

ŘADA B – PRO KONSTRUKTÉRY

ČASOPIS PRO ELEKTRONIKU ROČNÍK XLIII/1994 • • ČÍSLO 4

V TOMTO SEŠITĚ

FERITOVÁ JÁDRA PRO VÝKONO POUŽITÍ	VE
1. Feritové materiály 1	23
2. Feritová jádra1	24
2.1 Hrníčková jádra1	24
2.2 Jádra E 1	
2.3 Jádra EF 1	
2.4 Jádra EC1	26
2.5 Jádra ETD1	28
2.6 Jádra U a Ul1	29
2.7 Jádra RM 1	30
2.8 Feritové toroidy1	31
3. Feritová jádra se vzduchovou	
mezerou1	32
 Stejnosměrné sycení feritových jader se vzduchovou mezerou 	^^
5. Návrh feritového jádra pro výkonový	32
transformátor1	27
Příklad výpočtu1	
6. Orientační návrh jader	77
filtračních tlumivek	44
6. Orientační návrh jader filtračních tlumivek	N
TECHNICE	
Základní popis činnosti1	45
Praktická zapojení1	46
OBČANSKÉ RADIOSTANICE	CB
V PRAXI (dokončení z AR B3/94)	
Systémy selektivní volby1	52
Příklady zapojení typických CB 1	
Inzerce 1	
AMATÉRSKÉ RADIO - ŘADA	В
Vydavatel: Vydavatelství MAGNET-PRESS, s Vladislavova 26, 113 66 Praha 1,	۰۰۰,
teleton 24 22 73 84-9, fax 24 22 31 73, 24 21 73	15.
Redakce: Jungmannova 24, 113 66 Praha tel. 24 22 73 84-9. Šéfredaktor Luboš Kalous	ek.
OK1FAC, I. 354.	
Sazba: SOU polygrafické Rumburk. Ročně vychází 6 čísel. Cena výtisku 14,80	ν×
Pololetní předplatné 44,40 Kč, celoroční předpla	itné
88.80 Kč.	
Rozšířuje MAGNET-PRESS a PNS, informa o předplatném podá a objednávky přijímá Pl	ace
pošta, doručovatel a předplatitelské středi	sko

administrace MAGNET-PRESS. Velkoodberatelé a prodejci si mohou objednat AR za výhodných pod-mínek v oddělení velkoobchodu MAGNET-PRESS,

mínek v oddělení velkoobchodu MAGNET-PRESS, tel /lax. (02) 26 12 26. Podávání novinových zásilek povoleno jak Ředitelstvím pošt. přepravy Praha (č. j. 349/93 ze dne 1. 2. 1993), tak RPP Bratislava - pošta Bratislava 12 (č. j. 82/93 dňa 23. 8. 1993). Objednávky do zahraničí přijímá vydavatelství MAGNET-PRESS, OZO.312, Vladislavova 26, 113 66 Praha † formou bankovního šeku, zaslaného na výše uvedenou adresu. Celoroční předplatné časopisu pozemní cestou 30 DM nebo 20 US \$, letecky 46 DM nebo 28 US \$.

Ve Slovenské republice předplatné zajišťuje a objednávky přijímá přímo nebo prostředníctvím dalších distributorů MAGNET-PRESS Slovakia s.r.o. P.O. BOX 814 89 Bratislava, tel. (07) 39 41 67, cena za

distributoru MAGNE I-PHESS Slovakia s.r.o. P.O. BOX 814 89 Bratislava, tel. (07) 39 41 67, cena za jeden výtisk v SR je 17,50 SK.
Inzerci příjirná inzertní oddělení MAGNET- PRESS, Jungmannova 24, 113 66 Praha 1, tel. (02) 24 22 73 84, 24 22 77 23, tel./lax.(02) 24 22 31 73.
Znění a úpravu odborné Inzerce Ize dohodnout

s kterýmkoli redaktorem AR. Za původnost a správnost příspěvků odpovídá autor. Nevyžádané rukopisy nevracíme. ISSN 0139-9572, číslo Indexu 46 044 Toto číslo vyšlo 20. 7. 1994 © MAGNET-PRESS s. p. Praha

SE PŘEDSTAVUJE

Doposud jsme v našem úvodníku představovali většinou firmy či společnosti, které vznikly v minulosti, ať již blízké, či "daleké".

V dnešním úvodníku si však představíme firmu, která je z hlediska svého vzniku relativně velmi mladá. neboť vešla do povědomí většiny lidí teprve s nástupem nového druhu televizního vysílání - s nástupem družicové (satelitní) televize.

V minulých letech byl ve "spotřební" vysílací technice jistě největší revolucí nástup družicového vysílání. Po období, kdy ani hustá síť televizních pozemních vysílačů nezaručovala především v členitém terénu uspokojivý příjem televizních signálů, přineslo v kvalitě televízního příjmu pro každého posluchače zásadní rozdíl vypuštění družice Astra - dnes příjem televizních a rozhlasových signálů z družic zaručuje při vhodně zvolených dílech přijímacího zařízení obraz i zvuk špičkové jakosti a to prakticky (s mírnou nadsázkou) na celém světě.

Nástup družicové televize - to byl také impuls pro vznik firmy PACE, která byla založena ve Velké Británii v roce 1982. V současnosti se tato firma s roční výrobní kapacitou kolem 1,2 millónů přístrojů stala největším výrobcem družicových televizních přijímacích zařízení v Evropě. Přístroje firmy Pace ize najít po celém světě, ať již pod původním jménem, nebo s mnoha daišími označeními, např. Comet, Colourvision, Granada, Norweb, Visionshire, Thorn, John Lewis a Tandy atd., které si pro výrobky Pace volí široká síť dealerů.

O rozmachu a úspěšnosti firmy Pace si lze nejsnadněji udělat představu z několika údajů: V roce 1988 byl obrat firmy asi 6,5 miliónu liber, v současném běžném finančním roce dosáhl již úctyhodné výše 112 miliónů liber. Tento úspěch, kterého firma dosáhla na jednom z nejnáročnějších světových trhů s obrovskou konkurencí, lze kromě jiného přičítat dobré marketingové filosofii, neustálým inovačním opatřením, která jsou orientována na kvalitu výroby a tím současně i na spokojenost širokého okruhu zákazníků, a na dokonalý a komplexní servis.

Pověst solidního výrobce si Pace získal i proto, že se soustřeďuje kromě modernizačních inovací

především na spolehlivost svých přístrojů. Přístroje Pace jsou vyráběny v anglických závodech, v nichž je výrobní zařízení (I celý výrobní proces) na odpovídající úrovni - výjimku z pravidla, že v případě přístrojů Pace jde o čistě anglické výrobky, tvoří pouze výrobní jednotky v Polsku a Indli, které vyrábějí přístroje pro družicový příjem pro "vnitřní" prodej, nebot v obou těchto státech platí taková importní restrikční pravidla, která neumožňují uspokojivý dovoz družicových zařízení ze zahraničí.

V letošním roce firma vyváží asi 40 % svých výrobků, předpokládá se však, že v roce 1995 se export zvýší na 60 %, neboť roční přírůstek, pokud jde o množství vysílacích družic, je asi kolem 20 - trh pro odbyt družicových přijímačů se tedy neustále rozšířuje. Firma v této souvislosti věnuje zvýšenou pozornost oblasti Středního a Dálného východu a má pro ni připraveny inovované výrobky za přijatelnou cenu.

V posledních 18 měsících se firmě také podařilo získat do vlastnictví pomocné provozy v Německu, Dánsku a Norsku a vstoupila do joint-venture s francouzským distributorem. To vše, spolu s vlastní rozsáhlou distribuční sítí po celém světě, umožnilo firmě získat všechny potřebné klíče k celosvětovému trhu družicových přijímačů.

Analogové produkty

Všechny výrobky Pace isou navrhovány i se zřetelem na budoucnost, tj. tak, aby vyhověly nejen všem dnešním nárokům na bezchybný a požadovaný příjem, ale aby stejně dobře vyhověly i v budoucnosti. Proto každý přístroj v každé ze základních řad může být doplněn přídavnými dekodéry a dalšími motorem ovládanými parabolickými anténami na sofistikovaný systém. Přitom poslední modely umožňují uložit do pamětl přijímače 199 předvolených televizních nebo rozhlasových stanic a kromě toho lze výstup z přijímače naladit na libovolný volný kanál

televizního přijímače v celém rozsahu IV. a V. pásma, aby se předešlo konfliktům ve volbě vhodného kanálu při současně připojených televizních hrách, videomagnetofonu či nových "kanálů" (jako Channel 5). Vývojáři firmy Pace neustále doplňují přijímače o nejrůznější "vymoženosti", rozšiřující možnosti příjmu typickými světovými prioritami přijímačů Pace byly např. integrovaný družicový přijímačový dekodér videocrypt s Dolby Pro Logic Surround Sound a čtyřkanálový systém SMATV pro větší počet účastníků, vhodný např. pro hotely a bloky domů (za výhodnou cenu), v neposlední řadě i výrobky, podporující zavedení systému tzv. Cryptovision Pay TV na celém světě.

Digitální technika

V posledních rocích devadesátých let se velmi rychle šířila i do oblastí, dosud vyhrazených čistě analogové technice, technika digitální. Tento jev se nevyhnul ani družicové přijímací technice - analogové vysílací technologie jsou nahrazovány novým digitálním standardem, zvaným MPEG2, který začal ve světě převládat. Pro družicové vysílače to je jasný přínos - do té doby byl např. používán na jednom družicovém transpondéru jeden kanál, po zavedení digitálního systému mohlo být na něm kanálů deset.což umožňuje podstatně bohatší nabídku programů. Aby Pace mohl přijít rychle na světový trh s novými (digitálními) přijímači, vstoupil do jednání s National Transcommunications Ltd. (NTL) s nabídkou spolupracovat na vývoji digitálního televizního přijímacího zařízení, splňujícího všechny náležitosti, potřebné k příjmu signálu digitálního standardu MPEG2. NTL byla vybrána proto, neboť je světově uznávanou "jedničkou" v technice videokomprese, která umožňuje realizovat mnohakanálovou digitální TV. Výsledkem koprodukce bude v brzké budoucnosti digitální přijímací zařízení pro profesionální i spotřební trh se zaměřením jak na dokonalý příjem z družic, tak na pozemní a kabelovou televizi.

Nejnovější řada družicových přijímačů Pace na našem trhu - MSS 1000 (popis byl v AR řady A)

Začátky firmy

Firma PACE byla založena jako importní a distribuční firma počítačového software v roce 1982. Její jméno se mezi odborníky poprvé objevilo v souvislosti s prodejem modemu iménem Nightingale, který sloužil ke komunikaci počítačpočítač po telefonním vedení mnoha jednotlivcům, malým podnikatelům i vzdělávacím zařízením a to díky své ceně - v době, kdy podobná zařízení byla nabízena na trhu za několik set liber, stál uvedený modem méně než 100 liber. Dceřiná společnost firmy, Pace Micro Communications Ltd., vyrábějící datová komunikační zařízení pro profesionální použití, je i dnes ve svém oboru (velmi rychlé datové modemy) špičkou ve Velké Británii.

Sídlo firmy Pace v Shipley by mělo být v budoucnu "doplněno" o novou investici v hodnotě 5 miliónů liber závodem, splňujícím standardy BS 5750 a ISO9000, který by měl umožnit vlastní výrobu pěti set tisíc přijímačů za rok, přijímačů, které za přijatelnou cenu budou mít špičkové parametry při odpovídající spolehlivosti.

Nezapomněli jste, že se neodvratně blíží uzávěrka letošního ročníku Konkursu AR na nejlepší elektronické konstrukce, dotovaná velmi zajímavými a hodnotnými cenami? Podmínky a ceny byly uveřejněny počátkem letošního roku v AR řady A, stejně jako výsledky Konkursu 1993.

Vážení čtenáři,

pro naplnění obsahu AR řady B v příštím roce bychom uvítali nabídky na vypracování několika čísel tohoto ročníku (i ze Slovenské republiky). Bližší informace obdržíte v redakci buď při osobní návštěvě nebo na telefonním čísle (02) 26 12 74.

FERITOVÁ JÁDRA

PRO VÝKONOVÉ POUŽITÍ V KMITOČTOVÉM ROZSAHU DO 200 kHz

Ing. Jan Petrek, Pramet a. s. Šumperk

Feritová jádra se používají dlouhou dobu, největší rozmach jejich vývoje a výroby však přineslo zavedení techniky spínaných zdrojů, jejichž výhody proti klasickým jsou nesporné. Kromě velké účinnosti a malých rozměrů i hmotnosti jsou již dnes i cenově velmi výhodné. Současný trend ve výrobě feritových materiálů je charakteristický úsilím o zvětšování rozsahu použitelných kmitočtů - jsou již dostupné materiály pro kmitočtový rozsah okolo 1 MHz (např. Siemens N47, Philips 3F3). Maximum jader se však používá v kmitočtovém rozsahu do 200 kHz a to ve spínaných zdrojích jak pro malé výkony s tranzistory, tak i pro velké výkony s tyristory. V dalších kapitolách vás chceme seznámit jak s materiály vhodnými pro tento rozsah kmitočtů a s vlastními jádry, tak i s návodem, jak pro daný výkon a kmitočet zvolit vhodné jádro, jednak výpočtem, jednak pomocí vhodných tabulkových údajů.

1. Feritové materiály

V tuzemsku vyrábíme pro daný kmitočtový rozsah feritový materiál FONOX H21. Jedná se o manganato-zinečnatý feritový materiál, vyráběný speciálně pro výkonové použití.

Jeho vlastnosti jsou uvedeny v tab. 1. Tento feritový materiál je srovnatelný s

následujícími feritovými materiály světových výrobců:

Siemens N27, Philips 3C80, Vogt Fi324, Thomson B50, Kaschke K2004 TDK PC 30.

Uvedení výrobci vyrábějí jádra i rozměrově shodná (ve většině případů) s tuzemskými, takže lze použít stejné cívkové kostry a upínací příslušenství. V praxi lze tedy ve většině případů vyměnit jádro za jádro.

Na obr. 1 až 7 uvádíme následující charakteristiky materiálu FONOX H21:

- a) statickou magnetizační a hysterézní smyčku včetně závislosti permeability na intenzitě magnetického pole při teplotách 20 a 100 °C (obr. 1),
- b) závislost počáteční permeability na teplotě (obr. 2),
- c) závislost amplitudové permeability na indukci při teplotě 20 a 100°C (obr. 3),
- d) závislost složek komplexní permeability na kmitočtu (obr. 4),
- e) závislost měrných ztrát na teplotě pro různá sycení (obr. 5),
- f) závislost měrných ztrát na indukci při teplotě 25 a 100 °C (obr. 6),
- g) závislost efektivní a reverzibilní permeability na stejnosměrném sycení (obr.7).

Uvedené charakteristiky uvádí většina výrobců v různých kombinacích, v zásadě však stačí k získání základních znalostí o daném materiálu.

V současné době se zavádí do výroby nový typ feritového materiálu FONOX H24 pro kmitočtový rozsah do 400 kHz (srovnatelný s materiály Siemens N67, Philips 3F3), jeho vlastnosti budou popsány v příštím roce.

Obr. 1. Statická magnetizační křivka a závislost permeability na intenzitě magnetického pole H pro teploty 20 a 100°C u materiálu FONOX H21

Obr. 2. Teplotní závislost počáteční permeability u materiálu FONOX H21

Počáteční permeabilita	μ_i		1900 ±20%
Měrné ztráty při $f = 15$ kHz, $B = 200$ mT, $T = 20$ °C $T = 100$ °C	P_{s}	mW/g	≤23 ≤20,8
Magnetická indukce při H = 250 A/m, T = 100 °C	В	mT	≥330
Courieho teplota	T_{C}	°C	≥200
Měrný odpor	ρ	Ω m	2
Magnetická indukce v nasycení, H = 3000 A/m	В	mT	500
Koercitivní síla	$H_{\rm C}$	A/m	20
Měrná hmotnost	γ	kg/m³	4800

Obr. 3. Závislost amplitudové permeability na magnetické indukci (FONOX H21)

Obr. 4. Závislost složek komplexní permeability na kmitočtu (FONOX H21)

Obr. 7. Závislost efektivní a reverzibilní permeability na stejnosměrném sycení pro dělená jádra

2. Feritová jádra

Z feritového materiálu FONOX H21 se vyrábějí (nebo se v současné době připravuje výroba) prakticky všechny běžné typy jader, vyráběných světovými výrobci.

Jedná se o následující tvarové typy jader:

- a) hrníčková jádra,
- b) jádra E,
- c) jádra EF,
- d) jádra EC,
- e) jádra ETD,
- f) jádra RM,
- g) jádra U a UI,
- h) toroidní jádra.

Jádra z uvedeného feritového materiálu, pokud nejsou potištěná, jsou označena tečkou hnědé barvy.

Obr. 5. Závislost specifických ztrát na teplotě a magnetické indukci (FONOX H21)

10⁻¹ 10⁻² 10⁻³ 10⁻³ 10⁻³ 10⁻³ 10⁻³ 10⁻³

Obr. 6. Závislost specifických ztrát na magnetické indukci (FONOX H21)

2. 1 Feritová hrníčková jádra

Hrníčková jádra se používají zejména tam, kde záleží na malé rozptylové indukčnosti a malé vlastní kapacitě transformátorů. Jádra jsou dodávána buď bez vzduchové mezery nebo se vzduchovou mezerou, která je tvořena zkrácením středního sloupku jádra. Vzduchová mezera je tvořena do velikosti 0,5 mm asymetricky v jedné polovině jádra, přes 0,5 mm symetricky v obou polovinách jádra. Rozměry hrníčkových jader isou uvedeny v tab. 2, v níž je také tabulka údajů efektivních parametrů pro výpočty. Jádra rozměrově odpovídají doporučení IEC č. 133. Z materiálu FONOX H21 se vyrábějí ve velikostech od průměru 18 do průměru 42 mm. Na těchto jádrech lze realizovat transformátory s přenášeným výkonem od 5 do 480 W v závislosti na volbě pracovního režimu a kmitočtu. Elektromagnetické vlastnosti jsou uvedeny v tab. 3, v níž jsou velikosti magnetické indukce při H = 250 A/m a T = 100°C, celkové ztráty jádra při B = 200 mT, f =15 kHz a T = 100 °C, součinitelé indukčnosti A_L a efektivní permeability pro jádra bez i se vzduchovou mezerou.

Hrníčková jádra lze kromě spínaných zdrojů používat pro impulsní transformátory, anténní transformátory pro vysílače, v řídicích obvodech strojů, "zapalovacích" transformátorech apod.

Na obr. 8 je závislost součinitele indukčnosti A_L na velikosti vzduchové mezery pro všechny typy hrníčkových jader.

2. 2 Feritová jádra E

Tato jádra jsou po hrníčkových jádrech nejstarším typem feritových jader. Typy E 20 až E 32/12 jsou rozměrově shodné s řadou plechových jader EB, typy E 42 a E 65 jsou rozměrově shodné s řadou plechových jader M a odpovídají normě DIN 41295. Jádra jsou dodávána buď bez vzduchové mezery nebo se vzduchovou mezerou, vytvořenou zkrácením středního sloupku. Rozměry řady jader E včetně efektivních rozměrů pro výpočty jsou uvedeny v tab. 4. Na těchto jádrech lze realizovat transformátory s přenášeným výkonem od 4 do 2340 W v závislosti na pracovním režimu a pracovním kmitočtu. Elektromagnetické vlastnosti jsou v tab. 5. Jádra E je možno používat i ve složeném tvaru, tj. několik jader vedle sebe, čím dosáhneme výhodnějších parametrů - tuto konfiguraci používáme tehdy, jsme-li omezeni např. stavební výškou.

Na obr. 9 je závislost součinitele indukčnosti A_L na velikosti vzduchové mezery pro celou řadu jader E.

Tab. 2. Rozměry feritových hrníčkových jader (v mm)

Тур	D_1	D_2	D_3	D_4	H_1	H_2	A	В
P 18x11	18,4 -0,8	14,9 +0,5	7,6 -0,3	3 +0,2	10,7 -0,3	7,2 +0,4	13,1 -0,5	2,5
P 26x16	26 -1	21,2 +0,8	11,5 -0,4	5,4 +0,3	16,3 -0,4	11 +0,4	18,4 -0,7	3,5
P 30x19	30,5 -1	25 +0,8	13,5 -0,4	5,4 +0,3	19 -0,4	13 +0,4	21,4 -0,8	4
P 36x22	36,2 -1,2	29,9 +1	16,2 -0,6	5,4 +0,3	22 -0,6	14,6 +0,4	26 -1	4,5
P 42x29	43,1 -1,4	35,6 +1,4	17,7 -0,6	5,4 +0,3	29,9 -0,6	20,3 +0,4	32 -2	5

Efektivní parametry pro výpočty

Тур	$C_1 (\mathrm{mm}^{-1})$	$S_{\bullet}(\text{mm}^2)$	S_{\min} (mm ²)	$l_{\rm e}({ m mm})$	$V_{\rm e} ({\rm mm}^3)$	Hmotnost (g)			
P 18x11	0,597	43	35	25,8	1120	7			
P 26x16	0,400	93	74	37,6	3530	20			
P 30x19	0,330	137	112	45,2	6190	36			
P 36x22	0,264	202	173	53,2	10 700	57			
P 42x29	0,259	265	214	68,6	18 200	120			

Tab. 3. Elektromagnetické vlastnosti hrníčkových jader

	Magnetická	. Celkové	,			
Тур	indukce B. (mT) při	ztráty P _C (W) při	d (mm)	A _L (nH)	$m_{_{\mathrm{e}}}$	Objednací číslo
	H = 250 A/m,					
		f = 15 kHz a				
	T = 100 °C	T = 100 °C				
P 18x11	≥310	≤0,3	-	2940 ±25 %	1400	205 521 005 250
		ŕ	0,1 ±0,02	~517	~246	261
			0,25 ±0,02	~247	~117	262
			0,5 ±0,05	~136	~ 64	263
P 26x16	≥310	≤0,5		4750 ±25 %	1510	205 521 005 350
			0,1 ±0,02	~1056	~336	361
			0 ,25 ±0,02	~520	~165	362
		1	0,5 ±0,05	~289	~92	363
			0,75 ±0,05	~203	~65	364
P 30x19	≥310	≤0,9	-	6000 ±25 %	1575	205 521 005 400
			0,1 ±0,02	~1500	~394	411
i			0,25 ±0,02	~750	~197	412
			0,5 ±0,05	~420	~110	413
			0,75 ±0,0 5	~297	~78	414
			1 ±0,1	~233	~61	415
P 36x22	≥310	≤1,4	-	7600 ±25 %	1600	205 521 005 450
			0,1 ±0,02	~2135	~448	461
			0,2 ±0,02	~1304	~274	46 6
			0,25 ±0,02	~1090	~223	462
			0,5 ±0,05	~615	~129	463
			0,75 ±0,05	~435	~ 91	464
			1 ±0,1	~342	~72	465
P 42x29	≥310	≤3	-	8100 ±25%	1670	205 521 005 500
			0,1 ±0,02	~2620	~540	511
			0,25 ±0,02	~1380	~284	512
			0,5 ±0,05	~790	~163	513
			0,75 ±0,05	~563	~116	514
			1 ±0,1	~444	~91	515
			1,25 ±0,1	~365	~75	516

Obr. 8. Závislost konstanty A. na velikosti vzduchové mezery pro hrníčková jádra (FONOX H21)

2. 3 Feritová jádra EF

Koncem 80. let se v západní Evropě začala zavádět nová řada jader E, tzv. EF, na základě normy DIN 41985. Jsou to typy EF 12,6 až EF 32, rozměrově poněkud rozdílné od řady jader E a měly by jádra E

Tab. 4. Rozměry jader E (v mm)

Тур	A	B_{\min}	С	D_{\min}	E	F	R_1	R_2
E 20	20 ±0,6	15	5 -0,3	11,4	17,2 -0,8	4,8 -0,4	1,5	0,4
E 25	25 ±0,75	18,8	6 -0,4	14, 0	21,3 -1,0	5,8 -0,4	2	0,4
E 32/7,8	32 ±1	23,6	8 -0,5	17,2	26,2 -1,2	7,8 -0,5	2,5	0,5
E 32/12	32 ±1	23,6	8 -0,5	17,2	26,2 -1,2	12 -0,7	2,5	0,5
E 42/15	42 ±1,25	29,5	12 -0,7	29	42,6 -1,5	15 -0,9	2,5	0,5
E 42/20	42 ±1,25	29,5	12 -0,7	29	42,6 -1,5	20 -1,0	2,5	0,5
E 55	55,2±1,45	37,5	17 -0,9	38	57,0 -1,7	21 -1,0	2,5	0,5
E 65	65,4 ±1,6	44,2	20 -1	45	66,6 -2,0	27,4 -1,2	3	0,5

Efektivní parametry pro výpočty (byly vypočítány podle doporučení IEC č. 205)

Тур	$C_1 \text{ (mm}^{-1})$	$S_{\rm e}~({ m mm}^2)$	S_{\min} (mm ²)	l _e (mm)	$V_{\rm e}~({\rm mm}^3)$	Hmotnost (g)
E 20	1,85	22,4	21,2	41,7	935	5,6
E 25	E 25 1,54		31,4	51,5	1720	9,6
E 32/7,8	1,09	59,1	58,5	64,2	3790	20
E 32/12	0,7	93,1	90,3	65,6	6100	30
E 42/15	0,56	172	169	96,6	16 600	93
E42/20	0,42	230	226	96,6	22 250	120
E 55	0,39	328	320	129	42 300	227
E 65	0,29	528	52 0	152	80 100	410

Obr. 9 Zdvislost součinitele indukčnosti (konstanty) A. na velikosti vzduchové mezery u feritových jader E (FONOX H21)

Obr. 10. Závislost konstanty A, na velikosti vzduchové mezery u feritových jader EF (FONOX H21)

postupně nahrazovat. Jádra se dodávají buď bez vzduchové mezery nebo se vzduchovou mezerou vytvořenou zkrácením středního sloupku. Je možno dodávat buď jádra s definovanou vzduchovou mezerou nebo s definovaným součinitelem indukčnosti A, (viz tab. 7). Rozměry řad jader EF s efektivními parametry jsou v tab. 6. Jádra odpovídají rozměrově DIN 41985 a jsou shodná prakticky s výrobky všech světových výrobců. S těmito jádry lze realizovat výkonové transformátory pro výkony od 2 do 250 W podle zvoleného pracovního režimu a kmitočtu. V tab. 7 jsou elektromagnetické vlastnosti jader s definovanou vzduchovou mezerou a v tab. 8 s definovaným součinitelem indukčnosti $A_{\rm L}$. Na obr. 10 jsou závislosti součinitele indukčnosti $A_{\rm L}$ na velikosti vzduchové mezery.

