TAME EXPANSIONS OF O-MINIMAL STRUCTUKES
I. HISTORY
· (R, 2") - van du Dries (185)
(Axionalization, quantifien elimination (near model completeness)
structure of definable sets, d'minimal open core.)
Dave pains of o-minul structures - VdDies (198)
(U,+,<,) o-viewal group, W xW, N deux in M.
(Some paperties as above except o-minimal open cove inst
af d-minimal open cove.)
· (R,G) G < R' multiplicative goup of finite vank.
(R, 2), (R, 2 3), vdbries-G. (2006)
Save properties
· More axionatic approach - o-minal + other amoptous
Bevarstein-taly-G. (2007)
Bevarstein-Ealy-G. (2007) Observes imaginaries. TAME PAIRS
(R, 2 ª 3 ª, 2 ª) G. (2008-Thon's)
Asks: (1R, 2232, 22)? or equivalently (R, 22, 32)?
· (IR, power functions, G) (G as above and doesn't interact much with the power functions
Hieromani (2009) (the power functions
Modern
· G. Hieronymi (2011) - Similar setting to BEG & proves NIP.
· (1R, 22, 32) is no good Hieronymi (2011)

Scanned by CamScanner

let's carider another example let (U,P) be a deux pair of o-wint fields. Let S=P+Pa for some d&P. Define $f: M \rightarrow M$ $x \mapsto \begin{cases} 0 : i \neq x \notin S \\ v : i \neq x = v + sa \notin S \end{cases} (v, s \notin P)$ Now X=T(f) is a union of a small set {(x,r): IsEP x=r+sa} and the set {(x, 0): x. E.P.+Pa & which is not L-definable but is co-small in M. (Both of thom are cones.)
Also $\Gamma(f)$ is dense in M^2 ! What can we say about the function f? It coincides with an L-de fuction on M.S. We prove this happens in general: Theorem 2: f: X & M" -> M do finable. Those is a finite collection C of definable comes with UC=X and fis (fiber) L-definable on each CEC. Idea of the tops in 1-dimension (n=1) -Let XEM be defined by a formula φ(x): ∃ÿ∈p™ +(x,ÿ) where +(x,ÿ) is an L-formula. The goveral core is under control using condition (II).) We need to find a partition -0=90 <0, < ... < at < 9+1=00 of M such that for such i=0,..., t we have Xn (ai, ai+1) is either small or co-small (in (a; a;+1)) let S= 4 (Ul) = Mm+1. Then S is a union of 1-cells. Also for a given a EPM, we way as me that Sq is either a point is it or an open interval (f(a), g(a)). (We may own choose f & g to be continous functions) Then X is a min of an image of P" under an 1-def-function, and on open set. By (III), this open set is a finite union of open intervals.

Theorem 3: Let (Grt) be a group definable in M. Suppose that G is of large dimension to. Thou for every sch-generic a EG, a 2k-cone CEGXG contains (a, a) s.t the (x,y) -> x* a-1 * y is given by an L-definable function operation en C.