Saish Sali (SBU ID: 111492587)

Problem 1: Lamport's distributed mutex exclusion algorithm implementation

- The algorithm is implemented following five rules described in Lamport's CACM 1978 time-clocks paper.
- Assumption: "Any" is assumed to be any one Tm:Pi request resource message from request queue.
- Each process requests a resource, enters critical section and then releases resource following five rules mentioned in Lamport's logical time clock paper.
- Each process interleaves request and release commands.
- The algorithm has been implemented in **lamport.da** file.
- Compile program:

python -m da.compiler lamport.da

• Execute program:

python -m da lamport.da <num_procs> <num_requests>

Problem 2: Safety and liveness violation

- Liveness violation:
 - Let us consider 2 processes in a distributed system with process ids P1 and P2 respectively. Assumption: any means any one message in the request queue.
 - To request the resource, process P sends the message x:P request resource to every other process and puts that message into its request queue, where x is the timestamp of the message.
 - Let us consider process P1 sends resource request command twice and P2 sends request command once such that queue state is as follows:

1:P1	2:P2	3:P1			
Fig 1(a): Request queue for process P1					
1:P1	2:P2	3:P1			

Fig 1(b): Request queue for process P2

Let us assume P1 has been granted the resource. To release the resource, P1 removes 1:P1 request message from its queue and sends release resource message to every other process.

2:P2	3:P1

Fig 1(c): Request queue for process P1 after removing 1:P1

Saish Sali (SBU ID: 111492587)

When process P2 receives the P1 release resource message, it removes 3:P1 request message from its queue.

Fig 1(d): Request queue for process P2 after removing 3:P1

Since process P1 has 2:P2 as the head of the queue and P2 has 1:P1 as the head of the queue, there will be a deadlock (thus liveness violation) because there is no request message of respective processes in the request queue which is ordered before any other request in its queue (Rule 5).

• Safety violation:

- Let us consider 2 processes in a distributed system with process ids P1 and P2 respectively. Assumption: any means any one message in the request queue.
- To request the resource, process P sends the message x:P request resource to every other process and puts that message into its request queue, where x is the timestamp of the message.
- Let us consider process P1 sends resource request command twice and P2 sends request command once such that queue state is as follows:

1:P1	2:P2	3:P1			
Fig 2(a): Request queue for process P1					
1:P1	2:P2	3:P1			

Fig 2(b): Request queue for process P2

Let us assume P1 has been granted the resource. To release the resource, P1 removes 3:P1 request message from its queue and sends release resource message to every other process.

1·D1	ე.⊡ე
1.61	Ζ.ΓΖ

Fig 2(c): Request gueue for process P1 after removing 3:P1

 When process P2 receives the P1 release resource message, it removes 1:P1 request message from its queue.

Saish Sali (SBU ID: 111492587)

2:P2	3:P1

Fig 2(d): Request queue for process P2 after removing 1:P1

 Since process P1 has 1:P1 as the head of the queue and P2 has 2:P2 as the head of the queue, both the process enter critical section, thus violating safety.

Problem 3: Testing correctness and comparing performance

• Testing Correctness:

- A test process (test.da) is created that receives messages from all other processes, record information regarding critical sections and resource releases.
- The test process detects liveness and safety violations.
- Each process sends 2 types of messages to test process:
 - Critical section message (CS) on entering critical section
 - Release resource message (RELEASE)
- Each process has a timeout of 3 seconds for critical section
- If a process waits for more than 2 seconds before entering critical section, the test process flags it as a deadlock i.e. liveness violation.
- The test program validates process logs and checks if there are two or more processes entering critical section without releasing the resource. It then flags it as safety violation

Performance comparison:

- main.da does several different runs varying a particular parameter, with multiple repetitions of each run, and measures total user time, total system time and total process time and total memory, and report statistics about them.
- It uses controller.da to get performance statistics of different runs.

• Requirements:

- Environment: **macOS** Darwin Kernel Version 16.7.0
- It uses PrettyTable to create and display tables:

pip install PTable

• Execute program:

python -m da main.da p r n d a

Saish Sali (SBU ID: 111492587)

• Correctness example:

Correctness:				
Algorithm	Total Processes	Requests	Safety violation	Liveness violation
orig.da	2	 2	False	False
 spec.da	l 2 	l 2 	I False 	
lamport.da	2	2	 False	True
l orig.da	1	 4 	I False I	
spec.da	1	4	False	False
lamport.da	1	 4 	 False	False I
orig.da	2	3	 False	False I
spec.da	2	l 3	 False	False
lamport.da	2	1 3	 False	True
orig.da	3	1 3	 False	False
spec.da	3	l 3	 False	False
lamport.da	3	l 3	 False	True
 orig.da	3	 4	 False	False
 spec.da	3	l 4	 False	False I
 lamport.da	3	l 4	l True	True I
 orig.da	3	l 3	 False	False
 spec.da	3	l 3	 False	False I
 lamport.da	3	l l 3	 False	True I
+	 		+	++

Saish Sali (SBU ID: 111492587)

• Performance comparison:

erformance c	comparison: Varyin	g request nur -+	nbers 			
Algorithm	Total Processes	Requests	Total user time	Total system time	Total process time	Total memory
 orig.da	- + 3	-+ 2	0.02935	0.00593	0.03528	 20037632.0
spec.da	1 3	1 2	0.02844	0.00472	0.03316	20142080.0
lamport.da	1 3	1 2	0.03012	0.00566	0.03578	20088832.0
orig.da	1 3	4	0.0552	0.00752	0.06272	20011008.0
spec.da	1 3	4	0.0628	0.00668	0.06948	20133888.0
lamport.da	1 3	4	0.0554	0.0076	0.063	20217856.0
	comparison: Varyin Total Processes	-+		Total system time	Total process time	 Total memory
orig.da	+ I 3	-+ 4	+ 0.04877	0.00649	0.05526	 20041728.0
spec.da	1 3	1 4	0.06091	0.00648	0.06739	20164608.0
lamport.da	1 3	1 4	0.06186	0.00801	0.06987	20166656.0

References:

- https://dl.acm.org/citation.cfm?id=3231109
- https://sites.google.com/site/distalgo/
- cse535 mailing group
- Discussed with Jatin Garg, Abhinav Adarsh and Siddesh Shinde