Der natürliche Logarithmus

In

logarithmus naturalis

Zur Erinnerung:

Die Exponentialfunktion

$$y = \exp(x)$$

ist festgelegt durch

$$y'(x) = y(x)$$

$$y(0) = 1$$

Zur Erinnerung:

$$e := y(1) \approx 2.718$$

$$\exp(x) = e^x$$

Zu jeder Zahl $a\in\mathbb{R}_+$ gibt es genau eine Zahl $\ln(a)\in\mathbb{R}$ mit

 $a = \exp(\ln(a)).$

In(a) heißt der natürliche Logarithmus von a oder auch der Logarithmus von a zur Basis e.

$$e^{\ln(a)} = a$$

In(a) ist diejenige Zahl ("derjenige Exponent"), mit der man die Zahl e potenzieren muss, um a zu erhalten.

Zum Beispiel:

$$ln(e^2) = 2,$$

$$ln(e) = ln(e^1) = 1,$$

$$ln(1) = ln(e^0) = 0.$$

Die (natürliche) Logarithmusfunktion

$$x \mapsto \mathsf{In}(x)$$

ist definiert durch

$$e^{\ln(x)} = x$$
.

Sie ist die Umkehrfunktion der Exponentialfunktion.

$$e^{\ln x} = x$$
, $\ln(e^x) = x$.

Wie bekommt man den Graph der Funktion

$$y = \ln(x)$$
?

Merke:

Den Graph der Funktion

$$y = \ln(x)$$

bekommt man aus dem Graphen der Funktion

$$y=e^x$$
,

indem man x mit y vertauscht,

d.h. die Kurve $y = e^x$

an der Diagonalen (y = x) spiegelt.

ln(x) ist nur für x > 0 definiert.

Merke:

$$\mathsf{exp}: \mathbb{R} \to \mathbb{R}_+$$

$$\mathsf{In}:\mathbb{R}_+ \to \mathbb{R}$$

Der Definitionsbereich der Funktion In ist \mathbb{R}_+ , die Menge der positiven reellen Zahlen.

Wenn x eine kleine positive Zahl ist,

dann ist In(x) eine betragsmäßig große negative Zahl.

Wenn x eine kleine positive Zahl ist,

dann ist In(x) eine betragsmäßig große negative Zahl.

Es gilt:

$$ln(x) \rightarrow -\infty$$
 für $x \downarrow 0$.

Lies: In(x) konvergiert gegen minus Unendlich, wenn x (von oben) gegen Null geht.

Für $x \to \infty$ wächst In(x) gegen ∞ ,

allerdings sehr langsam:

$$e^{6.9} \approx 10^3$$
, also $\ln 10^3 \approx 6.9$

$$e^{13.8} pprox 10^6$$
 , also In $10^6 pprox 13.8$

$$e^{20.7} \approx 10^9$$
, also $\ln 10^9 \approx 20.7$

Die fundamentale Eigenschaft der Logarithmusfunktion:

$$\ln(rs) = \ln(r) + \ln(s)$$

denn

$$\exp(\ln(rs)) = rs$$

$$= \exp(\ln(r)) \cdot \exp(\ln(s))$$

$$= \exp(\ln(r) + \ln(s))$$

Aus

$$\ln(rs) = \ln(r) + \ln(s)$$

folgt sofort

$$ln(1) = 0$$
, denn $ln(1) = ln(1) + ln(1)$

$$\ln(\frac{1}{u}) = -\ln(u)$$
, denn $\ln(\frac{1}{u}) + \ln(u) = \ln(1) = 0$

$$\ln(\sqrt{u}) = \frac{1}{2}\ln(u)$$
, denn $\ln(\sqrt{u}) + \ln(\sqrt{u}) = \ln(u)$.

Potenzen und Logarithmen

Für b > 0, $x \in \mathbb{R}$ ist

$$b^{x} = \left(e^{\ln(b)}\right)^{x}$$
$$= e^{\ln(b)x}$$

$$\ln(b^x) = x \ln(b)$$

Für eine positive Zahl b und x > 0 ist die Zahl $\log_b(x)$ definiert durch $b^{\log_b(x)} = x$

Die Funktion

$$x \mapsto \log_b(x), x > 0$$

heißt Logarithmusfunktion zur Basis b.

