Getting Started

CS771: Introduction to Machine Learning
Purushottam Kar

Please enrol on Piazza

http://tinyurl.com/ml17-18adf

Recap

CS771: Intro to ML

August 4, 2017

Recap

Input driven ML

Batch Learning

Active Learning Robust Learning

Semi-supervised Supervised Learning

Online Learning

Unsupervised Learning

Reinforcement Learning

August 2, 2017

Output driven ML

Process driven ML

August 2, 2017 30

ML Primitives

A first look

Image Tagging

- 1. Angelina
- 2. Brad
- 3. Bradley
- 4. Channing
- 5. Ellen
- 6. Jared
- 7. Jennifer
- 8. Julia
- 9. Kevin
- 10.Lupita
- 11. Meryl
- 12.Peter

Image Tagging as Multi-label Classification

Celebrity Names

1. Asin

2. Angelina

3. Aamir

4. Brad

5. Bradley

6. Channing

7. Deepika

8. Dhanush

9. Ellen

10.Hansika

11. Hrithik

12.lleana

13.Jared

14. Jennifer

15.Julia

16.Kajal

17. Katrina

18.Kevin

19.Lupita

20.Meryl

21. Mohanlal

22.Nayantara

23.Peter

24.Prabhas

25.Rajnikanth

26.Shahrukh

27. Suriya

28.Sonam

29.Taapsee

30. Vikram

Image Tagging

Face Detection

Face Tagging

Face Detection

Face Detection as Binary Classification

Face Detection as Regression

Given any bounding box, predict the likelihood score of it containing a single face

Face Detection as Ranking

CS771: Intro to ML

- 1. Angelina
- 2. Brad
- 3. Bradley
- 4. Channing
- 5. Ellen
- 6. Jared
- 7. Jennifer
- 8. Julia
- 9. Kevin
- 10.Lupita
- 11. Meryl
- 12.Peter

- 1. Angelina
- 2. Brad
- 3. Bradley
- 4. Channing
- 5. Ellen
- 6. Jared
- 7. Jennifer
- 8. Julia
- 9. Kevin
- 10.Lupita
- 11. Meryl
- 12.Peter

- 1. Angelina
- 2. Brad
- 3. Bradley
- 4. Channing
- 5. Ellen
- 6. Jared
- 7. Jennifer
- 8. Julia
- 9. Kevin
- 10.Lupita
- 11. Meryl
- 12.Peter

- 1. Angelina
- 2. Brad
- 3. Bradley
- 4. Channing
- 5. Ellen
- 6. Jared
- 7. Jennifer
- 8. Julia
- 9. Kevin
- 10.Lupita
- 11. Meryl
- 12.Peter

- 1. Angelina
- 2. Brad
- 3. Bradley
- 4. Channing
- 5. Ellen
- 6. Jared
- 7. Jennifer
- 8. Julia
- 9. Kevin
- 10.Lupita
- 11. Meryl
- 12.Peter

Celebrity Names

- 1. Angelina
- 2. Brad
- 3. Bradley
- 4. Channing
- 5. Ellen
- 6. Jared
- 7. Jennifer
- 8. Julia
- 9. Kevin
- 10.Lupita
- 11. Meryl
- 12.Peter

CS771: Intro to ML

1. Angelina	0.01
2. Brad	0.01
3. Bradley	0.01
4. Channing	0.01
5. Ellen	0.99
6. Jared	0.01
7. Jennifer	0.25
8. Julia	0.34
9. Kevin	0.01
10.Lupita	0.01
11.Meryl	0.45
12.Peter	0.01
	13/5 76/19/19

l. Angelina	0.01
2. Brad	0.25
3. Bradley	0.99
4. Channing	0.01
5. Ellen	0.01
6. Jared	0.01
7. Jennifer	0.01
8. Julia	0.01
9. Kevin	0.11
10.Lupita	0.01
l1.Meryl	0.01
12.Peter	0.01

l. Angelina	0.65
2. Brad	0.01
3. Bradley	0.01
4. Channing	0.01
5. Ellen	0.44
6. Jared	0.01
7. Jennifer	0.01
8. Julia	0.99
9. Kevin	0.01
10.Lupita	0.01
l1.Meryl	0.22
12.Peter	0.01

Note: a separate regression problem for each celebrity

1. Angelina	0.65
2. Brad	0.01
3. Bradley	0.01
4. Channing	0.01
5. Ellen	0.44
6. Jared	0.01
7. Jennifer	0.01
8. Julia	0.99
9. Kevin	0.01
10.Lupita	0.01
11. Meryl	0.22
12.Peter	0.01

... or else, a multi-regression /vector regression problem

1. Angelina	0.65
2. Brad	0.01
3. Bradley	0.01
4. Channing	0.01
5. Ellen	0.44
6. Jared	0.01
7. Jennifer	0.01
8. Julia	0.99
9. Kevin	0.01
10.Lupita	0.01
11.Meryl	0.22
12.Peter	0.01

- 5. Ellen
- 8. Julia
- 11. Meryl
- 1. Angelina
- 4. Channing
- 6. Jared
- 7. Jennifer
- 2. Brad
- 9. Kevin
- 10. Lupita
- 3. Bradley
- 12. Peter

- 3. Bradley
- 2. Brad
- 9. Kevin
- 6. Jared
- 12. Peter
- 4. Channing
- 7. Jennifer
- 8. Julia
- 11. Meryl
- 10. Lupita
- 1. Angelina
- 5. Ellen

- 8. Julia
- 11. Meryl
- 10. Lupita
- 5. Ellen
- 1. Angelina
- 7. Jennifer
- 3. Bradley
- 2. Brad
- 9. Kevin
- 12. Peter
- 6. Jared
- 4. Channing

Note: can use regression to solve the ranking problem!

Celebrity Names

8. Julia

11. Meryl

10. Lupita

5. Ellen

1. Angelina

7. Jennifer

3. Bradley

2. Brad

9. Kevin

12. Peter

6. Jared

4. Channing

... but need not ... ranking this way is not scalable

- 8. Julia
- 11. Meryl
- 10. Lupita
- 5. Ellen
- 1. Angelina
- 7. Jennifer
- 3. Bradley
- 2. Brad
- 9. Kevin
- 12. Peter
- 6. Jared
- 4. Channing

Exercise: Recommendation Systems

Multi-Classification Regression

Ranking

Multi-Label Classification

Binary Classification

ML Workflows

Revisited

Supervised Batch Binary Classification

CS771: Intro to ML

Supervised Batch Binary Classification

Too much variety in Red class

August 4, 2017

freepik.com, dribble.com

Splitting Data Train Train Train Validation Data **Test** Test **Test** "Held-out" validation set August 4, 2017

CS771: Intro to ML

Multiple Splits

August 4, 2017

Fantastic Features

... and how to find them

What is a feature?

Raw/Low-level features

Derived/ Highlevel features

What is raw for you may have been derived by someone else

Types of Features

- Numerical features (pixel value, temperature)
- Categorical features (income bracket, blood type)
- Structured features (graph, tree, list)
- Relational features (neighbourhood, similarity)
- Bagged features (count statistics of other features)
 - Bag of words, bag of edges
- Pooled features (max, average of other features)
 - Popular in neural networks
- Missing and latent/hidden features

Exert caution with features

- Tricks, mnemonics lessen cognitive load, increase speed
- Easy questions can be solved in one step with a mnemonic!
- Too many mnemonics can confuse you at time of exam

- Derived features make learning easier, faster at test
- What you are trying to predict is just another (latent) feature!
- Too many useless features can confuse classifier