

Departamento de Ciência da Computação - DCC

Prof. Ricardo Martins

Site: https://ricardofm.com

Email: ricardo.martins@udesc.br

Ramal: 348<u>1-7823</u>

Sala: Bloco $F - 2^{\circ}$ piso (sala 8)

LINGUAGENS FORMAIS E AUTÔMATOS

<u>LFA0001</u>: Ciência da Computação 3ª fase

Aula: 02 Versão: 191

CONJUNTO

➤ Um <u>conjunto</u> é uma coleção de elementos em que não são consideradas ocorrências múltiplas dos mesmos nem há relação de ordem entre eles.

Exemplo:

A inclusão do elemento \spadesuit no conjunto $\{\clubsuit, \spadesuit, \diamondsuit, \diamondsuit, \spadesuit\}$ resulta no próprio conjunto $\{\clubsuit, \diamondsuit, \diamondsuit, \diamondsuit, \diamondsuit, \diamondsuit\}$, pois o mesmo já faz parte do conjunto e, portanto, não deve ser considerado novamente. Por outro lado, o conjunto $\{\clubsuit, \diamondsuit, \diamondsuit, \diamondsuit, \diamondsuit\}$ é igual ao conjunto $\{\diamondsuit, \clubsuit, \diamondsuit, \diamondsuit, \diamondsuit\}$, uma vez que não existe relação de ordem entre os elementos que os compõem.

SÍMBOLO

➤ Um <u>símbolo</u> corresponde a uma representação gráfica única e indivisível. Se formado por caracteres, um símbolo pode ser compostopor um número arbitrário deles.

Exemplo:

São exemplos de símbolos: "a", "abc", "♣", "1", etc.

Símbolos podem ser agrupados na forma de um conjunto, caso em que o mesmo recebe o nome de <u>alfabeto</u>. Conjuntos, por outro lado, podem ser formados por elementos de outra natureza, e não apenas por símbolos. É o caso de conjuntos formados por <u>cadeias</u> (sequências finitas de símbolos) e conjuntos cujos elementos também são conjuntos.

ENUMERAÇÃO

Alguns conjuntos podem ser especificados através da simples enumeração de todos os seus elementos, denotados entre chaves e separados por vírgulas.

Exemplo:

- O conjunto formado pelos elementos 0,1,2,3 é representado por $\{0,1,2,3\}$.
- O conjunto {a,b,c,d,e,f} é formado pelas seis primeiras letras do alfabeto romano.
- O conjunto {01, 231, 33, 21323} contém os elementos 01,231,33 e 21323.

NOMES

Conjuntos podem ser referenciados através de nomes, arbitrariamente escolhidos.

Exemplo:

$$X = \{0, 1, 2, 3\}, Y = \{a, b, c, d, e, f\}$$

Assim, os nomes X e Y passam a denotar os conjuntos correspondentes.

NÚMERO DE ELEMENTOS

O número de elementos contido em um conjunto A é denotado por:

<u>|A|</u>

Exemplo:

$$X = \{0, 1, 2, 3\}, Y = \{a, b, c, d, e, f\}$$

$$|X|=4, |Y|=6$$

PERTENCIMENTO

Os símbolos \in e $\not\in$ servem para denotar se um determinado elemento pertence ou não pertence a um conjunto, respectivamente.

Exemplo:

$$X = \{0, 1, 2, 3\}, Y = \{a, b, c, d, e, f\}$$

 $0 \in X, 5 \notin X, 2 \notin Y, b \notin X, c \in Y, h \notin Y$

CONJUNTOS FINITOS E INFINITOS

Conjuntos podem conter um número finito ou infinito de elementos.

No primeiro caso, o conjunto pode ser denotado enumerando-se (relacionando-se explicitamente) todos os elementos que o compõem, que são <u>conjuntos finitos</u>.

CONJUNTOS INFINITOS

Conjuntos infinitos podem ser denotados através da especificação (formal ou informal) de regras ou propriedades que devem ser satisfeitas por todos os seus elementos, possibilitando assim a sua identificação precisa e completa a partir de uma especificação finita.

Exemplo:

 $P = \{x \mid x \text{ \'e um n\'umero primo}\}$

 $Q = \{y \mid \exists n \text{ inteiro tal que } y = n^2\}$

CONJUNTO VAZIO

O conjunto que não contém nenhum elemento recebe o nome de conjunto vazio.

Por definição, $|\emptyset| = 0$.

O conjunto vazio é denotado por \varnothing ou ainda pelo símbolo $\{\}$.

Assim, $\{\}=\emptyset$.

SUBCONJUNTO

Um conjunto A é dito "contido em um conjunto B", condição esta denotada através do símbolo "⊆", se todo elemento de A for também elemento de B. Neste caso diz-se, equivalentemente, que "A é umsubconjunto de B" ou, ainda, que "B contém A".

