专业: 电气工程及其自动化

姓名:潘谷雨

学号: <u>3220102382</u>

日期: 2024.3.26

地点: 紫金港东三 406

浙江大学实验报告

课程名称: __模拟电子技术实验____ 指导老师: __张伟___ 成绩: _

实验名称: <u>仪用放大电路及其应用实验</u> 同组学生姓名: <u>杨骐恺</u>

一. 实验目的

1. 了解热电阻传感器的原理与应用;

- 2. 掌握普通运放构成的放大电路的电路结构及设计方法;
- 3. 了解仪表放大器与运算放大器的性能区别;
- 4. 掌握仪表放大器的电路结构及设计方法;
- 5. 比较各电路的测量精度分析与指标测试。

二. 实验仪器

模拟电路实验箱、GPD-4303S 直流稳压源、UT890D+数字万用表、DSOX1102G 示波器、LM358。

三. 实验内容

1.使用差分放大电路进行温度测量

用单个通用运算放大器设计一个差分放大电路,并与热电阻传感器、零点与增益调节电路、万用表一起构成温度计,调节好电路后进行温度测量实验,测量结果记录在自拟的表格中,并以热电阻分度表查找的温度为横坐标,测量的温度为纵坐标,画出此温度计的特性曲线并计算其测量精度。差分放大温度测量电路如图 2.1 所示。

图 1.1 差分放大温度测量电路

2.使用仪用放大器进行温度测量

用通用运算放大器设计一个仪用放大器,并与热电阻传感器、零点与增益调节电路、万用表一起构成温度计,调节好电路后进行温度测量实验,测量结果记录在自拟的表格中,并以热电阻分度表查找的温度为横坐标,测量的温度为纵坐标,画出此温度计的特性曲线并计算其测量精度。仪用放大器温度测量电路如图 2.1 所示。比较以上 2 个测温电路的性能参数。

图 2.1 仪用放大器温度测量电路

四.实验步骤、数据记录及结果分析

- 1.使用差分放大电路进行温度测量
- (1) 以图 1.1 参数搭建电路
- (2) 调整零点与增益调节电路
- ①室温时,用万用表测量 V+与 V-,同时调节 Rw,使得 V+= V-,万用表示数如下图所示。

②万用表测量 Vout,调节 Rw2,使得 Vout = 0V,此时万用表示数如下图所示。

(3) 调节 Pt100 热电阻电路

右图为 Pt100 热电阻电路。室温时,加+5V 电源,万用表测量 V+电压,调节 RW,使 $R3+RW=100\Omega$ (V+=0.4545V)。此时万用表示数如下图所示。

(4) 接通电源

由于制冷电源恒流控制-3A~+3A, 故接实验箱外的直流稳压源, 其余恒温风扇、Pt100 热电阻电路与差分放大温度测量电路均接通实验箱±12V 电源。适当调整零点与增益调节电路中的变阻器 Rw1, 使得输出电压数值合适。

温度测量时,保持 R3+RW 的阻值 100Ω 不变,两万用表同时测量 V-与 Vout 的电压值,计算热电阻 Pt100 在某个温度下的电阻值,查表得到温度实际值。

2.使用仪用放大器进行温度测量

- (1) 以图 2.1 参数搭建电路
- (2) 调整零点与增益调节电路

保持 Rw2 不变,适当调整零点与增益调节电路中的变阻器 Rw1,使得输出电压数值合适。

(3) 接诵由源

由于制冷电源恒流控制-3A~+3A, 故接实验箱外的直流稳压源, 其余恒温风扇、Pt100 热电阻电路与 仪用放大温度测量电路均接通实验箱±12V 电源。

温度测量时,保持 R3+RW 的阻值 100Ω 不变,测量 V-与 Vout 的电压值,可以计算热电阻 Pt100 在某个温度下的电阻值,查表得到温度实际值。

四. 数据记录及结果分析

1.使用差分放大电路进行温度测量

记录 V-与 Vout 的电压值,热电阻 Rt 实际值通过 V-算出,测量值通过 Vout 算出。

选取第一组实验作基准,此组实验的热电阻测量值与实际值相同,计算该组差模电压 \triangle V,确定增益基准值 $k = Vout/\triangle$ V。其他组别通过 V-算出热电阻 Rt 实际值,算出测量值 \triangle V = Vout/k,由于 V+不变,故通过 \triangle V 测量值算得 V-测量值,进而算出热电阻 Rt 实际值。各组实验数据如下表所示。

