

EMERGING METHODS FOR EARLY DETECTION OF FOREST FIRES

NALAIYA THIRAN PROJECT BASED LEARNING

On

PROFESSIONAL READINESS FOR INNOVATION, EMPLOYABILITY AND ENTREPRENEURSHIP

A PROJECT REPORT

G.GUNA SHEKAR 19104060

A.NAGA MAHESH 19104014

D.YAHOSHUVA 19104051

CHETHAN 19104040

BACHELOR OF ENGINEERING

IN

COMPUTER SCIENCE AND ENGINEERING HINDUSTHAN COLLEGE OF ENGINEERING AND TECHNOLOGY

Approved by AICTE, New Delhi, Accredited with 'A' Grade by NAAC

(An Autonomous Institution, Affiliated to Anna University, Chennai)

COIMBATORE – 641 032

November 2022

Hindusthan College of Engineering And Technology

Approved by AICTE, New Delhi, Accredited with 'A' Grade by NAAC (An Autonomous Institution, Affiliated to Anna University, Chennai) Valley Campus, Pollachi Highway, Coimbatore – 641 032

INTERNAL MENTOR

Mr. Bharathi Kannan, M.E., M. Tech

Assistant Professor,

Department of Computer Science and Engineering

Hindusthan College of Engineering and Technology,

Coimbatore-641 032

INDUSTRY MENTOR

SHANTHI (IBM)

ANNA UNIVERSITY: CHENNAI 600 025 BONAFIDE CERTIFICATE

Certified that project report "EMERGING METHODS FOR EARLY DETECTION OF FOREST FIRES" is the bonafide work of "G.GUNA SHEKAR, A.NAGA MAHESH, D.YAHOSHUVA, CHETHAN who carried out the project work under my supervision. Certified further that to the best of my knowledge the work reported herein does not form part of any other thesis or dissertation on the basis of which a degree or award was conferred on an earlier occasion on this or any other candidate.

MR.B.Bharathi Kannan,M.E.,
SUPERVISOR
Associate Professor,
Department of CSE,
Hindusthan College of Engineering
and Technology,
Coimbatore - 641 032.

EXTERNAL EXAMINER

INTERNAL EXAMINER

TABLE OF CONTENTS

CHAPTER NO	TITLE
1.	INTRODUCTION
	1.1 Project Overview
2.	1.2 Purpose LITERATURE SURVEY
	2.1 Existing problem
	2.2 References
3.	2.3 Problem Statement Definition IDEATION & PROPOSED SOLUTION
	3.1 Empathy Map Canvas
	3.2 Ideation & Brainstorming
	3.3 Proposed Solution
4.	3.4 Problem Solution fit REQUIREMENT ANALYSIS
	4.1 Functional requirement
5.	4.2 Non-Functional requirements PROJECT DESIGN
	5.1 Data Flow Diagrams
	5.2 Solution & Technical Architecture
6.	5.3 User Stories PROJECT PLANNING & SCHEDULING
	6.1 Sprint Planning & Estimation
	6.2 Sprint Delivery Schedule
7.	6.3 Reports from JIRA CODING & SOLUTIONING
	7.1 Feature 1

8.	7.2 Feature 2 TESTING
	8.1 Test Cases
	8.2 User Acceptance Testing
9.	RESULTS
	9.1 Performance Metrics
10.	ADVANTAGES & DISADVANTAGES
11.	CONCLUSION
11. 12.	CONCLUSION FUTURE SCOPE
12.	FUTURE SCOPE
12.	FUTURE SCOPE APPENDIX
12.	FUTURE SCOPE APPENDIX 13.1 Source Code
12.	FUTURE SCOPE APPENDIX 13.1 Source Code

1. INTODUCTION

1.1 Project Overview

Forest fires have been and still are serious problem for the European Union and for all other countries in Europe. In the year 2000, the EU has established the European Forest Fire Information system (EFFIS), which will soon become part of the European Emergency Management Service, maintained by the Copernicus Earth Observation Programme. This system provides valuable near real-time and also historical data on the forest fires in Europe, the Middle East and North Africa. Currently EFFIS is being used and supported with data by 25 EU member states and by numerous other countries. According to the annual report of EFFIS for 2016, more than 54 000 forest fires have occurred all around Europe and they have led to nearly 376 thousand hectares of burnt areas. If we compare these values to the average values from the EFFIS reports for the period 2006-2015, the number of forest fires have decreased by 13327 or by nearly 20%.

The most important factors in the fight against the forest fires include the earliest possible detection of the fire event, the proper categorization of the fire and fast response from the fire services. Several different types of forest fires are known, including ground fires, surface fires and crown/tree fires.

1.2 Purpose

Forest fires are a major environmental issue, creating economic and ecological damage while endangering human lives. There are typically about 100,000 wildfires in the United States every year. Over 9 million acres of land have been destroyed due to treacherous wildfires. It is difficult to predict and detect Forest Fire in a sparsely populated forest area and it is more difficult if the prediction is done using ground-based methods like Camera or Video-Based approach. Satellites can be an important source of data prior to and also during the Fire due to its reliability and efficiency. The various real-time forest fire detection and prediction approaches, with the goal of informing the local fire authorities.

