### Statisztika 1 előadás

Baran Sándor

A tananyag elkészítését az EFOP-3.4.3-16-2016-00021 számú projekt támogatta. A projekt az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósult meg.

### Irodalom

- Hunyadi László., Vita László: Statisztika I. Akadémiai Kiadó, Budapest, 2018. Online verzió (2019): https://mersz.hu/hunyadi-vita-statisztika-i
- Hunyadi László, Vita László: Statisztika II. Akadémiai Kiadó, Budapest, 2018. Online verzió (2019): https://mersz.hu/hunyadi-vita-statisztika-ii
- Keresztély Tibor, Sugár András, Szarvas Beatrix: Statisztika közgazdászoknak. Példatár és feladatgyűjtemény. Nemzeti Tankönyvkiadó, Budapest, 2005.
- Fazekas István: Valószínűségszámítás. Egyetemi Kiadó, Debrecen, 2009.
- Denkinger Géza: Valószínűségszámítás gyakorlatok. Nemzeti Tankönyvkiadó, Budapest, 2008

Baran Sándor Statisztika 1 előadás 2 / 189

### **Tartalom**

- Alapfogalmak
- Sokaság egy ismérv szerinti leírása
- 3 Sokaság több ismérv szerinti leírása
- 4 Összehasonlítás standardizálással és indexszámítással
- Mintavétel
- 6 Pontbecslések és tulajdonságaik
- Nagy számok törvényei
- 8 Intervallumbecslések
- 9 Hipotézisvizsgálat

3 / 189

### Mi a statisztika?

A statisztika olyan gyakorlati tevékenység, illetve tudományos módszertan, amely arra szolgál, hogy a valóság tényeinek nagy tömegét tömören, számszerűen jellemezze.

- Gyakorlati tevékenység: alapadatokat gyűjt, feldolgoz, elemez, majd közzéteszi ezek eredményét.
- Tudományos módszertan: az elemzéshez szükséges megfontolások, eljárások megadása.

A statisztika mindig a tények valamilyen nagy – esetleg végtelen nagy – tömegéről igyekszik tömör, számszerű képet adni.

#### Példa

Az alkalmazásban állók létszáma a nemzetgazdaságban 2022. május: 3232.4 ezer fő. Pénzügyi, biztosítási tevékenység: 63.8 ezer fő.

A teljes munkaidőben alkalmazásban állók havi bruttó átlakeresete a nemzetgazdaságban 2022. május: 495 863 Ft.

Pénzügyi, biztosítási tevékenység: 848 688 Ft. Forrás: KSH

A valóság jellemezni kívánt tényei bizonyos egységekhez köthetőek.

#### Példa

- Az alkalmazásban állók.
- Adott időszakban Magyarországra érkező külföldiek.

A vizsgálat tárgyának egyedeiről szerzett, megfelelő módon rögzített különféle információkat alapadatoknak, más néven elemi adatoknak nevezzük. Az alapadatok nem feltétlenül számszerűek. A vizsgált egységek bizonyos körét összességében jellemző számszerű információkat általánosságban adatoknak, bizonyos speciális esetekben pedig mutatószámoknak hívjuk. A mutatószám elnevezés többnyire a szabványosított tartalmú, egy-egy jelenség jellemzésére visszatérően használt számszerű információk megjelölésére szolgál.

A továbbiakban adatok és mutatószámok helyett csak adatokat fogunk emlegetni.

### Példák

### **Alapadatok**

- A Magyarországra érkező külföldiek nemzetisége.
- A Magyarországra érkező külföldiek életkora.
- A Magyarországra érkező külföldiek tartózkodási ideje.

#### **Adatok**

- Egy adott időszak alatt Magyarországra érkező külföldiek száma (ezer fő)
   2018: 57 667; 2019: 61 397; 2020: 31 641; 2021: 36 688.
- Egy adott időszak alatt Magyarországra érkező külföldiek összes pénzköltése (millió Ft).
  2018: 2 066 780; 2019: 2 310 110; 2020: 1 054 342; 2021: 1 345 559.

#### Mutatók

- Egy idelátogató külföldi napi átlagos pénzköltése (ezer Ft).
   2018: 15.9; 2019: 16.7; 2020: 14.9; 2021: 15.7.
- Az vendégéjszakák átlagos száma (éjszaka). 2018: 2.3; 2019: 2.3; 2020: 2.2; 2021: 2.3.
   Fontosak a mértékegységek!

Baran Sándor Statisztika 1 előadás 7 / 189

## Sokaságok

A vizsgálat tárgyát képező egységek összességét, halmazát statisztikai sokaságnak, röviden sokaságnak (populációnak) nevezzük. A sokaság egységei különféle tulajdonságaik megadásával jellemezhetők. E tulajdonságok egy része a sokaság minden egységére nézve közös, más része azonban nem.

### Egy sokaság megadható:

- egységeinek felsorolásával;
- eloszlásával.

### Sokaságok típusai, I.:

- Diszkrét, például:
  - ▶ a magyar népesség 2022. január 1-én (9 689 010 fő);
  - 2021-ben Magyarországra érkező külföldiek száma (36 688 ezer fő).
- Folytonos, önkényesen elkülöníthető egységek, például:
  - ▶ 2021 teljes búzatermése (5 316 074 tonna);
  - ▶ a belföldön közúton szállított áruk mennyisége 2021-ben (184 218 tonna).
- Fiktív, valamilyen eloszlással megadott, például:
  - 2022 lehetséges búzatermés eredményei.

## Sokaságok

### Sokaságok típusai, II.:

- Álló, azaz valamely időpontra vonatkozik (stock), például:
  - a magyar népesség 2022. január 1-én;
  - ▶ az IK beiratkozott hallgatói 2022. szeptember 5-én.
- Mozgó, azaz valamely időtartamra értendő (flow), például:
  - 2021 teljes búzatermése;
  - a belföldön közúton szállított áruk mennyisége 2021-ben;
  - az IK hallgatói által a 2021/22 tanév 2. félévének szorgalmi időszakában elfogyasztott sör mennyisége.

### Sokaságok típusai, III.:

- Véges, például:
  - a magyar népesség 2022. január 1-én.
- Végtelen, például:
  - 2022 lehetséges búzatermés eredményei.

## Sokaságok

Aggergált sokaság: különféle dolgokból elfogyasztott/felhasznált termékek vagy szolgáltatások összértéke. Például:

- Magyarország teljes exportja 2021-ben (42 781.5 milliárd forint);
- az IK hallgatói által a 2021/22 tanév 2. félévének szorgalmi időszakában elfogyasztott alkoholtartalmú italok összértéke.

Az aggregált sokaság nagysága (aggregátum):

$$A = \sum_{i=1}^n q_i p_i = \sum_{i=1}^n \nu_i$$

qi: az i-edik fajta egységeinek mennyisége valamilyen alkalmas mértékegységben;

p<sub>i</sub>: az i-edik fajta egység egységára;

 $\nu_i$ : az *i*-edik fajta egységek összértéke;

n: az egységek száma.

### Ismérvek

Az ismérvek olyan vizsgálati szempontok, melyek alapján a sokaság részekre bontható. A sokaság egységeinek valamely adott szempont szerint lehetséges tulajdonságait ismérvváltozatoknak nevezzük.

Ha számszerűek az ismérvváltozatok, akkor ezeket ismérvértékeknek, magát az ismévet pedig változónak nevezzük.

### Az ismérvek fajtái

- területi, például lakhely, születési hely;
- időbeli, például születési idő, munkába állás időpontja;
- minőségi, például nem, foglalkozás;
- mennyiségi, például életkor, testmagasság, testtömeg, tanulmányi átlag.

Baran Sándor Statisztika 1 előadás 11 / 189

### Mérési skálák

Ismérvváltozatok átkódolhatóak számokká. Csak olyan műveletek megengedettek, amik az eredeti változatokkal is.

#### Mérési szintek

- Nominális: csak az vizsgálható, két érték egyenlő-e, például név, lakhely, foglalkozás.
   Nincs mértékegysége.
- Ordinális: csak az értékek sorendje számít, távolsága nem, például vizsgajegyek, végzettség. Nincs mértékegysége.
- Különbségi: az értékek különbsége is információt hordoz, de az arányuk nem, például hőmérséklet. A skála kezdőpontja önkényes (Celsius, Kelvin, Fahrenheit fok), van mértékegysége.
- Arány: kezdőpont egyértelműen adott, az arány is értelmezhető, például havi jövedelem, testmagasság. Van mértékegysége.

| Sokaság               | Egy konkrét egység | Ismérv                 | Ismérvváltozat     | Ismérvfajta  | Mérési skála |
|-----------------------|--------------------|------------------------|--------------------|--------------|--------------|
| A Mordorba            |                    | állampolgárság         | megyelakó          | minőségi     | nominális    |
| irányuló ide-         | Zsákos             | tartózkodási idő (nap) | 7                  | mennyiségi   | arány        |
| genforgalom           |                    | életkor (év)           | 50                 | mennyiségi   | arány        |
| a harmadkor           | Frodó              | útitársak száma        | 2                  | mennyiségi   | arány        |
| 3018. évében          |                    | igénybe vett szállás   | szabad ég alatt    | minőségi     | nominális    |
|                       |                    | faj                    | ember              | minőségi     | nominális    |
|                       |                    | nem                    | férfi              | minőségi     | nominális    |
| A Galaktikus          | Luke               |                        |                    | (alternatív) |              |
| Birodalom             |                    | születési hely         | Polis Massa        | területi     | nominális    |
| népessége             | Skywalker          |                        | bolygó             |              |              |
| YU <sup>1</sup> 4-ben |                    | születési idő          | YE <sup>1</sup> 19 | időbeli      | intervallum  |
|                       |                    | anyabolygó             | Tatuin             | területi     | nominális    |
|                       |                    | életkor (év)           | 24                 | mennyiségi   | arány        |
|                       |                    | foglalkozás            | Jedi lovag         | minőségi     | nominális    |

<sup>&</sup>lt;sup>1</sup>YE, illetve YU: a yavini csata (a Halálcsillag megsemmisítése) előtt, illetve után.

Baran Sándor Statisztika 1 előadás 13 / 189

### Hibák

A statisztikai adatok, mutatószámok célszerű megadási módja:

$$A \pm a$$

A: közelítő érték.

*a*: abszolút hibakorlát.

$$A - a \le \text{val\'odi\'ert\'ek} \le A + a$$

Relatív hibakorlát:  $\alpha = a/A$ .

Példa. Magyarország népessége 2022. január 1-én: 9 689 ezer fő.

 $A = 9689, \ a = 0.5, \ \alpha = 0.5/9689 \approx 0.00005 = 0.005\%.$ 

Két közelítő érték összegének vagy különbségének abszolút hibakorlátja a megfelelő *abszolút* hibakorlátok *összege*. Két közelítő érték szorzatának vagy hányadosának *relatív* hibakorlátja nagyjából a megfelelő *relatív* hibakorlátok összege.

## Statisztikai alapműveletek

### I. A sokaság jellemzése valamely erre alkalmas adattal vagy mutatószámmal.

A sokasághoz hozzárendelünk egy annak egészét jellemző adatot, például a nagyságát, átlagát, várható értékét.

### II. Összehasonlítás.

Egy adott jelenség időbeli alakulásáról, területi eltéréseiről, vagy egymáshoz valamilyen módon kapcsolódó jelenségek viszonyáról ad számszerű információt. Fontos, hogy az adatok összehasonlíthatóak legyenek.

Az adatokból képezhetünk különbségeket vagy hányadosokat.

| Az alkalmazásban állók havi bruttó átlagkeresete |        |        |        |        |        |        |        |        |        |  |  |
|--------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|--|
| Év                                               | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   |  |  |
| Kereset (Ft)                                     | 230714 | 237695 | 247924 | 263171 | 297017 | 329943 | 367833 | 403616 | 438814 |  |  |
| Előző év=100%                                    | 103.4  | 103.0  | 104.3  | 106.1  | 112.9  | 111.3  | 111.4  | 109.7  | 108.7  |  |  |

# Több sokaság adatainak összehasonlítása

| A sokaságok           | A se                  | okaságok adatainak                   | A hányados      |
|-----------------------|-----------------------|--------------------------------------|-----------------|
| viszonya egymáshoz    | felsorolására         | hányadosára                          | mértékegysége   |
|                       | h                     | asznált elnevezés                    |                 |
| Időben és/vagy térben | összehasonlító sor    | összehasonlító viszonyszám           | -, illetve %    |
| különböző sokaságok   | (idősor/területi sor) | (dinamikus viszonyszám/              |                 |
|                       |                       | területi összehasonlító viszonyszám) |                 |
| ldőben és/vagy térben | összehasonlító sor    | index(szám)                          | –, illetve %    |
| különböző aggregált   | (idősor/területi sor) | (területi/időbeli)                   |                 |
| sokaságok             |                       |                                      |                 |
| Időben és/vagy térben | _                     | intenzitási viszonyszám              | a két adat mér- |
| azonos, de különböző  |                       |                                      | tékegységének   |
| fajta egységekből     |                       |                                      | hányadosa       |
| álló sokaságok        |                       |                                      |                 |

Hunyadi, Vita (2018, 1.4 táblázat)

| Sor- |                                                          | Mérték- |      |      | Dinamikus   |
|------|----------------------------------------------------------|---------|------|------|-------------|
| szám | Megnevezés                                               | egység  | 2005 | 2006 | viszonyszám |
|      |                                                          |         |      |      | (2005=100)  |
| 1.   | Alkalmazottak évi átlagos száma                          | fő      | 307  | 236  | 76.9        |
| 2.   | Ebből: fizikai foglalkozású                              | fő      | 261  | 208  | 79.7        |
| 3.   | Feldolgozott cukorrépa                                   | 1000 t  | 650  | 475  | 73.1        |
| 4.   | Cukortermelés                                            | 1000 t  | 85   | 70   | 82.4        |
| 5.   | Fizikai foglalkozásúak által teljesített munkaórák száma | 1000 h  | 520  | 360  | 69.2        |

Hunyadi, Vita (2018, 1.5 táblázat)

### Intenzitási viszonyszámok

- Termelékenység 2005:  $\frac{650 \text{ ezer t}}{520 \text{ ezer h}} = 1.25 \text{ t/h}.$
- Egy fizikai dolgozóra eső munkaórák száma 2005, illetve 2006:

$$\frac{520~ezer~h}{261~f\H{6}}=1992.3~h/f\H{6},~illetve~~\frac{360~ezer~h}{208~f\H{6}}=1730.8~h/f\H{6}$$

### Dinamikus viszonyszám

• Egy fizikai dolgozó munkaóráinak változása:  $\frac{1730.8 \text{ h/f6}}{1992.3 \text{ h/f6}} = 0.8687 = 86.87\%$ 

Baran Sándor Statisztika 1 előadás 17 / 189

## Statisztikai alapműveletek

### III. Osztályozás.

Valamely adott sokaság egy vagy több ismérv szerinti tagolása, osztályozása. A csoportok valamilyen szempontból homogénebbek, mint az egész sokaság.

Osztályok: az osztályozás során kapott csoportok.

Csoportképző ismérv(ek): az osztályok elhatárolására szolgáló ismérv(ek).

Példa. Az évfolyam osztályozása a *Mikroökonómia* jegyei alapján.

### Elvárások egy osztályozással szemben:

- legyen teljes;
- legyen átfedésmentes;
- eredményezzen homogén osztályokat.

Nómenklatúra: szabványosított osztályozási rendszer.

Foglalkozások Egységes Osztályozási Rendszere (FEOR'08). 10 főcsoport, 42 csoport, 136 alcsoport, 632 foglalkozás.

# Csoportosító sor

| Osztály  | Egységek száma |
|----------|----------------|
| $C_1$    | $f_1$          |
| $C_2$    | $f_2$          |
| :        | :              |
| Ci       | f <sub>i</sub> |
| :        | :              |
| $C_k$    | $f_k$          |
| Összesen | N              |

 $C_i$ : az *i*-edik osztály azonosítója (i = 1, 2, ..., k);

 $f_i$ : az i-edik osztály gyakorisága;

k: az osztályok száma, általában k a legkisebb egész, melyre  $2^k \ge N$ ;

N: a sokaság nagysága.  $N = \sum_{i=1}^{k} f_i$ .

Osztály másik elnevezése: részsokaság. Akkor használjuk, ha az osztályokat külön is tovább akarjuk vizsgálni.

# Kombinációs (kontingencia) tábla

| Az X ismérv        | Az              | Az Y ismérv szerinti osztályok |  |               |  |                 |                  |  |  |
|--------------------|-----------------|--------------------------------|--|---------------|--|-----------------|------------------|--|--|
| szerinti osztályok | $C_1^Y$         | $C_2^Y$                        |  | $C_j^Y$       |  | $C_c^Y$         |                  |  |  |
| $C_1^{\times}$     | $f_{11}$        | $f_{12}$                       |  | $f_{1j}$      |  | $f_{1c}$        | $f_1$ .          |  |  |
| $C_2^{\times}$     | $f_{21}$        | $f_{22}$                       |  | $f_{2j}$      |  | $f_{2c}$        | $f_2$ .          |  |  |
| :                  | :               | :                              |  | :             |  | :               | :                |  |  |
| $C_i^{x}$          | $f_{i1}$        | $f_{i2}$                       |  | $f_{ij}$      |  | $f_{ic}$        | f <sub>i</sub> . |  |  |
| :                  | :               | :                              |  | :             |  | :               | :                |  |  |
| $C_r^{\times}$     | $f_{r1}$        | $f_{r2}$                       |  | $f_{rj}$      |  | $f_{rc}$        | $f_r$ .          |  |  |
| $\sum i$           | f. <sub>1</sub> | f. <sub>2</sub>                |  | $f_{\cdot j}$ |  | f. <sub>c</sub> | N                |  |  |

 $C_i^X$ : az X szerinti i-edik osztály azonosítója  $(i=1,2,\ldots,r); r$ : az osztályok száma;  $C_j^Y$ : az Y szerinti j-edik osztály azonosítója  $(j=1,2,\ldots,c); c$ : az osztályok száma;  $f_{ij}$ : azon elemek száma, melyek mind  $C_i^X$ , mind pedig  $C_j^Y$  elemei;

$$\sum_{j=1}^{c} f_{ij} = f_{i.}, \quad \sum_{i=1}^{r} f_{ij} = f_{.j}, \qquad \sum_{j=1}^{c} f_{.j} = \sum_{i=1}^{r} f_{i.} = \sum_{i=1}^{r} \sum_{j=1}^{c} f_{ij} = N.$$

Baran Sándor Statisztika 1 előadás 20 / 189

# Viszonyszámok

### A viszonyszám két adat hányadosa:

$$V = A/B$$
.

*V*: viszonyszám;

A: a viszonyítás tárgya;

B: a viszonyítás alapja.

$$A = B \cdot V$$
,  $B = A/V$ .

### **Típusai**

- Dinamikus: idősorok adataiból számított hányadosok.
- Intenzitási: két egymással kapcsolatban lévő, de nem feltétlenül azonos fajta egységekből álló sokaság nagyságából képzett hányadosok.
- Megoszlási: valamely sokaságrésznek az egészhez viszonyított nagyságát mutatja.

A magyar lakásállomány megoszlása adott év január 1-én

| Szobák száma | 1990      | 2010      | 2022      |
|--------------|-----------|-----------|-----------|
| 1            | 645 064   | 525 228   | 458 437   |
| 2            | 1 680 918 | 1 739 538 | 1 696 221 |
| 3 és több    | 1 527 306 | 2 065 915 | 2 364 613 |
| Összesen     | 3 853 288 | 4 330 681 | 4 519 271 |
|              |           |           |           |

Forrás: KSH

| Szobák    | Százalékos megoszlás |        |        | 2010. évi  | 2022. évi | 2022. évi állomány |
|-----------|----------------------|--------|--------|------------|-----------|--------------------|
| száma     | 1990                 | 2010   | 2022   | állomány ( | 1990=100) | (2010=100)         |
| 1         | 16.74                | 12.13  | 10.15  | 81.42      | 71.07     | 87.28              |
| 2         | 43.62                | 40.17  | 37.53  | 103.49     | 100.91    | 97.51              |
| 3 és több | 39.64                | 47.70  | 52.32  | 135.27     | 154.82    | 114.46             |
| Összesen  | 100.00               | 100.00 | 100.00 | 112.39     | 117.28    | 104.35             |

### Dinamikus viszonyszámok kettőnél több adat esetén

 $Y_1, Y_2, \ldots, Y_t, \ldots, Y_n$ : az idősor adatai.

Bázisviszonyszám: 
$$b_t = Y_t/Y_b$$
,  $t = 1, 2, ..., n$ .

Láncviszonyszám: 
$$\ell_t = Y_t/Y_{t-1}, \quad t = 2, 3, \dots, n.$$

• Egymást követő bázisviszonyszámok hányadosa:

$$b_t/b_{t-1} = (Y_t/Y_b) : (Y_{t-1}/Y_b) = Y_t/Y_{t-1} = \ell_t.$$

• Új bázisra (például  $Y_b$ -ről  $Y_c$ -re) való áttérés:

$$b_t/b_c = (Y_t/Y_b) : (Y_c/Y_b) = Y_t/Y_c.$$

Láncviszonyszámok szorzata:

$$\ell_1 \cdot \ell_2 \cdot \ldots \cdot \ell_k = \frac{Y_{b+1}}{Y_b} \cdot \frac{Y_{b+2}}{Y_{b+1}} \cdot \ldots \cdot \frac{Y_{b+k}}{Y_{b+k-1}} = \frac{Y_{b+k}}{Y_b} = b_{b+k}.$$

• Két ugyanazon időegységre vonatkozó bázisviszonyszámsor hányadosa:

$$(A_t/A_b):(B_t/B_b)=(A_t/B_t):(A_b/B_b)=V_t/V_b.$$

Baran Sándor Statisztika 1 előadás 23 / 189

### A házi gyerekorvosi betegellátás adatai 2005-2009

|      | Házi gyerekorvosok | Házi gyerekorvosok Bejelentkezett lakosok |             |  |  |
|------|--------------------|-------------------------------------------|-------------|--|--|
| Év   | száma (fő)         | száma (ezer fő)                           | (ezer eset) |  |  |
| 2005 | 1571               | 1475.5                                    | 9634.4      |  |  |
| 2006 | 1557               | 1474.2                                    | 9856.7      |  |  |
| 2007 | 1554               | 1461.3                                    | 9676.1      |  |  |
| 2008 | 1559               | 1463.4                                    | 9780.6      |  |  |
| 2009 | 1548               | 1452.3                                    | 10284.2     |  |  |
|      |                    |                                           |             |  |  |

Forrás: KSH

### A házi gyerekorvosi betegellátás időbeli változása

|      | Orvosok | Bejelentke-  | Beteg-   | Orvosok | Bejelentke-  | Beteg-   |
|------|---------|--------------|----------|---------|--------------|----------|
| Év   | száma   | zettek száma | forgalom | száma   | zettek száma | forgalom |
|      |         | 2005=100     |          |         | Előző év=100 |          |
| 2005 | 100.0   | 100.0        | 100.0    | 1       | _            | _        |
| 2006 | 99.1    | 99.9         | 102.3    | 99.1    | 99.9         | 102.3    |
| 2007 | 98.9    | 99.0         | 100.4    | 99.8    | 99.1         | 98.2     |
| 2008 | 99.2    | 99.2         | 101.5    | 100.3   | 100.1        | 101.1    |
| 2009 | 98.5    | 98.4         | 106.7    | 99.3    | 99.2         | 105.1    |

### A házi gyerekorvosi betegellátást jellemző intenzitási viszonyszámok

|      | Egy házi gyer  | ekorvosra jutó | Százezer bejelent-  | Egy lakosra jutó |
|------|----------------|----------------|---------------------|------------------|
| Év   | bejelentkezett | betegforgalom  | kezett lakosra jutó | betegforgalom    |
|      | lakos (fő)     | (eset)         | házi gyerekorvos    | (eset)           |
| 2005 | 939            | 6132           | 106.5               | 6.53             |
| 2006 | 947            | 6331           | 105.6               | 6.69             |
| 2007 | 940            | 6227           | 106.3               | 6.62             |
| 2008 | 939            | 6274           | 106.5               | 6.68             |
| 2009 | 938            | 6644           | 106.6               | 7.08             |

### Az előző táblázatból számolt dinamikus viszonyszámok

|      | Eg         | gy házi gyer | ekorvosra | jutó     | Százezer bejelent- |             | Egy lakosra jutó |          |
|------|------------|--------------|-----------|----------|--------------------|-------------|------------------|----------|
|      | bejele     | ntkezett     | beteg     | forgalom | kezett l           | akosra jutó | betegforgalom    |          |
| Év   | lakos (fő) |              | (eset)    |          | házi gyerekorvos   |             | (eset)           |          |
|      | 2005       | előző év     | 2005      | előző év | 2005               | előző év    | 2005             | előző év |
|      | =100       | =100         | =100      | =100     | =100               | =100        | =100             | =100     |
| 2005 | 100.0      | _            | 100.0     | _        | 100.0              | _           | 100.0            | _        |
| 2006 | 100.9      | 100.9        | 103.2     | 103.2    | 99.2               | 99.2        | 102.5            | 102.5    |
| 2007 | 100.1      | 99.3         | 101.5     | 98.4     | 99.8               | 100.7       | 101.4            | 99.0     |
| 2008 | 100.0      | 99.9         | 102.3     | 100.8    | 100.0              | 100.2       | 102.3            | 100.9    |
| 2009 | 99.9       | 99.9         | 108.3     | 105.9    | 100.1              | 100.1       | 108.4            | 106.0    |

### Grafikus ábrázolás

Idősorok ábrázolása: vonaldiagram

Mennyiségi ismérvek kapcsolata: pontdiagram

Szerkezeti megoszlás ábrázolása: osztott kör-, oszlop- vagy szalagdiagram.

Mennyiségi ismérv eloszlásának ábrázolása: hisztogram.

# Mennyiségi sorok

Y: mennyiségi ismérv;

N: a sokaság elemszáma;

 $Y_1,\,Y_2,\ldots,\,Y_N$ : az Y ismérv változatai, amik különbségi, vagy arány skálán mért számértékek.

