Лекция 3 РЕКУРСИЯ

ФУНКЦИОНАЛЬНОЕ И ЛОГИЧЕСКОЕ ПРОГРАММИРОВАНИЕ КамчатГТУ, 2013 г.

- Почему рекурсия это зло?
- Почему рекурсия?
- Пре ещё бывает рекурсия?
- Какая ещё бывает рекурсия?
- Когда же она закончится?
- **6** См. пункт 1.

- Почему рекурсия это зло?
- 2 Почему рекурсия?
- Пде ещё бывает рекурсия?
- Какая ещё бывает рекурсия?
- б Когда же она закончится?
- **6** См. пункт 1.

 Рекурсия – это непонятно: рекурсивные решения неочевидны, программы трудно отлаживать.

- Рекурсия это непонятно: рекурсивные решения неочевидны, программы трудно отлаживать.
- Рекурсия хороша только для олимпиадных задач, в реальных задачах она не используется.

- Рекурсия это непонятно: рекурсивные решения неочевидны, программы трудно отлаживать.
- Рекурсия хороша только для олимпиадных задач, в реальных задачах она не используется.
- Рекурсия опасна: она может никогда не закончиться.

- Рекурсия это непонятно: рекурсивные решения неочевидны, программы трудно отлаживать.
- Рекурсия хороша только для олимпиадных задач, в реальных задачах она не используется.
- Рекурсия опасна: она может никогда не закончиться.
- Рекурсия опасна: неизвестно, сколько она потребует памяти и времени.

- Рекурсия это непонятно: рекурсивные решения неочевидны, программы трудно отлаживать.
- Рекурсия хороша только для олимпиадных задач, в реальных задачах она не используется.
- Рекурсия опасна: она может никогда не закончиться.
- Рекурсия опасна: неизвестно, сколько она потребует памяти и времени.
- Рекурсивные программы ресурсоёмки и неэффективны.

 Всё, что можно сделать с помощью рекурсии, можно сделать на циклах. Так зачем всё усложнять?

- Всё, что можно сделать с помощью рекурсии, можно сделать на циклах. Так зачем всё усложнять?
- Во многих классических учебниках по программированию настоятельно рекомендуют избегать рекурсии («...если бы программист, работающий

у меня, применял рекурсию для вычисления факториала, я бы нанял кого-то другого...»

С. Макконнелл «Совершенный код»)

- Всё, что можно сделать с помощью рекурсии, можно сделать на циклах. Так зачем всё усложнять?
- Во многих классических учебниках по программированию настоятельно рекомендуют избегать рекурсии

(«...если бы программист, работающий у меня, применял рекурсию для вычисления факториала, я бы нанял кого-то другого...»

С. Макконнелл «Совершенный код»)

• Рекурсия противоествественна для человеческого мышления.

- Почему рекурсия это зло?
- Почему рекурсия?
- Пре ещё бывает рекурсия?
- Какая ещё бывает рекурсия?
- Когда же она закончится?
- **6** См. пункт 1.

Рассмотрим задачу:

Вычислить сумму квадратов натуральных чисел от 1 до n:

$$S_n = 1 + 2^2 + 3^2 + \dots + n^2$$

Рассмотрим задачу:

Вычислить сумму квадратов натуральных чисел от 1 до n:

$$S_n = 1 + 2^2 + 3^2 + \dots + n^2$$

Итератор:

sum := 0

for i=1 to n do

 $sum := sum + i^2$

return sum

Рассмотрим задачу:

Вычислить сумму квадратов натуральных чисел от 1 до n:

$$S_n = 1 + 2^2 + 3^2 + \dots + n^2$$

Итератор:

sum := 0

for i=1 to n do

 $sum := sum + i^2$

return sum

Рассмотрим задачу:

Вычислить сумму квадратов натуральных чисел от 1 до n:

$$S_n = 1 + 2^2 + 3^2 + \dots + n^2$$

Итератор:

sum := 0

for i=1 to n do

 $sum := sum + i^2$

return sum

Условный цикл:

sum := 0i := n

while i > 0 do

 $sum := sum + i^2$

i := i-1

 $\mathbf{return}\ sum$

Рассмотрим задачу:

Вычислить сумму квадратов натуральных чисел от 1 до n:

$$S_n = 1 + 2^2 + 3^2 + \dots + n^2$$

Итератор:

sum := 0

for i=1 to n do

 $sum := sum + i^2$

return sum

Условный цикл:

sum := 0 i := n

while i > 0 do

 $sum := sum + i^2$

i := i - 1

return sum

Явное зацикливание:

sum := 0 i := n

1: **if** i = 0 **goto** 2

 $sum := sum + i^2$ i := i - 1

goto 1

2: return sum

В рамках функциональной парадигмы:

```
egin{aligned} egin{aligned} egin{aligned} egin{aligned} &sum := & 0 \\ i := & n \end{aligned} \ & \text{while } i > 0 \text{ do} \\ & sum := & sum + i^2 \\ & i := & i - 1 \end{aligned} \ & \text{return } sum \end{aligned}
```

В рамках функциональной парадигмы:

• нет переменных и присваивания;

```
Цика: sum := 0 i := n while i > 0 do sum := sum + i^2 i := i - 1 return sum
```

В рамках функциональной парадигмы:

- нет переменных и присваивания;
- нет заданного порядка вычисления.

Цикл:

```
\begin{aligned} sum &:= 0 \\ i &:= n \\ \text{while } i > 0 \text{ do} \\ sum &:= sum + i^2 \\ i &:= i - 1 \\ \text{return } sum \end{aligned}
```

В рамках функциональной парадигмы:

- нет переменных и присваивания;
- нет заданного порядка вычисления.

∐икл:

```
\begin{split} i &:= n \\ \text{while } i > 0 \text{ do} \\ sum &:= sum + i^2 \\ i &:= i - 1 \end{split}
```

Программа

Функциональная программа представляет собой композицию чистых функций.

В рамках функциональной парадигмы:

- нет переменных и присваивания;
- нет заданного порядка вычисления.

Цикл:

```
sum := 0

i := n

while i > 0 do

sum := sum + i^2

i := i - 1
```

функциональный цикл:

```
sum (n) = ...
```

Программа

Функциональная программа представляет собой композицию чистых функций.

Процесс

Вычисление функционального выражения состоит в подстановке фактических аргументов вместо формальных.

В рамках функциональной парадигмы:

- нет переменных и присваивания;
- нет заданного порядка вычисления.

∐икл:

```
sum := 0

i := n

while i > 0 do

sum := sum + i^2

i := i - 1
```

функциональный цикл:

Программа

Функциональная программа представляет собой композицию чистых функций.

Процесс

Вычисление функционального выражения состоит в подстановке фактических аргументов вместо формальных.

Таким образом, единственный способ повторить вычисления— вызвать функцию повторно.

Функциональная реализация

Задача вычисления суммы из n слагаемых сводится к задаче вычисления суммы n-1 слагаемого:

$$S_n = 1 + 2^2 + 3^2 + \dots + n^2 = (1 + 2^2 + 3^2 + \dots + (n-1)^2) + n^2 = S_{n-1} + n^2,$$

при этом $S_0 = 0$.

Функциональная реализация

Задача вычисления суммы из n слагаемых сводится к задаче вычисления суммы n-1 слагаемого:

$$S_n = 1 + 2^2 + 3^2 + \dots + n^2 = (1 + 2^2 + 3^2 + \dots + (n-1)^2) + n^2 = S_{n-1} + n^2,$$

при этом $S_0 = 0$.

Функциональная программа:

$$S(0) = 0$$

 $S(n) = S(n-1) + n^2$

Функциональная реализация

Задача вычисления суммы из n слагаемых сводится к задаче вычисления суммы n-1 слагаемого:

$$S_n = 1 + 2^2 + 3^2 + \dots + n^2 = (1 + 2^2 + 3^2 + \dots + (n-1)^2) + n^2 = S_{n-1} + n^2,$$

при этом $S_0 = 0$.

Функциональная программа:

$$S(0) = 0$$

 $S(n) = S(n-1) + n^2$

Определение

Рекурсивным является определение объекта, содержащее

- 1. базовые (нерекурсивные) определения для частных случаев;
- набор правил приводящих все прочие случаи к базовым и использующих определяемый объект.

- Почему рекурсия это зло?
- Почему рекурсия?
- бывает рекурсия?
- Какая ещё бывает рекурсия?
- б Когда же она закончится?
- **6** См. пункт 1.

Определение многих объектов в математике рекурсивно.

- 1. Формулируется базис, как нерекурсивное определение исключительных случаев при построении типа или множества.
- 2. Строится шаг, как рекурсивное правило построения того же объекта.

Определение многих объектов в математике рекурсивно.

- Формулируется базис, как нерекурсивное определение исключительных случаев при построении типа или множества.
- 2. Строится шаг, как рекурсивное правило построения того же объекта.

Множество натуральных чисел

К натуральным числам относятся 0 и любое число, следующее за натуральным.

$$\mathbf{N} = \{0, n+1 \mid n \in \mathbf{N}\}\$$

Определение многих объектов в математике рекурсивно.

- Формулируется базис, как нерекурсивное определение исключительных случаев при построении типа или множества.
- 2. Строится шаг, как рекурсивное правило построения того же объекта.

Множество натуральных чисел

К натуральным числам относятся 0 и любое число, следующее за натуральным.

$$\mathbf{N} = \{0, n+1 \mid n \in \mathbf{N}\}$$

Базис: $0 \in \mathbb{N}$

Шаг: $n+1\in \mathbb{N}$, если $n\in \mathbb{N}$.

Определение многих объектов в математике рекурсивно.

- Формулируется базис, как нерекурсивное определение исключительных случаев при построении типа или множества.
- 2. Строится шаг, как рекурсивное правило построения того же объекта.

