第1頁,共1頁

Searching PAJ

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-130919

(43)Date of publication of application: 13,05.1994

(51)Int.Cl.

3/36 609GGO2F 1/133

(21)Application number: 04-301829

(71)Applicant: NIPPON MOTOROLA LTD

(22)Date of filing:

14.10.1992

(72)Inventor: TANAKA NORIAKI

ITO SHUICHI

(54) LIQUID CRYSTAL DISPLAY DEVICE

(57)Abstract:

PURPOSE: To prevent the deterioration of a liquid crystal cell by the DC driving voltage held after the stop of the supply of a clock signal for display of the liquid crystal display device having a clock signal supplying circuit for display separate from a CPU clock signal supplying circuit and to prevent the disturbance of a display screen and the deterioration of the liquid crystal cell by the unstable clock signal for display right after the start of the supply.

CONSTITUTION: The clock signal supplying circuit 16 for display has a means for forming the clock validity/invalidity signal CKEN changing to a state indicating the validity upon lapse of a prescribed period after the start of the operation and exhibiting the state indicating the invalidity right after the stop of the operation and supplying this signal to the liquid crystal driving circuit 13. The liquid crystal driving circuit 13 has a means for shifting to the driving enable state of the liquid crystal panel 14 when the clock validity/invalidity signal changes to the state indicating the validity and holds the driving voltage impressed to the liquid crystal cell when the clock validity/invalidity signal changes to the state indicating the invalidity at zero.

LEGAL STATUS

[Date of request for examination]

03.07.1997

[Date of sending the examiner's decision of rejection]

10.07.2001

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision

of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出鄉公開番号

特開平6-130919

(43)公明日 平成6年(1994)5月13日

(51)Int.Cl. ⁶		識別記号	广内整型番号	FI	技術表示簡所
G 0 9 G	3/36		7319—5 G		
G 0 2 F	1/133	5 2 5	9226-2K		

審査請求 未請求 請求項の数1(全 5 頁)

		(71)出願人	特頭平4-301829	(21)出願番号
号	日本モトローラ株式会社 東京都港区南麻布3丁目20番1号		平成 4年(1992)10月14日	(22)出题日
号 日本モ	田中 範明 東京都港区南麻布3丁目20番1号 トローラ株式会社内	(72)発明者	- 1 16 3 (1002) 100	(22) DIRUE
号 日本モ		(72) 発明者		
	弁理士 櫻井 俊彦	(74)代理人		
	弁理士 櫻井 俊彦	(74)代理人		

(54) 【発明の名称】 液晶表示装置

(57)【要約】

[目的] CPUクロック信号の供給回路とは別個の表示用クロック信号供給回路を有する液晶表示装置において、表示用クロック信号の供給停止後に保持される直流駆動電圧による液晶セルの劣化を防止すると共に供給開始直後の不安定な表示用クロック信号による表示画面の乱れや液晶セルの劣化を防止する。

【構成】 表示用クロック信号供給回路(13)は、動作の開始後所定期間が経過すると有効を示す状態に変化すると共に動作の停止後直ちに無効を示す状態を示すクロック有効/無効信号(CKEN)を作成して液晶駆動回路(13)に供給する手段を備え、液晶駆動回路(13)は、クロック有効/無効信号が有効を示す状態に変化すると液晶パネル(14)の駆動動作可能状態に移行し、上記クロック有効/無効信号が無効を示す状態に変化すると液晶セルに印加する駆動電圧をゼロに保持する手段を備える。

特別平6-130919

(2)

【特許請求の範囲】

【請求項1】 C P U クロック信号の供給回路とは別個に設置された表示用クロック信号供給回路と、この表示用クロック信号供給回路と、この表示用クロック信号供給回路から供給される表示用クロック信号に同期して被晶表示パネルの各セルの両端に印加する駆動電圧を変化させる液晶駆動回路とを備えた液晶表示装置において、

