An openETCS DSL Based on GOPPRR

Jan Peleska, Johannes Feuser, and Cécile Braunstein
University of Bremen
2014-04-14

The Approach

How DSL are constructed

Rules for meta-model design

Syntax and static semantics for specific modeling formalism *F*

Concrete model *M* developed using formalism *F*

Executable code generated from *M* and deployed on target hardware

The Approach

An openETCS DSL based on GOPPRR

The GOPPRR meta-metamodel has been elaborated for the purpose of designing graphical domain-specific languages expressed by the "ingredients"

- Graphs where model fragments are presented
- Objects the individual language element types
- Properties attributes associated with each type
- Ports connection points "objects ⇔ roles"
- Roles meaning of "relationship
 ⇔ object" connection
- Relationships between objects on a graph

Benchmark Report

- Formal model of ERTMS Subset 026
 - Levels 0 and I
 - Modes
 - No Power (NP)
 - Stand By (SB)
 - System Failure (SF)
 - Isolation (IS)
 - Trip (TR)
 - Post Trip (PT)
 - Unfitted (UN)
 - Staff Responsible (SR)
 - Full Supervision (FS)

Language Elements (1). Matrix representation for ERTMS modes and transition in-between

No Power (INITIAL)
Stand By
Full Supervision
Staff Responsible
Unfitted
Trip
Post Trip
System Failure
Isolation

No Power (INITIAL)	Stand By	Full Supervision	Staff Responsible	Unfitted	Trip
	c4-p2			1	
c29-p2		c10-p7	c37-p7, c8-p7	c60-p7	
c29-p2	c28-p5		c37-p6	c21-p6	c12-p4, c16-p4, c1
c29-p2	c28-p5	c31-p6, c32-p6		c21-p6	c18-p4, c20-p4, c3
c29-p2	c28-p6	c25-p7	c44-p4		c39-p5, c67-p5
c29-p2				c62-p3	
c29-p2		c31-p4	c37-p4, c8-p4		
c29-p2					

Language Elements (3). Graphical sub-language for telegram representation

Benchmark Report (cont.)

Details in

- I. Jan Peleska, Johannes Feuser, and Anne E. Haxthausen. The Model-Driven openETCS Paradigm for Secure, Safe and Certifiable Train Control Systems. In Flammini, Francesco (ed.). Railway Safety, Reliability, and Security: Technologies and Systems Engineering. IGI Global, 2012. pp. 22-52. Web. 4 Jun. 2012. doi:10.4018/978-1-4666-1643-1
- 2. Johannes Feuser. Open Source Software for Train Control Applications and its Architectural Implications.
 Dissertation, University of Bremen, February 2013.
 Available under http://elib.suub.uni-bremen.de/edocs/00103095-1.pdf

Results of Benchmark

Pros

- Formal model yet quite intuitive for ERTMS domain experts
- Full tool chain support possible prototype tool chain already available
 - Code generator
 - Unit tester with assertion checker for static semantics
 - Simulator
 - Model-based testing with RT-Tester

Results of Benchmark

Cons

- Unanimous adoption of DSL in such a large project as openETCS seems very unlikely
- Benefits of DSL will only be fully appreciated when using it over several versions of the ERTMS standard
- SysML with a light-weight profile will do the modelling job just as well
- Requirements tracing from ERTMS standard to model is better in SysML than in GOPPRR DSL

Missing Elements, Ongoing Work

- University of Bremen currently favours SysML-based approach
- All benefits of DSL approach will be transferred to SysML-based approach
- This includes the complete tool chain