Juan Menduiña

<u>Trabajo Práctico Nº 1:</u> Operaciones y Circuitos Lógicos.

Ejercicio 1.

Realizar las siguientes operaciones lógicas:

(Nota: Se opera lógicamente con los bits ubicados en la misma posición del o de los operandos.)

00010001 AND 01011100 = 00010000 01010101 AND 01010101 = 0101010101010101 AND 10101010 = 0000000011110000 AND 11111111 = 11110000 01010101 OR 01010101 = 01010101 01010101 OR 10101010 = 11111111 11110001 OR 11110010 = 11110011 01010101 XOR 01010101 = 0000000001010101 XOR 10101010 = 11111111 00001111 XOR 00000000 = 00001111NOT 11111111 = 00000000NOT 01000000 = 10111111NOT 00001110 = 11110001

Ejercicio 2.

Si DATO "operación_lógica" MASK = RESULTADO, determinar la operación lógica y el valor de MASK tal que RESULTADO sea el indicado:

DATO	Op. lógica	MASK		RESULTADO
$D_7 D_6 D_5 D_4 D_3 D_2 D_1 D_0$	<mark>OR</mark>	11100111	_	$111D_4D_3111$
$D_7D_6D_5D_4D_3D_2D_1D_0$	OR	00001000	=	$D_7D_6D_5D_41D_2D_1D_0$
$D_7D_6D_5D_4D_3D_2D_1D_0$	AND	01111111	=	$0D_6D_5D_4D_3D_2D_1D_0$
מ מ מ מ מ מ מ	XOR	01010000	=	מממ קמקמ
$D_7 D_6 D_5 D_4 D_3 D_2 D_1 D_0$	XNOR	10101111	_	$D_7 \overline{D}_6 D_5 \overline{D}_4 D_2 D_1 D_0$

Ejercicio 3.

Analizar los siguientes esquemas y determinar los valores de las salidas C y D para todas las combinaciones de entrada (A y B o A, B y IN). ¿Se puede asociar los resultados obtenidos con una operación aritmética?

Figura 1:

C = AND(A, B)

C= A AND B

C = A * B.

D = XOR(A, B)

D= A XOR B

 $D=A \oplus B$.

A	В	С	D
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Figura 2:

C= OR (AND (A, B), AND (XOR (A, B), IN))

C= (A AND B) OR ((A XOR B) AND IN)

 $C = A * B + (A \oplus B) * IN.$

D = XOR (XOR (A, B), IN)

D= (A XOR B) XOR IN

 $D=(A \oplus B) \oplus IN$.

Licenciatura en Informática UNLP - Conceptos de Organización de Computadoras | 4 **Juan Menduiña**

A	В	IN	A * B	$A \oplus B$	(A ⊕ B) * IN	C	D
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1
0	1	0	0	1	0	0	1
0	1	1	0	1	1	1	0
1	0	0	0	1	0	0	1
1	0	1	0	1	1	1	0
1	1	0	1	0	0	1	0
1	1	1	1	0	1	1	1

Ejercicio 4.

Si sólo se poseen puertas lógicas NAND:

(a) ¿Será posible obtener las funciones AND, OR y NOT?

Sí, es posible obtener las funciones AND, OR y NOT si sólo se poseen puertas lógicas NAND.

(b) ¿Cómo se implementarían?

AND:
$$\overline{(\overline{A*B})*(\overline{A*B})} = \overline{\overline{A*B}} = A*B$$
.
OR: $\overline{(\overline{A*A})*(\overline{B*B})} = \overline{\overline{A}*\overline{B}} = \overline{\overline{A+B}} = A+B$.
NOT: $\overline{A*A} = \overline{A}$.

<u>Trabajo Práctico Nº 2:</u> Números y Operaciones Aritméticas en Binario.

Ejercicio 1.

Convertir los siguientes valores decimales a binario y a hexadecimal:

Decimal	Binario	Hexadecimal
<mark>27</mark>	<mark>11011</mark>	1B
54	110110	36
108	1101100	6C
542	1000011110	21E
1084	10000111100	43C
2013	11111011101	7DD
2168	100001111000	878

Ejercicio 2.

Convertir los siguientes valores a decimal:

(a)

$$1000111101010_{(2} = 1 * 2^{12} + 1 * 2^8 + 1 * 2^7 + 1 * 2^6 + 1 * 2^5 + 1 * 2^3 + 1 * 2^1 = 4586.$$

(b)

$$10100111001111000_{(2)} = 1 * 2^{16} + 1 * 2^{14} + 1 * 2^{11} + 1 * 2^{10} + 1 * 2^{9} + 1 * 2^{6} + 1 * 2^{5} + 1 * 2^{4} + 1 * 2^{3} = 85624.$$

(c)

$$FECB_{(16} = 15 * 16^3 + 14 * 16^2 + 12 * 16^1 + 11 * 16^0 = 65227.$$

(d)

$$1B2C_{(16} = 1 * 16^3 + 11 * 16^2 + 2 * 16^1 + 12 * 16^0 = 6956.$$

Ejercicio 3.

