BROUILLON - À PROPOS DE L'EXERCICE DE SPÉ MATHS DU BAC S DE JUIN 2018

CHRISTOPHE BAL

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution - Pas d'utilisation commerciale -Partage dans les mêmes conditions 4.0 International".

Dans le BAC S de Juin 2018, la partie A de l'exercice de SPÉ MATHS s'intéressait à l'équation diophantienne [ED] : $x^2 - 8y^2 = 1$ sur \mathbb{N}^2 .

On a une solution évidente (x;y) = (3;1). L'exercice introduit alors une matrice "magique" $A = \begin{pmatrix} 3 & 8 \\ 1 & 3 \end{pmatrix}$ pour ensuite construite des solutions $(x_n;y_n)$ de façon récursive linéairement comme suit : $\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = A \begin{pmatrix} x_n \\ y_n \end{pmatrix}$.

Très bien mais voyons comment découvrir la matrice "magique" A. Une idée élémentaire est de noter que $x^2 - 8y^2 = \begin{pmatrix} x & y \end{pmatrix} Q \begin{pmatrix} x \\ y \end{pmatrix}$ en posant $Q = \begin{pmatrix} 1 & 0 \\ 0 & -8 \end{pmatrix}$.

En notant $\begin{pmatrix} X \\ Y \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}$, nous avons : $\begin{pmatrix} X & Y \end{pmatrix} Q \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} A^T Q A \begin{pmatrix} x \\ y \end{pmatrix}$.

Essayons de trouver A vérifiant $A^TQA=Q$ car d'une solution $\begin{pmatrix} x \\ y \end{pmatrix}$ on pourra passer à une "autre" $\begin{pmatrix} X \\ Y \end{pmatrix}=A\begin{pmatrix} x \\ y \end{pmatrix}$.

Utilisant le déterminant, nous avons comme contrainte det $A=\pm 1$ donc A doit être inversible. Imposons det A=1. Notant $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, nous avons alors $A^{-1}=\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ d'où :

$$A^{T}QA = Q \iff A^{T}Q = QA^{-1}$$

$$\iff \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -8 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -8 \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$\iff \begin{pmatrix} a & -8c \\ b & -8d \end{pmatrix} = \begin{pmatrix} d & -b \\ 8c & -8a \end{pmatrix}$$

$$\iff a = d \text{ et } b = 8c$$

 $\det A = 1$ pour $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} d & 8c \\ c & d \end{pmatrix}$ nous donne $d^2 - 8c^2 = 1$. Que c'est joli!

La matrice du sujet de BAC utilise donc la solution élémentaire (c;d) = (1;3).

Date: 25 Juin 2018.