DIRECTION DE l'ORIENTATION ET DES EXAMENS (DOREX)

Union - Discipline - Travail

REPUBLIQUE DE CÔTE D'IVOIRE

SUPERIEUR ET DES ŒUVRES UNIVERSITAIRES (DGES)

Concours ITA session 2013

Composition : Chimie 2 Durée : 2 Heures

Les calculatrices sont autorisées Cette épreuve comporte trois exercices indépendants

ATOMISTIQUE

Isotopes du titane :

	Isotope	⁴⁶ Ti	⁴⁷ Ti	⁴⁸ Ti	⁴⁹ Ti	⁵⁰ Ti
	Abondance atomique (%)	8,0	7,8	73,4	5,5	5,3
N	Numéros atomiques : Ti : 22					

n	1	2	3	4
n*	1	2	3	3,7

414	1s	0,30		_		
électron n°"i" (subit l'effet d'écran)	2s, p	0,85	0,35			
	3s, p	1	0,85	0,35		
	3d	1	1	1	0,35	
	4s, p	1	1	0,85	0,85	0,35
		1s	2s, p	3s, p	3d	4s, p
		électron n°"j" (crée l'effet d'écran)			an)	

- 1) Donner la définition du terme isotope. Illustrer par un exemple.
- 2) En faisant l'approximation que la masse molaire atomique de chacun des isotopes exprimée en g.mol⁻¹ est égale à son nombre de masse. Calculer la masse molaire atomique de l'élément titane.
- 3) Donner la configuration électronique de l'atome de titane dans son état fondamental.
- 4) On se propose de vérifier que cette configuration est bien celle de l'état fondamental en calculant la différence d'énergie entre cette configuration (notée Ti) et la configuration 1s²2s²2p⁶3s²3p⁶3d⁴ (notée Ti*) en utilisant les règles de Slater.
- a) Donner l'expression de la différence d'énergie entre les deux configurations (E(Ti*) E(Ti)) en fonction des énergies des orbitales atomiques $E_{3d}(Ti^*)$, $E_{3d}(Ti)$ et $E_{4s}(Ti)$.
- b) On donne la valeur de l'énergie de ces orbitales atomiques dans le cadre du calcul de Slater : $E_{3d}(Ti^*) = -13,15 \text{ eV}, E_{3d}(Ti) = -20,13 \text{ eV} \text{ et } E_{4s}(Ti) = -9,86 \text{ eV}.$ Conclure quand à la position relative de ces deux niveaux.
- 5) Calculer l'énergie de première ionisation de l'atome de titane depuis sa configuration fondamentale par la méthode de Slater.
- 6) Donner la formule VSEPR du chlorure de titane (IV). Indiquer la géométrie de cette molécule.

CINETIQUE CHIMIQUE

Une solution aqueuse de méthanol de concentration 2 mol.L⁻¹ est oxydée par une solution de peroxodisulfate de sodium à la température de 80 °C selon l'équation :

$$S_2O_8^{2-} + CH_3OH \rightleftharpoons HCHO + 2HSO_4^{-}$$

On a réalisé plusieurs expériences pour différentes concentrations de peroxodisulfate. La vitesse initiale de la réaction a été mesurée et reportée dans le tableau suivant :

concentration initiale en peroxodisulfate (mol. L^{-1})	0,020	0,015	0,010
vitesse initiale (mol. L^{-1} .s ⁻¹)	$3,96.10^{-3}$	$2,57.10^{-3}$	$1,40.10^{-3}$

Donner l'expression générale de la vitesse en fonction des concentrations des réactifs.

- 2. Montrer que l'on peut déterminer l'ordre partiel α de la réaction par rapport à l'ion peroxodisulfate grâce aux expériences réalisées; donner en particulier la relation entre v_0 et α .
- 3. Déterminer la valeur de α.
- 4. On propose le mécanisme suivant :

$$S_{2}O_{8}^{2-} \xrightarrow{k_{1}} 2SO_{4}^{\bullet-}$$

$$SO_{4}^{\bullet-} + CH_{3}OH \xrightarrow{k_{2}} {}^{\bullet}CH_{2}OH + HSO_{4}^{-}$$

$${}^{\bullet}CH_{2}OH + S_{2}O_{8}^{2-} \xrightarrow{k_{3}} HCHO + HSO_{4}^{-} + SO_{4}^{\bullet-}$$

$$2{}^{\bullet}CH_{2}OH \xrightarrow{k_{4}} HO - CH_{2} - CH_{2} - OH$$

- a. Quelles sont les réactions d'initiation, de propagation et de rupture dans le mécanisme proposé?
- **b.** Qu'est ce que « l'approximation de l'état quasi stationnaire » ? Peut-on l'appliquer aux radicaux libres ?
- c. Déterminer l'expression de la vitesse initiale de formation du méthanal. Vérifier que l'ordre de la réaction par rapport à l'ion peroxodisulfate ainsi déterminé est en accord avec celui trouvé expérimentalement.

THERMOCHIMIE

Le méthane réagit dans l'air avec la proportion théorique d'oxygène selon l'équation bilan :

$$CH_4(g) + \frac{3}{2} O_2(g) \rightarrow 2H_2O(g) + CO(g)$$
.

En admettant que 10 % de la chaleur dégagée par la réaction soient perdus, déterminer la température atteinte, dite température de flamme, lorsqu'on fait réagir, sous p^0 , du méthane avec la quantité d'air nécessaire à sa disparition complète.

Les gaz sont pris initialement à 25 °C.

Données:

$$\begin{split} &\Delta_{f}H^{0}(CO,g) = -110.5 \text{ kJ} \cdot \text{mol}^{-1} \text{ ;} \\ &\Delta_{vap}H^{0}(H_{2}O,\ell) = +40.7 \text{ kJ} \cdot \text{mol}^{-1} \text{ ;} \\ &\Delta_{f}H^{0}(CH_{4},g) = -74.8 \text{ kJ} \cdot \text{mol}^{-1} \text{ ;} \\ &\Delta_{f}H^{0}(H_{2}O,g) = -245.1 \text{ kJ} \cdot \text{mol}^{-1} \text{ .} \\ &Capacit\'{e}s \text{ calorifiques à pression constante } C_{p}^{0} \text{ en J} \cdot K^{-1} \cdot \text{mol}^{-1} \text{ :} \\ &-\text{pour } N_{2}(g) \text{ : } C_{p}^{0} = 27.88 + 4.27 \cdot 10^{-3} \text{T} \text{ ;} \\ &-\text{pour } CO(g) \text{ : } C_{p}^{0} = 28.42 + 4.10 \cdot 10^{-3} \text{T} \text{ ;} \\ &-\text{pour } H_{2}O(g) \text{ : } C_{p}^{0} = 30.01 + 10.71 \cdot 10^{-3} \text{T} \text{ .} \end{split}$$

L'air est formé de 20 % de dioxygène et de 80 % de diazote en volume.

NB : Mélange initial stéochiométrique