IE2111 ISE Principles & Practice II Solutions to Tutorial #2

Question 1.

Investment cost	\$ 13,000,000
Useful life	15 years
Market value at end of useful life	\$ 3,000,000
Annual operating expenses	\$ 1,000,000
Overhaul cost – end of 5 th year	\$ 200,000
Overhaul cost – end of 10 th year	\$ 550,000

$$PW(12\%) = -13,000,000 + 3,000,000 [P/F,12\%,15] - 1,000,000 [P/A,12\%,15]$$
$$-200,000 [P/F,12\%,5] - 550,000 [P/F,12\%,10]$$
$$= -13,000,000 + 3,000,000 (0.182696) - 1,000,000 (6.810864)$$
$$-200,000 (0.567427) - 550,000 (0.321973)$$
$$= -19,553350$$

Hence the Power Plant has PW(12%) = -\$ 19,553,350 PW

Note that this is a cost or service project, i.e., although its PW is negative, it contributes indirectly to other parts of the company's operations.

Question 2.

Investment Cost	\$10,000
Expected life	5 years
Salvage value*	- \$1,000
Annual receipts	\$8,000
Annual expenses	\$4,000

FW at end of 5 years

$$= -10,000 [F/P,15\%,5] + (8,000 - 4,000) [F/A,15\%,5] - 1,000$$

= -10,000 (2.011357) + (4,000) (6.742381) - 1,000
= \$ 5,855.95 > 0

The project is acceptable at MARR = 15%.

Question 3.

Capital Investments

```
1. Land cost = $300,000
```

- 2. Building cost = \$600,000
- 3. Equipment cost = \$250,000
- 4. Working capital = \$100,000

Total Capital Investment = \$1,250,000

Annual Revenue & Expenses

```
1. Annual revenue = \$750,000
```

2. Annual expense = \$475,000

Annual Net Income = \$275,000

Salvage values at end of 10 years

1. Land = \$400,000 2. Building = \$350,000

3. Equipment = \$50,000

Total Salvage Values = \$800,000

Working capital recovered at EoY 10 = \$100,000

```
MARR = 15\%
Study period = 10 years.
```

```
= -1,250,000 [A/P, 15\%, 10] + 275,000 + (800,000 + 100,000) [A/F, 15\%, 10]
AW(15\%)
              = -1,250,000(0.199252063) + 275,000 + 900,000(0.049252063)
              = $\frac{70,261.78}{} > 0
```

Therefore, the project is feasible and the company should invest in the new product line

Question 4.

Initial investment for solar panels = \$1,400 Monthly savings = \$24 Useful life = 7 years = 84 months Salvage value = 0. Study period = 7 years.

The MARR = 3% per year compounded monthly = 0.25% per month compounded monthly

(a) Discounted payback period

Let
$$PW(i\%, k) = PW$$
 of the cash flows up to end of month $k = -1,400 + 24 [P/A, 0.25\%, k]$ for $k = 1$ to 84

The value of PW(0.25%, k) for k = 60 to 65 are as follows:

k	PW(k)	Sign
60	-\$64.34	< 0
61	-\$43.73	< 0
62	-\$23.18	< 0
63	-\$2.67	< 0
64	\$17.79	> 0
65	\$38.19	> 0

We note that PW(25%, 63 months) < 0 and PW(25%, 64) > 0.

Hence the discounted payback period = 64 months at MARR = 0.25% per month.

(b) Project IRR

IRR of the project is the solution to the equation:

$$-1,400 + 24 [P/A/i\%, 84] = 0$$

 $[P/A/i\%, 84] = 58.333333333$

By trial and error:

$$[P/A, 0.75\%, 84] = 62.1539646$$
 $\Leftarrow 58.33333333 = [P/A/i\%, 84]$ $[P/A, 1\%, 84] = 56.6484528$

By linear interpolation:

$$\frac{i - 0.75}{1.00 - 0.75} \approx \frac{62.1539646 - 58.3333333}{62.1539646 - 56.6484528}$$

 $i \approx 0.923$ % per month

Note: Exact solution using Excel Rate or Goal Seek is *IRR* = 0.9199% per month.

Question 5

The cash flows for the projects are:

End of Year	Cash flow (\$)
0	-65,000
1	25,000
2	30,000
3	30,000
4	40,000
5	46,000

MARR = 18% per year. Study period = 5 years.

(a)

$$FW(18\%) = -65,000 [F/P, 18\%, 5] + 25,000 [F/P, 18\%, 4] + 30,000 [F/P, 18\%, 3] + 30,000 [F/P, 18\%, 2] + 40,000 [F/P, 18\%, 1] + 46,000$$
$$= -65,000 (1.18)^5 + 25,000 (1.18)^4 + 30,000 (1.18)^3 + 30,000 (1.18)^2 + 40,000 (1.18) + 46,000$$
$$= \$ 84,028.15 > 0$$

Hence the project is acceptable at MARR = 18%

(b) Internal Rate of Return

IRR is the solution to:

$$FW(i) = -65,000 (1+i)^5 + 25,000 (1+i)^4 + 30 (1+i)^3 + 30,000 (1+i)^2 + 40,000 (1+i) + 46,000 = 0$$

By trial and error and linear interpolation (within the interval 35% to 40%)

$$FW(35\%) = +\$ 20,061.73 > 0$$

 $FW(40\%) = -\$ 10,425.60 < 0$

$$IRR \approx 35\% + \frac{(0 - 20,061.73)}{(-10,425.60 - 20,061.73)}(40\% - 35\%)$$
$$= 38.3\% > MARR = 18\%$$

Hence the project is acceptable since IRR > MARR.

Note that the actual IRR = 38.402% using Excel or Python.

(c) Modified Internal Rate of Return

Financing rate = 12% Reinvestment rate = 18%

PW(12%) of all –ve cash flows = - \$65,000

$$FW(18\%)$$
 of all +ve cash flows
= 25,000 $(1.18)^4 + 30,000 (1.18)^3 + 30,000 (1.18)^2 + 40,000 (1.18) + 46,000= $232,732.40$

MIRR at financing rate 12% and reinvestment rate 18%

$$= \sqrt[5]{\frac{232,732.40}{65,000}} - 1 = 0.29059 \quad \text{or} \quad \mathbf{29.059\%}$$

(d) Discounted payback period.

Compute
$$PW_k(18\%) = \sum_{j=0}^k \frac{CF_j}{(1+0.18)^j}$$
, for $k = 0, 1, ..., 5$.

EoY	Cash Flow (\$)	PWk(18%)	Sign
0	-65,000.00	-65,000.00	< 0
1	25,000.00	-43,813.56	< 0
2	30,000.00	-22,268.03	< 0
3	30,000.00	-4,009.10	< 0
4	40,000.00	+16,622.45	> 0
5	46,000.00	+36,729.48	> 0

Discounted payback period = 4 years < 5 years.

Hence the project is acceptable based on discounted payback period at MARR=18%.