WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

(11) International Publication Number:

WO 98/04524

A1 C07D 207/34, A61K 31/40

(43) International Publication Date:

5 February 1998 (05.02.98)

(21) International Application Number:

PCT/EP97/03719

(22) International Filing Date:

10 July 1997 (10.07.97)

(30) Priority Data:

9615692.2

25 July 1996 (25.07.96)

GB

(71) Applicant (for all designated States except US): PHARMACIA & UPJOHN S.P.A. [IT/IT]; Via Robert Koch, 1.2, I-20152 Milan (IT).

(72) Inventors; and

(75) Inventors/Applicants (for US only): COZZI, Paolo [IT/IT]; Via Zanella, 48/5, I-20133 Milan (IT). BERIA, Italo [IT/IT]; Via G. Matteotti, 39, I-45030 Villamarzana (IT). BIASOLI, Giovanni [IT/IT]; Via Scalarini, 31, I-21026 Gavirate (IT). CALDARELLI, Marina [IT/IT]; Via Besenzanica, 9, I-20147 Milan (IT). CAPOLONGO, Laura [IT/IT]; Via P. Rembrandt, 11, I-20147 Milan (IT). FRANZETTI, Cristina [IT/IT]; Via De Gasperi, 4, I-21023 Besozzo (IT).

(81) Designated States: AU, BG, BR, CA, CN, CZ, EE, HU, IL, JP, KR, LT, LV, MX, NO, NZ, PL, SG, SI, TR, UA, US, Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: ACRYLOYL SUBSTITUTED DISTAMYCIN DERIVATIVES, PROCESS FOR PREPARING THEM, AND THEIR USE AS ANTITUMOR AND ANTIVIRAL AGENTS

$$\begin{array}{c}
R_1 \\
R_2
\end{array}$$

$$\begin{array}{c}
C = C
\end{array}$$

$$\begin{array}{c}
NH \\
CH_3
\end{array}$$

$$\begin{array}{c}
NH \\
D
\end{array}$$

$$-NH - \begin{pmatrix} NH_2 \\ N-H \end{pmatrix}$$
 (5) $-C \equiv N$ (6) $\begin{pmatrix} O \\ -C-NR_7R_8 \end{pmatrix}$ (7)

(57) Abstract

Acryloyl substituted distamycin derivatives of formula (I) wherein n is 2, 3, or 4; R1 and R2 are selected, each independently, from: hydrogen, halogen, and C1-C4 alkyl; R3 is hydrogen or halogen; B is selected from: (1), (2), (3), (4), (5), (6) and (7); wherein R4, R5, R6, R7, and R8 are, each independently, hydrogen or C1-C4 alkyl, with the proviso that at least one of R4, R5 and R6 is C1-C4 alkyl; and pharmaceutically acceptable salts thereof. Such compounds are useful as antineoplastic and antiviral agents.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lkhuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ.	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	Œ	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	(L	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Srl Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 98/04524 PCT/EP97/03719

ACRYLOYL SUBSTITUTED DISTAMYCIN DERIVATIVES, PROCESS FOR PREPARING THEM, AND THEIR USE AS ANTITUMOR AND ANTIVIRAL AGENTS

The present invention refers to new alkylating antitumor and antiviral agents related to the known antibiotic distamycin A:

which belongs to the family of the pyrroleamidine antibiotics and is reported to interact reversibly and selectively with DNA-AT sequences interfering with both replication and transcription [Nature, 203, 1064 (1964); FEBS Letters, 7 (1970) 90; Prog.Nucleic Acids Res.Mol.Biol., 15, 285 (1975)].

DE-A-1795539 describes the preparation of distamycin derivatives in which the formyl group of distamycin is replaced by hydrogen or by the acid residue of an organic C_1 - C_4 aliphatic acid or of cyclopentylpropionic acid.

EP-B-246,868 describes distamycin analogues in which the distamycin formyl group is substituted by aromatic, alicyclic or heterocyclic moieties bearing alkylating groups.

International patent application WO 90/11277 discloses a broad class of acryloyl substituted distamycin derivatives wherein the acryloyl moiety is linked to the pyrrole ring through a single bond or an aromatic or heterocyclic dicarboxamide group.

25

It has now been found that a new class of distamycin

derivatives as defined hereinunder, wherein the distamycin formyl group is substituted by an acryloyl moiety while the amidine group is substituted by different nitrogencontaining end-groups, shows valuable biological properties.

5

10

Accordingly, the present invention relates to new distamycin derivatives of formula (I) as defined hereinunder, to a process for preparing them, to pharmaceutical compositions containing them and to their use in therapy, particularly as antitumor and antiviral agents.

Therefore, object of the present invention are acryloyl substituted distamycin derivatives of formula:

$$R_{2} = C \xrightarrow{R_{3}} NH \xrightarrow{NH} B$$

$$C = C \xrightarrow{NH} NH \longrightarrow B$$

$$C = C \xrightarrow{NH} NH \longrightarrow B$$

wherein:

n is 2, 3 or 4;

 R_1 and R_2 are selected, each independently, from: hydrogen, halogen, and $C_1\text{-}C_4$ alkyl;

R₃ is hydrogen or halogen;

20 B is selected from:

wherein R_4 , R_5 , R_6 , R_7 , and R_8 are, each independently, hydrogen or C_1 - C_4 alkyl, with the proviso that at least one

of R_4 , R_5 and R_6 is C_1 - C_4 alkyl; or pharmaceutically acceptable salts thereof.

The present invention includes within its scope also all the possible isomers covered by formula (I) both separately and as a mixture, as well as the metabolites and the pharmaceutically acceptable bio-precursors (otherwise known as pro-drugs) of the compounds of formula (I).

The alkyl groups may have branched or straight chains. A C_1 - C_4 alkyl group is preferably methyl or ethyl. A halogen atom is preferably chlorine, bromine or fluorine. Preferably, R_4 , R_5 , R_6 , R_7 , and R_8 are, each independently, hydrogen, methyl, or ethyl, with the proviso that at least one of R_4 , R_5 and R_6 is methyl or ethyl.

Pharmaceutically acceptable salts of the compounds formula (I) are their salts with pharmaceutically acceptable, either inorganic or organic, acids. Examples of inorganic acids are hydrochloric, hydrobromic, sulfuric and nitric acid; examples of organic acids acetic. propionic, succinic, malonic, citric, tartaric, methanesulfonic and p-toluenesulfonic acid.

25 A preferred class of compounds according to the present invention is that of formula (I) wherein:

n is 3 or 4:

20

 R_1 and R_2 are hydrogen;

R₃ is chlorine or bromine;

30 B is selected from:

20

wherein R_4 , R_5 , R_6 , R_7 , and R_8 are, each independently, hydrogen or methyl, with the proviso that at least one of R_4 , R_5 and R_6 is methyl;

or the pharmaceutically acceptable salts thereof.

Examples of specific compounds according to the present invention, especially in the form of salts, preferably with hydrochloric acid, are the following:

- 10 (1) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-bromo-acrylamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)

 pyrrole-2-carboxamido)propioncyanamidine;
 - (2) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(αbromoacrylamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)propioncyanamidine;
 - (3) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-chloroacrylamido)pyrrole-2-carboxamido
 - (4) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-bromo-acrylamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido) pyrrole-2-carboxamido)propion-N-methylamidine;
- (5) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-methyl-4-(α-methyl-4-(α-methyl-4-(α-methyl-4-(α-methyl-4-(α-methyl-4-(α-methyl-4-(α-methyl-4-(α-methyl-4-(α-methyl-4-(α-methyl-4-(α-methyl-4-(α-methyl-4-(1-methyl-4-(1-methyl-4-(α-methyl-4-(1-methyl-4-(α-methyl-4-(1-methyl-4-(α-methyl-4-(1-methyl-4-(α-methyl-4-(1-methyl-4-(α-methyl-4-(1-methyl-4-(1-methyl-4-(α-methyl-4-(1-methyl-4-(1-methyl-4-(α-methyl-4-(1-methyl-4-(1-methyl-4-(α-methyl-4-(1-methyl-4-(α-methyl-4-(1-methyl-4-(α-methyl-4-(1-methyl-4-(α-methy
 - (6) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-chloroacrylamido)pyrrole-2-carboxamido)pyrrole-2-

20

- carboxamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)propion-N-methylamidine;
- (7) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-bromoacrylamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido) pyrrole-2-carboxamido)propion-N, N'-dimethylamidine;
 - (8) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(αbromoacrylamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)propion-N, N'-dimethylamidine;
- 10 (9) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(αchloroacrylamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)propion-N,N'-dimethylamidine;
- (10) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-bromoacrylamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)
 pyrrole-2-carboxamido)propionamidoxime;
 - (11) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(αbromoacrylamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)propionamidoxime;
 - (12) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(αchloroacrylamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)propionamidoxime;
- 25 (13) 2-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-bromo-acrylamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)

 pyrrole-2-carboxamido)ethylguanidine;
 - (14) 2-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-bromoacrylamido)pyrrole-2-carboxamido)pyrrole-2-
- carboxamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) ethylguanidine;

15

25

30

- (15) 2-(1-methyl-4-(1-methyl-4-(1-methyl-4-(αchloroacrylamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)ethylguanidine;
- 5 (16) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-bromo-acrylamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)

 pyrrole-2-carboxamido)propionitrile;
 - (17) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(αbromoacrylamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)propionitrile;
 - (18) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(αchloroacrylamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)propionitrile;
 - (19) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-bromoacrylamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)
 pyrrole-2-carboxamido)propionamide;
- (20) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-bromoacrylamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)
 - (21) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(αchloroacrylamido) pyrrole-2-carboxamido) pyrrole-2carboxamido) pyrrole-2-carboxamido) pyrrole-2carboxamido) propionamide;
 - (22) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(αbromoacrylamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)propion-N-methylamide;
 - (23) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α -

-7-

bromoacrylamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)pyrrole-2-carboxamido)propion-N,Ndimethylamidine;

- (24) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(αbromoacrylamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)propion-N, N-dimethylamidine;
 - (25) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(αchloroacrylamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)propion-N, N-dimethylamidine;

10

15

25

30

- (26) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(αchloroacrylamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)pyrrole-2-carboxamido)propion-N-methylamidine;
- (27) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(αchloroacrylamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)pyrrole-2-carboxamido)propion-N,N'dimethyl-amidine;
- 20 (28) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-chloroacrylamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)
 - (29) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(αchloroacrylamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)pyrrole-2-carboxamido)propioncyanamidine;
 and
 - (30) 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-chloroacrylamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)

