

NAT-MCH Clock-Module Technical Reference Manual V 1.3 CLK Module HW Revision 3.x

The NAT-MCH has been designed by:

N.A.T. GmbH Konrad-Zuse-Platz 9 53227 Bonn-Oberkassel

Phone: +49 / 228 / 965 864 - 0 Fax: +49 / 228 / 965 864 - 10

E-Mail: support@nateurope.com Internet: http://www.nateurope.com

Disclaimer

The following documentation, compiled by N.A.T. GmbH (henceforth called N.A.T.), represents the current status of the product's development. The documentation is updated on a regular basis. Any changes which might ensue, including those necessitated by updated specifications, are considered in the latest version of this documentation. N.A.T. is under no obligation to notify any person, organization, or institution of such changes or to make these changes public in any other way.

We must caution you, that this publication could include technical inaccuracies or typographical errors.

N.A.T. offers no warranty, either expressed or implied, for the contents of this documentation or for the product described therein, including but not limited to the warranties of merchantability or the fitness of the product for any specific purpose.

In no event will N.A.T. be liable for any loss of data or for errors in data utilization or processing resulting from the use of this product or the documentation. In particular, N.A.T. will not be responsible for any direct or indirect damages (including lost profits, lost savings, delays or interruptions in the flow of business activities, including but not limited to, special, incidental, consequential, or other similar damages) arising out of the use of or inability to use this product or the associated documentation, even if N.A.T. or any authorized N.A.T. representative has been advised of the possibility of such damages.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations (patent laws, trade mark laws, etc.) and therefore free for general use. In no case does N.A.T. guarantee that the information given in this documentation is free of such third-party rights.

Neither this documentation nor any part thereof may be copied, translated, or reduced to any electronic medium or machine form without the prior written consent from N.A.T. GmbH.

This product (and the associated documentation) is governed by the N.A.T. General Conditions and Terms of Delivery and Payment.

Note:

The release of the Hardware Manual is related to a certain HW board revision given in the document title. For HW revisions earlier than the one given in the document title please contact N.A.T. for the corresponding older Hardware Manual release.

Table of Contents

CC	NVE	ENTIONS	7
1	BO	OARD SPECIFICATION	8
2	ST	FATEMENT ON ENVIRONMENTAL PROTECTION	9
	2.1	COMPLIANCE TO ROHS DIRECTIVE	9
	2.2	COMPLIANCE TO WEEE DIRECTIVE	
	2.3	COMPLIANCE TO CE DIRECTIVE	10
3	IN	NSTALLATION	11
	3.1	SAFETY NOTE	
	3.2	INSTALLATION PREREQUISITES AND REQUIREMENTS	
		2.1 Requirements	
		2.2 Power supply	
	3.2	2.3 Automatic Power Up	11
4	IN	NTRODUCTION	12
5	Cl	LK MODULE BASICS	13
6	BI	LOCK DIAGRAM OF THE NAT-MCH CLK MODULE	14
_		OARD FEATURES	
7			
8	FU	UNCTIONAL BLOCKS	
	8.1	STRATUM PLL.	
	8.2	JITTER CLEANER UNIT – VERSION 3.2.	
	8.3	MICROPROCESSOR	
	8.4 8.5	M-LVDS / HCSL Transceiver	
		EXTERNAL REFERENCE CLOCK TRANSCEIVER MODULE.	
9		OCATION OVERVIEW	
10	C	ONNECTORS	
	10.1	CONNECTOR OVERVIEW	
	10.2	MCH CONNECTOR CON1	
	10.3	CONNECTOR CON2: INTERFACE TO BASIC-PCB	
	10.4	CONNECTOR CON3: INTERFACE TO HUB-PCB	
	10.5 10.6	CONNECTOR JP1: LATTICE FPGA PROGRAMMING PORT. CONNECTOR JP2: JITTER CLEANER CONTROL	
11		AT-MCH CLK MODULE PROGRAMMING NOTES	
	11.1	SPI Interface	
	11.1	I'C Interface	
	11.3	REGISTER	
		1.3.1 BOARD_ID - 0x00	
		1.3.2 PCB_VERS – 0x01	
		1.3.3 FW_VERS - 0x02	
	11	1.3.4 FPGA_VERS – 0x03	32

11.3.5	$CLK1_OUT_MUX - 0x0A$						
11.3.6	CLK2_OUT_MUX - 0x16						
11.3.7	CLK3_OUT_MUX - 0x22						
11.3.8	UD_CLK1_TX_MUX - 0x2E						
11.3.9	UD_CLK3_TX_MUX - 0x2F						
11.3.10	EXT_REF_SNGL_MUX - 0x30						
11.3.11	EXT_REF_DIFF_MUX – 0x34						
11.3.12	PLL_REF_IN_MUX - 0x36						
11.3.13	PLL_SYNC_IN_MUX - 0x3A						
11.3.14	SYNC_CLK_IN_MUX - 0x3D						
11.3.15	SYNC_CLK_ENBL - 0x60						
11.3.16	<i>PLL_FB</i> – 0x61						
11.3.17	EXT_CLK_TERM - 0x62						
11.3.18	HCSL Buffer Register						
11.3.19	PCIe Reference Clock Generator Register						
11.3.20	DS3102 PLL Register	40					
KNOWN BUGS / RESTRICTIONS							
APPENDIX A	: CORRELATION BETWEEN MICROTCA AND AMC CLOCK NAMING	42					
	: CORRELATION BETWEEN MICROTCA AND AMC CLOCK NAMING : REFERENCE DOCUMENTATION						
APPENDIX B		43					
APPENDIX B	: REFERENCE DOCUMENTATION	43					
APPENDIX B	REFERENCE DOCUMENTATION	43					
APPENDIX B	REFERENCE DOCUMENTATION	43					
APPENDIX B	REFERENCE DOCUMENTATION	43					
APPENDIX B APPENDIX C	REFERENCE DOCUMENTATION	43					
APPENDIX B	REFERENCE DOCUMENTATION	43					
APPENDIX B APPENDIX C List of F	REFERENCE DOCUMENTATION	43 44					
APPENDIX B APPENDIX C List of F	REFERENCE DOCUMENTATION	43 44					
APPENDIX B APPENDIX C APPENDIX C List of F Figure 1: Arr Figure 2: Blo	REFERENCE DOCUMENTATION: REFERENCE DOCUMENTATION: DOCUMENT'S HISTORY	43 44 12					
APPENDIX B APPENDIX C APPENDIX C List of F Figure 1: Arr Figure 2: Blo Figure 3: M-	REFERENCE DOCUMENTATION						

List of Tables

Table 1:	List of used Abbreviations	7
Table 2:	NAT-MCH CLK Module Features	8
Table 3:	MCH Connector CON1	23
Table 4:	Connector to Basic-PCB CON2	25
Table 5:	Connector to Hub-PCB CON3	26
Table 6:	Lattice FPGA Programming Port	26
Table 7:	Jitter Cleaner Control	27
Table 8:	Register overview	31
Table 9:	HCSL Buffer Port to AMC Slot Mapping	39
	Correlation between MicroTCA and AMC Clock Naming	

Conventions

If not otherwise specified, addresses and memory maps are written in hexadecimal notation, identified by 0x.

