Lecture 1

Sequence of real numbers

Large collection of numbers $x_1, x_2, \cdots, x_n, \cdots \quad \forall \quad x_i \in \mathbb{R}$ in some particular order is called a sequence.

mathematically, sequence is $X:\mathbb{N}\longrightarrow \mathbb{R}, X(i)=x_i.$

Ex: $\{1, 1/2, 1/3, \dots\}$ can be expressed as a function as

$$X: \mathbb{N} \longrightarrow \mathbb{R}, X(i) = rac{1}{i}$$
 or $\left\{X(n) = rac{1}{n}
ight\}_{n=1}^{\infty}$ or $\left\langle X(n)
ight
angle_{n=1}^{\infty}$

Ex: $\{c, c, \dots\} = \left\{X(n) = c\right\}_{n=1}^{\infty}$ is a constant sequence.

Ex: {-1, 1, -1, 1,
$$\cdots$$
 } = $\Big\{X(n) = (-1)^n\Big\}_{n=1}^{\infty}$

• The sequence $\left\{X(n)=rac{1}{n}
ight\}$ approaches 0 as $x\longrightarrow\infty$.

Convergence of a sequence $\Big\{X(n)\Big\}_{n=1}^{\infty}$

Sequence converges to L if for every $\epsilon>0$, there exists a stage $n_1\in\mathbb{N}$, such that $|x_n-L|<\epsilon\quad \forall\quad n\geq n_1.$

In other words we can say that for the sequence $\{x_1, x_2, \cdots, x_{n_1}, \cdots\}$ we can find a stage n_1 such that all x_n after x_{n_1} lies in the epsilon neighbourhood of L.

Thus it follows that,

$$\lim_{n o\infty}x_n=L$$

• ϵ neighbourhood of L can be represented as $N_{\epsilon}(L)$ and it is also referred to as epsilon ball of L & denoted by $B(L, \epsilon)$.

Ex:
$$\{1, \frac{1}{2}, \frac{1}{3}, \dots\} = \left\{X(n) = \frac{1}{n}\right\}_{n=1}^{\infty}$$

We can take L = 0 as $\lim_{n \to \infty} x_n = 0$ & $n_1 = 3, \epsilon = 1/2$.

So all values for $n \geq 3$ lies within the ϵ neighbourhood of zero.

Ex:
$$\left\{ X(n) = (-1)^n \right\}$$
 = {1, -1, 1, -1, \cdots }

We are unable to find any stage n_1 such that for all $n \ge n_1$ values lie within the ϵ neighbourhood of L.

⇒ Divergent sequence & limit does not exists.

Theorem. Limit of a sequence is unique.

#semester-1 #mathematics #real-analysis