Solutions to Exercises from 'Algebra: Chapter 0'

Abstract. Solutions to exercises from the book 'Algebra: Chapter 0' by Paolo Aluffi.

Contents

Preface	7
Chapter 1. Preliminaries: Set theory and categories	1
1. Naive set theory	-

Preface

This document contains my attempt at writing (hopefully correct!) solutions to exercises from Aluffi's book, while engaging in some self-study of modern abstract algebra with the ultimate aim of teaching myself some modern algebraic geometry.

CHAPTER 1

Preliminaries: Set theory and categories

1. Naive set theory

EXERCISE 1.1. Let $U = \{x \mid x \notin x\}$. Then, $U \notin U \iff U \in U$, a contradiction. This is Russell's paradox. Either we assume the *set of all sets* doesn't exist, or we need to give up the axiom of *unrestricted comprehension* in set theory.

EXERCISE 1.2. Suppose \sim is an equivalence relation on a set S. For every element $a \in S$, define the *equivalence class* of a (with respect to \sim) by

$$[a]_{\sim} := \{ b \in S \mid b \sim a \}.$$

Then, we note that due to reflexivity, the equivalence class $[a]_{\sim}$ of every element $a \in S$ contains a, and hence, is nonempty. Also, $[a]_{\sim} \subset S$, and therefore, $\bigcup_{a \in S} [a]_{\sim} = S$. Finally, we show the equivalence classes are mutually disjoint. Indeed, for any two elements $a,b \in S$, if $[a]_{\sim}$ and $[b]_{\sim}$ are disjoint, then there is nothing to prove. So, suppose $[a]_{\sim} \cap [b]_{\sim}$ is nonempty. Then, there exists some $c \in S$ that belongs to such an intersection. Thus, $c \sim a$ and $c \sim b$. By symmetry, $a \sim c$, and thus, by transitivity, $a \sim b$, which by symmetry again, implies $b \sim a$. Therefore, for all $x \in [a]_{\sim}$, we have $x \sim a$, and since $a \sim b$, by transitivity, $x \sim b$, which implies $x \in [b]_{\sim}$, from which we conclude $[a]_{\sim} \subset [b]_{\sim}$. We can similarly show $[b]_{\sim} \subset [a]_{\sim}$. Hence, $[a]_{\sim} = [b]_{\sim}$. This establishes equivalence classes are mutually disjoint. Hence, the set \mathscr{P}_{\sim} of equivalence classes of S is indeed a partition of S.

EXERCISE 1.3. Suppose $\mathscr P$ is a partition on a set S. Define a relation \sim on S as follows: For any two elements $a,b\in S,\ a\sim b$ iff a and b belong to the same set in the partition. Then, it is easy to check \sim is indeed an equivalence relation on S. $\mathscr P$ is, therefore, the corresponding partition of the aforesaid equivalence relation, and we are done.

EXERCISE 1.4. Note the set of equivalence relations on a set S are in a one-to-one correspondence with the set of partitions of S. Thus, the number of different equivalence relations that may be defined on $S = \{1, 2, 3\}$ equals the number of partitions of S, and this number equals 5, since the partitions of S are

$$\{\{1\},\{2\},\{3\}\},\{\{1,2\},\{3\}\},\{\{1,3\},\{2\}\},\{\{2,3\},\{1\}\},\{\{1,2,3\}\}.$$

The above partitions are also written as 1|2|3, 12|3, 13|2, 23|1, 123.