# Limit Reference Points and the Fish Stocks Provisions

Background Material for the Joint TESA/NOG Workshop

## Objectives

- The objectives of this presentation are to:
  - Provide a brief introduction to reference points for age structured models
  - Provide some background information to support the pre-workshop exercises
- The presentation assumes limited knowledge of fisheries and is intended as an optional introduction

#### Sections

- Introduction:
  - Reference Points (slide 4)
  - LRPs (slide 12)
- Equilibrium Reference Points: Calculations (side 17)
- Per Recruit Reference Points: Calculations (slide 21)
- MSY Reference Points: Calculations (slide 53)
- Pre-Workshop Exercise (slide 71)



# Introduction – Reference Points



## Reference Points

- Target Reference Point (TRP) desirable state to have the stock approach and fluctuate around
- Limit Reference Point (LRP) threshold to an undesirable state
- Reference points are generally based on spawning stock biomass (SSB) or the instantaneous fishing mortality rate (F)





## Reference Points

- Used to determine stock status by comparing estimated SSB or F to Reference Points
- Used to define performance metrics used to evaluate how well harvest strategies meet (measurable) management objectives

Can be used as operational control points (OCPs) in harvest control

rules (HCRs)



OCPs = points where prespecified management actions are to be taken (e.g., change in F in a HCR)

## DFO - Precautionary Approach (PA) Policy

- A general fishery decision-making framework (<u>DFO 2009</u>) for implementing harvest strategies that incorporate the precautionary approach
- PA Policy applies to key stocks managed by DFO
- Primary components:
  - 1. reference points and stock status zones;
  - harvest strategy and harvest decision rules;
  - 3. the need to take into account uncertainty and risk when developing reference points, and developing and implementing decision rules.



## DFO - Precautionary Approach (PA) Policy

- A general fishery decision-making framework (<u>DFO 2009</u>) for implementing harvest strategies that incorporate the precautionary approach
- PA Policy applies to key stocks managed by DFO
- Primary components:
  - 1. reference points and stock status zones;
  - harvest strategy and harvest decision rules;
  - the need to take into account uncertainty and risk when developing reference points, and developing and implementing decision rules.



## DFO - PA Policy: Reference Points/Status

#### 1. Reference points and stock status zones

- LRP: "represents the stock level below which there is a high probability that the stock's productivity is so impaired that serious harm will occur"
- "At this stock status level, there may also be resultant impacts to the ecosystem, associated species and a long-term loss of fishing opportunities"
- The LRP is defined by DFO Science through a CSAS peer-review process



## DFO – PA Policy: USR

- USR "a level below which removals must be progressively reduced so the LRP can be avoided" OR "a target reference point"
- "USR is defined by resource management, in consultation with stakeholders and with advice and input from DFO Science"



## DFO – PA Policy: Removal Reference

- Removal Reference limit on the fishing mortality rate (*F*)
- Focus of the workshop is on LRPs (Role of Science)





# Introduction – LRPs



#### LRP - Definition

"The stock level below which productivity is sufficiently impaired to cause serious harm"

"At this stock status level, there may also be resultant impacts to the ecosystem, associated species and a long-term loss of fishing opportunities"

- Challenge to define a point of "serious harm" before you have reached it
- Often understood as avoiding recruitment overfishing when adults are removed to such a low level that they cannot reproduce fast enough to replenish the stock

Example: see Shelton and Rice (2002)

## LRP - Approaches

• It is egg production (often measured as SSB) that must be maintained to ensure future productivity, so LRPs are frequently based on SSB



Several methods of defining LRPs are based on *F* 

LRPs based on F can be interpreted in terms of the <u>equilibrium SSB</u> obtained from fishing at F over the long-term

## What is Equilibrium?

- A theoretical model state that arises when the fishing mortality (F), exploitation pattern (selectivity) and other fishery or stock characteristics (growth, natural mortality (M), recruitment) do not change from year to year
- Simplifying assumptions:
  - Births = Deaths
  - A fish population harvested at a constant rate for many years will achieve equilibrium ("steady state")
- A tool to help understand effects of fishing on fish populations
- Reality:
  - Annual variability "noise" (e.g., variable recruitment) this is accounted for in annual stock assessments
  - Effects of time-varying processes on assessments and reference points are challenging and not well-understood

## Provisional Default LRP in the PA Policy

- The provisional default reference points in the PA are based on (spawning) biomass at Maximum Sustainable Yield (MSY)
- LRP provisional default is 40%  $B_{MSY}$
- Many proxies for  $B_{MSY}$  exist
- Some background information is provided in the following slides to support the calculations that are conducted in the pre-workshop exercise



# Examples of Limit Reference Points

#### SOME EXAMPLES OF LIMIT REFERENCE POINTS1

| Reference Point                              | Description                                                                                                                                                                                                                                 | Some Pros                                                                                                                                                                                                                                                                 | Some Cons  May be difficult to estimate;  Sensitive to uncertainty in model assumptions concerning recruitment (e.g. steepness), natural mortality rate, selectivity, etc;  Relationship between B <sub>MSY</sub> and B <sub>0</sub> depends on model assumptions |  |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| X% B <sub>MSY</sub><br>X% SSB <sub>MSY</sub> | A percentage (X) of the biomass (B) or spawning stock biomass (SSB) that is obtained on average from fishing at rates associated with maximum sustainable yield (MSY)                                                                       | Takes into account various components of productivity;  Many proxies have developed over the years;  DFO's PA Policy gives a provisional default LRP of 40% B <sub>MSY</sub> (other jurisdictions have policy defaults ranging from 30-50% B <sub>MSY</sub> )             |                                                                                                                                                                                                                                                                   |  |
| X% B <sub>0</sub> (or K)                     | A percentage (X) of the biomass (B) or spawning stock biomass (SSB) under conditions of no fishing; sometimes 'carrying capacity' (K) is used                                                                                               | May be more estimable than B <sub>MSY</sub> for data-<br>poorer stocks;  Provisional policy defaults available in<br>other countries (e.g., 20% B <sub>0</sub> );  40-50% B <sub>0</sub> are common generic proxies for<br>B <sub>MSY</sub> (although 30-60% can be used) | May be difficult to estimate;  Sensitive to uncertainty in model assumptions (e.g. steepness, natural mortality rate)                                                                                                                                             |  |
| Y% Equilibrium B<br>at F <sub>X%SPR</sub>    | A percentage (Y) of the equilibrium biomass (B) at a level of fishing mortality (F) that allows the stock to maintain X% of its maximum spawning potential (i.e. X% spawning potential ratio) that would have been obtained with no fishing | Used as a reference point for recruitment overfishing;  Requires fewer assumptions or data (e.g., stock-recruitment relationship is not required);  F40%SPR is a common proxy for FMSY (the equilibrium biomass is therefore a proxy for BMSY)                            | Sensitive to uncertainty in model assumptions (e.g., "assumed" resilience, natural mortality rate);  Dynamic pool-type reference points like SPR may not be suitable for stocks with complex spatial structure (e.g., invertebrates)                              |  |

 $B_{MSY}$ 

% of  $B_0$  as a proxy for  $B_{MSY}$ 

% of Equilibrium B at  $F_{X\%SPR}$  as a proxy for  $B_{MSY}$ 

## Some Equilibrium Reference Points

- Calculations for an age-structured model:
  - 1. SSB at  $F_{X\%SPR}$ : equilibrium SSB from fishing at a fishing mortality rate over the long-term that reduces the spawning potential ratio (SPR) to X% SPR = ratio of spawning biomass per recruit at a given F to spawning biomass per recruit at F = O
  - 2.  $SSB_0$ : equilibrium SSB under conditions of no fishing
  - 3.  $F_{MSY}$  and  $SSB_{MSY}$ : fishing mortality rate at which yield is maximized over the long-term and equilibrium SSB from fishing at  $F_{MSY}$
- An Excel spreadsheet and R script are provided in the pre-workshop exercise

## Pre-Workshop Example Calculations.xlsx

Read Me phi0 phiF SPR YPR | SPR YPR all F | Fx%SPR | SSB at Fx%SPR | SRR and Yield | MSY | Plots | SR Plots with Ref Pts |

Read Me tab: Description of each tab in Spreadsheet

Calculations are done for the equilibrium references points on the previous slide using an example data set

The following slides provide some background information to support these calculations





