Д.П. Федченко, А.А. Шлапунов 1 О ЗАДАЧЕ КОШИ ДЛЯ МНОГОМЕРНОГО ОПЕРАТОРА КОШИ — РИМАНА В ПРОСТРАНСТВЕ ЛЕБЕГА L^2 В ОБЛАСТИ

Аннотация

Пусть D – ограниченная область в \mathbb{C}^n ($n \geq 1$), имеющая бесконечно гладкую границу ∂D . В работе описаны необходимые и достаточные условия разрешимости задачи Коши в пространстве Лебега $L^2(D)$ в области D для многомерного оператора Коши – Римана $\overline{\partial}$. В качестве примера рассмотрена ситуация, когда область D есть часть шарового слоя $\Omega(r,R)=B(R)\setminus \overline{B}(r)$ ($0 < r < R < \infty$) в \mathbb{C}^n , где B(R) – шар с центром в нуле и радиуса R, отсекаемая гладкой гиперповерхностью Γ , ориентированной как ∂D . В этом случае, используя разложение Лорана для гармонических функций в шаровом слое $\Omega(r,R)$, мы строим формулу Карлемана, восстанавливающую функцию из класса Лебега $L^2(D)$, по ее значениям на Γ и значениям $\overline{\partial}u$ в области D, если последние принадлежат $L^2(\Gamma)$ и $L^2(D)$ соответственно.

Задача Коши для голоморфных функций одного комплексного переменного является одним из классических примеров некорректной по Адамару задачи. Она естественно возникает в многочисленных приложениях – гидродинамике, теории передачи сигнала и т.д. (см., например, [1], [2] и библиографию к ней). Эта задача активно изучалась в течении XX века и стала одним из стимулов для построения теории условно корректных задач.

В 80-90 годы XX века, в связи с развитием многомерного комплексного анализа и его приложений, во многих научных центрах, в том числе и Красноярской школой комплексного анализа, были проведены серьезные исследования задачи Коши для голоморфных функций многих комплексных переменных в различных функциональных пространствах (см., например, [3], [4], а также [5] и библиографию к ней).

 $^{^{1}}$ Работа выполнена при поддержке гранта РФФИ N 08-01-00844 и гранта Сибирского федерального университета по научно-методическому проекту N 45.2007

Как оказалось, полученные для системы Коши — Римана результаты могут быть естественным образом обобщены в контексте общих линейных переопределенных эллиптических систем (см., например, [5]). Это в вою очередь позволило по новому взглянуть на задачу Коши для голоморфных функций. Именно, стало ясно, что требует изучения более общая задача — задача Коши для многомерной (неоднородной!) системы Коши — Римана. Конечно, в случае одного комплексного переменного эти задачи, как легко видеть, эквивалентны. Однако в многомерной ситуации доказательство эквивалентности задач требует информации о разрешимости $\overline{\partial}$ -уравнения (см, например, [6]) или, другими словами, о когомологиях комплекса Дольбо в степени 1 в различных классах функций, а значит, такая эквивалентность не имеет места для областей, не обладающих некоторыми свойствами выпуклости относительно оператора Коши — Римана.

В этой работе мы рассматриваем следующую (обобщенную) постановку задачи Коши для оператора Коши-Римана в классах Лебега и не налагаем никаких условий на "выпуклость" области, где ищется решение.

Задача 1. Пусть D – ограниченная область в \mathbb{C}^n , $n \geq 1$, c гладкой границей ∂D , а Γ – измеримое подмножество ∂D). По заданным функции u_0 из класса Лебега $L^2(\Gamma)$ и дифференциальной форме f бистепени (0,1) c коэффициентами из класса $L^2(D)$, найти такую функцию $u \in L^2_{loc}(D \cup \Gamma)$, что

$$\int_{D} u \overline{\partial} \phi = \int_{\Gamma} u_0 \phi - \int_{D} f \wedge \phi \tag{1}$$

для всех дифференциальных форм ϕ бистепени (n,n-1) с бесконечно дифференцируемыми коэфффициентами в \overline{D} , носители которых компактны в $(D \cup \Gamma)$.

Мы покажем, что эта задача имеет не более одного решения и сведем ее к задаче гармонического продолжения из меньшей области в большую, обобщая тем самым теорему Айзенберга – Кытманова (см. [3, теорема 4]) о задаче Коши для голоморфных функций (ср. также [4, теорема 4.1]). В случае, когда D есть часть шарового слоя в \mathbb{C}^n , отсеченная гладкой гиперповерхностью Γ , мы строим точные и приближенные решения задачи Коши 1 с помощью разложения Лорана для гармонических функций. Для функций одной комплексной переменной на этом пути получается известная формула Голузина – Крылова (см. [2, теорема 1.1]).

1 Постановка задачи

Пусть \mathbb{R}^n – n-мерное евклидово пространство, а \mathbb{C}^n - n-мерное комплексное пространство, точками которого являются упорядоченные наборы n комплексных чисел $z=(z_1,...,z_n)$, где $z_j=x_j+\sqrt{-1}x_{j+n},\ j=1,...,n,$ $\sqrt{-1}$ - мнимая единица, $x=(x_1,...,x_{2n})\in\mathbb{R}^{2n}$. Мы предполагаем, что n>1, хотя основные теоремы справедливы и для n=1.

Пусть D — ограниченная область в \mathbb{R}^{2n} , то есть открытое связное множество, а \overline{D} — ее замыкание. Всюду далее для простоты предполагается, что граница ∂D области D является бесконечно гладкой. Ограничения на гладкость границы используются прежде всего для работы со слабыми граничными значениями гармонических функций конечного порядка роста. Однако, поскольку мы работаем с распределениями конечного порядка (порядка не более 1 на открытых подмножествах \mathbb{C}^n и порядка не более 3/2 на гиперповерхностях), то все утверждения работы справедливы для областей с границами некоторой (возможно, достаточно высокой) конечной гладкости.

Кроме того, пусть Γ – связное открытьюе (в топологии ∂D) подмножество границы области D. Мы предполагаем, что граница $\partial \Gamma$ поверхности Γ является кусочно-гладкой.

Для открытого множества $D \subset \mathbb{C}^n$ обозначим через $C^{\infty}(D)$ пространство бесконечно дифференцируемых функций в D, а через $C^{\infty}(\overline{D})$ – пространство бесконечно дифференцируемых функций в D, (любые) произ-

водные которых непрерывно продолжаются на \overline{D} . Также обозначим через $C^{\infty}_{comp}(D \cup \Gamma)$ множество функций из $C^{\infty}(\overline{D})$, имеющих компактный носитель в $D \cup \Gamma$.

Далее, пусть $L^2(D)$ будет пространство Лебега т.е. множество (комплекснозначных) функций в области D, квадрат которых интегрируем по Лебегу в D. Как известно, это гильбертово пространство со скалярным произведением

$$(u,v)_{L^2(D)} = \int_D u(z)\overline{v}(z) \frac{d\overline{z} \wedge dz}{(2\pi\sqrt{-1})^n}.$$

Как обычно, пространство Соболева $H^s(D)$ $(s \in \mathbb{N})$ состоит из измеримых функций, чьи частные производные до порядка s включительно принадлежат пространству Лебега $L^2(D)$, а пространство Соболева $H^s_{loc}(D \cup \Gamma)$, состоит из измеримых функций, принадлежащих $H^s(\sigma)$ для каждого измеримого множества σ в D с $\overline{\sigma} \subset D \cup \Gamma$. Пространства Соболева $H^s(D)$ с $s \in \mathbb{R}_+$, иногда упоминающиеся в работе, определяются стандартным образом, например с помощью подходящей процедуры интерполяции (см., [7]).

Обозначим через $\overline{\partial}$ оператор Коши — Римана в \mathbb{C}^n . Как известно, оператор Коши — Римана индуцирует дифференциальный комплекс совместности

$$0 \longrightarrow \Lambda^{(0,0)} \stackrel{\overline{\partial}}{\longrightarrow} \Lambda^{(0,1)} \stackrel{\overline{\partial}_1}{\longrightarrow} \Lambda^{(0,2)} \stackrel{\overline{\partial}_2}{\longrightarrow} \dots \stackrel{\overline{\partial}_{n-1}}{\longrightarrow} \Lambda^{(0,n)} \longrightarrow 0,$$

который называется комплексом Дольбо (см., например, [6] или [8]). Здесь $\Lambda^{(q,r)}$ - множество дифференциальных форм бистепени (q,r), а $\overline{\partial}_j$ суть операторы комплексного дифференцирования дифференциальных форм; как обычно, если это не приводит к недоразумениям, мы будем писать просто $\overline{\partial}$ вместо $\overline{\partial}_j$. Пространство дифференциальных форм бистепени (q,r) с коэффициентами из какого-нибудь пространства $\mathfrak{S}(D)$ обозначим через $\mathfrak{S}(D,\Lambda^{(q,r)})$.

Нашей ближайшей целью будет "оправдание" такой постановки задачи, да и самого названия "задача Коши" для задачи 1.

