Interpolación y aproximación polinomial

Profesor
Edgar Miguel Vargas Chaparro
Monitor
Sebastian Guerrero Salinas

Se toma en consideración la gráfica de y = f(x) = cos(x) en [0,0,1,2]

Figura: Gráfica de la función propuesta cos(x)

- Se usarán los nodos $x_0 = 0.0$ y $x_1 = 1.2$ para construir un polinomio de interpolación lineal $P_1(x)$
- Se usarán los nodos $x_0 = 0.2$ y $x_1 = 1.0$ para construir un polinomio de interpolación lineal $Q_1(x)$
- Se tiene la fórmula

$$y = P_1(x) = y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0},$$

• Se reemplazan las abscisas $x_0=0.0$ y $x_1=1.2$ y las ordenadas $y_0=cos(0.0)=1.000000$ e $y_1=cos(1.2)=0.362358$ en la fórmula

$$P_1(x) = 1,000000 \frac{x - 1,2}{0,0 - 1,2} + 0,362358 \frac{x - 0,0}{1,2 - 0,0}$$
$$= -0,833333(x - 1,2) + 0,301965(x - 0,0)$$

• Con los nodos $x_0 = 0.2$ y $x_1 = 1.0$ con los valores $y_0 = cos(0.2) = 0.980067$ e $y_1 = cos(1.0) = 0.540302$ el resultado es

$$Q_1(x) = 0.980067 \frac{x - 1.0}{0.2 - 1.0} + 0.540302 \frac{x - 0.2}{1.0 - 0.2}$$
$$= -1.225083(x - 1.0) + 0.675378(x - 0.2)$$

Figura: Gráfica de y = cos(x) junto con la gráfica de $y = P_1(x)$ e $Q_1(x)$

x_k	$f(x_k) = \cos(x_k)$	$P_1(x_k)$	$f(x_k) - P_1(x_k)$	$Q_1(x_k)$	$f(x_k) - Q_1(x_k)$
0.0	1.000000	1.000000	0.000000	1.090008	-0.090008
0.1	0.995004	0.946863	0.048141	1.035037	-0.040033
0.2	0.980067	0.893726	0.086340	0.980067	0.000000
0.3	0.955336	0.840589	0.114747	0.925096	0.030240
0.4	0.921061	0.787453	0.133608	0.870126	0.050935
0.5	0.877583	0.734316	0.143267	0.815155	0.062428
0.6	0.825336	0.681179	0.144157	0.760184	0.065151
0.7	0.764842	0.628042	0.136800	0.705214	0.059628
0.8	0.696707	0.574905	0.121802	0.650243	0.046463
0.9	0.621610	0.521768	0.099842	0.595273	0.026337
1.0	0.540302	0.468631	0.071671	0.540302	0.000000
1.1	0.453596	0.415495	0.038102	0.485332	-0.031736
1.2	0.362358	0.362358	0.000000	0.430361	-0.068003

Figura: Comparación f(x) = cos(x) con sus aproximaciones lineales $P_1(x)$ y $Q_1(x)$

Las anteriores gráficas y resultados numéricos sirven para comparar ambas aproximaciones y revelan que $Q_1(x)$ tiene un error menor en los puntos x_k que verifican $0,1 \le x_k \le 1,1$. El error más grande de los recogidos en la tabla correspondiente a P_1 , que es $f(0,6) - P_1(0,6) = 0,144157$, se reduce a

$$f(0,6) - P_1(0,6) = 0.144157$$
, se reduce a $f(0,6) - Q_1(0,6) = 0.065151$ cuando se usa $Q_1(x)$

<ロト <個ト < 直ト < 重ト < 重 とり < で

Tomando nuevamente la función y = f(x) = cos(x) en [0,0,1,2]

Figura: Gráfica de la función propuesta cos(x)

- Se usarán los nodos $x_0 = 0.0$, $x_1 = 0.6$ y $x_2 = 1.2$ para construir el polinomio interpolador cuadrático $P_2(x)$
- Se usarán los cuatro nodos $x_0 = 0.0$, $x_1 = 0.4$, $x_2 = 0.8$ y $x_3 = 1.2$ para construir el polinomio interpolador cúbico $P_3(x)$

