Skript Modelltheorie

Lukas Metzger

5. November 2018

0 Motivation

Aus der Linearen Algebra

- K-Vektorräume, Untervektorräume, Homomorphismen
- Gruppen, Untergruppen, Homomorphismen
- Ringe, Unterringe, Homomorphismen
- Körper, Teilkörper, Homomorphismen

Entwicklungsschritte

- Suche nach allgemeiner Theorie ⇒ universelle Algebra.
- Modelltheorie (universelle Algebra + Logik)
- Kategorientheorie

Beispiel von Ax

Sei K ein Körper, und $P(X) \in K[X]$. P definiert eine Abbildung $\tilde{P}: K \to K$.

P hat die Hopf-Eigenschaft, wenn gilt:

Wenn \tilde{P} injektiv ist, dann ist \tilde{P} surjektiv.

Jedes Polynom hat über einem endlichen Körper die Hopf-Eigenschaft.

Formalisierung der Hopf-Eigenschaft

$$\forall y \forall z (P(y = P(z) \to y = z)$$

 $\forall w \exists v P(v) = w$

Für jedes n

$$\forall x_0, \dots, x_n \left(\forall y \forall z \left(\sum_{i=0}^n x_i y^i = \sum_{i=0}^n x_i z^i \to y = z \right) \to \forall w \exists v \sum_{i=0}^n x_i v^i = w \right)$$

Logik

$$\underset{\text{log. äquivalent}}{\sim} \forall x_0, \dots \forall x_n \forall w \exists v \exists y \exists z \left(\sum_{i=0}^n x_i y^i = \sum_{i=0}^n x_i z^i \right) \to \sum_{i=0}^n x_i v^i = w$$

Beispiel 0.1.

$$\mathbb{F}_{p^n} \models_{\text{erfüllt}} HE(n) \underset{\forall \exists -\text{Pr\"{a}servation}}{\Rightarrow} \underbrace{\bigcup_{n \in \mathbb{N}} \mathbb{F}_{p^n}}_{\text{n} \in \mathbb{N}} \models HE(n)$$

$$\tilde{\mathbb{F}}_{p} = \text{der algebraische Abschluss von } \mathbf{F}_{\mathbf{p}}$$

Beispiel 0.2. Aus dem Kompaktheitssatz folgt: $\mathbb{C} = \lim_{p \to \infty} \tilde{\mathbb{F}}_p$

1 Grundbegriffe

1.1 *L*-Strukturen

Beispiel 1.1. Der angeordnete Körper der reellen Zahlen (\mathbb{R} , $\underbrace{+,\cdot}_{\text{zweistellig}}$, $\underbrace{0,1}_{\text{konstanten}}$, $\underbrace{0,1}_{\text{zweistellige Relation}}$

Definition 1.2 (\mathcal{L} -Struktur). Sei \mathcal{L} eine Menge von

- Funktionszeichen f_i $(i \in I)$
- Relationszeichen $R_j \quad (j \in J)$

Jedes Zeichen hat ein festes $n \in \mathbb{N}$ als Stelligkeit (arity).

 \mathcal{L} heißt Sprache / Signatur / similarity type.

Eine \mathcal{L} -Struktur $\mathfrak A$ besteht aus

- einer nicht-leeren Menge A (Universum, Träger, Grundmenge)
- \bullet einer n-stellige Funktion $f^{\mathfrak{A}}:A^n\to A$ für jedes n-stellige Funktionszeichen $f\in\mathcal{L}$
- einer n-stellige Relation $R^{\mathfrak{A}} \subseteq A^n$ für jedes n-stellige Relationszeichen $R \in \mathcal{L}$

 $\underline{n} = 0$

$$A^0 = \{\emptyset\}$$

0-stellige Funktion in \mathfrak{A} : $f^{\mathfrak{A}}: \{\emptyset\} \to A$ ist eindeutig bestimmt durch $f(\emptyset) \in A$. Daher entsprechen 0-stellige Funktionen den Konstanten.

0-stellige Relationen in \mathfrak{A} :

$$R^{\mathfrak{A}} \subseteq \{\emptyset\} \begin{cases} \text{entweder} & R = \{\emptyset\} \stackrel{.}{=} \text{wahr} \\ \text{oder} & R = \emptyset \stackrel{.}{=} \text{falsch} \end{cases}$$

Daher entsprechen 0-stellige Relationszeichen den Aussagenvariablen

Beispiel 1.3. a) Zu jeder Menge $A \neq \emptyset$ und jeder Sprache \mathcal{L} kann ich eine \mathcal{L} -Struktur mit Träger A finden!

b) $\mathcal{L} = \{R\}, R$ 2-stelliges Relationssymbol

$$\mathfrak{Q}_1 = (\mathbb{Q}, <),$$
 d.h. $R^{\mathfrak{Q}_1} = \{(q_1, q_2) \in \mathbb{Q}^2 \mid q_1 < q_2\}$
 $\mathfrak{Q}_2 = (\mathbb{Q}, <),$ d.h. $R^{\mathfrak{Q}_2} = \{(q_1, q_2) \in \mathbb{Q}^2 \mid q_1 < q_2\}$

sind zwei verschiedene \mathcal{L} -Strukturen auf \mathbb{Q} .

c)
$$\mathcal{L}_{HGr} = \{\circ\} \text{ und } \mathcal{L}_{Gr} = \{\circ, ^{-1}, e\}$$

Gruppen sind \mathcal{L}_{Gr} -Strukturen \mathfrak{G} mit:

- o[®] ist assoziativ
- $e^{\mathfrak{G}} \circ^{\mathfrak{G}} g = g \circ^{\mathfrak{G}} e^{\mathfrak{G}} = g$ für alle $g \in G$
- $\bullet \ g \circ^{\mathfrak{G}} g^{-1^{\mathfrak{G}}} = g^{-1^{\mathfrak{G}}} = e^{\mathfrak{G}}$

Alternativ sind Gruppen \mathcal{L}_{HGr} -Strukturen \mathfrak{G} mit

- o[®] ist assoziativ
- es gibt ein neutrales Element

• es gibt inverse Elemente

Definition 1.4. Seien $\mathfrak A$ und $\mathfrak B$ $\mathcal L$ -Strukturen. $h:A\to B$ heißt

a) \mathcal{L} -Homomorphismus, falls

$$h(f^{\mathfrak{A}}(a_1,\ldots,a_n)) = f^{\mathfrak{B}}(h(a_1),\ldots,h(a_n))$$

für alle n und $a_1, \ldots, a_n \in A$, und n-stellige $f \in \mathcal{L}$ und

$$(a_1,\ldots,a_n)\in R^{\mathfrak{A}}\Rightarrow (h(a_1),\ldots,h(a_n))\in R^{\mathfrak{B}}$$

für alle n und $a_1, \ldots, a_n \in A$, und n-stellige $R \in \mathcal{L}$.

