时间序列分析

时间序列

平稳序列

\$Def\$ 时间序列\$\left{X_t\right} = \left{ X_t|t\in \mathbb{N}\right} \$满足:

- \$\forall t \in \mathbb{N}有EX t^2 < \infty\$.
- \$\forall t \in \mathbb{N}有EX_t = \mu\$.
- \$\forall t,s \in \mathbb{N}有E\left[\left(X_t-\mu \right)\left(X_s-\mu \right) \right] = \gamma_{t-s}\$.
 即:均值函数为常数且自协方差函数只与时间差有关的二阶矩时间序列为平稳时间序列,也称平稳序列.

自协方差函数的性质:

- 对称性: \$\gamma _k = \gamma _{-k},~\forall k \in \mathbb{Z}\$\$
- 非负定性:自协方差矩阵为 \$\$ \Gamma n = (\gamma{k-j})^n_{k,j=1} = \begin{bmatrix} \gamma _0 & \gamma _1 & \cdots & \gamma _{n-1} \ \gamma _1 & \cdots & \gamma _{n-1} \ \gamma _1 & \cdots & \gamma _{n-1} \ \gamma _{n-1} & \gamma _{n-2} & \cdots & \gamma _0 \ \end{bmatrix}是非负定矩阵. \$\$
- 有界性: \$\left\lvert \gamma _k\right\rvert\leqslant \left\lvert \gamma _0\right\rvert,~\forall k \in \mathbb{Z}\$.

即:平稳序列是非负定序列.

\$Lemma\$ 内积不等式: \$EX^2<\infty,~EY^2<\infty\$则有 \$\$ \left\lvert E(XY)\right\rvert \leqslant \sqrt{(EX^2)(EY^2)}, \$\$当且仅当有不全为零的常数\$a,b\$使得 \$\$ aX+bY=0,\quad a.s. \$\$时等号成立. 这个不等式是概率意义下的柯西-施瓦茨不等式.

\$Def\$ 自相关系数:\$\rho k = \frac{\gamma k}{\gamma 0},\guad k \in \mathbb{Z}\$\$

\$Def\$ 白噪声:自协方差函数满足\$Cov(\epsilon_t,\epsilon_s) = \begin{cases} \sigma^2, & t = s, \ 0, & t \neq s. \end{cases}\$ 记号:\$WN(\mu , \sigma^2)\$. 独立序列:独立白噪声 \$\quad\mu = 0\$:零均值白噪声 \$\quad WN(0 , 1)\$:标准白噪声\$\quad\$服从正态分布的独立白噪声:正态白噪声.

\$Def\$ 正交平稳序列: \$\forall s,t \in \mathbb{Z},E(X_tY_s) = 0\$则两序列正交; 若协方差函数恒为\$0\$则两序列不相关. 对于期望为\$0\$的平稳序列不相关和正交等价.

\$Them\$

- 正交的平稳序列的和的自协方差函数: \$\$ \gamma_Z(k) = \gamma_X(k) + \gamma_Y(k) 2\mu_X\mu_Y\$\$
- 不相关的平稳序列的和的自协方差函数: \$\$ \gamma Z(k) = \gamma X(k) + \gamma Y(k) \$\$

线性平稳序列和线性滤波

有限运动平均:

\$Def\$ 白噪声的有限项线性组合是白噪声的(**有限)运动平均**,也称**滑动平均**,有均值函数:\$\mu = EX_t = \sum_{j=0}^{q} a_jE\epsilon_{t-j} = 0,\quad t\in \mathbb{Z}\$. 自协方差函数:\$\gamma $\{t-s\} = E(X_tX_s) = 0$

 $\sum_{j=0}^{q}\sum_{k=0}^{q} a_{j=0}^{q}\sum_{k=0}^{q} a_{j=0}^{q-(t-s)}a_{j=0}^{q-(t-s)}a_{j=0}^{q-(t-s)}a_{j=0}^{q-(t-s)}a_{j=0}^{q-k}a_{j=$

线性平稳序列

\$Def\$ \$\sum_{j=-\infty}^{\infty}\left\lvert a_j\right\rvert<\infty \$则称\$\left{a_j\right} \$绝对可和. \$\left{\epsilon t\right} \$的无穷滑动:\$X_t=\sum{j=-\infty}^{\infty}a_j\epsilon _{t-j},\quad t \in \mathbb{Z}\$

