Family list

1 family member for: JP10039292

Derived from 1 application

1 LIQUID CRYSTAL DISPLAY ELEMENT

Inventor: MAEDA HIROSHI Applicant: TOSHIBA ELECTRONIC ENG; TOKYO

SHIBAURA ELECTRIC CO

EC: IPC: G02F1/1335; G02F1/136; G02F1/1368 (+

Publication info: JP10039292 A - 1998-02-13

Data supplied from the esp@cenet database - Worldwide

LIQUID CRYSTAL DISPLAY ELEMENT

Patent number: JP10039292
Publication date: 1998-02-13

Inventor: MAEDA HIROSHI

Applicant: TOSHIBA ELECTRONIC ENG; TOKYO SHIBAURA

ELECTRIC CO

Classification:

- international: G02F1/1335; G02F1/136; G02F1/1368; G02F1/13;

(IPC1-7): G02F1/1335; G02F1/136

- european:

Application number: JP19960194510 19960724 Priority number(s): JP19960194510 19960724

Report a data error here

Abstract of **JP10039292**

PROBLEM TO BE SOLVED: To prevent the defect and malfunction of switching elements occurring in ions or elements, etc., included in a material used for formation of the color filters of a liquid crystal display element particularly forming the color filters on an array substrate. SOLUTION: The liquid crystal display element constituted by forming the color filters on the array substrate has a protective film 10 between the switching elements 4 and the color filter (colored layer 7 and light shielding film 9). The liquid crystal display element constituted by forming the color filters on a opposed substrate has the protective film 10 between the switching element 4 and org. resin film 12. When the protective film is formed to cover only the switching element 4, the degradation in the transmittance of pixel aperture is prevented.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平10-39292

(43) 公開日 平成10年(1998) 2月13日

(51) Int. Cl	6	識別記号	FΙ		
G02F	1/1335	505	G02F	1/1335	505
	1/136	500		1/136	500

審査請求 未請求 請求項の数12 OL (全11頁)

(21)出願番号	特願平8-194510	(71)出願人 000221339
(21)山原铅石	行版中0 ─ 194010	東芝電子エンジニアリング株式会社
(22)出願日	平成8年(1996)7月24日	神奈川県川崎市川崎区日進町7番地1
		(71)出願人 000003078
		株式会社東芝
		神奈川県川崎市幸区堀川町72番地
		(72)発明者 前 田 裕 志
		神奈川県川崎市川崎区日進町7番地1 東
		芝電子エンジニアリング株式会社内
		(74)代理人 弁理士 佐藤 一雄 (外3名)

(54) 【発明の名称】液晶表示素子

(57) 【要約】

【課題】 特にカラーフィルタをアレイ基板上に形成した液晶表示素子において、カラーフィルタの形成に用いられる材料に含まれているイオン又は元素等に起因するスイッチング素子の不良、誤動作を防止する。

【解決手段】 アレイ基板上にカラーフィルタが形成された構成の液晶表示素子においては、スイッチング素子4とカラーフィルタ(着色層7及び遮光膜9)との間に保護膜10を備えたものとする。また、対向基板上にカラーフィルタが形成された構成の液晶表示素子においては、スイッチング素子4と有機樹脂膜12との間に保護膜10を備えたものとする。保護膜10をスイッチング素子4のみを覆うように形成した場合には、画素開口部の透過率の低下を防止することができる。

【特許請求の範囲】

【請求項1】第1の透明基板と、

前記第1の透明基板上に交差するように形成された複数 の信号線及び走査線と、

1

前記信号線と前記走査線との交差部毎に配設されたスイッチング素子と、

前記スイッチング素子毎に配設された画素電極と、

前記スイッチング素子、前記信号線及び前記走査線が形成された前記第1の透明基板上に形成されたカラーフィルタと、

前記スイッチング素子、前記信号線及び前記走査線が形成された前記第1の透明基板と前記カラーフィルタとの間に形成された保護膜と、

第2の透明基板と、

前記第2の透明基板上に形成された対向電極と、

前記第1の透明基板と前記第2の透明基板との間に挟持された液晶層とを備えたことを特徴とする液晶表示素子。

【請求項2】第1の透明基板と、

前記第1の透明基板上に交差するように形成された複数 20 の信号線及び走査線と、

前記信号線と前記走査線との交差部毎に配設されたスイッチング素子と、

前記スイッチング素子毎に配設された画素電極と、

前記スイッチング素子、前記信号線及び前記走査線が形成された前記第1の透明基板上に形成された有機樹脂膜と、

前記スイッチング素子、前記信号線及び前記走査線が形成された前記第1の透明基板と前記有機樹脂膜との間に 形成された保護膜と、

第2の透明基板と、

前記第2の透明基板上に形成された対向電極と、

前記第1の透明基板と前記第2の透明基板との間に挟持された液晶層とを備えたことを特徴とする液晶表示素子。

【請求項3】第1の透明基板と、

前記第1の透明基板上に配設された走査線と、

前記走査線が形成された前記第1の透明基板上全面に形成された絶縁膜と、

前記絶縁膜上に配設され、前記走査線と共にスイッチン 40 グ素子を構成する半導体層、信号線及びソース電極と、 前記ソース電極に接続されて配設され、前記スイッチン グ素子により駆動される画素電極と、

前記スイッチング素子を覆って形成され、前記スイッチング素子を保護する保護膜と、

前記保護膜が形成された前記絶縁膜上に形成された着色 層と、

前記着色層上全面に形成された第1の配向膜と、

第2の透明基板と、

前記第2の透明基板上全面に形成された対向電極と、

前記対向電極上全面に形成された第2の配向膜と、 前記第1の配向膜と前記第2の配向膜との間に挟持され た液晶層とを備えたことを特徴とする液晶表示素子。

【請求項4】請求項3に記載の液晶表示素子において、前記画素電極は、前記着色層に対応する位置に配設され、前記着色層及び前記保護膜に開口されたスルーホールを介して前記ソース電極に接続されたものであることを特徴とする液晶表示素子。

