

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

	General Certificate of Education Ordinary Level		
CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
COMBINED S	CIENCE		5129/2
Paper 2		Od	tober/November 2012
			2 hours 15 minutes
Candidates an	nswer on the Question Paper.		
No Additional	Materials are required.		
READ THESE	INSTRUCTIONS FIRST		
-	ntre number, candidate number and name on all the wo	rk you hand in.	

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use

This document consists of 23 printed pages and 1 blank page.

fibrin

fibrinogen

hormones

1 Use words from the list to complete the sentences below.

enzymes

antibodies

For
Examiner's
Use

	platelets	plasma	red	white	water	
Each word may	be used once,	more than or	nce, or not	at all.		
The liquid part of	of the blood is o	called				
This liquid conta	ains several dif	ferent types o	f blood cel	l.		
The function of	the		blo	od cells is to	carry oxygen.	
The		blood c	ells carry o	out phagocy	tosis and produce	
The platelets he	elp the blood to	clot by turnin	g			
into						[6]

2 Fig. 2.1 shows a paper chromatogram obtained from three coloured dyes and three unknown dyes W, X and Y.

For Examiner's Use

pencil origin line

Fig. 2.1

(a)	Explain why the origin line on the chromatography paper is drawn using a pencil rather than a pen.
	[1]
(b)	Which coloured dyes are present in dye W?
	[2]
(c)	Which of the unknown dyes W, X or Y is a pure substance?
	Explain your answer.
	[2]

3 A student measures the time for 20 complete oscillations of a pendulum.

She repeats the experiment for different lengths of the pendulum.

The results are shown in Fig. 3.1.

length/m	time for 20 oscillations/s	period/s
0.30	22.0	1.10
0.80	35.8	
1.20	44.0	2.20

Fig. 3.1

(a) (i) Complete Fig. 3.1 by calculating the period of the pendulum for a length of 0.80 m.

(ii)	Using the results from Fig. 3.1, state how the period of a pendulum varies with its length.	S
	r4	1

© UCLES 2012 5129/21/O/N/12

For Examiner's Use

[1]

(b) Three different positions of a swinging pendulum are shown in Fig. 3.2.

Fig. 3.2

(i) State the letter of the position or positions where the pendulum has most kinetic energy.

.....[1]

(ii) State the energy changes that take place as the pendulum swings from position ${\bf A}$ to position ${\bf B}$.

4 Information about the height and mass of humans is given in Fig. 4.1.

Fig. 4.1

The heights and masses of four students are:

student A 1.75 m and 88 kg student B 1.65 m and 65 kg student C 1.82 m and 58 kg student D 1.45 m and 70 kg

(a) State which student is obese and which student has the correct weight.

(b) Table 4.1 gives information about the energy and nutrients provided by 1.0 kg of six types of food.

For Examiner's Use

Table 4.1

food	energy /kJ	protein /g	fat /g	carbohydrate /g
oily fish	9700	170	190	0
eggs	6700	120	120	0
cheese	16000	250	310	0
milk	2900	31	39	50
beef	13000	150	280	0
leafy vegetables	1100	27	0	38

	vege	etables	1100	27	0	38	
	(i)	An obese	student wishes	to reach a correc	t body mass.		
		Name two	foods in Table 4	1.1 that he should	d avoid.		
		1					
		2					[2]
	(ii)		another way, oth s body mass.	er than eating dif	ferent foods, by	which this studer	nt could
							[1]
(c)	Lea	fy vegetabl	les provide fibre	in the diet.			
	Exp	lain					
	(i)	what is m	eant by fibre,				
							[1]
	(ii)	why it is ir	mportant to inclu	de fibre in the die	et.		
							[2]

5 Fig. 5.1 shows the structure of an atom of carbon.

For Examiner's Use

		Fig. 5.1	
(a)	For	this atom, state	
	(i)	the nucleon number,	
	(ii)	the proton number.	[2]
(b)	Cor	mplete Fig. 5.1 to show the electronic structure of an atom of carbon.	[1]
(c)	Car	bon combines with hydrogen to form methane, CH ₄ .	
		te the type of bonding present in methane and explain fully how the bonds ned.	are
	type	e of bonding	
	ехр	lanation	
			 [3]

6 Two lamps are connected in parallel, as shown in Fig. 6.1.

For Examiner's Use

Fig. 6.1

(a)	There	are	three	switches	Α,	В	and	C	in	the	circ	uit
-----	-------	-----	-------	----------	----	---	-----	---	----	-----	------	-----

State which switch, or switches, are closed to light lamp Y only.

