

# Driving competitive advantage with computer vision

Automated quality control for manual assembly

Overview



# 01 Sense of urgency



Manual manufacturing offers high optimization potential:

- →Cost of quality
- → Skilled worker shortage & nearshoring
- → Continuous process optimization





# 02 Solution



We digitize the four-eye-principle.

Four-eye-principle



Manual quality assurance



→ Evaluation
 Automated → Feedback & instructions

Documentation

# **)**'

# 04 Technology

Computer vision for assembly step recognition.



# 04 Technology



We understand the whole assembly process.

### Other solutions:

- → Automation of single end-of-line checks
- → State confirmation only
- → Focus on automated / low-mix, high-volume production: Lack of scalability
- → Fails in case of high variation, e.g., variant task execution, lighting situation, ...

### State confirmation



### **Our solution:**

- → Applicable for the whole assembly process
- → State confirmation + action recognition
- → Simple setup / adaption manual for highmix, low-volume production
- → Robust against variation

# State confirmation Detection: Part 3 present



# 05 Roadmap



We work towards 100% in-process control starting at lot size one.

2020: Applied research

ETHzürich inspire

# 2025: Automated quality control

- → Automated assembly step recognition
- → Live feedback, instructions, documentation

**BOSSARD** 



## 2027: Plug & play solution

- → Plug & play based on general dataset
- → Fully automated training pipeline using synthetic data

2029: 100% in-process control starting at lot size one



# 06 Technology vision



Tackling the hurdle of training data generation with synthetic training data.







Digital part models

Generation of synthetic images & model training

Automated assembly step recognition

# 06 Technology vision



Tackling the hurdle of training data generation with synthetic training data.



**Applied research** 



# 06 Team



We are experts in computer vision applications and business strategy.



Co-founder

## Jonas Conrad

- → MSc ETH Mechanical Engineering
- → PhD Deep learning in manual assembly (WIP)

### **RESPONSIBILITIES**

→ Executive lead



**Co-founder** 

## Felix Schnarrenberger

- → MSc ETH Robotics, Systems and Control
- → Applied machine learning and computer vision

### **RESPONSIBILITIES**

→ Technical lead



**Co-founder** 

## Constantin Herbst

- → MSc ETH Mechanical Engineering
- → Data Scientist CV

### **RESPONSIBILITIES**

→ Operational lead



## Christoph Conrad

→ Former Head Marketing "Solution & Service Portfolio" at Siemens AG

### **RESPONSIBILITIES**

→ Business development



## David Filliberti

- → MSc ETH Robotics, Systems and Control
- → Applied ML & CV

### **RESPONSIBILITIES**

Embedded systems



## Wsewolod Dubinski

- → MSc EBS Management
- → Strategy & Finances

RESPONSIBILITIES

→ Strategy & Finance

# copyright @2025 sentinus

# 07 DSL Challenge



# Automated anomaly detection in manual assembly based on synthetic data

- → Challenge Giver: Constantin Herbst, Jonas Conrad, Sentinus AG
- → Academic Coach:
- → Contact Details: constantin@sentinus.ch, jonas@sentinus.ch

### **Overview:**

- → **Aim**: Perform robust anomaly detection in the manufacturing process trained on synthetic data
- → Goal: A pipeline that recognizes anomalies in single parts and wrongly assembled subassemblies based on CAD data of assembly group in real time.
- → **Tools**: python, blender, pytorch
- → Focus:

Robustness: needs to work on real data under realistic conditions
Data-Efficiency: no need to record data to prepare inspection for assembly
Semantic Scene Understanding: Correct segmentation of parts / subassemblies

→ Support:

Recording extra datasets for specific anomalies Real-time testing with sentinus smart camera hardware Guidance from Sentinus team

→ Literature: Entry points to computer vision model training based on synthetic data

https://www.mdpi.com/2076-3417/13/22/12316 https://www.sciencedirect.com/science/article/pii/S2212827124006668

# sopyright ©2025 sentinus

# 07 DSL Challenge



## **Dataset:**

- → Sources: MA-3 dataset
- → Content: 60 videos of manual assembly of different products; 20 operators. Focus on vacuum pump. The dataset can be enhanced by Sentinus.
- → Pickup SSD at Technopark

## Challenge Components:

- → Build a CV pipeline that
  - 1. Based on CAD data of each part / assembly stage creates a rendered dataset to train models for the following step
  - 2. Segments all relevant assembly parts in a live video stream in real time
  - 3. Performs anomaly detection on single parts and sub-assemblies
  - 4. Anomaly detection on subassembly: wrong assembly!
  - 5. Rejects frames in which no inspection can be performed reliably due to occlusion, motion blur etc,

# 07 DSL Challenge



### **Dataset:**

- → Sources: MA-3 dataset
- → Content: 60 videos of manual assembly of different products; 20 operators. Focus on vacuum pump. The dataset can be enhanced by Sentinus.
- → Pickup SSD at Technopark

# Challenge Components:

- → Build a CV pipeline that
  - 1. Based on CAD data of each part / assembly stage creates a rendered dataset to train models for the following step
  - 2. Segments all relevant assembly parts in a live video stream in real time
  - 3. Performs anomaly detection on single parts and subassemblies
  - 4. Anomaly detection on subassembly: wrong assembly!
  - 5. Rejects frames in which no inspection can be performed reliably due to occlusion, motion blur etc,









