M4P54 Differential Topology

Lectured by Prof Paolo Cascini Typed by David Kurniadi Angdinata

Spring 2020

Syllabus

Contents

0	O Introduction	3
1	Differential forms on manifolds	4
	1.1 Alternating p -forms on a vector space	4
	1.2 Differential forms on manifolds	5
	1.3 Local description of p -forms	6
	1.4 Integration on manifolds	7

0 Introduction

Differential topology is the study of the topology of a manifold using analysis. The topics are

Lecture 1 Thursday 09/01/20

- $\bullet\,$ a review of differential forms,
- de Rham cohomology,
- Morse theory, and
- singular homology.

The following are references.

- J M Lee, Introduction to smooth manifolds, 2000
- L W Tu, Introduction to smooth manifolds, 2008
- J Milnor, Morse theory, 1960
- $\bullet\,$ A Banyaga and D Hurtubise, Lectures on Morse homology, 2004

1 Differential forms on manifolds

1.1 Alternating p-forms on a vector space

Let V be a vector space over \mathbb{R} , and let $p \geq 0$. Then $V^p = V \times \cdots \times V$.

Definition 1.1. A multilinear map $\omega: V^p \to \mathbb{R}$ is called an **alternating** p-form if we have

$$\omega\left(v_{\sigma(1)},\ldots,v_{\sigma(p)}\right)=\epsilon\left(\sigma\right)\omega\left(v_{1},\ldots,v_{p}\right),\qquad v_{1},\ldots,v_{p}\in V\qquad\sigma\in\mathcal{S}_{p},$$

where S_p is the group of permutations of p elements and $\epsilon(\sigma)$ is the signature of σ .

Recall that if m is the number of transpositions in a decomposition of σ , then $\epsilon(\sigma) = (-1)^m$, where a **transposition** is $(a_i a_j)$ for $a_i \neq a_j$.

Notation 1.2. $\Lambda^p V^* = \{\text{alternating } p\text{-forms } \omega \text{ on } V\} \text{ is called the } p\text{-th exterior power of } V.$

Check that it is a vector space. ¹

Example 1.3.

- $\bullet \ \Lambda^0 V^* = \mathbb{R}.$
- $\Lambda^1 V^* = V^* = \operatorname{Hom}(V, \mathbb{R})$, the dual of V.

Definition 1.4. Let $\omega_1 \in \Lambda^p V^*$ and $\omega_2 \in \Lambda^q V^*$. We define $\omega_1 \wedge \omega_2 \in \Lambda^{p+q} V^*$ the **exterior product** of ω_1 and ω_2 by

$$\omega_{1} \wedge \omega_{2}\left(v_{1}, \ldots, v_{p+q}\right) = \sum_{\sigma \in \mathcal{S}_{p,q}} \epsilon\left(\sigma\right) \omega_{1}\left(v_{\sigma(1)}, \ldots, v_{\sigma(p)}\right) \omega_{2}\left(v_{\sigma(p+1)}, \ldots, v_{\sigma(p+q)}\right), \qquad v_{1}, \ldots, v_{p+q} \in V,$$

where

$$S_{p,q} = \{ \sigma \in S_{p+q} \mid \sigma(1) < \dots < \sigma(p), \ \sigma(p+1) < \dots < \sigma(p+q) \}.$$

Example 1.5.

• Assume $\omega_1, \omega_2 \in \Lambda^1 V^*$. Then

$$\omega_1 \wedge \omega_2 (v_1, v_2) = \omega_1 (v_1) \omega_2 (v_2) - \omega_1 (v_2) \omega_2 (v_1), \quad v_1, v_2 \in V.$$

• Assume $\omega_1, \ldots, \omega_p \in \Lambda^1 V^*$. Then

$$\omega_1 \wedge \cdots \wedge \omega_p (v_1, \dots, v_p) = \det (\omega_i (v_i))_{i,i=1,\dots,p}, \quad v_1, \dots, v_p \in V.$$

Proposition 1.6. Let $\omega_i \in \Lambda^{p_i} V^*$ for i = 1, 2, 3.

- Associativity $(\omega_1 \wedge \omega_2) \wedge \omega_3 = \omega_1 \wedge (\omega_2 \wedge \omega_3)$.
- Distributivity $\omega_1 \wedge (\omega_2 + \omega_3) = \omega_1 \wedge \omega_2 + \omega_1 \wedge \omega_3$, assuming $p_2 = p_3$.
- Supercommutativity $\omega_1 \wedge \omega_2 = (-1)^{p_1 \cdot p_2} \omega_2 \wedge \omega_1$.

