

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India

(Autonomous College Affiliated to University of Mumbai)

End Semester Examination

Nov - Dec 2017

Max. Marks: 100

Class: B.E.

Course Code: CPC703

Name of the Course: Artificial Intelligence

Duration: 3Hrs Semester:VII

Branch: COMP

(1) All questions are compulsary

(2) Draw neat diagrams

(3) Assume suitable data if necessary

Q.NO	Question	Marks	CO
Q1		p troverse	COI
a)	Description of AI:1M	5M	
	Four approaches: 1M each		
b)	Any Five from the following.	5M	CO ₂
	Each carry one mark.		
	1) Fully observable vs.Partially observable		
	2) Single agent vs multi agent	ja	
	3) Detrministic VS stochastic	1	
	4) Episodic VS Sequential	1	
	5) Static VS Dynamic		
	6) Discrete VS Continuous		
c)	Types of quantifier: 1marks	5M	CO3
	1) Universal		
	2) Existential		
	Description with the help of example: 2marks each		
d)	Define learning from observation:1mark	5M	CO ₂
	Each component: 1mark		
	1) Learning elements		
	2) Performance elements		
	3) Problem generator		
	4) critic		
Q2a)	Step by step evaluation to reach from start state to	10M	CO ₂
	goal state:6mark		
	Finding the heuristic function: 4mark		
	OR		

	Following are the methods to represent domain knowledge in expert system. (Minimum eight required. Each Carry One Marks with Description) 1)Production Rule 2) Decision Tree 3) Semantic Nets 4) Factor tables 5) Attribute Value Pairs 6)Reasoning 7)Frames 8)Scripts 9)Logic 10)Conceptual Graphs		
Q2b)	Rules in prolog: 2marks	5M	CO2
- \	Each query in prolog: 3marks		
c)	initial state: 1 mark	5M	CO3
Ans:	Goal state: 1 mark		
	Successor function:2 marks		
02-1	Sequence of Rule: Imarks		
Q3a)	Architecture diagram-4marks	10M	CO ₂
	Explanation of each block-6marks		
	OR		
	Step 1: converting given statement to FOL5marks		
	Step 2:Converting FOL to CNF-2makrs		
	Step 3:Negate the statement to be proved-1marks		
2.0	Step 4 :Proof -2marks		
b)	i) Steps to build belief network.(4marks)	10M	CO2
	1) Identification of nodes and values.		
	2)Casual relationship among variable(structure)		
	3)Conditional probabilities		
	4) Identification of required Assumptions.		
	ii) Solution of given problem.(6marks)		
	P(D A) = P(A, D) / P(A)		
	$= (P(A, B, C, D) + P(A, B, \neg C, D) + P(A, \neg B, C, D)$		
	$D) + P(A, \neg B, \neg C, D)) / P(A)$		
	= P(B A) P(C A) P(D B, C) + P(B A)		
	$P(\neg C \mid A) P(D \mid B, \neg C) + P(\neg B \mid A) P(C \mid A)$		

	$P(D \mid \neg B, C) + P(\neg B \mid A) P(\neg C \mid A) P(D \mid \neg B, \neg C)$ $= (0.2 \times 0.7 \times 0.3) + (0.2 \times 0.3 \times 0.25) + (0.8 \times 0.7 \times 0.1) + (0.8 \times 0.3 \times 0.35)$ $= 0.042 + 0.015 + 0.056 + 0.084$ $= 0.197$	1	
Q4a)	Construction of Decision tree: 6marks Two rule:4marks OR Description of Conditional planning:2marks	10M	CO3
	Problem Formulation:4marks Graphical Representation of solution: 4marks		
b)	Specification of alpha and beta condition:2marks Left sub tree:3marks Right sub tree:3marks Advantages:2marks	10M	CO2
	OR Step by step representation of greedy search from start to goal: 4marks Step by step representation of search from start to goal: 4marks Function cost: 2marks		
Q5a)	Following are the techniques used in Natural language Processing.(description of each carry 2marks) 1) Pattern Matching 2) Syntactically driven parsing 3) Semantic Grammars 4) Case Frame Instantiation	8M	CO4
b)	Forward chaining tree -4marks Explanation of flow of tree-2marks Backward chaining tree -4marks Explanation of flow of tree-2marks	12M	CO2