Econometrics using STATA

Muhammad Yaseen

1	INT	RODUCTION 1
	1.1	An Overview of STATA's Distictive Features 1
2	WO	RKING WITH ECONOMIC AND FINANCIAL DATA IN
	STA	TA 3
	2.1	The Basics 3
		2.1.1 The use Command 3
		2.1.2 Variable Types 3
		2.1.3 Generate & Replace 4
		2.1.4 sort & gsort 4
3	ORG	SANIZING & HANDLING ECONOMIC DATA 7
	3.1	Cross-Sectional Data & Identifier Variables 7
	3.2	Time Series Data 7
	3.3	Pooled Cross-Sectional Time Series Data 7
	3.4	Panel Data 7
	3.5	Tools for Manipulating Panel Data 7
	3.6	Combining Cross-Sectional & Time Series Datasets 7
	3.7	Creating Long-Format Datasets with Append 7
	3.8	The reshape Command 7
	3.9	Using STATA for Reproducible Research 7
		3.9.1 Using do-files 7
		3.9.2 Data Validation: Assert & Duplicates 7
4	LIN	EAR REGRESSION 9
	4.1	Linear Regression 9
	4.2	Information Criteria 9
	4.3	The Coefficient Estimates & Beta Coefficients 10
	4.4	Recovering Estimation Results 10
	4.5	Detecting Collinearlity in Regression 12
	4.6	Presenting Regression Estimates 12
	4.7	Hypothesis Tests, Linear Restrictions, & Constrained
		Least Squares 14
		4.7.1 Wald Tests with Test 14
		4.7.2 Wald Tests involving Linear Combinations of
		Parameters 15
		4.7.3 Joint Hypothesis Tests 16
		4.7.4 Testing Nonlinear Restrictions & Forming Non-
		linear Combinations 16
		4.7.5 Testing Competing (Non-Nested) Models 17
	4.8	Computing Residuals & Predicted Values 17
		4.8.1 Computing Interval Predictions 17
	4.9	Computing Marginal Effects 19
5	SPE	CIFYING THE FUNCTIONAL FORM 23
	5.1	Introduction 23

	5.2	Specification Error 23
		5.2.1 Omitting relevant Variables from the Model 23
		5.2.2 Graphically Analyzing Regression data 23
		5.2.3 Added-Variable Plots 23
		5.2.4 Including Irrelevant Variables in the Model 26
		5.2.5 The Asymmetry of Specification Error 26
		5.2.6 Misspecification of the Functional Form 26
		5.2.7 Ramsey's RESET 26
		5.2.8 Specification Plots 27
		5.2.9 Specification & Interaction Terms 27
	5.3	Endogeneity & Measurement Error 41
6	0 0	
U	6.1	
	0.1	
		C TI DI LEU LA CALOR
		19
		6.1.3 The Cluster Estimator of VCE 46
		6.1.4 The Newey-West Estimator of VCE 46
	(-	6.1.5 The Generalized Least Squares Estimator 47
	6.2	Heteroskedasticity in the Error Distribution 47
		6.2.1 Heteroskedasticity Related to Scale 47
		6.2.2 Heteroskedasticity Between Groups of Observa-
		tions 49
	_	6.2.3 Heteroskedasticity in Grouped Data 51
	6.3	Serial Correlation in the Error Distribution 53
		6.3.1 Testing for Serial Correlation 53
		6.3.2 FGLS Estimation with Serial Correlation 54
7	REG	RESSION WITH INDICATOR VARIABLES 57
	7.1	Testing for Significance of a Qualitative Factor 57
		7.1.1 Regression with One Qualitative Measure 57
		7.1.2 Regression with Two Qualitative Measures 59
	7.2	Regression with Qualitative & Quantitative Factors 62
		7.2.1 Testing for Slope Differences 63
	7.3	Seasonal Adjustment with Indicator Variables 67
	7.4	Testing for Structural Stability & Structural Change 71
		7.4.1 Constraints of Continuity & Differentiability 71
		7.4.2 Structural Change in a Time Series Model 73
8	INS	TRUMENTAL VARIABLES ESTIMATORS 77
	8.1	Introduction 77
	8.2	Endogeneity in Economic Relationships 77
	8.3	2SLS 77
	8.4	The ivreg Command 77
	8.5	Identification & Tests of Overidentifying Restrictions 77
	8.6	Computing IV Estimates 77
	8.7	ivreg2 & GMM Estimation 80
	•	8.7.1 The GMM Estimator 80

		8.7.2	GMM in a Homoskedastic Context 80
		8.7.3	GMM & Heteroskedasticity-Consistent Standard
			Errors 80
		8.7.4	GMM & Clustering 80
			GMM & HAC Standard Errors 80
	8.8		g & Overidentifying Restrictions in GMM 80
		8.8.1	Testing a subset of the Overidentifying Restric-
			tions in GMM 80
	8.9	Testing	g for Heteroskedasticity in the IV context 80
	8.10	Testing	g the Relevance of Instruments 80
	8.11	Durbii	n–Wu–Hausman Tests for Endogeneity in IV Es-
		timatio	on 8o
9	PAN	EL DAT	TA MODELS 81
	9.1	Fixed	Effects & Random Effects Models 81
		9.1.1	One-Way Fixed Effects Models 81
		9.1.2	Time Effects & Two-Way Fixed Effects Models 84
		9.1.3	The Between Estimator 86
		9.1.4	One-Way Random Effects Models 86
		9.1.5	Testing the appropriateness of Random Effects
			Model 87
		9.1.6	Prediction from One-Way Fixed Effects Model
			& Random Effects Model 87
	9.2	IV Mo	odels for Panel Data 87
	9.3	-	nic Panel Data Models 87
	9.4		ngly Unrelated Regression Models 88
			SUR with Identical Regressors 88
	9.5		ng-Window Regression Estimates 88
10			F DISCRETE & LIMITED DEPENDENT VARIABLES 89
	10.1		nial Logit & Probit Models 89
			The Latent Variable Approach 89
			Marginal Effects & Predictions 89
			Evaluating Specification & Goodness of Fit 91
			ed Logit & Probit Models 92
	10.3		ated Regression & Tobit Models 94
		_	Truncation 94
		-	Censoring 96
			ntal Truncation & Sample Selection Models 98
	10.5		ate Probit & Probit with Selection 100
		10.5.1	Binomial Probit with Selection 102

LIST OF FIGURES

Figure 1	Actual versus predicted values from regression model 18
Figure 2	Point and interval predictions from bivariate
	regression 20
Figure 3	graph matrix of regression variables 24
Figure 4	Added-variable plots 25
Figure 5	Residual-versus-predictor plot 28
Figure 6	Autocorrelogram of regression residuals 55
Figure 7	Seasonal adjustment of time series 69
Figure 8	Seasonal adjustment and deterending of time
	series 70
Figure 9	Piecewise wage-tenure profile 74
Figure 10	Piecewise linear wage-tenure profile 75

1

INTRODUCTION

1.1 AN OVERVIEW OF STATA'S DISTICTIVE FEATURES

- You can easily learn STATA commands, even if you do not know the syntex
- You can use STATA's do-file Editor to save time developing you analysis
- A simple command performs all computations for all the desired obervations
- Looping over variables saves time & effort
- STATA's by-groups reduce the need for programming
- STATA has many statistical features that make it uniquely powerful
- You can avoid problems by keeping STATA up to date
- STATA is infinitely extensible
- STATA's user community provides a wealth of useful additions to STATA
- STATA is cross-platform compatible
- STATA can be fun

WORKING WITH ECONOMIC AND FINANCIAL DATA IN STATA

2.1 THE BASICS

2.1.1 The use Command

- . use census2c.(1980 Census data for NE and NC states)
- . list, sep(0)

-	+						
	state						
_							
	Connecticut		3107.6				
2.	Illinois	N Cntrl	11426.5	9518.0	29.90	109.8	51.0
3.	Indiana	N Cntrl	5490.2	3525.3	29.20	57.9	40.0
4.	Iowa	N Cntrl	2913.8	1708.2	30.00	27.5	11.9
5.	Kansas	N Cntrl	2363.7	1575.9	30.10	24.8	13.4
6.	Maine	NE	1124.7	534.1	30.40	12.0	6.2
7.	Massachusetts	NE	5737.0	4808.3	31.20	46.3	17.9
8.	Michigan	N Cntrl	9262.1	6551.6	28.80	86.9	45.0
9.	Minnesota	N Cntrl	4076.0	2725.2	29.20	37.6	15.4
10.	Missouri	N Cntrl	4916.7	3349.6	30.90	54.6	27.6
11.	Nebraska	N Cntrl	1569.8	987.9	29.70	14.2	6.4
12.	New Hampshire	NE	920.6	480.3	30.10	9.3	5.3
13.	New Jersey	NE	7364.8	6557.4	32.20	55.8	27.8
14.	New York	NE	17558.1	14858.1	31.90	144.5	62.0
15.	N. Dakota	N Cntrl	652.7	318.3	28.30	6.1	2.1
16.	Ohio	N Cntrl	10797.6	7918.3	29.90	99.8	58.8
17.	Pennsylvania	NE	11863.9	8220.9	32.10	93.7	34.9
18.	Rhode Island	NE	947.2	824.0	31.80	7.5	3.6
19.	S. Dakota	N Cntrl	690.8	320.8	28.90	8.8	2.8
20.	Vermont	NE	511.5	172.7	29.40	5.2	2.6
21.	Wisconsin	N Cntrl	4705.8	3020.7	29.40	41.1	17.5
_	' +						

2.1.2 Variable Types

- . use census2c.(1980 Census data for NE and NC states)
- . describe

Contains data from census2c.dta obs: 21

vars: size:	7 1,050			14 Jun 2006 08:48	
variable name	type	display format	label	variable label	
state region pop popurb medage marr divr	str13 byte double double float double double	%-13s %-8.0g %8.1f %8.1f %9.2f %8.1f %8.1f	cenreg	State Census region 1980 Population, '000 1980 Urban population, '000 Median age, years Marriages, '000 Divorces, '000	
Sorted by:					
2.1.3 Genera	te & Rep	lace			
. use census2d	.(1980 Ce	ensus data f	for NE and N	NC states)	
. generate urb	anized =	popurb/pop			
. summarize ur	banized				
Variable	()bs M	Mean Std	. Dev. Min Max	
•				00842 .3377319 .8903645	
. use census2d	.(1980 Ce	ensus data f	for NE and N	NC states)	
. generate urb	anized =	popurb/pop			
. replace urba		L00∗urbaniz∈	ed		
. summarize ur	banized				
				. Dev. Min Max	
•				00843 33.77319 89.03645	
2.1.4 sort &	gsort				
. use census2d				NC states)	
. list region					
region	state		pop		

1.	NE 	Connecticut	3107.6
	N Cntrl N Cntrl		11426.5 5490.2
	N Cntrl	Iowa	2913.8
5.	N Cntrl 	Kansas 	2363.7
6.	1	Maine	1124.7
7.	NE	Massachusetts	5737.0
8.	 N Cntrl	Michigan	 9262.1
9.	•	Minnesota	4076.0 I
10.	N Cntrl		4916.7
11.	N Cntrl		1569.8
11.			1309.0
12.	NE	New Hampshire	920.6
13.	NE	New Jersey	7364.8
14.	NE	New York	17558.1
15.	 N Cntrl	N. Dakota	 652.7
16.	N Cntrl		10797.6
17.	NE	Pennsylvania	11863.9
18.	NE	Rhode Island	947.2
19.	N Cntrl		690.8
20			
20.	1	Vermont	511.5
21.	I		4705.8
	+		

. sort region -pop

. list region state pop, sepby(region)

	+		+
	region		pop
1.	I NE	Vermont	 511.5
2.	I NE	New Hampshire	920.6
3.	NE	Rhode Island	947.2
4.	NE	Maine	1124.7
5.	NE	Connecticut	3107.6
6.	NE	Massachusetts	-
7.	NE	New Jersey	7364.8
8.	NE	Pennsylvania	11863.9
9.	NE	New York	17558.1
10.	N Cntrl	N. Dakota	652.7
11.	N Cntrl	S. Dakota	690.8
12.	N Cntrl	Nebraska	1569.8
13.	N Cntrl	Kansas	2363.7
14.	N Cntrl	Iowa	2913.8
15.	N Cntrl	Minnesota	4076.0
16.	N Cntrl	Wisconsin	4705.8

17.	1	N	Cntrl	Missouri	4916.7	-
18.	1	N	Cntrl	Indiana	5490.2	1
19.	1	N	Cntrl	Michigan	9262.1	1
20.	1	N	Cntrl	Ohio	10797.6	١
21.	1	N	Cntrl	Illinois	11426.5	-
	+					. +

.

. gsort region -pop

. list region state pop, sepby(region)

	+		+
	region	state	pop
1.	NE	New York	17558.1
2.	NE	Pennsylvania	11863.9
3.	NE	New Jersey	7364.8
4.	NE	Massachusetts	5737.0
5.	NE	Connecticut	3107.6
6.	NE	Maine	1124.7
7.	NE	Rhode Island	947.2
8.	NE	New Hampshire	920.6
9.	NE	Vermont	511.5
10.	N Cntrl	Illinois	11426.5
11.	N Cntrl	Ohio	10797.6
12.	N Cntrl	Michigan	9262.1
13.	N Cntrl	Indiana	5490.2
14.	N Cntrl	Missouri	4916.7
15.	N Cntrl	Wisconsin	4705.8
16.	N Cntrl	Minnesota	4076.0
17.	N Cntrl	Iowa	2913.8
18.	N Cntrl	Kansas	2363.7
19.	N Cntrl	Nebraska	1569.8
20.	N Cntrl	S. Dakota	690.8
21.	N Cntrl	N. Dakota	652.7
	+		+

ORGANIZING & HANDLING ECONOMIC DATA

- 3.1 CROSS-SECTIONAL DATA & IDENTIFIER VARIABLES
- 3.2 TIME SERIES DATA
- 3.3 POOLED CROSS-SECTIONAL TIME SERIES DATA
- 3.4 PANEL DATA
- 3.5 TOOLS FOR MANIPULATING PANEL DATA
- 3.6 COMBINING CROSS-SECTIONAL & TIME SERIES DATASETS
- 3.7 CREATING LONG-FORMAT DATASETS WITH APPEND
- 3.8 THE RESHAPE COMMAND
- 3.9 USING STATA FOR REPRODUCIBLE RESEARCH
- 3.9.1 Using do-files
- 3.9.2 Data Validation: Assert & Duplicates

LINEAR REGRESSION

4.1 LINEAR REGRESSION

- . use hprice2a.(Housing price data for Boston-area communities)
- . summarize price lprice lnox ldist rooms stratio, sep(0)

Variable	0bs	Mean	Std. Dev.	Min	Max
price	506	22511.51	9208.856	5000	50001
lprice	506	9.941057	. 409255	8.517193	10.8198
lnox	506	1.693091	.2014102	1.348073	2.164472
ldist	506	1.188233	.539501	.1222176	2.495682
rooms	506	6.284051	.7025938	3.56	8.78
stratio	506	18.45929	2.16582	12.6	22

- . use hprice2a.(Housing price data for Boston-area communities)
- . regress lprice lnox ldist rooms stratio

Source	SS	df	MS	Number of obs	=	506
+				F(4, 501)	=	175.86
Model	49.3987735	4	12.3496934	Prob > F	=	0.0000
Residual	35.1834974	501	.070226542	R-squared	=	0.5840
+-				Adj R-squared	=	0.5807
Total	84.5822709	505	.167489645	Root MSE	=	.265

lprice				• •	[95% Conf.	-
lnox ldist rooms stratio	95354 1343401 .2545271 0524512	.1167418 .0431032 .0185303 .0058971	-8.17 -3.12 13.74 -8.89	0.000 0.002 0.000 0.000	-1.182904 2190255 .2181203 0640373	7241762 0496548 .2909338 0408651
_cons	11.08387	.3181115	34.84	0.000	10.45887	11.70886

4.2 INFORMATION CRITERIA

- . use hprice2a.(Housing price data for Boston-area communities)
- . quietly regress lprice lnox ldist rooms stratio
- . estat ic

Model	0bs	ll(null)	ll(model)	df	AIC	BIC
·	506	-265.4135	-43.49514	5		118.123

Note: N=Obs used in calculating BIC; see [R] BIC note.

4.3 THE COEFFICIENT ESTIMATES & BETA COEFFICIENTS

- . use hprice2a.(Housing price data for Boston-area communities)
- . quietly regress lprice lnox ldist rooms stratio
- . regress, beta

Source	SS	df	MS	Number of obs	=	506 175.86
Model	49.3987735	4	12.3496934	, ,	=	0.0000
Residual	35.1834974		.070226542	R-squared Adj R-squared	=	0.5840 0.5807
Total	84.5822709		. 167489645		=	. 265
lprice	Coef.			P> t		Beta
lnox	95354	.1167418	-8.17	0.000	-	.4692738
ldist	1343401	.0431032	-3.12	0.002	-	.1770941
rooms	.2545271	.0185303	13.74	0.000		.4369626
stratio	0524512	.0058971	-8.89	0.000	-	.2775771
_cons	11.08387	.3181115	34.84	0.000		•

4.4 RECOVERING ESTIMATION RESULTS

- . use hprice2a.(Housing price data for Boston-area communities) $\,$
- . quietly regress lprice lnox ldist rooms stratio
- . ereturn list

scalars:

e(N) = 506 $e(df_m) = 4$ $e(df_r) = 501$ e(F) = 175.8550695227946 e(r2) = .5840322442976398 e(rmse) = .2650029089298266e(mss) = 49.39877352102587

e(rss) = 35.18349741237627 $e(r2_a) = .5807111444517128$ e(ll) = -43.4951392092929 $e(ll_0) = -265.4134648194153$ e(rank) = 5e(cmdline) : "regress lprice lnox ldist rooms stratio" e(title) : "Linear regression" e(marginsok) : "XB default" e(vce) : "ols" e(depvar) : "lprice" e(cmd) : "regress" e(properties) : "b V" e(predict) : "regres_p" e(model) : "ols" e(estat_cmd) : "regress_estat" $e(b) : 1 \times 5$ $e(V) : 5 \times 5$ e(sample) . use hprice2a.(Housing price data for Boston-area communities) . quietly regress lprice lnox ldist rooms stratio . matrix list e(b) lnox ldist rooms stratio _cons y1 -.95354002 -.13434015 .25452706 -.05245119 11.083865 . use hprice2a.(Housing price data for Boston-area communities) . quietly regress lprice lnox ldist rooms stratio

Covariance matrix of coefficients of regress model

macros:

matrices:

functions:

e(b)[1,5]

. estat vce

```
e(V) | lnox ldist rooms stratio _cons
------
     lnox | .01362865
    ldist | .00426247 .00185789
    rooms | .00035279 .00003043 .00034337
   stratio | 9.740e-07 .00002182 .00003374 .00003478
    _cons | -.03037429 -.01001835 -.00341397 -.00088151 .10119496
```

4.5 DETECTING COLLINEARLITY IN REGRESSION

- . use hprice2a.(Housing price data for Boston-area communities)
- . quietly regress lprice lnox ldist rooms stratio
- . estat vif

Variable	VIF	1/VIF
lnox	3.98	0.251533
ldist	3.89	0.257162
rooms	1.22	0.820417
stratio	1.17	0.852488
Mean VIF	2.56	

4.6 PRESENTING REGRESSION ESTIMATES

- . use hprice2a.(Housing price data for Boston-area communities)
- . generate rooms2 = rooms^2
- . quietly regress lprice rooms
- . estimates store model1
- . quietly regress lprice rooms rooms2 ldist
- . estimates store model2
- . quietly regress lprice ldist stratio lnox
- . estimates store model3
- . quietly regress lprice lnox ldist rooms stratio
- . estimates store model4
- . estimates table model1 model2 model3 model4, stat(r2_a, rmse) b(%7.3g) se(%6.
- > 3q) p(%4.3f)

Variable			
·	.369		 . 255
1	.0201	. 183	.0185

	0.000	0.000		0.000
rooms2		.0889		
		.014		
		0.000		
ldist		. 237	157	134
		.0255	.0505	.0431
		0.000	0.002	0.002
stratio			0775	0525
			.0066	.0059
			0.000	0.000
lnox			-1.22	954
			. 135	.117
			0.000	0.000
_cons	7.62	11.3	13.6	11.1
	. 127	.584	.304	.318
	0.000	0.000	0.000	0.000
r2_a	.399	.5	.424	.581
rmse	.317	. 289	.311	. 265
			lege	nd: b/se/p

- . use hprice2a.(Housing price data for Boston-area communities)
- . generate rooms2 = rooms^2
- . quietly regress lprice rooms
- . estimates store model1
- . quietly regress lprice rooms rooms2 ldist
- . estimates store model2
- . quietly regress lprice ldist stratio lnox
- . estimates store model3
- . quietly regress lprice lnox ldist rooms stratio
- . estimates store model4
- . estimates table model1 model2 model3 model4, stat($r2_a$ rmse ll) b(\$7.3g) star > title("Models of Median Housing Price")

