

Academic Year:	2022/2023	Term:	second term	T T
Course Code:	Elective4	Course Title:	EDA	

Cairo University

Faculty of Engineering

Electronics and Communications Engineering Department – 4^{th} Year

ATM DESIGN & Verification PROJECT

Name	Sec	BN
احمد سامح عبدالصبور منصور	1	4
ايهاب مصطفى فر غلي صالح	1	46
بسنت عاطف جاد الكريم	1	47
عبدالرحمن احمد عواد محمود	2	43
مصطفى خالد فاروق عبدالشافي	4	18
منی منصور امین محمد	4	30

Table of Contents

1.	Project Description:4
	1.1 Digital Design4
	1.2. Digital Verification:4
2.	Design Flow5
	2.1 System Arcitecture5
	2.2 Signals6
	2.3 FSM Diagram of the system8
	2.4 High level model of the system10
	2.5 RTL phase of the system10
3.	Verification Flow11
3	3.1 VERIFICATION PLAN11
	3.1.1 UVM-System Verilog Architecture11
	3.1.2 Sequence items
	3.1.3 Sequences
	3.1.4 Virtual sequences
	3.2 Interface signals13
;	3.3 Constraints Randomization14
;	3.4 Assertions
	3.4.1 Assertions table
	3.4.2 Assertions Waveform & Percentage & Pass
	3.5 Coverage
	3.5.1 Cover Groups
	3.5.2 Functional COVERAGE
	3.5.3 CODE COVERAGE
	3.5.4 FSM COVERAGE
	3.6 Scoreboard Self checking
4.	APPENDIX

Table of Figures:

Figure 1: The architecture of Design	5
Figure 2: FSM Diagram	8
Figure 3: UVM Architecture	11
Figure 4: Assertions Waveform	16
Figure 5: Assertions pass counts	16
Figure 6: Assertions Precentages	16
Figure 7: Functional Coverage	18
Figure 8: Code Coverage	18
Figure 9: FSM Coverage	
List of Tables:	
Table 1 : FSM Transition	6
Table 2: Interface signals	9
Table 3 : Assertions	
Table 4 : Cover Groups	17
Table 5 · Checks in Scorehoard	19

1. Project Description

1.1. Digital Design:

The project aims at practicing Digital Design by implementing the core of the **bank ATM** design. The student should assume all auxiliary devices like card handling, money counting, and timers exist. As well as assume account information like passwords, account numbers and balances exist locally with no need for database connection. ATM System Can contain the following auxiliaries:

- Card handling
- Language used
- · Card password
- Timers
- Operation (Deposit Withdraw Balance service)
- Balance exists
- Deposit value
- Withdraw value

1.2. Digital Verification:

The project aims also at practicing Digital Verification by implementing environment Testbench that covers (Test Stimulus using variation of directed, constraint random), Self-Checking TB Using Reference Model from Step#1, define design properties or assertion using SVA, create coverage model using combination between cover properties, cover groups and enable code coverage and create coverage report for Statement, Branch, FSM Coverage.

2- Design Flow

2.1 System Architecture:

The system architecture was done using **visio** program. In the architecture, we assumed that user's data (passwords, balances) exists in a memory and we have 4 main modules:

- Card handling
- User interface
- Timer
- FSM

The architecture is shown in figure (1).

Figure 1 The architecture of Design

2.2 Signals:

Signal name	Direction	Signal	Description	
width Card handling Signals				
	TNI			
Card_in	IN	BIT	Pulse of ATM response to Card number	
Card_number	IN	[5:0]	The Card number	
Password	OUT	[15:0]	The Card Password	
Balance	OUT	[19:0]	The balance found in card after operations	
pass_en	OUT	BIT	Pulse of ATM response to Card number if it	
card_out	IN	BIT	Signal rises for one clock edge when system back to idle state	
Updated_balance	IN	[19:0]	Updated value of balance during operation	
operation_done	IN	BIT	Signal to check if operation done or fail	
		Use	er interface signals	
Button_0 Button_1 Button_2 Button_3 Button_4 Button_5 Button_6 Button_7 Button_8 Button_9	IN	віт	Buttons of ATM interface	
Multiple_100_button Multiple_1000_button	IN	BIT	Buttons used to specify the value of deposit and withdraw	
English_button	IN	BIT	Buttons to choose the language between Arabic / English	
Arabic_button	111	D11	Dations to choose the language between Hubbe / Diignish	
Card_in	IN	BIT	Pulse of ATM response to Card number	
enter_button	IN	BIT	Enter button of ATM interface	
cancel_button			Cancel button of ATM interface	
Withdraw_button Deposit_button Show_balance Another_service	IN	BIT	Buttons to choose Withdraw/Deposit/ShowBalance/AnotherService operation	
In_password	OUT	[15:0]	The entered password	
Entry_value	OUT	[19:0]	The value specified for Withdraw/Deposit operation	