- b) Starker Homomorphismus, falls zusätzlich \Leftrightarrow im zweiten Teil gilt.
- c) \mathcal{L} -Einbettung falls h injektiver starker \mathcal{L} -Homomorphismus ist.
- d) \mathcal{L} -Isomorphismus falls h bijektiver starker \mathcal{L} -Homomorphismus ist und h^{-1} ebenfalls.
- e) \mathfrak{A} und \mathfrak{B} heißen \mathcal{L} -Isomorph falls es ein \mathcal{L} -Isomorphismus $h: \mathfrak{A} \to \mathfrak{B}$ gibt.
- f) Ein \mathcal{L} -Isomorphismus $h: \mathfrak{A} \to \mathfrak{A}$ heißt \mathcal{L} -Automorphismus.
- g) Falls $A \subseteq B$, dann heißt \mathfrak{A} \mathcal{L} -Unterstruktur von \mathfrak{B} beziehungsweise \mathfrak{B} \mathcal{L} -Oberstruktur von \mathfrak{A} , falls die Identität $id_A : A \to B$ eine \mathcal{L} -Einbettung ist.

Bemerkung 1.5. Falls $\mathcal{L}' \subseteq \mathcal{L}$, dann wird jede \mathcal{L} -Struktur \mathfrak{A} durch vergessen zu einer \mathcal{L}' -Struktur $\mathfrak{A}_{\mid \mathcal{L}'}$ (Redukt von \mathfrak{A}).

Bemerkung 1.6. Jeder Halbgruppenhomomorphismus zwischen Gruppen ist ein Gruppenhomomorphismus.

Falls $\mathfrak{G}_1, \mathfrak{G}_2$ \mathcal{L}_{Gr} -Strukturen sind und $h: G_1 \to G_2$ L_{HGr} Homomorphismus (genau genommen $G_1_{\upharpoonright \mathcal{L}_{HGr}}$ und $G_2_{\upharpoonright \mathcal{L}_{HGr}}$) dann ist h automatisch ein \mathcal{L}_{Gr} -Homomorphismus.

Dies stimmt nicht für Monoide statt Gruppen.

Bemerkung 1.7.

- 1) Wenn $h: \mathfrak{A} \to \mathfrak{B}$ ein injektiver Homomorphismus ist (d.h. es existiert Sprache \mathcal{L} , die im Hintergrund fest ist, $\mathfrak{A}, \mathfrak{B}$ sind \mathcal{L} -Strukturen, h ist \mathcal{L} -Homomorphismus) dann existiert auf h(A) eine \mathcal{L} -Struktur $h(\mathfrak{A})$, so dass $h: \mathfrak{A} \xrightarrow{\sim} h(\mathfrak{A})$, aber $h(\mathfrak{A})$ ist nicht notwendigerweise Unterstruktur von \mathfrak{B} .
- 2) Der Schnitt von \mathcal{L} -Unterstrukturen ist wieder eine \mathcal{L} -Unterstruktur.

Folgerung 1.8. Wenn $\mathfrak A$ eine $\mathcal L$ -Struktur und $C \subset A$ ist, dann existiert die von C erzeugte $\mathcal L$ -Unterstruktur $\langle C \rangle_{\mathcal L} = \langle C \rangle$ das heißt die kleinste Unterstruktur von $\mathfrak A$, deren Trägermenge C enthält.

Die Trägermenge von $\langle C \rangle$ erhält man dadurch, dass man C unter den Funktionen $f^{\mathfrak{A}}$ abschließt.

$$R^{\langle C \rangle}$$
 ist dann $R^{\mathfrak{A}} \cap \langle C \rangle \times \cdots \times \langle C \rangle$

1.2 \mathcal{L} -Formeln

Verwendete Symbole:

• Funktions- und Relationszeichen aus \mathcal{L} :

$$f_i, R_i, \ldots, +, \circ, \leq$$

- Gleichheitszeichen: \doteq (Zieglersche Konvention)
- Klammern: ()
- Quantoren: $\forall \exists$
- Individuenvariablen: v_0, v_1, \dots

Definition 1.9 (\mathcal{L} -Terme). \mathcal{L} -Terme sind:

- Individuenvariablen
- Wenn f ein n-stelliges Funktionszeichen in \mathcal{L} ist und τ_1, \ldots, τ_n sind \mathcal{L} -Terme dann ist $f\tau_1 \ldots \tau_n$ ein \mathcal{L} -Term.

Bemerkung 1.10.

- Es gilt die eindeutige Lesbarkeit der Terme
- Bei Zeichen wie $+, \cdot$ schreibt man traditionell $v_1 + v_2$ statt $+v_1v_2$ muss aber bei Verschachtelungen klammern.

Definition 1.11 (Auswertung von Termen in Strukturen). Eine Belegung der Individuenvariablen mit Elementen einer Struktur für eine \mathcal{L} -Struktur \mathfrak{A} ist eine Abbildung $\beta: \{v_0, v_1, \dots\} \to A$.

Die Auswertung von einem Term in einer Struktur bezüglich einer Belegung $\tau^{\mathfrak{A}}[\beta]$ ist induktiv definiert durch:

$$v_i^{\mathfrak{A}}[\beta] := \beta(v_i)$$

$$f\tau_1 \dots \tau_n^{\mathfrak{A}}[\beta] := f^{\mathfrak{A}}(\tau_1^{\mathfrak{A}}[\beta], \dots, \tau_n^{\mathfrak{A}}[\beta])$$

Definition 1.12 (\mathcal{L} -Formeln). \mathcal{L} -Formeln sind

- ⊥ ⊤
- $\tau_1 \doteq \tau_2$ für \mathcal{L} -Terme τ_1, τ_2
- $R\tau_1 \dots \tau_n$ für \mathcal{L} -Terme τ_1, \dots, τ_n und n-stelliges $R \in \mathcal{L}$

Definition 1.13 (Auswertung von \mathcal{L} -Formeln in Strukturen). \mathfrak{A} ist Modell von φ unter β oder formal $\mathfrak{A} \models \varphi[\beta]$

- stets gilt $\mathfrak{A} \models \top[\beta]$
- nie gilt $\mathfrak{A} \models \bot [\beta]$
- $\mathfrak{A} \models \lceil \tau_1 \doteq \tau_2 \rceil [\beta] \Leftrightarrow \tau_1^{\mathfrak{A}} [\beta] = \tau_2^{\mathfrak{A}} [\beta]$
- $\mathfrak{A} \models R\tau_1 \dots \tau_n[\beta] \Leftrightarrow (\tau_1^{\mathfrak{A}}[\beta], \dots, \tau_n^{\mathfrak{A}}[\beta]) \in R^{\mathfrak{A}}$
- Wenn $\varphi, \varphi_1, \varphi_2$ \mathcal{L} -Formeln sind, dann auch

$$\neg \varphi \qquad \qquad \mathfrak{A} \models \neg \varphi[\beta] \Leftrightarrow \mathfrak{A} \not\models \varphi[\beta] \\
(\varphi_1 \land \varphi_2) \qquad \qquad \mathfrak{A} \models (\varphi_1 \land \varphi_2)[\beta] \Leftrightarrow \mathfrak{A} \models \varphi_1[\beta] \text{ und } \mathfrak{A} \models \varphi_2[\beta] \\
(\varphi_1 \lor \varphi_2) \qquad \qquad \mathfrak{A} \models (\varphi_1 \lor \varphi_2)[\beta] \Leftrightarrow \mathfrak{A} \models \varphi_1[\beta] \text{ oder } \mathfrak{A} \models \varphi_2[\beta] \\
(\varphi_1 \to \varphi_2) \qquad \qquad \mathfrak{A} \models (\varphi_1 \to \varphi_2)[\beta] \Leftrightarrow \text{Wenn } \mathfrak{A} \models \varphi_1[\beta] \text{ dann } \mathfrak{A} \models \varphi_2[\beta] \\
(\varphi_1 \leftrightarrow \varphi_2) \qquad \qquad \mathfrak{A} \models (\varphi_1 \leftrightarrow \varphi_2)[\beta] \Leftrightarrow (\mathfrak{A} \models \varphi_1[\beta] \Leftrightarrow \mathfrak{A} \models \varphi_2[\beta]) \\
\exists v_i \varphi \qquad \qquad \text{Es gibt ein } a \in A \text{ so dass } \mathfrak{A} \models \varphi \left[\beta \frac{a}{v_i}\right] \\
\forall v_i \varphi \qquad \qquad \text{Für alle } a \in A \text{ gilt dass } \mathfrak{A} \models \varphi \left[\beta \frac{a}{v_i}\right]$$

Beispiel 1.14.
$$\forall v_0 \left((\forall v_1 \underbrace{Rv_0v_1}_{\text{Wirkungsbereich } \forall v_1}) \lor Rv_1v_0 \right)$$

Variablen im Wirkungsbereich eines Quantors heißen gebundene Variablen, alle anderen heißen freie Variablen.

Bemerkung 1.15. $\tau^{\mathfrak{A}}[\beta]$ beziehungsweise $\mathfrak{A} \models \varphi[\beta]$ hängt nur insofern von β ab, als man wissen muss, was β mit den freien Variablen macht.

Definition 1.16 (\mathcal{L} -Aussage). Eine \mathcal{L} -Aussage (\mathcal{L} -Satz, geschlossene Formel) ist eine \mathcal{L} -Formel ohne freie Variablen.

Satz 1.17. Für \mathcal{L} -Aussagen φ ist $\mathfrak{A} \models \varphi[\beta]$ unabhängig von β .

Man schreibt:

$$\mathfrak{A} \models \varphi$$
$$\mathfrak{A} \not\models \varphi$$

Definition 1.18.

- 1) Eine \mathcal{L} -Formel φ ist allgemeingültig ($\models \varphi, \vdash \varphi$), falls $\mathfrak{A} \models \varphi[\beta]$ für alle \mathfrak{A} und β .
- 2) \mathcal{L} -Formeln φ und ψ sind logisch äquivalent $(\varphi \sim \psi)$, falls

$$\mathfrak{A} \models \varphi[\beta] \Leftrightarrow \mathfrak{A} \models \psi[\beta]$$

für alle \mathfrak{A} und β .

3) ψ folgt aus $\phi = \{\varphi_i \mid i \in I\}$, falls:

$$\mathfrak{A}\models \varphi_i[\beta]$$
 für alle $i\in I$ \implies $\mathfrak{A}\models \psi[\beta]$ für alle \mathfrak{A} und β

Bemerkung 1.19. $\varphi \sim \psi \quad \Leftrightarrow \quad \vdash (\varphi \leftrightarrow \psi)$

Bemerkung 1.20. Für $\mathcal{L} \subseteq \mathcal{L}'$ und eine \mathcal{L} -Formel φ gilt: $\vdash_{\mathcal{L}} \varphi \Rightarrow \vdash_{\mathcal{L}'} \varphi$

Satz 1.21. Jede \mathcal{L} -Formel φ ist äquivalent zu einer \mathcal{L} -Formel in der folgenden Form:

$$\underbrace{Q_1 v_{i_1} \dots Q_n v_{i_n}}_{\text{pränexe Normalform}} \underbrace{\bigvee_{j \in J} \bigwedge_{k \in K_j} (\neg) \varphi_1 i, j}_{\text{disjunktive Normalform}}$$

 $mit Q_i \in \{\exists, \forall\}.$

1.3 Theorien

Definition 1.22. 1) Eine \mathcal{L} -Theorie T ist eine Menge von \mathcal{L} -Aussagen.

- 2) Eine Struktur \mathfrak{A} ist Modell einer Theorie T, $\mathfrak{A} \models T$, falls $\mathfrak{A} \models \varphi$ für jedes $\varphi \in T$..
- 3) $\operatorname{Mod}(T) = \{ \mathfrak{A} \ \mathcal{L}\text{-Struktur} \mid \mathfrak{A} \models T \}$ heißt Modellklasse von T. Achtung: $\operatorname{Mod}(T)$ ist im Allgemeinen keine Menge!
- 4) T ist konsistent (bzw. Widerspruchsfrei) falls T mindestens ein Modell hat (d.h. $\text{Mod}(T) \neq \emptyset$).
- 5) Eine Klasse \mathcal{K} von \mathcal{L} -Strukturen heißt elementar, falls es eine Theorie T gibt mit $\operatorname{Mod}(T) = \mathcal{K}$.
- 6) Sei A L-Struktur. Dann ist

$$Th(\mathfrak{A}) := \{ \varphi \ \mathcal{L}\text{-Aussage} \mid \mathfrak{A} \models \varphi \}$$

die vollständige Theorie von \mathfrak{A} .

7) Zwei \mathcal{L} -Strukturen $\mathfrak{A}, \mathfrak{B}$ heißen elementar äquivalent, $\mathfrak{A} \equiv \mathfrak{B}$, falls $\mathrm{Th}(\mathfrak{A}) = \mathrm{Th}(\mathfrak{B})$.

Beispiel 1.23.

- 1) Wenn \mathfrak{A} endlich ist und $\mathfrak{B} \equiv \mathfrak{A}$, dann ist \mathfrak{B} bereits isomorph zu \mathfrak{A} .
- 2) $(\mathbb{Q}, +, -, \cdot, 0, 1) \not\equiv (\mathbb{R}, +, -, \cdot, 0, 1), da$

$$(\mathbb{Q}, +, -, \cdot, 0, 1) \not\models \exists v_0(v_0 \cdot v_0 = 1 + 1)$$

 $(\mathbb{R}, +, -, \cdot, 0, 1) \models \exists v_0(v_0 \cdot v_0 = 1 + 1)$

3) $(\overline{\mathbb{Q}} \cap \mathbb{R}, +, -, \cdot, 0, 1) \equiv (\mathbb{R}, +, -, \cdot, 0, 1) \text{ mit } \overline{\mathbb{Q}} = \{c \in \mathbb{C} \mid \text{ es gibt ein } P \in \mathbb{Q}[X] \text{ so dass } P(c) = 0\}$ (algebraischer Abschluss von \mathbb{Q}) (Beweis dazu ist nicht trivial)

Definition 1.24. Seien T, T' \mathcal{L} -Theorien, φ \mathcal{L} -Aussage

1) $T \vdash \varphi$, falls gilt

$$\mathfrak{A} \models T \implies \mathfrak{A} \models \varphi$$

für alle \mathfrak{A} .

- 2) $T^{\vdash} \coloneqq \{ \varphi \ \mathcal{L}$ -Aussage $n \mid T \vdash \varphi \}$ heißt der deduktive Abschluss von T.
- 3) T ist deduktiv abgeschlossen $\Leftrightarrow T = T^{\vdash}$.
- 4) T und T' heißen äquivalent $T \equiv T'$ falls $T^{\vdash} = T'^{\vdash}$.

Bemerkung 1.25.

