Support Vector Machines

Aarti Singh

Machine Learning 10-601 Nov 22, 2011

SVMs reminder

Soft margin approach

Regularization Hinge loss

min
$$\mathbf{w}.\mathbf{w} + C \Sigma \xi_{j}$$
 \mathbf{w},b,ξ

s.t. $(\mathbf{w}.\mathbf{x}_{j}+b) \ \mathbf{y}_{j} \geq 1-\xi_{j} \ \forall j$
 $\xi_{j} \geq 0 \ \forall j$

Essentially a constrained optimization problem!

Constrained Optimization

Primal problem:

$$f^* = \min_x x^2$$
 s.t. $x \ge b$

Lagrangian $f^* = \min_x x^2$ $\equiv \min_x \max_{\alpha \ge 0} L(x, \alpha)$ s.t. $x \ge b$ → Lagrange multiplier

Dual problem:

$$d^* = \max_{\alpha} d(\alpha) \equiv \max_{\alpha \ge 0} \min_{x} L(x, \alpha)$$

s.t. $\alpha \ge 0$

$$\max_{\alpha \ge 0} \min_{x} L(x, \alpha)$$

In general,
$$d^* \leq f^*$$

When is
$$d^* = f^*$$
 ?

Constrained Optimization

Primal problem:

$$f^* = \min_x x^2$$
 s.t. $x \ge b$

$$x^* = \text{primal solution}$$

Dual problem:

$$d^* = \max_{\alpha} d(\alpha)$$

s.t. $\alpha \ge 0$

$$\alpha^* = \text{dual solution}$$

 $d^*=f^*$ if f is convex and \mathbf{x}^* , α^* satisfy the KKT conditions:

$$abla L(x^*, lpha^*) = 0$$
 Zero Gradient $x^* \geq b$ Primal feasibility $lpha^* \geq 0$ Dual feasibility $lpha^*(x^*-b) = 0$ Complementary slackness

 \rightarrow If $\alpha^* > 0$, then $x^* = b$ i.e. Constraint is effective

Constrained Optimization

$$\min_{x} x^{2}$$

$$\text{s.t.} \quad x \geq -1$$

$$x^{2}$$

$$x^{3}$$

$$x^{2}$$

$$x^{3}$$

$$x^{4} = 0$$

$$\alpha$$
* = 0 Constraint is ineffective

$$\alpha * = 1/2 > 0$$
 Constraint is effective

Complementary slackness $\alpha^*(x^*-1) = 0$

Primal problem:

minimize_{w,b}
$$\frac{1}{2}$$
w.w $\left(\mathbf{w}.\mathbf{x}_j + b\right)y_j \ge 1, \ \forall j$

w - weights on features

• Lagrangian:

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2}\mathbf{w}.\mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w}.\mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

$$\alpha_{j} \ge 0, \ \forall j$$

$$\alpha - \text{weights on training pts}$$

$$\alpha_j > 0$$
 constraint is effective $(w.x_j+b)y_j = 1$
point j is a support vector!!

Dual problem derivation:

$$\max_{\alpha} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

$$\alpha_{j} \geq 0, \ \forall j$$

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \qquad \Rightarrow \mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

$$\frac{\partial L}{\partial b} = 0 \qquad \Rightarrow \sum_{j} \alpha_{j} y_{j} = 0$$

we can solve for αs (dual problem), then we have a solution for **w** (primal problem)

Dual problem derivation:

$$\max_{\alpha} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

$$\alpha_{j} \geq 0, \ \forall j$$

$$\mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j} \qquad \sum_{j} \alpha_{j} y_{j} = 0$$

Dual problem:

maximize
$$_{\alpha}$$
 $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$ $\sum_{i} \alpha_{i} y_{i} = 0$ $\alpha_{i} \geq 0$

Dual problem:

maximize
$$_{\alpha}$$
 $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} . \mathbf{x}_{j}$ $\sum_{i} \alpha_{i} y_{i} = 0$ $\alpha_{i} > 0$

Dual problem is also QP Solution gives $\alpha_{\rm j}$ s

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$$

$$b = y_{k} - \mathbf{w}.\mathbf{x}_{k}$$
for any k where $\alpha_{k} > 0$

 $w.x_k+b=y_k$ ($w.x_k+b$) $y_k=1$ (Use support vectors to compute b

Dual SVM Interpretation: Sparsity

$$\mathbf{w} = \sum_{j \text{ = Support vectors}} \alpha_j y_j \mathbf{x}_j$$

Only few α_j s can be non-zero : where constraint is tight

$$(\mathbf{w}.\mathbf{x}_i + \mathbf{b})\mathbf{y}_i = 1$$

Support vectors – training points j whose α_i s are non-zero

So why solve the dual SVM?

