

Soal

- 1 Himpunan manakah yang termasuk himpunan kompak? Berikan alasannya.
 - (a) $[0,1] \cup [5,6] \subseteq \mathbb{R}$.
 - (b) $\{x \in \mathbb{R} : x \ge 0\}.$
- 2 Misalkan (x_n) dan (y_n) adalah dua barisan real sedemikian sehingga
 - $x_n \leq y_n$ untuk setiap $n \in \mathbb{N}$,
 - (x_n) monoton naik,
 - (y_n) monoton turun.

Buktikan bahwa (x_n) dan (y_n) konvergen dan $\lim_{n\to\infty} x_n \leq \lim_{n\to\infty} y_n$.

- 3 Misalkan $I \subseteq \mathbb{R}$ dan $f: I \to \mathbb{R}$ kontinu seragam. Buktikan bahwa jika (x_n) barisan Cauchy di I, maka barisan $(f(x_n))$ adalah barisan Cauchy.
- 4 Diberikan fungsi real

$$f(x) = \begin{cases} 0, & \text{jika } x \in \mathbb{R} \setminus \mathbb{Q}, \\ 1, & \text{jika } x \in \mathbb{Q} \end{cases}.$$

Tunjukkan bahwa $\lim_{x\to a} f(x)$ tidak ada untuk setiap $a\in\mathbb{R}.$

Himpunan manakah yang termasuk himpunan kompak? Berikan alasannya.

- (a) $[0,1] \cup [5,6] \subseteq \mathbb{R}$.
- (b) $\{x \in \mathbb{R} : x \ge 0\}.$

Solusi:

Perhatikan bahwa $X \subseteq \mathbb{R}^n$ kompak jika dan hanya jika X tertutup dan terbatas.

- (a) Di sini $A := [0,1] \cup [5,6]$ terbatas. Karena [0,1],[5,6] tertutup, maka $[0,1] \cup [5,6]$ tertutup. Jadi, A kompak.
- (b) Himpunan tersebut tidak kompak karena tidak terbatas.

Misalkan (\boldsymbol{x}_n) dan (\boldsymbol{y}_n) adalah dua barisan real sedemikian sehingga

- $x_n \leq y_n$ untuk setiap $n \in \mathbb{N}$,
- (x_n) monoton naik,
- (y_n) monoton turun.

Buktikan bahwa (x_n) dan (y_n) konvergen dan $\lim_{n\to\infty}x_n\leq\lim_{n\to\infty}y_n$.

Solusi:

Tinjau untuk setiap bilangan asli n berlaku $x_1 \leq x_n \leq y_1$ sehingga $x_1 \leq y_n$ dan $x_n \leq y_1$. Ini berarti (x_n) dan (y_n) berturut-turut terbatas ke atas dan ke bawah. Karena (x_n) monoton naik dan (y_n) monoton turun, maka $(x_n), (y_n)$ konvergen. Karena $x_n \leq y_n$ untuk setiap bilangan asli n, maka $\lim_{n \to \infty} x_n \leq \lim_{n \to \infty} y_n$.

Misalkan $I \subseteq \mathbb{R}$ dan $f: I \to \mathbb{R}$ kontinu seragam. Buktikan bahwa jika (x_n) barisan Cauchy di I, maka barisan $(f(x_n))$ adalah barisan Cauchy.

Solusi:

Karena f kontinu seragam, untuk setiap $\varepsilon > 0$ terdapat $\delta > 0$ sehingga untuk setiap $x,y \in I$ yang $|x-y| < \delta$ berlaku $|f(x)-f(y)| < \varepsilon$. Misalkan (x_n) barisan Cauchy, untuk setiap $\varepsilon := \delta > 0$ terdapat bilangan asli N sehingga $|x_n-x_m| < \delta$ untuk setiap $n,m \geq N$. Ini berarti untk setiap $n,m \geq N$ memenuhi $|f(x_n)-f(x_m)| < \varepsilon$ seperti yang ingin dibuktian.

Diberikan fungsi real

$$f(x) = \begin{cases} 0, & \text{jika } x \in \mathbb{R} \setminus \mathbb{Q}, \\ 1, & \text{jika } x \in \mathbb{Q} \end{cases}.$$

Tunjukkan bahwa $\lim_{x\to a} f(x)$ tidak ada untuk setiap $a\in\mathbb{R}$.

Solusi:

Misalkan $a \in \mathbb{R}$. Karena \mathbb{Q} dense, terdapat barisan bilangan rasional (x_n) yang konvergen ke a. Ini berarti $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} 1 = 1$. Karena $\mathbb{R} \setminus \mathbb{Q}$ dense, terdapat barisan bilangan irasional (y_n) yang konvergen ke a. Ini berarti $\lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} 0 = 0$. Karena limit dari barisan $(f(x_n))$ dan $(f(y_n))$ berbeda, maka $\lim_{x \to a} f(x)$ tidak ada.