Tab. 5. Elektromagnetické vlastnosti jader E

Tab. 5. Elektromagnetické vlastnosti jader E										
Тур .	Vzduch. mezera (mm)	A _L (nH)	$\mu_{\scriptscriptstyle e}$	Objednací číslo						
E 20	-	1070 ±25 %	1530	205 521 203 050						
	0,1 ±0,02	~298	424	070						
	0,25 ±0,02	~147	209	071						
	0,5 ±0,05	~82	117	072						
	0,75 ±0,05	~58	83	073						
	1 ±0,05	~45	65	074						
E 25	-	1100 ±25 %	1530	205 521 203 100						
	0,1 ±0,02	~345	472	120						
	0,25 ±0,02	~177	243	121						
	0,5 ±0,05	~101	137	122						
	0,75 ±0,05	~71	98	123						
	1 ±0,05	~56	77	124						
E 32/7,8	-	1600 ±25 %	1560	205 521 203 150						
	0,1 ±0,02	~587	560	170						
	0,25 ±0,02	~310	296	171						
	0,5 ±0,05	~179	170	172						
	0,75 ±0,05	~127	121	173						
	1 ±0,05	~100	96	174 •						
	1,5 ±0,1	~70	67	175						
	2 ±0,1	~55	53	176						
	2,5 ±0,1	~46	44	177						
E 32/12	-	2450 ±25%	1560	205 521 203 200						
	0,1 ±0,02	~880	560	220						
	0,25 ±0,02	~465	296	221						
	0,5 ±0,05	~268	171	222						
	0,75 ±0,05	~191	122	223						
	1 ±0,05	~150	95	224						
	1,5 ±0,1	~105	67	225						
	2 ±0,1	~83	53	226						

E 42/15	-	2450 ±25 %	1560	205 521 403 250
1	0,1 ±0,02	~1540	671	260
1	$0,25 \pm 0,02$	~846	370	261
1	0,5 ±0,05	~497	218	262
	0,75 ±0,05	~357	156	263
	1 ±0,05	~283	124	264
	1,5 ±0,1	~199	87	265
	2 ±0,1	~156	68	266
	2,5 ±0,1	~132	58	267
E 42/20	-	4900 ±25 %	1560	205 521 203 275
]	0,1 ±0,02	~2140	681	. 283
	$0,25 \pm 0,02$	~1180	376	284
	0,5 ±0,05	~694	221	285
	0,75 ±0,05	~498	159	286
	1 ±0,05	~395	126	281
	1,2 ±0,1	~337	107	280
	1,5 ±0,1	~278	89	287
	2 ±0,1	~218	69	288
	2,5 ±0	~184	59	289
E 55	-	5450 ±25 %	1560	205 521 403 350
	0,5 ±0,05	~960	275	320
	1 ±0,1	~554	159	321
	1,5 ±0,1	~392	112	322
	2 ±0,1	~308	88	323
	2,5 ±0,1	~261	75	324
	3 ±0,1	~229	66	325
E 65	•	7100 ±25 %	1580	205 521 403 350
	0,5 ±0,05	~1445	322	371
	1 ±0,1	~843	188	372
1	1,5 ±0,1	~600	134	373
	2 ±0,1	~473	105	374
	2,5 ±0,1	~401	89	375
	3 ±0,1	~352	78	376

Тур	P ₁₀₀ max (mW)	B ₁₀₀ min (mT)
E 20	300	
E 25	300	
E 32/7,8	500	
E 32/12	800	310
E 42/15	2 000	
E 42/20	2 500	
E 55	4 800	
E 65	8 500]

2. 4 Feritová jádra EC

Jádra EC jsou mezistupněm mezi jádry E a ETD. Proti jádrům E mají výhodu v kruhovém středním sloupku, který umožňuje navíjet cívky rychloběžnými válcovými navíječkami. Jádra jsou mezinárodně normalizovaná a odpovídají rozměrově doporučení IEC č. 647. Vyrábějí se celkem čtyři typy. Pouze v Japonsku se

vyrábějí i typy větší než EC 70. Jádra se dodávají buď bez vzduchové mezery, nebo s definovanou vzduchovou mezerou. Rozměry jader EC jsou v tab. 9, v níž jsou uvedeny i efektivní parametry pro výpočty. S těmito jádry lze realizovat výkonové transformátory od 40 do 1800 W (v závislosti na pracovním režimu a kmitočtu). V tab. 10 jsou elektromagnetické vlastnosti jader se vzduchovou i bez vzdu-

Tab. 6. Rozměry jader EF (v mm)

Тур	A	В	С	D	E	F	R_1	R_2
EF 12,6	12,6+0,5 -0,4	8,9 +0,6	3,7 -0,3	9 +0,6	13 -0,4	3,7 -0,3	1	0,3
EF 16	16 +0,7 -0,5	11,3 +0,6	4,7 -0,3	11,4 +0,8	16,4 -0,6	4,7 -0,4	1	0,3
BF 20	20 +0,8 0,6	14,1 +0,6	5,9 -0,4	14 +0,8	20,4 -0,8	5,9 -0,5	1,5	0,4
EF 25	25 +0,8 -0,7	17,5 +0,8	7,5 -0,5	17,4 +1	25,6 -1	7,5 -0,6	2	0,5
EF 32	32 +0,9 -0,7	22,7 +1	9,5 -0,6	22,4 +1,2	32,8 -1,2	9,5 -0,7	2,5	0,5

Efektivní parametry pro výpočty (vypočítány podle doporučení IEC č. 205)

7									
Тур	$C_1 (\mathrm{mm}^{-1})$	$S_{\rm e}~({\rm mm}^2)$	S_{\min} (mm^2)	l _e (mm)	$V_{\rm e}({ m mm}^3)$	Hmotnost (g)			
EF 12,6	2,27	13	12,2	29,6	384	2			
EF 16	1,87	20,1	19,4	37,6	754	4,6			
EF 20	1,34	33,5	31,6	44,9	1 500	7,4			
EF 25	1,09	52,5	51,5	57,5	3 020	16			
EF 30	0,89	83	81,4	74	6 100	34			

Tab. 7. Feritová jádra se zaručovanou velikostí vzduchové mezery

Тур	Vzduch, mezera	A _L (nH)	μ_{e}	Objednací číslo
-71	δ(mm)	()	,	
EE 10.6		000 .05 6	1450	205 521 202 400
EF 12,6	~0	800 ±25 %	1450 468	205 521 203 400
	0,05 ±0,01 0,1 ±0,02	~259 ~153	468 276	401 402
	0,1 ±0,02 0,25 ±0,02	~133	134	402
	0,23 ±0,02 0,5 ±0,05	~41	74	404
EF 16	~0	1050 ±25 %	1560	205 521 203 420
	0,05 ±0,01	~375	558	421
	0,1 ±0,02	~228	339	422
	0,25 ±0,02	~112	167	423
	0,5 ±0,05	~62 ~44	92	424
	0,75 ±0,05	~44	65	425
EF 20	~0	1500 ±25 %	1600	205 521 203 440
	0,05 ±0,01	~591	630	441
	0,1 ±0,02	~368	392	442
	0,25 ±0,02	~184	196	443
	0,5 ±0,05	~103	110	444
	0,75 ±0,05	~73	78	445
	1 ±0,05	~57	61	446
EF 25	~0	1900 ±25 %	1650	205 521 203 460
	0,1 ±0,02	~544	472	461
	0,25 ±0,02	~280	243	462
	0,5 ±0,05	~159	138	463
	0,75 ±0,05	~113	97	464
	1 ±0,05	~87	75	465
	1,5 ±0,1	~62	54	466
	2 ±0,1	~48	42	467
	2,5 ±0,1	~41	36	468
EF 32	. ~0	2400 ±25 %	1710	205 521 203 480
	0,1 ±0,02	~860	612	481
	0,25 ±0,02	~442	314	482
	0,5 ±0,05	~251	179	483
	0,75 ±0,05	~178	127	484
	1 ±0,05	~140	100	485
	1,5 ±0,1	~98	70	486
	2 ±0,1	~76	54	487
	2,5 ±0,1	~65	46	488

U jader bez vzduchové mezery jsou zaručovány: magnetická indukce B při H=250 A/m a T=100 °C a celkové ztráty $P_{\rm c}$ při B=200 mT, f=15 kHz a T=100 °C

Тур	P ₁₀₀ max (mW)	B ₁₀₀ min (mT)
EF 12,6 EF 16 EF 20 EF 25 EF 32	50 120 190 400 800	310

chové mezery. Na obr. 11 jsou závislosti součinitele indukčnosti $A_{\rm L}$ na velikosti vzduchové mezery.

Obr. 11. Závislost konstanty A, na velikosti vzduchové mezery u feritových jader EC (FONOX H21)

 $\it Tab.$ 8. Feritová jádra EF se zaručovaným součinitelem indukčnosti, $\it A_{\rm L}$

Тур	A _L (nH)	$\mu_{\mathbf{e}}$	~δ (mm)	Objednací číslo
EF 12,6	200 ±20	361	0,07	205 521 203 400.01
	160 ±15	289	0,1	.02
	100 ±15 80 ±10	181 145	0,17 0,23	.03 .04
	63 ±10	114	0,3	.05
	40 ±10	72	0,51	.06
EF 16	400 ±20	595	0,05	205 521 203 420.01
	250 ±15 160 ±15	372 238	0,09 0,19	.02 .03
	125 ±15	186	0,19	.04
	100 ±10	149	0,29	.05
	80 ±8	119	0,37	.06
	63 ±8 50 ±8	94 74	0,5 0,64	.07 .08
	40 ±8	60	0,82	.09
	31,5 ±6	49	1,1	.10
	25 ±5	37	1,4	.11
	20 ±4	30	1,9	.12
EF 20	500 ±20 400 ±15	533 426	0,06 0,09	205 521 203 440.01
	250 ±15	267	0,17	.03
	200 ±15	213	0,23	.04
	160 ±10	171	0,29	.05.
	125 ±10 100 ±10	133 107	0,4 0,52	.06 .07
	80 ±10	85	0,68	.08
	63 ±8	67	0,88	.09
	50 ±8 40 ±6	53 43	1,15 1,5	.10 .11
	31,5 ±6	34	1,95	.12
	25 ±4	27	2,65	.13
	20 ±4	21	3,6	.14
EF 25	630 ±20	546	0,08	205 521 203 460.01
	400 ±15 315 ±15	347 273	0,16 0,22	.02 .03
	250 ±10	217	0,29	.04
	200 ±8	173	0,38	.05
	160 ±8	139	0,5	.06
	125 ±8 100 ±8	108 87	0,67 0,86	.07 .08
	80 ±8	69	1,12	.09
	63 ±5	55	1,5	.10
	50 ±4 40 ±4	43 35	1,95 2.55	.11 .12
	31,5 ±4	27	2,55 3,6	.13
	25 ±3	22	5,1	.14
EF 32	800 ±15	569	0,1	205 521 203 480.01
	630 ±15	448	0,15	.02
	400 ±15 315 ±10	284	0,27	.03
	315 ±10 250 ±8	224 178	0,37 0,49	.04 .05
	200 ±8	142	0,83	.06
	160 ±8	114	1,15	.07
	125 ±8 100 ±5	89 71	1,45	.08
	100 ±5 80 ±5	57	1,85 2,55	.09 .10
	63 ±4	45	3,5	.11
	50 ±3	36	5	.12
· · · · · · · · · · · · · · · · · · ·				

Tab. 9. Rozměry feritových jader EC (v mm)

Тур	A	В	D_1	D_2	С	D	E	F
EC 35	35,3 -1,6	27,7 +1,6	22,2 +1,1	9,8 -0,6	9,8 -0,6	23,8 +1,4	34,9 -0,6	2,5 +0,5
EC 41 *)	41,6 -2	32,6 +2	26,3 +1,5	11,9 -0,6	11,9 -0,6	27,6 +1,6	39,3 -0,6	3 +0,5
EC 52	53,5 -2,6	42,7 +2,6	32,1 +1,8	13,75-0,7	13,75-0,7	31,0 +1,6	48,7 -0,6	3,5 +0,5
EC 70	71,7 -3,4	57,9 +3,4	43,2 +2,4	16,8 -0,8	16,8 -0,8	44,6 +1,8	69,3 -0,6	4,5 +0,5

^{*)} předběžné údaje - připravuje se

Efektivní parametry pro výpočty (vypočítány v souladu s doporučením IEC č.205)

Тур	$C_{\rm i}$ (mm ⁻¹)	$S_{e} (mm^{2})$	$S_{\min} (\text{mm}^2)$	$l_{\rm e}({ m mm})$	$V_{\rm e} ({\rm mm}^3)$	Hmotnost (g)
EC 35	0,918	84,3	71	77,4	6530	36
EC 41	0,735	121	106	89,3	10 800	52
EC 52	0,581	180	141	105	18 800	108
EC 70	0,514	279	211	144	40 100	252

Tab. 10. Velikosti vzduchové mezery δ, součinitele indukčnosti A_L a efektivní permeability jader EC

nosti A _L a efektivní permeability jader EC					
Тур	Vzduch. mezera (mm)	A _L (nH)	μ_{ullet}	Objednací číslo	
EC 35	0,1 ±0,02 0,25 ±0,02 0,5 ±0,05 0,75 ±0,05 1 ±0,05 1,5 ±0,1	2100 ±25 % ~805 ~431 ~250 ~178 ~141 ~100	1530 588 315 183 130 103 73	205 521 204 400 401 402 403 404 405 406	
EC 41	2 ±0,1 	~78 2700 ±25 % ~1100 ~603 ~353 ~253 ~201 ~142 ~112 ~95 ~83	57 1570 643 353 206 148 118 83 65 56 49	407 205 521 204 425 426 427 428 429 430 431 432 433 434	

EC 52	-	3400 ±25 %	1570	205 521 204 450
	0,1 ±0,02	~1548	716	451
	0,25 ±0,05	~868	401	452
	0,5 ±0,05	~515	238	453
	0,75 ±0,05	~371	171	454
	1 ±0,05	~295	136	455
	1,5 ±0,1	~209	97	456
į.	2 ±0,1	~164	76	457
	2,5 ±0,1	~139	64	458
	3 ±0,1	~123	57	459
1				
EC 70	-	3900 ±25 %	1590	205 521 204 475
EC 70	- 0,1 ±0,02	3900 ±25 % ~2104	1590 860	205 521 204 475 476
EC 70	- 0,1 ±0,02 0,25 ±0,02			
EC 70	1 ' '	~2104	860	476
EC 70	0,25 ±0,02	~2104 ~1247	860 510	476 477
EC 70	0,25 ±0,02 0,5 ±0,05	~2104 ~1247 ~762	860 510 312	476 477 478
EC 70	0,25 ±0,02 0,5 ±0,05 0,75 ±0,05	~2104 ~1247 ~762 ~556	860 510 312 227	476 477 478 479
EC 70	0,25 ±0,02 0,5 ±0,05 0,75 ±0,05 1 ±0,05	~2104 ~1247 ~762 ~556 ~445	860 510 312 227 182	476 477 478 479 480
EC 70	0,25 ±0,02 0,5 ±0,05 0,75 ±0,05 1 ±0,05 1,5 ±0,1	~2104 ~1247 ~762 ~556 ~445 ~317	860 510 312 227 182 130	476 477 478 479 480 481
EC 70	0,25 ±0,02 0,5 ±0,05 0,75 ±0,05 1 ±0,05 1,5 ±0,1 2 ±0,1	~2104 ~1247 ~762 ~556 ~445 ~317 ~250	860 510 312 227 182 130 102	476 477 478 479 480 481 482

Тур	P ₁₀₀ max (mW)	B ₁₀₀ min (mT)
EC 35 EC 41*)	0,8 1,1	210
EC 52	2,5	310
EC 70	5,5	

^{*)} předběžné údaje připravuje se

2.5 Feritová jádra ETD

Jádra ETD (Economic Transformer Design) jsou v podstatě jádra EC resp. jádra E, navržená tak, aby efektivní průřez byl pokud možno stejný po celé délce střední

magnetické silokřivky. Tato jádra se vyznačují tedy malou změnou efektivního průřezu, tj. rozdíl mezi efektivním průřezem a minimálním průřezem je velmi malý. Jádra rozměrově odpovídají doporučení IEC 51 (CO) 276. Tato jádra se jeví

Tab. 11. Rozměry feritových jader ETD (v mm)

Тур	A	D_{i}	D_2	С	D	E
ETD 29	30,6 - 1,6	22,4 +1,4	9,8 -0,6	9,8 -0,6	21,4 +1,2	32,0 -0,8
ETD 34	35,0 -1,6	25,6 +1,4	11,1 -0,6	11,1 -0,6	23,6 +1,2	35,0 -0,8
ETD 39	40,0 -1,8	29,3 +1,6	12,8 -0,6	12,8 -0,6	28,4 +1,6	40,0 -0,8
ETD 44	45,0 -2	32,5 +1,6	15,2 -0,8	15,2 -0,8	32,2 +1,6	49,0 -0,8
ETD 49	49,8 -2,2	36,1 +1,8	16,7 -0,8	16,7 -0,8	35,4 +1,6	49,8 -0,8

Efektivní parametry pro výpočty (vypočteny podle doporučení IEC č. 205)

Тур	C ₁ (mm ⁻¹)	S _e (mm ²)	S_{\min} (mm ²)	l _e (mm)	// _e (mm³)	Hmotnost (g)
ETD 29	0,92	76	70	71	5377	28
ETD 34	0,81	97,1	91,6	78,6	7640	40
ETD 39	0,74	125	123	92,2	11 500	60
ETD 44	0,6	173	172	103	17 800	94
ETD 49	0,54	211	209	114	24 000	124

128 amateriste ADI 94

Tab. 12. Velikosti vzduchové mezery δ , součinitele indukčnosti A_1 a efektivní permeability jader ETD

A _L a elektivni permeability jader E1D						
Тур	Vzduch.	$A_{\rm L}$ (nH)	$\mu_{\mathfrak{e}}$	Objednací číslo		
	mezera (mm)					
ETD 29	-	2100 ±25 %	1530	205 521 203 640		
	0,1 ±0,02	~750	549	641		
	0,25 ±0,02	~394	288	642		
	0,5 ±0,05	~227	166	643		
	0,75 ±0,05	~162	118	644		
	1 ±0,05	~128	94	645		
	1,5 ±0,1	~90	66	646		
	2 ±0,1	~71	52	647		
ETD 34	-	2400 ± 25%	1550	205 521 203 660		
	0,1 ±0,02	≁923	594	661		
	0,25 ±0,02	~495	319	662		
	0,5 ±0,05	~287	185	663		
	0,75 ±0,05	~205	132	664		
	1 ±0,05	~162	104	665		
	1,5 ±0,1	~115	74	666		
	2 ±0,1	~90	58	667		
ETD 39	-	2700 ±25 %	1600	205 521 203 680		
	0,1 ±0,02	~1127	663	681		
	0,25 ±0,02	~619	364	682		
	0,5 ±0,05	~363	214	683		
	0,75 ±0,05	~261	154	684		
	1 ±0,05	~207	122	685		
	1,5 ±0,1	~146	86	686		
	2 ±0,1	~115	68	687		
	3 ±0,1	~86	51	688		

ETD 44	-	3450 ±25 %	1650	205 521 203 700
	0,1 ±0,02	~1499	716	701
	0,25 ±0,02	~838	400	702
	0,5 ±0,05	~496	237	703
	0,75 ±0,05	~357	171	704
	1 ±0,05	~284	136	705
	1,5 ±0,1	~201	96	706
	2 ±0,1	~158	75	707
	3 ±0,1	~118	56	708
ETD 49	-	3850 ±25 %	1650	205 521 203 720
	$0,1 \pm 0,02$	~1758	755	721
	0,25 ±0,02	~1000	430	722
	0,5 ±0,05	~597	256	723
Ì	0,75 ±0,05	~432	186	724
	1 ±0,05	~343	147	725
	1,5 ±0,1	~243	104	726
	2 ±0,1	~192	82	727
	3 ±0,1	~143	61	728
	4 ±0,1	~118	51	729

P ₁₀₀ max (W)	B ₁₀₀ min (mT)
0,6	
1,3	310
2 2.6	
	(W) 0,6 0,8 1,3

jako optimální pro nové konstrukce. Jsou dodávána podobně jako jádra E nebo EC se vzduchovou mezerou nebo bez ní. Vzduchová mezera je vytvořena zkrácením středního sloupku. Rozměry feritových jader ETD včetně efektivních parametrů pro výpočty jsou v tab. 11. S jádry lze realizovat výkonové transformátory od 30 do 1170 W podle pracovního režimu a kmitočtu. V tab. 12 jsou uvedeny elektromagnetické vlastnosti jader ETD. Na obr. 11a jsou závislosti součinitele indukčnosti $A_{\rm L}$ na velikosti vzduchové mezery.

Obr. 11a. Zdvislost konstanty A, na velikosti vzduchové mezery u feritových jader ETD (FONOX H21)

2. 6 Feritová jádra U a UI

Uvedená jádra pokrývají celou výkonovou škálu od několika W do desítek kW. Svým tvarem jsou vhodná pro skládání jader do různých vhodných kombinací. Kromě jader U se dodává i řada vhodných jader I, z nichž lze sestavit jádra s libovolným průřezem a rozměry, která lze dodávat již slepená, protože pro sestavování je nutné zabrušovat jádra na míru, což lze ekonomicky dělat pouze u výrobce. Jádra se lepí epoxidovými pryskyřicemi s teplotní odolností 80 nebo 150 °C. S vhodnými lepidly lze dosáhnout i odolnosti přes 200 °C. V tab. 13 jsou rozměry stan-

běna jako standardní většinou světových výrobců. Se standardní řadou lze dosáhnout výkonového přenosu transformátorů od 1,5 do 5300 W. Jak jsme již poznamenali, možnosti uspořádat jádra do potřebných kombinací jsou velmi široké a spínané zdroje s nimi dnes již nahrazují i v netradičních oborech klasické zdroje nebo měniče (např. zdroje vn pro elektrostatické odlučovače, svářečky, měniče pro kolejová vozidla apod.)

Elektromagnetické vlastnosti jsou v tab. 14. Jádra jsou dodávána bez vzduchové mezery nebo se vzduchovou mezerou podle požadavku zákazníka.

Tab. 13. Rozměry feritových jader U/I (v mm)

140. 15. 1	Rozmery fe	rnovych ja	der U/I (V	mm)				
Тур	A	В	С	D	E	R_{I}	R_2	Objednací číslo
U 10/3	10 ±0,4	3,8 +0,4	5 +0,3	8,2 -0,4	3 -0,3	1	0,3	205 521 204 009
U 15/7	15,2±0,6	4,9 +0,6	5,9 +0,5	11,7 -0,6	6,7 -0,5	1,5	0,4	010
U 20/8	20,8±0,6	5,5 +0,6	8 +0,6	1 5, 9 -0,6	7,8 -0,5	1,5	0,4	011
U 25/8	24,8±0,7	7,9 +0,6	11 +0,6	20 -0,6	7,6 -0,5	2	0,4	018
U 25/13	24,8±0,7	7,9 +0,6	11 +0,6	20 -0,6	13,0 -0,5	2	0,4	012
U 26/16	25,8±0,7	9,0 +0,7	13 +0,4	22,2 -0,7	16,0 -0,6	3	0,5	016
U 30/16	30,8±0,8	10 +0,8	16 +0,6	27,0 -0,6	16,0 -0,6	2	0,5	013
U 30/26	30,8±1,2	10 +0,8	16 +0,6	27,0 -0,8	26,5 -0,8	2	0,5	017
U 70	70,0-3,2	>31	>37,5	57,0 +1	20 ±0,5	-	0,5	205 521 404 007
U 80	80,0±2	>39	>29	48,5 +1	20,0±0,5	-	1,5	006
I 80	80,0±2	-	-	20,0 ±0,5	20,0±0,5	-	-	214
U 93	93,0±1,8	>34,6	48 ±0,9	76,0 ±0,5	30,0±0,6	3	1,5	014
I 93	93,0±1,8	-	-	30,0 ±0,6	27,5±0,5	-	-	219

dardně vyráběných jader U a UI včetně efektivních parametrů pro výpočty. Jádra tohoto typu zatím nejsou mezinárodně normalizovaná, avšak řada z nich je vyrá-

B/4 Amatérske ADD 129

Efektivní parametry pro výpočty

Тур	C ₁ (mm ⁻¹)	S _e (mm ²)	l _e (mm)	(mm ³)	Hmotnost (g)
UU 10,3	4,4	8,7	38,2	332	1,8
UU 15/7	1,55	33	51	1670	9
UU 20/8	1,21	56	68	3820	18
UU 25/8	1,44	61	87	5320	26
UU 25/13	0,83	106	88	9330	42
UU 26/16	0,747	131	98	12 800	50
UU 30/16	0,73	159	118	18 800	96
UU 30/26	0,48	268	128	34 400	166
UU 70	0,68	400	272	108 700	550
UU 80	0,648	400	259	103 600	530
UI 80	0,503	400	201	80 300	418
UU 93	0,421	840	354	297 000	1520
UI 93	0,307	840	258	216 000	1110
M 186	0,421	1 680	708	594 000	3040
Jádro M18	36 je slož	eno ze	čtyř jad	ler U 93	

Ještě jedno důležité upozornění pro používání jader s větší vzduchovou mezerou: vždy je nutné vzduchovou mezeru vyplnit nemagnetickým materiálem, protože při činnosti transformátoru by se mohlo jádro mechanicky zničit.

Na obr. 12 jsou závislosti součinitele indukčnosti $A_{\rm L}$ na velikosti vzduchové mezery.

Tab. 14. Elektromagnetické vlastnosti jader U/I

Тур	A _L ±25 %	$\mu_{ m e}$	P _C max. (mW)	$B_{\min} \ (\mathrm{mT})$
UU 10/3	430	1500	100	
UU 15/7	1250	1540	210	
UU 20/8	1700	1640	5 00	
UU 25/8	1440	1650	600	
UU 25/13	2500	1650	1000	
UU 26/16	3000	1780	1500	310
UU 30/16	3300	1900	2200	
UU 30/26	4950	1900	3800	
UU 70	3300	1800	16 000	
UU 80	3500	1800	15 000	
UI 80	4500	1800	12 000	
UU 93	5400	1800	40 000	
UI 93	7400	1800	29 000	
M 186	5400	1800	80 000	
	1 1 7		7 00 10	

Součinitel indukčnosti $A_{\rm L}$ při T=23 °C ±5 °C, f=10 kHz, B<0,25 mT. Celkové ztráty $P_{\rm C}$ při T=100 °C, f=15 kHz, $B_{\rm a}=200$ mT. Minimální magnetická indukce $B_{\rm min}$ při T=100 °C, f=5 kHz, $H_{\rm a}=250$ A/m.

Obr. 12. Závislost součinitele indukčnosti (konstanty) A. na velikosti vzduchové mezery u feritových jader U (FONOX H21)

2. 7 Feritová jádra RM

Uvedená jádra se používají zejména tam, kde potřebujeme jádro s malou sta-

vební výškou a dobrou izolační pevností. Slučují dobré vlastnosti hrníčkových jader a jader E. Rozměry jader jsou meziná-

Tab. 15. Rozměry feritových jader RM (v mm)

140. 15.	14b. 15. Rozmery former yen juder Rivi (* mm.)									
Тур	A	В	C	D	E	F	D_1	D_2	$H_{_1}$	H_2
RM 8	19,7 -0,8	23,2 -0,9	9,5	11,0 -0,5	5	14,3 ±0,2	17,0 +0,6	8,55 -0,3	16,5 -0,2	10,8 +0,4
RM 10	24,7 -1,1	28,5 -1,3	10,9	13,5 -0,5	5	12,4 ±0,25	21,2 +0,9	10,9 -0,4	18,7 -0,2	12,4 +0,6
RM 12	29,8 -1,2	37,6 -1,5	13,4	16,1 -0,5	5	21,6 ±0,25	24,9 +0,1	12,8 -0,4	24,6 -0,2	16,8 +0,6
RM 14	34,8 -1,3	42,2 -1,5	17	19,0 -0,6	5,6	27,0 ±0,25	29,0 +1,2	15,0 -0,6	30,2 -0,2	20,8 +0,6

Velikosti efektivních parametrů pro výpočty

Тур	C ₁ (mm ⁻¹)	l _e (mm)	S _e (mm ²)	$S_{\min} (mm^2)$	V _e (mm ³)	Hmotnost (g)
RM 5	1,01	21,4	21,2	14,8	450	3
RM 6	0,863	26,9	31,3	23,8	840	4,5
RM 8	0,604	38,4	63,0	55,4	2430	12
RM 10	0,462	44,6	96,6	80,9	4310	22
RM 12	0,388	56,6	146	125	8340	45
RM 14	0,353	70	198	168	13 900	72

Tab. 16. Elektromagnetické vlastnosti jader RM

Тур	P ₁₀₀ max (mW)	B ₁₀₀ min (mT)
RM 5	80	
RM 6	150	
RM 8	300	310
RM 10	600	310
RM 12	1100	
RM 14	1700	

Tato jádra se dodávají buď bez vzduchové mezery nebo se zaručovanou velikostí činitele indukčnosti $A_{\rm L}$, velikost vzduchové mezery podle tabulky je pak pouze informativní.

