Dimensionality reduction

Aya benh hriz

05/11/2021

Importing libraries

```
library('plyr')
library('dplyr')
##
## Attachement du package : 'dplyr'
## Les objets suivants sont masqués depuis 'package:plyr':
##
       arrange, count, desc, failwith, id, mutate, rename, summarise,
##
##
       summarize
## Les objets suivants sont masqués depuis 'package:stats':
##
## filter, lag
## Les objets suivants sont masqués depuis 'package:base':
##
       intersect, setdiff, setequal, union
##
library(Hmisc)
## Le chargement a nécessité le package : lattice
## Le chargement a nécessité le package : survival
## Le chargement a nécessité le package : Formula
## Le chargement a nécessité le package : ggplot2
## Attachement du package : 'Hmisc'
## Les objets suivants sont masqués depuis 'package:dplyr':
##
      src, summarize
## Les objets suivants sont masqués depuis 'package:plyr':
## is.discrete, summarize
## Les objets suivants sont masqués depuis 'package:base':
##
##
       format.pval, units
```

```
library("viridis")
## Le chargement a nécessité le package : viridisLite
library('naniar')
library(xtable)
##
## Attachement du package : 'xtable'
## Les objets suivants sont masqués depuis 'package:Hmisc':
##
      label, label<-
##
library(schoRsch)
library(gmodels)
library(readr)
library(ggpubr)
##
## Attachement du package : 'ggpubr'
## L'objet suivant est masqué depuis 'package:plyr':
##
##
      mutate
library(magrittr)
library(dplyr)
library("FactoMineR")
library("factoextra")
## Welcome! Want to learn more? See two factoextra-related books at
https://goo.gl/ve3WBa
library(RColorBrewer)
library(scales)
## Attachement du package : 'scales'
## L'objet suivant est masqué depuis 'package:readr':
##
##
      col factor
## L'objet suivant est masqué depuis 'package:viridis':
## viridis pal
## Importing our data set
```r
```

```
df <- read.csv('users.db.csv')</pre>
head(df)
##
 userid date.crea score n.matches n.updates.photo n.photos
last.connex
1
 1 2011-09-17 1.495834
 11
 2011-10-
07
 2 2017-01-17 8.946863
 56
2
 2017-01-
31
3
 3 2019-05-14 2.496199
 13
 3
 2019-06-
17
4
 4 2015-11-27 2.823579
 32
 5
 2016-01-
15
 5 2014-11-28 2.117433
 21
5
 2015-01-
15
 6 2017-06-05 1.700014
 14
6
 2017-07-
03
 last.up.photo last.pr.update gender sent.ana length.prof voyage laugh
##
1
 2011-10-02
 NA
 1 6.490446
 0.00000
 0
2
 2017-02-03
 NA
 1 4.589125
 20.72286
 0
 0
3
 2019-06-19
 NA
 1 6.473182
 31.39928
 0
 0
4
 2015-12-09
 0
 0
 NA
 0 5.368982
 0.00000
 1
5
 2015-01-02
 NA
 0 5.573949
 38.51022
 0
 2017-06-25
 0
 0
6
 NA
 1 5.464667
 23.11221
 photo.keke photo.beach
##
1
 0
 0
2
 0
 1
3
 0
 1
4
 0
 1
5
 0
 0
6
df$gender=factor(df$gender)
correlation for all variables
corr=df[,c(3,4,5,6,11,12,13,14,15,16)]
tab=round(cor(corr),
 digits = 2 # rounded to 2 decimals
)
tab
 score n.matches n.updates.photo n.photos sent.ana
##
length.prof
score
 1.00
 0.90
 0.29
 0.05
 0.39
0.05
n.matches
 0.90
 1.00
 0.32
 -0.01
 0.44
0.03
n.updates.photo 0.29
 0.32
 1.00
 -0.02
 0.14
0.01
n.photos
 0.05
 -0.01
 -0.02
 1.00
 -0.05
0.04
```

