A Quick Guide for the pbdRPC Package

Wei-Chen Chen

pbdR Core Team Silver Spring, MD, USA

Contents

1.	Introduction	1
	1.1. Basic ssh and rpc()	1
	1.2. Basic ssh()	2
	1.3. Basic plink.exe and plink()	3
2.	Handling Login Information	3
3.	An Application Using remoter	5
4.	An Application Using pbdCS	6
5.	\mathbf{FAQs}	8
	5.1. General	8
D.	oforonaes	0

© 2017 Wei-Chen Chen.

Permission is granted to make and distribute verbatim copies of this vignette and its source provided the copyright notice and this permission notice are preserved on all copies.

This publication was typeset using LATEX.

Disclaimer:

The findings and conclusions in this article have not been formally disseminated by the U.S. Department of Health & Human Services nor by the U.S. Department of Energy, and should not be construed to represent any determination or policy of University, Agency, Administration and National Laboratory.

Warning:

This document is written to explain the main functions of **pbdRPC** (Chen 2017), version 0.1-1. Every effort will be made to ensure future versions are consistent with these instructions, but features in later versions may not be explained in this document.

Information about the functionality of this package, and any changes in future versions can be found on website: "Programming with Big Data in R" at http://r-pbd.org/ (Ostrouchov et al. 2012).

1. Introduction

This package, **pbdRPC** (Chen 2017), provides one high level function, **rpc()**, that can securely send commands to remote servers via **ssh** (OpenSSH) or **plink/plink.exe** (PuTTY). The high level function is also a wrapper of two low level functions, **ssh()** and **plink()**. These functions can ask remote servers to execute commands without logining to the servers. These functions mainly depend on four RPC controls:

- 1. .pbd_env\$RPC.CT is main RPC controls taking care several basic functionalities of three functions, rpc(), ssh(), and plink().
- 2. .pbd_env\$RPC.LI has information of login account for logining to the remote server include authentication using private keys. See Section 2 for details.
- 3. .pbd_env\$RPC.RR has examples of executing multiple commands on a remote server which is an application related to an R package, **remoter** (Schmidt and Chen 2016b). See Section 3 for details.
- 4. .pbd_env\$RPC.CS has examples of executing multiple commands on a pbdCS cluster which is an application related to an R package, pbdCS (Schmidt and Chen 2016a). See Section 4 for details.

Note that .pbd_env will be first generated when the library pbdRPC is loaded, then default objects RPC.CT, RPC.LI, RPC.RR, and RPC.CS will be generated.

Most OSs (Linux, Solaris, Mac OSX) have the system command ssh (OpenSSH) installed, so the ssh() is a wrapper function to the system ssh command. For Windows, the plink.exe (from PuTTY) will be compiled with pbdRPC, so the plink() is a wrapper function to the executable file, plink.exe. Note that for non-Windows system, the plink can be compiled as well.

1.1. Basic ssh and rpc()

Suppose a sshd is set and running correctly on a server running a Linux system at an ip address "192.168.56.101" and a port "22". Further, suppose an account called "snoweye" is created and a password for the account is set on the server.

From a termial of non-Windows systems, one may use

Basic ssh in shell

```
$ ssh snoweye@192.168.56.101 'whoami'
```

to access the server and ask it to execute a command whoami. Typing the password for the login account may be needed. The command whoami is available on most Linux systems, it should return the command result, "snoweye", on the screen/stdout without logining to a shell environment on the server. In the same setup, the command can be replaced the command call by any other proper programs, shell scripts, or procedures. For Windows system, one may use plink.exe instead of ssh from a termial cmd.exe. See Section 1.3 for details.

Within R, the next example will have the same results as the above shell command.

Basic rpc() in **pbdRPC** and R

```
> library(pbdRPC, quietly = TRUE)
> rpcopt_set(user = "snoweye", hostname = "192.168.56.101")
> rpc("whoami")
```

The command results may be captured by R as well.

Regardless the system, the high level function rpc() can unify the calls to either ssh() or plink() functions. One may use ssh() in non-Windows system, but use plink() in Windows system. The rpc() automatically detects the system first, then calls the corresponding function. Currently, no external plink.exe or plink is implemented even though it is possible. The details of ssh() and plink() are given in next.

1.2. Basic ssh()

Inside R and via **pbdRPC**, this can be done by

Basic ssh() in pbdRPC and R

```
> library(pbdRPC, quietly = TRUE)
> ssh("snoweye@192.168.56.101 'whoami'")
```

provided all other options (port, forwarding, etc) are set correctly. Note that the password for the account may be required when an authentication file (id_rda) is not available.

