Data and setup

```
In [2]: import pandas as pd
        import sqlite3
        from sqlalchemy import create_engine
        spotify_df = pd.read_csv("F:\spotify_songs.csv")
```

Normalize data into First Normal Form

Lose You To

Lose You To

Lose You To

Love Me

Love Me

Love Me

Selena

Gomez

Selena

Gomez

Selena

Gomez

```
    A primary key (a unique, non-null column identifying each row)

    No repeating groups of columns

           · Each cell contains a single value
In [3]: spotify_df.columns
Out[3]: Index(['track_id', 'track_name', 'track_artist', 'track_popularity',
                  'track_album_id', 'track_album_name', 'track_album_release_date',
                  'playlist_name', 'playlist_id', 'playlist_genre', 'playlist_subgenre',
                  'danceability', 'energy', 'key', 'loudness', 'mode', 'speechiness', 'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo',
                  'duration_ms'],
                dtype='object')
In [4]: # track_id might be a good contender for a primary key
         # Check if length of unique track id values is equal to number of rows
         spotify_df.shape[0] == len(spotify_df["track_id"].unique())
Out[4]: False
In [5]: | duplicated_track_id = (spotify_df.loc[spotify_df.duplicated(subset=['track_id'])]["track_id"].iloc[0])
         # Inspect rows of duplicated track_id
         spotify_df.loc[spotify_df["track_id"] == duplicated_track_id]
Out[5]:
                                 track_id track_name track_artist track_popularity
                                                                                          track_album_id track_album_name track_album_release_date
                                                                                                           Lose You To Love
                                                         Selena
                                          Lose You To
            739 1HfMVBKM75vxSfsQ5VefZ5
                                                                             93 3tBkjgxDqAwss76O1YHsSY
                                                                                                                                         2019-10-23
                                             Love Me
                                                         Gomez
                                                                                                                       Ме
                                          Lose You To
                                                          Selena
                                                                                                           Lose You To Love
           1299 1HfMVBKM75vxSfsQ5VefZ5
                                                                             93 3tBkjgxDqAwss76O1YHsSY
                                                                                                                                         2019-10-23
                                             Love Me
                                                         Gomez
                                                                                                                       Me
                                          Lose You To
                                                         Selena
                                                                                                           Lose You To Love
          18320 1HfMVBKM75vxSfsQ5VefZ5
                                                                             93 3tBkjgxDqAwss76O1YHsSY
                                                                                                                                         2019-10-23
                                             Love Me
                                                         Gomez
                                          Lose You To
                                                          Selena
                                                                                                           Lose You To Love
          19730 1HfMVBKM75vxSfsQ5VefZ5
                                                                             93 3tBkjgxDqAwss76O1YHsSY
                                                                                                                                         2019-10-23
                                             Love Me
                                                         Gomez
```

7 rows × 23 columns

21555 1HfMVBKM75vxSfsQ5VefZ5

23641 1HfMVBKM75vxSfsQ5VefZ5

30388 1HfMVBKM75vxSfsQ5VefZ5

2019-10-23

2019-10-23

2019-10-23

Lose You To Love

Lose You To Love

Lose You To Love

Ме

Me

Ме

93 3tBkjgxDqAwss76O1YHsSY

93 3tBkjgxDqAwss76O1YHsSY

93 3tBkjgxDqAwss76O1YHsSY

```
In [6]: | # track_id is redundant here because it's on multiple playlists.
        # We split the data frame into two tables (track and playlist)
        track_columns = ['track_id',
                          'track_name',
                          'track_artist',
                          'track_popularity',
                          'track_album_id',
                          'track_album_name',
                          'track_album_release_date',
                          'danceability',
                          'energy',
                          'key',
                          'loudness',
                          'mode',
                          'speechiness',
                          'acousticness',
                          'instrumentalness',
                          'liveness',
                          'valence',
                          'tempo',
                          'duration_ms']
        playlist_columns = ['playlist_id',
                             'playlist_name',
                             'playlist_genre',
                             'playlist_subgenre']
        # Create a dictionary of 2 dataframes (track_df and playlist_df)
        spotify_df_dict = {'track' : spotify_df.loc[:,track_columns].drop_duplicates(),
                            'playlist' : spotify_df.loc[:,playlist_columns].drop_duplicates()}
```

Now let's confirm that track_id and playlist_id are unique and non-null within each DataFrame:

```
In [7]: # Check track_id is unique per row in track df
        print("TRACK:")
        print("Is there a unique id per row?")
        print(spotify_df_dict["track"].shape[0] == len(spotify_df_dict["track"]["track_id"].unique()))
        # Check track_id has no NA values
        print("Are there NA values?")
        print(spotify_df_dict["track"]["track_id"].isnull().any())
        # Check playlist_id is unique per row in playlist df
        print("\nPLAYLIST:")
        print("Is there a unique id per row?")
        print(spotify_df_dict["playlist"].shape[0] == len(spotify_df_dict["playlist"]["playlist_id"].unique()))
        # Check playlist_id has no NA values
        print("Are there NA values?")
        print(spotify_df_dict["playlist"]["playlist_id"].isnull().any())
        TRACK:
        Is there a unique id per row?
        Are there NA values?
        False
        PLAYLIST:
        Is there a unique id per row?
        False
        Are there NA values?
        False
```

