PAT-NO:

JP02000277534A

DOCUMENT-IDENTIFIER: JP 2000277534 A

TITLE:

SEMICONDUCTOR DEVICE

PUBN-DATE:

October 6, 2000

INVENTOR-INFORMATION:

COUNTRY NAME

A/NKAWASAKI, MASASHI N/A OÑO, HIDEO N/A OTOMO, AKIRA

ASSIGNEE-INFORMATION:

COUNTRY NAME

JAPAN SCIENCE & TECHNOLOGY CORP N/A

APPL-NO: JP11082043

APPL-DATE: March 25, 1999

INT-CL (IPC): H01L021/338, H01L029/812, H01L027/15,

H01L029/786 , H01L033/00

US-CL-CURRENT: 257/E29.094, 257/E29.295 , 257/E29.296

ABSTRACT:

PROBLEM TO BE SOLVED: To form a high-quality thin film to match a bulk single crystal thin film and to form a semiconductor device which is excellent in characteristics.

SOLUTION: A channel layer 11 is formed of a semiconductor layer, such as a zinc oxide ZnO layer. A source 12, a drain 23, a gate 14 and a gate insulating layer 15 are provided on the layer 11 and an FET is formed. As the material

for a substrate 16, a proper one is selected in consideration of the matching property of the grating constants of the substrate 16 and the layer 11 with each other according to the thin film material for the layer 11. For example, if the semiconductor base of the layer 11 is assumed to be a ZnO thin film, a ScAlMgO4 thin film or the like can be used as the material for the substrate 10.

COPYRIGHT: (C) 2000, JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-277534 (P2000-277534A)

(43)公開日 平成12年10月6日(2000.10.6)

(51) Int.Cl. ⁷		識別記号	FI	テーマコード(参考)
H01L	21/338		H01L 29/80	B 5F041
	29/812		2 7/15	B 5F102
	27/15		33/00	D 5F110
	29/786		29/78	618B
	33/00			626C
			審査請求 有 請求	求項の数10 OL (全 14 頁)
(21)出顧番号	}	特顧平11-82043	(71)出顧人 396020800 科学技術振り	甲事業団
(22)出願日		平成11年3月25日(1999.3.25)	埼玉県川口下	市本町4丁目1番8号
			(72)発明者 川崎 雅司 神奈川県相	奠原市大野4−2−5−116
			(72)発明者 大野 英男 宮城県仙台F	市泉区桂 3 -33-10
			(72)発明者 大友 明 神奈川県大利	知市中央林間 3 -24-14-103
			(74)代理人 100107010 弁理士 橋/	nt de
			开程工 個/	IV PAE

最終頁に続く

(54) 【発明の名称】 半導体デバイス

(57)【要約】

【課題】 バルク単結晶に匹敵する高品質の薄膜を作成 し、特性の優れた半導体デバイスを作成する。

【解決手段】 チャネル層11は、例えば、酸化亜鉛Z n O等の半導体で形成される。チャネル層111には、ソース12、ドレイン13、ゲート14、ゲート絶縁層15が設けられ、FETが形成される。基板16は、チャネル層11の薄膜材料に応じて、両者の格子定数の整合性を考慮して適宜のものが選択される。例えば、チャネル層の半導体のベースをZnOとすると、基板16は、ScAIMgO4等を用いることができる。

【特許請求の範囲】

【請求項1】LnABO4 又はLnAO3 (BO) n

(Ln: Sc, In, Lu, Yb, Tm, Ho, Er, Y 等の希土類元素、

A: Fe, Ga, Al,

B:Mn, Co, Fe, Zn, Cu, Mg, Cd)を基 本構造とするいずれかの材料を用いた基板と、

酸化亜鉛乙n〇、酸化マグネシウム亜鉛Mgx 乙n 1-xO、酸化カドミウム亜鉛CdxZn1-xO、酸 化カドミウムCdO等のII族酸化物のいずれかの材料を 10 用い、前記基板上に形成された半導体層とを備えた半導 体デバイス。

【請求項2】前記基板の材料として、ScA1Mg O4 ScAlZnO4 ScAlCoO4 ScAl MnO4、ScGaZnO4、ScGaMgO4、又 は、ScAlZn3O6、ScAlZn4O7、ScA IZn7O10、又は、ScGaZn3O6、ScGa Zn5 O8、ScGaZn7 O1 0、又は、ScFeZ n2O5、ScFeZn3O6、ScFeZn6O9の いずれかを用い、

前記半導体層の材料として、ZnOを用いたことを特徴 とする請求項1に記載の半導体デバイス。

【請求項3】前記基板の材料として、ScA!Оョ (Z nO)_n, ScFeO₃ (ZnO)_n, ScGaO з (ZnO) n、InFeOз (ZnO) n、InGa O₃ $(ZnO)_n$, InAlO₃ $(ZnO)_n$, YbA103 (ZnO) n 又はLu A l O3 (ZnO) n のい ずれかを用い、

前記半導体層の材料として、ZnOを用いたことを特徴 とする請求項1に記載の半導体デバイス。

【請求項4】ScAlBeO4、ScBMgO4又はS cBBeO4、又は、1nAO3 (MgO)n (ここ で、A:Fe, Ga, Al)を基本構造とするいずれか の材料を用いた基板と、

GaN、AIN、InGaN又はAIInNのいずれか の材料を用い、前記基板上に形成された半導体層とを備 えた半導体デバイス。

【請求項5】前記基板と前記半導体層との間に、さら に、前記半導体層と同じ組成又は構造の材料をベースと して不純物をわずかにドープした又はドープしない絶縁 40 性材料を用いた緩衝層をさらに備えたことを特徴とする 請求項1乃至4のいずれかに記載の半導体デバイス。

