Classificador logístico

Gaspar J. Machado

Departamento de Matemática, Universidade do Minho

março de 2024

Perceptron

- Contexto: classificador binário linear (determinístico).
- \blacksquare Base de dados $D=(x^n,y^n)_{n=1}^N,\,x^n\in\mathbb{R}^I,\,y^n\in\{-1,+1\}.$
- Espaço das hipóteses: $\mathcal{H} = \mathbb{R}^{\overline{I+1}}$.
- Arquitetura da Machine Learning

$$\hat{y} \equiv h(x; \tilde{w}) = \operatorname{sgn}(\tilde{w} \cdot \tilde{x}), \tilde{w} \in \mathcal{H}.$$

■ Se D é linearmente separável, o algoritmo Perceptron determina em tempo finito um classificador $\tilde{w} \in \mathbb{R}^{I+1}$ tal que o erro de treino é 0, ou seja, tal que

$$E(\tilde{w}, D) \equiv \frac{1}{N} \sum_{n=1}^{N} \frac{1}{2} |y^n - \hat{p}^n| = 0.$$

- O algoritmo *Perceptron* não usa técnicas de otimização mas antes uma regra de aprendizagem muito simples mas muito engenhosa.
- É possível aplicar técnicas de otimização para minimizar a função custo E, mas é um processo muito difícil devido à baixa regularidade da função E (a função custo pode ter o mesmo valor para classificadores muito distintos, ou seja, E não varia suavemente com uma variação dos parâmetros \tilde{w}).

CLog

- Nova proposta: Classificador logístico (CLog).
- Contexto: classificador binário linear (probabilístico).
- Base de dados $D = (x^n, y^n)_{n=1}^N, x^n \in \mathbb{R}^I, y^n \in \{0, 1\}.$
- Espaço das hipóteses: $\mathcal{H} = \mathbb{R}^{I+1}$.
- Arquitetura da Machine Learning

$$\hat{p} \equiv h(x; \tilde{w}) = \sigma(\tilde{w} \cdot \tilde{x}), \tilde{w} \in \mathcal{H}.$$

■ Função logística ou função sigmóide

$$\sigma(z) = \frac{1}{1 + \exp(-z)}.$$

■ Relativamente ao Perceptron, a otimização do CLog é mais fácil e o output do CLog contém mais informação $((0,1)\ versus\ \{0,1\})$.

Função logística

■ Definição

$$\sigma(z) = \frac{1}{1 + \exp(-z)}.$$

■ Propriedades

$$\begin{split} &\lim_{z\to -\infty}\sigma(z)=0,\quad \sigma(0)=0.5,\quad \lim_{z\to +\infty}\sigma(z)=1.\\ &\sigma'(z)=\frac{\exp(-z)}{(1+\exp(-z))^2}>0\Rightarrow \sigma \text{ \'e uma função monótona crescente}.\\ &\sigma(z)\in(0,1). \end{split}$$

■ Gráfico

CLog

- Interpretação da arquitetura do CLog $\hat{p} \equiv h(x; \tilde{w}) = \sigma(\tilde{w} \cdot \tilde{x})$: a probabilidade da classe de x ser 1.
- E como funciona o classificador? Uma possibilidade para prever a classe é:

$$\hat{y} = \begin{cases} 1, & \text{se } \hat{p} > 0.5, \\ 0, & \text{se } \hat{p} \leqslant 0.5. \end{cases}$$

■ Dependendo do problema, o valor de corte (threshold) do classificador $\varepsilon_{\text{CLog}}$ pode assumir outros valores no intervalo (0,1), tendo-se

$$\hat{y} = \begin{cases} 1, & \text{se } \hat{p} > \varepsilon_{\text{CLog}}, \\ 0, & \text{se } \hat{p} \leqslant \varepsilon_{\text{CLog}}. \end{cases}$$

Arquitetura do CLog: $\hat{p} \equiv h(x; \tilde{w}) = \sigma(\tilde{w} \cdot \tilde{x}), \ \tilde{w} \in \mathbb{R}^{1+1}$

Função custo do CLog (i)

■ Ideia: o classificador é bom se atribui uma probabilidade \hat{p}^n (valor predito) próxima da classe y^n , ou seja, se é grande (próximo de 1) o valor da expressão

$$L(\tilde{w}; D) = \prod_{n=1}^{N} \begin{cases} \hat{p}^{n}, & \text{se } y^{n} = 1 \\ 1 - \hat{p}^{n}, & \text{se } y^{n} = 0 \end{cases} = \prod_{n=1}^{N} (\hat{p}^{n})^{y^{n}} (1 - \hat{p}^{n})^{1 - y^{n}}.$$

 \blacksquare Como a função logaritmo é monótona crescente, maximizar L é equivalente a maximizar ln L

$$\ln L = \frac{1}{N} \sum_{n=1}^{N} y^n \ln(\hat{p}^n) + (1 - y^n) \ln(1 - \hat{p}^n),$$

 \blacksquare ou ainda a minimizar a função custo E

$$E(\tilde{w}; D) = \frac{1}{N} \sum_{n=1}^{N} E_n(\tilde{w}; x^n, y^n),$$

$$E_n(\tilde{w}; x^n, y^n) = -y^n \ln(\hat{p}^n) - (1 - y^n) \ln(1 - \hat{p}^n).$$

Função custo do CLog (ii)

■ À função custo

$$E_n(\tilde{w}; x^n, y^n) = -y^n \ln(\hat{p}^n) - (1 - y^n) \ln(1 - \hat{p}^n)$$

chama-se "entropia cruzada" (cross entropy ou negative log-likelihood ou log loss).

