MTM5101-Dynamical Systems and Chaos

Gökhan Göksu, PhD

Week 13

Time-Delay Systems (TDS)...

Figure: Rotating Milling Machine.

$$\dot{x}(t) = F(x(t)) + B(\omega t)(x(t) - x(t - \delta(t))) \qquad \dot{x}(t) = -\alpha x(t - \delta), \ \alpha > 0$$

Figure: Shower.

$$\dot{x}(t) = -\alpha x(t - \delta), \ \alpha > 0$$

TDS: Notations

Consider the nonlinear TDS: $\dot{x}(t) = f(x_t, u(t))$

▶ State History: $x_t \in C^n$ defined with the maximum delay $\delta \ge 0$ as

$$x_t(s) := x(t+s), \quad \forall s \in [-\delta, 0].$$

- $ightharpoonup \mathcal{C}$: Set of all continuous functions $\varphi: [-\delta; 0] \to \mathbb{R}$.
- \triangleright \mathcal{U} : Set of measurable essentially bounded signals to \mathbb{R}^m .
- ▶ Given $x \in \mathbb{R}^n$, |x| denotes its Euclidean norm.
- $\qquad \qquad \text{Given any } \phi \in \mathcal{C}^n \text{, } \|\phi\| := \sup_{\tau \in [-\delta, 0]} |\phi(\tau)|.$
- $f: \mathcal{C}^n \times \mathbb{R}^m \to \mathbb{R}^n$, Lipschitz on bounded sets and to satisfy f(0,0) = 0.

TDS: Notations

▶ Lyapunov-Krasovskii functional (LKF) candidate: Any functional $V: \mathcal{C}^n \to \mathbb{R}_{\geq 0}$, Lipschitz on bounded sets, for which there exist $\underline{\alpha}, \overline{\alpha} \in \mathcal{K}_{\infty}$ such that

$$\underline{\alpha}(|\phi(0)|) \leq V(\phi) \leq \overline{\alpha}(||\phi||), \quad \forall \phi \in C^n.$$

The LKF candidate is said to be a coercive LKF if it also satisfies

$$\underline{\alpha}(\|\phi\|) \leq V(\phi) \leq \overline{\alpha}(\|\phi\|), \quad \forall \phi \in \mathcal{C}^n.$$

Its Driver's derivative along the solutions of $\dot{x}(t) = f(x_t, u(t))$ is then defined $\forall \phi \in \mathcal{C}^n \text{ and } \forall v \in \mathbb{R}^m \text{ as}$

$$D^+V(\phi,v)\coloneqq\limsup_{h\to 0^+}\frac{V(\phi_{h,v}^*)-V(\phi)}{h}.$$
 where, $\forall h\in[0,\theta)$ and $\forall v\in\mathbb{R}^m,\phi_{h,v}^*\in\mathcal{C}^n$ is defined as

$$\phi_{h,\nu}^*(s) := \begin{cases} \phi(s+h), & \text{if } s \in [-\delta, -h), \\ \phi(0) + f(\phi, \nu)(s+h), & \text{if } s \in [-h, 0]. \end{cases}$$

Its upper-right Dini derivative along the solutions of $\dot{x}(t) = f(x_t, u(t))$ is then defined for all t > 0 as

$$D^+V(x_t, u(t)) := \limsup_{h\to 0^+} \frac{V(x_{t+h}) - V(x_t)}{h}.$$

Under regularity conditions on the vector field, the Driver's derivative computed at $(x_t, u(t))$ and the upper-right Dini derivative coincides almost everywhere [Pepe, Automatica, 2007, Theorem 2].

GAS/0-GAS Characterization for TDS Definition (0-GAS)

The TDS $\dot{x}(t) = f(x_t, u(t))$ is said to be globally asymptotically stable in the absence of inputs (0-GAS) (or the input-free system $\dot{x}(t) = f(x_t, 0)$ is GAS) if there exists $\beta \in \mathcal{KL}$ such that, the solution of the input-free system $\dot{x}(t) = f(x_t, 0)$ satisfies

$$|x(t)| \leq \beta(||x_0||, t), \quad \forall t \geq 0.$$

Proposition (0-GAS characterization, [Hale, 1977, Corollary 3.1., p. 119)])

The TDS is 0-GAS if and only if there exist a LKF $V: \mathcal{C}^n \to \mathbb{R}_{\geq 0}$ and a function $\alpha \in \mathcal{PD}$ such that, for all $\phi \in \mathcal{C}^n$,

$$D^+V(\phi) \leq -\alpha(|\phi(0)|).$$

Proposition (0-GAS characterization, [Chaillet, G, Pepe, IEEE TAC, 2022])

