TE cooled Optically Immersed	cooled Optically Immersed 3.8 µm LED LED			
Peak wavelength λ _{max}	μm		3.75÷3.85	
Pulse power P _{pulsed}	mW	Drive current 1 A, 2 % duty cycle	0.23	
Quasi-CW power P _{QCW}	mW	Drive current 0.4 A, 50% duty cycle	0.12	
CW power P _{CW}	mW	Drive current 0.2 A	0.08	

Code	Emission size, mm	Lens material	Far-field pattern FWHM, deg.	Optical axis deviation, deg.	Optical power deviation, %	Operation conditions, ⁰ C	Lifetime, hrs
LED38TO8TEC	Ø 3.2	Si lens and sapphire window	~15	≤5	±25	-25÷+60	>80 000

Product view

Features

Bottom view

1 TEC -; 4 TEC + 8 LED +; 13 LED -

10, 11 thermosensor

Pin assignment

Growth of narrow gap semiconductor alloys onto n+-InAs substrate; Flip-chip design of LEDs; Optical coupling through the use of chalcogenide glasses and Si lenses with antireflection coating

3-fold increased LED output power; Beam collimation within ~15 deg; Low serial resistance; Small on-off time (tenths of ns); Low power consumption (≤0.1 W)

Emission beam divergence is small and thus we recommend adjusting LED position regarding to the detector system before final evaluation/use of the devices. We recommend if possible using low duty cycle mode of operation with I<0.5×Imax so that higher efficiency and long term stability of a LED are achieved. **Data are valid for 22°C and LED attached to a heatsink**. Heatsink is important for LED operation especially in the CW mode.

TO816.1MC0602415

Standard Perfomance Plots

Type	TB04-103
Batch	TB0180506

T, K	5%	R,	-5%	T, °C
375	0,58	0,64	0,69	102
370	0,67	0,73	0,79	97
365	0,77	0,83	0,90	92
360	0,90	0,96	1,02	87
355	1,04	1,11	1,17	82
350	1,22	1,28	1,35	77
345	1,43	1,50	1,56	72
340	1,69	1,75	1,82	67
335	2,00	2,06	2,12	62
330	2,38	2,44	2,48	57
325	2,85	2,89	2,92	52
320	3,44	3,45	3,46	47
315	4,17	4,15	4,12	42
310	5,08	5,01	4,93	37
305	6,24	6,09	5,93	32
300	7,71	7,45	7,19	27
293	10,50	10,00	9,50	20
290	12,04	11,39	10,75	17
285	15,22	14,24	13,29	12
280	19,41	17,95	16,56	7
275	24,96	22,81	20,80	2
270	32,40	29,25	26,33	-3
265	42,49	37,86	33,65	-8
260	56,29	49,49	43,40	-13
255	75,40	65,37	56,54	-18
250	102,18	87,32	74,44	-23
245	140,21	118,03	99,11	-28
240	194,95	161,56	133,55	-33
235	274,90	224,11	182,25	-38
230	393,45	315,33	252,09	-43
225	572,18	450,47	353,76	-48
220	846,39	654,04	504,13	-53
215	1275,02	966,21	730,37	-58
β=	3876,1	3691,5	3506,9	[K ⁻¹]
To=	221.011	293	223616	[K]

Glass beaded NTS Thermistor
Calibration

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100

$$R_{t} = R_{t0} \exp(\beta(T_{0}-T)/(T \times T_{0})),$$

where

 $R_{\mbox{\tiny t0}}$ - Resistivity at standard temperature ($T_0{=}293K)$ $\beta{=}3691~K^{\mbox{\tiny -1}}$ - Beta constant