Definition 1.7. Let $\Phi: V \to W$ be a linear map between vector spaces over \mathbb{R} . Let $\omega \in \Lambda^p W^*$. Then the **pull-back** $\Phi^*(\omega) \in \Lambda^p V^*$ of ω is an alternating p-form on V defined by

$$\Phi^* (\omega) (v_1, \dots, v_n) = \omega (\Phi (v_1), \dots, \Phi (v_n)), \qquad v_1, \dots, v_n \in V.$$

 $^{^{1}}$ Exercise

Proposition 1.8. Given $\Phi: V \to W$ a linear map,

• the pull-back

$$\Phi^* : \Lambda^p W^* \longrightarrow \Lambda^p V^*
\omega \longmapsto \Phi^* (\omega)$$

is a linear map that preserves exterior products, that is

$$\Phi^* \left(\omega_1 \wedge \omega_2 \right) = \Phi^* \left(\omega_1 \right) \wedge \Phi^* \left(\omega_2 \right), \qquad \omega_1 \in \Lambda^p W^*, \qquad \omega_2 \in \Lambda^q W^*,$$

• if $\Psi: W \to Z$ is linear then

$$(\Psi \circ \Phi)^* (\omega) = \Phi^* (\Psi^* (\omega)), \qquad \omega \in \Lambda^p Z^*,$$

• assuming V = W and $p = \dim V$, then

$$\Phi^*(\omega) = (\det \Phi) \omega, \qquad \omega \in \Lambda^p V^*.$$

1.2 Differential forms on manifolds

Let M be a smooth manifold of dimension n, and let $x \in M$. Then the tangent space T_xM of M at x is a vector space of dimension n.

Notation 1.9. Let

$$\Lambda^{p} \mathbf{T}_{x}^{*} M = \Lambda^{p} \left(\mathbf{T}_{x} M \right)^{*}.$$

Consider the set

$$\Lambda^p \mathbf{T}^* M = \bigsqcup_{x \in M} \Lambda^p \mathbf{T}_x^* M,$$

the **p-th exterior bundle** on M. There exists a morphism $\pi: \Lambda^p T^*M \to M$ such that for all $x \in M$, $\pi^{-1}(x) = \Lambda^p T_x^*M$, so $\Lambda^p T^*M$ is a vector bundle and it is a smooth manifold, and π is a smooth morphism.

Example 1.10.

- $\Lambda^0 T^* M = M \times \mathbb{R}$.
- $\Lambda^1 T^* M$ is the **cotangent bundle**, the dual of the tangent bundle.

Lecture 2 Monday 13/01/20

Definition 1.11. A differential *p*-form ω on M is a smooth section of π . That is, it is a smooth morphism $\omega: M \to \Lambda^p T^*M$ such that $\pi \circ \omega = \mathrm{id}_M$.

Thus, $\omega(x) \in \Lambda^p T_x^* M$.

Notation 1.12.

$$\Omega^{p}\left(M\right)=\left\{ \text{differential }p\text{-forms }\omega\text{ on }M\right\} ,\qquad \Omega^{\bullet}\left(M\right)=\bigoplus_{p}\Omega^{p}\left(M\right) .$$

Example 1.13. $\Omega^0(M) \cong \{f : M \to \mathbb{R} \ \mathbb{C}^{\infty}\text{-function}\}.$

Exercise. If $n = \dim M$, then $\Omega^{n+1}(M) = 0$.

The algebra is the same as last week.

