BERT

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. NAACL 2018 [PDF]

1简介

近年来的工作显示,预训练可以有效地提高各项NLP任务的成绩。把预训练表征(representation)应 用在下游任务上有两种策略:一种是基于特征,类似于ELMo这种杀鸡取卵式;另一种是微调(finetuning),比如GPT,在下游任务上引入很少的task-specified parameters。二者都包含一个预训练 模型,并且预训练目标都一样,区别在于面对下游任务时,ELMo只提供词表征,而模型需要根据下 游任务确定;GPT则是保留预训练模型,然后在此基础上引入少量的网络层,微调时将调整模型所有 参数。

Jacob Devlin等人认为当前预训练语言模型(如Open GPT)受限于单向建模,由此提出一个深度的 双向语言模型BERT(bidirectional encoder representation from Transformer).

BERT的贡献有两点:

- · 在GPT的基础上,提出双向语言建模,即Masked Language Modeling(MLM);
- · 提出NSP预训练任务,同时来学习句子对的表征;

🥏 感想

BERT指名道姓GPT的单向建模会损害性能,但是依然没有阻止后来GPT2、GPT3的崛起, 而NSP后来也成为BERT的诟病。如果不是BERT简单且高效,恐怕早已被人遗忘。由此可 见,在深度学习领域,在没得到充分的数学证明之前,任何理论和观点是站不住脚的,只有 成绩才能证明一切,并且即使成绩好也只能说明自己的方法有效,无法证明别人的方法不 对。

2模型架构

模型方面,BERT由12层Transformer Encoder层组成,参考 🗉 Transformer ;

输入和输出方面,BERT的输入有两种形式,一种是单句子,另一种是句子对。对于输入的任意句 子,BERT首先通过BPE子词算法将句子转化成token sequence,详见博客《子词算法》。词典大小 为21228, 既包含英文也包含中文;

随后,BERT将根据token sequence生成token id、position id和token type id,并通过lookup的方式得到三种embedding。以单句子 I like playing soccer和句子对 (I like playing soccer,我喜欢踢足球)两种输入为例,得到的id分别为:

Plain	Text												
1	token:		[CLS]	i	like	play	##ing	soc	##cer	[SEP]			
2	token id:		101	151	8993	8942	8221	11405	10326	102			
3	position i	d:	0	1	2	3	4	5	6	7			
4	token type	id:	0	0	0	0	0	0	0	0			
5													
6													
7	token:		[CLS]	i	like	play	##ing	soc	##cer	[SEP]	我	喜	
	欢 踢	足	球	[SEF	P]								
8	token id:		101	151	8993	8942	8221	11405	10326	102	2769	1599	
	3614 6677	6639	9 441	.3	102								
9	position i	d:	0	1	2	3	4	5	6	7	8	9	
	10 11	12	13	1	L4								
10	token type	id:	0	0	0	0	0	0	0	0	1	1	
	1 1	1	1	1	L								

- ·引入[CLS]和[SEP]两个特殊符号将两种输入形式统一起来:[CLS]总是位于句子首位,用于表达句子的整体语义,[SEP]为分隔符;
- · 引入token type id来区分当前token所属的句子id;
- · BERT的position embedding不再是固定的正弦余弦曲线,而是通过学习生成;

最终,将得到的token embedding、position embedding和token type embedding相加,即为BERT最终的输入。

3 预训练任务

BERT的预训练任务有Masked Language Modeling(MLM)和Next Sentence Prediction(NSP)两个。

3.1 MLM

BERT随机用[MASK]字符来覆盖token,然后通过上下文来预测被遮掩的字符的真实id,这样既可以避免"偷窥"还能起到预训练"语言模型"的作用。具体地,BERT随机选择15%的token来预测,一旦第i个token被选中,有三种处理结果:

- · 80%的概率用[MASK]替换
- · 10%的概率用随机token替换
- · 10%的概率不替换

无论采取那种处理,都通过交叉熵损失来预测。

3.2 NSP

BERT在[CLS]字符处,预测输入的句子对是否相邻,这个预训练任务主要的目的是学习句子间的语 义。实际操作时,将生成等量的正负句子对样例(分别对应标签IsNext和NotNext)数据以供训练。

3.3 预训练语料

预训练的语料来自于BookCorpus和English Wikipedia(只抽取文本文章,忽略列表、表格和标 题)。这里作者指出:为了抽取出连续的长句子,使用文档语料而不是打乱的句子语料很关键。

其他预训练超参数

· batch size: 256

· max_seq_len: 512(前90% steps使用128的序列长度,后10% steps使用512的序列长 度)

· epochs: 40

· 优化器: Adam, $\beta_1=0.9$, $\beta_2=0.999$, L2 weight decay = 0.01

· 学习率: 1e-4, 学习率线性衰减

· 激活函数: gelu (same as GPT)

· 正则: 所有层使用dropout=0.1

· 损失值: mean masked LM likelihood + mean next sentence prediction likelihood

4微调任务

微调的方式和GPT一样,最大化减少task-specific参数。

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

(c) Question Answering Tasks: SQuAD v1.1

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

🤗 微调超参数和预训练一致,除了:

· batch_size: 16, 32

· learning_rate: 5e-5, 3e-5, 2e-5

· number of epochs: 2, 3, 4

5 实验结果

BERT刷新了11项NLP任务的成绩,其中8个glue任务、SQuAD 1/SQuAD 2和SWAG,实验结果对比 如下:

1. GLUE (8个任务)

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-Onen AT SOTA	80 6/80 1	66 1	82.3	93.2	35.0	81 N	86 O	61 7	74 0

110 Open111 00 111	00.0/00.1	00.1	04.5	10.4	22.0	01.0	00.0	01.7	17.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$\mathrm{BERT}_{\mathrm{LARGE}}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

2. SQuAD (2个任务)

System	D	ev	Te	st
	EM	F1	EM	F1
Top Leaderboard System	s (Dec	10th,	2018)	
Human	-	-	82.3	91.2
#1 Ensemble - nlnet	-	-	86.0	91.7
#2 Ensemble - QANet	-	-	84.5	90.5
Publishe	ed			
BiDAF+ELMo (Single)	-	85.6	-	85.8
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5
Ours				
BERT _{BASE} (Single)	80.8	88.5	-	-
BERT _{LARGE} (Single)	84.1	90.9	-	-
BERT _{LARGE} (Ensemble)	85.8	91.8	-	-
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93.2

Table 2: SQuAD 1.1 results. The BERT ensemble is 7x systems which use different pre-training checkpoints and fine-tuning seeds.

System	D	ev	Test		
•	EM	F1	EM	F1	
Top Leaderboard Systems	(Dec	10th,	2018)		
Human	86.3	89.0	86.9	89.5	
#1 Single - MIR-MRC (F-Net)	-	-	74.8	78.0	
#2 Single - nlnet	-	-	74.2	77.1	
Publishe	d				
unet (Ensemble)	-	-	71.4	74.9	
SLQA+ (Single)	-		71.4	74.4	
Ours					
BERT _{LARGE} (Single)	78.7	81.9	80.0	83.1	

Table 3: SQuAD 2.0 results. We exclude entries that use BERT as one of their components.

3. SWAG

System	Dev	Test
ESIM+GloVe	51.9	52.7
ESIM+ELMo	59.1	59.2
OpenAI GPT	-	78.0

BERT _{BASE} BERT _{LARGE}	81.6 86.6	86.3
Human (expert) [†] Human (5 annotations) [†]	-	85.0 88.0

6总结

BERT的核心:

·输入mask机制

·三层embedding输入

· 两个预训练任务: mlm、nsp

• 微调