21-S-5-5-AG-077

A smooth leaning rod with a uniform mass is supported by a ball-and-socket joint at point A, the wall at point B, and a cable BC. Which forces are present on the diagram? Assume the wall is friction-less.

- a) A_x
- b) A_y
- c) A_z
- d) B_x
- e) B_y
- f) B_z
- g) C_x
- h) C_y
- i) C_z j) T_{BC}
- k) N_B

- 1) M_{Ax}
- m) M_{Ay}
- n) M_{Az}
- o) M_{Bx}
- p) M_{By}
- q) M_{Bz}
- r) M_{Cx}
- s) M_{Cy}
- t) M_{Cz}
- u) mg

Which equilibrium equation do you need to consider to solve for reaction components?

- a) $\sum M_A = 0$
- b) $\sum M_B = 0$
- c) $\sum M_C = 0$

ANSWER:

- a) A_x
- b) A_y
- c) A_z
- d) B_x
- e) B_y f) B_z
- g) C_x
- h) C_y
- i) C_z
- \mathbf{j}) T_{BC}
- k) N_B

- 1) M_{Ax}
- m) M_{Ay}
- n) M_{Az}
- o) M_{Bx}
- p) M_{By}
- q) M_{Bz}
- r) M_{Cx}
- s) M_{Cy}
- t) M_{Cz}
- u) *mg*

- a) $\sum M_A = 0$
- b) $\sum M_B = 0$
- c) $\sum M_C = 0$