LECTURE 1 INTRODUCTION TO ANALYTICS

LEK HSIANG HUI

OUTLINE

Introduction to Analytics
Supervised Learning
Unsupervised Learning
Applications of Analytics

INTRODUCTION TO ANALYTICS

Introduction to Analytics

Supervised Learning

Unsupervised Learning

Applications of Analytics

DATA

Companies are generating a LOT of data e.g. sales, transaction, customer data, etc

MORE DATA

Data is produced not only by the companies but also by others about the companies

Data! Data! I can't make bricks without clay!

Sir Arthur Conan Doyle

Writer of the famous detective story Sherlock Holmes

The goal is to turn data into information, and information into insight.

Carly Fiorina

Former CEO of HP

WHAT IS ANALYTICS?

Analytics is the use of

- Data
- Information Technology
- Statistical Analysis
- Mathematical or computer-based models

to help in decision making

DECISION MAKING

Decision Making

- Process of choosing two or more possible actions for the purpose of attaining a goal
- Want to provide a scientific/systematic explanation for the decision made
- Heavily influenced by many different disciplines: law, psychology, computer science, statistics, economics, operation research, etc

HOW TO MAKE DECISION MAKING?

Decision Making

- Make prediction based on the data
 - E.g. Based on past experience (i.e. historical data)
 predict how many patients we are expecting today
- To do this, we build decision models using historical data
- The models can then allow us to make prediction of future data instances

WHAT IS A DECISION MODEL?

Decision Model is a model used to understand, analyze, or facilitate decision making

Can be in the form of a mathematical formula or software

TYPES OF DECISION PROBLEM (LEARNING PROBLEMS)

Regression (Supervised) ≤

Stock price prediction

Classification (Supervised)

Weather forecast (sunny, rainy, cloudy, etc)

Clustering (Unsupervised)

Group Weibo/Twitter users based on their interest

What's the difference between regression & classification?

SUPERVISED LEARNING

Introduction to Analytics

Supervised Learning

Unsupervised Learning

Applications of Analytics

REGRESSION

Regression (Supervised)

 Using existing data instances to learn a model for predicting subsequent instances

Example:

173 //312

52.65749528

Assume we have a list of human height and weight

		-										
Height(cm)	₩eight(kg)				Uoiah	t (cm) v	ıc Moi	rist (ka	٠١			
167.0812	51.25136008				пеівііі	(CIII)	vs vvei	git (Kg	3)			
181.6608	61.91077208		80									
176.276	69.41318376		70			AA		****		•		
173.2788	64.56428528		60	•	+ 4			300	**			
172.1866	65.4533256		99 50 —	_	47.5	4.00 34						
174.498	55.9278936		30 40 40				*			_		
177.292	64.17873208		30									height = 170cm
177.8254	61.89716432		20			1	1041	1	000			311
172.466	50.97013304		10		weig	ht = 0.6	13^hei	ght - 48	.093			-
169.6212	54.73494664		0	1							$\boldsymbol{\lambda}$	
168.8846	57.8103004		155	160	165	170	175	180	185	190		weight = ?
171.7548	51.77299088					heigh	nt (cm)					
173.482	56.97569112										-	
170.4848	55.54687632											

REGRESSION DEMO

http://www.shodor.org/interactivate/activities/Regression/

REGRESSION EXAMPLE

Dataset:

- https://www.kaggle.com/mohansacharya/graduate-admissions
- Prediction of Graduate Admissions from an Indian perspective
- 500 instances
- Admission_Predict_Ver1.1.csv

GRADUATE ADMISSION

	А	В	С	D	Е	F	G	Н	1
1	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
2	1	337	118	4	4.5	4.5	9.65	1	0.92
3	2	324	107	4	4	4.5	8.87	1	0.76
4	3	316	104	3	3	3.5	8	1	0.72
5	4	322	110	3	3.5	2.5	8.67	1	0.8
6	5	314	103	2	2	3	8.21	0	0.65
7	6	330	115	5	4.5	3	9.34	1	0.9
8	7	321	109	3	3	4	8.2	1	0.75
9	8	308	101	2	3	4	7.9	0	0.68
10	9	302	102	1	2	1.5	8	0	0.5
11	10	323	108	3	3.5	3	8.6	0	0.45
12	11	325	106	3	3.5	4	8.4	1	0.52
13	12	327	111	4	4	4.5	9	1	0.84

