

Communication Systems Group (CSG)

Prof. Dr. Burkhard Stiller, Universität Zürich, Binzmühlestrasse 14, CH-8050 Zürich Telefon: +41 44 635 6710, Fax: +41 44 635 6809, stiller@ifi.uzh.ch Dr. Corinna Schmitt, Telefon: +41 44 635 7585, schmitt@ifi.uzh.ch

Übungen zu Informatik 1

Technische Grundlagen der Informatik - Übung 12

Ausgabedatum: 30. November 2015

Besprechung: Übungsstunden in der Woche 50 (7.12. - 11.12.2015)

1. Schaltwerke

1.1. Vervollständigen Sie die nachfolgende Tabelle über Flipflops.

Schaltsymbol	Bezeichnung	Ansteuertabelle		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	RS Latch pegalgest.	10107 10107 10107		
d 117 9 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	JK-Flipflop	70 - Cq		
# TID - 9 T = 9	Diatch Taktfl. gest D-FF	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
e ○ 1T	Toggle T-FF	Togife (1)		

Seite: 1/8

1.2. Gegeben ist das folgende Speicherelement. Vervollständigen Sie die untenstehende Funktionstabelle für das Speicherelement.

Funkt	tionstal	belle			
Q^{t}	×	X	Q^{t+1}	$\overline{Q}^{{}^{t+1}}$	
0	0	0	0	1	\checkmark
0	0	1	0	1	V
0	1	0	1	0	
0	1	1	7	1	\checkmark
1	0	0	~	0	\checkmark
1	0	1	0	1	
1	1	0	1	0	
1	1	1	1	1	ν

Gibt es unerlaubte Belegungen der Eingangsvariablen x und y? Wenn ja, welche?

Um welches Standard-Speicherelement handelt es sich beim gezeigten Speicher?

1.3.	Gegeben ist die folgende Schaltung, welche über 8 Takte simuliert wird. Wir wissen,
	dass alle Flipflops zu Beginn zurückgesetzt sind. Der Eingang ist permanent auf logisch
	"1". Bei den synchronen Bauteilen wird mit einer Verzögerungszeit von der Länge
	eines halben Taktes gerechnet. Zeichnen Sie die resultierenden Signalverläufe ein, wie
	sie für die gezeigte Schaltung an den entsprechenden Ein- respektive Ausgängen unter

den genannten Annahmen beobachtet werden können. Beachten Sie bitte, dass die Flipflops von links nach rechts und nach Flipflop-Typ nummeriert sind. 2J steht z.B. für den 1J Eingang des mittleren Flipflops.

Seite: 2/8

2. Rechnerstrukturen und Rechnerorganisation

2.1. Erklären Sie in je einem Satz was unter den Begriffen "Zugriffszeit" und "Zykluszeit" beim Speicherzugriff zu verstehen ist.

Zugr	iffszeit:
	Senden der Adresse vom Prozessor zum Hauptspeicher, rauslesen der Daten und senden der Daten an den Prozessor.
Zykl	uszeit:

Seite: 3/8

2.2. Erklären Sie, was unter dem "EVA-Prinzip" zu verstehen ist.

Ein X	-	[verarb]	-> A ms 1 = f(x)	

2.3. Was ist unter einem "Cache-Speicher" zu verstehen? Wozu dient ein solcher Speicher?

3. Betriebssysteme

3.1. Nennen Sie stichwortartig die Aufgaben eines Betriebssystems.

U	C	3	

Seite: 4/8

4. Repetition

	4.1.	Führen	Sie f	für den	angegebe	enen Boo	leschen	Ausdruck	eine	NAND	-Konv	ersion	durch.
--	------	--------	-------	---------	----------	----------	---------	----------	------	-------------	-------	--------	--------

