Introduction to R Workshop

Session 4 Sean Nguyen

Data Analysis in the

Tidyverse

Import

Tidy

Wrangle

Visualize

Stats

broom

Communicate

Data Analysis in the Tidyverse

Import

Tidy

Wrangle

Visualize

Stats

Communicate

Session 4: Goals

Data carpentry

Tidyverse review

Statistical tests

Name files so they're human readable and organize themselves by default figure 1.png

YYYY-MM-DD

figure 1.png
fig 1.png
myabstractMay2014.docx
Henry's file uses spaces and punctuation.xlsx
lolgoodluckfinding^thisfilein2years.doc

fig01_Scatterplot-of-KO-animals.png fig02_Histogram-of-plants-by-year.png 2012-04-17_vacation-packing-list.docx 2017-10-31_survey-data-from-orientation.xlsx

Clear nomenclature design makes data organization and analysis trivially Experiment ECISY E. coli S. aureus B. subtilus **Antibiotic Antibiotic** None None Antibiotic None 5 replicates 5 replicates 5 replicates 5 replicates 5 replicates 5 replicates

Consistently label your experimental Samples

Ecoli_antibiotic_exp1_rep1
Saureus_none_exp1_rep2
Saureus_antibiotic_50_exp2_rep4
keep_consistent_formatting

Data Carpentry

Naming Files

2015-08-17_Descriptive_File_Name

Experimental Design

Sample Labels

Treatment _Sample_ TechRep_BioRep_Antibody

Experimental Design

Three organisms – E. coli, S. aureus, B. subtilus Two treatments - Antibiotic, None Experiment - 5 replicates **X3 Experiment** Repeat experiment - 3 times E. coli B. subtilus S. aureus **Antibiotic** None **Antibiotic** None **Antibiotic** None 5 replicates 5 replicates 5 replicates 5 replicates 5 replicates 5 replicates

Tidy data

country	year	cases	population	
Afghanstan	1300	45	18:57071	
Afghanistan	2000	2666	20! 95360	
Brazil	1999	37737	172006362	
Brazil	2000	80488	174904898	
China	1999	212258	1272915272	
Chin	200	21 66	1280 28583	
variables				

Wide format

Treatment	1_Ecoli	1_Saureus	1_Bsubtilis	2_Ecoli	2_Saureus	2_Bsubtilis
Antibiotic	285	240	312	362	244	415
Antibiotic	345	371	461	368	375	315
Antibiotic	298	337	352	287	228	370
Antibiotic	286	394	494	378	302	314
Antibiotic	354	213	311	363	349	303
None	146	286	340	228	284	363
None	180	300	285	246	262	381
None	137	279	271	166	266	325
None	179	253	355	226	270	398
None	168	272	424	175	258	336

Long format - (tidy)

Treatment	Experiment	Organism	Count
Antibiotic	1	Ecoli	285
Antibiotic	1	Ecoli	345
Antibiotic	1	Ecoli	298
Antibiotic	1	Ecoli	286
Antibiotic	1	Ecoli	354
None	1	Ecoli	146
None	1	Ecoli	180
None	1	Ecoli	137
None	1	Ecoli	179
None	1	Ecoli	168

group_by() %>% summarize()

Treatment Experiment Organism Count

Antibiotic	1	Ecoli	285
Antibiotic	1	Ecoli	345
Antibiotic	1	Ecoli	298
Antibiotic	1	Ecoli	286
Antibiotic	1	Ecoli	354
None	1	Ecoli	146
None	1	Ecoli	180
None	1	Ecoli	137
None	1	Ecoli	179
None	1	Ecoli	168 /

Organism	Treatment	Experiment	N	mean	sd	se
Ecoli	Antibiotic	1	5	313.6	33.32116445	14.90167776
Ecoli	Antibiotic	2	5	351.6	36.66469692	16.39695094
Ecoli	Antibiotic	3	5	346.2	44.80736547	20.03846301
Ecoli	None	1	5	162	19.55760722	8.746427842
Ecoli	None	2	5	208.2	35.42880184	15.84424186
Ecoli	None	3	5	177.6	40.14722905	17.95438665

