Lenguaje matemático, conjuntos y números

a

 $1~\mathrm{de~marzo~de~2017}$

Índice general

L	Noc	ociones de lógica						
	1.1	Conectores	lógicos básicos	7				
		1.1.1 Neg	ación	7				
		1.1.2 Disy	yunción	7				
		1.1.3 Con	junción	7				
		1.1.4 Con	dicional	8				
		1.1.5 Bicc	ondicional	8				
	1.2	Construccio	ón de nuevas propociones	8				
	1.3	Leyes lógica	as	8				
		1.3.1 Ley	es lógicas con una proposición	8				
		1.3.2 Dob	ole negación	8				
		1.3.3 Sim	plificación	8				
				9				
				9				
				9				
				9				
				9				
				9				
				9				
				9				
				9				
			es lógicas equivalentes con tres proposiciones					
		-	ciativas					
			ributivas					
			es lógicas condicionales					
		-	plificación condicional					
			rencia					
			endo ponens					
			endo tollens					
			dación de proposiciones					
	1.4		sulada					
2	Con	juntos	1:	3				
	2.1	Algunas ide	eas sobre conjuntos. Predicados	3				
		2.1.1 Igua	aldad de conjuntos	3				
		2.1.2 Incl	usión de conjuntos	3				
			dicados	3				

Índice general

		2.1.4	Conjunto vacío	14
		2.1.5	Principio de inducción	14
		2.1.6	Cuantificadores	14
		2.1.7	Complementario y partes de un conjunto	14
		2.1.8	Complementario	14
		2.1.9	Partes de un conjunto	14
	2.2	Opera	ciones con conjuntos	14
		2.2.1	Unión	14
		2.2.2	Intersección	14
		2.2.3	Familia de conjuntos	15
		2.2.4	Diferencia de conjuntos	15
		2.2.5	Diferencia simétrica	16
	2.3	Produ	cto de conjuntos	16
	2.4		ones entre conjuntos	16
		2.4.1	Conjunto original de la relación R	16
		2.4.2	Conjunto final de la relación R	16
		2.4.3	Conjunto imagen de $x \in A$	17
		2.4.4	Conjunto original de $y \in B$	17
		2.4.5	Composición de relaciones	17
3	Rela	ciones	y aplicaciones entre conjuntos	19
	3.1	Propie	edades básicas	19
		3.1.1	Reflexiva	19
		3.1.2	Simétrica	19
		3.1.3	Antisimétrica	19
		3.1.4	Transitiva	19
	3.2	Relaci	ón de equivalencia	19
		3.2.1	Clase de equivalencia	20
		3.2.2	Partición de un conjunto	20
		3.2.3	Conjunto cociente	20
	3.3	Relaci	ón de orden	20
		3.3.1	Intervalos en un conjunto ordenado	21
		3.3.2	Intervalos iniciales y finales	21
		3.3.3	Orden lexicográfico en \mathbb{R}^2	21
		3.3.4	Orden producto en \mathbb{R}^2	21
		3.3.5	Conjunto acotado	21
		3.3.6	Máximo, mínimo, supremo e ínfimo	22
		3.3.7	Propiedad del buen orden	22
		3.3.8	Propiedad del supremo	22
		3.3.9	Maximal y minimal	22
	3.4		ciones entre conjuntos	23
		3.4.1	Igualdad entre aplicaciones	23
		3.4.2	Composición de aplicaciones	23
		3.4.3	Función característica de un conjunto	

		3.4.4	Aplicación sobreyectiva, sobreyección o epiyectiva	24
		3.4.5	Aplicación inyectiva o inyección	24
		3.4.6	Composición de aplicaciones sobreyectivas e inyectivas	24
		3.4.7	Aplicación biyectiva o biyección	24
	3.5	Equip	otencia de conjuntos	24
		3.5.1	Cardinal	E
4	Ope		, ,	27
	4.1	-	ciones internas	
			Propiedades	
	4.2	Grupo		
		4.2.1	Propiedades de un grupo	
		4.2.2	Subgrupos	
		4.2.3	Congruencia modulo	3
	4.3	Anillo	S	
		4.3.1	Propiedades de un anillo	įÇ
		4.3.2	Divisores de cero	
		4.3.3	Subanillos. Ideales	96
	4.4	Cuerp	os	30
		4.4.1	Subcuerpos	30
	4.5	Orden	y operaciones	30
		4.5.1	Grupo ordenado	30
		4.5.2	Anillo ordenado	1
	4.6	Homo	morfismos	
		4.6.1	Propiedades de un homomorfismo	32
		4.6.2	Homomorfismo de grupo	32
		4.6.3	Homomorfismo de anillos y cuerpos	32
		4.6.4	Homomorfismo de conjuntos ordenados	13
5	Los	número	os naturales y los números enteros 3	35
	5.1	Los nú	ímeros naturales	5
		5.1.1	Suma	5
		5.1.2	Producto	16
		5.1.3	Ordenación de números naturales	36
	5.2	Conju	ntos finitos	37
	5.3	Conju	ntos infinitos	36
	5.4	Los nú	ímeros enteros	36
		5.4.1	Operaciones en \mathbb{Z}	36
		5.4.2		36
		5.4.3	Identificación de \mathbb{N} con \mathbb{Z}_+	36
		5.4.4		1(
	5.5	Máxin	no común divisor y mínimo común múltiplo	10
		5.5.1		10
		5.5.2	Mínimo común múltiplo	10

Índice general

		5.5.3	Máximo común divisor	40
		5.5.4	Identidad de Bézout	40
		5.5.5	Teorema de Bézout	41
		5.5.6	Teorema de Gauss	41
6	Los	número	os racionales y los números reales	43
	6.1	Los nu	ímeros racionales	43
		6.1.1	Operaciones en \mathbb{Q}	43
		6.1.2	Orden en \mathbb{Q}	43
		6.1.3	Propiedad arquimediana de \mathbb{Q}	44
		6.1.4	Orden divisible	44
		6.1.5	Los números decimales	44

1 Nociones de lógica

1.1. Conectores lógicos básicos

1.1.1. Negación

p	$\neg p$
0	1
1	0

Tabla 1.1: Negación

1.1.2. Disyunción

p	q	$p \lor q$
0	0	0
0	1	1
1	0	1
1	1	1

Tabla 1.2: Disyunción

1.1.3. Conjunción

p	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

Tabla 1.3: Conjunción

1.1.4. Condicional

A la proposicional condicional se le asocian 3 nuevas proposiciones:

p	q	$p \rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

Tabla 1.4: Disyunción

Condiconal recíproco $q \rightarrow p$.

 $\mbox{Condiconal contrario } \neg p \rightarrow \neg q.$

Condiconal contrarrecíproco $\neg q \rightarrow \neg p$.

1.1.5. Bicondicional

p	q	$p \leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

Tabla 1.5: Disyunción

1.2. Construcción de nuevas propociones

Contradicción Proposición que solo toma el valor 0, se denota como 0.

Tautología Proposición que solo toma el valor 1, se denota como 1.

1.3. Leyes lógicas

1.3.1. Leyes lógicas con una proposición

1.3.2. Doble negación

$$\neg\neg p \Leftrightarrow p$$

1.3.3. Simplificación

- 1. $p \lor p \Leftrightarrow p$
- 2. $p \land p \Leftrightarrow p$

3.
$$p \rightarrow p \Leftrightarrow p$$

4.
$$p \leftrightarrow p \Leftrightarrow p$$

1.3.4. Tercio exclusivo

$$p \vee \neg p \Leftrightarrow \mathbf{1}$$

1.3.5. Contradicción

$$p \land \neg p \Leftrightarrow \mathbf{0}$$

1.3.6. Leyes lógicas equivalentes con dos proposiciones

1.3.7. Identidad

1.
$$p \lor 0 \Leftrightarrow p \lor p \lor 1 \Leftrightarrow 1$$
.

