Convex Optimization *Spring 2019*

Yuanming Shi

Outline

Data science models

Linear, bilinear, quadratic, low-rank, and deep models

Large-scale optimization

 Constrained vs. unconstrained, convex vs. nonconvex, deterministic vs. stochastic, solvability vs. scalability

High-dimensional statistics

Convex geometry, local geometry, global geometry

Topics and grading

Theoretical foundations, first-order methods, second-order methods, stochastic methods, and applications.

Motivations: The Era of Big Data

Intelligent IoT applications

Autonomous vehicles

Smart health

Smart home

Smart agriculture

Smart city

Smart drones

Financial big data

 Financial data & Al technologies: set up analytic models to gain valuable insights for better business decisions

Large Volume

data generating at speed of ITB/day in NYSE (2013)

typically 100,000trans/s in High-frequency Trading

Wide Variety
various data sources
and types

Intelligent supply chain system

Vignettes A: Data Science Models

What is data science?

Some possible definitions

> Data science is the application of **computational** and **statistical** techniques to address or gain insight into some problem in the **real world**

Actionable intelligence

Challenges

Retrieve or infer information from high-dimensional/large-scale data

limited processing ability (computation, storage, ...)

2.5 exabytes of data are generated every day (2012)

exabyte → zettabyte → yottabyte...??

We're interested in the *information* rather than the data

Challenges:

- High computational cost
- Only limited memory is available
- Do NOT want to compromise statistical accuracy

Optimization for data science

Optimization has transformed algorithm design

(Convex) optimization is almost a tool

Optimization problem

General optimization problem in standard form:

minimize
$$f_0(\boldsymbol{x})$$

subject to $f_i(\boldsymbol{x}) \leq 0, i = 1, \dots, m$

- $ightharpoonup x = (x_1, \dots, x_n)$: optimization variables
- $\succ f_0: \mathbb{R}^n \to \mathbb{R}$: objective function
- $\triangleright f_i: \mathbb{R}^n \to \mathbb{R}, i=1,\ldots,m$: constraint functions
- Goal: find optimal solution x^* minimizing f_0 while satisfying constraints
- Three basic elements: I) variables, 2) constraints, and 3) objective

High-dimensional data analysis

Linear model

- lacksquare Let $oldsymbol{x}^
 atural$ $\in \mathbb{R}^d$ be an unknown structured sparse signal
 - Individual sparsity for compressed sensing
- Let $f: \mathbb{R}^d \to \mathbb{R}$ be a convex function that reflects structure, e.g., ℓ_1 -norm
- Let $A \in \mathbb{R}^{m \times d}$ be a measurement operator
- Observe $z = Ax^{\natural}$
- Find estimate \hat{x} by solving convex program

minimize
$$f(x)$$
 subject to $Ax = z$

MR image

lacksquare Hope: $\hat{m{x}}=m{x}^{
atural}$

Bilinear model

image deblurring

Fig. credit: Romberg

multipath in wireless comm

Fig. credit: EngineeringsALL

Blind deconvolution: reconstruct two signals from their convolution

find x, h subject to $z_i = b_i^* h x^* a_i$, $1 \le i \le m$

Quadratic model

Phase retrieval: recover signal from intensity (missing phase)

Recover $oldsymbol{z}^
atural$ $\in \mathbb{R}^n$ from m random quadratic measurements

find
$$z$$
 subject to $y_r = |\langle \boldsymbol{a}_r, \boldsymbol{z} \rangle|^2$, $r = 1, 2, \dots, m$

Low-rank model

Fig. credit: Candès

Given partial samples Ω of a low-rank matrix M^{\sharp} , fill in missing entries

minimize
$$\operatorname{rank}(\boldsymbol{M})$$
 subject to $Y_{i,k} = M_{i,k}, (i,k) \in \Omega$

Deep models

- **Data:** n observations $\{x_i, y_i\}_{i=1}^n \in \mathcal{X} \times \mathcal{Y}$
- **Prediction function:** $h(\boldsymbol{x}, \boldsymbol{\theta}) \in \mathbb{R}$ parameterized by $\boldsymbol{\theta} \in \mathbb{R}^d$

- Estimating θ parameters is an optimization problem (ℓ : loss function)

minimize
$$f(\boldsymbol{\theta}) := \frac{1}{n} \sum_{i=1}^{n} \ell(h(\boldsymbol{x}_i, \boldsymbol{\theta}), y_i)$$
 subject to $\mathcal{R}(\boldsymbol{\theta}) \leq \tau$

 $\triangleright \mathcal{R}$:regularization function encoding prior information (e.g., sparse) on θ

Key benefits of looking at problems in AI as optimization problems: separate out the definition of the problem from the method for solving it!

