Lecture 4: Optimization: Stochastic Gradient Descent Momentum, AdaGrad, Adam Learning Rate Schedules

Recap

- We have some dataset of (x,y)
- We have a **score function**: $s=f(x;W)\stackrel{\text{e.g.}}{=}Wx$
- We have a **loss function**:

Softmax
$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 SVM $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$ Full loss

Strategy #1: A first very bad idea solution: Random search

```
# assume X train is the data where each column is an example (e.g. 3073 \times 50,000)
# assume Y train are the labels (e.g. 1D array of 50,000)
# assume the function L evaluates the loss function
bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
  W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
 loss = L(X train, Y train, W) # get the loss over the entire training set
 if loss < bestloss: # keep track of the best solution
   bestloss = loss
   bestW = W
  print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (trunctated: continues for 1000 lines)
```

Let's see how well this works on the test set...

```
# Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
# find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
# and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
# returns 0.1555
```

15.5% accuracy! not bad! (SOTA is ~95%)

Strategy #2: Follow the slope

Random search

Follow the slope

Strategy #2: Follow the slope

Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

In multiple dimensions, the gradient is the vector of (partial derivatives).

Numerical evaluation of the gradient...

current W: [0.34,-1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...]

loss 1.25347

gradient dW:

[0.34,	[0.34 + 0.0001 ,	[?,
-1.11,	-1.11,	?,
0.78,	0.78,	?,
0.12,	0.12,	?,
0.55,	0.55,	?,
2.81,	2.81,	?,
-3.1,	-3.1,	?,
-1.5,	-1.5,	?,
0.33,]	0.33,]	?,]
loss 1.25347	loss 1.25322	
	I	

W + h (first dim):

current W:

gradient dW:

W + h (first dim): gradient dW: [0.34 + 0.0001,[0.34,**-2.5**, -1.11, -1.11, 0.78, 0.78, 0.12, 0.12, (1.25322 - 1.25347)/0.0001 0.55, 0.55, = -2.52.81, 2.81, $\frac{df(x)}{dx} = \lim \frac{f(x+h) - f(x)}{dx}$ -3.1, -3.1, -1.5, -1.5, 0.33,...[0.33,...]?,...] loss 1.25322 loss 1.25347

current W:

[0.34,[0.34,[-2.5,-1.11 + 0.0001-1.11, 0.78, 0.78, 0.12, 0.12, 0.55, 0.55, 2.81, 2.81, -3.1, -3.1, -1.5, -1.5, 0.33,...0.33,...?,...] loss 1.25347 loss 1.25353

W + h (second dim):

current W:

gradient dW:

current W: W + h (second dim): gradient dW: [0.34,[0.34,[-2.5, -1.11, -1.11 + 0.00010.6, 0.78, 0.78, 0.12, 0.12, 0.55, 0.55, (1.25353 - 1.25347)/0.0001 2.81, 2.81, = 0.6-3.1, -3.1, $rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$ -1.5, -1.5, 0.33,...[0.33,...]loss 1.25353 loss 1.25347

gradient dW: [0.34,[0.34,[-2.5, -1.11, -1.11, 0.6, 0.78 + 0.00010.78, 0.12, 0.12, 0.55, 0.55, 2.81, 2.81, -3.1, -3.1, -1.5, -1.5, 0.33,...0.33,...?,...] loss 1.25347 loss 1.25347

W + h (third dim):

current W:

current W: **W** + h (third dim): gradient dW: [0.34,[0.34,[-2.5, -1.11, -1.11, 0.6, 0.78 + 0.00010.78, 0.12, 0.12, 0.55, 0.55, (1.25347 - 1.25347)/0.00012.81, 2.81, = 0-3.1, -3.1, $\frac{df(x)}{dx} = \lim \frac{f(x+h) - f(x)}{dx}$ -1.5, -1.5, 0.33,...[0.33,...]loss 1.25347 loss 1.25347

current W:

[0.34, -1.11, 0.78, 0.12, 0.55,

2.81, -3.1, -1.5,

0.33,...]

loss 1.25347

(V .

dW = ... (some function of data and W)

gradient dW:

[-2.5, 0.6, 0, 0.2, 0.7, -0.5, 1.1, 1.3, -2.1,...]

