Основи програмування – 1. Алгоритми та структури даних

Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження ітераційних циклічних алгоритмів» Варіант <u>13</u>

Виконав студент	<u> 111-15 Конденко Іван Ігорович</u>
•	(шифр, прізвище, ім'я, по батькові)
Перевірив(-ла)	
• • • • •	(прізвище, ім'я, по батькові)

Лабораторна робота 3

Дослідження ітераційних циклічних алгоритмів

Мета — дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Індивідуальне завдання Варіант 13 Постановка задачі

Для $x \in [0, 5]$ з точністю $\varepsilon = 10^{-4}$ знайти суму парних компонент ряду

$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \ldots + (-1)^n \frac{x^{2n}}{(2n)!}.$$

Математична модель

Змінна	Тип	Ім'я	Призначення
Змінна Х	Дійсний	X	Вхідні дані
Порядковий номер члену	Дійсний	n	Вхідні дані
Сума парних компонентів	Дійсний	S	Вихідні дані
Точність	Дійсний	e	Вхідні дані
Член ряду	Дійсний	a	Проміжні дані

Точність дано за умовою 10^{-4} . Перший порядковий номер n = 0. $n_0 = 1$. Кожний наступний член ряду обчислюється за формулою $((-1)^{n})x^{2n}/(2n)!$. Х має належати проміжку [0;5]. Функцію степеню позначимо символом « * ». Факторіал позначимо символом « $^{!}$ ». Для позначення модулю використовуємо abs().

Розв'язання

Крок 1. Визначаємо основні дії

Крок 2. Деталізуємо крок перевірки належності змінної Х проміжку

Крок 3. Деталізуємо крок обчислення кожного компоненту, та суми парних компонентів

Крок 4. Деталізуємо крок виведення суми парних компонентів

Псевдокод

Крок 1

Початок

Введення х, п, е

Перевірка належності Х до проміжку

<u>Обчислення значення кожного компоненту, та суми парних</u> компонентів

Виведення значення суми парних компонентів

Кінець

Крок 2

Початок

Введення х, п, е

якщо

0 = < x = < 5

TO

Обчислення значення кожного компоненту, та суми парних компонентів

Виведення значення суми парних компонентів

<u>інакше</u>

Х не належить проміжку

Кінець

Крок 3

Початок

Введення х, п, е

якщо

0 = < x = < 5

<u>TO</u>

n := 0

 $a := ((-1)^n)x^2n/(2n)!$

S := a

повторити

поки $abs(a_n - a_{n-1}) < 0.0001$

n := n + 2

 $a := ((-1)^n)x^2n/(2n)!$

S := S + a

все повторити

Виведення значення суми парних компонентів

інакше

Х не належить проміжку

Кінець

```
Крок 4
```

Початок

Введення х, п, е

<u>якщо</u>

$$0 = < x = < 5$$

<u>TO</u>

 $\underline{\mathbf{n}} := 0$

 $a := ((-1)^n)x^2n/(2n)!$

 $\underline{S:=a}$

повторити

поки $abs(a_n - a_{n-1}) < 0.0001$

n := n + 2

 $a := ((-1)^n)x^2n/(2n)!$

 $\underline{S:=S+a}$

все повторити

Виведення S

інакше

Х не належить проміжку

все якщо

Кінець

Блок схема

Крок 1

Крок 2

Випробування

Блок	Дія
	Початок
1	x=2, e=0.0001
2	<u>n:= 0</u>
	$\underline{a} := ((-1)^n)x^2n/(2n)!$
	<u>S:= a</u>
3	$abs(a_n - a_{n-1}) < 0.0001$
4	<u>n:= 1</u>
5	<u>a:= -2</u>
6	<u>n % 2 =/=0</u>
7	$abs(a_n - a_{n-1}) > 0,0001$
8	<u>S:= 1</u>
	Кінець

Висновки

Ми дослідили подання операторів повторення дій та набули практичних навичок їх використання під час складання циклічних програмних специфікацій.