PROBABILITÉS

I - Vocabulaire probabiliste

A) Expériences aléatoires

Définitions : Expérience aléatoire et issue

Une **expérience aléatoire** est une expérience dont on connaît tous les résultats possibles sans savoir à l'avance celui que l'on obtiendra.

Un résultat possible d'une expérience aléatoire s'appelle une issue.

Exemple

Le lancer d'une pièce est une expérience aléatoire qui admet deux issues : pile ou face.

Définitions: Univers et évènement

L'ensemble de toutes les issues possibles d'une expérience aléatoire s'appelle l'**univers**. On le note souvent Ω .

Un événement est une partie (ou sous-ensemble) de l'univers.

Lorsque le résultat de l'expérience aléatoire appartient à un événement, on dit que cet événement est réalisé.

Exemple

Lançons un dé à 6 faces. C'est une expérience aléatoire où l'univers Ω est $\{1; 2; 3; 4; 5; 6\}$.

L'évènement A « Obtenir un nombre pair » est un sous-ensemble de Ω et $A=\{2;4;6\}$.

Définition: Évènement contraire

L'évènement contraire d'un évènement A, noté \overline{A} , est l'ensemble de toutes les issues qui ne réalisent pas A.

Exemple

Dans l'exemple ple précédent, nous avons dit que A « Obtenir un nombre pair » est l'ensemble $A = \{2; 4; 6\}$. Son évènement contraire $\overline{A} = \{1; 3; 5\}$ est l'évènement « Obtenir un nombre impair ».

Remarques

- Si A se réalise toujours, c'est un **évènement certain**. On a : $A = \Omega$ et $\overline{A} = \emptyset$.
- Si A ne se réalise jamais, on parle d'évènement impossible : $A = \emptyset$ et $\overline{A} = \Omega$.
- Dans le vocabulaire de la théorie des ensembles, on dit que \overline{A} est le complémentaire de A dans Ω . On le note $\Omega \setminus A$ ou ${}^{\complement}A$.

B) Réunion et intersection d'évènements

Définition: Réunion

On appelle **réunion** de A et B l'évènement $A \cup B$ constitué des issues qui sont dans A ou dans B (c'est-à-dire dans A, dans B ou dans les deux).

Définition: Intersection

On appelle **intersection** de A et de B l'évènement $A \cap B$ constitué des issues qui sont dans A et dans B (dans les deux, en même temps).

Remarque

On dit que A et B sont **incompatibles** (ou **disjoints**) si $A \cap B = \emptyset$.

II - Calcul de probabilités

Définition : Loi de probabilité

Définir une **loi de probabilité** pour une expérience aléatoire, c'est associer pour toute issue A un nombre compris entre 0 et 1, la **probabilité de l'issue** $\mathbb{P}(A)$, et de sorte que la somme de toutes ces probabilités soit égale à 1.

Exemple

Dans l'activité d'introduction, nous avions construit le tableau suivant qui résume la loi de probabilité de l'expérience aléatoire.

Nombre de faces rouges	0	1	2	3	4
Probabilité	1 27	6 27	12 27	$\frac{8}{27}$	$\frac{0}{27}$

La somme des probabilités est bien égale à 1.

Propriété: Événements incompatibles

Soient deux événements incompatibles A et B (tels que $A \cap B = \emptyset$).

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$$

 $D\acute{e}monstration$. Supposons qu'il y a n issues possibles à l'expérience aléatoire. A est composé de a issues et B de b issues ($0 \le a \le n$ et $0 \le b \le n$).

A et B étant incompatibles, ils n'ont aucune issue en commun. Donc $A \cup B$ est composé de a + b issues. On peut ainsi établir les deux égalités suivantes et conclure.

$$\mathbb{P}(A \cup B) = \frac{a+b}{n}$$
 et $\mathbb{P}(A) + \mathbb{P}(B) = \frac{a}{n} + \frac{b}{n}$

Corollaire

On réalise une expérience aléatoire et notons A un événement.

- $\mathbb{P}(\emptyset) = 0$
- $\mathbb{P}(\Omega) = 1$
- $\mathbb{P}(\overline{A}) = 1 \mathbb{P}(A)$

Démonstration. C'est immédiat avec la propriété précédente sur les événements incompatibles.

Exemple

Toujours dans le même exemple, considérons l'événement $A = \{1; 2\}$, c'est-à-dire l'évènement formé des issues « 1 face rouge » et « 2 faces rouges ».

$$\mathbb{P}(A) = \frac{6}{27} + \frac{12}{27} = \frac{18}{27}$$
 et $\mathbb{P}(\overline{A}) = \mathbb{P}(\{0; 3; 4\}) = 1 - \mathbb{P}(A) = \frac{9}{27}$

Propriété: Probabilité de la réunion

Soient A et B deux événements d'une expérience aléatoire.