The compounds of formula (I) and the salts thereof, object

of the present invention, can be prepared according to one of the following processes, which comprise:

(a) reacting a compound of formula:

$$\begin{array}{c|c}
H_2N \\
N \\
\downarrow \\ CH_3
\end{array}$$

$$\begin{array}{c}
NH \\
n-m
\end{array}$$

$$\begin{array}{c}
\\
\end{array}$$

$$\begin{array}{c}
\end{array}$$

$$\begin{array}{c}
\end{array}$$

$$\begin{array}{c}
\end{array}$$

5 wherein:

n is 2, 3 or 4;

m is 0 or 1;

B is selected from:

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} NH_2 \\ \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} R_4 \\ N-R_5 \end{array} \end{array} \begin{array}{c} NH_2 \\ N-OH \end{array} \begin{array}{c} NH_2 \\ \end{array} \end{array} \begin{array}{c} NH_2 \\ \end{array} \begin{array}{c} NH_2 \\ \end{array} \end{array} \begin{array}{c} -NH - \begin{array}{c} NH_2 \\ N-H \end{array}$$

wherein R_4 , R_5 , R_6 , R_7 , and R_8 are, each independently, hydrogen or C_1 - C_4 alkyl, with the proviso that at least one of R_4 , R_5 and R_6 is C_1 - C_4 alkyl;

with a compound of formula:

wherein: R₁ and R₂ are selected, each independently, from: hydrogen, halogen, and C₁-C₄ alkyl; R₃ is hydrogen or halogen; X is hydroxy or a leaving group; and m has the above reported meanings;

or:

20 (b) when B is equal to -C≡N, reacting a compound of formula:

WO 98/04524 PCT/EP97/03719

-9-

$$R_1$$
 $C=C$
 NH
 NH
 NH
 NH
 NH
 NH

wherein n, R_1 , R_2 , and R_3 are as defined above; with succinic anhydride, and, if desired, converting a compound of formula (I) into a pharmaceutically acceptable salt thereof.

In the compounds of formula (III), X is hydroxy or a leaving group selected, for instance, from chloro, 2,4,5-trichlorophenoxy, 2,4-dinitro-phenoxy, succinimido-N-oxy, imidazolyl group, and the like.

5

10

15

20

25

The reaction of process (a) between a compound of formula (II) and a compound of formula (III) can be carried out according to known methods, for instance those described in EP-B-246,868.

The reaction between a compound of formula (II) and a compound of formula (III) wherein X is hydroxy, is preferably carried out with a molar ratio (II):(III) of from 1:1 to 1:2, in an organic solvent, such as, e.g., dimethylsulfoxide, hexamethylphosphotriamide, dimethylacetamide, dimethyl-formamide, ethanol, benzene, or pyridine, in the presence of an organic or inorganic base such as, e.g., triethylamine, diisopropyl ethylamine, or sodium or potassium carbonate or bicarbonate, and of a condensing agent such as, e.g., N-ethyl-N'-(3-dimethylamino-propyl)-carbodiimide, N,N'-dicyclo-hexylcarbodiimide, and/or 1-hydroxy-benzotriazole hydrate. The reaction temperature may vary from about -10°C to about 100°C, and the reaction

15

20

time from about 1 to about 24 hours.

The reaction between a compound of formula (II) and a compound of formula (III), wherein X is a leaving group as defined above, may be carried out with a molar ratio (II):(III) of from about 1:1 to about 1:2, in an organic solvent, such as, e.g., dimethylformamide, dioxane, pyridine, benzene, tetrahydrofurane, or mixtures thereof with water, optionally in the presence of an organic base, e.g. N,N'-diisopropylethylamine, triethylamine, or an inorganic base, e.g. sodium or potassium bicarbonate, at a temperature of from about 0°C to about 100°C, and for a time varying from about 2 hours to about 48 hours.

The optional conversion of a compound of formula (I) into a pharmaceutically acceptable salt thereof may be carried out by conventional known method.

The compounds of formula (II) are known compounds, or can be obtained by known methods (see e.g. Tetrahedron Letters 31, 1299 (1990), Anticancer Drug Design 9, 511 (1994)), such as:

(i) by hydrolitic deformylation, in a basic or acid medium, of compounds of formula:

$$\begin{array}{c|c} H & NH & NH \\ \hline & NH & NH \\ \hline & CH_3 & NH \\ \hline & n-m \end{array}$$
 (V)

or

(ii) by nitro-group reduction, according to known methods, of compounds of formula:

$$\begin{array}{c|c}
O_2N & & & \\
N & & & \\
CH_3 & & & \\
\end{array}$$

$$\begin{array}{c|c}
NH & & & \\
n-m & & & \\
\end{array}$$
(VI)

wherein in the compounds of formula (V) and (VI):

n is 2, 3 or 4; m is 0 or 1;

B is selected from:

$$- \left\langle \begin{array}{c} NH_2 \\ N-CN \end{array} \right\rangle, \quad \left\langle \begin{array}{c} R_4 \\ N-R_5 \\ N-R_6 \end{array} \right\rangle, \quad \left\langle \begin{array}{c} NH_2 \\ N-OH \end{array} \right\rangle, \quad \left\langle \begin{array}{c} NH_2 \\ N-NH_2 \end{array} \right\rangle, \quad -NH - \left\langle \begin{array}{c} NH_2 \\ N-H \end{array} \right\rangle$$

$$-C\equiv N$$
 , and $-C-NR_7R_8$;

wherein R_4 , R_5 , R_6 , R_7 , and R_8 are, each independently, hydrogen or C_1 - C_4 alkyl, with the proviso that at least one of R_4 , R_5 and R_6 is C_1-C_4 alkyl.

The compounds of formula (V), except when B is equal to

10

-NH $\stackrel{\text{NH}_2}{\sim}$. Can in turn be prepared starting from distamycin

$$\begin{array}{c|c} H & NH & NH \\ \hline & NH & NH \\ \hline & CH_3 & NH_2 \\ \end{array}$$
 (VII)

by using:

 H_2N -CN, so obtaining a compound of formula (I) having (i) 15 B equal to:

 H_2N -OH, so obtaining a compound of formula (I) having B equal to:

(iii) H_2N-NH_2 , so obtaining a compound of formula (I) having B equal to:

$$-\sqrt{N-NH_2}$$
;

(iv) HNR_4R_5 , so obtaining a compound of formula (I) having B equal to:

and then optionally with H_2NR_6 , so obtaining a compound of formula (I) having B equal to:

$$\begin{array}{c}
R_{\downarrow} \\
N - R_{5}
\end{array}$$

wherein R_4 , R_5 , and R_6 are, each independently, hydrogen or C_1 - C_4 alkyl, with the proviso that at least one of R_4 , R_5 , and R_6 is C_1 - C_4 alkyl;

- (v) succinic anhydride, so obtaining a compound of formula(I) having B equal to -C≡N;
- water in an alkaline medium, so obtaining a compound of formula (I) having B equal to $-\text{CO-NR}_7\text{R}_8$ wherein R_7 and R_8 are both hydrogen;
 - (vii) HNR_7R_8 , so obtaining a compound of formula (I) having B equal to:

20

and then with water in an alkaline medium, so obtaining a compound of formula (I) having B equal to $-\text{CO-NR}_7\text{R}_8$, wherein R_7 and R_8 are, each independently, hydrogen or $\text{C}_1\text{-C}_4$ alkyl, with the proviso that at least

one of R_7 and R_8 is C_1 - C_4 alkyl.

The reaction between a compound of formula (VII) and one of the reactants as described at points (i), (ii), (iii), (iv), or (vii) can be carried out according to known methods, for instance those reported in: US-4,766,142, Chem. Revs. 1961, 155; J. Med. Chem. 1984, 27, 849-857; Chem. Revs. 1970, 151; and "The Chemistry of Amidines and Imidates", edited by S. Patai, John Wiley & Sons, N.Y. (1975).

10

15

20

30

The reaction of a compound of formula (VII) with succinic anhydride (see point (v) above) is preferably carried out with a molar ratio (VII):succinic anhydride of from 1:1 to 1:3 in an organic solvent such as, e.g., dimethylsulfoxide, dimethylformamide, in the presence of an organic or inorganic base such as, e.g., triethylamine, diisopropylethylamine, sodium or potassium carbonate, and the like. The reaction temperature may vary from about 25°C to about 100°C, and the reaction time from about 1 hour to about 12 hours.

The reaction with water in an alkaline medium (see points (vi) and (vii) above) may be carried out according to known methods usually employed for an alkaline hydrolysis, e.g. by treating the substrate with an excess of sodium or potassium hydroxide dissolved in water or in a mixture of water with an organic solvent, e.g. dioxane, tetrahydrofurane, or acetonitrile, at a temperature of from about 50° to about 100°C, for a time varying from about 2 hours to about 48 hours.

The compounds of formula (III) are known compounds or may be

prepared starting from known compounds through reactions well known in organic chemistry: see, for instance, J.C.S. 1947-1032 and JACS $\underline{62}$, 3495 (1940).

The compounds of formula (VI) can be obtained:

5 (i) except when B is equal to
$$N-NH_2$$
, from a compound of formula:

$$\begin{array}{c|c}
O_2N & & & \\
N & & & \\
CH_3 & O & \\
\end{array}$$

$$\begin{array}{c|c}
N & & \\
CH_3 & O \\
\end{array}$$

$$\begin{array}{c|c}
X & & \\
\end{array}$$

$$\begin{array}{c|c}
(VIII)
\end{array}$$

wherein n, m and X are as defined above, by reaction with a compound of formula:

$$H_2N$$
 (IX)

wherein B' is selected from:

10

15

$$--NH - NH_{2} \qquad 0 \\ --NH_{2} \qquad 0 \\ \text{or -C-NR}_{7}R_{8} \qquad 0 \\ \text{N-H} \qquad , \text{ by}$$

Pinner reaction of a compound of formula:

$$O_2N \longrightarrow NH \longrightarrow C \equiv N \qquad (X)$$

with a suitable amine compound as defined at point (i),

30

(ii), (iii) or (iv) above.

The compounds of formulas (VII), (VIII), (IX) and (X) are known compounds, or may be obtained by known methods (see e.g. Tetrahedron, 34, 2389-2391, 1978; J. Org. Chem., 46, 3492-3497, 1981).

