PROBABILIDAD I

Segundo del Grado en Matemáticas

Hugo Marquerie

Profesor: Pablo Fernández Gallardo Facultad de Ciencias - Universidad Autónoma de Madrid Segundo cuatrimestre 2023 - 2024

1 de Febrero, 2024

1 Formulario

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = P(B|A) \cdot \frac{P(A)}{P(B)}$$

$$P(A) = \sum_{j=1}^{\infty} P(A|B_j) \cdot P(B_j)$$

$$A, B \text{ indep.} \iff P(A \cap B) = P(A) \cdot P(B)$$

$$A_1, \dots, A_N \in \mathcal{F} \text{ indep.} \iff \forall J \subset \mathbb{N}_N : P\left(\bigcap_{j \in J} A_j\right) = \prod_{j \in J} P(A_j)$$

$$P\left(\bigcup_{j=1}^{\infty} A_j\right) = \lim_{n \to \infty} P\left(\bigcup_{j=1}^{n} A_j\right)$$

1.1 Distribuciones de probabilidad

1.
$$X \sim \text{UNIF}(n) \implies$$

1.2 Sumatorios

2 Tema 1: Sucesos y probabilidades

2.1 Formalizando

Definición 2.1 (Espacio muestral). En un experimento aleatorio, el espacio muestral es el conjunto (no vacío) de sus posibles resultados y se denota por Ω . Puede ser:

- 1. Finito: $\Omega = \{\omega_1, \ldots, \omega_N\}$
- 2. Infinito numerable: $\Omega = \{\omega_1, \omega_2, \dots\}$
- 3. Infinito no numerable, ej.: $\Omega = [0,1) \vee \Omega = \mathcal{P}([0,1))$

Definición 2.2 (Espacio de sucesos por Kolmogórov). Dado el espacio muestral Ω de un experimento aleatorio, $\mathcal{F} \subset \mathcal{P}(\Omega)$ es su espeio de sucesos

$$\iff (\mathcal{F} \neq \phi) \land (A \in \mathcal{F} \implies A^C \in \mathcal{F}) \land \left(A_1, A_2, \dots \in \mathcal{F} \implies \bigcup_{j=1}^{\infty} A_j \in \mathcal{F}\right)$$

Observación 2.1. De la definición se deduce:

•
$$\phi \in \mathcal{F} \wedge \Omega \in \mathcal{F}$$
 • $A_1, \dots, A_n \in \mathcal{F} \implies \bigcup_{j=1}^n A_j \in \mathcal{F}$ • $\forall A, B \in \mathcal{F} \implies A \cap B \in \mathcal{F}$

Definición 2.3 (Función o medida de probabilidad). Dados espacio muestral (Ω) y de sucesos (\mathcal{F}) de un experimento aleatorio, la aplicación $P \colon \mathcal{F} \longrightarrow [0,1]$: es una medida de probabilidad

$$\iff (P(\Omega) = 1) \land \left[P\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} P(A_j) \iff A_i \cap A_j = \phi \text{ cuando } i \neq j \right]$$

Proposición 2.1. De la definición se deduce:

1.
$$P\left(\bigcup_{j=1}^{n} A_{j}\right) = \sum_{j=1}^{n} P(A_{j})$$
 2. $P\left(A^{C}\right) = 1 - P(A)$ 3. $P(\phi) = 0$
4. $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ 5. $A \subseteq B \implies P(A) \le P(B)$

Ejemplo 2.1. En un experimento aleatorio con espacio muestral finito, tomamos

$$\Omega = \{\omega_1, \dots, \omega_N\} \land \mathcal{F} = \mathcal{P} \to 2^N$$
. Asignamos $P(\{\omega_j\}) = p_j \land j = 1, \dots, N$ tales que $p_j \geq 0 \land \sum_{j=1}^N p_j = 1$. Entonces, $\forall A \in \mathcal{F} : P(A) = \sum_{\omega \in A} P(\omega)$

Caso particular:
$$\forall j \in \mathbb{N}_N : p_j = \frac{1}{N} \implies \forall A \in \mathcal{F} : P(A) = \frac{|A|}{N} = \frac{\text{"Casos favorables"}}{\text{"Total de casos"}}$$

Ejemplos varios:

- 1. (Muy tonto) $\Omega \neq \phi$, tomas $A \subset \Omega : A \neq \phi, \Omega$. Dato $p \in (0,1)$. $\mathcal{F} = \{\phi, A, A^c, \Omega\}$ con P(A) = p.
- 2. (Bastante general) $(\Omega = \{\omega_1, \dots, \omega_N\} \implies |\Omega| = N) \land (\mathcal{F} = P(\Omega) \to |\mathcal{F}| = 2^N)$.

 Dato: $p_1, \dots, p_N \ge 0 \implies \sum_{j=1}^N p_j = 1$. Asignamos $\forall j \in \mathbb{N}_N : p_j := P(\{\omega_j\})$.

 Definimos $\forall A \subset \Omega : P(A) = \sum_{\omega \in A} P(\omega)$.
- 3. Lanzas n veces una moneda. Dato: $p \in (0, 1)$.

$$\implies \Omega = \{111 \cdots 1, \dots, 000 \cdots 0\} \land |\Omega| = 2^{N} \land \text{ escogemos } \mathcal{F} = P(\Omega)$$

$$\implies \forall \omega \in \Omega : P(\omega) = p^{\text{\#unos de } \omega} (1 - p)^{\text{\#ceros de } \omega}$$

Comprobamos:

$$\sum_{\omega \in \Omega} P(\omega) = \sum_{k=0}^{n} \left(\sum_{\substack{\omega \in \Omega \\ \#0 \text{s de } \omega = k}} P(\omega) \right) = \sum_{k=0}^{n} p^{k} (1-p)^{n-k} \left(|\{\omega \in \Omega : \#1 \text{s de } \omega = k\}| \right)$$
$$= \sum_{k=0}^{n} p^{k} (1-p)^{n-k} \binom{n}{k} = (p+1-p)^{n} = 1$$

4. Lanzamos moneda hasta que sale una cara. Dato $p \in (0,1)$.

$$\Longrightarrow \Omega = \{C, XC, XXC, \dots\} \land \text{ escogemos } \mathcal{F} = P(\Omega)$$

$$P(C) =: p \implies P(XC) = p(1-p) \land P(XXC) = p(1-p)^2 \land \dots$$
Comprobamos:
$$\sum_{j=1}^{\infty} p(1-p)^{j-1} = p \sum_{k=0}^{\infty} (1-p)^k = p \frac{1}{1-(1-p)} = 1$$

2.2 Probabilidad condicionada y total, independencia y Bayes

Tienes (Ω, \mathcal{F}, P) y un suceso $A \in \mathcal{F} \to P(A)$. Llega "nueva información": ha ocurrido el suceso $B \in \mathcal{F} \longrightarrow \mathcal{F}$ Debo reasignar la probabilidad de A?

Ejemplo 2.2 (Dependencia). Lanzas 10 veces una moneda (regular).

$$A = \{\text{salen 6 caras}\} \implies P(A) = \frac{\binom{10}{6}}{2^{10}} \approx 20.51\%$$

$$B = \{\text{sale C en } 1^{0}\} \implies P(A) \text{ sube a } \frac{\binom{9}{5}}{2^{9}}$$

Definición 2.4. Sea (Ω, \mathcal{F}, P) un espacio de probabilidad y los sucesos $A, B \in \mathcal{F} : P(B) > 0$, P(A|B) es la probabilidad de A condicionada a B

$$\iff P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Observación 2.2. En general, $P(A|B) \neq P(B|A)$

Proposición 2.2 (Cálculo de P(A|B) para cada $A \in \mathcal{F}$). Sea (Ω, \mathcal{F}, P) un espacio de probabilidad y $B \in \mathcal{F}$ un suceso con P(B) > 0

$$\implies (\Omega, \mathcal{F}, Q_B), \ con \ Q_B \colon \mathcal{F} \longrightarrow [0, 1] : Q_B(A) = P(A|B), \ es \ un \ espacio \ de \ probabilidad$$

Demostración. Basta ver que Q_B es una función de probabilidad.

$$\left(Q_B(A) = P(A|B) = \frac{P(A \cap B)}{P(B)} \in [0,1]\right) \land \left(Q_B(\Omega) = \frac{P(\Omega \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1\right)$$

Sean $A_1, A_2, \dots \in \mathcal{F}$ disjuntos dos a dos.

$$\implies Q_B \left(\bigcup_{j=1}^{\infty} A_j \right) = P \left(\bigcup_{j=1}^{\infty} A_j \mid B \right) = \frac{P \left(\bigcup_{j=1}^{\infty} A_j \cap B \right)}{P(B)}$$

$$= \frac{1}{P(B)} P \left(\bigcup_{j=1}^{\infty} (A_j \cap B) \right) = \frac{1}{P(B)} \sum_{j=1}^{\infty} P(A_j \cap B) = \sum_{j=1}^{\infty} Q_B(A_j)$$

Definición 2.5 (Independencia). Sean $A, B \in \mathcal{F}$ dos sucesos con $P(A), P(B) \geq 0$ son independientes

$$\iff P(A|B) = P(A) \land P(B|A) = P(B) \ (para\ entender)$$

 $\iff P(A \cap B) = P(A) \cdot P(B) \ (la\ adecuada)$

- A, B disjuntos \implies no independientes.
- $A_1, \ldots, A_N \in \mathcal{F}$ independientes $\iff \forall J \subset \mathbb{N}_N : P\left(\bigcap_{j \in J} A_j\right) = \prod_{j \in J} P(A_j)$ $\iff P\left(\overline{A_1} \cap \cdots \cap \overline{A_N}\right) = \prod_{i=1}^N P\left(\overline{A_i}\right) \text{ donde } \overline{A_i} = A_i, (A_i)^c$

Ejercicio 2.2.1. Encontrar un espacio de probabilidad en el que haya un conjunto de sucesos independientes dos a dos pero no completamente independientes.

