Análise Matemática II

P. Cerejeiras

Aveiro, 2^o semestre de 2015/2016

0 Espaços métricos

O objectivo desta secção é o estender o estudo da convergência de sucessões e de séries de números reais (tratado em Análise Matemática 1) ao caso de estruturas mais gerais, que permitam, por exemplo, estudar a convergência de sequências de objectos (e.g., matrizes, ou funções) pertencentes a um dado espaço vectorial.

0.1 Produto interno

O tradicional produto interno no espaço vectorial real \mathbb{R}^3 permite introduzir os conceitos de comprimento de vectores e de ângulo entre vectores. Mais, dado um sistema linear Ax=y, do qual são conhecidos os valores próprios $\lambda_1, \lambda_2, \lambda_3$, associados à matriz A, e correspondentes vectores próprios $\vec{v}_1, \vec{v}_2, \vec{v}_3$, então é sabido que o sistema $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ forma uma base de \mathbb{R}^3 e, para $y=\alpha_1\vec{v}_1+\alpha_2\vec{v}_2+\alpha_3\vec{v}_3$, tira-se automaticamente a solução do sistema Ax=y como

$$x = \frac{\alpha_1}{\lambda_1} \vec{v}_1 + \frac{\alpha_2}{\lambda_2} \vec{v}_2 + \frac{\alpha_3}{\lambda_3} \vec{v}_3,$$

assumindo que os valores próprios λ_j são não nulos. Vamos agora generalizar este conceito ao caso de um espaço vectorial real (de dimensão arbitrária).

Definição 0.1. Dado um espaço vectorial real X (dito, espaço linear) chamamos produto interno a uma aplicação

$$\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R}, \quad (x, y) \mapsto \langle x, y \rangle,$$
 (0.1)

que verifica

- i) $\langle x, x \rangle \ge 0$, $\langle x, x \rangle$ sse x = 0; (positividade)
- $ii) \langle x, y \rangle = \langle y, x \rangle; \quad (comutatividade)$
- $(iii) \langle \lambda x, y \rangle = \lambda \langle x, y \rangle; \quad (associatividade)$
- $iv) \langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle, \quad (distributividadde)$

para todos $x, y, z \in X$ $e \lambda \in \mathbb{R}$.

Como exemplos de espaços vectoriais reais, considere-se

- 1) $X = \mathbb{R}^2$, onde $\langle (x_1, x_2), (y_1, y_2) \rangle := 2x_1y_1 + x_2y_2 + x_1y_2 + x_2y_1$.
- 2) $X = C[0,1], \text{ com } \langle f, g \rangle := \int_0^1 f(t)g(t)dt.$

3) X = C[0,1], com $\langle f,g \rangle_w := \int_0^1 f(t)g(t)w(t)dt$, onde w = w(t) representa uma função contínua positiva (dita, função peso).

Teorema 0.1 (Desigualdade de Cauchy-Schwarz).

$$|\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle, \quad \forall x, y \in X. \tag{0.2}$$

Demonstração. Tome-se $z=x+\lambda y\in X.$ Tem-se

$$0 \le \langle z, z \rangle = \langle x + \lambda y, x + \lambda y \rangle = \langle x, x \rangle + 2\lambda \langle x, y \rangle + \lambda^2 \langle y, y \rangle.$$

Para $\langle z,z\rangle=0$ então $z=x+\lambda y=0$ e temos que x e y são colineares. Para $\langle z,z\rangle>0$ então o discriminante da polinómio do segundo grau em λ terá que ser negativo, ou seja,

$$b^2 - 4ac = 4|\langle x, y \rangle|^2 - 4\langle x, x \rangle \langle y, y \rangle < 0,$$

o que conclui a prova.

Deste teorema retira-se automaticamente a desigualdade (ver Exemplo 2)

$$\left| \int_0^1 f(t)g(t)dt \right| \le \left(\int_0^1 (f(t))^2 dt \right) \left(\int_0^1 (g(t))^2 dt \right)$$

Definição 0.2. Sendo X um espaço vectorial real com produto interno $\langle \cdot, \cdot \rangle$, chama-se norma induzida por produto interno à aplicação

$$\|\cdot\|: X \to \mathbb{R}, \quad x \mapsto \|x\| := \langle x, x \rangle \ge 0.$$
 (0.3)

No que se segue, X denotará sempre um espaço vectorial real não vazio.

0.2 Definição de espaço métrico

Comecemos por definir sucessão de elementos no espaço vectorial real X (não vazio).

Definição 0.3. Chamamos sucessão em X a toda a aplicação

$$\varphi: \mathbb{N} \to X, \quad n \mapsto u_n \in X,$$

e escrevemos $(u_n)_{n\in\mathbb{N}}$.

As sucessões de números reais (estudadas em AM1) constituem o caso particular de sucessões em $X = \mathbb{R}$.