Sie ist die Umkehrfunktion von $x \mapsto b^x$.

Speziell: $\log_e(x) = \ln(x)$.

Beispiele

$$\log_2 8 = 3$$

$$\log_2 64 = 6$$

$$\log_2 1024 = \log_2(2^{10}) = 10.$$

Beispiele

$$\log_{10} 10 = 1$$

$$\log_{10} 1000 = 3$$

$$\log_{10} 1000000 = 6$$

$$\log_{10} 1000000000 = 9$$

Wie hängt In x mit $\log_b(x)$ zusammen?

Durch Logarithmieren der Gleichung $b^{\log_b(x)} = x$ sieht man:

$$\log_b(x)\ln(b) = \ln(x)$$

also

$$\log_b(x) = \frac{\ln(x)}{\ln(b)}.$$

"Für $x \to \infty$ ist In x klein gegen x."

Zum Beispiel:

 $ln 1000 \approx 6.9$

In $1000000 \approx 13.8$

In $1000000000 \approx 20.7$

In der Tat gilt:

$$\frac{\ln(x)}{x} \to 0$$
 für $x \to \infty$

Denn mit $y := \ln x$ ist das gleichbedeutend mit

$$rac{y}{e^y}
ightarrow 0$$
 für $y
ightarrow \infty.$

Und das wissen wir schon! Man erinnere sich:

$$e^y = 1 + y + \frac{y^2}{2!} + \frac{y^3}{3!} + \dots$$

Statt

$$\frac{\ln(x)}{x} \to 0$$
 für $x \to \infty$

schreibt man auch:

$$ln(x) = o(x)$$
 für $x \to \infty$

und liest: In(x) ist klein gegen x für x gegen Unendlich oder auch

In(x) ist klein o von x.

Zur Erinnerung:

Mit der Schreibweise

$$f(x) = o(g(x)) \text{ für } x \to \infty$$

meint man:

$$\frac{f(x)}{g(x)} \to 0$$
 für $x \to \infty$.

Beispiel:

$$x^2 = o(x^3)$$
 für $x \to \infty$,

denn

$$\frac{x^2}{x^3} = \frac{1}{x} \to 0 \quad \text{für} \quad x \to \infty.$$

$$\sqrt{x} = o(x)$$
 für $x \to \infty$, denn

$$\frac{\sqrt{x}}{x} = \frac{1}{\sqrt{x}} \to 0$$
 für $x \to \infty$.

$$\ln(x) = o(x)$$
 und $\sqrt{x} = o(x)$ für $x \to \infty$.

Was bleibt kleiner, In(x) oder \sqrt{x} ?

Für große x ist In(x) klein nicht nur gegen x,

sondern sogar auch gegen \sqrt{x} :

$$ln(x) = o(\sqrt{x}) \text{ für } x \to \infty.$$

Es gilt sogar:

Für jede positive Zahl p ist $\ln x \ \, \text{klein gegen } x^p \ \, \text{für } x \to \infty \text{:}$

$$\forall p > 0 : \ln(x) = o(x^p) \quad \text{für } x \to \infty.$$

Denn:

$$\frac{\ln(x)}{x^p} = \frac{\ln\left((x^p)^{1/p}\right)}{x^p} = \frac{\frac{1}{p}\ln\left(x^p\right)}{x^p} \to 0 \quad \text{für } x \to \infty.$$

Merke:

Für $x \to \infty$ ist e^x größer als jede noch so große Potenz von x

Für $x \to \infty$ ist In(x) kleiner als jede noch so kleine (positive) Potenz von x.

Heuristisch kann man sich das asymptotische Wachstum von

ln(x)

als das von $x^{\varepsilon} \ \mathrm{mit} \ \varepsilon \ \mathrm{``unendlich\ klein''}$ vorstellen.

Beispiel:

$$\ln(x) = o(x^{1/4})$$

denn

für kleines ε ist

$$\varepsilon$$
 < 1/4.

Beispiel:

$$x \ln(x) = o\left(\frac{x^{3/2}}{(\ln(x))^2}\right)$$

denn

für kleines ε ist

$$1+\varepsilon<\frac{3}{2}-2\varepsilon.$$