Diszkrét: csak megszámlálható számosságú értéket vehet fel. Valamilyen számlálás eredménye, például háztartás nagysága, családban lévő gépjárművek száma. Megadható a pontos értéke.

Folytonos: kontinuum számosságú értéket vehet fel. Valamilyen mérés eredménye, például a háztartás összjövedelme, a családban lévő gépjárművek összértéke. Értéke csak bizonyos pontosságra kerekítve adható meg.

Ha a diszkrét ismérv nagyon sok értéket vehet fel, kezelhetjük folytonosként, például nagyvárosok népessége.

A rangsor a megfigyelési egységekhez tartozó  $Y_i$  ismérvértékeknek az  $Y_i$  monoton nemcsökkenő sorrendjében történő felsorolása. A rangsor i-edik tagját  $Y_i^*$ -gal jelöljük.

# Gyakorisági sor

| Az Y szerint képzett osztály |              | Osztályközép | Abszolút | Relatív        |
|------------------------------|--------------|--------------|----------|----------------|
| alsó határa                  | felső határa |              | gyako    | riság          |
| $Y_{10}$                     | $Y_{11}$     | $Y_1$        | $f_1$    | <b>g</b> 1     |
| $Y_{20}$                     | $Y_{21}$     | $Y_2$        | $f_2$    | $g_2$          |
| :                            | :            | :            | :        | :              |
| $Y_{i0}$                     | $Y_{i1}$     | $Y_i$        | $f_i$    | gi             |
| :                            | :            | :            | :        | :              |
| $Y_{k0}$                     | $Y_{k1}$     | $Y_k$        | $f_k$    | g <sub>k</sub> |
| Összesen                     |              | _            | N        | 1              |

 $Y_{i0}$  és  $Y_{i1}$ : az Y ismérv szerint képzett  $C_i$  osztály határai. Egybe is eshetnek.

Osztályközös gyakorisági sor:  $Y_{i0}$  és  $Y_{i1}$  nem esik egybe.

 $f_i$ : a  $C_i$  osztály gyakorisága.

 $g_i = f_i/N$ : a  $C_i$  osztály relatív gyakorisága.

 $Y_i = (Y_{i0} + Y_{i1})/2$ : osztályközép.

Baran Sándor Statisztika 1 előadás 29 / 189

# Gyakorisági sor

a) Y diszkrét és kevés értéket vesz fel.

Példa. 405 személygépkocsi hengerszám szerinti megoszlása.

| A hengerek száma | A személygépkocsik |                       |  |  |
|------------------|--------------------|-----------------------|--|--|
| (darab)          | száma              | százalékos megoszlása |  |  |
| $Y_i$            | $f_i$              | gi                    |  |  |
| 3                | 4                  | 1.0                   |  |  |
| 4                | 207                | 51.1                  |  |  |
| 5                | 3                  | 0.8                   |  |  |
| 6                | 84                 | 20.7                  |  |  |
| 8                | 107                | 26.4                  |  |  |
| Összesen         | 405                | 100                   |  |  |

A rangsor egyértelműen felírható.

## Gyakorisági sor

b) Y folytonos vagy diszkrét és sok értéket vesz fel.

Példa. Magyarország városainak népességszám szerinti megoszlása, 2006. január 1. (Hunyadi, Vita, 2018, 2.3. táblázat).

|                 |            | A városok |            |              |              |  |
|-----------------|------------|-----------|------------|--------------|--------------|--|
| A népesség      | Osztályköz | száma     | számának   | népességének | népességének |  |
| száma (fő)      | hosszúság  |           | megoszlása | száma (fő)   | megoszlása   |  |
| 1001 - 5000     | 4000       | 56        | 19.4       | 199629       | 4.0          |  |
| 5001 - 10000    | 5000       | 95        | 33.0       | 685534       | 13.6         |  |
| 10001 - 20000   | 10000      | 76        | 26.4       | 1078313      | 21.3         |  |
| 20001 - 40000   | 20000      | 39        | 13.5       | 1088993      | 21.5         |  |
| 40001 - 70000   | 30000      | 11        | 3.8        | 622350       | 12.3         |  |
| 70001 - 110000  | 40000      | 5         | 1.7        | 436468       | 8.6          |  |
| 110001 - 160000 | 50000      | 3         | 1.0        | 400349       | 7.9          |  |
| 160001 - 210000 | 50000      | 3         | 1.0        | 541758       | 10.7         |  |
| Összesen        | _          | 288       | 99.8       | 5053394      | 99.9         |  |

Osztályközhossz:  $h_i = Y_{i1} - Y_{i0}$ 

Ha  $Y_{10}$  és/vagy  $Y_{k1}$  nem ismert, akkor értelmesen megbecsüljük.

Baran Sándor Statisztika 1 előadás 31 / 189

# Értékösszegsor

Az értékösszegsor az Y ismérv alapján kialakított osztályokhoz az egyes osztályokba tartozó egységeknél fellépő ismérvértékek  $S_i$ -vel jelölt összegét rendeli hozzá.

$$S_i = \sum_{Y_{i0} \leq Y \leq Y_{i1}} Y, \qquad i = 1, 2, \dots, k.$$

*S<sub>i</sub>*: tényleges értékösszeg.

Ha 
$$Y_{i0} = Y_i = Y_{i1}$$
, akkor  $S_i = f_i \cdot Y_i$ .

Osztályközös gyakorisági sor – becsült értékösszeg.

$$\widetilde{S}_i = f_i \cdot Y_i, \qquad i = 1, 2, \dots, k.$$

### Relatív értékösszeg:

$$Z_i = \frac{S_i}{\sum_{i=1}^k S_i}$$
 vagy  $\widetilde{Z}_i = \frac{\widetilde{S}_i}{\sum_{i=1}^k \widetilde{S}_i}$ .

Baran Sándor Statisztika 1 előadás 32 / 189

Tényleges és becsült értékösszegek.

| A népesség száma | fi  | $Y_i$  | $\widetilde{S}_i = f_i Y_i$ | $\widetilde{Z}_{i}$ | $S_i$   | $Z_i$  |
|------------------|-----|--------|-----------------------------|---------------------|---------|--------|
| 1001 - 5000      | 56  | 3000   | 168000                      | 3.23                | 199629  | 3.95   |
| 5001 - 10000     | 95  | 7500   | 712500                      | 13.69               | 685534  | 13.56  |
| 10001 - 20000    | 76  | 15000  | 1140000                     | 21.90               | 1078313 | 21.34  |
| 20001 - 40000    | 39  | 30000  | 1170000                     | 22.48               | 1088993 | 21.55  |
| 40001 - 70000    | 11  | 55000  | 605000                      | 11.62               | 622350  | 12.32  |
| 70001 - 110000   | 5   | 90000  | 450000                      | 8.64                | 436468  | 8.64   |
| 110001 - 160000  | 3   | 135000 | 405000                      | 7.78                | 400349  | 7.92   |
| 160001 - 210000  | 3   | 185000 | 555000                      | 10.66               | 541758  | 10.72  |
| Összesen         | 288 | _      | 5205500                     | 100.00              | 5053394 | 100.00 |

Hunyadi, Vita (2018, 2.6. táblázat)

#### Kumulálás

Gyakoriságok, értékösszegek:  $f_i' = \sum_{j=1}^i f_j$ ,  $S_i' = \sum_{j=1}^i S_j$ .

Baran Sándor Statisztika 1 előadás 33 / 189

### Kvantilisek

Az  $Y_{i/k}$  i-edik k-adrendű kvantilis az a szám, amelynél az összes előforduló ismérvérték legfeljebb i/k-ad része kisebb és legfeljebb (1-i/k)-ad része nagyobb,  $k \geq 2, \ i=1,2,\ldots,k-1$ . Az i/k helyett tetszőleges 0 szerepelhet.

| k   | Elnevezés   | Jelölés | Lehetséges kvantilisek     |
|-----|-------------|---------|----------------------------|
| 2   | medián      | Me      | Me                         |
| 4   | kvartilis   | $Q_i$   | $Q_1,Q_2,Q_3$              |
| 5   | kvintilis   | $K_i$   | $K_1, K_2, K_3, K_4$       |
| 10  | decilis     | $D_i$   | $D_1,D_2,\ldots,D_9$       |
| 100 | percentilis | $P_i$   | $P_1, P_2, \ldots, P_{99}$ |

$$Y_1^*, Y_2^*, \dots, Y_N^*$$
: rangsor

$$s_p=p(N+1).$$

Ha 
$$s_p \in \mathbb{Z}$$
:  $Y_p = Y_{s_p}^*$ .

$$\mathsf{Ha}\ \mathit{s_p} \not \in \mathbb{Z} \colon \mathit{Y_p} = \mathit{Y}^*_{[\mathit{s_p}]} + \{\mathit{s_p}\} \big(\mathit{Y}^*_{[\mathit{s_p}]+1} - \mathit{Y}^*_{[\mathit{s_p}]}\big).$$

Néhány alsó középkategóriás személygépkocsi vegyes fogyasztása.

|                                           | Kia cee'd          | Citroën C4               | Ford Focus            | Honda Civic               |
|-------------------------------------------|--------------------|--------------------------|-----------------------|---------------------------|
|                                           | 1.4 CVVT           | 1.4 Vti                  | 1.6 Ti-VCT            | 1.4i                      |
| Teljesítmény (LE)                         | 100                | 95                       | 105                   | 100                       |
| Fogyasztás (I/100km)                      | 6.0                | 6.1                      | 5.9                   | 5.4                       |
|                                           |                    |                          |                       |                           |
|                                           | Mazda 3            | Opel Astra               | Renault Mégane        | Volkwagen Golf            |
|                                           | Mazda 3<br>1.6 MZR | Opel Astra<br>1.4 Ecotec | Renault Mégane<br>1.6 | Volkwagen Golf<br>1.2 TSI |
| Teljesítmény (LE)                         |                    |                          |                       | _                         |
| Teljesítmény (LE)<br>Fogyasztás (I/100km) | 1.6 MZR            | 1.4 Ecotec               | 1.6                   | 1.2 TSI                   |

Forrás: Az Autó, 2012/9.

Rangsor: 5.4, 5.5, 5.7, 5.9, 6.0, 6.1, 6.5, 6.7

Alsó kvartilis: 
$$p = 1/4$$
,  $s_p = 9/4$ ,  $[s_p] = 2$ ,  $\{s_p\} = 0.25$ .

$$Q_1 = 5.5 + 0.25(5.7 - 5.5) = 5.55.$$

Medián: 
$$p = 1/2$$
,  $s_p = 9/2$ ,  $[s_p] = 4$ ,  $\{s_p\} = 0.5$ .

$$Q_2 = Me = 5.9 + 0.5(6.0 - 5.9) = (5.9 + 6.0)/2 = 5.95.$$

Felső kvartilis: 
$$p = 3/4$$
,  $s_p = 27/4$ ,  $[s_p] = 6$ ,  $\{s_p\} = 0.75$ .

$$Q_3 = 6.1 + 0.75(6.5 - 6.1) = 6.4.$$

Baran Sándor Statisztika 1 előadás 35 / 189

### Kvantilisek

Osztályközös gyakorisági sor: a kvantilis közelítése adható meg.

$$\widetilde{Y}_p = Y_{q0} + \left(pN - f'_{q-1}\right) \frac{h_q}{f_q}.$$

q: annak a  $legels \Ho$  osztálynak a sorszáma, melyre  $f_q' \geq p N$  (a kvantilist tartalmazó osztály).

 $Y_{q0},\ h_q,\ f_q$ : a kvantilist tartalmazó osztály alsó határa, szélessége, illetve gyakorisága.

 $f_{q-1}^{\prime}$ : a kvantilist tartalmazó osztály előtti osztállyal záródó kumulált gyakoriság.

Relatív gyakoriságokkal való megadás:

$$\widetilde{Y}_p = Y_{q0} + (p - g'_{q-1}) \frac{h_q}{g_q},$$

$$\widetilde{Y}_p = Y_{q0} + (100p - 100g'_{q-1}) \frac{h_q}{100g_q}.$$

Baran Sándor Statisztika 1 előadás 36 / 189

| A népesség száma | hį    | fi  | $100g_i$ | $f_i'$ | $100g_i'$ |
|------------------|-------|-----|----------|--------|-----------|
| 1001 - 5000      | 4000  | 56  | 19.44    | 56     | 19.44     |
| 5001 - 10000     | 5000  | 95  | 32.99    | 151    | 52.43     |
| 10001 - 20000    | 10000 | 76  | 26.39    | 227    | 78.82     |
| 20001 - 40000    | 20000 | 39  | 13.54    | 266    | 92.36     |
| 40001 - 70000    | 30000 | 11  | 3.82     | 277    | 96.18     |
| 70001 - 110000   | 40000 | 5   | 1.74     | 282    | 97.92     |
| 110001 - 160000  | 50000 | 3   | 1.04     | 285    | 98.96     |
| 160001 - 210000  | 50000 | 3   | 1.04     | 288    | 100.00    |
| Összesen         | _     | 288 | 100.00   | _      | _         |

Alsó kvartilis: p = 1/4, pN = 72, q = 2,  $Y_{q0} = 5000$ ,  $h_q = 5000$ ,  $f_q = 95$ ,  $f_{q-1}' = 56$ .

$$\widetilde{Q}_1 = 5000 + (72 - 56) \cdot 5000/95 = 5842.$$

Medián: p=1/2, q=2,  $Y_{q0}=5000$ ,  $h_q=5000$ ,  $g_q=0.3299$ ,  $g_{q-1}'=0.1944$ .

$$\widetilde{Q}_2 = Me = 5000 + (0.5 - 0.1944) \cdot 5000/0.3299 = 9632.$$

Felső kvartilis: p = 3/4, 100p = 75.00, q = 3,  $Y_{q0} = 10000$ ,  $h_q = 10000$ ,  $100g_q = 26.39$ ,  $100g_{q-1}' = 52.43$ .

$$\widetilde{Q}_3 = 10000 + (75.00 - 52.43) \cdot 10000/26.39 = 18552.$$

Baran Sándor Statisztika 1 előadás 37 / 189

# Gyakorisági eloszlások grafikus ábrázolása

### Leveles ág ábra (stem-and-leaf)

Függőleges vonal. Tőle balra az ismérvértékek legelső helyiértékű számjegyei (ágak). A vonal jobb oldalán az ismérvértékek további azonosításához szükséges számjegyek szóközzel vagy vesszővel elválasztva (levelek).

### Doboz ábra (box plot, box-and-whiskers plot)

Vízszintes vagy függőleges tengelyen ábrázolja a kvartiliseket, ezek alkotják a dobozt, valamint a legnagyobb és a legkisebb ismérvértéket.  $Q_1$ : a doboz alja;  $Q_3$ : a doboz teteje; Me: a doboz osztóvonala.

### Hisztogram

Osztályközös gyakorisági sorban az osztályközök fölé oszlopokat emelünk, melyek területe arányos az adott osztály gyakoriságával (gyakoriság hisztogram), vagy relatív gyakoriságával (sűrűség hisztogram).

# Helyzetmutatók (középértékek). Medián

A medián az az ismérvérték, amelyiknél az összes előforduló ismérvérték legfeljebb fele kisebb és legfeljebb fele nagyobb. p=1/2-hez tartozó kvantilis.

$$\sum_{i=1}^{N} |Y_i - A| \quad \text{minimumhelye} \quad A = Me.$$

Rangsorból számolva:

$$N = 2k + 1$$
:  $Me = Y_{k+1}^*$ ,  
 $N = 2k$ :  $Me = (Y_k^* + Y_{k+1}^*)/2$ .

Osztályközös gyakorisági sorból számolva:

$$\widetilde{M}e = Y_{me,0} + (N/2 - f'_{me-1}) \frac{h_{me}}{f_{me}}.$$

me: a legelső olyan osztályköz sorszáma, ahol  $f'_{me} \geq N/2$ .

Baran Sándor Statisztika 1 előadás 39 / 189

# Helyzetmutatók (középértékek). Módusz

Diszkrét ismérv esetén a módusz a leggyakrabban előforduló ismérvérték, folytonos ismérv esetén pedig a sűrűségfüggvény maximumhelye.

Osztályközös gyakorisági sorból számolható:

$$\widetilde{M}o = Y_{mo,0} + \frac{d_a}{d_a + d_f} \cdot h_{mo}.$$

mo: a móduszt tartalmazó osztályköz sorszáma;

$$d_a = f_{mo} - f_{mo-1}, \qquad d_f = f_{mo} - f_{mo+1}.$$

Egyenlő osztályközök:  $d_a$  és  $d_f$  a tényleges gyakoriságok különbségei.

Nem egyenlő osztályközök:  $d_a$  és  $d_f$  az egységesített (korrigált) gyakoriságok különbségei.

Baran Sándor Statisztika 1 előadás 40 / 189

Magyar városok gyakoriságainak egységesítése.

| A népesség      | Osztályköz | Eredeti  | Egységnyi     | 5000 fő         |
|-----------------|------------|----------|---------------|-----------------|
| száma (fő)      | hosszúság  | hosszúsá | gú osztályköz | zök gyakorisága |
| 1001 - 5000     | 4000       | 56       | 0.014         | 70              |
| 5001 - 10000    | 5000       | 95       | 0.019         | 95              |
| 10001 - 20000   | 10000      | 76       | 0.0076        | 38              |
| 20001 - 40000   | 20000      | 39       | 0.00195       | 9.75            |
| 40001 - 70000   | 30000      | 11       | 0.000367      | 1.84            |
| 70001 - 110000  | 40000      | 5        | 0.000125      | 0.63            |
| 110001 - 160000 | 50000      | 3        | 0.00006       | 0.30            |
| 160001 - 210000 | 50000      | 3        | 0.00006       | 0.30            |
| Összesen        | _          | 288      |               |                 |
|                 |            |          |               |                 |

Hunyadi, Vita (2018, 2.11. táblázat).

$$mo = 2$$
,  $f_{mo} = 95$ ,  $f_{mo-1} = 70$ ,  $f_{mo+1} = 38$ ,  $Y_{mo,0} = 5000$ ,  $h_{mo} = 5000$ ,  $d_a = 95 - 70 = 25$ ,  $d_f = 95 - 38 = 57$ .

$$\widetilde{Mo} = 5000 + \frac{25}{25 + 57} \cdot 5000 = 6524.$$

Baran Sándor Statisztika 1 előadás 41 / 189

# Helyzetmutatók (középértékek). Számtani átlag

 $Y_1, Y_2, \dots, Y_N$ : ismérvértékek.

Számtani átlag (súlyozatlan eset):

$$\overline{Y} = \frac{Y_1 + Y_2 + \ldots + Y_N}{N} = \frac{\sum_{i=1}^{N} Y_i}{N} = \frac{\sum Y}{N}.$$

$$\sum_{i=1}^{N} (Y_i - A)^2 \quad \text{minimumhelye} \quad A = \overline{Y}.$$

S értékösszegből:

$$\overline{Y} = S/N$$
.

Gyakorisági sorból (súlyozott eset):

$$\overline{Y} = \frac{\sum_{i=1}^k f_i Y_i}{\sum_{i=1}^k f_i} = \frac{\sum_{i=1}^k f_i Y_i}{N} = \frac{\sum fY}{N} = \frac{\sum \frac{f}{N}Y}{\sum \frac{f}{N}} = \frac{\sum gY}{\sum g} = \sum gY.$$

 $Y_i$ : az i-edik osztály egyedi értéke vagy osztályközepe;  $f_i$ : az i-edik osztály gyakorisága.

Baran Sándor Statisztika 1 előadás 42 / 189

## Szóródási mutatók. Terjedelemmutatók

Terjedelem: 
$$R = Y_N^* - Y_1^* = Y_{\text{max}} - Y_{\text{min}}$$
.

Osztályközös gyakorisági sor: problémás.

Interkvartilis távolság: 
$$R_{0.5} = Q_3 - Q_1$$
.

Példa. Személygépkocsik vegyes átlagfogyasztása.

Rangsor: 5.4, 5.5, 5.7, 5.9, 6.0, 6.1, 6.5, 6.7

$$R = 6.7 - 5.4 = 1.3 \text{ I}/100 \text{km}.$$

Kvartilisek:  $Q_1 = 5.55, \ Q_3 = 6.4.$ 

$$R_{0.5} = 6.4 - 5.55 = 0.85 \text{ I}/100 \text{km}.$$

# Szóródási mutatók. Szórás, variancia, relatív szórás

Szórás:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (Y_i - \overline{Y})^2} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} d_i^2} \quad \text{súlyozatlan eset},$$
 
$$\sigma = \sqrt{\frac{\sum_{i=1}^{k} f_i (Y_i - \overline{Y})^2}{\sum_{i=1}^{k} f_i}} = \sqrt{\frac{\sum_{i=1}^{k} f_i d_i^2}{\sum_{i=1}^{k} f_i}} \quad \text{súlyozott eset}.$$

 $d_i = Y_i - \overline{Y}$ : az átlagtól való eltérés.

Variancia (szórásnégyzet):  $\sigma^2$ .

$$\sum_{i=1}^N (Y_i - \overline{Y})^2 = \sum_{i=1}^N Y_i^2 - N \overline{Y}^2, \quad \text{azaz} \quad \sigma^2 = \overline{Y^2} - \overline{Y}^2.$$

Relatív szórás:

$$V = \sigma/\overline{Y}$$
.

Baran Sándor Statisztika 1 előadás 44 / 189

Személygépkocsik vegyes átlagfogyasztása.

Ismérvértékek: 6.0, 6.1, 5.9, 5.4, 6.5, 5.5, 6.7, 5.7.

$$\overline{Y} = \frac{6.0 + 6.1 + \dots + 5.7}{8} = 5.975$$
 I/100 km.

$$\sigma = \sqrt{\frac{(6.0 - 5.975)^2 + (6.1 - 5.975)^2 + \ldots + (5.7 - 5.975)^2}{8}} = 0.4265 \qquad \text{I}/100 \text{ km}.$$

$$V = 0.4265/5.975 = 0.0714.$$

#### Magyar városok népessége

| A népesség száma | fi  | $Y_i$  | $f_i Y_i$ | $d_i = Y_i - \overline{Y}$ | $f_i d_i^2$  |
|------------------|-----|--------|-----------|----------------------------|--------------|
| 1001 - 5000      | 56  | 3000   | 168000    | -15075                     | 12726315000  |
| 5001 - 10000     | 95  | 7500   | 712500    | -10575                     | 10623909375  |
| 10001 - 20000    | 76  | 15000  | 1140000   | -3075                      | 718627500    |
| 20001 - 40000    | 39  | 30000  | 1170000   | 11925                      | 5546019375   |
| 40001 - 70000    | 11  | 55000  | 605000    | 36925                      | 14998011875  |
| 70001 - 110000   | 5   | 90000  | 450000    | 71925                      | 25866028125  |
| 110001 - 160000  | 3   | 135000 | 405000    | 116925                     | 41014366875  |
| 160001 - 210000  | 3   | 185000 | 555000    | 166925                     | 83591866875  |
| Összesen         | 288 | _      | 5205500   | _                          | 195085145000 |

$$\overline{Y} = 5205500/288 = 18074.65 \approx 18075.$$

$$\sigma = \sqrt{\frac{195085145000}{288}} = 2.6026.51 \approx 26027.$$

$$V = 26026.51/18074.65 = 1.4399.$$

### Koncentráció

A sokasághoz tartozó teljes értékösszeg jelentős részének vagy egészének kevés egységre való összpontosulását koncentrációnak nevezzük.

Kicsi sokaság: abszolút koncentráció.

Nagy sokaság: relatív koncentráció.

#### Lorenz görbe

Egyedi adatok:  $Y_1^*, Y_2^*, \dots, Y_N^*$  rangsor, S értékösszeg.

$$(0,0)$$
 és  $\left(\frac{k}{N}, \frac{\sum_{i=1}^{k} Y_i^*}{S}\right), k=1,2,\ldots,N,$  pontok.

 $Osztályközök: g'_i, Z'_i$  osztályközös kumulált relatív gyakoriságok és relatív értékösszegek.

$$(0,0)$$
 és  $(g'_i, Z'_i)$ ,  $i = 1, 2, ..., k$ , pontok.

Koncentrációs együttható: a görbe és a négyzet átlója által bezárt terület (koncentrációs terület) aránya a négyzet feléhez. Jele: *L*.

Baran Sándor Statisztika 1 előadás 47 / 189

Magyar városok népességeinek relatív gyakoriságai és értékösszegei.

| A népesség száma | $f_i$ | gi     | $g_i'$ | $S_i$   | $Z_i$  | $Z_i'$ |
|------------------|-------|--------|--------|---------|--------|--------|
| 1001 - 5000      | 56    | 19.44  | 19.44  | 199629  | 3.95   | 3.95   |
| 5001 - 10000     | 95    | 32.99  | 52.43  | 685534  | 13.56  | 17.51  |
| 10001 - 20000    | 76    | 26.39  | 78.82  | 1078313 | 21.34  | 38.85  |
| 20001 - 40000    | 39    | 13.54  | 92.36  | 1088993 | 21.55  | 60.40  |
| 40001 - 70000    | 11    | 3.82   | 96.18  | 622350  | 12.32  | 72.72  |
| 70001 - 110000   | 5     | 1.74   | 97.92  | 436468  | 8.64   | 81.36  |
| 110001 - 160000  | 3     | 1.04   | 98.96  | 400349  | 7.92   | 89.28  |
| 160001 - 210000  | 3     | 1.04   | 100.00 | 541758  | 10.72  | 100.00 |
| Összesen         | 288   | 100.00 | _      | 5053394 | 100.00 | _      |



Koncentrációs együttható: L = 0.523.

Közepes koncentráció.

### Koncentráció

Herfindahl index:

$$HI = \sum_{i=1}^{N} Z_i^2.$$

HI = 1/N: nincs koncentráció. HI = 1: teljes koncentráció.

