Computer Organization 0616086邱彥慈

Architecture

Hardware module analysis

Shift_Left_26_to_28	Jump address=instr[25:0]<<2		
PC_instr	$Jump address = \{pc[31:28], instr[27:0]\}$		
Mux_Jump	If (Jump) select 0: jump address		
Mux_A	If(branch and zero), select 1 (shift left 2 bits)		
Mux_Jump_Register	mp_Register If(Jump_register)		
	jump to the contents of the first source register.		
Mux_Mem_To_Reg	3 to 1 Mux. 2 connect to PC+4		
Mux_Write_Reg	3 to 1 Mux. if(JAL), write the next instruction address to		
	the 31th register		

	Op	Function	MemRead	MemWrite	MemToReg	Jump	JumpRegister
1w	100011	-	1	0	1	1	0
sw	101011	-	0	1	0	1	0
J	000010	-	-	-	-	0	0
jal	000011	-	-	-	2	0	0
jr	000000	001000	-	-	-	-	1

Result:

Test 1:

Data Memory =	1,	2,	0, 0,	0,	0, 0,	0		
Data Memory =	0,	0,	0, 0,	0,	0, 0,	0		
Data Memory =	0,	0,	0, 0,	0,	0, 0,	0		
Data Memory =	0,	0,	0, 0,	0,	0, 0,	0		
Registers								
RO =	0, R1 =	1, R2 =	2, R3 =	3, R4 =	4, R5 =	5, R6 =	1, R7 =	2
R8 =	4, R9 =	2, R10 =	0, R11 =	0, R12 =	0, R13 =	0, R14 =	0, R15 =	0
R16 =	0, R17 =	0, R18 =	0, R19 =	0, R20 =	0, R21 =	0, R22 =	0, R23 =	0
R24 =	0, R25 =	0, R26 =	0, R27 =	0, R28 =	0, R29 =	128, R30 =	0, R31 =	0
Test 2:								
iest 2.								
Registers								
RO =	0, R1 =	0, R2 =	0, R3 =	0, R4 =	3, R5 =	0, R6 =	0, R7 =	0
R8 =	0, R9 =	1, R10 =	0, R11 =	0, R12 =	0, R13 =	0, R14 =	0, R15 =	0
R16 =	3, R17 =	0, R18 =	0, R19 =	0, R20 =	0, R21 =	0, R22 =	0, R23 =	0
R24 =	0, R25 =	0, R26 =	0, R27 =	0, R28 =	0, R29 =	104, R30 =	0, R31 =	56

Summary:

不知道為什麼 r2 不等於 5 (因為寫錯) 但我已經身心俱疲覺得沒救了 QQ 這次多實作了 sw/lw 和 j/jal/jr, 所以增加控制訊號 MemRead/Write/ToReg 跟 Jump/JumpRegister,尤其為了實現 j/jal/jr 增加許多 mux,令人十分心累