(b) Place axle

(c) Place centre mould







(e) Place cover



(f) Screw first location

# 07 DSL Challenge



## **Evaluation Metrics:**

- 1. Accuracy of recognized assembly status
- 2. Accuracy of segmentation (mIOU)
- 3. Detection rate of anomalies (screw missing, flipped part) (AUROC/PRO)

# **Successful Project:**

- → Can discern assembly status on real data
- > Rejects obvious disturbances / occlusions (e.g. hand covers assembly group
- → Can pinpoint anomalies robustly: rotation, position, illumination invariant, robust against slight variation in part appearance
- → Well-documented and reasonable code

# SotA: Datasets exist, but do not accurately represent real application scenarios



| Data set                  | Visual sensors                                                                  | Assembly task                     | Reflective components | Cabling tasks | Symmetric base | Fine-grained labelling |
|---------------------------|---------------------------------------------------------------------------------|-----------------------------------|-----------------------|---------------|----------------|------------------------|
| Assembly101 <sup>15</sup> | Eight RGB cameras (static mount), four monochrome cameras (head mount)          | Toy cars                          | No                    | No            | No             | Yes                    |
| Wooden box <sup>16</sup>  | Two RGB cameras (static mount)                                                  | Wooden box                        | No (screws)           | No            | Yes            | No                     |
| MECANO 17,18              | RealSense300 (RGB + depth, head mount), Pupil Core (gaze signals, head mount)   | Toy motorbike                     | No                    | No            | No             | Yes                    |
| IKEA ASM <sup>19</sup>    | Three Azure Kinect V2 (RGB + depth, static mount)                               | Ikea furniture                    | No                    | No            | Yes            | Yes                    |
| IKEA FA <sup>20</sup>     | One RGB camera (static mount)                                                   | Ikea furniture                    | No                    | No            | Yes            | No                     |
| IKEA Ego 3D <sup>21</sup> | HoloLens 2 (RGB + point cloud, head mount)                                      | Ikea furniture                    | No                    | No            | Yes            | Yes                    |
| HA4M <sup>22</sup>        | One Microsoft Azure Kinect<br>(RGB + depth + IR + point<br>cloud, static mount) | Generic assembly tasks            | No                    | No            | Yes            | Yes                    |
| HA-VID <sup>23</sup>      | Three Azure Kinect (RGB + depth, static mount)                                  | Generic assembly tasks            | No (screws, nuts)     | No            | Yes            | Yes                    |
| MA-3 dataset (ours)       | Two RGB cameras, 1 depth camera (all static mount)                              | Three manually assembled products | Yes                   | Yes           | Yes            | Yes                    |



# Contribution: Dataset including specific application hurdles for computer vision approaches in manual assembly + benchmark



# Challenges

- High operator-induced variance in task execution
- Reflective components
- Cabling tasks
- Symmetric parts (base plate)
- Fine-grained task distinction (e.g., screw coordinates)

### **Belt sander**



- Task execution variance
- Fine-grainde task distinction

## Robot car

Use cases



- Task execution variance
- Finegrainde task distinction
- Symmetric parts
- Cabling task

## Vaccum pump



- Task execution variance
- Finegrainde task distinction
- Reflective parts



# Methods: Dataset collection + benchmark

## **Data collection**

- 2 RGB cameras, 1 depth camera
- 20 participants, 3 recordings per use case
- Labelling with ground truth (79 distinct classes)
  - Action class + specifier, e.g., screw\_screw1

## **Benchmark**

- 4 Computer vision approaches
- F1-scores
- Reverse Leave-one-out









# **Action class overview**





# **Technical validation**

## **Dataset overview**

- 18 hours, 9 minutes of assembly activity
- Recorded in 540 videos

## **Benchmark**

- Overall performance
- Confusion matrix for one computer vision approach
- Results Reverse Leave-One-Out for one approach







# **Technical validation**

| Action        | Instances | Mean Length<br>(frames) | Variance<br>(frames) | Min Length<br>(frames) | Max Length<br>(frames) |
|---------------|-----------|-------------------------|----------------------|------------------------|------------------------|
| pick          | 1732      | 35.59                   | 21.73                | 10                     | 238                    |
| place         | 1286      | 134.43                  | 133.01               | 10                     | 1556                   |
| screw         | 961       | 208.65                  | 116.6                | 12                     | 904                    |
| mount         | 4015      | 100.26                  | 104.15               | 9                      | 1072                   |
| apply_loctite | 801       | 79.15                   | 51.78                | 10                     | 339                    |



# **Technical validation**

| F1-score of various models over all datasets |         |           |             |             |  |  |  |  |
|----------------------------------------------|---------|-----------|-------------|-------------|--|--|--|--|
| Models                                       | Average | Robot car | Belt sander | Vacuum Pump |  |  |  |  |
| YOLOv8m-cls                                  | 0.731   | 0.610     | 0.801       | 0.781       |  |  |  |  |
| EfficientNetB4                               | 0.796   | 0.677     | 0.885       | 0.825       |  |  |  |  |
| UniFormerV2                                  | 0.795   | 0.656     | 0.905       | 0.824       |  |  |  |  |
| CSN-r50                                      | 0.808   | 0.656     | 0.909       | 0.858       |  |  |  |  |
| CSN-r152                                     | 0.790   | 0.625     | 0.888       | 0.858       |  |  |  |  |

# 08 Next steps



- → Get familia with dataset and theory
- → Define focus areas
- → Reach out if further inputs are needed (best via mail)



# Thank you!

Please get in touch with us. Any day, any time!

+41 44 556 58 76

Reach us via mail to schedule a meeting: jonas@sentinus.ch

# Supported by:























