数学分析 II

第6次讨论班

2025年4月21日

- 1. 求解下列敛散性问题.
 - (a) 设级数 $\sum_{n=1}^{\infty} na_n$ 收敛, 证明 $\sum_{n=1}^{\infty} a_n$ 也收敛.
 - (b) 级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ 和 $\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n} + (-1)^n}$ 是否同收敛.
 - (c) 设数列 $\{a_n\}$ 单调减少趋于零, 且级数 $\sum_{n=1}^{\infty} a_n$ 发散.

证明: 级数 $\sum_{n=1}^{\infty} a_n \sin nx$ 当 $x \neq k\pi, k = 0, \pm 1, \pm 2, \cdots$ 时条件收敛.

解答.

- (a) $a_n = \frac{1}{n} n a_n$, 由 Abel 判别法即知原级数收敛.
- (b) 第一个级数由 Leibniz 判别法即知原级数收敛. 对于第二个级数有 $\frac{(-1)^n}{\sqrt{n}} \frac{(-1)^n}{\sqrt{n} + (-1)^n} \sim \frac{1}{n}$, 由此知第二个级数是发散的.
- (c) 由 $\sum_{n=1}^{\infty} \sin nx$ 的部分和有界和 Dirichlet 判别法即知原级数收敛. 另一方面, 利用 $|a_n \sin nx| \ge a_n \sin^2 nx = \frac{a_n}{2} (1 \cos 2nx)$, 由此知其不绝对收敛.
- 2. 证明下列问题.
 - (a) 设 $\sum_{n=1}^{\infty} a_n$ 为一个数项级数, 对它的一些项加上括号之后得到的新级数为 $\sum_{k=1}^{\infty} A_k$. 假定对每个 k, A_k 中的每个加数具有相同的符号. 证明: $\sum_{n=1}^{\infty} a_n$ 收敛的充要条件是 $\sum_{k=1}^{\infty} A_k$ 收敛.
 - (b) 证明: 级数 $\sum_{n=1}^{\infty} \frac{(-1)^{[\sqrt{n}]}}{n}$ 收敛.

解答.

(a) 必要性由 Cauchy 准则显然. 下证充分性, 设两个级数的部分和为 $S_n(a_n), T_k(A_k)$, 由于 A_k 中的每个加数具有相同的符号, 所以 S_n 总是介于 T_{k-1} 和 T_k 之间, 再由夹挤定理即可得证.

(b) 将级数中相邻的同号项合并, 从而组成一个交错级数 $\sum_{n=1}^{\infty} (-1)^n a_n$, 其中

$$a_n = \frac{1}{n^2} + \frac{1}{n^2 + 1} + \dots + \frac{1}{(n+1)^2 - 1}$$

$$= \frac{1}{n^2} \sum_{k=0}^{2n} \frac{1}{1 + k/n^2} = \frac{1}{n^2} \sum_{k=0}^{2n} \left[1 - \frac{k}{n^2} + O\left(\frac{k^2}{n^4}\right) \right]$$

$$= \frac{1}{n^2} \left[(2n+1) - \frac{2n+1}{n} + O\left(\frac{1}{n}\right) \right] = \frac{2}{n} - \frac{1}{n^2} + O\left(\frac{1}{n^3}\right).$$

由此即可知 $\{a_n\}$ 为无穷小量, 且至少当 n 充分大时单调减少:

$$a_n - a_{n+1} = \frac{2}{n^2} + O\left(\frac{1}{n^3}\right)$$

这表明原级数加括号之后得到的级数收敛,由于括号中的项符号相同,由上一问的结果可知原级数收敛.

- 3. 设 $\{a_n\}$ 单调递减收敛于0, 级数 $\sum_{n=1}^{\infty} |a_n \sin n|$ 发散, 试证:
 - (a) $\sum_{n=1}^{\infty} a_n \sin n$ 收敛.

(b)
$$\lim_{n \to \infty} \frac{u_n}{v_n} = 1$$
, $\sharp = 1$, $\lim_{k \to \infty} \frac{u_n}{v_n} = 1$, \lim

解答.

- (a) 由 1.(c) 知其收敛.
- (b) 记 $A_n = \sum_{k=1}^n |a_k \sin k|$, $B_n = \sum_{k=1}^n a_k \sin k$, 由条件和 (a) 则可得到:

$$\frac{u_n}{v_n} = \frac{A_n + B_n}{A_n - B_n} = \frac{1 + \frac{B_n}{A_n}}{1 - \frac{B_n}{A_n}} \to 1 \ (n \to \infty)$$

4. 若对任何收敛于零的序列 $\{x_n\}$, 级数 $\sum_{n=1}^{\infty} a_n x_n$ 都是收敛的, 证明级数 $\sum_{n=1}^{\infty} |a_n|$ 收敛.

