วงจรที่มีการกระตุ้นด้วยสัญญาณใชน์

Sinusoid Characteristic Circuit

Arnon Isaramongkolrak
Department of Electrical Engineering
Nakhon pathom Rajabhat University

หัวข้อการเรียนการสอน

- คุณลักษณะของฟังก์ชันไซนูซอยด์
- การวิเคราะห์เฟสเซอร์ของโหลดประเภท RLC
- การวิเคราะห์วงจรไฟฟ้ากระแสสลับเบื้องต้น

คุณลักษณะของฟังก์ชันไซนูซอยด์

- โดยทั่วไปในวงจรไฟฟ้ากระแสสลับ ปริมาณกระแสไฟฟ้าและ แรงดันไฟฟ้าจะแปรเปลี่ยนไปตามรูปคลื่นไซน์
- สัญญาณไซน์ คือ สัญญาณรายคาบ ที่มีขนาดแปรเปลี่ยนไป ตามคาบเวลาซึ่งอยู่ในรูปของฟังก์ชัน sine หรือ cosine

สัญญาณไซน์ถูกวาดเทียบกับเวลาโดยจะมีรูปสัญญาณครบหนึ่งรอบทุกๆ คาบเวลา ${f T}$

$$v(t) = V_m \sin \omega t$$

$$\omega = 2\pi f$$

$$f=$$
 ความถี่ของระบบไฟฟ้า

ฟังก์ชันไซนูซอยด์ของสัญญาณไซน์เมื่อมีการเลื่อนเฟส

 $360^{\circ} = 2\pi \ rad$

เฟสของสัญญาณมีหน่วย เรเดียน

$$v(t) = V_m \sin \omega t + \frac{\pi}{2} = v(t) = V_m \sin \omega t + 90^0$$

$$v(t) = V_m \sin \omega t + 90^0$$

$$v(t) = V_m \cos \omega t$$

ตัวอย่างที่ ${f 1}$ จากสัญญาณรูปด้านล่าง จงหา $T,\,f,\,\omega$

วิธีทำ

$$T$$
 คือ คาบเวลามีค่าเท่ากับ 2π \longrightarrow $T=2 imes\pi=2 imes3.14=6.28\,s$

$$\omega$$
 คือ ความถี่เชิงมุม มีค่าเท่ากับ $2\pi f \implies \omega = 2\pi f = 2\times 3.14\times 0.159 = 1 \ rad$

ตัวอย่างที่ 2 ถ้ากระแส i น้ำหน้าแรงคัน e เป็น 25 องศา และสัญญาณ มีความถี่ 50Hz ค่ากระแสสูงสุดใหลในวงจร 15A จงคำนวณกระแส ชั่วขณะที่เวลา 8ms

วิธีทำ

$$i(t) = I_m \sin \omega t + 25$$

คิดที่ เวลา 8ms,
$$i(8ms) = 15\sin\left(2\pi \times 50 \times 0.008 + \left(\frac{25 \times \pi}{180}\right)\right)$$
 $i(8ms) = 2.8601A$

โหลดทางไฟฟ้า

ใหลดทางไฟฟ้า แบ่งออกเป็น 3 ประเภท

1. โหลดความต้านทาน 2. โหลดความเหนี่ยวนำ 3. โหลดความจุไฟฟ้า

สัญลักษณ์	ความต้านทาน	เฟสของ I และ V
	R	I และ ∨ เฟสตรงกัน
	$X_{L}=\omega L=2\pi fL$	I ตาม ∨ 90 องศา
	$X_c = \frac{1}{\omega C} = \frac{1}{2\pi fC}$	I น้ำ V 90 องศา

คุณสมบัติของโหลดความต้านทาน

เฟสเซอร์ของแรงดันใฟฟ้าและกระแสไฟฟ้าจะตรงกัน

คุณสมบัติของโหลดความเหนี่ยวนำ

เฟสเซอร์ของแรงดันไฟฟ้าจะนำหน้ากระแสไฟฟ้า $\frac{\pi}{2}$

คุณสมบัติของโหลดความจุไฟฟ้า

เฟสเซอร์ของแรงดันไฟฟ้าจะล้าหลังกระแสไฟฟ้า
$$rac{\pi}{2}$$

จำนวนเชิงซ้อน

จำนวนเชิงซ้อน หรือปริมาณเชิงซ้อน คือปริมาณที่ประกอบไปด้วยส่วนจริง และส่วน จินตภาพ โดยมีสัญลักษณ์ซึ่งแทนจำนวนเชิงซ้อน และส่วนประกอบของจำนวน เชิงซ้อนดังนี้

Rectangular Form

$$Z = R + jX$$

R= ส่วนจริง

X= ส่วนจินตภาพ

Polar Form

$$Z = |Z| \angle \theta$$

$$|Z|$$
 = ขนาด

$$\theta =$$
มุมเฟล

ความสัมพันธ์ระหว่าง Polar Form และ Rectangular form

ในการสื่อความหมายของปริมาณเวกเตอร์ในทางไฟฟ้านั้น บางครั้งความเข้าใจจะขึ้นอยู่กับการนำเสนอในรูปของ Polar form หรือ Rectangular form ดังนั้น การแปลงรูปแบบ ระหว่าง Polar form และ Rectangular form จึงมี ความสำคัญต่อการตีความ

การแปลงค่าจาก Polar form เป็น Rectangular form

$$Z = |Z| \angle \theta$$

$$R = Z \cos \theta \qquad X = Z \sin \theta$$

การแปลงค่าจาก Rectangular Form เป็น Polar form

$$|Z| = R + jX$$

$$|Z| = \sqrt{R^2 + X^2}$$

$$|Z| = \tan^{-1}\left(\frac{X}{R}\right)$$

ตัวอย่างที่ 3 จงหาค่าจำนวนเชิงซ้อนให้อยู่ในรูป Polar

Form
$$(6+j5)+(3+j4)(10\angle 40^{\circ})$$

วิธีทำ พิจารณา
$$(3+j4)(10\angle 40^\circ)$$

3+j4 แปลงให้อยู่ในรูป Polar form ได้ดังนี้

$$|Z| = \sqrt{R^2 + X^2} = \sqrt{3^2 + 4^2} = 5$$

$$\theta = \tan^{-1} \left(\frac{X}{R} \right) = \tan^{-1} \left(\frac{4}{3} \right) = 53.13^{0}$$

จะได้
$$(3+j4)(10\angle 40^\circ) = (5\angle 53.13^\circ)(10\angle 40^\circ) = (50\angle 93.13^\circ)$$

ตัวอย่างที่ 3 จงหาค่าจำนวนเชิงซ้อนให้อยู่ในรูป Rect.

และ Polar
$$(6+j5)+(3+j4)(10∠40^\circ)$$

วิธีทำ พิจารณา
$$(6+j5)$$

(6+j5) แปลงให้อยู่ในรูป Polar form ได้ดังนี้

$$|Z| = \sqrt{R^2 + X^2} = \sqrt{6^2 + 5^2} = 7.81$$

$$\theta = \tan^{-1} \left(\frac{X}{R} \right) = \tan^{-1} \left(\frac{5}{6} \right) = 39.81^{0}$$

ตัวอย่างที่ 3 จงหาค่าจำนวนเชิงซ้อนให้อยู่ในรูป Rect.

และ Polar
$$(6+j5)+(3+j4)(10∠40^\circ)$$

การแปลงสัญญาณคลื่นรูปใชน์ให้เป็นเฟสเซอร์

การแปลงสัญญาณคลื่นรูปไซน์ให้เป็นเฟสเซอร์จะต้องอยู่ในรูป ของฟังก์ชัน COS เป็นหลัก

$$v_1(t) = V_m \cos(\omega t + \phi)$$
 \longrightarrow $v_1(t) = V_m \angle \phi$

