Cap.5-Aplicación de las leyes de Newton

5.8. Una gran bola para demolición está sujeta por dos cables de acero ligeros (figura 5.43). Si su masa m es de 4090 kg, calcule a) la tensión T_B en el cable que forma un ángulo de 40° con la vertical. b) Calcule la tensión T_A en el cable horizontal.

5.18. Se tira horizontalmente de tres trineos sobre hielo horizontal sin fricción, usando cuerdas horizontales (figura 5.50). El tirón es horizontal y de 125 N de magnitud. Obtenga *a*) la aceleración del sistema, y *b*) la tensión en las cuerdas *A* y *B*.

5.19. Máquina de Atwood. Una carga de 15.0 kg de ladrillos pende del extremo de una cuerda que pasa por una polea pequeña sin fricción y tiene un contrapeso de 28.0 kg en el otro extremo (figura 5.51). El sistema se libera del reposo. *a*) Dibuje un diagrama de cuerpo libre para la carga de ladrillos y otro para el contrapeso. *b*) ¿Qué magnitud tiene la aceleración hacia arriba de la carga de ladrillos? *c*) ¿Qué tensión hay en la cuerda mientras la carga se mueve?. Compare esa tensión con el peso de la carga de ladrillos y con el del contrapeso.

- **5.21**. Una cuerda ligera está atada a un bloque con masa de 4.00 kg que descansa en una superficie horizontal sin fricción. La cuerda horizontal pasa por una polea sin masa ni fricción, y un bloque de masa m pende del otro extremo. Al soltarse los bloques, la tensión en la cuerda es de 10.0 N. a) Dibuje un diagrama de cuerpo libre para el bloque de 4.00 kg y otro para el bloque de masa m. Calcule b) la aceleración de cada bloque y c) la masa m del bloque colgante. d) Compare la tensión con el peso del bloque colgante.
- **5.24. Peso aparente.** Un estudiante de física cuyo peso es de 550 N se para en una báscula de baño dentro de un elevador de 850 kg (incluyendo al estudiante), el cual es soportado por un cable. Al comenzar a moverse el elevador, la báscula marca 450 N. *a*) Determine la aceleración del elevador (magnitud y dirección). *b*) ¿Cuál será la aceleración si la báscula marca 670 N. *c*) Si la lectura es 0, ¿debería preocuparse el joven? Explique. *d*) En los incisos *a*) y *c*), ¿cuál es la tensión en el cable?
- **5.31.** Una caja de herramientas de 45.0 kg descansa sobre un piso horizontal. Usted ejerce sobre ella un empuje horizontal cada vez mayor sobre ella, y observa que la caja empieza a moverse justo cuando su fuerza excede 313 N. Después de lo cual, debe reducir el empuje a 208 N para mantener la caja en movimiento a 25.0 cm/s constantes. a) ¿Cuáles son los coeficientes de fricción estática y cinética entre la caja y el piso? b) ¿Qué empuje debe ejercer para darle una aceleración de 1.10 m/s²? c) Suponga que usted está realizando el mismo experimento sobre esta caja, pero ahora lo hace en la Luna, donde la aceleración debida a la gravedad es de 1.62 m/s². i) ¿Cuál sería la magnitud del empuje para que la caja se moviera? ii) ¿Cuál sería su aceleración si mantuviera el empuje del inciso b)?.

5.36. Considere el sistema de la figura 5.54. El bloque *A* pesa 45.0 N y el bloque *B* pesa 25.0 N. Una vez que el bloque *B* se pone en movimiento hacia abajo, desciende con rapidez constante. *a*) Calcule el coeficiente de fricción cinética entre el bloque *A* y la superficie de la mesa. *b*) Un gato, que también pesa 45.0 N, se queda dormido sobre el bloque *A*. Si ahora el bloque *B* se pone en movimiento hacia abajo,¿qué aceleración (magnitud y dirección) tendrá?

5.45. Los bloques A, B y C se colocan como en la figura 5.56 y se conectan con cuerdas de masa despreciable. Tanto A como B pesan 25.0 N cada uno, y el coeficiente de fricción cinética entre cada bloque y la superficie es de 0.35. El bloque C desciende con velocidad constante. a) Dibuje un diagrama de cuerpo libre que muestre las fuerzas que actúan sobre A, y otro para B. b) Calcule la tensión en la cuerda que une los bloques A y B. c) ¿Cuánto pesa el bloque C? d) Si se cortara la cuerda que une A y B, ¿qué aceleración tendría C?

- **5.50.** Una curva plana (sin peralte) en una carretera tiene un radio de 220.0 m. Un automóvil toma la curva a una rapidez de 25.0 m/s. *a*) ¿Cuál es el coeficiente de fricción mínimo que evitaría que derrape? *b*) Suponga que la carretera está cubierta de hielo y el coeficiente de fricción entre los neumáticos y el pavimento es de sólo un tercio del resultado del inciso *a*). ¿Cuál debería ser la rapidez máxima del auto, de manera que pueda tomar la curva con seguridad?
- **5.54.** Un botón pequeño, colocado en una plataforma giratoria horizontal de 0.320 m de diámetro, gira junto con la plataforma cuando ésta gira a 40.0 rpm, siempre que el botón no esté a más de 0.150 m del eje. *a*) ¿Qué coeficiente de fricción estática hay entre el botón y la plataforma? *b*) ¿A qué distancia del eje puede estar el botón, sin resbalar, si la plataforma gira a 60.0 rpm?
- **5.118.** Un carrito de control remoto con masa de 1.60 kg se mueve a una rapidez constante de v = 12.0 m/s, en un círculo vertical dentro de un cilindro hueco metálico de 5.00 m de radio (figura 5.82). ¿Qué magnitud tiene la fuerza normal ejercida sobre el coche por las paredes del cilindro a) en el punto A (parte inferior del círculo vertical)? b) ¿Y en el punto B (parte superior del círculo vertical)?

