

EexamPlace student sticker here

Note:

- During the attendance check a sticker containing a unique code will be put on this exam.
- This code contains a unique number that associates this exam with your registration number.
- This number is printed both next to the code and to the signature field in the attendance check list.

Machine Learning for Graphs and Sequential Data

Exam: IN2323 / Endterm **Date:** Friday 19th August, 2022

Examiner: Prof. Dr. Stephan Günnemann **Time:** 08:15 – 09:30

	P 1	P 2	P 3	P 4	P 5	P 6	P 7	P 8	P 9	P 10
ı										

Working instructions

- This exam consists of 16 pages with a total of 10 problems.
 Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 86 credits.
- Detaching pages from the exam is prohibited.
- · Allowed resources:
 - one A4 sheet of handwritten notes (two sides, not digitally written and printed).
- No other material (e.g. books, cell phones, calculators) is allowed!
- Physically turn off all electronic devices, put them into your bag and close the bag.
- There is scratch paper at the end of the exam (after problem 10).
- Write your answers only in the provided solution boxes or the scratch paper.
- If you solve a task on the scratch paper, clearly reference it in the main solution box.
- All sheets (including scratch paper) have to be returned at the end.
- Only use a black or a blue pen (no pencils, red or greens pens!)
- For problems that say "Justify your answer" you only get points if you provide a valid explanation.
- · For problems that say "Derive" you only get points if you provide a valid mathematical derivation.
- · For problems that say "Prove" you only get points if you provide a valid mathematical proof.
- If a problem does not say "Justify your answer", "Derive" or "Prove", it is sufficient to only provide the correct answer.

Left room from	to	/	Early submission at
			·

Problem 1 Normalizing flows (8 credits)

You are given the task of density estimation on \mathbb{R}^2 and plan on using normalizing flows. In the following we present some candidate transformations that will be used for **reverse parameterization.** For each of the transformations, state if it can be used to define a normalizing flow and justify your answers. In all cases, the input is a vector $\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$. We denote the output of the transformation with $\mathbf{z} \in \mathbb{R}^2$.

	z = Ax,	
where $\mathbf{W} \in \mathbb{R}^{2 \times 2}$.		
b)		
-,	$\mathbf{Z} = \begin{bmatrix} x_1^2 & x_2^2 \end{bmatrix}^T$	
	<u> </u>	
c)		
5 ,	$z_1 = \mathbf{V} ReLU(\mathbf{W} x_2 + \mathbf{b})$	
	$\mathbf{z} = \begin{bmatrix} z_1 & x_2 \end{bmatrix}^T,$	
where $\mathbf{W} \in \mathbb{R}^{h imes 1}$, $\mathbf{V} \in \mathbb{R}^{1 imes h}$,	$\mathbf{b} \in \mathbb{R}^h$ and ReLU is applied elementwise.	

_	`
a)

0
1
2

$z = a \odot x + b$,	
where $\mathbf{a},\mathbf{b}\in\mathbb{R}^2$ and \odot is the elementwise product.	

Problem 2 Variational inference (10 credits)

Suppose we are given a latent variable model for a sequence of observations $x_1, ..., x_N \in \{0, 1\}$ and latent variables $z_1, ..., z_N \in [0, 1]$ with

$$p(z_1, ..., z_N) = \prod_{n=1}^N \text{Beta}(z_n \mid \alpha, \beta) = \prod_{n=1}^N \frac{1}{B(\alpha, \beta)} z_n^{\alpha - 1} (1 - z_n)^{\beta - 1}$$

$$p(x_1, ..., x_N | z_1, ..., z_N) = \prod_{n=1}^N \text{Bern}(x_n \mid z_n) = \prod_{n=1}^N z_n^{x_n} (1 - z_n)^{1 - x_n}$$

with parameters $\alpha, \beta > 0$ and normalizing constant $B(\alpha, \beta)$. We define the variational distribution

$$q(z_1, ..., z_N) = \prod_{n=1}^{N} \text{Beta}(z_n \mid \gamma, \delta) = \prod_{n=1}^{N} \frac{1}{B(\gamma, \delta)} z_n^{\gamma - 1} (1 - z_n)^{\delta - 1}$$

with parameters $\gamma, \delta > 0$.

