A Network Model for **Dynamic Textual Communications** with Application to Government Email Corpora

Bomin Kim¹ Aaron Schein³ Bruce Desmarais 1 Hanna Wallach^{2,3}

June 12, 2017

Work supported by NSF grants SES-1558661, SES-1619644, SES-1637089. and CISE-1320219)

¹ The Pennsylvania State University

² Microsoft Research NYC

³ University of Massachusetts Amherst

Interaction-Partitioned Topic Model (IPTM)

- Probablistic model for time-stamped textual communications
- Integration of two generative models:
 - Latent Dirichlet allocation (LDA) for topic-based contents
 - Dynamic exponential random graph model (ERGM) for ties

"who communicates with whom about what, and when?"

Content Generating Process: LDA (Blei et al., 2003)

- For each topic k = 1, ..., K:
 - 1. Topic-word distribution $\phi^{(k)} \sim \mathsf{Dirichlet}(\beta, \mathbf{u})$
 - 2. Topic-IP distribution $c_k \sim \mathsf{Uniform}(1,C)$
- For each document d = 1, ..., D:
 - 3-1. Document-topic distribution: $\boldsymbol{\theta}^{(d)} \sim \text{Dirichlet}(\alpha, \boldsymbol{m})$
 - 3-2. For each word in a document n=1 to $N^{(d)}$:
 - (a) Choose a topic $z_n^{(d)} \sim \mathsf{Multinomial}(\boldsymbol{\theta}^{(d)})$
 - (b) Choose a word $w_n^{(d)} \sim \mathsf{Multinomial}(\phi^{(z_n^{(d)})})$
 - 3-3 Calculate the distribution of interaction patterns within a document:

Dynamic Network Features (Perry and Wolfe, 2012)

• Partition the past 384 hours (=16 days) into 3 sub-intervals

$$[t - 384h, t) = [t - 384h, t - 96h) \cup [t - 96h, t - 24h) \cup [t - 24h, t),$$

then define the interval-based dynamic network statistics (l = 1, 2, 3)

- $m{x}_{t}^{(c)}(i,j)$ is the network statistics at time t, for interaction pattern c
 - Degree: outdegree and indegree
 - Dvadic: send and receive
 - Triadic: 2-send, 2-receive, sibling and cosibling

```
h 【 ¦
outdegree i \rightarrow \forall j send i \rightarrow j 2-send i \rightarrow h \rightarrow j sibling
indegree i \leftarrow \forall j receive i \leftarrow j 2-receive i \leftarrow h \leftarrow j cosibling
```

Tie Generating Process: Latent Edges

1. For each sender $i \in \{1, ..., A\}$, choose a binary vector $J_i^{(d)}$ of length (A-1), by applying Gibbs measure (Fellows and Handcock, 2017)

$$\mathsf{P}(J_i^{(d)}) = \frac{1}{Z(\delta, \log(\lambda_i^{(d)}))} \exp\Big\{ \log \big(\mathsf{I}(\sum_{j \in \mathcal{A}_{\backslash i}} J_{ij}^{(d)} > 0)\big) + \sum_{j \in \mathcal{A}_{\backslash i}} (\delta + \log(\lambda_{ij}^{(d)})) J_{ij}^{(d)} \Big\},$$

where

$$-\ \lambda_{ij}^{(d)} = \sum_{c=1}^C p_c^{(d)} \cdot \exp\Bigl\{\lambda_0^{(c)} + \boldsymbol{b}^{(c)T}\boldsymbol{x}_{t^{(d-1)}}^{(c)}(i,j)\Bigr\} \quad \text{is a stochastic intensity}$$

- δ is a real-valued intercept controlling the recipient size
- $Z(\delta, \log(\lambda_i^{(d)}))$ is the normalizing constant

İ					
1	0	1	0	1	1
2	1	0	0	0	0
•••			•	• • • •	•
Α	0	0	1	0	0
	1 2 A	1 0 2 1	1 0 1 2 1 0 	1 0 1 0 2 1 0 0	i 1 2 3 4 1 0 1 0 1 2 1 0 0 0 A 0 0 1 0

Tie Generating Process: Observed

2. For each sender $i \in \mathcal{A}$, generate the time increments

$$\Delta T_{iJ_i} \sim \mathsf{Exp}(\lambda_{iJ_i}^{(d)}),$$

where
$$\lambda_{iJ_i}^{(d)} = \sum\limits_{c=1}^{C} p_c^{(d)} \cdot \exp\Bigl\{\lambda_0^{(c)} + \frac{1}{|J_i|} \sum\limits_{j \in J_i} \pmb{b}^{(c)T} \pmb{x}_{t^{(d-1)}}^{(c)}(i,j)\Bigr\}.$$

3. Set timestamp, sender, and receivers simultaneously:

$$\begin{split} t^{(d)} &= t^{(d-1)} + \min(\Delta T_{iJ_i}) \\ i^{(d)} &= i_{\min(\Delta T_{iJ_i})} \\ J^{(d)} &= J_{i(d)} \end{split}$$

i	1 2 3 4 ····· A			1	
1 2 A	0 1 0 1 ····· 1 1 0 1 0 ····· 0 0 0 1 0 ····· 0	→	t ₁ (2)	→	send : 2 receive : 1, 3 time : t ^{d-1} + t ₂

Inference - Pseudocode

Bayesian Inference using Markov Chain Monte Carlo (MCMC)

Algorithm 1 MCMC

Set initial values $\mathcal{Z}^{(0)}, \mathcal{C}^{(0)}$, and $(\mathcal{B}^{(0)}, \delta^{(0)})$

for o=1 to O do

Sample the latent edge $J_{ii}^{(d)}$ via Gibbs sampling

Sample the topic assignments Z via Gibbs sampling

Sample the interaction pattern assignments C via Gibbs sampling

Sample the interaction pattern parameters \mathcal{B} via Metropolis-Hastings

Sample the receiver size parameter δ via Metropolis-Hastings end

Data: North Carolina Dare county email data

• D=1456 emails between A=27 county government managers, covering 2 month periods (October 1 - November 30) in 2013

Hurricane Sandy passed by NC: October 26 - October 30

Effect of Hurricane Sandy on Email Exchange

IPTM Result: Dynamic Network Effects

• IPTM result with C=2, K=5 and O=20:

10 / 12

IPTM Result: Contents

• IPTM result with C=2, K=5 and O=20:

IP	2	2	1	2	2
Topic	5	1	2	3	4
Word	tim	forecast	updates	parcels	overtime
	request	force	amount	billed	east
	services	today	mph	real	scheduled
	report	rip	exam	ocean	library
	tax	race	machine	continues	comp
	northwest	moderate	esi	watched	count
	michelle	арр	view	duration	expected
	evans	summary	dangerous	early	human
	tonnage	operations	curves	situation	period
	coastal	late	north	wash	administrative

11 / 12

Conclusion

- Joint modeling of ties (sender, receiver, time) and contents
- Allowance of multicast multiple senders and/or receivers
- Possible application to various political science data