VARIATIONAL BAYESIAN MONTE CARLO

Luigi Acerbi

Department of Basic Neuroscience University of Geneva

Nov 26, 2018

Introduction and motivation

2 Background

Variational Bayesian Monte Carlo

4 Experiments

Introduction and motivation

- 2 Background
- 3 Variational Bayesian Monte Carlo

4 Experiments

Bayesian inference with expensive black-box statistical models

Bayesian inference with expensive black-box statistical models

• Likelihood: $p(\mathcal{D}|\mathbf{x})$

(data \mathcal{D} , parameters $\mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^D$)

Bayesian inference with expensive black-box statistical models

- ullet Likelihood: $p(\mathcal{D}|oldsymbol{x})$ (data \mathcal{D} , parameters $oldsymbol{x} \in \mathcal{X} \subseteq \mathbb{R}^D$)
- No detailed information (e.g., no gradient)

Bayesian inference with expensive black-box statistical models

- ullet Likelihood: $p(\mathcal{D}|oldsymbol{x})$ (data \mathcal{D} , parameters $oldsymbol{x} \in \mathcal{X} \subseteq \mathbb{R}^D$)
- No detailed information (e.g., no gradient)
- $\sim 500-1000$ likelihood evaluations

Bayesian inference with expensive black-box statistical models

- ullet Likelihood: $p(\mathcal{D}|oldsymbol{x})$ (data \mathcal{D} , parameters $oldsymbol{x} \in \mathcal{X} \subseteq \mathbb{R}^D$)
- No detailed information (e.g., no gradient)
- $\sim 500-1000$ likelihood evaluations

Posterior:
$$p(\mathbf{x}|\mathcal{D}) = \frac{p(\mathcal{D}|\mathbf{x})p(\mathbf{x})}{p(\mathcal{D})}$$
 (in usable form)

Marginal likelihood: $p(\mathcal{D}) = \int p(\mathcal{D}|\mathbf{x})p(\mathbf{x}) d\mathbf{x}$

Marginal likelihood: $p(\mathcal{D}) = \int p(\mathcal{D}|x)p(x)dx$

Bayesian inference with expensive black-box statistical models

- ullet Likelihood: $p(\mathcal{D}|oldsymbol{x})$ (data \mathcal{D} , parameters $oldsymbol{x} \in \mathcal{X} \subseteq \mathbb{R}^D$)
- No detailed information (e.g., no gradient)
- $\sim 500-1000$ likelihood evaluations

Posterior:
$$p(x|\mathcal{D}) = \frac{p(\mathcal{D}|x)p(x)}{p(\mathcal{D})}$$
 (in usable form)
Marginal likelihood: $p(\mathcal{D}) = \int p(\mathcal{D}|x)p(x)dx$

(Why Bayesian inference?)

Example: LN-LN neuronal model

from Goris et al., Neuron (2015)

 Luigi Acerbi
 VBMC
 Nov 26, 2018
 5 / 4

Example: Drift-diffusion models

from Zhang et al., Front Psychol (2014)

 Luigi Acerbi
 VBMC
 Nov 26, 2018
 6 / 40

Bayesian inference with expensive black-box statistical models?

Bayesian inference with expensive black-box statistical models?

Standard approximate Bayesian inference methods

- Markov Chain Monte Carlo (MCMC)
- Variational inference (VI)

Bayesian inference with expensive black-box statistical models?

Standard approximate Bayesian inference methods

- Markov Chain Monte Carlo (MCMC)
- Variational inference (VI)

require

many likelihood evaluations

Bayesian inference with expensive black-box statistical models?

Standard approximate Bayesian inference methods

- Markov Chain Monte Carlo (MCMC)
- Variational inference (VI)

require

- many likelihood evaluations
- knowledge of the model (e.g., gradients, detailed structure)

 Luigi Acerbi
 VBMC
 Nov 26, 2018
 7 / 40

Bayesian inference with expensive black-box statistical models?

Bayesian inference with expensive black-box statistical models?

• Fit surrogate model to likelihood evaluations

Bayesian inference with expensive black-box statistical models?

- Fit surrogate model to likelihood evaluations
- Perform approximate inference with surrogate model

Bayesian inference with expensive black-box statistical models?

