

Minimum Spanning Trees

Algorithms: Design and Analysis, Part II

Problem Definition

Overview

Informal Goal: Connect a bunch of points together as cheaply as possible.

Applications: Clustering (more later), networking.

Blazingly Fast Greedy Algorithms:

- Prim's Algorithm [1957; also Dijkstra 1959, Jarnik 1930]
- Kruskal's algorithm [1956]

Problem Definition

vertices edges

Input: Undirected graph G = (V, E) and a cost c_e for each edge $e \in E$.

- Assume adjacency list representation (see Part I for details)
- OK if edge costs are negative

Output: minimum cost tree $T \subseteq E$ that spans all vertices.

i.e., sum of edge costs

I.e.: (1) T has no cycles, (2) the subgraph (V, T) is connected (i.e., contains path between each pair of vertices).

Standing Assumptions

Assumption #1: Input graph G is connected.

- Else no spanning trees.
- Easy to check in preprocessing (e.g., depth-first search).

Assumption #2: Edge costs are distinct.

- Prim + Kruskal remain correct with ties (which can be broken arbitrarily).
- Correctness proof a bit more annoying (will skip).

Minimum Spanning Trees

Algorithms: Design and Analysis, Part II

Prim's MST Algorithm

Example

 $[Purple\ edges = minimum\ spanning\ tree]$

(Compare to Dijkstra's shortest-path algorithm)

Prim's MST Algorithm

- Initialize $X = \{s\}$ [$s \in V$ chosen arbitrarily]
- $T = \emptyset$ [invariant: X = vertices spanned by tree-so-far T]
- While $X \neq V$
 - Let e = (u, v) be the cheapest edge of G with $u \in X$, $v \notin X$.
 - Add e to T
 - Add v to X.

While loop: Increase # of spanned vertices in cheapest way possible.

Correctness of Prim's Algorithm

Theorem: Prim's algorithm always computes an MST.

Part I: Computes a spanning tree T^* . [Will use basic properties of graphs and spanning trees] (Useful also in Kruskal's MST algorithm)

Part II: T^* is an MST. [Will use the "Cut Property"] (Useful also in Kruskal's MST algorithm)

Later: Fast $[O(m \log n)]$ implementation using heaps.

Minimum Spanning Trees

Algorithms: Design and Analysis, Part II

Correctness of Prim's Algorithm (Part I)

Cuts

Claim: Prim's algorithm outputs a spanning tree.

Definition: A <u>cut</u> of a graph G = (V, E) is a partition of V into 2 non-empty sets.

Quiz on Cuts

Question: Roughly how many cuts does a graph with *n* vertices have?

- A) n C) 2^n (for each vertex, choose whether in A or in B)
- B) n^2 D) n^n

Empty Cut Lemma

Empty Cut Lemma: A graph is not connected $\iff \exists$ cut (A, B)with no crossing edges.

Proof: (\Leftarrow) Assume the RHS. Pick any $u \in A$ and $v \in B$. Since no edges cross (A, B) there is no u, v path in $G. \Rightarrow G$ not connected.

 (\Rightarrow) Assume the LHS. Suppose G has no u-v path. Define $A = \{ \text{Vertices reachable from } u \text{ in } G \}$ (u's connected component) $B = \{All \text{ other vertices}\}\ (all \text{ other connected components})$

Note: No edges cross cut (A, B) (otherwise A would be bigger!)

Two Easy Facts

Double-Crossing Lemma: Suppose the cycle $C \subseteq E$ has an edge crossing the cut (A, B): then so does some other edge of C.

Lonely Cut Corollary: If e is the only edge crossing some cut (A, B), then it is not in any cycle. [If it were in a cycle, some other edge would have to cross the cut!]

Proof of Part I

Claim: Prim's algorithm outputs a spanning tree. [Not claiming MST yet]

Proof: (1) Algorithm maintains invariant that T spans X [straightforward induction - you check]

- (2) Can't get stuck with $X \neq V$ [otherwise the cut (X, V X) must be empty; by Empty Cut Lemma input graph G is disconnected]
- (3) No cycles ever get created in T. Why? Consider any iteration, with current sets X and T. Suppose e gets added. Key point: e is the first edge crossing (X, V X) that gets added

Key point: e is the first edge crossing (X, V - X) that gets added to $T \Rightarrow$ its addition can't create a cycle in T (by Lonely Cut Corollary). QED!

Minimum Spanning Trees

Algorithms: Design and Analysis, Part II

Correctness of Prim's Algorithm (Part II)

Correctness of Prim's Algorithm

Theorem: Prim's algorithm always outputs a minimum-cost spanning tree.

