10-13-2021 - Homework due monday (10-18-2021) Last time: 2^{nd} derivative test $D = f_{xx} f_{yy} - f_{xy}^2$, \bar{p} a critical point. ① $f_{xx}(\vec{p}) > 0$ and $D(\vec{p}) > 0 \rightarrow \vec{p}$ a local min point. $\textcircled{2} \ f_{xx}(\vec{p}) < 0 \ \text{and} \ D(\vec{p}) > 0 \ \rightarrow \vec{p} \ \text{a local max point}.$ 3 $D(\vec{p}) < O \rightarrow \vec{p}$ a saddle point. Note: If $O(\vec{p}) = 0$, we cannot conclude anything about \vec{p} using this test. Note 2: You could use fyy (P) in place of fxx(P) EXAMPLE: Classify critical points of fix,y) = xy+ e-xy using 2nd derivative test: $\nabla f = \langle y - ye^{-xy}, x - xe^{-xy} \rangle = \langle y(1 - e^{-xy}), x(1 - e^{-xy}) \rangle$ $\nabla f = \vec{0}$ if and only if $(x(1-e^{-xy}) = 0)$ if and only if $\begin{cases} y=0 \text{ or } 1-e^{-xy}=0 \\ x=0 \text{ or } 1-e^{-xy}=0 \end{cases}$ Note: e-x3=1 if and only if -xy=0 if and only if x=0 or y=0 .. $\nabla f = \hat{O}$ if and only if either x = 0 or y = 0 b/c x = 0 or y = 0 implies both of the conditions for $\nabla f = \hat{O}$

Problem Continued

Now we need D(x,y):

 $f_{xx} = y^2 e^{-xy}$ $f_{yy} = x^2 e^{-xy}$

 $\nabla f = \langle 2x + y, 2y + x + 1 \rangle$

.. Vf = 0 if and only if

fxy = fyx = 1-(e-xy + (-xye-xy)) = 1-e-xy (1-xy)

.. D(x,y) = fxx · fyy - (fxy)2

D(x,y) = 0 uniformly when x=0 or y=0

.. Nothing can be said via 2nd derivative test.

EXAMPLE: lets classify critical points of $f(x,y)=x^2+y^2+xy+y$ via 2^{n} derivative test

£ 2x +y =0

if and only if \(\frac{2}{2}(-2x) + \times + 1 = 0

if and only if \{ -3x +1=0 \\ y= -2x

if and only; f & x= 1/3
y=-2/3

.. We have a unique critical point at $(\frac{1}{3}, -\frac{2}{3})$

C24+x+1=0

= (42e-xy)(x2e-xy) - (1-e-xy(1-xy))2

fxx = 2 , fyy = 2 , fxy = fyx = 1

.. D(x,y)=2-2-1=370

 $= (1/q) + (1/q) - (2/q) - (6/q) = -\frac{1}{3}$

EXAMPLE: Classify critical points f(x,y) = x3+y3-3x2-3y2-9x

 $\nabla f = \langle 3x^2 - 6x - 9, 3y^2 - 6y \rangle$ $= 3 < x^{2} - 2x - 3, y^{2} - 2y >$

=3(x-3)(x+1), y(y-2)>

.. $\nabla f = \vec{0}$ if and only if ((x-3)(x+1)=0) (y(y-2)=0)if and only if { x=3 or x=-1 y=0 or y=-2

• we have critical points: (3,0), (-1,0), (3,2), (-1,2)

Compute D(x,y)

 $f_{xx} = 6x - 6$ = 6(x - 1)

•• b/c $f_{xx}(\frac{1}{3}, -\frac{2}{3}) = 2 > 0$ and $D(\frac{1}{3}, -\frac{2}{3}) = 3 > 0$ we have by 2^{nd} derivative test: $(\frac{1}{3}, -\frac{2}{3}) = 3 > 0$ point within local min value $f(\frac{1}{3}, -\frac{2}{3}) = (\frac{1}{3})^2 + (-\frac{2}{3})^2 + (\frac{1}{3})(-\frac{2}{3}) + (-\frac{2}{3})$

x=3 x=-1

y=0 (3,0) (-1,0) (21,2) (عر3)

