

Universidad Tecnológica de la Mixteca

Clave DGP: 110506

Maestría en Modelación Matemática

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA

Introducción al cómputo científico

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Primero	221101	80

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

El alumno adquirirá una base matemática y computacional de las simulaciones numéricas, conocerá la motivación y las ideas detrás de los algoritmos, para la reconstrucción o predicción de fenómenos y procesos mediante modelos computacionales.

TEMAS Y SUBTEMAS

1. Estrategias y aproximaciones en cómputo científico

- 1.1. ¿Por qué estudiar cómputo científico?
- 1.2. Proceso de la simulación computacional.
- 1.3. Estrategias de solución a cualquier problema.
- 1.4. La aritmética de la computadora.
- 1.5. Estabilidad e inestabilidad de los algoritmos.
- 1.6. Presentación del software a utilizar.

2. Sistemas de ecuaciones lineales

- 2.1. Sistemas lineales.
- 2.2. Existencia y unicidad para ecuaciones lineales.
- 2.3. Sensibilidad y condicionamiento.
- 2.4. Tipos especiales de sistemas lineales.
- 2.5. Métodos iterativos.
- 2.6. Solución para sistemas lineales.
- 2.7. Aplicaciones.

3. Mínimos cuadrados lineales

- 3.1. Mínimos cuadrados y ecuaciones normales.
- 3.2. Existencia y unicidad.
- 3.3. Sensibilidad y condicionamiento.
- 3.4. Métodos de ortogonalización.
- 3.5. Descomposición de valores singulares.
- 3.6. Algoritmos usando matrices ortogonales.
- 3.7. Comparación de métodos.
- 3.8. Software para mínimos cuadrados.
- 3.9. Aplicaciones.

4. Ecuaciones no lineales

- 4.1. Ecuaciones no lineales.
- 4.2. Existencia y unicidad para ecuaciones no lineales.
- 4.3. Sensibilidad y condicionamiento.
- 4.4. Radio de convergencia y criterios de paro.
- 4.5. Ecuaciones no lineales en una dimensión.
- 4.6. Sistemas de ecuaciones no lineales.
- 4.7. Software para ecuaciones no lineales.
- 4.8. Aplicaciones.

5. Optimización

5.1. Problemas de Optimización.

- 5.2. Existencia y unicidad.
- 5.3. Sensibilidad y condicionamiento.
- 5.4. Optimización en una dimensión.
- 5.5. Optimización sin restricciones.
- 5.6. Mínimos cuadrados no lineales.
- 5.7. Optimización con restricciones.
- 5.8. Software para optimización.
- 5.9. Aplicaciones.

ACTIVIDADES DE APRENDIZAJE

El profesor siempre buscará un balance entre la teoría matemática detrás del método, su aplicación a problemas prácticos y su implementación computacional. Introducir al alumno a un lenguaje computacional de preferencia con licencia libre, por ejemplo, Python, Octave entre otros.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Se realizarán al menos dos evaluaciones parciales y una final, debe realizar un trabajo relacionado con los temas del curso. El profesor deberá tomar en cuenta la participación activa del alumno en clases y tareas, además de su puntual asistencia a las clases.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- 1. Scientific computing: an introductory survey, Heath, Michael T., SIAM, 2018.
- 2. Applied Scientific Computing with Python, Turner, P. Arildsen, T. Kavanagh, K.; Springer 2018.
- 3. Practical Numerical and Scientific Computing with MATLAB® and Python , Bashier, E.; CRC Press, 2020.

Consulta:

- Scientific computing: an introduction using Maple and MATLAB, Walter Gander, Martin J. Gander and Felix Kwok; Springer, 2014.
- 2. Scientific Computing: Approximation and Integration, Trangenstein, J.; Springer 2018.
- 3. Scientific Computing: Eigenvalues and Optimization. Trangenstein, J.; Springer 2018.

PERFIL PROFESIONAL DEL DOCENTE

Doctorado en Matemáticas o Matemáticas Aplicadas con conocimientos de programación.

Vo.Bo DE ESTUDIOS

DR. JOSÉ ANIBAL ARIAS AGUILAR GRADO
JEFE DE LA DIVISIÓN DE ESTUDIOS DE POSGRADO

DR. AGUSTÍN SANTIAGO ALVARAGOTORIA
VICE-RECTOR ACADÉMICADÉMICA

AUTORIZÓ