Outils mathématiques pour la physique

1 Équations algébriques

EXERCICE 1 – Équation de Kepler

Dans le cadre d'une approche simplifiée, pour obtenir l'évolution temporelle de la position d'une planète en orbite autour du Soleil, on est amené à résoudre l'équation de Kepler :

$$E - e \sin E = M$$
.

M est un paramètre angulaire fictif dont l'évolution temporelle est simple et e est l'excentricité de l'orbite. On cherche la valeur du paramètre angulaire E qui repère la position de la planète. Dans le cas général, cette équation n'admet pas de solution analytique : il faut la résoudre numériquement ou graphiquement.

- 1. Résoudre l'équation de Kepler pour la Terre $(e \approx 0)$ à la date pour laquelle $M = \frac{\pi}{4}$.
- 2. Résoudre graphiquement cette équation pour la comète de Halley $(e \approx 0.97)$ à la date pour laquelle $M = \frac{\pi}{4}$.

Un petite manipulation mathématique permet d'exprimer l'équation de Kepler sous la forme f(E) = g(E), où f est une fonction affine et g une fonction périodique.

- 2 Équations différentielles
- 3 Intégration Dérivation
- 3.1 Fonctions usuelles
- 3.2 Développements limités

3.2.1 Formule de Taylor

Pour simplifier certaines situations, il est courant d'effectuer un développement limité (DL). En physique, on se limitera à des DL à l'ordre 2 en utilisant la formule de Taylor-Young.

Au voisinage de x_0 , on peut écrire $x=x_0+\delta x$. Pour une grandeur physique f qui dépend de x, on a ainsi :

$$f(x_0 + \delta x) \approx f(x_0) + \left(\frac{\mathrm{d}f}{\mathrm{d}x}\right)_{x_0} \delta x + \left(\frac{\mathrm{d}^2 f}{\mathrm{d}x^2}\right)_{x_0} \frac{\delta x^2}{2}$$

3.2.2 Développements limités usuels

Quelques DL au voisinage de 0 sont à connaître par cœur!

Fonction	DL au voisinage de 0
$(1+x)^{\alpha}$	$1 + \alpha x$
e^x	1+x
$\ln(1+x)$	x
$\cos x$	$1 - \frac{x^2}{2}$
$\sin x$	x

${\bf Exercice}\,\,{\bf 2}-{\bf Pendule}\,\,{\bf simple}$

Le pendule simple est un exemple classique qui ne possède pas de solution analytique simple. Un DL permet de le rendre soluble.

- 1. Retrouver l'équation différentielle vérifiée par l'angle θ .
- 2. En effectuant un DL, retrouver l'équation différentielle d'un oscillateur harmonique dont on exprimera la pulsation propre ω_0 en fonction de l et g.

4 Géométrie

4.1 Systèmes de coordonnées

4.1.1 Coordonnées cartésiennes

Dans le système de coordonnées cartésiennes :

• la base de vecteurs utilisée est :

$$(\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})$$

• le vecteur \overrightarrow{OM} s'exprime :

$$\overrightarrow{OM} = x\overrightarrow{e_x} + y\overrightarrow{e_y} + z\overrightarrow{e_z}$$

4.1.2 Coordonnées cylindriques

Dans le système de coordonnées cylindriques :

• la base de vecteurs utilisée est :

$$(\overrightarrow{e_r}, \overrightarrow{e_\theta}, \overrightarrow{e_z})$$

• le vecteur \overrightarrow{OM} s'exprime :

$$\overrightarrow{OM} = \overrightarrow{re_r} + z\overrightarrow{e_z}$$

4.1.3 Coordonnées sphériques

Dans le système de coordonnées sphériques :

• la base de vecteurs utilisée est :

$$(\overrightarrow{e_r},\overrightarrow{e_\theta},\overrightarrow{e_\phi})$$

• le vecteur \overrightarrow{OM} s'exprime :

$$\overrightarrow{OM} = r\overrightarrow{e_r}$$

4.2 Périmètre, aire et volume

• Périmètre du cercle :

$$\mathcal{P}_{\text{cercle}} = 2\pi r$$

• Aire du disque :

$$\mathcal{A}_{\mathrm{disque}} = \pi r^2$$

• Aire de la sphère :

$$\mathcal{A}_{\rm sph\`ere} = 4\pi r^2$$

• Volume d'une boule :

$$\mathcal{V}_{\text{boule}} = \frac{4}{3}\pi r^3$$

• Volume d'un cylindre :

$$\mathcal{V}_{\text{cylindre}} = \pi r^2 \times h$$

5 Trigonométrie