Dynamic Time Warping

Farhan Tahmidul Karim¹ Md Ishrak Ahsan² Riad Ahmed Anonto³

¹1905035

²1905045

³1905050

^{1,2,3}Department of Computer Science and Technology, BUET

What is Dynamic Time Warping?

Dynamic Time Warping is

- An algorithm used for measuring the similarity between two temporal time series sequence
- Computes the distance from the matching similar elements between two series
- Used in dynamic programming to find the optimal path

What is Dynamic Time Warping?

Dynamic Time Warping is

- An algorithm used for measuring the similarity between two temporal time series sequence
- Computes the distance from the matching similar elements between two series
- Used in dynamic programming to find the optimal path

What is Dynamic Time Warping?

Dynamic Time Warping is

- An algorithm used for measuring the similarity between two temporal time series sequence
- Computes the distance from the matching similar elements between two series
- Used in dynamic programming to find the optimal path

Motivation for DTW

Tells us basically two things:

How similar are two signals

Motivation for DTW

Tells us basically two things:

- How similar are two signals
- Which points correspond to one another

First Approach

Euclidean Matching:

Compare the Signals point by point

In fact, this approach is called the "Naive Approach"

First Approach

Euclidean Matching:

Compare the Signals point by point In fact, this approach is called the "Naive Approach"

Second Approach

Dynamic Time Warping:

Used for two variable-length arrays or time sequences to create the best possible alignment.

Exploiting the temporal distortions between them.

Second Approach

Dynamic Time Warping:

Used for two variable-length arrays or time sequences to create the best possible alignment.

Exploiting the temporal distortions between them.

Similarity Detection

Formula can be written as:

$$d(x_{1:N},y_{1:M}) = \sum_{i=1}^{N} |x_i - y_i| + \sum_{i=1}^{N} |x_i - y_i|$$

Farhan(1905035) Ishrak(1905045) Anonto(1905050)

Dynamic Time Warping

How DTW is Different?

Euclidean Matching

- ✓ One to one point Comparison
- √ That's why compares only time series of same length

Dynamic Time Warping

- Allows many-to-one comparisons
- √ Time series of different length can be compared

Algorithm

```
int DTWDistance(s: array [1..n], t: array [1..m]) {
DTW := array [0..n, 0..m]
for i := 0 to n
  for i := 0 to m
     DTW[i, j] := \infty
DTW[0, 0] := 0
for i := 1 to n
  for j := 1 to m
     cost := d(s[i], t[i])
     DTW[i, i] := cost + min(DTW[i-1, j], // insertion
                                DTW[i, i-1], // deletion
                                DTW[i-1, i-1]) // match
return DTW[n, m]
```

Let us consider two time series

$$TS_A = [1, 3, 4, 9, 8, 2]$$

$$TS_B = [1, 6, 2, 3, 0, 9, 4]$$

Let us consider two time series

$$TS_A = [1, 3, 4, 9, 8, 2]$$

$$TS_B = [1, 6, 2, 3, 0, 9, 4]$$

2	21	13	9	10	12	16	11
8	20	9	13	16	19	9	12
9	13	7	11	11	14	8	13
4	5	4	5	5	8	12	12
3	2	3	4	4	7	12	14
1	0	5	6	8	9	17	20
	1	6	2	3	0	9	4

$$D_{i,j} = |A_i - B_j| + min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1})$$

2	21	13	9	10	12	16	11
8	20	9	13	16	19	9	12
9	13	7	11	11	14	8	13
4	5	4	5	5	8	12	12
3	2	3	4	4	7	12	14
1	0	5	6	8	9	17	20
	1	6	2	3	0	9	4

$$D_{i,j} = |A_i - B_j| + min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1})$$

2	21	13	9	10	12	16	11
8	20	9	13	16	19	9	12
9	13	7	11	11	14	8	13
4	5	4	5	5	8	12	12
3	2	3	4	4	7	12	14
1	0	5	6	8	9	17	20
	1	6	2	3	0	9	4

$$D_{i,j} = |A_i - B_j| + min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1})$$