2. Literature Survey

TREADITIONAL METHODS

Forest fire detection and prevention are real problems faced by a number of countries. Different methods have been stated for monitoring the emergence of fires.

A. Watch Towers

In earlier days, the forest fires were detected by manual observations with watch towers installed in the isolated areas of forest. Though this method was accurate, it was not preferred due to manual restrictions.

B. Satellite

Based Systems Earth orbiting satellites have been used for detection of forest fires. Unfortunately, these satellites can provide the images of regions of the earth's surface every two days which is a very long time for fire scanning. Also the weather conditions can affect the quality of satellite images.

C. Optical Sensors and Digital Camera

The use of optical sensors only provides a line of sight vision, where the vision can be blocked by high trees or hills. The Camera surveillance systems were also inefficient for forest fire detection because of short distance ranges.

D. Wireless Sensor Networks

The sensors sense physical as well as chemical parameters. The sensors can operate in a self-healing and self-organizing wireless networking environment. The major problem with this system is that there are high chances of false alarms due to lack of proper processing of the sensor data. In this paper, we propose a method which processes the sensor data to predict fire accurately. The sensor nodes are provided with Wi-Fi devices and tested on grassy areas to sense temperature, humidity, pressure and various other physical parameters and send this data back to the base station. At the base station, the data is processed by a machine learning agent to give alarm.

2.1 Existing problem

Problem statement Forest fires are a major environmental issue, creating economic and ecological damage while endangering human lives. There are typically about 100,000 wildfires in the United States every year. Over 9 million acres of land have been destroyed due to treacherous wildfires. It is difficult to predict and detect Forest Fire in a sparsely populated forest area and it is more difficult if the prediction is done using ground-based methods like Camera or Video-Based approach. Satellites can be an important source of data prior to and also during the Fire due to its reliability and

efficiency. The various real-time forest fire detection and prediction approaches, with the goal of informing the local fire authorities Literature survey TREADITIONAL METHODS Forest fire detection and prevention are real problems faced by a number of countries. Different methods have been stated for monitoring the emergence of fires. A. Watch Towers In earlier days, the forest fires were detected by manual observations with watch towers installed in the isolated areas of forest. Though this method was accurate, it was not preferred due to manual restrictions. B. Satellite Based Systems Earth orbiting satellites have been used for detection of forest fires. Unfortunately, these satellites can provide the images of regions of the earth's surface every two days which is a very long time for fire scanning. Also the weather conditions can affect the quality of satellite images. C. Optical Sensors and Digital Camera The use of optical sensors only provides a line of sight vision, where the vision can be blocked by high trees or hills. The Camera surveillance systems were also inefficient for forest fire detection because of short distance ranges. D. Wireless Sensor Networks The sensors sense physical as well as chemical parameters. The sensors can operate in a self-healing and self-organizing wireless networking environment. The major problem with this system is that there are high chances of false alarms due to lack of proper processing of the sensor data. In this paper, we propose a method which processes the sensor data to predict fire accurately. The sensor nodes are provided with Wi-Fi devices and tested on grassy areas to sense temperature, humidity, pressure and various other physical parameters and send this data back to the base station. At the base station, the data is processed by a machine learning agent to give alarm.

2.2 References

- [1] Y. Huang and K. Boyle, Antennas, "From Theory to Practice.", West Sussex, United Kingdom: John Wiley & Sons Ltd, 2008.
- [2] AA Portable Power Corp, "Category: Li-Ion/Polymer Single Cells," 2019. [Online]. Available: https://www.batteryspace.com/liionsinglecell.aspx.
- [3] C. A. Balanis, Antenna Theory, "Analysis and Design," Fourth Edition., Hoboken, New Jersey: John Wiley and Sons, Inc., 2016.
- [4] J. Pike, "Understanding LoRa WAN Basics: A Non-Technical Explanation," 21 August 2017. [Online]. Available: https://metova.com/ understanding-lora-basics-a-non-technical-explanation/.
- [5] "LoRaWAN, "What is it?"," November 2015. [Online]. Available: https://lora-alliance.org/sites/default/files/2018-04/what-is-lorawan.pdf.

2.3 Problem Statement Definition

Problem Statement	A Large destructive fire that spread over a
(PS):	forest or area of woodland is a Forest fire that
	causes loss of humungous amount of
	Property, Wildlife, Ecosystem and Economy.
	The project is focused on creating a
	permanent solution for this problem. It
	consists of an integrated IoT based system to
	detect, monitor and solve the issue without
	any manual involvement. The system consists
	of regular monitoring of the forest area with
	the help of cloud computing and analysis of
	the root cause of the fire. The system uses the
	latest Microcontroller, Wi-Fi communication
	and precision sensors such that there is no
	error in this part. The system also provides a
	quick response system so the fire can be
	controlled at the earliest stage.
I am	A Forest fire department
(USER)	
I'm trying to	Frequently monitor fire and make sure to
	prevent them from getting destroyed .Analyze
	data from various thermal camera's.
But	Requires a lot of thermal cameras for
	monitoring

Because	It's really hard to cover large boundaries and monitor them 24 hours a day
Which makes me feel	Stressed and agitated about the forests are burning fastly.

