Chicago Crime Data Analysis

Aomkar Mathakar - 015925013

Mugdha Gumphekar - 015786238

Sandesh Gupta - 015649036

Venkata Prithvi Raj Namburi - 015944994

Dataset

Number of records: 7,424,694

Number of attributes: 22

Sample Attributes:

Crime Type	Description	Location Description	Arrest	Domestic	District
Ward	Community area	Date	Latitude	Longitude	Block

https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2/data

Data mining methods used

- 1. Association rule mining
 - a. Apriori algorithm
 - b. Efficient Apriori
 - c. FP Growth
- 2. Clustering methods
 - a. K-means clustering
 - b. K-modes clustering
 - c. K-Prototype clustering
 - d. Hierarchical Agglomerative Clustering

Association Rule Mining - Analysis

- Analyse 2021 crime data
 - a. Dates: 01/01/2021 11/10/2021
 - b. Total 158084 records

- 2. Analyse Pre and Post Covid data
 - a. Dates: Pre-covid (03/20/2018 03/20/2020), Post- covid (03/21/2020 10/11/2021)
 - b. Total records: Pre-covid: 528391 and Post-covid: 319531

Association Rule Mining - Preprocessing

Preprocessing methods:

- 1. Drop redundant or unuseful columns
- 2. Add new column
- 3. Convert the record data to transaction data

Date	↓ :	Block :	IUCR
11/21/2021 1	1:50:00	050XX W MONROE ST	0930
11/21/2021 1	1:45:00	061XX S MONITOR AVE	0497
11/21/2021 1	1:40:00	006XX E 67TH ST	1305
11/21/2021 1	1:39:00	065XX S HARVARD AVE	0820
11/21/2021 1	1:30:00	079XX S GREENWOOD A	0486

```
[('Primary Type-DECEPTIVE PRACTICE',
   'Description-ILLEGAL USE CASH CARD',
   'Location Description-ATM (AUTOMATIC TELLER MACHINE)',
   'Arrest-False',
   'Domestic-False',
   'District-18',
   'Ward-27.0',
   'Community Area-8.0',
   'Month-1'),
```

Association Rule Mining - Algorithms used

- 1. Apriori algorithm
- 2. Efficient Apriori
- 3. FP Growth

Concepts:

- Support
- Confidence
- Lift

Association Rule Mining - 2021 data analysis

Support	Confidence	Lift	Number of rules generated	Time taken	
0.05	0.9	1	85	16s	
0.05	0.8	1	110	14s	
0.10	0.8	1	18	2s	
0.10	0.9	1	11	2s	
0.20	0.9	1	1	50ms	
0.5	0.9	1	0	34ms	

Association Rule Mining - Algorithm Runtime Comparison

	Apriori	Efficient Apriori	FP Growth
Support	0.05	0.05	0.05
Confidence	0.9	0.9	0.9
Lift	1	1	1
Time taken	16s	0.84s	1.8s

Association Rule Mining - Itemset Generation (2021 data)