Table 1: gives a list of the abbreviations used in this document:

Table 1: List of used Abbreviations

Abbreviation	Description
AMC	Advanced Mezzanine Card
b	bit, binary
В	Byte
ColdFire	MCF5470
CPU	Central Processing Unit
CU	Cooling Unit
DMA	Direct Memory Access
E1	2.048 Mbit G.703 Interface
FLASH	Programmable ROM
FRU	Field Replaceable Unit
J1	1,544 Mbit G.703 Interface (Japan)
K	kilo (factor 400 in hex, factor 1024 in decimal)
LIU	Line Interface Unit
M	mega (factor 10,0000 in hex, factor 1,048,576 in
	decimal)
MCH	μTCA Carrier Hub
MHz	1,000,000 Herz
μTCA	Micro Telecommunications Computing Architecture
PCIe	PCI Express
PCI	Peripheral Component Interconnect
PM	Power Manager
RAM	Random Access Memory
ROM	Read Only Memory
SDRAM	Synchronous Dynamic RAM
SSC	Spread Spectrum Clock
T1	1,544 Mbit G.703 Interface (USA)

Board Specification

Table 2: NAT-MCH CLK Module Features

Power Consumption 12 V / 0.5 A max. (only **CLK Module**)

Environmental

Temperature (operating): 0° C to +55°C with forced cooling

Conditions

Temperature (storage): -40° C to $+85^{\circ}$ C

Humidity: 10 % to 90 % rh noncondensing

Standards Compliance PICMG µTCA.0 Rev. 1.0

PICMG AMC.0 Rev. 2.0

PICMG AMC.1 Rev. 2.0

IPMI Specification v2.0 Rev. 1.0

Product Safety

The board complies with EN60950 and UL1950

PLL Input Frequencies

Any multiple of 2 kHz up to 131.072 MHz. Any multiple of 8 kHz up to 155.52 MHz.

(To be sourced from external Reference via Face Plate Connector. CLK1, CLK2 or CLK3) (clocks via backplane are restricted to a maximum frequency of 100MHz by the MicroTCA specification)

PLL Output Frequencies

Any multiple of 2 kHz up to 77.76 MHz. Any multiple of 8 kHz up to 311.04 MHz

(To be distributed via Face Plate Connector, CLK1, CLK2 or CLK3)

- Any multiple of 8 kHz up to 388.79 MHz
- Frame sync. of 8 kHz and 2 kHz

(clocks via backplane are restricted to a maximum frequency of 100MHz by the MicroTCA specification)

2 Statement on Environmental Protection

2.1 Compliance to RoHS Directive

Directive 2002/95/EC of the European Commission on the "Restriction of the use of certain Hazardous Substances in Electrical and Electronic Equipment" (RoHS) predicts that all electrical and electronic equipment being put on the European market after June 30th, 2006 must contain lead, mercury, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE) and cadmium in maximum concentration values of 0.1% respective 0.01% by weight in homogenous materials only.

As these hazardous substances are currently used with semiconductors, plastics (i.e. semiconductor packages, connectors) and soldering tin any hardware product is affected by the RoHS directive if it does not belong to one of the groups of products exempted from the RoHS directive.

Although many of hardware products of N.A.T. are exempted from the RoHS directive it is a declared policy of N.A.T. to provide all products fully compliant to the RoHS directive as soon as possible. For this purpose since January 31st, 2005 N.A.T. is requesting RoHS compliant deliveries from its suppliers. Special attention and care has been paid to the production cycle, so that wherever and whenever possible RoHS components are used with N.A.T. hardware products already.

2.2 Compliance to WEEE Directive

Directive 2002/95/EC of the European Commission on "Waste Electrical and Electronic Equipment" (WEEE) predicts that every manufacturer of electrical and electronical equipment which is put on the European market has to contribute to the reuse, recycling and other forms of recovery of such waste so as to reduce disposal. Moreover this directive refers to the Directive 2002/95/EC of the European Commission on the "Restriction of the use of certain Hazardous Substances in Electrical and Electronic Equipment" (RoHS).

Having its main focus on private persons and households using such electrical and electronic equipment the directive also affects business-to-business relationships. The directive is quite restrictive on how such waste of private persons and households has to be handled by the supplier/manufacturer, however, it allows a greater flexibility in business-to-business relationships. This pays tribute to the fact with industrial use electrical and electronical products are commonly integrated into larger and more complex environments or systems that cannot easily be split up again when it comes to their disposal at the end of their life cycles.

As N.A.T. products are solely sold to industrial customers, by special arrangement at time of purchase the customer agreed to take the responsibility for a WEEE compliant disposal of the used N.A.T. product. Moreover, all N.A.T. products are marked according to the directive with a crossed out bin to indicate that these products within the European Community must not be disposed with regular waste.

If you have any questions on the policy of N.A.T. regarding the Directive 2002/95/EC of the European Commission on the "Restriction of the use of certain Hazardous Substances in Electrical and Electronic Equipment" (RoHS) or the Directive 2002/95/EC of the European Commission on "Waste Electrical and Electronic Equipment" (WEEE) please contact N.A.T. by phone or e-mail.

2.3 Compliance to CE Directive

Compliance to the CE directive is declared. A 'CE' sign can be found on the PCB.

3 Installation

3.1 Safety Note

To ensure proper functioning of the **NAT-MCH CLK Module** during its usual lifetime take refer to the safety note section of the **NAT-MCH BASIC-Module** Technical Reference Manual before handling the board.

3.2 Installation Prerequisites and Requirements

IMPORTANT

Before powering up

• check this section for installation prerequisites and requirements

3.2.1 Requirements

The CLK-Module is always mounted on a NAT-MCH BASIC-Module. Therefore please refer to the requirements section of the **NAT-MCH BASIC-Module** Technical Reference Manual.