	差模	VO/mV	Vt/mV	Rt/Ω	T/°C	Vo/V	R0	Tout/℃	k/10 ³
1	114. 6	454. 6	569. 2	128. 46	74	5. 693	128. 46	74	
2	503. 7		503.7	112.03	31	2. 512	112. 39	32	
3	513. 1		513. 1	114. 36	37	3. 196	115. 81	41	
4	523. 6		523. 6	116. 97	44	3.600	117. 83	46	
5	531. 4		531. 4	118. 92	49	3. 992	119.81	51	
6	543. 5		543. 5	121.96	57	4. 566	122. 72	59	
7	553. 3		553. 3	124. 43	63	5. 057	125. 21	65	
8	560. 9		560.9	126. 35	68	5. 444	127. 19	70	
9	573. 3		573. 3	129. 51	76	6.081	130. 46	79	
10	583. 8		583. 8	132. 20	83	6. 58	133. 03	86	0.049677138
11	592. 5		592. 5	134. 43	89	7.02	135. 31	92	
12	603. 7		603. 7	137. 32	97	7. 59	138. 27	99	
13	617		617	140.77	106	8.04	140.63	106	
14	623		623	142. 33	110	8. 38	142. 41	110	
15	633		633	144. 95	117	8. 88	145. 04	117	
16	643		643	147. 58	124	9. 40	147. 80	125	
17	652		652	149. 95	130	9.85	150. 19	131	
18	663		663	152. 87	138	10. 41	153. 18	138	
19	670		670	154. 73	143	10.76	155. 05	144	

以热电阻分度表查找的温度为横坐标,测量的温度为纵坐标,画出此温度计的特性曲线如图 1.2 所示。

图 1.2 差分放大电路温度测量特性曲线

通过拟合得到差分放大电路温度测量特性曲线公式为 Tout = 0.9808T + 3.1814。

在温度计的特性曲线中, ΔLmax = 1.7606 $^{\circ}$ 、通过趋势线算出 YFS = 112V ,则线性度 γL = ±(ΔLmax/YFS)×100% = ±1.57%。

2.使用仪用放大器进行温度测量

记录 V-与 Vout 的电压值,热电阻 Rt 实际值通过 V-算出,测量值通过 Vout 算出。

选取第一组实验作基准,此组实验的热电阻测量值与实际值相同,计算该组差模电压 \triangle V,确定增益基准值 $k = Vout/\triangle$ V。其他组别通过 V-算出热电阻 Rt 实际值,算出测量值 \triangle V = Vout/k,由于 V+不变,故通过 \triangle V 测量值算得 V-测量值,进而算出热电阻 Rt 实际值。各组实验数据如下表所示。

	差模	VO/V	Vt/mV	Rt/Ω	T/°C	Vo/V	R0	Tout/°C	k
1	74. 1	454. 5	528.6	118. 22	47	2. 036	118. 22	47	4 0 1 1 3 3 9 5 4
2	538. 9		538. 9	120.80	54	2. 326	120.86	54	
3	548. 3		548. 3	123. 17	60	2. 571	123. 11	60	
4	558. 7		558. 7	125. 80	64	2. 853	125. 70	64	
5	568. 7		568. 7	128. 34	73	3. 12	128. 17	73	
6	578. 2		578. 2	130. 76	80	3. 366	130. 46	79	
7	588. 2		588. 2	133. 32	86	3. 633	132. 94	85	
8	598. 1		598. 1	135. 87	94	3. 922	135.65	94	
9	608. 8		608.8	138.64	100	4. 194	138. 21	99	
10	621		621	141.81	109	4. 441	140. 54	105	
11	630		630	144. 16	116	4. 678	142. 79	112	0. 027476383
12	640		640	146. 79	122	4. 951	145. 39	118	
13	650		650	149. 43	129	5. 21	147.87	125	3 9 5 3 9
14	660		660	152.07	138	5. 487	150. 54	133	
15	670		670	154. 73	144	5. 742	153.00	139	
16	680		680	157.41	150	6.007	155. 57	145	
17	691		691	160.36	158	6. 25	157. 93	153	
18	700		700	162. 79	164	6. 51	160.48	159	
19	710		710	165. 50	172	6. 78	163. 13	166	
20	720		720	168. 22	179	7.05	165. 80	173	
21	728		728	170.41	185	7. 26	167.88	178	

以热电阻分度表查找的温度为横坐标,测量的温度为纵坐标,画出此温度计的特性曲线如图 2.2 所示。

图 2.2 差分放大电路温度测量特性曲线

通过拟合得到仪用放大器电路温度测量特性曲线公式为 Tout = 0.9453T + 3.3122。

在温度计的特性曲线中,ΔLmax = 1.8296 $^{\circ}$ 、通过趋势线算出 YFS = 131V,则线性度γL = \pm (ΔLmax/YFS)×100% = \pm 1.40%。

比较以上2个测温电路的性能参数,得到结果如下表所示。

	Vomax/V	Tout (max) /℃	当场长	温度计特性曲线			
			总增益	斜率	截距	线性度	
差分放大电路	10. 76	144	49.7	0. 9808	3. 3122	1. 57%	
仪用放大器	7. 26	178	27. 5	0. 9453	3, 1814	1.40%	

差分放大电路的总增益更大,温度达到 144℃时 Vout = 10.76V,温度继续增加时 Vout 保持 10.76V 不再增加,而仪用放大器电路在一直升温的过程中 Vout 始终保持上升趋势,升到 178℃后会 Vout 回降并出现少量波动,故差分放大电路的输出电压 Vout 范围更大,仪用放大器电路的测温量程 Tout(max)更大。

从温度测量特性曲线上看,差分放大电路的斜率更接近1,仪用放大器电路的截距与线性度相对略小。