

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India (Autonomous College Affiliated to University of Mumbai)

End Semester Examination 2017-18

Max. Marks: 100

Class: M.Tech. (1st Year)

Course Code: CE922

Name of the Course: High Performance Computing

Duration: 180 Min Semester: II

Branch: Computer

Instruction:

(1) All questions are compulsory

(2) Draw neat diagrams

(3) Assume suitable data if necessary

				1
	Q No.	Question	Max. Marks	СО
(Q.1 (a)	State Bernsteins's three conditions with example.	05	CO1
(Q.1 (b)	State Amdahl's Law and Gustafson-Barsis's Law.	05	CO1
(Q.1 (c)	List any five static network topologies.	05	CO3
(Q.1 (d)	List any five performance metrics for Parallel Systems.	05	CO1
	Q.2 (a)	Compare Kernel-Level and User-Level Lightweight Communication Systems.	10	CO3
	Q.2 (b)	Exemplify Recursive Decomposition technique.	10	CO1
	Q.3 (a)	Discuss Agglomeration and Mapping in the design of Floyd's All-Pair Shortest-Paths Parallel Algorithm.	10	CO4
	Q.3 (b)	Discuss Data Decomposition options in the design of Sieve of Eratosthenes Parallel Algorithm.	10	CO3
(Q.4 (a)	Describe a typical zero-copy protocol of transferring a large message using Active Messages. OR	10	CO2
		Derive the equations for Speedup and Isoefficiency in Parallel Systems.	10	CO2
C	Q.4 (b)	Discuss the impact of location of Network Interface on the performance and usability inside the System.	10	CO3
		OR		
		Discuss the various fields in ServerNet address space.	10	CO3
Q	2.5 (a)	Discuss any five MPI functions with arguments. OR	10	CO3
		Differentiate Rowwise and Columnwise Block-Striped design of parallel Matrix-Vector Multiplication.	10	CO3

Q.5 (b)	Suppose we have chosen a block agglomeration of n elements (labeled $0, 1, \ldots, n-1$) to p processes (labeled $0, 1, \ldots, p-1$) in which process i is responsible for elements $\lfloor in/p \rfloor$ through $\lfloor (i+1)n/p \rfloor -1$. Prove that the last process is responsible for $\lceil n/p \rceil$ elements.	10	CO1
	OR	LE A	
	Prove that there exists a p_0 such that $p > p_0$ implies $\Psi(n,p) < \Psi(n,p_0)$ using the definition of speedup $\Psi(n,p) \le \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n)/p + \kappa(n,p)}$. Assume $\kappa(n,p) = C \log p$	10	CO1