ถ้าสัญญาณที่กำหนดอยู่ในรูปของฟังก์ชัน sin สามารถกระทำได้ดังนี้

$$v_2(t) = V_m \sin(\omega t + \phi)$$
 $v_2(t) = V_m \cos(\omega t + \phi - 90^\circ)$

$$V_2 = V_m \angle \phi - 90^\circ$$

ตัวอย่างที่ 4 จงแปลงสัญญาณรูปคลื่นไซน์ต่อไปนี้ให้เป็นเฟสเซอร์

1.
$$v(t) = 100\cos(400\omega t - 30^{\circ})$$

2.
$$i(t) = -5\sin(550t - 110^{\circ})$$

วิธีทำ

1.
$$v(t) = 100\cos(400\omega t - 30^{\circ})$$
 $V = 100\angle -30^{\circ}$

2.
$$i(t) = -5\sin(550t - 110^\circ)$$
 ต้องแปลง \sin เป็น \cos ก่อน

ตัวอย่างที่ 4 จงแปลงสัญญาณรูปคลื่นไซน์ต่อไปนี้ให้เป็นเฟสเซอร์

วิธีทำ

2. $i(t) = -5\sin(550t - 110^\circ)$ แปลง \sin เป็น \cos จะได้ว่า

$$i(t) = -5\sin(550t - 110^{\circ})$$
$$= -5\cos(550t - 110^{\circ} - 90^{\circ})$$

จากคุณสมบัติของฟังก์ชัน $\cos -\cos(\omega t) = \cos(\omega t \pm 180^\circ)$

$$i(t) = -5\cos(550t - 110^{\circ} - 90^{\circ})$$

$$= 5\cos(550t - 110^{\circ} - 90^{\circ} + 180)$$

$$= 5\cos(550t - 20^{\circ}) \qquad \qquad I = 5\angle - 20^{\circ}$$

การวิเคราะห์เฟสเซอร์ของโหลด RLC

โหลด RLC เมื่อต่อร่วมกันอยู่ในวงจรไฟฟ้า ย่อมส่งผลให้เฟส เซอร์ของปริมาณกระแสไฟฟ้าและแรงดันไฟฟ้ามีการเปลี่ยนแปลง โดยความสัมพันธ์ของเฟสเซอร์ดังกล่าวขึ้นอยู่กับขนาดของโหลด แต่ละชนิด

ตัวอย่างที่ 4 จงคำนวณหาค่ากระแสไฟฟ้าที่ใหลในวงจรและค่า แรงคันไฟฟ้าที่ตกคร่อมโหลดตัวเหนี่ยวนำที่เวลา 2ms

วิธีทำ แปลงวงจรให้อยู่ในรูปของเฟสเซอร์และอิมพิแดนซ์

พิจารณาที่แหล่งจ่าย
$$v(t) = 5\sin(10t)$$
 $= 5\cos(10t - 90^\circ)$

ตัวอย่างที่ 4 จงคำนวณหาค่ากระแสไฟฟ้าที่ใหลในวงจรและค่า แรงคันไฟฟ้าที่ตกคร่อมโหลดตัวเหนี่ยวนำที่เวลา 2ms

วิธีทำ (ต่อ) จะได้ ω = 10 rad/s

จะได้เฟสเซอร์แรงดัน
$$v(t) = 5\cos\left(10t - 90^\circ\right) \Longrightarrow \mathbf{V} = 5\angle - 90^\circ \, \mathbf{V}$$

พิจารณาที่ตัวเหนี่ยวนำ \Longrightarrow $Z_L=j\omega L=j(10)(0.2)=j2\;\Omega$

วิธีทำ (ต่อ) คำนวณหาค่ากระแสไฟฟ้าที่ใหลในวงจร

กฏของโอห์ม
$$\longrightarrow$$
 $\mathbf{I}=rac{\mathrm{V}}{\mathrm{Z}_{eq}}=rac{5\angle -90^\circ}{4+j2}=rac{5\angle -90^\circ}{4.47\angle 26.57^\circ}$ $=\left(rac{5}{4.47}
ight)\angle -90^\circ -26.57^\circ$ $=1.18\angle -116.57^\circ$ A