3.2.2 Power supply

The power supply for the **NAT-MCH CLK Module** must meet the following specifications:

+12 V / 0.5 A max. (only **CLK Module**, in addition to other PCBs of the **NAT-MCH**).

3.2.3 Automatic Power Up

Power ramping/monitoring and power up reset generation is done by the **NAT-MCH Basic-Module**

In the following situations the **NAT-MCH Basic-Module** will automatically be reset and proceed with a normal power up.

• The voltage sensor generates a reset, when +12 V voltage level drops below 8V.

4 Introduction

The **NAT-MCH** consists of a **Basic-Module**, which can be expanded with additional PCBs. The **Basic-Module** satisfies the basic requirements of the MicroTCA Specification for a MicroTCA Carrier Hub. The main capabilities of the **Basic-Module** are:

- management of up to 12 AMCs, two cooling units (CUs) and one or more power modules (PMs)
- Gigabit Ethernet Hub Function for Fabric A (up to 12 AMCs) and for the Update Fabric A to a second (redundant) **NAT-MCH**

To meet also the optional requirements of the MicroTCA specification, a **CLK-Module** and different **HUB Modules** are available. With the **Clock-Module** the following functions can be enabled:

- generation and distribution of synchronized clock signals for up to 12 AMCs and a second MCH
- reception of clock signals from either of 12 AMCs, a second MCH or from the front panel input and redistribution

Through the extension of the **NAT-MCH** with a **HUB Module**, hub functions for fabric D to G can be enabled. With the different versions the customers have the opportunity to choose a **HUB Module** that fits best to their applications. The versions differ in:

- max. number of supported AMCs (up to 6 / up to 12)
- supported protocols:
 - PCI Express
 - Serial Rapid IO
 - o 10Gigabit Ethernet

The features of the individual modules are described in more detail in the corresponding Technical Reference Manuals.

A general arrangement of the different modules of a **NAT-MCH** is shown in *Figure 1*.

Figure 1: Arrangement of different NAT-MCH Modules

This Technical Reference Manual describes the Clock-PCB.

5 CLK Module Basics

The **CLK Module** can be mounted on the **NAT-MCH Basic-PCB**. With the **CLK Module**, the 2nd tongue of the **NAT-MCH** connector to the MicroTCA backplane is installed. The **NAT-MCH CLK Module** implements the following major features:

- support of AMC clocks CLK1* CLK2* and CLK3* for up to 12 AMCs
- support of update CLK1 and CLK3 for a second NAT-MCH in a redundant system
- support of the front panel reference clock In/Outputs
- Stratum 3 or 3E (depending on assembly option) type PLL clock source for telecom applications with various output frequencies
- Telecom CLK signals can be distributed over all backplane clock connections and the front panel interface
- CLK1, CLK2 and CLK3 from all 12 AMCs, the update clocks from a second **NAT-MCH**, or a signal from the front panel interface can be used as reference for the PLL
- a PCI Express compliant clock signal can be distributed via CLK3 to all 12 AMCs (only possible with a installed PCI Express **Hub-Module**)
- Support of M-LVDS **or** HCSL compliant driver and termination for CLK3 (assembly option)
- V3.2 only features a Jitter Cleaner unit

.

Please refer to **Appendix A** for a brief description of the correlation between the MicroTCA and AMC clock interface naming

6 Block Diagram of the NAT-MCH CLK Module

PCIe Ref. 100MHz 100MHz **HCSL** Clock Buffer Generator I²C to 12 AMCs Temp. Sensor CLK2 to 12 AMCs CLK1 **FPGA** to 12 AMCs Update CLK1 to second NAT-MCH Update CLK3 Ref. Connector to PCIe HUB-PCB I²C/ SPI outputs Ref. __{V3.2:} _ 1 inputs Optional | Jitter Cleaner Parallel Configu-Bus ration (SPI) Connector to Basic-I²C/ **Stratum** Micro-**PLL** controller ext. ref. CLK **NAT-MCH CLK-Module** OR -Assembly option, located on MCH Base Module

Figure 2: Block Diagram of the NAT-MCH CLK Module

7 **BOARD FEATURES**

PLL

The board is equipped with a Maxim DS3102 Stratum 2/3E/3 PLL, which provides various typical telecom frequencies in the range from 8 kHz to 65.536 MHz. Especially to the two frequencies 8 kHz and 19.44 MHz, which are recommended for telecom applications by the MicroTCA Specification, are supported. Also 10MHz and 30.72MHz that are often needed for GPS applications are in the supported range.

The Maxim PLL is only assembled if the "TC-Option" is chosen.

The Stratum accuracy depends on the assembled reference oscillator. Stratum 2 is not supported. Stratum 3E is supported by the TCOCXO option and Stratum 3 by the TCTCXO option

Jitter Cleaner – Version 3.2 only

Board Version 3.2 is equipped with a Jitter Cleaner unit to clean the clock signal OC6 of the Maxim PLL. Depending on the frequency to be filtered an adequate VCXO needs to be assembled. Standard frequency is 122.8 MHz, for other frequencies between 50 and 125 MHz please contact NAT.

• Microprocessor

To configure the CLK Module an Atmel 8-bit microprocessor resides on the CLK Module.

Interfaces

CLK1: The NAT-MCH CLK Module implements clock interfaces to 12

> AMCs. These interfaces can be used to send a clock signal to the AMCs, or to receive a reference clock signal from any of the 12

AMCs.

CLK2: The NAT-MCH CLK Module implements clock interfaces to 12

AMCs. These interfaces can be used to send a clock signal to the

AMCs, or to receive a reference clock signal from any AMC.

CLK3: The NAT-MCH CLK Module implements clock interfaces to 12

AMCs. Depending on the assembly option different signal standards are supported:

The M-LVDS option supports M-LVDS compliant in- or

The HCSL option supports HCSL compliant outputs, as recommended for a PCIe reference clock.

Update CLK:

The **NAT-MCH CLK Module** implements 2 update channels (update CLK1 and CLK3). These channels are full-duplex connections to a second NAT-MCH. They can only be used to send and receive telecom clock signals (not the PCI Express clock signal).

Ext.-ref.-CLK:

The **NAT-MCH CLK Module** supports a dual external reference clock in- or output, accessible via a face plate connector. The required signals are routed to the **Base-Module**, were different clock transceiver modules can be assembled. These transceiver modules are using either SMA connectors or a RJ45 connector, depending on the needed signal standard.

The RJ45 connector is used for LVDS signals and the SMA connectors are used for single ended signals (e.g. TTL or CMOS level signals).

