Covid 19 en México

Murpholinox Peligro

23 April, 2020

```
# Carga los paquetes necesarios.
library(ggplot2)
library(ggdark)
library(latex2exp)
library(lubridate)
library(dplyr)
# Configura el directorio de trabajo.
setwd("/home/murphy/Repos/plotcovid19mx")
# Descarga datos del European CDC.
wget -0 full.csv https://opendata.ecdc.europa.eu/covid19/casedistribution/csv
# Obtiene las líneas correspondientes a México.
grep Mex full.csv > mex.csv
# Solo ocupamos la columna 1 y 6 (fecha y decesos por día).
awk -F "," '{print $1"," $6}' mex.csv > clean.csv
# Añade nombre a las columnas.
echo "fecha, decesos" >> clean.csv
# Revierte los datos en la lista.
tac clean.csv > clean_r.csv
## --2020-04-23 00:56:52-- https://opendata.ecdc.europa.eu/covid19/casedistribution/csv
## Resolving opendata.ecdc.europa.eu (opendata.ecdc.europa.eu)... 212.181.0.63
## Connecting to opendata.ecdc.europa.eu (opendata.ecdc.europa.eu)|212.181.0.63|:443... connected.
## HTTP request sent, awaiting response... 301 Moved Permanently
## Location: https://opendata.ecdc.europa.eu/covid19/casedistribution/csv/ [following]
## --2020-04-23 00:56:54-- https://opendata.ecdc.europa.eu/covid19/casedistribution/csv/
## Reusing existing connection to opendata.ecdc.europa.eu:443.
## HTTP request sent, awaiting response... 200 OK
## Length: 720081 (703K) [application/octet-stream]
## Saving to: 'full.csv'
##
##
     OK .....
                                                    229K 3s
##
     50K ...... 14%
                                                    236K 3s
##
    100K ..... 21%
                                                    243K 2s
##
    108K 3s
##
    ##
    250K ..... 42%
                                                    239K 2s
##
    300K ..... .... 49%
                                                    249K 2s
    350K ...... 56%
##
                                                    249K 1s
##
    400K ...... 63% 2.13M 1s
    450K ..... 71%
##
                                                   249K 1s
##
    500K ...... 78%
                                                    241K 1s
##
    550K ...... 85%
                                                    255K 0s
```

```
##
      600K ...... 92% 242K 0s
##
      650K ..... 99% 2.54M Os
##
      700K ...
                                                               100% 16.9M=2.6s
##
## 2020-04-23 00:56:57 (273 KB/s) - 'full.csv' saved [720081/720081]
# Carga los datos limpios a R.
datos <- read.csv("~/Repos/plotcovid19mx/clean_r.csv")</pre>
# Cambia el formato de la fecha de d/m/y a y-m-d.
datos$newdate <- lubridate::dmy(datos$fecha)</pre>
# Crea una nueva variable con un nuevo formato para la fecha (a números enteros).
# Esto se hace porque x con formato de fecha impide que el algoritmo para
# obtener el modelo exponencial llegue a una solución.
xmax <- max(length(datos$fecha))</pre>
datos$number <- seq(0,xmax-1)</pre>
# Necesitamos los días del brote en México (después del 20-marzo).
smalldf<-datos %>%
 filter(number >= 72)
# Ordena los datos a usar en un tibble.
x<-smalldf$number
x < -x - 71
y<-smalldf$decesos
y2<-y+1
nice<-tibble(x,y)
dummy<-tibble(x,y2)
# Guarda datos finales en formato CSV.
write.csv(nice, file="~/Repos/plotcovid19mx/nice.csv")
# Crea una gráfica base.
p <- ggplot(data = nice, aes(x=x, y=y)) + geom_point()</pre>
# Crea modelo lineal.
\lim <- \lim(\log(y2)^{-x}, data = dummy)
# Obtiene los parámetros del modelo exponencial.
a <- exp(coef(linm)[1])
b \leftarrow coef(linm)[2]
# Aplica los parámetros del modelo exponencial en la creación del mismo.
expm <-nls(y ~ a * exp(b * x), start = list(a=a, b=b), data = nice)
summary(expm)
##
## Formula: y \sim a * exp(b * x)
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## a 2.27566
              1.35475
                          1.68
                                0.103
## b 0.10902
                0.01968
                           5.54 4.12e-06 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 18.54 on 32 degrees of freedom
## Number of iterations to convergence: 5
## Achieved convergence tolerance: 4.603e-06
```

Decesos por Covid-19 (20-03/21-04)

