

Solar Spark

By: Sid Surapaneni, Nikki Aaron, Kevin Hoffman, and Ashley Scurlock

Component Executive summary

Taking into account location factors, weather, solar radiation levels, and average amount of energy used.

we want to build a model that can predict the yearly dollars saved on energy after installing 30 solar panels.

Our supervised model is accurate at predicting this (3% avg error) despite missing variables and not knowing all the equations that govern the result.

Data summary

Preprocessing

> Combined datasets and scaled all of the features except the response.

Response Variable:

Dollars saved is derived from the estimated energy output using 30 solar panels multiplied by the cost of electricity in the area.

Variation Std.Dev. / Mean		Correlations with Dollars Saved	
Dollars saved	24%	Energy used	-0.33
Elevation	125%	Cloudy	-0.23
Temp	37%	DNI	0.25
Energy used	18%	Temp	-0.18
DNI	16%	Elevation	0.14
Cloudy	12%	Lat	0.15
Solar output	5%	Lng	-0.11

Models constructed

- 1. Linear Regression
 - Baseline model for benchmarking
- 2. Random Forest Regression
 - **Ensemble of decision trees**
 - Great for non-linear relationships
- 3. Gradient Boosted Trees
 - Best model
 - One drawback is long training times

Model performance

Model Name	RMSE	Hyperparameters
Linear Regression	\$109.23	MaxIterations: 100 regParam: 0 elasticNetParam: 0
Random Forest Regression	\$54.95	MaxDepth: 8 numTrees: 250 minInstancesPerNode: 1
Gradient Boosted Trees	\$39.59	MaxIterations: 225 MaxDepth: 7 MinInstancesPerNode: 10

Prediction Choropleth

*RMSE gives a high weight to large errors

	feature	score
6	annual_kwh_used	0.195357
1	Ing	0.127142
0	lat	0.051254
17	temp_Oct	0.048217
26	pct_cloudy_days_Mar	0.048105
21	pct_cloudy_days_Dec	0.039097
4	elevation	0.036069
22	pct_cloudy_days_Feb	0.032837
25	pct_cloudy_days_Jun	0.028367
15	temp_May	0.027375

- The RMSE was sensitive to high errors. MAE was 18.11.
- Among the models tried out, the gradient boosted model had the most effective performance at predicting the dollars saved
- Feature Importances of Gradient Boosted Trees Model indicated that factors related to consumption and location(longitude, latitude) were important predictors for dollars saved
- Longitude and Annual_kwh_used also had highest feature importances in the Random Forest Model
- Future work can involve using more updated solar panel data as well as utilizing data from outside of the United States, as well as maintenance cost data of solar panels

