Relatório CARD 27 - Leitura: Detecção De Incêndio Florestais Com Recurso a Deep Learning E Visão Computacional (III)

Willian Augusto Soder de Souza

O objetivo deste relatório é apresentar um resumo dos conhecimentos abordados nas seções 'Implementação' e 'Teste e Avaliação' do artigo Detecção de Incêndios Florestais com Recurso a Deep Learning e Visão Computacional. Nesse artigo, o autor propõe um sistema de visão computacional que processa imagens de áreas florestais e é capaz de identificar a presença de incêndios. Abaixo segue o resumo das seções indicadas.

IMPLEMENTAÇÃO:

Esta seção do artigo começa descrevendo a organização do dataset. O autor menciona que, para este projeto, foi utilizado um conjunto de 882 imagens, dividido em dois classificadores: um diurno e outro noturno, sendo que cada classificador possui duas classes: 'Incêndio' e 'Sem Incêndio'. Para prever incêndios antes de se agravarem, as imagens de incêndio do dataset eram, majoritariamente, de incêndios em estágio inicial, permitindo ao classificador extrair suas características e prever o incêndio. O autor também relata que, para evitar que o modelo confundisse nuvens com fumaça, foi necessário alimentá-lo com imagens de cenas sem incêndio, mas contendo nuvens.

A arquitetura do classificador utilizada foi o Inception-V3, desenvolvido principalmente para melhorar o desempenho em tarefas de classificação de imagens. Essa arquitetura funciona aplicando convoluções 1x1, 3x3 e 5x5 na mesma camada, seguidas de operações de pooling. O autor também menciona o uso de um modelo de regressão logística, que é essencialmente uma regressão linear adaptada para classificação.

Por fim, o autor aponta as limitações encontradas no desenvolvimento do projeto, como a falta de verba para investir em imagens de maior qualidade (por exemplo, imagens aéreas) e a quantidade limitada de dados. Ele destaca que esses dois fatores impediram a criação de um modelo com resultados mais robustos."

TESTES E AVALIAÇÃO:

Nesta seção, o autor apresenta os resultados obtidos nos testes realizados para validar o desempenho do modelo em diversos cenários práticos, como variações de tonalidade da vegetação e a presença de elementos humanos, além de avaliar cada módulo específico. Durante essa parte, são exibidas várias matrizes de confusão, nas quais o autor demonstra a eficácia do modelo em diferentes situações. A principal matriz de confusão a ser destacada é a que mostra a eficiência dos classificadores. Quando o modelo foi submetido a fotos tiradas durante o dia, obteve uma precisão de 94,1%, enquanto em fotos noturnas, a precisão foi de 94,8%, como pode ser observado nas imagens abaixo.

Figura 1 - Matriz de confusão do classificador diurno com duas classes

		Predicted			
		Incêndio	Sem Incêndio	Σ	
Actual	Incêndio	94	7	101	
	Sem Incêndio	3	83	86	
	Σ	97	90	187	

Figura 2 - Matriz de confusão do classificador noturno com duas classes

Outras duas tabelas interessantes apresentadas nesta seção foram as de comparação dos modelos de extração de descritores e dos modelos de classificação, que demonstram a superioridade do Inception-V3, com 78% de acurácia. Na parte de classificação, a regressão logística obteve a maior precisão, com 94,1%. Abaixo seguem as tabelas que mostram a comparação entre os modelos.

DCNN	Top-1 accuracy	Top-5 error	Parâmetros
Inception-V3	78%	3.5%	24M
Resnet50	76%	6.71%	25M
VGG16	71%	7.3%	138M
GoogLeNet	68%	6.67%	5M
AlexNet	54%	15.3%	60M

Figura 3 - Comparação entre modelos DCNN

Method	AUC	CA	F1	Precision	$\overline{\mathbf{w}}$	Recall
Logistic Regression	0.980	0.941	0.941	0.941		0.941
SVM	0.970	0.922	0.921	0.924		0.922
kNN	0.963	0.921	0.921	0.922		0.921
Neural Network	0.969	0.908	0.908	0.907		0.908
Random Forest	0.938	0.906	0.906	0.906		0.906
Naive Bayes	0.912	0.904	0.904	0.904		0.904
Tree	0.808	0.865	0.864	0.864		0.865

Figura 4 - Comparação entre vários modelos de classificação

CONCLUSÃO:

A leitura deste artigo foi extremamente importante para compreender, de forma mais prática e real, como funciona a implementação de um algoritmo de visão computacional, mostrando as dificuldades enfrentadas pelo desenvolvedor ao longo de um projeto, desde a escolha do dataset e do modelo de classificação até a avaliação dos resultados. Ter essa visão dos desafios e do processo de criação de um projeto oferece uma perspectiva interessante sobre o mercado de machine learning e visão computacional.