Intro to Machine Learning (CS771A, Autumn 2018) Practice Problem Set 2

Problem 1

Consider N count-valued observations $\mathbf{y}=\{y_1,y_2,\ldots,y_N\}$ drawn i.i.d. from a Poisson distribution $p(y|\lambda)=\frac{\lambda^y e^{-\lambda}}{y!}$ where λ is the rate parameter of the Poisson. Assume a gamma prior on λ , i.e., $p(\lambda)=\operatorname{Gamma}(\lambda;\alpha,\beta)=\frac{\beta^\alpha}{\Gamma(\alpha)}\lambda^{\alpha-1}e^{-\beta\lambda}$, where $\alpha>0$ is the *shape parameter* and $\beta>0$ is the *rate parameter*, respectively, of the gamma. 1. Note that, for this parameterization of gamma distribution, the prior's *mode* is $\frac{\alpha-1}{\beta}$ and mean is $\frac{\alpha}{\beta}$.

- Derive the MLE and MAP estimates for λ .
- Derive the posterior distribution for λ .
- Show that the MAP estimate (i.e., mode of the posterior) can be written as weighted combination of the MLE estimate and the prior's mode. Likewise, show that the posterior's *mean* can be written as a weighted combination of the MLE estimate and the prior's *mean*.
- Compute the predictive distribution $p(y_*|y)$, given the MLE and MAP estimate of λ , and also given the full posterior distribution over λ . In all the three cases, this would be an probability distribution over counts. Is it a Poisson in all the three cases?

Problem 2

The NLL for logistic regression model $(y_n \in \{0, 1\})$ was

$$\mathrm{NLL}(\boldsymbol{w}) = -\sum_{n=1}^{N} (y_n \boldsymbol{w}^{\top} \boldsymbol{x}_n - \log(1 + \exp(\boldsymbol{w}^{\top} \boldsymbol{x}_n)))$$

Take its derivative w.r.t. w and show that the gradient can be written as a weighted combination of the N inputs. Also convince yourself that closed form solution for w is not possible in this case (unlike linear regression).

Take a close look at the form of the gradient expression you have obtained. This expression has an intuitive meaning in terms of which inputs contribute how much to each update of w when you apply the gradient descent procedure $w_{t+1} = w_t - \eta g$, where g denotes the gradient.

¹There is an alternate parameterization of gamma in terms of shape α and scale θ , for which $p(\lambda) \propto \lambda^{\alpha-1} e^{-\frac{\lambda}{\theta}}$