

Actuation and Response in Microsystems

Prof. Mark Rodwell

Electrical and Computer
Engineering Department and
Director of Nanofabrication Laboratory,
University of California, Santa Barbara

The views and opinions presented by the invited speakers are their own and should not be interpreted as representing the official views of DARPA or DoD

Approved For Public Release, Distribution Unlimited

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE MAR 2009	2. REPORT TYPE			3. DATES COVERED 00-00-2009 to 00-00-2009		
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER	
THz and nm Trans	5b. GRANT NUMBER					
	5c. PROGRAM ELEMENT NUMBER					
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
University of Calif	ZATION NAME(S) AND AE ornia, Santa Barbar tment,Santa Barba	a,Electrical and Co	mputer	8. PERFORMING REPORT NUMB	GORGANIZATION ER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited				
	otes crosystems Technoloderal Rights License	· · ·	um, 2009, Mar 2	-5, San Jose,	CA. U.S.	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF	18. NUMBER	19a. NAME OF	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 27	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

THz and nm Transistors for 1-1000 GHz Electronics

Mark Rodwell
University of California, Santa Barbara

The End (of Moore's Law) is Near (?)

It's a great time to be working on electronics!

Things to work on:

InP transistors: extend to 3-4 THz→ GHz & low-THz ICs

GaN HEMTs: powerful transmitters from 1-300 GHz

Si MOSFETs: scale them past 16 nm

III-V MOSFETs: help keep VLSI scaling (maybe)

VLSI transistors: subvert Boltzmann→ solve power crisis

mm-wave VLSI: massively complex ICs to re-invent radio

Why THz Transistors?

Why Build THz Transistors? 500 GHz digital logic *→ fiber optics* 35 30 THz amplifiers → THz radios *→ imaging, sensing,* Transistor Power Gain, dB communications 25 00 00 20 00 precision analog design at microwave frequencies → high-performance receivers Higher-Resolution 00 Microwave ADCs, DACs, **DDSs** 10

Frequency, Hz
Approved For Public Release, Distribution Unlimited

1E11

1E12

3E12

1E10

1E9

How to Make THz Transistors

Frequency Limits and Scaling Laws of (most) Electron Devices

 $\tau \propto \text{thickness}$

 $C \propto \text{area} / \text{thickness}$

$$R_{top} \propto \rho_{contact}$$
 / area

$$R_{bottom} \propto \frac{\rho_{contact}}{\text{area}} + \frac{\rho_{sheet}}{4} \cdot \frac{\text{width}}{\text{length}}$$

 $I_{\rm max,\,space-charge-limit} \propto {\rm area} / {\rm (thickness)}^2$

$$\Delta T \propto \frac{\text{power}}{\text{length}} \times \log \left(\frac{\text{length}}{\text{width}} \right)$$

To double bandwidth,

reduce thicknesses 2:1 Improve contacts 4:1 reduce width 4:1, keep constant length increase current density 4:1

Bipolar Transistor Scaling Laws

Changes required to double transistor bandwidth:

(emitter length L_E)

parameter	change
collector depletion layer thickness	decrease 2:1
base thickness	decrease 1.414:1
emitter junction width	decrease 4:1
collector junction width	decrease 4:1
emitter contact resistance	decrease 4:1
current density	increase 4:1
base contact resistivity	decrease 4:1

Linewidths scale as the inverse square of bandwidth because thermal constraints dominate.

FET Scaling Laws

Changes required to double transistor bandwidth:

parameter	change
gate length	decrease 2:1
gate dielectric capacitance density	increase 2:1
gate dielectric equivalent thickness	decrease 2:1
channel electron density	increase 2:1
source & drain contact resistance	decrease 4:1
current density (mA/μm)	increase 2:1

Linewidths scale as the inverse of bandwidth because fringing capacitance does not scale.

THz & nm Transistors: it's all about the interfaces

Metal-semiconductor interfaces (Ohmic contacts): very low resistivity

Dielectric-semiconductor interfaces (Gate dielectrics): very high capacitance density

Transistor & IC thermal resistivity.

THz Bipolar Transistors

InP Bipolar Transistor Scaling Roadmap

	industry	university →industry	•	appears feasible	maybe
emitter	512	256	128	64	32 nm width
	_16	8	4	2	1Ω·μm² access ρ
base	300	175	120	60	30 nm contact width,
	20	10	5	2.5	1.25 $\Omega \cdot \mu m^2$ contact ρ
collecto	r 150	106	75	53	37.5 nm thick,
Collecto	4.5	9	18	36	72 mA/μm ² current density
	4.9	4	3.3	2.75	2-2.5 V, breakdown
£	270	F20	700	1000	1400 011-
f_{τ}	370	520	730	1000	1400 GHz W_e
T _{max}	490	850	1300	2000	2800 GHz T_b W_{bc} T_c
power amplifiers		430	660	1000	$\downarrow 1400 \text{ GHZ} \qquad \downarrow \qquad \downarrow \qquad \uparrow \qquad \uparrow$
digital 2:1 divide	150	240	330	480	660 GHz
		А	pproved For Pu	ublic Release. Di	stribution Unlimited