Min_support = 0.05, min_confidence = 0.9, min_lift = 1

A	В	C	D E
1 antecedents	consequents	support co	nfidence lift
Description-DOMESTIC BATTERY SIMPLE', 'Arrest-False'	'Domestic-True'	0.08	0.99 4.4
21 'Description-DOMESTIC BATTERY SIMPLE', 'Primary Type-BATTERY', 'Arr	est-Fal [‡] 'Domestic-True'	0.08	0.99 4.4
'Domestic-False', 'Description-OVER \$500'	'Primary Type-THEFT', 'Arrest-False'	0.05	0.99 5.4
Domestic-False', 'Description-OVER \$500'	'Arrest-False'	0.05	0.99 1.1
'Domestic-False', 'Primary Type-THEFT', 'Description-OVER \$500'	'Arrest-False'	0.05	0.99 1.1
25 'Description-OVER \$500'	"Primary Type-THEFT", 'Arrest-False'	0.06	0.99 5.4
Description-OVER \$500'	'Arrest-False'	0.06	0.99 1.1
Description-OVER \$500', 'Primary Type-THEFT'	'Arrest-False'	0.06	0.99 1.1
8 'Primary Type-DECEPTIVE PRACTICE'	'Arrest-False'	0.08	0.99 1.1
29 'Domestic-False', 'Primary Type-DECEPTIVE PRACTICE'	'Arrest-False'	0.08	0.99 1.1
Omestic-False', 'Description-\$500 AND UNDER'	'Primary Type-THEFT', 'Arrest-False'	0.07	0.99 5.4
11 'Domestic-False', 'Description-\$500 AND UNDER'	'Arrest-False'	0.07	0.99 1.1
Domestic-False', 'Description-\$500 AND UNDER', 'Primary Type-THEFT'	'Arrest-False'	0.07	0.99 1.1
33 'Description-\$500 AND UNDER'	"Primary Type-THEFT", 'Arrest-False'	0.07	0.99 5.4
34 'Description-\$500 AND UNDER'	'Arrest-False'	0.07	0.99 1.1
35 'Description-\$500 AND UNDER', 'Primary Type-THEFT'	'Arrest-False'	0.07	0.99 1.1

Association Rule Mining - Itemset Generation (Pre-Covid)

Min_support = 0.05, min_confidence = 0.5, min_lift = 1

1	antecedents	consequents	support	confidence	lift
2	Description-DOMESTIC BATTERY SIMPLE'	Primary Type-BATTERY'	0.09	1	5.31
3	Description-\$500 AND UNDER'	Primary Type-THEFT'	0.09	1	4.15
4	Description-OVER \$500'	Primary Type-THEFT'	0.06	1	4.15
5	Primary Type-NARCOTICS'	Arrest-True'	0.05	1	4.79
6	Primary Type-NARCOTICS'	Domestic-False'	0.05	1	1.2
7	Primary Type-NARCOTICS'	Domestic-False', 'Arrest-True'	0.05	1	5.55
8	Primary Type-DECEPTIVE PRACTICE'	Domestic-False'	0.07	0.99	1.19
9	Ward-42.0'	Domestic-False'	0.06	0.97	1.16
10	Description-OVER \$500'	Arrest-False', 'Primary Type-THEFT'	0.05	0.97	4.45
11	Description-OVER \$500'	Arrest-False'	0.05	0.97	1.22
12	Primary Type-THEFT'	Domestic-False'	0.23	0.96	1.15
13	Description-\$500 AND UNDER'	Arrest-False', 'Primary Type-THEFT'	0.09	0.96	4.42
14	Description-\$500 AND UNDER'	Arrest-False'	0.09	0.96	1.22

Association Rule Mining - Itemset Generation (Post Covid)

Min_support = 0.05, min_confidence = 0.5, min_lift = 1

1	antecedents	consequents	support	confidence lif	ft
2	Description-TO PROPERTY'	Primary Type-CRIMINAL DAMAGE'	0.06	1	8.08
3	Description-\$500 AND UNDER'	Primary Type-THEFT'	0.08	1	5.34
4	Description-OVER \$500'	Primary Type-THEFT'	0.05	1	5.34
5	Description-DOMESTIC BATTERY SIMPLE'	Primary Type-BATTERY'	0.1	1	5.01
6	Month-1'	Year-2021'	0.05	1	2.02
7	Month-11'	Year-2020'	0.05	1	1.98
8	Month-12'	Year-2020'	0.05	1	1.98
9	Primary Type-DECEPTIVE PRACTICE'	Domestic-False'	0.08	0.99	1.25
10	Primary Type-DECEPTIVE PRACTICE'	Arrest-False'	0.08	0.99	1.14
11	Description-OVER \$500'	Primary Type-THEFT', 'Arrest-False'	0.05	0.99	5.51
12	Description-OVER \$500'	Arrest-False'	0.05	0.99	1.14
13	Description-\$500 AND UNDER'	Primary Type-THEFT', 'Arrest-False'	0.08	0.98	5.49
14	Description-\$500 AND UNDER'	Arrest-False'	0.08	0.98	1.13
15	Primary Type-DECEPTIVE PRACTICE'	Domestic-False', 'Arrest-False'	0.08	0.98	1.42
16	Description-TO VEHICLE'	Arrest-False'	0.06	0.97	1.11
17	Primary Type-CRIMINAL DAMAGE'	Arrest-False'	0.12	0.96	1.11
18	Primary Type-THEFT'	Arrest-False'	0.18	0.96	1.1