SOL:
$$\Omega = \{1, 2, 3, 4\} \land A = \{1, 2\} \land B = \{2, 3\} \land C = \{1, 3\}$$

Proposición 2.3 (Regla de Bayes). Sean (Ω, \mathcal{F}, P) un espacio de probabilidad y $A, B \in \mathcal{F}$ sucesos con P(A), P(B) > 0

$$\implies P(A|B) = P(B|A) \cdot \frac{P(A)}{P(B)}$$

Demostración.

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \wedge P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$\implies P(A|B) \cdot P(B) = P(A \cap B) = P(B|A) \cdot P(A) \implies P(A|B) = P(B|A) \cdot \frac{P(A)}{P(B)}$$

07/02/2024

2.2.1 Probabilidad total

Proposición 2.4. Sean (Ω, \mathcal{F}, P) un espacio de probabilidad y $\{B_1, B_2, \dots\}$ una partición de $\Omega : (\forall i, j : i \neq j : B_i \cap B_j = \phi) \land \left(\bigcup_{j=1}^{\infty} B_j = \Omega\right)$ $\Longrightarrow \forall A \in \mathcal{F} : P(A) = P\left(\bigcup_{j=1}^{\infty} (A \cap B_j)\right) = \sum_{j=1}^{\infty} (A \cap B_j) = \sum_{j=1}^{\infty} P(A|B_j) \cdot P(B_j)$

 $\implies \forall A \in \mathcal{F} : \boxed{P(A) = \sum_{j=1}^{\infty} P(A|B_j) \cdot P(B_j)}$

Ejemplo 2.3. Sean $U_1 = \{10b, 3n\}$ $U_2 = \{5b, 5n\}$ $U_3 = \{2b, 6n\}$ tres urnas con bolas blancas $U_3 = \{2b,$

- 1. Sorteamos una urna $P(U_1)=\frac{1}{4}\mathrel{{}_{\wedge}} P(U_2)=\frac{1}{4}\mathrel{{}_{\wedge}} P(U_3)=\frac{1}{2}$
- 2. Sacamos bola de la urna seleccionada.

¿Cuál es la probabilidad de que sea blanca?

$$P(b) = P(b|U_1)P(U_1) + P(b|U_2)P(U_2) + P(b|U_3)P(U_3)$$

Ejemplo 2.4 (Peso de la evidencia). Sean $U_1 = \{80\% b, 20\% n\} \land U_2 = \{20\% b, 80\% n\}$ dos urnas con bolas blancas (b) y negras (n). Procedimiento:

- 1. Sorteamos la urna con 1/2 y 1/2 de probabilidad.
- 2. Sacamos 10 bolas (con reemplazamiento).

Observamos la evidencia: $bb \dots nb$ ¿qué urna se usó?

$$P(U_1|5b5n) = P(5b5n|U_1) \frac{P(U_1)}{P(5b5n)} = \frac{P(5b5n|U_1)P(U_1)}{P(5b5n|U_1)P(U_1) + P(5b5n|U_2)P(U_2)}$$

$$\implies P(5b5n|U_1) = \binom{10}{5} 0.8^5 0.2^5 = P(5b5n|U_2) \implies P(U_1|5b5n) = \frac{1}{2}$$

Este es el resultado que esperábamos, prestemos atención a otro caso más contraintituitivo.

$$P(U_1|6b4n) = \frac{P(6b4n|U_1)P(U_1)}{P(6b4n|U_1)P(U_1) + P(6b4n|U_2)P(U_2)}$$
$$= \frac{\binom{10}{6}0.8^60.2^4 \cdot \frac{1}{2}}{\binom{10}{6}0.8^60.2^4 \cdot \frac{1}{2} + \binom{10}{6}0.8^40.2^6 \cdot \frac{1}{2}} \approx 90\%$$

Si dibujamos la gráfica de la función

$$f(x) = P(U_1|xb(10-x)n)$$

podemos ver que el cambio es muy brusco. Es decir, una pequeña diferencia en la evidencia puede cambiar mucho la probabilidad de que se haya usado una urna u otra.

Ejemplo 2.5 (Falsos positivos/negativos). Hay una enfermedad $(E \lor S)$ y hay una prueba para detectar $(+ \lor -)$. Datos: $P(+|E) = 95\% \land P(-|S) = 99\%$. Te haces la prueba y sale +:

$$P(E|+) = P(+|E)\frac{P(E)}{P(+)} = \frac{P(+|E)P(E)}{P(+|E)P(E) + P(+|S)P(S)}$$

Conozco todas estas probabilidades excepto $p := P(E) \implies P(S) = 1 - p$.

Si definimos
$$f(p) := P(E|+)$$

 $\implies \{f(0.5) = 98.95\% \land f(1/100) = 48.97\% \land f(1/1000) = 8.68\%\}$

Es decir, si la incidencia es muy baja, no tiene sentido hacer pruebas masivamente porque la mayoría de positivos serán falsos.

08/02/2024

Ejemplo 2.6 (Sobre independencia). $(\Omega, \mathcal{F}, P) \ \land A_1, \ldots, A_n$ sucesos independientes tal que $\forall j \in \mathbb{N}_n : P(A_j) = \frac{1}{n}$. ¿Qué sabemos sobre $P\left(\bigcup_{j=1}^n A_j\right)$?

En general, sabemos que
$$\frac{1}{n} \leq P\left(\bigcup_{j=1}^{n} A_j\right) \leq \sum_{j=1}^{n} P(A_j) \leq 1$$

$$n = 2: P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{3}{4}$$

$$n = 3: P(A \cup B \cup C) = \binom{3}{1} \frac{1}{3} - \binom{3}{2} \frac{1}{3^2} + \binom{3}{3} \frac{1}{3^3} = \frac{19}{27}$$

$$n \text{ general: } P\left(\bigcup_{j=1}^{n} A_{j}\right) = \sum_{j=1}^{n} P(A_{j}) - \sum_{1 \leq i < y \leq n} P(A_{i} \cap A_{j}) + \cdots \text{ (Inclusión exclusión)}$$

$$\implies P\left(\bigcup_{j=1}^{n} A_{j}\right) = \binom{n}{1} \frac{1}{n} - \binom{n}{2} \frac{1}{n^{2}} + \binom{n}{3} \frac{1}{n^{3}} + \cdots = \sum_{j=1}^{n} \binom{n}{j} \frac{1}{n^{j}} (-1)^{j+1}$$

$$\implies P\left(\bigcup_{j=1}^{n} A_{j}\right) = 1 - \sum_{j=0}^{n} \binom{n}{j} \left(\frac{-1}{n}\right)^{j} = 1 - \left(1 - \frac{1}{n}\right)^{n} \xrightarrow{n \to \infty} 1 - \frac{1}{e}$$

2.2.2 Continuidad de la probabilidad: detalle técnico

Proposición 2.5. Sean (Ω, \mathcal{F}, P) un espacio de probabilidades $y A_1, \dots : A_1 \subset A_2 \subset \dots$ una sucesión creciente de conjuntos

$$\implies P\left(\bigcup_{j=1}^{\infty} A_j\right) = \lim_{n \to \infty} P\left(A_n\right)$$

Demostración. Se trata de describir $\bigcup_{j=1}^n A_j$ como la unión de conjuntos disjuntos.

$$P\left(\bigcup_{j=1}^{n} A_{j}\right) = P\left(A_{1} \cup \bigcup_{j=1}^{n-1} (A_{j+1} \setminus A_{j})\right) = P(A_{1}) + \sum_{j=1}^{n-1} (P(A_{j+1}) - P(A_{j})) = P(A_{n})$$

$$\implies P\left(\bigcup_{j=1}^{\infty} A_{j}\right) = P(A_{1}) + \sum_{j=1}^{\infty} (P(A_{j+1}) - P(A_{j})) = \lim_{n \to \infty} P(A_{n})$$

Proposición 2.6. Si la sucesión A_1, \ldots es decreciente $\implies P\left(\bigcap_{j=1}^{\infty} A_j\right) = \lim_{n \to \infty} P\left(A_n\right)$

Teorema 2.1 (Continuidad de la probabilidad). En el espacio de probabilidades (Ω, \mathcal{F}, P) , sea A_1, A_2, \ldots una sucesión : $\forall j \in \mathbb{N} : A_j \in \mathcal{F}$

$$\implies P\left(\bigcup_{j=1}^{\infty} A_j\right) = \lim_{n \to \infty} P\left(\bigcup_{j=1}^{n} A_j\right)$$

