

Structural and Thermal Analysis with MATLAB

Sergio Obando Quintero – Application Engineer
Sarah Palfreyman – Technical Marketing & Product Management

Agenda

- Motivation
- MATLAB for Structural and Thermal Analysis
 - Workflow
 - Application Example 1: Heat Tolerance of Robotic Component [DEMO]
 - Application Example 2: Linear Elastic Study of Bracket [DEMO]
 - Application Example 3: Structural Dynamics of Tuning Fork [DEMO]
- Key Takeaways and Resources

Motivation

Structural and Thermal Analysis lets you ...

- ... assess a component for ...
 - Deformation, stress and strain related to loading
 - Failure under loading to determine its fitness-for-use
 - Vibration and resonance
 - Thermal response to applied heat sources
- Finite Element Analysis (FEA) is a popular approach for solving the underlying PDEs which capture the physics.

Applications

Thermal Analysis | Structural Analysis | General PDEs

- Conduction dominant heat transfer
- Linear static deflection and stress analysis
- Modal analysis
- Transient linear dynamics
- General PDE formulations

Heat Transfer in a Pipe

10 lines of code

```
pdem = createpde('thermal');
gm = multicylinder([20,25,35], 20, 'Void', [1,0,0]);
pdem.Geometry = gm;
generateMesh(pdem);
thermalProperties(pdem,'cell',1,'ThermalConductivity',40);
thermalProperties(pdem,'cell',2,'ThermalConductivity',0.15);
thermalBC(pdem,'Face',3,'Temperature',85);
thermalBC(pdem,'Face',7,'Temperature',4);
result = solve(pdem);
pdeplot3D(pdem,'ColormapData',result.Temperature)
```


PDE Workflow

GEOMETRY DEVELOP MODELS CAD (STL) **PRIMITIVES MESHING**

ANALYSIS

INTEGRATE AND SCALE

SHARE

Application Example 1

Parametric Thermal Analysis

Heat Tolerance of Components Exposed to Electronics

Objective:

- Calculate Max and Bulk body temperatures
- Test different materials for the robotic component
- Model relationship between thermal conductivity and max temperature

Application Example 2

Structural Analysis

Linear Elastic Deformation Parametric Study of Bracket with a Hole

Objective:

- Determine maximum deflection of bracket under load
- Parametric study of multiple materials
- Compute load deflection curves
- Integrate analysis into App for deployment

Application Example 3

Modal and Transient Linear Dynamics

Structural Dynamics of Tuning Fork

Objective:

- Find natural frequencies and mode shapes
- Visualize and animate results
- Simulate dynamics of fork
- Visualize displacement and spectrum

Mode	Frequency
1	0.0039119
2	0.0053546
3	0.0055787
4	0.0082541
5	0.0083016
6	0.0086049
7	467.27
8	714.48

Key Takeaways

- MATLAB offers an easy-to-use FEA workflow
- MATLAB tools which can be used for structural and thermal analysis
 - Live Editor
 - App Designer
 - Partial Differential Equation Toolbox
- Leverage MATLAB environment and tools to extend your mathematical analysis
 - Parallel Computing Toolbox
 - Symbolic Math Toolbox
 - Statistics and Machine Learning Toolbox
 - MATLAB Compiler

Resources **Finite Element Analysis**

» Learn more

» Learn more

Products Solutions Academia Support Community Events

https://www.mathworks.com/discovery/finite-element-analysis.html

magnetostatics.

and visualize results.

Resources https://www.mathworks.com/videos

Engineering Design and Documentation

Modeling an Aircraft Wing Load

Estimate stress and deformation of a 3D aircraft wing using Finite Element Analysis (FEA) based on analytical loading calculations.

- Symbolic Math Toolbox
- Partial Differential Equation Toolbox
- MATLAB Report Generator

Symbolic Analytical load

3D Structural Mechanics

Structural and Thermal Analysis with MATLAB