【請求項5】第1の透明基板と、

10 前記第1の透明基板上に配設された走査線と、

前記走査線が形成された前記第1の透明基板上全面に形成された絶縁膜と、

前記絶縁膜上に配設され、前記走査線と共にスイッチング素子を構成する半導体層、信号線及びソース電極と、 前記ソース電極に接続されて配設され、前記スイッチング素子により駆動される画素電極と、

前記スイッチング素子を覆って形成され、前記スイッチング素子を保護する保護膜と、

前記保護膜が形成された前記絶縁膜上に形成された有機 樹脂膜と、

前記有機樹脂膜上全面に形成された第1の配向膜と、 第2の透明基板と、

前記第2の透明基板上に形成された着色層と、

前記着色層上全面に形成された対向電極と、

前記対向電極上全面に形成された第2の配向膜と、

前記第1の配向膜と前記第2の配向膜との間に挟持され た液晶層とを備えたことを特徴とする液晶表示素子。

【請求項6】請求項2又は5のいずれかに記載の液晶表示素子において、前記画素電極は、前記有機樹脂膜上に30 配設され、前記有機樹脂膜及び前記保護膜に開口されたスルーホールを介して前記ソース電極に接続されたものであることを特徴とする液晶表示素子。

【請求項7】請求項1乃至6のいずれかに記載の液晶表示素子において、前記保護膜は、有機材料からなるものであることを特徴とする液晶表示素子。

【請求項8】請求項1乃至6のいずれかに記載の液晶表示素子において、前記保護膜は、無機材料からなるものであることを特徴とする液晶表示素子。

【請求項9】請求項1乃至6のいずれかに記載の液晶表示素子において、前記保護膜は、絶縁材料からなるものであることを特徴とする液晶表示素子。

【請求項10】請求項9に記載の液晶表示素子において、前記保護膜は、1種類以上の酸化ケイ素を含む材料からなるものであることを特徴とする液晶表示素子。

【請求項11】請求項1又は2のいずれかに記載の液晶表示素子において、前記保護膜は、少なくとも前記スイッチング素子、前記信号線、前記走査線のいずれかに対応した領域に形成されたものであることを特徴とする液晶表示素子。

50 【請求項12】請求項1乃至6のいずれかに記載の液晶

1.0

3

表示素子において、前記保護膜は、前記第1の透明基板 上全面に形成されたものであることを特徴とする液晶表 示素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は液晶表示素子に関し、特にアレイ基板上にカラーフィルタが形成された液晶表示素子に好適なものである。

[0002]

【従来の技術】液晶表示素子の高精細化を実現するためには画素の高密度化を図る必要があるが、スイッチング素子や電極配線等の占める面積を縮小するのは困難であり、画素電極の面積を減少せざるを得ない。特に、画素電極の構成のうち画面表示に寄与する画素開口部の面積が影響を受け易い。

【0003】そこで、画素開口部の面積を最大限に確保すべく、カラーフィルタをアレイ基板上に形成したアクティブマトリクス型液晶表示素子が提案されている。カラーフィルタをアレイ基板ではなく、対向基板上に形成した液晶表示素子においては、組立工程における組立誤 20 差等を考慮して設計が行われるため、画素開口部の面積を最大限に確保することができなかった。これに対し、カラーフィルタをアレイ基板上に形成したアクティブマトリクス型液晶表示素子においては、画素開口部の配置に関しては組立誤差等を考慮する必要がないため、画素開口部の面積を最大限に確保することが可能となる。

【0004】図5は、カラーフィルタをアレイ基板上に 形成したアクティブマトリクス型液晶表示素子における 画素の一構成単位の平面図、図6は、図5の線AA'に 沿った断面構造図である。

【0005】アレイ基板32を構成する側の透明基板1 上には走査線2が配設され、その上から全面に絶縁膜3 が形成されている。絶縁膜3上の走査線2に対応する所 定位置には半導体層14、信号線5、ソース電極6が配 設され、スイッチング素子4を構成している。スイッチ ング素子4、電極配線等が配設されている部分上には黒 色着色層等からなる遮光膜9が形成されており、スイッ チング素子4、電極配線等が配設された部分以外の部分 上には各色のカラーフィルタ7R、7G、7Bが形成さ れている。各色のカラーフィルタ7尺、7G、7B上に 40 は画素電極8が形成されているが、この画素電極8への 電圧印加は、スイッチング素子4によって行われるた め、画素電極は遮光膜9の一部を貫通してソース電極6 に接続されている。さらに、最上層として配向膜24が 形成されている。一方、対向基板31を構成する側の透 明電極1上には、対向電極22、配向膜24が順次全面 に形成されている。

【0006】対向基板31及びアレイ基板32の配線電極等が形成された対向面を相互に対向させて組み立てられた液晶セルに液晶層23が封入されて液晶表示素子3

0が構成されている。

[0007]

【発明が解決しようとする課題】しかしながら、上述したカラーフィルタをアレイ基板上に形成したアクティブマトリクス型液晶表示素子においては、カラーフィルタの形成に用いられる顔料又は染料、インキ等に含まれているイオン又は元素等、例えば、銅イオンや亜鉛イオン等が、アレイ基板上のスイッチング素子の構成部分に浸入し、スイッチング素子を誤動作させて表示品質を損なうという問題点があった。

4

【0008】本発明は上記問題点に鑑みてなされたもので、その目的は、カラーフィルタをアレイ基板上に形成したアクティブマトリクス型液晶表示素子において、カラーフィルタの形成に用いられる顔料又は染料、インキ等に含まれているイオン又は元素等に起因するスイッチング素子の不良、誤動作を防止することが可能な構成の液晶表示素子を提供することである。

[0009]

【課題を解決するための手段】本発明に係る液晶表示素子によれば、スイッチング素子、信号線及び走査線が形成された第1の透明基板とカラーフィルタとの間に形成された保護膜を備えたことを特徴とし、この構成により、カラーフィルタの形成に用いられる顔料又は染料、インキ等に含まれているイオン又は元素等に起因するスイッチング素子の不良、誤動作を防止することができる。

【0010】また、本発明に係る液晶表示素子の他の構成によれば、スイッチング素子、信号線及び走査線が形成された第1の透明基板と有機樹脂膜との間に形成され た保護膜を備えたことを特徴とし、この構成により、有機樹脂膜を形成する過程で有機樹脂膜を焼成する際に発生する腐食性ガス、例えば、塩酸ガス等に起因するスイッチング素子の不良、誤動作を防止することができる。