วิธีทำ (ต่อ) คำนวณหาค่าแรงดันไฟฟ้าที่คร่อมตัวเหนี่ยวนำ

กฏของโอห์ม
$$ightharpoonup V = (j2)I$$

$$= (2\angle 90^\circ)(1.18\angle -116.57^\circ)$$

$$= 2.36\angle -26.57^\circ V$$

วิธีทำ (ต่อ) แปลงกลับให้อยู่ในรูปของสัญญาณไซน์

$$I=1.18 \angle -116.57^\circ$$
 A $\Longrightarrow i(t)=1.18\cos\left(10t-116.57^\circ\right)$ A คิดที่เวลา 2ms; $i(2ms)=1.18\cos\left(10\times0.002-116.57^\circ\right)$ A $i(2ms)=-0.5066$ A **คอบ**

$$V = 2.36 \angle -26.57^{\circ} V \longrightarrow v(t) = 2.36 \cos(10t - 26.57^{\circ}) V$$

คิดที่เวลา
$$2ms$$
; $v(2ms) = 2.36\cos\left(10 \times 0.002 - 26.57^{\circ}\right) \text{ V}$ $v(2ms) = 2.1314 \text{ V}$

โจทย์ปัญหา 1 จากตัวอย่างที่ 4 จงคำนวณหากระแสไฟฟ้าที่ ใหลในวงจร และแรงคันไฟฟ้าที่ตกคร่อมตัวเหนี่ยวนำที่เวลา 2ms เมื่อเปลี่ยนค่าความเหนี่ยวนำเป็น 5H

โจทย์ปัญหา 2 จากตัวอย่างที่ 4 จงคำนวณหากระแสไฟฟ้าที่ ใหลในวงจร และแรงดันไฟฟ้าที่ตกคร่อมตัวเหนี่ยวนำที่เวลา 2ms เมื่อเปลี่ยนค่าความเหนี่ยวนำเป็น 0.005H

ตัวอย่างที่ 5 จงคำนวณหาค่ากระแสไฟฟ้าที่ใหลในวงจรและค่า แรงคันไฟฟ้าที่ตกคร่อมโหลดตัวเก็บประจุที่เวลา 2ms

วิธีทำ แปลงวงจรให้อยู่ในรูปของเฟสเซอร์และอิมพิแดนซ์

พิจารณาที่แหล่งจ่าย $v(t) = 5\sin(10t)$ $= 5\cos(10t - 90^\circ)$

ตัวอย่างที่ 5 จงคำนวณหาค่ากระแสไฟฟ้าที่ใหลในวงจรและค่า แรงคันไฟฟ้าที่ตกคร่อมโหลดตัวเก็บประจุที่เวลา 2ms

วิธีทำ (ต่อ) จะได้ $\omega = 10 \; rad \; / \; s$

จะได้เฟสเซอร์แรงดัน
$$v(t) = 5\cos\left(10t - 90^\circ\right)$$
 \Longrightarrow $V = 5\angle - 90^\circ$ V

พิจารณาที่ตัวเก็บประจุ
$$ightharpoondown$$
 $Z_{C}=rac{-j}{\omega C}=rac{-j}{(10)\left(25 imes10^{-6}
ight)}=-j4000~\Omega$

วิธีทำ (ต่อ) คำนวณหาค่ากระแสไฟฟ้าที่ใหลในวงจร

$$= \left(\frac{5}{4000}\right) \angle -90^{\circ} - 89.94^{\circ}$$

$$=0.0013\angle -179.94^{\circ} A$$

วิธีทำ (ต่อ) คำนวณหาค่าแรงดันไฟฟ้าที่คร่อมตัวเก็บประจุ

กฏของโอห์ม → V = (-j4000)I
$$= (4000 \angle -90^\circ)(0.0013 \angle -179.94^\circ)$$

$$= 5.20 \angle -269.94^\circ \text{ V}$$

วิธีทำ (ต่อ) แปลงกลับให้อยู่ในรูปของสัญญาณไซน์

$$I = 0.0013 \angle -179.94^{\circ} A \longrightarrow i(t) = 0.0013 \cos(10t -179.94^{\circ}) A$$

คิดที่เวลา 2ms; $i(2ms) = 0.0013\cos(10 \times 0.002 - 179.94^\circ)$ A

$$i(2ms) = -0.0013 \text{ A}$$

$$V = 5.20 \angle -269.94^{\circ} V \implies v(t) = 5.20 \cos(10t - 269.94^{\circ}) V$$

