Electrostatics Basics

Line Charge:	$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\lambda(\vec{r'})}{ r_{ m sep} ^2} \hat{r}_{ m sep} dt'$
--------------	--

Surface Charge:
$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\sigma(\vec{r'})}{||\vec{r_{\rm sep}}||^2} \hat{r}_{\rm sep} \, da'$$
Volume Charge:
$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(r')}{||\vec{r_{\rm sep}}||^2} \hat{r}_{\rm sep} \, d\tau'$$

Volume Charge:
$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\vec{r}^*)}{||\vec{r}_{\rm sep}||^2} \hat{r}_{\rm sep}$$

Potential Difference:
$$V(\vec{b}) - V(\vec{a}) = -\int_{\vec{a}}^{b} \vec{E} \cdot d\vec{l}$$

Potential of a Volume
$$V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\vec{r'})}{||r_{\rm sep}||} d\tau' t$$
 Charge:

Potential of a Collection of Point Charges:
$$V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \sum_{i=0}^{n} \frac{q_i}{||\vec{r}_{\text{sep}}||}$$

Work to Move a Charge:
$$W = \int_{\mathbf{a}}^{\mathbf{b}} \vec{F} \cdot d\vec{l} = -Q \int_{\mathbf{a}}^{\mathbf{b}} \vec{E} \cdot d\vec{l}$$

Work to Move a Charge (Potential):
$$W = Q[V(\vec{b}) - Q(\vec{a})]$$

Energy of a Collection of Point Charges:
$$W = \frac{1}{2} \sum_{i=1}^n q_i V(\vec{r_i})$$

Energy of a Continuous Charge Distribution:
$$W = \frac{\epsilon_0}{2} \int\limits_{\rm univ} E^2 d\tau$$

Field at a Charged
$$\vec{E}_{\rm surf} = \frac{1}{2} \left(\vec{E}_{\rm above} + \vec{E}_{\rm below} \right)$$

Parallel Plate Voltage:
$$V = \frac{Q}{A\epsilon_0} d$$

Capacitance:
$$V \equiv \frac{1}{A\epsilon_0}a$$

$$C \equiv \frac{Q}{V}$$

Parallel Plate Voltage:
$$V = \frac{Q}{A\epsilon_0}d$$
 Capacitance:
$$C \equiv \frac{Q}{V}$$
 Energy of a Capacitor:
$$W = \int_0^Q \left(\frac{q}{C}\right)dq = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}CV^2$$

Electrostatic Multipoles

Generalized Multipole Expansion:
$$V(r) = \frac{1}{4\pi\epsilon_0} \sum_{n=0}^{\infty} \frac{1}{r^{n+1}} \int_V ||\vec{r'}||^n P_n(\cos\alpha) \rho(\vec{r'}) d\tau'$$

Monopole Voltage:
$$V(r) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r}$$
 Dipole Voltage:
$$V(r) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r}$$

$$\begin{array}{ll} \text{Monopole Voltage:} & V(r) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r} \\ \text{Dipole Voltage:} & V(r) = \frac{1}{4\pi\epsilon_0} \frac{\vec{p}}{r^2} \cdot \hat{r} \\ \text{Dipole Moment (Continuous):} & \vec{p} \equiv \int_{V} \vec{r'} \rho(\vec{r'}) d\tau' \\ \end{array}$$

Dipole Moment (Discrete):
$$\vec{p} = \sum_{i=1}^{n} q_i \vec{r'}_i$$

Dipole Moment (Change of Origin):
$$\vec{p'} = \vec{p} - Q\vec{a}$$

Torque of a Dipole:
$$\vec{N} = \vec{p} \times \vec{E}$$

Energy of a Dipole: $U = -\vec{p} \cdot \vec{E}$

Energy of a Dipole:
$$U = -\vec{p} \cdot \vec{E}$$

Force on a Dipole: $\vec{F} = (\vec{p} \cdot \nabla) \vec{E}$

Field of a Dipole:
$$V = \vec{p} \times \vec{E}$$

Energy of a Dipole: $U = -\vec{p} \cdot \vec{E}$
Force on a Dipole: $\vec{F} = (\vec{p} \cdot \nabla) \vec{E}$
Field of a Dipole: $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{p}{r^2} \left(2\cos\theta \hat{r} + \sin\theta \hat{\theta}\right)$

