1 Static Semantics

$$\Theta; \Delta; \Gamma \vdash e : t$$
 Typing rules for expressions

$$\overline{\Theta;\Delta;\cdot,x:t\vdash x:t}\quad \text{TY_VAR_LIN}$$

$$\frac{x:t\in\Delta}{\Theta;\Delta;\cdot\vdash x:t}\quad \text{TY_VAR}$$

$$\Theta; \Delta; \Gamma \vdash e : t$$

$$\Theta; \Delta; \Gamma', x : t \vdash e' : t'$$

$$\frac{\Theta; \Delta; \Gamma', x : t \vdash e' : t'}{\Theta; \Delta; \Gamma, \Gamma' \vdash \mathbf{let} \ x = e \ \mathbf{in} \ e' : t'} \quad \text{TY_LET}$$

$$\overline{\Theta;\Delta;\cdot\vdash():\mathbf{unit}}\quad \mathrm{Ty_Unit_Intro}$$

$$\Theta; \Delta; \Gamma \vdash e : \mathbf{unit}$$

$$\Theta; \Delta; \Gamma' \vdash e' : t$$

$$\overline{\Theta;\Delta;\Gamma,\Gamma'} \vdash \mathbf{let}\,() = e\,\mathbf{in}\,e':t$$

 Ty_Unit_Elim

$$\Theta$$
; Δ ; · \vdash **true** : **bool** TY_BOOL_TRUE

$$\overline{\Theta;\Delta;\cdot\vdash\mathbf{false}:\mathbf{bool}}\quad \mathrm{TY_BOOL_FALSE}$$

$$\Theta; \Delta; \Gamma \vdash e : !bool$$

$$\Theta; \Delta; \Gamma' \vdash e_1 : t'$$

$$\Theta; \Delta; \Gamma' \vdash e_2 : t'$$

$$\Theta; \Delta; \Gamma, \Gamma' \vdash e_2 : t$$
 TY_BOOL_ELIM

$$\overline{\Theta; \Delta; \cdot \vdash k : \mathbf{int}}$$
 TY_INT_INTRO

$$\overline{\Theta;\Delta;\cdot \vdash el: \mathbf{elt}}$$
 TY_ELT_INTRO

$$\Theta; \Delta; \cdot \vdash v : t$$

$$v \neq l$$

$$\Theta; \Delta; \cdot \vdash \mathbf{Many} \ v : !t$$
 TY_BANG_INTRO

$$\Theta$$
; Δ ; $\Gamma \vdash e : !t$

$$\Theta; \Delta, x: t; \Gamma' \vdash e': t'$$

$$\Theta; \Delta; \Gamma, \Gamma' \vdash \text{let Many } x = e \text{ in } e' : t'$$
 TY_BANG_ELIM

$$\Theta; \Delta; \Gamma \vdash e : t$$

$$\Theta; \Delta; \Gamma' \vdash e' : t'$$

$$\frac{\Theta; \Delta; \Gamma' \vdash e' : t'}{\Theta; \Delta; \Gamma, \Gamma' \vdash (e, e') : t \otimes t'} \quad \text{Ty_Pair_Intro}$$

$$\Theta; \Delta; \Gamma \vdash e_{12} : t_1 \otimes t_2$$

$$\frac{\Theta; \Delta; \Gamma', a: t_1, b: t_2 \vdash e: t}{\Theta; \Delta; \Gamma, \Gamma' \vdash \mathbf{let} \, (a,b) = e_{12} \, \mathbf{in} \, e: t} \quad \text{TY_PAIR_ELIM}$$

$$\Theta; \Delta; \Gamma, \Gamma \vdash \mathbf{let}(a, b) = e_{12} \mathbf{ln} \ e :$$

$$\begin{array}{l} \Theta \vdash t' \operatorname{Type} \\ \Theta; \Delta; \Gamma, x : t' \vdash e : t \\ \hline \Theta; \Delta; \Gamma \vdash \operatorname{fun} x : t' \to e : t' \multimap t \\ \hline \Theta; \Delta; \Gamma \vdash \operatorname{fun} x : t' \to e : t' \multimap t \\ \hline \Theta; \Delta; \Gamma \vdash e : t' \multimap t \\ \hline \Theta; \Delta; \Gamma' \vdash e' : t' \\ \hline \Theta; \Delta; \Gamma, \Gamma' \vdash e \cdot e' : t \\ \hline \Theta; \Delta; \Gamma, \Gamma' \vdash e \cdot e' : t \\ \hline \Theta; \Delta; \Gamma \vdash \operatorname{fun}'fc \to e : 'fc.t \\ \hline \Theta; \Delta; \Gamma \vdash \operatorname{fun}'fc \to e : 'fc.t \\ \hline \Theta; \Delta; \Gamma \vdash e : 'fc.t \\ \hline \Theta; \Delta; \Gamma \vdash e : 'fc.t \\ \hline \Theta; \Delta; \Gamma \vdash e : t' : t \vdash e : t' \\ \hline \Theta; \Delta; \Gamma \vdash \operatorname{fix}(g, x : t, e : t') : t \multimap t' \\ \hline \end{array}$$

2 Dynamic Semantics

$$\frac{\langle \sigma, e \rangle \rightarrow \mathbf{err}}{\langle \sigma, C[e] \rangle \rightarrow \mathbf{err}} \quad \text{OP_CONTEXT_ERR}$$

$$\frac{0 \leq k_1, k_2 \quad l \text{ fresh}}{\langle \sigma, \mathbf{matrix} \ k_1 \ k_2 \rangle \rightarrow \langle \sigma + \{l \mapsto_1 M_{k_1, k_2} \}, l \rangle} \quad \text{OP_MATRIX}$$

$$\frac{k_1 < 0 \text{ or } k_2 < 0}{\langle \sigma, \mathbf{matrix} \ k_1 \ k_2 \rangle \rightarrow \mathbf{err}} \quad \text{OP_MATRIX_NEG}$$

$$\frac{\langle \sigma + \{l \mapsto_1 m_{k_1, k_2} \}, \mathbf{free} \ l \rangle \rightarrow \langle \sigma, () \rangle}{\langle \sigma + \{l \mapsto_{\frac{1}{2} l} m_{k_1, k_2} \}, \mathbf{free} \ l \rangle \rightarrow \langle \sigma, () \rangle} \quad \text{OP_FREE}}$$

$$\frac{\sigma' \equiv \sigma + \{l \mapsto_{\frac{1}{2} l} m_{k_1, k_2} \} + \{l \mapsto_{\frac{1}{2} l} m_{k_1, k_2} \}}{\langle \sigma', \mathbf{unshare}[f] \ l \ l \rangle \rightarrow \langle \sigma + \{l \mapsto_{\frac{1}{2} l} m_{k_1, k_2} \}, l \rangle} \quad \text{OP_UNSHARE_EQ}}$$

$$\frac{l \neq l'}{\langle \sigma + \{l \mapsto_{\frac{1}{2} l} m_{k_1, k_2} \} + \{l' \mapsto_{\frac{1}{2} l} m'_{k_1, k_2} \}, \mathbf{unshare}[f] \ l \ l' \rangle \rightarrow \mathbf{err}} \quad \text{OP_UNSHARE_NEQ}}$$

$$\sigma' \equiv \sigma + \{l_1 \mapsto_{f_c_1} m_{1k_1, k_2} \} + \{l_2 \mapsto_{f_c_2} m_{2k_2, k_3} \}$$

$$\sigma_1 \equiv \sigma' + \{l_3 \mapsto_1 m_{3k_1, k_3} \}$$

$$\sigma_2 \equiv \sigma' + \{l_3 \mapsto_1 m_{3k_1, k_3} \}$$

$$\sigma_2 \equiv \sigma' + \{l_3 \mapsto_1 (m_1 m_2 + m_3)_{k_1, k_3} \}$$

$$\sigma_1 \equiv \sigma' + \{l_3 \mapsto_1 (m_1 m_2 + m_3)_{k_1, k_3} \}$$

$$\sigma_2 \equiv \sigma' + \{l_3 \mapsto_{f_c_1} m_{1k_1, k_2} \} + \{l_2 \mapsto_{f_{c_2}} m_{2k_2, k_3} \}$$

