BIN – Aproximace násobiček pomocí CGP

Jan Zdeněk

Fakulta informačních technologií Vysokého učení technického v Brně
Božetěchova 1/2, 612 00 Brno – Královo Pole
xzdene01@fit.vutbr.cz

Úvod do problematiky

Optimalizace plochy

$$F_1(c) = \begin{cases} area(c) & \text{if } err(c) \le \tau \\ \infty & \text{otherwise} \end{cases}$$

Optimalizace průměrné chyby

$$F_2(c) = egin{cases} err(c) & ext{if } area(c) \leq \tau \\ \infty & ext{otherwise} \end{cases}$$

Reprezentace CGP obvodu

• hlavička: {8,8,1,64,2,1,0}	vstupů celkem	8
	výstupů celkem	8
	počet řádků	1
	počet sloupců	64
	vstupů na uzel	2
	výstupů na uzel	1
	l-back	∞
• jádro: ((10)2,6,2) ((73)70,72,3)	ID uzlu	10
	první vstup	2
	druhý vstup	6
	kód operace	2
výstup: (10,15,33,54,59,65,71,73)	ID výstupních uzlů	

... tato struktura tedy reprezentuje genotyp jedince.

Evoluce

- inicializace populace z prvotního rodiče (načten ze souboru)
- mutace nové populace (uzly + výstupy)
- ohodnocení celé populace a výběr rodiče (greedy selection¹)
- tvorba nové populace pomocí metody $\lambda + 1$

¹při stejné fitness se preferuje změna nejlepšího jedince

Plocha, Průměrná chyba a Fitness

Pro každého jedince c je spočteno:

- area(c) = count(c.active_nodes)
- $error_{avg}(c) = \frac{1}{N} \sum_{a,b} |c.forward(a_{(2)} \circ b_{(2)}) (a * b)|$, kde:
 - a a b jsou všechny kombinace N-bitovách vstupů
 - forward(x) je výstup CGP obvodu pro vstup x
 - (o) je konkatenace (prakticky je pouze jeden vstup, resp. 8 vstupů)
 - (x₍₂₎) je číslo x vyjádřeno v binární soustavě (little-endian bit order)
- $fitness(c) = F_{\{1,2\}}(c)$ pro předem zvolené τ

... podle fitness je následně zvolen rodič následující populace.

Nastavení

Počet jedinců v populaci Počet generací Předtrénování Koeficient mutace Omezení chyby (τ) Omezení plochy (τ) 10 5000 (4000 + 1000) 5000 (prakticky neomezeně) 0.03 log(0.1, 20, count=10) uniform(20, 60, step=4)

Optimalizace plochy

Optimalizace průměrné chyby

Porovnání obou přístupů

Porovnání obou přístupů (2)

Pareto fronty

Nad rámec zadání – finetuning (chyba)

4000 (optimalizace chyby) + 1000 (optimalizace plochy)

Analýza chování chyby

Řešení? – Chybu zvyšovat postupně s omezením.

Je chování systému v prostoru dle očekávání?

Ano, vizuálně je hypotéza i výsledek velice podobný.

Který způsob vede na lepší řešení z pohledu Pareto fronty?

Optimalizace plochy, resp. omezení chyby.

Který způsob/způsoby vedou na očekávanou podobu Pareto front?

Pouze optimalizace plochy vede na očekáváné "esíčko".

Děkuji za pozornost