Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 5 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження арифметичних циклічних алгоритмів» Варіант <u>17</u>

Виконав студент	<u> 111-13 Козак Антон Миколаиович</u>
•	(шифр, прізвище, ім'я, по батькові)
Перевірив	
1 1	(прізвище, ім'я, по батькові)

Лабораторна робота 5 Дослідження складних циклічних алгоритмів

Мета — дослідити особливості роботи складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 17

Дано натуральні числа a і b ($a \le b$). Отримати всі прості числа p, які задовольняють нерівність $a \le p \le b$.

Постановка задачі

Заданий алгоритм повинен приймати на вводі два натуральні числа а та b ($a \le b$) та виводити всі прості числа р з інтервалу [a,b].

Побудова математичної моделі

Таблиця змінних

Змінна	Тип	Ім'я	Призначення
Перше задане число	Натуральний	a	Початкові дані
Друге задане число	Натуральний	b	Початкові дані
Лічильник	Натуральний	i	Проміжні дані
вкладенного циклу			
Максимальний	Натуральний	maxDiv	Проміжні дані
можливий дільник			
Належність числа	Логічний	prime	Проміжні дані
простим числам			
Число яке	Натуральний	р	Кінцеві дані
проходить			
перевірку			

Використані функції

- floor(n) виводить цілу частину числа n шляхом округлення його до меншого цілого значення.
- а%b виводить остачу від ділення числа а на число b.

Розв'язання

- 1. Визначимо основні дії.
- 2. Деталізуємо визначення та виведення простих чисел на інтервалі за допомогою арифметичної форми повторення.
- 3. Деталізуємо дію визначення змінних циклу перевірки числа.
- 4. Деталізуємо дію перевірки числа на належність до простих чисел за допомогою арифметичної форми повторення.
- 5. Деталізуємо дію перевірки подільності числа на лічильник за допомогою умовної форми вибору.
- 6. Деталізуємо дію виведення числа при його належності до простих чисел за допомогою умовної форми вибору.

Псевдокод алгоритму

```
Крок 1
```

Початок

Введення а, b

Визначення та виведення простих чисел на інтервалі

Кінець

Крок 2

Початок

Введення a, b повторити для р від p=a до p=b

Визначення змінних циклу перевірки числа

Перевірка числа на належність до простих чисел

Виведення числа при його належності до простих чисел

все повторити

Кінець

Крок 3

Початок

```
Введення a, b повторити для p від p=a до p=b prime := True maxDiv := floor(\frac{p}{2})
```

Перевірка числа на належність до простих чисел

Виведення числа при його належності до простих чисел все повторити

Кінець

```
Крок 4
Початок
    Введення а, b
    повторити
    для р від р=а до р=в
       prime := True
       maxDiv := floor(\frac{p}{2})
       повторити
       для і від і=2 до і=тах Діу
          Перевірка подільності числа на лічильник циклу
       все повторити
       Виведення числа при його належності до простих чисел
    все повторити
Кінець
Крок 5
Початок
    Введення а, b
    повторити
    для р від р=а до р=в
       prime := True
       maxDiv := floor(\frac{p}{2})
       повторити
       для і від i=2 до i=maxDiv
          якщо p%i==0
             TO
                prime := False
          все якщо
       все повторити
       Виведення числа при його належності до простих чисел
    все повторити
Кінець
```

```
Крок 6
Початок
    Введення а, b
    повторити
    для р від р=а до р=в
       prime := True
       maxDiv := floor(\frac{p}{2})
       повторити
       для і від і=2 до і=тах Div
          якщо р%і==0
             ТО
               prime := False
          все якщо
       все повторити
       якщо prime == True
          то
             Виведення р
       все якщо
    все повторити
Кінець
```


Випробування алгоритму

Блок	Дія	
	Початок	
1	Введення $a \coloneqq 3$, $b \coloneqq 5$	
2	$p := 3, p \le 5$	
3	prime: = True, maxDiv: = 1	
4	$i \coloneqq 2, i > maxDiv$	
5	prime == True	
6	Виведення $p=3$	
7	$p := 4, p \le 5$	
8	prime: = True, maxDiv: = 2	
9	$i \coloneqq 2, i = maxDiv$	
10	p%i == 0	
11	prime: = False	
12	$prime \neq True$	
13	$p := 5, p \le 5$	
14	prime: = True, maxDiv: = 2	
15	$i \coloneqq 2, i = maxDiv$	
16	p%i == 1	
17	prime == True	
18	Виведення $p=5$	
19	p := 6, p > 5	
	Кінець	

Висновки

Протягом виконання цієї лабораторної роботи я набув навичок використання складних циклічних алгоритмів. Маючи довільні натуральні числа а та b, я склав алгоритм, який успішно визначає та виводить усі прості числа р з проміжку $a \le p \le b$.