Множество натуральных чисел

К натуральным числам относятся 0 и любое число, следующее за натуральным.

$$\mathbf{N} = \{0, n+1 \mid n \in \mathbf{N}\}$$

Базис: $0 \in \mathbb{N}$

Шаг: $n+1\in\mathbb{N}$, если $n\in\mathbb{N}$.

Сложение:

$$n + 0 = n$$

 $n + (m + 1) = (n + m) + 1$

Определение многих объектов в математике рекурсивно.

- Формулируется базис, как нерекурсивное определение исключительных случаев при построении типа или множества.
- 2. Строится шаг, как рекурсивное правило построения того же объекта.

Множество натуральных чисел

К натуральным числам относятся 0 и любое число, следующее за натуральным.

$$\mathbf{N} = \{0, n+1 \mid n \in \mathbf{N}\}$$

Базис: $0 \in \mathbb{N}$

Шаг: $n+1\in \mathbb{N}$, если $n\in \mathbb{N}$.

Сложение:

$$n + 0 = n$$

 $n + (m + 1) = (n + m) + 1$

Умножение:

$$n \times 0 = 0$$

$$n \times (m+1) = (n \times m) + n$$

Определение многих объектов в математике рекурсивно.

- Формулируется базис, как нерекурсивное определение исключительных случаев при построении типа или множества.
- 2. Строится шаг, как рекурсивное правило построения того же объекта.

Множество натуральных чисел

К натуральным числам относятся 0 и любое число, следующее за натуральным.

$$\mathbf{N} = \{0, n+1 \mid n \in \mathbf{N}\}\$$

Базис: $0 \in \mathbb{N}$

Шаг: $n+1 \in \mathbb{N}$, если $n \in \mathbb{N}$.

Сложение:

$$n + 0 = n$$

 $n + (m + 1) = (n + m) + 1$

Умножение:

$$n \times 0 = 0$$

$$n \times (m+1) = (n \times m) + n$$

Возведение в степень:

$$n^0 = 1$$
$$n^{m+1} = (n^m) \times n$$

К индуктивным множествам и типам данных относятся

• Натуральные, чётные, простые числа и т.д.;

К индуктивным множествам и типам данных относятся

- Натуральные, чётные, простые числа и т.д.;
- Потоки данных (динамические списки, файлы, строки, сериализованные данные, ...);

К индуктивным множествам и типам данных относятся

- Натуральные, чётные, простые числа и т.д.;
- Потоки данных (динамические списки, файлы, строки, сериализованные данные, ...);
- Древообразные структуры (словари, хэш-таблицы, грамматики, ...)

К индуктивным множествам и типам данных относятся

- Натуральные, чётные, простые числа и т.д.;
- Потоки данных (динамические списки, файлы, строки, сериализованные данные, ...);
- Древообразные структуры (словари, хэш-таблицы, грамматики, ...)
- Ацикличные графы.

 Рекурсивные программы наиболее просто и естественно описывают порождение и обработку индуктивных типов данных.

- Рекурсивные программы наиболее просто и естественно описывают порождение и обработку индуктивных типов данных.
- При рекурсивной обработке данных нет необходимости знать их «размеры» (количество термов) на этапе компиляции.

- Рекурсивные программы наиболее просто и естественно описывают порождение и обработку индуктивных типов данных.
- При рекурсивной обработке данных нет необходимости знать их «размеры» (количество термов) на этапе компиляции.

 Конечные рекурсивные программы позволяют порождать или обрабатывать бесконечное разнообразие объектов.

- Рекурсивные программы наиболее просто и естественно описывают порождение и обработку индуктивных типов данных.
- При рекурсивной обработке данных нет необходимости знать их «размеры» (количество термов) на этапе компиляции.

- Конечные рекурсивные программы позволяют порождать или обрабатывать бесконечное разнообразие объектов.
- Для индуктивных множеств и рекурсивных функций возможно доказательство свойств методом математической индукции.

- Рекурсивные программы наиболее просто и естественно описывают порождение и обработку индуктивных типов данных.
- При рекурсивной обработке данных нет необходимости знать их «размеры» (количество термов) на этапе компиляции.

- Конечные рекурсивные программы позволяют порождать или обрабатывать бесконечное разнообразие объектов.
- Для индуктивных множеств и рекурсивных функций возможно доказательство свойств методом математической индукции.

Вывод:

- Рекурсивные программы наиболее просто и естественно описывают порождение и обработку индуктивных типов данных.
- При рекурсивной обработке данных нет необходимости знать их «размеры» (количество термов) на этапе компиляции.

- Конечные рекурсивные программы позволяют порождать или обрабатывать бесконечное разнообразие объектов.
- Для индуктивных множеств и рекурсивных функций возможно доказательство свойств методом математической индукции.

Вывод:

Рекурсия — идеальный инструмент для работы с индуктивными данными:

• перечислимыми множествами,

- Рекурсивные программы наиболее просто и естественно описывают порождение и обработку индуктивных типов данных.
- При рекурсивной обработке данных нет необходимости знать их «размеры» (количество термов) на этапе компиляции.

- Конечные рекурсивные программы позволяют порождать или обрабатывать бесконечное разнообразие объектов.
- Для индуктивных множеств и рекурсивных функций возможно доказательство свойств методом математической индукции.

Вывод:

- перечислимыми множествами,
- списками и потоками,

- Рекурсивные программы наиболее просто и естественно описывают порождение и обработку индуктивных типов данных.
- При рекурсивной обработке данных нет необходимости знать их «размеры» (количество термов) на этапе компиляции.

- Конечные рекурсивные программы позволяют порождать или обрабатывать бесконечное разнообразие объектов.
- Для индуктивных множеств и рекурсивных функций возможно доказательство свойств методом математической индукции.

Вывод:

- перечислимыми множествами,
- списками и потоками,
- иерархическими структурами,

- Рекурсивные программы наиболее просто и естественно описывают порождение и обработку индуктивных типов данных.
- При рекурсивной обработке данных нет необходимости знать их «размеры» (количество термов) на этапе компиляции.

- Конечные рекурсивные программы позволяют порождать или обрабатывать бесконечное разнообразие объектов.
- Для индуктивных множеств и рекурсивных функций возможно доказательство свойств методом математической индукции.

Вывод:

- перечислимыми множествами,
- списками и потоками,
- иерархическими структурами,
- грамматическими конструкциями и т.п.

Парадигма разработки **быстрых алгоритмов**, состоящая в разбиении задачи на подзадачи того же типа, но меньшего размера и комбинировании их результатов.

Парадигма разработки **быстрых алгоритмов**, состоящая в разбиении задачи на подзадачи того же типа, но меньшего размера и комбинировании их результатов.

Парадигма разработки **быстрых алгоритмов**, состоящая в разбиении задачи на подзадачи того же типа, но меньшего размера и комбинировании их результатов.

Примеры:

• сортировка слиянием

Парадигма разработки **быстрых алгоритмов**, состоящая в разбиении задачи на подзадачи того же типа, но меньшего размера и комбинировании их результатов.

- сортировка слиянием
- быстрая сортирова Хоара

Парадигма разработки быстрых алгоритмов, состоящая в разбиении задачи на подзадачи того же типа, но меньшего размера и комбинировании их результатов.

- сортировка слиянием
- быстрая сортирова Хоара
- метод бисекции

Парадигма разработки **быстрых алгоритмов**, состоящая в разбиении задачи на подзадачи того же типа, но меньшего размера и комбинировании их результатов.

- сортировка слиянием
- быстрая сортирова Хоара
- метод бисекции
- двоичный поиск

Парадигма разработки **быстрых алгоритмов**, состоящая в разбиении задачи на подзадачи того же типа, но меньшего размера и комбинировании их результатов.

- сортировка слиянием
- быстрая сортирова Хоара
- метод бисекции
- двоичный поиск
- перемножение больших чисел

$$12 34 = 12 \times 10^{2} + 34$$

$$56 78 = 56 \times 10^{2} + 78$$

$$z_{2} = 12 \times 56 = 672$$

$$z_{0} = 34 \times 78 = 2652$$

$$z_{1} = (12 + 34)(56 + 78) - z_{2} - z_{0} = 2840$$

$$result = z_{2} \times 10^{2 \times 2} + z_{1} \times 10^{2} + z_{0} = 7006652.$$

Парадигма разработки **быстрых алгоритмов**, состоящая в разбиении задачи на подзадачи того же типа, но меньшего размера и комбинировании их результатов.

- сортировка слиянием
- быстрая сортирова Хоара
- метод бисекции
- двоичный поиск
- перемножение больших чисел
- быстрое преобразование Фурье

Парадигма разработки **быстрых алгоритмов**, состоящая в разбиении задачи на подзадачи того же типа, но меньшего размера и комбинировании их результатов.

- сортировка слиянием
- быстрая сортирова Хоара
- метод бисекции
- двоичный поиск
- перемножение больших чисел
- быстрое преобразование Фурье
- построение сеток

Парадигма разработки **быстрых алгоритмов**, состоящая в разбиении задачи на подзадачи того же типа, но меньшего размера и комбинировании их результатов.

Примеры:

- сортировка слиянием
- быстрая сортирова Хоара
- метод бисекции
- двоичный поиск
- перемножение больших чисел
- быстрое преобразование Фурье
- построение сеток

• Решение концептуально сложных задач.

Парадигма разработки **быстрых алгоритмов**, состоящая в разбиении задачи на подзадачи того же типа, но меньшего размера и комбинировании их результатов.

- сортировка слиянием
- быстрая сортирова Хоара
- метод бисекции
- двоичный поиск
- перемножение больших чисел
- быстрое преобразование Фурье
- построение сеток

- Решение концептуально сложных задач.
- Повышение эффективности решений.

Парадигма разработки **быстрых алгоритмов**, состоящая в разбиении задачи на подзадачи того же типа, но меньшего размера и комбинировании их результатов.

- сортировка слиянием
- быстрая сортирова Хоара
- метод бисекции
- двоичный поиск
- перемножение больших чисел
- быстрое преобразование Фурье
- построение сеток

- Решение концептуально сложных задач.
- Повышение эффективности решений.
- Пригодность к параллельной реализации.

