Fuel Cells 2

Ionic conduction

All the technologies in this course rely on ionic motion. In the solid state, this occurs through two main mechanisms:

There is an energy barrier E_{a} to ionic diffusion

- This can be overcome by thermal energy
- Follows an Arrhenius relationship:

$$\sigma(T) = Ae^{rac{-E_{
m a}}{RT}}$$

Diffusion pathways are often complex

- Often there are competing pathways, with different energy barriers.
- Diffusion pathways can be calculated and/or experimentally determined

e.g. **NASICON** Na⁺ conductor, Na₃Zr₂(SiO₄)₂(PO₄):

Characterising diffusion

Impedance spectroscopy allows us to determine the conductivity at different temperatures.

$$\sigma(T) = Ae^{rac{-E_a}{RT}}$$

- A plot of $\ln \sigma(T)$ versus 1/T has slope $= \frac{-E_a}{R}.$
- We usually plot $\log_{10}\sigma$ then slope $=rac{-E_a}{2.303R}$

e.g. NASICON again:

Ionic conduction

$$\sigma(T) = Ae^{rac{-E_a}{RT}}$$

- - (conductivity should increase with more charge carriers)
- However, at high defect concentrations we can get defect clusters
 - Local ordering of vacancies (or other defects) reduces conduction

e.g. YSZ:
$$((1-x)ZrO_2 + \frac{x}{2}Y_2O_3 \longrightarrow Y_xZr_{1-x}O_{2-\frac{x}{2}})$$
:

Long-range ordering

In some cases, long-range ordering of anions or cations can influence conductivity.

Ba₂In₂O₅

- Brownmillerite structure (essentially ABO_{2.5} perovskite with ordered vacancies)
- Low conductivity at low T due to anion ordering
- Large increase in conductivity as vacancies disorder

Oxide/Proton conductors

e.g. Perovskite ${\rm BaTi_{2.98}Ca_{0.02}O_{2.98}}$:

- In dry N₂ is an oxide ion conductor
- In wet N₂, shows proton conduction below 600 K, and oxide ion conduction

above this

Why?

In the presence of anion vacancies:

$$\mathrm{H_2O} + \mathrm{O^2}^- \longrightarrow 2\,\mathrm{OH}^-$$

In theory this could occur for *any* oxidevacancy conductor, but depends strongly on the enthalpy change during water incorporation.

How are protons transported?

Two possible mechanisms:

- Vehicle mechanism
 - Direct diffusion of
 OH⁻
- Grotthuss mechanism
 - Exchange of H⁺
 between
 neighbouring OH⁻

- The Grotthuss mechanism dominates
 - Water incorporation fills anion vacancies, so there is no conduction pathway for OH⁻

Which fuel to chose?

Lots of economic parameters to consider. Some work has been done in relation to fuel cell vehicles

'Well-to-wheel' analysis

H₂ is the most efficient fuel (ignoring many other factors), but there are two important obstacles to a *hydrogen economy*:

- Generation
- Storage

Hydrogen generation

Chemical methods

- · Steam reforming
 - High temperatures and pressures required
 - Requires catalyst (e.g. Ni, Pt, Rh)
 - Produces a mixture of H₂, CO, CO₂ and H₂O

- Pyrolysis
 - Thermal cracking of hydrocarbons in the absence of oxygen
 - Precious-metal catalyst required
 - Produces carbon waste
- lodine-sulfur cycle:

$$\begin{split} \mathrm{I_2} + \mathrm{SO_2} + 2\,\mathrm{H_2O} &\longrightarrow 2\,\mathrm{HI} + \mathrm{H_2SO_4} & (T = 120^{\circ}C) \\ 2\,\mathrm{HI} &\longrightarrow \mathrm{I_2} + \mathrm{H_2} & (T = 450^{\circ}C) \\ \mathrm{H_2SO_4} &\longrightarrow \mathrm{SO_2} + \mathrm{H_2O} + \frac{1}{2}\mathrm{O_2} & (T = 850^{\circ}C) \end{split}$$