U jader bez vzduchové mezery jsou zaručovány: magnetická indukce při $H_a = 250$ A/m a T = 100 °C, celkové ztráty při $B_a = 200$ mT, f = 15 kHz a T = 100 °C.

Vzduchová mezera.do velikosti 0,5 mm je zabroušena do jedné poloviny jádra, přes 0,5 mm do obou polovin jádra.

Součinitel indukčnosti $A_{\rm L}$, velikost vzduchové mezery δ a efektivní permeabilita jader RM

		permeaonn:		
Тур	$A_{\rm L}$ (nH)	~δ (mm)	μ_{e}	Objednací číslo
RM 5	1350 ±25 %	-	1100	250 521 306 825
ŀ	63 ±5	0,54	51	827
	100 ±5	0,35	80	828
İ	160 ±5	0,22	129	829
	250 ±10	0,14	201	830
RM 6	1900 ±25	-	1300	205 521 306 850
ļ	63 ±5	0,70	50.	852
İ	100 ±5	0,41	80	853
	160 ±5	0,24	127	854
1	250 ±10	0,14	200	855
	400 ±10	0,08	318	856
RM 8	2700 ±25 %	-	1300	205 521 306 875
	100 ±5	1,09	48	876
	160 ±5	0,64	77	877
1	250 ±5	0,38	120	878
	400 ±5	0,22	192	87 9
	630 ±10	0,12	302	880
RM 10	4100 ±25 %	-	1500	205 521 306 900
	160 ±5	1,03	59	901
	250 ±5	0,62	92	902
	400 ±5	0,35	147	903
	630 ±5	0,21	232	904
	1000 ±10	0,11	368	905
RM 12	5100 ±25 %	-	1570	205 521 306 925
	160 ±5	1,66	49	926
	250 ±5	0,99	77	927
	400 ±5	0,57	123	928
	630 ±5	0,28	194	929
	1000 ±10	0,18	309	930
RM 14	5800 ±25 %	-	1630	205 521 306 950
	160 ±5	2,39	45	951
	250 ±5	1,38	70	952
	400 ±5	0,8	112	953
	630 ±5	0,47	177	954
	1000 ±10	0,26	281	955
	1250 ±10	0,2	351	956

10³ RM12
RM10
RM10
RM6
RM5
RM8
RM8

Obr. 13. Závislost součinitele indukčnosti A, na velikosti vzduchové mezery pro feritová jádra RM (FONOX H21)

rodně normalizovány a odpovídají doporučení IEC č. 431.

V tab. 15 jsou rozměry vyráběných jader včetně efektivních parametrů pro výpočty. Jádra jsou dodávána buď bez vzduchové mezery, nebo s definovanou vzduchovou mezerou. Po dohodě lze dodávat i jádra s definovaným součinitelem indukčnosti $A_{\rm L}$. V tab. 16 jsou elektromagnetické vlastnosti jader. S uvedenými jádry lze dosáhnout výkonového přenosu transformátorů od 1,5 do 450 W podle pracovního režimu a kmitočtu. Na obr. 13 jsou závislosti součinitele indukčnosti $A_{\rm L}$ na velikosti vzduchové mezery.

Tab. 17. Rozměry nepovlakovaných toroidních feritových jader T (v mm)

Тур		D		d		H	s.	Objednací číslo
T 10	10	±0,3	6	±0,2	4	±0,15	0,3	205 521 200 005
Т 12,5	12,5	±0,35	7,5	5 ±0,2	5	±0,15	0,3	102
Т 16	16	±0,5	10	±0,2	6,3	±0,2	0,4	103
T 20	20	±0,5	12	±0,3	8	±0,2	0,5	. 104
T 25	25	±0,75	15	±0,45	10	±0,3	0,5	203
Т 32	32	±1	20	±0,6	13	±0,4	0,5	300
Т 40	40	±1,2	24	±0,7	16	±0,45	0,5	301
T 50	5 0	±1,5	30	±0,9	20	±0,6	0,5	303
T 80	80	±1,5	50	±0,9	22	±1	-	501

Hrany jader jsou zaobleny

Rozměry povlakovaných jader T (v mm)							
D max.	d min.	H max.	Objednací číslo				
11,1	5,0	4,95	205 521 200 005.1				
13,65	6,5	5,95	102.1				
17,3	8,9	7,3	103.1				
21,3	10,9	9,0	104.1				
26,55	13,75	11,1	203.1				
33,8	18,8	14,2	300.1				
43,0	22,5	17,25	301.1				
52,3	28,3	21,4	303.1				
82,5	51,7	23,8	501.1				
	D max. 11,1 13,65 17,3 21,3 26,55 33,8 43,0 52,3	D max. d min. 11,1 5,0 13,65 6,5 17,3 8,9 21,3 10,9 26,55 13,75 33,8 18,8 43,0 22,5 52,3 28,3	D max. d min. H max. 11,1 5,0 4,95 13,65 6,5 5,95 17,3 8,9 7,3 21,3 10,9 9,0 26,55 13,75 11,1 33,8 18,8 14,2 43,0 22,5 17,25 52,3 28,3 21,4				

Izolační povlak je tvořen epoxidovou pryskyřicí KOMAXIT

2. 8 Feritové toroidy

Použití toroidů jako výkonových transformátorů je omezeno pouze na případy, kdy se vyžadují jádra bez vzduchové mezery, protože zhotovení vzduchové mezery je velmi pracné a nákladné. Jádra se dodávají buď s izolačním povlakem nebo bez povlaku. V tab. 17 je rozměrová řada toroidů, která odpovídá doporučení IEC č.

Efektivní parametry pro výpočty

Brokervin paramony pro, vypooty						
Тур	C ₁ (mm ⁻¹)	l _e (mm)	S _e (mm ²)	V _e (mm ³)	Hmotnost (g)	
Т 10	3,8	24,1	7,8	188	1	
T 12,5	2,46	28,8	11,7	337	2	
Т 16	2,12	39,4	18,6	730	3,8	
T 20	1,58	50,3	32	1575	8	
T 25	1,23	60	49	2950	15	
T 32	1,03	77	77	6000	30	
T 40	0,77	96	125	12 000	60	
T 50	0,62	120	196	23 600	120	
T 80	0,61	197 '	323	63 600	324	

4401
A _L (nH)
≥580
≥730
≥840
≥1140
≥1450
≥1740
≥1330
≥2900
≥3700

Součinitele A_L jsou měřeny při f = 10 kHz a

B = 0.25 mT.

525. Elektromagnetické vlastnosti jsou v tab. 18. S uvedenými jádry lze realizovat výkonové transformátory pro 6 až 4300 W při dvojčinném provozu, výkon je závislý na pracovním kmitočtu.

3. Feritová jádra se vzduchovou mezerou

U skládaných feritových jader např. E, U, EC, ETD apod. rozlišujeme dva typy vzduchových mezer:

- a) technologické,
- b) úmyslně zavedené.

První typ vzniká při zabrušování jednotlivých částí jádra mezi stykovými plochami. Mezera bývá obvykle 0,001 až 0,015 mm. Je způsobená nerovnostmi povrchu při broušení.

Druhý typ se úmyslně vytváří v magnetickém obvodu jádra tak, že se např. zkrátí střední sloupek.

Z uvedených důvodů mají oba druhy mezery vliv na permeabilitu jádra. Počáteční permeabilita materiálu jádra se zmenšuje v závislosti na velikosti vzduchové mezery a nazývá se pak efektivní permeabilitou jádra µ_e.

Efektivní permeabilita se jednoduše vypočte, známe-li velikost součinitele indukčnosti A_L:

$$\mu_e = \frac{A_L \cdot C_1}{0.4\pi} \tag{3.1},$$

kde C_1 je tzv. tvarová konstanta jádra, udávaná v tabulkách (mm $^{-1}$), $A_{\rm L}$ součinitel indukčnosti (nH).

Jak jsme již uvedli, demagnetizační efekt mezi magnetickými póly obvodu

132 Amatorske AD 19 B/4

1. Součinitel indukčnosti $A_{\rm L}$ 2. Průrazná pevnost u povlakovaných toroidů:

Zkouší se v přípravku ze dvou kruhových elektrod, které se přiloží na feritové jádro a po dvě sekundy se nechá působit střídavé efektivní napětí pro toroidy o průměru

> 10 mm - 1 kV, 12,5 až 20 mm - 1,5 kV, nad 20 mm - 2 kV.

vlivem vzduchové mezery zmenšuje počáteční permeabilitu. Míra zmenšení bude záviset na reluktanci podél magnetické silokřivky v magnetickém materiálu jádra a na reluktanci vzduchové mezery. Pak můžeme psát

$$\mu_e = \frac{R_m}{R_m + R_g} \mu_i \tag{3. 2},$$

kde R_m je reluktance podél magnetické silokřivky jádra,

R_g reluktance vzduchové meze -

μ_i počáteční permeabilita mag netického materiálu.

Velikost R_m lze určit z geometrických rozměrů obvodu:

$$R_m = \frac{l_e}{S_e} \cdot \frac{1}{\mu_i} \tag{3. 3},$$

kde l_e je střední délka magnetické silokřivky,

S, efektivní průřez

Obě veličiny se udávají v tabulkách efektivních parametrů pro výpočty.

Reluktanci vzduchové mezery lze určit ze vztahu:

$$R_{\mathbf{g}} = \frac{l_{\mathbf{g}}}{S_{\mathbf{g}}} \tag{3.4},$$

protože μ pro vzduch se rovná jedné. Ve (3. 4) l_g je délka vzduchové meze-

 S_g průřez vzduch mezery.

Velikost $l_{\rm z}$ lze určit jednoznačně, $S_{\rm z}$ však představuje určitý problém, protože magnetické silokřivky neprobíhají jen mezi póly jádra, ale i mimo ně. Magnetické pole není homogenní, vykazuje určité deformace, protože magnetické silokřivky se na okrajích "vydouvají" do tvaru soudku, proto se tomuto efektu říká "barelový" efekt. Z tohoto důvodu je nutno zavést určitou korekci podle vztahu:

$$S_g = k.S_p$$
,

kde S_p je průřez magnetického pólu a k korekční činitel.

 S_p je tedy průřez části magnetického obvodu, vytvářejícího vzduchovou mezeru. Protože u feritových jader je velmi malý rozdíl mezi S_p a S_e , uvažuje se, že $S_p = S_e$ s malou chybou.

Pak můžeme vztah (3. 4) psát:

$$R_g = \frac{l_g}{k.S_g} \tag{3. 5}.$$

Vzhledem ke vztahům (3. 3) a (3. 5) lze vztah (3. 2) upravit

$$\mu_{e} = \frac{l_{e} \cdot \mu_{i}}{l_{e} + \frac{l_{g}}{L} \cdot \mu_{i}}$$
 (3. 6).

Činitele k byly určeny experimentálně a jsou uvedeny v tab 19.

Ze vztahu (3. 6) lze přímo vypočítat $\frac{l_g}{L}$ jako funkci μ_e a μ_i :

$$\frac{l_g}{k} = l_e \left(\frac{1}{\mu_e} - \frac{1}{\mu_i} \right) \tag{3.7}$$

nebo zavedením součinitele indukčnosti A_I

$$\frac{l_g}{k} = l_e \left(\frac{0.4\pi}{A_L \cdot C_1} - \frac{1}{\mu_i} \right)$$

Lze tedy konstatovat, že velikost l_s pro výpočet $A_{\rm L}$ (resp. $\mu_{\rm e}$) odpovídá fyzikální délce vzduchové mezery.

Této metody výpočtu lze využít i při určování amplitudové permeability při velkých magnetických indukcích.

Vliv technologické magnetické mezery na velikost efektivní permeability je značný, protože v oblasti, v níž se tyto mezery nacházejí, je zmenšení permeability v závislosti na velikosti vzduchové mezery značné. Pro ilustraci malý příklad:

Předpokládejme dělený tvar z materiálu H21, μ_i = 1900. Technologická vzduchová mezera l_t = 0,015 mm, l_e = 50 mm. Pak:

$$\mu_e = (50 \cdot 1900)/(50 + 0.015 \cdot 1900) =$$

= 1210,

je-li činitel k v oblasti uvažované vzduchové mezery roven jedné. Z uvedeného je tedy zřejmé, že se permeabilita změní podstatně. Proto nelze u dělených obvodů nikdy dosáhnout permeabilit snadno dosažitelných na nedělených tvarech jader (např. u toroidů).

Při určování součinitele indukčnosti $A_{\rm L}$ je nutno kromě předepsané maximální indukce zachovat ještě jednu zásadu: cívka pro měření musí být plná vinutí, protože jinak je možné dopustit se chyby, zejména u jader se vzduchovou mezerou, až minus 10%.

4. Stejnosměrné sycení feritových jader se vzduchovou mezerou

Základním úkolem je najít takové výpočtové vztahy pro feritová jádra se vzduchovou mezerou pro výpočet indukčnosti

Tab. 19. Součinitelé k rozptylu magnetického pole ve vzduchové mezeře feritových jader (barelový efekt)

Vzduch.			Vzduch.	<u>`</u>	
1	k k	1.11-		k	, ,,,
mezera	"	<i>l₌</i> /k	mezera	K	l.jk
l _g (mm)			l _g (mm)		
0,00	1,00	-	2,30	1,488	1,5450
0,05	1,05	0,0476	2,40	1,56	1,5385
0,10	1,1	0,0909	2,50	1,575	1,5873
0,15	1,15	0,1304	2,60	1,59	1,6352
0,20	1,2	0,1667	2,70	1,605	1,6822
0,25	1,217	0,2054	2,80	1,62	1,7284
0,30	1,234	0,2431	2,90	1,635	1,7737
0,35	1,25	0,2800	3,00	1,65	1,8182
0,40	1,267	0,3157	3,10	1,665	1,8788
0,45	1,283	0,3507	3,20	1,68	1,9048
0,50	1,3	0,3846	3,30	1,695	1,9469
0,60	1,32	0,4545	3,40	1,71	1,9883
0,70	1,34	0,5224	3,50	1,725	2,0290
0,80	1,36	0,5882	3,65	1,74	2,0290
0,90	1,38	0,6522	3,70	1,775	2,0845
1,00	1,4	0,7143	3,80	1,77	2,1469
1,10	1,41	0,7801	3,90	1,785	2,1849
1,20	1,42	0,8451	4,00	1,8	2,2222
1,30	1,43	0,9090	4,10	1,815	2,2590
1,40	1,44	0,9722	4,20	1,83	2,2950
1,50	1,45	1,0345	4,30	1,845	2,3306
1,60	1,46	1,0959	4,40	1,86	2,3656
1,70	1,47	1,1565	4,50	1,875	2,4000
1,80	1,48	1,2162	4,60	1,89	2,4339
1,90	1,49	1,2752	4,70	1,905	2,4670
2,00	1,5	1,3333	4,80	1,92	2,5000
2,10	1,515	1,3861	4,90	1,935	2,5300
2,20	1,53	1,4379	5,00	1,95	2,5640

a zatěžovacího stejnosměrného proudu. aby indukčnost byla v daném rozsahu konstantní, tj. aby nebyla proudově zá-

Proud I, tekoucí N závity vynutí, vytváří celkovou magnetomotorickou sílu, působící na magnetický obvod, a vytváří magnetický tok tekoucí jádrem i vzduchovou mezerou. Pro daný typ jádra je magnetická indukce v materiálu jádra úměrná _magnetickému toku. Magnetický tok jádra se vzduchovou mezerou je:

$$\Phi = \frac{\text{magnetomotorická síla}}{\text{reluktance (jádra + vzduch. mez.)}} = \text{konst. } \frac{I.N}{R_m + R_g} \tag{4. 1},$$

úpravou tohoto vztahu dostáváme výraz pro celkovou magnetomotorickou sílu

$$(I.N)_c = \text{konst.}(R_m + R_g) \cdot \Phi$$
 (4. 2)

Z uvedených vztahů vyplývá, že celková magnetomotorická síla může být rozdělena na dvě části:

- první (I · N), nutná pro překonání reluktance jádra.
- druhá $(I \cdot N)_{\mathbf{z}}$ nutná pro překonání reluktance vzduchové mezery.

Protože reluktance je úměrná délce a nepřímo úměrná průřezu a permeabilitě, můžeme pro obě složky magnetomotorické síly psát:

$$(I.N)_m = (I.N)_c \frac{R_m}{R_m + R_c}$$
 (4. 3),

$$(I.N)_g = (I.N)_c \frac{R_g}{R_m + R_g}$$
 (4. 4)

Protože předpokládáme, že průřez jádra i vzduchové mezery je stejný, potřebujeme pro další práce znát délku jádra, délku vzduchové mezery a permeabilitu jádra. Jak jsme již dříve uvedli, průřezy jádra a vzduchové mezery jsou v důsledku jádra a vzduchové mezery jsou v důsledku "barelového" efektu různé. Toto kritérium $H_g = \frac{10(I.N)_g}{l_s}$ je velmi přísné, proto v praxi s malou chybou tvrdíme, že průřez vzduchové mezery je rovný S_e . Se zvětšující se vzduchovou mezerou se zvětšuje i činitel "k". Proto se se zvětšováním tohoto činitele zvětšuje i reluktance vzduchové mezery. Magnetomotorickou sílu ve vzduchové mezeře můžeme vyjádřit vztahem:

$$(I.N)_{g} = (I.N)_{c} \frac{\frac{l_{g}}{k.S_{e}}}{\frac{l_{e}}{S_{e}\mu_{i}} + \frac{l_{g}}{k.S_{e}}} =$$

$$= (I.N)_{c} \frac{\frac{l_{g}}{k}}{\frac{l_{e}}{\mu_{i}} + \frac{l_{g}}{k}}$$

$$= (4.5).$$

Pro indukčnost L potřebujeme

$$N = 1000 \left(\frac{L}{A_L}\right)^{1/2}$$

závitů, kde L je v mH a AL v nH. Velikost AL

$$A_L = \frac{0,4\,\pi\,\mu_e}{C_1} = \frac{0,4\,\pi\,\mu_e}{\frac{l_e}{S_e}}\,,$$

kde C_1 je v mm⁻¹, l_e v mm, $S_{\bullet} \text{ v mm}^2$.

Velikost μ_e lze určit ze vztahu

$$\mu_e = \frac{l_e \cdot \mu_i}{l_e + \mu_i \frac{l_g}{l_e}}.$$

$$A_{L} = \frac{0.4\pi}{\frac{l_{e}}{S_{e}}} \frac{l_{e} \cdot \mu_{i}}{l_{e} + \frac{l_{g}}{k} \cdot \mu_{i}} = \frac{0.4\pi \cdot S_{e}}{\frac{l_{e}}{\mu_{i}} + \frac{l_{g}}{k}}$$
(4. 6).

Výše uvedený vztah pro výpočet počtu závitů N, potřebných pro indukčnost L v mH, vztah (4. 5) pro $(I.N)_g$ můžeme upravit, když $\frac{1}{0.4\pi} = 0.892 \text{ a } S_e.l_e =$

$$(I.N)_{g} = \lim_{\substack{l \\ l \\ u}} \frac{l_{g}}{k} \left[\frac{L}{0,4\pi.S_{e}} \left(\frac{l_{e}}{\mu_{i}} + \frac{l_{g}}{k} \right) \right]^{1/2} = \lim_{\substack{l \\ l \\ v}} \frac{l_{g}}{l_{e}} \cdot L \text{ na velikosti vzdu-chové mezery. Tyto závislosti jsou uváděny obvykle v katalozích světových výrobců.}$$

$$=892I\frac{l_{g}}{k}\left(\frac{L}{V_{e}}\frac{\mu_{i}}{1+\mu_{i}}\frac{l_{g}}{l_{e}.k}\right)^{1/2}$$
(4. 7).

B/4

Amatórica ADIO 133

Intenzita magnetického pole ve vzducho vé mezeře je

$$H_g = \frac{10(I.N)_g}{l_g}$$
 [A / cm],

kde l_g je v mm, pak v kombinaci se vzta hem (4. 7) dostáváme

$$H_g = 8920 I \frac{l_g}{k} \left(\frac{L}{V_e} \frac{\mu_i}{1 + \mu_i \frac{l_g}{l_e \cdot k}} \right)^{1/2}$$
 (4. 8).

Výše uvedené vztahy ukazují relaci mezi stejnosměrným zatěžovacím proudem, typem jádra (V., l.), požadovanou indukčností a velikostí vzduchové mezery. Používané feritové materiály mají vesměs počáteční permeabilitu okolo 2000 a magnetickou indukci v nasycení přes 400 mT. Abychom pracovali v lineární části magnetizační křivky, doporučuje se pracovní indukce maximálně 200 mT.

Indukce ve vzduchové mezeře bude o něco menší, v důsledku známých jevů se totiž zdánlivě rozšiřuje vzduchová mezera a tedy zvětšuje její plocha.

Položíme-li ve vztahu (4 · 8) za $\mu_i = 1900$, což je charakteristický údaj pro náš feritový materiál FONOX H21, a vztah transformujeme tak, aby vyjadřoval maximálně dovolený ss proud, dostáváme:

$$I_{\text{max}} = 0,00338k \left[\frac{V_e}{L} \left(1 + \frac{1900l_g}{l_e \cdot k} \right) \right]^{1/2}$$
(4. 9)

kde I je v A, V_e v mm³, L v nH, l_e , l_g

Ze vztahu (4. 6) můžeme úpravou získat vztah k určení potřebného poč tu závitů pro indukčnost L v mH

$$N = 1000 \left[\frac{L}{0, 4\pi . V_e l_e} . l_e \left(\frac{1}{\mu_i} + \frac{l_g}{l_e . k} \right) \right]^{1/2} =$$

= 19,95
$$l_e \left[\frac{L}{V_e} \left(1 + 1900 \frac{l_g}{l_e \cdot k} \right) \right]^{1/2}$$
 (4.10)

Použitím vztahů (4 · 9) a (4 · 10) byly vypočteny pro jednotlivé typy jader údaje I_{max} a N (pro indukčnost 1 mH), které jsou uvedeny v tab. 20 až 26 pro vzduchové mezery do 5 mm. Na obr. 14 až 20 jsou pak závislosti $I_m^2 \cdot L$ na velikosti vzduchové mezery. Tyto závislosti jsou uvá-

Tab. 20.	Kurčenir ost 1 m H	naxima u ferito	lniho stejn vých hrnič	osměrne kových	ého proud iader v z	u I _m a p ávislost	počtu záví i na velik	tů <i>N</i> vi	nuti pro i luchove m	ndukč- ezery
Vzduch.	P 1	$\overline{}$	P 2		P 3		P 3		P 4	
(mm)	$I_{m}(mA)$	N	I _m (mA)	N	I _m (mA)	N	I _m (mA)	N	I _m (mA)	N
0,05	252	33	389	23	484	20	603	17	729	15
0,10	345	43	522	30	642	25	793	21	941	19
0,15	424 495	50 56	636 740	35 39	779 903	29 32	956 1106	24 27	1126 1297	22
0,20	553	62	824	43	1005	36	1229	30	1435	26
0,30	607	67	903	46	1099	38	1343	32	1565	28
0,35	657	72	977	49	1188	41	1449	.34	1687	30
0,40	706	76	1048 1115	52 55	1273 13 5 4	43 45	1552 1650	36 38	1803 1915	32 33
0,45	752 796	80 83	1113	57	1432	47	1745	39	2024	35
0,60	877	90	1298	62	1574	51	1916	43	2219	37
0,70	952	97	1409	66	1707	55	2077	45	2403	40
0,80	1024	102	1514	70 74	1834	58 61	2231	48 51	2579 2747	42 44
0,90	1093	108	1615	/4	1956	61	2376	31	2/4/	**
1,00	1159	113	1712	77	2074	64	2520	53	2910	46
1,10	1219	118	1800	80	2180	67	2648	55	3057	48
1,20	1277	122	1885	83 86	2282	69 72	2772 2892	57 59	3199 3336	50 52
1,30 1,40	1333 1388	127 131	1967 2047	89	2381 24 7 8	74	3009	61	3470	54
1,50	1441	135	2125	92	2572	76	3123	63	3600	55
1,60	1493	139	2201	95	2664	79	3234	65	3728	57
1,70	1544	143	2276	97	2753	81	3343	67	3852	58
1,80	1593	146	2349	100	2841	83	3449	68 70	3975 4094	60 61
1,90	1642	150	2420	102	2928	85	3554	/0	4094	01
2,00	1690	153	2491	104	3013	87	3657	72	42 12	62
2,10	1		2564	106	3102	88	3764	73	4336	64
2,20			2637	108	3189	90 91	3871 3976	74 76	4458 4578	65 66
2,30 2,40			2709	110	3276 3362	93	4080	77	4698	67
2,50			2850	114	3447	94	4183	78	4816	68
2,60		1	2920	115	3531	96	4285	79	4933	69
2,70	1	ļ	2989	117	3614	97	4386	80	5049	70
2,80		1	3058	119	3697	98	4486	81 82	5164	71 72
2,90			3126	120	3779	100	4586	02	5278	/2
3,00			3193	122	3861	101	4684	83	5392	73
3,10			1		3942	102	4783	84	5505	74
3,20					4022	103	4880	85	5617 5728	74 75
3,30 3,40			1	1	4103	104 105	4977 5073	86	5839	76
3,50	1				4261	106	5169	88	5949	77
3,60			1	1	4340	107	5265	89	6058	77
3,70	1			1	4418	109	5360	90	6167	78
3,80		}	l		4496	109	5454	90	6276	79
3,90				1	4574	110	5548	91	6384	80
4,00			1		4651	111	5642	92	6491	80
4,10				1	4728	112	5735	93	6598	81
4,20			1		4805	113	5828	93	6705	82
4,30		1			4881 4957	114	5920 6013	94	6811 6917	82
4,40 4,50		1	1	İ	5033	116	6105	96	7023	83
4,60			1		5108	116	6196	96	7128	84
4,70		[1	1	5184	117	6287	97	7233	84
4,80			1	1	5259	118	6379	97	7338	85
4,90	1	1		1	5334	119	6469	98	7442	86
5,00					5409	120	6560	99	7546	86

Tab. 22. K určení maximálního stejnosměrného proudu I_m a počtu závitů N vinutí pro induk-