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation

Brainstorm & Idea Prioritization:

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem solving. Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich amount of creative solutions.

Define your problem statement

What problem are you trying to solve? Frame your problem as a How Might We statement. This will be the focus of your brainstorm.

Prioritize

Your team should all be on the same page about what's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feasible.

Regardies of their importance, which tasks are more feasible than others' blind, time, effort, complexity, etc.)

After you collaborate

You can export the mural as an image or pdf to share with members of your company who might find it helpful.

Quick add-ons

Share the mural Share a view link to the mural with stakeholders to keep them in the loop about the outcomes of the session.

Expert the mural Expert a copy of the ownel as a PRG or PRF to attach to emails, include in dislot, or save in your drive.

Keep moving forward

Strategy blueprint before the components of a new idea or strategy.

Customer experience journey map Understand customer needs, motivations, and obstacles for an experience. Open the template

Strengths, weaknesses, opportunities & threats identify strengths, weaknesses, opportunities, and threats (1990f) to develop a plan.

Share template feedback

3.3 Proposed Solution

S.No	Parameter	Description
1.	Proposed Statement (Problem to be solved)	Statement: To find emerging methods for early detection of forest fires using artificial intelligence.
		Description: This technology is to be implemented to locate a forest or a bush fire based on the concept of deep learning and YOLO algorithm. After detecting, authorities are to be alerted immediately to mitigate any damage
2.	Idea / Solution Description	1. In case of forest fire detection the burning substances are primarily identified as sceptical flame regions using a division strategy to expel the non-fire structures and results are verified by a deep learning model. 2. The technology used to locate a forest or a bush fire is based on the concept of deep learning and YOLO algorithm. This deep learning model is deployed on a UAV which help in detection of fire, meanwhile it can be monitored by web application in order to prevent it at advance

3.	Novelty / Uniqueness	1. Accurate and reliable
		recognition of sceptical flame
		regions by means of using
		YOLO v3 algorithm.
		2. Unlike previous algorithms,
		the exact location of the origin of
		the forest fire is also detected and
		sent to the web-app
4.	Social Impact / Customer	1. Because of earlier prediction,
	Satisfaction	loses of life, destruction of
		various environmental,
		geographical and essential
		resources can be avoided.
		2. By detecting a fire quickly and
		accurately, this system can limit
		the emission of toxic products
		created by combustion, as well as
		globalwarming gases produced
		by the fire itself
5.	Business Model (Revenue	1. The software platform to
	Model)	provide the fully autonomous
		processing of data received from
		the camera of UAV to obtain live
		feed in web App.
		2. This can also be implemented
		as a mobile application where the
		services can be accessed on
		subscription basis
6.	Scalability of the solution	1. This application can be
		developed as the world wide
		surveillance system to monitor
		the several sections of different
		forests
		2. Filtration of false positive
		result by comparing the dataset
		with the video feed obtained.

3.4 Problem Solution Fit

4. REQUIREMENT ANALYSIS

4.1 Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional	Sub Requirement (Story / Sub-	
	Requirement	Task)	
	(Epic)		
FR-1	User Reigstration	Registtation through Gmail.	
FR-2	User Confirmation	Confirmation via Email Confirmation	
		via OTP	
FR-3	User Login	Login using credentials	
FR-4	User Search	Search for info on forest fire	
		occurence	
FR-5	User Profile	User shall be given a live feed of the	
		forest	
FR-6	User Application	User is alerted if there is an forest fire	
		occurrence in their suuroundings	

4.2 Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional	Description	
	Requirement		
NFR-1	Usability	Alerts according to the user location	
NFR-2	Security	Instant live feed with alert of the	
		siituation	
NFR-3	Reliability	The predictions of the forest fire is	
		87% accurate	
NFR-4	Performance	The feed and the alert message is an	
		immediate action without a lag	
NFR-5	Availability	The application gives alerts and live	
		feeds 24/7	
NFR-6	Scalability	Early detection and alerting users are	
		done efficiently and in a faster means	

5. PROJECT DESIGN

5.1 Data Flow Diagrams

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

Example:

- 1. It is difficult to predict and detect Forest Fire in a sparsely populated forest area.
- 2. it is more difficult if the prediction is done using ground-based methods like Camera or Video-Based approach.
- 3. Satellites can be an important source of data prior to and also during the Fire due to its reliability and efficiency.
- 4. The various real-time forest fire detection and prediction approaches, with the goal of informing the local fire authorities.
- 5. If the fire is not detected, it will send the result to the frame camera. If the forest fire will detected the alert will go to the video feed frame camera.

FLOW

DFD:

5.2 Solution Architecture

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to: • Find the best tech solution to solve existing business problems. • Describe the structure, characteristics, behavior, and other aspects of the software to project stakeholders. • Define features, development phases, and solution requirements. • Provide specifications according to which the solution is defined, managed, and delivered.

