Jaime Fabián Nieto Castellanos

March 12, 2021

Low statistics results

The following results were obtained through several simulations on different lattices: 6×64 , 7×64 , 8×64 , 9×64 , 10×64 , 11×64 and 12×64 with the parameters:

Ntime	64
Ntherm	500
Nmeasure	1000
Trajectory Steps	10
Nsteps	10
β	4

Table 1: All the simulations were performed with this parameters.

Variance stands for the var option in the masscoll program and Chi squared for the χ^2 option. $g = \frac{1}{\sqrt{\beta}} = \frac{1}{2}$. The residual pion mass is extrapolated with two different methods. From the plots of m_{π}^2 vs. m_{pcac} on acan fit a parabola

$$y = a + bx^2. (1)$$

Meanwhile, from the plots of m_{π} vs. $(gm_{pcac}^2)^{1/3}$ one can fit a function of the form

$$y = \sqrt{a + bx^3}. (2)$$

(a) Fermion mass using PCAC relation, $\kappa_c = 0.26508 \pm 0.00119$

(b) Pion mass as a function of κ .

(c) m_{π}^2 vs. m_{pcac} . A function of the form $a+bx^2$ was fitted, the coefficients are $a=0.43078\pm0.02268,\,b=3.41885\pm0.71614,\,m_{\pi}=0.65634\pm0.01728$ for variance and $a=0.44075\pm0.03599,\,b=4.23048\pm1.0871,\,m_{\pi}=0.66389\pm0.02711$ for chi squared.

(d) A function of the form $y=\sqrt{a+bx^3}$ was fitted. Only $m_{pcac}>0$ is considered. $a=0.42714\pm0.01502,\,b=7.17786\pm0.492,$ $m_{\pi}=0.65356\pm0.01149$ for variance and $a=0.46526\pm0.02379,$ $b=6.66985\pm0.67166,\,m_{\pi}=0.6821\pm0.01744$ for chi squared.

(e) m_{π} vs. m_{pcac} .

Figure 1: Number of configurations vs. topological charge on a 5×64 lattice.

(a) Fermion mass using PCAC relation, $\kappa_c = 0.26356 \pm 0.00318$

(b) Pion mass as a function of κ .

(c) m_π^2 vs. m_{pcac} . A function of the form $a+bx^2$ was fitted, the coefficients are $a=0.3079\pm0.01585,\,b=3.65833\pm0.63195,\,m_\pi=0.55489\pm0.01428$ for variance and $a=0.31726\pm0.02114,\,b=3.62967\pm0.79829,\,m_\pi=0.56326\pm0.01876$ for chi squared.

(d) A function of the form $y = \sqrt{a + bx^3}$ was fitted. Only $m_{pcac} > 0$ is considered. $a = 0.28716 \pm 0.0094$, $b = 8.27208 \pm 0.33396$, $m_{\pi} = 0.53588 \pm 0.00877$ for variance and $a = 0.30109 \pm 0.0128$, $b = 8.04211 \pm 0.40997$, $m_{\pi} = 0.54871 \pm 0.01166$ for chi squared.

(e) m_{π} vs. m_{pcac} . Var fit constants. Left side $m_{\pi}{=}0.49366{\pm}0.0186$. Right side $m_{\pi}{=}0.42375{\pm}0.01578$. Chi fit constants. Left side $m_{\pi}{=}0.5394{\pm}0.02252$. Right side $m_{\pi}{=}0.43565{\pm}0.01682$.

Figure 2: Number of configurations vs. topological charge on a 6×64 lattice.

(a) Fermion mass using PCAC relation, $\kappa_c = 0.26378 \pm 0.00323$

(b) Pion mass as a function of κ

(c) m_π^2 vs. m_{pcac} . A function of the form $a+bx^2$ was fitted, the coefficients are $a=0.22561\pm0.00592,\,b=4.1984\pm0.25992,\,m_\pi=0.47498\pm0.00624$ for variance and $a=0.23081\pm0.00603,\,b=4.11223\pm0.22776,\,m_\pi=0.48042\pm0.00628$ for chi squared.

(d) A function of the form $y=\sqrt{a+bx^3}$ was fitted. Only $m_{pcac}>0$ is considered. $a=0.21237\pm0.0048,\,b=9.0339\pm0.36531,$ $m_\pi=0.46083\pm0.00521$ for variance and $a=0.21938\pm0.00726,$ $b=8.73561\pm0.46984,\,m_\pi=0.46838\pm0.00775$ for chi squared.