Key Question: When is it "safe" to include an edge in the tree-so-far?

The Cut Property

CUT PROPERTY: Consider an edge e of G. Suppose there is a cut (A, B) such that e is the cheapest edge of G that crosses it. Then e belongs to the MST of G.

Turns out MST is unique if edge costs are distinct

Cut Property Implies Correctness

Claim: Cut Property ⇒ Prim's algorithm is correct.

Proof: By previous video, Prim's algorithm outputs a spanning tree T^* .

Key point: Every edge $e \in T^*$ is explicitly justified by the Cut Property.

- $\Rightarrow T^*$ is a subset of the MST
- \Rightarrow Since T^* is already a spanning tree, it must be the MST

QED!

Minimum Spanning Trees

Algorithms: Design and Analysis, Part II

Proof of the Cut Property

The Cut Property

Assumption: Distinct edge costs.

CUT PROPERTY: Consider an edge e of G. Suppose there is a cut (A, B) such that e is the cheapest edge of G that crosses it. Then e belongs to the MST of G.

Proof Plan

Will argue by contradiction, using an exchange argument. [Compare to scheduling application]

Suppose there is an edge e that is the cheapest one crossing a cut (A, B), yet e is not in the MST T^* .

Idea: Exchange e with another edge in T^* to make it even cheaper (contradiction).

Question: Which edge to exchange e with?

Attempted Exchange

Note: Since T^* is connected, must construct an edge $f(\neq e)$ crossing (A, B).

Idea: Exchange e and f to get a spanning tree cheaper than T^* (contradiction).

Exchanging Edges

Question: Let T^* be a spanning tree of G, $e \notin T^*$, $f \in T^*$. Is $T^* \cup \{e\} - \{f\}$ a spanning tree of G?

- A) Yes always
- B) No never
- C) If e is the cheapest edge crossing some cut, then yes
- D) Maybe, maybe not (depending on the choice of e and f)

Smart Exchanges

Hope: Can always find suitable edge e' so that exchange yields bona fide spanning tree of G.

How? Let C = cycle created by adding e to T^* .

By the Double-Crossing Lemma: Some other edge e' of C [with $e' \neq e$ and $e' \in T^*$] crosses (A, B).

You check: $T = T^* \cup \{e\} - \{e'\}$ is also a spanning tree.

Since $c_e < c_{e'}$, T cheaper than purported MST T^* , contradiction.

Minimum Spanning Trees

Algorithms: Design and Analysis, Part II

Fast Implementation of Prim's Algorithm

Running Time of Prim's Algorithm

- Initialize $X = \{s\}$ [$s \in V$ chosen arbitrarily]
- $T = \emptyset$ [invariant: X = vertices spanned by tree-so-far T]
- While $X \neq V$
 - Let e = (u, v) be the cheapest edge of G with $u \in X$, $v \notin X$.
 - Add e to T, add v to X.

Running time of straightforward implementation:

- O(n) iterations [where n = # of vertices]
- O(m) time per iteration [where m = # of edges]
- $\Rightarrow O(mn)$ time

BUT CAN WE DO BETTER?

Prim's Algorithm with Heaps

[Compare to fast implementation of Dijkstra's algorithm] Invariant #1: Elements in heap = vertices of V - X.

Invariant #2: For $v \in V - X$, key[v] = cheapest edge (u, v) with $i \in X$ (or $+\infty$ if no such edges exist).

Check: Can initialize heap with $O(m + n \log n) = O(m \log n)$ preprocessing.

To compare keys n-1 Inserts $m \ge n-1$ since G connected

Note: Given invariants, Extract-Min yields next vertex $v \notin X$ and edge (u, v) crossing (X, V - X) to add to X and T, respectively.

Quiz: Issue with Invariant #2

Question: What is: (i) current value of key[v] (ii) current value of key[w] (iii) value of key[w] after one more iteration of Prim's

algorithm?

- A) 11, 10, 4 C) 2, 10, 1
- B) 2, 10, 10 D) 2, 10, 2

Maintaining Invariant #2

Issue: Might need to recompute some keys to maintain Invariant #2 after each Extract-Min.

Pseudocode: When v added to X:

- For each edge $(v, w) \in E$:
 - If $w \in V X \to \text{The only whose key might have changed}$ (Update key if needed:)
 - Delete w from heap
 - Recompute $key[w]:=min\{key[w], c_{vw}\}$
 - Re-Insert into heap

Subtle point/exercise:

Think through book-keeping needed to pull this off

Running Time with Heaps

- Dominated by time required for heap operations
- (n-1) Inserts during preprocessing
- (n-1) Extract-Mins (one per iteration of while loop)
- Each edge (v, w) triggers one Delete/Insert combo [When its first endpoint is sucked into X]
- \Rightarrow O(m) heap operations [Recall $m \ge n 1$ since G connected]
- $\Rightarrow O(m \log n)$ time [As fast as sorting!]