	. [1]
--	-------

- **(b)** With all the switches closed, the current in lamp **X** is 0.2 A.
 - (i) The current from the cell is 0.5 A.

Calculate the current in lamp Y.

(ii) The potential difference across lamp **X** is 1.5 V.

Calculate the resistance of lamp X.

7 The boxes on the left state processes carried out in the body.

The boxes on the right represent organs in the body.

Draw **one** line from each process to the organ where the process takes place.

breaks down alcohol

destroys hormones

excretes carbon dioxide

liver

lung

forms urea

For Examiner's Use

[5]

For Examiner's Use

8	The fo	ne formula of sulfuric acid is H ₂ SO ₄ .		
	The fo	rmula of sodium hydroxide is NaOH.		
	(a) () Name the ion that causes acidity.		
		[1]		
	(i) Name the ion that causes alkalinity.		
		[1]		
	(b) V	hen sulfuric acid is added to sodium hydroxide the solution becomes neutral.		
	() What is the pH of the solution when it is exactly neutral?[1]		
	(i) What is the colour of Universal Indicator in the neutral solution?		
		[1]		
	(ii) Balance the equation for the reaction between sulfuric acid and sodium hydroxide.		
		$H_2SO_4 + \dots NaOH \longrightarrow Na_2SO_4 + \dots H_2O$ [1]		
	(iv	Construct the ionic equation for the reaction between an acid and an alkali.		

BLANK PAGE

9 Fig. 9.1 shows a ray of light incident on the surface of a glass block. The glass block is in air.

For Examiner's Use

Fig. 9.1

(a) (i) Some of the incident light is reflected.

On Fig. 9.1, draw the reflected ray.

[1]

(ii) Calculate the angle of reflection.

angle of reflection =° [1]

(b) Some of the incident light is refracted.

On Fig. 9.1, draw the refracted ray.

[1]

10 Fig. 10.1 shows the male reproductive system.

Fig. 10.1

	1 ig. 10.1
(a) (i)	Use the letters on Fig. 10.1 to identify the
	prostate gland
	testis
	urethra[3]
(ii)	State a reproductive function of each of the following structures.
	prostate gland
	testis
	urethra
	[3]

	(iii) Explain the importance of the scrotum for the production of healthy sper		For
		EX	kaminer's Use
		[2]	
(b)	One method of male birth control involves a surgical procedure.		
	On Fig. 10.1, mark with an X one of the tubes a surgeon would cut when cathis procedure.	arrying out	

For Examiner's Use

11 Study the reaction scheme in Fig. 11.1.

alkane process A ethene reagent B steam polymerisation colourless liquid C solid D

Fig. 11.1

(a)	(i)	Identify the process	A					[1]
	(ii)	Identify substances	3 , C and	D.				
		reagent B						
		colourless liquid C						
		solid D						[3]
(b)	Bro	mine water is used to	show tha	at ethene is an	unsaturated	hydrocarbon.		
	(i)	What is meant by the	e term <i>un</i>	saturated?				
								[1]
	(ii)	How does the colour	of the br	omine water c	hange when	it is added to	ethene?	

12 A simple a.c. generator consists of a coil rotating in a uniform magnetic field.

For Examiner's Use

(a) Complete Fig. 12.1 to show how the voltage output of the generator varies with time during one rotation of the coil. [2]

Fig. 12.1

(b) State two factors affecting the size of the maximum voltage output of the general	erator.
---	---------

1.	1	
2.	2	
		[2]

(c) The generator has an average power output of 200W.

Calculate the electrical energy produced in 5 minutes.

