SPECIFICATION FOR APPROVAL

() Preliminary Sp	ecification
--------------------	-------------

Title

(♦) Final Specification	n
-------------------------	---

L				
·	,	1		******
Customer	ACER		SUPPLIER	LG Display Co., Ltd.
MODEL			*MODEL	LP140WH1

^{*}When you obtain standard approval, please use the above model name without suffix

TLA1

14.0"W HD TFT LCD

Suffix

	APPROVED BY	SIGNATURE
_	I	
	/	
_	1	
Pleas	e return 1 copy for yo	ur confirmation with

APPROVED BY	SIGNATURE
K. S. Kwon / S.Manager	Ato 68,10,17
REVIEWED BY	_ , ,
C. I. Kim / Manager	130 68.10.
PREPARED BY	
J. W. Kim / Engineer	26 Bry 108.10.19
Y. S. Kim / Engineer	_ LUBBY 08.11.11
Products Engineer LG Display Co	•

Contents

No	ITEM	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	
3-1	ELECTRICAL CHARACTREISTICS	6
3-2	INTERFACE CONNECTIONS	7
3-3	LVDS SIGNAL TIMING SPECIFICATION	8-9
3-3	SIGNAL TIMING SPECIFICATIONS	9
3-4	SIGNAL TIMING WAVEFORMS	10
3-5	COLOR INPUT DATA REFERNECE	11
3-6	POWER SEQUENCE	12
4	OPTICAL SFECIFICATIONS	13-16
5	MECHANICAL CHARACTERISTICS	17-25
6	RELIABLITY	26
7	INTERNATIONAL STANDARDS	
7-1	SAFETY	27
7-2	EMC	27
8	PACKING]
8-1	DESIGNATION OF LOT MARK	28
8-2	PACKING FORM	28
9	PRECAUTIONS	29-30
А	APPENDIX. Enhanced Extended Display Identification Data	31-33

Ver. 1.0 Oct. 17, 2008 2 / 33

RECORD OF REVISIONS

Revision No	Revision Date	Page	Description	EDID ver
0.0	Jun. 17. 2008	-	First Draft (Preliminary Specification)	0.0
0.1	Aug. 13, 2008	7	CN1 Pin #1 update (GROUND → NC)	
0.2	Aug. 14, 2008	18	Rear view update	
0.3	Aug. 25, 2008	18,19	Rear view drawing update	
0.4	Sep. 26, 2008	6	Update ELECTRICAL CHARACTERISTICS	0.1
		13	Update color coordinates spec.	
		14	Update Gray scale spec.	
		16	Insert Viewing Angle description page.	
		19	Update Rear view Drawing	
		27	Update color coordinates EDID data (Ver. $0.0 \rightarrow 0.1$)	
		29	Change EDID Checksum (E4 → EC)	
1.0	Oct. 17, 2008	-	Final Draft	1.0
				· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·

Ver. 1.0 Oct. 17, 2008 3 / 33

1. General Description

The LP140WH1 is a Color Active Matrix Liquid Crystal Display with an integral LED backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has 14.0 inches diagonally measured active display area with HD resolution(768 vertical by 1366 horizontal pixel array). Each pixel is divided into Red, Green and Blue subpixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit gray scale signal for each dot, thus, presenting a palette of more than 262,144 colors.

The LP140WH1 has been designed to apply the interface method that enables low power, high speed, low EMI.

The LP140WH1 is intended to support applications where thin thickness, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LP140WH1 characteristics provide an excellent flat display for office automation products such as Notebook PC.