## Per Recruit Reference Points [Concepts]

- 1. Mortality Rates
- 2. Survivorship
- 3. Spawning biomass per recruit (or eggs per recruit)
- 4. Spawning potential ratio (SPR)
- 5. Yield per recruit (YPR)
- 6. Equilibrium SSB at a specified F

#### **Notation:**

- *M* = Natural Mortality (instantaneous rate) removals from predation, disease, old age
- F = Fishing Mortality (instantaneous rate) removals from fishing
- Z = M + F = Total Mortality (instantaneous rate)

- Mortality rates can be instantaneous or finite (e.g., annual)
- Generally work with instantaneous rates (e.g., Z = 0.3)
- Mortality is applied by decreasing the population by a constant proportion in each time period (t)

$$N_{t+1} = N_t e^{-Z}$$

• Example: Z = 0.3, start with 1000 individuals at age 0



- Example: Z = 0.3, start with 1000 individuals at age 0
- $N_{year1} = N_{year0}e^{-0.3} = 1000e^{-0.3} = 741$
- Annual removal rate =  $1 \frac{741}{1000} = 0.259$
- 25.9% of population removed each year
- In general:
- Annual removal rate =  $1 e^{-Z}$



- Harvest rate (or exploitation rate) is the annual proportional change in numbers of fish for a given instantaneous fishing mortality rate (F)
- Sometimes expressed as a percentage (%)

| F   | Harvest Rate = 1-e <sup>-F</sup> |  |  |
|-----|----------------------------------|--|--|
| 0.1 | 0.095 or 9.5%                    |  |  |
| 0.3 | 0.259 or 25.9%                   |  |  |
| 0.5 | 0.393 or 39.9%                   |  |  |
| 0.7 | 0.503 or 50.3%                   |  |  |

• Add M = 0.25 and calculate total removal rate (from M and F)

| F   | Harvest Rate = 1-e <sup>-F</sup> | M    | Z = F+M | Total removal rate = 1-e <sup>-z</sup> |
|-----|----------------------------------|------|---------|----------------------------------------|
| 0.1 | 0.095                            | 0.25 | 0.35    | 0.295                                  |
| 0.3 | 0.259                            | 0.25 | 0.55    | 0.423                                  |
| 0.5 | 0.393                            | 0.25 | 0.75    | 0.528                                  |
| 0.7 | 0.503                            | 0.25 | 0.95    | 0.613                                  |



#### **Notation:**

- $l_a$  = survivorship-at-age a = (Probability of surviving to age a)
- $v_a$  = vulnerability (selectivity) -at-age a = proportion of age class that is vulnerable to the fishery
- Age of recruitment = age at first recruitment to the fishery
- Plus group (X<sup>+</sup>) = age category that contains all fish age X and older

- We track a cohort from the <u>age of recruitment</u> to a <u>plus group</u>
- We begin assuming no fishing mortality (F=0) so removal is only by natural mortality (M)
- We define "survivorship-at-age" ( $l_a$ ) as the probability of surviving to age a
- Example with age of recruitment = 1, plus group =  $9^+$ , and M = 0.3

# P(A and B) = P(A)P(B)If events A and B are independent

#### Per Recruit Reference Points 2. Survivorship

age 1 = age of recruitment

- For F = 0
  - $l_{a=1} = P(surviving \ to \ age \ 1) = 1$
  - $l_{a=2} = P(surviving \ to \ age \ 2)$ =  $P(surviving \ to \ age \ 1 \ \underline{and} \ from \ age \ 1 \ to \ age \ 2) = 1 \times e^{-M} = e^{-M}$
  - $l_{a=3} = P(surviving \ to \ age \ 3)$ =  $P(surviving \ to \ age \ 2 \ \underline{and} \ from \ age \ 2 \ to \ age \ 3) = e^{-M} \times e^{-M} = e^{-2M}$
  - $l_{a=4} =$   $= P(surviving \ to \ age \ 3 \ \underline{and} \ from \ age \ 3 \ to \ age \ 4) = e^{-2M} \times e^{-M} = e^{-3M}$
- $l_{a=a} = e^{-(a-1)M}$