【請求項6】前記半導体層として2n0を用い、

前記緩衝層として、1価の価数を取りうる元素又はV族 元素をわずかにドープした絶縁性乙n〇等の絶縁性材 料、又はドープしない純粋な絶縁性ZnO等の絶縁性半 導体を用いたことを特徴とする請求項5に記載の半導体 デバイス。

【請求項7】前記基板と同じ基本構造の材料を用いた絶 緑層をさらに備えたことを特徴とする請求項1乃至6の 50 【0004】

いずれかに記載の半導体デバイス。

【請求項8】前記半導体層と同じ組成又は構造の材料を ベースとして用い、前記半導体層上に形成された発光層

前記半導体層と同じ組成又は構造の材料をベースとして 用い、前記発光層上に形成され、前記半導体層と異なる チャネルの第2の半導体層とをさらに備えたことを特徴 とする請求項1乃至7のいずれかに記載の半導体デバイ

【請求項9】前記発光層は、(Mg, Zn) O及びZn Oの多層構造、(Zn, Cd) O及びZnOの多層構 造、又は、(Mg, Zn) O及び(Zn, Cd) Oの多 層構造のいずれかを用いたことを特徴とする請求項8に 記載の半導体デバイス。

【請求項10】前記半導体層は絶縁性半導体であり、 前記半導体層上に形成された入力電極及び出力電極とを さらに備え、

フィルタ特性を有することを特徴とする請求項1乃至7 のいずれかに記載の半導体デバイス。

【発明の詳細な説明】 20

[0001]

【発明の属する技術分野】本発明は、半導体デバイスに 係り、特に、II族酸化物又はIII族窒化物を薄膜材料と し、これと格子整合性の良い酸化物単結晶を基板とする ことで、高品質の単結晶薄膜を形成した半導体素子、及 び、その発光素子及び表面弾性波素子(SAW、Surfac e Acoustic Wave) 等への応用に関する。

[0002]

【従来の技術】従来より、半導体デバイスにおいて、例 30 えば、トランジスタとしては、アモルファスシリコンや 多結晶シリコン等を用いた薄膜トランジスタが用いられ ている。また、最近、半導体デバイスを製造するための 薄膜材料として、酸化亜鉛(ZnO)が、注目されてお り、紫外光発光素子や透明トランジスタなど、光・電子 デバイスとして既存の応用を置き換えるだけでなく、全 く新しい用途を開拓しつつある。現在、ZnOを用いた 発光素子やトランジスタを作製する際には、基板として はサファイアが用いられる。

【0003】また、従来より、半導体デバイスを作製す るに当たり、基板上に高品質な薄膜を形成することが、 切望されている。ここで、薄膜の結晶性(コヒーレン シ)の品質を決定する要因としては、次のような点があ る。

- (a)結晶粒サイズ
- (b)格子面間隔のゆらぎ(歪み)
- (c)格子面方向のゆらぎ(配向性、モザイクネス) すなわち、一般に、高品質な結晶とは、(a)結晶粒サ イズが大きく、(b)格子面間隔のゆらぎが小さく、
- (c) モザイクネスが小さいものである。

【発明が解決しようとする課題】しかしながら、従来の サファイア等を用いた基板では、薄膜材料であるZnO との格子不整合が18%程度と大きいものであった。そ のため、従来の薄膜においては、粒界が存在したり、モ ザイクネスが大きくなるなど、高品質の単結晶薄膜を形 成することが困難であった。また、従来、デバイス性能 については、本来ZnOがもつ性能を十分に発揮するこ とができず、必ずしも最適な基板を作製することができ なかった。

【0005】本発明は、以上の点に鑑み、ZnO等のII 10 る。 族酸化物、又は、GaN等のIII族窒化物等の薄膜材料 と、格子整合の極めて良い酸化物結晶を基板として使用 することにより、薄膜材料の質を飛躍的に向上し、バル ク単結晶に匹敵する高品質の薄膜を作成し、特性の優れ た半導体デバイスを作成することを目的とする。また、 本発明は、粒界がほとんど無く、粒サイズが大きく、格 子面間隔のゆらぎも小さく、モザイクネスも極めて小さ い、殆ど単結晶に近い高品質のZnO、GaN等の半導 体薄膜を形成することを目的とする。

【0006】本発明は、例えば、ScA1MgO4 (S CAM) 結晶等が ZnOに対して格子不整合が小さいこ とから(約0.13%)、その基板上にほぼ単結晶の2 nO薄膜を作製することを目的とする。また、本発明 は、従来のようなサファイア基板等を用いた場合に比べ て、電子移動度が高く、ZnO単結晶に近い、SCAM 基板上のZnOを形成することを目的とする。また、本 発明は、透明半導体材料であるZnOと、透明高絶縁性 のSCAM基板とを組み合わせることで、透明な半導体 デバイスを作製することができるとともに、ヘテロ構造 デバイスの性能を著しく向上することを目的とする。

【0007】また、本発明は、トランジスタ等に適用す ることで、スイッチング速度を高速とすることを目的と する。また、本発明は、電界効果トランジスタ等に適用 することで、電界を印加したときの空乏層幅が広がるの で、スイッチング用ゲート電圧が低くて済むようにする ことを目的とする。また、本発明は、発光素子に適用す ることで、発光効率を向上することを目的とする。本発 明は、電界効果トランジスタやバイポーラトランジス タ、GaNベースの窒化物青色レーザを含む発光素子 (LED、レーザ)、表面弾性波素子(SAW)、セン 40 サ等の各種電子デバイスに、適用することで、それらの 性能を向上させることを目的とする。

[0008]

【課題を解決するための手段】本発明の第1の解決手段

LnABO4又はLnAO3 (BO) n

(Ln: Sc, In, Lu, Yb, Tm, Ho, Er, Y 等の希土類元素、

A: Fe, Ga, Al

B:Mn, Co, Fe, Zn, Cu, Mg, Cd)を基 50 【0014】つぎに、基板16としては、絶縁性材料が

本構造とするいずれかの材料を用いた基板と、酸化亜鉛 ZnO、酸化マグネシウム亜鉛Mgx Zn1-xO、酸 化カドミウム亜鉛Cdx Zn1-xO、酸化カドミウム CdO等のII族酸化物、又は、窒化ガリウムGaN、窒 化アルミニウムAIN、窒化インジウムInN等のIII 族窒化物のいずれかの材料を用い、前記基板上に形成さ れた半導体層とを備えた半導体デバイスを提供する。

【0009】さらに、本発明は、発光素子及びSAW等 の光・電子デバイスへ応用した半導体デバイスを提供す

[0010]

(3)

【発明の実施の形態】(1)電解効果トランジスタ(Fi eld Effect Transistor、FET)

図1に、本発明に係る半導体デバイスの第1の実施の形 態の断面図を示す。図1(A)に示されるように、第1 の実施の形態の半導体デバイスは、FETに関するもの であり、チャネル層(半導体層)11、ソース12、ド レイン13、ゲート14、ゲート絶縁層15、基板16 を備える。基板16の上には、チャネル層11が形成さ 20 れる。チャネル層11には、ゲート絶縁層15、ソース 12及びドレイン13が形成される。ゲート絶縁層15 の上には、ゲート14が形成される。

【0011】図1(B)には、第1の実施の形態の変形 例が示される。このトランジスタは、基板16の上に、 チャネル層11が形成される。さらに、チャネル層11 には、ソース12及びドレイン13がオーミック接合に より、ゲート14がショットキー接合により、それぞれ 形成される。この例では、図1(A)と比べてゲート絶 緑層15がないため、ソース12及びドレイン13とゲ 30 ート14との間は適当な隙間が設けられる。

【0012】以下に、本発明の主な特徴である各構成要 素の材料について説明する。まず、チャネル層11は、 FETの構造により、適宜の導電性又は絶縁性の半導体 で形成される。チャネル層11の材料としては、周知の 半導体材料の他にも、例えば、酸化亜鉛乙n〇、酸化マ グネシウム亜鉛Mgx Ζ n 1 - x O、酸化カドミウム亜 鉛Cdx Zn1-xO、酸化カドミウムCdO等のII族 酸化物のいずれかを用いることができる。また、チャネ ル層11としては、窒化ガリウムGaN、窒化アルミニ ウムAIN、窒化インジウムInN、InGaN又はA 1 I n N等のIII族窒化物を用いることもできる。チャ ネル層11は、ドープ無し、純粋又は純粋に近い薄膜材 料を用いる。なお、チャネル層11として、ドープ有り のものを用いても良い。また、これらの薄膜材料は、n 形又はp形のいずれの形でも良い。

【0013】図2に、チャネル層に用いられる代表的な 薄膜材料の一例とその格子定数を表す図を示す。一例と して、図示の各材料を対象として説明するが、これに限 定されるものではない。

用いられる。本発明では、基板16に、チャネル層11 の格子定数と近い格子定数を持つような、整合性の良い 材料を用いることで、質の高いチャネル層11を形成す るようにした。一例として、チャネル層11に2nOが 用いられた場合、基板16として、最も高性能な材料の ひとつとして、例えば、酸化亜鉛単結晶又はScA1M gO4 単結晶等を用いると、その基板上にチャネル層1 1又はソース12並びにドレイン13等を高品質でエピ タキシャル成長させることが可能である。

【0015】以下に、チャネル層11に用いられる薄膜 10 材料の格子定数と、整合性の高い(即ち、その格子定数 と近い格子定数を持つ) 基板6の材料について組合せの 例を説明する。まず、チャネル層11の薄膜材料が2n ○等のⅡ族酸化物の場合を説明する。例えば、ZnOの 場合は、以下のような基板材料を選択することができ る。第1に、基板16としては、例えば、以下のような LnABO4 を基本構造とする材料 (LnABO4 の組成を もち、かつ、YbFe2O4構造をもつ結晶群)を用い ることができる。すなわち、

LnABO4

ここで、Ln:Sc, In, Lu, Yb, Tm, Ho, E r,Y等の希土類元素

A: Fe, Ga, Al

B: Mn, Co, Fe, Zn, Cu, Mg, Cd このような基板材料の格子定数は、約3.2~3.5Å である。このような基本構造をとる材料としては、例え ば、ScAlMgO4などがある。

【0016】図3に、LnABO4 についての格子定数と イオン半径との関係図を示す。横軸は、Ln酸化物の配位 数6のイオン半径であり、縦軸は、格子定数である。図 30 示されるように、格子定数について分析すると、Lnの元 素のイオン半径(原子の大きさ)が、大きくなっていく と、LnABO4の格子定数も増えることがわかる。ま た、ZnO、GaN及びAINの格子定数が横線(破 線)で図示され、この格子定数に近いLnABO4を基本 構造とする酸化物が示される。

【0017】また図4に、LnABO4を基本構造とする 基板材料の一例とその格子定数を表す図を示す。これ は、一例として、比較的小さな格子定数を持つ材料とし T, ScAlMgO4, ScAlZnO4, ScAlC oO4, ScAlMnO4, ScGaZnO4, ScG aMgO4を示した。図2に示したように、ZnOの格 子定数は3.249Åであるから、図6に示されたよう な基板材料のいずれかを用いると、格子定数の整合性が 良いものとなる。なお、整合性の良い基板材料として は、図3に示されるように、ScAlCuO4、InA 1 Mg O4 等も挙げられ、また、これらに限定されるも のではない。

