Media Additives

Antibiotics, counterselection agents & inhibitors

NOTE 1: Use in conjunction with the **Media Recipes** protocol.

NOTE 2: <u>NEVER</u> autoclave media with an additive. Generally an additive should not be added to agar-based media until cooled to $\approx 50^{\circ}$ C (just about cool enough to hold in your palm). Mix well (solubility is an issue with some of these things), 70% EtOH spritz and flame to remove bubbles (**careful**) and pour plates (generally a little thinner than normal to keep costs down).

Antibiotics (E.coli)

Ampicillin: (Amp) $1000 \text{ x stock} = 50 \text{mg/ml} \text{ in } ddH_2O (>99\% \text{ of the time} - \text{some older})$

plasmids have special requirements: **stringency issue**). 0.2µ filter sterilize and store 1ml aliquots at –20°C. Plates stable for >6 months at 4°C. Mixed media can be used after a week or two at RT°C (but storage at 4°C is recommended).

NOTE: Amp is bacteristatic rather than bactericidal. β -lactamase (the Amp^R product) is secreted into the media around Amp^R colonies, so satellites can develop if the

plates are incubated for too long.

<u>Kanamycin</u>: (Kan) $1000 \text{ x stock} = 50 \text{mg/ml in } ddH_2O (>99\% \text{ of the time} - \text{some older}$

plasmids have special requirements: **stringency issue**). 0.2μ filter sterilize and store 1ml aliquots at -20°C. Plates stable for >6 months at 4°C. Mixed media can

be used after a week or two at RT°C (but storage at 4°C is recommended).

NOTE: Kan is bactericidal – satellites not a problem

<u>Chloramphenicol</u>: (Chl) 1000 x stock = 34 mg/ml in EtOH. Store at -20° C. Usually used to

drive-up the yield of some low-copy plasmids: rarely done nowadays.

<u>Tetracycline</u>: (Tet) 1000 x stock = 5 mg/ml in EtOH. Store at -20° C. Usually used to maintain

the F' plasmid of some color-selectable strains (check the genotype maps) prior to

making competent cells.

Antibiotics (S.cerevisiae / S.pombe)

<u>G418</u>: (G418, geneticin sulfate, neomycin sulfate; eg. American Bioanalytical AB05057)

250~x~stock=50 mg/ml in $ddH_2O.~0.2\mu$ filter sterilize and store 1ml aliquots at $-20^{\circ}C$ for lab stocks. Plates (usually @ 200 $\mu g/ml$ in YPD) stable for >6 months at

4°C.

NOTE: When transforming the KanMX cassette into yeast it is <u>strongly</u> advised to replica plate 24hrs after transformation. If this is omitted there is usually a high background and it can be difficult to identify true G418^R colonies.

Protocol: *Media Additives - antibiotics & inhibitors*

Noursethricin: (clonNAT, Nat) 1000 x stock = 100mg/ml in ddH₂O. 0.2μ filter sterilize and store 1ml aliquots at -20°C. Plates (usually made in YPD) stable for >6 months at 4°C. NOTE: (from Werner Bioagents, http://www.webioage.com/seite5.html) ClonNAT, trade name for nourseothricin (a complex of the streptothricins F and D), produced by *Streptomyces noursei*, as a dihydrogen sulphate. Inhibits bacteria, mycobacteria, mycoplasms, yeasts, viruses and plants by inhibiting ribosomal protein synthesis and inducing miscoding.

Other additives (S.cerevisiae)

<u> α -aminoadipic acid</u>: (DL- α AAA; eg. US Biological A1374-09 5g \$104) Use at 0.2% final. Used to counterselect $LYS2^+$.

Stock = 2g / 50ml (4%) in ddH₂O. Adjust pH to 6.0 with 5M KOH, 0.2 μ filter sterilize and store at 4°C. Use 50ml of this per L media (0.2% final): **see specific protocol on LYS Counterselection (http://mckeogh.googlepages.com) NB. Must add LYS**⁺ **to media (3.3ml 100mM stock / L)**

NOTE: Solubility is an issue and the pH-ing to 6.0 step is absolutely required to get the αAAA into solution. It may help to initially overshoot (to \approx 8.0) and as more αAAA dissolves come closer to the desired 6.0. This will take hours: plan accordingly. 5-FOA is more commonly used as a counterselection agent

CLASS: Counterselection agent

5-FOA: (5-FluorO-Orotic acid; eg. US Biological F5050 10g \$199) Use at 1mg/ml. Used to counterselect *URA3*⁺. <u>Use URA</u>⁺ synthetic complete plates (the conversion of 5-FOA to the toxic metabolite requires a functional *URA3*, and you're selecting against this) to shuffle out a *URA* plasmid.

