UMMUL QURA HIGH SCHOOL

AROWONA BUS-STOP, AMULOKO-AKANRAN ROAD, IBADAN. 2020/2021 THIRD TERM EXAMINATION

SUBJECT: Mathematics DURATION : 3hrs

CLASS: SS1 INSTRUCTION: Attempt section A and B

SECTION A: OBJECTIVES

- 1. Given that $A = \{3, 4, 5, 6\}, B = \{3, 4, 5, 6\}$
 - 5, 7, 9, 11}. Find A v B.
 - A. {3, 4, 5, 6, 7, 9, 11}
 - B. {3, 3, 5, 4, 5, 6, 7, 9}
 - C. {3,3, 4, 5, 6,7,9,11}
 - D. {3, 4, 5,5, 7, 9,11}
- 2. Which of the following is an empty set?
 - A. {month beginning with A}
 - B. {month beginning with K }
 - C. {Days beginning with S }
 - D. {None of the above}
- 3. Given that set {9, 10, 11}, find all the possible sub-sets.
 - A. $\{9\}, \{10\}, \{11\}, \{9,10\}, \{9,11\}, \{10,11\}, \{\phi\} \text{ and } \{9,10,11\}$
 - B. {9},{10}, {11}
 - C. {9}, {10}, {11}, {9, 10}, {9, 11}, {10, 11}, {9, 10, 11}
 - D. $\{9, 10\}, \{9, 11\}, \{10, 11\}, \{\phi\},$ and $\{9, 10, 11\}$
- 4. Given the set $B = \{1, 2, 3, 4\}$, $C = \{g, b, c, e\}$. Find B v C.
 - A. {1, 2, 3, 4, g, b}
 - B. $\{g, b, c, e\}$
 - C. $\{1, 2, 3, 4\}$
 - D. $\{1, 2, 3, 4, g, b, c, e\}$
- 5. Let $A = \{a, b, c, d, e, f\}$ and $B = \{a, e, i, o, u\}$. Find $A \cap B$.
 - A. $\{a, b, c\}$
 - B. {a, e}
 - C. {a, o}

- D. {o, u}
- 6. Given a universal set $N = \{x : 2 \le x \le 5\}$ where X is an integer and the subset $A = \{x : 1 \le x \le 4\}$ and $B = \{x : -1 \le x \le 3\}$. $A \cap B$ is
 - A. {2, 3, 4}
 - B. {2, 3}
 - C. {-1, 0, 1, 2}
 - D. {2}
- 7. If $A = \{11, 12, 13, 14\}$ and $B = \{w, 12, 13, 14\}$
 - x, y, z. $A \cap B$ is
 - A. {11, 12, 13, 14}
 - B. $\{w, x, y, z\}$
 - C. { }
 - D. {11, 12, 13, 14, w, x, y, z}

Let $N = \{a, b, c, d, e, f, g, h\}$, $A = \{a, b, c, d\}$ $B = \{b, d, f, h\}$. use the above to answer question 8 - 9

- 8. $(A v B)^I$ is
 - A. $\{a, b, c, d, f, h\}$
 - B. $\{e, g\}$
 - C. $\{a, b, c, d\}$
 - D. $\{c, d, f, h\}$
- 9. $(A \cap B)^{I}$ is
 - A. $\{a, c, e, f, g, h\}$
 - B. {b, d}
 - C. $\{f, g, h\}$
 - D. $\{a, c, e, f\}$
- 10. In a class of 40 students a student can study French or History or both. If 20 study French, 23 study History

and 6 study neither, how many students study both subjects?

- A. 40
- B. 20
- C. 23
- D. 9
- 11. Make g the subject of the formula in the equation: $T = 2\pi \sqrt{\frac{h + k}{gh}}$ A. $4\pi^2(h^2 + k^2)$

 - B. $4\pi^{2}(h^{2}+k^{2})$

 - D. $\frac{gh}{h^2 + k^2}$
- 12. $V = \frac{1}{3} \pi r^2 h$ is the volume of a circular cone of base radius r and length h. make r the subject of the formular and find r when the volume is $898\frac{1}{3}$ cm³ and h = 70cm. (Take π = 22/7).
 - A. $3\frac{1}{2}$
 - B. 3
 - C. $\frac{14}{2}$
- 13. If P varies directly as R, and R = 12when P is 10, find the relationship between P and R.
 - A. $P = \frac{5}{6} R$
 - B. $R = \frac{5}{6} R$
 - C. $P = \frac{6}{5} R$
 - D. $P = \frac{10}{15} R$
- 14. P is inversely proportional to Q and P = 5 when Q = 4. What is the value of Q when P = 25.
 - A. 20