2.
$$p \wedge 1 \Leftrightarrow p \vee p \wedge 0 \Leftrightarrow 0$$
.

3.
$$1 \rightarrow p \Leftrightarrow p$$
.

1.3.8. De Morgan

1.
$$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$$
.

2.
$$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$$
.

1.3.9. Del condicional

1.
$$p \to q \Leftrightarrow \neg p \lor q$$
.

2.
$$p \to q \Leftrightarrow \neg (p \land \neg q)$$
.

3.
$$p \to q \Leftrightarrow p \to (p \land q)$$
.

4.
$$p \to q \Leftrightarrow q \to (p \lor q)$$
.

1.3.10. Del bicondicional

$$p \leftrightarrow q \Leftrightarrow (p \to q) \land (q \to p)$$

1.3.11. Reducción al absurdo

$$\neg p \to (q \land \neg q) \Leftrightarrow p$$

1 Nociones de lógica

1.3.12. Transposición

- 1. $p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p$.
- 2. $p \leftrightarrow q \Leftrightarrow \neg p \leftrightarrow \neg q$.

1.3.13. Leyes lógicas equivalentes con tres proposiciones

1.3.14. Asociativas

- 1. $p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$.
- 2. $p \wedge (q \wedge r) \Leftrightarrow (p \wedge q) \wedge r$.
- 3. $p \leftrightarrow (q \leftrightarrow r) \Leftrightarrow (p \leftrightarrow q) \leftrightarrow r$.
- 4. $p \to (q \lor r) \Leftrightarrow (p \to q) \lor (p \to q)$.
- 5. $p \to (q \land r) \Leftrightarrow (p \to q) \land (p \to q)$.

1.3.15. Distributivas

- 1. $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land q)$.
- 2. $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor q)$.
- 3. $p \to (q \lor r) \Leftrightarrow (p \to q) \lor (p \to q)$.
- 4. $p \to (q \land r) \Leftrightarrow (p \to q) \land (p \to q)$.

1.3.16. Leyes lógicas condicionales

1.3.17. Simplificación condicional

- 1. $p \land q \Rightarrow p$.
- 2. $p \Rightarrow p \lor q$

1.3.18. Inferencia

- 1. $\neg p \land (p \lor q) \Rightarrow q$.
- 2. $p \land (\neg p \lor \neg q) \Rightarrow \neg q$.

1.3.19. Ponendo ponens

$$(p \to q) \land p \Rightarrow q$$

1.3.20. Tollendo tollens

$$(p \to q) \land \neg q \Rightarrow \neg p$$

1.3.21. Validación de proposiciones

La validación de las proposiciones se puede realizar mediante:

- Construcción de la tabla de verdad.
- Refutación: Se aplica reducción al absurdo.

1.4. Forma clausulada

Proposición formada por la conjunción (\land) de disyunciones (\lor) .

2 Conjuntos

2.1. Algunas ideas sobre conjuntos. Predicados

Un conjunto C está bien definido cuando se tiene un criterio que permite decidir si un determinado elemento b pertenece al conjunto C o no pertenece al conjunto C.

Un objeto no puede ser a la vez un conjunto y un elemento de ese conjunto. Este decir, la proposición $b \in b$ es falsa.

La colección de todos los conjuntos posibles no forman un conjunto.

2.1.1. Igualdad de conjuntos

Se dice que dos conjuntos A y B son iguales, y se escribe A=B, si y sólo si tiene los mismo elementos.

Cuando un conjunto se determina mediante una lista de todos sus elementos se dice que está **definido por extensión**.

2.1.2. Inclusión de conjuntos

$$A \subset B \Leftrightarrow x \in A \land x \in B$$

$$A = B \Leftrightarrow A \subset B \land B \subset A$$

 $A y \emptyset$ son subconjuntos impropios de A.

2.1.3. Predicados

$$C_P = \{x \in C | P_x\}$$

 P_x es un predicado que indica si el elemento x forma parte del conjunto o no. Los conjuntos así definidos se dice que está **definido por inclusión**.

Al conjunto C se le conoce como universo de predicado.

Dos predicados son **equivalentes** sobre un universo C si definen el mismo subconjunto de C.

2.1.4. Conjunto vacío

$$\emptyset = \{x \in C | x \notin C\}$$

No tiene ningún elemento y es subconjunto de cualquier conjunto.

2.1.5. Principio de inducción

Si un predicado P se define sobre $\mathbb N$ tal que:

- 1. 0 satisface la propiedad P. Es decir, P_x es verdadero.
- 2. Si n satisface la propiedad P entonces el sucesor de n satisface también la propiedad P.

2.1.6. Cuantificadores

$$\neg(\forall x P_x) \Leftrightarrow \exists x \neg P_x$$
$$\neg(\exists x P_x) \Leftrightarrow \forall x \neg P_x$$

2.1.7. Complementario y partes de un conjunto

2.1.8. Complementario

$$\overline{A} = \{x \in U | x \notin A\} = \{x \in U | \neg P_x\}$$

$$A \subset B \Rightarrow \overline{B} \subset \overline{A}$$

2.1.9. Partes de un conjunto

$$\mathcal{P}(A) = \{B | B \subset A\}$$
$$card(\mathcal{P}(A)) = 2^{card(A)}$$

2.2. Operaciones con conjuntos

2.2.1. Unión

$$A \cup B = \{x | x \in A \lor x \in B\}$$

2.2.2. Intersección

$$A \cap B = \{x | x \in A \land x \in B\}$$

2.2.3. Familia de conjuntos

Si tenemos en cuenta un **conjunto de indices** no vacío I. A cada $i \in I$ le asociamos un conjunto F_i . La colección de todos esos conjuntos se denomina **familia de conjuntos** y se denota:

$$F = \{F_i | i \in I\}$$

Cuando todos los F_i son subconjuntos de un mismo conjunto U entonces F es un subconjunto de P(U). Cualquier subconjunto G no vacío de P(U) es una familia de conjuntos.

La unión e intersección se generaliza a familias arbitrarias:

$$\bigcup_{i \in I} = \{x | \exists i \in I, x \exists F_i\}$$
$$\bigcap_{i \in I} = \{x | \forall i \in I, x \exists F_i\}$$

Si la familia viene dada por $\emptyset \neq G \subset P(U)$:

$$\bigcup_{F \in G} = \{x | \exists F \in G, x \exists F_i\}$$
$$\bigcap_{F \in G} = \{x | \forall F \in G, x \exists F_i\}$$

2.2.4. Diferencia de conjuntos

$$A\Gamma$$

$$B = \{x | x \in A \land x \notin B\} = A \cap \overline{B}$$

La diferencia de conjuntos es distributiva:

$$A\Gamma$$

$$(B \cap C) = (A\Gamma$$

$$B) \cap (A\Gamma$$

$$C)$$

$$A\Gamma$$

$$(B \cup C) = (A\Gamma$$

$$B) \cup (A\Gamma$$

$$C)$$

2.2.5. Diferencia simétrica

$$A\triangle B = (A \cup B)\Gamma$$

$$(A \cap B) =$$

$$(A\Gamma$$

$$\overline{B}) \cup (\overline{A}\Gamma$$

$$B) =$$

$$\{x|x \in A \land x \notin B\} \cup \{x|x \notin A \land x \in B\}$$

2.3. Producto de conjuntos

Dado n conjuntos A_1, A_2, \ldots, A_n se denomina producto de A_1 , por A_2 , por \ldots , por A_n al conjunto:

$$A_1 \times A_2 \times \cdots \times A_n = \{(x_1, x_2, \dots, x_n) | x_1 \in A_1, x_2 \in A_2, \dots, x_n \in A_n\}$$

Es distributivo:

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$
$$(B \cap C) \times A = (B \times A) \cap (C \times A)$$
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
$$(B \cup C) \times A = (B \times A) \cup (C \times A)$$

2.4. Relaciones entre conjuntos

Dados los conjuntos A y B, todo subconjunto $R \subset A \times B$ es una relación del conjunto A al conjunto B, relación entre A y B o correspondencia entre A y B.

$$R:A\longrightarrow B$$

Otra notación posible es:

$$xRy \Leftrightarrow (x,y) \in R \subset A \times B$$

A es el conjunto inicial, y B el conjunto final.

