Shaving Peak Power Demand: A Comparative Life Cycle Assessment

Energy Star Home Energy Management System vs

Tesla Powerwall II

What is Demand Shaving?

Peak demand: period of time where consumer electricity demand is significantly higher than average.

The Concern

- Electricity demand spikes can lead to blackouts
- Renewable energy not as available during peak demand
 - reliance on fossil fuels

Current Solutions

- **Demand Side Management:** Utility providers rely on consumers to reduce energy consumption during periods of peak demand
 - Two approaches to energy optimisation:
 - 1. Energy storage in a battery
 - 2. Energy management system

02 Project Focus

Tesla Powerwall II

VS

Energy Star Home Energy Management System

Goals

- Research and understand product and technological systems
- Conduct LCA of Tesla Powerwall II and Energy Star HEMS

<u>Objectives</u>

- Compare relative impacts and peak demand shaving capabilities
- Determine which is environmentally and economically preferable

Current Literature?

G

Google Nest Learning Thermostat
Product environmental report

- Company environmental impact reports
- Peer-reviewed literature consensus
 - Batteries: materials and chemistry
 - O HEMS: use phase
- Renewable grid mix --> reduced impact

Functional Unit & System Scope

- Functional unit:
 kWh of peak demand shaved across a 10 year lifetime
- Inventory and impacts from cradle to gate, excluding EOL & recycling
 - Global warming potential and energy consumption

home energy demand & grid settings are kept constant throughout analysis

Tesla Powerwall II: Components

1. Tesla Powerwall II

Rechargeable Lithium-Ion NCA Battery (focus of this study)

2. Tesla Backup Gateway

Controls Battery Activities
(not included in scope due to lack
of information & relative impact)

System Boundaries: Tesla Powerwall II

HEMS: Components

1. Management Devices

- a.Retrieve, collect, store
 information through mobile
 app (out of scope)
- b. Smart meter

2. Field devices

- a. Smart plugs
- b. Smart thermostat
- c.LED Smart bulbs
- d. Internet system

System Boundaries: HEMS

Methods: Data Collection & LCA Tools

Inventory Data (Secondary):

- Federal Agencies (DOE, EPA, DOC, etc.), Environmental Organizations
- Google Scholar, USC Libraries, etc.
- Product specification sheets, Impact Reports

Impact Assessment & LCA Software:

- **EIO-LCA:** Carnegie Mellon tool for estimating impacts from economic activity
- PackageSmart: EarthShift Global tool for estimating impacts resulting from packaging designs
- Conversion factors from literature

Methods: Inventory & Impact Calculations

<u>Inventory Calculations (whenever literature was unavailable):</u>

- 1. Research literature to shape system boundaries
- 2. Determine mass of relative material inputs
- 3. Use secondary data to estimate energy inputs for production
- 4. Determine packaging materials and shipping methods
- 5.Use specs to calculate energy loss during use for Powerwall

Impact Calculations:

- 1.Use EIO-LCA tool to calculate impacts for material extraction and production
- 2. Use conversion factors to find impacts from production and assembly
- 3.Use PackageSmart tool to calculate impacts for packaging
- 4. Use conversion factors to find impacts from transport
- 5. Convert energy losses to GWP impacts for Powerwall

Methods: Peak Shaving Calculations

Peak Demand Time for Southern California: 4-9 pm

Peak Shaving for HEM System:

- Appliances Attached
 - Dishwasher
 - Clothes washer & dryer
 - Air Conditioner
 - Rechargeable electronics
- Calculated average daily energy consumption using typical appliance power outputs and duration of use

Peak Shaving for Powerwall System:

- Average Peak Demand in California per day was calculated using the EIA hourly demand monitor
- Powerwall Demand shaving and recharging methodology during peak supply was modeled to optimize cost.

Total average shaving potential can then be assessed on a daily, yearly, or lifetime basis

Limitations

Data:

- Relying on only secondary data
- Incomplete data sets due to diversity in literature, incomplete information, or hard-to-find figures
- Mandatory assumptions at the different stages of the LCA regarding the relative prices of components, the composition of the devices, and the processing methods
- Impossibility to assess a diversity of impacts

System Arrangement:

- The HEMS considered in the analysis represents the minimal case scenario (basic system components) with the addition of a smart meter and an internet system
- The Tesla Powerwall II considered in the study excludes the backup gateway due to the lack of available information
- The energy is exclusively obtained from the grid which would lead to significant modifications in overall impacts and shaving figures
- Household size, occupancy, and demand assumed

13 <u>Analysis: Powerwall Inventory Impacts</u>

14 <u>Analysis: Powerwall Inventory Impacts</u>

15 Analysis: HEMS Inventory Impacts

16 <u>Analysis: Peak Shaving</u>

Powerwall System Peak Shaving				
Daily shavings:	5.20	kWh		
Yearly shavings:	1925	kWh		
10 year lifetime:	19250	kWh		

HEMS System Peak Shaving				
Daily shavings:	3.188	kWh		
Yearly shavings:	1,163.62	kWh		
10 year lifetime:	11,636.2	kWh		

Comparative Analysis

Cost/Benefit Analysis

COST ANALYSIS:		POWERWALL	HEMS
	Intial cost of	\$9,600.00	\$442.50
	Use phase cost + maintenance	\$600.00	\$600.00
COST OF TECHNOLOGY	TOTAL	\$10,200.00	\$1,042.50
	Peak Shaving	\$1,105.46	\$1,396.66
	Energy Optimization	\$0.00	\$2,360.00
COST SAVINGS in 10 Years	TOTAL	\$1,105.46	\$3,756.66
	Difference	\$1,105.46	\$6,116.66

Conclusion and Recomendation

Recommendations:

- For this grid setting, the Energy Star HEMS is the preferable option for shaving peak demand
- The Tesla can shave more peak demand, but is much more environmentally impactful and expensive
- The HEMS also reduces your energy consumption by roughly 10%

Future studies:

- Use more sophisticated LCA tools not limited to Package Smart and EIO-LCA
- Incorporate "grave" phase
- Utilize primary data
- Geographically ample study
- Inclusion of broader components (i.e. solar panels, full HEMS system)

Presented by:

Marco Kleimans Saikiran Ravisanker Rosie Rothman Jacob Totaro Allie Wilcox

Questions