Computer methods in applied mechanics and engineering

Editors:

J.H. Argyris, (Principal Editor) Stuttgart, London

T.J.R. Hughes Stanford, CA

J.T. Oden Austin, TX

CMMECC Cumulative Index

NORTH-HOLLAND

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING EDITORS: J.H. ARGYRIS, STUTTGART and LONDON T.J.R. HUGHES, STANFORD, CA J.T. ODEN, AUSTIN, TX

W. PRAGER Founding Editor (deceased 1980)

EDITORIAL ADDRESSES

John H. ARGYRIS

Institut für Computer Anwendungen Pfaffenwaldring 27 D-7000 STUTTGART 80 Federal Republic of Germany (Editorial Office) Department of Aeronautics Imperial College of Science and Technology Prince Consort Road LONDON S.W. 7 U.K. Thomas J.R. HUGHES Division of Applied Mechanics Durand Building Room No. 281 Stanford University STANFORD CA 94305-4040, U.S.A. J. Tinsley ODEN
Texas Institute for
Computational Mechanics
University of Texas
AUSTIN
TX 78712, U.S.A.

ASSOCIATE EDITORS

I. BABUŠKA, College Park, MD A.J. BAKER, Knoxville, TN T. BELYTSCHKO, Evanston, IL G. DAHLQUIST, Stockholm R. E. EWING, Laramie, WY M. FEINGOLD, Marly-le-Roy R.H. GALLAGHER, Potsdam, NY
R. GLOWINSKI, Rocquencourt,
Le Chesnay
H.O. KREISS, Pasadena, CA
J.L. LIONS, Paris
C.E. MASSONNET, Liège
L.S.D. MORLEY, Uxbridge

K.S. PISTER, Berkeley, CA
D.B. SPALDING, London
G. STRANG, Cambridge, MA
G.P. VOSKRESENSKY, Moscow
W.H. YANG, Ann Arbor, MI
O.C. ZIENKIEWICZ, Swansea

ADVISORY EDITORS

J.F. ABEL, Ithaca, NY H. ARMEN, Bethpage, NY K.J. BATHE, Cambridge, MA P.G. BERGAN, Hovik J.F. BESSELING, Delft G. BORM, Karlsruhe H. BUFLER, Stuttgart H. CABANNES, Paris G.F. CARRIER, Cambridge, MA T. CEBECI, Long Beach, CA A.S.L. CHAN, London J.L. CHENOT, Valbonne H. CHRISTIANSEN, Provo, UT T.J. CHUNG, Huntsville, AL P.G. CIARLET, Paris H. COHEN, Yorktown Heights, NY M.Z. COHN, Waterloo, Ont. J. DONEA, Ispra P.R. EISEMAN, New York B. ENGQUIST, Los Angeles, CA C.A. FELIPPA, Boulder, CO K. FENG, Beijing I. FRIED, Boston, MA R.A. GELLATLY, Buffalo, NY

M. GERADIN, Liège R. GRUBER, Lausanne K.K. GUPTA, Pasadena, CA R.W. HAMMING, Monterey, CA F.H. HARLOW, Los Alamos, NM J.C. HEINRICH, Tucson, AZ M. HOGGE, Liège I. HOLAND, Trondheim C. JOHNSON, Göteborg B.Z. KAPLAN, Beer Sheva T. KAWAI, Tokyo J. KESTENS, Brussels S.W. KEY, Los Angeles, CA W.C. KNUDSON, Sunnyvale, CA F.A. LECKIE, Santa Barbara, CA R.W. LEWIS, Swansea K. LINKWITZ, Stuttgart H. LOMAX, Moffet Field, CA LUO Shi-jun, Xi'an G. MAIER, Milan J.L. MEEK, St. Lucia, Queensland A.J. MORRIS, Cranfield A. NEEDLEMAN, Providence, RI M.P. NIELSEN, Lyngby

A.K. NOOR, Hampton, VA P.J. PAHL, Berlin B. PAUL, Philadelphia, PA R. PEYRET, Nice J. PLANCHARD, Clamart A.R.S. PONTER, Leicester QIAN Ling-xi (L.H. Tsien), Dalian A.K. RAO, Bangalore M. REISER. Rüschlikon P.J. ROACHE, Albuquerque, NM W.P. RODDEN, La Canada, CA G.I.N. ROZVANY, Essen W. SCHIEHLEN, Stuttgart H.R. SCHWARZ, Zürich P.S. SYMONDS, Providence, RI A.B. TEMPLEMAN, Liverpool C.W. TROWBRIDGE, Kidlington J.R. WHITEMAN, Uxbridge K.J. WILLAM, Boulder, CO Y. YAMADA, Tokyo Th. ZIMMERMANN, Lausanne

Technical Editor: N.N.; Editorial Secretary: Marlies PARSONS; Editorial Advisor: W.P.F. SHARKEY

© 1990, Elsevier Science Publishers B.V. (North-Holland).

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher, Elsevier Science Publishers B.V. (North-Holland), P.O. Box 1991, 1000 BZ Amsterdam, The Netherlands.

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Although all advertising material is expected to conform to ethical standards, inclusion in this publication does not constitute a guarantee or endorsement of the quality or value of such product or of the claims made of it by its manufacturer.

This Cumulative Index is printed on acid-free paper.

Published 18 times a year

0045-7825/90/\$03.50

Printed in The Netherlands

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING

ASSOCIATE EDITORS

- BABUŠKA, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, U.S.A.
- A.J. BAKER, Department of Engineering Science and Mechanics, University of Tennessee, 317 Perkins Hall, Knoxville, Tennessee 37916, U.S.A.
- T. BELYTSCHKO, Department of Civil Engineering, Technological Institute, Northwestern University, Evanston, Illinois 60201, U.S.A.
- G. DAHLQUIST, Royal Institute of Technology, Department for Computer Sciences, Numerical Analysis, Lindstedtvägen 15, S-100 44 Stockholm 70, Sweden
- R.E. EWING, Department of Mathematics, University of Wyoming, Box 3036, University Station, Laramie, WY 82071, U.S.A.
- M. FEINGOLD, 9 Rue Thibault, 78 Marly-le-Roy, France
- R.H. GALLAGHER, Clarkson University, Potsdam, NY 13676, U.S.A.
- R. GLOWINSKI, INRIA, Laboratoire de Recherche en Informatique et Automatique, Domaine de Voluceau, Rocquencourt, B.P. 5, 78150 Le Chesnay, France
- H.-O. KREISS, California Institute of Technology, Applied Mathematics 101-50, Firestone Laboratory, Pasadena, California 91125, U.S.A.
- J.L. LIONS, Centre National d'Etudes Spatiales, 2, Place Maurice Quentin, 75039 Paris Cédex 01, France
- C.E. MASSONNET, Institut du Genie Civil, 6, Quai Banning, Liège, Belgium
- L.S.D. MORLEY, Institute of Computational Mathematics, BRUNEL, The University of West London, Uxbridge, Middlesex UB8 3PH, England
- K.S. PISTER, College of Engineering, Department of Civil Engineering, Division of Structural Engineering and Structural Mechanics, University of California, Berkeley, California 94720, U.S.A.
- D.B. SPALDING, Department of Mechanical Engineering, Imperial College of Science and Technology, Exhibition Road, London SW7, U.K.
- G. STRANG, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A.
- G.P. VOSKRESENSKY, Keldysh Institute of Applied Mathematics, U.S.S.R. Academy of Sciences, Miusskaya Sq. 4, Moscow 125047, U.S.S.R.
- W.H. YANG, Department of Applied Mathematics and Engineering Science, The University of Michigan, College of Engineering, Ann Arbor, Michigan 48109, U.S.A.
- O.C. ZIENKIEWICZ, Department of Civil Engineering, University of Swansea, Swansea SA2 8PP, U.K.

ADVISORY EDITORS

- J.F. ABEL, Structural Engineering, School of Civil and Environmental Engineering, Cornell University, Hollister Hall, Ithaca, NY 14853, U.S.A.
- H. ARMEN, Grumman Aerospace Corporation, Bethpage, NY 11714, U.S.A.
- K.J. BATHE, Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

- P.G. BERGAN, A.S. Venitas Research, P.O. Box 300, N-1322 Høvik, Norway
- J.F. BESSELING, Afdeling der Werktuigbouwkunde van de Technische Universiteit, Mekelweg 2, Delft, The Netherlands
- G. BORM, Institut f
 ür Modenmechanik und Felsmechanik, Universit
 ät (TH) Fridericiana Karlsruhe, D-7500 Karlsruhe, Federal Republic of Germany
- H. BUFLER, Institut f
 ür Mechanik (Bauwesen), Universit
 ät Stuttgart, Pfaffenwaldring 7, D-7000 Stuttgart 80, Federal Republic of Germany
- H. CABANNES, Tour 66 4ième étage, Université de Paris 6, 4, Place Jussieu, F-75230 Paris, Cedex 05, France
- G.F. CARRIER, Division of Engineering and Applied Physics, Pierce Hall, Harvard University, Cambridge, MA 02138, U.S.A.
- T. CEBECI, Douglas Aircraft Company, 3855 Lakewood Boulevard, Long Beach, CA 90846, U.S.A.
- A.S.L. CHAN, Department of Aeronautics, Imperial College of Science and Technology, Prince Consort Road, London S.W. 7, U.K.
- J.L. CHENOT, Centre de Mise en Forme des Matériaux, ENS, Ecole Nationale Superieure des Mines de Paris, Sophia Antipolis, F-06560 Valbonne, France
- H. CHRISTIANSEN, Department of Civil Engineering 368 CB, Brigham Young University, Provo, UT 84602, U.S.A.
- T.J. CHUNG, School of Engineering, Department of Mechanical Engineering, The University of Alabama in Huntsville, Huntsville, AL 35899, U.S.A.
- P.G. CIARLET, Analyse Numérique, Tour 55-65, Université de Paris 6, 4, Place Jussieu, F-75230 Paris, Cedex 05. France
- H. COHEN, IBM, Yorktown Heights, NY 10598, U.S.A.
- M.Z. COHN, University of Waterloo, Ontario, Canada
- J. DONEA, Commission of the European Communities, Joint Research Centre, Ispra Establishment, Applied Mechanics Division, I-21020 Ispra (Varese), Italy
- P.R. EISEMAN, Department of Applied Physics and Nuclear Engineering, Columbia University, New York, NY 10027, U.S.A.
- B. ENGQUIST, Department of Mathematics, University of California, Los Angeles, CA 90024, U.S.A.
- C.A. FELIPPA, Department of Aerospace Engineering Sciences, Campus Box 429, University of Colorado, Boulder, CO 80309-0429, U.S.A.
- K. FENG, Chinese Academy of Sciences, Computing Center, P.O. Box 2719, Beijing 100080, The People's Republic of China
- I. FRIED, Department of Mathematics, College of Liberal Arts, Boston University, Boston, MA 02215, U.S.A.
- R.A. GELLATLY, Aerospace and Structural Systems, Bell Aerospace Company, Buffalo, NY 14240, U.S.A.
- M. GERADIN, L.T.A.S., Dynamique des Constructions Mécaniques, Université de Liège, Rue Ernest Solvay 21, B-4000 Liège, Belgium
- R. GRUBER, Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, CH-1007, Lausanne, Switzerland

- K.K. GUPTA, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91103, U.S.A.
- R.W. HAMMING, Code 52 Hg, Department of Computer Science, Naval Postgraduate School, Monterey, CA 93940, U.S.A.
- F.H. HARLOW, University of California, Los Alamos Scientific Laboratory, P.O. Box 1663, Los Alamos, NM 87544, U.S.A.
- J.C. HEINRICH, College of Engineering and Mines, Aerospace and Mechanical Engineering Department, University of Arizona, Aero Building 16, Tucson, AZ 85721, U.S.A.
- M. HOGGE, L.T.A.S., Thermo mécanique, Université de Liège, Rue Ernest Solvay 21, B-4000 Liège, Belgium
- I. HOLAND, Institutt for Statikk, Norges Tekniske Høgskole, N-7034 Trondheim NTH, Norway
- C. JOHNSON, Department of Mathematics, Chalmers Institute of Technology, S-412 96 Göteborg, Sweden
- B.Z. KAPLAN, Department of Electrical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84 105, Israel
- T. KAWAI, Institute of Industrial Science, University of Tokyo, 22-1, Roppongi, 7 chome, Minato-ku, Tokyo 106, Japan
- J. KESTENS, 23 Avenue du Maréchal, B-1180 Brussels, Belgium
- S.W. KEY, The MacNeal-Schwendler Corporation, 815 Colorado Boulevard, Los Angeles, CA 90041-1777, U.S.A.
- W.C. KNUDSON, Lockheed Missile and Space Company, Inc., P.O. Box 3504, 0/81-11, Bldg. 157-5E, Sunnyvale, CA 94088-3504, U.S.A.
- F.A. LECKIE, Department of Mechanical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, U.S.A.
- R.W. LEWIS, Department of Civil Engineering, University College of Swansea, Applied Science Building, Singleton Park, Swansea SA2 8PP, U.K.
- K. LINKWITZ, Institut für Anwendungen der Geodäsie im Bauwesen, Universität Stuttgart, Keplerstr. 10, D-7000 Stuttgart 80, Federal Republic of Germany
- H. LOMAX, Computational Fluid Dynamic Branch, National Aeronautics and Space Administration, Ames Research Center, Moffet Field, CA 94035, U.S.A.
- LUO Shi-jun, North-Western Polytechnical University, Xi'an, The People's Republic of China
- G. MAIER, Istituto di Scienza e Tecnica delle Costruzioni, Politecnico di Milano, P. Za. Leonardo da Vinci 32, I-20133 Milano, Italy
- J.L. MEEK, University of Queensland, St. Lucia, Queensland 4067, Australia
- A.J. MORRIS, College of Aeronautics, Cranfield Institute of Technology, Cranfield, Bedford MK43 0AL, U.K.
- A. NEEDLEMAN, Division of Engineering, Brown University, Providence, RI 02912, U.S.A.
- M.P. NIELSEN, Structural Research Laboratory, Technical University of Denmark, Lundtoftevej 100, Bygning 118, DK-2800 Lyngby, Denmark
- A.K. NOOR, George Washington University, Langley Research Center, Hampton, VA 23665, U.S.A.

