Maths: ES 1

Groupe

 $N=^{\circ} 1$.

Comme Q est non commutatif, alors Q est nécessairement non monogène

 $N=^{\circ} 2$.

soient $x \in Q$ tel que $x \neq e \neq e$ ',

On sait que $o(x) \mid \text{Card } Q = 8$

Ainsi x = 1 ou x = 2 ou x = 4 ou x = 8

Or comme Q n'est pas monogène $x \neq 8$

Si o(x) = 1, alors $x = x^1 = e$. Absurde, donc $x \neq 1$

Et par unicité de e', $o(x) \neq 2$

Ainsi o(x) = 4

Q.E.D.

N=° 3. a.

Comme $a \in Q$ et $e' \in Q$, alors comme Q est un groupe, alors $e'a \in Q$,

Or prouvons par contraposé que $a \neq e$ et $a \neq e'$, Ainsi prouvons que a = e ou $a = e' \Rightarrow a = e'ae'$

• supposons que a = e, alors :

$$e'ae' = (e')^2 = e = a$$

• supposons que a = e', alors :

$$e'ae' = (e')^2e' = e' = a$$

Donc par contraposé et par hypotèse de l'exercice, $a \neq e$ et $a \neq e'$

Et donc comme $a \neq e$ donc $e'a \neq e'$ et comme $a \neq e'$ donc $e'a \neq (e')^2 = e$

et donc d'après la question précédente o(e'a)=4

Q.E.D.

b.

$$(a'a)^2 = (e'ae'a)^2 = (e'a)^4 = e$$

Donc o(a'a) = 2 ou o(a'a) = 1

Q.E.D.

c.

• Si o(a'a) = 1, alors

$$a'a = e \text{ donc } e'ae'a \text{ donc } (e'a)^2 = e$$

donc $o(e^{\prime}a)=2$ donc $e^{\prime}a=e^{\prime}$ (par unicité) donc a=e Absurde !!

Donc $o(a'a) \neq 1$

• Si o(a'a) = 2, alors par unicité de e'

$$a'a=e'$$
 donc $e'ae'a=e'$
$$\mathrm{donc}\ ae'a=e\ \mathrm{donc}\ \begin{cases} ae'=a^{-1}\\ e'a=a^{-1} \end{cases}$$

$$\mathrm{donc}\ ae'=e'a\ \mathrm{donc}\ a=e'ae'=a'\ \mathrm{Absurde}\ !!$$

Donc $o(a'a) \neq 2$

Ce qui est en contradiction avec la sous-question précédente, et donc Absurde!!

Donc
$$\nexists a \in Q, a \neq e'ae' \iff \forall a \in Q, a = e'ae'$$

Ce qui reviens a dire que e' commute avec tout éléments de Q

Q.E.D.

N=° 4. a.

Soit
$$\mathfrak{Q} = \{e, j, k, l, e', je', ke', le'\}$$

Comme Card $Q = \text{Card } \mathfrak{Q}$, alors il suffis de montrer que un des deux ensemble contient le second On a que les éléments e, j, k et $e' \in Q$, et comme Q est un groupe

alors les éléments l = jk, je', ke' et $le' \in Q$

Ainsi
$$Q = \mathfrak{Q}$$

Q.E.D.

b.

Soit
$$x \in \{j, k, l\}$$
, comme $o(j) = o(k) = o(l) = 4$, alors $o(x) = 4$ donc $x^4 = e$ donc $(x^2)^2 = e$ donc $o(x^2) = 2$, par unicité de e ', $x^2 = e$ ' Donc $j^2 = k^2 = l^2 = e$ '

Q.E.D.

*	:	e	j	k	l	e'	je	ke'	le'
e	2	e	j	k	l	e'	je'	ke'	le'
j		j	e'	l	ke'	je	e	le'	k
k	;	k	le'	e'	j	ke'	l	e	je'
l		l	k	je	e'	le'	ke'	j	e
e	,	e'	je'	ke'	le'	e	j	k	l
$j\epsilon$,	je	e	le'	k	j	e'	l	ke'
$k\epsilon$	9,	ke'	l	e	je	k	le'	e'	j
le	,	le'	ke'	j	e	l	k	je	e'

- $lkj = jkkj = (e')^2 = e(i)$
- par (i): $l^2kj = kje' = l \Leftrightarrow kj = le'$ $jk = l \Leftrightarrow jkl = e' \Leftrightarrow kle' = je' \Leftrightarrow kl = j$ $kl = j \Leftrightarrow klj = e' \Leftrightarrow lj = k$

le reste ce trouve facilement en combinant les éléments déjà trouvé sur le tableau

Q.E.D.