Para la realización del examen se permite un único libro (sea cual sea, salvo el texto **PATTERN RECOGNITION AND MACHINE LEARNING - SOLUTIONS TO EXERCISES - TUTORS' EDITION** de M. Svensén y C.M. Bishop) sin anotaciones de ningún tipo. Si considera que el enunciado contiene algún erratum, hágalo constar en su respuesta y, **de confirmarse**, el equipo docente compensará el tiempo invertido por el estudiante. En los enunciados, asuma el empleo de la notación habitual del texto base.

- 1. Calcule la divergencia de Kullback-Leibler entre dos gaussianas $p(x) = \mathcal{N}(x|\mu, \Sigma)$ y $q(x) = \mathcal{N}(x|m, L)$.
- 2. Deduzca la ecuación para (el logaritmo de) la evidencia de un modelo de regresión lineal con hiperparámetros α y β

$$\ln p(\boldsymbol{t}|\alpha,\beta) = \frac{M}{2} \ln \alpha + \frac{N}{2} \ln \beta - E(\boldsymbol{m}_N) - \frac{1}{2} \ln |\boldsymbol{A}| - \frac{N}{2} \ln (2\pi)$$

sabiendo que si $p(x) = \mathcal{N}(x|\mu, \Lambda^{-1})$ y $p(y|x) = \mathcal{N}(y|Ax + b, L^{-1})$, la distribución marginal viene dada por

$$p(y) = \mathcal{N}(y|A\mu + b, L^{-1} + A\Lambda^{-1}A^{T})$$

con la interpretación habitual de los símbolos implicados utilizada en el texto base.

3. Considere un modelo generativo de clasificación de K clases definido por K probabilidades a priori $p(\mathcal{C}_k) = \pi_k$ y densidades de probabilidad del vector de características de entrada ϕ condicionadas a la clase $p(\phi|\mathcal{C}_k)$ dadas por distribuciones normales multi-variantes con la misma covarianza:

$$p(\boldsymbol{\phi}|\mathcal{C}_k) = \mathcal{N}(\boldsymbol{\phi}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma})$$

Suponga que se nos proporciona un conjunto de entrenamiento ϕ_n , t_n donde el subíndice n toma valores n=1,...,N y t_n es un vector binario de longitud K que utiliza la codificación uno-de-K (es decir, que sus componentes son $t_{nj} = I_{jk}$ si el patrón t_n pertenece a la clase C_k). Si asumimos que el conjunto de entrenamiento constituye una muestra independiente de datos de este modelo, entonces el estimador máximo-verosímil de las probabilidades a priori viene dado por

donde N_k es el número de patrones asignados a la clase C_k .

Demuestre que el estimador máximo-verosimil de la media de la distribución de la clase C_k viene dado por

$$oldsymbol{\mu}_k = rac{1}{N_k} \sum_{n=1}^N t_{nk} oldsymbol{\phi}_n$$

y el de la matriz de covarianza, viene dado por

$$oldsymbol{\Sigma} = \sum_{k=1}^K rac{N_k}{N} oldsymbol{S}_k$$

con

$$oldsymbol{S}_k = rac{1}{N_k} \sum\limits_{n=1}^N t_{nk} (oldsymbol{\phi}_n - oldsymbol{\mu}_k) (oldsymbol{\phi}_n - oldsymbol{\mu}_k)^T$$