

DeepPumas Mixed effect neural nets

Niklas Korsbo

Let's have a look at Generative AI and mixed effect neural networks!

What are Mixed Effects?

- Fixed effects, θ
 - Model parameters modelled as deterministic quantities
- Random effects, η
 - Model parameters modelled as random variables

Hierarchical

We typically define hierarchies where θ are shared parameters but η is subject-specific.

- θ all the population parameters.
 - Shared across subjects
- η random effects of all subjects.
 - η_1 specific to subject 1
 - Typically has heta-dependent priors
- x covariates of all the subjects
 - x_1 specific to subject 1
- y responses of all the subjects
 - y_1 specific to subject 1

In a Pumas model

```
@model begin
                  @param begin
                     \theta \in VectorDomain(4, lower = zeros(4))
                     \Omega \in PSDDomain(2)
                     \Sigma \in \text{RealDomain(lower = 0.0)}
                     a ∈ RealDomain(lower = 0.0, upper = 1.0)
                   end
                   @random begin
                     η \sim MvNormal(Ω)
                   end
                   @covariates sex wt etn
                   @pre begin
                     \theta 1 := \theta[1]
                     CL = \theta[2] * ((wt / 70)^0.75) * (\theta[4]^sex) *
                       exp(\eta[1])
                     Vc = \theta[3] * exp(\eta[2])
                   end
y_i|\theta,\eta_i,x_i
                   @dynamics begin
                     Depot' = -Ka * Depot
                     Central' = Ka * Depot - (CL / Vc) * Central
                     Res' = Depot - Central
                   end
                   @derived begin
                     conc = @. Central / Vc
                     dv \sim @. Normal(conc, conc * \Sigma)
                     T_{max} = maximum(t)
                   end
                   @observed begin
                     obs_cmax = maximum(dv)
                   end
                 end
```


Don't assign too much meaning to the random effects

- Indicates unknown parameters that vary between subjects (or whatever hierarchy we use)
- Usually tied very closely to a fixed effect in pharmacometrics. $CL = tvCL \cdot \exp(\eta_{cl})$.
- Enables degrees of freedom along which the model can account for outcome heterogeneity.

Random effects during simulation?

Simple
Just sample and use

```
@model begin
                   @param begin
                      \theta \in VectorDomain(4, lower = zeros(4))
                     \Omega \in PSDDomain(2)
           \theta
                     \Sigma \in \text{RealDomain(lower = 0.0)}
                      a ∈ RealDomain(lower = 0.0, upper = 1.0)
                   @random begin
                     η \sim MvNormal(Ω)
                   end
          \chi_i
                    @covariates sex wt etn
                   @pre begin
                      \theta 1 := \theta[1]
                      CL = \theta[2] * ((wt / 70)^0.75) * (\theta[4]^sex) *
                        exp(\eta[1])
                     Vc = \theta[3] * exp(\eta[2])
                   end
y_i|\theta,\eta_i,x_i
                   @dynamics begin
                     Depot' = -Ka * Depot
                     Central' = Ka * Depot - (CL / Vc) * Central
                     Res' = Depot - Central
                   end
                   @derived begin
                      conc = @. Central / Vc
                     dv \sim @. Normal(conc, conc * \Sigma)
                     T_{max} = maximum(t)
                   end
                   @observed begin
                     obs_cmax = maximum(dv)
                   end
                 end
```


Fitting with random effects

Their effect is largely determined by how they contribute to the loss function of a model fit

Conditional probability

Probability of the response $m{y}$ according to the model given specific values of $m{ heta}$, $m{\eta}$ and $m{x}$

$$p_c(\mathbf{y} \mid \boldsymbol{\theta}, \boldsymbol{\eta}, \mathbf{x})$$

Fit model by simply finding the values of θ and η that maximizes the conditional probability?

Fitting with random effects

Their effect is largely determined by how they contribute to the loss function of a model fit

Marginal probability (!)

Integrates out the effect of the random effects

$$p_m(\mathbf{y} \mid \boldsymbol{\theta}, \mathbf{x}) = \int p_c(\mathbf{y} \mid \boldsymbol{\theta}, \boldsymbol{\eta}, \mathbf{x}) \cdot p_{prior}(\boldsymbol{\eta} \mid \boldsymbol{\theta}) d\boldsymbol{\eta}$$

Average conditional probability weighted by a prior.

Different methods/approximations: Laplace, FOCE and EM

Fitting with random effects

Their effect is largely determined by how they contribute to the loss function of a model fit

Conditional likelihood

Marginal likelihood

Fitting algorithms in DeepPumas

Marginal likelihood	Conditional likelihood
ЛАР(FO())	JointMAP()
MAP(FOCE())	
ЛАР(Laplacel())	
O()	N/A
OCE()	
aplacel()	
.C.	AP(FO()) AP(FOCE()) AP(Laplacel()) O() OCE()

Mixed effect neural networks (MeNets)

What happens when you use random effects as part of your NN input?

Let's see in an exercise!

