

DIGITAL DESIGN

ASSIGNMENT 2

Deadline: 22:55, Tuesday 12 November 2019

Lab sessions & Location:

- 1. Lychee Garden 6, Room 406 (Wednesday 16:20-18:10 pm)
- 2. Lychee Garden 6, Room 408 (Wednesday 19:00-20:50 pm)
- 3. Lychee Garden 6, Room 402 (Thursday 8:00-9:50 am)
- 4. Lychee Garden 6, Room 402 (Thursday 10:10~12:10 am)

Teaching Assistant:

Wang Wei, email: wangw6@sustech.edu.cn

Hua Zheng Chang, email: huazc@mail.sustech.edu.cn

PART 1: DIGITAL DESIGN THEORY

Provide answers to the following questions:

- 1. Convert the following binary numbers to hexadecimal and to decimal:
 - (a) 1.10101,
 - (b) 1101.01

How many times the decimal answer in (b) is larger than that in (a)? Explain why.

- 2. Do the following conversion problems:
 - (a) Convert decimal 37.875 to binary.
 - (b) Calculate the binary equivalent of 1/7 out to eight places. Then convert from binary to decimal. How close is the result to 1/7?
 - (c) Convert the binary result in (b) into hexadecimal. Then convert the result to decimal. Is the answer the same?
- 3. Represent the decimal number 7814 in (a) BCD, (b) excess-3 code, (c) 2421 code, and (d) 6311 code.
- 4. We can perform logical operations on strings of bits by considering each pair of corresponding bits separately (called bitwise operation). Given two eight-bit strings A = 10110101 and B = 00011100, evaluate the eight-bit result after the following logical operations: (a) AND (b) OR (c) XOR (d) NOT A (e) NOT B (f) NAND (g) NOR
- 5. Simplify the following Boolean expressions to a minimum or the indicated number of literals:
 - a. (a + b + c')(a'b' + c)
 - b. a'b'c + ab'c + abc + a'bc
 - c. (a + c)(a' + b + c)(a' + b' + c)
 - d. A'BD' + ABC'D'+ ABCD' to two literals
- 6. Given the Boolean functions F1 and F2, show that
 - a. The Boolean function E = F1 + F2 contains the sum of the minterms of F1 and F2

- b. The Boolean function $G = F1 \cdot F2$ contains only the minterms that are common to F1 and F2.
- 7. Convert each of the following to the other canonical form.

a.
$$F(x, y, z) = \sum (1, 3, 5, 7)$$

b.
$$F(A, B, C, D) = \Pi(3, 5, 8, 11, 13, 15)$$

8. Write the following Boolean expressions in:

a.
$$(b + d)(a' + b' + c)(a + c)$$
 SOP form

9. Determine whether the following Boolean equation is true or false.

a.
$$y'z' + yz' + x'z = x' + xz$$

b.
$$x'y' + xz' + yz = y'z' + xy + x'z$$

10. Simplify the following Boolean functions, using Karnaugh maps:

a.
$$F(w, x, y, z) = \sum (11, 12, 13, 14, 15)$$

b.
$$F(w, x, y, z) = \sum (8, 10, 12, 13, 14)$$

11. Simplify the following Boolean functions and expressions, using four-variable maps:

a.
$$F(A, B, C, D) = \sum (2, 3, 6, 7, 12, 13, 14)$$

b.
$$F(w, x, y, z) = \sum (1, 3, 4, 5, 6, 7, 9, 11, 13, 15)$$

d.
$$A'B'C'D' + BC'D + A'C'D + A'BCD + ACD$$

12. Implement the following logical functions with two-level NAND gate circuits.

Write down the simplification process.

a.
$$F(A, B, C, D) = AD + BC'D + ABC + A'BC'D$$

b.
$$F(A, B, C, D) = A'B'C'D + CD' + AC'D$$

c.
$$F(A, B, C, D) = (A' + C' + D')(A' + C')(C' + D')$$

d.
$$F(A, B, C, D) = A' + AB + B'C + ACD$$

PART 2: DIGITAL DESIGN LAB

INTRODUCTION

In this lab, you are required to use Vivado 2017.4 and Minisys/EGO1 Practice platform (xilinx FPGA chip artix 7 inside) to design a combinational logic circuit and test it.

PREAMBLE

Before working on the coursework itself, you should master the following material.