$$\sigma_1 \equiv \sigma' + \{l_3 \mapsto_{f_c_1} m_{1k_1, k_2} \}$$

$$\sigma_1 \equiv \sigma' + \{l_3 \mapsto_{f_c_1} m_{1k_1, k_2} \}$$

$$\sigma_1 \equiv \sigma' + \{l_3 \mapsto_{f_c_1} m_{1k_1, k_2} \}$$

$$\sigma_2 \equiv \sigma' + \{l_3 \mapsto_{f_c_1} m_{1k_1, k_2} \}$$

$$\sigma_1 \equiv \sigma' + \{l_3 \mapsto_{f_c_1} m_{1k_1, k_2} \}$$

$$\sigma_2 \equiv \sigma' + \{l_3 \mapsto_{f_{c_1}} m_{1k_1, k_2} \}$$

$$\sigma_1 \equiv \sigma' + \{l_3 \mapsto_{f_{c_1}} m_{1k_1, k_2} \}$$

$$\sigma_2 \equiv \sigma' + \{l_3 \mapsto_{f_{c_1}} m_{1k_1, k_2} \}$$

$$\sigma_1 \equiv \sigma' + \{l_3 \mapsto_{f_{c_1}} m_{1k_1, k_2} \}$$

$$\sigma_2 \equiv \sigma' + \{l_3 \mapsto_{f_{c_1}} m_{1k_1, k_2} \}$$

$$\sigma_1 \equiv \sigma' + \{l_3 \mapsto_{f_{c_1}} m_{1k_1, k_2} \}$$

$$\sigma_2 \equiv \sigma' + \{l_3 \mapsto_{f_{c_1}} m_{1k_1, k_2} \}$$

$$\sigma_3 \equiv \sigma' + \{l_3 \mapsto_{f_{c_1}} m_{1k_1, k_2} \}$$

$$\sigma_4 \equiv \sigma' + \{l_3 \mapsto_{f_{c_1}} m_{1k_1, k_2} \}$$

$$\sigma_1 \equiv \sigma' + \{l_3 \mapsto_{f_{c_1}} m_{1k_1, k_2} \}$$

$$\sigma_2 \equiv \sigma' + \{l_3 \mapsto_{f_{c_1}} m_{1k_1, k_2} \}$$

$$\sigma_3 \equiv \sigma' + \{l_3 \mapsto_{f_{c_1}} m_{1k_1, k_2} \}$$

$$\sigma_4 \equiv \sigma' + \{l_3 \mapsto_{f_{c_1}} m_{1k_1, k_2} \}$$

$$\sigma_4 \equiv \sigma' + \{l_3 \mapsto_{f_{c_1}} m_{1k_1, k_2} \}$$

$$\sigma_4 \equiv \sigma' + \{l_3 \mapsto_{f_{c_1}} m_{1k_1, k_2} \}$$

$$\sigma' \equiv \sigma' + \{l_3 \mapsto_{f_{c_1}} m_{1k_1, k_2} \}$$

$$\sigma' \equiv \sigma' + \{l_3 \mapsto_{f_{c_1}} m_{1k_1$$

3 Interpretation

3.1 Definitions

Operationally, $Heap \sqsubseteq Loc \times Permission \times Matrix$ (a multiset), denoted with a σ . Define its interpretation to be $Loc \rightharpoonup Permission \times Matrix$ with $\star : Heap \times Heap \rightharpoonup Heap$ as follows:

$$(\varsigma_1 \star \varsigma_2)(l) \equiv \begin{cases} \varsigma_1(l) & \text{if } l \in \text{dom}(\varsigma_1) \land l \notin \text{dom}(\varsigma_2) \\ \varsigma_2(l) & \text{if } l \in \text{dom}(\varsigma_2) \land l \notin \text{dom}(\varsigma_1) \\ (f_1 + f_2, m) & \text{if } (f_1, m) = \varsigma_1(l) \land (f_2, m) = \varsigma_2(l) \land f_1 + f_2 \le 1 \\ \text{undefined} & \text{otherwise} \end{cases}$$

Commutativity and associativity of \star follows from that of +. $\varsigma_1 \star \varsigma_2$ is defined if it is for all $l \in \text{dom}(\varsigma_1) \cup \text{dom}(\varsigma_2)$. Define $\mathcal{H}\llbracket \sigma \rrbracket = \bigstar_{(l,f,m)\in\sigma}[l \mapsto_f m]$ and **implicitly denote** $\varsigma \equiv \mathcal{H}\llbracket \theta(\sigma) \rrbracket$.

The n-fold iteration for the \rightarrow (functional) relation, is also a (functional) relation:

$$\forall n. \ \mathbf{err} \to^n \mathbf{err} \qquad \langle \sigma, v \rangle \to^n \langle \sigma, v \rangle \qquad \langle \sigma, e \rangle \to^0 \langle \sigma, e \rangle \qquad \langle \sigma, e \rangle \to^{n+1} ((\langle \sigma, e \rangle \to) \to^n)$$

Hence, all bounded iterations end in either an err, a heap-and-expression or a heap-and-value.

3.2 Interpretation

$$\begin{split} \mathcal{V}_{k}[\mathbf{bool}] &= \{(\emptyset, *)\} \\ \mathcal{V}_{k}[\mathbf{bool}] &= \{(\emptyset, true), (\emptyset, false)\} \\ \mathcal{V}_{k}[\mathbf{int}] &= \{(\emptyset, n) \mid 2^{-63} \leq n \leq 2^{63} - 1\} \\ \mathcal{V}_{k}[\mathbf{int}] &= \{(\emptyset, f) \mid f \text{ a IEEE Float64} \} \\ \mathcal{V}_{k}[[f \mathbf{mat}]] &= \{(\{l \mapsto_{2^{-f}} =\}, l)\} \\ \mathcal{V}_{k}[[t]] &= \{(\emptyset, \mathbf{Many} v) \mid (\emptyset, v) \in \mathcal{V}_{k}[t]\} \\ \mathcal{V}_{k}[[t_{0} = t]] &= \{(\varsigma_{1} + \varsigma_{2}, (v_{1}, v_{2})) \mid (\varsigma_{1}, v_{1}) \in \mathcal{V}_{k}[t_{1}] \land (\varsigma_{2}, v_{2}) \in \mathcal{V}_{k}[t_{2}]\} \\ \mathcal{V}_{k}[[t_{1} \otimes t_{2}]] &= \{(\varsigma_{1} + \varsigma_{2}, (v_{1}, v_{2})) \mid (\varsigma_{1}, v_{1}) \in \mathcal{V}_{k}[t_{1}] \land (\varsigma_{2}, v_{2}) \in \mathcal{V}_{k}[t_{2}]\} \\ \mathcal{V}_{k}[[t' \to t]] &= \{(\varsigma_{v}, v) \mid (v = \mathbf{fun} \ x : t' \to e \lor v = \mathbf{fix}(g, x : t', e : t)) \land \\ \forall j \leq k, (\varsigma_{v'}, v') \in \mathcal{V}_{j}[[t']], \ \varsigma_{v} \star \varsigma_{v}' \text{ defined} \ \Rightarrow (\varsigma_{v} \star \varsigma_{v}', vv') \in \mathcal{C}_{j}[[t]]\} \\ \mathcal{C}_{k}[[t]] &= \{(\varsigma_{s}, e_{s}) \mid \forall j < k, \sigma_{r}, \varsigma_{s} \star \varsigma_{r} \text{ defined} \ \Rightarrow (\varsigma_{s} \star \varsigma_{v}, e_{s}) \to^{j} \text{ err} \ \forall \exists \sigma_{f}, e_{f}, \\ \langle \sigma_{s} + \sigma_{r}, e_{s} \rangle \to^{j} \langle \sigma_{f} + \sigma_{r}, e_{f} \rangle \land (e_{f} \text{ is a value} \ \Rightarrow (\varsigma_{f} \star \varsigma_{r}, e_{f}) \in \mathcal{V}_{k-j}[[t]]) \} \\ \mathcal{I}_{k}[[\cdot]]\theta &= \{[\cdot]\} \\ \mathcal{I}_{k}[\cdot], x : t]\theta &= \{\delta[x \mapsto v_{x}] \mid \delta \in \mathcal{I}_{k}[\Delta]\theta \land (\emptyset, v_{x}) \in \mathcal{V}_{k}[\theta(t)]] \} \\ \mathcal{L}_{k}[\cdot], x : t]\theta &= \{(\varsigma \star \varsigma_{s}, \gamma_{f}[x \mapsto v_{x}]) \mid (\varsigma, \gamma) \in \mathcal{L}_{k}[\cdot]\theta \land (\varsigma_{x}, v_{x}) \in \mathcal{V}_{k}[\theta(t)]] \} \\ \mathcal{H}[\sigma] &= \bigstar_{(t,f,m) \in \sigma}[t \mapsto_{f} m] \\ \varsigma &= \mathcal{H}[\theta(\sigma)] \\ k[\Theta; \Delta; \Gamma \vdash e : t] &= \forall \theta, \delta, \gamma, \sigma, \Theta = \text{dom}(\theta) \land (\varsigma, \gamma) \in \mathcal{L}_{k}[\cdot]\theta \land \delta \in \mathcal{I}_{k}[\Delta]\theta \Rightarrow \mathcal{H}[\Delta]\theta \Rightarrow \mathcal{H}[\theta, v] \end{cases}$$

$$k[\![\Theta; \Delta; \Gamma \vdash e : t]\!] = \forall \theta, \delta, \gamma, \sigma. \ \Theta = \text{dom}(\theta) \land (\varsigma, \gamma) \in \mathcal{L}_k[\![\Gamma]\!] \theta \land \delta \in \mathcal{I}_k[\![\Delta]\!] \theta \Rightarrow (\varsigma, \theta(\delta(\gamma(e)))) \in \mathcal{C}_k[\![\theta(t)]\!]$$

4 Lemmas

4.1
$$\forall \sigma_s, \sigma_r, e. \ \varsigma_s \star \varsigma_r \ \mathbf{defined} \ \Rightarrow \forall n. \ \langle \sigma_s, e \rangle \to^n = \langle \sigma_s + \sigma_r, e \rangle \to^n$$

SUFFICES: By induction on n, consider only the cases $\langle \sigma_s, e \rangle \to \langle \sigma_f, e_f \rangle$ where $\sigma_s \neq \sigma_f$.

