Claims

We claim:

1	1. A method for computing an average bits/frame (BA) for frames extracted from a buffer used
2	for video encoding and decoding, each said frame having a same number of fields, said BA equal
3	to (BR + BR1/J1)/J2, said BR1, J1, and J2 each a positive integer, said BR a bit rate in bits/sec,
4	said BR1/BR a positive integer, said method comprising:
4 5 m cm 6 m 7 m 8 m m 9 m m 10 m 10 m m 10	determining BR1, J1, and J2 such that J2/(1+(BR1/BR)/J1) as evaluated in floating point
$\mathbf{q}_{}$	is approximately equal to FR, said FR a frame rate in frames/sec;
	calculating a quotient Q1 and remainder R1 from integer division of BR1 by J1;
8	calculating a quotient Q2 and remainder R2 from integer division of (BR+Q1) by J2;
	initializing to zero accumulators A1 and A2; and
10	executing N iterations, wherein N > 1, and wherein executing each iteration includes:
11	adding R1 to A1;
12	if A1≥J1, then adding 1 to A2 and decrementing A1 by J1;
13	setting BA=Q2 and adding R2 to A2;
14	if $A2 \ge J2$, then adding 1 to BA and decrementing A2 by J2.
1	2. The method of claim 1, wherein determining BR1, J1, and J2 includes computing BR1, J1, and
2	J2.

- 3. The method of claim 1, wherein determining BR1, J1, and J2 includes receiving as input BR1,
- 2 J1, and J2.
- 4. The method of claim 1, wherein J1 is a multiple of 10.
- 1 5. The method of claim 1, wherein J1 > J2.

```
6. A computer code that computes an average bits/frame (BA) for frames extracted from a buffer
```

- 2 used for video encoding and decoding, each said frame having a same number of fields, said BA
- equal to (BR + BR1/J1)/J2, said BR1, J1, and J2 each a positive integer, said BR a bit rate in
- bits/sec, said BR1/BR a positive integer, said computer code including an algorithm programmed
- 5 to:
- determine BR1, J1, and J2 such that J2/(1+(BR1/BR)/J1) as evaluated in floating point is
- 7 approximately equal to FR, said FR a frame rate in frames/sec;

calculate a quotient Q1 and remainder R1 from integer division of BR1 by J1;

calculate a quotient Q2 and remainder R2 from integer division of (BR+Q1) by J2;

initialize to zero accumulators A1 and A2; and

execute N iterations, wherein N > 1, and wherein to execute each iteration includes:

to add R1 to A1;

if $A1 \ge J1$, then to add 1 to A2 and to decrement A1 by J1;

to set BA=Q2 and to add R2 to A2; and

if $A2 \ge J2$, then to add 1 to BA and to decrement A2 by J2.

- 7. The computer code of claim 6, wherein to determine BR1, J1, and J2 includes to compute
- 2 BR1, J1, and J2.

15

- 8. The computer code of claim 6, wherein to determine BR1, J1, and J2 includes to receive as
- 2 input BR1, J1, and J2.

- 1 9. The computer code of claim 6, wherein J1 is a multiple of 10.
- 1 10. The computer code of claim 6, wherein J1 > J2.

1	11. A method of computing an average bits/frame (BA) for frames extracted from a buffer used
2	for video encoding and decoding, each said frame having a variable number of fields,
3	comprising:
4	defining BA1 as an average bits/frame for a two-field frame, said BA1 equal to (BR +
5	BR1/J1)/J2, said BR1, J1, and J2 each a positive integer, said BR a bit rate in bits/sec, said
6	BR1/BR a positive integer;
7	defining BA2 as an average bits/frame for a one-field frame, said BA2 equal to (BR +
8	BR1/J1)/(2*J2);
9	determining BR1, J1, and J2 such that J2/(1+(BR1/BR)/J1) as evaluated in floating point
	is approximately equal to FR, said FR a frame rate in frames/sec;
	calculating a quotient Q1 and remainder R1 from integer division BR1/J1;
12	calculating a quotient Q2 and remainder R2 from integer division (BR+Q1)/J2;
13=	calculating a quotient Q3 and remainder R3 from integer division (BR+Q1)/(2*J2);
14	initializing to zero accumulators A1, A2, B1, and B2;
15	executing N iterations, wherein N > 1, said executing iteration n of N relating to
16	extracting a frame n from the buffer, said executing of iteration n including:
17	calculating BA1, including:
18	adding R1 to A1;
19	if A1≥J1 then adding 1 to A2 and decrementing A1 by J1;
20	setting BA1=Q2 and adding R2 to A2;
21	if A2≥J2, then adding 1 to BA1 and decrementing A2 by J2;

