1)
$$x(t) = 2 + 5 \sin(\ln t) + 15 \cos(2\pi t)$$

i) $x(t)$ is periodic. $f_{0_1} = 3$ $f_{0_2} = 6$
 $GCD(f_1, f_2) = 3$ $T = \frac{1}{3} 5$
 $f_{0_1} = \frac{1}{3} \frac{1}{5} \frac{$

2)
$$y(t) = x^{2}(t)$$
, $x(t) = 400 \, \text{sinc}(400t)$
 $y(t) = 16 \times 10^{4} \, \text{sinc}(400t)$

i) Check its energy finite or not;

 $Ey = \int_{-\infty}^{\infty} 4^{4} \times 10^{3} \, \text{sinc}(400t) = ?$ Use for seval $\sqrt[4]{}$
 $Ey = \int_{-\infty}^{\infty} 4^{4} \times 10^{3} \, \text{sinc}(400t) = ?$ Use for seval $\sqrt[4]{}$
 $Ey = \int_{-\infty}^{\infty} 4^{4} \times 10^{3} \, \text{sinc}(400t) = ?$ Use for seval $\sqrt[4]{}$
 $Ey = \int_{-\infty}^{\infty} 4^{4} \times 10^{3} \, \text{sinc}(400t) = ?$ Use for seval $\sqrt[4]{}$
 $Y(t) = \frac{16 \times 10^{4}}{400} \, \text{tri}(\frac{1}{400}) \, \text{or ear finite}$

Since $E = 16 \times 10^{4} \, \text{sinc}(ESP) = |Y(t)|^{2}$

We calculated in the first part;

 $|Y(t)|^{2} = 16 \times 10^{4} \times 10^{4} \, \text{cri}(\frac{1}{400})$
 $|W(t)|^{2} = 16 \times 10^{4} \times 10^{4} \, \text{cri}(\frac{1}{400})$
 $|W(t)|^{2} = 16 \times 10^{4} \, \text{cri}(\frac{1}{400})$

3) Signal Bw = 6 k Hz

Min. Sampling frequency
$$\rightarrow$$
 Nygrist Rate; $f_s = 2f_m$

$$\begin{cases}
f_s = 2 \times 6k = 12k \text{ Hz} \\
\text{With } 2k \text{ Hz good } band \rightarrow f_s = 12k+2k=14kHz}
\end{cases}$$
With $2k \text{ Hz good } band \rightarrow f_s = 12k+2k=14kHz}$

$$H(f) = \begin{cases}
K & \frac{161-7000}{3000}, 7k<1f1<10k \\
0, 0, \omega
\end{cases}$$
Bw = 10k Hz
Bw + fm \leq fs
$$16k \leq f_s$$
Note $6k$

min $36k \text{ Hz for parfect reconstruction}$

$$K. $36k = 1$

$$K = \frac{4}{16k}$$
4) a) $P = 0.005 \rightarrow l \geq log \frac{1}{2p} \rightarrow l \geq log \frac{1}{2naa}$

$$l \geq 6.64 \Rightarrow l \text{ is minimum } 7 \text{ bits.}
\end{cases}$$
b) Nygrist rate $\Rightarrow f_s = 2 \times 5k = 10 \text{ k Hz}$
B: Hrate $R = l$, $f_s = 9 \times 10k \text{ Hz} = 70.000 \text{ bits lsec}$

$$C) 2^k = 16 \Rightarrow k = 4 \text{ bits lsymbol}$$

$$R_s = R/k = \frac{70.000}{4} = 17500 \text{ symbols} | \text{Sec}$$$$

In continue is

d)
$$(8w)_{min} = \frac{Rs}{2} = \frac{17500}{2} = 8750 \text{ Hz}$$

5) $M = 255$
 $V_{PP} = 4V \rightarrow from -2V + 0 2V$
 $S = V_{max} \cdot \frac{ln(1+m\frac{|x|}{|x|_{max}})}{ln(1+m)} \cdot Sgn(x)$
 $Sgn(x)$
 Sg