【0011】さらに、以上の各液晶表示素子において、 保護膜をスイッチング素子のみを覆うように形成した場 合には、同様の効果を得ながら画素開口部の透過率の低 下を防止することができる。

[0012]

【発明の実施の形態】以下、図面を参照しながら本発明 に係る液晶表示素子の実施の形態について説明する。

【0013】図1は、本発明の第1の実施の形態に係る 液晶表示素子の断面構造図である。本発明の第1の実施 の形態に係る液晶表示素子を平面図に表した場合におけ る構成は図5の構成と同様であり、図1は、その場合の 図5の線AA、に沿った断面構造図である。

【0014】アレイ基板32を構成する側の透明基板1 上には走査線2が配設され、その上から全面に絶縁膜3 が形成されている。絶縁膜3上の走査線2に対応する所 定位置には半導体層14、信号線5、ソース電極6が配 50 設され、スイッチング素子4を構成している。そして、

6

これらを覆って全面に保護膜10が形成されている。こ の保護膜10を形成したことが、本発明に係る液晶表示 素子の特徴である。保護膜10は、エポキシ樹脂、アク リル樹脂等の透明な樹脂により形成されている。但し、 スイッチング素子、電極配線等が形成された部分上につ いては保護膜10は透明なものでなくても良い。保護膜 10上のスイッチング素子4、電極配線等に対応した部 分には黒色着色層、金属膜等からなる遮光膜 9 が形成さ れており、スイッチング素子4、電極配線等が配設され た部分以外の部分上には各色の着色層7R、7G、7B が形成されている。さらに、着色層7 (符号7は、符号 7R、7G、7Bの総称とする。)及び遮光膜9からな るカラーフィルタ上にはオーバーコート層25が形成さ れている。オーバーコート層25上の着色層7R、7 G、7Bに対応した部分には画素電極8が形成されてい るが、この画素電極8への電圧印加は、スイッチング素 子4によって行われるため、画素電極は、保護膜10、 遮光膜9、オーバーコート層25の一部を貫通してソー ス電極6に接続されている。さらに、最上層として配向 膜24が形成されている。一方、対向基板31を構成す 20 る側の透明電極1上には、対向電極22、配向膜24が 順次全面に形成されている。

【0015】対向基板31及びアレイ基板32の配線電極等が形成された対向面を相互に対向させて組み立てられた液晶セルに液晶層23が封入されて、本発明の第1の実施の形態に係る液晶表示素子30が構成されている。

【0016】本発明の第1の実施例に係る液晶表示素子30は、スイッチング素子4とカラーフィルタとの間に保護膜10を備えているので、カラーフィルタの形成に用いられる顔料又は染料、インキ等に含まれているイオン又は元素等に起因するスイッチング素子の不良、誤動作を防止することができる。

【0017】同様の効果を得ながら画素開口部の透過率の低下を防止するためには、保護膜10は、スイッチング素子4のみを覆うように形成しても良い。

【0018】尚、配向膜24、液晶層23への悪影響は、オーバーコート層25によって防止することができる。また、オーバーコート層25は樹脂等で形成することにより、平滑層として機能させることができる。ある40いは、オーバーコート層25としてシリコン酸化膜(SiOz膜)を形成することにより、画素電極パターニング時における着色層等のしわの発生又は画素電極のクラックの発生を防止することができる。この場合の着色層等のしわの発生又は画素電極のクラックの発生は、画素電極の材料と着色層等の材料との熱膨張率の差から、画素電極パターニング時における加熱工程において生ずる現象である。従って、画素電極を着色層(その他の有機樹脂層を含む)上に直接形成せずに、シリコン酸化膜からなるオーバーコート層25を介して形成することによ50

り、着色層等のしわの発生又は画素電極のクラックの発生を防止することができる。さらに、オーバーコート層25は、上記2種類のものを組み合わせて、平滑層としての樹脂層及びシリコン酸化膜からなる2層構造のものとしても良い。

【0019】以下、本発明の第1の実施の形態に係る液晶表示素子の具体的な製造方法の一例について説明する。

【0020】アレイ基板32は以下のように作製する。 【0021】透明基板1として厚さ0.7mmのソーダ 石灰ガラス(ソーダライムガラス)又は厚さ1.1mm の無アルカリガラスを用い、この透明基板1上に複数の 走査線2を形成し、その上から全面に絶縁膜3を形成す る。絶縁膜3上における走査線2が形成された方向と直 行する方向に複数の信号線5を形成し、これらの走査線 2及び信号線5の交差部ごとに、ソース電極6を形成し てスイッチング素子4を構成する。絶縁膜3上の交差部 となるべき各位置には、スイッチング素子4を構成する 半導体層14を、信号線5及びソース電極6を形成する 前に予めそれぞれ形成しておく。

【0022】スイッチング素子4を形成後、エポキシ樹 脂、アクリル樹脂等の透明な樹脂により保護膜10を形 成する。保護膜10の材料として、硬化剤が無水酸系硬 化剤であるビスフェノールA型のエポキシ樹脂を用い、 スピンコートにより厚さ1μm以下に塗布して硬化さ せ、保護膜10を形成する。ここでは保護膜10の材料 としてエポキシ樹脂を用いたが、カラーフィルタを形成 する樹脂材料と同一の材料を用いるとより良い。その 他、保護膜10の材料は、有機材料、無機材料のいずれ でも良いが、無機材料の方が薄い膜を形成し易いため、 透過率を向上させる上で有利である。無機材料として は、窒化ケイ素、酸化ケイ素等を含む材料を用いること ができる。保護膜の厚さは薄い方がよいが、保護膜とし て有効に機能させるためには、100オングストローム 以上の厚さが必要である。保護膜は、上述のようにスピ ンコートのほか、浸漬コーティング、スパッタ等によっ て形成しても良い。