- P.J. PAHL, Technische Universität Berlin, Institut für Allgemeine Bauingenieurmethoden, Strasse des 17. Juni 135-EB433, D-1000 Berlin 12, Federal Republic of Germany
- B. PAUL, University of Pennsylvania, Civil and Urban Engineering, Mechanical Engineering and Mechanics, PA 19104, U.S.A.
- R. PEYRET, Département de Mathématiques, Université de Nice, Parc Valrose, 06034 Nice Cédex, France
- J. PLANCHARD, Département M.M.N., Electricité de France, 1, Avenue du General de Gaulle, F-92141 Clamart, France
- A.R.S. PONTER, Department of Engineering, University of Leicester, University Road, Leicester LEI 7RH, U.K.
- QIAN Ling-xi (L.H. Tsien), Dalian Institute of Technology, Dalian 116024, The People's Republic of China
- A.K. RAO, Indian Institute of Science, Department of Aeronautical Engineering, Bangalore-12, India
- M. REISER, IBM Research Laboratory Zürich, Säumerstrasse 4, CH-8803, Rüschlikon, Switzerland
- P.J. ROACHE, Ecodynamics Research Associates, Inc., P.O. Box 8172, Albuquerque, NM 87198, U.S.A.
- W.P. RODDEN, 255 Starlight Crest Drive, La Canada, CA 91011, U.S.A.
- G.I.N. ROZVANY, Fachbereich Bauwesen, Universität Essen, Postfach 1037 64, D-4300 Essen 1, Federal Republic of Germany
- W. SCHIEHLEN, Institut B für Mechanik, Universität Stuttgart, Pfaffenwaldring 9, D-7000 Stuttgart 80, Federal Republic of Germany
- H.R. SCHWARZ, Wiesliacher 9, CH-8053, Zürich, Switzerland
- P.S. SYMONDS, Department of Engineering, Brown University, Providence, RI 02912, U.S.A.
- A.B. TEMPLEMAN, Department of Civil Engineering, University of Liverpool, P.O. Box, 147 Liverpool L69 3BX, U.K.
- C.W. TROWBRIDGE, Vector Fields Limited, 24 Bankside, Kidlington, Oxon OX5 1JE, U.K.
- J.R. WHITEMAN, Institute of Computational Mathematics, Brunel University, GB-Uxbridge, Middlesex UB8 3PH, U.K.
- K.J. WILLAM, Department of Civil Engineering, University of Colorado, Campus Box 428, Boulder, CO 80309, U.S.A.
- Y. YAMADA, Institute of Industrial Sciences, University of Tokyo, Tokyo, 7-22-1 Roppongi, Minato-ku, Japan
- Th. ZIMMERMANN, Institut d'Economie et Aménagements Energetiques (IENER), Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland

COMPUTER METHODS in APPLIED MECHANICS AND ENGINEERING

EDITORS

J.H. ARGYRIS (Principal Editor)
Institut für Computer Anwendungen
Pfaffenwaldring 27
D-7000 STUTTGART 80
Federal Republic of Germany

T.J.R. HUGHES
Division of
Applied Mechanics
Durand Building
Room No. 281
Stanford University
STANFORD
CA 94305-4040, U.S.A.

J.T. ODEN
Texas Institute for
Computational Mechanics
University of Texas
AUSTIN
TX 78712, U.S.A.

or ·

Department of Aeronautics Imperial College of Science and Technology University of London Prince Consort Road LONDON S.W. 7 U.K.

> Cumulative Index, 1990 Volumes 61-80

© 1990, Elsevier Science Publishers B.V. (North-Holland)

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher, Elsevier Science Publishers B.V. (North-Holland), P.O. Box 1991, 1000 BZ Amsterdam, The Netherlands.

Special regulations for authors — Upon acceptance of an article by the journal, the author(s) will be asked to transfer copyright of the article to the publisher. This transfer will ensure the widest possible dissemination of information.

Submission of an article entails the author's irrevocable and exclusive authorization of the publisher to collect any sums or considerations for copying or reproduction payable by third parties (as mentioned in article 17 paragraph 2 of the Dutch Copyright Act of 1912 and in the Royal Decree of June 20, 1974 (S.351) pursuant to article 16b of the Dutch Copyright Act of 1912) and/or to act in or out of Court in connection therewith.

Special regulations for readers in the U.S.A. — This journal has been registered with the Copyright Clearance Center, Inc. Consent is given for copying of articles for personal or internal use, or for the personal use of specific clients. This consent is given on the condition that the copier pays through the Center the per-copy fee stated in the code on the first page of each article for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. The appropriate fee should be forwarded with a copy of the first page of the article to the Copyright Clearance Center, Inc., 27 Congress Street, Salem, MA 01970, U.S.A. If no code appears in an article, the author has not given broad consent to copy and permission to copy must be obtained directly from the author. All articles published prior to 1981 may be copied for a per-copy fee of US \$2.25, also payable through the Center. This consent does not extend to other kinds of copying, such as for general distribution, resale, advertising and promotion purposes, or for creating new collective works. Special written permission must be obtained from the publisher for such copying.

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Although all advertising material is expected to conform to ethical standards, inclusion in this publication does not constitute a guarantee or endorsement of the quality or value of such product or of the claims made of it by its manufacturer.

This volume is printed on acid-free paper.

CUMULATIVE AUTHOR INDEX OF VOLUMES 61-80

1	About D. and M. Frank Brooks and all for the orbits of States		
1.	Aboulaich, R. and M. Fortin, Iterative methods for the solution of Stokes equations	75 (1989) 3	17 224
2	Achenbach, J.D., G.E. Kechter and YL. Xu, Off-boundary approach to the	75 (1989) 3	11-324
4.	boundary element methods	70 (1988) 1	01 201
2	Adjedj, G. and D. Aubry, Development of a hierarchical and adaptive finite	70 (1900)	91-201
3.	element software	75 (1989) 1	52 165
4	Ahmadi-Befrui, B., A.D. Gosman, R.I. Issa and A.P. Watkins, EPISO—An	13 (1909)	133-103
٦.	implicit non-iterative solution procedure for the calculation of flows in re-		
	ciprocating engine chambers	79 (1990)	249_279
5	Alduncin, G., Duality and variational principles of potential boundary value	(2)20).	217
٠.	problems	64 (1987)	169-485
6.	Alduncin, G., Subdifferential and variational formulations of boundary value	0.(250.)	105 105
-	problems	72 (1989)	173-186
7.	Al-Khaiat, H., Initial-value analysis of continuous orthotropic plates	69 (1988)	
	Anastasselou, E.G. and N.I. Ioakimidis, On the location of straight discontinu-	,	
	ity intervals of arbitrary sectionally analytic functions by using complex		
	path-independent integrals	65 (1987)	165-176
9.	Angrand, F. and P. Leyland, Compressible viscous flow simulation by multi-		
	grid methods	75 (1989)	167-183
10.	Antoniadis, I. and A. Kanarachos, Decoupling procedures for fluid-structure		
	interaction problems	70 (1988)	1- 25
11.	Argyris, J. and M. Haase, An engineer's guide to soliton phenomena: Applica-		
	tion of the finite element method	61 (1987)	71-121
12.	Argyris, J., H. Balmer and I.St. Dolstinis, Implantation of a nonlinear capabil-		
	ity on a linear software system	65 (1987)	267–291
13.	Argyris, J., H. Balmer and I.St. Doltsinis, Some thoughts on shell modelling		
	for crash analysis	71 (1988)	341-365
14.	Argyris, J., I.St. Doltsinis and H. Friz, Hermes space shuttle: Exploration of		
	reentry aerodynamics	73 (1989)	1- 51
15.	Asaithambi, N.S., On a variable time-step method for the one-dimensional	(4.000)	
	Stefan problem	71 (1988)	
	Askar, H.G., Special elements for point singularities	63 (1987)	2/1-280
17.	Auerbach, T. and J. Mennig, 3-Point Hermite integration of differential	76 (1000)	1 16
10	equations	76 (1989)	1- 15
18.	Aufranc, M., Numerical study of a junction between a three-dimensional elastic structure and a plate	74 (1989)	207 222
10	Axelsson, O. and J. Maubach, On the updating and assembly of the Hessian	/4 (1707)	201-222
17.	matrix in finite element methods	71 (1988)	41_ 67
	matrix in minte element methods	/1 (1900)	41- 07
20.	Babuška, I. and B.Q. Guo, The h-p version of the finite element method for		
	problems with nonhomogeneous essential boundary condition	74 (1989)	1- 28
21.	Babuška, I. and A. Miller, A feedback element method with a posteriori error		
	estimation: Part I. The finite element method and some basic properties of the		
	a posteriori error estimator	61 (1987)	1- 40

22	Babuška, I. and M. Suri, The p- and h-p version of the finite element method,		
22.	An overview	80 (1990)	5- 26
23.	Babuška, I., B. Guo and E.P. Stephan, The h-p version of the boundary	00 (1770)	0 20
	element method with geometric mesh on polygonal domains	80 (1990)	319-325
24.	Ballal, G., CH. Li, R. Glowinski and N.R. Amundson, Single particle char	()	
	combustion and gasification	75 (1989)	467-479
25.	Bamberger, A., Definition d'une methodologie de demonstration numerique		
	d'existence de solutions d'équations elliptiques semi-lineaires	75 (1989)	3- 10
26.	Bamberger, A., B. Cockburn, Y. Goldman, P. Joly and M. Kern, Numerical		
	solutions of Maxwell's equations in a conductive and pclarizable medium	75 (1989)	11- 26
27.	Bardet, J.P., Finite element analysis of surface instability in hypo-elastic solids	78 (1990)	273-296
	Barenghi, C.F., A spectral method for time modulated Taylor-Couette flow	80 (1990)	223-227
29.	Barone, M.R. and R.J. Yang, A boundary element approach for recovery of		
	shape sensitivities in three-dimensional elastic solids	74 (1989)	69- 82
30.	Barragy, E. and G.F. Carey, A partitioning scheme and iterative solution for		
	sparse bordered systems	70 (1988)	321-327
31.	Bartholomew, R.W., Velocity field estimates and three-dimensional discrete		
	vortex methods	71 (1988)	15- 29
32.	Bayo, E., J. Garcia de Jálon and M.A. Serna, A modified Lagrangian formula-		
	tion for the dynamic analysis of contrained mechanical systems	71 (1988)	183-195
33.	Bègue, C., C. Bernardi, N. Debit, Y. Maday, G.E. Karniadakis, C. Mavriplis		
	and A.T. Patera, Non-conforming spectral element-finite element approxima-		
	tions for partial differential equations	75 (1989)	109-126
34.	Belegundu, A.D. and S.D. Rajan, A shape optimization approach based on		
	natural design variables and shape functions	66 (1988)	87-106
35.	Bellamy-Knight, P.G., M.G. Benson, J.H. Gerrard and I. Gladwell, Conver-		
-	gence properties of panel methods	76 (1989)	171-178
36.	Bellet, D. and M.C. Vinatier, Numerical spectral method for flows through		
	anevrisms	63 (1987)	167–182
37.	Bello-Ochende, F.L., A heat function formulation for thermal convection in a		
	square cavity	68 (1988)	
	Belytschko, T. and J. Fish, Embedded hinge lines for plate elements	76 (1989)	67- 86
39	Belytschko, T., J. Fish and B.E. Engelman, A finite element with embedded		
40	localization zones	70 (1988)	59- 89
40	Belytschko, T., W.K. Liu and J.SJ. Ong, Mixed variational principles and	60 (100m)	
49	stabilization of spurious modes in the 9-node element	62 (1987)	275-292
41	Bendsøe, M.Ph. and N. Kikuchi, Generating optimal topologies in structural	71 (1000)	107 004
40	design using a homogenization method	71 (1988)	197-224
42	Benim, A.C., A finite element solution for radiative heat transfer in participat-	(5 (1000)	
42	ing media utilizing the moment method	67 (1988)	1- 14
43	Benkhaldoun, F. and B. Larrouturou, A finite element adaptive investigation	76 (1000)	110 124
44	of curved stable and unstable flame front	76 (1989)	119-134
44	Benson, D.J., An efficient, accurate, simple ALE method for nonlinear finite	72 (1000)	206 260
AF	element programs	72 (1989)	303-330
43	Benson, D.J., Vectorizing the right-hand side assembly in an explicit finite	72 (1000)	147 160
AC	element program Benson, D.J. and J.O. Hallquist, A single surface contact algorithm for the	73 (1989)	147-132
40	post-buckling analysis of shell structures	79 (1000)	141 162
	post-outaining analysis of silen structures	78 (1990)	141-103

47.	Bermudéz, A. and J. Durany, Numerical solution of steady-state flow through		
	a porous dam	68 (1988)	55- 65
48.	Bermudez, A. and J. Durany, Numerical solution of cavitation problems in	## (# 000) A	
40	lubrication	75 (1989) 4	57-466
49.	Bernardi, C., G. Coppoletta, V. Girault and Y. Maday, Spectral methods for	90 (1000) 2	20 226
50	the Stokes problem in stream-function formulation Bernardou, M., S. Fayolle and F. Léné, Numerical analysis of junctions	80 (1990) 2	29-230
30.	between plates	74 (1989) 3	07_326
51	Berry, M.W. and R.J. Plemmons, Algorithms and experiments for structural	14 (1909) 3	07-320
J. 1.	mechanics on high-performance architectures	64 (1987) 4	87-507
52.	Billey, V., A. Dervieux, L. Fezoui, J. Periaux, V. Selmin and B. Stoufflet,	. ()	
	Recent improvements in Galerkin and upwind Euler solvers and applications		
	to 3-D transonic flow in aircraft design	75 (1989) 4	09-414
53.	Borja, R.I. and S.R. Lee, Cam-Clay plasticity, Part 1: Implicit integration of		
	elasto-plastic constitutive relations	78 (1990)	49- 72
54.	Bossavit, A., Simplicial finite elements for scattering problems in electromag-		
	netism	76 (1989) 2	99-316
55.	Boutros, Y.Z., M.B. Abd-el-Malek and S.Z. Masoud, Hilbert's method for		
	numerical solution of flow from a uniform channel over irregular bottom		
	topographies	65 (1987) 2	15-228
56.	Bradley, D., M. Missaghi and S.B. Chin, A Taylor-series approach to numeri-	(0 (1000) 1	22 161
-	cal accuracy and a third-order scheme for strong convective flows	69 (1988) 1	33-131
3/.	Bramble, J.H., R.E. Ewing, J.E. Pasciak and A.H. Schatz, A preconditioning technique for the efficient solution of problems with local grid refinement	67 (1988) 1	40 150
50	Brenier, Y., A combinatorial algorithm for the Euler equations of incom-	07 (1988) 1	49-139
20.	pressible flows	75 (1989) 3	25_332
59	Bressan, N. and D. Pavoni, Truncation versus mapping in the spectral ap-	15 (1505) 5	20-332
07.	proximation to the Korteweg-De Vries equation	80 (1990) 4	43-450
60.	Brezzi, F., C. Canuto and A. Russo, A self-adaptive formulation for the	00 (0000)	
	Euler/Navier-Stokes coupling	73 (1989) 3	17-330
61.	Brezzi, F., L.D. Marini and P. Pietra, Numerical simulation of semiconductor		
	devices	75 (1989) 4	93-514
62.	Briassoulis, D., The C^0 shell plate and beam elements freed from their		
	deficiencies	72 (1989) 2	43-266
10	Con CE - ID N. Fron No. Fron British I - I - I - I - I		
63.	Carey, G.F. and BN. Jiang, Nonlinear preconditioned conjugate gradient and least-squares finite elements	62 (1987) 1	AS 15A
64	Caussignac, P. and R. Touzani, Solution of three-dimensional boundary layer	02 (1967) 1	43-134
04.	equations by a discontinuous finite element method, Part 1: Numerical analy-		
	sis of a linear model problem	78 (1990) 2	49-271
65	Caussignac, P. and R. Touzani, Solution of three-dimensional boundary layer	10 (2220) 2	
	equations by a discontinuous finite element method, Part II: Implementation		
	and numerical results	79 (1990)	1- 20
66	. Chan, A.S.L. and T.B. Lau, Further development of the reduced basis method		
	for geometric nonlinear analysis	62 (1987) 1	27-144
	. Chang, H., A simple computer-aided design procedure for minimal variations	73 (1989)	99-107
68	. Chang, T.Y., A.F. Saleeb and W. Graf, On the mixed formulation of a 9-node		
	Lagrange shell element	73 (1989) 2	259-281