• For F = 0, M = 0.3



#### What is survivorship for age 9+?



```
\begin{split} l_{a=9^+} &= P(surviving \ to \ at \ least \ age \ 9 \ ) \\ &= P(surviving \ to \ age \ 9 \ ) + P(surviving \ to \ age \ 10 \ ) + P(surviving \ to \ age \ 11 \ ) + \cdots \\ &= e^{-8M} + e^{-9M} + e^{-10M} + \dots \\ &= e^{-8M} (1 + e^{-M} + (e^{-M})^2 + (e^{-M})^3 \ + \dots) \\ l_{a=9^+} &= e^{-8M} \frac{1}{1 - e^{-M}} \end{split}
```



Maclaurin series expansion

$$1 + x + x^2 + x^3 + \dots = \frac{1}{1 - x}$$

• In general:

$$l_{a} = \begin{cases} 1, a = a_{rec} \\ l_{a-1}e^{-(M_{a-1}+Fv_{a-1})}, a_{rec} < a < a_{max} \\ \frac{l_{a-1}e^{-(M_{a-1}+Fv_{a-1})}}{1-e^{-(M_{a}+Fv_{a})}}, a = a_{max} \end{cases}$$

• In general:

$$l_{a} = \begin{cases} 1, a = a_{rec} \\ l_{a-1}e^{-(M_{a-1}+Fv_{a-1})}, a_{rec} < a < a_{max} \\ \frac{l_{a-1}e^{-(M_{a-1}+Fv_{a-1})}}{1 - e^{-(M_{a}+Fv_{a})}}, a = a_{max} \end{cases}$$





#### Per Recruit Reference Points 3. Spawning Biomass per Recruit

#### **Notation:**

- $\varphi_F$ = Equilibrium spawning biomass per recruit (spawning biomass produced on average by each recruit over its lifetime, taking into account survival, growth, and maturity)
- $w_a$  = weight-at-age a
- $m_a$  = proportion mature-at-age a
- $a_{max}$  = maximum age (or plus group)
- $f_a$  = relative fecundity-at-age (eggs per unit body weight)

### Per Recruit Reference Points 3. Spawning Biomass per Recruit

- Equilibrium spawning biomass per recruit ( $\varphi_F$ ) =
- Sum over all ages:

P(survives to age a) × weight-at-age a × proportion mature-at-age a

$$\varphi_F = \sum_{a=1}^{a_{max}} l_a \mathbf{w}_a m_a$$

## Per Recruit Reference Points 3. Eggs per Recruit

- If we knew fecundity-at-age, we could calculate "eggs per recruit" Equilibrium eggs per recruit  $(\varphi_F)$
- Sum over all ages:

Eggs/unit body weight

Relative fecundity-at-age  $a \times P(survives to age a) \times weight-at-age a \times proportion mature-at-age <math>a$ 

$$\varphi_F = \sum_{a=1}^{a_{max}} f_a l_a w_a m_a$$

# Per Recruit Reference Points 3. Spawning Biomass per Recruit or Eggs per Recruit

 We generally don't know relative fecundity and assume that SSB is proportional to fecundity as use:

Equilibrium spawning biomass per recruit ( $\varphi_F$ )

#### **Notation:**

• SPR = ratio of

the *spawning biomass* (or eggs) per recruit over its lifespan when fishing at given F

relative to

the spawning biomass (or eggs) per recruit over its lifespan with no fishing

• 
$$SPR_F = \frac{\varphi_F}{\varphi_0}$$

- $\phi_F$  = spawning biomass per recruit when fishing at F=F
- $\phi_0$  = spawning biomass per recruit at F=0

Reference points based on SPR are common proxies for  $F_{MSY}$  and  $SSB_{MSY}$ 



- What influences  $SPR_F = \frac{\phi_F}{\phi_0}$ ?
  - Survivorship:
    - M
    - Vulnerability (selectivity)
    - F
  - Weight-at-age
  - Maturity-at-age

$$\varphi_F = \sum_{a=1}^{a_{max}} l_a w_a m_a$$

$$l_{a} = \begin{cases} 1, a = a_{rec} \\ l_{a-1}e^{-(M_{a-1}+Fv_{a-1})}, a_{rec} < a < a_{max} \\ \frac{l_{a-1}e^{-(M_{a-1}+Fv_{a-1})}}{1-e^{-(M_{a}+Fv_{a})}}, a = a_{max} \end{cases}$$



