

universitário CURSO DE ENGENHARIA DE AUTOMAÇÃO E CONTROLE

EL0910 - INTELIGÊNCIA COMPUTACIONAL APLICADA AO CONTROLE

RELATÓRIO DE INTELIGÊNCIA COMPUTACIONAL APLICADA AO CONTROLE

Atividade 3 – Pêndulo invertido

Aluno				
Número	Nome	Turma		
11.115.572-7	Pedro Henrique Silva Domingues	640		
Disciplina: EL0910 X				
Professor: Dr. Danilo H. Perico				

Data da Entrega:	06/03/2020
------------------	------------

universitário CURSO DE ENGENHARIA DE AUTOMAÇÃO E CONTROLE

EL0910 - INTELIGÊNCIA COMPUTACIONAL APLICADA AO CONTROLE

RELATÓRIO DE INTELIGÊNCIA COMPUTACIONAL APLICADA AO CONTROLE

Sumário

1.	DESCRIÇÃO DO PROBLEMA	3
2.	ESTUDO DO MODELO	4
3.	Treinamento:	5
4.	SIMULINK:	7
5.	MATLAB	9
6.	RESULTADOS	10
7.	CONCLUSÃO	11

RELATÓRIO DE INTELIGÊNCIA COMPUTACIONAL APLICADA AO CONTROLE

1. DESCRIÇÃO DO PROBLEMA

O objetivo dessa atividade é criar uma Rede Neural Feed Forward e treina-la para realizar o controle de um pêndulo invertido. Os dados de treino devem ser coletados a partir do "penddemo" disponível no simulink, no qual o controle é realizado por LQR.

A rede deve ser criada no matlab e implementada, junto a simulação no simulink.

(Figura 1 – Exemplo de Rede de Perceptrons)

RELATÓRIO DE INTELIGÊNCIA COMPUTACIONAL APLICADA AO CONTROLE

2. ESTUDO DO MODELO

2.1 Entradas da rede:

- 1. Posição do carro;
- 2. Posição da haste;
- 3. Velocidade instantânea do carro;
- 4. Velocidade instantânea da haste;
- 5. Valor de referência.

2.2 Saída da rede:

1. Esforço de controle (Força aplicada ao carro).

2.3 Topologia:

2 camadas ocultas com 10 e 5 neurônios consecutivamente.

RELATÓRIO DE INTELIGÊNCIA COMPUTACIONAL APLICADA AO CONTROLE

3. Treinamento:

O treinamento gerou os seguintes resultados:

RELATÓRIO DE INTELIGÊNCIA COMPUTACIONAL APLICADA AO CONTROLE

RELATÓRIO DE INTELIGÊNCIA COMPUTACIONAL APLICADA AO CONTROLE

4. SIMULINK:

Fig 1. Extração dos dados de treino via simulink

RELATÓRIO DE INTELIGÊNCIA COMPUTACIONAL APLICADA AO CONTROLE

Fig 2. Rede implementada no simulink

RELATÓRIO DE INTELIGÊNCIA COMPUTACIONAL APLICADA AO CONTROLE

5. MATLAB

```
saida = out.data(:,end);
entradas = out.data(:,1:end-1);
net = feedforwardnet([10 5]);

%% setup transfer function
net.layers{1}.transferFcn = 'tansig';
net.layers{2}.transferFcn = 'tansig';

%% change ratio: training, validation e test
net.divideParam.trainRatio = 0.6;
net.divideParam.valRatio = 0.2;
net.divideParam.testRatio = 0.2;
%% change number of validations needed to stop
net.trainParam.max_fail = 100;

%% train net
net = train(net,entradas',saida');
```


RELATÓRIO DE INTELIGÊNCIA COMPUTACIONAL APLICADA AO CONTROLE

6. RESULTADOS

- Amarelo: Posição do Carro;
- Azul: Referência;
- Vermelho: Posição do pêndulo;
- Verde: Esforço de controle;

RELATÓRIO DE INTELIGÊNCIA COMPUTACIONAL APLICADA AO CONTROLE

7. CONCLUSÃO

A rede foi treinada com sucesso, o controle do pêndulo é funcional. Porém os dados de treino coletados não abrangem todos os casos possíveis, portanto em alguns casos raros é possível notar a rede agindo de forma imprevista.

Foi possível notar durante a atividade que a falta de alguns dados de entrada para a rede, como velocidade do carro e da haste gera uma rede incapaz de realizar o controle. Também foi notado que utilizar uma função de ativação step é inviável, pois não aproxima a função desejada.

Duas camadas ocultas foram utilizadas, mas a rede foi treinada também com 3 camadas (o resultado foi satisfatório) e 1 camada (a rede não foi capaz de aprender o controle).

Com os gráficos de treino, é possível as seguintes informações:

- Erro (ou "loss") de validação, avaliado em 0.076881 e retirado do gráfico "best validation performance";
- Dispersão baixa do erro retirada do histograma de erro;
- Regressão próxima de 1, retirado do terceiro gráfico na sessão 3.