Identifier (unique for all instance) → Not useful for modeling

Undergraduate GPA (out of 10)

Research Experience (0 or 1)

Chance of Admin (0 to 1)

GRADUATE ADMISSION

								4	V
	Α	В	С	D	E	F	G	Н	1
1	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
2	1	337	118	4	4.5	4.5	9.65	1	0.92
3	2	324	107	4	4	4.5	8.87	1	0.76
4	3	316	104	3	3	3.5	8	1	0.72
5	4	322	110	3	3.5	2.5	8.67	1	0.8
6	5	314	103	2	2	3	8.21	0	0.65
7	6	330	115	5	4.5	3	9.34	1	0.9
8	7	321	109	3	3	4	8.2	1	0.75
9	8	308	101	2	3	4	7.9	0	0.68
10	9	302	102	1	2	1.5	8	0	0.5
11	10	323	108	3	3.5	3	8.6	0	0.45
12	11	325	106	3	3.5	4	8.4	1	0.52
13	12	327	111	4	4	4.5	9	1	0.84
			A	A		A			

GRE Scores (out of 340)

TOEFL Score (out of 120) Uni. Rating (out of 5)

Statement of Purpose (SOP) & Letter of Recommendation (LOR) Recommendation Strength (out of 5)

TYPES OF DATA

Target/Response Dependent Variable

	А	В	С	D	Е	F	G	Н	
1	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
2	1	337	118	4	4.5	4.5	9.65	1	0.92
3	2	324	107	4	4	4.5	8.87	1	0.76
4	3	316	104	3	3	3.5	8	1	0.72
5	4	322	110	3	3.5	2.5	8.67	1	0.8
6	5	314	103	2	2	3	8.21	0	0.65
7	6	330	115	5	4.5	3	9.34	1	0.9
8	7	321	109	3	3	4	8.2	1	0.75
9	8	308	101	2	3	4	7.9	0	0.68
10	9	302	102	1	2	1.5	8	0	0.5
11	10	323	108	3	3.5	3	8.6	0	0.45
12	11	325	106	3	3.5	4	8.4	1	0.52
13	12	327	111	4	4	4.5	9	1	0.84

Predictors
Independent Variables

TYPES OF DATA

Datasets with values for both predictors & response are also known as <u>labeled</u> data (also known as <u>training data</u>)

	Α	В	С	D	Е	F	G	Н	1
1	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
2	1	337	118	4	4.5	4.5	9.65	1	0.92
3	2	324	107	4	4	4.5	8.87	1	0.76
4	3	316	104	3	3	3.5	8	1	0.72
5	4	322	110	3	3.5	2.5	8.67	1	0.8
6	5	314	103	2	2	3	8.21	0	0.65
7	6	330	115	5	4.5	3	9.34	1	0.9
8	7	321	109	3	3	4	8.2	1	0.75
9	8	308	101	2	3	4	7.9	0	0.68
10	9	302	102	1	2	1.5	8	0	0.5
11	10	323	108	3	3.5	3	8.6	0	0.45
12	11	325	106	3	3.5	4	8.4	1	0.52
13	12	327	111	4	4	4.5	9	1	0.84

TYPES OF DATA

Datasets with only values for predictors are also known as <u>unlabeled</u> data (also known as <u>testing data</u>)

	Α	В	С	D	E	F	G	Н	1
1	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
2	401	304	100	2	3.5	3	8.22	0	?
3	402	315	105	2	3	3	8.34	0	?
4	403	324	109	3	3.5	3	8.94	1	?
5	404	330	116	4	4	3.5	9.23	1	?
6	405	311	101	3	2	2.5	7.64	1	?
7	406	302	99	3	2.5	3	7.45	0	?
8	407	322	103	4	3	2.5	8.02	1	?
9	408	298	100	3	2.5	4	7.95	1	?
10	409	297	101	3	2	4	7.67	1	?
11	410	300	98	1	2	2.5	8.02	0	?

