

Course Overview

An intensive half-day workshop introducing cloud and edge computing for smart factories, focusing on real-time processing, secure hybrid architectures, and seamless system integration to boost operational agility, enable predictive maintenance, and drive data-led decision-making.

П	
H	=
H	\equiv
H	\equiv

Content & Procedure

Course Content:

- Exploring paradigm of Cloud computing
- Core concepts of edge computing and real-time data processing
- Comparative analysis: cloud vs. edge architectures
- Analyse security best practices for hybrid environments (Cloud + onprem)

Course Procedure / Practical Exercises:

 Hands-on lab: deploying an edgenode gateway with data ingestion

Tools Used: Amazon Web Services (AWS)

Activities Prior to Course: Pre-course

Learning Objectives

After the course, you will...

- Design and deploy basic edge-cloud integrated solutions
- Integrate production-line systems using standard APIs and middleware
- Apply security controls across both cloud and on-premise edge nodes

Operational & Logistical Info

- Trainer: [Name or TBD]
- Duration: Half Day
- Cohort Size: Max 20 Participants
- Intended Audience: Engineers, Technicians, and Industry Professionals, Recent Grads
- Pre-requisites: Fundamental to Computer System and Network
- Level: Basic
- Location (if applicable): Physical
- Resources Needed: Laptop with installed software, stable internet connection

Agenda

01	Introduction to Cloud Computing	05	& Reference Architectures

- Fundamentals of Edge Computing and Real-Time Processing
- Key Differences Between Cloud and Edge Computing
- Smart Manufacturing Use Cases for Cloud & Edge Solutions

- Of Interfacing with ERP, MES and Other Digital Systems
- Security Considerations for Cloud & Edge Deployments
- Hands-on Edge-Cloud Deployment & Integration Exercises

Introduction to Cloud Computing Topics Covered:

- 1. What is Cloud Computing?
- 2. Cloud Deployment Models
- 3. Cloud Service Models
- 4. Cloud Computing: Applications in Manufacturing
- 5. Case Study

5

What is Cloud Computing?

Option 1: Buy a new computer

Challenges: High upfront cost; Need for

maintenance & upgrades

Benefits: Full control over infra; Works w/o

internet

Option 2: Use remote compute

BlueCloud – an over the internet compute provider

Challenges: Requires stable internet

connection

Benefits: pay-as-you-go; Instantly scalable

What is Cloud Computing?

- Cloud computing means delivering IT resources like servers, storage, and databases—over the internet on demand.
- Instead of buying and maintaining physical servers, organizations rent resources from cloud providers like AWS, Microsoft Azure, or Google Cloud.

Cloud Computing: Core Characteristics

On-demand selfservice

Provision computing resources as needed without human interaction with the provider.

Broad network access

Services available over the network via standard platforms (e.g., mobile, laptop, workstations).

Resource pooling

Provider resources are pooled to serve multiple customers dynamically.

Rapid elasticity

Capabilities can be elastically provisioned and released to scale outward/inward.

Measured service

Usage is monitored, controlled, and reported, ensuring transparency.

Cloud Computing: Core Services

8

	Service Category	Description
Components	Compute	Virtual machines, containers, serverless platforms for running workloads
	Storage	Object, file, and block storage options for persistent data
	Networking	Virtual networks, load balancers, DNS, VPN, and CDNs
	Databases	Managed SQL, NoSQL, and in-memory databases
Security & Ops	Security & Identity	IAM, encryption, firewalls, key management, compliance tools
	Monitoring & Logging	Observability tools, metrics collection, and log analysis
	DevOps & CI/CD	Code pipelines, infrastructure as code, monitoring integrations
New	AI/ML	Managed ML platforms, pre-trained models, data science tools
	IoT & Edge	Tools for managing and collecting data from IoT devices

Cloud Deployment Models

9

Model	Description	Example Use Case
Public Cloud	Services offered over the public internet by third-party providers (e.g., AWS, Azure).	Storing machine sensor logs from a factory in Amazon S3.
Private Cloud	Exclusive use by a single organization, managed internally or by a vendor.	Running a confidential design simulation on internal servers.
Hybrid Cloud	Mix of public and private clouds for flexibility and control.	Using private cloud for ERP and public cloud for backup storage.

Cloud Service Models

Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (laaS)

Cloud Service Models: IaaS

11

Infrastructure as a Service

- laaS provides remote computing resources over the internet.
- The provider manages the physical infrastructure (servers, storage, networking) while the customer controls operating systems, applications, and configurations.

Example Services

- AWS EC2
- Google Cloud Compute Engine
- Azure VMs

Cloud Service Models: PaaS

12

Platform as a Service

 PaaS offers a complete development platform where customers can create, deploy, and manage applications without focusing on infrastructure complexities.

• The provider takes care of hardware, operating systems, and middleware letting customers concentrate solely on building their applications.

Example Services

- AWS Beanstalk
- Google Cloud App Engine
- Azure App Service

Cloud Service Models: SaaS

13

Software as a Service

- SaaS offers remote software/applications services basis on subscription.
- The provider manages everything: infrastructure, platform, and application.
- Users simply access the software via a web browser, without needing to install, maintain, or upgrade anything.

Example Services

- Microsoft 365
- Google Workspace
- AWS Supply Chain

Cloud Service Models: Comparison

Model	What It Offers	Example (Manufacturing)
laaS (Infrastructure as a Service)	Raw computing resources like virtual machines and storage.	Hosting SCADA system backups.
PaaS (Platform as a Service)	Development platform and environment in the cloud.	Deploying predictive maintenance ML models.
SaaS (Software as a Service)	Fully managed software accessible via web.	Using Salesforce for vendor communication.

Case Study Audi on AWS

TÜV SUD

Audi

Challenge

- Audi's online car configurator ran as a monolithic app on-premises, requiring overprovisioned servers to handle traffic spikes.
- Deploying new environments in-house took days to weeks.

Solution

- Migrated to AWS EC2, automated provisioning via Terraform
- Adopted Kubernetes with containers, enabling blue/green and microservices deployments
- Deployed Karpenter to auto-scale multi-architecture EC2 instances, including Graviton-based workloads

Reference: https://aws.amazon.com/solutions/case-studies/audiefficient-compute-case-study/

Case Study Audi on AWS

Challenge

- Audi's online car configurator ran as a monolithic app on-premises, requiring overprovisioned servers to handle traffic spikes.
- Deploying new environments in-house took days to weeks.

Reference: https://aws.amazon.com/solutions/case-studies/audiefficient-compute-case-study/

AWS Services Used

- Amazon EC2 (including Graviton processors)
- Terraform & AWS CloudFormation (IaC tools)
- Amazon EKS + Karpenter (container orchestration & node scaling)

Outcomes

- **I 63% compute cost savings** by using Graviton, Spot, Reserved, and On-Demand instances
- 20% faster startup times, improving responsiveness globally

Thank you

Lorem ipsum dolor sit:

Name

Position

Email: lorem.ipsum@tuvsud.com

Phone: +XX XXX XXXXXX

Follow us on:

tuvsud.com info@tuvsud.com

Module: Cloud and Edge Computing 2025