		čnost 1 m	H u fer	itových ja	der EF	v závislos	tina ve	likosti vz	duchov	é mezery	(mm)
(mm) J _c (mA) N J _c (mA)	EF 1	2,6	EF	16	EF:	20	EF:	25	EF	32	
0,10		$I_{m}(mA)$	N	I _m (mA)	N	I _m (mA)	N	$I_{m}(mA)$	N	I _m (mA)	N
0,10	0,05	140	61	180	50	239	40	313	33	416	28
0,20		190	79	241							
0,25											
0,30											
0,35											
0,40											
0,45											
0,50											
0,60											
0,70									84		67
0,80							111			1352	71
1,00				700	151	906	118				
1,10	0,90			746	159	966	124	1217	99	1545	79
1,10	1.00			791	166	1024	129	1290	104	1636	83
1,20									108	1718	86
1,30						1127	140	1419	112	1798	89
1,40		1		909	187	1176	145	1480	116	1875	
1,50				946	193	1224	150	1539	120	1950	
1,70		i	1	982	199						
1,80	1,60										
1,90		ļ	ļ		ļ						
2,00 1488 175 1870 140 2366 111 2,10 1532 179 1925 143 2435 114 2,20 1575 182 1979 145 2503 116 2,30 1618 185 2033 148 2571 118 2,40 1660 188 2086 150 2638 120 2,50 1702 191 219 153 2704 121 2,60 1744 194 1291 155 2770 123 2,70 1785 197 2243 157 2835 125 2,80 1826 199 2294 159 2900 127 2,90 1867 202 2345 161 2964 128 3,00 3,00 1947 207 2445 165 3091 131 3,20 1947 207 2445 165 3091 13		1	1		ì						
1532 179 1925 143 2435 114	1,90			İ		1446	171	1818	137	2300	109
1575	2,00					1488	175		140		111
1618	2,10	1	ļ								
1660	2,20	1	1		l						
1702		1	l								
1744											
1785 197 2243 157 2835 125					1						
1826 199 2294 159 2900 127		ļ	1	1	i						
2,90 1867 202 2345 161 2964 128 3,00 3,10 3,10 1947 207 2445 165 3091 131 3,20 1987 209 2495 167 3154 133 3,30 2026 211 2545 169 3216 134 3,40 3,50 3,50 2125 218 2594 170 3278 135 3,60 2143 218 2692 174 3401 138 3,70 2143 218 2692 174 3401 138 3,70 2182 220 2740 175 3462 139 3,80 3,20 2221 222 2789 177 3523 141 3,90 2221 222 2789 177 3523 141 2,00 4,10 4,10 4,10 4,10 4,10 4,10 4,20 4,10 4,10 4,20 4,10 4,10 4,20 4,10 4,10 4,20 4,10 4,10 4,20 4,10 4,10 4,10 4,20 4,10 4,10 4,20 4,10 4,10 4,20 4,10 4,10 4,20 4,30 4,40 3168 188 3764 145 3027 184 3824 146 3074 186 3883 148 4,50 4,60 4,70 4,80 4,90 3261 191 4119 152 3307 192 4178 153			1								
3,00 3,10 1907 204 2395 163 3027 130 3,10 1947 207 2445 165 3091 131 3,20 2026 211 2545 169 3216 134 3,40 2065 213 2594 170 3278 135 3,50 2105 216 2643 172 3340 137 3,60 3,70 2143 218 2692 174 3401 138 3,70 2121 222 2789 177 3523 141 3,80 2221 222 2789 177 3523 141 2,20 2740 175 3462 139 2,20 2740 175 3462 139 2,20 2740 175 3462 139 2,20 2740 175 3462 139 2,20 2740 175 3462 139 2,20 2740 175 3462 139 2,20 2740 175 3462 139 2,20 2740 175 3462 139 2,20 2740 175 3462 139 2,20 2740 175 3462 139 2,20 2740 175 3462 139 2,20 2740 175 3462 139 2,20 2,20 2,20 2,20 2,20 2,20 2,20 2,20					1						
1947 207 2445 165 3091 131 3,20 1987 209 2495 167 3154 133 3,30 2026 211 2545 169 3216 134 3,40 2065 213 2594 170 3278 135 3,50 2105 216 2643 172 3340 137 3,60 2143 218 2692 174 3401 138 3,70 2182 220 2740 175 3462 139 3,80 2221 222 2789 177 3523 141 3,90 2259 224 2837 179 3584 142 4,00 2297 225 2884 180 3644 143 4,20 4,10 4,20 4,30 4,40 4,50 4,40 4,50 4,60 4,70 4,60 4,70 4,80 4,90 4,90 4,90 4,90 4,90 4,90 4,90 4,90 4,10 4,10 4,20 4,30 4,40 4,50 4,60 4,70 4,80 4,90 4,90 4,90 4,90 4,178 153 4,55 4,60 4,70 4,80 4,90 4,90 4,70 4,80 4,90 4,70 4,80 4,90 4,70 4,80 4,90 4,70 4,80 4,90 4,70 4,80 4,90 4,70 4,80 4,90 4,70 4,70 4,80 4,90 4,70 4,80 4,90 4,70 4,80 4,90 4,70 4,70 4,80 4,90 4,70 4,70 4,80 4,90 4,70 4,70 4,80 4,90 4,70 4,70 4,80 4,90 4,70 4,70 4,70 4,80 4,90 4,70 4,70 4,70 4,80 4,90 4,70 4,70 4,80 4,90 4,70 4,70 4,70 4,80 4,90 4,70 4,	2,90				1	1007	1 202	,	1	220	
3,20	3,00		ŀ			1907					
3,30	3,10	1	ì	İ							
3,40 2065 213 2594 170 3278 135 3,50 2105 216 2643 172 3340 137 3,60 2143 218 2692 174 3401 138 3,70 2182 220 2740 175 3462 139 3,80 2221 222 2789 177 3523 141 2259 224 2837 179 3584 142 4,00 2297 225 2884 180 3644 143 4,10 4,20 4,30 4,40 2980 183 3764 144 2980 183 3764 145 4,50 4,60 4,60 4,70 4,80 4,90 3168 188 4002 150 3261 191 4119 152 4,80 4,90 3307 192 4178 153		1	1	1	1						
3,50 2105 216 2643 172 3340 137 3,60 2143 218 2692 174 3401 138 3,70 2182 220 2740 175 3462 139 3,80 2221 222 2789 177 3523 141 3,90 2259 224 2837 179 3584 142 4,00 2297 225 2884 180 3644 143 4,10 4,20 2932 182 3704 144 4,20 4,30 2932 182 3704 144 4,90 3168 188 3833 148 3,10 3,10 3,10 3,10 4,60 3,168 188 4002 150 4,70 4,80 3,261 191 4119 152 4,90 3,307 192 4178 153 4,170 4,180 3,261 191 4119 152 4,90 3,307 192 4178 153 4,170 4,170 4,170 4,170 4,170 4,180 4,90 3,307 192 4178 153 4,170 4,170 4,170 4,170 4,170 4,180 4,90 3,307 192 4178 153 4,170 4,170 4,170 4,170 4,170 4,170 4,170 4,170 4,170 4,171 152 4,170 4,170 4,171 152 4,170 4,170 4,171 152 4,170 4,171 4,171 152 4,170 4,171 4,171 152 4,170 4,171 4,171 152 4,170 4,171 4,171 152 4,170 4,171 4,171 152 4,170 4,171 4,171 152 4,170 4,171 4,171 152 4,170 4,171 4,171 152 4,170 4,171 4,171 152 4,170 4,171 4,171 152 4,170 4,171 4,171 152 4,170 4,171 4,171 152 4,170 4,171 4,171 4,171 152 4,170 4,171					1						
3,60 2143 218 2692 174 3401 138 2182 220 2740 175 3462 139 3,80 3,80 2221 222 22789 177 3523 141 2259 224 2837 179 3584 142 2259 224 2837 179 3584 142 240 2980 183 3764 145 4,20 2980 183 3764 145 3027 184 3824 146 4,50 4,40 3168 188 36383 148 3121 187 3943 149 4,50 3168 188 4002 150 3168 188 4002 150 3261 191 4119 152 3307 192 4178 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 154 155		1	1	1	1						
2182 220 2740 175 3462 139 3,80 2221 222 2789 177 3523 141 3,90 2221 222 2789 177 3523 141 4,00 2297 225 2884 180 3644 143 4,10 2930 183 3764 144 4,20 4,30 4,40 2980 183 3764 145 4,40 3074 186 3833 148 4,50 4,60 3168 188 4002 150 4,70 3214 190 4060 151 4,80 4,90 3307 192 4178 153 4,90 3307 192 4178 153											
1400 2221 222 2789 177 3523 141			1	l	1						
14,00		1	1	1	1						
4,00 2297 225 2884 180 3644 143 2932 182 3704 144 2980 183 3764 145 3027 184 3824 146 3074 186 3833 148 4,50 4,60 4,70 2980 183 3076 184 3027 184 3121 187 3943 149 4,60 3168 188 4002 150 3214 190 4060 151 4,80 3261 191 4119 152 3307 192 4178 153		1			1						
4,10 2932 182 3704 144 4,20 3027 184 383 3764 145 4,30 3027 184 3824 146 4,40 3074 186 383 148 4,50 3168 188 4002 150 4,70 3214 190 4060 151 4,80 3261 191 4119 152 4,90 3307 192 4178 153	3,50		ļ			1					
4,20 2980 183 3764 145 4,30 3027 184 3824 146 4,40 3074 186 383 148 4,50 3121 187 3943 149 4,60 4,70 3214 190 4060 151 4,80 3261 191 4119 152 3307 192 4178 153					1	2297	225				
4,30 3027 184 3824 146 3074 186 3833 148 3121 187 3943 149 4,60 3168 188 4002 150 4,70 3214 190 4060 151 4,80 3261 191 4119 152 3307 192 4178 153		1		1	1	1	1				
4,40 3074 186 3883 148 4,50 3121 187 3943 149 4,60 3168 188 4002 151 4,70 3214 190 4060 151 4,80 3261 191 4119 152 3307 192 4178 153		1		1	1	1	1				
4,50 3121 187 3943 149 4,60 3168 188 4002 150 4,70 3214 190 4060 151 4,80 3261 191 4119 152 3307 192 4178 153		1		1	1		1				
4,60 3168 188 4002 150 4,70 3214 190 4060 151 4,80 3261 191 4119 152 3307 192 4178 153			1		i						
4,70 4,80 4,90		1		i		1	1				
4,80 4,90 3261 191 4119 152 3307 192 4178 153		1		1	1		1				
4,90 3307 192 4178 153		1		1	1		I				
1 200	5,00							3354	193	4236	154

Obr. 14. Závislost F_{max} . L na velikosti vzdu-chové mezery pro hrníčková jádra (FONOX H21)

Obr. 15. Zdvislost f_{max} . L na velikosti vzduchové mezery u feritových jader E (FONOX H21)

Obr. 16. Závislost F_{max} . L na velikosti vzduchové mezery u feritových jader EF (FONOX H21)

Tab. 21. K určení maximálního stejnosměrného proudu I_m a počtu závitů N vinutí pro indukčnost 1 mH u feritových jader E v závislosti na velikosti vzduchové mezery

	Jader E							_					,			
Vzd. mezera	E 20)	E 25	5	E 32/7	,8	E 32/1	12	E 42/1	15	E 42/2	0	E 55	5	E 65	
(mm)	<i>I</i> _m (mA)	N	I _m (mA)	N	$I_{m}(mA)$	N	I _m (mA)	N	$I_{m}(mA)$	N	I _m (mA)	N	$I_{\rm m}({\rm mA})$	N	I _m (mA)	N
0,05	210	44	249	42	3 5 0	33	429	27	634	21	756	17	959	16	1260	13
0,10	280	57	325	52	450	40	551	33	798	25	952	21	1183	19	1532	15
0,15	340	66	391	60	538	46	659	38	944	28	1126	24	1385	21	1780	17
0,20	395	73	452	67	619	51	758	41	1079	31	1287	26	1574	23	2013	19
0,25	440	80	502	73	685	55	839	45	1188	34	1417	28	1725	24	2197	20
0,30	482	87	548	79	746	59	914	49	1291	36	1539	30	1867	26	2372	21
0,35	521	93	592	84	804	63	985	52	1387	38	1655	32	2002	28	2537	23
0,40	559	98	633	89	860	67	1053	54	1480	40	1766	34	2131	29	2697	24
0,45	595	103	673	93	913	70	1118	57	1569	42	1871	35	2256	30	2850	25
		103	711		964	73	1118		1655							
0,50	629			97		79		60		44	1975	37	2377	31	3000	26
0,60	692	116	781	105	1057		1294	64	1811	47	2160	40	2595	34	3268	28
0,70	751	124	847	112	1144	84	1402	69	1958	50	2336	42	2801	36	3523	29
0,80	807	132	909	119	1228	89	1504	73	2099	53	2503	44	2998	38	3767	31
0,90	860	138	969	124	1308	93	1602	76	2234	56	2664	47	3187	40	4002	32
1,00	912	145	1027	130	1385	97	1697	79	2364	58	2820	49	3371	41	4229	34
1,10	959	151	1079	136	1455	102	1782	83	2481	60	2960	51	3536	43	4433	35
1,20	1004	157	1129	141	1523	105	1865	86	2595	63	3095	53	3695	45	4630	36
1,30	1048	163	1178	146	1588	109	1945	89	2705	65	3227	54	3850	46	4822	37
1,40	1090	168		151	1651	113	2023	92	2812	67	3354	56	4000	48	5009	39
1,50	1132	173		156	1713	116	2099	95	2917	69	3479	58	4147	49	5191	40
1,60	1172	178		160	1774	120	2173	98	3019	71	3601	60	4291	51	5369	41
1,70	1212	183	1361	164	1833	123	2245	100	3119	73	3720	61	4432	52	5544	42
1,80	1251	188	1404	168	1891	126	2316	103	3217	75	3837	63	4570	53	5715	43
1,00	1289	192		172	1948	129	2386	105	3313	76	3952	64	4706	54	5883	44
1,90	1209	192	144/	11/2	1940	129	2380	103	3313	۱′°	3932	04	4/00	34	3003	**
2,00	1326	196	1489	176	2004	131	2455	107	3408	78	4065	65	4839	56	6049	45
2,10	1365	200		179	2063	134	2527	109	3507	79	4183	67	4979	57	6222	46
2,20	1404	204	1576	183	2121	136	2598	111	3605	81	4300	68	5117	58	6394	46
2,30	1442	207	1618	186	2178	139	2668	113	3702	82	4416	69	5254	59	6564	47
2,40	1480	211	1661	189	2235	141	2737	115	3797	84	4530	70	5389	59	6732	48
2,50	1518	214 217	1703	192	2291	143	2806	117	3892	85	4643	71	5523	60	6899	49
2,60	1555	217	1744	194	2347	145	2874	119	3987	86	4756	72	5656	61	7064	49
2,70	1591	220	1785	197	2402	147	2942	120	4080	87	4867	73	5788	62	7228	50
2,80	1628	223	1826	200	2457	149	3009	122	4173	88	4977	74	5919	63	7391	51
2,90	1664	224		202	2511	151	3076	123	4265	90	5087	75	6048	64	7552	51
														l		
3,00	1700	229	1907	205	2565	153	3142	125	43 5 6	91	5196	76	6177	64	7713	52
3,10	1736	231	1947	207	2619	155	3207	126	4447	92	5 304	77	6305	65	7872	53
3,20	1771	234		210		156	3273	128	45 37	93	5412	78	6433	66	8030	53
3,30	1806	237		212	2725	158	3337	129	4626	94	5519	79	6559	67	8188	54
3,40	1842	239		214	2778	160	3402	130	4715	95	5625	79	6685	67	8344	54
3,50	1875	242		216	2830	161	3466	132	4804	96	5 730	80	6810	68	8500	55
3,60	1911	244		218	2882	163	3530	133	4892	97	5836	81	6935	69	8655	55
3,70	1946	246		220	2934	164	3593	134	4980	97	5940	82	7059	69	8809	56
3,80	1980	248		222	2986	166	3657	135	5067	98	6044	82	7182	70	8962	56
3,90	2014	251	2258	224	3037	167	3719	137	5154	99	6148	83	7305	70	9115	57
							١			l		1.		l		
4,00	2048	253 255	2296 2334	226 228		169 170	3782	138	5241 5327	100	6251	84	7427	71	9267	57
4,10	2082				3139		3844	139		101	6354	85	7549	72	9419	58
4,20	2116	257	2372	230	3190	171	3907	140	5413	102	6457	85	7670	72	9570	58
4,30	2149	259		232	3240	173	3969	141	5498	102	6559	86	7791	73	9720	59
4,40	2185	261	2447	233	3291	174	4030	142	5583	103	6660	86	7911	73	9870	59
4,50	2216	262	2484	235	3341	175	4092	143	5668	104	6762	87	8032	74	10 019	59
4,60	2250	264		237	3391	176	4153	144	5753	105	6863	88	8151	74	10 168	60
4,70	2283	266		238	3441	178	4214	145	5838	105	6964	88	8271	75	10 3 17	60
4,80	2316	268	2596	240	3491	179	4275	146	5922	106	7064	89	8390	75	10 465	61
4,90	2349	270	2633	241	3540	180	4336	147	6006	107	7164	89	8508	76	10 613	61
		l	l	l		1	l	l						l	1	ا . ا
5,00	2382	271	2670	243	3590	181	4396	148	6089	107	7264	90	8626	76	10 760	61

Tab. 24. K určení maximálního stejnosměrného proudu I_n a počtu závitů N vinntí pro indukčnost 1 mH u feritových jader BC v závislosti na velikosti vzduchové mezer

induk	čnost 1 mF	I u ferito	vých jader	BC v záv	islosti na	velikosti	vzduchové	mezery
Vzduch.	BC	35	BC	41	BC	52	BC	70
mezera (mm)	I _m (mA)	N	I _m (mA)	N	I_(mA)	N	I _u (mA)	N
0,05	422	28	523	24	664	21	907	18
0,10	540	34	662	29	829	25	1104	21
0,15	644	39	785	33	977	28	1284	24
0,20	740	43	899	37	1114	31	1453	26
0,25	817	47	991	40	1225	33	1587	28
0,30	890	50	1077	43	1329	35	1713	29
0,35	958	54	1158	45	1427	38	1833	31
0,40	1024	57	1236	48	1521	40	1949	33
0,45	1086	59	1311	50	1612	41	2 060	34
0,50	1147	62	1384	52	1700	43	2169	35
0,60	1257	67	1515	56	1858	46	2363	38
0,70	1361	71	1638	60	2008	49	2548	40
0,80	1460	75	1756	63	2151	52	2725	42
0,90	1555	79	1870	66	2288	55	2895	44
1.00	1646	•	1070	60	242.	67	2050	
1,00	1646	82 86	1979 2078	69 72	2421 2541	57 59	3059 3207	46 48
1,10	1729 1809	89	2173	75	2656	62	3350	50
1,20 1,30	1886	92	2266	77	2768	64	3489	52
1,40	1961	95	2355	80	2878	66	3624	53
1,50	2035	98	2443	82	2984	68	3756	55
1,60	2106	101	2529	85	3088	70	3885	56
1,70	2177	104	2613	87	3190	72	4012	58
1,80	2245	106	2695	89	3290	73	4136	59
1,90	2313	109	2776	91	3388	75	4258	61
-,								
2,00	2379	111	2855	93	3485	.77	4378	62
2,10	2449	113	2939	95	3586	78	4504	63
2,20	2518	115	3021	96	3686	79	4628	64
2,30	2586	117	3102	98	3785	81	4751	65
2,40	2653	119	3183	100	3882	82	4873	66
2,50	2720	121	3262	101	3979	83	4994	67
2,60	2786	123	3341	103	4075	84	5113	68
2,70	2851	124	3420	104	4171	86	5232	69
2,80	2916	126	3497	105	4265	87	5350	70
2,90	2980	128	3575	107	4359	88	5467	71
		1						
3,00	3044	129	3651	108	4452	89	5583	72
3,10	3108	131	3727	109	4545	90	5698	73
3,20	3171	132	3803	110	4637	91	5813	73
3,30	3234	133	3878	112	4728	92	5927	74
3,40	3296	135	3953	113	4819	93	6040	75
3,50	3358	136	4027	114	4910	94	6153	76
3,60	3420	138	4101	115	5000	95	6265	76
3,70	3482	139	4175	116	5089	9 6 96	6377	77 78
3,80 3,90	3543 3604	140 141	4248 4321	117 118	5178 5267	97	6488 6 5 98	78
3,90	3004	141	4321	110	3207	"	0378	l ′°
4,00	3664	142	4393	119	5355	98	6709	79
4,10	3725	144	4466	120	5443	99	6818	80
4,20	3785	145	4538	121	5531	100	6928	80
4,30	3845	146	4609	122	5618	100	7037	81
4,40	3905	147	4681	123	5705	101	7145	81
4,50	3964	148	4752	124	5792	102	7253	82
4,60	4023	149	4823	125	5878	103	7361	83
4,70	4083	150	4894	125	5965	103	7469	83
4,80	4142	151	4965	126	6051	104	7576	84
4,90	4200	152	5035	127	6136	105	7683	84
,,,,								
5,00	4259	153	5105	128	6222	105	7790	85
		L	L	·			L	

Obr. 17. Závislost f_{næ}. L na velikosti vzduchové mezery u feritových jader U (FONOX H21)

Obr. 18. Závislost 🖺 Lna velikosti vzduchové mezery u feritových jader ETD (FONOX H21)

Obr. 20. Závislost I_{max} . L na velikosti vzduchové mezery u feritových jader RM (FONOX H21)

94 Amatorska ADI 135

U 93 (mA) Z UI 93 (mA) 10 032 10 230 10 428 10 624 10 819 11 014 11 207 11 400 11 592 11 783 (917) 2233 28123 2 2 08 D (mA) 1281 | 1708 | 17 na velikosti vzduchové mezery ≥ 8 (mA) 11165
11995
11997
11906
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907
11907 5 2 U 70 (mA) 1351 11772 11772 11772 12116 12255 1 feritových jader U v závislosti ≥ U 30/26 (mA) 761 8884 8884 1100 1110 1110 1110 1120 11354 1435 1552 1552 1552 1652 U 30/16 (mA) 8800 938 11111 11711 11711 11360 113 = pro indukčnost 1 mH 2 U 26/16 (mA) 826 6699 826 ≥ U 25/13 určení maximálního stejnosměrného proudu I_m a počtu závitů N vinutí (mA) \$ 4248 4315 4382 4449 4449 4582 4648 4648 U 25/8 (mA) ≥ U20/8 (mA) 335 4432 5518 5 U 15/7 mA U 10/3 (mA) 23. Vzduch (mm) ľab.

	mourchos	f I mH	u remtovyo	cn jadei	EID AS	avisiost	i na veliko	sti vza	cnove m	ezery	1	nitových ja	der RM	v závislo	sti na v	elikosti vz	duchov	ré mezery					
Vzduch.	ETD	29	ETD	34	ETD	39	ETD	44	ETD	49	Vzduch.	RM	15	RM	6	RM	8	RM	10	RM I	12	RM	14
mezera (mm)	I _m (mA)	N	I _m (mA)	N	I _m (mA)	N	I _m (mA)	N	I _m (mA)	N	mezera (mm)	I _m (mA)	N	I _m (mA)	N	I _m (mA)	N	I _m (mA)	N	I _m (mA)	N	$I_{\rm m}({ m mA})$	N
0,05	393	29	455	26	536	24	649	21	736	20	0,05	172	46	215	39	321	28	405	24	522	20	634	18
0,10	505	36	581	32	676	29	812	25	913	23	0,10	238	61	294	50	430	36	539	30	683	25	816	22
0,15	604	41 45	692 795	37 40	800 916	33 36	957 1092	28 31	1073 1221	26 29	0,15	292	71 80	360 420	59 66	523 608	42 47	653 758	35 39	823 951	29 32	976 1124	25 28
0,20 0,25	695 769	49	878	44	1009	39	1201	34	1340	31	0,20	342 383	88	470	73	678	52	843	42	1056	35	1244	30
0,30	838	53	956	47	1097	42	1303	36	1452	33	0,30	420	96	505	79	742	56	923	46	1153	37	1356	33
0,35	903	56	1029	50	1179	45	1400	38	1558	35	0,35	456	102	558	84	803	60	997	49	1244	40	1461	35
0,40	966	59	1100	53	1258 1334	47 49	1492 1581	40 42	1660 1758	37 38	0,40	489	108	599	89 94	861 916	63 67	1069 1137	52 54	1332 1415	42 44	1562 1658	37 38
0,45 0,50	1025 1083	62 65	1167 1232	55 58	1408	51	1668	44	1853	40	0,45 0,50	522 553	114 119	638 676	98	969	70	1203	57	1497	46	1752	40
0,60	1187	70	1350	62	1541	55	1824	47	2024	43	0,60	609	129	744	107	1066	75	1322	61	1643	50	1921	43
0,70	1286	75	1461	66	1666	59	1971	50	2186	46	0,70	661	139	808	114	1157	81	1434	65	1781	53	2080	46
0,80	1380	79	1567	70	1786	62	2111	53	2341	48 51	0,80	711	147	869	121	1243	85	1541	69 73	1912 2038	56 59	2232 2378	49 51
0,90	1470	83	1669	73	1901	65	2246	56	2490	31	0,90	759	154	927	127	1326	90	1643	/3	2038	39	23/8	, ³¹
1,00	1557	87	1768	77	2012	68	2377	58	2633	53	1,00	806	162	984	133	1406	94	1742	76	2160	62	2519	53
1,10	1635	90	1856	80	2112	71	2494	60	2763	55	1,10	847	169	1035	139	1478	98	1831	79	2269	64	2646	56
1,20	1711	94	1942	83	2209	74	2608	63 6 5	2888	57 59	1,20	888	175	1084	144	1548	102	1917 2000	82 85	2375 2478	67 69	2769 2887	58 60
1,30 1,40	1784 1856	97 100	2025 2106	86 89	2303 2394	76 79	2718 2826	65 67	3009 3127	61	1,30 1,40	927 965	182 188	1131 1177	150 155	1616 1681	105 109	2000	88	2578	72	3003	62
1,50	1925	103	2185	91	2483	81	2930	69	3243	63	1,50	1002	194	1222	159	1745	112	2160	91	2675	74	3116	64
1,60	1993	106	2262	94	2570	83	3033	71	3356	64	1,60	1038	200	1266	164	1808	115	2237	94	2770	76	3226	66
1,70	2060	109	2337	97	2655	85	3133	73 7 5	3466 3574	66	1,70	1073	205	1309	168	1869	119	2313	96	2863 2955	78 80	3334 3440	67 69
1,80	2125 2189	112 114	2411 2483	99 101	2739 2821	88 90	3231 3327	76	3680	68 69	1,80 1,90	1108 1142	210 215	1352 1393	173 177	1929 1988	122 124	2387 24 5 9	98 101	3044	82	3543	71
1,50	2109	117	2465	101	2021	1	332.	,		٠,	1,90	1142	213	1393	1 ' '	1,000	124	2437	101	5011		55.5	'
2,00	2252	117	2555	103	2901	92	3422	78	3785	71	2,00	1175	220	1434	181	2045	127	2531	103	3132	84	3645	72
2,10	2318	119	2629	105	2986	93	3522	79	3895 4003	72 73	2,10	1210	224	1476	184	2106	130	2605	105	3224	85	3752 38 5 7	74 75
2,20	2383 2448	121	2703 2776	107 109	3069 31 5 2	95 97	3620 3717	81 82	4110	75	2,20	1244 1278	228 232	1518 1559	188	2165 2224	132 134	2679 2752	107 109	3315 3405	87 88	3962	76
2,30	2512	125	2848	111	3234	98	3813	83	4216	76	2,30 2,40	1312	232	1600	194	2283	136	2824	111	3494	90	4065	77
2,50	2575	127	2920	113	3315	100	3908	85	4321	77	2,50	1345	240	1641	197	2340	139	2895	112	3582	91	4167	79
2,60	2637	129	2990	114	3395	101	4003	86	4425	78	2,60	1378	243	1681	200	2398	141	2966	114	3669	92	4268	80
2,70	2699° 2761	131	3061 3130	116 117	3474 3553	102 104	4096 4189	87 88	4529 4631	79 80	2,70	1411	247 250	1721	203	2454 2511	143 145	3036 3105	116 117	3756 3842	94 95	4369 4469	81 82
2,80 2,90	2822	133	3200	117	3632	104	4281	89	4733	81	2,80 2,90	1444 1476	250	1761 1800	203	2567	146	3175	119	3927	96	4567	83
2,50	1 2022										2,50	1	250	1			ļ ⁻						
3,00	2883	136	3268	120	3709	106	4373	91	4834	82	3,00	1508	256	1839	211	2622	148	3243	120	4011	97	4666	84
3,10	2943	138	3336 3404	122 123	3787 3863	108	4464 4554	92 93	4934 5034	83 84	3,10	1540	260	1878	213	2677	150 152	3311 3379	121 123	4095 4179	99 100	4763 4860	85 86
3,20	3003 3062	139 141	3404	123	3940	110	4644	94	5133	85	3,20	1571 1602	262 265	1916 19 5 4	216	2732 2786	152	3446	123	4262	101	4956	87
3,40	3121	142	3539	126	4016	111	4733	95	5232	86	3,40	1634	268	1992	220	2840	155	3513	125	4344	102	5052	88
3,50	3180	144	3605	127	4091	112	4822	95	5330	87	3,50	1665	271	2030	222	2894	156	3579	127	4427	103	5147	89
3,60	3239	145	3672	128	4166	113	4911 4998	96 97	5427 5524	87 88	3,60	1695	274	2068	225	2948	158	3645	128	4508	104	5242	90
3,70	3297 3355	146 148	3738 3803	129 130	4241 4315	114 115	5086	98	5621	88	3,70	1726	276 279	2105 2142	227	3001 3054	159 161	3711 3777	129 130	4589 4670	105 106	5336 5430	90
3,90	3413	149	3869	132	4389	116	5173	99	5717	90	3,80 3,90	1757 1787	281	2142	231	3107	162	3842	131	4751	107	5524	92
		1	İ			i					3,50	1											
4,00	3470	150	3934	133	4463	117	5260	100	5813	91	4,00	1817	283	2216	233	3159	164	3907	133	4831	108	5617	93
4,10	3527	151 153	3999 4063	134 135	4537 4610	118	5346 5433	101 101	5908 6003	91 92	4,10	1848	286	2253	235	3211	165	3971	134 135	4911 4990	108	5709 5802	94 94
4,20 4,30	3584 3641	154	4127	136	4683	120	5518	102	6098	93	4,20 4,30	1878 1908	288 290	2290 2326	236 238	3264 3315	166 168	4036 4100	136	5069	110	5894	95
4,40	3698	155	4192	137	4755	121	5604	103	6193	93	4,40	1937	292	2362	240	3367	169	4164	137	5148	111	5985	96
4,50	3754	156	4255	138	4828	122	5689	104	6287	94	4,50	1967	294	2399	242	3419	170	4228	138	5227	112	6077	96
4,60	3810	157	4319	139	4900 4972	123 124	5774 5859	104 105	6380 6474	95 95	4,60	1997	297	2435	243	3470	171	4291	139	5305	112	6168	97 98
4,70 4,80	3866 3922	157 159	4383 4446	140 141	5043	124	5943	105	6567	96	4,70	2026	299 301	2471 2506	245 247	3521 3572	172 174	4354 4417	140	5384 5461	113 114	6258	98
4,90	3978	160	4509	142	5115	125	6027	106	6660	96	4,80 4,90	2056	301	2542	248	3623	175	4480	141	5539	115	6439	99
						l				_	7,50		""		1			}	1	1			
5,00	4034	161	4572	142	5186	126	6111	107	6753	97	5,00	2114	304	2578	250	3674	176	4543	142	5617	115	6529	100

5. Návrh feritového jádra pro výkonové transformátory

Základním úkolem při návrhu transformátorů s feritovým jádrem pro výkonový přenos (např. pro použití ve spínaných zdrojích) je pro daný výkon zvolit ten typ jádra, který by byl vhodný tvarem i rozměrem pro dané použití, zvolit pro zadané dovolené oteplení vinutí i jádra potřebnou velikost magnetické indukce a zjistit maximální proudovou hustotu ve vodiči vinutí. Výkonové transformátory pracují obvykle s napětím pravoúhlého průběhu, proto je nutné pro určení maximální dovolené magnetické indukce přepočítat ztráty v jádru, které jsou udávány při napětí sinusového průběhu.