Solution Architecture Diagram:

Technical Architecture

Technical Architecture:

Components & Technologies:

S.No	Component	Description	Technology
1.	User	The user	Python
	Interface	interacts with the	
		application.	
2.	Application	The logic for	Python
	Logic	performance of	
		the process to	
		execute the	
		desired output	
3.	Database	(Pictures)	MySQL
		Composite Data	
		Types	
4.	Machine	Purpose of	Object
	Learning	Machine	Recognition
	Model	Learning Model	Model,
			CNN.
5.	Infrastructu	Application	Local, IBM
	re (Server /	Deployment on	cloud
	Cloud)	Local System /	
		Cloud	

Application Characteristics:

S.No	Characterist	Description	Technology
	ics		
1.	Open-Source	List the open-	OSINT
	Frameworks	source	framework
		frameworks	
		used	
2.	Security	List all the	OWSAP
	Implementati	security /	top10, SIEM
	ons	access controls	

		implemented,	
		use of firewalls	
		etc.	
3.	Scalable	Justify the	HTTP
	Architecture	scalability of	overview
		architecture (3	implementati
		– tier, Micro-	on
		services)	
4.	Availability	Justify the	Round robin
		availability of	load
		application	balancing
		(e.g. use of	
		load balancers,	
		distributed	
		servers etc.)	
5.	Performance	Design	Secure
		consideration	cookie
		for the	implementati
		performance of	on
		the application	
		(number of	
		requests per	
		sec, use of	
		Cache, use of	
		CDN's) etc.	

5.3 User Stories

User Type	Functional Requirement (Epic)	User Story Number	User Story I Task	Acceptance criteria	Priority	Release
Environmenta list	Collect the data	USN-1	As an Environmentalist.it is necessary to collect the data of the forest which includes temperature,humidity,wind and rain of the forest	It is necessary to collect the right data else the prediction may become wrona	High	Sprint-1
		USN-2	Identify algorithms that can be used for prediction	To collect the algorithm to identify the accuracy level of each algorithms	Medium	Sprint-2
	Implement Algorithm	USN-3	Identify the accuracy of each algorithms	Accuracy of each algorithm-calculated so that it is easy to obtain the	High	Sprint-2
		USN-4	Evaluate the Dataset	most accurate output Data is evaluated before processing	Medium	Sprint-1
	Evaluate Accuracy of Algorithm	USN-5	Identify accuracy,precision,recall of each algorithms	These values are important for obtaining the riaht output	High	Sprint-3
	Display Results	USN-6	Outputs from each algorithm are obtained	It is highly used to predict the effect and to take precautionary measures.	High	Sprint-4

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional	User	User Story /	Story	Priority	Team Members
	Requireme	Story	Task	Points		
	nt (Epic)	Numb				
		er				
Sprint-1	User input	USN-1	As a user, I can	2	High	Guna,Mahesh,
			input the			Yahoushuva,
			particular URL			Chethan
			in the required			
			field and			
			waiting for			
			validation.			
Sprint-1	Feature	USN-1	Here system	1	High	Guna,Mahesh,
	extraction		can extract			Yahoushuva,
			feature using			Chethan
			heuristic and			
			visual			
			similarity			
			approach			
Sprint-1	Prediction	USN-1	Here the	2	High	Guna,Mahesh,
			Model will			Yahoushuva,
			predict the			Chethan
			URL websites			
			using Machine			
			Learning			
			algorithms			
Sprint-1	Classifier	USN-1	Here it will	2	High	Guna,Mahesh,
			send all the			Yahoushuva,
			model output			Chethan
			to classifier in			
			order to			
			produce final			
			result			

Sprint-1	Announcem	USN-1	Displays	1	High	Guna,Mahesh,
	ent		whether			Yahoushuva,Chet
			website is a			han
			legal			
			site or a			
			phishing site.			
Sprint-2	Bugs	USN-2	As a user, I can	1	Medium	Guna,Mahesh,
			report bugs in			Yahoushuva,Chet
			the application			han
Sprint-2	Feedback	USN-3	As a user, I can	1	Low	Guna,Mahesh,
			send feedback			Yahoushuva,Chet
			about the			han
			application and			
			opinions for			
			improvement			
Sprint-3	Tips	USN-4	Here cyber	1	Low	Guna,Mahesh,
			security tips			Yahoushuva,Chet
			are provided			han
			for the			
			Customers/Use			
			rs			

6.2 Sprint Delivery Schedule

Sprint	Total	Durati	Sprint	Sprint End	Story Points	Sprint
	Story	on	Start	Date	Completed	Release Date
	Points		Date	(Planned)	(as on	(Actual)
					Planned	
					End Date)	
Sprint-1	20	6 Days	24 Oct	29 Oct 2022	20	29 Oct 2022
			2022			
Sprint-2	20	6 Days	31 Oct	05 Nov 2022	20	05 Nov 2022
			2022			
Sprint-3	20	6 Days	07 Nov	12 Nov 2022	20	12 Nov 2022

			2022			
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

6.3 Reports from JIRA

7. CODING & SOLUTIONING

7.1 Feature 1

```
# Linear Regression Model
model = LinearRegression()
model.fit(X_train, y_train)

# Predictions
predictions = model.predict(X_test)

# Scores
print ("Mean Squared Error : ", mean_squared_error(y_test, predictions))
print ("r2 Score : ", r2_score(y_test, predictions))
```

Linear regression predicts the dependent value (y) according to the independent variable (x). The output here is the dependent value, and the input is the independent value.

