TOPIC 1: Algebra

Binomial Expansion / Binomial Series

Objective:

- use the expansion of $(1+x)^n$, where n is a rational number and |x| < 1 (finding a general term is not included, but adapting the standard series to expand e.g. $(2-\frac{1}{2}x)^{-1}$ is included).

BINOMIAL EXPANSION OF $(a+b)^n$ n is a positive integer \rightarrow AS component

a) The coefficients of a binomial expansion can be obtained from Pascal Triangle

b) General formula $(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \binom{n}{3}a^{n-3}b^3 + \dots + b^n, \text{ where } n \text{ is a positive integer}$ and $\binom{n}{r} = \frac{n!}{r!(n-r)!}$

n is negative, a fraction or a positive integer → A2 Component

The binomial expansion gives an *infinite series* which converges for certain values of the variable.

 \rightarrow It would be easier if the binomial expression is in the form $(1+x)^n$

The General Formula

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \cdots$$
, where *n* is rational and $|x| < 1$

Note:

Make sure the first term is always a 1. Eg: $(1+x)^n$

Example:

- 1. Find the expansion of $(1-2x)^2$ in ascending powers of x up to and including the
- 2. Find the binomial expansion of $(4-3x^2)^{\frac{1}{2}}$ up to and including the term in x^4 . $\int 2-\frac{3}{4}x^2-\frac{9}{64}x^4$
- 3. Expand $\frac{5+x}{2-x+x^2}$ in ascending powers of x up to the term x^3 . $\int_{2}^{\frac{5}{2} + \frac{7}{4}x - \frac{3}{8}x^{2} - \frac{17}{16}x^{3} + \dots$
- 4. Obtain the first three terms in the expansion, in ascending powers of x, of $(4+x)^{\frac{1}{2}}$. State the set of values of x for which the expansion is valid. $\int 2 + \frac{1}{4}x - \frac{1}{64}x^2, |x| < 4$

Note:

For an expansion $(1+x)^n$ to be valid:

- 1. Make sure the variable *x* only takes values: $-1 < x < 1 \Leftrightarrow |x| < 1$
- 2. Remember to check the values of *x* for which the expansion is valid.

Exercise 1 - Binomial Series Question 1

Find the first four terms in the expansion of each of the following in ascending powers of x. State the interval of values of x for which each expansion is valid.

(a)
$$\sqrt{1-6x}$$
 (b) $\frac{1}{1+5x}$ (c) $\frac{1}{\sqrt[3]{1+9x}}$ (d) $\frac{1}{(1-2x)^4}$ (e) $\sqrt{1+2x^2}$ (f) $\sqrt[3]{8-16x}$ (g) $\frac{10}{\left(1+\frac{1}{5}x\right)^2}$ (h) $\frac{2}{2-x}$

(c)
$$\frac{1}{\sqrt[3]{1+9r}}$$

(d)
$$\frac{1}{(1-2x)^4}$$

(e)
$$\sqrt{1+2x^2}$$

(f)
$$\sqrt[3]{8-16x}$$

(g)
$$\frac{10}{(1+\frac{1}{5}x)^2}$$

$$(h) \quad \frac{2}{2-x}$$

(i)
$$\frac{1}{(2+x)^3}$$
 (j) $\frac{4x}{\sqrt{4+x^3}}$

$$(j) \quad \frac{4x}{\sqrt{4+x^3}}$$

(k)
$$\sqrt[4]{1+8x}$$

(k)
$$\sqrt[4]{1+8x}$$
 (l) $\frac{12}{(\sqrt{3}-x)^4}$

(a)
$$1-3x-\frac{9}{2}x^2-\frac{27}{2}x^3$$
, $|x|<\frac{1}{6}$

(b)
$$1-5x+25x^2-125x^3$$
, $|x|<\frac{1}{5}$

(c)
$$1-3x+18x^2-126x^3$$
, $|x| < \frac{1}{9}$
(d) $1+8x+40x^2+160x^3$, $|x| < \frac{1}{2}$

(e)
$$1+x^2-\frac{1}{2}x^4+\frac{1}{2}x^4$$
 | $x < \frac{1}{2}\sqrt{2}$

(f)
$$2-\frac{4}{7}x-\frac{8}{8}x^2-\frac{80}{9}x^3$$

$$(1) \quad 2 - \frac{1}{3}x - \frac{1}{9}x - \frac{1}{81}x^{2}, |x| < \frac{1}{2}$$

(h)
$$1 + \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3, |x| < 2$$

(i)
$$\frac{1}{8} - \frac{3}{16}x + \frac{3}{16}x^2 - \frac{3}{32}x^3, |x| < 2$$

(j)
$$2x - \frac{1}{4}x^4 + \frac{3}{54}x^7 - \frac{5}{510}x^{10} |x| < \sqrt[3]{4}$$

(k)
$$1+2x-6x^2+28x^3$$
 | $x < \frac{1}{2}$

(i)
$$\frac{1}{8} - \frac{3}{16}x + \frac{3}{16}x^2 - \frac{8}{32}x^3, |x| < 2$$

(j) $2x - \frac{1}{4}x^4 + \frac{3}{34}x^7 - \frac{5}{512}x^{10}, |x| < \sqrt[3]{4}$
(k) $1 + 2x - 6x^2 + 28x^3, |x| < \frac{1}{8}$
(l) $\frac{4}{3} - \frac{16}{9}\sqrt{3}x + \frac{40}{9}x^2 + \frac{80}{27}\sqrt{3}x^3, |x| < \sqrt{3}$

Question 2

Expand $\frac{1}{(2+x)^3}$ in ascending powers of x, up to and including the term in x^2 , simplifying the coefficients. [4]

Question 3

Find the expansion of $\frac{1+x^2}{\sqrt{(1+4x)}}$ in ascending powers of x up to and including the term in x^2 .

 $[1-2x+7x^2]$

Question 4

Obtain the first three terms in the expansion, in ascending powers of x, of $(8+3x)^{\frac{2}{3}}$ stating the set of values of x for which the expansion is valid.

 $\left[\frac{4+x-\frac{1}{16}x^2,|x|<\frac{8}{3}}{1} \right]$

Question 5

Expand $\sqrt{1+8x}$ in ascending powers of x up to and including the term in x^3 . By giving a suitable value to x, find an approximation for $\sqrt{1.08}$. Deduce approximations for (a) $\sqrt{108}$, (b) $\sqrt{3}$.

 $1+4x-8x^2+32x^3, 1.039232$ [(a) 10.39232 (b) 1.73205]

Question 6

Expand $(1-x)^{-2}$ as a series of ascending powers of x, given that |x| < 1. Hence express $\frac{1+x}{(1-x)^2}$ in the form $1+3x+ax^2+bx^3+...$, where the values of a and b are to be stated.

 $[1+2x+3x^2+4x^3, a=5, b=7]$

Question 7

Expand $\frac{2+\left(1+\frac{1}{2}x\right)^6}{2+3x}$ in ascending powers of x up to and including the term in x^2 .

 $I^{\frac{3}{2}-\frac{3}{4}x+3x^2}$.