

Electrochemical Gas Sensors Integrated with Autonomous Aerial Vehicles for Wide Geographical Area Sensor Networks

Cedric Selph 1,4, Ashish D'Souza 2,4, Dontray Dowdell 3,4, Zaki J. Harris 3,4, Caio Azevedo 3,4 and Amir Khan 3,4

1. Dept. of Electrical Engineering, Delaware Technical Community College, Newark, Delaware 2. Polytech High School, Woodside, Delaware

3. Dept. of Physics and Engineering, Delaware State University, Dover, Delaware

4. Optical Science Center for Applied Research, Delaware State University, Dover, Delaware

Atmospheric Boundary Layer Sensing

- Sensing in the ABL important to understand complicated atmospheric process in region 100 m above the earth surface.
- The required sensors are integrated to an unmanned aerial platform.

Rapid and standoff spatio-temporal profiling of toxic chemicals and pollutants in the ABL.

loat Calculate_PPB_Equation_1(float OP1_Conversion, float OP2_Conversion, float Temp_C)

WEC_RAW = OP1_Conversion - (OP1_Zero - OP2_Zero) - (Temp_C * OP2_Conversion);

float Calculate_PPB_Equation_4(float OP1_Conversion, float OP1_Zero, float Temp_C) {

loat Calculate_PPB_Equation_2(float OP1_Conversion, float OP2_Conversion, float Temp_C, float OP1_Zero, float OP2_Zero)

WEC_RAW = OP1_Conversion - Temp_C * OP2_Conversion;

Alphasense EC Sensors

Working Principle: Chemicals attach to an electrode causing changes in the current/voltage.

System Schematic

Prototype

- 1.8 Km range
- Reprogrammable Baud Rates
- Half-Duplex configuration
- Full Duplex Configuration

Sensor Algorithms

/E。= corrected WE output /E』= uncorrected raw WE output

F.. = uncorrected raw AF output

= WE sensor zero, i.e. the sensor WE output in zero air

AE。 = AE sensor zero, i.e. the sensor AE output in zero air

VE⊤ = Total WE zero offset

 $E_e = WE$ electronic offset on the AFE or ISB

AE_e = AE electronic offset on the AFE or ISB

n_T = temperature dependent correction factor for algorithm 1, refer to Table 3 for values k_T = temperature dependent correction factor for algorithm 2, refer to Table 3 for values

κ'τ = temperature dependent correction factor for algorithm 3, refer to Table 3 for values
 κ''_τ = temperature dependent correction factor for algorithm 4, refer to Table 3 for values

Algorithm	Equation	Notes
1	$WE_c = WE_u - n_T * AE_u$	Directly scales the AE output. Gross under or over compensation can occur if AE _u is of opposite sign to n _T , or AE _u is significantly smaller or larger than WE _u .
2	$WE_c = WE_u - k_T * \left(\frac{WE_o}{AE_o}\right) * AE_u$	Scales AE by using the individual sensor calibration data. Gross under or over compensation will result If AE is very small or zero, or If WE _{cal} and AE _{cal} are of opposite signs, or the AE _T output is significantly smaller or larger than the WE _T output.
3	$WE_c = WE_u - (WE_o - AE_o) - k'_T AE_u$	Avoids the problem of Algorithm 2 with a zero AE _o value. Gross over or under compensation can result if AE _o is of opposite sign to WE _o , or if AE _o is significantly smaller or larger than WE _o .
4	$WE_c = WE_u - WE_o - k''_T$	Correction without using the AE₀ result. Gross under or over compensation can occur if AEu is significantly smaller or larger than WEu.

Measurements of Air Quality

• 1- sec. sampling rate with concentration ranges in Parts Per Billion(PPB) over a 70 second interval.

Conclusion and Future Work

Future integration with a DJI
Phantom Aerial System for short term
Aerial profiling over a wireless sensor
network.

- The prototype was successful y implemented in laboratory tests, future work incudes ABL sensing with low- payload Ariel vehicles.
- System can be further miniaturized, and computational algorithms, data communications can be further optimized for delays and real-time data synchronization with field sensors.
- Additional greenhouse gas sensors example carbon dioxide and methane sensors will be integrated to the current module.

We acknowledge the Optical Science Center for Applied Research (OSCAR), the financial support of The National Science Foundation (NSF-CREST grant N° 1242067 and of the National Aeronautics and Space Administration (NASA URC 5 grant N° NNX15AP84A).