If the external clock interface is used to receive a single ended reference clock, this clock signal is amplified by a special input circuit on the **Transceiver-Module**. This circuit accepts signal forms in a wide range, concerning frequency and input voltage. For a more detailed specification of the input signal please refer to the hardware reference manual of the **Base-Module**.

• Interface to other NAT-MCH PCBs

Basic PCB:

- The Microprocessor on the **CLK Module** can be programmed by the CPU on the **Basic-Module** via a SPI interface. Normal communication between the Microprocessor and the CPU is done by IPMI messages via the I²C interface.
- The external clock interface on the front panel is connected to the **CLK Module** via the interface to the **Basic-PCB** (via connector CON2).

PCIe Hub-PCB:

- depending on the HUB Module version the **CLK Module** can receive a PCI Express compliant clock signal from the **Hub-PCB** or transmit that clock signal to the HUB Module. This is only possible with the PCIe HUB Module.

8 Functional Blocks

The **NAT-MCH CLK Module** is divided into a number of functional blocks, which are described in the following paragraphs.

8.1 Stratum PLL

The DS3102 supports the Stratum 2, 3E, 3, 4E and 4 requirements of GR-1244, GR-253, G.812 Types I – IV, G.813 and G.8262. The first four reference inputs of the DS3102 are connected to the FPGA. Via multiplexers in the FPGA it can be decided which source shall be routed to those inputs. These inputs can synchronize to any reference with the frequency of:

- SONET/SDH: 6.48, N x 19.44, N x 51.84MHz
- Ethernet xMII: 2.5, 25, 125, 156.25MHz
- PDH: N x DS1, N x E1, N x DS2, DS3, E3
- Frame Sync: 2kHz, 4kHz, 8kHz
- Custom: Any Multiple of 2kHz Up to 131.072MHz,
- Any Multiple of 8kHz Up to 155.52MHz

By programming the FPGA multiplexers bit, any clock signal from any AMC (either CLK1, CLK2 or CLK3) or from the other NAT-MCH (CLK1 or CLK3 update) can be connected to these reference inputs of the PLL.

If no reference signal is available or if the reference fails the DS3102 uses a 12.8 MHz master clock for frequency generation in a free running/holdover mode. The 12.8 MHz clock is generated by an oscillator.

The DS3102 has seven clock and two frame sync outputs. These outputs are routed to the FPGA and can there be selected as source by any multiplexer. The outputs can programmed to generate the following output frequencies:

- SONET/SDH: 6.48, N x 19.44, N x 51.84MHz
- Ethernet xMII: 2.5, 25, 125, 156.25, 312.5MHz
- PDH: N x DS1, N x E1, N x DS2, DS3, E3
- Other: 10, 10.24, 13, 30.72MHz
- Frame Sync: 2kHz, 8kHz
- Custom Clock Rates: Any Multiple of 2kHz Up to 77.76MHz,

Any Multiple of 8kHz Up to 311.04MHz, Any Multiple of 10kHz Up to 388.79MHz

The DS3102 PLL is only assembled if the TC-Option is chosen.

Please refer to the manual of the DS3102 PLL [1] for a more detailed description.

8.2 Jitter Cleaner unit – Version 3.2

The Jitter Cleaner Unit is only available on Board version 3.2. It consists of the National Semiconductor LMK04031 Jitter Cleaner and an external VCXO. This external oscillator determines the frequency to be filtered, default is 122.8 MHz; other frequencies between 50 and 125 MHz are supported, please contact NAT for details.

The Jitter Cleaner unit cleans the clock frequency on OC6 only.

If you need further information, please refer to the LMK4000 family datasheet.

8.3 Microprocessor

An Atmel 8-bit microprocessor resides on the **CLK Module**. With the help of this microprocessor, the main CPU of the base board can configure all multiplexers implemented in the FPGA and enable the transceivers for the connection to each AMC. The firmware can be updated by the CPU of the **Base Module** via the SPI interface. The ColdFire communicates with the **CLK Module** via IPMI (using the I²C interface).

8.4 CLK-Multiplex Function

Flexible multiplexing of the various clock signals is achieved by a Lattice FPGA. Multiplexing of source clock signals to destination clock signals is performed by programming a register interface provided by the microcontroller.

The FPGA with these multiplexers is only assembled with the TC-option

8.5 M-LVDS / HCSL Transceiver

The MicroTCA R1.0 Specification recommends that all clock interfaces are equipped with M-LVDS compliant driver/receiver and termination. Contrary to that the AMC.0 R2.0 allows for FCLKA (formerly CLK3) also HCSL compliant driver/receiver and termination.

The main difference between the two signal specifications, which makes it difficult to realize both with the same hardware, is the different termination. M-LVDS uses a dual differential termination between the two complimentary clock lines at both ends of the bus. This termination is shown in Figure 3.

Figure 3: M-LVDS Termination

HCSL uses a source-only termination with two series and term-to-ground resistors. This termination is depicted in Figure 4.

Figure 4: HCSL termination

Because of this differences N.A.T. decided to offer two different assembly/ordering options SSCM (Spread Spectrum Clock M-LVDS) and SSCH (Spread Spectrum Clock HCSL). The SSCM option implements M-LVDS compliant Transmitter and termination for CLK3. The SSCH option implements HCSL compliant Transmitter and termination.

Either the SSCM or the SSCH option can be chosen. Beside these two options always the TC option can additionally be chosen. The TC option implements always M-LVDS compliant transceiver and termination for CLK1, CLK2 and Update CLK1/3.

Please Note: It is important that not only the CLK-Module and the AMC modules fit together regarding the termination, also the Backplane need to be selected adequate.

The Backplane shall have a 1000hm termination if M-LVDS is chosen for CLK3 (refer to Figure 3). If HCSL is chosen for CLK3 the backplane shall have no termination (refer to Figure 4).

8.6 External Reference clock Transceiver Module

Reference clock signals can be received or transmitted via connectors on the NAT-MCH face plate. Depending on an assembly option different External Reference Clock Transceiver Modules can be chosen. The available Transceiver modules differ in the number of supported clock signals, in the supported electrical standard (e.g. LVDS,

TTL, ...) and the supported connector. The different External Reference Clock Transceiver Modules are assembly options of the NAT-MCH Base Module. Therefore the different options are described in more detail in the reference manual of the Base Module.

9 Location Overview

Figure 5 shows the position of important components. Depending on the chosen options it may be that the board does not include all components named in the location diagram.

Figure 5: Location Diagram of the NAT-MCH CLK Module

Top View

Bottom View

10 Connectors

10.1 Connector Overview

Figure 6 and **Fehler! Verweisquelle konnte nicht gefunden werden.** are showing the position of the different connectors of the CLK Module.