Já a aplicação

$$n \mapsto u_n, \quad u_n(x) := x^n + n, \ x \in [0, 1],$$

ou seja,

$$u_1(x) = x + 1$$
, $u_2(x) = x^2 + 2$, $u_3(x) = x^3 + 3$, \cdots ,

com $x \in [0, 1]$, estabece uma sucessão no espaço X = C[0, 1], das funções reais contínuas de variável real no intervalo [0, 1].

Outro exemplo é o espaço $X = \mathbb{R}^2$, dos pares ordenados de números reais. A sucessão

$$n \mapsto u_n, \quad u_n = (\frac{1}{n}, \frac{1}{n+1}) \in \mathbb{R}^2,$$

ou seja.

$$u_1 = (1, \frac{1}{2}), \quad u_2 = (\frac{1}{2}, \frac{1}{3}), \quad u_3 = (\frac{1}{3}, \frac{1}{4}), \dots,$$

constitui uma sucessão de pares de números reais.

Definido o que se entende por uma sucessão X, estabeleça-se o conceito de *limite desta sucessão*. A definição usual de convergência de uma sucessão $(x_n)_{n\in\mathbb{N}}$ de números reais para $x\in\mathbb{R}$ diz que, para todo o $\epsilon>0$, existe uma ordem $N=N(\epsilon)\in\mathbb{N}$ tal que

$$n > N \quad \Rightarrow \quad |x_n - x| < \epsilon, \tag{0.4}$$

e escrevemos $\lim_n x_n = x$. Esta definição assenta no estudo da proximidade entre os elementos x_n e x, de \mathbb{R} , pelo que é razoável definir convergência com base numa conveniente definição de distância.

Definição 0.4 (Distância). Dado um espaço X, chamo distância, ou métrica, em X a toda a aplicação $d: X \times X \to \mathbb{R}$ que verifique

- i) d(x,x) = 0;
- ii) d(x,y) > 0 para todo $x \neq y$;
- iii) d(x,y) = d(y,x) (simetria);
- $iv) \ d(x,z) = d(x,y) + d(y,z) \ (designal dade \ triangular),$

para todos $x, y, z \in X$.

Note-se que as condições i) e ii) são equivalentes a afirmar que $d(x,y) \ge 0$, com d(x,y) = 0 sse x = y. É igualmente óbvio que o mesmo espaço pode ser munido de diferentes métricas.

Também notar que, se X possuir um produto interno, então $d(x,y) := ||x-y|| = \langle x-y, x-y \rangle$ constitui uma distância em X (dita distância induzida pelo produto interno).

Definição 0.5 (Espaço métrico). Chama-se espaço métrico ao par (X, d), onde d é uma distância em X.

No caso das sucessões de números reais, temos $X = \mathbb{R}$ e a distância usada é a distância Euclideana $d_{Euc}(x,y) = |x-y|$. Todavia,

$$d_{disc}(x,y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$$

é também uma distância em $X = \mathbb{R}$. Obviamente, os espaços (\mathbb{R}, d_{Euc}) e (\mathbb{R}, d_{disc}) são espaços métricos distintos.

Outros exemplos:

1) X = C[0,1] munido da distância

$$d(f,g) := \int_0^1 |f(x) - g(x)| dx;$$

2) $X = \mathbb{R}^d, (d \in \mathbb{N})$, munido da distância ℓ_1 , ou métrica do táxista,

$$d_{\ell_1}((x_1, x_2, \cdots, x_d), (y_1, y_2, \cdots, y_d)) := |x_1 - y_1| + |x_2 - y_2| + \cdots + |x_d - y_d|;$$

3) $X = \mathbb{R}^d$, $(d \in \mathbb{N})$, munido da distância ℓ_2 , ou métrica Euclideana,

$$d_{\ell_2}\left((x_1,x_2,\cdots,x_d),(y_1,y_2,\cdots,y_d)\right) := \sqrt{|x_1-y_1|^2 + |x_2-y_2|^2 + \cdots + |x_d-y_d|^2};$$

4) $X = \mathbb{R}^d$, $(d \in \mathbb{N})$, munido da distância ℓ_{∞} ,

$$d_{\ell_{\infty}}((x_1, x_2, \cdots, x_d), (y_1, y_2, \cdots, y_d)) := \sup_{j=1, 2, \cdots, d} |x_j - y_j|;$$

5) X é o espaço das funções reais de variável real num dado intervalo $D \subset \mathbb{R}$, com a distância (métrica do supremo)

$$d_{sup}(f,g) := \sup_{x \in D} |f(x) - g(x)|.$$

0.3 Convergência em espaços métricos

Definição 0.6 (Convergência em espaço métrico). Dados um espaço métrico (X,d) e uma sucessão $(u_n)_{n\in\mathbb{N}}$ de elementos de X, e $u\in X$, diremos que a sequência $(u_n)_{n\in\mathbb{N}}$ converge para u em (X,d) se e só se

$$\forall \epsilon > 0, \exists N = N(\epsilon) \in \mathbb{N} : \forall n \in \mathbb{N}, \ n > N \quad \Rightarrow \quad d(u_n, u) < \epsilon, \tag{0.5}$$

ou seja,

$$\lim_{n} d(u_n, u) = 0.$$

O seguinte lema mostra a equivalência entre a Definição 0.6 e a convergência usual de sucessões de números reais.