【0023】保護膜10を形成後、遮光膜9及び着色層7からなるカラーフィルタを以下のように形成する。まず、遮光膜9を形成するため、アルカリ現像可能な光硬化型アクリル樹脂にカーボンブラックを分散させた材料をスピンナにより塗布する。塗布した材料を90℃の温度で約10分間乾燥させた後、所定のパターン形状のフォトマスクを用いて300mj/cm²の露光量で露光する。露光後、pH11.5のアルカリ溶液を用いて現像し、さらに、200℃の温度で約1時間焼成を行って膜厚2.0 μ mの格子状パターンの遮光膜9を形成する

【0024】赤色着色層7Rを形成するため、遮光膜9を形成した透明基板1上に、アルカリ現像可能な赤色着

色レジストCR-2000(;商品名、富士ハントテクノロジー(株))をスピンナにより塗布し、仮焼成する。これを赤色着色層パターンが形成されたマスクを用いて $100\,\mathrm{mj}/\mathrm{cm}^2$ の露光量で露光した後、 $\mathrm{pH}11.5$ の現像液を用いて現像する。その後、 $200\,\mathrm{C}$ の温度で約1時間焼成し、膜厚 $20\,\mathrm{mm}$ の赤色着色層 7Rを形成する。

【0025】次に、緑色着色層7Gを形成するため、遮光膜9を形成した透明基板1上に、アルカリ現像可能な緑色着色レジストCG-2000(;商品名、富士ハントテクノロジー(株))をスピンナにより塗布し、仮焼成する。これを緑色着色層パターンが形成されたマスクを用いて100mj/cm²の露光量で露光した後、pH11.5の現像液を用いて現像する。その後、200 Cの温度で約1時間焼成し、膜厚 2.0μ mの緑色着色層7Gを形成する。

【0026】同様に、青色着色層7Bを形成するため、 遮光膜9を形成した透明基板1上に、アルカリ現像可能 な青色着色レジストCB-2000(;商品名、富士ハ ントテクノロジー(株))をスピンナにより塗布し、仮 20 焼成する。これを青色着色層パターンが形成されたマス クを用いて100mj/cm²の露光量で露光した後、 pH11.5の現像液を用いて現像する。その後、200℃の温度で約1時間焼成し、膜厚2.0 μ mの青色着 色層7Bを形成し、カラーフィルタを形成する。

【0027】カラーフィルタ形成後、オーバーコート層 25を形成するため、カラーフィルタ上全面にアクリル 系樹脂を2μmの厚さとなるようにスピンナを用いて塗布する。スピンナによりスピンコートを行うことにより、塗布されたアクリル系樹脂は平坦化される。アクリ 30ル系樹脂はスピンコートによる塗布ではなく、スクリーン印刷を行っても良い。塗布されたアクリル系樹脂を250度の温度で熱処理することにより硬化させ、オーバーコート層25を形成する。

【0028】オーバーコート層25を形成後、保護膜10及び遮光膜9、オーバーコート層25にスルーホール11を開口し、このスルーホール11中にITOからなる電極配線を形成し、オーバーコート層25上の着色層7に対応する部分に形成する画素電極8と接続して導通させる。

【0029】画素電極8が形成されたオーバーコート層25上全面にポリイミドからなる配向膜24を形成すると、アレイ基板32が完成する。

【0030】一方、対向基板31は以下のように作製する。

【0031】アレイ基板32と同じ透明基板1を用い、この透明基板1上全面にITOからなる対向電極22を全面に形成し、その対向電極22上全面にポリイミドからなる配向膜24を形成すると、対向基板31が完成する。

【0032】以上のようにそれぞれ作製したアレイ基板32と対向基板31とを、それぞれの対向面が対向するように配置し、液晶注入部以外の基板周縁部に形成したシール材により両基板を貼り合わせる。その後、液晶注入部から液晶を注入して液晶層23とし、液晶注入部を紫外線硬化型樹脂で封止して第1の実施の形態に係る液晶表示素子30が完成する。

【0033】以上のように作製した本発明の第1の実施例に係る液晶表示素子30は、上述したように、スイッチング素子4とカラーフィルタとの間に保護膜10を備えているので、カラーフィルタの形成に用いられる顔料又は染料、インキ等に含まれているイオン又は元素等に起因するスイッチング素子の誤動作を防止することができる。また、製造工程中においても、カラーフィルタ形成時に用いる現像液によってスイッチング素子や配線が侵され不良発生の原因とならないよう、スイッチング素子や配線に対応した領域に保護膜10を形成する効果がある。

【0034】図2は、本発明の第2の実施の形態に係る 液晶表示素子の断面構造図である。本発明の第2の実施 の形態に係る液晶表示素子を平面図に表した場合におけ る構成は図5の構成と同様であり、図2は、その場合の 図5の線AA'に沿った断面構造図である。

【0035】アレイ基板32を構成する側の透明基板1 上には走査線2が配設され、その上から全面に絶縁膜3 が形成されている。絶縁膜3上の走査線2に対応する所 定位置には半導体層14、信号線5、ソース電極6が配 設され、スイッチング素子4を構成している。また、絶 縁膜3上の所定位置には画素電極8が形成されており、 この画素電極8はスイッチング素子4のソース電極6に 接続され、スイッチング素子4によって駆動される。画 素電極8が形成される所定位置は、後述するカラーフィ ルタの各着色層7に対応する位置である。そして、これ らを覆って全面に保護膜10が形成されている。第1の 実施の形態と同様に、この保護膜10を形成したことが 本発明に係る液晶表示素子の特徴である。保護膜10 は、エポキシ樹脂、アクリル樹脂等の透明な樹脂により 形成されている。但し、スイッチング素子、電極配線等 が形成された部分上については保護膜10は透明なもの でなくても良い。保護膜10上のスイッチング素子4、 電極配線等に対応した部分には黒色着色層、金属膜等か らなる遮光膜9が形成されており、スイッチング素子 4、電極配線等が配設された部分以外の部分上には各色 の着色層7尺、7G、7日が形成されている。着色層7 (符号7は、符号7R、7G、7Bの総称とする。)及 び遮光膜 9 からなるカラーフィルタ上にはオーバーコー ト層25が形成されており、さらに、最上層として配向 膜24が形成されている。一方、対向基板31を構成す る側の透明電極1上には、対向電極22、配向膜24が 50 順次全面に形成されている。

