Relations

Chapter 9

Chapter Summary

- Relations and Their Properties
- n-ary Relations and Their Applications
- Representing Relations
- Closures of Relations
- Equivalence Relations
- Partial Orderings

Relations and Their Properties

Section 9.1

Section Summary

- The definition of Relation
- Relations and Functions
- Properties of Relations
 - Reflexive Relations
 - Symmetric and Antisymmetric Relations
 - Transitive Relations
- Combining Relations

Binary relation

[Definition] A binary relation R from a set A to a set B is a subset of A×B.

Note:

- \blacksquare A binary relation R is a set.
- \blacksquare $R \subseteq A \times B$
- $\blacksquare R = \{(a,b) \mid a \in A, b \in B(aRb)\}$

Example 1

(1)
$$A = \{2,3,4\}, B = \{2,3,4,5,6\} \quad R = \{(x,y) \mid x \in A, y \in B, x \mid y\}$$
$$R = \{(2,2), (2,4), (2,6), (3,3), (3,6), (4,4)\}$$

(2) Let A and B be sets, ϕ , $A \times B$

n-ary Relations

[Definition] Let $A_1, A_2, ..., A_n$ be sets. An *n*-ary Relation on these sets is a subset of $A_1 \times A_2 \times ... \times A_n$

The domains of relation

degree

A function f from a set A to a set B is a relation form A to B.

Example 2 Suppose that $A = \{1, 2, 3, 4\}, B = \{0, 1\}.$

$$f: A \rightarrow B, f(1)=f(3)=1, f(2)=f(4)=0$$

$$R = \{(1,1),(3,1),(2,0),(4,0)\}$$

A relation can be used to express a one to many relationship between the elements of the sets A and B.

Example 3
$$R = \{(1,0),(1,1),(2,1),(3,0)\}$$

Relations are a generalization of graphs of function.

Relations On A Set

[Definition] A relation on the set A is a relation form A to A.

Note:

 \blacksquare $R \subseteq A \times A$

Example 4

- (1) Let $A = \{1,2,3,4\}, R = \{(a,b) \mid a,b \in A, a \mid b\}$
- (2) Suppose that *S* is a set. $R = \{(S_1, S_2) | S_1 \subseteq S_2, S_1, S_2 \in P(S)\}$

Question:

How many binary relations are there on a set A with n elements?

Representing Relations

The methods of representing relation:

- list its all ordered pairs
- using a set build notation/specification by predicates
- 2D table
- **■** Connection matrix /zero-one matrix
- Directed graph/Digraph

Example 5
$$A = \{2,3,4\}, B = \{2,3,4,5,6\}$$
 $R = \{(x,y) \mid x \in A, y \in B, x \mid y\}$

$$R = \{(2,2), (2,4), (2,6), (3,3), (3,6), (4,4)\}$$

	2	3	4	5	6
2	×		×		×
3		×			×
4			×		

Connection Matrices

[Definition] Let R be a relation from

$$A = \{a_1, a_2, ..., a_m\}, \text{ to } B = \{b_1, b_2, ..., b_n\}$$

An $m \times n$ connection matrix $M_R = [m_{ii}]$ for R is defined by

$$m_{ij} = \begin{cases} 1 & if(a_i, b_j) \in R, \\ 0 & if(a_i, b_j) \notin R. \end{cases}$$

For example,

$$A = \{2,3,4\}, B = \{2,3,4,5,6\}$$
 $R = \{(x, y) \mid x \in A, y \in B, x \mid y\}$

$$2 \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Question:

How many binary relations are there on a set A with n

elements?

By the product rule,

$$2 \times 2 \times ... \times 2 = 2^{n^2}$$

Directed graph/Digraph

[Definition] A directed graph or a digraph, consists of a set V of vertices together with a set E of ordered pairs of elements of V called edges(or arcs).

The vertices a,b is called the initial and terminal vertices of the edge (a,b).

For example,

$$A = \{2,3,4\}, B = \{2,3,4,5,6\}$$
 $R = \{(x, y) \mid x \in A, y \in B, x \mid y\}$

[Example 6] $A = \{0, 1, 2, 3\}$

$$R = \{(0,0), (0,3), (2,0), (2,1), (2,3), (3,2)\}.$$

Properties of Binary Relations

- Reflexive
- Irreflexive
- Symmetric
- Antisymmetric
- **■** Transitive

Reflexive Relations

[Definition] A relation R on a set A is reflexive if

 $(x,x) \in R$, for every element $x \in A$.

$$\forall x (x \in A \rightarrow (x, x) \in R)$$

Questions:

(1) What do we know about matrices representing reflexive relations?

