Speech Processing 2008/09

1st Test

April 6th 2009

Please identify this form with your name and student number in the reserved space at the bottom. The answers to multiple-choice questions will only be accepted if inserted in the appropriate place. Wrong answers will be penalized. The phonetic symbols should use the SAMPA alphabet (Lisbon accent).

- 1. Classify as True (T) or False (F)
 - (a) In pitch detection algorithms, smoothing prevents jumps to double pitch frequencies.
 - (b) In the Bark scale, the spacing between the central frequencies of the filter bank is logarithmic.
 - (c) The two spectrograms in this test have been obtained with a narrow-band analysis.
 - (d) Forward temporal masking is larger than backward.
 - (e) The best part of the glottal cycle for computing a filter model is the closed phase.
 - (f) Low order cepstral coefficients are a good model of the vocal tract.
- 2. Classify as True (T) or False (F)
 - (a) The LPC covariance analysis method applies a window to the error signal.
 - (b) The reflection coefficients have a broader dynamic range than the LPC coefficients.
 - (c) Very high values of the linear prediction order cause modeling of individual harmonics.
 - (d) Error minimization in linear prediction corresponds to a better modeling of the formants than the valleys between formants.
 - (e) An all-pole filter is a good model for nasal vowels.
 - (f) LSP coefficients are better for quantization than LPC coefficients.
- 3. Give examples of sounds for European Portuguese with the following properties (insert "-" in case they do not exist). Only one example is required for each category.
 - (a) vowel low nasal
 - (b) fricative dental unvoiced
 - (c) plosive velar voiced
 - (d) lateral palatal
- 4. What do we call the phonation type where the posterior part of the glottis remains open, without vibration?
- 5. What is the part of the human ear that (give answers as precise as you can)
 - (a) maps the frequency of sound stimuli to localization?
 - (b) helps in sound localization?
 - (c) has the role of impedance transformation?
- 6. Compute the vocal tract length (cm) corresponding to a value of 750 Hz for the third formant of the neutral vowel, indicating intermediate steps. Can this correspond to a human being?
- 7. Write the expression for the cepstrum of a voiced signal, including as many cepstral components as possible. Indicate the names of the different components.

- 8. Identify the 10-digit sequence by inspecting the spectrograms and waveforms in pages 2 and 3. There are no repeated digits. The recordings correspond to telephone speech.
- 9. Figures A and B present the short-time Fourier transform (magnitude) of a vowel segment, obtained with different window types, Hamming or rectangular (equal length). The LPC spectral envelope is also shown in one of them.
 - (a) Indicate approximate values for F0, F1 and F2 (Hz).
 - (b) May it correspond to a window of 5 ms?
 - (c) May it correspond to a child voice?
 - (d) May it correspond to vowel /a/?
 - (e) May the spectral envelope be obtained with an LPC analysis of order 16?
 - (f) Does it correspond to telephone speech?
 - (g) Which is the rectangular one (A or B)?
- 10. Consider the following sentences:

Os Hospitais de Coimbra realizaram uma cirurgia que permite colocar um implante auditivo em pessoas com surdez neurosensorial, melhorando a sua qualidade de vida.

- (a) Write the broad phonetic transcription.
- (b) What are the missing nasal diphthongs in this transcription?

1. (1.2)	val.) I	ndicat	e T or F:							
a b	c d	l e	f							
2. (1.2 a b	val.) I		e T or F:							
3. (2.0	val.)									
a										
b										
С										
d										
	(0.8/0	.9/2.5/	1.5 val.)							
4 5 (a)										
5 (a) 5 (b)										
5 (c)										
6										
7										
8. (3 v	al.)									
9. (4.5	val.) (Compl	ete:							
F0		F1	F2	T/F	T/F	T/F	T/F	T/F	A/B	
10. (2.	0/0.4 s	val)								
$\frac{10.(2.5)}{(a)}$	0/0. + v	a1.)								
(b)										
(b)										
(b)										

Test 1 - Answers
Name:

Number: