Politechnika Warszawska WYDZIAŁ ELEKTRONIKI I TECHNIK INFORMACYJNYCH

Sprawozdanie

Wprowadzenie do sztucznej inteligencji Ćwiczenie nr. 2

Mikołaj Bańkowski

Numer albumu 310408

prowadzący Grzegorz Rypeść

Warszawa 2024

Spis treści

1. Temat ćwiczenia	3
2. Minima i maksima funkcji	4
3. Co jest przestrzenią poszukiwań	. 11
4. Czy jest potrzebny gradient?	. 11
5. Jak odchylenie standardowe w szumie mutacji (σ) wpływa na wyniki (wartości 0.01, 0.1, 10)?	
6. Jak liczba rodziców μ i dzieci λ wpływa na proces optymalizacji (wartości {1, 1}, {1, 16}, {16, 1}, {16,16}, {128, 512})?	
7. Proszę punkt startowy ES (dla μ , λ =(128 ,512) , σ =0.1) oraz algorytmu SGD z poprzedniego zadania ustawić na punkt (10,10) i porównać wyniki	. 22
7.1 Co i dlaczego można zaobserwować?	. 22
7.2 Kiedy ES jest lepszym rozwiązaniem niż SGD?	. 23
7.3 Który algorytm optymalizacji jest bardziej złożony obliczeniowo?	. 23

1. Temat ćwiczenia

Proszę znaleźć minima oraz maksima funkcji $f(x,y)=\frac{9\cdot x\cdot y}{e^{(x^2+0.5x+y^2)}}$ wykorzystując strategię ewolucyjną $\mu+\lambda$ (ES, ang. Evolution Strategy). Strategia ma dokonywać mutacji osobnika za pomocą dodania do niego szumu Gaussowskiego. Krzyżowanie ma być dokonane za pomocą interpolacji, tzn. wynikiem krzyżowania osobników o¹ i o² jest osobnik a o¹+(1-a)o², gdzie a jest zmienną losową z rozkładu jednostajnego na przedziale [0;1]. Proszę samemu zaproponować strategię selekcji i eliminacji. Osobnik jest tutaj dwuwymiarowym wektorem, niech będzie on reprezentowany przez numpy array, albo torch tensor.

Odpowiedzieć na pytania:

- 1) Co jest przestrzenią poszukiwań?
- 2) Czy jest potrzebny gradient?
- 3) Jak odchylenie standardowe w szumie mutacji (σ) wpływa na wyniki (wartości 0.01, 0.1, 1, 10)?
- 4) Jak liczba rodziców μ i dzieci λ wpływa na proces optymalizacji (wartości {1, 1}, {1, 16}, {16, 1}, {16,16}, {128, 512})?

Proszę punkt startowy ES (dla μ , λ =(128 ,512) , σ =0.1) oraz algorytmu SGD z poprzedniego zadania ustawić na punkt (10,10) i porównać wyniki.

Odpowiedzieć na pytania:

- Co i dlaczego można zaobserwować?
- 2. Kiedy ES jest lepszym rozwiązaniem niż SGD?
- 3. Który algorytm optymalizacji jest bardziej złożony obliczeniowo?

2. Minima i maksima funkcji

Do wstępnej analizy badanej funkcji i jej wizualizacji, wykorzystano narzędzie WolframAplha

Na podstawie analizy poniższych wykresów funkcji, można zauważyć, że funkcja posiada dwa minima i dwa maksima.

Minima funkcji znajdują się w II i IV ćwiartce układu współrzędnych. Są to kolejno

$$min\{f(x,y)\} \approx -2.43687 \text{ dla } (x, y) \approx (-0.84307, 0.707107)$$

$$min\{f(x,y)\} \approx -1.19715 \text{ dla } (x, y) \approx (0.59307, -0.707107)$$

Maxima funkcji znajdują się w I i III ćwiartce układu współrzędnych. Są to kolejno

$$\max\{f(x,y)\} \approx 1.19715 \text{ dla } (x, y) \approx (0.59307, 0.707107)$$

$$\max\{f(x,y)\} \approx 2.43687 \text{ dla } (x, y) \approx (-0.84307, -0.707107)$$

Minima funkcji znalezione za pomocą algorytm ewolucyjnego $\,$ ES(μ + λ)

λ	μ	σ	Pokolenia	Punkt końcowy	Znalezione minimum
10	100	0.1	200	x = -0.8430703308792917 y = 0.7071067885974828	-2.4368681615230177

λ	μ	σ	Pokolenia	Punkt końcowy	Znalezione minimum
10	100	0.1	200	x = 0.5930703224398627 y = -0.7071067812684363	-1.197146871901824

Maksima funkcji znalezione za pomocą algorytm ewolucyjnego $ES(\mu+\lambda)$

λ	μ	σ	Pokolenia	Punkt końcowy	Znalezione maksimum
10	100	0.1	200	x = -0.8430703305330756 y = 0.7071068216406652	2.4368681615230097

λ	μ	σ	Pokolenia	Punkt końcowy	Znalezione maksimum
10	100	0.1	200	x = -0.8430703308792917 y = 0.7071067885974828	-2.4368681615230177

Podczas szukania drugiego maksimum lokalnego – będąc bardzo blisko jednego z maksimum lokalnego algorytm 'przeskoczył' do drugiego maksimum globalnego. Można wywnioskować, że algorytm nie daje nam gwarancji, że znajdziemy wszystkie minima/maksima, ale dąży do znalezienia najlepszego optima.