General Features

Active Screen Size	14.0 inches diagonal
Outline Dimension	323.5(H, typ) × 192.0(V, typ) × 5.2(D,max) [mm]
Pixel Pitch	0.2265mm × 0.2265 mm
Pixel Format	1366 horiz. By 768 vert. Pixels RGB strip arrangement
Color Depth	6-bit, 262,144 colors
Luminance, White	220 cd/m ² (Typ.5 point)
Power Consumption	Total 4.5 Watt(Typ.) @ LCM circuit 1.4 Watt(Typ.), B/L input 3.1 Watt(Typ.)
Weight	350g (Max.)
Display Operating Mode	Transmissive mode, normally white
Surface Treatment	Hard Coating(3H), Glare treatment of the front polarizer
RoHS Comply	Yes

Ver. 1.0 Oct. 17, 2008 4 / 33

2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Val	ues	Units	Notes	
Farameter	Syllibol	Min	Max	Office		
Power Input Voltage	VCC	-0.3	4.0	Vdc	at 25 ± 5°C	
Operating Temperature	Тор	0	50	°C	1	
Storage Temperature	Нѕт	-20	60	°C	1	
Operating Ambient Humidity	Нор	10	90	%RH	1	
Storage Humidity	Нѕт	10	90	%RH	1	

Note: 1. Temperature and relative humidity range are shown in the figure below.

Wet bulb temperature should be 39°C Max, and no condensation of water.

Ver. 1.0 Oct. 17, 2008 5 / 33

3. Electrical Specifications

3-1. Electrical Characteristics

The LP140WH1 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input which powers the LED BL.

Table 2. ELECTRICAL CHARACTERISTICS

Parameter	Cymphol		Unit	Notes		
Parameter	Symbol	Min	Тур	Max	Unit	Notes
MODULE :	I					
Power Supply Input Voltage	VCC	3.0	3.3	3.6	V_{DC}	
Power Supply Input Current	I _{cc}	.	430	495	mA	11
Power Consumption	Pc	[.	1.4	1.6	Watt	11
Differential Impedance	Zm	90	100	110	Ohm	2
Inrush Current	Irush			1500	mA	
LED Backlight (With LED Driver)	l					
Operating Current per string	I _{LED}	[.	20	[.	mA	3
Power Consumption	P _{LED}	.	3.6	3.9	Watt	4
Life Time		12,000	-	-	Hrs	5
VLED		7.0		20	V	
PWM Input Signal	l				l	
Frequency	F _{PWM}	120		1000	Hz	
On Duty	D _{on}	3			%	
Voltage Level	V_{PWM}	2.9	l	[V	
LED_EN	I	[l	[<u></u>	
Voltage Level	V_{LED_EN}	2.9			V	

Note)

1. The specified current and power consumption are under the Vcc = 3.3V, $25^{\circ}C$, fv = 60Hz condition whereas Mosaic pattern is displayed and fv is the frame frequency.

- 2. This impedance value is needed to proper display and measured form LVDS Tx to the mating connector.
- 3. The typical operating current is for the typical surface luminance (L_{WH}) in optical characteristics. I_{LED} is the current of each LED's string, LED backlight has 6 strings on it.
- 4. The LED power consumption shown above includes power of internal LED driver circuit for typical current condition.
- 5. The life time is determined as the time at which brightness of LCD is 50% compare to that of initial value at the typical LED current.

Ver. 1.0 Oct. 17, 2008 6 / 33

3-2. Interface Connections

This LCD employs two interface connections, a 40 pin connector is used for the module electronics interface and the other connector is used for the integral backlight system.

The electronics interface connector is a model CABLINE-VS RECE ASS'Y manufactured by I-PEX.

Table 3. MODULE CONNECTOR PIN CONFIGURATION (CN1)

Pin	Symbol	Description	Notes
1	NC	Reserved	
2	VCC	Power Supply, 3.3V Typ.	
3	VCC	Power Supply, 3.3V Typ.	A latertain altho
4	V EEDID	DDC 3.3V power	1, Interface chips 1.1 LCD: SW, SW0624 (LCD Controller)
5	NC	No Connection	including LVDS Receiver
6	CIk EEDID	DDC Clock	1.2 System: THC63LVDF823A
7	DATA EEDID	DDC Data	or equivalent
8	Odd_R _{IN} 0-	Negative LVDS differential data input	* Pin to Pin compatible with LVDS
9	Odd_R _{IN} 0+	Positive LVDS differential data input	2. Connector
10	GND	Ground	2.1 LCD : CABLINE-VS RECE ASS'Y, I-PEX
11	Odd_R _{IN} 1-	Negative LVDS differential data input	or its compatibles 2.2 Mating: CABLINE-VS PLUG CABLE
12	Odd_R _{IN} 1+	Positive LVDS differential data input	ASS'Y or equivalent.
13	GND	Ground	2.3 Connector pin arrangement
14	Odd_R _{IN} 2-	Negative LVDS differential data input	
15	Odd_R _{IN} 2+	Positive LVDS differential data input	40 ПППП
16	GND	Ground	
17	Odd_CLKIN-	Negative LVDS differential clock input	
18	Odd_CLKIN+	Positive LVDS differential clock input	[LCD Module Rear View]
19	GND	Ground	
20	NC	No Connection	3, Pin connection for LED IC
21	NC	No Connection	1.1 Pin #35 should not connect with Pin #36.
19	GND	Ground	
23	NC	No Connection	
24	NC	No Connection	
19	GND	Ground	
26	NC	No Connection	
27	NC	No Connection	
19	GND	Ground	
29	NC	No Connection	
30	NC	No Connection	
31	VLED_GND	LED Ground	
32	VLED_GND	LED Ground	
33	VLED_GND	LED Ground	
34	NC	Reserved	
35	PWM	PWM for luminance control(200Hz ~ 1000Hz)	
36	LED_EN	Backlight On/Off Control	
37	NC	No Connection (Reserved)	
38	VLED	LED Power Supply (7V-20V)	
39	VLED	LED Power Supply (7V-20V)	
40	VLED	LED Power Supply (7V-20V)	

3-3. LVDS Signal Timing Specifications

3-3-1. DC Specification

Description	Symb ol	Min	Max	Unit	Notes
LVDS Differential Voltage	V _{ID}	100	600	mV	-
LVDS Common mode Voltage	V _{CM}	0.6	1.8	V	-
LVDS Input Voltage Range	VIN	DS _{0.3}	2.1	V	-

 $|V_{ID}|$

3-3-2. AC Specification

Description	Symbol	Min	# _{Max} II		LVDS+ (LVD	S-)
LVDS Clock to Data Skew Margin	t _{SKEW} O	V ^{- 400}	# V _{CI} + 400	y = {(ps	Notes LVDS+) + (LVD 85MHz > Fclk ≥ 65MHz	S-)}/2
LVDS Clock to Data Skew Margin	t _{SKEW}	- 600	+ 600	ps	65MHz > Fclk ≥ 25MHz	
LVDS Clock to Clock Skew Margin (Even to Odd)	t _{SKEW_EO}	- 1/7	+ 1/7	T _{clk}	-	
Maximum deviation of input clock frequency during SSC	F _{DEV}	-	± 3	%	-	
Maximum modulation frequency of input clock during SSC	F _{MOD}	-	200	KHz	-	

Ver. 1.0 Oct. 17, 2008 8 / 33

< Clock skew margin between channel >

LVDS Even Data < Spread Spectrum >

3-3-3. Data Format

1) LVDS 1 Port

< LVDS Data Format >

Ver. 1.0 Oct. 17, 2008 9 / 33

 $\mathsf{T}_{\mathsf{clk}}$

Condition: VCC =3.3V

Product Specification

3-4. Signal Timing Specifications

This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications and specifications of LVDS Tx/Rx for its proper operation.