 \blacksquare Exemplos

y^n \hat{p}^n	$\frac{1}{0.001}$	$\begin{array}{c} 1 \\ 0.01 \end{array}$	$\begin{array}{c} 1 \\ 0.5 \end{array}$	$\frac{1}{0.99}$	$\frac{1}{0.999}$
$\overline{E_n}$	6.9078	4.6052	0.6932	0.0101	0.0010
y^n \hat{p}^n	0 0.001	0 0.01	0 0.5	0 0.99	0 0.999
$\overline{E_n}$	0.0010	0.0101	0.6932	4.6052	6.9078

Método do Gradiente $| f : \mathbb{R} \to \mathbb{R}$

```
Input: (f: \mathbb{R} \to \mathbb{R},) f', x_{(0)} \in \mathbb{R}, \eta \in \mathbb{R}^+, CP
   Output: x^* \in \mathbb{R}
1 t \leftarrow 0;
2 while V do
      s_{(t)} \leftarrow f'(x_{(t)});
  x_{(t+1)} \leftarrow x_{(t)} - \eta s_{(t)};
if CP = V then
      x^* \leftarrow x_{(t+1)}; return x^*;
```

Método do Gradiente $| f : \mathbb{R}^M \to \mathbb{R}$

```
Input: (f: \mathbb{R}^M \to \mathbb{R},) \nabla f, x_{(0)} \in \mathbb{R}^M, \eta \in \mathbb{R}^+, CP
     Output: x^* \in \mathbb{R}^M
1 t \leftarrow 0;
_2 while V do
\begin{array}{c|c} \mathbf{3} & s_{(t)} \leftarrow \nabla f(x_{(t)}); \\ \mathbf{4} & x_{(t+1)} \leftarrow x_{(t)} - \eta s_{(t)}; \\ \mathbf{5} & \mathbf{if} \ CP = V \ \mathbf{then} \end{array}
```

Método do Gradiente | CP

- Critérios de paragem (CP):
 - $t = t_{\text{max}}$.
 - $|f(x_{(t+1)}) f(x_{(t)})| \leqslant \varepsilon \text{ ou } \frac{|f(x_{(t+1)}) f(x_{(t)})|}{|f(x_{(t+1)})|} \leqslant \varepsilon.$
 - $\| \|x_{(t+1)} x_{(t)}\| \leqslant \varepsilon \text{ ou } \frac{\|x_{(t+1)} x_{(t)}\|}{\|x_{(t+1)}\|} \| \leqslant \varepsilon.$
 - $\blacksquare M = 1: |f'(x_{(t+1)})| \leqslant \varepsilon.$
 - $\blacksquare M > 1: \|\nabla f(x_{(t+1)})\| \leqslant \varepsilon.$

Método do Gradiente | ML

 Muitas vezes as funções objetivo que se encontram em ML são da forma

$$E(x) = \frac{1}{N} \sum_{n=1}^{N} E_n(x),$$

em que E_n é uma função real de M variáveis reais $E_n : \mathbb{R}^M \to \mathbb{R}$.

- Então, o método do gradiente assume três versões:
 - Método do Gradiente batch algoritmo MGB: consideram-se todas as funções E_n por iteração.
 - Método do Gradiente mini-batch algoritmo \mathbf{MGmB} : considera-se um $\mathbf{subconjunto}$ das funções E_n com \mathbf{B} elementos por iteração.
 - Método do Gradiente estocástico algoritmo MGE: considera-se uma função aleatoriamente escolhida E_n por iteração.

Algoritmo MGB

```
Input: (E(x) = \frac{1}{N} \sum_{n=1}^{N} E_n(x), E_n(x) : \mathbb{R}^M \to \mathbb{R},) \nabla E_1, ..., \nabla E_N, x_{(0)} \in \mathbb{R}^M, \eta \in \mathbb{R}^+, CP
       Output: x^* \in \mathbb{R}^M
1 t \leftarrow 0;
2 while V do
\mathbf{3} \qquad s_{(t)} \leftarrow \frac{1}{N} \sum_{n=1}^{N} \nabla E_n(x_{(t)});
 \begin{array}{c|c} \mathbf{4} & x_{(t+1)} \leftarrow x_{(t)} - \eta s_{(t)}; \\ \mathbf{5} & \mathbf{if} \ CP = V \ \mathbf{then} \\ \mathbf{6} & x^* \leftarrow x_{(t+1)}; \mathbf{return} \ x^*; \end{array} 
            else  | t \leftarrow t + 1;
```

Algoritmo MGmB

```
Input: (E(x) = \frac{1}{N} \sum_{n=1}^{N} E_n(x), E_n(x) : \mathbb{R}^M \to \mathbb{R},) \nabla E_1, ..., \nabla E_N, x_{(0)} \in \mathbb{R}^M, \eta \in \mathbb{R}^+, B \in \mathbb{N}, CP
 Output: x^* \in \mathbb{R}^M
 t \leftarrow 0;
while V do
          gerar aleatoriamente um subconjunto de índices
            D_{(t)} \subset \{1, \ldots, N\} \text{ com } B \text{ elementos};
        s_{(t)} \leftarrow \frac{1}{B} \sum \nabla E_n(x_{(t)});
      x_{(t+1)} \leftarrow x_{(t)} - \eta s_{(t)};
     if CP=V then
          x^* \leftarrow x_{(t+1)}; return x^*;
          else
          t \leftarrow t + 1;
```

Algoritmo MGE

```
Input: (E(x) = \frac{1}{N} \sum_{n=1}^{N} E_n(x), E_n(x) : \mathbb{R}^M \to \mathbb{R}, ) \nabla E_1, ..., \nabla E_N, x_{(0)} \in \mathbb{R}^M, \eta \in \mathbb{R}^+, CP
   Output: x^* \in \mathbb{R}^M
1 t \leftarrow 0;
   while V do
            gerar aleatoriamente um índice n \in \{1, ..., N\};
     s_{(t)} \leftarrow \nabla E_n(x_{(t)});
      | x_{(t+1)} \leftarrow x_{(t)} - \eta s_{(t)};
      if CP=V then
      x^* \leftarrow x_{(t+1)}; \mathbf{return} \ x^*;
```