Minimum Spanning Trees

Algorithms: Design and Analysis, Part II

Fast Implementation of Prim's Algorithm

Running Time of Prim's Algorithm

- Initialize $X = \{s\}$ [$s \in V$ chosen arbitrarily]
- $T = \emptyset$ [invariant: X = vertices spanned by tree-so-far T]
- While $X \neq V$
 - Let e = (u, v) be the cheapest edge of G with $u \in X$, $v \notin X$.
 - Add e to T, add v to X.

Running time of straightforward implementation:

- O(n) iterations [where n = # of vertices]
- O(m) time per iteration [where m = # of edges]
- $\Rightarrow O(mn)$ time

BUT CAN WE DO BETTER?

Prim's Algorithm with Heaps

[Compare to fast implementation of Dijkstra's algorithm] Invariant #1: Elements in heap = vertices of V - X.

Invariant #2: For $v \in V - X$, key[v] = cheapest edge (u, v) with $i \in X$ (or $+\infty$ if no such edges exist).

Check: Can initialize heap with $O(m + n \log n) = O(m \log n)$ preprocessing.

To compare keys n-1 Inserts $m \ge n-1$ since G connected

Note: Given invariants, Extract-Min yields next vertex $v \notin X$ and edge (u, v) crossing (X, V - X) to add to X and T, respectively.

Quiz: Issue with Invariant #2

Question: What is: (i) current value of key[v] (ii) current value of key[w] (iii) value of key[w] after one more iteration of Prim's

algorithm?

- A) 11, 10, 4 C) 2, 10, 1
- B) 2, 10, 10 D) 2, 10, 2

Maintaining Invariant #2

Issue: Might need to recompute some keys to maintain Invariant #2 after each Extract-Min.

Pseudocode: When v added to X:

- For each edge $(v, w) \in E$:
 - If $w \in V X \to \text{The only whose key might have changed}$ (Update key if needed:)
 - Delete w from heap
 - Recompute $key[w]:=min\{key[w], c_{vw}\}$
 - Re-Insert into heap

Subtle point/exercise:

Think through book-keeping needed to pull this off

Running Time with Heaps

- Dominated by time required for heap operations
- (n-1) Inserts during preprocessing
- (n-1) Extract-Mins (one per iteration of while loop)
- Each edge (v, w) triggers one Delete/Insert combo [When its first endpoint is sucked into X]
- \Rightarrow O(m) heap operations [Recall $m \ge n-1$ since G connected]
- $\Rightarrow O(m \log n)$ time [As fast as sorting!]

Algorithms: Design and Analysis, Part II

Kruskal's MST Algorithm

MST Review

Input: Undirected graph G = (V, E), edge costs c_e .

Output: Min-cost spanning tree (no cycles, connected).

Assumptions: *G* is connected, distinct edge costs.

Cut Property: If e is the cheapest edge crossing some cut (A, B), then e belongs to the MST.

Example

Kruskal's MST Algorithm

- Sort edges in order of increasing cost [Rename edges $1, 2, \ldots, m$ so that $c_1 < c_2 < \ldots < c_m$]
- *T* = ∅
- For i = 1 to m
 - If $T \cup \{i\}$ has no cycles
 - Add i to T
- Return T

Algorithms: Design and Analysis, Part II

Correctness of Kruskal's Algorithm

Correctness of Kruskal (Part I)

Theorem: Kruskal's algorithm is correct.

Proof: Let $T^* = \text{output of Kruskal's algorithm on input graph } G$.

- (1) Clearly T^* has no cycles.
- (2) T^* is connected. Why?
- (2a) By Empty Cut Lemma, only need to show that T^* crosses every cut.
- (2b) Fix a cut (A, B). Since G connected at least one of its edges crosses (A, B).

Key point: Kruskal will include first edge crossing (A, B) that it sees [by Lonely Cut Corollary, cannot create a cycle]

Correctness of Kruskal (Part II)

(3) Every edge of T^* satisfied by the Cut Property. (Implies T^* is the MST)

Reason for (3): Consider iteration where edge (u, v) added to current set T. Since $T \cup \{(u, v)\}$ has no cycle, T has no u - v path.