λ	μ	σ	Pokolenia	Punkt końcowy	Znalezione maksimum
10	100	0.1	200	x = -0.8430703201291451 y = 0.7071067702216859	2.4368681615230168

3. Co jest przestrzenią poszukiwań

Przestrzeń poszukiwań w algorytmie $\lambda + \mu$ to obszar, w którym algorytm przeszukuje potencjalne rozwiązania. W przypadku algorytmu ewolucji strategii (ES) $\lambda + \mu$ przestrzeń poszukiwań obejmuje zakres możliwych wartości zmiennych decyzyjnych, które mogą być oceniane przez funkcję celu.

W algorytmie $\lambda + \mu$ definiuje się dwie liczby: λ i μ . Parametr λ określa liczbę potomków, które są tworzone w każdym pokoleniu poprzez krzyżowanie i mutację. Parametr μ określa liczbę rodziców, którzy są wybierani z populacji i służą jako rodzice do generowania potomstwa.

Przestrzeń poszukiwań w algorytmie $\lambda + \mu$ jest zazwyczaj definiowana przez ograniczenia problemu optymalizacyjnego, w tym zakresy wartości zmiennych decyzyjnych.

W przypadku mojego kodu, przestrzenią poszukiwań jest obszar zdefiniowany przez poniższy fragment kodu. Z tego obszaru są

```
x = np.random.uniform(-20.0, high: 20.0)
y = np.random.uniform(-20.0, high: 20.0)
```

Oznacza to, że przestrzeń poszukiwań dla zmiennych x i y mieści się w zakresie od -20.0 do 20.0. Algorytm będzie próbował znaleźć wartości x i y w tym przedziale, które minimalizują lub maksymalizują funkcję celu, w zależności od tego, czy szukamy minimum czy maksimum.

4. Czy jest potrzebny gradient?

W algorytmie ewolucji strategii $ES(\mu + \lambda)$ gradient nie jest potrzebny. Algorytm ten jest oparty na ewolucji populacji, w której generowane są nowe rozwiązania poprzez krzyżowanie, mutację i selekcję, a następnie oceniane są one na podstawie funkcji celu.

 $ES(\mu + \lambda)$ jest często wykorzystywany w problemach optymalizacji, w których gradient może być trudny do obliczenia lub nie jest dostępny. Zamiast tego, algorytm ten polega na przeszukiwaniu przestrzeni poszukiwań poprzez ewolucję populacji rozwiązań w kierunku optymalizacji funkcji celu.

Dzięki temu, $ES(\mu + \lambda)$ może być skuteczny w przypadku funkcji celu nieliniowych, nieregularnych lub zawierających wiele lokalnych ekstremów, gdzie metody oparte na gradientach mogą nie być wystarczająco skuteczne.

5. Jak odchylenie standardowe w szumie mutacji (σ) wpływa na wyniki (wartości 0.01, 0.1, 1, 10)?

Przestrzeń przeszukiwań

```
x = np.random.uniform(-10000.0, high: 10000.0)
y = np.random.uniform(-10000.0, high: 10000.0)
```

Minima funkcji znalezione za pomocą algorytm ewolucyjnego ES(μ+λ)

λ	μ	σ	Pokolenia	Punkt końcowy	Znalezione minimum
10	100	0.01	2000	x = 921.8740423793206 y = -8708.683560421592	0.0

λ	μ	σ	Pokolenia	Punkt końcowy	Znalezione minimum
10	100	0.1	2000	x = 7025.51025670431 y = -5897.360235172188	0.0

λ	μ	σ	Pokolenia	Punkt końcowy	Znalezione minimum
10	100	1	2000	x = -0.8430703388621299 y = -0.7071067807915719	-2.436868161523017

λ	μ	σ	Pokolenia	Punkt końcowy	Znalezione minimum
10	100	10	2000	x = -0.843070332338862 y = -0.7071067785899547	-2.436868161523017

Przestrzeń przeszukiwań

```
x = np.random.uniform(-10000.0, high: 10000.0)
y = np.random.uniform(-10000.0, high: 10000.0)
```

λ	μ	σ	Pokolenia	Znalezione minimum
10	100	0.1	50000	2.4368681615230168

Silna mutacja to mała szansa trafienia w interesujący obszar, słaba mutacja to mały krok

Zasięg mutacji zwiększa różnorodność populacji, a co za tym idzie zmniejsza ryzyko wpadnięcia w minimum lokalne oraz zwiększa szybkość znalezienia minimum dla funkcji. Z drugiej stromy, gdy jego wartość jest zbyt duża może utrudnić znalezienie minimum funkcji oraz zwiększyć liczbę iteracji potrzebnych do jego znalezienia

5. Jak liczba rodziców μ i dzieci λ wpływa na proces optymalizacji (wartości {1, 1}, {1, 16}, {16, 1}, {16,16}, {128, 512})?