The reaction of process (b) is preferably carried out with a molar ratio (IV):succinic anhydride of from 1:1 to 1:3 in an 10 solvent such as, e.g., dimethylsulfoxide dimethylformamide, in the presence of an inorganic base such as, e.g., triethylamine, diisopropylethylamine, sodium or potassium carbonate, and the like. The reaction temperature may vary from about 25°C to about 100°C, and the reaction time from about 1 hour to 15 about 12 hours.

The compounds (IV) can be obtained with known methods, for example, those described in WO 90/11277.

- 20 Salification of a compound of formula (I), as well as preparation of a free compound starting from a salt, may be carried out by known standard methods.
 - Well known procedures such as, e.g., fractional crystallization or chromatography, may also be followed for separating a mixture of isomers of formula (I) into the single isomers.

The compounds of formula (I) may be purified by conventional techniques such as, e.g., silica gel or alumina column chromatography, and/or by recrystallization from an organic solvent such as, e.g., a lower aliphatic alcohol, e.g. methyl, ethyl or isopropyl alcohol, or dimethylformamide.

PHARMACOLOGY

The compounds of formula (I) according to the present invention are useful as antineoplastic and antiviral agents. Particularly, they show cytostatic properties towards tumor cells, so that they can be useful to inhibit growth of various tumors in mammals, including humans, such as, for instance, carcinomas, e.g. mammary carcinoma, lung carcinoma, bladder carcinoma, colon carcinoma, ovary and endometrial tumors. Other neoplasias in which the compounds of the present invention can find application are, for instance, sarcomas, e.g. soft tissue and bone sarcomas, and the hematological malignancies such as, e.g. leukemias.

- The <u>in vitro</u> antitumor activity was evaluated by cytotoxicity studies carried out on murine L_{1210} leukemia cells. Cells were derived from <u>in vivo</u> tumors and established in cell culture. Cells were used until the tenth passage. Cytotoxicity was determined by counting surviving cells after 48 hours treatment.
- The percentage of cell growth in the treated cultures was compared with that of controls. IC_{50} values (concentration inhibiting 50% of the cellular growth in respect to controls) were calculated on dose-response.
- The compounds of the invention were tested also in vivo on L_{1210} murine leukemia and on murine reticulosarcoma M 5076, showing a very good antitumoral activity, with the following procedure.
- L_{1210} murine leukemia was maintained <u>in vivo</u> by i.v. serial transplantation. For experiments, 10^5 cells were injected i.p. in CD2F1 female mice, obtained from Charles River Italy. Animals were 8 to 10 weeks old at the beginning of the

20

25

30

experiments. Compounds were administered i.v. at day +1 after tumor cells injections.

M5076 reticulosarcoma was maintained in vivo by i.m. serial transplantation. For experiments, $5x10^5$ cells were injected i.m. in C57B16 female mice, obtained from Charles River Italy. Animals were 8 to 10 weeks old at the beginning of the experiments. Compounds were administered i.v. at day 3, 7 and 11 after tumor injection.

Survival time of mice and tumor growth were calculated and activity was expressed in term of T/C% and T.I.%.

median survival time treated group

T/C = ----- x 100

median survival time untreated group

T.I.= % inhibition of tumor growth respect to control

Tox: number of mice which died for toxicity.

Tox determination was made when mice died before the control and/or tested significant body weight loss and/or spleen and/or liver size reduction were observed.

The compounds of the invention show also a remarkable effectiveness in interfering with the reproductive activity of pathogenic viruses and protect tissue cells from viral infections. For example, they show activity against DNA viruses such as, for instance, herpes, e.g. herpes simplex and herpes zoster viruses, virus vaccinia, RNA viruses such as, e.g., Rhinovirus and Adenovirus, and against retroviruses such as, for instance, sarcoma viruses, e.g., murine sarcoma virus, and leukemia viruses, e.g. Friend leukemia virus.

-18-

For example, effectiveness against herpes, coxsackie and respiratory syncytial viruses was tested in a fluid medium as follows. Serial two-fold dilutions of the compounds from 200 to 1.5 mcg/ml were distributed in duplicate 0.1 ml/well in 96 well microplates for tissue culture. Cell suspensions $(2x10^5 \text{ cells/ml})$ infected with about $5x10^{-3}$ TClD₅₀ of virus/cell were immediately added 0.1 ml/well.

After 3-5 day incubation at 37° C in CO_2 5%, the cell cultures were evaluated by microscope observation and Minimum Inhibiting Concentration (MIC) was determined, MIC being the minimum concentration which determines a reduction of cytopathic effect in comparison with the infected controls.

10

- The compounds of the invention can be administered to mammals, including humans, through the usual routes, for example, parenterally, e.g. by intravenous injection or infusion, intramuscularly, subcutaneously, topically or orally. The dosage depends on the age, weight and conditions of the patient and on the administration route. For example, a suitable dosage for administration to adult humans may range from about 0.1 to about 150-200 mg pro dose 1-4 times a day.
- Further object of the present invention are pharmaceutical compositions, which comprise a compound of formula (I) as an active principle, in association with one or more pharmaceutically acceptable carrier and/or diluent.
- The pharmaceutical compositions of the present invention are usually prepared following conventional methods and are administered in a pharmaceutically suitable form. For

WO 98/04524 PCT/EP97/03719

-19-

instance, solutions for intravenous injection or infusion may contain as a carrier, for example, sterile water or preferably, they may be in the form of sterile aqueous isotonic saline solutions.

- Suspensions or solutions for intramuscular injections may contain, together with the active compound, a pharmaceutically acceptable carrier, e.g. sterile water, olive oil, ethyl oleate, glycols, e.g. propylene glycol, and if desired, a suitable amount of lidocaine hydrochloride.
- In the forms for topical application, e.g. creams, lotions or pastes for use in dermatological treatment, the active ingredient may be mixed with conventional oleaginous or emulsifying excipients.

The solid oral forms, e.g. tablets and capsules, contain, together with the active compound, diluents, e.g., 15 lactose, dextrose, saccharose, cellulose, corn starch and potato starch; lubricants, e.g. silica, talc, stearic acid, magnesium or calcium stearate, and/or polyethylene glycols; binding agents, e.g. starches, arabic gums, gelatin, methylcellulose, 20 carboxymethyl cellulose, polyvinylpyrrolidone; disaggregating agents, e.g. starch, alginic acid, alginates, sodium starch glycolate; effervescing mixtures; dyestuffs; sweeteners; wetting agents, instance, lecithin, polysorbates, laurylsulfates; and, general, non-toxic and pharmacologically inactive substances 25 used in pharmaceutical formulation. Said pharmaceutical preparation may be manufactured by known techniques, example by means of mixing, granulating, tabletting, sugarcoating or film-coating processes.

A further object of the present invention are the compounds of formula (I) for use in a method for treating the human or

30

WO 98/04524 PCT/EP97/03719

-20-

animal body by therapy.

30

Furthermore, the present invention provides a method for treating tumors and viral infections in a patient in need of it, which comprises administering to said patient a composition of the invention.

A further object of the present invention is a combined method for treating cancer or for ameliorating the conditions of mammals, including humans, suffering from cancer, said method comprising administering a compound of formula (I), or a pharmaceutically acceptable salt thereof, and an additional antitumor agent, close enough in time and in amounts sufficient to produce a therapeutically useful effect.

- The present invention also provides combined preparations for simultaneous, separate or sequential use in anti-cancer therapy, comprising a compound of formula (I), or a pharmaceutically acceptable salt thereof, and an additional antitumour agent.
- The term "antitumor agent" is meant to comprise both a 20 single antitumor drug and "cocktails" i.e. a mixture of such drugs, according to the clinical practice. Examples of antitumor agents that can be formulated with a compound of formula (I), or alternatively, can be administered in a 25 combined method of treatment, include doxorubicin, daunomycin, epirubicin, idarubicin, etoposide, uracil, melphalan, cyclo-phosphamide, 4-demethoxy daunorubicin, bleomycin, vinblastin, and mitomycin, or mixtures thereof.

The following examples are given to better illustrate the invention, but do not limit the scope of the invention

itself.

EXAMPLE 1

15

20

3-[1-methyl-4[1-methyl-4[1-methyl-4[1-methyl-4(α-bromo-acrylamido)pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]

Step I The intermediate 3-[1-methyl-4[1-methyl-4[1-methyl-4[1-methyl-4-aminopyrrole-2-carboxamido]pyrrole-2-carboxamido] pyrrole-2-carboxamido] propioncyanamidine hydrochloride

To a solution of 324 mg of cyanamide in 20 ml of DMF were added 186 mg of sodium hydride. The mixture was stirred at room temperature for 30 min and then added to a solution of 1 g of distamycin A in 10 ml DMF. The solution was stirred at room temperature for two hours, then acetic acid was added until pH=7. The solvent was removed at reduced pressure and the crude residue purified by chromatography (methylene chloride/methanol: 9/1) to give mg of 3-[1-methyl-4[1-methyl-4[1-methyl-4-formamidopyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2carboxamido]propioncyanamidine which was dissolved in 50 ml of methanol and added of 5 ml of 2N hydrochloric acid.

The reaction was stirred at room temperature for two days, solvent evaporated in vacuo and the solid residue suspended in 200 ml of ethyl acetate, yielding after filtration 600 mg of the intermediate.

FAB-MS: m/z 479, (65, $[M+H]^+$)

30 PMR (DMSO- d_6) δ :

10.11 (s, 1H), 9.97 (s, 1H), 9.80-9.60 (b.s., 2H), 8.50-8.00 (b.s., 3H), 7.40 (t, J=5.8 Hz, 1H), 7.25 (d, J=1.7 Hz,

WO 98/04524

1H), 7.19(d, J=1.7 Hz, 1H), 7.08(d, J=1.7 Hz, 1H), 7.06(d, J=1.7 Hz, 1H), 6.94(d, J=1.7 Hz, 1H), 6.88(d, J=1.7 Hz, 1H), 3.81(s, 3H), 3.79(s, 3H), 3.75(s, 3H), 3.41(m, 2H), 2.70(m, 2H).