Vignettes B: Large-Scale Optimization

Classes of optimization problems

 Types of optimization problems: linear programming, nonlinear programming, integer programming, geometric programming, ...

We focus on three dimensions: unconstrained vs. constrained, convex vs. nonconvex, and smooth vs. nonsmooth

Constrained vs. unconstrained optimization

- Unconstrained optimization: every point $x \in \mathbb{R}^n$ is feasible, so only focus is on minimizing f(x)
- Constrained optimization: it may be difficult to even find a feasible point $x \in \mathcal{C}$

Convex vs. nonconvex optimization

Convex optimization:

- 1) All local optima are global optima
- 2) Can be solved in polynomial-time

"... the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity"

— R. Rockafellar '1993

Deterministic vs. stochastic optimization

Stochastic optimization

- minimize $f(\boldsymbol{x}) := \mathbb{E}[F(\boldsymbol{x}, \boldsymbol{\xi})]$ subject to $\boldsymbol{x} \in \mathcal{X}$
- $\triangleright f$: loss; x: parameters; ξ : data samples
- Example: supervised machine learning (finite-sum problems)

minimize
$$f(\boldsymbol{x}) := \frac{1}{n} \sum_{i=1}^{n} f_i(\boldsymbol{x}) = \frac{1}{n} \sum_{i=1}^{n} \ell(b_i - \boldsymbol{a}_i^T \boldsymbol{x})$$

- ightharpoonup Data observations: $(a_i,b_i)\in\mathbb{R}^d imes\mathbb{R}$; loss function: $\ell:\mathbb{R}^d o\mathbb{R}$
- Stochastic gradient: $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k \alpha_k \nabla f_{i(k)}(\boldsymbol{x}_k)$
 - $\succ i(k) \in \{1,2,\ldots,n\}$ uniformly at random; unbiased estimate: $\mathbb{E}[
 abla f_{i(k)}] =
 abla f$

Scaling issues: solvability vs. scalability

- Polynomial-time algorithms might be useless in large-scale applications
- Example: Newton's method

$$egin{aligned} \mathsf{minimize}_{m{x} \in \mathbb{R}^{m{n}}} & f(m{x}) \end{aligned} egin{aligned} egin{aligned\\ egin{aligned} egin{aligned}$$

- Attains ϵ accuracy within $\mathcal{O}(\log\log\frac{1}{\epsilon})$ iterations; requires $abla^2 f({m x}) \in \mathbb{R}^{n imes n}$
- A single iteration may last forever; prohibitive storage requirement

Iteration complexity vs. per-iteration cost

computational cost = iteration complexity (#iterations) x cost per iteration

Large-scale problems call for methods with *cheap iterations*

First-order methods

- First-order methods: methods that exploit only information on function values and (sub)gradients without using Hessian information
 - cheap iterations
 - low memory requirements

Randomized and approximation methods

 Optimization for high-dimensional data analysis: polynomial-time algorithms often not fast enough: further approximations are essential

 Randomized and stochastic methods: project data into subspace, and solve reduced dimension problem

Advanced large-scale optimization

nonconvex optimization on manifold

deep reinforcement learning

Vignettes C: High-Dimensional Statistics

Nonconvex problems are everywhere

Empirical risk minimization is usually nonconvex

$$\underset{\boldsymbol{x}}{\text{minimize}} f(\boldsymbol{x}; \boldsymbol{\theta})$$

- low-rank matrix completion
- blind deconvolution/demixing
- dictionary learning
- phase retrieval
- mixture models
- deep learning
- **>** ...

Nonconvex optimization may be super scary

Challenges: saddle points, local optima, bumps,...

• Fact: they are usually solved on a daily basis via simple algorithms like (stochastic) gradient descent

Statistical models come to rescue

Blessings: when data are generated by certain statistical models, problems are often much nicer than worst-case instances

Convex geometry

Success!

Compressive sensing: find sparse estimate \hat{x} by solving

minimize
$$f(x)$$
 subject to $Ax = z$

Geometry of linear inverse problems

Failure!

Global geometry

Proposal: separation of landscape analysis and generic algorithm design

landscape analysis (statistics)

all local minima are global minima

- dictionary learning (Sun et al. '15)
- phase retrieval (Sun et al. '16)
- matrix completion (Ge et al. '16)
- synchronization (Bandeira et al. '16)
- inverting deep neural nets (Hand et al. '17)

• ..

generic algorithms (optimization)

all the saddle points can be escaped

- gradient descent (Lee et al. '16)
- trust region method (Sun et al. '16)
- perturbed GD (Jin et al. '17)
- cubic regularization (Agarwal et al. '17)
- Natasha (Allen-Zhu '17)
- ...

Local geometry

- Initialize within local basin sufficiently close to ground-truth (i.e., strongly convex, no saddle points/ local minima)
- Iterative refinement via some iterative optimization algorithms

Optimization meets statistics

nonconvex optimization may be super scary

benign geometry: no spurious local optima

To be success — 50% success — 5% success — 5

Goals: data sizes, expressivity, information propagations, etc.

framework: high-dimensional data analysis

Case study: bilinear model

Demixing from bilinear measurements

find
$$\{x_i\}, \{h_i\}$$

subject to $z_j = \sum_{i=1}^s b_j^* h_i x_i^* a_{ij}$

Applications

image deblurring

convolutional dictionary learning

low-latency communication

Case study: deep learning model

Learning neural networks with quadratic activation

lacksquare input features: $oldsymbol{a}$; weights: $oldsymbol{X}^\star = [oldsymbol{x}_1^\star, \cdots, oldsymbol{x}_r^\star]$

output:
$$y = \sum_{i=1}^r \sigma(\boldsymbol{a}^\top \boldsymbol{x}_i^\star) \stackrel{\sigma(z)=z^2}{:=} \sum_{i=1}^r (\boldsymbol{a}^\top \boldsymbol{x}_i^\star)^2$$

Topics and Grading

Theoretical foundations

 Main topics: convex sets, convex functions, convex problems, Lagrange duality and KKT conditions, disciplined convex programming

Convex Optimization, by S. Boyd and L. Vandenberghe, Cambridge University Press, 2003.

Applications in financial engineering

 Main topics: portfolio optimization, factor models, time series modeling, robust portfolio optimization, risk-parity portfolio, index tracking, pairs trading

Optimization Methods in Finance, by G. Cornuejols, J. Pena, and R. Tutuncu, Cambridge University Press, 2018.

First-order methods

Main topics: gradient methods, subgradient methods, proximal methods

First-order Methods in Optimization, by A. Beck, MOS-SIAM Series on Optimization, 2017.

Second-order methods

Main topics: Newton method, interior-point methods, quasi-Newton methods

Numerical Optimization, by J. Nocedal and S. Wright, Springer-Verlag, 2006.

Stochastic and randomized methods

 Main topics: stochastic gradient methods, stochastic Newton methods, randomized sketching methods, randomized linear algebra

Lecture Notes on Randomized Linear Algebra, by Mahoney, Michael, 2016.

Applications in machine learning

Main topics (statistics meets optimization):

- Convex geometry: phase transitions (compressive sensing, matrix sensing)
- Local geometry: basin of attraction (phase retrieval, blind deconvolution)
- Global geometry: escape saddle points (matrix completion, neural networks)

High-Dimensional Probability: An Introduction with Applications in Data Science, by Roman Vershynin, Cambridge University Press, 2018.

Prerequisites

Warning: there will be quite a few THEOREMS and PROOFS ...

- Basic linear algebra
- Basic probability
- A programming language (e.g. Matlab, Python, ...)

Somewhat surprisingly, most proofs rely only on basic linear algebra and elementary recursive formula

Grading

- Homeworks: 6 homework sets
- Final exam: 3-hours open book exam
- Course project:
 - > either individually or in groups of two/three
 - ➢ list of topics (before May I); report & slides (end of I6-th week)

$$grade = 0.2H + 0.4E + 0.4P$$

 \triangleright H: homework; E: final exam; P: project

Course information

- Instructor: Yuanming Shi (http://shiyuanming.github.io)
 - Email: shiym@shanghaitech.edu.cn
 - Office location: Room 1C-403C, SIST Building
 - Office hours: by appointments

TAs:

- Chen Chen, Xiangyu Yang, Qiong Wu, Tao Jiang, Jialin Dong
- Office hours: TBD

Course information

- Use WeChat as the main mode of electronic communication; please post (and answer) questions there!
- Post all the course materials on Piazza.

