ESTADO SÓLIDO

La estabilidad de la materia depende de dos factores principales:

- Las fuerzas intermoleculares: su rol es mantener unidas a las partículas que forman la materia (átomos, moléculas, iones, unidos)
 - La energía térmica: energía que poseen las partículas debido a su movimiento
 - La formación de un sólido ocurre a bajas temperaturas lo que determina que la energía térmica sea baja y las fuerzas intermoleculares altas, esto alinea las partículas que permanecen estables y ocupan posiciones fijas en las que oscilan

El **estado sólido** se **caracteriza** generalmente por su **rigidez**, por su **resistencia mecánica**, y la **incompresibilidad**. Estas **propiedades** se deben al **empaquetamiento (arreglo, disposición) cercana** de las partículas que forman la sustancias sólida. Esta partículas pueden ser átomos, moléculas o iones.

Los **átomos, moléculas o iones se mantienen unidos** por **fuerzas** naturales fuertes (**interiónicas o intermoleculares**) las cuales hacen que estas partículas ocupen posiciones fijas en la estructura del sólido.

IMPORTANTE!!!!! RECUERDA!!!!

SÓLIDOS CRISTALINOS

- Las partículas en los sólidos cristalinos presentan una estructura repetitiva regular (patrón) de átomos, moléculas o iones, en tres dimensiones, y están arregladas con algún tipo de orden
- Este tipo de orden se denomina "orden de largo alcance"
- Cada cristal deriva de un *bloque de construcción* básico ("ladrillo") que se repite en todas las direcciones del espacio. Este bloque de construcción se denomina **celda unidad**. Cúbico Tetragonal Ortorrómbico Monoclínico
- Una **Celda Unitaria** es la unidad estructural repetida de un sólido cristalino, y es el volumen del cristal que muestra todas las características del modelo del cristal

CARACTERÍSTICAS

PROPIEDADES

EJEMPLOS

CRISTALES IÓNICOS Al estar formados por aniones y cationes de distinto tamaño, las fuerzas de cohesión son debidas a enlaces iónicos, por lo que la energía del enlace oscila en torno a los 100 KJ/mol.

Duros y frágiles.

Elevado punto de fusión.

Buenos conductores del calor y de la electricidad en estado líquido.

Al₂O₃ NaCl BaCl₂ Sales Silicatos

CLASIFICACIÓN SÓLIDOS
CRISTALINOS SEGÚN EL TIPO DE
ENLACE O
FUERZA INTERMOLECULAR

CRISTALES
COVALENTES

Las fuerzas de cohesión son debidas a enlaces covalentes, por lo que las uniones presentan energías del orden entre 100 y 1000 KJ/mol. Duros e incomprensibles.

Malos conductores del calor y de la electricidad.

Grafito Diamante Cuarzo SiO₂

CRISTALES
MOLECULARES

Constituidos por moléculas, las fuerza de cohesión son debidas a puentes de H y a fuerzas de Van der Waals, que son de intensidad reducida. Por ello su energía de cohesión es del orden 1 KJ/mol. Blandos.

Comprensibles y deformables.

Bajo punto de fusión.

Malos conductores del calor y de la electricidad.

SO₂ I₂ H₂O (hielo)

CRISTALES METÁLICOS Cada punto de masa lo constituye un átomo de metal. Los electrones están deslocalizados, moviéndose por todo el cristal

Buena resistencia ante esfuerzos externos.

Buenos conductores del calor y la electricidad.

Li Ca Na

EJEMPLOS DE SÓLIDOS CRISTALINOS COVALENTES

SÓLIDOS AMORFOS

- En estos sólidos el patrón de repetición sólo alcanza distancias cortas,
- presentando un "orden de corte alcance"
- En el rango de corto alcance, las porciones que presentan patrones se enc manera desordenada

is en el sólido de

- **Ejemplos:** plásticos, vidrio, caucho, vidrio metálico, polímeros, gel, etc. Hay muchas aplicaciones de sólidos amorfos, algunas de ellas son:
- **El vidrio** se usa ampliamente en envases (frascos de alimentos, cajas de cosméticos y botellas de refrescos), para hacer vajillas (utensilios), en la construcción de edificios (ventanas, iluminación y estantes), etc.
- **El caucho** se utiliza principalmente en la fabricación de neumáticos, calzado, cuerdas, ropa de campo y como materia prima para varias industrias.
- El uso de polímeros puede verse en la fabricación de tuberías, medicamentos y como ingrediente crudo para muchas fábricas.
- El silicio amorfo se considera el mejor material fotovoltaico para convertir la luz solar en electricidad.

CRISTALINOS

El arreglo interno de las partículas es regular, por lo tanto tienen una estructura definida

- Tienen puntos de fusión y calores de fusión definidos
- Hay una regularidad en la forma externa cuando se forman los cristales
- Cuando se cortan con algún elemento afilado dan un corte regular
- Son anisotrópicos, esto quiere decir que propiedades como: índice de refracción, conductividad, expansión térmica son diferentes según la dirección

El arreglo interno de las partículas no es regular por lo tanto no tienen una estructura ordenada

No poseen puntos de fusión definidos ni calores de fusión determinados

- No presentan regularidad en su forma externa
- Cuando se cortan o rompen presentan elementos irregulares
- Los sólidos amorfos no son muy rígidos.
 Estos pueden ser distorsionados por fuerzas de flexión o compresión.
- Los sólidos amorfos son de naturaleza isotrópica. Esto implica que varias propiedades físicas son iguales en todas las direcciones. Esto se debe a la disposición aleatoria de las partículas.

SÓLIDOS AMORFOS

CLASIFICACIÓN DE SÓLIDOS SEGÚN COMO CONDUCEN LA ELECTRICIDAD

Semiconductor tipo p

Banda de conducción

Semiconductor tipo n

¿Qué relación hay entre un semiconductor y una lámpara LED y con un televisor LED/LCD?

¿Qué nuevos materiales se están desarrollando para ser usados como semiconductores?

CAMBIOS DE ESTADO

DIAGRAMA DE FASES GENÉRICO PARA UNA SUSTANCIA PURA

Temperatura

