RAÍCES PRIMITIVAS.

Profesores del curso:

Ronald Mass ¹

Ángel Ramírez ¹

¹Universidad Nacional de Ingeniería, Lima, Perú

19 de agosto de 2020

Tabla de contenidos

- Orden
- Raíces primitivas

Orden modular de un entero

Definición 1

Sea $m \in \mathbb{Z}$, $n \in \mathbb{N}$ y mcd(m, n) = 1. Entonces el **orden** de m módulo n es el menor número $e \in \mathbb{N}$ tal que $m^e \equiv 1 \pmod{n}$, el cual es denotado por $e = ord_n(m)$.

Ejemplos:

1

$$2^3 \equiv 1 \pmod{7}$$

pero $2^j \not\equiv 1 \pmod{7}$ para j = 1, 2, entonces $ord_7(2) = 3$.

② Por el pequeño teorema de Fermat $2^{10} \equiv 1 \pmod{11}$ y además $2^d \equiv 1 \pmod{11}$ para todo d < 10, luego $ord_{11}(2) = 10$.

Tabla de contenidos

- Orden
- 2 Raíces primitivas

Definición 2

Si $m \in \mathbb{Z}$, $n \in \mathbb{N}$ y:

$$ord_n(m) = \phi(n),$$

entonces m es llamado una raíz primitiva módulo n.

Ejemplos:

- **1** 2 es una raíz primitiva módulo 11 pues $ord_{11}(2) = 10 = \phi(11)$.
- ② $2962 = 2 \times 1481$ donde 1481 es primo, entonces $\phi(2962) = 1480$ y además $ord_{2962}(3) = 1480 = \phi(2962)$, entonces 3 es raíz primitiva de 2962.
- 35 no tiene raíz primitiva.

Proposición 1

Si $m \in \mathbb{Z}$, $d, n \in \mathbb{N}$ tal que mcd(m, n) = 1, entonces $m^d \equiv 1 \pmod{n}$ si y sólo si $ord_n(m)|d$.

Demostración:

• (\Leftarrow) Si $ord_n(m)|d$ entonces existe $k \in \mathbb{N}$ tal que $d = k \, ord_n(m)$. Luego:

$$m^d = m^{k \operatorname{ord}_n(m)} = (m^{\operatorname{ord}_n(m)})^k \equiv 1 \pmod{n}.$$

• (\Rightarrow) Si $m^d \equiv 1 \pmod{n}$ entonces $d \geq ord_n(m)$. Luego, existen únicos enteros q, r tal que $d = q \ ord_n(m) + r$ donde $0 \geq r < ord_n(m)$. Luego:

$$1 \equiv_n m^d \equiv_n m^{q \operatorname{ord}_n(m)+r} \equiv_n (m^{\operatorname{ord}_n(m)}) q m^r \equiv m^r (\operatorname{mod} n)$$

de donde por la minimalidad del orden, se tiene que r=0. Es decir, $ord_n(m)|d$.

Si mcd(m, n) = 1, donde $m \in \mathbb{Z}$ y $n \in \mathbb{N}$, entonces:

$$ord_n(m)|\phi(n)$$
.

Demostración:

Como mcd(m, n) = 1, el teorema de Euler establece que $m^{\phi(n)} \equiv 1 \pmod{n}$, y así por la Proposición 1, se tiene que $ord_n(m)|\phi(n)$.

Ejemplo:

Por el Corolario 1 se tiene que todos los posibles órdenes son divisores de $\phi(n)$, esto permite reducir la búsqueda. Por ejemplo, para determinar el orden de 3 módulo 2962, sólo necesitamos buscar en los divisores de $\phi(2962)=1480$, los cuales son: 1,2,4,5,8,10,20,37,40,74,148,185,296,370,740,1480. De donde concluimos que 3 es raíz primitiva módulo 2962, sin la necesidad de probar con todos los exponentes $1 \le j \le 1480$.

Si $d, n \in \mathbb{N}$ y $m \in \mathbb{Z}$ tal que mcd(m, n) = 1, entonces:

$$ord_n(m^d) = \frac{ord_n(m)}{mcd(d, ord_n(m))}.$$

Demostración:

Ejercicio.

Sean $e, n \in \mathbb{N}$ y $m \in \mathbb{Z}$ tal que mcd(m, n) = 1, entonces:

$$ord_n(m^e) = ord_n(m).$$

si y sólo si:

$$mcd(e, ord_n(m)) = 1.$$

Demostración:

Por el Corolario 2:

$$ord_n(m^e) = \frac{ord_n(m)}{mcd(e, ord_n(m))}$$

$$\Rightarrow ord_n(m) = \frac{ord_n(m)}{mcd(e, ord_n(m))} \Rightarrow mcd(e, ord_n(m)) = 1.$$

Si m es una raíz primitiva módulo n, entonces m^e es una raíz primitiva módulo n si y sólo si $mcd(e, \phi(n)) = 1$.

Demostración:

Ejercicio.