【0036】対向基板31及びアレイ基板32の配線電 極等が形成された対向面を相互に対向させて組み立てら れた液晶セルに液晶層23が封入されて、本発明の第2 の実施の形態に係る液晶表示素子30が構成されてい る。

【0037】本発明の第2の実施例に係る液晶表示素子 30は、スイッチング素子4とカラーフィルタとの間に 保護膜10を備えているので、カラーフィルタの形成に 用いられる顔料又は染料、インキ等に含まれているイオ ン又は元素等に起因するスイッチング素子の不良、誤動 10 作を防止することができる。

【0038】同様の効果を得ながら画素開口部の透過率 の低下を防止するためには、保護膜10は、スイッチン グ素子4のみを覆うように形成しても良い。

【0039】尚、配向膜24、液晶層23への悪影響 は、オーバーコート層25によって防止することができ

【0040】以下、本発明の第2の実施の形態に係る液 晶表示素子の具体的な製造方法の一例について説明す

【0041】アレイ基板32は以下のように作製する。

【0042】透明基板1として厚さ0.7mmのソーダ 石灰ガラス(ソーダライムガラス)又は厚さ1.1mm の無アルカリガラスを用い、この透明基板1上に複数の 走査線2を形成し、その上から全面に絶縁膜3を形成す る。絶縁膜3上における走査線2が形成された方向と直 行する方向に複数の信号線5を形成し、これらの走査線 2及び信号線5の交差部ごとに、ソース電極6を形成し てスイッチング素子4を構成する。絶縁膜3上の交差部 となるべき各位置には、スイッチング素子4を構成する 30 半導体層14を、信号線5及びソース電極6を形成する 前に予めそれぞれ形成しておく。さらに、各スイッチン グ素子4ごとに対応して、所定位置に ITOからなる画 素電極8を形成し、画素電極8はスイッチング素子4の ソース電極6に接続する。

【0043】スイッチング素子4及び画素電極8を形成 後、エポキシ樹脂、アクリル樹脂等の透明な樹脂により 保護膜10を形成する。保護膜10の材料として、硬化 剤が無水酸系硬化剤であるビスフェノールA型のエポキ シ樹脂を用い、スピンコートにより厚さ1μm以下に塗 40 布して硬化させ、保護膜10を形成する。ここでは保護 膜10の材料としてエポキシ樹脂を用いたが、カラーフ ィルタを形成する樹脂材料と同一の材料を用いるとより 良い。その他、保護膜10の材料は、有機材料、無機材 料のいずれでも良いが、無機材料の方が薄い膜を形成し 易いため、透過率を向上させる上で有利である。本実施 の形態においては、着色層の下に画素電極が形成される ため、第1の実施の形態と比較すると、画素電極と対向 電極との間の容量が低下するので、保護膜10はより薄

イ素、酸化ケイ素等を含む材料を用いることができる。 保護膜の厚さは薄い方がよいが、保護膜として有効に機 能させるためには、100オングストローム以上の厚さ が必要である。保護膜は、上述のようにスピンコートの ほか、浸漬コーティング、スパッタ等によって形成して も良い。

【0044】保護膜10を形成後、遮光膜9及び着色層 7からなるカラーフィルタを以下のように形成する。ま ず、遮光膜9を形成するため、アルカリ現像可能な光硬 化型アクリル樹脂にカーボンブラックを分散させた材料 をスピンナにより塗布する。塗布した材料を90℃の温 度で約10分間乾燥させた後、所定のパターン形状のフ オトマスクを用いて300mj/cm²の露光量で露光 する。露光後、pH11.5のアルカリ溶液を用いて現 像し、さらに、200℃の温度で約1時間焼成を行って 膜厚2.0μmの格子状パターンの遮光膜9を形成す

【0045】赤色着色層7Rを形成するため、遮光膜9 を形成した透明基板1上に、アルカリ現像可能な赤色着 20 色レジストCR-2000(;商品名、富士ハントテク ノロジー(株))をスピンナにより塗布し、仮焼成す る。これを赤色着色層パターンが形成されたマスクを用 いて100mj/cm² の露光量で露光した後、pH1 1. 5の現像液を用いて現像する。その後、200℃の 温度で約1時間焼成し、膜厚2.0μmの赤色着色層7 Rを形成する。

【0046】次に、緑色着色層7Gを形成するため、遮 光膜9を形成した透明基板1上に、アルカリ現像可能な 緑色着色レジストCG-2000(;商品名、富士ハン トテクノロジー(株))をスピンナにより塗布し、仮焼 成する。これを緑色着色層パターンが形成されたマスク を用いて100mj/cm²の露光量で露光した後、p H11.5の現像液を用いて現像する。その後、200 ℃の温度で約1時間焼成し、膜厚2. 0μmの緑色着色 層7Gを形成する。

【0047】同様に、青色着色層7Bを形成するため、 遮光膜9を形成した透明基板1上に、アルカリ現像可能 な青色着色レジストCB-2000(;商品名、富士ハ ントテクノロジー(株))をスピンナにより塗布し、仮 焼成する。これを青色着色層パターンが形成されたマス クを用いて100mj/cm²の露光量で露光した後、 pH11.5の現像液を用いて現像する。その後、20 0℃の温度で約1時間焼成し、膜厚2.0 µmの青色着 色層7日を形成し、カラーフィルタを形成する。

【0048】カラーフィルタ形成後、オーバーコート層 25を形成するため、カラーフィルタ上全面にアクリル 系樹脂を2μmの厚さとなるようにスピンナを用いて塗 布する。スピンナによりスピンコートを行うことによ り、塗布されたアクリル系樹脂は平坦化される。アクリ い膜であることが望ましい。無機材料としては、窒化ケ 50 ル系樹脂はスピンコートによる塗布ではなく、スクリー

る。

る。さらに、最上層として配向膜24が形成されてい

ン印刷を行っても良い。塗布されたアクリル系樹脂を250度の温度で熱処理することにより硬化させ、オーバーコート層25を形成する。さらに、オーバーコート層25上全面にポリイミドからなる配向膜24を形成すると、アレイ基板32が完成する。

【0049】一方、対向基板31は以下のように作製する。

【0050】アレイ基板と同じ透明基板1を用い、この透明基板1上全面にITOからなる対向電極22を全面に形成し、その対向電極22上全面にポリイミドからなる配向膜24を形成すると、対向基板31が完成する。