解答. 用反证法. 假设
$$\sum_{n=1}^{\infty} a_n = \infty$$
.

对
$$M=1$$
, 必存在 k_1 , 使得 $\sum_{n=1}^{k_1} a_n > 1$. 取 $y_n=1$, 其中 $1 \le n \le k_1$,

对
$$M=2$$
, 必存在 k_2 , 使得 $\sum_{n=k_1+1}^{k_2} a_n > 2$. 取 $y_n = \frac{1}{2}$, 其中 $k_1 + 1 \leqslant n \leqslant k_2, \cdots$

对
$$M=m$$
, 必存在 k_m , 使得 $\sum_{n=k_m-1+1}^{k_m} a_n > m$. 取 $y_n = \frac{1}{m}$, 其中 $k_{m-1} + 1 \leq n \leq k_m$, · · · · .

$$\sum_{n=1}^{\infty} a_n x_n = \sum_{n=1}^{\infty} a_n \cdot y_n \cdot sgn(a_n) = \sum_{n=1}^{\infty} |a_n| y_n = \sum_{m=1}^{\infty} \left(\sum_{n=k_{m-1}+1}^{k_m} |a_n| y_n \right)$$
$$= \sum_{m=1}^{\infty} \left(\frac{1}{m} \sum_{n=k_{m-1}+1}^{k_m} |a_n| \right) > \sum_{m=1}^{\infty} 1 = +\infty.$$

与条件矛盾, 从而可知 $\sum_{n=1}^{\infty} |a_n|$ 收敛.

5. 讨论级数 $\sum_{n=2}^{\infty} \ln \left(1 + \frac{(-1)^n}{n^p} \right), p > 0$ 的绝对收敛性与条件收敛性.

解答. 因 p > 0, 所以 $\lim_{n \to +\infty} \frac{(-1)^n}{n^p} = 0$, 故

$$\lim_{n \to +\infty} \left| \frac{\ln \left(1 + \frac{(-1)^n}{n^p} \right)}{\frac{(-1)^n}{n^p}} \right| = 1,$$

故 p > 1 时原级数绝对收敛.

当 0 时有

$$\lim_{n \to +\infty} \frac{\frac{(-1)^n}{n^p} - \ln\left(1 + \frac{(-1)^n}{n^p}\right)}{\left[\frac{(-1)^n}{n^p}\right]^2} = \lim_{x \to 0} \frac{x - \ln\left(1 + x\right)}{x^2} = \frac{1}{2}.$$

则由上式可知, 当 $p > \frac{1}{2}$ 时, 原级数收敛, 而 0 时, 原级数发散.

6. (提高题) 对 p > 0, 讨论级数 $\sum_{n=1}^{\infty} \frac{\sin \frac{n\pi}{4}}{n^p + \sin \frac{n\pi}{4}}$ 的绝对收敛性与条件收敛性.

解答. 当 p > 1 且 n > 1 时,

$$\left|\frac{\sin\frac{n\pi}{4}}{n^p + \sin\frac{n\pi}{4}}\right| \leqslant \left|\frac{1}{n^p - 1}\right| = \frac{1}{n^p - 1},$$

故知此时原级数是绝对收敛的.

当 0 且 <math>n > 1 时, 取 n = 8k + 2 的部分项求和, 得

$$\sum_{n=1}^{\infty}\left|\frac{\sin\frac{n\pi}{4}}{n^p+\sin\frac{n\pi}{4}}\right|\geqslant \sum_{k=1}^{\infty}\frac{1}{(8k+2)^p+1},$$

故此时原级数不是绝对收敛的.

又因为

$$\sum_{n=1}^{\infty} \frac{\sin \frac{n\pi}{4}}{n^p + \sin \frac{n\pi}{4}} = \sum_{n=1}^{\infty} \frac{\sin \frac{n\pi}{4}}{n^p} - \sum_{n=1}^{\infty} \frac{\sin^2 \frac{n\pi}{4}}{n^p \left(n^p + \sin \frac{n\pi}{4}\right)},$$

由 Dirichlet 判别法知等式右边的第一个级数收敛.

当
$$p>\frac{1}{2}$$
, 且 $n>1$ 时,

$$0 \leqslant \frac{\sin^2 \frac{n\pi}{4}}{n^p \left(n^p + \sin \frac{n\pi}{4}\right)} \leqslant \frac{1}{n^p (n^p - 1)},$$

故此时等式右边的第二个级数也收敛.

当
$$0 且 $n > 1$ 时, 取 $n = 8k + 2$ 的部分项求和, 得$$

$$\sum_{n=1}^{\infty} \frac{\sin \frac{n\pi}{4}}{n^p \left(n^p + \sin \frac{n\pi}{4}\right)} \ge \sum_{k=1}^{\infty} \frac{1}{(8k+2)^p ((8k+2)^p + 1)}$$

故此时等式右边的第二个级数发散.