We want the generated model to predict the response values

SUPERVISED LEARNING

This also illustrates the idea of Supervised Learning

 Teach the machine to do prediction with examples and the corresponding expected prediction

HANDS-ON: REGRESSION

HANDS-ON: REGRESSION

Dataset:

- https://www.kaggle.com/mohansacharya/graduate-admissions
- Prediction of Graduate Admissions from an Indian perspective
- 500 instances
- Manually divided into:
 - 400 instances training data (Admission_Predict_Ver1.1.train.csv)
 - 100 instances testing data (Admission_Predict_Ver1.1.test.csv)

Software:

- Excel (with the Analysis ToolPak)
- WEKA (https://www.cs.waikato.ac.nz/ml/weka/)

INSTALLING EXCEL ANALYSIS

TOOLPAK (WIN)

INSTALLING EXCEL ANALYSIS

TOOLPAK (MAC)

GENERATING REGRESSION MODEL (EXCEL)

Admission_Predict_Ver1.1.train.csv

GENERATING REGRESSION MODEL (EXCEL)

15									
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
17	Intercept	-1.259432478	0.124730747	-10.097209	1.841E-21	-1.5046574	-1.0142076	-1.5046574	-1.0142076
18	GRE Score	0.001737412	0.000597897	2.9058702	0.0038701	0.0005619	0.0029129	0.0005619	0.0029129
19	TOEFL Score	0.002919577	0.001089532	2.6796622	0.0076802	0.0007775	0.0050616	0.0007775	0.0050616
20	University Rating	0.005716658	0.004770425	1.1983539	0.2315032	-0.0036622	0.0150955	-0.0036622	0.0150955
21	SOP	-0.003305169	0.005561643	-0.5942792	0.5526682	-0.0142395	0.0076292	-0.0142395	0.0076292
22	LOR	0.022353127	0.005541485	4.0337793	6.599E-05	0.0114584	0.0332479	0.0114584	0.0332479
23	CGPA	0.118939454	0.012219435	9.7336294	3.382E-20	0.0949156	0.1429633	0.0949156	0.1429633
24	Research	0.024525106	0.007959756	3.0811379	0.0022076	0.008876	0.0401743	0.008876	0.0401743
25									

-1.259432478 + 0.001737412 * **GRE** + 0.002919577 * **TOEFL** + 0.005716658 * **Uni_Rating** - 0.003305169 * **SOP** + 0.022353127 * **LOR** + 0.118939454 * **CGPA** + 0.024525106 * **Research**

PREDICTING TESTING DATA

(EXCEL)

Admission_Predict_Ver1.1.test.csv

-1.259432478 + 0.001737412 * **GRE** + 0.002919577 * **TOEFL** + 0.005716658 * **Uni_Rating** - 0.003305169 * **SOP** + 0.022353127 * **LOR** + 0.118939454 * **CGPA** + 0.024525106 * **Research**

	Α	В	С	D	E	F	G	Н	1	J
1	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit (Actual)	Chance of Admit (Predicted)
2	401	304	100	2	3.5	, 3	8.22	. 0	0.63	0.605305387
3	402	315	105	, 2	. 3	, 3	8.34	, 0	0.66	0.654940123
4	403	324	109	3	3.5	, 3	8.94	, 1	0.78	0.782207991
5	404	330	116	4	. 4	3.5	9.23	1	0.91	0.862802581
6	405	311	101	. 3	, 2	2.5	7.64	. 1	0.62	0.575424919
7	406	302	99	3	3 2.5	, 3	7.45	C	0.52	0.516349434

Predicted values

PERFORM REGRESSION IN WEKA

Limitations in Excel

- Very tedious to do it properly in Excel
- Regression tool in Analysis Toolpak has a limit on the number of independent variables

WEKA

 Open source machine learning software with a graphical user interface for trying out different machine learning techniques and for running experiments

PERFORM REGRESSION IN

WEKA

PERFORM REGRESSION IN

WEKA

Remove Serial No. attribute

PERFORM REGRESSION IN WEKA

PERFORM REGRESSION IN WEKA

PERFORM REGRESSION IN

WEKA

PERFORM REGRESSION IN

WEKA

```
Linear Regression Model
Chance of Admit =
      0.0018 * GRE Score +
      0.003 * TOEFL Score +
      0.0228 * LOR +
     0.121 * CGPA +
     0.0246 * Research +
    -1.2985
Attribute mappings:
```

Model attributes Incoming attributes

(numeric)	GRE Score	> 2	(numeric)	GRE Score
	TOEFL Score	> 3	(numeric)	TOEFL Score
	University Rating	> 4	(numeric)	University Rating
(numeric)			(numeric)	
(numeric)		> 6	(numeric)	LOR
(numeric)		> 7	(numeric)	CGPA
(numeric)			(numeric)	
(numeric)	Chance of Admit	> 9	(numeric)	Chance of Admit