69.	Chaouche, A., A. Randriamampianina and P. Bontoux, A collocation method based on the influence matrix technique for Navier-Stokes problems in	
	annular domains	80 (1990) 237-244
70.	Chen, C.J., M.Z. Sheikholeslami and R.B. Bhiladvala, Finite analytic numeri-	00 (2770) 277
	cal method for two-point boundary value problems of ordinary differential equations	75 (1989) 61- 76
71	Chen, D.R. and M.J. Sheu, Investigation of numerical solutions of integral	73 (1909) 01- 70
	equation methods for multi-element aerofoils	68 (1988) 345-364
72.	Chen, D.R. and M.J. Sheu, Numerical solutions for oscillatory aerofoil at high	
	reduced frequency	74 (1989) 55 - 68
73.	Chen, HT., TM. Chen and CK. Chen, Hybrid Laplace transform/finite	(A (100F) 0A 05
	element method for one-dimensional transient heat conduction problems	63 (1987) 83- 95
14.	Chen, Y.H., Solution of stiffened problems for a finite internally cracked plate	(2 (1007) 1 16
76	by using complex potentials and the generalized variational method	62 (1987) 1- 16
13.	Chen, Z.Q. and X. Ji, A new approach to finite deformation problems of	70 (1000) 1 10
20	elastoplasticity-boundary element analysis methods	78 (1990) 1- 18
	Cheng, SI., A deterministic view of shear turbulence	64 (1987) 5- 19
11.	Cheng, WQ., FW. Zhu and JW. Luo, Computational finite element analy-	71 (1008) 21 20
70	sis and optimal design for multibody contact system	71 (1988) 31- 39
/8.	Chinosi, C., G. Sacchi and T. Scapolla, A hierarchic family of conforming	00 (1000) 227 226
-	finite elements for the solution of plate bending problems	80 (1990) 327–336
	Chrisfield, M.A. and J. Wills, Solution strategies and softening materials	66 (1988) 267–289
80.	Chu, M.T. and G.H. Guirguis, A numerical method for solving interface	74 (1000) 00 112
	problems arising in two-point boundary value problems	74 (1989) 99–113
81.	Chyu, W.J., T. Kawamura and D.P. Bencze, Calculation of external-internal	(4 (100m) at an
rio.	flow fields for mixed-compression inlets	64 (1987) 21- 37
82	Cline, D.D. and J.J. Bertin, Considerations for the development of grid	76 (1000) 202 207
0.2	schemes for hypersonic flows	75 (1989) 283–297
83	. Cohen, G. and P. Joly, Fourth order schemes for the heterogeneous acoustics	90 (1000) 207 407
0.4	equation	80 (1990) 397–407
84	. Conca, C. and M. Vanninathan, A spectral problem arising in fluid-solid	60 (1000) 216 242
00	structures	69 (1988) 215–242
83	. Conca, C., J. Planchard and M. Vanninathan, Un problème de fréquences	75 (1000) 27 27
96	propres en couplage fluide-structure Conca, C., J. Planchard and M. Vanninathan, Existence and location of	75 (1989) 27– 37
80		77 (1090) 252 201
97	eigenvalues for fluid-solid structures Cotsaftis, M. and C. Vibet, Synthesis of dynamical equations of mechanisms	77 (1989) 253–291
0/	from their related control laws	74 (1090) 20 40
90	Coulaud, O., D. Funaro and O. Kavian, Laguerre spectral approximation of	74 (1989) 29- 40
90	elliptic problems in exterior domains	80 (1990) 451-458
90	Crotty Sisson, J.M., Accurate interior point computations in the boundary	00 (1990) 431-430
02	integral equation method	79 (1990) 281-307
90	Cruse, T.A., Recent advances in boundary element analysis methods	62 (1987) 227–244
,	. Cross, 121, 1800th advances in boundary element analysis methods	02 (1901) 221-244
91	. Dahlburg, R.B. and J.M. Picone, Pseudospectral simulation of compressible	
	magnetohydrodynamic turbulence	80 (1990) 409-416
92	2. Dawe, D.J. and V. Peshkam, Buckling and vibration of finite-length composite	
	prismatic plate structures with diaphragm ends, Part I: Finite strip formulation	77 (1989) 1- 30

93.	De Borst, R., Smeared cracking, plasticity, creep, and thermal loading—a		
0.4	unified approach	62 (1987) 89-	-110
94.	De Borst, R. and P.P.J.M. Peeters, Analysis of concrete structures under	77 (1000) 202	210
06	thermal loading	77 (1989) 293-	-310
95.	De Frutos, J., T. Ortega and J.M. Sanz-Serna, A Hamiltonian explicit al- gorithm with spectral accuracy for the 'good' Boussinesq system	90 (1000) 417	422
06	Demkowicz, L., J.T. Oden, W. Rachowicz and O. Hardy, Toward a universal	80 (1990) 417-	-423
90.	h-p adaptive finite element strategy, Part 1. Constrained approximation and		
	data structure	77 (1989) 79-	-112
97	Desai, C.S., J. Kujawski, C. Miedzialowski and W. Ryzynski, Improved time	11 (1202) 12	-112
	integration of nonlinear dynamic problems	62 (1987) 155-	-168
98.	Descloux, J., M. Flück and R. Frosio, A two fluids stationary free boundary	02 (2701) 200	
	problem	77 (1989) 215-	-226
99.	Destuynder, P. and T. Nevers, A new finite element scheme for bending plates	68 (1988) 127-	
100.	Destuynder, P. and T. Nevers, Some numerical aspects of mixed finite ele-	, ,	
	ments for bending plates	78 (1990) 73-	- 87
	Deville, M.O., Chebyshev collocation solutions of flow problems	80 (1990) 27-	- 37
102.	Devloo, P., J.T. Oden and P. Pattani, An h-p adaptive finite element method		
	for the numerical simulation of compressible flow	70 (1988) 203-	-235
103.	Devloo, P., J.T. Oden and T. Strouboulis, Implementation of an adaptive		
	refinement technique for the SUPG algorithm	61 (1987) 339	-358
104.	Di Blasi, C., S. Crescitelli and G. Russo, Numerical modelling of flow assisted		
	flame spread	75 (1989) 481	-492
105.	Djomehri, M.J. and J.H. George, Application of the moving finite element	## (1000) 10¢	
100	method to moving boundary Stefan problems	71 (1988) 125	-136
100.	Don, WS. and D. Gottlieb, Spectral simulation of an unsteady compressible	90 (1000) 30	60
107	flow past a circular cylinder Donat, R. and S. Osher, Propagation of error into regions of smoothness for	80 (1990) 39	- 38
107.	non-linear approximations to hyperbolic equations	80 (1990) 59	64
108	Donea, J. and L.G. Lamain, A modified representation of transverse shear in	60 (1990) 39	- 04
100.	C ⁰ quadrilateral plate elements	63 (1987) 183	-207
109	Donea, J. and H. Laval, Nodal partition of explicit finite element methods for	05 (1501) 105	20.
107.	unsteady diffusion problems	68 (1988) 189	-204
110.	Drummond, J.P., R.C. Rogers and M.Y. Hussaini, A numerical model for	()	
	supersonic reacting mixing layers	64 (1987) 39	- 60
111.	Dulikravich, G.S., K.W. Mortara and L. Marraffa, Physically consistent mod-	, , , , ,	
	els for artificial dissipation in transonic potential flow computations	79 (1990) 309	-320
112.	Dumir, P.C. and A. Bhaskar, Nonlinear static analysis of rectangular plates on		
	elastic foundations by the orthogonal point collocation method	67 (1988) 111	-124
113.	Dwyer, H.A. and S. Ibrani, Time accurate solutions of the incompressible and		
	three-dimensional Navier-Stokes equations	75 (1989) 333	-341
114	Edlund, U. and A. Klarbring, Analysis of elastic and elastic-plastic adhesive		
114.	joints using a mathematical programming approach	78 (1990) 19	_ A7
115	Eggert, G.M. and P.R. Dawson, A viscoplastic formulation with elasticity for	70 (1990) 19	- 41
113.	transient metal forming	70 (1988) 165	-190
116	Eiseman, P.R., Adaptive grid generation	64 (1987) 321	
	Eisenberger, M., On exact solutions for beam columns on two-parameter	(,	
	elastic foundations	76 (1989) 95	- 97

118.	Elishakoff, I. and C.W. Bert, Comparison of Rayleigh's noninteger-power	(# (1000) a	07. 200
	method with Rayleigh-Ritz method	67 (1988) 2	97-309
119.	Elishakoff, I. and J. Hollkamp, Computerized symbolic solution for a noncon-		
	servative system in which instability occurs by flutter in one range of a	(2 (1007)	07 46
	parameter and by divergence in another	62 (1987)	27- 46
120.	Elishakoff, I. and I. Lottati, Divergence and flutter of nonconservative systems	********	44 050
	with intermediate support	66 (1988) 2	41-250
121.	Elishakoff, I. and F. Pellegrini, Exact solutions for buckling of some diver-		
	gence-type nonconservative systems in terms of Bessel and Lommel functions	66 (1988) 1	07-119
122.	Elishakoff, I. and J. Tang, Buckling of polar orthotropic circular plates on	40 (4000) m	
	elastic foundation by computerized symbolic algebra	68 (1988) 2	29-247
123.	Eraslan, A.N. and R.C. Brown, A simple iterative procedure for reducing		
	stiffness and computer memory in reactive flow problems	64 (1987)	
	Eriksson, LE., Flow solution on a dual-block grid around an airplane	64 (1987)	
	Eriksson, LE., Simulation of transonic flow in radial compressors	64 (1987)	95–111
126.	Espedal, M.S. and R.E. Ewing, Characteristic Petrov-Galerkin subdomain		
	methods for two-phase immiscible flow	64 (1987) 1	13–135
127.	Ewing, R.E., R.F. Heinemann, J.V. Koebbe and U.S. Prasad, Velocity weight-		
	ing techniques for fluid displacement problems	64 (1987) 1	137–151
128.	Eymard, R., T. Gallouët and P. Joly, Hybrid finite element techniques for oil		
	recovery simulation	74 (1989)	83- 98
129	Farcy, A. and T. Alziary de Roquefort, Pseudo-spectral multi-domain method		
147.	for incompressible viscous flow computation	80 (1990) 3	337_346
130	Farhat, C. and L. Crivelli, A general approach to nonlinear FE computations	00 (1770) .	331-340
150.	on shared-memory multiprocessors	72 (1989)	153_171
131	Farshad, M., G. Karami and M.R. Banan, A. theoretical and numerical finite	12 (1505)	100 111
101.	element analysis of spatial rod systems	73 (1989)	111_132
132	Fauchon, D., P.A. Tanguy and R.E. Hayes, A finite element computation of	15 (1505)	111 150
1.000	moderate Reynolds fluid flow using a modified Marquardt method	70 (1988)	139_149
133	Felippa, C.A. and P.G. Bergan, A triangular bending element based on an	10 (1700)	107 117
100.	energy-orthogonal free formulation	61 (1987)	129_160
134	Fischer, P.F., Analysis and application of a parallel spectral element method	01 (150.)	
10 11	for the solution of the Navier-Stokes equations	80 (1990)	483_491
135	Fish, J. and T. Belytschko, A finite element with a unidirectionally enriched	00 (1770)	105 171
-	strain field for localization analysis	78 (1990)	181-200
136	Flanagan, D.P. and L.M. Taylor, An accurate numerical algorithm for stress	10 (1)))	101 200
100	integration with finite rotations	62 (1987)	305-320
137	Forsyth, P.A., Comparison of the single-phase and two-phase numerical model	02 (1707)	505 520
	formulation for saturated-unsaturated groundwater flow	69 (1988)	243_259
138	Fortin, M. and R. Pierre, On the convergence of the mixed method of Crochet	05 (1500)	213 237
	and Marchal for viscoelastic flows	73 (1989)	341_350
139	Franca, L.P., Analysis and finite element approximation of compressible and	10 (1202)	J 11 350
	incompressible linear isotropic elasticity based upon a variational principle	76 (1989)	259-273
140	Franca, L.P. and E.G. Dutra do Carmo, The Galerkin gradient least-squares	(2505)	
	method	74 (1989)	41- 54
141	Franca, L.P. and T.J.R. Hughes, Two classes of mixed finite element methods	69 (1988)	
	, , , , , , , , , , , , , , , , , , ,	()	

142. Francken, P., M.O. Deville and E.H. Mund, On the spectrum of the iteration	
operator associated to the finite element preconditioning of Chebyshev collocation	1-
tion calculations	80 (1990) 295-304
143. Friberg, O., A set of parameters for finite rotations and translations	66 (1988) 163-171
144. Fried, I. and A.R. Johnson, Nonlinear computation of axisymmetric soli	d
rubber deformation	67 (1988) 241-253
145. Fried, I. and A.R. Johnson, A note on elastic energy density functions for	or
largely deformed compressible rubber solids	69 (1988) 53- 64
146. Frölich, J. and R. Peyret, Calculations of non-Boussinesq convection by	a
pseudospectral method	80 (1990) 425-433
147. Fung, KY., J. Tripp and B. Goble, Adaptive refinement with truncation error	or
injection	66 (1988) 1- 16
148. Galeão, A.C. and E.G. Dutra do Carmo, A consistent approximate upwin	d
Petrov-Galerkin method for convection-dominated problems	68 (1988) 83- 95
149. Ganjoo, D.K. and T.E. Tezduyar, Petrov-Galerkin formulations for electrons	0-
chemical processes	65 (1987) 61-83
150. Ganjoo, D.K., W.D. Goodrich and T.E. Tezduyar, A new formulation for	or
numerical simulation of electrophoresis separation processes	75 (1989) 515-530
151. Gao, XC. and QX. Zhang, Multi-step numerical integrators for timedeper	n-
dent vibrating systems	69 (1988) 45- 52
152. Garnier, C., P. Rideau and Y. Papegay, Modelisation dynamique litterale	75 (1989) 215-225
153. Gastaldi, F., A. Quarteroni and G. Sacchi Landriani, Coupling of two-dime	
sional hyperbolic and elliptic equations	80 (1990) 347-354
154. Gauthier, S., A semi-implicit collocation method: Application to two-dime	
sional compressible convection	80 (1990) 435-442
155. Geymonat, G., M. Rosati and V. Valente, Numerical analysis for eversion	
elastic spherical caps equilibrium	75 (1989) 39- 52
156. Girrens, S.P. and F.W. Smith, Finite element analysis of coupled constitue	
diffusion in thermoelastic solids	62 (1987) 209–223
157. Givoli, D. and J.B. Keller, A finite element method for large domains	76 (1989) 41– 66
158. Golley, B.W. and W.A. Grice, Prismatic folded plate analysis using fini	
strip-elements	76 (1989) 101–118
159. Golse, F., Applications of the Boltzmann equation witin the context of upp	
atmosphere vehicle aerodynamics	
160. Greenberg, J.B., Y. Stavski and M. Sabag, Eigenfrequencies of anisotrop	75 (1989) 299–316
composite shells of revolution having nonuniform supports	70 (1988) 91–102
161. Greenspan, D., Particle modeling of cavity flow on a vector computer	66 (1988) 291–299
162. Guillard, H. and J.A. Desideri, Iterative methods with spectral preconditioning	•
for elliptic equations	80 (1990) 305-312
163. Guillard, H. and R. Peyret, On the use of spectral methods for the numeric	
solution of stiff problems	66 (1988) 17- 43
164. Gupta, R.S. and N.C. Banik, Constrained integral method for solving movi	
boundary problems	67 (1988) 211–221
165. Guran, A. and F.P.J. Rimrott, Application of funicular polygon method	
inelastic buckling analysis of plates	76 (1989) 157–170
100 Name of N. Marrier and J. Brains, As Indian Co. Co.	
166. Hassan, O., K. Morgan and J. Peraire, An implicit/explicit scheme is	
compressible viscous high speed flows	76 (1989) 245–258