Lema 0.1. Considere-se a sucessão $(x_n)_{n\in\mathbb{N}}$ de números reais, e $x\in\mathbb{R}$. Temos que $(x_n)_{n\in\mathbb{N}}$ converge para x se e só se $\lim_n d_{Euc}(x_n,x)=0$.

Demonstração. $\lim_n x_n = x$ é equivalente a afirmar que para todo o $\epsilon > 0$, existe uma ordem $N(\epsilon) \in \mathbb{N}$ tal que

$$(n > N \Rightarrow |x_n - x| < \epsilon) \Leftrightarrow (n > N \Rightarrow d_{Euc}(x_n, x) < \epsilon)$$

$$\Leftrightarrow (n > N \Rightarrow |d_{Euc}(x_n, x) - 0| < \epsilon),$$

ou seja, $\lim_n d_{Euc}(x_n, x) = 0$.

A sucessão $\mathbb{N}\ni n\mapsto u_n$, dada por $u_n=(\frac{1}{n},\frac{1}{n+1})\in\mathbb{R}^2$, converge para (0,0) em $(\mathbb{R}^2,d_{\ell_1})$, uma vez que

$$d_{\ell_1}\Big((\frac{1}{n},\frac{1}{n+1}),(0,0)\Big) = |\frac{1}{n}-0| + |\frac{1}{n+1}-0| = \frac{1}{n} + \frac{1}{n+1} \to 0 \quad \text{quando } n \to \infty.$$

Todavia, esta sucessão não converge no espaço métrico (\mathbb{R}^2, d_{disc}). Com efeito, suponha-se que a sucessão converge para $(x_0, y_0) \in \mathbb{R}^2$ segundo d_{disc} . Então, para $\epsilon = 0, 5 (< 1)$, existirá uma ordem $N(0, 5) \in \mathbb{N}$ tal que para todo o natural n > N se terá

$$d_{disc}\Big((\frac{1}{n}, \frac{1}{n+1}), (x_0, y_0)\Big) < 0, 5.$$

Da Definição 0.2, i) e ii), resulta que $(\frac{1}{n}, \frac{1}{n+1}) = (x_0, y_0)$ para todos n > N, o que é falso. Em consequência, não pode existir o limite (x_0, y_0) .

Este exemplo levanta a questão de quando é que a convergência em (X, d_1) implica a convergência em (X, d_2) ?

Definição 0.7 (Equivalência de métricas). Sejam d_1, d_2 duas distâncias num mesmo espaço X. Estas distâncias dizem-se equivalentes, e escrevemos $d_1 \sim d_2$, se e só se existirem constantes reais $0 < A \le B < \infty$ tais que

$$Ad_1(x,y) \le d_2(x,y) \le Bd_1(x,y),$$
 (0.6)

para todos $x, y \in X$.

A equivalência entre distâncias é

- 1) reflexiva: $d_1 \sim d_1$;
- 2) simétrica: $d_1 \sim d_2 \implies d_2 \sim d_1$;
- 3) transitiva: $d_1 \sim d_2 \wedge d_2 \sim d_3 \implies d_1 \sim d_3$,

onde d_1, d_2 e d_3 são distâncias num mesmo espaço X.

Lema 0.2. Se a sequência $(u_n)_{n\in\mathbb{N}}$ converge para u em (X,d_1) , e d_1,d_2 são distâncias equivalentes em X, então $(u_n)_{n\in\mathbb{N}}$ também converge para u em (X,d_2) .

Demonstração. Temos que $\lim_n d_1(u_n, u) = 0$, e existem constantes $0 < A \le B < \infty$ tais que

$$Ad_1(u_n, u) \le d_2(u_n, u) \le Bd_1(u_n, u).$$

Pelo teorema das sucessões enquadradas, vem que $\lim_n d_2(u_n, u) = 0$.