Evaluating the gradient numerically

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

```
def eval numerical gradient(f, x):
 a naive implementation of numerical gradient of f at x
  - f should be a function that takes a single argument
  - x is the point (numpy array) to evaluate the gradient at
  11 11 11
 fx = f(x) # evaluate function value at original point
 grad = np.zeros(x.shape)
 h = 0.00001
 # iterate over all indexes in x
 it = np.nditer(x, flags=['multi index'], op flags=['readwrite'])
 while not it.finished:
   # evaluate function at x+h
   ix = it.multi index
   old value = x[ix]
   x[ix] = old value + h # increment by h
   fxh = f(x) # evalute f(x + h)
   x[ix] = old value # restore to previous value (very important!)
    # compute the partial derivative
    grad[ix] = (fxh - fx) / h # the slope
   it.iternext() # step to next dimension
  return grad
```

Evaluating the gradient numerically

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

- approximate
- very slow to evaluate

```
def eval numerical gradient(f, x):
 a naive implementation of numerical gradient of f at x
  - f should be a function that takes a single argument
  - x is the point (numpy array) to evaluate the gradient at
 fx = f(x) # evaluate function value at original point
 grad = np.zeros(x.shape)
 h = 0.00001
 # iterate over all indexes in x
 it = np.nditer(x, flags=['multi index'], op flags=['readwrite'])
 while not it.finished:
   # evaluate function at x+h
   ix = it.multi index
   old value = x[ix]
   x[ix] = old value + h # increment by h
   fxh = f(x) # evalute f(x + h)
   x[ix] = old value # restore to previous value (very important!)
    # compute the partial derivative
    grad[ix] = (fxh - fx) / h # the slope
   it.iternext() # step to next dimension
  return grad
```

The loss is just a function of W:

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^N L_i + \sum_k W_k^2 \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \end{aligned}$$

$$s = f(x; W) = Wx$$

want $\nabla_W L$

Use calculus to compute an analytic gradient

During a pandemic, Isaac Newton had to work from home, too. He used the time wisely.

A later portrait of Sir Isaac Newton by Samuel Freeman. (British Library/National Endowment for the Humanities)

By Gillian Brockell

March 12, 2020 at 2:18 p.m. EDT

- 1. Developed calculus
- 2. Fundamentals of optics
- 3. Theory of gravity
 - ...not too shabby!

In summary:

- Numerical gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation with numerical gradient. This is called a gradient check.

Gradient Descent

```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```


Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^N \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

```
# Vanilla Minibatch Gradient Descent

while True:
   data_batch = sample_training_data(data, 256) # sample 256 examples
   weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
   weights += - step size * weights grad # perform parameter update
```


Example of optimization progress while training a neural network.

(Loss over mini-batches goes down over time.)

What if loss changes quickly in one direction and slowly in another? What does gradient descent do?

Aside: Loss function has high **condition number**: ratio of largest to smallest singular value of the Hessian matrix is large

VV I

What if loss changes quickly in one direction and slowly in another? What does gradient descent do?

Very slow progress along shallow dimension, jitter along steep direction

Loss function has high **condition number**: ratio of largest to smallest singular value of the Hessian matrix is large

What if the loss function has a local minima or saddle point?

What if the loss function has a local minima or saddle point?

Zero gradient, gradient descent gets stuck

What if the loss function has a local minima or saddle point?

Saddle points much more common in high dimension

Dauphin et al, "Identifying and attacking the saddle point problem in high-dimensional non-convex optimization", NIPS 2014

saddle point in two dimension

$$f(x,y) = x^2 - y^2$$

$$rac{\partial}{\partial x}(x^2-y^2)=2x
ightarrow 2(0)=0$$

$$rac{\partial}{\partial {\color{red} {m y}}}(x^2-{\color{red} {m y}}^2)=-2y
ightarrow -2({\color{red} {m 0}})=0$$

Image source: https://en.wikipedia.org/wiki/Saddle_point

Our gradients come from minibatches so they can be noisy!

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W)$$

SGD + Momentum

Local Minima Saddle points

Poor Conditioning

Gradient Noise

SGD: the simple two line update code

SGD

