

WHAT IS CLAIMED IS:

1 1. A system for modifying a valve in a patient's heart to reduce
2 regurgitation, the valve having an annulus, the system comprising:
3 a catheter configured for advancement through the patient's vasculature
4 into the heart from a vascular access point remote from the heart; and
5 a supporting structure releasably coupled to the catheter, the supporting
6 structure being adapted for deployment at a tissue location on or near the annulus, the
7 supporting structure being movable between a delivery configuration suitable for
8 advancement through the patient's vasculature and a deployed configuration suitable for
9 modifying the annulus when deployed at the tissue location so as to reduce regurgitation
10 in the valve.

1 2. The system of claim 1 wherein the supporting structure comprises a
2 ring adapted to at least partially surround the annulus.

1 3. The system of claim 1 wherein the supporting structure is elastic
2 and moves from the delivery configuration to the deployed configuration upon
3 deployment from the catheter.

1 4. The system of claim 1 wherein the supporting structure is
2 expandable from the delivery configuration to the deployed configuration.

1 5. The system of claim 4 further comprising an expansion element on
2 the catheter for expanding the supporting structure.

1 6. The system of claim 5 wherein the expansion element comprises a
2 balloon.

1 7. The system of claim 5 wherein the expansion element comprises a
2 plurality of spokes.

1 8. The system of claim 1 further comprising a fastener for fastening
2 the supporting structure to tissue.

1 9. The system of claim 8 wherein the fastener comprises suture.

1 10. The system of claim 8 wherein the fastener comprises a staple.

1 11. The system of claim 1 wherein the supporting structure is
2 configured to circumferentially shorten the annulus.

1 12. The system of claim 1 wherein the supporting structure is
2 configured for deployment over the annulus.

1 13. The system of claim 1 wherein the supporting structure is adapted
2 for adhesive attachment to tissue.

1 14. The system of claim 1 wherein the catheter is configured to extend
2 into the heart from a femoral venous location.

1 15. The system of claim 1 wherein the catheter is configured to extend
2 across an inter-atrial septum of the heart.

1 16. The system of claim 1 wherein the valve is the mitral valve, the
2 supporting structure being adapted for modifying the annulus of the mitral valve in the
3 deployed configuration.

1 17. The system of claim 1 further comprising a guide catheter
2 configured for advancement through the patient's vasculature into the heart from the
3 vascular access point remote from the heart, the catheter and the supporting structure
4 being positionable through the guide catheter.

1 18. The system of claim 1 wherein the supporting structure is
2 configured to tighten the annulus.

1 19. The system of claim 1 wherein the supporting structure is
2 deformable from the delivery configuration to the deployed configuration.

1 20. A method of modifying a valve in a patient's heart to reduce
2 regurgitation, the valve having an annulus, the method comprising:
3 advancing a catheter through the patient's vasculature into the heart from a
4 vascular access point remote from the heart, the catheter having a supporting structure
5 releasably coupled thereto in a delivery configuration; and
6 deploying the supporting structure from the catheter at a tissue location on
7 or near the annulus, the supporting structure having a deployed configuration upon

8 deployment, the supporting structure modifying the annulus so as to reduce regurgitation
9 in the valve.

1 21. The method of claim 20 wherein the supporting structure
2 comprises a ring, and wherein deploying comprises deploying the supporting structure so
3 that the ring at least partially surrounds the annulus.

1 22. The method of claim 20 wherein the supporting structure is elastic
2 and wherein deploying includes elastic recoil movement of the supporting structure from
3 the delivery configuration to the deployed configuration upon deployment from the
4 catheter.

1 23. The method of claim 20 wherein deploying comprises expanding
2 of the supporting structure from the delivery configuration to the deployed configuration.

1 24. The method of claim 23 wherein expanding comprises using an
2 expansion element on the catheter to expand the supporting structure.

1 25. The method of claim 24 wherein the expansion element comprises
2 a balloon and using the expansion element comprises inflating the balloon.

1 26. The method of claim 24 wherein the expansion element comprises
2 a plurality of spokes and using the expansion element comprises opening the plurality of
3 spokes.

1 27. The method of claim 20 further comprising fastening the deployed
2 supporting structure to tissue with a fastener.

1 28. The method of claim 27 wherein the fastener comprises suture.