The TDS is 0-GAS if and only if there exist a LKF $V: \mathcal{C}^n \to \mathbb{R}_{\geq 0}$ and a function $\sigma \in \mathcal{KL}$ such that, for all $\phi \in \mathcal{C}^n$,

$$D^+V(\phi) \leq -\sigma(|\phi(0)|, ||\phi||).$$

ISS/iISS for TDS

Definition (ISS, [Pepe, Jiang, SCL, 2006])

The system is ISS if there exist $\nu \in \mathcal{K}_{\infty}$ and $\beta \in \mathcal{KL}$ such that, for any $x_0 \in \mathcal{C}^n$ and any $u \in \mathcal{U}$, $|x(t)| \leq \beta(||x_0||, t) + \nu(||u||)$, $\forall t > 0$.

Definition (iISS, [Pepe, Jiang, SCL, 2006])

The TDS is said to be iISS if there exists $\beta \in \mathcal{KL}$ and $\nu, \sigma \in \mathcal{K}_{\infty}$ such that, for any $x_0 \in \mathcal{C}^n$ and any $u \in \mathcal{U}$, its solution satisfies

$$|x(t)| \leq \beta(||x_0||, t) + \nu\left(\int_0^t \sigma(|u(s)|)ds\right), \quad \forall t \geq 0.$$

- Forward completeness [Hale, 1977, Theorem 3.2, p. 43]
- Asymptotic stability in the absence of inputs (0-GAS)

LKF Characterization for ISS/iISS

Proposition (ISS LKF, Necessity: [Pepe, Karafyllis, IJC, 2013], Sufficiency: [Pepe, Jiang, SCL, 2006])

The TDS is ISS if and only if there exists a LKF candidate $V: \mathcal{C}^n \to \mathbb{R}_{\geq 0}$, $\alpha \in \mathcal{K}_{\infty}$ and $\gamma \in \mathcal{K}_{\infty}$, such that the following holds:

$$D^+V(x_t, u(t)) \leq -\alpha(V(x_t)) + \gamma(|u(t)|), \quad \forall t \geq 0.$$

→ Finite-dimensional case: [Sontag, IEEE TAC, 1989].

Proposition (iISS LKF, Necessity: [Lin, Wang, CDC, 2018], Sufficiency: [Pepe, Jiang, SCL, 2006])

The TDS is iISS if and only if there exists a LKF candidate $V : \mathcal{C}^n \to \mathbb{R}_{\geq 0}$, $\alpha \in \mathcal{PD}$ and $\gamma \in \mathcal{K}_{\infty}$, such that the following holds:

$$D^+V(x_t,u(t)) \leq -\alpha(V(x_t)) + \gamma(|u(t)|), \quad \forall t \geq 0.$$

→ Finite-dimensional case: [Angeli et al., IEEE TAC, 2000].

Robustness Properties

Definition (BEBS, BECS)

The TDS $\dot{x}(t) = f(x_t, u(t))$ is said to have the bounded energy-bounded state (BEBS) property, if there exists $\zeta \in \mathcal{K}_{\infty}$ such that its solution satisfies

$$\int_0^\infty \zeta(|u(s)|) \mathrm{d} s < \infty \quad \Rightarrow \quad \sup_{t \geq 0} |x(t)| < \infty.$$

It is said to have the bounded energy-converging state (BECS) property if there exists $\zeta \in \mathcal{K}_{\infty}$ such that, its solution satisfies

$$\int_0^\infty \zeta(|u(s)|)ds < \infty \quad \Rightarrow \quad \lim_{t \to \infty} |x(t)| = 0.$$

Definition (UBEBS)

If the system $\dot{x}(t)=f(x_t,u(t))$ is said to have the uniform bounded energy-bounded state (UBEBS) property if there exist $\alpha,\xi,\zeta\in\mathcal{K}_\infty$ and $c\geq 0$ such that, $\forall x_0\in\mathcal{C}^n$ and $\forall u\in\mathcal{U}$, its solution satisfies

$$\alpha(|x(t)|) \leq \xi(||x_0||) + \int_0^t \zeta(|u(s)|)ds + c, \quad \forall t \geq 0.$$

Soln Characterizations and Zero-Output Dissipativity of iISS TDS

Proposition (iISS⇔0-GAS+UBEBS, [Chaillet, G, Pepe, IEEE TAC, 2022])

The TDS $\dot{x}(t) = f(x_t, u(t))$ is iISS if and only if it is 0-GAS and owns the UBEBS property.