**Példa.** Autógyárak piaci részesedése (%) az Európai Unióban 2020-ban és 2021-ben:

| Gyártó | VW csop.     | Stellanis | Renault csop. | Hyundai csop. | BMW csop. |
|--------|--------------|-----------|---------------|---------------|-----------|
| 2021   | 25.1         | 21.9      | 10.6          | 8.5           | 6.8       |
| 2020   | 25.8         | 21.8      | 11.5          | 7.0           | 6.5       |
| Gyártó | Toyota csop. | Daimler   | Ford          | Volvo         | Egyéb     |
| 2021   | 6.3          | 5.6       | 4.1           | 2.3           | 8.8       |
| 2010   | 5.7          | 6.3       | 4.9           | 2.2           | 8.3       |

Forrás: Európai Autógyártók Szövetsége (ACEA)

2021:  $HI = 0.251^2 + 0.219^2 + \ldots + 0.088^2 = 0.1511$ .

2020:  $HI = 0.258^2 + 0.218^2 + ... + 0.083^2 = 0.1534$ .

Baran Sándor Statisztika 1 előadás 49 / 189

#### Momentumok

#### A körüli r-edik momentum:

$$M_r(A) = rac{1}{N} \sum_{i=1}^N (Y_i - A)^r = rac{1}{N} \sum_{i=1}^N d_i^r(A)$$
 súlyozatlan eset,  $M_r(A) = rac{\sum_{i=1}^k f_i (Y_i - A)^r}{\sum_{i=1}^k f_i} = rac{1}{N} \sum_{i=1}^k f_i d_i^r(A)$  súlyozott eset.

 $d_i(A) = Y_i - A$ : az A értéktől való eltérés.

A = 0: r-edik momentum;

 $A = \overline{Y}$ : r-edik centrális momentum.

#### Speciális esetek:

- $M_1(0) = \overline{Y}, M_1(\overline{Y}) = 0.$
- $M_2(0) = \overline{Y^2}, M_2(\overline{Y}) = \sigma^2.$

## Alakmutatók



Aszimmetria: jobbra vagy balra elnyúló.

Csúcsosság: hegyesebb vagy lapultabb, mint az ugyanolyan paraméterű normális eloszlás.

Baran Sándor Statisztika 1 előadás 51 / 189

### Aszimmetriamutatók

Ferdeség (skewness):

$$\alpha_3 = \frac{M_3(\overline{Y})}{\sigma^3}.$$

Pearson-féle mutató:

$$P = \frac{3(\overline{Y} - Me)}{\sigma}.$$

Decilisek és a medián eltérésén alapuló mutató:

$$F_{0,1} = rac{(D_9 - Me) - (Me - D_1)}{(D_9 - Me) + (Me - D_1)}, \qquad -1 \le F_{0,1} \le 1.$$

| Mutató    | Jobbra elnyúló | Szimmetrikus         | Balra elnyúló  |
|-----------|----------------|----------------------|----------------|
| Ferdeség  | $\alpha_3 > 0$ | $\alpha_3 \approx 0$ | $\alpha_3 < 0$ |
| Pearson   | P > 0          | $P \approx 0$        | P < 0          |
| Decilisek | $F_{0,1} > 0$  | $F_{0,1} \approx 0$  | $F_{0,1} < 0$  |

Személygépkocsik vegyes átlagfogyasztása.

Ismérvértékek: 6.0, 6.1, 5.9, 5.4, 6.5, 5.5, 6.7, 5.7.

$$\overline{Y} = 5.975, \ \sigma = 0.4265, \ \textit{Me} = 5.95.$$

$$M_3(\overline{Y}) = \frac{(6.0 - 5.975)^3 + (6.1 - 5.975)^3 + \ldots + (5.7 - 5.975)^3}{8} = 0.0262.$$

$$\alpha_3 = \frac{0.0262}{0.4265^3} = 0.3372,$$

$$P = \frac{3(5.975 - 5.95)}{0.4265} = 0.1759.$$

Jobbra elnyúló.

## Csúcsossági mutató

## Lapultság (kurtosis):

$$\alpha_4 = \frac{M_4(\overline{Y})}{\sigma^4} - 3.$$

Normális eloszlás esetén az elméleti értéke 0. Azonos paraméterű normálishoz hasonlítjuk.

| Normálisnál csúcsosabb | Megegyező            | Normálisnál lapultabb |
|------------------------|----------------------|-----------------------|
| $\alpha_4 > 0$         | $\alpha_4 \approx 0$ | $\alpha_4 < 0$        |

Példa. Személygépkocsik vegyes átlagfogyasztása.

Ismérvértékek: 6.0, 6.1, 5.9, 5.4, 6.5, 5.5, 6.7, 5.7.

$$M_4(\overline{Y}) = \frac{(6.0 - 5.975)^4 + (6.1 - 5.975)^4 + \ldots + (5.7 - 5.975)^4}{8} = 0.0648.$$

$$\alpha_4 = \frac{0.0648}{0.4265^4} - 3 = -1.0408.$$

Lapultabb, mint az 5.975 várható értékű, 0.4265 szórású normális.

Baran Sándor Statisztika 1 előadás 54 / 189

## Heterogén sokaságok

Az elemzés Y ismérve szempontjából lényegesen eltérő jellegzetességeket mutató részekre bontható sokaságokat az adott ismérv szempontjából heterogén sokaságoknak nevezzük.

A fősokaságot M darab részsokaságra bontjuk valamilyen csoportképző ismérv alapján.

### Részviszonyszámok:

$$V_j = A_j/B_j, \qquad j = 1, 2, \ldots, M.$$

Összetett viszonyszám:

$$\overline{V} = \frac{\sum_{j=1}^{M} A_j}{\sum_{j=1}^{M} B_j} = \frac{\sum A}{\sum B} = \frac{\sum_{j=1}^{M} B_j V_j}{\sum_{j=1}^{M} B_j} = \frac{\sum_{j=1}^{M} A_j}{\sum_{j=1}^{M} \frac{A_j}{V_j}}.$$

 $A_j$  és  $B_j$  helyett a belőlük képzett megoszlási viszonyszámok is használhatóak.

A magyar lakásállomány megoszlása adott év január 1.-én

| Szobák    | L         | _akások szám | a         | Száza  | lékos meg | 2016. évi állo- |                 |
|-----------|-----------|--------------|-----------|--------|-----------|-----------------|-----------------|
| száma     | 1990      | 2010         | 2022      | 1990   | 2010      | 2022            | mány (2010=100) |
| 1         | 645 064   | 525 228      | 458437    | 16.74  | 12.13     | 10.15           | 87.28           |
| 2         | 1 680 918 | 1 739 538    | 1 696 221 | 43.62  | 40.17     | 37.53           | 97.51           |
| 3 és több | 1 527 306 | 2 065 915    | 2 364 613 | 39.64  | 47.70     | 52.32           | 114.46          |
| Összesen  | 3 853 288 | 4 330 681    | 4 519 271 | 100.00 | 100.00    | 100.00          | 104.35          |

Utolsó oszlop első 3 sor: részviszonyszámok.

Utolsó oszlop utolsó sor: összetett viszonyszám.

$$\frac{525228 \cdot 87.28 + 1739538 \cdot 97.51 + 2065915 \cdot 114.46}{4330681} = \frac{451928881.1}{4330681} = 104.3552\%;$$

$$\frac{12.13 \cdot 87.28 + 40.17 \cdot 97.51 + 47.70 \cdot 114.46}{100} = \frac{10435.4251}{100} = 104.3543\%.$$

$$\frac{4519271}{\frac{458437}{97.29} + \frac{1696221}{07.51} + \frac{2364613}{114.46}} = 104.3550\%;$$

$$\frac{100}{\frac{10.15}{97.29} + \frac{37.53}{07.51} + \frac{52.32}{114.46}} = 104.3538\%.$$

## Rész- és főátlagok

 $Y_{ij}$ : a j-edik részsokaság  $(j=1,2,\ldots,M)$  i-edik értéke  $(i=1,2,\ldots,N_j)$ .

 $N = \sum_{j=1}^{M} N_j$ : a fősokaság nagysága.

A j-edik részátlag:

$$\overline{Y_j} = \frac{1}{N_j} \sum_{i=1}^{N_j} Y_{ij} = \frac{S_j}{N_j}, \quad j = 1, 2, \dots, M.$$

 $S_j = \sum_{i=1}^{N_j} Y_{ij}$ : a *j*-edik részsokaság értékösszege.

A főátlag:

$$\overline{Y} = \frac{1}{N} \sum_{j=1}^{M} \sum_{i=1}^{N_j} Y_{ij} = \frac{1}{N} \sum_{j=1}^{M} S_j = \frac{\sum_{j=1}^{M} N_j \overline{Y_j}}{\sum_{j=1}^{M} N_j} = \frac{\sum_{j=1}^{M} S_j}{\sum_{j=1}^{M} \overline{Y_j}},$$

mivel

$$S_j = N_j \overline{Y_j}, \quad \text{azaz} \quad N_j = \frac{S_j}{\overline{Y_i}}.$$

## Teljes szórás és variancia

Átlagtól való eltérés:

$$d_{ij} = Y_{ij} - \overline{Y} = B_{ij} + K_j, \quad i = 1, 2, \dots, N_j, \ j = 1, 2, \dots, M.$$

Belső eltérés:

$$B_{ij}=Y_{ij}-\overline{Y_j},\quad i=1,2,\ldots,N_j,\; j=1,2,\ldots,M.$$

Külső eltérés:

$$\mathcal{K}_j = \overline{Y_j} - \overline{Y}, \quad j = 1, 2, \dots, M.$$

Teljes szórás:

$$\sigma = \sqrt{\frac{1}{N} \sum_{j=1}^{M} \sum_{i=1}^{N_j} (Y_{ij} - \overline{Y})^2} = \sqrt{\frac{1}{N} \sum_{j=1}^{M} \sum_{i=1}^{N_j} d_{ij}^2}.$$

Teljes variancia:

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{M} \sum_{j=1}^{N_j} (Y_{ij} - \overline{Y})^2 = \frac{1}{N} \sum_{i=1}^{M} \sum_{j=1}^{N_j} d_{ij}^2.$$

### Belső szórás és variancia

Részszórások vagy csoporton belüli szórások:

$$\sigma_j = \sqrt{\frac{1}{N_j} \sum_{i=1}^{N_j} (Y_{ij} - \overline{Y_j})^2} = \sqrt{\frac{1}{N_j} \sum_{i=1}^{N_j} B_{ij}^2}, \quad j = 1, 2, \dots, M.$$

Belső szórás:

$$\sigma_B = \sqrt{\frac{1}{N} \sum_{j=1}^{M} \sum_{i=1}^{N_j} (Y_{ij} - \overline{Y_j})^2} = \sqrt{\frac{1}{N} \sum_{j=1}^{M} \sum_{i=1}^{N_j} B_{ij}^2}.$$

A  $\sigma_B$  belső szórás azt mutatja, hogy a fősokaság egyes egységeihez tartozó  $Y_{ij}$  ismérvértékek átlagosan mennyivel térnek el a saját részátlaguktól. A belső szórás négyzete a belső variancia.

Részvarianciák és belső variancia kapcsolata:

$$\sigma_B^2 = \frac{1}{N} \sum_{i=1}^M N_j \sigma_j^2.$$

## Külső szórás és variancia

Külső szórás:

$$\sigma_{\mathcal{K}} = \sqrt{\frac{1}{N} \sum_{j=1}^{M} \sum_{i=1}^{N_j} (\overline{Y_j} - \overline{Y})^2} = \sqrt{\frac{1}{N} \sum_{j=1}^{M} N_j K_j^2}.$$

A  $\sigma_K$  külső szórás azt mutatja, hogy a részátlagok átlagosan mennyire térnek el a főátlagtól.

Kapcsolat a varianciák között:

$$\sigma^2 = \sigma_B^2 + \sigma_K^2.$$

Négyzetösszegek közötti összefüggés:

$$\sum_{j=1}^{M}\sum_{i=1}^{N_j}(Y_{ij}-\overline{Y})^2=\sum_{j=1}^{M}\sum_{i=1}^{N_j}(Y_{ij}-\overline{Y_j})^2+\sum_{j=1}^{M}N_j(\overline{Y_j}-\overline{Y})^2.$$

$$SST = SSB + SSK$$

SST a teljes, SSB a belső, SSK a külső négyzetösszeg.

Baran Sándor Statisztika 1 előadás 61/189

Középfölde népei évenkénti fogathajtó versenye döntőjének másodpercekben mért eredményei:

| j  | Népcsoport |      | Eredmény <i>Y<sub>ij</sub></i> |      |      |    | $S_j$ | $\sum_{i=1}^{N_j} (Y_{ij} - \overline{Y_j})^2$ |
|----|------------|------|--------------------------------|------|------|----|-------|------------------------------------------------|
| 1  | Tündék     | 54.3 | 59.7                           | 49.5 |      | 3  | 163.5 | 52.08                                          |
| 2  | Törpök     | 55.0 | 45.2                           |      |      | 2  | 100.2 | 48.02                                          |
| 3  | Emberek    | 52.1 | 54.5                           | 56.9 | 50.7 | 4  | 214.2 | 22.35                                          |
| 4  | Hobbitok   | 44.8 | 47.4                           | 54.2 |      | 3  | 146.4 | 47.12                                          |
| Ös | szesen     |      |                                |      |      | 12 | 624.3 | 169.57                                         |

$$\overline{Y_1} = 163.5/3 = 54.50, \qquad \overline{Y_2} = 100.2/2 = 50.10,$$

$$\overline{Y_3} = 214.0/4 = 53.55, \qquad \overline{Y_4} = 146.4/3 = 48.80.$$

$$\overline{Y} = \frac{3 \cdot 54.50 + 2 \cdot 50.10 + 4 \cdot 53.55 + 3 \cdot 48.80}{12} = \frac{624.3}{12} = 52.025.$$

| j  | Népcsoport |      | Eredmény $Y_{ij}$ |      |      |    | $S_j$ | $\sum_{i=1}^{N_j} (Y_{ij} - \overline{Y_j})^2$ |
|----|------------|------|-------------------|------|------|----|-------|------------------------------------------------|
| 1  | Tündék     | 54.3 | 59.7              | 49.5 |      | 3  | 163.5 | 52.08                                          |
| 2  | Törpök     | 55.0 | 45.2              |      |      | 2  | 100.2 | 48.02                                          |
| 3  | Emberek    | 52.1 | 54.5              | 56.9 | 50.7 | 4  | 214.2 | 22.35                                          |
| 4  | Hobbitok   | 44.8 | 54.2              | 47.4 |      | 3  | 146.4 | 47.12                                          |
| Ös | Összesen   |      |                   |      |      | 12 | 624.3 | 169.57                                         |

$$\overline{Y_1} = 54.50, \ \overline{Y_2} = 50.10, \ \overline{Y_3} = 53.55, \ \overline{Y_4} = 48.80, \ \overline{Y} = 52.025.$$

$$SST = (54.3 - 52.025)^2 + \dots + (47.4 - 52.025)^2 = 235.8625,$$
  
 $SSK = 3 \cdot (54.50 - 52.025)^2 + \dots + 3 \cdot (48.80 - 52.025)^2 = 66.2925,$   
 $SSB = SST - SSK = 169.57.$ 

$$\sigma = \sqrt{235.8625/12} = 4.4334, \quad \sigma_B = \sqrt{169.57/12} = 3.7591, \quad \sigma_K = \sqrt{66.292/12} = 2.3504.$$

$$\sigma_1 = \sqrt{52.08/3} = 4.1665,$$
  $\sigma_2 = \sqrt{48.02/2} = 4.9000,$   $\sigma_3 = \sqrt{22.35/4} = 2.3638,$   $\sigma_4 = \sqrt{47.12/3} = 3.9632.$ 

Baran Sándor Statisztika 1 előadás 63 / 189

## Az ismérvek közötti kapcsolat fajtái

#### Lehetséges kapcsolatok két ismérv között:

- Az ismérvek függetlenek egymástól. Például: hajszín, testmagasság.
- A két ismérv között sztochasztikus kapcsolat van, azaz például a sokaság egységeinek X szerinti hovatartozásából, milyenségéből következtetni lehet az Y szerinti hovatartozásra, milyenségre. Például: hajszín, szemszín.
- A két ismérv között függvényszerű, azaz determinisztikus kapcsolat van. Például: ösztöndíjátlag, tanulmányi ösztöndíj.

### Az ismérvek fajtái szerinti csoportosítás:

- Asszociáció: mindkét ismérv minőségi vagy területi (nominális skála).
- Vegyes kapcsolat: az egyik ismérv mennyiségi, a másik minőségi vagy területi (különbségi vagy arány és nominális skála).
- Korreláció: mindkét ismérv mennyiségi (különbségi vagy arány skála).
- Rangkorreláció: mindkét ismérvet sorrendi skálán mérjük.

### Asszociáció

A kontingenciatábla általános alakja:

| Az X ismérv sze- | Az            | Y isn           | nérv sz | erinti        | osztály | /ok      | $\sum j$                |
|------------------|---------------|-----------------|---------|---------------|---------|----------|-------------------------|
| rinti osztályok  | $C_1^Y$       | $C_2^Y$         |         | $C_j^Y$       |         | $C_c^Y$  |                         |
| $C_1^{\times}$   | $f_{11}$      | $f_{12}$        |         | $f_{1j}$      |         | $f_{1c}$ | $f_1$ .                 |
| $C_2^{\times}$   | $f_{21}$      | $f_{22}$        |         | $f_{2j}$      |         | $f_{2c}$ | <b>f</b> <sub>2</sub> . |
| :                | :             | :               |         | :             |         | :        | :                       |
| $C_i^{\times}$   | $f_{i1}$      | $f_{i2}$        |         | $f_{ij}$      |         | $f_{ic}$ | $f_i$ .                 |
| :                | :             | :               |         | :             |         | :        | :                       |
| $C_r^{\times}$   | $f_{r1}$      | $f_{r2}$        |         | $f_{rj}$      |         | $f_{rc}$ | $f_r$ .                 |
| $\sum i$         | $f_{\cdot 1}$ | f. <sub>2</sub> |         | $f_{\cdot j}$ |         | f.c      | N                       |

Utolsó sor: Y szerinti megoszlás.

Utolsó oszlop: X szerinti megoszlás.

Ha a soronkénti megoszlások azonosak, akkor X és Y függetlenek.

Ha a soronként legfeljebb egy nem 0 gyakoriság van, akkor X értéke egyértelműen meghatározza Y értékét, azaz függvényszerű a kapcsolat.

# Tényleges és várt gyakoriságok

A  $C_i^X \cdot C_j^Y$  tényleges, illetve relatív gyakorisága:  $f_{ij}$ , illetve  $f_{ij}/N$ .

$$P(C_i^X \cdot C_j^Y) \approx \frac{f_{ij}}{N}, \qquad P(C_i^X) \approx \frac{f_{i\cdot}}{N}, \qquad P(C_j^Y) \approx \frac{f_{\cdot j}}{N}.$$

Ha  $C_i^X$  és  $C_i^Y$  függetlenek, akkor

$$P(C_i^X \cdot C_j^Y) = P(C_i^X) \cdot P(C_j^Y) \approx \frac{f_i}{N} \cdot \frac{f_{i,j}}{N}.$$

 $C_i^X \cdot C_j^Y$  várt gyakorisága (ha függetlenek):  $NP(C_i^X \cdot C_j^Y) \approx \frac{f_i \cdot f_{ij}}{N}$ .

Várt gyakoriságok (a függetlenség feltételezése mellett):  $f_{ij}^* = \frac{f_i \cdot f_{.j}}{N}$ .

## A kapcsolat szorossága

Khi-négyzet (chi-square) mutató:

$$\mathcal{X}^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(f_{ij} - f_{ij}^*)^2}{f_{ij}^*} = N \left( \sum_{i=1}^r \sum_{j=1}^c \frac{f_{ij}^2}{f_{i\cdot} \cdot f_{\cdot j}} - 1 \right).$$

Lehetséges értékei:  $O \leq \mathcal{X}^2 \leq N \min \{(r-1), (c-1)\}$ .

 $\mathcal{X}^2 = 0$ : X és Y függetlenek.

 $\mathcal{X}^2 = N \min \{(r-1), (c-1)\}$ : X és Y között függvényszerű a kapcsolat.

Cramér-féle asszociációs együttható (SPSS: Cramer's V):

$$C = \sqrt{rac{\mathcal{X}^2}{N\min\left\{(r-1),(c-1)
ight\}}}, \qquad 0 \leq C \leq 1.$$

C = 0: X és Y függetlenek.

C=1: X és Y között függvényszerű a kapcsolat.

Baran Sándor Statisztika 1 előadás 67 / 189

Egy kutatócsoport azt vizsgálta, milyen szoros az összefüggés egy bizonyos betegség lefolyásának súlyossága és a betegek életkora között. A vizsgálati adatok:

|          |         |           | Összesen |            |     |
|----------|---------|-----------|----------|------------|-----|
|          |         | 40 alatti | 40–60    | 60 fölötti |     |
|          | enyhe   | 41        | 34       | 9          | 84  |
| Lefolyás | közepes | 25        | 25       | 12         | 62  |
|          | súlyos  | 6         | 33       | 15         | 54  |
| Összesen |         | 72        | 92       | 36         | 200 |

$$r = c = 3$$
,  $N = 200$ . Várt gyakoriságok:

$$\mathcal{X}^2 = \frac{(41-30.24)^2}{30.24} + \frac{(34-38.64)^2}{38.64} + \ldots + \frac{(15-9.72)^2}{9.72} = 22.5230.$$

$$C = \sqrt{\frac{22.5230}{200 \cdot 2}} = 0.2373$$
. Gyenge kapcsolat.

Baran Sándor Statisztika 1 előadás 68 / 189

## PRE eljárás a kapcsolat szorosságának mérésére

Határozzuk meg annak a többletinformációnak a mennyiségét, amit a sokaság egységeinek az X szerinti hovatartozása nyújt az Y szerinti hovatartozásról.

### PRE eljárás:

- Meghatározzuk, hogy összességében mekkora hibával járna, ha a sokaság egységenek Y szerinti hovatartozását kizárólag azok Y szerinti megoszlása alapján próbálnánk meg megadni. Jelölés:  $E_1$ .
- 2 Meghatározzuk a hibát akkor is, ha ismerjük az egységek X szerinti hovatartozását. Jelölés:  $E_2$ .
- Meghatározzuk a relatív hibacsökkenést:

$$0 \le PRE = \frac{E_1 - E_2}{E_1} \le 1.$$

PRE = 0: X és Y függetlenek.

PRE = 1: X és Y között függvényszerű a kapcsolat.

Baran Sándor Statisztika 1 előadás 69 / 189

## Vegyes kapcsolat

Y a mennyiségi, X a minőségi vagy területi ismérv.

 $Y_{ij}$ : a X szerint képzett j-edik részsokaság i-edik egységéhez tartozó Y ismérvérték  $(j=1,2,\ldots,M,\ i=1,2,\ldots,N_j)$ .

X ismerete nélkül az Y értékének becslése  $\overline{Y}$ . A becslési hiba:

$$E_1 = \sum_{j=1}^{M} \sum_{i=1}^{N_j} (Y_{ij} - \overline{Y})^2 = SST.$$

Ha tudjuk, a vizsgált egység az X szerinti j-edik részsokaságba tartozik, akkor az Y értékének becslése  $\overline{Y_i}$ . A becslési hiba:

$$E_2 = \sum_{i=1}^{M} \sum_{j=1}^{N_j} (Y_{ij} - \overline{Y_j})^2 = SSB.$$

PRE mutató:

$$PRE = \frac{E_1 - E_2}{E_1} = \frac{SST - SSB}{SST} = \frac{SSK}{SST} = 1 - \frac{\sigma_B^2}{\sigma^2} = \frac{\sigma_K^2}{\sigma^2} = H^2.$$

Baran Sándor Statisztika 1 előadás 70 / 189

## Varianciahányados

Varianciahányados:

$$0 \le H^2 = \frac{SST - SSB}{SST} = \frac{SSK}{SST} \le 1.$$

 $H^2$  az Y ismérv szórásnégyzetének az X ismérv által megmagyarázott hányada.

$$H^2 = 0 \iff SSK = \sum_{j=1}^M N_j (\overline{Y_j} - \overline{Y})^2 = 0 \iff \overline{Y} = \overline{Y_j}.$$

Ez teljesül, ha X és Y független.

$$H^2=1\iff SSB=\sum_{i=1}^M\sum_{j=1}^{N_j}(Y_{ij}-\overline{Y_j})^2=0\iff Y_{ij}=\overline{Y_j}.$$

Ekkor X és Y között függvényszerű a kapcsolat.

Szóráshányados:  $H = \sqrt{H^2}$ .

Középfölde népei évenkénti fogathajtó versenye döntőjének másodpercekben mért eredményei:

| j  | Népcsoport |      | Eredmény $Y_{ij}$ |      |      |   |  |  |
|----|------------|------|-------------------|------|------|---|--|--|
| 1  | Tündék     | 54.3 | 59.7              | 49.5 |      | 3 |  |  |
| 2  | Törpök     | 55.0 | 45.2              |      |      | 2 |  |  |
| 3  | Emberek    | 52.1 | 54.5              | 56.9 | 50.7 | 4 |  |  |
| 4  | Hobbitok   | 44.8 | 47.4              | 54.2 |      | 3 |  |  |
| Ös | Összesen   |      |                   |      |      |   |  |  |

$$SST = 235.8625$$
,  $SSB = 169.57$ ,  $SSK = 66.2925$ .

$$H^2 = \frac{66.292}{235.8625} = 0.2811$$
 (28.11%),  $H = 0.5302$ .

A népcsoporthoz való tartozás az Y szórásnégyzetének 28.11%-át magyarázza. H=0.5302 közepesen erős kapcsolatot jelez.

Baran Sándor Statisztika 1 előadás 72 / 189

# Empirikus (tapasztalati) regressziófüggvény

X és Y mennyiségi ismérvek (akár fel is cserélhető a szerepük).

X: csoportképző ismérv. X szerinti osztályokat sorrendbe tudjuk állítani X értékei szerint.

Vizsgálható az X és az Y közötti kapcsolat *iránya*. Ha X növekedésével Y értéke is nő, az irány pozitív, ellenkező esetben negatív.

