Problem 1

Let V be a vector space, and let $\vec{u}, \vec{v}, \vec{w} \in V$. Prove that if $\vec{u} \oplus \vec{w} = \vec{v} \oplus \vec{w}$ then $\vec{u} = \vec{v}$.

Proof. Consider $\vec{v}, \vec{u}, \vec{w} \in V$, and assume $\vec{u} \oplus \vec{w} = \vec{v} \oplus \vec{w}$.

$$\begin{array}{ll} \vec{u} \oplus \vec{w} = \vec{v} \oplus \vec{w} & \text{Assertion} \\ (\vec{u} \oplus \vec{w}) \oplus -\vec{w} = (\vec{v} \oplus \vec{w}) \oplus -\vec{w} & \text{Axiom 5 states } -\vec{w} \in V \\ \vec{u} \oplus (\vec{w} \oplus -\vec{w}) = \vec{v} \oplus (\vec{w} \oplus -\vec{w}) & \text{Axiom 3} \\ \vec{u} \oplus \mathbf{id} = \vec{v} \oplus \mathbf{id} & \text{Def. of additive inverse} \\ \vec{u} = \vec{v} & \text{Def. of additive identity} \end{array}$$

 $\vec{u} \oplus \vec{u} = \vec{v} \oplus \vec{w}$ then $\vec{u} = \vec{v}$

Problem 2

Prove Theorem B.

Proof. Let $k \in \mathbb{R}$. Recall that Theorem A implies that $0 \odot \mathbf{id} = \mathbf{id}$:

$$k \odot \mathbf{id} = k \odot (0 \odot \mathbf{id})$$
 Thm A
 $= (k \cdot 0) \odot \mathbf{id}$ Axiom 9
 $= 0 \odot \mathbf{id}$
 $= \mathbf{id}$ Thm A

 $\therefore \forall k \in \mathbb{R}, k \odot \mathbf{id} = \mathbf{id}$

Problem 3

Prove Theorem D. If $k \odot \vec{u} = id$, then k = 0 and/or u = id

Proof. Consider $k \odot \vec{u} = \text{id}$ and $k \neq 0$. Since $\frac{1}{k} \neq \frac{1}{0}$, $\frac{1}{k}$ is well-defined.

$$k \odot \vec{u} = \mathbf{id} \qquad \qquad \text{Assertion}$$

$$\frac{1}{k} \odot k \odot \vec{u} = \frac{1}{k} \odot \mathbf{id}$$

$$(\frac{1}{k} \cdot k) \odot \vec{u} = \frac{1}{k} \odot \mathbf{id} \qquad \qquad \text{Axiom 9}$$

$$1 \odot \vec{u} = \mathbf{id} \qquad \qquad \text{Thm B}$$

$$\vec{u} = \mathbf{id} \qquad \qquad \text{Axiom 10}$$

Now consider $k \odot \vec{u} = \mathbf{id}$ and $\vec{u} \neq \mathbf{id}$. Since k is defined, -k is also defined.

$$k\odot \vec{u} = \mathbf{id} \hspace{1cm} \text{Assertion}$$

$$k\odot \vec{u} = \mathbf{id}$$

$$k\odot \vec{u} \oplus (-k)\odot \vec{u} = \mathbf{id} \oplus (-k)\odot \vec{u}$$

$$(k+(-k))\odot \vec{u} = (-k)\odot \vec{u} \hspace{1cm} \text{Axiom 8}$$

$$0\odot \vec{u} = (-k)\odot \vec{u}$$

Since $u \neq id$,

$$0 = -k$$
, $\therefore k = 0$

Problem 4

Prove that there does not exist a real vector space of size 2. Show that there cannot be a vector space of size 2.

Proof. Let $V = \{\vec{u}, \vec{v}\}$ be a vectorspace. That is, it satisfies all 10 Axioms.

Axiom 4 states that **id** exist, and is unique, therefore either $\vec{u} = \mathbf{id}$ or $\vec{v} = \mathbf{id}$. Both cannot be **id**, so therefore $\vec{u} \neq \vec{v}$

Without the loss of generality, let $\vec{u} = \mathbf{id}$.

$$\vec{u} \oplus \vec{v} = \vec{v}$$
 Axiom 4 $\mathbf{id} \oplus \vec{v} = \vec{v}$

Now consider Axiom 5: additive inverse exists for all $\vec{u} \in V$.

Consider $-\vec{v} \oplus \vec{v} = \mathbf{id}$. Since $\vec{v} \neq \mathbf{id}$, $-\vec{v} \neq \vec{v}$. Since there is only one other element in V, $-\vec{v} = \vec{u}$ must be true. Remember that $\vec{u} = \mathbf{id}$.

$$\vec{u} \oplus \vec{v} = \vec{u}$$

Therefore we have from Axiom 4 and 5:

$$\vec{u} \oplus \vec{v} = \vec{u}$$
$$\vec{u} \oplus \vec{v} = \vec{v}$$
$$\therefore \vec{u} = \vec{v}$$

However, this contradicts with our assertion that $\vec{u} \neq \vec{v}$.

 \therefore A vector space of size 2 cannot exist.