(c) link events to real numbers within [0,1]

Probability Theory for EOR

Sample Space and Naive Definition of Probability

(c) link events to real numbers within [0,1]

Probability is a function

•000

- ► To quantify the uncertainty and randomness, we want a number for a random event. The larger, the higher chance for such event to happen.
 - ► For example, when we throw a coin, what is a proper number you would have in mind for the event getting the head of the coin?
 - ► Fifty-fifty (1/2).
 - ▶ What about the event of getting either head or the bottom?
 - ▶ Pretty sure 100% chances (1).
- ► Those are the informal/causal ways we use the idea of probability in daily life:

probability maps **random events** to **numbers** (non-negative numbers within 0 and 1).

Probability is a function

- Essentially, the probability is a function. Like a ruler measure heights, it measures how likely one event is going to happen.
- Let A denote a random event containing some possible random outcomes.

$$\mathbb{P}: \quad \{A_i \subseteq S, i \in I\} \qquad \qquad \mapsto \qquad \qquad [0,1]$$

$$A \qquad \qquad \mapsto \qquad \qquad x$$

where S denotes a collection of all possible outcomes, or a sample space, ans A denotes a arbitrary (but properly chosen) subset of S.

▶ To understand a function (maps elements from one set to elements in another set), we need to understand: (a) domain of the function (a collection of the subsets of S, $\{A_i \subseteq S, i \in I\}$); (b) codomain of the function ([0,1]); (c) how the elements from the two sets are linked to each other.

Probability is a function

► Let A denote a random event containing some possible random outcomes.

$$\mathbb{P}: \quad \{A_i \subseteq S, i \in I\} \qquad \qquad \mapsto \qquad \qquad [0,1]$$

$$A \qquad \qquad \mapsto \qquad \qquad x$$

where S denotes a collection of all possible outcomes, or a sample space, ans A denotes a arbitrary (but properly chosen) subset of S.

- ▶ To understand a function (maps elements from one set to elements in another set), we need to understand: (a) domain of the function (a collection of the subsets of S, $\{A_i \subseteq S, i \in I\}$); (b) codomain of the function ([0,1]); (c) how the elements from the two sets are linked to each other.
- ▶ To understand a function (maps elements from one set to elements in another set), we need to understand: (a) domain of the function (a collection of the subsets of S, $\{A_i \subseteq S, i \in I\}$); (b) eodomain of the function ([0,1]); (c) how the elements from the two sets are linked to each other.
- ▶ To understand a function (maps elements from one set to elements in another set), we need to understand: (a) domain of the function (a collection of the subsets of S, $\{A_i \subseteq S, i \in I\}$); (b) ecdomain of the function ([0,1]); (c) how the elements from the two sets are linked to each other.
- ▶ To understand a function (maps elements from one set to elements in another set), we need to understand: (a) domain of the function (a collection of the subsets of S, $\{A_i \subseteq S, i \in I\}$); (b) codomain of the function ([0,1]); (c) how the elements from the two sets are linked to each other.

(a) Elements in the domain of probability

Sets of possible outcomes are elements in the domain of one probability function

Definition (Event, sample space)

The sample space S is the set of all possible outcomes of the experiment. An event A is a subset of the sample space S, and we say that A occurred if the actual outcome is in A.

Note that:

- (1) $S \subseteq S$, and we always include S as one event (the largest one as it contains all possible outcomes);
- (2) if A and B are two events, then their intersections, unions are also included as events, so are their complements;
- (3) ∅ is also an event (zero probability though);
- (4) if A_i 's are events, so is $\bigcup_{i=1}^{\infty} A_i$.

Example I: coin tossing for one time

- $ightharpoonup S = \{ Head, Bottom \};$
- $ightharpoonup A = \{ Head \}, B = \{ Bottom \};$
- $ightharpoonup A \cup B = S$:
- $ightharpoonup A \cap B = \emptyset;$
- $ightharpoonup A^c = B$.

Example II: pebble space

(all the 16 pebbles are equally likely to be chosen).

Probability Theory for EOR 9 of 14

DIY: Laws

- Commutative laws
 - \triangleright $A \cap B = B \cap A$
 - $\triangleright A \cup B = B \cup A$
- ► Associative laws
 - $\blacktriangleright (A \cup B) \cup C = A \cup (B \cup C)$
 - $\blacktriangleright (A \cap B) \cap C = A \cap (B \cap C)$
- ► Distributive laws
 - $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
 - $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

(c) link events to real numbers within [0,1]

First attempt: naive definition of probability

- ► Events are sets of possible outcomes.
- Let's consider a special case: finite outcomes, all the outcomes are equally likely to happen.
- ▶ The more outcomes one event contains, the more likely it happens.

Definition (Naive definition of probability)

Denote A be an event for an experiment with a **finite*** sample spaces S and each outcome is **equally likely*** to happen:

$$P_{\text{Naive}}(A) = \frac{\text{number of outcomes favorable to } A}{\text{number of outcomes in } S} = \frac{|A|}{|S|}.$$

Example I: coin tossing for one time

(head and bottom are equally likely to happen)

- $ightharpoonup S = \{ Head, Bottom \};$
- $ightharpoonup A = \{ Head \}, B = \{ Bottom \};$

$$\mathbb{P}_{\mathsf{Naive}}(A) = 1/2, \mathbb{P}_{\mathsf{Naive}}(B) = 1/2, \mathbb{P}_{\mathsf{Naive}}(A \cup B) = 1.$$

Example II: pebble space

(all the 16 pebbles are equally likely to be chosen).

$$\mathbb{P}_{\mathsf{Naive}}(A) = 3/16, \mathbb{P}_{\mathsf{Naive}}(B) = 1/8,$$

 $\mathbb{P}_{\mathsf{Naive}}(A \cup B) = 1/4, \mathbb{P}_{\mathsf{Naive}}(A \cap B) = 1/16.$