A Sublinear-Time Quantum Algorithm for Approximating Partition Functions

Arjan Cornelissen, Yassine Hamoudi

QuSoft

UC Berkeley

Independent set

= subset of non-adjacent vertices

= occupied

Hard-core gas model in statistical physics

independent sets = 7

Count # independent sets

#P-hard in many regimes

Bipartite graphs

[Provan,Ball'83]

3-regular graphs

[Dyer, Greenhill'00]

Exact counting ——— Approximate counting?

Approximate # independent sets

$$(1 - \epsilon)$$
 #ind $\leq S \leq (1 + \epsilon)$ #ind

Classical algorithms

 $\tilde{O}(n^2/\epsilon^2)$ [Štefankovič, Vempala, Vigoda'09] [Chen,Liu,Vigoda'21]

No FPRAS unless NP = RP

[Sly'10]

Maximum vertex degree

Quantum algorithms

$$\tilde{O}(n^2 + n^{3/2}/\epsilon)$$

[Montanaro'15]

 $\tilde{O}(n^{3/2}/\epsilon)$

[Harrow, Wei'20]

 $\tilde{O}(n^{5/4}/\epsilon)$

Our work

n = #vertices

Weighted independent sets

$$Z(\beta) = \operatorname{Tr}(e^{-\beta H})$$

$$\lambda$$
 = fugacity

$$\lambda^2$$

Partition function:
$$Z(\lambda) = \sum_{I \text{ ind. set}} \lambda^{|I|}$$

Markov Chain Monte Carlo

Partition function:
$$Z(\lambda) = \sum_{I \text{ ind. set}} \lambda^{|I|}$$

Gibbs distribution:
$$\pi_{\lambda}(I) = \frac{\lambda^{|I|}}{Z(\lambda)}$$

$$Z(\lambda_{k+1}) = Z(\lambda_k) \cdot E_{I \sim \pi_{\lambda_k}} \left(\frac{\lambda_{k+1}}{\lambda_k}\right)^{|I|}$$

$$Z(\lambda_{k+1}) = Z(\lambda_k) \cdot E_{\pi_k}(X_k)$$

Markov Chain Monte Carlo

$$Z(1) = E_{\pi_0}(X_0) \cdot E_{\pi_1}(X_1) \cdots E_{\pi_{L-1}}(X_{L-1})$$

Fast mixing Markov chain for π_k

Classical: Glauber dynamics [Chen,Liu,Vigoda'21]

Quant. speedup: Szegedy quantum walk + quant.

simulated annealing [Wocjan, Abeyesinghe'08]

Quantum sample:

$$|\pi_k\rangle = \sum_I \sqrt{\pi_k(I)} |I\rangle$$

Sample efficient estimator for $E_{\pi_k}(X_k)$

Classical: Empirical mean

Quant. speedup: Based on Phase Estimation

[Montanaro'15], [Harrow, Wei'20]

Our improvement: Unbiased estimator

 \Rightarrow Better product estimate $S_0 \cdots S_{L-1} \approx Z(1)$

Unbiased Phase Estimation

Estimate φ where $U | \pi \rangle = e^{2\pi i \varphi} | \pi \rangle$

Standard approach

⇒ Biased finite outcome set

Unbiased Phase Estimation

Estimate φ where $U | \pi \rangle = e^{2\pi i \varphi} | \pi \rangle$

Standard approach

⇒ Biased finite outcome set

Symmetrization

- 1) Sample a random phase θ
- 2) Run Phase Est. on $e^{2\pi i\theta}U$
- 3) Correct for choice of θ
 - \Rightarrow Unbiased estimate of $e^{2\pi i\varphi}$

Estimate $p = ||\Pi|\pi\rangle||^2$ for a projector Π

Unbiased Phase Estimation on $U = \text{Ref}_{\pi} \text{Ref}_{\Pi}$

Unbiased $p = \frac{1}{2} \left(1 - \text{Re} \left[e^{2i \sin^{-1} \sqrt{p}} \right] \right)$

Restoring $|\pi\rangle$? Needed to warm-start next walk

Estimate $p = ||\Pi|\pi\rangle||^2$ for a projector Π

Unbiased Phase Estimation on $U = \text{Ref}_{\pi} \text{Ref}_{\Pi}$

Unbiased
$$p = \frac{1}{2} \left(1 - \text{Re} \left[e^{2i \sin^{-1} \sqrt{p}} \right] \right)$$

Restoring $|\pi\rangle$? Needed to warm-start next walk

Estimate $p = ||\Pi|\pi\rangle||^2$ for a projector Π

Unbiased Phase Estimation on $U = \text{Ref}_{\pi} \text{Ref}_{\Pi}$

Unbiased
$$p = \frac{1}{2} \left(1 - \text{Re} \left[e^{2i \sin^{-1} \sqrt{p}} \right] \right)$$

Restoring $|\pi\rangle$? Rewind the estimation

Estimate $p = \|\Pi\|\pi\|^2$ for a projector Π

Density d(x)

Unbiased Phase Estimation on $U = \text{Ref}_{\pi} \text{Ref}_{\Pi}$

Unbiased
$$p = \frac{1}{2} \left(1 - \text{Re} \left[e^{2i \sin^{-1} \sqrt{p}} \right] \right)$$

Restoring $|\pi\rangle$? Rewind the estimation

Estimate $p = ||\Pi|\pi\rangle||^2$ for a projector Π

Unbiased Phase Estimation on $U = \text{Ref}_{\pi} \text{Ref}_{\Pi}$

Unbiased
$$p = \frac{1}{2} \left(1 - \text{Re} \left[e^{2i \sin^{-1} \sqrt{p}} \right] \right)$$

Restoring $|\pi\rangle$? Rewind the estimation

$$\Omega = \begin{pmatrix} \star & \star & \star \\ \star & \star & \star \end{pmatrix}$$

Examples:

- independent sets
- k-colorings
- matchings
- (volume of convex body)
- (Ising model)
- ...

Approximate the size $|\Omega|$ in time

$$\approx \log^{3/4} |\Omega| \times \sqrt{\text{classical mixing time}}$$

Previous work:

$$\log |\Omega| \times ...$$

Open question: $log^{1/2} |\Omega| \times \sqrt{class}$. mixing time ?