【0051】以上のようにそれぞれ作製したアレイ基板32と対向基板31とを、それぞれの対向面が対向するように配置し、液晶注入部以外の基板周縁部に形成したシール材により両基板を貼り合わせる。その後、液晶注入部から液晶を注入して液晶層23とし、液晶注入部を紫外線硬化型樹脂で封止して第2の実施の形態に係る液晶表示素子30が完成する。

【0052】以上のように作製した本発明の第2の実施例に係る液晶表示素子30は、上述したように、スイッ 20 チング素子4とカラーフィルタとの間に保護膜10を備えているので、カラーフィルタの形成に用いられる顔料又は染料、インキ等に含まれているイオン又は元素等に起因するスイッチング素子の誤動作を防止することができる。

【0053】図3は、本発明の第3の実施の形態に係る 液晶表示素子の断面構造図である。本発明の第3実施の 形態に係る液晶表示素子を平面図に表した場合における 構成は図5の構成と同様であり、図3は、その場合の図 5の線AA'に沿った断面構造図である。

【0054】第3の実施の形態に係る液晶表示素子は、 上述の第1及び第2の実施の形態に係る液晶表示素子と 異なり、カラーフィルタがアレイ基板ではなく対向基板 上に形成された構成となっている。

【0055】アレイ基板32を構成する側の透明基板1 上には走査線2が配設され、その上から全面に絶縁膜3 が形成されている。絶縁膜3上の走査線2に対応する所 定位置には半導体層14、信号線5、ソース電極6が配 設され、スイッチング素子4を構成している。そして、 これらを覆って全面に保護膜10が形成されている。第 3の実施の形態においても、この保護膜10を形成した ことが本発明に係る液晶表示素子の特徴である。保護膜 10は、透明な無機材料により形成されている。但し、 スイッチング素子、電極配線等が形成された部分上につ いては保護膜10は透明なものでなくても良い。保護膜 10上には全面に有機樹脂膜12が形成されており、有 機樹脂膜12上の所定位置には画素電極8が形成されて いる。この画素電極8への電圧印加は、スイッチング素 子4によって行われるため、画素電極は、保護膜10、 樹脂膜12一部を貫通してソース電極6に接続されてい 50 【0056】一方、対向基板31を構成する側の透明電極1上には、アレイ基板32上のスイッチング素子4、電極配線等に対応した部分に黒色着色層、金属膜等からなる遮光膜9が形成されており、スイッチング素子4、電極配線等が配設された部分以外の部分上に各色の着色層7R、7G、7Bが形成されている。各着色層7R、7G、7Bが形成される位置は、アレイ基板32上の画素電極8が形成される所定位置に対応している。さらに、着色層7(符号7は、符号7R、7G、7Bの総称とする。)及び遮光膜9からなるカラーフィルタ上には、対向電極22、配向膜24が順次全面に形成されている。

【0057】対向基板31及びアレイ基板32の配線電極等が形成された対向面を相互に対向させて組み立てられた液晶セルに液晶層23が封入されて、本発明の第3の実施の形態に係る液晶表示素子30が構成されている。

【0058】本発明の第3の実施例に係る液晶表示素子30は、スイッチング素子4と有機樹脂膜12との間に保護膜10を備えているので、有機樹脂膜を形成する過程で有機樹脂膜を焼成する際に発生する腐食性ガス、例えば、塩酸ガス等に起因するスイッチング素子の不良、誤動作を防止することができる。

【0059】同様の効果を得ながら画素開口部の透過率の低下を防止するためには、保護膜10は、スイッチング素子4のみを覆うように形成しても良い。

【0060】尚、第3の実施の形態においては、画素電 30 極8が有機樹脂膜12上に直接形成されているが、有機 樹脂膜12上にオーバーコート層を形成し、その上に画素電極8を形成しても良い。この場合もオーバーコート 層を適当な材料で形成することにより、第1の実施の形態と同様の効果を得ることができる。

【0061】以下、本発明の第3の実施の形態に係る液晶表示素子の具体的な製造方法の一例について説明する

【0062】アレイ基板32は以下のように作製する。 【0063】透明基板1として厚さ0.7mmのソーダ 石灰ガラス(ソーダライムガラス)又は厚さ1.1mm の無アルカリガラスを用い、この透明基板1上に複数の 走査線2を形成し、その上から全面に絶縁膜3を形成す る。絶縁膜3上における走査線2が形成された方向と直 行する方向に複数の信号線5を形成し、これらの走査線 2及び信号線5の交差部ごとに、ソース電極6等を形成 してスイッチング素子4を構成する。絶縁膜3上の交差 部となるべき各位置には、スイッチング素子4を構成す る半導体層14を、信号線5及びソース電極6を形成す る前に予めそれぞれ形成しておく。

【0064】スイッチング素子4を形成後、エポキシ樹

脂、アクリル樹脂等の透明な樹脂により保護膜10を形 成する。第3の実施の形態においては、保護膜10の上 に有機樹脂膜を形成するため、保護膜10の材料は無機 材料に限定される。保護膜10の材料をスピンコートに より厚さ1μm以下に塗布して硬化させ、保護膜10を 形成する。無機材料としては、窒化ケイ素、酸化ケイ素 等を含む材料を用いることができる。保護膜の厚さは薄 い方がよいが、保護膜として有効に機能させるために は、100オングストローム以上の厚さが必要である。 保護膜は、上述のようにスピンコートのほか、浸漬コー 10 遮光膜9を形成した透明基板1上に、アルカリ現像可能 ティング、スパッタ等によって形成しても良い。

【0065】保護膜10を形成後、エポキシ樹脂、アク リル樹脂等の透明な樹脂により有機樹脂膜12を形成す る。有機樹脂膜12の材料は、スピンコート、スクリー ン印刷、浸漬コーティング等により塗布し、材料の種類 に応じた条件で焼成を行う。この焼成の際、塩酸ガス等 の腐食性ガスが発生するが、保護膜10が形成されてい るため、スイッチング素子4に不良が発生したり、後に 誤動作が発生したりするのを防止することができる。

