南亞塑膠工業股份有限公司 電子材料部

CCL含浸機製程管理作業優化

報告人: 江澤修 2022年11月30日

報告摘要

- 一、銅箔基板近年來因市場產品複雜化,配方種類增加,以及 少量多樣的趨勢,導致含浸機製程切換頻率提高,調整生產 條件次數增加,生產效率降低,動用率由早期大量生產時的 90%以上降低至81.2%。
- 二、切換製程時,為確保品質,需調整爐溫,並進行試製確認, 所需時間長,故進行以下兩點改善:
 - (一)將含浸製程調整方式由調整爐溫改為固定爐溫調整線速, 節省升降爐溫的時間,以快速切換製程。
 - (二)以製程專業知識及AI技術,自含浸機37個製程變數篩選關鍵變數,建立<u>膠化時間及樹脂含量</u>兩項重要品質預測模型,並開發製程推薦程式,透過模型精確預測換製程生產條件,可確保品質,直接生產不需試製,以提高動用率及產品收率。
- 三、2021年10月推薦系統展開至兩岸各廠,目前成功率達99.1%, 試製比例由41.2%降低到6.1%,動用率自81.2%提升至87.1%、 基材收率自98.07%提升至98.3%,年效益新台幣118,356千元, 投資費用2,896千元,減碳量2,706噸-CO₂e/年。

報告內容

- 一、銅箔基板製程介紹
- 二、改善動機
- 三、開發歷程
- 四、改善效益
- 五、後續規劃

一、銅箔基板製程介紹

銅箔基板製程主要分為五段,本次AI應用在含浸製程段

一、銅箔基板製程介紹

含浸製程說明:玻纖布發送,進入含浸槽,含浸樹脂,經擠壓輪控制樹脂含量, 再進入垂直烘箱,進行溶劑揮發,半固化樹脂,製成基材。

- 1. 生產條件調整以線速、爐內溫度、樹脂密度及擠壓輪控制為主要參數。
- 2. 樹脂含量及膠化時間為基材物性的重要指標。

【樹脂含量】控制玻纖布含浸樹脂量,決定成品厚度、電氣性質及阻抗控制。

【膠化時間】控制樹脂反應程度,決定後段壓合品質,包括樹脂與玻纖布、銅箔的結合度,多層板的填膠能力及厚度均勻程度。

二、改善動機

- (一)因應市場訂單轉為少量多樣與急單快速服務客戶的需求,製程切換次數提高,兩岸七個廠目前含浸機75台切換製程平均4,300次/月。
- (二)原切換製程是依規格固定線速調整爐溫,為確保品質,其中有 41.2%必須進行試製,每次試製需耗時75分鐘至120分鐘,損失 玻纖布平均60米/次。
- (三)為降低試製次數,應用AI技術建立含浸機換製程推薦系統,換製程 時由系統推薦開機的生產條件,不試製直接開機,達到縮短換製程 停機時間及降低試製損失。

(一)執行重點:

改善製程調整方式

原依規格固定線速調整爐溫生產,因調整爐溫至穩定耗時較長,改由固定爐溫,直接精準調整線速,快速切換製程。

模型開發

模型一: 膠化時間預測模型。模型二: 樹脂含量預測模型。

開發 製程條件 推薦程式

設定關鍵變數合理範圍,藉由電腦模擬不同操作條件組合,帶入模型運算,預測符合品質標準的生產條件。

上線運行

藉由即時演算,將推薦系統的建議值,呈現於製程電腦,供操作人員執行生產。

(二)模型開發:

1. 數據收集及前處理

含浸段製程變數共37個(含機台別/配方/布種/品質目標/生產條件),收集2019年7月至2021年4月共46,227筆含浸批號數據,經刪除異常值與重複性資料,得到有效製程數據及有效品質數據各18,163筆。

(二)模型開發:

- 2. 變數篩選
- (1)將37個製程變數以相關係數分析,計算出每個變數的影響程度,將低度相關的變數剔除(係數小於0.3),【**膠化時間**】篩選出9個重要製程變數,【樹脂含量】篩選出6個重要製程變數。

製程變數對膠化時間影響程度

排名	製程參數	膠化時間 相關係數絕對值
1	二區爐內溫	0.79
2	線速	0.74
3	樹脂膠化時間	0. 57
4	樹脂密度	0.46
5	一區爐內溫	0.45
6	一區排氣風車轉速	0.43
7	一區進氣風車轉速	0.32
8	二區進氣風車轉速	0.31
9	二區排氣風車轉速	0.31
10	擠壓輪轉速	0.24
11	一區上板溫	0.22
12	一區下板溫	0.21
:		:
36	頂爐進氣風車轉速	0.03
37	頂爐排氣風車轉速	0.02

製程變數對樹脂含量影響程度

排名	製程參數	樹脂含量 相關係數絕對值
1	擠壓輪間隙左	0. 74
2	擠壓輪間隙右	0. 74
3	樹脂密度	0. 65
4	擠壓輪轉速	0. 57
5	樹脂膠化時間	0.42
6	線速	0. 34
7	二區下板溫	0.18
8	二區風溫	0.18
9	一區上板溫	0.17
10	二區排氣風車轉速	0.14
11	一區風溫	0.13
12	一區下板溫	0.11
:	•	:
36	頂爐排氣風車轉速	0.03
37	頂輪出口溫	0.01

- (二)模型開發:
 - 2. 變數篩選
 - (2)整合【膠化時間】與【樹脂含量】的重要製程變數,最終篩選出12個變數。
 - (3)以重要製程變數進行建模,模型準確度尚不佳,經進一步探討後,主要是厚薄布種切換,單位樹脂量差異大,會顯著影響爐溫,故再增加【玻纖布基重差異】與【樹脂含量差異】兩項規格變數,共納入14個關鍵變數進行建模。

(二)模型開發:

3. 建立模型

經初步測試,以非線性模型之準確率較高,故**選用五種非線性演算法**進行建模,其中以Ada Boost模型最佳:

模型一: 膠化時間 MAPE為 1.62%、 R²為 0.95 模型二: 樹脂含量 MAPE為 0.56%、 R²為 0.91 故選Ada Boost為演算法,預測兩大重要品質指標。

演算	拿法	Random Forest	Randomized		Xgboost	Ada Boost
		(隨機森林)	(極限隨機樹)	(梯度提升)	(極限梯度提升)	(自適應增強)
模型一	MAPE	3. 72%	5. 94%	2.71%	1.73%	1.62%
膠化時間	\mathbb{R}^2	0.77	0.75	0.67	0.82	0. 95
模型二	MAPE	1. 42%	3. 59%	2. 54%	1. 32%	0. 56%
樹脂含量	\mathbb{R}^2	0.74	0.66	0.57	0.74	0. 91

(二)模型開發:

4. 模型驗證

以2021年3月的實際數據,進行模型上線驗證,**膠化時間MAPE為1.38%**, 樹脂含量MAPE0.51%,與建模時水準相當,代表模型有效預測。

- (三)開發製程條件推薦程式
 - 1. 以Python程式語言開發製程條件推薦程式,依現狀製程及切換下製程相同規格最近一次的生產條件,設定重要變數的合理操作範圍及間距,共獲得13,068種操作條件組合。
 - 2. 各種組合帶入膠化時間、樹脂含量的預測模型,經模型即時演算,找到一組 最佳操作條件,供現場執行生產。