Definition 1.14. Let $\omega_1 \in \Omega^p(M)$ and $\omega_2 \in \Omega^q(M)$. Then $\omega_1 \wedge \omega_2 \in \Omega^{p+q}(M)$ is defined by

$$\omega_1 \wedge \omega_2(x) = \omega_1(x) \wedge \omega_2(x) \in \Lambda^{p+q} T_x^* M, \qquad x \in M.$$

By Proposition 1.6, associativity, distributivity, and supercommutativity hold for $\Omega^p(M)$. Let $F: M \to N$ be a smooth morphism between manifolds. Then for all $x \in M$, the differential of F at x is the linear map

$$DF_x: T_xM \to T_{F(x)}N.$$

Thus, for all $p \geq 0$, we have a natural map, called the **pull-back**,

$$F_{x}^{*} : \Lambda^{p} T_{F(x)}^{*} N \longrightarrow \Lambda^{p} T_{x}^{*} M$$

$$\omega \left(v_{1}, \dots, v_{p}\right) \longmapsto \omega \left(DF_{x}\left(v_{1}\right), \dots, DF_{x}\left(v_{p}\right)\right), \qquad \omega \in \Lambda^{p} T_{F(x)}^{*} N, \qquad v_{1}, \dots, v_{p} \in T_{x}^{*} M.$$

Thus, we can define

$$\begin{array}{cccc} F^{*} & : & \Omega^{p}\left(N\right) & \longrightarrow & \Omega^{p}\left(M\right) \\ & & \omega\left(x\right) & \longmapsto & F^{*}\left(\omega\left(F\left(x\right)\right)\right) \end{array}, \qquad \omega \in \Omega^{p}\left(N\right).$$

By Proposition 1.8, the pull-back preserves the exterior product, so

$$F^* (\omega_1 \wedge \omega_2) = F^* (\omega_1) \wedge F^* (\omega_2).$$

If $G: N \to P$,

$$(G \circ F)^* (\omega) = F^* (G^* (\omega)).$$

1.3 Local description of p-forms

Let M be a manifold of dimension n, let $x_0 \in M$, let (U, ϕ) be a local chart around x_0 , and let (x_1, \ldots, x_n) be local coordinates around x_0 . A basis of $T_{x_0}M$ is given by

$$\left\{ \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n} \right\}.$$

A basis of $T_{x_0}^*M$ is given by

$$\{dx_1, \dots, dx_n\}, \qquad dx_i \left(\frac{\partial}{\partial x_j}\right) = \delta_{ij}.$$

A basis of $\Lambda^p T_{x_0}^* M$ is

$$\mathrm{d}x_{i_1} \wedge \cdots \wedge \mathrm{d}x_{i_p}, \qquad i_1 < \cdots < i_p.$$

Thus, $\omega \in \Omega^p(M)$ is locally given by

$$\omega(x) = \sum_{|I|=p} f_I(x) dx_{i_1} \wedge \dots \wedge dx_{i_p}, \qquad I = (i_1, \dots, i_p), \qquad i_1 < \dots < i_p,$$

where f_I is a C^{∞} -function on U for all I.

Example 1.15. Let $F: M \to N$ be a smooth morphism between manifolds of dimension n, and let $\omega \in \Omega^n(N)$. Locally,

$$\omega(y) = f(y) dy_1 \wedge \cdots \wedge dy_n, \quad y \in N$$

for some $f \in \mathbb{C}^{\infty}$. Proposition 1.8 implies that

$$F^*(\omega)(x) = (f \circ F)(x) \det DF_x dx_1 \wedge \cdots \wedge dx_n, \qquad x \in M.$$

where $y_i = p_i \circ F$ and $p_i : \mathbb{R}^n \to \mathbb{R}$ is the *i*-th projection.

Let $f: M \to \mathbb{R}$ be a smooth function, so $f \in \Omega^{0}(M)$. Locally, the **differential** is

$$\begin{array}{cccc} \mathbf{d} & : & \Omega^0\left(M\right) & \longrightarrow & \Omega^1\left(M\right) \\ & f & \longmapsto & \sum_{i=1}^n \frac{\partial f}{\partial x_i} \, \mathrm{d}x_i \end{array}.$$

Check that $df \in \Omega^1(M)$, so df is a 1-form on M. Alternatively, $df = f^*(dx)$ for dx a 1-form on \mathbb{R} , or df(X) = X(f) for any vector field X on M. More in general, let $\omega \in \Omega^p(M)$. Locally,

$$\omega = \sum_{|I|=p} f_I dx_{i_1} \wedge \dots \wedge dx_{i_p}, \qquad f_I \in C^{\infty},$$

so $d\omega \in \Omega^{p+1}(M)$. Then the **de Rham differential** is

$$d : \Omega^{p}(M) \longrightarrow \Omega^{p+1}(M)$$

$$\omega \longmapsto \sum_{|I|=p} df_{I} \wedge dx_{i_{1}} \wedge \cdots \wedge dx_{i_{p}}.$$

Lecture 3

Tuesday 14/01/20

Proposition 1.16.

