Introducción a las Bases de Datos

- •Bases de datos (BD) versus Sistemas de Gestión de Bases de Datos (SGBD).
- Bases de datos relacionales.
- Principios ACID para bases de datos relacionales.
- Bases de datos no relacionales.

¿Qué es un dato?

DATOS

Un dato es una unidad básica, cruda y sin procesar que por sí sola no tiene mucho significado. Los datos carecen de contexto alguno.

Algunos ejemplos de datos son:

- 25 de mayo.
- Paul McCartney.
- 37 °C.
- 11:59 hs.

INFORMACIÓN

La información es un conjunto de datos organizados que tiene un contexto y puede ser útil para tomar decisiones o hacer algo con ellos.

Algunos ejemplos de información son:

- La temperatura actual de Madrid es de 35°C.
- El 12 de marzo de 2025 es un día miércoles.
- Freddie Mercury fue el cantante de Queen.
- La selección argentina juega un partido amistoso hoy a las 21 hs.

CONOCIMIENTO

El conocimiento es la interpretación y el entendimiento de la información basada en la experiencia, el aprendizaje o el análisis. Es el uso de la información para resolver problemas o tomar decisiones.

Algunos ejemplos de conocimiento son:

- En Madrid hay temperaturas muy elevadas en el mes de Julio, por lo que se recomienda hidratarse con frecuencia en dicho periodo.
- Cuando el nivel de colesterol "malo" es alto, aumenta el riesgo de enfermedades cardiovasculares. Para mantenerlo en niveles saludables se recomienda llevar una dieta baja en grasas saturadas y hacer ejercicio regularmente.

EN RESUMEN...

ESTRUCTURADOS

típicamente en tablas con

estructura está definida de

antemano y no cambia

filas y columnas. Su

fácilmente.

SEMI-ESTRUCTURADOS

NO ESTRUCTURADOS


```
{"canciones":
    [
        {
            "id": 202321
            "cancion": "Help"
            },
        {
            "id": 203541
            "cancion": "Save me"
        }
     ]
}
```


Presentan cierta estructura, pero no tan rígida como los datos estructurados. Poseen un esquema flexible que puede variar dentro de un mismo conjunto de datos.

Carecen de una estructura predefinida y organizada. Su formato es libre y puede incluir texto, imágenes, audio, video, etc. No poseen ningún esquema.

Es una colección organizada de información, estructurada de manera que pueda ser fácilmente accedida, gestionada y actualizada.

En términos más simples, es como una biblioteca digital donde se almacenan datos de forma ordenada para poder encontrarlos rápidamente cuando los necesites.

Ejemplo: una base de datos podría almacenar datos de los clientes de una tienda de una empresa (nombre, dirección, teléfono) o los productos de una tienda (nombre, precio, stock).

- **Eficiencia:** Acceso y modificación de grandes volúmenes de datos.
- Adaptabilidad: Supervivencia de datos bajo errores, reduciendo inconsistencias.
- Control de acceso: Simulataneidad de uso múltiple dentro de una congruencia con control de concurrencia y seguridad.
- Persistencia: Existencia y mantenimiento de datos por largos períodos de tiempo, independientemente del modo de acceso.

Sistema de gestión de bases de datos

Es un conjunto de programas que permiten el almacenamiento, modificación y extracción de la información en una base de datos, además de proporcionar herramientas para añadir, borrar, modificar y analizar los datos

Sirven para:

- **Definir una base de datos:** consiste en especificar los tipos de datos, estructuras y restricciones para los datos que se almacenarán.
- Construir una base de datos: es el proceso de almacenar los datos sobre algún medio de almacenamiento.
- Manipular una base de datos: incluye funciones como consulta, actualización, etc. de bases de datos.

Bases de Datos Relacionales

Sistema de gestión de bases de datos

Bases de Datos No Relacionales

Clasificación de las bases de datos

	RELACIONALES	NO RELACIONALES
ESTRUCTURA DE LOS DATOS	Rígida, formada por filas y columnas altamente estructuradas.	Flexibles, no solo pueden tener diversas estructuras sino que las mismas pueden mutar con el tiempo.
TIPOS DE DATOS QUE ALMACENAN	Únicamente estructurados.	Pueden almacenar datos estructurados, semi-estructurados y no estructurados.
LENGUAJE DE CONSULTA	SQL	NoSQL
EJEMPLOS	MySQL, PostgreSQL, Oracle database, SQL server.	MongoDB, Cassandra, Redis, DynamoDB.