PROOF SKETCH: Only OP-{FREE, MATRIX, SHARE, UNSHARE_EQ, GEMM_MATCH} change the heap: the rest are either parametric in the heap or step to an **err**.

PROVE: $\langle \sigma_s + \sigma_r, e \rangle \rightarrow \langle \sigma_f + \sigma_r, e_f \rangle$.

- $\langle 1 \rangle 1$. Case: Op_Free, $\sigma_s \equiv \sigma' + \{l \mapsto_1 m\}$, $\sigma_f = \sigma'$. Proof: Instantiate Op_Free with $(\sigma' + \sigma_r) + \{l \mapsto_1 m\}$, valid because $l \notin \text{dom}(\varsigma_r)$ by $\varsigma' \star [l \mapsto_1 m] \star \varsigma_r$ defined (assumption).
- $\langle 1 \rangle 2$. Case: Op_Matrix Proof: Rule has no requirements on σ_s so will also work with $\sigma_s + \sigma_r$.
- $\langle 1 \rangle 3$. Case: Op_Share, $\sigma_s \equiv \sigma' + \{l \mapsto_f m\}$, $\sigma_f = \sigma' + \{l \mapsto_{\frac{1}{2} \cdot f} m\} + \{l \mapsto_{\frac{1}{2} \cdot f} m\}$. Proof: Union-ing σ_r does not remove $l \mapsto_f m$, so that can be split out of $\sigma_s + \sigma_r$ as before.
- $\langle 1 \rangle 4$. Case: Op_Unshare_Eq, $\sigma_s \equiv \sigma' + \{l \mapsto_{\frac{1}{2} \cdot f} m\} + \{l \mapsto_{\frac{1}{2} \cdot f} m\}, \ \sigma_f = \sigma' + \{l \mapsto_f m\}.$
 - $\langle 2 \rangle 1$. Union-ing σ_r does not remove $l \mapsto_{\frac{1}{2} \cdot f} m$, so that can still be split out of $\sigma_s + \sigma_r$.
 - $\langle 2 \rangle 2$. There may also be other valid splits introduced by σ_r .
 - $\langle 2 \rangle 3$. However, by assumption of $\varsigma_s \star \varsigma_r$ defined, any splitting of $\sigma_s + \sigma_r$ will satisfy $f \leq 1$.
- $\langle 1 \rangle$ 5. Case: Op_Gemm_Match
 - $\langle 2 \rangle 1$. By assumption of $\varsigma_s \star \varsigma_r$ defined, either l_1 (or l_2 , or both) are not in σ_r , or they are and the matrix values they point to are the same.
 - $\langle 2 \rangle 2$. The permissions (of l_1 and/or l_2) may differ, but OP_GEMM_MATCH universally quantifies over them and leaves them unchanged, so they are irrelevant.
 - $\langle 2 \rangle 3$. Only the pointed to matrix value at l_3 changes.
 - $\langle 2 \rangle 4$. Suffices: $l_3 \notin \pi_1[\sigma_r]$.
 - $\langle 2 \rangle 5$. By assumption of $\varsigma_s \star \varsigma_r$ defined, $l_3 \notin \text{dom}(\varsigma_r)$.
 - $\langle 2 \rangle 6$. Hence $l_3 \notin \pi_1[\sigma_r]$.

4.2 $\forall k, t. \ \mathcal{V}_k[\![t]\!] \subset \mathcal{C}_k[\![t]\!]$

Follows from definition of $C_k[t]$, $\to^j (\forall n. \langle \sigma, v \rangle \to^n \langle \sigma, v \rangle)$ for arbitrary $j \leq k$ and 4.1.

4.3 $\forall \theta, \delta, \gamma, v. \ \theta(\delta(\gamma(v)))$ is a value.

 θ is irrelevant because it only maps fractional permission variables to fractional permissions. By construction, δ and γ only map variables to values, and values are closed under substitution.

5

4.4 $\forall k, \sigma, \sigma', e, e', t. \ (\varsigma', e') \in \mathcal{C}_k[\![t]\!] \land \langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle \Rightarrow (\varsigma, e) \in \mathcal{C}_{k+1}[\![t]\!]$

In the lemma, and for the rest of its proof, $\varsigma = \mathcal{H}[\![\sigma]\!]$.

Assume: arbitrary j < k + 1, and σ_r such that $\varsigma \star \varsigma_r$ defined.

- $\langle 1 \rangle 1$. CASE: j = 0. Clearly $\sigma_f = \sigma_s + \sigma_r$ and e' = e. Remains to show that if e is a value then $(\varsigma_s \star \varsigma_r, e) \in \mathcal{V}_k[\![t]\!]$. This is true vacuously, because by assumption, e is not a value.
- $\langle 1 \rangle 2$. Case: $j \geq 1$. We have $\langle \sigma, e \rangle \to^j = \langle \sigma', e' \rangle \to^{j-1}$. Instantiate $(\varsigma', e') \in \mathcal{C}_k[\![t]\!]$, with j-1 < k and σ_r to conclude the required conditions.
- **4.5** $j \leq k \Rightarrow k \cdot \| \cdot \| \subseteq k \cdot \| \cdot \|$

For the rest of this proof, $\varsigma = \mathcal{H}[\![\sigma]\!]$.

Lemma 4.4 is the inductive step for this lemma for the $\mathcal{C}[]$ case.

Need to prove for $\mathcal{V}[]$, by induction on t and then index.

Suffices: Consider only $t \multimap t'$ case, rest use k directly on structure of type.

Assume: Arbitrary $j \leq k$ and $(\varsigma_{v'}, v') \in \mathcal{V}_k[t \multimap t']$.

PROVE: $(\varsigma_{v'}, v') \in \mathcal{V}_i \llbracket t \multimap t' \rrbracket$.

- $\langle 1 \rangle 1$. v' is of the correct syntactic form (lambda or fixpoint) by assumption.
- $\langle 1 \rangle 2$. Assume: arbitrary $j' \leq j$ and $(\varsigma_v, v) \in \mathcal{V}_{j'}[[t]]$ such that $\varsigma_{v'} \star \varsigma_v$ is defined.
- $\langle 1 \rangle 3$. Suffices: to show $(\varsigma_{v'} \star \varsigma_v, v'v) \in \mathcal{C}_{i'} \llbracket t' \rrbracket$.
- $\langle 1 \rangle 4$. This is true by instantiating $(\varsigma_{v'}, v') \in \mathcal{V}_k \llbracket t \multimap t' \rrbracket$ with $j' \leq k$ and $(\varsigma_v, v) \in \mathcal{V}_{j'} \llbracket t \rrbracket$.
- **4.6** $\forall \Delta, \Gamma, t, k, \theta, \delta, \gamma. \ \delta \in \mathcal{I}_k[\![\Delta]\!] \theta \wedge \gamma \in \pi_2[\mathcal{L}_k[\![\Gamma]\!] \theta] \Rightarrow \operatorname{dom}(\Delta) = \operatorname{dom}(\delta) \text{ and } \operatorname{dom}(\Gamma) = \operatorname{dom}(\gamma)$

PROOF: By induction on Δ and Γ .

4.7 $\forall k, \Gamma, \Gamma', \theta, \sigma_+, \gamma_+. \ (\varsigma_+, \gamma) \in \mathcal{L}_k[\![\Gamma, \Gamma']\!]\theta \wedge \Gamma, \Gamma' \ \mathbf{disjoint} \ \Rightarrow \exists \sigma, \gamma, \sigma', \gamma'. \ \sigma_+ = \sigma + \sigma' \wedge \gamma, \gamma' \ \mathbf{disjoint} \ \wedge \gamma_+ = \gamma \cup \gamma' \wedge (\varsigma, \gamma) \in \mathcal{L}_k[\![\Gamma]\!] \wedge (\varsigma', \gamma') \in \mathcal{L}_k[\![\Gamma']\!]$

PROOF: By induction on Γ' .