2.4.1. Conjunto original de la relación R

$$R^{-1}(B) = \{x \in A | \exists y \in B, xRy\}$$

2.4.2. Conjunto final de la relación R

$$R(A) = \{ y \in B | \exists x \in A, xRy \}$$

2.4.3. Conjunto imagen de $x \in A$

$$R(x) = \{ y \in B | (x, y) \in R \} = \{ y \in B | xRy \}$$

2.4.4. Conjunto original de $y \in B$

$$R^{-1}(y) = \{x \in A | (x, y) \in R\} = \{x \in A | xRy\}$$

2.4.5. Composición de relaciones

Dadas las relaciones R entre los conjuntos A y B, y la relación S entre los conjuntos B y C, se define una relación entre los conjuntos A y C conocida como **composición** de las relaciones R y S o relación composición:

$$S \circ R = \{(x, z) \in A \times C | \exists y \in B, xRy \land ySz \}$$

3 Relaciones y aplicaciones entre conjuntos

3.1. Propiedades básicas

3.1.1. Reflexiva

R es reflexiva \Leftrightarrow $(x, x) \in R \Leftrightarrow \forall x \in U, xRx$

3.1.2. Simétrica

R es simétrica $\Leftrightarrow R^{-1} \subset R \Leftrightarrow \forall x, y \in U, xRy \Rightarrow yRx$.

3.1.3. Antisimétrica

R es antisimétrica $\Leftrightarrow R^{-1} \cap R = \{(x, x) | x \in U\} \Leftrightarrow \forall x, y \in U, xRy \land yRx \Rightarrow x = y.$

3.1.4. Transitiva

R es transitiva $\Leftrightarrow R \circ R = R \Leftrightarrow \forall x, y, z \in U, xRy \land yRz \Rightarrow xRz.$

3.2. Relación de equivalencia

Una relación \mathcal{E} en el conjunto U se denomina **relación de equivalencia** si posee las siguientes características:

- 1. Reflexiva.
- 2. Simétrica.
- 3. Transitiva.

3.2.1. Clase de equivalencia

Dada una relación de equivalencia \mathcal{E} en el conjunto U, se denomina clase de equivalencia del elemento $x \in U$ al conjunto imagen de x:

$$x\mathcal{E} = [x] = \{y \in U | x\mathcal{E}y\}$$

Tiene las siguientes propiedades:

- Es independiente del representate elegido $x\mathcal{E}y \Rightarrow [x] = [y]$.
- Cualquier $y \in [x]$ es denominado representante de la clase [x].
- Son disjuntos: $x \not \mathcal{E}y \Rightarrow [x] \cap [y] = \emptyset$

3.2.2. Partición de un conjunto

Una partición de un conjunto U es una familia P de subconjuntos no vacíos de U disjuntos dos a dos y cuya unión es el conjunto U. Es decir:

1.
$$\forall A, B \in P, A = B \lor A \cap B = \emptyset$$
.

2.
$$\bigcup_{A \in P} A = U$$
.

3.2.3. Conjunto cociente

Dada una relación de equivalencia \mathcal{E} en el conjunto U, se denomina **conjunto cociente**, y se denota por U/\mathcal{E} , al conjunto de todas las clases que general la relación de equivalencia \mathcal{E} .

 U/\mathcal{E} es una partición del conjunto U.

3.3. Relación de orden

Una relación \mathcal{R} en el conjunto U se denomina **relación de orden** is posee las propiedades:

- Reflexiva.
- 2. Antisimétrica.
- 3. Transitiva.

 \mathcal{R} es una relación de orden total si

$$\mathcal{R}^{-1} \cup \mathcal{R} = U \times U \Leftrightarrow \forall x, y \in U, x\mathcal{R}y \vee y\mathcal{R}x$$

En cualquier otro caso es una relación de orden parcial.

3.3.1. Intervalos en un conjunto ordenado

Dados un conjunto ordenado (U, \preceq) , y $a, b \in U$ tales que $a \preccurlyeq b$, se denominan intervalos a cada uno de los siguientes conjuntos:

Intervalo abierto $(a,b) = \{x \in U | a \prec x \prec y\}$

Intervalo cerrado
$$[a,b] = \{x \in U | a \leq x \leq y\}$$

Intervalo semiabiertos Pueden ser:

- $\bullet (a,b] = \{x \in U | a \prec x \preceq y\}$
- $\bullet [a,b) = \{x \in U | a \leq x \prec y\}$

3.3.2. Intervalos iniciales y finales

Dado un conjunto ordenado (U, \preceq) , los siguientes conjuntos también se denominan intervalos:

Intervalo inicial abierto $(\leftarrow, a) = \{x \in U | x \prec a\}.$

Intervalo final abierto $(a, \leftarrow) = \{x \in U | a \prec x\}.$

Intervalo inicial cerrado $(\leftarrow, a] = \{x \in U | x \leq a\}.$

Intervalo final cerrado $[a, \leftarrow) = \{x \in U | a \leq x\}.$

3.3.3. Orden lexicográfico en \mathbb{R}^2

$$(a,b) \leq_L (c,d) \Leftrightarrow (a < c) \lor (a = c \land (b \leq d))$$

3.3.4. Orden producto en \mathbb{R}^2

$$(a,b) \leq_P (c,d) \Leftrightarrow a \leq c \land b \leq d$$

3.3.5. Conjunto acotado

Dados un conjunto ordenado (U, \preceq) y un subconjunto $A \subset U$, se denomina:

Cota superior Cualquier elemento $u \in U$ que cumple que $\forall x \in A, x \leq u$.

Cota inferior Cualquier elemento $u \in U$ que cumple que $\forall x \in A, u \leq x$.

Conjunto A acotado superiormente Si existe una cota superior de A.

Conjunto A acotado inferiormente Si existe una cota inferior de A.

Conjunto A acotado Si existe tanto cota superior como inferior de A.

3.3.6. Máximo, mínimo, supremo e ínfimo

Máximo del conjunto $A \max(A) = m \in A \text{ tal que } \forall x \in A, x \leq m.$

Mínimo del conjunto $A \min(A) = m \in A \text{ tal que } \forall x \in A, m \leq x.$

Supremo del conjunto A Cota superior $\sup(A) = s \in U$ tal que $s \leq u$ para toda cota superior u de A.

Infimo del conjunto A Cota inferior $\inf(A) = i \in U$ tal que $u \leq i$ para toda cota inferior u de A.

El ínfimo es el máximo de las cotas inferiores. El supremo es el mínimo de las cotas superiores.

Si existe máximo entonces hay supremo y son iguales. Si existe mínimo entonces hay ínfimo y son iguales.

