I.Ellipse

The graph of the equation $(\frac{x}{a})^2 + (\frac{y}{b})^2 = 1$, with $-a \le x \le a$, $-b \le y \le b$ is an ellipse.

iii. Find the volume of the solid of by rotating this ellipse about the x-axis. Hint: First find the volume of the solid of revolution of the first-quadrant portion, y=b $\left(1-\left(\frac{x}{a}\right)^2\right)^{\frac{1}{2}}$, $0 \le x \le a$, about the x-axis and multiply it by 2. Then, with a=3 and b=5, plot the solid of revolution about the x-axis using the built-in syntax of Mathematica.

We have a function y=b $\left(1-\left(\frac{x}{a}\right)^2\right)^{\frac{1}{2}}$, $0 \le x \le a$

In[4]:= Plot
$$\left[5\left(1-\left(\frac{x}{3}\right)^2\right)^{\frac{1}{2}}$$
, {x, 0, 3}, AspectRatio \rightarrow Automatic]

Solve the first quadrant of the ellipse and multiply it by 2

In[*]:= Solve
$$\left[\int_{0}^{a} \pi * \left(b \left(1 - \left(\frac{x}{a}\right)^{2}\right)^{\frac{1}{2}}\right)^{2} dx\right]$$
Out[*]=
Solve $\left[\frac{2}{3} a b^{2} \pi\right]$

 $In\{*\}:=$ Manipulate $\left[RevolutionPlot3D \left[\frac{5 \sqrt{3^2-x^2}}{3} \right] \right]$

 $\{x, 0, 10\}, \{t, 0, tt\}, RevolutionAxis \rightarrow \{1, 0, 0\}], \{tt, .1, 2\pi\}$

Out[0]=

Multiply it by 2 and plotting a and b

$$In[*]:= Solve \left[\left(\frac{2}{3} \times 3 \times 5^2 \pi \right) * 2 \right]$$

Solve [100 π]

In[*]:= RevolutionPlot3D $\left[\frac{5\sqrt{3^2-x^2}}{3}, \{x, -10, 10\}, \text{RevolutionAxis} \rightarrow \{1, 0, 0\}\right]$

Out[@]=

II.Torus

The disks $x^2+y^2 \le a$ is revolved about the line x=b (b>a) to generate a solid shaped like a doughnut called a torus. Plot the torus with a=2 and b=5.

Out[0]=

$$V = \int_{-r}^{r} \pi (A(y)^{2} - a(y)^{2}) dy$$

$$(x - R)^{2} + y^{2} = r^{2}$$

$$x = R + \sqrt{r^{2} - y^{2}}$$

$$A(y) = R + \sqrt{r^{2} - y^{2}}$$

$$a(y) = R - \sqrt{r^{2} - y^{2}}$$

$$= > \pi \int_{-r}^{r} ((R + \sqrt{r^{2} - y^{2}})^{2} - ((R - \sqrt{r^{2} - y^{2}})^{2}) dy$$

$$= \pi \int_{-r}^{r} (4R \sqrt{r^{2} - y^{2}}) dy$$

$$V = 4\pi R \int_{-r}^{r} (\sqrt{r^{2} - y^{2}}) dy$$

$$= 4\pi R (\frac{1}{2}\pi r^{2})$$

 $In[*]:= Solve[2\pi^2 * 2^2 * 5]$ Out[*]=

 $V=2\pi^{2}r^{2}R$

Solve $\left[40 \pi^2\right]$

In[7]:= Graphics3D[Torus[{5, 0, 0}, {3, 7}], Axes \rightarrow True]

 $In[\ensuremath{\,{}^\circ}\xspace] := Manipulate[RevolutionPlot3D[\{2+Cos[t],Sin[t]\},\{t,0,2Pi\},\{d,0,dd\}],\{dd,.1,2\pi\}]$ Out[@]=

III. Asteroid

The graph of the equation $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$, with $-1 \le x \le 1$, $-1 \le y \le 1$ is called an "Asteroid" because of its starlike appearance.

iii. Find the volume of the solid by rotating this asteroid about the x-axis . Hint: First find the volume of the solid of revolution of the first quadrant portion.

 $y=(1-x^{\frac{2}{3}})^{\frac{\pi}{2}}$, $0 \le x \le 1$, about the x-axis and multiply it by . Then, plot the solid of revolution about the x-axis using the built-in syntax of Mathematica.

We have a function $y = \left(1 - x^{\frac{2}{3}}\right)^{\frac{3}{2}}$, $0 \le x \le 1$

In[*]:= Plot
$$\left[\left(1-x^{\frac{2}{3}}\right)^{\frac{3}{2}}, \{x, -1, 1\}, AspectRatio \rightarrow Automatic\right]$$

Out[0]=

Solve the first quadrant of the asteroid

In [*]:= Solve
$$\left[\int_0^1 \pi \star \left(\left(1-x^{\frac{2}{3}}\right)^{\frac{3}{2}}\right)^2 dx\right]$$

Solve: $\frac{16 \pi}{105}$ is not a quantified system of equations and inequalities.

Out[0]=

Solve
$$\left[\frac{16\,\pi}{105}\right]$$

In[@]:= Manipulate

RevolutionPlot3D $\left[\left(1-x^{\frac{2}{3}}\right)^{\frac{3}{2}}, \{x, 0, 1\}, \{t, 0, tt\}, \text{RevolutionAxis} \rightarrow \{1, 0, 0\}\right], \{tt, .1, 2\pi\}\right]$

Out[0]=

Multiply it by 2

In[*]:= Solve
$$\left[\frac{16 \pi}{105} * 2\right]$$

Out[0]= Solve $\left[\frac{32 \pi}{105}\right]$

In[*]:= **Rev2 =**

RevolutionPlot3D
$$\left[\sqrt{1-3(-x)^{2/3}+3(-x)^{4/3}-(-x)^{2}},\{x,-1,1\},\text{RevolutionAxis} \rightarrow \{1,0,0\}\right];$$

In[*]:= Rev1 = RevolutionPlot3D $\left[\left(1-x^{\frac{2}{3}}\right)^{\frac{3}{2}}, \{x, -1, 1\}, \text{RevolutionAxis} \rightarrow \{1, 0, 0\}\right];$

In[@]:= Show[Rev1, Rev2, PlotRange \rightarrow All]

Out[•]=