【0018】さらに、基板16としては、2n0にマッ

化物材料も用いることもできる。一般式で表すと、以下 のようなLnAO3 (BO) n を基本構造とする材料(Ln AO3 (BO) n の組成をもち、かつ、Yb2 Fe3 O 7 構造をもつ結晶群)を適宜用いることができる。すな わち、

LnAO3 (BO) n

ここで、Ln:Sc, In, Lu, Yb, Tm, Ho, E r, Y等の希土類元素

A: Fe, Ga, Al

B: Mn, Co, Fe, Zn, Cu, Mg, Cd このように、LnABO4構造にZnOを混入していく と、ZnOが格子の隙間に入ることにより、ZnOの格 子定数と近い物質を合成することができる。nを無限大 にすると、格子定数は、3.249(ZnOの格子定 数)に限りなく近づく。

【0019】図5に、LnAO3 (BO) n についての格 子定数とイオン半径との関係図を示す。横軸は、Ln酸化 物の配位数6のイオン半径であり、縦軸は、格子定数で ある。図3と同様に、格子定数について分析すると、Ln 20 の元素のイオン半径(原子の大きさ)が、大きくなって いくと、LnAO3 (BO) nの格子定数も増えることが わかる。また、ZnO、GaN及びAlNの格子定数が 横線(破線)で図示され、この格子定数に近いLnAO3 (BO) n を基本構造とする酸化物が示される。

【0020】図示されるように、具体的には、例えば、

ScAlO3 (ZnO) n

ScFeO3 (ZnO) n

ScGaO3 (ZnO) n InFeO3 (ZnO) n

InGaO3 (ZnO) n

InAlO3 (ZnO) n

YbAlO3 (ZnO) n

LuAlO3 (ZnO) n

等を用いると格子整合性が良い。さらに、この中でも、 例えば、ScAl Zn3 O6、ScAl Zn4 O7、S cAlZn7O10、Xは、ScGaZn3O6、Sc GaZn5 O8、ScGaZn7 O1 0、又は、ScF eZn2O5、ScFeZn3O6、ScFeZn6O 9 等の各材料を用いることができる。

【0021】第2に、チャネル層11の薄膜材料がGa N、AlN等のIII族窒化物の場合を説明する。例え ば、図2に示したように、GaN及びAINの格子定数 は、それぞれ3.112Å及び3.189Åである。図 3及び図4に例示されたLnABO4 構造をとる酸化物結 晶は、格子定数が小さくても3.2 Å程度であるから、 GaN及びAINの格子定数にマッチし得る結晶として は、例えば、その中でも最小のScAlMgO4、Sc AlZnO4等が挙げられる。

【0022】また、図3~図5に例示した材料の他に、 チさせようとすると、以下のような2n0を添加した酸 50 格子定数が比較的小さく、GaN及びA1N等に整合性

が良い物質としては、以下のものが挙げられる。すなわ ち、

ScAlBe04

ScBMgO4

ScBBeO4

等である。また、上述のような一般式LnAOa (BO) n において、BとしてMgを選択した材料が整合性が良 い。すなわち、この基板は、上述のような酸化物基板材 料にMgOを添加したものである。

【0023】つぎに、ゲート絶縁層15としては、適宜 10 の絶縁性材料が用いられる。ゲート絶縁層15は、チャ ネル層11の材料と格子マッチングの良い高絶縁性の材 料を用いることができる。上述のように、チャネル層1 1の薄膜材料に応じて、基板16について格子定数の整 合性の良い材料を用いたのと同様に、適宜の格子整合性 の良い絶縁層15を選択することができる。例えば、2 nOをチャネル層11とした場合、例えば、ScAIM gO4 等をゲート絶縁層15として用いることができ る。また、ゲート絶縁層15としては、例えば、1価の 価数を取りうる元素又はV族元素をドープした絶縁性Z 20 n O等の透明絶縁性材料を用いることもできる。1 価の 価数を取りうる元素としては、例えば、I族元素(L i, Na, K, Rb, Cs)、Cu, Ag, Au等があ る。V族元素としては、N, P, As, Sb, Bi等が ある。こうすることで、両方の層は、全ての面内の格子 定数が1%以内で一致することになり、相互にエピタキ シャル成長が可能であり、格子整合性のよい半導体デバ イスを得ることができる。また、ゲート絶縁層15に、 強誘電性の材料を用いることにより、トランジスタ自体 がメモリ機能を有するようにすることもできる。強誘電 30 性の材料として、例えば、Zn1-xLixO、Zn 1-x (Liy Mgx-y) O等を用いることができ る。なお、ゲート絶縁層15としては、例えば、ガラ ス、ビニール、プラスティック等の絶縁体を用いても良 い。ゲート絶縁層15としては、その他にも、A12O 3, MgO, CeO2, SiO2、等の絶縁性酸化物を 用いることができる。

【0024】以上の説明では、ゲート絶縁層15につい て述べたが、他の適宜の絶縁層を形成する場合にも、同 様の材料を用いることができる。これにより、格子整合 40 性の良い半導体デバイスを製造することが可能となる。 【0025】また、ソース12、ドレイン13又はゲー ト14は、適宜の電極材料を用いることができる。電極 材料としては、チャネル層11と同じ材料をベースとし て、適宜不純物をドープした又はドープしない導電性材 料を用いることができる。Zn〇等をベースとする電極 としては、例えば、III族元素 (B, A1, Ga, I n, Tl)、VII族元素(F, Cl, Br, I)、I族 元素(Li, Na, K, Rb, Cs)、V族元素(N,