Lemma 1

Si $m \in \mathbb{Z}$ y $n \in \mathbb{N}$ tal que mcd(m, n) = 1, entonces $m^i \equiv m^j \pmod{n}$ para enteros no negativos i, j si y sólo si $i \equiv j \pmod{ord_n(m)}$.

Demostración:

- (\Rightarrow) Si $m^i \equiv m^j \pmod{n}$ para $0 \le i \le j \le \phi(n)$, como mcd(m,n)=1, por la ley de cancelación se tiene que $m^{j-i} \equiv 1 \pmod{n}$ y por la Proposición 1 se tiene que $ord_n(m)|(j-i)$, es decir: $i \equiv j \pmod{ord_n(m)}$.
- (\Leftarrow) Si $i \equiv j \pmod{ord_n(m)}$ para $0 \le i \le j$, entonces $j = i + q \text{ ord}_n(m)$ donde $q \ge 0$. Por tanto:

$$m^{j} \equiv m^{i+q \operatorname{ord}_{n}(m)} \equiv m^{i} (m^{\operatorname{ord}_{n}(m)})^{q} \equiv m^{i} 1^{q} \equiv m^{i} (\operatorname{mod} n)$$

Teorema 1 (Raíces primitivas y residuos reducidos)

Sean $m \in \mathbb{Z}$ y $n \in \mathbb{N}$ relativamente primo con m. Si m es una raíz primitiva módulo n, entonces $\{m^j\}_{j=1}^{\phi(n)}$ es un conjunto completo de residuos reducidos módulo n.

Demostración:

Ejercicio.

Ejemplo:

Sabemos que 2 es raíz primitiva módulo 11, luego:

$$\{2, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}\}$$

es un sistema completo de residuos reducidos módulo 11.

Teorema 2 (Número de raíces primitivas)

Si $n \in \mathbb{N}$ tiene una raíz primitiva, entonces este tiene $\phi(\phi)$ raíces primitivas incongruentes.

Demostración:

Sea m una raíz primitiva módulo n. Por el Teorema 1, otra raíz primitiva debe ser de la forma m^e donde $1 \le e \le \phi(n)$. Por el Corolario 1, se sabe que: $ord_n(m) = ord_n(m^e)$ si y sólo si $mcd(e,\phi(n)) = 1$, y así son precisamente $\phi(\phi(n))$ de tales enteros e.

Ejemplo:

How many primitive roots are there modulo the prime 257?

Solution:

There are $\phi(\phi(257)) = \phi(256) = \phi(2^8) = 2^7 = 128$ primitive roots.

Ejemplo:

Calcule el orden de 3 módulo 301.

Resolución:

Note que $301=7\times43$. Si h_1 es el orden de 3 módulo 7 y h_2 es el orden de 3 módulo 43, entonces el orden de 3 módulo 301 será el mínimo común múltiplo de h_1 y h_2 (**Ejercicio: Demostrar esta afirmación**). Por el Teorema de Fermat: $3^6\equiv 1 (mod\ 7)$ Observe que 3^2 y 3^3 no son congruentes 1 módulo 7, por tanto $h_1=6$. También $3^{42}\equiv 1 (mod\ 43)$, desde que el orden divide a 42, luego, o es igual a 42 o 42|p donde p es uno dels primos que divide a 42: 2, 3 o 7. Ahora, observe que $3^{21}, 3^14$ y 3^6 no son $1 (mod\ 43)$. Así $h_2=42$. Entonces, el orden de 3 módulo 301 es mcm(6,42)=42.

Orden

Ejemplo:

Suponga que x es un entero que satisface $19^x \equiv 2 \pmod{29}$. Dado que 19 es una raíz primitiva de 29, ξx es par o impar?.

Resolución:

Observe que si α es una raíz primitiva módulo un primo p, entonces una solución x a $\alpha^x \equiv b \pmod{p}$ será par si $b^{(p-1)/2} \equiv 1 \pmod{p}$ e impar si $b^{(p-1)/2} \equiv -1 \pmod{p}$. Ahora, calculamos:

$$2^{(29-1)/2} \equiv 2^{14} (mod 29)$$

$$\equiv 2^8 \times 2^4 \times 2^2 (mod 29)$$

$$\equiv (256)(16)(4)(mod 29)$$

$$\equiv (24)(16)(4)(mod 29)$$

$$\equiv 1536 (mod 29)$$

$$\equiv 28 (mod 29)$$

$$\equiv -1 (mod 29)$$

por tanto, concluimos que x debe ser impar.

Example:

Suppose that $a, b, n \in \mathbb{N}$, the order of a modulo n es h, and the order of b modulo n is k. Prove that the order of ab modulo n divides hk.

Solution:

We have a theorem which states that, if the order of a modulo n is t, then $a^s \equiv 1 \pmod{n}$ if and only if t|s. So it is enough to show that $(ab)^{hk} \equiv 1 \pmod{n}$. Note that $(ab)^{hk} = a^{hk}b^{hk} = (a^h)^k(b^k)^h \equiv 1^k1^h = 1 \pmod{p}$.