• The Leibnitz rule

$$d(\omega_{1} \wedge \omega_{2}) = d\omega_{1} \wedge \omega_{2} + (-1)^{p} \omega_{1} \wedge d\omega_{2}, \qquad w_{1} \in \Omega^{p}(M), \qquad \omega_{2} \in \Omega^{q}(M).$$

• $d^2 = 0$, that is

$$d(d\omega) = 0, \qquad \omega \in \Omega^p(M).$$

• Let $F: M \to N$ be a smooth morphism between manifolds. Then

$$F^*(d\omega) = d(F^*(\omega)), \qquad \omega \in \Omega^p(M)$$

so

$$\begin{array}{ccc} \Omega^{p}\left(M\right) & \stackrel{\mathrm{d}}{\longrightarrow} & \Omega^{p+1}\left(M\right) \\ & & & \uparrow^{F^{*}} & & \uparrow^{F^{*}} & \cdot \\ & & & \Omega^{p}\left(N\right) & \stackrel{\mathrm{d}}{\longrightarrow} & \Omega^{p+1}\left(N\right) & & \end{array}$$

Definition 1.17.

- $\omega \in \Omega^p(M)$ is **closed** if $d\omega = 0$.
- $\omega \in \Omega^{p}(M)$ is **exact** if there exists $\omega' \in \Omega^{p-1}(M)$ such that $d\omega' = \omega$.

 ω is exact implies that ω is closed, since if $\omega = d\omega'$ then $d\omega = d^2\omega' = 0$.

1.4 Integration on manifolds

Let M be a manifold of dimension n, let $F: M \to M$ be a smooth morphism, and let $\omega \in \Omega^n(M)$. Then

$$F^*(\omega)(x) = \det DF_x \omega(F(x)).$$

Locally, assume $\omega = f dy_1 \wedge \cdots \wedge dy_n$ for some coordinates y_1, \dots, y_n and $f \in C^{\infty}$. Let $\{(U_{\alpha}, \phi_{\alpha})\}$ be an atlas of M, and let $\phi_{\alpha} : U_{\alpha} \to V_{\alpha} \subset \mathbb{R}^n$. Then

$$h_{\alpha\beta} = \phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha} (U_{\alpha} \cap U_{\beta}) \subset \mathbb{R}^{n} \longrightarrow \phi_{\beta} (U_{\alpha} \cap U_{\beta}) \subset \mathbb{R}^{n}$$
$$\omega (x) \longmapsto (f \circ h_{\alpha\beta}) (x) \det (Dh_{\alpha\beta})_{x} dx_{1} \wedge \cdots \wedge dx_{n}$$

Let $D \subset \mathbb{R}^n$ be compact such that ∂D has zero measure, so D is a domain of integration, let $f: U \to \mathbb{R}$ be a C^{∞} -function where $U \subset \mathbb{R}^n$ is open such that $D \subset U$, and let $h: U \to h(U) \subset \mathbb{R}^n$ be a diffeomorphism. Then

$$\int_{h^{-1}(D)} f(y) \, \mathrm{d}y_1 \dots \mathrm{d}y_n = \int_{h^{-1}(D)} f(y) \, \mathrm{d}y_1 \wedge \dots \wedge \mathrm{d}y_n = \int_D (f \circ h)(x) |\det Dh_x| \, \mathrm{d}x_1 \wedge \dots \wedge \mathrm{d}x_n.$$

Definition 1.18. Let us assume that $\omega = f(y) dy_1 \wedge \cdots \wedge dy_n$ on U. We define

$$\int_{D} \omega = \int_{D} f(y) \, dy_{1} \wedge \cdots \wedge dy_{n}, \qquad D \subset U.$$

Definition 1.19. Let $U \subset \mathbb{R}^n$ be an open set. We define the **support** of ω as

$$\operatorname{supp}\omega=\overline{\left\{ x\in U\mid\omega\left(x\right)\neq0\right\} },\qquad\omega\left(x\right)\in\Lambda^{p}\mathrm{T}_{x}^{\ast}U.$$

Then ω has **compact support**, if supp ω is compact.

Under this assumption, we can define

$$\int_{U} \omega = \int_{D} \omega \in \mathbb{R},$$

which is well-defined.

Fact. Under the same assumption, if $\phi: V \to U$ is a diffeomorphism, provided that $\det D\phi_x > 0$, since $\det D\phi_x \neq 0$ for all x, then

$$\int_{U} \omega = \int_{V} \phi^{*} \left(\omega\right).$$

The goal is to define $\int_M \omega$. Let V be a vector space over \mathbb{R} of dimension n, and let $B = (b_1, \ldots, b_n) \subset V$ and $B' = (b'_1, \ldots, b'_n) \subset V$ be ordered bases of V. Then B and B' have the **same orientation** if $\det T > 0$ where

$$\begin{array}{cccc} T & : & V & \longrightarrow & V \\ & b_i & \longmapsto & b'_i \end{array}$$

is a linear map. Let $\omega \in \Lambda^n V^*$ for $\omega \neq 0$. Then B and B' have the same orientation if and only if $\omega(b_1,\ldots,b_n)$ has the same sign as $\omega(b'_1,\ldots,b'_n)$, by Proposition 1.8. An **orientation** Λ of V is a set of all the ordered basis of V with the same orientation. Let $\phi:V\to W$ be an isomorphism of vector spaces with fixed orientations Λ_v and Λ_w respectively. We say that ϕ is **orientation preserving** if an ordered basis of V induces an ordered basis of W, so Λ_v induces Λ_w .

Example 1.20. Let $V = \mathbb{R}^n$, and let $e_i = (0, \dots, 0, 1, 0, \dots, 0)$. Then e_1, \dots, e_n defines an orientation of V called **positive**.

Let M be a manifold. The idea is to find an orientation Λ_x of T_xM for all $x \in M$.

Special case. Let $M = U \subset \mathbb{R}^n$ be open. There exists a natural isomorphism $\phi_x : T_x U \to \mathbb{R}^n$. Let Λ_x^+ be an orientation on $T_x U$ such that ϕ_x is orientation preserving with respect to the positive orientation on \mathbb{R}^n . Let $\Lambda^+ = \{\Lambda_x^+\}$.

General case. Let $\{(U_{\alpha}, \phi_{\alpha})\}$ be an atlas on M. On U_{α} , we define the orientation so that $(\mathrm{D}\phi_{\alpha})_x : \mathrm{T}_x U_{\alpha} \to \mathrm{T}_{\phi_{\alpha}(x)}\phi_{\alpha}(U) \subset \mathbb{R}^n$ is orientation preserving. This is called the positive orientation on the chart $(U_{\alpha}, \phi_{\alpha})$. We define Λ on M, which is a collection of Λ^+ on $\mathrm{T}_x M$ for all $x \in M$. Then M is **orientable** if there exists an atlas with positive orientation charts. This coincides in assuming that $\det \mathrm{D}\left(\phi_{\beta}^{-1} \circ \phi_{\alpha}\right) > 0$ for all α and β .

For all $p \geq 0$,

$$\Omega_{c}^{p}(M) = \{\omega \in \Omega^{p}(M) \mid \operatorname{supp} M \text{ is compact}\}.$$

If M is compact $\Omega_{\rm c}^p(M) = \Omega^p(M)$. Let $\omega \in \Omega_{\rm c}^r(M)$. Assume ${\rm supp}\,\omega \subset U$ where (U,ϕ) is a chart of M, and $\phi: U \to \phi(U) \subset \mathbb{R}^n$. Assume also that (U,ϕ) is positively oriented. Let $\phi^{-1}: \phi(U) \to U$ such that $(\phi^{-1})^*(\omega) \in \Omega_{\rm c}^n(\phi(U))$, that is ${\rm supp}\,(\phi^{-1})^*(\omega) \subset \phi(U)$. We define

$$\int_{M} \omega = \int_{\phi(U)} (\phi^{-1})^* (\omega).$$

We need to show that, under the assumptions above, $\int_M \omega$ does not depend on (U, ϕ) . Let $(\overline{U}, \overline{\phi})$ be also a positively oriented chart such that supp $\omega \subset \overline{U}$. We want to show that

$$\int_{\phi(U)} (\phi^{-1})^* (\omega) = \int_{\overline{\phi}(\overline{U})} (\overline{\phi}^{-1})^* (\omega).$$

Let

$$\overline{\phi}\circ\phi^{-1}:\phi\left(U\cap\overline{U}\right)\to\overline{\phi}\left(U\cap\overline{U}\right),$$