Gradiente do CLog

 \blacksquare Para se aplicar o Método do Gradiente ao C Log
 tem que se calcular o gradiente da função custo E

$$E(\tilde{w}; D) = \frac{1}{N} \sum_{n=1}^{N} E_n(\tilde{w}; x^n, y^n),$$

$$E_n(\tilde{w}; x^n, y^n) = -y^n \ln(\hat{p}^n) - (1 - y^n) \ln(1 - \hat{p}^n).$$

■ Pode-se mostrar (exercício) que

$$\nabla E_n(\tilde{w}; x^n, y^n) = (\hat{p}^n - y^n)\tilde{x}^n,$$

$$\nabla E(\tilde{w}; D) = \frac{1}{N} \sum_{n=1}^N \nabla E_n(\tilde{w}; x^n, y^n) = \frac{1}{N} \sum_{n=1}^N (\hat{p}^n - y^n)\tilde{x}^n.$$

■ Vamos denotar por **CLog−MGB** o algoritmo do classificador logístico com o MGB a por **CLog−MGE** o algoritmo do classificador logístico com o MGE.

Algoritmo CLog-MGB

```
Input: D = (x^n, y^n)_{n=1}^N, x^n \in \mathbb{R}^I, y^n \in \{0, 1\}, \tilde{w}_{(0)} \in \mathbb{R}^{I+1},
                               n \in \mathbb{R}^+. CP
         Output: \tilde{w}^* \in \mathbb{R}^{I+1}
 1 t \leftarrow 0;
 2 while V do
\begin{array}{c|c} \mathbf{3} & & \hat{p}^n \leftarrow \sigma\left(\tilde{w}_{(t)} \cdot \tilde{x}^n\right), \ n=1,\ldots,N; \\ \mathbf{4} & & s_{(t)} \leftarrow \frac{1}{N} \sum_{n=1}^N \left(\hat{p}^n - y^n\right) \tilde{x}^n; \\ \mathbf{5} & & \tilde{w}_{(t+1)} \leftarrow \tilde{w}_{(t)} - \eta s_{(t)}; \\ \mathbf{6} & & \mathbf{if} \ CP = V \ \mathbf{then} \end{array}
             \tilde{w}^* \leftarrow \tilde{w}_{(t+1)}; \mathbf{return} \ \tilde{w}^*;
```

Algoritmo CLog-MGE

```
Input: D = (x^n, y^n)_{n=1}^N, x^n \in \mathbb{R}^I, y^n \in \{0, 1\}, \ \tilde{w}_{(0)} \in \mathbb{R}^{I+1},
                  n \in \mathbb{R}^+. CP
     Output: \tilde{w}^* \in \mathbb{R}^{I+1}
 1 t \leftarrow 0;
     while V do
              selecionar n \in \{1, ..., N\} aleatório;
      \hat{p}^n \leftarrow \sigma\left(\tilde{w}_{(t)} \cdot \tilde{x}^n\right);
        s_{(t)} \leftarrow (\hat{p}^n - y^n) \, \tilde{x}^n;
        \tilde{w}_{(t+1)} \leftarrow \tilde{w}_{(t)} - \eta s_{(t)};
         if CP=V then
 7
              \tilde{w}^* \leftarrow \tilde{w}_{(t+1)}; return \tilde{w}^*;
              else
              t \leftarrow t + 1;
10
```

Perceptron vs CLog-MGE

 \blacksquare Perceptron

$$\hat{y}^n \leftarrow \operatorname{sgn}(\tilde{w}_{(t)} \cdot \tilde{x}^n)$$
$$\tilde{w}_{(t+1)} \leftarrow \tilde{w}_{(t)} + \frac{\eta}{2} (y^n - \hat{y}^n) \tilde{x}^n$$

■ CLog-MGE

$$\begin{split} \hat{p}^n \leftarrow \sigma \left(\tilde{w}_{(t)} \cdot \tilde{x}^n \right) \\ \tilde{w}_{(t+1)} \leftarrow w_{(t)} + \eta \left(y^n - \hat{p}^n \right) \tilde{x}^n \end{split}$$

ex1 (AND) | CLog-MGE

 \blacksquare Aplicar o algoritmo CLog–MGE à base de dados "AND":

$$D = (x^n, y^n)_{n=1}^4 \text{ com}$$

$$x^1 = (0, 0)^\top, y^1 = 0 \text{ (F)}$$

$$x^3 = (1, 0)^\top, y^3 = 0 \text{ (F)}$$

$$x^4 = (1, 1)^\top, y^4 = 1 \text{ (V)}$$

ex1 (AND) | CLog-MGE

■ Aplicar o algoritmo CLog-MGE à base de dados "AND":

$$\begin{array}{l} D = (x^n, y^n)_{n=1}^4 \text{ com} \\ x^1 = (0, 0)^\top, \ y^1 = 0 \ \ (\text{F}) \\ x^3 = (1, 0)^\top, \ y^3 = 0 \ \ (\text{F}) \end{array} \qquad \begin{array}{l} x^2 = (0, 1)^\top, \ y^2 = 0 \ \ (\text{F}) \\ x^4 = (1, 1)^\top, \ y^4 = 1 \ \ (\text{V}) \end{array}$$

- CP: $t_{MAX} = 50$.
- Taxa de aprendizagem: $\eta = 0.5$.
- Aproximação inicial: $\tilde{w}_{(0)} = (0,0,0)^{\top}$.
- Valor de corte: $\varepsilon_{\text{CLog}} = 0.5$.

$$\tilde{w}_{(0)} = (0,0,0)^{\top}, E_{(0)} = 0.69315$$

 $\tilde{w}_{(1)} = (0.25, 0.25, 0.25)^{\top}, E_{(1)} = 0.79024$

 $\tilde{w}_{(2)} = (0.41041, 0.41041, 0.41041)^{\top}, E_{(2)} = 0.88661$

 $\quad \blacksquare \ \, \tilde{w}_{(3)} = (0.10982, 0.41041, 0.41041)^\top, E_{(3)} = 0.76385$