Парадигма разработки **быстрых алгоритмов**, состоящая в разбиении задачи на подзадачи того же типа, но меньшего размера и комбинировании их результатов.

- сортировка слиянием
- быстрая сортирова Хоара
- метод бисекции
- двоичный поиск
- перемножение больших чисел
- быстрое преобразование Фурье
- построение сеток

- Решение концептуально сложных задач.
- Повышение эффективности решений.
- Пригодность к параллельной реализации.

Парадигма разработки **быстрых алгоритмов**, состоящая в разбиении задачи на подзадачи того же типа, но меньшего размера и комбинировании их результатов.

Примеры:

- сортировка слиянием
- быстрая сортирова Хоара
- метод бисекции
- двоичный поиск
- перемножение больших чисел
- быстрое преобразование Фурье
- построение сеток

- Решение концептуально сложных задач.
- Повышение эффективности решений.
- Пригодность к параллельной реализации.

Рекурсия наиболее просто и естественно реализует эту парадигму.

- Почему рекурсия это зло?
- 2 Почему рекурсия?
- Пре ещё бывает рекурсия?
- Какая ещё бывает рекурсия?
- Когда же она закончится?
- **6** См. пункт 1.

$$S(0) = 0$$

$$S(n) = S(n-1) + n2$$

$$S(0) = 0$$

 $S(n) = S(n-1) + n^2$

$$S(0) = 0$$

$$S(n) = S(n-1) + n2$$

$$S(4)$$
1. $S(3) + 16$

$$S(0) = 0$$

$$S(n) = S(n-1) + n2$$

1.
$$S(3) + 16$$

2.
$$(S(2) + 9) + 16$$

$$S(0) = 0$$

$$S(n) = S(n-1) + n2$$

1.
$$S(3) + 16$$

2.
$$(S(2) + 9) + 16$$

3.
$$((S(1) + 4) + 9) + 16$$

$$S(0) = 0$$

$$S(n) = S(n-1) + n2$$

1.
$$S(3) + 16$$

$$2. (S(2) + 9) + 16$$

3.
$$((S(1) + 4) + 9) + 16$$

4.
$$(((S(0) + 1) + 4) + 9) + 16$$

$$S(0) = 0$$

$$S(n) = S(n-1) + n2$$

1.
$$S(3) + 16$$

2.
$$(S(2) + 9) + 16$$

3.
$$((S(1) + 4) + 9) + 16$$

4.
$$(((S(0) + 1) + 4) + 9) + 16$$

5.
$$(((0+1)+4)+9)+16$$

$$S(0) = 0$$

$$S(n) = S(n-1) + n2$$

1.
$$S(3) + 16$$

2.
$$(S(2) + 9) + 16$$

3.
$$((S(1) + 4) + 9) + 16$$

4.
$$(((S(0) + 1) + 4) + 9) + 16$$

5.
$$(((0+1)+4)+9)+16$$

6.
$$((1+4)+9)+16$$

Прислушаемся к мнению тех, кто утверждает, что рекурсия неэффективна и разберёмся, как производятся вычисления.

$$S(0) = 0$$

$$S(n) = S(n-1) + n2$$

1.
$$S(3) + 16$$

$$2. (S(2) + 9) + 16$$

3.
$$((S(1) + 4) + 9) + 16$$

4.
$$(((S(0) + 1) + 4) + 9) + 16$$

$$5. (((0+1)+4)+9)+16$$

6.
$$((1+4)+9)+16$$

$$7. (5+9)+16$$

Прислушаемся к мнению тех, кто утверждает, что рекурсия неэффективна и разберёмся, как производятся вычисления.

$$S(0) = 0$$

$$S(n) = S(n-1) + n2$$

1.
$$S(3) + 16$$

$$2. (S(2) + 9) + 16$$

3.
$$((S(1) + 4) + 9) + 16$$

4.
$$(((S(0) + 1) + 4) + 9) + 16$$

$$5. (((0+1)+4)+9)+16$$

6.
$$((1+4)+9)+16$$

$$7. (5+9)+16$$

$$8. 14 + 16$$

Прислушаемся к мнению тех, кто утверждает, что рекурсия неэффективна и разберёмся, как производятся вычисления.

$$S(0) = 0$$

$$S(n) = S(n-1) + n2$$

1.
$$S(3) + 16$$

$$2. (S(2) + 9) + 16$$

3.
$$((S(1) + 4) + 9) + 16$$

4.
$$(((S(0) + 1) + 4) + 9) + 16$$

5.
$$(((0+1)+4)+9)+16$$

6.
$$((1+4)+9)+16$$

$$7. (5+9)+16$$

$$8.14 + 16$$

Прислушаемся к мнению тех, кто утверждает, что рекурсия неэффективна и разберёмся, как производятся вычисления.

$$S(0) = 0$$

$$S(n) = S(n-1) + n2$$

Характеристики рекурсивного процесса

• Вычисление имеет две стадии:

1.
$$S(3) + 16$$

$$2. (S(2) + 9) + 16$$

3.
$$((S(1) + 4) + 9) + 16$$

4.
$$(((S(0) + 1) + 4) + 9) + 16$$

5.
$$(((0+1)+4)+9)+16$$

$$6. ((1+4)+9)+16$$

7.
$$(5+9)+16$$

$$8. 14 + 16$$

Прислушаемся к мнению тех, кто утверждает, что рекурсия неэффективна и разберёмся, как производятся вычисления.

$$S(0) = 0$$

$$S(n) = S(n-1) + n2$$

Характеристики рекурсивного процесса

- Вычисление имеет две стадии:
 - разворачивание цепочки отложенных операций;

1.
$$S(3) + 16$$

$$2. (S(2) + 9) + 16$$

3.
$$((S(1) + 4) + 9) + 16$$

4.
$$(((S(0) + 1) + 4) + 9) + 16$$

5.
$$(((0+1)+4)+9)+16$$

$$6. ((1+4)+9)+16$$

$$7. (5+9)+16$$

$$8. 14 + 16$$

Прислушаемся к мнению тех, кто утверждает, что рекурсия неэффективна и разберёмся, как производятся вычисления.

$$S(0) = 0$$

$$S(n) = S(n-1) + n2$$

Характеристики рекурсивного процесса

- Вычисление имеет две стадии:
 - разворачивание цепочки отложенных операций;
 - сворачивание этой цепочки.

1.
$$S(3) + 16$$

$$2. (S(2) + 9) + 16$$

3.
$$((S(1) + 4) + 9) + 16$$

4.
$$(((S(0) + 1) + 4) + 9) + 16$$

5.
$$(((0+1)+4)+9)+16$$

6.
$$((1+4)+9)+16$$

$$7. (5+9)+16$$

$$8.14 + 16$$

Прислушаемся к мнению тех, кто утверждает, что рекурсия неэффективна и разберёмся, как производятся вычисления.

$$S(0) = 0$$

$$S(n) = S(n-1) + n2$$

Характеристики рекурсивного процесса

- Вычисление имеет две стадии:
 - разворачивание цепочки отложенных операций;
 - сворачивание этой цепочки.
- Для запоминания отложенных операций используется стек.

S(4)

- 1. S(3) + 16
- 2. (S(2) + 9) + 16
- 3. ((S(1) + 4) + 9) + 16
- 4. (((S(0) + 1) + 4) + 9) + 16
- 5. (((0+1)+4)+9)+16
- 6. ((1+4)+9)+16
- 7. (5+9)+16
- 8.14 + 16
- 9. 30

Прислушаемся к мнению тех, кто утверждает, что рекурсия неэффективна и разберёмся, как производятся вычисления.

$$S(0) = 0$$

$$S(n) = S(n-1) + n2$$

Характеристики рекурсивного процесса

- Вычисление имеет две стадии:
 - разворачивание цепочки отложенных операций;
 - сворачивание этой цепочки.
- Для запоминания отложенных операций используется стек.
- ullet Процесс имеет порядок роста $\Theta(n)$ по времени и памяти.

S(4)

1. S(3) + 16

2. (S(2) + 9) + 16

3. ((S(1) + 4) + 9) + 16

4. (((S(0) + 1) + 4) + 9) + 16

5. (((0+1)+4)+9)+16

6. ((1+4)+9)+16

7. (5+9)+16

8.14 + 16

Процесс можно организовать по-другому:

$$S(n) = S'(0, n)$$

 $S'(sum, 0) = sum$
 $S'(sum, i) = S'(sum + i^2, i - 1)$

Процесс можно организовать по-другому:

```
S(n) = S'(0, n)
S'(sum, 0) = sum
S'(sum, i) = S'(sum + i^2, i - 1)
```

Используются итератор i и накопитель sum, так же, как и в императивных программах.

```
\begin{array}{l} sum := \ 0 \\ i := \ n \\ \text{until } i = 0 \ \mathbf{do} \\ sum := \ sum + i^2 \\ i := \ i - 1 \\ \mathbf{return} \ sum \end{array}
```

Процесс можно организовать по-другому:

$$S(n) = S'(0, n)$$

 $S'(sum, 0) = sum$
 $S'(sum, i) = S'(sum + i^2, i - 1)$

Используются итератор i и накопитель sum, так же, как и в императивных программах.

$$egin{array}{ll} sum := & 0 \\ i := & n \\ \mbox{until } i = 0 \mbox{ do} \\ sum := & sum + i^2 \\ i := & i - 1 \\ \mbox{return } sum \end{array}$$

Процесс вычисления этой функции:

РекурсияЦиклS(4)Вызов программы

Процесс можно организовать по-другому:

$$S(n) = S'(0, n)$$

$$S'(sum, 0) = sum$$

$$S'(sum, i) = S'(sum + i^{2}, i - 1)$$

Используются итератор i и накопитель sum, так же, как и в императивных программах.

$$\begin{array}{l} sum := \ \mathbf{0} \\ i := \ n \\ \text{until} \ i = 0 \ \mathbf{do} \\ sum := \ sum + i^2 \\ i := \ i - 1 \\ \mathbf{return} \ sum \end{array}$$

Процесс вычисления этой функции:

Рекурсия

S(4)

1. S'(4, 0)

Цикл

Вызов программы

1. i = 4; sum = 0

Процесс можно организовать по-другому:

$$S(n) = S'(0, n)$$

$$S'(sum, 0) = sum$$

$$S'(sum, i) = S'(sum + i^2, i - 1)$$

Используются итератор i и накопитель sum, так же, как и в императивных программах.

$$egin{array}{ll} sum := & 0 \\ i := & n \\ & ext{until } i = 0 \ ext{do} \\ & sum := & sum + i^2 \\ & i := & i - 1 \\ & ext{return } sum \end{array}$$

Процесс вычисления этой функции:

Рекурсия	Цикл
S(4)	Вызов программы
1. $S'(4, 0)$	1. $i = 4$; sum = 0
2. $S'(3, 16)$	2. $i = 3$; sum = 16

Процесс можно организовать по-другому:

$$S(n) = S'(0, n)$$

$$S'(sum, 0) = sum$$

$$S'(sum, i) = S'(sum + i^{2}, i - 1)$$

Используются итератор i и накопитель sum_i так же, как и в императивных программах.

```
sum := 0
i := n
until i = 0 do
 sum := sum + i^2
 i := i - 1
return sum
```

Пр

роцесс вычисления этой функции:	
Рекурсия	Цикл
S(4)	Вызов программы
S'(4, 0)	1. $i = 4$; sum = 0
S'(3, 16)	2. $i = 3$; sum = 16
S'(2, 25)	3. $i = 2$; sum = 25

3

Процесс можно организовать по-другому:

$$S(n) = S'(0, n)$$

 $S'(sum, 0) = sum$
 $S'(sum, i) = S'(sum + i^2, i - 1)$

Используются итератор i и накопитель sum_i так же, как и в императивных программах.

$$egin{array}{ll} sum := & 0 \\ i := & n \\ \hbox{until } i = 0 \ \mbox{do} \\ sum := & sum + i^2 \\ i := & i - 1 \\ \hbox{return } sum \end{array}$$

Процесс вычисления этой функции:

Рекурсия	Цикл
S(4)	Вызов программы
1. $S'(4, 0)$	1. $i = 4$; sum = 0
2. $S'(3, 16)$	2. $i = 3$; sum = 16
3. $S'(2, 25)$	3. $i = 2$; sum = 25
4. $S'(1, 29)$	4. $i = 1$; sum = 29

Процесс можно организовать по-другому:

$$S(n) = S'(0, n)$$

$$S'(sum, 0) = sum$$

$$S'(sum, i) = S'(sum + i^2, i - 1)$$

Используются итератор i и накопитель sum, так же, как и в императивных программах.

$$egin{array}{ll} sum := & 0 \\ i := & n \\ ext{until } i = 0 & ext{do} \\ sum := & sum + i^2 \\ i := & i - 1 \\ ext{return } sum \end{array}$$

Процесс вычисления этой функции:

Рекурсия	
S(4)	Вызо
S'(4, 0)	1. $i = 4$
S'(3, 16)	2. $i = 3$
S'(2, 25)	3. $i = 2$
S'(1, 29)	4. $i = 1$
S'(0, 30)	5. $i = 0$

Вызов программы

1.
$$i = 4$$
; sum = 0

2.
$$i = 3$$
; sum = 16
3. $i = 2$; sum = 25

4.
$$i = 1$$
; sum = 29

5.
$$i = 0$$
; sum = 30

Процесс можно организовать по-другому:

$$S(n) = S'(0, n)$$

$$S'(sum, 0) = sum$$

$$S'(sum, i) = S'(sum + i^{2}, i - 1)$$

Используются итератор i и накопитель sum, так же, как и в императивных программах.

$$egin{array}{ll} sum := & 0 \\ i := & n \\ ext{until } i = 0 \ ext{do} \\ sum := & sum + i^2 \\ i := & i - 1 \\ ext{return } sum \end{array}$$

Процесс вычисления этой функции:

Рекурсия	Цикл
S(4)	Вызов программы
S'(4, 0)	1. $i = 4$; sum = 0
S'(3, 16)	2. $i = 3$; sum = 16
S'(2, 25)	3. $i = 2$; sum = 25
S'(1, 29)	4. $i = 1$; sum = 29
S'(0, 30)	5. $i = 0$; sum = 30

6. return 30

Процесс можно организовать по-другому:

$$S(n) = S'(0, n)$$

$$S'(sum, 0) = sum$$

$$S'(sum, i) = S'(sum + i^{2}, i - 1)$$

Используются итератор i и накопитель sum, так же, как и в императивных программах.

$$egin{array}{ll} sum := & 0 \\ i := & n \\ ext{until } i = 0 \ ext{do} \\ sum := & sum + i^2 \\ i := & i - 1 \\ ext{return } sum \end{array}$$

Процесс вычисления этой функции:

Рекурсия	Цикл
S(4)	Вызов программы
S'(4, 0)	1. $i = 4$; sum = 0
S'(3, 16)	2. $i = 3$; sum = 16
S'(2, 25)	3. $i = 2$; sum = 25
S'(1, 29)	4. $i = 1$; sum = 29
S'(0, 30)	5. $i = 0$; sum = 30

6. return 30

Процесс можно организовать по-другому:

$$S(n) = S'(0, n)$$

$$S'(sum, 0) = sum$$

$$S'(sum, i) = S'(sum + i^2, i - 1)$$

Используются итератор i и накопитель sum, так же, как и в императивных программах.

$$egin{array}{ll} sum := & 0 \\ i := & n \\ \mbox{until } i = 0 \mbox{ do} \\ sum := & sum + i^2 \\ i := & i - 1 \\ \mbox{return } sum \end{array}$$

Процесс вычисления этой функции:

Рекурсия	Цикл
S(4)	Вызов программы
1. $S'(4, 0)$	1. $i = 4$; sum = 0
2. $S'(3, 16)$	2. $i = 3$; sum = 16
3. $S'(2, 25)$	3. $i = 2$; sum = 25
4. S'(1, 29)	4. $i = 1$; sum = 29
5. $S'(0, 30)$	5. $i = 0$; sum = 30
6. 30	6. return 30

Характеристики итеративного процесса

Процесс можно организовать по-другому:

$$S(n) = S'(0, n)$$

 $S'(sum, 0) = sum$
 $S'(sum, i) = S'(sum + i^2, i - 1)$

Используются итератор i и накопитель sum, так же, как и в императивных программах.

```
\begin{array}{l} sum := \ \mathbf{0} \\ i := \ n \\ \text{until } i = 0 \ \mathbf{do} \\ sum := \ sum + i^2 \\ i := \ i - 1 \\ \mathbf{return} \ sum \end{array}
```

Процесс вычисления этой функции:

Рекурсия	Цикл
S(4)	Вызов программы
1. $S'(4, 0)$	1. $i = 4$; sum = 0
2. $S'(3, 16)$	2. $i = 3$; sum = 16
3. $S'(2, 25)$	3. $i = 2$; sum = 25
4. S'(1, 29)	4. $i = 1$; sum = 29
5. $S'(0, 30)$	5. $i = 0$; sum = 30
6. 30	6. return 30

Характеристики итеративного процесса

• Вычисление не разбивается на две стадии.

Процесс можно организовать по-другому:

$$S(n) = S'(0, n)$$

 $S'(sum, 0) = sum$
 $S'(sum, i) = S'(sum + i^2, i - 1)$

Используются итератор i и накопитель sum, так же, как и в императивных программах.

$$\begin{array}{l} sum := \ \mathbf{0} \\ i := \ n \\ \text{until } i = 0 \ \mathbf{do} \\ sum := \ sum + i^2 \\ i := \ i - 1 \\ \mathbf{return} \ sum \end{array}$$

Процесс вычисления этой функции:

Рекурсия	Цикл
S(4)	Вызов программы
1. $S'(4, 0)$	1. $i = 4$; sum = 0
2. $S'(3, 16)$	2. $i = 3$; sum = 16
3. $S'(2, 25)$	3. $i = 2$; sum = 25
4. S'(1, 29)	4. $i = 1$; sum = 29
5. $S'(0, 30)$	5. $i = 0$; sum = 30
6. 30	6. return 30

Характеристики итеративного процесса

- Вычисление не разбивается на две стадии.
- ullet Процесс имеет порядок роста $\Theta(n)$ по времени и $\Theta(1)$ по памяти.

```
S(n) = S'(0, n)
S'(sum, 0) = sum
S'(sum, i) = S'(sum + i^2, i - 1)
```

```
sum := 0

i := n

until i = 0 do

sum := sum + i^2

i := i - 1

return sum
```

Итеративный цикл состоит из

- 1. инициализации;
- 2. условия выхода;
- 3. тела цикла;

Определение

Рекурсивный процесс — вычислительный процесс, состоящий из двух стадий: а) создания рекурсивной последовательности отложенных вычислений и б) вычисления этой последовательности.

Определение

Рекурсивный процесс — вычислительный процесс, состоящий из двух стадий: а) создания рекурсивной последовательности отложенных вычислений и б) вычисления этой последовательности.

Определение

Итеративный процесс — вычислительный процесс, сводящийся к многократному повторению вычислений, использующих результат предыдущих аналогичных вычислений.

Определение

Рекурсивный процесс — вычислительный процесс, состоящий из двух стадий: а) создания рекурсивной последовательности отложенных вычислений и б) вычисления этой последовательности.

Определение

Итеративный процесс — вычислительный процесс, сводящийся к многократному повторению вычислений, использующих результат предыдущих аналогичных вычислений.

Универсальность рекурсии

С помощью рекурсивных определений можно описывать как рекурсивные процессы, так и итеративные.