167. Healey, T.J., A group-theoretic approach to computational bifurcation prob-	
lems with symmetry	67 (1988) 257–295
168. Heinrich, J.C., Numerical simulations of the thermosolutal instability during	
directional solidification of a binary alloy	69 (1988) 65- 88
169. Heinrich, J.C. and C.C. Yu, Finite element simulation of buoyancy-driven	40 44 0000
flows with emphasis on natural convection in horizontal circular cylinder	69 (1988) 1- 27
170. Heinrichs, W., Algebraic spectral multigrid methods	80 (1990) 281–286
171. Heise, U., Dependence of the round-off error in the solution of boundary	
integral equations on a geometrical scale factor	62 (1987) 115–126
172. Ho, LW. and A.T. Patera, A Legendre spectral element method for simula-	
tion of unsteady incompressible viscous free-surface flows	80 (1990) 355–366
173. Ho, LW., Y. Maday, A.T. Patera and E.M. Rønquist, A high-order	
Lagrangian-decoupling method for the incompressible Navier-Stokes equa-	
tions	80 (1990) 65- 90
174. Hoff, C. and P.J. Pahl, Practical performance of the θ_1 -method and compari-	
son with other dissipative algorithms in structural dynamics	67 (1988) 87–110
175. Hoff, C. and P.J. Pahl, Development of an implicit method with numerical	
dissipation from a generalized single-step algorithm for structural dynamics	67 (1988) 367–385
176. Hoff, C., T.J.R. Hughes, G. Hulbert and P.J. Pahl, Extended comparison of	
the Hilber-Hughes-Taylor α -method and the θ_1 -method	76 (1989) 87- 93
177. Hsiao, KM. and HC. Hung, Large-deflection analysis of shell structure by	
using co-rotational total Lagrangian formulation	73 (1989) 209–225
178. Huang, CY. and G.S. Dulikravich, Fast iterative algorithms based on opti-	
mized explicit time stepping	63 (1987) 15- 36
179. Huerta, A. and W.K. Liu, Viscous flow with large free surface motion	69 (1988) 277–324
180. Hughes, T.J.R. and F. Brezzi, On drilling degrees of freedom	72 (1989) 105–121
181. Hughes, T.J.R. and L.P. Franca, A new finite element formulation for compu-	
tational fluid dynamics: VII. The Stokes problem with various well-posed	
boundary conditions: Symmetric formulations that converge for all velocity/	
pressure spaces	65 (1987) 85- 96
182. Hughes, T.J.R. and L.P. Franca, A mixed finite element formulation for	
Reissner-Mindlin plate theory: Uniform convergence of all higher-order spaces	
183. Hughes, T.J.R. and G.M. Hulbert, Space-time finite element method for	
elastodynamics: Formulations and error estimates	66 (1988) 339–363
184. Hughes, T.J.R., R.M. Ferencz and J.O. Hallquist, Large-scale vectorized im-	
plicit calculations in solid mechanics on a CRAY X-MP/48 utilizing EBE	
preconditioned conjugate gradients	61 (1987) 215–248
185. Hughes, T.J.R., L.P. Franca and G.M. Hulbert, A new finite element formula-	
tion for computational fluid dynamics: VIII. The Galerkin/least-squares	
method for advective-diffusive equations	73 (1989) 173–189
186. Hughes, T.J.R., L.P. Franca and M. Mallet, A new finite element formulation	
for computational fluid dynamics: VI. Convergence analysis of the generalized	
SUPG formulation for linear time-dependent multidimensional advective-dif-	
fusive systems	63 (1987) 97–112
187. Ioakimidis, N.I. and M.S. Pitta, Remarks on the Gaussian quadrature rule for	
finite-part integrals with a second-order singularity	69 (1988) 325-343
mint part mograts with a second-order singularity	07 (1700) 323-343

188.	Jaamei, S., F. Frey and P. Jetteur, Nonlinear thin shell finite element with six	
100	degrees of freedom per node	75 (1989) 251–266
189.	Jacquotte, OP., A mechanical model for a new grid generation method in	66 (1000) 222 220
100	computational fluid dynamics Jain, R.K. and R. Kumar, A sixth-order modification of the Stiefel-Bettis	66 (1988) 323–338
190.	method for nonlinearly damped oscillators	72 (1989) 187-193
101	Jang, JY. and WJ. Chang, Buoyancy-induced inclined boundary layer flow	12 (1909) 107-193
171.	in a saturated porous medium	68 (1988) 333-344
192.	Jauberteau, F., C. Rosier and R. Temam, A nonlinear Galerkin method for the	00 (1700) 555-544
	Navier-Stokes equations	80 (1990) 245-260
193.	Jiang, BN. and C.L. Chang, Least-squares finite elements for Stokes problem	78 (1990) 297-311
	Jonker, J.B., A finite element dynamic analysis of spatial mechanisms with	()
	flexible links	76 (1989) 17- 40
195.	Juvanon du Vachat, R., A general formulation for nonlinear initialization of a	
	numerical weather prediction model. Experiments with a shallow-water limited	
	area model	75 (1989) 127-140
196.	Kačianauskas, R. and A. Čyras, The integral yield criterion of finite element	
	and its application to limit analysis and optimization problems of thinwalled	67 (1000) 131 147
107	elastic-plastic structures Kanarachos, A. and Ch. Provatidis, Performance of mass matrices for the	67 (1988) 131–147
177.	BEM dynamic analysis of wave propagation problems	63 (1987) 155-165
108	Kanarachos, A. and Ch. Provatidis, On the symmetrization of the BEM-for-	03 (1967) 133-103
170.	mulation	71 (1988) 151-165
199.	Kane, J.H., S. Saigal and B.L. Kashava Kumar, An arbitrary condensing,	71 (1700) 151 105
	noncondensing solution strategy for large scale, multi-zone boundary element	
	analysis	79 (1990) 219-244
200.	Kaplan, B.Z. and D. Yardeni, Development of a new three-phase triangular	, , , , , , , , , , , , , , , , , , , ,
	wave oscillator	63 (1987) 305-312
201.	Karafiat, A., On convergence of solutions for FDM with irregular mesh in	
	Neumann problem	72 (1989) 91–103
202.	Karageorghis, A., Numerical solution of a shallow dam problem by a boundary	
	element method	61 (1987) 265–276
203.	Karageorghis, A., Chebyshev spectral methods for solving two-point boundary	TO (1000) 100 101
204	value problems arising in heat transfer	70 (1988) 103–121
204.	Karamanlidis, D., Finite element analysis of two-dimensional shear flexible	67 (1988) 55- 68
205	frame structures: Nonlinear analysis Karamanlidis, D. and V. Agrawal, Analysis of stiffened shear-flexible ortho-	07 (1900) 33- 00
205.	tropic panels	73 (1989) 133-146
206	Karamanlidis, D. and R. Jasti, Finite element analysis of two-dimensional	75 (1909) 133-140
200	shear flexible frame structures: Linear analysis	67 (1988) 161-169
207	. Karamanlidis, D. and V. Prakash, Exact transfer and stiffness matrices for a	. ()
	beam/column resting on a two-parameter foundation	72 (1989) 77- 89
208	. Karniadakis, G.E., Spectral element-Fourier methods for incompressible	, ,
	turbulent flows	80 (1990) 367-380
209	. Kaveh, A., Suboptimal cycle bases of graphs for the flexibility analysis of	
	skeletal structures	71 (1988) 259–271
210	. Kikuchi, F., Mixed and penalty formulations for finite element analysis of an	
	eigenvalue problem in electromagnetics	64 (1987) 509-521

211.	Kikuta, M., H. Togoh and M. Tanaka, Boundary element analysis of nonlinear	(A (100F) 001 000
	transient heat conduction problems	62 (1987) 321–329
212.	Kim, SS. and E.J. Haug, A recursive formulation for flexible multibody	71 (1000) 202 214
212	dynamics, Part I: Open-loop systems	71 (1988) 293–314
213.	Kim, SS. and E.J. Haug, A recursive formulation for flexible multibody	74 (1000) 261 260
95.6	dynamics, Part II: Closed loop systems	74 (1989) 251–269
214.	Kim, SW. and YS. Chen, A finite element computation of turbulent boundary layer flows with an algebraic stress turbulence model	66 (1000) AE 63
216	King, R.B. and V. Sonnad, Implementation of an element-by-element solution	66 (1988) 45- 63
215.	algorithm for the finite element method on a coarse-grained parallel computer	65 (1987) 47- 59
216	Kirsch, U., Optimal topologies of truss structures	72 (1989) 15- 28
	Kitahara, M. and J.D. Achenbach, BIE method to analyze wave motion in	72 (1909) 13- 20
217.	solids with periodically distributed cavities	64 (1987) 523-536
218	Knupp, P.M., On the invertibility of the isoparametric map	78 (1990) 313–329
	Koh, B.C. and N. Kikuchi, New improved hourglass control for bilinear and	70 (1770) 313-327
217.	trilinear elements in anisotropic linear elasticity	65 (1987) 1- 46
220	Kremer, Z. and M.A. Slonim, A novel computational approach for the analysis	05 (1507) 1- 40
www.	of transient and steady-state processes in an LC chopper	72 (1989) 1- 13
221.	Ku, H.C., T.D. Taylor and R.S. Hirsh, A pseudospectral matrix element	12 (1505) 1 15
	method for calculation of double diffusive layers near corners	75 (1989) 141-151
222.	Ku, H.C., T.D. Taylor and R.S. Hirsh, Pseudospectral matrix element methods	10 (2505) 212 202
	for flow in complex geometry	80 (1990) 381-388
223.	Kulak, R.F., Adaptive contact elements for three-dimensional explicit transient	()
	analysis	72 (1989) 125-151
224.	Kuznetsov, Y.A., Multigrid domain decomposition methods for elliptic prob-	
	lems	75 (1989) 185–193
225	La Hargue, J.P. and J.P. Mascarell, Internal design of the E3D inter-discipline	
tetes.	environment	75 (1989) 227-240
226	Lacombe, C. and C. Bédard, Face-apex projectors for the interpolation func-	15 (1909) 221-240
a.a.o.	tion of a general tetrahedral mid-edge finite element	68 (1988) 177-188
227	Ladefoged, R., Triangular ring element with analytic expressions for stiffness	00 (1700) 177-100
	and mass matrix	67 (1988) 171-188
228.	Ladopoulos, E.G., On the numerical solution of the finite-part singular integral	0. (2,00) 2.2 200
	equations of the first and the second kind used in fracture mechanics	65 (1987) 253-266
229.	Langer, F.D., H. Hemami and D.B. Brown, Constraint forces in holonomic	()
	mechanical systems	62 (1987) 255-274
230.	LaPorte, F., On the design of an expert system guide for the use of scientific	
1.	software	75 (1989) 241-250
231.	Le Quéré, P. and J. Pecheux, A three-dimensional pseudo-spectral algorithm	
	for the computation of convection in a rotating annulus	80 (1990) 261-271
232.	Le Tallec, P. and A. Lotfi, Decomposition methods for adherence problems in	
1	finite elasticity	68 (1988) 67- 82
233.	Lee, J.H.W., J. Peraire and O.C. Zienkiewicz, The characteristic-Galerkin	
25	method for advection-dominated problems-an assessment	61 (1987) 359-369
234.	Lee, M.S., N. Kikuchi and R.A. Scott, Shape optimization in laminated	
145	composite plates	72 (1989) 29- 55
235.	Leipholz, H.H.E., On Galerkin's method interpreted as a generalized integral	11
	transformation	65 (1987) 177-189

236.	Lewis, R.I., Recent developments and engineering applications of the vortex		
	cloud method	64 (1987) 153-	176
237.	Li, ZC., A combined method for solving elliptic problems on unbounded		
	domains	73 (1989) 191-	208
238.	Lin, J.I., An Element Eigenvalue Theorem and its application for stable time	, , , , , , , , , , , , , , , , , , , ,	
	steps	73 (1989) 283-	294
230	Lin, J.S. and P.L. Gould, Shells of revolution with local plasticity	65 (1987) 127-	
	Lions, P.L., On Hartree and Hartree-Fock equations in atomic and nuclear	03 (1907) 127-	140
240.		75 (1000) 53	60
241	physics N. The stability of the stabili	75 (1989) 53-	00
241.	Liu, B. and Beris, A.N., The stability of numerical approximations to nonlinear		
	hyperbolic equations	76 (1989) 179-	204
242.	Liu, W.K., T. Belytschko and JS. Chen, Nonlinear versions of flexurally		
	superconvergent elements	71 (1988) 241-	258
243.	Liu, W.K., G. Besterfield and T. Belytschko, Transient probabilistic systems	67 (1988) 27-	54
244.	Liu, W.K., H. Chang, JS. Chen and T. Belytschko, Arbitrary Langrarian-		
	Eulerian Petrov-Galerkin finite elements for nonlinear continua	68 (1988) 259-	310
245	Löhner, R., An adaptive finite element scheme for transient problems in CFD	61 (1987) 323-	
	Löhner, R., Adaptive remeshing for transient problems	75 (1989) 195-	
	Loula, A.F.D. and J.N.C. Guerreiro, Finite element analysis of nonlinear	15 (1707) 175	214
241.	creeping flows	79 (1990) 87-	100
240		79 (1990) 87-	103
248.	Loula, A.F.D., L.P. Franca, T.J.R. Hughes and I. Miranda, Stability, conver-		
	gence, and accuracy of a new finite element method for the circular arch	40 4400m 004	
	problem	63 (1987) 281-	303
249.	Loula, A.F.D., T.J.R. Hughes and L.P. Franca, Petrov-Galerkin formulations		
	of the Timoshenko beam problem	63 (1987) 115-	132
250.	Loula, A.F.D., T.J.R. Hughes, L.P. Franca and I. Miranda, Mixed Petrov-		
	Galerkin methods for the Timoshenko beam problem	63 (1987) 133-	154
251.	Loula, A.F.D., I. Miranda, T.J.R. Hughes and L.P. Franca, On mixed finite		
	element methods for axisymmetric shell analysis	72 (1989) 201-	-231
		()	
252.	Maday, Y. and E.M. Rønquist, Optimal error analysis of spectral methods		
	with emphasis on non-constant coefficients and deformed geometries	80 (1990) 91-	115
253	Malkus, D.S. and X. Qiu, Division structure of finite element eigenproblems	00 (2220)	
200.	arising from negative and zero masses	66 (1988) 365-	368
254	Malkus, D.S., M.E. Plesha and MR. Liu, Reversed stability conditions in	00 (1900) 303-	300
234.		60 (1000) 07	114
000	transient finite element analysis	68 (1988) 97-	114
200.	Malone, J.G., Automated mesh decomposition and concurrent finite element	E0 (1000) 0E	
	analysis for hypercube multiprocessor computers	70 (1988) 27-	- 58
256.	Mandel, J., Iterative solvers by substructuring for the p-version finite element	473.4	
	method	80 (1990) 117-	-128
257.	Matejovič, P. and V. Adamík, A one-point integration quadrilateral with		
	hourglass control in axisymmetric geometry	70 (1988) 301-	-320
258.	Matejovič, P. and V. Adamík, A diffusion equation with hourglass control in	1 1	
	an axisymmetric geometry	76 (1989) 135-	-156
259	Meakin, R.L. and R.L. Street, Simulation of environmental flow problems in		
	geometrically complex domains. Part 1: A general coordinate transformation	68 (1988) 151-	-175
260	Meakin, R.L. and R.L. Street, Simulation of environmental flow problems in	23 (2700) 202	
200	geometrically complex domains. Part 2: A domain-splitting method	68 (1988) 311-	-331
	gometrically complex domains, rate 2. A domain-splitting method	00 (1200) 311-	331