Como exemplo, note-se que as distâncias d_{ℓ_1} e d_{ℓ_2} são equivalentes em \mathbb{R}^d , uma vez que

$$d_{\ell_2}(x,y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_d - y_d)^2} \underbrace{\leq}_{a^2 + b^2 \leq (a+b)^2, \ a,b \geq 0} |x_1 - y_1| + \dots + |x_d - y_d| = d_{\ell_1}(x,y)$$

 \mathbf{e}

$$d_{\ell_1}(x,y) = |x_1 - y_1| + \dots + |x_d - y_d| \underbrace{\leq}_{|a| < \sqrt{a^2 + b^2}} d\sqrt{(x_1 - y_1)^2 + \dots + (x_d - y_d)^2} = d \ d_{\ell_2}(x,y).$$

Assim, a sucessão $(\frac{1}{n}, \frac{1}{n+1})_{n \in \mathbb{N}}$ que provámos convergir para (0,0) em (R^2, d_{ℓ_1}) , também converge para (0,0) em $(\mathbb{R}^2, d_{\ell_2})$, dado que $d_{\ell_2} \sim d_{\ell_1}$.

0.4 Sequências de Cauchy e espaços métricos completos

Definição 0.8 (Sequência de Cauchy). Dados um espaço métrico (X,d), e uma sucessão $(u_n)_{n\in\mathbb{N}}$ de elementos de X, diremos que a sucessão $(u_n)_{n\in\mathbb{N}}$ constitui uma sucessão de Cauchy em (X,d) se e só se

$$\forall \epsilon > 0, \exists N = N(\epsilon) \in \mathbb{N} : \quad n > N \quad \Rightarrow \quad \left(d(u_n, u_{n+m}) < \epsilon, \ \forall m \in \mathbb{N} \right), \tag{0.7}$$

ou seja,

$$\lim_{n} d(u_n, u_{n+m}) = 0,$$

para todo $m = 1, 2, 3, \dots$

Definição 0.9 (Espaço métrico completos). Um espaço métrico (X,d) diz-se completo se toda a successão de Cauchy em (X,d) tiver limite em (X,d).

Um exemplo de um espaço métrico completo é o espaço (\mathbb{R}, d_{disc}) . Com efeito, se $(x_n)_{n \in \mathbb{N}}$ fôr uma sucessão de Cauchy em (\mathbb{R}, d_{disc}) , ou seja,

$$\forall \epsilon > 0, \exists N = N(\epsilon) \in \mathbb{N} : n > N \Rightarrow \left(d_{disc}(x_n, x_{n+m}) < \epsilon, \ \forall m \in \mathbb{N} \right),$$

então para $\epsilon < 1$ vem

$$n > N \quad \Rightarrow \quad 0 = d_{disc}(x_n, x_{n+m}) < \epsilon, \ \forall m \in \mathbb{N},$$

ou seja, $x_n = x_{n+1} = x_{n+2} = \dots = x \in \mathbb{R}$, e a sucessão dada converge para x em (\mathbb{R}, d_{disc}) .

Atenção: o espaço métrico (\mathbb{R}, d_{disc}) não é equivalente a (\mathbb{R}, d_{Euc}) .

1 Sucessões e séries de funções

Pressupõe-se o conhecimento de sucessões e séries numéricas leccionadas em Análise Matemática 1.

1.1 Sucessões de funções

No que se segue, X representa o espaço das funções reais de variável real num intervalo $D \subset \mathbb{R}$, não vazio. Note-se que este espaço é um espaço vectorial para a adição pontual

$$(f+g)(x) := f(x) + g(x),$$

e produto pontual por um escalar real λ ,

$$(\lambda f)(x) := \lambda f(x),$$

onde $x \in D$, e $f, g \in X$.

Definição 1.1 (Sucessão de funções). Designa-se por sucessão de funções $(u_n)_{n\in\mathbb{N}}$ no espaço X a toda a aplicação de \mathbb{N} em X ou seja, $n\in\mathbb{N}\mapsto u_n\in X$, com

$$u_n: D \subset \mathbb{R} \to \mathbb{R}, \quad x \to u_n(x) \quad (n = 1, 2, \ldots),$$

e denota-se por

$$(u_n)_{n\in\mathbb{N}} = (u_1, u_2, u_3, \ldots)$$
.

A função u_n designa-se por termo de ordem n da sucessão $(u_n)_{n\in\mathbb{N}}$.

Note-se que a sucessão de funções $(u_n)_{n\in\mathbb{N}}$ constitui uma sucessão ordenada de funções cujo domínio, para a variável x, é $D\subset\mathbb{R}$, e onde a cada concretização da variável $x\in D$ corresponde uma sucessão numérica. Em estrito rigor, $(u_n)_{n\in\mathbb{N}}$ designa uma sucessão de funções enquanto que

$$(u_n(x))_{n\in\mathbb{N}} = (u_1(x), u_2(x), u_3(x), \ldots)$$

designa a concretização dessa sucessão na variável $x \in D$. Por abuso de linguagem, não faremos distinção entre ambas as notações.