32

END920010005US1

- 22 determining a number of fields F_n comprised by the frame n;
- 23 if F_n is even then setting BA2=0 else calculating BA2 including:
- 24 adding R1 to B1;
- 25 if B1≥J1, then adding 1 to B2 and decrementing B1 by J1;
- 26 setting BA2=Q3 and adding R3 to B2;
- 27 if B2≥(2*J2), then adding 1 to BA2 and decrementing B2 by (2*J2);
- computing BA= $(F_n/2)*BA1 + BA2$, said $(F_n/2)$ computed by integer division.
 - 12. The method of claim 11, wherein F_n is 2 or 3.
 - 13. The method of claim 11, wherein determining BR1, J1, and J2 includes computing BR1, J1, and J2.
 - 14. The method of claim 11 wherein determining BR1, J1, and J2 includes receiving as input
- 1

15. The method of claim 11, wherein J1 is a multiple of 10.

1 16. The method of claim 11 wherein J1 > J2.

BR1, J1, and J2.

I	17. A computer code that computes an average bits/frame (BA) for frames extracted from a
2	buffer used for video encoding and decoding, each said frame having a variable number of fields
3	said BA a function of BA1 and BA2, said BA1 defined as an average bits/frame for a two-field
4	frame, said BA1 equal to (BR + BR1/J1)/J2, said BR1, J1, and J2 each a positive integer, said
5	BR a bit rate in bits/sec, said BR1/BR a positive integer, said BA2 defined as an average
6	bits/frame for a one-field frame, said BA2 equal to (BR + BR1/J1)/(2*J2), said computer code
7	including an algorithm, said algorithm programmed to:
8	determine BR1, J1, and J2 such that J2/(1+(BR1/BR)/J1) as evaluated in floating point is
90	approximately equal to FR, said FR a frame rate in frames/sec;
8 10 11 12 13 14	calculate a quotient Q1 and remainder R1 from integer division BR1/J1;
1	calculate a quotient Q2 and remainder R2 from integer division (BR+Q1)/J2;
12	calculate a quotient Q3 and remainder R3 from integer division (BR+Q1)/(2*J2);
13	initialize to zero accumulators A1, A2, B1, and B2;
143	execute N iterations, wherein N > 1, said iteration n of N relating to extracting a frame n
15	from the buffer, wherein to execute iteration n includes:
16	to calculate BA1, including:
17	to add R1 to A1;
18	if A1≥J1 then to add 1 to A2 and to decrement A1 by J1;
19	to set BA1=Q2 and to add R2 to A2;
20	if A2≥J2, then to add 1 to BA1 and to decrement A2 by J2;
21	to determine a number of fields F _n comprised by the frame n;

- 22 if F_n is even then to set BA2=0 else to calculate BA2 including:
- to add R1 to B1;
- if B1≥J1, then to add 1 to B2 and to decrement B1 by J1;
- 25 to set BA2=Q3 and to add R3 to B2;
- to compute $BA=(F_n/2)*BA1 + BA2$, said $(F_n/2)$ computed by integer division.
- 1 18. The computer code of claim 17, wherein F_n is 2 or 3.
 - 19. The computer code of claim 17, wherein to determine BR1, J1, and J2 includes to compute BR1, J1, and J2.
 - 20. The computer code of claim 17 wherein to determine BR1, J1, and J2 includes to receive as input BR1, J1, and J2.
 - 21. The computer code of claim 17, wherein J1 is a multiple of 10.
- 1 22. The computer code of claim 17 wherein J1 > J2.

```
1 23. A method for computing Z, said Z = \sum_{n} Z_{n}, said \sum_{n} denoting a summation over n from 1 to
```

N, said N a positive integer of at least 1, said
$$Z_n = X_n/Y$$
, said $X_n = (I_{1n}/J_1)M_{1n} + (I_{2n}/J_2)M_{2n} + ... + ... + ...$

3
$$(I_{Kn}/J_K)M_{Kn}$$
, said Y and said I_{kn} , J_k , M_{kn} (k=1, 2, ..., K) each a positive integer, said K a positive

4 integer of at least 1, said method comprising:

5 setting Z=0, B=0, and
$$A_k$$
=0 for k=1, 2, ..., K;

6 executing N iterations, said executing of iteration n of N including:

calculating a quotient Q_{kn} and a remainder R_{kn} from integer division I_{kn}/J_k for k=1,

7

15

16

calculating $X_n = \sum_k [Q_{kn}M_{kn}]$ as summed over k from 1 to K;

adding
$$R_{kn}M_{kn}$$
 to A_k for $k=1, 2, ..., K$;

for
$$k=1,\,2,\,...,\,K,$$
 if $A_k \geq J_k,$ then adding 1 to B and decrementing A_k by $J_k;$

if $Y \! \neq \! 1$ then calculating a quotient Q_n and a remainder R_n from integer division

$$X_n/Y$$
, else setting $Q_n = X_n$ and $R_n = 0$;

setting
$$Z_n = Q_n$$
 and adding R_n to B;

if B
$$\geq$$
 Y, then calculating $Z_n = Z_n + 1$ and decrementing B by Y;

adding
$$Z_n$$
 to Z .

1 24. The method of claim 23, further comprising:

computing
$$S = B + \sum_{k} (A_k/J_k)]/Y$$
), said $\sum_{k} (A_k/J_k)$ denoting a summation over k from 1 to

3 K, said S computed in floating point; and

- adding S to Z.
 - 1 25. The method of claim 23, wherein $Y \neq 1$.
 - 1 26. The method of claim 23, wherein Y=1.

```
1 27. A computer code that computes Z, said Z = \sum_{n} Z_{n}, said \sum_{n} denoting a summation over n
```

- from 1 to N, said N a positive integer of at least 1, said $Z_n = X_n/Y$, said $X_n = (I_{1n}/J_1)M_{1n} +$
- $(I_{2n}/J_2)M_{2n} + ... + (I_{Kn}/J_K)M_{Kn}$, said Y and said I_{kn} , J_k , M_{kn} (k=1, 2, ..., K) each a positive integer,
- 4 said K a positive integer of at least 1, said computer code including an algorithm, said algorithm
- 5 programmed to:

8

16

17

6 set
$$Z=0$$
, $B=0$, and $A_k=0$ for $k=1, 2, ..., K$;

7 execute N iterations, wherein to execute iteration n of N includes:

to calculate a quotient Q_{kn} and a remainder R_{kn} from integer division I_{kn}/J_k for k=1,

2, ..., K;

to calculate $X_n = \sum_k [Q_{kn} M_{kn}]$ as summed over k from 1 to K;

to add $R_{kn}M_{kn}$ to A_k for k=1, 2, ..., K;

for k = 1, 2, ..., K, if $A_k \geq J_k,$ then to add 1 to B and to decrement A_k by $J_k;$

if Y \neq 1 then to calculate a quotient Q_n and a remainder R_n from integer division

 X_n/Y , else to set $Q_n = X_n$ and $R_n = 0$;

to set $Z_n = Q_n$ and to add R_n to B;

if $B \ge Y$, then to calculate $Z_n = Z_n + 1$ and to decrement B by Y;

to add Z_n to Z.

- 1 28. The computer code of claim 27, said algorithm further programmed to:
- compute $S = [B + \sum_k (A_k/J_k)]/Y$, said $\sum_k (A_k/J_k)$ denoting a summation over k from 1 to
- 3 K, said S computed in floating point; and

END920010005US1

- 1 29. The computer code of claim 27, wherein $Y \neq 1$.
- 1 30. The computer code of claim 27, wherein Y=1.

1	31. A computer program product, comprising a computer usable medium having a computer
2	readable program code embodied therein, wherein the computer code computes an average
3	bits/frame (BA) for frames extracted from a buffer used for video encoding and decoding, each
4	said frame having a same number of fields, said BA equal to (BR + BR1/J1)/J2, said BR1, J1,
5	and J2 each a positive integer, said BR a bit rate in bits/sec, said BR1/BR a positive integer, said
6	computer code including an algorithm programmed to:
7	determine BR1, J1, and J2 such that J2/(1+(BR1/BR)/J1) as evaluated in floating point is
8	approximately equal to FR, said FR a frame rate in frames/sec;
9 <u>5</u>	calculate a quotient Q1 and remainder R1 from integer division of BR1 by J1;
10.1	calculate a quotient Q2 and remainder R2 from integer division of (BR+Q1) by J2;
11	initialize to zero accumulators A1 and A2; and
12	execute N iterations, wherein N > 1, and wherein to execute each iteration includes:
9 10 11 12 13 14 15 15	to add R1 to A1;
14	if $A1 \ge J1$, then to add 1 to A2 and to decrement A1 by J1;
15	to set BA=Q2 and to add R2 to A2; and
16	if $A2 \ge J2$, then to add 1 to BA and to decrement A2 by J2.

