电路理论基础

时间:星期三上午8:00至10:40,星期五上午8:00至10:40

地点: 南校园1506

任课教师: 粟涛(电子与信息工程学院)

考试方式: 闭卷

成绩评定:平时分40%,期末考试60%。

学分: 4

频率响应

- > 电路的传递函数
- ▶ 波德图 (波特图)
- ▶ 串联谐振电路
- ▶ 并联谐振电路
- > 无源滤波器
- > 有源滤波器

电路的传递函数

介绍

 传递函数(transfer function),又名网络函数 (network function),是一个以频率或角速度为自 变量的函数。

传递函数的定义

一个电路的传递函数是输出变量与输入变量在频域上的比率。

这些变量可以是电压也可以是电流。 输入变量称为源或激励,输出变量是某 元件(组)上的电压或电流。输入变量 和输出变量,自己也是一个函数。

• 电路的四种传递函数

- 电压增益
$$H(j\omega) = \frac{V_{out}(j\omega)}{V_{in}(j\omega)}$$

跨阻
$$H(j\omega) = \frac{V_{out}(j\omega)}{I_{in}(j\omega)}$$

- 电流增益
$$H(\omega) = \frac{I_{out}(j\omega)}{I_{in}(j\omega)}$$

跨导
$$H(j\omega) = \frac{I_{out}(j\omega)}{V_{in}(j\omega)}$$

表达形式

- 电路的传递函数是一个相量
 - 相量是既有幅值又有相位的量;

$$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)}$$

- 电路的输入变量;
- 电路的输出变量。

$$|H| \angle \varphi_H = \frac{|Y|}{|X|} \angle (\varphi_Y - \varphi_X)$$

- 传递函数可以表达为两个多项式之比
 - 符号 $N(j\omega)$ 是分子多项式;
 - 符号 $N(j\omega)$ 是分母多项式;

$$H(j\omega) = \frac{N(j\omega)}{D(j\omega)}$$

- 两个多项式之间已经没有公共因子。

举个
$$H(j\omega) = \frac{j\omega}{(j\omega + 2)(j\omega + 3)}$$

关键频率

• 传递函数的表达式中含有两种特殊的频率点

$$H(j\omega) = \frac{N(j\omega)}{D(j\omega)}$$

- 第一种叫零点, zero, 分子多项式的根: $N(j\omega)=0$
- 第二种叫极点, pole, 分母多项式的根: $D(j\omega)=0$
- 当电路的工作频率位于极点时,
 - 传递函数的值趋向无穷大。
 - 稍微有点输入,就会产生巨大反应。

$$H(j\omega) = \frac{j\omega}{(j\omega + 2)(j\omega + 3)}$$

举例

- 分子的根为0, 因此传 递函数零点为0。
- 分母的根为-2和-3, 因此传递函数的极点 为-2和-3。
 - 对应频率为0和无实。

例题

• 问题:对于下图的RC电路,计算传递函数 V_o/V_i 及其频率响应。假设 $V_c = V_m \cos \omega t$ 。

$$H(j\omega) = \frac{V_o}{V_i} = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}}$$

$$H(j\omega) = \frac{1}{1 + j\omega RC} = \frac{1}{1 + j\frac{\omega}{\omega_0}}$$

- 解答:
 - 先将时域电路转化为频域等效电路
 - 信号由相量的形式表达
 - 元件用阻抗的形式表达
 - 然后列出方程, 推导

$$|H| = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_0}\right)^2}}$$

$$\omega_0 = \frac{1}{RC}$$

$$\angle H = -\tan^{-1}\frac{\omega}{\omega_0}$$

例题续

• 解答:

- 分析一下频率响应
- 代表性数据
- 响应曲线

ω/ω_0	\boldsymbol{H}	ϕ	ω/ω_0	H	ϕ
0	1	0	10	0.1	-84°
1	0.71	-45°	20	0.05	−87°
2	0.45	-63°	100	0.01	-89°
3	0.32	-72°	∞	0	− 90°

$$|H| = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_0}\right)^2}}$$

$$\angle H = -\tan^{-1}\frac{\omega}{\omega_0}$$

$$\omega_0 = \frac{1}{RC}$$

波特图

对数坐标

对数函数的特性

$$\log(P_1 P_2) = \log P_1 + \log P_2$$

$$\log P^n = n \log P$$

$$\log \frac{P_1}{P_2} = \log P_1 - \log P_2$$

$$log 1 = 0$$

- 对数刻度下的增益G
 - 贝尔(bel) 是功率比的对数:

$$\frac{G}{\text{bel}} = \log \frac{P_1}{P_2}$$

- 分贝(dB)是功率比的贝尔的十分之一。

$$G_{dB} = \frac{G}{dB} = 10 \log \frac{P_1}{P_2}$$

10

分贝

- 使用分贝来描述增益时
 - 使用功率计算和使用电压计算, 结果一样。
 - 当线性增益上升一数量级时,分贝值加十。

$$G_{dB} = \frac{G}{dB} = 10 \log \frac{P_2}{P_1}$$

$$G_{dB} = 20 \log \frac{V_2}{V_1}$$

分贝	P ₂ /P ₁	V ₂ /V ₁
0 dB	1	1
3 dB	2	1.414
6 dB	4	2
10 dB	10	3.16
20 dB	100	10
30 dB	1000	31.6
40 dB	10000	100

波特图的概念

• 波特图是传递函数的模(单位为分贝)与相位(单位为度)关于频率的半对数曲线图。

$$H = |H| \angle \varphi_H = |H| e^{j\varphi_H}$$

- 假设传递函数可以表达为两个函数之积/之比
 - 则波特图因变量为两函数之和

$$H = H_1 \times H_2$$

$$H_{dB} = H_{dB_{-1}} + H_{dB_{-2}}$$
 $\varphi_H = \varphi_{H_{-1}} + \varphi_{H_{-2}}$

传递函数的标准形式

 将传递函数进行变换,得到显示零点和极点的表达 式,称为传递函数的标准形式。

$$\mathbf{H}(\omega) = \frac{K(j\omega)^{\pm 1} (1 + j\omega/z_1) [1 + j2\zeta_1\omega/\omega_k + (j\omega/\omega_k)^2] \cdots}{(1 + j\omega/p_1) [1 + j2\zeta_2\omega/\omega_n + (j\omega/\omega_n)^2] \cdots}$$

- 上面表达式具有7种因子
 - 增益 K;
 - 在原点的极点 $1/j\omega$ 或者 零点 $j\omega$;
 - 单极点 $1/(1+j\omega/p)$ 或者 单零点 $(1+j\omega/p)$;
 - 二阶极点(太长省略)或者 二阶零点(太长省略)。

绘制波特图的方法

- 先将传递函数写成标准形式。
 - 典型因子相乘;
 - 对数刻度下, 因子相加。
- 首先分别绘制各因子的曲线, 然后将它们加起来。
 - 各因子的形状可以由极点零点的特性得到。
- 常数项因子的幅频特性和相频特性是一条水平线

原点处零点和极点

• 位于原点处的零点

$$20\log|H| = 20\log|\omega|$$

• 位于原点处的极点

$$20\log|H| = -20\log|\omega|$$

$$H = \frac{1}{j\omega} = \left| \frac{1}{\omega} \right| e^{-j\frac{\pi}{2}}$$

$$\angle H = -\frac{\pi}{2}$$

山大学 - 电子与信息工程学院 - 栗涛

单零点和单极点

• 单零点:翻升

- 近似线和转折点

$$H = 1 + \frac{j\omega}{z} = \begin{cases} \frac{j\omega}{z} & \omega \to \infty \\ 1 + j & \omega = z \\ 1 & \omega = 0 \end{cases}$$

$$H = 1 + \frac{j\omega}{z} = \begin{cases} \frac{\omega}{z} e^{j\frac{\pi}{2}} & \omega \to \infty \\ \sqrt{2}e^{j\frac{\pi}{4}} & \omega = z \\ 1e^{j0} & \omega = 0 \end{cases}$$

$$20 \log |H| = \begin{cases} 20 \log |\omega| - C & \omega \to \infty \\ 3 & \omega = z \\ 0 & \omega = 0 \end{cases}$$

• 单极点: 趋势相反, 滚降

二阶零点和二阶极点

二阶极点

$$H = \frac{1}{1 + j2\zeta_2 \frac{\omega}{\omega_n} + \left(\frac{j\omega}{\omega_n}\right)^2} = \begin{cases} \left(\frac{j\omega}{\omega_n}\right)^2 & \omega \to \infty \end{cases}$$

$$\frac{1}{j2\zeta_2} \quad \omega = \omega_n$$

$$\omega = 0$$

$$\frac{1}{\sqrt{2}} \quad \omega = 0$$

$$\frac{1}{\sqrt{2}} \quad \omega = 0$$

$$\frac{1}{\sqrt{2}} \quad \omega = 0$$

- 阻尼因子(

绘制波特图的方法 (续)

- 第一步:
 - 找到转折频率

- 第二步:
 - 相邻转折频率之间的斜率
 - 绘出连线

- 第三步:
 - 得到整个频率响应图

例题-1

• 问题: 画出如下传递函数的波特图

$$H = \frac{200j\omega}{(j\omega + 2)(j\omega + 10)}$$

- 解答:
 - 转折频率
 - 斜率计算

圆频率	0	2	10
类型	零点	单极点	单极点
幅度贡献	+ 20 dB/dec	- 20 dB/dec	- 20 dB/dec
相位贡献	90°	$-\tan^{-1}(\omega/2)^{a}$	-tan ⁻¹ ($\omega/10$) b

圆频率	[0, 2)	[2,10)	$[10, \infty)$	
幅度斜率	+ 20 dB/dec	+ 0 dB/dec	- 20 dB/dec	

圆频率	[0, 0.2)	[0.2, 1)	[1, 2)	[2,10)	[10, 20)	[20, 100)	[100, ∞)
相位	稳 90°	滑 -a	滑 -a-b	滑 -a-b	滑 -a-b	滑 -b	稳 – 90°

例题-1

解答:

圆频率		[0, 2)		[2,10)		[10, ∞)		
	幅度斜率		+ 20 dB/dec		+0 dB/dec		- 20 dB/dec	
	圆频率	[0, 0.2)	[0.2, 1)	[1, 2)	[2,10)	[10, 20)	[20, 100)	[100, ∞)

圆频率	[0, 0.2)	[0.2, 1)	[1, 2)	[2,10)	[10, 20)	[20, 100)	[100, ∞)
相位	稳 90°	滑 -a	滑 -a-b	滑 -a-b	滑 -a-b	滑 -b	稳 – 90°

例题-2

• 问题: 画出如下传递函数的波特图

$$H = \frac{j\omega + 10}{j\omega(j\omega + 5)^2}$$

• 解答:

圆频率	0	5	10
类型	极点	二阶极点	单零点
幅度贡献	-20 dB/dec	-40 dB/dec	+20 dB/dec
相位贡献	-90°	$-(\tan^{-1}(\omega/5))^2$ a	$+ \tan^{-1}(\omega/10)^{b}$

圆频率	[0, 2)	[2,10)	$[10, \infty)$	
幅度斜率	+ 20 dB/dec	+ 0 dB/dec	- 20 dB/dec	

圆频率	[0, 0.2)	[0.2, 1)	[1, 2)	[2,10)	[10, 20)	[20, 100)	[100, ∞)
相位	稳 90°	滑 -a	滑 -a-b	滑 -a-b	滑 -a-b	滑 -b	稳 – 90°

2021版

21

串联谐振电路

介绍

电路频率响应的最为显著的特征式其频幅特性中所 呈现的尖峰, 也称谐振峰。

谐振是RLC电路中容性电抗与感性电抗大小相等时 呈现的一种状态, 此时该电路呈现出纯电阻的阻抗 性质。

谐振电路对于滤波器的设计是非常有用的。滤波器 的传递函数通常具有高度的频率选择性。

23

输入阻抗

• 串联谐振电路的结构如下图所示

$$Z = R + j\omega L + \frac{1}{j\omega C}$$

$$Z = R + j\left(\omega L - \frac{1}{\omega C}\right)$$

• 谐振频率 fo: 当虚部为 0 时,

$$\omega_0 L - \frac{1}{\omega_0 C} = 0$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

• 此时的阻抗为纯实数:

$$Z = R + j\mathbf{0}$$

谐振位置的特性

$$Z = R + j\left(\omega L - \frac{1}{\omega C}\right)$$

• (一) 阻抗为纯电阻;

