1

Vector Algebra

EE24Btech11022 - Eshan Sharma

I. MCQs with one correct answer 1) The unit vector which is orthogonal to the vector $3\hat{i} + 2\hat{j} + 6\hat{k}$ and is coplanar with vectors $2\hat{i} + \hat{j} + \hat{k}$

and $\hat{i} - \hat{j} + \hat{k}$ is

a) $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a} = \mathbf{0}$ b) $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a} \neq \mathbf{0}$ c) $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{a} \times \mathbf{c} \neq \mathbf{0}$

a)	$\frac{2\hat{i} - 6\hat{j} + \hat{k}}{\sqrt{41}}$ $\frac{2\hat{i} - 3\hat{j}}{\sqrt{13}}$	c) $\frac{3\hat{i}-\hat{k}}{\sqrt{10}}$ d) $\frac{4\hat{i}+3\hat{j}-3\hat{k}}{\sqrt{34}}$	
If t		the origin cuts the coordinate axes at A , B and C . s the relation $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = k$, then the value k is	
a) 3 b) 3		c) $\frac{1}{3}$ d) 9	
$\frac{\mathbf{b} \cdot \mathbf{c}}{ \mathbf{c}^2 }$	\mathbf{a} , \mathbf{b} , \mathbf{c} are three non-zero, non-coplanar vectors \mathbf{b}_1 , $\mathbf{c}_2 = \mathbf{c} - \frac{\mathbf{c} \cdot \mathbf{a}}{ \mathbf{a}^2 } \mathbf{a} + \frac{\mathbf{b}_1 \cdot \mathbf{c}}{ \mathbf{b}_1 ^2} \mathbf{b}_1$, $\mathbf{c}_3 = \mathbf{c} - \frac{\mathbf{c} \cdot \mathbf{a}}{ \mathbf{c}^2 } \mathbf{a} + \frac{\mathbf{b} \cdot \mathbf{c}}{ \mathbf{c}^2 } \mathbf{b}_1$ etors is	s and $\mathbf{b_1} = \mathbf{b} - \frac{\mathbf{b} \cdot \mathbf{a}}{ \mathbf{a}^2 } \mathbf{a}$, $\mathbf{b_2} = \mathbf{b} + \frac{\mathbf{b} \cdot \mathbf{a}}{ \mathbf{a}^2 } \mathbf{a}$, $\mathbf{c_1} = \mathbf{c} - \frac{\mathbf{c} \cdot \mathbf{a}}{ \mathbf{a}^2 } \mathbf{a} + \mathbf{c}$, $\mathbf{c_4} = \mathbf{c} - \frac{\mathbf{c} \cdot \mathbf{a}}{ \mathbf{c}^2 } \mathbf{a} = \frac{\mathbf{b} \cdot \mathbf{c}}{ \mathbf{b}^2 } \mathbf{b_1}$, then the set of orthogonal (2005S)	
	$(\mathbf{a}, \mathbf{b}_1, \mathbf{c}_3)$ $(\mathbf{a}, \mathbf{b}_1, \mathbf{c}_2)$	c) (a, b_1, c_1) d) (a, b_2, c_2)	
	4) A plane which is perpendicular to two planes $2x - 2y + z = 0$ and $x - y + 2z = 4$ passes through $(1, -2, 1)$. The distance of the plane from the point $(1, 2, 2)$ is $(2006 - 3M, -1)$		
a) (b) 1		c) $\sqrt{2}$ d) $2\sqrt{2}$	
on a) 4 b) 3 c) 2	$\mathbf{c} = \hat{i} + 2\hat{j} + \hat{k}, \mathbf{b} = \hat{i} - \hat{j} + \hat{k} \text{ and } \mathbf{c} = \hat{i} + \hat{j} - \hat{k}.$ A \mathbf{c} is $\frac{1}{\sqrt{3}}$, is $4\hat{i} - \hat{j} + 4\hat{k}$ $3\hat{i} + \hat{j} - 3\hat{k}$ $2\hat{i} + \hat{j} - 2\hat{k}$ $4\hat{i} + \hat{j} - 4\hat{k}$	A vector in the plane of a and b whose projection (2006-3M,-1)	
6) Th	3	the vectors $-\lambda^2 \hat{i} + \hat{j} + \hat{k}$, $\hat{i} - \lambda^2 \hat{j} + \hat{k}$ and $\hat{i} + \hat{j} - \lambda^2 \hat{k}$ (2007 - 3marks)	
a) 1 b) 2		c) 3 d) 4	
7) let \mathbf{a} , \mathbf{b} , \mathbf{c} be unit vectors such that $\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$. Which of the following are correct? (2007- 3marks)			

