"7 Motifs" of High Performance Computing

- Phil Colella (LBL) identified 7 kernels of which most simulation and data-analysis programs are composed:
 - 1. Dense Linear Algebra
 - Ex: Solve Ax=b or Ax = λx where A is a dense matrix
 - 2. Sparse Linear Algebra
 - Ex: Solve Ax=b or $Ax = \lambda x$ where A is a sparse matrix (mostly zero)
 - 3. Operations on Structured Grids
 - Ex: Anew(i,j) = 4*A(i,j) A(i-1,j) A(i+1,j) A(i,j-1) A(i,j+1)
 - 4. Operations on Unstructured Grids
 - Ex: Similar, but list of neighbors varies from entry to entry
 - 5. Spectral Methods
 - Ex: Fast Fourier Transform (FFT)
 - 6. Particle Methods
 - Ex: Compute electrostatic forces on n particles
 - 7. Monte Carlo, Embarrassing Parallelism, Map Reduce, ...
 - Ex: Many independent simulations using different inputs

194

What you want to know about a motif

196

- How to use it
 - What problems does it solve?
 - How to choose solution approach, if more than one?
- How to find the best software available now
 - Best: fastest? most accurate? fewest keystrokes?
- How are the best implementations built?
 - What is the "design space" (w.r.t. math and CS)?
 - How do we search for best solutions (autotuning)?

197

196

The Dense Linear Algebra Motif

- In the beginning was the do-loop...
- Libraries like EISPACK (for eigenvalue problems)
- Then the BLAS (1) were invented (1973-1977)
 - Standard library of 15 operations (mostly) on vectors
 - "AXPY" ($y = \alpha \cdot x + y$), dot product, scale ($x = \alpha \cdot x$), etc
 - Up to 4 versions of each (S/D/C/Z), 46 routines, 3300 LOC
 - Goals
 - Common "pattern" to ease programming, readability
 - Robustness, via careful coding (avoiding over/underflow)
 - Portability + Efficiency via machine specific implementations
 - Why BLAS 1? They do O(n¹) ops on O(n¹) data
 - Used in libraries like LINPACK (for linear systems)
 - Source of the name "LINPACK Benchmark" (not the code!)

The Dense Linear Algebra Motif (2)

- But BLAS-1 weren't enough
 - Consider AXPY ($y = \alpha \cdot x + y$): 2n flops on 3n read/writes
 - Computational intensity = (2n)/(3n) = 2/3
 - Too low to run near peak speed (read/write dominates)
 - Hard to vectorize on supercomputers of the day (1980s)
- So the BLAS-2 were invented (1984-1986)
 - Standard library of 25 operations on matrix/vector pairs
 - "GEMV": $y = \alpha \cdot A \cdot x + \beta \cdot x$, "GER": $A = A + \alpha \cdot x \cdot y^T$, $x = T^{-1} \cdot x$
 - Up to 4 versions of each (S/D/C/Z), 66 routines, 18K LOC
 - Why BLAS 2? They do O(n²) ops on O(n²) data
 - So computational intensity still just ~(2n²)/(n²) = 2
 - OK for vector machines, but not for machine with caches

198

(2)

The Dense Linear Algebra Motif (3)

- The next step: BLAS-3 (1987-1988)
 - Standard library of 9 operations on matrix/matrix pairs
 - "GEMM": $C = \alpha \cdot A \cdot B + \beta \cdot C$, $C = \alpha \cdot A \cdot A^T + \beta \cdot C$, $B = T^{-1} \cdot B$
 - Up to 4 versions of each (S/D/C/Z), 30 routines, 10K LOC
 - Why BLAS 3? They do O(n3) ops on O(n2) data
 - So computational intensity $(2n^3)/(4n^2) = n/2 big$ at last!
 - Good for machines with caches, other mem. hierarchy levels
- How much BLAS1/2/3 code so far
 - Source: 142 routines, 31K LOC, Testing: 28K LOC
 - Reference (unoptimized) implementation only
 - Ex: 3 nested loops for GEMM
 - Lots more optimized code
 - Motivates "automatic tuning" of the BLAS

The Dense Linear Algebra Motif (4)

- LAPACK "Linear Algebra PACKage": BLAS-3 (1989 now)
 - Ex: Obvious way to express Gaussian Elimination (GE) is adding multiples of one row to other rows – BLAS-1
 - How do we reorganize GE to use BLAS-3 ? (details later)
 - Contents of LAPACK (summary)
 - Algorithms we can turn into (nearly) 100% BLAS 3: Linear Systems & Least squares
 - Algorithms that are only 50% BLAS 3 (so far): Eigenproblems & Singular Value Decomposition (SVD)
 - Error bounds for everything
 - Lots of variants depending on A's structure
 - How much code? (Nov 2008) (www.netlib.org/lapack)
 - Source: 1582 routines, 490K LOC, Testing: 352K LOC

200

201

The Dense Linear Algebra Motif (5)