Models of Median Housing Price

Variable	model1	model2	model3	model4
+				
rooms	.369***	821***		.255***

rooms2 ldist stratio lnox _cons	7.62***	.0889*** .237*** 11.3***	157** 0775*** -1.22*** 13.6***	134** 0525*** 954*** 11. 1***
r2_a	.399	.5	.424	.581
rmse	.317	.289	.311	.265
ll	-136	-88.6	-124	-43.5

legend: * p<0.05; ** p<0.01; *** p<0.001

4.7 HYPOTHESIS TESTS, LINEAR RESTRICTIONS, & CONSTRAINED LEAST SQUARES

4.7.1 Wald Tests with Test

- . use hprice2a.(Housing price data for Boston-area communities)
- . regress lprice lnox ldist rooms stratio

Source	SS	df	MS	Number of obs	=	506 175.86
Model	49.3987735	4	12.3496934	F(4, 501) Prob > F	=	0.0000
Residual	35.1834974 		.070226542	R-squared Adj R-squared	=	0.5840 0.5807
Total	84.5822709	505	.167489645	Root MSE	=	. 265

lprice		Std. Err.			-	Interval]
lnox	95354	.1167418	-8.17	0.000	-1.182904	7241762
ldist	1343401	.0431032	-3.12	0.002	2190255	0496548
rooms	.2545271	.0185303	13.74	0.000	.2181203	. 2909338
stratio	0524512	.0058971	-8.89	0.000	0640373	0408651
_cons	11.08387	.3181115	34.84	0.000	10.45887	11.70886

. test rooms

(1) rooms = 0

$$F(1, 501) = 188.67$$

 $Prob > F = 0.0000$

- . use hprice2a.(Housing price data for Boston-area communities)
- . quietly regress lprice lnox ldist rooms stratio
- . test rooms = 0.33
- (1) rooms = .33

F(1, 501) = 16.59Prob > F = 0.0001

4.7.2 Wald Tests involving Linear Combinations of Parameters

- . use hprice2a.(Housing price data for Boston-area communities)
- . quietly regress lprice lnox ldist rooms stratio
- . lincom rooms + ldist + stratio
- (1) ldist + rooms + stratio = 0

lprice | Coef. Std. Err. t P>|t| [95% Conf. Interval]
(1) | .0677357 .0490714 1.38 0.168 -.0286753 .1641468

- . test ldist = stratio
- (1) ldist stratio = 0

$$F(1, 501) = 3.63$$

 $Prob > F = 0.0574$

- . test lnox = 10∗stratio
- (1) lnox 10*stratio = 0

$$F(1, 501) = 10.77$$

 $Prob > F = 0.0011$

- . use hprice2a.(Housing price data for Boston-area communities)
- . constraint def 1 rooms + ldist + stratio = 0
- . cnsreg lprice lnox ldist rooms stratio, constraint(1)

Constrained linear regression F(3, 502) = 233.42 Prob > F = 0.0000 Root MSE = 0.2652

(1) ldist + rooms + stratio = 0

					[95% Conf.	-
lnox		.0691935			-1.219337	
ldist	1880712	.0185284	-10.15	0.000	2244739	1516684
rooms	.2430633	.01658	14.66	0.000	.2104886	.2756381
stratio	0549922	.0056075	-9.81	0.000	0660092	0439752

_cons | 11.48651 .1270377 90.42 0.000 11.23691 11.7361

4.7.3 Joint Hypothesis Tests

- . use hprice2a.(Housing price data for Boston-area communities)
- . quietly regress lprice lnox ldist rooms stratio
- . test lnox ldist
- (1) lnox = 0
- (2) ldist = 0

$$F(2, 501) = 58.95$$

 $Prob > F = 0.0000$

- . use hprice2a.(Housing price data for Boston-area communities)
- . quietly regress lprice lnox ldist rooms stratio
- . test (lnox = 10*stratio) (ldist = stratio)
- (1) lnox 10*stratio = 0
- (2) ldist stratio = 0

$$F(2, 501) = 5.94$$

 $Prob > F = 0.0028$

- 4.7.4 Testing Nonlinear Restrictions & Forming Nonlinear Combinations
- . use hprice2a.(Housing price data for Boston-area communities)
- . quietly regress lprice lnox ldist rooms stratio
- . testnl $_b[lnox] * _b[stratio] = 0.06$
 - (1) $_b[lnox] * _b[stratio] = 0.06$

$$chi2(1) = 1.44$$

Prob > chi2 = 0.2300

- . use hprice2a.(Housing price data for Boston-area communities)
- . quietly regress lprice lnox ldist rooms stratio
- . testnl (b[lnox] * b[stratio] = 0.06) (b[rooms] * b[ldist] = 3 * b[lnox])

```
(1) _b[lnox] * _b[stratio] = 0.06
  (2) _b[rooms] * _b[ldist] = 3 * _b[lnox]
              chi2(2) = 184.94
          Prob > chi2 =
                            0.0000
4.7.5 Testing Competing (Non-Nested) Models
. use hprice2a.(Housing price data for Boston-area communities)
. nnest lprice lnox ldist rooms stratio (crime proptax ldist rooms stratio)
command nnest is unrecognized
r(199);
end of do-file
r(199);
4.8 COMPUTING RESIDUALS & PREDICTED VALUES
. use hprice2a.(Housing price data for Boston-area communities)
. quietly regress lprice lnox ldist rooms stratio
. predict double lpricehat, xb
. label var lpricehat "Predicted log price"
. twoway (scatter lpricehat lprice, msize(small) mcolor(black) msize(tiny)) ||
> (line lprice lprice if lprice <., clwidth(thin)), ytitle("Predicted log media
> n housing price") xtitle("Actual log median housing price") aspectratio(1) le
> gend(off)
4.8.1 Computing Interval Predictions
. use hprice2a.(Housing price data for Boston-area communities)
. quietly regress lprice lnox if _n <= 100
. predict double xb if e(sample)
(option xb assumed; fitted values)
(406 missing values generated)
. predict double stdpred if e(sample), stdp
(406 missing values generated)
. scalar tval = invttail(e(df_r), 0.975)
```


Figure 1: Actual versus predicted values from regression model

- . generate double uplim = xb + tval * stdpred
 (406 missing values generated)
- . generate double lowlim = xb tval * stdpred (406 missing values generated)
- . summarize lnox if e(sample), meanonly
- . generate lnoxbar = r(mean)
- . label var xb "Pred"
- . label var uplim "95% prediction interval"
- . label var lowlim "95% prediction interval"
- . twoway (scatter lprice lnox if e(sample), sort ms(0h) xline('lnoxbar')) (conn
- > ected xb lnox if e(sample), sort msize(small)) (rline uplim lowlim lnox if e(
- > sample), sort), ytitle(Actual and predicted log price) legend(cols(3))

4.9 COMPUTING MARGINAL EFFECTS

- . use hprice2a.(Housing price data for Boston-area communities)
- . regress price nox dist rooms stratio proptax

Source	SS	dŤ	MS	Number of obs	=	506
+-				F(5, 500)	=	165.85
Model	2.6717e+10	5	5.3434e+09	Prob > F	=	0.0000
Residual	1.6109e+10	500	32217368.7	R-squared	=	0.6239
+-				Adj R-squared	=	0.6201
Total	4.2826e+10	505	84803032	Root MSE	=	5676

price	Coef.	Std. Err.	t	P> t	-	Interval]
nox	-2570.162	407.371	-6.31	0.000	-3370.532	-1769.793
dist	-955.7175	190.7124	-5.01	0.000	-1330.414	-581.021
rooms	6828.264	399.7034	17.08	0.000	6042.959	7613.569
stratio	-1127.534	140.7653	-8.01	0.000	-1404.099	-850.9699
proptax	-52.24272	22.53714	-2.32	0.021	-96.52188	-7.963555
_cons	20440.08	5290.616	3.86	0.000	10045.5	30834.66

. mfx, eyex

Elasticities after regress
 y = Fitted values (predict)

Figure 2: Point and interval predictions from bivariate regression

= 22511.51

variable	ey/ex	Std. Err.	z		-	C.I.]	Х
nox dist rooms stratio proptax	6336244 1611472 1.906099 9245706 0947401	.10068 .03221 .1136 .11589	-6.29 -5.00 16.78 -7.98	0.000 0.000 0.000 0.000	830954 224273	436295 098022 2 .12876 697429	5.54978 3.79575 6.28405 18.4593 40.8237
hiohrax	094/401	.04088	-2.32	0.020	1/48/1	014009	40.8237

5.1 INTRODUCTION

5.2 SPECIFICATION ERROR

- 5.2.1 Omitting relevant Variables from the Model
- 5.2.2 Graphically Analyzing Regression data
- . use hprice2a.(Housing price data for Boston-area communities)
- . graph matrix lprice lnox ldist rooms stratio, ms(Oh) msize(tiny)

5.2.3 Added-Variable Plots

- . use hprice2a.(Housing price data for Boston-area communities)
- . generate rooms2 = rooms^2
- . regress lprice lnox ldist rooms rooms2 stratio lproptax

Source	SS	df	MS	Number of obs	=	506
 				F(6, 499)	=	138.41
Model	52.8357813	6	8.80596356	Prob > F	=	0.0000
Residual	31.7464896	499	.06362022	R-squared	=	0.6247
 				Adj R-squared	=	0.6202
Total	84.5822709	505	. 167489645	Root MSE	=	.25223

lprice | Coef. Std. Err. t P>|t| [95% Conf. Interval]

lnox | -.6615694 .1201606 -5.51 0.000 -.8976524 -.4254864
ldist | -.095087 .0421435 -2.26 0.024 -.1778875 -.0122864
rooms | -.5625662 .1610315 -3.49 0.001 -.8789496 -.2461829
rooms2 | .0634347 .0124621 5.09 0.000 .0389501 .0879193
stratio | -.0362928 .0060699 -5.98 0.000 -.0482185 -.0243671
lproptax | -.2211125 .0410202 -5.39 0.000 -.301706 -.1405189
_cons | 14.15454 .5693846 24.86 0.000 13.03585 15.27323

. avplots, ms(Oh) msize(small) col(2)

Figure 3: graph matrix of regression variables

Figure 4: Added-variable plots

- 5.2.4 Including Irrelevant Variables in the Model
- 5.2.5 The Asymmetry of Specification Error
- 5.2.6 Misspecification of the Functional Form
- 5.2.7 Ramsey's RESET
- . use hprice2a.(Housing price data for Boston-area communities)
- . quietly regress lprice lnox ldist rooms stratio
- . estat ovtest

Ramsey RESET test using powers of the fitted values of lprice Ho: model has no omitted variables

> F(3, 498) = 9.69Prob > F = 0.0000

. estat ovtest, rhs

Ramsey RESET test using powers of the independent variables

Ho: model has no omitted variables

F(12, 489) = 11.79Prob > F = 0.0000

- . use hprice2a.(Housing price data for Boston-area communities)
- . $generate rooms2 = rooms^2$
- . regress lprice lnox ldist rooms rooms2 stratio lproptax

Source	SS	df	MS	Number of obs	=	506
 +-				F(6, 499)	=	138.41
Model	52.8357813	6	8.80596356	Prob > F	=	0.0000
Residual	31.7464896	499	.06362022	R-squared	=	0.6247
 +-				Adj R-squared	=	0.6202
Total	84.5822709	505	.167489645	Root MSE	=	. 25223

lprice	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnox	6615694	.1201606	-5.51	0.000	8976524	4254864
ldist	095087	.0421435	-2.26	0.024	1778875	0122864
rooms	5625662	.1610315	-3.49	0.001	8789496	2461829
rooms2	.0634347	.0124621	5.09	0.000	.0389501	.0879193
stratio	0362928	.0060699	-5.98	0.000	0482185	0243671
lproptax	2211125	.0410202	-5.39	0.000	301706	1405189
_cons	14.15454	.5693846	24.86	0.000	13.03585	15.27323

Ramsey RESET test using powers of the fitted values of lprice

Ho: model has no omitted variables

F(3, 496) = 1.64Prob > F = 0.1798

5.2.8 Specification Plots

- . use hprice2a.(Housing price data for Boston-area communities)
- . generate rooms2 = rooms^2
- . quietly regress lprice lnox ldist rooms rooms2 stratio lproptax
- . rvpplot ldist, ms(0h) yline(0)

5.2.9 Specification & Interaction Terms

- . use hprice2a.(Housing price data for Boston-area communities)
- . generate taxschl = lproptax * stratio
- . regress lprice lnox ldist lproptax stratio taxschl

Source	SS	df	MS	Number of obs	=	506
+-				F(5, 500)	=	84.47
Model	38.7301562	5	7.74603123	Prob > F	=	0.0000
Residual	45.8521148	500	.09170423	R-squared	=	0.4579
+-				Adj R-squared	=	0.4525
Total	84.5822709	505	. 167489645	Root MSE	=	.30283

lprice	Coef.	Std. Err.	t	P> t	=	. Interval]
lnox ldist lproptax stratio taxschl	9041103 1430541 -1.48103 4388722 .0641648	.1441253 .0501831 .5163117 .1538321 .026406	-6.27 -2.85 -2.87 -2.85 2.43	0.000 0.005 0.004 0.005 0.015	-1.187276 2416499 -2.495438 7411093 .0122843	6209444 0444583 4666219 1366351 .1160452
_cons	21.47905	2.952307	7.28	0.000	15.6786	27.27951

5.2.10 Outlier Statistics & Measures of Leverage

- . use hprice2a.(Housing price data for Boston-area communities)
- . $generate rooms2 = rooms^2$

Figure 5: Residual-versus-predictor plot

- . quietly regress lprice lnox ldist rooms rooms2 stratio lproptax
- . $generate town = _n$
- . predict double lev if e(sample), leverage
- . predict double eps if e(sample), res
- . $generate eps2 = eps^2$
- . summarize price lprice

Variable	0bs	Mean	Std. Dev	. Min	Max
+					
price	506	22511.51	9208.856	5000	50001
lprice	506	9.941057	.409255	8.517193	10.8198

- . gsort -lev
- . list town price lprice lev eps2 in 1/5

	т.					
	 	town	price	lprice	lev	eps2
1. 2. 3. 4. 5.		366 368 365 258 226	27499 23100 21900 50001 50001	10.2219 10.04759 9.994242 10.8198 10.8198	.17039262 .11272637 .10947853 .08036068 .0799096	.6181372 .3002205 .3308896 .0604706 .0338277
	т.					

- . gsort -eps2
- . list town price lprice lev eps2 in 1/5

	+ -					+
	 	town	price	lprice	lev	eps2
1. 2. 3. 4. 5.	i I	369 373 372 370 406	50001 50001 50001 50001 5000	10.8198 10.8198 10.8198 10.8198 8.517193	.02250047 .01609848 .02056901 .0172083 .00854955	1.71812 1.489409 1.242105 1.022456 1.006366
	+					+

- . predict double dfits if e(sample), dfits
- . gsort -dfits
- . quietly generate cutoff = abs(dfits) > 2 * sqrt((e(df_m) +1)/e(N)) & e(sampl > e)
- . list town price lprice dfits if cutoff

```
1. | 366 27499 10.2219 1.5679033 |
 2. | 368 23100 10.04759 .82559867 |
 3. | 369 50001 10.8198 .8196735 |
 4. | 372 50001 10.8198 .65967704 |
 5. | 373 50001 10.8198 .63873964 |
   |-----|
 6. | 371 50001 10.8198 .55639311 |
 7. | 370 50001 10.8198 .54354054 |
 8. | 361 24999 10.12659 .32184327 |
9. | 359 22700 10.03012 .31516743 |
10. | 408 27901 10.23642 .31281326 |
   |-----|
11. | 367
         21900 9.994242 .31060611 |
12. | 360 22600 10.02571 .28892457 |
13. | 363 20800 9.942708 .27393758 |
14. | 358 21700 9.985067
                        .24312885 |
490. | 386 7200 8.881836 -.23838749 |
   |-----|
491. | 388 7400 8.909235 -.25909393 |
492. | 491 8100 8.999619 -.26584795 |
493. | 400 6300 8.748305 -.28782824 |
494. | 416 7200 8.881836 -.29288953 |
495. | 402 7200 8.881836 -.29595696 |
   |-----|
496. | 381 10400 9.249561 -.29668364 |
497. | 258 50001
               10.8198 -.30053391 |
498. | 385 8800 9.082507 -.302916 |
499. | 420
         8400 9.035987
                       -.30843965 |
500. | 490 7000 8.853665 -.3142718 |
   |-----|
501. | 401 5600 8.630522 -.33273658 |
502. | 417 7500 8.922658 -.34950136 |
503. | 399 5000 8.517193 -.36618139 |
504. | 406 5000 8.517193 -.37661853 |
|-----|
506. | 365 21900 9.994242
                      -.85150064 |
   +-----+
```

. dfbeta lnox

_dfbeta_1: dfbeta(lnox)

- . quietly generate $dfcut = abs(_dfbeta_1) > 2 * sqrt(e(N)) & e(sample)$
- . sort _dfbeta_1
- . summarize lnox

Variable	0bs	Mean	Std. Dev.	Min	Max
lnox	506	1.693091	.2014102	1.348073	2.164472

. list town price lprice lnox _dfbeta_1

+----+

price lprice lnox | town _dfbeta_1 | |-----| 50001 10.8198 1.842136 1. | 369 -.4316933 | 2. | 372 50001 10.8198 1.842136 -.4257791 l 3. | 373 50001 10.8198 1.899118 -.3631822 | 4. | 371 50001 10.8198 1.842136 -.2938702 | 10.8198 -.2841335 | 5. | 370 50001 1.842136 |-----| 6. | 365 9.994242 21900 1.971299 -.2107066 | 7. | 408 27901 10.23642 1.885553 -.1728729 | 8. | 368 23100 10.04759 1.842136 -.1309522 | 9. | 11 15000 9.615806 1.656321 -.1172723 | 10. | 410 27499 10.2219 1.786747 -.1117743 | |-----| 11. | 413 17900 9.792556 1.786747 -.0959273 | 12. | 437 9600 9.169518 2.00148 -.0955826 | 13. | 146 13800 9.532424 2.164472 -.0914387 | -.0856147 | 14. | 438 8700 9.071078 2.00148 15. | 420 8400 9.035987 1.971299 -.085223 | |-----| 16. | 145 11800 9.375854 2.164472 -.0816827 | 17. | 439 2.00148 8400 9.035987 -.070508 | -.0668001 | 18. | 182 36199 10.49679 1.585145 19. | 423 9.942708 20800 1.814825 -.064928 | 20. | 157 9.480368 -.0622912 | 13100 2.164472 |------21. | 258 50001 10.8198 1.867176 -.0570776 | 22. | 158 41299 10.62859 1.800058 -.0563827 | 23. | 409 17200 9.752665 1.786747 -.0549674 | 24. | 343 16500 9.711116 1.644805 -.0542086 | 25. | 414 16300 9.69892 1.786747 -.0522002 | |-----26. | 143 13400 9.50301 2.164472 -.0499795 | 27. | 446 11800 9.375854 2.00148 -.0498875 | 28. | 31 12700 9.449357 1.682688 -.0480591 | 29. | 156 9.655026 -.0474292 | 15600 2.164472 30. | 493 20100 9.908475 1.806648 -.0472557 | |-----| 9.971147 1.814825 31. | 480 21400 -.0469688 | 32. | 481 23001 10.04329 1.671473 -.0465269 33. | 451 13400 9.50301 1.964311 -.0461007 | 34. I 9 16500 9.711116 1.656321 -.0449441 | 35. | 13200 9.487972 1.682688 33 -.0427313 | |-----| 36. | 28 14800 9.602383 1.682688 -.0383155 | 37. 32 14500 9.581903 1.682688 -.0374429 | 38. | 188 32000 10.37349 1.474763 -.0370926 | 39. | 435 11700 9.367344 1.964311 -.0370922 | 40. | 454 17794 9.786616 1.964311 -.0369095 | |-----| 41. | 9.50301 -.0368249 | 436 13400 2.00148 42. | 35 13500 9.510445 1.682688 -.036522 | 43. | 161 27000 10.20359 1.800058 -.035759 | 44. | 441 9.25913 2.00148 -.0354014 | 10500 45. | 26 13900 9.539644 1.682688 -.0336016 | |------46. | 445 10800 9.287301 2.00148 -.0330708 |