Completar la siguiente tabla:

Decimal	Binario	Hexadecimal
5689	1011000111001	1639
<mark>896</mark>	1110000000	380
713	1011001001	<mark>2C9</mark>

Juan Menduiña

Ejercicio 4.

Interpretar las siguientes cadenas de dígitos binarios como números codificados en Binario Sin Signo (BSS) o Binario Con Signo (BCS).

Resultado	BSS	BCS
10000010	130	<mark>-2</mark>
10110011	179	-51
0000010	2	2
00110011	51	51
10101110	174	-46

Ejercicio 5.

Realizar las siguientes operaciones de suma y resta indicando el estado de las banderas de Z(cero) y C(carry). Interpretar el resultado obtenido considerando que la operación trabaja con valores binarios que representaban números enteros sin signo. Determinar cuáles resultados son correctos y cuáles no. El resultado de la operación es del mismo tamaño de los operandos, es decir, 8 bits.

	Resultado	ZC	Interpretados como sin signo	¿Correcto?
$00000001 \\ + 10000000 =$	10000001 ₍₂	00	$\frac{1 + 128}{129_{(10)}}$	Sí
10000001 + 10000000 =	00000001 ₍₂	01	$\frac{129 + 128 =}{1_{(10)}}$	No
$01110000 \\ + 00101111 =$	10011111 ₍₂	00	$112 + 47 = 159_{(10)}$	Sí
$01000000 \\ + 01000000 =$	10000000 ₍₂	00	$64 + 64 = 128_{(10)}$	Sí
111111111 + 00000001 =	00000000 ₍₂	11	$255 + 1 = 0_{(10)}$	No
$011111111 \\ + 00000001 =$	10000000 ₍₂	00	$127 + 1 = 128_{(10)}$	Sí
11111111 + 11111110 =	11111101 ₍₂	01	$255 + 254 = 253_{(10)}$	No
$10011111 \\ + 11110000 =$	10001111 ₍₂	01	$159 + 240 = 143_{(10)}$	No
00100000 - 01100000 =	11000000 ₍₂	01	$\frac{32 - 96}{192_{(10)}}$	No
01110000 - 01111000 =	11111000 ₍₂	01	$112 - 120 = 248_{(10)}$	No
10110111 - 00011110 =	10011001 ₍₂	00	$183 - 30 = 153_{(10)}$	Sí
01111111 - 11110000 =	10001111 ₍₂	01	$127 - 240 = 143_{(10)}$	No

Trabajo Práctico Nº 3: Dispositivos Periféricos.

Ejercicio 1.

¿Cuánta memoria requieren las siguientes terminales? Responder en bytes.

(a) Alfanumérica ASCII extendida (8bits) de 24 filas x 80 columnas: monocromo.

Memoria (bits)=
$$24 * 80 * (8 + 0 + 0)$$
 bits
Memoria (bits)= 15360 bits.

Memoria (bytes)=
$$\frac{15360 \text{ bits}}{8}$$

Memoria (bytes)= 1920 bytes.

Por lo tanto, esta terminal requiere 1.920 bytes de memoria.

(b) Alfanumérica ASCII extendida (8bits) de 24 filas x 80 columnas con 16 colores y con 4 atributos.

Memoria (bits)=
$$24 * 80 * (8 + 4 + 4)$$
 bits
Memoria (bits)= 30720 bits.

Memoria (bytes)=
$$\frac{30720 \ bits}{8}$$

Memoria (bytes)= 3840 bytes.

Por lo tanto, esta terminal requiere 3.840 bytes de memoria.

(c) Gráfica de 640 x 480 pixels monocromo.

Memoria (bytes)=
$$\frac{307200 \ bits}{8}$$

Memoria (bytes)= 38400 bytes.

Por lo tanto, esta terminal requiere 38.400 bytes de memoria.

(d) Gráfica de 640 x 480 pixels True Color.

Memoria (bits)= 7372800 bits.

Memoria (bytes)=
$$\frac{7372800 \text{ bits}}{8}$$

Memoria (bytes)= 921600 bytes.

Por lo tanto, esta terminal requiere 921.600 bytes de memoria.

(e) Gráfica de 1024 x 768 pixels con 8 colores.