Demos

Statistical tests

shapiro.test() - normal distribution

t.test() - T test

aov() - ANOVA

TukeyHSD() - Tukey post hoc test

wilcox.test() - Mann Whitney U test

kruskal.test() - Kruskal Wallis test

Much easier to run on 'tidy data'

Shapiro Test - normality test

Need all values in a single column

Tests the null hypothesis that data is normally distributed

Formula: shapiro.test(dataframe\$column)

normality <- shapiro.test(data3\$Count)

Student's t-Test: compare differences between means

Formula: t.test(y~x, data= dataframe) # where y is numeric and x is a binary factor

Formula: t.test(y1, y2, data= dataframe) # where y1 and y2 are numeric

Formula: t.test(y1, y2, paired = TRUE) # where y1 and y2 are numeric

tt <- t.test(mpg~am, data = mtcars)

Analysis of Variance (ANOVA)

Formula: aov(numerical~factor*factor2*factor3, data = dataframe)

ANOVA <- aov(mean~Organism*Treatment, data = data4)

Tukey's HSD - post hoc test

Formula: TukeyHSD(aov_output)

ANOVA <- aov(mean~Organism*Treatment, data = data4)

TukeyHSD(ANOVA)

Wilcoxon/Mann-Whitney U test

Formula: wilcox.test($y\sim A$) # where y is numeric, A is binary factor

Formula: wilcox.test(y, x) # where x and y are numeric

Formula: wilcox.test(y1, y2) # where y1 and y2 are numeric

Kruskal Wallis test

Non-parametric test

one way ANOVA by ranks

Formula: $kruskal.test(y\sim A)$ # where y is numeric and A is a factor

library(broom) - tidy up statistical tests

Formula: tidy(statisical_analysis)

```
Welch Two Sample t-test

data: mpg by cyl
t = 4.7191, df = 12.956, p-value = 0.0004048
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
3.751376 10.090182
sample estimates:
mean in group 4 mean in group 6
26.66364
19.74286
```


Demos

Data Analysis in the

Tidyverse

Import

Tidy

Wrangle

Visualize

Stats

broom

Communicate

Data Analysis in the Tidyverse

Import

read_csv() write_csv() Tidy

gather()
spread()
separate()
unite()

Wrangle

filter()
rename()
select()
mutate()
group_by()
summarise()

Visualize

ggplot()
geom_bar()
geom_point()
geom_boxplot()
geom_hist()
geom_violin()
ggsave()

Stats

t.test()
aov()
TukeyHSD()
tidy()

Communicate

.md .Rmd .pdf .html

Thank you!

library(pwr) - power analysis

Need three to calculate the fourth

- sample size = n
- effect size = d
- significance level (P value)= sig.level
- power 1-P = power

```
(ANOVA)
                     number of groups = k
                    effect size = f(0.1, 0.25, 0.4)
pwr.anova.test(k = n = f = sig.level = power = sig.level = power = sig.level = sig.level = pwr.anova.test(<math>k = n = f = sig.level = sig.l
        pwr.t.test(n = , d = , sig.level =, power = ,
                                                                                                                                   type = c("two.sample",
                                                                                                                                                                                                                                              "one.sample",
                                                                                                                                                                                                                                                    "paired"))
```

Markdown

- Lightweight markup language
- Easy formatting
- Easy to read
- Simple syntax

Bold text

italics

Plain text

Big Header

Smaller Header

Smaller

Even maller

Easily create lists

- item one
- item two
- item three

It's really easy to make tables

header	header	header
value1	value2	value3

Rmarkdown

IATEX markdown knitr

- Markdown
- LaTeX
- R code
- renders to .md, .pdf, .html
- Great for formatting dissertation

```
title: "Untitled"
   output: html_document
    ```{r setup, include=FALSE}
 knitr::opts_chunk$set(echo = TRUE)
10 - ## R Markdown
12 This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word
 documents. For more details on using R Markdown see < http://rmarkdown.rstudio.com >.
 When you click the **Knit** button a document will be generated that includes both content as well as the
 output of any embedded R code chunks within the document. You can embed an R code chunk like this:
    ```{r cars}
                                                                                                        ☆ 🎽 🕨
   summary(cars)
                         dist
                    Min. : 2.00
                    1st Qu.: 26.00
                    Median : 36.00
                    Mean : 42.98
                    3rd Qu.: 56.00
                    Max. :120.00
```