PHY 623 - Exercise IA2.3

M. Ross Tagaras (Dated: April 24, 2020)

If we multiply by a test function $f(\theta)$, then

$$\begin{split} D_k &= e^{-\frac{1}{2}\theta^i\bar{\theta}_i}\frac{\partial}{\partial\theta^k}e^{\frac{1}{2}\theta^j\bar{\theta}_j}f(\theta^k) = \left(1-\frac{1}{2}\theta^i\bar{\theta}_i\right)\frac{\partial}{\partial\theta^k}\left[\left(1+\frac{1}{2}\theta^j\bar{\theta}_j\right)f(\theta^k)\right] = \left(1-\frac{1}{2}\theta^i\bar{\theta}_i\right)\left[\frac{1}{2}\delta_k^j\bar{\theta}_jf(\theta^k) + \left(1+\frac{1}{2}\theta^j\bar{\theta}_j\right)\frac{\partial f(\theta^k)}{\partial\theta^k}\right] \\ &= \frac{1}{2}\bar{\theta}^kf(\theta^k) + \frac{\partial f(\theta^k)}{\partial\theta^k} \implies e^{-\frac{1}{2}\theta^i\bar{\theta}_i}\frac{\partial}{\partial\theta^k}e^{\frac{1}{2}\theta^j\bar{\theta}_j} = \frac{\partial}{\partial\theta^k} + \frac{1}{2}\bar{\theta}_k \end{split}$$

and we find a similar result for \bar{D}^k .

Now take f and \bar{g} to be arbitrary functions of $\theta, \bar{\theta}$. Then, using the conditions $\bar{D}f = D\bar{g} = 0$, we find that

$$\left(\partial_{\bar{\theta}} + \frac{1}{2}\theta\right)\left(a + b\theta + c\bar{\theta} + d\theta\bar{\theta}\right) = c - d\theta + \frac{a}{2}\theta + \frac{c}{2}\theta\bar{\theta} = 0 \implies c = 0, \ d = a/2$$

so we have $f = a + b\theta + \frac{a}{2}\theta\bar{\theta}$. By a similar calculation, $g = a + b\bar{\theta} - \frac{a}{2}\theta\bar{\theta}$. Generalizing to more than one θ , it is easy to see that $f = \prod_i \left(a_i + b_i\theta_i + \frac{a_i}{2}\theta^{i\bar{\theta}_i}\right)$ obeys the condition $D_i f = 0$ (and similarly for g).

We can also construct f by acting on a general function of θ with $e^{\frac{1}{2}\theta\bar{\theta}}$:

$$e^{\frac{1}{2}\theta\bar{\theta}}\left(a+b\theta\right)=\left(1+\frac{1}{2}\theta\bar{\theta}\right)\left(a+b\theta\right)=a+b\theta+\frac{1}{2}\theta\bar{\theta}=f$$

and this easily generalizes to cases with more θ 's. We also find a similar result for \bar{g} :

$$e^{-\frac{1}{2}\theta\bar{\theta}}(a+b\bar{\theta}) = \left(1 - \frac{1}{2}\theta\bar{\theta}\right)\left(a + b\bar{\theta}\right) = a + b\bar{\theta} - \frac{1}{2}\theta\bar{\theta} = \bar{g}$$

If we now take Df, we find

$$Df = \left(\partial_{\theta} + \frac{1}{2}\bar{\theta}\right)\left(a + b\theta + \frac{a}{2}\theta\bar{\theta}\right) = b + \frac{a}{2}\bar{\theta} + \frac{a}{2}\bar{\theta} + \frac{b}{2}\bar{\theta}\theta = b + a\bar{\theta} - \frac{b}{2}\theta\bar{\theta}$$

This matches the expression for \bar{g} with the order of the coefficients reversed. Since we can move $D(\theta_i)$ through $f(\theta_j)$ if $i \neq j$, this generalizes to the case with more than one θ . We also have that

$$\bar{D}\bar{g} = \left(\partial_{\bar{\theta}} + \frac{1}{2}\theta\right)\left(a + b\bar{\theta} - \frac{a}{2}\theta\bar{\theta}\right) = b + a\theta + \frac{b}{2}\theta\bar{\theta}$$

Finally, let f be a function of θ_i , where $i=1,\ldots,N$. It can be written as a sum of all products of the θ_i 's where none repeat e.g. $f(\theta_1,\theta_2)=\alpha_1^f+\alpha_2^f\theta_1+\alpha_3^f\theta_2+\alpha_4^f\theta_1\theta_2$. When we apply the operator $\mathcal{D}_i=(\partial_{\theta_i}+\theta_i)$ to f, the derivative will kill the 2^{N-1} terms without θ_i , and multiplying by θ_i will kill the 2^{N-1} terms with a θ_i , leaving us with $2^{N-1}+2^{N-1}=2^N$ terms, which is the same number we started with.

When we act on f with \mathcal{D}_i , the overall effect is to reshuffle the coefficients, reducing the index on terms with θ_i and increasing it on terms without θ_i . For example,

$$(\partial_{\theta_1} + \theta_1)(\alpha_1 + \alpha_2\theta_1 + \alpha_3\theta_2 + \alpha_4\theta_1\theta_2) = \alpha_2 + \alpha_1\theta_1 + \alpha_4\theta_2 + \alpha_3\theta_1\theta_2$$

As we continue this process, the order of the α_i 's completely reverses. If $g = \alpha_1^g + \alpha_2 \theta_1 + \dots$, then the relationship between the coefficients of f and g is $\alpha_1^g = \alpha_N^f$, $\alpha_2^g = \alpha_{N-1}^f$, etc.