- B. $\frac{4}{5}$ C. $\frac{6}{4}$
- D. 5
- 15. If m varies directly as n and inversely as the square of P. If m = 3when n = 2 and p = 1, find m in term of n and p
 - A. $n = \frac{3m}{p^2}$
 - B. $m = \frac{n}{p^2}$
 - C. $m = \frac{p^{2}}{3n}$ D. $\frac{3p^{2}}{4n}$
- 16. Factorize $X^2 + 9x + 14$.
 - A. (x+3)(x+5)
 - B. (x + 3)(x + 6)
 - C. (x + 2)(x + 7)
 - D. (x + 4)(x + 5)
- 17. Factorize $16y^3 + 16y^2 + 4y$
 - A. (2y + 1)(2y + 2)
 - B. (2y+4)(2y+4)
 - C. 4y(2y + 1)(2y + 1)
 - D. (y + 1)(y + 16)
- 18. Factorize $12x^2y^2 + 11xy 1$
 - A. (xy-1)(12xy+1)
 - B. (y-1)(12x+1)
 - C. (xy-2)(10xy+1)
 - D. (xy-1)(12xy+2)
- 19. Factorize $16h^3 + 16h^2 + 4h$
 - A. 4h(2h+2)(2h+1)
 - B. (2h + 1)(2h + 1)
 - C. 4h(2h + 1)(2h + 1)
 - D. 2h(2h + 1)(2h + 1)
- 20. Factorize $27p2 3q^2$
 - A. (3p q)(3p q)
 - B. 3(3p-q)(3p+q)
 - C. (3p + q)(3p + q)
 - D. 3(3p + q)(3p + q)

- 21. Construct a quadratic equation whose roots are $\frac{-2}{5}$ and $\frac{1}{3}$ respectively.
 - A. $3t^2 + t 2 = 0$
 - B. $15t^2 + t 2 = 0$
 - C. $4t^2 + 3t 2 = 0$
 - D. $t^2 + t 2 = 0$
- 22. find the missing angles

- A. 57
- B. 62
- C. 51
- D. 67
- 23. A chord is drawn 3cm away from the centre circle of radius 5cm. calculate the length of the chord.
 - A. Length of the chord = 2cm
 - B. Length of the chord = 4cm
 - C. Length of the chord = 3cm
 - D. Length of the chord = 5 cm
- 24. what is the sum of the interior angles of a dodecagon?
 - A. 180°
 - B. 1800^{0}
 - C. 170°
 - D. 18⁰
- 25. a regular polygon has an interior angle equal to 168⁰. The number of sides it has is
 - A. 14
 - B. 16
 - C. 17
 - D. 12

- 26. A polygon has the following interior angles: y^0 , $(y + 10)^0$, $(y + 20)^0$, $(y + 30)^0$, $(y + 40)^0$ and $(y + 50)^0$. The value of y is
 - A. 75^{0}
 - B. 85°
 - C. 65°
 - D. 95⁰
- 27. The sum of the angles of a regular polygon is 2520°. How many sides does the polygon have
 - A. 180
 - B. 16
 - C. 4
 - D. 14
- 28. The sum of the interior angles of a polygon of n sides is 900°. Find the value of n
 - A. 8
 - B. 4
 - C. 9
 - D. 7
- 29. Find the value of x in the diagram below

- A. 72
- B. 108
- C. 74
- D. 77
- 30. The angle marked in the diagram below is

- A. 45
- B. 70
- C. 55
- D. 45
- 31.

In the above diagram the value of $\boldsymbol{\phi}$

is

- A. 45
- B. 125
- C. 65
- D. 55
- 32. The value of x in the diagram is

- A. 90
- B. 35
- C. 15

- D. 45
- 33. The value of x in the worked angle is
 - A. 54
 - B. 39
 - C. 87
 - D. 77
- 34. Express 0.0462 in standard form
 - A. 0.462 x 10⁻¹
 - B. 0.462 x 10⁻²
 - C. 4.62 x 10⁻¹
 - D. 4.62 x 10⁻²
- 35. The population of a village is 5846. Express this number to three significant figures
 - A. 5850
 - B. 5840
 - C. 5860
 - D. 5870
- 36. Simplify: $\left(\frac{1}{4}\right)^{-1\frac{1}{2}}$
 - A. $\frac{1}{8}$
 - B. $\frac{1}{4}$
 - C. 2
 - D. 8
- 37. If the area of DCF = 24cm³, Find the area of the quadrilateral ABCD in the diagram below:

- A. 24cm²
- B. 48cm²
- C. 80cm²
- D. 96cm²

38. In the diagram below, QRS is a straight line, QP//RT, PRQ = 56° , < QPR = 84 and <TRS = X° . Find x.

- A. 28
- B. 40
- C. 44
- D. 84
- 39. Simplify $r^7 \div r^7$
 - A. 0
 - B. 1
 - C. 2
 - D. 3
- 40. Solve $\frac{5^{x+3}}{25^{2x-3}} = 1$
 - A. 5
 - B. 3
 - C. 4
 - D. 1
- 41. Simplify $3^{2-1} \times 3^{1-2}$
 - A. 1
 - B. 0
 - C. 2
 - D. 5
- 42. Simplify $8^{2/3}$ x $27^{-1/3}$

$$64^{1/3}$$

- A. -3
- B. $\frac{1}{9}$
- C. $\frac{1}{3}$
- D. $^{27}/_{8}$
- 43. Solve the equation $5x^2 4x 1 = 0$

