

《现代密码学》第四讲

分组密码 (二)

上ji内容回顾

●分组密码定义

●分组密码算法的设计思想

本节主要内容

- DES算法的整体结构
- DES算法的轮函数
- DES算法的密钥编排算法
- ◆ DES的安全增强

本节主要内容

- DES算法的整体结构
- DES算法的轮函数
- DES算法的密钥编排算法
- DES的安全增强

DES是从1975年被美国联邦政府确定为非敏感信息的加密标准,它利用56比特长度的密钥K来加密长度为64比特的明文,得到64比特长的密文。

1997年,由于计算机技术迅速发展,DES的密钥长度已经太短,NIST建议停止使用DES算法作为标准. 目前,二重DES和三重DES仍然广泛使用。

▶ 1. 给定明文,通过一个固定的初始置换IP来重排输入明文块P中的比特,得到比特串P₀=IP(P)=L₀R₀, 这里L_{0和}R₀分别是P₀的前32比特和后32比特

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3

ΙP

初始置换IP

- » Feistel结构
- ▶ 2. 按下述规则进行16 次迭代,即1≤i≤16
- $L_i = R_i 1 \bigoplus R_i = L_i \oplus f(R_{i-1}, K_i)$ 这里 是对应比特的模2加, f是一个函数(称为轮函 数);
 - 16个长度为48比特的子密 钥K_i(1≤i≤16)是由密 钥k经密钥编排函数计算 出来的.

DES算法的整体结构——Feistel结构

DES算法的整体结构——Feistel结构

41

3. 对比特串R₁₆L₁₆使用逆置换IP⁻¹得到密文C,即 C=IP⁻¹(R₁₆L₁₆)。(注意L₁₆和R₁₆的相反顺序)

	40	8	48	16	56	24	64	32
	39	7	47	15	55	23	63	31
	38	6	46	14	54	22	62	30
J	37	5	45	13	53	21	61	29
T	36	4	44	12	52	20	60	28
	35	3	43	11	51	19	59	27
	34	2	42	10	50	18	58	26

17

57

 ${
m IP}^{-1}$

初始置换的 逆置换IP

33

25

本节主要内容

- DES算法的整体结构——Feistel结构
- DES算法的轮函数
- DES算法的密钥编排算法
- DES的安全增强

函数f以长度为32比特串R_{i-1}作为第一输入,以

长度为48比特串K_i作为第二个输入,产生长度为32

比特的输出:

E扩展: R_{i-1}根据扩展规则扩展为48比特长度的串;

	E	比特—	—选择表	ŧ	3
32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

密钥加: 计算 $E(R_{i-1}) \oplus K_i$, 并将结果写成8个比特

串,每个6比特,B=B₁B₂B₃B₄B₅B₆B₇B₈

S**盒代换**: 使用8个S盒 S_1 …… S_8 . 每个 S_i 是一个固定的4*16阶矩阵,其元素取 0° 15之间的整数.

给定长度为6的比特串,如Bj=b₁b₂b₃b₄b₅b₆,Sj(Bj)计算如下:

- 1) b_1b_6 两个比特确定了 S_j 的行r的二进制表示(0 \leq r \leq 3),
- 2) b₂b₃b₄b₅四个比特确定了S_j的列c的二进制表示(0≤c≤15),
- 3) $S_j(B_j)$ 定义成长度为4的比特串的值 $S_j(r,c)$ 。由此可以算出 $C_j=S_j(B_j)$, $1 \le j \le 8$.

								No.			-	_	-	_	_
14	4	13	-	2	15	11		3	10	-	-12)	353	739	1104	1
14 0	15	7	4	14	15 2	11 13	8	10	10 6	12	1		-	TY OF POSTS	
4		14	8	13	6	2	11	15	12	9	7	BENING	10	TY OF POSTS	ANDTELE
15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
17)	12	0		-	9	1		32			14	10	U		L
15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
3	13	4	7	15	2	8	14	12	_	1	10	6	9	11	5
0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9
13	0	10		3	1.7	(78)		33	10	-	12	, U .	3	14	9
10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12
2000	10	ده ۱	· ·	U	9	0		34	العار	14	1 3	10	L 2		12
7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
12	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14
	1.3	·	U	10	-	1.5		35				12			17
2	12		1	7	10	11	6	8	5	3	15	12		1	9
14	11	2	12	4	7	13	1	5	0	15	10	13 3	9	14 8	6
4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3
	0.	12		-	17	E		36	10		170	10	100	A	
12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
10	15	4	2	7	12	9	5	6	1	13	14	0	111	3	8
9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13
1 T			-	-	-		17.00	37	1		-		· ·		
4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12
U	-11	1.5	0		-4	10		38			LJ	14		3	12
13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
		214	- viz	3.4	10		13	15	12		-	3	5	6	11
2信	-	女子	- hr	1	10	8	13	13	12	9	0	3	Э	0	11