Seems like playlist_id still isn't unique. Let's look more closely at the rows where playlist_id is duplicated:

Out[8]:

	playlist_id	playlist_name	playlist_genre	playlist_subgenre
29945	25ButZrVb1Zj1MJioMs09D	EDM 2020 House & Dance	edm	pop edm
27216	25ButZrVb1Zj1MJioMs09D	EDM 2020 House & Dance	edm	electro house
30804	2CJsD3fcYJWcliEKnwmovU	TOP 50 GLOBAL 2020 UPDATED WEEKLY 🔵 🜆 WORLDWIDE	edm	pop edm
23436	2CJsD3fcYJWcliEKnwmovU	TOP 50 GLOBAL 2020 UPDATED WEEKLY 🔵 🚜 WORLDWIDE	r&b	hip pop
1067	37i9dQZF1DWTHM4kX49UKs	Ultimate Indie Presents Best Indie Tracks o	рор	dance pop
22829	37i9dQZF1DWTHM4kX49UKs	Ultimate Indie Presents Best Indie Tracks o	r&b	hip pop
10387	37i9dQZF1DX4OjfOteYnH8	Flow Selecto	rap	trap
19687	37i9dQZF1DX4OjfOteYnH8	Flow Selecto	latin	reggaeton
12900	3Ho3iO0iJykgEQNbjB2sic	Classic Rock 70s 80s 90s, Rock Classics - 70s	rock	classic rock
15155	3Ho3iO0iJykgEQNbjB2sic	Classic Rock 70s 80s 90s, Rock Classics - 70s	rock	hard rock
30196	3xMQTDLOIGvj3IWH5e5x6F	Charts 2020 <mark>│</mark> Top 2020 │ Hits 2020 │ Summer 2020 │ Po	edm	pop edm
23099	3xMQTDLOIGvj3IWH5e5x6F	Charts 2020	r&b	hip pop
19703	4JkkvMpVl4lSioqQjeAL0q	2020 Hits & 2019 Hits – Top Global Tracks 🦰 🖰 💍	latin	latin hip hop
18295	4JkkvMpVl4lSioqQjeAL0q	2020 Hits & 2019 Hits – Top Global Tracks 🦰 🖰 💍	latin	latin pop
23755	4JkkvMpVl4lSioqQjeAL0q	2020 Hits & 2019 Hits – Top Global Tracks 🦰 🖰 🦰	r&b	hip pop
27962	6KnQDwp0syvhfHOR4IWP7x	Fitness Workout Electro House Dance Prog	edm	electro house
31024	6KnQDwp0syvhfHOR4IWP7x	Fitness Workout Electro House Dance Prog	edm	progressive electro house

The issue seems to be that some playlists are listed under two subgenres. let's instead just create a new unique id for the playlist dataframe:

```
In [11]: spotify_df_dict["playlist"]["playlist_id"] = list(range(0, spotify_df_dict["playlist"].shape[0]))

In [12]: # Check playlist_uid is unique per row in playlist df
    print("Is there a unique id per row?")
    print(spotify_df_dict["playlist"].shape[0] == len(spotify_df_dict["playlist"]["playlist_uid"].unique()))

# Check playlist_uid has no NA values
    print("Are there NA values?")
    print(spotify_df_dict["playlist"]["playlist_id"].isnull().any())

Is there a unique id per row?
    True
    Are there NA values?
    False
```

Check that there are no repeating columns

```
In [13]: spotify_df_dict["track"].head()
```

Oı	ut	[1	.3]	:
		_	_	

	track_id	track_name	track_artist	track_popularity	track_album_id	track_album_name	track_album_release_date
0	6f807x0ima9a1j3VPbc7VN	I Don't Care (with Justin Bieber) - Loud Luxur	Ed Sheeran	66	2oCs0DGTsRO98Gh5ZSl2Cx	I Don't Care (with Justin Bieber) [Loud Luxury	2019-06-14
1	0r7CVbZTWZgbTCYdfa2P31	Memories - Dillon Francis Remix	Maroon 5	67	63rPSO264uRjW1X5E6cWv6	Memories (Dillon Francis Remix)	2019-12-13
2	1z1Hg7Vb0AhHDiEmnDE79I	All the Time - Don Diablo Remix	Zara Larsson	70	1HoSmj2eLcsrR0vE9gThr4	All the Time (Don Diablo Remix)	2019-07-05
3	75FpbthrwQmzHlBJLuGdC7	Call You Mine - Keanu Silva Remix	The Chainsmokers	60	1nqYsOef1yKKuGOVchbsk6	Call You Mine - The Remixes	2019-07-19
4	1e8PAfcKUYoKkxPhrHqw4x	Someone You Loved - Future Humans Remix	Lewis Capaldi	69	7m7vv9wlQ4i0LFuJiE2zsQ	Someone You Loved (Future Humans Remix)	2019-03-05
4							•

```
In [14]: spotify_df_dict["playlist"].head()
```

