NI	
Name:	
i vaiiic.	

As always you need to show your work. Fill in the appropriate blanks

1. A pair (λ, ν) is an eigen pair if

	and	
--	-----	--

- 2. For $A = \begin{pmatrix} 2 & 1 & 1 \\ 2 & 1 & 1 \\ -2 & 1 & 1 \end{pmatrix}$.
 - **2.1.** Is $v = \{1, 1, -1\}$ an eigenvector of A?
 - **2.2.** If it is an eigenvector compute the associated eigenvalue λ =

- 3. For $A = \begin{pmatrix} 2 & 1 & 1 \\ 2 & 1 & 1 \\ -2 & 1 & 1 \end{pmatrix}$.
 - **3.1.** Is $v = \{0, 1, -1\}$ an eigenvector of A?
 - **3.2.** If it is an eigenvector compute the associated eigenvalue λ =

- **4.** For $A = \begin{pmatrix} 4 & 2 \\ -2 & 5 \end{pmatrix}$.
 - **4.1.** Is $\lambda = 8$ an eigenvalue of A?
 - **4.2.** If it is an eigenvalue compute an associated eigenvector. $v = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

- **5.** For $A = \begin{pmatrix} 4 & 2 \\ -2 & 5 \end{pmatrix}$.
 - **5.1.** Is $\lambda = 5$ an eigenvalue of A?
 - **5.2.** If it is an eigenvalue compute an associated eigenvector. v =

- **6.** For $A = \begin{pmatrix} 4 & 2 \\ -2 & 5 \end{pmatrix}$.
 - **6.1.** Is $\lambda = 2$ an eigenvalue of A?

6.2. If it is an eigenvalue compute an associated eigenvector. $v = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$