

이번 장에서 학습할 내용

- * 변수와 상수의 개념
- * 자료형
- * 정수형
- * 실수형
- * 문자형
- * 기호 상수 사용
- * 오버플로우와 언더플로우

Q) 변수(variable)이란 무엇인가?

A) 프로그램에서 일시적으로 데이터를 저장하는 공간

sum = x + y;

위 프로그램 문장에서 sum, x, y가 변수

변수를 사용하는 이유

- 프로그램 실행 과정에 사용되는 데이터가 저장되는 공간이 반드시 필요
 - 사용자로부터 입력 받은 데이터, 프로그램 연산에 의해 생성된 데이터 등

변수를 사용하는 이유

- □ 변수를 사용하면 프로그램 코드를 더 유연하게 만들 수 있음
 - □ 왼쪽 코드: 크기가 100 x 200인 사각형의 넓이만 계산 가능
 - □ 오른쪽 코드: width, height 값만 변경하면 어떤 사각형의 넓이도 계산 가능

변수를 사용하지 않는 코드	변수를 사용하는 코드
// 크기가 100×200인 사각형의 면적 area = 100 * 200;	// 크기가 width×height인 사각형의 면적 width = 100; height = 200; area = width * height;

변수와 상수

- 변수(variable): 저장된 값의 변경이 가능한 공간
- 상수(constant): 저장된 값의 변경이 불가능한 공간
 □ (예) 3.14, 100, 'A', "Hello World!"

예제: 변수와 상수

```
/* 원의 면적을 계산하는 프로그램 */
#include <stdio.h>
int main(void)
        float radius;
                          // 원의 반지름
        float area;
                                  // 원의 면적
        printf("원의 면적을 입력하시요:");
        scanf("%f", &radius);
        area = 3.141592 * radius * radius;
        printf("원의 면적: %f ₩n", area);
        return 0;
```


- □ 자료형(data type): 데이터의 타입(종류)
 - □ (예) short, int, long: 정수형 데이터(100)
 - □ (예) double, float: 실수형 데이터(3.141592)
 - □ (예) char: 문자형 데이터('A', 'a', '한')

다양한 자료형이 필요한 이유

□ 상자에 물건을 저장하는 것과 같다.

• 저장되는 데이터의 크기에 따라 메모리의 필요량이 다름

자료형의 크기

예제: 자료형의 크기

```
#include <stdio.h>
int main(void)
         int x;
         printf("변수 x의 크기: %d\n", sizeof(x));
         printf("char형의 크기: %d\n", sizeof(char));
         printf("int형의 크기: %d\n", sizeof(int));
         printf("short형의 크기: %d\n", sizeof(short));
         printf("long형의 크기: %d\n", sizeof(long));
         printf("long long형의 크기: %d\n", sizeof(long long));
         printf("float형의 크기: %d\n", sizeof(float));
         printf("double형의 크기: %d\n", sizeof(double));
         return 0;
```


실행 결과

○ 실행결과

```
변수 x의 크기: 4
char형의 크기: 1
int형의 크기: 4
short형의 크기: 2
long형의 크기: 4
long long형의 크기: 8
float형의 크기: 4
double형의 크기: 8
```

• 바이트(byte) 단위: 1byte는 8 bits

□ int형

$$-2^{31}$$
, ..., -2 , -1 , 0, 1, 2, ..., 2^{31} -1 (-2147483648 ~ +2147483647)

약 -21억에서 +21억

🗖 short형

$$-2^{15}$$
, ..., -2 , -1 , 0, 1, 2, ..., 2^{15} -1 (-32768 ~ +32767)

- □ long형
 - □ 보통 int형과 같음

정수형 선언의 예

```
short grade; // short형의 변수를 생성한다.
int count; // int형의 변수를 생성한다.
long distance; // distance형의 변수를 생성한다.
```


예저

```
/* 정수 자료형을 사용하는 프로그램*/
#include <stdio.h>
int main(void)
   short year = 0; // 0으로 초기화한다.
   int sale = 0; // 0으로 초기화한다.
   long total_sale = 0; // 0으로 초기화한다.
   long long large_value;
   year = 10; // 약 3만2천을 넘지 않도록 주의
   sale = 200000000; // 약 21억을 넘지 않도록 주의
    total_sale = year * sale; // 약 21억을 넘지 않도록 주의
    printf("total sale = %d \n", total sale);
    return 0;
```

○ 실행결과

```
total_sale = 20000000000
```


signed, unsigned 수식자

- unsigned
 - □ 음수가 아닌 값만을 나타냄을 의미
 - unsigned int
- signed
 - □ 부호를 가지는 값을 나타냄을 의미
 - □ 흔히 생략

signed short unsigned sort

signed int unsigned int

signed long unsigned long

signed long long unsigned long long

0, 1, 2, ...,
$$2^{32}$$
 -1 (0 ~ +4294967295)

- □ unsigned int speed;// 부호없는 int형
- unsigned distance; // unsigned int distance와 같다.
- unsigned short players; // 부호없는 short형
- unsigned long seconds; // 부호없는 long형