All the elements on the main diagonal of M_R must be 1s.

(2) What do we know about digraphs representing reflexive relations?

There is a loop at every vertex of the directed graph.

Irreflexive Relations

[Definition] A relation R on a set A is irreflexive if

$$\forall x (x \in A \rightarrow (x, x) \notin R)$$

Questions:

- (1) The connection matrix of a irreflexive relations?
- (2) Digraph?
- (3) Can a relation on a set be neither reflexive nor irreflexive?

Yes.

$$\begin{bmatrix} 1 & \times & \dots & \times \\ \times & 0 & \dots & \times \\ L & & & \\ \times & \times & \dots & 0 \end{bmatrix}_{n \times n}$$

Symmetric Relations

[Definition] A relation R on a set A is symmetric if

$$\forall x \forall y ((x, y) \in R \rightarrow (y, x) \in R)$$

Questions:

(1) The connection matrix of a symmetric relations?

(2) Digraph?

If there is an arc (x, y) there must be an arc (y, x).

Antisymmetric Relations

[Definition] A relation R on a set A is antisymmetric if

$$\forall x \forall y ((x, y) \in R \land (y, x) \in R \rightarrow x = y)$$

Note:

(1) $\forall x \forall y ((x, y) \in R \land x \neq y \rightarrow (x, y) \notin R)$

- (3) If there is an arc from x to y there cannot be one from y to x if $x \neq y$.
- (4) The symmetric and antisymmetric relations are not opposites.

For example,

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

Transitive Relations

[Definition] A relation R on a set A is transitive if whenever $\forall x \forall y \forall z ((x, y) \in R \land (y, z) \in R \rightarrow (x, z) \in R)$

Note:

(1)
$$\overline{(m_{ij} \wedge m_{jk})} \vee m_{ik} = 1$$
Why?

(2) If there is an arc from x to y and one from y to z then there must be one from x to z.

Example 7 Determine whether the following relations are reflexive, irreflexive, symmetric, antisymmetric and/or transitive.

$$\begin{array}{c|cccc}
\mathbf{(1)} & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
\end{array}$$

reflexive, symmetric, antisymmetric, transitive

not reflexive, symmetric, antisymmetric, transitive

- (3) $R_1 = \{(a,b) \mid a \mid b,a,b \in N\}$ reflexive, antisymmetric, transitive
- (4) $R_2 = \{(a,b) \mid a+b=2m, a,b,m \in N\}$ reflexive, symmetric, transitive

Question:

Symmetric, transitive \Rightarrow reflexive?

$$\begin{array}{c} (a,b) \in R \\ R \ is \ symmetric \end{array} \right\} \Rightarrow \begin{array}{c} (b,a) \in R \\ R \ is \ transitive \end{array}$$

[Example 8] Counting relations How many relations are there on a set with *n* elements that are

- (1) reflexive?
- (2) symmetric?
- (3) antisymmetric?

Solution:

(1)

$$\begin{bmatrix} \times & 1 & \dots & \times \\ 1 & \times & \dots & 0 \\ \dots & & & \\ \times & 0 & \dots & \times \end{bmatrix}_{n \times n}$$

$$2^{n^2-n}$$

$$2^n \times 2^{\frac{n^2-n}{2}} = 2^{\frac{n(n+1)}{2}}$$

Solution:

$$2^n \times 3^{\frac{n^2-n}{2}}$$

Questions:

- **■** reflexive and symmetric?
- **■** transitive?

Combining Relations

Since relations form A to B are subsets of A×B, two relations form A to B can be combined in any way two sets can be combined.

- **⊗** Set operation
- *** Composition**
- **※** Inverse relation

Example 9 Let $A = \{1,2,3,4\}, Z$ is the set of integers,

$$R = \{(a,b) \mid a,b \in A, \frac{a-b}{2} \in Z\}, S = \{(a,b) \mid a,b \in A, \frac{a-b}{3} \in Z, a-b > 0\},$$
 what are the relations $R \cup S, R \setminus S, \overline{R}, R - S, S \oplus R$?

