Implementation and Use of The K-Means Algorithm

Swetha Varadarajan

September 11, 2014

Contents

T	Introduction	J
2	Python Implementation of k-means 2.1 k-means 2.2 Implementation 2.3 Demonstrations	2
3	Experiments 3.1 Data Sets 3.2 Loading Data Set into python 3.3 Result set-1 3.4 Result set-2 3.5 Assignmet-1 experience	4
_	References	ç
	 first second 	

Abstract

The k-means algorithm is described and an implementation in python is presented. The algorithm is applied to a manually created data-set for demonstation and also to a data set obtained from the UCI Machine Learning Repository. The result of each iteration of the k-means algorithm is illustrated and variations in the results are studied for different values of k.

1 Introduction

Finding groupings of data samples consisting of more than two or three dimensions.

Objective of *k-means* is to find points in the data space that are near the centers of groupings of data (Bishop, 2006, pp. 424–428). Difficulties: don't know how many groupings there are, so don't know how many centers to use. Will consider a performance measure to help choose.

2 Python Implementation of k-means

This section contains a summary of the k-means algorithm, an implementation of it in python, and some demonstrations of the algorithm's behavior on two-dimensional data.

2.1 k-means

The naive idea of using training values, finding the cost function and later optimizing for the best result is followed in this algorithm. The k-means algorithm operates by 5 steps.

step1: Initialize the centers by taking random k values of centers (training values).

step2: Find the distances given by the equation-1 below

$$(x_n - \mu_k)^2$$

step3: Estimate a better center value and find distortion measure (cost function-J) given by equation-2 below.

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} (x_n - \mu_k)^2$$

step4: Update the cluster centers.

step5: Test for convergence. i.e, repeat steps 2 and 3 for n iterations with the updated center values at each iteration (optimizing).

2.2 Implementation

The implementation is done using python scripting. The code structure consists of 4 parts. Part-1 has the importing of necessary packages. Part-2 is the definition of functions. Part-3 consists of reading or creating the datasets and calling the defined functions. Part-4 consists of plotting the obtained results. Part-2 is discussed here. Next section discusses Part-3 and 4 in detail.

```
def kmeans(d, k, n):
    #Step-1
    centers = d[np.random.choice(range(d.shape[0]),k,replace=False), :]
    J = []

#Step-5
    for iteration in range(n):

#Step-2
    # Which center is each sample closest to?
    sqdistances = np.sum((centers[:,np.newaxis,:] - d)**2, axis=2)
    #Step-3
    closest = np.argmin(sqdistances, axis=0)

# Calculate J and append to list J
    J.append(calcJ(d,centers))

# Step-4
    for i in range(k):
        centers[i,:] = d[closest=i,:].mean(axis=0)

J.append(calcJ(d,centers))
    return centers, J, closest
```

In the above piece of code, the function of k-means is defined for k number of clusters and n number of iterations. The 5 steps are mentioned in the comments. In step-1, the centers are randomly selected from the range of data set. step2 finds the equation-1. The syntax says that the equation-1 has to be performed along axis-2. Axis-2 here denotes the individual column(attributes). In step-3, the appropriate center is found out by picking the index value of the minimum distance. In step-4, the new center is found by taking the mean of values closest to the kth center. Step-5 is the repetition of the above steps. The J value is determined

at each step using a seperate function listed below. This involves the double summation as shown in the equation-2. The convergence can be found by monitoring the recorded J's value at each iteration.

```
def calcJ(d, centers):
    diffsq = (centers[:,np.newaxis,:] - d)**2
    return np.sum(np.min(np.sum(diffsq,axis=2), axis=0))
```

2.3 Demonstrations

To demonstrate the above explained k-means algorithm and the distortion measure J, let us consider a set of two-dimensional data. Let a=[1,4],[2,3],[3,2],[4,1],[1,2.5],[2,2.5],[3,2.6],[4,2.4] be the set.

Figure 1: Demonstration of k-means on two-dimensional data.

The subplot-1 gives a plot of the 2-D data. The subplot-2 gives the clustering result for k=2 and the number of iterations as 7. The green spots represent the centers. Since k=2, there are 2 different clusters represented by blue and red.

The convergence happens after the 2nd iteration. This was found out from the J value obtained at each iteration as seen in figure-2 since the J value remains constant after 2nd iteration.

Thus, k-means algorithm as simple as seen in the demonstration, is useful for bigger data sets. One such example is shown in the next section.

3 Experiments

This section describes the data set which is being used to study the k-means algorithm and the obtained results.

3.1 Data Sets

From UCI Machine Learning Repository, the data set of TAE http://archive.ics.uci.edu/ml/machine-learning-databatae/ has been selected. It has 6 attributes describing the performance of the Teaching assistants at UW-

Figure 2: Demonstration of J measure on two-dimensional data.

Madison.

3.2 Loading Data Set into python

The data set was downloaded from the url and the following command was used to load into python. The pandas package was used.

```
data = pandas.read_csv(open('tae.data'))
data = data[data.isnull().any(axis=1)==False]
d=data.iloc[:,:].values
```

3.3 Result set-1

The k-means algorithm has been applied to the entire data-set and the distortion measure obtained as a function of iteration is shown in figure-3

|!htbp|

The corresponding values of J at each iteration are

J = [39750, 25345, 21341, 19196, 18604, 18404, 18444, 18393, 18393, 18393, 18393]

thus, convergence happens after iteration 8.

The variation of J with respect to k is been observed and the plot shown in figure-4 says that as k increases, the J value decreases.

3.4 Result set-2

This result set is obtained for a subset (40 TA's report) of 2 of the attributes (class size and class attribute) of the selected data set.

Figure-5 shows the distribution of data. Next 5 figures (Figure-6 to Figure-11) show the movement of centers which finally reaches convergence in figure 6.

Figure 3: J versus iteration

Figure 4: J versus k value

Figure 5: Demonstration of k-means on subset.

Figure 6: Demonstration of k-means on subset.

Figure 7: Demonstration of k-means on subset.

Figure 8: Demonstration of k-means on subset.

Figure 9: Demonstration of k-means on subset.

Figure 10: Demonstration of k-means on subset.

Figure 11: Demonstration of k-means on subset.

3.5 Assignmet-1 experience

- 1. Clear topics: Importance and implementation of k-means algorithm
- 2. Not-clear: Why should J decrease with increase in k?
- 3. Difficulties: Plotting the results and inserting in latex.

4 References

- 1.Class notes
- 2.UCI's Machine Learning Repository (http://archive.ics.uci.edu/ml/machine-learning-databases/tae/)

Bibliography

Christopher Bishop. Pattern Recognition and Machine Learning. Springer, 2006.