

Scenario Importer Generate a SCANeR™ scenario from real word data

- Presentation
- File Format
- Result

- Tool available in SCANeR™Studio since the 1.8 version.
- Trajectory can be extracted and reused.
- The scenario is still editable.

- To use this tool, you need to have the RND file (road logical content) and the IVE (3D file) in SCANeR™studio
 of the road network where the real world test took place.
- To do that, you can create from scratch these two files in SCANeR™studio. You can also import a file in order to automatically generate this road network. SCANeR™studio allows to import the following files formats:
 - -SD Maps (Navstreet Shapefile, OpenStreetMap).
 - -OpenDrive.
 - -HD Maps (Here, Tom Tom).
 - -Points of cloud (Mappel).
 - -Custom (CSV).

File Format

File Format

• The file can be a : csv, a MatLab (.mat) file or a IBEO file (.IDC).

File Format

- One input file to import the data of the EGO vehicle and the detected objects.
- The inputs data for the EGO vehicle are the the following. **Warning**: all these inputs need to be present in the input file.

Inputs	Comments	Data Types
Time	Unique time base [s]	vector [N*1] double
EGO_GPSdirection	GPS direction [°] (0° = north, clock-wise)	vector [N*1] double
EGO_latGPS	GPS latitude coordinate [°]	vector [N*1] double
EGO_longGPS	GPS longitudinal coordinate [°]	vector [N*1] double
EGO_longSpeed	Vehicle Speed [km/h]	vector [N*1] double
EGO_longAccel	Longitudinal Acceleration [m/s2]	vector [N*1] double
EGO_latAccel	Transversal Acceleration [G] (9.81 m/s2)	vector [N*1] double
EGO_SwAngle	SteeringWheel Angle [°]	vector [N*1] double
EGO_SwRotSpeed	SteeringWheel Rotation Speed [°/s]	vector [N*1] double

File Format

The inputs data for the detected objects are the following:

Warning: you need to put all these data for every detected objects.

Detected objects	input	Data Types
OBJECT_xxxx_Unique_ID	Unique ID of object	vector [N*1] int64
OBJECT_xxxx_Length	Length of object [m]	vector [N*1] double
OBJECT_xxxx_Width	Width of object [m]	vector [N*1] double
OBJECT_xxxx_Height	Height of object [m]	vector [N*1] double
OBJECT_xxxx_LongPos	Longitudinal distance [m], relative to Ego's position	vector [N*1] double
OBJECT_xxxx_LatPos	Lateral distance [m], positive to the left, relative to Ego's position	vector [N*1] double
OBJECT_xxxx_LongVel	Longitudinal velocity [m/s], relative to Ego's speed	vector [N*1] double
OBJECT_xxxx_LatVel	Lateral velocity [m/s] , relative to Ego's speed	vector [N*1] double
OBJECT_xxxx_LongAccel	Longitudinal acceleration [m/s2] (absolute)	vector [N*1] double
OBJECT_xxxxx_ObstacleClass	Object classes: 0=Undetermined 1=Car 2=Motorcycle 3=Truck 4=Pedestrian 5=Pole 6=Tree 7=Animal 8=General On-road	vector [N*1] int64
	9=Bicycle	
	10=Unidentified Vehicle	

Note: this tool is very sensitive to the data quality: the EGO position must be accurate.

Also, a bad detections means a bad scenario.

File Format

• One example.

Result

Result

First step: in SCANeR™Studio: Tools – ScenarioImporter.
 Note: This program can also be launched by command line.

Result.

Fill the ScenarioImporter GUI.

Result

• The scenario is now available in your configuration.

QUESTIONS / ANSWERS

• ...

Europe Office

1, Cours de l'Ile Seguin 92650 Boulogne - Billancourt + 33 1 46 94 97 40

US Office

AdduXi Inc. 2791 Research Drive Rochester Hills MI 48309 USA

<u>support-scaner@avsimulation.fr</u> www.avsimulation.fr