Definição 1.2 (Convergência pontual). A sucessão de funções $(u_n)_{n\in\mathbb{N}}$ no espaço X (onde $u_n:D\subset\mathbb{R}\to\mathbb{R}$, $n\in\mathbb{N}$) converge pontualmente para a função $u\in X$ (onde $u:D\subset\mathbb{R}\to\mathbb{R}$) se para cada

 $x \in D$, a sucessão numérica $(u_n(x))_{n \in \mathbb{N}}$ converge para $u(x) \in \mathbb{R}$, isto é, se para todo o $\epsilon > 0$, existir uma ordem $N = N(\epsilon, x)$ tal que

$$n > N \Rightarrow |u_n(x) - u(x)| < \epsilon.$$

A função $u \in X$ diz-se limite (pontual) de $(u_n)_{n \in \mathbb{N}}$ em X, e escreve-se $\lim_n u_n = u$.

Exemplo 1.1. Considerar o D = [0,1] nos exemplos que se seguem.

- (i) A sucessão de funções de termo geral $u_n(x) = x^n$ converge para u(x) = 0, $x \in [0,1[,u(1)=1;$
- (ii) a sucessão de funções de termo geral $u_n(x) = \frac{1}{1+nx}$ converge para $u(x) = 0, x \in]0,1], u(0) = 1;$
- (iii) a sucessão de funções de termo geral $u_n(x) = \frac{nx}{1+n^2x^2}$ converge para $u(x) = 0, x \in [0,1];$
- (iv) a sucessão de funções de termo geral $u_n(x) = 2n^2xe^{-n^2x^2}$; converge para u(x) = 0, $x \in [0,1]$.

Na figura seguinte são dados os gráficos dos primeiros termos destas sucessões.

Figura 1: Gráficos dos primeiros quatro termos das sucessões dadas, respectivamente.

As séries de funções são introduzidas à custa da sucessão das suas somas parciais.

Definição 1.3 (Série de funções). Seja $(f_j)_{j\in\mathbb{N}}$ uma sucessão em X (ou seja, $f_j:D\subset\mathbb{R}\to\mathbb{R},\ j\in\mathbb{N}$) Chama-se série de funções, e denota-se por

$$f_1 + f_2 + \dots + f_n + \dots = \sum_{j=1}^{\infty} f_j,$$

à sucessão $(s_n)_{n\in\mathbb{N}}$ das somas parciais dos primeiros n termos de $(f_j)_{j\in\mathbb{N}}$, onde

$$s_n: D \subset \mathbb{R} \to \mathbb{R}, \quad x \mapsto s_n(x) = f_1(x) + \dots + f_n(x).$$

Definição 1.4 (Convergência pontual de uma série de funções). Seja $\sum_{j=1}^{\infty} f_j$ uma série em X (ou seja, $f_j : D \subset \mathbb{R} \to \mathbb{R}$, $j \in \mathbb{N}$).

Chama-se soma da série ao limite (pontual) da sucessão das somas parciais $S = \lim_n s_n : D \subset \mathbb{R} \to \mathbb{R}$.

Note-se que a notação $\sum_{j=1}^{\infty} f_j$ representa simultaneamente a sucessão das soma parciais

$$s_1 = f_1, \quad s_2 = f_1 + f_2, \quad \dots, \quad s_n = f_1 + \dots + f_n, \quad \dots,$$

e a soma da série, limite pontual da sucessão das somas parciais,

$$S = \lim_{n} s_n = \lim_{n} (f_1 + \dots + f_n).$$

Consequências:

- (i) Os resultados e teoremas válidos para sucessões e séries numéricas são agora extensíveis a sucessões e séries de funções. Em particular, o limite pontual de uma sucessão de funções, se existir, é único.
- (ii) Dos termos da série obtêm-se os termos da sucessão das somas parciais associada. Conversamente, a partir dos termos da sucessão das somas parciais $(s_n)_{n\in\mathbb{N}}$ recuperam-se os termos da série por meio da relação de recorrência

$$f_1(x) = s_1(x), \quad f_n(x) = s_n(x) - s_{n-1}(x), n \ge 2, \quad x \in D.$$

1.2 Convergência pontual e convergência uniforme

A convergência pontual não é suficiente para garantir a transição, no limite, de propriedades como a continuidade, a primitivação ou a diferenciação. Para tal, é necessário exigir convergência no espaço métrico (X, d_{sup}) , isto é, no espaço linear das funções reais de variável real num intervalo $D \subset \mathbb{R}$, munido da métrica do supremo

$$d_{sup}(f,g) := \sup_{x \in D} |f(x) - g(x)|, \quad f, g \in X.$$

Definição 1.5 (Convergência uniforme). Sejam $u_n, u \in X$, com $n \in \mathbb{N}$.