P置换: 长度为32比特串C=C₁C₂C₃C₄C₅C₆C₇C₈,根据固定置换P(*)进行置换,得到比特串P(C)。

	P置	换	
16	7	20	21
29	12	28	17
1	15	23	26
5	18	31	10
2	8	24	14
32	27	3	9
19	13	30	6
22	11	4	25

本节主要内容

- DES算法的整体结构——Feistel结构
- DES算法的轮函数
- DES算法的密钥编排算法
- DES的安全增强

给定64比特密钥K
 ,根据固定的置换PC-1来处理K得到PC-1(K)
 =C₀D₀,其中C₀和D₀分别由最前和最后28比特组成

			PC-1			
57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

计算C_i=LS_i(C_i-1)和D_i=LS_i(D_i-1),且K_i=PC-2(C_iD_i),LS_i表示循环左移两个或一个位置,具体地,如果i=1,2,9,16就移一个位置,否则就移两个位置,PC-2是另一个固定的置换。

		PC	C-2		
14	17	11	24	1	5
3	28	15	6	21	10
23	19	12	4	26	8
16	7	27	20	13	2
41	52	31	37	47	55
30	40	51	45	33	48
44	49	39	56	34	53
46	42	50	36	29	32

。对1≤i≤16, DES的每一轮中使用K的56比特中的

48个比特,具体选取位置由下表确定

	北京	鄞	電	大学	
--	----	---	---	----	--

					轮	1					
10	51	34	60	49	17	33	57	2	9	19	42
3	35	26	25	44	58	59	1	36	27	18	41
22	28	39	54	37	4	47	30	5	53	23	29
61	21	38	63	15	20	45	14	13	62	55	31
					轮	2					
2	43	26	52	41	9	25	49	59	1	11	34
60	27	18	17	36	50	51	58	57	19	10	33
14	20	31	46	29	63	39	22	28	45	15	21
53	13	30	55	7	12	37	6	5	54	47	23

轮3											
51	27	10	36	25	58	9	33	43	50	60	18
44	11	2	1	49	34	35	42	41	3	59	17
61	4	15	30	13	47	23	6	12	29	62	5
37	28	14	39	54	63	21	53	20	38	31	7

			3-		轮	4		a:	OH 15		
35	11	59	49	9	42	58	17	27	34	44	2
57	60	51	50	33	18	19	26	25	52	43	1
45	55	62	14	28	31	7	53	63	13	46	20
2	12	61	23	38	47	ж	.37	4	22	15	54

			46	113	BEIDING	UNIVER	SITY OF	POSTS /	AND TELE	СОММ	UNICAT
19	60	43	33	58	26	42	1	11	18	57	51
41	44	35	34	17	2	3	10	9	36	27	50
29	39	46	61	12	15	54	37	47	28	30	4
5	63	45	7	22	31	20	21	55	6	62	38

					轮	6					
3	44	27	17	42	10	26	50	60	2	41	35
25	57	19	18	1	51	52	59	58	49	11	34
13	23	30	45	63	62	38	21	31	12	14	55
20	47	29	54	6	15	4	5	39	53	46	22

3	8		8 5	a	轮	7	52 52	84 8	ă.	52	86
52	57	11	1	26	59	10	34	44	51	25	19
9	41	3	2	50	35	36	43	42	33	60	18
28	7	14	29	47	46	22	5	15	63	61	39
4	31	13	38	53	62	55	20	23	37	30	6