ZnO、又は各種元素をドープしない導電性ZnO等が 用いられる。ここで、これらの元素をドープする場合、 ドープ量は適宜設定することができる(例えば、高濃度 に n 形をドープした n ** - Z n O 等を用いることができ るが、これに限定されない)。このようなチャネル層1 1等と同じ構造・組成の材料をベースとすることで、格 子定数の整合性の良い高品質な半導体デバイスを作製す ることができる。また、その他に、例えば、AI、Cu 等の金属や、高ドープした半導体ポリシリコン等を用い ることができる。さらに、ソース12、ドレイン13又 はゲート14としては、その他に、In2O3、SnO 2、(In-Sn)Oxなどの透明導電体を用いること もできる。

【0026】(2)緩衝層のある基板を備えたFET 図6に、本発明に係る半導体デバイスの第2の実施の形 態の断面図を示す。図6(A)に示されるように、第2 の実施の形態は、FETに関するものあり、ソース1 2、ドレイン13、ゲート14、ゲート絶縁層15、チ ャネル層17、緩衝層18、基板16を備える。

【0027】チャネル層11が、ドープしてない純粋な 場合又はわずかに不純物がドープされた場合には、図1 のような構成により、基板16とチャネル層11の格子 定数の整合性は良いものとなる。一方、この第2の実施 の形態は、チャネル層17に、不純物がかなりの量(例 えば、10~20%程度等) ドープされたものを用いる 場合等について、さらに格子定数の整合性を高めること ができるようにしたものである。ここでは、そのため に、緩衝層18を基板16とチャネル層17の間に設け るようにした。

【0028】チャネル層17は、第1の実施の形態と同 様の組成の材料が用いられるが、ここでは、特に、不純 物が比較的大量にドープされたものを用いることができ る。また、基板16については、第1の実施の形態と同 様に、チャネル層17に応じて、整合性の高い材料が適 宜用いられる。緩衝層17としては、II族酸化物又はII I族窒化物をチャネル層17として用いた場合、それと 同じ組成でドープ量をわずかとした又はドープしない絶 縁性材料を用いることができる。例えば、チャネル層1 7として例えば2n〇を用いた場合、緩衝層17は、1 価の価数を取りうる元素又はV族元素をわずかにドープ した絶縁性ZnO等の絶縁性材料、又はドープしない純 粋な絶縁性Zn〇等の絶縁性半導体を用いることができ る。1 価の価数を取りうる元素としては、例えば、 I 族 元素(Li, Na, K, Rb, Cs)、Cu, Ag, A u等がある。V族元素としては、N, P, As, Sb, Bi等がある。第2の実施の形態においても、第1の実 施の形態で説明したように、チャネル層17と、その薄 膜材料と同様の組成の材料を用いた緩衝層18と、基板 16との各々の材料の組み合わせは、格子定数の整合性 P. As, Sb, Bi)のいずれかをドープした導電性 50 を考慮して適宜のものを選択することができる。

【0029】(3)半導体デバイスの特性

以下に、本発明の好適な例として、第1の実施の形態の ようなScAlMgO4基板上形成されたZnO薄膜 と、従来のようなサファイア基板上に形成されたZnO 薄膜との特性を比較して説明する。この例では、レーザ 分子線エピタキシ法又はパルスレーザ堆積法を用い、基 板温度300~1000度で、ZnOを形成したもので ある。

【0030】図7に、酸化亜鉛薄膜及び酸化亜鉛バルク 単結晶の電気特性の比較説明図を示す。この図では、S 10 CAIMgO4 基板上及びサファイア基板上 (α-AI 2 〇3 基板上) にそれぞれ酸化亜鉛薄膜が形成された場 合と、水熱合成法で作成された酸化亜鉛バルク単結晶の 電気特性が比較される。電気特性としては、移動度ル と、室温での電子又はキャリア濃度を示すドナー濃度N ρ との関係が示される。なお、抵抗率ρと、移動度μ及 びドナー濃度NDとの関係は、

 $\rho = 1 / (e \mu N_D)$

となる。但し、eは、電荷素量である。

【0031】ZnO本来の物性を表すものとして、バル 20 ク単結晶の特性が示される。バルクZn〇単結晶は、移 動度が大で、ドナー濃度が小さく、良質の特性をもつ。 このようなバルク単結晶の特性に近づけることが、本発 明の目標のひとつである。一方、従来のサファイア基板 上にZnOを形成した場合は、移動度が小さく、ドナー 濃度が大きい。これに対し、本発明のScAlMgO4 基板上にZnOを形成した場合は、従来と比較して、移 動度が大で、ドナー濃度が小さく、ZnOバルク単結晶 に近い良質な特性を得ることができる。さらに、この図 では、本発明ではもともと混入されるドナー濃度が小さ 30 いことが示されるので、ドナー又はアクセプタの添加量 を調整することによって、ドナー濃度及びアクセプタ濃 度の制御範囲・設定範囲が大きくとることができる。本 発明によると、図示のように、キャリア濃度が1015 cm-3程度、電子移動度が60~70cm2/Vs程 度の薄膜が、再現性良く形成することができる。なお、 これらの特性の違いは、欠陥、不純物、粒界等が原因と 考えられる。

【0032】そして、この図から判断されるように、本 発明をトランジスタ等に適用すると、スイッチング速度 40 を高速とすることができる。また、本発明を電界効果ト ランジスタ等に適用すると、電界を印加したときの空乏 層幅が広がるので、スイッチング用ゲート電圧が低くて 済む。また、本発明を、発光索子に適用すると、発光効 率を向上することができる。