Table 4. TIMING TABLE

ITEM	Symbol		Min	Тур	Max	Unit	Note
DCLK	Frequency	f _{CLK}	-	72.3	-	MHz	
	Period	t _{HP}	1470	1526	1586		
Hsync	Hsync Width Width-Active		23	32	40	tCLK	
			1366	1366	1366		
	Period		779	790	801		
Vsync Width		t _{wv}	2	5	8	tHP	
	Width-Active		768	768	768		
	Horizontal back porch	t _{HBP}	72	80	124	tCLK	
Data	Horizontal front porch	t _{HFP}	8	48	48	ICLK	
Enable	Vertical back porch	t _{VBP}	8	14	20	tHP	
	Vertical front porch	t _{VFP}	1	3	5	וחר	

3-5. Signal Timing Waveforms

Ver. 1.0

Oct. 17, 2008

3-6. Color Input Data Reference

The brightness of each primary color (red,green and blue) is based on the 6-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 5. COLOR DATA REFERENCE

									Inp	out Co	olor D	ata							
	Color			RE	ΞD					GRE	EEN					BL	UE		
								MSB LSB									LSB		
	I	R 5						G 5	G 4	G 3	G 2	G 1		B 5	B 4	В 3	B 2	B 1	B 0
	Black	0	0			0	0	0	0	0	0	0 	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0				0	1 	1 				1	0	0	0		0	0
Basic	Blue	0	0				0	0	0	0	0	0	0	1	1	1		1	1
Color	Cyan	0	0	0			0	1	1	. 1 			1	1	1	1			1
	Magenta	1	1	.1	. 1	. 1	1	0	0	0	0	0	0	1	1	.1	. 1	1	1
	Yellow	1	1	1	. 1	. 1		1	1				1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (01)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
RED																			
	RED (62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (01)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
GREEN					 														
	GREEN (62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	GREEN (63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	BLUE (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (01)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE		·····			 														
	BLUE (62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	 1	 1	
	BLUE (63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Ver. 1.0 Oct. 17, 2008 11 / 33

3-7. Power Sequence

- * VLED(LED Power supply) should be turn on before PWM on signal and turn off after PWM off signal.
- * PWM On signal should be fixed PWM duty or DC, not variable duty signal while PWM on.

Table 6. POWER SEQUENCE TABLE

-				
Parameter		Value		Units
	Min.	Тур.	Max.	
T ₁	0.5	-	10	(ms)
T ₂	0	-	50	(ms)
T ₃	200	-	-	(ms)
T ₄	0	-	T ₃	(ms)
T ₅	0	-	T ₆	(ms)
T ₆	200	-	-	(ms)
T ₇	0	-	50	(ms)
T ₈	3	-	10	(ms)
T ₉	400	-	-	(ms)

Note)

- 1. Valid Data is Data to meet "3-3. LVDS Signal Timing Specifications"
- 2. Please avoid floating state of interface signal at invalid period.
- 3. When the interface signal is invalid, be sure to pull down the power supply for LCD VCC to 0V.
- 4. LED power must be turn on after power supply for LCD and interface signal are valid.

Ver. 1.0 Oct. 17, 2008 12 / 33

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 30 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and Θ equal to 0° .

FIG. 1 presents additional information concerning the measurement equipment and method.

Table 7. OPTICAL CHARACTERISTICS

Ta=25°C, VCC=3.3V, fv=60Hz, f_{CLK} = 72.3MHz , I_{LED} = 20 mA

Parameter	Symbol		Values		Units	Notes
Parameter	Symbol	Min	Тур	Max	Units	Notes
Contrast Ratio	CR	500	-	-		1
Surface Luminance, white	L _{WH}	190	220	-	cd/m ²	2
Luminance Variation	δ_{WHITE}	-	1.4	1.6]	3
Response Time	Tr_{R} + Tr_{D}	-	8	15	ms	4
Color Coordinates	[]	
RED	RX	0.588	0.618	0.648	1	
	RY	0.325	0.355	0.385		
GREEN	GX	0.305	0.335	0.365		
	GY	0.554	0.584	0.614		
BLUE	вх	0.120	0.150	0.180		
	BY	0.079	0.109	0.139		
WHITE	WX	0.283	0.313	0.343		
	WY	0.299	0.329	0.359		
Viewing Angle					.	5
x axis, right(Φ=0°)	Θr	40	-	-	degree	
x axis, left (Ф=180°)	Θl	40	-	-	degree	
y axis, up (⊕=90°)	Θu	10	-	-	degree	
y axis, down (Φ=270°)	Θd	30	-	-	degree	
Gray Scale]	6
Color Gamut	C/G	-	60	-	%	