Solution:

$$R = \{(1,1), (2,2), (3,3), (4,4), (1,3), (3,1), (2,4), (4,2)\}$$
 $S = \{(4,1)\}$

- (1) Set operations
- (2) Boolean operations/logical operations

The Boolean Sum
$$\lor: 0 \lor 0 = 0, 0 \lor 1 = 1, 1 \lor 0 = 1, 1 \lor 1 = 1$$

The Boolean product $\land: 0 \land 0 = 0, 0 \land 1 = 0, 1 \land 0 = 0, 1 \land 1 = 1$
The complement $-: \overline{0} = 1, \overline{1} = 0$

The logical operations of matrices:

Let $A = \{a_1, a_2, ..., a_n\}, B = \{b_1, b_2, ..., b_m\}, M_{R_1} = [c_{ij}], M_{R_2} = [d_{ij}]$, the set operations of two relations are defined by

$$M_{R_1 \cup R_2} = [c_{ij} \lor d_{ij}] = M_{R_1} \lor M_{R_2}$$

$$M_{R_1R_2} = [c_{ij} \wedge d_{ij}] = M_{R_1} \wedge M_{R_2}$$

$$M_{\overline{R}_1} = [\overline{c}_{ij}]$$

$$M_{R_1-R_2} = M_{R_1 \square \overline{R}_2} = [c_{ij} \wedge \overline{d}_{ij}]$$

2) Composition

$$R = \{(a,b) \mid a \in A, b \in B, aRb\}, S = \{(b,c) \mid b \in B, c \in C, bSc\}$$

The composite of R and $S: S \square R$

$$S \square R = \{(a,c) \mid a \in A \land c \in C \land \exists b(b \in B \land aRb \land bSc)\}$$

Question:

How to computer SoR?

- (1) Using the definition directly
- (2) Using the connection matrix

[Example 10]
$$A = \{a,b\}, B = \{1,2,3,4\}, C = \{5,6,7\}$$

 $R = \{(a,1),(a,2),(b,3)\}, S = \{(2,6),(3,7),(4,5)\}$
 $S \square R = ? R \square S = ?$

Solution:

(1) Using the definition directly

$$S \square R = \{(a,6), (b,7)\}$$
$$R \square S = \phi$$

Note:

$$S \square R \neq R \square S$$

Solution:

(2) Using the connection matrix

$$\mathbf{M}_{R} = [r_{ij}]_{m \times n}, \mathbf{M}_{S} = [s_{jk}]_{n \times l}$$

$$\mathbf{M}_{S \subseteq R} = \mathbf{M}_{R} \cdot \mathbf{M}_{S} = [w_{ik}]_{m \times l}, \quad w_{ik} = \bigvee_{j=1}^{n} (r_{ij} \wedge s_{jk})$$

$$A = \{a, b\}, B = \{1, 2, 3, 4\}, C = \{5, 6, 7\}$$

$$R = \{(a, 1), (a, 2), (b, 3)\}, S = \{(2, 6), (3, 7), (4, 5)\}$$

$$\therefore \mathbf{M}_{R} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{M}_{S} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\mathbf{M}_{S \subseteq R} = \mathbf{M}_{R} \cdot \mathbf{M}_{S} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\therefore S \square R = \{(a, 6), (b, 7)\}$$

The Power of a relation R

[Definition] Let R be a relation on the set A. The powers R^n , $n=1,2,3,\square$ are defined inductively by

$$R^1 = R$$
, and $R^{n+1} = R^n \square R$

Example 11 Let $A = \{0,1,2,3\}$. R is the relation on the set A. $R = \{(0,0),(0,3),(2,3),(3,2),(2,1),(2,0)\}$. $R^2 = ?$

Solution:

- (1) Using the definition $R^2 = \{(0,0),(0,3),(0,2),(2,2),(3,3),(2,3),(2,0),(3,1),(3,0)\}$
- (2) Using the digraph

(3) Using the matrix

$$\mathbf{M}_{R^2} = M_R \bullet M_R$$

$$= \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

[Theorem] The relation R on a set A is transitive if and only if $R^n \subseteq R$, for n=1,2,3,...