Association Rule Mining - 2021 data conclusion

- In districts 4 and 8, no arrests have been made for more than 90% of the crimes.
- The months of August and September contribute to 20% of the annual crime. And yet no arrests were made for more than 90% of the cases.
- In following crimes, arrests rates were very low:
 - Theft over \$500 1%
 - Theft under \$500 1%
 - Deceptive practice 1%
 - Criminal Damage to vehicle 2%
 - Simple Assault 6%
 - Crimes committed at residences, apartments 6%, contributes to 25% of the crimes.

Association Rule Mining - Pre/Post Covid data conclusion

- Pre-Covid, the arrest rate for the case of Narcotics was 100% whereas no cases were recorded post covid with the same rate of confidence.
- Post-Covid thefts increased about 40%
- Pre-Covid, the months of August and September resulted in 15% of the crime whereas Post-Covid it increased to 20%, and yet the arrest was only about 1%
- In the following crimes, arrests rates are very low:
 - Theft over \$500 1%
 - Theft under \$500 1%
 - Deceptive practice 1%
 - Criminal Damage to vehicle 2%

Clustering - Data Preprocessing

- 1. Dropping unnecessary columns like Beat, Case Number, FBI Code, Location co-ordinates, etc.
- Splitting the date type data into date and time, and the time data into seconds, hours and months
- We then normalized all these values to bring them to a scale of 0 to 1.

Clustering - Techniques used

- 1. K-Means clustering
- 2. K-Modes clustering
- 3. Hierarchical Agglomerative Clustering

K-Means

- We implemented k-means for multiple combinations of dimensions
- The most insightful one was for IUCR and District
- 3. Main finding crimes such as IUCR
 Codes 5131 (other offence violent
 offender), 4387 (Violation of Order of
 Protection), 3731 (Obstructing
 Identification) etc occur much less
 frequently than others

K-Modes

- Extension of K-Means algorithm works on categorical data, uses Hamming distance as the distance measure
- 2. Performed clustering on Types of Crimes and Districts; and Crime types and Arrests
- 3. The results helped validate results of kmeans clustering most crimes occurring in most districts, led to new insights
- District 7 is more prone to Crimes like 'Battery', 'Deceptive practice', 'Weapons violation', 'Burglary'
- Very few arrests were made for crimes such as 'Assault', 'Criminal Damage',
 'Motor Vehicle Theft' out of all 31 unique crime types

Hierarchical Agglomerative Clustering (HAC)

- HAC was used to get much deeper and granular insights about the distribution of crime across various dimensions
- Months and Crime types Findings -
 - i) Deceptive Practice and Public Indecency occurred more frequently in January and February
 - ii) Assault, Burglary, Homicide had the highest occurrences between June and October
 - iii) Relatively fewer crimes have occurred in March and October

-2

Hierarchical Agglomerative Clustering (HAC)

- Hour and crime types findings
 - i) Arson, liquor law violation, crimes involving children, obscenity, homicides and sex offences occurred the most frequently between 10 pm and 1 am
 - ii) Public indecency and other offences occurred more frequently in the afternoon
 - iii) 6-8 am seem to be safer hours for the city

0.5

0.0

-0.5

-1.0

-1.5

-2.0

Thank you