Figure 6: Connectors of the NAT-MCH CLK Module

Please refer to the following tables for the pin assignment of the **NAT-MCH CLK Module**.

10.2 MCH Connector CON1

Table 3: MCH Connector CON1

Pin No.	MCH-Signal	MCH-Signal	Pin No.
1	GND	GND	170
2	RSVD	RSVD	169
3	RSVD	RSVD	168
4	GND	GND	167
5	RSVD	RSVD	166
6	RSVD	RSVD	165
7	GND	GND	164
8	CLK3_Tx+	CLK3_Rx+	163
9	CLK3_Tx-	CLK3_Rx-	162
10	GND	GND	161
11	CLK1_Tx+	CLK1_Rx+	160
12	CLK1_Tx-	CLK1_Rx-	159
13	GND	GND	158
14	TxFB-1+	RxFB-1+	157
15	TxFB-1-	RxFB-1-	156
16	GND	GND	155
17	TxFB-2+	RxFB-2+	154
18	TxFB-2-	RxFB-2-	153
19	GND	GND	152
20	TxFB-3+	RxFB-3+	151
21	TxFB-3-	RxFB-3-	150
22	GND	GND	149
23	TxFB-4+	RxFB-4+	148
24	TxFB-4-	RxFB-4-	147
25	GND	GND	146
26	TxFB-5+	RxFB-5+	145
27	TxFB-5-	RxFB-5-	144
28	GND	GND	143
29	TxFB-6+	RxFB-6+	142
30	TxFB-6-	RxFB-6-	141
31	GND	GND	140
32	CLK3-1+	CLK3-7+	139
33	CLK3-1-	CLK3-7-	138
34	GND	GND	137
35	CLK3-2+	CLK3-8+	136
36	CLK3-2-	CLK3-8-	135
37	GND	GND	134

Pin No.	MCH-Signal	MCH-Signal	Pin No.
38	CLK3-3+	CLK3-9+	133
39	CLK3-3-	CLK3-9-	132
40	GND	GND	131
41	CLK3-4+	CLK3-10+	130
42	CLK3-4-	CLK3-10-	129
43	GND	GND	128
44	CLK3-5+	CLK3-11+	127
45	CLK3-5-	CLK3-11-	126
46	GND	GND	125
47	CLK3-6+	CLK3-12+	124
48	CLK3-6-	CLK3-12-	123
49	GND	GND	122
50	CLK1-1+	CLK2-1+	121
51	CLK1-1-	CLK2-1-	120
52	GND	GND	119
53	CLK1-2+	CLK2-2+	118
54	CLK1-2-	CLK2-2-	117
55	GND	GND	116
56	CLK1-3+	CLK2-3+	115
57	CLK1-3-	CLK2-3-	114
58	GND	GND	113
59	CLK1-4+	CLK2-4+	112
60	CLK1-4-	CLK2-4-	111
61	GND	GND	110
62	CLK1-5+	CLK2-5+	109
63	CLK1-5-	CLK2-5-	108
64	GND	GND	107
65	CLK1-6+	CLK2-6+	106
66	CLK1-6-	CLK2-6-	105
67	GND	GND	104
68	CLK1-7+	CLK2-7+	103
69	CLK1-7-	CLK2-7-	102
70	GND	GND	101
71	CLK1-8+	CLK2-8+	100
72	CLK1-8-	CLK2-8-	99
73	GND	GND	98
74	CLK1-9+	CLK2-9+	97
75	CLK1-9-	CLK2-9-	96
76	GND	GND	95
77	CLK1-10+	CLK2-10+	94
78	CLK1-10-	CLK2-10-	93

Pin No.	MCH-Signal	MCH-Signal	Pin No.
79	GND	GND	92
80	CLK1-11+	CLK2-11+	91
81	CLK1-11-	CLK2-11-	90
82	GND	GND	89
83	CLK1-12+	CLK2-12+	88
84	CLK1-12-	CLK2-12-	87
85	GND	GND	86

10.3 Connector Con2: Interface to Basic-PCB

Connector CON2 connects the NAT-MCH CLK Module with the Basic-PCB

Table 4: Connector to Basic-PCB CON2

Pin No.	Signal	Signal	Pin No.	
1	/SPISEL_CLKPCB	INT_HUB	2	
3	GND	GND	4	
5	BASE_TA_N	BASE_RA_N	6	
7	BASE_TA_P	BASE_RA_N	8	
9	+12V	+12V	10	
11	+12V	+12V	12	
13	EXTREF_OUT_P	+3.3V MP	14	
15	EXTREF_OUT_N	SPICLK	16	
17	GND	EXTREF_IN	18	
19	MOSI	MISO	20	
21	GND	/SPISEL_HUB PCB	22	
23	SCL	nRESET_CLK- PCB	24	
25	SDA	nRESET_HUB- PCB	26	
27	GND	GND	28	

10.4 Connector CON3: Interface to Hub-PCB

Connector CON3 connects the **CLK Module** with the **HUB-PCB**.

Table 5: Connector to Hub-PCB CON3

Pin No.	Signal	Signal	Pin No.
1	N.C.	INT_HUB	2
3	GND	GND	4
5	BASE_TA_N	BASE_RA_N	6
7	BASE_TA_P	BASE_RA_N	8
9	+12V	+12V	10
11	+12V	+12V	12
13	PCIeCLK_P	+3.3V MP	14
15	PCIeCLK_N	SPICLK	16
17	GND	expansion3	18
19	MOSI	MISO	20
21	GND	/SPISEL_HUB PCB	22
23	SCL	nRESET_CLK- PCB	24
25	SDA	nRESET_HUB- PCB	26
27	GND	GND	28

10.5 Connector JP1: Lattice FPGA Programming Port

Connector JP1 connects the serial programming-port of the Lattice FPGA device.

Table 6: Lattice FPGA Programming Port

Pin No.	Signal	Signal	Pin No.
1	+3.3V	TDO	2
3	TDI	PROGRAMN	4
5	N.C.	TMS	6
7	GND	TCK	8
9	DONE	/INIT	10

10.6 Connector JP2: Jitter Cleaner Control

Connector JP2 enables setup and control of the Jitter Cleaner IC.

Table 7: Jitter Cleaner Control

Pin No.	Signal	Signal	Pin
			No.
1	MISO AVR	+3.3V	2
3	SCK AVR	MOSI AVR	4
5	/RST AVR	GND	6

11 NAT-MCH CLK Module Programming Notes

11.1 SPI Interface

The SPI interface on the **CLK Module** is used only for maintenance purposes, e.g. updating the microcontroller firmware or the FPGA image.

