CHAPTER 3

© 2008 Pearson Education, Inc.

3-1.

Place a 1 in each K-map cell where 2 or more inputs are equal to 1.

$$F = XZ + XY + YZ$$

This is the same function as the carry for the full adder.

3-2.*

$$F = AB + AC$$

3-3.

3-4. a) For the 3 x 3 pattern, there are exactly three row, three column and two diagonal combinations that represent a win for the X player: W = X1 X2 X3 + X4 X5 X6 + X7 X8 X9 + X1 X4 X7 + X2 X5 X8 + X3 X6 X9 + X1 X5 X9 + X3 X5 X7 Gate Input cost = 32

b) W = X5(X1X9 + X2X8 + X3X7 + X4X6) + X1X2X3 + X1X4X7 + X7X8X9 + X3X6X9 Gate Input Cost = 30

3-5. a) For the 4 x 4 pattern, there are exactly four row, four column and two diagonal combinations that represent a win for the X player: $W = X1 \ X2 \ X3 \ X4 + X5 \ X6 \ X7 \ X8 + X9 \ X10 \ X11 \ X12 + X13 \ X14 \ X15 \ X16 + X1 \ X5 \ X9 \ X13 \ X2 \ X6 \ X10 \ X14 + X3 \ X7 \ X11 \ X15 + X4 \ X8 \ X12 \ X16 + X1 \ X6 \ X11 \ X16 + X4 \ X7 \ X10 \ X13 \ Gate Input cost = 50$

b) W = X1(X2 X3 X4 + X5 X9 X13 + X6 X11 X15) + X7(X5 X6 X8 + X3 X11 X15 + X4 X10 X13) + X9 X10 X 11 X12 + X13 X14 X15 X16 + X2 X6 X10 X14 + X4 X8 X12 X16 Gate Input Cost = 48

3-6.

a) Detecting a change in one-out-ofthree inputs can be done using a parity function as Z. The truth table shown is for even parity. For this case,

$$Z = X1 \oplus X2 \oplus X3$$

If odd parity is chosen, then an alternative result for Z is:

$$Z = \overline{X1 \oplus X2 \oplus X3}$$

X1	X2	X3	Z
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

3-7.+

ABCD	GNS	YNS	RNS	GEW	YEW	REW
0000	1	0	0	0	0	1
0001	1	0	0	0	0	1
0011	1	0	0	0	0	1
0010	1	0	0	0	0	1
0110	1	0	0	0	0	1
0111	1	0	0	0	0	1
0101	0	1	0	0	0	1
0100	0	0	1	0	0	1
1100	0	0	1	1	0	0
1101	0	0	1	1	0	0
1111	0	0	1	1	0	0
1110	0	0	1	1	0	0
1010	0	0	1	1	0	0
1011	0	0	1	1	0	0
1001	0	0	1	0	1	0
1000	0	0	1	0	0	1

$$GNS = \overline{A}C + \overline{A}\overline{B}$$

3-8.

A	В	C	S5	S 4	S 3	S2	S 1	S 0
0	0	0	0	0 0 0 0 1 1	0	0	0	0
0	0	1	0	0	0	0	0	1
0	1	0	0	0	0	1	0	0
0	1	1	0	0	1	0	0	1
1	0	0	0	1	0	0	0	0
1	0	1	0	1	1	0	0	1
1	1	0	1	0	0	1	0	0
1	1	1	1	1	0	0	0	1

$$S0 = C$$

$$S1 = 0$$

$$S2 = \overline{A}B\overline{C} + AB\overline{C}$$
$$S3 = \overline{A}BC + A\overline{B}C$$

$$S4 = A\overline{B} + AC$$

$$S5 = AB$$

3-9.+

A	В	C	D	S2	S 1	S0
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	1	0
0	1	0	0	0	1	0
0	1	0	1	0	1	0
0	1	1	0	0	1	0
0	1	1	1	0	1	1
1	0	0	0	0	1	1
1	0	0	1	0	1	1
1	0	1	0	0	1	1
1	0	1	1	0	1	1
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	1	0	0

$$S0 = \overline{B} \ \overline{C} \ D + \overline{B} \ C \ \overline{D} + A \overline{B} + A \overline{C} \ \overline{D} + \overline{A} B C D$$

$$S1 = \overline{A}B + A\overline{B} + \overline{A}CD + B\overline{C}\,\overline{D}$$

$$S2 = ABC + ABD$$

3-10.

A	В	C	D	W	X	Y	Z
0	0	0	0	0	1	1	0
0	0	0	1	0	1	1	1
0	0	1	0	1	0	0	0
0	0	1	1	1	0	0	1
0	1	0	0	1	0	1	0
0	1	0	1	1	0	1	1
0	1	1	0	1	1	0	0
0	1	1	1	1	1	0	1
1	0	0	0	1	1	1	0
1	0	0	1	1	1	1	1
	101 11	0 to 11		XX	XX		

$$W = A + B + C$$

$$X = \overline{B} \, \overline{C} + BC$$

$$Y = \overline{C}$$

$$Z = D$$

3-11.

a)

PS	LS	RS	RR	PL	LL	RL
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	0	1	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	1	0
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	1	0	0
1	0	1	1	1	0	0
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	1	0	0

$$PL = PS$$

$$LL = \overline{PS} LS \overline{RS} + \overline{PS} LS RR$$

$$RL = \overline{PS} \overline{LS} RS + \overline{PS} RS \overline{RR}$$

3-12.

