ДЗ №13. Компьютерные сети. Теория

Светлана Шмидт

21 мая 2022 г.

Задача 1. $(Np(1-p)^{N-1})'=N(1-p)^{N-1}-(N-1)Np(1-p)^{N-2}=N(1-p)^{N-2}(1-Np).$ Ответ: максимум достигается при $p=\frac{1}{N}.$ Тогда эффективность: $\lim_{n\to\infty}(1-\frac{1}{N})^{N-1}=\lim_{n\to\infty}((1-\frac{1}{N})^{-N})^{-1}=\frac{1}{e}.$

Задача 2.

- Вероятность того, что A успешно передаст информацию в кванте 5 равна $p(1-p)^3$.
- У всех хостов одинаковая вероятность передать информацию в кванте 4, то есть ответ $3p(1-p)^3$.
- Чтобы первая успешная передача была в кванте 3, нужно, чтобы в первые 2 кванта была неудачная передача, а в третьем удачная. Это $(1-4p(1-p)^3)^2(4p(1-p)^3)$.
- Эффективность системы это вероятность успешной передачи в кванте, то есть $4p(1-p)^3$.

 Задача 3. Цикл опроса длится $N(\frac{Q}{R}+d)$, тогда максимальная пропускная способность $\frac{QR}{Q+Rd}$.