Zastosowanie metod typu 'ab-initio' do badania właściwości materiałów

WYKŁAD – Metody oparte na pseudopotencjałach, baza zlokalizowana, kod Siesta

Metody typu "localized atomic orbitals"

- Używają pseudopotencjałów
- Bazą funkcji falowej jest zbiór orbitali atomowych
 - Opis "zlokalizowany" w duchu chemii kwantowej
 - Wysoka wydajność
 - Problemy ze zbieżnością
 - Główne cechy bazy: wielkość, zakres, kształt
- Numeryczne orbitale atomowe (NAO)
 - Rozwiązania numeryczne zagadnienia K-S dla izolowanego (pseudo-) atomu

Metoda liniowych kombinacji orbitali atomowych (LCAO)

- Stosowana głównie w przypadkach silnej lokalizacji elektronów zewnętrznych (słabe przekrywanie funkcji na sąsiednich atomach)
- Funkcja Blocha przedstawiona jako kombinacja funkcji LCAO:

$$\Psi_{nk}(\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{\mu} c_{n\mu}(\mathbf{k}) \Phi_{k\mu}(\mathbf{r})$$

$$Φ_{k\mu}(\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{j} e^{i\mathbf{k}\mathbf{R}_{j}} \mathbf{φ}_{\mu}(\mathbf{r} - \mathbf{R}_{j}),$$
Funkcja LCAO
$$Φ_{\mu}(\mathbf{r}) = R_{\mu l}(r) Y_{lm}(\mathfrak{V}, \mathbf{φ})$$

Konstrukcja bazy LCAO

Podstawą bazy LCAO są funkcje atomowe

$$\phi_{Ilmn}(\mathbf{r}) = \phi_{Iln}(r_I)Y_{lm}(\hat{\mathbf{r}}_I) \qquad \mathbf{r}_I = \mathbf{r} - \mathbf{R}_I$$

$$r = |\mathbf{r}|$$
 Cechy
$$\hat{\mathbf{r}} = \mathbf{r}/r$$

- Rozmiar: liczba orbitali dla danego atomu
- Kształt: kształt częsci radialnej
- Zasięg: rozciągłość w przestrzeni
- Minimalny rozmiar bazy "single-ζ" (SZ) jedna funkcja radialna na jedną zapełnioną powłokę ze względu na moment pędu
- Możliwości zwiększenia rozmiaru bazy zwiększenie ilości funkcji radialnych ("multiple-ζ") lub dodanie orbitali o różnym ℓ ("polarization")

Atom	Valence	SZ		DZ		P	
	configuration						
		# orbita	ls symmetry	# orbita	als symmetry	# orbitals	symmetry
Si	$3s^2 \ 3p^2$	1	s	2	s	1	d_{xy}
		1	p_x	2	p_x	1	d_{yz}
		1	p_y	2	p_y	1	$egin{array}{c} d_{zx} \ d_{x^2-y^2} \ d_{3z^2-r^2} \end{array}$
		1	p_z	2	p_z	1	$d_{x^2-y^2}$
						1	$d_{3z^2-r^2}$
	Total	4		8		(DZ+P) 13	

Atom	Valence						
	configuration						
		# orbitals	symmetry	# orbitals	symmetry	# orbitals	symmetry
Fe	$4s^2 \ 3d^6$	1	s	2	s	1	p_x
		1	d_{xy}	2	d_{xy}	1	p_y
		1	d_{yz}	2	$d_{xy} \ d_{yz}$	1	p_z
		1	d_{zx}	2	d_{zx}		
		1	$rac{d_{x^2-y^2}}{d_{3z^2-r^2}}$	2	$d_{zz} \ d_{x^2-y^2} \ d_{3z^2-r^2}$		
		1	$d_{3z^2-r^2}$	2	$d_{3z^2-r^2}$		
	Total	6		12		(DZ+P) 15	

Single- ζ (minimal or SZ)

One single radial function per angular

momentum shell occupied in the free-atom

Examples of minimal basis-set:

Si atomic configuration: 1s² 2s² 2p⁶

core

valence

$$l=0$$
 (s)

$$l=1$$
 (p)

$$m = 0$$

$$m = -1$$

$$m = 0$$

$$m = +1$$

4 atomic orbitals per Si atom

Single-ζ (minimal or SZ)