4.8
$$\forall e, \sigma, e', \sigma', \theta. \ \langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle \Rightarrow \langle \theta(\sigma), \theta(e) \rangle \rightarrow \langle \theta(\sigma'), \theta(e') \rangle$$

PROOF: By induction on \rightarrow .

- $\langle 1 \rangle 1$. Assume: Arbitrary $e, \sigma, e', \sigma', \theta$ such that $\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle$.
- $\langle 1 \rangle 2$. Suffices: To consider only the following rules which mention fractional permission variables. OP_FRAC_PERM, OP_SHARE, OP_UNSHARE_(N)EQ and OP_GEMM_(MIS)MATCH.
- $\langle 1 \rangle 3$. Case: Op_Frac_Perm.

Because substitution avoids capture, $\langle \theta(\sigma), \theta((\mathbf{fun}'fc \to v)[f]) \rangle \to \langle \theta(\sigma'[f/fc]), \theta(v[f/fc]) \rangle$.

- $\langle 1 \rangle 4$. The rest of the cases are parametric in their use of fractional permission variables and so will take the same step ater any substitution.
- $\langle 1 \rangle$ 5. COROLLARY: If $\langle \sigma[f_1/f_c], e[f_1/f_c] \rangle \rightarrow^n \langle \sigma_2, e_2' \rangle$ and $\langle \sigma[f_2/f_c], e[f_2/f_c] \rangle \rightarrow^n \langle \sigma_2, e_2' \rangle$, then $\exists \sigma, e'. \ \sigma_1 = \sigma[f_1/f_c] \wedge \sigma_2 = \sigma[f_2/f_c] \wedge e_1' = e'[f_1/f_c] \wedge e_2' = e'[f_2/f_c].$

5 Soundness

$$\forall \Theta, \Delta, \Gamma, e, t. \ \Theta; \Delta; \Gamma \vdash e : t \Rightarrow \forall k. \ _k \llbracket \Theta; \Delta; \Gamma \vdash e : t \rrbracket$$

PROOF SKETCH: Induction over the typing judgements.

ASSUME: 1. Arbitrary $\Theta, \Delta, \Gamma, e, t$ such that $\Theta; \Delta; \Gamma \vdash e : t$.

- 2. Arbitrary $k, \theta, \delta, \gamma, \sigma$ such that:
 - a. $\Theta = dom(\theta)$
 - b. $\delta \in \mathcal{I}_k \llbracket \Delta \rrbracket \theta$.
 - c. $(\varsigma, \gamma) \in \mathcal{L}_k[\![\Gamma]\!]\theta$
- 3. W.l.o.g., all variables are distinct, hence Θ , dom(Δ) and dom(Γ) are disjoint so order of θ , δ and γ (as substitutions defined recursively over expressions) is irrelevant.

PROVE: $(\varsigma, \theta(\delta(\gamma(e)))) \in \mathcal{C}_k[\![\theta(t)]\!].$

Assume: Arbitrary j < k and σ_r , such that $\varsigma \star \varsigma_r$ defined.

SUFFICES:
$$\langle \sigma + \sigma_r, e \rangle \rightarrow^j \mathbf{err} \ \lor \exists \sigma_f, e_f. \ \langle \sigma + \sigma_r, e \rangle \rightarrow^j \langle \sigma_f + \sigma_r, e_f \rangle$$

 $\land (e_f \text{ is a value } \Rightarrow (\varsigma_f \star \varsigma_r, e_f) \in \mathcal{V}_{k-j}[\![t]\!]).$

SUFFICES: By 4.1, to show $\langle \sigma, e \rangle \to^j \mathbf{err} \ \lor \exists \sigma_f, e_f. \ \langle \sigma, e \rangle \to^j \langle \sigma_f, e_f \rangle$ $\land (e_f \text{ is a value } \Rightarrow (\varsigma_f, e_f) \in \mathcal{V}_{k-j}[\![t]\!])$

- $\langle 1 \rangle 1$. Case: Ty_Let.
 - $\langle 2 \rangle 1$. By induction,
 - 1. $\forall k. \ _{k} \llbracket \Theta; \Delta; \Gamma \vdash e : t \rrbracket$
 - 2. $\forall k. \ _k \llbracket \Theta; \Delta; \Gamma', x : t \vdash e' : t' \rrbracket$.
 - $\langle 2 \rangle 2$. By 2c, 3 and 4.7, we know there exists the following (for all k):
 - 1. $(\varsigma_e, \gamma_e) \in \mathcal{L}_k \llbracket \Gamma \rrbracket$
 - 2. $\gamma = \gamma_e \cup \gamma_{e'}$
 - 3. $\sigma = \sigma_e + \sigma_{e'}$.
 - $\langle 2 \rangle 3$. So, using $k, \theta, \delta, \gamma_e, \sigma_e$, we have $(\varsigma_e, \theta(\delta(\gamma_e(e)))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.
 - $\langle 2 \rangle 4$. By $\langle 2 \rangle 2$ ($\gamma = \gamma_e \cup \gamma_{e'}$), have $(\varsigma_e, \theta(\delta(\gamma(e)))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.
 - $\langle 2 \rangle$ 5. By definition of $C_k[\cdot]$ and $\langle 2 \rangle$ 2, we instantiate with j and $\sigma_r = \sigma_{e'}$ to conclude that $\langle \theta(\sigma), \theta(\delta(\gamma(e))) \rangle$ either takes j steps to **err** or another heap-and-expression $\langle \sigma_f, e_f \rangle$.
 - $\langle 2 \rangle$ 6. Case: j steps to **err**By Op_Context_Err, the whole expression reduces to **err** in j < k steps.
 - $\langle 2 \rangle$ 7. Case: j steps to another heap-and-expression. If it is not a value, then OP_CONTEXT runs j times and we are done.
 - $\langle 2 \rangle 8$. If it is, then $\exists i \leq j$. $(\varsigma_f, v_1) \in \mathcal{V}_{k-i} \llbracket \theta(t_1) \rrbracket \subseteq \mathcal{V}_{k-j} \llbracket \theta(t_1) \rrbracket$ by 4.3 and 4.5. So, OP_CONTEXT runs i times, and then we have the following. SUFFICES: $(\varsigma_f \star \varsigma_{e'}, \mathbf{let} \ x = v \mathbf{in} \ \theta(\delta(\gamma(e')))) \in \mathcal{C}_{k-i} \llbracket \theta(t') \rrbracket$ by 4.4 i times. SUFFICES: $(\varsigma_f \star \varsigma_{e'}, \theta(\delta(\gamma(e')))[v/x]) \in \mathcal{C}_{k-i-1} \llbracket \theta(t') \rrbracket$ by 4.4.
 - $\langle 2 \rangle 9$. By 4.5, $(\varsigma_{e'}, \gamma_{e'}[x \mapsto v]) \in \mathcal{L}_k[\![\Gamma', x : t]\!] \theta \subseteq \mathcal{L}_{k-i-1}[\![\Gamma', x : t]\!] \theta$.
 - $\langle 2 \rangle 10$. Instantiate 2 of step $\langle 2 \rangle 1$ with $k-i-1, \theta, \delta, \gamma_{e'}[x \mapsto v], \sigma_{e'}$ to conclude $(\varsigma_{e'}, \theta(\delta(\gamma_{e'}[x \mapsto v](e')))) \in \mathcal{C}_{k-i-1}\llbracket \theta(t') \rrbracket$.

- $\langle 2 \rangle$ 11. By 3, we have $\theta(\delta(\gamma(e')))[v/x] = \theta(\delta(\gamma_{e'}[x \mapsto v](e')))$ and by 4.1 we conclude $(\varsigma_f \star \varsigma_{e'}, \theta(\delta(\gamma(e')))[v/x]) \in \mathcal{C}_{k-i-1}[\![\theta(t')]\!]$
- $\langle 1 \rangle 2$. Case: Ty_Pair_Elim.

PROOF SKETCH: Similar to TY_LET, but with the following key differences.