Language	OUT	[1:0]	The chosen language		
Operation	OUT	[1:0]	The chosen operation		
Timer signals					
Threshold	IN	[31:0]	Timer for time out of ATM		
Restart_timer	IN	BIT	Button to restart the timer		
start_timer	IN	BIT	Button to start the timer		
time_out	OUT	BIT	Signal make ATM goes to IDLE		
			FSM signals		
In_password	IN	[15:0]	The entered password		
Entry_value	IN	[19:0]	The value specified for Withdraw/Deposit operation		
Language	IN	[1:0]	The chosen language		
Operation	IN	[1:0]	The chosen operation		
enter_button	IN	BIT	Enter button of ATM interface		
cancel_button		510.03	Cancel button of ATM interface		
Actual_deposit_value	IN	[19:0]	The value of actual deposit which user entered		
Another_service	IN	BIT	Button to use another service after finishing operation		
Password	IN	[15:0]	The entered password		
Balance	IN	[19:0]	The balance found in card after operations		
Pass_en	IN	BIT	Pulse of ATM response to Card number		
Card_out	OUT	BIT	Signal rises for one clock edge when system back to idle state		
Updated_balance	OUT	[19:0]	The updated value of balance during operation		
Time_out	IN	BIT	Signal make ATM goes to IDLE		
Start_timer	OUT	BIT	Signal make ATM goes to IDLE		
Restart_timer	OUT	BIT	Signal to restart the timer		
Wrong_password	OUT	BIT	Signal to check if password pass or fail		
Operation_done	OUT	BIT	Signal to check if operation pass or fail		

2.3 FSM Diagram of the system

Figure 2 FSM Diagram

Table 1:FSM Transition

State	Transition	Signals
IDLE	IDLE → IDLE	pass_en=0
	IDLE → LANGUAGE	pass_en=1
LANGUAGE	LANGUAGE → IDLE	time_out=1 , cancel=1
	LANGUAGE → WRITE_PASS	language = 2'b01 or 2'b10
	LANGUAGE → LANGUAGE	Otherwise
WRITE_PASS	WRITE_PASS → IDLE	time_out=1 , cancel=1
	WRITE_PASS → CHEK_PASS	enter_button=1
	WRITE_PASS → WRITE_PASS	Otherwise
CHECK_PASS	CHECK_PASS → IDLE	wrong_pass=1 &&
		error_count_reg=2'b10
	CHECK_PASS → WRITE_PASS	wrong_pass=1 &&
		error_count_reg < 2'b10
	CHECK_PASS → OPERATION	Otherwise
OPERATION	OPERATION → IDLE	time_out=1 , cancel=1
	OPERATION → WRITE_WITHDRAW	operation='b00
	OPERATION → WRITE_DEPOSIT	operation='b01
	OPERATION → BALANCE	operation='b10
	OPERATION → OPERATION	Otherwise
WRITE_WITHDRAW	WRITE_WITHDRAW → IDLE	time_out=1 , cancel=1
	WRITE_WITHDRAW → WITHDRAW	enter_button=1
	WRITE_WITHDRAW →	Otherwise
	WRITE_WITHDRAW	
WITHDRAW	WITHDRAW → IDLE	time_out=1 , cancel=1 ,
		operation_done=1,
		(error_count_reg =2'b10 &&
	WITHDDAW A OPEDATION	operation_done=0)
	WITHDRAW → OPERATION	another comics 1
		another_service=1,
		operation_done=1
	WITHDRAW → WITHDRAW	another_service=0,
		operation_done=1
	WITHDRAW → WRITE_WITHDRAW	Otherwise
WRITE_DEPOSIT	WRITE_DEPOSIT → IDLE	time_out=1 , cancel=1
	WRITE_DEPOSIT → DEPOSIT	enter_button=1
	WRITE_DEPOSIT → WRITE_DEPOSIT	Otherwise

