Report problem 1

Perform SVD for a matrix (or matrices)

- (i) Prepare a $M \times N$ matrix A. (M, N > 100) is better)
 - It is encouraged to prepare a matrix related to your research field.
 - If it is difficult, prepare a picture. (It should be different from the examples in the lecture.) (In the report, please include the explanation (meaning) of the matrix.)
- (ii) Perform SVD and plot the singular values.

You can use any libraries. (LAPACK, numpy or scipy in python, matlab, ...)

Please normalize the singular values as $\tilde{\sigma}_i = \sigma_i / \sqrt{\sum_j \sigma_j^2}$

Report problem 1 (cont.)

Perform SVD for a matrix (or matrices)

- (iii) Perform low rank approximations of the matrix with ranks r₁,r₂, ...
 - Calculate the distances between the original and approximate matrices. Please use Frobenius norm $\|A \tilde{A}\|_F$ as the distance. It is better to show a normalized distance: $\|A \tilde{A}\|_F/\|A\|_F$
 - Try at least two ranks (r₁ and r₂).
- (iv) Discuss characteristics of the low rank approximations (for your matrix) based on the singular value spectrum.
 - Please include "explanation" of the relation between the distance and singular values.
 (You can find the relation in the lecture slides.)

Report problem 1 (cont.)

Sample python code for Image SVD: Report_SVD.zip (Run with python2.7 or python3. You need PIL, numpy, matplotlib) It works at least on ECCS.

Usage of sample python code for Image SVD:

python image_svd.py -c chi -f filename

[Example of output]

```
Input file: sample.jpg
Array shape: (768, 1024)
Low rank approximation with chi=10
Normalized distance:0.10087303978176487
```

(In addition, the singular value spectrum and the approximated image appear.)

You can see help message: python image_svd.py -h