Dados un conjunto ordenado (U, \preceq) y un subconjunto $A \subset U$, se tiene:

- Si existe máximo, mínimo, del conjunto A, entonces éste es único.
- Si existe supremo, ínfimo, del conjunto A, entonces éste es único.
- Si existe supremo s del conjunto A y $s \in A$, entonces s es el máximo de A.
- Si existe ínfimo i del conjunto A y $i \in A$, entonces i es el mínimo de A.

3.3.7. Propiedad del buen orden

Se dice que un conjunto (U, \preceq) es un conjunto bien ordenado, o que la relación \preceq es una buena ordenación, si cualquier subconjunto no vacío posee mínimo. El elemento mínimo de cada subconjunto A también se denomina primer elemento.

3.3.8. Propiedad del supremo

Se dice que un conjunto (U, \preceq) cumple la propiedad del supremo si y sólo si cualquier subconjunto no vacío A acotado superiormente posee supremo.

3.3.9. Maximal y minimal

Dados un conjunto ordenado (U, \preceq) y un subconjunto $A \subset U$ se define:

Maximal del conjunto A Es un elemento $m \in A$ tal que

$$\nexists x \in A, x \neq m, m \prec x$$

Minimal del conjunto A Es un elemento $m \in A$ tal que

$$\nexists x \in A, x \neq m, x \leq m$$

Si un conjunto tiene máximo (mínimo) entonces solo hay un maximal (minimal) que coincide con él.

3.4. Aplicaciones entre conjuntos

Una relación entre los conjuntos A y B se denomina **aplicación**, o **función**, entre A y B si y sólo si cualquier elemento del conjunto inicial A esta relacionado con un único elemento del conjunto final B.

$$\forall a \in A, \exists b \in B; f(a) = b; b = f(a) \land b' = f(a) \Rightarrow b = b'$$

- A es el conjunto inicial, original o dominio de definición de f, y se denota como Orig(f), Dom(f).
- B es el conjunto final de f.
- $f(A) = Im(f) = \{y \in B | \exists x \in A, f(x) = y\} = \{f(x) | x \in A\}$ es el conjunto imagen.
- f(x) es la imagen de x.
- $f^{-1}(y) = \{x \in A | f(x) = y\}$ se denomina **imagen inversa de** y **por** f.
- El conjunto de aplicaciones de A a B se denota por $\mathcal{F}(A,B), B^A, \mathcal{F}(A)$.

Una aplicación f es constante

$$\Leftrightarrow \forall x, x' \in A, f(x) = f(x')$$

Una relación de equivalencia \mathcal{E} sobre un conjunto A define una aplicación f que asigna a cada elemento su clase de equivalencia. Se denomina **proyección canónica**.

La aplicación de identidad asigna a cada $x \in A$ el mismo valor. Se denota como $I_A, 1_A, Id_A$.

3.4.1. Igualdad entre aplicaciones

Dos aplicaciones $f:A\longrightarrow B$ y $g:A'\longrightarrow B'$ son iguales:

$$f = g \Leftrightarrow \begin{cases} A = A' \\ B = B' \\ f(x) = g(x) \ \forall x \in A \end{cases}$$

3.4.2. Composición de aplicaciones

Dadas las aplicaciones $f: A \longrightarrow B$ y $g: B \longrightarrow C$, se define la **composición de** f y g, o aplicación composición, a la aplicación de A a C, que denotamos como $g \circ f$, tal que:

$$(g \circ f)(x) = g(f(x)), \forall x \in A$$

3.4.3. Función característica de un conjunto

Dado un subconjunto $A \subset U$, se llama función característica de A, y se denota \mathcal{X}_A , a la función $\mathcal{X}_A : U \longrightarrow \mathbb{R}$ definida de la forma:

$$\mathcal{X}_A = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

3.4.4. Aplicación sobreyectiva, sobreyección o epiyectiva

Es una aplicación tal que cualquier elemento del conjunto final está relacionado con alguno del conjunto inicial. Es decir, $f \in \mathcal{F}(A, B)$ tal que Im(f) = B, o lo que es lo mismo:

$$\forall y \in B, \exists x \in A; f(x) = y$$

3.4.5. Aplicación inyectiva o inyección

Es una aplicación tal que no hay dos elementos del conjunto inicial que tengan la misma imagen. Es decir, $f \in \mathcal{F}(A, B)$ tal que:

$$\forall x, x' \in A; f(x) = f(x') \Rightarrow x = x'$$

O lo que es lo mismo:

$$\forall x, x' \in A; x \neq x' \Rightarrow f(x) \neq f(x')$$

3.4.6. Composición de aplicaciones sobreyectivas e inyectivas

Dadas las aplicaciones $f \in \mathcal{F}(A, B), g \in \mathcal{F}(B, C)$ y $g \circ f \in \mathcal{F}(A, B)$, se tiene:

- 1. Si f y g son sobreyectivas, entonces $g \circ f$ es sobreyectiva.
- 2. Si f y g son inyectivas, entonces $g \circ f$ es inyectiva.

3.4.7. Aplicación biyectiva o biyección

Es una aplicación que es sobreyectvia o inyectiva al mismo tiempo, es decir, tal que cada elemento del conjunto final está relacionado cono un único elemento del conjunto inicial. Es decir, una aplicación $f \in \mathcal{F}(A, B)$ tal que:

para cada
$$y \in B$$
 existe un unico elemento $x \in A$ tal que $f(x) = y$

Una aplicación $f \in \mathcal{F}(A, B)$ es biyectiva si y sólo si existe una aplicación $g \in \mathcal{F}(B, A)$ tal que $f \circ g = I_B$ y $g \circ f = I_A$.

Sean $f \in \mathcal{F}(A, B)$ y $g \in \mathcal{F}(B, C)$ aplicaciones biyectivas, entonces $g \circ f \in \mathcal{F}(A, C)$ es biyectiva, y su inversa es:

$$(g \circ f)^{-1}(x) = f^{-1}(x) \circ g^{-1}(x)$$

Sea una aplicación $f \in \mathcal{F}(A, B)$:

- 1. f es sobreyectiva si y sólo si existe una aplicación $h \in \mathcal{F}(B,A)$ tal que $f \circ h = I_B$.
- 2. f es inyectiva si y sólo si existe una aplicación $g \in \mathcal{F}(A, B)$ tal que $g \circ f = I_A$.

3.5. Equipotencia de conjuntos

Dos conjuntos A y B se dicen equipotentes si y sólo si existe una biyección entre ellos, y se denota $A \equiv B$.

3.5.1. Cardinal

Se denomina:

Cardinal 0 Es la colección de todos los conjuntos equipotentes con \emptyset , y se representa con el símbolo del número 0.

Cardinal n Es la colección de todos los conjuntos equipotentes con $1, \ldots, n \subset \mathbb{N}^*$, y se representa con el símbolo del número n.

Cardinal de \mathbb{N} o \mathfrak{N}_0 Es la colección de todos los conjuntos equipotentes con \mathbb{N} , y se representa con el símbolo del número \mathfrak{N}_0 .

Cardinal \mathbb{R} **o** \mathfrak{c} Es la colección de todos los conjuntos equipotentes con \mathbb{R} , y se representa con el símbolo del número \mathfrak{c} .

Decimos que el conjunto A tiene n elementos siendo $n \in \mathbb{N}^*$ si y sólo si:

$$card(A) = n$$

Se dice que un conjunto A es:

Finito Si existe $n \in \mathbb{N}$ tal que card(A) = n.

Infinito Si no es un conjunto finito.

Numerable Si existe una biyección de los números naturales al conjunto, y se indica escribiendo $card(A) = \mathfrak{N}_0$.