 $\tilde{w}_{(4)} = (-0.1539, 0.41041, 0.41041)^{\top}, E_{(4)} = 0.67316$

 $\quad \blacksquare \ \, \tilde{w}_{(5)} = (-0.43579, 0.12852, 0.41041)^\top, E_{(5)} = 0.59338$

 $\quad \blacksquare \ \, \tilde{w}_{(6)} = (-0.19867, 0.36564, 0.64753)^\top, E_{(6)} = 0.67201$

 $\quad \blacksquare \ \, \tilde{w}_{(7)} = (-0.045201, 0.51911, 0.80099)^\top, E_{(7)} = 0.75399$

 $\quad \blacksquare \ \, \tilde{w}_{(8)} = (-0.28955, 0.51911, 0.80099)^\top, E_{(8)} = 0.66492$

 $\quad \blacksquare \ \, \tilde{w}_{(9)} = (-0.15806, 0.65059, 0.93248)^\top, E_{(9)} = 0.73893$

 $\quad \blacksquare \ \, \tilde{w}_{(10)} = (-0.38835, 0.65059, 0.93248)^\top, E_{(10)} = 0.65421$

 $\tilde{w}_{(11)} = (-0.67094, 0.368, 0.93248)^{\top}, E_{(11)} = 0.5564$

 $\quad \blacksquare \ \, \tilde{w}_{(12)} = (-0.95345, 0.368, 0.64998)^\top, E_{(12)} = 0.49574$

 $\tilde{w}_{(13)} = (-1.1658, 0.368, 0.43762)^{\top}, E_{(13)} = 0.48159$

 $\quad \blacksquare \ \, \tilde{w}_{(14)} = (-1.3286, 0.368, 0.27482)^\top, E_{(14)} = 0.48794$

$$\quad \blacksquare \ \, \tilde{w}_{(15)} = (-1.4333, 0.368, 0.27482)^\top, E_{(15)} = 0.4869$$

$ex1 (AND) \mid CLog-MGE \mid t = 16$

$$\tilde{w}_{(16)} = (-1.5296, 0.368, 0.27482)^{\top}, E_{(16)} = 0.48775$$

$$\quad \blacksquare \ \, \tilde{w}_{(17)} = (-1.6186, 0.368, 0.27482)^\top, E_{(17)} = 0.49$$

$$\tilde{w}_{(18)} = (-1.7221, 0.368, 0.17138)^{\top}, E_{(18)} = 0.50911$$

$ex1 (AND) \mid CLog-MGE \mid t = 19$

$$\quad \blacksquare \ \, \tilde{w}_{(19)} = (-1.8096, 0.368, 0.083887)^\top, E_{(19)} = 0.52861$$

 $\quad \blacksquare \ \, \tilde{w}_{(20)} = (-1.4119, 0.76569, 0.48158)^\top, E_{(20)} = 0.43769$

$ex1 (AND) \mid CLog-MGE \mid t = 21$

 $\tilde{w}_{(21)} = (-1.1413, 1.0362, 0.75211)^{\top}, E_{(21)} = 0.4644$

 $\quad \blacksquare \ \, \tilde{w}_{(22)} = (-1.2624, 1.0362, 0.75211)^\top, E_{(22)} = 0.44255$

 $\quad \blacksquare \ \, \tilde{w}_{(23)} = (-1.0766, 1.2219, 0.93784)^\top, E_{(23)} = 0.49485$

 $\quad \blacksquare \ \, \tilde{w}_{(24)} = (-1.3093, 1.2219, 0.70516)^\top, E_{(24)} = 0.43917$

 $\quad \blacksquare \ \, \tilde{w}_{(25)} = (-1.1342, 1.3971, 0.8803)^\top, E_{(25)} = 0.49077$

 $\quad \blacksquare \ \, \tilde{w}_{(26)} = (-1.3526, 1.3971, 0.66187)^\top, E_{(26)} = 0.43824$

 $\quad \blacksquare \ \, \tilde{w}_{(27)} = (-1.4553, 1.3971, 0.66187)^\top, E_{(27)} = 0.42087$

 $\tilde{w}_{(28)} = (-1.611, 1.3971, 0.50615)^{\top}, E_{(28)} = 0.40443$

 $\tilde{w}_{(29)} = (-1.7355, 1.3971, 0.38174)^{\top}, E_{(29)} = 0.40051$

$ex1 (AND) \mid CLog-MGE \mid t = 30$

 $\quad \blacksquare \ \, \tilde{w}_{(30)} = (-1.8104, 1.3971, 0.38174)^\top, E_{(30)} = 0.39577$

 $\quad \blacksquare \ \, \tilde{w}_{(31)} = (-1.9071, 1.3971, 0.28509)^\top, E_{(31)} = 0.40023$

 $\quad \blacksquare \ \, \tilde{w}_{(32)} = (-1.9895, 1.3971, 0.20262)^\top, E_{(32)} = 0.40753$

 $\tilde{w}_{(33)} = (-2.0613, 1.3971, 0.13089)^{\top}, E_{(33)} = 0.41636$

 $\tilde{w}_{(34)} = (-2.1246, 1.3971, 0.067539)^{\top}, E_{(34)} = 0.42598$

 $\quad \blacksquare \ \, \tilde{w}_{(35)} = (-2.1813, 1.3971, 0.010869)^\top, E_{(35)} = 0.43596$

 $\quad \blacksquare \ \, \tilde{w}_{(36)} = (-1.8392, 1.7392, 0.35299)^\top, E_{(36)} = 0.39262$