• Explore the Excel Spreadsheet

| 1  | A                                                | В    | C                                | D                                                                                              | E              | F        | G        | Н        | I.       | J        | K        | L        | М        | N          |
|----|--------------------------------------------------|------|----------------------------------|------------------------------------------------------------------------------------------------|----------------|----------|----------|----------|----------|----------|----------|----------|----------|------------|
| 1  | 4. Calculate F <sub>x</sub> % (i.e. F at X% SPR) |      |                                  |                                                                                                |                |          |          |          |          |          |          |          |          |            |
| 2  |                                                  |      | Parameter                        |                                                                                                | 1              | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9+       | units      |
| 3  |                                                  |      | Weight-at-age                    | w_age                                                                                          | 0.528688       | 0.917438 | 1.2655   | 1.635396 | 1.943729 | 2.215542 | 2.518042 | 2.795604 | 3.155688 | kg         |
| 4  |                                                  |      | Proportion mature                | m_age                                                                                          | 0.189883       | 0.51526  | 0.830718 | 0.940038 | 0.975651 | 0.989041 | 0.994701 | 0.9973   | 0.99857  | -          |
| 5  |                                                  |      | M                                | M_age                                                                                          | 0.2            | 0.2      | 0.2      | 0.2      | 0.2      | 0.2      | 0.2      | 0.2      | 0.2      | 2          |
| 6  | Start with F =                                   | 0.1  | Unfished survivorship            | l <sub>o_</sub> age                                                                            | 1              | 0.818731 | 0.67032  | 0.548812 | 0.449329 | 0.367879 | 0.301194 | 0.246597 | 1.113794 | -          |
| 7  |                                                  |      | Unfished spawning biomass (or e  | € Фо                                                                                           | 8.645726       |          |          |          |          |          |          |          |          | kg/recruit |
| 8  |                                                  |      | Vulnerability (selectivity)      | v_age                                                                                          | 0.004044       | 0.048547 | 0.354896 | 0.724669 | 0.908942 | 0.97144  | 0.989727 | 0.996591 | 0.998065 | -          |
| 9  |                                                  |      | Fishing mortality rate           | F                                                                                              | 0.1            |          |          |          |          |          |          |          |          | -          |
| 10 |                                                  |      | Fished survivorship              | I <sub>F</sub> _age                                                                            | 1              | 0.8184   | 0.666804 | 0.526898 | 0.401232 | 0.299959 | 0.222851 | 0.165261 | 0.472789 | -          |
| 11 |                                                  |      | Fished spawning biomass (or eggs | φ <sub>F</sub>                                                                                 | 5,92523        |          |          |          |          |          |          |          |          | kg/recruit |
| 12 |                                                  |      | Spawning potential ratio         | SPR                                                                                            | 0.685336       |          |          |          |          |          |          |          |          | -          |
| 13 |                                                  |      | Yield per recruit-at-age         | YPR_age                                                                                        | 0.000194       | 0.003296 | 0.026683 | 0.05466  | 0.061508 | 0.055851 | 0.048005 | 0.039785 | 0.12866  | kg         |
| 14 |                                                  |      | Yield per recruit                | YPR                                                                                            | 0.41864        |          |          |          |          |          |          |          |          | kg         |
| 15 |                                                  |      |                                  |                                                                                                |                |          |          |          |          |          |          |          |          |            |
| 16 |                                                  |      |                                  |                                                                                                |                |          |          |          |          |          |          |          |          |            |
| 17 |                                                  |      |                                  | Step 1. Ent                                                                                    | er X in cell B | 19       |          |          |          |          |          |          |          |            |
| 18 |                                                  |      |                                  | Step 2. Find approximate F when SPR = X (i.e. find F where abs(SPR-x%) is at its minimum       |                |          |          |          |          |          |          |          |          |            |
| 19 |                                                  |      |                                  | Step 3. Repeat column F beginning in cell F30 to lookup the F corresponding to min[abs(SPR-X)] |                |          |          |          |          |          |          |          |          |            |
| 20 |                                                  | 4    |                                  | Step 4. Solution is in cell B20                                                                |                |          |          |          |          |          |          |          |          |            |
| 21 | X =                                              | 40   | %                                |                                                                                                |                |          |          |          |          |          |          |          |          |            |
| 22 | F=                                               | 0.37 |                                  |                                                                                                |                |          |          |          |          |          |          |          |          |            |
| 23 |                                                  |      |                                  |                                                                                                |                |          |          |          |          |          |          |          |          |            |