Мы выбрали в качестве пространства данных Коши в области D пространство Лебега потому, что пространство Лебега $L^2(D)$ является достаточно широким и, в то же время, не выходит за рамки "обычных" функций. Кроме того, такая постановка позволяет в дальнейшем привлекать методы теории гильбертовых пространств, при этом немаловажно, что пространство Лебега $L^2(D)$ имеет очень простое скалярное произведение.

Заметим теперь, что $C^{\infty}_{comp}(D,\Lambda^{(n,n-1)})\subset C^{\infty}_{comp}(D\cup\Gamma,\Lambda^{(n,n-1)})$. Поэтому условие (1) в частности означает, что, если решение задачи существует, то

$$\overline{\partial}u=f$$
 в смысле распределений в области $D.$ (2)

Для n=1 уравнение (2) с правой частью из $L^2(D)$ всегда разрешимо в пространстве Соболева $H^1(D)$; при этом "хорошее" решение для непрерывных функций задается (несобственным) интегралом Коши – Грина (ср., например, [8, §1]):

$$u(z) = \frac{1}{2\pi\sqrt{-1}} \int_D \frac{f(\zeta)d\overline{\zeta} \wedge d\zeta}{\zeta - z},$$

а для произвольных функций из $L^2(D)$ это решение задается с помощью сингулярного интегрального оператора, индуцированного интегралом Коши – Грина. Конечно, существуют и менее регулярные решения.

Ситуация при n>1 более сложна. Во-первых, как видно из (1), необходимым условием разрешимости задачи 1 является равенство

$$\overline{\partial} f = 0$$
 в смысле распределений в области D . (3)

Во-вторых, как стало ясно еще в 60-х годах прошлого столетия, $\overline{\partial}$ -задача в многомерном случае субэллиптична. Например, не для всех дифференциальных форм $f \in L^2(D, \Lambda^{(0,1)})$, удовлетворяющим (3), найдется решение уравнения (2) в пространстве Соболева $H^s(D)$ для s>1/2, даже если D- шар (ср. [9]). По этой причине решение задачи Коши 1 мы ищем

в пространстве $L^2_{loc}(D \cup \Gamma)$, т.е. предполагаем некоторую потерю регулярности (ср. [10]).

Напомним теперь определение слабых предельных значений на Γ (см. [11], а также [8, §11], [4, (2.1)]). Зафиксируем какую-нибудь определяющую функцию $\rho \in C^{\infty}$ для области D, т.е. вещественнозначную бесконечно гладкую функцию с $|d\rho| \neq 0$ на ∂D и такую, что

$$D = \{ z \in \mathbb{C}^n : \rho(z) < 0 \}.$$

Положим $D_{\varepsilon} = \{x \in D : \rho(x) < -\varepsilon\}$. Тогда для достаточно малых $\varepsilon > 0$ множества $D_{\varepsilon} \in D \in D_{-\varepsilon}$ суть области с бесконечно гладкими границами $\partial D_{\pm \varepsilon}$ класса C^{∞} , а векторы $x + \nu_{\varepsilon}^{\mp}(x)$ принадлежат $\partial D_{\pm \varepsilon}$ для каждой точки $x \in \partial D$ (здесь $\nu_{\varepsilon}^{\mp}(x)$ – внешняя и внутренняя нормали к поверхности ∂D в точке x длины ε). Всюду далее ds_{ε} – форма объема на ∂D_{ε} индуцированная из \mathbb{C}^n , $ds = ds_0$.

Определение 1. Пусть $u \in H^1_{loc}(D)$, а $u_0 \in \mathcal{D}'(\Gamma)$ – распределение на Γ . Будем говорить, что $u = u_0$ в смысле *слабых граничных значений на* Γ , если

$$< u_0, v> = \lim_{\varepsilon \to +0} \int_{\partial D} v(y) u(y + \nu_{\varepsilon}^+(y)) ds(y)$$
 для всех $v \in C^{\infty}_{comp}(\Gamma)$.

Лемма 1. Если $u \in H^1_{loc}(D)$, а $u_0 \in \mathcal{D}'(\Gamma)$, то $u = u_0$ в смысле слабых граничных значений на Γ тогда и только тогда, когда

$$< u_0, \phi> = \lim_{\varepsilon \to +0} \int_{\partial D_{\varepsilon}} u\phi \ \partial ns \ scex \ \phi \in C^{\infty}_{comp}(D \cup \Gamma, \Lambda^{(n,n-1)}).$$
 (4)

Доказательство. Как известно, см., например, [8, лемма 3.5],

$$d\overline{\zeta}[k] \wedge d\zeta = 2^{n-1} \sqrt{-1}^n (-1)^{k-1} \overline{\rho}_k(\zeta) ds \text{ Ha } \partial D, \tag{5}$$

где

$$\rho_k(\zeta) = \frac{\partial \rho}{\partial \zeta_k} \frac{1}{\left(\sum_{j=1}^n \left|\frac{\partial \rho}{\partial \zeta_k}\right|^2\right)^{1/2}}, \quad 1 \le k \le n.$$

Так как $\rho_{\varepsilon} = \rho + \varepsilon$ является определяющей функцией области D_{ε} , то

$$d\overline{\zeta}[k] \wedge d\zeta = 2^{n-1} \sqrt{-1}^n (-1)^{k-1} \overline{\rho}_k(\zeta) ds_{\varepsilon} \text{ Ha } \partial D_{\varepsilon}.$$

Поэтому, если $u=u_0$ в смысле слабых граничных значений на Γ , то справедливо также и (4).

Обратно, так как $|d\rho| \neq 0$ в окрестности ∂D , то для каждой точки $\zeta_0 \in \partial D$ найдется номер k такой, что $\rho_k \neq 0$ в некоторой окрестности ζ_0 . Поэтому, с помощью разбиения единицы, для всякой $v \in C^{\infty}_{comp}(\Gamma)$ легко построить форму $\phi \in C^{\infty}_{comp}(D \cup \Gamma, \Lambda^{(n,n-1)})$, сужение которой на ∂D совпадает с vds. Значит, из из теоремы Банаха — Штейнгауза и (4) следует, что $u = u_0$ в смысле слабых граничных значений на Γ .

Замечание 1. Если V – какая-нибудь относительно компактная подобласть D, то из теоремы Банаха – Штейнгауза и леммы 1 следует, что $u = u_0$ в смысле слабых граничных значений на Γ тогда и только тогда, когда

$$\langle u_0, \phi \rangle = \lim_{\varepsilon \to +0} \int_{\partial D_{\varepsilon}} u\phi \, \partial n s \, \operatorname{ecex} \, \phi \in C^{\infty}_{comp}((D \cup \Gamma) \setminus V, \Lambda^{(n,n-1)}).$$
 (6)

Заметим, что для однородной задачи Коши естественным пространством граничных значений в задаче Коши 1 является одна из разновидностей пространства Соболева $H^{-1/2}(\Gamma)$ (ср. [11], [4, §2]). Это пространство понимается как двойственное к пространству $H^{1/2}(\Gamma)$ относительно спаривания в $L^2(\Gamma)$. Вопрос о том, какие функции класса $L^2(D \cup \Gamma)$ имеют следы (в каком-нибудь смысле) на Γ в пространстве $H^{-1/2}(\Gamma)$ требует отдельного обстоятельного исследования. В нашей ситуации все упрощается, поскольку решение u задачи 1 не только принадлежит $L^2_{loc}(D \cup \Gamma)$, но и $\overline{\partial} u \in L^2(D, \Lambda^{(0,1)})$.

Лемма 2. Всякая функция v класса Лебега $L^2(D)$ такая, что $\overline{\partial}u \in L^2(D,\Lambda^{(0,1)})$, принадлежит $H^1_{loc}(D)$ и имеет в смысле слабых граничных значений следы на ∂D в классе $H^{-1/2}(\partial D)$.

Доказательство. Обозначим через $H^1_0(D)$ замыкание линейного подмножества $C^\infty_{comp}(D)$ в пространстве $H^1(D)$. Зафиксируем какую-нибудь функцию $v \in L^2(D)$ такую, что $\overline{\partial} v \in L^2(D, \Lambda^{(0,1)})$. Ясно, что выражение

$$4(\overline{\partial}w,\overline{\partial}v)_{L^2(D)}, \quad w \in H_0^1(D),$$

определяет непрерывный линейный функционал на пространстве $H_0^1(D)$. Поэтому из [12, гл. 3, §5, теорема 6]) и теоремы Рисса об общем виде непрерывного линейного функционала на пространствах Гильберта следует, что существует единственная функция $V \in H_0^1(D)$, для которой

$$\Delta V = \Delta v$$
 в смысле распределений в D .

В частности, функция $v-V\in L^2(D)$ гармонична в области D, а v есть сумма функции $V\in H^1_0(D)$ и v-V. Поэтому $v\in H^1_{loc}(D)$.

Кроме того гармоническая функция $v-V\in L^2(D)$ имеет конечный порядок роста, а значит имеет слабые предельные значения на ∂D , принадлежащие пространству $H^{-1/2}(\partial D)$, см., [11].

