Treatment Effects Practical Session #1: Testing the LATE Model

Frank DiTraglia

Oxford Econometrics Summer School

Introduction

This practical session is based on Huber & Mellace (2015). You may find it helpful to consult the paper and or my lecture notes. See Hands-On Programming with R for a review of basic R that you will need below. My notes on this book are available here.

Exercises

 Write a function to simulate n iid draws from the model given below, with arguments n, alpha and beta. Your function should return a data frame (or tibble) with named columns D, Z, and Y.

$$\begin{split} Y &= D + \beta Z + U \\ D &= 1\{\alpha Z + \epsilon > 0\} \\ \begin{bmatrix} U \\ \epsilon \end{bmatrix} &\sim \text{Normal}(0, \Sigma), \quad \Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} \\ Z &\sim \text{Bernoulli}(0.5), \text{ indep. of } (U, \epsilon) \end{split}$$

- 2. Answer the following questions about the model from the preceding part.
 - (a) Is the treatment D endogenous? How can you tell?
 - (b) What is the distribution of treatment effects? What is the LATE in this model?
 - (c) What is the role of β ?
 - (d) What is the role of α ?
 - (e) Which of the LATE assumptions does the model satisfy?
- 3. Write a function called get_theta() to compute the sample analogues of θ_1 , θ_2 , θ_3 , θ_4 defined in Equation (7) of Huber & Mellace (2015). Your function should take a single input argument: a data frame (or tibble) with columns named D, Z, and Y corresponding to the model from above. It should return a vector with four named elements: theta1, theta2, theta3, and theta4.

- 4. Check your function from the preceding part by generating 100,000 observations from the model in part 1 with parameter values $\alpha = 0.6$ and $\beta = 1$. You should detect a violation of the LATE assumptions. Calculate the Wald estimand. Does it equal the LATE? Repeat for $\beta = 0$. How do you results change?
- 5. Repeat the preceding part for a variety of values of β until you find one for which the LATE assumptions are violated but you *cannot* detect a violation of the inequalities from the paper. Why is this possible?
- 6. Load the wooldridge dataset and read the documentation for the card dataset. Once you understand the contents of the dataset, carry out the following steps to construct a data frame (or tibble) called card_dat:
 - (a) Define the instrument Z as a dummy variable for living near a 4-year college in 1966. (The idea here is that living near a college reduces your costs of attending in a way that doesn't affect wages.)
 - (b) Define the outcome Y as the log of weekly earnings in 1976.
 - (c) Construct the treatment D as a dummy variable that equals one if a person has completed 16 years of education or more by 1976. This is effectively a proxy for "has a four-year degree."
- 7. Apply your function get_theta() to card_dat. Do you detect any violations of the LATE model? Re-read the documentation for card to see if you can find any potential explanation for your results. Interpret the IV estimate for card_dat in light of this.
- 8. **Bonus Question:** If you found the preceding parts too easy, here's a challenge for you! We did not consider statistical significance when looking for a violation of the LATE model in the preceding part. Use the function boot() from the R package boot, along with your function get_theta() from above to implement the "simple bootstrap with Bonferroni adjustment" described on page 402 of Huber & Mellace (2015) and apply it to card_dat. Briefly discuss your findings.