Están formadas por una o varias tablas con un schema definido. El schema hace referencia a cuáles son las columnas y qué tipo de datos almacenan.

CIENTÍFICOS

id (int)
nombre (varchar)
apellido (varchar)
fecha_de_nacimiento (date)

CAMPOS

REGISTROS

id	nombre	apellido	fecha_de_nacimiento
1	Marie	Curie	1867-11-07
2	Mileva	Maric	1875-12-19
3	Isaac	Newton	1643-01-04
4	Alan	Lightman	1948-11-28

Una transacción en una base de datos relacional debe cumplir con 4 requisitos:

- 1. Atomicidad.
- 2. Consistencia.
- 3. Aislamiento (Isolation).
- 4. **D**urabilidad.

Atomicidad

Toda transacción es indivisible y debe seguir una filosofía de "todo o nada". Si una parte de la transacción falla entonces toda la transacción debe fallar y la BD permanece sin modificaciones.

Ejemplo: al hacer una transferencia bancaria, el dinero no debería quitarse de la cuenta de origen y añadirse a la cuenta de destino hasta no asegurarnos de que se realizó correctamente.

Principios ACID Consistencia

Consistencia

Todos los datos que se incorporan a la BD deben seguir las reglas y los constraints de la misma.

Ejemplo: al hacer una transferencia bancaria, es necesario que el usuario que desea realizar la transferencia tenga suficiente dinero en su cuenta bancaria.

Aislamiento

Considerando que se pueden realizar múltiples transacciones por varios usuarios en simultáneo, una transacción no debería poder ver los efectos de las otras que están en progreso.

Ejemplo: si queremos extraer dinero de una cuenta hacia 2 cuentas distintas primero deberemos extraer hacia una y luego hacia la otra para asegurarnos que tenemos suficiente dinero en la cuenta como para realizar la segunda transferencia.

Principios ACID Aislamiento

Durabilidad

Una vez que la transacción fue confirmada, permanecerá incluso si hay una falla en el SO o en el hardware.

Ejemplo: imaginemos que teníamos \$10.000 en el banco y extrajimos \$1.000. Si luego de eso se corta la luz y se apagan todas las computadoras, al encenderlas nuevamente seguiremos teniendo \$9.000 en nuestra cuenta.

Bases de datos no relacionales

Almacenan datos como pares clave-valor donde cada clave es única, de manera parecida a un diccionario de Python.

```
A Document

{
    "BookID":"978-1449396091",
    "Title":"Redis-The Definitive Guide",
    "Author":"Salvatore Sanfilippo",
    "Year":"2021",
}
```

Key	Value
BookID	978-1449396091
Title	Redis - The Definitive Guide
Author	Salvatore Sanfilippo
Year	2021

Bases de datos no relacionales DOCUMENTALES

Almacenan datos en documentos (generalmente en formato JSON o BSON).

```
1 {
2   _id: "5cf0029caff5056591b0ce7d",
3   firstname: 'Jane',
4   lastname: 'Wu',
5   address: {
6    street: '1 Circle Rd',
7    city: 'Los Angeles',
8   state: 'CA',
9   zip: '90404'
10  }
11 }
```


Bases de datos no relacionales COLUMNARES

Organizan los datos en columnas en lugar de filas, lo que es eficiente para consultas analíticas.

Row oriented (Relational)

Students				
ID	First name	Last name		
1	Luna	Lovegood		
2	Hermione	Granger		
3	Ron	Weasley		

Column oriented

Students			
ID	First name	Last name	
1	Luna	Lovegood	
2	Hermione	Granger	
3	Ron	Weasley	

Bases de datos no relacionales

Diseñadas para almacenar y consultar relaciones complejas entre datos, representadas como nodos y aristas.