DEPOSIT	DEPOSIT → IDLE	time_out=1 , cancel=1 , operation_done=1 , (error_count_reg =2'b10 && operation_done=0)
	DEPOSIT → OPERATION	another_service=1, operation_done=1
	DEPOSIT → DEPOSIT	another_service=0 , operation_done=1
	DEPOSIT → WRITE_DEPOSIT	Otherwise
BALANCE	BALANCE → IDLE	time_out=1 , cancel=1
	BALANCE → OPERATION	another_service=1
	BALANCE → BALANCE	Otherwise

2.4 High level model of the system

This phase was done using MATLAB to make a model that describes the system behavior.

The MATLAB model is attached with the project files.

2.5 RTL phase of the system

This phase was done using Verilog to implement the design architecture.

The RTL code is attached with the project files.

3- Project Verification Flow

3.1 VERIFICATION PLAN

3.1.1 UVM-System Verilog Architecture:

Figure 3 UVM Architecture

3.1.2 Sequence items:

ATM_sequence_item

3.1.3 Sequences:

 $ATM_sequence_operation_toIDLE$

ATM_sequence_anotherService

ATM_sequence_errors

ATM_sequence_timeouts

3.1.4 Virtual sequences:

We will create some testes that will cover some of our sequences.

- Test_all_mode: (test all modes for all operation modes by all the following scenarios).
- Test_Scenario1:

(Withdraw \rightarrow IDLE \rightarrow Deposit \rightarrow IDLE \rightarrow Show Balance \rightarrow IDLE).

• Test_Scenario2:

(Withdraw → Another Service → Deposit → Another Service → Show Balance)

• Test_Scenario3:

(Deposit \rightarrow Three Errors \rightarrow IDLE \rightarrow Wrong Password \rightarrow IDLE \rightarrow

Withdraw \rightarrow One Error (Success) \rightarrow IDLE \rightarrow Withdraw \rightarrow Three Errors \rightarrow IDLE).

• Test Scenario4:

(IDLE → Language → IDLE (timeout) → ----- → Write pass → IDLE

(timeout) \rightarrow ----- \rightarrow Operation \rightarrow IDLE (timeout) \rightarrow ----- \rightarrow Write Withdraw \rightarrow

IDLE (timeout) \rightarrow ---- \rightarrow Withdraw \rightarrow IDLE (timeout) \rightarrow ----- \rightarrow Write Deposit \rightarrow IDLE

(timeout). \rightarrow ----- Deposit \rightarrow IDLE (timeout) \rightarrow ----- \rightarrow Balance \rightarrow IDLE (timeout)

3.2 Interface signals:

Table 2: Interface signals

Signal name	Dir "driver of active agent"	Dir "monitor of active agent"	Signal width	Description
Clk	-	-	Bit	System clock
Rst	OUT	IN	Bit	System reset
Threshold	OUT	IN	[31:0]	Timer for time out of ATM
card number	OUT	IN	[5:0]	Card number of user
card_in	OUT	IN	Bit	Pulse of ATM response to Card number
button 0 button 1 button 2 button 3 button 4 button 5 button 6 button 7 button 8 button 9	OUT	IN	Bit	Buttons of ATM interface
enter_button	OUT	IN	Bit	Enter button of ATM interface
cancel_button	OUT	IN	Bit	Cancel button of ATM interface
withdraw_button	OUT	IN	Bit	Button for withdraw operation
deposit_button	OUT	IN	Bit	Button for deposit operation
show_balance	OUT	IN	Bit	Button to show balance operation
another_service	OUT	IN	Bit	Button to do another operation
English_button	OUT	IN	Bit	Button to use English language
Arabic_button	OUT	IN	Bit	Button to use Arabic language
multiple_100_butt multiple_1000_but	OUT	IN	Bit	Buttons used to specify the value of deposit and withdraw
actual_deposit_value	OUT	IN	[19:0]	The value of actual deposit value

updated_balance	OUT	IN	[19:0]	The value of updated balance
wrong_password	OUT	IN	Bit	Signal show if password is wrong
operation_done	OUT	IN	Bit	Signal show if operation done—
Error	OUT	IN	Bit	Signal show if there is error
card_out	OUT	IN	Bit	Signal rises for one clock edge when system back to idle state

3.3 Constraints Randomization:

Bit entry_int (Random signal) → Constraint inside [1:9]

- Using it for randomization entry deposit value.
- Using it for randomization entry withdraw value.
- Using it for randomization entry password buttons.