 $\quad \blacksquare \ \, \tilde{w}_{(37)} = (-1.9314, 1.7392, 0.26074)^\top, E_{(37)} = 0.39221$

 $\quad \blacksquare \ \, \tilde{w}_{(38)} = (-1.9947, 1.7392, 0.26074)^\top, E_{(38)} = 0.38856$

 $\quad \blacksquare \ \, \tilde{w}_{(39)} = (-2.0546, 1.7392, 0.26074)^\top, E_{(39)} = 0.38578$

 $\tilde{w}_{(40)} = (-2.1259, 1.7392, 0.18944)^{\top}, E_{(40)} = 0.39061$

$ex1 (AND) \mid CLog-MGE \mid t = 41$

 $\quad \blacksquare \ \, \tilde{w}_{(41)} = (-2.1792, 1.7392, 0.18944)^\top, E_{(41)} = 0.38969$

 $\tilde{w}_{(42)} = (-1.898, 2.0204, 0.47059)^{\top}, E_{(42)} = 0.38772$

 $\quad \blacksquare \ \, \tilde{w}_{(43)} = (-2.1633, 1.7551, 0.47059)^\top, E_{(43)} = 0.36247$

 $\tilde{w}_{(44)} = (-2.363, 1.5554, 0.47059)^{\top}, E_{(44)} = 0.36872$

 $\tilde{w}_{(45)} = (-2.0712, 1.8471, 0.76232)^{\top}, E_{(45)} = 0.35124$

 $\quad \blacksquare \ \, \tilde{w}_{(46)} = (-1.8869, 2.0314, 0.94662)^\top, E_{(46)} = 0.38208$

 $\tilde{w}_{(47)} = (-1.7612, 2.1572, 1.0723)^{\top}, E_{(47)} = 0.42082$

 $\quad \blacksquare \ \, \tilde{w}_{(48)} = (-1.9284, 2.1572, 0.90519)^\top, E_{(48)} = 0.38396$

 $\tilde{w}_{(49)} = (-2.2069, 1.8787, 0.90519)^{\top}, E_{(49)} = 0.3333$

- $\tilde{w}_{(0)} = (0,0,0)^{\top}, E_{(0)} = 0.69315$
- $\quad \blacksquare \ \, \tilde{w}_{(50)} = (-2.2564, 1.8787, 0.90519)^\top, E_{(50)} = 0.32892$

ex1 (AND) | CLog-MGE | E

ex1 (AND) | CLog-MGE | t = 2000

- $\tilde{w}_{(0)} = (0,0,0)^{\top}, E_{(0)} = 0.69315$
- $\tilde{w}_{(2000)} = (-6.5701, 4.1876, 4.2653)^{\top}, E_{(2000)} = 0.081614$

ex
1 (AND) | CLog–MGE | E

ex1 (AND) | CLog-MGE

ex2 (OR) | CLog-MGE

ex3 (XOR) | CLog-MGE

 $t_{\rm MAX} = 50, \, \eta = 0.5$

 $t_{\text{MAX}} = 2000, \, \eta = 0.1$

ex4 | CLog-MGE

ex5 | CLog-MGE

$$t_{\text{MAX}} = 50, \ \eta = 0.5$$
 $E = 0.2159, \ acc = 0.96$
 $t_{\text{MAX}} = 2000, \ \eta = 0.1$
 $E = 0.0730, \ acc = 1$

ex6 | CLog-MGE

CLog | versão dual (i)

- Base de dados $D = (x^n, y^n)_{n=1}^N, x^n \in \mathbb{R}^I, y^n \in \{0, 1\}.$
- Espaço das hipóteses: $\mathcal{H} = \mathbb{R}^N$.
- Relação entre o vetor das variáveis primais $\tilde{w} \in \mathbb{R}^{I+1}$ e o vetor das variáveis duais $\alpha \in \mathbb{R}^N$

$$\tilde{w} = \sum_{n=1}^{N} \alpha_n \tilde{x}^n.$$

■ Arquitetura da Machine Learning

$$\hat{p} \equiv h(x; \alpha) = \sigma\left(\sum_{n=1}^{N} \alpha_n(\tilde{x}^n \cdot \tilde{x})\right), \alpha \in \mathcal{H}.$$

■ Função custo

$$E(\alpha; D) = \frac{1}{N} \sum_{n=1}^{N} E_n(\alpha; x^n, y^n),$$

$$E_n(\alpha; x^n, y^n) = -y^n \ln(\hat{p}^n) - (1 - y^n) \ln(1 - \hat{p}^n).$$

CLog | versão dual (ii)

 \blacksquare Para se aplicar o Método do Gradiente ao CLog tem que se calcular o gradiente da função custo E, podendo-se mostrar (exercício) que

$$\nabla E_n(\alpha; x^n, y^n) = (\hat{p}^n - y^n) \begin{bmatrix} \tilde{x}^1 \cdot \tilde{x}^n \\ \vdots \\ \tilde{x}^N \cdot \tilde{x}^n \end{bmatrix},$$

$$\nabla E(\alpha; D) = \frac{1}{N} \sum_{n=1}^{N} \nabla E_n(\alpha; x^n, y^n) = \frac{1}{N} \sum_{n=1}^{N} (\hat{p}^n - y^n) \begin{bmatrix} \tilde{x}^1 \cdot \tilde{x}^n \\ \vdots \\ \tilde{x}^N \cdot \tilde{x}^n \end{bmatrix}.$$

■ Vamos denotar por **CLogD**−**MGE** o algoritmo do classificador logístico na versão dual com o MGE.