7.2 Feature 2

```
In [16]: #to define the linear Initialisation import sequential
         from keras.models import Sequential
         #to add layers import Dense
         from keras.layers import Dense
         #to create Convolutional kernel import convolution2D
         from keras.layers import Convolution2D
         #import Maxpooling layer
         from keras.layers import MaxPooling2D
         #import flatten layer
         from keras.layers import Flatten
         import warnings
         warnings.filterwarnings('ignore')
In [17]: model = Sequential()
In [18]: model.add(Convolution2D(32,(3,3),input_shape=(64,64,3),activation='relu'))
         #add maxpooling layers
         model.add(MaxPooling2D(pool_size=(2,2)))
         #add faltten layer
         model.add(Flatten())
In [19]: #add hidden layers
         model.add(Dense(150,activation='relu'))
         #add output layer
         model.add(Dense(1,activation='sigmoid'))
In [20]: model.compile(loss='binary_crossentropy',optimizer="adam",metrics=["accuracy"])
```

```
\label{local_state} \mbox{In [21]: model.fit\_generator} (x\_train, steps\_per\_epoch=14, epochs=5, validation\_data=x\_test, validation\_steps=20)
        Epoch 1/5
       Epoch 2/5
        14/14 [===
                       =======] - 15s 1s/step - loss: 0.2791 - accuracy: 0.8761
        Epoch 3/5
        14/14 [===
                         ======] - 15s 1s/step - loss: 0.2204 - accuracy: 0.9243
        Epoch 4/5
       H4/14 [=======] - 15s 1s/step - loss: 0.2018 - accuracy: 0.9197
Epoch 5/5
       Out[21]: <keras.callbacks.History at 0x7f7922f642b0>
In [22]: model.save("forest.h5")
In [23]: !tar -zcvf image-classification_new.tgz forest.h5
       forest.h5
In [24]: ls -1
        forest.h5
        image-classification_new.tgz
 In [26]: from ibm_watson_machine_learning import APIClient
          wml_credentilas = {
                              "url":"https://us-south.ml.cloud.ibm.com",
                             "apikey": "EaR3aCur9IAUaH1UBaPdk7Xyy8ndwd0kTuq_hoBc-eeV"
          client = APIClient(wml_credentilas)
 In [27]: def guid_from_space_name(client, space_name):
              space = client.spaces.get_details()
              return(next(item for item in space['resources'] if item['entity']["name"] == space_name)['metadata']['id'])
 In [30]: space_uid = guid_from_space_name(client, 'image_deployment')
          print("Space UID = " + space_uid)
             Space UID = 9b378920-7f2a-4205-b263-7316f53b47bb
 In [31]: client.set.default_space(space_uid)
    Out[31]: 'SUCCESS'
```

```
In [33]: software_spec_uid = client.software_specifications.get_uid_by_name("tensorflow_rt22.1-py3.9")
         software_spec_uid
  Out[33]: 'acd9c798-6974-5d2f-a657-ce06e986df4d'
In [34]: | model_details = client.repository.store_model(model='image-classification new.tgz',meta props={
         client.repository.ModelMetaNames.NAME: 'CNN',
         client.repository.ModelMetaNames.TYPE:"tensorflow_rt22.1",
         client.repository.ModelMetaNames.SOFTWARE_SPEC_UID:software_spec_uid}
         model id = client.repository.get model uid(model details)
            This method is deprecated, please use get_model_id()
In [35]: model_id
  Out[35]: '27c82d94-ca58-4755-8019-8935f87131c5'
In [36]: #import load model from keras.model
         from keras.models import load model
         #import image from keras
         from tensorflow.keras.preprocessing import image
         import numpy as np
         #import cv2
         import cv2
         #load the saved model
         model=load model("forest.h5")
         img=image.load_img('/home/wsuser/work/Dataset/test_set/with fire/forest_fire_2268729_1280.jpg')
         x=image.img_to_array(img)
         res=cv2.resize(x,dsize=(64,64),interpolation=cv2.INTER_CUBIC)
         #expand the image shape
         x=np.expand dims(res,axis=0)
In [37]: pred=model.predict(x)
         pred = int(pred[0][0])
         pred
         int(pred)
  Out[37]: 1
In [38]: if pred==1:
          print('Forest fire')
         elif pred==0:
           print('No Fire')
            Forest fire
```

Despite the power and resource complexity of CNNs, they provide in-depth results. At the root of it all, it is just recognizing patterns and details that are so minute and inconspicuous that it goes unnoticed to the human eye. But when it comes to understanding the contents of an image it fails.