```
sent.ana
 0.39
 0.44
 0.14
 -0.05
 1.00
0.02
length.prof
 -0.05
 -0.03
 -0.01
 -0.04
 0.02
1.00
voyage
 -0.09
 -0.01
 -0.02
 0.03
 -0.01
0.00
 0.00
laugh
 -0.13
 -0.03
 -0.01
 -0.03
0.02
photo.keke
 -0.15
 0.02
 -0.05
 0.01
 0.02
0.04
photo.beach
 0.19
 -0.01
 0.00
 0.06
 -0.03
0.02
##
 voyage laugh photo.keke photo.beach
score
 -0.09 -0.13
 -0.15
n.matches
 -0.01 -0.03
 0.02
 -0.01
n.updates.photo
 -0.02 -0.01
 0.02
 0.00
n.photos
 0.03 -0.03
 -0.05
 0.06
sent.ana
 -0.01 0.00
 0.01
 -0.03
length.prof
 0.00 -0.02
 0.04
 -0.02
voyage
 1.00 0.01
 0.00
 0.01
 0.01
 1.00
 0.02
 -0.01
laugh
photo.keke
 0.00 0.02
 1.00
 -0.06
photo.beach
 0.01 -0.01
 -0.06
 1.00
```

#This correlation matrix gives an overview of the correlations for all combinations of two variables.

```
library(corrplot)
corrplot 0.90 loaded

corrplot(cor(corr),
 method = "number",
 type = "upper" # show only upper side
)
```



# multiple scatterplots
pairs(df[, c("score", "n.matches", "n.updates.photo", "sent.ana")])



#The figure indicates that score is positively correlated with n.matches, n.updates.photo and sent.ana.

##dentifying correlations in the variables

ggqqplot(df,x="score",color="gender",ylab = "score")



ggqqplot(df,x='n.matches',color="gender",ylab = "n.matches")



#check if it's normal it doesn't follow a straight line so it's not normal and we use then spearman's

tab=cor.test(df\$score,df\$n.matches, method = 'spearman')

## Warning in cor.test.default(df\$score, df\$n.matches, method = "spearman"):
Cannot

## compute exact p-value with ties

hist(df\$score,col="chocolate")

### Histogram of df\$score



hist(log(df\$score),col="blue")

## Histogram of log(df\$score)



hist(df\$n.matches,col="chocolate")

## Histogram of df\$n.matches



hist(log(df\$n.matches),col="blue")

### Histogram of log(df\$n.matches)



```
#when it's not normally distributed we have to use log so that we can use lm
mod <- lm(log(n.matches) ~</pre>
log(df$score)+gender+photo.keke+gender*photo.beach, data = df)
summary(mod)
##
Call:
lm(formula = log(n.matches) ~ log(df$score) + gender + photo.keke +
 gender * photo.beach, data = df)
##
Residuals:
##
 Min
 1Q
 Median
 3Q
 Max
-0.63095 -0.07556 -0.01281 0.08869
 0.44190
##
Coefficients:
##
 Estimate Std. Error t value Pr(>|t|)
(Intercept)
 1.999728
 0.004560 438.511 < 2e-16
 0.004761 260.776
log(df$score)
 1.241509
 < 2e-16
gender1
 0.005413 -10.459
 -0.056613
 < 2e-16
gender2
 -0.119253
 0.020198
 -5.904 3.94e-09
photo.keke
 0.305489
 0.006714
 45.503
 < 2e-16
photo.beach
 0.011386
 23.641
 0.269180
 < 2e-16
 0.014222 -54.539 < 2e-16 ***
gender1:photo.beach -0.775623
gender2:photo.beach -0.246712
 0.041960 -5.880 4.57e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.1317 on 2992 degrees of freedom
```

```
Multiple R-squared: 0.9579, Adjusted R-squared: 0.9578
F-statistic: 9727 on 7 and 2992 DF, p-value: < 2.2e-16</pre>
```

#### **Dimensionality Reduction**

#### **PCA**

```
#keep only the nuemrical variables for scaling
df2=df[,c("score","n.matches","n.updates.photo","sent.ana")]
#inertia drops when you add more variables
#when scaling we only keep the numeric variables
res.pca=PCA(df2, scale.unit = TRUE, graph = FALSE)
PCA(df2, scale.unit = TRUE, graph = TRUE)
```

#### PCA graph of individuals





```
Results for the Principal Component Analysis (PCA)
The analysis was performed on 3000 individuals, described by 4 variables
*The results are available in the following objects:
##
name description
1 "$eig" "eigenvalues"
```