2	21	13	9	10	12	16	11
8	20	9	13	16	19	9	12
9	13	7	11	11	14	8	13
4	5	4	5	5	8	12	12
3	2	3	4	4	7	12	14
1	0	5	6	8	9	17	20
	1	6	2	3	0	9	4

$$D_{i,j} = |A_i - B_j| + min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1})$$

2	21	13	9	10	12	16	11
8	20	9	13	16	19	9	12
9	13	7	11	11	14	8	13
4	5	4	5	5	8	12	12
3	2	3	4	4	7	12	14
1	0	5	6	8	9	17	20
	1	6	2	3	0	9	4

$$D_{i,j} = |A_i - B_j| + min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1})$$

2	21	13	9	10	12	16	11
8	20	9	13	16	19	9	12
9	13	7	11	11	14	8	13
4	5	4	5	5	8	12	12
3	2	3	4	4	7	12	14
1	0	5	6	8	9	17	20
	1	6	2	3	0	9	4

$$D_{i,j} = |A_i - B_j| + min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1})$$

2	21	13	9	10	12	16	11
8	20	9	13	16	19	9	12
9	13	7	11	11	14	8	13
4	5	4	5	5	8	12	12
3	2	3	4	4	7	12	14
1	0	5	6	8	9	17	20
	1	6	2	3	0	9	4

$$D_{i,j} = |A_i - B_j| + min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1})$$

2	21	13	9	10	12	16	11
8	20	9	13	16	19	9	12
9	13	7	11	11	14	8	13
4	5	4	5	5	8	12	12
3	2	3	4	4	7	12	14
1	0	5	6	8	9	17	20
	1	6	2	3	0	9	4

$$D_{i,j} = |A_i - B_j| + min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1})$$

2	21	13	9	10	12	16	11
8	20	9	13	16	19	9	12
9	13	7	11	11	14	8	13
4	5	4	5	5	8	12	12
3	2	3	4	4	7	12	14
1	0	5	6	8	9	17	20
	1	6	2	3	0	9	4

$$D_{i,j} = |A_i - B_j| + min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1})$$

2	21	13	9	10	12	16	11
8	20	9	13	16	19	9	12
9	13	7	11	11	14	8	13
4	5	4	5	5	8	12	12
3	2	3	4	4	7	12	14
1	0	5	6	8	9	17	20
	1	6	2	3	0	9	4

$$D_{i,j} = |A_i - B_j| + min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1})$$

2	21	13	9	10	12	16	11
8	20	9	13	16	19	9	12
9	13	7	11	11	14	8	13
4	5	4	5	5	8	12	12
3	2	3	4	4	7	12	14
1	0	5	6	8	9	17	20
	1	6	2	3	0	9	4

$$D_{i,j} = |A_i - B_j| + min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1})$$

2	21	13	9	10	12	16	11
8	20	9	13	16	19	9	12
9	13	7	11	11	14	8	13
4	5	4	5	5	8	12	12
3	2	3	4	4	7	12	14
1	0	5	6	8	9	17	20
	1	6	2	3	0	9	4

$$D_{i,j} = |A_i - B_j| + min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1})$$

$$D_{i,j} = |A_i - B_j| + min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1})$$

2	21	13	9	10	12	16	11
8	20	9	13	16	19	9	12
9	13	7	11	11	14	8	13
4	5	4	5	5	8	12	12
3	2	3	4	4	7	13	14
1	0	5	6	8	9	17	20
	1	6	2	3	0	9	4

- Start at $D_{n,m}$
- ② Find $min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1})$, add to current path and jump to that cell
- **3** Proceed until we reach $D_{1,1}$

2	21	13	9	10	12	16	11
8	20	9	13	16	19	9	12
9	13	7	11	11	14	8	13
4	5	4	5	5	8	12	12
3	2	3	4	4	7	13	14
1	0	5	6	8	9	17	20
	1	6	2	3	0	9	4

- Start at $D_{n,m}$
- ② Find $min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1})$, add to current path and jump to that cell
- 3 Proceed until we reach $D_{1.1}$

2	21	13	9	10	12	16	11
8	20	9	13	16	19	9	12
9	13	7	11	11	14	8	13
4	5	4	5	5	8	12	12
3	2	3	4	4	7	13	14
1	0	5	6	8	9	17	20
	1	6	2	3	0	9	4