- Is LAPACK parallel?
 - Only if the BLAS are parallel (shared memory)
- ScaLAPACK "Scalable LAPACK" (1995 now)
 - For distributed memory uses MPI
 - More complex data structures, algorithms than LAPACK
 - Only subset of LAPACK's functionality available
 - All at www.netlib.org/scalapack

Success Stories for Sca/LAPACK Widely used - Adopted by Mathworks, Cray, Fujitsu, HP, IBM, IMSL, Intel, NAG, NEC, SGI, NVidia, AMD, ARM - 5.5M webhits/year @ Netlib (incl. CLAPACK, LAPACK95)

- New Science discovered through the solution of dense matrix systems
 - Nature article on the flat universe used ScaLAPACK
 - Other articles in Physics Review B that also use it
 - 1998 Gordon Bell Prize
 - www.nersc.gov/news/reports/newNERSCr esults050703.pdf

Cosmic Microwave Background Analysis, BOOMERanG collaboration, MADCAP code (Apr. 27, 2000).

202

207

The Future of Dense Linear Algebra

- Communication-Avoiding for everything
- Extensions for multicore systems
 - PLASMA Parallel Linear Algebra for Scalable Multicore **Architectures**
 - Dynamically schedule tasks into which the algorithm is decomposed: minimize synchronization & keep all processors busy
- Extensions for GPUs
 - "Benchmarking GPUs to tune Dense Linear Algebra"
 - Best Student Paper Prize at SC08 (Vasily Volkov)
 - MAGMA Matrix Algebra on GPU and Multicore **Architectures**
- How much code generation can we automate?
 - MAGMA, and FLAME (www.cs.utexas.edu/users/flame/)

Sparse Linear Algebra Motif

- Similar problems to dense matrices
 - Ax=b, Least squares, Ax = λx , SVD, ...
- But different algorithms!
 - Exploit structure: only store, work on non-zeros
 - Direct methods
 - LU, Cholesky for Ax=b, QR for Least squares
 - See crd.lbl.gov/~xiaoye/SuperLU/index.html for LU codes
 - See crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf for a survey of available serial and parallel sparse solvers
 - Iterative methods for Ax=b, least squares, eig, SVD
 - Use simplest operation: Sparse-Matrix-Vector-Multiply (SpMV)
 - Krylov Subspace Methods: find "best" solution in space spanned by vectors generated by SpMVs

208

209

Sparse Linear Algebra Motif (2)

- Fast code must minimize communication
 - Especially for sparse matrix computations because communication dominates
- Generating fast code for a single SpMV
 - Design space of possible algorithms must be searched at run-time, when sparse matrix available
 - Design space should be searched automatically
- Biggest speedups from minimizing communication in an entire sparse solver
 - Many more opportunities to minimize communication in multiple SpMVs than in one
 - Requires transforming the entire algorithm
- More information can be found: bebop.cs.berkeley.edu

ODEs and Sparse Matrices

- ODEs/PDEs problems reduce to sparse matrix problems
 - Explicit: sparse matrix-vector multiplication (SpMV).
 - Implicit: solve a sparse linear system
 - Direct solvers (Gaussian elimination)
 - Iterative solvers (Use sparse matrix-vector multiplication)
 - Eigenvalue/vector algorithms may also be explicit or implicit
- Conclusion: SpMV is key to many ODE problems
 - Relatively simple algorithm to study in detail
 - Two key problems: locality and load balance

210

Goals of Reordering

- Performance goals
 - Balance load how is load measured?
 - Approx equal number of non-zeros (not necessarily rows)
 - Balance storage how much does each processor store?
 - Approx equal number of non-zeros
 - Minimize communication how much is communicated?
 - Minimize non-zeros outside diagonal blocks
 - Related optimization criterion is to move non-zeros near diagonal
 - Improve register and cache re-use
 - Group non-zeros in small vertical blocks so source (x) elements loaded into cache or registers may be reused (temporal locality)
 - Group non-zeros in small horizontal blocks so nearby source (x) elements in the cache may be used (spatial locality)
- Other algorithms reorder for other reasons
 - Reduce # non-zeros in matrix after Gaussian elimination
 - Improve numerical stability

214

Graph Partitioning and Sparse Matrices

215

• Relationship between matrix and graph

- Edges in the graph are nonzero in the matrix: here the matrix is symmetric (edges are unordered) and weights are equal (1)
- If divided over 3 procs, there are 14 nonzeros outside the diagonal blocks, which represent the 7 (bidirectional) edges

Graph Partitioning and Sparse Matrices (2)

216

Relationship between matrix and graph

- · A "good" partition of the graph has
 - equal (weighted) number of nodes in each part (load and storage balance).
 - minimum number of edges crossing between (minimize communication).
- Reorder the rows/columns by putting all nodes in one partition together.

216

217

Summary: Common Problems

- Load Balancing
 - Dynamically if load changes significantly during job
 - Statically Graph partitioning
 - Discrete systems
 - Sparse matrix vector multiplication
- Linear algebra
 - Solving linear systems (sparse and dense)
 - Eigenvalue problems will use similar techniques
- Fast Particle Methods
 - O(n log n) instead of O(n²)

