MAS205 Complex Variables 2005-2006

Exercises 4

- Exercise 13: For each of the following functions, decide at which values of z the function is continuous and at which values it is not continuous. Give reasons, but detailed proofs are not expected.
 - (a) f(z) = |z|
 - (b) $f(z) = z^3/\overline{z}$ for all non-zero z, and f(0) = 0.
- Exercise 14: Let f and g denote functions $\mathbb{C} \to \mathbb{C}$. For each question below, give either a proof or a counterexample to justify your answer.
 - (a) If f and g are both continuous at z_0 , does it follow that g-f is continuous at z_0 ?
 - (b) If f and g are both discontinuous at z_0 , does it follow that fg is discontinuous at z_0 ?
 - (c) If f and g are both continuous at z_0 , does it follow that $f \circ g$ is continuous at z_0 ?
 - (d) Suppose f is discontinuous at 3+i, but continuous everywhere else, and g is discontinuous at 2+i, but continuous everywhere else. Is f+g continuous at 4+2i?
- Exercise 15: Starting from the definition of the derivative of a complex function as a limit,
 - (a) find the derivative of f(z) = iz(1-2z) at z = i;
 - (b) find the derivative of $f(z) = z^3 + z$ for all $z \in \mathbb{C}$;
 - (c) prove that $f(z) = |z|^2 + z^2$ does not have a derivative at z_0 unless $z_0 = 0$. What is the value of f'(0)?
- Exercise 16: For each of the following functions, decide at which values of z the function is differentiable and at which values it is not differentiable. Give reasons, but detailed proofs are not expected.
 - (a) f(z) = |z|
 - (b) $f(z) = z^3/\overline{z}$ for all non-zero z, and f(0) = 0.

Please hand in your solutions (to the yellow Complex Variables box on the ground floor) by 10:30am Wednesday 2nd November