Рекурсивный процесс

$$S(n) = n^2 + S(n-1)$$

 $S(0) = 0$

Итеративный процесс

$$S'(sum, i) = S'(sum + i^2, i - 1)$$

$$S'(sum, 0) = sum$$

Рекурсивный процесс

$$S(n) = n^2 + S(n-1)$$

 $S(0) = 0$

Итеративный процесс

$$S'(sum, i) = S'(sum + i^2, i - 1)$$

$$S'(sum, 0) = sum$$

Обобщение

$$F(...) = f(..., F(...), ...)$$

$$F(base) = ...$$

Рекурсивный процесс

$$S(n) = n^2 + S(n-1)$$

$$S(0) = 0$$

Итеративный процесс

$$S'(sum, i) = S'(sum + i^2, i - 1)$$

$$S'(sum, 0) = sum$$

Обобщение

$$F(\ldots) = f(\ldots, F(\ldots), \ldots)$$

$$F(base) = \ldots$$

Решение задачи **сводится** к комбинации решений других задач. Ответ задачи **выражается** через ответы других задач.

Рекурсивный процесс

$$S(n) = n^2 + S(n-1)$$

 $S(0) = 0$

Итеративный процесс

$$S'(sum, i) = S'(sum + i^2, i - 1)$$

$$S'(sum, 0) = sum$$

Обобщение

$$F(\ldots) = f(\ldots, F(\ldots), \ldots)$$

$$F(base) = \ldots$$

Решение задачи **сводится** к комбинации решений других задач. Ответ задачи **выражается** через ответы других задач.

$$F(...) = F(..., f(...), ...)$$

 $F(base) = ...$

Рекурсивный процесс

$$S(n) = n^2 + S(n-1)$$

 $S(0) = 0$

Итеративный процесс

$$S'(sum, i) = S'(sum + i^2, i - 1)$$

$$S'(sum, 0) = sum$$

Обобщение

$$F(...) = f(..., F(...), ...)$$

 $F(base) = ...$

Решение задачи **сводится** к комбинации решений других задач. Ответ задачи **выражается** через ответы других задач.

$$F(\ldots) = F(\ldots, f(\ldots), \ldots)$$

$$F(base) = \ldots$$

Решение задачи **заменяется** решением другой задачи. Ответ к задаче **совпадает** с ответом другой задачи.

Определение

Хвостовым называется вызов функции из тела другой функции, при котором результат вызываемой функции является результатом функции её вызывающей.

Определение

Хвостовым называется вызов функции из тела другой функции, при котором результат вызываемой функции является результатом функции её вызывающей.

$$f(\ldots) = g(\ldots, h(\ldots), \ldots)$$

здесь g вызывается в хвостовой позиции, а h — нет.

Определение

Хвостовым называется вызов функции из тела другой функции, при котором результат вызываемой функции является результатом функции её вызывающей.

$$f(\ldots)=g(\ldots,h(\ldots),\ldots)$$

здесь g вызывается в хвостовой позиции, а h — нет.

Определение

Рекурсия, в которой все рекурсивные вызовы являются хвостовыми, называется **хвостовой рекурсией**.

Определение

Хвостовым называется вызов функции из тела другой функции, при котором результат вызываемой функции является результатом функции её вызывающей.

$$f(\ldots)=g(\ldots,h(\ldots),\ldots)$$

здесь g вызывается в хвостовой позиции, а h — нет.

Определение

Рекурсия, в которой все рекурсивные вызовы являются хвостовыми, называется **хвостовой** рекурсией.

Хвостовая рекурсия

• Реализует итеративный процесс:

Определение

Хвостовым называется вызов функции из тела другой функции, при котором результат вызываемой функции является результатом функции её вызывающей.

$$f(\ldots)=g(\ldots,h(\ldots),\ldots)$$

здесь g вызывается в хвостовой позиции, а h — нет.

Определение

Рекурсия, в которой все рекурсивные вызовы являются хвостовыми, называется **хвостовой** рекурсией.

Хвостовая рекурсия

- Реализует итеративный процесс:
 - не образует цепочки отложенных вычислений;

Определение

Хвостовым называется вызов функции из тела другой функции, при котором результат вызываемой функции является результатом функции её вызывающей.

$$f(\ldots)=g(\ldots,h(\ldots),\ldots)$$

здесь g вызывается в хвостовой позиции, а h — нет.

Определение

Рекурсия, в которой все рекурсивные вызовы являются хвостовыми, называется **хвостовой** рекурсией.

Хвостовая рекурсия

- Реализует итеративный процесс:
 - не образует цепочки отложенных вычислений;
 - не имеет стадий разворачивания и сворачивания.

Определение

Хвостовым называется вызов функции из тела другой функции, при котором результат вызываемой функции является результатом функции её вызывающей.

$$f(\ldots)=g(\ldots,h(\ldots),\ldots)$$

здесь g вызывается в хвостовой позиции, а h — нет.

Определение

Рекурсия, в которой все рекурсивные вызовы являются хвостовыми, называется **хвостовой** рекурсией.

Хвостовая рекурсия

- Реализует итеративный процесс:
 - не образует цепочки отложенных вычислений;
 - не имеет стадий разворачивания и сворачивания.
- Однозначно транслируется в условный цикл, не использующий стек и рекурсивных вызовов.

Определение

Хвостовым называется вызов функции из тела другой функции, при котором результат вызываемой функции является результатом функции её вызывающей.

$$f(\ldots)=g(\ldots,h(\ldots),\ldots)$$

здесь g вызывается в хвостовой позиции, а h — нет.

Определение

Рекурсия, в которой все рекурсивные вызовы являются хвостовыми, называется **хвостовой** рекурсией.

Хвостовая рекурсия

- Реализует итеративный процесс:
 - не образует цепочки отложенных вычислений;
 - не имеет стадий разворачивания и сворачивания.
- Однозначно транслируется в условный цикл, не использующий стек и рекурсивных вызовов.

Определение

Хвостовым называется вызов функции из тела другой функции, при котором результат вызываемой функции является результатом функции её вызывающей.

$$f(\ldots)=g(\ldots,h(\ldots),\ldots)$$

здесь g вызывается в хвостовой позиции, а h — нет.

Определение

Рекурсия, в которой все рекурсивные вызовы являются хвостовыми, называется **хвостовой** рекурсией.

Хвостовая рекурсия

- Реализует итеративный процесс:
 - не образует цепочки отложенных вычислений;
 - не имеет стадий разворачивания и сворачивания.
- Однозначно транслируется в условный цикл, не использующий стек и рекурсивных вызовов.

В SCHEME она входит в стандарт языка и является обязательной.
Оптимизация хвостовой рекурсии

используется в языках OCAML, HASKELL.

Плюсы и минусы

Плюсы и минусы

 Любая программа может быть переписана так, чтобы в ней содержались только хвостовые вызовы.

Плюсы и минусы

- Любая программа может быть переписана так, чтобы в ней содержались только хвостовые вызовы.
- Существует формальный способ трансляции рекурсивных программ в итеративные.

Плюсы и минусы

- Любая программа может быть переписана так, чтобы в ней содержались только хвостовые вызовы.
- Существует формальный способ трансляции рекурсивных программ в итеративные.

 Хвостовая рекурсия часто (но не всегда!) формулируется более громоздким кодом.

Плюсы и минусы

- Любая программа может быть переписана так, чтобы в ней содержались только хвостовые вызовы.
- Существует формальный способ трансляции рекурсивных программ в итеративные.

- Хвостовая рекурсия часто (но не всегда!) формулируется более громоздким кодом.
- При оптимизации хвостовой рекурсии трудно сохранить отладочную информацию о стеке вызовов.

Иногда рекурсия приводит к многократному вычислению одних и тех же выражений.

Рассмотрим рекурсивное определение для последовательности чисел Фибоначчи:

$$F_0 = 0$$

$$F_1 = 1$$

$$F_n = F_{n-1} + F_{n-2}$$

Иногда рекурсия приводит к многократному вычислению одних и тех же выражений.

Рассмотрим рекурсивное определение для последовательности чисел Фибоначчи:

$$F_0 = 0$$

$$F_1 = 1$$

$$F_n = F_{n-1} + F_{n-2}$$

Иногда рекурсия приводит к многократному вычислению одних и тех же выражений.

Рассмотрим рекурсивное определение для последовательности чисел Фибоначчи:

$$F_0 = 0$$

$$F_1 = 1$$

$$F_n = F_{n-1} + F_{n-2}$$

Процесс имеет экспоненциальный порядок роста $\Theta(1.6^n)$.

Иногда рекурсия приводит к многократному вычислению одних и тех же выражений.

Рассмотрим рекурсивное определение для последовательности чисел Фибоначчи:

$$F_0 = 0$$

$$F_1 = 1$$

$$F_n = F_{n-1} + F_{n-2}$$

Определение

Мемоизация – замена повторного вызова функции от одних и тех же аргументов результатом, однажды полученным для этих аргументов.

Процесс имеет экспоненциальный порядок роста $\Theta(1.6^n)$.

Иногда рекурсия приводит к многократному вычислению одних и тех же выражений.

Рассмотрим рекурсивное определение для последовательности чисел Фибоначчи:

$$F_0 = 0$$

$$F_1 = 1$$

$$F_n = F_{n-1} + F_{n-2}$$

Определение

Мемоизация – замена повторного вызова функции от одних и тех же аргументов результатом, однажды полученным для этих аргументов.

Процесс имеет линейный порядок роста $\Theta(n)$.

 Мемоизированная функция, произведя вычисления для конкретных значений аргументов, запоминает в таблице полученный результат.

- Мемоизированная функция, произведя вычисления для конкретных значений аргументов, запоминает в таблице полученный результат.
- В дальнейшем, при вызове этой функции от этих же аргументов, результат возвращается сразу вместо вычисления.