En la fórmula

$$P_2(x) = y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

usamos
$$x_0 = 0.0$$
, $x_1 = 0.6$ y $x_2 = 1.2$ e $y_0 = cos(0.0) = 1$, $y_1 = cos(0.6) = 0.825336$, $y_2 = cos(1.2) = 0.362358$ y obtenemos

$$P_{2}(x) = 1.0 \frac{(x-0.6)(x-1.2)}{(0.0-0.6)(0.0-1.2)} + 0.825336 \frac{(x-0.0)(x-1.2)}{(0.6-0.0)(0.6-1.2)} + 0.362358 \frac{(x-0.0)(x-0.6)}{(1.2-0.0)(1.2-0.6)}$$

$$= 1.388889(x-0.6)(x-1.2) - 2.292599(x-0.0)(x-1.2) + 0.503275(x-0.0)(x-0.6)$$

Ahora en la fórmula

$$P_3(x) = y_0 \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)}$$

$$+ y_1 \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)} + y_2 \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)}$$

$$+ y_3 \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)}$$

usamos
$$x_0=0.0$$
, $x_1=0.4$, $x_2=0.8$, $x_3=1.2$ e $y_0=cos(0.0)=1$, $y_1=cos(0.4)=0.921061$, $y_2=cos(0.8)=0.696707$, $y_3=cos(1.2)=0.362358$ y obtenemos

◆ロト ◆御ト ◆恵ト ◆恵ト ・恵 ・ 夕久で

$$P_{3}(x) = 1,000000 \frac{(x-0,4)(x-0,8)(x-1,2)}{(0,0-0,4)(0,0-0,8)(0,0-1,2)}$$

$$+0,921061 \frac{(x-0,0)(x-0,8)(x-1,2)}{(0,4-0,0)(0,4-0,8)(0,4-1,2)}$$

$$+0,696707 \frac{(x-0,0)(x-0,4)(x-1,2)}{(0,8-0,0)(0,8-0,4)(0,8-1,2)}$$

$$+0,362358 \frac{(x-0,0)(x-0,4)(x-0,8)}{(1,2-0,0)(1,2-0,4)(1,2-0,8)}$$

$$= -2,604167(x - 0,4)(x - 0,8)(x - 1,2)$$

$$+7,195789(x - 0,0)(x - 0,8)(x - 1,2)$$

$$-5,443021(x - 0,0)(x - 0,4)(x - 1,2)$$

$$+0,943641(x - 0,0)(x - 0,4)(x - 0,8)$$

Vemos la representación gráfica de y = cos(x) junto con las de los polinomios $y = P_2(x)$ e $y = P_3(x)$

Figura: Polinomio interpolador cuadrático y polinomio interpolador cúbico

Polinomio interpolador de Newton

Sea $f(x) = x^3 - 4x$. Se construirá la tabla de diferencias divididas para los nodos $x_0 = 1$, $x_1 = 2$, ..., $x_5 = 6$, y a calcular el polinomio interpolador de Newton $P_3(x)$ para los nodos x_0 , x_1 , x_2 y x_3

x_k	$f[x_k]$	Primera diferencia dividida	Segunda diferencia dividida	Tercera diferencia dividida	Cuarta diferencia dividida	Quinta diferencia dividida
$x_0 = 1$ $x_1 = 2$ $x_2 = 3$ $x_3 = 4$ $x_4 = 5$ $x_5 = 6$	$ \begin{array}{r} -3 \\ \hline 0 \\ 15 \\ 48 \\ 105 \\ 192 \end{array} $	3 15 33 57 87	6 9 12 15	1 1 1	0	0_

Figura: Tabla de diferencias divididas del polinomio $P_3(x)$

Polinomio interpolador de Newton

Los cálculos se mostraron en la tabla anterior.

- Los coeficientes de $P_3(x)$ aparecen en la diagonal de la tabla de diferencias divididas y valen, respectivamente, $a_0 = -3$. $a_1 = 3$. $a_2 = 6$ y $a_3 = 1$.
- Los centros $x_0 = 1$, $x_1 = 2$ y $x_2 = 3$ son los valores dispuestos en la primera columna así que de acuerdo con la fórmula

$$P_3(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_3(x - x_0)(x - x_1)(x - x_2)$$

Polinomio interpolador de Newton

podemos escribir

$$P_3(x) = -3 + 3(x-1) + 6(x-1)(x-2) + (x-1)(x-2)(x-3)$$