5

25

30

<u>Step II</u> The intermediate 1-methyl-4-(α-bromoacrylamido) pyrrole-2-carboxyl chloride

To a solution of α -bromoacrylic acid (1.7 g) in dry CH₃CN (5 ml) a solution of N, N'-dicycloexylcarbodiimide (1.2 g) in 20 ml CH_3CN was added in 1 hour and the resulting suspension 10 was stirred at 25°C for 20'. The white precipitate was filtered and the resulting solution was added to a solution of 1-methyl-4-aminopyrrole-2-carboxylic acid hydrochloride (1 g) in 20 ml of H_2O and 1.4 g of $NaHCO_3$. The solution was stirred for 1 hour at 25°C then HCl 2N was added until 15 pH=3. The solvent was removed at reduced pressure and the crude residue purified by flash chromatography (methylene chloride/methanol:95/5) to give 1.2 g of 1-methyl-4-(α bromoacrylamido)pyrrole-2-carboxylic acid, which 20 dissolved in benzene (40 ml) and added of 10 ml of SOCl. The solution was refluxed for 1 hour then evaporated to dryness in vacuo to give 1.4 g of the intermediate.

By analogous procedure and by using the opportune starting materials the following product can be obtained:

1-methyl-4-(α -chloroacrylamido)pyrrole-2-carboxyl chloride.

Step III The title compound

To a solution of 206 mg of the intermediate obtained from step I, 100 mg of NaHCO₃ in 40 ml of water and 20 ml of dioxane, a solution of 175 mg of the intermediate obtained

from step II in 40 ml of dioxane was added. The solution was stirred for 2 hours at 25°C then the solvent evaporated in vacuo and the crude residue purified by flash chromatography (methylene chloride/methanol:10/1) to yield 150 mg of the title compound as a yellow solid.

FAB-MS: m/z 732, (42, [M-H]⁻)

PMR (DMSO-d₆ 45°C) δ :

10.27 (s, 1H), 9.95 (s, 1H), 9.92 (s, 1H), 9.88 (s, 1H), 8.3 (b.s., 2H), 8.1 (b.s., 1H), 6.8-7.3 (m, 8H), 6.67 (d, J=2.9 Hz, 1H), 6.22 (d, J=2.9 Hz, 1H), 3.85 (s, 6H), 3.84 (s, 3H), 3.79 (s, 3H), 3.45 (b.s., 2H), 2.6 (b.s., 2H).

By analogous procedure and by using the opportune starting materials the following products can be obtained:

- 3-[1-methyl-4[1-methyl-4[1-methyl-4(α-bromoacrylamido) pyrrole-2-carboxamido)pyrrole-2-carboxamido]pyrrole-2-carboxamido]propioncyanamidine; and
 - 3-[1-methyl-4[1-methyl-4[1-methyl-4[1-methyl-4(α -chloroacrylamido)pyrrole-2-carboxamido]pyrrole-2-
- carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]
 propioncyanamidine.

EXAMPLE 2

- 3-[1-methyl-4[1-methyl-4[1-methyl-4[1-methyl-4(α -
- bromoacrylamido)pyrrole-2-carboxamido]pyrrole-2carboxamido]pyrrole-2-carboxamido]pyrrole-2carboxamido]propion-N-methyl-amidine hydrochloride
 - <u>Step I</u> The intermediate 3-[1-methyl-4[1-methyl-4[1-methyl-4-aminopyrrole-2-carboxamido]pyrrole-2-
- carboxamido]pyrrole-2-carboxamido]propion-N-methyl-amidine dihydrochloride

A solution of 2 g of distamycin A in 50 ml DMF was treated with 0.38 ml of methylamine hydrochloride 80%. After 8 hours additional 0.25 equivalent of methylamine hydrochloride 80% was added. The solution was evaporated to dryness and the crude residue was purified by flash chromatography (methylene chloride/methanol: 8/2) to give 1.5 g of 3-[1-methyl-4[1-methyl-4-1-methyl

formamidopyrrole-2-carboxamido]pyrrole-2-

carboxamido]pyrrole-2-carboxamido]propion-N-methyl-amidine hydrochloride which was dissolved in 40 ml of methanol and added of 5 ml of 2N hydrochloric acid.

The reaction was stirred at room temperature for two days, the solvent evaporated in vacuo and the solid residue suspended in 200 ml of ethyl acetate, yielding after filtration 1.4 g of the intermediate.

FAB-MS: m/z 468, (40, [M+H]⁺)

PMR (DMSO- d_6) δ :

1.0

30

10.20 (s, 3H), 10.18 (s, 1H), 9.65 (m, 1H), 9.20 (s, 1H), 8.63 (s, 1H), 8.25 (t, J=5.8 Hz, 1H), 7.25 (d, J=1.7 Hz, 20 1H), 7.19 (d, J=1.7 Hz, 1H), 7.11 (d, J=1.7 Hz, 1H) 7.08 (d, J=1.7 Hz, 1H), 7.05 (d, J=1.7 Hz, 1H), 6.91 (d, J=1.7 Hz, 1H), 3.90 (s, 3H), 3.85 (s, 3H), 3.79 (s, 3H), 3.60-3.40 (m, 2H), 2.80 (d, J=6 Hz, 3H), 2.61 (m, 2H).

By analogous procedure and by using the opportune starting material the following product can be obtained:

3-[1-methyl-4[1-methyl-4[1-methyl-4-aminopyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyropion-N,N-dimethyl-amidine dihydrochloride.

Step II The title compound

A solution of 170 mg of 1-methyl-4-(α -

bromoacrylamido) pyrrole-2-carboxyl chloride (prepared as reported in Example 1 step II) in 30 ml of dioxane, was added to a solution of the intermediate obtained from step I (162 mg) and 75 mg of NaHCO₃ in 25 ml of H₂O. The solution was stirred for 2 hours at room temperature, acidified with HCl 2N until pH=5 and then evaporated in vacuo. The crude residue was purified by flash chromatography (methylene chloride/ methanol: 8/2) to yield 120 mg of the title compound as a yellow solid.

10 FAB-MS: m/z 722, (18, [M+H]⁺)

PMR (DMSO-d₆) δ :

10.34 (s, 1H), 9.98 (s, 1H), 9.95 (s, 1H), 9.92 (s, 1H),

9.5 (b.s., 1H), 9.1 (b.s., 1H), 8.5 (b.s., 1H), 8.22 (t, J=5.9 Hz, 1H), 6.9-7.3 (m, 8H), 6.68 (d, J=2.8 Hz, 1H),

15 6.22 (d, J=2.8 Hz, 1H), 3.85 (s, 6H), 3.84 (s, 3H), 3.80 (s, 3H), 3.48 (b.s., 2H), 2.79 (s, 3H), 2.62 (b.s., 2H).

By analogous procedure and by using the opportune starting materials the following products can be obtained:

- 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-bromoacrylamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)propion-N,N-dimethylamidine hydrochloride FAB-MS: m/z 736, (100, [M+H]⁺)
- PMR (DMSO-d₆) δ : 10.37 (s, 1H), 9.99 (s, 1H), 9.95 (s, 1H), 9.94 (s, 1H), 9.0 (b.s., 1H), 8.3 (b.s., 1H), 8.31 (t, J=5.8 Hz, 1H), 6.9-7.3 (m, 8H), 6.70 (d, J=2.9 Hz, 1H), 6.22 (d, J=2.9 Hz, 1H), 3.84 (s, 6H), 3.83 (s, 3H), 3.80 (s, 3H), 3.46 (m, 2H), 3.22 (b.s., 3H), 3.03 (b.s., 3H), 2.77 (t, J=6.5 Hz, 2H);

- 3-[1-methyl-4[1-methyl-4[1-methyl-4(α-bromoacrylamido)pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]propion-N-methyl-amidine hydrochloride;
- 3-[1-methyl-4[1-methyl-4[1-methyl-4[1-methyl-4(α-chloroacrylamido)pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]propion-N-methyl-amidine hydrochloride;
 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-bromoacrylamido)pyrrole-2-carboxamido)pyrrole-2-
- bromoacrylamido) pyrrole-2-carboxamido) pyrrole-2carboxamido) pyrrole-2-carboxamido) propion-N, Ndimethylamidine hydrochloride; and
 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-chloroacrylamido) pyrrole-2-carboxamido) pyrrole-2carboxamido) pyrrole-2-carboxamido) pyrrole-2-
- carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)propion-N,N-dimethylamidine hydrochloride.

EXAMPLE 3

30

- 3-[1-methyl-4[1-methyl-4[1-methyl-4[1-methyl-4(α20 bromoacrylamido)pyrrole-2-carboxamido]pyrrole-2carboxamido]pyrrole-2-carboxamido]pyrrole-2carboxamido]propion-N,N'-dimethyl-amidine hydrochloride
- Step I The intermediate 3-[1-methyl-4[1-methyl-4[1-methyl-4]]

 methyl-4-aminopyrrole-2-carboxamido]pyrrole-2carboxamido]pyrrole-2-carboxamido]propion-N,N'dimethyl-amidine dihydrochloride

A solution of 1.5 g of distamycin A in 40 ml DMF was heated at 80°C and treated with 4 ml of methylamine hydrochloride 80%. After 4 hours additional 5 equivalent (4 ml) of methylamine hydrochloride 80% were added. The solution was

evaporated to dryness and the crude residue was purified by flash chromatography (methylene chloride/methanol:8/2) to give 1.2 g of 3-[1-methyl-4[1-methyl-4[1-methyl-4-formamidopyrrole-2-carboxamido]pyrrole-2-carboxamido]

5 pyrrole-2-carboxamido]propion-N,N'-dimethyl-amidine hydrochloride which was dissolved in 40 ml of methanol and added of 5 ml of 2N hydrochloric acid solution.

The reaction was stirred at room temperature for two days, the solvent evaporated in vacuo and the solid residue suspended in 200 ml of ethyl acetate, yielding after filtration 1.4 g of the intermediate.

FAB-MS: m/z 482, (45, $[M+H]^+$)

PMR (DMSO- d_6) δ :

10

10.21 (s, 3H), 10.18 (s, 1H), 9.61 (m, 1H), 8.85 (s, 1H),
8.39 (t, J=5.8 Hz, 1H), 8.00-7.70 (b.s., 1H), 7.28 (d,
J=1.7 Hz, 1H), 7.22 (d, J=1.7 Hz, 1H), 7.12 (d, J=1.7 Hz,
1H) 7.08 (d, J=1.7 Hz, 1H), 7.03 (d, J=1.7 Hz, 1H), 6.92
(d, J=1.7 Hz, 1H), 3.92 (s, 3H), 3.89 (s, 3H), 3.86 (s,
3H), 3.60-3.40 (m, 2H), 3.02 (d, J=6 Hz, 3H), 2.80 (d, J=6
20 Hz, 3H), 2.72 (m, 2H).