A sucessão $(u_n)_{n\in\mathbb{N}}$ diz-se que converge uniformemente para u em D, e escreve-se $\lim_n u_n \stackrel{unif}{=} u$, se convergir para u em (X, d_{sup}) , isto \acute{e} , se para todo o $\epsilon > 0$, existir uma ordem $N = N(\epsilon)$ tal que

$$n > N(\epsilon) \Rightarrow d_{sup}(u_n, u) < \epsilon.$$

Exemplo 1.2. (i) A sucessão de termo geral $u_n(x) = \frac{x}{1+n^2x^2}, x \in [0,1]$ converge pontualmente para u(x) = 0. A diferença entre o termo geral da sucessão e o seu limite é estimável por

$$0 \le u_n(x) - u(x) = \frac{1}{2n} \frac{2nx}{1 + n^2 x^2} \le \frac{1}{2n},$$

donde concluimos que, para todo o $\epsilon > 0$, existe um $N = N(\epsilon) = \left[\frac{1}{2\epsilon}\right]$ tal que

$$n > N(\epsilon)$$
 \Rightarrow $d_{sup}(u_n, u) = \sup_{x \in [0,1]} |u_n(x) - u(x)| = \sup_{x \in [0,1]} \frac{1}{2n} \frac{2nx}{1 + n^2 x^2} \le \frac{1}{2n} < \epsilon,$

ou seja, a sucessão de termo geral $u_n(x) = \frac{x}{1+n^2x^2}$ converge uniformente para $u \equiv 0$ em D = [0,1].

(ii) Já a sucessão de termo geral $u_n(x) = \frac{nx}{1+n^2x^2}, x \in [0,1]$, converge pontualmente para o mesmo limite da sucessão anterior mas tem a diferença entre o termo geral da sucessão e o seu limite majorada por

$$0 \le u_n(x) - u(x) = \frac{nx}{1 + n^2 x^2} \le \frac{nx}{n^2 x^2} = \frac{1}{nx}.$$

Assim, para $x_n = \frac{1}{n}$ tem-se

$$d_{sup}(u_n, u) = \sup_{x \in [0,1]} |u_n(x) - u(x)| \ge |u_n(\frac{1}{n}) - u(\frac{1}{n})| = \frac{1}{2}.$$

A sucessão $(u_n)_{n\in\mathbb{N}}$ não converge para $u\equiv 0$ em (X,d_{sup}) , ou seja, não converge uniformemente em D=[0,1].

Lema 1.1. Sejam $u_n, u \in X$ (n = 1, 2, ...). As seguintes afirmações são equivalentes:

i) A sequência de funções $(u_n)_{n\in\mathbb{N}}$ converge para u em (X, d_{sup}) ;

$$ii) \ \forall \epsilon > 0, \quad \exists N = N(\epsilon) \in \mathbb{N} : n > N \Rightarrow \left(|u_n(x) - u(x)| < \epsilon, \ \forall x \in D \right)$$

Lema 1.2. (X, d_{sup}) é um espaço métrico completo.

A demonstração destes dois lemas é deixada como exercício.

Definição 1.6 (Convergência uniforme de série de funções). Seja $\sum_{j=1}^{\infty} f_j$ uma série em X, isto é, $f_j: D \subset \mathbb{R} \to \mathbb{R}, j \in \mathbb{N}$.

Diz-se que a série $\sum_{j=1}^{\infty} f_j$ converge uniformemente para S em D, $(S: D \subset \mathbb{R} \to \mathbb{R})$, e escreve-se $\sum_{j=1}^{\infty} f_j \stackrel{unif}{=} S$, se a sucessão das suas somas parciais convergir para S em (X, d_{sup}) .

A convergência da sucessão das somas parciais $s_n = \sum_{j=1}^{\infty} f_j$ para S em (X, d_{sup}) é equivalente ao estudo da convergência da sucessão dos restos, de termo geral

$$D \ni x \mapsto R_n(x) = f_{n+1}(x) + f_{n+2}(x) + f_{n+3}(x) + \cdots$$
$$= \sum_{j=n+1}^{\infty} f_j(x), \quad n \in \mathbb{N}.$$

Porque

$$s_n(x) + R_n(x) = S(x) \Leftrightarrow R_n(x) = S(x) - s_n(x), \quad x \in D,$$

a sucessão dos restos tem os seus termos bem definidos, e a convergência da sucessão das somas parciais para S em (X, d_{sup}) é equivalente à convergência da sucessão dos restos para a função nula em (X, d_{sup}) .

Exemplo 1.3. A série

$$\sum_{j=1}^{\infty} x^{j-1} = 1 + x + x^2 + x^3 + \dots + x^n + \dots$$

corresponde à sucessão das somas parciais

$$s_n(x) = 1 + x + x^2 + \dots + x^{n-1} = \sum_{j=1}^n x^{j-1}$$

$$= \begin{cases} \frac{1-x^n}{1-x}, & x \neq 1\\ n, & x = 1 \end{cases},$$

pelo que converge pontualmente para $S(x) = \frac{1}{1-x}$ se |x| < 1.

