Epping Boys High School

4 unit mathematics

Trial DSC Examination 1990

- 1. (a) Express in the form x + iy:
- (i) $\frac{2+3i}{1-2i}$ (ii) Square root of 4+3i
- (b) Given that $\arg Z = \frac{\pi}{6}$, mod $Z = \sqrt{2}$
- (i) Express Z in the form x + iy
- (ii) Express Z^8 in x + iy form.
- (c) Find in mod-arg form all complex numbers z such that $z^3 = 1$. Plot them on an Argand Diagram.
- (d) Solve $z\overline{z} + 2z = \frac{1}{4} + i$ for z = x + iy.
- (e) On an Argand diagram shade in the region containing the points satisfying |z| < 4 or $\frac{\pi}{4} \le \arg z \le \frac{3\pi}{4}$.
- (f) Draw a neat sketch of the locus $\Re(z) = |z 2|$.
- **2.** (i) Show that: (a) $\int_2^3 \frac{2x}{(x^4-1)} dx = \frac{1}{2} \ln \frac{4}{3}$
- **(b)** $\int_0^2 \sqrt{\frac{x}{4-x}} \ dx = \pi 2 \ (\text{Hint: let } x = 4\sin^2 \theta)$
- (ii) Find the following:
- (a) $\int x^3 \log_3 x \ dx$
- **(b)** $\int x^2 \sqrt{1-x} \ dx$
- (iii) If $I_n = \int_0^{\frac{\pi}{4}} \tan^n x \ dx$, show that $I_n + I_{n-2} = \frac{1}{n-1}$. Hence evaluate I_5 .
- 3. (a) Solve the equation $x^4 + x^3 8x^2 + 14x 8 = 0$, being given that 1 + i is one root.
- (b) Show that $x^3 + 4x 1 = 0$ has only one real root, giving the integers between which this root lies.
- (c) Show that if P(x) has a zero α of multiplicity m, then P'(x) has the zero α of multiplicity (m-1).
- (d) Prove that if α is a zero of multiplicity m of the H.C.F. of P(x) and its derivative P'(x), then α is a zero of multiplicity (m+1) of P(x).
- (e) Determine whether $P(x) = 4x^3 + 4x^2 15x 18$ has a repeated zero.
- (f) Prove directly that if $\frac{a}{b}$ is in its lowest terms, and is a rational zero of $P(x) = 8x^4 5x^2 7x + 3$, then b|8 and a|3.
- (g) Given that $\alpha_1, \alpha_2\alpha_3$, are the zeros of $2x^3 4x^2 3x 1$, find:
- (i) $\sum \alpha_i^2$ (ii) $\sum \alpha_i^3$ (iii) $\sum \alpha_i^4$
- (iv) an equation whose roots are $\alpha_1 + \alpha_2$, $\alpha_1 + \alpha_3$, $\alpha_2 + \alpha_3$.

- **4.** (i) (a) If x is real show that $\frac{x^2+2x+1}{x+2}$ is either ≥ 2 or ≥ -4 . (Don't have to use Calculus)
- (b) Determine all the asymptotes of the curve $y = x + \frac{1}{x+2}$
- (c) Draw a careful sketch of the curve $y = x + \frac{1}{x+2}$
- (ii) Given the function $f(x) = x\sqrt{4-x^2}$
- (a) State its natural domain and show that it is an odd function.
- (b) Show that on the curve y = f(x) stationary points occur at $x = -\sqrt{2}, \sqrt{2}$ and determine their nature.
- (c) Draw a neat sketch of the curve y = f(x), indicating all the feature points.
- (d) On different diagrams, sketch the curves (α) y = |f(x)| (β) $y^2 = x^2(4 x^2)$
- **5.** (i) Given the equations of circles $S_1: x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$, $S_2: x^2 + y^2 + 2g_2x + 2f_2y + c_2 = 0$
- (a) Find the centre and radius of S_1 .
- (b) Determine the conditions for y = mx + c to be a common tangent to S_1 and S_2 .
- (c) Find the equation of the tangent common to both $x^2 + y^2 6x 2y = 30$, $x^2 + y^2 9x 3y = 0$.
- (d) "The equation of a circle passing through the points of intersection of circles S_1 and S_2 is $S_1 + \lambda S_2 = 0$, where λ is a real constant". Justify this statement, and consider the case $\lambda = -1$.
- (e) Given that $S_1: x^2 + y^2 + 2x 7 = 0$, $S_2: x^2 + y^2 + 4x 2y 5 = 0$ intersect at the points P, Q:
- (α) Show that the equation of the common chord is x y + 1 = 0;
- (β) Find the length of PQ;
- (γ) Determine the mid-point of PQ;
- (δ) Find the equation of the circle with PQ as its diameter.
- **6.** (i) Find the general solution of the equation $\tan 2x = 2\sin x$