- Fit surrogate model to likelihood evaluations
- Perform approximate inference with surrogate model
- Use active sampling to smartly evaluate likelihood landscape

Introduction and motivation

- 2 Background
- 3 Variational Bayesian Monte Carlo
- 4 Experiments

ullet Approximate $p(\pmb{x}|\mathcal{D})$ with $q_{oldsymbol{\phi}}(\pmb{x})$

- Approximate $p(x|\mathcal{D})$ with $q_{\phi}(x)$
- Minimize KL $[q_{\phi}(\mathbf{x})||p(\mathbf{x}|\mathcal{D})] = \mathbb{E}_{q_{\phi}}\left[\log rac{q_{\phi}(\mathbf{x})}{p(\mathbf{x}|\mathcal{D})}
 ight]$

- Approximate $p(x|\mathcal{D})$ with $q_{\phi}(x)$
- ullet Minimize KL $[q_{oldsymbol{\phi}}(x)||p(x|\mathcal{D})] = \mathbb{E}_{q_{oldsymbol{\phi}}}\left[\lograc{q_{oldsymbol{\phi}}(x)}{p(x|\mathcal{D})}
 ight]$

$$\implies$$
 Maximize $\mathsf{ELBO}(\phi) = \mathbb{E}_{q_{\phi}}\left[\log p(\mathcal{D}|\mathbf{x})p(\mathbf{x})\right] + \mathcal{H}[q_{\phi}(\mathbf{x})]$

- Approximate $p(x|\mathcal{D})$ with $q_{\phi}(x)$
- Minimize KL $[q_{\phi}(x)||p(x|\mathcal{D})] = \mathbb{E}_{q_{\phi}}\left[\log rac{q_{\phi}(x)}{p(x|\mathcal{D})}
 ight]$

$$\implies$$
 Maximize $\mathsf{ELBO}(\phi) = \mathbb{E}_{q_{\phi}}\left[\log p(\mathcal{D}|\mathbf{x})p(\mathbf{x})\right] + \mathcal{H}[q_{\phi}(\mathbf{x})] \leq \log p(\mathcal{D})$

Nov 26, 2018 10 / 40

- Approximate $p(x|\mathcal{D})$ with $q_{\phi}(x)$
- Minimize KL $[q_{\phi}(x)||p(x|\mathcal{D})] = \mathbb{E}_{q_{\phi}}\left[\log \frac{q_{\phi}(x)}{p(x|\mathcal{D})}\right]$

$$\implies$$
 Maximize $\mathsf{ELBO}(\phi) = \mathbb{E}_{q_{\phi}}\left[\log p(\mathcal{D}|\mathbf{x})p(\mathbf{x})\right] + \mathcal{H}[q_{\phi}(\mathbf{x})] \leq \log p(\mathcal{D})$

Obtains

- An approximate posterior $q_{\phi}(x)$
- A lower bound to the log marginal likelihood, ELBO(ϕ)

Nov 26, 2018 10 / 40

- Approximate $p(x|\mathcal{D})$ with $q_{\phi}(x)$
- Minimize KL $[q_{\phi}(x)||p(x|\mathcal{D})] = \mathbb{E}_{q_{\phi}}\left[\log \frac{q_{\phi}(x)}{p(x|\mathcal{D})}\right]$

$$\implies$$
 Maximize $\mathsf{ELBO}(\phi) = \mathbb{E}_{q_{\phi}}\left[\log p(\mathcal{D}|\mathbf{x})p(\mathbf{x})\right] + \mathcal{H}[q_{\phi}(\mathbf{x})] \leq \log p(\mathcal{D})$

Obtains

- An approximate posterior $q_{\phi}(x)$
- A lower bound to the log marginal likelihood, ELBO(ϕ)

VI casts Bayesian inference into optimization + integration

Nov 26, 2018 10 / 40

GPs used as *priors* over $f: \mathcal{X} \subseteq \mathbb{R}^D \to \mathbb{R}$

GPs used as *priors* over $f: \mathcal{X} \subseteq \mathbb{R}^D \to \mathbb{R}$

- ullet mean function $m:\mathcal{X}
 ightarrow \mathbb{R}$
 - zero, constant, polynomial...