 There are some quadratic programming algorithms that can solve the dual faster than the primal, specially in high dimensions d>>n

Recall:
$$(w_1, w_2, ..., w_d, b) - d+1$$
 primal variables $\alpha_1, \alpha_2, ..., \alpha_n - n$ dual variables

Dual SVM – non-separable case

Primal problem:

minimize_{w,b}
$$\frac{1}{2}$$
w.w + $C \sum_{j} \xi_{j}$ $\left(\mathbf{w}.\mathbf{x}_{j} + b\right) y_{j} \geq 1 - \xi_{j}, \ \forall j$ $\xi_{j} \geq 0, \ \forall j$

 $\left[egin{aligned} lpha_j \ \mu_j \end{aligned}
ight]$

Lagrange Multipliers

Dual problem:

$$\begin{aligned} \max_{\alpha,\mu} \min_{\mathbf{w},b} L(\mathbf{w},b,\alpha,\mu) \\ s.t.\alpha_j &\geq 0 \quad \forall j \\ \mu_j &\geq 0 \quad \forall j \end{aligned}$$

Dual SVM – non-separable case

$$\begin{aligned} & \max \mathsf{imize}_{\alpha} \quad \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}. \mathbf{x}_{j} \\ & \sum_{i} \alpha_{i} y_{i} = \mathbf{0} \\ & C \geq \alpha_{i} \geq \mathbf{0} \end{aligned} \\ & \mathsf{comes from} \quad \frac{\partial L}{\partial \mu} = \mathbf{0} \quad \begin{aligned} & \underbrace{\mathbf{Intuition:}}_{\mathsf{Earlier - If constraint violated, } \alpha_{i} \neq \infty} \\ & \mathsf{Now - If constraint violated, } \alpha_{i} \leq \mathbf{C} \end{aligned}$$

Dual problem is also QP
$$b = y_k - \mathbf{w}.\mathbf{x}_k$$
 for any k where $C > \alpha_k > 0$

So why solve the dual SVM?

 There are some quadratic programming algorithms that can solve the dual faster than the primal, specially in high dimensions d>>n

Recall:
$$(w_1, w_2, ..., w_d, b) - d+1$$
 primal variables $\alpha_1, \alpha_2, ..., \alpha_n - n$ dual variables

• But, more importantly, the "kernel trick"!!!

What if data is not linearly separable?

Using non-linear features to get linear separation

What if data is not linearly separable?

Using non-linear features to get linear separation

What if data is not linearly separable?

Use features of features of features of features....

$$\Phi(\mathbf{x}) = (x_1^2, x_2^2, x_1x_2,, \exp(x_1))$$

Feature space becomes really large very quickly!

Can we get by without having to write out the features explicitly?

Higher Order Polynomials

d – input features

m – degree of polynomial

num. terms
$$= \binom{m+d-1}{m} = \frac{(m+d-1)!}{m!(d-1)!} \sim d^m$$

grows fast! m = 6, d = 100 about 1.6 billion terms

Dual formulation only depends on dot-products, not on w!

$$\begin{aligned} \text{maximize}_{\alpha} & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}. \mathbf{x}_{j} \\ & \sum_{i} \alpha_{i} y_{i} = 0 \\ & C \geq \alpha_{i} \geq 0 \end{aligned}$$

$$\mathbf{maximize}_{\alpha} & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j}) \\ & K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j}) \\ & \sum_{i} \alpha_{i} y_{i} = 0 \\ & C \geq \alpha_{i} \geq 0 \end{aligned}$$

 $\Phi(\mathbf{x})$ – High-dimensional feature space, but never need it explicitly as long as we can compute the dot product fast using some Kernel K

Dot Product of Polynomials

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 $\mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \Phi(\mathbf{x}) = \text{polynomials of degree exactly}$

m=1
$$\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = x_1 z_1 + x_2 z_2 = \mathbf{x} \cdot \mathbf{z}$$

m=2
$$\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \begin{bmatrix} x_1^2 \\ v_2 x_1 x_2 \\ x_2^2 \end{bmatrix} \cdot \begin{bmatrix} z_1^2 \\ v_2 z_1 z_2 \\ z_2^2 \end{bmatrix} = x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2$$

$$= (x_1 z_1 + x_2 z_2)^2$$

$$= (\mathbf{x} \cdot \mathbf{z})^2$$

m
$$\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = K(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z})^{\mathsf{m}} = K(\mathbf{x}, \mathbf{z})$$

Don't store high-dim features - Only evaluate dot-products with kernels

Finally: The Kernel Trick!

maximize_{$$\alpha$$} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$

$$K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j})$$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$C > \alpha_{i} > 0$$

- Never represent features explicitly
 - Compute dot products in closed form
- Constant-time high-dimensional dotproducts for many classes of features

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \Phi(\mathbf{x}_{i})$$
$$b = y_{k} - \mathbf{w} \cdot \Phi(\mathbf{x}_{k})$$

for any k where $C > \alpha_k > 0$

Common Kernels

Polynomials of degree d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$$

Polynomials of degree up to d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$$

 Gaussian/Radial kernels (polynomials of all orders – recall series expansion)

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||^2}{2\sigma^2}\right)$$

Sigmoid

$$K(\mathbf{u}, \mathbf{v}) = \tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)$$

Which Functions Can Be Kernels?