 $\it J\'a~a~sucess\~ao~dos~restos~tem~por~termo~geral$

$$R_n(x) = x^n + x^{n+1} + x^{n+2} + x^{n+3} + \dots = x^n \frac{1}{1-x}, \quad |x| < 1,$$

com

$$d_{sup}(R_n, 0) = \sup_{|x| < 1} |R_n(x) - 0| = \lim_{x \to 1^-} |R_n(x)| = \infty.$$

Assim, a série $\sum_{j=1}^{\infty} x^{j-1} = 1 + x + x^2 + x^3 + \cdots$ não converge uniformemente em]-1,1[. Todavia, converge uniformente em qualquer sub-intervalo [-a,a],0 < a < 1.

Teorema 1.1 (Critério de Weierstrass). Seja $\sum_{j=1}^{\infty} f_j$ uma série em X, isto é, $f_j : D \subset \mathbb{R} \to \mathbb{R}$, $j \in \mathbb{N}$. Se existe uma sucessão de reais $(c_n)_{n \in \mathbb{N}}$ tal que

(i) para cada $n \in \mathbb{N}$ temos

$$|f_n(x)| \le c_n, \forall x \in D;$$

(ii) a série numérica $\sum_{n=1}^{\infty} c_n$ converge,

então a série de funções $\sum_{n=1}^{\infty} f_n$ converge em (X, d_{sup}) .

Demonstração. Vamos provar que sucessão das somas parciais $s_n = \sum_{j=n+1}^{\infty} f_j$ é uma sucessão de Cauchy em (X, d_{sup}) . Com efeito,

$$d_{sup}(s_n, s_{n+m}) = \sup_{x \in D} |f_{n+1}(x) + f_{n+2}(x) + \dots + f_{n+m}(x)|$$

$$\leq \sup_{x \in D} (|f_{n+1}(x)| + |f_{n+2}(x)| + \dots + |f_{n+m}(x)|)$$

$$\leq c_{n+1} + c_{n+2} + \dots + c_{n+m} \to 0, \text{ quando } n \to \infty,$$

e qualquer $m \in \mathbb{N}$.

Corolário 1.1.1. Se a série de reais $\sum_{n=1}^{\infty} a_n$ fôr absolutamente convergente então as séries de cosinos, $\sum_{n=1}^{\infty} a_n \cos(nx)$, e de sinos, $\sum_{n=1}^{\infty} a_n \sin(nx)$, convergem uniformemente em \mathbb{R} .

1.3 Continuidade, integração e derivação termo a termo

Teorema 1.2 (Continuidade). Seja $(u_n)_{n\in\mathbb{N}}$, com $u_n:D\subset\mathbb{R}\to\mathbb{R}$, $n\in\mathbb{N}$, uma sucessão de funções contínuas.

Se a sucessão $(u_n)_{n\in\mathbb{N}}$ convergir para u em (X,d_{sup}) , então u é uma função contínua em D.

Demonstração. Por hipótese da continuidade das funções u_n , para cada ponto $x_0 \in D$ e $\epsilon > 0$, existe um $\delta = \delta(\epsilon, n) > 0$ tal que

$$\forall x \in D, \quad |x - x_0| < \delta \quad \Rightarrow \quad |u_n(x) - u_n(x_0)| < \frac{\epsilon}{3}.$$

Porque $(u_n)_{n\in\mathbb{N}}$ converge para u em (X, d_{sup}) , para todo o $\epsilon > 0$, existe uma ordem $N = N(\epsilon) \in \mathbb{N}$ tal que

$$n > N \Rightarrow |u_n(t) - u(t)| \le \sup_{x \in D} |u_n(x) - u(x)| = d_{sup}(u_n, u) < \frac{\epsilon}{3}, \quad \forall t \in D.$$

Fixe-se $n > N(\epsilon)$. Existe então um $\delta = \delta(\epsilon, n) > 0$ tal que para, todo o $x \in D$ se tem

$$|x - x_0| < \delta \Rightarrow |u(x) - u(x_0)| \leq |u(x) - u_n(x)| + |u_n(x) - u_n(x_0)| + |u_n(x_0) - u(x_0)|$$

$$\leq d_{sup}(u_n, u) + |u_n(x) - u_n(x_0)| + d_{sup}(u_n, u)$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

Corolário 1.2.1. Se a série de funções contínuas $\sum_{n=1}^{\infty} f_n$ converge para S em (X, d_{sup}) então S é uma função contínua em D.

De notar que o Teorema 1.2 estabelece uma condição **suficiente**, mas **não necessária**. Reveja-se o Exemplo 1.2 (ii) para confirmar que uma sucessão pode não convergir uniformente e ainda assim o limite ser uma função contínua.

Passamos agora aos teoremas referentes à primitivação e derivação, termo a termo, de sucessões (resp., séries) de funções.

Teorema 1.3 (Integração termo a termo). Seja D = [a, b], a < b. Se a sucessão de funções contínuas $(u_n)_{n \in \mathbb{N}}$ converge para u em (X, d_{sup}) então para todo o $x_0 \in D$, tem-se que a sucessão das primitivas, de termo geral $U_n(x) = \int_{x_0}^x u_n(t) dt$, converge para $U(x) = \int_{x_0}^x u(t) dt$ em (X, d_{sup}) .