Наконец, поскольку функция $V \in H^1_0(D)$ имеет следы на ∂D в обычном смысле, то она имеет и (нулевые) слабые предельные значения на ∂D . Поэтому функция v = (v - V) + V также имеет слабые предельные значения на ∂D , принадлежащие классу $H^{-1/2}(\partial D)$. В частности, это означает, что решение u задачи 1 имеет слабые предельные значения на Γ , принадлежащие классу $H^{-1/2}_{loc}(\Gamma)$.

Однако работать в пространствах Соболева с отрицательной гладкостью не очень удобно на практике, Поэтому мы рассматривать задачу Коши с граничными данными из пространства $H^{-1/2}(\Gamma)$ не будем.

Лемма 3. Тождество (1) выполнено для всех дифференциальных форм ϕ бистепени (n,n-1) с коэфффициентами из пространства $C_{comp}^{\infty}(D \cup \Gamma)$ в том и только том случае, когда выполнено (2) и

$$u = u_0$$
 в смысле слабых граничных значений на Γ . (7)

Доказательство. Пусть задана форма $f \in L^2(D, \Lambda^{(0,1)})$. Как мы уже отмечали выше, условие (1) означает, что $\overline{\partial}u = f$ в смысле распределений в области D. Таким образом, из леммы 2 следует, что решение задачи 1, когда существует, принадлежит еще и пространству Соболева $H^1_{loc}(D)$.

Кроме того, для $\phi \in C^{\infty}_{comp}(D \cup \Gamma, \Lambda^{(n,n-1)})$ по формуле Стокса мы имеем:

$$\lim_{\varepsilon \to +0} \int_{\partial D_{\varepsilon}} u\phi = \lim_{\varepsilon \to +0} \left(\int_{D_{\varepsilon}} f \wedge \phi + \int_{D_{\varepsilon}} u \overline{\partial} \phi \right) =$$
$$\int_{D} f \wedge \phi + \int_{D} u \overline{\partial} \phi,$$

поскольку $u\in L^2(D),\,f\in L^2(D,\Lambda^{(0,1)}).$ Наконец, применяя (1), мы видим, что

$$\lim_{\varepsilon \to +0} \int_{\partial D_{\varepsilon}} u \phi = \int_{\Gamma} u_0 \phi \text{ для всех } \phi \in C^{\infty}_{comp}(D \cup \Gamma, \Lambda^{(n,n-1)}).$$

Обратно, из (2) и леммы 2 следует, что $u \in H^1_{loc}(D)$, а значит, интегралы в определении 1 имеют смысл для u. Более того, снова применяя формулу Стокса мы имеем, для всех $\phi \in C^\infty_{comp}(D \cup \Gamma, \Lambda^{(n,n-1)})$:

$$\int_{\Gamma} u_0 \phi = \lim_{\varepsilon \to +0} \int_{\partial D_{\varepsilon}} u \phi = \int_{D} f \wedge \phi + \int_{D} u \overline{\partial} \phi,$$
 т.е. выполнено (1).

Итак, лемма 3 означает, что для достаточно гладких данных f и u_0 задача 1 превращается в классическую задачу Коши для оператора Коши – Римана.

Продолжим обсуждение необходимых условий разрешимости задачи Коши. При n>1 оператор $\overline{\partial}$ индуцирует еще и касательный оператор $\overline{\partial}_{\tau}$ на ∂D (см., например, [6] или [8, §18]), а значит, данные Коши u_0 и f должны быть согласованы. Именно, поскольку $\overline{\partial}^2=0$, то для разрешимости задачи 1 необходимо, чтобы

$$\int_{\Gamma} u_0 \wedge \overline{\partial} \psi - \int_{D} f \wedge \overline{\partial} \psi = 0 \text{ для всех } \psi \in C_{comp}^{\infty}(D \cup \Gamma, \Lambda^{(n,n-2)}).$$
 (8)

Ясно, что для n=1 условие (8) всегда выполнено. При n>1 и f=0, условие (8) означает, что u_0 есть CR-функция на Γ (см., например, [6], [8, §18]).

Лемма 4. Если $f \in H^1(D, \Lambda^{(0,1)})$, то условие (8) выполнено в том u только том случае, когда $\overline{\partial} f = 0$ в смысле распределений в области D u

$$\int_{\Gamma} f \wedge \psi + \int_{\Gamma} u_0 \wedge \overline{\partial} \psi = 0 \text{ dis } \sec x \ \psi \in C_{comp}^{\infty}(D \cup \Gamma, \Lambda^{(n,n-2)}). \tag{9}$$

Доказательство. Немедленно следует из формулы Стокса и того факта, что $C^{\infty}_{comp}(D) \subset C^{\infty}_{comp}(D \cup \Gamma)$.

Поскольку первый интеграл в (9) зависит только от касательной части формы f, а второй индуцирует касательный оператор Коши-Римана $\overline{\partial}_{\tau}$ на Γ , то условие (9) можно интерпретировать как " $\overline{\partial}_{\tau}u_0 = \tau(f)$ в смысле слабых граничных значений на Γ ".

2 Теорема единственности

Обозначим через $\mathfrak{U}(\zeta,z)$ ядро Мартинелли – Бохнера в \mathbb{C}^n :

$$\mathfrak{U}(\zeta,z) = \frac{(n-1)!}{(2\pi\sqrt{-1})^n} \sum_{j=1}^n (-1)^{j-1} \frac{\overline{\zeta}_j - \overline{z}_j}{|\zeta - z|^{2n}} d\overline{\zeta}[j] \wedge d\zeta, \quad \zeta \neq z.$$

В силу (5), ядро Мартинелли – Бохнера может быть записано в следующем виде:

$$\mathfrak{U}(\zeta, z) = \mathfrak{R}_z(\zeta) ds(\zeta), \quad z \notin \partial D, \quad \zeta \in \partial D.$$

Теперь через $M_{\partial D}v(z)$, $z \notin \partial D$, обозначим преобразование Мартинелли – Бохнера с плотностью $v \in \mathcal{D}'(\partial D)$ (см., например, [3, §2]), т.е. результат действия распределения $v \in \mathcal{D}'(\partial D)$ на функцию $\mathbb{R}_z(\zeta)$. Как известно, $M_{\partial D}v(z)$ является гармонической функцией относительно переменной z всюду в \mathbb{C}^n вне носителя распределения v (см., например, [3, §2]).

В частности, для $v \in L^2(\Gamma)$ определен интеграл типа Мартинелли – Бохнера $M_{\Gamma}v$:

$$M_{\Gamma}v(z) = \int_{\Gamma} v(\zeta)\mathfrak{U}(\zeta, z), \qquad z \notin \Gamma.$$

Если $\partial D \in C^2$, то интеграл типа Мартинелли – Бохнера индуцирует ограниченный линейный оператор

$$M_{\Gamma}: L^2(\Gamma) \to L^2(D)$$

(см., например, [4, следствие 1.3]).

Далее, для дифференциальной формы $f\in L^2(D,\Lambda^{(0,1)})$ обозначим через T_Df следующий сингулярный интеграл:

$$T_D f(z) = -\int_D f(\zeta) \wedge \mathfrak{U}(\zeta, z).$$

Как хорошо известно, T_D индуцирует ограниченный линейный оператор

$$T_D: L^2(D, \Lambda^{(0,1)}) \to H^1(\tilde{D})$$

для всякой ограниченной области $\tilde{D}\supset D$ с достаточно гладкой границей $\partial \tilde{D}$ (см., например, [8, §16.1]).

Уместно отметить, что потенциал $T_D f$ совпадает с интегралом Коши – Грина при n=1, однако он не является, вообще говоря, решением уравнения (2), даже если $\overline{\partial} f = 0$ в D.

Лемма 5. Для любой функции $v \in L^2(D)$ такой, что $\overline{\partial}v \in L^2(D,\Lambda^{(0,1)}),$ справедлива формула Мартинелли-Бохнера-Грина:

$$M_{\partial D}v + T_D \overline{\partial}v = \chi_D v \ \epsilon \ \mathbb{C}^n, \tag{10}$$

 $\emph{где}\ \chi_D$ – $\emph{характеристическая}\ \emph{функция}\ \emph{области}\ D.$

Доказательство. Мы уже отмечали, что в условиях леммы $v \in H^1_{loc}(D)$. Как хорошо известно, для всякой функции класса $H^1(D)$ формула Мартинелли – Бохнера справедлива, см., например, [8, теорема 1.3]. Поскольку для каждого $\varepsilon > 0$ функция v принадлежит $H^1(D_{\varepsilon})$, то

$$M_{\partial D_{\varepsilon}}v + T_{D_{\varepsilon}}\overline{\partial}v = \chi_{D_{\varepsilon}}v. \tag{11}$$

Переходя в (11) к пределу при $\varepsilon \to +0$, с учетом замечания 1 и леммы 2, мы и заключаем, что формула (10) справедлива в $\mathbb{C}^n \setminus \partial D$. Наконец, так как ∂D есть множество меры нуль, то формула верна в \mathbb{C}^n .

Приведем еще один довод в пользу задачи 1: из обобщеной формулировки мы легко получаем, что задача 1 не может иметь более одного решения.

