Introprocedural

Introprocedural

Global Register Allocation

via Graph Coloring

Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.

Register Allocation

Part of the compiler's back end

- Produce correct code that uses k (or fewer) registers
- Minimize added loads and stores 5pills
- Minimize space used to hold spilled values
- Operate efficiently O(n), $O(n \log_2 n)$, maybe $O(n^2)$, but not $O(2^n)$

The big picture

Optimal global allocation is NP-Complete, under almost any assumptions.

At each point in the code

Determine which values will reside in registers Allocation

Assign ment 2 Select a register for each such value The goal is an allocation that "minimizes" running time

Most modern, global allocators use a graph-coloring paradigm

Build a "conflict graph" or "interference graph"

Find a k-coloring for the graph, or change the code to a nearby problem that it can k-color

This is an assignment problem, not an allocation problem!

What's harder across multiple blocks?

- Must build a control-flow graph to understand inter-block flow
- Can spend an inordinate amount of time adjusting the allocation

What if one block has x in a register, but the other does not?

A more complex scenario

- Block with multiple predecessors in the control-flow graph
- Must get the "right" values in the "right" registers in each predecessor
- In a loop, a block can be its own predecessor

This adds tremendous complications

Taking a global approach

- Abandon the distinction between local & global
- Make systematic use of registers or memory
- Adopt a general scheme to approximate a good allocation

Graph coloring paradigm

(Lavrov & (later) Chaitin)

- 1 Build an interference graph G_T for the procedure
 - \rightarrow Computing LIVE is harder than in the local case (yes, but we've $\rightarrow G_{\tau}$ is not an interval araph
 - $\rightarrow G_T$ is not an interval graph
- 2 (Try to) construct a k-coloring
 - → Minimal coloring is NP-Complete
 - → Spill placement becomes a critical issue
- 3 Map colors onto physical registers

The problem

A graph G is said to be k-colorable iff the nodes can be labeled with integers 1... k so that no edge in G connects two nodes with the same label

Examples

Each color can be mapped to a distinct physical register

Building the Interference Graph

What is an "interference"? (or conflict)

- Two values interfere if there exists an operation where both are simultaneously live
- If x and y interfere, they cannot occupy the same register
 To compute interferences, we must know where values are "live"

The interference graph, G_I

- Nodes in G_I represent values, or live ranges
- Edges in G_I represent individual interferences
 - \rightarrow For x, y $\in G_I$, $\langle x,y \rangle \in iff x and y interfere$
- A k-coloring of G_I can be mapped into an allocation to k registers

Building the Interference Graph

To build the interference graph

- 1 Discover live ranges
 - Build SSA form [Eliot's digression to explain ...]
 - > At each ϕ -function, take the union of the arguments
- 2 Compute LIVE sets for each block
 - Use an iterative data-flow solver
 - > Solve equations for LIVE over domain of live range names
- 3 Iterate over each block (note: backwards flow problem)
 - Track the current LIVE set
 - At each operation, add appropriate edges & update LIVE
 - Edge from result to each value in LIVE
 - Remove result from LIVE
 - Edge from each operand to each value in LIVE

Eliot's Digression about SSA

• SSA = Static Single Assignment form

What is a Live Range?

- A set LR of definitions $\{d_1, d_2, ..., d_n\}$ such that for any two definitions d_i and d_j in LR, there exists some use u that is reached by both d_i and d_j .
- How can we compute live ranges?
 - \rightarrow For each basic block b in the program, compute REACHESOUT(b)
 - the set of definitions that reach the exit of basic block b
 - $d \in REACHESOUT(b)$ if there is no other definition on some path from d to the end of block b
 - \rightarrow For each basic block b, compute LIVEIN(b)—the set of variables that are live on entry to b
 - $v \in LIVEIN(b)$ if there is a path from the entry of b to a use of v that contains no definition of v
 - \rightarrow At each join point b in the CFG, for each live variable v (i.e., $v \in LIVEIN(b)$), merge the live ranges associated with definitions in REACHESOUT(p), for all predecessors p of b, that assign a value to v.

Computing LIVE Sets

A value v is live at p iff

 \exists a path from p to some use of v along which v is not re-defined

Data-flow problems are expressed as simultaneous equations

LIVEOUT(b) =
$$\cup_{s \in succ(b)}$$
 LIVEIN(s)

LIVEIN(b) = (LIVEOUT(b) $\cap \frac{VarKILL(b)}{}) \cup UEVar(b)$

where

UEVAR(b) is the set of upward-exposed variables in b (names used before redefinition in block b)