#### Notation:

• Yield per Recruit (YPR)-at-age = the expected life time yield per fish recruited into the stock at a specified age

Yield per Recruit (YPR) at age for a given F

from M and F

Removals per recruit-at-age = biomass per recruit-at-age × removal rate Removals per recruit at age =  $l_a w_a (1 - e^{-(M_a + F v_a)})$ 

YPR-at-age = biomass per recruit-at-age × proportion of removal rate that is due to fishing

$$YPR_{F_a} = l_a w_a (1 - e^{-(M_a + Fv_a)}) \frac{Fv_a}{M_a + Fv_a}$$

• YPR = Sum over all ages:  $YPR_{F_a} = l_a w_a (1 - e^{-(M_a + Fv_a)}) \frac{Fv_a}{M_a + Fv_a}$ 

$$YPR_F = \sum_{a=1}^{a_{max}} l_a w_a (1 - e^{-(M_a + Fv_a)}) \frac{Fv_a}{M_a + Fv_a}$$

- Can be calculated over a range of F values to estimate  $F_{max}$
- $F_{max}$  = fishing mortality rate corresponding to the maximum YPR



### Per Recruit Reference Points 6. Equilibrium SSB at F=F

#### **Notation:**

• Equilibrium SSB at  $F=F_y$ : equilibrium spawning stock biomass obtained from fishing at a fishing mortality rate  $F_y$  over the long-term

# Per Recruit Reference Points 6. Equilibrium SSB at $F=F_y$

- What SSB is obtained on average from fishing at  $F=F_y$ ?
- Given an unfished equilibrium recruitment ( $R_0$ ) and no stock recruitment relationship, we can assume average recruitment will be

 $R_0$ 



Number of recruits

Spawning biomass per recruit



# Per Recruit Reference Points 6. Equilibrium SSB at F=F

• Can be calculated over a range of F values



# Per Recruit Reference Point: SSB at F<sub>X%SPR</sub>

- Equilibrium SSB at  $F_{40\%SPR}$  (SPR = spawning potential ratio)
- $F_{40\%SPR}$  = fishing mortality rate that allows the stock to maintain 40% of its maximum (unfished) spawning potential
- Example: Suppose  $F_{40\%SPR} = 0.41$
- Equilibrium SSB at  $F_{40\%SPR}$  = 10.9 kt



# SSB<sub>0</sub> (assuming no stock recruitment relationship)

• Equilibrium SSB at F=0

• Equilibrium  $SSB_0 = \varphi_0 R_0$ 

Number of recruits

<u>Unfished</u> spawning biomass per recruit





# Yield per Recruit → Yield

- Yield =  $YPR \times R$
- We already know how to calculate YPR for various F
- Now we need to know how the number of recruits (R) changes with F



**Stock Recruitment Relationships** 



# **MSY Reference Points**

#### Notation:

- $R_0$  = average number of recruits in an unfished state (at equilibrium)
- *h* = steepness of the stock recruitment relationship = proportion of equilibrium unfished recruitment produced by 20% of unfished equilibrium SSB
- a and b = parameters of the Beverton-Holt stock recruitment relationship
- $\alpha$  and  $\beta$  = parameters of the Ricker stock recruitment relationship

# MSY Reference Points [Concepts]

- 1. Stock Recruitment Relationships (SRR)
- 2. MSY



#### • Beverton-Holt

$$R(B) = \frac{aB}{1 + bB}$$



Ricker

$$R(B) = \alpha B e^{-\beta B}$$



• Focus on Beverton-Holt

$$R(B) = \frac{aB}{1 + bB}$$
 Are  $R(B) = \frac{4R_0 hB}{(1 - h)R_0 \varphi_0 + (5h - 1)B}$ 

