Projeto_Pokemon

Thomas Raphael Zonta

2025-02-20

```
knitr::opts_chunk$set(echo = FALSE)
```

Bibliotecas

- Installing ggplot2 ...

Successfully installed 1 package in 15 milliseconds.

Essas foram as bibliotecas importadas para a realização desta análise.

```
## The following package(s) will be installed:
## - summarytools [1.1.1]
## These packages will be installed into "~/RSTUDIO/Trabalho_Pokemon/renv/library/windows/R-4.4/x86_64-
## # Installing packages -------
                                         OK [linked from cache]
## - Installing summarytools ...
## Successfully installed 1 package in 17 milliseconds.
## The following package(s) will be installed:
## - renv [1.1.1]
## These packages will be installed into "~/RSTUDIO/Trabalho_Pokemon/renv/library/windows/R-4.4/x86_64-
## # Installing packages -----
## - Installing renv ...
                                          OK [linked from cache]
## Successfully installed 1 package in 15 milliseconds.
## The following package(s) will be installed:
## - tidyverse [2.0.0]
## These packages will be installed into "~/RSTUDIO/Trabalho_Pokemon/renv/library/windows/R-4.4/x86_64-
## - Installing tidyverse ...
                                         OK [linked from cache]
## Successfully installed 1 package in 16 milliseconds.
## The following package(s) will be installed:
## - ggplot2 [3.5.1]
## These packages will be installed into "~/RSTUDIO/Trabalho_Pokemon/renv/library/windows/R-4.4/x86_64-
## # Installing packages -----
```

OK [linked from cache]

```
## The following package(s) will be installed:
## - readr [2.1.5]
## These packages will be installed into "~/RSTUDIO/Trabalho_Pokemon/renv/library/windows/R-4.4/x86_64-
## # Installing packages ------
## - Installing readr ...
                                          OK [linked from cache]
## Successfully installed 1 package in 16 milliseconds.
## The following package(s) will be installed:
## - dplyr [1.1.4]
## These packages will be installed into "~/RSTUDIO/Trabalho_Pokemon/renv/library/windows/R-4.4/x86_64-
## # Installing packages -----
                                          OK [linked from cache]
## - Installing dplyr ...
## Successfully installed 1 package in 16 milliseconds.
## The following package(s) will be installed:
## - summarytools [1.1.1]
## These packages will be installed into "~/RSTUDIO/Trabalho_Pokemon/renv/library/windows/R-4.4/x86_64-
## # Installing packages ------
## - Installing summarytools ...
                                           OK [linked from cache]
## Successfully installed 1 package in 15 milliseconds.
## The following package(s) will be installed:
## - readxl [1.4.3]
## These packages will be installed into "~/RSTUDIO/Trabalho_Pokemon/renv/library/windows/R-4.4/x86_64-
## # Installing packages -----
                                           OK [linked from cache]
## - Installing readxl ...
## Successfully installed 1 package in 15 milliseconds.
## The following package(s) will be installed:
## - knitr [1.49]
## These packages will be installed into "~/RSTUDIO/Trabalho_Pokemon/renv/library/windows/R-4.4/x86_64-
## # Installing packages -----
## - Installing knitr ...
                                          OK [linked from cache]
## Successfully installed 1 package in 16 milliseconds.
## The following package(s) will be installed:
## - dlookr [0.6.3]
## These packages will be installed into "~/RSTUDIO/Trabalho_Pokemon/renv/library/windows/R-4.4/x86_64-
## # Installing packages -----
## - Installing dlookr ...
                                          OK [linked from cache]
## Successfully installed 1 package in 17 milliseconds.
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.4 v readr 2.1.5
## v forcats 1.0.0 v stringr 1.5.1
                  v tibble 3.2.1
## v ggplot2 3.5.1
```

```
## v lubridate 1.9.4
                         v tidyr
                                     1.3.1
## v purrr
              1.0.4
                                        ## -- Conflicts -----
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
## Anexando pacote: 'summarytools'
##
##
## O seguinte objeto é mascarado por 'package:tibble':
##
##
       view
##
##
## Registered S3 methods overwritten by 'dlookr':
     method
##
                     from
##
     plot.transform scales
##
    print.transform scales
##
##
## Anexando pacote: 'dlookr'
##
##
## O seguinte objeto é mascarado por 'package:tidyr':
##
##
       extract
##
##
## O seguinte objeto é mascarado por 'package:base':
##
##
       transform
```

Base de dados Pokemon

A ideia do projeto é dentro da base de dados estipular quais pokemons dentro das 6 gerações catalogadas são os mais fortes utilizando a coluna que registra os dados de ataque básico. A seguir vamos carregas a nossa base de dados:

Análises iniciais da tabela

Contagem do número de linhas da tabela.

```
## n
## 1 800
```

Visualização das colunas da tabela.

