1830004016 1830005022 1830021031 1830006195 1830006230

Prediction of the result of Pokémon one-on-one battles

Kaiyang LIU Zinan LU Geng Yunzhi XIAO Jiaying YIN

CONTENT

Pokémon Overview

Model Building

Model Interpretation

Discussion

Pokémon Overview

Variables

- 1 Name
- ② Type 1
- ③ Type 2
- (4) HP
- 5 Attack
- 6 Defense
- Type Speed
- 8 Sp.Atk
- 9 Sp.Def
- 10 Generation
- 11 Legendary

character character character numeric numeric numeric numeric numeric numeric numeric logic

Variables

- 1 Name: The English name of the Pokémon
- 2 **Type 1:** Primary type, related to the nature (18 possible types)
- 3 Type 2: A Pokémon can have secondary type but not necessary
- 4 HP: Base health points of the Pokémon
- 5 Attack: Base attack of the Pokémon
- 6 **Defense:** Base defense of the Pokémon
- **Speed:** Base speed of the Pokémon
- 8 Sp.Atk: Base special attack of the Pokémon
- 9 Sp.Def: Base special defense of the Pokémon
- 10 Generation: The generation when the Pokémon was released
- 11 Legendary: Boolean indicating whether the Pokémon is legendary or not

Data visualization

Logistic Regression

Data Preprocessing

Name	Squirtle	
Type 1	Water	
Type 2	NA	
НР	44	
Attack	48	
Defense	65	
Sp. Atk	50	
Sp. Def	64	
Speed	43	
Generation	1	
Legendary	FALSE	
	•	

Name	Bulbasaur	
Type 1	Grass	
Type 2	Poison	
НР	45	
Attack	49	
Defense	49	
Sp. Atk	65	
Sp. Def	65	
Speed	45	
Generation	1	
Legendary	FALSE	

Take the relative difference of the numeric variables
Calculate the type relationship parameter

Building Model

```
> glm(winner first label~Diff arrack + Diff defense +
Diff_sp_defense + Diff_sp_attack + Diff_speed + Diff_HP +
First_pokemon_legendary + Second_pokemon_legendary +
type relationship, data = train, family = 'binomial')
 Coefficients:
                                            Diff_sp_defense
      (Intercept)
                   Diff_attack
                                Diff_defense
       -1.055374
                     0.009622
                                   0.001625
                                                 0.001308
                                    Diff_HP type_relationship
    Diff_sp_attack
                    Diff_speed
                                   0.002242
       -0.001128
                     0.065027
                                                 0.793978
> sum(diag(table(test$winner_first_label,
test$predicted)))/nrow(test)
[1] 0.8831907
```


Model Evaluation and Diagnostics

Goodness of Fit

```
> mylogit = glm(winner first label~Diff arrack +
Diff defense + Diff sp defense + Diff sp attack +
Diff_speed + Diff_HP + First_pokemon_legendary +
Second_pokemon_legendary + type_relationship,
data = train, family = 'binomial')
> mylogit one =
glm(winner first label~Diff arrack + Diff defense
+ Diff_sp_defense + Diff_sp_attack + Diff_speed +
Diff HP + type relationship, data = train, family
= 'binomial')
> anova(mylogit one, mylogit, test = 'Chisq')
```

Statistical Tests for Individual Predictors

Wald Test

The Wald statistic is defined as (e.g. Wasserman (2006): All of Statistics, pages 153, 214-215):

$$W = \frac{(\hat{\beta} - \beta_0)}{\widehat{se}(\hat{\beta})} \sim \mathcal{N}(0,1)$$

or

$$W = \frac{\left(\hat{\beta} - \beta_0\right)^2}{\widehat{var}\left(\hat{\beta}\right)} \sim \mathcal{X}_1^2$$

Wald Test

```
>> summary(mylogit_one)
```

```
> summary(mylogit_one)
Call:
glm(formula = winner_first_label ~ Diff_attack + Diff_defense +
    Diff_sp_defense + Diff_sp_attack + Diff_speed + Diff_HP +
    type_relationship, family = "binomial", data = train)
Deviance Residuals:
    Min
             1Q Median
                               3Q
                                      Max
-4.1457 -0.5364 -0.0818 0.5348 4.3381
Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
                 -1.0553738 0.0383047 -27.552 < 2e-16 ***
(Intercept)
Diff_attack
                  0.0096219 0.0004580 21.009 < 2e-16 ***
Diff_defense
                  0.0016250 0.0004460
                                       3.644 0.000268 ***
Diff_sp_defense
                  0.0013079 0.0005350
                                        2.445 0.014504 *
Diff_sp_attack
                 -0.0011282 0.0004601
                                       -2.452 0.014195 *
Diff_speed
                  0.0650266 0.0007346 88.522 < 2e-16 ***
                                       4.515 6.32e-06 ***
Diff_HP
                  0.0022421 0.0004966
type_relationship 0.7939779 0.0338008 23.490 < 2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 51870 on 37500 degrees of freedom
Residual deviance: 27115 on 37493 degrees of freedom
AIC: 27131
Number of Fisher Scoring iterations: 6
```

Validation of Predicted Values

ROC Curves

ROC curves in logistic regression are used for determining the best cutoff value for predicting whether a new observation is a "failure" (0) or a "success" (1)

Cross Validation

```
> ctrl = trainControl(method = 'repeatedcv',
number = 10, savePredictions = T)
> mylogit n = (winner first label~Diff arrack +
Diff defense + Diff sp defense + Diff sp attack +
Diff_speed + Diff_HP + First_pokemon_legendary +
Second pokemon legendary + type relationship,
data = train, family = 'binomial', method = 'glm',
trControl = ctrl, tunelength = 100)
> pred1 = predict(mylogit n, test)
> confusionMatrix(data = pred1,
test$winner_first_label)
```

```
Confusion Matrix and Statistics
         Reference
Prediction
        0 5911 780
        1 688 5120
              Accuracy : 0.8826
                95% CI: (0.8768, 0.8881)
   No Information Rate: 0.528
   P-Value [Acc > NIR] : < 2e-16
                 Kappa: 0.7642
Mcnemar's Test P-Value: 0.01755
           Sensitivity: 0.8957
           Specificity: 0.8678
        Pos Pred Value: 0.8834
        Neg Pred Value: 0.8815
            Prevalence: 0.5280
        Detection Rate: 0.4729
   Detection Prevalence: 0.5353
     Balanced Accuracy: 0.8818
      'Positive' Class: 0
```


Neural Network

Building Neural Network

```
> prrr = predict(nn,
temp2[-split,], type =
'class')
> sum(diag(table(prrr,
test$winner_first_label)))
/nrow(test)
[1] 0.9479158
```


Cross Validation

</>>

```
rate = rep(0,100)
for(a in 1:100){
  split <- createDataPartition(y=temp1$winner_first_label, p = 0.9, list = FALSE)</pre>
  train <- temp1[split,]
  test <- temp1[-split,]
  nn = nnet(winner_first_label ~ Diff_attack + Diff_defense + Diff_sp_defense + Diff_sp_attack + Diff_speed + Diff_HP +
               First_pokemon_legendary+Second_pokemon_legendary + type_relationship,
             data = temp2, subset = split, size = 5, rang = 0.1, decay = 5e-4, maxit = 10000)
  prrr = predict(nn,temp2[-split,],type = 'class')
  rate[a] = sum(diag(table(prrr, test$winner_first_label)))/nrow(test)
  mean(rate)
> rate
  [1] 0.9580 0.9464 0.9548 0.9550 0.9568 0.9540 0.9592 0.9600 0.9452 0.9480 0.9538 0.9536 0.9506 0.9520 0.9568 0.9552 0.9536 0.9556 0.9530 0.9482
 [21] 0.9512 0.9480 0.9572 0.9500 0.9564 0.9552 0.9560 0.9572 0.9578 0.9434 0.9560 0.9554 0.9538 0.9466 0.9582 0.9468 0.9516 0.9468 0.9520 0.9552
 [41] 0.9562 0.9512 0.9522 0.9444 0.9606 0.9490 0.9536 0.9454 0.9562 0.9526 0.9558 0.9498 0.9460 0.9504 0.9582 0.9524 0.9514 0.9578 0.9478 0.9506
 [61] 0.9554 0.9406 0.9474 0.9546 0.9570 0.9434 0.9550 0.9468 0.9556 0.9488 0.9514 0.9432 0.9564 0.9564 0.9572 0.9548 0.9544 0.9558 0.9524 0.9500
 $\tag{81\} 0.9556 0.9538 0.9526 0.9596 0.9596 0.9584 0.9558 0.9476 0.9494 0.9574 0.9516 0.9520 0.9532 0.9606 0.9520 0.9564 0.9548 0.9488 0.9442 0.9574 0.9564
> mean(rate)
[1] 0.952784
```


KNN

How to choose k?

Use cross validation to find out the k value that return us the min error.

```
>/>
> kchoose = which.min(error)
> kchoose
[1] 12
```


Model evaluation

Cross validation & Accuracy

```
> knn.opt = knn(train = train[,2:10], test = test
[,2:10], cl = train[,1], k = 12)
> table = CrossTable(x = test[,1], y = knn.opt,
dnn = c("Actual", "Predicted"), prop.chisq = F)
> accuracy = sum(diag(table$t))/sum(table$t)
> accuracy
[1] 0.9124
> mean(error)
[1] 0.08974
```

Total Observations in Table: 5000

	Predicted		
Actual	first win	second win	Row Total
first win	2168	198	2366
	0.916	0.084	0.473
	0.900	0.076	
	0.434	0.040	
second win	240	2394	2634
	0.091	0.909	0.527
	0.100	0.924	
	0.048	0.479	
Column Total	2408	2592	5000 İ
j	0.482	0.518	į
			i