Výrobci uvádějí specifické ztráty feritových materiálů při napětí sinusového průběhu obvykle v mW/g nebo mW/cm³. Tyto ztráty se udávají při určitém kmitočtu f_0 (obvykle 15, 25 nebo 100 kH), při dané teplotě (obvykle 25 a 100 °C) a při určitém zdvihu magnetické indukce ΔB_0 (obvykle 200 mT).

Pro jednočinné a blokovací měniče se uvažuje se zdvihem magnetické indukce 200 mT, pro dvojčinné 400 mT.

Pro celkové ztráty při napětí pravoúhlého průběhu platí výraz:

$$P_{c} = p_{Fe0} \left(\frac{f}{f_{0}}\right)^{m} \cdot \left(\frac{\Delta B}{\Delta B_{0}}\right)^{n} \cdot V_{e} \cdot \gamma \cdot r \quad (5. 1),$$

kde p_{Fe0} je měrný ztrátový činitel při sinusovém průběhu napětí,

f pracovní kmitočet,

 f_0 kmitočet, při němž je p_{Fe0} udáván,

ΔB požadovaný zdvih magne - tické indukce,

 ΔB_0 zdvih magnetické indukce, při němž je p_{Fe0} udáván,

 V_{e} efektivní objem ferit. jádra,

γ měrná hmotnost materiálu jádra (4,8 g/cm³ pro mate riál H21),

r konstanta (= 0,8),

 $m \approx 1.3$

 $n \approx 2,3$

(m, n ... konstanty pro ferit)

Celkové ztráty v jádru lze určit také ze vztahu

$$P_{\rm c} = \frac{\Delta \vartheta_{\rm Fe}}{R_{\rm th}} \qquad \left[\text{W: K, KW}^{-1} \right] \qquad (5. \ 2)$$

kde $\Delta \mathcal{G}_{\text{Fe}}$ je oteplení jádra vlivem ztrát, R_{th} tepelný odpor součástky.

Tepelný odpor součástky s feritovým já - drem lze určit ze vztahu

$$R_{\rm th} = \frac{1}{S_{\nu}} \left(\frac{1}{\alpha} + \frac{d}{\lambda} \right) \tag{5. 3},$$

kde S_v je povrch součástky v mm²,

d nejmenší rozměr součást ky v mm,

α činitel přestupu tepla na povrch,

λ činitel přestupu tepla dovnitř součástky.

94 amatérske All 19 137

Při volném chlazení bez nuceného oběhu vzduchu jsou

 $\alpha = 0.029 \cdot 10^{-3} \text{W K}^{-1} \text{ mm}^{-2} \text{ a}$

 $\lambda = 0.35 \cdot 10^{-3} \text{ WK}^{-1} \text{ mm}^{-1}$.

Velikost R_{\bullet} pro daná jádra jsou uvedeny na průbězích v obr. 21 a 22 a v tabulkách pro návrhy.

Ze vztahů $(5 \cdot 1)$ a $(5 \cdot 2)$ můžeme určit dovolený zdvih magnetické indukce:

$$\Delta B = \Delta B_0 \left(\frac{f_0^m \cdot \Delta \vartheta_{Fe}}{p_{Fe0} \cdot f^m \cdot \gamma \cdot r \cdot V_e \cdot R_{th}} \right)^{1/n} (5.4),$$

nebo

$$\Delta B = C_B \left(\frac{\Delta \mathcal{G}_{Fe}}{V_e.R_{th}}\right)^{1/n},$$

kde

$$C_B = \Delta B_0 \left(\frac{f_0^m}{p_{Fe0} \cdot f^m \cdot \gamma \cdot r} \right)^{1/n}.$$

Pro feritový materiál H21 jsou činitelé $C_{\rm B}$: $f = 20 \text{ kHz} - C_{\rm B} = 25.2$,

 $50 \text{ kHz} - C_B = 15,02,$

 $100 \text{ kHz} - C_{\text{B}} = 10,15.$

Celkový přenesený výkon jádrem lze určit ze vztahu:

$$P_c = c. f. \Delta B. J. f_{Cu}. S_N. S_e$$
 (5. 5),

kde c je činitel pro druh provozu (pro dvojčinný c = 1, pro jednočinný $c = 1/2p^{1/2}$, kde $p = t_1 f$ je spínací poměr, při p = 0, 5 je c = 0, 71, pro blokovací provoz c = 0, 61).

f pracovní kmitočet v Hz,

ΔB zdvih magnetické indukce v T,

J proudová hustota v A/mm²,

 f_{Cu} čin. plnění mědi (obvykle 0, 4),

 S_N průřez vinutí v mm²,

 S_e průřez jádra v mm².

Obr. 23. Rozbor vztahu pro výpočet přenášeného výkonu transformátoru s feritovým jádrem a závislosti na různých parametrech: P je přenášený výkon, C konstanta podle druhu provozu, f kmitočet, Δ B zdvih magnetické indukce, S_c efektivní průřez jádra, f_{Cu} činitel plnění cívky, J proudová hustota, S_N průřez vinutí, Δ B_2 maximální zdvih indukce a P_{Fe} ztráty v jádru

Při tomto vztahu je zanedbán úbytek napětí na odporu vinutí, rozptylová indukčnost a také magnetizační proud u transformátorů pro propustné měniče.

Přehledný rozbor uvedeného vztahu je na obr. 23.

Protože feritová jádra mají obvykle nerovnoměrný průřez po délce magnetické silokřivky, je nutno zdvih magnetické indukce upravit tak, aby v tzv. minimálním průřezu S_{mn} nebyl překročen:

$$\Delta B_2 = \Delta B \frac{S_{\min}}{S_e} \tag{5. 6}$$

kde S_e je efektivní průřez fer. jádra, S_{\min} minimální průřez fer. jádra, ΔB požadovaný zdvih magnetic - ké indukce.

Oba parametry jsou udávány pro jednotlivé druhy feritových jader. Ze vztahů (5 · 4) a (5 · 6) lze tedy určit maximální dovolený zdvih magnetické indukce.

Proudová hustota ve vodiči vinutí je dána vztahem:

$$J = \frac{\sum I.N}{S_n \cdot f_{Cu}} \tag{5.7}$$

kde S_N je průřez vinutí,

 $f_{C\mu}$ činitel plnění mědi,

I proud v jednotlivých vinutích,

N počet závitů jednotlivých vinutí.

Proudová hustota je omezena oteplením vinutí $\Delta \vartheta_{Cu}$, způsobeném ztrátami v mědi

$$P_{Cu} = (\sum I.N)^2.A_R = \frac{\Delta \theta_{Cu}}{R_{th}}$$
 (5. 8),

kde A_R je odporový činitel = $\frac{\rho \cdot l_N}{f_{Cu} \cdot V_N}$,

 V_N objem vinutí,

N střední délka závitu vinutí,

ρ měrný odpor mědi (= 21 μΩmm).

S použitím vztahu $(5 \cdot 7)$ a $(5 \cdot 8)$ dostáváme pro proudovou hustotu vztah:

$$J = \left(\frac{\Delta \theta_{\text{Cu}}}{\rho f_{\text{Cu}} \cdot V_N \cdot R_{\text{th}}}\right)^{1/2} \tag{5. 9}$$

Optimální přenos výkonu transformátorem je omezen dovoleným oteplením, které je složeno ze dvou stejných dílů a to z oteplení $\Delta\delta_{\rm Re}$ feritového jádra, způsobeného ztrátami v jádře, a oteplení vinutí $\Delta\delta_{\rm CL}$, způsobeného ztrátami v mědi. V důsledku toho, že zdvih indukce B_2 , vypočtený ze vztahu $(5\cdot 6)$, je menší než vypočtený ze vztahu $(5\cdot 4)$, jsou i ztráty v jádru menší. Proto je nutno ztráty ve vinutí korigovat následujícím vztahem

$$\varDelta \vartheta_{\rm Cu2} = \varDelta \vartheta_{\rm Cu} + \left[1 - \left(\frac{\varDelta B_2}{\varDelta B}\right)^n\right] \varDelta \vartheta_{\rm Fe}$$

(5.10).F20 ETD29 U25/8 ETD44 VE42/12 [K/W] _D39 *542/2*0 -Rth L EF25 U151 F65 E32/12 FTD34 U26 U30/26 · U25/13 5 ETD49 U70 2×UU93 เมเสด 102 → Sv [cm²]

Obr. 21. Závislost tepelného odporu součástky s feritovým jádrem na celkové vyzařovací ploše S_v a nejmenším rozměru "d" pro feritová jádra hrníčková, RM, EC a toroidní

Obr. 22. Závislost tepelného odporu součástky s feritovým jádrem na celkové vyzařovací ploše S., a nejmenším rozměru "d" pro feritová jádra E, EF, ETD a U

Pak dosazením do vztahu (5. 9) dostáváme větší proudové hustoty a tím také větší přenášený výkon. Na základě výše uvedených vztahů byly zpracovány tab.

Tab. 27. Údaje k určení max. přenášeného výkonu transformátorů s feritovými hrníčkovými jádry (FONOX H21)

	jádry (FONOX H21)					
Velič	Xim.		•	Гур jádr	a	
A CH	cina	P 18	P 26	P 30	P 36	P 42
Efek	tivní průřez jádra S. (mm²)	43	93	137	202	265
	průřez jádra S _{min} (mm²)	3 5	74	112	173	214
Efek	tivní objem jádra V _• (mm³)	1120	3460	6100	10 600	18 200
Průř	ez vinutí S _N (mm²)	16	32	48	63	140
	dní délka závitu l _N (mm)	35,6	52	60	73	81
	em vinutí V _N (mm³)	570	1664	1880	4599	11 34
Tene	eľný odpor R _{th} (KW ⁻¹) součástky	64	36	30	26,5	22
лорі Мах	im. zdvih indukce ΔB (mT) pro $\Delta \delta_{p_e} = 15 \text{ K}$					
	f = 20 kHz	633	499	421	349	299
	f = 50 kHz	377	297	251	208	178
	f = 100 kHz	255	201	170	141	120
Max	. proud. hustota J (Amm ⁻²) pro $\Delta \delta_{Cu} = 15 \text{ K}$	7	5,5	4,6	3,8	2,7
	Max. zdvih indukce ΔB_2 (mT), $f = 20$ kHz	326	318	327	343	299
	f = 50 kHz	326	297	251	208	178
	f = 100 kHz	255	201	170	141	120
	Max. oteplení vinutí $\Delta \delta_{\text{Cu}2}$ (K), $f = 20 \text{ kHz}$	26,7	24,7	21,6	15,6	15
	f = 50 kHz	19,3	15	15	15	15
A	f = 100 kHz	15	15	15	15	15
	Max. proud. hustota J_2 (Amm ⁻²), $f = 20$ kHz	9,3	7	5,4	3,8	2,7
	f = 50 kHz	7,9	5,5	4,6	3,8	2,7
	f = 100 kHz	7	5,5	4,6	3,8	2,7
	Max. přenášený výkon P (W), f = 20 kHz	17	53	93	134	240
	f = 50 kHz	36	97	152	201	357
	f = 100 kHz	49	132	206	278	480
	Max. zdvih indukce ΔB_2 (mT), $f = 20$ kHz	163	159	164	171	162
	f = 50 kHz	163	159	164	171	162
	f = 100 kHz	163	159	164	141	120
	Max. oteplení vinutí $\Delta \delta_{\text{Cu2}}(K)$, $f = 20 \text{ kHz}$	29,3	28,9	28,2	27,1	26,3
	f = 50 kHz	27,8	26,4	24,4	27,1	17,9
В	f = 100 kHz	24,6	21,3	16,2	15	15
-	Max. proud. hustota J_2 (Amm ⁻²), $f = 20$ kHz	9,8	7,6	6,2	5,1	3,5
	f = 50 kHz	9,5	7,2	5,8	5,1	2,9
	f = 100 kHz	9	6,5	4,7	3,8	2,7
	Max. přenášený výkou $P(W)$, $f = 20 \text{ kHz}$	6.2	20,4	38	63	119
	f = 50 kHz	15,1	47	95	158 194	248 341
	f = 100 kHz	28,7	87	146	-	-
	Max. zdvih indukce $\Delta B_2(\text{mT})$, $f = 20 \text{ kHz}$	163	159	164	171	162
	f= 50 kHz	163	159	164	171	162
	f = 100 kHz	163	159	164	141	120
	Max. oteplení vinutí $\Delta \delta_{\text{Co2}}$ (K), $f = 20 \text{ kHz}$	29,3	28,9	28,2	27,1	26,3
	f = 50 kHz	27,8	26,4	24,4	27,1	17,9
C	f = 100 kHz	24,6	21,3	16,2	15	15
	Max. proud. hustota J_2 (Amm ⁻²), $f = 20$ kHz	9,8	7,6	6,2	5,1	3,5
	f = 50 kHz	9,5	7,2	5,8	5,1	2,9
	f = 100 kHz	52	6,5	33	3,8	102
	Max. přenášený výkon ř (W), f = 20 kHz	5,3 13	17,5	82	136	213
	f = 50 kHz	25	75	124	167	293
	f = 100 kHz	23	1,5	1.24	1 10/	1_2/3

A = dvojčinný propustný měnič, $\Delta B \le 400$ mT, $\Delta \delta$ = 30 K, B = jednočinný propustný měnič, $\Delta B \le 200$ mT, $\Delta \delta$ = 30 K. C = jednočinný blokující měnič, $\Delta B \le 200$ mT, $\Delta \delta$ = 30 K.

Tab. 28. K určení max. přenášeného výkonu transformátoru s feritovými jádry E

					Тур	jádra			
Veli	čina	E20	E25	E32/7,8	E32/12	E42/15	E42/20	E55	E65
Efel	ctivní průřez jádra S. (mm²)	22,4	33,5	59,1	93,1	172	230	328	528
	im. průřez jádra S _{min} (mm²)	21,2	31,4	58,5	90,3	169	226	320	520
Efel	ctivní objem jádra V. (mm ³)	935	1720	3790	6100	16 600	22 250	41 300	80 100
	ez vinutí S _N (mm²)	40	45	105	105	177	172	280	394
	dní délka závitu l _N (mm)	42	52,5	67	76	87	100	113	150
	em vinutí $V_{\rm N}$ (mm ³)	1680	2360	7035	7980	15 400	17 200	31 600	59 100
		60	45	30	24	19	15	11	6
	elný odpor R _{th} součástky (KW ⁻¹)	60	43	30	24	15	13	**	ľ
Max	x. zdvih indukce ΔB (mT) pro $\Delta \delta_{F_0} = 15 \text{ K a } f = 20 \text{ kHz}$	546	534	395	413	343	363	319	317
	f = 50 kHz	325	318	235	246	204	216	190	189
	f = 100 kHz	220	215	159	166	138	146	128	128
Maz	c. proudová hustota J (Amm ⁻²) pro		1						
	$\Delta \delta_{\text{Cu}2}$ = 15 K	4,2	4,1	2,9	3,1	2,5	2,6	2,3	2,2
	Max. zdvih indukce ΔB_2 (mT)								
	f = 20 kHz	379	375	395	388	343	363	319	317
	f = 50 kHz	325	318	235	246	204	216	190	189
	f = 100 kHz	220	215	159	166	138	146	128	128
	Max. oteplení vinutí $\Delta \delta_{Cu2}$ (K)			1					
	f = 20 kHz	23,5	23,3	15	17	15	15	15	15
	f = 50 kHz	15	15	15	15	15	15	15	15
A	f = 100 kHz	15	15	15	15	15	15	15	15
	Max. proudová hustota J_2 (Amm ⁻²)		1		l	l			
	f = 20 kHz	5,2	5,1	2,9	3,1	2,5	2,6	2,3	2,2
	f = 50 kHz	4,2	4,1	2,9	3,1	2,5	2,6	2,3	2,2
	f = 100 kHz	4,2	4,1	2,9	3,1	2,5	2,6	2,3	2,2
	Max. přenášený výkon P (W)								
	f = 20 kHz	14	23	57	97	202	295	519	1130
	f = 50 kHz	24,5	39	85	149	310	444	803 1080	1730 2340
	f = 100 kHz	33	53	114	201	420	600	1080	2340
	Max. zdvih indukce ΔB_2 (mT)	ļ	l						
	f = 20 kHz	190	188	198	194	196	197	195	197
	f = 50 kHz	190	188	198	194	196	197	190	189
	f = 100 kHz	190	188	158	166	138	146	128	128
	Max. oteplení vinuti $\Delta \delta_{Cu2}$ (K)	l	١			250		25.0	ا م
	f = 20 kHz	28,7	28,7	26,9	27,4	25,9	26,3	25,2	25
В	f = 50 kHz	25,6	25,5	19,9	21,3	16,3	17,9	15	15
Б	f = 100 kHz	19,3	19	15	15	15	15	15	15
	Max. proudová hustota J ₂ (Amm ²)		- 7	1 20		22	21	1 20	2,9
	f = 20 kHz	5,8	5,7	3,9	4,1	3,2	3,1	2,9	2,9
	f = 50 kHz	5,5	5,35	3,35	3,6	2,6	2,9	2,3	2,2
	f = 100 kHz	4,8	4,6	2,9	3,1	2,3	1 2,0	1,3	2,2
	Max. přenášený výkon P (W) f = 20 kHz	5,6	9,2	27	44	108	137	294	675
	f = 50 kHz	13,3	21,5	58,5	97	220	321	570	1228
	f = 100 kHz	23,2	37	81	143	298	426	768	1663
		123,2		+	1	+	 	1	
	Max. zdvih indukce ΔB_2 (mT)	1,00	100	100	104	104	197	195	197
	f = 20 kHz	190	188	198	194	196		193	189
	f = 50 kHz	190	188	198 159	194	196 138	197 146	128	128
	f = 100 kHz	190	188	139	166	138	1 40	128	***
	Max. oteplení vinutí $\Delta \delta_{\text{Cu2}}$ (K)	28,7	28,7	26,9	27,4	25,9	26,3	25,2	25
	f = 20 kHz	25,6	25,5	19,9	21,3	16,3	17,9	15	15
С	f = 50 kHz f = 100 kHz	19,3	19	15,9	15	15,3	15	15	15
-	Max. proudová hustota J_2 (Amm ⁻²)	1 2,3	1 ''	"	"	"	1 .	۱."	"
	f = 20 kHz	5,8	5,7	3,9	4,1	3,2	3,1	2,9	2,9
	f = 20 kHz f = 50 kHz	5,5	5,35	3,35	3,6	2,6	2,9	2,3	2,2
	f = 30 kHz f = 100 kHz	4,8	4,6	2,9	3,1	2,5	2,6	2,3	2,2
1	j - 100 KHZ	1 7,0	1 7,3	2,9	""	~,5		-,5	-,-
	May ntensteny vykon P (W)								
	Max. přenášený výkon $P(W)$ f = 20 kHz	4.87	7.7	23.2	38	93	118	249	580
	f = 20 kHz	4,87	7,7	23,2	38 83	1	118 276	249 490	580 1055
		4,87 11,4 20	7,7 18,5 32	23,2 50 70		93 189 256			

A = dvojčinný proputný měnič $\Delta B \le 400$ mT, $\Delta \delta$ = 30 K, B = jednočinný propustný měnič $\Delta B \le 200$ mT, $\Delta \delta$ = 30 K, C = jednočinný blokovací měnič $\Delta B \le 200$ mT, $\Delta \delta$ = 30 K

27 až 34, v nichž jsou uvedeny kmitočtové charakteristiky přenášeného výkonu pro jednotlivá feritová jádra.

Po zvolení potřebného jádra lze vypočítat další potřebné parametry jako:

- napětí na závit U/N,
- efektivní proud I,
- špičkový proud I_{*p} ,
- intenzitu magnetického pole H_{\bullet} ,
- efektivní permeabilitu μ_{e} .

Potřebné vztahy jsou v tab. 35 (str. 145).

Obr. 24. Závislost přenášeného výkonu na kmitočtu u transformátorů na feritových hrníčkových jádrech: a) dvojčinný propustný měnič, $\Delta B < 400$ mT, $\Delta \delta = 30$ K, b) jednočinný propustný měnič, $\Delta B < 200$ mT, $\Delta \delta = 30$ K, c) jednočinný blokující měnič, $\Delta B < 200$ mT, $\Delta \delta = 30$ K

Tab. 29. Údaje k určení max. přenášeného výkonu transformátorů s feritovými jádry EF

	27. Odaje k meeni max. prenaseneno vykonu u			Typ jádra		
Veli	Sina	EF12,6	EF 16	EF 20	EF 25	EF 32
Efek	tivní průřez jádra S. (mm²)	13	20,1	33,5	52,5	83
	průřez jádra S _{min} (mm²)	12,2	19,4	31,6	51,5	81,4
Efek	tivní objem jádra V _e (mm³)	384	754	1500	3020	6180
	z vinutí S _N (mm²)	11,6	22,3	34	56	108,5
	lní délka závitu l _N (mm)	27,2	34	41,2	52	64,4
	m vinutí V _N (mm³)	316	758	1400	2910	6990
	lný odpor součástky R _{th} (KW ⁻¹)	77	54	39	28	21
Max	im. zdvih indukce ΔB (mT) pro $\Delta \delta_{R_e} = 15 \text{ K}$	000	007	604		
	f = 20 kHz	928 55 3	807 481	684	55 6	448 291
	f = 50 kHz $f = 100 kHz$	375	325	408 276	331 224	197
Max	proud. hustota J (Amm ⁻²) pro $\Delta \delta_{Cu} = 15$ K	8,6	6,6	5,7	4,7	3,5
IVIAN						
	Max. zdvih indukce ΔB_2 (mT), $f = 20$ kHz	37 5 375	386 386	384 384	392 331	392 291
	f = 50 kHz f = 100 kHz	375	325	276	224	197
	Max. oteplení vinutí $\Delta \delta_{\text{Cu}2}$ (K), $f = 20 \text{ kHz}$	28,1	27,2	26	23,3	21
	f = 50 kHz	23,9	21	17	15	15
A	f = 100 kHz	15	15	15	15	15
	Max. proud. hustota J_2 (Amm ⁻²), $f = 20$ kHz	11,8	8,9	7,6	5,8	4,1
	f = 50 kHz	10,8	7,8	6,1	4,7	3,5
	f = 100 kHz	8,6	6,6	5,7	4,7	3,5
	Max. přenášený výkon $P(W)$, $f = 20 \text{ kHz}$	5, 3	12,3	27	54	115
	f = 50 kHz	12,2	27	5 3,4	91	183
	f = 100 kHz	19,5	38,5	72	124	248
	Max. zdvih indukce ΔB_2 (mT), $f = 20$ kHz	188	193	187	196	196
	f = 50 kHz	188	193	187	196	196
	f= 100 kHz	188	193	187	196	196
	Max. oteplení vinutí $\Delta \delta_{\text{Cu2}}$ (K), $f = 20 \text{ kHz}$	29,6	29,5	29,2	28,6	28,2
	f = 50 kHz	28,7	28,2	27,2	2 5, 5	24
В	f = 100 kHz Max. proud. hustota J_2 (Amm ²), $f = 20 \text{ kHz}$	26,9 12,05	2 5, 6 9,3	23 , 7	19 6,5	15,2 4,8
	f = 50 kHz	11,85	9,1	7,7	6,1	4,4
	f = 100 kHz	11,5	8,6	7,2	5,3	3,5
	Max. přenášený výkon $P(W)$, $f = 20 \text{ kHz}$	1,95	4,6	9,7	21	48
	f = 50 kHz	4,8	11,4	23,3	50	110
	f = 100 kHz	9,3	21,1	43,5	87	175
	Max. zdvih indukce ΔB_2 (mT), $f = 20$ kHz	188	193	187	196	196
	f = 50 kHz	188	193	187	196	196
	f = 100 kHz	188	193	187	196	196
	Max. oteplení vinutí $\Delta \delta_{\text{Cu2}}$ (K), $f = 20 \text{ kHz}$	29,6	29,5	29,2	28,6	28,2
	f = 50 kHz	28,7	28,2	27,2	25,5	24
С	f = 100 kHz	26,9	25,6	23,7	19	15,2
	Max. proud. hustota J_2 (Amm ⁻²), $f = 20$ kHz	12,05	9,3	8	6,5	4,8
	f = 50 kHz f = 100 kHz	11,85 11,5	9,1	7,7 7,2	6,1 5,3	4,4 3,5
	Max. přenášený výkon $P(W)$, $f = 20 \text{ kHz}$	1,7	8,6 4	8,3	18	3,3
•	f = 50 kHz	4,1	9,8	20	43	95
	f = 100 kHz	8	18	37	75	150
	, , , , , , , , , , , , , , , , , , , ,	20.75.41.5			<u> </u>	<u> </u>