- (二) 电压与电流同相, 功率因数为1;
- (三) 阻抗的幅度达到最低值;
- (四) 电容器和电感器的电压高于电源电压。

功率

输入谐振电路的电流

$$I = \frac{V}{Z} = \frac{V}{R + j\omega L + \frac{1}{j\omega C}}$$

$$|I| = \frac{V_m}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$

功率计算式
$$P = \frac{1}{2}|I|^2R = \frac{1}{2}\frac{{V_m}^2}{R}\frac{1}{1 + \frac{1}{R^2}\left(\omega L - \frac{1}{\omega C}\right)^2}$$

半功率频率
$$\frac{1}{R^2} \left(\omega L - \frac{1}{\omega C} \right)^2 = 1$$

$$\omega_1 = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

$$\omega_2 = +\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

带宽

- 电流的频率响应
 - 在中心频率左右一个范围内电流幅度接近最大值。
 - 这个范围称为半功率带宽。

- · 半功率带宽, 又称为3 dB带宽
 - 功率位于峰值一半内的频率范围

$$\omega_1 = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

$$\omega_2 = +\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

$$B = \omega_2 - \omega_1 = \frac{R}{L}$$

$$\omega_0 = \sqrt{\omega_1 \omega_2} = \frac{1}{\sqrt{LC}}$$

品质因子

- 品质因子(品质因数)的定义式如下
 - 是电路储能与阻性能耗的一种比例。

以相位度量,振荡能 持续的"时间"。

一个周期的相位变化。

一个周期的能耗, 在电阻上。

电路储能,在电感或电容中。

- 品质因子的计算式
 - 对于串联谐振电路, 电流是公有物理量
 - 宜使用电感计算储能,使用电阻计算能耗

$$Q = 2\pi \frac{\frac{1}{2}LI^2}{\frac{1}{2}I^2R \times T_0}$$

$$Q = \frac{2\pi}{T_0} \times \frac{\frac{1}{2}LI^2}{\frac{1}{2}I^2R}$$

$$Q = \omega_0 \times \frac{L}{R}$$

品质因子

• 品质因子和带宽的关系

$$B = \frac{R}{L}$$

$$Q = \omega_0 \times \frac{L}{R}$$

$$B = \frac{\omega_0}{Q}$$

$$\omega_2 \approx \omega_0 + \frac{B}{2}$$

- 品质因子反应了谐振的尖锐程度
 - Q越大, 带宽越小, 曲线越尖锐,
 - 也就是说频率选择性越好;

$$\frac{Z}{R} = 1 + j \frac{\omega_0 L}{R} \left(\frac{\omega}{\omega_0} - \frac{1}{\omega C} \frac{1}{\omega_0 L} \right) = 1 + j \frac{\omega_0 L}{R} \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right)$$

$$\frac{Z}{R} = 1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right) \qquad \longrightarrow \qquad \frac{Z}{R} \approx 1 + j2Q\frac{\omega - \omega_0}{\omega_0}$$

例题

- 问题: 下图中, $R = 2\Omega$, L = 1 mH, $C = 0.4 \mu$ F。
 - 求谐振频率与半功率频率:
 - 计算品质因子与带宽:
 - 计算在下列频率的电流幅度。
 - · 0₀、 0₁ 和 0₂

30

解答:

- 第一阶段先算出谐振频率
$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{10^{-3} \times 0.4 \times 10^{-6}}} = 50 \text{ krad/s}$$

- 第二阶段
 - 方法一:使用 RLC 值算出 ω₁ 和 ω₂,然后算出 B,然后算出 Q。
 - 方法二: 使用 RLC 值算出Q, 然后算出 B, 然后算出 ω, 和 ω, 。
- 第三阶段(利用关键频率的物理含义进行计算)
 - 处于谐振频率时阻抗为R,处于边界频率时阻抗模为 $\sqrt{2}R$ 。

例题

- 问题: 下图中, R=2Ω, L=1mH, C=0.4 μF。
 - 求谐振频率与半功率频率;
 - 计算品质因子与带宽;
 - 计算在下列频率的电流幅度。
 - ω₀、ω₁和ω₂