【0033】図8に、酸化亜鉛薄膜及び酸化亜鉛バルク 単結晶のX線逆格子マッピングの比較説明図を示す。こ の図では、ScAlMgO4基板上及びサファイア基板 上にそれぞれZnO薄膜が形成された場合と、水熱合成

O薄膜が形成された場合のX線逆格子マッピングが示さ れる。また、この図では、z方向の格子定数の逆数Qz (縦軸)と、x方向の格子定数の逆数Qx(横軸)との 逆格子空間が示される。図示の矢印ような方向で、

10

(a) 粒サイズの逆数、(b) 格子面間隔のゆらぎ、

(c)格子面方向のゆらぎ(モザイクネス)が、それぞ れ表される。また、ここでは、一例として非対称回折面 として、ZnO(114)についての特性を示すが、回 折面(115)、(104)、(105)の各々につい ても同様な結果を得ることができる。

【0034】図示のように、本発明によると、従来に比 べ、(a) 粒サイズが大きく、(b) 格子面間隔のゆら ぎが小さく、且つ、(c)格子面方向のゆらぎ(モザイ クネス)が小さいことがわかる。そして、本発明による と、従来に比べ、結晶性が大幅に改善され、モザイクネ スや粒サイズ等がバルク単結晶と同様な単結晶ZnO薄 膜を得ることができる。また、図から、本発明におい て、格子定数がバルクに近づいたこと、及び、回折ピー クがシャープになっている点がわかる。

【0035】図9に、X線ロッキングカーブの半値幅の 基板温度依存性についての比較説明図を示す。この図で は、ScAlMgO4基板上及びサファイア基板上のZ nOについて、半値幅と成膜温度との関係が示される。 一般に、X線ロッキングカーブの半値幅は、格子面方向 のゆらぎ (モザイクネス) 及び粒サイズを表すものであ る。すなわち、本発明は、X線ロッキングカーブの半値 幅が、従来例に比べて小さいので、これらについての特 性が良いことがわかる。例えば、本発明のようにScA 1 MgO4 基板を用いると、成膜温度が300℃程度の 低温で作成したZn〇薄膜であっても、従来のサファイ ア基板上に1000℃で堆積した薄膜と同程度のモザイ クネス及び粒サイズとなり、非常に高い結晶性の薄膜を 得ることができることがわかる。一般に、高い温度で薄 膜を形成すると、層間に拡散が起こる場合があるが、本 発明は、これを減少又は防止することができる。

【0036】図10に、薄膜表面の平坦さについての比 較説明図を示す。図より、本発明によるScAIMgO 4 基板上のZnO薄膜表面は、従来のサファイア基板上 のZnO薄膜表面に比べて、表面の凹凸が格段に小さい ことがわかる(例えば、精密な計測によると1/100 程度)。本発明では、ZnO薄膜表面は、0.26nm (c軸長の1/2)又は0.52nm(c軸長)のステ ップと、表面が原子レベルで平坦な薄膜を形成できる。 【0037】図11に、窒素濃度の基板温度依存性につ いての比較説明図を示す。この図は、本発明のScAI MgO4 基板上及び従来のサファイア基板上に窒素ドー プレたZnO薄膜を形成した場合について、窒素濃度 と、成膜温度の関係を示す。本発明によると、従来例に 比べ、窒素ドーピング量が2倍程度向上する(即ち、窒 法で作成された酸化亜鉛バルク単結晶の作成された Zn 50 素がドープしやすい)ことができる。このことは、従来 と同程度のドーピング量を得るために、約50℃低い成 膜温度で、2nO薄膜を形成することができること、即 ち、ドーピング特性が向上することを表す。なお、窒素 ドーピング特性は、デバイスのアクセプタとしての特性 に相当する。

【0038】(3)他のFET

図12に、本発明に係る半導体デバイスの第3の実施の 形態の断面図を示す。図12(A)に示される第3の実施の形態は、FETに関するもので、チャネル層21、 ソース22、ドレイン23、ゲート24、ゲート絶縁層 10 25、基板26を備える。基板26の上にソース22及 びドレイン23が形成される。これらを覆うように、チャネル層21が形成される。チャネル層21には、さらに、ゲート絶縁層25が形成される。ゲート絶縁層25 の上には、ゲート24が形成される。ここでは、ゲート 24、ゲート絶縁層25及びチャネル層21が、MIS 構造となっている。

【0039】図12(B)は、第3の実施の形態の変形であり、図12(A)に示されたものとは、ゲート絶縁層25が形成されておらず、ゲート24とチャネル層2 201とがショットキー接合の構造となっている。図12(A)のようにゲート絶縁層25を有する場合は、ゲートの印加電圧の制限が少ない。これに対し、図12(B)のようにゲート絶縁層25を有しない場合は、ゲートーソース間及びゲートードレイン間の絶縁耐圧が低くなる。また、この場合は、製造プロセスは簡単となる。これらの構成においても、第1及び第2の実施の形態で説明したように、チャネル層21又はソース22、ドレイン23の薄膜材料と、基板26又はゲート絶縁層25の材料とは、両者の格子定数が整合するように、適30宜の組み合わせを用いることができる。

【0040】図13に、本発明に係る半導体デバイスの第4の実施の形態の断面図を示す。第4の実施の形態は、FETに関するものであり、チャネル層31、ソース32、ドレイン33、ゲート34、ゲート絶縁層35、基板36を備える。基板36の上にチャネル層31が形成される。チャネル層31には、ゲート絶縁層35が形成され、ゲート絶縁層35の上には、ゲート34が形成される。ソース32及びドレイン33は、例えば、ゲート絶縁層35をマスクとする拡散又はイオン注入等により、形成されることができる。また、この実施例の変形としてゲート34のサイズを適宜設定することにより、ゲート絶縁層35を省略することもできる。

