## Path Routing Entry Compression Algorithm for Multi-level Multi-rooted Tree

**Gaoxiong ZENG** 

SINGLab, CSE, HKUST

### Topology

• Multi-level multi-rooted tree: Fat-tree, VL2 ...



#### Input

• Given a L-level multi-rooted tree

#### Output

- All desired paths between any two Edge Switch(i.e., l=1) and its ID;
- LPM routing entries of all switches;

#### Algorithm

- General step:
- 1) Search desired path;
- 2) Assign path ID according to Path ID Assignment Rules;
- 3) Add LPM routing entries to the switches along the path;

#### Notation

- $S^l$  The switch set of level  $l; l \in [1, L]$  where L is the size of the level  $R_{S_1-S_2}$  The direct route (distance decrease by one level each hop) set from  $s_1$  to  $s_2$
- $DP_{S}$  The downward port set of switch s
- $n_{S^l}$  The sequence number (start from 0) of  $S^l$  in  $S^l$
- $n_{r_{S_1-S_2}}$  The sequence number (start from 0) of  $r_{S_1-S_2}$  in  $R_{S_1-S_2}$
- $n_{dp_{\mathcal{S}}}$  The sequence number (start from 0) of  $dp_{\mathcal{S}}$  in  $DP_{\mathcal{S}}$

#### Path ID Assignment Rule

- Desired Path:  $s_{up}^1 \rightarrow s_{up}^2 \rightarrow \cdots \rightarrow s^{t+2} \rightarrow \cdots s_{down}^2 \rightarrow s_{down}^1$ ;
- Therefore, there are L-1 types of path, i.e.,  $t \in [0, L-2]$ ;
- Path ID:

t. 
$$n_{s^{t+2}}$$
 .  $n_{r_{s^1_{up}-s^{t+2}}}$  .  $n_{dp_{s^{t+2}}}$  .  $n_{dp_{s^{t+1}_{down}}}$  . . . .  $n_{dp_{s^2_{down}}}$ 

For each type, block size is fixed and should be calculated beforehand;

- Type:  $\lceil \log_2(L-1) \rceil$  bits
- Top:  $\lceil \log_2 |S^{t+2}| \rceil$  bits
- Route:  $\left[\log_2 \max_{s^1 \in S^1, s^{t+2} \in S^{t+2}} |R_{s^1 s^{t+2}}|\right]$  bits
- DP\_l:  $\lceil \log_2 \max_{s \in S^l} |DP_s| \rceil$  bits

#### Note:

- [a] denotes the smallest integer that is larger than a;
- |S| denotes the set size of S;

#### LPM routing entry

#### Typical for 3-level topology!

| Switch level Path Type |          | level 1      | level 2                   | level 3                    | <br>level L       |
|------------------------|----------|--------------|---------------------------|----------------------------|-------------------|
| Type 0                 | Upward   | 0.Top.Route/ |                           |                            |                   |
|                        | Downward |              | 0.Top.Route.DP_2/         |                            |                   |
| Type 1                 | Upward   | 1.Top.Route/ | 1.Top.Route/              |                            |                   |
|                        | Downward |              | 1.Top.Route.DP_3.DP_2/    | 1.Top.Route.DP_3/          |                   |
|                        |          |              |                           |                            |                   |
|                        |          |              |                           |                            |                   |
| Type L-2               | Upward   | t.Top.Route/ | t.Top.Route/              | t.Top.Route/               |                   |
|                        | Downward |              | t.Top.Route.DP_LDP<br>_2/ | t.Top.Route.DP_L.<br>DP_3/ | t.Top.Route.DP_L/ |

Path ID: Type. Top. Route. DP\_t+2. DP\_t+1..... DP\_2

# Illustration – Fattree(4) Level 3 Level 2 Level 1

 $s_n^l$  denotes the n-th switch of level l;

The green number denotes the physical port number;

The red number denotes the corresponding downward port sequence number.

Type: 
$$\lceil \log_2(L-1) \rceil = \lceil \log_2(3-1) \rceil = 1$$
 bit

DP\_3: 
$$\lceil \log_2 \max_{s \in S^l} |DP_s| \rceil = \lceil \log_2 \max_{s \in S^3} |DP_s| \rceil = 2 \text{ bits}$$

DP\_2: 
$$\lceil \log_2 \max_{s \in S^l} |DP_s| \rceil = \lceil \log_2 \max_{s \in S^2} |DP_s| \rceil = 1$$
 bit

• For type 0, t = 0,

Top: 
$$[\log_2 |S^{t+2}|] = 3$$
 bits

Route: 
$$\left[\log_2 \max_{s^1 \in S^1, s^{t+2} \in S^{t+2}} |R_{s^1 - s^{t+2}}|\right] = 0$$
 bit

• For type 1, t = 1,

Top: 
$$[\log_2 |S^{t+2}|] = 2$$
 bits

Route: 
$$\left[\log_2 \max_{s^1 \in S^1, s^{t+2} \in S^{t+2}} |R_{s^1 - s^{t+2}}|\right] = 0$$
 bit

Note: 0 bit means we don't need that block, or the block is null!

• LPM routing entries of some switches:

Entry Form: Path\_ID\_Prefix/ Physical\_Port

| Path Type | Switch   | $s_1^1$                                                      | $s_1^2$                                                                          | $s_1^3$                                                                  |
|-----------|----------|--------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Type 0    | Upward   | 0.001.null/ 1<br>0.010.null/ 2                               |                                                                                  |                                                                          |
|           | Downward |                                                              | 0.001.null.0/ 1<br>0.001.null.1/ 2                                               |                                                                          |
| Type 1    | Upward   | 1.01.null/ 1<br>1.10.null/ 1<br>1.11.null/ 2<br>1.00.null/ 2 | 1.01.null/ 3<br>1.10.null/ 4                                                     |                                                                          |
|           | Downward |                                                              | 1.01.null.01.0/ 1<br>1.01.null.01.1/ 2<br>1.10.null.01.0/ 1<br>1.10.null.01.1/ 2 | 1.01.null.01/ 1<br>1.01.null.10/ 2<br>1.01.null.11/ 3<br>1.01.null.00/ 4 |

Bottleneck

## Scalability

|              | Fat-tree(64) | Fat-tree(256) | VL2(100,96,100) |
|--------------|--------------|---------------|-----------------|
| ID Space     | 22 bits      | 30 bits       | 22 bits         |
| Max. Entries | 1088         | 16640         | 5100            |