Step II The title compound

A solution of 200 mg 1-methyl-4-(α-bromoacrylamido)pyrrole2-carboxyl chloride (prepared as reported in Example 1 step
25 II) in 10 ml of benzene, was added to a solution of the intermediate obtained from step I (250 mg) and 76 mg of NaHCO₃ in 5 ml of H₂O. The solution was stirred for 1 hour at room temperature, then evaporated under reduced pressure and the crude residue was purified by flash chromatography (methylene chloride/ methanol:85/15) to yield 185 mg of the title compound as a yellow solid.

FAB-MS: m/z 736, (70, [M+H]⁺)

PMR (DMSO- d_6) δ :

10.38 (s, 1H), 10.00 (s, 1H), 9.96 (s, 1H), 9.94 (s, 1H),

9.2 (b.s., 2H), 8.33 (t, J=6.0 Hz, 1H), 6.9-7.3 (m, 8H),

6.71 (d, J=2.9 Hz, 1H), 6.22 (d, J=2.9 Hz, 1H), 3.85 (s,

6H), 3.84 (s, 3H), 3.80 (s, 3H), 3.44 (b.s., 2H), 3.00 (s,

3H), 2.79 (s, 3H), 2.73 (b.s., 2H).

UV: c=18.1mg/1(EtOH 95%) $\lambda_{Max}=312$ $\epsilon=44375$

By analogous procedure and by using the opportune starting materials the following products can be obtained:

3-[1-methyl-4[1-methyl-4[1-methyl-4(α-bromoacrylamido)

pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-

carboxamido]propion-N,N'-dimethyl-amidine hydrochloride;

15 and

3-[1-methyl-4[1-methyl-4[1-methyl-4[1-methyl-4(α-chloroacrylamido)pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-1-carboxamido]pyrrole-2-carboxamido]propion-N,N'-dimethyl-amidine hydrochloride.

20

30

EXAMPLE 4

3-[1-methyl-4[1-methyl-4[1-methyl-4[1-methyl-4(α-bromo-acrylamido)pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]

25 propionamidoxime

- Step I The intermediate 3-[1-methyl-4[1-methyl-4[1methyl-4-aminopyrrole-2-carboxamido]pyrrole-2carboxamido]pyrrole-2-carboxamido]propionamidoxime
 hydrochloride
- A solution of 2 g of distamycin A in 35 ml DMF was heated

to 80°C and treated with 0.46 ml of hydroxylamine 1M in DMF. After 30' additional 1 equivalent of hydroxylamine 1M in DMF was added. The solution was evaporated to dryness and the crude residue was purified by flash chromatography (methylene chloride/methanol: 9/1) to give 1.50 g of 3-[1-methyl-4[1-methyl-4-formamidopyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido] propionamidoxime which was dissolved in 50 ml of methanol and added of 10 ml of HCl 2N. The solution was stirred at room temperature for 2 days, the solvent evaporated in vacuo and the solid residue suspended in 200 ml of ethyl

after filtration

1.4

q

of

FAB-MS: m/z 480 (20, $[M+H]^{+}$)

acetate, yielding,

15 PMR (DMSO- d_6) δ :

intermediate.

10

20

10.18 (b.s., 3H); 9.98 (s, 1H); 8.32 (t, J=5.7 Hz, 1H); 7.25 (d, J=1.7 Hz, 1H); 7.20 (d, J=1.7 Hz, 1H); 7.16 (d, J=1.7 Hz, 1H); 7.12 (d, J=1.7 Hz, 1H); 7.10 (d, J=1.7 Hz, 1H); 6.93 (d, J=1.7 Hz, 1H); 3.89 (s, 3H); 3.86 (s, 3H); 3.82 (b.s., 7H); 3.50 (m, 2H); 2.22 (m, 2H).

<u>Step II</u> The title compound

To a solution of 277 mg of the intermediate obtained from step I and 137 mg of $NaHCO_3$ in 55 ml of H_2O , a solution of 203 mg of 1-methyl-4-(α-bromoacrylamido)pyrrole-2-carboxyl 25 chloride (prepared as reported in Example 1 step II) in 55 ml of dioxane, was added. The solution was stirred for 5 hours at room temperature, then evaporated in vacuo and the crude residue was purified by flash chromatography (methylene chloride/ methanol: 85/15) to yield 90 mg of the 30 title compound as a hazel solid.

FAB-MS: m/z 724, (10, $[M+H]^+$)

PMR (DMSO- d_6) δ :

10.27 (s, 1H), 9.94 (s, 1H), 9.91 (s, 1H), 9.88 (s, 1H),

9.5 (b.s., 2H), 8.5 (b.s., 1H), 7.98 (t, J=5.9 Hz, 1H),

5 7.3-6.8 (m, 8H), 6.66 (d, J=2.9 Hz, 1H), 6.21 (d, J=2.9 Hz,

1H), 3.84 (s, 6H), 3.83 (s, 3H), 3.79 (s, 3H), 3.38 (b.s.,

2H), 2.31 (b.s., 2H).

UV: c=4.16mg/l(MeOH) λ_{MAX} =307.8 ϵ =51155

- By analogous procedure and by using the opportune starting materials the following products can be obtained:
 - 3-[1-methyl-4[1-methyl-4[1-methyl-4(α-bromoacrylamido)

pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2carboxamido]propionamidoxime; and

3-[1-methyl-4[1-methyl-4[1-methyl-4[1-methyl-4(α-chloroacrylamido)pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]propionamidoxime.

20 EXAMPLE 5

2-[1-methyl-4[1-methyl-4[1-methyl-4[1-methyl-4(α-bromo-acrylamido)pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]ethylguanidinehydrochloride

25

- <u>Step I</u> The intermediate 2-aminoethylguanidine dihydrochloride
- A solution of commercial N-BOC-ethylendiamine (1 g) in dry ethanol (100 ml) and 2-methyl-2-thiopseudourea hydroiodide
- 30 (1.5 g) was refluxed for 8 hours. The solvent was removed at reduced pressure and the crude residue purified by flash

chromatography (methylene chloride/methanol:9/1) to yield 1.5 g of N-BOC-2-aminoethylguanidine hydroiodide as a yellow oil which was dissolved in methanolic hydrochloric acid solution 5N (20 ml) and stirred at room temperature for 3 hours. The white precipitate was collected, washed with dry ethanol, affording 700 mg of the intermediate.

FAB-MS: m/z 103, (20, [M+H]⁺)

PMR (DMSO- d_6) δ :

15

20

25

30

8.38 (b.s., 3H), 7.97 (t, J=6 Hz, 1H), 7.51 (b.s., 4H), 10 3.45 (m, 2H), 2.92 (m, 2H).

Step II The intermediate 2-[1-methyl-4[1-methyl-4[1-methyl-4-aminopyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]ethylguanidine dihydrochloride

Α solution 1-methyl-4[1-methyl-4[1-methyl-4of nitropyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2carboxylic acid (590 mg) (prepared as reported in Tetrahedron 34,2389-2391,1978) in 20 ml of DMF, 2 aminoethylguanidine dihydrochloride (500 mg), 1 hydroxybenzotriazole hydrate (350 mg), dicycloexylcarbodiimide (880 mg), and sodium bicarbonate (385 mg) was stirred at 70°C for 4 hours. The solution obtained after filtration was evaporated in vacuo and the purified by chromatography flash (methylene chloride/methanol:8/2) to yield 800 mg of 2-[1-methyl-4[1methyl-4[1-methyl-4-nitropyrrole-2-carboxamido]pyrrole-2carboxamido]pyrrole-2-carboxamido]ethylguanidine hydrochloride, which was dissolved in methanol (100 ml), added with 1N hydrochloric acid solution (2 ml) and reduced over Pd catalyst (10% on charcoal) in hydrogen atmosphere (50 psi) in a Parr apparatus. The solution obtained after

filtration of the catalyst was evaporated in vacuo and the solid residue washed with dry ethanol to yield $750~{\rm mg}$ of the intermediate as a brown powder.

FAB-MS: m/z 469, (15, [M+H]⁺)

- 5 PMR (DMSO- d_6) δ :
 - 10.38-10.11 (b.s., 4H), 9.98 (s, 1H), 8.28 (b.s., 1H), 8.19
 - (d, J=1.7 Hz, 1H), 7.73, (b.s., 1H), 7.63 (d, J=1.7 Hz,
 - 1H), 7.60-7.00 (b.s., 4H), 7.28 (d, J= 1.7 Hz, 1H), 7.20
 - (d, J=1.7 Hz, 1H), 7.1 (d, J=1.7 Hz, 1H), 6.92 (d, J=1.7
- 10 Hz, 1H), 3.93 (s, 3H), 3.90 (s, 3H), 3.82 (s, 3H), 3.28 (m, 4H).

By analogous procedure and by using the opportune starting materials the following products can be obtained:

- materials the following products can be obtained:

 3-[1-methyl-4[1-methyl-4-aminopyrrole-2
 - carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]
 - propioncyanamidine hydrochloride;
 - 3-[1-methyl-4[1-methyl-4[1-methyl-4-aminopyrrole-2-
 - carboxamido]pyrrole-2-carboxamido]pyrrole-2-
- 20 carboxamido]propionamidoxime hydrochloride;
 - 3-[1-methyl-4[1-methyl-4[1-methyl-4-aminopyrrole-2-
 - carboxamido]pyrrole-2-carboxamido]
 - propion-N-methyl-amidine dihydrochloride;
 - 3-[1-methyl-4[1-methyl-4[1-methyl-4-aminopyrrole-2-
- carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]
 - propion-N, N'-dimethyl-amidine dihydrochloride;
 - 3-[1-methyl-4[1-methyl-4[1-methyl-4-aminopyrrole-2-
 - carboxamido]pyrrole-2-carboxamido]
 - propionamide hydrochloride;
- 30 3-[1-methyl-4[1-methyl-4[1-methyl-4-aminopyrrole-2
 - carboxamido) pyrrole-2-carboxamido] pyrrole-2-carboxamido]
 - propion-N-methylamide hydrochloride; and

3-[1-methyl-4[1-methyl-4[1-methyl-4-aminopyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-1-carboxamido]propionitrile hydrochloride.

5 Step III The title compound

A solution of 250 mg of 1-methyl-4-(α-bromoacrylamido) pyrrole-2-carboxyl chloride (prepared as reported in Example 1 step II) in 15 ml of benzene, was added to a solution of the intermediate obtained from step II (250 mg) and 82 mg of NaHCO₃ in 5 ml of H₂O. The solution was vigorously stirred for 8 hours at room temperature, then evaporated in vacuo and the crude residue was purified by flash chromatography (methylene chloride/ methanol: 8/2) to yield 220 mg of the title compound as a yellow solid.

