GRADIENT

DESCENT

Overview

• in many algorithms we want to compute weights w to minimize cost function J(w)

figure reprinted from www.kdnuggets.com with explicit permission of the editor

Basic Idea

• in gradient descent, we start with initial weights and update weights to reduce J(W)

figure reprinted from www.kdnuggets.com with explicit permission of the editor

How to Update Weights?

 take steps proportional to the gradient

figure reprinted from www.kdnuggets.com with explicit permission of the editor

Why Use Gradient?

• cost function J(W) decreases fastest in the direction of negative gradient

figure reprinted from www.kdnuggets.com with explicit permission of the editor

Intuition

• find temperature ("weights") to maximize "enjoyment"

figure reprinted from www.kdnuggets.com with explicit permission of the editor

Equivalent Formulation

• find temperature ("weights") to minimize "suffering" J(W)

figure reprinted from www.kdnuggets.com with explicit permission of the editor

Exhaustive Search

- can examine "all" values
- this is inefficient

figure reprinted from www.kdnuggets.com with explicit permission of the editor

Gradient Descent

• iteratively update weights to lower J(W)

figure reprinted from www.kdnuggets.com with explicit permission of the editor

Typical Step

• J(W) is lowered if we move "opposite" gradient

figure reprinted from www.kdnuggets.com with explicit permission of the editor

Typical Step (cont'd)

• continue moving "opposite" gradient

figure reprinted from www.kdnuggets.com with explicit permission of the editor

"Speed" of Convergence

• can take larger step for "steeper" slopes

figure reprinted from www.kdnuggets.com with explicit permission of the editor

Stopping Criteria

• no ("significant") decrease in J(W)

figure reprinted from www.kdnuggets.com with explicit permission of the editor

Using Curvature

- can reduce number of steps
- large curvature: big step

figure reprinted from www.kdnuggets.com with explicit permission of the editor

Using Curvature (cont'd)

• small curvature: small step

figure reprinted from www.kdnuggets.com with explicit permission of the editor

Curvature Trade-off

- use fewer steps
- but more computations

figure reprinted from www.kdnuggets.com with explicit permission of the editor

Issue: Local Minimum

may consider randomization

figure reprinted from www.kdnuggets.com with explicit permission of the editor

Issue: Noisy Data

may stop far from optimal

figure reprinted from www.kdnuggets.com with explicit permission of the editor

Issue: Zero Gradient

cannot update weights

figure reprinted from www.kdnuggets.com with explicit permission of the editor

Issue: Discontinuous Cost Function

may stop far from optimal

figure reprinted from www.kdnuggets.com with explicit permission of the editor

The Algorithm

- compute W to minimize f(x)
- choose initial weights W_0 and learning rate α
- for iteration i update weights:

$$W_i = W_{i-1} - \alpha \cdot \partial f(W_{i-1})$$

• repeat iterations until changes in W do not (significantly) change $f(\cdot)$

Geometric Interpretation

- iterative optimization
- direction to minimize f(x)

Python Code

```
import numpy as np
x = np.linspace(0, 10, 1000)
y = (x - 5)**2
df = lambda x: 2*(x-5)
rate = 0.25; precision = 0.001
next_x = 8; max_iterations = 100
for i in range(max_iterations):
    cur_x = next_x
    next_x = cur_x - rate * df(cur_x)
    step = next_x - cur_x
    print("Iteration:",i+1,"x= ",next_x)
    if abs(step) <= precision:</pre>
        break
print("Minimum at", next_x, ', ',
       i+1, 'iterations')
```

Execution Details

• for iteration 1:

$$cur_{x} = next_{x} = 8$$
 $df(cur_{x}) = 2*(8-5) = 6$
 $next_{x} = cur_{x} - rate*df(cur_{x})$
 $= 8 - 0.25*6 = 6.5$

```
Iteration: 1 	 x = 6.5
```

Iteration: $2 \times = 5.75$

Iteration: $3 \times = 5.375$

Iteration: 10 x = 5.0029296875

Iteration: $11 \times = 5.00146484375$

Iteration: $12 \times = 5.000732421875$

Minimum at 5.000732421875, 12 iterations

Choosing the Learning Rate

- \bullet small α slow convergence
- \bullet large α possible oscillations

Effect of Decreasing Rate

• slower rate - more iterations

Effect of Decreasing Rate (cont'd)

• rate = 0.25, next_x = 8

```
Iteration: 1 	 x = 7.4
```

Iteration: $2 \times = 6.92$

Iteration: $3 \times = 6.536$

Iteration: $29 \times = 5.0046422751473205$

Iteration: 30 x = 5.003713820117857

Minimum at 5.003713820117857, 30 iterations

Effect of Increasing Rate

• may fail to converge

Effect of Increasing Rate (cont'd)

- rate = 1.1, next_x = 8
- may fail to converge

Iteration: $2 \times = 9.32$

Iteration: $3 \quad x = -0.184000000000000005$

Iteration: $99 \times = -207044931.30503917$

Iteration: 100 x = 248453928.566047

Minimum at 248453928.566047, 100 iterations

Oscillations

• never converges

Example of Oscillations

- take rate = 1, $next_x = 6$
- iteration 1:

$$cur_{x} = next_{x} = 6$$
 $df(cur_{x}) = 2*(6-5) = 2$
 $next_{x} = cur_{x} - rate*df(cur_{x})$
 $= 6 - 1*2 = 4$

• iteration 2:

$$cur_{x} = next_{x} = 4$$
 $df(cur_{x}) = 2 * (4 - 5) = -2$
 $next_{x} = cur_{x} - rate * df(cur_{x})$
 $= 4 - 1 * (-2) = 6$

Notes on Gradient Descent

- slow each iteration requires to examine all samples
- some variants stochastic gradient descent (examine some points)
- how to compute rate?
 - 1. constant
 - 2. decrease with updates

Concepts Check:

- (a) optimization by iterations
- (b) gradient
- (c) curvature
- (d) stopping criteria
- (e) learning rate
- (f) oscillations