Title

D. Zack Garza

Thursday 27th August, 2020

Contents

1 Thursday, August 27

1

1 Thursday, August 27

Recall Hilbert's Nullstellensatz:

- a. For any affine variety, V(I(X)) = X.
- b. For any ideal $J \leq k[x_1, \dots, x_n], I(V(J)) = \sqrt{J}$.

So there's an order-reversing bijection

{Radical ideals
$$k[x_1, \dots, x_n]$$
} $\longrightarrow V(\cdot)I(\cdot)$ {Affine varieties in \mathbb{A}^n }.

In proving $I(V(J)) \subseteq \sqrt{J}$, we had an important lemma (Noether Normalization): the maximal ideals of $k[x_1, \dots, x_n]$ are of the form $\langle x - a_1, \dots, x - a_n \rangle$.

Corollary 1.1(?).

If V(I) is empty, then $I = \langle 1 \rangle$.

Slogan: the only ideals that vanish nowhere are trivial. No common vanishing locus \implies trivial ideal, so there's a linear combination that equals 1.

Proof.

By contrapositive, suppose $I \neq \langle 1 \rangle$. By Zorn's Lemma, these exists a maximal ideals \mathfrak{m} such that $I \subset \mathfrak{m}$. By the order-reversing property of $V(\cdot)$, $V(\mathfrak{m}) \subseteq V(I)$. By the classification of maximal ideals, $\mathfrak{m} = \langle x - a_1, \dots, x - a_n \rangle$, so $V(\mathfrak{m}) = \{a_1, \dots, a_n\}$ is nonempty.

Returning to the proof that $I(V(J)) \subseteq \sqrt{J}$: let $f \in V(I(J))$, we want to show $f \in \sqrt{J}$. Consider the ideal $\tilde{J} := J + \langle ft - 1 \rangle \subseteq k[x_1, \dots, x_n, t]$.

Observation: f=0 on all of V(J) by the definition of I(V(J)). But $ft-1\neq 0$ if f=0, so $V(\tilde{J})=V(G)\cap V(ft-1)=\emptyset$.

Figure 1: Effect, a hyperbolic tube around V(J), so both can't vanish

Applying the corollary $\tilde{J}=(1)$, so $1=\langle ft-1\rangle\,g_0(x_1,\cdots,x_n,t)+\sum f_ig_i(x_1,\cdots,x_n,t)$ with $f_i\in I$. Let t^N be the largest power of t in any g_i . Thus for some polynomials G_i , we have

$$f^N := (ft-1)G_0(x_1, \cdots, x_n, ft) + \sum f_i G_i(x_1, \cdots, x_n, ft)$$

noting that f does not depend on t.

Now take $k[x_1, \dots, x_n, t]/\langle ft - 1 \rangle$, so ft = 1 in this ring. This kills the first term above, yielding

$$f^N = \sum f_i G_i(x_1, \cdots, x_n, 1) \in k[x_1, \cdots, x_n, t] / \langle ft - 1 \rangle$$
.

Observation: there is an inclusion [.]