Deep Reinforcement Learning: An Overview

Patrick Emami

PhD student, CISE department

February 24, 2018

Motivation

What is a good framework for studying intelligence?

Motivation

What is a good framework for studying intelligence?

What are the necessary and sufficient ingredients for building agents that learn and act like people?

Reinforcement Learning

Source: Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. Vol. 1. No. 1. Cambridge: MIT press, 1998.

Reinforcement Learning

My Perspective

Reinforcement Learning is necessary but not sufficient for general (strong) artificial intelligence

Markov Decision Processes

Definition

A **Markov decision process** (MDP) is a formal way to describe the sequential decision-making problems encountered in RL.

Markov Decision Processes

Definition

A **Markov decision process** (MDP) is a formal way to describe the sequential decision-making problems encountered in RL.

In the simplest RL setting, an MDP is specified by states S, actions A, an episode length H, and a reward function r(s, a).

Policies and Value Functions

- A policy $\pi(a|s)$ is a behavior function for selecting an action given the current state.
- The action-value function is the expected total reward accumulated from starting in state s, taking action a, and following policy π until the end of the length H episode:

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}\left[\sum_{t=0}^{H} r_t | s_t = s, a_t = a\right]$$

"What is the utility of doing action a when I'm in state s?"

Big Picture

Find policy π^* that maximizes expected total reward, i.e.,

$$\pi^* = \operatorname*{argmax}_{\pi} Q^{\pi}(s, a).$$

In particular, for any start state $s_0 \in S$, the agent can use π^* to select the action a_0 that will maximize its expected total reward.

Deep Reinforcement Learning

Source: http://people.csail.mit.edu/hongzi/

Deep Reinforcement Learning

Playing Atari (2013)

Source: Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." arXiv preprint arXiv:1312.5602 (2013).

Deep Q-Network (DQN)

- ▶ End-to-end learning of values Q(s, a) from pixels s
- ▶ Input state s is stack of raw pixels from last 4 frames
- Output is Q(s, a) for 18 joystick/button positions
- Reward is change in score for that step

Network architecture and hyperparameters fixed across all games [Mnih et al.]

Just Apply Gradient Descent

• Represent $Q^{\pi}(s, a)$ by a deep Q-network with weights w

$$Q(s, a, w) \approx Q^{\pi}(s, a)$$

Define objective function by mean-squared Bellman error

$$L(w) = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w)\right)^2\right]$$

• Leading to the following gradient

$$\frac{\partial L}{\partial w} = \mathbb{E}\Big[\Big(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w)\Big) \frac{\partial Q(s, a, w)}{\partial w}\Big]$$

• Optimize with stochastic gradient descent

Stability Issues with Deep RL

Naive Q-learning with non-linear function approximation oscillates or diverges

- Experiences from episodes generated during training are correlated, non-iid
- Policy can change rapidly with slight changes to Q-values
- Q-learning gradients can be large and unstable when backpropagated

Stabilizing Deep RL

- Maintain a replay buffer of experiences to uniformly sample from to compute gradients for Q-network. This decorrelates samples and improves samples efficiency
- Hold the parameters of the target Q-values fixed in Bellman error with a target Q-network. Periodically update the parameters of the target network
- Clip rewards and potentially clip gradients as well

	B. Rider	Breakout	Enduro	Pong	Q*bert	Seaquest	S. Invaders
Random	354	1.2	0	-20.4	157	110	179
Sarsa [3]	996	5.2	129	-19	614	665	271
Contingency [4]	1743	6	159	-17	960	723	268
DQN	4092	168	470	20	1952	1705	581
Human	7456	31	368	-3	18900	28010	3690
HNeat Best [8]	3616	52	106	19	1800	920	1720
HNeat Pixel [8]	1332	4	91	-16	1325	800	1145
DQN Best	5184	225	661	21	4500	1740	1075

Source: Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." arXiv preprint arXiv:1312.5602 (2013).

Rainbow DQN (2017)

Source: Hessel, Matteo, et al. "Rainbow: Combining Improvements in Deep Fig Reinforcement Learning." 57 AarXiv:1710.02298 (2017).

Figure 1: **Median human-normalized performance** across 57 Atari games. We compare our integrated agent (rainbow-

AlphaGo (2015)

It was thought that AI was a decade away from beating humans at Go

AlphaGo

Key Ingredients

Tree search augmented with policy and value deep networks that intelligently control exploration and exploitation

Monte Carlo Tree Search

Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation traverses the tree by selecting the edge with maximum action value Q, plus a bonus u(P) that depends on a stored prior probability P for that edge. b, The leaf node may be expanded; the new node is processed once by the policy network P₀ and the output probabilities are stored as prior probabilities P for each action. c, At the end of a simulation, the leaf node

is evaluated in two ways: using the value network v_0 s and by running a rollout to the end of the game with the fast rollout policy p_n , then computing the winner with function r. d. Action values Q are updated to track the mean value of all evaluations $r(\cdot)$ and $v_0(\cdot)$ in the subtree below that action.

Source: Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489

Continuous control

- Locomotion Behaviors https://www.youtube.com/watch?v=g59nSURxYgk
- Learning to Run
 https://www.youtube.com/watch?v=mbjuaRg__DI
- Solution
 Robotics
 https://www.youtube.com/watch?v=Q4bMcUk6pcw&t=56s

Continuous control

Can we learn Q^{π^*} by minimizing the expected Bellman error?

Continuous Action Spaces

For $A \in \mathbb{R}^n$,

$$\mathbb{E}\left[\left(r + \gamma \max_{a' \in A} Q(s', a', w) - Q(s, a, w)\right)^{2}\right]$$

Requires solving a non-convex optimization problem!

Deep Deterministic Policy Gradient (2016)

- Let the policy be a deterministic function $\pi(s,\theta): S \to A$, $S \in \mathbb{R}^m$, $A \in \mathbb{R}^n$, parameterized as a deep network
- Still maximize expected total reward, except now need to compute the deterministic policy (actor) gradient and the (critic) action-value gradient
- Train both the policy and action-value networks with an actor-critic approach

Source: Lillicrap, Timothy P., et al.
"Continuous control with deep
reinforcement learning." arXiv preprint
arXiv:1509.02971 (2015).

Actor-Critic

Source: Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. Vol. 1. No. 1. Cambridge: MIT press, 1998.

Future Research Directions

- Sample-efficient learning by embedding priors about the world, e.g., intuitive physics
- 2 Low-variance, unbiased policy gradient estimators
- Multi-agent RL
- Safe RL
- Reinforcement learning on combinatorial action spaces

Source: http://blog.otoro.net/2017/11/12/evolvingstable-strategies/

Fin.