

ENTERPRISE DATA CLOUD

CLOUDERA Now

CLOUDERA

LOW CODE REAL TIME ANALYTICS

#QuarantineMeetup

AGENDA

- Introductions
- Cloudera Data Flow
- Demo Environment
- Predictive Maintenance
- Time to Play
- Wrap Up

INTRO DUCTIONS

WHOWEARE

WHO WE ARE

Eynar Espinoza

Solutions Engineering Manager

Alex Campos

Solutions Engineer

@campossalex

CLOUDERA DATA FLOW

STREAMING DATA BRINGS GREAT OPPORTUNITIES

CHALLENGES IN FAST DATA

Data Ingestion: High-volume streaming sources, multiple message formats, diverse protocols and multi-vendor devices creates data ingestion challenges

Real-time Insights: Analyzing continuous and rapid inflow (velocity) of streaming data at high volumes creates major challenges for gaining real-time insights

Visibility: Lack visibility of end-to-end streaming data flows, inability to troubleshoot bottlenecks, consumption patterns etc.

CLOUDERA DATA-IN-MOTION PLATFORM

A DATA-IN-MOTION REFERENCE ARCHITECTURE

FOUNDATION OF MODERN DATA MANAGEMENT

CDP A Platform for Multiple Workloads

Data, Metadata, Security, Workload Management, Governance

PREDICTIVE MAINTENANCE

Business Drivers

From Edge to Al

IOT ARCHITECTURE

From Edge to Al

Edge Environment

DEMO ENVRON MENT

DEMO ENVIRONMENT

DEMO CLUSTER

CONFIGURATIONS

Pre-configured setup

TIME PLAY

STEP

1

IOT ARCHITECTURE registry Edge Flow SCHEMA REGISTRY From Edge to Al Management Manager **((**□)) ထို kafka HUE IMPALA **((**□)) CDSW

Data in Motion

Edge Environment

Cloudera Data Platform Environment

Data Storage

Query Engine

User Interface

STEP 1 – OVERVIEW

- Design a flow in Edge Flow Manager to forward data from MQTT Broker to NiFi.
- Version and publish flow to MiNiFi agent.
- Review data queue in NiFi to make sure data is incoming.

STEP 1 - COMPONENTS

Apache NiFi is an open source software for automating and managing the flow of data between systems. It is a powerful and reliable system to process and distribute data. It provides a web-based User Interface for creating, monitoring, & controlling data flows.

Some of the features includes **data provenance**, **extensible**, **secure** and others.

STEP 1 – COMPONENTS

MiNiFi is a complementary data collection approach that supplements the core tenets of <u>NiFi</u> in dataflow management, focusing on the collection of data at the source of its creation, mainly in the edge

Agent management hub that supports a graphical flow-based programming model to develop, deploy, and monitor edge flows on thousands of MiNiFi agents

Edge Flow Manager

STEP

IOT ARCHITECTURE

From Edge to Al

Edge Environment

STEP 2 - OVERVIEW

Define a schema in Schema Registry.

STEP 2 - COMPONENTS

Provides a central repository to store, manage and version data schemas between components, allowing evolution and reusability

STEP

3

IOT ARCHITECTURE

From Edge to Al

Edge Flow

Manager

SCHEMA REGISTRY

Cloudera Data Platform Environment

Management

STEP 3 – OVERVIEW

- Version a NiFi Process Group, using NiFi Registry
- Design a flow in NiFi to publish the data events to Kafka, including related schema

STEP 3 - COMPONENTS

Provides a central location for storage and management of shared resources across one or more instances of NiFi and/or MiNiFi

A streaming message platform. It is designed to be high performance, highly available, and redundant, ideal for real-time and streaming applications

STEP

4

STEP 4 – OVERVIEW

- Check in SMM that data is flowing to Kafka.
- Review *iot* topic configuration

STEP 4 – COMPONENTS

As a monitoring and management tool that provides end-to-end visibility in an enterprise Apache Kafka environments. With SMM, it is possible to gain clear insights about Kafka clusters, like brokers, topics, producers and consumers.

STEP

5

IOT ARCHITECTURE

From Edge to Al

Edge Environment

Cloudera Data Platform Environment

STEP 5 - OVERVIEW

 Update MiNiFi flow to filter noisy/erroneous data, pushing additional logic to the edge

STEP 5 - COMPONENTS

MiNiFi is a complementary data collection approach that supplements the core tenets of <u>NiFi</u> in dataflow management, focusing on the collection of data at the source of its creation, mainly in the edge

Agent management hub that supports a graphical flow-based programming model to develop, deploy, and monitor edge flows on thousands of MiNiFi agents

Edge Flow Manager

STEP

6

IOT ARCHITECTURE registry Edge Flow SCHEMA REGISTRY From Edge to Al Management Manager **((**□)) ထို kafka HUE IMPALA **((□))** CDSW Data in Motion Query Engine User Interface Data Storage

Cloudera Data Platform Environment

Edge Environment

44

STEP 6 – OVERVIEW

- From NiFi:
 - Consume Kafka events.
 - Call a Machine Learning model exposed in CDSW to predict device health (if the device is likely to break or not).
 - Store each event in a Kudu table

STEP 6 - COMPONENTS

Self-service enterprise data science platform that lets data scientists manage their own analytics pipelines, thus accelerating machine learning projects from exploration to production

Kudu is storage for fast analytics on fast data—providing a combination of fast inserts and updates alongside efficient columnar scans to enable multiple real-time analytic workloads across a single storage layer.

STEP

IOT ARCHITECTURE registry Edge Flow SCHEMA REGISTRY From Edge to Al Management Manager **((**□)) ထို kafka HUE IMPALA **((□))** CDSW Data in Motion Query Engine Data Storage User Interface

Cloudera Data Platform Environment

Edge Environment

STEP 7 – OVERVIEW

From Hue, query the data stored in Kudu running an Impala query (SQL)

STEP 7 – COMPONENTS

Hue is the open source analytics workbench designed for fast data discovery, intelligent query assistance, and seamless collaboration. Bridge the gap between IT and the business for trusted self-service analytics.

Impala provides high-performance, low-latency SQL queries on data storage layer. The fast response for queries enables interactive exploration and fine-tuning of analytic queries.

STEP

8

IOT ARCHITECTURE

From Edge to Al

Edge Environment

STEP 8 – OVERVIEW

- In NiFi:
 - Push scored event data to a new Kafka topic.
- In SMM:
 - Review new Kafka topic
- In Flink:
 - Create a stream data table, using Kafka topic as source
 - Run analytics queries to filter and aggregate data

STEP 8 – COMPONENTS

Flink is a distributed processing engine and a scalable data analytics framework that can deliver data analytics in real-time.

Flink is designed to run in all common cluster environments, perform computations at in-memory speed and at any scale. Furthermore, Flink provides communication, fault tolerance, and data distribution for distributed computations over data streams.

MRAP UP

A DATA-IN-MOTION REFERENCE ARCHITECTURE

IOT ARCHITECTURE

From Edge to Al

Edge Environment

ENTERPRISE DATA CLOUD

CLOUDERA Now

THANK YOU