

THE UNIVERSITY OF TEXAS AT ARLINGTON, TEXAS DEPARTMENT OF ELECTRICAL ENGINEERING

EE 5322 - 003 INTELLIGENT CONTROL SYSTEMS

HW # 3 ASSIGNMENT

by

SOUTRIK PRASAD MAITI 1001569883

Presented to

Dr. Frank Lewis

Sept 26, 2017

Fall 2015 Homework Pledge of Honor

O	- 11	to a see a consequent			VOLUMBLOT	MODIZ ALONE
()n	all	homework	cs in this	CHASS.	- Y()	WORK ALONE

Any cheating or collusion will be severely punished.

It is very easy to compare your software code and determine if you worked together

It does not matter if you change the variable names.

Please sign this form and include it as the first page of all of your submitted homeworks.
Typed Name: Soutrik Maiti

Pledge of honor:

"On my honor I have neither given nor received aid on this homework."

e-Signature: Soutrik Maiti

EE 5322 Homework 3

Discrete Time Simulation & RLS

Problem 1:

a)

MATLAB Code:

```
%State Matricies
a = [0,1;-0.9801,1.6];
                                              %Matrix A
b = [0,1]';
                                             %Matrix B
k = [1:1:100]';
                                             %Time Index
u = ones(size(k));
                                             %Unit Step
x0 = [0,0]';
                                             %Initial Conditions
[ki x] = discrete_time_sys(a,b,x0,u);
plot(ki,x)
                                             %Plotting State Variables
xlabel('Time');
ylabel('Amplitude');
legend('x1','x2');
figure
plot(ki,x(:,1))
xlabel('Time');
ylabel('Amplitude');
legend('x1');
figure
plot(ki,x(:,2))
xlabel('Time');
ylabel('Amplitude');
legend('x2');
function[ki,x] = discrete time sys(a,b,x0,u)
                                         %N = 100s
    N = size(u);
   ki(1) = 1;
                                         %Time Index ki
    n = size(x0);
    x = zeros(N(1), n(1)); x(1,:) = x0'; %Initalizing State variable & x(0)
    for k = 1:N(1)-1
                                         %Loop for calculation of State
variables
        ki(k+1) = k+1;
        x(k+1,:) = (a*x(k,:)'+b*u(k,:)')';
    end
    ki = ki';
    end
```


Fig 3.1 – Discrete Time simulation of the system

Period of the system – Fig 3.2 shows the coordinates of the first and second peak.

Hence the period is simply x2-x1+1 i.e. 15-6+1 which is 10.

The period is 10.

As of the peak overshoot is considered, we know :-

$$\textit{Peak Overshoot} = \frac{V_{\textit{Peak}} - V_{\textit{Constant}}}{V_{\textit{Constant}}} \times 100 = 95.01\%$$

Where

Vpeak = 5.127

Vconstant = 2.629 from Fig 3.3

Fig 3.2 – Figure for the calculation of period

Fig 3.3 – Figure for the calculation of peak overshoot

b) Same system with process noise

```
%state matricies
a = [0,1;-0.9801,1.6];
                                                  %Matrix A
b = [0,1]';
                                                  %Matrix B
x0 = [0 \ 0]';
                                                  %Initial State x(0)
                                                  %Time Index
k = [1:1:100]';
u = ones(size(k));
                                                  %Unit Step input
[ki,x] = disc time sys wnoise(a,b,x0,u);
                                                  %Plotting State
plot(ki,x)
Variables
xlabel('Time');
ylabel('Amplitude');
function [ki,x] = disc_time_sys_wnoise(a,b,x0,u)
    N = size(u);
                                                      %N = 100
    n = size(x0);
    ki(1) = 1;
    x = zeros(N(1), n(1));
                                                      %Initializing
States
    x(1,:) = x0';
                                                      %x(0)
    r = sqrt(0.1) * randn(N(1), 2);
                                                      %Process noise
with Covar=0.1
    for k = 1:N(1)-1
                                                      %Calculating State
Vatiables
        ki(k+1) = k+1;
        x(k+1,:) = (a*x(k,:)' + b*u(k,:)' + r(k,:)')';
    end
    ki = ki';
end
```


Fig 3.4 - Discrete Time Simulation of system with process noise of mean=0 & Covar =0.1

Problem 2:

MATLAB Code

```
clc;
uk=xlsread('hwk RLS ID data.xls','C4:C604');
yk=xlsread('hwk RLS ID data.xls','E4:E604');

d = 2;
n = 2;
ht = zeros(601,3);
%Calculation of Regression Matrix

for k = 3:601
    ht(k,:) = [-yk(k-1) -yk(k-2) uk(k-2)];
end

sigma = 0.1;
p1 = 1000*eye(3);
theta_cap = zeros(3,601);% Initial Estimates
%Calculation of Pk & Theta_Cap Using RLS Algorithm
```

```
for k = 2:600
    pk = p1 - p1*ht(k+1,:)'*(inv(ht(k+1,:)*p1*ht(k+1,:)'+
sigma))*ht(k+1,:)*p1;
    theta cap(:,k+1) =
theta cap(:,k) + (pk*(ht(k+1,:)'/sigma)*(yk(k+1,1)-
(ht(k+1,:)*theta cap(:,k)));
p1 = pk;
end
ye = ht*theta cap;
ye = diag(ye); %Y estimate
% Difference of estimate and given output (Error in Estimation)
diff = ye-yk;
figure
plot(diff)
%System Transfer function
theta cap(:,601)
num=[0 0 theta_cap(3,601)];
den=[1 theta cap(1,601) theta_cap(2,601)];
sys=filt(num,den)
%simulating the obtained transfer function using the input
out= lsim(sys,uk,1:601);
figure
plot (1:601,out)
hold on
plot (3:603, yk)
hold off
Output:-
ans =
 -1.9000
  0.9500
  0.2000
sys =
    0.2 z^-2
 _____
 1 - 1.9 z^{-1} + 0.95 z^{-2}
```


Fig 3.5 – The difference between y estimate and y actual

Fig 3.6 – The comparision of the transfer functions. The time has been shifted for the second transfer function to observe the similarity between the two.