Demostración. Definimos $B_i := \bigcup_{j=1}^i A_j \implies \bigcup_{j=1}^\infty A_j = \bigcup_{i=1}^\infty B_i \wedge (B_i)$ es creciente.

$$\implies P\left(\bigcup_{j=1}^{\infty} A_j\right) = P\left(\bigcup_{i=1}^{\infty} B_i\right) = \lim_{n \to \infty} P\left(B_n\right) = P\left(\bigcup_{j=1}^{n} A_j\right)$$

3 Tema 2: Variables aleatorias discretas

Definición 3.1. Sea (Ω, \mathcal{F}, P) un espacio de probabilidades, $X: \Omega \longrightarrow \mathbb{R}$ es una variable aleatoria discreta* (v.a.d.)

$$\iff$$
 (1) $X(\Omega)$ es numerable* $(2) \forall x \in \mathbb{R} : \{\omega \in \Omega : X(\omega) = x\} \in \mathcal{F}$

En realidad, solo interesa (2) cuando $x = x_j$

Definición 3.2. Sea X una v.a.d. en (Ω, \mathcal{F}, P) , $p_X : \mathbb{R} \longrightarrow [0, 1]$ es su función de masa $\iff x \longmapsto p_X(x) = P(X = x) := P(\{\omega \in \Omega : X(\omega) = x\})$

Vemos que

$$\sum_{j\geq 1} p_X(x_j) = \sum_{j\geq 1} P(X = x_j) = \sum_{j\geq 1} P(\{\omega \in \Omega : X(\omega) = x_j\}) = P\left(\bigcup_{\omega \in \Omega} \{\omega\}\right) = P(\Omega) = 1$$

Lo relevante es el conjunto de posibles valores de X ($\{x_1, x_2, \dots\}$) numerable y el conjunto (también numerable) de probabilidades $\{p_1, p_2, \dots\}$ donde

$$\left(\forall j \ge 1 : p_j = P(x = x_j) \land p_j \ge 0\right) \land \sum_{j \ge 1} p_j = 1$$

13/02/2024

Teorema 3.1. Sea $S = \{x_1, x_2, \dots, x_j\}$ un conjunto $y (\Pi_1, \Pi_2, \dots, \Pi_j)$ una lista tal que $\forall i \leq j : \Pi_i \geq 0 \land \sum_{j \geq 1} \Pi_j = 1$

$$\implies \exists (\Omega, \mathcal{F}, P) \land X \ v.a.d : (\forall x \notin S : p_X(x) = 0) \land p_X(x_i) = \Pi_i$$

Demostración. Fijamos $\Omega = S$ y $\mathcal{F} = \mathcal{P}(S)$.

$$A \in \mathcal{F} \implies P(A) = \sum_{j: x_j \in A} \prod_{j \land X} (x_j) = x_j$$

Ejemplo 3.1 (Diferentes modelos de distribución de probabilidad).

1. X sigue una distribución **uniforme** en $\{1, \dots, N\}, N \ge 2$ $(X \sim \text{UNIF}(N))$.

$$\iff S = \{1, \cdots, N\} \land \Pi_j = 1/N, \dots, 1/N$$

Se usa para modelizar un lanzamiento de un dado regular de N caras.

2. X sigue una distribución de **Bernoulli** con parámetro p ($X \sim \text{BER}\left(p\right)$)

$$\iff \begin{cases} p_X(x) = 0 \iff x \neq 0, 1 \\ p_X(1) = p \land p_X(0) = 1 - p \end{cases} \iff \begin{cases} P(X = 1) = p \\ P(X = 0) = 1 - p \end{cases}$$

donde 1 es éxito y 0 fracaso. Se usa para modelizar el resultado de un experimento con dos posibles resultados, i.e. una moneda no necesariamente regular.

13/02/2024

3. X sigue una distribución **binomial** de parámetros $n \geq 1$ \wedge $p \in (0,1)$ $(X \sim \text{BIN}\,(n,p))$

$$\iff S = \{0, 1, \dots, n\} \land \forall j \in \{0, 1, \dots, n\} : P(X = j) = \binom{n}{j} p^j (1 - p)^{n-j}$$

Sirve para modelizar el número de caras que salen al lanzar n veces una moneda de probabilidad p.

Podemos estimar cual es la probabilidad de que salgan n/2 caras con p = 1/2 mediante la fórmula de Stirling:

$$n! \sim n^{n} e^{-n} \sqrt{2\pi n} \implies \binom{n}{n/2} \sim \frac{n^{n} e^{-n} \sqrt{2\pi n}}{\binom{n}{2}\binom{n/2}{2} e^{-\binom{n/2}{2}} \sqrt{2\pi \binom{n/2}{2}} \binom{n/2}{2}\binom{n/2}{2} e^{-\binom{n/2}{2}} \sqrt{2\pi \binom{n/2}{2}}}$$

$$\implies \frac{n^{n} \sqrt{n}}{\binom{n/2}{2}\sqrt{2\pi \binom{n/2}{2}} \binom{n/2}{2}\binom{n/2}{2}\sqrt{\binom{n/2}{2}}} = \frac{n^{n} \sqrt{n}}{\binom{n/2}{2}\sqrt{2\pi \binom{n/2}{2}}} = \frac{n^{n} \sqrt{2}}{\binom{n/2}{2}\sqrt{2\pi \binom{n/2}{2}}} = 2^{n} \sqrt{\frac{2}{\pi n}}$$

$$\implies P\left(X = \frac{n}{2}\right) = \binom{n}{n/2} \frac{1}{2^{n}} \approx 2^{n} \sqrt{\frac{2}{\pi n}} \frac{1}{2^{n}} = \sqrt{\frac{2}{\pi n}}$$

4. La variable X sigue una distribución **geométrica** de parámetro $p \in (0,1)$ ($X \sim \text{GEOM}(p)$).

$$\iff S = \{1, 2, \dots\} \land \forall j \ge 1 : P(x = j) = p(1 - p)^{j-1}$$

Sirve para modelizar el número de lanzamientos hasta que sale un resultado C en cuestión con P(X=C)=p.

Observación 3.1. Cuidado porque existen variables aleatorias que también se dicen de distribución geométrica en las que $S = \{0, 1, 2, ...\}$. Se habla de cuantas veces has obtenido el resultado complementario a C antes de que halla salido C.

5. La variable X sigue una distribución de **Poisson** con parámetro $\lambda > 0$ ($X \sim \text{POISSON}(\lambda)$)

$$\iff S = \{0, 1, \dots\} \land \forall j \ge 0 : P(x = j) = e^{-\lambda} \frac{\lambda^j}{j!}$$

Se usa para modelizar la frecuencia de eventos determinados durante un intervalo de tiempo fijado a partir de la frecuencia media de aparición de dichos eventos.

Proposición 3.1. Sea $X \sim BIN(n, p)$ una v.a.d.

$$\implies$$
 cuando n es grande, BIN $(n, p) \sim \text{POISSON}(np)$

Demostración. Fijo $\lambda > 0 \wedge p = \frac{\lambda}{n}$.

$$\lim_{n \to \infty} \binom{n}{k} \frac{\lambda^k}{n^k} \left(1 - \frac{\lambda}{n} \right)^{n-k} = \frac{\lambda^k}{k!} \lim_{n \to \infty} \frac{n!}{(n-k)!} \frac{1}{n^k} \left(1 - \frac{\lambda}{n} \right)^n \left(1 - \frac{\lambda}{n} \right)^{-k} = e^{-k} \frac{\lambda^k}{k!}$$

Ejemplo 3.2 (¿Hay más ejemplos?).

- Binomial negativa Hipergeométrica
- Sea cualquier serie convergente $\sum_{n=0}^{\infty} a_n = s$

$$\implies$$
 se puede definir la variable aleatoria $X: S = \{1, 2, \dots\} \land P(x = k) = \frac{a_k}{s}$

14/02/2024

3.1 Funciones transformadoras de variables aleatorias (discretas)

Sea X una v.a.d. y $g: \mathbb{R} \longrightarrow \mathbb{R}$ una función, definimos Y := g(X).

$$\implies \{\omega \in \Omega : Y(\omega) = g(X(\omega)) = y\} \in \mathcal{F} \implies Y \text{ es una v.a.d}$$

Por otro lado,

$$\forall y \in \mathbb{R} : P(Y = y) = P(g(X) = y) = P(X \in g^{-1}(y)) = \sum_{x \in g^{-1}(y)} P(X = x) = \sum_{x \in g^{-1}(y)} p_X(x)$$

Ejemplo 3.3 $(Y = x^2)$.

$$p_Y(y) = P(Y = y) = P(X^2 = y) = \begin{cases} 0, & y < 0 \\ P(X = 0) = p_X(0), & y = 0 \\ P(X = \pm \sqrt{y}) = p_X(\sqrt{y}) + p_X(-\sqrt{y}), & y > 0 \end{cases}$$

3.2 Resúmenes: esperanza, varianza, momentos

Definición 3.3 (Esperanza). Sea X una v.a.d. en el espacio de probabilidad (Ω, \mathcal{F}, P) y con función de masa p_X , E(X) es la esperanza de X (también llamada media o expectatio)

$$\iff E(X) = \sum_{x \in X(\Omega)} x \cdot P(X = x) = \sum_{j \ge 1} x_j \cdot p_X(x_j)$$

Pero ojo, solo si la serie es absolutamente convergente.