VARKILL(b) is the set of variable names redefined in b

As output,

LIVEOUT(x) is the set of names live on exit from block x LIVEIN(x) is the set of names live on entry to block x

solve it with the iterative algorithm

Observation on Coloring for Register Allocation

- Suppose you have k registers look for a k coloring
- Any vertex n that has fewer than k neighbors in the interference graph $(n^{\circ} < k)$ can always be colored!
 - → Pick any color not used by its neighbors there must be one
- Ideas behind Chaitin's algorithm:
 - \rightarrow Pick any vertex n such that n° < k and put it on the stack
 - → Remove that vertex and all edges incident from the interference graph
 - This may make some new nodes have fewer than k neighbors
 - \rightarrow At the end, if some vertex *n* still has k or more neighbors, then spill the live range associated with *n*
 - ightarrow Otherwise successively pop vertices off the stack and color them in the lowest color not used by some neighbor

Chaitin's Algorithm

- 1. While \exists vertices with $\langle k \text{ neighbors in } G_I \rangle$
 - > Pick any vertex n such that $n^{\circ} < k$ and put it on the stack
 - > Remove that vertex and all edges incident to it from G_I
 - This will lower the degree of n's neighbors
- 2. If G_I is non-empty (all vertices have k or more neighbors) then:
 - > Pick a vertex n (using some heuristic) and spill the live range associated with n
 - > Remove vertex n from G_I , along with all edges incident to it and put it on the stack
 - > If this causes some vertex in G_I to have fewer than k neighbors, then go to step 1; otherwise, repeat step 2
- 3. Successively pop vertices off the stack and color them in the lowest color not used by some neighbor

3 Registers R6B

3 Registers

Stack

Colors:

1: 🦲

2:

3: 🔵

3 Registers

Stack

Colors:

1: (

2:

3:

Improvement in Coloring Scheme

Optimistic Coloring (Briggs, Cooper, Kennedy, and Torczon)

- Instead of stopping at the end when all vertices have at least k neighbors, put each on the stack according to some priority
 - → When you pop them off they may still color!

Improvement in Coloring Scheme

Optimistic Coloring (Briggs, Cooper, Kennedy, and Torczon)

- Instead of stopping at the end when all vertices have at least k neighbors, put each on the stack according to some priority
 - → When you pop them off they may still color!

2 Registers:

2-colorable

Chaitin-Briggs Algorithm

- 1. While \exists vertices with $\langle k \text{ neighbors in } G_I \rangle$
 - > Pick any vertex n such that $n^{\circ} < k$ and put it on the stack
 - > Remove that vertex and all edges incident to it from G_I
 - This may create vertices with fewer than k neighbors
- 2. If G_I is non-empty (all vertices have k or more neighbors) then:
 - > Pick a vertex n (using some heuristic condition), push n on the stack and remove n from G_I , along with all edges incident to it
 - > If this causes some vertex in G_I to have fewer than k neighbors, then go to step 1; otherwise, repeat step 2
- 3. Successively pop vertices off the stack and color them in the lowest color not used by some neighbor
 - > If some vertex cannot be colored, then pick an uncolored vertex to spill, spill it, and restart at step 1

Working the 4-node example

Chaitin Allocator

(Bottom-up Coloring)

Build SSA, build live ranges, rename

Build the interference graph

Fold unneeded copies

 $LR_x \rightarrow LR_y$, and $< LR_x, LR_y > \notin G_t \Rightarrow$ combine $LR_x \& LR_y$

Estimate cost for spilling each live range

Remove nodes from the graph

while *N* is non-empty
if ∃ *n* with *n*°< k then
push *n* onto stack
else pick *n* to spill
push *n* onto stack
remove *n* from *G*,

While stack is non-empty pop n, insert n into G_p , & try to color it

Spill uncolored definitions & uses

Chaitin's algorithm

Chaitin Allocator

(Bottom-up Coloring)

Build SSA, build live ranges, rename

Build the interference graph

Fold unneeded copies

 $LR_x \rightarrow LR_y$, and $< LR_x, LR_y > \notin G_I \Rightarrow$ combine $LR_x \& LR_y$

Estimate cost for spilling each live range

Remove nodes from the graph

if ∃ *n* with *n*°< k then push *n* onto stack else pick *n* to spill push *n* onto stack remove *n* from *G*,

while *N* is non-empty

While stack is non-empty remove pop n, insert n into G_p , & try to color it

Spill uncolored definitions & uses

Chaitin's algorithm

Chaitin-Briggs Allocator (Bottom-up Coloring)

Build SSA, build live ranges, rename

Build the interference graph

Fold unneeded copies

 $LR_x \rightarrow LR_y$, and $< LR_x, LR_y > \notin G_I \Rightarrow$ combine $LR_x \& LR_y$

Estimate cost for spilling each live range

Remove nodes from the graph

while *N* is non-empty
if ∃ *n* with *n*°< k then
push *n* onto stack
else pick *n* to spill
push *n* onto stack
remove *n* from *G*₁

While stack is non-empty remove pop n, insert n into G_p , & try to color it

Spill uncolored definitions & uses

Briggs' algorithm (1989)

Picking a Spill Candidate

When $\forall n \in G_I$, $n^{\circ} \ge k$, simplify must pick a spill candidate