1 29. The method of claim 27 wherein the fastener comprises a staple.

1 30. The method of claim 20 wherein modifying the annulus by the
2 supporting structure comprises circumferentially shortening the annulus.

1 31. The method of claim 20 wherein deploying the supporting structure
2 comprises deploying the supporting structure over the annulus.

1 32. The method of claim 20 further comprising fastening the
2 supporting structure to tissue with adhesive.

1 33. The method of claim 20 wherein advancing the catheter comprises
2 advancing the catheter from a femoral venous location.

1 34. The method of claim 20 wherein advancing the catheter comprises
2 advancing the catheter across an inter-atrial septum of the heart.

1 35. The method of claim 20 wherein the valve is a mitral valve, the
2 supporting structure modifying the annulus of the mitral valve.

1 36. The method of claim 20 further comprising positioning a guide
2 catheter through the patient's vasculature into the heart from the vascular access point
3 remote from the heart, and wherein advancing the catheter comprises advancing the
4 catheter through the guide catheter.

1 37. The method of claim 20 wherein modifying the annulus comprises
2 tightening the annulus.

1 38. The method of claim 20 wherein deploying comprises deforming
2 of the supporting structure from the delivery configuration to the deployed configuration.

1 39. A method of modifying a valve in a patient's heart to reduce
2 regurgitation, the valve having an annulus, the method comprising:
3 advancing a catheter through the patient's vasculature into the heart from a
4 vascular access point remote from the heart, the catheter having an annuloplasty device
5 releasably coupled thereto; and
6 deploying the annuloplasty device on or near the annulus so as to modify
7 the annulus to reduce regurgitation in the valve.

1 40. The method of claim 39 wherein the annuloplasty device is
2 disposed in a delivery configuration while advancing the catheter through the patient's
3 vasculature, and wherein deploying the annuloplasty device comprises expanding the
4 annuloplasty device into a delivery configuration suitable for modifying the annulus.

1 41. The method of claim 39 wherein modifying the annulus comprises
2 shortening the annulus.

1 42. The method of claim 39 wherein modifying the annulus comprises
2 tightening the annulus.

1 43. A method of modifying a valve in a patient's heart to reduce
2 regurgitation, the valve having an annulus, the method comprising:
3 advancing a catheter through the patient's vasculature into the heart from a
4 vascular access point remote from the heart, the catheter carrying a plurality of anchors;
5 placing the anchors on or near the annulus;
6 coupling a filament to the anchors; and
7 tightening the filament so as to modify the annulus to reduce regurgitation
8 in the valve.

1 44. A method of modifying a valve in a patient's heart to reduce
2 regurgitation, the valve having an annulus, the method comprising:
3 advancing a catheter through the patient's vasculature into the heart from a
4 vascular access point remote from the heart, the catheter carrying a plurality of staples;
5 and
6 applying the staples to tissue on or near the annulus so as to modify the
7 annulus to reduce regurgitation in the valve.

1 45. A method for repairing an atrioventricular valve, said method
2 comprising:
3 accessing a patient's vasculature remote from a heart;
4 advancing an interventional catheter through the vasculature into the heart,
5 the interventional catheter having an interventional tool at a distal end thereof;
6 delivering an implantable device through the interventional catheter to a
7 target location in the heart with the use of the interventional tool; and
8 modifying the annulus with the use of the implantable device in a manner
9 that reduces leakage through the valve during ventricular systole.

1 46. A method as in claim 45 wherein the implantable device comprises
2 a supporting structure and modifying the annulus comprises attaching the supporting
3 structure to the annulus.

1 47. A method as in claim 46 wherein the supporting structure
2 comprises a ring and modifying the annulus comprises affixing the ring around the
3 circumference of the annulus.

1 48. A method as in claim 47, wherein the interventional tool comprises
2 a balloon and delivering the implantable device comprises expanding the balloon having
3 the ring mounted thereon within the annulus.

1 49. A method as in claim 45, wherein the implantable device
2 comprises a plurality of anchors and modifying the annulus comprises circumferentially
3 tightening the annulus by drawing at least some of the plurality of anchors together.

1 50. A method as in claim 45, wherein the implantable device
2 comprises a plurality of plicators and modifying the annulus comprises circumferentially
3 tightening the annulus by plicating portions of the annulus with the plicators.