	重要製程變	中へ	條件設	定	相同規格最	模型計算
	里女农任党	发\	操作範圍	間距	近一次條件	較佳條件
X_1	線速	米/分鐘	8. 4~9. 4	0.1	8. 9	9. 1
X_2	擠壓輪線速(-)	米/分鐘	-3.0~-4.0	0.1	-3.5	-3.5
X_3	擠壓輪間隙左	0.001mm	300-350	10	310	308
X_4	擠壓輪間隙右	0.001mm	300-350	10	320	319
X_5	實際密度	${ m g/cm^3}$	1. 14~1. 16	0.01	1.15	1.15
:	:	:	:	•	:	i
X ₁₄	二區排氣 風車轉速	rpm	857	/	857	857
管制	膠化時間	秒	± 5 %	炒	129	131
標準	樹脂含量	%	± 0.5	%	63.8	64. 1

(四)推薦系統架構流程圖

推薦系統由資料庫擷取程式、AI模型(Ada boost)、製程條件推薦程式及網頁介面組成。

(五)推薦系統案例說明

現場實際操作網頁,如下圖:

- P)	一												
	含浸機製程條件推薦系統												
横	卷台		配方		布種 樹脂含量			月	膠化時間			別	
RJ	L07		NA		107	8	64	±0.5		130±5		2	
					J	前製和	呈條件			前	製程	設定分	完成
RL07	RL07/NA/7628/130s/44% NA/1078/130s/64%												
膠化 時間	樹脂含量	線速	擠壓輪 轉速	擠壓輪間隙左	擠壓輪間隙右	樹脂密度	一區爐內溫	二區爐內溫	一進風轉速	二進風轉速	一排風轉速	二排風轉速	樹脂 膠化 時間
132	44.2	7.8	-3.4	545	555	1.18	122.2	173.7	1160	1212	1244	857	301
129	63.8	8.9	-3.5	310	320	1.15	124.5	175.9	1160	1212	1244	857	309
模型	模型預測 停機不試製 推薦製程條件												
膠化 時間	樹脂含量	線速	擠壓輪 轉速	擠壓輪間隙左	擠壓輪 間隙右	樹脂 密度	一區爐內溫	二區爐內溫	一進風轉	二進風車轉速	一排風 東東	二排風東轉速	樹脂 膠化 時間
131	64.1	9.1	-3.5	308	319	1.15	122.2	173.7	1160	1212	1244	857	301

(五)推薦系統案例說明

以含浸機(RL07)為例

	配方	布種	布基重(g/M ²⁾	樹脂含量(%)	膠化時間(秒)
現狀製程	NA	7268	208	44±0.5	130±5
切換下製程	NA	1078	48	64±0.5	130±5

本次切換因布基重差異大必須停機調整線速、擠壓輪間隙及樹脂密度。

第一步 Step 1

進入含浸機製程條件推薦系統,

依序設定機台別、配方、布種、樹脂含量(含允差)、膠化時間(含允差)。

	含浸機製程條件推薦系統											
機台	配方	布種	樹脂含量	膠化時間	製程別							
RL07	RL07 NA 1078 64±0.5 130±5 2											

(五)推薦系統案例說明

第二步 Step 2

產品規格設定完成後,系統自動找出換製程相同規格最近一次生產條件及物性資料,顯示在介面上。

						前	「製和	星條化	+		前集	製程	設定第	完成
	RL07/NA/7628/130s/44% NA/1078/130s/64%													
	膠化 時間	樹脂含量	線速	擠壓輪轉速	擠壓輪間隙左	擠壓輪間隙右	樹脂密度	一區爐內溫	二區爐內溫	一進風轉速	二進風轉	一排風轉速	二排風轉速	樹脂 膠間
1.	顯示	現狀製	.程條作	牛										
	132	44.2	7.8	-3.4	545	555	1.18	122.2	173.7	1160	1212	1244	857	301
2.	顯示	切換下	製程行	後相同	規格最	员近一:	次生產	條件						
	129	63.8	8.9	-3.5	310	320	1.15	124.5	175.9	1160	1212	1244	857	309

