CSC14116 - Applied Parallel Programming

Parallel LSTM Training for Sequence Prediction from Sequential Data

19120454 - Bùi Quang Bảo

Introduction

About the project

Introduction

Analyze and parallel the training process of a LSTM model.

→ Improve training speed + handle larger datasets

Task: Sequence prediction from sequential data (Seq2Seq)

Implement a raw LSTM model using Python with Numpy library, analyze, parallelize and measure the efficiency.

02 Background

About RNN and LSTM

Sequence to Sequence (Seq2Seq)

Input: Sequence (List of tokens)

Output: Sequence (List of tokens)

Applications: Chatbots, Machine Translation, Text Summarization, ...

Solutions for Seq2Seq: RNN, CNN, Transformers, ...

Example about Seq2Seq

LSTM

- Long Short-Term Memory, is a type of recurrent neural network (RNN).
- LSTM networks have the ability to selectively **remember** or **forget** information over long periods of time.
- The architecture of an LSTM network includes: memory cells, input and output gates, and forget gates,...

RNN and LSTM

RNN and LSTM

LSTM Architecture

Parallel Potential

- The compute-intensive process is the **training phase** of LSTM model.
- Some processes: data encoding, forward pass, backward pass, loss calculating, activation functions calculating, parameters optimizing,... looped for all samples for all epochs.
- The training phase of a LSTM model will benefit from parallelism.

Challenges

Challenges for parallelizing LSTM model

Challenges

- 1. LSTM model training does not contain totally-independent loops.
- Epochs cannot be parallelized, because after each epoch, the parameters must be updated by the optimization functions (Gradient Descent or Adam).
- The process of "looking" at validation data and training data is not totally independent and it is based on how we implement the optimization functions.
- 2. It's not easy to demo and visualize in comparison with other models.

04 Resources

Hardware resources

Hardware Resources

Kaggle

os Goals

Goals and Deliverables

Goals

100%

Plan to achieve

The final parallelized version will run x5 faster.

150%

Hope to achieve 2

Training time do not scale up as quickly as the size of the dataset

125%

Hope to achieve 1

The final parallelized version will run x10 faster.

75%

In case slowly

The final parallelized version will run faster.

o6 Schedule

Timeline to do the project

Schedule

Time	Assignee	To do	
Phase 1 20/3 - 26/3	19120454 - Bùi Quang Bảo	Understand the LSTM model and analyze what and how to parallel.	
Phase 2 27/3 - 9/4	19120454 - Bùi Quang Bảo	Finish the sequential implementation of the LSTM model.	
Phase 3 10/4 - 30/4	19120454 - Bùi Quang Bảo	Parallel LSTM model training. Update the sequential implementation if necessary. Present the project at weekly reports or mid-term seminars, if any.	
Phase 4 1/5 - 7/5	19120454 - Bùi Quang Bảo	Write the report about the project and the results.	
Phase 5 Unknown	19120454 - Bùi Quang Bảo	Demo and present the project at the final seminal.	
Phase 6 Unknown	19120454 - Bùi Quang Bảo	Update the project after the final seminar, if required.	

O7 Implementation

Implementation Strategy

Gradient Descent

Gradient descent is an optimization algorithm which is commonly-used to train machine learning models and neural networks.

→ Update LSTM network's parameters

Optimization Strategy

Stochastic Gradient Descent

Rough gradient Fast

Batch Gradient Descent

Good gradient Slow

→ Benefit from parallelism

Parallel Strategy

Parallel Strategy

08 Demo

Demo on real dataset

Dataset: US Airline Passengers

This dataset provides monthly totals of a US airline passengers from 1949 to 1960.

Original Source: Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (1976) Time Series Analysis, Forecasting and Control. Third Edition. Holden-Day. Series G.

Task to solve

Predict/forecast the number of passengers of a US airline.

This is a time-series prediction task and totally fit the purpose of this project

→ We will build a LSTM model to solve this task.

Preprocessing

Result

Result

Versions Comparison

Parallelization Efficiency

Sequential Version

This is sequential implementation of LSTM, all the processes run on CPU.

Sequential Version:

Each Epoch runs on: CPU

Each Mini-batch runs on: CPU 🗶

Each Data sample runs on: CPU X

Thread positioning: No 🗶

Numpy Version

This is sequential implementation of LSTM, use Numpy, all the processes run on CPU.

Numpy Version:

Each Epoch runs on: CPU

Each Mini-batch runs on: CPU X

Each Data sample runs on: CPU X

Thread positioning: No 🗶

This is the first parallel implementation of LSTM to run on GPU.

This version is not actually "parallel" yet, it's just a quick convert from sequential version to test the ability to run on GPU using numba.

Parallel V1:

Each Epoch runs on: CPU

Each Mini-batch runs on: GPU 🗸

Each Data sample runs on: GPU 🗸

Thread positioning: No 🗶

This is the second parallel implementation of LSTM to run on GPU.

In this version, for each mini-batch we will invoke kernel once, and each data sample in the mini-batch will run on a thread on GPU.

Parallel V2:

Each Epoch runs on: CPU

Each Mini-batch runs on: GPU 🗸

Each Data sample runs on: GPU 🗸

Thread positioning: Yes 🗸

This is the third parallel implementation of LSTM to run on GPU.

In this version, for each mini-batch we will invoke kernel once, and each data sample in the mini-batch will run on a thread on GPU. The improvement compared to the version 2 is that in this version, we **avoid the unnecessary transfer** for read-only data arrays.

By default, Numba *automatically* transfer NumPy arrays to the device, it can only do so conservatively by always transferring device memory back to the host when a kernel finishes. So, we decide to *manually control* the transfer behavior for these read-only data arrays:

- Data: minibatch_set
- Previous parameters information: U, V, W, B, b_out

This is the third parallel implementation of LSTM to run on GPU.

In this version, for each mini-batch we will invoke kernel once, and each data sample in the mini-batch will run on a thread on GPU. The improvement compared to the version 2 is that in this version, we **avoid the unnecessary transfer** for read-only data arrays.

Parallel V3:

Each Epoch runs on: CPU

Each Mini-batch runs on: GPU 🗸

Each Data sample runs on: GPU 🗸

Thread positioning: Yes 🗸

Optimize data transferring: Yes 🗸

Versions

All implementation versions

	Mini-batch	Data Sample	Thread positioning	Data transferring optimization
Sequential	CPU	CPU		
Numpy	CPU	CPU		
Parallel V1	CPU+GPU	CPU+GPU	No	No
Parallel V2	CPU+GPU	CPU+GPU	Yes	No
Parallel V3	CPU+GPU	CPU+GPU	Yes	Yes

Results

5 epochs, mini-batch gradient descent

	Wall time	Efficiency (vs. Sequential)	Efficiency (vs. Numpy)	Evaluate
Sequential	4min 53s	100%		
Numpy	2min 10s	225%	100%	
Parallel V1	1min 20s	366%	162%	
Parallel V2	18.8 s	1558%	691%	
Parallel V3	17.2 s	1703%	756 %	8 Best Version

10 Conclusion

Conclusion about the project

Conclusion

We successfully completed the project and reached the goal we stated in the project's proposal (100%)

	Wall time	Efficiency (vs. Sequential)	Efficiency (vs. Numpy)
Sequential	4min 53s	100%	
Numpy	2min 10s		100%
Parallel V3	17.2 s	1703%	756 %

Thanks for listening!