Algoritmo CLogD-MGB

```
Input: D=(x^n,y^n)_{n=1}^N,\ x^n\in\mathbb{R}^I,\ y^n\in\{0,1\},\ \eta\in\mathbb{R}^+,\ d\in\mathbb{N},\ CP Output: \alpha^*\in\mathbb{R}^N
 1 t \leftarrow 0:
 \alpha_{(0)} = (0, \dots, 0)^{\top} \in \mathbb{R}^{N};
 _3 while V do

\begin{array}{c|c}
\mathbf{4} & \hat{p}^n \leftarrow \sigma\left(\sum_{\ell=1}^N \alpha_{(t),\ell}(\tilde{x}^\ell \cdot \tilde{x}^n)\right), \ n=1,\ldots,N; \\
\mathbf{5} & s_{(t)} \leftarrow \frac{1}{N}\sum_{n=1}^N (\hat{p}^n - y^n) \begin{bmatrix} \tilde{x}^1 \cdot \tilde{x}^n \\ \vdots \\ \tilde{x}^N \cdot \tilde{x}^n \end{bmatrix};
\end{array}

                 \alpha_{(t+1)} \leftarrow \alpha_{(t)} - \eta s_{(t)};
              if CP = V then
                       \alpha^* \leftarrow \alpha_{(t+1)}; return \alpha^*;
```

Algoritmo CLogD-MGE

7

10 11

```
Input: D = (x^n, y^n)_{n=1}^N, x^n \in \mathbb{R}^I, y^n \in \{0, 1\}, \eta \in \mathbb{R}^+, d \in \mathbb{N}, CP
     Output: \alpha^* \in \mathbb{R}^N
1 t \leftarrow 0:
\alpha_{(0)} = (0, \dots, 0)^{\top} \in \mathbb{R}^{N};
     while V do
                selecionar n \in \{1, ..., N\} aleatório;
   \hat{p}^n \leftarrow \sigma \left( \sum_{\ell=1}^N \alpha_{(t),\ell} (\tilde{x}^\ell \cdot \tilde{x}^n) \right);
      s_{(t)} \leftarrow (\hat{p}^n - y^n) \begin{bmatrix} \tilde{x}^1 \cdot \tilde{x}^n \\ \vdots \\ \tilde{x}^N \cdot \tilde{x}^n \end{bmatrix};
             \alpha_{(t+1)} \leftarrow \alpha_{(t)} - \eta s_{(t)};
                if CP=V then
                  \alpha^* \leftarrow \alpha_{(t+1)}; return \alpha^*;
```

CLog | versão dual com kernel polinomial

■ Arquitetura da Machine Learning

$$\hat{p} \equiv h(x; \alpha) = \sigma \left(\sum_{n=1}^{N} \alpha_n K(\tilde{x}^n, \tilde{x}) \right), \alpha \in \mathcal{H}.$$

 \blacksquare Para se aplicar o Método do Gradiente ao C Log
 com kernelpolinomial de graud

$$K(\tilde{x}^n, \tilde{x}) = (\tilde{x}^n \cdot \tilde{x})^d,$$

tem que se calcular o gradiente da função custo E, podendo-se mostrar (exercício) que

$$\nabla E(\alpha; D) = \frac{1}{N} \sum_{n=1}^{N} \nabla E_n(\alpha; x^n, y^n) = \frac{1}{N} \sum_{n=1}^{N} (\hat{p}^n - y^n) \begin{bmatrix} (\tilde{x}^1 \cdot \tilde{x}^n)^d \\ \vdots \\ (\tilde{x}^N \cdot \tilde{x}^n)^d \end{bmatrix}.$$

■ Vamos denotar por **CLogDKPd–MGE** o algoritmo do classificador logístico na versão dual com *kernel* polinomial de grau *d* com o MGE e por **CLogDKPd–MGE** o algoritmo do classificador logístico na versão dual com *kernel* polinomial de grau *d* com o MGE.

Algoritmo CLogDKPd-MGB

```
Input: D = (x^n, y^n)_{n=1}^N, x^n \in \mathbb{R}^I, y^n \in \{0, 1\}, \eta \in \mathbb{R}^+, d \in \mathbb{N}, CP
        Output: \alpha^* \in \mathbb{R}^N
 1 t \leftarrow 0:
 \alpha_{(0)} = (0, \dots, 0)^{\top} \in \mathbb{R}^{N};
 _3 while V do

\begin{array}{c|c}
\mathbf{4} & \hat{p}^n \leftarrow \sigma \left( \sum_{\ell=1}^N \alpha_{(t),\ell} (\tilde{x}^\ell \cdot \tilde{x}^n) \right), \ n = 1, \dots, N; \\
\mathbf{5} & s_{(t)} \leftarrow \frac{1}{N} \sum_{n=1}^N (\hat{p}^n - y^n) \begin{bmatrix} (\tilde{x}^1 \cdot \tilde{x}^n)^d \\ \vdots \\ (\tilde{x}^N \cdot \tilde{x}^n)^d \end{bmatrix};
\end{array}

                  \alpha_{(t+1)} \leftarrow \alpha_{(t)} - \eta s_{(t)};
               if CP = V then
                       \alpha^* \leftarrow \alpha_{(t+1)}; return \alpha^*;
```

Algoritmo CLogDKPd-MGE

```
Input: D = (x^n, y^n)_{n=1}^N, x^n \in \mathbb{R}^I, y^n \in \{0, 1\}, \eta \in \mathbb{R}^+, d \in \mathbb{N}, CP
      Output: \alpha^* \in \mathbb{R}^N
 1 t \leftarrow 0:
 \alpha_{(0)} = (0, \dots, 0)^{\top} \in \mathbb{R}^{N};
      while V do
                  selecionar n \in \{1, ..., N\} aleatório;
          \hat{p}^n \leftarrow \sigma \left( \sum_{\ell=1}^N \alpha_{(t),\ell} (\tilde{x}^\ell \cdot \tilde{x}^n) \right);
         s_{(t)} \leftarrow (\hat{p}^n - y^n) \begin{bmatrix} (\tilde{x}^1 \cdot \tilde{x}^n)^d \\ \vdots \\ (\tilde{x}^N \cdot \tilde{x}^n)^d \end{bmatrix};
 6
                  \alpha_{(t+1)} \leftarrow \alpha_{(t)} - \eta s_{(t)};
                  if CP=V then
                     \alpha^* \leftarrow \alpha_{(t+1)}; return \alpha^*;
10
11
```

