1. Derive the following for random variables *X* and *Y*

a.
$$Pr(X = 1) = 0.1 + 0.05 = 0.15$$

b.
$$Pr(X = 2 \cap Y = 1) = 0.25$$

b.
$$Pr(X = 2 \cap Y = 1) = 0.25$$

c. $Pr(X = 3 \mid Y = 2) = \frac{P(X \cap Y)}{Pr(Y)} = \frac{0.35}{0.05 + 0.25 + 0.35} = 0.318$

- 2. Given 2 die D_1 and D_2 with $\Omega = \{1,2,3,4,5,6\}$, find the following
 - a. $Pr(D_1 \text{ has a larger value than } D_2)$

	D_1 Values
$D_2 = 1$	{2,3,4,5,6}
$D_2 = 2$	{3,4,5,6}
$D_2 = 3$	{4,5,6}
$D_2 = 4$	{5,6}
$D_2 = 5$	{6}
$D_2 = 6$	{}

Since there are 6^2 possible combination of outcomes, and we see from the table that 15 D_1 values that are greater than D_2 the answer is $\frac{15}{36} = \frac{5}{12}$

b. Expected value of the sum of D_1 and D_2

$$E[X] = \sum_{\alpha \in \Omega} \omega * \Pr[X = \omega]$$

Sums	$D_1 = 1$	$D_1 = 2$	$D_1 = 3$	$D_1 = 4$	$D_1 = 5$	$D_1 = 6$
$D_2 = 1$	2	3	4	5	6	7
$D_2 = 2$	3	4	5	6	7	8
$D_2 = 3$	4	5	6	7	8	9
$D_2 = 4$	5	6	7	8	9	10
$D_2 = 5$	6	7	8	9	10	11
$D_2 = 6$	7	8	9	10	11	12

Value	2	3	4	5	6	7	8	9	10	11	12
P[Value]	1	2	3	4	5	6	5	4	3	2	1
	36	36	36	36	36	36	36	36	36	36	36

$$2\left(\frac{1}{36}\right) + 3\left(\frac{2}{36}\right) + 4\left(\frac{3}{36}\right) + 5\left(\frac{4}{36}\right) + 6\left(\frac{5}{36}\right) + 7\left(\frac{6}{36}\right) + 8\left(\frac{5}{36}\right) + 9\left(\frac{4}{36}\right) + 10\left(\frac{3}{36}\right) + 11\left(\frac{2}{36}\right) + 12\left(\frac{1}{36}\right)$$

$$= \frac{2 + 6 + 12 + 20 + 30 + 42 + 40 + 36 + 30 + 22 + 12}{36} = \frac{252}{36} = 7$$

3. For $f(X = x) = \begin{cases} \frac{1}{2} & \text{if } x \in [0,2] \\ 0 & \text{if } x \notin [0,2] \end{cases}$ what Is $\Pr(f(X = 1))$?

The probability that a continuous random variable equal any number is exactly 0

4. For $D=\{-1,7,4\}$, and M from $\Omega=\{1,3,5\}$. m pulled from $f(x)=\frac{1}{6}\exp\left(-\frac{|m-x|}{3}\right)$, and $\Pr(M=1)=0.4, \Pr(M=3)=0.3$, and $\Pr(M=5)=0.3$, find which model is most likely Given that $\ln(\Pr(D\mid M)=\sum_{x\in\Omega}\frac{-|m-x|}{3}$ M=1

$$-\frac{|0.4+1|}{3} - \frac{|0.4-7|}{3} - \frac{|0.4-4|}{3} = -\frac{1.4+6.6+3.6}{3} = \frac{-8.4}{3}$$

$$M = 3$$

$$-\frac{|0.3+1|}{3} - \frac{|0.3-7|}{3} - \frac{|0.3-4|}{3} = -\frac{1.3+6.7+3.7}{3} = -\frac{11.7}{3}$$

$$M = 5$$

$$-\frac{|0.3+1|}{3} - \frac{|0.3-7|}{3} - \frac{|0.3-4|}{3} = -\frac{1.3+6.7+3.7}{3} = -\frac{11.7}{3}$$

M = 1 is the most likely model

5. Generated following graphs for the PDF and CDF of Laplace distribution. See code below

Page 2 of 3

```
import matplotlib as mpl
mpl.use('svg')
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
from scipy.stats import laplace as l
import numpy as np
import math

x = np.linspace(-3,3,100)

plt.plot(x, l.pdf(x), linewidth=2.0, label='PDF')
plt.plot(x, l.cdf(x), linewidth=2.0, label='CDF')

plt.legend(bbox_to_anchor=(.35,1))
plt.savefig('cdf.svg', bbox_inches='tight')
```