Ver. 1.0 Oct. 17, 2008 13 / 33

Note)

1. Contrast Ratio(CR) is defined mathematically as

Surface Luminance with all white pixels

Contrast Ratio =

Surface Luminance with all black pixels

2. Surface luminance is the average of 5 point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 1.

$$L_{WH} = Average(L_1, L_2, \dots L_5)$$

3. The variation in surface luminance , The panel total variation (δ_{WHITE}) is determined by measuring L_N at each test position 1 through 13 and then defined as followed numerical formula. For more information see FIG 2.

$$\delta_{\text{ WHITE}} = \frac{\text{Maximum}(\mathsf{L}_{1}, \mathsf{L}_{2}, \ \dots \ \mathsf{L}_{13})}{\text{Minimum}(\mathsf{L}_{1}, \mathsf{L}_{2}, \ \dots \ \mathsf{L}_{13})}$$

- 4. Response time is the time required for the display to transition from white to black (rise time, Tr_R) and from black to white(Decay Time, Tr_D). For additional information see FIG 3.
- 5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4.
- 6. Gray scale specification

*
$$f_{V} = 60Hz$$

Gray Level	Luminance [%] (Typ)
LO	0.2
L7	1.5
L15	5.4
L23	12.2
L31	21.0
L39	34.8
L47	52.5
L55	74.2
L63	100

Ver. 1.0 Oct. 17, 2008 14 / 33

FIG. 2 Luminance

<measuring point for surface luminance & measuring point for luminance variation>

FIG. 3 Response Time

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

Ver. 1.0 Oct. 17, 2008 15 / 33

FIG. 4 Viewing angle

<Dimension of viewing angle range>

Ver. 1.0 Oct. 17, 2008 16 / 33

5. Mechanical Characteristics

The contents provide general mechanical characteristics for the model LP140WH1. In addition the figures in the next page are detailed mechanical drawing of the LCD.

	Horizontal	323.5 ± 0.5mm				
Outline Dimension	Vertical	192.0 ± 0.5mm				
	Thickness	5.2mm (max)				
Bezel Area	Horizontal (VESA Standard)	From A/A to Edge of Case Top 1.5mm(min.)				
bezei Alea	Vertical (VESA Standard)	From A/A to Edge of Case Top 1.5mm(min.)				
Active Display Area	Horizontal	309.40 mm				
Active Display Area	Vertical	173.95 mm				
Weight	350g (Max.)					
Surface Treatment	Hard Coating(3H), Glare treatm	ent of the front polarizer				
Mother Glass Thickness	Upper Glass (C/F Glass)	0.50 + 0.05 / -0.03 mm				
Would Class Hickiess	Lower Glass (TFT Glass)	0.50 + 0.05 / -0.03 mm				

Ver. 1.0 Oct. 17, 2008 17 / 33

<FRONT VIEW>

Note) Unit:[mm], General tolerance: ± 0.5mm

<REAR VIEW>

Note) Unit:[mm], General tolerance: \pm 0.5mm

<REAR VIEW>

Note) Unit:[mm], General tolerance: \pm 0.5mm

Ver. 1.0 Oct. 17, 2008 20 / 33

[DETAIL DESCRIPTION OF SIDE MOUNTING SCREW]

- * Mounting Screw Length (A) = 2.0(Min) / 2.5(Max)
- * Mounting Screw Hole Depth (B) = 2.5(Min)
- * Mounting hole location: 3.1(typ.)
- * Torque : 2.0 kgf.cm(Max)

(Measurement gauge: torque meter)

Notes: 1. Screw plated through the method of non-electrolytic nickel plating is preferred to reduce possibility that results in vertical and/or horizontal line defect due to the conductive particles from screw surface.

