關於 ResNet 的三兩事

問題:模型是不是越深越好

答案是否定的

可以看到,增加層數反而使 error 增加了

這個現象是源於

梯度消失 Vanishing Gradient

$$\times \longrightarrow f_1 \longrightarrow h_1 \longrightarrow f_2 \longrightarrow h_2 \longrightarrow \dots$$

$$\dots \longrightarrow f_N \longrightarrow h_N \longrightarrow Loss \longrightarrow l$$

$$h_i = f_i(h_{i-1}) = \alpha(w_i h_{i-1} + b_i)$$

$$\nabla w_i = \frac{\partial l}{\partial w_i} = \frac{\partial l}{\partial h_N} \frac{\partial h_N}{\partial h_{N-1}} \dots \frac{\partial h_{i+1}}{\partial h_i} \frac{\partial h_i}{\partial w_i}$$

$$\nabla w_i = \frac{\partial l}{\partial w_i} = \frac{\partial l}{\partial h_N} \underbrace{\frac{\partial h_N}{\partial h_{N-1}} \dots \frac{\partial h_{i+1}}{\partial h_i}}_{\partial h_i} \underbrace{\frac{\partial h_i}{\partial w_i}}_{\partial w_i}$$

越多項越容易出現梯度消失or爆炸

越靠前面的 layer 更新越慢

超有效又簡單的解決方案

Residual Block

白話文:加一個 shortcut

Shortcut Forward

Shortcut Backward

shortcut 達成了

恆等映射 Identity Mappings

消除了冗於結構的負面影響

恆等映射 Identity Mappings

$$f(x)=x$$

$$f(x) = g(x) + x$$

如果g(x)對解決問題是沒有幫助的 那就讓它輸出為 0

$$f(x) = g(x) + x$$

人為設計的多層結構,不一定每一層都有用處

模型只要將冗於的部分歸 0 就不會受到拖累

ResNet 官方結構

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
conv1	112×112	7×7, 64, stride 2				
		3×3 max pool, stride 2				
conv2_x	56×56	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times3$	$ \left[\begin{array}{c} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \right] \times 3 $	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $
conv3_x		$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$		Γ 1 ∨ 1 129]	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$
conv4_x		$\left[\begin{array}{c} 3\times3, 256\\ 3\times3, 256 \end{array}\right]\times2$	-	1 × 1, 1024	$1 \times 1, 1024$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$ \left[\begin{array}{c} 1 \times 1,512 \\ 3 \times 3,512 \\ 1 \times 1,2048 \end{array} \right] \times 3 $	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $
	1×1	average pool, 1000-d fc, softmax				
FLOPs		1.8×10^9	3.6×10^9	3.8×10^{9}	7.6×10^9	11.3×10^9

Global Average Pooling

優點

- 減少參數
- 避免 overfitting
- 可變動輸入大小

ResNet 效果

PlainCNN vs ResNet

Shortcut 越乾淨越好

在 Identity Mappings in Deep Residual Networks 進行了許多關於 Shortcut 的實驗

其中最重要的結論就是:Shortcut 不要有多餘運算

讓梯度能利用這條捷徑不受任何影響的往回傳

Shortcut 越乾淨越好

更多詳細的實驗請看 <u>Deep Residual Learning for Image</u> <u>Recognition</u> 與

<u>Identity Mappings in Deep Residual Networks</u>

參考 <u>Identity Mappings in Deep Residual Networks</u>

論文介紹

加碼:更多種 Block

DenseNet

DenseNet

• 除了做到恆等映射外,還充分整合了各種感受野的特徵。

• 只要更少的權重與計算量就能做的比 ResNet 更好。

VoVNet

VoVNet

- 繼承 DenseNet 的優點。
- 比 DenseNet 更快速輕量。

小挑戰

- 請規劃一個實驗,來證明模型是不是越深越好。
- 請規劃一個實驗,向大家說明 shortcut 是否有效。
- 請比較 residual block 與另外一種 conv block 的效果。