

අඹසන පොදු සහනික පතු (උසස් පෙළ) සිංලුක්ති ගණිතය ස්ටිතිතය - I අනිජේක කිවේම පොත

(2017 නව විෂය නිර්දේශයට අනුව සකස් කරන ලදී)

ගණිත දෙපාර්තමේන්තුව විදන හා තාක්ෂණ පීඨය ජාතික අධ්පාපන ආයතනය ශී ලංකාව www.nie.lk

අධෳයන පොදු සහතික පතු (උසස් පෙළ)

සංයුක්ත ගණිතය

ස්ථිතිකය - I

අතිරේක කියවීම් පොත

(2017 නව විෂය නිර්දේශයට අනුව සකස් කරන ලදී)

ගණිත දෙපාර්තමේන්තුව විදහා හා තාක්ෂණ පීඨය ජාතික අධහාපන ආයතනය ශී ලංකාව www.nie.lk

සංයුක්ත ගණිතය ස්ථිතිකය - I

© ජාතික අධාාපන ආයතනය පුථම මුදුණය 2019

ගණිත දෙපාර්තමේන්තුව විදහා හා තාක්ෂණ පීඨය ජාතික අධහාපන ආයතනය

මුදුණය : මුදුණාලය ජාතික අධාාපන ආයතනය මහරගම

අධෘක්ෂ ජනරාල්තුමියගේ පණිවිඩය

ගණිත අධාාපනය සංවර්ධනය කිරීම සඳහා ජාතික අධාාපන ආයතනයේ ගණිත දෙපාර්තමේන්තුව විසින් කාලෝචිත ව විවිධ කියා මාර්ග අනුගමනය කරමින් සිටී. ''සංයුක්ත ගණිතය, ස්ථිතිකය - I'' නමින් රචිත පොත එහි එක් පුතිඵලයකි.

දොළහ සහ දහතුන්වන ශ්‍රෙණිවලවල විෂය නිර්දේශ හැදෑරීමෙන් පසු පැවැත්වෙන අධ්‍යයන පොදු සහතික පතු (උසස් පෙළ) විභාගය සඳහා සිසුන් සූදානම් කිරීම පාසලේ ගුරුවරයාට පැවරෙන ප්‍රධාන කාර්යයකි. මේ සඳහා යෝග්‍ය ඇගයීම් උපකරණ බෙහෙවින් විරල වේ. වෙළෙඳපොලේ පවත්නා බොහොමයක් උපකරණ වලංගු බවින් හා ගුණාත්මක බවින් ඌන ප්‍රශ්නවලින් සමන්විත ප්‍රශ්න පත්‍රවලින් යුක්ත බව නොරහසකි. මෙම තත්ත්වය වළක්වා සිසුන්ට විභාගයට මනා ලෙස සූදානම් වීම සඳහා ජාතික අධ්‍යාපන ආයතනයේ ගණිත දෙපාර්තමේන්තුව මෙම සංයුක්ත ගණිතය ''ස්ථිතිකය - I'' සකස් කර ඇත. මෙය විෂය නිර්දේශයට අනුව සකසා, පූර්ව පරීක්ෂණයන්ට ලක් කර කරන ලද වටිනා පුශ්න ඇතුළත් ගුන්ථයකි. පුශ්න සමඟ ඒවායේ උත්තර ඇතුළත් කර තිබීම ගුරුවරුන්ට මෙන් ම සිසුන්ට ද බෙහෙවින් පුයෝජනවත් වන බව නිසැක ය.

මෙම පොත පරීශීලනයෙන් ගණිත විෂයයේ ඇගයීම් කිුයාවලිය සාර්ථක කර ගන්නා මෙන් ගුරුවරුන්ගෙන් ද, සිසුන්ගෙන් ද ඉල්ලා සිටිමි.

''සංයුක්ත ගණිතය, ස්ථිතිකය - I'' ඔබ අතට පත් කිරීම සඳහා අනුගුහය දක් වූ AusAid වාාපෘතියටත්, මෙම කාර්යය සාර්ථක කර ගැනීමට ශාස්තුීය දායකත්වය සැපයූ ගණිත දෙපාර්තමේන්තුවේ කාර්ය මණ්ඩලයට හා බාහිර විද්වතුන් සියලු දෙනාටත් මගේ පුණාමය හිමි වේ.

ආචාර්ය ටී. ඒ. ආර්. ජේ. ගුණසේකර අධානක්ෂ ජනරාල් ජාතික අධාාපන ආයතනය

අධෘක්ෂතුමාගේ පණිවිඩය

අධායන පොදු සහතික පතු (උසස් පෙළ) විෂයධාරාවන් අතර ගණිතය විෂයධාරාව සඳහා සුවිශේෂි ස්ථානයක් හිමිව ඇත. අධායන පොදු සහතික පතු (සාමානා පෙළ) විභාගයෙන් උසස් ලෙස සමත්වන සිසුන් විශේෂයෙන් ගණිත විෂය ධාරාවට පිය කරයි. රටකට සහ ලෝකයට ඔබින නවෝත්පාදක රාශියක් බිහි කිරීමට දායක වූ විශේෂඥයින් බිහි කර ඇත්තේ උසස් පෙළ ගණිත විෂයධාරාව හැදුරු සිසුන් බව අතීතය මැනවින් සාක්ෂි දරයි.

අධායන පොදු සහතික පතු (උසස් පෙළ) ගණිත විෂයයන් සඳහා විෂයමාලාව සකස් කර ඇත්තේ විදාාත්මක ලෝකයට, තාක්ෂණ ලෝකයට සහ වැඩලෝකයට අතාාවශා විද්වතුන් බිහි කර දීමේ පරම චේතනාව ඇතිවයි.

වර්ෂ 2017 සිට උසස් පෙළ සංයුක්ත ගණිත විෂය සහ උසස් පෙළ ගණිත විෂය සඳහා සංශෝධිත නව විෂයමාලාවක් කිුියාත්මක වේ. මෙම විෂයමාලාව ඉගෙන ගන්නා ශිෂා ශිෂායාවන්ගේ ඉගෙනුම පහසුව සඳහා පුහුණු පුශ්න සහ උත්තර ඇතුළත් පොතක් ජාතික අධාාපන ආයතනයේ ගණිත දෙපාර්තමේන්තුව විසින් සකස් කර ඇත. මෙම පොතේ ඇතුළත් පුශ්න සිසුන්ගේ සංකල්ප සාධන මට්ටම මැන බැලීමටත් ඉදිරියේ දී පවත්වන අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය සඳහා පෙර සූදානමටත් සුදුසු වන පරිදි සකස් කර ඇත. පුශ්නයට අදාළ උත්තර සපයා දීමෙන් බලාපොරොත්තු වන්නේ ශිෂා ශිෂායාවන් පුශ්නයක් සඳහා උත්තරය ලබාදීමේ දී අනුගමනය කළ යුතු පියවර සහ කුමචේද පිළිබඳ ව අත්දකීමක් ලබා දීම යි. එමඟින් උත්තරය පෙළගැස්විය යුතු ආකාරය පිළිබඳ ව සිසුන්ට තම හැකියා, කුසලතා සහ දැනුම වැඩි දියුණු කර ගැනීමට හැකිවේ. මෙම පුශ්න සහ උත්තර සකස් කිරීමට විශේෂඥතාවයක් ඇති විශ්වව්දහල කථිකාචාර්යවරුන් ගුරුවරුන් සහ විෂයමාලා විශේෂඥයින්ගේ සම්පත් දායකත්වය ලබා දී ඇත. තවද මෙම පුශ්න සකස් කිරීමේ දී එක් එක් විෂය අන්තර්ගතයන් සඳහා විවිධ මාන ඔස්සේ ශිෂා ශිෂායාවන්ගේ අවධානය යොමු කරීමටත්, සිසුන්ගේ දනුම පුළුල් කර ගැනීමටත් අවස්ථාව ලබා දීමට හා මග පෙන්වීමට අවධානය යොමු කර ඇත. ගුරුවරුන්ගේ උපදෙස් සහ මග පෙන්වීම යටතේ මෙන් ම ස්වයංව ඉගෙනුම සඳහාත් උචිත ලෙස මෙම පොත සකස් කර ඇත.

මෙවැනි වටිනා පොතක් නිර්මාණය කිරීමට අවශා උපදෙස් සහ මග පෙන්වීම ලබාදුන් ජාතික අධාාපන ආයතනයේ අධාක්ෂ ජනරාල්තුමියට සහ සම්පත් දායකත්වය දක් වූ සැමටත් ස්තුතියි. මෙම පොත භාවිත කර එමඟින් ලබන අත්දකීම් තුළින් නැවත මුදුණයක දී භාවිතයට සුදුසු ධනාත්මක අදහස් අප වෙත ලබා දෙන ලෙස ගෞවරයෙන් ඉල්ලා සිටිමි.

කේ. රංජිත් පත්මසිරි අධාාක්ෂ ගණිත දෙපාර්තමේන්තුව ජාතික අධාාපන ආයතනය

විෂයමාලා කම්ටුව

අනුමැතිය : ශාස්තී්ය කටයුතු මණ්ඩලය,

ජාතික අධාාපන ආයතනය.

උපදේශකත්වය : ආචාර්ය ටී. ඒ. ආර්. ජේ. ගුණසේකර මිය

අධාක්ෂ ජනරාල්

ජාතික අධාාපන ආයතනය

අධීක්ෂණය : කේ. රංජිත් පත්මසිරි මයා,

අධානක්ෂ, ගණිත දෙපාර්තමේන්තුව, ජාතික අධාාපන ආයතනය.

විෂය සම්බන්ධිකරණය : එස්. රාජේන්දුම් මයා

ජොෂ්ඨ කථිකාචාර්ය, ගණිත දෙපාර්තමේන්තුව

ජාතික අධාාපන ආයතනය.

කේ. කේ. වජිමා එස්. කංකානම්ගේ මෙනෙවිය සහකාර කථිකාචාර්ය, ගණිත දෙපාර්තමේන්තුව

ජාතික අධාාපන ආයතනය.

සම්පත් දායකත්වය:

ජී. පී. එච්. ජගත් කුමාර මයා ජොෂ්ඨ කරීකාචාර්ය, ගණිත දෙපාර්තමේන්තුව,

ජාතික අධාාපන ආයතනය.

එම්. නිල්මිණි පී. පීරිස් මිය ජොෂ්ඨ කථිකාචාර්ය, ගණිත දෙපාර්තමේන්තුව

ජාතික අධාාපන ආයතනය

එස්. රාජේන්දුම් මයා ජොෂ්ඨ කථිකාචාර්ය, ගණිත දෙපාර්තමේන්තුව

ජාතික අධාාපන ආයතනය.

සී. සුදේශන් මයා සහකාර කථිකාචාර්ය, ගණිත දෙපාර්තමේන්තුව,

ජාතික අධාාපන ආයතනය.

පී. විජායිකුමාර් මයා සහකාර කථිකාචාර්ය, ගණිත දෙපාර්තමේන්තුව,

ජාතික අධාාපන ආයතනය.

කේ.කේ.වජීමා එස්. කංකානම්ගේ මෙය සහකාර කරීකාචාර්ය, ගණිත දෙපාර්තමේන්තුව,

ජාතික අධාාපන ආයතනය.

කර්තෘ මණ්ඩලය

කේ. ගනේෂලිංගම් මයා විශුාමික පුධාන වාහපෘති නිලධාරි

ජාතික අධාාපන ආයතනය

වී. රාජරත්නම් මයා විශාමික ගණිත ආචාර්ය

ටී. සිදම්බරතාදන් මයා විශාමික ගණිත ආචාර්ය

එන්. ආර්. සහබන්දු මයා විශුාමික ගණිත ආචාර්ය

එච්. ඩී. සී. එස්. පුතාන්දු මයා ගුරු සේවය, විවේකානන්ද විදහලය, කොළඹ 13

එස්. ජී. දොලුවීර මයා ගුරු සේවය, වෙෂ්ලි විදුහල

කොළඹ 09

භාෂා සංස්කරණය

මුදුණය හා අධීකෘණය : ඩබ්. එම්. යූ. විජේසූරිය

වැ.බ අධාංක (මුදුණ හා පුකාශන) ජාතික අධාාපන ආයතනය

පරිගණක වදන් සැකසීම : මොනිකා විපේකෝන්,

විවෘත පාසල

ජාතික අධාාපන ආයතනය

ඉරේෂා රංගතා දිසාතායක මෙනවිය

මුදුණාලය

ජාතික අධාහපන ආයතනය

පිටකවරය : ඉරේෂා රංගතා දිසාතායක මෙතවිය

මුදුණාලය

ජාතික අධාාපන ආයතනය

විවිධ සහාය : එස්. හෙට්ටිආරච්චි මයා

ගණිත දෙපාර්තමේන්තුව

කේ. එන්. සේනානි මිය ගණිත දෙපාර්තමේන්තුව

ආර්. එම්. රූපසිංහ මයා ගණිත දෙපාර්තමේන්තුව

පෙරවදන

අධාාපන පොදු සහතික පතු (උසස් පෙළ) ශේණීවල සංයුක්ත ගණිතය ඉගෙනුම ලබන සිසුන් පුහුණු වීම සඳහා මෙම පොත සකස් කර ඇත. සිසුන්ට පුමාණවත් අභාාස ලබා දීම සඳහාත්, විෂය ධාරාව හැදරු පසු විභාගයට සුදානම් කිරීම පිණිස අභාාස කරවීමේ අරමුණෙන් මෙම පොත සකස් කර ඇත. මෙය ආදර්ශ පුශ්න පතු කට්ටලයක් නොවන බවත් අභාාස පුශ්නවල එකතුවක් බවත් සිසුන් ගුරුවරුන් වටහා ගත යුතුයි.

මෙම අභාාස පුශ්න කට්ටලයේ අභාාස කළ පසු දී ඇති පිළිතුරු සමග තමන්ගේ පිළිතුරු සසඳා බැලිය හැකි ය. මෙහි දී ඇති ආකාරයේ ම සියලුම පියවර සිසුන්ගේ පිළිතුරුවල තිබීම අතාවශා නොවේ. ඔබේ පිළිතුරුවල නිවැරදිතාවය බැලීමටත් පියවර නිවැරදිව අනුගමනය කිරීමට මග පෙන්වීමක් ලෙස මෙහි පිළිතුරු දී ඇති බව වටහා ගන්න.

මෙම අභාහස පුශ්න කට්ටලය වර්ෂ 2017 සිට කිුිිියාත්මක වන සංශෝධිත විෂය මාලාවට අනුව 2019 අවුරුද්දේ පුථම වරට අ.පො.ස (උ.පෙළ) විභාගයට පෙනී සිටින සිසුන් ඉලක්ක කරගෙන සකස් කර ඇත. නමුත් සංයුක්ත ගණිතය, උසස් ගණිතය, ගණිතය වැනි විෂයන් හදාරන තමන්ගේ විෂයධාරාවට අනුව පුශ්න කට්ටලය භාවිත කළ හැකි ය.

ජාතික අධාාපන ආයතනයේ ගණිත දෙපාර්තමේන්තුව විසින් එළි දක්වන අ.පො.ස (උ.පෙළ) සඳහා වු පුථම අභාාස පුශ්න කට්ටලයට අමතරව ස්ථිතිකය - I ස්ථිතිකය - II, සංයුක්ත ගණිතය I, සංයුක්ත ගණිතය II සඳහා ඒකක අනුව සකස් කළ අභාාස පුශ්න කට්ටල ඉක්මනින් එළි දැක්වීමට නියමිතය.

මෙම පොතෙහි ඇති අඩුපාඩු සම්බධන්ව අදහස් අප වෙත යොමු කරන්නේ නම් නැවත මුදුණයේ දී සකස් කිරීමට හැකි වේ. ඔබේ අදහස් අප මහත් අගය කොට සලකන බවත් මෙයින් දන්වා සිටිමි.

එස්. රාජේන්දුම් මයා වහාපෘති නායක 12 - 13 ශේණී ගණිතය

පටුන

	පිටුව
අධානක්ෂ ජනරාල්තුමියගේ පණිවිඩය	111
අධාකෘතුමාගේ පණිවිඩය	īV .
විෂයමාලා කමිටුව	v - vi
<u>පෙරවදන</u>	VΪ
1.0 ලෛශික	1 - -20
1.1 අදිශ රාශි	01
1.2 මෙදශි රාශි	01
1.3 ඉදෙශිකවල නිරූපණය	01
1.4 ඉදෙශිකයක මාපාංකය	02
1.5 ලෛශික දෙකක සමානතාව	02
1.6 ඒකක මෙදශික	02
1.7 අභිශුනා වෛදශිකය	03
1.8 දෙන ලද දෛශිකයක ඍණ දෛශිකය	03
1.9 ලෛශිකයක් අදිශයකින් ගුණ කිරීම	03
1.10 සමාන්තර ලෛශික	04
1.11 ඉදෙශික ආකලනය	04
1.12 මෛදශිකයක අර්ථ දක්වීම	05
1.13 මෛදශික දෙකක් අතර කෝණය	05
1.14 පිහිටුම් ඉදෙශික	05
1.15 දෙශික වීජයෙහි නීති	06
1.16 විසඳු නිදසුන්	08
1.17 අභනාසය	13
1.18 කාටිසියානු මෛදශික අංකයනය	14
1.19 අභනාසය	16
1.20 අදිශ ගුණිතයේ ගුණිතය	16
1.21 අභනාසය	20
2.0 අංශුවක් මත කිුයාකරන එකතල බල පද්ධති	21-44
2.1 හැඳින්වීම	21
2.1 බල සඳහා සමාන්තරාසු නීතිය	22
2.3 බලයක් සංරචක දෙකකට විභේදනය කිරීම	24
2.4 ලඎක් මත කිුයාකරන ඒකතල බල පද්ධතියක සම්පුයුක්තය	26

2.5 ලකුෂායක් මත කිුයාකරන ඒකතල බල පද්ධතියක සමතුලිඃ	තතාවය 28
2.6 අංශුවක් ඒකතල බල තුනක් කිුයාකරන අවස්ථාව	30
2.7 විසඳූ නිදසුන්	33
2.8 අභාපාසය	41
3.0 සමාන්තර බල, සුර්නය, යුග්මය	45-68
3.1 සමාන්තර බල	45
3.2 විසඳූ නිදසුන්	48
3.3 අභාහාසය	53
3.4 සුර්ණය	54
3.5 විසඳූ නිදසුන්	58
3.6 විසඳූ නිදසුන්	61
3.7 බල යුග්මය	62
3.8 විසඳූ නිදසුන්	65
3.9 අභාහාසය	68
4.0 දෘඪ වස්තුවක් මත කිුියාකරන ඒකතල බල	69- 99
4.1 ඒකතල බලවල සම්පුයුක්තය	69
4.2 විසඳූ නිදසුන්	74
4.3 කිුයාකාරකම	86
4.4 ඒකතල බල යටතේ දෘඪ වස්තුවක සමතුලිතතාවය	89
4.5 විසඳූ නිදසුන්	90
4.6 බල තුනකට වඩා වැඩියෙන් කිුයාකරන විට	99
4.7 විසඳූ නිදසුන්	99
4.8 අභාවාසය	

1.0 දෙශික

1.1 අදිශ රාශි

අදාළ ඒකක සමඟ සංඛාහ මඟින් මුළුමනින් ම නිර්ණය කළ හැකි රාශි අදිශ රාශි යයි කියනු ලැබේ.

දුර, කාලය, ස්කන්ධය, පරිමාව, උෂ්ණත්වය අදිශ රාශි වේ.

තව ද, එක ම වර්ගයේ රාශි දෙකක් ආකලනයේ දී එම වර්ගයේ ම තවත් රාශියක් ලැබේ.

උදාහරණ :

ස්කන්ධය $10\,\mathrm{kg}$ වේ. උෂ්ණත්වය $27^\circ\,\mathrm{C}$ වේ. කාලය $20\,\mathrm{s}$ වේ. දුර $2\,\mathrm{m}$ වේ. වර්ගඵලය $5\,\mathrm{m}^2$ වේ. පරිමාව $4\,\mathrm{m}^3$ වේ. ධාරිතාව $2\,l$ වේ. වේගය $5\,\mathrm{m}\,\mathrm{s}^{-1}$ වේ. ඉහත උදාහරණවල ඒකක රහිත සංඛාාත්මක කොටස අදිශ යයි කියනු ලැබේ.

ඒකක සමඟ විශාලත්වය පමණක් ඇති ව සම්පූර්ණයෙන් විස්තර කළ නොහැකි රාශි ද වේ. ඒවා සම්පූර්ණයෙන් ම දක්විය හැක්කේ විශාලත්වය හා දිශාව වන දෙක ම ඇසුරිනි.

- i) උදාහරණයක් ලෙස නැවක් $15~{
 m km~h}^{-1}$ වේගයෙන් උතුරු දෙසට ගමන් කරයි.
- ii) අංශුවක් මත නිව්ටන් 20ක බලයක් සිරස් ලෙස පහළට කිුියා කරයි.

දෙශික පිළිබඳ ව අධායනය පුථම වරට යොමු වූයේ 19 වන සියවස මැද භාගයේ දී ය. මෑත අතීතයේ දී දෛශික නැතිම බැරි උපකරණයක් බවට පත් ව ඇත. ගණීතඥයෝ භෞතික විදාහඥයෝ ජාහමිතික හා භෞතික ගැටලු සංක්ෂිප්ත ව ඉදිරිපත් කිරීමට දෛශික භාවිත කරති. ඉංජිනේරුවන්ගේ ගණිතමය සුළු කිරීම් සඳහා ද දෛශික යොදා ගනී.

1.2 දෙශික රාශි

ඒකක සහිත ව විශාලත්වය හා දිශාව මඟින් සම්පූර්ණයෙන් විස්තර කළ හැකි රාශියක් දෛශික රාශියක් ලෙස හඳුන්වමු.

උදාහරණ :

- i. උතුරු දෙසට විස්ථාපනය 5 m වේ.
- $\ddot{\text{ii}}$. ගිනිකොන දෙසට $15~\text{m s}^{-1}$ පුවේගයකි.
- iii. 30 N භාරයක් සිරස් ව පහළට පවතී.
- iv. 10 N බලයක් තිරසට 30°ක කෝණයක් ඉහළ දිශාවට පවතී. දෛශික සඳහා විශාලත්වයක් දිශාවත් යන 2 ම පවතී.

1.3 දෙශිකවල නිරූපණය

දෛශික නිරූපණය සඳහා කුම දෙකක් වේ.

ජාාමිතික නිරූපණය

ලදෙශිකයක් AB දිශාගත රේඛා ඛණ්ඩයක් මඟින් නිරූපණය කළ හැකිය. රේඛා ඛණ්ඩයේ දිග ලදෙශිකයේ විශාලත්වය ලබා දේ. එය මත ඊ හිස දිශාව නිරූපණය කරයි. මෙය දෛශිකයේ ජාාමිතික නිරූපණය ලෙස දක්වනු ලැබේ.

උදාහරණ :

නැඟෙනහිරට $4\ N$ බලයක් දක්වීමට නැඟෙනහිර දෙසට AB=4 ඒකක වන සේ රේඛා ඛණ්ඩය අඳිනු ලැබේ. බලයේ දිශාව A සිට B දක්වා (රූපයේ දක්වෙන පරිදි) ඊතලය මඟින් දක්වමු.

වීජීය නිරූපණය

 \overrightarrow{AB} දෛශිකය තනි වීජිය සංකේතයක් (\underline{a} , \overline{a} වැනි) මඟින් දක්වමු. සමහර පාඨ ගුන්ථවල \mathbf{a} තද කළු අකුරින් දැක්වෙන සංකේතයකින් සාමානාංගයන් දක්වනු ලැබේ.

1.4 ලෛශිකයක මාපාංකය

ලෛශිකයක විශාලත්වය එහි මාපාංකය මඟින් හඳුන්වනු ලැබේ.

 \overrightarrow{AB} හෝ $\underline{\pmb{a}}$ දෙශිකයේ මාපාංකය $|\overrightarrow{AB}|$ හෝ $|\underline{\pmb{a}}|$ හෝ $|\underline{\pmb{a}}|$ හෝ ලෙස දක්වමු. දෙශිකයක මාපාංකය හැම විට ම ඍණ නොවේ.

1.5 දෙශික දෙකක සමානතාව

දෛශික දෙකක් විශාලත්වයෙන් සමාන ව එක ම දිශාවට වේ නම් ඒවා සමාන දෛශික යයි කියනු ලැබේ.

 \overrightarrow{AB} (= \underline{a}) හා \overrightarrow{CD} (= \underline{b}) ඉදෙශික දෙක සමාන වන්නේ

$$|\overrightarrow{AB}| = |\overrightarrow{CD}|$$

- ii) AB // CD හා
- (iii) \overrightarrow{AB} හා \overrightarrow{CD} එක ම දිශාවට වන්නේ නම් ම පමණි.

සටහන $: \overrightarrow{AB}$ හා \overrightarrow{CD} ඉදෙශික සලකන්න.

$$AB = CD$$
 එනම් $|\overrightarrow{AB}| = |\overrightarrow{CD}|$

AB // CD

එහෙත් ඒවා එක ම දිශාවට නොවේ.

එම නිසා
$$\overrightarrow{AB} \neq \overrightarrow{CD}$$
 ; $\underline{a} \neq \underline{b}$

1.6 ඒකක ලෛශික

ඒකක විශාලත්වයෙන් යුත් දෛශිකයක් ඒකක දෛශිකයක් යයි කියනු ලැබේ. දෙන ලද \underline{a} , දිශාවට ඒකක දෛශිකය $\frac{1}{|\underline{a}|}$. \underline{a} මඟින් දක්වමු.

1.7 අභිශූනා දෛශිකය

විශාලත්වය ශූතා වන දෛශිකයට අභිශූතා දෛශිකයක් යයි කියනු ලැබේ. එය $oldsymbol{0}$ මඟින් දක්වනු ලැබේ. $|oldsymbol{0}|=0$ හා එහි දිශාව අභිමත වේ. එය ලක්ෂායක් මඟින් දක්වනු ලැබේ.

1.8 දෙන ලද දෛශිකයක සෘණ දෛශිකය

 \overrightarrow{AB} දෙන ලද දෛශිකය සඳහා \overrightarrow{BA} , \overrightarrow{AB} හි සෘණ දෛශිකය වේ. එය \overrightarrow{BA} = \overrightarrow{AB} ලෙස ලියයි.

$$\overrightarrow{AB} = \underline{a}$$
, නම් එවිට $\overrightarrow{BA} = -\underline{a}$

$$\left| \overrightarrow{AB} \right| = \left| \overrightarrow{BA} \right|, \, |\underline{a}| = |-\underline{a}|$$

 \underline{a} ඉදෙශිකයක් ද λ අදිශයක් ද විට λ අදිශයේ හා \underline{a} ඉදෙශිකයේ ගුණිතය λ \underline{a} වේ. මෙහි λ . එනම් $\lambda > 0$, $\lambda = 0$ හා $\lambda < 0$ අවස්ථා තුන යටතේ සලකා බැලිය යුතු ය.

අවස්ථාව

(i) $\lambda > 0$ $\overrightarrow{OA} = \underline{\boldsymbol{a}}$, ලෙස ගනිමු. $OB = \lambda OA$ වන සේ OA මත හෝ දික් කළ OA මත B ලක්ෂා ගනිමු $\overrightarrow{OB} = \lambda \overrightarrow{OA} = \lambda \mathbf{a}$

- (ii) $\lambda=0$, විට $\lambda \underline{a}$ අභිශූනා ඉදෙශිකය ලෙස අර්ථ දක්වමු. එනම් $\lambda \underline{a}=0\underline{a}= extbf{\emph{0}}$
- (iii) $\lambda < 0$

මේ අවස්ථාවේ \underline{a} හි දිශාවට විරුද්ධ දිශාවට වූ \underline{a} මෙන් $|\lambda|$ ගුණයක් විශාල වූ දෙශිකයක් වේ. එවිට $OB = |\lambda|OA$. $\overrightarrow{OB} = \lambda\underline{a}$. වේ.

දික් කරන ලද AO මත B ලක්ෂා තෝරා ගනිමු.

1.10 සමාන්තර දෙශික

දෙන ලද \underline{a} හා $k\underline{a}$, $k\underline{a}$ ලෙදශික \underline{a} ට සමාන්තර ව පවතී.

- (i) k > 0, විට $k\underline{a}$ ඉදෙශිකය \underline{a} හි දිශාවට වේ.
- (ii) k < 0, විට $k\underline{a}$ ලෙදශිකය \underline{a} .හි දිශාවට පුතිවිරුද්ධ දිශාවට වේ.

 \underline{a} හා \underline{b} ලෛශික දෙක සමාන්තර යයි කියනු ලබන්නේ $\underline{b} = \lambda \underline{a}$

1.11 දෛශික ආකලනය

 \underline{a} හා \underline{b} දෙශික \overrightarrow{AB} හා \overrightarrow{BC} මඟින් පිළිවෙළින් නිරූපණය කරයි නම් එවිට \underline{a} හා \underline{b} දෙශිකවල එකතුව \overrightarrow{AC} මඟින් නිරූපණය වේ.

එනම්
$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$

= $\underline{a} + \underline{b}$

මෙයට දෛශික ආකලනයේ තිකෝණ නීතිය යයි කියනු ලැබේ.

$$\overrightarrow{AB} = \underline{\boldsymbol{a}}$$
 හා $\overrightarrow{CD} = \underline{\boldsymbol{b}}$ ඉදෙශික දෙකක් යයි ගනිමු.

PQ = AB හා PQ //AB වන සේ PQ රේඛා කණ්ඩය අදින්න.

QR = CD හා QR // CD වන සේ QR රේඛා ඛණ්ඩය අදින්න.

අර්ථ දක්වීමෙන් $\overrightarrow{AB}=\overrightarrow{PQ}=\underline{\textbf{\textit{q}}}$ හා $\overrightarrow{CD}=\overrightarrow{QR}=\underline{\textbf{\textit{b}}}$ ආකලනය පිළිබඳ තිකෝණ නීතියට අනුව

$$\overrightarrow{PR} = \overrightarrow{PQ} + \overrightarrow{QR} = \underline{a} + \underline{b}$$

1.12 ලෛශිකයක අර්ථ දක්වීම

දෛශිකයකට විශාලත්වයක් හා දිශාවක් ඇති අතර ආකලනය පිළිබඳ තිකෝණ නීතිය පිළිපැදිය යුතු වේ.

1.13 දෙශික දෙකක් අතර කෝණය

 \underline{a} හා \underline{b} දෛශික දෙකක් යයි සිතමු.

 $m{a}$ හා $m{b}$ අතර කෝණය පහත දක්වේ.

 $0 \le \theta \le \pi$ ඉඩ්.

 \underline{a} හා \underline{b} සමාන්තර හා එක ම දිශාවට වේ නම් එවිට $\theta=0$.

 \underline{a} හා \underline{b} සමාන්තර හා පුතිවිරුද්ධ දිශාවට වෙනස් නම් එවිට $\mathbf{\theta}=\mathbf{\pi}$.

1.14 පිහිටුම් දෙශික

මූලය ලෙස තෝරාගන්නා O අචල ලක්ෂාය සමඟ ඕනෑම

P ලක්ෂායක පිහිටුම \overrightarrow{OP} මඟින් දැක්විය හැකිය.

 $\overrightarrow{OP} = \underline{r}$ මූලයට අනුබද්ධ P හි පිහිටුම් දෛශිකය ලෙස හඳුන්වනු ලැබේ.

 ${
m A}$ හා ${
m B}$ ලක්ෂා දෙකෙහි පිහිටුම් දෛශික ${m a}$ හා ${m b}$ ලෙස ගනිමු.

$$\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB}$$

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$= \underline{b} - \underline{a}$$

1.15 දෙශික වීජයෙහි නීති

 $\underline{\pmb{a}},\underline{\pmb{b}},\underline{\pmb{c}}$ ඉදෙශික යයි ද λ හා μ අදිශ යයිද ගනිමු

(i)
$$\underline{a} + \underline{b} = \underline{b} + \underline{a}$$
 (නපාදේශ නපාය)

(ii)
$$(\underline{a} + \underline{b}) + \underline{c} = \underline{a} + (\underline{b} + \underline{c})$$
 (සංඝටන නහය)

(iii)
$$\lambda(\underline{a} + \underline{b}) = \lambda\underline{a} + \lambda\underline{b}$$
 (විඝටන නහායය)

(iv)
$$\underline{a} + \underline{0} = \underline{a} = \underline{0} + \underline{a}$$

(v)
$$\underline{a} + (-\underline{a}) = \underline{0} = (-\underline{a}) + \underline{a}$$

(vi)
$$(\lambda + \mu)\underline{a} = \lambda\underline{a} + \mu\underline{a}$$

(vii)
$$\lambda \mu(\underline{a}) = \lambda (\mu \underline{a}) = \mu (\lambda \underline{a})$$

සාධනය

(i) $\overrightarrow{AB} = \underline{a}$ හා $\overrightarrow{BC} = \underline{b}$ ලෙස ගනිමු \overrightarrow{ABCD} සමාන්තරාසුය සම්පූර්ණ කළ විට

දන්
$$\overrightarrow{DC} = \overrightarrow{AB} = \underline{a}$$

 $\overrightarrow{AD} = \overrightarrow{BC} = \underline{b}$

දෛශික ආකලනය පිළිබඳ තිුකෝණ නීතියෙන්

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \underline{a} + \underline{b}$$

$$\overrightarrow{AC} = \overrightarrow{AD} + \overrightarrow{DC} = \underline{b} + \underline{a}$$

එනයින්
$$\underline{a} + \underline{b} = \underline{b} + \underline{a}$$

$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD}$$

$$= \overrightarrow{AB} + (\overrightarrow{BC} + \overrightarrow{CD})$$

$$= \underline{a} + (\underline{b} + \underline{c}) \qquad ...$$
 ①

$$\overrightarrow{AD} = \overrightarrow{AC} + \overrightarrow{CD}$$

$$= (\overrightarrow{AB} + \overrightarrow{BC}) + \overrightarrow{CD}$$

$$= (\underline{a} + \underline{b}) + \underline{c} \qquad ...$$

$$(1)$$
 හා (2) , $(\underline{a} + \underline{b}) + \underline{c} = \underline{a} + (\underline{b} + \underline{c})$

 $\overrightarrow{OA} = \underline{a} \otimes_{I} \xrightarrow{B'} \underline{b}$

 $0 < \lambda < 1$

A' ලක්ෂාය OA මත (හෝ දික්කල OA) මත තෝරා ගනිමු

$$\overrightarrow{OA}' = \lambda \overrightarrow{OA} = \lambda \underline{\mathbf{a}}$$

AB ට සමාන්තරව A' හරහා ඇඳි රේඛාවට OB රේඛාව හෝ දික් කරන ලද OB රේඛාව B' හිදී හමු වේ.

දන් , ΔOAB , $\Delta OA'B'$ තිකෝණ සමරූපී වේ.

$$\frac{OA'}{OA} = \frac{A'B'}{AB} = \frac{OB'}{OB} = \lambda.$$

$$\overrightarrow{OB'} = \overrightarrow{OA'} + \overrightarrow{A'B'} = \lambda \underline{a} + \lambda \underline{b}$$

$$\lambda \overrightarrow{OB} = \lambda (\overrightarrow{OA} + \overrightarrow{AB}) = \lambda (\underline{a} + \underline{b})$$
3

(1)
$$\overrightarrow{OB'} = \lambda \overrightarrow{OB}$$

(2) හා (3)

$$\lambda \underline{a} + \lambda \underline{b} = \lambda (\underline{a} + \underline{b})$$

 $\lambda < 0$ විට

$$\overrightarrow{OA} = \underline{a}$$
, $\overrightarrow{AB} = b$, $\overrightarrow{OA'} = \lambda a$

BA ට සමාන්තරව A'B' ඇන්ද විට දික්කල BO, B' හිදී හමුවේ. $\overrightarrow{A'B'}=\lambda \underline{m b}$ හා $\overrightarrow{OB'}=\lambda \underline{m a}+\lambda \underline{m b}$

සමරූපී තිුකෝණ ලක්ෂණවලින් හා දෛශික ගුණවලින්

$$\lambda(\underline{a} + \underline{b}) = \lambda\underline{a} + \lambda\underline{b}$$
, $\lambda < 0$

(iv)
$$\underline{a} + \underline{\theta} = \underline{a} = \underline{\theta} + a$$

$$\overrightarrow{AB} = \underline{a}$$
ලෙස ගනිමු

$$\overrightarrow{AB} = \overrightarrow{AB} + \overrightarrow{BB}$$

$$\underline{a} = \underline{a} + \underline{\theta}$$
 ①

$$\overrightarrow{AB} = \overrightarrow{AA} + \overrightarrow{AB}$$

$$\underline{a} = \underline{\theta} + \underline{a}$$

$$(1)$$
 හා (2) $\underline{a} + \underline{\theta} = \underline{a} = \underline{\theta} + \underline{a}$

1.16 විසඳු නිදසුන්

උදාහරණ 1

 \overrightarrow{ABCDEF} සවිධි ෂඩාසුයකි $\overrightarrow{AB} = \underline{\boldsymbol{a}}$ හා $\overrightarrow{BC} = \underline{\boldsymbol{b}}$, නම් \overrightarrow{AC} , \overrightarrow{AD} , \overrightarrow{AE} හා \overrightarrow{AF} ලෙදශික $\underline{\boldsymbol{a}}$, $\underline{\boldsymbol{b}}$ පදවලින් සොයන්න.

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \underline{a} + \underline{b}$$

ජාාමිතියෙන් AD = 2BC; AD // BC

$$\overrightarrow{AD} = 2 \overrightarrow{BC} = 2\underline{b}$$

$$\overrightarrow{AE} = \overrightarrow{AD} + \overrightarrow{DE}$$

$$= 2\underline{b} + (-\underline{a}) = 2\underline{b} - \underline{a}$$

ජහාමිතියෙන් BC = FE; BC // FE

$$\overrightarrow{FE} = \overrightarrow{BC} = \underline{\boldsymbol{b}}$$

$$\overrightarrow{AF} = \overrightarrow{AE} + \overrightarrow{EF} = (2\underline{b} - \underline{a}) - \underline{b} = \underline{b} - \underline{a}$$

උදාහරණ 2

 ${
m A}$ හා ${
m B}$ ලඍවල පිහිටුම් දෛශික පිළිවෙළින් ${m a}$ හා ${m b}$ වේ.

- (i) C , ABහි මධා ලක්ෂායයි.
- (ii) D, AB මක AD: DB = 1:2 වන පරිදි වේ
- (iii) E , AB මත AE : EB = 2 : 1 වන පරිදි වේ

Cහි, Dහි හා E හි පිහිටුම් දෛශික සොයන්න.

$$\overrightarrow{\mathrm{OA}} = \underline{\pmb{a}}, \ \overrightarrow{\mathrm{OB}} = \underline{\pmb{b}}$$
. ලෙස ගනිමු එවිට $\overrightarrow{\mathrm{AB}} = \overrightarrow{\mathrm{OB}}$ - $\overrightarrow{\mathrm{OB}}$

(i)
$$AC = CB$$

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC}$$

$$= \overrightarrow{OA} + \frac{1}{2} \overrightarrow{AB}$$

$$= \underline{a} + \frac{1}{2} (\underline{b} - \underline{a})$$

$$= \frac{1}{2} (\underline{a} + \underline{b})$$

(ii)
$$AD : DB = 1 : 2$$

$$\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{AD}$$

$$= \overrightarrow{OA} + \frac{1}{3}\overrightarrow{AB}$$

$$= \overrightarrow{OA} + \frac{1}{3}(\overrightarrow{OB} - \overrightarrow{OA})$$

$$= \underline{a} + \frac{1}{3}(\underline{b} - \underline{a})$$

$$= \frac{2}{3}\underline{a} + \frac{1}{3}\underline{b} = \frac{1}{3}(2\underline{a} + \underline{b})$$
(iii)
$$\overrightarrow{OE} = \overrightarrow{OA} + \overrightarrow{AE}$$

$$= \overrightarrow{OA} + \frac{2}{3}\overrightarrow{AB}$$

$$= \overrightarrow{OA} + \frac{2}{3}(\overrightarrow{OB} - \overrightarrow{OA})$$

$$= \underline{a} + \frac{2}{3}(\underline{b} - \underline{a})$$

 $=\frac{1}{3}\underline{a}+\frac{2}{3}\underline{b}$

 $=\frac{1}{3}(\underline{a}+\underline{2b})$

උදාහරණ 3

 $-2\underline{p}+5\underline{q}$, $7\underline{p}-\underline{q}$ හා $\underline{p}+3\underline{q}$ යනු පිළිවෙළින් A,B හා C ලක්ෂා තුනෙහි අචල O, මූලයට අනුබද්ධව පිහිටුම් දෙශික යයි ගනිමු. මෙහි \underline{p} හා \underline{q} සමාන්තර නොවන දෛශික දෙකකි. A,B හා C ඒක රේඛිය බව පෙන්වා C මඟින් AB බෙදන අනුපාතය සොයන්න.

$$\overrightarrow{OA} = -2\underline{p} + 5\underline{q},$$
 $\overrightarrow{OB} = 7\underline{p} - \underline{q},$

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$= (7\underline{p} - \underline{q}) - (-2\underline{p} + 5\underline{q})$$

$$= 9\underline{p} - 6\underline{q}$$

$$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA}$$

$$= (\underline{p} + 3\underline{q}) - (-2\underline{p} + 5\underline{q})$$

$$= 3\underline{p} - 2\underline{q}$$

$$\overrightarrow{AB} = 3(3\underline{p} - 2\underline{q})$$

$$\overrightarrow{AC} = 3\underline{p} - 2\underline{q} \implies \overrightarrow{AB} = 3\overrightarrow{AC}$$

 $\overrightarrow{OC} = \underline{p} + 3\underline{q}$

එම නිසා A,B හා C ඒක රේඛිය වන අතර AC:CB=1:2

උදාහරණ 4

 $\underline{m{a}},\underline{m{b}}$ අභිශූනා නොවන සමාන්තර නොවන දෛශික හා $m{lpha},m{eta}$ අදිශ වේ. $m{lpha}m{a}+m{eta}m{b}=m{\underline{m{b}}}$ නම් හා නම් ම පමණක් $\alpha=0$ හා $\beta=0$ බව ඔප්පු කරන්න.

 $\alpha = 0$ හා $\beta = 0$ යයි සිතම

$$\alpha \underline{a} + \beta \underline{b} = \underline{0} + \underline{0} = \underline{0}.$$

විලෝම වශයෙන් $\alpha \underline{a} + \beta \underline{b} = \underline{0}$ ලෙස ගනිමු

(i) අවස්ථාව : α = θ ලෙස ගනිමු

එවිට
$$\underline{\boldsymbol{\theta}} + \beta \underline{\boldsymbol{b}} = \underline{\boldsymbol{\theta}}$$

$$\beta \underline{\boldsymbol{b}} = \underline{\boldsymbol{\theta}}$$

 $\underline{{m b}}
eq \underline{{m \theta}}$, නිසා $\beta = 0$ බව ලැබේ.

 $\alpha = 0$, නම් එවිට $\beta = 0$ වේ.

එසේම β =0, නම් එවිට α = 0 බව පෙන්විය හැකිය.

(ii) අවස්ථාව : $\alpha \neq 0$ යයි සිතමු

$$\alpha \underline{a} + \beta \underline{b} = \underline{0}$$

$$\alpha \underline{a} = -\beta \underline{b}$$

$$\underline{a} = -\frac{\beta}{\alpha} \underline{b} \qquad (\alpha \neq \underline{0})$$

$$(\alpha \neq \underline{\theta})$$

ඉහත සමීකරණය මඟින් \underline{a} // \underline{b} බව ලැබේ.

මෙය පරස්පර විරෝධයකි.

එනයින් lpha
eq 0 යැයි කල උපකල්පනය වැරදිය.

එමනිසා α = 0 විය යුතුයි.

මේ ආකාරයටම eta=0 බව පෙන්විය හැක.

එම නිසා $\alpha \underline{a} + \beta \underline{b} = \underline{0}$ නම් හා නම් ම පමණක් $\alpha = 0$, $\beta = 0$ වේ.

උදාහරණ 5

OABC සමාන්තරාසුයකි. BCහි මධා ලක්ෂා D වේ. OD, හා AC රේඛා M හි දී ඡේදනය

- වේ. $\overrightarrow{OA} = a$, $\overrightarrow{OC} = c$ යයි දී ඇත.
- $\overrightarrow{\mathrm{OD}}$ a හා c පදවලින් සොයන්න. (i)
- $OM:MD = \lambda:1$ නම්, OM $\underline{a},\underline{c}$ හා λ පදවලින් සොයන්න. (ii)
- (iii) AM:MC = μ:1 නම්, \overrightarrow{AM} $\underline{\textbf{\textit{q}}}$, $\underline{\textbf{\textit{c}}}$ හා μ පදවලින් සොයා එනයින් \overrightarrow{OM} සොයන්න.
- (iv) ඉහත (ii) හා (iii) න් ලබාගත් පුතිඵල භාවිතයෙන් λ හි හා μහි අගය සොයන්න.

(i)
$$\overrightarrow{OA} = \underline{a}, \overrightarrow{OC} = \underline{c}; \overrightarrow{OA} = \overrightarrow{CB} = \underline{a}$$

 $\overrightarrow{OD} = \overrightarrow{OC} + \overrightarrow{CD}$

$$= \overrightarrow{OC} + \frac{1}{2}\overrightarrow{CB}$$

$$= c + \frac{1}{2}a$$

OM: MD =
$$\lambda$$
: 1, $\overrightarrow{OM} = \frac{\lambda}{\lambda+1} \overrightarrow{OD} = \frac{\lambda}{\lambda+1} \left[\frac{1}{2} \underline{a} + \underline{c} \right]$

$$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA}$$

$$= \underline{c} - \underline{a}$$

AM: MC =
$$\mu$$
: 1, $\overrightarrow{AM} = \frac{\mu}{\mu+1}$ $\overrightarrow{AC} = \frac{\mu}{\mu+1}(\underline{c} - \underline{a})$

$$\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{AM} = \underline{a} + \frac{\mu}{\mu+1}(\underline{c} - \underline{a})$$

$$= \left(1 - \frac{\mu}{\mu+1}\right)\underline{a} + \frac{\mu}{\mu+1}\underline{c}$$

$$= \frac{1}{\mu+1}\underline{a} + \frac{\mu}{\mu+1}\underline{c} \qquad 3$$

② හා ③

 \underline{a} , \underline{c} ට සමාන්තර නොවන නිසා

$$\frac{\lambda}{2(\lambda+1)} = \frac{1}{\mu+1} \quad \quad \textcircled{4}$$

$$\frac{\oplus}{\odot}$$
 න් $\frac{1}{2} = \frac{1}{\mu}$, $\mu = 2$

$$\mu = 2$$
, නම් $4 \frac{\lambda}{2(\lambda+1)} = \frac{1}{3}$

$$\lambda = 2$$
 $\lambda = 2 = 1$

$$\lambda = 2 = \mu$$

එනම් OM: MD = AM: MC = 2:1

1.17 අභාගාසය

- 1. ABCDEF සමාකාර ෂඩාසුය $\overrightarrow{AB} = \underline{\boldsymbol{a}}$, $\overrightarrow{AC} = \underline{\boldsymbol{b}}$. $\underline{\boldsymbol{a}}$ හා $\underline{\boldsymbol{b}}$ පදවලින් \overrightarrow{AD} , \overrightarrow{AE} , \overrightarrow{AF} ඉසායන්න.
- 2. ABCDEF සමාකාර ෂඩාසුයක් හා O එහි කේන්දුය වේ. $\overrightarrow{OA} = \underline{\boldsymbol{a}}$, හා $\overrightarrow{OB} = \underline{\boldsymbol{b}}$ නම් \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CD} , \overrightarrow{DE} , \overrightarrow{EF} , \overrightarrow{FA} $\underline{\boldsymbol{a}}$, $\underline{\boldsymbol{b}}$ පදවලින් සොයන්න.
- 3. \overrightarrow{ABCD} තල චතුරසුයක් හා \overrightarrow{O} චතුරසුය පවතින තලයේ වූ ලක්ෂායකි. $\overrightarrow{AO}+\overrightarrow{CO}=\overrightarrow{DO}+\overrightarrow{BO}$, නම් \overrightarrow{ABCD} සමාන්තරාසුයක් බව පෙන්වන්න.
- ABC යනු BA = BC වන සමද්විපාද තුිකෝණයකි. ACහි මධා ලක්ෂා D වේ. $\overrightarrow{BA} + \overrightarrow{BC} = 2 \, \overrightarrow{BD}$ බව පෙන්වන්න.
- \underline{a} හා \underline{b} එකිනෙකට ලම්බක දෛශික දෙකකි. දෛශික ආකලනය පිළිබඳ තිුකෝණය නීතිය භාවිතයෙන් $|\underline{a}+\underline{b}|=|\underline{a}-\underline{b}|$ බව පෙන්වන්න. $|\underline{a}-\underline{b}|=5$ හා $|\underline{a}|=3$, විට $|\underline{b}|$ සොයන්න.
- \underline{a} , \underline{b} යනු $|\underline{a}|=6$, $|\underline{b}|=6$ වන දෛශික වේ. \underline{a} හා \underline{b} අතර කෝණය 60° වේ. $|\underline{a}+\underline{b}|$ හා $|\underline{a}-\underline{b}|$ සොයන්න.

පහත (7,8,9) පුශ්න සාධනය කිරීමට දෛශික භාවිත කරන්න.

- 7. ABC තුකෝණයකි. D හා E, AB හා ACහි මධා ලක්ෂාය වේ. $DE = \frac{1}{2}$ BC හා DE , BC සමාන්තර බව සාධනය කරන්න.
- 8. ABCD චතුරසුයකි. P,Q,R හා S පිළිවෙළින් AB,BC,CD හා DA පාදවල මධා ලක්ෂාය වේ. PQRS සමාන්තරාසුයක් බව පෙන්වන්න.
- 9. ABC තිකෝණයකි. A, B හා C හි පිහිටුම් දෛශික $\underline{a},\underline{b},\underline{c}$ වේ. ABC තිකෝණයේ කේන්දයේ පිහිටුම් දෛශිකය සොයන්න.
- 10. OABC සමාන්තරාසුයකි. AB හි මධා ලක්ෂාය D වේ. OD හා AC රේඛා E හිදී ඡේදනය වේ.

$$\overrightarrow{\mathrm{OA}} = \underline{\boldsymbol{a}}, \ \overrightarrow{\mathrm{OB}} = \underline{\boldsymbol{b}}, \ \mathrm{OE} : \mathrm{ED} = \lambda : 1, \ \mathrm{CE} : \mathrm{EA} = \mu : 1.$$

- i. \overrightarrow{OD} දෛශිකය $\underline{\pmb{a}}$ හා $\underline{\pmb{b}}$ පදවලින් සොයන්න. එනයින් \overrightarrow{OE} දෛශිකය $\lambda,\underline{\pmb{a}}$ හා $\underline{\pmb{b}}$ පදවලින් ලියන්න.
- ii. \overrightarrow{AC} ඉදෙශිකය සොයා \overrightarrow{OE} ඉදෙශිකය $\mu, \underline{\textbf{\textit{a}}}$ හා $\underline{\textbf{\textit{b}}}$ පදවලින් ලියන්න.

- iii. (i) හා (ii) ලබා ගත් පුතිඵල භාවිත කර ඉහත λ හා μ සොයන්න.
- iv. OD හා CB දික් කළ විට H, දී හමුවේ නම් \overrightarrow{OH} ඉදෙශිකය සොයන්න.
- OABC චතුරසුය ගනිමු. OB හා AC හි මධා ලක්ෂා D හා E වේ. විකර්ණ ඡේදන ලක්ෂාය E ලෙස ගනිමු. E හා E ලක්ෂාවල පිහිටුම් දෛශිකය E ට අනුබද්ධව E හා E ලෙස ගැනීමෙන් E E බව පෙන්වන්න.

P හා Q යනු OA හා BC පාදවල මධා ලක්ෂා වේ. P,F හා Q ඒක රේඛීය බව පෙන්වන්න. PF:FQ අනුපාතය සොයන්න.

12. A හා B , O සමඟ ඒක රේඛීය නොවන පුහින්න ලක්ෂා දෙකක් ලෙස ගනිමු. A හා B පිහිටුම් දෛශික පිළිවෙළින් Oට අනුබද්ධ ව \underline{a} හා \underline{b} නම් AB මත D ලක්ෂාය BD = 2DA වන පරිදි Dහි පිහිටුම් දෛශිකය $\frac{1}{3}(2\underline{a}+\underline{b})$ බව පෙන්වන්න.

 $\overrightarrow{BC}=K\underline{\pmb{a}}\,(K>1)\,\,O,\,D$ හා C ලක්ෂා ඒක රේඛිය වේ. \mathbf{k} හි අගය හා OD:DC අනුපාතය සොයන්න. $\underline{\pmb{a}}\,$ හා $\underline{\pmb{b}}\,$ පදවලින් $\overrightarrow{AC}\,$ පුකාශ කරන්න. \mathbf{a} හව ද ACට සමාන්තරව O හරහා යන රේඛාව Eහි දී AB හමු වේ නම් 6DE=AB බව පෙන්වන්න.

- 13. ABCD නුපීසියමක් වන අතර $\overrightarrow{DC} = \frac{1}{2}\overrightarrow{AB}$ තව ද $\overrightarrow{AB} = \underline{\boldsymbol{p}}$ සහ $\overrightarrow{AD} = \underline{\boldsymbol{q}}$ වේ. E ලක්ෂාය BC මත පිහිටා ඇත්තේ $\overrightarrow{BE} = \frac{1}{3}\overrightarrow{BC}$ වන ලෙස වේ. AE සහ BD රේඛාවල ඡේදන ලක්ෂාය වන F, $\overrightarrow{BF} = \lambda \overrightarrow{BD}$ පරිදි වේ. මෙහි λ යනු නියතයකි. $(0 < \lambda < 1)$ $\overrightarrow{AF} = (1 \lambda)\underline{\boldsymbol{p}} + \lambda \underline{\boldsymbol{q}}$ බව පෙන්වන්න. එනයින් λ හි අගය සොයන්න.
- 1.18 කාටිසියානු දෛශික අංකනය

කාටීසියානු තලය සලකන්න.

 $\mathbf{O} x$ දෙසට ඒකක දෛශිකය $oldsymbol{i}$, ලෙස ද $\mathbf{O} y$ දෙසට ඒකක දෛශිකය

j, හා $P \equiv (x, y)$ ලෙස ගනිමු.

 $\overrightarrow{\mathrm{OP}} = \underline{r}$ ලෙස ගනිමු.

$$\underline{r} = \overrightarrow{OP} = \overrightarrow{OM} + \overrightarrow{MP} = x\underline{i} + y\underline{i}$$

$$|\underline{\boldsymbol{r}}| = \mathrm{OP} = \sqrt{x^2 + y^2}$$

 $\underline{a} = a_1 \underline{i} + a_2 \underline{j}$ හා $\underline{b} = b_1 \underline{i} + b_2 \underline{j}$ ුලෙස ගනිමු.

$$\underline{a} + \underline{b} = (a_1 \underline{i} + b_1 \underline{i}) + (a_2 \underline{j} + b_2 \underline{j})$$
 බව හා

 $\underline{a}-\underline{b}=\left(a_1-b_1\right)\underline{i}+\left(a_2-b_2\right)\underline{j}$ බව ලෙන්වන්න.

සාධනය

$$\overrightarrow{OA} = a_1 \underline{i} + a_2 \underline{j}$$
 $A \equiv (a_1, a_2)$

$$\overrightarrow{OB} = b_1 \underline{i} + b_2 \underline{j}$$
 $B = (b_1, b_2)$

 \overrightarrow{OACB} සමාන්තරාසුය සම්පූර්ණ කරමු. එවිට $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \underline{a} + \underline{b}$

$${
m AB}$$
හි මධා ලක්ෂාය ${
m M}$ නිසා ${
m M}$ $\equiv \left(rac{a_1+b_1}{2},rac{a_2+b_2}{2}
ight)$

OCහි මධා ලක්ෂාය M නිසා

$$C \equiv \left(a_1 + b_1, a_2 + b_2\right)$$

$$\overrightarrow{OC} = (a_1 + b_1)\underline{i} + (a_2 + b_2)\underline{i}$$
 $\underline{a} = a_1 i + a_2 j$ හා $\underline{b} = b_1 i + b_2 \underline{j}$ නම් එවිට
$$\underline{a} - \underline{b} = a + (-b) = (a_1 \underline{i} + a_2 \underline{i}) + (-b_1 \underline{i} - b_2 \underline{i})$$

$$= (a_1 - b_1)\underline{i} + (a_2 - b_2)\underline{i}$$

උදාහරණ 6

$$A \equiv (2, -1) \text{ so } B \equiv (5, 3)$$

i.
$$\overrightarrow{OA}$$
, \overrightarrow{OB} , \overrightarrow{AB} $\overrightarrow{\underline{\textbf{\emph{i}}}}$, $\overrightarrow{\underline{\textbf{\emph{L}}}}$ පදවලින් සොයන්න.

$$\overrightarrow{B}$$
, $\left|\overrightarrow{OA}\right|$, $\left|\overrightarrow{OB}\right|$, $\left|\overrightarrow{AB}\right|$ මසායන්න.

$$\overrightarrow{\mathrm{iii}}$$
. $\overrightarrow{\mathrm{AB}}$ දෙසට ඒකක දෛශිකය සොයන්න.

$$A \equiv (2, -1), B \equiv (5, 3)$$

(i)
$$\overrightarrow{OA} = 2\underline{i} - \underline{j}$$
 $\overrightarrow{OB} = 5\underline{i} + 3\underline{j}$
 $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (5\underline{i} + 3\underline{j}) - (2\underline{i} - \underline{j})$
 $= 3\underline{i} + 4\underline{j}$

(ii)
$$\overrightarrow{OA} = 2\underline{i} - \underline{j}$$
, $|\overrightarrow{OA}| = \sqrt{2^2 + (-1)^2} = \sqrt{5}$

$$\overrightarrow{OB} = 5\underline{i} + 3\underline{j}, \qquad |\overrightarrow{OB}| = \sqrt{5^2 + 3^2} = \sqrt{34}$$

$$\overrightarrow{AB} = 3\underline{i} + 4\underline{j}, \qquad |\overrightarrow{AB}| = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$$

$$(iii)$$
 \overrightarrow{AB} දෙසට ඒකක දෛශිකය සොයන්න.

$$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} = \frac{1}{5} (3\underline{i} + 4\underline{i})$$

1.19 අභනාසය

- $\underline{\boldsymbol{a}} = \underline{\boldsymbol{i}} 2\underline{\boldsymbol{j}}$ $b = 4\underline{\boldsymbol{i}}$ $\underline{\boldsymbol{c}} = 3\underline{\boldsymbol{i}} \underline{\boldsymbol{j}}$ ලෙස ගනිමු.
 - i. (a) $2\underline{a} + \underline{b}$ (b) $\underline{a} + 3\underline{c}$
- (c) 2a b c
- (a) $|2\underline{a} + \underline{b}|$ (b) $|\underline{a} + 3\underline{c}|$
- (c) $|\underline{2a} \underline{b} \underline{c}|$
- $\underline{a} + \underline{b} + \underline{c}$ දෙසට ඒකක දෛශිකය සොයන්න.
- $A \equiv (4, 3), B \equiv (6, 6)$ හා $C \equiv (0, 1)$ යයි දී ඇත.
 - \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} දෙශික ලියන්න. (a)
 - (b) \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CA} මසායන්න.
 - (c) $|\overrightarrow{AB}|$, $|\overrightarrow{BC}|$, $|\overrightarrow{CA}|$ ලසායන්න.
- \overrightarrow{O} යනු මූලය හා $\overrightarrow{OA} = -\underline{i} + 5\underline{j}$, $\overrightarrow{OB} = 2\underline{i} + 4\underline{j}$ හා $\overrightarrow{OC} = 2\underline{j}$ වේ. \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CA} 3. සොයන්න. එනයින් ABC සමද්විපාද තිුකෝණයක් බව පෙන්වන්න.
- $\overrightarrow{OA} = \underline{i} + 2\underline{i}$, $\overrightarrow{OB} = 3\underline{i} \underline{i}$ හා $\overrightarrow{OC} = -\underline{i} + 5\underline{i}$. නම් \overrightarrow{AB} හා \overrightarrow{CA} සොයා එනයින් A, B හා C ලක්ෂාා ඒක රේඛීය බව පෙන්වන්න.
- ${
 m A}$ හා ${
 m B}$ ලක්ෂාවල පිහිටුම් දෛශික පිළිවෙළින් ${m a}$ හා ${m b}$ වේ. මෙහි ${m a}=2{m i}+3{m j}$ සහ $\underline{\mathbf{b}} = \underline{\mathbf{i}} + 5\underline{\mathbf{j}}$ වේ.
 - (i) AB, හි මධා ලක්සය R නම් R වල පිහිටුම් ලෛශිකය $oldsymbol{i}$, $oldsymbol{i}$ පදවලින් ලියන්න.
 - (ii) $\underline{c} = 2\underline{a} \underline{b}$ නම් \underline{c} දෙසට ඒකක දෙශිකය $\underline{i}, \underline{j}$ පදවලින් සොයන්න.
- 6. (a) විශාලත්වය ඒකක 10වන $3\underline{i}$ - $4\underline{i}$ දිශාවට වූ ලෛශිකය $a\underline{i}$ + $b\underline{i}$, ලෙස ලියන්න.
 - (b) $A \equiv (-2, -5)$ හා $B \equiv (3, 7)$
 - (i) \overrightarrow{OA} , \overrightarrow{OB} ලියා එනයින් \overrightarrow{AB} ලියන්න.
 - (ii) විශාලත්වය ඒකක 65 වන \overrightarrow{AB} , දිශාවට වන ඉදෙශිකය $a \underline{\pmb{i}} + b \underline{\pmb{j}}$ ආකාරයට සොයන්න.

1.20 ලෛශික දෙකක අදිශ ගුණිතය

මීට පෙර අපි දෛශික එකතුව හා අන්තරය ඉගෙන ගතිමු. දෛශික ගුණිත දෙකක් අර්ථ දක්වා ඇත.

- (i) දෛශික දෙකක් අතර අදිශ ගුණිතය
- (ii) දෙශික දෙකක් අතර දෙශික ගුණිතය

අදීශ ගුණිතය තිත් ගුණිතය ලෙස හඳුන්වයි. තිත් ගුණිතයේ පුතිඵලය අදිශයකි. දෛශික ගුණිතයේ පුතිඵලය දෛශිකයකි.

අර්ථ දක්වීම : අදිශ ගුණිතය

 $\underline{m{a}}$ හා $\underline{m{b}}$ ඕනෑම අභිශුනා නොවන දෛශික දෙකක් යයි ගනිමු. $m{ heta}$ යනු දෛශික දෙක අතර කෝණය යි.

 \underline{a} හා \underline{b} ඉදෙශික අතර අදිශ ගුණිතය $\underline{a} \cdot \underline{b} = |\underline{a}| \ |\underline{b}| \cos \theta$ $(0 \le \theta \le \pi)$ ඉලස අර්ථ දක්වමු.

අදිශ ගුණිතයේ ගුණිතය

$$1.$$
 $\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{a}$ (නහාදේශ නහාය) අර්ථ දැක්වීමෙන් $\underline{a} \cdot \underline{b} = |\underline{a}| \ |\underline{b}| \cos \theta$ $= |\underline{b}| \ |\underline{a}| \cos \theta$ එනයින් $\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{a}$

 \underline{a} හා \underline{b} අභිශූනා නොවන දෛශික දෙකක් නම් $\underline{a} \cdot \underline{b} = o$ වන්නේ $\underline{a} \cdot \underline{b}$ ට ලම්බක වන්නේ නම් ම පමණි.

$$\underline{\boldsymbol{a}} \cdot \underline{\boldsymbol{b}} = 0 \Leftrightarrow |\underline{\boldsymbol{a}}| |\underline{\boldsymbol{b}}| \cos\theta = 0$$

$$\Leftrightarrow \cos\theta = 0 \qquad (\underline{\boldsymbol{a}}, \underline{\boldsymbol{b}} \neq \underline{\boldsymbol{\theta}})$$

$$\Leftrightarrow \theta = \frac{\pi}{2}$$

3. $\underline{\boldsymbol{a}} \cdot \underline{\boldsymbol{a}} = |\underline{\boldsymbol{a}}| |\underline{\boldsymbol{a}}| \cos 0 = |\underline{\boldsymbol{a}}|^2 \times 1 = \underline{\boldsymbol{a}}^2$ ඉලස ද ලියනු ලැබේ. $\underline{\boldsymbol{i}} \cdot \underline{\boldsymbol{i}} = |\underline{\boldsymbol{i}}| |\underline{\boldsymbol{i}}| \cos 0 = 1 \times 1 \times 1 = 1$ $\underline{\boldsymbol{i}} \cdot \underline{\boldsymbol{i}} = |\underline{\boldsymbol{j}}| |\underline{\boldsymbol{j}}| \cos 0 = 1 \times 1 \times 1 = 1$ $\underline{\boldsymbol{i}} \cdot \underline{\boldsymbol{i}} = |\underline{\boldsymbol{i}}| |\underline{\boldsymbol{j}}| \cos \frac{\pi}{2} = 1 \times 1 \times 0 = 0$

එනම් $\underline{\boldsymbol{i}} \cdot \underline{\boldsymbol{i}} = \underline{\boldsymbol{i}} \cdot \underline{\boldsymbol{i}} = 1$ ද $\underline{\boldsymbol{i}} \cdot \underline{\boldsymbol{i}} = \underline{\boldsymbol{i}} \cdot \underline{\boldsymbol{i}} = 0$ වේ.

 \underline{a} , \underline{b} , \underline{c} ඉදෙශික වේ.

$$\underline{a}$$
 . $(\underline{b} + \underline{c}) = \underline{a} . \underline{b} + \underline{a} . \underline{c}$ (විඝටන නීතිය)

 \underline{a} හා \underline{b} අතර කෝණය lpha වේ

 \underline{a} හා \underline{c} අතර කෝණය eta වේ

 \underline{a} හා $(\underline{b} + \underline{c})$ කෝණය θ වේ.

$$\underline{a} \cdot (\underline{b} + \underline{c}) = |\underline{a}| \cdot |\underline{b} + \underline{c}| \cos \theta$$
$$= (OA) (OC) \cos \theta$$

$$= (OA) \cdot (ON)$$

$$= (OA) \cdot (OM + MN)$$

$$= OA \cdot OB \cdot COS\alpha + OA \cdot BCCOS\beta \qquad (MN = BL)$$

$$= \overrightarrow{OA} \cdot \overrightarrow{OB} + \overrightarrow{OA} \cdot \overrightarrow{BC}$$

$$= a \cdot b + a \cdot c$$

එම නිසා
$$\underline{a}$$
 . $(\underline{b} + \underline{c})$ $= \underline{a} \cdot \underline{b} + \underline{a} \cdot \underline{c}$

5.
$$\underline{\boldsymbol{a}} = \mathbf{a}_1 \underline{i} + \mathbf{a}_2 \underline{j}$$
 හා $\underline{\boldsymbol{b}} = \mathbf{b}_1 \underline{i} + \mathbf{b}_2 \underline{j}$ ලෙස ගනිමු.

$$\underline{\boldsymbol{a}} \cdot \underline{\boldsymbol{b}} = (\mathbf{a}_{1} \underline{\boldsymbol{i}} + \mathbf{a}_{2} \underline{\boldsymbol{j}}) \cdot (\mathbf{b}_{1} \underline{\boldsymbol{i}} + \mathbf{b}_{2} \underline{\boldsymbol{j}})$$

$$= \mathbf{a}_{1} \underline{\boldsymbol{i}} \cdot (\mathbf{b}_{1} \underline{\boldsymbol{i}} + \mathbf{b}_{2} \underline{\boldsymbol{j}}) + \mathbf{a}_{2} \underline{\boldsymbol{j}} \cdot (\mathbf{b}_{1} \underline{\boldsymbol{i}} + \mathbf{b}_{2} \underline{\boldsymbol{j}})$$

$$= \mathbf{a}_{1} \underline{\boldsymbol{i}} \cdot \mathbf{b}_{1} \underline{\boldsymbol{i}} + \mathbf{a}_{1} \underline{\boldsymbol{i}} \cdot \mathbf{b}_{2} \underline{\boldsymbol{j}} + \mathbf{a}_{2} \underline{\boldsymbol{j}} \cdot \mathbf{b}_{1} \underline{\boldsymbol{i}} + \mathbf{a}_{2} \underline{\boldsymbol{i}} \cdot \mathbf{b}_{2} \underline{\boldsymbol{j}}$$

$$= \mathbf{a}_{1} \mathbf{b}_{1} + \mathbf{a}_{2} \mathbf{b}_{2} (\underline{\boldsymbol{i}} \cdot \underline{\boldsymbol{i}} = \underline{\boldsymbol{j}} \cdot \underline{\boldsymbol{j}} = 1 \text{ so } \underline{\boldsymbol{i}} \cdot \underline{\boldsymbol{j}} = \underline{\boldsymbol{j}} \cdot \underline{\boldsymbol{i}} = 0 \text{ ards}$$

උදාහරණ 7

$$\underline{\boldsymbol{a}}=2\underline{\boldsymbol{i}}$$
 - 3 $\underline{\boldsymbol{i}}$ හා $\underline{\boldsymbol{b}}=\underline{\boldsymbol{i}}$ - 3 $\underline{\boldsymbol{i}}$ නම් $\underline{\boldsymbol{a}}$ හා $\underline{\boldsymbol{b}}$ අතර කෝණය සොයන්න.

$$\underline{\boldsymbol{a}} \cdot \underline{\boldsymbol{b}} = |\underline{\boldsymbol{a}}| |\underline{\boldsymbol{b}}| \cos \theta$$

$$|\underline{\boldsymbol{a}}| = \sqrt{2^2 + (-3)^2} = \sqrt{13} \quad |\underline{\boldsymbol{b}}| = \sqrt{1^2 + (-3)^2} = \sqrt{10}$$

$$\underline{\boldsymbol{a}} \cdot \underline{\boldsymbol{b}} = \sqrt{13} \times \sqrt{10} \cos \theta \quad -------(1)$$

$$\underline{\boldsymbol{a}} \cdot \underline{\boldsymbol{b}} = (2\underline{\boldsymbol{i}} - 3\underline{\boldsymbol{i}}) \cdot (\underline{\boldsymbol{i}} - 3\underline{\boldsymbol{i}})$$

$$= 2\underline{\boldsymbol{i}} \cdot (\underline{\boldsymbol{i}} - 3\underline{\boldsymbol{i}}) - 3\underline{\boldsymbol{j}} \cdot (\underline{\boldsymbol{i}} - 3\underline{\boldsymbol{i}})$$

$$= 2 + 0 - 0 + 9 = 11$$

$$= 2 + 0 - 0 + 9 = 11$$

$$= 2 + 0 - 0 + 9 = 11$$

$$= 2 + 0 - 0 + 9 = 11$$

$$= 2 + 0 - 0 + 9 = 11$$

$$= 2 + 0 - 0 + 9 = 11$$

$$= 2 + 0 - 0 + 9 = 11$$

$$= 2 + 0 - 0 + 9 = 11$$

$$= 2 + 0 - 0 + 9 = 11$$

$$\cos\theta = \frac{11}{\sqrt{130}}, \ \theta = \cos^{-1}\left(\frac{11}{\sqrt{130}}\right)$$

උදාහරණ 8

- \underline{a} , \underline{b} යනු $|\underline{a}|=|\underline{b}|=|\underline{a}+\underline{b}|$, වන පරිදි වූ දෛශික දෙකක් නම් \underline{a} හා \underline{b} අතර කෝණය සොයන්න.
- ii. $\underline{a}+\underline{b}$ දෛශිකය \underline{a} ට ලම්බක වේ නම් $|\underline{b}|=\sqrt{2}|\underline{a}|$, නම් ද $(2a+b),\ b$ ට ලම්බක බව පෙන්වන්න.

i.
$$|\underline{a}| = |\underline{b}| = |\underline{a} + \underline{b}|$$

$$|\underline{a}|^2 = |\underline{a} + \underline{b}|^2$$

$$\underline{a} \cdot \underline{a} = (\underline{a} + \underline{b}) \cdot (\underline{a} + \underline{b}) \text{ (අර්ථ දක්වීමෙන්)}$$

$$|\underline{a}|^2 = |\underline{a}|^2 + |\underline{b}|^2 + 2\underline{a} \cdot \underline{b}$$

$$- |\underline{b}|^2 = 2|\underline{a}| |\underline{b}| \cos\theta$$

$$- |\underline{b}|^2 = 2|\underline{b}| |\underline{b}| \cos\theta$$

$$\cos\theta = -\frac{1}{2} \quad \theta = \frac{2\pi}{3}$$

උදාහරණ 9

නියත \underline{F} බලය කිුයා කිරීම නිසා වස්තුවක් AB, දෙසට d විස්ථාපනයක් චලිත වේ. \overrightarrow{AB} , $oldsymbol{ heta}$ කෝණයක් සාදයි නම් \underline{F} සමඟ බලය මඟින් සිදු කළ කාර්යය \underline{F} . \underline{d} .

$$\underline{F} = 2\underline{i} + 3\underline{i}$$
 බලයේ යෙදුම් ලක්ෂාය $\underline{S} = 5\underline{i} - 3\underline{i}$,

විස්ථාපනයක් සිදු කරයි නම් \underline{F} . බලයෙන් සිදු කළ කාර්යය සොයන්න.

