Práctica 3 Transformaciones Homogéneas

Robots Bípedos Autónomos

Facultad de Ingeniería, UNAM

Objetivos

- Familiarizar al alumno con el concepto de Transformación Homogénea.
- Aprender a utilizar el paquete tf para el manejo de transformaciones homogéneas.
- Familiarizar al alumno con los archivos urdf para descripción de cadenas cinemáticas.

1. Introducción

1.1. Movimiento rígido

Para entender el movimiento en los robots bípedos, es necesario comprender primero los conceptos de movimiento rígido y transformación homogénea. Un movimiento rígido es una combinación de una posición y una orientación, es decir es un par ordenado (d, R), donde $d \in \mathbb{R}^3$ y $R \in SO(3)$.

El conjunto SO(3) se refiere al conjunto de matrices ortogonales de orden 3 (del inglés $Special\ Orthogonal$). Las matrices del conjunto SO(n) tienen varias propiedades especiales como el hecho de que su inversa es igual a su transpuesta, todos sus renglones y columnas son de magnitud 1 y ortogonales entre sí y que su determinante es siempre 1, si estas representan rotaciones de sistemas dextrógiros.

Entonces, un movimiento rígido es una combinación de una posición y una orientación. Estos movimientos también pueden ser usados para representar la Transformación de un sistema coordenado a otro, es decir, el par (d,R) puede representar una rotación y una traslación. Es importante mencionar que, aunque la rotación R puede darse sobre cualquier eje, en general siempre se manejan rotaciones sobre alguno de los ejes coordenados, por lo que R, en general, tiene alguna de las siguientes formas:

$$R_{x,\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix} \qquad R_{y,\theta} = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

$$R_{z,\theta} = \begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

- 1.2. Transformaciones homogéneas
- 1.3. El paquete tf
- 1.4. El formato urdf
- 2. Desarrollo
- 3. Evaluación