4 Operaciones internas y estructuras algebraicas

4.1. Operaciones internas

Sea E un conjunto. Una **operación interna**, o **ley de composición interna**, en E es una aplicación de $E \times E$ en E. Es decir, es una ley que asocia a todo par (a,b) de elemento de E un elemento único de E, que notaremos, $a \star b$.

4.1.1. Propiedades

Sea E un conjunto y \star una operación interna definida en E:

Asociativa

$$\forall a, b, c \in E; a \star (b \star c) = (a \star b) \star c$$

Conmutativa

$$\forall a, b \in E; a \star b = b \star a$$

Los elementos que cumplen esta propiedad se llaman conmutables.

Elemento neutro

$$\exists e \in E, \forall a \in E; a \star e = e \star a = a$$

Si existe elemento neutro de \star en E este es único.

Elemento simétrico del elemento $a \in E$ a un elemento $a' \in E$ tal que $a \star a' = a' \star a = e$.

Sea \star una operación asociativa interna en E con elemento neutro $e \in E$. Si $a \in E$ tiene elemento simétrico, este es único.

4.2. Grupos

Sean G un conjunto y \star una **operación interna** en G. Se dice que el par (G, \star) tiene estructura de grupo, o que (G, \star) es un **grupo**, si se satisfacen las siguientes propiedades:

- 1. ★ es asociativa.
- 2. Existe elemento neutro de \star en G.
- 3. Para todo elemento $a \in G$, existe en G el **elemento simétrico** de a respecto de \star .

Si ademas la operación \star es conmutativa se dice que el grupo es **conmutativo** o **abeliano**.

4.2.1. Propiedades de un grupo

Sea (G, \star) un grupo. Se tiene:

- 1. $\forall a, b \in G, a \star b = a \star c \Rightarrow b = c$ (Propiedad cancelativa).
- 2. Para todo $a, b \in G$, existe un único $x \in G$, tal que $a \star x = b$.
- 3. Si a^{-1} y b^{-1} son los simétricos de a y b respectivamente, entonces $(a \star b)^{-1} = b^{-1} \star a^{-1}$.

4.2.2. Subgrupos

Dados (G, \star) y $H \subset G$, se dice que H es un subgrupo de G si (H, \star) tiene a su vez estructura de grupo. En particular, el subconjunto $\{e\}$ y el propio G son subgrupos de G.

Sean un grupo (G, \star) y H un subconjunto no vacío de G, (H, \star) es un subgrupo de G si y sólo si $\forall a, b \in H, a \star b^{-1} \in H$.

4.2.3. Congruencia modulo

Sea (G, \star) un **grupo abeliano** y sea (H, \star) un subgrupo. La relación \mathcal{R}_H en G definida:

$$\forall a, b \in G, a\mathcal{R}_H b \Leftrightarrow a \star b^{-1} \in H$$

es una relación de equivalencia, que se denomina congruencia modulo H.

Las clases de equivalencia generadas son equipotentes en G. Y si G es finito card([a])|card(G).

4.3. Anillos

Sea A un conjunto y sean + y \cdot dos operaciones internas definidas en A. Diremos que $(A, +, \cdot)$ es un **anillo** si se satisface:

- 1. (A, +) es un grupo conmutativo.
- 2. La operación \cdot es asociativa.
- 3. La operación · es distributiva respecto de la operación +, esto es,

$$a(b+c) = ab + ac$$

$$(b+c)a = ba + ca$$

Si además la operación \cdot es conmutativa, se dice que $(A,+,\cdot)$ es una **anillo conmutativo**.

Si $(A, +, \cdot)$ tiene elemento neutro para \cdot , siendo este distinto del elemento neutro de \star , se dice que $(A, +, \cdot)$ es una **anillo unitario**.

4.3.1. Propiedades de un anillo

Sea $(A, +, \cdot)$ un anillo. Se tiene:

- 1. $\forall a \in A, A \cdot 0 = 0 \cdot A = 0$, se dice que 0 es absorbente para el producto.
- 2. $\forall a, b \in A, (-a)b = a(-b) = -(ab) \text{ y } (-a)(-b) = ab.$
- 3. Si además el $(A, +, \cdot)$ es una anillo conmutativo se satisfacen las siguientes igualdades:

$$(a+b)^{2} = a^{2} + b^{2} + 2ab$$
$$(a+b)(a-b) = a^{2} - b^{2}$$
$$(a+b)^{n} = \sum_{i=0}^{n} {n \choose i} a^{n-i}b^{i}$$

4.3.2. Divisores de cero

En un anillo $(A, +, \cdot)$ se dice que el elemento $a \in A, a \neq 0$, es un divisor de cero si existe $b \in A, b \neq 0$, tal que ab = 0. Un anillo que no tenga divisores de cero se llama anillo integro.

4.3.3. Subanillos. Ideales

Sea $(A, +, \cdot)$ un anillo y H un subconjunto no vació de G. Se dice que H es un **subanillo** de A si $(H, +, \cdot)$ es a su vez una anillo. Los subconjuntos $\{1\}$ y el propio A son subanillos de A.

Sean $(A, +, \cdot)$ un anillo y H un subconjunto no vacío de A. H es un **subanillo** de A si y sólo si $\forall a, b \in H$ se cumple:

- 1. $a b \in H$.
- $2. ab \in H.$

Sean $(A, +, \cdot)$ un **anillo conmutativo** e I un subconjunto no vacío de A. Se dice que I es un **ideal** de A si cumple:

- 1. $a b \in I, \forall a, b \in I$.
- 2. $ac \in I, \forall a \in I, \forall c \in A$.
- Si $(A, +, \cdot)$ un anillo conmutativo y $a \in A$ es un elemento fijo, el conjunto

$$aA = (a) = \{ak | k \in A\}$$

es un ideal de A que se denomina **ideal principal** generado por a.

4.4. Cuerpos

Sea \mathbb{K} un conjunto y seán + y · dos operaciones internas definidas en \mathbb{K} . ($\mathbb{K}, +, \cdot$) es un **cuerpo** si se satisfacen las siguientes propiedades:

- 1. Las operaciones $+ y \cdot \text{son asociativas en } \mathbb{K}$.
- 2. Las operaciones $+ y \cdot \text{son commutativas en } \mathbb{K}$.
- 3. La operación \cdot es distributiva respecto la operación + en \mathbb{K} .
- 4. Existen dos elementos distintos en \mathbb{K} que se designan por 0,1 que son elementos neutros de la suma y del producto respectivamente.
- 5. Existencia de opuesto: para todo a en \mathbb{K} existe el simétrico de a respecto de la suma que se designa por -a.
- 6. Existencia de inverso: para todo elemento $a \neq 0$ de \mathbb{K} existe el simétrico de a para el producto que se designa por a^{-1} .

O lo que es lo mismo:

- 1. $(\mathbb{K}, +)$ es un grupo conmutativo.
- 2. (\mathbb{K},\cdot) es un grupo conmutativo.
- 3. La operación \cdot es distributiva respecto de la operación + en \mathbb{K} .

Un cuerpo no tiene divisores de cero, es decir, es un anillo integro.

4.4.1. Subcuerpos

Sea $(\mathbb{K},+,\cdot)$ un cuerpo y sea H un subconjunto no vacío de \mathbb{K} donde consideramos las restricciones de las operaciones en \mathbb{K} . Se dice que H es un **subcuerpo** de \mathbb{K} si $(H,+,\cdot)$ es su vez un cuerpo.

Sea $(\mathbb{K}, +, \cdot)$ un cuerpo y sea H un subconjunto con al menos dos elementos distintos. H es un subcuerpo de \mathbb{K} si y sólo si se cumple:

- 1. $a b \in H$ para todo $a, b \in H$.
- 2. $ab^{-1} \in H$ para todo $a, b \in H^* = H \setminus \{0\}$.