GPs used as *priors* over $f: \mathcal{X} \subseteq \mathbb{R}^D \to \mathbb{R}$

- ullet mean function $m:\mathcal{X}
 ightarrow \mathbb{R}$
 - zero, constant, polynomial...
- covariance function $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$
 - exponentiated quadratic $\kappa_{EQ}(\pmb{x},\pmb{x}') = \sigma_f^2 \exp\left[-\frac{1}{2}\sum_i \frac{(x_i-x_i')^2}{\ell_i^2}\right]$

GPs used as *priors* over $f: \mathcal{X} \subseteq \mathbb{R}^D \to \mathbb{R}$

- ullet mean function $m:\mathcal{X}
 ightarrow \mathbb{R}$
 - zero, constant, polynomial...
- ullet covariance function $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$
 - exponentiated quadratic $\kappa_{EQ}(\pmb{x},\pmb{x}')=\sigma_f^2\exp\left[-rac{1}{2}\sum_irac{(x_i-x_i')^2}{\ell_i^2}
 ight]$
- observation function
 - Figure 3. Gaussian (\sim small numerical noise $\sigma_{\rm obs}^2$)

GPs used as *priors* over $f: \mathcal{X} \subseteq \mathbb{R}^D \to \mathbb{R}$

- ullet mean function $m:\mathcal{X}
 ightarrow \mathbb{R}$
 - zero, constant, polynomial...
- covariance function $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$
 - exponentiated quadratic $\kappa_{EQ}(\pmb{x},\pmb{x}') = \sigma_f^2 \exp\left[-\frac{1}{2}\sum_i \frac{(x_i-x_i')^2}{\ell_i^2}\right]$
- observation function
 - Gaussian (\sim small numerical noise $\sigma_{\rm obs}^2$)

Posterior GPs

```
Training inputs \mathbf{X} = (x_1, \dots, x_n)
Observed values \mathbf{y} = (y_1 = f(\mathbf{x}_1), \dots, y_n = f(\mathbf{x}_n))
GP hyperparameters \psi = (\sigma_f, \ell, \sigma_{\text{obs}}, m_0, \dots)
```

Posterior GPs

```
Training inputs \mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)
Observed values \mathbf{y} = (y_1 = f(\mathbf{x}_1), \dots, y_n = f(\mathbf{x}_n))
GP hyperparameters \psi = (\sigma_f, \ell, \sigma_{\text{obs}}, m_0, \dots)
```

Posterior mean $\overline{f}(\mathbf{X}^*; \mathbf{X}, \mathbf{y}, \psi) = \kappa(\mathbf{X}, \mathbf{X}^*) \left[\kappa(\mathbf{X}, \mathbf{X}) + \sigma_{\mathrm{obs}}^2 \mathbf{I}_n \right]^{-1} \mathbf{y}$ Posterior covariance $C(\mathbf{X}^*; \mathbf{X}, \mathbf{y}, \psi) = \text{analytical expression}$

Luigi Acerbi VBMC Nov 26, 2018 14 / 40

Posterior GPs

Training inputs
$$\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$$

Observed values $\mathbf{y} = (y_1 = f(\mathbf{x}_1), \dots, y_n = f(\mathbf{x}_n))$
GP hyperparameters $\psi = (\sigma_f, \ell, \sigma_{\text{obs}}, m_0, \dots)$

Posterior mean $\overline{f}(\mathbf{X}^*; \mathbf{X}, \mathbf{y}, \psi) = \kappa(\mathbf{X}, \mathbf{X}^*) \left[\kappa(\mathbf{X}, \mathbf{X}) + \sigma_{\mathrm{obs}}^2 \mathbf{I}_n \right]^{-1} \mathbf{y}$ Posterior covariance $C(\mathbf{X}^*; \mathbf{X}, \mathbf{y}, \psi) = \text{analytical expression}$

Posterior GPs

Training inputs
$$\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$$

Observed values $\mathbf{y} = (y_1 = f(\mathbf{x}_1), \dots, y_n = f(\mathbf{x}_n))$
GP hyperparameters $\psi = (\sigma_f, \ell, \sigma_{\text{obs}}, m_0, \dots)$

Posterior mean $\overline{f}(\mathbf{X}^*; \mathbf{X}, \mathbf{y}, \psi) = \kappa(\mathbf{X}, \mathbf{X}^*) \left[\kappa(\mathbf{X}, \mathbf{X}) + \sigma_{\mathrm{obs}}^2 \mathbf{I}_n \right]^{-1} \mathbf{y}$ Posterior covariance $C(\mathbf{X}^*; \mathbf{X}, \mathbf{y}, \psi) = \text{analytical expression}$

