

Multivariate translationsinvariante Räume

Ronny Bergmann

Institut für Mathematik Universität zu Lübeck

5. Februar 2011

21. Rhein-Ruhr-Workshop in Königswinter

Inhalt

- Einleitung
- 2 Muster
- Translationsinvariante Räume

Einleitung - Motivation

Im Findimensionalen

- Verschiebung $2\pi/N$
- Charakterisierung der (Unter-)Räume im Frequenzbereich
- periodische Wavelets ([Se98], [PT95])

Im Mehrdimensionalen darauf aufbauend

- Charakterisierung der (Unter-)Räume
- (wie immer) Umgang mit dem "Curse of Dimension"
- (adaptive Berücksichtigung von Richtung(en)
- ⇒ nicht nur Tensorprodukt

Einleitung - Notation

Betrachten Funktionen $f,g: \mathbb{T}^d \to \mathbb{C}$, auf dem $\mathbb{T}^d \cong [0,2\pi)^d$ *d*-dimensionalen Torus.

Mit

$$\langle f,g\rangle = \frac{1}{(2\pi)^d} \int_{\mathbb{T}^d} f(\mathbf{x}) \overline{g(\mathbf{x})} d\mathbf{x}$$

ist $L^2(\mathbb{T}^d) := \{ f | \langle f, f \rangle < \infty \}$ ein Hilbertraum.

Bild des \mathbb{T}^2

Jede Funktion $f \in L^2(\mathbb{T}^d)$ kann als Fourier-Reihe geschrieben werden

$$f = \sum_{\mathbf{k} \in \mathbb{Z}^d} c_{\mathbf{k}}(f) e^{i \mathbf{k}^l \circ} \text{ mit } c_{\mathbf{k}}(f) = \langle f, e^{i \mathbf{k}^l \circ} \rangle$$

Parsevalsche Gleichung:
$$\langle f, g \rangle = \sum_{\mathbf{k} \in \mathbb{Z}^d} c_{\mathbf{k}}(f) \overline{c_{\mathbf{k}}(g)}, \quad \mathbf{c}(f) = (c_{\mathbf{k}}(f))_{\mathbf{k} \in \mathbb{Z}^d} \in l^2(\mathbb{Z}^d)$$

Das Muster und die erzeugende Gruppe

Sei $\mathbf{M} \in \mathbb{Z}^{d \times d}$ eine reguläre Matrix, $m := |\det \mathbf{M}| > 0$.

Das Gitter $\Lambda(\mathbf{M}) = \mathbf{M}^{-1}\mathbb{Z}^d = \{\mathbf{y} | \mathbf{M}\mathbf{y} \in \mathbb{Z}^d\}$ ist 1-periodisch.

Definition

Für eine reguläre Matrix $\mathbf{M} \in \mathbb{Z}^{d \times d}$ heißt $\mathcal{P}(\mathbf{M}) \coloneqq \Lambda(\mathbf{M}) \cap [0,1)^d$ das Muster zur Matrix \mathbf{M}

- $\mathcal{P}(\mathbf{M})$ ist ein Repräsentantensystem bezüglich + mod I
- $(\mathcal{P}(\mathbf{M}), + \text{mod } \mathbf{I})$ eine abelsche Gruppe.

Analog: Die erzeugende Gruppe $\mathcal{G}(\mathbf{M}) := \mathbf{M}\mathcal{P}(\mathbf{M})$ mit + mod \mathbf{M} , d.h. es gibt eine eindeutige Zerlegung für $\mathbf{k} \in \mathbb{Z}^d$: $\mathbf{k} = \mathbf{h} + \mathbf{M}\mathbf{z}$, $\mathbf{h} \in \mathcal{G}(\mathbf{M})$, $\mathbf{z} \in \mathbb{Z}^d$.

Verallgemeinerung des 1D:
$$\mathbf{M} = N \in \mathbb{N}^+$$
, also $\mathcal{P}(N) = \{\frac{k}{N}, k = 0, \dots, N-1\}$ und $\mathcal{G}(N) = \{0, 1, \dots, N-1\}$.

Eigenschaften des Musters

Lemma (Anzahl Elemente)

Es gilt
$$|\mathcal{P}(\mathbf{M})| = |\det \mathbf{M}| = m$$

Beweisidee: Betrachtung des Volumens von $\mathbf{M}^{-1}[0,1)^d$ [BHR93, S.35].