InP DHBTs: September 2008

popular metrics:

$$f_{\tau}$$
 or $f_{\rm max}$ alone $(f_{\tau} + f_{\rm max})/2$ $\sqrt{f_{\tau} f_{\rm max}}$ $(1/f_{\tau} + 1/f_{\rm max})^{-1}$

much better metrics :

<u>power amplifiers</u>:

PAE, associated gain, mW/µm

low noise amplifiers:

 F_{min} , associated gain,

digital:

$$f_{clock}$$
, hence $(C_{cb}\Delta V/I_c)$, $(R_{ex}I_c/\Delta V)$, $(R_{bb}I_c/\Delta V)$, $(au_b+ au_c)$

Ohmic Contacts Good Enough for 3 THz Transistors

64 nm (2.0 THz) HBT needs ~ 2 Ω - μ m² contact resistivities 32 nm (2.8 THz) HBT needs ~ 1 Ω - μ m²

Contacts to N-InGaAs*:

Mo MBE in-situ 0.3 (+/- 0.3) Ω - μ m²

TiW ex-situ ~1 to 2Ω - μ m²

Contacts to P-InGaAs:

Mo MBE in-situ below $2.5 \Omega - \mu m^2$

Pd/... ex-situ 0.36 (+/- 0.3) Ω - $μm^2$

THz HBTs: MOSFET-like Processes for 64, 32 nm Nodes

nm MOSFETs

FET Scaling Laws

Changes required to double transistor bandwidth:

parameter	change
gate length	decrease 2:1
gate dielectric capacitance density	increase 2:1
gate dielectric equivalent thickness	decrease 2:1
channel electron density	increase 2:1
source & drain contact resistance	decrease 4:1
current density (mA/μm)	increase 2:1

What do we do if gate dielectric cannot be further scaled?

III-V MOSFETs for VLSI

What is it ? MOSFET with an InGaAs channel

Why do it?

low electron effective mass → higher electron velocity more current, less charge at a given insulator thickness & gate length very low access resistance

What are the problems?

low electron effective mass → constraints on scaling ! must grow high-K on InGaAs, must grow InGaAs on Si

Synopsis

III-V MOSFET might win... if Si gate dielectric cannot scale below 0.5 nm

THz Field-Effect Transistors

(THZ HEMTS)

FET Scaling Laws

Changes required to double transistor bandwidth:

parameter	change
gate length	decrease 2:1
gate dielectric capacitance density	increase 2:1
gate dielectric equivalent thickness	decrease 2:1
channel electron density	increase 2:1
source & drain contact resistance	decrease 4:1
current density (mA/μm)	increase 2:1

InGaAs HEMTs are best for mm-wave low-noise receivers... but there are difficulties in improving them further.

Why HEMTs are Hard to Improve

1st challenge with HEMTs: reducing access resistance

2nd challenge with HEMTs: low gate barrier

high tunneling currents with thin barrier high emission currents with high electron density

III-V MOSFETs do not face these scaling challenges

InGaAs MOSFETs as THz Low-Noise Amplifiers

<u>Why ?</u>

Much lower access resistance in S/D regions Higher gate barrier→ higher feasible electron density in channel Higher gate barrier→ gate dielectric can be made thinner

Estimated Performance (?)

2 THz cutoff frequencies at 32 nm gate length

VSLI for mm-wave & sub-mm-wave systems

Billions of 700-GHz Transistors → Imaging & Arrays

65 nm CMOS: ~5 dB gain @ 200 GHz 22 nm will be much faster yet.

What can you do with a few billion 700-GHz transistors?

Build Transmitter / Receiver Arrays

100's or 1000's of transmitters or receivers ...on < 1 cm² IC area ...operating at 100-500 GHz.

Approved For Public Release, Distribution Unlimited

Billions of 700-GHz Transistors→ Imaging & Arrays

Arrays for point-point radio links:

bit rate · distance $^2 \propto (\# \text{ array elements})^2 \cdot \text{wavelength}^2$

Arrays for (sub)-mm-wave imaging :

resovable pixels = # array elements

Arrays for Spatial-Division-Multiplexing Networks:

independen t beams = # array elements

$$\leq \frac{4 \cdot \text{array area}}{\text{wavelength}^2}$$

Approved For Public Release, Distribution Unlimited

It's a great time to be working on electronics!

Device scaling (Moore's Law) is not yet over.

Challenges in scaling: contacts, dielectrics, heat

Multi-THz transistors:

for systems at very high frequencies for better performance at moderate frequencies

Vast #s of THz transistors complex systems new applications.... imaging, radio, and more