- $T \subseteq T^{\vdash} = T^{\vdash}$
- $\mathfrak{A} \models T \Rightarrow \mathfrak{A} \models T^{\vdash}$ beziehungsweise $Mod(T) = Mod(T^{\vdash})$
- \bullet T^\vdash ist die maximale Theorie $T'\supseteq T$ mit der Eigenschaft $\operatorname{Mod}(T)=\operatorname{Mod}(T^\vdash)$

Bemerkung 1.26. Wenn $\mathfrak{A} \models \varphi$ und $\varphi' \sim \varphi$, dann gilt $\mathfrak{A} \models \varphi'$.

Daher unterscheidet man ab sofort logisch äquivalente Formeln nicht mehr.

Formal: definiere $\mathfrak{A} \models \varphi / \sim$ für Äquivalenzklassen $[\varphi] = \varphi / \sim = \{\varphi' \mid \varphi \sim \varphi'\}$

Satz 1.27 (Tarski-Lindenbaum-Algebren). Die \mathcal{L} -Formeln bis auf logische Äquivalenz bilden eine boolesche Algebra $\mathcal{F}_{\infty}(\mathcal{L})$. Die Formeln deren freie Variablen in $\{v_0, \ldots, v_{n-1}\}$ enthalten sind bilden eine boolesche Algebra $\mathcal{F}_n(\mathcal{L})$ das bedeutet:

 $\mathcal{F}_i(\mathcal{L})$ ist eine partielle Ordnung $[\varphi] \leq [\psi]$ falls $\vdash (\varphi \to \psi)$ mit

- einem maximalen Element [⊤]
- einem minimalen Element [⊥]
- je zwei Elemente $[\varphi], [\psi]$ haben
 - ein Supremum $[(\varphi \lor \psi)]$
 - ein Infimum $[(\varphi \wedge \psi)]$
- jedes Element $[\varphi]$ hat ein Komplement $\neg \varphi$ das heißt

$$-[(\varphi \wedge \neg \varphi)] = [\bot]$$
 und

$$-\ [(\varphi \vee \neg \varphi)] = [\top]$$

Die Boolesche Algebra ist dann die Struktur $(\mathcal{F}_i(\mathcal{L}), \wedge, \vee, \neg, \top, \bot)$ wobei $[\varphi] \wedge [\psi] = [(\varphi \wedge \psi)]$ etc.

Definition 1.28. Wenn $\mathfrak{B}=(B,\cap,\cup^C,0,1)$ beziehungsweise (B,\subseteq) eine Boolesche Algebra ist, dann ist

$$\mathfrak{B}^* = (B, \cup, \cap, {}^C, 1, 0)$$
beziehungsweise (B, \supseteq)

ebenfalls eine Boolesche Algebra, die duale Algebra und

$$\mathfrak{B} \to \mathfrak{B}^*, b \mapsto b^C$$

ist Isomorphismus Boolescher Algebren. Insbesondere gilt

$$(a \cup b)^C = a^C \cap b^C$$
$$(a \cap b)^C = a^C \cup b^C$$

Satz 1.29 (Stonescher Repräsentationssatz). Jede Boolesche Algebra ist Unteralgebra einer Potenzmengenalgebra.

Bemerkung 1.30. $\varphi \vdash \psi$ ist partielle Ordnung auf den Äquivalenzklassen $[\varphi]$.

- reflexiv: $\varphi \vdash \varphi$
- transitiv: $\varphi \vdash \psi, \psi \vdash \chi \Rightarrow \varphi \vdash \chi$
- antisymmetrisch: $\varphi \vdash \psi, \psi \vdash \varphi \Rightarrow \varphi \sim \psi$

Definition 1.31 (Filter). Ein Filter in einer Booleschen Algebra $\mathfrak B$ ist eine Teilmenge $F\subseteq B$ mit

- $1 \in F, 0 \notin F$
- Wenn $b \in F, b \subseteq b'$ dann $b' \in F$
- Wenn $b_1, b_2 \in F$, dann auch $b_1 \cap b_2 \in F$

Bemerkung 1.32. Das duale Konzept heißt Ideal.

Beispiel 1.33.

• Wenn $0 \neq b \in B$, dann ist

$$\langle b \rangle := \{ b^i \in B \mid b \subseteq b' \}$$

ein Filter, der von b erzeugt Hauptfilter.

• $\mathfrak{P}(\mathbb{N}) = \text{Pot}(\mathbb{N})$ der Frechet-Filter ist

$$\{X \subseteq \mathbb{N} \mid \mathbb{N} \setminus X \text{ endlich}\}\$$

• Sei T eine konsistente \mathcal{L} -Theorie, dann ist T^{\vdash} ein Filter in $\mathcal{F}_0(\mathcal{L})$ der von T erzeugte Filter.

Bemerkung 1.34.

$$T$$
 ist inkonsistent $\iff \bot \in T^{\vdash}$
 \iff alle $\varphi \in \mathcal{F}_0(\mathcal{L})$ liegen in T^{\vdash}
 \iff es gibt ein $\varphi \in \mathcal{F}_0(\mathcal{L})$ mit $T \vdash \varphi$ und $T \vdash \neg \varphi$

- **Definition 1.35.** 1) Eine \mathcal{L} -Theorie T heißt vollständig, falls für jede $\varphi \in \mathcal{F}_0(\mathcal{L})$ entweder $T \vdash \varphi$ oder $T \vdash \neg \varphi$ (insbesondere sind vollständige Theorien konsistent)
 - 2) Ein Filter in einer Booleschen Algebra \mathfrak{B} heißt Ultrafilter, falls F Filter ist und für alle $b \in B$ gilt entweder $b \in F$ oder $b^C \in F$.

Bemerkung 1.36. 1) T ist vollständig $\Leftrightarrow T^{\vdash}$ ist Ultrafilter in $\mathcal{F}_0(\mathcal{L})$

2) \mathfrak{A} ist \mathcal{L} -Struktur, dann ist $\operatorname{Th}(\mathfrak{A}) = \{ \varphi \in \mathcal{F}_0(\mathcal{L}) \mid \mathfrak{A} \models \varphi \}$ vollständig. Man schreibt auch $\operatorname{Th}(\mathfrak{A}) = \operatorname{Th}(\mathfrak{A})^{\vdash}$.

Definition 1.37. \mathfrak{A} sei eine \mathcal{L} -Struktur.

1) Definiere

$$\mathcal{L}_A := \mathcal{L} \dot{\cup} \{c_a \mid a \in A\}$$

 $\mathfrak A$ wird kanonisch zu einer $\mathcal L_A$ -Struktur $\mathfrak A_A$ expandiert durch

$$c_a^{\mathfrak{A}_A} = a$$

2) Das atomare Diagramm von \mathfrak{A} , Diag(\mathfrak{A}) besteht aus allen atomaren und negiertatomaren \mathcal{L}_A -Aussagen, die in \mathfrak{A} gelten

$$Diag(\mathfrak{A}) = \{ \varphi \text{ atomar oder } \varphi = \neg \psi, \psi \text{ atomare } \mathcal{L}_A\text{-Aussage } \mid \mathfrak{A} \models \varphi \}$$

Das positive atomare Diagramm ist

$$\operatorname{Diag}^+(\mathfrak{A}) = \{ \varphi \text{ atomare } \mathcal{L}_A \text{-Aussage } | \mathfrak{A} \models \varphi \}$$

Satz 1.38. $h: A \to B$ ist \mathcal{L} -Einbettung $\mathfrak{A} \hookrightarrow \mathfrak{B}$ genau dann, wenn $\mathfrak{B}_h \models \text{Diag}(\mathfrak{A})$ wobei $\mathfrak{B}_h = (\mathfrak{B}, (h(a))_{a \in A})$.

