DenseNet

Densely Connected Convolutional Networks

2021.03.30

Overview

2017 CVPR 컨퍼런스 >> Densely Connected Network

Figure 2. Residual learning: a building block

[Advantage]

- 1. Vanishing Gradient 문제 완화
- 2. 더 강력한 feature propagation
- 3. Feature 재사용 촉진
- 4. 파라미터 수 감소
- 5. Regularlizing 효과와 Overfitting 감소

Dense Connectivity

Densely connected convolution networks CVPR 2017 oral presentation slide

Dense Connectivity

전통 CNN

$$X_{l} = H_{l}(X_{l-1})$$

ResNet

$$X_{l} = H_{l}(X_{l-1}) + X_{l-1}$$

DenseNet

$$\mathbf{x}_{\ell} = H_{\ell}([\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{\ell-1}]),$$

Summation vs Concatenation

Figure 1: A 5-layer dense block with a growth rate of k=4. Each layer takes all preceding feature-maps as input.

Dense Connectivity

Composite Function

Composite function. Motivated by [12], we define $H_{\ell}(\cdot)$ as a composite function of three consecutive operations: batch normalization (BN) [14], followed by a rectified linear unit (ReLU) [6] and a 3×3 convolution (Conv).

Three consecutive operations

Growth Rate

One explanation for this is that each layer has access to all the preceding feature-maps in its block and, therefore, to the network's "collective knowledge".

One can view the feature-maps as the global state of the network.

Each layer adds k feature-maps of its own to this state.

The growth rate regulates how much new information each layer contributes to the global state.

The global state, once written, can be accessed from everywhere within the network and,

unlike in traditional network architectures, there is no need to replicate it from layer to layer.

Bottleneck Layer

Densely connected convolution networks CVPR 2017 oral presentation slide

Higher parameter and computational efficiency

Densely connected convolution networks CVPR 2017 oral presentation slide

Compression (Transition Layer)

>> Transition Layer = Convolution Layer + Pooling Layer

Huang, Gao, et al. "Densely connected convolutional networks." arXiv preprint arXiv:1608.06993 (2016).

DenseNet 실험 - 모델 구조

	CIFAR	SVHN	ImageNet
Optimization Method	SGD	SGD	SGD
Batch Size	64	64	256
Epoch	300	40	90
Initial Learning Rate	0.1	0.1	0.1
Initalization Method	Не	Не	Не

>> DenseNet ImageNet architecture

Layers	Output Size	DenseNet- $121(k = 32)$	DenseNet-169 $(k = 32)$	DenseNet-201 $(k = 32)$	DenseNet-161 $(k = 48)$							
Convolution	112 × 112		7×7 conv, stride 2									
Pooling	56 × 56		$3 \times 3 \max p$	oool, stride 2								
Dense Block (1)	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$							
Transition Layer	56 × 56		1 × 1	conv								
(1)	28 × 28		2×2 average pool, stride 2									
Dense Block (2)	28 × 28	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$							
Transition Layer	28×28		1 × 1	conv								
(2)	14 × 14		2×2 average pool, stride 2									
Dense Block (3)	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 24$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 48$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 36$							
Transition Layer	14 × 14		1 × 1	conv								
(3)	7 × 7		2 × 2 average	pool, stride 2								
Dense Block (4)	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 24$							
Classification	1 × 1		7 × 7 global	average pool								
Layer			1000D fully-connected, softmax									

Table 1: DenseNet architectures for ImageNet. The growth rate for the first 3 networks is k = 32, and k = 48 for DenseNet-161. Note that each "conv" layer shown in the table corresponds the sequence BN-ReLU-Conv.

Huang, Gao, et al. "Densely connected convolutional networks." arXiv preprint arXiv:1608.06993 (2016).

DenseNet 실험 - 모델 구조

	CIFAR	SVHN	ImageNet
Optimization Method	SGD	SGD	SGD
Batch Size	64	64	256
Epoch	300	40	90
Initial Learning Rate	0.1	0.1	0.1
Initalization Method	Не	Не	Не

>> DenseNet CIFAR, SVHN architecture

Layers	Output Size	DenseNet (k	=12, L=40)	DenseNet (k=12, L=100)		DenseNet (k=24, L=100)		DenseNet-BC (k=12, L=100)		DenseNet-BC (k=24, L=250)		DenseNet-BC (k=40, L=190)	
Convolution	32x32		3x3 conv										
Dense Block (1)	32x32	3x3 conv	x12	3x3 conv	x32	3x3 conv	x32	1x1 conv 3x3 conv	x 16	1x1 conv 3x3 conv	x 41	1x1 conv 3x3 conv	x 31
Transition Layer	32x32							1x1 conv					
(1)	16x16						2x2 ave	erage pool, stride	:=2				
Dense Block (2)	16x16	3x3 conv	x12	3x3 conv	x32	3x3 conv	x32	1x1 conv 3x3 conv	x 16	1x1 conv 3x3 conv	x 41	1x1 conv 3x3 conv	x 31
Transition Layer	16x16		1x1 conv										
(2)	8x8		2x2 average pool, stride=2										
Dense Block (3)	8x8	3x3 conv	x12	3x3 conv	x32	3x3 conv	x32	1x1 conv 3x3 conv	x 16	1x1 conv 3x3 conv	x 41	1x1 conv 3x3 conv	x 31
Classification	1x1		8x8 global average pool										
Layer			10D fully-connected, softmax										