Ver. 1.0 Oct. 17, 2008 21 / 33

Backlight Exploded View. (Appendix)

No	Part Name	No	Part Name
1	Diffuser Up Sheet	9	LED Housing
2	Prism Up Sheet	10	LED Array
3	Prism Down Sheet	11	Cover Bottom Fixing Double Tape
4	Diffuser Down Sheet	12	LGP Fixing Double Tape
5	Light Guide Panel	13	Panel Fixing Double Tape
6	Reflector	14	Sheet Fixing Pad (4pcs)
7	Supporter Main	15	Screw (2pcs)
8	Cover Bottom		

Ver. 1.0 Oct. 17, 2008 22 / 33

LGD Proposal for system cover design.(Appendix)

LGD Proposal for system cover design. (Appendix)

LGD Proposal for system cover design. (Appendix)

6. Reliability

Environment test condition

No.	Test Item	Conditions
1	High temperature storage test	Ta= 60°C, 240h
2	Low temperature storage test	Ta= -20°C, 240h
3	High temperature operation test	Ta= 50°C, 50%RH, 240h
4	Low temperature operation test	Ta= 0°C, 240h
5	Vibration test (non-operating)	Sine wave, 10 ~ 500 ~ 10Hz, 1.5G, 0.37oct/min 3 axis, 1hour/axis
6	Shock test (non-operating)	Half sine wave, 180G, 2ms one shock of each six faces(I.e. run 180G 2ms for all six faces)
7	Altitude operating storage / shipment	0 ~ 10,000 feet (3,048m) 24Hr 0 ~ 40,000 feet (12,192m) 24Hr
8	Image Sticking 1)	Ta= 25°C, Pattern : Mosaic(8 by 6), Operating Time : 30 min Lamp Operating Current : 6.0mA

{ Result Evaluation Criteria }

There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.

<Judgment Condition>

: Operating during 30 minutes with Mosaic Pattern(8 by 6), there is no Image Sticking after 10 second with half gray pattern.

Ver. 1.0 Oct. 17, 2008 26 / 33

7. International Standards

7-1. Safety

a) UL 60950-1:2003, First Edition, Underwriters Laboratories, Inc.,

Standard for Safety of Information Technology Equipment.

b) CAN/CSA C22.2, No. 60950-1-03 1st Ed. April 1, 2003, Canadian Standards Association,

Standard for Safety of Information Technology Equipment.

c) EN 60950-1:2001, First Edition,

European Committee for Electrotechnical Standardization(CENELEC)

European Standard for Safety of Information Technology Equipment.

7-2. EMC

- a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHz. "American National Standards Institute(ANSI), 1992
- b) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special Committee on Radio Interference.
- c) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization.(CENELEC), 1998 (Including A1: 2000)

Ver. 1.0 Oct. 17, 2008 27 / 33

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

		А	В	С	D	Е	F	G	Н	I	J	К	L	М
--	--	---	---	---	---	---	---	---	---	---	---	---	---	---

A,B,C : SIZE(INCH) D : YEAR

E: MONTH F ~ M: SERIAL NO.

Note

1. YEAR

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Mark	1	2	3	4	5	6	7	8	9	0

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	Α	В	С

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

a) Package quantity in one box: 30 pcs

b) Box Size : 490 mm \times 390 mm \times 256 mm

Ver. 1.0 Oct. 17, 2008 28 / 33

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. OPERATING PRECAUTIONS

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm\ 200mV(Over\ and\ under\ shoot\ voltage)$
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.

Ver. 1.0 Oct. 17, 2008 29 / 33

9-3. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object.