Memoria (bytes)=
$$\frac{2359296 \text{ bits}}{8}$$

Memoria (bytes)= 294912 bytes.

Por lo tanto, esta terminal requiere 294.912 bytes de memoria.

Ejercicio 2.

Considerar una imagen en blanco y negro de 8,5" x 11" con una resolución de 2400 dpi (ppp - puntos por pulgada).

(a) ¿Cuántos bytes de memoria hacen falta para almacenarla?

Memoria (bytes)=
$$\frac{538560000 \text{ bits}}{8}$$

Memoria (bytes)= 67320000 bytes.

Por lo tanto, hacen falta 67.320.000 bytes para almacenarla.

(b) ¿Cuánto ocuparía si tuviese 256 tonos de gris?

Memoria (bytes)=
$$\frac{4308480000 \ bits}{8}$$

Memoria (bytes)= 538560000 bytes.

Por lo tanto, si tuviese 256 tonos de gris, ocuparía 538.560.000 bytes.

(c) ¿Y si fuese "True Color"? (True Color utiliza 24 bits por pixel).

Memoria (bytes)=
$$\frac{12925440000 \ bits}{8}$$

Memoria (bytes)= $1615680000 \ bytes$.

Por lo tanto, si fuese "True Color", ocuparía 1.615.680.000 bytes.

Ejercicio 3.

Calcular la velocidad mínima que debe tener la comunicación entre una computadora y un scanner si éste puede digitalizar una página de 8,5" x 11" monocromo con una resolución de 600 dpi en 30 segundos.

Velocidad (bits)=
$$\frac{8.5*11*600^2*1 \text{ bits}}{30 \text{ seg}}$$
Velocidad (bits)=
$$\frac{33660000 \text{ bits}}{30 \text{ seg}}$$
Velocidad (bits)=
$$1122000 \text{ bits/seg}.$$

Velocidad (bytes)=
$$\frac{1122000 \ bits/seg}{8}$$

Velocidad (bytes)= 140250 bytes/seg.

Por lo tanto, la velocidad mínima que debe tener es 140.250 bytes/seg.

Ejercicio 4.

Un disco rígido tiene 512 bytes/sector, 1000 sectores/pista, 5000 pistas/cara y 8 platos (16 caras). Calcular la capacidad total del disco.

Capacidad= 512 bytes * 1000 * 5000 * 16 Capacidad= 40960000000 bytes.

Por lo tanto, la capacidad total del disco es 40.960.000.000 bytes.

Ejercicio 5.

Un disco rígido tiene dos caras (1 plato). El radio de la pista más interna es 1 cm y el radio de la pista más externa es 5 cm. Cada pista mantiene el mismo número de bits. La máxima densidad de almacenamiento es 10.000 bits/cm, el espaciamiento entre pistas es 0,1mm. Asumir que la separación entre sectores es despreciable y en el borde exterior hay una pista.

(a) ¿Cuál es el máximo número de bits que puede almacenarse en el disco?

Caras= 2.

Radio pista más interna= 1 cm.

Radio pista más externa= 5 cm.

Espaciamiento entre pistas= 0,1 mm.

Máxima densidad de almacenamiento= 10000 bits/cm.

$$Pistas = \frac{5cm - 1cm}{0.1mm}$$

$$Pistas = \frac{4cm}{0.01cm}$$

$$Pistas = 400.$$

Perímetro= $2\pi * 1$ cm

Perímetro= 6,28 cm.

Capacidad de cada pista= 10000 bits/cm * 6,28 cm (perímetro)

Capacidad de cada pista= 62832 bits.

Capacidad del disco= 2 (caras) * 400 (pistas) * 62832 bits

Capacidad del disco= 50265482 bits.

Por lo tanto, el máximo número de bits que puede almacenarse en el disco es 50.265.482.

(b) ¿Cuál es la velocidad de transferencia en bits/seg si la velocidad de rotación es de 3600 rpm? ¿Y si es 7200 rpm?

Velocidad= 1 (cabezal) * 62832 bits *
$$\frac{3600 \ rpm}{60 \ seg}$$
 Velocidad= 3769920 bits/seg.

Velocidad= 1 (cabezal) * 62832 bits *
$$\frac{7200 \ rpm}{60 \ seg}$$
 Velocidad= 7539840 bits/seg.

Velocidad= /539840 bits/seg.

Por lo tanto, si la velocidad de rotación es de 3600 rpm, la velocidad de transferencia en bits/seg es 3.769.920 bits/seg y, si la velocidad de rotación es de 7200 rpm, la velocidad de transferencia en bits/seg es 7.539.840 bits/seg.