Ren Pang

(484)747-2401 | \square ain-soph@live.com | \square ain-soph.github.io

EDUCATION

Ph.D. Information Sciences and Technology Pennsylvania State University 2019 – 2023 B.Sc. Mathematics Nankai University 2014 – 2018

WORK EXPERIENCE

Applied Scientist, Amazon

2024 - Present

Develop Guardrails for Amazon Bedrock, the safeguards customized to customers' application requirements and responsible AI policies.

INTERN EXPERIENCE

Applied Scientist (Intern), Amazon

2023 Summer

Explore the vulnerabilities of LLMs to jail-breaking attacks, where Reinforcement Learning from Human Feedback (RLHF) is considered to enhance the attack and defense efficiency. During project development, I submitted several bug fixes and new features to Transformers, Peft and Trl libraries.

Machine Learning Engineer (Intern), Meta

2022 Summer

Pages and Groups Integrity: Introduce new classification model for malicious page detection. It mitigates the impact of incorrect label annotation, and provides interpretable classification outputs for better user experience.

TorchVision: Provide the official TorchVision implementation of SwinTransformerV2.

PUBLICATIONS

- 1. On the Difficulty of Defending Contrastive Learning against Backdoor Attacks,
 - C. Li, R. Pang, B. Cao, J. Chen, S. Ji, and T. Wang,
 - Proceedings of the USENIX Security Symposium (USENIX), 2024.
- 2. Defending Pre-trained Language Models as Few-shot Learners Against Backdoor Attacks,
 - Z. Xi, T. Du, C. Li, R. Pang, S. Ji, J. Chen, F. Ma, and T. Wang,
 - Proceedings of Advances in Neural Information Processing Systems (NeurIPS), 2023.
- 3. An Embarrassingly Simple Backdoor Attack against Self-supervised Learning,
 - C. Li, R. Pang, Z. Xi, T. Du, S. Ji, Y. Yao, and T. Wang,
 - Proceedings of the International Conference on Computer Vision (ICCV), 2023.
- 4. On the Security Risks of Knowledge Graph Reasoning,
 - Z. Xi, T. Du, C. Li, R. Pang, S. Ji, X. Luo, X. Xiao, F. Ma, and T. Wang,
 - Proceedings of the USENIX Security Symposium (USENIX), 2023.
- 5. The Dark Side of AutoML: Towards Architectural Backdoor Search,
 - R. Pang, C. Li, Z. Xi, S. Ji, and T. Wang,
 - Proceedings of the International Conference on Learning Representations (ICLR), 2023.
- 6. TrojanZoo: Towards Unified, Holistic, and Practical Evaluation of Neural Backdoors,
 - R. Pang, Z. Zhang, X. Gao, Z. Xi, S. Ji, P. Cheng, and T. Wang,
 - Proceedings of the IEEE European Symposium on Security and Privacy (EuroS&P), 2022.
- 7. On the Security Risks of AutoML,
 - R. Pang, Z. Xi, S. Ji, X. Luo, and T. Wang,
 - Proceedings of the USENIX Security Symposium (USENIX), 2022.
- 8. Graph Backdoor,
 - Z. Xi, R. Pang, S. Ji, and T. Wang,
 - Proceedings of the USENIX Security Symposium (USENIX), 2021.

- 9. i-Algebra: Towards Interactive Interpretability of Deep Neural Networks, X. Zhang, **R. Pang**, S. Ji, F. Ma, and T. Wang, Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2021.
- 10. AdvMind: Inferring Adversary Intent of Black-Box Attacks,

R. Pang, X. Zhang, S. Ji, X. Luo, and T. Wang,

Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2020.

- 11. A Tale of Evil Twins: Adversarial Inputs versus Poisoned Models,
 - R. Pang, H. Shen, X. Zhang, S. Ji, Y. Vorobeychik, X. Luo, A. Liu, and T. Wang,

Proceedings of the ACM Conference on Computer and Communications Security (CCS), 2020.

OPEN-SOURCE CONTRIBUTION