Números complejos

UNIVERSIDAD DE GRANADA
DEPARTAMENTO DE ANÁLISIS MATEMÁTICO

Si $x \neq 0$ se define $x^0 = 1$.

Si $x \neq 0$ se define $x^0 = 1$.

Para todo entero negativo q y para todo $x \neq 0$ se define $x^q = \left(\frac{1}{x}\right)^{-q}$.

Si $x \neq 0$ se define $x^0 = 1$.

Para todo entero negativo q y para todo $x \neq 0$ se define $x^q = \left(\frac{1}{x}\right)^{-q}$.

Si $x \neq 0$ se define $x^0 = 1$.

Para todo entero negativo q y para todo $x \neq 0$ se define $x^q = \left(\frac{1}{x}\right)^{-q}$.

i)
$$x^m x^n = x^{m+n}$$
.

Si $x \neq 0$ se define $x^0 = 1$.

Para todo entero negativo q y para todo $x \neq 0$ se define $x^q = \left(\frac{1}{x}\right)^{-q}$.

- i) $x^m x^n = x^{m+n}$.
- ii) $(xy)^n = x^n y^n$. En particular, $\frac{1}{x^n} = \left(\frac{1}{x}\right)^n$.

Si $x \neq 0$ se define $x^0 = 1$.

Para todo entero negativo q y para todo $x \neq 0$ se define $x^q = \left(\frac{1}{x}\right)^{-q}$.

- i) $x^m x^n = x^{m+n}$.
- ii) $(xy)^n = x^n y^n$. En particular, $\frac{1}{x^n} = \left(\frac{1}{x}\right)^n$.
- iii) $(x^m)^n = x^{mn}$. En consecuencia, $x^{2n} > 0$.

Si $x \neq 0$ se define $x^0 = 1$.

Para todo entero negativo q y para todo $x \neq 0$ se define $x^q = \left(\frac{1}{x}\right)^{-q}$.

- i) $x^m x^n = x^{m+n}$.
- ii) $(xy)^n = x^n y^n$. En particular, $\frac{1}{x^n} = \left(\frac{1}{x}\right)^n$.
- iii) $(x^m)^n = x^{mn}$. En consecuencia, $x^{2n} > 0$.
- iv) Además, si $n \in \mathbb{N}$, $x, y \in \mathbb{R}^+$ entonces se verifica que x < y si, y sólo si, $x^n < y^n$.

Fórmula del binomio de Newton. Cualesquiera sean los números reales a, b y el número natural n se verifica que:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Fórmula del binomio de Newton. Cualesquiera sean los números reales a, b y el número natural n se verifica que:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Suma de una progresión geométrica. Sea $x \in \mathbb{R}$, $x \neq 1$ y $n \in \mathbb{N}$. Se verifica:

$$\sum_{k=0}^{n} x^{k} = \frac{x^{n+1} - 1}{x - 1}$$

Fórmula del binomio de Newton. Cualesquiera sean los números reales a, b y el número natural n se verifica que:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Suma de una progresión geométrica. Sea $x \in \mathbb{R}$, $x \neq 1$ y $n \in \mathbb{N}$. Se verifica:

$$\sum_{k=0}^{n} x^{k} = \frac{x^{n+1} - 1}{x - 1}$$

Igualdad para una diferencia de potencias. Sean $a,b\in\mathbb{R}$ y $q\in\mathbb{N},\ q\geqslant 2$. Entonces se verifica la igualdad:

$$b^{q} - a^{q} = (b - a) \sum_{k=0}^{q-1} b^{k} a^{q-1-k}$$

Dados un número real a>0 y un número natural $k\geqslant 2$, existe un único número real **positivo** b>0 que verifica que $b^k=a$. Dicho número real b se llama la raíz k-ésima o de orden k de a y se representa por $\sqrt[k]{a}$ o por $a^{1/k}$.

Dados un número real a>0 y un número natural $k\geqslant 2$, existe un único número real **positivo** b>0 que verifica que $b^k=a$. Dicho número real b se llama la raíz k-ésima o de orden k de a y se representa por $\sqrt[k]{a}$ o por $a^{1/k}$.

Además, si x > 0 e y > 0, se verifica que:

Dados un número real a>0 y un número natural $k\geqslant 2$, existe un único número real **positivo** b>0 que verifica que $b^k=a$. Dicho número real b se llama la raíz k-ésima o de orden k de a y se representa por $\sqrt[k]{a}$ o por $a^{1/k}$.

Además, si x > 0 e y > 0, se verifica que:

i)
$$x < y$$
 si, y sólo si, $\sqrt[k]{x} < \sqrt[k]{y}$,

Dados un número real a>0 y un número natural $k\geqslant 2$, existe un único número real **positivo** b>0 que verifica que $b^k=a$. Dicho número real b se llama la raíz k-ésima o de orden k de a y se representa por $\sqrt[k]{a}$ o por $a^{1/k}$.

Además, si x > 0 e y > 0, se verifica que:

- i) x < y si, y sólo si, $\sqrt[k]{x} < \sqrt[k]{y}$,
- ii) $\sqrt[k]{xy} = \sqrt[k]{x} \sqrt[k]{y}$.

Existencia de números irracionales

Dados $k \in \mathbb{N}$, $k \geqslant 2$ y $n \in \mathbb{N}$, se verifica que $\sqrt[k]{n}$ o bien es un número natural o bien es irracional.

Existencia de números irracionales

Dados $k \in \mathbb{N}$, $k \geqslant 2$ y $n \in \mathbb{N}$, se verifica que $\sqrt[k]{n}$ o bien es un número natural o bien es irracional.

Un conjunto A de números reales se dice que es *denso* en un intervalo I, si entre dos números reales cualesquiera de I siempre hay algún número real que está en A. En particular, A es denso en $\mathbb R$ si en todo intervalo abierto no vacío hay puntos de A.

Existencia de números irracionales

Dados $k \in \mathbb{N}$, $k \geqslant 2$ y $n \in \mathbb{N}$, se verifica que $\sqrt[k]{n}$ o bien es un número natural o bien es irracional.

Un conjunto A de números reales se dice que es *denso* en un intervalo I, si entre dos números reales cualesquiera de I siempre hay algún número real que está en A. En particular, A es denso en \mathbb{R} si en todo intervalo abierto no vacío hay puntos de A.

Los conjuntos \mathbb{Q} y $\mathbb{R} \setminus \mathbb{Q}$ son densos en \mathbb{R} .