

problema 5 "

a) Verdedeva, Suberness que, $\exists c_1, c_2 \neq c_1 (g(n)) \neq f(n)$ $y \neq f(n) \neq c_2 g(n)$. Además, $\exists c_3, c_4 \neq c_3 h(n) \neq g(n) \neq c_4 h(n)$ $\Rightarrow c_1 c_3 h(h) = f(n) \neq c_2 c_4 h(n)$ $\Rightarrow f(n) = \Theta(h(n)), y per$ $simetria h(n) = \Theta(f(n)), g$

b) Verdaderro Jabemes que, $f_{c1} \neq f_{(n)} \neq c_{1}g_{(n)}$, y $f_{c2} \neq g_{(n)} \neq c_{2}h_{(n)}$ $\Rightarrow f_{(n)} \neq c_{1}c_{2}h_{(n)} = ch_{(n)}$, $c = c_{1}c_{2}$ $\Rightarrow f_{(n)} \neq h_{(n)}$ $c = c_{1}c_{2}$ $c = c_{1}c_{2}$ C) Falso.

En el vodido se tiene una tupla de O(n) con un idoble buncle $\Rightarrow O(n^2)$. Sin embargo of final se crea una subtupla, entencos, $\sum_{i=0}^{n-1}\sum_{j=i+1}^{n-1}o(j-1)=o\left(\sum_{i=0}^{n-1}\frac{(n-i-1)(n-i)}{2}\right)$ $=O(n^3/6)$... $O(n^3)$.