- $\Rightarrow \exists$ empty cut (A, B) separating u and v. (As in proof of Empty Cut Lemma)
- \Rightarrow By (2b), no edges crossing (A, B) were previously considered by Kruskal's algorithm.
- \Rightarrow (u, v) is the first (+ hence the cheapest!) edge crossing (A, B).
- \Rightarrow (u, v) justified by the Cut Property. QED

Algorithms: Design and Analysis, Part II

Implementing
Kruskal's Algorithm
via Union-Find

Kruskal's MST Algorithm

```
- Sort edges in order of increasing cost. (O(m \log n), \text{ recall } m = O(n^2) assuming nonparallel edges)
- T = \emptyset
- For i = 1 to m(O(m) \text{ iterations})
- If T \cup \{i\} has no cycles (O(n) \text{ time to check for cycle [Use BFS or DFS in the graph } (V, T) \text{ which contains } \leq n - 1 \text{ edges]})
- Add i to T
```

Running time of straightforward implementation: (m = # of edges, n = # of vertices) $O(m \log n) + O(mn) = O(mn)$

Plan: Data structure for O(1)-time cycle checks $\Rightarrow O(m \log n)$ time.

The Union-Find Data Structure

Raison d'être of union-find data structure: Maintain partition of a set of objects.

FIND(X): Return name of group that X belongs to. UNION(C_i , C_i): Fuse groups C_i , C_i into a single one.

Why useful for Kruskal's algorithm: Objects = vertices

- Groups = Connected components w.r.t. chosen edges T.
- Adding new edge (u, v) to $T \iff$ Fusing connected components of u, v.

Union-Find Basics

Motivation: O(1)-time cycle checks in Kruskal's algorithm.

Idea #1: - Maintain one linked structure per connected component of (V, T).

- Each component has an arbitrary leader vertex.

Invariant: Each vertex points to the leader of its component ["name" of a component inherited from leader vertex]

Key point: Given edge (u, v), can check if u & v already in same component in O(1) time. [if and only if leader pointers of u, v match, i.e., $\mathsf{FIND}(u) = \mathsf{FIND}(v)$] $\Rightarrow O(1)$ -time cycle checks!

Maintaining the Invariant

Note: When new edge (u, v) added to T, connected components of u & v merge.

Question: How many leader pointer updates are needed to restore the invariant in the worst case?

- A) $\Theta(1)$
- B) $\Theta(\log n)$
- C) $\Theta(n)$ (e.g., when merging two components with n/2 vertices each)
- D) $\Theta(m)$

Maintaining the Invariant (con'd)

Idea #2: When two components merge, have smaller one inherit the leader of the larger one. [Easy to maintain a size field in each component to facilitate this]

Question: How many leader pointer updates are now required to restore the invariant in the worst case?

- A) $\Theta(1)$
- B) $\Theta(\log n)$
- C) $\Theta(n)$ (for same reason as before, i.e., when merging two components with n/2 vertices each)
- D) $\Theta(m)$

Updating Leader Pointers

But: How many times does a single vertex v have its leader pointer updated over the course of Kruskal's algorithm?

- A) $\Theta(1)$
- B) $\Theta(\log n)$
- C) $\Theta(n)$
- D) $\Theta(m)$

Reason: Every time v's leader pointer gets updated, population of its component at least doubles \Rightarrow Can only happen $\leq \log_2 n$ times.

Running Time of Fast Implementation

Scorecard:

```
O(m \log n) time for sorting O(m) times for cycle checks [O(1)] per iteration
```

 $O(n \log n)$ time overall for leader pointer updates

 $O(m \log n)$ total (Matching Prim's algorithm)

Algorithms: Design and Analysis, Part II

State-of-the-Art and Open Questions

State-of-the-Art MST Algorithms

Question: Can we do better than $O(m \log n)$? (Running time of Prim/Kruskal.)

Answer: Yes!

O(m) randomized algorithm [Karger-Klein-Tarjan JACM 1995]

 $O(m \alpha(n))$ deterministic [Chazelle JACM 2000]

"Inverse Ackerman Function": In particular, grows much slower than $\log^* n := \#$ of times you can apply \log to n until result drops below 1 (inverse of "tower function" $2^{2^{2\cdots^2}}$)

Open Questions

Weirdest of all: [Pettie/Ramachandran JACM 2002] Optimal deterministic MST algorithm, but precise asymptotic running time is unknown! [Between $\Theta(m)$ and $\Theta(m\alpha(n))$, but don't know where]

Open Questions:

- Simple randomized O(m)-time algorithm for MST [Sufficient: Do this just for the "MST verification" problem]
- Is there a deterministic O(m)-time algorithm?

Further reading: [Eisner 97]