\$Them\$ 若系数绝对可和则零均值白噪声的无穷滑动为平稳序列. \$Prof\$ 单调收敛定理、内积不等式: \$\$ $E\left(\int_{j=-\infty}^{\sin ty}^{\sin ty}|a_j|epsilon_{t-j}|\right) = \sum_{j=-\infty}^{\sin ty}^{\sin ty}|a_j|E|epsilon_{t-j}|\right) = \sum_{j=-\infty}^{\sin ty}^{\sin ty}|a_j|E|epsilon_{t-j}|$ j|\leqslant \sigma \sum_{j=-\infty}^{\infty}|a_j| < \infty \$\$ 由\$\left\\vert \sum_{j=-\infty} n}^{n}a_j\epsilon\right\rvert \leqslant \sum_{j=-\infty}^{\infty}|a_j\epsilon|\$以及控制收敛定理 \$\$ EX_t = $\lim_{n \to \infty}E\left(\sum_{j=-n}^{n}a_j\right) = 0$ \$\$现令\$\xi n = \sum{j=-n}^{n}a_j\epsilon {t-j}, \quad \eta n = \sum{k=-n}^{n}a_k\epsilon {s-k}\$则\$\xi n \eta \infty}^{\infty}\left\lvert a_ja_k\epsilon {t-j}\epsilon {s-k}\right\rvert = V\$ 由单调收敛定理 \$\$ EV = $E\left(\frac{j-\frac{1}{2}}{\frac{1}{2}}\right)^{\frac{1}{2}}$ k\right\rvert\right) = \sum{j=-\infty}^{\infty}\sum{k=-\infty}^{\infty}\left\lvert a_ja_k\right\rvert $E\left(\frac{t-j}{epsilon {t-j}-psilon {s-k}\rightright\rvert \leq \frac{2 \left(\frac{t-j}{epsilon {s-k}\rightright}^2 < \frac{t-j}{epsilon {s-k}-right}}$ \infty \$\$ 则由控制收敛定理得 \$\$ E(X_tX_s) = \lim{n \to \infty} E(\xi n \eta n)=\lim{n \to \infty}E\left(\sum{j= $n^{n}_j = \int_{-\infty}^{n}a_j \exp i(t-j)\sum_{k=-\infty}^{n}a_k \exp i(t-j)$ 可知\${X_t}\$为平稳序列,且可得到自协方差函数\$\gamma k=\sigma^2 \sum{j=-\infty}^{\infty}a_ja{j+k},~k \in \mathbb{Z}.\$ 我们可以接着得到:\$\lim{n \to \infty}\gamma k = 0.\$这里可以由柯西不等式得:\$\sigma $^2\sum_{j=\infty} \frac{1}{|j|\leq x} \frac{1}{|j|} eqslant \frac{1}{$ k/2}a{j+k}^2\right)^{1/2}\$ 然后可证明上式.

时间序列的线性滤波

考虑线性滤波: $Y_t=\sum_{j=-\infty}^{-\infty}^{-\infty}_{j=-\infty}^{-\infty}^{-\infty}_{j=-$

谱函数

\$Them\$ **\${\epsilon** *t}\$是\$WN(0,~\sigma^2)\$,* \$*{a_j}\$绝对可和则\${X_t=\sum*{j=-\infty}^{\infty}a_j\epsilon *{t-j}}\$的谱密度为\$f(\lambda) = \frac{\sigma^2}{2\pi}\left\lvert \sum{j=-\infty}^{\infty} a_j e^{ij\lambda}\right\rvert^2\$*

证明如下:设\$Y\thicksim U[-\pi, \pi]\$则令\$\eta $n = e^{inY}$ \$有\$E\eta_n = \delta_n,\quad E(\eta n\overline{\eta_m}) = \frac{1}{2\pi}\int{-\pi}^{\pi}e^{i(n-m)y}, dy = \delta {m-n}\$, 令\$Z_n = \sum{j=-\infty}^{\infty}a_j\eta {n-j} = \sum{j=-\infty}^{\infty}a_j e^{i(n-j)Y}\$ 由内积的连续性可得\$EZ_n = a_n,\quad $E(Z_n \circ Z_m) = \sum_{j=-\infty}^{\infty} =$

 $\label{thm:linetty}^{\left(n-ty}a_je^{i(n-j)y}\right) \left(\int_{-\infty}^{\inf y}^{\inf y}a_ke^{-i(m-k)y}\right), dy = \frac{1}{2\pi^{-i}}^{\left(n-ty}^{i(n-t)y}^{$

\$Them\$ 有两互相正交的零期望平稳序列, \$c\$为常数, 令\$\$Z_t = X_t + Y_t + c\$\$则

- 谱函数\$F Z=F X+F Y\$
- 谱密度\$f_Z = f_X + f_Y\$ 证明可由上面的定理得到.

