Projet MOPSI

Louis Hémadou et Louis Lesueur

1 Exemple en 1D

On considère $\Omega = [0, 1]$ et $\rho_1, \rho_2 \in \mathcal{P}(\Omega)$ Les densités ρ_1 et ρ_2 sont discrétisées (cf. pixelisation)

$$\Delta x = 1/M$$

$$x_0 = 0 \quad x_1 \quad \dots \quad x_M = 1$$

On pose donc : $\rho_i(x) = \rho_i^j$ pour chaque $x \in [x_{j-1}, x_j[$ (densités de proba constantes par morceaux, telles que $\Delta x \sum_{j=1}^M \rho_i^j = 1$)

Remarque Pour une image, l'espace sera en 2D (N_y pixels de haut, N_x pixels de large). Dans le cas d'une image en noir et blanc 1=Noir, 0=blanc et gris entre 0 et 1.

1.1 Formalisation du problème

On cherche une sorte d'interpolation entre ρ_1 et rho_2 , une sorte de $\lambda \in [0, 1]$ qui permettrait de trouver une densité du type $(1-\lambda)\rho_1 + \lambda\rho_2$. Mais c'est plus compliqué, donc on va remplacer le " $(1-\lambda)$ " par une équation.

Pour ça, on se fixe un $\epsilon > 0$ et on se donne W_{ϵ} une distance sur $\mathcal{P}(\Omega)$ et on va chercher un barycentre pour cette distance. C'est-à-dire un $\lambda \in [0,1]$ tel que ¹

$$\bar{\rho_{\lambda}} \in \underset{\rho \in \mathcal{P}}{argmin} \ \lambda W_{\epsilon}(\rho, \rho_1)^2 + (1 - \lambda) W_{\epsilon}(\rho, \rho_2)^2$$
 (1)

Remarque On peut vérifier que pour $\lambda = 1$, ρ_1 est bien solution et que pour $\lambda = 0$, ρ_2 est aussi solution.

Exercice Si on choisit une distance induite par une norme pour W_{ϵ} dans un espace vectoriel normé (ce qui n'est pas le cas de $\mathcal{P}(\Omega)$!), montrer que ρ_{λ} est unique et que $\rho_{\lambda} = \lambda \rho_1 + (1-\lambda)\rho_2$, ce qui justifie le nom de barycentre!

^{1.} cf formule (8) du papier

Distance de Wasserstein régularisée

Pour le W_{ϵ} on va considérer la distance de Wasserstein régularisée ² :

$$W_{\epsilon}(\rho_1, \rho_2) = \min_{\pi \in \mathcal{P}(\Omega \times \Omega)} \int_{\Omega \times \Omega} (x - y)^2 \pi(x, y) dx dy + \epsilon K L(\pi | \xi)$$
 (2)

- $-KL(\pi|\xi) = \int_{\Omega \times \Omega} \pi(x,y) (\log(\frac{\pi(x,y)}{\xi(x,y)}) 1) dx dy$ $-\xi \in \mathcal{P}(\Omega \times \Omega) \text{ mesure de proba de référence (on peut choisir } \xi = 1 \text{ ou } \xi(x,y) = 0$ $\rho_1(x)\rho_2(y)$ par exemple)

Propriétés de $\pi \in \mathcal{P}(\Omega \times \Omega)$

- $--\pi(x,y) \geq 0$

1.3 Retour sur le cas discret sur [0,1]

On pose, pour $1 \le j \le M : \tilde{x_j} = (j + \frac{1}{2})\Delta x$

À partir d'ici on peut abandonner les " Δx " grâce aux simplexes, comme dans le papier.

Discrétisations des outils définis ci-dessus

On définit $(\pi_{ij})_{1 \leq i,j \leq M}$ tel que :

- $\pi_{j,j'} \ge 0$ $\sum_{j,j'} \pi_{jj'} = 1$
- $-\sum_{i'}\pi_{ii'}=\rho_1^j$
- $-\sum_{i}\pi_{ij'}=\rho_2^{j'}$

Norme de Wasserstein discrétisée :

$$W_{\epsilon}(\rho_1, \rho_2) = \sum_{1 \le j, j' \le M} c_{jj'} \pi j j' + \epsilon \sum_{1 \le j, j' \le M} \pi_{jj'} (\log(\frac{\pi_{jj'}}{\xi_{jj'}}) - 1)$$
(3)

avec $c_{jj'}=(\tilde{x_j}-\tilde{x_{j'}})^2$ Faut-il mettre des Δx ? En reparler à Virginie quand on rencontrera le

Cette norme se calcule avec la section 2 du papier

^{2.} cf section 3.1 du papier

2 À faire pour la prochaine fois

- Lire le papier jusqu'à la page 11
- Implémenter un algo pour générer des densités de proba discrètes
- Calculer des W_{ϵ} et regarder ce qu'il se passe pour différentes valeurs de ϵ (reproduire ce qu'il se passe sur la Figure 1 du papier où ρ_1 est en bleu et ρ_2 est en rouge)
- prochain rdv le 07/11 à 17^h30