

Classifier Chains for Multi-label Classification

Jesse Read, Bernhard Pfahringer, Geoff Holmes, Eibe Frank

University of Waikato, Hamilton, New Zealand

Introduction

- ▶ Multi-label Data
 - ► Each instance is associated with *multiple* labels
 - ▶ Given instances x_1, x_2, \dots, x_n and a *predefined* set of labels L:
 - ▶ single-label data: $(x_1, I_1), (x_2, I_2), \dots, (x_n, I_n)$ where each $I_i \in L$
 - ▶ multi-label data: $(x_1, S_1), (x_2, S_2), \dots, (x_n, S_n)$ where each $S_i \subseteq L$
 - ▶ For example, a film can be labeled {romance,comedy}
- Applications
 - ▶ Scene, Video classification
 - ► Text classification
 - Medical classification
 - ▶ Biology, Genomics
- Multi-label Issues
 - ▶ label correlations: consider {romance,comedy} vs {romance,horror}
 - computational complexity

Prior Work

- ▶ Binary relevance method (BR): binary problem for each label
 - ▶ simple, intuitive
 - efficient: can be run in parallel or serial
 - useful for incremental contexts
 - but doesn't account for label correlations
 - ▶ e.g. Nearest neighbor approaches based on BR, e.g. MLkNN
 - ▶ e.g. Stacking approaches, e.g. meta level stacking (MS)
 - ▶ e.g. Pairwise approaches, e.g. calibrated label ranking
- ▶ Label powerset method: label sets are treated as single labels
 - ▶ takes into account label correlations
 - but can become computationally complex
 - ▶ e.g. RAKEL: ensemble of subsets
 - ▶ e.g. EPS: ensemble of pruned sets
- ▶ Other methods
 - ▶ often model label correlations in a complex way, prone to overfitting
- ► Classifier Chains (CC)
 - ► To account for label correlations while retaining advantages of BR: able to scale up to larger problems with e.g. SVMs as the base classifier.

Classifier Chains (CC)

- ▶ Binary Relevance (BR)
 - ▶ |L| classifiers $C_1 \cdots C_{|L|}$ predict the relevance of each $I_i \in L$
 - ▶ each $C_i: X \to Y[i] \in \{0,1\}$ where Y[i] = 1 if $I_i \in Y, Y \subseteq L$
- ▶ Classifier Chains (CC)
 - ▶ |L| classifiers $C_1 \cdots C_{|L|}$ predict the relevance of each $I_i \in L$
 - ▶ each C_i : $(x \cup Y[1] \cup \cdots \cup Y[i-1]) \rightarrow Y[i] \in \{0,1\}$
 - ▶ i.e. extending the feature space *x* with *the binary relevances of all previous labels in the chain*

$E.G. For L = \{ romance, horror, comedy, drama, action, we step the state of the s$	ern $\{ (L = 6): $			
Classifiers	Classifications			
$C_1: X \rightarrow \{ \texttt{romance}, ! \texttt{romance} \}$	romance			
$ extbf{\emph{C}}_2: extbf{\emph{X}} \cup ext{romance} ightarrow \{ ext{horror}, ! ext{horror}\}$!horror			
$ extcolor{0.75cm}{$C_3:x$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	comedy			
$\textit{\textbf{C}}_{4}: \textit{\textbf{x}} \cup \texttt{romance} \cup \texttt{!horror} \cup \texttt{comedy} {} \rightarrow \{\texttt{drama}, \texttt{!drama}\}$!drama			
$ extstyle C_5: extstyle extstyle$!action			
$ extstyle C_6: extstyle extstyle$!western			
$Y\subseteq L=\{\mathtt{romance},\mathtt{comedy}\}$				

- similar advantages to binary relevance method
- time complexity similar in practice
- ▶ takes into account label correlations
- ▶ one chain can't be run in parallel (but can be run in serial)
- ▶ how to order the chain?

Ensembles of Classifier Chains (ECC)

- Ensembles
 - known for augmenting accuracy
 - more label correlations can be learnt, without overfitting
 - solves 'chain order' issue: each chain random order
 - generic vote/score/threshold classification method
 - can also be applied to binary relevance method, i.e. EBR

Experiments

▶ Evaluation:

- ▶ Label set evaluation: subset Accuracy, Macro F-measure
- ▶ Per-label evaluation: LogLoss, *AU*(*PRC*)
- ▶ 5x2 cross validation; train/test on large datasets

Datasets LC(D) PD(D)|X|6 294*n* Scene 2407 1.07 0.006 Yeast 2417 14 103*n* 4.24 0.082 45 1449 1.25 Medical 978 0.096 Slashdot 3782 22 1079 1.18 0.041 Enron 1702 53 1001 3.38 0.442 Reuters 6000 103 500*n* 0.147 1.46 Ohsumed 13929 23 1002 1.66 0.082 Tmc2007 28596 22 500 2.16 0.047 MediaMill 43907 101 120*n* 4.38 0.149 2.40 Bibtex 7395 159 1836 0.386 IMDB 95424 28 1001 1.92 0.036 Delicious 16105 983 500 19.02 0.981

Results (Summary)

▶ Comparing CC to BR and BR-related methods.

 Table: Standard Datasets.

 CC
 BR
 SM
 MS

 Accuracy
 5
 0
 1
 0

 Macro F1
 5
 0
 1
 0

 Micro F1
 3
 1
 0
 2

 Exact M.
 6
 0
 0
 0

 Total wins
 19
 1
 2
 2

- ▶ CC justified over default BR, other similar BR-based methods
- ▶ CC's complexity usually comparable to BR in practice, except for special cases (e.g. *Medical* which has a relatively large label set *L*)
- ▶ Comparing ECC to EBR and RAKEL, EPS, MLkNN

Table: Standard Datasets.							
	ECC	EBR	EPS	MLKNN	RAKEL		
Accuracy	2	0	3	0	1		
Macro F1	1	0	4	0	1		
Log Loss	3	0	1	1	1		
$AU(\overline{PRC})$	3	0	0	3	0		
Total wins	9	0	8	4	3		

- ▶ Binary methods (e.g. ECC, MLkNN) are better at *per-label* evaluation
- whereas other methods are better at *label-set* evaluation
- ▶ Binary methods are better on large datasets, even at *label-set* evaluation
- ▶ indicating that directly modelling label correlations (e.g. EPS, RAKEL) is less helpful with larger numbers of training instances
- ▶ ECC is the best performer overall

Table: Fastest method for build, test times (excl. EBR, MLkNN)

asiesi memod idi bulia, test times (exci. EBR, ME								
	Dataset	Build	Test	Dataset	Build	Test		
	Scene	EPS	RAK	OHSUMED	ECC	ECC		
	Yeast	ECC	ECC	TMC2007	EPS	ECC		
	Slashdot	RAK	RAK	Bibtex	ECC	ECC		
	Medical	RAK	RAK	MediaMill	ECC	ECC		
	Enron	EPS	ECC	IMDB	RAK	ECC		
	Reuters			Delicious		EPS		
2 DNF for RAKEL; 1 for EPS								

▶ ECC's efficiency is most noticeable on the larger datasets

Conclusion

- Ensembles of Classifier Chains
 - ▶ classifier chains improve on the binary relevance method
 - ▶ takes into account label correlations without overfitting
 - efficient, can be run in parallel and serial
 - performs well, especially on large data sets