b)

$$a = \overline{A}C + \overline{A} \overline{B} \overline{D} + \overline{A}BD + A\overline{B} \overline{C}$$

$$b = \overline{A} \, \overline{B} + \overline{B} \, \overline{C} + \overline{A} \, \overline{C} \, \overline{D} + \overline{A} C D$$

$$c = \overline{A}B + \overline{B}\overline{C} + \overline{A}D$$

$$d = \overline{A}B\overline{C}D + A\overline{B}\overline{C} + \overline{A}\overline{B}\overline{D} + \overline{A}\overline{B}C + \overline{A}C\overline{D}$$

$$e = \overline{B} \overline{C} \overline{D} + \overline{A} C \overline{D}$$

$$f = A\overline{B} \; \overline{C} + \overline{A}B\overline{D} + \overline{A}B\overline{C} + \overline{A} \; \overline{C} \; \overline{D}$$

$$g = A\overline{B} \overline{C} + \overline{A}B\overline{C} + \overline{A} \overline{B}C + \overline{A}C\overline{D}$$

c) The following gate input counts include input inverters and share AND gates.

Total gate inputs for this solutions = 74. Total gate inputs for book solution is 70. The book solution is better by 4 gate inputs.

3-13.

3-14.

3-15.+

3-16.

3-17.

3-19.

3-20.

3-21.

Except for G1 = 1 and G2A and G2B = 0, the outputs Y0 through Y7 are all 1's. Otherwise, one of Y0 through Y7 is equal to 0 with all others equal to 1. The output that is equal to 0 has index i = decimal value of the values of (A,B,C) in binary. E.g., if (A,B,C) = (1,1,0), then Y6 = 0.

3-22.

3-23.

3-24.*

3-25.

3-26.

3-27.

3-28.

3-29.

3-30.*

3-31. (Errata: Replace "4" with "3" in "4-to-6-line decoder")

3-32.

a) The Truth Table:

X_2	X_1	X_0	a	b	c	d	e	f	g
0	0	0 1 0 1 0 1 0 1	d	d	d	d	d	d	d
0	0	1	0	0	0	1	0	0	0
0	1	0	1	0	0	0	0	0	1
0	1	1	1	0	0	1	0	0	1
1	0	0	1	1	0	0	0	1	1
1	0	1	1	1	0	1	0	1	1
1	1	0	1	1	1	0	1	1	1
1	1	1	d	d	d	d	d	d	d

Note: a = g, b = f, and c = e.

b) A = {d} B = {a,g} C = {c. e} D = {b, f}

Gate input cost: b = 4 compared to a = 27 + 11 = 38

3-33.

3-34.

3-35.*

3-36.	Decimal Inputs									Binary Outputs					
	9	8	7	6	5	4	3	2	1	0	A_3	A_2	A_1	A_0	V
	0	0	0	0	0	0	0	0	0	0	X	X	X	X	0
	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
	0	0	0	0	0	0	0	0	1	X	0	0	0	1	1
	0	0	0	0	0	0	0	1	X	X	0	0	1	0	1
	0	0	0	0	0	0	1	X	X	X	0	0	1	1	1
	0	0	0	0	0	1	X	X	X	X	0	1	0	0	1
	0	0	0	0	1	X	X	X	X	X	0	1	0	1	1
	0	0	0	1	X	X	X	X	X	X	0	1	1	0	1
	0	0	1	X	X	X	X	X	X	X	0	1	1	1	1
	0	1	X	X	X	X	X	X	X	X	1	0	0	0	1
	1	X	X	X	X	X	X	X	X	X	1	0	0	1	1

3-37.

3-38.

3-39.

3-40.

3-41.

3-42.*

3-43.*

A_1	A_0	Е	D_0	D_1	D_2	D_3
0	0	0	0	0	0	0
0	0	1	1	0	0	0
0	1	0	0	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	0	0
1	0	1	0	0	1	0
1	1	0	0	0	0	0
1	1	1	0	0	0	1

Consider E as the data input and A0, A1 as the select lines. For a given combination on (A1, A0), the value of E is distributed to the corresponding D output. For example for (A1, A0) = (10), the value of E appears on D2, while all other outputs have value 0.

3-44.

3-45.

- a) LR = LT·BL + $\overline{\text{LT}}$ ·BR + EM·BL = BL·(LT + EM) + $\overline{\text{LT}}$ ·BR RR = RT·BL + $\overline{\text{RT}}$ ·BR + EM·BL = BR·(RT + EM) + $\overline{\text{RT}}$ ·BR
- b) Maximum of four inputs on OR gates assumed.

LT	EM	BR	BL	LR
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

For RR, same circuit with LT replace by RT.

3-46.

A	В	C	D	F	
0	0	0	0	0	г о
0	0	0	1	0	F = 0
0	0	1	0	1	_ <u>_</u>
0	0	1	1	0	F = D
0	1	0	0	1	E -
0	1	0	1	0	$F = \overline{D}$
0	1	1	0	1	$F = \overline{D}$
0	1	1	1	0	r = D
1	0	0	0	0	E D
1	0	0	1	1	F = D
1	0	1	0	1	E 1
1	0	1	1	1	F = 1
1	1	0	0	0	F = 0
1	1	0	1	0	$\Gamma = 0$
1	1	1	0	0	E - D
1	1	1	1	1	F = D

3-47.*

3-48.