 $\begin{cases} \text{Si } x_1, \dots, x_N \text{ finito, la suma obviamente converge.} \\ \text{Si los } x_j \text{ son positivos, la serie converge si y solo si es acotada. Si no lo es diverge a } \infty. \end{cases}$

Ejemplo 3.4 (Cálculo de la esperanza).

•
$$x_1, \ldots, x_N \wedge p_1, \ldots, p_N \implies E(X) = \sum_{j=1}^N x_j \cdot p_j$$

•
$$X \sim \text{BER}(p) \implies E(X) = 1 \cdot p + 0 \cdot (1 - p) \implies \boxed{E(X) = p}$$

•
$$X \sim \text{UNIF}(1, ..., N) \implies E(X) = \frac{1}{N} \sum_{n=1}^{N} n \implies E(X) = \frac{N+1}{2}$$

•
$$X \sim \text{BIN}(n, p) \implies E(X) = \sum_{j=0}^{n} j \binom{n}{j} p^{j} (1-p)^{n-j} \implies E(X) = np$$

Se obtiene derivando el binomio de Newton $(1+x)^n = \sum_{i=0}^n \binom{n}{j} x^j$

$$\implies \frac{\mathrm{d}}{\mathrm{d}x}(1+x)^n = \sum_{j=0}^n \binom{n}{j} j \cdot x^{j-1} \implies xn(1+x)^{n-1} = \sum_{j=0}^n \binom{n}{j} j x^j$$

Si
$$x = \frac{p}{1-p} \implies \frac{p}{1-p} n \left(1 + \frac{p}{1-p}\right)^{n-1} = \sum_{j=0}^{n} \binom{n}{j} j \left(\frac{p}{1-p}\right)^{j}$$

$$\implies \frac{p}{1-p} n \left(\frac{1}{1-p}\right)^{n-1} = \sum_{j=0}^{n} \binom{n}{j} j \left(\frac{p}{1-p}\right)^{j}$$

$$\implies np = (1-p)^n \sum_{j=0}^n \binom{n}{j} j \left(\frac{p}{1-p}\right)^j = \sum_{j=0}^n j \binom{n}{j} p^j (1-p)^{n-j} = E(X)$$

•
$$X \sim \text{GEOM}(p) \implies E(X) = \sum_{k=1}^{\infty} k \cdot p \cdot (1-p)^{k-1} \implies \boxed{E(X) = \frac{1}{p}}$$

$$\forall x : |x| < 1 : \frac{1}{1-x} = \sum_{k=1}^{\infty} x^{n} \implies \frac{1}{(1-x)^{2}} = \sum_{k=1}^{\infty} nx^{n-1} \implies E(X) = p\frac{1}{n^{2}} = \frac{1}{n}$$

•
$$X \sim \text{POISSON}(\lambda) \implies E(X) = \sum_{j=0}^{\infty} j \frac{\lambda^j}{j!} e^{-\lambda} \implies \boxed{E(X) = \lambda}$$

$$\implies E(X) = e^{-\lambda} \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda} \sum_{j=0}^{\infty} \frac{\lambda^j}{j!} = \lambda$$

Ejemplo 3.5. Sea X una v.a.d. con $\forall k \geq 0 : P(X = k) = \frac{6}{\pi^2} \frac{1}{k^2}$

$$\implies E(X) = \sum_{k=1}^{\infty} k \frac{6}{\pi^2} \frac{1}{k^2} = \frac{6}{\pi^2} \sum_{k=1}^{\infty} \frac{1}{k}$$
 que diverge a ∞

Ejemplo 3.6. Sea X una v.a.d. que toma valores en $\{(-1)^{k+1}k : k \ge 1\} = \{1, -2, 3, -4, \dots\}$

$$P(X = (-1)^{k+1}k) = \frac{6}{\pi^2} \frac{1}{k^2} \implies E(X) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$$
 que sabemos que tiende a $\ln 2$

Sin embargo, la serie no converge absolutamente, por tanto, mediante argumentos de reordenación, se puede argumentar que E(X) toma cualquier valor real. Entonces E(X) no tiene sentido.

Teorema 3.2. Sea X una v.a.d. que toma los valores x_j con probabilidades p_j para $j \geq 1$. Sea $g: \mathbb{R} \longrightarrow \mathbb{R}$ una función.

$$\implies E(g(X)) = \sum_{j \ge 1} g(x_j) p_j$$

Demostración. Sabemos que g(X) es una v.a.d. que toma valores en $\{g(x_j): j \geq 1\}$, donde $|\{g(x_j)\}| \leq |\{x_j\}|$ porque g puede no ser inyectiva.

Como
$$P(g(X) = y) = \sum_{x \in g^{-1}(y)} P(X = x)$$

$$\implies E(g(X)) = \sum_{y \in g(X(\Omega))} y \cdot P(g(X) = y) = \sum_{y \in g(X(\Omega))} y \left(\sum_{x \in g^{-1}(y)} P(X = x) \right)$$

Como $\forall y \in g(X(\Omega)) : \exists |g^{-1}(y)|$ cantidad de $i_s \geq 1 : g(x_i) = y$ se tiene

$$E(g(X)) = \sum_{j>1} g(x_j)p_j$$

Observación 3.2.

1. Si X es tal que
$$P(X = a) = 1 \implies E(X) = a$$

2.
$$X \sim \text{UNIF}(\{-1,0,1\}) \land Y = X^2 \implies E(X) = 0 \land E(Y) = \frac{2}{3}$$

3.
$$E(aX + b) = aE(X) + b$$
 porque

$$\sum_{j\geq 1} (ax_j + b)p_j = a\sum_{j\geq 1} x_j p_j + b\sum_{j\geq 1} p_j = aE(X) + b$$

4. En general
$$E(g(X)) \neq g(E(X))$$

(Motivo de excomunión)

Ejemplo 3.7
$$(X \sim \text{POISSON}(\lambda) \implies E(X) = \lambda)$$
. Si $Y = g(X) = e^X$ $\implies E(Y) = E(e^Y) = \sum_{j=0}^{\infty} e^j \frac{\lambda^j}{j!} e^{-\lambda} = e^{-\lambda} \sum_{j=0}^{\infty} \frac{(e\lambda)^j}{j!} = e^{-\lambda} e^{e\lambda} = e^{\lambda(e-1)} \neq e^{\lambda}$

21/02/2024

Definición 3.4 (Varianza). Sea (Ω, \mathcal{F}, P) un espacio de probabilidad y X una v.a.d. con función de masa p_X , V(X) es la varianza de X

$$\iff V(X) = E\left[(X - E(X))^2 \right]$$

Si X toma valores x_1, x_2, \ldots con probabilidades p_1, p_2, \ldots y denominamos $\mu := E(X)$

$$\implies V(X) = \sum_{j \ge 1} (x_j - \mu)^2 \cdot p_j = \sum_{j \ge 1} (x_j - \mu)^2 \cdot p_j = \sum_{j \ge 1} (x_j^2 - 2x_j\mu + \mu^2) \cdot p_j$$

$$\implies V(X) = \sum_{j \ge 1} x_j^2 p_j - 2 \sum_{j \ge 1} x_j \mu p_j + \sum_{j \ge 1} \mu^2 p_j = E(X^2) - 2\mu^2 + \mu^2$$

$$\implies V(X) = E\left[(X - E(X))^2 \right] = E\left(X^2\right) - E(X)^2$$

Observación 3.3.

- 1. V(X) es medida de dispersión de X alrededor de E(X).
- 2. V(X) > 0
- 3. $V(X) = 0 \implies P(X = E(X)) = 1$

4.
$$V(aX + b) = E[(aX + b - E(aX + b))^2] = E[(aX - aE(X))^2] = a^2V(X)$$

5. Las unidades de V(X) son las de X^2

$$\implies$$
 definimos la desviación típica de X como $\boxed{\sigma(X) := \sqrt{V(X)}}$

6. ¿Por qué no E(|X - E(X)|)?

Porque el valor absoluto no es diferenciable y no se puede trabajar con él.

Ejemplo 3.8.

1.
$$X \sim \text{BER}(p) \implies E(X) = p \land \boxed{V(X)} = p - p^2 = \boxed{p(1-p)}$$

2.
$$X \sim \text{UNIF}(\{1, \dots, N\}) \implies E(X) = \frac{N+1}{2} \wedge \left[V(X) = \frac{N^2 - 1}{12} \right]$$

$$\implies V(X) = \frac{1}{N} \sum_{j=1}^{N} j^2 = \frac{1}{N} \cdot \frac{N(N+1)(2N+1)}{6} = \frac{(N+1)(N-1)}{12}$$

3.
$$X \sim \text{BIN}(n, p) \implies E(X) = np \land V(X) = np(1-p)$$

Demostraci'on.

4.
$$X \sim \text{GEOM}(p) \implies E(X) = \frac{1}{p} \land V(X) = \frac{1-p}{p^2}$$

Demostración.