Os conjuntos \emptyset e A são, por definição, subconjuntos de qualquer conjunto A.

Exemplo:

$$A = \{b, c, d\}, B = \{a, b, c, d, e\} e C = \{e, a, d, b, c\}$$

 $A \subseteq B e B \subseteq C$

UNIÃO, INTERSECÇÃO E CONJUNTOS DISJUNTOS

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\} \dots \bigcup_{0,n} A_i = A_0 \cup A_1 \cup A_2 \cup \dots \cup A_n$$

$$A \cap B = \{x \mid x \in A \text{ e } x \in B\} \dots \bigcap_{0,n} A_i = A_0 \cap A_1 \cap A_2 \cap \dots \cap A_n$$

Dois conjuntos, A e B, são ditos disjuntos se A \cap B = \emptyset .

DIFERENÇA

Define-se a diferença entre dois conjuntos, A e B (nesta ordem), como sendo o conjunto formado por todos os elementos de A não pertencentes ao conjunto B.

Denota-se este conjunto como:

$$A - B = \{ x \mid x \in A \in x \notin B \}$$

COMPLEMENTAÇÃO

Complementação:

Define-se a complementação de um conjunto A em relação ao conjunto B, $A \subseteq B$, como sendo o conjunto de todos os elementos de B que não pertencem a A.

Denota-se este conjunto como:

$$\overline{A}_{B} = B - A$$

PRODUTO CARTESIANO

O produto cartesiano de dois conjuntos é o conjunto formado por todos os pares ordenados (a,b), em que a é um elemento de A, e b um elemento de B, tal que, $A \times B = \{ (a, b) \mid a \in A \in B \}$.

Definição: Símbolo, Caractere

- entidades abstratas básicas
- não definida formalmente

Exemplo: Símbolo

- letras
- dígitos

Definição: Alfabeto

conjunto finito de símbolos

Exemplo: Alfabeto

Definição: Palavra, Cadeia de Caracteres, Sentença

- sobre um alfabeto
- sequência finita de símbolos justapostos

Exemplo: Palavra

- a, abcb são palavras sobre { a, b, c }
- 3
 - palavra vazia sem símbolos
- é palavra sobre qualquer alfabeto

Definição: Tamanho, Comprimento de uma palavra

- número de símbolos que compõem uma palavra
- representação
 - |w|
 - w denota uma palavra

Exemplo: Tamanho de uma palavra

- |abcb| = 4
- **■** |8|

- Conjunto de palavras sobre ∑
 - Σ*
 - Conjunto de todas as palavras sobre ∑
 - \(\sum_{+} \)
 - $\sum_{k} \sum_{k} \sum_{k} \{\epsilon\}$

Exemplo: para $\sum = \{ a, b \}$

- \blacksquare $\Sigma^* = \{ \epsilon, a, b, aa, ab, ba, bb, aaa, ... \}$

- Definição: Prefixo, Sufixo, Subpalavra
 - prefixo (sufixo)
 - qq sequência de símbolos inicial (final) de um palavra
 - subpalavra
 - qq sequência de símbolos contígua de uma palavra

Exemplo: para abcb

- prefixos: ε, a, ab, abc, abcb
- sufixos: ε, b, cb, bcb, abcb
- prefixos e sufixos são <u>subpalavras</u>

- Definição: Linguagem Formal
 - um conjunto de palavras sobre um alfabeto
- Exemplo: Ling. Formal sobre $\sum = \{ a, b \}$
 - conjunto vazio >> { }
 - conjunto formado pela palavra vazia $>> \{ \epsilon \}$
 - Obs.: $\{\} \neq \{ \epsilon \}$
 - conjunto dos palíndromos
 - palavras que tem a mesma leitura da esquerda p/ a direita (e viceversa)
 - linguagem infinita
 - ε, a, b, aa, bb, aaa, aba, bab, bbb, aaaa, ... são palíndromos

- Definição: Concatenação
 - operação binária, definida sobre uma linguagem
 - palavra formada pela justaposição das palavras
 - notação
 - justaposição dos símbolos que representam as palavras componentes
 - satisfaz as seguintes propriedades:
 - associativa: v(wt) = (vw)t
 - elemento neutro (esq/dir): $\varepsilon w = w = w\varepsilon$
 - Exemplo: Concatenação
 - para v = ab e w = cd >> vw = abcd

- Definição: Concatenação Sucessiva
 - concatenação sucessiva de uma palavra com ela mesma
 - indefinida para ϵ^0
 - Exemplo: Concatenação Sucessiva
 - $\mathbf{w}^3 = \mathbf{w} \mathbf{w} \mathbf{w}$
 - $w^1 = w^1$
 - $a^5 = aaaaa$
 - $a^n = aaa...a$ (a repetido n vezes)
 - $w^0 = \varepsilon$, para $w \neq \varepsilon$

