Basic Discrete Structures

Sets, Functions, Sequences, Matrices, and Relations (Lecture – 2)

Dr. Nirnay Ghosh

Generalized Unions and Intersections

The *union* of a collection of sets is the set that contains those elements that are members of at least one set in the collection.

The *intersection* of a collection of sets is the set that contains those elements that are members of all the sets in the collection.

(a) $A \cup B \cup C$ is shaded.

(b) $A \cap B \cap C$ is shaded.

Membership Tables

- Set identities can also be proved using **membership tables**.
- We consider each combination of sets that an element can belong to and verify that elements in the same combinations of sets belong to both the sets in the identity.
- To indicate that an element is in a set, a 1 is used; to indicate that an element is not in a set, a 0 is used.
- Example: Use a membership table to show that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

TABLE 2 A Membership Table for the Distributive Property.								
	A	$\boldsymbol{\mathit{B}}$	C	$B \cup C$	$A\cap (B\cup C)$	$A \cap B$	$A \cap C$	$(A\cap B)\cup (A\cap C)$
	1	1	1	1	1	1	1	1
	1	1	0	1	1	1	0	1
	1	0	1	1	1	0	1	1
	1	0	0	0	0	0	0	0
	0	1	1	1	0	0	0	0
	0	1	0	1	0	0	0	0
	0	0	1	1	0	0	0	0
	0	0	0	0	0	0	0	0

Functions

- In many instances we assign to each element of a set a particular element of a second set.
 - Example of a function: Assignment of grades in a particular class

- Functions: important for both mathematics and computer science
 - Used to define discrete structures: sequences and strings
 - How long it takes a computer to solve problems of given size
 - Many computer programs and subroutines are designed to calculate values of functions.
 - Recursive functions, which are functions defined in terms of themselves, are used throughout computer science

Functions

If f is a function from A to B, we say that A is the *domain* of f and B is the *codomain* of f. If f(a) = b, we say that b is the *image* of a and a is a *preimage* of b. The *range*, or *image*, of f is the set of all images of elements of A. Also, if f is a function from A to B, we say that f maps A to B.

- Two functions are **equal** when they have the same domain, have the same codomain, and map each element of their common domain to the same element in their common codomain.
- A function is called **real-valued** if its codomain is the set of real numbers, and it is called **integer-valued** if its codomain is the set of integers.
- Two real-valued functions or two integer-valued functions with the same of omain can be added, as well as multiplied.

 9/24/2020

Functions

Let f_1 and f_2 be functions from A to \mathbf{R} . Then $f_1 + f_2$ and $f_1 f_2$ are also functions from A to \mathbf{R} defined for all $x \in A$ by

$$(f_1 + f_2)(x) = f_1(x) + f_2(x),$$

 $(f_1 f_2)(x) = f_1(x) f_2(x).$

Image of a subset can be defined as follows:

Let f be a function from A to B and let S be a subset of A. The *image* of S under the function f is the subset of B that consists of the images of the elements of S. We denote the image of S by f(S), so

$$f(S) = \{t \mid \exists s \in S \ (t = f(s))\}.$$

We also use the shorthand $\{f(s) \mid s \in S\}$ to denote this set.

Mappings: One-to-One Functions

A function f is said to be *one-to-one*, or an *injunction*, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f. A function is said to be *injective* if it is one-to-one.

- Conditions that guarantee that a function is one-to-one:
 - Increasing/Strictly increasing, Decreasing/Strictly decreasing functions

A function f whose domain and codomain are subsets of the set of real numbers is called increasing if $f(x) \le f(y)$, and strictly increasing if f(x) < f(y), whenever x < y and x and y are in the domain of f. Similarly, f is called decreasing if $f(x) \ge f(y)$, and strictly decreasing if f(x) > f(y), whenever x < y and x and y are in the domain of f. (The word strictly in this definition indicates a strict inequality.)

Mappings: Onto & One-to-one correspondence Functions

A function f from A to B is called *onto*, or a *surjection*, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b. A function f is called *surjective* if it is onto.

• A function f is onto if $\forall y \exists x (f(x) = y)$, where the domain for x is the domain of the function and the domain for y is the codomain of the function.

The function f is a *one-to-one correspondence*, or a *bijection*, if it is both one-to-one and onto. We also say that such a function is *bijective*.

9/24/2020

Mappings

- (a) One-to-one, not onto
- (b) Onto, not one-to-one
- (c) One-to-one, and onto
- (d) Neither one-to-one nor onto
- (e) Not a function

Suppose that $f: A \to B$.

To show that f is injective Show that if f(x) = f(y) for arbitrary $x, y \in A$ with $x \neq y$, then x = y.

To show that f is not injective Find particular elements $x, y \in A$ such that $x \neq y$ and f(x) = f(y).

To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

9

Inverse Functions

Let f be a one-to-one correspondence from the set A to the set B. The *inverse function* of f is the function that assigns to an element b belonging to B the unique element a in A such that f(a) = b. The inverse function of f is denoted by f^{-1} . Hence, $f^{-1}(b) = a$ when f(a) = b.

- A one-to-one correspondence is called **invertible** because we can define an **inverse** of this function.
- A function is **not invertible** if it is not a one-to-one correspondence, because the inverse of such a function does not exist.

10

Composition of Functions

Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The *composition* of the functions f and g, denoted for all $a \in A$ by $f \circ g$, is defined by

$$(f \circ g)(a) = f(g(a)).$$

9/24/2020

Floor & Ceiling Functions

The *floor function* assigns to the real number x the largest integer that is less than or equal to x. The value of the floor function at x is denoted by $\lfloor x \rfloor$. The *ceiling function* assigns to the real number x the smallest integer that is greater than or equal to x. The value of the ceiling function at x is denoted by $\lceil x \rceil$.

- Floor function: same value throughout the interval [n, n + 1), namely n, and then it jumps up to n + 1 when x = n + 1.
- <u>Ceiling function</u>: same value throughout the interval (n, n + 1], namely n + 1, and then jumps to n + 2 when x is a little larger than n + 1.
- A useful approach for considering statements about the floor function is to let $x = n + \mathcal{E}$, where n is the integer, and \mathcal{E} is the fractional part of x, satisfies the inequality $0 \le \mathcal{E} < 1$.
- Similarly, when considering statements about the ceiling function, it is useful to write $x = n \mathcal{E}$, where n is an integer and $0 \le \mathcal{E} < 1$.

TABLE 1 Useful Properties of the Floor and Ceiling Functions.

(n is an integer, x is a real number)

- (1a) $\lfloor x \rfloor = n$ if and only if $n \le x < n + 1$
- (1b) $\lceil x \rceil = n$ if and only if $n 1 < x \le n$
- (1c) $\lfloor x \rfloor = n$ if and only if $x 1 < n \le x$
- (1d) $\lceil x \rceil = n$ if and only if $x \le n < x + 1$

(2)
$$x-1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x+1$$

- (3a) $\lfloor -x \rfloor = -\lceil x \rceil$
- (3b) $\lceil -x \rceil = -\lfloor x \rfloor$
- (4a) |x + n| = |x| + n
- (4b) $\lceil x + n \rceil = \lceil x \rceil + n$

Floor & Ceiling Functions

- In Figure 10(a), the floor function is shown. Note that this function has the same value throughout the interval [n, n + 1), namely n, and then it jumps up to n + 1 when x = n + 1.
- In Figure 10(b), the graph of the ceiling function is shown. Note that this function has the same value throughout the interval (n, n + 1], namely n + 1, and then jumps to n + 2 when x is a little larger than n + 1.

FIGURE 10 Graphs of the (a) Floor and (b) Ceiling Functions.

$$\lfloor \frac{1}{2} \rfloor = 0$$
, $\lceil \frac{1}{2} \rceil = 1$, $\lfloor -\frac{1}{2} \rfloor = -1$, $\lceil -\frac{1}{2} \rceil = 0$, $\lfloor 3.1 \rfloor = 3$, $\lceil 3.1 \rceil = 4$, $\lfloor 7 \rfloor = 7$, $\lceil 7 \rceil = 7$.