Note that multiple commands can be automatically given at once as shell commands under an shell prompt, such as ";", "&&", ">", "<", "|" or "&" etc. For example, the next will tell current id, date/time, and files.

Multiple commands to ssh in shell

```
$ ssh snoweye@192.168.56.101 'whoami;date;ls -a'
```

The multiple commands can be applied to ssh() and plink() as

Multipel commands to ssh() in pbdRPC and R

```
> library(pbdRPC, quietly = TRUE)
> ssh("snoweye@192.168.56.101 'whoami;date;ls -a'")
```

See Section 3 and .pbd_env\$RPC.RR for more details.

1.3. Basic plink.exe and plink()

In Windows system under cmd.exe, one may similarly use next

```
Basic plink.exe in cmd.exe
```

```
C:\> plink.exe snoweye@192.168.56.101 'whoami'
```

to access the server provided plink.exe is in the PATH.

Inside RGui and via pbdRPC, this can be done by

Basic plink() in pbdRPC and R

```
> library(pbdRPC, quietly = TRUE)
> plink("snoweye@192.168.56.101 'whoami'")
```

provided all other options (port, forwarding, etc) are set correctly. The multiple commands can be applied to plink() as well.

By default, the plink() will open an cmd.exe to execute the command whoami because the password input is not allowed inside RGui. When the authentication file (id_rsa.ppk) is available, one may want to disable the opening cmd.exe as in next.

Advance plink() in **pbdRPC** and R

```
> .pbd_env$RPC.CT$use.shell.exec <- FALSE
> ret <- plink("snoweye@192.168.56.101 'whoami'")
> print(ret)
```

Because the shell.exec() is disable, the plink() call may accept returns of the remote server and capture/save the returns in an R object, ret.

The use.shell.exec is for Windows system only and required to be TRUE when RGui is mainly used. The plink() in RGui may hang forever or crash when input/typing of a password or a passphrase is needed for logining to the server. RGui has different stdin and stdout than a usual terminal. The use.shell.exec can be switched to FALSE when the authentication is correct and no passphrase is needed, i.e. no stdin input/typing. However, Rcmd running within a cmd.exe may be OK with stdin input/typing when use.shell.exec = FALSE.

Other solutions to replace internal plink.exe of pbdRPC include:

- The plink.exe can be installed from the PuTTY as well.
- Windows PowerShell and git also provide ssh.exe but additional installation/configuration is unavoidable.

2. Handling Login Information

Suppose an Oracle VM VirtualBox runs Xubuntu 15.10 as the guest OS within a Windows 8 system as the host OS. The VM has an virtual network adaptor (host-only) with ip address

192.168.56.101, so that one can login to the VM using either telnet, plink, or ssh from the Windows 8 system. Note that telnet and ssh uses ports 23 and 22 as default, respectively. Suppose further the login id is called "snoweye", then one may use the function rpcopt_set() to assign/overwrite the login information to .pbd_env\$RPC.LI as in next.

Set login information

```
> rpcopt_set(user = "snoweye", hostname = "192.168.56.101", pport = "22")
```

In next, the basic login information RPC.LI describes that rpc() will

- use ssh (exec.type) to execute a command (given by rpc(), ssh(), or plink())
- with args (additional arguments to ssh or plink.exe)
- and a user account (snoweye)
- login into a hostname (server ip = 192.168.56.101 or host name)
- from a pport (server port = 22), and
- may use authentication keys in priv.key or priv.key.ppk.

Basic RPC.LI

```
> .pbd_env$RPC.LI
$exec.type
[1] "ssh"

$args
[1] ""

$pport
[1] "22"

$user
[1] "snoweye"

$hostname
[1] "192.168.56.101"

$priv.key
[1] "~/.ssh/id_rsa"

$priv.key.ppk
[1] "./id_rsa.ppk"
```

Currently, the <code>exec.type</code> is only for non-Windows systems, and it will be ignored on Windows systems ("plink" will be used). Also, <code>ssh</code> uses "-p" to input the server port argument. plink.exe uses "-P" to input the server port argument. Therefore, the <code>args</code> should not include "-p" nor "-P". Similarly, the "-i" may not be include in the <code>args</code> as well because additional authentication may be required.

The account may have the private key for authentication to avoid typing the login password for the user account. The private keys may be stored in files indicated by prive.key for ssh() or prive.key.ppk for plink(). When all setups are correct, command calls can be executed at the hostname (192.168.56.101) remotely. By default, the prive.key.ppk will read the file from the current working directory (from getwd()) in Windows systems. In this case, the file C:/Users/login_account/Documents/id_rsa.ppk is probably read for authentication.

