Chapter 10 — Problem Set

Michael Brodskiy

Instructor: Mr. Morgan

January 21, 2020

1. A solution is made by dissolving 1.25[g] of C_2H_5OH in 11.6[g] of water ($\rho = 1.38 \left[\frac{g}{mL}\right]$). Calculate the molality of the solution.

$$\frac{1.25}{46} = .0272 [\text{mol}]$$

$$\frac{.0272}{.0116} = 2.34 [\text{M}]$$

$$\frac{12.85}{1.38} = 9.31 [\text{mL}]$$

$$\frac{.0272}{.00931} = 2.92 [\text{M}]$$
(1)

2. A solution contains 50[g] of CS_2 and 50[g] of $CHCl_3$. Calculate the mole fraction of each.

$$\frac{50}{76} = .658 [\text{mol}]$$

$$\frac{50}{119} = .42 [\text{mol}]$$

$$\frac{.658}{.42 + .658} = .39_{\text{CHCl}_3}$$

$$1 - .39 = .61_{\text{CS}_2}$$
(2)

3. The molality of a solution of $C_{12}H_{22}O_{11}$ is 1.62[M]. Calculate the mass percent.

$$C_{12}H_{22}O_{11} \rightarrow 342 \left[\frac{g}{mol}\right]$$

 $1.62 \cdot 342 = 554[g]$
 $\frac{554}{1000 + 554} = 36\%$
(3)

4. The mole fraction of a solution of C_2H_5OH is 0.0532. Calculate the molality.

$$1[\text{mol}_{total}] \rightarrow .0532[\text{mol}_{\text{C}_2\text{H}_5\text{OH}}]$$

$$1 - .0532 = .9468[\text{mol}_{\text{H}_2\text{O}}]$$

$$.9468 \cdot 18 = 17.04[\text{g}]$$

$$\frac{.0532}{.01704} = 3.12[\text{M}]$$
(4)

5. Complete the following table for three different solutions of NaOH:

	Density $\left(\frac{g}{mL}\right)$	Molarity (M)	Molality (M)	Mass (%)
Solution 1	1.05	1.32	1.32	5
Solution 2	1.22	6.1	6.25	20.0
Solution 3	1.35	10.8	11.8	32

$$\begin{aligned} 1.32[\text{mol}_{\text{NaOH}}] &\to 1000[\text{mL}] \\ 1000 \cdot 1.05 &= 1050[\text{g}] \\ 1.32 \cdot 40 &= 52.8[\text{g}] \\ 1050 - 52.8 &= 997.2[\text{g}] \\ \frac{1.32}{.9972} &= 1.32[\text{M}] \\ \frac{52.8}{1050} &= 5\% \end{aligned} \tag{5}$$

Solution 2:

$$1220[g] \rightarrow 1000[mL]$$

$$1220 \cdot .2 = 244[g_{NaOH}]$$

$$\frac{244}{40} = 6.1[mol]$$

$$\frac{6.1}{1} = 6.1[M]$$

$$\frac{6.1}{.976} = 6.25[M]$$
(6)

Solution 3:

$$11.8[\text{mol}] \rightarrow 1000[\text{g}]$$

$$40 \cdot 11.8 = 472[\text{g}]$$

$$1000 + 472 = 1472[\text{g}]$$

$$\frac{1472}{1.35} = 1090[\text{mL}]$$

$$\frac{11.8}{1.09} = 10.8[\text{M}]$$

$$\frac{472}{1472} \cdot 100\% = 32\%$$

$$(7)$$