(五)推薦系統案例說明

第三步 Step 3

經過AI模型運算,預測符合品質標準的製程條件,即可開機生產。

模型預測 停機不試製 推薦製程條件

膠化 時間	樹脂含量	線速	擠壓輪轉速	擠壓輪間隙左	擠壓輪間隙右	樹脂密度	一區爐內溫	二區爐內溫	一進風轉區氣車速	二進風轉區氣車速	一排風轉區氣車速	二排風轉區氣車速	樹脂 膠化 時間
131	64.1	9.1	-3.5	308	319	1.15	122.2	173.7	1160	1212	1244	857	301

經推薦系統演算出建議條件,維持原來爐內溫度及風車轉速,**僅調整線速、擠壓輪轉速、左右間隙及樹脂密度等製程條件**,得到最佳品質的膠化時間及樹脂含量,達到換製程停機不必試製縮短停機時間的效果,改善前後比較如下:

	切換製程時間(分)	損失玻纖布(米)	差異說明
改善前未使用推薦系統	120	60	調整爐溫、試製 調整線速、擠壓輪、樹脂密度
改善後使用推薦系統	40	20	調整線速、擠壓輪、樹脂密度

(六)上線運行: 開發進度

開發時程	2020				2021				2022			
廠區	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
				立模型								
台灣廠區				系統	開發							
								上	線運行	Ť		
昆山廠區						建立	模型					
尼山水區									上	線運行	Ţ	
惠州廠區						建立	模型					
心川風四									上	線運行	Ţ	

- 1. 台灣廠區2020年7月建立模型並持續優化,2020年10月系統開發,2021年4月於樹林二廠上線運行。
- 2. 兩岸各廠2021年4月建立模型, 2021年10月上線運行。

(六)上線運行:樹林二廠

2021年4月樹林二廠三台含浸機開始上線運行,經每月增加資料量,重新訓練模型,推薦成功率由92.6%進步到9月的97.9%,展開至兩岸各廠使用推薦系統。

(六)上線運行:兩岸七個廠

- 1.2021年Q4開始導入兩岸七個廠共 40台,持續增加使用機台數到2022年10月共 60台。
- 2. 推薦成功率由2021年Q4 93. 0%,到2022年10月成功率維持在 99. 1%。

(六)上線運行:推薦系統導入後試製比例統計

- 1. 試製由改善前1,442次/月,占比41.2%,2022年10月降低至183次/月,占比6.1%。
- 2. 少量製程、定保團休後開機少數情況需進行試製。

四、改善效益

(一)效益提升:

- 1. 含浸機推薦系統到2022年10月共執行機台 60台,動用率提升 5.9%。
- 2. 基材收率到2022年10月提升 0.23%。

四、改善效益

(二)投資費用:

各廠電腦設備硬體建置費用,共2,896千元。

(三)效益計算:

項次	改善內容	年效益 (千元)	減碳量 (噸-CO ₂ e/年)
1	動用率自81.2%提升至87.1%,提升5.9%, 每月合計節省換製程時間97,264分鐘。 (各廠平均單位工繳(元/分)*每月節省時間(分)*12)	83, 448	2, 706
2	基材收率自98.07%提升至98.30%,提升0.23%, 每月合計降低基材損失 43,856米。 (平均基材成本(元/米)*每月節省基材米數(米)*12)	34, 908	_
	總計	118, 356	2, 706

五、後續規劃

- (一)兩岸含浸機共75台,其中60台已導入推薦系統(18種配方), 剩餘15台含浸機因生產特殊配方(28種配方),資料量較少 導致模型準確度不佳,故須再持續增加資料量以優化模型 並導入推薦系統,預定2023年12月完成。
- (二)降低試製比例,持續優化推薦系統,穩定機台生產狀況 高低爐溫製程切換及團休、定保後開機,確實執行推薦 系統以零試製為目標。
- (三)開發推薦系統自動化訓練程式,定期自動重新訓練模型 提升推薦成功率與節省人力維護時間。
- (四)建立基材膠化時間預測模型,減少基材物性取測頻率及取樣損失。物試員目前每人負責兩台可增加到三台精節 24人,效益18,720千元/年。

