Database: Teoria

Aymane Chabbaki

III semestre 2019/2020

Contents

1	Relational Algebra 1.1	2
2	SQL 2.1	2
3	Functional Dependencies	2
	3.1	2
4	Indexes 4.1	2
5	Query Cost	2
	5.1 Page	2
	5.2 Size of a Record	
	5.3 Pages of Relation	
	5.4 Cardinality of a Relation	
	5.5 Cardinality of an Attribute	
	5.6 Records per Page	
	5.7 Relation size	
	5.8 Cost	
	5.9 Scan	
	5.10 Sorting	
	5.11 Indexes	
	9.11 Indexes	٠
6	Transaction	4
	6.1	4

1 Relational Algebra

1.1

•

- 2 SQL
- 2.1

•

- 3 Functional Dependencies
- 3.1

•

- 4 Indexes
- 4.1

•

5 Query Cost

5.1 Page

- Every time a Hard Drive is instructed to **read** or **write** something on the disk, it does so by **reading** or **writing units of specific size**.
- This size is called a Page and has always a fixed size.
- The size of a page on the disk will be denoted as P.

5.2 Size of a Record

- Records of a relation have the same size.
- The size of a record:
 - indicates how much space, in bytes, a record occupies when stored on the disk.
 - will be typically **given** or it would be possible to **compute** from the **size of the individual attributes**.
- The size of a record of a relation R will be denoted as t_R .
- Example:
 - Student(ssn:int, credits:int, age:int, name:varchar(25), surname:varchar(25)
 - Knowing that an **int** variable occupies 4 bytes and a **varchar** variable occupies 1 byte, we have that:

$$t_{Student} = (3 \cdot 4) + (2 \cdot 25) = 62$$
 bytes

- So the size of each record of Student occupies 62 bytes on the disk.

5.3 Pages of Relation

- When a page contains some data of a relation, no records from other relations are allowed in that page.
- The database try to fill a page with as many records of the same relations as it can, and if no more records can fit, then it start saving them in another page.
- All the pages that a relation occupies on the disk are full.
- The number of pages that a relation R occupies on the disk will be denoted as P_R .

5.4 Cardinality of a Relation

- A relation is a set of records.
- The cardinality of a relation R will be denoted as |R| (number of records a relation has).

5.5 Cardinality of an Attribute

- The **cardinality** of:
 - an attribute is the number of different distinct values that the attribute has.
 - two or more attributes is the number of different distinct combinations of the values of these attributes.
- The **cardinality** of:
 - of an attribute A of a relation R, will be denoted as |R.A|.
 - of two or more attributes of a **relation** R, will be denoted as $|R.A_1, R.A_2, \ldots, R.A_n|$.
- If the attribute is a **key**, the **cardinality** of the attribute is the **same** as the cardinality of the **relation**:
 - If the attribute A is key, then |R| = |R.A|, otherwise $|R.A| \leq |R|$.

5.6 Records per Page

•

5.7 Relation size

•

5.8 Cost

•

5.9 Scan

•

5.10 Sorting

•

5.11 Indexes

•

6 Transaction

6.1

.