11.2 I²C Interface

The I²C interface is the main communication interface between the microcontroller and the CPU of the **Basic-Module**. All communication is based on IPMI Messages.

11.3 Register

The clock module can generate, receive and transmit various clock signals.

Different clock signals can be received by the clock module via interfaces at the MCH face plate or the backplane interfaces, e.g. CLK1/2/3 connected to AMCs as well as CLK1/2_UD connected to a redundant MCH.

Additional the clock module can generate clock signals on its own. Therefore a stratum 3/3E PLL resides on the clock module. This PLL can generate various frequencies on different outputs either in free run mode or locked onto a reference clock.

Clock signals coming from one of the interfaces described before can serve as reference for the PLL.

Beside receiving or generating clock signals the clock module can of course also transmit clock signals. This can also be done by the backplane interfaces (CLK1/2/3 and CLK1/2 UD).

The clock signals generated by the PLL can serve as source for the transceiver. Or received signals can directly be routed to other interfaces to be transmitted again.

To allow a maximum flexibility to choose at runtime which clock shall be routed from which interface to which interface a lot of multiplexer are implemented into the clock module FPGA.

To get a better understanding of the (multiplexer-) functions that are implemented in the CLK-Module FPGA Figure 7 is showing a detailed overview.

PLL_OUTP ... Configuration Register CLK1_OUT_MUX PLL_OUTP UD_CLK1_TX_MUX CLK2 OUT MUX ... FPGA integrated Multiplexer PLL_CTR1 CLK3_OUT_MUX UD_CLK3_TX_MUX PLL CTR2 EXT_REF_DIFF_MUX M-LVDS ... FPGA integrated M-LVDS compliant Transceiver EXT_REF_SNGL_MUX 1 PLL_SYNC_IN_MUX External Component SYNC_CLK_ENBL (1 bit) PLL REF IN MUX D Q (MAXIM DS3102) M-LVDS CLK1_UD IOs M-LVDS CLK3_UD IOs 19 M-LVDS CLK1 IOs MUX ,12 Input Signals M-LVDS CLK2 ,12 IOs M-LVDS CLK3 IOs External Component M-LVDS IOs 3.3V 12.8MHz IOs 25MHz EXT_REF_SNGL_MUX EXT_REF_DIFF_MUX

Figure 7: Detailed Functional overview

Figure 8: Optional Jitter Cleaner

The multiplexer and other functions implemented on the clock module can be controlled by a register interface. The following tables are showing a detailed description of the registers that are available. These registers are not intended to be used by the customer. N.A.T. offers a script based configuration interface that simplifies the complex configuration options. Please refer to chapter 10 "Clock Module Configuration" of the NAT-MCH User Manual for a more detailed description of this interface.

Table 8: Register overview

	7	6	5	4	3	2	1	0
0x00	BOARD ID							
0x01				<u>PCB</u>	_VERS			
0x02				FW	VERS			
0x03				<u>FPG</u>	A VERS			
0x0A				CLK1_0	OUT_MUX			
0x16				CLK2 (OUT MUX			
0x22				CLK3_0	OUT_MUX			
0x2E				UD CLK	1 TX MUX			
0x2F				UD_CLK	3_TX_MUX			
0x30				EXT REF	SNGL MUZ	<u> </u>		
0x34				EXT REF	DIFF MUX	<u> </u>		
0x36				PLL RE	F IN MUX			
0x3A				PLL_SYN	IC_IN_MUX			
0x3D				SYNC_CI	_K_IN_MUX			
0x60		·		SYNC (CLK ENBL	·	·	
0x61				PL	L_FB			
0x62		_	_	EXT C	LK TERM	_	_	

11.3.1 BOARD_ID - 0x00

Bit	Name	Description	Default	Access
70	BOARD_ID	The Board Identifier Register contains the Board ID that identifies the board as NAT-MCH CLK Module.	0xB4	Read Only

11.3.2 PCB_VERS - 0x01

Bit	Name	Description	Default	Access
74	PCB_VERS_MAJ	The PCB Version Register contains the version code of the NAT-MCH CLK Module.	0xXX	Read Only
30	PCB_VERS_MIN	Bits 7 to 4 contain the major version and bits 3 to 0 contain the minor version. That means if the PCB version is e.g. v3.1 the PCB Version Register contains the value 0x31.	0xXX	Read Only

11.3.3 FW_VERS - 0x02

Bit	Name	Description	Default	Access
74	FW_VERS_MAJ	The Atmel Version Register contains the version of the Atmel firmware.	0xXX	Read Only
30	FW_VERS_MIN	Bits 7 to 4 contain the major version and bits 3 to 0 contain the minor version. That means if the firmware running on the Atmel is v1.3 the Firmware Version Register contains the value 0x13.	0xXX	Read Only

11.3.4 FPGA_VERS - 0x03

Bit	Name	Description	Default	Access
74	FW_VERS_MAJ	The FPGA Version Register contains the revision code of the Altera FPGA.	0xXX	Read Only
30	FW_VERS_MIN	Bits 7 to 4 contain the major version and bits 3 to 0 contain the minor version. That means if the FPGA is running with the image v1.3 the FPGA Version Register contains the value 0x13.	0xXX	Read Only

11.3.5 CLK1_OUT_MUX - 0x0A

The value of the output selection multiplexer registers selects which source is connected to CLK1 of AMC slot 1 to 12.

Register	AMC Slot
0x0A	CLK1-1_OUT_MUX
0x0B	CLK1-2_OUT_MUX
0x0C	CLK1-3_OUT_MUX
0x0D	CLK1-4_OUT_MUX
0x0E	CLK1-5_OUT_MUX
0x0F	CLK1-6_OUT_MUX
0x10	CLK1-7_OUT_MUX
0x11	CLK1-8_OUT_MUX
0x12	CLK1-9_OUT_MUX
0x13	CLK1-10_OUT_MUX
0x14	CLK1-11_OUT_MUX
0x15	CLK1-12_OUT_MUX