fyy = 6y - 6 fxy = fyx = 0

Problem Continued • D(x,y) = $f_{xx} \cdot f_{yy} - f_{xy}^2 = 6(x-1) \cdot 6(y-1) - 0^2 = 36(x-1)(y-1)$ for p = (3,0): D(x,y) = 36(3-1)(0-1) < 0 and $f_{xx}(\vec{p}) = 6(3-1) > 0$ b/c D(3,0) < 0, (3,0) is a saddle point For p = (-1,0): $D(\vec{p}) = 36(-1-1)(0-1) > 0$ and $f_{xx}(\vec{p}) = 6(-1-1) < 0$ (-1,0) is a local max point of f w/a local max value of f(-1,0) = 5for p = (3,2): $D(\vec{p}) = 36(3-1)(2-1) > 0$ and $f_{xx}(\vec{p}) = 6(3-1) > 0$... (3,2) is a local minimum point of f w local min value f(3,2) = -31for p = (-1,2): $D(\vec{p}) = 36(-1-1)(2-1) < 0$: (-1,2) is a saddle point of f Lagrange Multipliers Idea: Method for solving constrained optimization problems Observation: if $f: \mathbb{R}^7 \to \mathbb{R}$ has a level curve $f(\bar{x}) = C$, then for every point \bar{p} on this level curve: $\nabla f(\bar{p}) = \nabla c = \bar{0}$

i.e. ∇f is orthogonal to level curves

So the idea at this point: Set up constrained optimization to be optimization on a level curve...

In general: $\begin{cases} optimize \ f(\vec{x}) \\ Subject \ to \ g_1(\vec{x}) = 0 \end{cases}, g_2(\vec{x}) = 0, \ldots$

Zero-level curves

Can be turned into optimize: $F(\vec{x}, \lambda_1, \lambda_2, \dots \lambda_k) = f(\vec{x}) - \lambda_1 g_1(\vec{x}) - \lambda_2 g_2(\vec{x}), \dots - \lambda_k g_k(\vec{x})$ $F(\bar{x}, \bar{\lambda})$ has critical points via $\nabla F = 0$ So supposing the solution set of $g_1(\vec{x}) = 0 = g_2(\vec{x}) = \dots = g_k(\vec{x})$ is closed and bounded, the local extrema of F determine global extrema of f under $g_1 = g_2 = \dots = g_k = 0$ Example: Lets optimize f(x,y) = xey subject to x2+y2=2 via Lagrange Multipliers: Should be satisfied if and only if g(x,y)=0 $F(x,y,\lambda) = f(x,y) - \lambda g(x,y)$ $W/g(x,y) = x^2 + y^2 - 2$ (b/c g(x,y) = 0 if and only if $x^2 + y^2 = 2$) So, $F(x,y,\lambda) = xe^y - \lambda(x^2+y^2-2)$. $\nabla F = \langle e^{y} - \lambda (2x), xe^{y} - \lambda (2y), x^{2} + y^{2} - 2 \rangle$ So, $\nabla F = 0$ if and only if $\begin{pmatrix} e^{y} - \lambda 2x = 0 \\ 4xe^{y} - \lambda 2y = 0 \\ -x^{2} - y^{2} + 2 = 0 \end{pmatrix}$ if and only if $(2\lambda x = e^{y})$ (1) $(2\lambda y = xe^{y})$ (2) $(-x^{2}-y^{2}=-2)$ (Note: solve this system) $2 \lambda \times = e^{y}$ implies $\lambda \neq 0$ (unless $e^{y} = 0$, which is nonsense!)

with equation land 2 we obtain the following: $2\lambda y = x(2\lambda x)$

$$2\lambda_y = 2\lambda_x^2 \quad \text{Now } \lambda \neq 0 \text{ yeilds } y = x^2$$
So equation 3 becomes $x^2 + (x^2)^2 = 7$

So, equation 3 becomes
$$x^2 + (x^2)^2 = 2$$

i.e. $(x^2)^2 + (x^2) - 2 = 0$
i.e. $(x^2+2)(x^2-1) = 0$
i.e. $(x^2+2)(x-1)(x+1) = 0$

i.e.
$$(x^{2}+2)(x-1)(x+1)=0$$

·• $x=1$ or $x=-1$

if
$$x = -1$$
 then $y = (-1)^2$ and $\lambda = \frac{e^4}{2x} = \frac{e^1}{2(-1)} = -\frac{e}{2}$
So, $(-1,1)$ is a potential extreme point of f subject to $g = 0$

$$f(-1,1) = (-1)e^{1} = -e$$

 $x = -1: y = 1^{2} = 1, \lambda = \frac{e^{1}}{2} = \frac{e}{2}$

$$(1,1) \text{ is also a possible extreme point}$$

$$f(1,1) = 1 \cdot e' = e$$