GP marginal likelihood $p(y|X, \psi)$

Why don't we use GPs all the time

Why don't we use GPs all the time

• Computation of $\left[\kappa(\mathbf{X},\mathbf{X})+\sigma_{\mathrm{obs}}^{2}\mathbf{I}_{n}\right]^{-1}$ is $\mathit{O}(\mathit{n}^{3})$

Why don't we use GPs all the time

- Computation of $\left[\kappa(\mathbf{X},\mathbf{X}) + \sigma_{\text{obs}}^2 \mathbf{I}_n\right]^{-1}$ is $O(n^3)$
- Model mismatch

from xkcd.com/2048

Luigi Acerbi VBMC Nov 26, 2018 15 / 40

Example: Bayesian Optimization

Optimize expensive black-box functions

Example: Bayesian Optimization

Optimize expensive black-box functions

from Ghahramani, Nature (2015)

Luigi Acerbi VBMC Nov 26, 2018 16 / 40

Example: Bayesian Optimization

Optimize expensive black-box functions

from Ghahramani, Nature (2015)

Luigi Acerbi VBMC Nov 26, 2018 16 / 40

Evaluate integral of (expensive) black-box functions

Evaluate integral of (expensive) black-box functions

$$Z = \int p(x)f(x)dx$$

Evaluate integral of (expensive) black-box functions

$$Z = \int p(x)f(x)dx$$

- p(x) is Gaussian
- f(x) approximated via a GP with EQ covariance

Evaluate integral of (expensive) black-box functions

$$Z = \int p(x)f(x)dx$$

- p(x) is Gaussian
- f(x) approximated via a GP with EQ covariance

 \Longrightarrow posterior Z can be computed analytically

Evaluate integral of (expensive) black-box functions

$$Z = \int p(x)f(x)dx$$

- p(x) is Gaussian
- f(x) approximated via a GP with EQ covariance

 \Longrightarrow posterior Z can be computed analytically

from Duvenaud, NIPS workshop on Probabilistic Numerics (2012)

Luigi Acerbi VBMC Nov 26, 2018 17 / 40

Evaluate integral of (expensive) black-box functions

$$Z = \int p(x)f(x)dx$$

- p(x) is Gaussian
- f(x) approximated via a GP with EQ covariance

 \Longrightarrow posterior Z can be computed analytically

from Duvenaud, NIPS workshop on Probabilistic Numerics (2012)

Luigi Acerbi VBMC Nov 26, 2018 17 / 40

Evaluate marginal likelihood of (expensive) black-box functions

Evaluate marginal likelihood of (expensive) black-box functions

- Bayesian Monte Carlo (BMC), Rasmussen and Ghahramani, NIPS (2003)
- Doubly-Bayesian quadrature (BBQ), Osborne et al., NIPS (2012)
- Warped seq. active Bayesian integration (WSABI), Gunter et al., NIPS (2014)

Evaluate marginal likelihood of (expensive) black-box functions

- Bayesian Monte Carlo (BMC), Rasmussen and Ghahramani, NIPS (2003)
- Doubly-Bayesian quadrature (BBQ), Osborne et al., NIPS (2012)
- Warped seq. active Bayesian integration (WSABI), Gunter et al., NIPS (2014)

Acquisition functions

Evaluate marginal likelihood of (expensive) black-box functions

- Bayesian Monte Carlo (BMC), Rasmussen and Ghahramani, NIPS (2003)
- Doubly-Bayesian quadrature (BBQ), Osborne et al., NIPS (2012)
- Warped seq. active Bayesian integration (WSABI), Gunter et al., NIPS (2014)

Acquisition functions

Minimize expected variance of integral Z

Luigi Acerbi VBMC Nov 26, 2018 18 / 40

Evaluate marginal likelihood of (expensive) black-box functions

- Bayesian Monte Carlo (BMC), Rasmussen and Ghahramani, NIPS (2003)
- Doubly-Bayesian quadrature (BBQ), Osborne et al., NIPS (2012)
- Warped seq. active Bayesian integration (WSABI), Gunter et al., NIPS (2014)

Acquisition functions

- Minimize expected variance of integral Z
- Uncertainty sampling: Maximize variance of integrand p(x)f(x)

