

Varianta 62

Subjectul I.

- $\mathbf{a)} \quad S_{ABC} = \sqrt{3} \ .$
- **b**) a = 1.
- c) AB = AC = BC = 2, deci triunghiul ABC este echilateral.
- **d**) $h_B = \sqrt{3}$.
- e) Distanța de la O la AB este de $2\sqrt{3}$.
- **f**) $z_1 + z_2 + z_3 + z_4 = 0$.

Subjectul II.

- 1.
- **a)** $x_1^3 + x_2^3 = -2$.
- **b**) $10\sqrt{2}$.
- c) Numărul funcțiilor $f: A \rightarrow B$, unde $A = \{1, 2\}$ și $B = \{1, 2, 3\}$ este egal cu 9.
- $\mathbf{d)} \ \begin{cases} a = -2 \\ b = 8 \end{cases}.$
- e) x > 0.
- 2
- a) $f'(x) = \frac{2(1-x^2)}{(1+x^2)^2}, \forall x \ge 1.$
- **b)** Avem $f'(x) < 0 \iff x > 1$, aşadar f este strict descrescătoare pe $[1, \infty)$.
- c) Dreapta Ox: y = 0 este asimptota (orizontală) spre $+\infty$ la graficul funcției.
- **d**) Folosind monotonia și continuitatea funcției f se arată că Im f = (0, 1].
- e) $\int_{1}^{2} f(x) dx = \ln \frac{5}{2}$.

Subjectul III.

- a) Pentru x = y = 0 în relația din enunț, obținem f(0) = 0.
- **b**) Pentru orice $x \in \mathbf{Q}$, punând y = -x în relația din enunț și folosind **a**) obținem f(-x) = -f(x).
- c) Se demonstrează prin inducție, folosind proprietatea din ipoteză.
- **d)** Pentru n = 0 și $x \in \mathbf{Q}$ oarecare, avem $f(0 \cdot x) = f(0) = 0 = 0 \cdot f(x)$

Pentru $n \in \mathbb{N}^*$ și $x \in \mathbb{Q}$ oarecare, alegând $x_1 = x_2 = ... = x_n = x$ în (1) obținem $f(nx) = n \cdot f(x)$.

e) Pentru $n \in \mathbb{N}^*$, alegând $x = \frac{1}{n}$ în **d**) obținem $f\left(\frac{1}{n}\right) = \frac{a}{n}$.

Dacă $x \in \mathbf{Q}$, x > 0, atunci există $p, n \in \mathbf{N}^*$ astfel încât $x = \frac{p}{n}$.

Din **d**) obținem $f(x) = f\left(p \cdot \frac{1}{n}\right) = a \cdot x$,

Pentru $x \in \mathbf{Q}$, x < 0, din **b**) și **a**) rezultă că $f(x) = a \cdot x$.

f) Evident, folosind definiția funcției bijective.

g) Considerăm subgrupul (H, +) al grupului $(\mathbf{Q}, +)$, astfel încât există $f : \mathbf{Q} \to H$ un izomorfism de grupuri. Obținem că există $a \neq 0$, astfel încât $\forall x \in \mathbf{Q}$, $f(x) = a \cdot x$. Se arată ușor că Im $f = \mathbf{Q}$, deci $H = \mathbf{Q}$.

Subjectul IV.

a)
$$g'(x) = x \cdot \cos x$$
, $\forall x \in \left[0, \frac{\pi}{2}\right]$.

b)
$$f'(x) = g\left(\frac{\pi}{x}\right)$$
, $\forall x \in (0, \infty)$.

c) Evident, folosind punctul a).

d) Din **c**), rezultă că g este strict crescătoare pe $\left[0, \frac{\pi}{2}\right]$, deci

$$\forall x \in \left(0, \frac{\pi}{2}\right), g(x) > g(0) = 1.$$

e) Pentru orice x > 2, funcția f este o funcție Rolle pe intervalul [x, x+1] și folosind teorema lui Lagrange deducem că există $c_x \in (x, x+1)$, astfel încât

$$\frac{f(x+1) - f(x)}{x+1-x} = f'(c_x) \stackrel{\text{b}}{=} g\left(\frac{\pi}{c_x}\right) \stackrel{\text{d}}{=} 1$$

f) Pentru $n \ge 3$, dându-i lui x succesiv valorile 3, 4, ..., n-1 în inegalitatea de la punctul e) și adunând relațiile obținute, deducem concluzia.

g) Pentru $n \in \mathbb{N}$, $n \ge 3$, avem $0 < f(n) = n \cdot \cos \frac{\pi}{n} < n$.

Folosind punctul f) deducem:

$$-\frac{1}{n^2} + \frac{(n-2)(n-1)}{2n^2} < \frac{f(1) + f(2) + \dots + f(n)}{n^2} < -\frac{1}{n^2} + \frac{(n-2)(n+3)}{2n^2}$$

și trecând la limită obținem $\lim_{n\to\infty} \frac{f(1)+f(2)+...+f(n)}{n^2} = \frac{1}{2}$.