Network Slicing in the on-board Nextgeneration of train communication networks

David Kule Mukuhi*2,Léo Mendiboure*, Rodrigue Fargeon², Sylvain Cherrier*, Pierre-Yves Petton², Marion Berbineau*, Rami Langar*.

*Université Gustave Eiffel, 2SNCF-SA

- 1. Context
- 2. Problem
- 3. State of the art
- 4. Our proposal
- 5. Questions

On-board Network

TCMS

- Automatic Train Protection (ATP) SIL 4
- Automatic Train Operation (ATO)
- ETCS Bearing temperature (SIL 2)
- Breaks beed measurement (SIL 2)
- Train Fleet Management Systems [SIL 0 to SIL 2]
- Passenger Information System (PIS) [SIL 0 to SIL
 2]

OOS

- CCTV
- Infotainment onboard train devices.
- Automatic passenger counting.
- Vehicle positioning-service (also exists in TCMS domain)
 - Fare management or ticketing.
 - Driving assistance system.
 - E-schedule (schedule for the driver).
 - Diagnostic systems and CBM (condition-based maintenance) (service exists in the TCMS domain as well).
 - Passenger Information System (PIS)

COS

 User equipment access (example Wi-Fi hotspots).

1. Emergency communication

protection (black box)

-to-wayside communication

From Wired Train BackBone

To Wireless Train Backbone

- 1. Context
- 2. The Problem?
- 3. State of the art
- 4. Our proposal
- 5. Questions

How do we share radio resource for all Networks?

1. Critical Services:

10 Mbps, 20 ms

3. Customer service 40 Mbps, 250ms

Network Slicing Principle

Focus RAN

access

node

node

node

- 1. Context
- 2. Problem
- 3. State of the art
- 4. Our contribution
- 5. Questions

State of the art

^[2] C. Yongzhou, Y. Ruihao, H. Haitham, and M. Radhika, "Channel-Aware 5G RAN Slicing with Customizable Schedulers," 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 24), pp. 1767-1782, Apr. 2023.

^[1] R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan, "NVS: a virtualization substrate for WiMAX networks," in *Proceedings of the sixteenth annual international conference on Mobile computing and networking*, Chicago Illinois USA: ACM, Sep. 2010, pp. 233–244. doi: 10.1145/1859995.1860023.

- 1. Context
- 2. Problem
- 3. State of the art
- 4. Our contribution
- 5. Questions

Our contribution

- 1. Predict Channel condition
- 2. Satisfy Hetergeneous Railways constraints
- 3. Assign RB using RL model

CQI Prediction Results

 LSTM [1]: Neural network model known for time series forecasting and its ability to capture long-term dependencies using memory cell to prevent overfitting

hidden layer 1 hidden layer 2

• Random Forest [2]: ensemble learning technique that builds multiple decision trees to improve accuracy and reduce overfitting in regression tasks.

XGBoost [3]: optimized gradientboosting algorithm that enhances decision trees' performance, known for its speed and accuracy,

The dataset is divided into 80% of data for training, 10% for validation and 10 % for Testing

Model	Val accuracy	SMAPE	Tolerance 5%	Test accuracy	SMAPE	Tolerance 5%
Xgboost	93,86	6,14	71,26	89,47	10,53	36,24
LSTM	92,52	7,48	58,57	89,61	10,38	28,3
Random Forest	93,30	6,70	55,63	88,89	11,11	29,03

^[1] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Computation, vol. 9, no. 8, pp. 1735-1780, Nov. 1997. doi: 10.1162/neco.1997.9.8.1735

^[2] L. Breiman, "Random Forests," Machine Learning, vol. 45, no. 1, pp. 5-32, 2001, doi: 10.1023/A:1010933404324.

CQI Prediction Results

Model	Val accuracy	SMAPE	Tolerance 5%	Test accuracy	SMAPE	Tolerance 5%
Xgboost	93,86	6,14	71,26	89,47	10,53	36,24
LSTM	92,52	7,48	58,57	89,61	10,38	28,3
Random Forest	93,30	6,70	55,63	88,89	11,11	29,03

Conclusion

- XGBoost are better performance over all
- Accuracy decrease when prediction horizon is long

Implications

- Use XGBoost predictions
 - upto 1 sec in static channel condition
 - Upto 500ms is stable condition
 - No prediction during unstable channel condition
- Error Threshold between channel should be trigger based on stand deviation of channel data

Testbed

Software Hardware gNB (srsRAN) Open5GS AMF-UPF CU N2-N3 Other ... NR RT-RIC E2 Xapp: Core Network **Dell Precision** Al agent DU **Functions** 5820 Tower MAC PHY (((2))) RU USRP x310 UE **NVIDIA Jetson Car**

Conclusion

- 1. Leverage Network slicing in NG-TCN
- 2. Use ML to implement an intelligent Slice resource allocator
 - Satisfy Hetergeneous Railways constraints
 - Predict Channel condition
 - Assign RB using RL model

Perspectives

1. CQI prediction

2. PRB Allocation Model

3. Algorithm evaluation

- Model selection
- Performance comparison

Performance evaluation

THANK YOU