Лемма 6. Задача 1 имеет не более одного решения.

Доказательство. В самом деле, полагая $u_0 = 0$, f = 0, и используя лемму 3, мы видим, что решение задачи Коши 1 есть в этом случае голоморфная функция класса $L^2_{loc}(D \cup \Gamma)$, у которой $u_{|\Gamma} = u_0 \in L^2(D)$ в смысле слабых предельных значений. Возьмем какую-нибудь область $G \subset D$ с бесконечно гладкой границей ∂G такую, что $\partial G \cap \partial D = \Gamma_1 \Subset \Gamma$ имеет хотя бы одну внутреннюю точку. Для этой области справедлива формула Мартинелли — Бохнера (10):

$$M_{\partial G}v(z) = (\chi_D v)(z), \quad z \notin \partial G.$$
 (12)

Так как преобразование Мартинелли – Бохнера $M_{\partial G}v$ гармонично всюду в $D^+ \cup \Gamma_1 \cup G$ и зануляется в D^+ , то, по теореме единственности для гармонических функций, оно равно нулю тождественно. В силу (12) функция v также исчезает в G, а значит, и в D (по теореме единственности для голоморфных функций).

3 Критерий разрешимости задачи

Ясно, что интегралы $M_{\Gamma}u_0$ и T_Df являются гармоническими всюду вне \overline{D} как интегралы, зависящие от параметров. Поэтому и функция

$$F = M_{\Gamma} u_0 + T_D f$$

является гармонической всюду вне \overline{D} . С учетом формулы Мартинелли – Бохнера (10), функция F может содержать достаточно много информации о решении задачи Коши 1, если оно существует.

Нашей дальнейшей целью будет получение критерия разрешимости задачи Коши 1 с помощью функции F. Для этого выберем область D^+

так, чтобы множество $\Omega=D\cup\Gamma\cup D^+$ было бы областью с кусочногладкой границей. Пусть $D^-=D$. Обозначим через F^\pm сужение F на D^\pm . В силу вышесказанного, F^+ гармонична в D^+ . Кроме того, если $\partial D\in C^\infty$, то интеграл типа Мартинелли – Бохнера индуцирует ограниченный линейный оператор

$$M_{\Gamma}^+: L^2(\Gamma) \to L^2(B(0,R) \setminus D),$$

(см., например, [4, следствие 1.3]).

Итак, по построению, $F^{\pm} \in L^2(D^{\pm})$.

Теорема 1. Задача Коши 1 разрешима тогда и только тогда выполнено условие (8) и функция F^+ гармонически продолжается из D^+ на Ω .

Доказательство. Пусть задача 1 разрешима, а u – ее решение. Необходимость условия (8) нами уже отмечена выше.

Положим

$$\mathcal{F} = F - \chi_D u \tag{13}$$

По определению функция $\mathcal F$ гармонична в D^+ и принадлежит $L^2(D^+)$ и $L^2_{loc}(D \cup \Gamma)$.

Возьмем какую-нибудь область $G \subset D$ с кусочно-гладкой границей, для которой $\overline{G} \cap \partial D = \Gamma_1 \Subset \Gamma$ имеет хотя бы одну внутреннюю точку $x_0 \in \Gamma$. Тогда по формуле Мартинелли – Бохнера (10) для области G мы имеем в $D^+ \cup G \cup \Gamma_1$:

$$\mathcal{F} = M_{\Gamma}u_0 + T_D f - \chi_D u =$$

$$M_{\Gamma}u + T_G\overline{\partial}u + T_{D\backslash G}f - M_{\partial G}u - T_G\overline{\partial}u.$$

Поэтому для всякой функции $\beta \in C^{\infty}_{comp}(D \cup \Gamma_1)$, равной единице в некоторой окрестности $\Gamma_2 \subset \Gamma$ точки x_0 , мы получаем в $D^+ \cup \Gamma_2 \cup G$:

$$\mathcal{F} = (M_{\Gamma \setminus \Gamma_1}(1-\beta)u - M_{\partial G \setminus \Gamma_1}(1-\beta)u + T_{D \setminus G}f).$$

Из этого равенства следует, что \mathcal{F} гармонически продолжается из D^+ в $D^+ \cup G \cup \Gamma_1$, поскольку интеграл $T_{D \setminus G} f$ гармоничен всюду вне множества интегрирования как интеграл, зависящий от параметра z, а преобразования $M_{\Gamma \setminus \Gamma_1} (1-\beta) u$ и $M_{\partial G \setminus \Gamma_1} (1-\beta) u$ гармоничны всюду вне $(\Gamma \setminus \Gamma_1) \cup (\partial G \setminus \Gamma_1)$.

Наконец, в силу произвольности области G с описанными выше свойствами, $\mathcal F$ на самом деле гармонична в Ω и на D^+ совпадает с F^+ .

Обратно, пусть существует функция \mathcal{F} , гармоничная в Ω и совпадающая с F^+ на D^+ . Положим

$$u(z) = F^{-} - \mathcal{F}^{-}. \tag{14}$$

По построению функция u принадлежит $L^2_{loc}(D \cup \Gamma) \cap H^1_{loc}(D)$. Теперь из теоремы о слабом скачке интеграла типа Мартинелли – Бохнера (см. [13]) и того факта, что $T_D f$ и функция $\mathcal F$ принадлежат $H^1_{loc}(\Omega)$, следует, что

$$\lim_{\varepsilon \to +0} \int_{\partial D_{\varepsilon}} u \phi = \lim_{\varepsilon \to +0} \left(\int_{\partial D_{\varepsilon}} F^{-} \phi - \int_{\partial D_{-\varepsilon}} F^{+} \phi \right) =$$

$$\lim_{\varepsilon \to +0} \left(\int_{\partial D_{\varepsilon}} (M_{\Gamma}^{-} u_{0}) \phi - \int_{\partial D_{-\varepsilon}} (M_{\Gamma}^{+} u_{0}) \phi \right) = \int_{\Gamma} u_{0} \phi,$$

для всех $\phi \in C^{\infty}(D \cup \Gamma, \Lambda^{(n,n-1)})$ т.е. $u = u_0$ в смысле слабых предельных значений на Γ (см. лемму 1).

Для завершения доказательства нам осталось убедиться, что выполнено (1). С этой целью рассмотрим (0,1)-форму $g=(f-\overline{\partial}u)$, принадлежащую $\mathcal{D}'(D,\Lambda^{(0,1)})$.

Если $\Phi \in C^{\infty}_{comp}(\Omega), \Lambda^{(n,n-1)})$ то $\Phi^{-} \in C^{\infty}_{comp}(D \cup \Gamma, \Lambda^{(n,n-1)})$. Значит, то по формуле Стокса,

$$\int_{D_{\varepsilon}} (f - \overline{\partial}u) \wedge \Phi = \int_{D_{\varepsilon}} f \wedge \Phi - \int_{\partial D_{\varepsilon}} u\Phi + \int_{D_{\varepsilon}} u\overline{\partial}\Phi.$$
 (15)

Поэтому, с учетом того, что $u=u_0$ в смысле слабых предельных значений на Γ , для каждого $\Phi \in C^\infty_{comp}(\Omega, \Lambda^{(n,n-1)})$ существует предел

$$A(\Phi) = \lim_{\varepsilon \to +0} \int_{D_{\varepsilon}} (f - \overline{\partial}u) \wedge \Phi = \int_{D} f \wedge \Phi - \int_{\Gamma} u_{0} \Phi + \int_{D} u \overline{\partial} \Phi.$$
 (16)

Кроме того, ясно, что

$$|A(\Phi)| \le C \|\Phi\|_{C^1(\overline{\Omega}, \Lambda^{(n,n-1)})}$$

с некоторой неотрицательной постоянной C, не зависящей от Φ . Таким образом, предел $A(\Phi)$ определяет некоторое распределение, скажем \hat{g} , из $\mathcal{D}'(\Omega, \Lambda^{(0,1)})$ с носителем в $D \cup \Gamma$, сужение которой на D совпадает с g.

Далее, мы уже показали, что $u=u_0$ в смысле слабых предельных значений на Γ . Поэтому из условия (8) следует, что

$$\lim_{\varepsilon \to +0} \int_{D_{\varepsilon}} (\overline{\partial} u) \wedge \overline{\partial} \Psi = \lim_{\varepsilon \to +0} \int_{\partial D_{\varepsilon}} u \overline{\partial} \Psi = \int_{\Gamma} u_0 \overline{\partial} \Psi = \int_{D} f \wedge \overline{\partial} \Psi$$

для всех $\Psi \in C^{\infty}_{comp}(\Omega, \Lambda^{(n,n-2)})$. Или, другими словами,

$$A(\overline{\partial}\Psi) = 0$$
 для всех $\Psi \in C_{comp}^{\infty}(\Omega, \Lambda^{(n,n-2)}).$ (17)

В частности, форма g $\overline{\partial}$ -замкнута в D. Кроме того, форма g является козамкнутой, т.е. удовлетворяет $\overline{\partial}^* g = 0$ в смысле распределений в D.

