Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет «Высшая школа экономики»

Факультет компьютерных наук

01.03.02 ОП «Прикладная математика и информатика»

Отчёт о прохождении практики

Студент : Рубачёв Иван Викто	рович	
Группа: БПМИ161		
Вид практики: Учебная		
Руководитель:	Научный Сотрудник, Ст. Преп.,	
	Лобачева Екатерина	
Куратор:	Младший Научный Сотрудник,	
	Надежда Чиркова	

Москва, 2018

Содержание

Введение	2
Основная часть	2
Обзор статьи	2
Описание модели	3
Реализация метода прунинга	5
Заключение	7
Список используемых источников	9

Введение

Большая часть успехов в распознавании речи, анализе текстов и изображений отчасти достигнута благодаря увеличению объемов данных и усложнению моделей (рекуррентных нейросетей в частности). При таком подходе возникают проблемы связанные с использованием полученных моделей с большим числом параметров в условиях ограничения ресурсов (например, на мобильных устройствах). Прунинг – один из методов решения данной проблемы.

Целью данной практики было изучение статьи [10] на тему прунинга рекуррентных нейронных сетей и дальнейшая реализация метода, описанного в ней алгоритма. Перед началом работы над темой практики необходимо было изучить основы рекуррентных нейронных сетей, выполнив лабораторную работу. Более детальная информация о методе прунинга из статьи, реализации базовой модели, реализации прунинга и результатах представлена в основной части отчета.

Основная часть

Обзор статьи «Exploring Sparsity in Recurrent Neural Networks» [10]

Существуют различные подходы к прунингу нейронных сетей (Optimal Brain Damage [2], Optimal Brain Surgeon [5], прунинг весов ниже порогового значения [4]).

Авторы статьи, выбранной для изучения в рамках данной практики предлагают алгоритм прунинга рекуррентных нейроннных сетей. Преимущества предлагаемого метода:

- Вычислительная простота
- Отсутствие необходимости в дообучении модели

Метод заключается в обращении в 0 весов, абсолютное значение которых ниже ε . Пороговое значение монотонно увеличивается в соответствии со следующими формулами:

$$\varepsilon = \begin{cases} \theta \cdot \text{diff/freq,} & \text{current_itr} < \text{ramp_itr} \\ (\theta \cdot \text{diff} + \phi \cdot (\text{current_itr} - \text{ramp_itr} + 1)) / \text{freq,} & \text{current_itr} \geqslant \text{ramp_itr} \end{cases}$$
(1)

Где diff = ramp_itr - start_itr + 1, a start_itr, ramp_itr, end_itr - итерации начала прунинга, увеличения скорости прунинга и конца прунинга соответственно. current_itr - текущая итерация, freq - частота прунинга, ϕ и θ - коэффициенты, определяющие интенсивность удаления весов.

 θ определяется по формуле:

$$\theta = \frac{2 \cdot q \cdot \text{freq}}{2 \cdot (\text{ramp itr} - \text{start itr}) + 3 \cdot (\text{end itr} - \text{ramp itr})} \tag{2}$$

Параметры freq, ramp_itr, start_itr, end_itr и ϕ подбираются отдельно для каждого слоя сети. Параметр q – девяностый перцентиль абсолютных значений весов обученной без применения прунинга модели. Алгоритм прунинга раз в freq итераций убирает из модели веса, абсолютное значение которых меньше ε , и добавляет веса, значения которых больше ε (Вес может стать больше порогового значения при обновлении весов в шаге градиентного спуска, т.к. градиенты для данных весов на этом шаге не изменяются). Таким образом удаление весов в данном алгоритме мягкое — веса могут вернуться в модель

Описание модели анализа тональности текста

Данные и их предобработка

В качестве набора данных для экспериментов был выбран датасет IMDB с рецензиями на фильмы [9]. В датасете собраны положительные и отрицательные отзывы (по эмоциональной окраске). Размеры тренировочной и тестовой выборок 25000 пар. Целевая переменная – два класса (0 – негативная рецензия, 1 – положительная рецензия). На начальной стадии проекта для обработки данных использовался модуль torchtext, затем он был заменен решением, написанным самостоятельно. Вся предобработка производится в модуле utils. Процесс можно описать пошагово:

- Загрузка текстов. Все тексты и значения целевой переменной сохраняются в python массивах. В случае первой загрузки данных сохраняются как тестовые, так и тренировочные данные.
- Токенизация. На данном этапе из текстов удаляются или заменяются редко встречающиеся служебные символы (например

 /> заменяется на "\n"). Слова написанные в верхнем регистре заменяются на слова в нижнем регистре, при этом перед такими словами добавляется дополнительный токен t_up. Также перед повторяющимися символами и словами добавлены специальные токены (с указанием числа повторов). После этого применяется токенизатор из модуля spacy. Этот этап обработки производится в параллельном режиме (поэтому работает быстрее, чем torchtext)

• Нумерализация. Далее, полученным на предыдущем шаге токенам присваиваются номеара. При этом остаются только 60000 наиболее популярных токенов, из которых также отсеиваются те, которые встречаются реже 3 раз. Полученные данные сохраняются на диск.

