Correction

1. Notons
$$R$$
 le rayon de convergence de la série entière $\sum \frac{x^n}{(2n)!}$.

Pour
$$x \neq 0$$
, posons $u_n = \left| \frac{x^n}{(2n)!} \right|$.

$$\frac{u_{n+1}}{u_n} = \frac{|x|}{(2n+2)(2n+1)} \xrightarrow[n \to +\infty]{} 0.$$

On en déduit que la série entière $\sum \frac{x^n}{(2n)!}$ converge (absolument) pour tout $x \in \mathbb{R}$ d'après la règle de d'Alembert et donc $R = +\infty$.

- 2. $\forall x \in \mathbb{R}$, $\operatorname{ch}(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!}$ et le rayon de convergence du développement en série entière de la fonction ch est égal à $+\infty$.
- 3. (a) Pour $x \ge 0$, on peut écrire $x = t^2$ et $S(x) = \sum_{n=0}^{+\infty} \frac{x^n}{(2n)!} = \sum_{n=0}^{+\infty} \frac{t^{2n}}{(2n)!} =$ ch $(t) = \text{ch}\sqrt{x}$. Pour x < 0, on peut écrire $x = -t^2$ et $S(x) = \sum_{n=0}^{+\infty} \frac{x^n}{(2n)!} = \sum_{n=0}^{+\infty} \frac{(-1)^n t^{2n}}{(2n)!} =$ cos $(t) = \cos \sqrt{-x}$.
 - (b) D'après la question précédente, la fonction f n'est autre que la fonction S.

S est de classe \mathcal{C}^{∞} sur $\mathbb R$ car développable en série entière à l'origine avec un rayon de convergence égal à $+\infty$.

Cela prouve que f est de classe C^{∞} sur \mathbb{R} (si on ne remarque pas que f est la somme d'une série entière la question est autrement plus compliquée!)