Determina todos los números racionales a para los que la matriz M es el cuadrado de una matriz con entradas racionales.

$$M = \begin{pmatrix} a & -a & -1 & 0 \\ a & -a & 0 & -1 \\ 1 & 0 & a & -a \\ 0 & 1 & a & -a \end{pmatrix}$$

Solución:

Siendo $A = \begin{pmatrix} a & -a \\ a & -a \end{pmatrix}$ y la matriz identidad $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, la matriz $M = \begin{pmatrix} A & -I_2 \\ I_2 & A \end{pmatrix}$. El polinomio característico de M se puede calcular como:

$$P(\lambda) = |M - \lambda I_4| = \begin{vmatrix} A - \lambda I_2 & -I_2 \\ I_2 & A - \lambda I_2 \end{vmatrix} = |(A - \lambda I_2)^2 + I_2^2| =$$

$$= |A^2 - 2\lambda A + (\lambda^2 + 1)I_2| = \begin{vmatrix} -2\lambda a + \lambda^2 + 1 & 2\lambda a \\ -2\lambda a & 2\lambda a + \lambda^2 + 1 \end{vmatrix} = (\lambda^2 + 1)^2$$

Por el teorema de Cayley-Hamilton, se sabe que $P(M) = 0_4$. Ahora bien, se quiere demostrar que $M = R^2$, siendo R una matriz con entradas racionales. Entonces $P(R^2) = 0_4$ también. Luego, la matriz R es raíz del polinomio $P(\lambda^2) = (\lambda^4 + 1)^2$.

El polinomio mínimo de R será el polinomio $\mu(\lambda)$ de menor grado que divida a $P(\lambda^2)$, que cumpla que $\mu(R) = 0_4$ y que los factores irreducibles de $P(\lambda^2)$ dividan a $\mu(\lambda)$. Por tanto, el polinomio mínimo de R en el cuerpo de los racionales será $\mu(\lambda) = \lambda^4 + 1$, que coincide en este caso con su polinomio característico. Por este motivo, se ha de cumplir que $\mu(R) = 0_4$:

$$\mu(R) = R^4 + I_4 = M^2 + I_4 = \begin{pmatrix} A & -I_2 \\ I_2 & A \end{pmatrix}^2 + I_4$$

$$= \begin{pmatrix} A^2 - I_2 & -2A \\ 2A & A^2 - I_2 \end{pmatrix} + I_4 = \begin{pmatrix} A^2 & -2A \\ 2A & A^2 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & -2a & 2a \\ 0 & 0 & -2a & 2a \\ 2a & -2a & 0 & 0 \\ 2a & -2a & 0 & 0 \end{pmatrix} = 0_4 \iff a = 0$$