В самом деле, обозначим через Δ_{2n} обычный оператор Лапласа в \mathbb{R}^{2n} . Очевидно, что $\overline{\partial}^* \overline{\partial} = -\frac{1}{4} \Delta_{2n}$. Пусть $\mathfrak{G}(\zeta - z)$ – фундаментальное решение оператора Лапласа в \mathbb{R}^{2n} . Как хорошо известно (ср. [8, §1]),

$$\mathfrak{U}(\zeta, z) = -4 \sum_{j=1}^{n} (-1)^{j-1} \frac{\partial \mathfrak{G}}{\partial z_j} (\zeta - z) d\overline{\zeta}[j] \wedge d\zeta,$$

$$T_D f = -4 \sum_{j=1}^n (-1)^{j-1} \frac{\partial}{\partial z_j} \int_D \mathfrak{G}(\zeta - z) f(\zeta) \wedge d\overline{\zeta}[j] \wedge d\zeta.$$

Поэтому, из свойств фундаментального решения немедленно следует, что

$$4\overline{\partial}^*\overline{\partial}T_Df = \Delta_{2n}T_Df = 4\overline{\partial}^*\chi_Df$$
 в смысле распределений в \mathbb{C}^n . (18)

Теперь из гармоничности функции \mathcal{F} и потенциала $M_{\Gamma}u_0$ вытекает, что, в смысле распределений в D,

$$\overline{\partial}^* g = \overline{\partial}^* (f - \overline{\partial} (M_{\Gamma} u_0 + T_D f \mathcal{F})) = \overline{\partial}^* (f - \overline{\partial} T_D f) = 0.$$
 (19)

Итак, из (19) и (18) следует, что $(\overline{\partial} + \overline{\partial}^*)g = 0$ в смысле распределений в D. В частности, это означает, что коэффициенты $g_j, j = 1, 2 \dots n$, формы g гармоничны в D, а поэтому вещественно аналитичны там.

Обозначим через * оператор Ходжа для дифференциальных форм. Положив $\overline{*}h=\overline{*h}$ для дифференциальной формы $h\in C^\infty(\Lambda^{(0,1)}),$ нетрудно видеть, что

$$\lim_{\varepsilon \to +0} \int_{D_{\varepsilon}} g \wedge \overline{*} \overline{\partial} V = 0 \text{ для всех } V \in C_{comp}^{\infty}(\Omega).$$
 (20)

В самом деле, согласно (18),

$$\int_{D} f \wedge \overline{*} \overline{\partial} V = \int_{\Omega} \chi_{D} f \wedge \overline{*} \overline{\partial} V = \int_{\Omega} \overline{\partial} T_{D} f \wedge \overline{*} \overline{\partial} V. \tag{21}$$

С учетом того, что \mathcal{F} гармонична в Ω , а $T_D f \in H^1_{loc}(\mathbb{C}^n)$ и $\overline{*}\overline{\partial}V = c(n)\partial(\overline{V}\sum_{j=1}^n dz[j] \wedge d\overline{z}[j])$, мы имеем: $(M_{\Gamma}u_0)^+ \in H^1_{loc}(D^+ \cup \Gamma)$. Поэтому,

$$\int_{D} \overline{\partial} \mathcal{F} \wedge \overline{\ast} \overline{\partial} V = \int_{\Omega} \overline{\partial} \mathcal{F} \wedge \overline{\ast} \overline{\partial} V - \int_{\Omega \setminus D} \overline{\partial} \mathcal{F} \wedge \overline{\ast} \overline{\partial} V =$$

$$- \int_{\Omega \setminus D} \overline{\partial} \mathcal{F} \wedge \overline{\ast} \overline{\partial} V = - \int_{\Omega \setminus D} \overline{\partial} (M_{\Gamma} u_{0} + T_{D} f)^{+} \wedge \overline{\ast} \overline{\partial} V =$$

$$- \int_{\Omega \setminus D} \overline{\partial} T_{D} f \wedge \overline{\ast} \overline{\partial} V + \lim_{\varepsilon \to +0} \int_{\partial D_{-\varepsilon}} \overline{\partial} (M_{\Gamma} u_{0})^{+} \wedge (\overline{V} \sum_{j=1}^{n} dz[j] \wedge d\overline{z}[j]). \quad (22)$$

Кроме того, так как интеграл типа Мартинелли – Бохнера определяет гармонические функции конечного порядка роста вблизи поверхности интегрирования, то на ∂D определены следы (в классе распределений) $\overline{\partial}$ -нормальных производных интеграла типа Мартинелли – Бохнера $\overline{\partial}_{\nu}(M_{\Gamma}u_0)^+|_{\partial D}$ и $\overline{\partial}_{\nu}(M_{\Gamma}u_0)^-|_{\partial D}$ (см. [3, §2]) и для интегрантов класса $L^2(\Gamma)$ эти следы совпадают (см. [3, лемма 1]).

Поэтому, из (21) и (22),

$$\lim_{\varepsilon \to +0} \int_{D_{\varepsilon}} g \wedge \overline{*} \overline{\partial} V =$$

$$\lim_{\varepsilon \to +0} \left(\int_{\partial D_{-\varepsilon}} \overline{\partial} (M_{\Gamma} u_0)^+ \wedge (\overline{V} \sum_{j=1}^n dz[j] \wedge d\overline{z}[j]) - \int_{D_{\varepsilon}} \overline{\partial} M_{\Gamma} u_0 \wedge \overline{*} \overline{\partial} V \right) =$$

$$\lim_{\varepsilon \to +0} \left(\int_{\partial D_{-\varepsilon}} \overline{\partial} (M_{\Gamma} u_0)^+ \wedge (\overline{V} \sum_{j=1}^n dz[j] \wedge d\overline{z}[j]) \right) -$$

$$\lim_{\varepsilon \to +0} \left(\int_{\partial D_{\varepsilon}} (\overline{\partial} M_{\Gamma} u_0)^- \wedge (\overline{V} \sum_{j=1}^n dz[j] \wedge d\overline{z}[j]) \right) =$$

$$< \overline{\partial}_{\nu} (M_{\Gamma} u_0)^+_{|\partial D} - \overline{\partial}_{\nu} (M_{\Gamma} u_0)^-_{|\partial D}, \overline{v}_{|\partial D} > = 0,$$

т.е. формула (20) справедлива.

Формула (20), в частности, означает, что

$$A(\overline{*}\overline{\partial}V) = 0$$
 для всех $V \in C^{\infty}_{comp}(\Omega)$,

или, другими словами, с учетом (17),

$$\overline{\partial}\hat{g} = 0 \text{ B } \Omega, \quad \overline{\partial}^*\hat{g} = 0 \text{ B } \Omega.$$
 (23)

А поскольку из равенств (23) следует что распределение \hat{g} с носителем в $D \cup \Gamma$ гармонично в Ω , то $\hat{g} \equiv 0$, т.е. $A(\Phi) = 0$ для любой $\Phi \in C^{\infty}_{comp}(\Omega, \Lambda^{(n,n-1)})$.

Наконец, если $\phi \in C^{\infty}_{comp}(D \cup \Gamma, \Lambda^{(n,n-1)})$, то по теореме Уитни, найдется форма $\Phi \in C^{\infty}_{comp}(\Omega, \Lambda^{(n,n-1)})$, совпадающая с ϕ на D. Следовательно, из (15) и (16),

$$\int_{D} u \overline{\partial} \phi = \int_{\Gamma} u_{0} \phi - \int_{D} f \wedge \phi + A(\Phi) = \int_{\Gamma} u_{0} \phi - \int_{D} f \wedge \phi$$

для всякой $\phi \in C^{\infty}_{comp}(D \cup \Gamma, \Lambda^{(n,n-1)}),$ т.е. u есть решение задачи 1. $\ \square$

Замечание 2. Из теоремы 1 легко извлечь условия локальной разрешимости задачи Коши. В самом деле, зафиксируем точку $x_0 \in \Gamma$. Пусть V – какая-нибудь (односторонняя) окрестность точки x_0 в D, а $\hat{\Gamma} = \partial V \cap \Gamma$. Положим $\hat{F} = M_{\hat{\Gamma}}(u_0) + T_V f$. Так как

$$F = \hat{F} + M_{\Gamma \setminus \hat{\Gamma}}(u_0) + T_{D \setminus V}f,$$

то F^+ гармонически продолжается в $\hat{\Omega} = V \cup \hat{\Gamma} \cup D^+$ тогда и только тогда, когда этим свойством обладает потенциал \hat{F}^+ . Поэтому, при условии (8), решение задачи Коши существует в той окрестности V, в которую продолжается потенциал F^+ .

Следствие 1. Задача Коши 1 разрешима в пространстве $L^2(D)$ тогда и только тогда выполнено условие (8) и функция F^+ гармонически продолжается из D^+ на Ω в классе Лебега $L^2(\Omega)$.

Доказательство. Если задача Коши 1 разрешима в пространстве $L^2(D)$, то из теоремы 1 вытекает, что функция F^+ гармонически продолжается из D^+ на Ω , а ее продолжение \mathcal{F} задается формулой (13). Поэтому $\mathcal{F} \in L^2(D^\pm) \cap C^\infty_{loc}(\Omega)$. Следовательно, $\mathcal{F} \in L^2(\Omega)$.

