

STATISTICS FOR DATA SCIENCE HYPOTHESIS and INFERENCE

Dr. Deepa Nair

Department of Science and Humanities

UNIT-4 HYPOTHESIS and INFERENCE

Session-4

Drawing Conclusions from the Results of Hypothesis Tests

Dr. Deepa Nair

Department of Science and Humanities

Drawing Conclusions from the Results of Hypothesis Tests

- The only two conclusions that can be reached in a hypothesis test are that
- H_0 is false or that H_0 is plausible.
- One can never conclude that H_0 is true.

Drawing Conclusions from the Results of Hypothesis Tests

- How do we know when to reject H₀?
- The smaller the P-value, the less plausible H_0 becomes.
- A common rule of thumb is to draw the line at 5%. According to this rule of thumb, if $P \leq 0.05$, H_0 is rejected; otherwise H_0 is not rejected.

Drawing Conclusions from the Results of Hypothesis Tests

• The smaller the P-value, the more certain we can be that H_0 is false.

• The larger the P-value, the more plausible H_0 becomes, but we can never be certain that H_0 is true.

Drawing Conclusions from the Results of Hypothesis Tests

• There is no sharp dividing line between conclusive evidence against \boldsymbol{H}_0

• So while this rule of thumb is convenient, it has no real scientific justification.

Drawing Conclusions from the Results of Hypothesis Tests

• A rule of thumb suggests to reject H_0 whenever $P \leq 0.05$.

Drawing Conclusions from the Results of Hypothesis Tests

Statistical Significance:

- Whenever the *P*-value is less than a particular threshold, the result is said to be "statistically significant" at that level.
- So, for example, if $P \le 0.05$, the result is statistically significant at the 5% level; if $P \le 0.01$, the result is statistically significant at the 1% level, and so on.

Drawing Conclusions from the Results of Hypothesis Tests

Statistical Significance:

• If a result is statistically significant at the $100\alpha\%$ level, we can also say that the null hypothesis is "rejected at level $100\alpha\%$."

Drawing Conclusions from the Results of Hypothesis Tests

- The null hypothesis is rejected at the $100\alpha\%$ level.
- When reporting the result of a hypothesis test, report the P -value, rather than just comparing it to 5% or 1%.

Drawing Conclusions from the Results of Hypothesis Tests

- Let α be any value between 0 and 1. Then, if $P \leq \alpha$,
- The result of the test is said to be statistically significant at the $100\alpha\%$ level.

Drawing Conclusions from the Results of Hypothesis Tests

Example:

- A hypothesis test is performed of the null hypothesis H_0 : $\mu=0$. The P-value turns out to be 0.03.
- Is the result statistically significant at the 10% level? The 5% level? The 1% level?
- Is the null hypothesis rejected at the 10% level? The 5% level? The1% level?

Drawing Conclusions from the Results of Hypothesis Tests

Solution:

- The result is statistically significant at any level greater than or equal to 3%.
- Thus it is statistically significant at the 10% and 5% levels, but not at the 1% level.
- Similarly, we can reject the null hypothesis at any level greater than or equal to 3%
- So H_0 is rejected at the 10% and 5% levels, but not at the 1% level.

Drawing Conclusions from the Results of Hypothesis Tests

Example:

- The length of life *X* of certain computers is approximately normally distributed with mean 800 hours and standard deviation 40 hours.
- If a random sample of 30 computers has an average life of 788 hours, test the null hypothesis that $\mu=800\ hours$ against the alternate hypothesis that $\mu\neq800\ hours$. at
- 0.5% *b*) 1% *c*)4% *d*)5% *e*) 10% *f*)15% level of significance.

Drawing Conclusions from the Results of Hypothesis Tests

Solution:

$$H_0$$
: $\mu = 800 hours$, H_1 : $\mu \neq 800 hours$

$$\overline{X}=788$$
, $n=30$, $\mu=800$, $\sigma=40$

$$z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{788 - 800}{40 / \sqrt{30}} = -1.643$$

Drawing Conclusions from the Results of Hypothesis Tests

Solution:

Case 1:

$$\alpha = 0.5\% = 0.005$$

P- Value 0.101 > 0.005

So we need to reject the null hypothesis at 0.5% level.

Drawing Conclusions from the Results of Hypothesis Tests

Solution:

Case 2:

$$\alpha = 1\% = 0.01$$

P- Value 0.101 > 0.01

So we need to reject the null hypothesis at 1% level.

Drawing Conclusions from the Results of Hypothesis Tests

Solution:

Case 3:

$$\alpha = 4\% = 0.04$$

P- Value 0.101 > 0.04

So we need to reject the null hypothesis at 4% level.

Drawing Conclusions from the Results of Hypothesis Tests

Solution:

Case 4:

$$\alpha = 5\% = 0.05$$

P- Value 0.101 > 0.05

So we need to reject the null hypothesis at 5% level.

Drawing Conclusions from the Results of Hypothesis Tests

Solution:

Case 5:

$$\alpha = 10\% = 0.10$$

P- Value 0.101 > 0.10

So we need to reject the null hypothesis at 10% level.

Drawing Conclusions from the Results of Hypothesis Tests

Solution:

Case 6:

$$\alpha = 15\% = 0.15$$

P- Value 0.101 < 0.15

So we accept the null hypothesis at 15% level.

Drawing Conclusions from the Results of Hypothesis Tests

Example:

- Mice with an average life span of 32months will live up to 40 months when fed by a certain nutrious food.
- If 64 mice fed on this diet have an average life span of 38 months and standard deviation of 5.8 months.
- Is there any reason to believe that the average life span is less than 40 months.

Drawing Conclusions from the Results of Hypothesis Tests

Solution:

Let us take 0.01 as the significance level.

*H*₀:
$$\mu \ge 40$$
 months, *H*₁: $\mu < 40$ months $\overline{X} = 38$, $n = 64$, $\sigma \to s = 5.8$
$$z = \frac{38 - 40}{5.8/\sqrt{64}} = -2.76$$

P- Value is 0.00290.0029 < 0.01

We need to reject H_0

We will conclude that there is a reason to believe that the average life span of mice with nutrition food is less than 40 months

Dr. Deepa Nair

Department of Science and Humanities

deepanair@pes.edu