5. $X \sim \text{POISSON}(\lambda) \implies E(X) = \lambda \wedge V(X) = \lambda$

Demostración.

$$E(X^2) = \sum_{k=0}^{\infty} k^2 e^{-k} \frac{\lambda^k}{k!}$$

Definición 3.5 (Momentos de X). Sea X una v.a.d. con función de masa p_X , μ_k es el k-ésimo momento de $X \iff \mu_k = E\left[(X - E(X))^k\right]$

Observación 3.4. Algunos momentos tienen nombre propio:

1. $\mu_1 = 0$ 2. $\mu_2 = V(X)$

3. μ_3 es la **asimetría** de X

4. μ_4 es la **curtosis** de X

Teorema 3.3 (Desigualdad de Markov). Sea X una v.a.d. : $P(X < 0) = 0 \land E(X) < \infty$ $\implies \forall t > 0 : P(X \ge t) \le \frac{E(X)}{t}$

 $\textbf{\textit{Demostraci\'on}. Notaci\'on: } \text{En } (\Omega, \mathcal{F}, P), \ A \subset \mathcal{F} \text{ y } \mathbbm{1}_A(\omega) = \begin{cases} 1 \text{ si } \omega \in A \\ 0 \text{ si } \omega \notin A \end{cases}$

Fijamos t > 0 y definimos $Y_t(\omega) = t \cdot \mathbbm{1}_{\{x \ge t\}}(\omega) = \begin{cases} t \text{ con probabilidad } P(x \ge t) \\ 0 \text{ con probabilidad } 1 - P(x \ge t) \end{cases}$

$$\implies \forall \omega : Y_t(\omega) \le X(\omega) \implies E(Y_t) = t \cdot P(X \ge t) \le E(X)$$

Así que
$$\forall t > 0 : P(X \ge t) \le \frac{E(X)}{t}$$

Teorema 3.4 (Desigualdad de Chebyshev). Sea X una v.a.d. : $E(X), V(X) < \infty$.

$$\implies \forall \lambda > 0: P(|X - E(X)| \ge \lambda \cdot \sigma(X)) \le \frac{1}{\lambda^2}$$

$$\iff \forall \alpha > 0 : P(|X - E(X)| \ge \alpha) \le \frac{V(X)}{\alpha^2}$$

Demostración. Definimos $Y = |X - E(X)|^2$ y aplicamos la desigualdad de Markov.

$$\implies \forall t > 0 : P(Y \ge t) \le \frac{E(Y)}{t} \implies \forall t > 0 : P(|X - E(X)|^2 \ge t) \le \frac{E(Y)}{t}$$

Como
$$E(Y) = E(|X - E(X)|^2) = V(X)$$
 por la def de varianza,

$$\implies \forall t > 0 : P\left(|X - E(X)| \ge \sqrt{t}\right) \le \frac{V(X)}{t}$$

Definimos
$$\alpha := \sqrt{t} \implies \forall \alpha > 0 : P(|X - E(X)| \ge \alpha) \le \frac{V(X)}{\alpha^2}$$

y para la desigualdad equivalente definimos $\lambda := \frac{\alpha}{\sigma(X)}$

$$\implies \forall \lambda > 0 : P(|X - E(X)| \ge \lambda \cdot \sigma(X)) \le \frac{1}{\lambda^2}$$

26/02/2024

3.2.1 Esperanza condicionada

Definición 3.6 (Esperanza condicionada). Sea (Ω, \mathcal{F}, P) un espacio de probabilidad $B \in \mathcal{F}$ un suceso tal que P(B) > 0 y X una v.a.d. con esperanza E(X), E(X|B) es la **esperanza** de X condicionada a B

$$\iff E(X|B) := \sum_{x \in X(\Omega)} x \cdot P(X = x|B) = \sum_{x \in X(\Omega)} x \cdot \frac{P((X = x) \land B)}{P(B)}$$

(Siempre que la serie sea absolutamente convergente).

Teorema 3.5 (Esperanza total). En (Ω, \mathcal{F}, P) , sea X una v.a.d. y $\{B_1, B_2, ...\}$ una partición de Ω

$$\implies E(X) = \sum_{i \ge 1} E(X|B_i) \cdot P(B_i)$$

(Siempre que la serie sea absolutamente convergente).

Demostración

$$\sum_{i\geq 1} E(X|B_i) \cdot P(B_i) = \sum_{i\geq 1} \sum_{x\in X(\Omega)} x \cdot P(X=x|B_i) \cdot P(B_i)$$

$$= \sum_{x\in X(\Omega)} x \cdot \sum_{i\geq 1} \frac{P((X=x) \land B_i)}{P(B_i)} \cdot P(B_i) = \sum_{x\in X(\Omega)} x \cdot P(X=x)$$

Ejemplo 3.9. Lanzamos una moneda con probabilidad p de cara y 1-p de cruz y definimos X como la longitud de la racha inicial, i.e. el número de caras/cruces consecutivas.

$$\implies E(X) = E(X|C) \cdot p + E(X|\times) \cdot (1-p)$$

$$\implies E(X) = \left(\sum_{j \ge 1} j \cdot P(X=j|C)\right) p + \left(\sum_{j \ge 1} j \cdot P(X=j|\times)\right) (1-p)$$

$$\implies E(X) = p \sum_{k=1}^{\infty} k p^{k-1} (1-p) + (1-p) \sum_{k=1}^{\infty} k (1-p)^{k-1} p$$

$$\implies E(X) = \frac{1}{1-p} \cdot p + \frac{1}{p} \cdot (1-p) = \frac{1}{p(1-p)} - 2$$

También se puede abordar el problema pensando en las variables geométricas:

$$E(X) = E(X|C) \cdot p + E(X|X) \cdot (1-p) = \frac{p}{1-p} + \frac{1-p}{p} = \frac{p^2 + (1-p)^2}{p(1-p)}$$
$$\implies E(X) = \frac{p^2 + 1 - 2p + p^2}{p(1-p)} = \frac{2p(p-1) + 1}{p(1-p)} = \frac{1}{p(1-p)} - 2$$

27/02/2024

3.3 Varias variables aleatorias

En (Ω, \mathcal{F}, P) , sea $\mathcal{X} = X_1, X_2, \dots, X_n$ una colección de variables aleatorias discretas.

En el caso n = 2, tenemos X e Y variables aleatorias discretas, se genera una tabla con las probabilidades conjuntas:

$$p_{X,Y}(x,y) := P(\omega \in \Omega : X(\omega) = x \land Y(\omega) = y) = P(X = x \land Y = y)$$

Definición 3.7 (Función de masa conjunta). En (Ω, \mathcal{F}, P) , sean X e Y v.a.d., $p_{X,Y}$ es su función de masa conjunta

$$\iff p_{X,Y} \colon \mathbb{R}^2 \longrightarrow [0,1] \land \forall (x,y) \in X(\Omega) \times Y(\Omega) : p_{X,Y}(x,y) = P(X = x \land Y = y)$$
tal que
$$\sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} p_{X,Y}(x,y) = 1 \text{ y } \forall (x,y) \notin X(\Omega) \times Y(\Omega) : p_{X,Y}(x,y) = 0$$

Ya tenemos X e Y en (Ω, \mathcal{F}, P) con $P_{X,Y}$

- 1. ¿Qué sabemos de X e Y por separado?
- 2. Esperanzas: nos interesa calcular E(X), E(Y), E(X+Y), $E(X\cdot Y)$
- 3. Independencia

Definición 3.8 (Funciones marginales). En (Ω, \mathcal{F}, P) , sean $X \in Y$ v.a.d., p_X, p_Y son sus funciones de masa marginales

$$\iff p_X(x) = \sum_{y \in Y(\Omega)} p_{X,Y}(x,y) \quad \land \quad p_Y(y) = \sum_{x \in X(\Omega)} p_{X,Y}(x,y)$$

Teorema 3.6. En (Ω, \mathcal{F}, P) , sean X e Y v.a.d. y sea $g: \mathbb{R}^2 \longrightarrow \mathbb{R}$ una función

$$\implies E(g(X,Y)) = \sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} g(x,y) \cdot p_{X,Y}(x,y)$$

Si converge absolutamente.