(ii) The point P(x,y) lies on the semi-circle $y=\sqrt{4-x^2}$. A is the foot of the ordinate of P and O is the origin. Show that $\angle POA = \theta = \tan^{-1} \frac{y}{\sqrt{4-y^2}}$. Find $\frac{d\theta}{dy}$ when y = 1.

(iii) A vertical tower stands on a river bank. From a point on the other bank directly opposite and at a height h above the water level, the angle of elevation of the top of the tower is α and the angle of depression of the reflection of the top of the tower is ζ . Prove that the width, x, of the river is $2h\cos\alpha\cos\zeta\csc(\zeta-\alpha)$. The diagram below may be of some assistance to you. (Note: y is the height of the tower).

- 7. (i) P is a point $(a \sec \theta, b \tan \theta)$ on Hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$; whose eccentricity is e, an with foci S, S' (P lies in the first quadrant)
- (a) Show that the equation of the tangent at P is $\frac{x \sec \theta}{a} \frac{y \tan \theta}{b} = 1$ (b) Show that $PS = a(e \sec \theta 1)$ and hence S'P SP = 2a
- (c) The normal at P meets the transverse axis in G.

Show that SG: SP = S'G: S'P = e

- (d) This normal meets the conjugate axis in L. Show that the midpoint M of GL lies on the hyperbola $\frac{x^2}{b^2} \frac{y^2}{a^2} = \frac{(a^2 + b^2)^2}{4a^2b^2}$. Find the eccentricity of this hyperbola in
- (ii) In the complex plane show that the locus of z satisfying |z+3|+|z-3|=10 is an ellipse.
- (**a**) Find:

- (α) The length of major and minor axis
- (β) The equation of directrix
- (γ) The coordinates of its foci
- (b) Draw a neat sketch of the ellipse, clearly indicating all of the above.
- **8.** (i) Consider solid ABCDEF whose height is h, and whose base is a rectangle ABCD, where AB = a, BC = b, and the top edge EF = c.

Consider a rectangular slice A'B'C'D' (parallel to the base ABCD) x units from the top edge, with width Δx .

NOTE: B'C'||BC| and A'B'||AB|

- (a) Show that the volume of the slice is $\Delta V = (\frac{x}{h}a)(c + \frac{b-c}{h}x)\Delta x$
- (b) Hence show that the volume of the solid is $\frac{ha}{6}(2b+c)$
- (ii) Shade in the region of the x-y-plane satisfied by each of the relations $0 \le y \le \sin x$, $0 \le x \le \pi$. Find the volume of the solid generated when this region is rotated through 2π about the line $x = \frac{\pi}{2}$.
- (iii) A particle falls from rest at a height h above the ground. The retardation due to air resistance is KV^2 , where K is a constant. Show that $V^2 = \frac{g}{k}(1 e^{-2kx})$ hence find the greatest possible velocity.
- (iv) A bird is 10m vertically above a man who throws a stone at an angle of projection of θ . The bird is flying with a uniform speed of 14m/sec. in a direction making 60° with the horizontal. Show that, for the stone to hit the bird, $\tan \theta \ge 2 + \sqrt{3}$.