Problem 1.

The curve C is defined parametrically by $x = a(2\cos\theta + \cos 2\theta)$, $y = a(2\sin\theta + \sin 2\theta)$ where $0 \le \theta \le \pi$ and a is a positive constant.

- (a) Find the coordinates of the points at which C meets the x-axis.
- (b) Sketch C.
- (c) Find the exact total length of C.
- (d) Find the exact area of the curve surface generated when C is rotated through 2π radians about the x-axis.

Solution

Part (a)

When C meets the x-axis, y = 0.

$$y = 0$$

$$\implies a(2\sin\theta + \sin 2\theta) = 0$$

$$\implies 2\sin\theta + \sin 2\theta = 0$$

$$\implies 2\sin\theta + 2\sin\theta\cos\theta = 0$$

$$\implies \sin\theta(1 + \cos\theta) = 0$$

Note that $\sin \theta = 0 \implies \theta = 0 \vee \pi$ and $1 + \cos \theta = 0 \implies \theta = \pi$. Hence, $\theta = 0 \vee \pi$.

At $\theta = 0$, $x = a(2\cos 0 + \cos 0) = 3a$. At $\theta = \pi$, $x = a(2\cos \pi + \cos 2\pi) = -a$. Hence, C meets the x-axis at (3a, 0) and (-a, 0).

$$(3a,0), (-a,0)$$

Part (b)

Part (c)

Note that
$$\frac{dx}{d\theta} = a(-2\sin\theta - 2\sin 2\theta) = -2a(\sin\theta + \sin 2\theta)$$
 and $\frac{dy}{d\theta} = a(2\cos\theta + 2\cos 2\theta) = 2a(\cos\theta + \cos 2\theta)$. Hence,

Length
$$= \int_0^\pi \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2} \, \mathrm{d}\theta$$

$$= \int_0^\pi \sqrt{\left[-2a(\sin\theta + \sin 2\theta)\right]^2 + \left[2a(\cos\theta + \cos 2\theta)\right]^2} \, \mathrm{d}\theta$$

$$= \int_0^\pi 2a\sqrt{\left(\sin\theta + \sin 2\theta\right)^2 + \left(\cos\theta + \cos 2\theta\right)^2} \, \mathrm{d}\theta$$

$$= \int_0^\pi 2a\sqrt{\left(\sin^2\theta + 2\sin\theta\sin 2\theta + \sin^2 2\theta\right) + \left(\cos^2\theta + 2\cos\theta\cos 2\theta + \cos^2 2\theta\right)} \, \mathrm{d}\theta$$

$$= \int_0^\pi 2a\sqrt{2 + 2\sin\theta\sin 2\theta + 2\cos\theta\cos 2\theta} \, \mathrm{d}\theta$$

$$= \int_0^\pi 2a\sqrt{2 + 2\cos(2\theta - \theta)} \, \mathrm{d}\theta$$

$$= \int_0^\pi 2a\sqrt{2 + 2\cos\theta} \, \mathrm{d}\theta$$

$$= \int_0^\pi 2a\sqrt{2 + 2\cos(\theta/2)} \, \mathrm{d}\theta$$

$$= \int_0^\pi 2a \cdot 2\cos(\theta/2) \, \mathrm{d}\theta$$

$$= 4a \left[2\sin(\theta/2)\right]_0^\pi$$

$$= 8a$$

The total length of C is 8a units.

Part (d)

Area =
$$2\pi \int_0^{\pi} a(2\sin\theta + \sin 2\theta) \cdot \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} d\theta$$

= $2\pi \int_0^{\pi} a(2\sin\theta + \sin 2\theta) \cdot 4a\cos(\theta/2) d\theta$
= $8\pi a^2 \int_0^{\pi} (2\sin\theta + \sin 2\theta)\cos(\theta/2) d\theta$
= $8\pi a^2 \int_0^{\pi} (2\sin\theta + 2\sin\theta\cos\theta)\cos(\theta/2) d\theta$
= $16\pi a^2 \int_0^{\pi} \sin\theta (1 + \cos\theta)\cos(\theta/2) d\theta$
= $16\pi a^2 \int_0^{\pi} \sin\theta \left[1 + (2\cos^2(\theta/2) - 1)\right]\cos(\theta/2) d\theta$
= $32\pi a^2 \int_0^{\pi} \sin\theta\cos^3(\theta/2) d\theta$