- 1. 'Ch2-Boolean Algrebra-ICs-SUSTC.ppt' and CH3-Minimisation-SUSTC ' in Sakai site.
- 2. 'Digital design lab6', 'Digital design lab7' and 'Digital design lab8' in Sakai site.
- 3. Verilog: http://www.verilog.com

EXERCISE SPECIFICATION

TASK1:

There are 4 wards, which are numbered from 1 to 4 respectively, among which the #1 ward has the lowest priority, and the #4 has the highest priority (Priority increases as the number increases). Each room has a call bell, it can be turn on and turn off. In the main control room there is a 7-seg tube which shows the ID of the room whose bell is on with the highest priority. Write a circuit to realize this function and test.

- Do the design.
- Write testbench to verify the function of your design.
- Create the constraint file.
- Do the synthetic and implementation, generate the bitstream file and program the device, then test on the Minisys/EGO1 develop board.

TASK2:

Implement a 4-16 decoder by two 3-8 decoders. You can either modify the provided 3-8 decoder in the or design 74138 decoder

- Do the design.
- Write testbench to verify the function of your design.
- Create the constraint file

 Do the synthetic and implementation, generate the bitstream file and program the device, then test on Minisys/EGO1 the develop board

SUBMISSION

Submit your assignment report to the Sakai on *Corresponding site* "Digital Design fall2019" by the deadline.

ASSESSEMENT

The full marks for this exercise is 100 and they are distributed as follows:

Theory: 40%

Question 1	3
Question 2	3
Question 3	2
Question 4	4
Question 5	4
Question 6	2
Question 7	2
Question 8	2
Question 9	2
Question 10	4
Question 11	6(4*1.5)
Question 12	6(4*1.5)
Total	40 marks

Lab: 60%

Task 1: Design in Verilog, the truth-table	5*2 marks
Task 1: Test bench in Verilog, simulation result	5*2 marks

Task 1: Constrains file, the description of the test result on	5*2 marks
Minisys/EGO1 practice board	
Task 2: Design in Verilog, the truth-table	5*2 marks
Task 2: Test bench in Verilog, simulation result	5*2 marks
Task 2: Constrains file and the description of the test result on	5*2 marks
Minisys/EGO1 practice board	
Total	60 marks

The template for the report is provided in the next pages.

DIGITAL DESIGN

ASSIGNMENTREPORT

ASSIGNMENT ID: XXXX

Student Name: xxxx

Student ID: xxxx

PART 1: DIGITAL DESIGN THEORY

Provide your answers here:

PART 2: DIGITAL DESIGN LAB (TASK1)

DESIGN

Describe the design of your system by providing the following information:

- Verilog design (provide the Verilog code)
- Truth-table

SIMULATION

Describe how you build the test bench and do the simulation.

- Using Verilog(provide the Verilog code)
- Wave form of simulation result (provide screen shots)
- The description on whether the simulation result is same as the truth-table, is the function of the design meet the expectation.

CONSTRAINT FILE AND THE TESTING

Describe how you test your design on the Minisys Practice platform.

- Constraint file (provide the screen shots on the feature of a pin and the binding info between pins and the input /output ports)
- The testing result (provide the screen shots (at least 3 testing scene) to show state of inputs and outputs along with the related descriptions.

THE DESCRIPTION OF OPERATION

Describe the problem occurred while in the lab and your solution. Any suggestions are welcomed.

Problems and solutions

PART 2: DIGITAL DESIGN LAB (TASK2)

DESIGN

Describe the design of your system by providing the following information:

- Verilog design while using data flow (provide the Verilog code)
- Verilog design while using structured design (provide the Verilog code)
- Block design (provide screen shots)
- Truth-table

SIMULATION

Describe how you build the test bench and do the simulation.

- Using Verilog (provide the Verilog code)
- Wave form of simulation result (provide screen shots)
- The description on whether the simulation result is same as the truth-table, is the function of the design meet the expectation

CONSTRAINT FILE AND THE TESTING

Describe how you test your design on the Minisys Practice platform.

- Constraint file (provide the screen shots on the feature of a pin and the binding info between pins and the input /output ports)
- The testing result (provide the screen shots (at least 3 testing scene)) to show state of inputs and outputs along with the related descriptions.

THE DESCRIPTION OF OPERATION

Describe the problem occurred while in the lab and your solution. Any suggestions are welcomed.

• Problems and solutions