前記表示用クロック信号供給回路は、表示用クロック信号の供給開始後所定期間が経過すると第1の状態に変化することにより表示用クロック信号が有効であることを 10 示すと共に動作の停止後直ちに第2の状態に変化することにより表示用クロック信号が無効であることを示す表示用クロック有効/無効信号を作成し前記液晶駆動回路に供給する手段を備え、

前記液晶駆動回路は、前記表示用クロック信号供給回路から供給される表示用クロック有効/無効信号が有効を示す状態にあれば前記表示用クロック信号に同期して前記液晶表示パネルの各セルの両端に印加する駆動電圧を変化させる動作可能状態に移行すると共に、前記表示制御信号が無効を示す状態にあれば前記液晶表示パネルの各セルの両端に印加する駆動電圧差をゼロに保持する手段を備えたことを特徴とする液晶表示装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、各種の電子機器の表示 装置として汎用される液晶表示装置に関するものであ る。

[0002]

【従来の技術】各種の電子機器の表示装置として液晶表示装置が汎用されている。この種の液晶表示装置の典型 30 的なものとして、液晶表示パネルの表裏両面に互いに直交する電極群をマトリックス状に配列し、表裏の電極群に電圧を印加することによりその電圧差に等しい駆動電圧を各交点に配列されている各セルに印加する形式のものが知られている。

【0003】この形式の液晶表示装置では、通常、表裏の電極群に印加する駆動電圧のレベルがクロック信号に同期して複数段階にわたって制御される。このクロック信号に同期した複数段階にわたる駆動電圧レベルの制御は、液晶駆動回路によって行われる。また、この液晶駆動回路に供給されるクロック信号はCPUクロック信号に比べて低速である点、さらには、内蔵の電池で動作する携帯型の電子機器などでは表示が不要な期間内は表示系の動作を停止して消費電力の節減を図る点などを考慮して、通常、CPUクロック信号とは別系統の専用の表示用クロック信号供給回路から供給される。

[0004]

【発明が解決しようとする課題】上記従来の液晶表示装 では、表示が不要となった時点で表示用クロック信号 の供給を停止すると、これに伴って液晶駆動回路による 駆動電圧の制御が停止し、制御停止時点で駆動信号線群に印加されていた電圧がそのまま保持されてしまう。この結果、液晶表示パネルの各セルには表裏の駆動線の印加電圧差に等しい直流駆動電圧が印加され続けることになり、セルが劣化するという問題がある。

2

【0005】また、従来の液晶表示装置では、表示が必要となった時点で表示用クロック信号の供給を開始すると、この表示用クロック信号の供給の開始と同時に液晶駆動回路が動作を開始し、駆動信号線群に駆動電圧が出力される。このため、供給開始直後の不安定な表示用クロック信号に基づき出力される液晶表示パネルの駆動電圧が不安定となりやすく、表示両面の乱れや、液晶表示パネルの各セルの劣化を招くという問題がある。

100061

【課題を解決するための手段】上記従来技術の問題点を 解決する本発明の液晶表示装置によれば、表示用クロッ **少信号供給回路は、表示用クロック信号の供給開始後所** 定期間が経過すると第1の状態に変化することにより表 示用クロック信号が有効であることを示すと共に動作の 停止後直ちに第2の状態に変化することにより表示用ク ロジク信号が無効であることを示す表示用クロック有効 /無効信号を作成し、液晶駆動回路に供給する手段を備 えている。また、液晶駆動回路は、表示用クロック信号 供給回路から供給される表示用クロック有効/無効信号 が有効を示す状態にあれば表示用クロック信号に同期し て液晶表示パネルの各セルの両端に印加する駆動電圧を 変化させる動作可能状態に移行すると共に、表示制御信 号が無効を示す状態にあれば液晶表示パネルの各セルの 両端に印加する駆動電圧差をゼロに保持する手段を備え ている。

[0007]