Vamos visualizar o topo da base de dados para vermos os dados que teremos para trabalhar.

X.	Name	Type.1	Type.2	НР	Attack	Defense	SpAtk	SpDef	Speed	Generation	Legendary
1	Bulbasaur	Grass	Poison	45	49	49	65	65	45	1	False
2	Ivysaur	Grass	Poison	60	62	63	80	80	60	1	False
3	Venusaur	Grass	Poison	80	82	83	100	100	80	1	False
4	Mega	Grass	Poison	80	100	123	122	120	80	1	False
	Venusaur										
5	Charmander	Fire		39	52	43	60	50	65	1	False
6	Charmeleon	Fire		58	64	58	80	65	80	1	False

Tipos de dados da base de dados

Vamos visualizar o tipo de dados de cada coluna da nossa tabela.

##	# .	A tibble: 12	2 x 6				
##		variables	types	missing_count	missing_percent	unique_count	unique_rate
##		<chr></chr>	<chr></chr>	<int></int>	<dbl></dbl>	<int></int>	<dbl></dbl>
##	1	Х.	integer	0	0	800	1
##	2	Name	character	0	0	800	1
##	3	Type.1	character	0	0	18	0.0225
##	4	Type.2	character	0	0	19	0.0238
##	5	HP	integer	0	0	94	0.118
##	6	Attack	integer	0	0	111	0.139
##	7	Defense	integer	0	0	103	0.129
##	8	SpAtk	integer	0	0	105	0.131
##	9	SpDef	integer	0	0	92	0.115
##	10	Speed	integer	0	0	108	0.135
##	11	Generation	integer	0	0	6	0.0075
##	12	Legendary	character	0	0	2	0.0025

Frequência por tipo

Vamos visualizar a frequência com que cada tipo.1 aparece na nossa tabela.

```
\verb|## Error in table(names(candidates))[["tested"]]: \verb| indice for a dos limites||
```

Warning in parse_call(mc = match.call(), caller = "freq"): metadata extraction
terminated unexpectedly; inspect results carefully

Frequencies
df\$Type.1
Type: Character
##

##		Frea	% Valid	% Valid Cum.	% Total	% Total Cum.
		rreq	/₀ Valiu	% varia cum.	% IOUAL	% local cum.
## -						
##	Bug	69	8.62	8.62	8.62	8.62
##	Dark	31	3.88	12.50	3.88	12.50
##	Dragon	32	4.00	16.50	4.00	16.50
##	Electric	44	5.50	22.00	5.50	22.00
##	Fairy	17	2.12	24.12	2.12	24.12
##	Fighting	27	3.38	27.50	3.38	27.50

##	Fire	52	6.50	34.00	6.50	34.00
##	Flying	4	0.50	34.50	0.50	34.50
##	Ghost	32	4.00	38.50	4.00	38.50
##	Grass	70	8.75	47.25	8.75	47.25
##	Ground	32	4.00	51.25	4.00	51.25
##	Ice	24	3.00	54.25	3.00	54.25
##	Normal	98	12.25	66.50	12.25	66.50
##	Poison	28	3.50	70.00	3.50	70.00
##	Psychic	57	7.12	77.12	7.12	77.12
##	Rock	44	5.50	82.62	5.50	82.62
##	Steel	27	3.38	86.00	3.38	86.00
##	Water	112	14.00	100.00	14.00	100.00
##	<na></na>	0			0.00	100.00
##	Total	800	100.00	100.00	100.00	100.00

Primeira comparação de poder de ataque

Vamos usar um um código para trazer de cada geração registrada o pokemon mais forte e mais fraco.

##	#	A tibble: 6 x 5			
##		Generation Mais_Forte	${\tt max_atack}$	Mais_Fraco	min_atack
##		<int> <chr></chr></int>	<int></int>	<chr></chr>	<int></int>
##	1	1 Mega Mewtwo X	190	Chansey	5
##	2	2 Mega Heracross	185	Shuckle	10
##	3	3 Primal Groudon	180	Feebas	15
##	4	4 Mega Garchomp	170	Happiny	5
##	5	5 Kyurem Black Kyurem	170	Munna	25
##	6	6 Mega Diancie	160	Spewpa	22

Buscando outliers

Poderemos ver se há pokemons que fogem a média dos outros.

Gráfico de apresentação

Veremos o gráfico apresentando os dados dos pokemons mais fortes e fracos de cada geração.

