Criptología asimétrica

Criptografía asimétrica

• Términos equivalentes: Cifrado

asimétrico

Problemas polinómicos

– de clave pública

Problemas NP

Factorización Factorización

– de dos claves

Problemas NP-completos

Logaritmos discretos

Aritmética modular

Números primos

• Basada en teoría de complejidad y teoría de números

• Requisitos:

- Cada entidad tiene dos claves fáciles de generar computacionalmente:
 - Pública: conocida por cualquiera
 - Privada: secreta

Una usada para cifrado y otra para descifrado

- Computacionalmente sencillo cifrar y descifrar texto cuando se conoce clave correspondiente
- Computacionalmente imposible determinar clave privada si sólo se conoce algoritmo y clave pública
- Computacionalmente imposible determinar texto claro si sólo se conoce algoritmo y clave de cifrado es la pública
- Algoritmos: RSA, ElGamal, curvas elípticas

RSA

- De Rivest, Samir y Adleman en 1977 (¿previo?)
- Patentado en 1982 en EEUU
 - Prohibida exportación y uso salvo fines no comerciales

Generación de claves

2. Elegir un número entero e tal que

```
1<e<\varnothing(n), mcd(e,\varnothing(n))=1 mcd(e,160)=1 (e y \varnothing(n) primos entre sí) ==7
```

3.Calcular/elegir un número d tal que d.e=1 mod 160 y d<160 $0 \le d \le n$ y e.d $\equiv 1 \mod \emptyset$ (n) d=23 $(23 \times 7 = 161 = 1 \times 160 + 1)$

```
clave pública: (e, n) ----- (7,187)

clave privada: (d, n) 0 ----- (23,187)

(d, p, q)
```

RSA (cont.)

Procedimiento

• Cifrado:

Texto claro:

Texto cifrado:

clave pública de receptor

 $C = M^e \pmod{n}$

• Descifrado:

Texto cifrado:

Texto claro:

C

 $M = C^{d} \pmod{n}$

Cifrado

 $11^{23} = 11^8 11^4 11^2 11^1$

Descifrado

clave privada de receptor

RSA. Criptoanálisis

• Ataques matemáticos:

- -Factorizar n (=p.q) para obtener Ø (n) y después d
- -Determinar Ø (n) directamente y luego d
- -Encontrar d directamente

Equivalentes a factorización: por ahora seguro para nº de 1024 bits

Ataques basados en el tiempo

- Inferir tamaño de operando según tiempo que tardan operaciones
- -RSA aprovecha tiempo que tarda exponenciación
- -Contramedidas:
 - tiempo de exponenciación constante, retardos aleatorios, ...

• Fuerza bruta:

No factible si tamaño de números es grande: 1024 bits (300 decimales)
(1994: con 1600 computadoras y clave de 129 decimales cifrado roto en 8 meses
1999: 130 dígitos decimales (512 bits) roto con algoritmo GNFS)

ElGamal

- Taher ElGamal en 1985
- No patentado

Generación de claves

- Elegir un primo p grande (puede ser conocido y compartido)
- Elegir raíz primitiva g, 1<g<p (puede ser conocido y compartido)
- -Elegir x, x<p
- -Calcular y=gx mod p
- -Pública: p, g, y privada: x

Procedimiento

• Cifrado:

Tamaño de cifrado doble que claro

- Elegir número aleatorio k, k y p−1 primos entre sí
- -C(M, k) = (a, b), donde clave pública de receptor $a = g^k \mod p$ clave pública de receptor $b = My^k \mod p$ clave pública de receptor
- Descifrado:

$$-D(a,b) = b/a^{x} \mod p = M$$

Comparación entre simétricos y asimétricos

Criptosistemas simétricos

- Ventajas:
 - Muchos algoritmos:
 - IDEA, CAST, 3DES, RC4, Blowfish, RC5 y 6, AES, etc.
 - Implementación eficiente en software y hardware
 - Rápidos o muy rápidos
- Inconvenientes:
 - Necesario secreto previo compartido
 - Comunicación segura de claves (procedimiento y canal)
 - Número de claves crece con el cuadrado del número de comunicantes:
 - n comunicantes \rightarrow n(n-1)/2 claves

Criptosistemas asimétricos

- Ventajas:
 - Implementación eficiente en software y, algo menos, en hardware
 - No necesario secreto previo compartido
 - Número de claves crece linealmente con número de comunicantes
- Inconvenientes:
 - Pocos algoritmos
 - RSA, ElGamal, Curvas Elípticas
 - Muy lentos y costosos computacionalmente

Funciones hash

Funciones hash

Valor representa original de manera concisa

REQUISITOS de una función hash H para usarla en criptosistemas:

- Se puede aplicar a entradas de cualquier tamaño
- Produce una salida de longitud fija
- H(x) es fácil de calcular
- Es de sentido único:
 - Dado H(x), es computacionalmente imposible encontrar x
- Es resistente a colisiones:
 - Dado x, es computacionalmente imposible encontrar x'distinta, tal que H(x)=H(x') (débil)
 - Es computacionalmente imposible encontrar x y x' distintos, tales que H(x)=H(x') (fuerte)

PROCEDIMIENTO

- Basado en funciones de compresión con entrada de longitud fija
 - Texto procesado en bloques (puede necesitarse relleno)
 - Salida a entrada de siguiente (puede necesitarse vector de inicialización)
- Algoritmos: familia MD, familia SHA, RIPEMD-160, ...
- Criptoanálisis: Seguridad depende de probabilidad de colisión