Figure 3: Number of configurations vs. topological charge on a 7×64 lattice.

(a) Fermion mass using PCAC relation, $\kappa_c = 0.26316 \pm 0.00263$

(b) Pion mass as a function of κ

(c) m_π^2 vs. m_{pcac} . A function of the form $a+bx^2$ was fitted, the coefficients are $a=0.16869\pm0.00315,\,b=4.91552\pm0.1548,\,m_\pi=0.41072\pm0.00383$ for variance and $a=0.17081\pm0.00449,\,b=4.96313\pm0.20058,\,m_\pi=0.41329\pm0.00543$ for chi squared.

(d) A function of the form $y = \sqrt{a + bx^3}$ was fitted. Only $m_{pcac} > 0$ is considered. $a = 0.16342 \pm 0.00256$, $b = 10.15484 \pm 0.23169$, $m_{\pi} = 0.40426 \pm 0.00317$ for variance and $a = 0.16548 \pm 0.00512$, $b = 10.25655 \pm 0.41141$, $m_{\pi} = 0.40679 \pm 0.00629$ for chi squared.

(e) m_{π} vs. m_{pcac} . Var fit constants. Left side $m_{\pi} = 0.32734 \pm 0.01422$. Right side $m_{\pi} = 0.32476 \pm 0.00903$. Chi fit constants. Left side $m_{\pi} = 0.32631 \pm 0.01496$. Right side $m_{\pi} = 0.32495 \pm 0.01099$.

Figure 4: Number of configurations vs. topological charge on a 8×64 lattice.

(a) Fermion mass using PCAC relation, $\kappa_c = 0.26343 \pm 0.00153$

(b) Pion mass as a function of κ

(c) m_{π}^2 vs. m_{pcac} . A function of the form $a + bx^2$ was fitted, the coefficients are $a = 0.13652 \pm 0.00356$, $b = 5.29252 \pm 0.19094$, $m_{\pi} = 0.36948 \pm 0.00482$ for variance and $a = 0.13866 \pm 0.00427$, b =5.23423 \pm 0.19744, m_{π} =0.37237 \pm 0.00574 for chi squared.

(d) A function of the form $y = \sqrt{a + bx^3}$ was fitted. Only $m_{pcac} > 0$ is considered. $a = 0.13667 \pm 0.00228$, $b = 10.15266 \pm 0.13843$, $m_{\pi} = 0.36969 \pm 0.00309$ for variance and $a = 0.13997 \pm 0.00301$, b =10.04565 \pm 0.15739, m_{π} =0.37412 \pm 0.00402 for chi squared.

(e) m_{π} vs. m_{pcac}

(g) Autocorrelation of the topological charge

Figure 5: Number of configurations vs. topological charge on a 9×64 lattice.

(b) Pion mass as a function of κ

(c) m_{π}^2 vs. m_{pcac} . A function of the form $a+bx^2$ was fitted, the coefficients are $a=0.10923\pm0.00272,\,b=5.79338\pm0.1752,\,m_{\pi}=0.3305\pm0.00412$ for variance and $a=0.11293\pm0.00235,\,b=5.66633\pm0.14032,\,m_{\pi}=0.33606\pm0.0035$ for chi squared.

(d) A function of the form $y = \sqrt{a + bx^3}$ was fitted. Only $m_{pcac} > 0$ is considered. $a = 0.1067 \pm 0.00218$, $b = 11.65238 \pm 0.26154$, $m_{\pi} = 0.32665 \pm 0.00334$ for variance and $a = 0.11045 \pm 0.00145$, $b = 11.41887 \pm 0.15804$, $m_{\pi} = 0.33234 \pm 0.00218$ for chi squared.

(e) m_{π} vs. m_{pcac} . Var fit constants. Left side $m_{\pi} = 0.24139 \pm 0.01272$. Right side $m_{\pi} = 0.24982 \pm 0.00837$. Chi fit constants. Left side $m_{\pi} = 0.24181 \pm 0.01281$. Right side $m_{\pi} = 0.25364 \pm 0.00839$.

Figure 6: Number of configurations vs. topological charge on a 10×64 lattice.

(a) Fermion mass using PCAC relation, $\kappa_c = 0.26327 \pm 0.00189$

(b) Pion mass as a function of κ

(c) m_{π}^2 vs. m_{pcac} . A function of the form $a+bx^2$ was fitted, the coefficients are $a=0.09215\pm0.00255,\,b=5.97476\pm0.16241,\,m_{\pi}=0.30356\pm0.0042$ for variance and $a=0.09236\pm0.00327,\,b=6.02194\pm0.18321,\,m_{\pi}=0.3039\pm0.00537$ for chi squared.

(d) A function of the form $y=\sqrt{a+bx^3}$ was fitted. Only $m_{pcac}>0$ is considered. $a=0.09598\pm0.00272,\,b=11.0958\pm0.22224,$ $m_{\pi}=0.3098\pm0.00439$ for variance and $a=0.10028\pm0.0034,$ $b=10.95341\pm0.251,\,m_{\pi}=0.31667\pm0.00538$ for chi squared.

Figure 7: Number of configurations vs. topological charge on a 11×64 lattice.

(b) Pion mass as a function of κ

(c) m_π^2 vs. m_{pcac} . A function of the form $a+bx^2$ was fitted, the coefficients are $a=0.07922\pm0.00249,\,b=6.2819\pm0.16946,\,m_\pi=0.28146\pm0.00443$ for variance and $a=0.08344\pm0.00217,\,b=6.09893\pm0.13452,\,m_\pi=0.28886\pm0.00375$ for chi squared.

(d) A function of the form $y = \sqrt{a + bx^3}$ was fitted. Only $m_{pcac} > 0$ is considered. $a = 0.07753 \pm 0.003$, $b = 12.57244 \pm 0.36746$, $m_{\pi} = 0.27844 \pm 0.00539$ for variance and $a = 0.08164 \pm 0.00237$, $b = 12.24683 \pm 0.26713$, $m_{\pi} = 0.28572 \pm 0.00414$ for chi squared.

(e) m_{π} vs. m_{pcac} . Var fit constants. Left side $m_{\pi} = 0.19691 \pm 0.00741$. Right side $m_{\pi} = 0.19678 \pm 0.00398$. Chi fit constants. Left side $m_{\pi} = 0.19743 \pm 0.00917$. Right side $m_{\pi} = 0.19857 \pm 0.00417$.

Figure 8: Number of configurations vs. topological charge on a 12×64 lattice.

Figure 9: $\langle \overline{\psi}\psi \rangle$ vs. κ

Two plots of the Smilga prediction for all N_{space} are shown.

Figure 10: m_{π} vs. $(m_{pcac}^2 g)^{1/3}$ for Chi squared

Figure 11: m_{π} vs. $(m_{pcac}^2 g)^{1/3}$ for Variance

Figure 12: A function of the form $m_{\pi} = a/N_{space}$ was fitted. For variance the fit parameter is $a = 3.36547 \pm 0.01812$, while for Chi squared $a = 3.31621 \pm 0.01044$. To perform the fit only the points where $N_{space} > 4$ were considered, the other points in the plot correspond to high statistics results, however they are shown together with this low statistics results.

Figure 13: Kappa critical as a function of the volume size.

High statistics results

The following results were obtained through several simulations on different lattices: 2×64 , 3×64 , 4×64 and 10×64 with the parameters:

Ntime	64
Ntherm	1000
Nmeasure	10000
Trajectory Steps	10
Nsteps	100
β	4

Table 2: All the simulations were performed with this parameters.

(a) Fermion mass using PCAC relation, $\kappa_c = 0.28085 \pm 0.05262$

(b) Pion mass as a function of κ

(c) m_{π}^2 vs. m_{pcac} . A function of the form $a+bx^2$ was fitted, the coefficients are $a = 3.10771 \pm 0.01387$, $b = 3.52539 \pm 0.57509$, $m_{\pi} = 1.76287 \pm 0.00393$ for variance and $a = 3.10897 \pm 0.01499$, $b = 3.37729 \pm 0.54389, m_{\pi} = 1.76323 \pm 0.00425$ for chi squared.

(d) Smilga prediction. Only $m_{pcac} > 0$ is considered.

(e) m_{π} vs. m_{pcac}

Figure 14: Number of configurations vs. topological charge on a 2×64 lattice.

(b) Pion mass as a function of κ

(c) m_π^2 vs. m_{pcac} . A function of the form $a+bx^2$ was fitted, the coefficients are $a=1.66304\pm0.02205,\ b=-0.17669\pm0.74098,$ $m_\pi=1.28959\pm0.00855$ for variance and $a=1.64521\pm0.02288,$ $b=-0.46975\pm2.04727,\ m_\pi=1.28266\pm0.00892$ for chi squared

(d) Smilga prediction. Only $m_{pcac} > 0$ is considered.

(e) m_{π} vs. m_{pcac}

Figure 15: Number of configurations vs. topological charge on a 3×64 lattice.