Out[14]:

	playlist_id	playlist_name	playlist_genre	playlist_subgenre	playlist_uid
0	0	Pop Remix	рор	dance pop	0
70	1	Dance Pop	рор	dance pop	1
167	2	Dance Room	рор	dance pop	2
223	3	Cardio	рор	dance pop	3
272	4	Dance Pop Hits	рор	dance pop	4

Repeating Columns

- For the track DataFrame, none of the columns seem to repeat
- For the playlist DataFrame there are no repeating groups of columns

Each cell contains a single value

From our inspection of the DataFrames we see that each cell contains a single value; so, this requirement is satisfied.

Normalize data into Second Normal Form

Playlist table

Each column describes what the primary key identifies (a playlist), so 2NF is satisfied for this table.

Track table

Here, we notice that some of the columns (specifically, track_album_id, track_album_name, track_album_release_date) relate to the album of the track, not the track itself (as the other columns do). So, let's move the album-related columns to their own table

```
Is there a unique id per row?
True
Are there NA values?
False
```

Now let's remove those columns from the track DataFrame and we should be all set with 2NF:

Normalize data into Third Normal Form (3NF)

Album table

In [18]:	spo	otify_df_dict["album"].	head()	
Out[18]:	track_album_i		track_album_name	track_album_release_date
	0	2oCs0DGTsRO98Gh5ZSl2Cx	I Don't Care (with Justin Bieber) [Loud Luxury	2019-06-14
	1 63rPSO264uRjW1X5E6cWv6 Memories (Dillon Fra		Memories (Dillon Francis Remix)	2019-12-13
	2 1HoSmj2eLcsrR0vE9gThr4 All the Time (Don D		All the Time (Don Diablo Remix)	2019-07-05
	3 1nqYsOef1yKKuGOVchbsk6 C		Call You Mine - The Remixes	2019-07-19
	4	7m7vv9wlQ4i0LFuJiE2zsQ	Someone You Loved (Future Humans Remix)	2019-03-05

Each column depends on the album_id (or row number), so there are no 3NF violations.

Playlist table

Out[19]:

```
In [19]: spotify_df_dict["playlist"].head()
```

	playlist_id	playlist_name	playlist_genre	playlist_subgenre	playlist_uid
0	37i9dQZF1DXcZDD7cfEKhW	Pop Remix	рор	dance pop	0
70	37i9dQZF1DWZQaaqNMbbXa	Dance Pop	рор	dance pop	1
167	37i9dQZF1DX2ENAPP1Tyed	Dance Room	рор	dance pop	2
223	37i9dQZF1DWSJHnPb1f0X3	Cardio	рор	dance pop	3
272	37i9dQZF1DX6pH08wMhkal	Dance Pop Hits	рор	dance pop	4

- Here, playlist_subgenre violates 3NF, because it only depends on the playlist_id via the playlist_genre.
- So, let's split that out (with playlist_genre) into a separate genre table:

Is there a unique id per row? True Are there NA values? False

Great. Lastly, let's remove playlist_genre and playlist_subgenre from the playlist table:

```
In [18]: spotify_df_dict["playlist"].drop(["playlist_genre","playlist_subgenre"], axis=1, inplace=True)

# Confirm that album columns were removed
spotify_df_dict["playlist"].columns

Out[18]: Index(['playlist_id', 'playlist_name', 'playlist_uid'], dtype='object')
```

Track table

In [19]: spotify_df_dict["track"].head()

Out[19]:

	track_id	track_name	track_artist	track_popularity	track_album_id	track_album_name	track_album_release_date
0	6f807x0ima9a1j3VPbc7VN	I Don't Care (with Justin Bieber) - Loud Luxur	Ed Sheeran	66	2oCs0DGTsRO98Gh5ZSl2Cx	I Don't Care (with Justin Bieber) [Loud Luxury	2019-06-14
1	0r7CVbZTWZgbTCYdfa2P31	Memories - Dillon Francis Remix	Maroon 5	67	63rPSO264uRjW1X5E6cWv6	Memories (Dillon Francis Remix)	2019-12-13
2	1z1Hg7Vb0AhHDiEmnDE79I	All the Time - Don Diablo Remix	Zara Larsson	70	1HoSmj2eLcsrR0vE9gThr4	All the Time (Don Diablo Remix)	2019-07-05
3	75FpbthrwQmzHlBJLuGdC7	Call You Mine - Keanu Silva Remix	The Chainsmokers	60	1nqYsOef1yKKuGOVchbsk6	Call You Mine - The Remixes	2019-07-19
4	1e8PAfcKUYoKkxPhrHqw4x	Someone You Loved - Future Humans Remix	Lewis Capaldi	69	7m7vv9wlQ4i0LFuJiE2zsQ	Someone You Loved (Future Humans Remix)	2019-03-05
4							•

Each column depends on the track_id (or row number), so there are no 3NF violations.