Storing and managing the parameters of a MF model in low precision

■ For *improving the memory access operations* in the training of MF models

Strategy 1: *m*-quantization

☐ The potential of the *m*-quantization strategy for improving the training performance of MF models

Strategy 2: g-switching

- ☐ *Grouping* users/items having a *similar* number of ratings and *applying* precision switching in a *group-wise* manner
 - For considering the difference among users/items in RS datasets

<The performance improvement by the g-switching of MASCOT>

Strategy 2: g-switching

☐ Performance improvemnet by the *g*-switching

Applying precision switching only to the groups highly likely to cause the model error

<The performance improvement by the g-switching of MASCOT>

Algorithm

□ Training process of MASCOT

- 1) Grouping users/items vectors
- For each user/item,
 - ☐ Read the embedding vector;
 - ☐ Compute the loss and gradients;
 - ☐ Update the embedding vector;
 - ☐ Compute the quantization error of each group;
- Determining to apply precision switching to each user/item group

Algorithm 1 Training of MASCOT

```
Require: R \in \mathbb{R}^{m \times n}, P \in \mathbb{R}^{m \times k}, Q \in \mathbb{R}^{n \times k}, # of groups q,
      error estimate period \pi, sample ratio \gamma, error threshold \theta,
      learning rate \eta
  1: R, P, Q \leftarrow \text{grouping}(R, P, Q, q)
  2: Initialize P, Q with half precision
  3: for t = 1, ..., T do
      for each rating r_{u,i} do
              \nabla p_u \leftarrow e_{u,i} \cdot q_i - \lambda_P \cdot p_u
             \nabla q_i \leftarrow e_{u,i} \cdot p_u - \lambda_O \cdot q_i
             p_u \leftarrow p_u + \eta \cdot \nabla p_u
              q_i \leftarrow q_i + \eta \cdot \nabla q_i
              if S \sim B(\gamma) then
                  S_i^U.push(
abla p_u), S_i^I.push(
abla q_i)
10:
              end if
11:
              update latent matrix(P, Q, p_u, q_i)
12:
          end for
13:
          if t \pmod{\pi} == 0 then
14:
             for j = 1, ...q do
15:
                  \epsilon^U \leftarrow q\text{-}error(S_i^U), \epsilon^I \leftarrow q\text{-}error(S_i^I)
                  precision switching(P, Q, \epsilon^U, \epsilon^I, \theta)
17:
              end for
19:
          end if
         \forall j \in \{1, ..., g\}, S_i^U.flush(\cdot), S_i^I.flush(\cdot)
21: end for
22: Return P, Q
```

Experimental Setup

■ Models & Datasets

- MF models with varying the dimensionality of laten space (64, 128)
- Statistics of datasets

Datasets	# of users	# of items	# of ratings	Sparsity
ML10M	69,878	10,677	10,000,035	98.66%
ML25M	162,541	59,047	24,997,208	99.74%
Netflix	480,189	17,770	100,480,507	98.82%
Yahoo!Musics	1,000,990	624,961	256,804,235	99.96%

☐ Competing algorithms

- MPT (ICML'18)
- MuPPET (ICML'20)
- AFP (CVPR'20)
- Two baselines (FP32, FP16)

Questions to Answer

☐ Q1: Training performance

■ Does MASCOT improve the training performance of MF models more than existing quantization methods?

☐ Q2: Model quality

■ Does MASCOT provide the errors of MF models lower than existing quantization methods?

☐ Q3: Effectiveness of each strategy

■ How effective are the strategies of MASCOT in improving the MF model training?

Q1. Training Performance

- ☐ MASCOT improves the training performance of MF models most
 - About 45% performance improvement on average
- ☐ Existing SOTA quantization methods *degrade* the training performance of MF models

Q2. Model Quality

☐ MASCOT achieves low model errors comparable to that of FP32

■ The g-switching applies the precision switching only to the groups that are highly likely to incur significant model errors

Q3. Ablation Study: Effectiveness of Strategies

☐ Three versions of MASCOT

- MASCOT-N1 is with only *m*-quantization
- MASCOT-N2 is with *m*-quantization and the existing precision switching method
- \blacksquare MASCOT is with both m-quantization and g-switching

Q3. Ablation Study: Effectiveness of Strategies

☐ Both strategies of MASCOT are quite effective in the MF model training.

- \blacksquare MASCOT-N1 shows the best improvement in reducing training time (m-quantization)
- MASCOT outperforms MASCOT-N2 in terms of both training performance and model quality (g-switching)

Conclusions

- □ Discovering that existing SOTA quantization techniques are effective in the training of MF models
- ☐ Identifying two unique features of the training of MF models
 - (i) The training of MF models is more memory-intensive than that of DNN models
 - (ii) The quantization error of each user/item differs, depending on the number of
- ☐ Proposing a quantization framework for efficient training of MF models
 - Employing two strategies to address the unique features of the training MF models
- □ Comprehensive evaluation verifying the effectiveness of MASCOT in the training MF models
 - Improving the training performance by about 45% on average (almost ideal)

Thank You!

Email: koyunyong@hanyang.ac.kr

