Year 12 Specialist
TEST 2
Monday 1 April 2019
TIME: 45 minutes working
Classpads allowed
One page of notes
45 marks 7 Questions

Теасhег:

Note: All part questions worth more than 2 marks require working to obtain full marks.

From the diagram, Z_1 is a solution to $^{Z^4}$ $^{=k}$ for complex k . i) Determine k .

. Determine the other three roots and express in the form $^{1d+D}$.

Perth Modern School

- 0 -

Q2 (2, 3 & 1 = 6 marks)

Let
$$f(x) = \sqrt{2x-1}$$
 and $g(x) = \frac{1}{x+5}$.

- a) State the natural domain and range of g(x).
- b) Does $f \circ g(x)$ exist over the natural domain of g? If it does not, determine the largest possible domain for the composite to exist.
- c) Determine $f \circ f^{-1}(x)$

Q3 (2, 3 & 2 = 7 marks)

Given that $f(x) = 2x^2 - 12x + 19$, $x \le 3$, determine the following.

- a) $f^{-1}(x)$ and its domain.
- b) Sketch on the axes below, $f(x) \& f^{-1}(x)$

c) On the sketch above show the precise points where $f(x) = f^{-1}(x)$

Q7 (5 marks)

Page 7

Let w=1+qi where q is a real constant. Let $p(z)=z^3+bz^2+cz+d$, where $b,c\otimes d$ are real constants. If p(z)=0 for z=w and all roots of p(z)=0 satisfy $\left|z^3\right|=8$, determine all possible values of $q,b,c\otimes d$.

Page 6

Q6 continued

$$OA = \begin{cases} \frac{\Omega}{2} \\ \frac{\Omega}{2} \\ \frac{\Omega}{2} \end{cases}$$
 and
$$OB = \begin{cases} \frac{\Omega}{2} \\ \frac{\Omega}{2} \\ \frac{\Omega}{2} \end{cases}$$
 Since $SA = \frac{1}{2}$ is isosceles, with $SA = \frac{1}{2}$ is isosceles, with $SA = \frac{1}{2}$ is isosceles.

constant, chosen so that triangle $^{\rm OAB}$ is isosceles, with $^{\rm |OB|}=|^{\rm OA}|$. where $^{\ensuremath{\Omega}}$ is a positive Now consider the particular triangle $^{\mbox{\footnotesize AAO}}$ with

c) Show that $\alpha = 4$.

d) Use a vector method to show that $^{\mbox{\scriptsize OQ}}$ is perpendicular to $^{\mbox{\scriptsize AB}}$.

Consider the function y = f(x) for the questions below. Q4 (2 & 3 = 5 marks)

a) Sketch the function y = |f(x)| on the axes below.

b) Sketch the function y = |f(x||x|)| on the axes below.

Page 4

Yr 12 Maths Specialist

Perth Modern School

Q5 (3 & 4 = 7 marks)

a) Two moving objects have the following position vectors and constant velocities at time, t=0:

$$r_a = \begin{pmatrix} 9 \\ -8 \end{pmatrix} m \quad v_a = \begin{pmatrix} -2 \\ 7 \end{pmatrix} m / s$$

$$r_b = \begin{pmatrix} 11 \\ -3 \end{pmatrix} m \quad v_b = \begin{pmatrix} 5 \\ -3 \end{pmatrix} m / s$$

Determine the closest approach and the time that this will occur.

b) Let the circle S have a radius 3 units and centre $(1,\beta)$, where β is a constant, and the line $r = \begin{pmatrix} -2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -5 \end{pmatrix}$ is tangential to this circle. Determine the value(s) of β .

c)

Page 5 Yr 12 Maths Specialist Perth Modern School

Q6 (1, 1, 1, 3, 1 & 3 = 10 marks)

The diagram below shows a triangle with vertices with $^{O,\,A\,\&\,B}$. Let O be the origin, with vectors $^{OA}=a$ and $^{OB}=b$.

- a) Determine the following vectors in terms of a & b.
- i) MA, where M is the midpoint of the line segment OA.
- ii) BA
- iii) AQ , where Q is the midpoint of the line segment AB .

Let N be the midpoint of the line segment OB .

b) Use a vector method tom prove that the quadrilateral ${\it MNQA}$ is a parallelogram.