Lemma

Es gilt: für $M = JN: \mathcal{P}(N) \subset \mathcal{P}(M)$

Für ein $\mathbf{y} \in \mathcal{P}(\mathbf{N})$ gilt $\mathbf{N}\mathbf{y} \in \mathbb{Z}^d$ und somit auch $\mathbf{M}\mathbf{y} = \mathbf{J}\mathbf{N}\mathbf{y} \in \mathbb{Z}^d$

Für **J** gilt dies nicht, etwa für
$$\mathbf{N} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
, $\mathbf{J} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ gilt $\mathcal{P}(\mathbf{J}) \notin \mathcal{P}(\mathbf{J}\mathbf{N})$

$$\mathbf{M} = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}$$

auf \mathbb{T}^2

$$\mathbf{M} = \begin{pmatrix} 4 & -1 \\ 4 & 1 \end{pmatrix}$$
(Diagonal)

auf \mathbb{T}^2

$$\mathbf{M} = \begin{pmatrix} 4 & -1 \\ 16 & 4 \end{pmatrix}$$
(Skalierung y)

auf \mathbb{T}^2

$$\mathbf{M} = \begin{pmatrix} -12 & -5 \\ 20 & 3 \end{pmatrix}$$
(Diagonal)

auf \mathbb{T}^2

$$\mathbf{M} = \begin{pmatrix} -24 & -10 \\ 20 & 3 \end{pmatrix}$$
(Skalierung x)

auf \mathbb{T}^2

$$\mathbf{M} = \begin{pmatrix} -24 & -10 \\ 80 & 12 \end{pmatrix}$$
(Skalierung y)

auf \mathbb{T}^2

$$\mathbf{M} = \begin{pmatrix} -48 & -20 \\ 80 & 12 \end{pmatrix}$$
(Skalierung x)

auf \mathbb{T}^2

$$\mathbf{M} = \begin{pmatrix} -128 & -32 \\ 32 & -8 \end{pmatrix}$$
 (Diagonal)

 $\text{auf}\, \mathbb{T}^2$

auf
$$[0,1)^2$$

$$\mathbf{M} = \begin{pmatrix} -128 & -32 \\ 64 & -16 \end{pmatrix}$$
(Skalierung y)

 $\text{auf}\, \mathbb{T}^2$

Fourier-Transformation

Die Fourier-Matrix auf $\mathcal{P}(\mathbf{M})$ ist definiert durch [CL94]

$$\mathcal{F}(\boldsymbol{M}) \coloneqq \frac{1}{\sqrt{m}} \Big(e^{-2\pi \, i \, \boldsymbol{h}^T \boldsymbol{y}} \Big)_{\boldsymbol{h} \in \mathcal{G}(\boldsymbol{M}^T), \boldsymbol{y} \in \mathcal{P}(\boldsymbol{M})} \in \mathbb{C}^{m \times m}$$

- $\mathbf{h} \in \mathcal{G}(\mathbf{M}^T)$ adressiert Zeilen
- $\mathbf{y} \in \mathcal{P}(\mathbf{M})$ die Spalten
- mit $\mathbf{a} = (a_{\mathbf{y}})_{\mathbf{y} \in \mathcal{P}(\mathbf{M})} \in \mathbb{C}^m$ (sortiert wie d. Spalten): DFT auf $\mathcal{P}(\mathbf{M})$

$$\hat{\mathbf{a}} = (\hat{a}_{\mathbf{h}})_{\mathbf{h} \in \mathcal{C}(\mathbf{M}^T)} = \sqrt{m} \mathcal{F}(\mathbf{M}) \mathbf{a} \in \mathbb{C}^m$$

Für d = 1 ist $\mathbf{M} = \mathbf{M}^T = N \in \mathbb{N}$ und $\mathcal{F}(\mathbf{M})$ die klassische Fourier-Matrix.

Interpretation: $\mathcal{P}(\mathbf{M})$ entspricht den Abtastpunkten (auf \mathbb{T}^d), $\mathcal{G}(\mathbf{M}^T)$ den mehrdimensionalen Frequenzen (e^{i ko}: "Welle mit Richtung")

Zyklen im Muster

Definition

Die Zerlegung M = QER mit

- $\mathbf{E} = \operatorname{diag}(\varepsilon_1, \dots, \varepsilon_d)$
- $\varepsilon_{j-1}|\varepsilon_j, j=2,\ldots,d$
- |det **R**| = |det **Q**| = 1

heißt Smith-Normalform von M.

Da R, Q lediglich einen Basiswechsel vollziehen, gilt

$$\mathcal{P}(\mathbf{M}) \cong \mathcal{P}(\mathbf{E}) = \mathcal{C}_{\mathcal{E}_1} \otimes \cdots \otimes \mathcal{C}_{\mathcal{E}_d}$$
, wobei $\mathcal{C}_{\mathcal{E}_j} = \frac{1}{\mathcal{E}_j} \mathbf{e}_j \{0, \dots, \mathcal{E}_j - 1\}$.

Für nichttriviale Zyklen $(\varepsilon_i > 1)$ $\exists \mathbf{y} \in \mathcal{P}(\mathbf{M}) : k\mathbf{y} \equiv \mathbf{0} \mod \mathbf{I} \Leftrightarrow k = \mathbb{Z}\varepsilon_i$

Somit ist
$$\mathcal{F}(\mathbf{M}) = \mathbf{P_h} \mathcal{F}_{\varepsilon_1} \otimes \cdots \otimes \mathcal{F}_{\varepsilon_d} \mathbf{P_y}, \quad \mathcal{F}_{\varepsilon} = \left(e^{-2\pi i h \varepsilon^{-1} g} \right)_{g,h=0}^{\varepsilon - 1}$$

Raum der Translate

Mit dem Translationsoperator $T(\mathbf{y})f := f(\circ - 2\pi \mathbf{y}), f \in L^2(\mathbb{T}^d), \quad \mathbf{y} \in \mathcal{P}(\mathbf{M}).$

