

COMBINATIONAL CIRCUITS

- Principles
- Characteristics

WELL FORMED CIRCUITS: RULES 1 AND 2 (+)

DEFINITION: a well formed (WF) circuit is a circuit built only using the following 4 rules:

RULE 1: simple gates (OR, AND, NOT, NOR, NAND, XOR, XNOR) and wires are WF circuits

RULE 2: concatenation of two WF circuits is a WF circuit.

WELL FORMED CIRCUITS: RULE 3 (2) (+)

RULE 3: a circuit obtained by connecting some inputs of a WF circuit to the outputs of a WF circuit is in turn WF

WELL FORMED CIRCUITS: RULE 4 (2)

RULE 4: a circuit obtained by connecting together some inputs of a WF circuit is in turn WF

FORBIDDEN CONNECTIONS (2) (

The connection below is strictly forbidden.

Potentially the output of the two gates can be different. If for example a = b = 1, the first gate will deliver a logical 1 and a high voltage while the second gate will deliver a logical 0 and low voltage.

The same wire will carry two different logical values: NO MEANING The same wire will create a short circuit.

A WF circuit cannot have have such connections.

FORBIDDEN CONNECTIONS (3)

The connection below is strictly forbidden.

Potentially the output of the two gates can be different. If for example a = 0 and b = 1, the gate will deliver a logical 0 and a low voltage while it is connected to the b input high voltage and logical 1!!

The same wire will carry two different logical values: NO MEANING The same wire will create a short circuit.

A WF circuit cannot have have such connections.

GATE DELAY (1)

GATE DELAY (2)

VARYING DEPTH (+)

b c d

DEPTH 3

In red, one critical path is displayed.

THERE IS NOT A UNIQUE CRITICAL PATH

-

Adding two 4 bits numbers (a) and (b), the result (s) on 5 bits $(a_3a_2a_1a_0) + (b_3b_2b_1b_0) = (s_4s_3s_2s_1s_0)$ Bitwise algorithm view

A Full Adder sums 3 bits and delivers a result on 2 bits: $c_{in} + a + b = (c_{out}s)$ where c_{in} denotes the incoming carry while c_{out} denotes the outgoing carry. Truth table below:

c _{in}	a	b	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

c _{in}	a	b	C _{out}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

KMAP for
$$c_{out}$$

Minimal SOP
 $c_{out} = ab + bc_{in} + ac_{in}$

Canonical Form

$$c_{out} = abc_{in}' + a'b c_{in} + ab'c_{in} + ab c_{in}$$

COMPUTING s (1) 😉

C _{in}	a	b	S
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

KMAP for s Minimal SOP = Canonical **Form**

Canonical Form

$$s = a'bc_{in}' + ab'c_{in}' + a'b'c_{in} + ab c_{in}$$

COMPUTING s (2)

# 1	c _{in}	a	b	S
0	0	0	0	0
1	0	0	1	1
1	0	1	0	1
2	0	1	1	0
1	1	0	0	1
2	1	0	1	0
2	1	1	0	0
3	1	1	1	1

$$s = a \oplus b \oplus c_{in}$$
Much simpler

CIRCUITS FOR COMPUTING s AND cout

2 XOR gates Total delay: 2 Δ

3 AND gates + 1 OR Gate Total delay: 2Δ

ASSUMPTION: Let us assume that all gates (AND, OR, XOR) have the same delay Δ

BUILDING THE RIPPLE CARRY ADDER (+)

Ripple Carry Adder (RCA): the carries are propagated from the rightmost bit to the leftmost one.

REMARK: the first Full Adder could be replaced by a simpler

structure: Half Adder

RIPPLE CARRY ADDER TIMING (1)

TIME T = 0

Nothing is computed only the inputs are valid!! In blue the inputs In red the invalid outputs In green the valid outputs

1	1	1	1	
	1	1	1	1
	0	0	0	1
1	0	0	0	0

RIPPLE CARRY ADDER TIMING (5)

TIME $T = 8 \Delta$

In blue the inputs In red the invalid outputs In green the valid outputs

RIPPLE CARRY ADDER TIMING (1)

TIME $T = 2 \Delta$

All of the outputs are valid In blue the inputs In red the invalid outputs In green the valid outputs

A SIMPLE 2x1 MULTIPLEXER (MUX) (+)

If
$$s = 0$$
 then $z = a$
If $s = 1$ then $z = b$

z = s'a + sb2 AND gates + 1 OR Gate + 1 NOT Gate Delay: 2 Δ (NOT gate effect being neglected)

AN 8 BIT RCA ADDER (+)

Let us build a 8 bit RCA adder using a 4 Bit RCA Adder (see above). Stab (RCA(8)) = 16Δ

AN 8 BIT ADDER: CARRY SELECT ADDER

CARRY SELECT ADDER VARIANTS (1)

Using constant size building blocks: a 4 x 4 Adder

CARRY SELECT ADDER VARIANTS (2)

Using variable size building blocks: a 5-4-3-2-2 Adder

Acknowledgements

A lot of material was found in Wikipedia.

Some of these slides were inspired by slides developed by:

- University of Washington Computer Science & Engineering (CSE 370)
- Y.N. Patt (Univ of Texas Austin)
- S. J. Patel (Univ of Illinois Urbana Champaign)
- Walid A. Najjar (Univ California Riverside)
- Brian Linard (Univ California Riverside)
- G.T. Byrd (Univ North Carolina)