Time taken to build model: 0.02 seconds

=== Predictions on test set ===

inst#	actual	predicted	error
1	0.63	0.609	-0.021
2	0.66	0.659	-0.001
3	0.78	0.784	0.004
4	0.91	0.862	-0.048
5	0.62	0.568	-0.052
6	0.52	0.51	-0.01
7	0.61	0.64	0.03

=== Evaluation on test set === Time taken to test model on supplied test set: 0.03 seconds === Summary === Correlation coefficient 0.9476 Mean absolute error 0.0336 Root mean squared error 0.043 Relative absolute error 29.9675 % Root relative squared error 31.8241 % Total Number of Instances 100

> Overall performance (there are other metrics – will be elaborated more in the regression topic)

PERFORM REGRESSION IN

WEKA

0.78

0.91

0.62

0.52

0.61

0.784

0.862

0.568

0.51

0.64

0.004

-0.048

-0.052

-0.01

0.03

```
Linear Regression Model
Chance of Admit =
      0.0018 * GRE Score +
      0.003 * TOEFL Score +
      0.0228 * LOR +
      0.121 * CGPA +
      0.0246 * Research +
     -1.2985
Attribute mappings:
Model attributes
                                    Incoming attributes
(numeric) GRE Score
                                --> 2 (numeric) GRE Score
(numeric) TOEFL Score
                                --> 3 (numeric) TOEFL Score
(numeric) University Rating
                                --> 4 (numeric) University Rating
(numeric) SOP
                                --> 5 (numeric) SOP
(numeric) LOR
                                --> 6 (numeric) LOR
(numeric) CGPA
                                --> 7 (numeric) CGPA
(numeric) Research
                                --> 8 (numeric) Research
(numeric) Chance of Admit
                               --> 9 (numeric) Chance of Admit
Time taken to build model: 0.02 seconds
=== Predictions on test set ===
              actual predicted
    inst#
                                     error
                                    -0.021
               0.63
                          0.609
               0.66
                          0.659
                                    -0.001
```

=== Evaluation on test set ===

Time taken to test model on supplied test set: 0.03 seconds

=== Summary ===

Correlation coefficient 0.9476
Mean absolute error 0.0336
Root mean squared error 0.043
Relative absolute error 29.9675 %
Root relative squared error 31.8241 %
Total Number of Instances 100

Notice that not all predictors are used (due to attribute selection)

Possible to turn off (and use all predictors)

STATISTICAL LEARNING

What is Statistical Learning?

- Suppose Y_i = quantitative response, X_i = (X_{ij} , ..., X_{ip}) for observation i = 1, ..., n, and predictor j = 1, ..., p
- We assume there is some relationship between Y and X
- This can be modeled as

$$Y_i = f(X_i) + \varepsilon_i$$

 where f = unknown function and E = random error with mean zero

STATISTICAL LEARNING

$$Y_i = f(X_i) + \varepsilon_i$$

Example

• Suppose Y_i = quantitative response, X_i = (X_{ij} , ..., X_{ip}) for observation i = 1, ..., n, and predictor j = 1, ..., p

X_{ij}	=	predictor

Height(cm)	₩eight(kg)	
167.0812	51.25136008	
181.6608	61.91077208	
176.276	69.41318376	
173.2788	64.56428528	
172.1866	65.4533256	
174.498	55.9278936	
177.292	64.17873208	
177.8254	61.89716432	
172.466	50.97013304	
169.6212	54.73494664	
168.8846	57.8103004	
171.7548	51.77299088	
173.482	56.97569112	
170.4848	55.54687632	
173 //312	52 65749528	

 Y_i = quantitative response

Predicting the weight using the height

WHY ESTIMATE F?

$$Y_i = f(X_i) + \varepsilon_i$$

2 main reasons:

- Prediction
- Inference

Mean of 0

PREDICTION

$$Y_i = f(X_i) + \varepsilon_i$$

Prediction of Y

$$\hat{Y}_i = \hat{f}(X_i)$$

Estimate for *f*

Height (cm) vs Weight (kg)

Predicting the weight using the height

INFERENCE

Want to find the relationship between response Y and predictors $X_{1,...}X_{p}$

- Which predictor will affect the response?
- Which predictor is more significant than the other predictors?
- Is the relationship positive or negative?
- Can the relationship between Y and X be modeled using a linear function?

INFERENCE

Is there a correlation between Brand Sentiment and Stock Price Movements?