线性滤波输出的平稳序列的谱密度和谱函数

由上面定义的线性滤波: 首先\$\$\gamma_Y(k) = \sum_{l,j=-\infty}^{\infty}h_lh_j\gamma_{k+l-j}\$\$ 则由 \$\$\sum_{l,j=-\infty}^{\infty}\left\lvert h_lh_j\right\rvert = \left(\sum_{j=-\infty}^{\infty}\left\lvert h_j\right\rvert \right)^2 < \infty\$\$ 由控制收敛定理 \$\$\gamma_Y(k) = \sum_{l,j=-\infty}^{\infty}\h_lh_j\int_{-\pi}^{\pi}\left\lvert h_j\right\rvert \right)^2 < \infty\$\$ 由控制收敛定理 \$\$\gamma_Y(k) = \sum_{l,j=-\infty}^{\infty}h_lh_j\right_{-\pi}^{\pi}\left\lvert \right}^{\infty}h_lh_j\right_{-\pi}^{\pi}\left\lvert \right}^{\infty}h_lh_j\right_{-\pi}^{\pi}\left\lvert \right}^{\infty}h_lh_j\right_{-\pi}^{\pi}\left\lvert \right}^{\pi}\left\lvert H(e^{-\pi}\right)\right\rvert^2 e^{\pi}\lambda})\right\rvert^2 e^{\pi}\lambda}, dF_X(\lambda)\$\$\frac{\pi}\right\rvert^2 e^{\pi}\right\rvert^2 \right\rvert^2 \right\

SHilbertS空间中的平稳序列

\$Def\$ 完备的内积空间称为\$Hilbert\$空间

对于平稳序列 ${X_t}$, ${L^2(X)}$ 表示其中随机变量有限线性组合的全体: ${L^2(X)}$ = ${\{f_{\sum_{j=1}^k a_j X(t_j)|a_j \in \mathbb{R}, t_j \in \mathbb{R}, t_j$

内积的连续性

\$Them\$ 在内积空间中若\$n\rightarrow \infty时\left\lVert \xi _n - \xi\right\rVert \rightarrow 0,\left\lVert \eta _n - \eta\right\rVert \rightarrow 0\$则有

- \$\left\lVert \xi \right\rVert \rightarrow \left\lVert \xi \right\rVert ,n\rightarrow\infty\$
- \$\left\langle \xi_n,\eta_n\right\rangle \rightarrow \left\langle \xi,\eta\right\rangle\$ 可由三角不等式和内积不等式证明.

现在我们可以证明当\$ $\{a_j\}$ \$平方可和时\$ $X_t = \sum_{j=-\infty}^{\infty}_{j=-\infty}^{\infty$

第一章总结:

重点:

- 平稳序列的定义和正交平稳序列的性质
- 滑动平均和无穷滑动(包括平稳性的证明,绝对可和、平方可和的情况)
- 线性滤波
- 谱函数、谱密度以及无穷滑动和线性滤波的谱密度

证明无穷滑动是平稳序列的重点是:用有限滑动来逼近无穷滑动,工具是单调收敛定理、控制收敛定理以及 \$Hilbert\$空间里的内积连续性.

自回归模型

推移算子和差分方程

Def \$\psi (z) = \sum _{j=-\infty}^{\infty}b_jz^j\$则\$\psi (\mathcal{B})X_t = \sum { $j=-\infty$ }^{\infty}b_jX{t-j}\$

\$Def\$ \${a_n}\$为实数列则称 \$\$X_t - \sum_{j} = 1}^{p}a_jX_{t-j} = 0\$\$即\$\$A(\mathcal{B})X_t = 0\$\$ 为\$p\$**阶齐** 次常系数线性差分方程,简称为**齐次差分方程**. 可以由\$p\$个初值唯一决定. 把\$A(z) = 1 - \sum_{j=-\infty}^{\infty}a_jz^j\$称为其特征多项式.

\$Them\$ 设\$A(z) = 0\$有\$k\$个互异根\${z_j}\$,且\$z_j\$是\$r(j)\$重根则\$\${z_j^{-t}t^l}, \quad l = 0,1,\cdots ,r(j)-1,~j = 1,2,\cdots ,k\$\$是差分方程的\$p\$个解且通解为\$\$X_t = \sum $\{j=1\}^k \setminus sum\{l=0\}^r \{r(j)-1\}U_{l,j}t^lz_j^{-t}\}$ t}\$\$其中\$U\$为被初值决定的随机变量.若写成\$\$U_{l,j} = V_{l,j}e^{i\theta_{l,j}}, \quad z_j = \rho $je^{i} \setminus sum\{l=0\}^r \{r(j)-1\}V_{l,j}t^l \setminus rho ^{-t} \setminus sum\{j=1\}^k \setminus sum\{l=0\}^r \{r(j)-1\}V_{l,j}t^l \setminus rho ^{-t} \setminus sum\{j=1\}^k \setminus sum\{l=0\}^r \{r(j)-1\}V_{l,j}t^l \setminus rho ^{-t} \setminus sum\{j=1\}^r \}$

非齐次:找特解,通解=特解+齐次通解.

