

Projeto Final de Graduação

AVALIAÇÃO DOS BENEFÍCIOS DA ALOCAÇÃO ESTRATÉGICA DE BATERIAS NO PLANEJAMENTO DA EXPANSÃO DE SISTEMAS ELÉTRICOS

21 de agosto de 2023

Pedro Hervé Quaranta Cabral de Almeida

- 01 Introdução ao Planejamento da Expansão
- 02 O Papel das Baterias no Planejamento
- 03 Metodologia de Pesquisa
- 04 Resultados
- 05 Conclusão

Introdução ao Planejamento da Expansão

Objetivo do Planejamento da Expansão

Buscar o equilíbrio entre oferta e demanda de energia a longo prazo

Critérios

- Custos (Investimento + Operação)
- Segurança e Confiabilidade
- Meio Ambiente
- Incertezas

Introdução ao Planejamento da Expansão

Na Prática

Planejar o sistema é determinar o conjunto de geradores e circuitos que atendam a todos esses critérios de maneira concomitante.

Metodologias

- Hierárquico
- Proativo
- Integrado

Introdução ao Planejamento da Expansão

Modelagem de Transmissão

Modelo de Transporte

Apenas Primeira Lei de Kirchhoff

Modelo DC

 \longrightarrow

Primeira Lei de Kirchhoff

 Segunda Lei de Kirchhoff apenas para circuitos existentes

Modelo DC Disjuntivo

Primeira Lei de Kirchhoff

 Segunda Lei de Kirchhoff para circuitos existentes e candidatos

- 01 Introdução ao Planejamento da Expansão
- 02 O Papel das Baterias no Planejamento
- 03 Metodologia de Pesquisa
- 04 Resultados
- 05 Conclusão

Os Desafios da Operação do Sistema com Renováveis

Desafio

Intensa penetração de renováveis intermitentes

Dificuldades

- Imprevisibilidade da geração
- Intermitências das renováveis
- Mudança da curva de carga
- Estabilidade da rede

Os Desafios da Operação do Sistema com Renováveis

A Importância das Baterias para a Flexibilidade do Sistema

Flexibilidade

É a capacidade do sistema elétrico de se ajustar a condições mutáveis, volatilidades e incertezas na oferta e/ou demanda, entregando energia de modo seguro, eficiente, confiável, acessível e com responsabilidade ambiental.

A Importância das Baterias para a Flexibilidade do Sistema

Os Potenciais Técnicos das Baterias

- Mitigar os impactos das flutuações da geração intermitente;
- Regular a frequência do sistema;
- Reduzir corte de geração renovável;
- Controlar a tensão;
- Prover reserva operativa;
- Entre outros.

A Importância das Baterias para a Flexibilidade do Sistema

Os Potenciais Econômicos

Redução dos custos operativos do sistema

Redução dos investimentos em linhas de transmissão

- 01 Introdução ao Planejamento da Expansão
- 02 O Papel das Baterias no Planejamento
- 03 Metodologia de Pesquisa
- 04 Resultados
- 05 Conclusão

Enfoque

Avaliar os benefícios econômicos que a alocação estratégica de baterias na rede de transmissão traz para o sistema.

Método

Utilizar a cadeia de modelos disponível da PSR para planejar a expansão de um sistema elétrico fictício de pequeno porte.

- 1 Geração + Transmissão (G + T)
- 2 Geração + Transmissão + Baterias (G + T + B)

1 Processo Metodológico – G + T

1

Cadastro dos dados das usinas eólicas

2

Produção de 43 cenários futuros de geração eólica

Determinação dos 10 cenários mais representativos

2

Processo Metodológico – G + T + B

Estratégia OptGen 2

Utiliza técnicas de cootimização através da formulação de um problema de MILP, em que os problemas de investimento e operação são resolvidos simultaneamente.

Simplificações

- Decomposição do Horizonte em Sub-horizontes de um ano
- Dias e Meses transformados em Dias Típicos e Estações

Caso Base - Adaptado do IEEE24

- 24 Barras
- 34 Circuitos
- 59 Térmicas (4,61 GW de Potência)
- 4,70 GW de Demanda Máxima

Alterações

- Apenas um circuito por faixa de passagem
- Demanda 50% maior
- Capacidade das térmicas 50% maior
- Térmicas grandes transformadas em várias térmicas de menor capacidade e CVU distintos

Caso Base - Adaptado do IEEE24

- 24 Barras
- 34 Circuitos
- 59 Térmicas (4,61 GW de Potência)
- 4,70 GW de Demanda Máxima