One single radial function per angular momentum shell occupied in the free-atom

Examples of minimal basis-set:

Fe atomic configuration: 1s² 2s² 2p⁶ 3s2 3p6

core

4s² 3d⁶

valence

$$l=0$$
 (s)

$$m = 0$$

$$m = -2$$
 $m = -1$ $m = 0$ $m = +1$

$$m = -1$$

$$m = 0$$

l=2 (d)

$$m = +2$$

6 atomic orbitals per Fe atom

Si atomic configuration: 1s² 2s² 2p⁶

3s² 3p²

core

valence

$$l=0$$
 (s)

m = 0

$$m = -1$$

$$l=1$$
 (p)

$$m = 0$$

$$m = +1$$

Polarize: add l = 2 (d) shell

$$m = -2$$

$$m = -1$$
 $m = 0$

$$m = 0$$

$$m = +1$$

$$m = +2$$

New orbitals directed in different directions with respect the original basis

Konstrukcja bazy LCAO

- Konstrukcja części "multiple-ζ"
 - "split-valence"

$$\phi_l^{2\zeta}(r) = \begin{cases} r^l(a_l - b_l r^2) & \text{if } r < r_l^s \\ \phi_l^{1\zeta}(r) & \text{if } r \ge r_l^s \end{cases}$$

- stany wzbudzone
- "chemical-hardness"
- Konstrukcja części polaryzacyjnej
 - "perturbative polazarization" rozwiązanie części radialnej dla małego zaburzenia (np. pole eleketryczne)
 - rozwiązanie części radialnej dla wyższego momentu pędu

Konstrukcja bazy LCAO

Konstrukcja bazy LCAO – zasięg

- W przypadku bazy zlokalizowanej zasadnicze znaczenie ma zasięg
- Jak zdefiniować zasieg dla każdej składowej bazy?
- Definicja globalna "energy shift"

$$\left(-\frac{1}{2r}\frac{d^2}{dr^2}r + \frac{l(l+1)}{2r^2} + V_l(r)\right)\phi_l(r) = (\epsilon_l + \delta\epsilon_l)\phi_l(r)$$

Konstrukcja bazy LCAO – zbieżność

Konstrukcja bazy LCAO – zbieżność

Basis	a (Å)	B (GPa)	E_c (eV)
SZ	5.521	88.7	4.722
DZ	5.465	96.0	4.841
TZ	5.453	98.4	4.908
SZP	5.424	97.8	5.227
DZP	5.389	96.6	5.329
TZP	5.387	97.5	5.335
TZDP	5.389	96.0	5.340
TZTP	5.387	96.0	5.342
TZTPF	5.385	95.4	5.359
PW	5.384	95.9	5.369
LAPW	5.41	96	5.28
Expt.	5.43	98.8	4.63

Siesta- podstawowe informacje

- Realizuje metodę K-S, używa pseudopotencjału
- Baza funkcji orbitale atomowe
 - Podstawowe parametry definicja bazy
 - Sposób postępowania:
 - Obliczenia wstępne baza SZ,DZ
 - Obliczenia dokładne baza DZP
- Kod darmowy, ale:
 - Licencja akademicka
 - Licencja personalna

Siesta – możliwości

- Struktura elektronowa, gęstość stanów
- Gęstości elektronowa i spinowa,
- Energia całkowita, siły (F-H), optymalizacja struktury
- Widmo fononów
- Układy spinowo spolaryzowane (ferro, antyferro, niekolinearny)
- Oddziaływanie spin-orbita
- LDA, GGA, LDA+U
- Moduł dynamiki molekularnej
- Nie uwzględnia symetrii układu (komórki elementarnej)
- Wizualizacja XCrysDen
- Kod Transiesta transport (transmisja, charakterystyki I-V)

Transiesta

- Kod korzystający z formalizmu nierównowagowych funkcji Greena do opisu transportu elektronowego
- Definiuje się trzy obszary obszar elektrod i obszar centralny ("device")
- Można otrzymać transmisję oraz charakterystyki I-V w granicy liniowej