47. | 10 18900 9.846917 1.656321 -.0328998 | 48. | 101 27499 10.2219 1.648659 -.0317264 | 49. | 189 29801 10.3023 1.474763 -.0315825 | 50. I 12 18900 9.846917 1.656321 -.0311876 | -----| |----1.671473 -.0303079 | 51. | 472 19600 9.883285 34899 10.46021 1.393766 -.0302973 | 52. | 200 53. | 34 13100 9.480368 1.682688 -.0300799 | 54. | 470 20100 9.908475 1.757858 -.0299316 | 55. | 482 23699 10.07319 1.671473 -.0295599 | |-----| 50001 10.8198 1.800058 -.0294572 | 56. | 162 57. | 263 48801 10.79551 1.867176 -.0288593 | 58. | 23 15200 9.62905 1.682688 -.0284555 | 59. | 468 19100 9.857444 1.764731 -.0278265 | 60. | 448 12600 9.441452 2.00148 -.027274 | |------61. | 450 13000 9.472705 1.964311 -.0268602 | 62. | 24 14500 9.581903 1.682688 -.0267329 | 63. | 506 11900 9.384294 1.745715 -.0259339 | 64. | 75 24101 10.09001 1.474763 -.0255723 | 65. | 159 24299 10.09819 1.800058 -.0253549 | |-----| 37001 10.5187 66. | 191 1.474763 -.0246281 | 19500 9.87817 1.648659 -.0242416 | 67. | 106 68. | 292 37298 10.5267 1.413423 -.0242084 | 9.87817 69. | 107 19500 1.648659 -.0240593 | 70. | 484 21800 9.989665 1.671473 -.0238902 | |-----| 9.517825 71. | 21 13600 1.682688 -.0234366 | 72. | 230 1.617406 -.0231037 | 31499 10.35771 73. | 102 26500 10.1849 1.648659 -.0219822 | 74. | 62 16000 9.680344 1.510722 -.0219783 | 75. I 489 15200 9.62905 1.806648 -.0218215 | |-----| 76. | 25 15600 9.655026 1.682688 -.0215176 | 77. | 127 15700 9.661416 1.83098 -.0211289 | 78. | 430 9500 9.159047 1.915451 -.0207799 | 79. | 455 9.609117 1.964311 -.0206806 | 14900 80. | 108 20400 9.92329 1.648659 -.020656 | |-----| 81. | 173 23100 10.04759 1.629241 -.020537 | 82. | 215 23699 10.07319 1.587192 -.0205038 | 83. | 275 32400 10.38591 1.497388 -.0203821 | 84. | 184 10.389 32500 1.585145 -.019082 | 85. | 185 26399 10.18108 1.585145 -.0189528 | -----| |----86. | 190 34899 10.46021 1.474763 -.0188717 | 87. | 456 14100 9.55393 1.964311 -.0187349 | 88. | 483 24999 10.12659 1.671473 -.0186684 | 89. | 473 23200 10.05191 1.757858 -.0183966 | 90. | 224 30101 10.31231 1.623341 -.0176759 | |-----| 91. | 233 41702 10.6383 1.623341 -.0173393 | 92. | 180 37201 10.52409 1.585145 -.0173209 | 93. | 417 7500 8.922658 1.915451 -.0171022 |

94. | 375

13800

9.532424

1.899118 -.0166074 |

_

95.	316	16200	9.692766	1.693779	0165045
96.	279	29100	10.27849	1.497388	0162037
	1119	20400	9.92329	1.699279	0161968
	176	29401	10.28878	1.629241	0161278
		18400	9.820106	1.682688	0157718
100.	374 	13800	9.532424	1.899118	0145677
101.	183	37900	10.54271	1.585145	0144407
102.	40	30801	10.3353	1.453953	014429
103.	495	24499	10.10639	1.766442	0138828
104.	264	30999	10.34171	1.867176	013838
105.	105	20100	9.908475	1.648659	013284
106.	457	12700	9.449357	1.964311	0129107
107.	341	18700	9.836279	1.638997	0129061
	193	36399	10.5023	1.474763	0128875
109.	96	28399	10.25411	1.492904	0127983
110.	201	32899	10.4012	1.393766	0126864
111		20501	10 22551	1 474762	0125961
	192	30501 43998	10.32551	1.474763	0125861
112.	257	43998 32000	10.6919 10.37349	1.371181 1.497388	0124312 0120773
	276				
114.	186	29599	10.2955	1.585145	0116235
115.	338 	18500	9.825526	1.638997 	0116081
116.	494	21800	9.989665	1.766442	0114905
	166	24999	10.12659	1.800058	0114317
	99	43800	10.68739	1.492904	0108364
	41	34899	10.46021	1.453953	0108243
120.	471	19900	9.898475	1.757858	0104401
					·
121.	278	33100	10.40729	1.497388	0101313
122.	94	24999	10.12659	1.534714	0101088
123.	111	21700	9.985067	1.699279	01002
124.	317	17800	9.786954	1.693779	0099336
125.	434	14300	9.568015	1.964311	0098488
		19000			0097685
127.	117	21200	9.961757	1.699279	0093754
128.	I 346	17500	9.769957	1.48614	0091785
	469	1/052	9.744022	1.757858	0091705
	452	15200			0091184
	•				000026
	-				0090826
	-				008913 0087004
	179				
					0086304
135.	68 				0085998
136.	347				0085918
	53	22620	10.02659	1.479329	0084467 l
	1 429	11000	9.305651	1.915451	0083504
	150	15400	9.642123	2.164472	0080456
	349	24499		1.470176	
					·i
141.	213	22400	10.01682	1.587192	0074679

142.	163	50001	10.8198	1.800058	0072357
143.	203	42302	10.65259	1.423108	0072147
144.	214	28099	10.24349	1.587192	0071618
145.	488	20600	9.933046	1.763017	0069738
146.	169	23799	10.0774	1.800058	0067039
147.	168	23799	10.0774	1.800058	0066772
148.	426	8300	9.024011	1.915451	0066314
149.	I 393	9700	9.179881	1.94591	0066296
150.	81	28001	10.24	1.449269	0064669 I
1301					
151.	140	17800	9.786954	1.83098	0063847
152.	83	24800	10.1186	1.449269	0063639
153.	52	20500	9.92818	1.479329	0061827
154.	306	28399	10.25411	1.551809	0060002
155.	104	19300	9.867861	1.648659	0059841
156.	51	19700	9.888374	1.479329	0058348
157.	236	24000	10.08581	1.623341	0057875
158.	499	21200	9.961757	1.766442	0056033
159.	1	24000	10.08581	1.682688	0055244
160.	l 254	42800	10.66429	1.460938	0054843
161.	165	22700	10.03012	1.800058	0053979
162.	216	24999	10.12659	1.587192	0053433
163.	416	7200	8.881836	1.915451	0053274
164.	228	31600	10.36091	1.617406	0051245
	l 293	27901	10.23642	1.413423	0049782
166.	27	16600	9.717158	1.682688	0049226
167.	49	14400	9.574984	1.499623	0049053
168.	229	46700	10.7515	1.617406	0047393
169.	147	15600	9.655026	2.164472	0047173
170.	175	22600	10.02571	1.629241	0047105
171.	128	16200	9.692766	1.83098	0045839
172.	312	22099	10.00329	1.693779	0044402
173.	122	20300	9.918376	1.759581	0044247
174.	235	29001	10.27509	1.623341	0042688
	•			1.534714	•
	•				
176.	73	22800	10.03452	1.418277	0041709
177.	206	22600	10.02571	1.587192	004164
178.	125	18800	9.841612	1.759581	0037207
				1.545433	
					0034284
181.		19400	9.873029	1.499623	0033576
	39	24701	10.1146	1.607436	0031628 0030147
183.	178	24600	10.1105	1.629241	0030147
184.	110	19400		1.648659	0029739
185.	61	18700		1.510/22	0029386
100					0020010
					0028818
					0027495
	120			1.759581	
189.	124	17300	9.758462	1.759581	0025984

190.	148	14600	0 500777		
		14000	9.588///	2.164472	0025087
191.	 123	20500	9,92818	1.759581	 0022385.
				1.460938	
	167	50001			0022249
			10.0190	1.800058	
	500		9.769957		0021589
195.	428 		9.296518	1.915451	0021474
196.	196	50001	10.8198		0021369
197.	248	20500	9.92818	1.460938	002122
				1.682688	
	•			1.499623	
	-			1.48614	
200.	342 				1.0010905
201.	48	16600	9.717158	1.499623	0018894
202.	60			1.510722	0018844
203.	226		10.8198		001832
	155			2.164472	0018229
	353		9.830916		0016996
206	 137	17400	0 764226	1 02000	0016502
		17400		1.83098	
	394			1.93586	
				1.477049	•
				1.587192	
210.	223	27499	10.2219	1.623341	0015933
211.	330	22600	10.02571	1.526056	 0015749-
				1.704748	
		11500		1.94591	
	272	25200		1.534714	0014252
	209	24399	10.1023	1.587192	0014232
	395		9.449357		0013078
	•			1.745715	
				1.4884	
219.	63	22199	10.0078	1.510722	0011577
220.	324	18500	9.825526	1.595339	0011329
221		22100	10 04750	1 456207	0011200
		23100			0011269
	74				0010706
	142			1.83098	
				1.499623	
	•	28601		1.474763	0009321
					 0008757-
	246				0008337
		22800	10 03/152	1 603770	0007587
				1.693779	
		22800			000556
					0005297
					0004579
				1.474763	
				1.587192	
234.					
	126	21400	9.9/114/	1./39361	0002049
235.					0002649 0001415-

237. | 397 12500 9.433484 1.93586 -.0001163 | 238. | 477 16700 9.723164 1.814825 -.000081 |

238.	477	16700	9.723164	1.814825	000081
239.	86	26601	10.1887	1.501853	0000522
240.	232	31701	10.3641	1.617406	0000151
241.	310	20300	9.918376	1.693779	.0001054
242.	219	21500	9.975808	1.704748	.0001567
243.		46000	10.7364	1.4884	.0001949
244.		14100	9.55393	1.964311	.0002028
245.	277	33200	10.41031	1.497388	.0002292
245.	2//	33200	10.41031	1.497300	
246.	44	24701	10.1146	1.499623	.0002693
247.	305	36098	10.49399	1.551809	.000271
248.	344	23899	10.43333	1.576915	.000271
			10.00139		
249.	297	27100		1.474763	.0003851
250.	84	22900	10.03889	1.449269	.0005833
251.	212	19300	9.867861	1.587192	.0005905
252.	43	25301	10.1386	1.499623	.0006433
253.			10.13058		.0006712
	237	25099		1.623341	
254.	37	20000	9.903487	1.607436	.0006828
255.	170	22299	10.0123	1.800058	.0007145
256. l	130	14300	9.568015	1.83098	.0007622
257.	70	20900	9.947504	1.408545	.0007022
258.	!		10.1023	1.587192	
	207	24399			.000875
259.	251	24399	10.1023	1.460938	.00088
260.	314	21600	9.980449	1.693779	.0009465
261.	501	16800	9.729135	1.766442	.0010252
262.	238	31499	10.35771	1.623341	.0010367
263.		24200	10.09411	1.418277	.0010956
264.	57	24701	10.1146	1.410987	.0011089
265.	138	17100	9.746834	1.83098	.0011234
266.	252	24800	10.1186	1.460938	.0011321
267.	503	20600	9.933046	1.745715	
				1.595339	
268.	323	20400	9.92329		.0011816
269.	227	37602	10.53481	1.617406	.0013204
270.	30	21000	9.952278	1.682688	.0013535
271.	56	35/01		1.393766	.0014627
	440	12800	9.4572	2.00148	.0014027
273.		15600	9.655026	2.164472	.0016168
					•
	313	19400	9.873029	1.693779	.0017158
275.	281 	45401 	10.72329	1.4884	.0017327
276.	217	23300	10.05621	1.704748	.0018928
	136	18100	9.803667	1.83098	.0019621
	150		9.809176	1.682688	
:					
	271		9.957028	1.534714	.0020471
280.	172 	19100	9.857444	1.800058	.0023016
281.	267	30699	10.33199	1.867176	.0023292
:	113	18800	9.841612	1.699279	.0023232
283.		22501	10.02131	1.501853	.0023302
284.	475	13800	9.532424	1.764731	.0023/62

285.	352	24101	10.09001	1.413423	.002526
286.	 244	23699	 10 07310	1.453953	.0025868
	85	23899		1.501853	
	72	21700	9.90500/	1.418277	.0027141
	225	44802		1.617406	.0027266
290.	304 	33100	10.40729	1.551809	.0027396
291.	90	28701	10.26469	1.587192	.0029018
292.	403	12100	9.400961	1.93586	.0029982
	135			1.83098	
	337		9.87817		.0030569
	384			1.94591	.0031938
	38		9.522813		.0032047
297.	266	22800	10.03452	1.867176	.0032496
	187	50001	10.8198	1.585145	.0033213
	291		10.25769		.0033408
	422	14200	9.560997		.0033722
301.	 351	22900	10.03889	1.456287	.0033961
				1.83098	.003347
				1.595339	
	-			1.460938	.003478
	•			1.400938	.0034818
303.	404 	40499	10./093	1.423313	.0033203
	164	50001	10.8198	1.800058	.0035734
307.			9.985067		.0036516
308.		29801	10.3023	1.814825	.0039417
309.				1.460938	.0039509
	181	39799		1.585145	.0041167
311.	 79	21200	9.961757	1.474763	.0041254
			9.814656		.0041364
				1.745715	
				1.638997	
314.			10.78521		.0043115
515.	 				
	308			1.551809	
	354			1.410987	
318.	321	23799	10.0774	1.595339	.0046011
319.				1.94591	.0047599
320.	389	10200	9.230143	1.94591	.0047679
	•			1.388791	
322	260	30101	10.343	1.867176	.0047700
				1.474763	
	•				
				1.623341	
	-			1.759581	
	•			1.453953	
	•			1.800058	
				1.693779	
	259	36001	10.4913		.0056653
		24399	10.1023		.0056988
331.	331	19800	9.893437	1.526056	.0057538

332.	109	19800	9.893437	1.648659	.005793
333.	404	8300	9.024011	1.93586	.0060482
334.	319	23100	10.04759	1.693779	.006068
335.	444	15400	9.642123	2.00148	.0062065
336.	114	18700	9.836279	1.699279	.0064821
337.	47	20000	9.903487	1.499623	.0065764
	-			1.456287	.0065786
	•		10.4545		.006829
	-		10.27849		.0068445
	, 				
341.	411	15000	9.615806	1.786747	.0069358
	247	24299	10.09819	1.460938	.0069601
	•	19700	9.888374	1.766442	.0070464
	355	18200	9.809176	1.418277	.0070865
	320		9.952278		.0070909
346.	•		10.41631		.007096
	•		9.588777		
	•		9.846917		
			10.42819		.0072586
350.	1116		9.814656		.0072618
351.	20	18200	9.809176	1.682688	.0075003
	285	32199		1.386294	.007564
	318	19800	9.893437		.0076158
	329	19300	9.867861	1.526056	.0076533
355.	•	24999	10.12659	1.510722	.0076632
356.	46	19300	9.867861	1.499623	.0077691
	•	7012	8.855378	1.93586	.007824
358.	419	8800	9.082507	1.915451	.007874
359.	458	13500	9.510445	1.964311	.0080279
360.	205	50001	10.8198	1.425515	.0081019
361.	447	14900	9.609117	2.00148	.0081669
	298		9.918376		.0085907
363.	76	21400	9.971147	1.474763	.0091335
364.	82	23899	10.08159	1.449269	.0092037
365.		20100	9.908475	1.348073	.0093339
366.	270	20700	9.937889	1.534714	.0094668
	391			1.94591	
	387		9.25913	1.94591	
369.	332	17100	9.746834	1.477049	.009686
				1.964311	
371.	103	18600	9.830916	1.648659	.0097767
	7		10.03889		.0099829
			9.994242	1.366092	.0101005
373.	255		10 07210	1.366092 1.453953	.0102395
	•	23699	10.07319		
374.	•		9.883285	1.83098	.0102551
374.	239 132	19600	9.883285		.0102551
374. 375.	239 132 	19600	9.883285	1.83098	
374. 375.	239 132 288	19600 23200	9.883285	1.83098 1.398717	.0103194
374. 375. 376. 377.	239 132 288 284	19600 23200 50001	9.883285 10.05191 10.8198	1.83098 1.398717	.0103194 .0103747
374. 375. 376. 377. 378.	239 132 288 284	19600 23200 50001 19100	9.883285 10.05191 10.8198 9.857444	1.83098 1.398717 1.388791	.0103194 .0103747 .0104986

380.	325	24999	10.12659	1.595339	.0105819
381.	 433	16100	9.686575	1 764731	.0107606
	•				
	256				.0108386
383.	•	24800	10.1186	1.398717	.0114381
384.	174	23600	10.069	1.629241	.0116044
385.	496	23100	10.04759	1.766442	.0117644
386.	65	33001	10.40429	1.425515	.0121224
	78	20800	9.942708	1.474763	.0121406
	265				.0122671
	•		9.723164		.0123169
390.	218 		10.26469 	1.704748	.012537
391.	1		10.06049	1.479329	.0129076
392.	55	18900	9.846917	1.410987	.0129513
393.	221			1.623341	.0129747
	327	23001	10.04329	1.595339	.0132197
	100	33200	10.41031	1.492904	.01351
555.	±00 			1.752304	.01331
	58	32562	10.3909	1.413423	.0140252
397.	202			1.423108	.0143737
398.	240	23300	10.05621	1.453953	.0146344
399.	93			1.534714	.0146731
400.	88	22199	10.0078	1.501853	.0147033
401.	 220	22100	10 0079	1.595339	.0147417
	•				
				1.474763	
403.	91	22600	10.02571	1.587192	.0149329
404.	418	10400	9.249561	1.915451	.0149713
405.	459	14900	9.609117	1.964311	.0150557
406.	22	19600	9.883285	1.682688	.0152086
	398		9.047821	1.93586	.0153095
			10.68049	1.7492	.0162008
	•		9.392662		
					.0163773
410.	300 	29001	10.27509	1.386294	.0168745
411.	139	13300	9.49552	1.83098	.0171233
412.	89	23600	10.069	1.587192	.0173629
				1.453953	.0176759
			10.0123	1.398717	.0176951
415.	356	20600	9.933046	1.418277	.0178045
41.5					
416.	•			1.460938	
	6	28701	10.26469	1.521699	.0180267
		8500		1.93586	
419.	199	34600	10.45161	1.396245	.0184836
	92	22000		1.587192	
	•	24600		1 505220	
421.				1.595339	
400	134			1.83098	
	241		9.998797		.0201607
423.			0 635600	2 164472	.0202187
423.				2.164472	
423.	153 4		10.41631	1.521699	.0206138

427.	141			1.83098	
428.			10.05621	1.510722	.0209189
429.	385	8800	9.082507	1.94591	.0216851
430.	485	20600	9.933046		.0229157
431.	 402	13600	0 517025	1 0066/10	0221727
	492		9.517825		.0231727
	115 19	18500	9.825526	1.699279	.0234778
		20200	9.913438 9.957028	1.682688	.0239359
					.0240607
	•	23501	10.0648	1.381282	.0240661
				1.786747	
437.	133	23001	10.04329	1.83098	.0251679
	•			1.964311	
	-			1.396245	
			10.0078		
141.	388	/400	8.909235		.0263166
142.	69	7400 17400 36199	9.764226		.0263849
143.	5	36199	10.49679	1.521699	.0266658
144.		20600	9.933046	1.534714	.0274035
45.	407	11900	9.384294	1.885553	.0274155
146.	402	7200	8.881836	1.93586	.0280494
	•			1.386294	
	-			1.492904	
			9.898475		
50.	345			1.576915	.0318101
¥51.	262	43101	10.6713	1.867176	.032273
52.	379	13100	9.480368	1.903599	.0328231
153.	198	30300	10.3189	1.396245	.0330362
54.	486	21200	9.961757	1.763017	.0337355
	302	22000	9.998797	1.465567	.0341089
	•	14500		1 76/1721	0242425
	•		9.581903		.0342425
	•		10.1186		.0343599
58.	77				.0356156
	97		9.971147		
160.	476 	13300	9.49552 	1.764731	.0361187
461.	442	17100	9.746834	2.00148	.0364184
462.	14	20400	9.92329	1.682688	.0369498
460	1 277	13900	9.539644	1.903599	.0369729
463.	3//	13300			
	401	5600	8.630522	1.93586	.0383786
464.	401 367	5600 21900	8.630522 9.994242	1.971299	.0430825
464. 465.	401 367 	5600 21900	8.630522 9.994242	1.971299	.0430825
164. 165. 166.	401 367 	5600 21900 27100	8.630522 9.994242 	1.971299 1.656321	.0430825 .043922
164. 165. 166. 167.	401 367 8 382	5600 21900 27100 10900	8.630522 9.994242 	1.971299 1.656321 1.903599	.0430825 .043922 .0451832
64. 65. 66. 67. 68.	401 367 8 382 378	5600 21900 27100 10900 13300	8.630522 9.994242 10.20729 9.296518 9.49552	1.971299 1.656321 1.903599 1.903599	.0430825 .043922 .0451832 .0464509
164. 165. 166. 167. 168.	401 367 8 382 378 467	5600 21900 27100 10900 13300 19000	8.630522 9.994242 10.20729 9.296518 9.49552 9.852194	1.971299 1.656321 1.903599 1.903599 1.879465	.0430825 .043922 .0451832 .0464509 .0484201
164. 165. 166. 167. 168.	401 367 8 382 378 467	5600 21900 27100 10900 13300 19000	8.630522 9.994242 10.20729 9.296518 9.49552 9.852194	1.971299 1.656321 1.903599 1.903599	.0430825 .043922 .0451832 .0464509 .0484201 .048621
464. 465. 466. 467. 468. 469. 470.	401 367 	5600 21900 27100 10900 13300 19000	8.630522 9.994242 10.20729 9.296518 9.49552 9.852194	1.971299 1.656321 1.903599 1.903599 1.879465 1.94591	.0430825 .043922 .0451832 .0464509 .0484201 .048621
464. 465. 466. 467. 468. 469. 470.	401 367 8 382 378 467 386	5600 21900 27100 10900 13300 19000 7200 15000 19400	8.630522 9.994242 10.20729 9.296518 9.49552 9.852194 8.881836	1.971299 1.656321 1.903599 1.903599 1.879465 1.94591	.0430825 .043922 .0451832 .0464509 .0484201 .048621
465. 466. 467. 468. 469. 470.	401 367 8 382 378 467 386 376	27100 10900 13300 19000 7200	8.630522 9.994242 10.20729 9.296518 9.49552 9.852194 8.881836	1.971299 1.656321 1.903599 1.903599 1.879465 1.94591	.0430825 .043922 .0451832 .0464509 .0484201 .048621