Az X szerint képzett részsokaságokhoz hozzárendelt  $\overline{Y_j}$  részátlagok sorozatát az Y változó X változóra vonatkozó (X szerinti) empirikus regressziófüggvényének nevezzük.

Grafikus ábrázolás: az  $(X_i, \overline{Y_i})$  pontokat összekötő vonaldiagram.

Y-nak X-re vonatkozó determinációs hányadosa (az X szerinti osztályokból számolt variancia-hányados):

$$\eta_{Y|X}^2 = \frac{\sigma_K^2(Y)}{\sigma^2(Y)}.$$

 $\sigma_K^2(Y)$ , illetve  $\sigma^2(Y)$ : Y külső, illetve teljes szórásnégyzete.

Baran Sándor Statisztika 1 előadás 73 / 189

A háztartások taglétszáma és átlagos egy főre jutó havi nettó jövedelme 2004-ben Budapesten és a községekben.

| A háztartás | Az adott taglétszámú háztartásban lévő személyek |             |                              |             |
|-------------|--------------------------------------------------|-------------|------------------------------|-------------|
| tagjainak   | százalékos megoszlása                            |             | egy főre jutó jövedelme (Ft) |             |
| száma       | Budapesten                                       | községekben | Budapesten                   | községekben |
| 1           | 13.0                                             | 7.9         | 99586                        | 65921       |
| 2           | 26.6                                             | 19.7        | 94538                        | 64996       |
| 3           | 25.6                                             | 20.2        | 83887                        | 62287       |
| 4           | 21.4                                             | 26.7        | 69762                        | 53235       |
| 5           | 8.5                                              | 14.9        | 65900                        | 44985       |
| 6 és több   | 4.9                                              | 10.6        | 58996                        | 38796       |
| Összesen    | 100.0                                            | 100.0       | 82974                        | 55619       |
|             |                                                  |             |                              |             |

Forrás: KSH

Legalább 6 fős háztartások átlagos létszáma Budapesten 6.55 fő, a községekben 6.74 fő.

## Empirikus regressziófüggvény



Az egy főre jutó havi nettó jövedelem és a háztartások taglétszáma közötti kapcsolat empirikus regressziófüggvényei.

## Analitikus regressziófüggvény

X és Y mennyiségi ismérvek. Az  $(X_i, Y_i)$  párokat vizsgáljuk.

Kérdés: Felhasználható-e az X változó  $X_i$  értéke az Y változó ugyanazon egységéhez tartozó  $Y_i$  érték előrejelzésére?

Az X és Y közötti sztochasztikus kapcsolat természetét egy f(X) függvénnyel, analitikus regressziófüggvénnyel akarjuk leírni.

Például:

$$f(X) = \beta_0 + \beta_1 \cdot X$$
, lineáris regresszió;  
 $f(X) = \beta_0 \cdot \beta_1^X$ , exponenciális regresszió.

Az Y változó  $X_i$ -hez tartozó értékének előrejelzése  $f(X_i)$ .

Pontdiagram: az  $(X_i, Y_i)$  párok ábrázolása a kétdimenziós tér pontjaiként. Utal az f(X) létezésére, illetve alakjára.

# Pontdiagram típusok



a) X és Y független.

- b) X és Y között *pozitív irányú* (lineáris) kapcsolat.
- c) X és Y között negatív irányú (lineáris) kapcsolat.
- d) X és Y között nemlineáris kapcsolat.

Baran Sándor Statisztika 1 előadás 77 / 189

#### Korreláció

(Lineáris) korrelációs együttható:

$$r(X,Y) = \frac{\sum d_{X_i} d_{Y_i}}{\sqrt{\sum d_{X_i}^2 \sum d_{Y_i}^2}} = \frac{\sum X_i Y_i - N\overline{X} \overline{Y}}{\sqrt{\left(\sum X_i^2 - N(\overline{X})^2\right)\left(\sum Y_i^2 - N(\overline{Y})^2\right)}}$$
$$= \frac{N \sum X_i Y_i - \left(\sum X_i\right)\left(\sum Y_i\right)}{\sqrt{\left(N \sum X_i^2 - \left(\sum X_i\right)^2\right)\left(N \sum Y_i^2 - \left(\sum Y_i\right)^2\right)}}.$$

Az  $-1 \le r(X,Y) \le 1$  korrelációs együttható abszolút értéke az X és Y közötti lineáris kapcsolat szorosságát méri, előjele pedig a kapcsolat irányát mutatja.

 $r(X, Y) = \pm 1$ : függvényszerű lineáris kapcsolat;

r(X, Y) = 0: nincs lineáris kapcsolat. Korrelálatlanok. Nem feltétlenül függetlenek!

Minél nagyobb |r(X, Y)|, annál szorosabb a kapcsolat.

Baran Sándor Statisztika 1 előadás 78 / 189

### Kovariancia

X és Y kovarianciája:

$$C(X,Y)=\frac{\sum d_{X_i}d_{Y_i}}{N}.$$

Kapcsolata a korrelációval:

$$r(X,Y)=\frac{C(X,Y)}{\sigma_X\sigma_Y}.$$

 $\sigma_X$ ,  $\sigma_Y$ : X, illetve Y szórása.

Kapcsolata a varianciával:  $C(X,X) = \sigma_X^2$ .

C(X, Y) > 0: X és Y között pozitív irányú kapcsolat;

C(X, Y) < 0: X és Y között negatív irányú kapcsolat.

C(X, Y) = 0: nincs lineáris kapcsolat. Nem feltétlenül függetlenek!

# Determinációs együttható, súlyozott alakok

Determinációs együttható:  $r^2$ .

PRE mutató.  $100r^2$  azt mutatja, hogy az X ismerete hány százalékkal csökkenti az Y nagyságával kapcsolatos bizonytalanságot, ha X és Y között lineáris kapcsolat van.

Súlyozott alakok:

$$C(X,Y) = \frac{\sum f_i \cdot d_{X_i} d_{Y_i}}{N}, \qquad r(X,Y) = \frac{\sum f_i \cdot d_{X_i} d_{Y_i}}{\sqrt{\sum f_i \cdot d_{X_i}^2 \sum f_i \cdot d_{Y_i}^2}}.$$

 $f_i$ : az  $(X_i, Y_i)$  pár gyakorisága.

 $N = \sum f_i$ : a sokaság elemszáma.

### Példa

Néhány alsó középkategóriás személygépkocsi vegyes fogyasztása és CO<sub>2</sub> kibocsátása.

|                                        | Kia cee'd          | Citroën C4               | Ford Focus            | Honda Civic               |
|----------------------------------------|--------------------|--------------------------|-----------------------|---------------------------|
|                                        | 1.4 CVVT           | 1.4 Vti                  | 1.6 Ti-VCT            | 1.4i                      |
| Teljesítmény (LE)                      | 100                | 95                       | 105                   | 100                       |
| Fogyasztás (I/100km)                   | 6.0                | 6.1                      | 5.9                   | 5.4                       |
| CO <sub>2</sub> (g/km)                 | 139                | 140                      | 136                   | 128                       |
|                                        |                    |                          |                       |                           |
|                                        | Mazda 3            | Opel Astra               | Renault Mégane        | Volkwagen Golf            |
|                                        | Mazda 3<br>1.6 MZR | Opel Astra<br>1.4 Ecotec | Renault Mégane<br>1.6 | Volkwagen Golf<br>1.2 TSI |
| Teljesítmény (LE)                      |                    |                          |                       |                           |
| Teljesítmény (LE) Fogyasztás (I/100km) | 1.6 MZR            | 1.4 Ecotec               | 1.6                   | 1.2 TSI                   |

Forrás: Az Autó, 2012/9.

$$X: 6.0, 6.1, 5.9, 5.4, 6.5, 5.5, 6.7, 5.7;$$
  $\overline{X} = 5.975;$ 

$$Y: 139, 140, 136, 128, 149, 129, 155, 134;$$
  $\overline{Y} = 138.75.$ 

Baran Sándor Statisztika 1 előadás 81 / 189

### Példa

 $d_X$ : 0.025, 0.125, -0.075, -0.575, 0.525, -0.475, 0.725, -0.275;  $d_Y$ : 0.25, 1.25, -2.75, -10.75, 10.25, -9.75, 16.25, -4.75.

$$\sum_{y} d_x^2 = 0.025^2 + 0.125^2 + \dots + (-0.275)^2 = 1.455,$$

$$\sum_{y} d_y^2 = 0.25^2 + 1.25^2 + \dots + (-4.75)^2 = 611.5,$$

$$\sum_{y} d_x d_y = 0.025 \cdot 0.25 + \dots + (-0.275) \cdot (-4.75) = 29.65.$$

$$C(X,Y) = \frac{\sum d_{X_i} d_{Y_i}}{N} = \frac{29.65}{8} = 3.7062,$$

$$r(X,Y) = \frac{\sum d_{X_i} d_{Y_i}}{\sqrt{\sum d_{X_i}^2 \sum d_{Y_i}^2}} = \frac{29.65}{\sqrt{1.455 \cdot 611.5}} = 0.9940.$$

Baran Sándor

## Pontdiagram



Korreláció: r(X, Y) = 0.9940. Determinációs együttható:  $r^2 = 0.9881$ .

Az egyenes egyenlete:  $f(X) = 16.9914 + 20.3780 \cdot X$ .

Baran Sándor Statisztika 1 előadás

83 / 189

## Rangkorreláció

Mindkét ismérv sorrendi skálán mérhető.

 $R_X$  és  $R_Y$ : az X és Y változó szerinti rangok.

Kapcsolt rangok: az adott ismérv több értéke is megegyezik. A hozzájuk tartozó rangok átlagát kapja meg mindegyik azonos ismérvérték.

Spearman-féle rangkorrelációs együttható:

$$-1 \leq \varrho = 1 - \frac{6\sum (R_X - R_Y)^2}{N(N^2 - 1)} \leq 1.$$

arrho=1: tökéletesen egyező rangsorolás.

arrho=-1: tökéletesen ellentétes rangsorolás.

 $\varrho=0$ : nincs kapcsolat a rangsorolások között.

Nincsenek kapcsolt rangok –  $\varrho$  megegyezik a rangokból számolt r korrelációs együtthatóval.

 $\varrho^2$ : a kapcsolat szorosságát mérő *PRE* mutató.

Baran Sándor Statisztika 1 előadás 84 / 189

### Példa

A hazai informatikai képzőhelyek 2015-ös, a hallgatói, illetve az oktatói kiválóság szerinti rangsorai. (Forrás: eduline.hu)

| Intézmény | Hallgatók $(R_X)$ | Oktatók $(R_Y)$ | $(R_X - R_Y)^2$ |
|-----------|-------------------|-----------------|-----------------|
| BME-VIK   | 1                 | 5.5             | 20.25           |
| ELTE-IK   | 2                 | 8               | 36              |
| SZTE-TTIK | 3                 | 2               | 1               |
| PE-MIK    | 7                 | 3               | 16              |
| DE-IK     | 5                 | 5.5             | 0.25            |
| DF        | 10                | 7               | 9               |
| OE-NIK    | 4                 | 4               | 0               |
| PPKE-ITK  | 6                 | 1               | 25              |
| GDF       | 9                 | 9.5             | 0.25            |
| Kf-GAMFK  | 8                 | 9.5             | 2.25            |
| Összesen  | 55                | 55              | 110             |

$$\varrho = 1 - \frac{6 \cdot 110}{10 \cdot (100 - 1)} = \frac{1}{3} = 0.3(3), \quad \varrho^2 = \frac{1}{9} = 0.1(1), \quad r = 0.3293.$$

Gyenge kapcsolat a rangsorok között.

Baran Sándor Statisztika 1 előadás 85 / 189

# Összetett intenzitási viszonyszámok összehasonlítása

Két azonos tartalmú, de különböző összetett viszonyszámot kívánunk összehasonlítani.

$$V_{0i} = A_{0i}/B_{0i}, \ V_{1i} = A_{1i}/B_{1i}$$
: részviszonyszámok.

Összetett viszonyszámok:

$$\overline{V}_s = \frac{\sum_j A_{sj}}{\sum_j B_{sj}} = \frac{\sum_j B_{sj} V_{sj}}{\sum_j B_{sj}} = \frac{\sum_j A_{sj}}{\sum_j \frac{A_{sj}}{V_{sj}}}, \qquad s = 0, 1.$$

 $\overline{V}_0$  és  $\overline{V}_1$  eltérésének okai:

- eltérőek lehetnek a két sokaság ugyanazon részeire számított  $V_{0i}$  és  $V_{1i}$  részviszonyszámok, és/vagy
- eltérő lehet a két sokaság szerkezete (összetétele).

Baran Sándor Statisztika 1 előadás 87 / 189

## Jelölések

| Részsokaság | Első sokaság    |               |                  | Második sokaság |               |                  | Összehasonlítás |                       |
|-------------|-----------------|---------------|------------------|-----------------|---------------|------------------|-----------------|-----------------------|
| sorszáma    | számláló        | nevező        | viszonyszám      | számláló        | nevező        | viszonyszám      | különbség       | hányados              |
| 1           | $A_{01}$        | $B_{01}$      | $V_{01}$         | $A_{11}$        | $B_{11}$      | $V_{11}$         | $k_1$           | $i_1$                 |
| 2           | $A_{02}$        | $B_{02}$      | $V_{02}$         | $A_{12}$        | $B_{12}$      | $V_{12}$         | k <sub>2</sub>  | <i>i</i> <sub>2</sub> |
| :           | :               | :             | :                | :               | :             | :                | :               | :                     |
| j           | $A_{0j}$        | $B_{0j}$      | $V_{0j}$         | $A_{1j}$        | $B_{1j}$      | $V_{1j}$         | kj              | ij                    |
| :           | i               | :             | :                | :               | :             | :                | :               | :                     |
| М           | A <sub>0M</sub> | $B_{0M}$      | $V_{0M}$         | A <sub>1M</sub> | $B_{1M}$      | $V_{1M}$         | k <sub>M</sub>  | i <sub>M</sub>        |
| Fősokaság   | $\sum A_{0j}$   | $\sum B_{0j}$ | $\overline{V}_0$ | $\sum A_{1j}$   | $\sum B_{1j}$ | $\overline{V}_1$ | K               | I                     |

Részviszonyszám különbségek:  $k_j = V_{1j} - V_{0j}$ .

Részviszonyszám hányadosok:  $i_j = V_{1j}/V_{0j}$ .

Összetett viszonyszám különbségek:  $K=\overline{V}_1-\overline{V}_0$ .

Összetett viszonyszám hányadosok:  $I = \overline{V}_1/\overline{V}_0$ .

### Különbségfelbontás

Teljes különbség:  $K = \overline{V}_1 - \overline{V}_0$ .

$$K = \frac{\sum B_1 V_1}{\sum B_1} - \frac{\sum B_0 V_0}{\sum B_0}.$$

Részhatás különbség(ek):

$$K' = K'_s = rac{\sum B_s V_1}{\sum B_s} - rac{\sum B_s V_0}{\sum B_s} = rac{\sum B_s (V_1 - V_0)}{\sum B_s} = rac{\sum B_s k}{\sum B_s}, \quad s = 0, 1.$$

A részviszonyszámok közötti eltérések hatását mutatja.

Összetétel hatás különbség(ek):

$$K'' = K''_s = rac{\sum B_1 V_s}{\sum B_1} - rac{\sum B_0 V_s}{\sum B_0}, \quad s = 0, 1.$$

A sokaságok eltérő összetételének a hatását mutatja.

Feltétel: K = K' + K''.

$$lacktriangledown$$
 Ha  $K'$ -ben  $B_s=B_0$ , akkor  $K''$ -ben  $V_s=V_1$  ( $K=K_0'+K_1''$ ).

lacksquare Ha K'-ben  $B_s=B_1$ , akkor K''-ben  $V_s=V_0$   $(K=K_1'+K_0'')$ .

Baran Sándor Statisztika 1 előadás 89 / 189

### Példa

| Korcsoport | Népesség száma (millió fő) |            | Halálozások száma (fő) |            | Halálozási arányszám $(\%)$ |            |
|------------|----------------------------|------------|------------------------|------------|-----------------------------|------------|
| (év)       | Mexikó                     | Svédország | Mexikó                 | Svédország | Mexikó                      | Svédország |
| 0–14       | 33.86                      | 1.53       | 110 471                | 904        | 3.3                         | 0.6        |
| 15–59      | 53.01                      | 5.17       | 140 238                | 9 674      | 2.7                         | 1.9        |
| 60–69      | 4.74                       | 1.12       | 61 826                 | 13 751     | 13.1                        | 12.3       |
| 70–        | 1.40                       | 0.95       | 133 913                | 66 001     | 95.7                        | 69.5       |
| Összesen   | 93.01                      | 8.77       | 446 448                | 90 330     | 4.8                         | 10.3       |

Keresztély, Sugár, Szarvas (2005, B.7 feladat, 87. old.)

| Korcsoport | Népesség megoszlása (%) |            |  |  |  |
|------------|-------------------------|------------|--|--|--|
| (év)       | Mexikó                  | Svédország |  |  |  |
| 0–14       | 36.4                    | 17.4       |  |  |  |
| 15–59      | 57.0                    | 59.0       |  |  |  |
| 60–69      | 5.1                     | 12.8       |  |  |  |
| 70-        | 1.5                     | 10.8       |  |  |  |
| Összesen   | 100.0                   | 100.0      |  |  |  |

A<sub>1</sub>: halálozások száma, Svédország;

A<sub>0</sub>: halálozások száma, Mexikó;

B<sub>1</sub>: népesség száma, Svédország;

 $B_0$ : népesség száma, Mexikó;

 $V_1$ : halálozási arány, Svédország;

 $V_0$ : halálozási arány, Mexikó.

$$K = \overline{V}_1 - \overline{V}_0 = 10.3 - 4.8 = 5.5 \%$$

Baran Sándor Statisztika 1 előadás 90 / 189

| Korcsoport | Népesség megoszlása (% ) |            | Halálozások száma (fő) |            | Halálozási arányszám ‰) |            |
|------------|--------------------------|------------|------------------------|------------|-------------------------|------------|
| (év)       | Mexikó                   | Svédország | Mexikó                 | Svédország | Mexikó                  | Svédország |
| 0-14       | 36.4                     | 17.4       | 110 471                | 904        | 3.3                     | 0.6        |
| 15–59      | 57.0                     | 59.0       | 140 238                | 9 674      | 2.7                     | 1.9        |
| 60–69      | 5.1                      | 12.8       | 61 826                 | 13 751     | 13.1                    | 12.3       |
| 70-        | 1.5                      | 10.8       | 133 913                | 66 001     | 95.7                    | 69.5       |
| Összesen   | 100.0                    | 100.0      | 446 448                | 90 330     | 4.8                     | 10.3       |

$$\begin{split} \mathcal{K}_1' &= 10.3 - \frac{17.4 \cdot 3.3 + 59 \cdot 2.7 + 12.8 \cdot 13.1 + 10.8 \cdot 95.7}{100} = -3.9 \ \% \\ \mathcal{K}_0' &= \frac{36.4 \cdot 0.6 + 57 \cdot 1.9 + 5.1 \cdot 12.3 + 1.5 \cdot 69.5}{100} - 4.8 = -1.8 \ \% \end{split}$$

$$K_1'' = K - K_0' = 5.5 + 1.8 = 7.3 \%$$
 $K_0'' = K - K_1' = 5.5 + 3.9 = 9.4 \%$ 
 $K_{10}' = \frac{K_1' + K_0'}{2} = \frac{-3.9 - 1.8}{2} = -2.85 \%$ 
 $K_{10}'' = \frac{K_1'' + K_0''}{2} = \frac{7.3 + 9.4}{2} = 8.35 \%$ 

## Hányadosfelbontás

Összhatásindex:  $I = \overline{V}_1/\overline{V}_0$ .

$$I = \frac{\sum A_1}{\sum B_1} : \frac{\sum A_0}{\sum B_0} = \frac{\sum A_1}{\sum A_0} : \frac{\sum B_1}{\sum B_0} = \frac{\sum B_1 V_1}{\sum B_1} : \frac{\sum B_0 V_0}{\sum B_0}.$$

Részhatásindex(ek):

$$I' = I'_s = \frac{\sum B_s V_1}{\sum B_s} : \frac{\sum B_s V_0}{\sum B_s} = \frac{\sum B_s V_1}{\sum B_s V_0}, \quad s = 0, 1.$$

A részviszonyszámok változásának hatását mutatja.

Összetételhatás index(ek):

$$I'' = I_s'' = \frac{\sum B_1 V_s}{\sum B_1} : \frac{\sum B_0 V_s}{\sum B_0}, \quad s = 0, 1.$$

A sokaságok összetétele megváltozásának a hatását mutatja.

Feltétel:  $I = I' \cdot I''$ .

- **1** Ha I'-ben  $B_s = B_0$ , akkor I''-ben  $V_s = V_1 \ (I = I'_0 \cdot I''_1)$ .
- lacksquare Ha I'-ben  $B_s=B_1$ , akkor I''-ben  $V_s=V_0$   $(I=I_1'\cdot I_0'')$ .

Baran Sándor Statisztika 1 előadás 92 / 189

I = 113.4%

|                    |         | 2007     |               |         | 2010     |               |               |  |
|--------------------|---------|----------|---------------|---------|----------|---------------|---------------|--|
|                    | 2007    |          |               |         | 2010     |               |               |  |
| Legmagasabb        | Léts    | zám      | Havi bruttó   | Léts    | zám      | Havi bruttó   | 2007=100      |  |
| iskolai végzettség | fő      | megosz-  | átlagkereset, | fő      | megosz-  | átlagkereset, | $i = V_1/V_0$ |  |
|                    | $B_0$   | lás (% ) | eFt $V_0$     | $B_1$   | lás (% ) | eFt $V_1$     |               |  |
| 8 általános alatt  | 8866    | 0.4      | 126           | 6236    | 0.3      | 127           | 100.8         |  |
| 8 általános        | 315625  | 14.2     | 109           | 263124  | 12.7     | 123           | 112.8         |  |
| Szakiskola         | 647433  | 29.2     | 129           | 564221  | 27.3     | 144           | 111.6         |  |
| Középiskola        | 726217  | 32.8     | 172           | 689006  | 33.3     | 186           | 108.1         |  |
| Főiskola           | 329675  | 14.9     | 270           | 348364  | 16.9     | 300           | 111.1         |  |
| Egyetem            | 189436  | 8.5      | 407           | 196527  | 9.5      | 440           | 108.1         |  |
| Összesen           | 2217252 | 100.0    | 184.9         | 2067478 | 100.0    | 209.7         | 113.4         |  |

Forrás: Munkaügyi adattár. 2008, 2011.

```
I'_1 = 209.7 : 190.96 = 1.0981 (109.81\%), I''_0 = 113.4 : 109.81 = 1.0327 (103.27\%), I''_0 = 203.18 : 184.9 = 1.0989 (109.89\%), I''_1 = 113.4 : 109.89 = 1.0320 (103.20\%).
```

## Aggregátumok összehasonlítása

Aggregátum:

$$A = \sum_{i=1}^n q_i p_i = \sum_{i=1}^n \nu_i$$

 $q_i$ : az i-edik fajta egységeinek (termékeinek) mennyisége valamilyen alkalmas mértékegységben;  $p_i$ : az i-edik fajta egység egységára;

 $\nu_i$ : az i-edik fajta egységek összértéke.

Ha a  $q_i$  adatok:

- termelt mennyiségek, akkor A a termelés;
- eladott mennyiségek, akkor A a forgalom;
- fogyasztott mennyiségek, akkor A a fogyasztás.

qi: valamilyen időszakra értelmezhető.

p<sub>i</sub>: valamilyen időpontra értelmezhető.

Továbbiakban:  $q_i$  – termelt mennyiség;  $p_i$  – egységár.

Baran Sándor Statisztika 1 előadás 94 / 189

### Két időszak közötti összehasonlítás

n termék két időszakra vonatkozóan: bázisidőszak, tárgyidőszak

| Termék        | Termelt mennyiség | Egységár               | Termelt mennyiség | Egységár |
|---------------|-------------------|------------------------|-------------------|----------|
| sorszáma (i)  | a bázisidős       | zakban                 | a tárgyidősz      | zakban   |
| 1             | $q_{01}$          | $p_{01}$               | $q_{11}$          | $p_{11}$ |
| 2             | <b>q</b> 02       | <i>P</i> <sub>02</sub> | $q_{12}$          | $p_{12}$ |
| :             | <u>:</u>          | :                      | i :               | ÷        |
| i             | 9 <sub>0i</sub>   | P <sub>0i</sub>        | $q_{1i}$          | $p_{1i}$ |
| :             | :                 | :                      | i :               | :        |
| n             | <b>q</b> 0n       | $p_{0n}$               | $q_{1n}$          | $p_{1n}$ |
| Rövid jelölés | $q_0$             | $p_0$                  | $q_1$             | $ ho_1$  |

Kérdések egy termékkel, vagy a termékek összességével kapcsolatban:

- a) hogyan változott a termelés értéke;
- b) hogyan változott a termelés mennyisége (volumene);
- c) hogyan változott az ár, illetve az árszínvonal.

# Egyedi indexek

Egy termék vizsgálata – dinamikus viszonyszámok.

$$i_{\nu} = \frac{q_{1i}p_{1i}}{q_{oi}p_{oi}} = \frac{\nu_{1i}}{\nu_{0i}}, \qquad i_{q} = \frac{q_{1i}}{q_{oi}}, \qquad i_{p} = \frac{p_{1i}}{p_{oi}}.$$

Az egy termékre vonatkozóan meghatározott  $i_{\nu}$ ,  $i_{q}$  és  $i_{p}$  dinamikus viszonyszámokat egyedi indexeknek nevezzük. Az egyedi indexek rendre azt mutatják meg, hogy hogyan (hány százalékkal) változott az adott termékre vonatkozó

- termelési érték,
- termelt mennyiség,
- egységár

a bázisidőszakról a tárgyidőszakra.

