metapath2vec

본 논문은 heterogeneous network의 representation을 나타내기 위해 metapath2vec 이라는 방법을 제안한다. 이 방법은 multiple types of nodes and links가 존재하는 graph에 적용될 수 있어 node classification, clustering, similarity search와 같은 다양한 task에 적용될 수 있음을 보여준다.

Introduction

network representation을 하기 위해 word2vec 방식을 차용한 Deepwalk, LINE, node2vec과 같은 여러 모델들이 제안되었지만 homogeneous networks에만 사용될 수 있기 때문에 한계가 명확했다.

이러한 문제를 해결하기 위해 heterogeneous한 network를 표현할 수 있는 metapath2vec, metapath2vec++를 제안한다.

기존 random walks로 표현할 수 없기 때문에 meta-path based random walks를 제안 함과 동시에 효율적으로 근처 노드들을 표현할 수 있게 negative sampling-based method를 제안한다.

Problem Definition

G = (V, E, T)

 $V: a \ set \ of \ node$, $E: a \ set \ of \ edge$, $T: a \ set \ of \ type$

 $\phi(v):V o T_V$, $arphi(e):E o T_E$

 $T_{V}: the\ sets\ of\ object\ types,\ \ T_{E}: the\ sets\ of\ relation\ types$

 $|T_V|+|T_E|>2:$ multiple types of nodes and links

Heterogeneous Network Representation Learning

heterogeneous network G가 주어졌을 때, task는 learn the d-dimensional latent representations $X \in \mathbb{R}^{|V| imes D}$ 이다.

Network Representation은 주변 Node들의 관계에서 Embedding을 찾는 것인데 heterogeneous한 node들이 있는 상황에서 어떻게 주변 Node들을 표현할지가 문제인 상황이다.

Metapath2vec

Homogeneous Network Embedding

$$\arg\max_{\theta} \prod_{v \in V} \prod_{c \in N(v)} p(c|v;\theta)$$

• Skip-Gram: 어떠한 $node\ v$ 에 대해 주변 Context (local structure)를 predict 하는 문제

Heterogeneous Network Embedding

$$\arg\max_{\theta} \sum_{v \in V} \sum_{t \in T_V} \sum_{c_t \in N_t(v)} \log p(c_t | v; \theta)$$

- ullet $N_t(v):v$'s neighborhood with the t^{th} type of nodes
- $p(c_t|v; heta) = rac{e^{X_{c_t} \cdot X_v}}{\sum_{u \in V} e^{X_u \cdot X_v}}$ (softmax function)
 - Homogeneous한 방법과 달리 Heterogeneous한 Information을 반영하기 위해 Type이 같은 Neighbor만 예측에 반영
- Efficient optimization을 위해 negative sampling 이용

Negative Sampling

- sampled from the network for the construction of softmax
- 모든 Node들에 대해 계산하는 것이 비효율적이기 때문에 뽑히지 않았으면 하는 Negative한 Sample을 반영해서 Probability를 근사하는 것
- $O(X) = log \ \sigma(X_{c_t} \cdot X_v) + \sum_{m=1}^M \mathbb{E}_{u_t^m P_t(u_t)}[log \ \sigma(-X_{u_t^m} \cdot X_v)]$
- M의 값이 커지면 Robust한 결과
- k: [5, 20]의 값을 선택하는 것이 일반적

- Negative Sample을 뽑는 함수는 Uniform한 것이 아니라 특정 Bias를 가지는 형태
- 아래와 같이 "빈도"를 기준으로 샘플링

$$P(w_i) = \frac{f(w_i)^{3/4}}{\sum_{n}^{j=0} (f(w_j)^{3/4})}.$$

Meta-Path-Based Random Walks

Random Walk에서 보였던 것처럼 Neighborhood를 Random하게 방문하는 것이 아니라 미리 정해진 Meta-path scheme 대로 방문하자는 개념

(a) An academic network

- 오른쪽의 meta paths 같이 scheme을 이미 정해놨으면 APA, APVPA, OAPVPAO 대로 type을 방문함
- 즉, i-th step의 transition probability는 아래와 같이 정의된다.

