Test de Primalité

Jean-Didier Pailleux - Robin Feron - Romain Robert - Damien Thenot - Maxence Joulin

UVSQ

09/01/2018

Introduction

- **Nombre Premier :** Entier divisible par 1 et lui-même. pause
- Test Probabiliste :Test avec marge d'erreur très faible mais rapide.
- **Test Deterministe** : Test fiable mais plus lent.
- \blacksquare 2⁶⁴ :Taille maximale des nombre a tester => Unsigned long long int
- Nombre Hautement Composé : Entier qui possède strictement plus de diviseur que les nombres qui le précède

Introduction

- 1 Architecture
- 2 Outils et Langage de Programmation
- 3 Analyse des Résultats
- Bilan Technique
- 5 Organisation interne du groupe
- 6 Conclusion

Architecture

- 1 Architecture
- 2 Outils et Langage de Programmation
- 3 Analyse des Résultats
- 4 Bilan Technique
- 5 Organisation interne du groupe
- 6 Conclusion

Architecture

Qui?

Outils et Langage de Programmation

- 1 Architecture
- 2 Outils et Langage de Programmation
- 3 Analyse des Résultats
- 4 Bilan Technique
- **5** Organisation interne du groupe
- 6 Conclusion

Outils et Langage de Programmation

Qui?

- 1 Architecture
- Outils et Langage de Programmation
- 3 Analyse des Résultats
- 4 Bilan Technique
- **5** Organisation interne du groupe
- 6 Conclusion

Fonctionnement du projet :

Script appelé avec ./test.shOptions :

a: Tous les algorithmes

e : Euclide (computation bound)

m: Crible d'eratosthene

i: Miller-Rabin

H : Nombre hautement composé def

Lequel utiliser?

Itération?

■ Combien de nombre?

Donner les nombres

k: AKS

o: Modulo (computation bound)

p : Pocklington

h : Nombre hautement composé naive

Evolution du temps d'exécution de Eratosthène/Memory Bound :

Evolution du temps d'exécution de Euclide/Computation Bound :

Evolution du temps d'exécution de Modulo/Computation Bound :

Evolution du temps d'exécution d'AKS :

Evolution du temps d'exécution de Pocklington :

Evolution du temps d'exécution de Miller-Rabin :

Evolution du temps d'exécution de Hautement composé (méthode naïve et définition) :

Bilan Technique

- 1 Architecture
- 2 Outils et Langage de Programmation
- 3 Analyse des Résultats
- 4 Bilan Technique
- **5** Organisation interne du groupe
- 6 Conclusion

Bilan Technique

- crible d'Eratosthène/ Mémory Bound : Création d'un tableau de taille N+1 dans le crible => limité au niveau de la RAM pour N grand sur nos machines. Complexité de N pour le remplissage de la liste memory_bound.
- Computation Bound : Effectue $\sqrt{2^{\log_2(n)}}$ divisions euclidiennes => Exécution en temps exponentiel
- **Pocklington**: Limite causé par la factorisation du nombre N-1 => facotisation très longues pour N très grand.

Bilan Technique

- Miller-Rabin : Résultats faux dans certains cas + Nombre d'itérations demandé élevé pour un meilleur résultat => augmentation du temps d'exécution.
- **AKS**: Avantage: Sa complexité en $log(n)^{12}$.

 <u>Inconvénient</u>: Utilisation de NTL qui effectue des vérifications superflue + Implémentation compliquée.
- **Hautement Composé**: N calcul du nombre de diviseurs d'un nombre => exécution très lente pour la méthode naïve.

Organisation interne du groupe

- 1 Architecture
- Outils et Langage de Programmation
- 3 Analyse des Résultats
- 4 Bilan Technique
- 5 Organisation interne du groupe
- 6 Conclusion

Organisation interne du groupe

Tableau de répartition du travail :

Tâches	Jean-Didier	Maxence	Romain	Robin	Damien
Eratosthène/Memory Bound	×				
Euclide/Computation Bound		×			
AKS			×		
Pocklington					×
Miller-Rabin				×	
Highly Composite	x				
Cmake	X	×			
Script	X	×			

Conclusion

- 1 Architecture
- 2 Outils et Langage de Programmation
- 3 Analyse des Résultats
- 4 Bilan Technique
- 5 Organisation interne du groupe
- 6 Conclusion

Conclusion

Qui?