Electrostatics in Matter

Electric Displacement:
$$\vec{D} \equiv \epsilon_0 \vec{E} + \vec{P}$$

Bound Surface Charge:
$$\sigma_{\rm bound} = \vec{P} \cdot \hat{n}$$

Bound Volume Charge:
$$\rho_{\text{bound}} \equiv -\nabla \cdot \vec{P}$$

Linear Dielectrics –
$$\vec{P} = \epsilon_0 \chi_e \vec{E}$$

Polarization:
$$P = \epsilon_0 \chi_e P$$

Linear Dielectrics –
$$\vec{D} = \epsilon \vec{E}$$

Electric Permittivity:
$$\epsilon = \epsilon_0 (1 + \chi_e) = \epsilon_0 \epsilon_r$$

Gauss's Law for
$$\vec{D}$$

$$\nabla \cdot \vec{D} = \rho_f$$

(Derivative):
$$\nabla \cdot D = \rho$$

Gauss's Law for
$$\vec{D}$$
 (Integral):
$$\oint \vec{D} \cdot d\vec{A} = Q_{f_{\rm encl}}$$

Force on a Dielectric:
$$F = -\nabla U$$

Energy of a Dielectric:
$$W = \frac{1}{2} \int \vec{D} \cdot \vec{E} d\tau$$

Names of Stuff

 ϵ_0 : Permittivity of Free Space

Force on a Dielectric:

- ϵ_r : Dielectric Constant or Relative Permittivity
- ϵ : Permittivity of a Material

Techniques for Solving Problems

Cylindrical Laplacian Solution:

$$V(s,\phi) = A \ln s + B + \sum_{n=1}^{\infty} \left(A_n s^n + \frac{B_n}{s^n} \right) \left(C_n \cos(\phi n) + D_n \sin(\phi n) \right)$$

Solution for Spherical
$$f(r,\theta) = \sum_{l=0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos \theta)$$
 Laplacians:

Method of Images General
$$\sum \frac{q_i}{||\vec{r_{sep,i}}||} = 0$$
 Principle:

$$\begin{array}{ll} \text{Method of Images for Two} & -\frac{q_1}{q_2} = \frac{||\vec{r_{\text{sep}1}}||}{||\vec{r_{\text{sep}2}}||} \end{array}$$

Image Charge Surface
$$\sigma = -\epsilon_0 \frac{\partial V}{\partial n}$$

Binomial Expansion:
$$(1+x)^k = \sum_{n=0}^{\infty} \left(\frac{k!}{n!(k-n)!}\right) x^n$$
 Taylor Expansion:
$$f(x) \approx \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}$$

Taylor Expansion:
$$f(x) \approx \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}$$

Because I can't remember:
$$f(x) \approx f(0) + f'(0) \cdot x + f''(0) \cdot \frac{x^2}{2} + \cdots$$

Because I can't remember.
$$f(x) \approx f(0) + f'(0) \cdot x + f'(0) \cdot \frac{1}{2} + \cdots$$
$$P_0(\cos \theta) = 1$$