Hydrogen generation

Biological sources

- Fermentation
 - Enzymatic conversion of sugars to H₂

$$\circ \ \text{e.g.} \ \mathrm{C_6H_{12}O_6} + 2\,\mathrm{H_2O} \longrightarrow 2\,\mathrm{CH_3CO_2H} + 2\,\mathrm{CO_2} + 4\,\mathrm{H_2}$$

- Photosynthesis
 - Green algae (and others) can use sunlight to generate H₂

Direct water splitting

- Electrolytic splitting
 - Use electricity to split water directly
 - Can use renewable energy sources
- Direct solar splitting
 - Use solar furnace to reach the ~2000 K required to split water directly

Hydrogen Storage

Under pressure

- Compressed gases are an established technology, but
- H₂ is not an ideal gas
 - Extremely high pressures are required to achieve a reasonable density (much higher than hydrocarbons)
- Safety concerns over compressed H₂

Hydrogen Storage

Cryogenically

- Liquid H₂ (LH2) has a density of 70.6 kg m⁻³
- Boiling point = 21.2 K (at ambient pressure)
- but hydrogen liquifaction is technically challenging
 - At room temperature, H₂ warms on expansion
 - Conversion between ortho and para H₂ is exothermic
 - at RT, 75% ortho, but para is the low-temperature stable form
- Liquifaction takes ~35% of the energy stored in H₂!

Hydrogen Storage

Chemically - Physisorption

- High surface area materials (e.g. activated carbon) can adsorb H₂
- How much?

$$\circ~A = \left(rac{M_{ads}}{
ho_{
m liq}N_A}
ight)^{rac{2}{3}}$$

- So, for a carbon with surface area of 1000 m² kg⁻¹:
 - \circ A = 1.304 × 10⁻¹⁹ m² per molecule, or 78240 m² mol⁻¹
 - 1 g carbon can store 0.026 g H₂, i.e. 2.6 wt %
- Relatively cheap materials
- Storage capacity depends on surface area; dificult to exceed ~4000 m² g⁻¹
- Could be used to enhance LH2 storage (as a trap for boil-off)

Hydrogen storage

Chemically - Hydride phases

- Challenging → H-H bond is remarkably strong
 - $\circ~ ext{H}_2 \longrightarrow 2\, ext{H} \qquad \Delta H = 436 ext{ kJ mol}^{-1}$
- Dissociation can still occur if balanced by an exothermic reaction
 - o e.g. formation of (metal) hydride phase

- Good volumetric storage (up to 150 kg m⁻³)
- hydrogen is extracted at constant pressure
- Often pyrophoric in air
- Large volume changes on hydridation cause material breakdown
- Metals are typically heavy!

Metal	Hydride	wt%	p (bar)	T (K)
Pd	$PdH_{0.6}$	0.56	0.02	298
LaNi ₅	LaNi ₅ H ₆	1.37	2	298
ZrV_2	$\rm ZrV_2H_{5.5}$	3.01	10 ⁻⁸	323
FeTi	FeTiH ₂	1.89	5	303
Mg ₂ Ni	Mg ₂ NiH ₄	3.59	1	555

Hydrogen storage

Chemically - lighter hydrides

One way to increase H₂ capacity (per kg) is to use lighter elements

- e.g. MgH₂ has 7.6 wt% H₂
- They are often cheaper than heavier metals
- but formation of lighter hydrides is kinetically slow
- Often complex sequence of reactions to yield full H₂ content

Summary

Three similar energy storage technologies (batteries, supercapacitors and fuel cells) all share very similar chemistry requirements:

- High ionic conductivity at relevant temperatures
- High (or low) electronic conductivity depending on component
- Chemical stability under different operating conditions / between neighbouring materials
- Device compatibility (e.g. thermal expansion, cyclability, cost...)