Bit	Name	Description	Default	Access
70	Name CLK1-112_OUT_MUX	Description Reference Select for REF0 input of the PLL 0x00 – High impedance (recommended value for receive functionality) 0x01 – CLK1 of AMC1 0x02 – CLK1 of AMC2 0x0C – CLK1 of AMC12 0x0D – CLK2 of AMC1 0x18 – CLK2 of AMC11 0x18 – CLK3 of AMC12 0x19 – CLK3 of AMC1 0x24 – CLK3 of AMC12 0x25 – Update CLK1 Rx (from 2 nd MCH) 0x26 – Update CLK3 Rx (from 2 nd MCH)	Default 0x00	Access Read/Write
		0x27 – Extref_single1 (External reference from face plate, single ended) 0x28 – Extref_single2 0x29 – Extref_single3 0x2A – Extref_single4 0x2B – Extref_diff1 (External reference from face plate, differential) 0x2C – Extref_diff2 0x2D – PLL_OC1b (clock output of the Maxim PLL) 0x2E – PLL_OC2b (clock output of the Maxim PLL) 0x2F – PLL_OC3b (clock output of the Maxim PLL) 0x30 – PLL_OC4b (clock output of the		
		Maxim PLL) 0x31 – PLL_OC5b (clock output of the Maxim PLL) 0x32 – PLL_OC6 (clock output of the Maxim PLL) 0x33 – PLL_OC7 (clock output of the Maxim PLL) 0x34 – PLL_fsync (frame sync output of the Maxim PLL) 0x35 – PLL_mfsync (frame sync output of the Maxim PLL) 0x36 – 12.8 MHz (Stratum3E/3 reference clock) 0x37 – 25 MHz (only with HCSL option) 0x38 – "0" 0x39 – "1" 0x3A – Sync_clk (refer to the		
		Ox3A – Sync_clk (refer to the SYNC_CLK_ENBL for a description) all other values result in undefined output values		

The following multiplexers CLK2-1..12_OUT_MUX and CLK3-1..12_OUT_MUX are offering exactly the same reference signals. Therefore this table is also true for these multiplexers.

11.3.6 CLK2_OUT_MUX - 0x16

The value of the output selection multiplexer registers selects which source is connected to CLK2 of AMC slot 1 to 12.

Register	AMC Slot
0x16	CLK2-1_OUT_MUX
0x17	CLK2-2_OUT_MUX
0x18	CLK2-3_OUT_MUX
0x19	CLK2-4_OUT_MUX
0x1A	CLK2-5_OUT_MUX
0x1B	CLK2-6_OUT_MUX
0x1C	CLK2-7_OUT_MUX
0x1D	CLK2-8_OUT_MUX
0x1E	CLK2-9_OUT_MUX
0x1F	CLK2-10_OUT_MUX
0x20	CLK2-11_OUT_MUX
0x21	CLK2-12_OUT_MUX

For further information refer to the reference table in chapter 11.3.5.

11.3.7 CLK3_OUT_MUX - 0x22

The value of the output selection multiplexer registers selects which source is connected to CLK3 of AMC slot 1 to 12.

Register	AMC Slot
0x22	CLK3-1_OUT_MUX
0x23	CLK3-2_OUT_MUX
0x24	CLK3-3_OUT_MUX
0x25	CLK3-4_OUT_MUX
0x26	CLK3-5_OUT_MUX
0x27	CLK3-6_OUT_MUX
0x28	CLK3-7_OUT_MUX
0x29	CLK3-8_OUT_MUX
0x2A	CLK3-9_OUT_MUX

0x2B	CLK3-10_OUT_MUX
0x2C	CLK3-11_OUT_MUX
0x2D	CLK3-12_OUT_MUX

For further information refer to the reference table in chapter 11.3.5.

11.3.8 UD_CLK1_TX_MUX - 0x2E

Bit	Name	Description	Default	Access
70	CLK1_TX	The value of the update CLK1_Tx output selection multiplexer registers selects which source is connected to update CLK1-Tx.	0x00	Read/Write

11.3.9 UD_CLK3_TX_MUX - 0x2F

Bit	Name	Description	Default	Access
70	CLK3_TX	The value of the update CLK3_Tx output selection multiplexer registers selects which source is connected to update CLK3-Tx.	0x00	Read/Write

Register	Source
0x30	Extref_single_1 _MUX
0x31	Extref_single_2 _MUX
0x32	Extref_single_3 _MUX
0x33	Extref_single_4 _MUX

Bit	Name	Description	Default	Access
70	EXT_REF_SNGL_14_MUX	The value of the Clock 14 Single Ended Output Selection Multiplexer Registers selects which source is connected to the single ended external reference clock at the face plate.	0x00	Read/Write

Register	Source
0x34	Extref_diff_1 _MUX
0x35	Extref_diff_2 _MUX

Bit	Name	Description	Default	Access
70	EXT_REF_DIFF_12_MUX	The value of the Clock 12 Differential Output Selection Multiplexer Registers selects which source is connected to the differential external reference clock at the face plate.	0x00	Read/Write

11.3.12 PLL_REF_IN_MUX - 0x36

Register	Source
0x36	PLL_REF_IC1_MUX
0x37	PLL_REF_IC2_MUX
0x38	PLL_REF_IC3_MUX
0x39	PLL_REF_IC4_MUX

Bit	Name	Description	Default	Access
70	PLL_REF_IC14_MUX	The value of the Maxim PLL Reference Input IC14 Selection Multiplexer Registers selects which source is connected to the reference input IC1 to IC4 of the Maxim PLL.	0x00	Read/Write

11.3.13 PLL_SYNC_IN_MUX - 0x3A

Register	Source
0x3A	PLL_SYNC_IN_1_MUX
0x3B	PLL_SYNC_IN_2_MUX
0x3C	PLL_SYNC_IN_3_MUX

Bit	Name	Description	Default	Access
70	PLL_SYNC_IN_13_MUX	The value of the Maxim PLL Sync Input 13 Selection Multiplexer Registers selects which source is connected to the sync input 1 to 3 of the Maxim PLL.	0x00	Read/Write

11.3.14 SYNC CLK IN MUX - 0x3D

To enable the clock signals for all AMCs in a complete system the multiplexer for each AMC need to be set up one after the other. That causes that the AMCs do not get their clocks enabled at the same time. If the system application requires enabling the clock to all AMCs at the same time the Synchronous Clock function can be used.

The Synchronous Clock function includes a multiplexer with the same input as the other multiplexers. The difference is that the output of this multiplexer is connected to an enable gate instead of driving directly the output buffer. The output of that enable gate ("sync_clk") can then be chosen as an input for the clock output multiplexer (e.g. CLK1-1_OUT_MUX, CLK1-2_OUT_MUX, ...).

With that solution the clock output multiplexer for all AMCs can be set up one after the other and when everything is ready configured the Sync_clk_en bit in the SYNC_CLK_ENBL - 0x60 can be asserted.

The Synchronous Clock function is controlled by SYNC_CLK_IN_MUX - 0x3D together with the SYNC_CLK_ENBL - 0x60.