- $\langle 2 \rangle 1$. When $(\varsigma_f, v) \in \mathcal{V}_{k-i} \llbracket \theta(t_1) \otimes \theta(t_2) \rrbracket$, we have $v = (v_1, v_2)$.
- $\langle 2 \rangle 2$. SUFFICES: $(\varsigma_{e'}, \theta(\delta(\gamma(e')))) \in \mathcal{C}_{k-i-1} \llbracket \theta(t') \rrbracket$ by 4.4 i+1 times.
- $\langle 2 \rangle 3$. By 4.5, $(\varsigma_{e'}, \gamma_{e'}[a \mapsto v_1, b \mapsto v_2]) \in \mathcal{L}_k[\Gamma', a: t_1, b: t_2]\theta \subseteq \mathcal{L}_{k-i-1}[\Gamma', a: t_1, b: t_2]\theta$.
- $\langle 2 \rangle 4$. Instantiate k=i-1 $[\Theta; \Delta; \Gamma', a: t_1, b: t_2 \vdash e': t']$ with $\theta, \delta, \gamma_{e'}[a \mapsto v_1, b \mapsto v_2], \sigma_{e'}$.
- $\langle 2 \rangle 5$. By 3 (for $\gamma = \gamma_e \cup \gamma_{e'}$ and a, b), conclude $(\varsigma_{e'}, \theta(\delta(\gamma(e'[v_1/a][v_2/b])))) \in \mathcal{C}_{k-i-1}[\theta(t')]$.
- $\langle 1 \rangle 3$. Case: Ty_Bang_Elim.

PROOF SKETCH: Similar to TY_LET, but with the following key differences.

- $\langle 2 \rangle 1$. When $(\varsigma_f, v) \in \mathcal{V}_{k-i}[\![\theta(!t)]\!]$, since $\mathcal{V}_{k-i}[\![\theta(!t)]\!] = \mathcal{V}_{k-i}[\![!\theta(t)]\!]$, we have $\varsigma_f = \emptyset$ and $v = \mathbf{Many} v'$ for some $(\emptyset, v') \in \mathcal{V}_{k-i}[\![\theta(t)]\!]$.
- $\langle 2 \rangle 2$. SUFFICES: $(\varsigma_{e'}, \mathbf{let} \, \mathbf{Many} \, x = \mathbf{Many} \, v' \, \mathbf{in} \, \theta(\delta(\gamma(e')))) \in \mathcal{C}_{k-i} \llbracket \theta(t) \rrbracket$.
- $\langle 2 \rangle 3$. SUFFICES: $(\varsigma_{e'}, \theta(\delta(\gamma(e')))[v/x]) \in \mathcal{C}_{k-i-1}[\theta(t)]$ by 4.4 i+1 times.
- $\langle 2 \rangle 4$. Instantiate k=i-1 $[\Theta; \Delta, x: t, \Gamma' \vdash e': t']$ with $\theta, \delta_{e'} = \delta[x \mapsto v'], \gamma_{e'}, \sigma_{e'}$.
- $\langle 2 \rangle 5$. By 3, $(\varsigma_{e'}, \theta(\delta(\gamma(e')))[v/x]) \in \mathcal{C}_{k-i-1}[\theta(t)]$.
- $\langle 1 \rangle 4$. Case: Ty_Unit_Elim.

PROOF SKETCH: Similar to Ty_Let, but with the following key differences.

- $\langle 2 \rangle 1$. When $(\varsigma_f, v) \in \mathcal{V}_{k-i}[\mathbf{unit}]$, we have $\varsigma_f = \emptyset$ and v = ().
- $\langle 2 \rangle 2$. SUFFICES: $(\varsigma_{e'}, \theta(\delta(\gamma(e')))) \in \mathcal{C}_{k-i-1} \llbracket \theta(t') \rrbracket$ by 4.4 i+1 times.
- $\langle 2 \rangle 3$. By 4.5, $(\varsigma_{e'}, \gamma_{e'}) \in \mathcal{L}_k \llbracket \Gamma' \rrbracket \theta \subseteq \mathcal{L}_{k-i-1} \llbracket \Gamma' \rrbracket \theta$.
- $\langle 2 \rangle 4$. Instantiate $_{k-i-1} \llbracket \Theta; \Delta; \Gamma' \vdash e' : t' \rrbracket$ with $\theta, \delta, \gamma_{e'}, \sigma_{e'}$.
- $\langle 2 \rangle 5$. By $3 (\varsigma_{e'}, \theta(\delta(\gamma(e')))) \in \mathcal{C}_{k-i-1} \llbracket \theta(t') \rrbracket$.
- $\langle 1 \rangle$ 5. Case: Ty_Bool_Elim.

PROOF SKETCH: Similar to TY_UNIT_ELIM but with OP_IF_{TRUE,FALSE}, $\varsigma_f = \emptyset$ and $v = \mathbf{Many true}$ or $v = \mathbf{Many false}$.

- $\langle 1 \rangle 6$. Case: Ty_Bang_Intro.
 - $\langle 2 \rangle 1$. We have, e = v for some value $v \neq l$, $\Gamma = \emptyset$ and so $\forall k. \ _k \llbracket \Theta ; \Delta ; \cdot \vdash v : t \rrbracket$ by induction.
 - $\langle 2 \rangle 2$. SUFFICES: $(\emptyset, \mathbf{Many} \, \theta(\delta(v))) \in \mathcal{C}_k \llbracket ! \theta(t) \rrbracket$ by $2c \ (\varsigma = \emptyset, \gamma = \llbracket])$.
 - $\langle 2 \rangle 3$. Instantiate $_k \llbracket \Theta; \Delta; \cdot \vdash v : t \rrbracket$ with $\theta, \delta, \gamma = \llbracket \rbrack, \sigma = \emptyset$ to obtain $(\emptyset, \theta(\delta(v))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.
 - $\langle 2 \rangle 4$. Instantiate $(\emptyset, \theta(\delta(v))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$ with $j = 0, \sigma_r = \emptyset$ and 4.3 $(\theta(\delta(v)))$ is a value),

to conclude $(\emptyset, \theta(\delta(v))) \in \mathcal{V}_k \llbracket \theta(t) \rrbracket$.

- $\langle 2 \rangle 5$. By definition of $\mathcal{V}_k \llbracket ! \theta(t) \rrbracket$, 4.3 and 4.2 we have $(\emptyset, \mathbf{Many} \theta(\delta(v))) \in \mathcal{C}_k \llbracket ! \theta(t) \rrbracket$.
- $\langle 1 \rangle$ 7. Case: Ty_Pair_Intro.
 - $\langle 2 \rangle 1$. By 2c, 3 and 4.7, we know there exists the following (for all k):
 - 1. $(\varsigma_1, \gamma_1) \in \mathcal{L}_k \llbracket \Gamma_1 \rrbracket$
 - 2. $(\varsigma_2, \gamma_2) \in \mathcal{L}_k[\![\Gamma_2]\!]$
 - 3. $\gamma = \gamma_1 \cup \gamma_2$
 - 4. $\sigma = \sigma_1 + \sigma_2$.
 - $\langle 2 \rangle 2$. By induction,
 - 1. $\forall k. \ _{k} \llbracket \Theta; \Delta; \Gamma_{1} \vdash e_{1} : t_{1} \rrbracket$
 - 2. $\forall k. \ _k \llbracket \Theta; \Delta; \Gamma_2 \vdash e_2 : t_2 \rrbracket$.
 - $\langle 2 \rangle 3$. Instantiate the first with $k, \theta, \delta, \gamma_1, \sigma_1$.
 - $\langle 2 \rangle 4$. By that and $\langle 2 \rangle 1$, $(\varsigma_1, \theta(\delta(\gamma_1(e_1)))) = (\varsigma_1, \theta(\delta(\gamma(e_1)))) \in \mathcal{C}_k[\![\theta(t)]\!]$.
 - $\langle 2 \rangle$ 5. So, $\langle \theta(\sigma_1 + \sigma_2), \theta(\delta(\gamma_1(e_1))) \rangle$ either takes j steps to **err** or a heap-and-expression $\langle \sigma_{1f}, e_{1f} \rangle$.
 - $\langle 2 \rangle$ 6. Case: j steps to **err** By Op_Context_Err, the whole expression reduces to **err** in j < k steps.
 - $\langle 2 \rangle$ 7. Case: j steps to another heap-and-expression. If it is not a value, then OP_CONTEXT runs j times and we are done.
 - $\langle 2 \rangle 8$. If it is, then $\exists i_1 \leq j$. $(\varsigma_{1f}, v_1) \in \mathcal{V}_{k-i_1} \llbracket \theta(t_1) \rrbracket \subseteq \mathcal{V}_{k-j} \llbracket \theta(t_1) \rrbracket$ by 4.3 and 4.5. So, OP_CONTEXT runs i_1 times, and then we have the following. SUFFICES: By 4.4, $(\varsigma_{1f} \star \varsigma_2, (v_1, e_2)) \in \mathcal{C}_{k-i_1} \llbracket \theta(t_1 \otimes t_2) \rrbracket$.
 - $\langle 2 \rangle 9$. Instantiate the second IH with $k, \theta, \delta, \gamma_2, \sigma_2$.
 - $\langle 2 \rangle 10$. So, $\langle \theta(\sigma_{1f} + \sigma_2), \theta(\delta(\gamma_2(e_2))) \rangle$ either takes j steps to **err** or a heap-and-expression $\langle \sigma_{2f}, e_{2f} \rangle$.
 - $\langle 2 \rangle$ 11. Case: j steps to **err** By Op_Context_Err, the whole expression reduces to **err** in j < k steps.
 - $\langle 2 \rangle$ 12. Case: j steps to another heap-and-expression. If it is not a value, then OP_CONTEXT runs j times and we are done.
 - $\langle 2 \rangle 13$. If it is, then $\exists i_2 \leq j$. $(\varsigma_{2f}, v_2) \in \mathcal{V}_{k-i_2}\llbracket \theta(t_2) \rrbracket \subseteq \mathcal{V}_{k-j}\llbracket \theta(t_2) \rrbracket$ by 4.3 and 4.5. So, OP_CONTEXT runs i_2 times, and then we have the following. SUFFICES: By 4.4, $(\varsigma_{1f} \star \varsigma_{2f}, (v_1, v_2)) \in \mathcal{V}_{k-i_1-i_2}\llbracket \theta(t_1) \otimes \theta(t_2) \rrbracket$.
 - $\langle 2 \rangle$ 14. By 4.5 and $k i_1 i_2 \leq k i_1, k i_2$, have $(\varsigma_{1f}, v_1) \in \mathcal{V}_{k-i_1} \llbracket \theta(t_1) \rrbracket \subseteq \mathcal{V}_{k-i_1-i_2} \llbracket \theta(t_1) \rrbracket$ and $(\varsigma_{2f}, v_2) \in \mathcal{V}_{k-i_2} \llbracket \theta(t_2) \rrbracket \subseteq \mathcal{V}_{k-i_1-i_2} \llbracket \theta(t_2) \rrbracket$ as needed.
- $\langle 1 \rangle 8$. Case: Ty_Lambda.