- Мемоизированная функция, произведя вычисления для конкретных значений аргументов, запоминает в таблице полученный результат.
- В дальнейшем, при вызове этой функции от этих же аргументов, результат возвращается сразу вместо вычисления.
- Для каждого набора аргументов функция вычисляется лишь однажды.

- Мемоизированная функция, произведя вычисления для конкретных значений аргументов, запоминает в таблице полученный результат.
- В дальнейшем, при вызове этой функции от этих же аргументов, результат возвращается сразу вместо вычисления.
- Для каждого набора аргументов функция вычисляется лишь однажды.
- Поиск в таблице может быть организован в виде быстрого поиска (поиск в двоичном дереве).

- Мемоизированная функция, произведя вычисления для конкретных значений аргументов, запоминает в таблице полученный результат.
- В дальнейшем, при вызове этой функции от этих же аргументов, результат возвращается сразу вместо вычисления.
- Для каждого набора аргументов функция вычисляется лишь однажды.
- Поиск в таблице может быть организован в виде быстрого поиска (поиск в двоичном дереве).

 Мемоизация оптимизирует время вычисления и использование стека за счёт памяти.

- Мемоизированная функция, произведя вычисления для конкретных значений аргументов, запоминает в таблице полученный результат.
- В дальнейшем, при вызове этой функции от этих же аргументов, результат возвращается сразу вместо вычисления.
- Для каждого набора аргументов функция вычисляется лишь однажды.
- Поиск в таблице может быть организован в виде быстрого поиска (поиск в двоичном дереве).

- Мемоизация оптимизирует время вычисления и использование стека за счёт памяти.
- Мемоизация возможна только при использовании функций, прозрачных по ссылкам.

- Мемоизированная функция, произведя вычисления для конкретных значений аргументов, запоминает в таблице полученный результат.
- В дальнейшем, при вызове этой функции от этих же аргументов, результат возвращается сразу вместо вычисления.
- Для каждого набора аргументов функция вычисляется лишь однажды.
- Поиск в таблице может быть организован в виде быстрого поиска (поиск в двоичном дереве).

- Мемоизация оптимизирует время вычисления и использование стека за счёт памяти.
- Мемоизация возможна только при использовании функций, прозрачных по ссылкам.
- Реализована не во всех языках программирования.

- Мемоизированная функция, произведя вычисления для конкретных значений аргументов, запоминает в таблице полученный результат.
- В дальнейшем, при вызове этой функции от этих же аргументов, результат возвращается сразу вместо вычисления.
- Для каждого набора аргументов функция вычисляется лишь однажды.
- Поиск в таблице может быть организован в виде быстрого поиска (поиск в двоичном дереве).

- Мемоизация оптимизирует время вычисления и использование стека за счёт памяти.
- Мемоизация возможна только при использовании функций, прозрачных по ссылкам.
- Реализована не во всех языках программирования.

Eсть в Haskell, Python, Mathematica, Formica.

- Мемоизированная функция, произведя вычисления для конкретных значений аргументов, запоминает в таблице полученный результат.
- В дальнейшем, при вызове этой функции от этих же аргументов, результат возвращается сразу вместо вычисления.
- Для каждого набора аргументов функция вычисляется лишь однажды.
- Поиск в таблице может быть организован в виде быстрого поиска (поиск в двоичном дереве).

- Мемоизация оптимизирует время вычисления и использование стека за счёт памяти.
- Мемоизация возможна только при использовании функций, прозрачных по ссылкам.
- Реализована не во всех языках программирования.

ECTL B HASKELL, PYTHON, MATHEMATICA, FORMICA.

Доступна в виде библиотек в в SCHEME, COMMON LISP, OCAML, JAVA, C++ и др.

- Почему рекурсия это зло?
- 2 Почему рекурсия?
- Пде ещё бывает рекурсия?
- Какая ещё бывает рекурсия?
- Когда же она закончится?
- 6 См. пункт 1.

Как определить, завершится ли рекурсия?

Как определить, завершится ли рекурсия?

1. Необходимо, чтобы подзадача к которой сводится решение, была в каком-то смысле «меньше» основной задачи.

Как определить, завершится ли рекурсия?

- Необходимо, чтобы подзадача к которой сводится решение, была в каком-то смысле «меньше» основной задачи.
- 2. Необходимо существование «минимальной» задачи, являющейся базой рекурсии.

Как определить, завершится ли рекурсия?

- Необходимо, чтобы подзадача к которой сводится решение, была в каком-то смысле «меньше» основной задачи.
- 2. Необходимо существование «минимальной» задачи, являющейся базой рекурсии.

Определение

Отношение \prec на множестве S называется вполне обоснованным, если для любого подмножества S существует элемент, минимальный относительно \prec .

Как определить, завершится ли рекурсия?

- Необходимо, чтобы подзадача к которой сводится решение, была в каком-то смысле «меньше» основной задачи.
- 2. Необходимо существование «минимальной» задачи, являющейся базой рекурсии.

Определение

Отношение \prec на множестве S называется вполне обоснованным, если для любого подмножества S существует элемент, минимальный относительно \prec .

Такое отношение не образует бесконечной последовательности упорядоченных элементов $\ldots \prec a_1 \prec a_2 \prec \ldots$

Примеры вполне обоснованных отношений:

Примеры вполне обоснованных отношений:

 отношение < на множестве натуральных чисел;

$$0 < 1 < 2 < 3 < 4 < 5 < \dots$$

 $3 < 64 < 123 < 19293$

Примеры вполне обоснованных отношений:

- отношение < на множестве натуральных чисел;
- отношение над конечными строками конечного алфавита: $s_1 \prec s_2$ если s_1 является подстрокой s_2 ;

$$0 < 1 < 2 < 3 < 4 < 5 < \dots$$

 $3 < 64 < 123 < 19293$

 $\varnothing \prec n \prec unc \prec func \prec function$

Примеры вполне обоснованных отношений:

- отношение < на множестве натуральных чисел;
- отношение над конечными строками конечного алфавита: $s_1 \prec s_2$ если s_1 является подстрокой s_2 ;
- отношение связности над множеством узлов любого направленного нецикличного графа: $n_1 \prec n_2$, если существует путь из n_1 в n_2 .

$$0 < 1 < 2 < 3 < 4 < 5 < \dots$$

 $3 < 64 < 123 < 19293$

 $\emptyset \prec n \prec unc \prec func \prec function$

$$4 \prec 1 \prec 2 \prec 3 \prec 5$$

Примеры отношений, не являющихся вполне обоснованными:

Примеры отношений, не являющихся вполне обоснованными:

 отношение > на множестве натуральных чисел;

$$0 < 1 < 2 < 3 < 4 < 5 < \dots$$

Примеры отношений, не являющихся вполне обоснованными:

- отношение > на множестве натуральных чисел;
- отношение < на множестве целых чисел;

$$0 < 1 < 2 < 3 < 4 < 5 < \dots$$

$$\ldots < -2 < -1 < -0 < 1 < 2 \ldots$$

Примеры отношений, не являющихся вполне обоснованными:

- отношение > на множестве натуральных чисел;
- отношение < на множестве целых чисел;
- отношение < на множестве рациональных чисел:

$$0 < 1 < 2 < 3 < 4 < 5 < \dots$$

$$\dots < -2 < -1 < -0 < 1 < 2\dots$$

$$0 < \dots < \frac{1}{3} < \frac{1}{2} < \dots < \frac{999}{1000} < \dots < 1$$

Обоснованность рекурсии

Примеры отношений, не являющихся вполне обоснованными:

- отношение > на множестве натуральных чисел;
- отношение < на множестве целых чисел;
- отношение < на множестве рациональных чисел;
- отношение лексикографического порядка над строками конечного алфавита.

$$0 < 1 < 2 < 3 < 4 < 5 < \dots$$

$$\dots < -2 < -1 < -0 < 1 < 2\dots$$

$$0 < \dots < \frac{1}{3} < \frac{1}{2} < \dots < \frac{999}{1000} < \dots < 1$$

$$\dots \prec aaab \prec aab \prec ab \prec b \prec bab \prec bb \prec \dots$$

Обоснованность рекурсии

Примеры отношений, не являющихся вполне обоснованными:

- отношение > на множестве натуральных чисел;
- отношение < на множестве целых чисел;
- отношение < на множестве рациональных чисел;
- отношение лексикографического порядка над строками конечного алфавита.
- отношение связности над множеством узлов любого цикличного графа: $n_1 \prec n_2$, если существует путь из n_1 в n_2 .

$$0 < 1 < 2 < 3 < 4 < 5 < \dots$$

$$\dots < -2 < -1 < -0 < 1 < 2\dots$$

$$0 < \dots < \frac{1}{3} < \frac{1}{2} < \dots < \frac{999}{1000} < \dots < 1$$

 $\dots \prec aaab \prec aab \prec ab \prec b \prec bab \prec bb \prec \dots$

Обработка любых **индуктивных данных** удовлетворяет условиям обоснованности:

Обработка любых **индуктивных данных** удовлетворяет условиям обоснованности:

 Для этих данных существует понятие следующего элемента, определяемого рекурсивным конструктором, следовательно для них можно определить отношение порядка.

Обработка любых **индуктивных данных** удовлетворяет условиям обоснованности:

- Для этих данных существует понятие следующего элемента, определяемого рекурсивным конструктором, следовательно для них можно определить отношение порядка.
- 2. Существуют нерекурсивные базовые элементы (один или несколько), «минимальные» для отношения порядка.

Обработка любых **индуктивных данных** удовлетворяет условиям обоснованности:

- Для этих данных существует понятие следующего элемента, определяемого рекурсивным конструктором, следовательно для них можно определить отношение порядка.
- Существуют нерекурсивные базовые элементы (один или несколько), «минимальные» для отношения порядка.

Определение

Процедура называется структурно рекурсивной по аргументу индуктивного типа T, если она

- 1. нерекурсивно определена для всех базовых элементов T,
- 2. для каждого из рекурсивных конструкторов T всякий рекурсивный вызов производятся от непосредственных аргументов этого конструктора.