Bit	Name	Description	Default	Access
70	SYNC_CLK_IN_MUX	The value of the Synchronous Clock Input Selection Multiplexer Registers selects which source is connected to the Synchronous Clock function. This multiplexer has the same input signals as all the other multiplexers, described in chapter 11.3.5.	0x00	Read/Write

11.3.15 SYNC_CLK_ENBL - 0x60

The value of the Synchronous Clock Enable Registers starts or stops the Synchronous Clock output. Refer to 11.3.14 for a description of the Synchronous Clock function.

Bit	Name	Description	Default	Access
71		no function	0x0	Read/Write
		write as 0 and ignore when read		
0	SYNC_CLK_ENBL	Enables the Synchronous Clock If this bit is set the signal that is selected by the SYNC_CLK_IN_MUX Register is glitch free enabled. If the bit is cleared again the signal is glitch free disabled and a "0" is driven out on the Sync clock.	0x0	Read/Write

11.3.16 PLL_FB - 0x61

The value of the Maxim PLL Feedback Registers shows the status of different feedback pins of the Maxim PLL.

Bit	Name	Description	Default	Access
73		no function write as 0 and ignore when read		
2	PLL_INTREQ	This bit shows the status of the INTREQ pin of the PLL. By default the function of that pin is disabled into the PLL.	0x0	Read Only
1	PLL_SRFAIL	This bit shows the status of the SRFAIL pin of the PLL. This bit is set to 1 when the selected reference to the DS3102 T0 DPLL fails, (i.e., no clock edges in two UI). SRFAIL is not set in free-run mode or holdover mode.	0x0	Read Only
0	PLL_LOCK	This bit shows the status of the LOCK pin of the PLL. The PLL_LOCK bit is set to high when the T0 DPLL is in the lock state.	0x0	Read Only

11.3.17 EXT_CLK_TERM - 0x62

The value of the External Clock Termination Select Registers chooses which termination is used for the external reference clock from the face plate.

Bit	Name	Description	Default	Access
71		no function	0x0	Read/Write
		write as 0 and ignore when read		
0	EXT_REF_CLK_TERM	Selects the termination for the extref	0x0	Read/Write
		lines		
		If this bit is set a differential termination is		
		chosen and the clock is transmitted via the		
		Extref_diff12 lines.		
		If the bit is cleared a single ended		
		termination is chosen and the clock is		
		transmitted via the Extref_single14 lines.		

11.3.18 HCSL Buffer Register

Register 0-8 of the HCSL Buffer are mirrored to the clock module registers 0x64 - 0x6C (100 – 108). Writes on these registers do directly affect the HCSL buffer register. Please refer to the manual [2] of the HCSL buffer for a register description. Table 9: shows a mapping between the buffer ports and the AMC slots.

Table 9: HCSL Buffer Port to AMC Slot Mapping

# AMC Slot	# HCSL Buffer Port
CLK3	
AMC1	0
AMC2	1
AMC3	2
AMC4	3
AMC5	4
AMC6	5
AMC7	11
AMC8	10
AMC9	9
AMC10	8
AMC11	7
AMC12	6

11.3.19 PCIe Reference Clock Generator Register

Register 0x00 - 0x0E of the PCIe reference clock generator are mirrored to the clock module registers 0x6E - 0x7C (110 - 124). Writes on these registers do directly affect the clock generator register. Please refer to the manual of the clock generator for a register description [3].

11.3.20 DS3102 PLL Register

Register 0x00 - 0x7F of the DS3102 PLL are mirrored to the clock module registers 0x80 - 0xFF. Writes on these registers do directly affect the PLL register. Please refer to the manual of the DS3102 PLL for a register description [1].

Known Bugs / Restrictions

[1] The M-LVDS Specification recommends a signal rise time of at least 1ns. The output of the used FPGA has a rise time of 0.3 ns.

Appendix A: Correlation between MicroTCA and AMC Clock Naming

The AMC.0 Rev.1.0 as well as the MicroTCA Rev.1.0 have defined three clock interfaces that can be used to for clock distribution purposes. These interfaces are named CLK1, CLK2 and CLK3. With the new AMC.0 V2.0 specification the clocks have been renamed as well as additional clocks were defined.

Which clock of an AMC is connected to which clock of the MCH depends on the connections that are made by the backplane. That means it must not necessarily be that TCLKA of an AMC is always connected to CLK1 of the MCH. Even though, this is the standard way for a non redundant MicroTCA Backplane.

Table 10: shows the correlation between the MicroTCA/AMC.0 Rev. 1.0 and the AMC.0 Rev. 2.0 naming.

Table 10: Correlation between MicroTCA and AMC Clock Naming

MicroTCA/ AMC.0 Rev. 1.0	AMC.0 Rev. 2.0	Description	
CLK1	TCLKA	Telecom Clock A Telecom Clock B Fabric Clock	
CLK2	TCLKB		
CLK3	FCLKA		
X	TCLKC	Telecom Clock C	
X	TCLKD	Telecom Clock D	

Please refer to the AMC.0 Rev. 2.0 specification for a more detailed description of the single clock signals and their intended purpose.

Since the MicroTCA specification defines the MCH this manual is using the names that are defined by the MicroTCA.

Appendix B: Reference Documentation

- [1] Maxim DS3102 Stratum 2/3E/3 Timing Card IC, 05/09 http://datasheets.maxim-ic.com/en/ds/DS3102.pdf
- [2] IDT ICS9DB1200CTwelve Output Differential Buffer for PCIe Gen1/Gen2, 09/08 http://www.idt.com/products/getDoc.cfm?docID=18459714
 [3] IDT ICS9FG104 programmable FTG for differential P4TM CPU, PCIe Clocks, 02/07
- [3] IDT ICS9FG104 programmable FTG for differential P4TM CPU, PCIe Clocks, 02/07 http://timing.idt.com/datasheets/ics9FG104.pdf
- [4] LMK04000 family datasheet http://www.national.com/ds/LM/LMK04000.pdf

Appendix C: Document's History

Revision	Date	Description	Author
0.9	03.08.2009	initial draft revision	ks
1.0	07.05.2010	 Added description of synchronous clock function Added description of correlation between the 	ks
1.1	11.11.2010	MicroTCA and AMC.0 clock naming - Moved detailed description of external reference clock transceiver modules to NAT-MCH Base Module reference manual.	ks
1.2	27.04.2011	Document structure chapter "NAT-MCH CLK Module Programming Notes" updated	se
1.3	22.09.2011	Added description of Jitter Cleaner	se