

Data Understanding: Grouping and Summarizing Data

Patrick Mathias May 9, 2022

1

Goals

1. Learn dplyr tools for grouping and summarizing data in R

Objectives

- 1. Calculate a summary statistic for a variable using the summarize() function
- 2. Creates groupings of data using the group_by() function
- 3. Combine group_by() and summarize() functions to calculate summary statistics for groups of data

summarize() Make summaries of your data

summarize() • Make summaries of your data covid_testing %>% summarize(new_variable = calculation) name for new variable Performs calculation across all rows of data frame

summarize()

• Make summaries of your data

covid_testing %>%
 select(mrn, pan_day) %>%
 head(4) %>%
 summarize(order_count = n())

mrn pan_day
 5001412 4
 5000533 7
 5009134 7
 5008518 8

function that returns
number of observations

function that returns
number of observations

order_count
4

The second in the second

summarize()

Summarize supports calculations on summary stats

mrn	pan_day
5001412	4
5000533	7
5009134	7
5008518	8

order_count	day_count	orders_per_day
15524	102	152

Your Turn #1

- Open "05 Group and Summarize.Rmd"
- Run the setup chunk
- Fill-in the gaps to calculate the mean count of orders per clinic

05:00

11

Output the last day

covid_testing %>%
 summarize(last_day = last(pan_day))

mrn	pan_day	→	last_day
5001412	4		8
5000533	7		
5009134	7		
5008518	8		

13

Calculate the mean turnaround time

covid_testing %>%
 mutate(col_ver_tat = col_rec_tat + rec_ver_tat) %>%
 summarize(col_ver_tat_mean = mean(col_ver_tat))

mrn	pan_day	col_ver_tat		
5001412	4	6		
5000533	7	8	\rightarrow	col_ver_tat_mea
5009134	7	10		8.75
5008518	8	11		

Calculate the 75th percentile turnaround time

mrn	pan_day	col_ver_tat			
5001412	4	6			
5000533	7	8	\rightarrow	col_ver_tat_mean	col_ver_tat_mean
5009134	7	10		8.75	9.6
5008518	8	11			15

15

Your Turn #2

For the covid_testing data frame, calculate both the median and the 95th percentile collect-to-verify turnaround time.

16

Pop Quiz

How would you calculate the median number of orders per day?

17

group_by()

• Grouping observations based on a specific variable's values

```
covid_testing %>%
   group_by(variable)
```

name of variable to group by

group_by()

Group observations by pan_day

```
covid_testing %>%
   group_by(pan_day)
```


21

group_by()

Group observations by `pan_day` and `clinic_name`

```
covid_testing %>%
    select(mrn, pan_day, clinic_name) %>%
    group_by(pan_day, clinic_name)
```


group_by() %>% summarize()

• Make summaries of your data

```
covid_testing %>%

summarize(order_count = n())
```

mrn	pan_day
5001412	4
5000533	7
5009134	7
5008518	8

order_count

25

group_by() %>% summarize()

Make summaries of your data

covid_testing %>%
 group_by(pan_day) %>%
 summarize(order_count = n())

mrn	pan_day
5001412	4
5000533	7
5009134	7
5008518	8

1
2
3
9

Your Turn #3

Calculate:

- a) The median collect-to-verify turnaround time for each day
- b) The median collect-to-verify turnaround time for each clinic/unit
- c) The median number of orders per day

05:00

27

Recap

Summarize() is a function that enables us to calculate summaries of variables (columns).

Common summary activities include counting observations using \mathbf{n} (), counting unique observations using \mathbf{n} _distinct(), and calculating means using \mathbf{mean} ().

Group_by() is a function that enables us to create subsets of data by a variable. Data can also be grouped by multiple variables.

Combining the **group_by()** and **summarize()** functions is a powerful way to look at summarizations across groups.

29

What else?

Q: Is there an association between insurance product and SARS-CoV-2 RT-PCR positivity?

33

Q: Is the association between test positivity and a government insurance product explained by the age of the patient?

```
tmp <- covid testing 2 %>%
  filter(payor_group_fac %in% c("commercial", "government")) %>%
  mutate(result fac = factor(result,
                              levels=c("negative", "positive"),
                              ordered=T),
         payor_group_fac = (payor_group == "government"))
tmp fit <- glm(result fac ~ payor group fac + age,</pre>
                                                        # model formula
               data = tmp,
                                                        # dataset
               family = "binomial"
                                                        # type of model
  )
summary(tmp fit)
exp(coefficients(tmp fit))
                                                        # odds
```

Output for logistic regression