 \underline{F} මඟින් කරන ලද කාර්යය

$$= |\underline{F}|.AN$$

$$= |\underline{F}| . AM \cos\theta \qquad (\overline{AM} = d)$$

1.21 අභාගසය

- $1. \qquad \underline{a} = 3\underline{i} + j$ හා $\underline{b} = -\underline{i} + 2j$, නම් \underline{a} හා \underline{b} අතර කෝණය සොයන්න.
- $\underline{a}=p\,\underline{i}+3\,\underline{j}$ හා $\underline{b}=2\,\underline{i}+6\,\underline{j}$ ඉදෙශික ලම්බක වේ නම්
 - i. pහි අගය සොයන්න.
 - ii. $|\underline{a}|$ හා $|3\underline{b}-\underline{a}|$ සොයන්න.
 - iii. \underline{a} . $(3\underline{b} \underline{a})$ මසායන්න.
 - iv. \underline{a} හා $(3\underline{b} \underline{a})$ අතර කෝණය සොයන්න.
- $oldsymbol{\underline{a}}$ හා $oldsymbol{\underline{b}}$ දෙශික දෙක $|oldsymbol{\underline{a}}| = |oldsymbol{\underline{b}}| = |oldsymbol{\underline{a}} oldsymbol{\underline{b}}|$ වන පරිදි වේ නම් $oldsymbol{\underline{a}}$ හා $oldsymbol{\underline{b}}$ අතර කෝණය සොයන්න.
- 4. $|\underline{a}| = 3, |\underline{b}| = 2 \text{ so } |\underline{a} \underline{b}| = 4,$
 - (i) <u>a</u>. <u>b</u>
 - (ii) $|\underline{a} + \underline{b}|$ සොයන්න.
- \underline{a} හා $(\underline{a}+\underline{b})$ එකිනෙකට ලම්බක දෛශික නම් $|\underline{a}+\underline{b}|^2=|\underline{b}|^2-|\underline{a}|^2$ බව පෙන්වන්න.
- 6. තිත් ගුණිතය භාවිත කර රොම්බසයක විකර්ණ එකිනෙකට ලම්බක බව පෙන්වන්න.
- 7. $|\underline{\pmb{a}}+\underline{\pmb{b}}|=|\underline{\pmb{a}}-\underline{\pmb{b}}|$ නම් $\underline{\pmb{a}}$. $\underline{\pmb{b}}=0$ බව පෙන්වන්න. එනයින් සමාන්තරාසුයක විකර්ණ දිගින් සමාන නම් එය ඍජු කෝණාසුයක් බව පෙන්වන්න.
- $\underline{a} = \underline{i} + \sqrt{3}\underline{j}$ මෙහි \underline{i} හා \underline{i} ට සුපුරුදු අර්ථ ඇත. \underline{b} , විශාලත්වය $\sqrt{3}$ වන දෛශිකයකි. \underline{a} හා \underline{b} අතර කෝණය $\frac{\pi}{3}$ නම් \underline{b} දෛශික $x\underline{i} + y\underline{i}$ ආකාරයෙන් සොයන්න. මෙහි x (<0) හා y නියත නිර්ණය කළ යුතුය.
- P යනු වෘත්තයක විෂ්කම්භය නම් හා P යනු වෘත්තයේ පරිධිය මත ඕනෑම ලක්ෂායක් නම් APB ඍජුකෝණයක් බව තිත් ගුණිතය භාවිතයෙන් පෙන්වන්න.
- 10. තිත් ගුණිතය භාවිතයෙන් ඕනෑම ABC තිකෝණයක් සඳහා සම්මත අංකනයෙන් $\cos A = \frac{b^2 + c^2 a^2}{2bc}$ බව පෙන්වන්න.

2.0 අංශුවක් මත කුියා කරන ඒකතල බල පද්ධති

2.1 හැඳින්වීම

ස්ථිතිකය :

ස්ථිතිකය යාන්තික විදහාවේ එක් කොටසකි. එමඟින් බාහිර බල යටතේ සමතුලිතව ඇති වස්තු පිළිබඳ සොයා බලයි.

බලය :

නිශ්චල හෝ ඒකාකාර පුවේගයෙන් චලිත වන හෝ වස්තුවක චලිත ස්වභාවය වෙනස් කරයි නම් හෝ වෙනස් කිරීමට තැන් කරන බලපෑමක් බලය ලෙස අර්ථ දැක්විය හැකිය. බලයේ ඒකක නිව්ටන් වන අතර එය N මගින් දක්වනු ලැබේ.

අංශුවක් මත කුියා කරන බලයක් පිළිබඳ සඳහන් කරන විට විශේෂයෙන් පහත සඳහන් කරණු දැක්විය යුතුය.

- i. බලයේ විශාලත්වය
- ii. බලය කිුයා කරන දිශාව සහ
- iii. බලය කිුිිියා කරන ලක්ෂාය

බලයක් දිශානුගත රේඛා ඛණ්ඩයකින් නිරූපණය කළ හැකිය. O ලඤායේ දී $10\,\mathrm{N}$ බලයක් ඊසාන දිශාවට කියා කරන්නේ යැයි සිතමු. එනම් එම බලය දිශානුගත OA රේඛා ඛණ්ඩයෙන් නිරූපණය කළ හැකිය. මෙහි OA දිගින් ඒකක 10ක් ද ඊතල හිසින් දිශාව ද නිරූපණය කෙරෙයි.

සම්පුයුක්ත බලය

යම් වස්තුවක් බල සමූහයක් යටතේ කිුයා කරන විට එම කිුයා සිදු කළ හැකි තනි බලයට එම බලවල සම්පුයුක්තය ලෙස කියනු ලැබේ.

2.2 බල සමාන්තරාසු නීතිය

බල සමාන්තරාසු නීතිය ස්ථිතිකයේ මූලික සිද්ධාන්තයක් වන අතර එය පරීක්ෂණාත්මක ව තහවුරු කළ හැකිය.

අංශුවක් මත බල දෙකක් O හි දී කිුිිිිිිිිිිිිිිිිි කරන විට එම බල විශාලත්වය හා දිශාව අතින් OA සහ OB රේඛා මඟින් නිරූපණය කරයි නම් සම්පුයුක්ත බලය විශාලත්වය හා දිශාව අතින් OACB සමාන්තරාසුයේ OC විකර්ණයෙන් නිරූපණය වේ.

P සහ Q බල පිළිවෙළින් OACB සමාන්තරාසුයේ OA සහ OB මඟින් නිරූපණය කරන විට OC විකර්ණයෙන් P සහ Qහි සම්පුයුක්තය වන R නිරූපණය වේ.

පයිතගරස් පුමේයයෙන්

$$\begin{aligned}
OC^{2} &= OM^{2} + MC^{2} \\
&= (OA + AM)^{2} + MC^{2} \\
R^{2} &= (P + Q \cos\theta)^{2} + (Q \sin\theta)^{2} \\
&= P^{2} + 2PQ \cos\theta + Q^{2} \cos^{2}\theta + Q^{2} \sin^{2}\theta \\
R^{2} &= P^{2} + Q^{2} + 2PQ \cos\theta
\end{aligned}$$

$$\tan \alpha = \frac{CM}{OM} = \frac{CM}{OA + AM}$$
$$= \frac{Q \sin \theta}{P + Q \cos \theta}$$

$$R^{2} = P^{2} + Q^{2} + 2PQ \cos\theta$$

$$\tan \alpha = \frac{Q \sin\theta}{P + Q \cos\theta}$$

$$\theta = 90^{\circ}$$
, විට $\cos\theta = \cos 90 = 0$; $\sin\theta = \sin 90 = 1$

$$R^2 = P^2 + Q^2$$
, සහ $\tan \alpha = \frac{Q}{P}$ ඉව්.

$$Q = P \delta \delta$$

$$R^{2} = P^{2} + P^{2} + 2P \times P \times \cos\theta$$

$$= 2P^{2} + 2P^{2}\cos\theta = 2P^{2}(1 + \cos\theta)$$

$$= 2P^{2} \times 2\cos^{2}\frac{\theta}{2} = 4P^{2}\cos^{2}\frac{\theta}{2}$$

$$Q$$
 A
 A

$$R = 2P.\cos\frac{\theta}{2}$$

$$\tan \alpha = \frac{P\sin\theta}{P + P\cos\theta} = \frac{\sin\theta}{1 + \cos\theta} = \frac{2\sin\frac{\theta}{2}.\cos\frac{\theta}{2}}{2\cos^2\frac{\theta}{2}} = \tan\frac{\theta}{2}$$

$$\alpha = \frac{\theta}{2}$$

කිුියා කරන බල දෙක සමාන නම් බල දෙකේ සම්පුයුක්ත බලය බල දෙක අතර කෝණය සමච්ඡේදනය කරයි. වෙනත් කුමයක් (ජනාමිතිය මඟින්)

$$P = Q$$
; නම් $OA = OB$

සමාන්තරාසුය රොම්බසයක් වේ. OACB

i. OC සහ AB ඡේදනය වන්නේ 90^0 කිනි.

ii.
$$\angle AOC = \angle BOC (= \frac{\theta}{2})$$

$$OC = 2OM = 2OA \cos \frac{\theta}{2}$$

$$R = 2P \cos \frac{\theta}{2}$$

උදාහරණය 1

3P සහ 5P බල ලක්ෂායක් මත කිුයා කරන අතර බල දෙක අතර කෝණය 60° කි. සම්පුයුක්ත බලය සොයන්න.

$$R^{2} = P^{2} + Q^{2} + 2PQ\cos\theta$$

$$= (3P)^{2} + (5P)^{2} + 2 \times 3P \times 5P \cdot \cos60^{\circ}$$

$$= 9P^{2} + 25P^{2} + 15P^{2} = 49P^{2}$$

$$R = 7P$$

$$\tan \alpha = \frac{5P\sin60^{\circ}}{3P + 5P\cos60^{\circ}}$$

$$\tan \alpha = \frac{5\sqrt{3}}{11}$$

$$\alpha = \tan^{-1}\left(\frac{5\sqrt{3}}{11}\right)$$

උදාහරණය 2

ලක්ෂායක් මත කිුයා කාරන 8P සහ 5P බල දෙකක සම්පුයුක්තය 7P වේ. බල දෙක අතර කෝණය සොයන්න.

8P සහ 5P බල අතර කෝණය heta නම්

$$R^{2} = P^{2} + Q^{2} + 2PQ\cos\theta$$
 $(7P)^{2} = (8P)^{2} + (5P)^{2} + 2 \times 8P \times 5P\cos\theta$
 $49P^{2} = 64P^{2} + 25P^{2} + 80P^{2}\cos\theta$
 $-40 = 80\cos\theta$
 $\cos\theta = -\frac{1}{2}$
 $\theta = 120^{\circ}$

උදාහරණය 3

ලක්ෂායක් මත කිුිිිිිිිිිි කරන P සහ $\sqrt{2}P$, බල දෙකෙහි සම්පුයුක්ත බලය කුඩා බලය සමඟ 90^0 ක කෝණයක් සාදයි. සම්පුයුක්ත බලයේ විශාලත්වය ද බල දෙක අතර කෝණය ද සොයන්න.

පයිතගරස් පුමේයය යෙදීමෙන්

$$OC^2 + CB^2 = OB^2$$

$$R^2 + P^2 = \left(\sqrt{2}P\right)^2$$

$$R^2 = P^2$$
; $R = P$;

එම නිසා OC = BC සහ $\angle BOC = 45^\circ$

බල දෙක අතර කෝණය $90^\circ + 45^\circ = 135^\circ$

2.3 බලයක් සංරචක දෙකකට විභේදනය කිරීම

a. බලයක් ඍජුකෝණීය සංරචක දෙකකට විභේදනය කිරීම

ලක්ෂායක් මත කිුයා කරන බල දෙකක් තනි බලයකට (සම්පුයුක්තය බලය) පත්කරන අකාරය බල සමාන්තරාසු පුමේයයෙන් ඉගෙන ගත්තෙමු. පුතිලෝම ලෙස තනි බලයක් බල දෙකකට විභේදනය කළ හැකි අතර එසේ කළ හැකි ආකාර අපරිමිත පුමාණයක් ඇත.

අංශුව මත කිුිිිියා කරන බලය R නම් එම බලය ලම්බක දිශා දෙකකට විභේදනය කළ හැකි ය.

 OC මඟින් R බලය නිරූපණය කරයි නම්

 ${
m R}$ බලයේ ${
m O}{
m extbf{\emph{x}}}$ හා ${
m O}{
m extbf{\emph{y}}}$ ඔස්සේ විභේදනය කළ යුතු ය.

m R බලය m Ox දිශාව සමඟ m heta කෝණයක් සාදයි නම්

OMCN ඍජුකෝණාසුයක් නිසා

$$\cos\theta = \frac{OM}{OC}$$
, OM = OC $\cos\theta = R\cos\theta$

$$\sin\theta = \frac{MC}{OC}$$
, $MC = OC \sin\theta = R\sin\theta = ON$

එම නිසා R බලයේ Ox හා Oy ඔස්සේ විභේදන සංරචක පිළිවෙළින් $R\cos\theta$ සහ $R\sin\theta$ වේ.

b. ලම්බක නොවූ විභේදනය

R යනු දෙන ලද බලයක් නම්, එම R බලය දෙන ලද OA හා OB දිශා ඔස්සේ විභේදනය කරමු. R බලය OC මඟින් නිරූපණය වේ.

 ${
m C}$ හරහා ${
m CM}$ හා ${
m CL}$ රේඛාව ${
m OA}$ ට හා ${
m OB}$ සමාන්තර ලෙස අඳින්න.

දුන් OLCM සමාන්තරාසුයක් වේ.

එම නිසා OL හා OM මඟින් R

බලයේ OA හා OB ඔස්සේ විභේදන සංරචක දක්වේ.

$$\hat{COA} = \alpha$$
 නම් සහ $\hat{COB} = \beta$ නම්

OLC තුිකෝණයට සයින් නියමය යෙදීමෙන්

$$\frac{OL}{\sin O\hat{C}L} = \quad \frac{LC}{\sin C\hat{O}L} = \frac{OC}{\sin O\hat{L}C}$$

$$\frac{OL}{\sin \beta} = \frac{LC}{\sin \alpha} = \frac{R}{\sin \left[180 - (\alpha + \beta)\right]}$$

$$\frac{OL}{\sin \beta} = \frac{LC}{\sin \alpha} = \frac{R}{\sin (\alpha + \beta)}$$

$$\mathrm{OL} = \, \frac{R \mathrm{sin} \, \beta}{\mathrm{sin} (\alpha + \beta)} \,, \qquad \qquad \mathrm{LC} \quad = \quad \frac{R \mathrm{sin} \, \alpha}{\mathrm{sin} (\alpha + \beta)} = \mathrm{OM} \,$$

එනම් OA හා OB දිශා ඔස්සේ විභේදන සංරචක පිළිවෙළින් $\frac{R\sin\beta}{\sin(\alpha+\beta)}, \frac{R\sin\alpha}{\sin(\alpha+\beta)}$ වේ.

උදාහරණ 4

(b)
$$\leftarrow$$
 X = $10\sin 30$, = $10 \times \frac{1}{2} = 5N$
 \uparrow Y = $10\cos 30 = 10 \times \frac{\sqrt{3}}{2} = 5\sqrt{3} N$

(c)
$$\leftarrow$$
 X = $5\sqrt{2}\cos 45 = 5\sqrt{2} \times \frac{1}{\sqrt{2}} = 5N$
 \downarrow Y = $5\sqrt{2}\sin 45 = 5\sqrt{2} \times \frac{1}{\sqrt{2}} = 5N$

(d)
$$\rightarrow$$
 X = $5\cos 75 = 5\left(\frac{\sqrt{3}-1}{2\sqrt{2}}\right)N$
 \downarrow Y = $5\sin 75 = 5\left(\frac{\sqrt{3}+1}{2\sqrt{2}}\right)N$

2.4 ලක්ෂායක් මත කිුිිිියා කරන ඒකතල බල පද්ධතියක සම්පුයුක්තය

 $\mathbf{O} x$ ඔස්සේ විභේදනයෙන්

$$\rightarrow X = P_1 \cos\alpha_1 + P_2 \cos\alpha_2 + P_3 \cos\alpha_3 + \dots + P_n \cos\alpha_n$$

$$\uparrow Y = P_1 \sin\alpha_1 + P_2 \sin\alpha_2 + P_3 \sin\alpha_3 + \dots + P_n \sin\alpha_n$$

R යනු සම්පුයුක්ත බලය නම්

$$R = \sqrt{X^2 + Y^2}$$
$$\tan \alpha = \frac{Y}{X}$$

උදාහරණ 5

පහත දක්වෙන බල පද්ධති (කුලකයක්) $\, {
m O} \,$ ලක්ෂාය මත කිුයා කරයි නම් එම බලවල සම්පුයුක්ත

 $\mathbf{O} x$ හා $\mathbf{O} y$ එකිනෙකට ලම්බක සහ $\mathbf{A} \mathbf{B}$ හා $\mathbf{C} \mathbf{D}$ එකිනෙකට ලම්බක වේ.

(a) Ox ඔස්සේ විභේදනය කිරීමෙන්

$$X = 2\sqrt{3}\cos 30 - 6\cos 60 - 2 + 3\sqrt{2}\cos 45$$
$$= 3 - 3 - 2 + 3 = 1$$

 $\mathrm{O}y$ ඔස්සේ විභේදනය කිරීමෙන්

$$Y = 3 + 2\sqrt{3} \sin 30 + 6\sin 60 - 3\sqrt{2} \sin 45$$

$$= 3 + \sqrt{3} + 3\sqrt{3} - 3 = 4\sqrt{3}$$

$$R^{2} = X^{2} + Y^{2} = (4\sqrt{3})^{2} + 1^{2} = 49$$

$$R = 7, \tan \alpha = 4\sqrt{3}$$

(b) BA ඔස්සේ විභේදනය කිරීමෙන්

$$X = \sqrt{3} + 4\sin 60 - 6\cos 30$$
$$= \sqrt{3} + 2\sqrt{3} - 3\sqrt{3} = 0$$

DC ඔස්සේ විභේදනය කිරීමෙන්

$$Y = 5 - 4\cos 60 + 6\sin 30$$
$$= 5 - 2 + 3 = 6$$

එම නිසා 6N සම්පුයුක්ත බලය DC ඔස්සේ කිුයා කරයි.

උදාහරණ 6

ABCDEF යනු සවිධි ෂඩසුයකි. විශාලත්වයෙන් $2,\ 4\sqrt{3}\ ,\ 8,\ 2\sqrt{3}$ සහ 4 නිව්ටන් වන බල A ලක්ෂායේ දී පිළිවෙළින් AB,AC,AD,AE සහ AF දිශා ඔස්සේ කිුිිිියා කරයි. සම්පුයුක්ත බලය සොයන්න.

 $\hat{BAE} = 90^{\circ}$

AB සහ AE පිළිවෙළින් x හා y අකුපය ලෙස ගනිමු.

AB ඔස්සේ විභේදනයෙන්

$$X = 2 + 4\sqrt{3}\cos 30 + 8\cos 60 - 4\cos 60$$
$$= 2 + 6 + 4 - 2 = 10$$

$$Y = 4\sqrt{3}\sin 30 + 8\sin 60 + 2\sqrt{3} + 4\sin 60$$
$$= 2\sqrt{3} + 4\sqrt{3} + 2\sqrt{3} + 2\sqrt{3} = 10\sqrt{3}$$

$$R^{2} = X^{2} + Y^{2} = 10^{2} + (10\sqrt{3})^{2}$$

$$= 400$$

$$R = 20N$$

$$\tan \alpha = \frac{10\sqrt{3}}{10} = \sqrt{3}; \qquad \alpha = 60^{\circ}$$

එම නිසා සම්පුයුක්ත බලය 20N වන අතර එය AD ඔස්සේ කිුයා කරයි.

2.5 ලක්ෂායක් මත කිුිිියා කරන ඒකතල බල පද්ධතියක සමතුලිතතාව

 P_1, P_2, P_3 P_n යන ඒකතල බල පද්ධතියක් O ලක්ෂායේ දී කිුියා කරයි නම් Ox හා Oy යනු එකිනෙකට ලම්බක අසෂ දෙකක් නම් ද $P_1, P_2, P_3,$ P_n බල Ox අසෂායේ ධන දිශාව සමඟ $\alpha_1, \, \alpha_2, \, \alpha_3,$ α_n කෝණ සාදයි නම්

 $\mathbf{O} x$ ඔස්සේ බල විභේදනය කිරීමෙන්

$$\rightarrow X = P_1 \cos \alpha_1 + P_2 \cos \alpha_2 + \dots + P_n \cos \alpha_n$$

$$\uparrow Y = P_1 \sin \alpha_1 + P_2 \sin \alpha_2 + \dots + P_n \sin \alpha_n$$

$$R = X^2 + Y^2$$

අංශුව සමතුලිත නම් සම්පුයුක්ත බලය ${
m R}={
m O}$ වේ.

$$R = 0 \implies X = 0,$$
 $Y = 0$ $(X^2 > 0, Y^2 > 0)$ නිසා)

උදාහරණ 7

ABCDEF යනු සවිධි ෂඩසුයකි. විශාලත්වය 2, P, 5, Q හා 3 වන බල පිළිවෙළින් AB, CA, AD, AE සහ FA ඔස්සේ කිුිියා කරයි. බල පද්ධතිය සමතුලිත නම් P හා Q බල සොයන්න.

AB ඔස්සේ විභේදනයෙන්

$$X = 2 - P\cos 30 + 5\cos 60 + 3\cos 60$$

$$= 2 - \frac{\sqrt{3}P}{2} + \frac{5}{2} + \frac{3}{2}$$

$$= 6 - \frac{\sqrt{3}P}{2}$$

$$Y = Q - P\sin 30 + 5\sin 60 - 3\sin 60$$

$$= Q - \frac{P}{2} + \sqrt{3}$$

බල පද්ධතිය සමතුලිතතාවයේ ඇත්නම්

$$X = 0, Y = 0$$

$$X = 0 \Rightarrow 6 - \frac{P\sqrt{3}}{2} = 0; P = \frac{12}{\sqrt{3}} = 4\sqrt{3} N$$

$$Y = 0 \Rightarrow Q - \frac{P}{2} + \sqrt{3} = 0$$

$$Q - 2\sqrt{3} + \sqrt{3} = 0$$

$$Q = \sqrt{3}N$$

^{*} අනිවාර්ය අවශාතාව නම් අංශුව මත කි්යාකරන බල එකිනෙකට සමාන්තර නොවන දිශා දෙකක් ඔස්සේ විභේදන කොටස්වල එකතුව ශුනා විය යුතු වීම යි.

2.6 අංශුවක් මත ඒකතල බල තුනක් කිුයා කරන අවස්ථාව

1. බල තිකෝණය

අංශුවක් මත බල තුනක් කිුයා කරයි නම් හා එම බල විශාලත්වය හා දිශාව අතින් තිුකෝණයක අනුපිළිවෙළින් ගත් පාද මඟින් නිරූපණය කළ හැකි නම් අංශුව සමතුලිත වේ.

 $L,\,M,\,N$ යනු O ලක්ෂායේ දී කිුයා කරන බල තුනක් නම් හා ඒවා පිළිවෙළින් $BC,\,CA,\,AB$ (විශාලත්වය හා දිශාව) අතින් ABC තිුකෝණයක නිරූපණය කළ හැකි නම් $L,\,M,\,N$ බල සමතුලිත වේ.

BCAD සමාන්තරාසුය සම්පූර්ණ කිරීමෙන්

 $BD = CA, BD \parallel CA$

 BD රේඛාව මඟින් M බලයේ විශාලත්වය හා දිශාව නිරූපණය වේ.

බල සමාන්තරාසු පුමේයයෙන් $oldsymbol{\mathrm{M}}$ හා $oldsymbol{\mathrm{L}}$ හි සම්පුයුක්තය $\overline{oldsymbol{\mathrm{BA}}}$ මඟින් නිරූපණය කරයි.

එනම් ; $\mathrm{BA} = \mathrm{N}$ සහ එහි දිශාව N ට පුතිවිරුද්ධ වේ.

R=N නම් සහ දිශාවෙන් පුතිවිරුද්ධ ව O හි දී කිුයා කරයි

L, M, N බල සමතුලිත වේ.

නැතිනම්,

ලෛශික භාවිතයෙන් $\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}$ = $\overrightarrow{\mathrm{BA}}$

$$(\overrightarrow{BC} + \overrightarrow{CA}) + \overrightarrow{AB} = \overrightarrow{BA} + \overrightarrow{AB} = \underline{0}$$

බල තුනෙහි දෛශික එකතුව ශූනා වේ. එම නිසා ලඤා මත කිුයා කරන බල තුන සමතුලිත වේ.

2. බල තිකෝණ නියමයේ විලෝමය

අංශුවක් බල තුනක කිුිිිිිිිිිිිි යටතේ සමතුලිත වේ නම් එම බල විශාලත්වයෙන් හා දිශාවෙන් තිුිකෝණයක අනුපිළිවෙළින් ගත් පාද මඟින් නිරූපණය කළ හැකි ය.

L,M සහ N යනු අංශුවක් මත කිුිිිියා කරන බල තුනක් වේ. ඒවා සමතුලිත වේ.

L, M, N බල O ලඎයේ දී කිුයා කරයි නම් හා ඒවා පිළිවෙළින් OA, OB, OC ඔස්සේ (විශාලත්වය හා දිශාව) නිරූපණය කරමු.

OADB සමාන්තරාසුය නිර්මාණය කරමු. එවිට බල සමාන්තරාසු පුමේයය භාවිතයෙන් Lහි හා Mහි සම්පුයුක්ත බලය R, OD ඔස්සේ නිරූපණය කරයි. L, M සහ N බල සමතුලිත නම් R හා N සමතුලිත වේ.

එනම් $\mathbf{R}=\mathbf{N}$ නම් සහ ඒවා දිශාවෙන් පුතිවිරුද්ධ වේ.

 OAD තිකෝණයේ , L බලය OA මඟින් ද M බලය AD මඟින් ද N බලය DO මඟින් ද නිරූපණය වේ.

3. ලාමිගේ පුමේයය

අංශුවක් බල තුනක් යටතේ සමතුලිත ව ඇත්නම් එක් එක් බලය අනෙක් බල දෙක අතර කෝණයේ සයින් අගයට සමානුපාතික වේ.

L,M,N බල සමතුලිත නම්

$$\frac{L}{sin\;B\hat{O}C} = \frac{M}{sin\;C\hat{O}A} = \frac{N}{sin\;A\hat{O}B}$$

මෙම පුමේයය පහසුවෙන් සාධනය කළ හැකිය.

තිුකෝණයක් සඳහා සයින් නියමය භාවිතයෙන්

L, M, N බල තිකෝණය AOD තිකෝණයේ පාද මඟින් නිරූපණය කළ හැකිය. AOD තිකෝණයේ

$$\frac{OA}{\sin O\hat{D}A} = \frac{AD}{\sin D\hat{O}A} = \frac{DO}{\sin O\hat{A}D}$$

$$\frac{L}{\sin B\hat{O}C} = \frac{M}{\sin C\hat{O}A} = \frac{N}{\sin A\hat{O}B}$$

4. බල බහුඅසුය

අංශුවක් මත බල සමූහයක් කිුිිියා කරන්නේ නම් හා එම බල විශාලත්වය හා දිශාව අතින් බහුඅසුයක අනුපිළිවෙළින් ගත් පාද මඟින් නිරූපණය කළ හැකි නම් එම බල සමූහය යටතේ එම අංශුව සමතුලිත වේ.

 $P_1, P_2, P_3, \dots P_n$ බල අංශුවක් මත කිුයා කරයි නම් හා එම බල $BA_1A_2A_3$ A_n බහුඅසුයේ පිලිවෙළින්.

$$BA_1, A_1A_2, A_2A_3, \dots A_{n-1}A_n, A_nB$$

පාද මඟින් දක්විය හැකි නම් එවිට බල සමතුලිතව පවතී.

$$\overrightarrow{BA}_1 + \overrightarrow{A_1A}_2 = \overrightarrow{BA}_2$$

$$\overrightarrow{BA}_1 + \overrightarrow{A}_1 \overrightarrow{A}_2 + \overrightarrow{A}_2 \overrightarrow{A}_3 = \overrightarrow{BA}_2 + \overrightarrow{A}_2 \overrightarrow{A}_3 = \overrightarrow{BA}_3$$

දෛශික ආකලනය මඟින්

$$\overrightarrow{BA}_1 + \overrightarrow{A_1A}_2 + \overrightarrow{A_2A}_3 + \dots + \overrightarrow{A_{n-1}A}_n + \overrightarrow{A_nB} = 0$$

ආතතිය

තත්තුවක බර දෙන ලද ගැටළුවේ අතෙකුත් බර හා සසඳන විට නොසැලකිය හැකි තරම් කුඩා නම් එම තත්තුව ලුහු තත්තුවක් ලෙස හැදින්වේ. තත්තුවක් මඟින් වස්තුව මත යොදන බලය ආතතිය ලෙස හඳුන්වන අතර එය තත්තුව දිගේ කිුියා කරයි.

ආතතිය

සැහැල්ලු තන්තුවක ආතතිය ආසන්න ලෙස තන්තුව දිගේ ඒකාකාර වේ. තන්තුව බර නම් තන්තුවේ ආතතිය තන්තුව දිගේ ලඤායෙන් ලඤායට වෙනස් වේ.

සුමට පෘෂ්ඨය

වස්තු එකිනෙක ස්පර්ශ වී ඇති විට එම වස්තු මත කිුයා කරන එකම බලය වන්නේ අභිලම්භ ස්පර්ශක පුතිකිුයාව නම් එම අභිලම්බ පුතිකිුයාව ඔවුන්ගේ පොදු ස්පර්ශක තලයට ලම්බක වේ නම් සුමට වස්තු දෙකක් ගැටී ඇති විට අභිලම්බ පුතිකිුයාව අංශුව චලනය වීමට පුයත්න දරන දිශාවට ලම්බ වේ.

දණ්ඩ හා සුමට බිම අතර පුතිකිුයාව R_1 නම් එය සුමට බිමට ලම්බක වෙයි. දණ්ඩ හා සුමට බිත්තිය අතර පුතිකිුයාව R_2 නම් එය බිත්තියට ලම්බක වේ. මෙහි R_1 , අභිලම්බ පුතිකිුයා වේ.

දණ්ඩක් සුමට නා දත්තක් හා ගැටී සමතුලිත වන විට පුතිකිුිිිිියාව \mathbf{S} දණ්ඩට ලම්බ වේ.

2.7 විසඳු නිදසුන්

උදාහරණය 8

බර W වන අංශුවක් AB ලුහු තන්තුවක B කෙළවරට ගැට ගසා අනෙක් කෙළවර අචල ලක්ෂායකට සවි කර ඇත. අංශුව මත P තිරස් බලයක් B හි දී යෙදූ විට තන්තුව සිරසට lpha කෝණයක් සාදමින් සමතුලිතතාවයේ ඇත්නම් තන්තුවේ ආතතිය ද Pහි අගය ද W හා lpha ඇසුරෙන් සොයන්න.

කුමය (I)

අංශු මත කිුිිියා කරන බල

- i. බලය W (සිරස් ව පහළට)
- ii. බලය P (තිරස් ව)
- iii. තන්තුවේ ආතතිය T (තන්තුව ඔස්සේ)

අංශුවේ සමතුලිතතාවය සඳහා

බල සිරස් ව විභේදනයෙන්

$$\uparrow$$
 Tcos α - W = 0 \Rightarrow

$$T = \frac{W}{\cos \alpha}$$

බල තිරස්ව විභේදනයෙන්

$$\rightarrow$$
 P-Tsin $\alpha = 0$

$$P = Tsin\alpha = Wtan\alpha$$

කුමය II (බල තිකෝණ පුමේයයෙන්)

T,W,P බල තුන අංශුව මත කිුයා කරයි නම් හා අංශුව සමතුලිතතාවේ ඇත්නම් BAC තිුකෝණය සැලකීමෙන්

BA මඟින් තන්තුවේ ආතතිය T නිරූපණය කළ හැකිය.

AC මඟින් බර W නිරූපණය කරයි

CB මඟින් P බලය නිරූපණය කරයි

$$\frac{T}{BA} = -\frac{W}{AC} = -\frac{P}{CB}$$

$$\frac{T}{BA} = \frac{W}{AC}$$
; $T = W \times \frac{BA}{AC} = \frac{W}{\cos \alpha}$

$$\frac{W}{AC} = -\frac{P}{CB}, \quad P = W \times \frac{CB}{AC} = W tan\alpha$$

T

කුමය III (ලාමිගේ පුමේයයෙන්)

$$\frac{T}{\sin 90} = \frac{W}{\sin(90+\alpha)} = \frac{P}{\sin(180-\alpha)}$$

$$\frac{T}{1} = \frac{W}{\cos \alpha} = \frac{P}{\sin \alpha}$$

$$T = \frac{W}{\cos \alpha}$$
, $P = W \tan \alpha$

උදාහරණය 9

බර W වන අංශුවක් ලුහු OA හා OB තන්තු දෙකක O කෙලවරවලට සම්බන්ධ කර ඇත. එම තන්තුවල දිග පිළිවෙළින් $50~{
m cm}$, $120~{
m cm}$ වේ. තන්තුවල අනෙකුත් A හා B අගු එකම තිරස් මට්ටමේ ඇති ලක්ෂා දෙකකට සම්බන්ධ කර ඇත්තේ A හා B අතර පරතරය $130~{
m cm}$ වන පරිදි ය. තන්තුවල ආතතිය සොයන්න.

$$OA^2 + OB^2 = 50^2 + 120^2 = 130^2 = AB^2$$

එම නිසා $\angle AOB = 90^\circ$

$$\hat{OAB} = \alpha$$
 නම $\cos \alpha = \frac{5}{13}$, $\sin \alpha = \frac{12}{13}$

O ලක්ෂායේ දී කිුයා කරන බල

- i. W බර (සිරස් ව පහළට)
- ii. ආතතිය $T_{_1}\left(OA\;$ තත්තුව දිගේight)
- iii. ආතතිය $T_{\gamma}(OB$ තන්තුව දිගේ)

අංශුවේ සමතුලිතතාව සඳහා

බල ති්රස් ව විභේදනයෙන්

බල සිරස් ව විභේදනයෙන්

කුමය II (බල තිකෝණයෙන්)

AC සිරස් වේ. BO, C තෙක් දික් කර ඇත.

OAC තිකෝණයෙන් සැලකීමෙන්

$$T_{1} \longrightarrow OA$$

$$W \longrightarrow AC$$

$$T_{2} \longrightarrow CO$$

බල තිකෝණ නියමයෙන්

$$\frac{T_1}{OA} = \frac{W}{AC} = \frac{T_2}{CO}$$

$$T_1 = W.\frac{OA}{AC} = W\sin\alpha = \frac{12W}{13}$$

$$T_2 = W.\frac{OC}{AC} = W\cos\alpha = \frac{5W}{13}$$

කුමය III (ලාමිගේ පුමේයය)

$$\frac{W}{\sin 90} = \frac{T_1}{\sin(180-\alpha)} = \frac{T_2}{\sin(90+\alpha)}$$

$$\frac{W}{1} = \frac{T_1}{\sin \alpha} = \frac{T_2}{\cos \alpha}$$

$$T_1 = W \sin \alpha = \frac{12W}{13}$$

$$T_2 = W\cos\alpha = \frac{5W}{13}$$

උදාහරණය 10

බර W වන අංශුවක් තිරසට lpha කෝණයකින් ආනත සුමට තලයක තබා ඇත.

- i. ආනත තලය ඔස්සේ අංශුවට යෙදූ බලයක් මඟින්
- ii. තිරස් ව අංශුවට යෙදු බලයක් මඟින්

අංශුව සමතුලිතව පවතින විට එම බලයේ විශාලත්වය සොයන්න.

- i. අංශුව මත කුියා කරන බල
 - a) බර W (සිරස් ව පහළට)
 - b) අභිලම්බ පුතිකිුයාව R (තලයට ලම්බක වේ)
 - c) P බලය (තලය ඔස්සේ)

කුමය I

අංශුවේ සමතුලිතතාව සඳහා ආනත තලය ඔස්සේ බල විභේදනයෙන්

$$P - W \sin \alpha = 0; \quad P = W \sin \alpha$$

ආනත තලයට ලම්බකව බල විභේදනයෙන්

$$R - W\cos\alpha = 0$$

$$R = W\cos\alpha$$

කුමය II (බල තිකෝණයෙන්)

ABC තිකෝණය සැලකීමෙන්

- (ii). අංශුව මත කිුියා කරන බල
 - a) බර W (සිරස් ව පහළට)
 - b) අභිලම්බ පුතිකිුයාව S (තලයට ලම්බක වේ)
 - c) තිරස් බලය Q

කුමය I

අංශුවේ සමතුලිතතාවය සලකා,

තලයට සමාන්තර ව බල විභේදනය කිරීමෙන්,

$$Q\cos\alpha - W\sin\alpha = 0$$

බල සිරසට විභේදනයෙන්

$$\uparrow S \cos \alpha - W = O$$

$$S = \frac{W}{\cos \alpha}$$

කුමය II (බල තිුකෝණය)

LMN තුිකෝණය සලකා බලමු

- i) බර W ——> LM
- ii) අභිලම්බ පුතිකිුයාව S \longrightarrow MN
- iii) තිරස් බලය $Q \longrightarrow NL$

බල තිුකෝණ නියමයෙන්

$$\frac{W}{LM} = \frac{S}{MN} = \frac{Q}{NL}$$

$$Q = W \frac{NL}{LM} = W tan\alpha$$

$$S = W \frac{MN}{LM} = \frac{W}{\cos \alpha} = W \sec \alpha$$

උදාහරණය II

බර W වන අංශුවක් තන්තු දෙකක් මඟින් එල්ලා ඇත. එක් තන්තුවක් සිරස සමඟ $lpha\,(0 < lpha < rac{\pi}{2})$ කෝණයක් සාදයි. අනෙක් තන්තුවේ ආතතිය අඩුතම වන පරිදි එම තන්තුව සිරස සමඟ සාධන කෝණය සොයන්න. මෙම අවස්ථාවේ දී තන්තු දෙකේ ආතති සොයන්න.

අංශුව මත කිුිිියා කරන බල

- i) අංශුවේ බර W (සිරස් ව පහළට)
- ii) ආතතිය $T_{_1}$ (සිරසට lpha කෝණයකින් ආනත)
- $f{iii}$) ආතතිය $f{T}_2$ (අනෙක් තන්තුවේ අතතිය අවම විය යුතු යි)

අංශුවේ සමතුලිතතාව ය සඳහා බල තුනක් කිුියාත්මක වී ඇත.

පළමු ව W බලය නිරූපණය කිරීම සඳහා AB සිරස් රේඛාව අඳින්න.

ඉන් පසු BL රේඛාව සිරස සමඟ lpha කෝණයක් සැදෙන සේ ඇදීමෙන්

 $egin{array}{l} T_1^{}$ ආතතියේ දිශාව නිරූපණය කරයි. අඩුතම $egin{array}{l} T_2^{}$ සඳහා AC රේඛාව BL ට ලම්බ ව අඳින්න.

දැන් T_2 ආතතිය CA දිග මඟින් විශාලත්වය හා දිශාව අතින් නිරූපණය වේ.

$$\begin{array}{ccc} W & \longrightarrow AB \\ T_1 & \longrightarrow BC \\ T_2 & \longrightarrow CA \end{array}$$

බල තිකෝණ නියමයෙන්

$$\frac{W}{AB} = \frac{T_1}{BC} = \frac{T_2}{CA}$$

$$T_1 = W\cos\alpha$$

 $T_2 = W\sin\alpha$

දෙවන තන්තුවේ ආතතියේ (T_{γ}) දිශාව පළමු තන්තුවට ලම්බ වේ.

අංශුවේ සමතුලිතතාව සඳහා, ලාමීගේ පුමේය භාවිතයෙන්,

$$\frac{W}{\sin(\alpha+\theta)} = \frac{T_1}{\sin(180-\theta)} = \frac{T_2}{\sin(180-\alpha)}$$

$$T_1 = \frac{W \sin \theta}{\sin(\alpha + \theta)}$$
, $T_2 = \frac{W \sin \alpha}{\sin(\alpha + \theta)}$

අඩුතම $T_2^{}$ සඳහා $\sin(\alpha\!+\!\theta)$ අගය 1 විය යුතු ය.

[එනම් $\sin(lpha + heta)$ අගය උපරිම විය යුතු ය]

එනම්
$$(\alpha+\theta)=rac{\pi}{2}$$
 විය යුතුයි.

$$T_1 = W \sin\theta = W \sin\left[\frac{\pi}{2} - \alpha\right] = W \cos\alpha$$

$$T_2 = W \sin \alpha$$

$$T_{\gamma}$$
 දිශාව T_{1} ට ලම්බක වේ.

උදාහරණය 12

අපුතාස්ත $A \ BCD$ තත්තුවක දෙකෙළවර A හා D එක ම තිරස් මට්ටමේ පිහිටි ලඎා දෙකකට සවිකර ඇත. W හා 3W වන බාර දෙකක් පිළිවෙළින් B හා C ලෲාවලින් එල්ලා ඇත. AB හා CD තත්තු කොටස් පිළිවෙළින් සිරස සමඟ 60° හා 30° කෝණ සාදයි. BC තත්තුව තිරස් බව පෙන්වා AB, BC හා CD කොටස්වල ආතති සොයන්න.

BC රේඛාව තිරස සමඟ lpha කෝණයක් සාදන්නේ යයි ගනිමු.

Bවල සමතුලිතතාව සඳහා

ලාමිගේ පුමේයය භාවිතයෙන්

$$\frac{T_2}{\sin 120} = \frac{T_1}{\sin(90 - \alpha)} = \frac{W}{\sin(150 + \alpha)}$$

$$\frac{T_2}{\sin 60} = \frac{T_1}{\cos \alpha} = \frac{W}{\sin(30-\alpha)} \qquad \dots$$

C වල සමතුලිතතාව සඳහා

$$\frac{T_2}{\sin 150} = \frac{T_3}{\sin (90+\alpha)} = \frac{3W}{\sin (120-\alpha)}$$

$$\frac{T_2}{\sin 30} = \frac{T_3}{\cos \alpha} = \frac{3W}{\sin(60+\alpha)} \qquad (2)$$

(1) හා (2) න්

$$T_2 = \frac{Wsin60}{sin(30-\alpha)} = \frac{3Wsin30}{sin(60+\alpha)}$$

 $\sin 60.\sin(60 + \alpha) = 3\sin 30.\sin(30 - \alpha)$

$$\frac{\sqrt{3}}{2} \left[\frac{\sqrt{3}}{2} \cos\alpha + \frac{1}{2} \sin\alpha \right] = \frac{3}{2} \left[\frac{1}{2} \cos\alpha - \frac{\sqrt{3}}{2} \sin\alpha \right]$$

$$\sqrt{3}\cos\alpha + \sin\alpha = \sqrt{3}\cos\alpha - 3\sin\alpha$$

$$4\sin\alpha = 0$$
; $\sin\alpha = 0$; $\alpha = 0$

එම නිසා BC තිරස් වේ.

$$(1)$$
න් $T_1 = \frac{W}{\sin 30} = 2W$

$$(1)$$
 න් $T_2 = \frac{W \sin 60}{\sin 30} = \sqrt{3} W$

$$(2)$$
 න් $T_3 = \frac{3W}{\sin 60} = 2\sqrt{3}$

උදාහරණය 13

- (a) බල $F_1=4\underline{i}+2\underline{j}$, $F_2=2\underline{i}-5\underline{j}$ සහ $F_3=-\underline{i}+\underline{j}$ ලක්ෂායක් මත කිුිිියා කරයි. මෙම බල තුනේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව සොයන්න.
- (b) A,B හා C ලක්ෂාවල ඛණ්ඩාංක පිළිවෙළින් $A(2,3),\,B(5,7)$ සහ $C(ext{-}3,15)$ නම්
 - \overrightarrow{AB} හා \overrightarrow{AC} ඉදෙශික $\overrightarrow{\underline{i}}, \overrightarrow{\underline{j}}$ ඇසුරෙන් සොයන්න.
 - $\stackrel{.}{\text{ii.}}$ $\stackrel{.}{\underline{F}}_1$ හා $\stackrel{.}{\underline{F}}_2$ බලවල විශාලත්වය පිළිවෙළින් $20~\mathrm{N}$ හා $65~\mathrm{N}$ වන අතර A ලක්ෂායේ දී AB හා AC දිගේ කුියා කරයි. සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව සොයන්න.

 $(\ \mathbf{O}x\ \mathbf{v})$ $\mathbf{O}y$ ඛණ්ඩාංක අසා ඔස්සේ ඒකක දෛශික පිළිවෙළින් \underline{i} හා \underline{j} වේ.)

(a)
$$\underline{R} = \underline{F}_1 + \underline{F}_2 + \underline{F}_3$$

$$= (4\underline{i} + 2\underline{j}) + (2\underline{i} - 5\underline{j}) + (-\underline{i} + \underline{j})$$

$$= 5\underline{i} - 2\underline{j}$$

$$|\underline{R}| = \sqrt{5^2 + (-2)^2} = \sqrt{29}$$

$$\tan \alpha = \frac{2}{5} \Rightarrow \alpha = \tan^{-1}\left(\frac{2}{5}\right)$$

b)
$$A = (2,3), B = (5,7), C = (-3,15)$$

$$\overrightarrow{OA} = 2\underline{i} + 3\underline{j}, \overrightarrow{OB} = 5\underline{i} + 7\underline{j},$$

$$\overrightarrow{OC} = -3\underline{i} + 15\underline{j}$$

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$= (5\underline{i} + 7\underline{j}) - (2\underline{i} + 3\underline{j})$$

$$= 3\underline{i} + 4\underline{j}$$

$$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA}$$

$$= (-3\underline{i} + 15\underline{j}) - (2\underline{i} + 3\underline{j})$$

$$= -5\underline{i} + 12\underline{j}$$

 $\overrightarrow{\mathrm{AB}}$ ඔස්සේ ඒකක ඉදෙශිකය $\frac{1}{5} \left(3 \underline{\pmb{i}} + 4 \underline{\pmb{j}} \right)$

 \overrightarrow{AC} ඔස්සේ ඒකක දෛශිකය $\frac{1}{13} \left(-5 \underline{\pmb{i}} + 12 \underline{\pmb{j}} \right)$

$$F_{1} = 20 \times \frac{1}{5} (3\underline{i} + 4\underline{j})$$

$$= 12\underline{i} + 16\underline{j}$$

$$F_{2} = 65 \times \frac{1}{13} (-5\underline{i} + 12\underline{j})$$

$$= -25\underline{i} + 60\underline{j}$$

සම්පුයුක්තය
$$\underline{\mathbf{R}} = \underline{\mathbf{F}}_1 + \underline{\mathbf{F}}_2$$

$$= (12\underline{i} + 16\underline{j}) + (-25\underline{i}$$

$$= -13\underline{i} + 76\underline{j}$$

$$|\underline{\mathbf{R}}| = \sqrt{(-13)^2 + 76^2}$$

$$\theta = \tan^{-1}\left(\frac{76}{-13}\right)$$

2.8 අභාගාසය

P සහ Q බල දෙක O ලක්ෂායක දී එකිනෙකට θ කෝණයකින් ආනතව කිුිියා කරයි. R යනු සම්පුයුක්ත බලය ද α යනු R සහ P අතර කෝණය ද වේ.

a) $P = 6, Q = 8, \theta = 90^{\circ};$

R සහ α සොයන්න.

b) $P = 10, Q = 8, \theta = 60^{\circ};$

R සහ α සොයන්න.

c) $P = 15, Q = 15\sqrt{2}, \theta = 135^{\circ};$

R සහ α සොයන්න.

d) $P = 8, R = 7, \theta = 120^{\circ};$

Q සහ α සොයන්න.

e) P = 7, R = 15, $\theta = 60^{\circ}$;

Q සහ α සොයන්න.

2. F සහ 2F බල දෙකක් අංශුවක් මත කිුිිිිිිිිිි කරයි. සම්පුයුක්ත බලය F බලයට ලම්බක වේ. බල දෙක අතර කෝණය සොයන්න.

3. නිව්ටන් P සහ 2P වන බල අංශුවක් මත කිුයා කරයි. පළමු බලය දෙගුණ කර දෙවන බලය නිව්ටන් 10කින් ඉහළ දමූ විට නව සම්පුයුක්ත බලයේ දිශාව වෙනස් නොවූයේ නම් Pවල අගය සොයන්න.

4. අංශුවක් මත P සහ Q බල දෙකක් එකිනෙකට θ කෝණයක් සාදමින් කියා කරයි. θ හි අගය 60° වන විට සම්පුයුක්ත බලය $\sqrt{57}~N$ හා θ කෝණය 90° වන විට සම්පුයුක්ත බලය $5\sqrt{2}~N$ නම් Pහි හා Qහි අගයන් සොයන්න.

5. එක සමාන බල දෙකක් එකිනෙකට 2θ කෝණයකින් ආනත ව කිුයා කරන විට බල දෙකේ සම්පුයුක්තයේ විශාලත්වය, එම බල දෙක 2α කෝණයකින් ආනතව කිුයාකරන විට සම්පුයුක්ත බලයේ විශාලත්වය මෙන් දෙගුණයක් නම් $\cos\theta = 2\cos\alpha$ බව පෙන්වන්න.

6. අංශුවක් මත P සහ Q බල දෙකක් θ කෝණයක් සාදමින් කිුිිියා කරයි. සම්පුයුක්ත බලයේ විශාලත්වය P වේ. නැවත P බලය දෙගුණ කළ විට අලුත් සම්පුයුක්ත බලයේ විශාලත්වය P නම් Q බලය විශාලත්වය P හා θ ඇසුරින් පුකාශ කරන්න.

7. $P, P, \sqrt{3} P$ යන බල අංශුවක් මත කිුියා කරමින් සමතුලිතතාවයේ ඇත. එම බල අතර කෝණ සොයන්න.

8. P හා Q බලවල සම්පුයුක්ත බලය $\sqrt{3}\,Q$ වන අතර 30° කෝණයක් P සමඟ සාදයි නම් P=Q හෝ P=2Q බව පෙන්වන්න.

9. ABCD යනු සමචතුරසුයකි. $P,\ 2\sqrt{2}\ P\ , 2P$ බල A ලක්ෂායේ දී පිළිවෙළින් AB,AC,AD ඔස්සේ කියා කරයි. සම්පුයුක්ත බලයේ විශාලත්වය සොයන්න.

10. ABCD සෘජුකෝණාසුයකි. $AB=3m,\,BC=5\,m$ වේ. නිව්ටත් $6,\,10,\,12\,$ බල A ලක්ෂායේ දී පිළිවෙළින් AB,AC,AD ඔස්සේ කියා කරයි. සම්පුයුක්ත බලයේ විශාලත්වය සොයන්න.

11. ABCDEF යනු සවිධි ෂඩසුයකි. B ලක්ෂායේ දී $2\sqrt{3}$, 4, $8\sqrt{3}$, 2 සහ $\sqrt{3}$ පිළිවෙළින් BC, BD, EB, BF සහ AB ඔස්සේ කිුයා කරයි නම් සම්පුයුක්ත බලයේ විශාලත්වය සොයන්න.

- 12. ABCD යනු සමචතුරසුයක් වේ. BC සහ CD රේඛාවල මධා ලක්ෂා පිළිවෙළින් E සහ F වේ. 5, $2\sqrt{5}$, $5\sqrt{2}$, $4\sqrt{5}$, 1 බල A ලක්ෂායේ දී පිළිවෙළින් AB, AE, CA, AF, AB ඔස්සේ කියා කරයි. සම්පුයුක්ත බලයේ විශාලත්වය සොයන්න.
- 13. ABCD යනු පාදයක දිග 4 cm වන සමචතුරසුයකි. E, F, G, සහ J ලක්ෂා පිළිවෙළින් AB, BC, CD, DA පාද මත පිහිටා ඇත්තේ AE = BF = CG = HD = DJ = 1 cm H ලක්ෂාය CD මත පිහිටා ඇත්තේ GH = 2 cm වන පරිදිය. විශාලත්වය ඒකක $10,\ 3\sqrt{10}$, $2\sqrt{5}$, $10,\ \sqrt{10}$, 5 බල E ලක්ෂායේ දී පිළිවෙළින් EB, EF, EG, EH, EJ, EA ඔස්සේ කියා කරයි. සම්පුයුක්ත බලයේ විශාලත්වය සොයන්න.
- 14. ABCයනු සමපාද තිකෝණයක් වන අතර G යනු කේන්දුය වේ. $10,\,10$ සහ 20 බල G ලසායේ දී පිළිවෙළින් GA,GB සහ GC ඔස්සේ කියා කරයි. සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව සොයන්න.
- 15. බර 50~N වන A අංශුවක් දිග පිළිවෙළින් 60~cm සහ 80~cm වන සැහැල්ලු අවිතනා තත්තු දෙකකින් එල්ලා ඇත්තේ එකම තිරස් මට්ටමේ එකිනෙකට 100~cm ඇතින් පිහිටි ලස්ෂා දෙකකට තන්තුවල නිදහස් කෙළවරවල් සම්බන්ධ කිරීමෙනි. තන්තුවල ආතතිය සොයන්න.
- 16. බර $100~{
 m N}$ වන ${
 m A}$ අංශුවක් තිරසට 60කින් ආනත සුමට පෘෂ්ඨයක තබා ඇත. අංශුව සමතුලිත ව තැබීම සඳහා
 - (a) ආනත තලයට සමාන්තර ව
 - (b) තිරස් ව
 - යෙදිය යුතු බලය සොයන්න.
- 17. බර 30~N වන A අංශුවක් එක ම තිරස් මට්ටමේ 60~cm කින් ඇතින් පිහිටි A හා B ලක්ෂා දෙකකට ඇඳා ඇත්තේ පිළිවෙළින් 35~cm සහ 50~cm වන සැහැල්ලු අවිතනා තන්තු දෙකක් මඟිනි. තන්තුවල ආතතිය සොයන්න.
- 18. දිග $120\ cm$ වන සැහැල්ලු අවිතනා තන්තුවක් එක ම තිරස් මට්ටමේ එකිනෙකට $60\ cm$ ඇතින් පිහිටි A හා B ලඤා දෙකකට ගැට ගසා ඇත. බර $50\ N$ වන මුඳුවකට තන්තුව ඔස්සේ නිදහසේ ගමන් කළ හැකිය. තිරසට යෙදූ F බලයක් මඟින් මුඳුව B ලඤායට සිරස් ව පහළින් සිටින සේ සමතුලිතතාවයේ පවතී නම් තන්තුවේ ආතතියද, F බලයේ විශාලත්වය ද සොයන්න.
- 19. තන්තුවක් එක ම තිරස් මට්ටමේ ඇති ලක්ෂා දෙකකට ගැට ගසා ඇත. බර නිවුටන් W වන මුඳුවක් තන්තුව දිගේ නිදහසේ චලිත වේ. මුඳුව තිරස් F N බලයක් මඟින් අදිනු ලැබේ. සමතුලිත පිහිටීමේ දී එක් එක් කොටස සිරස සමඟ සාදන කෝණය 60° සහ 30° වේ. F බලයේ අගය ද තන්තුවේ ආතතිය ද සොයන්න.
- Ox හා Oy යනු එකිනෙකට ලම්බ අක්ෂ වන අතර Ox හා Oy ඔස්සේ ඒකක දෛශික පිළිවෙළින් \underline{i} හා j වේ.
 - a) $\underline{F}_1 = 3\underline{i} + 5\underline{j}$, $\underline{F}_2 = -2\underline{i} + \underline{j}$, $\underline{F}_3 = 3\underline{i} \underline{j}$ බල අංශුවක් මත කිුිිියා කරයි. \underline{F}_1 , \underline{F}_2 සහ \underline{F}_3 බලවල සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව සොයන්න.
 - b) $R_1 = (2P\underline{i} P\underline{j}), R_2 = (-4\underline{i} + 3P\underline{j})$ සහ $R_4 = (2Q\underline{i} 5\underline{j})$ බල අංශුවක් මත කිුයා කරන අතර අංශුව සමතුලිතතාවයේ පවතී. P සහ Q බලවල විශාලත්වය සොයන්න.

- c) A හා B ලක්ෂාවල ඛණ්ඩාංක පිළිවෙළින් (3,4) සහ (-1,1) වේ. $2,3,5,6\sqrt{2}$ බල O ලක්ෂායේ දී පිළිවෙළින් Ox, Oy, OA, OB ඔස්සේ කියා කරයි. සියලු ම බල $X\underline{i} + Y\underline{j}$ ආකාරයට පුකාශ කර එනයින් බලවල සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව සොයන්න.
- 21. සෘජුකෝණාසාකාර අස Ox හා Oy ඔස්සේ ඒකක දෙශික පිළිවෙළින් \underline{i} හා \underline{j} වේ. P සහ Q බල දෙකක් අංශුවක් මත කියා කරනුයේ පිළිවෙළින් $4\underline{i}+3\underline{j}$ සහ $-3\underline{i}-4\underline{j}$ දෙශිකවලට සමාන්තර වන ලෙසට ය. බල දෙකෙහි සම්පුයුක්ත බලයේ විශාලත්වය 7N වන අතර එය \underline{i} දෙශිකයේ දිශාවට කියා කරයි. P හා Q බලවල විශාලත්වය සොයන්න.

3.0 සමාන්තර බල, සූර්ණය, යුග්මය

3.1 සමාන්තර බල

ඉහත පාඩමේ දී අපි ලඤා මත දී කිුිිිියාකරන බලවල සම්පුයුක්තය සොයන ආකාරය පෙන්වා දුන්නෙමු. මෙම පාඩමේ දී අපි සමාන්තර බලවල කිුිියාකාරිත්වය හා සම්පුයුක්ත බලය සොයන ආකාරය ඉගෙන ගනිමු.

සමාන්තර බල ආකාර දෙකකි

i. එක ම දිශාවට කිුයා කරන සමාන්තර බල

කිසියම් බල දෙකක් සමාන්තර වෙයි නම් හා එක ම දිශාවට කුියාකරයි නම් ඒවා එක ම දිශාවට කිුියා කරන සමාන්තර බල ලෙස හැඳින්වේ. (අභි දිශාව)

ii. එක ම දිශාවට කිුයා නොකරන සමාන්තර බල

කිසියම් බල දෙකක් සමාන්තර නම් ද හා දිශාවෙන් පුතිවිරුද්ධ නම් ද ඒවා එකම දිශාවට කිුිිියා නොකරන සමාන්තර බල වේ. කිසියම් බල දෙකක් ඡේදනය නොවේ නම් එම බලවල සම්පුයුක්ත බලය, බල සමාන්තරාසු පුමේයය යෙදීමෙන් කෙළින් ම සෙවිය නොහැකිය.

එක ම දිශාවට කිුයා කරන සමාන්තර බල දෙකක සම්පුයුක්තය

A හා B ලක්ෂාවල දී එකම දිශාවට කිුිිියා කරන සමාන්තර බල දෙකක් වන P හා Q පිළිවෙළින් AC හා BD රේඛා මඟින් නිරූපණය කරයි.

A හා B ලක්ෂාවල දී විශාලත්වයෙන් සමාන දිශාවෙන් පුතිවිරුද්ධ F බල දෙකක් AB රේඛාව ඔස්සේ යොදනු ලැබේ. ඒවා AE හා BG රේඛා මඟින් නිරූපණය කරයි. මෙම සමාන පුතිවිරුද්ධ බල එකිනෙක තුලනය වන බැවින්, එමඟින් P හා Q බලයට බලපෑමක් ඇති නොවේ.

AEHC හා BDKG සමාන්තරාසු සම්පූර්ණ කර HA හා KB විකර්ණ Oහි දී හමු වන සේ දික් කරනු ලැබේ.

 OL රේඛාව AC (හෝ BD) රේඛාවට සමාන්තර ලෙස ඇන්ද විට එය AB හමු වන ලක්ෂාය L වේ.

A ලක්ෂායේ දී P හා F බලයන්ගේ සම්පුයුක්තය AH මඟින් ද B ලක්ෂායේ දී Q හා F බලයන්ගේ සම්පුයුක්තය BK මඟින් ද පිළිවෙළින් OAH හා OBK රේඛා ඔස්සේ O ලක්ෂායේ දී කියා කරන්නේ යැයි සිතමු.

එම සම්පුයුක්ත බල නැවත Oහි දී විභේදනය කරමු. එවිට P සංරචකය OL ඔස්සේ ද F බලය AE ට සමාන්තර ව ද Q බලය OL ඔස්සේ ද F බලය BG ට සමාන්තර ව ද කිුයා කරයි. F බල විශාලත්වයෙන් සමාන ව හා දිශාවෙන් පුතිවිරුද්ධ ව Oහි දී තුලනය වේ. එම නිසා මුල් P හා Q බල දෙකේ සම්පුයුක්තය වන (P+Q) බලය මුල් බල හා එක් දිශාවට ම OL ඔස්සේ කිුයා කරයි.

 ${
m L}$ ලක්ෂායේ පිහිටීම සෙවීම : ${
m OLA}$ හා ${
m ACH}$ සමරුපී තිකෝණ සැලකීමෙන්

$$\frac{OL}{LA} = \frac{AC}{CH} = \frac{P}{F} \qquad$$

මෙලෙස ම OLB හා BDK සමරූපී තිකෝණ සැලකීමෙන්

$$\frac{OL}{LB} = \frac{BD}{DR} = \frac{Q}{F}$$

$$\mathbb{O} \otimes_{0} \otimes_{0}, \text{ OL } \times F = P \times LA = Q \times LB$$

$$\frac{LA}{LB} = \frac{Q}{P}$$

එනම් L ලඎය මඟින් AB රේඛාව අභාන්තර ලෙස බල අතර අනුපාතයට බෙදනු ලැබේ.

$$P.AL = Q.BL$$
 සහ සම්පුයුක්තය $R = P + Q$

P=Q නම් R සම්පුයුක්තය මඟින් AB රේඛාව සමච්ඡේදනය කරයි.

අවස්ථාව (ii)

එකම දිශාවට කිුිිියා නොකරන සමාන්තර බල දෙකක සම්පුයුක්තය

එකම දිශාවට කිුිිිියා නොකරන සමාන්තර P හා Q (P>Q) බල දෙකක් A හා B ලක්ෂාවල දී පිළිවෙළින් AC හා BD රේඛා ඔස්සේ කිුිිිිිිිිිිි කරන්නේ යයි සිතමු.

A හා B ලක්ෂාවල දී විශාලත්වයෙන් එක සමාන, දිශාවෙන් පුතිවිරුද්ධ F බල දෙකක් AB ඔස්සේ යොදනු ලැබේ. එම බල AE හා BG මඟින් නිරූපණය කරයි. එම බල එකිනෙකට තුලනය වන අතර Pට හා Q ට බලපෑමක් ඇති නොකරයි. AEHC, BGKD සමාන්තරාසු සම්පූර්ණ කර AH හා KB විකර්ණ Oහි දී හමු වන සේ දික්කරනු ලැබේ. (P=Q නම් එම බලවල සම්පුයුක්ත එක ලක්ෂාක දී හමු නො වේ).

 OL රේඛාව CA ට (හෝ BD ට) සමාන්තර ලෙස L හි දී දික් කළ AE හමුවන සේ ඇඳ ඇත.

Aහි දී කිුයා කරන P හා F බලවල සම්පුයුක්තය AH ද Bහි දී කිුයා කරන Q හා F බලවල සම්පුයුක්තය BK ද Oහි දී AO හා OB ඔස්සේ කිුයා කරන්නේ යැයි සිතමු. මෙම සම්පුයුක්ත බල Oහි දී විභේදනය කරනු ලැබේ. එවිට P සංරචකය LO ඔස්සේ ද F බලය AEට සමාන්තර ව ද Q බලය OLඔස්සේ F බලය BGට සමාන්තර ව Oහි දී කිුයාකරන්නේ යැයි සිතමු. F බල විශාලත්වයෙන් සමාන හා දිශාවෙන් පුතිවිරුද්ධ නිසා එකිනෙකට තුලනය වේ. එම නිසා P හා Q බල දෙකේ සම්පුයුක්තය තනි P0 බලයකට සමාන වන අතර P0 රේඛාව දිගේ P0 බලයේ දිශාවට කිුයා කරයි.

L ලක්ෂායේ පිහිටීම

OLA හා HEA සමරූපී තිකෝණ සැලකීමෙන්

$$\frac{OL}{LA} = \frac{HE}{EA} = \frac{P}{F} \Rightarrow P.LA = F.OL$$

මෙලෙස ම OLB සහ BDK සමරුපී තිකෝණ සැලකීමෙන්

$$\frac{OL}{LB} = \frac{BD}{DK} = \frac{Q}{F} \Rightarrow Q.LB = F.OL$$

① හා ② න්
$$\frac{LA}{LB} = \frac{Q}{P}$$

එනම් Lලඎය මඟින් AB රේඛාව බාහිරයෙන් බෙදනු ලබන අතර එම දුර අතර අනුපාතය බල අතර පුතිලෝම අනුපාතයට සමාන වේ.

P=Q නම් AEH හා BGK තුිකෝණ සම්පූර්ණ කළ විට AH හා KB සමාන්තර නිසා ඒවා O ලක්ෂායෝ දී හමු නොවේ.

සමාන්තර බල සමූහයක සම්පුයුක්තය සෙවීම

(i) සමාන්තර බල එක ම දිශාවට කිුියා කරන විට

එකම දිශාවට කිුිිියා කරන සමාන්තර බල දෙකක සම්පුයුක්තය සොයන ආකාරය නැවත නැවත යෙදීමෙන් එක ම දිශාවට කිුිියා කරන සමාන්තර බල සමූහයක සම්පුයුක්තය සෙවිය හැකිය.

එවිට සම්පුයුක්ත බලයේ විශාලත්වය එම සමාන්තර බලවල විශාලත්වල එකතුවට ද දිශාව එම සමාන්තර බල කිුිිියා කරන දිශාවට ද සමාන වේ.

(i) සමාන්තර බල එක ම දිශාවට නොවන විට

එක ම දිශාවට කිුිිිියා කරන සමාන්තර බල වෙන් කර ඒවායේ සම්පුයුක්ත බලය ඉහත සඳහන් කළ කුමයේ ආකාරයට සොයා ගනු ලැබේ. ඉන්පසු එම විරුද්ධ දිශාවට කිුිිියා කරන සමාන්තර බල දෙකේ සම්පුයුක්තය පහත ආකාරයට සොයා ගනු ලැබේ.