【作用】表示用クロック信号供給回路は、表示用クロック信号の供給の開始後、表示用クロック信号が安定するために必要な所定期間が経過すると第1の状態に変化することにより表示用クロック信号が有効であることを示す表示用クロック信号と表示用クロック信号を出力する。この表示用クロック信号と表示用クロック有効/無効信号を出力する。この表示用クロック信号が有効になったことを設別しよって表示用クロック信号が有効になったことを識別しよって表示用クロック信号に同期して液晶表示パネルの各セルの両端に印加する駆動電圧を変化させる動作可能状態に移行する。この動作可能状態から実際の動作状態に移行する。この動作可能状態から実際の動作状態に移行するが高かはCPUから直接発せられる溝通開始指令の有無などに委ねられる。

【0008】表示用クロック信号供給回路は、CPUなどから発せられる指令に基づき表示用クロック信号の供給の停止後直ちに第2の状態に変化することにより表示用クロック信号が無効であることを示す表示用クロック有効/無効信号を出力する。このクロック有効/無効信号を出力する。大示用クロック信号が無効

(3)

特朗平6-130919

になったことを識別し、液晶表示パネルの各セルの両端 に印加する駆動電圧差をゼロに保持する。この結果、表 示用クロック信号の供給停止に伴う動作休止期間内は、 液晶表示パネルの各セルの両端の印加電圧差はゼロに保 持され、直流電圧が印加され続ける場合の劣化が有効に 回避される。

3

[00009]

【実施例】図1は、本発明の一実施例の液晶表示装置の 構成を示すブロック図であり、11はCPU、12は液 晶駆動回路制御部、13は液晶駆動回路、14は液晶変 10 示パネル、15はCPUクロック供給回路、16は表示 用クロック信号供給回路、17, 18は外部クロック信 号の入力端子である。

【0010】外部クロック信号の入力端子17には、図示しない水晶発振器などから高速の外部クロック信号路は、が入力し、これを受けたCPUクロック供給回回路は高速のCPUクロックCLKを作成してCPU11と液晶駆動回路制御部12に供給する。一方、外部クロック信号には、CPUクロック信号よりも高速のクロック信号には、が入力に、これを受けた表示用クロック信号の供給の開始後所定期間が経過であると共に、このでは、低速の関始をがあると共に、このでは、12に立ち上げることにより表示用クロック信号がではに、13に通知する。

【0011】すなわち、表示用クロック信号供給回路16は、ナンドゲート16a、インパータ16b、Nビットカウンタ16c及びフリップフロップ16dから構成されており、外部クロック入力端子18に供給されるクロック信号ck'を受け、CPU11から供給される表示用クロック供給指令がオフ("0")からオン

("1")に立ち上げられることにより選択的に導通せしめられるナンドゲート16aとインバータ16bとを通過させることにより表示用クロック信号CKとして液晶駆動回路13に供給する。

ック供給指令がオン("1")に立ち上がって表示用クロック信号CKの供給が開始されても、この表示用クロック信号CKが安定するまでの所定期間が経過するまでは表示用クロック有効/無効信号CKENが"1"に立ち上がらない。

【0013】表示用クロック信号供給回路16から表示用クロック信号CKとその有効/無効出力CKENを受ける液晶駆動回路13は、表示用クロック有効/無効信号CKENが有効を示す"1"に立ち上がると表示用クロック信号CKに同期して液晶表示パネル14に接続される駆動信号線群FP,BPに出力する印加電圧を変化させることにより、液晶表示パネルの各セルの両端に印加する駆動信号線群、変側信号線群の表面側の電極群に連なる駆動信号線群であり、表取の電極群の交点に配列される液晶パネルの各セルにはFPとBPに印加される駆動電圧の差に等しい駆動電圧が印加される。

【0014】また、液晶駆動回路13は、表示用クロック有効/無効信号CKENが"0"に立ち下がると、液晶表示パネル14の駆動信号線群FP, BPに出力する印加電圧をゼロに保持する。この結果、液晶表示パネルの各セルの両端に印加される駆動電圧もゼロに保持される。このように、表示用クロック信号の供給が停止している期間内は、液晶表示パネルの各セルに印加される駆動電圧がゼロに保持されるため、各セルに直流電圧が印加され続けることがなくなり各セルの劣化が有効に回避される。

