FY55429, MARCH 29, 2023
Probabilistic models;
Proxaxia sir contract,
Directed graph
·
€0
p(to) p(ti/to) p(tz/ti)
$p(t_0,t_1,t_2) = p(t_0)p(t_1/t_0)p(t_1/t_1)$
$\beta(60,01,02) = \beta(60)\beta(61,60)\beta(61,60)$
Bagesian statisties
undirected graph
(tu) (tz)
p(%) p(%)
Marka chain + Monte Carlo
Markov chain + Monte Conto sampling = (MC)2
-(MC)
- Bagasian statisties - prolatitity mode
- proxaxius mode
$\mathcal{P}(x) = \mathcal{P}(x)$
7
marmal129 tom
statisticac
Statisticac

$$Z = \int \overline{p}(x)dx$$

$$x \in D$$

$$Z \subseteq |M| \leq P$$

$$USE = Emergy - Lasel model$$

$$(Boltzmann)$$

$$\overline{p}(x) = exp(-E(x))$$

$$E(x) \text{ known as energy}$$

$$function$$

$$exp(x) > 0 \Rightarrow a \text{ probability}$$

$$which is always large than 2000.

$$Discrete p(x)$$

$$Z = \sum exp(-E(xj))$$

$$JeD$$

$$p(xi) = exp(-E(xj))$$

$$JeD$$

$$p(xi) = exp(-E(xi))$$

$$Lager$$

$$Lager$$

$$Lager$$

$$Nisikle(xi)$$

$$Lager$$

$$Nisikle(xi)$$

$$Lager$$

$$Lager$$$$

X could be a discrete vousable (binary) on continuous, som	
(linary) on continuous, san	xe
with h.	
Binary - Binary modec	
6aussian-Binary - (-	
•	
Restricted Boltzmann mach	rco
p(x) = exp(-E(x))	
- RBH Z - Vanational AES	
- CANS = GENERAL GENERAL	<i>19)</i>
- GANS = Gemena 42 ed advusia	
Marka Chain Monte Carlo 15 the way we sample different varables Xih; sampling rules: - Gills sampling	
the was we sample different	•
varater x, 4 : Sommena	
nuces:	
- Gills sampling	
- Metropolis - Hasting	
Sampling	
For the modeling and opti- mization we will need to	
mization we will need &	O
optimize b, c, w.	
Define the Free energy	
	<u> </u>
$F(x) = -\log\left(\sum_{h} exp(-E(x,h))\right)$	
den	