SUFFICES: By 4.2, to show $(\varsigma, \theta(\delta(\gamma(\mathbf{fun}\,x:t\to e)))) \in \mathcal{V}_k[\![\theta(t\multimap t')]\!]$.

Assume: Arbitrary $j \leq k$, $(\varsigma_v, v) \in \mathcal{V}_j[\![\theta(t)]\!]$ such that $\varsigma \star \varsigma_v$ is defined.

SUFFICES: $(\varsigma \star \varsigma_v, \theta(\delta(\gamma(\mathbf{fun}\,x:t\to e)))\,v) \in \mathcal{C}_j[\![\theta(t')]\!].$

SUFFICES: $(\varsigma \star \varsigma_v, \theta(\delta(\gamma(e)))[v/x]) \in \mathcal{C}_{i-1}[\theta(t')]$ by 4.4.

- $\langle 2 \rangle 1$. By induction, $\forall k.\ _k \llbracket \Theta ; \Delta ; \Gamma , x : t \vdash e \rrbracket .$
- $\langle 2 \rangle 2$. Instantiate if $j-1, \theta, \delta, \gamma[x \mapsto v], \sigma + \sigma_v$.
- $\langle 2 \rangle 3$. Hence, $(\varsigma \star \varsigma_v, \theta(\delta(\gamma[x \mapsto v](e)))) \in \mathcal{C}_{j-1}[\![\theta(t')]\!]$.
- $\langle 2 \rangle 4$. By 3, $\theta(\delta(\gamma[x \mapsto v](e))) = \theta(\delta(\gamma(e)))[v/x]$, we are done.
- $\langle 1 \rangle 9$. Case: Ty_App.
 - $\langle 2 \rangle 1$. By 2c, 3 and 4.7, we know there exists the following (for all k):
 - 1. $(\varsigma_e, \gamma_e) \in \mathcal{L}_k \llbracket \Gamma_e \rrbracket$
 - 2. $(\varsigma_{e'}, \gamma_{e'}) \in \mathcal{L}_k[\![\Gamma_{e'}]\!]$
 - 3. $\gamma = \gamma_e \cup \gamma_{e'}$
 - 4. $\sigma = \sigma_e + \sigma_{e'}$.
 - $\langle 2 \rangle 2$. By induction,
 - 1. $\forall k. \ _{k} \llbracket \Theta ; \Delta ; \Gamma \vdash e : t' \multimap t \rrbracket$
 - 2. $\forall k. \ _{k} \llbracket \Theta; \Delta; \Gamma' \vdash e' : t' \rrbracket$.
 - $\langle 2 \rangle 3$. Instantiate the first with $k, \theta, \delta, \gamma_e, \sigma_e$ to conclude $(\varsigma_e, \theta(\delta(\gamma_e(e)))) \in \mathcal{C}_k \llbracket \theta(t') \multimap \theta(t) \rrbracket$.
 - $\langle 2 \rangle 4$. Instantiate this with j and $\sigma_{e'}$ and use $\langle 2 \rangle 1$ to conclude $\langle \theta(\sigma_e + \sigma_{e'}), \theta(\delta(\gamma(e))) \rangle$ either takes j steps to **err** or a heap-and-expression $\langle \sigma_f + \sigma_{e'}, e_f \rangle$.
 - $\langle 2 \rangle$ 5. Case: j steps to **err** By Op_Context_Err, the whole expression reduces to **err** in j < k steps.
 - $\langle 2 \rangle$ 6. Case: j steps to another heap-and-expression. If it is not a value, then OP_CONTEXT runs j times and we are done.
 - $\langle 2 \rangle$ 7. If it is, then $\exists i_e \leq j$. $(\varsigma_f, e_f) \in \mathcal{V}_{k-i_e} \llbracket \theta(t') \multimap \theta(t) \rrbracket \subseteq \mathcal{V}_{k-j} \llbracket \dots \rrbracket$ by 4.3 and 4.5. So, OP_CONTEXT runs i_e times, and then we have the following. SUFFICES: By 4.4 i_e times, $(\varsigma_f \star \varsigma_{e'}, e_f e') \in \mathcal{C}_{k-i_e} \llbracket \theta(t') \rrbracket$.
 - $\langle 2 \rangle 8$. By 4.5, $(\varsigma_{e'}, \gamma_{e'} \in \mathcal{L}_k \llbracket \Gamma' \rrbracket \theta \subseteq \mathcal{L}_{k-i_e} \llbracket \Gamma' \rrbracket \theta$.
 - $\langle 2 \rangle 9$. So, instantiate the second IH with $k i_e, \theta, \delta, \gamma_{e'}, \sigma_{e'}$ to conclude $(\varsigma_{e'}, \theta(\delta(\gamma_{e'}(e')))) \in \mathcal{C}_{k-i_e} \llbracket \theta(t') \rrbracket$.
 - $\langle 2 \rangle 10$. Instantiate this with $j i_e$ and σ_f to conclude $\langle \theta(\sigma_f + \sigma_{e'}), \theta(\delta(\gamma_{e'}(e'))) \rangle$ either takes $j i_e$ steps to **err** or $\langle \sigma_f + \sigma'_f, e'_f \rangle$.
 - $\langle 2 \rangle$ 11. Case: $j i_e$ steps to **err**By Op_Context_Err, the whole expression reduces to **err** in $j i_e < k i_e$ steps.
 - $\langle 2 \rangle 12$. Case: $j i_e$ steps to another heap-and-expression. If it is not a value, then OP_CONTEXT runs $j - i_e$ times and we are done.
 - $\langle 2 \rangle$ 13. If it is, then $\exists i_{e'} \leq j i_e$. $(\varsigma_f', v_{e'}) \in \mathcal{V}_{k-i_e-i_e'}[\![\theta(t')]\!]$ by 4.3. So, OP_CONTEXT runs $i_{e'}$ times, and then we have the following. SUFFICES: By 4.4 $i_{e'}$ times, $(\varsigma_f \star \varsigma_f', e_f e_f') \in \mathcal{C}_{k-i_e-i_{e'}}[\![\theta(t')]\!]$.
 - $\langle 2 \rangle 14$. Instantiate $(\varsigma_f, e_f) \in \mathcal{V}_{k-i_e} \llbracket \theta(t') \multimap \theta(t) \rrbracket$ with $k i_e i_{e'} \leq k i_e$ and

 $(\varsigma_{v'}, v_{e'}) \in \mathcal{V}_{k-i_e-i_{e'}}[\![\theta(t')]\!]$, to conclude $(\varsigma_f \star \varsigma_f', e_f e_f') \in \mathcal{C}_{k-i_e-i_{e'}}[\![\theta(t)]\!]$ as needed.