2	261.	Meek, J.L. and S. Loganathan, Large displacement analysis of space-frame	
		structures	72 (1989) 57- 75
		Merriam, M.L., Smoothing and the second law	64 (1987) 177–193
4	263.	Mita, A. and J.E. Luco, Dynamic response of embedded foundations: A	
		hybrid approach	63 (1987) 233–259
4	264.	Mitra, A.K. and S. Das, Nonuniqueness in the integral equation formulation	
		of the biharmonic equation in multiply connected domains	69 (1988) 205–214
-	265.	Mukherjee, A. and M. Mukhopadhyay, Response of stiffened plated structures	
		under stochastic excitation	71 (1988) 273–292
	266.	Muñoz, R., Theoretical analysis of some spectral multigrid methods	80 (1990) 287–294
,	267	Nacar, A., A. Needleman and M. Ortiz, A finite element method for analyzing	
	207.	localization in rate dependent solids at finite strains	73 (1989) 235-258
,	268	Nakamura, S. and R.S. Lakes, Finite element analysis of stress concentration	75 (1707) 255-250
,	200.	around a blunt crack in a Cosserat elastic solid	66 (1988) 257-266
	269	Nakamura, T. and M. Ohsaki, Sequential optimal truss generator for frequency	00 (1700) 257 200
	207.	ranges	67 (1988) 189-209
ì	270.	Navarrina, F., E. Bendito and M. Casteleiro, High order sensitivity analysis in	07 (1700) 107 207
		shape optimization problems	75 (1989) 267-281
	271.	Nee, KM. and A. Haldar, Elastoplastic nonlinear post-buckling analysis of	(2,0,) 20, 201
		partially restrained space structures	71 (1988) 69- 97
	272.	Needleman, A., Material rate dependence and mesh sensitivity in localization	,
		problems	67 (1988) 69- 85
	273.	Noor, A.K. and J.M. Peters, Vibration analysis of laminated anisotropic shells	, ,
		of revolution	61 (1987) 277-301
	274.	Noor, A.K. and J.M. Peters, A computational strategy for making complicated	
		structural problems simple	71 (1988) 167-182
	275.	Noor, A.K., C.M. Andersen and J.A. Tanner, Exploiting symmetries in the	
		modeling and analysis of tires	63 (1987) 37- 81
		Nouh, A., A sequential aggregation algorithm for the set partitioning problem	63 (1987) 225-232
	277.	Nour-Omid, B. and K.C. Park, Solving structural mechanics problems on the	
		CalTech Hypercube machine	61 (1987) 161–176
	270	Oder IT I Demkenier W Beckenier and TA Westerness Toward	
	2/8.	Oden, J.T., L. Demkowicz, W. Rachowicz and T.A. Westermann, Toward a	
		universal h-p adaptive finite element strategy, Part 2. A posteriori error estimation	77 (1090) 112 190
	270	Ong, TG., G.I.N. Rozvany and WT. Szeto, Least-weight design of perfo-	77 (1989) 113–180
	219.	rated elastic plates for given compliance: Nonzero Poisson's ratio	66 (1099) 201 222
	280	Ortiz, M., Y. Leroy and A. Needleman, A finite element method for localized	66 (1988) 301–322
	200.	failure analysis	61 (1987) 189-214
	281	Osiadacz, A.J. and K. Rudowski, Analysis of loop methods for simulating gas	01 (1907) 109-214
	201.	networks	65 (1987) 201-213
	282.	Owen, D.R.J. and Z.H. Li, Elastic-plastic dynamic analysis of anisotropic	05 (1907) 201-215
		laminated plates	70 (1988) 349-365
	283.	Öz, H. and A. Raffie, Inverse response problem (control) of dynamic systems	(2200) 212 303
		via Hamilton's law	62 (1987) 17- 26
			, , , ,
	284	Padovan, J., Y.H. Guo and G. Ryland, Static response of sparsely probabilistic	
		systems	79 (1990) 113–127

Garage Contract		
285.	Palmerio, F., A two-dimensional FEM adaptive moving-node method for	
	steady Euler flow simulations	71 (1988) 315–340
286.	Pandya, B.N. and T. Kant, Flexural analysis of laminated composites using	
	refined higher-order C^0 plate bending elements	66 (1988) 173–198
287.	Papadrakakis, M. and M. Yakoumidakis, A partial preconditioned conjugate	
***	gradient method for large eigenproblems	62 (1987) 195–207
288.	Pelletier, D., A. Garon and R. Camarero, A new finite element method for	
200	computing the flow inside rotating machinery	75 (1989) 343–358
	Pelz, R.B., Pseudospectral methods on massively parallel computers	80 (1990) 493–503
290.	Peshkam, V. and D.J. Dawe, Buckling and vibration of finite-length composite	
	prismatic plate structures with diaphragm ends, Part II: Computer programs	77 (1000) 227 252
201	and buckling applications	77 (1989) 227–252
	Petrolito, J., Hybrid-Trefftz quadrilateral elements for thick plate analysis	78 (1990) 331–351
292.	Pettersen, Ø., Simulation of two-phase flow in porous rocks on a laboratory	(6 (1007) 220 262
202	scale: Diffusion operator splitting and consistency Petzold, L.R., Recent developments in the numerical solution of differential/	65 (1987) 229–252
293.		75 (1090) 77 90
204	algebraic systems Peyret, R., The Chebyshev multidomain approach to stiff problems in fluid	75 (1989) 77- 89
294.	mechanics	90 (1000) 120 145
205	Phelan, D.G. and R.B. Haber, Sensitivity analysis of linear elastic systems	80 (1990) 129–145
293.	using domain parameterization and a mixed mutual energy principle	77 (1989) 31- 59
206	Phillips, T.N., Spectral domain decomposition techniques for viscous incom-	11 (1909) 31- 39
290.	pressible flows	80 (1990) 389-395
207	Pierre, R., Simple C^0 approximations for the computation of incompressible	00 (1990) 309-393
671.	flows	68 (1988) 205-227
208	Pinsky, P.M., A finite element formulation for elastoplasticity based on a	00 (1700) 205-227
270.	three-field variational equation	61 (1987) 41- 60
299	Polizzotto, C., An energy approach to the boundary element method. Part I:	01 (1507) 41- 00
2//	Elastic solids	69 (1988) 167-184
300	Polizzotto, C., An energy approach to the boundary element method. Part II:	07 (1700) 107-104
500.	Elastic-plastic solids	69 (1988) 263-276
301.	Providakis, C.P. and D.E. Beskos, Free and forced vibrations of plates by	07 (2700) 200 210
-	boundary elements	74 (1989) 231-250
302.	Pruett, C.D., A fast algorithm for simulation of a spatially-evolving, two-di-	(2,0,,20, 200
	mensional planar mixing layer	76 (1989) 275-298
303.	Rachowicz, W., J.T. Oden and L. Demkowicz, Toward a universal h-p adap-	
	tive finite element strategy, Part 3. Design of h-p meshes	77 (1989) 181-212
304	Rajpal, S.D.O., W.L. Cleghorn and B. Tabarrok, Improving the performance	
	of beam elements undergoing forced vibrations	62 (1987) 245-253
305	Ramos, J.I., Modified equation techniques for reactive-diffusive systems. Part	
	1: Explicit, implict, and quasilinear methods	64 (1987) 195-219
306	Ramos, J.I., Modified equation techniques for reactive-diffusive systems. Part	
	2: Time linearization and operator-splitting methods	64 (1987) 221–236
307	. Ravier, P. and JP. Penicaud, Etude en éléments finis de faisceaux de parti-	
	cules chargées	75 (1989) 531–542
308	. Reddy, S.C. and L.N. Trefethen, Lax-stability of fully discrete spectral meth-	
	ods via stability regions and pseudo-eigenvalues	80 (1990) 147-164

309.	Rehak, M.L., F.L. Dimaggio, H. Benaroya and I. Elishakoff, Random vibra-	
	tions with MACSYMA	61 (1987) 61- 70
310.	Rencis, J.J. and KY. Jong, A self-adaptive h-refinement technique for the	
	boundary element method	73 (1989) 295–316
311.	Renwei, X. and L. Peng, Structural optimization based on second-order	65 (100T) 101 111
010	approximations of functions and dual theory	65 (1987) 101–114
312.	Robichaud, M.P., P.A. Tanguy and M. Fortin, An improved finite element	76 (10) 250 260
212	iterative method for 3-dimensional fluid flow problems Rodi, W., S. Majumdar and B. Schönung, Finite volume methods for two-di-	75 (1962, 359–368
313.	mensional incompressible flows with complex boundaries	75 (1989) 369-392
314	Rodrigues, H.C., Shape optimal design of elastic bodies using a mixed varia-	15 (1707) 507-572
0111	tional formulation	69 (1988) 29- 44
315.	Rothert, H. and W. Dehmel, Nonlinear analysis of isotropic, orthotropic and	()
	laminated plates and shells	64 (1987) 429-446
316.	Samagaio, A. and N.S. Vlachos, Calculation of three-dimensional laminar	
	flows in tee-shaped junctions	75 (1989) 393-407
317.	Sanders, R. and A. Weiser, A high order staggered grid method for hyperbolic	
	systems of conservation laws in one space dimension	75 (1989) 91-107
318.	Schnabel, R.B., Concurrent function evaluations in local and global optimiza-	
V	tion	64 (1987) 537-552
	Schulz, J.C., Global mode hourglassing control	64 (1987) 553–566
320.	Sguazzero, P., M. Kindelan and A. Kamel, Dispersion-bounded numerical	
	integration of the elastodynamic equations with cost-effective staggered	00 (1000) 166 170
221	schemes	80 (1990) 165–172
321.	Shabana, A.A. and S.K. Niamathullah, Total Lagrangian formulation for large-displacement analysis of the triangular finite elements	72 (1989) 195-199
322	Shakib, F., T.J.R. Hughes and Z. Johan, A. multi-element group precondi-	12 (1909) 193-199
344	tioned GMRES algorithm for nonsymmetric systems arising in finite element	
	analysis	75 (1989) 415-456
323.	She, ZS., E. Jackson and S.A. Orszag, Vortex structure and dynamics in	(,
	turbulence	80 (1990) 173-183
324	. Shen, J., Numerical simulation of the regularized driven cavity flows at high	
	Reynolds numbers	80 (1990) 273-280
	. Shi, Z.C., Convergence of the TRUNC Plate Element	62 (1987) 71- 88
326	. Shin, Y.S., R.T. Haftka, L.T. Watson and R.H. Plaut, Tracing structural	
	optima as a function of available resources by a homotopy method	70 (1988) 151–164
327	. Shyy, Y.K., C. Fleury and K. Izadpanah, Shape optimal design using high-order	## (#000) OO 444
220	elements	71 (1988) 99–116
340	 Silling, S.A., Finite difference modeling of phase changes and localization in elasticity 	70 (1000) 251 272
329	Silvester, D.J. and N. Kechkar, Stabilised bilinear-constant velocity-pressure	70 (1988) 251–273
027	finite elements for the conjugate gradient solution of the Stokes problem	79 (1990) 71- 86
330	Simo, J.C., A J ₂ -flow theory exhibiting a corner-like effect and suitable for	(2220) 11-00
	large-scale computation	62 (1987) 169-194
331	. Simo, J.C., A framework for finite strain elastoplasticity based on maximum	
	plastic dissipation and the multiplicative decomposition: Part I. Continuum	
	formulation	66 (1988) 199-219

222	Simo, J.C., A framework for finite strain elastoplasticity based on maximum		
332.	plastic dissipation and the multiplicative decomposition. Part II: Computa-		
	tional aspects	69 (1000)	1 21
222	Simo, J.C. and D.D. Fox, On a stress resultant geometrically exact shell model.	68 (1988)	1- 31
333.	Part I: Formulation and optimal parametrization	72 (1000) 2	67 204
224		72 (1989) 2	10/-304
334.	Simo, J.C. and L. Vu-Quoc, On the dynamics in space of rods undergoing large	CC (1000) 1	
226	motions—a geometrically exact approach	66 (1988) 1	25-161
333.	Simo, J.C., D.D. Fox and M.S. Rifai, On a stress resultant geometrically exact		
	shell model. Part II: The linear theory; Computational aspects	73 (1989)	53- 92
336.	Simo, J.C., D.D. Fox and M.S. Rifai, On a stress resultant geometrically exact		
	shell model. Part III: Computational aspects of the nonlinear theory	79 (1990)	21- 70
337.	Simo, J.C., J.G. Kennedy and R.L. Taylor, Complementary mixed finite		
	element formulations for elastoplasticity	74 (1989)	177-206
338.	Służalec, A., Thermo-elastic stresses within a rectangular conductor carrying		
	an alternating current	61 (1987)	253-264
	Smith, R.E. and LE. Eriksson, Algebraic grid generation	64 (1987)	285-300
340.	Smolinski, P., A variational formulation for the generalized Galerkin method		
	for the convection-diffusion equation	73 (1989)	93- 98
341.	Smolinski, P., T. Belytschko and W.K. Liu, Stability of multi-time step		
	partitioned transient analysis for first-order systems of equations	65 (1987)	115-125
	Somervaille, I., Quadrature matrices and elastica problems	69 (1988)	345-354
343.	Sotomayer, W.A., L.N. Sankar and J.B. Malone, A comparison of numerical		
	algorithms for unsteady transonic flow	64 (1987)	237-265
344.	Soulaimani, A., M. Fortin, G. Dhatt, Y. Ouellet and F. Bertrand, Simple		
	continuous pressure elements for two- and three-dimensional incompressible		
	flows	62 (1987)	47- 69
345.	Steger, J.L. and J.A. Benek, On the use of composite grid schemes in computa-		
	tional aerodynamics	64 (1987)	301-320
346.	Stenberg, R., On some three-dimensional finite elements for incompressible		
	media	63 (1987)	261-269
347.	Storti, M., A.L. Crivelli and S.R. Idelsohn, An efficient tangent scheme for		
	solving phase-change problems	66 (1988)	65- 86
348.	Strouboulis, T. and J.T. Oden, A posteriori error estimation of finite element		
	approximations in fluid mechanics	78 (1990)	201-242
349.	Succi, S., K. Appert, G. Radicati, Y. Robert and J. Vaclavik, Finite element	(/-	
	modelling of weak plasma turbulence	75 (1989)	543-566
350.	Szabó, B.A., The p- and h-p versions of the finite element method in solid	(2505)	
	mechanics	80 (1990)	185-195
351	Szabó, L., Discussion of "On constitutive relations at finite strain: hypoelastic-	00 (1770)	105 175
001.	ity and elasto-plasticity with isotropic or kinematic hardening, by S.N. Atluri"		
	(Short Note)	67 (1988)	125_127
352	Szymczak, W.G., An analysis of viscous splitting and adaptivity for steady-state	07 (1300)	143-127
332.	convection-diffusion problems	67 (1988)	311_354
	convection-direction problems	07 (1966)	311-334
353.	Tabarrok, B. and L. Assamoi, A new variational principle in elastodynamics	61 (1987)	303-321
	Tabarrok, B., M. Farshad and H. Yi, Finite element formulation of spatially	32 (2.5.)	
-	curved and twisted rods	70 (1988)	275-299
355.	Tabarrok, T., J. Xu and R.G. Fenton, A finite element procedure for plane	(222)	
	strain metal flow within specified plastic boundaries	63 (1987)	1- 14
	• •	()	