「【0015】図2は、図1の液晶駆動回路13の構成の一例を、1本の駆動信号線(FP又はBP)について簡略化して示す回路図である。図2中、入力信号ENはCPU11から液晶駆動回路制御部12を経て供給される1ビットのオン/オフ指令でる。また、入力信号DATAは、液晶駆動回路制御部12から供給される1ビットの導通開始指令である。入力信号CKとCKENは、前述したように表示用クロック信号と表示用クロック有効/無効信号である。

【0016】表示用クロック有効/無効信号CKENと 導通開始指令ENのいずれもが"1"の場合には、通常 の表示のための液晶駆動動作が行われる。すなわち、表 示データDATAが"1"であるか"0"であるかに応 じて4個のスイッチQ0~Q3のうちの異なる1対が交 互に導通し、駆動信号線(FP/BP)上にクロック周 期で異なる被形の駆動電圧が供給される。すなわち、表 示デークDATAが"1"であれば、表示用クロック信 号CKに同期してスイッチQ0とQ3の対が交互に導通 し、駆動信号線(FP/BP)上に、接地電圧と最高電 し、駆動信号線(FP/BP)上に、接地電圧と最高電 にV3が交互に供給される。また、表示データDATA (4)

特開平6-130919

が"0"であれば、表示用クロック信号CKに同期してスイッチQ1とQ2の対が交互に導通し、駆動信号線(FP/BP)上に2番目に高い電圧V2と3番目に高い電圧V1が交互に供給される。

5

【0017】この後、表示用クロック信号の供給が停止されて表示用クロック有効/無効信号CKENが"0"になると、表示データDATAとクロック信号CKが"1"であるか"0"であるかに係わらず、スイッチQ1、Q2、Q3が非海通状態に保たれると共にスイッチQ1、Q2、Q3が非海通状態に保たれると共にスイッチP/BP)は接地電圧に保持される。この接地電位への保持は、図2と同一の回路によって全ての駆動信号線(FP/BP)について行われるので、液晶表示パネルの各セルに印加される駆動電圧も当然ゼロになる。この後、海通開始指令ENも"0"になると、スイッチQ0も非導通状態となり、駆動信号線(FP/BP)はこの液晶駆動回路から切り離される。

【0018】以上、表示用クロック信号の供給の停止に伴い、全ての駆動信号線(FP/BP)をゼロ電圧に保つ構成を例示した。しかしながら、液晶表示パネルの各20セルには駆動信号線間の差電圧が印加されるので、表示用クロック信号の停止時には全ての駆動信号線に駆動電圧V1、V2又はV3のうちの一つを供給することにより全ての駆動信号線を等電圧に保持する構成としてもよい。

[0019]

【発明の効果】以上詳細に説明したように、本発明の液*

* 協宏示装置によれば、表示用クロック信号の供給が開始 されても所定期間が経過するまでは液晶駆動回路の動作 が開始されない構成であるから、供給開始直後の不安定 な表示用クロック信号によって表示画面が乱れたり、液 晶表示パネルの各セルが劣化したりするという従来技術 の問題点が有効に解決される。

6

【0020】また、本発明の液晶表示装置によれば、表示用クロック信号の供給が停止されると直ちに、液晶駆動回路は液晶表示パネルの各セルの両端に印加する駆動電圧をゼロに保持する構成であるから、表示用クロック信号の停止時点の駆動電圧が液晶パネルの各セルに印加され続けて各セルの劣化を生じさせるという従来技術の問題点が有効に解決される。

【図面の簡単な説明】

【図1】本発明の一実施例の液晶表示装置の構成を示す プロック図である。

【図2】図1の液晶駆動回路の構成の一例を一つの駆動 信号線について示す回路図である。

【符号の説明】

- 20 11 CPU
 - 12 液晶駆動回路制御部
 - 13 液晶駆動回路
 - 14 液晶表示パネル
 - 16 表示用クロック信号供給回路
 - 16c Nビットカウンタ
 - FP, BP 驱動信号線群

[図1]

(5)

特開平6-130919