```
2 "$var"
 "results for the variables"
3 "varcoord"
 "coord. for the variables"
4 "varcor"
 "correlations variables - dimensions"
 "cos2 for the variables"
5
 "varcos2"
6 "varcontrib"
 "contributions of the variables"
7 "$ind"
 "results for the individuals"
 "coord. for the individuals"
8 "indcoord"
9 "indcos2"
 "cos2 for the individuals"
10 "indcontrib"
 "contributions of the individuals"
11 "$call"
 "summary statistics"
12 "$call$centre"
 "mean of the variables"
13 "$call$ecart.type" "standard error of the variables"
14 "$call$row.w"
 "weights for the individuals"
15 "$call$col.w"
 "weights for the variables"
mt.pca <- prcomp(df2, center = TRUE, scale. = TRUE)</pre>
summary(mt.pca)
Importance of components:
 PC1
 PC2
 PC3
 PC4
Standard deviation
 1.5307 0.9358 0.8280 0.30937
Proportion of Variance 0.5857 0.2189 0.1714 0.02393
Cumulative Proportion 0.5857 0.8047 0.9761 1.00000
library(devtools)
Le chargement a nécessité le package : usethis
install_github("vqv/ggbiplot")
WARNING: Rtools is required to build R packages, but is not currently
installed.
Please download and install Rtools 4.0 from https://cran.r-
project.org/bin/windows/Rtools/.
Skipping install of 'ggbiplot' from a github remote, the SHA1 (7325e880)
has not changed since last install.
Use `force = TRUE` to force installation
library(ggbiplot)
Le chargement a nécessité le package : grid
ggbiplot(mt.pca,obs.scale = 1, var.scale = 1)
```



## Warning: ggrepel: 165 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

### PCA - Biplot



## Warning: ggrepel: 979 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps



#the further the obs is far from the origin for the x axis the highest the contirb for the 1st pr comp

fviz\_screeplot(res.pca, addlabels = TRUE, ylim = c(0, 65))

### Scree plot



## Apply pca and kmean

```
using MCA for discrete variables
df3=df[,c(13,14,15,16,10)]
for (i in 1:5) {
 plot(df3[,i], main=colnames(df3)[i],
 ylab = "Count", col="steelblue", las = 2)
}
```





# laugh



## photo.keke



# photo.beach



# 1400 -1200 -1000 -1000 -800 -400 -200 -

0

0

N





#### Variables representation



```
Results of the Multiple Correspondence Analysis (MCA)
The analysis was performed on 3000 individuals, described by 5 variables
*The results are available in the following objects:
##
##
 description
 name
1
 "$eig"
 "eigenvalues"
2
 "$var"
 "results for the variables"
3
 "varcoord"
 "coord. of the categories"
 "varcos2"
 "cos2 for the categories"
4
 "varcontrib"
 "contributions of the categories"
5
 "varv.test"
 "v-test for the categories"
6
 "$ind"
 "results for the individuals"
7
8 "indcoord"
 "coord, for the individuals"
9 "indcos2"
 "cos2 for the individuals"
 "contributions of the individuals"
10 "indcontrib"
11 "$call"
 "intermediate results"
12 "$call$marge.col" "weights of columns"
13 "$call$marge.li"
 "weights of rows"
res.mca <- MCA(df3, graph = FALSE)
print(res.mca)
Results of the Multiple Correspondence Analysis (MCA)
The analysis was performed on 3000 individuals, described by 5 variables
*The results are available in the following objects:
##
##
 description
 name
1 "$eig"
 "eigenvalues"
```

```
2 "$var"
 "results for the variables"
 "coord. of the categories"
 "varcoord"
3
4
 "varcos2"
 "cos2 for the categories"
 "varcontrib"
 "contributions of the categories"
5
6
 "varv.test"
 "v-test for the categories"
7
 "$ind"
 "results for the individuals"
 "coord. for the individuals"
 "indcoord"
8
 "cos2 for the individuals"
9 "indcos2"
10 "indcontrib"
 "contributions of the individuals"
11 "$call"
 "intermediate results"
12 "$call$marge.col" "weights of columns"
13 "$call$marge.li"
 "weights of rows"
fviz_screeplot(res.mca, addlabels = TRUE, ylim = c(0, 45))
```

### Scree plot



## Warning: ggrepel: 2991 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps





#So here we can see that the "elbow" in the scree plot is at k=4, so we apply the k-means clustering function with k=4 and plot.

```
From scree plot elbow occurs at k = 4
Apply k-means with k=4
pc <- prcomp(df2)
comp <- data.frame(pc$x[,1:2])
k <- kmeans(comp, 4, nstart=25, iter.max=1000)
palette(alpha(brewer.pal(9,'Set1'), 0.5))
plot(comp, col=k$clust, pch=16)</pre>
```



## HCPC

res.pca <- PCA(df2, graph = FALSE)
res.hcpc <- HCPC(res.pca, graph = FALSE)
plot(res.hcpc, choice='tree')</pre>



plot(res.hcpc)

## Hierarchical clustering on the factor map