ex1 (AND) | CLog-MGE

CLog-MGE, $\eta = 0.5$

E = 0.0226, acc = 1

2.5

0.5

GJM

CLogDKP3-MGE, $\eta =$

ex1 (AND) | CLog-MGE

$$E = 0.0226, \ acc = 1$$

CLog-MGE, $\eta = 0.5$

CLogDKP2-MGE,
$$\eta = 0.5$$

 $E = 0.0016$, $acc = 1$

CLogDKP3-MGE, $\eta = E = 0.0000$, acc = 1

CLogDKP2–MGE, $\eta = 0.1$ $E = 0.0102, \ acc = 1$

ex2 (OR) | CLog-MGE

CLog-MGE, $\eta = 0.5$

1.4 1.2 0.8 0.6 0.4 0.2 2000 CLogDKP2-MGE, $\eta = 0.1$ E = 0.0159, acc = 10.7 0.6 0.5 0.4 0.3

0.2

0.1

0

GJM

CLogDKP2-MGE, $\eta = 0.5$

E = 0.0030, acc = 1

91

0.4

0.3

0.2

0.1

2000

Classificador logístico

0

ex2 (OR) | CLog-MGE

CLog-MGE,
$$\eta = 0.5$$

 $E = 0.0128$, $acc = 1$

CLogDKP3–MGE, $\eta = E = 0.0013$, acc = 1

CLogDKP2–MGE, $\eta = 0.1$ E = 0.0159, acc = 1

CLogDKP3–MGE, $\eta = E = 0.0078$, acc = 1

ex3 (XOR) | CLog-MGE

CLog-MGE, $\eta = 0.5$

E = 1.2297, acc = 0.50

2.5

1.5

0.5

0

GJM

2000

Classificador logístico

93

CLogDKP3-MGE, $\eta =$

12

E = 0.0016, acc = 1

ex3 (XOR) | CLog-MGE

CLog-MGE,
$$\eta = 0.5$$

 $E = 1.2297, \ acc = 0.50$

CLog-MGE, $\eta = 0.1$ E = 0.6958, acc = 0.75

CLogDKP2–MGE, $\eta = 0.5$ E = 0.0187, acc = 1

 $\begin{aligned} \text{CLogDKP2-MGE, } & \eta = 0.1 \\ & E = 0.1714, \; acc = 1 \end{aligned}$

CLogDKP3–MGE, $\eta = E = 0.0016$, acc = 1

CLogDKP3-MGE, $\eta = E = 0.0207$, acc = 1

ex4 | CLog-MGE

ex4 | CLog-MGE

CLog-MGE, $\eta = 0.5$

$$E = 0.0000, acc = 1$$

CLogDKP2-MGE, $\eta = 0.5$ E = 0.0000, acc = 1

$$E = 0.0000, \ acc = 1$$

CLogDKP3-MGE, $\eta =$

ex5 | CLog-MGE

CLog-MGE, $\eta = 0.5$

E = 0.0018, acc = 1

2000

0.5

GJM

2000

CLogDKP3-MGE, $\eta =$ E = 0.0002, acc = 1

ex5 | CLog-MGE

CLog-MGE,
$$\eta = 0.5$$

 $E = 0.0018$, $acc = 1$

E = 0.0001, acc = 1

CLogDKP2-MGE, $\eta = 0.5$

E = 0.0002, acc = 1

CLogDKP3-MGE, $\eta =$

CLogDKP3-MGE, $\eta =$

CLog-MGE, $\eta = 0.1$ E = 0.0166, acc = 1

ex6 | CLog-MGE

2000

CLog-MGE, $\eta = 0.5$

E = 0.7325, acc = 0.90

CLogDKP3-MGE, $\eta =$

12

E = 1.3176, acc = 0.9

2000 GJMClassificador logístico

ex6 | CLog-MGE

CLog-MGE, $\eta = 0.5$

$$E = 0.7325, \ acc = 0.90$$

$$E = 1.3338, acc = 0.92$$

CLogDKP2-MGE, $\eta = 0.5$

$$E = 1.3176, \ acc = 0.9$$

CLogDKP3-MGE, $\eta =$

CLog-MGE,
$$\eta = 0.1$$

 $E = 0.3103, acc = 0.90$

ex8 | CLog-MGE

2000

CLog-MGE, $\eta = 0.5$ E = 11.0524, acc = 0.60

5

CLogDKP2-MGE, $\eta = 0.5$

CLogDKP3-MGE, $\eta =$

ex8 | CLog-MGE

E = 11.1456, acc = 0.58

CLog-MGE, $\eta = 0.5$

$$E = 10.7208, acc = 0.6$$

$$E = 0.0000, \ acc = 1$$

CLogDKP2-MGE, $\eta = 0.5$

CLogDKP3-MGE, $\eta =$

E = 10.7208, acc = 0.6

Exercício 1. Considere um classificador logístico linear com $\varepsilon_{\text{CLog}}=0.5.$

- (a) Sejam I = 1 e $\tilde{w} = (1,2)^{\top}$. Represente graficamente os pontos cuja classe predita seja 1.
- (b) Sejam I = 2 e $\tilde{w} = (1, 2, 3)^{\top}$. Represente graficamente os pontos cuja classe predita seja 1.
- (c) Sejam I=2 e $\tilde{w}=(-1,-2,-3)^{\top}$. Represente graficamente os pontos cuja classe predita seja 1.