 It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer.
 - Please carefully peel off the protection film without rubbing it against the polarizer.
- (3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
- (4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

Ver. 1.0 Oct. 17, 2008 30 / 33

APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 1/3

Byte#	Byte#	Field Name and Comments	۷a	lue	Value	
(decimal)	(HEX)	T bu Haire and committee	(HE	X)	(b inary)	
0	00	Header	0	0	0000 0000	
1	01	Header	F	F	1111 1111	
2	02	Header	F	F F	1111 1111 1111 1111	llaada.
3 4	03	Header Header	F	F	1111 1111	Header
5	05	Header	F	F	1111 1111	
6	06	Header	F	F	1111 1111	
7	07	Header	0	0	0000 0000	
8	08	E BA manufacturer code(3 Character D) = LGD	3	0	0011 0000	
9	09	Compressed ASCII	Ε	4	1110 0100	
10	OA	Productcode	8	В	1000 1011	
11	0B	(Hex, LSB first)	0	1	0000 0001	
12	OC	LCD module SerialNo - Preferred butOptional (d" ifnotused)	0	0	0000 0000	Vender/
13	OD	LCD module SerialNo - Preferred butOptional (d" ifnotused)	0	0	0000 0000	Product ID
14	0E	LCD module SerialNo - Preferred butOptional (0" ifnotused)	0	0	0000 0000	
15	0F	LCD module SerialNo - Preferred butOptional (d" if not used)	0	0	0000 0000	
16	10	W eek of M anufacture	0	0	0000 0000	
17	11	Year of M anufacture = 2008	1	2	0001 0010	
18	12	ED D Structure version # = 1	0	1	0000 0001	EDID Version/
19	13	EDD Revision # = 3	0	3	0000 0011	Revision
20	14	Video InputDefinition = Digital I/P, non TM DS CRGB	8	0	1000 0000	
21	15	MaxH mage size(cm)=31cm	1	F	0001 1111	D isp lay
22	16	MaxV magesize(cm)=17cm	1	1	0001 0001	Parameter
23	17	D isp by gamma =2.2	7	8	0111 1000	
24	18	Feature support(DPMS) = Active off, RGB Cobr	0	Α	0000 1010	
25 26	19 1A	Red/Green bw B its	8	5	0100 1110 1000 0101	
27	1B	B Lie/W h ite Low B its Red X = 0.618	9	E	1000 0101	
28	1C	Red Y = 0.355	5	В	0101 1011	
29	1D	Green X = 0.335	5	5	0101 0101	Color
30	1E	G reen Y = 0.584	9	5	1001 0101	Characteristic
31	1F	B ue X = 0.150	2	6	0010 0110	
32	20	B lue Y = 0.109	1	С	0001 1100	
33	21	White X = 0.313	5	0	0101 0000	
34	22	White Y = 0.329	5	4	0101 0100	
35	23	Established Timing I = 00h(Ifnotused)	0	0	0000 0000	Established
36	24	Established Timing II = 00h(Ifnotused)	0	0	0000 0000	Tim ings
37	25	Manufacturer's Timings = 00h(lfnotused)	0	0	0000 0000	
38	26	Standard Timing Identification 1 was not used	0	1	0000 0001	
39	27	Standard Timing Identification 1 was not used		1	0000 0001	
40	28	Standard Timing Identification 2 was not used	0	1	0000 0001	
41	29	Standard Timing Identification 2 was not used	0	1	0000 0001	
42	2A	Standard Timing Identification 3 was not used	0	1	0000 0001	
43	2B	Standard Timing Identification 3 was not used	0	1	0000 0001	0.1
44	2C	Standard Timing Identification 4 was not used	0	1	0000 0001	Standard
45	2D	Standard Timing Identification 4 was not used	0	1	0000 0001	Timing ID
46	2E	Standard Timing Identification 5 was not used	0	1	0000 0001	
47	2F	Standard Timing Identification 5 was not used	0	1	0000 0001	
48	30	Standard Timing Identification 6 was not used	0	1	0000 0001	
49	31	Standard Timing Identification 6 was not used	0	1	0000 0001	
50	32	Standard Timing Identification 7 was not used	0	1	0000 0001	
51	33	Standard Timing Identification 7 was not used	0	1	0000 0001	
52	34	Standard Timing Identification 8 was not used	0	1	0000 0001	
53	35	Standard Timing Identification 8 was not used	0	1	0000 0001	

APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 2/3

Byte#	Byte#	Field Name and Comments	Value		
(decimal)	(HEX)		(HEX	(10 11 10 11)	
54	36	1366X 768 @ 60Hz mode pixelc bck (LSB) => 72.3M Hz	3 E		
55	37	(Stored LSB first)	1 C		
56	38	Horizontal Active = 1366 pixels (bw er 8b its)	5 6		
57	39	Horizonta I B lanking = 160 pixe ls (bw er 8b its)	A 0		
58	3A	Horizontal Active: Horizontal Blanking (upper 4:4bits)	5 0		
59	3B	Vertical Avtive = 768 lines (bw er 8b its)	0 0		
60	3C	Vertica IB lanking = 22 lines (lower 8b its)	1 6		
61	3D	Vertica Active : Vertica B lanking (upper 4:4b its)	3 0		Tim ing
62	3E	Horizontal Sync. Offset = 48 pixels	3 0		Descriptor
63	3F	Horizontal Sync Pulse Width = 32 pixels	2 0	0010 0000	#1
64	40	Vertica Sync 0 ffset=3 lines:Sync W idth = 5 lines	3 5		
65	41	Horizontal Vertical Sync 0 ffset/W idth upper 2b its = 0	0 0		
66	42	Horizontal Image Size = 309.399mm (309)	3 5		
67	43	Vertical Image Size = 173.952mm (173)	A E		
68	44	Horizontal& Vertical Image Size	1 0		
69	45	Horizon ta I Border = 0	0 0		
70	46	Vertica Border = 0	0 0		
71	47	Non-interfaced, Normaldisplay, no stereo, Digital separate sync, H/V polnegatives	1 9	0001 1001	
72	48	Detailed Timing Descriptor #2	0 0	0000 0000	
73	49		0 0	0000 0000	
74	4A		0 0		
75	4B		0 0		
76	4C		0 0		
77	4D		0 0		
78	4E		0 0		
79	4F		0 0		T im ing
80	50		0 0		Description
81	51		0 0		#2
82	52				#4
83	52 53		0 0		
84	 54		0 0		
85	5 4		0 0		
86	 56		0 0		
87	57		0 0		
88	58		0 0		
89	59		0 0		
90	5A	Detailed Timing Descriptor#3		1	
90	5B	Dealed Filling Descriptor#3	0 0		
92 93	5C 5D		0 0 F E		
93	5E		0 0		
95	SF		4 C		
96	60	G	4 7	0100 1100	
97	61	U	2 0		Tim ing
98	62	D	4 4		Description
99	63	i	6 9		#3
100	64	\$	7 3		πυ
101	65	p	7 0		
102	66	l I	6 C		
103	67	a	6 1		
104	68	у	7 9		
105	69	LF	0 A		
106	6A	니	2 0		
107	6B		2 0		
101	OD		۷ ر	0010 0000	

Ver. 1.0 Oct. 17, 2008 32 / 33

APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 3/3

Byte#	Byte#	Field Name and Comments		lue	Value	
(decimal)	(HEX)		(HI	ΞX)	(binary)	
108	6C	Detailed Timing Descriptor#4	0	0	0000 0000	
109	6D		0	0	0000 0000	
110	6E		0	0	0000 0000	
111	6F		F	Ε	1111 1110	
112	70		0	0	0000 0000	
113	71	L	4	С	0100 1100	
114	72	Р	5	0	0101 0000	
115	73	1	3	1	0011 0001	Tim ing
116	74	4	3	4	0011 0100	Description
117	75	0	3	0	0011 0000	#4
118	76	W	5	7	0101 0111	
119	77	H	4	8	0100 1000	
120	78	1	3	1	0011 0001	
121	79	-	2	D	0010 1101	
122	7A	T	5	4	0101 0100	
123	7B	L	4	С	0100 1100	
124	7C	A	4	1	0100 0001	
125	7D	1	3	1	0011 0001	
126	7E	Extension flag = 00	0	0	0000 0000	Extension Flag
127	7F	Checksum	Ε	С	1110 1100	Checksum

Ver. 1.0 Oct. 17, 2008 33 / 33