For Examiner's Use

13	(a)	Describe the intake of water by plants.
		rol
		[2]
	(b)	Fig. 13.1 shows the appearance of a healthy plant at 07.00 hours.
		Fig. 13.2 shows the appearance of the same plant 14 hours later.
		Fig. 13.1 Fig. 13.2
		(i) State what has happened to this plant.
		[1]
		(ii) Explain what has caused this change.
		[2]

For Examiner's Use

14	(a)	Define relative molecular mass.
		[2]
	(b)	When it is heated, sodium hydrogen carbonate decomposes to form sodium carbonate, carbon dioxide and water.
		The equation for the reaction is
		$2NaHCO_3 \longrightarrow Na_2CO_3 + CO_2 + H_2O$
		The relative molecular mass, $M_{\rm r}$, of sodium hydrogen carbonate is 84. ($A_{\rm r}$: Na, 23; O, 16; C, 12; H, 1)
		Complete the following sentences.
		168 g of sodium hydrogen carbonate producesg of sodium
		carbonate andg of carbon dioxide.
		16.8 g of sodium hydrogen carbonate producesg of sodium
		carbonate andg of carbon dioxide.
		4.2 g of sodium hydrogen carbonate producesg of sodium carbonate. [4]

15 A measuring cylinder contains 32 cm³ of water.

A stone is added to the measuring cylinder, as shown in Fig. 15.1.

Fig. 15.1

(a) Use Fig. 15.1 to calculate the volume of the stone.

(b) The density of the stone is $3.0\,\mathrm{g/cm^3}$.

Calculate the mass of the stone.

© UCLES 2012

16 A metal can is filled with hot water and placed on a metal table, as shown in Fig. 16.1.

Fig. 16.1

The surface of the metal can is matt black.

The temperature is seen to fall quickly.

(ii) the surface of the can is shiny white instead of matt black. (b) Air above the can becomes heated and rises. Explain why hot air rises.			
(ii) the surface of the can is shiny white instead of matt black. (b) Air above the can becomes heated and rises. Explain why hot air rises. (c) A laboratory liquid-in-glass thermometer is used to measure the temperature of water. Explain two differences between a laboratory liquid-in-glass thermometer and a clir	(a)	Ехр	lain why the temperature falls more slowly when
(ii) the surface of the can is shiny white instead of matt black. (b) Air above the can becomes heated and rises. Explain why hot air rises. (c) A laboratory liquid-in-glass thermometer is used to measure the temperature of water. Explain two differences between a laboratory liquid-in-glass thermometer and a clir		(i)	the can is placed on a wooden table,
(ii) the surface of the can is shiny white instead of matt black. (b) Air above the can becomes heated and rises. Explain why hot air rises. (c) A laboratory liquid-in-glass thermometer is used to measure the temperature of water. Explain two differences between a laboratory liquid-in-glass thermometer and a clir			
 (b) Air above the can becomes heated and rises. Explain why hot air rises. (c) A laboratory liquid-in-glass thermometer is used to measure the temperature of water. Explain two differences between a laboratory liquid-in-glass thermometer and a clir 			[1]
 (b) Air above the can becomes heated and rises. Explain why hot air rises. (c) A laboratory liquid-in-glass thermometer is used to measure the temperature of water. Explain two differences between a laboratory liquid-in-glass thermometer and a clir 		(ii)	the surface of the can is shiny white instead of matt black.
 (b) Air above the can becomes heated and rises. Explain why hot air rises. (c) A laboratory liquid-in-glass thermometer is used to measure the temperature of water. Explain two differences between a laboratory liquid-in-glass thermometer and a clir 			
Explain why hot air rises. (c) A laboratory liquid-in-glass thermometer is used to measure the temperature of water. Explain two differences between a laboratory liquid-in-glass thermometer and a clir			[1]
(c) A laboratory liquid-in-glass thermometer is used to measure the temperature of water. Explain two differences between a laboratory liquid-in-glass thermometer and a clir	(b)	Air a	above the can becomes heated and rises.
(c) A laboratory liquid-in-glass thermometer is used to measure the temperature of water. Explain two differences between a laboratory liquid-in-glass thermometer and a clir		Ехр	lain why hot air rises.
(c) A laboratory liquid-in-glass thermometer is used to measure the temperature of water.Explain two differences between a laboratory liquid-in-glass thermometer and a clir			
water. Explain two differences between a laboratory liquid-in-glass thermometer and a clir			[1]
· · · · · · · · · · · · · · · · · · ·	(c)		
		•	· · · · · · · · · · · · · · · · · · ·

17 Fig. 17.1 shows some properties of five elements, A, B, C, D and E.

The letters are not the symbols of the elements.