Beweis. h injektiv

 \Leftrightarrow für alle $a \neq a'$ gilt $h(a) \neq h(a')$

$$\Leftrightarrow \text{ für alle } a \neq a' \text{ gilt } \mathfrak{B}_h \models \underbrace{\neg c_a = c_a'}_{\in \text{Diag}(\mathfrak{A})}$$

h starker Homomorphismus

 \Leftrightarrow für alle n und a_1, \ldots, a_n

$$\begin{cases} \text{falls } f^{\mathfrak{A}}(a_{1}, \dots, a_{n}) \stackrel{(\neq)}{=} a, \text{ dann } f^{\mathfrak{B}}(h(a_{1}), \dots, h(a_{n}) \stackrel{(\neq)}{=} h(a) \\ \text{falls (nicht) } R^{\mathfrak{A}}(a_{1}, \dots, a_{n}), \text{ dann (nicht) } R^{\mathfrak{B}}(h(a_{1}), \dots, h(a_{n})) \end{cases}$$

$$\Leftrightarrow \begin{cases} \mathfrak{B}_{h} \models (\neg) f(c_{a_{1}}, \dots, c_{a_{n}}) = c_{a} \\ \mathfrak{B}_{h} \models (\neg) R(c_{a_{1}}, \dots, c_{a_{n}}) \end{cases}$$

Satz 1.39. $h: A \to B$ ist \mathcal{L} -Homomorphismus $\mathfrak{A} \to \mathfrak{B} \Leftrightarrow \mathfrak{B}_h \models \operatorname{Diag}^+(\mathfrak{A})$

Beweis. Wie eben. \Box

2 Elementar Unterstrukturen und Kompaktheit

2.1 Elementare Unterstrukturen

Definition 2.1. Seien $\mathfrak{A}, \mathfrak{B}$ \mathcal{L} -Strukturen.

1) $h: A \to B$ heißt elementare Abbildung, wenn für alle \mathcal{L} -Formeln $\varphi = \varphi(v_0, \ldots, v_{n-1})$ und $a_0, \ldots, a_{n-1} \in A$ gilt:

Wenn $\mathfrak{A} \models \varphi(a_0,\ldots,a_{n-1})$, dann $\mathfrak{B} \models \varphi(h(a_0),\ldots,h(a_{n-1}))$. Durch Betrachten von $\neg \varphi$ folgt

$$\mathfrak{A} \models \varphi(a_0,\ldots,a_{n-1}) \Leftrightarrow \mathfrak{B} \models \varphi(h(a_0),\ldots,h(a_{n-1}))$$

2) \mathfrak{A} heißt elementare Unterstruktur von \mathfrak{B} , $\mathfrak{A} \preceq \mathfrak{B}$, falls $A \subseteq B$ und $id_A : A \to B$ elementare Abbildung.

Bemerkung 2.2. $h: A \to B$ elementar $\Leftrightarrow \mathfrak{B}_h \models \mathrm{Th}(\mathfrak{A}_A) \supseteq \mathrm{Th}(\mathfrak{A}) \cup \mathrm{Diag}(\mathfrak{A})$

Also: Wenn $\mathfrak{A} \preceq \mathfrak{B}$ dann $\mathfrak{A} \equiv \mathfrak{B}$ und $\mathfrak{A} \subseteq \mathfrak{B}$.

Die Umkehrung gilt nicht!

Aber

$$\mathfrak{A} \preccurlyeq \mathfrak{B} \Leftrightarrow (\mathfrak{A} \subseteq \mathfrak{B} \text{ und } \mathfrak{A} \equiv \mathfrak{B})$$

Beispiel 2.3. $(\mathbb{N}, <) \supseteq (\mathbb{N} \setminus \{0\}, <)$

$$(\mathbb{N}, <) \cong (\mathbb{N} \setminus \{0\}, <) \text{ also } (\mathbb{N}, <) \equiv (\mathbb{N} \setminus \{0\}, <)$$

Variante 1: Sauber beweisen per Induktion über den Aufbau der Formeln

Variante 2: Ist klar

$$(\mathbb{N} \setminus \{0\}, <) \npreceq (\mathbb{N}, <) \text{ da } (\mathbb{N} \setminus \{0\}, <) \models \neg \exists x \ x < 1 \text{ aber } (\mathbb{N}, <) \not\models \exists x \ x < 1.$$

Beispiel 2.4. $\mathcal{L} = \{E\}$ E zweistelliges Relationssymbol, T = E ist Äquivalenzrelation

Falls $\mathfrak{A} \models T$ und $\mathfrak{B} \supseteq \mathfrak{A}$ beliebige Oberstruktur. Dann bleibt Äquivalenz aus \mathfrak{A} in \mathfrak{B} erhalten und umgekehrt, aber es können Äquivalenzklassen in der Oberstruktur dazu kommen und größer werden.

- 1) Wenn eine endliche Zahl von Äquivalenzklassen existieren, dann bleibt die Anzahl in der elementaren Oberstruktur erhalten.
- 2) Wenn eine endliche Äquivalenzklasse existiert, dann bleibt deren Größe in der elementaren Oberstruktur erhalten.
- 3) Wenn jede Äquivalenzklasse n Elemente hat, dann hat auch in jeder Oberstruktur jede Äquivalenzklasse n Elemente.
- 4) Für jedes $n \in N \setminus \{0\}$ gibt es genau eine Äquivalenzklasse mit n Elementen und keine unendliche Klasse. In einer Elementaren Oberstruktur kommen nur unendliche große Äquivalenzklassen dazu.

Satz 2.5 (Tarskis Test). Sei \mathcal{L} eine Sprache, und \mathfrak{B} eine \mathcal{L} -Struktur, und $A \subseteq B$. Dann ist A genau dann Träger einer elementaren Unterstruktur von \mathfrak{B} , wenn für alle \mathcal{L}_A -Formeln $\varphi(v_0) \in \mathcal{F}_0(\mathcal{L}_A)$, die in \mathfrak{B} erfüllt sind, gilt dass sie mit einem $a \in A$ erfüllt sind.

Das heißt wenn $\mathfrak{B} \models \exists v_0 \varphi(v_0)$, dann existiert $x \in A$ mit $\mathfrak{B} \models \varphi(a)$.

Beweis. \Rightarrow Angenommen $\mathfrak{A} \preccurlyeq \mathfrak{B} \models \exists v_0 \varphi(v_0) \text{ (wegen } \preccurlyeq).$

Also existiert $a \in A$ mit $\mathfrak{A} \models \varphi(a)$, somit $\mathfrak{B} \models \varphi(a)$ (wegen \preccurlyeq)

 \triangleq

1) $\mathfrak{B} \models \exists v_0 v_0 \doteq v_0$

Also gibt es $a \in A$ mit $\mathfrak{B} \models a = a$ insbesondere $A \neq \emptyset$.

2) Seien $f \in \mathcal{L}$ n-stellig, $a_1, \ldots, a_n \in A$

$$\mathfrak{B} \models \exists v_0 f a_1 \dots a_n \doteq v_0$$

Bedingung: es existiert $a \in A$ mit $\mathfrak{B} \models fa_1 \dots a_n \doteq a$.

