Politechnika Łódzka

Wydział Elektrotechniki Elektroniki Informatyki i Automatyki

sem, zimowy, r ak. 2024/2025

Sprawozdanie z projektu BigData "Predykcja cen samochodów używanych"

Mateusz Grzybek 240678 Kamil Młynarczyk 240757

15 grudnia 2024

Spis treści

1	Wst	tęp	2
	1.1	Założenia projektowe	2
	1.2	Komponenty	2
	1.3	Wykorzystane technologie	2
2	Apl	ikacja kliencka	4
	2.1	Opis	4
	2.2	Widoki aplikacji	5
		2.2.1 Strona	5
		2.2.2 Okno z ceną	6
		2.2.3 Okno z błędem	6
3	Kor	nponent pośredniczący i komunikacyjny	7
	3.1	Komponent pośredniczący	7
		3.1.1 Opis	7
	3.2	Komponent komunikacyjny	7
		3.2.1 Opis	7
4	Dia	gramy	8
		Diagram przypadków użycia	8
		Diagram sekwencji zdarzeń	8

$\operatorname{Wst} olimits_{\operatorname{I}} olimits_{\operatorname{I$

1.1 Założenia projektowe

Celem projektu jest zaimplementowanie aplikacji webowej pozwalającej użytkownikom na predykcję ceny używanego samochodu na podstawie dostarczonego przez niego zestawu cech. Tematyka projektu daje możliwość wykorzystania różnorodnych technologii z dziedziny uczenia maszynowego, rozwoju aplikacji webowych, komunikacji pomiędzy serwisami, architektury oprogramowania oraz bierania i przetwarzania danych. W celu zrealizowania przewidywanych funkcjonalności, aplikacja została podzielona na cztery komponenty, każdy z nich odpowiedzialny za realizację innego aspektu aplikacji.

1.2 Komponenty

- Aplikacja kliencka Interfejs graficzny użytkownika.
- Pośrednik Komponent pośredniczący w komunikacji pomiędzy aplikacją kliencką i serwisem predykcyjnym
- Komponent komunikacyjny Komponent zawierający szyny danych, które są wykorzystywane do dostarczania i odbierania informacji od serwisu predykcyjnego
- Serwis predykcyjny Komponent dokonujący predykcji na podstawie dostarczonych danych, z wykorzytaniem nauczonego modelu.

1.3 Wykorzystane technologie

- Java Obiektowy język programowania.
- SpringBoot Framework dla języka Java nastawiony na wytwarzanie aplikacji webowych i mikroserwisów
- Gradle Narzędzie do automatyzacji budowania projektów.
- React Framework JavaScript do tworzenia interfejsów użytkownika w oparciu o komponenty.
- Docker Narzędzie do tworzenia, uruchamiania i zarządzania aplikacjami w izolowanych środowiskach zwanych kontnerami.

- Docker Compose Narzędzie usprawniające zarządzanie wieloma kontenerami jednocześnie.
- Python Język skryptowy.
- Apache Spark Framework do sprawnego przetwarzania zbiorów danych w pamięci.
- Apache SparkML Moduł Apache Spark przeznaczony do uczenia maszynowego.
- Apache Kafka Platforma przetwarzania danych w czasie rzeczywistym.
- Apache Zookeeper Usługa koordynacyjna systemów rozproszonych.

Aplikacja kliencka

2.1 Opis

Aplikacja kliencka stanowi pojedynczą stronę dostępną za pośrednictwem przeglądarki, udostępnianą pod adresem $localhost^1$, na porcie 9091. Strona zawiera informacje związane z aplikacją oraz pola do wprowadzania wartości, na podstawie których następnie dokonywana jest predykcja ceny samochodu. Aplikacja łączy się z komponentem middleware za pośrednictwem protokołu $HTTP^2$ w architekturze $REST^3$.

 $^{^{1}}$ loopback address — adres pętli zwrotnej, który jest wykorzystywany do komunikacji urządzenia z samym sobą.

²HyperText Transfer Protocol — protokół komunikacyjny używany do przesyłania danych w sieci.

³Representational State Transfer — architektura komunikacji oparta o protokół HTTP definiujący sposoby identyfikacji i manipulacji zasobami za pomocą zapytań HTTP.

2.2 Widoki aplikacji

2.2.1 Strona

Rysunek 2.1: Widok strony

2.2.2 Okno z ceną

Rysunek 2.2: Widok okna z ceną

2.2.3 Okno z błędem

Rysunek 2.3: Widok okna z błędem

Komponent pośredniczący i komunikacyjny

3.1 Komponent pośredniczący

3.1.1 Opis

Komponent pośrediczący pełni rolę pośrednika pomiędzy aplikacją kliencką i serwisem predykcyjnym. Otrzymywane od **frontendu**¹ dane w formie \mathbf{JSON}^2 są w tym komponencie przetwarzane na wiadomości w formacie odpowiadającym wejściu modelu, z uwzględnieniem procesu **kodowania liczbowego**³ pól. Otrzymane w tym procesie wiadomości zapisywane są na \mathbf{temat}^4 wejściowy Kafki. Pośrednik jest również odpowiedzialny za odczytywanie danych z tematu wyjściowego i przekazywanie uzyskanych z nich informacji do klienta.

3.2 Komponent komunikacyjny

3.2.1 Opis

Komponent komunikacyjny odpowiedzialny jest za transport danych pomiędzy komponentem pośredniczącym i serwisem predykcyjnym. Wykorzystuje w tym celu skonteneryzowany **broker**⁵ wiadomości Apache Kafka wraz z dwoma tematami input oraz output, wykorzystywanych odpowiednio do gromadzenia danych odczytywanych przez serwis predykcyjny i gromadzenia danych odczytywanych przez pośrednika. Do zarządzania brokerem wykorzystywany jest Apache Zookeeper.

¹Część aplikacji, z którą użytkownik wchodzi w bezpośednią interakcję, w tym wszystko co widzi oraz elementy wizualne i interaktywne.

²JavaScript Object Notation — format danych zapewniający kompaktowe rozmiary i jest czytelny dla ludzi i maszyn.

³Technika zamiany wartości danych tekstowych na wartości liczbowe, poprzez przypisanie unikalnej liczby każdej unikalnej wartości tekstowej.

⁴Podstawowy komponent Apache Kafka służący do kategoryzacji napływających wiadomości.

⁵Serwer Apache Kafka zawierający dane należace do tematów i partycji, na które może być podzielony temat

Diagramy

4.1 Diagram przypadków użycia

Rysunek 4.1: Przebieg interakcji użytkownika z aplikacją

4.2 Diagram sekwencji zdarzeń