4.5. Orden y operaciones

4.5.1. Grupo ordenado

Sea una una relación de orden \leq definida sobre un grupo conmutativo (G, +), se dice que $(G, +, \leq)$ es un **grupo ordenado** si la relación de orden es compatible con la suma, es decir:

$$\forall a,b,c \in G, a \preceq b \Rightarrow a+c \preceq b+c$$

En un grupo ordenado $(G, +, \preceq)$ se satisfacen las siguientes propiedades:

- 1. $a \leq b \Leftrightarrow b + (-a) \in G_+$.
- 2. $a \leq b \wedge a' \leq b' \Rightarrow a + a' \leq b + b'$.
- 3. $a \leq b \Rightarrow -b \leq -a$.

4.5.2. Anillo ordenado

Sea una una relación de orden \leq definida sobre un grupo conmutativo $(A, +, \cdot)$, se dice que $(A, +, \cdot, \leq)$ es un **anillo ordenado** si se cumple:

- 1. $\forall a, b, c \in A, a \leq b \Rightarrow a + c \leq b + c$.
- 2. $\forall a, b \in A, 0 \leq a \land 0 \leq b \Rightarrow 0 \leq ab$.

Si la relación de orden es total, se dice que el anillo es una **anillo totalmente ordenado**. Si además, es un cuerpo hablaremos de **cuerpo ordenado**.

En un anillo totalmente ordenado se define el valor absoluto de $a \in A$ mediante:

$$|a| = \begin{cases} a & si & 0 \le a \\ -a & si & a < a \end{cases}$$

En un anillo totalmente ordenado $(A, +, \cdot, \preceq)$ se satisfacen las siguientes propiedades:

- 1. $a \leq b \Leftrightarrow b a \in A$.
- 2. $a \leq b \wedge a' \leq b' \Rightarrow a + a' \leq b + b'$.
- 3. $a \leq b \Rightarrow -b \leq -a$.
- 4. $a \prec b \land 0 \prec c \Rightarrow ac \prec bc$.
- 5. $a \prec b \land c \prec 0 \Rightarrow bc \prec ac$.
- 6. $\forall a \in A, 0 \leq a^2$.
- 7. Si A es un anillo unitario entonces $0 \prec 1$.
- 8. $|a| \succeq 0, \forall a \in A \text{ y } |a| = 0 \Leftrightarrow a = 0.$
- 9. $|ab| = |a||b|, \forall a, b \in A$.
- 10. $|a+b| \leq |a| + |b|, \forall a, b \in A$.

Si además $(A, +, \cdot)$ es un cuerpo también se cumple:

- 1. $a \succ 0 \Rightarrow a^{-1} \succ 0$.
- 2. $0 \prec a \prec b \Rightarrow b^{-1} \prec a^{-1}$.
- 3. $a \prec b \prec 0 \Rightarrow b^{-1} \prec a^{-1}$.

4.6. Homomorfismos

Sean G y G' dos conjuntos donde se tiene respectivamente definida una operación interna +. Sea $f:G\longrightarrow G'$ una aplicación. Se dice que f es un **homomorfismo** si se cumple que:

$$\forall a, b \in G, f(a+b) = f(a) + f(b)$$

Si G = G' se denomina **endomorfismo**. Si el homomorfismo es biyectivo hablaremos de **isomorfismo** y todo endomorfismo biyectivo se denomina **automorfismo**.

4.6.1. Propiedades de un homomorfismo

- 1. Si $f: G \longrightarrow G'$ es un homomorfismo entonces la operación de G' es una operación interna cuando se restringe al conjunto imagen f(G).
- 2. Si $f:G\longrightarrow G'$ y $g:G'\longrightarrow G''$ son homomorfismo entonces la composición $g\circ f:G\longrightarrow G'$ es un homomorfismo.
- 3. Si $f: G \longrightarrow G'$ es un isomorfismo entonces la aplicación inversa $f^{-1}: G' \longrightarrow G$ es un isomorfismo.

La existencia de un isomorfismo entre dos conjuntos define una relación de equivalencia, ya que es reflexiva, simétrica y transitiva.

4.6.2. Homomorfismo de grupo

Sean (G, +) y (G', +) dos grupos tales que sus elementos neutros son respectivamente 0_G y $0_{G'}$, y -a y -a' los elementos simétricos de $a \in G$ y $a' \in G'$. Sea $f : G \longrightarrow G'$. Se tiene:

- 1. $f(0_G) = 0_{G'}$.
- 2. $f(-a) = -f(a), \forall a \in G$.
- 3. Si H es un subgrupo de G entonces,

$$f(H) = \{a' \in G' | \exists a \in H, f(a) = a'\}$$

es un subgrupo de G'.

4. Si H' es un subgrupo de G' entonces,

$$f^{-1}(H') = \{ a \in G | a \in G, f(a) \in H' \}$$

es un subgrupo de G.

Sean (G, +) y (G', +) dos grupos y $f: G \longrightarrow G'$ es un homomorfismo. Se tiene:

1. Imf es un subgrupo de G'.

- 2. Kerf es un subgrupo de G.
- 3. f es inyectivo si y sólo si $Kerf = \{0_G\}$.
- 4. f es sobreyectivo si y sólo si Im f = G'

4.6.3. Homomorfismo de anillos y cuerpos

Si $(A, +, \cdot)$ y $(A', +, \cdot)$ son dos anillos, un **homomorfismo de anillos** es una aplicación $f: A \longrightarrow A'$ tal que para todo $a, b \in A$ se cumple:

- 1. f(a+b) = f(a) + f(b).
- 2. f(ab) = f(a)f(b).

Para la + se cumplen las todas propiedades del homomorfismo de grupo, y para \cdot las propiedades de homomorfismo.

Si Si $(A, +, \cdot)$ y $(A', +, \cdot)$ son cuerpos estaríamos ante un **homomorfismo de cuerpos**.

4.6.4. Homomorfismo de conjuntos ordenados

Si tenemos dos conjuntos ordenados (U, \preceq) y (V, \preccurlyeq) una aplicación $f: U \longrightarrow V$ se denomina **homomorfismo de estructuras ordenadas** si es creciente, es decir:

$$\forall a,b \in U, a \leq b \Rightarrow f(a) \leq f(b)$$

Si f es biyectiva estaremos ante un isomorfirmos de estructuras ordenadas.

5 Los números naturales y los números enteros

5.1. Los números naturales

Los números naturales se definen mediante los axiomas de Peano:

- 1. El elemento 0 es un número natural.
- 2. Todo elemento natural n tiene un único elemento sucesor que tambien es un número natural.
- 3. 0 no es el sucesor de ningún número natural.
- 4. Dos números naturales cuyos sucesores sean iguales, son iguales.
- 5. Si un conjunto de número naturales incluye al 0 y a todos los sucesores de cada uno de los elementos, incluye a todos los números naturales.

Se denotan de la siguiente manera, teniendo en cuenta si incluyen al 0 o no:

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$
$$\mathbb{N} * = \{1, 2, 3, \ldots\}$$

En resumen:

- \bullet Todo número natural $n \neq 0$ es sucesor de algún número natural.
- Para todo $n \in \mathbb{N}, n \neq s(n)$.

5.1.1. Suma

Se define mediante recursión sobre n la suma m+n mediante:

- 1. m + 0 = n para todo $m \in \mathbb{N}$.
- 2. m + s(n) = s(m+n) para todo $m, n \in \mathbb{N}$.