【0041】これらの構成においても、第1及び第2の 実施の形態で説明したように、チャネル層21の薄膜材料と、基板26又はゲート絶縁層35との材料は、両者 の格子定数が整合するように、適宜の組み合わせを用い ることができる。さらに、第2の実施の形態で説明した ように、チャネル層31の薄膜材料及び不純物のドーピング量に応じて、チャネル層31と基板36との間に 1 2

は、緩衝層をさらに備えることができる。なお、上述の 第3及び第4の実施の形態において、特に言及してない 場合、各構成要素の材料は、第1の及び第2の実施の形 態で説明したものと同様の物質を用いることができる。 【0042】(4)発光素子

図14に、本発明に係る半導体デバイスの第5の実施の 形態の断面図を示す。この実施の形態は、レーザダイオ ード等の発光素子に関するもので、発光層41、p形半 導体層42、n形半導体層43、第1及び第2の電極4 5及び電極46、基板47を備える。

【0043】発光層41は、p形半導体42とn形半導体43に挟まれており、例えば、ドーピングしてないZnOを用いたり、(Mg, Zn) O及びZnOの極薄い厚さの多層膜で構成することができる。この場合、ZnOは井戸層と呼ばれ、(Mg, Zn) O層はバリア層と呼ばれるものである。また、井戸層のバンドギャップよりバリア層のバンドギャップが大きいものが用いられる。発光層41の他の材料例としては、(Zn, Cd) O及びZnOの多層構造等を用いることができる。さらに、発光層41としては、多層反射膜や、ダブルヘテロ構造、面発光レーザ構造など、適宜の構成を採用して組み合わせることもできる。

【0044】これらp形半導体42及びn形半導体43

の材料のベースとしては、第1の実施の形態で述べた各 材料を適宜用いることができる。 p形半導体42として は、例えば、p形ZnO等のII族酸化物又はp形Ga N、AIN、InGaN、AlInN等のIII族窒化物 が使用される。p形ZnOの場合は、例えば、I族元素 (Li, Na, K, Rb, Cs)、V族元素(N, P, As, Sb, Bi)をドープしたZnOである。また、 n形半導体43としては、例えば、n形ZnO等のII族 酸化物又はn形GaN、AIN等のIII族窒化物が使用 される。n形ZnOの場合は、例えば、III族元素 (B, A1, Ga, In, T1)、VII族元素(F, C 1, Br, I)をドープしたZnOである。これらの各 元素のドープ量は、素子の寸法、厚さ、集積度、性能等 に応じて適宜の量とすることができる。第2の電極(n 型電極) 46の材料は、例えば、第1の実施の形態で説 明した、ソース12、ドレイン13又はゲート14の材 料と同様のものが用いられる。第1の電極(p型電極) 45としては、例えば、Au、Pt、Ni/Ti (多層 構造)等によるオーミック電極が用いられる。

【0045】これらの構成においても、第1の実施の形態で説明したように、n形半導体層43(基板47に接合される半導体層がp形のときはp形半導体層)の薄膜材料と、基板47の材料は、両者の格子定数が整合するように、適宜の組み合わせを用いることができる。さらに、第2の実施の形態で説明したように、n形半導体層5043の薄膜材料及び不純物のドーピング量に応じて、n

形半導体層43と基板47との間に、緩衝層をさらに備 えることができる。なお、p形半導体42、n形半導体 43、発光層41、基板47の全て又は一部に格子整合 の良い材料の組合せを用いることで、高品質の半導体デ バイスを製造することができる。

【0046】なお、上述の第5の実施の形態において、 特に言及してない場合、各構成要素の材料は、第1の及 び第2の実施の形態で説明したものと同様の物質を用い ることができる。また、透明な半導体を用いると、発光 層から図の上面又は下面に向けても光を出射することが 10 でき、本発明を、面発光レーザやエレクトロルミネセン ス素子等の発光素子等に多様に応用することができる。 【0047】(5)表面弹性波索子SAW(Surface Aco ustic Wave)

図15に、本発明に係る半導体デバイスの第6の実施の 形態の構成図を示す。図15(A)には、SAWの斜視 図を、図15(B)には、そのB-B 断面図をそれぞ れ示す。SAWは、基板111、半導体層112、入力 電極113及び出力電極114を備える。SAWは、入 力電極113から、高周波信号が入力されると、SAW のフィルタ特性により、適宜の信号が出力電極114か ら出力される半導体デバイスである。

【0048】半導体層112は、絶縁性半導体であり、 ベースとしては、第1の実施の形態で述べた各材料を適 宜用いることができる。半導体層112としては、例え ば、ドーピングしない又はⅠ族元素又はⅠⅠⅠ族元素を ドーピングした絶縁性乙nOを用いることができる。な お、粒界を押さえるために不純物として、例えば、IIId 遷移金属(Co, Ni等)を少し添加してもよい。これ らの構成においても、第1及び第2の実施の形態で説明 30 したように、半導体層112の薄膜材料と、基板11 1、入力電極113、出力電極114の材料とは、両者 の格子定数が整合するように、適宜の組み合わせを用い ることができる。

【0049】(6)その他の応用

本発明は、各層の面が極めて平坦に形成することができ るので、積層形半導体デバイスに適用する際に、非常に 有効である。その際、各層と接合する層との格子定数の 整合性を考慮して、上述の材料を適宜選択して積層する ことができる。さらに、複数の種類のトランジスタを選 40 択して混合して積層しても良い。