DenseNet 실험 - 실험 결과

Method	Depth	Params	C10	C10+	C100	C100+	SVHN
Network in Network [22]	-	-	10.41	8.81	35.68	-	2.35
All-CNN [31]	-	-	9.08	7.25	-	33.71	-
Deeply Supervised Net [20]	-	-	9.69	7.97	-	34.57	1.92
Highway Network [33]	-	-	-	7.72	-	32.39	-
FractalNet [17]	21	38.6M	10.18	5.22	35.34	23.30	2.01
with Dropout/Drop-path	21	38.6M	7.33	4.60	28.20	23.73	1.87
ResNet [11]	110	1.7M	-	6.61	-	-	-
ResNet (reported by [13])	110	1.7M	13.63	6.41	44.74	27.22	2.01
ResNet with Stochastic Depth [13]	110	1.7M	11.66	5.23	37.80	24.58	1.75
	1202	10.2M	-	4.91	-	-	-
Wide ResNet [41]	16	11.0M	-	4.81	-	22.07	-
	28	36.5M	-	4.17	-	20.50	-
with Dropout	16	2.7M	-	-	-	-	1.64
ResNet (pre-activation) [12]	164	1.7M	11.26*	5.46	35.58*	24.33	-
	1001	10.2M	10.56*	4.62	33.47*	22.71	-
DenseNet $(k = 12)$	40	1.0M	7.00	5.24	27.55	24.42	1.79
DenseNet $(k = 12)$	100	7.0M	5.77	4.10	23.79	20.20	1.67
DenseNet $(k = 24)$	100	27.2M	5.83	3.74	23.42	19.25	1.59
DenseNet-BC $(k = 12)$	100	0.8M	5.92	4.51	24.15	22.27	1.76
DenseNet-BC $(k = 24)$	250	15.3M	5.19	3.62	19.64	17.60	1.74
DenseNet-BC $(k = 40)$	190	25.6M	-	3.46	-	17.18	-

Table 2: Error rates (%) on CIFAR and SVHN datasets. k denotes network's growth rate. Results that surpass all competing methods are **bold** and the overall best results are **blue**. "+" indicates standard data augmentation (translation and/or mirroring). * indicates results run by ourselves. All the results of DenseNets without data augmentation (C10, C100, SVHN) are obtained using Dropout. DenseNets achieve lower error rates while using fewer parameters than ResNet. Without data augmentation, DenseNet performs better by a large margin.

DenseNet 실험 - 실험 결과

Method	Depth	Params	C10	C10+	C100	C100+	SVHN
Network in Network [22]	-	-	10.41	8.81	35.68	-	2.35
All-CNN [31]	-	-	9.08	7.25	-	33.71	-
Deeply Supervised Net [20]	-	-	9.69	7.97	-	34.57	1.92
Highway Network [33]	-	-	-	7.72	-	32.39	-
FractalNet [17]	21	38.6M	10.18	5.22	35.34	23.30	2.01
with Dropout/Drop-path	21	38.6M	7.33	4.60	28.20	23.73	1.87
ResNet [11]	110	1.7M	-	6.61	-	-	-
ResNet (reported by [13])	110	1.7M	13.63	6.41	44.74	27.22	2.01
ResNet with Stochastic Depth [13]	110	1.7M	11.66	5.23	37.80	24.58	1.75
	1202	10.2M	-	4.91	-	-	-
Wide ResNet [41]	16	11.0M	-	4.81	-	22.07	-
	28	36.5M	-	4.17	-	20.50	-
with Dropout	16	2.7M	-	-	-	-	1.64
ResNet (pre-activation) [12]	164	1.7M	11.26*	5.46	35.58*	24.33	-
	1001	10.2M	10.56*	4.62	33.47*	22.71	-
DenseNet $(k = 12)$	40	1.0M	7.00	5.24	27.55	24.42	1.79
DenseNet $(k = 12)$	100	7.0M	5.77	4.10	23.79	20.20	1.67
DenseNet $(k = 24)$	100	27.2M	5.83	3.74	23.42	19.25	1.59
DenseNet-BC $(k = 12)$	100	0.8M	5.92	4.51	24.15	22.27	1.76
DenseNet-BC $(k = 24)$	250	15.3M	5.19	3.62	19.64	17.60	1.74
DenseNet-BC $(k = 40)$	190	25.6M	-	3.46	-	17.18	-

Table 2: Error rates (%) on CIFAR and SVHN datasets. k denotes network's growth rate. Results that surpass all competing methods are **bold** and the overall best results are **blue**. "+" indicates standard data augmentation (translation and/or mirroring). * indicates results run by ourselves. All the results of DenseNets without data augmentation (C10, C100, SVHN) are obtained using Dropout. DenseNets achieve lower error rates while using fewer parameters than ResNet. Without data augmentation, DenseNet performs better by a large margin.

Thank You

