## COMPUTER TECHNOLOGY PRACTICAL SESSION P5 (LOGISIM) DESIGN OF SEQUENTIAL CIRCUITS

Given the state diagram of Figure 1:



Figure 1

Design the sequential circuit using the following flip flops:

- T FF for the most significant flip-flop  $(T_2)$ .
- D FF for the middle flip-flop  $(D_1)$ .
- JK FF for the least significant flip-flop  $(J_0K_0)$ .

Implement  $T_2$  using logic gates,  $D_1$  at the discretion of the student, and  $J_0K_0$  using an active-high output DEC 4x16. The output S must be implemented using a MUX 4x1. Design and simulate the circuit with Logisim.

Check that if x=0 the state sequence is:

$$q0 \rightarrow q5 \rightarrow q3 \rightarrow q4 \rightarrow q2 \rightarrow q1 \rightarrow q0$$

Check that if x=1 the state sequence is:

$$q0 \rightarrow q1 \rightarrow q4 \rightarrow q3 \rightarrow q5 \rightarrow q2 \rightarrow q0$$

## COMPUTER TECHNOLOGY PRACTICAL SESSION P5 (LOGISIM) DESIGN OF SEQUENTIAL CIRCUITS

**REMARK 1:** The state encoding is shown in Table 1.

| 7 4 1 5 1 5 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1                            |                |                  |                  |  |  |  |  |  |  |
|----------------------------------------------------------------------|----------------|------------------|------------------|--|--|--|--|--|--|
|                                                                      | Q <sub>2</sub> | $\mathbf{Q}_{1}$ | $\mathbf{Q}_{0}$ |  |  |  |  |  |  |
| $q_0$                                                                | 0              | 0                | 0                |  |  |  |  |  |  |
| $q_1$                                                                | 0              | 0                | 1                |  |  |  |  |  |  |
| $q_2$                                                                | 0              | 1                | 0                |  |  |  |  |  |  |
| q <sub>1</sub><br>q <sub>2</sub><br>q <sub>3</sub><br>q <sub>4</sub> | 0              | 1                | 1                |  |  |  |  |  |  |
| q <sub>4</sub>                                                       | 1              | 0                | 0                |  |  |  |  |  |  |
| <b>q</b> 5                                                           | 1              | 0                | 1                |  |  |  |  |  |  |

Table 1

**REMARK 2:** The state of the circuit must be visualized using 3 orange LEDs and a display (take *Hex Digit Display*), corresponding to the outputs of the three flip-flops. These LEDs must be placed horizontally, in the following order:  $Q_2Q_1Q_0$ . The output S must be visualized using a green LED.

## FILL OUT THE TABLE BELOW:

| E | $Q_2(t)$ | $Q_1(t)$ | $Q_0(t)$ | $Q_2(t+1)$ | $Q_1(t+1)$ | $Q_0(t+1)$ | $T_2$ | $\mathbf{D}_1$ | $\mathbf{J}_0$ | $\mathbf{K}_{0}$ | S |
|---|----------|----------|----------|------------|------------|------------|-------|----------------|----------------|------------------|---|
| 0 | 0        | 0        | 0        |            |            |            |       |                |                |                  |   |
| 0 | 0        | 0        | 1        |            |            |            |       |                |                |                  |   |
| 0 | 0        | 1        | 0        |            |            |            |       |                |                |                  |   |
| 0 | 0        | 1        | 1        |            |            |            |       |                |                |                  |   |
| 0 | 1        | 0        | 0        |            |            |            |       |                |                |                  |   |
| 0 | 1        | 0        | 1        |            |            |            |       |                |                |                  |   |
| 0 | 1        | 1        | 0        |            |            |            |       |                |                |                  |   |
| 0 | 1        | 1        | 1        |            |            |            |       |                |                |                  |   |
| 1 | 0        | 0        | 0        |            |            |            |       |                |                |                  |   |
| 1 | 0        | 0        | 1        |            |            |            |       |                |                |                  |   |
| 1 | 0        | 1        | 0        |            |            |            |       |                |                |                  |   |
| 1 | 0        | 1        | 1        |            |            |            |       |                |                |                  |   |
| 1 | 1        | 0        | 0        |            |            |            |       |                |                |                  |   |
| 1 | 1        | 0        | 1        |            |            |            |       |                |                |                  |   |
| 1 | 1        | 1        | 0        |            |            |            |       |                |                |                  |   |
| 1 | 1        | 1        | 1        |            |            |            |       |                |                |                  |   |