Collaborative Feature Maps of Networks and Hosts for Aldriven Intrusion Detection

Introduction

침입 탐지 시스템(IDS): 네트워크 또는 호스트에서 다양한 네트워크 위협 및 악의적인 동작으로부터 보호하는 중요한 보안 메커니즘 => 네트워크와 자산을 보호하는데 중요함

- 홈페이지 및 애플리케이션 서버에 대한 침입을 실시간으로 탐지 및 대응하는 서비스
- 공격탐지를 위한 패턴 자동 업데이트 실시, 공격 유형, 타켓IP, 경보 목록을 대시보드 및 report 화면으로 제공하는 기능이 있다

IDS (Security Cloud Platform Intrusion Detection System) | 클라우드 상품 | 삼성SDS (samsungsds.com)

NIDS : 네트워크의 특정 지점에서 여러 호스트를 대상으로 침입을 탐지하는 시스템. 스니핑(Sniffing) 을 사용하여 네트워크 패킷을 분석하고 침입을 탐지한다.

HIDS: 호스트 내부에 설치되며 내부 시스템의 여러가지 상태를 모니터링한다. 내부 시스템의 여러가지 상태를 모니터링하고 침입을 탐지하기 위해 syscall, log, 시스템 설정, 파일의 무결성을 분석한다.

CIDS(Combined Intrusion Detection System) : NIDS + HIDS

Introduction

< Contribution >

- 1. CIDS 분야에서 딥 러닝 모델을 사용하여 임의의 기능을 수동으로 마이닝하는 대신 호스트 기반 데이터에서 직접 기능을 추출하는 첫 번째 시도이다.
- 2. CIDS 데이터 세트를 만들기 위한 새로운 프레임워크가 제안된다.
- 3. SCVIC CIDS2021이라는 CIDS 데이터 세트는 잘 알려진 벤치마크 데이터 세트 CIC-IDS-2018 사용하여 생성된다.
- 4. 이 논문은 다양한 모양과 차원의 네트워크 흐름과 호스트 기반 기능을 포함할 수 있는 CIDS-Net을 제공한다.
- 5. C Loss라는 새로운 손실 함수가 제안된다.

Related Work

네트워크 및 호스트 기반 데이터의 조합과 관련된 최근 연구 소개.

- KDD98/99[7] 및 NSL-KDD[8]: 네트워크 및 호스트 기반 기능을 모두 제공하지만 비현실적인 트래픽과 오래된 공격으로 비판을 받았다. 또한 메타 데이터에서 제한된 기능만 가져간다.
- CICFlowMeter : 네트워크 패킷에서 feature 을 추출하는 데 사용되지만 호스트 기반 데이터는 분석하지 않습니다.
- Vinayakumar et al.[12]: NIDS와 HIDS를 통합하기 위한 프레임워크를 제안하려고 시도하는 반면, 실험 파트는 NIDS와 HIDS 데이터 세트에서 DNN의 성능을 별도로 평가한다.

Related Work

네트워크 및 호스트 기반 데이터의 조합과 관련된 최근 연구

- ⇒ 네트워크 기반 데이터와 호스트 기반 데이터를 결합한 위의 연구는 네트워크 기반 기능을 수용하기 위해 호스트 기반 데이터를 표 형식으로 강제로 생성하여 많은 양의 귀중한 데이터 손실을 초래한 것으로 보인다.
- ⇒ 그럼에도 불구하고, 양 끝의 모델(NIDS 및 HIDS)은 크게 개선되었고, 데이터의 특성에 더 부합하기 위해 수많은 고급 방법/모델이 제안되었다.

예를 들어, Du et al. [14]는 LSTM(Long Short Term Memory) 네트워크를 사용하여 로그 항목을 시간 시퀀스로 표현하고 로그 파일에서 이상을 발견하는 DeepLog를 제공한다.