Legendre Polynomials:
$$P_{1}(\cos \theta) = \cos \theta$$

$$P_{2}(\cos \theta) = \frac{3}{2}\cos^{2}\theta - \frac{1}{2}$$

$$P_{3}(\cos \theta) = \frac{5}{2}\cos^{3}\theta - \frac{3}{2}\cos\theta$$

Magnetostatics

Lorentz Force Law:
$$\vec{F}_{\rm mag} = Q(\vec{v} \times \vec{B})$$

Surface Current Density:
$$\vec{K} \equiv \frac{d\vec{I}}{dl_{\perp}}$$

$$\vec{K} = \sigma \vec{v}$$

Volume Current Density:
$$J \equiv \frac{dI}{da_{\perp}}$$

$$\vec{J} = \rho \vec{v}$$

Magnetic Force (General):
$$\vec{F}_{\text{mag}} = \int I(d\vec{l} \times \vec{B}) = I \int (d\vec{l} \times \vec{B})$$

Magnetic Force (Surface):
$$\vec{F}_{\rm mag} = \int (\vec{K} \times \vec{B}) da$$

Magnetic Force (Volume):
$$\vec{F}_{\text{mag}} = \int (\vec{J} \times \vec{B}) d\tau$$

Biot-Savart Law: $\vec{B}(\vec{r}) = \frac{\mu_0}{\vec{J}} \int \frac{\vec{I} \times \hat{r}_{\text{sep}}}{\vec{J}} dt'$

iot-Savart Law:
$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{\vec{I} \times \hat{r}_{\text{sep}}}{||\vec{r}_{\text{sep}}||^2} dl'$$

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} I \int \frac{d\vec{I}' \times \hat{r}_{\text{sep}}}{||\vec{r}_{\text{sep}}||^2}$$

Ampere's Law:
$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$$

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{\rm encl}$$

Magnetic Vector Potential:
$$\vec{B} = \vec{\nabla} \times \vec{A}$$

 $\vec{\nabla} \cdot \vec{A} = 0$

Magnetic Vector Potential:
$$\vec{B} = \vec{\nabla} \times \vec{A}$$

$$\vec{\nabla} \cdot \vec{A} = 0$$

$$\nabla^2 \vec{A} = -\mu_0 \vec{J}$$
Vector Potential – Line:
$$\vec{A} = \frac{\mu_0}{4\pi} \int \frac{\vec{I}}{||\vec{r}_{\vec{\text{sep}}}||} dl' = \frac{\mu_0 I}{4\pi} \int \frac{1}{||\vec{r}_{\vec{\text{sep}}}||} d\vec{l}'$$
Vector Potential – Surface:
$$\vec{A} = \frac{\mu_0}{4\pi} \int \frac{\vec{K}}{||\vec{r}_{\vec{\text{sep}}}||} da'$$
Vector Potential – Volume:
$$\vec{A} = \frac{\mu_0}{4\pi} \int \frac{\vec{J}(\vec{r}')}{||\vec{r}_{\vec{\text{sep}}}||} d\tau'$$
Magnetic Dipole Moment:
$$\vec{m} = I \int d\vec{\sigma} - I\vec{\sigma}$$

Vector Potential – Line:
$$A = \frac{1}{4\pi} \int \frac{1}{||r_{\vec{se}}||} dt = \frac{1}{4\pi} \int \frac{1}{||r_{\vec{se}}||} dt$$

Vector Potential – Surface:
$$\vec{A} = \frac{\mu_0}{4\pi} \int \frac{1}{||\vec{r}_{\text{rep}}||} da'$$

Vector Potential – Volume:
$$\vec{A} = \frac{\mu_0}{4\pi} \int \frac{J(\vec{r})}{||\vec{r}_{\rm sep}||} d\tau'$$

Magnetic Dipole Moment:
$$\vec{m} \equiv I \int d\vec{a} = I \vec{a}$$

Magnetic Dipole Potential
$$\vec{A}_{\rm dip}(\vec{r}) = \frac{\mu_0}{4\pi} \frac{\vec{m} \times \hat{r}}{r^2}$$
 Expansion:

Magnetic Torque:
$$\vec{N} = \vec{m} \times \vec{B}$$

Force on a Magnetic Dipole:
$$\vec{F} = \nabla(\vec{m} \cdot \vec{B})$$

Force Between Two Current-Carrying Wires:
$$\frac{F}{l} = \frac{\mu_0 I_1 I_2}{2\pi r}$$

