Capítulo 1

Variedades

1.1. Variedades Afines

Definición 1.1.1. El espacio afín $\mathbb{A}^n(k)$ sobre k, un cuerpo algebraicamente cerrado es el conjunto de todas las n-tuplas de elementos de k.

Los elementos del espacio afín son puntos x que se representan con coordenadas $\mathbf{x} = (x_1, \dots, x_n)$. No debemos confundir el punto con sus coordenadas.

Definición 1.1.2. Un subconjunto $Y \subseteq \mathbb{A}^n(k)$ se dice ser un conjunto algebraico (también llamado <u>variedad afín</u>) si existe un subconjunto $T \subseteq k[x]$ tal que

$$Y=V(T):=\{\,\mathbf{a}\in\mathbb{A}^n(k):\ \forall p\in T(p(\mathbf{a})=0)\,\}.$$

Proposición 1.1.3. Supongamos que $M, N \subseteq \mathbb{A}^n(k)$, vale lo siguiente:

- (a) Si $M \subseteq N$, entonces $V(N) \subseteq V(M)$.
- (b) Si i = gen(M), entonces V(i) = V(M).
- (c) La unión de finita de variedades es una variedad. Más específicamente

$$V(M) \cup V(N) = V(M \cap N) = V(M \cdot N).$$

(d) La intersección de variedades es variedad. Específicamente vale:

$$\bigcap_{i\in I} V(M_i) = V\left(\bigcup_{i\in I} M_i\right).$$

(e) El vacío y el espacio afín son variedades.

Prueba

- (a) Si $\mathbf{x} \in V(N)$, entonces \mathbf{x} anula a cualquier polinomio de N. En particular, anula a cualquier polinomio de M. Es decir $\mathbf{x} \in V(M)$.
- (b) Como $M \subseteq \mathfrak{i}$, entonces $V(\mathfrak{i}) \subseteq V(M)$. Por otro lado, si $\mathbf{a} \in V(M)$ entonces a anula a cualquier polinomio de M. Como M genera a \mathfrak{i} , entonces todo elemento $g \in \mathfrak{i}$ es de la forma

$$g = \sum_{f \in M} hf \Rightarrow g(\mathbf{a}) = \sum_{f \in M} h(\mathbf{a})f(\mathbf{a}) = 0.$$

Por lo tanto tenemos la otra inclusión.

(c) Como $M \cdot N \subseteq M \cap N \subseteq M, N$ entonces valen las inclusiones de izquierda a derecha.

Si a $\in V(M \cdot N)$ pero a $\notin V(M)$ entonces para algún $f \in M$ vale que $f(\mathbf{a}) \neq 0$. Sin embargo para $g \in N$ vale $(f \cdot g)(\mathbf{a}) = 0$. Como g es arbitrario, entonces $\mathbf{a} \in V(N)$. Así concluimos la igualdad.

(d) Como $M_i \subseteq \bigcup_{i \in I} M_i$ para todo i, entonces vale la inclusión \supseteq .

Mientras tanto si a $\in \bigcap_{i \in I} V(M_i)$, entonces

$$\forall i \in I (\mathbf{a} \in V(M_i)) \Rightarrow \forall i \in I \forall f \in M_i(f(\mathbf{a}) = 0).$$

Es decir, a anula a cualquier polinomio dentro de cualquier M_i . Entonces a anula a cualquier polinomio en $\bigcup_{i \in I} M_i$. Esta justificación no me gusta.

(e) Finalmente vale que $V(\{0\}) = \mathbb{A}^n(k)$ y $V(k[\mathbf{x}]) = \emptyset$.

Definición 1.1.4. La topología de Zariski se define tomando como cerrados a las variedades. Los abiertos son los complementos de las variedades. De acuerdo con la proposición anterior, esta colección forma una topología.

Ejemplo 1.1.5. Topología de Zariski en dimensión 1 Recordemos que en k[x] todo ideal es principal. Entonces vale para cualquier variedad:

$$V(M) = V(gen(M)) = V(p),$$

donde p es el único generador del ideal en cuestión. Es decir, cualquier variedad es el $\mathbf{2}$

conjunto de ceros de un único polinomio. A su vez

$$p(x) = c(x - a_1) \cdots (x - a_n), \ c, a_i \in k \Rightarrow V(p) = \{a_i\}_{i=1}^n.$$

Así cualquier variedad en $\mathbb{A}^1(k)$ es un conjunto finito.

Esto nos dice que la topología de Zariski en dimensión 1 corresponde con la topología cofinita que de hecho no es de Hausdorff.

Para hablar de ejemplos en dimensión superior precisamos otros conceptos topológicos.

Definición 1.1.6. Un subconjunto $Y \subseteq X$ de un espacio topológico es <u>irreducible</u> si no es posible escribir $Y = Y_1 \cup Y_2$ con $Y_1, Y_2 \subseteq Y$ cerrados. El vacío *no* es irreducible.