Integrals and Fundamental Theorem of Calculus

1 Definite Integrals

1. (a) If f is a continuous function defined on \mathbb{R} , we know that for any real number, c,

$$\int_0^2 f(x) dx = \int_0^c f(x) dx + \int_c^2 f(x) dx.$$

For $0 \le c \le 2$, we can interpret this geometrically. How can we interpret this equality geometrically for c > 2? What about for c < 0?

First, let's think about c > 2. Then, $\int_c^2 f(x) dx = -\int_2^c f(x) dx$. This means, we can think of $\int_c^2 f(x) dx$ as the negative of the area under the graph of f from x = 2 to x = c. Then, the equation is saying that the area under the graph of f from x = 0 to x = 2 is the area under the graph of f from x = 0 to x = c minus the area under the graph of f from x = 0 to x = c. This makes sense.

Now, think about c < 0. Then, we should think of $\int_0^c f(x) dx$ as the area under the graph of f from x = c to x = 0. The equation is then saying that the area under the graph of f from x = 0 to x = 2 is the area under the graph of f from x = c to x = 2 minus the area under the graph of f from x = c to x = 0. This also makes sense.

(b) Let $f(x) = \sqrt{\ln x}$. Evaluate

$$\int_{1}^{4} f(x)dx + \int_{3}^{6} f(x)dx + \int_{6}^{1} f(x)dx - \int_{3}^{4} f(x)dx.$$

Rewrite the third term as $-\int_1^6 f(x) dx$. We can see geometrically that the integral is then 0. Algebraically,

$$\int_{1}^{4} f(x)dx + \int_{3}^{6} f(x)dx + \int_{6}^{1} f(x)dx - \int_{3}^{4} f(x)dx$$

$$= \left(\int_{1}^{3} f(x)dx + \int_{3}^{4} f(x)dx\right) + \int_{3}^{6} f(x)dx - \int_{1}^{6} f(x)dx - \int_{3}^{4} f(x)dx$$

$$= \int_{1}^{3} f(x)dx + \int_{3}^{6} f(x)dx - \int_{1}^{6} f(x)dx = 0.$$

2. There is a real number, c, such that $\int_{-2}^{2} (c + \sqrt{4 - x^2}) = 0$. What is c?

Breakup the integral as $\int_{-2}^{2} c \, dx + \int_{-2}^{2} \sqrt{4 - x^2} \, dx$. The first term is 4c. The second term, is the area under a semicircle of radius 2; hence, it is 2π . Thus, we want to find c such that $4c + 2\pi = 0$. $c = -\pi/2$.

2 Fundamental Theorem of Calculus

1. Using Fundamental Theorem of Calculus, evaluate

$$\int_{3\pi/2}^{4\pi} e^{\sin x} \cos x \, dx.$$

The antiderivative of $e^{\sin x} \cos x$ is $e^{\sin x}$. Check that $e^{\sin(4\pi)} - e^{\sin(3\pi/2)} = e^0 - e^{-1} = 1 - \frac{1}{e}$.

2. g is a function such that g'' exists and is continuous at all real numbers. Given that g(1) = 2, g(3) = -9, g'(1) = 0, and g'(3) = 4, compute

$$\int_{1}^{3} (g''(x) + g'(x)) dx.$$

Break up the integral as $\int_1^3 g''(x) dx + \int_1^3 g'(x) dx$. The antiderivative of g'' is g', so the first term is g'(3) - g'(1) = 4. The antiderivative of g' is g, so the second term is g(3) - g(1) = -11. The answer is 4 + (-11) = -7.

3. (a) Let f be the function given by

$$f(x) = \int_3^x \frac{1}{t^3 + 1} dt.$$

What is f'(5)? What about f'(2)?

By fundamental theorem of calculus, $f'(x) = \frac{1}{x^3+1}$. $f'(5) = \frac{1}{126}$ and $f'(2) = \frac{1}{9}$.

(b) Let g be the function given by

$$g(x) = \int_{x}^{7} \tan t \, \, \mathrm{d}t$$

What is g'(2)? What about g'(9)?

Note that $g(x) = -\int_7^x \tan t dt$, so $g'(x) = -\tan x$. In particular, $g'(2) = -\tan 2$ and $g'(9) = -\tan 9$.

4. The antiderivative of $\frac{1}{x}$ is $\ln |x|$. Is the following reasoning correct?

$$\int_{-1}^{e} \frac{1}{x} dx = \ln|x||_{-1}^{e} = \ln|e| - \ln|-1| = 1.$$

No, $\frac{1}{x}$ is not continuous on the interval [-1, e]. The integral is not even defined.

5. Let f be the function with the following graph. For what value of $c \in [0,6]$ is $\int_0^x f(t)dt$ greatest?

2

The maximum possible value will be when c=5. This is because the absolute area between 2 and 3 is more than the absolute area between 1 and 2 and the absolute area between 4 and 5 is more than the absolute area between 3 and 4.