ST202/ST206 – Autumn Term

Problem set 4

Due: 12 noon, Wednesday AT Week 5

- 1. Find the cumulative distribution functions corresponding to the following density functions:
 - (a) Cauchy: $f_X(x) = 1/[\pi(1+x^2)]$ for $x \in \mathbb{R}$
 - (b) Logistic: $f_X(x) = e^{-x}/(1+e^{-x})^2$ for $x \in \mathbb{R}$
 - (c) Pareto: $f_X(x) = (a-1)/(1+x)^a$ for x > 0, where a > 1
 - (d) Weibull: $f_X(x) = c\tau x^{\tau-1}e^{-cx^{\tau}}$ for x > 0, where $c, \tau > 0$
- 2. Let $X \sim F_X$ be a continuous random variable. Work out the CDF and PDF of the following random variables:
 - (a) e^X (b) X^2 (c) $F_X(X)$ (d) $G^{-1}(F_X(X))$

where $G: \mathbb{R} \to [0,1]$ is a continuous and strictly increasing function

3. If X is a positive continuous random variable with density function $f_X(x)$ and mean μ , show that

$$g(y) = \left\{ \begin{array}{ll} y f_X(y)/\mu & y \geq 0 \\ 0 & y < 0 \end{array} \right.$$

is a valid density function, and hence show that

$$\mathbb{E}(X^3)\,\mathbb{E}(X) \geq \{\mathbb{E}(X^2)\}^2.$$

- 4. Find the mean and the variance for the following distributions:
 - (a) Gamma: $f_X(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} e^{-\lambda x} x^{\alpha-1}$ for x > 0, where $\alpha, \lambda > 0$
 - (b) Poisson: $f_X(x) = e^{-\lambda} \lambda^x / x!$ for x = 0, 1, 2, ..., where $\lambda > 0$
 - (c) Pareto: $f_X(x) = (a-1)/(1+x)^a$ for x > 0, where a > 1
- 5. * Suppose that $X \sim F_X$ is a continuous random variable taking values between $-\infty$ and $+\infty$. Sometimes we want to *fold* the distribution of X about the value x = a, that is, we want the distribution of the random variable Y = |X a|.
 - (a) Work out the density function of Y in terms of f_X . [Hint: start with the CDF, $F_Y(y)$.]
 - (b) Apply the result to the case where $X \sim N(\mu, \sigma^2)$ and $a = \mu$.

1