8. TESTING

8.1 Test Cases

Section	Total Cases	Not Tested	Fa il	Pass
Print Engine	7	0	0	7
Client Application	51	0	0	51
Security	2	0	0	2
Outsource Shipping	3	0	0	3
Exception Reporting	9	0	0	9

8.2 User Acceptance Testing

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report showsthe number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	4	3	2	4	13
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	9	2	4	11	26
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won't Fix	0	5	2	1	8
Totals	16	13	13	18	60

9. RESULTS

9.1 Performance Metrics

In [53]: model.fit_generator(x_train,steps_per_epoch=14,epochs=5,validation_data=x_test,validation_steps=20)

10. ADVANTAGES & DISADVANTAGES

ADVANTAGES

Early detection of forest fire-accidents can save innumerable lives along with saving properties from permanent infrastructure damage and the consequent natural losses. In order to achieve high accuracy and robustness in dense urban areas, detection through local surveillance is necessary and also effective.

DISADVANTAGES

Traditional opto-electronic fire detection systems have major disadvantages: Requirement of separate and often redundant systems, fault-prone hardware systems, regular maintenance, false alarms and so on. Usage of sensors in hot, dusty industrial conditions is also not possible.

11. CONCLUSION
Forest fires can be devastating, burning houses, animal habitats, and wood while polluting the air with potentially toxic pollutants. Fire also releases carbon dioxide into the environment. To avoid the uncontrolled broad spreading of forest fires, it is vital to identify wildfires in an earlier stage and control their propagation. It is necessary to mobilize appropriate fire apparatus and qualified operating people as rapidly as possible to the source of the fire. In conclusion, this literature review has found that deep learning-based classifiers are more accurate than traditional methods, and object detection was the most commonly used technique for forest fire detection.

13. APPENDIX

13.1 Source Code

INDEX.PHP

```
<?php
session_start(); if
(isset($_SESSION['SESSION_EMAIL'])) {
header("Location: welcome.php");
die();
}
include 'config.php';
$msg = "";
if (isset($_GET['verification'])) {
if \ (mysqli\_num\_rows(mysqli\_query(\$conn, "SELECT*FROM users \ WHERE
code='{$_GET['verification']}'")) > 0) {
$query = mysqli_query($conn, "UPDATE users SET code=" WHERE
code='{$_GET['verification']}'");
if ($query) {
$msg = "<div class='alert alert-success'>Account verification has been successfully
completed.</div>";
}
} else {
header("Location: index.php");
}
}
```

```
if (isset($_POST['submit'])) {
$email = mysqli_real_escape_string($conn, $_POST['email']);
$password = mysqli_real_escape_string($conn, md5($_POST['password']));
$sql = "SELECT * FROM users WHERE email='{$email}' AND password='{$password}'";
$result = mysqli query($conn, $sql);
if (mysqli_num_rows($result) === 1) {
$row = mysqli_fetch_assoc($result);
if (empty($row['code'])) {
$_SESSION['SESSION_EMAIL'] = $email;
header("Location: welcome.php");
} else {
$msg = "<div class='alert alert-info'>First verify your account and try again.</div>";
}
} else {
$msg = "<div class='alert alert-danger'>Email or password do not match.</div>";
}
}
?>
<!DOCTYPE html>
<html lang="zxx">
<head>
<title>Forest fire detection</title>
<!-- Meta tag Keywords -->
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta charset="UTF-8"/>
<meta name="keywords"
content="Login Form" /> <!--
```

```
//Meta tag Keywords -->
k href="//fonts.googleapis.com/css2?family=Poppins:wght@300;400;500;600&display=swap"
rel="stylesheet">
<!--/Style-CSS -->
<link rel="stylesheet" href="css/style.css" type="text/css" media="all" /> <!--//StyleCSS -->
<script src="https://kit.fontawesome.com/af562a2a63.js" crossorigin="anonymous"></script>
</head>
<body>
<!-- form section start -->
<section class="w3l-mockup-form">
<div class="container">
<!-- /form -->
<div class="workinghny-form-grid">
<div class="main-mockup">
<div class="alert-close">
<span class="fa fa-close"></span>
</div>
<div class="w3l_form align-self">
<div class="left_grid_info">
<img src="login1.jpeg" alt="">
</div>
</div>
<div class="content-wthree">
<h2>Login Now</h2>
<?php echo $msg; ?>
<form action="" method="post">
```

```
<input type="email" class="email" name="email" placeholder="Enter Your Email"</pre>
required>
<input type="password" class="password" name="password" placeholder="Enter
Your Password" style="margin-bottom: 2px;" required>
<a href="forgot-password.php" style="margin-bottom: 15px; display: block;</p>
textalign: right;">Forgot Password?</a>
<button name="submit" name="submit" class="btn" type="submit">Login</button>
</form>
<div class="social-icons">
Create Account! <a href="register.php">Register</a>.
</div>
</div>
</div>
</div>
<!-- //form -->
</div>
</section>
<!-- //form section start -->
<script src="js/jquery.min.js"></script>
<script>
$(document).ready(function (c) {
$('.alert-close').on('click', function (c) {
$('.main-mockup').fadeOut('slow', function (c) {
$('.main-mockup').remove();
});
});
});
```

```
</script>
</body>
</html>
REGISTER.PHP
<?php
//Import PHPMailer classes into the global namespace
//These must be at the top of your script, not inside a function
use PHPMailer\PHPMailer; use
PHPMailer\PHPMailer\SMTP; use
PHPMailer\PHPMailer\Exception;
session start(); if
(isset($_SESSION['SESSION_EMAIL'])) {
header("Location: welcome.php");
die();
}
//Load Composer's autoloader
require 'vendor/autoload.php';
include 'config.php';
$msg = "";
if (isset($_POST['submit'])) {
$name = mysqli_real_escape_string($conn, $_POST['name']);
$email = mysqli_real_escape_string($conn, $_POST['email']);
$password = mysqli_real_escape_string($conn, md5($_POST['password']));
$confirm_password = mysqli_real_escape_string($conn, md5($_POST['confirm-password']));
$code = mysqli_real_escape_string($conn, md5(rand()));
if (mysqli_num_rows(mysqli_query($conn, "SELECT * FROM users WHERE email='{$email}'")) >
0)
```

```
{
$msg = "<div class='alert alert-danger'>{$email} - This email address has been already
exists.</div>";
} else {
if ($password === $confirm password) {
$sql = "INSERT INTO users (name, email, password, code) VALUES ('{$name}', '{$email}',
'{$password}', '{$code}')";
$result = mysqli_query($conn, $sql);
if ($result) { echo "<div
style='display: none;'>";
//Create an instance; passing `true` enables exceptions
$mail = new PHPMailer(true);
try {
//Server settings
$mail->SMTPDebug = SMTP::DEBUG_SERVER; //Enable verbose debug
output
$mail->isSMTP(); //Send using SMTP
$mail->Host = 'smtp.gmail.com'; //Set the SMTP server to send through
$mail->SMTPAuth = true; //Enable SMTP authentication
$mail->Username = 'forestfiredetection13@gmail.com
'; //SMTP username
$mail->Password = 'nolubeunltmkypfl'; //SMTP password
$mail->SMTPSecure = PHPMailer::ENCRYPTION_SMTPS; //Enable implicit TLS
encryption
$mail->Port = 465; //TCP port to connect to; use 587 if you have
set `SMTPSecure = PHPMailer::ENCRYPTION_STARTTLS`
//Recipients
```

```
$mail->setFrom('smartroadsafety247@gmail.com'); $mail-
>addAddress($email);
//Content
$mail->isHTML(true); //Set email format to HTML
$mail->Subject = 'forestfiredetection13 register form';
$mail->Body = ' click here to login <b><a</pre>
href="http://localhost/login/?verification='.$code.'">
http://localhost/login/?verification='.$code.'</a></b>';
$mail->send();
echo 'Message has been sent';
} catch (Exception $e) { echo "Message could not be
sent. Mailer Error: {$mail->ErrorInfo}";
}
echo "</div>";
$msg = "<div class='alert alert-info'>We've send a verification link on your email
address.</div>";
} else {
$msg = "<div class='alert alert-danger'>Something wrong went.</div>";
}
} else {
$msg = "<div class='alert alert-danger'>Password and Confirm Password do not
match</div>";
}
}
}
?>
<!DOCTYPE html>
```

```
<html lang="zxx">
<head>
<title>Forest fire detection</title>
<!-- Meta tag Keywords -->
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta charset="UTF-8"/>
<meta name="keywords"
content="Login Form" />
<!-- //Meta tag Keywords -->
<link href="//fonts.googleapis.com/css2?family=Poppins:wght@300;400;500;600&display=swap"</pre>