Lemma (UBEBS with c = 0, [Chaillet, G, Pepe, IEEE TAC, 2022])

If the system $\dot{x}(t) = f(x_t, u(t))$ is 0-GAS, then the following properties are equivalent:

- The system satisfies the UBEBS estimate.
- ▶ The system satisfies the UBEBS estimate with c = 0.

Proposition (iISS⇔0-GAS+zero-output dissipativity, [Chaillet, G, Pepe, IEEE TAC, 2022])

The TDS $\dot{x}(t) = f(x_t, u(t))$ is ilSS if and only if it is 0-GAS and there exists a LKF $V: \mathcal{C}^n \to \mathbb{R}_{>0}$ and $\mu \in \mathcal{K}_{\infty}$ such that

$$D^+V(\phi, v) \leq \mu(|v|), \quad \forall \phi \in \mathcal{C}^n, \forall v \in \mathbb{R}^m.$$

iISS LKFs

Definition (iISS LKF)

A LKF $V: \mathcal{C}^n \to \mathbb{R}_{>0}$ is said to be:

▶ an iISS LKF with point-wise dissipation rate for $\dot{x}(t) = f(x_t, u(t))$ if $\exists \alpha \in \mathcal{PD}$ and $\gamma \in \mathcal{K}_{\infty}$ such that, $\forall \phi \in \mathcal{C}^n$ and $\forall v \in \mathbb{R}^m$,

$$D^+V(\phi, v) \leq -\alpha(|\phi(0)|) + \gamma(|v|).$$

▶ an iISS LKF with LKF-wise dissipation rate for $\dot{x}(t) = f(x_t, u(t))$ if $\exists \alpha \in \mathcal{PD}$ and $\gamma \in \mathcal{K}_{\infty}$ such that, $\forall \phi \in \mathcal{C}^n$ and $\forall v \in \mathbb{R}^m$,

$$D^+V(\phi, v) \leq -\alpha(V(\phi)) + \gamma(|v|).$$

▶ an iISS LKF with history-wise dissipation rate for $\dot{x}(t) = f(x_t, u(t))$ if $\exists \alpha \in \mathcal{PD}$ and $\gamma \in \mathcal{K}_{\infty}$ such that, $\forall \phi \in \mathcal{C}^n$ and $\forall v \in \mathbb{R}^m$,

$$D^+V(\phi, \mathbf{v}) \leq -\alpha(\|\phi\|) + \gamma(|\mathbf{v}|).$$

▶ an iISS LKF with \mathcal{KL} dissipation rate for $\dot{x}(t) = f(x_t, u(t))$ if $\exists \sigma \in \mathcal{KL}$ and $\gamma \in \mathcal{K}_{\infty}$ such that, $\forall \phi \in \mathcal{C}^n$ and $\forall v \in \mathbb{R}^m$,

$$D^+V(\phi, v) \leq -\sigma(|\phi(0)|, ||\phi||) + \gamma(|v|).$$

- α and σ are called dissipation rate,
- $ightharpoonup \gamma$ is called supply rate.

Theorem (iISS LKF Characterizations, [Chaillet, G, Pepe, IEEE TAC, 2022])

The following statements are equivalent for the TDS $\dot{x}(t) = f(x_t, u(t))$:

- (i) The TDS admits a coercive iISS LKF with history-wise dissipation.
- (ii) The TDS admits an iISS LKF with LKF-wise dissipation.
- (iii) The TDS admits an iISS LKF with history-wise dissipation.
- (iv) The TDS admits an iISS LKF with \mathcal{KL} dissipation.
- (v) The TDS is iISS.

Moreover, the TDS is iISS if

(vi) The TDS admits an iISS LKF with point-wise dissipation.

Figure: Proof Strategy.

Proof (Sketch).

- ▶ $\underline{\text{(iv)}}\Rightarrow\text{(v)}$: iISS LKF with \mathcal{KL} dissipation \Rightarrow 0-GAS+zero-output dissipativity \Rightarrow iISS.
- **►** (v)⇒(i): iISS ⇒
 - ▶ ∃ coercive LKF $V: \mathcal{C}^n \to \mathbb{R}_{\geq 0}, \nu \in \mathcal{K}_{\infty}$ with $D^+V(\phi, v) \leq \nu(|v|)$, $\forall \phi \in \mathcal{C}^n, v \in \mathbb{R}^m$ (Lin, Wang, CDC, 2018).
 - ▶ ∃ coercive LKF $V_1: \mathcal{C}^n \to \mathbb{R}_{\geq 0}, \pi \in \mathcal{K} \cap \mathcal{C}^1$ with $\pi'(s) > 0, \forall s \geq 0,$ $\alpha \in \mathcal{PD}, \gamma \in \mathcal{K}_{\infty}$ such that $W_1 := \pi \circ V_1$ satisfies $D^+W_1(\phi, v) \leq -\alpha(\|\phi\|) + \gamma(|v|).$
 - $\mathcal{V} := V + W_1$ is a coercive iISS LKF with history-wise dissipation.
- ► (i)⇒(iii): Trivial as any coercive LKF is a LKF.

