Packet 2

Part 1: Sections 13.3-13.4

13.3 Arc Length and Curvature

Problem 1. Let $\vec{\mathbf{r}}(t) = \langle 6t, t^3, 3t^2 \rangle$. Use the lengths of the line segments connecting $\vec{\mathbf{r}}(0)$, $\vec{\mathbf{r}}(1)$, $\vec{\mathbf{r}}(2)$, and $\vec{\mathbf{r}}(3)$ to approximate the length of the curve from t = 0 to t = 3.

Solution.

Definition 2. Let $\vec{\mathbf{r}}(t) = \langle f(t), g(t), h(t) \rangle$ be a vector function. Then the **arclength** or **length** of the curve given by $\vec{\mathbf{r}}(t)$ from t = a to t = b is

$$L = \int_{a}^{b} \left| \lim_{\Delta t \to 0} \frac{\vec{\mathbf{r}}(t + \Delta t) - \vec{\mathbf{r}}(t)}{\Delta t} \right| dt = \int_{a}^{b} |\vec{\mathbf{r}}'(t)| dt$$

Problem 3. Find the length of the curve given by $\vec{\mathbf{r}}(t) = \langle 6t, t^3, 3t^2 \rangle$ from t = 0 to t = 3.

Solution. \Diamond

Definition 4. Let s(t) be the **arclength function/parameter** representing the length of a curve from the point given by $\vec{\mathbf{r}}(0)$ to the point given by $\vec{\mathbf{r}}(t)$. (Assume s(t) < 0 for t < 0.)

Theorem 5. The arclength function s(t) is given by the definite integral

$$s(t) = \int_0^t |\vec{\mathbf{r}}'(\tau)| \, d\tau$$

Theorem 6. The derivative of the arclength function gives the lengths of the tangent vectors given by the derivative of the position function:

$$\frac{ds}{dt} = \left| \frac{d\vec{\mathbf{r}}}{dt} \right|$$

Problem 7. Compute s(t) for $\vec{\mathbf{r}}(t) = \langle 6t, t^3, 3t^2 \rangle$, and use it to find the arclength parameter corresponding to t = -2.

Solution. \Diamond

Problem 8. Find the length of an arc of the circular helix with vector equation $\vec{\mathbf{r}}(t) = \langle \cos(t), \sin(t), t \rangle$ from (1,0,0) to $(1,0,2\pi)$.

Definition 9. The unit tangent vector $\vec{\mathbf{T}}$ to a curve $\vec{\mathbf{r}}$ is the direction of the derivative $\vec{\mathbf{r}}'(t) = \frac{d\vec{\mathbf{r}}}{dt}$.

Theorem 10.

$$\overrightarrow{\mathbf{T}} = \frac{d\overrightarrow{\mathbf{r}}/dt}{|d\overrightarrow{\mathbf{r}}/dt|} = \frac{d\overrightarrow{\mathbf{r}}}{ds}$$

Definition 11. The **curvature** κ of a curve C at a given point is the magnitude of the rate of change of $\overline{\mathbf{T}}$ with respect to arclength s.

Theorem 12.

$$\kappa = \left| \frac{d\overrightarrow{\mathbf{T}}}{ds} \right| = \left| \frac{1}{ds/dt} \frac{d\overrightarrow{\mathbf{T}}}{dt} \right| = \frac{1}{|d\overrightarrow{\mathbf{r}}/dt|} \left| \frac{d\overrightarrow{\mathbf{T}}}{dt} \right|$$

Theorem 13. An alternate formula for curvature is given by

$$\kappa = \frac{|\vec{\mathbf{r}}'(t) \times \vec{\mathbf{r}}''(t)|}{|\vec{\mathbf{r}}'(t)|^3}$$

Problem 14. Prove that the helix given by the vector equation $\vec{\mathbf{r}}(t) = \langle \cos(t), \sin(t), t \rangle$ has constant curvature.

Solution.

Problem 15. (OPTIONAL) Prove that the alternate formula for curvature is accurate by showing

$$\frac{1}{|d\vec{\mathbf{r}}/dt|} \left| \frac{d\vec{\mathbf{T}}}{dt} \right| = \frac{|\vec{\mathbf{r}}'(t) \times \vec{\mathbf{r}}''(t)|}{|\vec{\mathbf{r}}'(t)|^3}$$

(Some of the solution has been provided.)

Solution. Begin by observing that $\vec{\mathbf{r}}' = \left| \frac{d\vec{\mathbf{r}}}{dt} \right| \vec{\mathbf{T}} = \frac{ds}{dt} \vec{\mathbf{T}}$, and by the product rule it follows that $\vec{\mathbf{r}}'' = \frac{d^2s}{dt^2} \vec{\mathbf{T}} + \frac{ds}{dt} \vec{\mathbf{T}}'$.

Definition 16. The **unit normal vector** $\overrightarrow{\mathbf{N}}$ to a curve $\overrightarrow{\mathbf{r}}$ is the direction of the derivative of the unit tangent vector $\overrightarrow{\mathbf{T}}'(t) = \frac{d\mathbf{T}}{dt}$. (By definition, this vector points into the direction of the curve.)

Theorem 17.

$$\overrightarrow{\mathbf{N}} = rac{\overrightarrow{\mathbf{T}}'}{|\overrightarrow{\mathbf{T}}'|}$$

Problem 18. Prove that $\overrightarrow{\mathbf{N}}$ is actually normal to the curve by using a theorem from a previous section. (Hint: $|\overrightarrow{\mathbf{T}}| = 1$.)

Auburn University

 \Diamond

Solution.

 \Diamond

Definition 19. The **binormal vector** $\overrightarrow{\mathbf{B}}$ is the direction normal to both $\overrightarrow{\mathbf{T}}$ and $\overrightarrow{\mathbf{N}}$ according to the right-hand rule.

Theorem 20.

$$\overrightarrow{\mathbf{B}} = \overrightarrow{\mathbf{T}} imes \overrightarrow{\mathbf{N}}$$

Problem 21. Prove that $\overrightarrow{\mathbf{T}} \times \overrightarrow{\mathbf{N}}$ is a unit vector.

Solution.