NOTE: Solubility is an issue. Add appropriate amount for final volume to $2 \times \text{synthetic}$ complete medium (+ URA). Place on shaker for an hour or two at 37°C. Add an equal volume of >70°C $2 \times \text{Agar}$ (40g/L in ddH₂O), Mix well, 70% EtOH spritz and flame to remove bubbles (**careful**), and pour plates (generally a little thinner than normal to keep costs down). Plates stable for >6 months at 4°C.

CLASS: Counterselection agent

6AU: (6-AzaUracil) Stock = 100mg/ml in DMSO. Store at -20°C.

Commonly used at $75\mu g/ml$ final in <u>URA</u> synthetic complete plates. Plates stable for >6 months at 4°C.

Transcription elongation inhibitor; works by depleting nucleotide pools (see also MPA). The massive amount of Uracil in URA⁺ plates kills this. Strain should be URA⁺ (ie. *URA3* in the genomic locus, or transformed with a cen/ars *URA3* plasmid, eg. pRS316).

NOTE: While commonly used at $75\mu g/ml$, it is recommended to test a variety of concentrations: 0, 10, 25, 50, 75 and 200 (all $\mu g/ml$ final). $ppr2\Delta$ (TFIIS) shows a

Protocol: *Media Additives - antibiotics & inhibitors* (4/28/07) p3 of 4

sensitivity at 10, although most don't show problems until > 25 (Keogh *et al* (2004) *Mol Cell Biol* **23:**7005).

CLASS: Transcription elongation inhibitor

Benomyl: (Ben) Commonly used 15µg/ml final in YPD plates. **Horribly insoluble**.

Used in: Krogan et al (2004) PNAS **101:**15313; Keogh et al (2006) Genes Dev **20:**660.

CLASS: Microtubule destabilizer, chromosome stability analyses.

Bleomycin: (bleo) Commonly used at 5µg/ml final in YPD plates. Expensive. Generates free

radicals and induces DNA lesions similar to those caused by ionizing radiation.

Used in: Keogh *et al* (2006) *Nature* **439:**497.

CLASS: DNA damaging agent / genotoxin

<u>Camptothecin</u>: (CPT) Commonly used at 20µM final (7mg/L, 100mg bottle) in YPD

plates. Topoisomerase inhibitor that induces DSBs by causing replication forks to

stall.

CLASS: DNA damaging agent / genotoxin

<u>HydroxyUrea</u>: (HU) Use at 100mM final (Yes, that is <u>milli</u>Molar), commonly in YPD

medium or plates. Inhibitor of dNTP synthesis, leads to DNA replication fork

collapse. Also used to induce a cell-cycle arrest (early S-phase).

Used in: Keogh et al (2006) Nature **439:**497; Keogh et al (2006) Genes Dev **20:**660.

CLASS: DNA damaging agent / genotoxin, cell-cycle arrest

MethaneMethyl Sulfonate: (MMS) 100% stock in chemical cabinet. Use at 0.05 - 0.1% final

(commonly in YPD medium or plates). Alkylating agent.

Used in: Keogh et al (2006) Nature 439:497; Keogh et al (2006) Genes Dev 20:660.

CLASS: DNA damaging agent / genotoxin

MycoPhenolic acid: (MPA) Commonly used at 15μg/ml final in URA synthetic complete plates. Transcription elongation inhibitor; works by depleting nucleotide pools (see also 6AU). The massive amount of Uracil in URA plates kills this. Strain should be URA in the genomic locus, or transformed with a cen/ars

URA3 plasmid, eg. pRS316).

NOTE: When working with a possible transcription elongation factor, it is recommended to test for MPA sensitivity (it usually mirrors 6AU), but the latter is more commonly used

for in-depth experiments (Keogh et al (2004) Mol Cell Biol 23:7005).

CLASS: Transcription elongation inhibitor

Nocodazole: (noc) Make a 1.5mg/ml stock in DMSO; this is 100x. (Sigma M1404 >99%TLC;

10mg \$54, 50mg \$215). Destabilizes microtubules preventing sister chromatin

separation: G_2/M phase.

Protocol: *Media Additives - antibiotics & inhibitors* (4/28/07) p4 of 4

NOTE: Nocodazole escape can occur (particularly with checkpoint mutants). Arresting cells for too long is eventually lethal. Nocodazole arrest is strain dependent (too much can induce break-through, results are also problematic at 37°C).

Used in: Keogh *et al* (2006) *Genes Dev* **20:**660. **CLASS:** Microtubule destabilizer, cell-cycle arrest

Sodium Butyrate: Histone DeACetylase (HDAC) inhibitor. Use at 5 – 50mM final (test at 0.5mM). Relatively cheap, but nowhere near the potency of Trichostain A (TsA). **CLASS:** HDAC inhibitor

Trichostain A: (TsA) HDAC inhibitor (see also Sodium Butyrate). Use at 30nM – 3μM final. **Very Expensive**. Used in (Keogh *et al* (2005) *Cell* **123:**593). **CLASS:** HDAC inhibitor