Definition

Ein Unterraum $V \subset L^2$ heißt **M**-invariant

$$\forall \mathbf{y} \in \mathcal{P}(\mathbf{M}) \ \forall f \in V \colon T(\mathbf{y}) f \in V$$

Lemma

Der Raum $V_{\mathbf{M}}^f := \operatorname{span} \{ T(\mathbf{y}) f, \mathbf{y} \in \mathcal{P}(\mathbf{M}) \}$ ist **M**-invariant

Für ein $g = \sum_{\mathbf{y} \in \mathcal{P}(\mathbf{M})} a_{\mathbf{y}} T(\mathbf{y}) f \in V_{\mathbf{M}}^f$ ist für ein bel. $\mathbf{x} \in \mathcal{P}(\mathbf{M})$

$$T(\mathbf{x})g = \sum_{\mathbf{y} \in \mathcal{P}(\mathbf{M})} a_{\mathbf{y}} T(\mathbf{x} + \mathbf{y}) f = \sum_{\mathbf{y} \in \mathcal{P}(\mathbf{M})} a_{\mathbf{y} - \mathbf{x} \bmod \mathbf{I}} T(\mathbf{y}) f \in V_{\mathbf{M}}^{f}$$

Inklusionsbeziehung der Funktionen

Theorem

 $g \in V_{\mathbf{M}}^f$ ist erfüllt, genau dann, wenn ein Vektor $\mathbf{a} = (a_{\mathbf{y}})_{\mathbf{y} \in \mathcal{P}(\mathbf{M})}$ mit diskreter Fourier-Transformierten $\hat{\mathbf{a}} = \sqrt{m}\mathcal{F}(\mathbf{M})\mathbf{a}$ existiert und für diesen gilt

$$c_{\mathbf{k}+\mathbf{Mz}}(g) = \hat{a}_{\mathbf{k}}c_{\mathbf{k}+\mathbf{Mz}}$$
 für alle $\mathbf{k} \in \mathcal{G}(\mathbf{M}^T), \mathbf{z} \in \mathbb{Z}^d$

Beweis.

$$g \in V_{\mathbf{M}}^f \Leftrightarrow g = \sum_{\mathbf{y} \in \mathcal{P}(\mathbf{M})} a_{\mathbf{y}} T(\mathbf{y}) f \Leftrightarrow c_{\mathbf{k}}(g) = \sum_{\mathbf{y} \in \mathcal{P}(\mathbf{M})} a_{\mathbf{y}} e^{-2\pi i \mathbf{k}^T \mathbf{y}} c_{\mathbf{k}}(f)$$

Zerlegen $\mathbf{k} = \mathbf{h} + \mathbf{M}^T \mathbf{z}, \mathbf{h} \in \mathcal{G}(\mathbf{M}^T), \mathbf{z} \in \mathbb{Z}^d \text{ und erhalten } (e^{-2\pi i \mathbf{z}^T \mathbf{M} \mathbf{y}} = 1)$

$$\Leftrightarrow c_{\mathbf{h}+\mathbf{M}^{\mathsf{T}}\mathbf{z}}(g) = \sum_{\mathbf{y} \in \mathcal{P}(\mathbf{M})} a_{\mathbf{y}} e^{-2\pi i \mathbf{h}^{\mathsf{T}}\mathbf{y}} c_{\mathbf{h}+\mathbf{M}^{\mathsf{T}}\mathbf{z}}(f) = \hat{a}_{\mathbf{h}} c_{\mathbf{h}+\mathbf{M}^{\mathsf{T}}\mathbf{z}}(f)$$

Zusammenfassung & Ausblick

- Richtungspräferenz im Mehrdimensionalen durch Muster
- Charakterisierung der (Unter-)Räumen
- Berechnungen/Enthaltenseinsbeziehung im Frequenzbereich

Möglich sind

- ein dyadisches mulativariates Waveletsystem
- (adaptive) Richtungspräferenz durch Teilmuster und Waveletfunktionen
- schnelle Algorithmen (FFT, Zerlegung)

Herausforderung:

- Verallgemeinerung der de-La-Vallée-Poussin-Mittel
- Anforderungen/Eigenschaften der Wavelet- und Skalierungsfunktionen

Literatur

- [BHR93] C. de Boor, K. Höllig, S. Riemenschneider: *Box splines*, Springer, 1993, ISBN 0-387-94101-0
 - [CL94] C.K. Chui, C. Li: A general framework of multivariate wavelets with duals, ACHA 1-4 / 1994 p.368–390
 - [LP10] D. Langemann, J. Prestin: *Multivariate Periodic Wavelet Analysis*, ACHA 28-1 / 2010 p. 46–66
 - [PT95] G. Plonka, M. Tasche: On the computation of periodic spline wavelets, ACHA 2-1 / 1995 p. 1–14
 - [Se98] K. Selig: periodische Wavelet-Packets und eine gradoptimale Schauderbasis, Dissertation, Universität Rostock, Shaker Verlag 1998

Vielen Dank für die Aufmerksamkeit.