Összefüggés az egyedi indexek között:  $i_{
u}=i_{q}\cdot i_{p}.$ 

# Érték- és volumenindex

#### Értékindex:

$$I_{\nu} = \frac{\sum q_1 p_1}{\sum q_0 p_0} = \frac{\sum \nu_1}{\sum \nu_0}.$$

Az  $I_{\nu}$  értékindex azt mutatja, hogy hogyan (hány százalékkal) változott a teljes termelés értéke a bázisidőszakról a tárgyidőszakra.

#### Volumenindex:

$$I_q = rac{\sum q_1 p_s}{\sum q_0 p_s}.$$

p<sub>s</sub>: mindkét időszakra érvényesnek feltételezett egységár.

Az  $I_q$  volumenindex azt mutatja, hogy a termelt mennyiségek összességükben hogyan (hány százalékkal) változtak, vagyis hogyan változott a termelés volumene a bázisidőszakról a tárgyidőszakra.

# Árindex

### Árindex:

$$I_p = \frac{\sum q_s p_1}{\sum q_s p_0}.$$

q<sub>s</sub>: mindkét időszakra érvényesnek feltételezett mennyiség.

Az  $I_p$  árindex azt mutatja, hogy az egységárak összességükben hogyan (hány százalékkal) változtak, amit az árszínvonal-változás mértékének is szokás nevezni.

 $I_{\nu}$ ,  $I_{a}$ ,  $I_{p}$ : indexek aggregát formái.

$$I_{
u}=rac{\sum q_1p_1}{\sum q_0p_0}, \qquad I_q=rac{\sum q_1p_s}{\sum q_0p_s}, \qquad I_p=rac{\sum q_sp_1}{\sum q_sp_0}.$$

Baran Sándor Statisztika 1 előadás 98 / 189

## Legfontosabb volumen- és árindexformulák

Meg kell választani a  $p_s$  egységárakat és a  $q_s$  mennyiségeket. Használhatunk

- ullet bázisidőszaki adatokat:  $I_q$ -ban  $p_s=p_0$ ,  $I_p$ -ben  $q_s=q_0$ ;
- ullet tárgyidőszaki adatokat:  $I_q$ -ban  $p_s=p_1$ ,  $I_p$ -ben  $q_s=q_1$ ;
- a bázisidőszaki és tárgyidőszaki indexek mértani átlagát.

Bázisidőszaki súlyozású, avagy Laspeyres-féle indexek:

$$I_q^0 = rac{\sum q_1 p_0}{\sum q_0 p_0}, \qquad I_p^0 = rac{\sum q_0 p_1}{\sum q_0 p_0}.$$

Tárgyidőszaki súlyozású, avagy Paasche-féle indexek:

$$I_q^1 = rac{\sum q_1 p_1}{\sum q_0 p_1}, \qquad I_p^1 = rac{\sum q_1 p_1}{\sum q_1 p_0}.$$

Mértani átlagolású, ún. Fisher-féle indexek:

$$I_q^F = \sqrt{I_q^0 \cdot I_q^1}, \qquad I_p^F = \sqrt{I_p^0 \cdot I_p^1}.$$

### Példa

Egy fővárosi piacon egy büfében a jellegzetes termékek téli és nyári árai és a fogyasztott mennyiségek.

|                    | De   | cember    | J    | lúlius    |
|--------------------|------|-----------|------|-----------|
| Megnevezés         | ár   | eladott   | ár   | eladott   |
|                    | (Ft) | mennyiség | (Ft) | mennyiség |
| Nagyfröccs (pohár) | 70   | 1500      | 80   | 1800      |
| Sör (korsó)        | 120  | 1740      | 130  | 2110      |
| Lángos (db)        | 100  | 2100      | 100  | 2000      |
| Bableves (tál)     | 400  | 650       | 410  | 660       |
| Hurka (10 dkg)     | 80   | 980       | 85   | 1060      |

Keresztély, Sugár, Szarvas (2005, Gy.108 feladat, 103. old.)

$$I_{\nu} = \frac{80 \cdot 1800 + 130 \cdot 2110 + 100 \cdot 2000 + 410 \cdot 660 + 85 \cdot 1060}{70 \cdot 1500 + 120 \cdot 1740 + 100 \cdot 2100 + 400 \cdot 650 + 80 \cdot 980} = \frac{979000}{862200} = 1.1355 \quad (113.55\%).$$

Baran Sándor Statisztika 1 előadás 100 / 189

|                    | De   | cember    | Július |           |  |
|--------------------|------|-----------|--------|-----------|--|
| Megnevezés         | ár   | eladott   | ár     | eladott   |  |
|                    | (Ft) | mennyiség | (Ft)   | mennyiség |  |
| Nagyfröccs (pohár) | 70   | 1500      | 80     | 1800      |  |
| Sör (korsó)        | 120  | 1740      | 130    | 2110      |  |
| Lángos (db)        | 100  | 2100      | 100    | 2000      |  |
| Bableves (tál)     | 400  | 650       | 410    | 660       |  |
| Hurka (10 dkg)     | 80   | 980       | 85     | 1060      |  |

$$I_q^0 = \frac{70 \cdot 1800 + 120 \cdot 2110 + 100 \cdot 2000 + 400 \cdot 660 + 80 \cdot 1060}{70 \cdot 1500 + 120 \cdot 1740 + 100 \cdot 2100 + 400 \cdot 650 + 80 \cdot 980} = \frac{928000}{862200} = 1.0763 \quad (107.63\%).$$

$$I_q^1 = \frac{80 \cdot 1800 + 130 \cdot 2110 + 100 \cdot 2000 + 410 \cdot 660 + 85 \cdot 1060}{80 \cdot 1500 + 130 \cdot 1740 + 100 \cdot 2100 + 410 \cdot 650 + 85 \cdot 980} = \frac{979000}{906000} = 1.0806 \quad (108.06\%).$$

 $I_a^F = \sqrt{1.0763 \cdot 1.0806} = 1.0784 \quad (107.84\%).$ 

|                    | December |           | Július |           |  |
|--------------------|----------|-----------|--------|-----------|--|
| Megnevezés         | ár       | eladott   | ár     | eladott   |  |
|                    | (Ft)     | mennyiség | (Ft)   | mennyiség |  |
| Nagyfröccs (pohár) | 70       | 1500      | 80     | 1800      |  |
| Sör (korsó)        | 120      | 1740      | 130    | 2110      |  |
| Lángos (db)        | 100      | 2100      | 100    | 2000      |  |
| Bableves (tál)     | 400      | 650       | 410    | 660       |  |
| Hurka (10 dkg)     | 80       | 980       | 85     | 1060      |  |

$$I_{p}^{0} = \frac{80 \cdot 1500 + 130 \cdot 1740 + 100 \cdot 2100 + 410 \cdot 650 + 85 \cdot 980}{70 \cdot 1500 + 120 \cdot 1740 + 100 \cdot 2100 + 400 \cdot 650 + 80 \cdot 980} = \frac{906000}{862200} = 1.0508 \quad (105.08\%).$$

$$I_{p}^{1} = \frac{80 \cdot 1800 + 130 \cdot 2110 + 100 \cdot 2000 + 410 \cdot 660 + 85 \cdot 1060}{70 \cdot 1800 + 120 \cdot 2110 + 100 \cdot 2000 + 400 \cdot 660 + 80 \cdot 1060} = \frac{979000}{928000} = 1.0550 \quad (105.50\%).$$

$$I_{q}^{F} = \sqrt{1.0508 \cdot 1.0550} = 1.0529 \quad (105.29\%).$$

## Indexek átlagformái

Minden aggregát formában felírható index egyben a megfelelő egyedi indexek súlyozott átlaga, azaz összetett viszonyszám.

| Indexformula | Α         | В         | V      |
|--------------|-----------|-----------|--------|
| $I_{\nu}$    | $q_1p_1$  | $q_0 p_0$ | $i_ u$ |
| $I_q^0$      | $q_1 p_0$ | $q_0 p_0$ | $i_q$  |
| $I_q^1$      | $q_1p_1$  | $q_0p_1$  | $i_q$  |
| $I_{p}^{0}$  | $q_0 p_1$ | $q_0 p_0$ | $i_p$  |
| $I_p^1$      | $q_1p_1$  | $q_1 p_0$ | $i_p$  |

Volumenindexek felírása átlagforma alakban:

$$I_q^0 = \frac{\sum q_0 p_0 i_q}{\sum q_0 p_0} = \frac{\sum \nu_0 i_q}{\sum \nu_0} = \frac{\sum q_1 p_0}{\sum \frac{q_1 p_0}{i_q}},$$

$$I_q^1 = \frac{\sum q_0 p_1 i_q}{\sum q_0 p_1} = \frac{\sum q_1 p_1}{\sum \frac{q_1 p_1}{i_q}} = \frac{\sum \nu_1}{\sum \frac{\nu_1}{i_q}}.$$

# Összefüggések

Egyedi termékekre vonatkozó összefüggések:

$$q_0p_0 \cdot i_q = q_1p_0, \quad q_0p_0 \cdot i_p = q_0p_1, \quad q_0p_0 \cdot i_\nu = q_1p_1,$$
  $rac{q_1p_1}{i_q} = q_0p_1, \quad rac{q_1p_1}{i_p} = q_1p_0, \quad rac{q_1p_1}{i_
u} = q_0p_0.$ 

Indexformulák összefüggései:

$$I_q^0 \cdot I_p^1 = I_{\nu}, \quad I_q^1 \cdot I_p^0 = I_{\nu}, \quad I_q^F \cdot I_p^F = I_{\nu}.$$

Baran Sándor Statisztika 1 előadás 104 / 189

### Példa

A karácsonyi fenyőfapiac forgalmi adatairól az alábbiakat tudjuk:

|                | A forgalom értékének     | Árváltozás  |
|----------------|--------------------------|-------------|
| Fenyő fajtája  | %-os megoszlása 2021-ben | (2020=100%) |
| Lucfenyő       | 50                       | 105         |
| Ezüstfenyő     | 30                       | 107         |
| Nordmann fenyő | 20                       | 115         |

Ismert, hogy a fenyők összes forgalma 2020-ról 2021-re 20%-kal emelkedett. Számítsa ki a forgalom érték-, ár- és volumenindexét. Minden kapott eredményt szövegesen is értékeljen.

# A Laspeyres- és a Paache féle indexek eltérése

Volumenindexek:

$$I_q^0 = \frac{\sum q_0 p_0 i_q}{\sum q_0 p_0} = \frac{\sum \nu_0 i_q}{\sum \nu_0}, \qquad I_q^1 = \frac{\sum q_0 p_1 i_q}{\sum q_0 p_1}.$$

Az egyedi volumenindexek súlyozott átlagai. A súlyok:

$$w_L = \frac{q_0 p_0}{\sum q_0 p_0} = \frac{\nu_0}{\sum \nu_0}, \qquad w_P = \frac{q_0 p_1}{\sum q_0 p_1}.$$

Összefüggés a súlyok között:

$$w_P = rac{q_0 p_0}{\sum q_0 p_0} \cdot rac{p_1/p_0}{\sum q_0 p_1} = w_L \cdot rac{i_P}{I_p^0}.$$

### Bortkiewicz formula

Az  $I_q^0$  és  $I_q^1$  volumenindexek minden olyan esetben eltérő eredményt adnak, amikor

- szóródnak az egyedi volumenindexek és
- szóródnak az egyedi árindexek és
- az egyedi volumen- és egyedi árindexek között sztochasztikus kapcsolat van.

Ha az egyedi volumen- és árindexek közötti sztochasztikus kapcsolat pozitív irányú, akkor  $I_q^0 < I_q^1$ , ha negatív irányú, akkor  $I_q^0 > I_q^1$ .

#### Bortkiewicz formula:

$$\frac{I_q^1}{I_q^0} = 1 + V_{i_q} \cdot V_{i_p} \cdot r_{i_q,i_p}.$$

 $V_{i_q}$ ,  $V_{i_p}$ : az egyedi indexek relatív szórása;

 $r_{i_q,i_p}$ : az egyedi ár- és volumenindexek korrelációs együtthatója.

# Árollók

Két egymással valamilyen kapcsolatban lévő csoport indexeit hasonlítjuk össze, legtöbbször árindexeket.

Árolló: két árindex hányadosa. A leggyakoribb árollók:

- agrárolló: a mezőgazdasági termékek termelőiár-indexének és a mezőgazdasági ráfordítások árindexének hányadosa.
- cserearányindex (terms of trade): az exportált és importált termékek árindexének hányadosa.

Az árolló azt mutatja, hogy a bevételt biztosító termékek bázisidőszakival azonos, illetve egységnyi volumenéért mennyivel nagyobb vagy kisebb volumenű másféle termék kapható cserébe a tárgyidőszakban.

## Cserearányindex

A cserearényindex azt mutatja, hogy az exportált termékek és szolgáltatások bázisidőszakival azonos, illetve egységnyi volumenéért hányszor akkora volumenű terméket és szolgáltatást lehet importálni a tárgyidőszakban, mint a bázisidőszakban.

$$I_{cs} = rac{I_p^{\times}}{I_p^m}.$$

 $I_p^x$ : az exportált termékek árindexe;

 $I_p^m$ : az importált termékek árindexe.

Példa. 2020-ban az export forintban mért árszínvonala 4.7 %-kal, az importé 2.6 %-kal nőtt az előző évihez képest.

$$I_p^x = 104.7, \qquad I_p^m = 102.6, \qquad I_{cs} = 104.7/102.6 = 1.0205.$$

A cserearány 2.05 %-kal javult.

Forrás: KSH, Helyzetkép a külkereskedelemről, 2020.

Baran Sándor Statisztika 1 előadás 109 / 189

### Több időszak közötti összehasonlítás

Az indexsor valamely index – egy érték-, egy ár- vagy egy volumenindex – kettőnél több idő-szakra vonatkozó sorozata.

Aggregátumok:

$$A_{ij} = \sum q_i p_j, \qquad i,j = 1,2,\ldots,k.$$

- az összegzés mindig a termékek ugyanazon körére terjed ki minden időszakban;
- az i index azt jelzi, melyik időszak termelési értékéről van szó, melyik időszak mennyiségi adatait vesszük alapul;
- a j index azt jelzi, a termelési értéket melyik időszak egységárain számították;
- k: az időszakok száma.

Az  $A_{ij}$  aggregátum nem más, mint az i-edik időszak termelési értéke a j-edik időszak egységárain számítva.

# Aggregátummátrix

Aggregátummátrix:  $A = [A_{ij}]$ .

A főátlója: folyóáras aggregátumok.

Az A mátrix főátlójában található aggregátumok hányadosai értékindexeket, valamely adott oszlop aggregátumainak hányadosai voumenindexeket, valamely sor adataiból számított hányadosok pedig árindexeket adnak.

#### Példa

Magyarországon a háztartásokban az egy főre jutó fogyasztás értékei 1997–2000 között.

| Fogyasztás | 1997                 | 1998 | 1999 | 2000 |
|------------|----------------------|------|------|------|
| éve        | évi árakon (ezer Ft) |      |      |      |
| 1997       | 219                  | 223  | 238  | 251  |
| 1998       | 240                  | 244  | 261  | 275  |
| 1999       | 261                  | 266  | 284  | 299  |
| 2000       | 288                  | 293  | 313  | 330  |

Keresztély, Sugár, Szarvas (2005, Gy.121 feladat, 111. old.)

#### Indexsorok

- 1. Ha a főátlóban vagy valamely adott sorban/oszlopban lévő minden aggregátumot egy bázisidőszaknak választott időszak aggregátumával osztunk, akkor bázisindexsorokat kapunk, ha pedig minden aggregátumot a főátlóban vagy valamely adott sorban/ oszlopban közvetlenül előtte található aggregátummal osztunk, akkor láncindexsorokhoz jutunk.
- 2. Ha a volumen- és árindexsorok esetében az indexsor minden egyes tagját ugyanazon oszlop vagy sor aggregátumaiból számítjuk, akkor állandó súlyú indexsorokhoz jutunk, ha viszont az indexsor minden egyes tagját más-más oszlopban/sorban található két aggregátum hányadosa-ként számítjuk, akkor változó súlyú indexsorokat kapunk.
- **3.** A változó súlyú láncvolumen- vagy láncárindexek tagjairól mindig egyértelműen eldönthető, azok Laspeyres- vagy Paache-féle indexek-e. Meg kell nézni, az adott "láncszem" milyen súlyozású.
- **4.** Egymást követő *láncindexek szorzata* (érték vagy állandó súlyú volumen ill. árindexek esetén) *bázisindexet* ad.

#### Területi indexek

Területi indexek: indexszámításban az időszakok szerepét *területi* egységek veszik át, a kapcsolódó aggregátumokat hasonlítjuk össze.

#### Sajátosságai:

- A területi egységeknek nincs sorrendje. Fontos, hogy az azonos relációjú összehasonlítások azonos eredményhez vezessenek.
- Adott ország régiói vagy azonos valutájú országok esetén a területi indexek jelentése ugyanaz, mint az eddigi indexeké. Eltérő valutáju országok: nemzetközi indexek. Az egyes országok aggregátumai más valutában vannak kifejezve.

Vásárlóerő-paritás: nemzetközi árindex.

Jelölése: PPP (Purchasing Power Parity)

A PPP(A/B)-vel jelölt A/B relációjú nemzetközi árindex azt mutatja, hogy B ország egy valutaegysége A ország hány valutaegységével egyenértékű, ha azt a vizsgált termékek megvásárlására fordítjuk.

### Vásárlóerő-paritás

Egyedi vásárlóerő-paritás:  $p_A/p_B$ , azaz a B ország egy valutaegysége hány A valutát ér.

A nemzetközi árindex az egyedi vásárlóerő-paritások súlyozott átlaga.

Példa. Big-Mac index (Economist, 2022 július).

Egy Big Mac átlagára Magyarországon 1030 HUF, az Egyesült Államokban 5.15 USD.

1 USD vásárlóereje 1030/5.15=200.00 HUF vásárlóerejével egyezik.

HUF/USD árfolyam: 389.05 HUF/1 USD.

2022 júliusában a forint 48.6 %-kal volt alulértékelve a dollárral szemben.

2020 júliusához képest (40.0 % alulértékelés) 8.6 % esés.

2010 júliusához képest (5.6 % alulértékelés) 43.0 % esés.

Az összehasonlítandó országok lakosságszáma, területe, mérete általában jelentősen különböző. Megoldás: *egy főre vetített* aggregátumokat vizsgálnak.

Baran Sándor Statisztika 1 előadás 114 / 189

#### Bilaterális összehasonlítás

A, B: két eltérő valutájú ország.

$$PPP^{A}(A/B) = \frac{\sum q_{A}p_{A}}{\sum q_{A}p_{B}} = \frac{\sum q_{A}p_{B} \cdot \frac{p_{A}}{p_{B}}}{\sum q_{A}p_{B}} = \frac{\sum q_{A}p_{A}}{\sum \frac{q_{A}p_{A}}{p_{A}/p_{B}}},$$

$$PPP^{B}(A/B) = \frac{\sum q_{B}p_{A}}{\sum q_{B}p_{B}} = \frac{\sum q_{B}p_{A} \cdot \frac{p_{A}}{p_{B}}}{\sum q_{B}p_{B}} = \frac{\sum q_{B}p_{A}}{\sum \frac{q_{B}p_{A}}{p_{A}/p_{B}}}.$$

A Paache- és a Laspeyres-féle árindexek megfelelői. A Fisher index megfelelője:

$$PPP^{F}(A/B) = \sqrt{PPP^{A}(A/B) \cdot PPP^{B}(A/B)} = 1/PPP^{F}(B/A).$$

Árszínvonalindex (Price Level Index):  $PLI(A/B) = \frac{PPP(A/B)}{ER(A/B)}$ .

ER(A/B): valutaárfolyam (Exchange Rate).

Az árszínvonalindex megadja, hogy az A ország árszínvonala hányszorosa a B ország árszínvonalának, ha az egységárakat azonos valutában fejezzük ki az ER(A/B) átváltási kulcs segítségével.

# Sokaságok megadása

Egyetlen ismérv szerint vizsgált sokaság megadásának módjai.

• Véges N elemű sokaság esetén az elemek felsorolásával:

$$Y_1, Y_2, ..., Y_N$$
.

• Végtelen sokaság esetén diszkrét ismérvre megadjuk a

$$P(Y = y_k) = P_k$$

eloszlást vagy az

$$F(y) = P(Y < y)$$

eloszlásfüggvényt, folytonos ismérvre pedig vagy az F(y) eloszlásfüggvényt, vagy a f(y) sűrűségfüggvényt, melyre

$$F(y) = \int_{-\infty}^{y} f(t) dt.$$

Baran Sándor Statisztika 1 előadás 117 / 189

# Sokasági várható érték és szórásnégyzet

Elemeivel adott sokaság esetén:

$$\mathsf{E}(Y) = \overline{Y} = \frac{1}{N} \sum_{i=1}^n Y_i = \mu, \quad \mathsf{Var}(Y) = \frac{1}{N} \sum_{i=1}^n \big(Y_i - \overline{Y}\big)^2 = \sigma^2.$$

Eloszlásával adott sokaság esetén diszkrét esetben:

$$\mathsf{E}(Y) = \sum_k y_k \mathsf{P}(Y = y_k) = \mu,$$
  $\mathsf{Var}(Y) = \sum_k \left(y_k - \mathsf{E}(Y)\right)^2 \mathsf{P}(Y = y_k) = \sigma^2;$ 

folytonos esetben:

$$\mathsf{E}(Y) = \int\limits_{-\infty}^{\infty} y f(y) \mathrm{d}y = \mu, \quad \mathsf{Var}(Y) = \int\limits_{-\infty}^{\infty} \big( y - \mathsf{E}(Y) \big)^2 f(y) \mathrm{d}y = \sigma^2.$$

Baran Sándor Statisztika 1 előadás 118 / 189

#### Minta

Minta (*n* elemű):

$$\mathbf{y}=(y_1,y_2,\ldots,y_n).$$

Elemeivel megadott sokaság esetén egy n elemű minta elemei a sokaság elemei közül kerülnek ki.

Véletlen mintavétel: minden sokasági elem előre megadott valószínűséggel kerül a mintába.

Eloszlásával megadott sokaság esetén a mintaelemek a megadott eloszlású valószínűségi változók.

A mintalemek a *mintavétel előtt* valószínűségi változóknak tekinthetőek. A *mintavétel után* megkapjuk a minta egy realizációját, ami konkrét (szám)értékeket tartalmaz.

A mintából számított tetszőleges *mintajellemző* (pl. átlag, szórás, kvantilisek) szintén valószínűségi változó.

A mintajellemzők eloszlását mintavételi eloszlásnak nevezzük.

# Független, azonos eloszlású (FAE) minta

Véges homogén sokaság esetén FAE mintát kapunk, ha minden sokasági elemet azonos valószínűséggel kiválasztva veszünk *visszatevéses* mintát.

Nagyon nagy sokaság esetén a visszatevés nélküli mintavétel is közel FAE mintát ad.

Eloszlásával megadott sokaság esetén a FAE minta független, a megadott eloszlással bíró valószínűségi változókból áll.

 $y_1, y_2, \ldots, y_n$ : FAE minta egy sokaságból, melynek várható értéke és szórása rendre  $\mu$  és  $\sigma$ .

 $\overline{y} = \frac{1}{n}(y_1 + \ldots + y_n)$ : mintaátlag.

$$\mathsf{E}(\overline{y}) = \frac{1}{n} \big( \mathsf{E}(y_1) + \ldots + \mathsf{E}(y_n) \big) = \frac{1}{n} \big( \underbrace{\mu + \ldots + \mu}_{n \; \mathsf{darab}} \big) = \mu,$$

$$\operatorname{Var}(\overline{y}) = \sigma_{\overline{y}}^2 = \frac{1}{n^2} \left( \operatorname{Var}(y_1) + \ldots + \operatorname{Var}(y_n) \right) = \frac{1}{n^2} \left( \underbrace{\sigma^2 + \ldots + \sigma^2}_{n \text{ dereb}} \right) = \frac{\sigma^2}{n}.$$

 $\sigma_{\overline{V}} = \sigma / \sqrt{n}$ : standard hiba.

Baran Sándor Statisztika 1 előadás 120 / 189

# Egyszerű véletlen (EV) minta

Egyszerű véletlen mintavételt használunk homogén, véges elemszámú sokaság esetén, amikor a mintát visszatevés nélkül választjuk ki, minden lehetséges n elemű minta kiválasztásának azonos valószínűséget biztosítva.

 $y_1, y_2, \ldots, y_n$ : EV minta egy N elemű sokaságból, melynek várható értéke és szórása rendre  $\mu$  és  $\sigma$ .

$$\mathsf{E}(\overline{y}_{EV}) = \mu, \qquad \mathsf{Var}(\overline{y}_{EV}) = \frac{\sigma^2}{n} \left( \frac{\mathsf{N} - \mathsf{n}}{\mathsf{N} - 1} \right) pprox \frac{\sigma^2}{n} \left( 1 - \frac{\mathsf{n}}{\mathsf{N}} \right).$$

#### Szisztematikus kiválasztás

n elemű EV mintát akarunk venni N elemű sokaságból.

k = N/n: lépésköz.

 $k_0$ : véletlen kiindulópont  $(1 \le k_0 \le k)$ .

Ciklikusan haladva a  $k_0$ -ból kiindulva minden k-adik elemet kiválasztunk. Ha a sokaság a vizsgált ismérv szerint véletlenszerűen van rendezve, akkor EV mintához jutunk.

### Rétegzett (R) minta

Heterogén sokaság jellemzőit vizsgáljuk, pl. a lakosság jövedelmi viszonyait vagy iskolázottságát a lakhely jellege szerint (Budapest, megyeszékhely, stb).