Proof (Sketch-Continued).

Fact [Angeli et. al, IEEE TAC, 2000]: $\forall \alpha \in \mathcal{PD}, \exists \mu \in \mathcal{K}_{\infty}, \ell \in \mathcal{L} \text{ such that } \alpha(s) \geq \mu(s)\ell(s), \forall s \geq 0.$

• (i) \Rightarrow (ii): V is coercive history-wise LKF $\Rightarrow \exists V: C^n \to \mathbb{R}_{\geq 0}, \alpha \in \mathcal{PD}, \underline{\alpha}, \overline{\alpha}, \gamma \in \mathcal{K}_{\infty}$ such that

$$\underline{\alpha}(\|\phi\|) \le V(\phi) \le \overline{\alpha}(\|\phi\|)
D^+V(\phi, v) \le -\alpha(\|\phi\|) + \gamma(|v|)
\le -\mu(\|\phi\|)\ell(\|\phi\|) + \gamma(|v|)
\le -\mu \circ \overline{\alpha}^{-1}(V(\phi))\ell \circ \underline{\alpha}^{-1}(V(\phi)) + \gamma(|v|)$$

- \Rightarrow *V* is iISS LKF with LKF-wise dissipation.
- ▶ (ii) \Rightarrow (iv): V is iISS LKF with LKF-wise dissipation \Rightarrow Fact \Rightarrow V is iISS LKF with \mathcal{KL} dissipation rate.
- (iii) \Rightarrow (iv): V is iISS LKF with history-wise dissipation rate \Rightarrow Fact \Rightarrow V is iISS LKF with \mathcal{KL} dissipation rate.
- (vi) \Rightarrow (iv): Implication follows by using the fact and observing $\alpha(|\phi(0)|) \geq \mu(|\phi(0)|)\ell(|\phi(0)|) \geq \mu(|\phi(0)|)\ell(|\phi(0)|)\ell(|\phi(0)|)$ for any $\alpha \in \mathcal{PD}$, $\mu \in \mathcal{K}_{\infty}$, $\ell \in \mathcal{L}$.

New LKF Characterizations for iISS TDS: Illustrative Examples

Example

Consider the following TDS:

$$\dot{x}(t) = -\frac{|x(t)|}{1 + ||x_t||^2} + u(t).$$

Consider the LKF (proposed in [Pepe, Jiang, SCL, 2006]) defined as

$$W(\phi) := \sup_{s \in [-\delta, 0]} e^{s} Q(\phi(s)), \quad \forall \phi \in \mathcal{C},$$

where the function $Q: \mathbb{R} \to \mathbb{R}^+$ is defined as

$$Q(x) = \begin{cases} \frac{1}{2}x^2, & \text{if } |x| \le 1, \\ |x| - \frac{1}{2}, & \text{if } |x| > 1. \end{cases}$$

After cumbersome calculation, it is possible to get

$$D^{+}W(\phi,\nu) \leq \begin{cases} -W(\phi), & \text{if } W > Q(\phi(0)), \\ \max\left\{-W, Q'(\phi(0))\left(\frac{-\phi(0)}{1+\|\phi\|^{2}} + \nu\right)\right\}, & \text{if } W = Q(\phi(0)). \end{cases}$$

which then also implies $D^+W(\phi, v) \leq -\alpha(W) + |v|$ where $\alpha(s) = \frac{s}{1+\underline{\alpha}^{-1}(s)^2}$ again after some calculation.

New LKF Characterizations for iISS TDS: Illustrative Examples

Example

Consider the following TDS:

$$\dot{x}(t) = -\frac{|x(t)|}{1 + ||x_t||^2} + u(t).$$

On contrary $V(\phi) = |\phi(0)|$ satisfies, $\forall \phi \in \mathcal{C}$ and $\forall v \in \mathbb{R}$

$$D^+V(\phi, \mathbf{v}) \leq -\frac{|\mathbf{x}(t)|}{1+||\mathbf{x}_t||^2}+|\mathbf{v}|,$$

does the same job with \mathcal{KL} dissipation.