A = dvojčinný propustný měnič, $\Delta B \le 400$ mT, $\Delta \delta = 30$ K ($\Delta \delta = \Delta \delta_{P_0} + \Delta \delta_{C_0}$), B = jednočinný propustný měnič, $\Delta B \le 200$ mT, $\Delta \delta = 30$ K, C = jednočinný blokující měnič, $\Delta B \le 200$ mT, $\Delta \delta = 30$ K

Tab. 31. Údaje k určení max. přenášeného výkonu transformátorů s feritovými jádry EC

	The course is a second many production of the course of th		Тур		
Veli	čina	EC 35	EC 411)	EC 52	EC 70
Efek	tivní průřez jádra S. (mm²)	84,3	121	180	279
Min.	průřez jádra S _{min} (mm²)	71	106	141	211
Efek	tivní objem jádra V _e (mm³)	6530	10 800	18 800	40 100
Průře	ez vinutí S _N (mm²)	97	134	212	469
	iní délka závitu l _N (mm)	53	62	74	97
Obje	m vinutí V _N (mm³)	5140	8310	15 690	45 490
Тере	elný odpor součástky R _u (KW ⁻¹)	18	15	11	7
Max	im. zdvih indukce ΔB (mT) pro $\Delta \delta_{Pe} = 15$ K				
	f = 20 kHz	511	444	400	350
	f = 50 kHz	305	265	238	209
	f = 100 kHz	206	179	161	141
Max	. proud. hustota J (Amm ⁻²) pro $\Delta \delta_{\text{Cu}}$ = 15 K	4,4	3,8	3,2	2,4
	Max. zdvih indukce ΔB_2 (mT), $f = 20 \text{ kHz}$	337	350	313	303
	f = 50 kHz	305	265	238	209
	f= 100 kHz	206	179	161	141
	Max. oteplení vinutí $\Delta \delta_{\text{Cu}2}$ (K), $f = 20 \text{ kHz}$	24,2	21,3	21,5	19,2
A	f = 50 kHz	15	15	15	15
·*	f = 100 kHz	15	15	15	15
	Max. proud. hustota J_2 (Amm ⁻²), $f = 20$ kHz	5,6	4,5	3,85	2,7
	f = 50 kHz	4,4	3,8	3,2	2,4
	f = 100 kHz	4,4	3,8	3,2	2,4
	Max. přenášený výkon $P(W)$, $f = 20 \text{ kHz}$	123	204	368	856
	f = 50 kHz $f = 100 kHz$	219 296	327 441	581 786	1313 1770
		 		 	
	Max. zdvih indukce ΔB_2 (mT), $f = 20$ kHz	169	175	157	152
	f = 50 kHz	169 169	175 175	157 157	152 141
	$f = 100 \text{ kHz}$ Max. oteplení vinutí $\Delta \delta_{\text{Cu2}}(K)$, $f = 20 \text{ kHz}$	28,8	28,2	28,3	27,8
	f = 50 kHz	26,1	24,2	24,2	22,8
_	f = 100 kHz	20,5	15,8	15,8	15
В	Max. proud. hustota J_2 (Amm ²), $f = 20$ kHz	6,1	5,2	4,4	3,2
	f = 50 kHz	5,8	4,8	4,1	2,9
	f = 100 kHz	5,1	3,9	3,3	2,4
İ	Max. přenášený výkon $P(W)$, $f = 20 \text{ kHz}$	48	84	150	362
	f = 50 kHz	114	193	349	904
	f = 100 kHz	200	314	5 61	1258
	Max. zdvih indukce ΔB_2 (mT), $f = 20$ kHz	169	175	157	152
	f = 50 kHz	169	175	157	152
	f = 100 kHz	169	175	157	141
	Max. oteplení vinutí $\Delta \delta_{\text{Cu}^2}$ (K), $f \approx 20 \text{ kHz}$	28,8	28,2	28,3	27,8
1	f = 50 kHz	26,1	24,2	24,2	22,8
c	f = 100 kHz	20,5	15,8	15,8	15
ľ	Max. proud. hustota J_2 (Amm ²), $f = 20$ kHz	6,1	5,2	4,4	3,2
	f = 50 kHz	5,8	4,8	4,1	2,9
	f= 100 kHz	5,1	3,9	3,3	2,4
	Max. přenášený výkon $P(W)$, $f = 20 \text{ kHz}$	42	72	129	311
	f = 50 kHz	98	166	300	777
	f = 100 kHz	172	270	482	1080
		00 TZ D			

A = dvojčinný propustný měnič, ΔB = 400 mT, $\Delta \delta$ = 30 K, B = jednočinný propustný měnič, ΔB = 200 mT, $\Delta \delta$ = 30 K, C = jednočinný blokující měnič, ΔB = 200 mT, $\Delta \delta$ = 30 K, Ω připravuje se, předběžné údaje

Obr. 25. Závislost přenášeného výkonu na kmitočtu u transformátorů s feritovými jádry E: dvojčinný propustný měnič, $\Delta B < 400$ mT, $\Delta \delta = 30$ K, b) jednočinný propustný měnič, $\Delta B < 200$ mT, $\Delta \delta = 30$ K, c) jednočinný blokující měnič, $\Delta B < 200$ mT, $\Delta \delta = 30$ K

Tab	. 30. K určení max. přer	iášenéh	o výko	nu trans	formát	oru s fe	ritovým								
Velič	ine.								Typ jádra						
Venc		U10/3	U15/7	U20/8	U25/8	U25/13	U26/16	U30/16	U30/26	U70	UI80	UU80	UI93	UU93	M186
	tivní průřez jádra S_{u} (mm ²) tivní objem jádra V_{e} (mm ³)	8,7 332	33 1670	56 3820	61 5320	106 9330	131 12 800	159 18 800	268 34 400	400 108 700	400 80 300	400 103 600	840 216 000	840 297 000	1680 594.10³
	ez vinutí S _N (mm²)	23	38,2	73	131	131	136 80	230 97	230	2x 530 144	2x 420	2x 840	2x 550	2x 1052	2700
	iní délka závitu l _n (mm) m vinutí V _N (mm³)	26 598	43,5 1660	54 3940	63 8250	73 9560	10 880	22 300	117 26 900	152 600	164 137 700	164 275 500	195 214 500	195 410 300	344 929.10 ³
_	lný odpor R _{th} (KW ⁻¹) souč.	74	35	24	20	15	13.5	11	9	6,5	7,5	5,5	5	4	2,7
Max.	zdvih indukce ΔB (mT)					_	,		1		-				-,.
pro ∆	$\Delta \delta_{\rm Re} = 15 \text{ K při } f = 20 \text{ kHz}$	919 548	630 376	518 309	486 290	431 257	393 234	364 217	305 182	213 127	228 136	235 140	1 7 7 106	170 101	164 98
	f = 50 kHz f = 100 kHz	370	254	209	196	174	158	147	123	86	92	95	72	68	66
	proudová hustota				1						ļ	ļ.			
J (A	Λ mm ⁻²) pro $\Delta \delta_{C_{42}} = 15 \text{ K}$	6,3	5,5	4,3	3,3	3,5	3,5	2,7	2,7	1,3	1,3	1,1	1,3	1,1	0,85
	Max. zdvíh indukce	400	400	400	400	400	393	364	305	213	228	235	177	170	164
	ΔB_2 (mT), $f = 20$ kHz f = 50 kHz	400	376	309	290	257	234	217	182	127	136	140	106	101	98
	f = 100 kHz	370	254	209	196	174	158	147	123	86	92	95	72	68	66
	Max. oteplení vínutí $\Delta \delta_{co}$ (K), $f = 20$ kHz	27,8	24,3	21,7	24,6	17,4	15	15	15	15	15	15	15	15	15
	f = 50 kHz	22,7	15	15	15	15	15	15	15	15	15	15	15	15	15
A	f = 100 kHz	15	15	15	15	15	15	15	15	15	15	15	15	15	15
A	Max. proudová hustota $J_2(Amm^{-1}), f = 20 \text{ kHz}$	8.7	7,1	5,2	4,2	3,8	3,5	2,7	2,7	1,3	1,3	1,1	1,3	1,1	0,85
	f = 50 kHz	7,8	5,5	4,3	3,3	3,5	3,5	2,7	2,7	1,3	1,3	1,1	1,3	1,1	0,85
	f = 100 kHz Max. přenášený výkon	6,3	5,5	4,3	3,3	3,5	3,5	2,7	2,7	1,3	1,3	1,1	1,3	1,1	0,85
	P(W), $f = 20 kHz$	5,5	28,6	68	97	164	192	280	397	917	780	1350	1660	2350	5060
	f = 50 kHz	12,5	40	108	153	250	292	429	606	1400	1188	2070	2550	3830	7560
\vdash	f = 100 kHz	18,7	70	147	207	338	394	580	819	1900	1610	2810	3460	5290	10 200
	Max. zdvih indukce ΔB , (mT), $f = 20 \text{ kHz}$	200	200	200	200	200	200	200	200	200	200	200	177	170	164
	f = 50 kHz	200	200	200	200	200	200	200	182	127	136	140	106	101	98
	f = 100 kHz	200	200	200	196	175	158	147	123	86	92	95	72	68	66
	Max. oteplení vinutí $\Delta \delta_{\text{Cu2}}$ (K), $f = 20 \text{ kHz}$	29.6	28,9	28,3	28,1	27,4	26,8	26,2	24,3	17	18,9	19,6	15	15	15
	f = 50 kHz	28,5	26,5	24,5	23,6	21,6	19,6	17,6	15	15	15	15	15	15	15
В	f = 100 kHz	26,4	21,3	16,4	15	15	15	15	15	15	15	15	15	15	15
"	Max. proudová hustota J, (Amm ⁻¹), $f = 20$ kHz	8,9	7,7	6,0	4,5	4,8	4,7	3,6	3,5	1,5	1,5	1,25	1,3	1,1	0,85
	f = 50 kHz	8,8	7,4	5,6	4,1	4,2	4,0	2,7	2,7	1,5	1,3	1,1	1,3	1,1	0,85
	f = 100 kHz Max. přenášený výkon	8,4	6,6	4,5	3,3	3,5	3,5	2,7	2,7	1,3	1,3	1,1	1,3	1,1	0,85
	P(W), $f = 20 kHz$	2	11	28	41	76	95	150	244	722	572	854	1208	1980	3590
	f = 50 kHz	5,1	26,5	65	93	165	202	280	430	994	844	1470	1808	2790	5365
	f = 100 kHz	9,6	53	105	147	240	280	412	581	1346	1141	1994	2456	3755	7227
	Max. zdvih indukce ΔB_1 (mT), $f = 20$ kHz	200	200	200	200	200	200	200	200	200	200	200	177	170	164
	f = 50 kHz	200	200	200	200	200	200	200	182	127	136	140	106	101	98
	f = 100 kHz	200	200	200	196	174	158	147	123	86	92	95	72	68	66
	Max. oteplení vinutí $\Delta \delta_{Col}$ (K), $f = 20$ kHz	29,6	28,9	28.3	28,1	27,4	26,8	26,2	24,3	17	18,9	19,6	15	15	15
	f = 50 kHz	28,5	26,5	24,5	23,6	21,5	19,6	17,6	15	15	15	15	15	15	15
c	f = 100 kHz	26,4	21,3	16,4	15	15	15	15	15	15	15	15	15	15	15
"	Max. proudová hustota J, (Amm ⁻¹), f = 20 kHz	8,9	7,7	6,0	4,5	4,8	7,7	3,6	3,5	1,5	1,5	1,25	1,3	1,1	0,85
	f = 50 kHz	8,8	7,4	5,6	4,1	4,2	4,0	2,7	2,7	1,3	1,3	1,1	1,3	1,1	0,85
+-	f = 100 kHz	8,4	7,6	4,5	3,3	3,5	3,5	2,7	2,7	1,3	1,3	1,1	1,3	1,1	0,85
	Max. přenášený výkon P(W), $f = 20 kHz$	1,7	9,5	24	35	65	82	129	210	620	491	734	1038	1701	3084
	f = 50 kHz	4,4	22,8	56	80	142	174	241	369	854	725	1263	1553	2397	4609
\Box	f = 100 kHz	8,2	45,5	90	126	206	241	354	499	1156	980	1713	2110	3226	6209

A = dvojčinný proputný měnič $\Delta B \le 400 \text{ mT}$, $\Delta \delta = 30 \text{ K}$, B = jednočinný propustný měnič $\Delta B \le 200 \text{ mT}$, $\Delta \delta = 30 \text{ K}$, C = jednočinný blokovací měnič $\Delta B \le 200$ mT, $\Delta \delta = 30$ K

Obr. 26. Závislost přenášeného výkonu na kmitočtu u transformátorů s feritovými jádry EF: a) dvojčinný propustný měnič, $\Delta B < 400$ mT, $\Delta \delta = 30$ K, b) jednočinný propustný měnič, $\Delta B < 200$ mT, $\Delta \delta = 30$ K, c) jednočinný blokující měnič, $\Delta B < 200 \text{ mT}$, $\Delta \delta = 30 \text{ K}$

Obr. 27. Závislost přenášeného výkonu na kmitočtu u transformátorů s feritovými jádry ETD: a) dvojčinný propustný měnič, $\Delta B < 400$ mT, $\Delta \delta = 30$ K, b) jednočinný propustný měnič, $\Delta B < 200$ mT, $\Delta \delta = 30$ K, c) jednočinný blokující měnič, $\Delta B < 200 \text{ mT}$, $\Delta \delta = 30 \text{ K}$

Tab. 32. Údaje k určení max. přenášeného výkonu transformátorů s feritovými jádry ETD

				Typ jádra		
Velič	Sina	ETD 29	ETD 34	ETD 39	ETD 44	ETD 49
Efekti	ivní průřez jádra S. (mm²)	76	97,1	125	173	211
Min. 1	průřez jádra S _{min} (mm²)	70	91,6	123	172	209
Efekti	ivní objem jádra V _e (mm³)	5377	7640	11 500	17 800	24 000
Průře:	z vinutí S _N (mm²)	97	122	178	210	269,4
	ní délka závitu l _n (mm)	58,8	60,5	69	77,7	86
Objer	n vinutí V_N (mm³)	5704	7381	12 280	16 320	23 170
Tepel	ný odpor součástky R _{th} (KW ⁻¹)	28	20	16	11	8
Maxi	m. zdvih indukce ΔB (mT) pro $\Delta \delta_{F_4} = 15$ K					
	f = 20 kHz	459	456	420	409	413
	f = 50 kHz	273	272	251	244	246
	f = 100 kHz	185	184	169	165	166
Max.	proud. hustota J (Amm ⁻²) pro $\Delta \delta_{Cu} = 15 \text{ K}$	3,35	3,4	3	3,15	3,1
	Max. zdvih indukce ΔB_2 (mT), $f = 20$ kHz	368	377	394	398	396
	f= 50 kHz	273	272	251	244	246
	f = 100 kHz	185	184	169	165	166
	Max. oteplení vinutí $\Delta \delta_{Cu2}$ (K), $f = 20 \text{ kHz}$	21	20,3	17,1	15,9	16,4
A	f = 50 kHz	15	15	15	15	15
A	f = 100 kHz	15	15	15	15	15
	Max. proud. hustota $J_2(Amm^2)$, $f = 20 \text{ kHz}$	4,0	4,05	3,2	3,25	3,25
	f = 50 kHz	3,35	3,4	3	3,15	3,1
	f = 100 kHz	3,35	3,4	3	3,15	3,1
	Max. přenášený výkon $P(W)$, $f = 20 \text{ kHz}$	87	145	224	376	585
	f = 50 kHz	135	219	335	558	867
	f= 100 kHz	183	296	459	755	1170
	Max. zdvih indukce ΔB_2 (mT), $f = 20$ kHz	184	189	197	199	198
	f = 50 kHz	184	189	197	199	198
	f= 100 kHz	184	184	169	165	166
	Max. oteplení vinutí $\Delta \delta_{Cu2}(K)$, $f = 20 \text{ kHz}$	28,2	28,0	27,4	27,1	27,2
В	f = 50 kHz	24	23,5	21,4	20,6	20,9
	f = 100 kHz	15,2	15	15	15	15
	Max. proud. hustota J_2 (Amm ⁻²), $f = 20$ kHz	4,6	4,7	4,1	4,2	4,2
	f = 50 kHz	4,2	4,35	3,6	3,7	3,7
	f = 100 kHz Max. přenášený výkon $P(W)$, $f = 20 \text{ kHz}$	3,4 36	3,4 60	3 102	3,15 172	3,1 268
	f = 50 kHz	81	138	224	380	491
	f = 100 kHz	131	210	320	536	831
						-
	Max. zdvih indukce $\Delta B_2(\text{mT})$, $f = 20 \text{ kHz}$	184	189	197 197	199 199	198 198
	f = 50 kHz	184 184	189 184	169	165	166
	f = 100 kHz Max otenlani vinuti AS (K) f = 20 kHz	28,2	28	27,4	27,1	27,2
_	Max. oteplení vinutí $\Delta \delta_{Cu2}$ (K), $f = 20$ kHz f = 50 kHz	24	23,5	21,4	20,6	20,9
С	f = 100 kHz	15,2	15	15	15	15
	Max. proud. hustota J_2 (Amm ⁻²), $f = 20$ kHz	4,6	4,7	4,1	4,2	4,2
	f = 50 kHz	4,2	4,35	3,6	3,7	3,7
	f = 100 kHz	3,4	3,4	3	3,15	3,1
		-,.				
	Max. přenášený výkon $P(W)$, $f = 20 \text{ kHz}$	31	52	88	148	230
	Max. přenášený výkon $P(W)$, $f = 20 \text{ kHz}$ f = 50 kHz	31 70	52 119	88 192	148 326	230 508

A = dvojčinný propustný měnič, ΔB = 400 mT, $\Delta \delta$ = 30 K, B = jednočinný propustný měnič, ΔB = 200 mT, $\Delta \delta$ = 30 K, C = jednočinný blokující měnič, ΔB = 200 mT, $\Delta \delta$ = 30 K 0 připravuje se, předběžné údaje

Obr. 28. Zdvislost přenášeného výkonu na kmitočtu u transformátorů s feritovými jádry EC: a) dvojčinný propustný měnič, $\Delta B < 400$ mT, $\Delta \delta = 30$ K, b) jednočinný propustný měnič, $\Delta B < 200$ mT, $\Delta \delta = 30$ K, c) jednočinný blokující měnič, $\Delta B < 200$ mT, $\Delta \delta = 30$ K

Tab. 33. Údaje k určení max. přenášeného výkonu transformátorů s feritovými jádry RM

Velič		Typ jádra							
Veličina			RM 6	RM 8	RM 10	RM 12	RM 14		
Efektivní průřez jádra S. (mm²)			31,3	63	96,6	146	198		
Min. průřez jádra S _{min} (mm²)			23,8	55,4	80,9	125	168		
Efektivní objem jádra V. (mm³)			840	2430	4310	8340	13 900		
	z vinutí S _N (mm²)	9,5	15	30	41,5	73	107		
	ní délka závitu l _n (mm)	25	30	42	52	61	71,5		
Objen	n vinutí V _N (mm³)	237	450	1260	2158	4453	7650		
Гереb	ný odpor součástky R _{th} (KW ⁻¹)	100	80	57	40	25	18		
Maxir	m. zdvih indukce ΔB (mT) pro $\Delta \delta_{Pe} = 15$ K								
	f = 20 kHz	791	591	476	441	398	367		
	f = 50 kHz	471 319	352	283	263	237	219		
f = 100 kHz			238	191 5, 0	177 4,55	160 4,0	147 3,6		
Max. proud. hustota J (Amm ⁻²) pro $\Delta \delta_{Cu} = 15$ K			7,05						
	Max. zdvih indukce ΔB_2 (mT), $f = 20$ kHz	288	339	343	367	334	340		
	f = 50 kHz	288	339	283	263	237	219		
	f = 100 kHz	288	238	191	177	160	147		
	Max. oteplení vinutí $\Delta \delta_{\text{Cu2}}$ (K), $f = 20 \text{ kHz}$	28,5	25,8	22,9	20,2	20	17,4		
A	f = 50 kHz	25,2	16,2	15	15	15	15		
^	f = 100 kHz	18,1	15	15	15	15	15		
	Max. proud. hustota J_2 (Amm ⁻²), $f = 20$ kHz	12	9,2	6,2	5,3	4,6	3,9		
1	f = 50 kHz	11,3	7,3	5	4,55	4	3,6		
- 1	f= 100 kHz	9,5	7,05	9	4,55	4	3,6		
	Max. přenášený výkon $P(W)$, $f = 20 \text{ kHz}$	5,5	14	33	63	131	227		
	f = 50 kHz	13	27	94	97	202	337		
	f= 100 kHz	21,6	37	73	131	273	453		
	Max. zdvih indukce ΔB_2 (mT), $f = 20$ kHz	144	169	172	184	167	170		
	f = 50 kHz	144	169	172	184	167	170		
	f= 100 kHz	144	169	172	177	160	147		
	Max. oteplení vinutí $\Delta \delta_{\text{Cu2}}(K)$, $f = 20 \text{ kHz}$	29,7	29,2	28,6	26,9	28	27,5		
В	f = 50 kHz	29	27,2	25,3	23,4	23,3	21,6		
	f = 100 kHz	27,6	23,2	18,2	15	15	15		
	Max. proud. hustota J_2 (Amm ⁻²), $f = 20$ kHz	12,2	9,8	6,9	6,1	5,5	4,9		
	f = 50 kHz	12,1	9,5	6,5	5,7	5	4,3		
-	f = 100 kHz	11,8 2	8,8 5,2	5,5 13	4,55 26	55	3,6 102		
	Max. přenášený výkon P (W), $f = 20$ kHz f = 50 kHz	4,9	12,5	31	60	126	222		
	f = 100 kHz	9,5	23,5	52	93	193	320		
		144	169	172	184	167	170		
ļ	Max. zdvih indukce $\Delta B_2(\text{mT})$, $f = 20 \text{ kHz}$ f = 50 kHz	144	169	172	184	167	170		
с	f = 100 kHz	144	169	172	177	160	147		
	Max. oteplení vinutí $\Delta \delta_{\text{Cu2}}$ (K), $f = 20 \text{ kHz}$	29,7	29,2	28,6	26,9	28	27,5		
	f = 50 kHz	29	27,2	25,3	234	23,3	21,6		
	f = 100 kHz	27,6	23,2	18,2	15	15	15		
	Max. proud. hustota J_2 (Amm ⁻²), $f = 20$ kHz	12,2	9,8	6,9	6,1	5,5	4,9		
	f = 50 kHz	12,1	9,5	6,5	5,7	5	4,3		
	f = 100 kHz	11,8	8,8	5,5	4,55	4	3,6		
	Max. přenášený výkon P (W), f = 20 kHz	1,7	4,5	11,2	22,3	47	88		
l			.,-	,-					
•	f = 50 kHz	4,2	10,8	26,7	52	108	191		

A = dvojčinný propustný měnič, ΔB = 400 mT, Δδ = 30 K, B = jednočinný propustný měnič, ΔB = 200 mT, Δδ = 30 K, C = jednočinný blokující měnič, ΔB = 200 mT, Δδ = 30 K

Obr. 30. Závislost přenášeného výkonu na kmitočtu u transformátorů s feritovými jádry RM: a) dvojčinný propustný měnič, $\Delta B < 400$ mT, $\Delta \delta = 30$ K, b) jednočinný propustný měnič, $\Delta B < 200$ mT, $\Delta \delta = 30$ K, c) jednočinný blokující měnič, $\Delta B < 200$ mT, $\Delta \delta = 30$ K

							Typ jádra				
Vel	ičina		T 10	T 12,5	T 16	T 20	T 25	T 32	T 40	T 50	T 80
Efektivní průřez jádra S_{\bullet} (mm ²) Efektivní objem jádra V_{\bullet} (mm ³)			7,8 188	11,7 337	18,6 730	32 1575	49 2950	77 6000	125 12 000	196 23 600	323 63 600
Tloušíka vinutí h_N (mm) Průřez vinutí S_N (mm²) Střední délka závitu l_N (mm)			1,5 42 18	2 82,6 23	3 109 34,6	3,5 177 38	4 237 46	5 414 58	6 61 5 72	8 1022 92	10 2250 114
Ob	jem vinutí $V_{ m N}$ (1	mm³)	762	1900	3770	6720	10 920	23 990	44 300	94 000	256 500
Tepelný odpor R _{th} (KW ⁻¹) souč. Max. zdvih indukce ΔB (mT)			121	67	43	32	24	17	13	9,6	5,3
při $\Delta \delta_{\mu_0} = 15 \text{ K pro } f = 20 \text{ kHz}$		1043	1047	907	730	637	468	452	384	323	
_		f = 50 kHz	622	624	541	440	380	279	269	229	193
f = 100 kHz			420	422	365	297	257	188	182	155	131
Max. proudová hustota $J (\text{Amm}^{-2}) \text{ při } \Delta \delta_{\text{Cu}2} = 15 \text{ K}$		4,4	3,75	3,3	2,9	2,6	2,1	1,75	1,4	1,15	
	Max. zdvih in	dukce									
	ΔB_2 (mT),	f = 20 kHz	400	400	400	400	400	400	400	384	323
		f = 50 kHz	400	400	400	400	380	279	269	229	193
		f = 100 kHz	400	400	365	297	257	188	182	155	131
	Max. oteplení	f = 20 kHz	28,3	28,4	27,7	26,3	24,9	19,6	18,7	15	15
A	$\Delta \delta_{C_{02}}(K),$	f = 50 kHz	24,6	24,1	22,5	18	15	15,0	15	15	15
n.		f = 100 kHz	16,6	16,7	15	15	15	15	15	15	15
	Max. proudová hustota								1		ł
	$J_2(\mathrm{Amm}^{-1}),$	f = 20 kHz	6,05	5,15	4,5	3,8	3,4	2,4	2,0	1,4	1,15
	İ	f = 50 kHz	5,6	4,75	4,1	3,2	2,6	2,1	1,75	1,4	1,15
		f = 100 kHz	4,6	3,95	3,3	2,9	2,6	2,1	1,75	1,4	1,15
	Max. přenáše			1,0	20	-	100		400	0.00	
	P (W),	f = 20 kHz f = 50 kHz	6,3	16 37	29 65	69 1 5 0	126 230	245 374	492 724	862 1284	2160 3226
		f = 50 kHz f = 100 kHz	14,7 24	61	98	195	310	503	980	1739	4380

Obr. 31. Závislost přenášeného výkonu na kmitočtu u transformátorů s feritovými toroidními jádry - dvojčinný propustný měnič, ΔB < 400 mT, Δδ = 30 K

Příklad výpočtu

Příklad 1.

Navrhněte transformátor pro dvojčinný propustný měnič $U_1 = 300 \text{ V}$, $U_2 = 10 \text{ V s výkonem } P = 100 \text{ W}.$ Použitý kmitočet f = 50 kHz. Podmínkou je co nejnižší zástavba a jádro s kruhovým průřezem.

Z tab. 32 si zvolíme jádro ETD 29, které při f = 50 kHz přenese max. 139 W.

Jádro bude pracovat za těchto podmínek:

max. zdvih indukce $\Delta B_2 = 273$ mT,

max. oteplení vinutí $\Delta \delta_{\text{Cu}} = 15 \text{ K}$, max. oteplení jádra $\Delta \delta_{\text{Fe}} = 15 \text{ K}$, max. proudová hustota $J_2 =$ =3,35 A/mm²,

průřez vinutí $S_N = 97 \text{ mm}^2$, střední délka závitu $l_N = 58.8 \text{ mm}$, objem vinutí $V_N = 5704 \text{ mm}^3$, střední průřez jádra S = 76 mm².