- d) $\mathbf{a} \times \mathbf{b}, \mathbf{b} \times \mathbf{c}, \mathbf{c} \times \mathbf{a}$ are mutually perpendicular
- 8) The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vectors $\hat{a}, \hat{b}, \hat{c}$ such that $\hat{a} \cdot \hat{b} = \hat{b} \cdot \hat{c} = \hat{c} \cdot \hat{a} = \frac{1}{2}$. Then, the volume of the parallelopiped is (2008)
- 9) Let two non-collinear unit vectors \hat{a} and \hat{b} form an acute angle. A point **P** moves so that at any time t the position vector \overrightarrow{OP} (where O is the origin) is given by $\hat{a}\cos t + \hat{b}\sin t$. When **P** is farthest from origin \mathbf{O} , let \mathbf{M} be the length of \overrightarrow{OP} and \hat{u} be the unit vector along \overrightarrow{OP} . Then,

 - a) $\hat{u} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|}$ and $M = (1 + \hat{a} \cdot \hat{b})^{1/2}$ b) $\hat{u} = \frac{\hat{a} \hat{b}}{|\hat{a} \hat{b}|}$ and $M = (1 + \hat{a} \cdot \hat{b})^{1/2}$ c) $\hat{u} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|}$ and $M = (1 + 2\hat{a} \cdot \hat{b})^{1/2}$ d) $\hat{u} = \frac{\hat{a} \hat{b}}{|\hat{a} \hat{b}|}$ and $M = (1 + 2\hat{a} \cdot \hat{b})^{1/2}$
- 10) Let P(3,2,6) be a point in space and Q be a point on the line $\mathbf{r} = (\hat{i} - \hat{j} + 2\hat{k}) + \mu(-3\hat{i} + \hat{j} + 5\hat{k})$

Then the value of μ for which the vector \overrightarrow{PQ} is parallel to the plane x - 4y + 3z = 1 is (2009)

a) $\frac{1}{4}$ b) $-\frac{1}{4}$ c) $\frac{1}{8}$ d) $-\frac{1}{8}$

- 11) If $\mathbf{a}, \mathbf{b}, \mathbf{c}$, and \mathbf{d} are unit vectors such that $(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = 1$ and $\mathbf{a} \cdot \mathbf{c} = \frac{1}{2}$, then (2009)
 - a) **a**, **b**, **c** are non-coplanar
 - b) **b**, **c**, **d** are non-coplanar
 - c) **b**, **d** are non-parallel
 - d) **a**, **d** are parallel and **b**, **c** are parallel
- 12) A line with positive direction cosines passes through the point P(2, -1, 2) and makes equal angles with the coordinate axes. The line meets the plane 2x + y + z = 9 at point **Q**. The length of the line segment PQ equals (2009)

c) $\sqrt{3}$ d) 2 a) 1 b) $\sqrt{2}$

- 13) Let **P**, **Q**, **R** and **S** be the points on the plane with position vectors $-2\hat{i} \hat{j}$, $4\hat{i}$, $3\hat{i} + 3\hat{j}$ and $-3\hat{i} + 2\hat{j}$ respectively. The quadrilateral PQRS must be a (2010)
 - a) parallelogram, which is neither a rhombus nor a rectangle
 - b) square
 - c) rectangle, but not a square
 - d) rhombus, but not a square
- 14) Equation of the plane containing the straight line $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3} = \frac{y}{4} = \frac{z}{2}$ and $\frac{x}{4} = \frac{y}{2} = \frac{z}{3}$ is (2010)
 - a) x + 2y 2z = 0
 - b) 3x + 2y 2z = 0
 - c) x 2y + z = 0
 - d) 5x + 2y 4z = 0
- 15) If the distance of the point P(1, -2, 1) from the plane $x + 2y 2z = \alpha$, where $\alpha > 0$, is 5, then the foot of the perpendicular from P to the plane is (2010)
 - a) $\left(\frac{8}{3}, \frac{4}{3}, \frac{-7}{3}\right)$

- b) $\left(\frac{4}{3}, \frac{-4}{3}, \frac{1}{3}\right)$ c) $\left(\frac{1}{3}, \frac{2}{3}, \frac{10}{3}\right)$ d) $\left(\frac{2}{3}, \frac{-1}{3}, \frac{5}{2}\right)$