网页排名

资料来源: http://en.wikipedia.org/wiki/File:PageRank-hi-res.png

PageRank: 节点重要性的一种测度

基本要领:每一个节点将自己的值均分给出向邻居

每个节点将从邻居收 到的值加起来

多次迭代!

搜索引擎形成查询结果网页排序的重要参数

上图的算例

经过约70次迭代,最后收敛到: A=0.615, B=0.923, C=D=1.231

E14												
	Α	В	С	D	E							
1	a=c/2	b=a/2+c/2	c=d	d=a/2+b	传递关系							
2	a	b	c	d								
3	1	1	1	1	初值							
4	0. 5	1	1	1.5	按传递关系计算							
5	0. 5	0. 75	1.5	1. 25								
6	0. 75	1	1. 25	1	a	b						
7	0.625	1	1	1. 375								
8	0. 5	0.8125	1. 375	1. 3125								
9	0. 6875	0. 9375	1. 3125	1.0625								
10	0.65625	1	1.0625	1. 28125		7						
11	0. 53125	0.859375	1. 28125	1. 328125	c	d -						
12	0.640625	0. 90625	1. 328125	1. 125								
13	0.6640625	0. 984375	1, 125	1, 2265625								

PageRank基本算法描述

- 输入:一个有n个节点的网络(有向图),设所有 节点的PageRank初始值为1/n。
- 选择操作的步骤数k
- 按照下列规则, 同时对每个节点进行操作, 做k次:
 - 每个节点将自己当前的PageRank值通过出向链接均分传递给所指向的节点
 - 若没有出向链接,则认为传递给自己(或者说保留给自己)
 - 每个节点以从入向链接获得的(包括可能自传的)所有值之和更新它的PageRank

一个计算网页排名的实例

Step	A	В	ŭ	D	E	F	Ğ	Н
1	$\frac{1}{2}$	$\frac{1}{16}$	16	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	<u>1</u> 8
2	$\frac{3}{16}$	<u>1</u> 4	$\frac{1}{4}$	$\frac{1}{32}$	$\frac{1}{32}$	$\frac{1}{32}$	$\frac{1}{32}$	1 16

- 每个节点的初值都是 1/8
- 最后收敛结果见下图

小结

- 在一个由"引用"或者"推荐"关系构成的<u>信息网</u> 络中,每个节点的重要性可以认为取决于有多少人 推荐,以及推荐人的重要性
- 这种重要性可通过 "PageRank算法"得到量化
- PageRank算法的基本精神是基于信息网络的结构 , 让每个节点不断把自己的重要性分给出向邻居, 同时用从入向邻居收到的重要性之和来更新自己