Luigi Acerbi VBMC Nov 26, 2018 18 / 40

Variational inference:

$$\begin{split} q_{\phi}(\textbf{\textit{x}}) &= \mathsf{argmax}_{\phi} \mathsf{ELBO}(\phi) \\ &= \mathsf{argmax}_{\phi} \left\{ \int q_{\phi}(\textbf{\textit{x}}) \mathsf{log} \left[p(\mathcal{D}|\textbf{\textit{x}}) p(\textbf{\textit{x}}) \right] d\textbf{\textit{x}} + \mathcal{H}[q_{\phi}(\textbf{\textit{x}})] \right\} \end{split}$$

Luigi Acerbi VBMC Nov 26, 2018 19 / 40

Variational inference:

$$\begin{split} q_{\phi}(\textbf{\textit{x}}) &= \mathsf{argmax}_{\phi} \mathsf{ELBO}(\phi) \\ &= \mathsf{argmax}_{\phi} \left\{ \int q_{\phi}(\textbf{\textit{x}}) \mathsf{log} \left[p(\mathcal{D}|\textbf{\textit{x}}) p(\textbf{\textit{x}}) \right] d\textbf{\textit{x}} + \mathcal{H}[q_{\phi}(\textbf{\textit{x}})] \right\} \end{split}$$

Bayesian quadrature:

$$Z = \int q(x)f(x)dx$$

Variational inference:

$$\begin{split} q_{\phi}(\textbf{\textit{x}}) &= \mathsf{argmax}_{\phi} \mathsf{ELBO}(\phi) \\ &= \mathsf{argmax}_{\phi} \left\{ \int q_{\phi}(\textbf{\textit{x}}) \mathsf{log} \left[p(\mathcal{D}|\textbf{\textit{x}}) p(\textbf{\textit{x}}) \right] d\textbf{\textit{x}} + \mathcal{H}[q_{\phi}(\textbf{\textit{x}})] \right\} \end{split}$$

Bayesian quadrature:

$$Z = \int q(x)f(x)dx$$

Variational inference:

$$\begin{split} q_{\phi}(\textbf{\textit{x}}) &= \mathsf{argmax}_{\phi} \mathsf{ELBO}(\phi) \\ &= \mathsf{argmax}_{\phi} \left\{ \int q_{\phi}(\textbf{\textit{x}}) \mathsf{log} \left[p(\mathcal{D}|\textbf{\textit{x}}) p(\textbf{\textit{x}}) \right] d\textbf{\textit{x}} + \mathcal{H}[q_{\phi}(\textbf{\textit{x}})] \right\} \end{split}$$

Bayesian quadrature:

$$Z = \int q(x)f(x)dx$$

$$VI + BQ = VBMC$$

Introduction and motivation

2 Background

Variational Bayesian Monte Carlo

4 Experiments

VBMC in an nutshell

In each iteration t:

- (Actively) sample new points, evaluate $f = \log p(\mathcal{D}|\mathbf{x}_{\text{new}})p(\mathbf{x}_{\text{new}})$
- 2 train GP model of the log joint f
- **1** update variational posterior q_{ϕ_t} by optimizing the ELBO

Loop until reaching termination criterion

Acerbi, NeurIPS (2018)

Luigi Acerbi Nov 26, 2018 21 / 40

Variational posterior

$$q_{\phi}(\mathbf{x}) = \sum_{k=1}^{K} w_k \mathcal{N}\left(\mathbf{x}; \boldsymbol{\mu}_k, \sigma_k^2 \boldsymbol{\Sigma}\right), \quad \boldsymbol{\Sigma} \equiv \mathsf{diag}[\lambda^{(1)^2}, \dots, \lambda^{(D)^2}]$$

Luigi Acerbi VBMC Nov 26, 2018 23 / 40

Variational posterior

$$q_{\phi}(\mathbf{x}) = \sum_{k=1}^{K} w_k \mathcal{N}\left(\mathbf{x}; \boldsymbol{\mu}_k, \sigma_k^2 \boldsymbol{\Sigma}\right), \quad \boldsymbol{\Sigma} \equiv \mathrm{diag}[\lambda^{(1)^2}, \dots, \lambda^{(D)^2}]$$

- $\mathbf{x} \in \mathbb{R}^D$
- $\phi \equiv (w_1, \dots, w_K, \mu_1, \dots, \mu_K, \sigma_1, \dots, \sigma_K, \lambda)$
- K(D+2) + D parameters
- K is changed adaptively each iteration

$$f(\mathbf{x}) = \log p(\mathcal{D}|\mathbf{x})p(\mathbf{x})$$

$$f(\mathbf{x}) = \log p(\mathcal{D}|\mathbf{x})p(\mathbf{x})$$

- Exponentiated quadratic covariance
- Gaussian observation noise
- Negative quadratic mean

$$f(\mathbf{x}) = \log p(\mathcal{D}|\mathbf{x})p(\mathbf{x})$$

- Exponentiated quadratic covariance
- Gaussian observation noise
- Negative quadratic mean

$$m_{NQ}(\mathbf{x}) = m_0 - \frac{1}{2} \sum_{i=1}^{D} \frac{\left(x^{(i)} - x_{m}^{(i)}\right)^2}{\omega^{(i)^2}},$$

$$f(\mathbf{x}) = \log p(\mathcal{D}|\mathbf{x})p(\mathbf{x})$$

- Exponentiated quadratic covariance
- Gaussian observation noise
- Negative quadratic mean

$$m_{NQ}(\mathbf{x}) = m_0 - \frac{1}{2} \sum_{i=1}^{D} \frac{\left(x^{(i)} - x_{m}^{(i)}\right)^2}{\omega^{(i)^2}},$$

Sample over GP hyperparameters (later optimize)

$$\mathsf{ELBO}(\phi,f) = \int q_{\phi}(\mathbf{x})f(\mathbf{x})d\mathbf{x} + \mathcal{H}[q_{\phi}(\mathbf{x})]$$

$$\mathsf{ELBO}(\phi,f) = \int q_{\phi}(\mathbf{x})f(\mathbf{x})d\mathbf{x} + \mathcal{H}[q_{\phi}(\mathbf{x})]$$

• Expected log joint and gradient are analytical

$$\mathsf{ELBO}(\phi, f) = \int q_{\phi}(\mathbf{x}) f(\mathbf{x}) d\mathbf{x} + \mathcal{H}[q_{\phi}(\mathbf{x})]$$

- Expected log joint and gradient are analytical
- Entropy via simple Monte Carlo
- Entropy gradient via reparametrization trick (Kingma & Welling, 2013; Miller et al., 2017)

Nov 26, 2018 25 / 40

$$\mathsf{ELBO}(\phi,f) = \int q_{\phi}(\mathbf{x})f(\mathbf{x})d\mathbf{x} + \mathcal{H}[q_{\phi}(\mathbf{x})]$$

- Expected log joint and gradient are analytical
- Entropy via simple Monte Carlo
- Entropy gradient via reparametrization trick (Kingma & Welling, 2013; Miller et al., 2017)

Optimize with SGD (Adam; Kingma & Ba, 2014)

Luigi Acerbi VBMC Nov 26, 2018 25 / 40

Optimize acquisition function: $x_{next} = arg \max_{x} a(x)$

Optimize acquisition function: $x_{next} = arg \max_{x} a(x)$

Goal: Evaluate $\mathbb{E}_{\phi}[f] = \int q_{\phi}(x)f(x)dx$

Optimize acquisition function:
$$\mathbf{x}_{next} = arg \max_{\mathbf{x}} a(\mathbf{x})$$

Goal: Evaluate
$$\mathbb{E}_{\phi}[f] = \int q_{\phi}(x)f(x)dx$$

$$\implies$$
 'Vanilla' uncertainty sampling: $a_{us}(x) = V(x)q_{\phi}(x)^2$

Luigi Acerbi VBMC Nov 26, 2018 26 / 40

Optimize acquisition function:
$$\mathbf{x}_{next} = arg \max_{\mathbf{x}} a(\mathbf{x})$$

Goal: Evaluate
$$\mathbb{E}_{\phi}\left[f\right] = \int q_{\phi}(x)f(x)dx$$

$$\Longrightarrow$$
 'Vanilla' uncertainty sampling: $a_{\mathsf{us}}(x) = V(x)q_{\phi}(x)^2$

Goal: Evaluate
$$\mathbb{E}_{\phi_1}[f]$$
, $\mathbb{E}_{\phi_2}[f]$, ..., $\mathbb{E}_{\phi_T}[f]$