報告完準

附件一、中英文名詞對照

項次	英文縮寫	英文全名	中文名稱	說明
1	Random Forest	Random Forest Model	隨機森林模型	決策樹演算法,由多個決 策樹決定計算結果。
2	Extremely Randomized Trees	Extremely Randomized Trees Model	極限隨機森林模型	決策樹演算法,決策樹的 節點劃分採隨機的方式。
3	Ada Boost	Adaptive Boosting Model	自適應增強模型	決策樹演算法,透過迭代 計算方式修正決策樹節點
4	Gradient Boost	Gradient Boosting Model	梯度提升模型	決策樹演算法,透過微分 計算損失函數修正決策樹
5	IX ODOOST	eXtreme-Gradient-Boosting Model	極限梯度提升模型	集大成的決策樹演算法。
6	\mathbb{R}^2	Coefficient of Determination	決定係數(R平方)	可直接判斷模組預測值與 實際值得相似程度0.7以 上可接受。
7	IIVI A P E	Mean absolute percentage Error	平均絕對百分比誤差	代表預測值與實際值的平 均誤差百分比。越低越好

附件二

含浸機製程37個生產參數列表:

欄數	1	2	3	3	4	5	6	7	8	9	10	11	1:	2 1	.3	14	15	16	17
製程 多數	含浸機台	1 中型	鱼配	~h	膠化 時間	樹脂含量	線速	爐內 溫 (一區)	爐內 溫 (二區)	擠壓 輪轉 速	擠壓輪間	輪間	引 一樹	脂 轉 度 Z1	車速進氣	風車 轉速 Z2進 氣	風車 轉速 Z1排 氣	風車 轉速 Z2排 氣	VGT
	影響品	品質程	度		品質需求	品質需求	影響 GT 要因	影響 GT 次因	影響 GT 要因	影響 RC 要因	影響 RC 要因	RC	KU Sh	與 爐	響體壓衡	影爐風壓	影爐 風壓	影爐風壓	影響 GT 次因
	生產言	周整速	度		求	求	快	慢	慢	快	快	快	慢	E 1	央	快	快	快	無法調整
18	19	20	21	22	2	3 24	25	26	27	28	29	30	31	32	33	34	35	36	37
Z1上 板温	Z1下 板温	Z2上 板溫	Z2下 板溫	進 Z1 風 設 定	Z 温 風 t (i	2 溫 頂爐 没 進氣			Z1爐 上板 溫左	Z1爐 上板 溫中	Z1爐 上板 溫右	Z2爐 上板 溫左	Z2爐 上板 溫中	Z2爐 上板 溫右	Z1% 口 ž	I	44.17	1	壓平 輪間 隙右
影響 GT 次因	影響外觀品質	影響 GT 次因	影響 GT 次因	影 ^響 GT 次因	G'	Τ 温度	煌 爐 鬼 風 風 風	彩觀	影響 GT 平衡	影響 GT 平衡	影響 GT 平衡	影響 GT 平衡	影響 GT 平衡	影響 GT 平衡	影製和安全	と 外離	1 外觀	小觀	影響外觀品質
慢	慢	慢	慢	慢	慢	慢 快	快	慢	慢	慢	慢	慢	慢	慢	慢	慢	慢	快	快