Also $f^{\mathfrak{B}}(a_1,\ldots,a_n)\in A$, das heißt A ist Träger einer Unterstruktur.

3) Zeige per Induktion übe den Aufbau der \mathcal{L}_A -Formeln

$$\mathfrak{A} \models \varphi \Leftrightarrow \mathfrak{B} \models \varphi$$

• Induktionsanfang: φ Atomar

$$\mathfrak{A} \subseteq \mathfrak{B} \Leftrightarrow id_A : A \to B\mathcal{L}_A$$
-Einbettung
 $\Leftrightarrow \mathcal{L}_h \models \operatorname{Diag}(\mathfrak{A}_A) = \operatorname{Diag}(\mathfrak{A})$
 \Leftrightarrow für alle atomaren Formeln $\varphi \in \mathcal{F}_0(\mathcal{L}_A)$ gilt: $(\mathfrak{A} \models \varphi \Leftrightarrow \mathfrak{B} \models \varphi)$

• Induktionsschritte

$$\mathfrak{A} \models \neg \varphi \Leftrightarrow \mathfrak{A} \not\models \varphi \Leftrightarrow \mathfrak{B} \not\models \neg \varphi$$

$$\mathfrak{A} \models (\varphi_1 \land \varphi_2) \Leftrightarrow \begin{cases} \mathfrak{A} \models \varphi_1 & \mathfrak{B} \models \varphi_1 \\ \text{und} & \Leftrightarrow \text{und} \\ \mathfrak{A} \models \varphi_2 & \mathfrak{B} \models \varphi_2 \end{cases} \Leftrightarrow \mathfrak{B} \models (\varphi_1 \land \varphi_2)$$

$$\mathfrak{A} \models \exists v_0 \varphi(v_0) \Leftrightarrow \text{ex. } a \in A \text{ mit } \mathfrak{A} \models \varphi(a) \\ \Leftrightarrow \text{ex. } a \in A \text{ mit } \mathfrak{B} \models \varphi(a) \\ \Rightarrow \text{ex. } a \in B \text{ mit } \mathfrak{B} \models \varphi(a) \Leftrightarrow \mathfrak{B} \models \exists v_0 \varphi(v_0)$$

Da $\{\neg, \land, \exists\}$ ein vollständiges Junktoren-Quantoren-System bilden ist die Aussage damit gezeigt.

Folgerung 2.6. Sei \mathfrak{B} \mathcal{L} -Struktur, $S \subseteq B$. Dann existiert eine elementare Unterstruktur $\mathfrak{A} \preceq \mathfrak{B}$ mit $S \subseteq A$ und $|A| \leq \max\{|S|, |\mathcal{L}|, \aleph_0\}$.

Beweis. Definiere induktiv S_i für $i \in \mathbb{N}$.

$$S_0 \coloneqq S$$

$$S_{i+1} \coloneqq S_i \cup \{a_\varphi \mid \varphi(x) \ \mathcal{L}_{S_i}\text{-Formel}\mathfrak{B} \models \exists \varphi(x) \text{ und } a_\varphi \text{ ist ein Element mit } \mathfrak{B} \models \varphi(a_\varphi)\}$$

$$S_\omega \coloneqq \bigcup_{i \in \omega} S_i$$

Nach Konstruktion ist S_{ω} Träger einer elementaren Unterstruktur $\mathfrak{A} \preceq \mathfrak{B}$.

Denn: Wenn $\mathfrak{B} \models \exists x \varphi(x), \varphi \in \mathcal{F}_1(\mathcal{L}_{S_+}).$

Also existiert n mit $\varphi \in \mathcal{F}_1(\mathcal{L}_{S_n})$, dann existiert $a_{\varphi} \in S_{n+1} \subseteq S_{\omega}$ mit $\mathfrak{B} \models \varphi(a_{\varphi})$. Das heißt Tarskis Test gilt.

Behauptung: $|S_{\omega}| \leq \max\{|S|, |\mathcal{L}|, \aleph_0\}$

Per Induktion $|S_i| \leq \max\{|S|, |\mathcal{L}|, \aleph_0\}$

 $\underline{i} = 0$

$$|S_0| = |S| \le \max\{|S|, |\mathcal{L}|, \aleph_0\}$$

 $i \rightarrow i + 1$

$$|S_{i+1}| \leq |S_i| + \underbrace{|\mathcal{F}_1(\mathcal{L}_{S_i})|}_{\text{endliche Folgen mit Zeichen aus } Z(S_i)}$$

$$\leq |S_i| + |Z(S_i)^{<\omega}|$$

$$= |S_i| + |Z(S_i)|$$

$$= |S_i| + |\mathcal{L}| + \aleph_0 + |S_i|$$

$$= |\mathcal{L}| + |S_i| + \aleph_0$$

$$\stackrel{\text{IV}}{\leq} |\mathcal{L}| + \max\{|\mathcal{L}|, |S|, \aleph_0\} + \aleph_0$$

$$= \max\{|L|, |S|, \aleph_0\}$$

wobei

$$Z(S_i) = \mathcal{L} \cup \{v_0, v_1, \dots\} \cup \{\neg, \lor, \land, \exists, \forall\} \cup S_i$$

Bemerkung 2.7. Für $|\mathcal{L}| = |S| = \aleph_0$ heißt die Folgerung auch Satz von Löwenheim.

Sei $\mathfrak{A}_0 \subseteq \mathfrak{A}_1 \subseteq \mathfrak{A}_2 \subseteq \ldots$ eine gerichtete Vereinigung.

Es gibt eine eindeutig bestimmte \mathcal{L} -Struktur \mathfrak{A}_{ω} auf $\bigcup_{i\in\omega}A_i$, so dass $\mathfrak{A}_i\subseteq\mathfrak{A}_{\omega}$ für alle i.

Satz 2.8. Falls $\mathfrak{A}_0 \preceq \mathfrak{A}_1 \preceq \mathfrak{A}_2 \preceq \ldots$ dann gilt $\mathfrak{A}_i \preceq \mathfrak{A}_{\omega}$ für alle i.

Beweis. Induktion über den Aufbau der Formeln: $\mathfrak{A}_i \models \varphi \Leftrightarrow \mathfrak{A}_\omega \models \varphi$ für $\varphi \in \mathcal{F}_0(\mathcal{L}_{A_i})$

Atomar: da $\mathfrak{A}_i \subseteq \mathfrak{A}_{\omega}$

Negation und Konjunktion: wie letztes Mal

Existenzquantor: $\mathfrak{A}_i \models \exists x \varphi(x) \text{ dann } \mathfrak{A}_i \models \varphi(a) \text{ für ein } a \in A_i.$

$$\stackrel{\text{IV}}{\Rightarrow} \mathfrak{A}_{\omega} \models \varphi(a) \text{ also } \mathfrak{A}_{\omega} \models \exists x \varphi(x).$$

 $\mathfrak{A}_{\omega} \models \exists x \varphi(x)$, dann $\mathfrak{A}_{\omega} \models \varphi(a)$ für ein $a \in A_{\omega}$. Das heißt ex existiert $n \geq i$ mit $a \in A_n$.

