ATOMIC STRUCTURE AND MOLECULAR ARCHITECTURE - OBJECTIVES

- 1. Discuss the various scientific experiments that lead to the quantum model of the atom.
- 2. Give detailed descriptions of the currently accepted model of the atom and know how to write electron configurations.
- 3. Discuss periodicity in the elements and trends in the periodic table.
- 4. Give detailed descriptions of ionic, covalent, polar covalent, metallic and coordinate covalent bonding.
- 5. Use VSEPR theory to predict shapes of molecules up to octahedral.
- 6. Determine the polarity of bonds and molecules.
- 7. Contrast intra-molecular and inter-molecular bonding.
- 8. Describe: Van der Waals forces, dipole-dipole interactions and hydrogen bonding.
- Describe ionic, metallic, molecular and network solids in terms of their inter- and intra-molecular bonding and properties.
- Identify the major inter-molecular forces present in a substance given the name or formula of the substance.

Evolution of the Theory of the Atom

How did the evolution of the theory occur?

400 BC - Democritus -

1808 – Lavoisier, Proust, Dalton –

1903 - Thomson -

1910 - Rutherford-

1913 - Bohr -

Approx 1920+ Quantum and Waves

Definitely get to know these guys

The Early Theories of the Atom

There are lots of people to know from the past

Read pages 162-168 + Internet!

- Scientist, approx. year, key experiments (empirical data) and theories added to the understanding of the atom
- Make a note of the technology being used

Scientist or theory	Experiments	Theories
	and/or technologies	
Democritus		
Dalton		
Lavoisier		
Proust		
Arrhenius		
Farady		
Crookes		
Thompson		
Millikan		
Rutherford		
Rutherford Thompson		
and associates		
Aston		
Chadwick		
Soddy		
Brookes		

Homework

 Read 3.1 and 3.2 Complete Questions 6

Scientist or theory	Experiments and/or technologies	Theories
Democritus		
Dalton		
Lavoisier		
Proust		

Arrhenius	
Farady	
Crookes	
Thompson	

Millikan	
Rutherford	
Rutherford Thompson and associates	
Aston	

Chadwick	
Soddy	
Brookes	

ATOMIC THEORY

Dalton

experiment

Thompson

Rutherford

Rutherford's problem

Classica 272 (+)

Sacceleration
-charged particles
emitradiation = energy

Photoelectric Effect