- Start at $D_{n,m}$
- ② Find $min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1})$, add to current path and jump to that cell
- ③ Proceed until we reach $D_{1,1}$

2	21	13	9	10	12	16	11
8	20	9	13	16	19	9	12
9	13	7	11	11	14	8	13
4	5	4	5	5	8	12	12
3	2	3	4	4	7	13	14
1	0	5	6	8	9	17	20
	1	6	2	3	0	9	4

- ① Start at $D_{n,m}$
- ② Find $min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1})$, add to current path and jump to that cell
- **3** Proceed until we reach $D_{1,1}$

2	21	13	9	10	12	16	11
8	20	9	13	16	19	9	12
9	13	7	11	11	14	8	13
4	5	4	5	5	8	12	12
3	2	3	4	4	7	13	14
1	0	5	6	8	9	17	20
	1	6	2	3	0	9	4

- ① Start at $D_{n,m}$
- ② Find $min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1})$, add to current path and jump to that cell
- **3** Proceed until we reach $D_{1,1}$

2	21	13	9	10	12	16	11
8	20	9	13	16	19	9	12
9	13	7	11	11	14	8	13
4	5	4	5	5	8	12	12
3	2	3	4	4	7	13	14
1	0	5	6	8	9	17	20
	1	6	2	3	0	9	4

- ① Start at $D_{n,m}$
- ② Find $min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1})$, add to current path and jump to that cell
- **3** Proceed until we reach $D_{1,1}$

2	21	13	9	10	12	16	11
8	20	9	13	16	19	9	12
9	13	7	11	11	14	8	13
4	5	4	5	5	8	12	12
3	2	3	4	4	7	13	14
1	0	5	6	8	9	17	20
	1	6	2	3	0	9	4

- ① Start at $D_{n,m}$
- ② Find $min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1})$, add to current path and jump to that cell
- **3** Proceed until we reach $D_{1,1}$

2	21	13	9	10	12	16	11
8	20	9	13	16	19	9	12
9	13	7	11	11	14	8	13
4	5	4	5	5	8	12	12
3	2	3	4	4	7	13	14
1	0	5	6	8	9	17	20
	1	6	2	3	0	9	4

- ① Start at $D_{n,m}$
- ② Find $min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1})$, add to current path and jump to that cell
- **3** Proceed until we reach $D_{1,1}$

2	21	13	9	10	12	16	11
8	20	9	13	16	19	9	12
9	13	7	11	11	14	8	13
4	5	4	5	5	8	12	12
3	2	3	4	4	7	13	14
1	0	5	6	8	9	17	20
	1	6	2	3	0	9	4

- ① Start at $D_{n,m}$
- ② Find $min(D_{i-1,j-1}, D_{i-1,j}, D_{i,j-1})$, add to current path and jump to that cell
- **3** Proceed until we reach $D_{1,1}$

- Spoken Word Recognition
- Detect Sales & Trend
- Wearable Fitness Trackers
- Route and ETA Calculation

- Spoken Word Recognition
- Detect Sales & Trend
- Wearable Fitness Trackers
- Route and ETA Calculation

- Spoken Word Recognition
- Detect Sales & Trend
- Wearable Fitness Trackers
- Route and ETA Calculation

- Spoken Word Recognition
- Detect Sales & Trend
- Wearable Fitness Trackers
- Route and ETA Calculation

Spoken Word Recognition by Matching Sound Pattern

"Doors and corners, kid. That's where they get you v1

"Doors and corners, kid. That's where they get you v2

Spoken Word Recognition by Sound Matching Pattern: Euclidian Approach

Failure of Euclidian matching in identifying speech delays/pauses

Spoken Word Recognition by Sound Matching Pattern: Using DTW

Detecting Sales Trends

Units of each product sold per week									
Product Code	Product Code W1 W2 W52								
P1	11	12		7					
P2	7	6		4					
P3	7	11		3					
P4	12	8		2					
P5	8	5		0					
P6	4	3		10					
P7	5	6		5					
P20	18	6		7					

Weekly sales transaction data set of a company throughout last year

Detecting Sales Trends

DTW distances for each pairwise product sales comparison

Detecting Sales Trends

Comparing Optimal Sales Trend with the Furthest and Closest Produ