- not all functions
- for some definitions of $K(x_1,x_2)$ there is no corresponding projection $\phi(x)$
- Nice theory on this, including how to construct new kernels from existing ones
- Initially kernels were defined over data points in Euclidean space, but more recently over strings, over trees, over graphs, ...

Overfitting

- Huge feature space with kernels, what about overfitting???
 - Maximizing margin leads to sparse set of support vectors (decision boundary not too complicated)
 - Some interesting theory says that SVMs search for simple hypothesis with large margin
 - Often robust to overfitting

What about classification time?

$$\mathbf{w} = \sum_i lpha_i y_i \Phi(\mathbf{x}_i)$$
 $b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$ for any k where $C > lpha_k > 0$

$$b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$$

- For a new input **x**, if we need to represent $\Phi(\mathbf{x})$, we are in trouble!
- Recall classifier: sign($\mathbf{w}.\Phi(\mathbf{x})$ +b)
- Using kernels we are cool!

$$K(\mathbf{u}, \mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$$

SVMs with Kernels

- Choose a set of features and kernel function
- Solve dual problem to obtain support vectors α_i
- At classification time, compute:

$$\begin{aligned} \mathbf{w} \cdot \Phi(\mathbf{x}) &= \sum_i \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i) \\ b &= y_k - \sum_i \alpha_i y_i K(\mathbf{x}_k, \mathbf{x}_i) \\ \text{for any } k \text{ where } C > \alpha_k > 0 \end{aligned} \qquad \text{Classify as} \qquad sign\left(\mathbf{w} \cdot \Phi(\mathbf{x}) + b\right)$$

SVM Decision Surface using Gaussian Kernel

Bishop Fig 7.2

$$\hat{f}(\mathbf{x}) = \mathbf{w}^T \Phi(\mathbf{x}) + b$$

Circled points are the support vectors: training examples with non-zero $\boldsymbol{\alpha}_{\!\scriptscriptstyle j}$

Points plotted in original 2-D space.

Contour lines show constant $\hat{f}(\mathbf{x})$

$$\hat{f}(\mathbf{x}) = b + \sum_{l=1}^{M} \alpha_l \ y_l \ \kappa(\mathbf{x}, \mathbf{x}_l) = b + \sum_{l=1}^{M} \alpha_l \ y_l \exp(-\|\mathbf{x} - \mathbf{x}_l\|^2 / 2\sigma^2)$$

SVM Soft Margin Decision Surface using Gaussian Kernel

Bishop Fig 7.4

$$\hat{f}(\mathbf{x}) = \mathbf{w}^T \Phi(\mathbf{x}) + b$$

Circled points are the support vectors: training examples with non-zero $\boldsymbol{\alpha}_{\text{i}}$

Points plotted in original 2-D space.

Contour lines show constant $\hat{f}(\mathbf{x})$

$$\hat{f}(\mathbf{x}) = b + \sum_{l=1}^{M} \alpha_l \ y_l \ \kappa(\mathbf{x}, \mathbf{x}_l) = b + \sum_{l=1}^{M} \alpha_l \ y_l \exp(-\|\mathbf{x} - \mathbf{x}_l\|^2 / 2\sigma^2)$$

SVMs vs. Kernel Regression

SVMs

$$sign\left(\mathbf{w}\cdot\Phi(\mathbf{x})+b\right)$$

$$sign\left(\sum_{i}\alpha_{i}y_{i}K(\mathbf{x},\mathbf{x}_{i})+b\right)$$

Kernel Regression

$$sign\left(\frac{\sum_{i} y_{i} K(\mathbf{x}, \mathbf{x}_{i})}{\sum_{j} K(\mathbf{x}, \mathbf{x}_{j})}\right)$$

Differences:

- SVMs:
 - Learn weights α_i (and bandwidth)
 - Often sparse solution
- KR:
 - Fixed "weights", learn bandwidth
 - Solution may not be sparse
 - Much simpler to implement

SVMs vs. Logistic Regression

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!
		J+

Kernels in Logistic Regression

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \Phi(\mathbf{x}) + b)}}$$

Define weights in terms of features:

$$\mathbf{w} = \sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i})$$

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}) + b)}}$$

$$= \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} K(\mathbf{x}, \mathbf{x}_{i}) + b)}}$$

• Derive simple gradient descent rule on α_i

SVMs vs. Logistic Regression

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!
Solution sparse		
Semantics of output		56

Kernels: Key Points

- Many learning tasks are framed as optimization problems
- Primal and Dual formulations of optimization problems
- Dual version framed in terms of dot products between x's
- Kernel functions K(x,y) allow calculating dot products $<\Phi(x),\Phi(y)>$ without bothering to project x into $\Phi(x)$
- Leads to major efficiencies, and ability to use very high dimensional (virtual) feature spaces

What you need to know...

- Dual SVM formulation
 - How it's derived
- The kernel trick
- Common kernels
- Differences between SVMs and kernel regression
- Differences between SVMs and logistic regression
- Kernelized logistic regression
- Also, Kernel PCA, Kernel ICA, ...