Maxwell's Equations

Gauss's Law:
$$\vec{\nabla} \cdot \vec{E} = \frac{1}{\epsilon_0} \rho$$

(unnamed)
$$\vec{\nabla} \cdot \vec{B} = 0$$

Faraday's Law:
$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

Ampere's Law with Maxwell's Correction:
$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J} + \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t}$$

Magnetostatics in Matter

magnetization is **parallel** to \vec{B} Paramagnets:

Diamagnets: magnetization is **opposite** to \vec{B}

magnetization holds outside the presence of Ferromagnets:

an external magnetic field.

 $\vec{M} \equiv$ magnetic dipole per unit volume Magnetization:

 $\vec{J}_{\text{bound}} = \vec{\nabla} \times \vec{M}$ Bound Volume Current:

Bound Surface Current: $\vec{K}_{\text{bound}} = \vec{M} \times \hat{n}$

 $\vec{J} = \vec{J}_b + \vec{J}_f$ Free Current:

 $\vec{H} \equiv \frac{1}{\mu_0} \vec{B} - \vec{M}$ Auxillary Field:

Ampere's Law for $\vec{\nabla} \times \vec{H} = \vec{J}_f$ Auxillary Fields:

 $\oint \vec{H} \cdot d\vec{I} = I_{f_{\text{encl}}}$

 $\vec{B} = \mu \vec{H}$.

Linear Magnetics:

Permeability: $\mu \equiv \mu_0 (1 + \chi_m)$

Linear Magnetics with E

and H Fields:

Electrodynamics

V = IROhm's Law:

Power in a Circuit:

$$\begin{split} P &= VI = I^2 R = \frac{V^2}{R} \\ \mathcal{E} &= \frac{F_{\mathrm{mag, \ tot}}}{Q} = \int (\vec{v} \times \vec{B}) d\vec{l} \end{split}$$
Electromotive Force:

 $\mathcal{E} = \oint \vec{f} \cdot d\vec{I}$ $\mathcal{E} = -\frac{d\Phi}{dt}$ $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$

Faraday's Law:

Inductance: $\Phi = LI$

 $\mathcal{E} = -L\frac{dI}{dt}$

Work of a Magnetic Field:

 $W = \frac{1}{2\mu_0} \int_{\text{all space}} B^2 d\tau$

 $\vec{J}_d \equiv \epsilon_0 \frac{\partial \vec{E}}{\partial t}$ Displacement Current:

Maxwell's Equations in Matter

 $\vec{\nabla} \cdot \vec{D} = \rho_f$ Gauss's Law:

 $\vec{\nabla} \cdot \vec{B} = 0$ (unnamed)

 $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ Faraday's Law:

 $\vec{\nabla} \times \vec{H} = \vec{J}_f + \frac{\partial \vec{D}}{\partial t}$ Ampere's Law with Maxwell's Correction:

Triangles

Takeaways from Practice

- Gauss's law inside a dielectric always includes both ρ_b and σ_b .
- Use the definition for displacement where ever possible: $\vec{D} \equiv$ $\epsilon_0 \vec{E} + \vec{P}$.
- The potential is constant below an image plane and the field is

Boundary Conditions in Electrostatics

$$\vec{D}_{\text{above}}^{\perp} - \vec{D}_{\text{below}}^{\perp} = \sigma_f$$

$$\vec{D}_{\mathrm{above}}^{\parallel} - \vec{D}_{\mathrm{below}}^{\parallel} = \vec{P}_{\mathrm{above}}^{\parallel} - \vec{P}_{\mathrm{below}}^{\parallel}$$

$$\vec{E}_{\mathrm{above}}^{\perp} - \vec{E}_{\mathrm{below}}^{\perp} = \sigma_{\mathrm{tot}}/\epsilon_{0}$$