Обратно, пусть существует функция $\mathcal{F} \in L^2(\Omega)$, гармоничная в Ω и совпадающая с F^+ на D^+ . Тогда из теоремы 1 следует, что задача Коши 1 разрешима, а ее решение u задается формулой (14). Так как $\mathcal{F}^- \in L^2(D)$, то и u принадлежит $L^2(D)$.

Для f=0 теорема 1 получена в [3] (см. также [4]):

Следствие 2. Пусть Γ – гладкая гиперповерхность в области Ω , разбивающая Ω на две связные компоненты, D^+ и $D = \Omega \setminus D^+$. Тогда CR-функция $u_0 \in L^2(\Gamma)$ голоморфно продолжается в D в том и только том случае, когда ее интеграл типа Мартинелли – Бохнера $M_{\Gamma}u_0$ гармонически продолжается из D^+ в Ω .

4 Базисы с двойной ортогональностью

В работе [3] было предложено применить базисы с двойной ортогональностью для изучения задачи Коши для голоморфных функций (ср. также [4]). Мы коротко изложим этот метод применительно к задаче 1. С этой целью обозначим через $h(\Omega)$ пространство гармонических функций в Ω принадлежащих $L^2(\Omega)$.

Лемма 7. Если $\omega \in \Omega$ – область с кусочно-гладкой границей и $\Omega \setminus \omega$ не

имеет компактных (связных) компонент, то существует ортонормированный базис $\{b_{\nu}\}_{\nu=1}^{\infty}$ в $h(\Omega)$ такой, что $\{b_{\nu|\omega}\}_{\nu=1}^{\infty}$ есть ортогональный базис в $h(\omega)$.

Доказательство. На самом деле эти функции $\{b_{\nu}\}_{\nu=1}^{\infty}$ суть собственные векторы компактного самосопряженного оператора $R(\Omega,\omega)^*R(\Omega,\omega)$, где

$$R(\Omega,\omega):h(\Omega)\to h(\omega)$$

есть оператор естественного вложения (см. [4, теорема 3.1] или [3, замечание 8], а также [14]).

Воспользуемся базисом $\{b_{\nu}\}$ для того, чтобы упростить следствие 1. С этой целью зафиксируем области $\omega \in D^+$ и Ω как в лемме 7 и обозначим через

$$c_{\nu}(F^{+}) = \frac{(F^{+}, b_{\nu})_{L^{2}(\omega)}}{\|b_{\nu}\|_{L^{2}(\omega)}^{2}}, \qquad \nu \in \mathbb{N},$$
(24)

коэффициенты Фурье функции F^+ относительно ортогонального базиса $\{b_{\nu|\omega}\}$ в $h(\omega)$.

Следствие 3. Задача Коши 1 разрешима в классе $L^2(D)$ тогда и только тогда, когда выполнено условиие (8) и сходится ряд $\sum_{\nu=1}^{\infty} |c_{\nu}(F^+)|^2$.

Доказательство. В самом деле, если задача 1 разрешима в классе $L^2(D)$, то согласно следствию 1, выполнено условие (8) и найдется функция $\mathcal{F} \in h(\Omega)$, совпадающая с F^+ в ω .

По лемме 7,

$$\mathcal{F}(z) = \sum_{\nu=1}^{\infty} k_{\nu}(\mathcal{F}) b_{\nu}(z), \qquad z \in \Omega, \tag{25}$$

где

$$k_{\nu}(\mathcal{F}) = (\mathcal{F}, b_{\nu})_{L^{2}(\Omega)}, \qquad \nu \in \mathbb{N},$$

– коэффициенты Фурье $\mathcal F$ по ортогональному базису $\{b_{
u}\}$ в $h(\Omega)$.

Теперь из неравенства Бесселя следует, что ряд $\sum_{\nu=1}^{\infty} |k_{\nu}(\mathcal{F})|^2$ сходится.

Наконец,

$$c_{\nu}(F^{+}) = \frac{(R(\Omega, \omega)\mathcal{F}, R(\Omega, \omega)b_{\nu})_{L^{2}(\omega)}}{(R(\Omega, \omega)b_{\nu}, R(\Omega, \omega)b_{\nu})_{L^{2}(\omega)}} = \frac{(\mathcal{F}, R(\Omega, \omega)^{*}R(\Omega, \omega)b_{\nu})_{L^{2}(\Omega)}}{(b_{\nu}, R(\Omega, \omega)^{*}R(\Omega, \omega)b_{\nu})_{L^{2}(\Omega)}} = k_{\nu}(\mathcal{F}),$$

т.е. необходимость условий следствия доказана.

Обратно, если выполнены условия следствия, то, согласно теореме Рисса-Фишера, мы имеем

$$\mathcal{F}(z) = \sum_{\nu=1}^{\infty} c_{\nu}(F^{+})b_{\nu}(z), \qquad z \in \Omega, \tag{26}$$

в пространстве $h(\Omega)$.

По построению, $\mathcal F$ совпадает с F^+ в ω . Значит, из следствия 1 вытекает, что задача 1 разрешима в классе $L^2(D)$.

Примеры базисов со свойством двойной ортогональности можно найти в [4], [5, глава 12], [14].

Получим формулу Карлемана для решений задачи 1. С этой целью, для $z \in \Omega, \; \zeta \not\in \overline{\omega}, \; z \neq \zeta$, рассмотрим ядра Карлемана:

$$\mathfrak{C}_N(\zeta,z) = \mathfrak{U}(\zeta,z) - \sum_{\nu=1}^N c_{\nu}(\mathfrak{U}(\zeta,\cdot))b_{\nu}(z), \ N \in \mathbb{N}.$$

Следствие 4. Для всякой функции $v \in L^2(D)$, которая имеет на Γ слабые предельные значения класса $L^2(\Gamma)$ и для которой $\overline{\partial}v \in L^2(D,\Lambda^{(0,1)})$, справедлива формула Карлемана:

$$\lim_{N \to \infty} \|v - v_N\|_{L^2(D)} = 0 \tag{27}$$

где

$$v_N = \int_{\Gamma} v(\zeta) \mathfrak{C}_N(\zeta, \cdot) - \int_{D} (\overline{\partial} v)(\zeta) \wedge \mathfrak{C}_N(\zeta, \cdot).$$

Доказательство. В самом деле, для данных Коши $f = \overline{\partial} v$ и $u_0 = v_{|\Gamma}$, задача Коши 1 разрешима в классе $L^2(D)$. Значит из следствия 1 вытекает, что решение u этой задачи Коши задается формулой (14). Теперь из леммы 6 следует, что u = v в D.

Так как $\overline{\omega} \cap \overline{D} = \emptyset$, то можно воспользоваться теоремой Фубини и заключить, что для всех $\nu \in \mathbb{N}$:

$$k_{\nu}(F^{+}) = \left(\int_{\Gamma} v_{0}(\zeta) c_{\nu}(\mathfrak{U}(\zeta, \cdot)) - \int_{D} f(\zeta) \wedge c_{\nu}(\mathfrak{U}(\zeta, \cdot)) \right). \tag{28}$$

Более того, (см. доказательство следствия 3), мы знаем, что функция \mathcal{F} задается формулой (25) с коэфициентами (24). Частичные суммы ряда \mathcal{F} в $L^2(\Omega)$, а значит, суженные на D^- , они сходятся к \mathcal{F}^- в $L^2(D)$, т.е. мы имеем:

$$\lim_{N \to \infty} \left\| v - M_{\Gamma} v_0 - T_D \overline{\partial} v - \sum_{\nu=1}^{N} \left(\int_{\Gamma} v_0(\zeta) c_{\nu}(\mathfrak{U}(\zeta, \cdot)) - \int_{D} f(\zeta) \wedge c_{\nu}(\mathfrak{U}(\zeta, \cdot)) \right) b_{\nu} \right\|_{L^2(D)} = 0.$$

Это и дает равенство (27) после перегруппировки слагаемых.

Замечание 3. Формула (14) означает, что $v = M_{\Gamma}v + T_D \overline{\partial} v - \mathcal{F}$. Так как \mathcal{F} и b_{ν} гармоничны, то из теоремы Стильтьеса – Витали следует, что ряд (26) сходится в $C^{\infty}_{loc}(\Omega)$. Значит, если $v_{|\Gamma} \in H^{s-1/2}(\Gamma)$, $\overline{\partial} v \in H^p(D, \Lambda^{(0,1)})$, то $v \in H^s_{loc}(D \cup \Gamma) \cap H^{p+1}_{loc}(D)$ и мы дополнительно имеем: 1) $\overline{\partial} v_N$ сходится к $\overline{\partial} v$ в $H^p_{loc}(D \cup \Gamma, \Lambda^{(0,1)})$; 2) v_N сходится к v в $H^s_{loc}(D \cup \Gamma, \Lambda^{(0,1)})$; 2) v_N сходится к v в $H^s_{loc}(D \cup \Gamma, \Lambda^{(0,1)})$; 3) v_N сходится v в v

Уместно отметить, что на самом деле мы получили те же самые ядра Карлемана, что и для случая f = 0 (см. [4, §5]).

