Chapitre 18: Arithmétique

I. Multiples et diviseurs

a) Division euclidienne

Propriétés :

- On a toujours : **dividende** = **diviseur** x quotient + reste
- Le reste d'une division euclidienne est toujours inférieur au diviseur.

Exemple: Effectuer la division euclidienne de 318 par 4:

$$\begin{array}{c|c}
\widehat{318} & \underline{4} \\
- & 28 \\
\hline
 & 38 \\
- & 36 \\
\hline
 & 2
\end{array}$$
On a $318 = 79 \times 4 + 2$

b) Multiples et diviseurs

<u>Définition</u>: Un nombre entier a est un multiple d'un nombre entier b non nul si le reste de la division euclidienne de a par b est 0. On dit aussi que b est un diviseur de a ou que a est divisible par b.

Exemple:

Le reste de la division euclidienne de 246 par 6 est égal à 0 :

- 246 est un **multiple** de 6
- 246 est divisible par 6
- 6 est un diviseur de 246.

II. Nombres premiers

ACTIVITÉ: POLY

1	<mark>2</mark>	<mark>3</mark>	4	<mark>5</mark>	6	7	8	9	10
<mark>11</mark>	12	<mark>13</mark>	14	15	16	<mark>17</mark>	18	<mark>19</mark>	20
21	22	<mark>23</mark>	24	25	26	27	28	<mark>29</mark>	30
<mark>31</mark>	32	33	34	35	36	<mark>37</mark>	38	39	40
<mark>41</mark>	42	<mark>43</mark>	44	45	46	<mark>47</mark>	48	49	50
51	52	<mark>53</mark>	54	55	56	57	58	<mark>59</mark>	60
<mark>61</mark>	62	63	64	65	66	<mark>67</mark>	68	69	70
<mark>71</mark>	72	<mark>73</mark>	74	75	76	77	78	<mark>79</mark>	80
81	82	<mark>83</mark>	84	85	86	87	88	<mark>89</mark>	90
91	92	93	94	95	96	<mark>97</mark>	98	99	100

Rappels:

<u>Critère de divisibilité par 2</u>: Un nombre entier est divisible par **2** lorsque son chiffre des unités est **0**, **2**, **4**, **6 ou 8**.

<u>Critère de divisibilité par 5 :</u> Un nombre entier est divisible par **5** lorsque son chiffre des unités est **0 ou 5**.

<u>Critère de divisibilité par 10</u>: Un nombre entier est divisible par **10** lorsque son chiffre des unités est **0**.

<u>Critère de divisibilité par 4 :</u> Un nombre entier est divisible par 4 lorsque son chiffre des dizaines et son chiffre des unités forment un nombre **multiple de 4**.

<u>Critère de divisibilité par 3 :</u> Un nombre est divisible par **3** lorsque la **somme** de ses chiffres est un **multiple de 3**.

<u>Critère de divisibilité par 9</u>: Un nombre est divisible par **9** lorsque la **somme** de ses chiffres son chiffre est un **multiple de 9**.

Les nombres non rayés sont des nombres qui n'admettent que 2 diviseurs : 1 et eux-mêmes.

<u>Définition</u>: Un nombre premier est un nombre qui admet exactement deux diviseurs : 1 et lui-même.

Exemples:

- 17 est un nombre premier. Il n'est divisible que par 1 et 17.
- 15 n'est pas premier. Il est divisible par 1, 3, 5, 15.

Remarque: 1 n'est pas premier. Il n'admet qu'un seul diviseur: lui-même.

Il y a 25 nombres premiers inférieurs à 100 : 2 ; 3 ; 5 ; 7 ; 11 ; 13 ; 17 ; 19 ; 23 ; 29 ; 31 ; 37 ; 41 ; 43 ; 47 ; 53 ; 59 ; 61 ; 67 ; 71 ; 73 ; 79 ; 83 ; 89 ; 97.

III. Décomposition en facteurs premiers

<u>Théorème</u>: <u>Théorème fondamental de l'arithmétique</u>

Tout nombre entier supérieur à 1 peut se décomposer en un produit de facteurs premiers et cette décomposition est unique (à l'ordre des facteurs près).

Exemple : Décomposition de 1 170 en facteurs premiers :

1 170 est pair donc 1 170 = 2 × 585

585 est divisible par 3 donc 1 170 = $2 \times 3 \times 195$

195 est encore divisible par 3 donc 1 170 = $2 \times 3 \times 3 \times 65$

65 est divisible par 5 donc 1 170 = $2 \times 3 \times 3 \times 5 \times 13$

13 est premier donc la décomposition est finie : 1 170 = $2 \times 3^2 \times 5 \times 13$

On peut écrire :

<u>Définition</u>: Une fraction est irréductible lorsque son numérateur et son dénominateur ont 1 pour seul diviseur commun.

Exemples: $\frac{2}{3}$; $\frac{7}{24}$; $\frac{19}{20}$ sont irréductibles. $\frac{9}{24}$ n'est pas irréductible car 9 et 24 sont divisibles par 3.

Rendre une fraction irréductible :

$$\frac{280}{448} = \frac{2^3 \times 5 \times 7}{2^6 \times 7} = \frac{5}{2^3} = \frac{5}{8}$$

 $\frac{5}{8}$ est irréductible.