- a) බල දෙක අසමාන නම් සම්පුයුක්ත බලය තනි බලයක් වන අතර විශාලත්වය බලවල විජිය එකතුවට සමාන වේ.
- b) (i) එම බල සමාන හා එම බලවල කිුිිියා රේඛා සමපාත වූ විට සම්පුයුක්ත බලය ශුනා වන අතර එවිට බල සියල්ල සමතුලිත වේ.
 - (ii) එම බල සමාන වී කිුිිියා රේඛා සමපාත නොවූයේ නම් එමඟින් බල යුග්මයක් සාදයි.

3.2 විසඳු නිදසුන්

උදාහරණය 1

- 1) එක ම දිශාවට කිුයා කරන සමාන්තර බල දෙකක් වන 8N හා 12~N පිළිවෙළින් A හා B ලක්ෂාවල දී කිුයා කරයි. AB=15~cm නම්
- a. සම්පුයුක්ත බලයේ විශාලත්වය ද සම්පුයුක්තය AB කපන ලක්ෂාය ද සොයන්න.
- b. මෙම බල දිශාවෙන් පුතිවිරුද්ධ නම් සම්පුයුක්ත බලයේ විශාලත්වය ද කිුයා රේඛාව ද සොයන්න.

- (a) R = P+Q = 8+12 = 20N 8.AC = 12.BC 8x = 12(15-x) $20x = 12 \times 15$ AC = 9 cm
- (b) R = 12-8 = 4N 12x = (15+x)8 $4x = 15 \times 8$ x = 30 cm

- 2) පහත සඳහන් උදාහරණවල P හා Q බල කිුියා කරන ලක්ෂා A හා B නම් සහ සම්පුයුක්තය AB රේඛාව හමු වන ලක්ෂාය C නම්
 - i. P හා Q එක ම දිශාවට කිුයා කරන සමාන්තර බල නම් $P=8~N,\,R=17~N,\,AC=9~cm$ විට Q සහ AB සොයන්න.
 - \dot{m} . \dot{p} හා \dot{Q} පුතිවිරුද්ධ දිශාවට කිුයා කරන සමාන්තර බල නම් $\dot{p}=6N$ $\dot{A}C=18$ cm , $\dot{C}B=16$ cm විට \dot{Q} හා \dot{R} සොයන්න.

$$P + Q = 17$$
 $Q = 17 - 8$
 $= 9 N$
 $AC:CB = 9:8$

$$6 \times 18 = Q \times 16$$

$$Q = \frac{27}{4}N$$

$$R = Q-P$$

$$R = \frac{27}{4} - 6$$

$$R = \frac{3}{4}N$$

3) එක ම දිශාවට කියාකරන සමාන බල හතරක් සමචතුරසුයක ශිර්ෂවල දී කියා කරයි. සම්පුයුක්ත බලය සමචතුරසුයේ කේන්දය හරහා ගමන් කරන බව පෙන්වන්න. කියා කරන බල PN යයි ගනිමු.

A ලක්ෂායේ දී කිුයා කරන P හා B ලක්ෂායේ දී කිුයා කරන P යන සමාන්තර බල දෙකේ සම්පුයුක්තය බලය වන 2P, AB රේඛාවේ මධා ලක්ෂාය වන Eහි දී කිුයා කරයි.

දන් 2P සමාන්තර බල දෙකේ සම්පුයුක්තය 4P වන අතර එය EFවල මධා ලක්ෂා හරහා ගමන් කරයි. එනම් සම්චතුරසුයේ කේන්දුය හරහා යයි.

එනම් බලවල සම්පුයුක්තය සමචතුරසුයේ කේන්දුය හරහා යයි

4) P හා Q යනු එක ම දිශාවට කිුියා කරන සමාන්තර බල වෙයි. Q බලය දිශාව වෙනස් නොකර කිුියා කරන ලක්ෂාය x දුරකින් විස්ථාපනය කළ විට Pහි හා Qහි සම්පුයුක්ත බලය විස්ථාපනය වන දුර සොයන්න.

P හා Q බල පිළිවෙළින් A හා B ලක්ෂාවලදී කිුයා කරන්නේ යයි ද එම බලවල සම්පුයුක්ත බලය R , AB රේඛාව C ලක්ෂායේ දී කපන්නේ යයි ද ගනිමු. එවිට

$$\frac{AC}{CB} = \frac{Q}{P}$$

$$\frac{AC}{AB} = \frac{Q}{P+Q}$$

$$AC = \left(\frac{Q}{P+Q}\right)AB$$

$$A \qquad C \qquad C \qquad C \qquad B \qquad x \qquad B \qquad B$$

දැන් Q බලය x දුරක් විස්ථාපනය කළ විට සම්පුයුක්තය AB රේඛාව C' ලඤායේ කපන්නේ නම්, එවිට

$$\frac{AC'}{C'B'} = \frac{Q}{P}$$

$$AC' = \left(\frac{Q}{P+Q}\right)AB' = \left(\frac{Q}{P+Q}\right)(AB+x)$$

එම නිසා සම්පුයුක්තය විස්ථාපනය වූ දුර

$$CC' = AC' - AC$$

$$CC' = \left(\frac{Q}{P+Q}\right) [AB + x - AB]$$

$$CC' = \left(\frac{Q}{P+Q}\right) x$$

5) එකම දිශාවට කිුයා කරන සමාන්තර බල දෙකක් වන P හා Q පිළිවෙළින් A හා B ලක්ෂාවල දී දෘඪ වස්තුවක් මත කිුයා කරයි. එම P හා Q බල මාරු කළ විට සම්පුයුක්ත බලය AB කපන ලක්ෂා $\left(\frac{P-Q}{P+Q}\right)AB$ දුරකින් වෙනස් වන බව පෙන්වන්න.

$$\frac{AC}{CB} = \frac{Q}{P}$$

$$AC = \left(\frac{Q}{P+Q}\right)AB$$

$$\frac{AC'}{C'B} = \frac{P}{Q}$$

$$AC' = \left(\frac{P}{P+Q}\right)AB$$

$$AC' - AC = \left(\frac{P}{P+Q}\right)AB - \left(\frac{Q}{P+Q}\right)AB$$

$$= \left(\frac{P-Q}{P+Q}\right)AB$$

- 6) එකම දිශාවට කිුිිියා කරන P,Q හා R සමාන්තර බල තුනක් පිළිවෙලින් ABC තිකෝණයක A,B හා C ශීර්ෂ මත කිුිිියා කරයි. එම බලවල තුනෙහි සම්පුයුක්ත බලය තිුිකෝණයේ ලම්බ කේන්දිය හරහා ගමන් කරයි නම්
 - P: Q: R = tan A: tan B: tan C බව පෙන්වන්න.

m O යනු තිකෝණයේ ලම්බ කේන්දුය යි.

බලවල සම්පුයුක්තය O හරහා ගමන් කරයි නම් P හා Q බලවල සම්පුයුක්තය D හරහා ගමන් කළ යුතුය, ($CD \perp AB$ නිසා).

$$\frac{AD}{DB} = \frac{Q}{P} = \frac{CD \cot A}{CD \cot B}$$

$$\frac{Q}{P} = \frac{\tan B}{\tan A}$$
(1)

එසේම Q හා R බලවල සම්පුයුක්තය E හරහා ගමන් කළ යුතුයි. ($AE \perp BC$ නිසා)

$$\frac{BE}{EC} = \frac{R}{Q} = \frac{AE \cot B}{AE \cot C} = \frac{\tan C}{\tan B}$$
 (2)

$$(1)$$
, (2) $\Rightarrow P:Q:R = \tan A: \tan B: \tan C$

3.3 අභාගාසය

- 1. එක ම දිශාවට කිුයා කරන $2,5,3\,\mathrm{N}$ වන සමාන්තර බල ABC තිුකෝණයක පිළිවෙළින් A, B, Cශිර්ෂවලදී කිුයා කරයි. AB = 4 cm, BC = 3 cm හා AC = 5 cm වේ.
 - i) සම්පුයුක්තයේ විශාලත්වය සොයන්න.
 - ii) සම්පුයුක්ත බලයේ කිුිිියා රේඛාව කිුිිියා කරන ලක්ෂාය සොයන්න.
- 2. විශාලත්වය $P,\ P,\ 2P$ වන එක ම දිශාවට කිුියා කරන සමාන්තර බල තුනක් $A,\ B,\ C$ තිුකෝණයක පිළිවෙළින් $A,\ B$ හා C ශිර්ෂවල දී කිුිිියා කරයි. බලවල සම්පුයුක්තයේ කිුිිියා රේඛාව C ලක්ෂායේ සිට AB හි මධා ලක්ෂායට අදින ලද රේඛාවේ මධා ලක්ෂාය හරහා ගමන් කරන බව පෙන්වන්න.
- 3. එකම දිශාවට කියා කරන සමාන්තර බල හතරක් සමචතුරසුයක ශීර්ෂ මත කිුයා කරයි. බලවල සම්පුයුක්තය සමචතුරසුයේ ශීර්ෂ හරහා ගමන් කරන බව පෙන්වන්න.
- 4. P, Q හා R යන එක ම දිශාවට කිුිියා කරන සමාන්තර බල තුනක් ABC තිකෝණයක පිළිවෙළින් AB හා C ශීර්ෂ ඔස්සේ කිුිිියා කරයි නම් සහ එම බලවල සම්පුයුක්තය තිකෝණයේ අන්තර් කේන්දුය හරහා ගමන් කරයි නම්

$$\frac{P}{BC} = \frac{Q}{AC} = \frac{R}{AB}$$
 බව පෙන්වන්න.

- 5. බල හතරක් $\overline{AB}, 2\overline{BC}, 3\overline{CD}$ සහ $4\overline{DA}$ මඟින් නිරූපණය වේ. මෙහි ABCD සමචතුරසුයකි. සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව සොයන්න.
- 6. එකම දිශාවට කිුිිිියා නොකරන සමාන්තර බල දෙකක් වන P හා Q (P>Q) පිළිවෙළින් A සහ B ලක්ෂාවල දී කිුිිිිිිිිිි කරයි. එම බලවල විශාලත්වය S පුමාණයකින් වැඩි කළ විට සම්පුයුක්තය $\frac{S(AB)}{P-Q}$ දුර පුමාණයකින් වෙනස් වන බව පෙන්වන්න.
- 7. එකම දිශාවට කිුියා කරන සමාන්තර බල තුනක් වන P,Q හා R යන බල ABC තිුකෝණයක පිළිවෙළින් A,B හා C ශීර්ෂ ඔස්සේ කිුියා කරයි.
 - (i) සම්පුයුක්ත බලය තිුකෝණයේ කේන්දුය හරහා ගමන් කරයි නම් P=Q=R බව ද
 - (ii) පරිවෘත්ත කේන්දුය හරහා ගමන් කරයි නම් $\frac{P}{\sin 2A} = \frac{Q}{\sin 2B} = \frac{R}{\sin 2C}$ බව ද පෙන්වන්න.
- 8. විශාලත්වය P, 2P, 3P වන සමාන්තර බල තුනක් OABC සරල රේඛාවක පිළිවෙළින් A, B හා C ලක්ෂාය හරහා ගමන් කරයි. මෙහි OA = a, AB = b සහ BC = c වේ. බලවල සම්පුයුක්තය OABC රේඛාව මත පිහිටි $OD = \frac{6a + 5b + 3c}{2}$ වන පරිදි D ලක්ෂා හරහා යන බව පෙන්වන්න.

3.4 සූර්ණය

දෘඪ වස්තුවක් මත බල කිුිිියා කරන විට එම දෘඪ වස්තුවේ ලක්ෂායක් අචල ව සවි කර ඇති විට සමහර අවස්ථාවල දී එම වස්තුව එම ලක්ෂය වටා භුමණය වීම සිදු වේ.

මෙලෙස යම් වස්තුවක් යම් ලඤායක් වටා ඇති කරන භුමණය එම ලඤාය වටා එම බලයේ සූර්ණය ලෙස හැඳින්විය හැක. දෘඪ වස්තුවක් එක් ලඤායකින් සවිකර එම වස්තුව මත බලයක් පමණක් කියා කරයි නම් එම බලයේ කියා රේඛාව එම අවල ලඤාය හරහා ගමන් නොකරයි නම් එම වස්තුව එම බලය යටතේ භුමණය වේ.

අර්ථ දුක්වීම :

දෙන ලද ලක්ෂායක් වටා බලයක සූර්ණය යනු එම බලයේ විශාලත්වයේත් එම ලක්ෂායේ සිට බලයේ කිුිියා රේඛාවට ඇති ලම්බ දුරෙහිත් ගුණිතය යි.

සටහන:

බලයේ කිුිිිියා රේඛාව O ලක්ෂා හරහා යයි නම් එම O ලක්ෂා වටා ඝූර්ණය ශූනා වේ.

O යනු වස්තුව මත අචල ලක්ෂායක් නම් සහ O ලක්ෂායේ සිට P බලයේ කිුියා රේඛාවට ඇති ලම්බ දුර, ON නම් O ලක්ෂාය වටා P බලයේ සූර්ණය $P \times ON$ වන අතර ඔරලෝසුවේ කටු කැරකෙන දිශාවට විරුද්ධ දිශාවට වස්තුව හැරීමට ලක් වේ.

Om ලක්ෂාය වටා සුර්ණය = $P \times ON$

සූර්ණය මනින SI ඒකකය නිව්ටන් මීටර් Nm වේ. දෙන ලද ලස්ෂාය වටා වස්තුවක සූර්ණය ඔරලෝසුවේ කටු කැරකෙන දිශාව හෝ පුතිවිරුද්ධ දිශාව හෝ අනුව ධන හෝ සෘණ හෝ වේ. වස්තුවක් මත බල සමූහයක් කිුිිියා කරන විට යම් ලස්ෂායක් වටා එම බලවල සූර්ණයන්ගේ වීජ

ඓකා එම ලඤාය වටා එක් එක් බලයේ ඝූර්ණය ලකුණ සමඟ එකතු කිරීමෙන් ලබාගත හැකිය.

බලයක ඝූර්ණය දෙශිකයක් වන අතර එයට විශාලත්වයක් හා දිශාවක් ඇත.

සුර්ණය ජාාමිතිකව ව නිරූපණය කිරීම

P බලය විශාලත්වය හා දිශාව අතින් AB රේඛා ඛණ්ඩයෙන් නිරූපණය කරන්නේ යයි සිතමු. O ලස්ෂාය වටා සූර්ණය සෙවීමට අවශා යයි සිතමු. ON යනු O සිට AB රේඛාවට ඇති ලම්බ දුර යි. එනම් P බලයේ O ලස්ෂාය වටා සූර්ණය $P \times ON = AB \times ON$

එහෙත් $\frac{1}{2}\,\mathrm{AB} imes \mathrm{ON}$ යනු OAB තිකෝණයේ වර්ගඵලයයි.

AB පාදය මඟින් බලය ද O ශීර්ෂය මගින් සූර්ණය ගනු ලබන ලඎය ද නිරූපණය කරයි නම් එම ලෲනය වටා බලයේ සූර්ණයේ විශාලත්වය සංඛාාත්මක ලෙස තුිකෝණයේ වර්ගඵලය මෙන් දෙගුණක් වේ. $P.\ ON=2\Delta OA\ B$

සටහන :

සූර්ණයේ සමහර මූලික සිද්ධාන්ත සාධනය කිරීම සඳහා ජාාමිතික ඉදිරිපත් කිරීම් භාවිත කරනු ලැබේ.

වැරිග්නෝන්ගේ පුමේයය (වරින්යෝ පුමේයය)

එක ම තලයේ කිුිිිිිිිිිි කරන බල දෙකක් එම තලයේ ලඤෳයක් වටා ඇති කරන සූර්ණයන්ගේ වීජ ඓකාය එම බල දෙකේ සම්පුයුක්ත බලය මගින් එම ලඤෳය වටා ඇති කරන සූර්ණයට සමාන වේ. මෙහි දී අවස්ථා දෙකක් සලකනු ලැබේ.

- (i) බල සමාන්තර නොවන විට
- (ii) බල සමාන්තර වන විට

අවස්ථාව (i) බල සමාන්තර නොවන විට

සාධනය : බල එක ලක්ෂායක දී හමුවන අවස්ථාව

P හා Q බල A ලක්ෂයේ දී කිුිිිිිිිිිිිිිිි කරයි. O යනු එම තලයේ පිහිටි ලක්ෂායක් නම් සහ එම ලක්ෂාය වටා එම බලවල සූර්ණය ලබා ගන්නා ලද නම් OC රේඛාව P බලයට සමාන්තර ව අදින්න. Q බලයේ කිිියා රේඛාව Dහි දී හමු වන පරිදි ABCD සමාන්තරාසුය සම්පූර්ණ කරන්න.

එවිට Q බලයේ විශාලත්වය AD මඟින් ද P බලයේ විශාලත්වය AB මඟින් ද නිරූපණය වේ.

 OA හා OB සම්බන්ධ කරන්න. AC මඟින් P හා Q බලවල සම්පුයුක්තය R නිරූපණය කරයි. ඉහත ආකාරයට O සඳහා පිහිටුම් දෙකක් ඇත.

අවස්ථා දෙකේ ම O වටා P ගේ සුර්ණය $=2OAB \Delta$ වර්ගඵලය

O වටා Q බලයේ සූර්ණය = $2OAD \Delta$ වර්ගඵලය

O වටා R බලයේ සූර්ණය = $2OAC \Delta$ වර්ගඵලය

පළමු රූපයේ Om වටා P සහ Q බලවල සූර්ණවල එකතුව = $2\Delta OAB + 2\Delta OAD$

 $= 2\Delta ABC + 2\Delta OAD$

- = $2\Delta ACD + 2\Delta OAD$
- = $2\Delta OAC$
- = Om වටා R හි සූර්ණය

රූපය (ii)

Om වටා P හා Q බලවල සූර්ණවල එකතුව = $2\Delta OAB - 2\Delta AOD$

= $2\Delta ABC - 2\Delta AOD$

= $2\Delta ADC - 2\Delta AOD$

= $2\Delta AOC$

= Om වටා R හි ඝර්ණය

අවස්ථාව (ii) බල සමාන්තර වන විට

P හා Q යනු එක ම දිශාවට කිුයාකරන සමාන්තර බල දෙකක් නම් හා O යනු ඉහත දක්වෙන ආකාරයට එම තලයේ ලඎයක් නම් එම බලවල කිුිිියා රේඛාවලට ලම්බක ලෙස OAB රේඛාව අදිනු ලැබේ. එම බලවල කිුිිියා රේඛා OAB රේඛාව හමු වන ලෲන පිළිවෙළින් A හා B නම් P හා Q වල R සම්පුයුක්තය C හරහා කිුියාකරයි. OC රේඛාව R බලයට ලම්බ වේ AC : CB=Q:P

රූපය
$$(i)$$
 O o වටා P සහ Q බලවල සූර්ණයේ එකතුව $= P \times OA + Q \times OB$ $= P(OC - AC) + Q(OC + CB)$ $= (P + Q)OC - P \times AC + Q \times CB$

$$\frac{AC}{CB} = \frac{Q}{P}$$
 නම

$$P \times AC = Q \times CB$$

සූර්ණවල එකතුව = (P+Q) imes OC

= Oo වටා R හි සූර්ණය

රූපය (ii)

Om වටා P හා Q බලවල සූර්ණවල එකතුව

බල සමාන්තර හා දිශාවෙන් පුතිවිරුද්ධ නම්

 ${
m P}$ හා ${
m Q}$ දිශාවෙන් පුතිවිරුද්ධ සමාන්තර බල නම් සහ ${
m P}>{
m Q}$ නම්

Oo වටා සූර්ණවල එකතුව

$$= P \times OA - Q \times OB$$
$$= P(OC + CA) - Q(OC + CB)$$

$$= (P - Q)OC + P \times AC - Q \times CB$$

$$= (P - Q) OC$$

= O වටා R හි සූර්තය

සටහන : සම්පුයුක්ත බලයේ කිුිිියා රේඛාවේ පිහිටි සෑම ලක්ෂායක් වටා සූර්ණයන්ගේ වීජ එකතුව ශූනා වේ.

පුමේයය

දෘඪ වස්තුවක් මත එක ම තලයේ කිුිිියා කරන බාහිර බල සමූහයක් නිසා සම්පුයුක්තයක් පවතින විට එම තලයේ පිහිටි කවර හෝ ලඤායක් වටා වස්තුව මත කිුිිිියා කරන බාහිර බලවල වීජ ඓකාය එම බලවල සම්පුයුක්තය මඟින් එම ලඤාය වටා ඇති කරන සූර්ණයට සමාන වේ. මෙය සූර්ණ පිළිබඳ සාධාරණ මූල ධර්මය ලෙස හැඳින්වේ.

එක තලයේ කිුිිිියා කරන බල පද්ධතියක් යටතේ දෘඪ වස්තුව සමතුලිත ව ඇත්නම් එම බලවල සම්පුයුක්ත බලය ශූනා වේ. එම නිසා එම තලයේ සෑම ලක්ෂායක් වටාම සම්පුයුක්ත බලයේ සූර්ණය ශූනා වේ.

එම නිසා එක ම තලයේ කුියා කරන බල පද්ධතියක් සමතුලිත නම් එම තලයේ සෑම ලඎයක් ම වටා එම බලවල වීජ ඓකාය ශුනා වේ.

එහෙත් විලෝමය සතා නොවේ.

ඒකතල බල පද්ධතියක බල පද්ධතිය පිහිටා ඇති තලය මත වූ ලඎයක් වටා ඝූර්ණවල වීජ ඓකාය ශූතා වූ පමණින් එම බල පද්ධතිය සමතුලිත යයි කිව නොහැකි ය. එනම් එම බලවල සම්පුයුක්තයේ කිුියා රේඛාව එම ලඎය හරහා වැටී තිබිය හැකි බැවිනි.

3.5 විසඳු නිදසුන්

නිදසුන 7

පැත්තක දිග 2m වන ABC සහ සමපාද තිකෝණයක BC, CA සහ AB පාද ඔස්සේ නිව්ටන් 4, 5, 6 බල කියා කරයි. තිකෝණයේ කේන්දුකය වටා බලවල සූර්ණවල වීජ ඓකාය සොයන්න.

G යනු කේන්දුකය නම් $AD = 2\sin 60$

$$= 2\frac{\sqrt{3}}{2} = \sqrt{3}m$$

$$GD = GE = GF \qquad = \frac{1}{3}\sqrt{3}m$$

$$G$$
 වටා සූර්ණවල වීජ ඓකාන $= 4 imes \frac{1}{\sqrt{3}} + 5 imes \frac{1}{\sqrt{3}} + 6 imes \frac{1}{\sqrt{3}}$ $= \frac{15}{\sqrt{3}} = 5\sqrt{3} \, \mathrm{Nm}$

නිදසුන 8

පැත්තක දිග 4m වන ABCD සමචතුරසුයක නිව්ටන් 4,3,2 සහ 5බල පිළිවෙළින් CB,BA,DA සහ DB පාද ඔස්සේ කිුයාකරයි. බලවල සූර්ණයන්ගේ වීජ ඓකාය D = C

(i) C ශිර්ෂයේ වටා (ii) කේන්දුය O වටා සොයන්න.

CO =
$$4\cos 45 = \frac{4}{\sqrt{2}} = 2\sqrt{2}$$

m C~m වටා බලවල සූර්ණවල වීජ මෙඑකාය = 2 imes 4 - $3 imes 4 + 5 imes 2\sqrt{2}$ = $(10\sqrt{2}$ - 4) m Nm

O O වටා බලවල සූර්ණවල වීජ ඓකාසය $=4 \times 2 + 3 \times 2 - 2 \times 2$ $=10 \ \mathrm{Nm}$

නිදසුන 9

 $72~\mathrm{cm}$ දිග සැහැල්ලු දණ්ඩක එක් කෙළවරක සිට $18~\mathrm{cm}$ දුරින් සහ අනෙක් කෙළවරේ සිට $30~\mathrm{cm}$ දුරකින් එක සමාන බර දෙකක් එල්ලා ඇත. දණ්ඩ තිරස්ව සමතුලිත ව තබා ඇත්තේ දණ්ඩේ දෙකෙළවරට සම්බන්ධ කරන ලද සැහැල්ලු අවිතනා තන්තු දෙකක් මඟිනි. තන්තුවලට දරිය හැකි උපරිම ආතතිය $50~\mathrm{N}$ නම් බරවලට තිබිය හැකි උපරිම විශාලත්වය සොයන්න.

බර W ද තන්තුවල ආතති T_1, T_2 යයි ද ගනිමු. දණ්ඩේ සමතුලිතතාව සඳහා බල සිරසට විභේදනයෙන්

$$\uparrow T_1 + T_2 - 2W = 0$$

Bm වටා සූර්ණය
$$T_1 \times 72 + W \times 54 + W \times 30 = 0$$

$$72T_1 = 84W$$

$$T_1$$
 ආතතිය උපරිම වන විට ($T_1 = 50$) $72 \times 50 = 84W$

$$W = \frac{72 \times 50}{84} = 42 \frac{6}{7} N$$

Am වටා සූර්ණය $T_2 \times 72 - W \times 18 - W \times 42 = 0$

$$72 ext{T}_2 = 60 ext{ W}, ext{ T}_2$$
 ආතතිය උපරිම වන විට $(ext{T}_2 = 50)$ $ext{W} = rac{72 imes 50}{60} = 60 ext{ N}$

එම නිසා එල්ලිය හැකි උපරිම බර $42rac{6}{7}
m N$

නිදසුන 10

 $20 {
m cm}$ දිග AB වන සැහැල්ලු දණ්ඩක් එකිනෙකට $10 {
m cm}$ දුරින් පිහිටි කුඩා කුඤ්ඤ දෙකක් මත තබා බර 2W සහ 3W අංශු දෙකක් පිළිවෙළින් A සහ B දෙකෙළවරින් එල්ලා ඇත. කුඤ්ඤ මඟින් දණ්ඩ මත ඇති කරන පුතිකියා සමාන වීමට එක් එක් කෙළවරේ සිට කුඤ්ඤයක පිහිටුම සොයන්න.

A සිට xcm දුරකින් C කුඤ්ඤය පවතී යයි සිතමු.

දණ්ඩ සමතුලිතව ඇති විට C ලක්ෂාය වටා සූර්ණවල වීජ ඓකාය ශූතා වේ.

$$R \times 10 + 2Wx - 3W(20 - x) = 0$$

$$10R = 60W - 5Wx \qquad (1)$$

$$R \qquad R \qquad R$$

$$V \qquad A \qquad A \qquad A \qquad B$$

$$V \qquad C \leftarrow 10cm \rightarrow D \qquad W$$

$$2W \qquad 3W$$

On වටා සූර්ණ ගැනීමෙන්

$$R \times 10 + 3W(10 - x) - 2W(10 + x) = 0$$
 $10R = 5Wx - 10W$ (2)
(1) සහ (2) $10x = 70$
 $x = 7$

A කෙළවරේ සිට කුඤ්ඤ දෙකට දුර 7cm සහ 17cm

නිදසුන 11

පැත්තක දිග $2\ m$ වන ABCDEF සවිධි ෂඩසුයක පාද ඔස්සේ නිව්ටන් $1,\,2,\,3,\,4,\,5,\,6$ බල පිළිවෙළින් AB,CB,DC,DE,EF සහ FA ඔස්සේ කිුයා කරයි. බලවල සූර්ණයන්ගේ වීජ ඓකාය

(i) A ශීර්ෂය වටා (ii) ෂඩසුයේ කේන්දුය O වටා සොයන්න.

$$AL=2\sin 60$$
 $=\sqrt{3}m$ A_O වටා සූර්ණයන්ගේ වීජ ඓකාපය $=2\times\sqrt{3}+3\times2\sqrt{3}-4\times2\sqrt{3}-5\times\sqrt{3}$ $=-5\sqrt{3}$ Am වටා = $5\sqrt{3}$ Nm

$$OM = 2\sin 60 = \sqrt{3}m$$

Om වටා සූර්ණයේ වීජ ඓකාz=1 $imes \sqrt{3}$ - 2 $imes \sqrt{3}$ - 3 $imes \sqrt{3}$ + 4 $imes \sqrt{3}$ + 5 $imes \sqrt{3}$ + 6 $imes \sqrt{3}$

$$=11\sqrt{3}$$
 Nm

නිදසුන 12

 $P,\ Q,\ R$ බල තුනක් ABC තිකෝණයක $BC,\ CA,\ AB$ පාද ඔස්ස් කියාකරයි. බල පද්ධතියේ සම්පුයුක්තය තිකෝණයේ පරිවෘත්තයේ කේන්දුය හරහා යයි නම් $P\cos A + Q\cos B + R\cos C = O$ බව පෙන්වන්න.

BÔD=Â, CÔE=Ê, AÔF=Ĉ

R යනු පරිවෘත්තයේ අරය නම් R=OA=OB=OC වේ.

Om වටා සූර්ණ ගැනීමෙන්

$$P \times OD + O \times OE + R \times OF = 0$$

P. $OB\cos A + QOC \cdot \cos B + R \cdot OA\cos C = 0$

$$OB = OC = OA$$
 නිසා

 $P\cos A + Q\cos B + R\cos C = 0$

3.6අභාගසය

- 1. ස්කන්ධය $3 \, \mathrm{kg}$ දිග $1.5 \, \mathrm{m}$ වන ඒකාකාර දණ්ඩක එක් කෙළවරක සිට ස්කන්ධය $1, 2, 3, 4 \, \mathrm{kg}$ වන $0.3 \, \mathrm{m}, 0.6 \, \mathrm{m}, 0.9 \, \mathrm{m}, 1.2 \, \mathrm{m}$ වන දුරින් පිළිවෙළින් $1, 2, 3, 4 \, \mathrm{kg}$ ස්කන්ධ එල්ලා ඇත. මෙම ස්කන්ධ නිසා දණ්ඩ සමතුලිත වන ලක්ෂාය සොයන්න.
- 2. දිග 3m සහ ස්කන්ධය $6 \ kg$ වන AB ඒකාකාර දණ්ඩක් A කෙළවර එක් ආධාරකයක් මත ද දණ්ඩේ තවත් ලක්ෂායක් තවත් ආධාරයක් මත ගැටෙමින් තිරස්ව පවතී. ස්කන්ධය $1 \ kg$ වන බරක් B ලක්ෂායේ ද තව ද $5 \ kg$ සහ $4 \ kg$ වන බර දෙකක් කෙළවර සිට පිළිවෙළින් $1 \ m$ හා $2 \ m$ දුරින් ද එල්ලා ඇත. A ආධාරක මත පුතිකිුයාව $40 \ N$ නම් අනෙක් ආධාරකයේ පිහිටීම සොයන්න.
- 3. ස්කන්ධය $17\ kg$ වන දිග $0.6\ m$ වන ඒකාකාර දණ්ඩක් සිරස් තන්තු දෙකක් මඟින් එල්ලා ඇත. ඒ තන්තුවක් දණ්ඩේ එක් කෙළවරක සිට $7.5\ cm$ දුරකින් ද අනෙක් තන්තුව දණ්ඩේ අනෙක් කෙළවර සිට $10\ cm$ දුරකින් ද එල්වා ඇත. එම තන්තුවලට දරිය හැකි උපරිම ආතති පිළිවෙළින් $70\ Nm$ $100\ N$ නම් තන්තු නොගැලවෙන පරිදි $1.7\ kg$ ස්කන්ධයක් එල්ලිය හැකි පිහිටීම සොයන්න.
- 4. ABCD යනු පැත්තක දිග a වන සමචතුරසුයකි. $2,3,4\,\mathrm{N}$ බල පිළිවෙළින් AB,AD සහ AC ඔස්සේ කියා කරයි. බලවල සම්පුයුක්තයේ කියා රේඛාව DC රේඛාව හමු වන ලස්ෂාය සොයන්න.
- 5. P,Q,R බල තුනක් පිළිවෙළින් A,B,C ශීර්ෂවල දී කියාකරනුයේ එම ලක්ෂායට පුතිවිරුද්ධ ව ඇති පාදයට ලම්භක වන පරිදි හා සමතුලික වන පරිදි නම් P:Q:R=a:b:c බව පෙන්වන්න.
- 6. P, Q, R බල BC, CA හා AB , පාද ඔස්සේ කිුයා කරයි. එම බලවල සම්පුයුක්තය ABC තිකෝණයේ කේන්දය හරහා යයි නම්

$$(i)$$
 $\frac{P}{\sin A} + \frac{Q}{\sin B} + \frac{R}{\sin C} = 0$ (ii) $\frac{P}{BC} + \frac{Q}{CA} + \frac{R}{AB} = 0$ බව පෙන්වන්න.

7. ABC තිකෝණයක BC, CA, AB පාද ඔස්සේ කියා කරන බල තුනක සම්පුයුක්තය එම තිකෝණ පරිවෘත්තීය කේන්දුය හා පුලකු කේන්දුය හරහා යයි නම් බව පෙන්වන්න.

$$\frac{P}{(b^2-c^2)\cos A} = \frac{Q}{(c^2-a^2)\cos B} = \frac{R}{(a^2-b^2)\cos C}$$

8. ABC සුළු කෝණි තිකෝණයක BC, CA, AB පාද ඔස්සේ පිළිවෙළින් P, λP , $\lambda^2 P$ බල කියා කරයි. පද්ධතියේ සම්පුයුක්තය පුලම්බ කේන්දුය හරහා ගමන් කරයි නම්

$$\frac{1}{\cos A} + \frac{\lambda}{\cos B} = \frac{\lambda^2}{\cos(A+B)}$$
 බව පෙන්වන්න.

3.7 බල යුග්මය

අර්ථ දක්වීම : විශාලත්වයෙන් සමාන දිශාවෙන් පුතිවිරුද්ධ බල දෙකක එම බලවල කිුිිියා රේඛා සමපාත නොවන විට එම බල යුගලය බලයුග්මයක් ලෙස අර්ථ දක්වේ.

බල යුග්මයක කිුිිියාව නිසා භුමනයක් සිදුවේ.

බල යුග්මයක විශාලත්වය සූර්ණය මඟින් සෙවිය හැකිය.

බල දෙක කිුයාකරන කිුයා රේඛා අතර ලම්භ දූර යු

බල යුග්මයේ විශාලත්වය = බලයක විශාලත්වය imes බල දෙක අතර ලම්බ දුර

$$M = P \times d$$

$$= Pd$$
 m

පුමේයය

බල යුග්මයක් සාධන බල දෙකක එම තලයේ කවර හෝ ලක්ෂායක් වටා සූර්ණවල විජිය ඓකාය නියත වන අතර එය යුග්මයේ සූර්ණයට සමාන වේ.

සාධනය

බල යුග්මයේ බලයන් Pට සමාන ලෙස ද O යනු එම තලයේ ඕනෑම ලඎයක් ද ලෙස ගනිමු. බලවල කිුිිියා රේඛාවන්ට ලම්බකව Aහි සහ B හි දී හමු වන පරිදි OAB ලම්බකය අදින්න.