\$AR(p)\$模型

\$Def\$ \${\epsilon_t}\$为\$WN(0\sigma^2)\$且\$A(z) = 0\$的根都在单位圆外.其中\$A(z) = 1 - \sum _{j=-\infty}^{\infty}a_jz^j\$即\$\$A(z) = 1 - \sum _{j=-\infty}^{\infty}a_jz^j \neq 0,~\left\\vert z\right\rvert \leqs\lant 1 \$\$ 则称\$p\$阶差分方程\$\$A(\mathcal{B}) X_t = \epsilon_t\$\$为\$p\$阶自回归模型即\$AR(p)\$模型.满足上式的 平稳序列为**平稳解**即\$\\bm{AR(p)}\$**序列**,\${a_j}\$为模型的自回归系数,根在单位圆外的条件是稳定性条件或最 小相位条件.

解\$AR(p)\$模型

可由 $X_t=A^{-1}(\mathbb{B}) \exp \int_t^{j=0}^{\inf y \cdot j \cdot j \cdot j \cdot j} x$ 得模型的特解(平稳解),再由上面的定理求得齐次差分方程的通解,最后得到模型的通解. 这里 $\mathcal{S}(\mathbb{S}) = \mathcal{S}(\mathbb{S})$ 数可由 $\mathcal{S}(\mathbb{S}) = \mathcal{S}(\mathbb{S})$ 数可由 $\mathcal{S}(\mathbb{S}) = \mathcal{S}(\mathbb{S})$ 数可由 $\mathcal{S}(\mathbb{S})$ 可以由递推公式求得.

\$AR\$序列的谱密度和\$Yule-Walker\$方程

利用线性平稳序列的谱密度公式: \$\$f_X(\lambda) = \frac{\sigma^2}{2\pi}\left\lvert \sum_{j=-\infty}^{\infty}\psi_je^{ij\lambda}\right\rvert^2 = \frac{\sigma^2}{2\pi\left\lvert A(e^{i\lambda})\right\rvert^2 }\$\$

\$Them\$ 若平稳序列的自协方差函数绝对可和则有 \$\$f_X(\lambda) = \frac{1}{2\pi}\sum_{k=-\infty}^{\infty}\gamma_k e^{-k\lambda}\$\$ 由于谱密度是实值函数,则还可以写成 \$\$f_X(\lambda) = \frac{1}{2\pi}\left[\gamma_0 + 2\sum_{k=1}^{\infty}\gamma_k \cos(k\lambda)\right]\$\$

推论

对于\$AR(p)\$模型,有 \$\$f_X(\lambda) = \frac{1}{2\pi}\sum_{k=-\infty}^{\infty}\gamma_k e^{-k\lambda} = \frac{\sigma^2}{2\pi\left\lvert A(e^{i\lambda})\right\rvert^2 }\$\$ 这里我们可以得到自协方差函数和特征多项式的关系.

\$Yule-Walker\$方程

通过在模型等式两边同时乘上\$X_{t+k}\$然后取期望,我们可以得到一系列式子:\$\$\gamma_k - \sum_{j=1}^pa_j\gamma_{k-j} = 0, \quad k \geqslant 1 \\gamma_0 - \sum_{j=1}^pa_j\gamma_{-j} = \sigma^2 \$\$ 这组方程称为\$Yule-Walker\$方程.当然我们也可以用矩阵形式表示:\$\$\begin{bmatrix} \gamma_0 & \cdots & \gamma_1 & \cdots & \gamma_{n-1} \\gamma_1 & \gamma_0 & \cdots & \gamma_{n-2} \\vdots & \ddots & \ddots & \ddots & \gamma_n \ \end{bmatrix} = \begin{bmatrix} \gamma_1 \\gamma_1 \\gamma_1 \\gamma_1 \\gamma_1 \\gamma_n \\end{bmatrix} \\$ \pamma_1 \\gamma_1 \\gamma

我们有如下\$Yule-Walker\$方程的推论: \$\$\gamma_k - (a_1\gamma_{k-1}+a_2\gamma_{k-2}+\cdots +a_p\gamma_{k-p}) = \sigma^2\psi_{-k}\$\$