Eksploracja danych

Piotr Lipiński

Systemy rekomendujące

- Dostępność coraz większej ilości informacji wymaga jej filtrowania.
 Użytkownik często potrzebuje rekomendacji pomocy w wyborze interesującej go części informacji:
 - pomoc przy wyborze książki/filmu/muzyki
 - pomoc przy wyborze wiadomości prasowych do przeczytania
 - pomoc przy wyborze artykułów w sklepie internetowym
 - pomoc przy oznaczaniu niechcianych wiadomości pocztowych (trochę inny problem, ale podobny)
 - pomoc przy korzystaniu z bardziej złożonych programów komputerowych (inteligentny interfejs – też trochę inny problem)
- □ Problem rekomendowania jest rozszerzeniem problemu wyszukiwania informacji.
 - Użytkownik chce znaleźć pewną informację, ale nie potrafi sprecyzować kryteriów wyszukiwania.
 - W praktyce: to raczej nie użytkownik chce znaleźć informację, ale osoba trzecia (najczęściej właściciel portalu internetowego) chce mu dostarczyć taką potencjalnie ciekawą informację. Nie można więc liczyć na bezpośrednią współpracę z użytkownikiem.

Wyszukiwanie informacji

- □ Parametryczne wyszukiwanie informacji
 - wyszukiwanie zazwyczaj dotyczy danych ustrukturalizowanych bądź danych nieustrukturalizowanych, ale opisanych przez ustrukturalizowane meta-dane
 - Przykład: książki opisane przez meta-dane (autor, tytuł, wydawnictwo, słowa kluczowe)
 - sprowadza się do przeszukiwania baz danych
 - istnieją efektywne algorytmy, oparte na indeksowaniu tabel
 - wyzwania dotyczą spraw niezwiązanych z eksploracją danych
- □ Nieparametryczne wyszukiwanie informacji
 - wyszukiwanie może dotyczyć danych nieustrukturalizowanych, m.in. tekstów, obrazów, dźwięków, itp.
 - Przykład: treść książek, a nie tylko ich opis przez meta-dane
 - wymaga niestandardowego podejścia (jak reprezentować dane, jak określić zapytanie do bazy danych)
- Problemem ubocznym jest uporządkowanie znalezionych informacji (określenie kolejności w jakiej zostaną zwrócone, istotne zwłaszcza przy długiej liście wyników).

Nieparametryczne wyszukiwanie informacji

- □ Klasyczny przykład:
 - Która sztuka Szekspira zawiera słowa Brutus i Caesar ale nie zawiera słowa Calpurnia?
 - Można wypisać wszystkie sztuki Szekspira zawierające "Brutus" i "Caesar", a później wykreślić z listy te niezawierające "Calpurnia".
 - podejście bardzo nieefektywne (dla dużych danych)
 - Warunek niezawierania (NOT Calpurnia) jest trudny.
 - Bardziej złożone warunki, na przykład znalezienie słowa "Romans" w pobliżu "countrymen" też nie są łatwe.
- □ Potrzebna jest efektywna reprezentacja danych umożliwiająca łatwe przetwarzanie zapytań.
 - Skupimy się na przetwarzaniu dokumentów tekstowych. Inne dane, obrazy, dźwięki, multimedia, wymagają innych technik.

Piotr Lipiński, Wykład z eksploracji danych

Term-Document Index (TDI)

- □ Pierwsze podejście: Niech T będzie zbiorem wszystkich słów, które mogą występować w analizowanych dokumentach. Niech d = |T|. Każdy dokument można przedstawić jako wektor binarny długości d, którego kolejne pozycje odpowiadają kolejnym słowom z T i mają wartość 1 jeśli dane słowo występuje w dokumencie lub 0 w przeciwnym przypadku.
 - Odpowiedź na zapytanie "Brutus AND Caesar BUT NOT Calpurnia" wymaga więc tylko porównania wektorów reprezentujących dokumenty z maską bitową odpowiadającą zapytaniu.