475.	443	18400	9.820106	2.00148	.0566888
476.	286	22000	9.998797	1.358409	.0573509
477.	17	23100	10.04759	1.682688	.0589057
478.	400	6300	8.748305	1.93586	.0589789
479.	432	14100	9.55393	1.764731	.0600489
480.	465	21400	9.971147	1.879465	.0677176
481.	380	10200	9.230143	1.903599	.0691514
482.	364	16800	9.729135	2.04122	.0709101
483.	392	23200	10.05191	1.94591	.0715526
484.	381	10400	9.249561	1.903599	.0725951
485.	149	17794	9.786616	2.164472	.0743867
486.	· 466	19900	9.898475	1.879465	.0744588
487.	399	5000	8.517193	1.93586	.0797595
488.	l 366	27499	10.2219	1.971299	.0797842
489.	357	17794	9.786616	2.04122	.0857706
490.	154	19400	9.873029	2.164472	.0910494
491.	463	19500	9.87817	1.964311	.0941472
492.	464	20200	9.913438	1.964311	.0974507
493.	427	10200	9.230143	1.764731	.1007114
494.	406	5000	8.517193	1.93586	.1024767
495.	151	21500	9.975808	2.164472	.1047597
406		10600	0 002205	2 164472	1120427
496.	152	19600	9.883285	2.164472	.1120427
	460	20000	9.903487	1.964311	.1142668
498.	160	23300	10.05621	2.164472	.1165014
499.	491 362	8100 19900	8.999619 9.898475	1.806648	.1222368 .1376445
500.	302 	19900	9.0904/3	2.04122	.1370445
501.	363	20800	9.942708	2.04122	.1707894
502.	490	7000	8.853665	1.806648	.1791869
503.	358	21700	9.985067	2.04122	.1827834
504.	360	22600	10.02571	2.04122	.2209745
505.	361	24999	10.12659	2.04122	.2422512
506.	359	22700	10.03012	2.04122	.2483543

5.3 ENDOGENEITY & MEASUREMENT ERROR

+----+

REGRESSION WITH NON-IID ERRORS

6.1 THE GENERALIZED LINEAR REGRESSION MODEL

- 6.1.1 Types of Deviations from i.i.d. Errors
- 6.1.2 The Robust Estimator of VCE

. use fertil2.. describe

Contains data from fertil2.dta

obs: 4,361 vars: 30 size: 484,071

2 Dec 2004 00:16

vaniahla nama		display format	variable '	lahal	
variable name	type	TOTIIIat	variable		
mnthborn	float	%9.0g			
yearborn	float	%9.0g			
age	float	%9.0g			
electric	float	%9.0g			
radio	float	%9.0g			
tv	float	%9.0g			
bicycle	float	%9.0g			
educ	float	%9.0g			
ceb	float	%9.0g			
agefbrth	float	%9.0g			
children	float	%9.0g			
knowmeth	float	%9.0g			
usemeth	float	%9.0g			
monthfm	float	%9.0g			
yearfm	float	%9.0g			
agefm	float	%9.0g			
idlnchld	float	%9.0g			
heduc	float	%9.0g			
agesq	float	%9.0g			
urban	float	%9.0g			
urbeduc	float	%9.0g			
spirit	float	%9.0g			
protest	float	%9.0g			
catholic	float	%9.0g			
frsthalf	float	%9.0g			
educ0	float	%9.0g			
evermarr	float	%9.0g			
_est_OLS	byte	%8.0g		from estimates	
$_{ m est_}$ robust	byte	%8.0g	•	from estimates	
_est_cluster	byte	%8.0g	esample()	from estimates	store

Sorted by:

. summarize

Variable	0bs	Mean	Std. Dev.	Min	Max
mnthborn	4,361	6.331346	3.323333	1	12
yearborn	4,361	60.43362	8.682723	38	73
age	4,361	27.40518	8.685233	15	49
electric	4,358	.1402019	.3472363	0	1
radio	4,359	.7017665	. 457535	0	1
tv	4,359	.0929112	.2903413	0	1
bicycle	4,358	.2758146	.4469751	Θ	1
educ	4,361	5.855996	3.927075	0	20
ceb	4,361	2.441642	2.406861	0	13
agefbrth	3,273	19.0113	3.092333	10	38
children	4,361	2.267828	2.222032	0	13
knowmeth	4,354	.9632522	.1881636	0	1
usemeth	4,290	.5776224	.4939956	0	1
monthfm	2,079	6.270322	3.619943	1	12
yearfm	2,079	76.91246	7.760183	50	88
agefm	2,079	20.68639	5.002383	10	46
idlnchld	4,241	4.615892	2.219303	0	20
heduc	1,956	5.144683	4.803028	0	20
agesq	4,361	826.46	526.9232	225	2401
urban	4,361	.5166246	. 4997808	0	1
urbeduc	4,361	3.469158	4.294228	0	20
spirit	4,361	.4221509	. 493959	0	1
protest	4,361	.2277001	.4193961	0	1
catholic	4,361	.1024994	.3033387	Θ	1
frsthalf	4,361	.5404724	. 4984164	0	1
educ0	4,361	.2077505	.4057437	0	1
evermarr	4,361	.4767255	. 4995153	Θ	1
_est_OLS	4,361	.7367576	. 4404433	Θ	1
_est_robust	4,361	.7367576	. 4404433	0	1
_est_cluster	4,361	.7367576	.4404433	0	1

. use fertil2.. regress ceb age agefbrth usemeth

Source	SS	df	MS	Number of obs	=	3,213
+				F(3, 3209)	=	1433.16
Model	9202.53439	3	3067.51146	Prob > F	=	0.0000
Residual	6868.49331	3,209	2.14038433	R-squared	=	0.5726
+				Adj R-squared	=	0.5722
Total	16071.0277	3,212	5.00343328	Root MSE	=	1.463
ceb	Coef.	Std. Err.	t P	P> t [95% Co	onf.	Interval]

age | .2237368 .003448 64.89 0.000 .2169763 .2304974 agefbrth | -.2606634 .0087954 -29.64 0.000 -.2779085 -.2434184

usemeth	. 1873702	.0554298	3.38	0.001	.0786888	.2960516
_cons	1.358134	.1737828	7.82	0.000	1.017397	1.69887

- . estimates store nonRobust
- . summarize ceb age agefbrth usemeth children if e(sample)

0bs	Mean	Std. Dev.	Min	Max
3,213	3.230003	2.236836	1	13
3,213	29.93931	7.920432	15	49
3,213	19.00498	3.098121	10	38
3,213	.6791161	.4668889	Θ	1
3,213	2.999378	2.055579	Θ	13
	3,213 3,213 3,213 3,213	3,213 3.230003 3,213 29.93931 3,213 19.00498 3,213 .6791161	3,213 3.230003 2.236836 3,213 29.93931 7.920432 3,213 19.00498 3.098121 3,213 .6791161 .4668889	3,213 3.230003 2.236836 1 3,213 29.93931 7.920432 15 3,213 19.00498 3.098121 10 3,213 .6791161 .4668889 0

. regress ceb age agefbrth usemeth, robust

Linear regression	Number of obs	=	3,213
	F(3, 3209)	=	874.06
	Prob > F	=	0.0000
	R-squared	=	0.5726
	Root MSE	=	1.463

 ceb	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	-
age	.2237368	.0046619	47.99	0.000	.2145962	.2328775
agefbrth	2606634	.0095616	-27.26	0.000	2794109	2419159
usemeth	.1873702	.0606446	3.09	0.002	.0684642	.3062762
_cons	1.358134	.1675624	8.11	0.000	1.029593	1.686674

. estimates store Robust

- . estimates table nonRobust Robust, b(%9.4f) se(%5.3f) t(%5.2f) p(%4.3f) title(
- > Estimates of CEB with OLS and Robust Standard Errors)

Estimates of CEB with OLS and Robust Standard Errors

Variable	nonRobust	Robust
age	0.2237	0.2237
I	0.003	0.005
I	64.89	47.99
I	0.000	0.000
agefbrth	-0.2607	-0.2607
I	0.009	0.010
I	-29.64	-27.26
I	0.000	0.000
usemeth	0.1874	0.1874
I	0.055	0.061
I	3.38	3.09
I	0.001	0.002
_cons	1.3581	1.3581

								1			0		17	4			0	. 1	68	3
								1				7	. 8	32			8	3.	1:	1
								1			0	١. ١	00	0			0	. 0	0(9
	_	 	 _	_	_	_	_		_	_	 		_		 	 _	 			_

legend: b/se/t/p

6.1.3 The Cluster Estimator of VCE

. use fertil2.. regress ceb age agefbrth usemeth, cluster(children)

Linear regression	Number of obs	=	3,213
	F(3, 13)	=	20.91
	Prob > F	=	0.0000
	R-squared	=	0.5726
	Root MSE	=	1.463

(Std. Err. adjusted for 14 clusters in children)

 ceb	Coef.	Robust Std. Err.	t	P> t	-	Interval]
age	.2237368	.0315086	7.10	0.000	.1556665	.2918071
agefbrth	2606634	.0354296	-7.36	0.000	3372045	1841224
usemeth	.1873702	.0943553	1.99	0.069	016472	.3912125
_cons	1.358134	.4248589	3.20	0.007	.4402818	2.275985

6.1.4 The Newey-West Estimator of VCE

. use ukrates.. describe

Contains data from ukrates.dta

obs: 526 vars: 3 size: 6,312

2 Dec 2004 10:43

variable name	3	display format	variable label	
rs month	float float	- 3		

month float %9.0g
r20 float %9.0g

Sorted by: month

. summarize

Variable			Std. Dev.		
	526	7.651513	3.553109 151.9874	1.561667	16.18

r20 | 526 8.863726 3.224372 3.35 17.18

- . quietly regress D.rs LD.r20
- . estimates store nonHAC
- . newey D.rs LD.r20, lag(5)

Regression with Newey-West standard errors Number of obs = 524 maximum lag: 5 F(1, 522) = 36.00 Prob > F = 0.0000

D.rs		Newey-West Std. Err.			[95% Conf.	Interval]
r20 LD.	. 4882883	.0813867	6.00	0.000	.3284026	. 648174
_cons	.0040183	.0254102	0.16	0.874	0459004	.0539371

- . estimates store NeweyWest
- . estimates table nonHAC NeweyWest, b(%9.4f) se(%5.3f) t(%5.2f) p(%4.3f) title(
- > Estimates of D.rs with OLS and Newey-West Standard Errors)

Estimates of D.rs with OLS and Newey-West Standard Errors

Variable	nonHAC	NeweyWest
r20		
LD.	0.4883	0.4883
1	0.067	0.081
	7.27	6.00
	0.000	0.000
_cons	0.0040	0.0040
	0.022	0.025
	0.18	0.16
1	0.858	0.874

legend: b/se/t/p

6.1.5 The Generalized Least Squares Estimator

6.2 HETEROSKEDASTICITY IN THE ERROR DISTRIBUTION

- 6.2.1 Heteroskedasticity Related to Scale
- 6.2.1.1 Testing for Heteroskedasticity Related to Scale

- . use hprice2a.(Housing price data for Boston-area communities)
- . regress lprice rooms crime ldist

Source	SS	df	MS	Number of obs	=	506
+-				F(3, 502)	=	219.03
Model	47.9496883	3	15.9832294	Prob > F	=	0.0000
Residual	36.6325827	502	.072973272	R-squared	=	0.5669
+-				Adj R-squared	=	0.5643
Total	84.5822709	505	.167489645	Root MSE	=	.27014

lprice				[95% Conf.	_
rooms	.3072343	17.24	0.000	.2722172	.3422514
crime	0174486	-10.97	0.000	0205744	0143228
ldist	.074858	2.93	0.004	.0246115	.1251045

. estat hettest, iid

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance

Variables: fitted values of lprice

chi2(1) = 44.67Prob > chi2 = 0.0000

. estat hettest rooms crime ldist, iid

 ${\tt Breusch-Pagan / Cook-Weisberg \ test \ for \ heterosked a sticity}$

Ho: Constant variance

Variables: rooms crime ldist

chi2(3) = 80.11Prob > chi2 = 0.0000

. whitetst command whitetst is unrecognized r(199);

end of do-file
r(199);

6.2.1.2 Feasible Generalized Least Squares Estimation

- . use hprice2a.(Housing price data for Boston-area communities)
- . generate rooms2 = rooms^2
- . regress lprice rooms crime ldist [aw=1/rooms2]
 (sum of wgt is 13.31716591697057)

Source | SS df MS Number of obs = 506

Model Residual Total	39.6051883 41.426616	3 502	13.2017294 .082523139	R-squared Adj R-square	= = = ed = =	0.4888 0.4857
lprice	Coef.			P> t [95%		-
rooms crime ldist _cons	.2345368 0175759	.0194432 .0016248 .027514 .1172977	12.06 -10.82 2.37	0.000 .196 0.000020	3367 7682 0349	.272737 0143837 .1191483 8.680536

6.2.2 Heteroskedasticity Between Groups of Observations

6.2.2.1 Testing for Heteroskedasticity Between Groups of Observations

. use NEdata.. describe

Contains data from NEdata.dta

120 obs: vars:

24 Oct 2004 13:28

size: 2,640

variable name	storage type	display format	value label	variable label
state year pop dpi dpipc ldpipc	long int float float float float	%8.0g %8.0g %9.0g %9.0g %9.0g %9.0g	state	

Sorted by:

. summarize

Variable	0bs	Mean	Std. Dev.	Min	Max
state	120	3.5	1.714986	1	6
year	120	1990.5	5.790459	1981	2000
pop	120	2196276	1931629	515594	6362076
dpi	120	4.33e+07	4.46e+07	4385134	1.93e+08
dpipc	120	18.15802	5.662848	8.153382	33.38758
ldpipc	120	2.848302	.3265395	2.098433	3.508184

. regress dpipc year

Source	SS	df	MS	Number of obs	=	120
+				F(1, 118)	=	440.17

Model Residual 	3009.33617 806.737449 3816.07362		6.83675804	Prob > F R-squared Adj R-squared Root MSE	= = =	0.7868
dpipc		Std. Err.				Interval]
year _cons	.8684582 -1710.508	.0413941 82.39534	20.98	9.000 .78648 9.000 -1873.6	65	.9504298 -1547.343

- . predict double eps, residual
- . robvar eps, by(state)

	-	Mean	ory of Residua Std. Dev.	Freq.
			1.3596266	
	MA	1.618796	.86550138	20
	ME -	2.9841056	.93797625	20
	NH	.51033312	.61139299	20
	RI	8927223	.63408722	20
			.71470977	
			2.6037101	
W0 =	4.3882072	df(5, 1	.14) Pr >	F = 0.00108562
W50 =	3.2989851	df(5, 1	.14) Pr >	F = 0.00806751
W10 =	4.2536245	df(5, 1	.14) Pr >	F = 0.00139064

6.2.2.2 Feasible Generalized Least Squares Estimation

. use NEdata.. regress dpipc year

Source	SS	df	MS	Number of obs	=	120
+-				F(1, 118)	=	440.17
Model	3009.33617	1	3009.33617	Prob > F	=	0.0000
Residual	806.737449	118	6.83675804	R-squared	=	0.7886
+-				Adj R-squared	=	0.7868
Total	3816.07362	119	32.0678456	Root MSE	=	2.6147
dpipc				P> t [95% (
+-						
year	.8684582	.0413941	20.98	9.000 .78648	865	.9504298
_cons	-1710.508	82.39534	-20.76	9.000 -1873.6	73	-1547.343

[.] predict double eps, residual

[.] by state, sort: egen sd_eps = sd(eps)

- . generate double gw_wt = 1/sd_eps^2
- . tabstat sd_eps gw_wt, by(state)

Summary statistics: mean
by categories of: state

state	$sd_{-}eps$	gw_wt
+-		
CT	1.359627	.5409545
MA	.8655014	1.334948
ME	.9379762	1.136623
NH	.611393	2.675218
RI	.6340872	2.48715
VT	.7147098	1.957675
+-		
Total	.8538824	1.688761

. regress dpipc year [aw = gw_wt] (sum of wgt is 202.6513649171444)

	ce		df			er of obs		120
	+				· F(1,	118)	=	698.19
Mod	lel	2845.55409	1	2845.5540	9 Prob	> F	=	0.0000
Residu	ıal	480.921278	118	4.0756040	5 R-sq	uared	=	0.8554
	+				. Adj I	R-squared	=	0.8542
Tot	al	3326.47537	119	27.953574	5 Root	MSE	=	2.0188
•	pc		Std. Err.			-		Interval]
	+							
ye	ear	.8444948	.0319602	26.42	0.000	.78120	49	.9077847
_CC	ns	-1663.26	63.61705	-26.14	0.000	-1789.2	39	-1537.281

6.2.3 Heteroskedasticity in Grouped Data

6.2.3.1 Feasible Generalized Least Squares Estimation

. use pubschl.. describe

Contains data from pubschl.dta
obs: 420
vars: 18 2 Dec 2004 12:36
size: 58,380

storage display value
variable name type format label variable label

observation_n~r float %9.0g
dist_cod float %9.0g
county str18 %18s

 $\begin{array}{lll} \mbox{district} & \mbox{str53} & \mbox{\$53s} \\ \mbox{gr_span} & \mbox{str8} & \mbox{\$8s} \end{array}$ $enrl_tot$ float %9.0g teachers
calw_pct
meal_pct
computer float %9.0g float %9.0g float %9.0g float %9.0g testscr float %9.0g comp_stu float %9.0g expn_stu float %9.0g float %9.0g str float %9.0g avginc el_pct read_scr float %9.0g float %9.0g math_scr float %9.0g

.....