```
x_{t+1} = x_t - \alpha \nabla f(x_t)
```

```
while True:
   dx = compute_gradient(x)
   x -= learning_rate * dx
```

SGD + Momentum:

continue moving in the general direction as the previous iterations SGD+Momentum

```
x_{t+1} = x_t - \alpha \nabla f(x_t) while True:  dx = \text{compute\_gradient(x)}   x = \text{learning\_rate * } dx
```

 $v_{t+1} = \rho v_t + \nabla f(x_t)$ $x_{t+1} = x_t - \alpha v_{t+1}$

- Build up "velocity" as a running mean of gradients
- Rho gives "friction"; typically rho=0.9 or 0.99

Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

SGD + Momentum:

continue moving in the general direction as the previous iterations

SGD

```
x_{t+1} = x_t - \alpha \nabla f(x_t)
```

```
while True:
   dx = compute_gradient(x)
   x -= learning_rate * dx
```

SGD+Momentum

```
v_{t+1} = \rho v_t + \nabla f(x_t)x_{t+1} = x_t - \alpha v_{t+1}
```

```
vx = 0
while True:
    dx = compute_gradient(x)
    vx = rho * vx + dx
    x -= learning_rate * vx
```

- Build up "velocity" as a running mean of gradients
- Rho gives "friction"; typically rho=0.9 or 0.99

Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

Added element-wise scaling of the gradient based on the historical sum of squares in each dimension

"Per-parameter learning rates" or "adaptive learning rates"

Duchi et al, "Adaptive subgradient methods for online learning and stochastic optimization", JMLR 2011

```
grad_squared = 0
while True:
  dx = compute\_gradient(x)
  grad_squared += dx * dx
 x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
                                       ••
```

Q: What happens with AdaGrad?

```
grad_squared = 0
while True:
  dx = compute\_gradient(x)
  grad_squared += dx * dx
  x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
                                         ( · · )
```

Q: What happens with AdaGrad?

Progress along "steep" directions is damped; progress along "flat" directions is accelerated

```
grad_squared = 0
while True:
  dx = compute\_gradient(x)
  grad_squared += dx * dx
 x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
                                       00
```

Q2: What happens to the step size over long time?

```
grad_squared = 0
while True:
  dx = compute\_gradient(x)
  grad_squared += dx * dx
 x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

Q2: What happens to the step size over long time? Decays to zero

RMSProp: "Leaky AdaGrad"

AdaGrad

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

RMSProp

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

Tieleman and Hinton, 2012

RMSProp

SGD

SGD+Momentum

decaying Ir)

RMSProp

AdaGrad
(stuck due to

Adam (almost)

```
first_moment = 0
second_moment = 0
while True:
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))
```

Adam (almost)

```
first moment = 0
second moment = 0
while True:
  dx = compute\_gradient(x)
 first_moment = beta1 * first_moment + (1 - beta1) * dx
 second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
 x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))
```

Momentum

AdaGrad / RMSProp

Sort of like RMSProp with momentum

Q: What happens at first timestep?

Adam (full form)

```
first_moment = 0
second_moment = 0
for t in range(1, num_iterations):
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx

first_unbias = first_moment / (1 - beta1 ** t)
    second_unbias = second_moment / (1 - beta2 ** t)

x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))
AdaGrad / RMSProp
```

Bias correction for the fact that first and second moment estimates start at zero

Adam (full form)

```
first_moment = 0
second_moment = 0
for t in range(1, num_iterations):
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx

    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx

first_unbias = first_moment / (1 - beta1 ** t)
    second_unbias = second_moment / (1 - beta2 ** t)

x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))
AdaGrad / RMSProp
```

Bias correction for the fact that first and second moment estimates start at zero

Adam with beta1 = 0.9, beta2 = 0.999, and learning_rate = 1e-3 or 5e-4 is a great starting point for many models!

Adam

Learning rate schedules

```
# Vanilla Gradient Descent
while True:
  weights grad = evaluate gradient(loss fun, data, weights)
 weights += - step_size * weights_grad # perform parameter update
               Learning rate
```

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have **learning rate** as a hyperparameter.

Q: Which one of these learning rates is best to use?

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have learning rate as a hyperparameter.

Q: Which one of these learning rates is best to use?

A: In reality, all of these are good learning rates.

Learning rate decays over time

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.