Prednášky z Matematiky (4) – Logiky pre informatikov

Ján Kľuka, Jozef Šiška

Katedra aplikovanej informatiky FMFI UK Bratislava

Letný semester 2015/2016

11. prednáška

Prvorádové vyplývanie

9. mája 2016

Obsah 11. prednášky

1 Logika prvého rádu Korektnosť tablového kalkulu pre logiku prvého rádu Tablové dôkazy prvorádového vyplývania

Splnenie formuly v štruktúre

Definícia 1.1

Nech $\mathcal{M}=(M,i)$ je štruktúra, e je ohodnotenie premenných. Relácia formula A je splnená v štruktúre \mathcal{M} pri ohodnotení e (skrátene $\mathcal{M}\models A[e]$) má nasledovnú rekurzívnu definíciu:

- $\mathcal{M} \models t_1 \doteq t_2[e] \text{ vtt } t_1^{\mathcal{M}}[e] = t_2^{\mathcal{M}}[e],$
- $\mathcal{M} \models P(t_1,\ldots,t_n)[e] \text{ vtt } (t_1^{\mathcal{M}}[e],\ldots,t_n^{\mathcal{M}}[e]) \in P^{\mathcal{M}},$
- $\mathcal{M} \models \neg A[e]$ vtt $\mathcal{M} \not\models A[e]$,
- $\mathcal{M} \models (A \land B)[e]$ vtt $\mathcal{M} \models A[e]$ a zároveň $\mathcal{M} \models B[e]$,
- $\mathcal{M} \models (A \lor B)[e]$ vtt $\mathcal{M} \models A[e]$ alebo $\mathcal{M} \models B[e]$,
- $\mathcal{M} \models (A \rightarrow B)[e]$ vtt $\mathcal{M} \not\models A[e]$ alebo $\mathcal{M} \models B[e]$,
- ▶ $\mathcal{M} \models \exists x A[e]$ vtt pre nejaký prvok $m \in M$ máme $\mathcal{M} \models A[e(x/m)]$,
- ▶ $\mathcal{M} \models \forall y A[e]$ vtt pre každý prvok $m \in M$ máme $\mathcal{M} \models A[e(x/m)]$,

pre všetky arity n > 0, všetky predikátové symboly P s aritou n, všetky termy t_1, t_2, \ldots, t_n , a všetky formuly A, B.

Splnenie množiny formúl, teórie

Definícia 1.2

Nech \mathcal{M} je štruktúra pre \mathcal{L} .

- Nech e je ohodnotenie výrokových premenných. Množina S formúl jazyka $\mathcal L$ je splnená v štruktúre $\mathcal M$ pri ohodnotení e $(\mathcal{M} \models S[e])$ vtt pre všetky formuly $Y \neq S$ platí $\mathcal{M} \models Y[e]$.
- Formula X jazyka \mathcal{L} je (súčasne) splnená v štruktúre \mathcal{M} $(\mathcal{M} \models X)$ vtt X je splnená v štruktúre \mathcal{M} pri každom ohodnotení e.
- Množina S formúl jazyka \mathcal{L} je splnená v štruktúre \mathcal{M} (skrátene $\mathcal{M} \models S$) vtt pre všetky formuly $Y \neq S$ platí $\mathcal{M} \models Y$.

Definícia 1.3

Množinu formúl T jazyka \mathcal{L} nazývame teória v jazyku \mathcal{L} vtt je spočítateľná a každá jej formula je uzavretá.

Platné formuly a prvorádové vyplývanie

Definícia 1.4

Nech X je formula v jazyku \mathcal{L} . Formula X je platná (skrátene $\models X$) vtt X je splnená v každej štruktúre \mathcal{M} pre \mathcal{L} .

Definícia 1.5

Nech X je formula v jazyku \mathcal{L} , nech S je množina formúl v jazyku \mathcal{L} . Formula X (prvorádovo) vyplýva z S (skrátene $S \models X$) vtt pre každú štruktúru \mathcal{M} pre \mathcal{L} a každé ohodnotenie e platí, že ak je S splnená v \mathcal{M} pri e, tak aj X je splnená v \mathcal{M} pri e.

Prvorádová splniteľnosť a vyplývanie

Definícia 1.6

Nech X je formula v jazyku \mathcal{L} , nech S je množina formúl v jazyku \mathcal{L} .

- Formula X je (prvorádovo) splniteľná vtt existuje taká štruktúra \mathcal{M} pre \mathcal{L} a také ohodnotenie indivíduových premenných e, že platí $\mathcal{M} \models X[e]$. Inak je X (prvorádovo) nesplniteľná.
- Množina S je (súčasne prvorádovo) splniteľná vtt existuje taká štruktúra \mathcal{M} pre \mathcal{L} a existuje také ohodnotenie indivíduových premenných e, že $\mathcal{M} \models S[e]$. Inak je S (súčasne prvorádovo) nesplniteľná.