Sorted by:

. summarize

Variable	•		Std. Dev.		Max
observatio~r		210.5	121.3878	1	420
dist_cod	420	67472.81	3466.995	61382	75440
county] 0				
district	0				
gr_span	0				
enrl_tot	420	2628.793	3913.105	81	27176
teachers	420	129.0674	187.9127	4.85	1429
calw_pct	420	13.24604	11.45482	0	78.9942
${\sf meal_pct}$	420	44.70524	27.12338	Θ	100
computer	420	303.3833	441.3413	0	3324
testscr		654.1565	19.05335	605.55	706.75
comp_stu	420	.1359266	.0649558	0	.4208333
expn_stu	420	5312.408	633.9371	3926.07	7711.507
str	420	19.64043	1.891812	14	25.8
avginc	•	15.31659	7.22589	5.335	55.328
el_pct		15.76816	18.28593		85.53972
read_scr	'	654.9705		604.5	
math_scr	•	653.3426	18.7542	605.4	709.5

. regress read_scr expn_stu comp_stu meal_pct

Source	SS	df	MS	Number of obs	=	420
+				F(3, 416)	=	565.36
Model	136046.267	3	45348.7558	Prob > F	=	0.0000
Residual	33368.3632	416	80.2124115	R-squared	=	0.8030
+				Adj R-squared	=	0.8016
Total	169414.631	419	404.330861	Root MSE	=	8.9561

read_scr | Coef. Std. Err. t P>|t| [95% Conf. Interval]

expn_stu | .0046699 .0007204 6.48 0.000 .0032538 .006086

comp_stu	19.88584	7.168347	2.77	0.006	5.795143	33.97654
meal_pct	635131	.0164777	-38.54	0.000	667521	602741
$_{-}cons$	655.8528	3.812206	172.04	0.000	648.3592	663.3464

. regress read_scr expn_stu comp_stu meal_pct [aw = enrl_tot] (sum of wgt is 1,104,093)

Source	SS	df	MS	Number of obs	=	420
+-				F(3, 416)	=	906.75
Model	123692.671	3	41230.8903	Prob > F	=	0.0000
Residual	18915.9815	416	45.4711093	R-squared	=	0.8674
+-				Adj R-squared	=	0.8664
Total	142608.652	419	340.354779	Root MSE	=	6.7432

 $read_scr \mid \qquad Coef. \quad Std. \; Err. \qquad t \qquad P>|t| \qquad [95\% \; Conf. \; Interval]$ expn_stu | .0055534 .0008322 6.67 0.000 .0039176 .0071892 comp_stu | 27.26378 8.197228 3.33 0.001 11.15063 43.37693 meal_pct | -.6352229 .013149 -48.31 0.000 -.6610696 -.6093762 648.988 4.163875 155.86 0.000 640.8031 _cons | 657.1728

6.3 SERIAL CORRELATION IN THE ERROR DISTRIBUTION

6.3.1 Testing for Serial Correlation

. use ukrates.. describe

Contains data from ukrates.dta

526 obs: 3 vars: 6,312 size:

2 Dec 2004 10:43

storage display value

variable name type format label variable label ______

float %9.0g month float %tm float %9.0g

Sorted by: month

. summarize

Variable		Mean			
+					
rs	526	7.651513	3.553109	1.561667	16.18
month	526	168.5	151.9874	-94	431
r20	526	8.863726	3.224372	3.35	17.18

Model	13.8769739	1	13.8769739	F(1, 522) Prob > F	= =	52.88 0.0000
Residual	136.988471			R-squared Adj R-squared		
·	150.865445			Root MSE		
				P> t [95% Co		_
r20	. 4882883			9.000 .35637		
				0.858039955 		
. predict doubl	e ens. resid	ual				

- predict double eps, residual(2 missing values generated)
- . estat bgodfrey, lags(6)

Breusch-Godfrey LM test for autocorrelation

	chi2	Prob > chi2
·	17.237	

H0: no serial correlation

. wntestq eps

Portmanteau test for white noise

Portmanteau (Q) statistic = 82.3882 Prob > chi2(40) = 0.0001

. ac eps

6.3.2 FGLS Estimation with Serial Correlation

. use ukrates.. regress D.rs LD.r20

Source	SS	df	MS	Number of obs	=	524
+				F(1, 522)	=	52.88
Model	13.8769739	1	13.8769739	Prob > F	=	0.0000
Residual	136.988471	522	.262430021	R-squared	=	0.0920
+				Adj R-squared	=	0.0902
Total	150.865445	523	.288461654	Root MSE	=	.51228
D.rs	Coef.	Std. Err.	t F	P> t [95% (onf.	Interval]
+						
r20						
LD.	.4882883	.0671484	7.27	.3563	74	.6202027

Figure 6: Autocorrelogram of regression residuals

 cons_	.0040183	.022384	0.18	0.858	039955	55 	.0479921
. prais D.rs L	.D.r20, nolog						
Prais-Winsten	AR(1) regress	ion ite	rated estim	nates			
Source	SS						
	6.56420242						
·	133.146932						
+							0.0452
Total	139.711134	523	.2671341	L Root	MSE	=	.50505
· ·	Coef.						
+							
r20	. 3495857	068012	5.07	0 000	21/206	:7	1810617
LD.	. 5495657	.000912	3.07	0.000	.214200	, ,	.4049047
_cons	.0049985	.0272145	0.18	0.854	048464	19	.0584619
+							
rho	. 1895324						

Durbin-Watson statistic (original) 1.702273 Durbin-Watson statistic (transformed) 2.007414

REGRESSION WITH INDICATOR VARIABLES

7.1 TESTING FOR SIGNIFICANCE OF A QUALITATIVE FACTOR

7.1.1 Regression with One Qualitative Measure

. use NEdata.. describe

Contains data from NEdata.dta

obs: 120 vars: 6 size: 2,640

: 2,640

24 Oct 2004 13:28

variable name	storage type	display format	value label	variable label
state year pop dpi dpipc ldpipc	long int float float float float	%8.0g %8.0g %9.0g %9.0g %9.0g %9.0g	state	

Sorted by:

. summarize

Variable	0bs	Mean	Std. Dev.	Min	Max
state	120	3.5	1.714986	1	6
year	120	1990.5	5.790459	1981	2000
pop	120	2196276	1931629	515594	6362076
dpi	120	4.33e+07	4.46e+07	4385134	1.93e+08
dpipc	120	18.15802	5.662848	8.153382	33.38758
+					
ldpipc	120	2.848302	.3265395	2.098433	3.508184

. mean dpipc, over(state)

Mean estimation Number of obs = 120

CT: state = CT
MA: state = MA
ME: state = ME
NH: state = NH
RI: state = RI
VT: state = VT

	0ver	Mean	Std. Err.	[95% Conf.	Interval]
dpipc					
	CT	22.32587	1.413766	19.52647	25.12527
	MA	19.77681	1.298507	17.20564	22.34798
	ME	15.17391	.9571251	13.27871	17.06911
	NH	18.66835	1.193137	16.30582	21.03088
	RI	17.26529	1.045117	15.19586	19.33473
	VT	15.73786	1.020159	13.71784	17.75788

. tabulate state, generate(NE)

state	Freq.	Percent	Cum.
CT MA ME NH RI	20 20 20 20 20 20	16.67 16.67 16.67 16.67 16.67	16.67 33.33 50.00 66.67 83.33
VT	20	16.67	100.00
Total	120	100.00	

. regress dpipc NE2-NE6

Source	SS	df	MS	Number of obs	=	120
+-				F(5, 114)	=	5.27
Model	716.218512	5	143.243702	Prob > F	=	0.0002
Residual	3099.85511	114	27.1917115	R-squared	=	0.1877
+-				Adj R-squared	=	0.1521
Total	3816.07362	119	32.0678456	Root MSE	=	5.2146

 dpipc	Coef.	Std. Err.	t	P> t	-	Interval]
NE2	-2.549057	1.648991	-1.55	0.125	-5.815695	.7175814
NE3	-7.151959	1.648991	-4.34	0.000	-10.4186	-3.88532
NE4	-3.65752	1.648991	-2.22	0.029	-6.924158	3908815
NE5	-5.060575	1.648991	-3.07	0.003	-8.327214	-1.793937
NE6	-6.588007	1.648991	-4.00	0.000	-9.854646	-3.321369
_cons	22.32587	1.166013	19.15	0.000	20.01601	24.63573

. use NEdata.. tabulate state, generate(NE)

state	Freq.	Percent	Cum.
CT	20	16.67	16.67
MA	20	16.67	33.33
ME	20	16.67	50.00
NH	20	16.67	66.67
RI	20	16.67	83.33
VT	20	16.67	100.00
Total	120	100.00	

```
. forvalues i = 1/5 {
   2.   generate NE_'i' = NE'i' - NE6
   3. }
```

. regress dpipc NE_*

Source	SS	df	MS	Number of	obs =	120
+				F(5, 114)	=	5.27
Model	716.218512	5	143.243702	Prob > F	=	0.0002
Residual	3099.85511	114	27.1917115	R-squared	=	0.1877
+				Adj R-squa	ared =	0.1521
Total	3816.07362	119	32.0678456	Root MSE	=	5.2146
dpipc				P> t [9		=
+						
NE_1	4.167853	1.064419	3.92	0.000 2.	059247	6.276459
NE_2	1.618796	1.064419	1.52	0.131 -	.48981	3.727402
NE_3	-2.984106	1.064419	-2.80	0.006 -5.	092712	8754996
NE_4	.5103331	1.064419	0.48	0.633 -1.	598273	2.618939
NE_5	8927223	1.064419	-0.84	0.403 -3.	001328	1.215884
_cons	18.15802	.4760227	38.15	0.000 17	.21502	19.10101

. $lincom - (NE_1 + NE_2 + NE_3 + NE_4 + NE_5)$

(1) - NE_1 - NE_2 - NE_3 - NE_4 - NE_5 = 0

dpipc	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
·	-2.420154	1.064419	-2.27	0.025	-4.52876	3115483

7.1.2 Regression with Two Qualitative Measures

- . use nlsw88.(NLSW, 1988 extract)
- . describe

Contains data from nlsw88.dta

 obs:
 2,246
 NLSW, 1988 extract

 vars:
 17
 21 Jun 2006 11:33

 size:
 60,642
 (_dta has notes)

variable name	storage type	display format	value label	variable label
idcode age race married	int byte byte byte	%8.0g %8.0g %8.0g %8.0g	racelbl marlbl	NLS id age in current year race married

<pre>never_married grade</pre>	byte byte	%8.0g %8.0g		never married current grade completed
collgrad	byte	%16.0g	gradlbl	college graduate
south	byte	%8.0g		lives in south
smsa	byte	%9.0g	smsalbl	lives in SMSA
$c_{-}city$	byte	%8.0g		lives in central city
industry	byte	%23.0g	indlbl	industry
occupation	byte	%22.0g	occlbl	occupation
union	byte	%8.0g	unionlbl	union worker
wage	float	%9.0g		hourly wage
hours	byte	%8.0g		usual hours worked
ttl_exp	float	%9.0g		total work experience
tenure	float	%9.0g		job tenure (years)

Sorted by: idcode

. summarize

Variable	0bs	Mean	Std. Dev.	Min	Max
idcode	2,246	2612.654	1480.864	1	5159
age	2,246	39.15316	3.060002	34	46
race	2,246	1.282725	.4754413	1	3
married		.6420303	. 4795099	0	1
never_marr~d	2,246		.3055687	0	1
+-					
grade	2,244	13.09893	2.521246	Θ	18
collgrad	2,246	.2368655	.4252538	0	1
south	2,246	.4194123	. 4935728	Θ	1
smsa	2,246	.7039181	. 4566292	Θ	1
c_city	2,246	.2916296	.4546139	Θ	1
+-					
industry	2,232	8.189516	3.010875	1	12
occupation	2,237	4.642825	3.408897	1	13
union	1,878	.2454739	. 4304825	0	1
wage	2,246	7.766949	5.755523	1.004952	40.74659
hours	2,242	37.21811	10.50914	1	80
+-					
ttl_exp	2,246	12.53498	4.610208	.1153846	28.88461
tenure	2,231	5.97785	5.510331	0	25.91667

- . keep if !missing(wage + race + union)
 (368 observations deleted)
- . generate lwage = log(wage)
- . tabulate race, generate(R)

race	Freq.	Percent	Cum.
white black other	1,353 501 24	72.04 26.68 1.28	72.04 98.72 100.00
Total	1,878	100.00	

- . test R1 R2
- (1) R1 = 0
- (2) R2 = 0

F(2, 1874) = 23.25Prob > F = 0.0000

7.1.2.1 Interaction Effects

- . use nlsw88.(NLSW, 1988 extract)
- . keep if !missing(wage + race + union)
 (368 observations deleted)
- . generate lwage = log(wage)
- . tabulate race, generate(R)

race	Freq.	Percent	Cum.
white black other	1,353 501 24	72.04 26.68 1.28	72.04 98.72 100.00
Total	1,878	100.00	

- . generate R1u = R1 * union
- . generate R2u = R2 * union
- . regress lwage R1 R2 union R1u R2u

Source	SS	df	MS	Number of obs	=	1,878
+-				F(5, 1872)	=	26.63
Model	33.3636017	5	6.67272035	Prob > F	=	0.0000
Residual	469.09053	1,872	.250582548	R-squared	=	0.0664
+-				Adj R-squared	=	0.0639

Total | 502.454132 1,877 .267690001 Root MSE = .50058

lw	age		Std. Err.	t	P> t	[95% Conf.	Interval]
	R1	1818955	. 1260945		0.149	4291962	.0654051
	R2	4152863	.1279741	-3.25	0.001	6662731	1642995
un	ion	2375316	.2167585	-1.10	0.273	6626452	. 187582
I	R1u .	4232627	.2192086	1.93	0.054	0066561	.8531816
I	R2u .	6193578	.2221704	2.79	0.005	.1836302	1.055085
_C	ons	2.07205	. 1251456	16.56	0.000	1.82661	2.317489

- . test R1u R2u
- (1) R1u = 0
- (2) R2u = 0

$$F(2, 1872) = 8.04$$

 $Prob > F = 0.0003$

7.2 REGRESSION WITH QUALITATIVE & QUANTITATIVE FACTORS

- . use nlsw88.(NLSW, 1988 extract)
- . keep if !missing(wage + race + union)
 (368 observations deleted)
- . generate lwage = log(wage)
- . tabulate race, generate(R)

race	Freq.	Percent	Cum.
white black other	1,353 501 24	72.04 26.68 1.28	72.04 98.72 100.00
Total	1,878	100.00	

. regress lwage R1 R2 union tenure

Source	SS	df	MS	Number of obs	=	1,868
+				F(4, 1863)	=	85.88
Model	77.1526731	4	19.2881683	Prob > F	=	0.0000
Residual	418.434693	1,863	.224602626	R-squared	=	0.1557
+				Adj R-squared	=	0.1539
Total	495.587366	1,867	.265445831	Root MSE	=	.47392
lwage	Coef.	Std. Err.	t F	P> t [95% Co	onf. I	interval]

lwage	ı				[95% Conf.	-
•					2619053	
R2	2612185	.0991154	-2.64	0.008	4556074	0668297

union | .1871116 .0257654 7.26 0.000 .1365794 .2376438 tenure | .0289352 .0019646 14.73 0.000 .0250823 .0327882 _cons | 1.777386 .0975549 18.22 0.000 1.586058 1.968715

- . test R1 R2
- (1) R1 = 0
- (2) R2 = 0

$$F(2, 1863) = 29.98$$

 $Prob > F = 0.0000$

7.2.1 Testing for Slope Differences

- . use nlsw88.(NLSW, 1988 extract)
- . keep if !missing(wage + race + union)
 (368 observations deleted)
- . generate lwage = log(wage)
- . tabulate race, generate(R)

race	Freq.	Percent	Cum.
white black other	1,353 501 24	72.04 26.68 1.28	72.04 98.72 100.00
Total	1,878	100.00	

- . generate uTen = union * tenure
 (10 missing values generated)
- . regress lwage R1 R2 union tenure uTen

Source	SS		MS	Number of obs F(5, 1862)		1,868 69.27
Model	77.726069	5	15.5452138	Prob > F		
Residual	417.861297	1,862	.224415304	R-squared	=	0.1568
+-				Adj R-squared	=	0.1546
Total	495.587366	1,867	.265445831	Root MSE	=	. 47372
				> t [95% Co		_
						_
+-	0715443		-0.73 0		 54	
R1	0715443 2638742	.0976332	-0.73 0 -2.66 0	.464263020	 54 93	.1199377
R1 R2	0715443 2638742 .2380442	.0976332 .0990879	-0.73 0 -2.66 0 5.81 0		 54 93 91	.1199377 0695391 .3183975
R1 R2 union	0715443 2638742 .2380442 .0309616	.0976332 .0990879 .0409706	-0.73 0 -2.66 0 5.81 0 13.25 0	.464263026 .008458209 .000 .15769	 54 93 91 74	.1199377 0695391 .3183975 .0355458

- . generate R1ten = R1 * tenure
 (10 missing values generated)
- . generate R2ten = R2 * tenure
 (10 missing values generated)
- . regress lwage R1 R2 union tenure R1ten R2ten

Source	SS	df	MS		er of obs 1861)	=	1,868 57.26
Model	77.2369283			٠, ,	> F		0.0000
Residual	418.350438	1,861	.224798731	R-sq	uared	=	0.1558
+				Adj F	R-squared	=	0.1531
Total	495.587366	1,867	.265445831	Root	MSE	=	.47413
lwage	Coef.	Std. Err.	t I	P> t	[95% Coi	nf.	Interval]
R1		. 1395		0.553	3563459		.1908398
R2	291495	.1422361	-2.05	0.041	57045	4	012536
union	.1876079	.0257915	7.27	0.000	.137024	6	.2381912
tenure	.0257611	.0186309	1.38	9.167	010778	5	.0623007
R1ten	.0024973	.0187646	0.13	0.894	034304	5	.0392991
R2ten	.0050825	.018999	0.27	9.789	032179	9	.0423441
_cons	1.794018	.1382089	12.98	0.000	1.52295	7	2.065078

- . test R1ten R2ten
- (1) R1ten = 0
- (2) R2ten = 0

$$F(2, 1861) = 0.19$$

 $Prob > F = 0.8291$

. regress lwage R1 R2 union tenure uTen R1ten R2ten

Source	SS	df	MS	Number of obs	s =	1,868
+				F(7, 1860)	=	49.48
Model	77.8008722	7	11.1144103	Prob > F	=	0.0000
Residual	417.786494	1,860	.224616394	R-squared	=	0.1570
+				Adj R-squared	=	0.1538
Total	495.587366	1,867	.265445831	Root MSE	=	.47394
				 P> t [95% (
lwage						_
R1 l	0697096			0.61834366		
R2	2795277	. 1423788		.05055876	668	0002886
union	.238244	.0410597	5.80 0	.000 .15771	L61	.3187718
tenure	.0304528	.0188572	1.61 0	.10600653	808	.0674364
uTen	0068628	.0043311	-1.58 0	.11301535	572	.0016316
R1ten	0001912	.0188335	-0.01 0	.99203712	283	.0367459
R2ten	.0023429	.0190698	0.12 0	.90203505	576	.0397433

_cons | 1.76904 .1390492 12.72 0.000 1.496331 2.041749

. test uTen R1ten R2ten

- (1) uTen = 0
- (2) R1ten = 0
- (3) R2ten = 0

F(3, 1860) = 0.96Prob > F = 0.4098

. regress lwage union tenure uTen

Source	SS	df	MS Number of obs		=	1,868
+-				F(3, 1864)	=	92.25
Model	64.0664855	3	21.3554952	Prob > F	=	0.0000
Residual	431.52088	1,864	.231502618	R-squared	=	0.1293
+-				Adj R-squared	=	0.1279
Total	495.587366	1,867	.265445831	Root MSE	=	. 48115

_cons | 1.655054 .0193938 85.34 0.000 1.617018 1.6930

. regress lwage tenure if !union

Source	SS	df	MS	Number of obs	=	1,408
+				F(1, 1406)	=	148.43
Model	36.8472972	1	36.8472972	Prob > F	=	0.0000
Residual	349.032053	1,406	.248244703	R-squared	=	0.0955
+				Adj R-squared	=	0.0948
Total	385.87935	1,407	.274256823	Root MSE	=	.49824

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
tenure	.0298926	.0024536	12.18	0.000	.0250795 1.615659	.0347056

. predict double unw if e(sample), res
(470 missing values generated)

. regress lwage tenure if union

 Source | SS
 df
 MS
 Number of obs = 460

 Number of obs = 460
 10.0775663
 F(1, 458)
 = 55.95

 Model | 10.0775663
 1 10.0775663
 Prob > F
 = 0.0000

```
Total | 92.5663941
                  459 .201669704 Root MSE =
                                         .42439
-----
           Coef. Std. Err. t P>|t|
-----
   tenure | .0242707 .0032447
                       7.48 0.000
                                 .0178944
    _cons | 1.869513 .0323515 57.79 0.000
                                 1.805937 1.933088
. predict double nunw if e(sample), res
(1,418 missing values generated)
. generate double allres = nunw
(1,418 missing values generated)
. replace allres = unw if unw <.
(1,408 real changes made)
. sdtest allres, by(union)
Variance ratio test
------
              Mean Std. Err. Std. Dev. [95% Conf. Interval]
 Group |
       0bs
nonunion | 1,408 7.51e-17 .0132735 .4980645 -.0260379
            3.33e-17
                   .0197657
       460
                          .4239271
                                 -.0388425
-----+-----
combined | 1,868 6.48e-17 .0111235
                          .4807605 -.0218157
-----
  ratio = sd(nonunion) / sd(union)
                                      f = 1.3803
Ho: ratio = 1
                            degrees of freedom = 1407, 459
  Ha: ratio < 1
                  Ha: ratio != 1
                                    Ha: ratio > 1
 Pr(F < f) = 1.0000  2*Pr(F > f) = 0.0000
                                  Pr(F > f) = 0.0000
. regress lwage union tenure uTen, robust
                            Number of obs
Linear regression
                                         1.868
                                         109.84
                            F(3, 1864)
                                     =
                            Prob > F
                                     =
                                         0.0000
                            R-squared
                                      =
                                         0.1293
                            Root MSE
                                     =
                                         . 48115
                Robust
          Coef. Std. Err.
    lwage |
                        t P>|t| [95% Conf. Interval]
union | .2144586 .0407254 5.27 0.000
                                .1345864 .2943308
   tenure | .0298926 .0023964 12.47 0.000
                                 .0251928
                                        .0345924
                      -1.46 0.146
    uTen | -.0056219 .0038631
                                 -.0131984
```

_cons | 1.655054 .0210893 78.48 0.000

.0019546

1.613693 1.696415

7.3 SEASONAL ADJUSTMENT WITH INDICATOR VARIABLES

. use turksales.. describe

Contains data from turksales.dta

320

obs: 40 vars: 2

21 Jun 2006 11:33 (_dta has notes)

.....

storage display value
variable name type format label variable label

t float %tq

sales float %9.0g

Sorted by: t

size:

. summarize

Variable	0bs	Mean	Std. Dev	. Min	Max
t			11.69045		
sales	40	105.6178	4.056961	97.84603	112.9617

- . summarize sales, meanonly
- . generate mu = r(mean)
- . forvalues i=1/3 {
- 2. generate qseas'i'= (quarter(dofq(t)) == 'i')
- 3. }
- . regress sales qseas*