	Tadmor, E., Shock capturing by the spectral viscosity method Tamma, K.K. and R.R. Namburu, A new finite element based Lax-	80 (1990) 197–208
	Wendroff/Taylor-Galerkin methodology for computational dynamics Tamma, K.K. and S.B. Railkar, Nonlinear/linear unified thermal stress for-	71 (1988) 137–150
	mulations: Transfinite element approach	64 (1987) 415-428
359.	Tanaka, M. and Y. Masuda, Boundary element method applied to certain	71 (1000) 225 224
260	structural-acoustic coupling problems	71 (1988) 225–234
	Tessler, A., A C^0 -anisoparametric three-node shallow shell element Tezduyar, T.E., Finite element formulation of the vorticity-stream function	78 (1990) 89–103
362.	form of the incompressible Euler equations on multiply-connected domains Tezduyar, T.E. and J. Liou, Adaptive implicit-explicit finite element al-	73 (1989) 331–339
363.	gorithms for fluid mechanics problems Thompson, J.F., A general three-dimensional elliptic grid generation system on	78 (1990) 165–179
364.	a composite block structure Tin-Loi, F. and M.B. Wong, Nonholonomic computer analysis of elastoplastic	64 (1987) 377–411
365.	frames Tortorelli, D.A., R.B. Haber and S.CY. Lu, Design sensitivity analysis for	72 (1989) 351–364
366.	nonlinear thermal systems Touzani, R., Implementation of the discontinuous finite element method for	77 (1989) 61- 77
	hyperbolic equations Twizell, E.H., A sixth-order extrapolation method for special nonlinear fourth-	68 (1988) 115–123
	order boundary value problems Twizell, E.H., A family of numerical methods for the solution of high-order	62 (1987) 293–303
	general initial value problems	67 (1988) 15- 25
369.	Vahdani, B. and L.C. Wellford Jr., A singular perturbation-finite element procedure for the analysis of structures with a small bending rigidity	66 (1988) 221–240
	Van der Giessen, E., FE thermomechanics and material sampling points Vandeven, H., On the eigenvalues of second-order spectral differentiation	64 (1987) 447–465
	matrices Vu-Quoc, L., A perturbation method for dynamic analyses using under-in-	80 (1990) 313–318
	tegrated shell elements Vu-Quoc, L. and J.A. Mora, A class for simple and efficient degenerated shell	79 (1990) 129–172
	elements—Analysis of global spurious-mode filtering Vu-Quoc, L. and M. Olson, A computational procedure for interaction of	74 (1989) 117–175
	high-speed vehicles on flexible structures without assuming known vehicle nominal motion	76 (1989) 207–244
375.	Wang, J.H. and H.R. Chen, A substructure modal synthesis method with high computational efficiency	79 (1990) 203–217
376	Wang, WC. and JT. Chen, Stress analysis of finite interfacially cracked bimaterial plates by using the variational method	
377	Warby, M.K. and J.R. Whiteman, Finite element model of viscoelastic membrane deformation	73 (1989) 153–171
378	. Wasberg, C.E. and Ø. Andreassen, Pseudospectral methods with open boundary	68 (1988) 33- 54
270	conditions for the study of atmospheric wave phenomena	80 (1990) 459–465
	Wathen, A.J., An analysis of some element-by-element techniques Watson, L.T. and R.T. Haftka, Modern homotopy methods in optimization	74 (1989) 271–287 74 (1989) 289–305
300	. watson, 2.1. and R.1. Hartka, wouldn nomotopy methods in optimization	74 (1707) 207-303

381.	Weber, G. and L. Anand, Finite deformation constitutive equations and a time integrated procedure for isotropic hyperelastic-viscoplastic solids	79 (1990) 173–202
382	Weideman, J.A.C. and A. Cloot, Spectral methods and mappings for evolution	17 (1770) 113-202
304.	equations on the infinite line	80 (1990) 467-481
383.	Weissmann, S.L. and R.L. Taylor, Resultant fields for mixed plate bending	
	elements	79 (1990) 321-355
384.	White, R.E., Multisplittings and parallel iterative methods	64 (1987) 567-577
	Wriggers, P., W. Wagner and C. Miehe, A quadratically convergent procedure	(,
	for the calculation of stability points in finite element analysis	70 (1988) 329-347
386.	Wrobel, L.C. and C.A. Brebbia, The dual reciprocity boundary element	(
	formulation for diffusion problems	65 (1987) 147-164
387.	Wu, S.T. and J.F. Wang, Numerical tests of a modified full implicit continuous	
	Eulerian (FICE) scheme with projected normal characteristic boundary condi-	
	tions for MHD flows	64 (1987) 267-282
388.	Zang, T.A., Spectral methods for simulations of transition and turbulence	80 (1990) 209-221
389.	Zhiyun, X., The Hamiltonian system and the spline function	78 (1990) 125-139
390.	Zhu, J. and M.A. Leschziner, A local oscillation-damping algorithm for	
	higher-order convection schemes	67 (1988) 335-366
391.	Zieliński, A.P., Trefftz method: Elastic and elasto-plastic problems	69 (1988) 185-204
392.	Zienkiewicz, O.C., J. Szmelter and J. Peraire, Compressible and incompressible	
	flow: An algorithm for all seasons	78 (1990) 105-121
393.	Zografos, A.I., W.A. Martin and J.E. Sunderland, Equations of properties as a	
	function of temperature for seven fluids	61 (1987) 177-187

CUMULATIVE CO-AUTHOR INDEX OF VOLUMES 61-80

Abd-el-Malek, M.B., see Boutros,		Besterfield, G., see Liu, W.K.	67 (1988) 27
Y.Z.	65 (1987) 215	Bhaskar, A., see Dumir, P.C.	67 (1988) 111
Achenbach, J.D., see Kitahara,		Bhiladvala, R.B., see Chen, C.J.	75 (1989) 61
M.	64 (1987) 523	Bontoux, P., see Chaouche, A.	80 (1990) 237
Adamík, V., see Matejovič, P.	70 (1988) 301	Brebbia, C.A., see Wrobel, L.C.	65 (1987) 147
Adamík, V., see Matejovič, P.	76 (1989) 135	Brezzi, F., see Hughes, T.J.R.	72 (1989) 105
Admundson, N.R., see Ballal, G.	75 (1989) 467	Brown, D.B., see Langer, F.D.	62 (1987) 255
Agrawal, V., see Karamanlidis, D.	73 (1989) 133	Brown, R.C., see Eraslan, A.N.	64 (1987) 61
Alziary de Roquefort, T., see			, ,
Farcy, A.	80 (1990) 337	Company B and Polleties D	75 (1989) 343
Anand, L., see Weber, G.	79 (1990) 173	Camarero, R., see Pelletier, D.	73 (1989) 343
Anderson, C.M., see Noor, A.K.	63 (1987) 37	Canuto, C., see Brezzi, F.	
Andreassen, Ø., see Wasberg,		Carey, G.F., see Barragy, E.	70 (1988) 321
C.E.	80 (1990) 459	Casteleiro, M., see Navarrina, F.	75 (1989) 267
Appert, K., see Succi, S.	75 (1989) 543	Chang, C.L., see Jiang, B.N.	78 (1990) 297
Assamoi, L., see Tabarrock, B.	61 (1987) 303	Chang, H., see Liu, W.K.	68 (1988) 259
Aubry, D., see Adjedj, G.	75 (1989) 153	Chang, WJ., see Jang, JY.	68 (1988) 333
		Chen, CK., see Chen, HT.	63 (1987) 83
Balmer, H., see Argyris, J.	65 (1987) 267	Chen, H.R., see Wang, J.H.	79 (1990) 203
Balmer, H., see Argyris, J.	71 (1988) 341	Chen, JS., see Liu, W.K.	68 (1988) 259
Banan, M.R., see Farshad, M.	73 (1989) 111	Chen, JS., see Liu, W.K.	71 (1988) 241
Banik, N.C., see Gupta, R.S.	67 (1988) 211	Chen, JT., see Wang, WC.	73 (1989) 153
Bédard, C., see Lacombe, C.	68 (1988) 177	Chen, TM., see Chen, HT.	63 (1987) 83
Belytschko, T., see Fish, J.	78 (1990) 181	Chen, YS., see Kim, SW.	66 (1988) 45
Belytschko, T., see Liu, W.K.	67 (1988) 27	Chin, S.B., see Bradley, D.	69 (1988) 133
Belytschko, T., see Liu, W.K.	68 (1988) 259	Cleghorn, W.L., see Rajpal,	
Belytschko, T., see Liu, W.K.	71 (1988) 241	S.D.O.	62 (1987) 245
Belytschko, T., see Smolinski, P.	65 (1987) 115	Cloot, A., see Weideman, J.A.C.	80 (1990) 467
Benaroya, H., see Rehak, M.L.	61 (1987) 61	Cockburn, B., see Bamberger, A.	75 (1989) 11
Bencze, D.P., see Chuy, W.J.	64 (1987) 21	Coppoletta, G., see Bernardi, C.	80 (1990) 229
Bendito, E., see Navarrina, F.	75 (1989) 267	Crescitelli, S., see Di Blasi, C.	75 (1989) 481
Benek, J.A., see Steger, J.L.	64 (1987) 301	Crivelli, A.L., see Storti, M.	66 (1988) 65
Benson, M.G., see Bellamy-	0. (250.) 502	Crivelli, L., see Farhat, C.	72 (1989) 153
Knight, P.G.	76 (1989) 171	Čyras, A., see Kačianauskas, R.	67 (1988) 131
Bergan, P.G., see Felippa, C.A.	61 (1987) 129		
Beris, A.N., see Liu, B.	76 (1989) 179	Das, S., see Mitra, A.K.	69 (1988) 205
Bernardi, C., see Bègue, C.	75 (1989) 109	Dawe, D.J., see Peshkam, V.	77 (1989) 227
Bert, C.W., see Elishakoff, I.	67 (1988) 297	Dawson, P.R., see Eggert, G.M.	70 (1988) 165
Bertin, J.J., see Cline, D.D.	75 (1989) 283	Debit, N., see Bègue, C.	75 (1989) 109
Bertrand, F., see Soulaimani, A.	62 (1987) 47	Dehmel, W., see Rothert, H.	64 (1987) 429
Beskos, D.E., see Providakis, C.P.	74 (1989) 231	Demkowicz, L., see Oden, J.T.	77 (1989) 113
Donos, D.L., our i ioriunkis, C.I.	14 (1707) 231	Dellinowicz, E., see Odell, J. I.	(1909) 113

Demkowicz, L., see Rachowicz, W.	77 (1989) 181	Franca, L.P., see Loula, A.F.D.	72 (1989) 201
	75 (1989) 409	Frey, F., see Jaamei, S.	75 (1989) 251
Dervieux, A., see Billey, V.	80 (1990) 305	Friz, H., see Argyris, J.	73 (1989) 1
Desideri, J.A., see Guillard, H.		Frosio, R., see Descloux, J.	77 (1989) 215
Deville, M.O., see Francken, P.	80 (1990) 295	Funaro, D., see Couland, O.	80 (1990) 451
Dhatt, G., see Soulaimani, A.	62 (1987) 47	Gallouët, T., see Eymard, R.	74 (1989) 83
Dimaggio, F.L., see Rehak, M.L.	61 (1987) 61	Garcia de Jálon, J., see Bayo, E.	71 (1988) 183
Doltsinis, I.St., see Argyris, J.	65 (1987) 267		
Doltsinis, I.St., see Argyris, J.	73 (1989) 1	Garon, A., see Pelletier, D.	75 (1989) 343 71 (1988) 125
Doltsinis, I.St., see Argyris, J.	71 (1988) 341	George, J.H., see Djomehri, M.J. Gerrard, J.H., see Bellamy-	/1 (1900) 123
Dulikravich, G.S., see Huang,	62 (1007) 16		76 (1989) 171
C.Y.	63 (1987) 15	Knight, P.G.	80 (1990) 229
Durany, J., see Bermudéz, A.	68 (1988) 55	Girault, V., see Bernardi, C.	80 (1990) 229
Durany, J., see Bermudez, A.	75 (1989) 457	Gladwell, I., see Bellamy-Knight, P.G.	76 (1090) 171
Dutra do Carmo, E.G., see	74 (1000) 41		76 (1989) 171
Franca, L.P.	74 (1989) 41	Glowinski, R., see Ballal, G.	75 (1989) 467
Dutra do Carmo, E.G., see Gale-	(0 (1000) 00	Goble, B., see Fung, KY.	66 (1988) 1
ão, A.C.	68 (1988) 83	Goldman, Y., see Bamberger, A.	75 (1989) 11
Elishekeff I ass Dahak MI	61 (1097) 61	Goodrich, W.D., see Ganjoo,	75 (1000) 514
Elishakoff, I., see Rehak, M.L.	61 (1987) 61	D.K.	75 (1989) 514
Engelman, B.E., see Belytschko,	70 (1099) 50	Gosman, A.D., see Ahmadi-Be-	70 (1000) 240
T.	70 (1988) 59	frui, B.	79 (1990) 249
Eriksson, LE., see Smith, R.E.	64 (1987) 285	Gottlieb, D., see Don, WS.	80 (1990) 39
Ewing, R.E., see Bramble, J.H.	67 (1988) 149	Gould, P.L., see Lin, J.S.	65 (1987) 127
Ewing, R.E., see Espedal, M.S.	64 (1987) 113	Graf, W., see Chang, T.Y.	73 (1989) 259
Farshad, M., see Tabarrok, B.	70 (1988) 275	Grice, W.A., see Golley, B.W.	76 (1989) 101
Fayolle, S., see Bernardou, M.	74 (1989) 307	Guerreiro, J.N.C., see Loula,	70 (1000) 07
Fenton, R.G., see Tabarrok, T.	63 (1987) 1	A.F.D.	79 (1990) 87
Ferencz, M., see Hughes, T.J.R.	61 (1987) 215	Guirguis, G.H., see Chu, M.T.	74 (1989) 99
Fezoui, L., see Billey, V.	75 (1989) 409	Guo, B.Q., see Babuška, I.	74 (1989) 1
Fish, J., see Belytschko, T.	70 (1988) 59	Guo, B.Q., see Babuška, I.	80 (1990) 319
Fish, J., see Belytschko, T.	76 (1989) 67	Guo, Y.H., see Padovan, J.	79 (1990) 113
Fleury, C., see Shyy, Y.K.	71 (1988) 99	Haase, M., see Argyris, J.	61 (1007) 71
Flück, M., see Descloux, J.	77 (1989) 215	Haber, R.B., see Phelan, D.G.	61 (1987) 71
Fortin, M., see Aboulaich, R.	75 (1989) 317		77 (1989) 31
Fortin, M., see Robichaud, M.P.	75 (1989) 359	Haber, R.B., see Tortorelli, D.A. Haftka, R.T., see Shin, Y.S.	77 (1989) 61 70 (1988) 151
Fortin, M., see Soulaimani, A.	62 (1987) 47		, ,
Fox, D.D., see Simo, J.C.	72 (1989) 267	Haftka, R.T., see Watson, L.T. Haldar, A., see Nee, KM.	74 (1989) 289
Fox, D.D., see Simo, J.C.	73 (1989) 53		71 (1988) 69
Fox, D.D., see Simo, J.C.	79 (1990) 21	Hallquist, J.O., see Benson, D.J. Hallquist, O., see Hughes, T.J.R.	78 (1990) 141
Franca, L.P., see Hughes, T.J.R.	63 (1987) 97		61 (1987) 215
Franca, L.P., see Hughes, T.J.R.	65 (1987) 85	Hardy, O., see Demkowicz, L.	77 (1989) 79
Franca, L.P., see Hughes, T.J.R.	67 (1988) 223	Haug, E.J., see Kim, SS.	71 (1988) 293
Franca, L.P., see Hughes, T.J.R.	73 (1989) 173	Haug, E.J., see Kim, SS.	74 (1989) 251
Franca, L.P., see Loula, A.F.D.	63 (1987) 115	Hayes, R.E., see Fauchon, D. Heinemann, R.F., see Ewing, R.E.	70 (1988) 139 64 (1987) 137
Franca, L.P., see Loula, A.F.D.	63 (1987) 133	Hemami, H., see Langer, F.D.	62 (1987) 255
Franca, L.P., see Loula, A.F.D.	63 (1987) 281	Hirsh, R.S., see Ku, HC.	,
rand, L.r., see Louia, A.r.D.	03 (1707) 201	Illish, R.S., see Ru, IIC.	75 (1989) 141