자료형		비트	범위	
정수형	short	부호있는 정수	16비트	-32768~32767
	int		32비트	-2147483648~2147483647
	long			-2147483648~2147483647
	long long		64비트	-9,223,372,036,854,775,808 ~9,223,372,036,854,775,807
	unsigned short	부호없는 정수	16비트	0~65535
	unsigned int		32비트	0~4294967295
	unsigned long			0~4294967295
	unsigned long long		64비트	0~18,446,744,073,709,551,615

□ 오버플로우(overflow): 변수가 나타낼 수 있는 범위를 넘는 숫자를 저장하려고 할 때 발생

오버플로우

```
#include <stdio.h>
#include inits.h>
int main(void)
        short s_money = SHRT_MAX; // 최대값으로 초기화한다. 32767
        unsigned short u_money = USHRT_MAX; // 최대값으로 초기화한다. 65535
                                                오버플로우 발생!!
        s_money = s_money + 1;
        printf("s_money = %d", s_money);
                                                   s_money = -32768
                                                    u_money = 0
        u money = u money + 1;
        printf("u_money = %d", u_money);
        return 0;
```

C언어 Express

오버플로우

- □ 규칙성이 있다.
 - □ 수도 계량기나 자동차의 주행거리계와 비슷하게 동작

정수 상수

- □ 숫자를 적으면 기본적으로 int 형이 된다.
 - □ sum = 123; // 123은 int 형
- □ 상수의 자료형을 명시하려면 다음과 같이 한다.
 - □ sum = 123L; // 123은 long 형

접미사	자료형	예
u 또는 U	unsigned int	123u 또는 123U
I 또는 L	long	123l 또는 123L
ul 또는 UL	unsigned long	123ul 또는 123UL

정수 상수 표현: 10진법, 8진법, 16진법

- □ 정수 상수는 10진법 뿐만 아니라 8진법 이나 16진법으로도 표기 가능
- □ 8진법: 앞에 0을 붙임
 - $012_8 = 1 \times 8^1 + 2 \times 8^0 = 10$
- □ 16진법: 앞에 0x를 붙임

10진수	8진수	16진수
0	00	0x0
1	01	0x1
2	02	0x2
3	03	0x3
4	04	0x4
5	05	0x5
6	06	0x6
7	07	0x7
8	010	0x8
9	011	0x9
10	012	0xa
11	013	0xb
12	014	0xc
13	015	0xd
14	016	0xe
15	017	0xf
16	020	0x10
17	021	0x11
18	022	0x12


```
/* 정수 상수 프로그램*/
#include <stdio.h>
int main(void)
   int x = 10; // 10은 10진수이고 int형이고 값은 십진수로 10이다.
   int y = 010; // 010은 8진수이고 int형이고 값은 십진수로 8이다.
   int z = 0x10; // 010은 16진수이고 int형이고 값은 십진수로 16이다.
   printf("x = %d", x);
   printf("y = %d", y);
                                                          x = 10
                                                          V = 8
    printf("z = %d", z);
                                                          z = 16
   return 0;
    © 2012 생능출판사 All rights reserved
                                                               当川 声 リ こ し ご リ Éxpress
```


기호 상수

- □ *기호 상수(symbolic constant):* 기호를 이용하여 상수를 표현한 것
- □ (예)
 - area = 3.141592* radius * radius;
 - □ area ⇒PI * radius * radius;
 - income = salary 0.15 salary;
 - income = salary -TAX_RATE * salary;
- □ 기호 상수의 장점
 - □ 가독성이 높아진다.
 - □ 값을 쉽게 변경할 수 있다.

기호 상수의 장점

리터**럴 상수를 사용하는 경우:** 등장하는 모든 곳을 수정하여야 한다.

기호 상수를 사용하는 경우: 기호 상수가 정의된 곳만 수정하면 한다.

기호 상수를 만드는 방법 #1

EXCHANGE_RATE이라는 기호를 1120으로 정의

#define **EXCHANGE RATE 1120**

기호 상수를 만드는 방법 #2

변수가 값을 변경할 수 없게 한다.

const int EXCHANGE_RATE = 1120;

예제: 기호 상수

```
#include <stdio.h>
#define TAX_RATE 0.2
                                                 기호상수
int main(void)
        const int MONTHS = 12
        int m_salary, y_salary;
                                  // 변수 선언
         printf( "월급을 입력하시요: "); // 입력 안내문
        scanf("%d", &m_salary);
        y_salary = MONTHS * m_salary; // 순수입 계산
                                                         월급을 입력하시요: 200
                                                         연봉은 2400입니다.
         printf("연봉은 %d입니다.", y_salary);
                                                         세금은 480.000000 입니다.
         printf("세금은 %f입니다.", y_salary*TAX_RATE);
        return 0;
    © 2012 생능출판사 All rights reserved
```


중간 점검

- □ 정수형에 속하는 자료형을 모두 열거하라.
- □ 왜 정수를 하나의 타입으로 하지 않고 int, short, long 등의 여러 가지 타입으로 복잡하게 분류하여 사용하는가?
- □ 부호가 없는 unsigned int 형의 변수에 음수를 넣으면 어떤 일이 벌어 지는가?
- 변수가 저장할 수 있는 한계를 넘어서는 값을 저장하면 어떻게 되는
 가? 구체적인 예로 short 형의 변수에 32768을 저장하면 어떻게 되는
 가?
- _ 숫자 값을 직접 사용하는 것보다 기호 상수를 사용하는 것의 이점은 무엇인가?

Q & A

