Boston Makmur Gemilang Data Engineer Test

Summary: After we have successfully migrated our Json files to PostgreSQL server, we will split and connect between each table to creates relationship.

Details:

Database : PostgreSQL Server : Localhost

Explanations:

The exam test & Exam_test_Datas are the result of the json files we have migrated recently from python.

Exam test table:

- index : Automatically generated by python
- event: Indicates the type of event
- oon: Indicates on which entity event occurred
- at:timestamp of the entity
- data: This is the list of nested JSON (we parsed it into another tables on Exam_test_Datas)
- organization_id : Identifies the organization event belongs to

Exam_test_Datas table:

- index : Automatically generated by python
- id: The user id of the vehicle
- -locations_lat: The latitude of the vehicle-locations_lng: The longitude of the vehicle
- -locations at: The timestamp
- -starts: Timestamp -finish: Timestamp

Problems: as we can see, both of the tables contains a lot of information, and it has to be normalized and breakdown to avoid the anomalies or redundancy in the upcoming times.

Solution: creates a separates table to store each unique attributes as a primary key

Explanations: we have divided our table into a more approachable design, now that each unique attributes has primary key.

User_id table

- User_id = Unique Key/ Primary Key
- Id = The id of the user

vehicle location table

- vehicle_location_id = Unique Key/Primary Key
- locations lat = The latitude of the vehicle
- locations_Ing = The longitude of the vehicle

user_vehicle_location table: serves as an intermediate table for both user and vehicle tables

- user_id = Foreign key of user_id
- vehicle_location_id = Foreign key of vehicle_id

Event_tab table

- id = Unique Key/ Primary key
- event: Indicates the type of event
- oon: Indicates on which entity event occurred

user_event_timestamp : user event timestamp tables uses both user_id & timestamp to indicates precisely when one's event take times

- user_id = Foreign key of user_id
- timestamp = timestamp
- event_id = Foreign key of event_id

Before Normalization:

Exam test Datas table

Exam_test table:

After Normalization:

User_id table

Vehicle location table

Event_tab table

User_event_timestamp table

User_vehicle_location table

Thank you for your attentions, let's move on to the visualization part.