		045 55		5	轮	8			l)		
36	41	60	50	10	43	59	18	57	35	9	3
58	25	52	51	34	19	49	27	26	17	44	2
12	54	61	13	31	30	6	20	62	47	45	23
55	15	28	22	37	46	39	4	7	21	14	53

					轮	9					
57	33	52	42	2	35	51	10	49	27	1	60
50	17	44	43	26	11	41	19	18	9	36	59
4	46	53	55	23	22	61	12	54	39	37	15
47	7	20	14	29	38	31	63	62	13	6	45

			6		北	18.	鄞	E	大	学	
			46	est.	BEILING	13	SITY OF	POSTS A	AND TELI	COMM	IUNICA
58	34	17	43	3	36	52	11	50	57	2	35
51	18	9	44	27	41	42	49	19	10	1	60
7	45	20	39	22	21	28	15	53	38	4	14
46	6	23	13	63	37	30	62	61	47	5	12

					轮	10					
41	17	36	26	51	19	35	59	33	11	50	44
34	1	57	27	10	60	25	3	2	58	49	43
55	30	37	20	7	6	45	63	38	23	21	62
31	34	4	61	13	22	15	47	46	28	53	29

					轮	14					
42	18	1	27	52	49	36	60	34	41	51	9
35	2	58	57	11	25	26	33	3	59	50	44
54	29	4	23	6	5	12	62	37	22	55	61
30	53	7	28	47	21	14	46	45	31	20	63

					轮	11					
25	1	49	10	35	3	19	43	17	60	34	57
18	50	41	11	59	44	9	52	51	42	33	27
39	14	21	4	54	53	29	47	22	7	5	46
15	38	55	45	28	6	62	31	30	12	37	13

					轮	15					
26	2	50	11	36	33	49	44	18	25	35	58
19	51	42	41	60	9	10	17	52	43	34	57
38	13	55	7	53	20	63	46	21	6	39	45
14	37	54	12	31	5	61	30	29	15	4	47

					轮	12					
9	50	33	59	19	52	3	27	1	44	18	41
2	34	25	60	43	57	58	36	35	26	17	11
22	61	5	55	38	37	13	31	6	54	20	30
V	BUP 122	89	29	宛	全31	46	15	14	63	21	28

					轮	16					
18	59	42	3	57	25	41	36	10	17	27	50
11	43	34	33	52	1	2	9	44	35	26	49
30	5	47	62	45	12	55	38	13	61	31	37
6	29	46	4	23	28	53	22	21	7	63	39

本节主要内容

- DES算法的整体结构——Feistel结构
- DES算法的轮函数
- DES算法的密钥编排算法
- DES的安全增强

DES的安全增强

穷举搜索攻击

目标: 给定输入输出对 (m_i, c_i = E(k, m_i))

i=1,..,3,寻找密钥k.

挑战消息

msg = "The unknown messages is:

XXXX ... "

$$CT = c_1 c_2 c_3 c_4$$

1997年1月

RSA Security 公司

数据加密标准 (DES) 攻击挑战

DES Challenge I

Rocke Verser, Justin Dolske, Matt Curtin, 和78,000个志愿者

分布式计算, 历时96天

1997年4月18日

DES Challenge II-1

distributed.net (or Distributed Computing Technologies, Inc.)

分布式计算, 历时39天

1998年2月23日

DES Challenge II-2

EFF (Electronic Frontier Foundation)

造价\$250,000的DES破译机, 历时2.5 天

1998年7月15日

DES Challenge III

EFF (Electronic Frontier Foundation)

造价\$250,000的DES破译机, 历时22.5小时

1999年1月19日

DES Challenge IV

DIS

COPACOBANA (120 FPGAs)

造价10K\$, 历时7天

2006年

DES安全增强

Triple-DES

● 令 E: K × M → M 是一个分组密码

定义 $3E: K^3 \times M \rightarrow M$ 为

 $3E((k_1,k_2,k_3), m) = E(k_3,E(k_2,E(k_1,m)))$

密钥长度 = 3×56 = 168 bits (穷举攻击复杂度 ≈ 2¹¹⁸).

主要知识点小结

- DES算法的整体结构——Feistel结构
- DES算法的轮函数
- DES算法的密钥编排算法

THE END!

