Mathematical Tripos Part III: Michaelmas Term 2017/18

Topic in Mathematics of Information – Exercise Sheet III

1. Show that if $A \in \mathbb{R}^{m \times n}$ and $\Lambda \subset \{1, \dots, n\}$ are such that

$$\sum_{i \in \Lambda} |v_j| < \sum_{l \in \Lambda^c} |v_l| \quad \forall v \in \mathcal{N}(A), \, \mathbb{R}^n \ni v \neq 0,$$

then

$$\sum_{j \in \Lambda} \sqrt{v_j^2 + w_j^2} < \sum_{l \in \Lambda^c} \sqrt{v_l^2 + w_l^2}, \quad \forall v, w \in \mathcal{N}(A), (v, w) \neq (0, 0).$$

Hint: For $u, v \in \mathcal{N}(A)$, consider $u = \cos(\theta)v + \sin(\theta)w$.

2. Given $A \in \mathbb{R}^{m \times n}$, show that every k-sparse vector $x \in \mathbb{R}^n$ where $x \ge 0$ (this means all entries are nonnegative) is the unique solution to

$$\min \|z\|_{l^1}$$
 subject to $Az = Ax$ $z \geqslant 0$

if and only if

$$v_{\Lambda^c} \geqslant 0 \Rightarrow \sum_{j=1}^n v_j > 0$$

for all $v \in \mathcal{N}(A) \setminus \{0\}$ and all $\Lambda \subset \{1, \dots, n\}$ with $|\Lambda| \leq k$.

3. Let $A \in \mathbb{C}^{m \times N}$. Show that $\delta_s(A) = \max_{S \subset [N], |S| \leqslant s} \|A_S^* A_S - I_S\|_{2 \to 2}$. Suppose that $\delta_s(A) < 1$. Show that for any $S \subset [N]$ with $|S| \leqslant s$, $\frac{1}{1 + \delta_s(A)} \leqslant \|(A_S^* A_S)^{-1}\|_{2 \to 2} \leqslant \frac{1}{1 - \delta_s(A)}$.

$$\begin{split} (1 - \delta) \|x\|_2^2 &\leqslant \|Ax\|_2^2 \leqslant (1 + \delta) \|x\|_2^2 \\ \iff -\delta \|x\|_2^2 &\leqslant \|Ax\|_2^2 - \|x\|^2 \leqslant \delta \|x\|_2^2 \\ \iff |\langle (A_S^*A_S - I_S)x, \, x \rangle| &\leqslant \delta. \end{split}$$

So,

$$\delta_s = \sup_{S \subset [N], |S| = s} \sup_{\|x\| = 1} |\langle (A_S^* A_S - I_S) x, \, x \rangle| = \sup_{S \subset [N], |S| = s} \|A_S^* A_S - I_S\|_{2 \to 2}$$

since $A_S^*A_S - I_S$ is self-adjoint.

Finally, since we have for x with $Supp(x) \subset S$,

$$(1-\delta)\|x\|_2^2 \underbrace{\leqslant}_{(a)} \langle A_S^* A_S x, x \rangle \underbrace{\leqslant}_{(b)} (1+\delta)\|x\|_2^2,$$

- (a) implies that $(1 \delta_s) \|x\| \le \|A_S^* A_S x\|$, so letting $x = (A_S^* A_S)^{-1} z$, we have $\|z\| \ge \|(A_S^* A_S)^{-1} z\|$ which implies that $\|A_S^* A_S)^{-1} \| \le \frac{1}{1 \delta_s}$.
- (b) implies that $||A_S^*A_S|| \le (1 + \delta_2)$. So, $||x|| = ||(A_S^*A_S)^{-1}A_S^*A_Sx|| \le ||(A_S^*A_S)^{-1}||(1 + \delta_s)||x||$.
- 4. Let $A \in \mathbb{C}^{m \times N}$. Suppose that A has ℓ^2 -normalized columns, i.e. for each column a_j of A, $||a_j||_2 = 1$. Show that for all s-sparse vectors

$$(1 - \mu_1(s-1)) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \mu_1(s-1)) \|x\|_2^2$$

where $\mu_1(s) = \max_k \max\left\{\sum_{j \in S} |\langle a_j, \, a_k \rangle| \; ; \; S \subset [N], |S| = s, k \not\in S \right\}$ is the ℓ^1 coherence function of A.