 $u = \theta/2$

 $du = d\theta / 2$

$$= 32\pi a^{2} \int_{0}^{\pi} 2\sin(\theta/2)\cos(\theta/2) \cdot \cos^{3}(\theta/2) d\theta$$

$$= 64\pi a^{2} \int_{0}^{\pi} \sin(\theta/2)\cos^{4}(\theta/2) d\theta$$

$$= 128\pi a^{2} \int_{0}^{\pi/2} \sin u \cos^{4} u du$$

$$= 64\pi a^{2} \cdot 2 \int_{0}^{\pi/2} \sin^{2(1)-1} u \cos^{2(5/2)-1} u du$$

$$= 64\pi a^{2} \cdot B \left(1, \frac{5}{2}\right)$$

$$= 64\pi a^{2} \cdot \frac{\Gamma(1)\Gamma(5/2)}{\Gamma(1+5/2)}$$

$$= 64\pi a^{2} \cdot \frac{\Gamma(5/2)}{5/2 \cdot \Gamma(5/2)}$$

$$= 64\pi a^{2} \cdot \frac{2}{5}$$

$$= \frac{128}{5}\pi a^{2}$$

The surface area is $\frac{128}{5}\pi a^2$ units².

Problem 2.

The curve C is given by the equation $y = \frac{1}{2}(e^x + e^{-x})$.

- (a) Sketch the curve C.
- (b) Find the exact area bounded by C, the lines x = 2 and x = -2 and the x-axis.
- (c) Points A and B are on C where x=2 and x=-2 respectively. Find the exact length of the arc AB.

A solid, made of a certain material, is of the shape obtained by rotating the region bounded by C, the lines x=2 and x=-2 and the x-axis about the y-axis through π radians.

- (d) Find the exact amount of material required to make this solid if x is measured in cm.
- (e) The solid is painted with a brush that uses 2 cm³ of paint for every cm² of surface painted. Find the exact amount of paint required.

Solution

Part (a)

Part (b)

Note that $y = \frac{1}{2}(e^x + e^{-x}) = \cosh x$ is an even function. Hence,

Area =
$$\int_{-2}^{2} y \, dx$$

= $2 \int_{0}^{2} \cosh x \, dx$
= $2 \left[\sinh x \right]_{0}^{2}$
= $2 \left(\sinh 2 - \sinh 0 \right)$
= $2 \left(\frac{e^{2} - e^{-2}}{2} - 0 \right)$

$$=e^2-e^{-2}$$

The area is $e^2 - e^{-2}$ units².

Part (c)

Note that $\frac{dy}{dx} = \frac{d}{dx} \cosh x = \sinh x$, whence

$$\sqrt{1 + (\mathrm{d}y/\mathrm{d}x)^2} = \sqrt{1 + \sinh^2 x} = \sqrt{\cosh^2 x} = \cosh x$$

Hence,

Length =
$$\int_{-2}^{2} \sqrt{1 + (dy/dx)^2} dx$$
$$= \int_{-2}^{2} \cosh x dx$$
$$= 2 \int_{0}^{2} \cosh x dx$$
$$= e^2 - e^{-2}$$

The length of arc AB is $e^2 - e^{-2}$ units.

Part (d)

Volume =
$$2\pi \int_0^2 xy \,dx$$

= $2\pi \int_0^2 x \cosh x \,dx$

$$\begin{array}{c|cc}
D & I \\
+ x & \cosh x \\
- 1 & \sinh x \\
+ 0 & \cosh x
\end{array}$$

$$= 2\pi \left[x \sinh x - \cosh x \right]_0^2$$

$$= 2\pi \left[(2 \sinh 2 - \cosh 2) - (0 \sinh 0 - \cosh 0) \right]$$

$$= 2\pi \left(2 \cdot \frac{e^2 - e^2}{2} - \frac{e^2 + e^{-2}}{2} + 1 \right)$$

$$= \pi \left(2e^2 - 2e^{-2} - e^2 - e^{-2} + 2 \right)$$

$$= \pi \left(e^2 - 3e^{-2} + 2 \right)$$

 $\pi (e^2 - 3e^{-2} + 2)$ cm³ of material is required.

Part (e)

Area = Area of curved surface + Area of side + Area of bottom
=
$$2\pi \int_0^2 x \cosh x \, dx + 2^2 \pi + 2^2 \pi \cosh 2$$

= $\pi \left(e^2 - 3e^{-2} + 2 \right) + 4\pi + 4\pi \cdot \frac{e^2 + e^{-2}}{2}$
= $\pi \left(e^2 - 3e^{-2} + 2 \right) + 4\pi + 2\pi (e^2 + e^{-2})$
= $\pi \left[\left(e^2 - 3e^{-2} + 2 \right) + 4 + 2(e^2 + e^{-2}) \right]$
= $\pi \left[3e^2 - e^{-2} + 6 \right]$
[$2\pi \left[3e^2 - e^{-2} + 6 \right]$ cm³ of paint is required.]