5 Пример построения формулы Карлемана

В этом параграфе мы построим формулу Карлемана задачи без применения базисов с двойной ортогональностью. В качестве примера рассмотрим следующую ситуацию. Пусть B(R) – шар с центром в нуле и радиуса R, а $\Omega = \Omega(r,R) = B(R) \setminus \overline{B}(r)$ ($0 < r < R < \infty$) есть шаровой слой в \mathbb{C}^n . Пусть гладкая связная гиперповерхность $\Gamma \subset \Omega(r,R)$ – разбивает

 $\Omega(r,R)$ на две связные компоненты D^+ и $D=D^-$ так, чтобы

$$\max(dist(\overline{D},\partial B(R),dist(\overline{D},\partial B(r)))>0.$$

Далее, пусть пусть $\{h_{\nu}^{(i)}\}$ – система однородных гармонических многочленов, образующих ортонормированный базис в $L^2(\partial B_1)$ (здесь ν – степень однородности, а $J(\nu) = \frac{(2n+2\nu-2)(2n+\nu-3)!}{\nu!(2n-2)!}$ – количество линейно независимых многочленов степени ν в этом базисе, см. [15, глава XI]).

Следствие 5. Если $dist(\overline{D}, \partial B(R)) > 0$, то функция F^+ гармонически продолжается из D^+ на $\Omega = D \cup \Gamma \cup D^+$ тогда и только тогда, когда

$$\limsup_{\nu \to \infty} \sqrt[\nu]{\max_{1 \le i \le J(\nu)} |\hat{k}_{\nu}^{(i)}|} \le r, \tag{29}$$

e

$$\hat{k}_{\nu}^{(i)} = \int_{\Gamma} u_0(\zeta) \frac{*\partial \overline{h_{\nu}^{(i)}}(\zeta)}{n + \nu - 1} + \int_{D} f(\zeta) \wedge \frac{*\partial \overline{h_{\nu}^{(i)}}(\zeta)}{n + \nu - 1}.$$
 (30)

Доказательство. При сформулированных условиях найдется шаровой слой $\hat{\Omega} = \Omega(\hat{r}, \hat{R}) \in D^+$, с некоторыми радиусами $r < \hat{r} < \hat{R} < R$.

Очевидно, $F^+ \in C^{\infty}(\overline{\Omega}(\hat{r}, \hat{R}))$ гармонична в этом слое. Поэтому мы можем разложить функцию F^+ в ряд Лорана по однородным гармоническим функциям в $\hat{\Omega}$ (см., например, [16, §8]). Именно,

$$F^{+}(z) = \sum_{\nu=0}^{\infty} \sum_{i=1}^{J(\nu)} k_{\nu}^{(i)} h_{\nu}^{(i)}(z) + \hat{k}_{0} \mathfrak{G}(z) + \sum_{\nu=1}^{\infty} \sum_{i=1}^{J(\nu)} \hat{k}_{\nu}^{(i)} \frac{h_{\nu}^{(i)}(z)}{|z|^{2n+2\nu-2}}, \quad z \in \hat{\Omega}, (31)$$

где ряд сходится равномерно вместе со всеми производными на компактах из $\hat{\Omega}$, а коэффициенты $k_{\nu}^{(i)}$, $\hat{k}_{\nu}^{(i)}$ определены однозначно.

Если $dist(\overline{D}, \partial B(R)) > 0$, то

$$|z| > |\zeta|$$
 для всех $z \in \hat{\Omega}, \zeta \in \Gamma$.

Для того, чтобы узнать коэффициенты $k_{\nu}^{(i)}$, $\hat{k}_{\nu}^{(i)}$, воспользуемся следующим разложением, ядра Мартинелли — Бохнера, полученным в [3, лемма 2]:

$$\mathfrak{U}(\zeta, z) = \sum_{\nu=0}^{\infty} \sum_{i=1}^{J(\nu)} \frac{*\partial_{\zeta} \overline{h_{\nu}^{(i)}}(\zeta) h_{\nu}^{(i)}(z)}{(n+\nu-1)|z|^{2n+2\nu-2}},$$

где ряд также сходится равномерно вместе со всеми производными на компактах из конуса $\{z\in\mathbb{C}^n,\zeta\in\mathbb{C}^n:\,|z|>|\zeta|\}.$

Подставляя данное разложение в интегралы $M_{\Gamma}u_0$ и T_Df мы получим, что $k_{\nu}^{(i)}=0,\ \hat{k}_0=0,\ a\ \hat{k}_{\nu}^{(i)},\ \nu\in\mathbb{N},$ заданы формулой (30) для всех $\nu\in\mathbb{Z}_+,1\leq i\leq J(\nu).$

Пусть теперь найдется функция \mathcal{F} , гармоническая в шаровом слое Ω и совпадающая с F^+ в D^+ . Разлагая ее в шаровом слое Ω в ряд Лорана по однородным гармоническим функциям, мы получаем:

$$\mathcal{F}(z) = \sum_{\nu=0}^{\infty} \sum_{i=1}^{J(\nu)} c_{\nu}^{(i)} h_{\nu}^{(i)}(z) + \hat{c}_0 \mathfrak{G}(z) + \sum_{\nu=0}^{\infty} \sum_{i=1}^{J(\nu)} \hat{c}_{\nu}^{(i)} \frac{h_{\nu}^{(i)}(z)}{|z|^{2n+2\nu-2}}, \quad z \in \hat{\Omega}, \quad (32)$$

где ряд сходится равномерно вместе со всеми производными на компактах из Ω , а коэффициенты $c_{\nu}^{(i)}$, $\hat{c}_{\nu}^{(i)}$ определены однозначно. Поскольку $\hat{\Omega} \subset \Omega$, разложение справедливо и для $z \in \hat{\Omega}$. Однако коэффициенты разложения Лорана определены однозначно, поэтому, сравнивая (31) и (32), мы видим, что $c_{\nu}^{(i)} = k_{\nu}^{(i)}$, $\hat{c}_{\nu}^{(i)} = \hat{k}_{\nu}^{(i)}$. Следовательно, для гармонического продолжения \mathcal{F} функции F^+ справедлива формула:

$$\mathcal{F}(z) = \frac{1}{|z|^{2n-2}} \sum_{\nu=0}^{\infty} \left(\sum_{i=1}^{J(\nu)} \hat{k}_{\nu}^{(i)} h_{\nu}^{(i)}(z/|z|) \right) |z|^{-\nu}, \quad z \in \Omega.$$
 (33)

Теперь, проинтегрировав $|\mathcal{F}|^2$ по произвольной сфере радиуса $r<\gamma< R,$ и учтя (33), мы получим

$$\frac{1}{\gamma^{2n-2}} \sum_{\nu=0}^{\infty} \left(\max_{1 \le i \le J(\nu)} |\hat{k}_{\nu}^{(i)}|^2 \right) |\gamma|^{-2\nu} \le \frac{1}{\gamma^{2n-2}} \sum_{\nu=0}^{\infty} \left(\sum_{i=1}^{J(\nu)} |\hat{k}_{\nu}^{(i)}|^2 \right) |\gamma|^{-2\nu} < \infty.$$
(34)

В силу произвольности $r < \gamma < R$ и формулы Коши – Адамара мы заключаем, что выполнено условие (29).

Обратно, как известно (см. [15, глава XI]),

$$1 \le J(\nu) \le c\nu^{2n-2},\tag{35}$$

$$\max_{|z|=1} |h_{\nu}^{(i)}(z)| \le c(n)\nu^{n-1}. \tag{36}$$

Кроме того, очевидно, что

$$\sum_{i=1}^{J(\nu)} \hat{k}_{\nu}^{(i)} h_{\nu}^{(i)}(z/|z|) \le J(\nu) \max_{1 \le i \le J(\nu)} |\hat{k}_{\nu}^{(i)}| \max_{|z|=1} |h_{\nu}^{(i)}(z)|.$$

Поэтому из формулы Коши – Адамара для радиуса сходимости степенного ряда и формул (35), (36) немедленно следует, что при выполнении условия (29) ряд (33) сходится в $\mathbb{C}^n \setminus \overline{B}(r)$, а значит и в Ω . Этот ряд и дает гармоническое продолжение функции F^+ на Ω .

Получим теперь формулу Карлемана задачи 1.

Следствие 6. Пусть $dist(\overline{D}, \partial B(R)) > 0$. Тогда для любой функции $v \in L^2_{loc}(D \cup \Gamma)$ такой, что $\overline{\partial} v \in L^2(D, \Lambda^{(0,1)})$ справедлива формула Карлемана:

$$v(z) = \lim_{N \to \infty} v_N(z), \qquad \overline{\partial}v(z) = \lim_{N \to \infty} \overline{\partial}v_N(z), \qquad z \in D,$$
 (37)

где первый предел достигается в $L^2_{loc}(D \cup \Gamma)$ (и даже в $H^1_{loc}(D)$), второй – в $L^2_{loc}(D \cup \Gamma, \Lambda^{(0,1)})$,

$$v_N(z) = \left(\int_{\Gamma} v(\zeta) \mathfrak{C}_N(\zeta, z) + \int_{D} (\overline{\partial} v)(\zeta) \wedge \mathfrak{C}_N(\zeta, z)\right),$$

a

$$\mathfrak{C}_{N}(\zeta, z) = \mathfrak{U}(\zeta, z) - \sum_{\nu=0}^{N} \sum_{i=1}^{J(\nu)} \frac{*\partial_{\zeta} \overline{h_{\nu}^{(i)}(\zeta)} h_{\nu}^{(i)}(z)}{(n+\nu-1)|z|^{2n+2\nu-2}}$$

– ядра Карлемана.