rel="stylesheet">
<!--/Style-CSS -->
<link rel="stylesheet" href="css/style.css" type="text/css" media="all" /> <!--//StyleCSS -->
<script src="https://kit.fontawesome.com/af562a2a63.js" crossorigin="anonymous"></script>
</head>
<body>
<!-- form section start -->
<section class="w3l-mockup-form">
<div class="container">
<!-- /form -->
<div class="workinghny-form-grid">
<div class="main-mockup">
<div class="alert-close">
<span class="fa fa-close"></span>
</div>
<div class="w3l_form align-self">
<div class="left_grid_info">
```

```
<img src="reg1.jpeg" alt="">
</div>
</div>
<div class="content-wthree">
<h2>Register Now</h2>
<?php echo $msg; ?>
<form action="" method="post">
<input type="text" class="name" name="name" placeholder="Enter Your Name"</pre>
value="<?php if (isset($_POST['submit'])) { echo $name; } ?>" required>
<input type="email" class="email" name="email" placeholder="Enter Your Email"</pre>
value="<?php if (isset($_POST['submit'])) { echo $email; } ?>" required>
<input type="password" class="password" name="password" placeholder="Enter
Your Password" required>
<input type="password" class="confirm-password" name="confirm-password"
placeholder="Enter Your Confirm Password" required>
<button name="submit" class="btn" type="submit">Register</button>
</form>
<div class="social-icons">
Have an account! <a href="index.php">Login</a>.
</div>
</div>
</div>
</div>
<!-- //form -->
</div>
</section>
```

```
<!-- //form section start -->
<script src="js/jquery.min.js"></script>
<script>
$(document).ready(function (c) {
$('.alert-close').on('click', function (c) {
$('.main-mockup').fadeOut('slow', function (c) {
$('.main-mockup').remove();
});
});
});
</script>
</body>
</html>
WELCOME.PHP
<?php
session_start(); if
(!isset($_SESSION['SESSION_EMAIL'])) {
header("Location: index.php");
die();
}
include 'config.php';
$query = mysqli_query($conn, "SELECT * FROM users WHERE
email='{$_SESSION['SESSION_EMAIL']}'");
if (mysqli_num_rows($query) > 0) {
$row = mysqli_fetch_assoc($query);
echo "Welcome " . $row['name'] . " <a href='logout.php'>Logout</a>";
}
```

```
?>
FORGET PWD.PHP
<?php
session_start(); if
(isset($_SESSION['SESSION_EMAIL'])) {
header("Location: welcome.php");
die();
}
//Import PHPMailer classes into the global namespace
//These must be at the top of your script, not inside a function
use PHPMailer\PHPMailer; use
PHPMailer\PHPMailer\SMTP; use
PHPMailer\PHPMailer\Exception;
//Load Composer's autoloader require
'vendor/autoload.php';
include 'config.php';
smsg = "";
if (isset($_POST['submit'])) {
$email = mysqli_real_escape_string($conn, $_POST['email']);
$code = mysqli_real_escape_string($conn, md5(rand()));
if (mysqli_num_rows(mysqli_query($conn, "SELECT * FROM users WHERE email='{$email}'")) >
0) {
$query = mysqli_query($conn, "UPDATE users SET code='{$code}' WHERE email='{$email}'");
if ($query) { echo "<div
style='display: none;'>";
//Create an instance; passing `true` enables exceptions
$mail = new PHPMailer(true);
```

```
try {
//Server settings
$mail->SMTPDebug = SMTP::DEBUG_SERVER; //Enable verbose debug output
$mail->isSMTP(); //Send using SMTP
$mail->Host = 'smtp.gmail.com'; //Set the SMTP server to send through
$mail->SMTPAuth = true; //Enable SMTP authentication
$mail->Username = 'forestfiredetection13@gmail.com'; //SMTP username
$mail->Password = 'nolubeunltmkypfl'; //SMTP password
$mail->SMTPSecure = PHPMailer::ENCRYPTION_SMTPS; //Enable implicit TLS
encryption
$mail->Port = 465; //TCP port to connect to; use 587 if you have set
`SMTPSecure = PHPMailer::ENCRYPTION_STARTTLS`
//Recipients
$mail->setFrom('forestfiredetection13@gmail.com');
$mail->addAddress($email);
//Content
$mail->isHTML(true); //Set email format to HTML
$mail->Subject = 'smartroadsafety247 reset password';
$mail->Body = 'reset link <b><a</pre>
href="http://localhost/login/changepassword.php?reset='.$code.'">http://localhost/login/changepas
sword.php?reset='.$code.'</a></b>';
$mail->send(); echo
'Message has been sent';
} catch (Exception $e) { echo "Message could not be sent.
Mailer Error: {$mail->ErrorInfo}";
}
echo "</div>";
```

```
$msg = "<div class='alert alert-info'>We've send a verification link on your email
address.</div>";
}
} else {
$msg = "<div class='alert alert-danger'>$email - This email address do not found.</div>";
}
}
?>
<!DOCTYPE html>
<html lang="zxx">
<head>
<title>Forest fire detection</title>
<!-- Meta tag Keywords -->
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta charset="UTF-8"/>
<meta name="keywords"
content="Login Form" />
<!-- //Meta tag Keywords -->
k href="//fonts.googleapis.com/css2?family=Poppins:wght@300;400;500;600&display=swap"
rel="stylesheet">
<!--/Style-CSS -->
<link rel="stylesheet" href="css/style.css" type="text/css" media="all" /> <!--//StyleCSS -->
<script src="https://kit.fontawesome.com/af562a2a63.js" crossorigin="anonymous"></script>
</head>
<body>
<!-- form section start -->
<section class="w3l-mockup-form">
```

```
<div class="container">
<!-- /form -->
<div class="workinghny-form-grid">
<div class="main-mockup">
<div class="alert-close">
<span class="fa fa-close"></span>
</div>
<div class="w3l_form align-self">
<div class="left_grid_info">
<img src="fog1.jpeg" alt="">
</div>
</div>
<div class="content-wthree">
<h2>Forgot Password</h2>
<?php echo $msg; ?>
<form action="" method="post">
<input type="email" class="email" name="email" placeholder="Enter Your Email"</pre>
required>
<button name="submit" class="btn" type="submit">Send Reset Link</button>
</form>
<div class="social-icons">
Back to! <a href="index.php">Login</a>.
</div>
</div>
</div>
</div>
```

```
<!-- //form -->
</div>
</section>
<!-- //form section start -->
<script src="js/jquery.min.js"></script>
<script>
$(document).ready(function (c) {
$('.alert-close').on('click', function (c) {
$('.main-mockup').fadeOut('slow', function (c) {
$('.main-mockup').remove();
});
});
});
</script>
</body>
</html>
LOGOUT.PHP
<?php
session_start(); session_unset();
session_destroy();
header("Location: index.php");
```

13.2 GitHub & Project Demo Link					
	m/IBM-EPBL/IB	M-Project-3466	<u>65-1660256754</u>		
https://youtu.b	e/6L84NAULtcY				