Zero-Knowledge Proofs (Lecture 5–8) — Summary

Interactive Proofs. A language $L \subseteq \{0,1\}^*$ has an interactive proof if there exists a (possibly unbounded) prover P and a PPT verifier V such that the protocol output $\langle P,V\rangle(x)\in\{0,1\}$ satisfies: (Completeness) $\forall x\in L: \Pr[\langle P,V\rangle(x)=1]\geq 2/3$; (Soundness) $\forall x\notin L$ and any (possibly malicious) $P^*: \Pr[\langle P^*,V\rangle(x)=1]\leq 1/3$. These constants can be made negligible by repetition. Interactive proofs can be strictly more powerful than one-shot NP proofs (e.g., IP = PSPACE) and can yield succinctness and zero-knowledge.

Zero-Knowledge (ZK). An interactive proof $\langle P, V \rangle$ for L is (computational) ZK if for every (possibly malicious) V^* there exists a PPT simulator Sim_{V^*} such that the verifier's view in a real interaction is computationally indistinguishable from the simulator's output:

$$\mathsf{View}[\langle P, V^* \rangle(x)] \; \approx_c \; \mathsf{Sim}_{V^*}(x) \,, \quad \forall x \in L.$$

Intuitively, the verifier "learns nothing" beyond the truth of $x \in L$.

Example: Hamiltonicity (Blum). For $L = \{G : G \text{ has a Hamiltonian cycle}\}$, the prover commits to a random isomorphic copy $\Pi(G)$ and the adjacency matrix, then the verifier challenges $c \in \{0,1\}$: if c = 0, open the isomorphism; if c = 1, open commitments revealing a Hamiltonian cycle in $\Pi(G)$. Assuming a perfectly binding, computationally hiding commitment, this is a ZK proof with perfect completeness, soundness error $\leq \frac{1}{2}$, and computational ZK; error becomes negligible by repetition.

Proofs of Knowledge (PoK). For NP languages with verifier M, a protocol is a PoK with knowledge error ε if there exists an efficient *extractor* Ext such that for any P^* ,

$$\Pr\left[M(x,w) = 1: w \leftarrow \mathsf{Ext}^{P^*}(x)\right] \ge \Pr[\langle P^*, V \rangle(x) = 1] - \varepsilon.$$

Extractors may rewind P^* (e.g., in Hamiltonicity, two accepting transcripts for the same commitment but distinct challenges yield the witness).

Sigma Protocols. Three-round, public-coin protocols (u, c, z) with deterministic verification verif(x, u, c, z) that satisfy: (Perfect completeness); (Special soundness): from two accepting transcripts (u, c, z) and (u, c', z') with $c \neq c'$ one can extract a witness; (Honest-Verifier ZK): there is a simulator that on input (x, c) outputs (u, c, z) indistinguishable from an honest execution. Any Σ -protocol has soundness error at most $1/|\mathcal{C}|$, and both sequential and parallel compositions preserve these properties (for HVZK).

Non-Interactive ZK (NIZK) & Fiat-Shamir. Turning interaction into a single message π is possible in the Random Oracle Model (ROM) via Fiat-Shamir: set the challenge as c = H(x, u) and send $\pi = (u, z)$; the verifier recomputes c and checks. In ROM, ZK follows by programming H as to make it match the challenge of $\langle P, V \rangle$; PoK follows via rewinding at the RO query and reprogramming it to obtain two challenges; completeness is immediate. For NIZKs, completeness and soundness errors are required to be *negligible* since there is no repetition to amplify. In practice, one instantiates H with a cryptographic hash (a heuristic).

Key Takeaways. (i) Interaction enables proofs beyond NP, succinct verification, and zero-knowledge. (ii) ZK is defined via indistinguishability from simulation. (iii) PoK formalizes "knowing a witness" via extraction under rewinding. (iv) Σ-protocols offer a clean template with special soundness and HVZK, and compose well. (v) Fiat–Shamir yields practica NIZKs from Σ -protocols in ROM.