SO

$$\mathbb{R}^n \supset \phi\left(U \cap \overline{U}\right) \xrightarrow{\overline{\phi}} \overline{\phi}\left(U \cap \overline{U}\right) \subset \mathbb{R}^n$$

Lecture 4 Thursday 16/01/20 Since both charts are positively oriented the determinant of the differential D $(\overline{\phi} \circ \phi^{-1})$ is positive. Then

$$\begin{split} \int_{\overline{\phi}(U)} \left(\overline{\phi}^{-1}\right)^* (\omega) &= \int_{\overline{\phi}(U \cap \overline{U})} \left(\overline{\phi}^{-1}\right)^* (\omega) \\ &= \int_{\overline{\phi}(U \cap \overline{U})} \left(\overline{\phi} \circ \phi^{-1}\right)^* \left(\overline{\phi}^{-1}\right)^* (\omega) \\ &= \int_{\overline{\phi}(U \cap \overline{U})} \left(\phi^{-1}\right)^* \circ \overline{\phi}^* \circ \left(\overline{\phi}^{-1}\right)^* (\omega) \\ &= \int_{\overline{\phi}(U \cap \overline{U})} \left(\phi^{-1}\right)^* \circ \left(\overline{\phi}^{-1} \circ \overline{\phi}\right)^* (\omega) \\ &= \int_{\overline{\phi}(U \cap \overline{U})} \left(\phi^{-1}\right)^* \circ \left(\overline{\phi}^{-1} \circ \overline{\phi}\right)^* (\omega) \\ &= \int_{\overline{\phi}(U \cap \overline{U})} \left(\phi^{-1}\right)^* (\omega) \\ &= \int_{\overline{\phi}(U)} \left(\phi^{-1}\right)^* (\omega) \\ &= \int_{\overline{\phi}(U)} \left(\phi^{-1}\right)^* (\omega) \\ &= \int_{\overline{\phi}(U)} \left(\phi^{-1}\right)^* (\omega) \\ &= 0 \text{ outside } \overline{\phi} \left(U \cap \overline{U}\right) . \end{split}$$

Let M be a manifold, and let $U = \{U_{\alpha}\}$ be an open covering. A **partition of unity** with respect to U is a collection of smooth functions $f_{\alpha}: M \to [0,1]$ such that

- 1. supp $f_{\alpha} = \overline{\{x \in M \mid f_{\alpha}(x) = 0\}} \subset U_{\alpha}$ for all α ,
- 2. $\sum_{\alpha} f_{\alpha}(x) = 1$ for all $x \in M$, and
- 3. for all $x \in M$, there exists $U \ni x$ open such that supp $f_{\alpha} \cap U \neq \emptyset$ for only finitely many α .

Remark. 3 implies that 2 is a finite sum.

Example 1.21. Let

$$M = S^1 = \{x \in \mathbb{R}^2 \mid |x| = 1\}, \qquad U_1 = S^1 \setminus \{(1,0)\}, \qquad U_2 = S^1 \setminus \{(-1,0)\},$$

so $\{U_i\}$ is a cover. Let

$$f_1(\cos\theta,\sin\theta) = \frac{1}{2} - \frac{1}{2}\cos\theta, \qquad f_2(\cos\theta,\sin\theta) = \frac{1}{2} + \frac{1}{2}\cos\theta.$$

Then f_i is a partition of unity.

Theorem 1.22. Let M be a manifold, and let $U = \{U_{\alpha}\}$ be an open covering of M. Then there exists a partition of unity f_{α} with respect to U.

Proof. We omit the proof. \Box

Theorem 1.23. Let M be a manifold, and let $n = \dim M$. Then M is orientable if and only if there exists $\omega \in \Omega^n(M)$ which is never vanishing on M.

 ω is called a **volume form** on M.

Proof.

Assume $\omega \in \Omega^n(M)$ is a volume form. We want to define an orientation Λ_x of T_xM for all $x \in M$. Given an oriented basis v_1, \ldots, v_n of T_xM we say that it is positively oriented if $\omega(x)(v_1, \ldots, v_n) > 0$. This defines Λ_x on T_xM which is compatible with the choice of an atlas on M. Indeed, the pull-back between two different charts is defined by the determinant, so it is orientation preserving, so M is orientable.