3.4 Assertions:

3.4.1 Assertions table:

Table 3:Assertions

Assertion	Sequence	Status
Cancel_Cardout	After Cancel_Button is pressed -> Card_out = 1 or Card_out = 0 and Idle state	Pass
Timeout_cardout	After Timer timeout ->Card_out = 1 or Card_out =0 and Idle state	Pass
Cancel_starttimer	After Cancel_Button is pressed => Start_timer=0 (Timer stopped)	Pass
Timeout_Starttimer	After Timer Timeout is pressed => Start_timer=0 (Timer stopped)	Pass
Pass_checkpass	checking transition IDLE > Language > Write_Password > Check_Password -> Start_timer = 0 (Timer Stopped while checking password)	Pass
Error_idle	Checks that 3 errors return to Idle state -> (Current_State == 0)	Pass
Withdraw	checking withdraw operation until Enter button -> Enter_button = 1	Pass
withdraw_done	checking that withdraw operation is done successfully -> Operation_done = 1;	Pass

withdraw_another	checking withdraw operation with another service (given that cancel button not pressed or timer has timed out) -> (next_state == 4)	Pass
Deposit	checking Deposit operation until Enter button -> Enter_button = 1	Pass
Deposit_done	checking that Deposit operation is done successfully -> Operation_done = 1;	Pass
Deposit_another	checking Deposit operation with another service (given that cancel button not pressed or timer has timed out) -> (next_state == 4)	Pass
ShowBalance	checking ShowBalance operation until Enter button -> Enter_button = 1	Pass
ShowBalance _done	checking that ShowBalance operation is done successfully -> Operation_done = 1;	Pass
ShowBalance _another	checking ShowBalance operation with another service (given that cancel button not pressed or timer has timed out) -> (next_state == 4)	Pass
balance_equal	Checking that balance gets updated after every deposit and withdraw - > (UpdatedBalance==Balance_memory [Card_number]) == 1	Pass
Wrong_password	Checking if (in_password != user_password) that Wrong_Passwordis raised -> Wrong_Password = 1	Pass

3.4.2 Assertions Waveform & Percentage & Pass

Figure 4 Assertions Waveform

Figure 5 Assertions pass counts

Figure 6 Assertions Precentages

3.5 Coverage

3.5.1 Cover Groups:

Table 4:Cover Groups

❖ Number_Buttons_cg	❖ Functional_Buttons_cg
• button_0	enter_button
• button_1	• cancel_button
• button_2	Arabic_button
• button_3	English_button
• button_4	withdraw_button
• button_5	deposit_button
• button_6	show_balance
• button_7	another_service
• button_8	
• button_9	
<pre>money_button_cg</pre>	<pre></pre>
multiple_100_button	operation_done
multiple_1000_button	• error
	wrong_password
	• card_in
	• card_out

3.5.2 Functional COVERAGE:

Figure 7 Functional Coverage

3.5.3 CODE COVERAGE:

Figure 8 Code Coverage

3.5.4 FSM COVERAGE:

Figure 9 FSM Coverage

3.6 Scoreboard Self checking:

Table 5: Checks in Scoreboard

Statement	Description	Signals
Deposit Mode operation checking	Checks that the deposit value through serial line is being added to the user's balance and the updated balance is equivalent to the user's balance after the operation is done.	actual_deposit_value, updated_balance, operation_done
Withdraw Mode operation checking	Checks that the withdraw value through serial line is being subtracted from the user's balance and the updated balance is equivalent to the user's balance after the operation is done.	withdraw_button, multiple_100_button, multiple_1000_button, updated_balance, operation_done

4. APPENDIX:

The GitHub repository link:

 $\underline{https://github.com/EngMostafaKhaled/ATM---based-bank-system-Design-verification}$