Definition

Recall, let V be a vector space. We say that $\{v_1, \dots, v_n\} \subset V$ is linearly independent if

$$a_1v_1 + \cdots + a_nv_n = 0$$
 for some $a_1, \cdots, a_n \in \mathbb{F} \implies a_1 = \cdots = a_n = 0$

Otherwise, we call them linearly dependent.

Remark. Notice the definition of linearly independent is an implication, instead of an 'and' statement. Therefore, given a linearly independent set, we can not make any conclusion until the hypothesis of the implication is satisfied.

Questions

- 1. Let V, W be vector spaces over \mathbb{F} . Let $T: V \to W$ be an invertible linear transformation. Let $I = \{v_1, \dots, v_n\}$ be a linearly independent set of vectors in V. Prove that,
 - (a) Show that $T(I) = \{T(v_1), \dots, T(v_n)\}$ is also linearly independent

2. Let V,W be vector spaces over \mathbb{F} . Let $T:V\to W$ be a linear transformation. Assume that $S=\{T(v_1),\cdots,T(v_n)\}$ are linearly independent for some $v_1,\cdots,v_n\in\mathbb{F}$. Show that v_1,\cdots,v_n are linearly independent.