$$p(v^{i+1}|v_t^i, \mathcal{P}) = \begin{cases} \frac{1}{|N_{t+1}(v_t^i)|} & (v^{i+1}, v_t^i) \in E, \phi(v^{i+1}) = t+1\\ 0 & (v^{i+1}, v_t^i) \in E, \phi(v^{i+1}) \neq t+1\\ 0 & (v^{i+1}, v_t^i) \notin E \end{cases}$$
(3)

- $\phi(v):V \to T_V$
- 즉 정해진 Type이 아닐 경우는 이동할 확률이 0이고, Neighborhood 중에 정해진 Type이 있을 경우 Uniform 한 확률을 가진다.
- 이때, 이 pre-defined meta path는 symmetric한 형태를 갖는 게 일반적이다.

(b) Skip-gram in *metapath2vec*, node2vec, & DeepWalk

Metapath2vec++

• metapath2vec는 softmax를 계산할 때 node type을 반영하지 않는다.

 즉, metapath2vec은 negative sampling시 모든 type의 negative samples을 반 영한다.

이러한 문제를 해결하기 위해 heterogeneous negative sampling을 제안한다.

$$p(c_t|v;\theta) = \frac{e^{X_{c_t} \cdot X_v}}{\sum_{u_t \in V_t} e^{X_{u_t} \cdot X_v}}$$

(c) Skip-gram in *metapath2vec++*

• 위의 그림대로 Type에 따라 각 Node의 probability를 구할 수 있게 된다.

Algorithm of metapath2vec++

```
Input: The heterogeneous information network G = (V, E, T),
          a meta-path scheme \mathcal{P}, #walks per node w, walk
          length l, embedding dimension d, neighborhood size k
Output: The latent node embeddings \mathbf{X} \in \mathbb{R}^{|V| \times d}
initialize X;
for i = 1 \rightarrow w do
     for v \in V do
         MP = \text{MetaPathRandomWalk}(G, \mathcal{P}, v, l) ;
         X = HeterogeneousSkipGram(X, k, MP);
end
return X;
MetaPathRandomWalk(G, P, v, l)
MP[1] = v;
for i = 1 \rightarrow l-1 do
     draw u according to Eq. 3;
     MP[i+1] = u;
end
return MP;
HeterogeneousSkipGram(X, k, MP)
for i = 1 \rightarrow l do
    v = MP[i];
    for j = max(0, i-k) \rightarrow min(i+k, l) \& j \neq i do
\begin{vmatrix} c_t = MP[j]; \\ X^{new} = X^{old} - \eta \cdot \frac{\partial O(X)}{\partial X} \text{ (Eq. 7)}; \end{vmatrix}
     end
end
```

ALGORITHM 1: The metapath2vec++ Algorithm.

Gradient

$$O(X) = ~log~\sigma(X_{c_t} \cdot X_v) + \sum_{m=1}^{M} \mathbb{E}_{u_t^m - P_t(u_t)}[log~\sigma(-X_{u_t^m} \cdot X_v)]$$

$$\frac{\partial O(\mathbf{X})}{\partial X_{u_t^m}} = (\sigma(X_{u_t^m} \cdot X_{\upsilon} - \mathbb{I}_{c_t}[u_t^m]))X_{\upsilon}$$

$$\frac{\partial X_{u_t^m}}{\partial X_{v}} = \sum_{m=0}^{M} (\sigma(X_{u_t^m} \cdot X_{v} - \mathbb{I}_{c_t}[u_t^m])) X_{u_t^m}$$

$$\mathbb{I}_{[v^m]} = \sum_{m=0}^{M} (\sigma(X_{u_t^m} \cdot X_{v} - \mathbb{I}_{c_t}[u_t^m])) X_{u_t^m}$$

• $\mathbb{I}_{ct}[u_t^m]$: an indicator function to indicate whether u_t^m is the neighborhood context node c_t and when $m=0, u_t^0=c_t$

Experiments

Data

- AMiner CS: 9,323,739 computer scientists and 3,194,405 papers, 3,883 computer science venues
- DBIS: 464 venues, top-500 authors, 72,902 publications
- venue: 장소 ??? type의 일종으로 생각

Node Classification

Table 2: Multi-class venue node classification results in AMiner data.