【0050】本発明は、SAWの他、光導波路、回折格 子等の光集積回路、光デバイスに適用することもでき る。また、本発明は、バリスタ、湿度センサ、温度セン サ、ガスセンサ等の各種センサに応用することもでき る。また、本発明は、メモリにも、応用することができ る。なお、メモリに応用する際は、トランジスタ及びコ ンデンサをマトリクス状に配列し、各コンデンサを各ト ランジスタで駆動することにより、メモリデバイスを実 現することができる。また、本発明は、トランジスタ、 50 ンジスタ、GaNベースの窒化物青色レーザを含む発光

発光索子、コンデンサ等の適宜の索子を同一基板に作成 することができる。その他、高品質の結晶が形成される ことで、幅広い分野での半導体デバイスへの応用が可能 である。

【0051】なお、半導体デバイス及び各層の大きさ、 厚さ、寸法、などは、用途やプロセス等に応じて適宜設 計することができる。ドープ量は、製造プロセス、デバ イス性能等、必要に応じて適宜設定することができる。 また、n形半導体、p形半導体、導電性材料及び絶縁性 材料として、半導体をZnOをベースとして各元素をド ープする例を述べたが、これに限られるものではない。 また、第1及び第2の実施の形態では、基板上にチャネ ル層が形成される場合について説明したが、その他の実 施の形態でも示されるように、基板上には、チャネル層 以外にも、絶縁性若しくは導電性の半導体層、ドープ無 し若しくは有りの半導体層、又は、n形若しくはp形の 半導体層を適宜形成することができる。

[0052]

【発明の効果】本発明によると、ZnO等のII族酸化 物、又は、GaN等のII族窒化物等の薄膜材料と、格 子整合の極めて良い酸化物結晶を基板として使用したこ とにより、薄膜材料の質を飛躍的に向上し、バルク単結 晶に匹敵する高品質の薄膜を作成し、特性の優れた半導 体デバイスを作成することができる。また、本発明によ ると、粒界がほとんど無く、粒サイズが大きく、格子面 間隔のゆらぎも小さく、モザイクネスも極めて小さい、 殆ど単結晶に近い高品質のZnO、GaN等の半導体薄 膜を形成することができる。

【0053】本発明によると、例えば、ScA1MgO 4 (SCAM)結晶等がZnOに対して格子不整合が小 さいことから(約0.13%)、その基板上にほぼ単結 晶のZnO薄膜を作製することができる。また、本発明 によると、従来のようなサファイア基板等を用いた場合 に比べて、SCAM基板上のZnOは、電子移動度が高 く、ZnO単結晶に近いものとすることができる。ま た、本発明によると、透明半導体材料であるZnOと、 透明高絶縁性のSCAM基板とを組み合わせることで、 透明な半導体デバイスを作製することができるととも に、ヘテロ構造デバイスの性能を著しく向上することが できる。さらに、FET等における各電極材料、絶縁層 等の適宜のものの一部又は全部について、透明な材料を 用いるようにしても良い。

【0054】また、本発明をトランジスタ等に適用する と、スイッチング速度を高速とすることができる。ま た、本発明を電界効果トランジスタ等に適用すると、電 界を印加したときの空乏層幅が広がるので、スイッチン グ用ゲート電圧が低くて済む。また、本発明を、発光素 子に適用すると、発光効率を向上することができる。本 発明によると、電界効果トランジスタやバイポーラトラ

素子(LED、レーザ)、表面弾性波素子(SAW)、 センサ等の各種電子デバイスに、適用することができ、 それらの性能を向上させることができる。

【図面の簡単な説明】

【図1】本発明に係る半導体デバイスの第1の実施の形 態の断面図。

【図2】チャネル層に用いられる代表的な薄膜材料の一 例とその格子定数を表す図。

【図3】LnABO4についての格子定数とイオン半径と の関係図。

【図4】LnABO4を基本構造とする基板材料の一例と その格子定数を表す図。

【図5】LnAO3 (BO) n についての格子定数とイオ ン半径との関係図。

【図6】本発明に係る半導体デバイスの第2の実施の形 態の断面図。

【図7】酸化亜鉛薄膜及び酸化亜鉛バルク単結晶の電気 特性の比較説明図。

【図8】酸化亜鉛薄膜及び酸化亜鉛バルク単結晶のX線 逆格子マッピングの比較説明図。

【図9】X線ロッキングカーブの半値幅の基板温度依存 性についての比較説明図。

【図10】薄膜表面の平坦さについての比較説明図。

【図11】窒素濃度の基板温度依存性についての比較説 明図。

【図12】本発明に係る半導体デバイスの第3の実施の 形態の断面図。

【図13】本発明に係る半導体デバイスの第4の実施の 形態の断面図。

10 【図14】本発明に係る半導体デバイスの第5の実施の 形態の断面図。

【図15】本発明に係る半導体デバイスの第6の実施の 形態の構成図。

【符号の説明】

- 11 チャネル層 (半導体層)
- 12 ソース
- 13 ドレイン
- 14 ゲート
- 15 ゲート絶縁層
- 16 基板 20

(B)

再模材料 格子定数 (A) ZnO 3. 249 AIN 3. 112 GaN 3. 189 InN 5.76

【図2】

【図12】

【図3】

【図11】

【図4】

基板材料	格子定数(Å)
ScAlMgO ₄	3. 236
ScAlZnO ₄	3. 242
ScAlCoO4	3. 247
ScAlMnO ₄	3. 260
ScGaZnO ₄	3. 259
ScGaMgO ₄	3. 272

【図6】

【図13】

【図14】

【図5】

【図7】

【図15】

(B)

【図9】

フロントページの続き

Fターム(参考) 5F041 AA40 CA04 CA05 CA34 CA40 CA41 CA46 5F102 GB01 GC01 GD01 GD10 GJ01 GL00 HC07 5F110 AA01 CC01 CC05 DD01 DD04