

Calcolo Differenziale

Eugenio Montefusco

07. Le funzioni elementari

Definizione.

Dato $A \subseteq \mathbb{R}$ insieme non vuoto

Definizione.

Dato $A \subseteq \mathbb{R}$ insieme non vuoto e $f: A \to \mathbb{R}$ una legge che ad ogni $x \in A$ fa corrispondere un unico elemento $f(x) \in \mathbb{R}$

Definizione.

Dato $A \subseteq \mathbb{R}$ insieme non vuoto e $f : A \to \mathbb{R}$ una legge che ad ogni $x \in A$ fa corrispondere un **unico** elemento $f(x) \in \mathbb{R}$ diremo che la coppia (f, A) è una **funzione** a valori reali.

Definizione.

Dato $A \subseteq \mathbb{R}$ insieme non vuoto e $f : A \to \mathbb{R}$ una legge che ad ogni $x \in A$ fa corrispondere un unico elemento $f(x) \in \mathbb{R}$ diremo che la coppia (f, A) è una funzione a valori reali.

A è il dominio della funzione.

Definizione.

Dato $A \subseteq \mathbb{R}$ insieme non vuoto e $f : A \to \mathbb{R}$ una legge che ad ogni $x \in A$ fa corrispondere un unico elemento $f(x) \in \mathbb{R}$ diremo che la coppia (f, A) è una funzione a valori reali.

A è il dominio della funzione.

$$f(A) = \{y : y = f(x) \mid \forall x \in A\}$$
 è l'immagine di f .

Definizione.

Definizione.

Una funzione $f: A \rightarrow \mathbb{R}$ si dice

i. crescente se f(x) > f(y) per ogni x < y

Definizione.

- i. crescente se f(x) > f(y) per ogni x < y
- ii. non decrescente se $f(x) \ge f(y)$ per ogni x < y

Definizione.

- i. crescente se f(x) > f(y) per ogni x < y
- ii. non decrescente se $f(x) \ge f(y)$ per ogni x < y
- iii. non crescente se $f(x) \le f(y)$ per ogni x < y

Definizione.

- i. crescente se f(x) > f(y) per ogni x < y
- ii. non decrescente se $f(x) \ge f(y)$ per ogni x < y
- iii. non crescente se $f(x) \le f(y)$ per ogni x < y
- iv. decrescente se f(x) < f(y) per ogni x < y

Definizione.

Un insieme $A \subseteq \mathbb{R}$ si dice

Definizione.

Un insieme $A \subseteq \mathbb{R}$ si dice simmetrico (rispetto all'origine) se $x \in A$ implica $-x \in A$.

Definizione.

Un insieme $A \subseteq \mathbb{R}$ si dice simmetrico (rispetto all'origine) se $x \in A$ implica $-x \in A$.

Una funzione $f: A \rightarrow \mathbb{R}$, con A simmetrico, si dice

Definizione.

Un insieme $A \subseteq \mathbb{R}$ si dice simmetrico (rispetto all'origine) se $x \in A$ implica $-x \in A$.

Una funzione $f: A \to \mathbb{R}$, con A simmetrico, si dice pari se f(x) = f(-x) per ogni $x \in A$.

Definizione.

Un insieme $A \subseteq \mathbb{R}$ si dice simmetrico (rispetto all'origine) se $x \in A$ implica $-x \in A$.

Una funzione $f: A \to \mathbb{R}$, con A simmetrico, si dice pari se f(x) = f(-x) per ogni $x \in A$.

Una funzione $f: A \rightarrow \mathbb{R}$, con A simmetrico, si dice

Definizione.

Un insieme $A \subseteq \mathbb{R}$ si dice simmetrico (rispetto all'origine) se $x \in A$ implica $-x \in A$.

Una funzione $f:A\to \mathbb{R}$, con A simmetrico, si dice pari se f(x)=f(-x) per ogni $x\in A$.

Una funzione $f: A \to \mathbb{R}$, con A simmetrico, si dice dispari se f(x) = -f(-x) per ogni $x \in A$.

Definizione.

Una funzione $f: A \rightarrow J \subseteq \mathbb{R}$, si dice invertibile

Definizione.

Una funzione $f:A\to J\subseteq \mathbb{R}$, si dice invertibile se per ogni $y\in J$ esiste un unico $x\in A$ tale che f(x)=y.

Definizione.

Una funzione $f:A\to J\subseteq \mathbb{R}$, si dice invertibile se per ogni $y\in J$ esiste un unico $x\in A$ tale che f(x)=y.

Quindi possiamo definire $f^{-1}: J \to A$ con legge

$$x = f^{-1}(y)$$

Definizione.

Una funzione $f: A \to J \subseteq \mathbb{R}$, si dice invertibile se per ogni $y \in J$ esiste un unico $x \in A$ tale che f(x) = y.

Quindi possiamo definire $f^{-1}: J \to A$ con legge

$$x=f^{-1}(y)$$

Osservazione.

Una funzione $f: A \rightarrow \mathbb{R}$ strettamente monotona è invertibile.

Potenze

Sia $n \in IN$ e consideriamo la funzione $f(x) = x^n$, con $x \in IR$, allora

Potenze

Sia $n \in \mathbb{IN}$ e consideriamo la funzione $f(x) = x^n$, con $x \in \mathbb{IR}$, allora

i. se n è pari, allora f è pari, $x^n \ge 0$ ($x^n = 0$ solo se x = 0) ed è crescente su $(0, +\infty)$

Potenze

Sia $n \in \mathbb{N}$ e consideriamo la funzione $f(x) = x^n$, con $x \in \mathbb{R}$, allora

- i. se n è pari, allora f è pari, $x^n \ge 0$ ($x^n = 0$ solo se x = 0) ed è crescente su $(0, +\infty)$
- ii. se n è dispari, allora f è dispari, $x^n > 0$ se e solo se x > 0 ed è crescente su \mathbb{R}

Radici

Sia $n \in \mathbb{N}$ e consideriamo la funzione $f(x) = x^n$, allora

Radici

Sia $n \in \mathbb{N}$ e consideriamo la funzione $f(x) = x^n$, allora

i. se n è pari, esiste $f^{-1}(x) = x^{1/n}$, per $x \ge 0$

Radici

Sia $n \in \mathbb{N}$ e consideriamo la funzione $f(x) = x^n$, allora

- i. se n è pari, esiste $f^{-1}(x) = x^{1/n}$, per $x \ge 0$
- ii. se n è dispari, esiste $f^{-1}(x) = x^{1/n}$, per ogni $x \in \mathbb{R}$, inoltre la funzione è dispari

Sia $n \in \mathbb{N}$ e consideriamo la funzione $f(x) = x^n$, allora

- i. se n è pari, esiste $f^{-1}(x) = x^{1/n}$, per $x \ge 0$
- ii. se n è dispari, esiste $f^{-1}(x) = x^{1/n}$, per ogni $x \in \mathbb{R}$, inoltre la funzione è dispari

Si ricordi che

$$\sqrt{x^2} = |x| \ge 0$$

Sia $a \in (0,1) \cup (1,+\infty)$ e consideriamo la funzione $f(x) = a^x$, con $x \in \mathbb{R}$, allora

Sia $a \in (0,1) \cup (1,+\infty)$ e consideriamo la funzione $f(x) = a^x$, con $x \in IR$, allora i. se a > 1, allora f è crescente su IR

Sia $a \in (0,1) \cup (1,+\infty)$ e consideriamo la funzione $f(x) = a^x$, con $x \in \mathbb{R}$, allora

- i. se a > 1, allora f è crescente su IR
- ii. se $a \in (0,1)$, allora f è decrescente su IR

Sia $a \in (0,1) \cup (1,+\infty)$ e consideriamo la funzione $f(x) = a^x$, con $x \in \mathbb{R}$, allora

- i. se a > 1, allora f è crescente su IR
- ii. se $a \in (0,1)$, allora f è decrescente su IR

Si ricordi che

$$a^{x} \cdot a^{y} = a^{x+y}$$

$$(a^{x})^{y} = a^{xy}$$

$$a^{-x} = \left(\frac{1}{a}\right)^{x} = \frac{1}{a^{x}}$$

La funzione inversa di una funzione esponenziale è una funzione logaritmo

La funzione inversa di una funzione esponenziale è una funzione logaritmo

$$a^x = y$$
 se e solo se $\log_a(y) = x$

La funzione inversa di una funzione esponenziale è una funzione logaritmo

$$a^x = y$$
 se e solo se $\log_a(y) = x$

Osservazione.

La funzione $\log_a(x)$ è strettamente monotona, dello stesso tipo della funzione a^x .

La funzione inversa di una funzione esponenziale è una funzione logaritmo

$$a^x = y$$
 se e solo se $\log_a(y) = x$

Osservazione.

La funzione $\log_a(x)$ è strettamente monotona, dello stesso tipo della funzione a^x .

Si ricordi che

$$\log_{a}(x) + \log_{a}(y) = \log_{a}(xy)$$
$$k \log_{a}(x) = \log_{a}(x^{k})$$
$$\log_{e}(x) = \ln(x)$$

$$\cos^2(x) + \sin^2(x) = 1$$
 $-1 \le \cos(x), \sin(x) \le 1$

$$\cos^2(x) + \sin^2(x) = 1 \qquad -1 \le \cos(x), \sin(x) \le 1$$
$$\cos(x + 2\pi) = \cos(x) \qquad \sin(x + 2\pi) = \sin(x)$$

$$\cos^2(x) + \sin^2(x) = 1$$
 $-1 \le \cos(x), \sin(x) \le 1$
 $\cos(x + 2\pi) = \cos(x)$ $\sin(x + 2\pi) = \sin(x)$
 $\cos(x) = \cos(-x)$ $\sin(x) = -\sin(-x)$

$$\cos^2(x) + \sin^2(x) = 1$$
 $-1 \le \cos(x), \sin(x) \le 1$
 $\cos(x + 2\pi) = \cos(x)$ $\sin(x + 2\pi) = \sin(x)$
 $\cos(x) = \cos(-x)$ $\sin(x) = -\sin(-x)$
 $|\sin(x)| \le |x|$ $1 - |x| \le \cos(x) \le 1$

Protagonisti

John Napier

1550 - 1617