Om වටා සූර්ණවල වීජීය ඓකාය (1

$$= P \times OB + P \times OA$$

$$= P \times AB m$$

= බල යුග්මයේ ඝූර්ණය

Om වටා සූර්ණවල ඓකාය (2 රූපය)

$$= P \times OA - P \times OB$$

$$= P(OA - OB)$$

= P(AB) m

එම නිසා O ලක්ෂායේ පිහිටීම කුමක් වුවත් බල යුග්මයේ සූර්ණය එක ම අගයකි. එනම් බල යුග්මයේ සූර්ණය ලක්ෂායේ පිහිටුමෙන් ස්වායත්ත වේ.

පුමේයය

දෘඪ වස්තුවක් මත කුියා කරන බල යුග්ම දෙකක් බල යුග්ම දෙකේ සූර්ණවල වීජිය ඓකෳයට සමාන සූර්ණයක් ඇති තනි බල යුග්මයකට තුලෳ වේ.

අවස්ථා දෙකක් සලකයි.

සාධනය

සිද්ධිය

- (i) බලවල කියා රේඛා සමාන්තර වන විට සහ (P,P), (Q,Q) යනු රූප සටහනට අනුව කියා කරන යුග්මයන්හි බල නම් OABCD යනු ඒවායේ කියා රේඛාවට ඇදී ලම්බකය වේ. P හා Qහි සම්පුයුක්තය A හි දී කියා කරන අතර F යනු (P+Q) බලය වන අතර එය E හි දී කියා කරයි. තව ද AE:EF=Q:P සහ B හා D හි දී කියාකරන P සහ Qහි සම්පුයුක්තය (P+Q) වන අතර C හි දී කියා කරයි. මෙහි BC:CD=Q:P දන් සමාන සමාන්තර පුතිවිරුද්ධ බල වන (P+Q) මඟින් බල යුග්මයක් නිර්මාණය කරයි. මෙය බල යුග්ම දෙකෙහි සම්පුයුක්ත යුග්මය වේ.
 - (ii) බලවල කිුයා රේඛා සමාන්තර නොවන විට, P, P, Q, Q යනු සූර්ණයෙහි අඩංගු බල නම් සහ එක P බලයක් සහ එක් Q බලයක් රුපයේ පරිදි O හි දී හමුවෙයි. Oහි දී කිුයා කරන P සහ Q බලවල සම්පුයුක්ත වන R, Oහි දී කිුයා කරන අතර අනෙක් P සහ Q බල O' හිදී කිුයා කරන විට සම්පුයුක්තය වන R, O' මත කිුයා කරයි. එම සම්පුයුක්ත බල සමාන හා සමාන්තර හා නමුත් විජාතීය බල මඟින් බල යුග්මයක් නිර්මාණය කරයි.

බල යුග්මයේ සූර්ණය = O' සහ O වටා R වල සූර්ණය

= O' වටා P වල සහ O' වටා Q වල සූර්ණවල ඓකාය

= බල යුග්මවල ඝූර්ණවල ඓකාය

පහත අපෝහනයන් කළ හැකි ය

- කලයක කිුයා කරන සමාන හා ප්‍රතිවිරුද්ධ සූර්ණයන් සහිත බල යුග්ම දෙකක් එකිනෙක සංකුලනය කරයි.
- 2. සමාන ඝූර්ණ සහිත එක ම තලයේ කවර හෝ බල යුග්ම දෙකක් තුලා වේ.

පුමේයය

දෘඪ වස්තුවක් මත එක ම තලයේ කිුිිියා කරන තනි බලයක් සහ බල යුග්මයක් වෙනත් ලක්ෂායකදී කිුිියා කරන දී ඇති බලයට සමාන සහ පුතිවිරුද්ධ තනි බලයකට තුලා වේ.

සාධනය

 ${f P}$ යනු ${f A}$ හි දී කිුයා කරන බලයක් ලෙස ද ${f G}$ යනු එම තලයේ ම කිුයා කරන බල යුග්මයක් ද ලෙස ගනිමු.

A හි දී P බලය සහ $AB=rac{G}{P}$ වන වෙනත් B ලක්ෂායක දී කිුයා කරන P බලය මඟින් G පුතිස්ථාපනය කළ හැකි ය.

දැන් A හි දී සමාන හා පුතිවිරුද්ධ P බලයන් එකිනෙක සංතුලනය කිරීමෙන් සම්පුයුක්තය B හි දී කිුයා කරන තනි P බලයක් වේ.

පුමේයය

දෘඪ වස්තුවක කවර හෝ ලක්ෂාන් මත ඇති කරන බලය වෙනත් කවර හෝ ලක්ෂායක දී එක ම දිශාවකට කිුිිියා කරන සමාන්තර බලයකට සහ බල යුග්මයකට තුලා වේ.

සාධනය

 ${f P}$ යනු ${f A}$ හි දී ${f AC}$ දිගේ කුියා කරන දී ඇති බලය ලෙස ද ${f B}$ යනු වෙනත් කවර හෝ ලක්ෂායක් ලෙස ද ගනිමු. ${f B}$ සිට ${f AC}$ ට ඇති ලම්බ දුර ${f d}$ ලෙස ගනිමු. ${f B}$ හි දී සමාන සහ පුතිවිරුද්ධ සමාන්තර ${f P}$ බලයන් දක්වන්න. මේවායින් එක් බලයක් ${f A}$ හි දී පුතිවිරුද්ධ ${f P}$ සමඟ ${f G}={f P}\times{f d}$ බල යුග්මය සාදයි. ${f B}$ හි ඇති අනෙක් බලය තනි ${f P}$ බලයකි.

3.8 විසඳු නිදසුන්

උදාහරණ 13

ABCD යනු පැත්තක දිග 1 m. වන සමචතුරසුයකි. විශාලත්වයෙන් නිව්ටන් $1,\,2,\,3,\,4,\,2\sqrt{2}$ වන බලයන් $AB,\,BC,\,CD,\,DA$ පාද සහ AC විකර්ණය ඔස්සේ දී ඇති පිළිවෙළට කිුයා කරයි. බලපද්ධතිය බල යුග්මයක්ට තුලා බව පෙන්වා එහි සූර්ණය සොයන්න.

 $2\sqrt{2}$ N බලය, AD සහ AB. දිගේ විභේදනය කරමු.

$$\overrightarrow{AD}$$
 දිගේ සංරචක = $2\sqrt{2}$ $\cos 45$ \overrightarrow{AB} දිගේ සංරචක = $2\sqrt{2}$ $\cos 45$ = $2N$

දුන් පද්ධතිය ඉහත 2 රූපයේ දක්වා ඇති පරිදි පාද දිගේ කිුිිිියා කරන බලයන්ට සමාන වේ.

දන් පද්ධතිය එකම අතට කිුිිියා කරන බල යුග්ම දෙකකට තුලෳ වී ඇති නිිසා, එම යුග්ම දෙක තනි යුග්මයකට ඌනනය කළ හැක.

සම්පුයුක්ත බල යුග්මයේ සූර්ණය
$$= 3 \times 1 + 2 \times 1$$
 (වාමාර්ථව) $= 5 \; \mathrm{Nm} \; \mathrm{m}$

උදාහරණ 14

ABCD යනු විශාලත්වය නිව්ටන් 3, 2, 4, 3, P වන AB, CB, CD, AD සහ DB අකුරු මඟින් දක්වෙන පිළිවෙළට කුියා කරන බලයන් ඇතුළත් සමචතුරසුයකි. පද්ධතිය බල යුග්මයකට ඌනනය වේ නම් P8 අගය සොයන්න.

P N බලය AB සහ CB දිගේ විභේදයෙන් ලැබෙන සංරචකයේ විශාලත්ව එක හා සමාන වන අතර එය $P\cos 45 = \frac{P}{\sqrt{2}}\,N$.

බල යුග්මයට ඌනනය කිරීමට
$$3+\frac{P}{\sqrt{2}}=4$$
 සහ $2+\frac{P}{\sqrt{2}}=3$ විය යුතුයි.
$$\frac{P}{\sqrt{2}}=1$$
 සහ $\frac{P}{\sqrt{2}}=1$ $P=\sqrt{2}$ සහ $P=\sqrt{2}$.: $P=\sqrt{2}$

උදාහරණ 15

 ABCD යනු සමාන්තරාසුයකි. $\operatorname{\overline{AB}}$, $\operatorname{\overline{BC}}$, $\operatorname{\overline{CD}}$, $\operatorname{\overline{DA}}$ මඟින් නිරූපණය වන බලයන් පිළිවෙළින් එම පැති දිගේ කියා කරයි. එම බලයන් සමාන්තරාසුයේ වර්ගඵලය මෙන් දෙගුණයකට සමාන සූර්ණයකින් යුක්ත බල යුග්මයකට සමාන බව පෙන්වන්න. ජමහි $|\operatorname{\overline{AB}}| = |\operatorname{\overline{CD}}|$ හා $|\operatorname{\overline{BC}}| = |\operatorname{\overline{DC}}|$ වේ.

 \overrightarrow{AB} සහ \overrightarrow{CD} බල විශාලත්වයෙන් සමාන පුතිවිරුද්ධ සහ සමාන්තර බල නිසා $\overrightarrow{AB} imes d_1$ බල යුග්මයක් වේ. මෙහි \overrightarrow{AB} සහ \overrightarrow{CD} අතර දුර ලම්භ දුර d_1 වේ.

 \overrightarrow{BC} සහ \overrightarrow{DA} විශාලත්වයෙන් සමාන පුතිවිරුද්ධ සහ සමාන්තර බල නිසා $BC imes d_2$ බල යුග්මයක් සාදයි.

තව ද බල යුග්ම දෙක ම එක ම අතට කිුිිිිිිිිිිි කරන බැවින් සම්පුයුක්ත බල යුග්මයේ සූර්ණය $AB imes d_1 + BC imes d_2$ වේ. (මෙහි d_2 යනු AB සහ BC අතර ලම්භ දුර වේ) එහෙත් $AB imes d_1 = BC imes d_2 =$ සමාන්තරාසුයේ වර්ගඵලය

එබැවින් බල යුග්මයේ ඝූර්ණය සමාන්තරාසුයේ වර්ගඵලය මෙන් දෙගුණයකට සමාන වේ.

3.9 අභාගසය

- 1. ABCD යනු පැත්තක දිග $2\,m$. වන සමවතුරසුයකි. a,b,c සහ d බලයන් AB,BC,CD සහ DA දිගේ පිළිවෙළින් ද $p\sqrt{2}$, $q\sqrt{2}$ බලයන් AC සහ BD දිගේ පිළිවෙළින් ද කියා කරයි. p+q=c-a සහ p-q=d-b නම් බලයන් හි සූර්ණය a+b+c+d. වන බල යුග්මයකට තුලා බව පෙන්වන්න.
- 2. P සහ Q යනු සමාන්තර එක ම දිශාවකට කිුයා නොකරන බල දෙකකි. විශාලත්වය F වන බල යුග්මයක් එම තලය මත යෙදු විට P සහ Q බල වල සම්පුයුක්තය බලය $\frac{Fa}{(P+Q)}$ දුරකින් විස්ථාපනය වන බව පෙන්වන්න. මෙහි a යනු P හා Q බලවල කිුයාරේඛා අතර ලම්බ දුර වේ.
- 3. ABC තිකෝණයක ශීර්ෂවල දී පරිවෘත්තයට ඇඳි ස්පර්ශක දිගේ ABC අතට A, B හා C වලදි කියාකරන P, Q සහ R බල තුනක් බල යුග්මයකට තුලා වේ.

P : Q : R = sin2A : sin2B : sin2C බව පෙන්වන්න.

- 4. ABCD සමචතුරසුයකි. CD සහ BC පාදවල මධා ලක්ෂායන් පිළිවෙළින් D සහ E වේ. P, Q, R බල පිළිවෙලින් AD, DE සහ EA අක්ෂර මඟින් දක්වෙන දිශාවන් ඔස්සේ කුියා කරයි. පද්ධතිය බල යුග්මයකට තුලා වේ නම් $P:Q:R=\sqrt{5}:\sqrt{2}:\sqrt{5}$ බව පෙන්වන්න.
- 5. පැත්තක දිග $0.6\ m$ වන ABC සමපාද තුිකෝණයක AB, BC, CA පාද දිගේ නිව්ටන් 4, 3, 3 බල පිළිවෙළින් කියා කරයි. P N වන තවත් බලයක් පද්ධතිය බල යුග්මයකට ඌනනය වන පරිදි C හි දී කියා කරයි. Pහි විශාලත්වය සහ දිශාව සොයන්න. බල යුග්මයේ සුර්ණය ද සොයන්න.
- 6. දෘඪ වස්තුවක් මත කිුයා කරන බල තුනක විශාලත්වය දිශාව සහ කිුයා රේඛාව තිුකෝණයක පිළිවෙළින් ගත් පාද තුනක් ඔස්සේ නිරූපණය කරයි නම් ඒවා තිුකෝණයේ වර්ගඵලය මෙන් දෙගුණයක් වන තනි බල යුග්මයකට තුලා බව පෙන්වන්න.
- 7. P, P, Q, Q බල හතරක් ABCD රොම්බසයක AB, BC, CD, DA පාද දිගේ කුියා කරයි. රොම්බසයේ කේන්දුය O වටා ඒවායේ සූර්ණවල එකතුව සොයන්න. ඒවායේ සම්පුයුක්තය

$${
m O}$$
 සිට ${BD\over 2}igg({P+Q\over P-Q}igg)$ දුරකින් බව ඔප්පු කරන්න.

 $\mathbf{P} = \mathbf{Q}$ වන අවස්ථාව සාකච්ඡා කරන්න.

4.0 දෘඪ වස්තුවක් මත කුියා කරන ඒකතල බල

4.1 ඒකතල බලවල සම්පුයුක්තය

දෙවන පරිච්ඡේදයේ දී ලඤෳායක් මත කිුයා කරන බල පිළිබඳ අධාායනය කරන ලදී. මෙහි දී සියලු ම බල ඒක ලඤාා නොවන අවස්ථා ගැන සාකච්ඡා කෙරේ.

ඒකතල බල පද්ධතියක සම්පුයුක්තය

මෙහි දී විශාලත්වය හා කිුිිිිිිිිිි රේඛාව දන්නා බල සමූහයක සම්පුයුක්තය සෙවීම සිදු කෙරේ.

සම්පුයුක්තයේ විශාලත්වය

බල එකිනෙකට ලම්බක දිශා දෙකකට විභේදනය කරනු ලැබේ. මෙම සංරචක වෙන වෙන ම එකතු කර ඒවා ${f X}$ හා ${f Y}$ ලෙස අංකනය කරනු ලැබේ. සම්පුයුක්තයේ විශාලත්වය ${f R}^2={f X}^2+{f Y}^2$ මඟින් ලබා ගත හැකිය.

සම්පුයුක්තයේ දිශාව

සම්පුයුක්තය X සමඟ සාධන දිශාව heta නම්

$$\tan \theta = \frac{Y}{X}$$

$$\theta = \tan^{-1} \left(\frac{Y}{X}\right)$$

සම්පුයුක්තයේ කිුිිිිිිිිිි තියා රේඛාව කිිිිිිිිිිිි කරන ලක්ෂා සඳහා දෙන ලද රේඛාවක පිහිටි O ලක්ෂාය වටා සූර්ණ ගැනිමෙන් සම්පුයුක්තයේ කිුිිිිිිිිිි තියා රේඛාව දෙන ලද රේඛාව කපන ලක්ෂාය සොයාගත හැකිි ය.

උදාහරණ 1

පැත්තක දිග 2a. වන ABCD සමචතුරසුයක පාද ඔස්සේ නිව්ටන් 3P, 2P, P, 3P බල පිළිවෙලින් AB, CB, CD, සහ AD ඔස්සේ කිුයා කරයි නම්

- (i) සම්පුයුක්තයේ විශාලත්වය හා දිශාව ද
- (ii) සම්පුයුක්තයේ කිුයා රේඛාව ද සොයන්න.

$$AB$$
 දිශාවට විභේදනයෙන් $ightarrow$ $X = 3P - P$ = $2P$

m AD දිශාවට විභේදනයෙන් ightharpoonup Y = 3P - 2P

$$= P$$

$$R^{2} = X^{2} + Y^{2}$$

$$= (2P)^{2} + P^{2} = 5P^{2}$$

$$R = P\sqrt{5} N$$

$$\tan \theta = \frac{Y}{X} = \frac{P}{2P} = \frac{1}{2}$$

$$\theta = \tan^{-1}\left(\frac{1}{2}\right)$$

සම්පුයුක්තයේ විශාලත්වය $P\sqrt{5}$ N ද AB සමඟ $an^{-1}\left(\frac{1}{2}\right)$ සාදයි. සම්පුයුක්ත බලය AB කපන ලක්ෂාය E නම් සහ AE=x නම්

E වටා සූර්ණ ගැනීමෙන්

$$3Px + 2P(2a - x) - P \times 2a = 0$$

 $3x - 2x = 2a - 4a$
 $x = -2a$

හෝ

A වටා සූර්ණ ගැනීමෙන්

$$R \times x \sin \theta = P \times 2a - 2P \times 2a$$

$$P\sqrt{5} \times x \times \frac{1}{\sqrt{5}} = -2Pa$$

$$x = -2a$$

සම්පුයුක්තය BA රේඛාව, A සිට 2a දුරක දී කපයි.

උදාහරණ 2

ABC සමපාද තිකෝණයක පාදයක දිග 2a.වේ. $4N,\,2N,\,2N$ බල පිළිවෙළින් $BA,\,AC,\,BC$ ඔස්සේ කියා කරයි. සම්පුයුක්තයේ විශාලත්වය සොයන්න. තව ද සම්පුයුක්තයේ කියා රේඛාව B ලක්ෂායේ සිට $\frac{2a}{3}$ දුරක දී BC රේඛාව කපන බව පෙන්වන්න.

BC ට සමාන්තර ව විභේදනයෙන්

$$R^{2} = X^{2} + Y^{2}$$

$$= 1^{2} + (\sqrt{3})^{2}$$

$$= 1 + 3 = 4$$

$$R = 2N$$

$$\tan \theta = \frac{Y}{X} = \frac{\sqrt{3}}{1} = \sqrt{3}$$

$$\theta = \tan^{-1}(\sqrt{3}) = 60^{\circ}$$

සම්පුයුක්තයේ විශාලත්වය 2N වන අතර එය BC සමඟ 60° ක කෝණයක් සාදයි සම්පුයුක්තය BC රේඛාව කපන ලක්ෂාය E නම්

E වටා සූර්ණ ගැනීමෙන් $4 \times x \sin 60 - 2 \times (2a - x) \sin 60^\circ = 0$ 4x - 4a + 2x = 0 6x = 4a

$$x = \frac{2}{3} a$$

උදාහරණ 3

ABCDEF යනු පැත්තක දිග a වන සවිධි ෂඩසුයකි. 2N, 2N, 3N, 2N බල පිළිවෙළින් AB, CD, ED, EF ඔස්සේ කිුිිියා කරයි. සම්පුයුක්තය විශාලත්වය සොයන්න. තව ද එය A ලක්ෂායේ දී AB ඔස්සේ කිුිිියා කරන බව ද පෙන්වන්න.

AB සහ AE එකිනෙකට ලම්බක නිසා

ABට සමාන්තර ව බල විභේදනයෙන්

$$\rightarrow X = 2 + 3 - 2\cos 60 - 2\cos 60$$

= 3N

AEට සමාන්තරව බල විභේදනයෙන්

$$Y = 2\sin 60 - 2\sin 60$$
$$= 0$$

R = 3N AB \bigcirc සමාන්තර වේ.

Am වටා සූර්ණ ගැනීමෙන්

$$2 \times 2a\sin 60 - 3 \times 4a\cos 30 + 2 \times 4a\cos 30$$

එය A හරහා යමින් AB ඔස්සේ කිුයා කරයි.

ඒකතල බල පද්ධතියක්

ඒකතල බල පද්ධතියක් එම බල පද්ධතිය කිුයාකරන තලයේ පිහිටි යම් මූල ලඤෳයක දී කිුයා කරන තනි බලයකට සහ බල යුග්මයකට තුලෳ වේ.

 $F_{i}(i=1,2,....n)$ බල $P_{i}(i=1,....n)$ ලක්ෂාවල දී කිුයා කරන්නේ යයි ද එම බල කිුියා කරන තලයේ පිහිටි මූල ලක්ෂාය O නම් O මූල ලක්ෂාය ලෙස ගත් විට Ox, Oy කණ්ඩාංක අක්ෂ පද්ධතියට අනුව $P_{i\equiv}(x_{i},y_{i})$ (i=1,2,....n) ද ලෙස ගනිමු.

 $\mathbf{F}_{_{i}}$ $(i{=}1,2,3,....n)$ බල $\mathbf{O}x$ සමඟ $\mathbf{\theta}_{_{i}}$ කෝණයක් සාදයි නම්

 \mathbf{F}_i බලය $\mathbf{O} x$ හා $\mathbf{O} y$ ඔස්සේ විභේදනයෙන්

$$X_{i} = F_{i} \cos \theta_{i}, \quad Y_{i} = F_{i} \sin \theta_{i} (i = 1, 2,n)$$

O ලක්ෂායේ දී $X_{\pmb{i}}, Y_{\pmb{i}}$ බල සමඟ දිශාවෙන් විරුද්ධ බල එකතු කිරීමෙන් බල පද්ධතියට බලපෑමක් ඇති නොවේ.

 $ext{P}_i$ ලක්ෂයේ දී $ext{Y}$ i $ext{P}$ i $ext{H}$ $ext{H}$ $ext{H}$ $ext{H}$ $ext{H}$

ಶುತಂದೆ ಕ್ಲಿ X_i \longleftrightarrow V_i

R තනි බලයක් සාදයි

මඟන් O ලක්ෂායේ දී $G_{m i}$ බල යුග්මයක් හා

$$\tan \theta = \frac{Y}{X}$$

$$\theta = \tan^{-1}(\frac{Y}{X})$$

$$\cot G = \sum_{n=1}^{\infty} Y_{n} Y_{n} - X_{n} Y_{n}$$

$$\operatorname{deg} G = \sum_{\underline{i}=1}^{n} Y_{\underline{i}} x_{\underline{i}} - X_{\underline{i}} y_{\underline{i}}$$

සටහන : G යනු O වටා වාමාවර්ථව සියලු බලවල සූර්ණවල වීජ ඓකාය යි. එය O ලක්ෂායේ පිහිටීම මත රඳා පවතී.

ඒකතල බල පද්ධතියක සමතුලිත අවස්ථා

බල පද්ධතියක් ඕනෑ ම O ලක්ෂෳයක දී (මුලය) කිුයා කරන තනි $\,R\,$ බලයකට සහ එම තලයේ කිුයා කරන $\,G\,$ යුග්මයකට ඌනනය කළ හැකි ය.

- i. R=0 සහ G=0 නම් බල පද්ධතිය සමතුලිත වේ.
- $\ddot{\mathrm{ii}}$. $\mathrm{R} \neq 0$, සහ $\mathrm{G} = 0$ නම් පද්ධතිය O ලක්ෂායේ කිුිිිිිිිිි කරන තනි බලයකට ඌනනය වේ.
- iii. R=0 සහ G
 eq 0 නම් බල පද්ධතිය G බල යුග්මයකට ඌනනය වේ.
- iv. $R \neq 0$ සහ $G \neq 0$ නම් බල පද්ධතිය සමතුලිත නොවේ බල පද්ධතිය O'නම් ලක්ෂායේ දී කියා කරන R නම් තනි බලයකට ඌනනය වේ.

පහත නිරූපණය කරන පරිදි $\operatorname{OO'} = \frac{G}{R}$ වේ.

සාධනය :

G බල යුග්මය විශාලත්වයෙන් සමාන දිශාවෙන් පුතිවිරුද්ධ R සහ R බල දෙකක් ලෙස O සහ O' ලක්ෂාවල දි නිරූපණය කරනු ලැබේ. බල දෙකේ කිුයා රේඛා අතර දුර $d=\frac{G}{R}$ වේ.

විශාලත්වයෙන් සමාන දිශාවෙන් පුතිවිරුද්ධ බල තුලනය කරයි. එම නිසා තනි $\, R \,$ බලයක් $O' \,$ හි දී කිුයා කරයි.

ඒකතල බල පද්ධතියක සම්පුයුක්තයේ කිුයා රේඛාවේ සමීකරණය

බල පද්ධතියක් සමතුලිතතාව් නැත්නම් එම බල පද්ධතිය ඕනෑම (x',y') ලඤායක ම කිුයා කරන R තනි බලයකට සහ G' බල යුග්මයකට තුලා වේ.

එනම්
$$R^2 = X^2 + Y^2$$
 සහ $G' = G + Xy' - Yx'$

සම්පුයුක්තයේ කිුිිිියා රේඛාව මත ඕනෑම ලක්ෂාක සූර්ණය ශූතා වේ. සම්පුයුක්තයේ කිුිිිිිිිිිිිිිිිිිි මත ඕනෑම ලක්ෂාක් (x,y) තම් G+Xy-Yx=0;

මෙය සම්පුයුක්තයේ කිුයා රේඛාවේ සමීකරණයයි.

O වටා සූර්ණය =

$$G = Yx' - Xy' + G'$$

එම නිසා
$$G' = G + Xy' - Yx'$$

සම්පුයුක්තය (x', y') හරහා යයි නම් G' = 0

$$O = G + Xy' - Yx'$$

කිුයා රේඛාවේ සමීකරණය

$$O = G + Xy - Yx$$

8.2 විසඳු නිදසුන්

උදාහරණ 4

2,4,1,6 නිව්ටන් බල සමචතුරසුයක පාද පිළිවෙළින් AB, CB, CD, AD ඔස්සේ කුියා කරයි. සම්පුයුක්තයේ විශාලත්වයේ දිශාව සොයන්න. පාදයක දිග a වේ.

AB සහ AD රේඛා ඛණ්ඩාංක අසු ලෙස ගත් විට සම්පුයුක්තයේ කියා රේඛාවේ සමීකරණය 2x - y+3a=0 බව පෙන්වන්න.

ABට සමාන්තර ව බල විභේදනයෙන්

$$\rightarrow X = 2 - 1 = 1$$

AD ට සමාන්තරව බල විභේදනයෙන්

$$\uparrow Y = 6 - 4 = 2$$

$$R^2 = X^2 + Y^2 = 2^2 + 1^2 = 5$$

$$R = \sqrt{5} N$$

$$\tan\theta = \frac{Y}{X}$$

$$= 2$$

$$\theta = \tan^{-1}(2)$$

සම්පුයුක්තයේ විශාලත්වය $\sqrt{5}$ N ද AB සමඟ $tan^{-1}(2)$ කෝණයක් සාදයි. A වටා සූර්ණ ගැනීමෙන්

$$Gm = 1 \times a - 4 \times a$$
$$= -3a \text{ N}m$$

කුියා රේඛාවේ සමීකරණය

$$G + Xy - Yx = 0$$
$$-3a + y - 2x = 0$$
$$2x - y + 3a = 0$$

හෝ

A වටා සම්පුයුක්තයේ ඝූර්ණය

= A වටා බලවල සූර්ණයන්ගේ වීජ ඓකාය

$$G = Yx - Xy$$

$$-3a = 2x - 1y$$

$$2x - y + 3a = 0$$

උදාහරණ 5

 ${
m ABCD}$ යනු පැත්තක දිග a වන සමචතුරසුයකි. නිව්ටන් 5,4,3,2 බල පිළිවෙළින් ${
m AB,BC,CD,AD}$ ඔසේ කිුයා කරයි. බල පද්ධතිය

- i. A ලකුෂායේ කිුියා කරන තනි බලයකට හා බල යුග්මයකට
- ii. O ලක්ෂායේ කිුිිිියා කරන බලයකට හා බල යුග්මයකට
- iii. AB හා AD ඛණ්ඩාංක අසු ලෙස ගෙන කිුියා රේඛාවේ සමීකරණය සොයන්න.

AB ට සමාන්තරව බල විභේදනයෙන්

$$X = 5 - 3$$

$$= 2N$$

 ${
m AB}$ ට ලම්බක ව බල විභේදනයෙන්

$$\uparrow Y = 4 + 2$$

$$= 6N$$

$$R^2 = X^2 + Y^2$$
$$= 40$$

Am වටා සූර්ණ ගැනීමෙන්

$$G = 4 \times a + 3 \times a$$
$$= 7a \text{ Nm}$$

A ලක්ෂායේ කිුිිිිිිිිිිිිිි කරන $2\sqrt{10}$ N තනි බලයකට සහ 7a Nm බල යුග්මයකට තුලා වේ. O ලක්ෂායේ දී සූර්ණයය

G =
$$5 \times \frac{a}{2} + 4 \times \frac{a}{2} + 3 \times \frac{a}{2} - 2 \times \frac{a}{2}$$

= $5a \text{ Nm}$

කේන්දුයේ දී $2\sqrt{10}$ N බලයට සහ 5a Nm බල යුග්මයකට තුලා වේ. කිුයා රේඛාවේ සමීකරණය

$$G + X.y - Y.x = 0$$

$$5a + 2y - 4x = 0$$

$$4x - 2y - 5a = 0$$

උදාහරණය 6

පැත්තක දිග 2a වන ABCDEF සවිධි ෂඩසුයක නිව්ටන් 2, 1, 2, 3, 2, 1 N බල පිළිවෙළින් AB, BC, CD, ED, EF, AF පාද ඔස්සේ කිුයා කරයි.

- i. බල පද්ධතිය AC ඔස්සේ කුියා කරන $2\sqrt{3}N$ තනි බලයකට හා බල යුග්මයකට තුලා වන බව පෙන්වන්න.
- ii. බල පද්ධතිය තනි බලයකට ඌනන කළ හැකි බව පෙන්වා කිුිිියා රේඛාවේ සමීකරණ සොයන්න.
- $\ddot{ ext{iii.}}$ කියා රේඛාව දික් කරන ලද FA රේඛාව K හි දී කපයි නම් AK අර සොයන්න.

$$\rightarrow$$
 X = 2 + 3 + 1cos60 - 2cos60 - 2cos60 - 1cos60
= 5 - 2 = 3 N

$$\uparrow Y = 1\sin 60 + 1\sin 60 + 2\sin 60 - 2\sin 60$$

$$= \sqrt{3}N$$

$$R^2 = X^2 + Y^2$$

$$= 12$$

$$R = 2\sqrt{3}N$$

$$\tan\theta = \frac{X}{Y} = \frac{1}{\sqrt{3}}$$

$$\theta = 30^{\circ}$$

සම්පුයුක්තය ACට සමාන්තර වේ.

A m වටා සූර්ණවල එකතුව

G =
$$1 \times 2a\sin 60 + 2 \times 4a\cos 30 + 2 \times 2a\sin 60 - 3 \times 4a\cos 30$$

= $a\sqrt{3} + 4\sqrt{3}a + 2\sqrt{3}a - 6\sqrt{3}a$
= $a\sqrt{3}$ Nm

• පද්ධතිය AC ඔස්සේ

 $2\sqrt{3}$ N බලයට හා $a\sqrt{3}$ N වූ යුග්මයකට තුලා වේ.

යුග්මයේ සූර්ණය a $\sqrt{3}$ Nm

ඉහත පෙන්වා ඇති පරදි $2\sqrt{3}~\mathrm{N}$ බලය සමාන පුතිවිරුද්ධ බල දෙකකින් පුතිස්ථාපනය කළ හැකි

a.
$$AA' = \frac{a\sqrt{3}}{2\sqrt{3}} = \frac{a}{2}m$$

A ලක්ෂායේ ඇති බල එකිනෙකට තුලනය කරයි.

එම නිසා A' හි කිුයා කරන $2\sqrt{3}\,$ N තනි බලයකට ඌනනය වේ. කිුයා රේඛාවේ සමීකරණය

$$G + Xy - Yx = 0$$

$$a\sqrt{3} + 3y - \sqrt{3}x = 0$$

$$x - \sqrt{3}y - a = 0$$

කිුයා රේඛාව AB රේඛාව H හි දී කපයි. FA රේඛාව K තෙක් දික් කරනු ලැබේ.

$$H=(x_1, 0) x - \sqrt{3} y - a = 0$$

$$y = 0 x_1 = a$$

$$E = (a, 0)$$

$$\sin 60^0 = \frac{AK}{AE}$$

$$AK = AE\sin 60$$

$$= \frac{a\sqrt{3}}{2}m$$

උදාහරණය 7

පැත්තක දිග 2a වන ABCDEF සවිධි ෂඩසුයක AB, BC, CD, DE, EF, FA පාද ඔස්සේ P,Q,R,P,2P,3P N බල පිළිවෙළින් කිුයා කරයි.

- i. පද්ධතිය යුග්මයකට සමාන නම් Q=2P සහ R=3P බව පෙන්වා යුග්මයේ සූර්ණය ද සොයන්න.
- $\ddot{\mathrm{ii}}$. පද්ධතිය AD ඔස්සේ කිුයා කරන තනි බලයකට සමාන නම් Q සහ R බල P ඇසුරින් පුකාශ

පද්ධතියේ බල යුග්මයකට තුලා නිසා

$$X = 0$$
 සහ $Y = 0$

$$X = Q\cos 60 - R\cos 60 - 2P\cos 60 + 3P\cos 60 = \frac{Q-R+P}{2}$$

$$X = 0; \quad Q - R + P = 0$$

$$R - Q = P \qquad (1)$$

$$\uparrow$$
 Y = Qsin60 + Rsin60 - 2Psin60 - 3Psin60 = (Q+R-5P) $\frac{\sqrt{3}}{2}$

$$Y=0;$$
 $Q+R=5P$ (2) $R=3P$ සහ $Q=2P$ යුග්මයේ සූර්ණය $=$ Om වටා සූර්ණවල එකතුව $=$ $(P+Q+R+P+2P+3P) \times a\sqrt{3}$ $=$ $12\sqrt{3}$ aP Nm

(ii)
$$X = \frac{Q-R+P}{2}$$

 $Y = (Q+R-5P)\frac{\sqrt{3}}{2}$

සම්පුයුක්තය AD ට සමාන්තර නිසා

$$\tan\theta = \sqrt{3} = \frac{\sqrt{3}(Q+R-5P)}{Q-R+P}$$

$$Q-R+P = Q+R-5P$$

$$R = 3P$$

AD ඔස්සේ කුියා කරන තනි බලයකට තුලා වේ. Om වටා සූර්ණවල එකතුව ශුනාය වේ.

$$(7P + Q + R)a\sqrt{3} = 0$$

 $10P + Q = 0$
 $Q = -10P$

උදාහරණය 8

ABCDEF යනු පැත්තක දිග a වන සවිධි ෂඩාසුයකි. විශාලත්ව λP , μP , γP බල පිළිවෙළින් AB, CB, CD ඔස්සේ කිුයා කරයි. D, E, F ශීර්ෂ හරහා සූර්ණ පිළිවෙළින් $2\sqrt{3}$ Pa, $\frac{3\sqrt{3}}{2}$ Pa, $\frac{\sqrt{3}}{2}$ Pa වන අතර එම සූර්ණවල අත ඔරලෝසු කටු කැරකෙන දිශාවට විරුද්ධ ව කිුයා කරයි.

