Macoun'IO

Automatisches Resizing

Max Seelemann

Das Problem

Fahrplan

- Das Problem
- Das Modell
- Erkennung
- Änderungen anwenden
- Einbettung in Lokalisierung
- DEMO!!!

Das Modell

	_	Column 1	Column 2		3	Column 4		5	Column 6	
	0	00	<u></u> Window							
Row 1		Cell 1		Cell 2						
Row 2	_		Cell 3			Cell 4				
Row 3						Cell 5			Cell 6	
										1

Tabelle

	Со	Column 1		lumn 1 Column 2			3	Column 4		5	Column 6		
Row 1		Cell 1		Cell 2									
Row 2			+	Cell 3			Cell 4	Т			\dashv		
Row 3							Cell 5			Cell 6			
									\perp				

Tabelle

	Column 1	Column 2	umn 2 3 Column 4		5	Column 6					
Row 1	Cell 1		Cell 2								
Row 2		Cell 3		Cell 4							
Row 3				Cell 5		Cell 6					
							Ш				

Tabelle

	Column 1	Column 2	3		Col 4		Column 5	6		
Row 1	Cell 1	C	Cell 2							
Row 2		Cell 3				Сє	ell 4			
Row 3				C	ell 5		Cell 6			
		_								

Oberflächen als Tabellen

- Zu unflexibel
- Zu viele Abhängigkeiten
- Zu viele Seiteneffekte

- Umgehen durch...
 - ... Schachtelung?
 - ... ein besseres Modell!

Das Auckland Layout Model

- Zellen liegen zwischen Tab-Stops
- Tab-Stops bilden
 Halbordnung
- Lineare (Un-)Gleichungen für Constraints
- Lineares UGLS lösen

Erkennung

Interfaces sind generell
 Tabellen-<u>ähnlich</u>

- Gruppierung in Zeilen, Spalten
 - Rekursiver Aufruf
- Generierung des Tab-Graphen
 - Komposition

Abhängigkeiten

- Bisher nur Struktur
 - Keine Abhängigkeiten zwischen Elementen
- Model erlaubt beliebige lineare Constraints
 - Unmöglich zu erkennen
- Fokus auf zwei Typen
 - Rest implizit durch Anwendung

Fahrplan

- √ Das Problem
- √ Das Modell
- √ Erkennung
- → Änderungen anwenden
- ➡ Einbettung in Lokalisierung
- DEMO!!!

Anwendung

· Lösen einen Linearen Optimierungsproblems

$$min: c_1 * x_1 + c_2 * x_2 + \ldots + c_n * x_n$$

$$c_{i1} * x_1 + c_{i2} * x_2 + \ldots + c_{in} * x_n \leq k_i$$

- Kodieren des Modells
 - Tab Stops: $x_i \le x_j$
 - Constraints: $x_{i+1} x_i \ge d_{min}(k)$

$$x_{i2} - x_{i1} = h$$

Problem: Zu wenig
 Constraints

- Lösung?
 - Original-Layout benutzen
 - Beste Lösung ist Original
 - Möglichst gut annähern

Zielfunktion mit minimaler Abweichung vom Original

$$\min: |x_0 - x_0'| + |x_1 - x_1'| + \dots + |x_n - x_n'|$$

• Linearisierung: $\min: \delta_0 + \delta_1 + \ldots + \delta_n$ $\delta_i >= x_i - x_i'$ $\delta_i >= x_i' - x_i$

• Gewichtung: $\min: \delta_0 + \delta_1 + \ldots + \delta_{n-1} + n * \delta_n$

• Größen-Verhalten der Elemente ist nicht-linear

· Größen-Verhalten der Elemente ist nicht-linear

Special Ordered Set

$$SOS_t[v_1, ..., v_n]$$

 $NZ \le SOS_t, |NZ| \le t$
 $v_i \notin NZ \Leftrightarrow v_i = 0$

Kodierung

$$SOS_{2}[v_{1},...,v_{n}]$$
 $v_{1} + ... + v_{n} = 1$
 $w \geq v_{1} * w_{1} + ... + v_{n} * w_{n}$
 $h \geq v_{1} * h_{1} + ... + v_{n} * h_{n}$

Höchstens t aufeinander-folgende von n Variablen sind nicht 0

- Zielfunktion hat Seiteneffekte
- Umformulieren auf Kanten

$$min: \sum_{t_i \to t_j} |(x_j - x_i) - (x'_j - x'_i)|$$

- Diese Zielfunktion hat ähnliche Seiteneffekte
- Gewichtung durch Klassifizierung

Bessere Zielfunktion

$$min: \sum_{t_i \to t_j} \left(\sigma_{ij} \cdot |(x_j - x_i) - (x'_j - x'_i)| \right)$$

$$\sigma_{ij} = \begin{cases} 1 & \text{if } t_i \to t_j \text{ red or blue,} \\ \frac{1}{N} & \text{otherwise.} \end{cases}$$

Demo

Einbettung in Lokalisierung

Lokalisierung unter Mac OS X

Lokalisierung

Inkrementelle Änderungen

Einfaches Layouting

Inkrementelles Layouting

Warum so und nicht so?

- Integriert mit Apple-Werkzeugen
- Kein fremder Code im Programm
- Einfache manuelle Kontrolle
- Erlaubt manuelles Finetuning
- Erlaubt Fallback auf manuelle Anpassung

Fahrplan

- √ Das Problem
- √ Das Modell
- ✓ Erkennung
- √ Änderungen anwenden
- ✓ DEMO!!!
- √ Einbettung in Lokalisierung

Abschluss

Ausblick

- Nutzbares automatisches Layout für Cocoa
- Praktische Einsetzbarkeit herstellen
- Eingesetzt werden
- Probleme finden und beheben

• iPhone?!?

Fragen?

Vielen Dank

Macoun'IO