⇒ 이 연구는 다양한 형태와 모양의 데이터 샘플로 CIDS 데이터 세트를 생성하는 프레임워크와 침입 유형을 감지하기 위한 입력으로 사용할 수 있는 transformer-based CIDS-Net의 격차를 식별한다.

Method

CIDS Dataset Formation Framework

Fig. 1. CIDS Sample Generation Framework

- 호스트 기반 기능과 네트워크 기반 기능은 별도의 타임스탬프와 기 간 특성을 가지고 있음 → 정렬 알고리즘 제시
- 각 네트워크 기반 샘플은 여러 호스트 기반 샘플에 해당.
 - 네트워크 기반 인스턴스와 호스트 기반 인스턴스가 동일한
 시간 프레임에 생성되도록 정렬

```
Input: S_n; S_h
   Output: CIDS Samples
1 sort(samples_h);
2 S_c \leftarrow \emptyset;
3 foreach s_n \in S_n do
        ip, d \leftarrow get\_ip\_timewindow(s_n);
        \boldsymbol{E}_f, \boldsymbol{E}_m \leftarrow \emptyset, \emptyset;
        foreach s_h \in S_h do
             if ip \in s_h and s_h.ts \in d then
                   e_f, e_m \leftarrow s_h;
                  E_m \leftarrow E_m \frown e_m;
11
             end
        end
12
        S_c \leftarrow S_c \cup (s_n, E_f, E_m);
14 end
```

Method

CIDS sample

이벤트 피쳐 인스턴스는 벡터이며, 이벤트 피쳐의 출력은 행렬이고, event messages 는 직접 연결되어 더 긴 문자열을 만든다.

- **network feature** : 네트워크 흐름에 대한 통계 관측치 벡터(패킷 길이, TCP flags, 패킷 출발-도착 시간)
 - ⇒ network-based features, events features, event messages, label 4가지 요소를 구성한다.
- event feature : R(n*m) 행렬 ⇒ n : window time 내에 발생하는 event 수, m : event feature 의 수
- **event messages** : 문자열 ⇒ NLP(Natural Language Processing) 기술이 활용됨.

CIDS-Net

Fig. 3. The architecture of CIDS-Net

- Network Feature Encoder: network feature 는 표 형식의 데이터라 FCN 을 인코더로 사용(TabNet)
- Event Feature Encoder : 트랜스포머 인코더
- Event Message Encoder : BERT word 임베딩을 통해 벡터로 변환 → R(i*j) 행렬로 변환 (i : 문장의 토큰 수, j : 임베딩 벡터의 차원) , 트랜스포머 인코더
 - 큰 네트워크를 CIDS-Net에 연결하여 잠재적인 과적합을 방지하기 위해 미세 조정 없이 가중치를 고정하는 사전 훈련된 BERT 네트워크를 사용
- aggregator(FCN) : 인코더의 출력을 입력으로 받아 intrusion(침입) 을 예측하는 layer
 - 예측을 얻기 위해 인코딩된 hidden state 는 FCN layer 에 의해 aggregate 된다.

C_Loss

$$C_Loss = \alpha * CE(y, \hat{y}_n) + (1 - \alpha) * CE(y, \hat{y})$$

Fig. 3. The architecture of CIDS-Net

Combined Loss(C_loss)을 사용하여 네트워크 feature 인코더와 전체 CIDS-Net을 공동으로 훈련하여 둘 다 예측할 수 있도록 할 것을 제안 한다. → 호스트 기반 데이터가 없을 때 유연성을 보장하고 더 복잡한 모델을 통합한다.

