

Fondamenti di Chimica industriale

4 Luglio 2013

Esercizio N. 1

- · Alimentazione fresca: inerti 2 mol%; A e B in rapporto stechiometrico.
- . Reattore: conversione = 35%.
- . Sezione di separazione:
 - a) C puro;
 - b) A, B e inerti (10 mol%).
- Si etichetti lo schema e si proceda al calcolo dei gradi di libertà con il metodo delle tie streams.
- Si motivi che sussistono le condizioni per calcolare la resa globale di processo, il rapporto di riciclo e il rapporto di spurgo.
- Si proceda a calcolare i suddetti parametri di processo.

Esercizio N. 2

Una soluzione di zucchero in acqua deve essere concentrata dal 5 wt% al 20 wt% in zucchero. La soluzione è alimentata a 45°C ad una colonna in cui è insufflata aria a 45°C e temperatura di rugiada di 4°C. L'aria esce satura dalla colonna, che opera adiabaticamente. Determinare l'umidità assoluta e la temperatura dell'aria in uscita dalla colonna e il volume (m³) di aria umida alimentato per kg di soluzione in ingresso alla colonna.

Esercizio N. 3

$$CO_2(g) + C(s) \rightarrow 2CO(g)$$
 $\Delta H_r^0 = 172.5 \text{ kJ/mol}$

Il diossido di carbonio alimentato è stechiometrico rispetto al carbonio alimentato presente nel coke (composizione in massa: 84% C, 16% inerti).

Calcolare la conversione percentuale del carbonio presente nel coke.

	C_p	C_p
	(kJ/kmol⋅K)	$(kJ/kg\cdot K)$
CO	32	
CO_2	46	
С		1
Inerti		1