over the basis $(\overrightarrow{a_0a_1}, \ldots, \overrightarrow{a_0a_m})$ in \overrightarrow{E} , then over the basis $(\overrightarrow{a_0a_1}, \ldots, \overrightarrow{a_0a_m}, a_0)$ in \widehat{E} , the coordinates of v are

$$(v_1,\ldots,v_m,0).$$

For any element $\langle a, \lambda \rangle$, where $\lambda \neq 0$, if the barycentric coordinates of a w.r.t. the affine basis (a_0, \ldots, a_m) in E are $(\lambda_0, \ldots, \lambda_m)$ with $\lambda_0 + \cdots + \lambda_m = 1$, then the coordinates of $\langle a, \lambda \rangle$ w.r.t. the basis (a_0, \ldots, a_m) in \widehat{E} are

$$(\lambda\lambda_0,\ldots,\lambda\lambda_m).$$

If a vector $v \in \overrightarrow{E}$ is expressed as

$$v = v_1 \overrightarrow{a_0 a_1} + \dots + v_m \overrightarrow{a_0 a_m} = -(v_1 + \dots + v_m)a_0 + v_1 a_1 + \dots + v_m a_m,$$

with respect to the affine basis (a_0, \ldots, a_m) in E, then its coordinates w.r.t. the basis (a_0, \ldots, a_m) in \widehat{E} are

$$(-(v_1+\cdots+v_m),v_1,\ldots,v_m).$$

Proof. We sketch parts of the proof, leaving the details as an exercise. Figure 25.2 shows the basis $(\overrightarrow{a_0a_1}, \overrightarrow{a_0a_2}, a_0)$ corresponding to the affine frame (a_0, a_1, a_2) in E.

Figure 25.2: The affine frame (a_0, a_1, a_2) of E and the basis $(\overrightarrow{a_0a_1}, \overrightarrow{a_0a_2}, a_0)$ in \widehat{E} .

If we assume that we have a nontrivial linear combination

$$\lambda_1 \overrightarrow{a_0 a_1} + \cdots + \lambda_m \overrightarrow{a_0 a_m} + \mu a_0 = 0,$$

if $\mu \neq 0$, then we have

$$\lambda_1 \overrightarrow{a_0 a_1} + \cdots + \lambda_m \overrightarrow{a_0 a_m} + \mu a_0 = \langle a_0 + \mu^{-1} \lambda_1 \overrightarrow{a_0 a_1} + \cdots + \mu^{-1} \lambda_m \overrightarrow{a_0 a_m}, \mu \rangle$$