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

Exemple

Supposons que $\mathbb{P}(A)=0.1$, $\mathbb{P}(\overline{B})=0.5$ et $\mathbb{P}(A\cup B)=0.35$. Calculons $\mathbb{P}(B)$ et $\mathbb{P}(A\cap B)$.

- $\mathbb{P}(B) = 1 \mathbb{P}(\overline{B}) = 1 0.5 = 0.5$
- $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$ donc $\mathbb{P}(A \cap B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cup B)$. Ainsi, $\mathbb{P}(A \cap B) = 0.1 + 0.5 + 0.35 = 0.95$.

III - Équiprobabilité

Définition : Équiprobabilité

Quand chaque issue a autant de chances de se produire qu'une autre, on parle d'équiprobabilité.

Propriété

Si une expérience comporte n issues équiprobables, la probabilité de chacune est $\frac{1}{n}$.

Démonstration. Supposons que pour chacune de ces n issues, la probabilité est p où $p \in [0;1]$. Ainsi, comme la somme de ces n probabilités est égale à 1, nous avons np = 1 et donc $p = \frac{1}{n}$.

Exemple

C'est le cas d'un lancer de dé non-truqué. Il y a 6 issues équiprobables, associées aux tirages de l'une des faces du dé qui ont chacun 1 chance sur 6 de se produire. On résume la situation dans un tableau.

Issue	1	2	3	4	5	6
Probabilité	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Exercice

On considère un jeu de 32 cartes (as, roi, dame, valet, 10, 9, 8 et 7.) réparties en quatre familles : cœur et carreau (rouges), et pique et trèfle (noires). On tire une carte au hasard.

- 1) Quelle est la probabilité de tirer un cœur?
- 2) Quelle est la probabilité de tirer un roi?
- 3) Quelle est la probabilité de tirer une figure rouge?
- 4) Quelle est la probabilité de tirer une carte qui ne soit pas un as?

IV - Dénombrement

A) Tableau à double entrée

Un **tableau à double entrée** permet de dénombrer les issues d'une expérience aléatoire, en particulier lorsqu'on étudie, en même temps, deux caractères d'une même population.

Exemple

On choisit au hasard une des 67,2 millions de personnes de la population française, et on s'intéresse à son groupe sanguin ainsi qu'à son rhésus sanguin.

La tableau suivant donne la répartition de ces caractères au sein de la population française.

	О	A	В	AB
Rhésus +	24,2	24,9	6	2
Rhésus –	4	4,7	0,7	0,7

On peut lire différentes probabilités comme celle d'être A+ ou de groupe B.

•
$$\mathbb{P}(\text{``A+ "}) = \mathbb{P}(\text{``A "}) \cap \text{``Rhésus} + \text{"}) = \frac{24\,900\,000}{67\,200\,000} \simeq 0.37$$

•
$$\mathbb{P}(\text{``B''}) = \frac{6\,000\,000 + 700\,000}{67\,200\,000} \simeq 0.1$$

B) Arbre

Un arbre permet de représenter et dénombrer les issues d'une expérience aléatoire, en particulier lorsqu'on a une succession de plusieurs épreuves.

Exemple

On lance un pièce équilibrée puis on lance un dé à six faces équilibré.

On peut construire l'abri ci-dessous, sur lequel on a représenté la première épreuve (le lancer de la pièce) puis la deuxième épreuve (le lancer du dé).

- Cet arbre permet de déterminer le nombre total d'issues de cette expérience aléatoire en comptant les branches : $2 \times 6 = 12$.
- Soit A l'évènement « Obtenir Pile puis un nombre pair ». Il contient trois issues : (Pile; 2), (Pile; 4) et (Pile; 6).

Chaque issue est équiprobable et a pour probabilité $\frac{1}{12}$. Donc $\mathbb{P}(A)=3\times\frac{1}{12}=\frac{3}{12}$.

V - Modèles et fréquences

Théorème : Loi des grands nombres

Quand on répète un **grand nombre** de fois une expérience aléatoire, la **fréquence d'apparition** de chaque issue se stabilise autour d'une valeur. On prend alors cette valeur comme probabilité de l'issue.

Démonstration admise.

Exemple

Nous résumons les résultats de 10000 lancers d'un même dé dans le tableau suivant.

Issue	1	2	3	4	5	6
Fréquence	0.11	0.14	0.13	0.19	0.27	0.26

Il semblerait que nous ne sommes pas dans une situation d'équiprobabilité : le dé n'est pas équilibré.

Remarque

L'étude des **fréquences observées** permet de répondre à beaucoup de problèmes réels qui relèvent de probabilités et statistiques. Cela permet par exemple de valider ou invalider le modèle probabiliste choisi.