A rétegzett mintavétel végrehajtása úgy történik, hogy először a sokaságot többé-kevésbé homogén rétegekbe soroljuk be, úgy, hogy a rétegek átfedésmentesen és teljesen lefedjék a sokaságot, majd az egyes rétegeken belül, egymástól függetlenül EV (ritkábban FAE) mintavételt hajtunk végre.

```
M: rétegek száma;
```

$$N_1, N_2, \ldots, N_M$$
: az egyes rétegek elemszáma,  $\sum_{j=1}^M N_j = N$ ;

$$n_1, n_2, \ldots, n_M$$
: az egyes rétegekből kiválasztott minták elemszáma,  $\sum_{j=1}^M n_j = n$ ;

$$\mu_1, \mu_2, \dots, \mu_M$$
: az egyes rétegek várható értékei;

$$\sigma_1, \sigma_2, \dots, \sigma_M$$
: az egyes rétegek szórásai.

#### Mintavételi tervek

a) Egyenletes elosztás. Minden rétegből azonos elemszámú mintát veszünk:  $n_i = n/M$ .

Egyszerű, az egyes rétegek jellemzői könnyen számolhatóak.

b) Arányos elosztás. Az egyes rétegekből vett minták elemszámai úgy aránylanak egymáshoz, mint maguknak a rétegeknek az elemszámai:

$$n_j = n \frac{N_j}{\sum_{k=1}^M N_k} n \frac{N_j}{N}.$$

Egyszerű, a mintában ugyanazok a súlyarányok, mint a sokaságban.

c) Neyman-féle optimális elosztás. A nagyobb szóródású rétegekből nagyobb mintákat veszünk:

$$n_j = n \frac{N_j \sigma_j}{\sum_{k=1}^M N_k \sigma_k}.$$

A főátlag becslésénél a mintavételi hiba minimális. Problémás a megvalósítás, mert a  $\sigma_j$  szórások általában nem ismertek.

### Csoportos minták

#### Egylépcsős (1L) minta

Az összes sokasági elem nem áll rendelkezésünkre (vagy csak nagyon drágán), de nagyobb összetartozó csoportokról van listánk.

Egylépcsős (csoportos) mintavétel esetén a csoportok halmazából választunk EV mintát, majd az így kiválasztott csoportokat teljeskörűen megfigyeljük.

Minél homogénebbek az egyes csoportok, annál kevésbé hatékony az eljárás.

#### Többlépcsős (TL) minta

Minden egyes lépcsőben a korábban kiválasztott csoportokból veszünk újabb mintát. Például a kétlépcsős mintavétel is kevesebb redundáns mintaelemet tartalmaz, mind az egylépcsős.

## Becslőfüggvény

 $y_1, y_2, \dots, y_n$ : minta (FAE, ritkábban EV).

Statisztika: a mintaelemek tetszőleges függvénye. Valószínűségi változó.

A becslőfüggvény olyan statisztika, ami valamely sokasági jellemző mintából történő közelítő meghatározására szolgál.

 $\theta$ : becsülni kívánt sokasági jellemző. Becslőfüggvénye:

$$\hat{\theta}(y_1, y_2, \ldots, y_n) = \hat{\theta}(n) = \hat{\theta}.$$

**Példa.**  $\theta = \sigma^2$ , azaz a sokasági szórásnégyzetet becsüljük.

$$\hat{\theta}_1 = \hat{\theta}_1(n) = \hat{\theta}_1(y_1, y_2, \dots, y_n) = \frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2 = s^{*2},$$

$$\hat{\theta}_2 = \hat{\theta}_2(n) = \hat{\theta}_2(y_1, y_2, \dots, y_n) = \frac{1}{n-1} \sum_{i=1}^n (y_i - \overline{y})^2 = s^2.$$

s<sup>2</sup>: korrigált tapasztalati (empirikus) szórásnégyzet.

Baran Sándor Statisztika 1 előadás 126 / 189

# A becslőfüggvény tulajdonságai. Torzítatlanság

Egy becslőfüggvényt torzítatlannak nevezünk, ha annak várható értéke megegyezik a becsülni kívánt sokasági jellemzővel, azaz

$$\mathsf{E}\big(\hat{\theta}\big) = \theta.$$

**Példa.**  $\theta = \mu$ , azaz a sokasági várható értéket becsüljük.

$$\hat{\theta}_1 = \hat{\mu}_1 = \overline{y} = \frac{1}{n} \sum_{i=1}^n y_i.$$

Mind FAE, mind EV minta esetén:  $E(\hat{\mu}_1) = E(\overline{y}) = \mu$ .

A mintaátlag a sokasági várható érték torzítatlan becslése.

$$\hat{\theta}_2 = \hat{\mu}_2 = (y_1 + y_n)/2.$$

Mind FAE, mind EV minta esetén:  $E(\hat{\mu}_2) = \mu$  (torzítatlan).

Torzítás (bias):

$$\mathsf{Bs}\left(\hat{\theta}\right) = \mathsf{E}(\hat{\theta}) - \theta.$$

#### Példa

 $\theta=\sigma^2$ , azaz a sokasági szórásnégyzetet becsüljük.

$$\mathsf{E}(s^{*2}) = \frac{n-1}{n}\sigma^2 = \sigma^2 - \frac{\sigma^2}{n} \neq \sigma^2.$$

Torzítás:

$$\mathsf{Bs}\left(s^{*2}\right) = \left(\sigma^2 - \frac{\sigma^2}{n}\right) - \sigma^2 = -\frac{\sigma^2}{n}.$$

Korrigált empirikus szórásnégyzet:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = \frac{n}{n-1} \cdot \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = \frac{n}{n-1} s^{*2}.$$

$$\mathsf{E}(\mathsf{s}^2) = \mathsf{E}\bigg(\frac{\mathsf{n}}{\mathsf{n}-1}\mathsf{s}^{*2}\bigg) = \frac{\mathsf{n}}{\mathsf{n}-1} \cdot \frac{\mathsf{n}-1}{\mathsf{n}}\sigma^2 = \sigma^2.$$

A korrigált empirikus szórásnégyzet a sokasági szórásnégyzet torzítatlan becslése.

Baran Sándor Statisztika 1 előadás 128 / 189

## Mintavételi szórásnégyzet

 $\hat{\theta}$ : a  $\theta$  torzítatlan becslése, azaz  $\mathsf{E}(\hat{\theta}) = \theta$ .

A becslőfüggvény szórásnégyzetét mintavételi szórásnégyzetnek, ennek négyzetgyökét pedig a becslőfüggvény, illetve a becslés standard hibájának (standard error) nevezzük.

$$\mathsf{Se}\left(\hat{ heta}
ight) = \sqrt{\mathsf{Var}\left(\hat{ heta}
ight)}.$$

**Példa.**  $\theta = \mu$ , azaz a sokasági várható értéket becsüljük. FAE minta  $\sigma^2$  sokasági szórásnégyzettel.

$$\hat{\theta}_1 = \hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n y_i, \qquad \hat{\theta}_2 = \hat{\mu}_2 = (y_1 + y_n)/2.$$

Mindkét becslés torzítatlan.

$$\begin{split} \operatorname{Var}\left(\hat{\theta}_{1}\right) &= \sigma^{2}/n, \qquad \operatorname{Var}\left(\hat{\theta}_{2}\right) = \sigma^{2}/2, \\ \operatorname{Se}\left(\hat{\theta}_{1}\right) &= \sigma/\sqrt{n}, \qquad \operatorname{Se}\left(\hat{\theta}_{2}\right) = \sigma/\sqrt{2}. \end{split}$$

Baran Sándor Statisztika 1 előadás 129 / 189

# A becslőfüggvény tulajdonságai. Hatásosság

 $\theta$  egy olyan  $\hat{\theta}_0$  torzítatlan becslőfüggvényét, melynek szórásnégyzete  $\theta$  tetszőleges torzítatlan becslőfüggvénye szórásnégyzeténél nem nagyobb,  $\theta$  minimális szórásnégyzetű torzítatlan becslőfüggvényének (MVUE, Minimum Variance Unbiased Estimator) nevezzük.

 $\hat{\theta}_1$ ,  $\hat{\theta}_2$ : a  $\theta$  torzítatlan becslőfüggvényei. A  $\hat{\theta}_1$  becslőfüggvénynek a  $\hat{\theta}_2$ -re vonatkozó relatív hatásfoka:

$$\mathsf{Ef}_r = rac{\mathsf{Var}\left(\hat{ heta}_1
ight)}{\mathsf{Var}\left(\hat{ heta}_2
ight)}.$$

 $\mathsf{Ef}_r > 1$ :  $\hat{\theta}_2$  hatásosabb, mint  $\hat{\theta}_1$ .

Ha létezik  $\hat{\theta}_0$  MVUE, akkor  $\hat{\theta}_1$  abszolút hatásfoka:

$$\mathsf{Ef}_{a} = rac{\mathsf{Var}\left(\hat{ heta}_{1}
ight)}{\mathsf{Var}\left(\hat{ heta}_{0}
ight)} \geq 1.$$

#### Példa

 $\theta=\mu$ , azaz a sokasági várható értéket becsüljük. FAE minta  $\sigma^2$  sokasági szórásnégyzettel.

$$\hat{\theta}_1 = \hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n y_i, \qquad \hat{\theta}_2 = \hat{\mu}_2 = (y_1 + y_n)/2.$$

Mindkét becslés torzítatlan.

$$\operatorname{Var}\left(\hat{\theta}_{1}\right) = \sigma^{2}/n, \qquad \operatorname{Var}\left(\hat{\theta}_{2}\right) = \sigma^{2}/2.$$

Relatív hatásfok:

$$\mathsf{Ef}_r = \frac{\mathsf{Var}\left(\hat{\theta}_2\right)}{\mathsf{Var}\left(\hat{\theta}_1\right)} = \frac{\sigma^2/2}{\sigma^2/n} = \frac{n}{2} > 1, \quad \mathsf{ha} \ n > 2.$$

# MSE kritérium. Aszimptotikus torzítatlanság

Ha két nem feltétlenül torzítatlan becslés összehasonlítására az átlagos négyzetes hiba (MSE, Mean Squared Error) szolgál.

$$\mathsf{Mse}\left(\hat{\theta}\right) = \mathsf{E}(\hat{\theta} - \theta)^2 = \mathsf{Var}\left(\hat{\theta}\right) + \mathsf{Bs}^2(\hat{\theta}).$$

Az a becslőfüggvény a "jobb", amelyiknek az átlagos négyzetes hibája kisebb.

 $\hat{ heta} = \hat{ heta}( extbf{n})$  aszimptotikusan torzítatlan, ha

$$\lim_{n\to\infty} \operatorname{Bs}\left(\hat{\theta}(n)\right) = 0.$$

#### Példa

$$\mathsf{Bs}\left(s^{*2}\right) = -\frac{\sigma^2}{n} \to 0, \qquad \mathsf{ha} \ n \to \infty.$$

s<sup>\*2</sup> torzított, de aszimptotikusan torzítatlan.

## A becslőfüggvény tulajdonságai. Konzisztencia

A  $\theta$  paraméter  $\hat{\theta}=\hat{\theta}(n)$  becslőfüggvénye konzisztens, ha  $n\to\infty$  esetén várható értéke tart a valódi paraméterértékhez, szórásnégyzete pedig tart nullához, azaz

$$\lim_{n\to\infty} \mathsf{E}\big(\hat{\theta}(\textit{n})\big) = \theta \qquad \text{ és } \qquad \lim_{n\to\infty} \mathsf{Var}\left(\hat{\theta}(\textit{n})\right) = 0.$$

**Példa.**  $\theta = \mu$ , FAE minta  $\sigma^2$  sokasági szórásnégyzettel.

$$\mathsf{E}(\overline{y}) = \mu, \qquad \mathsf{Var}(\overline{y}) = \frac{\sigma^2}{n} \to 0, \quad \mathsf{ha} \ n \to \infty.$$

FAE minta esetén a mintaátlag a sokasági várható érték konzisztens (és torzítatlan) becslése.

Baran Sándor Statisztika 1 előadás 133 / 189

### Becslési módszerek. Momentumok módszere

 $y_1, y_2, \dots, y_n$ : FAE minta egy  $\theta$  paraméterű Y valószínűségi változóra.

A körüli r-edik elméleti momentum:

$$\mathcal{M}_r(A) = \mathsf{E}(Y-A)^r.$$

A körüli r-edik empirikus momentum:

$$M_r(A) = \frac{1}{n} \sum_{i=1}^n (y_i - A)^r.$$

Ismert típusú eloszlás esetén a momentumok az eloszlás paramétereinek függvényei. Ezekbe a függvényekbe behelyettesítve az empirikus momentumokat megkapjuk a paraméterek becsléseit.

# Exponenciális eloszlás $\lambda>0$ paraméterrel

 $Y \sim \mathsf{Exp}(\lambda)$ . Y sűrűségfüggvénye:

$$f(y) = egin{cases} \lambda \mathrm{e}^{-\lambda y}, & \text{ha } y > 0; \\ 0, & \text{ha } y \leq 0. \end{cases}$$

$$\mathcal{M}_r(0) = \mathsf{E}ig(Y^rig) = rac{r!}{\lambda^r}, \quad \mathsf{azaz} \quad \mathcal{M}_1(0) = \mathsf{E}(Y) = rac{1}{\lambda}.$$

 $y_1, y_2, \dots, y_n$ : FAE minta Y-ra,  $M_1(0) = \overline{y}$ .

 $\lambda$  becslése az  $\mathcal{M}_1(0)=M_1(0)$ , azaz az  $1/\lambda=\overline{y}$  egyenlet megoldása:

$$\hat{\lambda} = \frac{1}{\overline{y}}.$$

# Egyenletes eloszlás az [a, b] intervallumon

 $Y \sim U(a, b)$ . Y sűrűségfüggvénye:

$$f(y) = \begin{cases} \frac{1}{b-a}, & \text{ha } y \in [a,b]; \\ 0, & \text{ha } y \notin [a,b]. \end{cases}$$

$$\mathcal{M}_1(0) = \mathsf{E}(Y) = (a+b)/2, \qquad \mathcal{M}_2(\mathsf{E}(Y)) = \mathsf{Var}(Y) = (b-a)^2/12.$$

 $y_1, y_2, \ldots, y_n$ : FAE minta Y-ra.

$$M_1(0) = \overline{y}, \qquad M_2(\overline{y}) = \frac{1}{N} \sum_{i=1}^n (y_i - \overline{y})^2 = s^{*2}.$$

$$(a,b)$$
 becslése  $(a < b)$  az  $\mathcal{M}_1(0) = M_1(0)$ ,  $\mathcal{M}_2ig(\mathsf{E}(Y)ig) = M_2(\overline{y})$ , azaz az

$$(a+b)/2 = \overline{y}, \qquad (b-a)^2/12 = s^{*2}$$

egyenletrendszer megoldása:

$$\hat{a} = \overline{y} - \sqrt{3s^{*2}}, \qquad \hat{b} = \overline{y} + \sqrt{3s^{*2}}.$$

Baran Sándor Statisztika 1 előadás 136 / 189

# Normális eloszlás $\mu, \sigma^2$ paraméterekkel

 $Y \sim \mathcal{N}(\mu, \sigma^2)$ . Y sűrűségfüggvénye:

$$f(y) = rac{1}{\sqrt{2\pi}\sigma} \exp\left(-rac{(y-\mu)^2}{2\sigma^2}
ight).$$
  $\mathcal{M}_1(0) = \mathsf{E}(Y) = \mu, \qquad \mathcal{M}_2ig(\mathsf{E}(Y)ig) = \mathsf{Var}(Y) = \sigma^2.$ 

 $y_1, y_2, \ldots, y_n$ : FAE minta Y-ra.

$$M_1(0) = \overline{y}, \qquad M_2(\overline{y}) = \frac{1}{N} \sum_{i=1}^n (y_i - \overline{y})^2 = s^{*2}.$$

$$(\mu,\sigma^2)$$
 becslése az  $\mathcal{M}_1(0)=M_1(0),~\mathcal{M}_2ig(\mathsf{E}(Y)ig)=M_2(\overline{y}),~$  azaz az  $\mu=\overline{y},~~\sigma^2=s^{*2}$ 

egyenletrendszer megoldása:

$$\hat{\mu} = \overline{y}, \qquad \widehat{\sigma^2} = s^{*2}.$$

Baran Sándor Statisztika 1 előadás 137 / 189

# Becslési módszerek. Maximum likelihood (ML) módszer

 $y_1, y_2, \dots, y_n$ : FAE minta egy  $\theta$  paraméterű Y valószínűségi változóra.

A minta  $L(\theta; y_1, ..., y_n)$  likelihood függvénye diszkrét esetben a minta együttes eloszlása, folytonos esetben a minta együttes sűrűségfüggvénye.

Log-likelihood függvény: 
$$\ell(\theta; y_1, \dots, y_n) = \log L(\theta; y_1, \dots, y_n)$$
.

A  $\theta$  paraméter  $\hat{\theta}$  ML becslése az

$$L(\theta; y_1, \ldots, y_n)$$

likelihood vagy az

$$\ell(\theta; y_1, \ldots, y_n)$$

log-likelihood függvény maximum helye.

## Sokasági arány becslése

20-szor feldobunk egy érmét, y; az i-edik dobás kimenetele.

 $y_i = 1$ , ha fejet dobunk és  $y_i = 0$ , ha írást. A minta realizációja:

Becsülendő a fej dobás p valószínűsége.

$$L(p; y_1, ..., y_{20}) = P(y_1 = 0, y_2 = 1, ..., y_{20} = 1|p) = P(y_1 = 0|p) \cdot P(y_2 = 1|p) \cdot ... \cdot P(y_{20} = 1|p)$$

$$= (1 - p)p(1 - p)^2 p^3 (1 - p)^2 p^5 (1 - p)p^3 (1 - p)p = p^{13} (1 - p)^7,$$

$$\ell(p; y_1, ..., y_{20}) = 13 \log p + 7 \log(1 - p).$$

$$\frac{\partial \ell}{\partial p} = \frac{13}{p} - \frac{7}{1-p} = 0, \quad \text{azaz} \quad p = \frac{13}{20}.$$

$$\frac{\partial^2 \ell}{\partial p^2} = \frac{13}{p^2} - \frac{7}{(1-p)^2} < 0, \quad \text{azaz} \quad p = \frac{13}{20} \quad \text{maximumhely.}$$

 $\hat{p} = 13/20$ : a fej dobások *relatív gyakorisága*.

Baran Sándor Statisztika 1 előadás 139 / 189

## Exponenciális eloszlás $\lambda > 0$ paraméterrel

 $Y \sim \mathsf{Exp}(\lambda)$ . Y sűrűségfüggvénye:

$$f(y) = egin{cases} \lambda \mathrm{e}^{-\lambda y}, & \text{ha } y > 0; \\ 0, & \text{ha } y \leq 0. \end{cases}$$

 $y_1, y_2, \ldots, y_n$ : FAE minta Y-ra.

$$L(\lambda; y_1, \dots, y_n) = \prod_{i=1}^n \lambda e^{-\lambda y_i} = \lambda^n e^{-\lambda \sum_{i=1}^n y_i},$$

$$\ell(\lambda; y_1, \dots, y_n) = n \log \lambda - \lambda \sum_{i=1}^n y_i = n \log \lambda - \lambda n \overline{y}.$$

$$\frac{\partial \ell}{\partial \lambda} = \frac{n}{\lambda} - n \overline{y} = 0, \quad \text{azaz} \quad \lambda = \frac{1}{\overline{y}}.$$

$$\frac{\partial^2 \ell}{\partial \lambda^2} = -\frac{n}{\lambda^2} < 0, \quad \text{azaz} \quad \lambda = \frac{1}{\overline{y}} \quad \text{maximumhely.}$$

Baran Sándor Statisztika 1 előadás 140 / 189

### További példák

#### Normális eloszlás $\mu, \sigma^2$ paraméterekkel

Sűrűségfüggvénye:

$$f(y) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right).$$

 $y_1, y_2, \ldots, y_n$ : FAE minta.

$$\hat{\mu} = \overline{y}, \qquad \widehat{\sigma^2} = s^{*2}.$$

#### Egyenletes eloszlás az [a, b] intervallumon

Sűrűségfüggvénye:

$$f(y) = \begin{cases} \frac{1}{b-a}, & \text{ha } y \in [a, b]; \\ 0, & \text{ha } y \notin [a, b]. \end{cases}$$

 $y_1, y_2, \ldots, y_n$ : FAE minta.

$$\hat{a} = \min\{y_1, y_2, \dots, y_n\}, \qquad \hat{b} = \max\{y_1, y_2, \dots, y_n\}.$$

## Egyenlőtlenségek

Markov egyenlőtlenség: Legyen  $Y \ge 0$  egy valószínűségi változó, aminek létezik  $\mathsf{E}(Y)$  várható értéke. Ekkor bármely  $\delta > 0$  esetén

$$P(Y \ge \delta) \le \frac{E(Y)}{\delta}$$
.

Csebisev egyenlőtlenség: Legyen Y egy valószínűségi változó, aminek létezik  $\mathsf{E}(Y)$  várható értéke. Ekkor bármely  $\epsilon>0$  esetén

$$P(|Y - E(Y)| \ge \varepsilon) \le \frac{Var(Y)}{\varepsilon^2}.$$

**Példa.** Hányszor kell egy szabályos kockát feldobnunk, hogy a hatos dobás valószínűségét az esemény relatív gyakorisága legalább 0.8 valószínűséggel 0.1-nél kisebb hibával megközelítse? Mi a helyzet, ha nem tudjuk, hogy a kocka szabályos-e?

Baran Sándor Statisztika 1 előadás 143 / 189

## Nagy számok gyenge törvénye

Azt mondjuk, hogy valószínűségi változók egy  $Y_1,Y_2,\ldots,Y_n,\ldots$  sorozata sztochasztikusan konvergál egy Y valószínűségi változóhoz, ha bármely  $\varepsilon>0$  esetén

$$\lim_{n\to\infty} P(|Y_n-Y|\geq \varepsilon)=0.$$

Ha  $Y \equiv c$  (konstans), akkor elegendő:

$$\lim_{n\to\infty} \mathsf{E}(Y_n) = c, \qquad \lim_{n\to\infty} \mathsf{Var}(Y_n) = 0.$$

Nagy számok gyenge törvénye: Legyenek  $Y_1,Y_2,\ldots,Y_n,\ldots$  páronként független, azonos eloszlású valószínűségi változók, legyen  $\mathsf{E}(Y_1)=\mu$  és  $\mathsf{Var}(Y_1)<\infty$ , továbbá legyen

$$S_n = Y_1 + Y_2 + \ldots + Y_n.$$

Ekkor  $\overline{Y} = S_n/n$  sztochasztikusan konvergál a  $\mu$  várható értékhez.

Az átlag a várható érték konzisztens becslése.

Baran Sándor Statisztika 1 előadás 144 / 189

### Központi határeloszlás tétel

Központi határeloszlás tétel: Legyenek  $Y_1, Y_2, \ldots, Y_n, \ldots$  független, azonos eloszlású valószínűségi változók,  $\mathsf{E}(Y_1) = \mu$  és  $0 < \mathsf{Var}(Y_1) = \sigma^2 < \infty$ , továbbá legyen

$$S_n = Y_1 + \ldots + Y_n$$
.

Ekkor  $E(S_n) = n \cdot \mu$ ,  $Var(S_n) = n \cdot \sigma^2$  és

$$\lim_{n\to\infty}\mathsf{P}\left(\frac{S_n-n\cdot\mu}{\sqrt{n}\cdot\sigma}< x\right)=\Phi(x)=\int_{-\infty}^x\frac{1}{\sqrt{2\pi}}\mathrm{e}^{-t^2/2}\mathrm{d}t,\quad x\in\mathbb{R}.$$

Nagy n esetén  $\overline{Y}=S_n/n$  eloszlása hozzávetőlegesen normális  $\mu$  várható értékkel és  $\sigma^2/n$  szórásnégyzettel.

Baran Sándor Statisztika 1 előadás 145 / 189

## Normálisból származtatható eloszlások. Khi-négyzet eloszlás

 $X_1, X_2, \dots, X_n$ : független standard normális valószínűségi változók.

$$Y = X_1^2 + X_2^2 + \ldots + X_n^2 \ge 0.$$

Y eloszlása n szabadsági fokú khi-négyzet (chi-square) eloszlás. Jelölés:  $Y \sim \mathcal{X}_n^2$ .

Várható értéke: n; szórásnégyzete: 2n.

p-kvantilis:  $\mathcal{X}_p^2(n)$ . Ha  $Y \sim \mathcal{X}_n^2$ , akkor  $P(Y < \mathcal{X}_p^2(n)) = p$ . Táblázatból kiolvasható.

Ha  $y_1, y_2, \dots, y_n$  FAE minta  $\mathcal{N}(\mu, \sigma^2)$  eloszlásból, akkor

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$
 és  $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \overline{y})^2$ 

függetlenek, valamint

$$\overline{y} \sim \mathcal{N} \left( \mu, \sigma^2 / n \right)$$
 és  $\frac{(n-1)s^2}{\sigma^2} \sim \mathcal{X}_{n-1}^2$ .

#### Normálisból származtatható eloszlások. t-eloszlás

 $X_0, X_1, \dots, X_n$ : független standard normális valószínűségi változók.

$$Y = \frac{\sqrt{n}X_0}{\sqrt{X_1^2 + X_2^2 + \ldots + X_n^2}}.$$

Y eloszlása n szabadsági fokú t-eloszlás (Student-eloszlás). Jelölés:  $Y \sim t_n$ .

Várható értéke: 0, ha n > 1; szórásnégyzete: n/(n-2), ha n > 2.

p-kvantilis:  $t_p(n)$ . Ha  $Y \sim t_n$ , akkor  $P(Y < t_p(n)) = p$ . Táblázatból kiolvasható.

Ha  $n \to \infty$ , akkor  $t_n \to \mathcal{N}(0,1)$  (standard normális).  $n = \infty$  eset.

Ha  $n \to \infty$ , akkor  $t_p(n) \setminus z_p$ , ahol  $z_p$  a standard normális eloszlás p-kvatilise.

Ha  $y_1, y_2, \ldots, y_n$  FAE minta  $\mathcal{N}(\mu, \sigma^2)$  eloszlásból, akkor

$$\frac{\overline{y}-\mu}{s/\sqrt{n}}\sim t_{n-1}.$$

### Normálisból származtatható eloszlások. F-eloszlás

 $X_1, X_2$ : független khi-négyzet eloszlású valószínűségi változók n és m szabadsági fokkal.

$$Y=\frac{X_1/n}{X_2/m}\geq 0.$$

Y eloszlása n és m szabadsági fokú F-eloszlás. Jelölés:  $Y \sim F_{n,m}$ .