有機樹脂膜12にスルーホール11を開口し、このスル ーホール11中にITOからなる電極配線を形成し、有 機樹脂膜12上に形成する画素電極8と接続して導通さ せる。

【0067】画素電極8が形成された有機樹脂膜12上 全面にポリイミドからなる配向膜24を形成すると、ア レイ基板32が完成する。

【0068】一方、対向基板31は以下のように作製す

【0069】アレイ基板と同じ透明基板1を用い、この 透明基板1上に、遮光膜9及び着色層7からなるカラー フィルタを以下のように形成する。まず、遮光膜9を形 成するため、アルカリ現像可能な光硬化型アクリル樹脂 にカーボンブラックを分散させた材料をスピンナにより 塗布する。塗布した材料を90℃の温度で約10分間乾 燥させた後、所定のパターン形状のフォトマスクを用い て300mj/cm²の露光量で露光する。露光後、p H11.5のアルカリ溶液を用いて現像し、さらに、2 00℃の温度で約1時間焼成を行って膜厚2.0μmの 格子状パターンの遮光膜9を形成する。

【0070】赤色着色層7Rを形成するため、遮光膜9 を形成した透明基板1上に、アルカリ現像可能な赤色着 色レジストCR-2000(;商品名、富士ハントテク ノロジー(株))をスピンナにより塗布し、仮焼成す る。これを赤色着色層パターンが形成されたマスクを用 いて100mj/cm² の露光量で露光した後、pH1 1. 5の現像液を用いて現像する。その後、200℃の 温度で約1時間焼成し、膜厚2.0μmの赤色着色層7 Rを形成する。

【0071】次に、緑色着色層7Gを形成するため、遮 50 ーコート層33が形成されている。アンダーコート層3

光膜9を形成した透明基板1上に、アルカリ現像可能な 緑色着色レジストCG-2000(;商品名、富士ハン トテクノロジー(株))をスピンナにより塗布し、仮焼 成する。これを緑色着色層パターンが形成されたマスク を用いて100mi/cm² の露光量で露光した後、p H111 5の現像液を用いて現像する。その後、200 ℃の温度で約1時間焼成し、膜厚2.0 µmの緑色着色 層7Gを形成する。

【0072】同様に、青色着色層7Bを形成するため、 な青色着色レジストCB-2000(;商品名、富士ハ ントテクノロジー(株))をスピンナにより塗布し、仮 焼成する。これを青色着色層パターンが形成されたマス クを用いて100mj/cm² の露光量で露光した後、 pH11.5の現像液を用いて現像する。その後、20 0℃の温度で約1時間焼成し、膜厚2.0 μmの青色着 色層7日を形成し、カラーフィルタを形成する。

【0073】カラーフィルタ形成後、このカラーフィル タ上全面に I T O からなる対向電極 2 2 を全面に形成 【0066】有機樹脂膜12を形成後、保護膜10及び 20 し、その対向電極22上全面にポリイミドからなる配向 膜24を形成すると、対向基板31が完成する。

> 【0074】以上のようにそれぞれ作製したアレイ基板 32と対向基板31とを、それぞれの対向面が対向する ように配置し、液晶注入部以外の基板周縁部に形成した シール材により両基板を貼り合わせる。その後、液晶注 入部から液晶を注入して液晶層23とし、液晶注入部を 紫外線硬化型樹脂で封止して第3の実施の形態に係る液 晶表示素子30が完成する。

【0075】以上のように作製した本発明の第3の実施 30 例に係る液晶表示素子30は、上述したように、スイッ チング素子4と有機樹脂膜12との間に保護膜10を備 えているので、有機樹脂膜を形成する過程で有機樹脂膜 を焼成する際に発生する腐食性ガス、例えば、塩酸ガス 等に起因するスイッチング素子の不良、誤動作を防止す ることができる。

【0076】また、上記第1及び第3の実施の形態にお いては、保護膜、有機樹脂膜に開口されたスルーホール を介してスイッチング素子と画素電極とを接続している ため、信号線と画素電極との短絡等の発生を考慮せずに 画素電極の形成領域を、例えば、信号線上にまで拡大す ることができ、画素領域を拡大することが可能となる。

【0077】図4は、本発明の第4の実施の形態に係る 液晶表示素子の断面構造図である。本発明の第4の実施 の形態に係る液晶表示素子を平面図に表した場合におけ る構成は図5の構成と同様であり、図4は、その場合の 図5の線AA'に沿った断面構造図である。

【0078】アレイ基板32を構成する側の透明基板1 上には黒色着色層、金属膜等からなる遮光膜39が配設 され、その上から全面に、窒化シリコンからなるアンダ 10

16

3上の遮光膜39に対応する所定位置には多結晶シリコ ン層34が形成されており、この多結晶シリコン層34 中にはソース領域34a及びドレイン領域34b、チャ ネル領域34cが含まれている。そして、これらを覆っ て全面にゲート絶縁膜35が形成されている。ゲート絶 縁膜35上におけるチャネル領域34cに対応する所定 位置にはゲート電極36が形成されており、ゲート電極 36及びゲート絶縁膜35を覆って全面に、酸化シリコ ンからなる絶縁膜37が形成されている。ソース領域3 4 a 及びドレイン領域34 b 上の絶縁膜37 及びゲート 絶縁膜35には開口部が開設され、各開口部にソース電 極38a及びドレイン電極38bが形成されている。ソ ース電極38a及びドレイン電極38bが形成された絶 縁膜37上全面に保護膜10が形成され、さらに保護膜 10上には着色層7が形成されている。この保護膜10 を形成したことが、本発明に係る液晶表示素子の特徴で ある。保護膜10は、エポキシ樹脂、アクリル樹脂等の 透明な樹脂により形成されている。但し、スイッチング 素子、電極配線等が形成された部分上については保護膜 10は透明なものでなくても良い。着色層7上の画素部 には画素電極8が形成されているが、この画素電極8へ の電圧印加を行うために、画素電極8は、着色層7及び 保護膜10の一部を貫通して開口されたスルーホール1 1を介してソース電極38aに接続されている。さら に、最上層として配向膜24が形成されている。一方、 対向基板31を構成する側の透明電極1上には、対向電 極22、配向膜24が順次全面に形成されている。