Обработка любых **индуктивных данных** удовлетворяет условиям обоснованности:

- Для этих данных существует понятие следующего элемента, определяемого рекурсивным конструктором, следовательно для них можно определить отношение порядка.
- Существуют нерекурсивные базовые элементы (один или несколько), «минимальные» для отношения порядка.

Определение

Процедура называется структурно рекурсивной по аргументу индуктивного типа T, если она

- 1. нерекурсивно определена для всех базовых элементов T,
- 2. для каждого из рекурсивных конструкторов T всякий рекурсивный вызов производятся от непосредственных аргументов этого конструктора.

Структурно рекурсивная процедура обязательно завершается на всех конечных аргументах.

Вычисление суммы квадратов

```
| 1 + \mathbb{N} |
S 0 = 0
S (n + 1) = (S n) + n^2
```

 $\mathbb{N} = 0$

Функция **структурно обоснована** по аргументу – натуральному числу.

Вычисление суммы квадратов

```
| 1 + \mathbb{N}

S 0 = 0

S (n + 1) = (S n) + n^2
```

 $\mathbb{N} = 0$

 $\mathbb{R} = \emptyset$

Функция **структурно обоснована** по аргументу – натуральному числу.

Вычисление суммы листьев бинарного дерева

```
| Leaf x
| Node \mathbb{B} \mathbb{B}

S \emptyset = 0
S (Leaf x) = x
S (Node l r) = (S l) + (S r)
```

Функция **структурно обоснована**: рекурсивный вызов производится от аргумента рекурсивного конструктора.

Вычисление НОД

Функция не является структурно рекурсивной, но она вполне обосновано рекурсивна по отношению между аргументами рекурсивного (a',b') и исходного (a,b) вызовов: a'+b'< a+b, поэтому она гарантированно завершается.

Вычисление НОД

```
\begin{array}{lll} \gcd 0 & b = b \\ \gcd a & 0 = a \\ \gcd a & b = \mbox{if } a \leqslant b \\ & \qquad \qquad \mbox{then} & \gcd a & (b-a) \\ & \qquad \qquad \mbox{else} & \gcd \left(a-b\right) & b \end{array}
```

Функция не является структурно рекурсивной, но она вполне обосновано рекурсивна по отношению между аргументами рекурсивного (a',b') и исходного (a,b) вызовов: a'+b'< a+b, поэтому она гарантированно завершается.

Вычисление синуса

$$\sin x = 3\sin\frac{x}{3} - 4\sin^3\frac{x}{3}$$

$$\sin x = x, \quad \text{при} \quad x \to 0$$

Рекурсия не является вполне обоснованной.

Вычисление НОД

Функция не является структурно рекурсивной, но она вполне обосновано рекурсивна по отношению между аргументами рекурсивного (a',b') и исходного (a,b) вызовов: a'+b'< a+b, поэтому она гарантированно завершается.

Вычисление синуса

$$\sin x = 3\sin\frac{x}{3} - 4\sin^3\frac{x}{3}$$

$$\sin x = x, \quad \text{при} \quad x < \varepsilon$$

Рекурсия не является вполне обоснованной.

Введение малого числа ε определяющего точность вычислений делает рекурсию вполне обоснованной.

Вычисление НОД

Функция не является структурно рекурсивной, но она вполне обосновано рекурсивна по отношению между аргументами рекурсивного (a',b') и исходного (a,b) вызовов: a'+b'< a+b, поэтому она гарантированно завершается.

Вычисление синуса

$$\sin x = 3\sin\frac{x}{3} - 4\sin^3\frac{x}{3}$$

$$\sin x = x, \quad \text{при} \quad x < \varepsilon$$

Рекурсия не является вполне обоснованной.

Введение малого числа ε определяющего точность вычислений делает рекурсию вполне обоснованной.

Введение счётчика максимального числа итераций делает рекурсию **структурно обоснованной**.

Условный цикл

sum := 0

```
\begin{split} i &:= n \\ \text{while } i \neq 0 \text{ do} \\ sum &:= sum + i^2 \\ i &:= i - 1 \\ \text{return } sum \end{split}
```

Обоснованность обрабатываемого множества требуется для условного цикла в той же мере, что и для рекурсии.

Условный цикл

sum := 0

```
\begin{array}{l} i := \ n \\ \text{while} \ i \neq 0 \ \text{do} \\ sum := \ sum + i^2 \\ i := \ i-1 \\ \text{return} \ sum \end{array}
```

Обоснованность обрабатываемого множества требуется для условного цикла в той же мере, что и для рекурсии.

Условие $i \neq 0$ не гарантирует завершаемости.

Условный цикл

sum := 0

```
i := n
while i \neq 0 do
sum := sum + i^2
i := i - 1
return sum
```

Обоснованность обрабатываемого множества требуется для условного цикла в той же мере, что и для рекурсии.

Условие $i \neq 0$ не гарантирует завершаемости.

Условие i > 0 – гарантирует.

Условный цикл

sum := 0

```
i := n

while i \neq 0 do

sum := sum + i^2

i := i - 1

return sum
```

Обоснованность обрабатываемого множества требуется для условного цикла в той же мере, что и для рекурсии.

Условие $i \neq 0$ не гарантирует завершаемости.

Условие i>0 – гарантирует.

Завершаемость цикла также зависит от типа счётчика i.

Условный цикл

i := nwhile $i \neq 0$ do $sum := sum + i^2$

sum := 0

i := i - 1

return sum

Обоснованность обрабатываемого множества требуется для условного цикла в той же мере, что и для рекурсии.

Условие $i \neq 0$ не гарантирует завершаемости.

Условие i > 0 – гарантирует.

Завершаемость цикла также зависит от типа счётчика i.

Итератор

sum := 0

for i=1 to n do

 $sum := sum + i^2$

return sum

Итерационный цикл эквивалентен структурно-обоснованной рекурсии и завершается гарантированно.

- Почему рекурсия это зло?
- Почему рекурсия?
- Пре ещё бывает рекурсия?
- Какая ещё бывает рекурсия?
- Когда же она закончится?
- **6** См. пункт 1.

 Рекурсия – это непонятно: рекурсивные решения неочевидны, программы трудно отлаживать.

 Рекурсия может быть непривычной, но она столь же естественна, как и циклические конструкции.

Haskell

Haskell

C++

```
int quickSort(int *arr, int elements) {
#define MAX LEVELS 1000
int piv, beg[MAX_LEVELS], end[MAX_LEVELS], i=0, L, R;
beg[0]=0; end[0]=elements;
while (i \ge 0) {
 L=beg[i]; R=end[i]-1;
 if (L<R)
  { piv=arr[L]; if (i==MAX LEVELS-1) return 0;
    while (L<R)
    { while (arr[R] \ge piv \&\& L < R) R --; if (L < R) arr[L ++] = arr[R];
      while (arr[L] \le piv \&\& L \le R) L ++; if (L \le R) arr[R --] = arr[L]; 
    arr[L]=piv; beg[i+1]=L+1; end[i+1]=end[i]; end[i++]=L; }
  else { i--; }}
return 1: }
```

 Рекурсия – это непонятно: рекурсивные решения неочевидны, программы трудно отлаживать. Рекурсия может быть непривычной, но она столь же естественна, как и циклические конструкции.

- Рекурсия может быть непривычной, но она столь же естественна, как и циклические конструкции.
- Сложные задачи требуют сложных решений.

- Рекурсия может быть непривычной, но она столь же естественна, как и циклические конструкции.
- Сложные задачи требуют сложных решений.
- Отладку программ, во многих случаях, необходимо заменять на юнит-тестирование в сочетании с повышением модульности.

- Рекурсия может быть непривычной, но она столь же естественна, как и циклические конструкции.
- Сложные задачи требуют сложных решений.
- Отладку программ, во многих случаях, необходимо заменять на юнит-тестирование в сочетании с повышением модульности.
- Отладку следует заменять доказательством корректности. Для рекурсивных решений корректность решения малой подзадачи подразумевает корректность решения всей задачи.

- Рекурсия может быть непривычной, но она столь же естественна, как и циклические конструкции.
- Сложные задачи требуют сложных решений.
- Отладку программ, во многих случаях, необходимо заменять на юнит-тестирование в сочетании с повышением модульности.
- Отладку следует заменять доказательством корректности. Для рекурсивных решений корректность решения малой подзадачи подразумевает корректность решения всей задачи.
- Корректность рекурсивных программ можно доказать по индукции.

 Рекурсия хороша только для олимпиадных задач и для теоретиков. В реальных задачах она практически не используется.

 Рекурсия хороша только для олимпиадных задач и для теоретиков. В реальных задачах она практически не используется. Для решения каждодневных задач используются простые (линейные) комбинации библиотечных модулей. Рекурсия лежит в основе очень многих быстрых и надёжных алгоритмов, инкапсулированных в библиотеки.

 Рекурсия хороша только для олимпиадных задач и для теоретиков. В реальных задачах она практически не используется.

- Для решения каждодневных задач используются простые (линейные) комбинации библиотечных модулей. Рекурсия лежит в основе очень многих быстрых и надёжных алгоритмов, инкапсулированных в библиотеки.
- Рекурсия инструмент для работы с рекурсивными (индуктивными) данными: динамическими списками, очередями, потоками, бинарными и размеченными деревьями, синтаксическими и грамматическими структурами и т.д. Если вы каждый день работаете с такими данными, рекурсия – инструмент на каждый день.

 Рекурсия опасна: она может никогда не закончиться.

• Рекурсия опасна: она может никогда не закончиться.

 Цикл while опасен: он может никогда не закончиться,

• Рекурсия опасна: она может никогда не закончиться.

- Цикл while опасен: он может никогда не закончиться,
 - a goto ещё опаснее.

• Рекурсия опасна: она может никогда не закончиться.