Помимо предобработки также написан нестандартный сэмплер (torch.utils.data.Sampler), который сортирует тексты в данных таким образом, что в батч попадают тексты приблизительно одной длины. Независимо сортируются срезы размера (batchSize × 50), затем сортируются срезы размера batchSize.

При обучении тексты в батче дополняются слева специальным символом (единица после нумерализации) до длины максимального из них.

Архитектура модели

Базовая модель представляет собой однослойную рекуррентную нейронную сеть с архитектурой long-short term memory (LSTM) [6], на вход которой подаются векторные представления токенов (word embedding), на выходе находится один линейный слой. Для регуляризации используется рекуррентный дропаут [3] с вероятностью p=0.65 (одна и та же маска применяется на каждом шаге RNN) после word embedding, обычный дропаут [13] с вероятностью p=0.5 на входе линейного слоя, также используется дропаут в word embedding [3] (зануляются векторы для отдельных слов с вероятностью p=0.1).

Все дальнейшие эксперименты производились с моделью со следующими параметрами:

Layer	Input dim	Output dim
Word Embedding	60002	300
LSTM	300	128
Linear Layer	128	1

Общее число параметров в модели: 18,220,889.

Результаты

После обучения 8 эпох, были получены следующие результаты:

Epoch	Time (s)	Train Loss	Test Loss	Train Acc	Test Acc
1	108.65	35.958	27.779	0.68	0.78
2	111.31	24.467	24.578	0.84	0.84
3	98.24	19.873	20.623	0.87	0.87
4	109.19	17.795	22.941	0.89	0.87
5	106.14	16.155	20.806	0.9	0.87
6	105.55	14.864	21.017	0.91	0.87
7	103.66	13.645	22.307	0.92	0.87
8	104.53	11.989	21.826	0.93	0.86

Здесь точность – доля правильо классифицированных текстов, а функция потерь – бинарная перекрестная энтропия ($\ell(x,y) = \sum l_n$, $l_n = -w_n [t_n \cdot \log \sigma(x_n) + (1-t_n) \cdot \log(1-\sigma(x_n))]$). Полученные качество соотвестствует модели такого типа из работы [12].

Реализация метода прунинга

Описание алгортма

Данный метод заключается в поддержании набора масок для весов модели. Изначально маски инициализируются единицами. После каждого шага оптимизации веса перемножаются с масками, таким образом 1 в маске означает, что соответствующий вес используется в модели, а 0 – вес не используется. Также с регулярным интервалом маски обновляются, выставлением в 0/1 элементов, соответствующих весам, абсолютное значение которых меньше/больше порогового значения, подсчитанного по формуле 1.

Реализация в pytorch

Вспомогательные классы, добавляющие поддержку прунинга находятся в модуле pruner.py. Класс ModelPruner инициализирует для каждого параметра модели класс WeightPruner, который затем обновляет и применяет маску к своему параметру в соотвестствии с параметрами, которые указаны в конфигурационном файле. Маски применялись ко всем параметрам модели (в том числе матрице слоя представлений и линейному слою), кроме сдвигов (bias).

Результаты

При применении прунинга, были получены следующие результаты:

Epoch	Time (s)	Train Loss	Test Loss	Train Acc	Test Acc	Sparsity
1	110.37	35.547	25.801	0.69	0.83	0.0
2	100.53	24.139	23.167	0.84	0.81	0.08
3	103.67	19.789	22.054	0.87	0.84	0.26
4	101.6	16.809	20.582	0.89	0.87	0.45
5	103.79	15.053	20.901	0.91	0.87	0.64
6	107.55	14.253	21.799	0.91	0.87	0.81
7	112.47	14.276	24.024	0.92	0.87	0.94
8	104.8	11.653	22.526	0.93	0.84	0.94
9	100.44	11.072	24.969	0.93	0.86	0.94
10	113.35	11.093	22.774	0.93	0.85	0.94

В данном случае применение прунинга не ухудшило качество на тестовой выборке (Если взять модель после 7 эпохи).