You may use without proof Gershgorin's disk theorem: Let λ be an eigenvalue of a square matrix $M \in \mathbb{C}^{n \times n}$. Then, there exists an index $j \in [n]$ such that

$$|\lambda - M_{j,j}| \leqslant \sum_{k \in [n] \setminus \{j\}} |M_{j,k}|.$$

5. This question discusses the converse to Theorem 19 of the notes. For a given matrix A, consider the following condition:

$$\left|\sum_{j \in S} \operatorname{sgn}(x_j) v_j\right| < \|v_{S^c}\|_1, \qquad v \in \mathcal{N}(A) \setminus \{0\}. \tag{1}$$

(a) Let $A=\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}$ and let $x=(e^{-i\pi/3},e^{i\pi/3},0)$. Check that (1) is false for $S=\operatorname{Supp}(x)$ and verify that x is the unique solution to

$$\min \|z\|_{l^1} \quad \text{subject to} \quad Az = Ax, \tag{2}$$

(b) Let $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$ such that $\operatorname{supp}(x) = S \subset \{1, \dots, n\}$. Show that x is the unique minimiser to (2) (where we minimize only over real vectors) implies that (1) holds.

Hint: Show that $\langle v, \operatorname{sign}(x - tv) \rangle < \|v_{S^c}\|_1$ for all $v \in \mathcal{N}(A) \setminus \{0\}$ and all t > 0.

6. Let $D \in \mathbb{R}^{N \times M}$ with $M \geqslant N$ and let $A \in \mathbb{R}^{m \times N}$. The restricted isometry constant δ_s adapted to D is defined as the smallest constant such that

$$(1 - \delta_s) \|z\|_2^2 \leqslant \|Az\|_2^2 \leqslant (1 + \delta_s) \|z\|_2^2$$

for all $z \in \mathbb{R}^N$ of the form z = Dx for some s-sparse $x \in \mathbb{R}^M$.

If A is an $m \times N$ subgaussian random matrix, show that the RIP constant adapted to D of $m^{-1/2}A$ satisfy $\delta_s \leqslant \delta$ with probability at least $1 - \varepsilon$ provided that

$$m \geqslant C\delta^{-2}(s \ln(eM/s) + \ln(2\varepsilon^{-1})).$$

7. Let $A \in \mathbb{C}^{m \times N}$ be a matrix with ℓ_2 -normalized columns. Let $x \in \mathbb{C}^N$ and let $S \subset [N]$ be an index set of s largest absolute entries of x. Assume that

$$||A_S^*A_S - I||_{2\to 2} \leqslant \alpha$$

for some $\alpha \in (0,1)$ and that there exists $u=A^*h\in \mathbb{C}^N$ with $h\in \mathbb{C}^m$ such that

$$u_S = \operatorname{sign}(x_S), \quad \|u_{S^c}\|_{\infty} \leqslant \beta, \quad \|h\|_2 \leqslant \gamma \sqrt{s},$$

for some constants $\beta \in (0,1)$ and $\gamma > 0$. Suppose that we are given y = Ax + e with $||e||_2 \leqslant \eta$. Show that any solution $\hat{x} \in \mathbb{C}^N$ of

$$\min_{z} \|z\|_1 \quad \text{subject to} \quad \|Az - y\|_2 \leqslant \eta$$

satisfies

$$||x - \hat{x}||_2 \leqslant C\sigma_s(x)_1 + D\sqrt{s}\eta$$

for appropriate constants C, D > 0 which depend only on α, β, γ .

Hint: Let $z = \hat{x} - x$. First use the fact that $(A_S^*A_S)$ is invertible to show that $||z_S||_2 \lesssim \eta + ||z_{S^c}||_1$. Now, how does the existence of a dual certificate allow for control on $||z_{S^c}||_1$?