【0079】対向基板31及びアレイ基板32の配線電極等が形成された対向面を相互に対向させて組み立てられた液晶セルに液晶層23が封入されて、本発明の第430の実施の形態に係る液晶表示素子30が構成されている。

【0080】本発明の第4の実施例に係る液晶表示素子30は、スイッチング素子と着色層7との間に保護膜10を備えているので、着色層7の形成に用いられる顔料又は染料、インキ等に含まれているイオン又は元素等に起因するスイッチング素子の不良、誤動作を防止することができる。

【0081】同様の効果を得ながら画素開口部の透過率の低下を防止するためには、保護膜10は、スイッチン 40 グ素子のみを覆うように形成しても良い。

【0082】以下、本発明の第4の実施の形態に係る液晶表示素子の具体的な製造方法の一例について説明する。

【0083】図4に示されるように、ガラスからなる基板1上にアモルファスシリコン(a-Si)等からなる遮光膜39を形成し、その上に窒化シリコン等からなるアンダーコート層33を被覆する。アンダーコート層33上にアモルファスシリコン層をスパッタ法により成膜した後、レーザアニールにより多結晶シリコン層34と

し、所定のパターニングを施す。その上に、ゲート絶縁膜35を形成し、さらにモリブデンとタングステンとの合金(MoW)等からなるゲート電極36を形成し、所定のパターニングを施す。このゲート電極36をマスクとして、多結晶シリコン層34にイオンドープを行い、ソース領域34a及びドレイン領域34bを形成する。その後、ゲート電極36及びゲート絶縁膜35上全面に酸化シリコン等からなる絶縁膜37を形成する。形成された絶縁膜37のソース領域34a及びドレイン領域34b上の部分にスルーホールを開口し、スルーホールを介して多結晶シリコン層34のソース領域34a及びドレイン領域34bにそれぞれ電気的に接続されるようにソース電極38a及びドレイン電極38bを形成する。以上のようにして、薄膜トランジスタが形成される。以上のようにして、

【0084】さらに、保護膜10を全面に形成し、保護膜10上には着色層7を形成する。形成された保護膜10及び着色層7のソース電極38a上の部分にスルーホール11を開口し、スルーホール11を介してソース電極38aに電気的に接続されるように、ITO等からなる画素電極8を着色層7上の画素部に形成する。画素電極8が形成された着色層7上全面にポリイミドからなる配向膜24を形成すると、アレイ基板32が完成する。 【0085】一方、対向基板31は以下のように作製する。

【0086】アレイ基板32と同じ透明基板1を用い、この透明基板1上全面にITOからなる対向電極22を全面に形成し、その対向電極22上全面にポリイミドからなる配向膜24を形成すると、対向基板31が完成する

【0087】以上のようにそれぞれ作製したアレイ基板32と対向基板31とを、それぞれの対向面が対向するように配置し、液晶注入部以外の基板周縁部に形成したシール材により両基板を貼り合わせる。その後、液晶注入部から液晶を注入して液晶層23とし、液晶注入部を紫外線硬化型樹脂で封止して第4の実施の形態に係る液晶表示素子30が完成する。

【0088】以上のように作製した本発明の第4の実施例に係る液晶表示素子30は、上述したように、スイッチング素子と着色層7との間に保護膜10を備えているので、着色層7の形成に用いられる顔料又は染料、インキ等に含まれているイオン又は元素等に起因するスイッチング素子の誤動作を防止することができる。また、製造工程中においても、着色層7形成時に用いる現像液によってスイッチング素子や配線が侵され不良発生の原因とならないよう、スイッチング素子や配線に対応した領域に保護膜10を形成する効果がある。

[0089]

アンダーコート層33を被覆する。アンダーコート層3 【発明の効果】以上説明したように、本発明に係る液晶 3上にアモルファスシリコン層をスパッタ法により成膜 表示素子によれば、スイッチング素子、信号線及び走査 した後、レーザアニールにより多結晶シリコン層34と 50 線が形成された第1の透明基板とカラーフィルタとの間 17

に形成された保護膜を備えたものとしたので、カラーフ ィルタの形成に用いられる顔料又は染料、インキ等に含 まれているイオン又は元素等に起因するスイッチング素 子の不良、誤動作を防止することができる。

【0090】また、本発明に係る液晶表示素子の他の構 成によれば、スイッチング素子、信号線及び走査線が形 成された第1の透明基板と有機樹脂膜との間に形成され た保護膜を備えたものとしたので、有機樹脂膜を形成す る過程で有機樹脂膜を焼成する際に発生する腐食性ガ ス、例えば、塩酸ガス等に起因するスイッチング素子の 10 9、39 遮光膜 不良、誤動作を防止することができる。

【0091】さらに、以上の各液晶表示素子において、 保護膜をスイッチング素子のみを覆うように形成した場 合には、同様の効果を得ながら画素開口部の透過率の低 下を防止することができる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態に係る液晶表示素子 の断面構造図。

【図2】本発明の第2の実施の形態に係る液晶表示素子 の断面構造図。

【図3】本発明の第3の実施の形態に係る液晶表示素子 の断面構造図。

【図4】本発明の第4の実施の形態に係る液晶表示素子 の断面構造図。

【図5】カラーフィルタをアレイ基板上に形成したアク ティブマトリクス型液晶表示素子における画素の一構成 単位の平面図。

【図6】従来のアクティブマトリクス型液晶表示素子の 断面構造図。

【符号の説明】

- 1 透明基板
- 2 走査線
- 3、37 絶縁膜
- 4 スイッチング素子
- 5 信号線
- 6 ソース電極
- 7 着色層
- 8 画素電極
- - 10 保護膜
 - 11 スルーホール
 - 12 有機樹脂膜
 - 14 半導体層
 - 22 対向電極
 - 23 液晶層
 - 24 配向膜
 - 2.5 オーバーコート層
 - 30 液晶表示素子
- 20 3 1 対向基板
 - 32 アレイ基板
 - 33 アンダーコート層
 - 34 多結晶シリコン層
 - 34a ソース領域
 - 34b ドレイン領域
 - 35 ゲート絶縁膜
 - 36 ゲート電極
 - 38a ソース電極
 - 38b ドレイン電極

【図1】 【図2】