附件三

厚薄布種切換單位樹脂量差異大會顯著影響爐內溫,下表以NA配方舉例: 不同布種下RC的單位樹脂量。

NA配方(NP-155F)各布種單位樹脂量

布種		7628			2116			1078			1067			1037			1015	
項目	基重 (g/m³)	RC(%)	單位 樹脂量 (g/m²)	基重 (g/m²)	RC(%)	單位 樹脂量 (g/m ²)	基重 (g/m²)	RC(%)	單位 樹脂量 (g/m²)	基重 (g/m²)	RC(%)	單位 樹脂量 (g/m²)	基重 (g/m²)	RC(%)	單位 樹脂量 (g/m³)	基重 (g/m²)	RC(%)	單位 樹脂量 (g/m ²)
		40.5	141.6		45. 0	85. 9		54.5	56.3		65. 0	55. 7		67. 0	48. 7		73. 0	64. 9
		41.0	144. 5		46. 5	91.3		64.0	83.6		67. 0	60.9		70.0	56.0			
		42.0	150.6		48.5	98. 9		67.0	95. 4		68.0	63.8		74.0	68. 3			
		43.5	160.1		50.0	105.0					70.0	70.0						
內容	208	44.0	163. 4	105	51.0	109.3	47			30	72.0	77. 1	24			17		
1/4		45.5	173. 7		53. 0	118. 4					74.0	85. 4						
		47.0	184. 5		53. 5	120.8					76.0	95. 0						
		49.0	199.8		56.0	133.6												
		52.0	225. 3		62.0	171.3												

附件四

含浸機動用率提升:

含浸機動用率由改善前81.2%提升至85.5%(2022年10月)。

附件五

基材收率提升:

基材收率由改善前98.07%提升至98.33%(2022年10月)。

附件六

上線運行:停機試製原因分析

	導入推	2022年Q3	停機試	製次數				停機記	式製原因			
廠區	· 薦機台 數量	平均每月 換規格 次數	月平均 次數	平均 比例(%)	高低溫 切換	特殊/少量製程	定保團休	換料種	換布種 (厚薄布 切換)	單、雙幅 切換	依規範 要求 試製	其他
樹二廠	6	218	14	6. 3	0	3	1	2	6	0	2	0
新一廠	8	340	34	10.0	9	2	4	7	0	5	2	5
新三廠	11	251	17	6. 9	0	2	3	6	0	4	0	2
昆一廠	9	407	16	4. 0	10	0	3	3	0	0	0	0
昆二廠	8	553	19	3. 4	7	0	10	0	0	0	0	2
昆三廠	8	495	23	4.6	4	15	2	2	0	0	0	0
惠一廠	10	784	67	8.6	48	17	8	5	4	0	4	0
合計	60	3047	190	6. 2	78	39	31	25	10	9	8	9

- 1.2022年Q3停機試製月平均190次,主要是高低溫切換78次、特殊/少量製程39次、定保、 團休後開機31次、換料種25次。
- 2. 分析試製的原因,主要為資料量不足,需持續再收集資料強化推薦系統。需再加強人對推薦系統的信賴度,大宗產品以零試製為目標。

附件七

推薦系統兩岸合計減碳量共 $\frac{2,706}{1}$ 噸 $\frac{-CO_2e}{4}$ (225.5 噸 $\frac{-CO_2e}{4}$)

	電力節省減碳量													
	樹林二廠	新港一廠	新港三廠	台灣合計	昆山一廠	昆山二廠	昆山三廠	惠州一廠	大陸合計	產銷一組合計				
月節省生產時間(分)	9, 425	5, 571	10, 125	25, 121	14, 240	24, 699	18, 293	14, 911	72, 143	97, 264				
月節省用電量(千度)	22. 70	9. 33	11.19	43. 21	15. 92	17. 45	13. 94	14. 38	61.69	104. 91				
電力碳排係數 (頓-C02e/千度)	0.714	0. 911	0. 911	-	0.848	0.848	0.848	0.638	_	-				
電力減碳量 (噸-C02e/月)	16. 22	8. 50	10.19	34. 91	13. 50	14. 80	11.82	9. 18	49. 30	84. 20				
			天	然氣節省	省減碳量									
	樹林二廠	新港一廠	新港三廠	台灣合計	昆山一廠	昆山二廠	昆山三廠	惠州一廠	大陸合計	產銷一組合計				
月節省生產時間(分)	9, 425	5, 571	10, 125	25, 121	14, 240	24, 699	18, 293	14, 911	72, 143	97, 264				
月節省天然氣用量 (1000M ³)	5. 98	3. 48	6. 20	15. 66	7. 62	14. 44	10.69	17. 45	50. 21	65. 86				
天然氣碳排係數 (噸-CO ₂ e/1000M ³)	2. 116	2. 076	2. 076	_	2. 162	2. 162	2. 162	2. 162	_	-				
天然氣減碳量 (噸-CO ₂ e/月)	12.65	7. 23	12.87	32. 74	16. 48	31. 23	23. 10	37. 73	108. 55	141. 29				

	總減碳量(電力+天然氣)												
	樹林二廠	新港一廠	新港三廠	台灣合計	昆山一廠	昆山二廠	昆山三廠	惠州一廠	大陸合計	產銷一組合計			
總減碳量合計 (噸-CO ₂ e/月)	28. 86	15. 72	23. 06	67. 65	29. 98	46. 03	34. 92	46. 90	157. 84	225. 49			

附件八

推薦系統兩岸合計年效益共118,356千元 (9,863千元/月*12個月)

							人民幣	匯率	4.4	:
				動用率技	是升效益					
	樹林二廠	新港一廠	新港三廠	台灣合計	昆山一廠	昆山二廠	昆山三廠	惠州一廠	大陸合計	產銷一組合計
平均單位工繳(元/分)	127. 2	109.1	104. 9	_	56. 1	56. 9	61.5	50.7	ı	-
每月節省時間(分)	9, 425	5, 571	10, 125	25, 121	14, 240	24, 699	18, 293	14, 911	72, 143	97, 264
效益金額(千元/月)	1, 199	608	1, 062	2, 869	799	1, 405	1, 125	756	4, 085	6, 954
				收率提	升效益					
	樹林二廠	新港一廠	新港三廠	台灣合計	昆山一廠	昆山二廠	昆山三廠	惠州一廠	大陸合計	產銷一組合計
平均基材成本(元/米)	94. 6	69. 2	73. 5	_	62. 9	62. 9	62. 9	57. 2	-	-
每月節省基材米數	4, 302	3, 203	3, 090	10, 595	6, 138	11, 334	8, 960	6, 829	33, 261	43, 856
效益金額(千元/月)	407	222	227	856	386	713	564	391	2, 053	2, 909

	總效益(動用率+收率)												
	樹林二廠	新港一廠	新港三廠	台灣合計	昆山一廠	昆山二廠	昆山三廠	惠州一廠	大陸合計	產銷一組合計			
總效益合計 (千元/月)	1,606	829	1, 289	3, 725	1, 185	2, 118	1, 689	1, 147	6, 138	9, 863			

附件九

投資費用兩岸合計共2,896千元

	CCL含浸機製程管理作業優化投資費用												
項目	樹二廠	新一廠	新三廠	昆一廠	昆二廠	昆三廠	惠州廠	費用總金額 (千元)					
含浸條件推薦系統	含浸條件推薦系統 1,990 0 428 0 0 478 0 2,896												

附件十

使用推薦系統換製程時間及米數統計

		推薦系	統換製程	時間及米	數統計			
項	目	樹二廠	新一廠	新三廠	昆一廠	昆二廠	昆三廠	惠州廠
調整溫度	時間(分/次)	30	45	45	45	45	45	45
停機不試製	損失時間(分)	35	40	40	40	40	40	40
行傚小訊袋	損失米數/次	13	20	20	20	20	20	20
停機試製	損失時間(分)		75	75	75	75	75	75
厅饭武衣	損失米數/次		60	60	60	60	60	60