Várható értéke:  $\frac{m}{m-2}$ , ha m>2; szórásnégyzete:  $\frac{2m(n+m-2)}{n(m-2)^2(m-4)}$ , ha m>4.

p-kvantilis:  $F_p(n; m)$ . Ha  $Y \sim F_{n,m}$ , akkor  $P(Y < F_p(n; m)) = p$ . Táblázatból kiolvasható.

Ha  $x_1, x_2, \ldots, x_n$  és  $y_1, y_2, \ldots, y_m$  FAE minták  $\mathcal{N}(\mu_x, \sigma^2)$  és  $\mathcal{N}(\mu_y, \sigma^2)$  eloszlásból, valamint

$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$$
 és  $s_y^2 = \frac{1}{m-1} \sum_{i=1}^m (y_i - \overline{y})^2$ ,

akkor

$$s_x^2/s_y^2 \sim F_{n-1,m-1}$$
.

Baran Sándor Statisztika 1 előadás 148 / 189

## Az intervallumbecslés alapjai

 $y_1, y_2, \ldots, y_n$ : minta

 $\theta$ : becsülni kívánt sokasági jellemző.

Intervallumbecslés esetén a minta alapján olyan intervallumot határozunk meg, amely előre megadott (nagy) valószínűséggel tartalmazza az ismeretlen jellemzőt. Ezt az intervallumot konfidencia intervallumnak nevezzük.

 $0 < \alpha < 1$ : adott érték (jellemzően  $\alpha \le 0.2$ ).

Keresünk olyan  $\hat{\theta}_{a(\alpha)}$  és  $\hat{\theta}_{f(\alpha)}$  becslőfüggvényeket, melyekre

$$\mathsf{P}(\hat{\theta}_{\mathsf{a}(\alpha)} < \theta < \hat{\theta}_{f(\alpha)}) = 1 - \alpha.$$

 $\hat{\theta}_{a(\alpha)}$ ,  $\hat{\theta}_{f(\alpha)}$ : az  $(1-\alpha)\cdot 100\%$ -os megbízhatóságú konfidencia intervallum alsó és felső határai. Például  $\alpha=0.05$ : 95%-os megbízhatóságú konfidencia intervallum.

A minta egy konkrét *realizációját* behelyettesítve a  $\hat{\theta}_{a(\alpha)}$  és  $\hat{\theta}_{f(\alpha)}$  becslőfüggvénybe egy "konkrét" intervalumot kapunk.

### Normális eloszlás, ismert szórás

 $y_1, y_2, \ldots, y_n$ : FAE minta  $\mathcal{N}(\mu, \sigma^2)$  eloszlásból,  $\sigma$  ismert.

 $\theta=\mu$ : becsülni kívánt sokasági jellemző.

 $\overline{y} \sim \mathcal{N}ig(\mu, \sigma^2/nig)$ , ezért

$$Z = rac{\overline{y} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1).$$

Ha  $(z_1, z_2)$  egy intervallum, és  $\Phi(z)$  a standard normális eloszlás eloszlásfüggvénye, akkor

$$\mathsf{P}\left(z_1 < rac{\overline{y} - \mu}{\sigma/\sqrt{n}} < z_2
ight) = \Phi(z_2) - \Phi(z_1).$$

Olyan intervallumot keresünk, hogy az intervallumon kívül esés valószínűsége mindkét oldalon egyenlő  $(\alpha/2)$  legyen.

Z eloszlása szimmetrikus,  $\hat{\theta}_{s(\alpha)}$  és  $\hat{\theta}_{f(\alpha)}$  a mintaátlagra nézve szimmetrikusan helyezkednek el.

### Normális eloszlás, ismert szórás

Adott  $z \in \mathbb{R}$  esetén a (-z, z) intervallumba esés valószínűsége:

$$\mathsf{P}\left(\!-z<\frac{\overline{y}-\mu}{\sigma/\sqrt{n}}< z\right)\!=\!\Phi(z)-\Phi(-z)\!=\!\Phi(z)-\left(1-\Phi(z)\right)\!=\!2\Phi(z)-1.$$

Adott  $0 < \alpha < 1$  esetén keressük azt a z értéket, melyre

$$\mathsf{P}\left(-z < \frac{\overline{y} - \mu}{\sigma/\sqrt{n}} < z\right) = 2\Phi(z) - 1 = 1 - \alpha \iff \Phi(z) = 1 - \alpha/2.$$

Megoldás:  $z=z_{1-\alpha/2}$ , a standard normális eloszlás  $p=1-\alpha/2$  rendű kvantilise. Táblázatból meghatározható.

Például: 
$$\alpha = 0.05, \ 1 - \alpha/2 = 0.975, \ z_{0.975} = 1.9600,$$
  $\alpha = 0.10, \ 1 - \alpha/2 = 0.950, \ z_{0.950} = 1.6449.$ 

$$P\left(\overline{y}-z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}<\mu<\overline{y}+z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\right)=1-\alpha.$$

Baran Sándor Statisztika 1 előadás 152 / 189

### Normális eloszlás, ismert szórás

Alsó határ:  $\hat{\theta}_{\mathsf{a}(\alpha)} = \overline{y} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$  (valószínűségi változó).

Felső határ:  $\hat{\theta}_{f(\alpha)} = \overline{y} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$  (valószínűségi változó).

Hibahatár: 
$$\Delta_{\overline{y}} = \Delta = z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$$
.

Ismételt mintavétel esetén az esetek átlagosan  $(1-\alpha)\cdot 100\,$  százalékában igaz, hogy a  $(\hat{\theta}_{a(\alpha)},\hat{\theta}_{f(\alpha)})\,$  intervallum lefedi (tartalmazza) a keresett sokasági jellemzőt.

- Minél nagyobb  $\alpha$  értéke, annál kisebb a megbízhatóság. Kisebb megbízhatóság keskenyebb konfidencia intervallumot eredményez.
- A mintaelemszám növelése csökkenti a hibahatárt, azaz rövidebb intervallumot eredményez.

A mintavételezés után a számegyenes egy konkrét intervallumát kapjuk. Itt már nem beszélhetünk arról, hogy ez  $1-\alpha$  valószínűséggel lefedi a keresett sokasági jellemzőt.

Baran Sándor Statisztika 1 előadás 153 / 189

Egy teherautórakománnyi félliteres üdítőitalból 10 palackot véletlenszerűen kiválasztva és lemérve azok űrtartalmát az alábbi, milliliterben kifejezett értékeket kaptuk:

Ismert, hogy a palackokba töltött üdítőital mennyisége normális eloszlású 3 ml szórással. Adjon 95%-os megbízhatóságú konfidencia intervallumot az átlagos töltőtömegre.

$$n = 10, \ \alpha = 3, \ \alpha = 0.05, \ z_{1-\alpha/2} = z_{0.975} = 1.96, \ \overline{y} = 500.7.$$

A keresett konfidencia intervallum:

$$\overline{y} \pm z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} = 500.7 \pm 1.96 \frac{3}{\sqrt{10}} = 500.7 \pm 1.8594.$$

Határok:  $\hat{\theta}_a = 498.8406$ ,  $\hat{\theta}_f = 502.5594$ ; hibahatár:  $\Delta = 1.8594$ .

Jelölés: Int  $_{0.95}(\mu) = (498.8406, 502.5594)$ .

Baran Sándor Statisztika 1 előadás 154 / 189

$$n = 10, \ \sigma = 3, \ \Delta = 1.8594, \ \operatorname{Int}_{0.95}(\mu) = (498.8406, 502.5594).$$

Mekkora mintaelemszám szükséges egy kétszer ilyen pontos 95%-os megbízhatóságú konfidencia intervallum meghatározásához?

Új hibahatár:  $\widetilde{\Delta} = \Delta/2$ .

Új mintanagyság:  $\widetilde{n}$ .

$$\widetilde{\Delta} = z_{0.975} \frac{\sigma}{\sqrt{\widetilde{n}}} = 1.96 \frac{3}{\sqrt{\widetilde{n}}} = 1.96 \frac{3}{2\sqrt{10}} = z_{0.975} \frac{\sigma}{2\sqrt{n}} = \Delta/2.$$

Megoldás:  $\widetilde{n}=4n=40$ , azaz négyszeres mintanagyság szükséges.

$$n = 10, \ \sigma = 3, \ \Delta = 1.8594, \ \operatorname{Int}_{0.95}(\mu) = (498.8406, 502.5594).$$

Mekkora mintaelemszám szükséges egy fele ilyen pontos 90%-os megbízhatóságú konfidencia intervallum meghatározásához?

Új hibahatár:  $\widetilde{\Delta} = 2\Delta$ .

Új mintanagyság:  $\widetilde{n}$ .

Új megbízhatóság:  $\widetilde{\alpha} = 0.1, \ z_{1-\widetilde{\alpha}/2} = z_{0.95} = 1.6449.$ 

$$\widetilde{\Delta} = z_{0.95} \frac{\sigma}{\sqrt{\widetilde{n}}} = 1.6449 \frac{3}{\sqrt{\widetilde{n}}} = 2 \cdot 1.96 \frac{3}{\sqrt{10}} = 2 \cdot z_{0.975} \frac{\sigma}{2\sqrt{n}} = 2\Delta.$$

$$\frac{1.6449}{\sqrt{\widetilde{n}}} = \frac{2 \cdot 1.96}{\sqrt{10}} \iff \sqrt{\widetilde{n}} = \frac{1.6449 \cdot \sqrt{10}}{2 \cdot 1.96} = 1.3269 \iff \widetilde{n} = 1.7608.$$

Megoldás: legalább 2 elemű minta szükséges.

## Egyoldali konfidencia intervallumok

 $y_1, y_2, \dots, y_n$ : minta.  $\theta$ : becsülni kívánt sokasági jellemző.

Adott  $\alpha$  esetén keresünk olyan  $\hat{\theta}_{s(\alpha)}$  és  $\hat{\theta}_{f(\alpha)}$  becslőfüggvényeket, melyekre

$$\mathsf{P}ig( heta < \hat{ heta}_{\mathsf{f}(lpha)} ig) = 1 - lpha$$
 (baloldali konfidencia intervallum);

$$P(\hat{\theta}_{a(\alpha)} < \theta) = 1 - \alpha$$
 (jobboldali konfidencia intervallum).

#### Normális eloszlás, ismert szórás

 $y_1, y_2, \dots, y_n$ : FAE minta  $\mathcal{N}(\mu, \sigma^2)$  eloszlásból,  $\sigma$  ismert.

 $\theta = \mu$ : becsülni kívánt sokasági jellemző.

Baloldali konfidencia intervallum:

$$\mathsf{P}\left(\mu < \overline{y} + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha, \quad \mathsf{azaz} \quad \left(-\infty, \, \overline{y} + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}\right).$$

Jobboldali konfidencia intervallum:

$$\mathsf{P}\left(\overline{y}-z_{1-\alpha}\frac{\sigma}{\sqrt{n}}<\mu\right)\!=\!1-\alpha,\quad\mathsf{azaz}\quad\left(\overline{y}-z_{1-\alpha}\frac{\sigma}{\sqrt{n}},\,\infty\right).$$

Baran Sándor Statisztika 1 előadás 157 / 189

### Normális eloszlás, ismeretlen szórás

 $y_1, y_2, \dots, y_n$ : FAE minta  $\mathcal{N}(\mu, \sigma^2)$  eloszlásból,  $\sigma$  nem ismert.

 $\theta=\mu$ : becsülni kívánt sokasági jellemző.

 $\sigma^2$  becslése:  $s^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \overline{y})^2$ .

$$T=rac{\overline{y}-\mu}{s/\sqrt{n}}\sim t_{n-1},$$

ezért adott  $\alpha$  esetén

$$\mathsf{P}\left(\overline{y}-t_{1-\alpha/2}(n-1)\frac{s}{\sqrt{n}}<\mu<\overline{y}+t_{1-\alpha/2}(n-1)\frac{s}{\sqrt{n}}\right)=1-\alpha.$$

 $t_{1-\alpha/2}(n-1)$ : az n-1 szabadsági fokú t-eloszlás  $p=1-\alpha/2$  rendű kvantilise. Táblázatból meghatározható.

Az  $(1-\alpha)\cdot 100\%$ -os megbízhatóságú konfidencia intervallum

alsó határa: 
$$\overline{y} - t_{1-\alpha/2}(n-1)\frac{s}{\sqrt{n}}$$
; felső határa:  $\overline{y} + t_{1-\alpha/2}(n-1)\frac{s}{\sqrt{n}}$ .

Baran Sándor Statisztika 1 előadás 158 / 189

Egy gabonaraktárban 60 kg-os kiszerelésben búzát csomagolnak. A havi minőségellenőrzés során lemértek tíz darab véletlenül kiválasztott zsákot. Eredményül a következőket kapták:

Feltételezve, hogy a töltőtömeg normális eloszlású, adjon 95%-os megbízhatóságú konfidencia intervallumot a zsákokba lévő búzamennyiség várható értékére.

$$n = 10, \ \alpha = 0.05, \ t_{1-\alpha/2}(n-1) = t_{0.975}(9) = 2.2622, \ \overline{y} = 62.54, \ s^2 = 6.2938, \ s = 2.5087.$$

A keresett konfidencia intervallum:

$$\overline{y} \pm t_{1-\alpha/2}(n-1)\frac{s}{\sqrt{n}} = 62.54 \pm 2.2622\frac{2.5087}{\sqrt{10}} = 62.54 \pm 1.7946,$$

azaz

Int 
$$_{0.95}(\mu) = (60.7454, 64.3346)$$
 kg.

Baran Sándor Statisztika 1 előadás 159 / 189

## Sokasági variancia becslése

 $y_1, y_2, \dots, y_n$ : FAE minta  $\mathcal{N}(\mu, \sigma^2)$  eloszlásból.

 $\theta=\sigma^2$ : becsülni kívánt sokasági jellemző.

 $\sigma^2$  becslése:  $s^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \overline{y})^2$ .

$$\mathcal{X}^2 = \frac{(n-1)s^2}{\sigma^2} \sim \mathcal{X}_{n-1}^2,$$

ezért adott  $\alpha$  esetén

$$\mathsf{P}\left(\frac{(n-1)s^2}{\mathcal{X}_{1-\alpha/2}^2(n-1)}<\sigma^2<\frac{(n-1)s^2}{\mathcal{X}_{\alpha/2}^2(n-1)}\right)=1-\alpha.$$

 $\mathcal{X}^2_{\alpha/2}(n-1)$  és  $\mathcal{X}^2_{1-\alpha/2}(n-1)$ : az n-1 szabadsági fokú  $\mathcal{X}^2$ -eloszlás  $\alpha/2$ , illetve  $1-\alpha/2$  rendű kvantilisei. Táblázatból meghatározhatóak.

A  $\sigma^2$ -re adott  $(1-\alpha)\cdot 100\%$ -os megbízhatóságú konfidencia intervallum

alsó határa: 
$$\frac{(n-1)s^2}{\mathcal{X}_{1-\alpha/2}^2(n-1)}$$
; felső határa:  $\frac{(n-1)s^2}{\mathcal{X}_{\alpha/2}^2(n-1)}$ .

Baran Sándor Statisztika 1 előadás 160 / 189

Tekintsük az előző példa normális eloszlásúnak feltételezett mintáját:

Adjunk 95%-os megbízhatóságú konfidencia intervallumot a szórásra.

$$n = 10, \ \alpha = 0.05, \ \mathcal{X}_{\alpha/2}^2(n-1) = \mathcal{X}_{0.025}^2(9) = 2.7004,$$
  
 $\mathcal{X}_{1-\alpha/2}^2(n-1) = \mathcal{X}_{0.975}^2(9) = 19.0228, \ s^2 = 6.2938.$ 

A  $\sigma^2$ -re vett 95%-os megbízhatóságú konfidencia intervallum

alsó határa 
$$\frac{(n-1)s^2}{\mathcal{X}_{1-\alpha/2}^2(n-1)} = \frac{9\cdot 6.2938}{19.0228} = 2.9777,$$
 felső határa 
$$\frac{(n-1)s^2}{\mathcal{X}_{\alpha/2}^2(n-1)} = \frac{9\cdot 6.2938}{2.7004} = 20.9762.$$

A  $\sigma$ -ra vett 95%-os megbízhatóságú konfidencia intervallum:

Int 
$$_{0.95}(\sigma) = (\sqrt{2.9777}, \sqrt{20.9762}) = (1.7256, 4.5800).$$

Baran Sándor Statisztika 1 előadás 161 / 189

## Sokasági arány becslése

Legyen adott egy esemény, aminek a valószínűsége P. Például feldobunk egy érmét és fejet dobunk, egy véletlenszerűen kiválasztott hallgató lány, stb.

n elemű minta: n darab független kísérlet az adott eseményre.

 $\hat{P} = p = \frac{k}{n}$ : P torzítatlan és konzisztens becslőfüggvénye, k a vizsgált esemény bekövetkezéseinek száma.

k eloszlása binomiális n és p paraméterekkel:

$$\mathsf{E}(p) = P, \qquad \mathsf{Var}(p) = \sigma_p^2 = \frac{P(1-P)}{n}, \quad \mathsf{becsl\'ese} \quad s_p^2 = \frac{p(1-p)}{n}.$$

Ha a mintaelemszám nagy, azaz  $\min\{np, n(1-p)\} \ge 10$ , akkor

$$Z = \frac{p-P}{s_p}$$
 eloszlása közel  $\mathcal{N}(0,1)$ .

Adott  $\alpha$  esetén

$$\mathsf{P}\bigg(p-z_{1-\alpha/2}\sqrt{\frac{p(1-p)}{n}} < P < p+z_{1-\alpha/2}\sqrt{\frac{p(1-p)}{n}}\bigg) = 1-\alpha.$$

Baran Sándor Statisztika 1 előadás 162 / 189

## Mintanagyság

Az P arányra vett  $(1-\alpha)\cdot 100\%$ -os megbízhatóságú konfidencia intervallum

alsó határa: 
$$p-z_{1-\alpha/2}\sqrt{\frac{p(1-p)}{n}};$$
 felső határa:  $p+z_{1-\alpha/2}\sqrt{\frac{p(1-p)}{n}}.$ 

Adott  $\Delta$  pontossághoz szükséges mintanagyság:

$$n=\frac{z_{1-\alpha/2}^2\cdot P\cdot (1-P)}{\Delta^2}.$$

P nem ismert, de  $P \cdot (1-P) \le 1/4$ , azaz egy felső becslés a mintanagyságra:

$$n=\frac{z_{1-\alpha/2}^2}{4\cdot\Delta^2}.$$

Baran Sándor Statisztika 1 előadás 163 / 189

A Medián közvéleménykutató 2017 október végi 1200 fős reprezentatív mintán alapuló felmérése alapján az összes megkérdezett 30%-a vallotta magát bizonytalan szavazónak, vagy nem válaszolt a kérdezőbiztosnak (HVG, 44. szám, 2017. november 2). Adjon 95%-os megbízhatóságú konfidenciaintervallumot a bizonytalan/nem válaszoló szavazók az arányára az összes választópolgár között.

$$n = 1200, \ p = 0.3, \ \alpha = 0.05, \ z_{1-\alpha/2} = z_{0.975} = 1.96, \ s_p^2 = 0.000175.$$

A keresett konfidencia intervallum:

$$p \pm z_{1-\alpha/2} \sqrt{\frac{p(1-p)}{n}} = 0.3 \pm 1.96 \sqrt{\frac{0.3 \cdot 0.7}{1200}} = 0.3 \pm 0.0259,$$

azaz

Int 
$$_{0.95}(P) = (0.2741, 0.3259)$$
.

Az előző példában 90%-os megbízhatóság mellett hány elemű minta kell az 1%-os pontosság eléréséhez?

$$\alpha = 0.1, \ z_{1-\alpha/2} = z_{0.95} = 1.6449, \ \Delta = 0.01.$$

A szükséges mintaelemszám egy felső becslése:

$$n = \frac{z_{1-\alpha/2}^2}{4 \cdot \Delta^2} = \left(\frac{1.6449}{2 \cdot 0.01}\right)^2 = 6763.9.$$

6764 elemű minta már biztosan teljesíti a kívánt feltételeket.

# Értékösszeg becslése

 $Y_1, Y_2, \dots, Y_N$ : N elemű sokaság.

 $\mu = \overline{Y}$ : sokasági várható érték.

 $Y' = N\overline{Y} = N\mu$ : értékösszeg.

Ha a  $\mu$  várható értékre adott egy az  $y_1, y_2, \ldots, y_n$  minta alapján készült konfidencia intervallum, akkor az értékösszegre vett konfidencia intervallum ennek az intervallumnak az N-szerese.

**Példa.** Tíz véletlenszerűen kiválasztott zsák búza töltőtömege alapján az átlagos töltőtömegre vett 95%-os megbízhatóságú konfidencia intervallum:

$$Int_{0.95}(\mu) = (60.7454, 64.3346) \text{ kg.}$$

Tegyük fel, hogy a raktárban egy hét alatt 10000 zsákot töltenek meg. Ekkor az összes töltőmennyiségre vett 95%-os megbízhatóságú konfidencia intervallum:

$$Int_{0.95}(Y') = 10000(60.7454, 64.3346) \text{ kg} = (607.454, 643.346) \text{ tonna.}$$

Baran Sándor Statisztika 1 előadás 166 / 189

## Várható értékek különbségének becslése. Ismert szórás

 $x_1, x_2, \dots, x_{n_X}$ : FAE minta  $\mathcal{N}(\mu_X, \sigma_X^2)$  eloszlásból.

 $y_1, y_2, \dots, y_{n_Y}$ : FAE minta  $\mathcal{N}(\mu_Y, \sigma_Y^2)$  eloszlásból.

A két minta **független** és a  $\sigma_X^2$  és  $\sigma_Y^2$  varianciák **ismertek**.

 $\delta = \mu_Y - \mu_X$ : becsülendő sokasági jellemző.

 $\overline{d} = \overline{y} - \overline{x}$ : becslőfüggvény, normális eloszlású,

$$\mathsf{E}(\overline{d}) = \delta \ (\mathsf{torz}(\mathsf{tatlan}), \ \mathsf{Var}(\overline{d}) = \mathsf{Var}(\overline{y}) + \mathsf{Var}(\overline{x}) = \sigma_{\overline{d}}^2 = \frac{\sigma_{\overline{Y}}^2}{n_{\overline{Y}}} + \frac{\sigma_{\overline{X}}^2}{n_{\overline{X}}}.$$

Adott  $\alpha$  esetén

$$\mathsf{P}\left(\overline{d} - z_{1-\alpha/2}\sigma_{\overline{d}} < \delta < \overline{d} + z_{1-\alpha/2}\sigma_{\overline{d}}\right) = 1 - \alpha.$$

Az  $(1-\alpha)\cdot 100\%$ -os megbízhatóságú konfidencia intervallum

alsó határa: 
$$\overline{y} - \overline{x} - z_{1-\alpha/2} \sqrt{\frac{\sigma_Y^2}{n_Y} + \frac{\sigma_X^2}{n_X}}$$
; felső határa:  $\overline{y} - \overline{x} + z_{1-\alpha/2} \sqrt{\frac{\sigma_Y^2}{n_Y} + \frac{\sigma_X^2}{n_X}}$ .

Baran Sándor Statisztika 1 előadás 167 / 189

## Várható értékek különbségének becslése. Ismeretlen szórás

 $x_1, x_2, \dots, x_{n_X}$ : FAE minta  $\mathcal{N}(\mu_X, \sigma_X^2)$  eloszlásból.

 $y_1, y_2, \dots, y_{n_Y}$ : FAE minta  $\mathcal{N}(\mu_Y, \sigma_Y^2)$  eloszlásból.

A két minta **független** és a  $\sigma_X^2$  és  $\sigma_Y^2$  varianciák **nem ismertek**, de **egyenlőek**, azaz  $\sigma_X^2 = \sigma_Y^2 = \sigma^2$ .

 $\delta = \mu_Y - \mu_X$ : becsülendő sokasági jellemző.

$$\sigma_X^2$$
 becslése:  $s_X^2 = \frac{1}{n_X-1}\sum_{i=1}^{n_X}(x_i-\overline{x})^2;$   $\sigma_Y^2$  becslése:  $s_Y^2 = \frac{1}{n_Y-1}\sum_{j=1}^{n_Y}(y_i-\overline{y})^2.$ 

 $\sigma^2 = \sigma_X^2 = \sigma_Y^2$  kombinált becslése:

$$s_c^2 = \frac{(n_X - 1)s_X^2 + (n_Y - 1)s_Y^2}{n_X + n_Y - 2}.$$

 $\overline{d} = \overline{y} - \overline{x}$  becslőfüggvény standard hibája és becsült standard hibája

$$\sigma_{\overline{d}} = \sqrt{\frac{\sigma_Y^2}{n_Y} + \frac{\sigma_X^2}{n_X}}, \qquad s_{\overline{d}} = s_c \sqrt{\frac{1}{n_Y} + \frac{1}{n_X}}.$$

## Várható értékek különbségének becslése. Ismeretlen szórás

 $\overline{d}=\overline{y}-\overline{x}$  becslőfüggvény eloszlása  $\mathcal{N}(\delta,\sigma_{\overline{d}}^2)$ , valamint

$$T=rac{\overline{d}-\delta}{s_{\overline{d}}}\sim t_{
u}, \qquad ext{ahol} \quad 
u=n_X+n_Y-2.$$

Adott  $\alpha$  esetén

$$\mathsf{P}\left(\overline{d} - t_{1-\alpha/2}(\nu)s_{\overline{d}} < \delta < \overline{d} + t_{1-\alpha/2}(\nu)s_{\overline{d}}\right) = 1 - \alpha.$$

 $t_{1-\alpha/2}(\nu)$ : a  $\nu=n_X+n_Y-2$  szabadsági fokú t-eloszlás  $p=1-\alpha/2$  rendű kvantilise. Táblázatból meghatározható.