For Examiner's Use

element	melting point /°C	boiling point /°C	electronic structure
Α	-248	-246	2,8,8
В	- 7	59	2,8,18,7
С	63	766	2,8,1
D	119	444	2,8,6
E	659	2447	2,8,3

Fig. 17.1

Use the letters $\mathbf{A} - \mathbf{E}$ to answer the questions.

(a)	Which element is a liquid at room temperature?		[1]
(b)	Which element is in Group 3 of the Periodic Table?		[1]
(c)	Which element is a solid non-metal at room tempera	ture?	
	Explain why you have chosen this element.		
	element		
	explanation		
			[3]

18	(a)	State the sign of the charge on the nucleus of an atom.	For Examiner's Use
	(b)	Explain why an electron is attracted to the nucleus of an atom.	
		[1]	
	(c)	Some nuclei are unstable and emit gamma-rays.	
		State the speed of gamma-rays in a vacuumm/s [1]	
19	Fig.	19.1 shows a mains plug.	
		lead Y lead X lead Z	
		Fig. 19.1	
	(a)	Identify the leads X, Y and Z.	
		X	
		Υ	
		Z [2]	
	(b)	The fuse has a rating of 10 A.	
		Explain what is meant by a fuse <i>rating</i> .	
		[2]	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET

2045						F	he Perio	dic Table	e of the	The Periodic Table of the Elements	ts						
								Gro	Group								
_	=											=	//	^	N	NII V	0
							Hydrogen										Helium
\ \	_о 9					_						= 	¹ C C	[‡] Z	9P O	6 T	
3 Lithium	Beryllium 4											Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
23	24											27	58 	33	35	35.5	40
Sodium 11	Magnesium 12											Aluminium 13	_	snus	Sulfur 16	Chlorine	Ar Argon
39	40	45	48	51	52	55	56	29	59	64	65	02	73	75	62		84
×	Ca	သွ	F	>	ဝံ	Mn	Fe	ဝိ	Z	Cn	Zu	Ga			Se	亩	궃
Potassium 19	Calcium 20	Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32		Selenium 34		Krypton 36
982	88	88	91	93	96			103	106	108	112			122	128		131
8	ഗ്	>	Zr	g	Mo	ဥ		絽	Pd	Ag	ပ	П	Sn	Sp	<u>е</u>	Т	Xe
Rubidium 37	Strontium 38	Yttrium 39	Zirconium 40	Niobium 41	Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	Palladium 46	Silver 47	Cadmium 48	64	Tin 50	Antimony 51	Tellurium 52	lodine 53	Xenon 54
133	137	139	178	181	184	186		192	195	197	201		207	209	209	210	222
S	Ва	Га	Ξ	Та	≥	Re	Os	Ţ	풉	Αn	Нg	11	Ъ	ā	Po	Αt	R
Caesium 55	Barium 56	Lanthanum 57 *	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine 85	Radon 86
223	226	227															
Francium 87	Radium 88	Actinium +															
* 58-71	* 58-71 Lanthanoid series	oid series		140	141	144	147	150	152	157	159	162	165	167	169	173	175
+ 90-10	+ 90-103 Actionid series	A ceries		S	Ā	PN	Pm	Sm	En	В	q	ò	운	ш	E	ΛÞ	ב
?				Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67		Thulium 69	_	Lutetium 71

* 58–71 Lanthanoid series	140	
+ 90_103 Actinoid series	ဦ	
5	Cerium	۵
		i

			Cerium 58
	Ø	a = relative atomic mass	232
Key	×	X = atomic symbol	Ļ
	Ф	b = atomic (proton) number	Thorium

series	္ဗီ	- ፫	ž	P	S	En H	<u> </u>	<u>a</u>	2	₽ £	<u>й</u>	<u> </u>	Ş Q
ries	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70
ative atomic mass	232	231	238	237	244	243	247	247	251	252	257	258	259
omic symbol	丘	Pa	-	Ν	Pu	Am	CB	路	ర	Es	Fa	Βq	<u>8</u>
mic (proton) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).