MD5

- Ronald Rivest diseñó MD4 en 1990
 - -Procesa por etapas con bloques de 512 bits (16 x 32 bits)
 - Salida son 4 palabras de 32 bits (128 bits)
 Criptoanálisis parciales: sentimiento general de poca seguridad
- Ronald Rivest mejoró MD4 con MD5 en 1991 (RFC1321)
 - Entrada y salida como MD4

FUNCIONAMIENTO

- -Rellenar texto para que longitud sea 448 mod 512
- Añadir 64 bits (con longitud en bits de original)
- Inicializar 4 variables (128 bits) en registro (123456, 89abcdef, fedcba98, 76543210)
- -Procesar en grupos de 16 palabras (512 bits):
 - 4 etapas intermedias de 16 operaciones de bit con bloques y registro
- Valor de salida = Concatenación de valor final de variables

Parte de muchas aplicaciones: IPsec, PGP, ...

Criptoanálisis: en Crypto2004 anuncio de ruptura de familia MD (y otros)

Secure Hash Algoritm (SHA)

- Diseñado por NIST y NSA en 1993
 - Basado en MD4 y MD5
 - Revisado en 1995: SHA-1
 - Revisión FIPS 180-2: SHA-256, SHA-384, SHA-512

FUNCIONAMIENTO

- Entrada de longitud $< 2^{64}$ bits, salida de 160 bits
- Rellenar texto para que longitud sea 448 mod 512
- Añadir 64 bits (con longitud en bits de original)
- Inicializar 5 variables (160 bits) en registro
 - -(67452301,efcdab89,98badcfe,10325476,c3d2e1f0)
- Procesar en grupos de 16 palabras (512 bits):
 - Expandir a 80 palabras mezclando y desplazando
 - 4 etapas de 20 operaciones de bit con bloques y registro
- Valor de salida = Concatenación de valor final de variables

Criptoanálisis: en Crypto2004 anuncio de ruptura de SHA-0 y debilitamiento de SHA-1

Etapas intermedias

Etapa en el MD5

Etapa en el SHA

Funciones combinatorias Φ en el SHA

Aplicaciones

Confidencialidad
Integridad
Autenticación

Confidencialidad

- Critografía simétrica
 - Cifrado y descifrado con misma clave

- En comunicación:
 - Cifrado de
 - mensaje completo: necesario descifrar en cada nodo de la red (clave secreta cada 2)
 - mensaje sin cabecera: sólo descifrar en destino
 - ¿Cómo conseguir que emisor y receptor compartan clave?

Necesaria distribución segura de clave

Distribución de clave

Posibilidades

- Clave pasada fisicamente
 - elegida por uno de los dos
 - elegida por tercero
- Clave cifrada (necesaria otra clave antes)
 - elegida por uno de los dos
 - elegida por tercero

Algoritmo de Diffie-Hellman para intercambio de clave (1976)

- No se pasa secreto entre usuarios →escuchas no pueden interceptarlo
- Parámetros iniciales: q primo y g raíz primitiva de q (pueden conocerse)

Confidencialidad (cont.)

- Criptografía asimétrica
 - Cifrado y descifrado con distinta clave
 - En comunicación:
 - Emisor cifra con clave pública de receptor
 - Receptor descifra con su clave privada

Integridad

Resumen hash

• Resumen hash (cifrado)

Integridad (cont.)

- MAC (Mesage Authentication Code):
 - Resumen que depende de clave
 - Ej., último bloque de salida de DES en modo CBC
 - HMAC: hash (de sentido único) como MAC

- Concatena clave y mensaje
- Posibilidades:

$$\begin{aligned} & \text{HMAC}_{K}(X) = h(K \mid X) \\ & \text{HMAC}_{K}(X) = h(X \mid K) \\ & \text{HMAC}_{K}(X) = h(K \mid X \mid K) \\ & \text{HMAC}_{K}(X) = h(K \mid X \mid K2) \\ & \text{HMAC}_{K}(X) = h(K \mid h(K2 \mid X)) \\ & (K1, K2 \text{ a partir de } K) \end{aligned}$$

- Ventajas:
 - Más rápido que cifrador
 - Sin patente
- Seguridad: la de algoritmo hash utilizado

Autenticación

Criptografía simétrica:

– ¿Cuál de los dos lo ha hecho?

Criptografía asimétrica:

• Cifrar con clave privada y descifrar con clave pública de emisor

- Algoritmos de firma digital : El Gamal, DSA, ...
- Generalmente cifrado de resumen, no de mensaje completo
 - Más rápido

Autenticación (cont.)

DSA (Digital Signature Algorithm)

- Estándar NIST en 1991, basada en ElGamal y hash de sentido único
- No patentado
- Parámetros:
 - p primo, q primo (160 bits) y q divide p-1
 - g raíz primitiva, y=gx mod p
 - x n° aleatorio entre 1 y q
 - Clave pública y, p,q,g clave privada x
 - M texto claro
 - H función hash
 - k clave aleatoria para una vez

¿Vale para confidencialidad?

• Firma:

$$r=(g^k \text{ mod } p) \text{ mod } q$$
 $s=k^{-1}(H(M)+xr) \text{ mod } q$

$$firma_x(M)=(r,s)$$
SHA-1

• Verificación:

Dados M y (r, s)

$$u1 = s^{-1} H(M) \mod q$$

 $u2 = s^{-1} r \mod q$
 $v = (g^{u1} y^{u2} \mod p) \mod q$

aceptar si v=r