Demostración. Si consideramos la variable aleatoria Z que toma valores en $X(\Omega) \times Y(\Omega)$ con función de masa $p_Z = p_{X,Y}$, entonces E(g(X,Y)) = E(g(Z)). Como $X(\Omega) \times Y(\Omega)$ es numerable, podemos renombrar sus elementos como $\{z_1, z_2, \dots\}$ y entonces del teorema 3.2 obtenemos:

$$E(g(X,Y)) = E(g(Z)) = \sum_{j \ge 1} g(z_j) \cdot p_Z(z_j) = \sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} g(x,y) \cdot p_{X,Y}(x,y)$$

Observación 3.5. Si $g: \mathbb{R} \longrightarrow \mathbb{R}$

$$\implies E(g(X)) = \sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} g(x) \cdot p_{X,Y}(x,y) = \sum_{x \in X(\Omega)} \left(g(x) \sum_{y \in Y(\Omega)} p_{X,Y}(x,y) \right)$$

$$\implies E(g(X)) = \sum_{x \in X(\Omega)} g(x) p_X(x)$$

De manera análoga, $E(g(Y)) = \sum_{y \in Y(\Omega)} g(y) p_Y(y)$

Ejemplo 3.10 (E(aX + bY) = aE(X) + bE(Y)).

$$E(aX + bY) = \sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} (ax + by) \cdot p_{X,Y}(x,y)$$

$$\implies E(aX + bY) = a \sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} x \cdot p_{X,Y}(x,y) + b \sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} y \cdot p_{X,Y}(x,y)$$

28/02/2024

Definición 3.9 (Independencia de v.a.d.). En (Ω, \mathcal{F}, P) , sean $X \in Y$ v.a.d., $X \in Y$ son independientes

$$\iff \forall (x,y) \in X(\Omega) \times Y(\Omega) : X = x \text{ y } Y = y \text{ son sucesos independientes.}$$

$$\iff \forall (x,y) \in X(\Omega) \times Y(\Omega) : P(X=x \land Y=y) = P(X=x) \cdot P(Y=y)$$

Teorema 3.7. En (Ω, \mathcal{F}, P) , sean $X \in Y$ v.a.d., $X \in Y$ son independientes

$$\iff \exists g, h \colon \mathbb{R} \longrightarrow \mathbb{R} : p_{X,Y}(x,y) = g(x) \cdot h(y)$$

Demostración. (\Longrightarrow) Trivial: $g(x) = p_X(x) \wedge h(y) = p_Y(y)$. (\Longleftrightarrow) Suponemos que $\exists g, h \colon \mathbb{R} \longrightarrow \mathbb{R} : p_{X,Y}(x,y) = g(x) \cdot h(y)$, veamos las funciones marginales.

$$\implies p_X(x) = \sum_{y \in Y(\Omega)} p_{X,Y}(x,y) = \sum_{y \in Y(\Omega)} g(x) \cdot h(y) = g(x) \sum_{y \in Y(\Omega)} h(y)$$

Análogamente $p_Y(y) = h(y) \sum_{x \in X(\Omega)} g(x)$

$$\implies p_X(x) \cdot p_Y(y) = \left(g(x) \sum_{z \in Y(\Omega)} h(z)\right) \left(h(y) \sum_{w \in X(\Omega)} g(w)\right)$$

$$\implies p_X(x) \cdot p_Y(y) = g(x) \cdot h(y) \sum_{z \in Y(\Omega)} \sum_{w \in X(\Omega)} g(w) \cdot h(z) = p_{X,Y}(x,y)$$

$$\forall (x,y) \in X(\Omega) \times Y(\Omega) : P(X = x \land Y = y) = p_X(x) \cdot p_Y(y) = P(X = x) \cdot P(Y = y)$$

Ejemplo 3.11. Sean X e Y dos v.a.d. tales que

$$p_{X,Y}(x,y) = e^{-(\lambda+\mu)} \frac{\lambda^x \mu^y}{x!y!} \text{ con } x,y \in \mathbb{Z} \text{ y } \lambda,\mu > 0$$

 \implies Se puede interpretar como $X \sim \text{POISSON}(\lambda)$ e $Y \sim \text{POISSON}(\mu)$ independientes.

Observación 3.6. Si X e Y son independientes $\implies E(X \cdot Y) = E(X) \cdot E(Y)$. Sin embargo, la implicación recíproca no es cierta. (Motivo de excomunión)

Definición 3.10 (Covarianza). En (Ω, \mathcal{F}, P) , sean $X \in Y$ v.a.d., $\operatorname{cov}(X, Y)$ es la covarianza de $X \in Y$

$$\iff$$
 $\left[\operatorname{cov}\left(X,Y\right) = E\left[\left(X - E(X)\right) \cdot \left(Y - E(Y)\right)\right] = E(X \cdot Y) - E(X) \cdot E(Y)\right]$

29/02/2024

Observación 3.7.

1. Cálculo de la covarianza

$$cov(X,Y) = \sum_{i,j} x_i y_j P(X = x_i \land Y = y_j) - \left(\sum_i x_i P(X = x_i)\right) \left(\sum_j y_j P(Y = y_j)\right)$$

2. Signo de la covarianza (y coeficiente de correlación)

$$cov(X, Y) = \sum_{i,j} (x_i - E(X))(y_j - E(Y))P(X = x_i \land Y = y_j)$$

Entonces, si la covarianza es positiva, X e Y tienden a crecer juntas. Si es negativa, tienden a decrecer juntas. Si es 0, no hay relación lineal entre X e Y.

3. Cálculo fundamental

$$\begin{split} V(X+Y) &= E((X+Y)^2) - (E(X+Y))^2 \\ &= E(X^2 + 2XY + Y^2) - (E(X) + E(Y))^2 \\ &= E(X^2) + 2E(XY) + E(Y^2) - (E(X))^2 - 2E(Y)E(X) - (E(Y))^2 \\ &\Longrightarrow \boxed{V(X+Y) = V(X) + V(Y) + 2\operatorname{cov}(X,Y)} \end{split}$$

Pero cuidado: $V(X - Y) = V(X) + V(Y) - 2 \operatorname{cov}(X, Y)$

De forma más general:

$$V(aX + bY) = V(aX) + V(bY) + 2\operatorname{cov}(aX, bY)$$
$$= a^{2}V(X) + b^{2}V(Y) + 2ab\operatorname{cov}(aX, bY)$$
$$\Longrightarrow V(aX + bY) = a^{2}V(X) + b^{2}V(Y) + 2ab\operatorname{cov}(aX, bY)$$

4. Si X e Y son independientes \implies cov (X, Y) = 0

Definición 3.11 (coeficiente de correlación). Sean X e Y dos v.a.d., ρ es su coeficiente de correlación $\iff \rho := \frac{\text{cov}(X,Y)}{\sqrt{V(X) \cdot V(Y)}} \implies \rho$ no tiene unidades y $|\rho(X,Y)| \le 1$.

Proposición 3.2 (Desigualdad de Cauchy-Schwarz). Sean X e Y dos v.a.d.

$$\implies E(X \cdot Y)^2 \le E(X^2) \cdot E(Y^2)$$

La igualdad se da cuando una variable es transformación lineal de la otra, i.e. Y = aX + b.

Demostración. Definimos W = sX + Y, $W^2 \ge 0$ con probabilidad 1.

$$\implies 0 \le E(W^2) = E((sX+Y)^2) = E(s^2X^2 + Y^2 + 2sXY)$$
$$= s^2E(X^2) + E(Y^2) + 2sE(XY)$$
$$= E(X^2) \cdot s^2 + 2E(XY) \cdot s + E(Y^2)$$

Vemos que el resultado es una parábola si se toma como función de s.

Como $\forall s \in \mathbb{R} : E(X) \ge 0$ y $E(X^2) \ge 0$, sabemos que la parábola o bien toca el eje X una única vez, o no lo hace nunca. Esto es equivalente a pedir que el valor del discriminante

sea menor o igual que 0.

$$4E(XY)^2 - 4E(X^2)E(Y^2) \le 0 \implies E(XY)^2 \le E(X^2)E(Y^2)$$

Por tanto, $\overline{(\operatorname{cov}(X,Y)^2)} = E((X - E(X))(Y - E(Y)))^2 \le \overline{V(X) \cdot V(Y) \cdot \operatorname{cov}(X,Y)}$ Además $\rho(aX + b, cY + d) = \operatorname{sgn}(ac) \cdot \rho(X, Y).$

04/03/2024

3.3.1Detalle sobre independencia

Teorema 3.8. Sean X e Y dos v.a.d. en (Ω, \mathcal{F}, P) y $g, h: \mathbb{R} \longrightarrow \mathbb{R}$ dos funciones

$$X \ e \ Y \ independent es \iff E(g(X) \cdot h(Y)) = E(g(X)) \cdot E(h(Y))$$

$$E(g(X) \cdot h(Y)) = \left(\sum_{x \in X(\Omega)} g(x)P(X = x)\right) \left(\sum_{y \in Y(\Omega)} h(y)P(Y = y)\right) = E(g(X)) \cdot E(h(Y))$$

(\iff) Sean $\hat{x}, \hat{y} \in \mathbb{R}$, queremos probar que $P(X = \hat{x} \land Y = \hat{y}) = P(X = \hat{x}) \cdot P(Y = \hat{y})$

Definimos
$$g(x) := \begin{cases} 1 \text{ si } x = \hat{x} \\ 0 \text{ si } x \neq \hat{x} \end{cases} \quad h(y) := \begin{cases} 1 \text{ si } y = \hat{y} \\ 0 \text{ si } y \neq \hat{y} \end{cases}$$

$$\implies E\big(g(X)\cdot h(Y)\big) = \sum_{x\in X(\Omega)} \sum_{y\in Y(\Omega)} g(x)h(y)P(X=\hat{x}_\wedge Y=\hat{y}) = P(X=\hat{x}_\wedge Y=\hat{y})$$

$$\text{Como } E(g(X)) = P(X = \hat{x}) \wedge E(h(Y)) = P(Y = \hat{y}) \text{ y } E\left(g(X)h(Y)\right) = E(g(X))E(h(Y))$$

$$\boxed{P(X = \hat{x} \wedge Y = \hat{y})} = E\left(g(X) \cdot h(Y)\right) = E(g(X)) \cdot E(h(Y)) = \boxed{P(X = \hat{x}) \cdot P(Y = \hat{y})}$$

¿Qué pasaría con (X_1,\ldots,X_n) para n=2?

