

Vishay Siliconix

N-Channel 30 V (D-S) 175 °C MOSFET

DESCRIPTION

The attached SPICE model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the - 55 °C to 125 °C temperature ranges under the pulsed 0 V to 10 V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS
- Apply for both Linear and Switching Application
- Accurate over the 55 °C to + 125 °C Temperature Range
- · Model the Gate Charge

SUBCIRCUIT MODEL SCHEMATIC

Note

• This document is intended as a SPICE modeling guideline and does not constitute a commercial product datasheet. Designers should refer to the appropriate datasheet of the same number for guaranteed specification limits.

SPICE Device Model SUM85N03-06P

www.vishay.com	Vishay Siliconix

SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)							
PARAMETER	SYMBOL	TEST CONDITIONS	SIMULATED DATA	MEASURED DATA	UNIT		
Static							
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1.8	-	V		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 10 \text{ V}$	923	-	Α		
		$V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$	0.0044	0.0053	Ω		
Drain-Source On-State Resistance ^a	R _{DS(on)}	V _{GS} = 10 V, I _D = 20 A, T _J = 125 °C	0.0080	-			
		$V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A}$	0.0077	0.0078			
Diode Forward Voltage	V_{SD}	I _S = 100 A, V _{GS} = 0 V	0.89	1.2	V		
Dynamic ^b							
Input Capacitance	out Capacitance C _{iss}		3155	3100			
Output Capacitance	C _{oss}	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz	509	565	pF		
Reverse Transfer Capacitance	C _{rss}		177	255			
Total Gate Charge	Q_g		47	48			
Gate-Source Charge	Q_{gs}	$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 50 \text{ A}$	10	10	nC		
Gate-Drain Charge	Q_{gd}		7.5	7.5			
Turn-On Delay Time	t _{d(on)}		10	12			
Rise Time	t _r	$V_{DD} = 15 \text{ V}, R_L = 0.3 \Omega$ $I_D = 50 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 2.5 \Omega$	14	12	ns		
Turn-Off Delay Time	t _{d(off)}		26	30			
Fall Time	t _f		33	10			
Source-Drain Reverse Recovery Time	t _{rr}	I _F = 50 A, dl/dt = 100 A/μs	31	35			

Notes

- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.

www.vishay.com

Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA (T_J = 25 °C, unless otherwise noted)

Note

• Dots and squares represent measured data.