Day 2

Data Engineering Pipelines

Data Volume

Data Velocity

Data Variety

Data Value

Identifying Big Data Sources

Probability and Statistics

Fundamental Concepts of Probability

Probability and Inferential Statistics

Random Variables

Probability Distributions

Expectations

NumPy

Understanding Data Types in Python

Fixed-Type Arrays

Arrays from Lists

Arrays from Scratch

Data Engineering Pipelines:

Data Engineer => Data Science + Data Engineering
Skills => Prgmg skills, data storage (DB),System
Implementation, Database Management
Data Scientist => AI, ML, DL, Math, statistics,
programing language, domain knowledge

Data Engineering => It will help to create a dataset for Data Modelling and data production and send this data to Data Science dept (**Data Scientist**)

Data Engineering Pipelines

Big Data: It is a combination of Structured (Relational DB -> SQL , Oracle) , unstructured (Non Relational , No SQL DB → Cassandra , Reddis) and semi structured data (Unstructured DB)collected by a company

Eg: FB

Eg: Pig, Hive, Hbase etc...

5V's:

- Velocity How quick data generates & moves
- Volume Refers to the size of data
- Value Check whether the data is valuable or not

- Variety It will analyse the data types and storage db like relational or non relational db
- Veracity This defines the quality of data

Probability and Statistics:

Fundamental Concepts of Probability

- For solving the prediction problem -> Probability is used
- In DS:
 - a. Data preprocessing
 - b. model evaluation
 - c. Visualisation of features (numpy, pandas)
 - d. Dimensionality reduction
 - e. Feature engineering
 - f. Mean or Expectation value
 - Possible outcome of a random experiment repeated again and again for n times is called Expectation value

Eg: Six face dice

Possible outcome: {1,2,3,4,5,6} = \%

EV =
$$1(1/6)+2(1/6)+3(1/6)+4(1/6)+5(1/6)+6(1/6)$$

6)
= $(1+2+3+4+5+6)/6 = 21/6 = 3.5$
EV of 2 dice = $3.5+3.5 = 7$
EV of n => $3.5 *n$
Assignment -> Find the EV of 1 dice of 4 faced =? $(1+2+3+4)/4 = 10/4 = 2.5$

EV of 3 dice of 4 faced = 7.5

Variance

- a. Find the mean of the given data set.
 Calculate the average of a given set of values
- b. Now subtract the mean from each value and square them
- c. Find the average of these squared values, that will result in variance Eg: 610,

a.Mean =
$$1950 / 5 = 390$$

b. $(610-390)^2+(450-390)^2+(160-390)^2$
2+ $(420-390)^2+(310-390)^3$

- = 112200/5
- = 224400

Standard deviation

- 1.Mean
- 2. Diff of value with mean, square and sum
- 3. Square root of o/p of step 2 / (sum-1)

$$1.25/5 = 5$$

$$2.(4-5)^2+(2-5)^2+(5-5)^2+(8-5)^2+(6-5)^2$$

= $(-1)^2+(-3)^2+(0)^2+(3)^2+(1)^2$

3. Square root of (20) / (5-1=4) = 20/4=5Square root of 5 = 2.23

Bayes Theorem

Eg: 1 Image -> 4 boys , 6 girls 2 Image ->4boys , 3 girls

Find 1 person in Image 1 -> Girl?

Image 1 => $\frac{1}{2}$ Image 2=> $\frac{1}{2}$ Prob of finding a girl in image 1 => $\frac{6}{10}$ Prob of finding a girl in image 2 => $\frac{3}{7}$

BT =
$$\frac{1}{2}$$
 * 6/10

$$\frac{}{(\frac{1}{2}$$
 * 6/10) + $(\frac{1}{2}$ * 3/7) = 7/12

Probability and Inferential Statistics Random Variables Probability Distributions Expectations

NumPy

Understanding Data Types in Python Fixed-Type Arrays
Arrays from Lists
Arrays from Scratch