複素表現

- ●正弦波を複素数で表す
- ●時間表現(これまでの表現)
 - **電**圧 $v(t) = A \cos \omega t + B \sin \omega t$
 - **電流** $i(t) = A \cos \omega t + B \sin \omega t$
- ●複素表現
 - 複素電圧 $\dot{V} = A jB$
 - 複素電流 $\dot{I} = A jB$
 - ◆ jは虚数単位. j² = −1
 - ◆Ÿ,İなど点が付いている記号は複素数を表す

インピーダンス (impedance)

- 複素電圧, 複素電流について, 以下が成立
 - $\mathbf{V}_R = R\dot{I}_R$
 - $\mathbf{V}_{L} = j\omega L \dot{I}_{L}$
 - $\dot{V}_C = \frac{1}{j\omega C} \dot{I}_C$

- •インピーダンス
 - 交流に関する抵抗値のようなもの
 - [各素子のインピーダンス] = [i] についている係数]
 - ■単位:Ω

LR直列回路

 $e(t) = E \cos \omega t$ とするi(t)をもとめよ

 $\dot{E} = E$ とする \dot{I} をもとめよ

計算

$$\bullet \dot{V}_R = R \dot{I}$$

$$\bullet \dot{V}_L = j\omega L \dot{I}$$

$$\bullet \dot{V}_R + \dot{V}_L = \dot{E}$$

$$\bullet \dot{I}(R+j\omega L)=E$$

$$\bullet \dot{I} = \frac{E}{R + j\omega L}$$

$$\bullet \dot{V}_R = \frac{R}{R + i\omega L} E$$

$$\bullet \dot{V}_L = \frac{j\omega L}{R + j\omega L} E$$

$$\dot{V}_R = R\dot{I}_R$$

 $\dot{V}_L = j\omega L \dot{I}_L$

$$\dot{V}_C = \frac{1}{j\omega C} \dot{I}_C$$

$$\dot{E} = E$$
とする \dot{I} をもとめよ

時間表現への変換

$$\bullet \dot{I} = \frac{1}{R + j\omega L} E$$

$$= \frac{R - j\omega L}{(R + j\omega L)(R - j\omega L)} E$$

$$= \frac{RE}{R^2 + \omega^2 L^2} - j\frac{\omega LE}{R^2 + \omega^2 L^2}$$

●対応する時間表現

$$i(t) = \frac{RE}{R^2 + \omega^2 L^2} \cos \omega t + \frac{\omega LE}{R^2 + \omega^2 L^2} \sin \omega t$$

◆■以前の結果と比較

●時間表現(これまでの表現)

- **電**圧 $v(t) = A \cos \omega t + B \sin \omega t$
- 電流 $i(t) = A \cos \omega t + B \sin \omega t$
- ●複素表現
 - 複素電圧 $\dot{V} = A jB$
 - 複素電流 $\dot{I} = A jB$

原理

- $A \cos \omega t + B \sin \omega t$
 - $= \text{Re}[(A jB)e^{j\omega t}]$

である。

- Re[..] : 複素数の実部
- e: 自然対数の底. ネイピア数
- 複素表現は、(A − jB)の部分を、 取り出したもの

- ●時間表現(これまでの表現)
 - **電**圧 $v(t) = A \cos \omega t + B \sin \omega t$
 - 電流 $i(t) = A \cos \omega t + B \sin \omega t$
- ●複素表現
 - 複素電圧 $\dot{V} = A jB$
 - 複素電流 $\dot{I} = A iB$

原理

- $A \cos \omega t + B \sin \omega t$
 - $= \operatorname{Re}[(A jB)e^{j\omega t}]$
- である.
 - Re[..] : 複素数の実部
- 上式が成り立っていることの確認
 - オイラーの公式: $e^{j\theta} = \cos \theta + j \sin \theta$

- ●時間表現(これまでの表現)
 - **電**圧 $v(t) = A \cos \omega t + B \sin \omega t$
 - 電流 $i(t) = A \cos \omega t + B \sin \omega t$
- ●複素表現
 - 複素電圧 $\dot{V} = A jB$
 - 複素電流 $\dot{I} = A jB$
- $\operatorname{Re}[(A jB)e^{j\omega t}] = \operatorname{Re}[(A jB)(\cos \omega t + j\sin \omega t)]$ $= \operatorname{Re}[(A\cos \omega t + B\sin \omega t) j(B\cos \omega t A\sin \omega t)]$ $= A\cos \omega t + B\sin \omega t$

原理:抵抗の電圧

- ●抵抗の電圧
 - $\mathbf{v}_R(t) = Ri(t)$
 - \bullet i(t)の複素表現をiとする
- $v_R(t) = Ri(t) = R(\text{Re}[\dot{I}e^{j\omega t}])$ = $\text{Re}[R\dot{I}e^{j\omega t}]$
- ●時間表現と同様,(電圧)=(抵抗)×(電流)

$$\vec{V}_R = R \dot{I}_R$$

- $\mathbf{V}_{L} = j\omega L \dot{I}_{L}$
- $\dot{V}_C = \frac{1}{j\omega C} \dot{I}_C$