Alterações

- Apenas um circuito por faixa de passagem
- Demanda 50% maior
- Capacidade das térmicas 50% maior
- Térmicas grandes transformadas em várias térmicas de menor capacidade e CVU distintos

Candidatos de Expansão

Usinas Eólicas

Barra: 22

Potência: 600 MW CAPEX: 956 \$/kW

Quantidade: 8

Baterias

• Barras: 16, 17, 18, 22

Potência: 60 MW

Eficiência (c/d): 96%

CAPEX: 595 \$/kW

Quantidade: 8

• 2 em cada barra

Linhas de Transmissão

Capacidade: 175, 400 e 500 MW

• *CAPEX*: Entre 3 e 146 M\$

Quantidade: 81

Demanda Horária de 2040

- 01 Introdução ao Planejamento da Expansão
- 02 O Papel das Baterias no Planejamento
- 03 Metodologia de Pesquisa
- 04 Resultados
- 05 Conclusão

Planos Ótimos de Expansão

	Plano G + T		Plano G + T + B	
Segmento	Quantidade	Capacidade Investida	Quantidade	Capacidade Investida
Geração	8 Usinas Eólicas	480 MW	8 Usinas Eólicas	480 MW
Transmissão	21 Circuitos	10.500 MW	20 Circuitos	10.000 MW
Bateria	_	-	2 Baterias	120 MW

Planos Ótimos de Expansão

	Plano G + T		Plano G + T + B	
Segmento	Quantidade	Capacidade Investida	Quantidade	Capacidade Investida
Geração	8 Usinas Eólicas	480 MW	8 Usinas Eólicas	480 MW
Transmissão	21 Circuitos	10.500 MW	20 Circuitos	10.000 MW
Bateria	-	-	2 Baterias	120 MW

Redução da construção de 1 linha de transmissão de 500 MW

Construção das 2 baterias alocadas na Barra 22

Circuitos construídos Caso G+T+B

T. 1 1 70 . ~	CI 11 10	FOO ACTIV
Linha de Transmissão	Circuito 49	500 MW
Linha de Transmissão	Circuito 78	500 MW
Linha de Transmissão	Circuito 79	500 MW
Linha de Transmissão	Circuito 83	$500~\mathrm{MW}$
Linha de Transmissão	Circuito 84	$500~\mathrm{MW}$
Linha de Transmissão	Circuito 87	500 MW
Linha de Transmissão	Circuito 88	500 MW
Linha de Transmissão	Circuito 91	$500~\mathrm{MW}$
Linha de Transmissão	Circuito 92	500 MW
Linha de Transmissão	Circuito 95	500 MW
Linha de Transmissão	Circuito 96	500 MW
Linha de Transmissão	Circuito 97	$500~\mathrm{MW}$
Linha de Transmissão	Circuito 100	$500~\mathrm{MW}$
Linha de Transmissão	Circuito 101	$500~\mathrm{MW}$
Linha de Transmissão	Circuito 102	$500~\mathrm{MW}$
Linha de Transmissão	Circuito 103	$500~\mathrm{MW}$
Linha de Transmissão	Circuito 104	$500~\mathrm{MW}$
Linha de Transmissão	Circuito 105	$500~\mathrm{MW}$
Linha de Transmissão	Circuito 114	500 MW
Linha de Transmissão	Circuito 115	500 MW

Custos da Expansão

Custo (M\$)	Plano G + T	Plano G + T + B
Deficit	0,00	0,00
Investimento	1.501,76	1.503,78
Operativo	1.745,13	1.738,29
Total	3.246,89	3.242,07

Custos da Expansão

Custo (M\$)	Plano G + T	Plano G + T + B
Deficit	0,00	0,00
Investimento	1.501,76	1.503,78
Operativo	1.745,13	1.738,29
Total	3.246,89	3.242,07

Redução dos Custos Operativos em M\$ 6,84

Redução dos Custos Totais em M\$ 4,82

Custo Marginal de Operação Médio - Dia Típico 1

Custo Marginal de Operação Médio - Dia Típico 2

Custo Marginal de Operação Médio - Dia Típico 3

Geração Eólica Diária Média de Julho de 2042

Custos Marginais Vs Geração das Baterias

Mix de Geração no ano de 2042 - Caso G + T

Mix de Geração no ano de 2042 - Caso G + T + B

- 01 Introdução ao Planejamento da Expansão
- 02 O Papel das Baterias no Planejamento
- 03 Metodologia de Pesquisa
- 04 Resultados
- 05 Conclusão

Conclusões

Politécnica

MUITO OBRIGADO!