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Term-Document Index (TDI)

- □ Problemy:
 - Wielkość słownika spowoduje, że wektory będą bardzo długie.
 - W słowniku będzie wiele słów nieistotnych (spójniki, zaimki, itp.).
 - W słowniku będzie wiele form tego samego słowa (odmiana słów).
 - Przydatne techniki preprocessingu: stop words elimination, stemming.
- Drugie podejście: Zamiast słów używać termów (słów po obcięciu końcówek).
- □ Problemy:
 - Reprezentacja dokumentu nie uwzględnia liczby wystąpień danego termu.
- Trzecie podejście: Zamiast wartości binarnych wektor może zawierać liczbę wystąpień danego termu w dokumencie.
- □ Każdy dokument można więc przedstawić jako wektor w przestrzeni R^d.
- □ Zbiór N dokumentów można więc przedstawić jako macierz M rozmiaru d x N. Macierz M nazywa się Term-Document Matrix (TDM). Element M[i, j] takiej macierzy określa znaczenie i-tego termu dla j-tego dokumentu (liczbę wystąpień i-tego termu w j-tym dokumencie).
- □ Zapytanie w analogiczny sposób można przedstawić jako wektor w przestrzeni R^d.

Term-Document Matrix (TDM)

- □ **Trzecie podejście:** Zamiast wartości binarnych wektor może zawierać liczbę wystąpień termu w dokumencie.
- □ Problemy:
 - Przyjęliśmy model "Bag of words", w którym niektóre dokumenty są utożsamiane:
 - □ "John is quicker than Mary" = "Mary is quicker than John"
 - (na razie ten problem będziemy ignorować)
 - Dokumenty mogą być różnej długości, więc liczba wystąpień termów jest nieobiektywna (3 wystąpienia w 10-termowym dokumencie, a 3 wystąpienia w 1000termowym dokumencie to nie to samo).

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Piotr Lipiński, Wykład z eksploracji danych

Term-Document Matrix (TDM)

- □ Czwarte podejście: Zamiast liczby wystąpień termu w dokumencie wektor może zawierać liczbę wystąpień danego termu podzieloną przez sumę liczb wystąpień wszystkich termów w dokumencie.
- □ Praktyka pokazuje, że lepiej jest jednak znormalizować frekwencję termów inaczej.

Term-Frequency Matrix (TF)

Piąte podejście: Niech TF będzie macierzą rozmiaru d x N o elementach $TF[i, j] = M[i, j] / max(\{M[k, j] : k = 1, 2, ..., d\}).$

Macierz TF nazywa się Term-Frequency Matrix.

- □ Problemy:
 - Same termy mogą mieć różną siłę dyskryminacyjną dla dokumentów, więc traktowanie ich jednakowo jest nieobiektywne.
 - Term, który ma duże znaczenie dla większości dokumentów (występuje często w większości dokumentów) nie pozwoli zbyt dobrze charakteryzować dokumentów.
 - Term, który ma duże znaczenie jedynie dla niektórych dokumentów (występuje często w małej liczbie dokumentów) pozwoli dużo lepiej charakteryzować dokumenty.

Piotr Lipiński, Wykład z eksploracji danych

TF-IDF Matrix

□ **Szóste podejście:** Niech IDF będzie wektorem długości d o elementach

$$IDF[i] = log (N / |\{j : M[i, j] > 0\}|).$$

Wartości IDF[i] nazywa się Inverse-Document-Frequency. Mierzą one jak wiele informacji dostarcza dany term. Niech TF-IDF będzie macierzą rozmiaru d x N o elementach

$$TF\text{-}IDF[i,j] = TF[i,j] \; IDF[i].$$

- □ Podejście z TF-IDF jest dość popularne i często sprawdza się w praktyce.
- ☐ Istnieją jeszcze inne podejścia, modyfikacje i rozszerzenia przedstawionych tutaj, m.in. z innym normowaniem wystąpień termów w dokumencie pozwalającym unikać błędów numerycznych.

