Title:	Modeling And Analysis Of Spin Splitting In Strained Graphene Nanoribbons				
Authors:	Sanjay Prabhakar, Roderick Melnik, Luis Bonilla				
Published in:	(2016).ECMS 2016 Proceedings edited by: Thorsen Claus, Frank Herrmann, Michael Manitz, Oliver Rose, European Council for Modeling and Simulation. doi:10.7148/2016				
	ISBN: 978-0-9932440-2-5 30 th European Conference on Modelling and Simulation, Regensburg Germany, May 31 st – June 3 rd , 2016				
Citation format:	Sanjay Prabhakar, Roderick Melnik, Luis Bonilla (2016). Modeling And Analysis Of Spin Splitting In Strained Graphene Nanoribbons, ECMS 2016 Proceedings edited by: Thorsten Claus, Frank Herrmann, Michael Manitz, Oliver Rose European Council for Modeling and Simulation. doi:10.7148/2016-0388				
DOI:	http://dx.doi.org/10.7148/2016-0388				
Abstract:	We study the influence of ripple waves, originating from the electromechanical effects, on band structures of graphene nanoribbons (GNRs)- GNRs are complex systems that require novel approaches for their analysis, due to multiscale and multiphysics effects involved. Here, we develop a mathematical model and we show that the externally applied magnetic fields along z-direction in combination with pseudofields enhance the spin splitting of GNRs bands. In particular, we show that the strain tensor induce quantum confinement effect that turn to lead the opening of the bandgaps at Dirac point- Such finite band gaps are highly sensitive to the control parameters (period length, applied stress) of the ripple waves that help to design the optoelectronic devices for straintronic and spintronic applications.				

 ε ε

$$\varepsilon = -\left(\partial + \partial + \partial - \partial\right) \qquad ()$$

 $\sqrt{}$

$$\varepsilon = \partial + -(\partial)$$

$$\varepsilon = - \left(\partial + \partial \right) + - \left(\partial \right) \left(\partial \right)$$

$$\sigma = \partial \partial \varepsilon$$

$$\sigma = \varepsilon + \varepsilon$$
 ()

$$\sigma = \varepsilon + \varepsilon$$
 ()

$$\sigma = \varepsilon$$
 ()

$$= \tau \qquad () \qquad = \tau \qquad ()$$

$$= \pi \quad \iota \qquad \iota$$

$$\partial \quad = \qquad ()$$

= εε

$$\partial$$
 = () = π

 $\psi = \varepsilon \psi \qquad \qquad \psi(\) = \qquad \big(\qquad \big) \big(\phi \ (\) \ \phi \ (\) \big)$

$$\begin{pmatrix} -\partial & \phi & = \left(\frac{\varepsilon}{\eta}\right) \phi & () \\ (& \partial & + & \partial &) & + (& + &) \partial & \partial \\ = & & & (&) + & (&) & (&) \\ -\frac{\tau}{\zeta} & (&) & & & (&) \\ (& \partial & + & \partial &) & + (& + &) \partial & \partial \\ = & & & & (&) + & (&) & (&) \\ -\frac{\tau}{\zeta} & & & & (&) \end{pmatrix}$$

$$\varepsilon_{\pm} = \pm \sqrt{(\eta_{-})(-)} \qquad ()$$

$$\varepsilon_{\pm} = \pm \sqrt{(\eta_{-})(-)} \qquad ()$$

$$\varepsilon = \frac{\tau}{\varepsilon} \quad ()+- \quad +-- \quad ()-\frac{\tau}{\varepsilon} \quad (--)()$$

$$\varepsilon_{\pm} = \pm \sqrt{(\eta_{-})(+)} \qquad ()$$

$$\phi_{-}(-) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} -$$

$$\phi = \frac{1}{\varepsilon_{\pm}} \{ () - () \} ()$$

$$\phi = () ()$$

$$\langle \phi () \phi () \rangle = \langle \phi () \phi () \rangle$$

$$= (\sigma + \sigma) + - \mu \sigma \qquad ()$$

$$= -\eta - \qquad = -\eta \hat{\sigma}$$

$$= (-\varepsilon)\beta$$

$$= (\delta) + (\delta) +$$

$$\kappa = \begin{pmatrix} - & +(\varepsilon &) & - & (&) \end{pmatrix}$$

$$\phi = \mu \frac{1}{\sqrt{-}} \left[\frac{(+)\pi}{-} \right] \qquad ()$$

$$\phi = \mu \frac{1}{\sqrt{-}} \left[\frac{(+)\pi}{-} \right] \qquad ()$$

$$\begin{pmatrix} -\partial_{+} + \frac{\beta}{2} \varepsilon_{+} + \frac{\beta}{\eta_{+}} \end{pmatrix} \phi_{-} = \begin{pmatrix} \varepsilon - \mu_{-} \\ \eta_{-} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ +\partial_{+} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ +\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-} + \frac{\beta}{\eta_{-}} \end{pmatrix} \phi_{-} \begin{pmatrix} \varepsilon \\ -\partial_{-} + \frac{\beta}{2} \varepsilon_{-}$$

$$\begin{pmatrix} \eta & 1 \end{pmatrix} \begin{bmatrix} -\partial & +\left(\frac{\beta}{\beta}\right) \varepsilon & +\left(\frac{\gamma}{\eta}\right) & +\frac{\beta}{\beta} (\partial \varepsilon & -\varepsilon & \partial \varepsilon) \\ +\frac{\gamma}{\eta} (\partial & -\partial \varepsilon) + & +\frac{\beta}{\beta} \varepsilon & +\frac{\gamma}{\eta} \\ +\frac{\beta}{\eta} \varepsilon & +-\left(\frac{\gamma}{\eta}\right) & -\frac{\beta}{\eta} (\partial \varepsilon & -\varepsilon & \partial \varepsilon) \\ -\frac{\gamma}{\eta} (\partial & -\partial \varepsilon) + & +\frac{\beta}{\beta} \varepsilon & +\frac{\gamma}{\eta} \\ +\frac{\beta}{\eta} \varepsilon & +-\left(\frac{\gamma}{\eta}\right) & -\frac{\beta}{\eta} (\partial \varepsilon & -\varepsilon & \partial \varepsilon) \\ \end{pmatrix} \phi = \varepsilon \phi \quad (\varepsilon)$$

 $\sqrt{}$

τ