Modale logica en natuurlijke deductie

Maria Aloni
ILLC-University of Amsterdam
M.D.Aloni@uva.nl

Logica en de Linguistic Turn 2013

9 December 2013

Plan voor vandaag

- 1. Modale logica: afronding
- 2. Natuurlijke Deductie

Huiswerk:

- Proeftentamen
- Wiki: stemmen voor het beste lemma via email naar mij deadline vanavond 22 uur (graag "wiki" noemen in mail header)

Definitie van de taal van modale logica

Zij PROP een verzameling propositieletters.

- 1. Een propositieletter $p \in PROP$ is een formule van ML;
- 2. als ϕ en ψ formules van ML zijn, dan zijn $\neg \phi$, $\neg \psi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$ dat ook;
- 3. als ϕ een formule van ML is dan zijn $\Diamond \phi$ en $\Box \phi$ dat ook;
- niets is een formule van ML als het niet gegenereerd is door de bovenstaande regels.

Kripke modellen, modellen en frames

- 1. Een Kripke-model K is een viertal $\langle W, R, V, w \rangle$ waarbij:
 - 1.1 W is een verzameling objecten [de mogelijke werelden]
 - 1.2 R is een binaire relatie over W [de modale basis] geeft aan welke wereld v een mogelijkheid is in w
 - 1.3 V is een valuatiefunctie zodanig dat voor elke wereld w, V_w de waarde bepaalt van alle propositieletters in w
 - $V_w(p) = 1$ lezen we dan als 'p is waar in w'
 - $V_w(p) = 0$ lezen we dan als 'p is onwaar in w'

[wereld afhankelijk valuatie]

- 1.4 w is een van de elementen van W [de actuele wereld]
- 2. Model \mapsto M = $\langle W, R, V \rangle$
- 3. Frame \mapsto F= $\langle W, R \rangle$

Waarheid en geldigheid

1. Waarheid in een Kripke model:

- 1.1 $\langle W, R, V, w \rangle \models p \text{ desda } V_w(p) = 1;$
- 1.2 $\langle W, R, V, w \rangle \models \neg \phi \text{ desda } \langle W, R, V, w \rangle \not\models \phi$;
- 1.3 ...
- 1.4 $\langle W, R, V, w \rangle \models \Diamond \phi$ desda er is een $v \in W$ zodanig dat Rwv en $\langle W, R, V, v \rangle \models \phi$;
- 1.5 $\langle W, R, V, w \rangle \models \Box \phi$ desda voor elke $v \in W$ zodanig dat Rwv geldt $\langle W, R, V, v \rangle \models \phi$.

2. Geldigheid in een model

Een formule ϕ is geldig in een model $\mathcal{M} = \langle W, R, V \rangle$, $\mathcal{M} \models \phi$, desda $\langle W, R, V, w \rangle \models \phi$ voor alle werelden $w \in W$.

3. Geldigheid op een frame

Een formule ϕ is geldig op een frame $\mathcal{F} = \langle W, R \rangle$, $\mathcal{F} \models \phi$, desda voor alle valuaties V geldt dat $\mathcal{M} = \langle W, R, V \rangle \models \phi$.

Vandaag

Definitie Een formule ϕ *karakteriseert* een verzameling G van frames als voor alle frames $\mathcal F$ geldt

$$\mathcal{F} \models \phi \Leftrightarrow \mathcal{F} \in \mathcal{G}$$

i.e., ϕ is geldig alleen op frames F die element zijn van G.

Stellingen

- (1) $\Box p \rightarrow p$ karakteriseert reflexieve frames
 - a. $\Box p \rightarrow p$ is geldig op alle reflexieve frames b. $\Box p \rightarrow p$ is ongeldig op alle niet-reflexieve frames
- (2) $\Diamond \Diamond p \rightarrow \Diamond p$ karakteriseert transitieve frames
 - a. $\Diamond \Diamond p \rightarrow \Diamond p$ is geldig op alle transitieve frames
 - b. $\Diamond\Diamond p \to \Diamond p$ is ongeldig op alle niet-transitieve frames
- (3) $p \to \Box \Diamond p$ karakteriseert symmetrische frames
 - a. $p \to \Box \Diamond p$ is geldig op alle symmetrische frames
 - b. $p \to \Box \Diamond p$ is ongeldig op alle niet-symmetrische frames

Voor $P = \{p, q\}$, beschouw het Kripke model $K = \langle W, R, V, w \rangle$

$$V = \{w, w_1, w_2, w_3\}$$

$$V_w(p) = 1, V_{w_1}(p) = 1, V_{w_2}(p) = 0, V_{w_3}(p) = 0, V_w(q) = 1, V_{w_1}(q) = 0, V_{w_2}(q) = 1, V_{w_3}(q) = 0.$$

Teken dit model, en ga nu na of de volgende formules waar zijn in K. Licht dan uw antwoord kort toe:

- (4) a. $\Box p \lor \Diamond q$
 - b. $\Box \Diamond p \land \Diamond \Box q$
 - c. $\Diamond p \rightarrow \Box q$
 - d. $\Diamond(p \leftrightarrow \Box p)$

 \Leftarrow

Voor $P = \{p, q\}$, beschouw het model M = (W, R, V) met

- $V = \{w_1, w_2, w_3\}$
- $\qquad \qquad R = \{\langle w_1, w_1 \rangle, \langle w_1, w_2 \rangle, \langle w_2, w_1 \rangle, \langle w_1, w_3 \rangle\}$
- $V_{w_1}(p) = 1, V_{w_2}(p) = 0, V_{w_3}(p) = 0,$ $V_{w_1}(q) = 0, V_{w_2}(q) = 1, V_{w_3}(q) = 0.$

Laat zien dat de volgende formules niet geldig zijn in \mathcal{M} :

(5) a.
$$\neg p \rightarrow \Box q$$
 b. $p \lor \Diamond \Box q$

Onthoud: Om te laten zien dat een formule ϕ *niet geldig is in een model* $\mathcal{M} = \langle W, R, V \rangle$ moet een wereld $w \in W$ worden gegeven waarvoor de formule onwaar is, *i.e.*, $\langle W, R, V, w \rangle \not\models \phi$.

Beschouw de frame F = (W, R) met

- $V = \{w_1, w_2, w_3\}$

Laat zien dat de volgende formules niet geldig zijn op \mathcal{F} :

(6) a.
$$\Diamond \Diamond p \rightarrow \Diamond p$$

b. $p \rightarrow \Box \Diamond p$

Onthoud: Om te laten zien dat een formule ϕ *niet geldig is op een frame* $\mathcal{F} = \langle W, R \rangle$ moet een valuatie V en een wereld $w \in W$ worden gegeven waarvoor de formule onwaar is, *i.e.*,

$$\langle W, R, V, w \rangle \not\models \phi.$$

Beschouw het volgende frame $\mathcal{F} = \langle W, R \rangle$:

$$W = \{w_1, w_2\}$$

$$R = \{\langle w_1, w_1 \rangle, \langle w_1, w_2 \rangle, \langle w_2, w_1 \rangle\}$$

Laat zien of de volgende formules geldig zijn op \mathcal{F} :

- (i) $p \rightarrow \Box \Diamond p$
- (ii) $p \rightarrow \Diamond p$

Natuurlijke Deductie

$$1. \vdash (p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$$

- 2. $p \rightarrow \neg q \vdash q \rightarrow \neg p$
- 3. $\vdash ((p \rightarrow q) \rightarrow p) \rightarrow p$ (hint: try to derive $\neg \neg p$ from $((p \rightarrow q) \rightarrow p)$
- 4. Extra opgave 7, 8, 9, 10