Miary podobieństwa dokumentów

- □ Do wyszukiwania dokumentów potrzebna jest jeszcze miara podobieństwa dokumentu do zapytania lub ogólniej miara podobieństwa dokumentów (bo zapytanie może być traktowane jako dokument).
- □ Popularne miary:
 - miara euklidesowa nie sprawdzi się (dlaczego?)
 - iloczyn skalarny
 - miara kosinusów (iloczyn skalarny podzielony przez iloczyn długości wektorów)

Piotr Lipiński, Wykład z eksploracji danych

Wyszukiwanie informacji tekstowej

- □ Podsumowanie:
 - modele oparte wektorowej reprezentacji dokumentów i na algebrze liniowej
 - model TF-IDF okazuje się dość efektywny w praktyce
 - implementacja może być dość efektywna
 - □ m.in. dzięki współczesnym procesorom potrafiącym szybko przetwarzać dane macierzowe
 - wiele szczegółów należy jeszcze doprecyzować
 - więcej informacji na wykładach z wyszukiwania informacji, przetwarzania tekstów, przetwarzania języka naturalnego, itp.
- □ Pozostałe problemy:
 - model "Bag of words"
 - brak informacji semantycznej (m.in. sensu słowa)
 - brak informacji syntaktycznej (m.in. struktury zdania, kolejności słów, itp.)
 - założenie niezależności słów (m.in. nie uwzględnia się synonimów)
 - logiczna niedoskonałość modelu (m.in. wymaganie występowania słowa w dokumencie, nie uwzględnianie synonimów, itp.)
 - dla zapytania złożonego z dwóch termów A i B, model może preferować dokument zawierający A z dużą częstością, ale bez B, bardziej niż dokument zawierający oba słowa A i B, ale z mniejszą częstością

Podejścia bardziej zaawansowane ...

- □ Macierz TDM składa się z dwóch czynników:
 - Czynnik lokalny l_{ii}:
 - term frequncy (TF), f_{ij} = liczba wystąpień termu i w dokumencie j
 - □ binary local factor, bool($f_{ii} \Leftrightarrow 0$)
 - □ logarithmic local factor, log(1+f_{ii})
 - \Box alternate-log, bool($f_{ij} \Leftrightarrow 0$) (1 + log f_{ij})
 - \square augmented normalized TF, $(bool(f_{ij} \Leftrightarrow 0) + f_{ij} / max_k f_{kj}) / 2$
 - Czynnik globalny g_i:
 - 1
 - entropia, $1 + \sum_{j} p_{ij} \log p_{ij} / \log n$, gdzie $p_{ij} = f_{ij} / \sum_{k} f_{ik}$
 - □ IDF, $\log (n / \Sigma_i bool(f_{ii} <> 0))$

Piotr Lipiński, Wykład z eksploracji danych

Podejścia bardziej zaawansowane ...

 Usprawnienie: ważenie termów – skalowanie przestrzeni R^d, każdy wymiar ma inną skalę.

- □ Problem: jak ustalać te wagi?
 - badanie statystyk występowania słów
 - badanie statystyk zapytań użytkownika
 - profile użytkowników (dla księgowych terminy łacińskie nie mają znaczenia, dla lekarzy owszem)
 - ręczne ustawianie (absolutnie niepraktyczne)

Podejścia bardziej zaawansowane ...

- □ Modele ze sprzężeniem zwrotnym:
 - Wyszukiwanie informacji można postrzegać jako proces ciągły.
 - Użytkownik zadaje zapytanie, zaraz po tym otrzymuje listę rezultatów, ale na tym nie kończy się działanie systemu.
 - Przez zadany okres użytkownik będzie otrzymywał kolejne rezultaty dotyczące zadanego zapytania (np. nowe dokumenty pojawiające się w bazie wiedzy).
 - Każdy z rezultatów jest oceniany przez użytkownika pod względem przydatności i stopnia dopasowania do zapytania (ukryte intencje).
 - Oceny użytkownika są używane do dostosowywania działania mechanizmu wyszukującego (ustawianie wag).
 - Prowadzi to do problemu optymalizacji

Piotr Lipiński, Wykład z eksploracji danych

Podejścia bardziej zaawansowane ...

- □ Modele ze sprzężeniem zwrotnym:
 - Prowadzi to do problemu optymalizacji
 - Niech $D_1^*, D_2^*, \dots, D_N^*$ oznaczają dokumenty zwrócone dotychczas użytkownikowi.
 - Niech $r_1, r_2, ..., r_N \in [0, 1]$ oznaczają oceny dopasowania rezultatu do zapytania nadane tym dokumentom przez użytkownika (0 źle, 1 dobrze).
 - Niech $\alpha = (\alpha_1, \alpha_2, ..., \alpha_m)$ będzie wektorem wag termów.
 - Niech $D^{(\alpha)}_{1}, D^{(\alpha)}_{2}, \dots, D^{(\alpha)}_{N}$ oznaczają dokumenty zwrócone przy zastosowaniu wektora wag termów α (N' > N jest ustaloną liczbą).

Podejścia bardziej zaawansowane ...

- Idea: dobrać wagi termów tak, aby wśród dokumentów $D^{(\alpha)}_1, D^{(\alpha)}_2, \ldots, D^{(\alpha)}_{N}$, znalazło się jak najwięcej dokumentów $D^*_1, D^*_2, \ldots, D^*_{N}$ o wysokich ocenach, a jak najmniej dokumentów o niskich ocenach.
- □ Funkcja celu (przykład):

$$F(\alpha) = \beta_{0.8} / (1 + \gamma_{0.2})$$

gdzie β_x oznacza liczbę dokumentów o r>x, zaś γ_x oznacza liczbę dokumentów o r< x.

- Funkcję celu F można maksymalizować przy użyciu algorytmu ewolucyjnego.
- □ Dwa algorytmy:
 - ES1 strategie ewolucyjne ES
 - ES2 strategie ewolucyjne z wbudowaną redukcją wymiarowości
- Problem:
 - długość chromosomu = liczba termów (ok. 5000)
 - ustawianie tylko wybranego podzbioru wszystkich wag (termy występujące w dokumentach $D_1^*, D_2^*, \dots, D_N^*$)

Piotr Lipiński, Wykład z eksploracji danych

Systemy rekomendujące

- Dostępność coraz większej ilości informacji wymaga jej filtrowania.
 Użytkownik często potrzebuje rekomendacji pomocy w wyborze interesującej go części informacji:
 - pomoc przy wyborze książki/filmu/muzyki
 - pomoc przy wyborze wiadomości prasowych do przeczytania
 - pomoc przy wyborze artykułów w sklepie internetowym
 - pomoc przy oznaczaniu niechcianych wiadomości pocztowych (trochę inny problem, ale podobny)
 - pomoc przy korzystaniu z bardziej złożonych programów komputerowych (inteligentny interfejs – też trochę inny problem)
- Problem rekomendowania jest rozszerzeniem problemu wyszukiwania informacji.
 - Użytkownik chce znaleźć pewną informację, ale nie potrafi sprecyzować kryteriów wyszukiwania.
 - W praktyce: to raczej nie użytkownik chce znaleźć informację, ale osoba trzecia (najczęściej właściciel portalu internetowego) chce mu dostarczyć taką potencjalnie ciekawą informację. Nie można więc liczyć na bezpośrednią współpracę z użytkownikiem.

