ADVANCED MATHEMATICS

Rings, Fields and Polinomials I

- 1. Show if the following sets have a ring structure, and verify if they are commutative, with unity, integral domains or fields.
 - (a) The positive integers.
 - (b) The integers that are a multiple of 7.
 - (c) $\{0, 1, -1, i, -i\}$.
 - (d) $\mathcal{M}_{2\times 3}(\mathbb{R})$.
 - (e) $\mathcal{M}_{2\times 2}(\mathbb{Z}_3)$.
 - (f) $\mathbb{Z} \times \mathbb{Z}_3 \times 2\mathbb{Z}$.
 - (g) $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}.$
 - (h) The set of polinomials $\{a + bx + cx^2 \mid a, b, c \in \mathbb{R}\}\$ of $\mathbb{R}[x]$.
- 2. Prove that a non-empty set B of a ring A is a *subring* if for every pair $b, b' \in B$ we have that $b-b' \in B$ and $bb' \in B$. Additionally, show that B is an *ideal* of A if for every pair $b, b' \in B$, $a \in A$, it holds that b-b', ab and ba are in B.
- 3. Prove that the set $A = \{0, 2, 4, 6, 8\}$ is a subring of \mathbb{Z}_{10} . Is A an ideal of \mathbb{Z}_{10} ? Compute the table of A for the multiplication and see if A has a neutral element for the product. Is A a Field?
- 4. Show that the set $B := \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\}$ is a subring of $\mathcal{M}_2(\mathbb{R})$. Prove that the set I of matrices of the form $\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$ is an ideal of B. Is I an ideal of $\mathcal{M}_2(\mathbb{R})$?
- 5. An element b of a ring B is a divisor of zero if $b \neq 0$ and there exists $a \neq 0$ with $a \in B$ such that ab = 0. We say that $a \in B$ is **nilpotent** if $a \neq 0$ and there exists an integer n > 1 such that $a^n = 0$. Prove that, if a es nilpontent, then it is a divisor of zero.
- 6. (a) Consider the ring B of exercise 4. Prove that every non-zero element of the ideal I of exercise 4 is nilpotent.
 - (b) Find the nilpotent elements of the ring \mathbb{Z}_{12} .
- 7. Show that the set B of matrices of the form $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, with $a, b \in \mathbb{R}$ is a subring with unity of $\mathcal{M}_2(\mathbb{R})$. Let $f: B \to \mathbb{C}$ be the mapping defined by $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mapsto a + bi$. Prove that f is a ring isomorphism. Show that then B is a Field.
- 8. Compute the quotient and remainder of the division:
 - (a) $x^4 + 3x^3 + 2x^2 + x + 4$ by $3x^2 + 2x$ in $\mathbb{Z}_5[x]$.
 - (b) x^{10} by $x^2 + 1$ in $\mathbb{Z}_2[x]$.
 - (c) $x^4 + 3x^3 + 2x^2 + x + 4$ by $x^2 + 2x$ in $\mathbb{Z}[x]$.
 - (d) $x^4 + 3x^3 + 2x^2 + x + 4$ by $3x^2 + 2x$ in $\mathbb{Q}[x]$.

- 9. Given $m, n, p \in \mathbb{N}$, with p > 1, show the equivalence of:
 - (a) m|n.
 - (b) $p^m 1 | p^n 1$.
 - (c) $x^{p^m-1} 1 \mid x^{p^n-1} 1$.
- 10. Compute the greatest common divisor of each of the following pairs of polinomials and write them as a(x)f(x) + b(x)g(x):
 - (a) $f(x) = x^3 1$, $g(x) = x^4 x^3 + x^2 + x 2$, in $\mathbb{Q}[x]$;
 - (b) $f(x) = x^2 + 1$, $g(x) = x^3 + 2x i$, in $\mathbb{C}[x]$;
 - (c) $f(x) = x^3 + x + 1$, g(x) = x + 1 in $\mathbb{Z}_3[x]$;
 - (d) $f(x) = x^3 + x + 1$, g(x) = x + 1 in $\mathbb{Z}_5[x]$;
 - (e) $f(x) = x^4 + x^3 x^2 + x 2$, $g(x) = x^3 + 6x^2 + x + 1$ in $\mathbb{Q}[x]$;
 - (f) $f(x) = x^4 + x^3 + x^2 + x$, $g(x) = x^2 + x 1$ in $\mathbb{Z}_3[x]$;
 - (g) $f(x) = x^5 + 5x^4 + 3x^3 + 2x + 1$, $g(x) = x^4 + 3$ in $\mathbb{Z}_7[x]$;
- 11. Find all the zeros in \mathbb{Z}_5 of the polinomials $f(x) = x^5 + 3x^3 + x^2 + 2x \in \mathbb{Z}_5[x]$ and $g(x) = x^5 x \in \mathbb{Z}_5[x]$.
- 12. Which of the following polinomials have multiple roots?
 - (a) $g(x) = x^4 x^3 + x^2 + x 2$, in $\mathbb{Q}[x]$;
 - (b) $g(x) = x^3 + 2x i$, in $\mathbb{C}[x]$;
 - (c) $f(x) = x^3 + x + 1$ in $\mathbb{Z}_3[x]$;
 - (d) $f(x) = x^3 + x + 1$ in $\mathbb{Z}_5[x]$;
 - (e) $f(x) = 3x^4 + 6x^3 + 5x^2 + 4x + 2$ in $\mathbb{Q}[x]$;
 - (f) $f(x) = x^4 + x^3 + x^2 + x$ in $\mathbb{Z}_3[x]$;
 - (g) $f(x) = x^5 + 5x^4 + 3x^3 + 2x + 1$ in $\mathbb{Z}_7[x]$;