- i. $\lambda,\,\mu,\,\gamma$ අගයන් සොයන්න.
- ii. සම්පුයුක්ත A හරහා EC ට සමාන්තරව කිුයා කරන $\sqrt{3} \ PN$ තනි බලයක් බව පෙන්වන්න.

Dm වටා සූර්ණ ගැනීමෙන්

$$\lambda P \times 2a\cos 30 - \mu P \times a\sin 60 = 2\sqrt{3} aP$$

$$2\lambda \frac{\sqrt{3}}{2} - \mu \frac{\sqrt{3}}{2} = 2\sqrt{3}$$

$$2\lambda - \mu = 4 \qquad \dots (1)$$

Em වටා සූර්ණවල එකතුව

$$\lambda P \times 2a\cos 30 - \mu P \times 2a\cos 30 + \gamma P \times a\sin 60 = \frac{3\sqrt{3}}{2}Pa$$

$$aP\frac{\sqrt{3}}{2}[2\lambda - 2\mu + \gamma] = 3a\frac{P\sqrt{3}}{2}$$

$$2\lambda - 2\mu + \gamma = 3 \qquad(2)$$

Fm වටා සූර්ණවල එකතුව
$$\lambda P \times a \sin 60 - \mu p \times 2a \cos 30 + \gamma p.2a \cos 30 = \frac{\sqrt{3}}{2} Pa$$

$$\lambda P a \frac{\sqrt{3}}{2} - \mu P 2 a \frac{\sqrt{3}}{2} + \gamma P 2 a \frac{\sqrt{3}}{2} = \frac{\sqrt{3} P a}{2}$$

$$ap \frac{\sqrt{3}}{2} [\lambda - 2\mu + 2\gamma] = a \frac{P \sqrt{3}}{2}$$

$$\lambda - 2\mu + 2\gamma = 1 \dots (3)$$
(1), (2), (3) $\lambda = 3$, $\mu = 2$, $\gamma = 1$

$$\rightarrow X = \lambda P - \mu P \cos 60 - \gamma P \cos 60$$

$$\rightarrow X = \lambda P - \mu P \cos 60 - \gamma P \cos 6$$

$$= 3P - 2\frac{P}{2} - \frac{P}{2} = \frac{3P}{2}$$

$$\downarrow Y = \mu P \sin 60 - \gamma P \sin 60$$
$$= 2P \left(\frac{\sqrt{3}}{2}\right) - P \left(\frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}P}{2}$$

$$R^2 = \left(3\frac{P}{2}\right)^2 + \left(\frac{\sqrt{3}P}{2}\right)^2 = 3P^2$$

$$R = \sqrt{3}PN$$

$$\tan\theta = \frac{\sqrt{\frac{3P}{2}}}{\frac{3P}{2}} = \frac{1}{\sqrt{3}}; \quad \theta = 30^{\circ}$$

$${
m A}$$
 m වටා සූර්ණය = ${
m P} imes 2a{
m cos}30$ - $2{
m P} imes a\sin 60$ = 0

සම්පුයුක්තය ECට සමාන්තර A හරහා ගමන් කරන $P\sqrt{3}\ N$ වන තනි බලයකි.

උදාහරණය 9

 ${
m ABCD}$ යනු සෘජුකෝණාසුයකි. එහි ${
m AB}=2a$ සහ ${
m AD}=a$ වේ. ${
m A},{
m B}$ හා ${
m C}$ ලක්ෂා වටා පද්ධතියේ වාමාර්ථ සුර්නයන් පිළිවෙළින් ${
m M}_1,{
m M}_2,$ - ${
m M}_3$ වේ.

- i. D වටා පද්ධතියේ සූර්ණය සොයන්න.
- ii. සම්පුයුක්තයේ විශාලත්වය හා දිශාව සොයන්න.
- $\ddot{\text{iii.}}$ සම්පුයුක්ත බලයේ කිුිිියා රේඛාව \vec{B} C රේඛාවට ලම්බක නම් $\vec{M}_1 = 5 \vec{M}_2 + 4 \vec{M}_3$ බව පෙන්වන්න.

ඉහත පෙන්වා ඇති පරිදි A ලක්ෂායට අක්ෂ මූලය ලෙස ද, AB පාදය x අක්ෂය හා AD පාදය y අක්ෂය ලෙස ද තෝරාගත් විට තලයේ පිහිටි ඕනෑම (x,y) ලක්ෂායක් වටා පද්ධතියේ සූර්ණය

ම්විට
$$A=(0,0)$$
 , $B=(2a,0)$, $C=(2a,a)$, $D=(0,a)$ වේ. A $=(0,0)$, $B=(2a,0)$, $C=(2a,a)$, $D=(0,a)$ වේ. A $=(0,0)$, $C=(2a,a)$, $D=(0,a)$ වේ. A $=(0,0)$, $D=(0,a)$ වේ. $D=(0,a)$ වේ. $D=(0,a)$ වේ. $D=(0,a)$ වේ. $D=(0,a)$ වේ. $D=(0,a)$ වේ. $D=(0,a)$ $D=(0$

ේඛාවේ අනුකුමණය
$$= \frac{\left(M_2 - M_1\right)}{2\left(M_2 + M_3\right)}$$
 AC රේඛාවේ අනුකුමණය $= \frac{1}{2}$ $\frac{\left(M_2 - M_1\right)}{2\left(M_2 + M_3\right)} imes \frac{1}{2} = -1$ $M_2 - M_1 = -4M_2 - 4M_3$ $5M_2 + 4M_3 = M_1$

උදාහරණය 10

 $\mathbf{O}x, \mathbf{O}y$ සෘජුකෝණාසු අක්ෂ පද්ධතියට සාපේක්ෂ ව $\mathbf{F}_i(i=1,2,....n)$ බල $\mathbf{P}_i(x_i,y_i)$ ලක්ෂායේ කියා කරයි. එම සැම බලයක් ම $\mathbf{O}x$ අක්ෂය සමඟ θ කෝණයක් සාදයි.

- i බල පද්ධතිය O හි දී කිුයා කරන තනි බලයකට හා බල යුග්මයකට ඌනනය කරන්න.
- ii. සම්පුයුක්තයේ කිුයා රේඛාවේ සමීකරණය සොයන්න.
- $ilde{iii}$. heta විචලා වන විට අදාළ සම්පුයුක්ත බලය අචල ලක්ෂායක් හරහා යන බව පෙන්වා එම ලක්ෂායේ ඛණ්ඩාංක සොයන්න.

$$X_{i} = F_{i} \cos \theta (i = 1, 2,n)$$

$$X = \sum_{\underline{i}=1}^{n} X_{i} = \cos \theta \sum_{\underline{i}=1}^{n} F_{i}$$

$$Y_{i} = F_{i} \sin \theta \qquad i = (1, 2, ... n)$$

$$Y = \sum_{\underline{i}=1}^{n} Y_{i} = \sin \theta \sum_{\underline{i}=1}^{n} F_{i}$$

$$O$$
 වටා Fi බලයේ සූර්ණය $G_i = Y_i x_i - X_i y_i$

$$G = \sum_{i=1}^{n} G_{i}$$

$$= \sum_{i=1}^{n} (Y_{i}x_{i} - X_{i}y_{i}) = \sum_{i=1}^{n} Y_{i}x_{i} - \sum_{i=1}^{n} X_{i}y_{i}$$

$$= \sin \theta \sum_{i=1}^{n} F_{i}x_{i} - \cos \theta \sum_{i=1}^{n} F_{i}y_{i}$$

$$R^{2} = X^{2} + Y^{2}$$

$$= \cos^{2}\theta \left(\sum_{i=1}^{n} F_{i}\right)^{2} + \sin^{2}\theta \left(\sum_{i=1}^{n} F_{i}\right)^{2}$$

$$= \left(\sum_{i=1}^{n} F_{i}\right)^{2}$$

කිුිිිියා රේඛාවේ අනුකුමණය

$$R = \sum_{\underline{i}=1}^{n} F_{i}$$

$$X_i \times l = G$$

සම්පුයුක්ත බලයේ කිුයා රේඛාවට
$$y$$
 අසපය හමුවන ලසපය $(0,-l)$ නම් $X_i imes l = G$
$$l = \frac{G}{X_i} \Rightarrow l = \frac{\sin \theta \sum_{i=1}^n F_i x_i - \cos \theta \sum_{i=1}^n F_i y_i}{\cos \theta \sum_{i=1}^n F_i}$$

$$=\frac{Y_i}{X_i}$$

$$= \frac{\sin \theta \sum_{i=1}^{n} F_i}{\cos \theta \sum_{i=1}^{n} F_i}$$
$$= \tan \theta$$

කිුයාරේඛාවේ සමීකරණය

$$y = \tan \theta x - l$$

$$y = \tan \theta x - \left[\frac{\sin \theta \sum_{i=1}^{n} F_i x_i - \cos \theta \sum_{i=1}^{n} F_i y_i}{\cos \theta \sum_{i=1}^{n} F_i} \right]$$

$$y \cos \theta \sum_{i=1}^{n} F_{i} = x \sin \theta \sum_{i=1}^{n} F_{i} - \sin \theta \sum_{i=1}^{n} F_{i} x_{i} + \cos \theta \sum_{i=1}^{n} F_{i} y_{i}$$
$$x \sin \theta \sum_{i=1}^{n} F_{i} - y \cos \theta \sum_{i=1}^{n} F_{i} + \cos \theta \sum_{i=1}^{n} F_{i} y_{i} - \sin \theta \sum_{i=1}^{n} F_{i} x_{i} = 0$$

මෙය heta මත රඳා පවතින විචලා රේඛාවකි.

$$\sin\theta(\sum_{i=1}^{n} F_{i} x_{i} - x \sum_{i=1}^{n} F_{i}) - \cos\theta(\sum_{i=1}^{n} F_{i} y_{i} - y \sum_{i=1}^{n} F_{i}) = 0$$

මෙය සියලු heta අගයන් සඳහා

$$\sum\limits_{i=1}^n F_i x_i - x \sum\limits_{i=1}^n F_i = 0$$
 සහ $\sum\limits_{i=1}^n F_i y_i - y \sum\limits_{i=1}^n F_i = 0$ යන රේඛා දෙකෙහි ඡේදන ලක්ෂය හරහා යන සරල රේඛාවකි.

එම නිසා ඡේදන ලක්ෂායේ ඛණ්ඩාංක
$$\left(\frac{\sum\limits_{i=1}^n F_i x_i}{\sum\limits_{i=1}^n F_i}, \frac{\sum\limits_{i=1}^n F_i y_i}{\sum\limits_{i=1}^n F_i} \right)$$
 වේ.

උදාහරණය 11

පැත්තක දිග a වන සවිධි ABCDEF ෂඩසුයක P, 7P, 8P, 7P, 3P බල පිළිවෙළින් AB, CB, CD, ED සහ FE ඔස්සේ කුියා කරයි. \overrightarrow{AB} සහ \overrightarrow{AE} දිශාවලට වූ එකක දෛශික පිළිවෙලින් $\underline{\boldsymbol{i}}$ සහ $\underline{\boldsymbol{i}}$ ලෙස ගනිමින් සියලු ම බල $\underline{\boldsymbol{i}},\underline{\boldsymbol{j}}$ සහ P ඇසුරින් ලියන්න.

එම බල පද්ධතිය $\stackrel{.}{BC}$ ට සමාන්තරව $\stackrel{.}{R}$ = $2P(\underline{\pmb{i}}+\sqrt{3}\,\underline{\pmb{i}})$ තනි බලයකට තුලා වන බව පෙන්වන්න. $\stackrel{.}{R}$ බලයේ විශාලත්වය සොයන්න.

තව ද සම්පුයුක්ත බලයේ කිුිිිිිිිිිිි පර්බාව DE සහ AF (දෙකම දික්කරන ලද) රේඛාවල පොදු ලක්ෂා හරහා යන බව පෙන්වන්න.

බල පද්ධතිය A ලඎායේ දී කිුයා කරන R බලයක් සමඟ බල යුග්මයකට තුලා වෙයි නම් බල යුග්මයේ සූර්ණය සහ අභිදිශාව සොයන්න.

බල

 $P_{{m i}}$, \overrightarrow{AB} ඔස්සේ කිුයා කරය.

$$7P\left(-\frac{1}{2}\underline{\boldsymbol{i}}-\frac{\sqrt{3}}{2}\underline{\boldsymbol{j}}\right)$$
 බලය \overrightarrow{CE} ඔස්සේ කිුයා කරයි.

$$8P\left(-rac{1}{2} \underline{i} + rac{\sqrt{3}}{2} \underline{j}
ight)$$
 බලය $\overrightarrow{\mathrm{CD}}$ ඔස්සේ කිුයා කරයි.

7P<u>i</u> බලය $\overrightarrow{\mathrm{ED}}$

 $3P\left(rac{1}{2} \underline{m{i}} - rac{\sqrt{3}}{2} \underline{m{j}}
ight)$ බලය \overrightarrow{FE} ඔස්සේ කුියා කරයි.

සම්පුයුක්තය
$$\underline{\mathbf{R}} = \left(1 - \frac{7}{2} - \frac{8}{2} + 7 + \frac{3}{2}\right) \mathbf{P}_{\underline{i}} + \left(-\frac{7\sqrt{3}}{2} + \frac{8\sqrt{3}}{2} + \frac{3\sqrt{3}}{2}\right) \mathbf{P}_{\underline{j}}$$

$$= 2\mathbf{P}_{\underline{i}} + 2\sqrt{3} \mathbf{P}_{\underline{j}}$$

$$= 2\mathbf{P}\left(\underline{i} + \sqrt{3}\,\underline{j}\right)$$
 සම්පුයුක්තය තනි බලයකි.
$$\overrightarrow{\mathbf{BC}} = \frac{a}{2}\,\underline{i} + \frac{a\sqrt{3}}{2}\,\underline{j}$$

$$= \frac{a}{2}\left(\underline{i} + \sqrt{3}\,\underline{j}\right)$$

 \therefore \mathbf{R} බලය $\overrightarrow{\mathrm{BC}}$ සමාන්තර වේ.

$$|\underline{\mathbf{R}}| = \sqrt{(2\mathbf{P})^2 + (2\sqrt{3}\mathbf{P})^2}$$
$$= 4\mathbf{P}$$

L වටා සූර්ණය ගැනීමෙන්

 $P \times 2a\cos 30 - 7P \times 3a\cos 30 + 8P \times 2a\sin 60 + 3P \times a\sin 60$ $21Pa\sin 60 - 21Pa\cos 30 = 0$

දික් කළ DE හා AF ජේදන ලක්ෂා හරහා සම්පුයුක්තය ගමන් කරයි.

පද්ධතිය A හරහා වූ R තනි බලයක හා යුග්මයකට ඌනනය වේ නම්, L හි වූ R හා A හි වූ -R මගින් ඇතිවන බල යුග්මය AFEDCB අතට වූ සූර්ණය $R \times 2a\sin 60$ වේ.

$$PC$$
 එනම් $4P \times 2a \times \frac{\sqrt{3}}{2} = 4\sqrt{3}Pa$ ඉඩි.

4.1 අභාගාසය

- 1. පැත්තක දිග a වන ABCD සමචතුරසුයක AB, BC, CD, DA පාද සහ BD විකර්නය ඔස්සේ පිළිවෙළින් $1,3,5,7,9\sqrt{2}$ කියා කරයි. AB සහ AD රේඛා x සහ y අක්ෂ ලෙස ගෙන
 - i. සම්පුයුක්තයේ විශාලත්වය හා දිශාව සොයන්න.
 - ii. සම්පුයුක්ත රේඛාව AB කපන ලක්ෂා සොයන්න.
- 2. ABCDEF යනු පැත්ක දිග a වන සවිධි ෂඩසුයකි. නිව්ටන් 1, 3, 2, 4 බල පිළිවෙළින් AB, BE, ED සහ DA ඔස්සේ කිුයා කරයි. AB සහ AE රේඛා x සහ y අකෂ ලෙස ගෙන
 - i. සම්පුයුක්තයේ විශාලත්වය හා දිශාව
 - ii. කියා රේඛාවේ සමීකරණය සොයන්න.
- 3. පැත්තක දිග a වන සවිධි ෂඩසුයක F, 2F, 3F, 4F, 5F, 6F බල පිළිවෙළින් AB, BC, CD, DE, DF, FA පාද ඔස්සේ කිුයා කරයි.
 - i. එම බලවල සම්පුයුක්තය දෙන ලද බලයකට සමාන්තර ව 6F බලයක් බව ද
 - ii. කේන්දුයේ සිට එම බලයට සහ සම්පුයුක්තයේ කිුිිියා රේඛාවට පවතින දුර අතර අනුපාතය 2:7 බව ද පෙන්වන්න.
- 4. නිව්ටන් 4, 3, 3 බල පිළිවෙළින් AB, BC, CA ඔස්සේ කුියා කරයි. මෙහි ABC සමපාද තිකෝණයක් වන අතර පැත්තක දිග $0.6~\mathrm{m}$ වේ.
 - i. සම්පුයුක්තයේ විශාලත්වය හා දිශාව
 - ii. C ලක්ෂායේ සිට සම්පුයුක්ත බලය කිුයා රේඛාවට ලම්බක දුර
 - $\ddot{\text{iii}}$. අමතර $\ddot{\text{F}}$ බලයක් $\ddot{\text{C}}$ ලක්ෂායේ දී $\ddot{\text{ABD}}$, තලයේ කියා කරන පරිදි එකතු කරනු ලැබේ. දැන් පද්ධතිය බල යුග්මයක් සාදයි. $\ddot{\text{nd}}$ බල යුග්මයේ සූර්ණය ද එකතු කළ බලයේ විශාලත්වය හා දිශාව ද සොයන්න.
- 5. O, A, B, C ලක්ෂාවල ඛණ්ඩාංක පිළිවෙළින් (0,0), (3,0), (3,4) සහ (0,4) වේ. විශාලත්වයෙන් නිවුටන් (3,0), (3,4) සහ (0,4) වේ. කියාකරයි. සූර්ණය ඒකක (3,4) සහ (0,4) වේ. කියාකරයි. සූර්ණය ඒකක (3,4) සහ (3,4)
- 6. කේන්දුය O වන පැත්තක දිග a වන ABCDEF සවිධි ෂඩසුයක AB, BC, CD, DE, EF පාද ඔස්සේ පිළිවෙළින් නිව්ටන් P, 2P, 3P, 4P, 5P බල කිුයා කරයි. Q, R, S බල තුනක් AF, FO, OA ඔස්සේ පද්ධතියට එකතු කරනු ලැබේ. පහත අවස්ථාවල Q, R, S බලවල විශාලත්ව P ඇසුරෙන් සොයන්න.
 - i. බල පද්ධතිය සමතුලිත විට
 - ii. පද්ධතිය ABC අතට එම තලයේ කිුයා කරන $\operatorname{Pa}\sqrt{3}\,\,\operatorname{N}\!m$ යුග්මයකට සමාන වන විට

- 7. A, B, C, D, E, F යනු පැත්තක දිග 2a වූ සවිධි ෂඩසුයක ඔරලෝසුවේ කටු කැරකෙන අතට පුතිවිරුද්ධ අතට පිහිටි ශීර්ෂ වේ. විශාලත්වයෙන් නිව්ටන් P, 2P, P, mP, nP සහ 2P වූ බලයන් AB, CB, DC, DE, FE සහ FA පාද දිගේ අක්ෂර මඟින් දක්වෙන පිළිවෙළට කුියා කරයි.
 - i. පද්ධතිය DA දිගේ කිුයා කරන තනි බලයකට තුලා නම් mහි සහ n හි අගයන් සොයන්න.
 - ii. දක්ෂිණාවර්ත ව විශාලත්වය $2\sqrt{3} \ Pa \ Nm$ වූ බල යුග්මයක් ෂඩසුයේ තලයේ පද්ධතියට එකතු කළ විට අලුත් පද්ධතිය තනි බලයකට තුලා වන බව පෙන්වා අවශා නම් දික් කරන ලද AB සමඟ එහි කිුිියා රේඛාව හමුවන ලක්ෂය සොයන්න.
- 8. ABCD යනු පැත්තක දිග මීටර් a වන සමචතුරසුයකි. විශාලත්වයෙන් නිව්ටන් 4, $6\sqrt{2}$, 8, 10, X සහ Y වන බල පිළිවෙලින් AD, CD, AC, BD, AB සහ CB දිගේ අකුරුවලින් දක්වෙන පිළිවෙළට වූ දිශාවන් ඔස්සේ කියා කරයි. පද්ධතිය \overline{OE} දිගේ කියා කරන තනි බලයකට තුලා වේ. මෙහි O සහ E යනු පිළිවෙළින් ACහි සහ CDහි මධා ලක්ෂා වේ. Xහි සහ Yහි අගයන් සොයා සම්පුයුක්තයේ විශාලත්වය නිව්ටන් 4K බව පෙන්වන්න. මෙහි $K = 2 \sqrt{2}$ වේ.

- 9. ABC යනු සමපාද තිකෝණයකි. ABC තිකෝණයේ පරිවෘත්තයේ කේන්දුය O සහ අරය R වේ. පද්ධතිය විශාලත්වයෙන් L,L,M,M සහ N,N වූ BC,OA,CA,OB,AF සහ OC දිගේ පිළිවෙළින් අක්ෂර මඟික් දක්වෙන දිශාවට කිුිිියා කරන බල හයකින් සහ ACB අතට ABC තිකෝණයේ තලයේ කිුිියා කරන නිශ්ශුනා $\lambda R(L+M+N)$ සූර්ණයකින් යුක්ත බල යුග්මයකින් සමන්විත ය. පද්ධතිය
 - a. තනි බලයකට ඌනනය වේ නම් $L^2+M^2+N^2>LM+MN+NL$
 - b. තනි බල යුග්මයකට ඌනනය වේ නම් $L=M=N,\,\lambda\neq\,rac{1}{2}$ බව පෙන්වන්න. මෙම පද්ධතිය සමතුලිත වීම සඳහා අනිවාර්ය හා පුමාණවත් අවශාතා පුකාශ කරන්න.
- 10. ABCD යනු පැත්තක දිග 5 m වන සමචතුරසුයකි. AE=3m වන පරිදි AB මත E පිහිටයි. නිව්ටන් $\lambda P, \mu P, \nu P, 2P, 10P$ සහ $2\sqrt{2}$ P වන බලයන් BA, BC, CD, AD, DE සහ DB දිගේ පිළිවෙළින් අකුරුවලින් දක්වෙන ආකාරයට වූ දිශා ඔස්සේ කියා කරයි.
 - i. පද්ධතිය සමතුලිතතාව් ඇති විට $\lambda=\mu=6$ සහ $\upsilon=4$ බව පෙන්වන්න.
 - $u \neq 4$ සහ $\lambda = \mu = 6$ නම් පද්ධතිය තනි බලයකට ඌනනය වන බව පෙන්වා එහි විශාලත්වය, දිශාව සහ කිුියා රේඛාව සොයන්න.
 - $\upsilon=2$ සහ $\lambda=\mu=6$ නම් පද්ධතිය බල සූර්ණය $80~\mathrm{N}m$ වන බල යුග්මයකට ඌනනය වීම සඳහා පද්ධතියට එකතු කළ යුතු බලයේ විශාලත්වය, දිශාව සහ කිුියා රේඛාව සොයන්න.

11. නිව්ටන් P, 7P, 8P, 7P, 3P වන බලයන් පැත්තක දිග මීටර් a වන ABCDEF සව්ධි සඩාසුයක AB, CB, CD, ED, FE පැති දිගේ පිළිවෙළින් අකුරු මඟින් දක්වෙන ආකාරයට වූ දිශා ඔස්සේ කුියා කරයි. \underline{i} සහ \underline{i} යනු පිළිවෙළින් \overline{AB} සහ \overline{AE} දිශාවල ඒකක දෙශික ලෙස ගෙන එක් එක් බලයන් \underline{i} , \underline{i} සහ \overline{P} පදවලින් පුකාශ කරන්න.

දී ඇති පද්ධතිය \overrightarrow{BC} ට සමාන්තර $\underline{R}=2P\Big(\underline{i}+\sqrt{3}\underline{j}\Big)$ වන තනි සම්පුයුක්ත බලයකට තුලා බව පෙන්වන්න.

Rහි විශාලත්වය කීය ද?

සම්පුයුක්තයේ කිුිිියා රේඛාව දික් කරන ලද DEහි සහ AF හි පොදු ලක්ෂා හරහා යන බව පෙන්වන්න.

පද්ධතිය A ශීර්ෂය හරහා කුියා කරන \underline{R} බලයක් සමඟ බල යුග්මයකට තුලා නම් බල යුග්මයේ සූර්ණයේ විශාලත්වය සහ අභිදිශාව සොයන්න.

12. Ox සහ Oy සෘජුකෝණාසාකාර කාටීසීය අක්ෂ අනුබද්ධයෙන් A, B සහ C ලක්ෂාවල බණ්ඩාංක පිළිවෙළින් $\left(\sqrt{3},0\right)$, (0,-1) සහ $\left(2\frac{\sqrt{3}}{3},1\right)$ වේ. විශාලත්වයෙන් නිව්ටන් 6P, 4P, 2P සහ $2\sqrt{3}\,P$ වන බලයන් පිළිවෙළින් OA, BC, CA සහ BO දිශා ඔස්සේ අක්ෂවල පටිපාටියෙන් දක්වෙන අතට කිුයා කරයි. මෙම බලවල සම්පුයුක්තයේ විශාලත්වය සහ දිශාව සොයන්න.

සම්පුයුක්තයේ කිුිිිිිිිිිිිිිිි හේ වෙත්ව y අක්ෂය ඡේදනය කරන ලක්ෂාය සොයන්න.

එමඟින් සම්පුයුක්තයේ කියා රේඛාවේ සමීකරණය සොයන්න.

විශාලත්වය නිව්ටන් $6\sqrt{3}$ P වන \overrightarrow{AB} දිගේ කිුයා කරන තවත් බලයක් පද්ධතියට අලුතින් හඳුන්වා දී ඇත් නම් පද්ධතිය නිව්ටන් මීටර් 10P විශාලත්වයන් ඇති බල යුග්මයකට ඌනනය වන බව පෙන්වන්න.

4.4 ඒකතල බල යටතේ දෘඪ වස්තුවක සමතුලිතතාව

<u>(1)</u>බල දෙකක කුියාකාරිත්වය යටතේ

බල දෙක විශාලත්වයෙන් සමාන ව දිශාවෙන් පුතිවිරුද්ධව එකම රේඛාව දිගේ කිුිිිියා කරයි නම් වස්තුව සමතුලිතතාවේ පවතී.

(<u>2)</u>බල තුනක කිුයාකාරිත්වය යටතේ

අවස්ථා දෙකක් සැලකීමට ඇත.

- (i) බල තුන ම සමාන්තර නොවන විට
- (ii) බල සියල්ල ම සමාන්තර විට
- (i) හි දී බලවල කියාරේඛා සියල්ල ම එකම ලක්ෂායක දී හමු විය යුතුය. කවර හෝ බල දෙකක සම්පුයුක්ත බලය තුන්වන බලයේ විශාලත්වයට සමාන හා දිශාවෙන් පුතිවිරුද්ධ විය යුතු යි.

සාධනය :

P,Q,R යනු දෘඪ වස්තුවක් මත කියා කරන ඒකතල බල තුනක් ලෙස හා P,Q බලවල කියාරේඛා O ලස්ෂායේ දී හමුවේ යැයි ගනිමු. එවිට P,Q හි සම්පුයුක්ත බලයේ $(S \ B)$ කියාරේඛාව O හරහා යයි. දන් දෘඪ වස්තුව මත කියාකරනු ලබන්නේ මෙම S බලය හා R බලය නිසා බල දෙකක් යටතේ වස්තුව සමතුලිතවීමට ඒවා විශාලත්වයෙන් සමානව, දිශාවෙන් පුතිවිරුද්ධව, ඒක රේඛීය විය යුතු නිසා RB කියාරේඛාවද O හරහා යයි.

(ii) හි P,Q,R සියල්ල ම සමාන්තර වේ.

P සහ Q එක ම දිශාවට කියා කරන බල ලෙස ගනිමු. එවිට ඒවායේ සම්පුයුක්තය වන S බලය P ට හෝ Qට හෝ සමාන්තර වේ. දැන් S සහ R. සමාන්තර බල දෙකකි. සමතුලිතතාව සඳහා S සහ R බලදෙක විශාලත්වයෙන් සමානව දිශාවෙන් පුතිවිරුද්ධව එකම කියා රේඛාව මත විය යුතු ය. නැත්නම් බල යුග්මයක් සෑදේ.

දෘඪ වස්තුවක් ඒකතල බල තුනක කියාකාරිත්වය යටතේ සමතුලිතතාවේ පවතී නම් පහත පුතිඵල භාවිත කළ හැකි වේ.

i ලාමී පුමේයය

i බල තිුකෝණ නියමය

🎹 💮 එකිනෙකට ලම්භක දිශා දෙකක් ඔස්සේ විභේදන සංචරකවල එකතුව ශුනා වේ.

එලෙසම පහත තිකෝණමිතික පුමේයයද සමතුලිතතා ගැටලු විසඳීමේදී පුයෝජනවත් වේ. පුමේයය :

ABC තිකෝණයෙහි BC පාදය මත D ලක්ෂය පිහිටා ඇත්තේ BD:DC=m:n සහ $B\hat{A}D=lpha$,

$$\hat{\mathrm{CAD}} = eta$$
 , $\hat{\mathrm{ADC}} = heta$ වන පරිදි නම්

(i)
$$(m+n)\cot\theta = m\cot\alpha - n\cot\beta$$

(ii)
$$(m+n)\cot\theta = n\cot B - m\cot C$$

4.5 විසඳූ නිදසුන්

උදාහරණය 1

බර W වු ඒකාකාර AB දණ්ඩක එහි B කෙළවරට තිරස් P බලයක් යොදා දණ්ඩ තිරසට 60^{0} ක කෝණයකින් ආනතව A කෙළවරෙන් අවල ලක්ෂායකට සුමටව අසව් කර සමතුලිතතාවයේ තබා ඇත. Aහි දී දණ්ඩමත අසව්ව මඟින් ඇති කරන පුතිකියාව සොයන්න.

යෙදෙන බල

- (i) දණ්ඩේ මධා ලක්ෂායෙන් සිරස් ව පහළට කියා කරන දණ්ඩේ බර W
- (ii) B හි දී තිරස් බලය P
- (iii) Aහි දී අසව්ව මගින් දණ්ඩම ඇතිකරන ප්‍රතික්‍රයාව R දණ්ඩ මෙම බල තුන යටතේ සමතුලිතතාවේ පවතින බැවින් ඒවායේ කි්යාරේඛාවකට ම ලක්ෂායක දී හමුවිය යුතු ය. එම ලක්ෂාය D ලෙස ගනිමු.

$$AB = 2a$$
 සහ $\angle ADE = \theta$ ලෙස ගනිමු.

$$AE = 2a\sin 60^{\circ} = \sqrt{3}a$$

$$ED = \frac{1}{2} \times 2a \cos 60^\circ = \frac{a}{2}$$

$$\tan \theta = \frac{AE}{ED} = 2\sqrt{3}$$

$$\cos ec\theta = \sqrt{1 + \cot^2 \theta}$$

$$\cos ec\theta = \sqrt{1 + \frac{1}{12}} = \sqrt{\frac{13}{12}}$$

(i) වන කුමය ලාමී පුමේයය භාවිතයෙන්

$$\frac{P}{\sin(90+\theta)} = \frac{R}{\sin 90^{\circ}} = \frac{W}{\sin(180-\theta)}$$

$$\frac{P}{\cos\theta} = R = \frac{W}{\sin\theta}$$

$$P = W \cot \theta$$

$$R = W \cos ec\theta$$

$$P = \frac{W}{2\sqrt{3}} = \frac{\sqrt{3}W}{6}N$$

$$R = W \sqrt{\frac{13}{12}} N$$

- (ii) වන කුමය
- AED තිකෝණයේ AE , W ,ට සමාන්තර වේ. ED , DA මගින් P සහ R නිරූපණය කළ හැකි ය. එනම් ΔAED තිකෝණය බල තිකෝණය යි. m R ~
 ightarrow DA

$$R \rightarrow DA$$

$$W \rightarrow AE$$

$$P \rightarrow ED$$

එවිට
$$\frac{P}{ED} = \frac{W}{AE} = \frac{R}{DA}$$

$$\frac{P}{\frac{a}{2}} = \frac{W}{\sqrt{3}a} = \frac{R}{\frac{\sqrt{13}a}{2}}$$

$$P = \frac{W}{2\sqrt{3}}$$
 $\approx R = W\sqrt{\frac{13}{12}}$

$$AD = \sqrt{3a^2 + \frac{a^2}{4}} = \frac{\sqrt{13}}{2}a$$

(iii) වන කුමය

බල විභේදනයෙන්

බල තිරස්ව විභේදනයෙන් $\, o$

 $P - R \cos \theta = 0$

 $P = R \cos \theta$

බල සිරස්ව විභේදනයෙන් ↑

 $R\sin\theta - W = 0$

$$R = \frac{W}{\sin \theta} = W \sqrt{\frac{13}{12}} N$$

$$P = W \cot \theta = \frac{W}{2\sqrt{3}} N$$

උදාහරණය 2

බර W වන ACB ඒකාකාර දණ්ඩක් එහි A කෙළවර සුමට සිරස් AD බිත්තියක් මත ගෑටෙමින් DB තිරස් වන පරිදි සහ CD බිත්තිය සමඟ 30° න් ආනත ව පවතින පරිදි CD සැහැල්ලු අවිතනා තන්තුවක් මඟින් B කෙළවර Aට ඉහළින් පිහිටන පරිදි බිත්තියට ලම්භ සිරස්තලයක් සමතුලිතව තබා ඇත.

i තන්තුවේ ආතතිය

ii බිත්තිය මඟින් දණ්ඩ මත ඇති කරන පුතිකිුයාව

iii දණ්ඩේ ති්රයට ආනතිය සොයන්න.

iv C ලකුෂාය පිහිටීම

කිුයා කරන බල

i AG=a වන පරිදි G හරහා සිරස් ව පහළට W බර

i A හි දී කිුයා කරන R තිරස් බලය

iii තත්තුවේ ආතතිය T

දණ්ඩ සමතුලිතතාවේ පවතින බැවින් බල තුන එක ම O ලක්ෂායක දී හමු විය යුතු ය. දණ්ඩේ තිරසට ආතතිය heta ලෙස ගනිමු.