Az  $(1-\alpha)\cdot 100\%$ -os megbízhatóságú konfidencia intervallum

alsó határa: 
$$\overline{y} - \overline{x} - t_{1-\alpha/2}(n_X + n_Y - 2)s_c\sqrt{\frac{1}{n_Y} + \frac{1}{n_X}};$$

felső határa: 
$$\overline{y} - \overline{x} + t_{1-\alpha/2}(n_x + n_Y - 2)s_c\sqrt{\frac{1}{n_Y} + \frac{1}{n_X}}$$
.

Baran Sándor Statisztika 1 előadás 169 / 189

Kétfajta instant kávé oldódási idejét tesztelték, melyekből minden alkalommal azonos mennyiséget tettek 1 dl forrásban lévő vízbe. A kísérletek eredményeit az alábbi táblázat tartalmazza:

| Kávé            | Oldódási idő (másodperc) |     |     |     |     |     |     |     |
|-----------------|--------------------------|-----|-----|-----|-----|-----|-----|-----|
| Mokka Makka (Y) | 8.2                      | 5.0 | 6.8 | 6.7 | 5.8 | 7.3 | 6.4 | 7.8 |
| Koffe In (X)    | 5.1                      | 4.3 | 3.4 | 3.7 | 6.1 | 4.7 |     |     |

Az oldódási időket normálisnak, a szórásokat pedig egyenlőnek tételezve fel adjon 95%-os megbízhatóságú konfidencia intervallumot az átlagos oldódási idők különbségére.

$$n_Y=8, \ n_X=6, \ \nu=12, \ \alpha=0.05, \ t_{1-\alpha/2}(\nu)=2.1788, \ \overline{y}=6.75, \ \overline{x}=4.55, \ s_Y^2=1.0857, \ s_X^2=0.9670.$$

A variancia kombinált becslése:

$$s_c^2 = \frac{(n_X - 1)s_X^2 + (n_Y - 1)s_Y^2}{n_X + n_Y - 2} = \frac{7 \cdot 1.0857 + 5 \cdot 0.9670}{12} = 1.0362, \quad s_c = 1.0180.$$

A keresett konfidencia intervallum:

$$\overline{y} - \overline{x} \pm t_{1-\alpha/2} (n_X + n_Y - 2) s_c \sqrt{\frac{1}{n_Y} + \frac{1}{n_X}} = 6.75 - 4.55 \pm 2.1788 \cdot 1.0180 \sqrt{\frac{1}{8} + \frac{1}{6}}$$

Int 
$$_{0.95}(\delta) = \text{Int}_{0.95}(\mu_{Y} - \mu_{X}) = (1.0022, 3.3978).$$

Baran Sándor Statisztika 1 előadás 170 / 189

### Páros minta

$$\begin{pmatrix} y_1 \\ x_1 \end{pmatrix}, \begin{pmatrix} y_2 \\ x_2 \end{pmatrix}, \dots, \begin{pmatrix} y_n \\ x_n \end{pmatrix}$$
: FAE minta  $\begin{pmatrix} Y \\ X \end{pmatrix}$  vektorra. A két ismérv **nem feltétlenül független!**

$$d_i=y_i-x_i$$
 normális eloszlású  $(i=1,2,\ldots,n)$ ,  $\mathsf{E}(Y)=\mu_Y$ ,  $\mathsf{E}(X)=\mu_X$ .

$$\delta = \mu_Y - \mu_X$$
: becsülendő sokasági jellemző.

 $d_1, d_2, \ldots, d_n$ : új minta  $\mathcal{N}(\delta, \sigma_d^2)$  eloszlásból. Ezzel a mintával készítünk konfidencia intervallumot  $\delta$ -ra.

$$\sigma_d^2$$
 becslése:  $s_d^2 = \frac{1}{n-1} \sum_{i=1}^n \left( d_i - \overline{d} \right)^2$ .

$$T = rac{\overline{d} - \delta}{s_d/\sqrt{n}} \sim t_{n-1}.$$

Adott  $\alpha$  esetén

$$\mathsf{P}\left(\overline{d} - t_{1-\alpha/2}(n-1)s_d/\sqrt{n} < \delta < \overline{d} + t_{1-\alpha/2}(n-1)s_d/\sqrt{n}\right) = 1 - \alpha.$$

Az  $(1-lpha)\cdot 100\%$ -os megbízhatóságú konfidencia intervallum

alsó határa: 
$$\overline{d} - t_{1-\alpha/2}(n-1)s_d/\sqrt{n}$$
; felső határa:  $\overline{d} + t_{1-\alpha/2}(n-1)s_d/\sqrt{n}$ .

Baran Sándor Statisztika 1 előadás 171 / 189

A Mindent Tudás Egyeteme másodéves gazdaságinformatikus hallgatói két zárthelyi dolgozatot írtak statisztikából. Az alábbi táblázat tíz véletlenszerűen kiválasztott hallgató eredményeit tartalmazza:

| Hallgató           | Α  | В  | С  | D  | Е  | F  | G  | Н  | I  | J  |
|--------------------|----|----|----|----|----|----|----|----|----|----|
| I. dolgozat $(Y)$  | 57 | 63 | 67 | 82 | 45 | 65 | 53 | 32 | 51 | 27 |
| II. dolgozat $(X)$ | 53 | 62 | 63 | 80 | 46 | 64 | 44 | 28 | 50 | 29 |

A dolgozateredmények eltérését normális eloszlásúnak tételezve fel adjon 98%-os megbízhatóságú konfidencia intervallumot az átlagos pontszámok különbségére.

Új minta (
$$d_i = y_i - x_i$$
): 4, 1, 4, 2, -1, 1, 9, 4, 1, -2.

$$n = 10, \ \alpha = 0.02, \ t_{1-\alpha/2}(n-1) = t_{0.99}(9) = 2.8214, \ \overline{d} = 2.3, \ s_d^2 = 9.7889, \ s_d = 3.1287.$$

A keresett konfidencia intervallum:

$$\overline{d} \pm t_{1-\alpha/2}(n-1)\frac{s_d}{\sqrt{n}} = 2.3 \pm 2.8214\frac{3.1287}{\sqrt{10}} = 2.3 \pm 2.7915,$$

azaz

$$Int_{0.98}(\delta) = Int_{0.98}(\mu_{Y} - \mu_{X}) = (-0.4915, 5.0915).$$

### Hányadosbecslés páros minta esetén

$$\begin{pmatrix} y_1 \\ x_1 \end{pmatrix}, \begin{pmatrix} y_2 \\ x_2 \end{pmatrix}, \dots, \begin{pmatrix} y_n \\ x_n \end{pmatrix}$$
: FAE minta  $\begin{pmatrix} Y \\ X \end{pmatrix}$  vektorra.

$$\mathsf{E}(Y) = \mu_Y, \;\; \mathsf{E}(X) = \mu_X, \;\; \mathsf{Var}(Y) = \sigma_Y^2, \;\; \mathsf{Var}(X) = \sigma_X^2.$$

 $H = \mu_Y/\mu_X$ : becsülendő sokasági jellemző.

 $h=\overline{y}/\overline{x}$ : becslőfüggvény, eloszlása nem ismert, de nagy minta esetén közel normális.

$$\mathsf{E}(h) \approx H + \frac{H}{n} \big( V_X^2 - r(X,Y) V_X V_Y \big).$$

 $V_X = \sigma_X/\mu_X$ ,  $V_Y = \sigma_Y/\mu_Y$ : X és Y relatív szórása.

r(X, Y): X és Y korrelációja.

$$Var(h) \approx \frac{H^2}{n} \left( V_X^2 + V_Y^2 - 2r(X, Y) V_X V_Y \right).$$

h a H hányados torzított, de aszimptotikusan torzítatlan és konzisztens becslése.

Baran Sándor Statisztika 1 előadás 173 / 189

### Külső információs becslés

Külső információ: például ismert  $\mu_X$ .

 $\mu_Y$  becslése:  $\hat{\mu}_Y = \mu_X \cdot \frac{\overline{y}}{\overline{x}} = \mu_X \cdot h$ .

$$\operatorname{Var}(\hat{\mu}_Y) = \mu_X^2 \operatorname{Var}(h) \approx \frac{1}{n} (\sigma_Y^2 + H^2 \sigma_X^2 - 2Hr(X, Y) \sigma_X \sigma_Y).$$

Hagyományos becslés varianciája:  $Var(\overline{y}) = \frac{\sigma_Y^2}{n}$ .

$$\operatorname{Var}(\hat{\mu}_Y) \leq \operatorname{Var}(\overline{y}), \quad \text{ha} \quad \frac{\sigma_Y^2}{n} \geq \frac{1}{n} (\sigma_Y^2 + H^2 \sigma_X^2 - 2Hr(X, Y) \sigma_X \sigma_Y),$$

azaz

$$r(X,Y) \geq \frac{1}{2} \cdot \frac{V_X}{V_Y}$$
.

Ha az X és Y korrelációja elég nagy, a külső információt használó becslés hatékonyabb, mint a mintaátlag.

### Becslés EV mintából

EV minta: N elemű sokaságból választunk n elemet visszatevés nélkül.

Különbségek a FAE mintához képest.

- A minta fontos jellemzője az alapsokaság N nagysága.
- Az egyes mintaelemek nem függetlenek.
- A mintajellemzők eloszlásának meghatározása jóval bonyolultabb, mint FAE minta esetén.
   Nagy minták esetén a mintaátlag, az értékösszeg és a sokasági arány közelítőleg normális eloszlású.

$$\mathsf{E}(\overline{y}_{EV}) = \mu, \qquad \mathsf{Var}(\overline{y}_{EV}) = \frac{\sigma^2}{n} \left( \frac{\mathsf{N} - \mathsf{n}}{\mathsf{N} - 1} \right) pprox \frac{\sigma^2}{n} \left( 1 - \frac{\mathsf{n}}{\mathsf{N}} \right).$$

EV mintából a várható érték becslése pontosabb, mint ugyanakkora FAE mintából.

## Sokasági átlag becslése, nagy minta

 $y_1, y_2, \ldots, y_n$ : EV minta egy N elemű sokaságból,  $n \ge 30$ .

 $\mu = \overline{Y}$ : becsülni kívánt sokasági jellemző.

Ha  $\sigma$  értéke ismert, adott  $\alpha$  esetén

$$P\left(\overline{y}-z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\sqrt{1-\frac{n}{N}}<\overline{Y}<\overline{y}+z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\sqrt{1-\frac{n}{N}}\right)=1-\alpha.$$

Az  $(1-lpha)\cdot 100\%$ -os megbízhatóságú konfidencia intervallum

alsó határa: 
$$\overline{y} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \sqrt{1-\frac{n}{N}}$$
; felső határa:  $\overline{y} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \sqrt{1-\frac{n}{N}}$ .

Értékösszeg becslése: FAE mintához hasonlóan

Ha  $\sigma$  nem ismert, akkor az s empirikus szórással helyettesíhetjük.

Adott  $\Delta$  pontossághoz szükséges mintaelemszám:

$$n = \frac{z_{1-\alpha/2}^2 \sigma^2}{z_{1-\alpha/2}^2 \sigma^2 / N + \Delta^2}.$$

Baran Sándor Statisztika 1 előadás 176 / 189

## Sokasági arány becslése EV mintából

Legyen P valamilyen tulajdonságú elemek aránya az N elemű sokaságban.

Minta: n darab visszatevés nélkül kiválasztott sokasági elem.

 $\hat{P} = p = \frac{k}{n}$ : P torzítatlan és konzisztens becslőfüggvénye, k a vizsgált tulajdonságú elemek száma a mintában.

$$\mathsf{E}(p) = P, \qquad \mathsf{Var}(p) = \frac{P(1-P)}{n} \left(1 - \frac{n}{N}\right) \approx s_p^2 = \frac{p(1-p)}{n} \left(1 - \frac{n}{N}\right).$$

Ha a mintaelemszám nagy, akkor

$$Z = \frac{p-P}{s_p}$$
 eloszlása közel  $\mathcal{N}(0,1)$ .

Adott  $\alpha$  esetén az  $(1-\alpha)\cdot 100\%$ -os megbízhatóságú konfidencia intervallum

alsó határa: 
$$p-z_{1-\alpha/2}\sqrt{\frac{p(1-p)}{n}}\sqrt{1-\frac{n}{N}};$$
 felső határa:  $p+z_{1-\alpha/2}\sqrt{\frac{p(1-p)}{n}}\sqrt{1-\frac{n}{N}}.$ 

Baran Sándor Statisztika 1 előadás 177 / 189

## A hipotézisvizsgálat általános kérdései

A sokaságokra vonatkozó különféle feltevéseket hipotéziseknek, az azok helyességének mintavételi eredményekre alapozott vizsgálatát pedig hipotézisvizsgálatnak nevezzük. A hipotézisek a vizsgált sokaság(ok) eloszlására vagy az adott eloszláso(ok) egy vagy több paraméterére vonatkozhatnak. A különféle hipotézisek vizsgálatára szolgáló eljárásokat statisztikai próbáknak nevezzük.

Eredményül nem azt kapjuk, hogy egy hipotézis igaz-e, vagy sem, hanem hogy az adott körül-mények között elfogadjuk-e.

#### Példa

- Tudva, hogy egy üdítőitalt gyártó gépsorról lekerülő palackokban a folyadékmennyiség normális eloszlású 3 ml szórással, egy 10 elemű minta alapján vizsgáljuk meg, az átlagos töltőmennyiség 500 ml-e.
- 2 Egy 15 elemű minta alapján vizsgáljuk meg, a gyártósorról lekerülő palackokban a folyadékmennyiség normális eloszlású-e.
- **3** 500 ember haj-, illetve szemszínét megvizsgálva döntsünk, a hajszín független-e a szemszíntől.

## Hipotézisek megfogalmazása

Két egymásnak ellentmondó feltevést – hipotézist – fogalmazunk meg.

Az egyik: nullhipotézis, jelölése  $H_0$ , erről hozunk döntést.

A másik: alternatív hipotézis, vagy ellenhipotézis, jelölése  $H_1$ .

#### Példa

lacktriangledown Jelölje  $\mu$  a palackokba töltött folyadékmennyiség várható értékét.

$$H_0: \ \mu = 500 \ \text{ml}; \qquad H_1: \ \mu \neq 500 \ \text{ml}.$$

- H<sub>0</sub>: a folyadékmennyiség normális eloszlású;
  - $H_1$ : a folyadékmennyiség **nem** normális eloszlású.
- H<sub>0</sub>: a hajszín és a szemszín függetlenek egymástól;
  - $H_1$ : a hajszín és a szemszín **nem** függetlenek egymástól.

Egyszerű nullhipotézis: fennállása esetén a sokaság eloszlása egyértelműen meghatározott.

## A próbafüggvény meghatározása

Próbafüggvény: az  $y_1, y_2, \ldots, y_n$  minta egy olyan  $T(y_1, y_2, \ldots, y_n)$  függvénye, melynek eloszlása  $H_0$  teljesülése esetén ismert.

**Példa.** Az üdítőitalt gyártó gépsorról lekerülő palackokban a folyadékmennyiség normális eloszlású  $\sigma=3$  ml szórással és ha  $H_0$  igaz, akkor 500 ml várható értékkel. n=10 esetén  $\overline{y}\sim\mathcal{N}(500,3^2/10)$ , azaz

$$z = \frac{\overline{y} - 500}{\sigma/\sqrt{n}} = \frac{\overline{y} - 500}{3/\sqrt{10}} \sim \mathcal{N}(0, 1).$$

A hipotézisek vizsgálatára *próbafüggvényeket* használunk, amik a becslőfüggvényekhez hasonlóan valószínűségi változók. A próbafüggvényt úgy kell megválasztani, hogy

- a sokaságra tett bizonyos kikötések teljesülése (például normális eloszlás, ismert szórás),
- ullet a mintavétel adott módja és a minta adott nagysága (például FAE minta vagy  $n \geq 100$ ),
- az ellenőrzendő H<sub>0</sub> helyességének feltételezése

mellett annak eloszlása pontosan ismert legyen. Ehhez  $H_0$ -nak egyszerű hipotézisnek kell lennie.

## Szignifikanciaszint, kritikus tartomány

A próbafüggvény értékkészletét két diszjunkt részre bontjuk, egy elfogadási (E) és egy kritikus (K) tartományra.

A határok megadása: ha  $H_0$  teljesül, akkor a próbafüggvény egy előre megadott nagy  $1-\alpha$  valószínűséggel az *elfogadási tartományba* esik, ahol  $\alpha$  kicsi (például 0.1, 0.05, 0.01).

Szignifikanciaszint:  $\alpha \cdot 100\%$  (például 10%, 5%, 1%)





$$\begin{array}{c|c}
K & E & K \\
\hline
\alpha/2 & 1-\alpha & \alpha/2
\end{array}$$

$$\begin{array}{c|c}
C_{a} & C_{f}
\end{array}$$

Bal oldali kritikus tartomány.

 $c_a$ : a próbafüggvény eloszlásának p=lpha rendű kvantilise.

Jobb oldali kritikus tartomány.

 $c_{\it f}$ : a próbafüggvény eloszlásának  $\it p=1-lpha$  rendű kvantilise.

Kétoldali kritikus tartomány.

 $c_a$ ,  $c_f$ : a próbafüggvény eloszlásának  $p=\alpha/2$ , illetve  $1-\alpha/2$  rendű kvantilise

Statisztika 1 előadás

## Egy- és kétoldali kritikus tartományok

A valóságnak a nullhipotézisben rögzített állapottól való meghatározott irányú eltérései egyoldali alternatív hipotézisként írhatók fel. Ha az egyoldali alternatív hipotézis fennállása esetén a próbafüggvény kisebb értéket vesz fel, mint  $H_0$  fennállásakor, bal oldali, ellenkező esetben pedig jobb oldali alternatív hipotézisről beszélünk. A bal oldali alternatív hipotéziseket ezután  $H_1^b$ -vel, a jobb oldaliakat pedig  $H_1^j$ -vel jelöljük.

A valóságnak a nullhipotézisben rögzített állapottól való tetszőleges irányú eltérései kétoldali alternatív hipotézisként fogalmazhatók meg. A kétoldali alternatív hipotézis fennállása esetén a próbafüggvény értéke akár kisebb, akár nagyobb lehet, mint  $H_0$  fennállásakor. A kétoldali alternatív hipotéziseket ezután  $H_1$ -gyel jelöljük.

#### Példa

```
\begin{split} &H_0: \mu = 500 \text{ ml}; \\ &H_1^b: \mu < 500 \text{ ml}; \quad H_1^j: \mu > 500 \text{ ml}; \quad H_1: \mu \neq 500 \text{ ml}. \end{split}
```

c<sub>a</sub>, c<sub>f</sub>: kritikus értékek, hozzátartoznak a kritikus tartományhoz.

Baran Sándor Statisztika 1 előadás 183 / 189

Tudva, hogy egy üdítőitalt gyártó gépsorról lekerülő palackokban a folyadékmennyiség normális eloszlású 3 ml szórással, egy 10 elemű minta alapján 5%-os szinten vizsgáljuk meg, az átlagos töltőmennyiség 500 ml-e. Írjuk fel az egyoldali és a kétoldali kritikus tartományokat.

Szignifikanciaszint: 5%, azaz  $\alpha = 0.05$ .

Próbafüggvény:  $z=rac{\overline{y}-500}{3/\sqrt{10}}$ . Ha  $H_0$  teljesül, eloszlása standard normális.

Kvantilisek:

Rend: 
$$p$$
 $\alpha/2 = 0.025$ 
 $\alpha = 0.05$ 
 $1 - \alpha = 0.95$ 
 $1 - \alpha/2 = 0.975$ 

 Kvantilis:  $z_p$ 
 -1.9600
 -1.6449
 1.6449
 1.9600

$$H_0: \mu = 500 \text{ ml}; \qquad H_1: \mu \neq 500 \text{ ml}.$$

Kritikus tartomány: 
$$z \le c_a = z_{\alpha/2} = z_{0.025} = -1.96$$
, vagy  $z \ge c_f = z_{1-\alpha/2} = z_{0.975} = 1.96$ , azaz  $|z| \ge 1.96$ .

$$H_0: \mu = 500 \text{ ml}; \qquad H_1^b: \mu < 500 \text{ ml}.$$

Kritikus tartomány: 
$$z \le c_a = z_\alpha = z_{0.05} = -1.6449$$
.

$$H_0: \mu = 500 \text{ ml}; \qquad H_1^j: \mu > 500 \text{ ml}.$$

Kritikus tartomány:  $z > c_f = z_{1-\alpha} = z_{0.95} = 1.6449$ .

Baran Sándor Statisztika 1 előadás 184 / 189

#### Mintavétel és döntés

A minta adataiból kiszámítjuk a próbafüggvény értékét. Ha az a kritikus tartományba esik, a megadott szinten elvetjük  $H_0$ -t, ellenkező esetben elfogadjuk.

**Példa.** Egy teherautórakománnyi félliteres üdítőitalból 10 palackot véletlenszerűen kiválasztva és lemérve azok űrtartalmát az alábbi, milliliterben kifejezett értékeket kaptuk:

Ismert, hogy a palackokba töltött üdítőital mennyisége normális eloszlású 3 ml szórással. 5%-os döntési szintet használva vizsgálja meg a gyártó azon állítását, hogy a palackokba átlagosan fél liter üdítőitalt töltöttek.

$$H_0: \mu = 500 \text{ ml}; \qquad H_1: \mu \neq 500 \text{ ml} \quad \text{(kétoldali ellenhipotézis)}.$$

$$n=10, \ \alpha=0.05, \ \sigma=3, \ \overline{y}=500.7.$$
 Kritikus tartomány:  $|z|\geq 1.96.$ 

Próbafüggvény értéke: 
$$z = \frac{500.7 - 500}{3/\sqrt{10}} = 0.7379 < 1.96.$$

5%-os szinten **elfogadjuk**  $H_0$ -t.

### Hibák

Elsőfajú hiba: a  $H_0$  hipotézist elvetjük, pedig igaz. Valószínűsége megegyezik az  $\alpha$  szignifikanciaszinttel.

Másodfajú hiba: a  $H_0$  hipotézist elfogadjuk, pedig nem igaz. Ennek a  $\beta$  valószínűségét csak akkor számszerűsíthetjük, ha pontosan tudjuk, a  $H_0$  helyett a valóságban milyen egyszerű alternatíva áll fenn.

| $H_0$      | igaz                     | nem igaz                |  |  |  |
|------------|--------------------------|-------------------------|--|--|--|
| elvetjük   | elsőfajú hiba $(lpha)$   | helyes döntés $(1-eta)$ |  |  |  |
| elfogadjuk | helyes döntés $(1-lpha)$ | másodfajú hiba $(eta)$  |  |  |  |

Adott mintanagyság és egyszerű alternatíva mellett az elsőfajú és a másodfajú hiba elkövetési valószínűsége egymással ellentétes irányba mozog.

### *p*-érték

A p-érték az a legkisebb szignifikanciaszint, amin  $H_0$  már éppen elvethető  $H_1$ -el szemben. A p-érték a T próbafüggvénynek a hipotézisvizsgálathoz használt mintából nyert értéke alapján határozható meg.

Egyoldali alternatív hipotézis esetén a p-érték úgy határozható meg, hogy a próbafüggvény mintából nyert értékét  $H_1$  irányának megfelelően alsó vagy felső kritikus értéknek tekintjük, majd megállapítjuk, vagy megbecsüljük a hozzá tartozó szignifikanciaszintet.

Kétoldali alternatív hipotézis esetén a próbafüggvény mintából nyert értékét előjelétől – egyes esetekben nagyságától – függően alsó vagy felső kritikus értéknek tekintjük, majd a hozzátartozó szignifikanciaszint kétszeresét vesszük.

Adott  $\alpha$  szint esetén:

 $p \le \alpha$ : elvetjük  $H_0$ -t;  $p > \alpha$ : elfogadjuk  $H_0$ -t.

Minta:

Hipotézisek:

$$H_0: \mu = 500 \text{ ml}; \qquad H_1: \mu \neq 500 \text{ ml} \quad \text{(kétoldali ellenhipotézis)}.$$

$$n = 10, \ \sigma = 3, \ \overline{y} = 500.7.$$

Próbafüggvény értéke: 
$$z = \frac{500.7 - 500}{3/\sqrt{10}} = 0.7379 > 0.$$

Felső kritikus értékként kezeljük:

$$P(Z \ge 0.7379) = 1 - P(Z \le 0.7379) = 1 - \Phi(0.7379) = 1 - 0.7697 = 0.2303.$$

*p*-érték:  $2 \cdot 0.2303 = 0.4606$ .

 $\alpha \geq 0.4606$ : elvetjük  $H_0$ -t;  $\alpha < 0.4606$ : elfogadjuk  $H_0$ -t.

Baran Sándor Statisztika 1 előadás 188 / 189

# Összetett nullhipotézisek

#### Példa

$$H_0: \mu \geq 500 \text{ ml}; \qquad H_1: \mu < 500 \text{ ml}.$$

Az összetett nullhipotézis helyett az egyoldali alternatív hipotézisnek legkevésbé ellentmondó egyszerű hipotézist választjuk. A példában:  $\mu=500$  ml.

A  $H_1^b$  vagy  $H_1^j$  egyoldali alternatív hipotézisnek legkevésbé ellentmondó egyszerű hipotézist technikai nullhipotézisnek nevezzük és  $H_0^T$ -vel jelöljük. A példában:

$$H_0^T : \mu = 500 \text{ ml}; \qquad H_1 : \mu < 500 \text{ ml}.$$

Ha  $H_0^T$  elvethető valamely egyoldali alternatív hipotézissel szemben, akkor vele együtt elvethető az adott egyoldali alternatív hipotézisnek  $H_0^T$ -nél jobban ellentmondó minden egyszerű hipotézis is. Ha  $H_0^T$  nem vethető el valamely egyoldali alternatív hipotézissel szemben, akkor csak annyi állítható, hogy a vizsgált alternatív hipotézissel szemben legalább egy egyszerű hipotézis nem utasítható vissza.