To generat private and public keys is pretty standard for most Linux systems via the ssh-keygen command which will generate keys in OpenSSH format. One may use puttygen in Linux to convert OpenSSH format to PuTTY format for Windows. See Section 5.1 for the conversion from id_rsa to id_rsa.ppk. For Windows systems, one may also use puttygen.exe to obtain both keys.

3. An Application Using remoter

The **remoter** (Schmidt and Chen 2016b) and **pbdZMQ** (Chen *et al.* 2015) provide client/server interface to control a remote R (e.g. running on a single server, Xubuntu, ip=192.168.56.101) from a local R (e.g. running on a single laptop, Windows 8). Combining with **pbdMPI** (Chen *et al.* 2012) and **pbdCS** (Schmidt and Chen 2016a), one may extent the remoter R to control clusters to run R's in a distributed environment. See Schmidt *et al.* (2016) for an introduction of **remoter** and **pbdCS**, and see https://github.com/snoweye/user2016.demo for a demo of both packages.

In a simplified scenario such as the setting in Section 2, one may use the following commands to "start", "check", and "kill" a remote R server under a shell environment provided Rscript is in PATH of the login server (pre-load or set by the OO_set_devel_R).

remoter server at 192.168.56.101

```
$ source ~/work-my/00_set_devel_R
$ nohup Rscript -e 'remoter::server()' > .rrlog 2>&1 < /dev/null &
$ ps ax|grep '[r]emoter::server'
$ kill -9 $(ps ax|grep '[r]emoter::server'|awk '{print $1}')</pre>
```

In an well established server, one can use ssh or plink.exe to send those commands from the local laptop. Furthermore, one may also use **pbdRPC** directly within an R environment to send those commands. The example is in next.

Using **pbdRPC** to control **remoter**

```
> library(pbdRPC, quietly = TRUE)
> rpcopt_set(user = "snoweye", hostname = "192.168.56.101")
> .pbd_env$RPC.CT$use.shell.exec <- FALSE
>
> preload <- "source ~/work-my/00_set_devel_R; "
> start_rr(preload = preload)
character(0)
>
> library(remoter)
Loading required package: pbdZMQ
Attaching package: 'remoter'
```

```
The following object is masked from 'package:grDevices':
    dev.off
The following objects are masked from 'package:utils':
    ?, help
> client(addr = "192.168.56.101")
WARNING: server not secure; communications are not encrypted.
remoter> 1+1
[1] 2
remoter > q()
> check_rr()
[1] " 2014 ?
                    Sl
                            0:00
   /home/snoweye/work-my/local/R-devel/lib64/R/bin/exec/R --slave
   --no-restore -e remoter::server()"
> kill_rr()
character (0)
```

where client() is for connect to the remote R server started by start_rr().

The start_rr(), check_rr(), and kill_rr() are all wrapper functions of rpc() to submit different commands stored in .pbd_env\$RPC.RR\$start, .pbd_env\$RPC.RR\$check, and .pbd_env\$RPC.RR\$kill, respectively. The details of RPC.RR are in next.

RPC.RR for controlling remoter

```
> .pbd_env$RPC.RR
$check
[1] "ps ax|grep '[r]emoter::server'"

$kill
[1] "kill -9 $(ps ax|grep '[r]emoter::server'|awk '{print $1}')"

$start
[1] "nohup Rscript -e 'remoter::server()' > .rrlog 2>&1 < /dev/null &"

$preload
[1] "source ~/work-my/00_set_devel_R; "</pre>
```

4. An Application Using pbdCS

Similar to the **remoter**, the **pbdCS** (Schmidt and Chen 2016a) provides interactivity for clusters running R's via the **pbdMPI** (Chen *et al.* 2012) in SPMD computing framework (Ostrouchov *et al.* 2012). See Schmidt *et al.* (2016) for an introduction of **remoter** and **pbdCS**, and see https://github.com/snoweye/user2016.demo for a demo of both packages.

In a simplified scenario such as the setting in Section 2, several pbdCS R's can run 4 instances

on the server, Xubuntu, ip=192.168.56.101 as in the next.

pbdCS cluster with 4 R instances

```
$ source ~/work-my/00_set_devel_R
$ nohup mpiexec -np 4 Rscript -e 'pbdCS::pbdserver()' > .cclog 2>&1 <
    /dev/null &
$ ps ax|grep '[p]bdCS::pbdserver'
$ kill -9 $(ps ax|grep '[p]bdCS::pbdserver'|awk '{print $1}')</pre>
```

The example above is very similar to the one in Section 3, but further demonstrates how to "start", "check", and "kill" a **pbdCS** cluster with 4 R launched by/within the MPI program mpiexec.

In an well established server, one can use ssh or plink.exe to send those commands from the local laptop. Furthermore, one may also use pbdRPC directly within an R environment to send those commands. The example is in next.