බල ← ති්රස් විභේදනයෙන්

$$T \sin 30^{\circ} - R = 0$$

$$R = \frac{T}{2}$$

බල ↑ සිරස් විභේදනයෙන්

 $T\cos 30 - W = 0$

$$T = \frac{2W}{\sqrt{3}} = \frac{2\sqrt{3}}{3}W \Rightarrow R = \frac{W}{\sqrt{3}} = \frac{\sqrt{3}W}{3}$$

ABහි සමතුලිතතාව සඳහා D වටා සූර්ණ ගැනීමෙන්

$$R \times AD - W \times AO = 0$$

$$\frac{W}{\sqrt{3}} \times 2a \sin \theta = W \times a \cos \theta \implies \tan \theta = \frac{\sqrt{3}}{2} \implies \theta = \tan^{-1} \left(\frac{\sqrt{3}}{2}\right)$$

CD තිකෝණයට සයින් නිතිය

$$\frac{AC}{\sin 30} = \frac{AD}{\sin (120 - \theta)}$$

$$\frac{AC}{\frac{1}{2}} = \frac{2a\sin\theta}{\cos(3\theta - \theta)}$$

$$AC = \frac{a\sin\theta}{\cos 30\cos\theta + \sin 30\sin\theta} = \frac{a}{\cos 30\cot\theta + \sin 30}$$

$$=\frac{2a}{\sqrt{3}\times\frac{2}{\sqrt{3}}+1}=\frac{2a}{3}$$

$$AC = \frac{1}{3}AB$$

2 වන කුමය ලාමී පුමේයයෙන්

$$\frac{T}{\sin 90^0} = \frac{W}{\sin 120^0} = \frac{R}{\sin 150^0}$$

$$T = \frac{W}{\cos 30^{0}}$$

$$R = \frac{W \cos 60^{0}}{\cos 30^{0}}$$

$$T = \frac{2W}{\sqrt{3}}N$$

$$R = \frac{W}{\sqrt{3}}N$$

උදාහරණය 3

AB ඒකාකාර දණ්ඩක් එහි ඉහළ A කෙළවර සුමට නාදත්තක් මත නිශ්චල ව සහ එහි පහළ B කෙළවර A හා එක ම මට්ටමේ ඇති C ලක්ෂායට සැහැල්ලු අවිතනා ලණුවකින් සම්බන්ධ කර තිරසට lpha කෝණයකින් ආනත ව සමතුලිතතාව් තබා ඇත. ලණුව තිරසට ආනත කෝණය eta ,

 $aneta=2 anlpha+\cotlpha$ සහ $AC=rac{AB\seclpha}{1+2 an^2lpha}$ සමීකරණය මඟින් දෙනු ලබන බව ඔප්පු කරන්න.

කුියාකරන බලයන්

i දණ්ඩේ බර W

i ලණුවේ ආතතිය T

 $\ddot{ extbf{ii}}$ දණ්ඩට ලම්බක ව නාදුත්ත මඟින් දණ්ඩ මත ඇති කරන පුතිකිුයාව $\, ext{R} \,$

දණ්ඩ බල තුන යටතේ සමතුලිතතාව පවතී. එම බල O ලක්ෂායේ දී හමුවේ. AOB තිකෝණයට කොට් නීතිය

 $(AG+GB)\cot\angle OGB=GB\cot 90-AG\cot\angle ABO$ (දණ්ඩේ දිග 2a වේ)

$$\angle OBA = \beta - \alpha$$

$$\angle OAB = 90^{\circ}$$

$$\angle OGB = 90^{\circ} + \alpha$$

$$(a+a)\cot(90+\alpha) = a\cot 90^{\circ} - a\cot(\beta - \alpha)$$

$$2\tan \alpha = \cot(\beta - \alpha)$$

$$2\tan \alpha = \frac{1+\tan \beta \tan \alpha}{\tan \beta - \tan \alpha}$$

$$\tan \beta (2\tan \alpha - \tan \alpha) = 1+2\tan^{2} \alpha$$

$$\tan \beta = \cot \alpha + 2\tan \alpha$$

ABC තිකෝණයට සයින් නිතිය

$$\frac{AC}{\sin(\beta - \alpha)} = \frac{AB}{\sin(180 - \beta)}$$

$$AC = \frac{AB\sin(\beta - \alpha)}{\sin\beta}$$

$$AC = \frac{AB}{\sin\beta} \left[\sin\beta\cos\alpha - \cos\beta\sin\alpha \right]$$

$$AC = AB \left[\cos\alpha - \cot\beta\sin\alpha \right]$$

$$= AB \left[\cos\alpha - \frac{\tan\alpha}{1 + 2\tan^2\alpha}\sin\alpha \right]$$

$$= \frac{AB}{1 + 2\tan^2\alpha} \left[\cos\alpha + \frac{2\sin^2\alpha}{\cos\alpha} - \frac{\sin^2\alpha}{\cos\alpha} \right]$$

$$= \frac{AB}{1 + 2\tan^2\alpha} \left[\frac{\cos^2\alpha + \sin^2\alpha}{\cos\alpha} \right]$$

$$AC = \frac{AB\sec\alpha}{1 + 2\tan^2\alpha}$$

උදාහරණ 4

අරය a සහ බර W වන ගෝලයක් තිරසට lpha කෝණයකින් ආනත සුමට තලයක් මත සමතුලිත ව ඇත්තේ දිග l වන සැහැල්ලු අවිතනා තන්තුවක එක කෙළවරක් ගෝලය මත ඇති ලක්ෂායකට ද අනෙක් කෙළවර ආතන තලයේ ලක්ෂායකට ද සම්බන්ධ කිරීමෙනි. තන්තුවේ ආනතිය

$$rac{Wig(a+lig)\sinlpha}{\sqrt{l^2+2al}}$$
 බව පෙන්වන්න.

කුියාකරන බල

i O හරහා සිරස් ව පහළට ගෝලයේ බර W

old i O හරහා තලයට ලම්බක ව තලය මඟින් ගෝලය මත ඇති කරන පුතිකිුයාව R

iii තන්තුවේ ආතතිය T

බල තුන යටතේ ගෝලය සමතුලිතතාවේ ඇති බැවින් තන්තුවේ ආතතිය O හරහා යා යුතු ය. AOB තිුකෝණයේ

$$OB = a + l$$

$$OA = a$$

$$AB^{2} = (a+l)^{2} - a^{2} = l^{2} + 2al$$

$$AB = \sqrt{l^2 + 2al}$$

$$\cos \theta = \frac{AB}{OB}$$

$$\cos\theta = \frac{\sqrt{l^2 + 2al}}{a + l}$$

කුමය 1 වන කුමය

බල තලයට සමාන්තර ව විභේදනයෙන්

$$OT\cos\theta - W\cos(90 - \alpha) = 0$$

$$T = \frac{W\sin\alpha}{\cos\theta}$$

$$= W\sin\alpha \cdot \frac{(a+l)}{\sqrt{l^2 + 2al}} = \frac{W(a+l)\sin\alpha}{\sqrt{l^2 + 2al}}$$

2 වන කුමය ලාමී පුමේයය

$$\frac{R}{\sin(90 + \alpha - \theta)} = \frac{W}{\sin(90 + \theta)} = \frac{T}{\sin\alpha}$$
$$T = \frac{W\sin\alpha}{\cos\theta} = \frac{W(a+l)\sin\alpha}{\sqrt{l^2 + 2al}}$$

උදාහරණය 5

බර W වන දණ්ඩක් ගුරුත්ව කේන්දුයේ දී 2:1 අනුපාතයට බෙදයි. දණ්ඩ සුමට කුහර ගෝලයක් ඇතුළත සමතුලිතතාවයේ තබා ඇත්තේ දණ්ඩ මඟින් කේන්දුයේ ආපාතනය කරන කෝණය 2lpha

වන පරිදි ය. තව ද දණ්ඩ ති්රසට heta කෝණයක් සාදයි නම් $an heta = rac{1}{3} an lpha$ බව පෙන්වන්න. තවද දණ්ඩේ අන්ත දෙක මත කි්යා කරන බල $ext{W}$ සහ lpha ඇසුරෙන් සොයන්න.

කුියාකරන බල

- (i) O හරහා කිුයා කරන දණ්ඩේ බර W
- (ii) O කේන්දුය හරහා යන දණ්ඩේ A සහ B කෙළවරවල පුතිකිුයා

$$\angle OGA = 90 - \theta$$

$$\angle OAB = \angle OBA = 90 - \alpha$$

AOB තිකෝණයට cot සුතුය යෙදුමට

$$(BG+GA)\cot(90-\theta) = GA.\cot \angle ABO - BG.\cot \angle BAO$$

$$3\cot(90-\theta) = 2\cot(90-\alpha) - 1.\cot(90-\alpha)$$

$$3 \tan \theta = \tan \alpha$$

$$\tan \theta = \frac{1}{3} \tan \alpha$$

 ${
m AB}$ හි සමතුලිතතාව සඳහා ${
m B}$ වටා සූර්ණ ගැනීමෙන්

$$\mathbf{n}R \times 3a \sin(90 - \alpha) - Wa \cos \theta = 0$$

$$3R\cos\alpha = W\cos\theta$$

$$R = \frac{W \cos \theta}{3 \cos \alpha}$$
 $R = \frac{W}{3 \cos \alpha} \cdot \frac{3}{\sqrt{9 + \tan^2 \alpha}}$
 $\sec^2 \theta = \frac{9 + \tan^2 \alpha}{9}$
 $\sec^2 \theta = \frac{9 + \tan^2 \alpha}{9}$
 $\cos \theta = \frac{3}{\sqrt{9 + \tan^2 \alpha}}$
දෙන්ඩ දිගේ බල විභේදනයෙන් වි

දණ්ඩ දිගේ බල විභේදනයෙන් 🥻 🦴

$$S.\cos(90-\alpha)-R.\cos(90-\alpha)-W.\cos(90-\theta)=0$$

$$S.\sin\alpha - R.\sin\alpha - W\sin\theta = 0$$

$$S.\sin \alpha = R\sin \alpha + W\sin \theta$$

$$= \frac{W}{\cos \alpha} \frac{\sin \alpha}{\sqrt{9 + \tan^2 \alpha}} + W \frac{\tan \alpha}{\sqrt{9 + \tan^2 \alpha}}$$
$$= \frac{2W \tan \alpha}{\sqrt{9 + \tan^2 \alpha}}$$

$$S = \frac{2W}{\cos \alpha \sqrt{9 + \tan^2 \alpha}}$$
$$= \frac{2W}{\sqrt{8\cos^2 \alpha + 1}}$$

උදාහරණය 6

බර ${
m W}$ වුද අර්ධ ශිර්ෂ කෝණය $30^{
m o}$ සහ පාදයේ අරය a වුද ඍජු වෘත්තාකාර ඝන කේතුවක් තිරසට lpha කෝණයට ආනත සුමට තලයක් මත තබා ඇත. දිග $\sqrt{3}a$ වන සැහැල්ලු අවිතනා තත්තුවක එක් කෙළවරක් කේතුවේ පාදයේ කේන්දුයට ද අනෙක් කෙළවර ආනත තලයට ද සම්බන්ධ කර ඇත. වකු පෘෂ්ඨය තලය සමඟ ස්පර්ශ ව පද්ධතිය සමතුලිතතාවේ පවතී නම්,

$${
m i}$$
 තන්තුවේ ආතතිය ${2\sqrt{3}W\sinlpha\over3}$ බව පෙන්වන්න.

- වකු පෘෂ්ඨය සහ තලය අතර පුතිකිුයාව සොයන්න.
- එම පුතිකිුියාවේ රේඛාව කේතුවේ සමමිතික අක්ෂය එහි ශිර්ෂයේ සිට

$$rac{3a}{4} \Biggl[rac{3\sqrt{3}\coslpha + 5\sinlpha}{3\coslpha + \sqrt{3}\sinlpha} \Biggr]$$
 දුරකින් ඡේදනය කරන බව පෙන්වන්න.

(උස h වන ඝන කේතුවක ගුරුත්ව කේන්දුය එහි ශීර්ෂයේ සිට $\frac{3h}{4}$ දුරින් පිහිටයි.)

සමතුලිතතාව සඳහා W සහ T බලයන් C හි දී හමු වන නිසා R පුතිකිුයාව C හරහා යා යුතු ය. බලතලයට සමාන්තරව විභේදනයෙන්

$$O T\cos 30 - W\sin \alpha = 0$$
$$T = \frac{2\sqrt{3}W\sin \alpha}{2}$$

බල තලයට ලම්බකව විභේදනයෙන්

$$MR - W\cos\alpha - T\sin 30 = 0$$

$$R = \frac{T}{2} + W \cos \alpha = \frac{W}{3} \left[\sqrt{3} \sin \alpha + 3 \cos \alpha \right]$$

m V m වටා සුර්ණ ගැනීමෙන්

$$R \times x \cos 30^{0} - W \cdot \frac{3}{4} a \sqrt{3} \cos(30^{0} + \alpha) - T 2\sqrt{3} a \cos 30^{0} \cdot \sin 30^{0} = 0$$
$$R \times x \cos 30 - W \cdot \frac{3}{4} a \sqrt{3} \cos(30 + \alpha) - T \sin 30 \times 2a \sqrt{3} \frac{\sqrt{3}}{2} = 0$$

$$R.x\frac{\sqrt{3}}{2} = \frac{3\sqrt{3}Wa}{4} \left[\frac{\sqrt{3}}{2}\cos\alpha - \frac{1}{2}\sin\alpha \right] + \frac{1}{2}\frac{2\sqrt{3}W}{3}\sin\alpha \times 3a$$

$$R.x = \frac{3Wa}{4} \left(\sqrt{3} \cos \alpha - \sin \alpha \right) + 2Wa \sin \alpha$$

$$R.x = \frac{W}{4} \left(3\sqrt{3}\cos\alpha - 3\sin\alpha + 8\sin\alpha \right) a$$

$$x = \frac{W}{4} \left(\frac{3\sqrt{3}\cos\alpha + 5\sin\alpha}{3\cos\alpha + \sqrt{3}\sin\alpha} \right) \frac{3a}{W}$$

$$x = \frac{3a}{4} \left(\frac{3\sqrt{3}\cos\alpha + 5\sin\alpha}{3\cos\alpha + \sqrt{3}\sin\alpha} \right)$$

4.6 බල තුනකට වඩා වැඩියෙන් කුියා කරන විට

දෘඪ වස්තුවක් මත ඒකතල බල තුනකට වඩා වැඩියෙන් කිුයා කරන අවස්ථා සලකමු. එක ලක්ෂායකදී බලයන් හමු වීම අවශා නොවේ.

දෘඪ වස්තුවක් මත එක ම තලයේ කිුයා කරන බලවලින් යුක්ත පද්ධතියක් තනි බලයකට හෝ ${f G}$ බල යුග්මයකට ඌනනය කළ හැකි ය.

 $R{=}0$ නම් එහි කවර හෝ දිශාවකට බලවල සංරචකවල වීජ චෛකාාය ශූනාා වේ.

එහෙත් $R^2 = X^2 + Y^2$, නිසා R=0 විට X=0 හා Y=0 වේ.

එකිනෙකට ලම්බක දිශා දෙකක් ඔස්සේ බලවල විභේදන සංරචකවල වීජ ඓකාය ශුනා විය යුතුය. බල පිහිටා ඇති තලය මත කවර හෝ ලක්ෂායක් වටා බලවල සූර්ණයන්ගේ වීජ ඓකා ශූනා වේ.

සමතුලිතතාවට අවශානාව එනම් සමතුලිතතා අවශානාවය.

i එකිනෙකට සමාන්තර නොවන දිශා දෙකක් ඔස්සේ වුවද බලවල සංරචකවල වීජ ඓකාය ශූනා වේ.

ii කවර ලක්ෂායක් වටා වුව ද බලවල සූර්ණයන්ගේ වීජ ඓකාය ශූනා වේ.

පළමු අවශාතාව මඟින් පද්ධතිය තනි බලයකට ඌනනය නොවන බවත් දෙවන අවශාතාව මඟින් පද්ධතිය බල යුග්මයකට ඌනනය නොවන බව තහවුරු කරයි.

වෙනත් තුලා අවශාතා

තලයක එක ම රේඛාවේ නොපිහිටන කවර හෝ ලක්ෂා තුනක් වටා සූර්ණවල වීජිය ඓකාය ශූනා වේ.

4.7 විසඳු නිදසුන

උදාහරණ 1

ඒකාකාර ඉණිමඟක් එහි එක් කෙළවරක් සුමට බිමක් මත ද අනෙක් කෙළවර සුමට සිරස් බිත්තියකට එරෙහිව ද තිරසට α කෝණයකින් ආනත ව නිශ්චලතාවේ පවතී. පහළ කෙළවර බිත්තිය සහ බිම හමු වන ලඤයට සැහැල්ලු අවිතනා තන්තුවකින් සම්බන්ධ කර ඇත. තන්තුවේ ආතතිය සහ බිත්තියේ සහ බිමෙහි පුතිකිුයාවන් සොයන්න.

ඉණීමගේ බරට සමාන බරකින් යුක්ත මිනිසකු ඉණීමගේ දිගෙන් හතරෙන් තුනක් දුර නැග ඇති විට තන්තුවේ ආතතිය සොයන්න.

ඉණිමඟ මත කිුයා කරන බල අතර

i බර W

i තන්තුවේ ආතතිය T

🎹 පොළොවේ පුතිකිුයාව R

 ${
m iv}$ බිත්තියේ පුතිකිුයාව ${
m S}$

ඉනිමගේ සමතුලිතතාව සඳහා බල තිරස්ව විභේදනයෙන්

$$T - S = 0$$

$$\rightarrow T = S$$
....(1)

\uparrow ඉනිමගේ සමතුලිතතාව සඳහා බල සිරස්ව විභේදනයෙන්

$$R - W = 0$$

$$R = W$$
....(2)

ඉනිමගේ දිග 2a ලෙස ගනිමු.

A M වටා සූර්ණ ගැනීමෙන්

$$S \times 2a \sin \alpha - W \times a \cos \alpha = 0$$

$$S = \frac{W}{2}\cot\alpha, T = \frac{W}{2}\cot\alpha$$

මිනිසා ඉණිමඟ උඩ සිටින විට බල සිරසට විභේදනයෙන්

B M වටා සූර්ණයෙන්

$$T \times 2a \sin \alpha - R \times 2a \cos \alpha + W \times a \cos \alpha + W \times \frac{a}{2} \cos \alpha = 0$$
$$2T \sin \alpha = 2 \times 2W \cos \alpha - \frac{3}{2}W \cos \alpha$$

$$T = \frac{5W\cos\alpha}{4\sin\alpha} = \frac{5W}{4}\cot\alpha$$

උදාහරණ 2

බර W වන බාල්කයක් එහි ගුරුත්ව කේන්දුය G මඟින් දිග a සහ b වන AC සහ BC කොටස් දෙකකට බෙදයි. බාල්කය සිරස් තලයක AD සුමට බිමක් මත සහ DB සුමට සිරස් බිත්තියකට එරෙහි ව නිශ්චලතාවේ පවතී. සැහැල්ලු අවිතනා තන්තුවක් Dට සහ බාල්කයේ P ලක්ෂායට සම්බන්ධ කර ඇත. තන්තුවේ ආතතිය T නම් සහ බාල්කයේ සහ තන්තුවේ තිරසට ආනතිය පිළිවෙළින් θ,ϕ නම්

$$T=rac{Wa\cos heta}{ig(a+big)\sinig(heta-\phiig)}$$
 බව පෙන්වන්න. (තන්තුව හා බාල්කය බිත්තියක බිමට ලම්භ සිරස්තලයක

පිහිටා ඇත.)

බාල්කයෙහි සමතුලිතතාව සඳහා බල තිරසට විභේදන

$$\to T\cos\phi - S = 0$$

$$S = T \cos \phi$$

A mුවටා සූර්ණ ගැනීමෙන්

 $S \times AB \sin \theta - T \times AD \sin \phi - W \times a \cos \theta = 0$ $T \cos \phi (a+b) \sin \theta - T \times (a+b) \cos \theta \sin \phi = Wa \cos \theta$

 $T(a+b)[\sin\theta\cos\phi - \cos\theta\sin\phi] = Wa\cos\theta$

$$T(a+b)\sin(\theta-\phi) = W \times a\cos\theta$$

$$T = \frac{Wa\cos\theta}{(a+b)\sin(\theta-\phi)}$$

උදාහරණ 3

බර W වන AB ඒකාකාර දණ්ඩක B කෙළවරට W බරැති අංශුවක් සවි කර ඇත. දණ්ඩේ දිගට සමාන සැහැල්ලු OA සහ OB අවිතනා තන්තු දෙකක් මඟින් දණ්ඩ සහ අංශුව O අවල ලක්ෂායකින් එල්ලා ඇත. සමතුලිතතාවදි OA සහ OB තන්තුවල ආතති T_1 සහ T_2 නම්

(i)
$$\frac{T_1}{T_2} = \frac{W}{W + 2w}$$

 $(ii)~{
m OA}~{
m d}$ සිරස සමඟ සාදන කෝණය lpha නම් $anlpha=rac{\left(W+2w
ight)\sqrt{3}}{3W+2w}$ වන බව ඔප්පුකරන්න.

කියාකරන බලයන්

- * දණ්ඩේ බර W
- * අංශුවේ බර w
- st තන්තුවල ආතති T_1 සහ T_2

W සහ w සමාන්තර බලවල සම්පුයුක්ත බලය වන W + w හි කිුයා රේඛාව O හරහා යන අතර දණ්ඩමත D ලඎයේ දී කිුයා කරයි.

$$AB=2a$$
 ලෙස ගනිමු. එවිට $GB=a$ වේ.

$$GD = \frac{w}{W + w}a$$

$$AD = a + \frac{wa}{W + w} = \left(\frac{W + 2w}{W + w}\right)a$$
 as

$$DB = a - \frac{wa}{W + w} = \frac{Wa}{W + w}$$

D වටා සූර්ණ ගැනීමෙන්

$$\mathbf{n} T_1 \times AD \sin 60 - T_2 \times DB \sin 60 = 0$$

$$\frac{T_1}{T_2} = \frac{DB}{AD} = \frac{Wa}{W+w} \times \frac{W+w}{\left(W+2w\right)a} = \frac{W}{W+2w}$$

OAD තිකෝණයට සයින් නීතිය

$$\frac{AD}{\sin \alpha} = \frac{OA}{\sin \left[180 - (60 + \alpha)\right]}$$

$$\frac{AD}{OA} = \frac{\sin \alpha}{\sin (60 + \alpha)}$$

$$\frac{W + 2w}{W + w} \times \frac{a}{2a} = \frac{\sin \alpha}{\frac{\sqrt{3}}{2} \cos \alpha + \frac{1}{2} \sin \alpha}$$

$$\frac{W+2w}{2(W+w)} = \frac{1}{\frac{\sqrt{3}}{2}\cot\alpha + \frac{1}{2}} = \frac{2}{\sqrt{3}\cot\alpha + 1}$$

$$\frac{\sqrt{3}\cot\alpha + 1}{2} = \frac{2(W+w)}{W+2w}$$

$$\sqrt{3}\cot\alpha = \frac{4W+4w}{W+2w} - 1 = \frac{3W+2w}{W+2w}$$

$$\cot\alpha = \left(\frac{3W+2w}{W+2w}\right)\frac{1}{\sqrt{3}}$$

$$\tan\alpha = \left(\frac{W+2w}{3W+2w}\right)\sqrt{3}$$

උදාහරණ 4

A,B,C,D,E,F ලක්ෂා යනු පැත්තක දිග 2a වූ සවිධි ABCDEF ෂඩාසුයක වාවවර්තව ශීර්ෂ වේ. නිව්ටන් P,2P,3P,4P,5P,L,M,N විශාලත්වයන් සහිත බල AB,CA,FC,DF,ED,BC,FA සහ FE දිගේ අකුරුවලින් දක්වෙන දිශාවන් ඔස්සේ පිළිවෙළින් කිුිිිිිිිිි කරයි. පද්ධතිය සමතුලිතතාවේ පවතී නම් L,M,N බල P ඇසුරෙන් සොයන්න.

බල සමතුලිතතාවේ ඇති බැවින් ඕනෑම ලක්ෂෳයක් වටා ඒවායේ සූර්ණවල එකතුව ශුනෳ වේ.

$$FB \perp BC$$
$$FD \perp DC$$

FM වටා සූර්ණ ගැනීමෙන්

$$L \times FB - 5P \times FK + P \times FQ - 2P \times FA = 0$$

 $L \times 4a \cos 30 - 5P \times 2a \sin 60 + P \times 2a \sin 60 - 2P \times 2a = 0$

$$4L \times \frac{\sqrt{3}}{2} - 10P \times \frac{\sqrt{3}}{2} + 2P \times \frac{\sqrt{3}}{2} - 4P = 0$$

$$2\sqrt{3}L - 4\sqrt{3}P - 4P = 0$$

$$L = \frac{4P + 4\sqrt{3}P}{2\sqrt{3}}$$

$$= 2P\left(1 + \frac{1}{\sqrt{3}}\right)N$$

A Mවටා සූර්ණ ගැනීමෙන්

$$L \times 2a \cos 30 - 5P \times 4a \cos 30 - N \times 2a \cos 30 + 4P \times 2a - 3P \times 2a \cos 30 = 0$$

$$2L \times \frac{\sqrt{3}}{2} - 2N \times \frac{\sqrt{3}}{2} - 26P \times \frac{\sqrt{3}}{2} + 8P = 0$$

$$L - N - 13P + \frac{8P}{\sqrt{3}} = 0$$

$$N = L - 13P + \frac{8P}{\sqrt{3}}$$

$$=2P+\frac{2P}{\sqrt{3}}+\frac{8P}{\sqrt{3}}-13P$$

$$N = \left(\frac{10}{\sqrt{3}} - 11\right)P$$

 ${
m AB}$ ට සමාන්තරව බල විභේදනයෙන්

$$\rightarrow L\cos 60 + M\cos 60 + N\cos 60 + 5P + 3P + P - 4P\cos 30 - 2P\cos 30 = 0$$

$$\frac{L}{2} + \frac{M}{2} + \frac{N}{2} + 9P - 4P\frac{\sqrt{3}}{2} - 2P\frac{\sqrt{3}}{2} = 0$$

$$L + M + N = 6\sqrt{3}P - 18P$$

$$M = 6\sqrt{3}P - 18P - \left(\frac{12P}{\sqrt{3}} - 9P\right)$$

$$=2\sqrt{3}P-9P$$

$$=(2\sqrt{3}-9)P$$

එම නිසා

$$L = \left(1 + \frac{1}{\sqrt{3}}\right)PN$$

$$M = \left(2\sqrt{3} - 9\right)PN$$

$$N = \left(\frac{10}{\sqrt{3}} - 11\right) PN$$

4.8 අභාගසය

(1) දිග l සහ බර 2w වන AB ඒකාකාර දණ්ඩක A කෙළෙවර සුමට ලෙස අචල ලක්ෂයකට අසව් කර B කෙළෙවරට යෙදු තිරස් බලයක් මගින් සමතුලිතතාවයේ තබා ඇත්තේ Aට පහළින් B පිහිටන පරිදි, A හරහා යන සිරස් රේඛාවේ සිට a දුරක් ඇතින් B පිහිටන පරිදිය

$${
m A}$$
 කෙළවර මත පුතිකිුයාව ${
m \it w} \bigg \lceil rac{4l^2-3a^2}{l^2-a^2} \bigg
ceil^{rac{1}{2}}$ බව පෙන්වන්න.

(2) දිග a වන ඒකාකාර දණ්ඩක් එහි එක් කෙළවරක් සුමට බිත්තියකට සුමටව අසව් කර දණ්ඩ අනෙක් කෙළවර දිග l වන ලුහු අවිතනා තන්තුවක එක් කෙළවරකටත් තන්තුවේ අනෙක් කෙළවර දණ්ඩ අසව්කල ලක්ෂයට ඉහළින් පිහිටි බිත්තියේ ලක්ෂායටත් සම්බන්ධ කිරීමෙනි. දණ්ඩ සමතුලිත විට දණ්ඩ බිත්තිය සමග සාදන කෝණය θ නම්

$$\cos^2 \theta = \frac{l^2 - a^2}{3a^2}$$
 බව පෙන්වන්න. (දණ්ඩ සහ තන්තුව බිත්තියට ලම්භ සිරස් තලයක පිහිටා ඇත.) සමතුලිතතාවය පැවතීමට $a:l$ අනුපාතයේ තිබිය යුතු සීමාව සොයන්න.

- (3) බර W සහ අරය r වන ඒකාකාර සුමට ගෝලයක් සුමට බිත්තියක ගැටෙමින් සමතුලිතාවයේ ඇත්තේ l දිග ලුහු අචිතනා තන්තුවක එක් කෙළවරක් ගෝලයට සම්බන්ධ කර අනෙක් කෙළවර බිත්තියට සම්බන්ධ කිරීමෙනි. තන්තුවේ ආතතිය $\dfrac{W(l+r)}{\sqrt{l^2+2lr}}$ බව පෙන්වන්න. බිත්තිය හා ගෝලය අතර පුතිකිුයාව සොයන්න.
- (4) අඩ සිරස් කෝණය α වන උස h වන ඒකාකාර ඝන කේතුවක පාදය සුමට බිත්තියක ගැටෙමෙන් සමතුලිතතාවයේ තබා ඇත්තේ කේතුවේ ශිර්ෂයට සහ බිත්තියේ ලක්ෂාකට සම්බන්ධ කරන සැහැල්ලු අවිතනා තන්තුවක් මගිනි. තන්තුවට තිබිය හැකි උපරිම දිග $h\sqrt{1+\frac{16}{9}\tan^2\alpha}$ බව පෙන්වන්න.
- (5) ABC ඒකාකාර තිුකෝණාකාර ආස්තරයක් BC දාරය සිරස්ව පිහිටන සේ O ලක්ෂායෙන් එල්ලා ඇත්තේ A හා B ශිර්ෂවලට සම්බන්ධ කරන සැහැල්ලු අවිතනා තන්තු දෙකක් මගිනි. AO සහ BO තන්තු සිරස සමග පිළිවෙළින් α සහ β කෝණ සාදයි නම් $2\cot\alpha-\cot\beta=3\cot\beta$ බව පෙන්වන්න.
- (6) ඒකාකාර සෘජුකෝණාසුාකාර ආස්තරයක් සිරස් තලයක සමතුලිතතාවයේ තබා ඇත්තේ එහි 2a සහ 2b පාද එකම තිරස් රේඛාවේ එකිනෙකට c දුරකින් පිහිටි පිහි තුඩු දෙකක් මත ගැටෙමිනි. 2a පාදය තිරස සමග θ කෝණයක් සාදයි නම් $c\cos 2\theta = a\cos \theta b\sin \theta$ බවද පෙන්වන්න. 2b පාදය තිරස සමග සාදන කෝණය $\frac{1}{2}\sin^{-1}\left(\frac{a^2-c^2}{c^2}\right)$ අපෝහනය කරන්න.

- (7) බර W වන ඒකාකාර දණ්ඩක් සමතුලිතතාවයේ ඇත්තේ තිරසට α සහ β කෝණවලින් ආනතවන සුමට තල දෙකක් මත ගැටීමෙනි. මෙම තල දෙක තිරස් රේඛාවක් මගින් ඡේදනය වේ. තවද දණ්ඩ සිරස සමග θ කෝණයක් සාදයි නම් $2\cot\theta = \cot\beta \cot\alpha$ බව පෙන්වන්න. දණ්ඩ මත තල මගින් ඇති කරන පුතිකියා සොයන්න. (දණ්ඩ පිහිටි සිරස් තලය ආනත තල දෙකට ලම්භක වේ.)
- (8) සුමට P කුඤ්ඤයක් සුමට සිරස් බිත්තියක සිට a දුරක් ඇතින් පවතින සේ අවල ලෙස සවිකර ඇත. දිග 6a සහ බර W වන AB ඒකාකාර දණ්ඩක් කුඤ්ඤයේ ගැටෙමින් සමතුලිතතාවයේ ඇත්තේ දණ්ඩේ A කෙළවර බිත්තියේ ගැටෙන පරිදිය. දණ්ඩ තිරස සමග සාදන කෝණය θ නම් දණ්ඩ මත කිුයාකරන බල තිුකෝණය ඇඳ දක්වන්න. කුඤ්ඤය මගින් දණ්ඩමත පුතිකිුයාව W සහ θ ඇසුරෙන් සොයන්න. $3\cos^3\theta=1$ බව පෙන්වන්න. (දණ්ඩ පිහිටි සිරස් තලය ආනත තල දෙකට ලම්භක වේ.)
- (9) දිග a වන සිහින් දණ්ඩක් අරය a වන වලල්ලක සුමට ඇතුලත පෘෂ්ඨය මත ගැටෙමින් සමතුලිතතාවයේ ඇත. දණ්ඩේ ගුරුත්ව කේන්දුයේදී දණ්ඩේ දිග 3:4 අනුපාතයට වෙන් කරයි. දණ්ඩ සිරස සමග සාදන කෝණය $\tan^{-1}\left(\frac{7}{\sqrt{3}}\right)$ බව පෙන්වන්න. දණ්ඩේ දෙකෙළවර මත වළල්ල මඟින් ඇතිවන පුතිකිුයාවල අනුපාතය සොයන්න.
- (10) අරය a වන සහ බර W වන සුමට ගෝල දෙකක් අරය $b\ (>2a)$ වන අවල සුමට පාතුයක ඇතුළත පෘෂ්ඨයේ ස්පර්ශ වෙමින් සමතුලිතව පවතී. එක් එක් ගෝලය මත කි්යාකරන බල සඳහා බල ති්කෝණය අඳින්න. ගෝල දෙක අතර කි්යාකරන පුතිකිියාව $\frac{Wa}{\sqrt{b(b-2a)}}$ බව පෙන්වන්න.
- (11) බර W වන ඒකාකාර දණ්ඩක එක් කෙළවරක් සුමට තිරස් බිත්තියක ගැටෙමින්ද අනෙක් කෙළවරට ලුහු අචිතනා තන්තුවක් ගැට ගසා එම කෙළවර තිරසට θ කෝණයකින් ආනත සුමට තලයක් මත ගැටී ඇත. තන්තුව ආනත තලයේ ඉහළ ඇති කප්පියක් මතින් පන්නා P භාරයකට ගැට ගසා ඇත. P භාරය සිරසට පහළට එල්ලී ඇති අතර පද්ධතිය සමතුලිත නම් $2P = W \sin \alpha$ බව පෙන්වන්න.
- (12) බර W වන ඒකාකාර දණ්ඩක එක් කෙළවරක් අවල ලක්ෂාකට සුමටව සවිකර අනෙක් අන්තයේ P දිගැති සැහැල්ලු අවිතනා තරුවක් ගැටගසා තන්තුවේ අනෙක් කෙළවර දණ්ඩ සවිකර ඇති ලක්ෂායට c දුරක් සිරස්ව ඉහළින් පිහිටි ලක්ෂායකට ගැට ගසා ඇත. තන්තුව හා සම්බන්ධ දණ්ඩේ කෙළවරට දණ්ඩේ බරෙන් අඩකට සමාන භාරයක් ගැට ගසා ඇති විට සමතුලිත නම් තන්තුවේ ආනතිය $\frac{lW}{c}$ බව පෙන්වන්න.
- (13) ABCDEF යනු සවිධි ෂඩාසුයකි. විශාලත්වය P වන බල පහක් AE, ED, DC, CB, BA. ඔස්සේ කියා කරයි. විශාලත්වය Q වන බල පහක් AC, CE, EB, BD, DA ඔස්සේ කියා කරයි. මෙම බල දහය යටතේ පද්ධතිය සමතුලිත නම් P සහ Q අතර තිබිය යුතු අනුපාතය සොයන්න.