Homework 3 of Matrix Theory

Sequence	Number:
----------	---------

Name:

Student ID:

习题一

32.

设欧式空间 $\mathbb{R}[x]_2$ 中的內积为

$$(f,g) = \int_{-1}^{1} f(x)g(x)dx$$

- (1) 求基 $1,t,t^2$ 的度量矩阵
- (2) 用矩阵乘法形式计算 $f(x) = 1 x + x^2$ 与 $g(x) = 1 4x 5x^2$ 的內积.

- (1) 复数域 $\mathbb C$ 是实数域 $\mathbb R$ 上的二维线性空间. 是否存在 $\mathbb C$ 上的一个內积,使得 i 与 1+i 成为 $\mathbb C$ 的一组标准正交基,为什么?
- (2) 试构造实线性空间 \mathbb{R}^3 上的一个內积,使得向量组 $e_1, e_1 + e_2, e_1 + e_2 + e_3$ 是一组标准正交 基. 问此时 e_2 与 e_3 的长度是多少?它们的夹角又是多少?

在欧式空间 \mathbb{R}^4 中,求三个向量 $\alpha_1=(1,0,1,1)',\alpha_2=(2,1,0,-3)'$ 和 $\alpha_3=(1,-1,1,-1)'$ 所生成的子空间的一个标准正交基.

设二维欧式空间 V 的一组基为 $lpha_1,lpha_2$,其度量矩阵为

$$A = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}$$

试求 V 的一个标准正交基到 α_1,α_2 的过渡矩阵.

设线性空间 $V=\mathbb{R}^2$ 是欧式空间 (未必是通常的欧式空间). 设 $\alpha_1=(1,1)',\alpha_2=(1,-1)'$ 与 $\beta_1=(0,2)',\beta_2=(6,12)'$ 是 V 的两组基. 设 α_j 与 β_k 的內积分别为

$$(lpha_1,eta_1)=1, (lpha_1,eta_2)=15, (lpha_2,eta_1)=-1, (lpha_2,eta_2)=3$$

- (1) 求两组基的度量矩阵
- (2) 求 V 的一个标准正交基.

- 设 A 是**反对称**实矩阵(即 A'=-A),证明:
- (1) A 的特征值为 0 或纯虚数
- (2) 设 $\alpha+\beta$ i 是 A 的属于一个非零特征值的特征向量,其中 α,β 均为实向量,则 α 与 β 正交。

设 A 是 Hermite 矩阵。如果对任意向量 x 均有 $x^*Ax=0$,则 A=0.

习题二

33.

在欧式空间 \mathbb{R}^n 中求一个超平面 W,使得向量 e_1+e_2 在 W 中的最佳近似向量为 e_2 .

设 α_0 是欧式空间中 V 的单位向量, $\sigma(\alpha)=\alpha-2(\alpha,\alpha_0)\alpha_0, \alpha\in V$. 证明

- (1) σ 是线性变换;
- (2) σ 是正交变换.

证明:欧式空间 V 的线性变换 σ 是反对称变换 \iff σ 在 V 的标准正交基下的矩阵是反对称矩阵.

证明 Givens 旋转矩阵 G 是正交矩阵,对任意向量 $x=(x_1,x_2,\cdots,x_n)'$,计算 Gx 的各个分量. 设 x 是单位向量,讨论如何重复使用若干 Givens 旋转矩阵将 x 变为标准向量 e_1 .

习题三

10.

设 A 的特征值为 0,1,对应的特征向量为 (1,2)',(2,-1)'. 判断 A 是否为对称矩阵并求 A.

Bonus Questions

求 $\alpha=(7,-4,-1,2)'$ 在 ω 上的正交投影,其中 ω 为 Ax=0 的解空间

$$A = \begin{pmatrix} 2 & 1 & 1 & 3 \\ 3 & 2 & 2 & 1 \\ 1 & 2 & 2 & -9 \end{pmatrix}$$