- $\langle 1 \rangle 10$. Case: Ty_Gen.
 - $\langle 2 \rangle 1$. By induction, $\forall k. \ _k \llbracket \Theta, fc; \Delta; \Gamma \vdash e : t \rrbracket$.
 - $\langle 2 \rangle 2$. Let: f be arbitrary; $\theta' \equiv \theta[fc \mapsto f]$. Instantiate induction hypothesis with $k = 1, \theta', \delta, \gamma, \sigma$, to conclude $(\varsigma, \theta'(\gamma(\delta(e)))) \in \mathcal{C}_{k-1} \llbracket \theta'(t) \rrbracket$ (for all f, by 4.8).
 - $\langle 2 \rangle 3$. Instantiate this with j and \emptyset to conclude $\langle \theta(\sigma), \theta'(\gamma(\delta(e))) \rangle$ either takes j steps to **err** or a heap-and-expression $\langle \sigma', e' \rangle$ (for all f, by 4.8).
 - $\langle 2 \rangle$ 4. Case: j steps to **err**. By Op_Context_Err, whole expression reduces to **err** in j < k-1 steps (for f = fc).
 - $\langle 2 \rangle$ 5. Case: j steps to another heap-and-expression. If it is not a value, then for f = fc, OP_CONTEXT runs j times and we are done.
 - $\langle 2 \rangle 6$. If it is, then $\exists i_e \leq j$. $(\varsigma', e') \in \mathcal{V}_{k-1-i_e} \llbracket \theta'(t) \rrbracket \subseteq \mathcal{V}_{k-1-j} \llbracket \dots \rrbracket$ by 4.3 and 4.5 (for all f, by 4.8).
 - $\langle 2 \rangle$ 7. So, OP_CONTEXT runs i_e times, and then we have the following. SUFFICES: By 4.4 i_e times, $(\varsigma', \mathbf{fun}'fc \to e') \in \mathcal{V}_{k-i_e}[\![\theta(fc, t)]\!]$ (for f = fc).
 - $\langle 2 \rangle 8$. Assume: Arbitrary f'. Suffices: $(\varsigma', e'[f'/fc]) \in \mathcal{V}_{k-1-i_e}[\![\theta(t)[f'/fc]]\!]$ (for f = fc).
 - $\langle 2 \rangle 9$. This is true by instantiating $\langle 2 \rangle 6$ with f = f'.
- $\langle 1 \rangle 11$. Case: Ty_Spc.
 - $\langle 2 \rangle 1$. By induction, $\forall k._k \llbracket \Theta; \Delta; \Gamma \vdash e : 'fc. t \rrbracket$.
 - $\langle 2 \rangle 2$. Instantiate with $k, \theta, \delta, \gamma, \sigma$ to conclude $(\varsigma, \theta(\delta(\gamma(e)))) \in \mathcal{C}_k \llbracket \theta(fc, t \rrbracket)$.
 - $\langle 2 \rangle 3$. Instantiate this with j and \emptyset and to conclude $\langle \theta(\sigma), \theta(\delta(\gamma(e))) \rangle$ either takes j steps to **err** or a heap-and-expression $\langle \sigma_f, e_f \rangle$.
 - $\langle 2 \rangle$ 4. Case: j steps to **err**. By Op_Context_Err, the whole expression reduces to **err** in j < k steps.
 - $\langle 2 \rangle$ 5. Case: j steps to another heap-and-expression. If it is not a value, then OP_CONTEXT runs j times and we are done.
 - $\langle 2 \rangle 6$. If it is, then $\exists i_e \leq j$. $(\varsigma_f, e_f) \in \mathcal{V}_{k-i_e} \llbracket \theta'(fc.t) \rrbracket \subseteq \mathcal{V}_{k-j} \llbracket \ldots \rrbracket$ by 4.3 and 4.5. So $e_f \equiv \mathbf{fun}' fc \to v$ for some v.
 - $\langle 2 \rangle$ 7. So, OP_CONTEXT runs i_e times, and then we have the following. SUFFICES: By 4.4 i_e times, $(\varsigma_f, (\mathbf{fun}'fc \to v)[f]) \in \mathcal{C}_{k-i_e}[\![\theta(t[f/fc])]\!]$. SUFFICES: By 4.4 once more, $(\varsigma_f, v[f/fc]) \in \mathcal{C}_{k-i_e-1}[\![\theta(t[f/fc])]\!]$.
 - $\langle 2 \rangle 8$. This is true by instantiating $\langle 2 \rangle 6$ with f and 4.2.
- $\langle 1 \rangle 12$. CASE: TY_FIX. SUFFICES: $(\emptyset, \theta(\delta(\mathbf{fix}(g, x:t, e:t'))))) \in \mathcal{V}_k[\![\theta(t \multimap t')]\!]$, by 4.2 $(\sigma = \{\}, \gamma = [])$. ASSUME: Arbitrary $j \leq k$, $(\varsigma_v, v) \in \mathcal{V}_j[\![\theta(t)]\!]$ $(\varsigma = \emptyset$, so $\varsigma \star \varsigma_v$ is defined).

Let: $\tilde{e} \equiv \theta(\delta(e))$.

SUFFICES: $(\varsigma_v, \mathbf{fix}(g, x : t, \tilde{e} : t') \ v) \in \mathcal{C}_j[\![\theta(t')]\!].$

SUFFICES: $(\varsigma_v, \tilde{e}[v/x][\mathbf{fix}(g, x:t, \tilde{e}:t')/g]) \in \mathcal{C}_{j-1}[\theta(t')]$ by 4.4.

- $\langle 2 \rangle 1$. By induction, $\forall k. \ _k \llbracket \Theta; \Delta, g: t \multimap t'; x: t \vdash e: t' \rrbracket$.
- $\langle 2 \rangle 2$. Instantiate this with $j-1, \delta[g \mapsto \mathbf{fix}(g, x: t, \tilde{e}: t')], \gamma = [x \mapsto v], \sigma_v$.
- $\langle 2 \rangle 3$. We have $(\emptyset, \mathbf{fix}(g, x : t, \tilde{e} : t')) \in \mathcal{V}_{j-1}[\![\theta(t \multimap t')]\!]$.
 - $\langle 3 \rangle 1$. Again by induction (over k), $(\emptyset, \mathbf{fix}(g, x : t, \tilde{e} : t')) \in \mathcal{C}_{j-1}[\![\theta(t \multimap t')]\!]$.
 - $\langle 3 \rangle 2$. Instantiate this with j = 0 and \emptyset and we are done.
- $\langle 2 \rangle 4$. We have $(\varsigma_v, v) \in \mathcal{V}_{j-1}\llbracket \theta(t) \rrbracket$ by assumption and 4.5.
- $\langle 2 \rangle 5$. So we conclude $(\varsigma_v, \theta(\delta'(\gamma(e)))) \in \mathcal{C}_{j-1} \llbracket \theta(t') \rrbracket$ as required.
- $\langle 1 \rangle 13$. Case: Ty_Var_Lin.

PROVE: $(\varsigma, \theta(\delta(\gamma(x)))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.

- $\langle 2 \rangle 1$. $\Gamma = \{x : t\}$ by assumption of Ty_VAR_LIN.
- $\langle 2 \rangle 2$. Suffices: $(\varsigma, \gamma(x)) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$ by 3 $(\theta \text{ and } \delta \text{ irrelevant})$.
- $\langle 2 \rangle 3$. By 2c, there exist $(\varsigma_x, v_x) \in \mathcal{V}_k[\![\theta(t)]\!]$, such that $\varsigma = \varsigma_x$ and $\gamma = [x \mapsto v_x]$.
- $\langle 2 \rangle 4$. Hence, $(\varsigma_x, v_x) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$, by 4.2.
- $\langle 1 \rangle 14$. Case: Ty_Var.

PROVE: $(\varsigma, \theta(\delta(\gamma(x)))) \in \mathcal{C}_k[\![\theta(t)]\!]$.

- $\langle 2 \rangle 1$. $x: t \in \Delta$ and $\Gamma = \emptyset$ by assumption of Ty_VAR.
- $\langle 2 \rangle 2$. Suffices: $(\emptyset, \delta(x)) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$ by 3.
- $\langle 2 \rangle 3$. By 2b, there exists v_x such that $(\emptyset, v_x) \in \mathcal{V}_k[\![\theta(t)]\!]$ (\$\theta\$ irrelevant and \$\gamma\$ empty).
- $\langle 2 \rangle 4$. Hence, $(\emptyset, v_x) \in \mathcal{C}_k[\![\theta(t)]\!]$, by 4.2.
- $\langle 1 \rangle 15$. Case: Ty_Unit_Intro.

True by 4.2 and definition of $V_k[\![\mathbf{unit}]\!]$.