Himb BC V. HC	90 (1000) 201	V-II- ID C' I' D	## (1000) At
Hirsh, R.S., see Ku, H.C.	80 (1990) 381	Keller, J.B., see Givoli, D.	76 (1989) 41
Hollkamp, J., see Elishakoff, I.	62 (1987) 27 69 (1988) 89	Kennedy, J.G., see Simo, J.C.	74 (1989) 177
Hughes, T.J.R., see Franca, L.P.		Kern, M., see Bamberger, A.	75 (1989) 11
Hughes, T.J.R., see Hoff, C.	76 (1989) 87	Kikuchi, N., see Bendsøe, M.Ph.	71 (1988) 197
Hughes, T.J.R., see Loula, A.F.D.	63 (1987) 115	Kikuchi, N., see Koh, B.C.	65 (1987) 1
Hughes, T.J.R., see Loula, A.F.D.	63 (1987) 133	Kikuchi, N., see Lee, M.S.	72 (1989) 29
Hughes, T.J.R., see Loula, A.F.D.	63 (1987) 281	Kindelan, M., see Sguazzero, P.	80 (1990) 165
Hughes, T.J.R., see Loula, A.F.D.	72 (1989) 201	Klarbring, A., see Edlund, U.	78 (1990) 19
Hughes, T.J.R., see Shakib, F.	75 (1989) 415	Koebbe, J.V., see Ewing, R.E.	64 (1987) 137
Hulbert, G., see Hoff, C.	76 (1989) 87	Kujawski, J., see Desai, C.S.	62 (1987) 155
Hulbert, G.M., see Hughes, T.J.R.	66 (1988) 339	Kumar, R., see Jain, R.K.	72 (1989) 187
Hulbert, G.M., see Hughes, T.J.R.	73 (1989) 173		
Hung, HC., see Hsiao, KM.	73 (1989) 209	Lakes, R.S., see Nakamura, S.	66 (1988) 257
Hussaini, M.Y., see Drummond,	(4 (1007) 20	Lamain, L.G., see Donea, J.	63 (1987) 183
J.P.	64 (1987) 39	Larrouturou, B., see Benkhal-	
There: C and Dunner U A	75 (1090) 222	doun, F.	76 (1989) 119
Ibrani, S., see Dwyer, H.A.	75 (1989) 333	Lau, T.B., see Chan, A.S.L.	62 (1987) 127
Idelsohn, S.R., see Storti, M.	66 (1988) 65	Laval, H., see Donea, J.	68 (1988) 189
Ioakimidis, N.I., see Anastasse-	65 (1007) 165	Lee, S.R., see Borja, R.I.	78 (1990) 49
lous, E.G.	65 (1987) 165	Léné, F., see Bernardou, M.	74 (1989) 307
Issa, R.I., see Ahmadi-Befrui, B	79 (1990) 249	Leroy, Y., see Ortiz, M.	61 (1987) 189
Izadpanah, K., see Shyy, Y.K.	71 (1988) 99	Leschziner, M.A., see Zhu, J.	67 (1988) 355
Jackson, E., see She, ZS.	80 (1990) 173	Leyland, P., see Angrand, F.	75 (1989) 167
Jasti, R., see Karamanlidis, D.	67 (1988) 161	Li, C.H., see Ballal, G.	75 (1989) 467
Jetteur, P., see Jaamei, S.	75 (1989) 251	Li, Z.H., see Owen, D.R.J.	70 (1988) 349
Ji, X., see Chen, Z.Q.	78 (1990) 1	Liou, J., see Tezduyar, T.E.	78 (1990) 165
Jiang, BN., see Carey, G.F.	62 (1987) 145	Liu, MR., see Malkus, D.S.	68 (1988) 97
Johan, Z., see Shakib, F.	75 (1989) 415	Liu, W.K., see Belytschko, T.	62 (1987) 275
Johnson, A.R., see Fried, I.	67 (1988) 241	Liu, W.K., see Huerta, A.	69 (1988) 277
Johnson, A.R., see Fried, I.	69 (1988) 53	Liu, W.K., see Smolinski, P.	65 (1987) 115
Joly, P., see Bamberger, A.	75 (1989) 11	Loganathan, S., see Meek, J.L.	72 (1989) 57
Joly, P., see Cohen, G.	80 (1990) 397	Lotfi, A., see Le Tallec, P.	68 (1988) 67
Joly, P., see Eymard, R.	74 (1989) 83	Lottati, I., see Elishakoff, I.	66 (1988) 241
Jong, KY., see Rencis, J.J.	73 (1989) 295	Lu, S.CY., see Tortorelli, D.A.	77 (1989) 61
Jong, R1., see Reneis, J.J.	13 (1909) 293	Luco, J.E., see Mita, A.	63 (1987) 233
Kamel, A., see Sguazzero, P.	80 (1990) 165	Luo, JW., see Cheng, WQ.	71 (1988) 31
Kanarachos, A., see Antoniadis,	00 (1770) 105		, , , ,
I.	70 (1988) 1	Maday, Y., see Bègue, C.	75 (1989) 109
Kant, T., see Pandya, B.N.	66 (1988) 173	Maday, Y., see Bernardi, C.	80 (1990) 229
Karami, G., see Farshad, M.	73 (1989) 111	Maday, Y., see Ho, LW.	80 (1990) 65
Karniadakis, G.E., see Bègue, C.	75 (1989) 109	Majumdar, S., see Rodi, W.	75 (1989) 369
Kashava Kumar, B.L., see Kane,	15 (1707) 107	Mallet, M., see Hughes, T.J.R.	63 (1987) 97
J.H.	79 (1990) 219	Malone, J.B., see Sotomayer,	05 (1501) 51
Kavian, O., see Coulaud, O.	80 (1990) 451	W.A.	64 (1987) 237
Kawamura, T., see Chyu, W.J.	64 (1987) 21	Marini, L.D., see Brezzi, F.	75 (1989) 493
Kechkar, N., see Silvester, D.J.	79 (1990) 71	Marraffa, L., see Dulikravich,	13 (1707) 493
Kechter, G.E., see Achenbach,	(1770) /1	G.S.	79 (1990) 309
J.D.	70 (1988) 191	Martin, W.A., see Zografos, A.I.	61 (1987) 177
J.D.	10 (1300) 131	waitin, w.A., see Zogiaios, A.I.	01 (1307) 177

Mascarell, J.P., see La Hargue,		Park, K.C., see Nour-Omid, B.	61 (1987) 161
J.P.	75 (1989) 227	Pasciak, J.E., see Bramble, J.H.	67 (1988) 149
Masoud, S.Z., see Boutros, Y.Z.	65 (1987) 215	Patera, A.T., see Bègue, C.	75 (1989) 109
Masuda, Y., see Tanaka, M.	71 (1988) 225	Patera, A.T., see Ho, LW.	80 (1990) 65
Maubach, J., see Axelsson, O.	71 (1988) 41	Patera, A.T., see Ho, LW.	80 (1990) 355
Mavriplis, C., see Bègue, C.	75 (1989) 109	Pattani, P., see Devloo, P.	70 (1988) 203
Mennig, J., see Auerbach, T.	76 (1989) 1	Pavoni, D., see Bressan, N.	80 (1990) 443
Miedzialowski, C., see Desai, C.S.	62 (1987) 155	Pecheux, J., see Le Quéré, P.	80 (1990) 261
Miehe, C., see Wriggers, P.	70 (1988) 329	Peeters, P.P.J.M., see De Borst,	(,
Miller, A., see Babuška, I.	61 (1987) 1	R.	77 (1989) 293
Miranda, I., see Loula, A.F.D.	63 (1987) 133	Pellegrini, F., see Elishakoff, I.	66 (1988) 107
Miranda, I., see Loula, A.F.D.	63 (1987) 281	Peng, L., see Renwei, X.	65 (1987) 101
Miranda, I., see Loula, A.F.D.	72 (1989) 201	Penicaud, JP., see Ravier, P.	75 (1989) 531
Missaghi, M., see Bradley, D.	69 (1988) 133	Peraire, J., see Hassan, O.	76 (1989) 245
Mora, J.A., see Vu-Quoc, L.	74 (1989) 117	Peraire, J., see Lee, J.H.W.	61 (1987) 359
Morgan, K., see Hassan, O.	76 (1989) 245	Peraire, J., see Zienkiewicz, O.C.	78 (1990) 105
Mortara, K.W., see Dulikravich,	* * * * * * * * * * * * * * * * * * * *	Periaux, J., see Billey, V.	75 (1989) 409
G.S.	79 (1990) 309	Peshkam, V., see Dawe, D.J.	77 (1989) 1
Mukhopadhyay, M., see		Peters, J.M., see Noor, A.K.	61 (1987) 277
Mukherjee, A.	71 (1988) 273	Peters, J.M., see Noor, A.K.	71 (1988) 167
Mund, E.H., see Francken, P.	80 (1990) 295	Peyret, R., see Fröhlich, J.	80 (1990) 425
		Peyret, R., see Guillard, H.	66 (1988) 17
Namburu, R.R., see Tamma,		Picone, J.M., see Dahlburg, R.B.	80 (1990) 409
K.K.	71 (1988) 137	Pierre, R., see Fortin, M.	73 (1989) 341
Needleman, A., see Nacar, A.	73 (1989) 235	Pietra, P., see Brezzi, F.	75 (1989) 493
Needleman, A., see Ortiz, M.	61 (1987) 189	Pitta, M.S., see Ioakimidis, N.I.	69 (1988) 325
Nevers, T., see Destuynder, P.	68 (1988) 127	Planchard, J., see Conca, C.	75 (1989) 27
Nevers, T., see Destuynder, P.	78 (1990) 73	Planchard, J., see Conca, C.	77 (1989) 253
Niamathullah, S.K., see Shabana,		Plaut, R.H., see Shin, Y.S.	70 (1988) 151
A.A.	72 (1989) 195	Plemmons, R.J., see Berry, M.W.	64 (1987) 487
		Plesha, M.E., see Malkus, D.S.	68 (1988) 97
Oden, J.T., see Demkowicz, L.	77 (1989) 79	Prakash, V., see Karamanlidis, D.	72 (1989) 77
Oden, J.T., see Devloo, P.	61 (1987) 339	Prasad, U.S., see Ewing, R.E.	64 (1987) 137
Oden, J.T., see Devloo, P.	70 (1988) 203	Provatidis, Ch., see Kanarachos,	
Oden, J.T., see Rachowicz, W.	77 (1989) 181	Α.	63 (1987) 155
Oden, J.T., see Strouboulis, T.	78 (1990) 201	Provatidis, Ch., see Kanarachos,	
Ohsaki, M., see Nakamura, T.	67 (1988) 189	Α.	71 (1988) 151
Olson, M., see Vu-Quoc, L.	76 (1989) 207	O: W	
Ong, J.SJ., see Belytschko, T.	62 (1987) 275	Qiu, X., see Malkus, D.s.	66 (1988) 365
Orszag, S.A., see She, ZS.	80 (1990) 173	Quarteroni, A., see Gastaldi, F.	80 (1990) 347
Ortega, T., see De Frutos, J.	80 (1990) 417	Rachowicz, W., see Demkowicz,	
Ortiz, M., see Nacar, A.	73 (1989) 235	L.	77 (1989) 79
Osher, S., see Donat, R.	80 (1990) 59	Rachowicz, W., see Oden, J.T.	77 (1989) 113
Ouellet, Y., see Soulaimani, A.	62 (1987) 47	Radicati, G., see Succi, S.	75 (1989) 543
		Raffie, A., see Öz, H.	62 (1987) 17
Pahl, P.J., see Hoff, C.	67 (1988) 87	Railkar, S.B., see Tamma, K.K.	64 (1987) 415
Pahl, P.J., see Hoff, C.	67 (1988) 367	Rajan, S.D., see Belegundu, A.D.	66 (1988) 87
Pahl, P.J., see Hoff, C.	76 (1989) 87	Randriamampianina, A., see	(3.00) 01
Papegay, Y., see Garnier, C.	75 (1989) 215	Chaouche, A.	80 (1990) 237
			, , , , , ,

Rideau, P., see Garnier, C.	75 (1989) 215	Suri, M., see Babuška, I.	80 (1990) 5
Rifai, M.S., see Simo, J.C.	73 (1989) 53	Szeto, WT., see Ong, TG.	66 (1988) 301
Rifai, M.S., see Simo, J.C.	79 (1990) 21	Szmelter, J., see Zienkiewicz, O.C.	78 (1990) 105
Rimrott, F.P.J., see Guran, A.	76 (1989) 157		2 2 1 21
Rønquist, E.M., see Ho, LW.	80 (1990) 65	Tabbarok, B., see Rajpal, S.D.O.	62 (1987) 245
Rønquist, E.M., see Maday, Y.	80 (1990) 91	Tanaka, M., see Kikuta, M.	62 (1987) 321
Robert, Y., see Succi, S.	75 (1989) 543	Tang, J., see Elishakoff, I.	68 (1988) 229
Rogers, R.C., see Drummond,		Tanguy, P.A., see Fauchon, D.	70 (1988) 139
J.P.	64 (1987) 39	Tanguy, P.A., see Robichaud,	
Rosati, M., see Geymonat, G.	75 (1989) 39	M.P.	75 (1989) 359
Rosier, C., see Jauberteau, F.	80 (1990) 245	Tanner, J.A., see Noor, A.K.	63 (1987) 37
Rozvany, G.I.N., see Ong, TG.	66 (1988) 301	Taylor, L.M., see Flanagan, D.P.	62 (1987) 305
Rudowski, K., see Osiadacz, A.J.	65 (1987) 201	Taylor, R.L., see Simo, J.C.	74 (1989) 177
Russo, A., see Brezzi, F.	73 (1989) 317	Taylor, R.L., see Weissmann, S.L.	79 (1990) 321
Russo, G., see Di Blasi, C.	75 (1989) 481	Taylor, T.D., see Ku, H.C.	75 (1989) 141
Ryland, G., see Padovan, J.	79 (1990) 113	Taylor, T.D., see Ku, H.C.	80 (1990) 381
Ryzynski, W., see Desai, C.S.	62 (1987) 155	Temam, R., see Jauberteau, F.	80 (1990) 245
	, ,	Tezduyar, T.E., see Ganjoo, D.K.	65 (1987) 61
Sabag, M., see Greenberg, J.B.	70 (1988) 91	Tezduyar, T.E., see Ganjoo, D.K.	75 (1989) 515
Sacchi, G., see Chinosi, C.	80 (1990) 327	Togoh, H., see Kikuta, M.	62 (1987) 321
Sacchi Landriani, G., see Gastal-		Touzani, R., see Caussignac, P.	78 (1990) 249
di, F.	80 (1990) 347	Touzani, R., see Caussignac, P.	79 (1990) 1
Saigal, S., see Kane, J.H.	79 (1990) 219	Trefethen, L.N., see Reddy, S.C.	80 (1990) 147
Saleeb, A.F., see Chang, T.Y.	73 (1989) 259	Tripp, J., see Fung, KY.	66 (1988) 1
Sankar, L.W., see Sotomayer,			
W.A.	64 (1987) 237	Vaclavik, J., see Succi, S.	75 (1989) 543
Sanz-Serna, J.M., see De Frutos,		Valente, V., see Geymonat, G.	75 (1989) 39
J.	80 (1990) 417	Vanninathan, M., see Conca, C.	69 (1988) 215
Scapolla, T., see Chinosi, C.	80 (1990) 327	Vanninathan, M., see Conca, C.	75 (1989) 27
Schatz, A.H., see Bramble, J.H.	67 (1988) 149	Vanninathan, M., see Conca, C.	77 (1989) 253
Schönung, B. see Rodi, W.	75 (1989) 369	Vibet, C., see Cotsaftis, M.	74 (1989) 29
Scott, R.A., see Lee, M.S.	72 (1989) 29	Vinatier, M.C., see Bellet, D.	63 (1987) 167
Selmin, V., see Billey, V.	75 (1989) 409	Vlachos, N.S., see Samagaio, A.	75 (1989) 393
Serna, M.A., see Bayo, E.	71 (1988) 183	Vu-Quoc, L., see Simo, J.C.	66 (1988) 125
Sheikholeslami, M.Z. see Chen,			
C.J.	75 (1989) 61	Wagner, W., see Wriggers, P.	70 (1988) 329
Sheu, M.J., see Chen, D.R.	74 (1989) 55	Wang, J.F., see Wu, S.T.	64 (1987) 267
Sheu, M.J., see Chen, D.R.	68 (1988) 345	Watkins, A.P., see Ahmadi-Be-	
Slonim, M.A., see Kremer, Z.	72 (1989) 1	frui, B.	79 (1990) 249
Smith, F.W., see Girrens, S.P.	62 (1987) 209	Watson, L.T., see Shin, Y.S.	70 (1988) 151
Sonnad, V., see King, R.B.	65 (1987) 47	Weiser, A., see Sanders, R.	75 (1989) 91
Stavski, Y., see Greenberg, J.B.	70 (1988) 91	Wellford, L.C., see Vahdani, B.	66 (1988) 221
Stephan, E.P., see Babuška, I.	80 (1990) 319	Westermann, T.A. see Oden, J.T.	77 (1989) 113
Stoufflet, B., see Billey, V.	75 (1989) 409	Whiteman, J.R., see Warby, M.K.	68 (1988) 33
Street, R.L., see Meakin, R.L.	68 (1988) 151	Wills, J., see Crisfield, M.A.	66 (1988) 267
Street, R.L., see Meakin, R.L.	68 (1988) 311	Wong, M.B., see Tin-Loi, F.	72 (1989) 351
Strouboulis, T., see Devloo, P.	61 (1987) 339		
Sunderland, J.E., see Zografos,		Xu, J., see Tabarrok, T.	63 (1987) 1
A.I.	61 (1987) 177	Xu, YL., see Achenbach, J.D.	70 (1988) 191