λ	μ	σ	Pokolenia	Punkt końcowy	Znalezione minimum
1	1	0.1	200	x = -0.7124067452599503 y = -0.8536002220308432	-2.4362729706189845

Znaleziono jedno z minimum po wielu uruchomieniach algorytmu

λ	μ	σ	Pokolenia	Punkt końcowy	Znalezione minimum
1	16	0.1	200	x = -0.8430703235228891 y = -0.7071067889332481	-2.436868161523017

Znaleziono jedno z minimum po bardzo dużej ilości ponownego uruchomienia algorytmu

λ	μ	σ	Pokolenia	Punkt końcowy	Znalezione minimum
16	1	0.1	200	x = -0.8333078712098345 y = -0.576516880709629	-2.349028928488879

Znaleziono jedno z minimum ale bardzo bardzo ciężko to szło, ciężko było znaleźć jakiekolwiek minimum, trzeba było wielokrotnie uruchomić algorytm

λ	μ	σ	Pokolenia	Punkt końcowy	Znalezione minimum
16	16	0.1	200	x = -0.8430703351073741 y = -0.7071067802526086	-2.436868161523017

W tym przypadku praktycznie za każdym uruchomieniem algorytmu udawało się znaleźć minimum jedno z dwóch minimów

λ	μ	σ	Pokolenia	Punkt końcowy	Znalezione minimum
128	512	0.1	200	x = 921.8740423793206 y = -8708.683560421592	0.0

Bezproblemowo za udawało się znaleźć minimum

- **{**1, 1**}**: Ta kombinacja może być niewystarczająca do skutecznej eksploracji przestrzeni rozwiązań, co może prowadzić do zatrzymania w lokalnych minimach lub nie znalezienia ich nawet
- {1, 16}: Ta kombinacja może prowadzić do bardziej intensywnej eksploatacji okolicy rodzica, co może pomóc w szybszym znalezieniu lokalnego minimum, ale ryzyko utknięcia w nim jest większe.
- {16, 1}: Ta kombinacja umożliwia lepszą eksplorację przestrzeni rozwiązań, ale może prowadzić do większego rozproszenia się wysiłków optymalizacyjnych.
- {16, 16}. Ta kombinacja zapewnia to równowagę między eksploracją a eksploatacją, co może pomóc w efektywnym przeszukiwaniu przestrzeni rozwiązań i unikaniu zatrzymywania się w lokalnych minimach.
- {128, 512}: Ta kombinacja ma dużą liczbę rodziców i dzieci. Wysokie wartości μ i λ mogą prowadzić do bardzo szerokiej eksploracji przestrzeni rozwiązań, co jest korzystne podczas szukania minimum i dużo łatwiej jest znaleźć szukane minimum.

7. Proszę punkt startowy ES (dla μ , λ =(128 ,512) , σ =0.1) oraz algorytmu SGD z poprzedniego zadania ustawić na punkt (10,10) i porównać wyniki.

7.1 Co i dlaczego można zaobserwować?

Algorytm ewolucyjny znalazł minumum natomiast algorytm SGD nie znalazł. Spowodowane jest to tym, że gradient w punkcie (10,10) jest zerowy więc algorytm nie zadziałał

7.2 Kiedy ES jest lepszym rozwiązaniem niż SGD?

Algorytm ewolucji strategii (ES) może być lepszym rozwiązaniem niż stochastyczny spadek gradientu (SGD) w sytuacjach, gdy:

- Brak dostępu do gradientu.
- Funkcja celu zawiera wiele lokalnych ekstremów.
- Funkcja celu jest złożona.
- Problem wymaga optymalizacji globalnej.

7.3 Który algorytm optymalizacji jest bardziej złożony obliczeniowo?

ES mu + lambda jest bardziej złożonym obliczeniowo algorytmem niż SGD.

W ES mu + lambda proces optymalizacji obejmuje generowanie, selekcję, krzyżowanie i mutację populacji osobników, co wymaga większej ilości obliczeń w porównaniu do SGD, który polega głównie na obliczeniach gradientu i aktualizacji wag.

Proces ewolucji populacji w ES mu + lambda może być bardziej złożony ze względu na wymagane operacje na dużych zbiorach danych oraz ewentualną konieczność dostosowania parametrów populacji.