Using **pbdRPC** to control **pbdCS**

```
> library(pbdRPC, quietly = TRUE)
> rpcopt_set(user = "snoweye", hostname = "192.168.56.101")
> .pbd_env$RPC.CT$use.shell.exec <- FALSE
> preload <- "source ~/work-my/00_set_devel_R; "</pre>
> start_cs(preload = preload)
character (0)
> library(pbdCS)
> pbdCS::pbdclient(addr = "192.168.56.101")
pbdR> library(pbdMPI)
pbdR> allreduce(1)
[1] 4
pbdR > q()
> check_cs()
[1] "12578 ?
                     Sl
                            0:00 mpiexec -np 4 Rscript -e
   pbdCS::pbdserver()"
[2] "12580 ?
                            0:00
                     Sl
   /home/snoweye/work-my/local/R-devel/lib64/R/bin/exec/R --slave
    --no-restore -e pbdCS::pbdserver()"
[3] "12581 ?
                            0:00
   /home/snoweye/work-my/local/R-devel/lib64/R/bin/exec/R --slave
   --no-restore -e pbdCS::pbdserver()"
[4] "12583 ?
                     Sl
                            0:00
   / \verb|home/snoweye/work-my/local/R-devel/lib64/R/bin/exec/R --slave| \\
   --no-restore -e pbdCS::pbdserver()"
[5] "12588 ?
                     Sl
                            0:00
   /home/snoweye/work-my/local/R-devel/lib64/R/bin/exec/R --slave
   --no-restore -e pbdCS::pbdserver()"
> kill_cs()
character(0)
```

where pbdclient() is for connect to the pbdCS cluster started by start_cs().

The start_cs(), check_cs(), and kill_cs() are all wrapper functions of rpc() to submit different commands stored in .pbd_env\$RPC.CS\$start, .pbd_env\$RPC.CS\$check, and .pbd_env\$RPC.CS\$kill, respectively. The details of RPC.CS are in next.

RPC.CS for controlling pbdCS

5. FAQs

5.1. General

- 1. Q: Does pbdRPC support Windows system?
 - A: Yes, the plink.exe from PuTTY will be the program to send commands to remote servers. An internal built plink.exe will be provided and wrapped by the pbdRPC command plink().
- 2. **Q:** Is an authentication used in **pbdRPC**? How does it work?
 - A: Yes, the authentication is the same way to ssh and plink.exe provided public and private keys are setup correctly. For example, when an RSA key is used, the ssh will by default search ~/.ssh/id_rsa or via the option "-i ./id_rsa" for a local private key. Similarly, the plink.exe uses the option "-i ./id_rsa.ppk" for a local private key. Inside pbdRPC, one can use the options of the control .pbd_env\$RPC.LI\$priv.key and .pbd_env\$RPC.LI\$priv.key.ppk to indicate the file of the private key. Then, ssh(), plink(), and rpc() commands will automatically access those files, accordingly.
- 3. Q: Can a ssh private key be converted to plink's private key? i.e. convert OpenSSH format to PuTTY format.
 - A: Yes, the puttygen on linux can convert the id_rsa (OpenSSH format) to id_rsa.ppk (PuTTY format) as in next.

Shell Command

```
$ sudo apt-get install putty
$ puttygen id_rsa -0 private -o id_rsa.ppk
```

References

- Chen WC (2017). "pbdRPC: Programming with Big Data Remote Procedure Call." R Package, URL https://cran.r-project.org/package=pbdRPC.
- Chen WC, Ostrouchov G, Schmidt D, Patel P, Yu H (2012). "pbdMPI: Programming with Big Data Interface to MPI." R Package, URL http://cran.r-project.org/package=pbdMPI.
- Chen WC, Schmidt D, Heckendorf C, Ostrouchov G (2015). "pbdZMQ: Programming with Big Data Interface to ZeroMQ." R Package, URL http://cran.r-project.org/package=pbdZMQ.
- Ostrouchov G, Chen WC, Schmidt D, Patel P (2012). "Programming with Big Data in R." URL http://r-pbd.org/.
- Schmidt D, Chen WC (2016a). pbdCS: pbdR Client/Server Utilities. R package version 0.1-0, URL https://github.com/RBigData/pbdCS.
- Schmidt D, Chen WC (2016b). "remoter: Remote R: Control a Remote R Session from a Local One." R Package, URL http://cran.r-project.org/package=remoter.
- Schmidt D, Chen WC, Ostrouchov G (2016). "Introducing a New Client/Server Framework for Big Data Analytics with the R Language." In *Proceedings of the XSEDE16 Conference on Diversity, Big Data, and Science at Scale*, pp. 38:1–38:9.