คิดที่เวลา 2ms;
$$v(2ms) = 5.20\cos(10 \times 0.002 - 269.94^{\circ}) \text{ V}$$

$$v(2ms) = -0.1094 \text{ V}$$

โจทย์ปัญหา 3 จากตัวอย่างที่ 5 จงคำนวณหากระแสไฟฟ้าที่ ใหลในวงจร และแรงคันไฟฟ้าที่ตกคร่อมตัวเก็บประจุที่เวลา 2ms เมื่อเปลี่ยนค่าตัวเก็บประจุเป็น 1 F

การวิเคราะห์วงจรไฟฟ้าที่มีความถี่ของแหล่งจ่ายไม่เท่ากัน

การวิเคราะห์ด้วยทฤษฎีการทับซ้อนกับเฟสเซอร์ ในกรณีที่วงจรมี แหล่งจ่ายมากกว่าหนึ่งแหล่งโดยที่มีแหล่งจ่ายหนึ่งตัว(หรือ มากกว่า) มีความถี่ไม่เท่ากับแหล่งจ่ายตัวอื่นๆ **การวิเคราะห์** วงจรในลักษณะเช่นนี้ จำเป็นต้องอาศัยทฤษฎีการวางซ้อน ในการวิเคราะห์วงจรเนื่องจากว่าค่าอิมพิแดนซ์ของตัวเหนี่ยวนำ และตัวเก็บประจุมีค่าที่ขึ้นกับความถี่ ดังนั้นการวิเคราะห์จึงต้อง แยกคิดผลตาเสนองที่เกิดจากแหล่งจ่ายแต่ละความถี่นั้น

วิธีทำ คิดผลของแหล่งจ่ายที่มีความถี่ ω = 3 rad/s

วิธีทำ (ต่อ) คิดผลของแหล่งจ่ายที่มีความถี่ ω = 3 rad/s

$$I_{o1} = 0.811 \angle -76.87^{\circ} \text{ A} \implies i_{o1}(t) = 0.811 \cos(3t - 76.87^{\circ}) \text{ A}$$

วิธีทำ (ต่อ) คิดผลของแหล่งจ่ายที่มีความถี่ ω = 5 rad/s

$$I_{o2} = 0.079 \angle -82.03^{\circ} \text{ A} \implies i_{o2}(t) = 0.079 \cos(5t - 82.03^{\circ}) \text{ A}$$

วิธีทำ (ท่อ) ผลตอบสนองที่เกิดจากแหล่งจ่ายทั้งสองคือ

$$i_o(t) = i_{o1}(t) + i_{o2}(t)$$

$$i_o(t) = 0.811\cos(3t - 76.87^\circ) + 0.079\cos(5t - 82.03^\circ)$$
 A

คิดที่เวลา 7ms จะได้

$$i_o(7ms) = 0.811\cos(3 \times 0.007 - 76.87^\circ) + 0.079\cos(5 \times 0.007 - 82.03^\circ)$$
 A

$$i_o(7ms) = 0.2145 \text{ A}$$

การบ้านครั้งที่ 1

- 1). ถ้ากระแสที่ไหลผ่านโหลดเป็น $i(t) = 2\cos(1000t 30^\circ)$ mA และแรงดันที่ตกคร่อมโหลดเป็น $v(t) = 10\cos(1000t + 25^{\circ}) \text{ V}$ โหลดอิมพิแดนซ์ Z_{L} มีค่าเท่าใด

- ก. 5 \angle 55 $^{\circ}$ k Ω ข. 20 \angle 55 $^{\circ}$ k Ω ค. 5 \angle -5 $^{\circ}$ k Ω ข. 20 \angle -5 $^{\circ}$ k Ω
- 2). จงหากระแส I_2 ในรูปวงจร

- ก.5.36∠71.6° A_{rms}
- Pl. 5.47∠68.6° A.....
- ข. 3.34∠82.7° A_{rms}
- 1. 4.33∠72.1° A_{mm}

การบ้านครั้งที่ 1 (ต่อ)

3 จากรูปวงจรต่อไปนี้ จงคำนวณหา $v_{_{\circ}}$

4 จากรูปวงจรต่อไปนี้ จงคำนวณหา \mathbf{I}_1 และ \mathbf{I}_2