Ниже приведены графики числа удаленных весов для различных параметров модели:

Графики построены для модели с конфигурацией описанной в файле base.yaml. Слева изображена зависимость разреженности весов от итерации обучения для различных параметров модели при прунинге. На графике справа изображена зависимость числа удаленных параметров от итерации обучения.

Заключение

В результате выполнения практики, был реализован и протестирован алгоритм прунинга рекуррентных нейронных сетей. Код с инструкциями к запуску выложен в открытый доступ: https://github.com/puhsu/pruning Данная практика оказалась очень полезной с образовательной точки зрения. В процессе решения задачи были изучены основные принципы работы рекуррентных нейронных сетей (а также работы с текстовыми данными), библиотека руtогсh, методы «сжатия» нейронных сетей. Также во время выполнения задания были изучены много источников (статей, орепѕоитсе проектов, видеолекций). Например, во время изучения основ RNN были найдены блоги [11, 8], при реализации модели были использованы идеи из статьи [7]. К сожалению, далеко не все идеи были опробованы. В качестве следующих шагов по данному проекту было бы интересно провести следующие эксперименты: удалять веса из языковой модели во время обучения на тех же данных (не исключая рецензий без целевой переменной), и затем дообучить полученную модель для задачи классификации. Также стоит попробовать использовать библиотеку [14], в которой есть реализации различных алгоритмов прунинга.

Список используемых источников

- [1] Torch Contributors. PyTorch documentation. 2018. URL: https://pytorch.org/docs/stable/index.html.
- [2] Yann Le Cun, John S. Denker и Sara A. Solla. "Advances in Neural Information Processing Systems 2". В: под ред. David S. Touretzky. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1990. Гл. Optimal Brain Damage, c. 598—605. ISBN: 1-55860-100-7. URL: http://dl.acm.org/citation.cfm?id=109230.109298.
- [3] Yarin Gal и Zoubin Ghahramani. A Theoretically Grounded Application of Dropout in Recurrent Neural Networks. 2015. eprint: arXiv:1512.05287.
- [4] Song Han и др. "Learning both Weights and Connections for Efficient Neural Networks". B: CoRR abs/1506.02626 (2015). arXiv: 1506.02626. URL: http://arxiv.org/abs/1506.02626.
- [5] B. Hassibi, D.G. Stork и G.J. Wolff. "Optimal Brain Surgeon and general network pruning". B: IEEE International Conference on Neural Networks. IEEE. DOI: 10.1109/icnn.1993.298572. URL: https://doi.org/10.1109/icnn.1993.298572.
- [6] Sepp Hochreiter и Jürgen Schmidhuber. "Long Short-Term Memory". B: Neural Comput. 9.8 (нояб. 1997), с. 1735—1780. ISSN: 0899-7667. DOI: 10.1162/neco.1997.9.8.1735. URL: http://dx.doi.org/10.1162/neco.1997.9.8.1735.
- [7] Jeremy Howard и Sebastian Ruder. "Fine-tuned Language Models for Text Classification". В: CoRR abs/1801.06146 (2018). arXiv: 1801.06146. URL: http://arxiv.org/abs/1801.06146.
- [8] Andrej Karpathy. The Unreasonable Effectiveness of Recurrent Neural Networks. 2015. URL: http://karpathy.github.io/2015/05/21/rnn-effectiveness/ (дата обр. 21.05.2015).
- [9] Andrew L. Maas и др. "Learning Word Vectors for Sentiment Analysis". B: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Portland, Oregon, USA: Association for Computational Linguistics, июнь 2011, с. 142—150. URL: http://www.aclweb.org/anthology/P11-1015.
- [10] Sharan Narang и др. "Exploring Sparsity in Recurrent Neural Networks". B: CoRR abs/1704.05119 (2017). arXiv: 1704.05119. URL: http://arxiv.org/abs/1704.05119.
- [11] Christopher Olah. Understanding LSTM Networks. 2015. URL: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ (дата обр. 27.08.2015).

- [12] Sentiment Analysis with Deeply Learned Distributed Representations of Variable Length Texts.

 2015. URL: https://cs224d.stanford.edu/reports/HongJames.pdf.
- [13] Nitish Srivastava и др. "Dropout: A Simple Way to Prevent Neural Networks from Overfitting". B: Journal of Machine Learning Research 15 (2014), c. 1929—1958. URL: http://jmlr.org/papers/v15/srivastava14a.html.
- [14] Neta Zmora, Guy Jacob и Gal Novik. Neural Network Distiller. Июнь 2018. DOI: 10.5281/zenodo.1297430. URL: https://doi.org/10.5281/zenodo.1297430.