NIE-AIB — Homework 5 – 24.11.2022

Instructions.

Complete the exercises and write your solutions on papers. Comment your solutions sufficiently. **A result alone without the solution is insufficient**. Submit your solutions to the MS Teams assignment "NIE-AIB, Homework 5" no later than December 7.

1 Exercise 1.

WKNN.

- Let $T = \{((2,2),\mathcal{C}), ((2,3),\mathcal{C}), ((3,3),\mathcal{C}), ((0,0),\mathcal{M}), ((0,1),\mathcal{M}), ((2,0),\mathcal{M})\}$ be a training set, where \mathcal{C} denotes the class of benign (clean) samples and \mathcal{M} denotes the class of malicious samples.
- Let $x_q = (2,1)$ be testing feature vector and the parameter k=3 be number of nearest neighbors.
- Use Distance Weighted k-Nearest Neighbor classifier and determine c_q .

2 Exercise 2.

Naive Bayes.

- Let $T = \{((a, a, b), \mathcal{C}), ((a, b, a), \mathcal{C}), ((b, a, a), \mathcal{C}), ((a, b, b), \mathcal{M}), ((b, a, b), \mathcal{M}), ((b, b, a), \mathcal{M})\}$ be a training set, where \mathcal{C} denotes the class of benign (clean) samples and \mathcal{M} denotes the class of malicious samples.
- Let $x_q = (a, a, a)$ be testing feature vector.
- Use Naive Bayes classifier and determine c_q .

3 Exercise 3.

Consider the following signature scheme. Alice chooses two large secret primes p, q and computes their product n. She also chooses an element $g \in \{0, \ldots, n-1\}$ such that g generates a subgroup of order r in \mathbb{Z}_n^* , where r is a large prime. Alice's public key is a pair (n, g), and her private key is a number r.

To sign a message m, Alice finds x such that $xm = 1 \pmod{r}$. Then she computes the signature $s = g^x \pmod{n}$. Suppose Bob has received a pair (m, s) from Alice.

- a. How is Bob able to verify her signature?
- b. Show that if r is a factor of exactly one of numbers p-1, q-1, then one can factor n using only a public key.

4 Exercise 4.

Alice and Bob use Shamir's no-key protocol to exchange a secret message. They agree to use the prime p=31883 for their communication. Alice chooses the random number a=8647 while Bob chooses b=10931. It is known that Bob receives the first exchanged message $c_1=K^a \mod p=26843$. Calculate the remaining values c_2, c_3 , and find the key K for Bob. Use the Extended Euclidean Algorithm to compute $a^{-1} \mod p-1$.