Model formalny

- □ Niech *C* oznacza zbiór klientów.
- □ Niech S oznacza zbiór produktów.
- \square Niech $u: C \times S \rightarrow R$ będzie funkcją użyteczności.
 - R to zbiór możliwych ocen. Musi być zbiorem uporządkowanym.
 - na przykład: liczba gwiazdek, od 0 do 5
 - □ na przykład: liczba rzeczywista z przedziału [0, 1]
 - u(c, s) to użyteczność produktu s dla klienta c

	erz użytec			
	King Kong	LOTR	Matrix	National Treasure
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4
				U.4

Systemy rekomendujące

- □ **Pierwsze podejście:** Mając funkcję użyteczności, klientowi c rekomendujemy produkty s, dla których u(c, s) ma wysokie wartości.
- □ Problemy:
 - zazwyczaj nie znamy funkcji użyteczności
 - dla ustalonego zbioru klientów C i zbioru produktów S możemy gromadzić informacje o wartościach funkcji użyteczności w macierzy użyteczności U rozmiaru |C| x |S| (m.in. na podstawie opinii klientów po zakupie), jednak ... w ten sposób nie otrzymamy informacji o użyteczności produktów, których klienci jeszcze nie kupili
 - gromadzenie informacji nie jest łatwe:
 - explicite proszenie użytkownika o ocenę większość użytkowników zignoruje prośbę
 - implicite obliczać ocenę na podstawie działań użytkownika (na przykład wielokrotny zakup produktu) – problem w jaki sposób przyznawać niskie oceny
- □ **Drugie podejście:** nieznane wartości funkcji użyteczności można próbować estymować na podstawie zgromadzonych danych w macierzy użyteczności.

Piotr Lipiński, Wykład z eksploracji danych

Estymacja macierzy użyteczności

- Drugie podejście: nieznane wartości funkcji użyteczności można próbować estymować na podstawie zgromadzonych danych w macierzy użyteczności.
- Kluczowy problem: macierz U jest rzadka, bo każda osoba ocenia jedynie niewielką część produktów.
- □ Popularne są trzy podejścia do estymacji macierzy użyteczności:
 - Content-based recommendations
 - Model-based recommendations
 - Collaborative filtering
 - Hybrid approach

Content-based recommendations

- ☐ **Idea:** Rekomendować klientowi produkty podobne do tych, które wysoko ocenił.
- Każdy produkt jest opisywany przez wartości pewnych cech. Jest więc reprezentowany przez wektor w przestrzeni cech. Wektor ten nazywa się profilem produktu.
 - Przykład: Książka może być opisywana przez cechy: autor, tytuł, wydawnictwo, rok wydania. Profil książki to wektor w przestrzeni AUTORZY x TYTUŁY x WYDAWNICTWA x LATA.
 - Przykład: Artykuł prasowy może być opisywany przez TF-IDF. Profil artykułu
 prasowego to wektor w przestrzeni R^d, gdzie d to liczba używanych termów.
- Dla każdego klienta tworzy się jego profil, który też jest wektorem w przestrzeni cech produktów.
 - Przykład: Profil klienta może być określony jako średnia (lub mediana) profili produktów wysoko przez niego ocenionych.
 - Przykład: Profil klienta może być określony jako średnia ważona profili produktów przez niego ocenionych z wagami będącymi różnicą między oceną danego klienta a średnią oceną produktu przez wszystkich klienta.
- Rekomenduje się klientowi te produkty, których odległość od profilu jest niewielka. Popularna miara odległości to miara kosinusów.

Piotr Lipiński, Wykład z eksploracji danych

Content-based recommendations

- □ Problemy:
 - trudności w definiowaniu właściwych cech produktów
 - małe prawdopodobieństwo rekomendowania produktów odległych od profilu klienta (a klienta może mieć różne zainteresowania – system rekomendujący je "uśredni")
 - problem nowego klienta klient, który wcześniej ocenił zbyt mało produktów, będzie miał mało wiarygodny profil

Model-based recommendations

- □ Idea: Dla każdego klienta stworzyć system klasyfikujący produkty (na interesujące i nieinteresujące) na podstawie ocen, które klient dotychczas wystawił niektórym produktom. Następnie użyć systemu do klasyfikacji nieocenionych jeszcze produktów.
- System klasyfikujący można tworzyć na rozmaite sposoby: drzewa decyzyjne, sieci neuronowe, SVM, modele bayesowskie.
- □ Problemy:
 - duża złożoność obliczeniowa
 - konieczność ponownego tworzenia klasyfikatora po zarejestrowaniu nowych ocen
 - słaba skalowalność rozwiązania