$$\vec{E}_{\text{above}}^{\parallel} - \vec{E}_{\text{below}}^{\parallel} = \vec{0}$$

$$V_{\rm above} = V_{\rm below}$$

$$\epsilon_{\mathrm{above}} \vec{E}_{\mathrm{above}}^{\perp} - \epsilon_{\mathrm{below}} \vec{E}_{\mathrm{below}}^{\perp} = \sigma_{\mathrm{poly}}$$

$$\begin{split} & \epsilon_{\text{above}} \vec{E}_{\text{above}}^{\perp} - \epsilon_{\text{below}} \vec{E}_{\text{below}}^{\perp} = \sigma_f \\ & \epsilon_{\text{above}} \frac{\partial V_{\text{above}}}{\partial n} - \epsilon_{\text{below}} \frac{\partial V_{\text{below}}}{\partial n} = -\sigma_f \end{split}$$

Boundary Conditions in Magnetostatics

$$\vec{B}_{\text{above}}^{\parallel} - \vec{B}_{\text{below}}^{\parallel} = \mu_0 \vec{K}$$

$$\vec{B}_{\text{above}} - \vec{B}_{\text{below}} = \mu_0(\vec{K} \times \hat{\mathbf{n}})$$

$$\vec{A}_{above} = \vec{A}_{below}$$

$$\begin{split} \vec{A}_{\rm above} &= \vec{A}_{\rm below} \\ \frac{\partial A_{\rm above}}{\partial n} &- \frac{\partial A_{\rm below}}{\partial n} = -\mu_0 \vec{K} \end{split}$$

$$\vec{H}_{\mathrm{above}}^{\perp} - \vec{H}_{\mathrm{below}}^{\perp} = - (\vec{M}_{\mathrm{above}}^{\perp} - \vec{M}_{\mathrm{below}}^{\perp})$$

$$\vec{H}_{\text{above}}^{\parallel} - \vec{H}_{\text{below}}^{\parallel} = \vec{K}_f \times \hat{\mathbf{n}}$$

More Boundary Conditions

Equations 7.60-63 are the general boundary conditions for electrodynamics. In the case of *linear* media, they can be expressed in terms of E and B alone:

(i)
$$\epsilon_1 E_1^{\perp} - \epsilon_2 E_2^{\perp} = \sigma_f$$
,

(iii)
$$\mathbf{E}_1^{\parallel} - \mathbf{E}_2^{\parallel} = \mathbf{0},$$

(ii)
$$B_1^{\perp} - B_2^{\perp} = 0$$
, (iv) $\frac{1}{\mu_1} \mathbf{B}_1^{\parallel} - \frac{1}{\mu_2} \mathbf{B}_2^{\parallel} = \mathbf{K}_f \times \hat{\mathbf{n}}$. (7.64)

(7.65)

In particular, if there is no free charge or free current at the interface, then

(i)
$$\epsilon_1 E_1^{\perp} - \epsilon_2 E_2^{\perp} = 0$$
,

(iii)
$$\mathbf{E}_{1}^{\parallel} - \mathbf{E}_{2}^{\parallel} = \mathbf{0}$$
,

(ii)
$$B_1^{\perp} - B_2^{\perp} = 0$$

(ii)
$$B_1^{\perp} - B_2^{\perp} = 0$$
, (iv) $\frac{1}{\mu_1} \mathbf{B}_1^{\parallel} - \frac{1}{\mu_2} \mathbf{B}_2^{\parallel} = \mathbf{0}$.

As we shall see in Chapter 9, these equations are the basis for the theory of reflection and refraction.

Common Fields

Magnetic Finite Wire:

 $\frac{\mu_0}{4\pi} \frac{I}{R} (\sin(\theta_1) - \sin(\theta_2))$

Magnetic Field of an Arc:

 $\mu_0 I \theta$

Magnetic Field of an

 $4\pi R$

Infinite Wire:

 $\mu_0 I$ $2\pi R$