Алгебра, 1 курс Фейгин Евгений Борисович Формула оценки: $\frac{D+C+K+2E}{5}$, где D,C,K,E — оценки за d/s, KP, коллоквиум и экзамен соответственно.

Определение 1. Абелева группа — множество A с определённой на нём операцией + со следующими свойствами:

- $\bullet \ \forall a, b : a + b = b + c;$
- $\forall a, b, c : (a + b) + c = a + (b + c);$
- $\exists 0 \forall a : a + 0 = a$;
- $\forall a \exists (-a) : a + (-a) = 0.$

Определение 2. Кольцо — множество A с операциями + и \times со следующими свойствами:

- (A, +) группа;
- $a \times (b+c) = a \times b + b \times c$;
- $(b+c) \times a = b \times a + c \times a$.

Кроме того, у × могут быть такие дополнительные свойства:

- $\exists 1 : \forall a : a \times 1 = 1 \times a = a$ (если есть единица);
- $\forall a, b : a \times b = b \times a$ (если коммутативное кольцо);
- $\forall a, b, c : a \times (b \times c) = (a \times b) \times c$ (если ассоциативное кольцо);
- $\forall a,b:a\times b=0 \implies a=0\lor b=0$ (если нет делителей нуля).

Определение 3. Целостное кольцо — ассоциативное коммутативное кольцо с единицей без делителей нуля.

Определение 4. Поле — коммутативное ассоциативное кольцо с 1, такое, что $0 \neq 1$ и $\forall a \neq 0 \exists a^{-1} : aa^{-1} = 1$.

Замечание. Отсутствие делителей нуля в кольце не гарантирует, что это поле.

Определение 5. Подгруппа абелевой группы A — множество $B \subset A$, со следующими свойствами:

- $0 \in B$;
- $\bullet \ a \in B \implies (-a) \in B$:
- $a, b \in B \implies a + b \in B$.

Определение 6. Подкольцо — подгруппа $B \subset A$ такая, что $a, b \in B \implies a \times b \in B$.

Определение 7. Подполе — подкольцо $B \subset A$ такое, что $1 \in B$ и $a \in B \implies a^{-1} \in B$.

Определение 8. Комплексные числа — множество $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$ (здесь i — формальный символ) с операциями сложения и умножения, определёнными следующим образом:

- (a+bi) + (c+di) = (a+c) + (b+d)i;
- $\bullet (a+bi) \times (c+di) = (ac-bd) + (bc+ad)i.$

Теорема 1. \mathbb{C} — поле.

Доказательство. Вначале докажем, что \mathbb{C} — кольцо (это очевидно). Кроме того,

$$a^{2} + b^{2} \neq 0 \implies (a + bi) \left(\frac{a}{a^{2} + b^{2}} - \frac{b}{a^{2} + b^{2}} i \right) = 1,$$

значит, это поле.

Определение 9. Вещественная часть — число Re(a + bi) = a.

Определение 10. Мнимая часть — число Im(a + bi) = b.

Определение 11. Модуль комплексного числа — число $N(a+bi) = \sqrt{a^2 + b^2}$.

Определение 12. Аргумент комплексного числа — множество Arg(a+bi) чисел φ таких, что $a+bi=N(a+bi)(\cos\varphi+i\sin\varphi)$.

Тригонометрическая запись числа. Будем записывать

$$z = a + bi = N(z)(\cos Arg(z) + i\sin Arg(z)).$$

Тогда получится, что

$$z_1 z_2 = (N(z_1)N(z_2)) \left(\cos(Arg(z_1) + Arg(z_2)) + i\sin(Arg(z_1) + Arg(z_2))\right).$$

Определение 13. Автоморфизм поля — отображение $f: K \to K$ такое, что f(a) + f(b) = f(a+b) и f(a)f(b) = f(ab). Автоморфизмы кольца и абелевой группы определяются аналогично.

Определение 14. Изоморфизм групп — отображение $f: A \to B$ такое, что $f(0_A) = f(0_B)$ и $f(a_1 +_A a_2) = f(a_1) +_B f(a_2)$. Если такое отображение существует, то A и B называются изоморфными.

Заметим, что $a+bi\mapsto \overline{a+bi}:=a-bi$ — автоморфизм. Множество его фиксированных точек — это \mathbb{R} , и легко доказать, что $z\overline{z},z+\overline{z}\in\mathbb{R}$.

Рассмотрим уравнение $z^n=1$. Если $z=\cos\varphi+i\sin\varphi$, то $z^n=\cos n\varphi+i\sin n\varphi=1$, т.е. $\varphi=\frac{2\pi k}{n}$. Это будет n корней (для $k=0,\ldots,n-1$; будем обозначать $\xi_r=\cos\frac{2\pi r}{n}+i\sin\frac{2\pi r}{n}$), и они делят окружность N(z)=1 на n равных частей. Понятно, что если z_1,z_2 — корни, то и z_1z_2 тоже, кроме того, 1 — корень. Тогда это абелева группа по умножению, которая изоморфна $\mathbb{Z}/n\mathbb{Z}$ (по сложению).