(1)16. CASE: TY_BOOL_TRUE, TY_BOOL_FALSE, TY_INT_INTRO, TY_ELT_INTRO. Similar to TY_UNIT_INTRO.

6 Additional Details

6.1 Well-formed types

 $\Theta \vdash f$ Perm Well-formed fractional permissions

$$\frac{\mathit{fc} \in \Theta}{\Theta \vdash \mathit{fc} \, \mathsf{Perm}} \quad \text{WF_Perm_Var}$$

$$\frac{}{\Theta \vdash 1 \, \mathsf{Perm}} \quad WF_PERM_ZERO$$

$$\frac{\Theta \vdash f \: \mathsf{Perm}}{\Theta \vdash \frac{1}{2} f \: \mathsf{Perm}} \quad \text{WF_Perm_Succ}$$

$$\Theta \vdash t \mathsf{Type}$$
 Well-formed types

$$\overline{\Theta \vdash \mathbf{unit}\,\mathsf{Type}} \quad \mathrm{WF_TYPE_UNIT}$$

$$\overline{\Theta \vdash \mathbf{bool}\,\mathsf{Type}} \quad WF_T\mathtt{YPE_BOOL}$$

$$\overline{\Theta \vdash \mathbf{int}\,\mathsf{Type}} \quad \mathrm{WF_TYPE_INT}$$

$$\overline{\Theta \vdash \mathbf{elt}\,\mathsf{Type}} \quad \mathrm{WF_TYPE_ELT}$$

$$\frac{\Theta \vdash f \: \mathsf{Perm}}{\Theta \vdash f \: \mathbf{arr} \: \mathsf{Type}} \quad WF_T\mathtt{YPE_ARRAY}$$

$$\frac{\Theta \vdash t \, \mathsf{Type}}{\Theta \vdash !t \, \mathsf{Type}} \quad \mathsf{WF_TYPE_BANG}$$

$$\frac{\Theta, \mathit{fc} \vdash \mathit{t} \, \mathsf{Type}}{\Theta \vdash \, '\mathit{fc}. \mathit{t} \, \mathsf{Type}} \quad \mathrm{WF_TYPE_GEN}$$

$$\begin{array}{l} \Theta \vdash t \, \mathsf{Type} \\ \Theta \vdash t' \, \mathsf{Type} \\ \Theta \vdash t \, \otimes \, t' \, \mathsf{Type} \end{array} \quad \mathsf{WF_TYPE_PAIR} \\$$

$$\begin{array}{l} \Theta \vdash t \, \mathsf{Type} \\ \hline \Theta \vdash t' \, \mathsf{Type} \\ \hline \Theta \vdash t \multimap t' \, \mathsf{Type} \end{array} \quad \text{WF_TYPE_LOLLY}$$

6.2 Grammar Definition

$$m$$
 ::= matrix expressions
 M matrix variables
 $m + m'$ matrix addition
 $m m'$ matrix multiplication

```
fractional permission
             fc
                                            variable
             1
                                            whole permission
             \frac{1}{2}f
t
                                         linear type
       ::=
             unit
                                            unit
             bool
                                            boolean (true/false)
             int
                                            63-bit integers
             elt
                                            array element
             f \operatorname{\mathbf{arr}}
                                            arrays
             f mat
                                            matrices
                                            multiple-use type
             !t
              'fc.t
                          bind fc in t
                                            frac. perm. generalisation
             t \otimes t'
                                            pair
             t \multimap t'
                                            linear function
                          S
                                            parentheses
             (t)
                                         primitive
p
                                            boolean negation
             \mathbf{not}
                                            integer addition
             (+)
             (-)
                                            integer subtraction
                                            integer multiplication
                                            integer division
                                            integer equality
                                            integer less-than
              (<)
                                            element addition
             (+.)
                                            element subtraction
                                            element multiplication
             (*.)
                                            element division
             (/.)
                                            element equality
             (=.)
             (<.)
                                            element less-than
                                            array index assignment
             \mathbf{set}
                                            array indexing
             get
             share
                                            share array
             unshare
                                            unshare array
             free
                                            free arrary
                                            Owl: make array
             array
             copy
                                            Owl: copy array
                                            Owl: map sine over array
             \sin
                                            Owl: x_i := \sqrt{x_i^2 + y_i^2}
             hypot
                                            BLAS: \sum_{i} |x_{i}|
             asum
                                            BLAS: x := \alpha x + y
             axpy
             \mathbf{dot}
                                            BLAS: x \cdot y
                                            BLAS: see its docs
             rotmg
                                            BLAS: x := \alpha x
             scal
             amax
                                            BLAS: \operatorname{argmax} i : x_i
                                            matrix index assignment
             \mathbf{set}\mathbf{M}
```

```
\mathbf{get}\mathbf{M}
                                                               matrix indexing
             shareM
                                                               share matrix
             unshareM
                                                               unshare matrix
             freeM
                                                               free matrix
             matrix
                                                               Owl: make matrix
             copyM
                                                               Owl: copy matrix
             copy M\_to
                                                               Owl: copy matrix onto another
             sizeM
                                                               dimension of matrix
                                                               transpose matrix
             trnsp
                                                               BLAS: C := \alpha A^{T?} B^{T?} + \beta C
             gemm
                                                               BLAS: C := \alpha AB + \beta C
             symm
                                                               BLAS: Cholesky decomp. and solve
             posv
                                                               BLAS: solve with given Cholesky
             potrs
                                                               BLAS: C := \alpha A^{T?} A^{T?} + \beta C
             syrk
                                                            values
v
                                                               primitives
             p
                                                               variable
             \boldsymbol{x}
                                                               unit introduction
             ()
             true
                                                               true
             false
                                                               false
                                                               integer
             k
              l
                                                               heap location
                                                               array element
              el
                                                               !-introduction
             Many v
             fun fc \rightarrow v
                                                               frac. perm. abstraction
             (v, v')
                                                               pair introduction
             \mathbf{fun}\,x:t\to e
                                        bind x in e
                                                               abstraction
                                        bind q \cup x in e
             \mathbf{fix}(g, x:t, e:t')
                                                               fixpoint
                                        S
                                                               parentheses
             (v)
                                                            expression
e
       ::=
                                                               primitives
             p
                                                               variable
             \mathbf{let}\,x=e\,\mathbf{in}\,e'
                                        bind x in e'
                                                               let binding
                                                               unit introduction
             \mathbf{let}() = e \, \mathbf{in} \, e'
                                                               unit elimination
             true
                                                               true
             false
                                                               false
             if e then e_1 else e_2
                                                               if
                                                               integer
              l
                                                               heap location
              el
                                                               array element
             Many e
                                                               !-introduction
             \mathbf{let}\,\mathbf{Many}\,x=e\,\mathbf{in}\,e'
                                                               !-elimination
             fun fc \rightarrow e
                                                               frac. perm. abstraction
                                                               frac. perm. specialisation
              e[f]
             (e, e')
                                                               pair introduction
```

```
bind a \cup b in e'
                     let(a, b) = e in e'
                                                                           pair elimination
                     \mathbf{fun}\,x:t\to e
                                                   bind x in e
                                                                           abstraction
                     e e'
                                                                           application
                     \mathbf{fix}(g, x:t, e:t')
                                                   bind g \cup x in e
                                                                           fixpoint
                     (e)
                                                                           parentheses
C
                                                                        evaluation contexts
              ::=
                     \mathbf{let} \ x = [-] \mathbf{in} \ e
                                                   bind x in e
                                                                           let binding
                     \mathbf{let}\,() = [-]\,\mathbf{in}\;e
                                                                           unit elimination
                     if [-] then e_1 else e_2
                                                                           if
                     \mathbf{Many}[-]
                                                                           !-introduction
                     let Many x = [-] in e
                                                                           !-elimination
                     fun fc \rightarrow [-]
                                                                           frac. perm. abstraction
                     [-][f]
                                                                           frac. perm. specialisation
                     ([-], e)
                                                                           pair introduction
                     (v, [-])
                                                                           pair introduction
                     let(a, b) = [-] in e
                                                   bind a \cup b in e
                                                                           pair elimination
                     [-]e
                                                                           application
                                                                           application
                     v[-]
Θ
              ::=
                                                                        fractional permission environment
                     \Theta, fc
\Gamma
              ::=
                                                                        linear types environment
                     \Gamma, x:t
                     \Gamma, \Gamma'
\Delta
              ::=
                                                                        intuitionistic types environment
                     \Delta, x:t
              ::=
                                                                        heap (multiset of triples)
                                                                           empty heap
                     \sigma + \{l \mapsto_f m_{k_1,k_2}\}
                                                                           location l points to matrix m
Config
                                                                        result of small step
                                                                           heap and expression
                     \langle \sigma, e \rangle
                     err
                                                                           error
```