Model Documentation of the Overhead Crane

1 Nomenclature

1.1 Nomenclature for Model Equations

- s_1 center of gravity distance of the load
- m_1 mass of trolley 1
- m_2 mass of load
- m_3 mass of trolley 2
- J_2 moment of inertia of the load
- l_0 initial distance between the trolleys
- l_i length of rope i, where i = 1, 2
- g acceleration due to gravity
- p_1 absolute x position of the load
- p_2 absolute y position of the load
- p_3 angle between basis and the load
- q_i displacement of the trolley i in x direction, where i = 1, 2

1.2 Graphic of the Structure

Figure 1: Structure of the Overhead Crane. Source: Wrede, Konstantin / Modellbildung und Reglerentwurf für ein Brückenkransystem

2 Model Equations

State Vector and Input Vector:

$$\underline{x} = (p_1 \ p_2 \ p_3 \ q_1 \ q_2 \ \dot{p}_1 \ \dot{p}_2 \ \dot{p}_3 \ \dot{q}_1 \ \dot{q}_2)^T$$

$$= (x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7 \ x_8 \ x_9 \ x_{10})^T$$

$$\underline{u} = (u_1 \ u_2 \ u_3 \ u_4)^T$$

System Equations:

$$0 = m_2 \ddot{x}_1 - \frac{u_4(-l_0 + s_2 \cos(x_3) + x_1 - x_5)}{l_2} - \frac{u_3(-s_2 \cos(x_3) + x_1 - x_4)}{l_1}$$
(1a)

$$0 = g m_2 + m_2 \ddot{x}_2 - \frac{u_4(s_2 \sin(x_3) + x_2)}{l_2} - \frac{u_3(-s_2 \sin(x_3) + x_2)}{l_1}$$
(1b)

$$0 = J_2 \ddot{x}_3 - \frac{s_2 u_4(s_2 \sin(x_3) + x_2) \cos(x_3)}{l_2} + \frac{s_2 u_4(-l_0 + s_2 \cos(x_3) + x_1 - x_5) \sin(x_3)}{l_2}$$

$$+ \frac{s_2 u_3(-s_2 \sin(x_3) + x_2) \cos(x_3)}{l_1} - \frac{s_2 u_3(-s_2 \cos(x_3) + x_1 - x_4) \sin(x_3)}{l_1}$$
(1c)

$$0 = m_1 \ddot{x}_4 - u_1 + \frac{u_3(-s_2 \cos(x_3) + x_1 - x_4)}{l_1}$$
(1d)

$$0 = m_3 \ddot{x}_5 - u_2 + \frac{u_4(-l_0 + s_2 \cos(x_3) + x_1 - x_5)}{l_2}$$
(1e)

Parameters: $s_1, m_1, m_2, m_3, J_2, l_0, l_1, l_2$

Outputs: \underline{x}

2.1 Assumptions

- 1. The movement of all components is only considered in the vertical plane.
- 2. The ropes are assumed to be massless.
- 3. The load is considered to have a homogeneous mass distribution.
- 4. Dissipative forces are not taken into account.

2.2 Exemplary parameter values

Parameter Name	Symbol	Value	Unit
center of gravity distance of the load	s_2	0.15	m
mass of trolley 1	m_1	0.45	kg
mass of load	m_2	0.557	kg
mass of trolley 2	m_3	0.45	kg
moment of inertia of the load	J_2	0.000221	$kg \cdot m^2$
initial distance between the trolleys	l_0	0.5	\mathbf{m}
length of rope 1	l_1	0.4	\mathbf{m}
length of rope 2	l_2	0.3	\mathbf{m}
acceleration due to gravity	g	9.81	$\frac{m}{s^2}$

3 Derivation and Explanation

The Lagrangian mechanics was used for the solution.

4 Simulation

Figure 2: Simulation of the double crane.

References

[1] Wrede, Konstantin: Modellbildung und Reglerentwurf für ein Brückenkransystem, student research project at the Institut of Control Theory TU Dresden, published 2022.

(not publicly accessible)