Proof:

(1)
$$R^n \subseteq R$$
, for $n = 1, 2, 3, ...$ $\Rightarrow R$ is transitive $(a,b) \in R$, $(b,c) \in R$ $(a,c) \in R$ $(a,c) \in R$

- (2) R is transitive \Rightarrow $R^n \subseteq R$, for n = 1, 2, 3, ...
 - **▶ Inductive base** n = 1, $R \subseteq R$
 - **▶ Inductive step** $R^n \subseteq R$ \Rightarrow $R^{n+1} \subseteq R$

$$(a,b) \in R^{n+1}$$

$$R^{n+1} = R^n \square R$$

$$(a,x) \in R, (x,b) \in R^n \subseteq R$$

$$R \text{ is transitive}$$

$$(a,b) \in R$$

Example 12 Let R be a symmetric relation on the set A. Show that R^n is symmetric for all positive integers n.

Proof:

- ➤ Inductive basen=1, R be a symmetric
- > Inductive step

 R^n is symmetric $\Rightarrow R^{n+1}$ is symmetric

$$(a,c) \in \mathbb{R}^{n+1} \Longrightarrow (c,a) \in \mathbb{R}^{n+1}$$

$$(a,b) \in R, (b,c) \in R^{n}$$

$$R,R^{n} \text{ are symmetric}$$

$$(b,a) \in R, (c,b) \in R^{n}$$

$$(c,a) \in R \square R^{n} = R^{n+1}$$

3) Inverse relation

$$R = \{(a,b) \mid a \in A, b \in B, aRb\}$$

The inverse relation form **B** to **A**: $R^{-1}(R^c)$

$$\{(b,a) \mid (a,b) \in R, a \in A, b \in B\}$$

Question:

How to get R^{-1} ?

(1) Using the definition directly

For example,
$$R = \{(a,b) \mid a \mid b, a, b \in Z^+\}$$

 $R^{-1} = \{(a,b) \mid b \mid a, a, b \in Z^+\}$

- (2) Reverse all the arcs in the digraph representation of R
- (3) Take the transpose $M_R^{\ T}$ of the connection matrix M_R of R.

4) The properties of relation operations

Suppose that R, S are the relations from A to B, T is the relation from B to C, P is the relation from C to D, then

(1)
$$(R \cup S)^{-1} = R^{-1} \cup S^{-1}$$

Proof: $\forall (x, y) \in (R \cup S)^{-1}$ $\Leftrightarrow (y, x) \in R \cup S$ $\Leftrightarrow (y, x) \in R \quad or \quad (y, x) \in S$ $\Leftrightarrow (x, y) \in R^{-1} \quad or \quad (x, y) \in S^{-1}$

 \Leftrightarrow $(x, y) \in R^{-1} \cup S^{-1}$

4) The properties of relation operations

Suppose that R, S are the relations from A to B, T is the relation from B to C, P is the relation from C to D, then

(1)
$$(R \cup S)^{-1} = R^{-1} \cup S^{-1}$$

(2)
$$(R I S)^{-1} = R^{-1} I S^{-1}$$

$$(3) \quad (\overline{R})^{-1} = \overline{R^{-1}}$$

(4)
$$(R-S)^{-1} = R^{-1} - S^{-1}$$

$$(5) \quad (A \times B)^{-1} = B \times A$$

Proof:

$$\forall (x, y) \in (A \times B)^{-1}$$

$$\Leftrightarrow$$
 $(y,x) \in A \times B$

$$\Leftrightarrow$$
 $(x, y) \in B \times A$

4) The properties of relation operations

Suppose that R, S are the relations from A to B, T is the relation from B to C, P is the relation from C to D, then

(1)
$$(R \square S)^{-1} = R^{-1} \square S^{-1}$$

(2)
$$(R \square S)^{-1} = R^{-1} \square S^{-1}$$

$$(3) \quad (\overline{R})^{-1} = \overline{R^{-1}}$$

(4)
$$(R-S)^{-1} = R^{-1} - S^{-1}$$

$$(5) \quad (A \times B)^{-1} = B \times A$$

$$(6) \quad \overline{R} = A \times B - R$$

(7)
$$(S \square T)^{-1} = T^{-1} \square S^{-1}$$

(8)
$$(R \square T) \square P = R \square (T \square P)$$

$$(9) \quad (R \cup S) \circ T = R \circ T \cup S \circ T$$

Homework:

Seventh Edition: P. 581 7, 25, 26, 47, 51

P. 596 13,14,31

