Devoir 3

Emeric Laberge 20220275 Sara Haddad 20208373

Dans le cadre du cours IFT 1575

Département d'informatique et de recherche opérationnelle Université de Montréal Canada 27 mars 2023

Question 2

Initialisation: $EM = \{1\}$; $\delta_1 = 0$

Itération 1:

Étape 1:

Les successeurs de 1 sont 2, 3 et 4. $\lambda_{12} = 10 \quad \lambda_{13} = 25 \quad \lambda_{14} = 16 \\ \min \left\{ \lambda_{12}, \lambda_{13}, \lambda_{14} \right\} = \min \{ 10, 25, 16 \} = 10 \Rightarrow j_1 = 2$

Étape 2:

On détermine le chemin le plus court menant de 1 à j_1 min $\{\delta_1 + \lambda_{12}\} = \min \{0 + 10\} = 10$ marquer $j_1 = 2$ avec $\delta_2 = 10$

Étape 3:

 $EM \leftarrow EM \cup \{j_1\}$ avec $\delta_{21} = \delta_1 + \lambda_{12} = 10$ $EM = \{1, 2\}$

Étape 4:

 $\overline{EM} \neq \emptyset$, alors on effectue un autre itération

Itération 2:

 $EM = \{1, 2\}$

Étape 1:

On identifie le sommet adjacent non marqué situé le plus près de:

1. min
$$\{\lambda_{13}, \lambda_{14}\} = \min \{25, 16\} = 16 \Rightarrow j_1 = 4$$

2.
$$\min \{\lambda_{24}, \lambda_{25}\} = \min \{5, 22\} = 5 \Rightarrow j_2 = 4$$

Étape 2:

 $\min \{\delta_1 + \lambda_{14}, \delta_2 + \lambda_{24}\} = \min \{0 + 16, 10 + 5\} = 15$ marquer le sommet $j_2 = 4$ avec $\delta_4 = 15$

Étape 3:

$$EM = \{1, 2, 4\}$$

Étape 4:

 $\overline{EM} \neq \emptyset$, alors on effectue un autre itération $\overline{EM} \neq \emptyset$, alors on effectue un autre itération

Itération 3:

$$EM = \{1, 2, 4\}$$

Étape 1:

On identifie les sommets adjacents non marqués situé les plus près de:

- 1. min $\{\lambda_{13}\} = 25 \implies j_1 = 3$
- 2. $\min \{\lambda_{25}\} = 22 \Rightarrow j_2 = 5$
- 3. min $\{\lambda_{43}, \lambda_{45}, \lambda_{46}, \} = \min\{7, 15, 22\} = 7 \Rightarrow j_4 = 3$

Étape 2:

 $\min~\{\delta_1+\lambda_{13}~,~\delta_4+\lambda_{43}~,~\delta_2+\lambda_{25}\}=\min~\{0+25~,~15+7~,~\}=22$ marquer le sommet $j_4=3$ avec $\delta_3=22$

Étape 3:

$$EM = \{1, 2, 4, 3\}$$

Étape 4:

 $\overline{EM} \neq \emptyset$, alors on effectue un autre itération

Itération 4:

$$EM = \{1, 2, 4, 3\}$$

Étape 1:

On identifie les sommets adjacents non marqués situé les plus près de:

- 1. $\min \{\} = \infty$
- 2. min $\{22\} \Rightarrow j_2 = 5$

3. min
$$\{22, 15\} \Rightarrow j_4 = 5$$

4. min
$$\{2\} \Rightarrow j_3 = 6$$

Étape 2:

min $\{\infty$, $\delta_2 + \lambda_{25}$, $\delta_4 + \lambda_{45}$, $\delta_3 + \lambda_{36}\} = \min\{10 + 22, 15 + 15, 22 + 2\} = 24$ marquer le sommet $j_3 = 6$ avec $\delta_4 = 24$

Étape 3:

$$EM = \{1, 2, 4, 3, 6\}$$

Étape 4:

 $\overline{EM} \neq \emptyset$, alors on effectue un autre itération

Itération 5:

$$EM = \{1, 2, 4, 3, 6\}$$

Étape 1:

On identifie les sommets adjacents non marqués situé les plus près de:

1.
$$\min \{\} = \infty$$

2. min
$$\{22\} \Rightarrow j_2 = 5$$

3. min
$$\{22, 15\} \Rightarrow j_4 = 5$$

4.
$$\min \{\} = \infty$$

5. min
$$\{5\} \Rightarrow j_6 = 7$$

Étape 2:

 $\min \; \{\infty \; , \; \delta_2 + \lambda_{25} \; , \; \delta_4 + \lambda_{45} \; , \; \infty \; , \; \delta_6 + \lambda_{67} \} = \min \; \{\infty \; , \; 10 + 22 \; , \; 15 + 15 \; , \; \infty \; , \; 24 + 5 \} = 29 \; \text{marquer le sommet} \; j_6 = 7 \; \text{avec} \; \delta_7 = 29$

Étape 3:

$$EM = \{1, 2, 4, 3, 6, 7\}$$

Étape 4:

 $\overline{EM} \neq \emptyset$, alors on effectue un autre itération

Itération 6:

$$EM = \{1, 2, 4, 3, 6\}$$

Étape 1:

On identifie les sommets adjacents non marqués situé les plus près de:

- 1. $\min \{\} = \infty$
- 2. min $\{22\} \Rightarrow j_2 = 5$
- 3. min $\{22, 15\} \Rightarrow j_4 = 5$
- 4. min $\{\} = \infty$
- 5. min $\{\} = \infty$
- 6. min $\{\} = \infty$

Étape 2:

 $\min \; \{ \infty \; , \; \delta_2 + \lambda_{25} \; , \; \delta_4 + \lambda_{45} \; , \; \infty \; , \; \infty \; , \; \infty \} = \min \; \{ \infty \; , \; 10 + 22 \; , \; 15 + 15 \; , \; \infty \; , \; \infty \; , \; \infty \; , \; \infty \} = 30$ marquer le sommet $j_4 = 5$ avec $\delta_5 = 30$

Étape 3:

$$EM = \{1, 2, 4, 3, 6, 7, 5\}$$

Étape 4:

 $\overline{EM} = \emptyset$, alors on arrête

Question 4

Table 1: Temps le plus tard

Étape i	$j \in p_i$	$LT_j - t_{ij}$	LT_i
12	-	-	92
11	12	92-1	91
10	11	91-1	90
9	10	90-1	89
8	9	89-1	88
7	8	88-14	74
6	9	89-1	88
5	6	88-14	
	7	74-7	
	9	89-70	19
	10	90-1	
	11	91-7	
4	5	19-3	16
3	4	16-0	16
2	3	16-14	2
2	4	16-14	
1	2	2-2	0

Table 2: Temps le plus tôt

Étape i	$j \in B_i$	$ET_j + t_{ji}$	ET_i
1	-	-	0
2	12	0+12	2
3	11	2+14	16
4	10	2+14	16
	10	2+0	
5	8	16+3	19
6	9	19 + 14	33
7	6	19 + 7	26
8	7	26 + 14	40
9	9	19 + 70	89
	10	33+1	
	11	40+1	
10	5	19+1	90
	4	89+1	
11	3	19+7	91
	4	90+1	
12	2	91 + 1	92

Table 3: Écarts

Tâches	$LT_j - (ET_i + t_{ij})$	Écart
(1,2)	2 - (0 + 2)	0
(2,3)	16 - (2 + 14)	0
(2,4)	16 - (2 + 14)	0
(3,4)	16 - (16 + 0)	0
(4,5)	19 - (16 + 3)	0
(5,6)	88 - (19 + 14)	55
(5,7)	76 - (19 + 7)	48
(5,9)	89 - (19 + 70)	0
(5,10)	90 - (19 + 1)	70
(5,11)	91 - (19 + 7)	65
(6,9)	89 - (33 + 1)	55
(7,8)	88 - (26 + 14)	48
(8,9)	89 - (40 + 1)	48
(9,10)	90 - (89 + 1)	0
(10,11)	91 - (90 + 1)	0
(11,12)	92 - (91 + 1)	0