KNN method when k = 12, Accuracy = 0.9124

Decision Tree

Classification Tree for combat

Minsplit = 10, cp = 0.0003

Classification Tree for combat

Simplify version, Minsplit = 10, cp = 0.0008

> accuracy [1] 0.9484

Example

- Speed difference \geq = 0.5 \rightarrow A faster than B
- Type relationship Difference >= 0.25 →
 - 1 If No, which means <0.25, for example A belong to ground type, B belong to fly type, then B wins
 - ② If Yes, which means >= 0.25, for example A belong to Fire type, B also belong to Fire type,

Model evaluation

Cross validation

```
> accuracy =
sum(diag(table$t))/sum(table$t
)
> accuracy
[1] 0.9484
> mean(error)
[1] 0.04876
```

Total Observations in Table: 5000

Actual	Predicted first win	second win	Row Total
first win	2263	103	2366
	0.956	0.044	2366
	0.944	0.040	0.473
	0.453	0.021	
second win	133	2501	
	0.050	0.950	2634
	0.056	0.960	0.527
	0.027	0.500	
Column Total	2396 0.479	2604 0.521	5000 5000

Supporting Vector Machine

■Ideas:

separate the combat result (the first Pokémon win or lose) according to these new differencing variables.

linear

> SVM_accuracy [1] 0.899416

polynomial

> SVM_accuracy [1] 0.9384123

Diff_attack

SVM classification plot

radial

> SVM_accuracy [1] 0.9394121

Linear Discriminant Analysis

LDA

■Ideas:

LDA tries to retain most of the between-class variance in the data

```
> LDA_model = lda(winner_first_label~.,data = df_train)
> LDA_test = predict(LDA_model, newdata = df_test[-c(1)])
> table_LDA = table(LDA_test$class, df_test[,1])
> LDA_accuracy[i] = sum(diag(table_LDA))/dim(df_test)[1]
> mean(LDA_accuracy)
[1] 0.8782244
```

LDA

Bayesian

Bayesian Network

- > library(bnlearn)
- > bn = hc(info)

```
Bayesian network learned via Score-based methods
  model:
   [Atype1][Btype1][A HP|Atype1][A legendary|Atype1][B Speed|Btype1][B legendary|Btype1][A Attack|
Atype1:A_HP]
   [B_Attack|Btype1:B_Speed][A_Sp_Atk|Atype1:A_HP:A_Attack][B_HP|Btype1:B_Attack:B_Speed]
   [A Speed Atype1: A Attack: A Sp Atk By Atk Btype1: B HP: B Speed]
   [label|A_HP:A_Attack:A_Speed:A_legendary:B_HP:B_Attack:B_Speed:B_legendary][A_Sp_Def|Atype1:A_H
P:A_Sp_Atk:label]
   [B_Sp_Def|Btype1:B_HP:B_Sp_Atk:label][A_Defense|Atype1:A_Attack:A_Sp_Def:B_Speed:label]
   [B Defense A Speed:Btype1:B Attack:B Sp Def:label]
  nodes:
  arcs:
   undirected arcs:
    directed arcs:
                                         46
  average markov blanket size:
                                         9.29
  average neighbourhood size:
                                         5.41
  average branching factor:
                                         2.71
  learning algorithm:
                                         Hill-Climbing
                                         BIC (cond. Gauss.)
  score:
  penalization coefficient:
                                         5.409889
  tests used in the learning procedure:
                                         1008
  optimized:
                                         TRUE
```


Bayesian Network

Bayesian Network

```
> fit <- bn.fit(bn, data = info)
> cpquery(fit, event=(Atype1=="Rock"), evidence =
   (A_Legendary=="TRUE")& (A_generation=="1")

[1] 0.2127
```

Naïve Bayesian

```
> f = naiveBayes(label~.,data = train)

> CrossTable(test$label,p,prop.r = F,prop.c = F,prop.t = T,prop.chisq = F)
> accuracy

[1] 0.809
```

Total Observations in Table: 10000

	р		
test\$label	0	1	Row Total
0	4277 0.428	989	5266
1	927	3807 0.381	4734
Column Total	5204	4796 	10000

Naïve Bayesian

```
> library(pROC)
> pred <- ordered(p)</pre>
> pre <- roc(test$label, pred)</pre>
> plot(pre,print.auc = T,auc.polygon
= T,max.auc.polygon = T)
```


Interpretation

- Significant factor
 - Logistic regression: Speed, attack, type, HP, defense
 - Bayes network: <u>Speed</u>, HP, <u>attack</u>, dependency
 - Decision tree: <u>Speed</u>, type, <u>attack</u>
- Speed and Attack seems to be the most decisive factor
- High accuracy of different models

Discussion

- Variable "Secondary type" is abandoned
- Use relative difference to estimate the difference of the two combating Pokémon on different variables
- Speed plays the decisive role.
- Base statistics (Ignore the evolution of the Pokémon)
- The type relationship actually should be a multiplicative coefficient of attack, defense, special attack, special defence
- Player's operation
 - Operation proficiency
 - Use props to improve Pokémon's attributes
 - Different kinds of attack/defense have different effects