Metric	Method	5%	10%	20%	30%	40%	50%	60%	70%	80%	90%
	DeepWalk/node2vec	0.0723	0.1396	0.1905	0.2795	0.3427	0.3911	0.4424	0.4774	0.4955	0.4457
Macro-F1	LINE (1st+2nd)	0.2245	0.4629	0.7011	0.8473	0.8953	0.9203	0.9308	0.9466	0.9410	0.9466
Macro-F1	PTE	0.1702	0.3388	0.6535	0.8304	0.8936	0.9210	0.9352	0.9505	0.9525	0.9489
	metapath2vec	0.3033	0.5247	0.8033	0.8971	0.9406	0.9532	0.9529	0.9701	0.9683	0.9670
	metapath2vec++	0.3090	0.5444	0.8049	0.8995	0.9468	0.9580	0.9561	0.9675	0.9533	0.9503
	DeepWalk/node2vec	0.1701	0.2142	0.2486	0.3266	0.3788	0.4090	0.4630	0.4975	0.5259	0.5286
Micro-F1	LINE (1st+2nd)	0.3000	0.5167	0.7159	0.8457	0.8950	0.9209	0.9333	0.9500	0.9556	0.9571
MICIO-11	PTE	0.2512	0.4267	0.6879	0.8372	0.8950	0.9239	0.9352	0.9550	0.9667	0.9571
	metapath2vec	0.4173	0.5975	0.8327	0.9011	0.9400	0.9522	0.9537	0.9725	0.9815	0.9857
	metapath2vec++	0.4331	0.6192	0.8336	0.9032	0.9463	0.9582	0.9574	0.9700	0.9741	0.9786

Table 3: Multi-class author node classification results in AMiner data.

Metric	Method	5%	10%	20%	30%	40%	50%	60%	70%	80%	90%
	DeepWalk/node2vec	0.7153	0.7222	0.7256	0.7270	0.7273	0.7274	0.7273	0.7271	0.7275	0.7275
Macro-F1	LINE (1st+2nd)	0.8849	0.8886	0.8911	0.8921	0.8926	0.8929	0.8934	0.8936	0.8938	0.8934
Mac10-11	PTE	0.8898	0.8940	0.897	0.8982	0.8987	0.8990	0.8997	0.8999	0.9002	0.9005
	metapath2vec	0.9216	0.9262	0.9292	0.9303	0.9309	0.9314	0.9315	0.9316	0.9319	0.9320
	metapath2vec++	0.9107	0.9156	0.9186	0.9199	0.9204	0.9207	0.9207	0.9208	0.9211	0.9212
	DeepWalk/node2vec	0.7312	0.7372	0.7402	0.7414	0.7418	0.7420	0.7419	0.7420	0.7425	0.7425
Micro-F1	LINE (1st+2nd)	0.8936	0.8969	0.8993	0.9002	0.9007	0.9010	0.9015	0.9016	0.9018	0.9017
MICIO-11	PTE	0.8986	0.9023	0.9051	0.9061	0.9066	0.9068	0.9075	0.9077	0.9079	0.9082
	metapath2vec	0.9279	0.9319	0.9346	0.9356	0.9361	0.9365	0.9365	0.9365	0.9367	0.9369
	metapath2vec++	0.9173	0.9217	0.9243	0.9254	0.9259	0.9261	0.9261	0.9262	0.9264	0.9266

- consistently and significantly outperform
- small size of training data에서 strong

Parameter Sensitivity

Figure 3: Parameter sensitivity in multi-class node classification. 50% as training data and the remaining as test data.

- Base Parameter
 - \circ the number of walks per node w: 1000
 - \circ the walk length l: 100

- \circ the vector dimension d: 128
- the neighborhood size k: 7
- the size of negative samples: 5
- Base Paremeter를 기준으로 하나의 Parameter를 변화해가면서 실험
- #walks per node w and walk length $l \circ |$ positive
- metapath2vec++가 insensitive해서 cost-efficient

Node Clustering

Figure 5: 2D t-SNE projections of the 128D embeddings of 48 CS venues, three each from 16 sub-fields.