Доказательство. В самом деле, для данных Коши $f = \overline{\partial} u$ и $u_0 = u_{|\Gamma}$ задача Коши 1 разрешима. Поэтому, согласно теореме 1 и следствию 5, выполнены условия (8) и (29), а решение u этой задачи задается формулой (14). В силу единственности решения задачи Коши мы заключаем, что u = v в D.

Более того, теперь (см. доказательство следствия 5) мы знаем, что функция $\mathcal F$ задана формулой (33) с коэффициентами (30), т.е. для всех $z\in D\cup\Gamma$ мы имеем

$$v(z) = \int_{\Gamma} u_0(\zeta) \mathfrak{U}(\zeta, z) + \int_{D} f(\zeta) \mathfrak{U}(\zeta, z) - \lim_{N \to \infty} \sum_{\nu=0}^{N} \sum_{i=1}^{J(\nu)} \left(\int_{\Gamma} u_0(\zeta) (*\partial) \frac{\overline{h_{\nu}^{(i)}}(\zeta)}{n+\nu-1} + \int_{D} f(\zeta) \wedge (*\partial) \frac{\overline{h_{\nu}^{(i)}}(\zeta)}{n+\nu-1} \right) \frac{h_{\nu}^{(i)}(z)}{|z|^{2n+2\nu-2}},$$

что и дает тождество (37) после перегруппировки слагаемых.

Что касается характера сходимости, то нужно отметить следующее: функция $\mathcal F$ гармонична в Ω , а ряд (32) состоит из гармонических слагаемых. По этой причине, в силу теоремы Стильтьеса — Витали ряд (32) сходится равномерно вместе со всеми производными на компактах из Ω к гармонической функции $v-F^-$.

Подобным образом доказываются следующие утверждения (ср. [3, теорема 5] для $f \equiv 0$).

Следствие 7. Если $dist(\overline{D}, \partial B(r)) > 0$, то то функция F^+ гармонически продолжается из D^+ на $\Omega = D \cup \Gamma \cup D^+$ тогда и только тогда, когда

$$\limsup_{\nu \to \infty} \max_{1 \le i \le J(\nu)} \sqrt[\nu]{|k_{\nu}^{(i)}|} \le 1/R,$$

где

$$k_{\nu}^{(i)} = \int_{\Gamma} u_0(\zeta)(*\partial) \frac{\overline{h_{\nu}^{(i)}}(\zeta)}{(n+\nu-1)|\zeta|^{2n+2\nu-2}} + \int_{D} f(\zeta) \wedge (*\partial) \frac{\overline{h_{\nu}^{(i)}}(\zeta)}{(n+\nu-1)|\zeta|^{2n+2\nu-2}}.$$
 (38)

Следствие 8. Пусть $dist(\overline{\Gamma},\partial B(r))>0$. Тогда для всякой функции

 $u\in L^2_{loc}(D\cup\Gamma)$ такой, что $\overline{\partial}u\in L^2(\overline{D},\Lambda^{(0,1)})$ справедлива формула Карлемана:

$$v(z) = \lim_{N \to \infty} v_N(z), \qquad \overline{\partial}v(z) = \lim_{N \to \infty} \overline{\partial}v_N(z), \qquad z \in D,$$
 (39)

где первый предел достигается в $L^2_{loc}(D \cup \Gamma)$ (и даже в $H^1_{loc}(D)$), второй – в $L^2_{loc}(D \cup \Gamma, \Lambda^{(0,1)})$,

$$v_N(z) = \left(\int_{\Gamma} v(\zeta) \mathfrak{C}_N(\zeta,z) + \int_{D} (\overline{\partial} v)(\zeta) \wedge \mathfrak{C}_N(\zeta,z)\right),$$

a

$$\mathfrak{C}_{N}(\zeta,z) = \mathfrak{U}(\zeta,z) - \mathfrak{U}(\zeta,0) + *\partial_{\zeta} \sum_{\nu=1}^{N} \sum_{i=1}^{J(\nu)} \frac{\overline{h_{\nu}^{(i)}(\zeta)} h_{\nu}^{(i)}(z)}{(n+\nu-1)|\zeta|^{2n+2\nu-2}}$$

– ядра Карлемана.

Уместно отметить, что при n=1 и $f\equiv 0$ соотношения (37) и (39) суть хорошо известные формулы Голузина – Крылова (см., например, [2, теорема 1.1]).

Список литературы

- [1] Carleman T. Les fonctions quasianalytiques, Gauthier-Villars, Paris, 1926.
- [2] Айзенберг Л.А. Формулы Карлемена в комплексном анализе. Первые приложения, Новосибирск, Наука, 1990.
- [3] Айзенберг Л.А., Кытманов А.М. О возможности голоморфного продолжения в область функций, заданных на куске ее границы, Мат. сб., **182**:5 (1991), 490-597.
- [4] Шлапунов А.А., Тарханов Н.Н. O задаче Коши для голоморфных функций класса Лебега L^2 в области, Сиб. мат. журнал, **33**:5, 1992, 914–922.
- [5] Tarkhanov N.N. The Cauchy problem for solutions of elliptic equations, Berlin, Akademie Verlag, 1995.
- [6] Хенкин Г.М. *Метод интегральных представлений в комплексном анализе*, Итоги науки и техники. современные проблемы математи-ки(фундаментальные направления), ВИНИТИ, Москва, **7** (1985), 23-124.
- [7] Егоров Ю.В., Шубин М.А. Линейные дифференциальные уравнени с частными производными. Основы классической теории, Итоги науки и техники. Современные проблемы математики. Фундаментальные направления, М.: ВИНИТИ АН СССР, **30** (1988), 264 с.
- [8] Кытманов А.М. Интеграл Бохнера-Мартинелли и его применения, Новосибирск, Наука, 1992.
- [9] Kerzman N. Hölder and L^p -estimates for solutions of $\overline{\partial}u=f$, Comm.Pure and Appl.Math, **24** :3 (1971), 301-379.
- [10] Hörmander L. L^2 -estimates and existense theorems for the $\overline{\partial}$ operator, Acta Math., **113**:1-2 (1965), 89-152.

- [11] Straube E.J. Harmonic and analytic functions admitting a distribution boundary value, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 11:4 (1984), 559– 591.
- [12] Михайлов В.П. Дифференциальные уравнения в частных производных, М.: Наука, 1976.
- [13] Чирка Е.М. *Аналитическое представление СR-функций*, Мат. сб., **98** (1975), 591-623.
- [14] Shapiro H.S Stefan Bergman's theory of doubly-orthogonal functions. An operator-theoretic approach. Proc. Roy. Ac. Sect. **79**:6 (1979), 49-56.
- [15] Соболев С.Л. *Введение в теорию кубатурных формул*, Наука, Москва, 1974.
- [16] Тарханов Н.Н. Ряд Лорана для решений эллиптических систем, Наука, Новосибирск, 1991.

Шлапунов Александр Анатольевич, Сибирский федеральный университет, институт математики, Красноярск, 660041, пр. Свободный, 79. e-mail: shlapuno@lan.krasu.ru

Федченко Дмитрий Петрович, Сибирский федеральный университет, институт математики, Красноярск, 660041, пр. Свободный, 79.

e-mail: fdp@bk.ru

ON THE CAUCHY PROBLEM FOR MULTI-DIMENSIONAL CAUCHY-RIEMANN OPERATOR IN LEBESQUE SPACE L^2 IN A DOMAIN

D.P. Fedchenko, A.A. Shlapunov

Abstract

Let D be a bounded domain in \mathbb{C}^n $(n \geq 1)$ with C^{∞} -smooth boundary ∂D . We describe necessary and sufficient solvability conditions for the Cauchy problem in the Lebesque spaces $L^2(D)$ in D for multi-dimensional Cauchy-Riemann operator $\overline{\partial}$. As an example we consider such a situation: the domain D is a part of a spherical shell $\Omega(r,R) = B(R) \setminus \overline{B}(r)$ $(0 < r < R < \infty)$, where B(R) is a ball with the center at origin and of radius R, cut off by a smooth hypersurface Γ oriented as ∂D . In this case using the Laurent series for harmonic functions in the shell $\Omega(R,r)$ we construct Carleman's formulae for functions from the Lebesque space $L^2(D)$, by their values on $\overline{\Gamma}$ and the values of $\overline{\partial}u$ in D if they belong to $L^2(\Gamma)$ and $L^2(D)$ respectively.