Tvrdenie 1.7

Nech X je formula a S je množina formúl v jazyku \mathcal{L} . Formula X prvorádovo vyplýva z S vtt množina $S \cup \{\neg X\}$ je prvorádovo súčasne nesplniteľná.

Splnenie označených formúl, vyplývanie

Definícia 1.8

Nech \mathcal{M} je štruktúra pre jazyk \mathcal{L} , nech e je ohodnotenie indivíduových premenných, nech X je formula jazyka \mathcal{L} . Štruktúra \mathcal{M} spĺňa označenú formulu $\mathbf{T}X$ pri ohodnotení e vtt $\mathcal{M} \models X[e]$.

Štruktúra $\mathcal M$ spĺňa označenú formulu $\mathbf F X$ pri ohodnotení e vtt $\mathcal M
ot \not = X[e].$

Splnenie množiny ozn. formúl a splniteľnosť definujeme analogicky ako pre neoznačené formuly.

Tvrdenie 1.9

Nech X je formula a S je množina formúl v jazyku \mathcal{L} . Formula X prvorádovo vyplýva z S vtt množina $\{ TY \mid Y \in S \} \cup \{ FX \}$ je prvorádovo súčasne nesplniteľná.

Jednotný zápis označených formúl — α

Definícia 1.10 (Jednotný zápis označených formúl typu α)

Označená formula A^+ je typu α ak vtt má jeden z tvarov v ľavom stĺpci nasledujúcej tabuľky pre nejaké formuly X a Y. Takéto formuly označujeme písmenom α ; α_1 označuje príslušnú označenú formulu zo stredného stĺpca a α_2 príslušnú formulu z pravého stĺpca.

α	α_1	α_2
$T(X \wedge Y)$	TX	TY
$\mathbf{F}(X \vee Y)$	FX	$\mathbf{F}Y$
$\mathbf{F}(X \to Y)$	TX	$\mathbf{F}Y$
$T \neg X$	FX	FX
$\mathbf{F} \neg X$	TX	TX

Jednotný zápis označených formúl — β

Definícia 1.11 (Jednotný zápis označených formúl typu β)

Označená formula B^+ je typu β vtt má jeden z tvarov v ľavom stĺpci nasledujúcej tabuľky pre nejaké formuly X a Y.

Takéto formuly označujeme písmenom β ;

 β_1 označuje príslušnú označenú formulu zo stredného stĺpca a β_2 príslušnú formulu z pravého stĺpca.

$$\begin{array}{c|cccc} \beta & \beta_1 & \beta_2 \\ \hline F(X \wedge Y) & FX & FY \\ T(X \vee Y) & TX & TY \\ T(X \to Y) & FX & TY \\ \end{array}$$

Jednotný zápis označených formúl — γ a δ

Definícia 1.12 (Jednotný zápis označených formúl typov γ a δ)

Označená formula C^+ je typu γ vtt má jeden z tvarov v ľavom stĺpci nasledujúcej tabuľky pre nejakú formulu A a indivíduovú premennú x. Takéto formuly označujeme písmenom γ ;

 $\gamma_{\mathsf{x}}(t)$ označuje príslušnú označenú formulu z pravého stĺpca.

$$\begin{array}{c|c}
\gamma & \gamma_{x}(t) \\
\hline
\mathbf{F} \exists x A & \mathbf{F} A_{x}(t) \\
\mathbf{T} \forall x A & \mathbf{T} A_{x}(t)
\end{array}$$

Označená formula D^+ je typu δ vtt má jeden z tvarov v ľavom stĺpci nasledujúcej tabuľky pre nejakú formulu A a indivíduovú premennú x. Takéto formuly označujeme písmenom δ ;

 $\delta_{x}(y)$ označuje príslušnú označenú formulu z pravého stĺpca.

$$\begin{array}{c|cc}
\delta & \delta_{x}(y) \\
\hline
\mathbf{T} \exists x A & \mathbf{T} A_{x}(y) \\
\mathbf{F} \forall x A & \mathbf{F} A_{x}(y)
\end{array}$$

J. Kľuka, J. Šiška Logika pre informatikov

Spĺňanie ozn. formúl v jednotnom zápise

Pozorovanie 1.13

Nech \mathcal{M} je štruktúra pre jazyk \mathcal{L} , nech e je ohodnotenie indivíduových premenných, nech α , β , γ , δ sú označené formuly príslušných typov v jazyku L.

