Statistical Inference and Hypothesis Testing in Data Science Applications

DTSA 5003 offered on Coursera

by the University of Colorado, Boulder

Instructor: J.N. Corcoran

A Generalization

This isn't really, as the title suggests, our first test. It is a generalization of the test in the previous lesson.

Suppose that X_1, X_2, \dots, X_n is a random sample from the $N(\mu, \sigma^2)$ distribution where σ^2 is known.

Let's construct a test of size (level of significance) α for

$$H_0: \mu = \mu_0$$
 versus $H_1: \mu = \mu_1$

where μ_0 and μ_1 are fixed and known.

Since μ_0 and μ_1 are known, we can tell which is smaller and which is larger. Here, let's first suppose that $\mu_0 < \mu_1$.

Step One: Choose a statistic on which to base the test.

Since this is a test concerning a population mean, we will choose to base this test on the sample mean \overline{X} .

Step Two: Give the "form" of the test.

Since the distribution under H_1 has the larger mean, we expect values sampled from the distribution to be larger when H_1 is true. In particular, we expect that the sample mean will be larger than it would be if H_0 were true. We will

"Reject H_0 , in favor of H_1 , if $\overline{X} > c$ for some c to be determined."

Step Three: Find c.

$$\alpha = P(\text{Type I Error})$$

$$= P(\text{Reject } H_0 \text{ when it's true})$$

$$= P(\overline{X} > c \text{ when } \mu = \mu_0)$$

$$= P\left(\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} > \frac{c - \mu_0}{\sigma/\sqrt{n}} \text{ when } \mu = \mu_0\right)$$

$$= P\left(Z > \frac{c - \mu_0}{\sigma/\sqrt{n}}\right)$$

where $Z \sim N(0, 1)$.

What number is Z greater than with probability α ? This is our definition of the critical value z_{α} .

That is, we must have

$$\frac{c - \mu_0}{\sigma / \sqrt{n}} = z_\alpha,$$

which gives us that

$$c = \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}.$$

Step Four: Conclusion

"We reject
$$H_0$$
, in favor of H_1 if $\overline{X} > \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}$."

If we were testing

$$H_0: \mu = \mu_0$$
 versus $H_1: \mu = \mu_1$

where $\mu_0 > \mu_1$, the alternative hypothesis would seem to be true if \overline{X} is "small". That is, we would want to reject H_0 , in favor of H_1 if $\overline{X} < c$ for some c.

Step Three of the test would give us that

$$\alpha = P\left(Z < \frac{c - \mu_0}{\sigma / \sqrt{n}}\right)$$

The critical value that captures area α to the left for a standard normal curve will capture area $1-\alpha$ to the right. Using our already established notation, it is called $z_{1-\alpha}$. However, by symmetry of the N(0,1) distribution about 0, we have that $z_{1-\alpha}=-z_{\alpha}$.

Our test of size (level of significance) α of

$$H_0: \mu = \mu_0$$
 versus $H_1: \mu = \mu_1$

where $\mu_0 > \mu_1$ is to

"Reject
$$H_0$$
, in favor of H_1 if $\overline{X} < \mu_0 - z_\alpha \frac{\sigma}{\sqrt{n}}$."