Luigi Acerbi VBMC Nov 26, 2018 26 / 40

Optimize acquisition function: $x_{next} = arg \max_{x} a(x)$

Goal: Evaluate
$$\mathbb{E}_{\phi}\left[f\right] = \int q_{\phi}(x)f(x)dx$$

$$\implies$$
 'Vanilla' uncertainty sampling: $a_{\rm us}(x) = V(x)q_{\phi}(x)^2$

Goal: Evaluate
$$\mathbb{E}_{\phi_1}[f]$$
, $\mathbb{E}_{\phi_2}[f]$, ..., $\mathbb{E}_{\phi_T}[f]$

$$\Longrightarrow$$
 Prospective uncertainty sampling: $a_{ ext{pro}}(x) = V(x)q_{\phi}(x) \exp\left(\overline{f}(x)\right)$

Luigi Acerbi VBMC Nov 26, 2018 26 / 40

Expected Lower Confidence Bound (ELCBO)

$$\mathsf{ELCBO}(\phi, f) = \mathsf{ELBO}(\phi, f) - \beta_{\mathit{LCB}} \cdot \mathsf{SD}\left[\mathbb{E}_{\phi}\left[f\right]\right]$$

Expected Lower Confidence Bound (ELCBO)

$$\mathsf{ELCBO}(\phi, f) = \mathsf{ELBO}(\phi, f) - \beta_{\mathsf{LCB}} \cdot \mathsf{SD}\left[\mathbb{E}_{\phi}\left[f\right]\right]$$

- Adaptive number of components
 - Try adding new components at each iteration
 - ▶ Prune small components with little effect on ELCBO

Expected Lower Confidence Bound (ELCBO)

$$\mathsf{ELCBO}(\phi, f) = \mathsf{ELBO}(\phi, f) - \beta_{\mathsf{LCB}} \cdot \mathsf{SD}\left[\mathbb{E}_{\phi}\left[f\right]\right]$$

- Adaptive number of components
 - Try adding new components at each iteration
 - Prune small components with little effect on ELCBO
- Warm-up
 - Clamp K = 2, $w_1 = w_2 = \frac{1}{2}$
 - ▶ Warm-up ends when ELCBO improvement slows down

Luigi Acerbi VBMC Nov 26, 2018 27 / 40

Expected Lower Confidence Bound (ELCBO)

$$\mathsf{ELCBO}(\phi, f) = \mathsf{ELBO}(\phi, f) - \beta_{\mathsf{LCB}} \cdot \mathsf{SD}\left[\mathbb{E}_{\phi}\left[f\right]\right]$$

- Adaptive number of components
 - Try adding new components at each iteration
 - Prune small components with little effect on ELCBO
- Warm-up
 - Clamp K = 2, $w_1 = w_2 = \frac{1}{2}$
 - Warm-up ends when ELCBO improvement slows down
- Termination criteria
 - Reliability index $\rho(t)$
 - ▶ Long-term stability: $\rho(t) \le 1$ for n_{stable} iterations

Introduction and motivation

2 Background

3 Variational Bayesian Monte Carlo

4 Experiments

Experiment setup

Benchmark sets:

- Three families of synthetic functions $(D \in \{2, 4, 6, 8, 10\})$
- Neuronal model with real data (D=7)

Nov 26, 2018 29 / 40

Experiment setup

Benchmark sets:

- Three families of synthetic functions $(D \in \{2, 4, 6, 8, 10\})$
- Neuronal model with real data (D=7)

Procedure:

- Budget of $50 \times (D+2)$ likelihood evaluations
- Metrics
 - Error wrt true log marginal likelihood (LML)
 - 'Gaussianized' symmetrized KL divergence between ground truth and posterior approximation (gsKL)

Nov 26, 2018 29 / 40

Algorithms

- VBMC-U (a_{us}) and VBMC-P (a_{pro})
- Simple Monte Carlo (SMC), annealed importance sampling (AIS)
- Bayesian Monte Carlo (BMC)
- Doubly-Bayesian quadrature (BBQ, BBQ*)
- WSABI, linearized (WSABI-L) and moment-matching (WSABI-M)
- Posterior estimation via GPs (AGP, BAPE)

Algorithms

- VBMC-U (a_{us}) and VBMC-P (a_{pro})
- Simple Monte Carlo (SMC), annealed importance sampling (AIS)
- Bayesian Monte Carlo (BMC)
- Doubly-Bayesian quadrature (BBQ, BBQ*)
- WSABI, linearized (WSABI-L) and moment-matching (WSABI-M)
- Posterior estimation via GPs (AGP, BAPE)

Algorithms

- VBMC-U (a_{us}) and VBMC-P (a_{pro})
- Simple Monte Carlo (SMC), annealed importance sampling (AIS)
- Bayesian Monte Carlo (BMC)
- Doubly-Bayesian quadrature (BBQ, BBQ*)
- WSABI, linearized (WSABI-L) and moment-matching (WSABI-M)
- Posterior estimation via GPs (AGP, BAPE)

Synthetic target densities

Three families: Lumpy, Student, Cigar $D \in \{2, 4, 6, 8, 10\}$

Luigi Acerbi Nov 26, 2018 31 / 40

Synthetic target densities: Results

Synthetic target densities: Results

Neuronal model: Results

Function evaluations

smc
is
bmc
wsabi-L
wsabi-M
bbq
- agp
- bape
vbmc-U
vbmc-P

Function evaluations

Neuronal model: VBMC

 Luigi Acerbi
 VBMC
 Nov 26, 2018
 34 / 40

Computational cost

Control experiment

LML computed with WSABI-L on VBMC samples

Other quadrature methods:

(BMC, BBQ, WSABI)

$$Z = \int p(x)p(\mathcal{D}|x)dx$$

Luigi Acerbi VBMC Nov 26, 2018 37 / 40

Other quadrature methods:

(BMC, BBQ, WSABI)

$$Z = \int p(\mathbf{x})p(\mathcal{D}|\mathbf{x})d\mathbf{x}$$

VBMC:

$$\mathcal{I}_k = \int q_k(\mathbf{x}) \log \left[p(\mathbf{x}) p(\mathcal{D}|\mathbf{x}) \right] d\mathbf{x}$$

 Luigi Acerbi
 VBMC
 Nov 26, 2018
 37 / 40

Other quadrature methods:

(BMC, BBQ, WSABI)

$$Z = \int p(\mathbf{x}) p(\mathcal{D}|\mathbf{x}) d\mathbf{x}$$

VBMC:

$$\mathcal{I}_k = \int q_k(\mathbf{x}) \log \left[p(\mathbf{x}) p(\mathcal{D}|\mathbf{x}) \right] d\mathbf{x}$$

• GP representation

 Luigi Acerbi
 VBMC
 Nov 26, 2018
 37 / 40

Other quadrature methods:

(BMC, BBQ, WSABI)

$$Z = \int p(x)p(\mathcal{D}|x)dx$$

VBMC:

$$\mathcal{I}_k = \int \frac{q_k(\mathbf{x}) \log \left[p(\mathbf{x}) p(\mathcal{D}|\mathbf{x}) \right] d\mathbf{x}}{\mathbf{x}}$$

- GP representation
- Integration scope

 Luigi Acerbi
 VBMC
 Nov 26, 2018
 37 / 40

Nonstationarity

- Nonstationarity
- Model mismatch and robustness

- Nonstationarity
- Model mismatch and robustness
- Alternative GP representations

- Nonstationarity
- Model mismatch and robustness
- Alternative GP representations
- More principled algorithmic solutions

- Nonstationarity
- Model mismatch and robustness
- Alternative GP representations
- More principled algorithmic solutions
- Killer application in machine learning

Toolboxes

Final slide

- VBMC paper: https://arxiv.org/abs/1810.05558
- VBMC toolbox at: github.com/lacerbi/vbmc
- BADS toolbox at: github.com/lacerbi/bads

Final slide

- VBMC paper: https://arxiv.org/abs/1810.05558
- VBMC toolbox at: github.com/lacerbi/vbmc
- BADS toolbox at: github.com/lacerbi/bads

Acknowledgments

- Alexandre Pouget and the Pouget lab
- Robbe Goris

Final slide

- VBMC paper: https://arxiv.org/abs/1810.05558
- VBMC toolbox at: github.com/lacerbi/vbmc
- BADS toolbox at: github.com/lacerbi/bads

Acknowledgments

- Alexandre Pouget and the Pouget lab
- Robbe Goris

Thanks!