Ausdruck: $\overline{a} \wedge c \vee \overline{b} \wedge \overline{c} \wedge d \vee \overline{a} \wedge b \wedge \overline{d} \vee \overline{a} \wedge b \wedge \overline{c} \wedge \overline{d}$
4.2. Führen Sie für den angegebenen Booleschen Ausdruck eine NOR-Konversion durch.
Ausdruck: $(a \rightarrow b) \wedge \overline{a} \wedge \overline{b} \wedge \overline{c}$
Ausdruck: $(a \rightarrow b) \wedge \overline{a} \wedge \overline{b} \wedge \overline{c}$
Ausdruck: $(a \rightarrow b) \wedge \overline{a} \wedge \overline{b} \wedge \overline{c}$
Ausdruck: $(a \rightarrow b) \wedge \overline{a} \wedge \overline{b} \wedge \overline{c}$
Ausdruck: $(a \rightarrow b) \wedge \overline{a} \wedge \overline{b} \wedge \overline{c}$
Ausdruck: $(a \rightarrow b) \wedge \overline{a} \wedge \overline{b} \wedge \overline{c}$
Ausdruck: $(a \rightarrow b) \wedge \overline{a} \wedge \overline{b} \wedge \overline{c}$
Ausdruck: $(a \rightarrow b) \wedge \overline{a} \wedge \overline{b} \wedge \overline{c}$
Ausdruck: $(a \rightarrow b) \wedge \overline{a} \wedge \overline{b} \wedge \overline{c}$
Ausdruck: $(a \rightarrow b) \land \overline{a} \land \overline{b} \land \overline{c}$
Ausdruck: $(a \rightarrow b) \wedge \overline{a} \wedge \overline{b} \wedge \overline{c}$
Ausdruck: $(a \rightarrow b) \land a \land \overline{b} \land \overline{c}$
Ausdruck: $(a \rightarrow b) \wedge \overline{a \wedge b} \wedge \overline{c}$
Ausdruck: $(a \rightarrow b) \wedge \overline{a} \wedge \overline{b} \wedge \overline{c}$
Ausdruck: $(a \rightarrow b) \wedge \overline{a} \wedge \overline{b} \wedge \overline{c}$
Ausdruck: $(a \rightarrow b) \land \overline{a} \land \overline{b} \land \overline{c}$
Ausdruck: $(a \rightarrow b) \land \overline{a} \land \overline{b} \land \overline{c}$

Seite: 5/8

4.3. Vervollständigen Sie die untenstehende Tabelle, in dem Sie für die gegebenen Boolesche Ausdrücke ankreuzen, ob es sich bei dem Ausdruck um eine Tautologie, Kontradiktion oder keines von beidem handelt.

	Ausdruck	Tautologie	Kontradiktion	keines von beidem
a)	$(\overline{a \to b}) \vee a \wedge b \wedge (\overline{a} \wedge (b \to b))$			
b)	$((\overline{c \vee d}) \wedge d) \vee a \wedge c \leftrightarrow (\overline{d \wedge c} \vee d) \wedge a \wedge c$			

Platz für Berechnungen:	

4.4. Bestimmen Sie für folgendes KV-Diagramm sämtliche Primimplikate, sowie eine konjunktive Minimalform (KMF), welche aus möglichst wenigen Primimplikaten besteht.

Primimplikate:
KMF:
KIVIF.
4.5. Modellieren Sie einen Moore-Automaten mit dem folgenden Verhalten:
- Die Eingabemenge sei E = {00, 01, 10, 11}
- Die Ausgabemenge sei A = {0, 1}
- Die Menge aller Zustände sei $Z = \{S0, S1\} = \{0, 1\}$
- Der Automat soll das Verhalten eines JK-Flipflops aufweisen.
((so)) (s1)
Platz für Berechnungen:

4.6. Gegeben ist das folgende Schaltbild. Nehmen Sie an, dass jedes Gatter eine Verzögerungszeit von τ hat.

Vervollständigen Sie das folgende Zeitdiagramm entsprechend der obigen Schaltung.

Tritt bei einem oder mehreren Ausgängen ein Hasardfehler auf? Falls ja, geben Sie die Art des Hasardfehlers an.

Seite: 8/8