Piotr Lipiński, Wykład z eksploracji danych

Collaborative filtering

- ☐ **Idea:** Dla każdego klienta wyznaczyć zbiór klientów do niego podobnych, a następnie estymować oceny nieocenionych jeszcze produktów na podstawie ocen tych produktów wystawionych przez klientów podobnych.
- Miara podobieństwa klientów:
 - klient jest reprezentowany przez wektor swoich ocen (wiersz macierzy użyteczności), wektor liczb rzeczywistych długości |S|
 - przykład: popularna miara odległości klientów to miara kosinusów
 - przykład: popularna miara podobieństwa klientów to współczynnik Pearsona

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \bar{r_x})(r_{ys} - \bar{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \bar{r_x})^2 (r_{ys} - \bar{r_y})^2}}$$

(S_{xy} to produkty ocenione przez obu klientów, r_{xs} to przyznane im oceny)

- □ Dla danego klienta c i danego produktu s, system rekomendujący wyznacza n najbliższych mu innych klientów, którzy ocenili produkt s.
- Prognozowana ocena produktu s przez klienta c, to średnia arytmetyczna ocen tego produktu przez wyznaczonych n klientów.
- ☐ Zamiast średniej arytmetycznej można rozpatrywać średnią ważoną z wagami proporcjonalnymi do odległości między klientem a rozważanym klientem c.
- Powyższe podejście nazywa się user-user collaborative filtering.

Collaborative filtering

- □ Analogicznie można opracować item-item collaborative filtering.
- ☐ Miara podobieństwa produktów:
 - produkt jest reprezentowany przez wektor swoich ocen (kolumnę macierzy użyteczności), wektor liczb rzeczywistych długości |C|
 - miary podobieństwa produktów są analogiczne jak w user-user collaborative filtering
- □ Dla danego klienta c i danego produktu s, system rekomendujący wyznacza n najbliższych mu innych produktów, które ocenił klient c.
- Prognozowana ocena produktu s przez klienta c, to średnia arytmetyczna ocen produktów podobnych wystawionych przez klienta c.
- □ Zamiast średniej arytmetycznej można rozpatrywać średnią ważoną z wagami proporcjonalnymi do odległości między produktem a rozważanym produktem s.

Piotr Lipiński, Wykład z eksploracji danych

Collaborative filtering

- □ Podsumowanie collaborative filtering:
 - podejście działa dla produktów dowolnego typu (niewymagane jest opisywanie produktu przez cechy)
 - problem nowego użytkownika
 - problem nowego produktu
 - problem "Cold Start" do działania systemu wymagane jest zgromadzenie pewnej liczby klientów i ich ocen pewnej liczby produktów
 - problem "First Rater" system nie zarekomenduje produktu, który nie został jeszcze nigdy oceniony
 - problem "Popularity Bias" system częściej będzie rekomendować popularne produkty, system nie trafi w gusta osób o wyjątkowych wymaganiach
 - Content-Based Recommendations nie miało problemów "Cold Start" ani "First Rater".

Collaborative filtering

- □ Rozszerzenia collaborative filtering:
 - klientów i produkty warto pogrupować, aby zredukować ich liczbę
 - klientów można pogrupować wcześniej i aktualizować to grupowanie w wolnym czasie (nie za każdym razem kiedy liczona jest rekomendacja, bo przydział do grup powinien być stabilny i długotrwały)
 - można połączyć collaborative filtering z analizą meta-danych (o klientach i o produktach)
 - można użyć reguł asocjacyjnych do wykrywania grup produktów kupowanych razem i wykorzystać to do rekomendowania zakupu następników reguł

Piotr Lipiński, Wykład z eksploracji danych

Slope One

- Rozszerzenia Collaborative Filtering wprowadzone przez Daniel Lemire i Anna Maclachlan w 2005 roku.
- □ propozycja referatu na następne zajęcia