15 FAB-MS: m/z 723, (32, [M+H]⁺)

PMR (DMSO- d_6) δ :

20

10.30 (s, 1H), 9.95 (s, 1H), 9.92 (s, 1H), 9.90 (s, 1H),8.10 (t, J=5.9Hz, 1H), 7.56 (t, J=5.9, 1H), 7.2 (b.s., 4H), 6.9-7.3 (m, 8H), 6.68 (d, J=2.9 Hz, 1H), 6.21 (d, J=2.9 Hz, 1H), 3.85 (s, 3H), 3.84 (s, 3H), 3.83 (s, 3H), 3.80 (s, 3H), 3.30 (b.s., 4H).

UV: c=15.3mg/l(EtOH95%) $\lambda_{MAX}=312.0$ $\epsilon=48792$

By analogous procedure and by using the opportune starting 25 materials the following products can be obtained:

- 2-[1-methyl-4[1-methyl-4[1-methyl-4(α-bromoacrylamido) pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]ethylguanidine hydrochloride;
- 2-[1-methyl-4[1-methyl-4[1-methyl-4[1-methyl-4 $(\alpha$ -chloro-
- acrylamido)pyrrole-2-carboxamido]pyrrole-2-carboxamido]
 pyrrole-2-carboxamido]pyrrole-2-carboxamido]ethylguanidine

```
hydrochloride;
    3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(\alpha-bromoacrylamido)
    pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-
    carboxamido) propioncyanamidine;
    3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(\alpha-
 5
    bromoacrylamido)pyrrole-2-carboxamido)pyrrole-2-
    carboxamido)pyrrole-2-carboxamido)pyrrole-2-
    carboxamido) propion-cyanamidine;
    3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(\alpha-
    chloroacrylamido)pyrrole-2-carboxamido)pyrrole-2-
10
    carboxamido) pyrrole-2-carboxamido)
    propioncyanamidine;
    3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(\alpha-bromoacrylamido)))
    pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-
15
    carboxamido) propion-N-methylamidine hydrochloride;
    3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(\alpha-
    bromoacrylamido)pyrrole-2-carboxamido)pyrrole-2-
    carboxamido)pyrrole-2-carboxamido)pyrrole-2-
    carboxamido) propion-N-methylamidine hydrochloride;
    3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(\alpha-
20
    chloroacrylamido)pyrrole-2-carboxamido)pyrrole-2-
    carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)
    propion-N-methylamidine hydrochloride;
    3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(\alpha-bromoacrylamido)))
    pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-
25
    carboxamido) propion-N, N'-dimethylamidine hydrochloride;
    3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(\alpha-
    bromoacrylamido)pyrrole-2-carboxamido)pyrrole-2-
    carboxamido)pyrrole-2-carboxamido)pyrrole-2-
    carboxamido) propion-N, N'-dimethylamidine hydrochloride;
30
    3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(\alpha-
```

-35-

```
chloroacrylamido) pyrrole-2-carboxamido) pyrrole-2-
                               carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)
                             propion-N, N'-dimethylamidine hydrochloride;
                              3-(1-\text{methyl}-4-(1-\text{methyl}-4-(1-\text{methyl}-4-(\alpha-\text{bromoacrylamido}))
                            pyrrole-2-carboxamido) pyrrole-2-carboxamido) pyrrole-2-
                              carboxamido) propionamidoxime;
                              3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(\alpha-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1
                            bromoacrylamido)pyrrole-2-carboxamido)pyrrole-2-
                             carboxamido) pyrrole-2-carboxamido)
                            propionamidoxime;
10
                             3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(\alpha-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1
                             chloroacrylamido) pyrrole-2-carboxamido) pyrrole-2-
                             carboxamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido)
                            propionamidoxime;
                             3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(\alpha-bromoacrylamido)
15
                            pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-
                             carboxamido) propionamide;
                             3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(\alpha-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1
                            bromoacrylamido)pyrrole-2-carboxamido)pyrrole-2-
20
                            carboxamido) pyrrole-2-carboxamido) pyrrole-2-
                             carboxamido) propionamide;
                              3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(\alpha-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1
                               chloroacrylamido)pyrrole-2-carboxamido)pyrrole-2-
                               carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)
                            propionamide; and
                              3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(\alpha-
                            bromoacrylamido)pyrrole-2-carboxamido)pyrrole-2-
                             carboxamido) pyrrole-2-carboxamido) pyrrole-2-
```

carboxamido) propion-N-methylamide.

EXAMPLE 6

3-[1-methyl-4[1-methyl-4[1-methyl-4(α-bromoacrylamido) pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]propionitrile

5

- Step I The intermediate 3-[1-methyl-4[1-methyl-4[1methyl-4-aminopyrrole-2-carboxamido]pyrrole-2carboxamido]pyrrole-2-carboxamido]propionitrile
 hydrochloride
- To a solution of 1 g of distamycin A in 20 ml DMF were 10 added 550 mg of succinic anhydride and 950 mg of $\rm K_2CO_3$. The solution was heated at 60°C for 3 hours then evaporated to and the crude residue was purified by flash dryness chromatography (methylene chloride/methanol: 9/1) to give 15 750 3-[1-methyl-4[1-methyl-4[1-methyl-4of g formamidopyrrole-2-carboxamido]pyrrole-2carboxamido]pyrrole-2-carboxamido] propionitrile which was dissolved in 20 ml of methanol and added of 5 ml of HCl 2N. The solution was stirred at room temperature for 2 days, the solvent evaporated in vacuo and the solid residue 20 suspended in 20 ml of ethyl acetate, yielding, after filtration 560 mg of the intermediate.

Step II The title compound

- To a solution of 80 mg α-bromoacrylic acid in 10 ml of DMF, 57 mg of dicyclohexylcarbodiimide were added. The solution was stirred at room temperature for 20' then added of 110 mg of intermediate obtained from step I and 20 mg of sodium bicarbonate.
- The mixture was stirred at room temperature for 8 hours, the solvent was evaporated in vacuo and the crude residue purified by flash chromatography (methylene chloride/

methanol:9/1) to yield 100 mg of the title compound as a yellow solid.

FAB-MS: m/z 571, (10, $[M+H]^+$)

PMR (DMSO- d_6) δ :

5 10.29 (s, 1H), 9.96 (s, 1H), 9.92 (s, 1H), 8.32 (t, J=5.9 Hz, 1H), 6.9-7.3 (m, 6H), 6.67 (d, J=2.8 Hz, 1H), 6.22 (d, J=2.8 Hz, 1H), 3.85 (s, 3H), 3.84 (s, 3H), 3.80 (s, 3H), 3.39 (m, 2H), 2.7 (t, J=6.3 Hz, 2H).

UV: c=15.1mg/l(EtOH95%) $\lambda_{MAX}=308.4$ $\epsilon=37068$

- By analogous procedure and by using the opportune starting materials the following products can be obtained:
- 3-[1-methyl-4[1-methyl-4[1-methyl-4[1-methyl-4(α -
- bromoacrylamido)pyrrole-2-carboxamido]pyrrole-2-
- carboxamido]pyrrole-2-carboxamido]pyrrole-2carboxamido]propionitrile;
 - 3-[1-methyl-4[1-methyl-4[1-methyl-4[1-methyl-4(α-chloroacrylamido)pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]
- 20 propionitrile;
 - 3-[1-methyl-4[1-methyl-4[1-methyl-4(α-chloroacrylamido) pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]propion-N-methyl-amidine hydrochloride;
 - $3-[1-methyl-4[1-methyl-4[1-methyl-4(\alpha-chloroacrylamido)]]$
- pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2carboxamido]propion-N,N'-dimethyl-amidine hydrochloride;
 - 3-[1-methyl-4[1-methyl-4[1-methyl-4(α-chloroacrylamido) pyrrole-2-carboxamido]pyrrole-2-
 - carboxamido]propionamidoxime;
- 30 3-[1-methyl-4[1-methyl-4[1-methyl-4(α-chloroacrylamido) pyrrole-2-carboxamido]pyrrole-2-

WO 98/04524 PCT/EP97/03719

-38-

carboxamido] propioncyanamidine;

3-[1-methyl-4[1-methyl-4[1-methyl-4(α -chloroacrylamido) pyrrole-2-carboxamido] pyrrole-2-carboxamido] pyrrole-2-carboxamido] propionamide.

5

10

15

20

EXAMPLE 7

3-[1-methyl-4[1-methyl-4[1-methyl-4[1-methyl-4(α-bromoacrylamido)pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-

Step I The intermediate 3-[1-methyl-4[1-methyl-4[1methyl-4-aminopyrrole-2-carboxamido]pyrrole-2carboxamido]pyrrole-2-carboxamido]propionamide
hydrochloride

solution of 1 g of distamycin A in 50 ml acetonitrile and 50 ml of water, 10 ml of NaOH 1N, were added and the solution was heated at 60°C for 4 hours. The solvent was evaporated to dryness and the crude residue was purified by flash chromatography (methylene chloride/ methanol:9/1) affording 800 mg of 3-[1-methyl-4[1-methyl-4[1-methyl-4-formamidopyrrole-2-carboxamido]pyrrole-2carboxamido]pyrrole-2-carboxamido]propionamide dissolved in 20 ml of methanol and added of 5 ml of HCl 2N. The reaction was stirred at room temperature for 2 days, the solvent was evaporated in vacuo and the solid residue suspended in 50 ml of ethyl acetate, yielding after filtration 600 mg of the intermediate as a light brown solid.

30

25

By analogous procedure and by using the opportune starting material the following product can be obtained:

3-[1-methyl-4[1-methyl-4[1-methyl-4-aminopyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]propion-N-methylamide hydrochloride

5 <u>Step II</u> The title compound

A solution of 260 mg of 1-methyl-4-(α -bromoacrylamido) pyrrole-2-carboxyl chloride (prepared as reported Example 1 step II) in 25 ml of dioxane, was added to a solution of the intermediate obtained from step II (420 mg) in 25 ml of acetonitrile and 25 ml dioxane and 0.27 ml of 10 triethylamine. The solution was stirred for 1 hour at room temperature, then evaporated in vacuo and the crude residue was purified by flash chromatography (methylene chloride/ methanol: 8/2) to yield 220 mg of the title compound as a yellow solid. 15

FAB-MS: m/z 711, (36, [M+H]⁺)

PMR (DMSO- d_6) δ :

10.27 (s, 1H), 9.94 (s, 1H), 9.92 (s, 1H), 9.86 (s, 1H), 7.94 (t, J=5.9 Hz, 1H), 6.8-7.3 (m, 8H), 7.31 (b.s., 1H),

20 6.79 (b.s., 1H), 6.66 (d, J=2.9 Hz, 1H), 6.21 (d, J=2.9 Hz, 1H), 3.84 (s, 6H), 3.83 (s, 3H), 3.79 (s, 3H), 3.33 (m, 2H), 2.30 (t, J=7.2 Hz, 2H).

UV: c=15.1mg/1 (EtOH95%) $\lambda_{MAX}=311.0$ $\epsilon=53146$

- By analogous procedure and by using the oppportune starting materials the following products can be obtained:
 - 3-[1-methyl-4[1-methyl-4[1-methyl-4(α-bromoacrylamido) pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]propionamide;
- 30 3-[1-methyl-4[1-methyl-4[1-methyl-4[1-methyl-4(α-chloroacrylamido)pyrrole-2-carboxamido]pyrrole-2-

carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]
propionamide; and

3-[1-methyl-4-[1-methyl-4-[1-methyl-4-[1-methyl-4-(α-bromoacrylamido)pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-

EXAMPLE 8

5

3-[1-methyl-4[1-methyl-4[1-methyl-4(α -

carboxamido]propion-N-methylamide.

- bromoacrylamido)pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]propion-N-methyl-amidine hydrochloride
- Step I The intermediate 3-[1-methyl-4[1-methyl-4[1-methyl-4[1-methyl-4-aminopyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-N-methyl-amidine dihydrochloride
- g of 3-[1-methyl-4-[1-methyl-4-[1-metyhyl-4nitropyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-20 carboxamido]propionitrile (prepared as reported in J.Med.Chem 22, 1296-1301, 1979) was suspended in and the solution saturated with dry hydrogen ethanol chloride. After 24 hours at room temperature, the solvent was evaporated in vacuo and the residue treated with two equivalents of solution of methylamine in dry ethanol. 25 24 hours at room temperature, the solvent evaporated in vacuo and the residue purified by flash chromatography yielding 500 mg of 3-[1-methyl-4[1-methyl-4[1-methyl-4-nitropyrrole-2-carboxamido]pyrrole-2-
- carboxamido]pyrrole-2-carboxamido]propion-N-methylamidine hydrochloride which was dissolved in a mixture of methanoldioxane-10% hydrochloric acid (4:1:1) and reduced over Pd

WO 98/04524

dioxane-10% hydrochloric acid (4:1:1) and reduced over Pd catalyst (10% on charcoal) in hydrogen atmosphere (50 psi) in a Parr apparatus.

-41-

The solution obtained after filtration of the catalyst was evaporated in vacuo, and the solid residue suspended in dry ethanol, and filtered to yield 500 mg of intermediate.

m/z 468, (40, $[M+H]^+$)

PMR (DMSO-d₆) δ:

10.20 (s, 3H), 10.18 (s, 1H), 9.98 (s, 1H), 9.65 (m, 1H), 10 9.20 (s, 1H), 8.63(s, 1H), 8.25 (t, J=5.8 Hz, 1H), (d, J=1.7 Hz, 1H), 7.19 (d, J=1.7 Hz, 1H), 7.11 (d, J=1.7 Hz)Hz, 1H) 7.08 (d, J=1.7 Hz, 1H), 7.05 (d, J=1.7 Hz, 1H), 6.91 (d, J=1.7 Hz, 1H), 3.90 (s, 3H), 3.85 (s, 3H), 3.79 (s, 3H), 3.60-3.40 (m, 2H), 2.80 (d, J=6 Hz, 3H), 2.61 (m,2H). 15

By analogous procedure and by using the opportune starting materials the following product can be obtained:

3-[1-methyl-4[1-methyl-4[1-methyl-4-aminopyrrole-2-

- carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido] 20 propioncyanamidine hydrochloride;
 - 3-[1-methyl-4[1-methyl-4[1-methyl-4-aminopyrrole-2carboxamido]pyrrole-2-carboxamido]pyrrole-2carboxamido] propionamidoxime hydrochloride; and
- 25 3-[1-methyl-4[1-methyl-4[1-methyl-4-aminopyrrole-2carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido] propion-N, N'-dimethyl-amidine dihydrochloride.

Step II The title compound

30 To a solution of 70 mg α -bromoacrylic acid in 8 ml of DMF, 51 mg of dicyclohexylcarbodiimide were added. The solution was stirred at room temperature for 20' then added of 108 mg of intermediate obtained from step I and 17 mg of sodium bicarbonate.

The mixture was stirred at room temperature for 10 hours, the solvent was evaporated in vacuo and the crude residue purified by flash chromatography (methylene chloride/methanol:8/2) to yield 50 mg of the title compound as a yellow solid.

FAB-MS: m/z 600, (20, $[M+H]^+$)

PMR (DMSO- d_6) δ :

10 10.28 (s, 1H), 9.93 (s, 1H), 9.88 (s, 1H), 9.4 (b.s., 1H), 9.1 (b.s., 1H), 8.5 (b.s., 1H), 8.18 (t, J=5.9 Hz, 1H), 6.8-7.3 (m, 6H), 6.64 (d, J=2.9 Hz, 1H), 6.18 (d, J=2.9 Hz, 1H), 3.80 (s, 3H), 3.79 (s, 3H), 3.76 (s, 3H), 3.48 (m, 2H), 2.75 (s, 3H), 2.62 (m, 2H).

15

By analogous procedure and by using the opportune starting materials the following products can be obtained:

- 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α -bromoacrylamido)pyrrole-2-carboxamido)pyrrole-2-
- carboxamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)propion-cyanamidine;
 - 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α -bromoacrylamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-
- carboxamido) propion-N-methylamidine hydrochloride;

 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-chloro-acrylamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) propion-N-methylamidine hydrochloride;
- 30 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-chloroacrylamido)pyrrole-2-carboxamido)pyrrole-2-

carboxamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) propion-N,N'-dimethylamidine hydrochloride; and

3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-bromoacrylamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) propionamidoxime.

EXAMPLE 9

10

3-[1-methyl-4[1-methyl-4[1-methyl-4[1-methyl-4(α-bromo-acrylamido)pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]

To a solution of 350 mg of 3-[1-methyl-4[1-methyl-4[1methyl-4-[1-methyl-4(α-bromoacrylamido)pyrrole-2carboxamido]pyrrole-2-carboxamido] pyrrole-2-carboxamido]propionamidine 15 hydrochloride (prepared as reported in WO 90/11277) in 20 ml of DMF, were added 120 mg of succinic anhydride and 165 mg of $\rm K_2CO_3$. The solution was heated at 60°C for 3 hours then the solvent evaporated under reduced pressure and the crude residue was 20 purified by flash chromatography (methylene chloride/methanol:95/5) to yield 150 mq of the title compound as a pale yellow solid. FAB-MS: m/z 693, (100, [M+H]⁺)

PMR (DMSO- d_6) δ :

25 10.32 (s, 1H), 10.00 (s, 1H), 9.97 (s, 1H), 9.95 (s, 1H), 8.36 (t, J=5.9 Hz, 1H), 6.9-7.3 (m, 8H), 6.70 (d, J=2.7 Hz, 1H), 6.25 (d, J=2.7 Hz, 1H), 3.88 (s, 6H), 3.87 (s, 3H), 3.60 (s, 3H), 3.42 (m, 2H), 2.75 (t, J=6.5 Hz, 2H). UV: c=20.3mg/l(EtOH95%) λ_{MAX} =312.6 ϵ =45606

By analogous procedure and by using the opportune starting materials the following products can be obtained:

- 3-[1-methyl-4[1-methyl-4[1-methyl-4(α-bromoacrylamido)
- pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]propionitrile; and
 - 3-[1-methyl-4[1-methyl-4[1-methyl-4[1-methyl-4(α-chloroacrylamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-1-carboxamido]

EXAMPLE 10

10

15

3-[1-methyl-4[1-methyl-4[1-methyl-4[1-methyl-4(\alpha-chloroacrylamido)pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]propion-N-methyl-amidine hydrochloride

To a solution of the intermediate prepared as reported in Example 2, step I, and 100 mg of NaHCO₃ in 15 ml of water,

395 mg of 1-methyl-4(α-chloroacrylamido)pyrrole-2-carboxyl chloride in 15 ml of benzene were added. The reaction was stirred vigorously for 4 hours, then the solvent was evaporated under vacuum and the crude residue purified by flash chromatography (methylene chloride/methanol:8/2) to yield 135 mg of the title compound as a yellow powder.

FAB-MS: m/z 678, (45, [M+H]⁺)

PMR (DMSO- d_c) δ :

- 10.29 (s, 1H), 9.96 (s, 1H), 9.92 (s, 1H), 9.89 (s, 1H) 8.9 (b.s., 3H), 8.19 (t, J=5.9 Hz, 1H), 6.9-7.3 (m, 8H)
- 30 6.37 (d, J=2.2 Hz, 1H), 5.99 (d, J=2.2 Hz, 1H), 3.84 (s,

- 6H), 3.83 (s, 3H), 3.79 (s, 3H), 3.48 (m, 2H), 2.78 (s, 3H), 2.59 (m, 2H).
- UV: c=18.5mg/l(EtOH95%) λ_{MAX} =312.6 ϵ =44232
- By analogous procedure and by using the opportune starting materials the following products can be obtained:
 - 3-[1-methyl-4[1-methyl-4[1-methyl-4[1-methyl-4(α-bromoacrylamido)pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-
- carboxamido]pyrrole-2-carboxamido]propion-N-methyl-amidine hydrochloride; and
 - 3-[1-methyl-4[1-methyl-4[1-methyl-4(α-bromoacrylamido) pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]propion-N-methyl-amidine hydrochloride.

CLAIMS

1. An acryloyl substituted distamycin derivative of formula:

$$\begin{array}{c}
R_1 \\
R_2
\end{array}$$

$$\begin{array}{c}
C = C
\end{array}$$

$$\begin{array}{c}
NH \\
NH \\
CH_3
\end{array}$$

$$\begin{array}{c}
NH \\
DH
\end{array}$$

5

15

wherein:

n is 2, 3 or 4;

 R_1 and R_2 are selected, each independently, from: hydrogen, halogen, and $C_1\text{-}C_4$ alkyl;

10 R₃ is hydrogen or halogen;

B is selected from:

$$-C \equiv N$$
 , and $-C - NR_2 R_2$;

wherein R_4 , R_5 , R_6 , R_7 , and R_8 are, each independently, hydrogen or C_1 - C_4 alkyl, with the proviso that at least one of R_4 , R_5 and R_6 is C_1 - C_4 alkyl;

or a pharmaceutically acceptable salt thereof.

2. A compound as defined in claim 1, wherein:

n is 3 or 4;

20 R₁ and R₂ are hydrogen;

R₃ is chlorine or bromine;

B is selected from:

wherein R_4 , R_5 , R_6 , R_7 , and R_8 are, each independently, hydrogen or methyl, with the proviso that at least one of R_4 , R_5 and R_6 is methyl.

5

15

- A compound as defined in claim 1, selected from:
- 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-bromoacrylamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) propioncyanamidine;
- 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-bromoacrylamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)
 - 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-chloroacrylamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)
 - 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-bromoacrylamido) pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)propion-N-methylamidine;
 - 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-bromoacrylamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-1-carboxamido)pyrrole-2-carboxamido)
- 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-chloroacrylamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-1-carboxamido)propion-N-methylamidine;
 - $3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(\alpha-bromoacrylamido)))$

WO 98/04524 PCT/EP97/03719

```
pyrrole-2-carboxamido) pyrrole-2-carboxamido) pyrrole-2-
carboxamido) propion-N, N'-dimethylamidine;
```

3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α -methyl-4-(α -

bromoacrylamido)pyrrole-2-carboxamido)pyrrole-2-

- carboxamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido)
 propion-N,N'-dimethylamidine;
 - 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-chloroacrylamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-1-carboxamido)pyrrole-2-carboxamido)
 - 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-bromoacrylamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) propionamidoxime;

- 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(αbromoacrylamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)
 propionamidoxime;
 - 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-chloroacrylamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)
- carboxamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido)
 propionamidoxime;
 - 2-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-bromoacrylamido)
 pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2 carboxamido)ethylguanidine;
- 2-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-bromoacrylamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)ethylguanidine;
- 2-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(αchloroacrylamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)pyrrole-2-carboxamido)

-49-

ethylguanidine;

15

- 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-bromoacrylamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) propionitrile;
- 5 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-bromoacrylamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)
- 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(αchloroacrylamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)pyrrole-2-carboxamido)
 propionitrile;
 - 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-bromoacrylamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) propionamide;
 - 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(αbromoacrylamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)
 propionamide;
- 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-chloroacrylamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)
- 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α25 bromoacrylamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)pyrrole-2-carboxamido)pyrrole-2-carboxamido)
 propion-N-methylamide;
 - 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-bromoacrylamido)
 pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)propion-N, N-dimethylamidine;
 - 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α -

10

bromoacrylamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) propion-N, N-dimethylamidine;

- 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(1-methyl-4-(αchloroacrylamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)propion-N, N-dimethylamidine;
 - 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-chloroacrylamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) propion-N-methyl-amidine;
 - 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-chloroacrylamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) propion-N,N'-dimethyl-amidine;
- 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-chloroacrylamido)
 pyrrole-2-carboxamido)pyrrole-2-carboxamido)pyrrole-2carboxamido)propionamidoxime;
 - 3-(1-methyl-4-(1-methyl-4-(1-methyl-4-(α-chloroacrylamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) pyrrole-2-carboxamido) propioncyanamidine; and

and the pharmaceutically acceptable salts thereof.

- 4. A process for producing a compound as defined in claim 1, which process comprises:
 - (a) reacting a compound of formula:

$$\begin{array}{c|c}
H_2N & & \\
N & & \\
CH_3 & & \\
\end{array}$$

$$\begin{array}{c|c}
NH & \\
n-m
\end{array}$$

$$\begin{array}{c|c}
B & (II)$$

wherein:

n is 2, 3 or 4;

m is 0 or 1;

B is selected from:

wherein R_4 , R_5 , R_6 , R_7 , and R_8 are, each independently, hydrogen or C_1 - C_4 alkyl, with the proviso that at least one of R_4 , R_5 and R_6 is C_1 - C_4 alkyl;

with a compound of formula:

$$R_{2}$$
 $C=C$ NH X (III)

10

5

wherein: R_1 and R_2 are selected, each independently, from: hydrogen, halogen, and C_1 - C_4 alkyl; R_3 is hydrogen or halogen; X is hydroxy or a leaving group; and m has the above reported meanings;

15 or:

(b) when B is equal to -C=N, reacting a compound of formula:

$$\begin{array}{c}
R_1 \\
R_2
\end{array}$$

$$\begin{array}{c}
R_3 \\
NH
\end{array}$$

$$\begin{array}{c}
NH \\
CH_3
\end{array}$$

$$\begin{array}{c}
NH \\
NH
\end{array}$$

$$\begin{array}{c}
NH \\
NH
\end{array}$$

$$\begin{array}{c}
NH \\
NH
\end{array}$$

wherein n, R_1 , R_2 , and R_3 are as defined above; with succinic anhydride, and, if desired, converting a

WO 98/04524

-52-

PCT/EP97/03719

compound of formula (I) into a pharmaceutically acceptable salt thereof.

- 5. A compound as defined in any one of claims 1 to 3, for use in a method of treating the human or animal body by therapy.
 - 6. A compound as claimed in claim 5 for use as an antineoplastic agent.

10

- 7. A compound as claimed in claim 5 for use as an antiviral agent.
- 8. Use of a compound as defined in any one of claims 1 to 3, in the manufacture of a medicament for use in the treatment of cancer.
- 9. Use of a compound as defined in any one of claims 1 to 3, in the manufacture of a medicament for use in the treatment of viral infection.
 - 10. A pharmaceutical composition, which comprises an effective amount of a compound as defined in any one of claims 1 to 3 as an active principle, in association with one or more pharmaceutically acceptable carriers and/or diluents.

Inter. ..onal Application No PCT/EP 97/03719

		Į P	CI/EP 9//03/19
A. CLASSII IPC 6	FICATION OF SUBJECT MATTER C07D207/34 A61K31/40		
According to	o International Patent Classification (IPC) or to both national class	ification and IPC	
B. FIELDS	SEARCHED		
Minimum do IPC 6	cumentation searched (classification system followed by classifi CO7D A61K	oation symbols)	
Documental	tion searched other than minimum documentation to the extent th	at such documents are included	in the fields searched
Electronic d	ata base consulted during the international search (name of data	a base and, where practical, sea	roh terma used)
C, DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
Y	WO 90 11277 A (FARMITALIA CARLO ERBA) 4 October 1990 cited in the application see page 8-9; claim 1		1-10
Y	GREHN ET AL.: "Synthesis and Antiviral activity of Distamycin A Analogues: Substitutions on the different Pyrrole Nitrogens and in the Amidine Function" JOURNAL OF MEDICINAL CHEMISTRY, vol. 26, no. 7, 1983, pages 1042-49, XP002047789 see the whole document		1-10
Y	GB 2 178 036 A (FARMITALIA CAR February 1987 *see page 6, line 40-50; page	15; claim 1*	1-10
		-/	
X Fur	ther documents are listed in the continuation of box C.	X Patent family men	nbers are listed in annex.
"A" docum consi "E" earlier filing "L" docum which citatis "O" docum other "P" docum	ent which may throw doubts on priority claim(e) or n is cited to establish the publication date of another on or other special reason (as specified) nent referring to an oral disclosure, use, exhibition or means nent published prior to the international filing date but	or priority date and no cited to understand the invention. "X" document of particular cannot be considered involve an inventive a "Y" document of particular cannot be considered document is combine ments, such combine in the art.	ed after the interrectional filing date at in conflict with the application but the principle or theory underlying the relevance; the claimed invention I novel or cannot be considered to top when the document is taken alone relevance; the claimed invention I to involve an inventive step when the id with one or more other such docu- dion being obvious to a person skilled
later	than the priority date claimed	"&" document member of t	
	e actual completion of the international search 21 November 1997		international search report
Name and	mailing address of the ISA	Authorized officer	-
	European Patent Office, P.B. 6818 Patentiaan 2 NL - 2280 MV Rijawijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Lauro, P	

Inte. .onal Application No PCT/EP 97/03719

Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT				
gery °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to clai	Relevant to claim No.	
	EP 0 246 868 A (FARMITALIA CARLO ERBA) 25 November 1987 cited in the application see page 1-2	1-10	1-10	

Information on patent family members

inte onal Application No
PCT/EP 97/03719

WO 9011277 A	04-10-90	AU 635733 B AU 5276190 A CA 2030519 A DE 69005164 D DE 69005164 T EP 0388948 A EP 0416075 A	01-04-93 22-10-90 24-09-90 27-01-94 31-03-94 26-09-90
		ES 2062143 T FI 95463 B HU 213507 B IE 64654 B JP 3504863 T PT 93552 B US 5175182 A	13-03-91 16-12-94 31-10-95 28-07-97 23-08-95 24-10-91 30-04-97 29-12-92
GB 2178036 A	04-02-87	AT 387013 B AU 587841 B AU 6020286 A BE 905110 A CA 1285934 A CH 674206 A CN 1018825 B CS 8904883 A CS 8605412 A DE 3623880 A DK 335986 A FR 2585018 A 1E 59073 B JP 2047861 C JP 7080843 B JP 62077362 A KR 9310496 B NL 8601837 A SE 468642 B SE 8603098 A SU 1544185 A SU 1609445 A US 4766142 A	25-11-88 31-08-89 22-01-87 15-01-87 09-07-91 15-05-90 28-10-92 12-03-91 12-03-91 12-03-91 29-01-87 17-01-87 12-01-94 25-04-96 30-08-95 09-04-87 25-10-93 16-02-87 22-02-93 17-01-87 15-02-90 23-11-90 23-08-88

Information on patent family members

Into onal Application No
PCT/EP 97/03719

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 246868 A	<u> </u>	AU 7316387 A	26-11-87
		BG 60531 B	28-07-95
		CA 1314551 A	16-03-93
		CS 9104137 A	16-09-92
		DE 3781716 A	2 2- 10-92
		DK 254587 A	21-11-87
		HK 31993 A	08-04-93
		IE 60198 B	15-06-94
		JP 1898111 C	23-01-95
		JP 6023193 B	30-03-94
		JP 62294653 A	22-12-87
		KR 9511408 B	04-10-95
		MX 9203122 A	01-07-92
		SU 1528316 A	07-12-89
		US 5017599 A	21-05-91
		US 5049579 Å	17-09-91
		US 5310752 A	10-05-94
		ZA 8703593 A	12-11-87