附件十一:銅箔基板配方總表

銅箔基板配方總表

項次	產品中類別	配方代號	說明	項次	產品中類別	配方代號	說明
1	CFR-4NU	VC	抗UV耐燃基板	28	NPG-170D	GD	無鹵高Tg高頻低介電
2	CFR-4	FD	耐燃基板	29	NPG-180BH	HA	車載無鹵高Tg高信賴性
3	NP-140	FG	耐燃多功能基板	30	NPG-181	Н8	無鹵高Tg HDI低介電
4	NP-140M	MD	耐燃多功能耐熱性提升	31	NPG-186	D6	無鹵高Tg 超低損耗
5	CFR-4-86PY	СН	高CTI耐燃基板	32	NPG-186	D8	無鹵高Tg 超低損耗
6	CFR-4-11PY	СН	耐熱性提升高CTI基板	33	NPG-188H	GL	無鹵高Tg低膨脹係數低損耗
7	NP-140F	VF	CTE降低	34	NPG-180IN	HP	無鹵Tg180℃
8	NP-175	NE	無鉛Tg175℃	35	NPG-180 I NBK	BK	無鹵Tg180℃
9	NP-155F	NA	無鉛Tg155℃	36	NPG-200	D3	無鹵Tg200℃BT
10	NP-155FBH	NA	無鉛Tg155℃低膨脹係數	37	NPG-200WT	WT	無鹵Tg200℃BT
11	NP-155F	ND	無鉛Tg155℃	38	CEM-3-09HT	CK	布、蓆高散熱複合基板(黄色)CORE
12	NP-155F	NC	無鉛Tg155℃	39	CEM-3-10	SC	布、蓆複合基板(棕色)CORE
13	NP-155FM	ZM	Mid Tg高耐熱電性改良	40	CEM-3-92PY	CE	布、蓆複合基板(黄色1)CORE
14	NP-175F	SE	無鉛Tg175℃低膨脹係數	41	CEM-3-98	CE	布、蓆複合基板(黄色1)CORE
15	NP-175FM	SM	無鉛Tg175℃低膨脹係數	42	CEM-3-92	CE	布、蓆複合基板(黄色/natural)CORE
16	NP-175FBH	ВН	無鉛Tg175℃低膨脹係數高信賴性		CEM-3-01HC	НЈ	無鹵素布、蓆高散熱基板(白色1W)FACE
17	NP-LD Π	LD	低介質常數	43	CEM-9-01UC	HW	無鹵素布、蓆高散熱基板(黃色1W)FACE
18	NPG	HF	無鹵素FR-4			CI	無鹵素布、蓆高散熱基板(1W)CORE
19	NPG-150N	HU	無鹵Tg150℃無鉛	44	СЕМ-3-01НС	НЈ	無鹵素布、蓆高散熱基板(白色 1.5W)FACE
20	NPG-170	HS	無鹵Tg170℃			CJ	無鹵素布、蓆高散熱基板(1.5W)CORE
21	NPG-151	НХ	無鹵Tg150℃高剛性			EC	布、紙複合基板(預含浸)
22	NPG-151	HY	無鹵Tg150℃高剛性	45	CEM-1-97	FH	布、紙複合基板(乳白色)FACE
23	NPGN-150LKHD	HK	無鹵Tg150℃高剛性低介電			EB	布、紙複合基板(乳白色)CORE
24	NPGN-150LKHD	GK	無鹵Tg150℃高剛性低介電			EC	布、紙複合基板(預含浸)
25	NPG-150D	GE	無鹵Mid Tg高頻低介電	16	CEM-1-97PM	FH	布、紙複合基板(乳白色)FACE
26	NPG-170N	HZ	無鹵Tg170℃無鉛	_ 40	CEM-I-SILM	EG	布、紙複合基板(乳白色/黃色)CORE
27	NPG-171	GS	無鹵Tg170℃低介電			EG	河·《牧方圣仪(孔口巴/贝巴/CURE

附件十二

含浸製程12個重要參數說明