Z tab. 35:

Počet závitů a špičkový proud vinutími

$$N_1 = \frac{U_1}{2f.S_e.\Delta B} = \frac{300}{2.50.10^3.76.10^{-6}.273.10^{-3}} = 145$$

$$N_2 = \frac{10}{2.50.10^3.76.10^{-6}.273.10^{-3}} = 5$$

$$I_{sp1} = \frac{S_N \cdot f_{Cu} \cdot J}{2N} = \frac{97.0, 4.3, 35}{2.145} =$$

= 448 mA

$$I_{\text{\$p2}} = \frac{97.0, 4.3, 35}{2.5} = 13 \text{ A}$$

Průřez vodičů:
$$S_{Cu1} = \frac{I_{5p1}}{J_2} = \frac{0,448}{3,35} = 0,135 \text{ mm}^2$$

$$d_1 = 0,4 \text{ mm}$$

$$S_{Cu2} = \frac{I_{sp2}}{J_2} = \frac{13}{3,35} = 3,9 \text{ mm}^2$$

 $d_2 = 2,2 \text{ mm}$

Příklad 2.

Navrhněte jádro pro transformátor blokovacího propustného měniče U_i = =300 V, U_2 =10 V s výkonem 100 W. Ke stavbě zvolit jádro EC, f = 50 kHz. Z tab. 31 zvolíme jádro EC 35 (přenese 98 W).

Jádro bude pracovat za následujících podmínek: max. zdvih indukce $B_2 = 169$ mT, max. oteplení vinutí $\Delta \delta_{\text{Cu}} = 26,1 \text{ K},$

max. oteplení jádra $\Delta \delta_{\rm Pe} = 3.9 \, {\rm K},$ max. proud. hustota $J_2 = 5.8 \, {\rm A/mm^2},$ průřez vinutí $S_N = 97 \text{ mm}^2$,

amatérske AD 144

střední délka závitu $l_N = 53 \text{ mm}$, objem vinutí = 5704 mm³, ef. průřez jádra = 84,3 mm², předpokládaný spínací poměr p = 0.5.

Z tab. 35:

$$N_1 = \frac{U_1 \cdot p}{f \cdot S_e \cdot \Delta B} = \frac{300.0, 5}{50.10^3 \cdot 97.10^{-6} \cdot 169.10^{-3}} = 183$$

$$\begin{split} N_2 &= \frac{U_1 \cdot (1-p)}{f \cdot S_e \cdot \Delta B} = \\ &= \frac{10 \cdot (1-0,5)}{50 \cdot 10^3 \cdot 97 \cdot 10^{-6} \cdot 169 \cdot 10^{-3}} = 6 \end{split}$$

$$I_{\S p1} = \frac{\sqrt{6.S_N \cdot f_{Cu} \cdot J_2}}{2N_1} =$$

$$= \frac{\sqrt{6.97.0, 4.5, 8}}{2.183} = 1,5 \text{ A}$$

$$I_{\$p2} = \frac{\sqrt{6.S_N.f_{Cu}.J_2}}{2N_2} = \frac{\sqrt{6.97.0,4.5,8}}{2.6} = 46 \text{ A}$$

$$S_{Cu1} = \frac{I_{\xi p1}}{J_2} = \frac{1.5}{5.8} = 0.259 \text{ mm}^2$$

 $d_1 = 0.6 \text{ mm}$

$$S_{Cu2} = \frac{I_{\$p2}}{J_2} = \frac{46}{5,8} = 7,93 \text{ mm}^2$$

 $d_2 = 3,2 \text{ mm}$

$$H_{Q} = \frac{\sqrt{6.1.N}}{l_e} = \frac{1,5.183}{77,4.10^{-3}} =$$

= 3547 A/m

$$\mu_{\rm e} = \frac{169.10^{-3}}{3547.1,257.10^{-6}} = 38$$

Efekt. permeabilita $\mu_e = 38$ odpovídá $A_L = \frac{0.4\pi.38}{0.918} = 52 \text{ nH}.$

Podle grafu na obr. 11 odpovídá tento údaj vzduchové mezeře 3,3 mm. Max. proud pro tuto mezeru je podle tab. 24 3234 mA, což vyhovuje.

Počet závitů pro indukčnost 1 mH je 133, to odpovídá zhruba uvažovanému součiniteli indukčnosti.

6. Orientační návrh jader filtračních tlumivek

Při napětí u_L pravoúhlého průběhu na tlumivce je průběh proudu i, pilovitý (obr. 32). Pro maximální proud tlumivky dostáváme zvlnění ΔI_{τ} , které bývá obvykle menší než $0.3\bar{I}_{1}$. Platí tedy, že

$$I_{\text{L,max}} = I_{\text{L}} + 0.5\Delta I_{\text{L}}$$
 (6. 1).

Obr. 32. Schematické znázornění průběhu napětí u, a proudu i, na tlumivce (p, - poměr doby sepnutí k periodě, p, - poměr doby vypnutí k periodě, T - perioda)

Při optimálním návrhu se využívá předmagnetizačního činitele (l²L)_{mex}. Indukčnost vinutí tlumivky vypočteme ze vztahu

$$L = (U_1 - U_2) \cdot U_2 / (\Delta I_L f \cdot U_1)$$
 (6. 2),

kde U_1 je vstupní napětí, U_2 výstupní napět výstupní napětí, spínací kmitočet.

Velikost předmagnetizačního činitele pak můžeme určit buď z dříve uvedených průběhů nebo nejjednodušeji z přiložených tabulek, v nichž pro dané I najdeme vhodnou vzduchovou mezeru pro zvolené jádro a vypočítáme pak potřebný počet závitů.

Příklad výpočtu filtrační tlumivky

Zadané parametry:

 $U_1 = 15 \text{ V},$

 $U_2 = 10 \text{ V},$

= 20 kHz.

Hledáme vhodnou indukčnost L tlumivky a vhodnou velikost feritového jádra a vzduchové mezery:

$$\Delta I_L = 0.3I = 0.3 \cdot 6 = 2 \text{ A},$$

 $L = (15 - 10) \cdot 10/(2 \cdot 20 \cdot 10^3 \cdot 15) =$
= 83 µH.

Nejdříve určíme max. $I_{\rm L}$: $I_{\text{L max}} = 6 + 0.5.2 = 7 \text{ A}.$ Pro proud 7 A zvolíme z tab. 21 jádro E55 se vzduchovou mezerou 3,7 mm. Maximální dovolený proud pro oteplení $\Delta \delta$ = 30 K je 7,059 A a počet závitů na 1 mH je 69. Pro indukčnost 83 µH je tedy třeba

 $N = \alpha \sqrt{L} = 69.\sqrt{0.083} = 20 \text{ závitů},$ kde α je počet závitů pro indukčnost 1 mH.

Pro maximální oteplení vinutí $\Delta\delta_{\text{Cu}2}$ = = 15 K je možno použít podle tab. 28 proudovou hustotu 2,3 A/mm².

$$S_{\text{Cu}} = 7/2,3 = 3 \text{ mm}^2,$$

 $d = 2 \text{ mm}.$

Spínané zdroje ve výpočetní technice

Ing. Jaroslav Belza

Naprostá většina napájecích zdrojů používaných ve výpočetní technice je dnes řešena jako spínané zdroje. Použití spínaných zdrojů umožňuje zlepšit účinnost napájecí části, a ač je to v našich podmínkách zatím těžko představitelné, i snížit výrobní náklady. Další úspory vzniknou zmenšením hmotnosti a rozměrů zařízení. Při konstrukci spínaných zdrojů jsou kladeny mimořádné nároky na feritová jádra transformátorů, na usměrňovací diody i na výkonové tranzistory. Z těchto důvodů se spínané zdroje ve větší míře používají až v posledním desetiletí. Velkou zásluhu na tom také mají nové integrované obvody, jejichž použití umožnilo zjednodušit konstrukci spínaných zdrojů a hlavně zvětšit spolehlivost. Dnešní mohutný nástup počítačů PC byl totiž podmíněn nejen rozvojem mikroelektroniky, ale jistě i pokrokem při konstrukci zdrojů. Těžko si představit PC, jak je "vyplněn" běžným transformátorem o výkonu 200 W, baterií elektrolytických kondenzátorů a chladiči stabilizátorů pro jednotlivá napájecí napětí. Ve spotřební elektronice se spínané zdroje uplatňují hromadně jen v televizních přijímačích, použití pro jiná zařízení není zatím příliš běžné.

V tomto článku bych chtěl popsat několik typických zapojení spínaných zdrojů a jejich vlastností. Popis by měl posloužit především jako inspirace při vlastní tvořivé práci a jako pomůcka pro servisní techniky.

Základní popis činnosti

Všechny zdroje používají pro napájení primární části přímo usměrněné síťové napětí. Pro menší výkony (do 60 až 100 W) bývá zdroj zapojen jako jednočinný blokující měnič, pro výkony větší jako dvojčinný propustný měnič. Pro amatérskou realizaci je zajímavější použití jednočinného měniče, neboť jeho konstrukce je podstatně snažší. Proto mu bude v popisu věnován větší prostor. Než se pustím do podrobného popisu jednotlivých zdrojů, připomeňme si princip jejich činnosti. Podrobný popis principu spínaných zdrojů lze nalézt v AR B4/82.

Obr. 1. Základní zapojení jednočinného

Podstatná část zapojení jednočinného měniče je na obr. 1. Kondenzátor C1 je filtrační kondenzátor a je nabíjen usměrněným síťovým napětím. Protože pracovní kmitočet měniče je podstatně vyšší než kmitočet napětí sítě, představuje C1 po většinu času zdroj napětí pro měnič.

Jeden pracovní cyklus měniče lze rozdělit do několika částí. V první části sepne tranzistor T1 a připojí primární vinutí transformátoru L1 ke kondenzátoru C1. Proud vinutím se postupně zvětšuje, zvětšuje se i magnetické pole v jádře transformátoru. Po určité době musí řídicí elektronika zajistit rozepnutí tranzistoru T1. Ve snaze zachovat procházející proud, vybudí magnetické pole jádra ve vinutí L1 a L2 napětí opačné polarity. Protože nyní vinutím L1 proud prakticky neprochází, "přelévá" se energie magnetického pole přes L2 a D1 do zátěže. Výstupní napětí zdroje je dáno poměrem závitů vinutí L1 a L2, velikostí napájenapětí na primární straně a poměrem časů, po něž je tranzistor otevřen a uzavřen. Průběhy napětí a proudu v některých místech měniče jsou na obr. 2a.

Je-li opakovací kmitočet měniče nízký, popř. je-li zdroj málo zatížen, může v praxi nastat případ, kdy magnetické pole v jádře zanikne dříve, než je tranzistor znovu sepnut. Na nyní nezatíženém vinutí transformátoru vzniknou tlumené kmity.

Průběhy napětí v měniči jsou na obr. 2b. Tento stav není příliš nebezpečný,

napětí tranzistoru OV napėti na vinuti L2 proud tekouci L1 proud tekouci L2

Obr. 2. Průběhy napětí v některých místech jednočinného měniče

Tab. 35. Parametry výkonových transformátorů (napětí pravoúhlého průbě-

			$I_{\rm e} = (S_{\rm N} f_{\rm Cu} J)/2N^{1}$				
Druh provozu	U_1/N_1	U_2/N_2	I_{\S}	H_{\S}	$\mu_{ m e}$		
Dvojčinný měnič	2 <i>f</i>	$S_{e}.\Delta B$	I_{\circ}				
Jednočinný měnič	$f.S_e.\Delta B$		$I_{\omega} p^{1/2}$				
Blokující měnič	$f.S_{e}.\Delta B/p$	$f.S_{\rm e}.\Delta B/(1-p)$	6 ^{1/2} .I _e	$6^{1/2}I_{\rm e}.N/l_{\rm e}^{2)}$	$\Delta B/\mu_0.H_{\S}$		

U/N - napětí na závit,

- efektivní velikost proudu,

- špičkový proud,

- špičková intenzita magnetického pole,

- spinací poměr = $T_1 f$;

1) předpokládá se, že průřez primárním i sekundárním vinutím je S_N/2,

2) pod I.N se rozumí celkový počet primárních nebo sekundárních závitů

Všechna uvedená jádra a další informace můžete získat na adrese PRAMET a. s., Uničovská 2, 787 53 Šumperk. tel. 42 21-9, 25 41-6, fax (0649) 4968,

kostřičky k jádrům lze získat na adrese

TESLA Lanškroun a. s., divize 11, Dvořákova 328, 503 24 Lanškroun,

Neuroth Elektronik o. s., s. r. o., Šumavská 31, 612 54 Brno

(zastupuje firmu NORWE ze SRN - ucelený sortiment koster a příslušenství pro feritová jádra)

amatérske ADIO 145

neboť amplituda kmitů je menší než pracovní rozkmit napětí. Zmenšuje se však účinnost měniče a proto tento způsob činnosti nelze v rozsahu pracovní zátěže tolerovat.

Při práci měniče mohou nastat dva nebezpečné stavy: pracuje-li do zkratu či bez zátěže. V prvním případě se může nadměrně zvětšit proud procházející spínacím tranzistorem, v druhém napětí na vinutí transformátoru. Tyto stavy jsou řešeny vhodným zapojením řídicí elektroniky a často i použitím rezistorů, realizujících jistou minimální zátěž pro měnič.

Poněkud složitější je zapojení dvojčinného propustného měniče. Při popisu jeho funkce můžeme vycházet ze zapojení na obr. 3. Kondenzátory C1 a C2 slouží jako zásobník energie (stejně jako v případě jednočinného měniče kondenzátor C1). Rezistory R1 a R2 udržují ve středu děliče přibližně polovinu napájecího napětí: Do tohoto středu je připojen jeden konec primárního vinutí L1, druhý může být přes tranzistory T1 a T2 připojen na kladné nebo záporné napájecí napětí. Na sekundární straně je dvojčinný usměrňovač a pro funkci měniče důležitá tlumivka TI.

Při popisu činnosti se podíváme na průběhy napětí v některých místech měniče - viz obr. 4. Tranzistory T1

Obr. 4. Průběhy napětí v některých místech dvojčinného měniče

a T2 střídavě připojují primární vinutí na kladné nebo záporné napájecí napětí. Tato napětí se přímo transformuje na sekundární vinutí. Protože se v transformátoru nehromadí tolik energie ve formě magnetického pole jako u blokujícího měniče, může být transformátor podstatně menší. Tranzistory jsou vždy otevřeny po dobu kratší než je polovina periody a proto na katodách diod D1 a D2 dostaneme pulsující stejnoměrné napětí, přičemž šířka impulsů odpovídá délce sepnutí T1 nebo T2.

Výstupní napětí je úměrné velikosti napětí a šířce impulsů na katodách D1 a D2. Výstupní napětí se vlastně reguluje na tlumivce řízením doby sepnutí T1 a T2. Má-li zdroj několik výstupních napětí, jsou všechny tlumivky navinuty na společném jádře. To zajistí přibližně stejný poměr výstupních napětí i při rozdílné zátěži v jednotlivých větvích. Počet závitů a polarita vinutí musí být úměrná výstupním napětím.

Rovněž tento typ měniče vyžaduje pro správnou činnost jistou minimální zátěž. Někteří výrobci doporučují 10%, což je někdy obtížné splnitelné. Napájí-li zdroj o výkonu 200 W bezdiskovou síťovou stanici, může být příkon komponent počítače i menší. Zpravidla však již zátěž několika procent zcela dostačuje.

Tento typ méniče je mnohem méně odolný proti zkratu. Podaří-li se nám zkratovat výstup, zdroj zpravidla zničíme.

Protože na některé součásti zdrojů bývají kladeny zvýšené nároky, nebude na škodu se zde o nich zmínit. Spínací tranzistor jednočinného měniče musí s rezervou vydržet napětí U1+U3 (viz obr. 2a), přičemž proud tekoucí sepnutým tranzistorem může dosáhnout i 2 A. U dvojčinného měniče musí spínací tranzistory vydržet napětí U1 (viz obr. 4) a proud asi 5 A. Dnes již není problém sehnat vhodné tranzistory. Ze známějších typů lze použít bipolární BÚT11A nebo BU508A, či unipolární IRF830 nebo BUZ90A.

Mnohem větší problém je sehnat vhodné feritové jádro pro transformátor. Z tuzemských materiálů lze použít jádra z hmoty H21. S jádrem EE32 se mi podařilo postavit blokující měnič, který dodal výkon 100 W. Měnič pracoval na kmitočtu 50 kHz. Pro amatérskou stavbu zdrojů můžeme také použít feritová jádra z vysokonapěťových transformátorů černobílých TV přijímačů.

U blokujících měničů je kritická parazitní kapacita vinutí. Z těchto důvodů bývá primární vinutí rozděleno na dvě části, které jsou zapojeny do série. První část vinutí je zcela vespod, druhá jako poslední vinutí navrchu. Pro zmenšení ztrát je pro každé vinutí (zvláště sekundární) použito několik tenčích vodičů paralelně. Při stejném průřezu se tak zvětší povrch a omezí povrchový jev.

Kritickou součástí měniče jsou usměrňovací diody na sekundární straně. Diody musí být dostatečně rychlé a nesmí mít velký úbytek napětí v propustném směru. Pro větší výstupní napětí a proudy do 1 A lze použít např. BY339, pro menší napětí a proud do 3 A např. BYW29-150. Pro malá výstupní napětí (5 V) je vhodné použít Schottkyho diody. I když použijeme kvalitní diody, je to právě usměrňovač, na němž vznikají největší ztráty a diody je nutno většinou chladit.

Praktická zapojení

Jako první si popíšeme zdroj z barevného monitoru VGA. Jeho úplné zapojení je na obr. 5. Zdroj dodává napětí 6,3 V pro žhavení obrazovky, napětí 20 V pro zapojení většiny obvodů, napětí 88 V pro koncový stupeň videozesilovače a přepínané napětí 88/101 V pro koncový stupeň řádkového rozkladu.

Jedná se o jednočinný blokující měnič, který je zapojen jako (kmitající) oscilátor. Kladná zpětná vazba, nutná pro nasazení a udržení oscilací, je zavedena z pomocného vinutí na primární straně (vývod č.7 Tr1) přes kondenzátor C6 a rezistor R4 do báze T2. V běžných oscilátorech tohoto typu je tranzistor otevřen tak dlouho, dokud se jádro transformátoru magneticky nenasytí. Pak zanikne napětí na pomocném vinutí, tranzistor přestane být buzen a zavře se. Energie magnetického pole se dovede do zátěže, tranzistor se otevře a celý cyklus začíná znovu. Pro činnost měniče je nevýhodné, je-li jádro transformátoru zmagnetizováno až do nasycení. Proto je v emitoru T2 rezistor s malým odporem (R10), na kterém je napětí úměrné proudu procházejícímu T2 a primárním vinutím. Dosáhne-li toto napětí jisté meze, otevírá se tranzistor T1 a působí proti dalšímu zvětšení proudu tekoucímu tranzistorem T2. Napětí na pomocném vinutí zanikne a T2 se zavře – jev je podobný jako při nasycení jádra. Indukčnost primárního vinutí transformátoru je asi 5 mH.

Požadovaná napětí jsou získána usměrněním z odboček na sekundárním vinutí transformátoru a stabilizována pomocí zpětné vazby přes optron na primární stranu. Zvětší-li se výstupní napětí, zvětší se proud tekoucí LED optronu. Popis obvodu TL431C, který je použit v obvodu stabilizace napětí, naleznete v AR A5/93 na str. 15. Výstupní tranzistor optronu zavede do báze T1 přídavný proud a tím způsobí, že T2 se zavře dříve. Celková energie dodaná do jádra (a tím i do zátěže) se

Obr. 5. Zapojení zdroje pro barevný monitor VGA

zmenší a zmenší se i výstupní napětí. Kondenzátor C9 se dobíjí, když je T2 otevřen, a proto napětí na něm je úměrné napájecímu a nikoliv výstupnímu napětí.

Rezistorem R2 prochází malý proud, který je nutný pro nasazení a udržení oscilací. Člen R3, C5 a D6 omezuje překmity na primárním vinutí, které ohrožují T2. Překmity jsou způsobeny nedokonalostí vazby mezi primárním a sekundárním vinutím a mohou být i několik set voltů. Tento člen najdeme u všech blokujících měničů. Podobný význam má i člen R5, C7 a D7 a kondenzátory připojené paralelně k usměrňovacím diodám.

Povšimněme si ještě dalších částí zdroje. Dioda D15 a tyristor Ty1 jsou zapojeny jako přepěťová pojistka. Vznikne-li z nějakého důvodu (např. porucha optronu) závada na stabilizaci a napětí se zvětší nad přípustnou mez, sepne tyristor a zkratuje výstup. I když dlouhotrvající zkrat může způsobit další poškození zdroje, jsou následky vždy snáze opravitelné, než při zničení části elektroniky monitoru napětím dva až čtyřikrát větším.

Měniče tohoto typu mají sklon k nepravidelnostem při své činnosti. Projevuje se to syčením nebo šumem ozývajícím se z jádra transformátoru. Proto je jeho práce synchronizována kmitočtem řádkového rozkladu. Cívka L3 jsou dva nebo jeden závit vodiče na vysokonapěťovém transformátoru monitoru. Kladné impulsy z L3 procházející C2 a D5 synchronizují otvírání T2. Pro správnou funkci musí být pracovní kmitočet nezasynchronizovaného zdroje nižší. Synchronizace má ještě jeden příznivý vliv - omezuje zkreslení obrazu monitoru. Rozptylové pole transformátoru a nedostatečně . vyfiltrované napájecí napětí mohou totiž způsobovat zdvojení řádek nebo roztřepení svislých čar. Synchronizací tento jev zcela vyloučíme.

Řádkový kmitočet monitoru super VGA může být buď 31,5 kHz nebo 35,5 kHz. Pro zachování rozměru obrazu a velikosti anodového napětí obrazovky je třeba pro vyšší kmitočet také větší napájecí napětí pro koncový stupeň řádkového rozkladu. K přepínání slouží tranzistory T3, T4 a T5. Na vstup označený 31/35k je přiváděn signál v úrovni TTL, generovaný elektronikou monitoru. Trimry P1 a P2 je nastavováno výstupní napětí zdroje pro jednotlivé případy.

Při zapnutí zdroje se nejdříve nabíjejí kondenzátory C3 a C4. Dojde k proudovému názoru, který značně ohrožuje diody D1 až D4, protože vybité kondenzátory představují v podstatě zkrat. Aby se omezil nabíjecí proud, je do přívodu zařazen termistor Rt2. Odpor termistoru je 10 až 20 Ω a po zahřátí procházejícím proudem se zmenší na zlomek této velikosti.

Zajímavým způsobem je vyřešeno přepínání na 120 V. Po sepnutí spínače S2 se změní funkce usměrňovače na zdvojovač napětí. Diody připojené ke spínači jsou pak vyřazeny z funkce. Spínač S2 bývá často vyřešen jen jako propojka, přístupná až po sejmutí krytu přístroje.

Nepříjemnou vlastností spínaných zdrojů je možnost vzniku rušení. Aby se omezilo rušení pronikající do síťového rozvodu, je téměř vždy použit filtr. U tohoto zdroje je realizován kondenzátorem C1 a filtrační tlumivkou l 1

Na závěr tohoto popisu zdroje bych trochu odbočil a popsal obvod, který s funkcí zdroje nijak nesouvisí. Pro zachování čistoty barev je u barevných televizorů a počítačových monitorů při

zapnutí demagnetizována obrazovka. K tomu slouží cívka, která je navinuta po obvodu čelní plochy obrazovky. Cívka vytváří střídavé magnetické pole, které se po zapnutí rychle zmenšuje a za několik sekund zcela zanikne. K řízení tohoto procesu se používá blok termistorů PTC. Termistor PTC je součástka, jejíž odpor se při určité teplotě prudce zvětší až o několik řádů. V bloku, nakresleném na obr. 5. jsou vlastně termistory dva - jeden je zapojen v sérii s demagnetizační cívkou a druhý přímo na síťové napětí. Mezi oběma termistory je těsná tepelná vazba. Po zapnutí prochází demagnetizační cívkou značný proud. Termistor se zahřívá a proud se postupně zmenšuje. Druhý termistor (připojený přímo k síti) je vyroben tak, že teplota, při které obvod přechází do nevodivého stavu, je vyšší. Malý procházející proud pak udržuje právě tuto teplotu, při které je první termistor již zcela nevodivý a proud demagnetizační cívkou neprochází.

* * *

Další ukázkou spínaného zdroje je zdroj z černobílého monitoru. Jeho zapojení je na obr. 6. Opět se jedná o jednočinný blokující kmitající měnič a jeho zapojení je velmi podobné zdroji z obr. 5. Odlišně je zapojena stabilizace výstupního napětí a proto si ji popíšeme.

Z pomocného vinutí na primární straně je přes diodu D7 nabíjen kondenzátor C8. Protože se kondenzátor nabíjí v době, kdy je T3 zavřen, odpo-

94 Amatorske 110 147

Obr. 6. Zapojení zdroje černobílého monitoru

vídá napětí na C8 přibližně výstupnímu napětí, samozřejmě v poměru k počtu závitů sekundárního a pomocného vinutí. Velikost napětí je upravena děličem R8 a R9. Zvětší-li se toto napětí tak, že dosáhne Zenerova napětí diody D6, otevírá se T1. Tranzistor T3 je pak otevřen kratší dobu a celková energie dodaná do jádra se zmenší. Princip řízení výkonového tranzistoru je shodný s řízením u zdroje na obr. 5. Činitel stabilizace je horší, a to zvláště při změně zátěže, protože vazba mezi vinutími není úplně těsná. Tento zdroj je výhodný do zařízení, jejichž odběr se příliš ne-

Rovněž tento zdroj je synchronizován kmitočtem řádkového rozkladu. Signál ze smyčky vodiče, provléknutého jádrem vn transformátoru, je přiveden přes D9 a R13 do báze T3.

Pro omezení proudového rázu při zapnutí je v tomto zdroji místo termistoru použit rezistor s odporem 3,9 Ω . Všechny ostatní obvody byly již popsány u předešlého zdroje a není proto potřeba se o nich znovu zmiňovat.

* * *

Speciální integrované obvody umožňují konstruovat zdroje s větší účinností a spolehlivostí. Jedním z často používaných typů je UC2842N. Obvod je určen pro řízení jednočinných měničů. Měnič je řízen šířkou impulsů, které jsou přiváděny na bázi (gate) výkonového tranzistoru. Zvláštností obvodu je, že šířka budicích impulsů je odvozena z emitorového proudu spínacího tranzistoru. Blokové zapojení obvodu je na obr. 7, obsahuje startovací klopný obvod, zdroj referenčního napětí, oscilátor, zesilovač regulační odchylky, budič spínacího tranzistoru a komparátor pro hlídání proudu tekoucího tranzistorem. Zdroi řízený tímto obvodem, je-li vhodně na-

2 IO. Toto napětí se porovnává s vnitř-34V UVLO V_{REF} S/R SV REF 5 V GND of 50 mA 15 V INTERNAL BIAS $R_T/C_T \sim \frac{4}{}$ OSC 6_0UTPUT ERROR AMP $V_{FB} \stackrel{2}{\sim} 2$ COMP CURRENT SENSE COMPARATOR CURRENT . SENSE

Obr. 7. Blokové zařízení obvodu UC3842N

vrhnut, může bez problémů pracovat s napětím sítě 90 až 240 V, aniž by bylo třeba cokoli přepínat. Díky účinnému řízení šířky budicího impulsu může také pracovat s větším rozsahem pracovní zátěže.

