QUESTION 3: [30 Points]

Assume that the ALU (Adder and Logic Unit) in Figure 3 has only the following features:

Feature 1: ALU can perform the following logical operations:

AND (AC \leftarrow AC \wedge M[AR])

 $XOR (AC \leftarrow AC \oplus DR).$

Feature 2: ALU cannot perform the subtraction directly. However, it can perform complement and add operations to perform subtraction.

Considering the basic computer in Figure 3 with the ALU defined above, write the sequence of register transfer statements needed to execute the commands in the table below.

HINT-1: Fetch and Decode is already done in T0, T1, T2, and T3 cycles.

HINT-2: Addressing mode bit (IR[15]) is already checked.

HINT-3: EA is the effective address in the AR at the time where the commands start executing.

Symbol	Opcode	Symbolic Representation	Description
XOR	000	AC← AC ⊕M[EA]	XOR with AC
SUB	001	AC←AC-M[EA]	Subtract memory from AC
EXC	010	AC←M[EA], M[EA]←AC	Exchange AC and memory
ВРА	011	If (AC>0) Then (PC←EA)	Branch if AC positive and non-zero

Figure 5-4 Basic computer registers connected to a common bus.

130

FIGURE 3

XOR:

D0T4: $DR \leftarrow M[AR]$

D0T5: $AC \leftarrow AC \oplus DR$, $SC \leftarrow 0$

SUB:

D1T4: DR← M[AR]

D1T5: $DR \leftarrow AC$, $AC \leftarrow DR$,

D1T6: AC← AC′

D1T7: AC←AC+1

D1T8: $AC \leftarrow AC + DR$, $SC \leftarrow 0$

EXC

D2T4: DR← M[AR]

D2T5: M[AR] \leftarrow AC, AC \leftarrow DR, SC \leftarrow 0

 BPA

D3T4: if(AC=0 AND AC(15)=0

Then

PC← AR, SC←0