

AMENDMENTS TO THE CLAIMS:

The following claims will replace all prior versions of the claims in this application (in the unlikely event that no claims follow herein, the previously pending claims will remain):

1. **(Currently Amended)** An adaptive resource allocation method in a multi-channel communication system, comprising:

determining, by an adaptive resource allocation processor, a subchannel channel gain according to channel quality; and

determining, by the adaptive resource allocation processor, a modulation method for each subchannel based on the channel gain,

wherein the determining of the modulation method includes:

allocating a number of bits to be transmitted to a subchannel according to the channel gain;

determining an optimal solution to number of bits to obtain minimum power for a total transmission rate according to the determined optimum number of bits; and

allocating a final number of bits to be transmitted for the subchannel according to the optimal number of bits solution;

wherein the determining of the optimal solution includes adaptively performing a convex search in a recursive manner according to an average power and an object transmission rate R_t , and the final number of bits is determined based on a result of the convex search;

wherein the convex search includes solving a transmission rate non-constraint problem until a Lagrange multiplier λ , corresponding to the object transmission rate R_t , is found;

wherein a less Lagrange multiplier λ is selected for the purpose of having a solution representing a higher transmission rate in a next step when a transmission rate for a predetermined solution, or a highest transmission rate for a plurality of solutions is less than the object transmission rate R_t , which is repeatedly performed until the Lagrange multiplier λ corresponding to the object transmission rate R_t is found.

2. (Previously Presented) The adaptive resource allocation method of claim 1, wherein, a Lagrange multiplier λ is analytically and experimentally estimated to determine the optimal number of bits.

3. (Cancelled).

4. (Currently Amended) The adaptive resource allocation method of ~~claim 3~~claim 1, wherein a relation between the average power and the object transmission rate R_t is represented as

$P(R)=\sigma^2\alpha^{-R}$ and $R>0$ with reference to a given channel response and a modulator, where $P(R)$ denotes an average power-transmission rate function, σ^2 denotes a variance of radio wave signals, and α is greater than 1.

5. (Currently Amended) The adaptive resource allocation method of ~~claim 3~~claim 1, wherein the convex search process for searching an optimal solution λ^* for the object transmission rate R_t comprises:

- a) respectively initializing a supremum λ_u and an infimum λ_l of the object transmission rate R_t to be 0 and ∞ ;
- b) experimentally selecting an initial Lagrange multiplier estimate of λ for the object transmission rate R_t ;
- c) solving ~~a transmission~~the transmission rate non-constraint problem until a Lagrange multiplier λ corresponding to the object transmission rate R_t is found;
- d) searching for a lowest transmission rate R_l and a highest transmission rate R_h ; and
- e) returning to solving the transmission rate non-constraint problem.

6. (Previously Presented) The adaptive resource allocation method of claim 5, wherein the initial Lagrange Multiplier value of λ satisfies:

$$\lambda = -\frac{\partial P(R)}{\partial R} = \alpha^{-R}\sigma^2\ln\alpha$$

7-10. (Canceled).

11. (Currently Amended) The adaptive resource allocation method of ~~claim 10~~claim 5, wherein, in c) for solving the transmission rate non-constraint problem, a lowest transmission rate R_t and a highest transmission rate R_h are found when the initial estimate λ is a singular value.
12. (Currently Amended) The adaptive resource allocation method of ~~claim 5~~claim 10, wherein, in c) for solving the transmission rate non-constraint problem, one transmission rate satisfying a relation of $R_l=R_h=R(\lambda)$ is found when the initial estimate λ is not a singular value.
13. (Currently Amended) The adaptive resource allocation method of ~~claim 5~~claim 10, wherein, in d) for searching for the lowest transmission rate R_l and the highest transmission rate R_h , the initial estimate λ becomes the optimal value when a relation of $R_l \leq R_t \leq R_h$ (lowest transmission rate \leq object transmission rate \leq highest transmission rate) is given.
14. (Currently Amended) The adaptive resource allocation method of ~~claim 5~~claim 10, wherein, in d) for searching for the lowest transmission rate R_l and the highest transmission rate R_h , a transmission rate $R_H(>R_h)$ in which a power reduction rate is maximized compared to the transmission rate increase at R_h and the supremum λ_u is updated with an inclination between R_h and R_H when a relation of $R_h < R_t$ (highest transmission rate $<$ object transmission rate) is given.
15. (Original) The adaptive resource allocation method of claim 14, wherein the transmission rate R_H in which the power reduction rate is maximized is found by searching for available modulation methods having transmission rates greater than R_h .
16. (Original) The adaptive resource allocation method of claim 15, wherein the initial Lagrange multiplier estimate λ becomes the optimal solution when a relation of $R_h \leq R_t \leq R_H$ (highest transmission rate \leq object transmission rate \leq transmission rate in which the power reduction rate is maximized) is given.

17. (Original) The adaptive resource allocation method of claim 16, wherein the initial Lagrange multiplier estimate λ for a next process is estimated in an experimental manner when the infimum is 0, and the estimate Lagrange multiplier λ for a next process is calculated by the equation 14 or 15 when the infimum is not 0.

18. (Currently Amended) The adaptive resource allocation method of claim 5~~claim 10~~, wherein, in d) for searching for the lowest transmission rate R_l and the highest transmission rate R_h , the transmission rate $R_L(<R_l)$ in which the power reduction rate is maximized compared to the transmission rate increase at the lowest transmission rate R_l is found and the supremum λ_l is updated with an inclination between R_l and R_L when a relation of $R_l > R_t$ (lowest transmission rate > object transmission rate) is given.

19. (Original) The adaptive resource allocation method of claim 18, wherein the transmission rate R_L in which the power reduction is maximized is found by searching for available modulation methods having transmission rates less than R_l .

20. (Original) The adaptive resource allocation method of claim 19, wherein an initial Lagrange multiplier estimate λ becomes the optimal value when a relation of $R_L \leq R_t \leq R_l$ (transmission rate in which power reduction rate is maximized \leq object transmission rate \leq lowest transmission rate) is given.

21. (Original) The adaptive resource allocation method of claim 20, wherein the initial Lagrange multiplier estimate λ for a next process is estimated in an experimental way when the supremum λ_u is ∞ , and the estimate Lagrange multiplier λ for a next process is calculated by the equation 14 or 15 when the supremum is not ∞ .

22-23. (Canceled).

24. (Currently Amended) An adaptive resource allocation method in a multi-channel communication system, comprising:

- a) allocating, by an adaptive resource allocation processor, a number of bits to be transmitted according to a subchannel quality;
- b) determining, by the adaptive resource allocation processor, a minimum power for a total transmission rate;
- c) determining, by the adaptive resource allocation processor, a channel gain for the subchannel according to the allocated number of bits and the power; and
- d) determining, by the adaptive resource allocation processor, a modulation method for each subchannel based on the channel gain, comprising:

adaptively performing a convex search in the recursive manner according to the average power and an object transmission rate R_t ; and

determining an initial Lagrange multiplier estimate of λ for the object transmission rate R_t , wherein the initial Lagrange Multiplier value of λ satisfies:

$$\lambda = -\frac{\partial P(R)}{\partial R} = \alpha^{-R} \sigma^2 \ln \alpha$$

25. (Canceled).