ECE 113- Basic Electronics

Lecture week 10: Continuation of AC response in circuits (under steady state condition)

Dr. Ram Krishna Ghosh, Assistant Professor

Office: B601, Research and Development Block

Email: rkghosh@iiitd.ac.in

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY **DELHI**

Bandwidth frequencies of a series RLC circuit

Current response in series RLC circuit

Let ω_x is the angular frequency at which current is $I = I_r / \sqrt{2}$

$$\frac{I_r}{\sqrt{2}} = \frac{V}{\sqrt{2R}} = \frac{V}{\left[R^2 + \left(\omega_x L - \frac{1}{\omega_x C}\right)^2\right]^{1/2}}$$
 Since at frequency ω_x , current is
$$I = \frac{V}{|Z|} = \frac{V}{\left[R^2 + \left(w_x L - \frac{1}{w_x C}\right)^2\right]^{1/2}}$$

or,
$$2R^2 = R^2 + \left(\omega_x L - \frac{1}{\omega_x C}\right)^2$$

or,
$$\omega_x L - \frac{1}{\omega_x C} = \pm R$$

or,
$$\omega_x^2 LC \mp \omega_x RC - 1 = 0$$
.

Since at frequency ω_{v} , current is

$$I = \frac{V}{|Z|} = \frac{V}{\left[R^2 + \left(w_x L - \frac{1}{w_x C}\right)^2\right]^{1/2}}$$

Only positive roots of this eq. are acceptable

The roots are

$$\omega_1 = rac{\sqrt{R^2C^2 + 4LC} - RC}{2LC}$$
 and $\omega_2 = rac{\sqrt{R^2C^2 + 4LC} + RC}{2LC}$

$$\omega_2 - \omega_1 = \frac{R}{L} = \frac{\omega_0 R}{\omega_0 L} = \frac{\omega_0}{Q}$$

or,
$$Q = \frac{\omega_0}{\omega_2 - \omega_1}$$
. This eq. relates the Q factor with bandwidth \rightarrow Higher the Q, smaller the bandwidth

At frequencies ω_1 and ω_2 the power dissipation is $(I_r/\sqrt{2})^2R$ \rightarrow half the power dissipated at resonance. So ω_1 and ω_2 are called **half power frequencies**

Capacitor voltage in series RLC circuit

The voltage across capacitor C is $V_C = -\frac{\jmath}{\omega C} \frac{V}{R + i \left(\omega L - \frac{1}{\omega}\right)}$

where V is the applied voltage

The magnitude of V_c is

$$|V_C| = \frac{V}{\omega C \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}} = \frac{V}{\left[\omega^2 R^2 C^2 + (\omega^2 L C - 1)^2\right]^{1/2}}$$
 (a)

 $|V_C|$ is maximum at $\omega = \omega_C$ when the denominator on the r.h.s. of the eq. (a) is minimum. Therefore, for maximum $|V_c|$, we have

Fig.15.17A. Variation of $|V_C|$ with ω

$$\frac{d}{d\omega}[\omega^2 R^2 C^2 + (\omega^2 L C - 1)^2] = 0$$
or, $2\omega R^2 C^2 + 4\omega L C(\omega^2 L C - 1) = 0$

or.
$$2\omega R^2 C^2 + 4\omega LC(\omega^2 LC - 1) = 0$$

or,
$$2LC(\omega^2LC - 1) + R^2C^2 = 0$$

or,
$$\omega = \omega_C = \left[\frac{1}{LC} \left(1 - \frac{R^2C}{2L}\right)\right]^{1/2}$$

or,
$$\omega_C = \omega_0 \left[1 - \frac{1}{2Q^2} \right]^{1/2}$$
 (b)

From eq. (b), $\omega_{\rm c} < \omega_{\rm o}$ where $\omega_{\rm o}$ is the resonant frequency.

- \rightarrow This is expected, as current peaks at ω_0 and the capacitor voltage is a product of current and $1/\omega C$ which increases with decreasing frequency. When Q is large $\omega_c \simeq \omega_0$
- ightarrow ω_{C} is sometimes called capacitor charge resonance or voltage resonance, but current resonance is true resonance as current and voltage in the circuit is in phase.

Sinusoidal voltage applied to a parallel RLC circuit

Fig.15.19. A parallel resonant circuit

Let I_L and I_C are phasors for current through the inductor and the capacitor, respectively, I_C and I is the current from the source.

 $C + I_L$ and I_C are almost 180° out of phase. I_C leads source voltage V by 90° while I_L lags source voltage V by 90°.

By KCL, the source current I is a phasor sum of I_C and I_L , and in resonance V and I are in phase.

We have,
$$I = IC + IL$$
 (1)

But, I=V/Z; where Z is the impedance offered by the circuit at the terminal x, y in the circuit.

Also,
$$I_L = \frac{V}{R + j\omega L}$$
 and $I_c = \frac{V}{1/(j\omega C)} = j\omega CV$. (2)

Therefore, from (1) and (2),

$$\frac{V}{Z} = \frac{V}{R + j\omega L} + j\omega CV$$

$$\frac{1}{Z} = \frac{R - j\omega L}{R^2 + \omega^2 L^2} + j\omega C$$
[Y is the admittance]
or,
$$\frac{1}{Z} = \frac{1}{R + j\omega L} + j\omega C$$
or,
$$Y = \frac{1}{Z} = \frac{R + j(\omega CR^2 + \omega^3 L^2 C - \omega L)}{R^2 + \omega^2 L^2}$$
(3)

Contd..

In resonance, I and V will be in phase when the imaginary part of Y is zero, i.e.,

$$\omega CR^{2} + \omega^{3}L^{2}C - \omega L = 0$$
or,
$$\omega^{2}L^{2}C = L - CR^{2}$$
or,
$$\omega = \omega_{p} = \sqrt{\frac{1}{LC} - \frac{R^{2}}{L^{2}}}$$

Corresponding parallel resonance frequency, $f_p = \frac{\omega_p}{2\pi}$

$$f_p = \frac{\omega_p}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$$

 $\omega_P \rightarrow$ parallel resonance angular frequency

The impedance of the circuit is purely resistive at resonance

Admittance in resonance \rightarrow $Y_p = \frac{R}{R^2 + \omega_p^2 L^2} = \frac{R}{L/C} = \frac{CR}{L}$

and the impedance in resonance
$$\Rightarrow$$
 $Z_p = \frac{1}{Y_p} = \frac{L}{CR}$

If R is small \rightarrow Z_P is large.

For R \rightarrow 0, $Z_P \rightarrow \infty$

Also when R \rightarrow 0; $\omega_P \rightarrow \frac{1}{\sqrt{LC}}$ the series resonance angular frequency