

Affine Function

Linear Algebra

Department of Computer Engineering
Sharif University of Technology

Hamid R. Rabiee <u>rabiee@sharif.edu</u>

Maryam Ramezani <u>maryam.ramezani@sharif.edu</u>

Affine Function

Definition

A function $f: \mathbb{R}^n \to \mathbb{R}$ is affine if and only if it can expressed as $f(x) = a^T x + b$ (linear function plus a constant (offset))

☐ Superposition property for affine function which is called restricted superposition

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$
, $\alpha + \beta = 1$

Affine Function

Theorem

Any scalar-valued function that satisfies the restricted superposition property is affine.

Conclusion

Every affine function can be written as $f(x) = a^T x + b$ with:

$$a^{T} = [f(e_1) - f(0), f(e_2) - f(0), ..., f(e_n) - f(0)]$$

 $b = f(0)$

Conclusion

Conclusion

We can write linear and affine functions in two methods:

- ☐ Method 1:
- ☐ Linear:

$$f(\alpha_1 x_1 + \dots + \alpha_n x_n) = \alpha_1 f(x_1) + \dots + \alpha_n f(x_n), \forall \alpha_1, \dots, \alpha_n$$

☐ Affine:

$$f(\alpha_1 x_1 + \cdots + \alpha_n x_n) = \alpha_1 f(x_1) + \cdots + \alpha_n f(x_n)$$
, $\alpha_1 + \cdots + \alpha_n = 1$

- ☐ Method 2:
 - ☐ Linear:

$$f(x) = a^T x$$

☐ Affine:

$$f(x) = a^T x + b$$

Conclusion

Definition

In many applications, scalar-valued functions of n variables, or relations between n variables and a scalar one, can be approximated as linear or affine functions, which is called "Model".

Scalar-valued function of a scalar

 \square Derivative of function $f: R \to R$ at the point (z, f(z)):

$$\lim_{t\to 0}\frac{f(z+t)-f(z)}{t}$$

- \square It gives the slope of the graph of f at the point (z, f(z)).
- $\Box f'(z)$ is a scalar-valued function of a scalar variable

Review: Scalar-valued function of a vector

☐ The partial derivative of function $f: \mathbb{R}^n \to \mathbb{R}$ at the point Z, with respect to its ith argument

$$\frac{\partial f}{\partial x_i}(z) = \lim_{t \to 0} \frac{f(z_1, \dots, z_{i-1}, z_i + t, z_{i+1}, \dots, z_n) - f(z)}{t} = \lim_{t \to 0} \frac{f(z + te_i) - f(z)}{t}$$

 \Box The partial derivative is the derivative with respect to the i —th argument, with all other arguments fixed.

Review: Gradient

 \Box Gradient: The partial derivatives of f(x) with respect to its n arguments can be collected into an n vector called the gradient of f(x) (at point z):

$$\nabla f(z) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(z) \\ \vdots \\ \frac{\partial f}{\partial x_n}(z) \end{bmatrix}$$

Theorem

Gradient of a combination of functions:

$$f(z) = ag(z) + bh(z)$$

$$\nabla f(z) = a\nabla g(z) + b\nabla h(z)$$

How to find an approximate affine model

 $\Box f: \mathbb{R}^n \to \mathbb{R}$ is differentiable: its partial derivatives exist

Definition

The (first-order) Taylor approximation of f near (or at) the point z:

$$\hat{f}(x) = f(z) + \frac{\partial f}{\partial x_1}(z)(x_1 - z_1) + \dots + \frac{\partial f}{\partial x_n}(z)(x_n - z_n)$$

How to find an approximate affine model

Example

 \square $\hat{f}(x)$ is a linear function or a affine function?

$$\hat{f}(x) = f(z) + \nabla f(z)^{T} (x - z)$$

Constant value of function at z Deviation or Perturbation of x from z

$$\hat{f}(x) = \nabla f(z)^T x + (f(z) - \nabla f(z)^T z)$$
Linear function Constant

Taylor approximation

 \Box The Taylor approximation is sometimes called the linear approximation or linearized approximation of f (at z)

A function f of one variable, and the first order Taylor approximation $\hat{f}(x) = f(z) + f'(z)(x - z)$ at z