Álgebra lineal II, Grado en Matemáticas

Junio 2017, 1^a. Semana

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora. Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

Importante: utilice una única cara para las cuatro definiciones. Si utiliza más espacio no se tendrá en cuenta.

- (a) Isometría vectorial.
- (b) Polinomio anulador y polinomio mínimo.
- (c) Forma cuadrática y forma polar.
- (d) Proyección ortogonal de un vector sobre un subespacio vectorial.

Ejercicio 1: (2 puntos)

Sea (V, <, >) un espacio vectorial euclídeo. Demuestre que si los vectores v_1, \ldots, v_k de V son ortogonales dos a dos, entonces son linealmente independientes.

Ejercicio 2: (3 puntos)

Sea $A \in \mathfrak{M}_3(\mathbb{K})$ una matriz invertible de orden 3 que cumple: $A^{-1} = \frac{A^2 - 5A + 7I_3}{3}$

- (a) Determine un polinomio anulador de A.
- (b) Sabiendo que A no es diagonalizable, determine las posibles matrices de Jordan semejantes a A.

Ejercicio 3: (3 puntos)

- (a) Determine la matriz de una forma cuadrática $\Phi: \mathbb{R}^3 \to \mathbb{R}$ tal que:
 - (1) El conjugado de la recta R=L(1,0,0) es $R^c\equiv x+y+z=0$.
 - (2) $\Phi(0,0,1)=1$.
 - (3) La signatura de Φ es (1,0).
- (b) Encuentre una base de vectores conjugados