1	32. A computer program product, comprising a computer usable medium having a computer
2	readable program code embodied therein, wherein the computer code computes an average
3	bits/frame (BA) for frames extracted from a buffer used for video encoding and decoding, each
4	said frame having a variable number of fields, said BA a function of BA1 and BA2, said BA1
5	defined as an average bits/frame for a two-field frame, said BA1 equal to (BR + BR1/J1)/J2, said
6	BR1, J1, and J2 each a positive integer, said BR a bit rate in bits/sec, said BR1/BR a positive
7	integer, said BA2 defined as an average bits/frame for a one-field frame, said BA2 equal to (BR
8	+ BR1/J1)/(2*J2), said computer code including an algorithm, said algorithm programmed to:
9 10 11 12 13 14 15	determine BR1, J1, and J2 such that J2/(1+(BR1/BR)/J1) as evaluated in floating point is
1 0 .	approximately equal to FR, said FR a frame rate in frames/sec;
114	calculate a quotient Q1 and remainder R1 from integer division BR1/J1;
12	calculate a quotient Q2 and remainder R2 from integer division (BR+Q1)/J2;
13.7 Li	calculate a quotient Q3 and remainder R3 from integer division (BR+Q1)/(2*J2);
14	initialize to zero accumulators A1, A2, B1, and B2;
15	execute N iterations, said N at least 1, said iteration n of N relating to extracting a frame n
16	from the buffer, wherein to execute iteration n includes:
17	to calculate BA1, including:
18	to add R1 to A1;
19	if A1≥J1 then to add 1 to A2 and to decrement A1 by J1;
20	to set BA1=Q2 and to add R2 to A2;
21	if A2≥J2, then to add 1 to BA1 and to decrement A2 by J2;
	END920010005US1 41

<i>LL</i>	to determine a number of fields F_n comprised by the frame n;
23	if F_n is even then to set BA2=0 else to calculate BA2 including:
24	to add R1 to B1;
25	if $B1 \ge J1$, then to add 1 to B2 and to decrement B1 by J1;
26	to set BA2=Q3 and to add R3 to B2;
27	to compute $BA=(F_n/2)*BA1 + BA2$, said $(F_n/2)$ computed by integer division

- 1 33. A computer program product, comprising a computer usable medium having a computer
- readable program code embodied therein, wherein the computer code computes Z, said $Z = \sum_{n} \sum_{n} z_{n} dz$
- Z_n , said Σ_n denoting a summation over n from 1 to N, said N a positive integer of at least 1, said
- 4 $Z_n = X_n/Y$, said $X_n = (I_{1n}/J_1)M_{1n} + (I_{2n}/J_2)M_{2n} + ... + (I_{Kn}/J_K)M_{Kn}$, said Y and said I_{kn} , J_k , M_{kn} (k=1,
- 5 2, ..., K) each a positive integer, said K a positive integer of at least 1, said computer code
- 6 including an algorithm, said algorithm programmed to:
- 7 set Z=0, B=0, and $A_k=0$ for k=1, 2, ..., K;
- 8 execute N iterations, wherein to execute iteration n of N includes:

to calculate a quotient Q_{kn} and a remainder R_{kn} from integer division I_{kn}/J_k for k=1,

2, ..., K;

9<u>5</u>

16

17

18

to calculate $X_n = \sum_k [Q_{kn}M_{kn}]$ as summed over k from 1 to K;

to add $R_{kn}M_{kn}$ to A_k for k=1, 2, ..., K;

for $k=1,\,2,\,...,\,K,$ if $A_k\geq J_k,$ then to add 1 to B and to decrement A_k by $J_k;$

if Y ≠ 1 then to calculate a quotient Q_n and a remainder R_n from integer division

 X_n/Y , else to set $Q_n = X_n$ and $R_n = 0$;

to set $Z_n = Q_n$ and to add R_n to B;

if $B \ge Y$, then to calculate $Z_n = Z_n + 1$ and to decrement B by Y;

to add Z_n to Z.