- CE : cross entropy loss
- y: sample 의 실제 레이블, y^: aggregator 의 예측, y^n: network feature 인코더의 예측
- 알파 : 하이퍼파라미터

Cross Entropy Loss

$$C_Loss = \alpha * CE(y, \hat{y}_n) + (1 - \alpha) * CE(y, \hat{y})$$

$$CE = -\sum_{c=1}^{C} L_c log P_c \hspace{0.5cm} CE = -rac{1}{n} \sum_{i=1}^{n} \sum_{c=1}^{C} L_c log P_c$$

C: 클래스의 총 개수

P: Softmax Function 에서 다룬 각각의 클래스에 속할 확률

L: 실제값의 One-hot Vector => 원-핫 인코딩을 통해 데이터가 벡터 형태로 변화된 형태

Python Pytorch 강좌: 제 13강 - 다중 분류(Multiclass Classification) - YUN DAE HEE (076923.github.io)

SCVIC-CIDS-2021 Dataset

CIC-IDS-2018 을 활용하여 2021 버전이 만들어졌다. network, host-based 와 현실적인 network setting 과 최근 공격 데이터가 필요하다.

- 2018 : network based feature 만 추출 (host 관련 데이터는 없음), CDFF 에 입력되어져서 2021 을 만드는데 활용됨.
 - OS 로그는 Windows와 Linux 운영 체제에서 가져옵니다.
 - 'Get-WinEvent' cmdlet은 윈도우즈 OS 로그를 tabluar 형식으로 변환하고, 'ProviderName' 및 이벤트 메시지는 Linux OS 로그 에서 추출됩니다.
- 2021 : PCAP format 의 network traffic , host-based data, labeling metadata 로 구성됨.
 - o network feature 는 2018 만큼
 - \circ system event entity 수가 28 \Rightarrow 모든 event feature 는 R(28 * 8) 크기로 zero padding 됨.

SCVIC-CIDS-2021 Dataset

TABLE I SCVIC-CIDS-2021 CLASS DISTRIBUTION

	Training Set	Test Set	Total
Benign	308375	152172	460547
Bot	60767	29693	90460
DDOS-HOIC	137147	67449	204596
DDOS-LOIC-HTTP	39019	19166	58185
DDOS-LOIC-UDP	760	342	1102
DoS-GoldenEye	2271	1163	3434
DoS-Hulk	13388	6553	19941
DoS-SlowHTTPTest	10579	5351	15930
DoS-Slowloris	1394	702	2096
FTP-BruteForce	32222	15918	48140
SSH-Bruteforce	11143	5418	16561
Sum	617065	303927	920992

Training, Test set sample 의 수

CIC-IDS-2018 에서 제공된 네트워크 흐름 기반 표 형식 데이터 세트에는 IP 주소와 타임스탬프가 없기 때문에 동일한 설정의 CICFlowMeter를 사용하여 재생성되고 IDS 2018에 나열된 attack traces 에 따라 레이블링된다.

Attacker	Victim	Attack Name	Date	Attack Start Time	Attack Finish Time
172.31.70.4 (Valid IP:18.221.219.4)	172.31.69.25 (Valid IP:18.217.21.148)	FTP- BruteForce	Wed-14- 02-2018	10:32	12:09
172.31.70.6 (Valid IP:13.58.98.64)	18.217.21.148- 172.31.69.25	SSH- Bruteforce	Wed-14- 02-2018	14:01	15:31
172.31.70.46 (Valid IP:18.219.211.138)	18.217.21.148- 172.31.69.25	DoS- GoldenEye	Thurs-15- 02-2018	9:26	10:09

IDS 2018 | Datasets | Research | Canadian Institute for Cybersecurity | UNB

CIDS-Net Results (Network-based feature 만 사용될 때)