• \Re : $\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{10^{-3} \times 0.4 \times 10^{-6}}} = 50 \text{ krad/s}$

$$\omega_1 = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$
$$= -\frac{2}{2 \times 10^{-3}} + \sqrt{(10^3)^2 + (50 \times 10^3)^2}$$

$$= -1 + \sqrt{1 + 2500}$$
 krad/s = 49 krad/s

$$\omega_2 = 1 + \sqrt{1 + 2500} \text{ krad/s} = 51 \text{ krad/s}$$

$$B = \omega_2 - \omega_1 = 2 \text{ krad/s}$$

$$B = \frac{R}{L} = \frac{2}{10^{-3}} = 2 \text{ krad/s}$$

$$Q = \frac{\omega_0}{B} = \frac{50}{2} = 25$$

并联谐振电路

输入导纳

• 并联谐振电路是串联谐振电路的对偶电路。

$$Z = R + j\left(\omega L - \frac{1}{\omega C}\right)$$

串联谐振,阻抗

$$Y = \frac{1}{R} + j\left(\omega C - \frac{1}{\omega L}\right)$$

并联谐振,导纳

• 当导纳的虚部为零时,产生谐振

$$\omega_0 C - \frac{1}{\omega_0 L} = 0$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

电压与功率

并联谐振电路中,三个元件共享电压,因此使用电压进行分析较为方便。

$$V = \frac{I}{Y} = \frac{I}{\frac{1}{R} + j\left(\omega C - \frac{1}{\omega L}\right)}$$

$$V = \frac{IR}{1 + jR\left(\omega C - \frac{1}{\omega L}\right)}$$

$$P = \frac{1}{2} \frac{V^2}{R} = \frac{1}{2} I_m^2 R \frac{1}{1 + R^2 \left(\omega C - \frac{1}{\omega L}\right)^2}$$
 串联谐振电路

$$P = \frac{1}{2}|I|^{2}R = \frac{1}{2}\frac{{V_{m}}^{2}}{R} \frac{1}{1 + \frac{1}{R^{2}}\left(\omega L - \frac{1}{\omega C}\right)^{2}}$$

并联谐振电路

频率响应

• 使用对比的方法求半功率频率和其他特征参数

$$1 + \frac{1}{R^2} \left(\omega L - \frac{1}{\omega C} \right)^2 = 2$$

$$\omega_1 = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

$$B = \omega_2 - \omega_1 = \frac{R}{L}$$

品质因子

$$Q = \frac{\omega_0 L}{R}$$

$$\omega_2 = +\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

$$1 + R^2 \left(\omega C - \frac{1}{\omega L}\right)^2 = 2$$

$$B = \omega_2 - \omega_1 = \frac{R}{L}$$

品质因子

$$Q = \frac{\omega_0 L}{R}$$

$$\omega_1 = -\frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 + \frac{1}{LC}}$$

$$\omega_2 = +\frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 + \frac{1}{LC}}$$

例题

- 问题: 下图中, $R = 8 k\Omega$, L = 0.2 mH, $C = 8 \mu F$ 。
 - 求谐振频率与半功率频率:
 - 计算品质因子与带宽:
 - - ω₀、ω₁和ω₂

解答:
$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{0.2 \times 10^{-3} \times 8 \times 10^{-6}}} = \frac{10^5}{4} = 25 \text{ krad/s}$$

$$Q = \frac{R}{\omega_0 L} = \frac{8 \times 10^3}{25 \times 10^3 \times 0.2 \times 10^{-3}} = 1,600$$

$$B = \frac{\omega_0}{Q} = 15.625 \text{ rad/s}$$

$$\omega_1 = \omega_0 - \frac{B}{2} = 25,000 - 7.812 = 24,992 \text{ rad/s}$$

$$\omega_2 = \omega_0 + \frac{B}{2} = 25,000 + 7.812 = 25,008 \text{ rad/s}$$

$$I_o = \frac{V}{Z} = \frac{10/-90^{\circ}}{8,000} = 1.25/-90^{\circ} \text{ mA}$$

$$P = \frac{1}{2} |\mathbf{I}_o|^2 R = 6.25 \text{ mW}$$

作业

- 画出本章思维导图
- 14.4
- 14.30
- 14.42
- 14.48
- 14.55