Table 4: Node clustering results (NMI) in AMiner data.

methods	venue	author
DeepWalk/node2vec	0.1952	0.2941
LINE (1st+2nd)	0.8967	0.6423
PTE	0.9060	0.6483
metapath2vec	0.9274	0.7470
metapath2vec++	0.9261	0.7354

- k-means 이용, normalized mutual information으로 evaluate
- LINE, PTE에 비해 gain이 큼

Similarity Search

Table 5: Case study of similarity search in AMiner Data

Rank	ACL	NIPS	IJCAI	CVPR	FOCS	SOSP	ISCA	S&P	ICSE	SIGGRAPH	SIGCOMM	CHI	KDD	SIGMOD	SIGIR	www
0	ACL	NIPS	IJCAI	CVPR	FOCS	SOSP	ISCA	S&P	ICSE	SIGGRAPH	SIGCOMM	CHI	KDD	SIGMOD	SIGIR	www
1	EMNLP	ICML	AAAI	ECCV	STOC	TOCS	HPCA	CCS	TOSEM	TOG	CCR	CSCW	SDM	PVLDB	ECIR	WSDM
2	NAACL	AISTATS	AI	ICCV	SICOMP	OSDI	MICRO	NDSS	FSE	SI3D	HotNets	TOCHI	TKDD	ICDE	CIKM	CIKM
3	CL	JMLR	JAIR	IJCV	SODA	HotOS	ASPLOS	USENIX S	ASE	RT	NSDI	UIST	ICDM	DE Bull	IR J	TWEB
4	CoNLL	NC	ECAI	ACCV	A-R	SIGOPS E	PACT	ACSAC	ISSTA	CGF	CoNEXT	DIS	DMKD	VLDBJ	TREC	ICWSM
5	COLING	MLJ	KR	CVIU	TALG	ATC	ICS	JCS	E SE	NPAR	IMC	HCI	KDD E	EDBT	SIGIR F	HT
6	IJCNLP	COLT	AI Mag	BMVC	ICALP	NSDI	HiPEAC	ESORICS	MSR	Vis	TON	MobileHCI	WSDM	TODS	ICTIR	SIGIR
7	NLE	UAI	ICAPS	ICPR	ECCC	OSR	PPOPP	TISS	ESEM	JGT	INFOCOM	INTERACT	CIKM	CIDR	WSDM	KDD
8	ANLP	KDD	CI	EMMCVPR	TOC	ASPLOS	ICCD	ASIACCS	A SE	VisComp	PAM	GROUP	PKDD	SIGMOD R	TOIS	TIT
9	LREC	CVPR	AIPS	T on IP	JAlG	EuroSys	CGO	RAID	ICPC	GI	MobiCom	NordiCHI	ICML	WebDB	IPM	WISE
10	EACL	ECML	UAI	WACV	ITCS	SIGCOMM	ISLPED	CSFW	WICSA	CG	IPTPS	UbiComp	PAKDD	PODS	AIRS	WebSci

Table 6: Case study of similarity search in DBIS Data

Rank	KDD	SIGMOD	SIGIR	www	WSDM
0	KDD	SIGMOD	SIGIR	www	WSDM
1	SDM	PVLDB	TREC	CIKM	WWW
2	ICDM	ICDE	CIKM	SIGIR	SIGIR
3	DMKD	TODS	IPM	KDD	KDD
4	KDD E	VLDBJ	IRJ	ICDE	AIRWeb
5	PKDD	PODS	ECIR	TKDE	CIKM
6	PAKDD	EDBT	TOIS	VLDB	WebDB
7	TKDE	CIDR	WWW	TOTT	ICDM
8	CIKM	TKDE	JASIST	SIGMOD	VLDB
9	ICDE	ICDT	JASIS	WebDB	VLDBJ
10	TKDD	DE Bull	SIGIR F	WISE	SDM

Scalability

Figure 6: Scalability of metapath2vec and metapath2vec++.