1. Modelo \longrightarrow función de masa conjunta $p_{X_1,...,X_n}(x_1,...,x_n)$

$$\begin{cases} \sum_{x_1 \in X_1(\Omega)} \cdots \sum_{x_n \in X_n(\Omega)} p_{X_1,\dots,X_n}(x_1,\dots,x_n) = 1\\ p_{X_1,\dots,X_n}(x_1,\dots,x_n) \ge 0 \end{cases}$$

2. Marginales
$$p_{X_1}(x_1) = \sum_{x_2 \in X_2(\Omega)} \cdots \sum_{x_n \in X_n(\Omega)} p_{X_1, ..., X_n}(x_1, ..., x_n)$$

3. Independencia (la función de masa conjunta se factoriza)

$$p_{X_1,\ldots,X_n}(x_1,\ldots,x_n)=p_{X_1}(x_1)\cdot\cdots\cdot p_{X_n}(x_n)\iff \text{independencia completa}$$

Pero puede haber otras nociones de independencia (ej. 2 a 2).

4. Matriz varianzas-covarianzas y matriz correlaciones respectivamente

$$V = \begin{pmatrix} V(X_1) & \cdots & \cos(X_1, X_n) \\ \vdots & \ddots & \vdots \\ \cos(X_n, X_1) & \cdots & V(X_n) \end{pmatrix} \wedge \Sigma = \begin{pmatrix} 1 & \cdots & \rho(X_1, X_n) \\ \vdots & \ddots & \vdots \\ \rho(X_n, X_1) & \cdots & 1 \end{pmatrix}$$

Ambas son simétricas y definidas positivas.

Ejemplo 3.12. Queremos modelizar experimentos del tipo lanzar 18 veces un dado y sumar los resultados obtenidos.

$$S_n = X_1 + \dots + X_n \implies \begin{cases} E(S_n) = \sum_{i=1}^n E(X_i) \\ V(S_n) = \sum_{i=1}^n V(X_i) + 2\sum_{i < j} \operatorname{cov}(X_i, X_j) \end{cases}$$

Si suponemos las X_i independientes e idénticas $\implies \forall i \in \mathbb{N}_n : E(X_i) =: \mu \land V(X_i) =: \sigma^2$

$$\implies E(S_n) = n\mu \wedge V(S_n) = n^2 \sigma^2$$

Si definimos
$$Z_n := \frac{1}{n} S_n = \frac{1}{n} (X_1 + \dots + X_n) \implies E(Z_n) = \mu \wedge V(Z_n) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

 $\implies Z_n$ no es aleatoria si $n \to \infty$ (ley de los grandes números)

05/03/2024

3.4 Funciones generatrices de probabilidad

3.4.1 Series de potencias

Sea $(a_n)_{n=0}^{\infty}$ una sucesión y $f(x) := \sum_{n=0}^{\infty} a_n x^n$ una función, ¿en qué valores de x está definida?

Sabemos que existe $R \in [0, \infty)$ radio de convergencia tal que

$$\sum_{n=0}^{\infty} a_n x^n \to \begin{cases} \text{converge} & \text{si } |x| < R \\ \text{diverge} & \text{si } |x| > R \end{cases} \iff \frac{1}{R} = \limsup_{n \to \infty} |a_n|^{1/n}$$

Ejemplo 3.13.

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x \quad \land \quad \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}, |x| < 1 \quad \land \quad \sum_{n=0}^{m} \binom{m}{n} x^n = (1+x)^m$$

3.4.2 Funciones generatrices

$$(a_n)_{n=0}^{\infty} \longleftrightarrow f(x) = \sum_{n=0}^{\infty} a_n x^n \implies \begin{cases} x \cdot f(x) \longleftrightarrow (0, a_0, \dots) \\ x \cdot f'(x) \longleftrightarrow (0a_0, 1a_1, 2a_2, \dots) \end{cases}$$
$$f(x) \cdot g(x) = \sum_{n=0}^{\infty} a_n x^n \sum_{n=0}^{\infty} b_n x^n = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k b_{n-k}\right) x^n$$

Definición 3.12 (Función generatriz de probabilidad). Sea X una variable aleatoria discreta que toma valores en $\{0, 1, 2, \dots\}$ donde $\forall j \geq 0 : p_j = P(X = j), G_X(s)$ es su función generatriz de probabilidad $\iff G_X(s) = \sum_{n=0}^{\infty} p_n s^n$

Ejemplo 3.14.

1.
$$X \sim \text{BER}(p) \implies G_X(s) = (1-p) + ps$$

2.
$$X \sim \text{BIN}(n,p) \implies G_X(s) = \sum_{j=1}^n \binom{n}{j} (1-p)^{n-j} (ps)^j = (1-p+ps)^n$$

3.
$$X \sim \text{GEOM}(p) \implies G_X(s) = \sum_{j=1}^{\infty} (1-p)^{j-1} p s^j = \frac{ps}{1-(1-p)s}$$

Demostración.

$$G_X(s) = \sum_{j=1}^{\infty} (1-p)^{j-1} p s^j = p \sum_{k=0}^{\infty} (1-p)^k s^{k+1} = p s \sum_{k=0}^{\infty} ((1-p)s)^k = \frac{ps}{1-(1-p)s}$$

4.
$$X \sim \text{POISSON}(\lambda) \implies G_X(s) = \sum_{j=0}^{\infty} e^{-\lambda} \frac{\lambda^j}{j!} s^j = e^{\lambda(s-1)}$$

Demostración.
$$G_X(s) = \sum_{j=0}^{\infty} e^{-\lambda} \frac{\lambda^j}{j!} s^j = e^{-\lambda} \sum_{j=0}^{\infty} \frac{(\lambda s)^j}{j!} = e^{-\lambda} e^{\lambda s} = e^{\lambda(s-1)}$$

¿Para qué?

1. Cálculo de momentos con $(p_n)_{n=0}^{\infty}$

$$G_X(s) = \sum_{n=0}^{\infty} p_n s^n \implies G_X'(s) = \sum_{n=1}^{\infty} n p_n s^{n-1} \implies G_X'(1) = \sum_{n=1}^{\infty} n p_n = E(X)$$

Si seguimos derivando, obetenemos

$$\implies G_X''(s) = \sum_{n=2}^{\infty} n(n-1)p_n s^{n-2} = \sum_{n=2}^{\infty} n^2 p_n s^{n-2} - \sum_{n=2}^{\infty} n p_n s^{n-2}$$

$$\implies G_X''(1) = \sum_{n=2}^{\infty} n^2 p_n - \sum_{n=2}^{\infty} n p_n = E(X^2) - E(X)$$

$$\implies V(X) = E(X^2) - E(X)^2 = G_X''(1) + G_X'(1) (1 - G_X'(1))$$

Ejemplo 3.15.

(a)
$$X \sim \text{BER}(p) \implies G_X(s) = (1-p) + ps$$

 $\implies G'_X(s) = p = E(X) \land G''_X(s) = 0 \implies V(X) = p(1-p)$

(b)
$$X \sim \text{BIN}(n, p) \implies G_X(s) = (1 - p + ps)^n$$

 $\implies G'_X(s) = n(1 - p + ps)^{n-1}p \implies G'_X(1) = np = E(X)$
 $\implies G''_X(s) = n(n-1)(\cdots)^{n-2}p^2 \implies G''_X(1) = n(n-1)p^2$
 $\implies V(X) = n(n-1)p^2 + np(1 - np) = np(1 - p)$

2. Suma de independientes

Teorema 3.9. Sean X, Y dos v.a.d. independientes con valores en $\{0, 1, 2, ...\}$ y con funciones generatrices de probabilidad $G_X(s), G_Y(s)$ respectivamente

$$\implies G_{X+Y}(s) = G_X(s) \cdot G_Y(s)$$

Demostración.

$$G_{X+Y}(s) = \sum_{n=0}^{\infty} P(X+Y=n)s^n = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} P(X=k \land Y=n-k)\right)s^n$$

Por otro lado,
$$G_X(s) \cdot G_Y(s) = \left(\sum_{n=0}^{\infty} P(X=n)s^n\right) \left(\sum_{n=0}^{\infty} P(Y=n)s^n\right) \\ = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} P(X=k)P(Y=n-k)\right) s^n \implies G_{X+Y}(s) = G_X(s) \cdot G_Y(s)$$

Otra manera:

$$G_X(s) = E(s^X) \land G_{X+Y}(s) = E(s^{X+Y}) = E(s^X \cdots Y) = E(s^X) \cdot E(s^Y) = G_X(s) \cdot G_Y(s)$$

Corolario 3.1. Sean X_1, X_2, \dots, X_n v.a.d. independientes con valores en $\{0, 1, 2, \dots\}$ y con

funciones generatrices de probabilidad $G_{X_1}(s), G_{X_2}(s), \ldots, G_{X_n}(s)$ respectivamente

$$\implies G_{X_1+X_2+\cdots+X_n}(s) = \prod_{i=1}^n G_{X_i}(s)$$

Si las X_i son "idénticas" $\implies G_{X_1+X_2+\cdots+X_n}(s) = (G_{X_1}(s))^n$

06/03/2024

Teorema 3.10 (Unicidad). Sean X, Y dos v.a.d. con valores en $\{0, 1, 2, ...\}$ y con funciones generatrices de probabilidad $G_X(s), G_Y(s)$ respectivamente

$$\implies G_X(s) = G_Y(s) \iff \forall n \ge 0 : P(X = n) = P(Y = n)$$

Ejemplo 3.16. Sean $X \sim \text{POISSON}(\lambda) \wedge Y \sim \text{POISSON}(\mu)$ independientes con $\lambda, \mu > 0$. Definimos Z = X + Y.

$$\implies \forall x \ge 0 : P(Z = k) = P(X + Y = k) = \sum_{j=0}^{k} P(X = j \land Y = k - j) = \cdots$$

Pero, a través de funciones generatrices obtenemos:

$$G_X(s) = e^{\lambda(s-1)} \wedge G_Y(s) = e^{\mu(s-1)} \implies G_Z(s) = e^{(\lambda+\mu)(s-1)} \implies Z \sim \text{POISSON}(\lambda+\mu)$$

Ejemplo 3.17.

1. Sean I_1, I_2, \ldots, I_n v.a.d. independientes con $\forall k \in \mathbb{N}_n : I_k \sim \text{BER}(p)$ y definimos $Z = I_1 + I_2 + \cdots + I_n$.

$$\implies G_Z(s) = [(1-p) + ps]^n \implies Z \sim BIN(n, p)$$

2. Sean $X \sim \text{BIN}\left(n,p\right) \wedge Y \sim \text{POISSON}\left(\lambda\right)$ independientes y definimos Z = X + Y.

$$\implies G_Z(s) = ((1-p)+ps)^n \cdot e^{\lambda(s-1)}$$

4 Variables aleatorias continuas

Hasta ahora en (Ω, \mathcal{F}, P) , una variable aleatoria X discreta era una función $X : \Omega \longrightarrow \mathbb{R}$ tal que $\exists N \subset \mathbb{N} : |X(\Omega)| = |N|$ y $P(X = k) = P(X^{-1}(k))$.

Definición 4.1 (Variable aleatoria). Sea (Ω, \mathcal{F}, P) un espacio de probabilidad, la función $X: \Omega \longrightarrow \mathbb{R}$ es una variable aleatoria

$$\iff \forall x \in \mathbb{R} : \{\omega \in \Omega : X(\omega) \le x\} \in \mathcal{F}$$

Proposición 4.1. X es $v.a.d. \implies X$ es variable aleatoria.

Demostración. Puedo describir el suceso $\{X \leq x\}$ como unión numerable de sucesos

$$\{\omega \in \Omega : X(\omega) \le x\} = \bigcup_{y \in X(\Omega)} \{\omega \in \Omega : X(\omega) = y\}$$

Como la unión numerable de sucesos es un suceso, $\{X \leq x\} \in \mathcal{F}$.

Definición 4.2 (Función de distribución). Sea X una variable aleatoria, $F_X : \mathbb{R} \longrightarrow [0,1]$ es su función de distribución $\iff \forall x \in X(\Omega) : \boxed{F_X(x) = P(X \leq x)}$

Sea X una v.a.d. que toma los valores x_1, x_2, \cdots con probabilidades p_1, p_2, \ldots y con función de masa $p_X \implies F_X(x) = \sum_{x_i \le x} P(X = x_i)$. Es decir, es la función de masa acumulada.

Lema 4.1. En (Ω, \mathcal{F}, P) , sea X una variable aleatoria con función de distribución F_X .

$$(1)\lim_{x\to\infty} F_X(x) = 1 \, \lim_{x\to-\infty} F_X(x) = 0$$

 \implies (2) F_X es no decreciente

 $(3)F_X$ es continua por la derecha

Demostración. (2)
$$x < y \implies \{X \le x\} \subseteq \{X \le y\} \implies F_X(x) \le F_X(y)$$
.

Teorema 4.1. Sea $F: \mathbb{R} \longrightarrow [0,1]$ una función que cumpla (1), (2) y (3) del lema anterior. $\implies \exists ! X \ variable \ aleatoria : F_X = F$

Demostración. TODO: POR REVISAR Defino $X(\omega) = \inf\{x \in \mathbb{R} : F(x) \geq U(\omega)\}$ con $U(\omega) \sim \text{UNIF}([0,1])$.

• $X(\omega) \le x \iff \inf\{x \in \mathbb{R} : F(x) \ge U(\omega)\} \le x \iff F(X(\omega)) \ge U(\omega) \iff X(\omega) \in \{x \in \mathbb{R} : F(x) \ge U(\omega)\}$

•
$$X(\omega) \le x \implies F(X(\omega)) \ge U(\omega) \implies F(x) \ge F(X(\omega)) \ge U(\omega) \implies \{x \in \mathbb{R} : F(x) \ge U(\omega)\} \subseteq \{x \in \mathbb{R} : F(x) \ge F(X(\omega))\}$$

Entonces,
$$X(\omega) = \inf\{x \in \mathbb{R} : F(x) \ge U(\omega)\} \implies F_X(x) = P(X \le x) = P(U \le F(x)) = F(x).$$

Moraleja: Una variable aleatoria queda determinada por su función de distribución.

5 Ejercicios

5.1 Hoja 1

5.2 Hoja 2

7. **b**
$$X \sim \text{GEOM}(p) \iff P(X > n + m | X > m) = P(X > n)$$

Solución: Lo que nos está diciendo la caracterización es que una distribución geométrica no tiene memoria, la probabilidad de no tener éxito en los próximos n intentos no depende de los intentos anteriores.

Demostración. (
$$\Longrightarrow$$
) Suponemos que $X \sim \text{GEOM}(p)$
 $\Longrightarrow P(X > n + m | X > m) = \frac{P(X > n + m \land X > m)}{P(X > m)} = \frac{P(X > n + m)}{P(X > m)}$

Como $P(X > m) = (1 - p)^m$ (por eso se llama geométrica), obtenemos

$$(\Leftarrow) \text{ Suponemos que } P(X > n + m | X > m) = P(X > n)$$

$$\Rightarrow \frac{P(X > n + m \land X > m)}{P(X > m)} = \frac{P(X > n)}{P(X > m)}$$

$$\Rightarrow P(X > n + m \land X > m) = P(X > n) \cdot P(X > m)$$

12. Sea X una v.a.d,
$$X \sim \text{BINNEG}(n, p) \iff P(X = k) = \binom{k-1}{n-1} p^n (1-p)^{k-n}$$
.

Esto significa que X es la suma de n v.a.d. independientes, con distribución GEOM (p).

Comprobemos que
$$\sum_{k=n}^{\infty} {k-1 \choose n-1} p^n (1-p)^{k-n} = 1$$

$$\sum_{k=n}^{\infty} \binom{k-1}{n-1} p^n (1-p)^{k-n} = \sum_{l=0}^{\infty} \binom{l+n-1}{n-1} p^n (1-p)^l = p^n \sum_{l=0}^{\infty} \binom{l+n-1}{n-1} (1-p)^l$$

Como sabemos que $\frac{1}{(1-x)^{m+1}} = \sum_{l=0}^{\infty} \binom{l+m}{m} x^l$, podemos tomar x = 1-p y m = n-1:

$$\implies \sum_{k=n}^{\infty} P(X=k) = \frac{p^n}{(1-(1-p))^{n-1+1}} = \frac{p^n}{p^n} = \boxed{1}$$

20. Cada día compramos 1 cromo de n totales que hay, con reposición. ¿Cuántos días esperamos hasta tener todos los cromos?

Solución: Sea T una v.a.d. igual a la cantidad de días hasta que terminamos la colección, queremos calcular E(T). Se puede utilizar el modelo de distribución geométrica.

Si definimos T_i como la cantidad de días que esperamos hasta tener el cromo i-ésimo nuevo

sabiendo que tienes los i-1 anteriores, entonces:

$$\implies T_1 = 1 \wedge T_2 \sim \text{GEOM}\left(\frac{n-1}{n}\right) \wedge T_3 \sim \text{GEOM}\left(\frac{n-2}{n}\right) \wedge \cdots$$

$$\implies \forall i \in \mathbb{N}_n : T_i \sim \text{GEOM}\left(1 - \frac{i-1}{n}\right) \implies E(T_i) = \frac{n}{n-i}$$

Además, $T = T_1 + T_2 + \ldots + T_n$. Por linealidad de la esperanza:

$$E(T) = \sum_{i=1}^{n} E(T_i) = \sum_{i=0}^{n-1} \frac{n}{n-i} = n \sum_{i=0}^{n-1} \frac{1}{n-i} = n \sum_{k=1}^{n} \frac{1}{k} = nH_n \sim \ln n - \gamma + O\left(\frac{1}{n}\right)$$

$$\implies E(T) = nH_n \approx n \ln n$$