HOW TO ESTIMATE F?

Assume we have a set of training data:

$$\{(X_1,Y_1),(X_2,Y_2),...,(X_n,Y_n)\}$$

Apply a statistical learning method and feed in the training data to train a model / estimate *f*

RECALL: TYPES OF DECISION PROBLEM (LEARNING PROBLEMS)

Regression (Supervised)

Stock price prediction

Classification (Supervised)

Weather forecast (sunny, rainy, cloudy, etc)

Clustering (Unsupervised)

Group Facebook users based on their interest

CLASSIFICATION

Classification (Supervised)

- Using existing data instances (labeled) to learn a model for predicting subsequent instances (unlabeled)
- Example:

 Assume that you have some attributes of the current weather, and we need to decide whether to go out to play

No.	1: outlook Nominal	2: temperature Nominal	3: humidity Nominal	4: windy Nominal	5: play Nominal
1	sunny	hot	high	FALSE	no
2	sunny	hot	high	TRUE	no
3	overcast	hot	high	FALSE	yes
4	rainy	mild	high	FALSE	yes
5	rainy	cool	normal	FALSE	yes
6	rainy	cool	normal	TRUE	no
7	overcast	cool	normal	TRUE	yes
8	sunny	mild	high	FALSE	no
9	sunny	cool	normal	FALSE	yes
10	rainy	mild	normal	FALSE	yes
11	sunny	mild	normal	TRUE	yes
12	overcast	mild	high	TRUE	yes
13	overcast	hot	normal	FALSE	yes
14	rainy	mild	high	TRUE	no

outlook: rainy temperature: mild

humidity: high windy: TRUE

play: ?

UNSUPERVISED LEARNING

Introduction to Analytics

Types of Decision Problem

Unsupervised Learning

Applications of Analytics

MACHINE LEARNING

I don't really care how you do it but when you see these values, this is how you should do prediction.

MACHINE LEARNING

Ok I've learnt something about the data but I get better at this if you give me more examples!

CHALLENGES OF SUPERVISED LEARNING

I know you learn well. But do you know that it is very tedious to find many examples?

UNSUPERVISED

Unsupervised

- Assume we only have unlabeled data and we want to either:
 - label the data instances
 - or group up data instances into subsets sharing common characteristics
- One commonly application of unsupervised approach is clustering
- What do you think is the accuracy of unsupervised approaches compared to supervised?
- Why are unsupervised approaches important?

CLUSTERING EXAMPLE

Points are clustered together because they are closer to each other

UNSUPERVISED

Clustering Example (Iris flower)

Sepal Length	Sepal Width	Petal Length	Petal Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
6.2	2.2	4.5	1.5	versicolor
5.7	2.6	3.5	1	versicolor
5.5	2.4	3.8	1.1	versicolor
5.5	2.4	3.7	1	versicolor
7.2	3.6	6.1	2.5	virginica
6.5	3.2	5.1	2	virginica
6.4	2.7	5.3	1.9	virginica
6.8	3	5.5	2.1	virginica

Introduction to Analytics

Supervised Learning

Unsupervised Learning

Applications of Analytics

Customer Relationship Management

- Maximize return on marketing campaigns
- Improve customer retention (churn analysis)
- Maximize customer value (cross-, up-selling)
- Identify and treat most valued customers

Banking & Other Financial

- Automate the loan application process
- Detecting fraudulent transactions
- Maximize customer value (cross-, up-selling)
- Optimizing cash reserves with forecasting

Retailing and Logistics

- Optimize inventory levels at different locations
- Improve the store layout and sales promotions
- Optimize logistics by predicting seasonal effects
- Minimize losses due to limited shelf life

Manufacturing and Maintenance

- Predict/prevent machinery failures
- Identify anomalies in production systems to optimize the use manufacturing capacity
- Discover novel patterns to improve product quality

Brokerage and Securities Trading

- Predict changes on certain bond prices
- Forecast the direction of stock fluctuations
- Assess the effect of events on market movements
- Identify and prevent fraudulent activities in trading

Insurance

- Forecast claim costs for better business planning
- Determine optimal rate plans
- Optimize marketing to specific customers
- Identify and prevent fraudulent claim activities

Homeland security and law enforcement

Travel industry

Healthcare

Medicine

Entertainment industry

Sports

Etc

WHAT'S NEXT?

Cross-Industry Standard Process for Data Mining (CRISP-DM)