12

Demonstração. Pelo Teorema 1.2, as primitivas U_n e U existem.

Para todo o $\epsilon > 0$ existe uma ordem $N = N(\epsilon) \in \mathbb{N}$ tal que

$$n > N \Rightarrow |u_n(t) - u(t)| \le \sup_{x \in D} |u_n(x) - u(x)| < \frac{\epsilon}{b - a}$$

para todo o $t \in D$. Então, para n > N temos

$$\sup_{x \in D} |U_n(x) - U(x)| = \sup_{x \in D} \left| \int_{x_0}^x (u_n(t) - u(t)) dt \right| < \frac{\epsilon}{b - a} |x - x_0| \le \epsilon.$$

Corolário 1.3.1. Se a série de funções contínuas $\sum_{n=1}^{\infty} f_n(x)$ converge para S em (X, d_{sup}) então para todo $x_0 \in D$ tem-se

$$\sum_{n=1}^{\infty} \left(\int_{x_0}^x f_n(t) dt \right) = \int_{x_0}^x S(t) dt.$$

O próximo exemplo ilustra a aplicação destes resultados.

Exemplo 1.4. Foi provado que a série de funções contínuas

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots$$

converge uniformemente em qualquer intervalo fechado $[-R,R] \subset]-1,+1[$. Usando este facto, obtém-se a expansão em série de funções contínuas de $\ln(1+x)$, isto é,

$$\ln(1+x) = \int_0^x \frac{1}{1+t} dt$$

$$= \int_0^x (1-t+t^2-\cdots) dt$$

$$= x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots,$$

válido para todo $x \in [-R, R] \subset]-1, +1[$.

Teorema 1.4 (Derivação termo a termo). Seja D = [a, b], a < b.

Se a sucessão de funções $(u_n)_{n\in\mathbb{N}}$, $(u_n:D=[a,b]\to\mathbb{R}, n=1,2,\ldots)$, verifica

- i) converge pontualmente para u em D;
- ii) as derivadas u'_n são contínuas em $D, n = 1, 2, \cdots;$
- iii) a sucessão das derivadas $(u'_n)_{n\in\mathbb{N}}$ converge em (X, d_{sup}) ;

então $(u'_n)_{n\in\mathbb{N}}$ converge para u' em (X, d_{sup}) .

Demonstração. Designe-se por u^* o limite da sucessão das derivadas $(u'_n)_{n\in\mathbb{N}}$. Pelo Teorema 1.2, u^* é contínua em D. Pela condição ii), os integrais $\int_a^x u'_n(t)dt$ existem, qualquer que seja o $n\in\mathbb{N}$.

Integrando, vem

$$\int_a^x u^*(t)dt = \lim_n \int_a^x u_n'(t)dt \quad \text{por iii) e Teorema 1.3}$$
$$= \lim_n (u_n(x) - u_n(a))$$
$$= u(x) - u(a), \quad x \in D, \quad \text{por i)}.$$

Pela unicidade do integral definido de uma função contínua, resulta a igualdade $u^* = u'$ em D.

Corolário 1.4.1. Se a série de funções $\sum_{n=1}^{\infty} f_n$ verifica

- i) a série converge pontualmente para S em D;
- ii) as derivadas f'_n são contínuas em D, $n = 1, 2, \cdots$;
- iii) a série das derivadas termo a termo, $\sum_{n=1}^{\infty} f'_n$ converge em (X, d_{sup}) ;

então $\sum_{n=1}^{\infty} f'_n$ converge para S' em (X, d_{sup}) , ou seja,

$$\sum_{n=1}^{\infty} f'_n(x) = S'(x), \quad \forall x \in D.$$

2 Séries de Taylor

Na secção anterior estudaram-se sucessões e séries de elementos do espaço métrico (X, d_{sup}) . Sendo X um espaço vectorial real levanta-se a questão de existência de uma base $\{\varphi_1, \varphi_2, \ldots\}$ que permita escrever qualquer elemento de X à custa dos elementos na base, isto é,

$$X \ni f = a_1 \varphi_1 + a_2 \varphi_2 + \ldots = \sum_n a_n \varphi_n, \quad a_n \in \mathbb{R}.$$

Note-se que há uma vantagem óbvia neste estudo, pois permite-nos descrever a acção de operações lineares através da sua acção sobre os elementos da base, isto é,

$$A\left(\sum a_n\varphi_n\right):=\sum a_nA(\varphi_n),$$

com A um operador linear (e.g., uma operação baseada em integração, ou derivação). Todavia, e porque a base \mathcal{B} tem (em geral) dimensão infinita, nem todos os resultados para espaços vectoriais de