A. -1,
$$\frac{1}{5}$$

B.
$$-1, -1/_{5}$$

- C. 1½
- D. 1, $-1/_{5}$
- 44. Make S the subject of the formula

$$V = \underbrace{K}_{T-S}$$
A.
$$S = \underbrace{T - K^2}_{V^2}$$
B.
$$S = K^2 - T$$

$$B. S = \underline{K^2 - T}$$

C.
$$S = T - V^{2}$$

$$K^{2}$$
D.
$$S = \underline{T(V^{2} - K^{2})}$$

$$V^{2}$$

 V^2 45. Find the equation whose roots are

$$\frac{2}{3}$$
 and $\frac{1}{4}$

A.
$$12x^2 + 11x - 2 = 0$$

B.
$$12x^2 - 11x + 2 = 0$$

C.
$$X^2 - \frac{11}{12}x + 2$$

D.
$$X^2 + \frac{11}{12}x - 2 = 0$$

- 46. What is $A \cap B$ in the diagram below?
 - A. (2, 3)
 - B. (2, 3, 4)
 - C. (1, 2, 3)
 - D. (2, 3, 8)

47. Simplify $(2\frac{1}{6} - 1\frac{2}{3}) \div 2\frac{2}{3}$

A.
$$\frac{3}{16}$$

B.
$$\frac{7}{16}$$

C.
$$1\frac{13}{24}$$

A.
$$\frac{3}{16}$$
B. $\frac{7}{16}$
C. $1\frac{13}{24}$
D. $2\frac{11}{24}$

48. Expand (2x - 5)(x - 3)

A.
$$X^2 - 1x - 15$$

B.
$$2x^2 - 11x + 15$$

C.
$$2x^2 - 5x - 8$$

D.
$$X^2 - 5x - 15$$

49. If
$$3p - q = 6$$
 and $2p + 3q = 4$, find q

B.
$$\frac{1}{2}$$

C.
$$\frac{2}{3}$$

50. M varies directly as n and inversely as the square of P. if M = 3, when n = 2 and p = 1, find M in terms of n and p

A.
$$M = \frac{2n}{3P}$$

B.
$$M = \frac{2n^2}{2P^2}$$

C.
$$M = \frac{n^2}{2p}$$

D.
$$M = \frac{3n}{3p^2}$$

SECTION B: THEORY PART

INSTRUCTION: ANSWER ANY FOUR QUESTIONS

- 1a. Verify that $(A \cap B) \cap C = A \cap (B \cap C)$
- b. Show that the statement : $[\sim P \land (P \lor Q)] \Rightarrow Q$ is a tautology.
- c. Show that the statement : $(P \land Q) \land \sim (P \lor Q)$ is a contraction.
- 2. The cost of maintaining a car is partly constant and partly varies with the distance travelled in a given month. The cost c for a particular month was #1250 when the distance d travelled was 300km, in another month, the cost was #3500 for a distance of 1200km. find:
- a. the formula connecting c and d.
- b. the cost for a journey of 1600km.
- c. make R the subject of the formular in I = E $R^2 + W^2L^2$
- 3a. Prove that the sum of angles of a triangle is two right angle.
- b. What is the value of the angle marked m? in the diagram below.

c. Find the marked angle y and x in the diagram below

- 4. In a class of 80 students for a seasonal examination, 34 students study English, 29 study History while 42 study Geography. 12 study English and History, 14 study Geography and History and 8 study English and Geography while 4 students did not study any of the three subjects.
 - i. how many students study the three subjects?
 - ii. how many students study any combination of two subjects only?
 - iii. how many students study at least 2 combination

5.

In the diagram above, we are given Δ XYZ with X = 90. YZ, XZ and XY are length, x, y and z unit respectively. Prove that $x^2 = y^2 + z^2$.

b. $\triangle ABC$ is right-angled at A and $\langle AB \rangle = 2 / AC / 2$. Prove that $\langle BC \rangle^2 = 5 / AC / 2$

c.

In the parallelogram PQRS and XYRS above, are on the same base SR and between the same parallel PY, SR. Prove that PQRS = XYRS.

6a.

In the diagram above prove that:

- (i) opposite side are equal
- (ii) the opposite angles are equal
 - b. Find the angles p, q, x in the diagram below:

c. Prove that PX/ = XR/, QX/ = XS/ in the diagram below

