Network Basics - Comprehensive Exam Notes

1. Introduction to Network Protocols

What is a Network Protocol?

- Definition: A set of rules used for communication between entities in different systems
- Purpose: Enables two entities to communicate successfully by "speaking the same language"
- Key Elements:
 - What is communicated
 - How it is communicated
 - When it is communicated

Layered Communication

- Concept: Complex communication tasks are divided into multiple layers
- Benefit: Each layer can have its own protocol, simplifying the overall system
- Example: Maria (Spanish) and Ann (English) using sign language as a common protocol

Real-World Analogy

- Face-to-face communication: Single layer (sign language)
- Remote communication: Multiple layers (encoding machines creating secret codes)
- This demonstrates how physical separation requires additional protocol layers

2. OSI Model (Open Systems Interconnection)

Background

- Created: 1983 by ISO (International Organization for Standardization)
- **Purpose**: Standardize network communication protocols
- **Structure**: 7 layers organized into upper and lower layers

Layer Classification

- Upper Layers (Layers 5-7): Local and end-user focused
- Lower Layers (Layers 1-4): Network and communication services focused

The 7 OSI Layers (Top to Bottom)

1. Application Layer (Layer 7)

- User interface and application services
- Examples: HTTP, FTP, SMTP

2. Presentation Layer (Layer 6)

- Data formatting, encryption, compression
- Character encoding, data translation

3. Session Layer (Layer 5)

- Session management and control
- Establishes, maintains, terminates connections

4. Transport Layer (Layer 4)

- End-to-end data delivery
- Error correction, flow control
- Examples: TCP, UDP

5. Network Layer (Layer 3)

- Routing and logical addressing
- Path determination across networks
- Example: IP

6. Data Link Layer (Layer 2)

- Node-to-node delivery
- Error detection and correction
- Examples: Ethernet, Wi-Fi

7. Physical Layer (Layer 1)

- Physical transmission of raw bits
- Hardware specifications
- Examples: cables, radio frequencies

3. TCP/IP Protocol Suite

Background

- Development: Created before the OSI model
- Evolution: Originally 4 layers, now commonly described as 5 layers
- **Practical Usage**: More widely implemented than pure OSI

TCP/IP vs OSI Model Comparison

OSI Layer	TCP/IP Layer	Function
Application, Presentation, Session	Application	User applications and services
Transport	Transport	End-to-end communication
Network	Internet	Routing and logical addressing
Data Link	Data Link	Frame transmission
Physical	Physical	Physical transmission
4	1	•

Key Differences

• OSI: 7 layers, theoretical framework

• TCP/IP: 5 layers (originally 4), practical implementation

Layer Mapping: OSI's top 3 layers combine into TCP/IP's Application layer

4. Communication Process Across Layers

Physical Layer Communication

• **Data Type**: Raw bits (011...101)

• **Scope**: Direct electrical/optical signals

• Path: Travels through each physical link in the network

Data Link Layer Communication

Data Unit: Frames

• Components: Header (H2) + Data (D2)

• Function: Node-to-node delivery with error detection

Address Changes: Physical addresses change at each hop

Network Layer Communication

Data Unit: Datagrams/Packets

• **Components**: Header (H3) + Data (D3)

• Function: End-to-end routing

• Address Consistency: Logical addresses remain constant

Transport Layer Communication

- **Data Unit**: Segments
- **Components**: Header (H4) + Data (D4)
- Function: Process-to-process delivery
- Reliability: Ensures complete data transmission

Application Layer Communication

- **Data Unit**: Messages
- **Components**: Data (D5)
- Function: User application communication
- Simplicity: Pure data exchange between applications

5. Addressing in TCP/IP

Four Levels of Addresses

1. Physical Address (Layer 2)

- Format: MAC address (e.g., 07:01:02:01:2C:4B)
- **Length**: 48 bits (6 bytes)
- **Scope**: Local network segment
- Characteristic: Changes at each network hop

2. Logical/IP Address (Layer 3)

- **IPv4 Format**: Dotted decimal (e.g., 130.130.215.2)
- IPv6 Format: Hexadecimal with colons
- Scope: Global internet
- Characteristic: Remains constant end-to-end

3. Port Address (Layer 4)

- **Format**: 16-bit number (e.g., 80)
- **Range**: 0-65535
- Function: Identifies specific application/service
- Well-known Ports:
 - FTP: 20 (data), 21 (control)
 - SSH: 22

- TELNET: 23
- SMTP: 25
- HTTP: 80

4. Application-Specific Address (Layer 7)

• Format: Domain names (e.g., <u>www.uow.edu.au</u>)

Function: Human-readable identifiers

Resolution: Converted to IP addresses via DNS

Address Resolution Process

1. **Application**: Uses domain name

2. **DNS**: Resolves to IP address

3. **IP**: Routes to correct network

4. ARP: Resolves IP to MAC address

5. **Physical**: Transmits to specific hardware

6. Internet Security Threats

1. Packet Sniffing

- **Definition**: Unauthorized interception of network packets
- **Method**: Attacker reads all packets passing through network
- Risk: Can capture unencrypted data (passwords, personal information)
- Prevention:
 - Use encryption (HTTPS, VPN)
 - Implement network segmentation
 - Use switched networks instead of hubs

2. IP Spoofing

- **Definition**: Forging source IP address in packets
- **Method**: Attacker generates raw IP packets with false source addresses
- **Risk**: Receiver cannot verify actual packet source
- Impact: Can bypass IP-based security measures
- Prevention:

- Implement ingress filtering
- Use authentication mechanisms
- Deploy intrusion detection systems

3. Denial of Service (DoS)

- Definition: Overwhelming target with malicious traffic
- Method: Flood of packets "swamps" receiver's capacity
- Variants:
 - **DoS**: Single source attack
 - **DDoS**: Multiple coordinated sources

Common Attacks:

- SYN flood attacks
- UDP floods
- Ping of death

Prevention:

- Rate limiting
- Traffic filtering
- Load balancing
- DDoS protection services

7. Key Concepts for Exam Success

Essential Definitions

- Protocol: Set of communication rules
- Encapsulation: Adding headers at each layer
- Routing: Path selection for data transmission
- Addressing: Identifying network entities at different layers

Layer Functions Memory Aid

- **Physical**: "Please" Physical transmission
- Data Link: "Do" Direct node-to-node delivery
- Network: "Not" Network routing
- Transport: "Throw" Transport reliability

- Session: "Sausage" Session management
- **Presentation**: "Pizza" Presentation formatting
- Application: "Away" Application services

Common Exam Questions

- 1. Layer identification: Match protocols to OSI layers
- 2. Address types: Identify address formats and purposes
- 3. **Communication flow**: Trace data through network layers
- 4. **Security threats**: Explain attack methods and countermeasures
- 5. **Protocol comparison**: OSI vs TCP/IP differences

Study Tips

- Understand, don't memorize: Focus on concepts and relationships
- **Practice scenarios**: Work through communication examples
- Know the numbers: Memorize well-known port numbers
- Security awareness: Understand threat mechanisms and defenses
- Real-world application: Connect concepts to actual network technologies

8. Additional Resources

Recommended Video

- Warriors of the Net: Animated introduction to TCP/IP networking
- URL: http://www.youtube.com/watch?v=TBxZqOGjyZc
- **Value**: Visual representation of packet journey through network layers

Further Reading

- Behrouz A. Forouzan, "TCP/IP Protocol Suite"
- OSI Model detailed specifications
- Current network security best practices