La suma de números naturales es una operación interna en \mathbb{N} que satisface, cualesquiera que sean $m, n, p \in \mathbb{N}$, las siguientes propiedades:

- 1. Existencia de elemento neutro: m + 0 = 0 + m = m.
- 2. Asociativa: (m + n) + p = m + (n + p).
- 3. Conmutativa: m + n = n + m.
- 4. Cancelativa: $m + p = n + p \Rightarrow m = n$.

5.1.2. Producto

Se define por recurrencia sobre n el producto, que designamos por $m \cdot n$ o mn, de los numeros naturales m y n mediante:

- 1. $m \cdot 0 = 0$ para todo $n \in \mathbb{N}$.
- 2. $m \cdot s(n) = m \cdot n + m$ para todo $m, n \in \mathbb{N}$.

El producto de números naturales es una operación interna en \mathbb{N} que satisface, cualesquiera que sean $m, n, p \in \mathbb{N}$, las siguientes propiedades:

- 1. Existencia de elemento neutro: $m \cdot 1 = 1 \cdot m = m$.
- 2. Distributiva: m(n+p) = mn + mp y (n+p)m = nm + pm.
- 3. Asociativa: $(m \cdot n) \cdot p = m \cdot (n \cdot p)$.
- 4. Conmutativa: $m \cdot n = n \cdot m$.
- 5. Cancelativa: $mp = np \land p \neq 0 \Rightarrow m = n$.

Se define la potencia n-ésima de a, a^n , mediante:

- 1. $0^n = 0$ para todo $n \in \mathbb{N}^*$.
- 2. $a^0 = 1$ para todo $a \in \mathbb{N}^*$.
- 3. $a^{n+1} = aa^n$ para todo $a \in \mathbb{N}^*$ v $n \in \mathbb{N}$.

5.1.3. Ordenación de números naturales

Dados $m, n \in \mathbb{N}$ se define la relación menor o igual, \leq , mediante:

$$\exists p \in \mathbb{N}, m+p=n \Rightarrow m \leq n$$

Se define estrictamente menor, < como:

$$m \leq n \land m \neq n \Rightarrow m < n$$

Además, se obtiene la siguiente relación:

$$m < n \Leftrightarrow m+1 \leq n$$

Las relaciones mayor o igual, \geq , y estrictamente mayor, <, se definen como:

$$m \ge n \Leftrightarrow n < m$$

$$m < n \Leftrightarrow n \leq m$$

La relación \leq es una relación de orden total en \mathbb{N} , compatible con la suma y producto de número naturales, es decir para todo $m, n, p \in \mathbb{N}$ se tiene:

$$m \le n \Rightarrow \begin{cases} m+p \le n+p \\ mp \le np \end{cases}$$

El intervalo abierto $(n, n+1)_{\mathbb{N}}$ es vacío, para todo $n \in \mathbb{N}$.

El conjunto \mathbb{N} con la relación \leq es un conjunto bien ordenado.

En \mathbb{N} , todo subconjunto no vacío y acotado superiormente, tiene máximo.

5.2. Conjuntos finitos

Un conjunto A es **finito** si es vacío o si existe una biyección de A sobre un listado cerrado $[1, n]_{\mathbb{N}}$, con $n \neq 0$. En caso contrario, se dice que el conjunto es **infinito**.

Los intervalos cerrados tienen las siguientes propiedades:

- Si $n, m \in \mathbb{N}$ y existe una aplicación inyectiva $f: [1, n]_{(\mathbb{N})} \longrightarrow [1, m]_{(\mathbb{N})}$ entonces n < m.
- Si $n, m \in \mathbb{N}$ y existe un biyección $f: [1, n]_{(\mathbb{N})} \longrightarrow [1, m]_{(\mathbb{N})}$ entonces n = m.

Sea A un conjunto finito no vacío. Existe un único número natural n, no nulo, tal que A y $[1, n]_{\mathbb{N}}$ son equipotentes. Se dice entonces que card(A) = n.

Si $n \in \mathbb{N}$ entonces toda aplicación inyectiva $f:[1,n]_{(\mathbb{N})} \longrightarrow [1,n]_{(\mathbb{N})}$ es biyectiva.

Sea A un subconjunto no vacío de \mathbb{N} . A es un conjunto finito si y sólo si A es un conjunto acotado superiormente.

Esta propiedad presenta los siguientes corolarios:

- N es un conjunto finito.
- Todo subconjunto de un subconjunto finito de N es finito.
- La unión de dos subconjuntos finitos de N es un subconjunto finito.
- El complementario de un subconjunto finito de N es un conjunto infinito.

Sea A un subconjunto de un conjunto finito de B y $A \neq B$. Entonces A es un conjunto finito y card(A) < card(B).

Sea A un conjunto finito y f una aplicación de A en cualquier conjunto B. Entonces f(A) es un conjunto finito y

$$card(f(A)) \le card(A)$$

Además, card(f(A)) = card(A) si y sólo si f es inyectiva.

Si f es una aplicación sobreyectiva de un conjunto finito A en un conjunto B, entonces:

$$card(B) \leq card(A)$$

Además, se tiene la igualdad card(A) = card(B) si y sólo si f es una aplicación biyectiva. Sean A y B dos conjuntos finitos de igual cardinal y sea una aplicación $f: A \longrightarrow B$. Son equivalentes: 5 Los números naturales y los números enteros

- 1. f es inyectiva.
- 2. f es biyectiva.
- 3. f es sobreyectiva.

Sean A y B dos conjuntos finitos disjuntos. Entonces $A \cup B$ es un conjunto finito y:

$$card(A \cup B) = card(A) + card(B)$$

Sean A y B dos conjuntos finitos. Entonces $A \cup B y A \cap B$ son conjuntos finitos y

$$card(A \cup B) + card(A \cap B) = card(A) + card(B)$$

Sean A y B dos conjuntos finitos. Entonces, $A \times B$ es un conjunto finito y

$$card(A \times B) = card(A) \cdot card(B)$$

Sean A y B dos conjuntos finitos. Supongamos que $a = card(A) \neq 0$ y $b = card(B) \neq 0$. Entonces

$$card(\mathcal{F}(A,B)) = card(B^A) = b^a$$

Sea A un conjunto finito. Entonces

$$card(\mathcal{P}(A)) = 2^{card(A)}$$

Sea A y B dos conjuntos finitos cuyos cardinales son $card(A) = a \neq 0$ y $card(B) = b \neq 0$. Entonces el número de aplicación inyectivas de A en B es

$$card(\mathcal{I}(A,B))) = b(b-1)\cdots(b-a+1)$$

El número anterior se conoce como variaciones de m sobre n $V_{m,n}$:

$$V_{m,n} = m(m-1)\cdots(m-n+1) = \frac{m!}{(m-n)!}$$

Sea A y B dos conjuntos finitos cuyos cardinales son card(A) = card(B) = n. Entonces el número de aplicaciones biyectivas de A en B es:

$$card(\mathcal{B}(A,B)) = n!$$

Sea A un conjunto finito tal que card(A) = m. Sea $0 \le n \le m$. El número de subconjuntos de A que poseen exactamente n elementos es

$$\binom{m}{n} = \frac{m!}{n!(m-n)!}$$

Es número se lee msobren y se denomina coeficiente binomial, número combinatorio o combinaciones de m sobre en $C_{m,n}$.

5.3. Conjuntos infinitos

Sea A un conjunto cualquiera. Entonces el conjunto $\mathcal{P}(A)$ y el conjunto A no son equipotentes.

Un conjunto A se considera **numerable** si es equipotente con \mathbb{N} . El cardinal de los conjuntos numerables se denota como aleph sub zero \aleph_0 .

Sea A un subconjunto de $\mathbb N.$ Entonces A es un conjunto finito o A es un conjunto numerable.

El conjunto $\mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$ es numerable.

