

NLP

Preprocesamiento de texto

Dr. Rodrigo Cardenas Szigety rodrigo.cardenas.sz@gmail.com

Programa de la materia

- Clase 1: Introducción a NLP, Vectorización de documentos.
- Clase 2: Preprocesamiento de texto, librerías de NLP, bots de información.
- Clase 3: Word Embeddings, CBOW y SkipGRAM, entrenamiento de embeddings.
- Clase 4: Redes recurrentes (RNN), problemas de secuencia y estimación de próxima palabra.
- Clase 5: Redes LSTM, análisis de sentimientos.
- Clase 6: Modelos Seq2Seq, traductores y bots conversacionales.
- Clase 7: Celdas con Attention. Transformers, BERT & ELMo, fine tuning.
- Clase 8: Cierre del curso, NLP hoy y futuro, deploy.
- *Unidades con desafíos a presentar al finalizar el curso.
- *Último desafío y cierre del contenido práctico del curso.

Preprocesamiento de texto

LINK GLOSARIO

Feature Engineering

Build model

Tokenizar

Proceso en el cual una oración o documento es segmentado en términos individuales. Una vez finalizada la segmentación cada término único es referenciado mediante un token.

Derivado (steeming)

Aplica reglas de eliminación de patrones recurrentes de la lengua. El resultado es una palabra truncada que no será necesariamente la raíz morfológica de la palabra.

Regla: Eliminar los sufijos

Lematización (lemmatization)

Devuelve la raíz morfológica de una palabra. Para ello se necesita un diccionario del idioma con todas las declinaciones posibles de las palabras raíz.

Parts-of-speech (POS) tagging

POS es el proceso de clasificar cada término en un texto en sus categorías gramaticales, etiquetándolos por ejemplo como **sustantivo** (noun), verbo (verb), adjetivo (adj), etc

Named-entity recognition (NER)

NER es el proceso de clasificar nombres propios de entidades en categorías predefinidas a las cuales pertenecen.

Name Date Designation	Subject	Named Entity Recognition
John McCarthy who was born on	September 4, 1927	was an American computer scientist and
cognitive scientist. He was one of t	he founders of the c	discipline of artificial intelligence. He co-authored
the document that coined the tern	n "Artificial intellige	nce" (AI), developed the programming language
family Lisp, significantly influenced	the design of the lo	anguage ALGOL

Stop words

Palabras que no aportan valor al significado de una oración ya que son muy frecuentes o comunes en el lenguaje

Argentina, oficialmente, República Argentina, es un país soberano de América del Sur, ubicado en el extremo sur y sudeste de dicho subcontinente. Adopta la forma de gobierno republicana, democrática, representativa y federal.

Argentina, oficialmente, República Argentina, es país soberano América Sur, ubicado extremo sur sudeste dicho subcontinente. Adopta forma gobierno republicana, democrática, representativa federal.

Stop words

Analizar un texto relacionado con calentamiento global (global climate)

Texto con Stop Words

Texto sin Stop Words

Las Stop Words pueden depender del contexto del corpus.

Librerías de NLP

Gran comunidad de desarrollo

No soporta GPU

Más optimizada en CPU

Más lenta en gran volúmenes de datos o operaciones

spaCy

Más moderna e implementa los últimos features

Soporta GPU

Menos optimizada en CPU

Más rápida en gran volúmenes de datos o operaciones (GPU)

LINK PÁGINA

"Librería por excelencia de procesamiento de lenguaje natural para Python" Inicios 2009

Implementa una tool/algoritmo para cada etapa de preprocesamiento de NLP

LINK PÁGINA

Inicios 2015

- Support for 72+ languages
- 80 trained pipelines for 24 languages
- Multi-task learning with pretrained transformers like BERT
- Pretrained word vectors
- State-of-the-art speed
- Production-ready training system

LINK PÁGINA

Un resumen de todo lo visto

<u>P0S</u>

TAG

DEP

TEXT	LEMMA	POS	TAG	DEP	SHAPE	ALPHA	STOP
Apple	apple	PROPN	NNP	nsubj	Xxxxx	True	False
is	be	AUX	VBZ	aux	xx	True	True
looking	look	VERB	VBG	ROOT	xxxx	True	False
at	at	ADP	IN	prep	xx	True	True
buying	buy	VERB	VBG	pcomp	xxxx	True	False
U.K.	u.k.	PROPN	NNP	compound	x.x.	False	False
startup	startup	NOUN	NN	dobj	xxxx	True	False
for	for	ADP	IN	prep	xxx	True	True
\$	\$	SYM	\$	quantmod	\$	False	False
1	1	NUM	CD	compound	d	False	False
billion	billion	NUM	CD	pobj	xxxx	True	False

Preprocesamiento

BOTs lingüísticos

Son limitados a una tarea espećifica

Fácil y "barato" de entrenar

Interactúan casi como un humano

Más difíciles de entrenar, requieren más datos y cómputo

Ideal para chats de pedidos

Ideal para asistentes virtuales

Sistema de obtención de información

Vectorizaremos texto de un corpus. Por ejemplo: párrafos u oraciones.

Vectorizaremos el texto de entrada y devolveremos la mejor coincidencia del corpus en términos de la similaridad coseno

$$\text{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|}$$

Probaremos el sistema armando una interfaz con gradio.

Sistema de obtención de información

BOT de consulta abierta y respuesta predeterminada

Nuestro bot será entrenado con <TAGS> (ej: saludo)

Cada <TAG> será
representado por un
patrón de posibles
preguntas
<patterns> (X)

Cada <TAG> tendrá
uno o varias
posibles respuestas
<classes> (y)

BOT de consulta abierta

Desafio

Tomar uno de los dos ejemplos mostrados y armar una versión propia