Определение 15. Первообразный корень из 1 — такой корень ξ_k , что $\forall n \exists m : (\xi_k)^m = \xi_n$. Лемма 2. ξ_k (r-и степени) первообразный тогда и только тогда, когда (k,r)=1.

Определение 16. Фактор-множество — M/R множество классов эквивалентности на множестве M по отношению эквивалентности R.

Определение 17. Отображение проекции — функция $\pi: M \to M/R$, переводящая любой элемент a в множество R(a) элементов, эквивалентных a.

Лемма 3. π — сюръекция и $\pi^{-1}(x) = \{a \in M, a \sim x\}.$

Пусть на M есть операция *. Будем говорить, что * согласована с отношением R, если из того, что $a \sim a', b \sim b'$ следует, что $a*b \sim a'*b$. Тогда на M/R возникает индуцированная операция *.

 $Ecnu*cornacoвaнa\ c\ R,\ mo\ индуцированная\ one paquя\ наследует\ многие\ свойства*,\ в\ част$ $ности:\ accoquamuвность,\ коммутативность,\ наличие\ нейтрального\ элемента.$

Теорема 4. $\mathbb{Z}/n\mathbb{Z}$ поле тогда и только тогда, когда n простое.

Доказательство. Пусть $n = n_1 * n_2$. Тогда $[n_1]_n [n_2]_n = [n]_n = [0]_n$.

С другой стороны, пусть n простое. Тогда для любого $m=1,2,\ldots,n-1$ выполняется (m,n)=1, тогда $\exists u,v:um+vn=1\iff [m]_n[u]_n=[1]_n$. Тогда u обратно к m.

Определение 18. Характеристика поля — минимальное такое $k \in \mathbb{N}$, что $\underbrace{1+\ldots+1}_k=0$ (имеются в виду 0 и 1 из этого поля). Если такого k нет, то характеристика равна 0.

Лемма 5. Если \mathbb{K} — поле, то $char\mathbb{K}$ — 0 или простое число.

Доказательство. Пусть $char \mathbb{K} = n = n_1 n_2$. Тогда $0 = \underbrace{1 + \ldots + 1}_{n} = \underbrace{(\underbrace{1 + \ldots + 1}_{n_1})(\underbrace{1 + \ldots + 1}_{n_2})},$

значит, у нас есть делители нуля.

Определение 19. Евклидово кольцо — целостное кольцо K с функцией нормы $N: K\setminus 0 \to Z_{\geq 0}$ со следующими свойствами:

- $N(ab) \ge N(a)$, причём равенство только если b обратим.
- $\forall a, b \in K, b \neq 0 \exists q, r \in K : a = bq + r, N(r) < N(b).$

Примеры.

- \mathbb{Z} ; N(x) = |x|.
- Пусть F поле, тогда F[x] с функцией $N(P) = \deg P$ подходит.

Лемма 6. F[x] — евклидово кольцо.

Доказательство. Очевидно, что это целостное кольцо. Очевидно также, что $\deg fg \ge \deg f \deg g$ и равенство, только если какой-то из многочленов 0 степени, т.е. обратим. Докажем деление с остатком. Пусть $f = \sum f_i x^i, g = \sum g_i x^i, n = \deg f \ge \deg g = m$. Тогда рассмотрим $k = f - g \frac{f_n}{g_m} x^{n-m}$. Его степень меньше n, кроме того, $k \equiv f \mod g$, значит, можно проделать алгоритм Евклида.

3амечание. В этой лемме необходимо, чтобы F было полем. Например, в $\mathbb{Z}[x]$ не получится разделить 3x на 2x с остатком.

Теорема 7 (Безу). остаток от деления f(x) на x-c равен f(c). Доказательство. Следует из 6.

Теорема 8. Многочлен $f(x) \in F[x]$ не может иметь в F более $\deg f$ корней.

Доказательство. Пусть c_1, c_2 — корни этого многочлена. Тогда $f = (x - c_1)f_1$ и $f(c_2) = (c_2 - c_1)f_1(c_2)$. Так как $c_1 - c_2 \neq 0$, то $f_1(c_2)$ имеет корень c_2 . Индукция по $\deg f$.

Лемма 9. Пусть F — бесконечное поле. Тогда разные многочлены в F[x] определяют разные функции на F.

Доказательство. Пусть $f_1, f_2 \in F[x]$ определяют одну и ту же функцию. Тогда $f_1 - f_2 = 0 \forall x$. Но $f_1 - f_2$ имеет конечную степень, а F бесконечное. Противоречие.