- 1 $\mathcal{M} \models \alpha[e]$ vtt $\mathcal{M} \models \alpha_1[e]$ a $\mathcal{M} \models \alpha_2[e]$.
- 2 $\mathcal{M} \models \beta[e]$ vtt $\mathcal{M} \models \beta_1[e]$ alebo $\mathcal{M} \models \beta_2[e]$.
- 3 $\mathcal{M} \models \gamma[e]$ vtt $\mathcal{M} \models \gamma_x(x)[e(x/a)]$ pre l'ubovolné $a \in \mathcal{M}$. Špeciálne, ak $\mathcal{M} \models \gamma[e]$, tak $\mathcal{M} \models \gamma_x(t)[e]$ pre ľubovoľný term t substituovateľný za x v $\gamma_x(x)$.
- 4 Nech y je premenná substituovateľná za x v $\delta_{x}(x)$. $\mathcal{M} \models \delta[e]$ vtt existuje $a \in M$ také, že $\mathcal{M} \models \delta_x(y)[e(y/a)]$.

Tablo pre množinu označených formúl

Definícia 1.14

Analytické tablo pre množinu označených formúl S⁺ (skrátene tablo pre S⁺) je binárny strom, ktorého vrcholy obsahujú označené formuly a ktorý je skonštruovaný podľa nasledovných rekurzívnych pravidiel:

 Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú formulu A^+ z S^+ je tablom pre S^+ .

Tablo pre množinu označených formúl

Pokračovanie Def. 1.14

- Nech \mathcal{T} je tablo pre S^+ a ℓ je nejaký jeho list. Potom tablom pre S^+ je aj každé *priame rozšírenie* \mathcal{T} ktoroukoľvek z operácií:
 - A: Ak sa na vetve π_ℓ (ceste z koreňa do ℓ) vyskytuje nejaká označená formula α , tak ako jediné dieťa ℓ pripojíme nový vrchol obsahujúci α_1 alebo α_2 .
 - B: Ak sa na vetve π_{ℓ} vyskytuje nejaká označená formula β , tak ako deti ℓ pripojíme dva nové vrcholy, pričom ľavé dieťa bude obsahovať β_1 a pravé β_2 .
 - C: Ak sa na vetve π_ℓ vyskytuje nejaká označená formula γ , tak ako jediné dieťa ℓ pripojíme nový vrchol obsahujúci $\gamma_x(t)$ pre ľubovoľný term t substituovateľný za x v $\gamma_x(x)$.
 - D: Ak sa na vetve π_ℓ vyskytuje nejaká označená formula δ , tak ako jediné dieťa ℓ pripojíme nový vrchol obsahujúci $\delta_x(y)$ pre ľubovoľnú premennú y, ktorá je substitovateľná za x v $\delta_x(x)$ a nemá voľný výskyt v žiadnej formule na vetve π_ℓ .
 - Ax: Ako jediné dieťa ℓ pripojíme nový vrchol obsahujúci ľubovoľnú

Korektnosť prvorádových tabiel

Otvorené a uzavreté vetvy a tablá sú definované rovnako ako pri tablách pre výrokovú logiku.

Veta 1.15 (Korektnosť tablového kalkulu)

Nech S^+ je množina označených formúl a \mathcal{T} je uzavreté tablo pre S^+ . Potom je množina S^+ nesplniteľná.

Dôkaz (nepriamy).

Nech S^+ je splniteľná. Úplnou indukciou na počet vrcholov tabla $\mathcal T$ pre S^+ dokážeme, že niektorá vetva $\mathcal T$ je splniteľná (a teda otvorená).

...

Tablové dôkazy prvorádového vyplývania

Príklad 1.16

 A_1 Všetky psy v noci zavýjajú.

A₂ Každý, kto má nejakú mačku, nemá žiadne myši.

A₃ Ľahkí spáči nemajú nič, čo v noci zavýja.

A₄ Juro má buď mačku alebo psa.

X Ak je Juro ľahký spáč, tak Juro nemá žiadne myši.

Dokážme, že z teórie, ktorá vznikne formalizáciou tvrdení A_1 až A_4 , vyplýva záver X.

Tablové dôkazy prvorádového vyplývania s rovnosťou

Príklad 1 17

Nech \mathcal{L} obsahuje binárny funkčný symbol \circ .

Dohodnime sa, že termy $\circ(t_1, t_2)$ budeme skrátene zapisovať $(t_1 \circ t_2)$.

$$B_1 \ \forall x \forall y \ (x \circ (y \circ z)) \doteq ((x \circ y) \circ z)$$

$$B_2 \exists u \forall x (u \circ x) \doteq x$$

$$B_3 \exists v \forall x (x \circ v) \doteq x$$

$$Y \exists w \forall x ((w \circ x) \doteq x \land (x \circ w) \doteq x)$$

Dokážme, že z teórie $\{B_1, B_2, B_3\}$ vyplýva záver Y.

Literatúra

SMULLYAN, R. M. *Logika prvého rádu*. Alfa, 1979. Z angl. orig. *First-Order Logic*, Berlin-Heidelberg: Springer-Verlag, 1968 preložil Svätoslav Mathé.

ŠVEJDAR, V. Logika: neúplnost, složitost, nutnost. Academia, 2002. Prístupné aj na http://www1.cuni.cz/~svejdar/book/LogikaSve2002.pdf.