Answers of homework Exercises Module CNAP: Complex Numbers And Phasors

Course: Signals Processing Basics (5ESE0)

Notes:

- During the contact hours complete workout of exercises can be explained by a tutor on request.
- The symbol [P] in the margin of an exercise denotes there is a pencast available.

Exercise 1

$$A=20;\,\omega=2\pi f=50\pi$$
 [rad/sec]; $\varphi=\frac{\pi}{2}$

Exercise 2

[P1]

a.
$$\sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2} = \cos(\frac{\pi}{6})$$
; $\cos(\frac{\pi}{3}) = \frac{1}{2} = \sin(\frac{\pi}{6})$; $\tan(\frac{\pi}{3}) = \sqrt{3}$; $\tan(\frac{\pi}{6}) = \frac{1}{\sqrt{3}}$; $\sin(\frac{\pi}{4}) = \frac{1}{\sqrt{2}} = \cos(\frac{\pi}{4})$; $\tan(\frac{\pi}{4}) = 1$

b.
$$\Re e\{e^{j\frac{2\pi}{3}}\} = -\frac{1}{2}$$
 and $\Im m\{e^{j\frac{2\pi}{3}}\} = \frac{\sqrt{3}}{2}$.

c. $\Im m\{\mathrm{e}^{\mathrm{j}\frac{\pi}{4}}\}=\frac{\sqrt{2}}{2}.$ All missing values are depicted in Fig.1.

Figure 1

Exercise 3

a.
$$z = 2e^{j\frac{\pi}{2}}$$

b.
$$z = \sqrt{3}e^{-\frac{1}{6}\frac{5\pi}{6}}$$

Exercise 4

a.
$$z = -1 + j$$

b.
$$z = -3j$$

Exercise 5

a.
$$z_3 = (3 + \frac{\sqrt{3}}{2}) + (4\frac{1}{2})j$$
.

b.
$$z_3 = 4j$$

[P2] c.
$$z_3 = -\frac{3}{2}$$

Exercise 6

a.
$$z = 0$$

b.
$$z = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}j$$

[P3] c.
$$z = -j$$

Exercise 7

a.
$$|z|^2 = 194$$

b.
$$\Re e\{z \cdot e^{-j\frac{\pi}{2}}\} = 5$$

c.
$$\Im m\{z\} = \frac{1}{2}$$

Exercise 8

a.
$$z_{1,2} = \pm 6j$$
.

[P4] b.
$$z_{1,2} = -4 \pm 2j$$

c.
$$z_{1,2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}$$
j

Exercise 9

$$A=2;\,\omega=300\pi$$
 and $\varphi=\frac{5\pi}{4}.$

Exercise 10
$$\theta = \frac{\pi}{6}$$
 and $r = 3 - 2\sqrt{3}$ OR $\theta = \frac{5\pi}{6}$ and $r = 3 + 2\sqrt{3}$

$$[P5] \hspace{1cm} \psi = 0 \text{ and } M = 0 \text{ OR } \psi = \frac{2\pi}{3} \text{ and } M = 5\sqrt{3}.$$