Source	SS	df	MS	Number of obs	=	40
+-				F(3, 36)	=	4.03
Model	161.370376	3	53.7901254	Prob > F	=	0.0143
Residual	480.52796	36	13.3479989	R-squared	=	0.2514
+-				Adj R-squared	=	0.1890
Total	641.898336	39	16.4589317	Root MSE	=	3.6535

sales		Std. Err.			-	-
gseas1	-5.232047	1.633891	-3.20	0.003	-8.545731	-1.918362
•						
qseas2	-2.842753	1.633891	-1.74	0.090	-6.156437	.4709317
L Eacesn	8969368	1.633891	-0.55	0.586	-4.210621	2.416748
436033	0909300	1.055091	-0.55	0.500	-4.210021	2.410/40
_cons	107.8608	1.155335	93.36	0.000	105.5177	110.2039

. predict double salesSA, residual

. replace salesSA = salesSA + mu
(40 real changes made)

. summarize sales salesSA

Variable	0bs	Mean	Std. Dev.	Min	Max
sales	 40		4.056961		
salesSA	40	105.6178	3.510161	97.49429	111.9563

- . label var salesSA "sales, seasonally adjusted"
- . tsline sales salesSA, lpattern(solid dash)

. regress sales qseas* t

Source	SS	df	MS	Number of obs	=	40
+-				F(4, 35)	=	54.23
Model	552.710487	4	138.177622	Prob > F	=	0.0000
Residual	89.1878487	35	2.54822425	R-squared	=	0.8611
+-				Adj R-squared	=	0.8452
Total	641.898336	39	16.4589317	Root MSE	=	1.5963

- . test qseas1 qseas2 qseas3
- (1) qseas1 = 0
- (2) qseas2 = 0
- (3) qseas3 = 0

$$F(3, 35) = 15.17$$

 $Prob > F = 0.0000$

- . predict double salesSADT, residual
- . replace salesSADT = salesSADT + mu
 (40 real changes made)
- . label var salesSADT "sales, detrende and SA"
- . tsline sales salesSADT, lpattern(solid dash) yline('mu')

Figure 7: Seasonal adjustment of time series

Figure 8: Seasonal adjustment and deterending of time series

7.4 TESTING FOR STRUCTURAL STABILITY & STRUCTURAL CHANGE

7.4.1 Constraints of Continuity & Differentiability

. use nlsw88.(NLSW, 1988 extract)

. describe

Contains data from nlsw88.dta

 obs:
 2,246
 NLSW, 1988 extract

 vars:
 17
 21 Jun 2006 11:33

 size:
 60,642
 (_dta has notes)

variable name	•	display format		variable label
idcode age race married never_married grade collgrad south smsa c_city industry occupation union wage hours ttl_exp	byte byte byte byte byte byte byte byte	%8.0g %8.0g %8.0g %16.0g %8.0g %9.0g %8.0g %23.0g %22.0g %8.0g %9.0g	gradlbl smsalbl indlbl occlbl	married never married current grade completed college graduate lives in south lives in SMSA lives in central city industry occupation union worker hourly wage usual hours worked total work experience
tenure	float	%9.0g		job tenure (years)

Sorted by: idcode

. summarize

Variable	0bs		Std. Dev.	Min	Max
idcode	2,246	2612.654	1480.864	1	5159
age	2,246	39.15316	3.060002	34	46
race	2,246	1.282725	.4754413	1	3
married	2,246	.6420303	.4795099	0	1
never_marr~d	2,246	.1041852	.3055687	0	1
+					
grade	2,244	13.09893	2.521246	Θ	18
collgrad	2,246	. 2368655	.4252538	Θ	1
south	2,246	.4194123	.4935728	Θ	1
smsa	2,246	.7039181	.4566292	Θ	1
$c_{-}city$	2,246	.2916296	.4546139	Θ	1
+					
industry	2,232	8.189516	3.010875	1	12
occupation	2,237	4.642825	3.408897	1	13
union	1,878	. 2454739	.4304825	Θ	1

```
wage | 2,246 7.766949 5.755523 1.004952 40.74659
hours | 2,242 37.21811 10.50914 1 80
ttl_exp | 2,246 12.53498 4.610208 .1153846 28.88461
tenure | 2,231 5.97785 5.510331 0 25.91667
```

- . generate lwage = log(wage)
- . generate Ten2 = tenure <= 2
- . generate Ten7 = !Ten2 & tenure <= 7
- . generate Ten12 = !Ten2 & !Ten7 & tenure <= 12
- . generate Ten25 = !Ten2 & !Ten7 & !Ten12 & tenure < .

. generate tTen2 = tenure * Ten2
(15 missing values generated)

. generate tTen7 = tenure * Ten7
(15 missing values generated)

. generate tTen12 = tenure * Ten12
(15 missing values generated)

. generate tTen25 = tenure * Ten25
(15 missing values generated)

. regress lwage Ten* tTen*, nocons hascons

Source	SS	df	MS	Number of obs	=	2,231
+-				F(7, 2223)	=	37.12
Model	76.6387069	7	10.9483867	Prob > F	=	0.0000
Residual	655.578361	2,223	.294907045	R-squared	=	0.1047
+-				Adj R-squared	=	0.1018
Total	732.217068	2,230	.328348461	Root MSE	=	.54305

 lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
Ten2	1.55662	.0383259	40.62	0.000	1.481462	1.631778
Ten7	1.708728	.060084	28.44	0.000	1.590901	1.826554
Ten12	1.870808	.1877798	9.96	0.000	1.502566	2.23905
Ten25	1.751961	.1691799	10.36	0.000	1.420194	2.083728
tTen2	.0897426	.0331563	2.71	0.007	.0247221	.1547631
tTen7	.0434089	.0140739	3.08	0.002	.0158095	.0710083
tTen12	.0154208	.019786	0.78	0.436	0233801	.0542218
tTen25	.0238014	.0102917	2.31	0.021	.0036191	.0439837

. predict double lwagehat
(option xb assumed; fitted values)
(15 missing values generated)

•

- . label var lwagehat "Predicted log(wage)"
- . sort tenure

. twoway (line lwagehat tenure if tenure <= 2) (line lwagehat tenure if tenure
> > 2 & tenure <= 7) (line lwagehat tenure if tenure > 7 & tenure <= 12) (lin
> e lwagehat tenure if tenure > 12 & tenure < .), legend(off)</pre>

. mkspline sTen2 2 sTen7 7 sTen12 12 sTen25 = tenure

. regress lwage sTen*

F(4, 2226) = 64 Model 76.1035947
Model I 76 1035947 4 19 0258987 Prob > $F = 0.0$
10000 70.1055547 4 15.0250507 1100 7 1 - 0.0
Residual 656.113473 2,226 .294749988 R-squared = 0.3
Adj R-squared = 0.1
Total 732.217068 2,230 .328348461 Root MSE = .54

lwage	•			P> t	-	. Interval]
	+					
sTen2	.1173168	.0248619	4.72	0.000	.0685619	.1660716
sTen7	.0471177	.009448	4.99	0.000	.02859	.0656455
sTen12	.0055041	.0111226	0.49	0.621	0163076	.0273158
sTen25	.0237767	.0083618	2.84	0.005	.007379	.0401744
_cons	1.539985	.0359605	42.82	0.000	1.469465	1.610505

. predict double lwageSpline(option xb assumed; fitted values)

(15 missing values generated)

- . label var lwageSpline "Predicted log(wage), splined"
- . twoway line lwageSpline tenure

7.4.2 Structural Change in a Time Series Model

Figure 9: Piecewise wage-tenure profile

Predicted log(wage), splined 10 15 job tenure (years) 5

Figure 10: Piecewise linear wage-tenure profile

INSTRUMENTAL VARIABLES ESTIMATORS

- 8.1 INTRODUCTION
- 8.2 ENDOGENEITY IN ECONOMIC RELATIONSHIPS
- 8.3 2SLS
- 8.4 THE IVREG COMMAND
- 8.5 IDENTIFICATION & TESTS OF OVERIDENTIFYING RESTRICTIONS
- 8.6 COMPUTING IV ESTIMATES
- . use griliches.(Wages of Very Young Men, Zvi Griliches, J.Pol.Ec. 1976)
- . describe

Contains data from griliches.dta

obs: 758 Wages of Very Young Men, Zvi Griliches, J.Pol.Ec. 1976

GITTETIES, J.POT.EC. 15

vars: 26 31 Oct 2004 14:12

size: 65,188

	storage	display	value	
variable name	type	format	label	variable label
rns	float	%9.0g		residency in South
rns80	float	%9.0g		
mrt	float	%9.0g		marital status = 1 if married
mrt80	float	%9.0g		
smsa	float	%9.0g		reside metro area = 1 if urban
smsa80	float	%9.0g		
med	float	%9.0g		mother's education, years
iq	float	%9.0g		iq score
kww	float	%9.0g		score on knowledge in world of
				work test
year	float	%9.0g		
age	float	%9.0g		
age80	float	%9.0g		
S	float	%9.0g		completed years of schooling
s80	float	%9.0g		
expr	float	%9.0g		experience, years
expr80	float	%9.0g		
tenure	float	%9.0g		tenure, years
tenure80	float	%9.0g		-
		-		

float	%9.0g	log wage
float	%9.0g	
byte	%8.0g	year==67
byte	%8.0g	year==68
byte	%8.0g	year==69
byte	%8.0g	year==70
byte	%8.0g	year==71
byte	%8.0g	year==73
	float byte byte byte byte byte	float %9.0g byte %8.0g byte %8.0g byte %8.0g byte %8.0g byte %8.0g byte %8.0g

Sorted by:

. summarize

Variable	0bs	Mean	Std. Dev.	Min	Max
rns	758	.2691293	.4438001		1
rns80	758	.292876	. 4553825	0	1
mrt	758	.5145119	.5001194	0	1
mrt80	758	.8984169	.3022988	0	1
smsa	758	.7044855	. 456575	0	1
smsa80	758	.7124011	. 452942	0	1
med	758	10.91029	2.74112	0	18
iq	758	103.8562	13.61867	54	145
kww	758	36.57388	7.302247	12	56
year	758	69.03166	2.631794	66	73
age	758	21.83509	2.981756	16	30
age80	758	33.01187	3.085504	28	38
s	758	13.40501	2.231828	9	18
s80	758	13.70712	2.214693	9	18
expr	758	1.735429	2.105542	0	11.444
expr80	758	11.39426	4.210745	.692	22.045
tenure	758	1.831135	1.67363	Θ	10
tenure80	758	7.362797	5.05024	0	22
lw	758	5.686739	. 4289494	4.605	7.051
lw80	758	6.826555	.4099268	4.749	8.032
_Iyear_67	758	.0831135	.2762359	0	1
_Iyear_68	758	.1042216	.3057496	Θ	1
_Iyear_69	758	.1121372	.3157435	Θ	1
_Iyear_70	758	.0844327	.2782193	Θ	1
_Iyear_71	758	.121372	.3267747	0	1
_Iyear_73	758	.2084433	.4064636	0	1

[.] use griliches.(Wages of Very Young Men, Zvi Griliches, J.Pol.Ec. 1976)

. ivreg lw s expr tenure rns smsa $_{\rm I}$ * (iq=med kww age mrt), first

First-stage regressions

Source	SS	df	MS	Number of obs	=	758
+				F(15, 742)	=	25.03

Model	47176.4676	15	3145.09784	Prob >	· F =	0.0000
Residual	93222.8583	742	125.637275	R-squa	red =	0.3360
+				Adj R-	squared =	0.3226
Total	140399.326	757	185.468066	Root M	ISE =	11.209
iq	Coof	Std Err	+	D- +	 [95% Conf.	Intervall
±4		Jtu. Lii.				
s	2.497742	. 2858159	8.74	0.000	1.936638	3.058846
expr	033548	. 2534458	-0.13	0.895	5311042	.4640082
tenure	.6158215	.2731146	2.25	0.024	.0796522	1.151991
rns	-2.610221	.9499731	-2.75	0.006	-4.475177	7452663
smsa	.0260481	.9222585	0.03	0.977	-1.784499	1.836595
_Iyear_67	. 9254935	1.655969	0.56	0.576	-2.325449	4.176436
_Iyear_68	.4706951	1.574561	0.30	0.765	-2.620429	3.56182
$_{ m L}$ Iyear $_{ m L}$ 69	2.164635	1.521387	1.42	0.155	8221007	5.15137
$_{ m _Iyear_70}$	5.734786	1.696033	3.38	0.001	2.405191	9.064381
_Iyear_71	5.180639	1.562156	3.32	0.001	2.113866	8.247411
_Iyear_73	4.526686	1.48294	3.05	0.002	1.615429	7.437943
med	. 2877745	.1622338	1.77	0.077	0307176	.6062665
kww	. 4581116	.0699323	6.55	0.000	.3208229	.5954003
age	8809144	. 2232535	-3.95	0.000	-1.319198	4426307
mrt	584791	.946056	-0.62	0.537	-2.442056	1.272474
_cons	67.20449	4.107281	16.36	0.000	59.14121	75.26776

Instrumental variables (2SLS) regression

Source	SS	df	MS	Number of obs	=	758
+				F(12, 745)	=	45.91
Model	59.2679161	12	4.93899301	Prob > F	=	0.0000
Residual	80.0182337	745	.107407025	R-squared	=	0.4255
+				Adj R-squared	=	0.4163
Total	139.28615	757	. 183997556	Root MSE	=	.32773
lw				P> t [95% C	onf.	Interval]
	.0001747				51	.0079044
s	.0691759	.013049	5.30	0.000 .04355	87	.0947931
expr	.029866	.006697	4.46	0.000 .01671	89	.0430132
tenure	.0432738	.0076934		0.000 .02817	95	. 058377
rns	1035897	.0297371	-3.48	0.00116196	82	0452111
smsa	.1351148	.0268889	5.02	0.000 .08232	77	.1879019
_Iyear_67	052598	.0481067	-1.09	0.27514703	88	.0418428
_Iyear_68	.0794686	.0451078	1.76	0.0790090	85	.1680222
_Iyear_69	.2108962	.0443153	4.76	0.000 .12389	84	. 2978939
_Iyear_70	.2386338	.0514161	4.64	0.000 .13769	62	.3395714
_Iyear_71	.2284609	.0441236	5.18	0.000 .14183	96	.3150823
_Iyear_73	.3258944	.0410718	7.93	0.000 .24526	42	.4065247
_cons	4.39955	.2708771	16.24	0.000 3.8677	77	4.931323

Instrumented: iq

Instruments: s expr tenure rns smsa _Iyear_67 _Iyear_68 _Iyear_69

_Iyear_70 _Iyear_71 _Iyear_73 med kww age mrt

- 8.7 IVREG2 & GMM ESTIMATION
- 8.7.1 *The GMM Estimator*
- 8.7.2 GMM in a Homoskedastic Context
- 8.7.3 GMM & Heteroskedasticity-Consistent Standard Errors
- . use griliches.(Wages of Very Young Men, Zvi Griliches, J.Pol.Ec. 1976)
- . ivreg2 lw s expr tenure rns smsa $_{\rm I}*$ (iq=med kww age mrt), gmm command ivreg2 is unrecognized r(199);

end of do-file
r(199);

- 8.7.4 GMM & Clustering
- 8.7.5 GMM & HAC Standard Errors
- 8.8 TESTING & OVERIDENTIFYING RESTRICTIONS IN GMM
- 8.8.1 Testing a subset of the Overidentifying Restrictions in GMM
- 8.9 TESTING FOR HETEROSKEDASTICITY IN THE IV CONTEXT
- 8.10 TESTING THE RELEVANCE OF INSTRUMENTS
- 8.11 DURBIN-WU-HAUSMAN TESTS FOR ENDOGENEITY IN IV ESTIMATION

PANEL DATA MODELS

9.1 FIXED EFFECTS & RANDOM EFFECTS MODELS

9.1.1 One-Way Fixed Effects Models

. use traffic.. describe

Contains data from traffic.dta

obs: 336 vars: 54 size: 61,152

30 Nov 2004 10:23

	storage	display	value	
variable name	type	format		
state	float	%9.0g		State ID (FIPS) Code
year	int	%9.0g		Year
spircons	float	%9.0g		Spirits Consumption
unrate	float	%9.0g		Unemployment Rate
perinc	float	%9.0g		Per Capita Personal Income
emppop	float	%9.0g		Employment/Population Ratio
beertax	float	%9.0g		Tax on Case of Beer
sobapt	float	%9.0g		% Southern Baptist
mormon	float	%9.0g		% Mormon
mlda	float	%9.0g		Minimum Legal Drinking Age
dry	float	%9.0g		% Residing in Dry Counties
yngdrv	float	%9.0g		% of Drivers Aged 15-24
vmiles	float	%9.0g		Ave. Mile per Driver
breath	byte	%9.0g		Prelim. Breath Test Law
jaild	byte	%9.0g		Mandatory Jail Sentence
comserd	byte	%9.0g		Mandatory Community Service
allmort	int	%9.0g		<pre># of Vehicle Fatalities (#VF)</pre>
mrall	float	%9.0g		Vehicle Fatality Rate (VFR)
allnite	int	%9.0g		<pre># of Night-time VF (#NVF)</pre>
mralln	float	%9.0g		Night-time VFR (NFVR)
allsvn	int	%9.0g		<pre># of Single VF (#SVN)</pre>
a1517	int	%9.0g		#VF, 15-17 year olds
mra1517	float	%9.0g		VFR, 15-17 year olds
a1517n	byte	%9.0g		#NVF, 15-17 year olds
mra1517n	float	%9.0g		NVFR, 15-17 year olds
a1820	int	%9.0g		#VF, 18-20 year olds
a1820n	int	%9.0g		#NVF, 18-20 year olds
mra1820	float	%9.0g		VFR, 18-20 year olds
mra1820n	float	%9.0g		NVFR, 18-20 year olds
a2124	int	%9.0g		#VF, 21-24 year olds
mra2124	float	%9.0g		VFR, 21-24 year olds
a2124n	int	%9.0g		#NVF, 21-24 year olds
mra2124n	float	%9.0g		NVFR, 21-24 year olds

aidall	float	%9.0q		# of alcohol-involved VF
mraidall	float	%9.0q		Alcohol-Involved VFR
pop	float	%9.0q		Population
pop1517	float	%9.0q		Population, 15-17 year olds
pop1820	float	%9.0q		Population, 18-20 year olds
pop2124	float	%9.0g		Population, 21-24 year olds
miles	float	%9.0g		total vehicle miles (millions
unus	float	%9.0g		U.S. unemployment rate
epopus	float	%9.0q		U.S. Emp/Pop Ratio
gspch	float	%9.0q		GSP Rate of Change
stabrv	str2	%9s		
region	str2	%9s		
reg	long	%8.0q	reg	
fatal	float	%9.0q	J	
fatal1517	float	%9.0g		
fatal1820	float	%9.0g		
fatal2124	float	%9.0g		
fatal1517n	float	%9.0g		
fatal1820n	float	%9.0g		
fatal2124n	float	%9.0g		
perincK	float	%9.0g		
		-		

.....

