Lecture 7: Modeling Hybrid Systems

Seyed-Hosein Attarzadeh-Niaki

Based on the slides by Edward Lee

Embedded Real-Time Systems

-

Review

- Discrete systems
- Finite-state machines (FSMs)
 - Graphical notation
 - Formal model
- Event-triggered vs. time-triggered models
- Deterministic vs. Non-deterministic FSMs
- Stuttering, Receptiveness, ...
- Extended FSMs

Embedded Real-Time Systems

Where Do Hybrid Systems Arise?

Digital controller of physical "plant"

- thermostat
- intelligent cruise/powertrain control in cars
- · aircraft auto pilot

Phased operation of natural phenomena

- · bouncing ball
- biological cell growth

Multi-agent systems

- ground and air transportation systems
- · interacting robots

Embedded Real-Time Systems

FSMs with Continuous-Time Signals Modal Models

- Continuous-time input and/or output signals
- Inputs/outputs does not require to be absent between reactions
- A transition occurs when a guard on an outgoing transition from the current state becomes enabled

Discrete outputs in this example.

Embedded Real-Time Systems

State Refinement

- A hybrid system associates with each state of an FSM a dynamic behavior.
- Example: Thermostat with continuous output.

Embedded Real-Time Systems

7

Three Classes of Hybrid Systems

Timed automata

• Finite automata extended with a finite set of real-valued clocks

Higher-order dynamics

• System variables change in the state refinements

Supervisory control

• Two-level control strategy

Embedded Real-Time Systems

Timed Automata:

A special case of hybrid systems

An alternative to FSMs that is explicit about the passage of time

A device that measures the passage of time, a **clock**, has a particularly simple *dynamics*: its state progresses linearly in time.

 $\forall t \in T_m, \dot{s}(t) = a$

Embedded Real-Time Systems

(

Example: Thermostat with Minimum Stay Time in Each State

 $20 \xrightarrow{t_1 \qquad t_1 + T_h} \cdots \xrightarrow{t}$

Embedded Real-Time Systems

Example: Mouse Double Click Detector

continuous variable: $x(t) \in \mathbb{R}$ inputs: $click \in \{present, absent\}$ outputs: single, $double \in \{present, absent\}$

This simple form of hybrid system is called a *timed automaton*, where the dynamics is just passage of time.

Embedded Real-Time Systems

11

Reflection

continuous variable: $x(t) \in \mathbb{R}$ inputs: $click \in \{present, absent\}$

outputs: single, $double \in \{present, absent\}$

How many states does this automaton have?

Embedded Real-Time Systems

Timed automaton model of a traffic light controller

continuous variable: x(t): \mathbb{R} **inputs:** pedestrian: pure **outputs:** sigR, sigG, sigY: pure

This light remains green at least 60 seconds, and then turns yellow if a pedestrian has requested a crossing. It then remains red for 60 seconds.

Embedded Real-Time Systems

13

When do reactions occur in a hybrid automaton?

continuous variable: x(t): \mathbb{R} **inputs:** pedestrian: pure **outputs:** sigR, sigG, sigY: pure

Reactions are occurring continually, with the continuous state variable *x* being continually updated.

Embedded Real-Time Systems

Example: "Tick" Generator (Timer)

How would you model a timer that generates a 'tick' each time T time units elapses?

A similar timed automaton can model a generator of a timer interrupt.

Embedded Real-Time Systems

15

Higher-Order Dynamics: Hybrid Automaton for Bouncing Ball

y – vertical distance from ground (position)

a – coefficient of restitution, $0 \le a \le 1$

If you plotted y(t), what would it look like?

Embedded Real-Time Systems

Hybrid Automaton for Bouncing Ball

y – vertical distance from ground (position)

a – coefficient of restitution, $0 \le a \le 1$

Embedded Real-Time Systems

1

Supervisory Control

- Control system involves four components
 - Plant
 - Environment
 - Sensors
 - Controller
- Controller with two levels
 - supervisory control that determines the mode transition structure
 - low-level control that determines the time-based inputs to the plant

Embedded Real-Time Systems

An Automated Guided Vehicle (AGV)

- · The vehicle
 - Can move forward along its body axis with speed $0 \le u(t) \le 10$ km/h
 - Rotate about its center of gravity with an angular speed $-\pi \le \omega(t) \le \pi \text{ rad/sec}$
- The controller guides the vehicle in four modes left, right, straight, and stop.
- Position given by
 - $-\dot{x}(t) = u(t)\cos\theta(t)$
 - $-\dot{y}(t) = u(t) \sin \theta(t)$
 - $-\theta(t)=\omega(t)$

Embedded Real-Time Systems

Next Lecture

- Composition of state machines
 - Synchronous composition
 - Asynchronous composition
- Statecharts
- Read chapter 5 of LeeSeshia

Embedded Real-Time Systems

SPARE SLIDES

Embedded Real-Time Systems

25

When do reactions occur in a hybrid automaton?

input: $x \in \{present, absent\}$ output: $y \in \{present, absent\}$

Suppose *x* and *y* are discrete and pure signals. When does the transition occur?

Answer: at the earliest time t when x is absent after entering s1. This will always be the same time when s1 is entered. Why?

If x is absent when s1 is entered, then the transition is taken then. If x is present when s1 is entered, then it will be absent at a time infinitesimally larger. How to model this rigorously?

Embedded Real-Time Systems

Hybrid Automaton Model of Toyota Powertrain Control Example

Four Operating Modes:

- Startup: Wait for O2 sensors to start giving accurate readings (temp dependent), employ open-loop control
- 2. Normal: Use combination of feedback PI control and feedforward control to regulate A/F ratio
- 3. Power: Driver depresses gas pedal more (higher throttle angle) - switch to feedforward
- 4. Sensor Failure: switch to feedforward control

"Powertrain Control Verification Benchmark", Lingt al HSCC ime Systems