(b) Pion mass as a function of κ

fitted, the coefficients are $a=0.71803\pm0.01385,\,b=2.55405\pm$ $0.17842, m_{\pi} = 0.84736 \pm 0.00817$ for variance and $a = 0.73566 \pm 0.00817$ $0.01899, b = 2.44527 \pm 0.20696, m_{\pi} = 0.85771 \pm 0.01107$ for chi squared

(c) m_{π}^2 vs. m_{pcac} . m_{π}^2 vs. m_{pcac} . A function of the form $a + bx^2$ was (d) A function of the form $y = \sqrt{a + bx^3}$ was fitted. Only $m_{pcac} > 0$ is considered. $a = 0.71823 \pm 0.01589$, $b = 5.13387 \pm 0.41096$, $m_{\pi} = 0.84748 \pm 0.00937$ for variance and $a = 0.73564 \pm 0.0207$, b =4.92092 \pm 0.4536, m_{π} =0.85769 \pm 0.01207 for chi squared.

(g) Autocorrelation of the topological charge

Figure 16: Number of configurations vs. topological charge on a 4×64 lattice.

(a) Fermion mass using PCAC relation, $\kappa_c = 0.26556 \pm 0.00109$

(b) Pion mass as a function of κ

(c) m_π^2 vs. m_{pcac} . A function of the form $a+bx^2$ was fitted, the coefficients are $a=0.42259\pm0.0063,\,b=3.42492\pm0.13595,\,m_\pi=0.65007\pm0.00484$ for variance and $a=0.44553\pm0.01245,\,b=3.08719\pm0.21368,\,m_\pi=0.66748\pm0.00933$ for chi squared

(d) A function of the form $y=\sqrt{a+bx^3}$ was fitted. Only $m_{pcac}>0$ is considered. $a=0.42334\pm0.00646,\,b=6.82472\pm0.27928,$ $m_\pi=0.65064\pm0.00497$ for variance and $a=0.44881\pm0.01253,$ $b=6.06369\pm0.42939,\,m_\pi=0.66993\pm0.00935$ for chi squared.

(e) m_{π} vs. m_{pcac}

Figure 17: Number of configurations vs. topological charge on a 5×64 lattice.

(a) Fermion mass using PCAC relation, $\kappa_c = 0.26459 \pm 0.00106$

(b) Pion mass as a function of κ

(c) m_π^2 vs. m_{pcac} . A function of the form $a+bx^2$ was fitted, the coefficients are $a=0.28125\pm0.00295,\,b=4.1968\pm0.06567,\,m_\pi=0.53033\pm0.00278$ for variance and $a=0.27897\pm0.00335,\,b=4.22684\pm0.06326,\,m_\pi=0.52818\pm0.00317$ for chi squared

(d) A function of the form $y=\sqrt{a+bx^3}$ was fitted. Only $m_{pcac}>0$ is considered. $a=0.28157\pm0.00313,\,b=8.3831\pm0.13964,$ $m_\pi=0.53063\pm0.00295$ for variance and $a=0.27934\pm0.00321,$ $b=8.44264\pm0.12115,\,m_\pi=0.52852\pm0.00303$ for chi squared.

(e) m_{π} vs. m_{pcac}

Figure 18: Number of configurations vs. topological charge on a 6×64 lattice.

(a) Fermion mass using PCAC relation, $\kappa_c = 0.26373 \pm 0.00137$

(b) Pion mass as a function of κ

(c) m_{π}^2 vs. m_{pcac} . A function of the form $a + bx^2$ was fitted, the coefficients are $a = 0.10697 \pm 0.00127$, $b = 5.61713 \pm 0.05967$, $m_{\pi} = 0.32706 \pm 0.00194$ for variance and $a = 0.10754 \pm 0.0013$, $b = 5.59865 \pm 0.05522, m_{\pi} = 0.32793 \pm 0.00198$ for chi squared.

(d) A function of the form $y = \sqrt{a + bx^3}$ was fitted. Only $m_{pcac} > 0$ is considered. $a = 0.10684 \pm 0.00134$, $b = 11.23804 \pm 0.12283$, $m_{\pi} = 0.32686 \pm 0.00205$ for variance and $a = 0.10766 \pm 0.00137$, b =11.18809 \pm 0.11521, m_{π} =0.32812 \pm 0.00209 for chi squared.

(e) m_{π} vs. m_{pcac}

Figure 19: Number of configurations vs. topological charge on a 10×64 lattice.