#### A Brief Analysis of Soccer Data

Sabo Vlad-Andrei & Negru Bogdan Liviu

Faculty of Mathematics and Computer SCience, University of Bucharest, 25th of May, 2024.

#### Introduction

- The Premise: Analyzing data from FBREF spanning 2017-2021 and Transfermarkt in the summer of 2021.
- The Objective: Derive insights to predict player market values effectively.

#### Data Overview

- Dataset includes player performance metrics and market values.
- Preprocessing involved handling missing or erroneus values and filtering relevant data.

# Exploratory Data Analysis - Insights

 Initial analysis focused on correlations between various factors such as nationality, league, position and related factors and the value.

#### **EDA** - Initial Insights



# EDA - Market Value vs. Age



Position

attack midfield Defender Goalkeeper

#### EDA - Contract Years Left and Value



## EDA - Distribution of Player Age by Position



## EDA - Distribution of Player Positions



# EDA - Position Breakdown by League



## EDA - Market Value by League



## EDA - Top 10 Most Valuable Football Clubs



## Top 10 Clubs by Average Player Value



## EDA - Market Value Distribution by Nationality



## EDA - Distribution of Player Values



#### **Predictive Modeling**

- Extra Data Preprocessing:
  - Search for relevant features related to value
  - Search for relevant statistics for each of the three outfield position (removed goalkeepers for this experiment)
  - Concatenate the features and use regression models to attempt to predict player values
- Models used: Linear Regression, Ridge Regression, and Random Forest.

## Model Performance with Filled Missing Values

| Model                    | MSE (×10 <sup>13</sup> ) | R-squared |
|--------------------------|--------------------------|-----------|
| Linear Regression        | 8096.89                  | 0.505     |
| Ridge Regression         | 8096.24                  | 0.505     |
| Random Forest Regression | 7858.02                  | 0.520     |

Table: Comparison of model performance with filled missing values.

## Model Performance with Dropped Missing Values

| Model                    | MSE (×10 <sup>13</sup> ) | R-squared |
|--------------------------|--------------------------|-----------|
| Linear Regression        | 12262.24                 | 0.605     |
| Ridge Regression         | 12251.34                 | 0.605     |
| Random Forest Regression | 11940.89                 | 0.615     |

Table: Comparison of model performance with dropped missing values.

#### Conclusions

- The analysis demonstrates significant variations in model performance based on data handling strategies (filling vs. dropping missing values).
- Random Forest Regression consistently outperformed Linear and Ridge Regression across different data preprocessing methods, indicating its robustness in handling complex patterns in football data.
- Insights from visual and statistical analyses provide a foundation for more targeted player valuation and potential investment strategies in football clubs.

#### Future Work and Improvements

- Future work could explore additional variables, more sophisticated modeling techniques, and larger datasets to refine the predictions and insights.
- Improvements could be the exploration of additional relationships and inclusion of extra plots, as well as using different models.

#### Thank You

Thank you for your attention.

Questions and comments are welcome!