- Цикл while опасен: он может никогда не закончиться,
- а **goto** ещё опаснее.
- Обоснованность гарантирует завершимость рекурсии при условии использования чистых функций.

• Рекурсия опасна: она может никогда не закончиться.

- Цикл while опасен: он может никогда не закончиться,
 - а **goto** ещё опаснее.
- Обоснованность гарантирует завершимость рекурсии при условии использования чистых функций.
 - Для цикла for завершаемость гарантирована.

• Рекурсия опасна: она может никогда не закончиться.

- Цикл while опасен: он может никогда не закончиться,
- a **goto** ещё опаснее.
- Обоснованность гарантирует завершимость рекурсии при условии использования чистых функций.
 - Для цикла for завершаемость гарантирована.
 - Для условного цикла while нет.

• Рекурсия опасна: она может никогда не закончиться.

- Цикл while опасен: он может никогда не закончиться,
- a **goto** ещё опаснее.
- Обоснованность гарантирует завершимость рекурсии при условии использования чистых функций.
 - Для цикла for завершаемость гарантирована.
 - Для условного цикла while нет.
 - Проблема завершаемости условного цикла с побочными эффектами неразрешима!

• Рекурсия опасна: она может никогда не закончиться.

- Цикл while опасен: он может никогда не закончиться,
- a **goto** ещё опаснее.
- Обоснованность гарантирует завершимость рекурсии при условии использования чистых функций.
 - Для цикла for завершаемость гарантирована.
 - Для условного цикла while нет.
 - Проблема завершаемости условного цикла с побочными эффектами неразрешима!

 Рекурсия опасна: она может никогда не закончиться.

- Цикл while опасен: он может никогда не закончиться,
- а **goto** ещё опаснее.
- Обоснованность гарантирует завершимость рекурсии при условии использования чистых функций.
 - Для цикла for завершаемость гарантирована.
 - Для условного цикла while нет.
 - Проблема завершаемости условного цикла с побочными эффектами неразрешима!

 Рекурсия опасна: неизвестно, сколько она потребует памяти и времени.

• Рекурсия опасна: она может никогда не закончиться.

- Цикл while опасен: он может никогда не закончиться,
- а **goto** ещё опаснее.
- Обоснованность гарантирует завершимость рекурсии при условии использования чистых функций.
 - Для цикла for завершаемость гарантирована.
 - Для условного цикла while нет.
 - Проблема завершаемости условного цикла с побочными эффектами неразрешима!
- Рекурсия универсальна: неважно насколько велики обрабатываемые данные.

 Рекурсия опасна: неизвестно, сколько она потребует памяти и времени.

 Рекурсия опасна: она может никогда не закончиться.

 Рекурсия опасна: неизвестно, сколько она потребует памяти и времени.

- Цикл while опасен: он может никогда не закончиться,
 - a **goto** ещё опаснее.
- Обоснованность гарантирует завершимость рекурсии при условии использования чистых функций.
 - Для цикла for завершаемость гарантирована.
 - Для условного цикла while нет.
 - Проблема завершаемости условного цикла с побочными эффектами неразрешима!
- Рекурсия универсальна: неважно насколько велики обрабатываемые данные.
 - Это свойство совершенно необходимо для обработки динамических данных.

• Рекурсивные программы ресурсоёмки и неэффективны.

 Рекурсивные программы ресурсоёмки и неэффективны. • Используйте хвостовую рекурсию, мемоизацию и подходящие языки программирования.

 Рекурсивные программы ресурсоёмки и неэффективны.

- Используйте хвостовую рекурсию, мемоизацию и подходящие языки программирования.
- Рекурсивные решения часто лежат в основе быстрых алгоритмов («разделяй и властвуй»).

 Рекурсивные программы ресурсоёмки и неэффективны.

- Используйте хвостовую рекурсию, мемоизацию и подходящие языки программирования.
- Рекурсивные решения часто лежат в основе быстрых алгоритмов («разделяй и властвуй»).
- Оптимизировать следует не только машинные ресурсы (они дешевеют), но и человеческие (они дорожают).

 Рекурсивные программы ресурсоёмки и неэффективны.

- Используйте хвостовую рекурсию, мемоизацию и подходящие языки программирования.
- Рекурсивные решения часто лежат в основе быстрых алгоритмов («разделяй и властвуй»).
- Оптимизировать следует не только машинные ресурсы (они дешевеют), но и человеческие (они дорожают).
 - Рекурсия позволяет эффективно находить надёжные и естественные для предметной области решения.

 Всё, что можно сделать с помощью рекурсии, можно сделать на циклах. Так зачем всё усложнять? • См. пример с быстрой сортировкой.

- См. пример с быстрой сортировкой.
- Рекурсии рекурсивное, итерациям итеративное.

- См. пример с быстрой сортировкой.
- Рекурсии рекурсивное, итерациям итеративное.
- Не стоит использовать рекурсивные процессы для обработки статических массивов и для выполнения явных итерационных операций.

- См. пример с быстрой сортировкой.
- Рекурсии рекурсивное, итерациям итеративное.
- Не стоит использовать рекурсивные процессы для обработки статических массивов и для выполнения явных итерационных операций.
- Не стоит усложнять и запутывать программу разворачивая древообразные структуры в линейные статические структуры.

Во многих классических учебниках по программированию настоятельно рекомендуют избегать рекурсии («...если бы программист, работающий у мееня, применял рекурсию для вычисления факториала, я бы нанял кого-то другого...» С. Макконнелл «Совершенный код»)

Во многих классических учебниках по программированию настоятельно рекомендуют избегать рекурсии («...если бы программист, работающий у мееня, применял рекурсию для вычисления факториала, я бы нанял кого-то другого...» С. Макконнелл «Совершенный код»)

 Правильно — не надо вычислять факториалы рекурсией,

Во многих классических учебниках по программированию настоятельно рекомендуют избегать рекурсии («...если бы программист, работающий у мееня, применял рекурсию для вычисления факториала, я бы нанял кого-то другого...» С. Макконнелл «Совершенный код»)

- Правильно не надо вычислять факториалы рекурсией,
 - и числа Фибоначчи не надо.

Во многих классических учебниках по программированию настоятельно рекомендуют избегать рекурсии («...если бы программист, работающий у мееня, применял рекурсию для вычисления факториала, я бы нанял кого-то другого...» С. Макконнелл «Совершенный код»)

- Правильно не надо вычислять факториалы рекурсией,
 - и числа Фибоначчи не надо.

А функцию Аккермана, сопоставление с образцом, синтаксический разбор текстов или символьное интегрирование с упрощением выражений — надо.

• Во многих классических учебниках по программированию настоятельно рекомендуют избегать рекурсии («...если бы программист, работающий у мееня, применял рекурсию для вычисления факториала, я бы нанял кого-то другого...» С. Макконнелл «Совершенный код»)

- Правильно не надо вычислять факториалы рекурсией,
 - и числа Фибоначчи не надо.
 - А функцию Аккермана, сопоставление с образцом, синтаксический разбор текстов или символьное интегрирование с упрощением выражений надо.
- Полный вариант цитаты: «Одна из проблем с учебниками по выч. технике в том, что они предлагают глупые примеры рекурсии. Типичными примерами рекурсии являются вычисление факториала или последовательности Фибоначчи. Рекурсия мощный инструмент, и очень глупо использовать ее в этих 2-х случаях. Если бы программист, работающий у мееня, применял рекурсию для вычисления факториала, я бы нанял кого-то другого.»

А на самом деле

хорошим стилем ФП считается, по возможности, избегать явного использования рекурсии, заменяя её комбинаторами общего назначения, таких как

map, accumulate, fold, filter, fixed-point Μ Τ. Π.

А на самом деле

хорошим стилем ФП считается, по возможности, избегать явного использования рекурсии, заменяя её комбинаторами общего назначения, таких как

map, accumulate, fold, filter, fixed-point M T. Π .

$$S_n = \sum_{i=1}^n i^2$$

А на самом деле

хорошим стилем ФП считается, по возможности, избегать явного использования рекурсии, заменяя её комбинаторами общего назначения, таких как

map, accumulate, fold, filter, fixed-point $\mbox{\it M}$ T. $\mbox{\it \Pi}$.

$$S_n = \sum_{i=1}^n i^2$$

Явный цикл:

sum := 0

for i=1 to n do

 $sum := sum + i^2$

return sum

А на самом деле

хорошим стилем ФП считается, по возможности, избегать явного использования рекурсии, заменяя её комбинаторами общего назначения, таких как

map, accumulate, fold, filter, fixed-point Μ T. Π.

$$S_n = \sum_{i=1}^n i^2$$

Явный цикл:

$$sum := 0$$
 for $i=1$ to n do

$$sum := sum + i^2$$

return sum

Рекурсия:

$$S = 0$$

$$S 0 = 0$$

 $S (n + 1) = (S n) + n^2$

А на самом деле

хорошим стилем ФП считается, по возможности, избегать явного использования рекурсии, заменяя её комбинаторами общего назначения, таких как

map, accumulate, fold, filter, fixed-point Μ T. Π.

$$S_n = \sum_{i=1}^n i^2$$

Явный цикл:

$$sum := 0$$
 for i =1 to n do

$$sum := sum + i^2$$

return sum

Рекурсия:

$$S 0 = 0$$

 $S (n + 1) = (S n) + n^{2}$

Комбинаторное решение:

$$S = sum (x \mapsto x^2)$$

А на самом деле

хорошим стилем ФП считается, по возможности, избегать явного использования рекурсии, заменяя её комбинаторами общего назначения, таких как

map, accumulate, fold, filter, fixed-point Μ T. Π.

$$S_n = \sum_{i=1}^n i^2$$

Явный цикл:

$$sum := 0$$
 for i =1 to n do

 $sum := sum + i^2$

return sum

Рекурсия:

$$S 0 = 0$$

 $S (n + 1) = (S n) + n^2$

Комбинаторное решение:

$$S = sum (x \mapsto x^2)$$

$$sum = accumulate + 0$$