Sorted by:

. summarize

Variable	0bs	Mean	Std. Dev.	Min	Max	
state		30.1875	15.30985	1	56	
year	•	1985	2.002983	1982	1988	
spircons	l 336	1.75369	.6835745	.79	4.9	
unrate	•	7.346726	2.533405	2.4	18	
perinc	•	13880.18	2253.046	9513.762		
per inc						
emppop	336	60.80568	4.721656	42.9932	71.26865	
beertax	336	.513256	. 4778442	.0433109	2.720764	
sobapt	336	7.156925	9.762621	0	30.3557	
mormon	336	2.801933	9.665279	.1	65.9165	
mlda	336	20.45563	.8990255	18	21	
+						
dry	336	4.267074	9.500901	0	45.7921	
yngdrv	336	.1859299	.0248736	.073137	.281625	
vmiles	336	7890.754	1475.659	4576.346	26148.27	
breath	336	.4613095	. 4992443	0	1	
jaild	335	.280597	. 449963	0	1	
+						
comserd	335	.1850746	. 388939	0	1	
allmort	336	928.6637	934.0515	79	5504	
mrall	336	.000204	.000057	.0000821	.0004218	
allnite	336	182.5833	188.4311	13	1049	
mralln	336	.0000388	.000011	.0000172	.0000944	
+						
allsvn	336	109.9494	108.5397	8	603	
a1517	336	62.61012	55.72909	3	318	
mra1517	336	.0003034	.0000937	.0001163	.0006735	
a1517n	336	12.2619	12.25341	Θ	76	
mra1517n	336	.0000598	.000033	Θ	.0002571	

336 106.6607 104.2236 7 a1820 | 601 336 33.52679 33.23834 a1820n | 0 196 336 .0004728 .0001522 .0001855 .0010952 mra1820 | mra1820n | 336 .0001436 .0000613 0 .0005238 336 126.872 131.7886 a2124 | 12 ------

 336
 .0004091
 .0001225
 .0002
 .0008922

 336
 41.37798
 42.93031
 1
 249

 mra2124 | a2124n | 336 .0001284 .0000422 .0000222 .0003143 336 293.3332 303.5807 24.6 2094.9 mra2124n | aidall | mraidall | 336 .0000659 .000026 .0000234 .0001772 4930272 5073704 478999.7 2.83e+07 336 pop | 336 230815.5 229896.3 21000.02 1172000 pop1517 | 336 249090.4 249345.6 20999.96 1321004 pop1820 | 336 336389.9 345304.4 30000.16 1892998 pop2124 | miles | 336 37101.49 37454.37 241575 3993 336 7.528571 1.479376 unus | 5.5 9.7 epopus | 336 59.97143 1.585048 57.8 336 .0253135 .0431732 -.1236415 .1423609 gspch | stabrv | 0 0 region | ------1 336 2.395833 1.16971 reg | 336 2.040444 .5701938 fatal | .82121 4.21784 336 3.033664 .9374229 1.16279 6.73469 fatal1517 | 336 4.727677 1.521962 1.854922 10.9524 fatal1820 | 336 4.091315 1.224812 2 8.92157 fatal2124 | -----+-----.597681 .3297287 fatal1517n | 336 0 2.57143 0 336 1.436218 .6128804 fatal1820n | 5.2381 336 1.284335 .4224502 .22222 3.14286 fatal2124n |

. xtsum fatal beertax spircons unrate perincK state year

perincK |

Variable				Std. Dev.					
	•			.5701938		·			
	between			.5461407	1.110077	3.653197	n	=	48
	within	 		. 1794253	1.45556	2.962664	Т 	=	7
beertax	overall		.513256	. 4778442	.0433109	2.720764	N	=	336
	between			.4789513	.0481679	2.440507	n	=	48
	within	l		.0552203	.1415352	.7935126	Т	=	7
spircons	overall		1.75369	.6835745	.79	4.9	N	=	336
	between			.6734649	.8614286	4.388572	n	=	48
	within			.147792	1.255119	2.265119	Т	=	7
unrate	overall	7	7.346726	2.533405	2.4	18	N	=	336
	between			1.953377	4.1	13.2	n	=	48
	within			1.634257	4.046726	12.14673	T	=	7
perincK	overall	:	13.88018	2.253046	9.513762	22.19345	N	=	336

336 13.88018 2.253046 9.513762 22.19345

	between		2.122712	9.9	5087 1	19.51582	r	1 =	48
	within		.8068546	11.43	3261 1	16.55782		Γ =	7
state	overall	30.1875	15.30985		1	56	1	1 =	336
	between		15.44883		1	56	1	1 =	48
	within		0	30.3	1875	30.1875	1 7	Γ =	7
							! .		
year	overall	•			1982	1988	•	I =	336
	between		0 2.002983		1985	1985	•) = -	48 7
	within		2.002983		1982	1988	I	Γ =	,
. use tr	affic x	treg fatal	beertax spi	rcons u	nrate pe	erincK, f	е		
· · · · · · · · · · · · · · · · · · ·									336
Group variable: state Number of groups = 48									
D. ca.									
R-sq: Obs per group: within = 0.3526 min = 7									
	ween = 0.3						avg =		7.0
	erall = 0.0						max =		7.0
						•			•
					F(4,28	34)	=		38.68
corr(u_i	, Xb) =	-0.8804			Prob >	> F	=		0.0000
	•		Std. Err.	t	P> t	[95%	Conf.	Int	terval]
	+ ertax -	4840728	.1625106	-2.98	0.003	803	9508		1641948
	•	.8169652	.0792118	10.31	0.000				9728819
•			.0090274	-3.22	0.001		8191		9112808
	incK		.0205986	5.08	0.000		4165		1452555
•	•	383783	.4201781	-0.91	0.362	-1.21			4432754
sig	ıma_u 1	. 1181913							
sig	gma_e . ∶	15678965							
	rho .9	98071823	(fraction o	f varia	nce due	to $u_{-}i)$			
F test t	:hat all u	_i=0: F(47,	284) = 59.	77		Р	rob > I	=	0.0000

9.1.2 Time Effects & Two-Way Fixed Effects Models

. use traffic.. tabulate year, generate(yr)

Year	Freq.	Percent	Cum.
1982	48	14.29	14.29
1983	48	14.29	28.57
1984	48	14.29	42.86
1985	48	14.29	57.14
1986	48	14.29	71.43
1987	48	14.29	85.71
1988	48	14.29	100.00
+			

```
Total | 336 100.00
```

(6) yr87 = 0

```
. local j 0
. forvalues i=82/87 {
 2. local ++j
 rename yr'j' yr'i'
 4. quietly replace yr'i' = yr'i' - yr7
 5. }
. drop yr7
. xtreg fatal beertax spircons unrate perincK yr*, fe
                                                           336
                                       Number of obs =
Fixed-effects (within) regression
Group variable: state
                                       Number of groups =
                                                            48
R-sq:
                                       Obs per group:
                                                             7
    within = 0.4528
                                                  min =
                                                  avg =
    between = 0.1090
                                                           7.0
    overall = 0.0770
                                                  max =
                                       F(10,278)
                                                    =
                                                          23.00
                                                    = 0.0000
corr(u_i, Xb) = -0.8728
                                       Prob > F
     fatal | Coef. Std. Err. t P>|t| [95% Conf. Interval]
beertax | -.4347195 .1539564 -2.82 0.005 -.7377878 -.1316511
   spircons | .805857 .1126425 7.15 0.000 .5841163 1.027598
unrate | -.0549084 .0103418 -5.31 0.000 -.0752666 -.0345502
    perincK | .0882636 .0199988 4.41 0.000 .0488953 .1276319
      yr82 | .1004321 .0355629
                                2.82 0.005
                                              .0304253 .170439
      yr83 | .0470609 .0321574 1.46 0.144 -.0162421 .1103638
      yr84 | -.0645507 .0224667 -2.87 0.004 -.1087771 -.0203243
      yr85 | -.0993055 .0198667 -5.00 0.000 -.1384139 -.0601971
      yr86 | .0496288 .0232525
                                2.13 0.034
                                              .0038554 .0954021
      yr87 | .0003593 .0289315 0.01 0.990 -.0565933 .0573119
     _cons | .0286246 .4183346 0.07 0.945 -.7948812 .8521305
------
    sigma_u | 1.0987683
    sigma_e | .14570531
     rho | .98271904 (fraction of variance due to u_{-}i)
F test that all u_i=0: F(47, 278) = 64.52
                                                Prob > F = 0.0000
. test yr82 yr83 yr84 yr85 yr86 yr87
 (1) yr82 = 0
 (2) yr83 = 0
 (3) yr84 = 0
 (4) yr85 = 0
 (5) yr86 = 0
```

```
F(6, 278) = 8.48

Prob > F = 0.0000
```

9.1.3 The Between Estimator

 use traffic xtreg fatal beertax spircons unrate perincK, 		use	traffic	xtrea	fatal	beertax	spircons	unrate	perincK.	be
--	--	-----	---------	-------	-------	---------	----------	--------	----------	----

Between regress Group variable:			of obs = of groups =	336 48		
between =	R-sq: within = 0.0479 between = 0.4565 overall = 0.2583					7 7.0 7
$sd(u_i + avg(e_i)$	F(4,43) Prob > F					
fatal					[95% Conf.	=
beertax spircons unrate perincK	.0740362 .2997517 .0322333 1841747		0.51 2.66 0.85 -4.36	0.614 0.011 0.401 0.000	2196614 .0722417 0444111	.3677338 .5272618 .1088776 0990218

9.1.4 One-Way Random Effects Models

. use traffic.. xtreg fatal beertax spircons unrate perincK, re

Random-effects Group variable:		f obs = f groups =						
R-sq:				Obs per group:				
within =		min =	•					
between =		avg =	7.0					
overall =	0.0042				max =	7		
				Wald chi	2(4) =	49.90		
$corr(u_i, X)$		hi2 =						
fatal	Coef.	Std. Err.	z	P> z	 [95% Conf			
+-								
beertax	.0442768	.1204613	0.37	0.713	191823	.2803765		
spircons	.3024711	.0642954	4.70	0.000	.1764546	. 4284877		
unrate	0491381	.0098197	-5.00	0.000	0683843	0298919		
perincK l	0110727	.0194746	-0.57	0.570	0492423	.0270968		

_cons | 2.001973 .3811247 5.25 0.000 1.254983 2.748964

sigma_u | .41675665
sigma_e | .15678965
rho | .87601197 (fraction of variance due to u_i)

9.1.5 Testing the appropriateness of Random Effects Model

- . use traffic.. quietly xtreg fatal beertax spircons unrate perincK, fe
- . estimates store fix
- . quietly xtreg fatal beertax spircons unrate perincK, re
- . estimates store ran
- . hausman fix ran

	Coeffi	cients		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	fix	ran	Difference	S.E.
beertax	4840728	.0442768	5283495	.1090815
spircons	.8169652	.3024711	.514494	.0462668
unrate	0290499	0491381	.0200882	
perincK	.1047103	0110727	.115783	.0067112

b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

$$chi2(4) = (b-B)'[(V_b-V_B)^{-1}](b-B)$$

= 130.93
Prob>chi2 = 0.0000
 (V_b-V_B) is not positive definite)

- 9.1.6 Prediction from One-Way Fixed Effects Model & Random Effects Model
- 9.2 IV MODELS FOR PANEL DATA
- 9.3 DYNAMIC PANEL DATA MODELS

. use traffic.. tsset

panel variable: state (strongly balanced)

time variable: year, 1982 to 1988

delta: 1 unit

. xtabond2 fatal L.fatal spircons year, gmmstyle(beertax spircons unrate perinc

> K) ivstyle(year) twostep robust nolevelq

command xtabond2 is unrecognized

r(199);

end of do-file

r(199);

9.4 SEEMINGLY UNRELATED REGRESSION MODELS

9.4.1 SUR with Identical Regressors

9.5 MOVING-WINDOW REGRESSION ESTIMATES

MODELS OF DISCRETE & LIMITED DEPENDENT VARIABLES

10.1 BINOMIAL LOGIT & PROBIT MODELS

- 10.1.1 The Latent Variable Approach
- 10.1.2 Marginal Effects & Predictions
- 10.1.2.1 Binomial Probit
- . use womenwk.. describe

Contains data from womenwk.dta

obs: 2,000 vars: 15 size: 134,000

9 Nov 2004 20:23

variable name	•	display format	variable label	
c1 c2 u v county age education married children select wagefull wage	double double double double	%10.0g %10.0g %10.0g %10.0g %9.0g %8.0g %8.0g	 variable tabet	
lw	float	%9.0g %9.0g		
work lwf	float float	%9.0g %9.0g		

Sorted by:

. summarize

Variable	0bs	Mean	Std. Dev.		Max
c1		0023069		-3.500514	3.614182
c2	2,000	0077596	1.006025	-3.410111	3.423961
u	2,000	0011535	.4940286	-1.750257	1.807091
V	2,000	0071367	1	-3.954782	3.229851
county	2,000	4.5	2.873	0	9

	+				
age	2,000	36.208	8.28656	20	59
education	2,000	13.084	3.045912	10	20
married	2,000	. 6705	.4701492	0	1
children	2,000	1.6445	1.398963	0	5
select	2,000	35.78556	14.98163	-14.45688	89.63869
	+				
wagefull	2,000	21.31176	7.012038	-1.680425	45.80979
wage	1,343	23.69217	6.305374	5.88497	45.80979
lw	1,343	3.126703	.2865111	1.772402	3.824498
work	2,000	.6715	. 4697852	0	1
lwf	2,000	2.099581	1.487519	0	3.824498

. probit work age married children education, nolog

Probit regression	Number of obs	=	2,000
	LR chi2(4)	=	478.32
	Prob > chi2	=	0.0000
Log likelihood = -1027.0616	Pseudo R2	=	0.1889

work			Z		[95% Conf.	-
age	.0347211	.0042293	8.21	0.000	.0264318	.0430105
married	.4308575	.074208	5.81	0.000	.2854125	.5763025
children	.4473249	.0287417	15.56	0.000	.3909922	.5036576
education	.0583645	.0109742	5.32	0.000	.0368555	.0798735
_cons	-2.467365	. 1925635	-12.81	0.000	-2.844782	-2.089948

. mfx compute

Marginal effects after probit
y = Pr(work) (predict)
= .71835948

variable	dy/dx		Z	P> z	[95%	C.I.]	Х
age	.011721 .150478 .1510059	.00142 .02641 .00922	8.25 5.70 16.38 5.32	0.000 0.000 0.000	.008935 .098716	.014507 .20224 .169073	36.208 .6705 1.6445 13.084

(*) dy/dx is for discrete change of dummy variable from 0 to 1

. margeff, dummies(married) count command margeff is unrecognized r(199);

end of do-file
r(199);

10.1.3 Evaluating Specification & Goodness of Fit

- . use womenwk..
- . logit work age married children education, nolog

Logistic regress	ion			Number of	obs =	2,000
				LR chi2(4) =	476.62
				Prob > ch	i2 =	0.0000
Log likelihood =	-1027.914	4		Pseudo R2	=	0.1882
work	Coef.	Std. Err.	Z	P> z	[95% Conf.	<pre>Interval]</pre>
+						
age	.0579303	.007221	8.02	0.000	.0437773	.0720833
married	.7417775	.1264705	5.87	0.000	. 4938998	.9896552

_cons | -4.159247 .3320401 -12.53 0.000 -4.810034 -3.508461

 children | .7644882
 .0515289
 14.84
 0.000
 .6634935
 .865483

 education | .0982513
 .0186522
 5.27
 0.000
 .0616936
 .134809

. mfx compute

Marginal effects after logit

y = Pr(work) (predict)

= .72678588

variable	•				-	=	
age married* children	.0115031 .1545671 .151803	.00142 .02703 .00938 .0037	8.08 5.72 16.19	0.000 0.000 0.000	.008713 .101592 .133425	.014293 .207542 .170181	36.208 .6705 1.6445 13.084

- (*) dy/dx is for discrete change of dummy variable from 0 to 1
- . mfx compute, at(children = 0)

warning: no value assigned in at() for variables age married education; means used for age married education

Marginal effects after logit

y = Pr(work) (predict)

= .43074191

variable	dy/dx	Std. Err.	Z	P> z	[95%	C.I.]	Х
·	.0142047 .1762562 .187455			0.000	.01071 .120897 .165609	.0177	36.208 .6705 0 13.084

(*) dy/dx is for discrete change of dummy variable from 0 to 1

10.2 ORDERED LOGIT & PROBIT MODELS

. use panel84extract.. describe

Contains data from panel84extract.dta

obs: 98 vars: 38

1 Dec 2004 23:14

size: 14,896

	storage	display format	value	
variable name		Tormat		variable label
s77	float	%9.0g		
s78	float	%9.0g		
s79	float	%9.0g		
s80	float	%9.0g		
s81	float	%9.0g		
s82	float	%9.0g		
s83	float	%9.0g		
b77	float	%9.0g		
b78	float	%9.0g		
b79	float	%9.0g		
b80	float	%9.0g		
b81	float	%9.0g		
b82	float	%9.0g		
b83	float	%9.0g		
is77	float	%9.0g		
is78	float	%9.0g		
is79	float	%9.0g		
is80	float	%9.0g		
is81	float	%9.0g		
is82	float	%9.0g		
is83	float	%9.0g		
ia77	float	%9.0g		
ia78	float	%9.0g		
ia79	float	%9.0g		
ia80	float	%9.0g		
ia81	float	%9.0g		
ia82	float	%9.0g		
ia83	float	%9.0g		
r77	float	%9.0g		
r78	float	%9.0g		
r79	float	%9.0g		
r80	float	%9.0g		
r81	float	%9.0g		
r82	float	%9.0g		
r83	float	%9.0g		
rating83	float	%9.0g		
rating83c	float	%9.0g	bondrati	ng
3		3		Bond rating, 1983
dia	float	%9.0g		3,

Sorted by:

Variable	0bs	Mean	Std. Dev.	Min	Max
s77	98	2399226	6835850	28188	5.50e+07
s78	98	2757617	7812873	48432	6.32e+07
s79	98	3084304	8191207	103004	6.63e+07
s80	98	3081560	7295521	114562	5.77e+07
s81	98	3328268	7815398	167239	6.27e+07
+					
s82		3126689	7479808	115376	6.00e+07
s83	•	3409835	9008834	108397	7.46e+07
b77	•	1.019388	.2675541	. 29	2.27
b78	•	1.035	. 2937677	. 29	2.27
b79	98	1.008265	.2601666	.29	2.27
b80	98	1.032245	.2380095	.29	2
b81	•	1.015612	.2452773	.29	2.08
b82	98	.9689796	.2139394	. 29	1.65
	98	.9932653	.2011348	. 46	1.65
is77	98	11.24923	5.615914	-16.54562	26.56383
+	· ·				
is78	98	11.65585	4.528279	.5114942	26.84296
is79	98	11.36975	4.527863	. 045454	23.66122
is80	98	11.04448	9.335074	-4.169284	88.73264
is81	98	10.34562	4.951754	-2.06479	25.77528
is82	98	7.204422	6.152187	-12.69882	24.89959
·+		7.046005			
is83	•	7.846085	6.495875	-16.40544	26.55174
ia77	98	14.95777	6.958497	-18.13673	37.67006
ia78	98	15.53974	5.104227	1.188427	29.87578
ia79	98	15.48429	5.302939	.0836498	28.42293
ia80	98	13.8006	6.085422	-6.350523	29.75574
ia81	J 98	13.82875	5.952011	-2.480706	30.5371
ia82		9.407202	7.306611	-12.54386	32.30307
ia83		10.11473	7.441946	-13.08016	30.74564
r77	•	2.34113	1.874804	0	6
r78	98	2.419951	1.911573	0	6
+					
r79	98	2.373979	1.912279	0	6
r80	98	2.315973	1.855837	0	6
r81	98	2.399914	1.841927	0	6
r82	98	2.342588	1.851536	0	6
r83	98	2.391481	1.850125	0	6
+		2 226725	1 707070		
rating83		2.336735	1.787378	0	6
rating83c		3.479592	1.17736	10 70014	5
dia	98	.7075242	4.711211	-10.79014	20.05367

. tabulate rating83c

Bond rating,	 			
1983		Freq.	Percent	Cum.
BA_B_C	+ 	26	26.53	26.53
BAA	i	28	28.57	55.10

AA_A	15	15.31	70.41
AAA	29	29.59	100.00
Total	98	100.00	

. ologit rating83c ia83 dia, nolog

Ordered logistic regression	Number of obs	=	98
	LR chi2(2)	=	11.54
	Prob > chi2	=	0.0031
Log likelihood = -127.27146	Pseudo R2	=	0.0434

rating83c	Coef.		Z	P> z	[95% Conf.	-
ia83	.0939166	.0296196	3.17	0.002	.0358633	. 1519699
dia	0866925	.0449789	-1.93	0.054	1748496	.0014646
+-						
/cut1	1853053	.3571432			8852932	.5146826
/cut2	1.185726	.3882099			.4248488	1.946604
/cut3	1.908412	.4164896			1.092108	2.724717

. predict spBA_B_C spBAA spAA_A spAAA
(option pr assumed; predicted probabilities)

- . summarize spAAA, mean
- . list sp* rating83c if spAAA == r(max)

	+				+
	spBA_B_C	spBAA	spAA_A	spAAA	rati~83c
31.	.0388714	.0985567	.1096733	.7528986	AAA
	+				+

- . summarize spBA_B_C, mean
- . list sp* rating83c if spBA_B_C == r(max)

i	spBA_B_C	spBAA	spAA_A	spAAA	rati~83c
67.	.7158453	.1926148	.0449056	.0466343	AAA

10.3 TRUNCATED REGRESSION & TOBIT MODELS

10.3.1 Truncation

. use laborsub.. describe

Contains data from laborsub.dta

obs: 250 vars: 6

25 Sep 2004 18:36

size: 1,750

variable name	storage type	display format	value label	variable label
lfp	byte	%9.0g		1 if woman worked in 1975
whrs	int	%9.0g		Wife's hours of work
kl6	byte	%9.0g		<pre># of children younger than 6</pre>
k618	byte	%9.0g		# of children between 6 and 18
wa	byte	%9.0g		Wife's age
we	byte	%9.0g		Wife's educational attainment

Sorted by:

. summarize

Variable	Obs	Mean	Std. Dev.	Min	Max
lfp	250	.6	.4908807	0	1
whrs	250	799.84	915.6035	0	4950
kl6	250	. 236	.5112234	0	3
k618	250	1.364	1.370774	0	8
wa	250	42.92	8.426483	30	60
	+				
we	250	12.352	2.164912	5	17

. regress whrs $\,$ kl6 k618 wa we if whrs > 0 $\,$

SS	df	MS	Number of obs	=	150
			F(4, 145)	=	2.80
7326995.15	4	1831748.79	Prob > F	=	0.0281
94793104.2	145	653745.546	R-squared	=	0.0717
			Adj R-squared	=	0.0461
102120099	149	685369.794	Root MSE	=	808.55
	7326995.15 94793104.2	7326995.15 4 94793104.2 145	7326995.15 4 1831748.79 94793104.2 145 653745.546	F(4, 145) 7326995.15	7326995.15

whrs					[95% Conf	_
kl6	-421.4822	167.9734	-2.51	0.013	-753.4748	-89.48953
k618	-104.4571	54.18616	-1.93	0.056	-211.5538	2.639668
wa	-4.784917	9.690502	-0.49	0.622	-23.9378	14.36797
we	9.353195	31.23793	0.30	0.765	-52.38731	71.0937
_cons	1629.817	615.1301	2.65	0.009	414.0371	2845.597

. truncreg whrs kl6 k618 wa we, ll(0) nolog

(note: 100 obs. truncated)

Truncated regression

Limit:	lower =	0
	upper =	+inf

Number of obs = 150Wald chi2(4) = 10.05

9 Nov 2004 20:23

whrs	Coef.			P> z	-	. Interval]
kl6	-803.0042	321.3614	-2.50	0.012	-1432.861	-173.1474
k618	-172.875	88.72898	-1.95	0.051	-346.7806	1.030579
wa	-8.821123	14.36848	-0.61	0.539	-36.98283	19.34059
we	16.52873	46.50375	0.36	0.722	-74.61695	107.6744
_cons	1586.26	912.355	1.74	0.082	-201.9233	3374.442
+-						
/sigma	983.7262	94.44303	10.42	0.000	798.6213	1168.831

10.3.2 Censoring

. use womenwk.. describe

Contains data from womenwk.dta

obs: 2,000

vars: 15

size: 134,000

V	ariable name	_	display format	variable	label
c		double	%10.0g	 	
С	2	double	%10.0g		
u			%10.0g		
V		double	%10.0g		
С	ounty	float	%9.0g		
а	ge	int	%8.0g		
е	ducation	int	%8.0g		
m	arried	byte	%8.0g		
С	hildren	int	%8.0g		
S	elect	float	%9.0g		
W	agefull	float	%9.0g		
W	age	float	%9.0g		
ŀ	W	float	%9.0g		
W	ork	float	%9.0g		
ŀ	wf	float	%9.0g		

Sorted by:

. summarize

Variable	0bs	Mean	Std. Dev.		Max
c1 c2 u	2,000 2,000 2,000	0023069 0077596 0011535	.9880571 1.006025	-3.500514 -3.410111 -1.750257	3.614182 3.423961 1.807091
v	2,000	0071367	1	-3.954782	3.229851
county	2,000	4.5	2.873	0	9

age	2,000	36.208	8.28656	20	59
education	2,000	13.084	3.045912	10	20
married	2,000	.6705	.4701492	0	1
children	2,000	1.6445	1.398963	0	5
select	2,000	35.78556	14.98163	-14.45688	89.63869
	+				
wagefull	2,000	21.31176	7.012038	-1.680425	45.80979
wage	1,343	23.69217	6.305374	5.88497	45.80979
lw	1,343	3.126703	.2865111	1.772402	3.824498
work	2,000	.6715	.4697852	0	1
lwf	2,000	2.099581	1.487519	0	3.824498

.