Mais forte por tipo.1

Veremos a lista dos mais fortes pokemons por seu tipo.

##	# 1	A tibble:	18 x 3	
##		Type.1	Mais_forte_tipo1	max_forte
##		<chr></chr>	<chr></chr>	<int></int>
##	1	Psychic	Mega Mewtwo X	190
##	2	Bug	Mega Heracross	185
##	3	Dragon	Mega Rayquaza	180
##	4	Ground	Primal Groudon	180
##	5	Ghost	Mega Banette	165
##	6	Rock	Rampardos	165
##	7	Fire	Mega Blaziken	160
##	8	Normal	Slaking	160
##	9	Water	Mega Gyarados	155
##	10	Dark	Mega Absol	150
##	11	Steel	Aegislash Blade Forme	150
##	12	Fighting	Mega Lucario	145
##	13	Grass	Mega Abomasnow	132
##	14	Fairy	Xerneas	131
##	15	Ice	Mamoswine	130
##	16	${\tt Electric}$	Electivire	123
##	17	Flying	Tornadus Incarnate Forme	115
##	18	Poison	Toxicroak	106

Media de ataque

A média de ataque dos pokemons calculada na geração.

```
## # A tibble: 6 x 2
##
    Generation media
##
         <int> <dbl>
             1 76.6
## 1
## 2
             2 72.0
## 3
             3 81.6
## 4
             4 82.9
## 5
             5 82.1
             6 75.8
## 6
```

Estatísticas de ataque

Estatistica de ataque dos pokemons calculada por geração.

```
## # A tibble: 6 x 5
    Generation media desvio prim_quartil terc_quartil
##
         <int> <dbl> <dbl>
                                                <dbl>
                                   <dbl>
## 1
             1 76.6
                       30.7
                                    55
                                                 95
             2 72.0
                                    50
                                                 90
## 2
                       32.7
## 3
             3 81.6
                       36.6
                                    54
                                                100
## 4
             4 82.9
                       32.8
                                    62
                                                103
## 5
             5 82.1
                       30.4
                                    55
                                                103
## 6
             6 75.8
                       29.2
                                    53.2
                                                 94.2
```

Comparação de tipo e geração com base no ataque

Gráfico trazendo 3 parametros para demonstração: Geração, Tipo e Ataque

Função DESC

Adding missing grouping variables: 'Generation'

Descriptive Statistics

by Generation

Data Frame: df

N: 800

##							
##		1	2	3	4	5	6
##							
##	Mean	76.64	72.03	81.62	82.87	82.07	75.80
##	Std.Dev	30.74	32.71	36.59	32.78	30.37	29.18
##	Min	5.00	10.00	15.00	5.00	25.00	22.00
##	Q1	55.00	50.00	53.00	62.00	55.00	53.00
##	Median	75.00	73.50	75.00	80.00	80.00	69.50
##	Q3	95.00	90.00	100.00	103.00	103.00	95.00
##	Max	190.00	185.00	180.00	170.00	170.00	160.00
##	MAD	29.65	31.88	37.06	29.65	37.06	28.91
##	IQR	40.00	40.00	46.00	41.00	48.00	41.00
##	CV	0.40	0.45	0.45	0.40	0.37	0.38
##	Skewness	0.58	0.63	0.63	0.31	0.34	0.83
##	SE.Skewness	0.19	0.23	0.19	0.22	0.19	0.27
##	Kurtosis	0.55	0.72	-0.14	-0.06	-0.59	0.40
##	N Valid	166 00	106 00	160 00	121 00	165 00	82 00

##	N	166.00	106.00	160.00	121.00	165.00	82.00
##	Pct.Valid	100.00	100.00	100.00	100.00	100.00	100.00

Histograma de poder de ataque por quantidade

Separação por quantidade de pokemons nivelado por seu poder de ataque com bins =10

Distribuição de ataque separado por geração

Aqui podemos analisar separadamente cada geração com o gráfico violino o lado para o qual a calda pende, mostrando uma curva assimétrica com calda prolongada para direita.

Scatterplot entre ataque e defesa

Veremos um scatterplot entre ataque e defesa separados por tipo.1 de pokemon vendo se há correlação ao fato de um pokemon com alto ataque também tem um alto índice de defesa ou não.

Gráfico de linha

Veremos um gráfico de linha calculando a médita de ataque por geração.

- ## Warning: Using 'size' aesthetic for lines was deprecated in ggplot2 3.4.0.
- ## i Please use 'linewidth' instead.
- ## This warning is displayed once every 8 hours.
- ## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
- ## generated.

Note that the \mbox{echo} = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.