$$h = \frac{a\varphi_0}{4 + a\varphi_0} \qquad h = \text{steepness}$$

$$R_0 = \frac{1}{b} \left( a - \frac{1}{\varphi_0} \right)$$

• Steepness (h) = proportion of equilibrium unfished recruitment produced by 20% of unfished equilibrium SSB

$$R(B) = \frac{4R_0hB}{(1-h)R_0\varphi_0 + (5h-1)B}$$



- h is a measure of the resilience of recruitment to decreases in SSB from SSB<sub>0</sub>
- h ranges from 0.2 to 1
- *h* is <u>hard to estimate</u>
- h = 1 (recruits do not decline as
   SSB declines from SSB<sub>0</sub>)
- h = 0.2 (recruits decline linearly as SSB declines from SSB<sub>0</sub>)



• Given a SRR we can calculate  $SSB_0 = \varphi_0 R_0$ 

| How to get parameter | $R(B) = \frac{aB}{1 + bB}$                                                                                     | $R(B) = \frac{4R_0 hB}{(1-h)R_0 \varphi_0 + (5h-1)B}$ |
|----------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| $arphi_0$            | $arphi_0 = \sum_{a=1}^{a_{max}} l_a w_a m_a$ Estimated from survivorship-atage, weight-at-age, maturity-at-age | Estimated from parameterization                       |
| $R_0$                | $R_0 = \frac{1}{b} \left( a - \frac{1}{\varphi_0} \right)$                                                     | Estimated from parameterization                       |



• When F is applied, the spawning biomass per recruit ( $\varphi_F$ ) decreases from the unfished  $\varphi_0$ 

• The equilibrium recruitment for 
$$\varphi_F$$
 is:  $R_F = \frac{1}{b} \left( a - \frac{1}{\varphi_F} \right)$ 

• The equilibrium SSB for F is:  $SSB_F = \varphi_F R_F$ 



- When F is applied, the equilibrium recruitment and equilibrium SSB "slide down" the SRR from ( $R_0$ , SSB<sub>0</sub>). Example: F = 0.34
- At F = 0.34 the unfished biomass per recruit decreases to  $\varphi_{0.34}$
- Equilibrium recruitment:  $R_{F=0.34}$  at  $\varphi_{0.34}$
- Equilibrium SSB:  $SSB_{F=0.34}$  at  $\varphi_{0.34}$



- MSY: the largest catch on average over the long-term that can be continuously removed from the stock assuming constant environmental conditions
- Reference points are based on F<sub>MSY</sub>
- $SSB_{MSY}$  is the average (equilibrium) SSB from fishing at  $F_{MSY}$

#### Theory:

- population growth rate is zero at carrying capacity
- as population size is reduced below carry capacity, the population growth rate increases (due to available resources)
- Maximum population growth rate occurs at an intermediate population size
- The "growth" is harvested as surplus production



• MSY: the largest catch on average over the long-term that can be continuously removed from the stock assuming constant environmental conditions

growth rate



67

Carrying capacity

•  $SSB_{MSY}$  is the average (equilibrium) SSB from fishing at  $F_{MSY}$ 





Here the maximum yield occurs at 12kt

- F<sub>MSY</sub> = Fishing mortality rate that results in MSY over the long term
- MSY = the largest catch that can be continuously removed from the stock assuming constant environmental conditions (equilibrium)
- $SSB_{MSY}$  = average SSB from fishing at  $F_{MSY}$  over the long term
- Example:





# MSY Reference Point: SSB at $F_{MSY}$

Equilibrium Yield at a specified F

•  $Yield_F = YPR_F \times R_F$ 

69

Yield-per-recruit at a specified F

Equilibrium Recruitment at a specified F

• To find SSB at  $F_{MSY}$ : calculate *Yield* for various F and identify F where *Yield* is at its maximum









# Pre-Workshop Exercise



# Pre-Workshop Exercise

Calculations for an age-structured model:

- 1. SSB at  $F_{X\%SPR}$ 2.  $SSB_0$ 3.  $F_{MSY}$  and  $SSB_{MSY}$  See "Pre-Workshop Example Calculations.xlxs"
- An Excel spreadsheet and R script are provided at assist with the calculations in the pre-workshop exercise
- Explore the influence of various parameters (e.g., M, h) on MSY reference points and the ratio of  $SSB_{MSY}/SSB_0$