Exercício 2. Seja a base de dados $D=(x^n,y^n)_{n=1}^N,\ x^n\in\mathbb{R}^I,\ y^n\in\{0,1\}$. O objetivo deste exercício é deduzir a expressão do gradiente da função custo E da Classificador logístico

$$E(\tilde{w}; D) = \frac{1}{N} \sum_{n=1}^{N} E_n(\tilde{w}; x^n, y^n),$$

$$E_n(\tilde{w}; x^n, y^n) = -y^n \ln(\hat{p}^n) - (1 - y^n) \ln(1 - \hat{p}^n),$$

$$\hat{p}^n = \sigma(\tilde{w} \cdot \tilde{x}^n).$$

Seja $n \in \{1, \ldots, N\}$.

(a) Mostre que

$$\sigma'(z) = \sigma(z)(1 - \sigma(z)).$$

(b) Mostre que

$$\frac{\partial}{\partial \tilde{w}_i} (y^n \ln(\hat{p}^n)) = y^n (1 - \hat{p}^n) \tilde{x}_j^n.$$

Exercício 2. (cont.)

(c) Mostre que

$$\frac{\partial}{\partial \tilde{w}_j} \left((1 - y^n) \ln(1 - \hat{p}^n) \right) = (y^n - 1) \hat{p}^n \tilde{x}_j^n.$$

(d) Mostre que

$$\frac{\partial}{\partial \tilde{w}_j} E_n(\tilde{w}; x^n, y^n) = (\hat{p}^n - y^n) \tilde{x}_j^n$$

(e) Mostre que

$$\nabla E(\tilde{w}; D) = \frac{1}{N} \sum_{n=1}^{N} \nabla E_n(\tilde{w}; x^n, y^n) = \frac{1}{N} \sum_{n=1}^{N} (\hat{p}^n - y^n) \tilde{x}^n.$$

Exercício 3. Seja a base de dados $D=(x^n,y^n)_{n=1}^N,\,x^n\in\mathbb{R}^I,\,y^n\in\{0,1\}$. O objetivo deste exercício é deduzir a expressão do gradiente da função custo E da Classificador logístico na versão dual

$$E(\alpha; D) = \frac{1}{N} \sum_{n=1}^{N} E_n(\alpha; x^n, y^n),$$

$$E_n(\alpha; x^n, y^n) = -y^n \ln(\hat{p}^n) - (1 - y^n) \ln(1 - \hat{p}^n),$$

$$\hat{p}^n = \sigma\left(\sum_{\ell=1}^{N} \alpha_\ell(\tilde{x}^\ell \cdot \tilde{x}^n)\right).$$

Sejam $n, j \in \{1, ..., N\}.$

(a) Mostre que

$$\frac{\partial}{\partial \alpha_j} (y^n \ln(\hat{p}^n)) = y^n (1 - \hat{p}^n) (\tilde{x}^j \cdot \tilde{x}^n).$$

(b) Mostre que

$$\frac{\partial}{\partial \alpha_i} \left((1 - y^n) \ln(1 - \hat{p}^n) \right) = (y^n - 1) \hat{p}^n (\tilde{x}^j \cdot \tilde{x}^n).$$

Exercício 3. (cont.)

(c) Mostre que

$$\frac{\partial E_n}{\partial \alpha_j} = (\hat{p}^n - y^n)(\tilde{x}^j \cdot \tilde{x}^n).$$

(d) Mostre que

$$\nabla E(\alpha; D) = \frac{1}{N} \sum_{n=1}^{N} \nabla E_n(\alpha; x^n, y^n) = \frac{1}{N} \sum_{n=1}^{N} (\hat{p}^n - y^n) \begin{bmatrix} \tilde{x}^1 \cdot \tilde{x}^n \\ \tilde{x}^2 \cdot \tilde{x}^n \\ \vdots \\ \tilde{x}^N \cdot \tilde{x}^n \end{bmatrix}.$$

Exercício 4. Seja a base de dados $D=(x^n,y^n)_{n=1}^N,\ x^n\in\mathbb{R}^I,\ y^n\in\{0,1\}$. Mostre que a expressão do gradiente da função custo E da Classificador logístico com kernel polinomial de grau d na versão dual é

$$\nabla E(\alpha; D) = \frac{1}{N} \sum_{n=1}^{N} \nabla E_n(\alpha; x^n, y^n) = \frac{1}{N} \sum_{n=1}^{N} (\hat{p}^n - y^n) \begin{bmatrix} (x^1 \cdot \tilde{x}^n)^d \\ \tilde{(}x^2 \cdot \tilde{x}^n)^d \\ \vdots \\ \tilde{(}x^N \cdot \tilde{x}^n)^d \end{bmatrix}.$$

Exercício 5. Considere a base de dados binária $D=(x^n,y^n)_{n=1}^6$ (I=2) com

$$x^{1} = (-1, 1)^{\top}$$
 $y^{1} = 0$
 $x^{2} = (-1, -1)^{\top}$ $y^{2} = 1$
 $x^{3} = (0, 0)^{\top}$ $y^{3} = 1$
 $x^{4} = (1, 1)^{\top}$ $y^{4} = 1$
 $x^{5} = (-1, 0)^{\top}$ $y^{5} = 0$
 $x^{6} = (1, -1)^{\top}$ $y^{6} = 0$

- (a) Aplique o algoritmo CLog–MGE com $\tilde{w}_{(0)} = (0,0,0)^{\top}$, $t_{\text{max}} = 6$, $\eta = 1$ e n dado pela sequência 3, 2, 5, 1, 1, 6 à base de dados D, indicando a accuracy que se obteve.
- (b) Aplique o algoritmo CLogDKP2–MGE com $t_{\rm max}=3,\,\eta=0.1$ e n dado pela sequência 3, 2, 5 à base de dados D, indicando a accuracy que se obteve.

Exercício 6.

- (a) Implemente o algoritmo CLog-MGB.
- (b) Implemente o algoritmo CLog-MGE.
- (c) Implemente o algoritmo CLogDKPd-MGE.
- (d) Implemente o algoritmo CLogDKPd–MGE.