Definição: Gramática

$$G = (V, T, P, S)$$

- V
 - conjunto finito de símbolos
 - variáveis / não-terminais
- T
 - conjunto finito de símbolos
 - terminais
 - disjunto de V

- P
 - conjunto finito de pares (α , β)
 - regra de produção
 - lacksquare α é palavra de (V \cup T)⁺
 - β é palavra de $(V \cup T)^*$
- **S**
 - elemento de V
 - variável inicial

- Definição: Gramática
 - Notação de (α, β)
 - $\alpha \rightarrow \beta$
 - Notação abreviada
 - $\alpha \rightarrow \beta_1$, $\alpha \rightarrow \beta_2$, ..., $\alpha \rightarrow \beta_n$
 - $\alpha \rightarrow \beta_1 \mid \beta_2 \mid ... \mid \beta_n$
- Definição: Derivação
 - G = (V, T, P, S) é uma gramática
 - Derivação é um par da relação denotada por "⇒"
 - com domínio em ($V \cup T$)+
 - \blacksquare com contra-domínio em ($\lor \cup T$)*
 - representado na forma infixa: $\alpha \Rightarrow \beta$

- ⇒ é indutivamente definida
- para qq produção $S \rightarrow \beta$
 - S é o símbolo inicial
 - Sua derivação: S ⇒ β
 - para qq par $\alpha \Rightarrow \beta$
 - onde $\beta = \beta_u \beta_v \beta_w$
 - se $\beta_v \to \beta_t$ é regra de P, então $\beta \Longrightarrow \beta_u \beta_t \beta_w$

Portanto... a derivação é a substituição de uma subpalavra de acordo com uma <u>regra de produção</u>

- Sucessivos passos de derivações
 - Notação: ⇒*
 - fecho transitivo e reflexivo da relação ⇒
 - zero ou mais passos de derivações sucessivas
 - Notação: ⇒⁺
 - fecho transitivo da relação ⇒
 - um ou mais passos de derivações sucessivas
 - Notação: ⇒ⁱ
 - exatos i passos de derivações sucessivas
 - i é um número natural

- Gramática é um formalismo
 - Axiomático
 - de geração
 - permite derivar ("gerar") todas as palavras da linguagem que representa
- Definição: Linguagem Gerada
 - G = (V, T, P, S)
 - Linguagem gerada por G
 - L(G) ou Gera(G)
 - Todas as palavras de símbolos terminais deriváveis, a partir de \$

$$L(G) = \{ w \in T^* \mid S \Rightarrow^+ w \}$$

- Exemplo: números naturais
 - G = (V, T, P, S)
 - V = { S, D }
 - $T = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0\}$
 - $P = \{ S \rightarrow D, S \rightarrow DS, D \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \}$
 - uma derivação do número 243 (existe outra?)

$$S \Rightarrow DS \Rightarrow 2S \Rightarrow 2DS \Rightarrow 24S \Rightarrow 24D \Rightarrow 243$$

portanto

$$S \Rightarrow^* 243$$

$$S \Rightarrow^+ 243$$

$$S \Rightarrow 6243$$

logo, GERA(G) representa o conjunto dos números naturais

- Definição: Equivalência de Gramáticas
 - G₁ e G₂ são equivalentes **sse**

$$GERA(G_1) = GERA(G_2)$$

Convenções:

a, b, c, ..., s, t

U, V, W, X, Y, Z

α, β, ...

símbolos variáveis

símbolos terminais

palavras de símbolos terminais

palavras de símbolos variáveis e/ou terminais

Exemplo: texto com aspas balanceadas

```
■ G = ( V, T, P, S )

V = \{ S \}
T = \{ x, " \}
P = \{ S \rightarrow xS \mid "S" \mid \epsilon \}
```

■ Exemplo: { ww | w é palavra de { a, b }* }

■ G = (V, T, P, S) = ({ S, X, Y, A, B, F }, { a, b }, P, S) $P = \{ S \rightarrow XY, \\
X \rightarrow XaA \mid XbB \mid F \\
Aa \rightarrow aA, Ab \rightarrow bA, AY \rightarrow Ya, \\
Ba \rightarrow aB, Bb \rightarrow bB, BY \rightarrow Yb, \\
Fa \rightarrow aF, Fb \rightarrow bF, FY \rightarrow \varepsilon \}$ ■ baba $S \Rightarrow \underline{X}Y \Rightarrow Xa\underline{AY} \Rightarrow \underline{X}aYa \Rightarrow Xb\underline{B}\underline{a}Ya \Rightarrow Xb\underline{B}\underline{Y}a \Rightarrow \underline{X}baYba$

⇒ FbaYba ⇒ bFaYba ⇒ baFYba ⇒ ba&ba ⇒ baba