Se satisfacen las siguientes propiedades:

- 1. Todo subconjunto de un conjunto numerable es finito o numerable.
- 2. El producto de conjuntos numerables es numerable.
- 3. La unión de dos conjuntos numerables es numerables.
- 4. La unión numerable de conjuntos numerables es numerable.

5.4. Los números enteros

En $\mathbb{N} \times \mathbb{N}$ se define la relación de equivalencia \mathcal{E} :

$$(a,b)\mathcal{E}(a',b') \Leftrightarrow a+b'=a'+b$$

El representante canónico del número entero α es el par (m,n) donde al menos una de sus componentes es nula.

5.4.1. Operaciones en \mathbb{Z}

Sean $\alpha, \beta \in \mathbb{Z}$ y sean $(a, b), (c, d) \in \mathbb{N} \times \mathbb{N}$ sendos representantes. Se define:

$$\alpha + \beta = (a + c, b + d)$$

$$\alpha \beta = (ac + bd, bc + ad)$$

 \mathbb{Z} es una anillo conmutativo unitario.

$$\alpha \cdot 0 = 0 \cdot \alpha = 0$$

 $\alpha, \beta \in \mathbb{Z}, \alpha\beta = 0 \Rightarrow \alpha = 0 \lor \beta = 0$

5.4.2. Orden en \mathbb{Z}

Dados $\alpha, \beta \in \mathbb{Z}$:

$$\alpha \le \beta \Leftrightarrow \beta - \alpha \in \mathbb{Z}_+$$

 $(\mathbb{Z}, +, \cdot, \leq)$ es un anillo totalmente ordenado.

5.4.3. Identificación de \mathbb{N} con \mathbb{Z}_+

Todo subconjunto de \mathbb{Z} no vacío y acotado

- 1. superiormente tiene máximo.
- 2. inferiormente tiene mínimo.

5.4.4. Propiedad arquimediana de \mathbb{Z}

Dados $\alpha, \beta \in \mathbb{Z}$ si $\alpha > 0$ entonces existe $n \in \mathbb{N}$ tal que $n\alpha > \beta$.

5.5. Máximo común divisor y mínimo común múltiplo

5.5.1. División entera

Sean $a, b \in \mathbb{Z}$ tales que b > 0. Existen $q, r \in \mathbb{Z}$ únicos tales que:

$$a = qb + r$$
 y $0 \le q < b$

Los números q y r se denominan respectivamente **cociente** y **resto** de la división entera de a entre b.

Se considera la relación divide en \mathbb{Z} , b divide a a, definida por:

$$b|a \Leftrightarrow \exists q \in \mathbb{Z}, a = qb$$

No es una relación de orden ya que no es antisimétrica. Y tiene las siguientes propiedades:

- 1. 0 es divisible por cualquier entero.
- 2. 1 y -1 son divisores de cualquier entero.
- 3. $b|a \Leftrightarrow a \in b\mathbb{Z}$
- 4. $b|a \Leftrightarrow a\mathbb{Z} \subset b\mathbb{Z}$

5.5.2. Mínimo común múltiplo

Sean $a, b \in \mathbb{N}^*$. Se tiene:

- 1. Existe un único $m \in \mathbb{N}^*$ tal que $a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$.
- 2. Además, como el m anterior es un múltiplo común de a y b y si $n \in \mathbb{Z}$ es un múltiplo común de a y b, entonces n es múltiplo de m.

5.5.3. Máximo común divisor

Sean $a, b \in \mathbb{N}^*$. Se tiene:

- 1. Existe un único $d \in \mathbb{N}^*$ tal que $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$.
- 2. Además, d es un divisor común de a y b y si $n \in \mathbb{Z}$ es un divisor común de a y b, entonces n es divisor de d.

5.5.4. Identidad de Bézout

Sean $a, b \in \mathbb{N}^*$ y d = mcd(a, b), entonces existen $u, v \in \mathbb{Z}$ tales que:

$$d = au + bv$$

Además, d es el mínimo número de \mathbb{N}^* que se puede expresar en la forma am+bn siendo $m,n\in\mathbb{Z}.$

Sean $a, b \in \mathbb{Z}^*$, se dice que a y b son primos entre sí si y sólo si mcd(|a|, |b|) = 1.

5.5.5. Teorema de Bézout

Sean $a,b\in\mathbb{N}^*$. Los números a y b son primos entre sí y sólo sí existen $u,v\in\mathbb{Z}$ tales que au+bv=1.

5.5.6. Teorema de Gauss

Si a y b son primos entre sí y a divide a bc entonces a divide a c.

Si a, b y a, c son primos entre sí entonces a y bc son primos entre sí.

6 Los números racionales y los números reales

6.1. Los números racionales

En el conjunto $\mathbb{Z} \times \mathbb{Z}^*$ se define la relación de equivalencia \mathcal{E} mediante:

$$(a,b)\mathcal{E}(a',b') \Leftrightarrow ab' = a'b$$

Toda clase de equivalencia es por definición un **número racional** y el conjunto de todas las clases de equivalencia o conjunto conciente $\mathbb{Z} \times \mathbb{Z}^*/\mathcal{E}$ es el conjunto de números racionales y se denota \mathbb{Q} .

Si $(a,b) \in \mathbb{Z}^* \times \mathbb{Z}^*$ y d = mcd(|a|,|b|) entonces a = da' y b = db', siendo mcd(|a'|,|b'|) = 1. Se denomina (a',b') representante canónico o fracción irreducible. Se elige generalmente con $b \in \mathbb{N}^*$.

6.1.1. Operaciones en \mathbb{Q}

Sean $\alpha, \beta in\mathbb{Q}$ y sean $(a, b), (c, d) \in \mathbb{Z} \times \mathbb{Z}^*$ sus representantes. Se define:

$$\alpha + \beta = [(ad + cb, bd)] = \frac{ad + cb}{bd}$$
$$\alpha\beta = [(ac, bd)] = \frac{ac}{bd}$$

 $(\mathbb{Q}, +, \cdot)$ es un cuerpo.

6.1.2. Orden en \mathbb{Q}

Dados $\alpha, \beta \in \mathbb{Q}$, se define la relación:

$$\alpha < \beta \Leftrightarrow \beta - \alpha \in \mathbb{O}_+$$

Tiene las siguientes propiedades:

- Reflexiva.
- Antisimétrica.
- Transitiva.
- Es de orden total.
- Es compatible con la suma.

 $(\mathbb{Q}, +, \cdot, \leq)$ es un cuerpo ordenado.

6.1.3. Propiedad arquimediana de \mathbb{Q}

Dados $\alpha, \beta \in \mathbb{Q}$ con $\alpha > 0$, existe un $n \in \mathbb{N}$ tal que $n\alpha > \beta$.

6.1.4. Orden divisible

El orden de \mathbb{Q} es **divisible**, es decir, para todo $\alpha, \beta \in \mathbb{Q}$ tales que $alpha < \beta$, existe $\gamma \in \mathbb{Q}$ tal que $\alpha < \gamma < \beta$.

 $\mathbb Z$ no tiene esta propiedad y por eso se dice que el orden de $\mathbb Z$ es discreto.

6.1.5. Los números decimales

Un número racional forma parte del conjunto \mathbb{D} de los números decimales si y sólo si el denominador de su fracción irreducible es de la forma $2^n 5^p$ con $n, p \in \mathbb{N}$.

Para todo $n \in \mathbb{N}$, existe un único $c \in \mathbb{N}$ que cumple

$$\frac{c}{10^n} \le \frac{a}{b} < \frac{c+1}{10^n}$$

Siendo c el cociente de dividir $a10^n$ por b.