原理:インダクタの電圧

- インダクタの電圧

 - *i*(*t*)の複素表現を*i*とする

$$\vec{V}_R = R \dot{I}_R$$

$$\vec{V}_L = j\omega L \dot{I}_L$$

$$\vec{V}_C = \frac{1}{L} \dot{I}_C$$

$$v_L(t) = L \frac{di(t)}{dt} = L \frac{d}{dt} \left(Re \left[i e^{j\omega t} \right] \right)$$

$$= Re \left[L \frac{d}{dt} \left\{ i e^{j\omega t} \right\} \right] = Re \left[j\omega L i e^{j\omega t} \right]$$

●時間表現での微分→ 複素表現ではjωのかけ算

$$i_L \downarrow L \geqslant \bigvee_{i} V_i$$

原理:キャパシタの電圧

- キャパシタの電圧
 - $v_C(t) = \frac{1}{c} \int i(t) dt$
 - = i(t)の複素表現をiとする

$$\dot{V}_R = R\dot{I}_R$$

- $\dot{V}_L = j\omega L \dot{I}_L$
- $\dot{V}_C = \frac{1}{j\omega C} \dot{I}_C$

•
$$v_C(t) = \frac{1}{c} \int i(t)dt = \frac{1}{c} \int \text{Re}[\dot{I}e^{j\omega t}]dt$$

= $\text{Re}\left[\frac{1}{c}\dot{I}\int e^{j\omega t}dt\right] = \text{Re}\left[\frac{1}{j\omega C}\dot{I}e^{j\omega t}\right]$

- ◆積分定数は0とする
- ●時間表現での積分→複素表現では $\frac{1}{j\omega}$ のかけ算

時間表現への変換: $r\cos(\omega t + \theta)$ の形式へ

• $r\cos(\omega t + \theta)$ の波形

■ 複数の波形の位相差を考えるうえで, $A\cos\omega t + B\sin\omega t$ の形式よ

り便利

時間表現への変換: $r\cos(\omega t + \theta)$ の形式へ

- ●複素数を極座標形式 (polar coordinate form)で表す
 - $re^{j\theta} (= r(\cos\theta + j\sin\theta))$
 - **◆**r: 絶対値
 - ◆θ: 偏角
- Re[複素数e^{jωt}]を計算
 - $Re[re^{j\theta}e^{j\omega t}] = Re[re^{j(\omega t + \theta)}]$ $= Re[r(\cos(\omega t + \theta) + j\sin(\omega t + \theta))]$ $= r\cos(\omega t + \theta)$
- \bullet 極座標形式にすれば、rと θ がもとまる

例. LR直列回路での電流

• 複素表現
$$\dot{I} = \frac{E}{R+j\omega L}$$

•
$$\dot{I} = \frac{E}{R + j\omega L} = \frac{E(R - j\omega L)}{R^2 + \omega^2 L^2} = \frac{ER}{R^2 + \omega^2 L^2} - j\frac{\omega LE}{R^2 + \omega^2 L^2}$$

●極座標形式へ変換

■絶対値
$$|\dot{I}| = \sqrt{\frac{E^2R^2 + \omega^2L^2E^2}{(R^2 + \omega^2L^2)^2}} = \frac{E\sqrt{R^2 + \omega^2L^2}}{R^2 + \omega^2L^2} = \frac{E}{\sqrt{R^2 + \omega^2L^2}}$$

$$\blacksquare 偏角\theta = \tan^{-1} \frac{-\omega LE}{ER} = -\tan^{-1} \frac{\omega L}{R}$$

$$\bullet \dot{I} = \frac{E}{\sqrt{R^2 + \omega^2 L^2}} e^{-j \tan^{-1} \frac{\omega L}{R}}$$

•時間表現
$$i(t) = \frac{E}{\sqrt{R^2 + \omega^2 L^2}} \cos(\omega t - \tan^{-1} \frac{\omega L}{R})$$

問03

(b)LR直列回路においてインダクタの複素電圧

$$\dot{V}_L = \frac{j\omega L}{R + j\omega L} E$$

時間表現が $r\cos(\omega t + \theta)$ の形のとき、 θ は?

付録. 複素数に関する基本的な定義

- • $\dot{A} = a + jb = re^{j\theta}$ とする
 - $re^{j\theta} = r\cos\theta + jr\sin\theta$
- •絶対値 $|\dot{A}| = r = \sqrt{a^2 + b^2}$
- 偏角 $Arg(\dot{A}) = \theta = \tan^{-1}\left(\frac{b}{a}\right)$
 - ただし, *a* > 0の場合
- 共役複素数 $\bar{A} = a jb = re^{-j\theta}$