Yakoumidakis, M., see		Zhang, QX., see Gao, XC.	69 (1988) 45
Papadrakakis, M.	62 (1987) 195	Zhu, FW., see Cheng, WQ.	71 (1988) 31
Yang, R.J., see Barone, M.R.	74 (1989) 69	Zienkiewicz, O.C., see Lee,	
Yardeni, D., see Kaplan, B.Z.	63 (1987) 305	J.H.W.	61 (1987) 359
Yi, H., see Tabarrok, B.	70 (1988) 275		()
Yu. C.C., see Heinrich, J.C.	69 (1988) 1		

CUMULATIVE SUBJECT INDEX OF VOLUMES 61-80 *

Boundary element methods

2 23 29 75 89 90 157 197 198 199 202 211 217 263 264 299 300 301 310 359 386

Boundary layers

64 65 302

Calculus of variations

353 376

Cavitation flows

324

Collocation method

69 95 101 106 112 129 142 146 154 171 203 222 231 289 294 320

Control theory

87 281 283

Coupled problems

10 14 37 77 84 85 148 153 163 168 169 191 225 338 359

Design of programs

51 134 281 289

Dynamics

120 152 160 10 13 32 113 119 151 161 194 197 198 200 207 212 213 217 229 238 243 246 253 301 309 282 283 287 290 334 341 353 359 374 375

^{*} Numbers refer to papers listed in the Cumulative Author Index.

Elasticity

250 257 353 354 369 376 391

Electromagnetic fields

26 54 210 265 307 338 387

Electronics

61 220

Finite difference methods

4 7 30 36 37 52 56 81 82 107 110 116 123 124 125 147 161 165 176 178 182 183 191 201 218 220 259 260 262 317 328 339 345 363 367 387 390

Finite element and matrix methods

373 375

Fluid mechanics

307 312

Fracture mechanics

8 16 74 93 228 268 376

Gas dynamics

13 91 166 356

General Rayleigh-Ritz and Galerkin techniques

Heat and diffusion

15 37 42 47 57 73 103 109 123 127 137 156 164 202 203 211 221 258 292 305 306 338 347 352 358 370 386

Incompressible and near incompressible media

1 28 31 33 35 36 49 55 58 69 98 113 126 132 139 141 144 145 169 173 181 192 193 208 231 232 247 313 316 323 324 329 344 346 362 392

Kinematics

143

Least squares method

63 193 393

Limit solutions

196

Material physics

94 393

- Matrix calculus

293 379

Miscellaneous topics

6 8 20 24 150 187 230 240 276 389

Nonconservative loads

119 120 121

Nonlinear mechanics

5	12	. 13	19	27	30	38	39	44	46	53	58	66	77	79	87	93	112
115	120	121	130	135	136	144	145	156	167	174	177	190	194	200	204	207	213
229	232	239	244	261	271	272	274	283	315	330	362	364	377				

Numerical solution procedure

1	3	9	15	19	21	25	26	30	31	38	46	47	53	58	60	63	64
65	70	71	72	76	79	80	90	96	97	102	104	105	109	114	116	119	135
141	142	151	155	162	163	170	176	178	184	185	189	193	195	201	209	213	215
218	219	223	224	225	226	228	232	236	238	241	243	249	254	255	262	264	266
271	274	278	287	292	293	303	305	306	309	312	313	318	319	321	322	330	339
341	342	343	345	352	357	362	364	368	371	379	381	384	385				

Optimization

5 6 34 77 210 234 276 279 314 318 327 380

Optimization and design of structures

41 67 196 216 269 270 311 314 326 365

Phase changes

164 168 347

Plasticity

13	27	39	53	75	93	114	165	196	239	267	271	272	280	282	298	300	330
						381							200		2,0	200	

Shells and plates

7	13	18	40	50	62	68	78	92	99	100	108	112	122	128	133	155	158
165	177	180	182	188	196	205	234	239	251	265	273	279	282	286	290	291	301
315	321	333	335	359	360	369	372	373	383								

Singularity methods

35 237 369

Solution of differential equations

17 25 160 164 174 175 190 367 368 374 390

Solution of integral equations (singularity method)

2 71 72 171 199 228

Solution of ordinary and partial differential equations

5 11 25 33 59 70 80 88 96 140 157 176 193 240 252 278 293 303 308 317 371 378 382

Spline approximation

Stability in fluid mechanics

111 168 349

Stability in structural mechanics

27 92 118 119 120 121 122 165 167 290 385

Structural mechanics

227 232 319 326 334 336 342 350

Subsonic flow

Supersonic flow

14 81 82 110 124 159 166 262 285 357

Systems of linear and nonlinear simultaneous equations

1 51 162 170 213 256 266 293 295 312 322 380 384

Thermal effects and thermodynamics

94 101 169 191 226

Transonic flow

52 111 125 233 285 343

Transport phenomena

15 24 44 57 126 127 137 149 150 185 186 246 292 305 306 390

Turbulence

4 323 388

Viscoelastic and viscoplastic media

115 138 257 272 297 377

Viscous flow

9 31 48 60 102 106 113 126 132 168 169 172 179 181 193 214 236 296 302 316 344

Wave motion

11 59 83 107 198 200 320 378 382

Theoretical and Applied Fracture Mechanics

An International Journal devoted to research in the Theoretical and Experimental Aspects of Material Damage

This journal comprises two communications: Fracture Mechanics Technology and Mechanics and Physics of Fracture

FRACTURE MECHANICS TECHNOLOGY

Fracture Mechanics Technology emphasizes material characterization techniques and translation of specimen data to design.

Contributions cover the application of fracture mechanics to hydro and electric machinery, offshore oil exploration equipment, pipelines and pressure vessels, nuclear reactor components, air, land and sea vehicles, and many others.

MECHANICS AND PHYSICS OF FRACTURE

Mechanics and Physics of Fracture encourages publication of original research on material damage leading to crack growth or fracture in materials such as metal alloys, polymers, composites, rocks, ceramics, etc.

Abstracted/Indexed In:

Cambridge Scientific Abstracts, Current Contents, Engineering Index, Physics Abstracts.

Editor-in-Chief:

G.C. Sih, Institute of Fracture and Solid Mechanics, Lehigh University, Bethlehem, PA, USA

Subscription Information:

1990: Vols. 13 & 14 (6 issues) US\$ 303.00 / Dfl. 606.00, including postage ISSN: 0167-8442

The Dutch Guilder (Dfl.) price is definitive.
US \$ price is subject to exchange rate fluctuations.

THEORETICAL AND APPLIED FRACTURE MECHANICS Please send me a free sample copy Please enter my subscription for 1990 and send me an invoice Name: Send this coupon (or a photocopy) to: Elsevier Science Publishers Attn: H. van der Poel P.O. Box 1991, 1000 BZ Amsterdam The Netherlands In the USA and Canada: Elsevier Science Publishers Attn: Journal Information Center 655 Avenue of the Americas New York, NY 10010, U.S.A.

Mechanics of Materials

An International Journal

Mechanics of Materials provides a forum for original scientific research on the flow, fracture, and general constitutive behavior of advanced, technological and natural materials, with balanced coverage of theoretical, experimental, and field investigations. Of special concern are macroscopic predictions based on microscopic models, identification of microscopic structures from limited overall macroscopic data, experimental and field results that lead to fundamental understanding of the behavior of materials, and coordinated experimental and analytical investigations that culminate in theories with predictive quality.

Mechanics of Materials publishes original contributions on the thermomechanical behavior of advanced technological materials such as metals, polymers, ceramics, various advanced composites, wood, etc., geotechnical materials such as rock and soil, and on thermomechanical processes pertaining to solid earth geophysics.

Abstracted/Indexed in:

Applied Mechanics Reviews, Engineering Index, INSPEC Abstracts, ISMEC, Metals Abstracts, Solid State Abstracts Journal, World Aluminium Abstracts.

Editor-in-Chief:

S. Nemat-Nasser, University of California, San Diego, CA, USA

Subscription Information:

1990: Vols. 9 & 10 (6 issues) US\$ 263.00 / Dfl. 526.00, including postage ISSN: 0167-6636

The Dutch Guilder (Dfl.) price is definitive.
US \$ price is subject to exchange rate fluctuations.

MECHANICS OF MATERIALS Please send me a free sample copy Please enter my subscription for 1990 and send me an invoice Name: Professional Address: Professional Address: Send this coupon (or a photocopy) to: Elsevier Science Publishers Attn: H. van der Poel P.O. Box 1991, 1000 BZ Amsterdam The Netherlands In the USA and Canada: Elsevier Science Publishers Attn: Journal Information Center 655 Avenue of the Americas New York, NY 10010, U.S.A.

INFORMATION FOR CONTRIBUTORS

Manuscripts should be sent in triplicate to one of the Editors. All manuscripts will be refereed. Manuscripts should preferably be in English. They should be typewritten, double-spaced, first copies (or clear Xerox copies thereof) with a wide margin. Abstracts, footnotes and lists of references should also be double-spaced. All pages should be numbered (also those containing references, tables and figure captions). Upon acceptance of an article, author(s) will be asked to transfer copyright of the article to the publisher. This transfer will ensure the widest possible dissemination of information.

Abstracts

The text of a paper should be preceded by a summary in English. This should be short, but should mention all essential points of the paper.

Figures and tables

The drawings for the figures must be submitted on separate sheets, drawn in black India ink in large size and carefully lettered (with the use of stencils). The lettering as well as the details should have proportionate dimensions, so as not to become illegible or unclear after the usual reduction by the printers; in general, the figures should be designed for a reduction factor of two or three. Mathematical symbols should be entered in italics, where appropriate. Each figure should have a number and a caption; the captions should be collected on a separate sheet. The appropriate place of a figure should be indicated in the margin. Tables should be typed on separate sheets. Each table should have a number and a title. The appropriate places for the insertion of tables should be indicated in the margin. In case the author wishes one or more figures to be printed in colour, extra costs will arise. These costs may, in consultation with one of the editors, partly be charged to the author.

Formulae

Displayed formulae should be numbered and typed or clearly written by hand. Symbols should be identified in the margin, where they occur for the first time.

References

In the text, reference to other parts of the paper should be made by section (or equation) number, but not by page number. References should be listed in a separate sheet in the order in which they appear in the text.

COMPLETE INSTRUCTIONS TO AUTHORS are published in every issue, and copies can also be obtained from the Editors and the Publisher, Elsevier Science Publishers BV., P.O. Box 1991, 1000 BZ Amsterdam, The Netherlands.

INFORMATION FOR SUBSCRIBERS

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (ISSN 0045-7825) is published in six volumes (18 issues) a year. The subscription price for 1990 (Volumes 78-83) is SFr. 1980.00 + SFr. 180.00 p.p.h. = SFrs. 2160.00 (approximately US\$ 1293). Our p.p.h. (postage, packing and handling) charge includes surface delivery of all issues, except to subscribers in the following countries where air delivery (S.A.L. - Surface Air Lifted) is ensured: Argentina, Australia, Brazil, Canada, Hong Kong, India, Israel, Japan (+40% normal p.p.h.), Malaysia, Mexico, New Zealand, Pakistan, P.R. China, Singapore, South Africa, South Korea, Taiwan, Thailand, U.S.A. For the rest of the world airmail charges are available upon request. Claims for missing issues will be honoured free of charge within three months after the publication date of the issues. Mail orders and inquiries to: Elsevier Sequoia S.A., P.O. Box 851, CH-1001 Lausanne 1, Switzerland.

INFORMATION FOR ADVERTISERS

Advertising orders and inquiries can be sent to the Advertising Manager, Elsevier Science Publishers B.V., Journal Division, P.O. Box 211, 1000 AE Amsterdam, The Netherlands.

Special regulations for authors

Upon acceptance of an article by the journal, the author(s) will be asked to transfer copyright of the article to the publisher. This transfer will ensure the widest possible dissemination of information.

Submission of an article entails the author's irrevocable and exclusive authorization of the publisher to collect any sums or considerations for copying or reproduction payable by third parties (as mentioned in article 17 paragraph 2 of the Dutch Copyright Act of 1912 and in the Royal Decree of June 20, 1974 (S.351) pursuant to article 16b of the Dutch Copyright Act of 1912) and/or to act in or out of Court in connection therewith.

Special regulations for readers in the U.S.A.

This journal has been registered with the Copyright Clearance Center, Inc. Consent is given for copying of articles for personal or internal use, or for the personal use of specific clients. This consent is given on the condition that the copier pays through the Center the per-copy fee stated in the code on the first page of each article for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. The appropriate fee should be forwarded with a copy of the first page of the article to the Copyright Clearance Center, Inc., 27 Congress Street, Salem, MA 01970, U.S.A. If no code appears in an article, the author has not given broad consent to copy and permission to copy must be obtained directly from the author. All articles published prior to 1981 may be copied for a per-copy fee of US \$2.25, also payable through the Center. This consent does not extend to other kinds of copying, such as for general distribution, resale, advertising and promotion purposes, or for creating new collective works. Special written permission must be obtained from the publisher for such copying.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING

(Articles are abstracted/indexed in: ACM Computing Reviews, Applied Mechanics Reviews, Boundary Elements Abstracts, Current Contents, Engineering Index, ERDA Abstracts, INSPEC, Newsletter Engineering Analysis Software)

Cumulative Index

CONTENTS

Cumulative Author Index of Volumes 61-80	1
Cumulative Co-author Index of Volumes 61-80	19
Cumulative Subject Index of Volumes 61-80	25