Also gilt $\mathfrak{A}_n \models \varphi(a)$ und somit

$$\mathfrak{A}_i \preceq \mathfrak{A}_n \models \exists x \varphi(x) \Rightarrow \mathfrak{A}_i \models \exists x \varphi(x)$$

2.2 Kompaktheitssatz und Ultraprodukte

Satz 2.9 (Kompaktheitssatz). Sei \mathcal{L} eine Sprache und T eine \mathcal{L} -Theorie.

T hat genau dann ein Modell, wenn jede endliche Teiltheorie $T_0 \subseteq T$ ein Modell hat.

Folgerung 2.10 (Satz von Löwenheim-Skolem-Tarski aufwärts). Sei \mathcal{L} eine Sprache und \mathfrak{A} eine unendliche \mathcal{L} -Struktur. Dann existiert zu jeder Kardinalzahl $\kappa \geq \max\{|A|, |\mathcal{L}|\}$ ein $\mathfrak{B} \succcurlyeq \mathfrak{A}$ mit $|B| = \kappa$.

Beweis. Betrachte $\mathcal{L}^c := \mathcal{L}_A \dot{\cup} \{c_i \mid i < \kappa\}$

und die \mathcal{L}^C -Theorie $T^c := \text{Th}(\mathfrak{A}_A) \cup \{\neg c_i \doteq c_j \mid i \neq j\}$

Zeige mit dem Kompaktheitssatz: T^c ist konsistent.

Sei $T_0 \subseteq_{\text{endl}} T^c$.

Dann $T_0 \subseteq \text{Th}(\mathfrak{A}) \cup \{ \neg c_i = c_j \mid i, j \in \text{ endlicher Menge} \}.$

 \mathfrak{A} wird Modell von T_0 , indem man die endlich vielen Konstanten in T_0 durch beliebige, paarweise verschiedene Elemente von A interpretiert.

Sei $\mathcal{L}' \models T^c$.

Dann ist
$$\mathcal{L}' \upharpoonright_{\mathcal{L}} \succcurlyeq \mathfrak{A} \text{ und } |B'| \ge \kappa.$$

Wähle Teilmenge $S\subseteq B$, die A enthält und so, dass $|S|=\kappa$. Wende Folgerung 2.6 auf \mathfrak{B}'_A an.

Dann erhält man $\mathfrak{B} \preccurlyeq \mathfrak{B}_A'$ in \mathcal{L}_A mit $|B| \geq |S| = \kappa$ und $|B| \leq \max\{|\mathcal{L}_A|, |S|, \aleph_0\} = \kappa$

Und

$$\left. \begin{array}{l} \mathfrak{A} \preccurlyeq \mathfrak{B}' \text{ in } \mathcal{L}_A \\ \mathfrak{B} \preccurlyeq \mathfrak{B}' \text{ in } \mathcal{L}_A \\ A \subseteq B' \end{array} \right\} \Rightarrow \mathfrak{A} \preccurlyeq \mathfrak{B}$$

Ultraprodukte

Seien \mathfrak{A}_i \mathcal{L} -Strukturen $(i \in I)$ und sei

$$\prod_{i \in I} A_i = \{ p : I \to \bigcup_{i \in I} A_i \mid p(i) \in A_i \}$$

Mit dem Auswahlaxiom gilt:

$$A_i \neq \emptyset$$
 für alle $i \in I \Rightarrow \prod_{i \in I} A_i \neq \emptyset$

Definiere \mathcal{L} -Struktur $\prod_{i \in I} \mathfrak{A}_i$ auf $\prod_{i \in I} A_i$.

$$f^{\mathfrak{A}}(p_1, \dots, p_n) = p \quad \Leftrightarrow \quad \text{für alle } i \in I \ p(i) = f^{\mathfrak{A}_i}(p_1(i), \dots, p_n(i))$$

 $(p_1, \dots, p_n) \in R^{\mathfrak{A}} \quad \Leftrightarrow \quad \text{für alle } i \in I \ (p_1(i), \dots, p_n(i)) \in R^{\mathfrak{A}_i}$

Betrachte Ultrafilter \mathcal{U} in Pot(I) also

- $\mathcal{U} \subsetneq \operatorname{Pot}(I), \emptyset \notin \mathcal{U}$
- Wenn $X \in \mathcal{U}, X \subseteq Y$, dann $Y \in \mathcal{U}$
- Wenn $X, Y \in \mathcal{U}$, dann $X \cap Y \in \mathcal{U}$
- Wenn $X \subseteq I$, dann entweder $X \in \mathcal{U}$ oder $I \setminus X \in \mathcal{U}$.

Ultrafilter \mathcal{U} definiert eine Art Maß auf Pot(I)

$$\mu_{\mathcal{U}} = \chi_{\mathcal{U}} : X \mapsto \begin{cases} 1 & \text{wenn } X \in \mathcal{U} \\ 0 & \text{wenn } X \notin \mathcal{U} \end{cases}$$

X mit $X \in \mathcal{U}$ heißt auch \mathcal{U} -groß.

Lemma 2.11. Ein Ultrafilter \mathcal{U} definiert eine Äquivalenzrelation $\sim_{\mathcal{U}}$ auf $\prod_{i \in I} A_i$ durch

$$p \sim_{\mathcal{U}} p' : \Leftrightarrow \{i \in I \mid p(i) = p'(i)\} \in \mathcal{U}$$

Beweis. • Reflexiv: klar, da $I \in \mathcal{U}$

• Symmetrie: klar per Definition

• Transitivität: $p \sim_{\mathcal{U}} p' \sim_{\mathcal{U}} p''$

$$\{i \mid p(i) = p''(i)\} \supseteq \{i \mid p(i) = p'(i)\} \cap \{i \mid p'(i) = p''(i)\} \in \mathcal{U} \cap \mathcal{U} = \mathcal{U}.$$

Definition 2.12. Seien $\mathfrak{A}_i (i \in I)$ \mathcal{L} -Strukturen, \mathcal{U} ein Ultrafilter auf I.

Das Ultraprodukt der \mathfrak{A}_i bezüglich \mathcal{U} ist die \mathcal{L} -Struktur

$$\prod_{i\in I} \mathfrak{A}_i/\sim_{\mathcal{U}}$$

mit Träger $\prod_{i \in I} A_i / \sim_{\mathcal{U}}$ und

$$(p_1/\sim_{\mathcal{U}}, \dots, p_m/\sim_{\mathcal{U}}) \in R^{\prod_{i \in I} \mathfrak{A}_i/\sim_{\mathcal{U}}} :\Leftrightarrow \{i \mid (p_1(i), \dots, p_n(i)) \in R_i^{\mathfrak{A}}\} \in \mathcal{U}$$

$$f^{\prod_{i \in I} \mathfrak{A}_i/\sim_{\mathcal{U}}}(p_1/\sim_{\mathcal{U}}, \dots, p_m/\sim_{\mathcal{U}}) = p/\sim_{\mathcal{U}} :\Leftrightarrow \{i \mid f^{\mathfrak{A}_i}(p_1(i), \dots, p_n(i)) = p(i)\} \in \mathcal{U}$$

Beweis. Wohldefiniertheit

Seien $p_1 \sim_{\mathcal{U}} p'_1, \dots, p_n \sim_{\mathcal{U}} p'_n$ zu zeigen ist

$$X := \{i \mid (p_1(i), \dots, p_n(i)) \in R^{\mathfrak{A}_i}\} \in \mathcal{U} \Leftrightarrow \{i \mid (p'_1(i), \dots, p'_n(i)) \in R^{\mathfrak{A}_i}\} \in \mathcal{U}$$

Sei $X_j = \{i \mid p_j(i) = p'_j(i)\} \in \mathcal{U}.$

Falls $X \in \mathcal{U}$ auf $X \cap X_1 \cap \cdots \cap X_n \in \mathcal{U}$ gilt

$$\begin{cases}
(p_1(i), \dots, p_n(i)) \in R^{\mathfrak{A}_i} \\
p_1(i) = p'_1(i) \\
\vdots \\
p_n(i) = p'_n(i)
\end{cases} \Rightarrow (p'_1(i), \dots, p'_n(i)) \in R^{\mathfrak{A}_i}$$

Analog für Funktionszeichen.

Warum existiert überhaupt solch ein $p_{\mathcal{U}}$?

Man sieht, dass $f^{\prod_{i \in I} \mathfrak{A}_i}(p_1, \dots, p_n)/\mathcal{U}$ es tut.

Falls $\mathfrak{A}_i = \mathfrak{A}$ für alle $i \in I$ dann heißt $\prod_{i \in I} \mathfrak{A}/\mathcal{U} = \mathfrak{A}^I/\mathcal{U}$ auch Ultrapotenz von \mathfrak{A} . \square

Satz 2.13 (Satz von Łos). Sei φ eine \mathcal{L} -Aussage dann gilt

$$\prod_{i \in I} \mathfrak{A}_i / \mathcal{U} \models \varphi \quad \Leftrightarrow \quad \{i \mid \mathfrak{A}_i \models \varphi\} \in \mathcal{U}$$

Insbesondere

- falls $\mathfrak{A}_i \models T$ für alle i, dann $\prod_{i \in I} \mathfrak{A}_i / \mathcal{U} \models T$
- falls $\mathfrak{A}_i \equiv \mathfrak{A}_i$ für alle $i \in I$, dann $\prod \mathfrak{A}_i/\mathcal{U} \equiv \mathfrak{A}_i$

Folgerung 2.14.

$$\delta: \mathfrak{A} \to \mathfrak{A}^I/\mathcal{U}, \quad a \mapsto (a, a, \dots, a, a)/\mathcal{U}$$

ist elementare Einbettung, das heißt

$$\mathfrak{A} \preceq \mathfrak{A}^I/\mathcal{U}$$

Beweis. zum Satz von Łos (Skizze)

Induktion über den Aufbau der Formeln

- φ atomar: Entweder Induktion über den Aufbau der Terme oder betrachte termreduzierte Formeln. Dazu sei f einstellig und c Konstante eine atomare Formel ist auch $ffc \doteq c$, diese ist aber äquivalent zu $\exists x (fc \doteq x \land fx \doteq c)$. Das heißt ohne Einschränkung kann man nur atomare Formeln der Formen $R\tau_1 \dots \tau_n$ oder $\tau_1 \doteq \tau_2$ oder $\tau_1 = \tau_2$ oder $\tau_2 = \tau_3 = \tau_2$ oder $\tau_3 = \tau_3 = \tau_3 = \tau_3$ betrachten, wobei $\tau_i, \tau_j = \tau_j = \tau_j$ konstanten oder Individuenvariablen sind.
- Satz von Łos für termreduzierte atomare Formeln ist im Wesentlichen die Definition der \mathcal{L} -Struktur auf $\prod A_i / \sim_{\mathcal{U}}$.
- Induktion:

Für und

$$\prod \mathfrak{A}_{i}/\mathcal{U} \models (\varphi \wedge \psi)
\Leftrightarrow \prod \mathfrak{A}_{i}/\mathcal{U} \models \phi \text{ und } \prod \mathfrak{A}_{i}/\mathcal{U} \models \psi
\Leftrightarrow I_{\varphi} = \{i \mid \mathfrak{A}_{i} \models \varphi\} \in \mathcal{U} \text{ und } I_{\psi} = \{i \mid \mathfrak{A}_{i} \models \psi\} \in \mathcal{U}
\Leftrightarrow \{i \mid \mathfrak{A}_{i} \models \varphi \wedge \psi\} = I_{\varphi} \cap I_{\psi} \in \mathcal{U}$$

Für nicht

$$\begin{split} &\prod_{i \in I} \mathfrak{A}_i / \mathcal{U} \models \neg \varphi \\ \Leftrightarrow &\prod_{i \in I} \mathfrak{A}_i / \mathcal{U} \not\models \varphi \\ \Leftrightarrow &I_{\varphi} = \{i \mid \mathfrak{A}_i \models \varphi\} \notin \mathcal{U} \\ &\overset{\text{Ultra}}{\Leftrightarrow} I \setminus I_{\varphi} \{i \mid \mathfrak{A}_i \models \neg \varphi\} \in \mathcal{U} \end{split}$$

Für Existenz

$$\prod_{i \in I} \mathfrak{A}_i / \mathcal{U} \models \exists x \varphi$$

$$\Leftrightarrow \text{ex existiert } p \text{ mit } \prod \mathfrak{A}_i / \mathcal{U} \models \varphi(p / \mathcal{U})$$

$$\stackrel{\text{Ind}}{\Leftrightarrow} \text{es existiert } p \text{ mit } \{i \mid \mathfrak{A}_i \models \varphi(p(i))\} \in \mathcal{U}$$

$$\Leftrightarrow \{i \mid \text{ex } p(i) \in A_i \text{ mit } \mathfrak{A}_i \models \varphi(p(i))\} \in \mathcal{U}$$

$$\Leftrightarrow \{i \mid \mathfrak{A}_i \models \exists x \varphi\} \in \mathcal{U}$$

Bemerkung 2.15.
Ultrafilter

• $\langle i \rangle = \{X \subseteq I \mid i \in X\}$ Ultrafilter, der von i erzeugte Haupt $\prod_{i \in I} \mathfrak{A}_i/\langle i \rangle \cong \mathfrak{A}_i$

• Mit Lemma von Zorn (bzw. AC): Jeder eigentliche Filter kann zu einem Ultrafilter erweitert werden.

Definition 2.16. Sei I eine unendliche Menge, betrachte Filter der ω -endlichen Mengen

$$\mathcal{F} = \{ X \mid I \setminus X \text{ endlich} \}$$

 $\mathcal F$ kann zu Ultrafilter $\mathcal U$ erweitert werden. Solche Ultrafilter heißen freie Ultrafilter. Dies sind die nicht-Haupt-Ultrafilter.

Bemerkung 2.17. Wenn \mathfrak{A} endlich ist, dann ist $\mathfrak{A}^I/\mathcal{U} \cong \mathfrak{A}$.

Wenn \mathfrak{A} unendlich ist und \mathcal{U} frei ist, dann ist häufig $\mathfrak{A} \lesssim \prod \mathfrak{A}_i/\mathcal{U}$.

Wenn $|A_i| < |A_{i+1}|$ endlich ist und \mathcal{U} frei, dann ist

$$\left|\prod_{i\in I}\mathfrak{A}_i/\mathcal{U}
ight|=2^{\aleph_0}$$

Wenn $|A_i| = \aleph_0$ für alle i und \mathcal{U} frei,

$$\left|\prod_{i\in I}\mathfrak{A}_i/\mathcal{U}\right|=2^{\aleph_0}$$