	LR	AB	NB	TabNet	GB	DT	XGB	RF
Benign	0.780	0.891	0.698	0.999	0.999	0.999	0.999	1.000
Bot	0.009	0.000	1.000	1.000	1.000	1.000	1.000	1.000
DDOS-HOIC	0.547	0.788	0.998	1.000	1.000	1.000	1.000	1.000
DDOS-LOIC-HTTP	0.000	0.000	0.998	1.000	1.000	1.000	1.000	1.000
DDOS-LOIC-UDP	0.000	0.000	0.423	0.715	0.746	0.759	0.761	0.761
DoS-GoldenEye	0.000	0.000	0.828	0.995	0.996	0.999	1.000	1.000
DoS-Hulk	0.763	0.372	1.000	0.999	1.000	1.000	1.000	1.000
DoS-SlowHTTPTest	0.000	0.000	0.500	0.440	0.544	0.543	0.543	0.542
DoS-Slowloris	0.000	0.000	0.020	0.907	0.905	0.993	0.994	0.996
FTP-BruteForce	0.498	0.853	0.498	0.866	0.875	0.875	0.875	0.875
SSH-Bruteforce	0.000	0.000	0.999	1.000	1.000	1.000	1.000	1.000
macro avg	0.236	0.264	0.724	0.902	0.915	0.924	0.925	0.925
weighted avg	0.556	0.674	0.810	0.982	0.984	0.985	0.985	0.985

XGBoost의 출력은 CID 결과를 비교하 는 Baseline

LR: logistic regression, AB: AdaBoost, NB:Naive Bayes, GB: gradient boost, DT: decision tree, RF: random forest

CIDS-Net Results

TABLE III
CIDS-NET RESULTS UNDER SCVIC-CIDS-2021 USING VARIOUS
NETWORK ENCODERS

	Baseline(XGB)	CIDS-Net using Different Network I					
	Dascine(AGD)	Identity	FCN	FCN (CLoss)	TabNet		
Benign	0.9995	0.9995	0.9993	0.9963	0.9998		
Bot	1.0000	0.9988	0.9978	0.9901	0.9994		
DDOS-HOIC	1.0000	1.0000	0.9996	0.9998	1.0000		
DDOS-LOIC-HTTP	0.9997	0.9997	0.9982	0.9989	0.9999		
DDOS-LOIC-UDP	0.7609	0.9771	0.9884	0.9899	0.9927		
DoS-GoldenEye	1.0000	0.9923	0.9914	0.9940	0.9996		
DoS-Hulk	1.0000	0.9992	0.9998	0.9665	0.9988		
DoS-SlowHTTPTest	0.5425	0.9228	0.9964	0.9233	0.9990		
DoS-Slowloris	0.9936	0.9894	0.9929	0.9716	0.9993		
FTP-BruteForce	0.8749	0.9721	0.9991	0.9713	0.9996		
SSH-Bruteforce	0.9999	0.9998	0.9984	0.9994	0.9998		
Macro Avg	0.9246	0.9864	0.9965	0.9819	0.9989		
Weighted Avg	0.9848	0.9967	0.9990	0.9934	0.9998		

CLoss를 사용하면 CIDS 성능이 약간 저하되지만 TabNet 을 네트워크 인코더로 사용하면 매크로 평균 F1 점수가 99.89%로 FCN을 네트워크 인코더로 사용하는 경우보다 약간(즉, 0.2%) 더 높다.

Conclusion

- 본 논문은 네트워크 및 호스트 기반 데이터를 통합하고 정렬하여 IDS 성능을 향상시킬 수 있는 새로운 결합 IDS(CIDS)를 제안
- CIDSNet에 대한 네트워크 인코더(즉, Identity, FCN 및 TabNet)와 손실 함수(즉, 교차 엔트로피 손실 및 CLoss)의 몇 가지 조합을 조사했다.
- FCN을 애그리게이터로 사용할 때, CIDS-Net은 네트워크 인코더로 TabNet을 사용할 때 최적의 성능을 발휘하여 99.89%의 매크로 F1 점수를 달성하는 것으로 나타났다.
- CIDS 결과는 호스트 기반 기능이 IDS 성능을 크게 향상시킬 수 있음을 보여주었다.
- 향후 연구는 머신 러닝 모델을 CIDS-Net에 통합하여 불균형 클래스의 성능을 향상시킬 수 있다.