S&DS 265 / 565 Introductory Machine Learning

Word Embeddings

Thursday, October 28

ADJ
NOUN
VERB
PRYAIC

Shortcomings of word clusters

- Can't use vector space operations
- Doesn't give "features" of words
- These are addressed with "distributed representations" (next)

Core idea of embeddings

- Form a language model but replace classes by vectors, one for each word
- Use PMI-like scores to fit the vectors
- Can be applied whenever have cooccurrence data.

Language model is

$$p(w_2 \mid w_1) = \frac{\exp(\phi(w_2)^T \phi(w_1)}{\sum_{w} \exp(\phi(w)^T \phi(w_1))}.$$

Carry out stochastic gradient descent over the embedding vectors $\phi \in \mathbb{R}^d$ (where $d \approx 50$ –500 is chosen by trial and error)

This is what Mikolov et al. (2014, 2015) did at Google. With a couple of heuristics:

4

[&]quot;Distributed representations of words," (2014) "Efficient representations of words in vector space" (2015)

Heuristics used:

Skip-gram: predict surrounding words from current word

Heuristics used:

- Skip-gram: predict surrounding words from current word
- An issue with this is that it "over generates" the data. With text the lazy brown fox jumped we will have p(brown | lazy) and p(brown | fox)

Heuristics used:

- Skip-gram: predict surrounding words from current word
- An issue with this is that it "over generates" the data. With text
 the lazy brown fox jumped we will have p(brown | lazy)
 and p(brown | fox)
- Second is computational. The bottleneck is computing the denominator in the logistic (softmax) probability.

Heuristics used:

- Skip-gram: predict surrounding words from current word
- An issue with this is that it "over generates" the data. With text the lazy brown fox jumped we will have p(brown | lazy) and p(brown | fox)
- Second is computational. The bottleneck is computing the denominator in the logistic (softmax) probability.
- Use "negative sampling": Approximation

$$\sum_{w} \exp(\phi(w)^{T} \phi(w_{1}))$$

$$\approx \exp(\phi(w_{2})^{T} \phi(w_{1})) + \sum_{\text{random } w} \exp(\phi(w)^{T} \phi(w_{1}))$$

5

Analogies

These heuristics enable training on very large text collections. Leads to vector representations of words with interesting properties.

For example, analogies:

king is to man as? is to woman

Analogies

These heuristics enable training on very large text collections. Leads to vector representations of words with interesting properties.

For example, analogies:

king is to man as? is to woman

Paris is to France as? is to Germany

Analogies

These heuristics enable training on very large text collections. Leads to vector representations of words with interesting properties.

For example, analogies:

king is to man as? is to woman
Paris is to France as? is to Germany

$$\begin{split} \phi(\texttt{king}) - \phi(\texttt{man}) &\stackrel{?}{\approx} \phi(\texttt{queen}) - \phi(\texttt{woman}) \\ \widehat{\pmb{w}} &= \underset{\pmb{w}}{\mathsf{arg}} \min_{\pmb{w}} \|\phi(\texttt{king}) - \phi(\texttt{man}) + \phi(\texttt{woman}) - \phi(\pmb{w})\|^2 \end{split}$$

Does $\widehat{\mathbf{w}} = \text{queen}$?

6

Learned Analogies

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4(Skipgram model trained on 783M words with 300 dimensionality).

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

Mikolov et al., "Distributed representations of words," (2014); "Efficient representations of words in vector space" (2015)

Evaluation Analogies

Type of relationship	Word Pair 1		Word Pair 2	
Common capital city	Athens	Greece	Oslo	Norway
All capital cities	Astana	Kazakhstan	Harare	Zimbabwe
Currency	Angola	kwanza	Iran	rial
City-in-state	Chicago	Illinois	Stockton	California
Man-Woman	brother	sister	grandson	granddaughter
Adjective to adverb	apparent	apparently	rapid	rapidly
Opposite	possibly	impossibly	ethical	unethical
Comparative	great	greater	tough	tougher
Superlative	easy	easiest	lucky	luckiest
Present Participle	think	thinking	read	reading
Nationality adjective	Switzerland	Swiss	Cambodia	Cambodian
Past tense	walking	walked	swimming	swam
Plural nouns	mouse	mice	dollar	dollars
Plural verbs	work	works	speak	speaks

