Exercise Sheet 6 due: 2022-06-16 23:55

Maximizing nongaussianity

Exercise T6.1: Solving the ICA problem by maximizing nongaussianity (tutorial)

- (a) What are the ambiguities and the limitations of the solutions found by ICA?
- (b) What role does whitening/sphering play in the context of ICA?
- (c) Why are Gaussians bad for ICA?
- (d) How do we find independent components by maximizing nongaussianity?
- (e) What measures do we have for nongaussianity and how do we use each for solving the ICA problem?

Exercise H6.1: Kurtosis of Toy Data

(homework, 6 points)

The file distrib.mat contains three toy datasets (uniform, normal, laplacian)¹. Each is made up of 10,000 samples with 2 sources (i.e. N=2, p=10,000). You are asked to do the following for each dataset:

(a) Apply the following mixing matrix $\underline{\mathbf{A}}$ to the original sources $\underline{\mathbf{s}}$:

$$\underline{\mathbf{A}} = \begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix} \\
\underline{\mathbf{x}} = \underline{\mathbf{A}}\underline{\mathbf{s}}.$$

- (b) Center the mixtures x to zero mean.
- (c) Decorrelate the mixtures from (b) by applying principal component analysis (PCA) on them and project them onto the PCs.
- (d) Scale the decorrelated mixtures from (c) to unit variance in each PC direction. The mixtures are now *whitened* (*sphered*).
- (e) Rotate the whitened mixtures by different angles θ

$$\underline{\mathbf{x}}_{\theta} = \underline{\mathbf{R}}_{\theta} \underline{\mathbf{x}} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \underline{\mathbf{x}}$$
$$\theta = 0, \frac{\pi}{50}, \dots, 2\pi$$

and calculate the (excess) kurtosis² empirically for each dimension in \mathbf{x} :

$$\operatorname{kurt}(x_{\theta}) = \langle x_{\theta}^4 \rangle - 3 \underbrace{\langle x_{\theta}^2 \rangle^2}_{=1}.$$

¹Python users can load the content of .mat files into a dict using the function loadmat from scipy.io

²Here and in the lecture notes the so-called *excess* Kurtosis is used which yields a value of 0 for normally distributed random variables. Additionally, this definition does not explicitly normalize by the standard deviation, because the standard deviation of each dimension is 1 after whitening.

- (f) Find the minimum and maximum kurtosis value for the first dimension and rotate the data accordingly.
 - Plot the original dataset (sources) and the mixtures after the steps (a), (b), (c), (d), and (f) as a scatter plot and display the respective marginal histograms.
 - For step (e) plot the kurtosis value $\operatorname{kurt}(x_{\theta})$ of each dimension in $\underline{\mathbf{x}}$ as a function of the rotation angle θ for each dimension.
 - Compare the histograms after rotation by θ_{min} and θ_{max} for the different distributions.

Exercise H6.2: Negentropy is scale-invariant

(homework, 4 points)

The differential entropy of an N-dimensional random vector \underline{X} with probability density $p(\underline{\mathbf{x}})$ is defined as

$$H(\underline{X}) = -\int_{\mathbb{R}^N} p(\underline{\mathbf{x}}) \log p(\underline{\mathbf{x}}) d\underline{\mathbf{x}}$$

The negentropy is defined as

$$J(\underline{X}) = H(\underline{X}_{Gauss}) - H(\underline{X})$$

where \underline{X}_{Gauss} is an N-dimensional multivariate Gaussian random vector with the same covariance matrix as X.

Show that the negentropy is invariant w.r.t. to an invertible $(\det \underline{\mathbf{A}} \neq 0)$ linear transformations $\underline{\mathbf{y}} = \underline{\mathbf{A}} \underline{\mathbf{x}}$, i.e.

$$J(\underline{\mathbf{A}}\,\underline{X}) = J(\underline{X})$$

from which it follows that the negentropy is scale-invariant.

Use that the differential entropy of a multivariate N-dimensional Gaussian random vector \underline{X} with covariance matrix Σ has the form

$$H(\underline{X}_{Gauss}) = \frac{1}{2} \, \log \, |\det \, \underline{\boldsymbol{\Sigma}} \, | + \frac{N}{2} \, (1 + \log \, 2\pi)$$

Remark: Differential entropy itself is not scale-invariant.