

From biomolecular data to information

CCP5 Summer School @ University of Durham 26-27 July 2022

Micaela Matta

micaela.matta@kcl.ac.uk

@micaelamatta

Antonia Mey

antonia.mey@ed.ac.uk

@ppxasjsm

Matteo Degiacomi

matteo.t.degiacomi@dur.ac.uk

@MatteoDegiacomi

Schedule

Morning

09:00-11:00	Dimensionality Reduction theory and toy examples (TM)
11:00-11:30	break
11:30-12:30	ML Dimensionality Reduction application to protein simulations (MD)

Afternoon

14:00-14:30	Clustering Theory (MD)
14:30 - 15:30	Clustering in practice (TM)
15:30 - 16:00	break
16:00 - 17:00	Classification problems (MD)

TM — Toni Mey

MD — Matteo Degiacomi

The Data Mining World — Clustering

From scikit-learn.org

There are many different clustering algorithms

There are many different clustering algorithms

K-means, DBSCAN and spectral clustering

K-means

Initial guess

K-clusters are generated with the nearest mean

Centroid of the k-lcusters becomes the new mean

Iterate until convergence

K-means, DBSCAN and spectral clustering

K-means

Initial guess

K-clusters are generated with the nearest mean

Centroid of the k-lcusters becomes the new mean

Iterate until convergence

DBSCAN

- 1. Find the points in the ϵ (eps) neighbourhood of every point, and identify the core points with more than minPts neighbours.
- 2. Find the connected components of core points on the neighbour graph, ignoring all non-core points.
- 3. Assign each non-core point to a nearby cluster if the cluster is an ϵ (eps) neighbour, otherwise assign it to noise.

K-means, DBSCAN and spectral clustering

K-means

Initial guess

K-clusters are generated with the nearest mean

Centroid of the k-lcusters becomes the new mean

Iterate until convergence

DBSCAN

- 1. Find the points in the ε (eps) neighbourhood of every point, and identify the core points with more than minPts neighbours.
- 2. Find the connected components of core points on the neighbour graph, ignoring all non-core points.
- 3. Assign each non-core point to a nearby cluster if the cluster is an ϵ (eps) neighbour, otherwise assign it to noise.

Spectral clustering

In spectral clustering clusters are found by doing an eigenvalue decomposition of the Laplacian

K-means example

Clustering is one of the first steps in building a Markov State Model

Post-its

Something you think could be improved