$$R_{l} = \frac{l - 2r + \frac{\pi r}{2}}{\lambda S}.$$
 (2)

Так как при постоянном напряжении сила тока обратно пропорциональна сопротивлению участка, то и для расхода жидкости будет выполняться аналогичное соотношение

$$\frac{V_I}{V_0} = \frac{R_0}{R_I} \,. \tag{3}$$

Следовательно,

$$V_{l} = V_{0} \frac{l}{l - 2r + \frac{\pi r}{2}}$$

графику зависимости скорости от времени приблизительно найти изменение координаты тела Δx за небольшой промежуток времени Δt по формуле $\Delta x = \frac{v_1 + v_0}{2} \Delta t$, где v_1, v_0 скорости тела в конце и начале рассматриваемого промежутка времени. Среднее значение ускорения на этом же временном приблизительно интервале можно рассчитать ПО формуле $\Delta x = \frac{v_1 - v_0}{\Delta t}$. Заметим, что координату тела легче рассчитывать в конце рассматриваемого интервала, а ускорение в его середине, кроме того, точность таких вычислений не слишком высока, поэтому лучше сначала построить графики зависимостей координаты и силы, действующей на тело (F = ma) от времени, а затем уже требуемую зависимость силы от координаты. Результаты таких построений

показаны на рисунках.

Работу, совершенную силой, проще и точнее рассчитать, как изменение кинетической энергии тела

$$A = \frac{mv^2}{2} \approx 12,5$$
Дж.

10 класс

1. Каждый атом в кристалле имеет три колебательных степени свободы. Следовательно, энергия колебательного движения одного атома равна 3kT, а энергия одного моля атомов $3kTN_A = 3RT$, где N_A - число Авогадро. Таким образом, молярная теплоемкость кристалла $C_\mu = 3R$. Заметим, что данный факт был установлен экспериментально еще в первой половине XIX века и носит название закона Дюлонга-Пти. Данный закон не учитывает изменение потенциальной энергии взаимодействия атомов кристаллической решетки, которая мало изменяется при изменении температуры.

Проверим справедливость закона Дюлонга-Пти для имеющихся данных. Для этого рассчитаем молярные теплоемкости металлов по формуле $C_{\mu}=C\mu$, и определим примерное значение газовой постоянной $R'=C_{\mu}/3$

Таблица.

1 tooling.				
металл	<i>C</i> ,	μ,	C_{μ} ,	R',
	кДж / (кг · К)	г/ моль	Дж / (моль · K)	Дж / (моль · К)
алюминий	0,88	27,0	23,76	7,92
железо	0,46	55,8	25,67	8,56
золото	0,13	197,0	25,61	8,54
магний	1,05	24,3	25,52	8,51
натрий	1,20	23,0	27,60	9,20
олово	0,20	118,6	23,72	7,91
марганец	0,50	54,9	27,45	9,15
медь	0,38	63,5	24,13	8,04

Как видно из проведенных расчетов, молярная теплоемкость действительно оказывается примерно одинаковой для всех металлов. Для более точной оценки газовой постоянной вычислим среднее значение величин R', а также оценим погрешность найденного значения.

$$\overline{R} = \frac{\sum R'_{i}}{n} \approx 8,48 \; \text{Дже / (моль · K)};$$