Chaitin's heuristic

- Minimize spill cost ÷ current degree
- If LR_x has a negative spill cost, spill it pre-emptively
 - → Cheaper to spill it than to keep it in a register
- If LR_x has an infinite spill cost, it cannot be spilled
 - → No value dies between its definition & its use
 - \rightarrow No more than k definitions since last value died (safety valve)

Spill cost is weighted cost of loads & stores needed to spill x

Bernstein et al. Suggest repeating simplify, select, & spill with several different spill choice heuristics & keeping the best

Other Improvements to Chaitin-Briggs

Spilling partial live ranges

- Bergner introduced interference region spilling
- Limits spilling to regions of high demand for registers

Splitting live ranges

- Simple idea break up one or more live ranges
- Allocator can use different registers for distinct subranges
- Allocator can spill subranges independently (use 1 spill location)

Conservative coalescing

- Combining $LR_x \rightarrow LR_y$ to form LR_{xy} may increase register pressure
- Limit coalescing to case where $LR_{xy}^{\circ} < k$
- Iterative form tries to coalesce before spilling

Chaitin-Briggs Allocator

(Bottom-up Global)

Strengths & weaknesses

- ↑ Precise interference graph
- ↑ Strong coalescing mechanism
- † Handles register assignment well
- ↑ Runs fairly quickly
- ↓ Known to overspill in tight cases
- ↓ Interference graph has no geography
- Spills a live range everywhere
- ↓ Long blocks devolve into spilling by use counts

Is improvement still possible?

Rising spill costs, aggressive transformations, & long blocks
 yes, it is

What about Top-down Coloring?

The Big Picture

- Use high-level priorities to rank live ranges
- Allocate registers for them in priority order
- Use coloring to assign specific registers to live ranges

Use spill costs as priority function!

The Details

- Unconstrained must receive a color!
- Separate constrained from unconstrained live ranges
 - > A live range is constrained if it has ≥ k neighbors in G_I
- Color constrained live ranges first
- Reserve pool of local registers for spilling (or spill & iterate)
- Chow split live ranges before spilling them
 - Split into block-sized pieces
 - > Recombine as long as $^{\circ} < k$

What about Top-down Coloring?

The Big Picture

- Use high-level priorities to rank live ranges
- Allocate registers for them in priority order
- Use coloring to assign specific registers to live ranges

More Details

- Chow used an imprecise interference graph
 - $\rightarrow \langle x,y \rangle \in G_I \Leftrightarrow x,y \in LiveIn(b)$ for some block b
 - \rightarrow Cannot coalesce live ranges since $x \rightarrow y \Rightarrow \langle x, y \rangle \in G_I$
- · Quicker to build imprecise graph
 - → Chow's allocator runs faster on small codes, where demand for registers is also likely to be lower (rationalization)

Tradeoffs in Global Allocator Design

Top-down versus bottom-up

- Top-down uses high-level information
- Bottom-up uses low-level structural information

Spilling

Reserve registers versus iterative coloring

Precise versus imprecise graph

- Precision allows coalescing
- Imprecision speeds up graph construction

Even JITs use this stuff ...

Regional Approaches to Allocation

Hierarchical Register Allocation (Koblenz & Callahan)

- Analyze control-flow graph to find hierarchy of tiles
- Perform allocation on individual tiles, innermost to outermost
- Use summary of tile to allocate surrounding tile
- Insert compensation code at tile boundaries $(LR_x \rightarrow LR_y)$

Strengths

- → Decisions are largely local
- → Use specialized methods on individual tiles
- → Allocator runs in parallel

Weaknesses

- → Decisions are made on local information
- → May insert too many copiesStill, a promising idea
- Anecdotes suggest it is fairly effective
- Target machine is multi-threaded multiprocessor (Tera MTA)

Regional Approaches to Allocation

Probabilistic Register Allocation (Proebsting & Fischer)

- Attempt to generalize from Best's algorithm (bottom-up, local)
- Generalizes "furthest next use" to a probability
- Perform an initial local allocation using estimated probabilities
- Follow this with a global phase
 - \rightarrow Compute a merit score for each LR as (benefit from x in a register = probability it stays in a register)
 - → Allocate registers to LRs in priority order, by merit score, working from inner loops to outer loops
 - → Use coloring to perform assignment among allocated LRs
- Little direct experience (either anecdotal or experimental)
- Combines top-down global with bottom-up local

Regional Approaches to Allocation

Register Allocation via Fusion (Lueh, Adl-Tabatabi, Gross)

- Use regional information to drive global allocation
- Partition CFGs into regions & build interference graphs
- Ensure that each region is k-colorable
- Merge regions by fusing them along CFG edges
 - \rightarrow Maintain k-colorability by splitting along fused edge
 - → Fuse in priority order computed during the graph partition
- Assign registers using int. graphs

i.e., execution frequency

Strengths

- Flexibility
- Fusion operator splits on low-frequency edges

Weaknesses

- Choice of regions is critical
- Breaks down if region connections have many live values