. regress lwf age married children education

Source	SS	df	MS	Number of obs	=	2,000
+-				F(4, 1995)	=	134.21
Model	937.873188	4	234.468297	Prob > F	=	0.0000
Residual	3485.34135	1,995	1.74703827	R-squared	=	0.2120
+-				Adj R-squared	=	0.2105
Total	4423.21454	1,999	2.21271363	Root MSE	=	1.3218

lwf	Coef.	Std. Err.	t	P> t	-	Interval]
age married children education _cons	.0363624 .3188214 .3305009 .0843345 -1.077738	.003862 .0690834 .0213143 .0102295 .1703218	9.42 4.62 15.51 8.24 -6.33	0.000 0.000 0.000 0.000 0.000	.0287885 .1833381 .2887004 .0642729 -1.411765	.0439362 .4543046 .3723015 .1043961 7437105

. tobit lwf age married children education, ll(0)

Refining starting values:

Grid node 0: log likelihood = -3563.7251

Fitting full model:

Iteration 0: log likelihood = -3563.7251
Iteration 1: log likelihood = -3368.4259
Iteration 2: log likelihood = -3350.1512
Iteration 3: log likelihood = -3349.9689
Iteration 4: log likelihood = -3349.9685
Iteration 5: log likelihood = -3349.9685

Tobit regression	Number of obs	=	2,000
	Uncensored	=	1,343
Limits: lower = 0	Left-censored	=	657
upper = +inf	Right-censored	= t	0
	LR chi2(4)	=	461.85
	Prob > chi2	=	0.0000
log likelihood = -3349.9685	Pseudo R2	=	0.0645

```
Coef. Std. Err. t P>|t| [95% Conf. Interval]
age | .052157 .0057457 9.08 0.000
married | .4841801 .1035191 4.68 0.000
                                     .0408888
                                    .2811633
                                    .4238228 .5481814
  children | .4860021 .0317055 15.33 0.000
  education | .1149492 .0150913 7.62 0.000
                                    .0853528
    _cons | -2.807696 .2632573 -10.67 0.000 -3.323984 -2.291408
var(e.lwf)| 3.507421 .1498785
                                    3.225466 3.814024
______
. mfx compute, predict(pr(0,.))
Marginal effects after tobit
   y = Pr(lwf>0) (predict, pr(0,.))
     = .81920975
        dv/dx Std. Err. z P>|z| [ 95% C.I. ]
.00083 8.84 0.000 .005703 .008952 36.208
   age | .0073278
                .01576 4.48 0.000 .039803 .101596
married*| .0706994
                                             .6705
                .00479 14.26 0.000 .058899 .077663 1.6445
children | .0682813
educat~n | .0161499 .00216 7.48 0.000 .011918 .020382 13.084
-----
(*) dy/dx is for discrete change of dummy variable from 0 to 1
. mfx compute, predict(e(0,.))
Marginal effects after tobit
   y = E(lwf|lwf>0) (predict, e(0,.))
     = 2.3102021
```

variable	dy/dx	Std. Err.	Z	P> z	[95%	C.I.]	Х
age married* children	.0314922 .2861047	.00347 .05982 .01908 .00912	9.08 4.78 15.38		.024695 .168855 .256041	.03829 .403355 .330852	36.208 .6705 1.6445 13.084

(*) dy/dx is for discrete change of dummy variable from 0 to 1

10.4 INCIDENTAL TRUNCATION & SAMPLE SELECTION MODELS

- . use womenwk..
- . heckman lw education age children, select(age married children education) no
- > log

Heckman selection model	Number of obs	=	2,000
(regression model with sample selection)	Selected	=	1,343
	Nonselecte	ed =	657
	Wald chi2(3)	=	454.78
Log likelihood = -1052.857	Prob > chi2	=	0.0000

lw	Coef.				[95% Conf.	. Interval]
+						
lw	0207100	0024525	16 20	0.000	0240121	0445256
	.0397189 .0075872				.0349121	
	.0075872				.0056767 0306981	
_cons			35.30		2.177509	
	•	.0055024		0.000	2.177309	2.43349
select						
	.0350233	.0042344	8.27	0.000	.0267241	.0433225
married	•	.0735876	6.18	0.000	.3105434	
children	•	.0288398	15.74	0.000	.3973122	
education	.0565136	.0110025	5.14	0.000	.0349492	
_cons	•	.1927823		0.000	-2.855901	
+	· ·					
/athrho	.3377674	.1152251	2.93	0.003	.1119304	.5636045
/lnsigma	-1.375543	.0246873	-55.72	0.000	-1.423929	-1.327156
+						
rho	.3254828	.1030183			.1114653	.5106469
sigma	. 2527024	.0062385			. 2407662	.2652304
lambda	.0822503	.0273475			.0286501	.1358505
LR test of ind	dep. eqns. (rl	ho = 0): c	hi2(1) =	5.53	Prob > chi	i2 = 0.0187
•						
. heckman lw e	education age	children,	select(a	ge marrie	d children ed	ducation) tw
> ostep						
·						2 000
Heckman select					of obs =	•
·				S	elected =	1,343
Heckman select				S		1,343
Heckman select				S. N	elected = onselected =	1,343 657
Heckman select				S N Wald ch	elected = onselected = i2(3) =	1,343 657 405.68
Heckman select				S N Wald ch	elected = onselected =	1,343 657 405.68
Heckman select				S N Wald ch	elected = onselected = i2(3) =	1,343 657 405.68
Heckman select	odel with samp	ole selectio	n)	S N Wald ch Prob >	elected = onselected = i2(3) = chi2 =	1,343 657 405.68 0.0000
Heckman select	odel with samp	ole selectio	n) z	Solution No. 1 No.	elected = onselected = i2(3) =	1,343 657 405.68 0.0000
Heckman select (regression mo	odel with samp	ole selectio	n) z	Solution No. 1 No.	elected = onselected = i2(3) = chi2 =	1,343 657 405.68 0.0000
Heckman select (regression mo	odel with samp	ole selectio	n) z	Solution No. 1 No. 1 No. 2 No.	elected = onselected = i2(3) = chi2 = [95% Conf.	1,343 657 405.68 0.0000
Heckman selection model (regression model)	odel with samp Coef.	Std. Err.	n) z 13.75	S N Wald ch Prob > P z	elected = onselected = i2(3) = chi2 = [95% Conf	1,343 657 405.68 0.0000 Interval]
Heckman select (regression mo	codel with samp Coef. Coef. Coef. Coef. Coef. Coef.	Std. Err003106	z 13.75 6.50	Solution No.	elected = onselected = i2(3) = chi2 = [95% Conf	1,343 657 405.68 0.0000 Interval] .0487944 .0121333
Heckman select (regression mo	Coef. .0427067 .009322	Std. Err003106 .0014343 .0115202	13.75 6.50 -0.17	Solution N N N N N N N N N N N N N N N N N N N	elected = onselected = i2(3) = chi2 = [95% Conf	1,343 657 405.68 0.0000 Interval] .0487944 .0121333 .0206242
Heckman select (regression mo	codel with samp Coef. Coef. Coef. Coef. Coef. Coef.	Std. Err003106 .0014343 .0115202 .1249789	z 13.75 6.50 -0.17 17.00	Solution No. 100 No. 1	elected = onselected = i2(3) = chi2 = [95% Conf	1,343 657 405.68 0.0000 Interval] .0487944 .0121333 .0206242
Heckman select (regression mo	Coef. .0427067 .009322 0019549 2.124787	Std. Err003106 .0014343 .0115202 .1249789	z 13.75 6.50 -0.17 17.00	Solution No. 100 No. 1	elected = onselected = i2(3) = chi2 = [95% Conf	1,343 657 405.68 0.0000 Interval] .0487944 .0121333 .0206242
Heckman select (regression mo	Coef. .0427067 .009322 0019549 2.124787	Std. Err003106 .0014343 .0115202 .1249789	13.75 6.50 -0.17 17.00	S. N Wald ch Prob > P> z 0.000 0.000 0.865 0.000	elected = onselected = i2(3) = chi2 = [95% Conf	1,343 657 405.68 0.0000 Interval]
Heckman select (regression mo	Coef. .0427067 .009322 0019549 2.124787	Std. Err003106 .0014343 .0115202 .1249789	13.75 6.50 -0.17 17.00	S. N Wald ch Prob > P> z 0.000 0.865 0.000 0.000	elected = onselected = i2(3) = chi2 = [95% Conf	1,343 657 405.68 0.0000 Interval] .0487944 .0121333 .0206242 2.369741
lw education age children _cons	Coef. Coef. .0427067 .009322 0019549 2.124787 .0347211 .4308575	Std. Err003106 .0014343 .0115202 .1249789	13.75 6.50 -0.17 17.00	S. N Wald ch Prob > P> z 0.000 0.865 0.000 0.000	elected = onselected = i2(3) = chi2 = [95% Conf	1,343 657 405.68 0.0000 Interval] .0487944 .0121333 .0206242 2.369741 .0430105 .5763025
lw education age children _cons	Coef. Coef. .0427067 .009322 0019549 2.124787 .0347211 .4308575	Std. Err003106 .0014343 .0115202 .1249789	13.75 6.50 -0.17 17.00	Solution No. 100 No. 1	elected = onselected = i2(3) = chi2 = [95% Conf	1,343 657 405.68 0.0000 Interval] .0487944 .0121333 .0206242 2.369741
lw education age children _cons select age married children education	Coef. Coef. .0427067 .009322 0019549 2.124787 .4308575 .4473249 .0583645	Std. Err003106 .0014343 .0115202 .1249789	13.75 6.50 -0.17 17.00 8.21 5.81 15.56 5.32	Solution No. 100 No. 1	elected = onselected = i2(3) = chi2 = [95% Conf	1,343 657 405.68 0.0000
Heckman select (regression mode) lw education age children cons select age married children education cons	Coef. Coef. .0427067 .009322 0019549 2.124787 .4308575 .4473249 .0583645	Std. Err. .003106 .0014343 .0115202 .1249789 .0042293 .074208 .0287417 .0109742 .1925635	13.75 6.50 -0.17 17.00 	S. N Wald ch Prob > P> z 0.000 0.000 0.865 0.000 0.000 0.000 0.000 0.000 0.000 0.000	elected = onselected = i2(3) = chi2 = [95% Conf0366191 .00651080245341 1.879833	1,343 657 405.68 0.0000
Heckman select (regression mode) lw education age children cons select age married children education cons	Coef. Coef. .0427067 .009322 0019549 2.124787 .0347211 .4308575 .4473249 .0583645 -2.467365	Std. Err. .003106 .0014343 .0115202 .1249789 .0042293 .074208 .0287417 .0109742 .1925635	13.75 6.50 -0.17 17.00 	S. N Wald ch Prob > P> z 0.000 0.000 0.865 0.000 0.000 0.000 0.000 0.000 0.000 0.000	elected = onselected = i2(3) = chi2 = [95% Conf0366191 .00651080245341 1.879833	1,343 657 405.68 0.0000 Interval] .0487944 .0121333 .0206242 2.369741 .0430105 .5763025 .5036576 .0798735 -2.089948
lw education age children cons select age married children education _cons+ /mills	Coef. Coef. .0427067 .009322 0019549 2.124787 .0347211 .4308575 .4473249 .0583645 -2.467365	Std. Err003106 .0014343 .0115202 .1249789 .0042293 .074208 .0287417 .0109742 .1925635	13.75 6.50 -0.17 17.00 	S. N Wald ch Prob > P> z 0.000 0.000 0.865 0.000 0.000 0.000 0.000 0.000 0.000	elected = onselected = i2(3) = chi2 = [95% Conf0366191 .00651080245341 1.879833	1,343 657 405.68 0.0000 Interval] .0487944 .0121333 .0206242 2.369741 .0430105 .5763025 .5036576 .0798735 -2.089948
lw education age children cons select age married children education _cons+ /mills	Coef. Coef. .0427067 .009322 0019549 2.124787 .4308575 .4473249 .0583645 -2.467365	Std. Err003106 .0014343 .0115202 .1249789 .0042293 .074208 .0287417 .0109742 .1925635	13.75 6.50 -0.17 17.00 	S. N Wald ch Prob > P> z 0.000 0.000 0.865 0.000 0.000 0.000 0.000 0.000 0.000	elected = onselected = i2(3) = chi2 = [95% Conf0366191 .00651080245341 1.879833	1,343 657 405.68 0.0000 Interval] .0487944 .0121333 .0206242 2.369741

rho | 0.66698

10.5 BIVARIATE PROBIT & PROBIT WITH SELECTION

- . use hmda..
- . replace fanfred = . if deny (285 real changes made, 285 to missing)
- . rename s6 loanamt
- . rename vr vacancy
- . rename mi med_income
- . rename s50 appr_value
- . rename s17 appl_income
- . replace appl_income = appl_income/1000 (2,379 real changes made)
- . rename s46 debt_inc_r

. summarize

Variable	0bs	Mean	Std. Dev.	Min	Max
seq	2,380	2328.934	1293.337	2	4509
s3	2,380	1	Θ	1	1
s4	2,380	1	0	1	1
s5	2,380	1.036555	.2027758	1	3
loanamt	2,380	139.1353	83.42097	2	980
s7	2,380	1.268908	.6605115	1	3
s9	2,380	1120	Θ	1120	1120
s11	2,380	.1743697	.3795069	Θ	1
s13	2,380	4.715126	.6991424	3	5
s14	2,379	5.702816	1.580592	1	8
s15	2,380	1.223109	.4342082	1	3
s16	2,379	2.513241	.9831064	1	8
appl_income	2,380	13.9406	116.9485	0	999.9994
s18	2,265	1.954967	3.044967	Θ	9
s19a	0				
s19b	0				
s19c	0				
s19d	0				
s20	2,380	1261.521	35488.59	1	999999.4
s23a	0				
s24a	2,380	.7605042	1.104747	0	8

s25a	2,380	19758.32	139160.4	0	999999.4
s26a	2,380	22275.29	147586.7	0	999999.4
s27a	2,380	.1163866	.3207553	0	1
s30a	2,380	4332.712	4663.801	0	81000
+		1260 250	2122 56		41.667
s30c		1360.359	2130.56	0	41667
s31a	•	4914.016	5162.458	0	81000
s31c		1471.81	2358.868	0	41667
s32	•	1457.293	854.9721	0	10798
s33	2,380	1870.239	40962.55		999999.4
s34	2,380	4.507271	87.8796	0	3908
s35	2,380	5134.612	70836.87	0	999999.4
s39	2,380	3782.993	61390.39	0	999999.4
s40	2,380	1.75	23.60479	0	666
s41	2,380	433.6915	20497.71	0	999999.4
+ s42	2,380	1.721008	.5372816	 1	4
s43	•	2.116387	1.666721	1	6
s44	'	.0735294	.2610584	0	1
s45	•	25.53461	9.665561	0	300
debt_inc_r		33.08136	10.72573	0	300
+					
s47	2,380	1.670588	.4736616	1	3
s48	2,380	2022.587	40956.14	6	999999.4
s49	0				
appr_value	2,380	198.5426	152.9863	25	4316
s51	2,380	1.711765	.4530364	1	2
+					
s52	2,380	.2256303	.4180845	0	1
s53	2,380	.0201681	.1406045	0	1
s54	0				
s55	2,380	.0294118	.1689932	Θ	1
s56	2,380	.047479	.2127058	0	1
+		102102 E	202042 7		000000 4
s57		102102.5	302843.7 1072.576	0 -7919	999999.4 28023
netw		253.0412 3.774496	2.027062	1.8	
uria rtdum					10.6
rtdum	2,380	.0726891 .444958	.25968	0	1
bd +	2,380	.444936	.4970656		1
med_income	2,380	.8294118	.3762278	Θ	1
old		. 4630252	.5054334	Θ	2
vacancy	•	. 4365546	.4960626	Θ	1
school		9679.206	97847.79	5	999999.4
chval	2,380	6993.166	81710.9	-8.333333	999999.4
+					
dnotown	•	.0336134	.1802699	0	1
dprop	•	0	0	0	0
deny		.1197479	.3247347	0	1
fanfred	•	.3331742	.4714608	0	1
approve	2,380	.8802521	.3247347	0	1
black	2,380	.142437	.3495712	0	1

[.] heckprob fanfred loanamt vacancy med_income appr_value, select(approve = blac

Probit model with sample selection				Se	f obs = elected = enselected =	2,095
						80.69
Log likelihood = -2063.066				Prob > c	:hi2 =	0.0000
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
fanfred						
loanamt	0026434	.0008029	-3.29	0.001	0042169	0010698
vacancy	2163307	.0609798	-3.55	0.000	3358489	0968125
med_income	.2671341	.0893349	2.99	0.003	.0920409	.4422273
appr_value	0014358	.0005099	-2.82	0.005	0024351	0004364
_cons	.1684824					
approve						
black	7343534	.081858	-8.97	0.000	8947921	5739148
$appl_income$						
debt_inc_r	0262367	.0036441	-7.20	0.000	0333791	0190944
_cons	2.236424					
	6006599	. 2712535	-2.21	0.027	-1.132307	0690128
rho	537519	. 1928812			8118074	0689034
LR test of ind						

10.5.1 Binomial Probit with Selection

- [1] Bollen, K.A. *Structural Equations with Latent Variables*. John Wiley & Sons, New Jersey, USA, 1989.
- [2] Sacha Epskamp and with contributions from Simon Stuber. sem-Plot: Path Diagrams and Visual Analysis of Various SEM Packages' Output, 2017. URL https://CRAN.R-project.org/package= semPlot. R package version 1.1.
- [3] John Fox, Zhenghua Nie, and Jarrett Byrnes. sem: Structural Equation Models, 2017. URL https://CRAN.R-project.org/packagesem. R package version 3.1-9.
- [4] Michael C. Neale, Michael D. Hunter, Joshua N. Pritikin, Mahsa Zahery, Timothy R. Brick, Robert M. Kirkpatrick, Ryne Estabrook, Timothy C. Bates, Hermine H. Maes, and Steven M. Boker. OpenMx 2.0: Extended structural equation and statistical modeling. *Psychometrika*, 81(2):535–549, 2016. doi: 10.1007/s11336-014-9435-8.
- [5] R Core Team. *R: A Language & Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria, 2017. URL http://www.R-project.org/.
- [6] Yves Rosseel. lavaan: An R package for structural equation modeling. *Journal of Statistical Software*, 48(2):1–36, 2012. URL http://www.jstatsoft.org/v48/i02/.