* * *

Na obr. 8 je zapojení zdroje z barevného monitoru SVGA, používajícího obvod UC3842N. Pro přehlednost byl ze zapojení vypuštěn síťový usměrňovač a vstupní filtr. Rovněž sekundární strana je pouze naznačena, v originálním zdroji je velmi podobná zapojení z obr. 5. I v tomto případě se jedná o jednočinný blokující měnič, avšak kmitočet je určen řídicím obvodem.

ním referenčním napětím 2,5 V a vzniká odchylka mění šířku budicích impulsů pro výkonový tranzistor. Rezistor R2 a kondenzátor C3 urychlují reakci stabilizátoru, R6 a C4 představují zpětnou vazbu zesilovače odchylky.

Po zapnutí se objeví napájecí napětí

na C1. Přes rezistor R1 se pomalu na-

bíjí C2. Řídicí IO není zatím aktivní.

a odebírá proud menší než 1 mA.

Když napětí na C2 dosáhne asi 16 V.

změní se stav klopného obvodu uvnitř

IO a aktivují se jeho další části. Na vý-

vodu 8 se objeví referenční napětí

+5 V a rozkmitá se vnitřní oscilátor. Na

vývodu 6 se objeví impulsy pro řízení

řídicí obvod napájen z pomocného vi-

nutí na primární straně (po usměrnění

diodami D4 a D2). Napětí na konden-

zátoru C2 je také použito jako srovná-

vací napětí pro stabilizaci. Přes dělič

R3, R4 a R5 je přivedeno na vývod

Pokud se zdroj zdárně rozběhne, je

výkonového tranzistoru.

Na rezistoru R10 se snímá proud, procházející tranzistorem a primárním vinutím transformátoru; proud má pilovitý průběh, viz obr. 2a. Dosáhne-li úbytek na tomto rezistoru a tím i na vývodu 3 IO velikosti napětí na výstupu zesilovače odchylky, překlopí se vnitřní klopný obvod R-S a ukončí se budicí impuls pro výkonový tranzistor. Jak je patrné z blokového zapojení na obr. 7, může se toto napětí pohybovat od 0 do 1 V v závislosti na výstupním

Obr. 8. Zapojení zdroje pro monitor s obvodem UC3842N

napětí zesilovače odchylky. R11 a C7 odstraňují překmit, který vznikne v důsledku nabíjení parazitních kapacit ve vinutí transformátoru při sepnutí tranzistoru. Snímání proudu není důležité jen pro řízení šířky impulsu, ale také jako ochrana spínacího tranzistoru proti nadměrnému proudu. Tato ochrana je velmi kvalitní a spolehlivě ochrání tranzistor nejen při zkratu na výstupu zdroje, ale i při mezizávitovém zkratu na primárním vinutí, což jsem si sám omylem vyzkoušel.

Primární vinútí transformátoru je opět dělené a jeho indukčnost je asi 0,5 mH.

Kmitočet měniče je řízen vnitřním oscilátorem. Nastavení je zajištěno rezistorem R7 a kondenzátorem C5. Pro zlepšení kvality obrazu je i v tomto zdroji kmitočet měniče synchronizován kmitočtem řádkového rozkladu. Za tímto účelem je v sérii s C5 rezistor R15, na který jsou přivedeny synchronizační impulsy. L1 je opět jen smyčka vodiče provlečená jádrem vn transformátoru.

Obvod UC3842N je podle katalogu určen pro buzení bipolárních a polem řízených tranzistorů. Ve všech zapojeních, se kterými jsem měl možnost se seznámit, byl použit tranzistor řízený polem (MOSFET). Dioda D5 zabraňuje, aby napětí na řídicí elektrodě přesáhlo 18 V. Pro většinu polem řízených tranzistorů je totiž maximální napětí G proti S jen 20 V. Dioda zároveň chrání řídicí IO při průrazu tranzistoru. Pro potlačení zákmitů je i zde použit člen R12, C8, D3 a dále pak R13, C9 a D6.

* * *

Další zapojení (obr. 9) je zdroj 60 W pro počítače PC. Zapojení je úplné, až na obvod generují signál Power Good. Tento signál má po zapnutí úroveň log. 0 a teprve po ustálení všech napětí přejde do log. 1. Při vypnutí zdroje by tento signál měl přejít do log. 0 dříve než "spadne" napájecí napětí. Signál Power Good je na desce počítače logicky svázán se signálem Reset. V popsaném zdroji byl signál Power Good generován speciálním obvodem, od kterého se mi nepodařilo sehnat žádné údaje.

Zdroj je opět zapojen jako jednočinný blokující měnič. Pro řízení je použit obvod UC3844, který se velmi podobá UC3842N. Tento obvod obsahuje navíc děličku dvěma a hradlo, které odstraní každý druhý výstupní impuls. Navenek tedy obvod budí spínací tranzistor impulsy s polovičním kmitočtem a šířka impulsů může být maximálně jen 50 procent. Ostatní funkce jsou zcela shodné s UC3942N.

Na rozdíl od zdroje pro monitor používá tento zdroj jiný způsob stabilizace napětí. Pro regulaci se snímá napětí na sekundární straně výstupu napětí +5 V a řídicí obvod je ovládán přes op-

Obr. 9. Zapojení zdroje 60 W pro počítače PC

tron. Stabilita a přesnost zdroje referenčního napětí v řídicím obvodu zde není důležitá, protože napětí je porovnáváno na IO2, nám již známém obvodu TL4331C. Snímání napětí až na sekundární straně umožňuje dosáhnout výborné stability napětí +5 V při změně zátěže. Pro zdroj, který musí pracovat v širokém rozmezí různých zátěží, je to vlastně jediné východisko.

Napájecí napětí +12 V a -12 V jsou odvozena jen poměrem závitů na příslušných vinutích a také stabilita výstupního napětí při změně zátěže je menší. Odchylka do 0,5 V však není na závadu. Napětí -5 V, ze kterého se předpokládá jen nepatrný odběr, je odvozeno z -12 V stabilizátorem 7905.

Pro usměrnění napětí +5 V je použit blok Schottkyho diod, které mají v propustném směru asi poloviční úbytek napětí proti běžným diodám. Pro napětí 12 V již nelze Schottkyho diody použít, protože nemají dostatečně velké závěrné napětí. Na vstupu i výstupu zdroje jsou filtry, potlačující vyzařování zdroje. Přepínání 110/220 V chybí, protože zdroj je schopen pracovat se síťovým napětím od 90 do 240 V. Proudový náraz při zapnutí zdroje je omezen termistorem.

l když je tento zdroj určen především pro bezdiskové stanice počítačové sítě, spolehlivě "utáhne" i běžné PC, vybavené pevným diskem, dvěma mechanikami pružných disků a několika rozšiřujícími kartami.

* * *

Další obvod, který se často používá ve spínaných zdrojích, je TL494. Podle výrobce může být označen také K7500 nebo IR3M02. I když je navržen pro řízení dvojčinných měničů, znám zapojení, v němž byl použit i pro buzení jednočinného měniče.

Jeho blokové schéma je na obr. 10. Obvod obsahuje zdroj referenčního napětí +5 V, nastavitelný oscilátor, obvod pro hlídání šířky impulsu (Dead time control), dva zesilovače regulační odchylky (Error amp.) a budič výstupních tranzistorů. V logice budiče je dělička dvěma a hradla, která podle napětí na vývodu 13 (Output control) spínají výstupní tranzistory buď současně (0 V) nebo střídavě (+5 V).

Povšimněte si způsobu, jakým je řízena šířka výstupního impulsu. Zatímco u obvodu UC3842 je napětí zesilovače odchylky porovnáváno s napětím snímaným na emitorovém rezistoru výkonového tranzistoru (má přibližně pilovitý průběh), je u obvodu

Obr. 10. Blokové zapojení obvodu TL494

94 Amaterike AD 149

TL494 napětí zesilovače odchylky porovnáváno s napětím na kondenzátoru (má rovněž pilovitý průběh). Proud tekoucí výkonovými tranzistory je možno hlídat jinými způsoby, o jednom z nich se zmíním při popisu konkrétního zdroje.

Pomocí napětí na vývodu 4 (Dead time control) je možno řídit maximální šířku výstupního impulsu. Na tento vývod bývá zpravidla připojen obvod zajišťující měkký start zdroje a obvod pro hlídání mezí výstupních napětí.

Obvod má dva zesilovače odchylky, jejichž výstupy jsou spojeny paralelně. Pro regulaci výstupního napětí se používá zpravidla jen jeden. Druhý bývá zapojen paralelně k prvnímu, případně vyřazen z funkce přivedením vhodných napětí na jeho vstupy. Další možnost je použít jej pro hlídání funkce zdroje.

* * *

Na obr. 11 je zapojení zdroje 200 W, který je řízen obvodem TL494. Jen s malými obměnami je takto zapojena většina zdrojů s výkonem 180 až 250 W, určených pro napájení počítačů. Zdroj je zapojen jako dvojčinný propustný měnič s regulací výstupního napětí.

Při popisu funkce si povšimneme nejdřív primární strany zdroje. Síťové napětí je přes filtr přivedeno na usměrňovač, který může být při napětí 110 V změněn ve zvojovač. Kondenzátory C5, C6 a rezistory R1, R2 vytvářejí umělý střed na usměrněném napětí. Tranzistory T1 a T2 jsou výkonové

spínací tranzistory měniče, které střídavě připojují jeden konec primárního vinutí na kladné nebo záporné napájecí napětí (proti středu). Výkonová větev začíná u spínacích tranzistorů (emitor T1, kolektor T2) a prochází nejprve pomocným vinutím budicího transformátoru Tr1 (vinutí 3), primárním vinutím hlavního transformátoru Tr2 (vinutí 1), primárním vinutím pomocného transformátoru Tr3 a kondenzátorem C9 na umělý střed napájecího napětí. Pro větší názornost je celá cesta ve schématu vyznačena tučně.

Po připojení napájecího napětí je celá sekundární strana zdroje bez napětí. Protože řídicí obvod je napájen ze sekundární strany a je bez napájení, nemůže pochopiteľně nic řídit. Budicí tranzistory T3 a T4 jsou zavřeny, naopak výkonové tranzistory jsou pootevřeny proudem protékajícím rezistory R5 a R7. Pomocí vinutí 3 transformátoru Tr1 je zavedena kladná zpětná vazba na vinutí 2a a 2b. která způsobí, že se výkonový stupeň měniče samovolně rozkmitá. Kmity mají relaxační charakter, po úzkém impulsu následuje relativně dlouhá mezera. Na výstupu zdroje se objeví napětí, které je vzhledem k povaze kmitů velmi malé. Pro napájení řídicího obvodu je napětí odebíráno ještě před výstupní tlumivkou (Tr4) a usměrněno diodou D14. Na kondenzátoru C16 je napětí odpovídající amplitudě kmitů a to je zpravidla již dostatečné pro práci řídicího obvodu. Jak se zvětšuje napětí na C16, otevírají se tranzistory T3

a T4 přes rezistory R20 a R21 a zkratovávají primární vinutí (1a, 1b) budicího transformátoru. To má za následek zmenšení kladné zpětné vazby a tím i utlumení kmitů. Je tak zabráněno nekontrolovatelným kmitům, pokud řídicí obvod z nějakého důvodu "nenaskočí". Rezistor R22 zajišťuje, že vinutí je zkratováno až po dosažení napětí dostatečného pro práci řídicího IO.

V běžném provozu je zdroj řízen pomocí IO1. Pokud jsou T1 i T2 zavřeny (viz obr. 3, 4), jsou T3 a T4 otevřeny. Zabrání se tím "divokým" oscilacím. Pokud se má otevřít jeden z výkonových tranzistorů, zavře se příslušný budicí tranzistor. Proud procházející přes R23 a D5 nyní jen jedním primárním vinutím Tr1 vybudí napětí na bázi výkonového tranzistoru a pomocí kladné zpětné vazby (nyní je odblokována) jej uvede rychle do saturace. Pokud impuls skončí, otevřou se opět oba budicí tranzistory, kladná zpětná vazba zanikne a překmitem na budicím transformátoru se výkonový tranzistor rychle uzavře. Protože délka impulsu vnucená řídicím IO je kratší než délka impulsu při samovolné oscilaci, udrží se kladná zpětná vazba po celou dobu impulsu.

Stabilizace napětí na výstupech zdroje je odvozena z výstupního napětí +5 V. Velikost ostatních napětí je zajištěna poměrem závitů na sekundární straně Tr2 a polaritou usměrňovacích diod. Pro správnou funkci zdroje je nutná výstupní tlumivka. Teprve na výstupu zdroje (za tlumiv-

kou) je vyhlazené výstupní napětí. Toto napětí je úměrné velikosti napětí impulsu před tlumivkou a poměru šířky impulsu k délce periody. Zde je také další zvláštnost popisovaného zdroje - tlumivka pro jednotlivá výstupní napětí je na společném jádře. Jedná se tak o další transformátor. Dodržíme-li počet závitů a směr vinutí úměrný výstupním napětím, dostaneme další vazbu mezi jednotlivými napětími. V praxi jsou na výstupu zdroje odchylky do 10 % od jmenovitého napětí i při velmi odlišném zatížení jednotlivých větví.

Z vnitřního zdroje referenčního napětí (vývod 14 IO) je přes dělič R15/R14 přivedeno napětí na invertující vstup (vývod 2) zesilovače odchylky. Na neinvertující vstup (vývod 1) je přes dělič R18/R16 přivedeno napětí z výstupu zdroje. Zpětná vazba R13, C13 zajišťuje stabilitu regulátoru. Napětí na výstupu zesilovače odchylky je porovnáno s napětím pilovitého průběhu, snímaným z kondenzátoru oscilátoru C12. Zmenší-li se např. výstupní napětí, zmenší se také napětí na výstupu zesilovače odchylky. Prodlouží se budicí impuls. Budicí tranzistory jsou déle otevřené. Šířka impulsu před tlumivkou se zvětší a napětí se "dorovná".

Druhý zesilovač odchylky je za normálních okolností zablokován předpětím přivedeným na invertující vstup (vývod 15). Zvětší-li se z nějakého důvodu proud tekoucí výkonovou větví zdroje na primární straně, nakmitá se na vinutí 2 transformátoru Tr3 napětí, které se po usměrnění diodou D13 odečítá od předpětí na vývodu 15 IO. Zmenší-li se napětí na tomto vývodu pod 0 V, začne druhý zesilovač odchylky pracovat, převezme řízení délky impulsu a zkracuje impuls tak dlouho, dokud se proud nezmenší na přípustnou velikost. Tato ochrana působí velmi dobře při pozvolném zvětšování proudu, při zkratu na výstupu reaguje však zpravidla pozdě. Proto náhdný zkrat skončí obvykle destrukcí výkonových tranzistorů. Transformátor Tr3 je často ralizován na toroidním jádru o průměru asi 1 cm. Sekundární vinutí tvoří 20 až 30 závitů, jako primární vinutí slouží vodič prostrčený středem transformátoru.

Povšimněme si obvodu připojeného k vývodu 4 řídicího IO. Napětím na tomto vývodu (v originále označeném Dead time control) můžeme ovlivnit maximální šířku impulsu na výstupu IO, tj. maximální čas, po který je zavřen T3 či T4, případně otevřen T1 či T2. Největší šířky je dosaženo při nulovém napětí. Při zvětšování napětí se impuls zkracuje, až zcela zanikne.

Při startu zdroje je kondenzátor C14 vybit a na vývodu 4 se krátce objeví napětí +5 V referenčního zdroje. Řídicí obvod je zablokován, napětí na vývodu 4 se však rychle zmenšuje (jak se nabíjí C14). Na výstupu IO se objeví impulsy, které jsou stále delší.

OBČANSKÉ RADIOSTANICE CB V PRAXI

Vojtěch Voráček, OK1XVV

(Dokončení z AR B3/94)

Dvojice současně vysílaných tónů je použita proto, aby se na nejmenší míru omezila možnost nežádoucí reakce na rušení náhodnými šumy a modulačními signály jiných stanic. Systém je nazýván DTMF a umožňuje využít 16 znaků (číslice 0 až 9, písmena A, B, C, D, symboly * a křížek). Použit může být jeden znak - po jeho vysílání se protistanice aktivuje, nebo mohou být vysílány např. 4 znaky za sebou v určitém časovém rozpětí a teprve jejich správná kombinace vyvolá u protistanice aktivaci. Otevře se nízkofrekvenční zesilovač a z repro-

duktoru je po určitou dobu slyšet modulovaný signál, nebo stanice akustickým a optickým návěštím upozorní obsluhu, že někdo volá a vyslal odpovídající kód. Kód se vysílá pomocí akustické vazby mikrofonu s generátorem dvojtónů (tak, jak je tomu u telefonů), nebo je mikrofon či stanice takovým vestavěným generátorem vybavena. Systém využívá speciálního integrovaného obvodu s fázovými závěsy s oscilátorem řízeným krystalem a řadou děličů, které reagují na přítomnost odpovídající dvojice signálů správného kmitočtu. Příslušné dvojici

Kombinace C14 a R24 tak zajišťuje měkký start zdroje. Naopak krátce po startu je otevřen tranzistor T5 proudem protékající kondenzátorem C17 a rezistorem R27. Protože časová konstanta C17*R27 je delší než časová konstanta C14*R24, trvá tato fáze déle než úvodní měkký start. Než se nabije C17 a následně uzavře T5, musí se na výstupu zdroje ustálit napětí. Pak se otevře tranzistor T6 a udržuje nadále na vývodu 4 nulové napětí. Není-li z nějakého důvodu dosaženo výstupních napětí v požadovaném čase, uzavře se tranzistor T5, T6 se neotevře a přes R25 a D10 se na vývod 4 dostane napětí referenčního zdroje a zablokuje řídicí obvod.

Pro práci počítače je nutný signál Power Good (PG). Oznamuje počítači, že zdroj je v pořádku a dává správná napětí. Je nutné, aby tento signál přešel z 0 na +5 V (z log. 0 na log. 1) se zpožděním (po startu zdroje). V počítači je buď přímo nebo přes rezistor spojen se signálem RESET na základní desce. Není-li signál RESET generován pomocí PG, je po zapnutí počítače nutno stisknout příslušné tlačítko.

Ve zdroji je signál PG generován pomocí dvou komparátorů z obvodu LM339. Při startu je prodleva na signálu způsobena nabíjením kondenzátoru C19 přes R38. Napětí se hlídá usměrněním napětím na sekundární straně ještě před výstupní tlumivkou. Amplituda impulsů na sekundární Tr2 je totiž přímo úměrná napětí na primární straně zdroje. Při vypnutí zdroje se zmenšuje amplituda impulsů na se-

kundární straně zdroje, úměrně tomu, jak se vybíjejí kondenzátory C5 a C6. Výstupní napětí se zatím drží, neboť řídicí obvod prodlužuje šířku impulsů, zmenšuje se však napětí na C18. Zmenší-li se napětí na výstupu děliče R35, R36 pod 2,5 V, překlopí se komparátory a signál PG přeje do log. 0 (0 V) dříve, než zanikne napájecí napětí.

Krátce se zmíním o některých součástkách zdroje. Zdroj je navržen pro výstupní proud 20 A pro +5 V, 8 A pro 12 V a 0,5 A pro napětí -5 a -12 V. Diodový blok BD2 jsou Schottkyho diody se špičkovým proudem 40 A, diodový blok BD3 jsou rychlé diody pro 20 A. Pro usměrnění napětí větve -5 a -12 V jsou použity běžné rychlé diody. V některých zdrojích je napětí -5 V odvozeno z -12 V stabilizátorem 7905. Transformátor Tr1 má feritové jádro EE o straně asi 20 mm, Tr2 má feritové jádro EE o straně asi 40 mm. Konstrukce Tr3 již byla zmíněna, Tr4 je navinut na feritovém toroidním jádře o průměru asi 35 mm.

* * *

Doufám, že tento popis pomůže zájemcům o problematiku spínaných zdrojů při pochopení jejich činnosti, radioamatérům při konstrukci vlastních zdrojů a servisním technikům při opravách.

Obr. 73. Příklad zapojení jednotónové selektivní volby DTMF- Albrecht

tónů pak odpovídá změna stavu na jednom ze 16 výstupů (kombinace čtyř vývodů v kódu BCD) integrovaného obvodu přijímače selektivní volby. Příklady zapojení selektivních voleb jsou na obr. 73 a 74. Vysílač DTMF je pak tvořen programovatelnou děličkou řízenou krystalem.

* * *

Systém selektivní volby lze díky dostupnosti potřebného integrovaného obvodu poměrně snadno realizovat i amatérsky a lze jím radiostanice doplnit, i když za cenu malých komplikací.

Ostatní systémy selektivní volby

Jiné systémy selektivní volby využívají postupného rychlého vysílání sledu signálů o různých kmitočtech. Tyto kmitočty jsou pak vyhodnoceny v přijímači selektivními filtry s příslušnou logikou. Tento systém selektivní volby je poněkud modernější, rychlejší v obsluze a je využíván i u profesionálních stanic - např. systémy TESLA SELECTIC, DNT 5 CALL PLUS, ZVEI atd. Velmi dobře je tento systém (5 CALL PLUS, kompatibilní s profesionální normou ZVEI) propracován u ra-

diostanice CB DNT ZIRKON (SIL-VERSTONE). Umožňuje vvtvořit systém až 1000 nezávislých sítí uživatelů na jediném kanálu CB, každá síť může mít až 100 účastníků, kteří mohou být navíc zařazeni až do 100 skupin. Programování kódu jednotlivé radiostanice (zařazení do dané sítě, uživatelské číslo a číslo skupiny) je velmi přehledné a rychlé. Vybraný účastník se volá stiskem tlačítka selektivní volby na mikrofonu. Radiostanice Zirkon má i zpětnou kontrolu uskutečněné výzvy a akustickou indikaci volání. Na displeji volané radiostanice se zobrazí i účastnické číslo stanice, která volala (pro případ, že obsluha není právě přítomna na místě a přijde později - je ihned informována, kdo volal a může volat zpět). Lze volat současně i všechny účastníky, zařazené v dané skupině a toto volání je rozlišeno jiným akustickým a optickým signálem. Systém je velmi spolehlivý, rychlý a uživatelsky přístupný. Je zajímavé, že spolehlivého přenosu kódu volby je dosaženo i za mezních podmínek, za nichž je běžná řeč již těžko srozumitelná. Systém je řízen jednoúčelovým integrovaným obvodem LSI a spolupracuje s řídicím procesorem stanice. Na obr. 75 je příklad obvodu selektivní volby 5-CALL PLUS, použitý v radiostanici DNT SILVERS-TONE - ZIRKON.

Selektivní volba CTCSS - TONE SQUELCH

Tento systém velmi zvětšuje užitnou hodnotu radiostanic obecně a nelze si bez něho představit síť profesionálních stanic v pásmech VKV. Systém se používá i pro aktivaci převáděčů (v zámoří i amatérských pro pásma 2 m a 70 cm). Poprvé byl systém aplikován u radiostanic CB firmy DNT. Firma použila modul volby CTCSS podle anglického CONTINUAL CODE SQUELCH SYSTEM, tedy pracuje s nepřetržitým tónem při vysílání, jak název napovídá. V profesionální praxi bývá také někdy systém nazýván CODE GUARD.

Systém pracuje takto: Představme si, že k modulačnímu signálu z mikrofonu (řeč) u vysílače přimícháme přibližně sinusový signál o přesném kmitočtu, který leží pod přenášeným akustickým pásmem. Tento signál má poměrně nízkou úroveň (asi – 20 dB), nízký kmitočet (67 až 250 Hz) a je na přijímací straně vyfiltrován, takže není prakticky v reproduktoru přijímací stanice slyšitelný. V přijímací stanici je opět vyhodnocovací obvod s děličkou a fázovým závěsem s kmitočtovým

Obr. 74. Zapojení čtyřtónové selektivní volby DTMF - Albrecht

Na závěr je pro seznámení s obvodovým řešením radiostanic CB uvedeno

několik schémat zapojení typických osvědčených a rozšířených CB.

komparátorem, který přítomnost tohoto signálu vyhodnotí a v případě přítomnosti tónu CTCSS "otevře" nf cestu k zesilovači a reproduktoru, tedy vlastně šumovou bránu. Šumová brána je v nepřítomnosti tohoto signálu zcela zavřena. Proto se systém také někdy nazývá TONE SQUELCH. Kmitočet těchto "subakustických" signálů je normalizován od 67 Hz do 250.3 Hz (celkem 38 pevných přesných kmitočtů - u profesionálních zařízení i více) - generovaných děličkou řízenou krystalem a tvarovaných články RC. Jednotlivé kmitočty lze zvolit - naprogramovat. Na jednom kanále tedy může pracovat až 38 sítí účastníků. kteří se vzájemně neslyší, pokud mají naprogramován rozdílný kmitočet tónu CTCSS oproti jiným uživatelům.

Systém je velmi rychlý při obsluze není třeba vysílat před relací žádný kód a obvod přijímače reaguje na přítomnost správného signálu CTCSS téměř okamžitě. U stanic, resp. sítí, které jsou vybaveny touto volbou, lze zcela odstranit manipulaci s ovládacím prvkem šumové brány, která přece jen vyžaduje od obsluhy jistý technický cit.

Systém využívá opět speciálních integrovaných obvodů, které jsou však poměrně drahé a špatně dostupné. Předpokládá se spolupráce s řídicím mikroprocesorem radiostanice.

Na obr. 76 jsou vyobrazeny některé moduly volby CTCSS, které lze vestavět do přístupných radiostanic, jež jsou pro aplikaci tohoto systému připraveny.

Mikrofonní zesilovač stanice ELIX Dragon SY - 101

A zcela na závěr pro srovnání ukázka blokových schémat dvou odlišných (svou složitostí) radiostanic CB:

Blokové schéma radiostanice TWIN 40

Blokové schéma radiostanice DNT Carat

Literatura

Žalud. V.: Vysokofrekvenční přijímací technika. SNTL: Praha 1986.

Macoun, J.: Antény, souosé kabely a konektory. AR B1/1994.

Rubrika CB (pravidelně v AR řady A).

Firemní podklady k prodávaným radiostanicím CB.

Nabízíme:

kompletní satelitní modul ELISAT OFFSET.

vhodný k vestavění do TV, videa ... s dokumentací a návodem k zapojení.

Cena s DPH jen 550,- Kč.

ELITRON Liberec, a. s. tř. Dr. M. Horákové 5 460 01 Liberec 4

tel. (048) 235 41 nebo (048) 259 51, linka 114

INZERCE

Inzerci přijímá osobně i poštou vydavatelství Magnet - Press (inzerce ARB), Jungmannova 24. 113 66 Praha 1. tel. (02) 24 22 73 84, (02) 24 22 77 23, tel./ fax (02) 24 22 31 73.

Uzávěrka tohoto čísla byla 7. 6. 1994, do kdy isme museli obdržet úhradu za inzerát.

Cena za první řádek činí 44.-Kč. za každý další i započatý 22.-Kč. Platba je včetně daně z přidané hodnoty. Cena za plošnou inzerci se řídí velikostí, za 1 cm² plochy je 29,-Kč, k ceně se připočítává 23% DPH. Nejmenší velikost plošného inzerátu je 54×40 mm. Za opakovanou inzerci poskytujeme slevy.

Texty pište čitelně, neilépe na stroji nebo hůlkovým písmem, aby se předešlo chybám, vznikajícím z nečitelnosti předlohy.

PRODEJ

Vojenský radiovůz T805 kompletní. Tel. (0368) 94145 večer.

KOUPĚ

1000 Kč i více dám za kompletní německou leteckou kuklu - síťovanou. koženou, plátěnou. Dále samostatné krční mikrofony a sluchátka. Tel. (02) 26 38 03.

Elektrosoučástky za nízké ceny

LHOTSKY - E.A. electronic actuell Komenského 465/11 431 51 Klášterec nad Ohří

odesíláme obratem poštou, možný též osobní odběr v pracovní dny mimc středu 8-12 hod, 15-20 hod

telefon: 0398/ 936 406

Seznam zašleme proti 5,- známce