GloVe

Shortly after: Stanford group introduced a computational expedient (with attempt to give a "principled" motivation)

$$\mathcal{O}(\phi) = \sum_{w_1, w_2} f(c_{w_1, w_2}) \left(\phi(w_1)^T \phi(w_2) - \log c_{w_1, w_2} \right)^2$$

where $c_{w,w'}$ are cooccurrence counts.

- A type of regression estimator. Can interpret/relate this to other objectives.
- Main advantage is that SGD can be carried out much more efficiently

Pennington et al., "GloVe: Global vectors for word representation," (2015)

9

GloVe

$$\mathcal{O}(\phi) = \sum_{w_1, w_2} f(c_{w_1, w_2}) \left(\phi(w_1)^T \phi(w_2) - \log c_{w_1, w_2} \right)^2$$

where $c_{w,w'}$ are cooccurrence counts.

Heuristic weighting function

$$f(x) = \left(\frac{x}{x_{\text{max}}}\right)^{\alpha}$$

where $\alpha = 3/4$ set empirically.

• So $10^{-4} \mapsto 10^{-3}$. Each order of magnitude down gets "boosted" by 1/4-magnitude.

Pennington et al., "GloVe: Global vectors for word representation," (2015)

GloVe site and code

Recommendation via Embedding

species2vec: A novel method for species representation

Boyan Angelov

doi: https://doi.org/10.1101/461996

This article is a preprint and has not been certified by peer review [what does this mean?].

Abstract

Full Text

Info/History

Metrics

Preview PDF

Abstract

Word embeddings are omnipresent in Natural Language Processing (NLP) tasks. The same technology which defines words by their context can also define biological species. This study showcases this new method - species embedding (species2vec). By proximity sorting of 6761594 mammal observations from the whole world (2862 different species), we are able to create a training corpus for the skip-gram model. The resulting species embeddings are tested in an environmental classification task. The classifier performance confirms the utility of those embeddings in preserving the relationships between species, and also being representative of species consortia in an environment.

Visualisation

```
In [10]: m = gensim.models.KeyedVectors.load word2vec format('reptilia.vec')
In [11]: len(m.vocab)
Out[11]: 7397
In [15]: m.most similar(u'Alligator mississippiensis')
Out[15]: [(u'Sternotherus bonevalleyensis', 0.8425856828689575),
          (u'Apalone ferox', 0.8147842884063721),
          (u'Macrochelys_suwanniensis', 0.8063992261886597),
          (u'Deirochelys reticularia', 0.7871163487434387),
          (u'Terrapene putnami', 0.7841686010360718),
          (u'Chelydra floridana', 0.7829421758651733),
          (u'Alligator mefferdi', 0.7742743492126465),
          (u'Macrochelys temminckii', 0.7682404518127441),
          (u'Trachemys inflata', 0.7563525438308716),
          (u'Deirochelys carri', 0.755811333656311))
In [16]: %matplotlib inline
         def tsne plot(model):
             "Creates and TSNE model and plots it"
             labels = []
```

Notebook

Let's go to the Python notebook!

• How can we visualize the embeddings?

- How can we visualize the embeddings?
- We're in a very high dimensional space

- How can we visualize the embeddings?
- We're in a very high dimensional space
- Could use PCA—this will tend to distort more

- How can we visualize the embeddings?
- We're in a very high dimensional space
- Could use PCA—this will tend to distort more
- Many visualization techniques exist. A currently popular one is t-SNE: "Student-t Stochastic Neighborhood Embedding"

Here's the idea behind t-SNE:

Form a language model using the embeddings

Here's the idea behind t-SNE:

- Form a language model using the embeddings
- Scale and symmetrize, giving a matrix $P = [P_{ij}]$

Pronounced: tee-snee

Here's the idea behind t-SNE:

- Form a language model using the embeddings
- Scale and symmetrize, giving a matrix $P = [P_{ij}]$
- Represent word i by $y_i \in \mathbb{R}^2$. Use a heavy-tailed distribution (Student-t)

Pronounced: tee-snee

Here's the idea behind t-SNE:

- Form a language model using the embeddings
- Scale and symmetrize, giving a matrix $P = [P_{ij}]$
- Represent word i by $y_i \in \mathbb{R}^2$. Use a heavy-tailed distribution (Student-t)
- Select y_i using stochastic gradient descent

Pronounced: tee-snee

t-SNE: More info and examples

```
https://lvdmaaten.github.io/tsne/
http://cs.stanford.edu/people/karpathy/tsnejs/
```

Note: This is just a visualization technique, to give intuition for the high dimensional embedding

Embedding / Visualization Examples

http://vectors.nlpl.eu/explore/embeddings/en/

Summary: Word embeddings

- Word embeddings are vector representations of words, learned from cooccurrence statistics
- The models can be viewed in terms of logistic regression and class-based bigram models
- Surprising semantic relations are encoded in linear relations
- Various heuristics have been introduced to get scalability
- Embeddings improve with more data
- t-SNE is an algorithm for visualizing embeddings

extra slides (optional)

For each word w_i compute a language model

$$P_{j\mid i} \propto \exp\left(-rac{\|\phi(w_i) - \phi(w_j)\|^2}{2h_i^2}
ight)$$

That is:

$$P_{j \mid i} = \frac{\exp\left(-\frac{\|\phi(w_i) - \phi(w_j)\|^2}{2h_i^2}\right)}{\sum_{k} \exp\left(-\frac{\|\phi(w_i) - \phi(w_k)\|^2}{2h_i^2}\right)}$$

For each word w_i compute a language model

$$P_{j\mid i} \propto \exp\left(-rac{\|\phi(w_i) - \phi(w_j)\|^2}{2h_i^2}
ight)$$

That is:

$$P_{j \mid i} = \frac{\exp\left(-\frac{\|\phi(w_i) - \phi(w_j)\|^2}{2h_i^2}\right)}{\sum_k \exp\left(-\frac{\|\phi(w_i) - \phi(w_k)\|^2}{2h_i^2}\right)}$$

Choose the bandwith h_i so that the perplexity is, say, 10. This puts the probabilities all on the same scale.

For each word w_i compute a language model

$$P_{j|i} \propto \exp\left(-\frac{\|\phi(w_i) - \phi(w_j)\|^2}{2h_i^2}\right)$$

For each word w_i compute a language model

$$P_{j \mid i} \propto \exp \left(- \frac{\|\phi(\textbf{\textit{w}}_i) - \phi(\textbf{\textit{w}}_j)\|^2}{2h_i^2} \right)$$

Now form

$$P_{ij} = \frac{1}{2} \left(P_{j \mid i} + P_{i \mid j} \right)$$

as a simple way of symmetrizing.

Now form Student-t distribution depending on the visualization vectors $y_i \in \mathbb{R}^2$:

$$Q_{ij} \propto \left(1 + \|y_i - y_j\|^2\right)^{-1}$$

Now form Student-t distribution depending on the visualization vectors $y_i \in \mathbb{R}^2$:

$$Q_{ij} \propto \left(1 + \|y_i - y_j\|^2\right)^{-1}$$

That is:

$$Q_{ij} = \frac{\left(1 + \|y_i - y_j\|^2\right)^{-1}}{\sum_{k \neq \ell} \left(1 + \|y_k - y_\ell\|^2\right)^{-1}}$$

This has fatter tails than a Gaussian

Finally, run stochastic gradient descent (SGD) over the vectors y_i to optimize:

$$\widehat{y} = rg \min \sum_{ij} P_{ij} \log P_{ij} / Q_{ij}$$

$$= rg \max \sum_{ij} P_{ij} \log Q_{ij}$$

Interpretation: if $\phi(w_i)$ is very close to $\phi(w_j)$ then y_i will be close to y_j . (long distances may be stretched further...)