Métodos Numéricos II

Tarefa 15

Rodrigo Nogueira⁴⁷³⁴¹³ e Victor Torres⁴⁷³⁷⁴¹

01 de Junho de 2022

1 Solução do PVC1

Com N=8, temos que $\Delta x=0.125$ e $1/(\Delta x)^2=64$. Daí, utilizando a filosofia central, a discretização da equação diferencial é

$$64y(x_{i-1}) - 129y(x_i) + 64y(x_{i+1}) = 0,$$

o que dá origem ao sistema

$$\begin{cases} 64y_0 - 129y_1 + 64y_2 = 0 \\ 64y_1 - 129y_2 + 64y_3 = 0 \\ 64y_2 - 129y_3 + 64y_4 = 0 \\ 64y_3 - 129y_4 + 64y_5 = 0 \\ 64y_4 - 129y_5 + 64y_6 = 0 \\ 64y_5 - 129y_6 + 64y_7 = 0 \\ 64y_6 - 129y_7 + 64y_8 = 0 \end{cases}$$

onde $y_0 = 0$ e $y_8 = 1$. Com isso, obtemos o seguinte sistema de equações em forma matricial

$$\begin{bmatrix} -129 & 64 & 0 & 0 & 0 & 0 & 0 \\ 64 & -129 & 64 & 0 & 0 & 0 & 0 \\ 0 & 64 & -129 & 64 & 0 & 0 & 0 \\ 0 & 0 & 64 & -129 & 64 & 0 & 0 \\ 0 & 0 & 0 & 64 & -129 & 64 & 0 \\ 0 & 0 & 0 & 0 & 64 & -129 & 64 \\ 0 & 0 & 0 & 0 & 0 & 64 & -129 \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -64 \end{bmatrix},$$

com solução

$$y \approx \begin{bmatrix} 0.10666 \\ 0.21499 \\ 0.32668 \\ 0.44348 \\ 0.56720 \\ 0.69978 \\ 0.84330 \end{bmatrix}.$$

Tabela 1: Respostas aproximada, exata e erro relativo percentual obtido.

y_1	y_2	y_3	y_4	y_5	y_6	y_7
Apr.: 0.10666	0.21499	0.32668	0.44348	0.56720	0.69978	0.84330
Real: 0.10664	0.21495	0.32662	0.44340	0.56713	0.69972	0.84336
Erro: 0.01875	0.01860	0.01836	0.01804	0.01234	0.00857	0.00474

2 Solução do PVC2

Com N=8, temos 8 subdivisões no eixo x e 8 no eixo y, o que dá um total de 64 regiões e, das condições de contorno, 49 incógnitas. A discretização da equação diferencial do problema é

$$64u(x_{i-1}, y_j) - 128u(x_i, y_j) + 64u(x_{i+1}, y_j) + 64u(x_i, y_{j-1}) - 128u(x_i, y_j) + 64u(x_i, y_{j+1}) = 4,$$

o que dá origem ao seguinte sistema de equações

$$\begin{cases}
-256u_1 + 64u_2 + 64u_8 + 4u_{49} = 4 \\
64u_1 - 256u_2 + 64u_3 + 64u_9 + 4u_{49} = 4 \\
\vdots \\
64u_{41} + 64u_{47} - 256u_{48} + 4u_{49} = 4
\end{cases}$$

em que a forma matricial será omitida por limitações de espaço, já que a matriz de coeficientes teria ordem 49. As soluções do sistema também serão omitidas, mas comparando com as soluções exatas pela resolução analítica da equação diferencial, o erro é desprezível com 5 casas decimais de precisão.