Assume that α, β are known and fixed. Prove or disprove the following statement: There **exist** observations $x_1, \dots, x_N \in \{0, 1\}$ and values of $\gamma, \delta > 0$ such that the ELBO is tight, i.e. $\exists x_1, \dots, x_N, \exists \gamma, \delta : \log(p(x_1, \dots, x_N)) = \mathcal{L}((\alpha, \beta), (\gamma, \delta))$.

Problem 3 Robustness (9 credits)

In the lecture, we have derived a convex relaxation for the ReLU activation function. Now, we want to generalize this result to the flexible ReLU (FReLU) activation function

$$FReLU(x) = \begin{cases} x+b & \text{if } x > 0\\ b & \text{if } x \le 0 \end{cases}$$

with variable input $x \in \mathbb{R}$ and constant parameter $b \in \mathbb{R}$.

Let $y \in \mathbb{R}$ be the variable we use to model the function's output. Now, given input bounds $l, u \in \mathbb{R}$ with $l \le x \le u$, provide a set of **linear constraints** corresponding to the convex hull of $\{[x \ FRelu(x)]^T | l \le x \le u\}$.

Hint: You will have to make a case distinction to account for different ranges of *I* and *u*.

Problem 4 Autoregressive models (8 credits)

An autoregressive process of order p, AR(p), is defined as:

$$X_t = c + \sum_{i=1}^p \phi_i X_{t-i} + \epsilon_t ,$$

with independently distributed noise variables $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$.

Provided that the AR(p) is stationary, derive its first moment $\mathbb{E}[X_t]$ as a function of c and ϕ_i .

0	
1	
2	
3	

b) Let us define a process X_t as

$$X_t = \sin^2\left(-\frac{\pi}{2}t\right) + \frac{2}{3}X_{t-1} + \epsilon_t$$

with independently distributed noise variables $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$. Decide if the process X_t is stationary. Justify your answer.

Problem 5 Hidden Markov Models (9 credits)

Consider a hidden Markov model with 2 states $\{1,2\}$ and 4 possible observations $\{c,e,i,n\}$. The initial distribution π , transition probabilities **A** and emission probabilities **B** are

where \mathbf{A}_{ij} specifies the probability of transitioning from state i to state j.

a) We have observed the sequence $X_{1:3} = [\mathrm{nic}]$. What is the most likely latent state Z_3 given these observations? Justify your answer. What is this type of inference called?	
	3

The full observed sequen servations? Justify your a	ce is $X_{1:4}$ = [nice]. Vanswer.	Vhat is the most likely	y latent state sequend	ce $Z_{1:4}$ given the

Problem 6 Temporal Point Processes (10 credits)

Assume that we use a Hawkes process to model a discrete event sequence $\{t_1, \dots, t_N\}$ with $t_i \in [0, T]$. Further assume that (like in the lecture) we use an exponential triggering kernel, i.e. $k_{\omega}(t-t_i) = \exp(-\omega(t-t_i))$. Prove that the log-likelihood-function of the process is

$$\log p_{\theta}(\{t_1,\ldots,t_N\}) = \sum_{i=1}^N \log \left(\mu + \alpha \sum_{j < i} \exp(-\omega(t_i - t_j))\right) - \mu T + \frac{\alpha}{\omega} \sum_{i=1}^N \left(\exp(-\omega(T - t_i)) - 1\right)$$

Problem 7 Graphs – Generative Models (8 credits)

Let $\mathbf{A} \in \{0,1\}^{N \times N}$ be the adjacency matrix of a graph generated by a stochastic block model with $\pi = \begin{bmatrix} a & 1-a \end{bmatrix}^T$, $\eta = \begin{bmatrix} p & q \\ q & p \end{bmatrix}$ and parameters $a, p, q \in [0,1]$. Let $\deg(n) = \sum_{j=1}^N A_{n,j}$ be the degree of node n.

Derive the expected degree $\mathbb{E}\left[\deg(n)\right]$ of an arbitrary node n .			

Problem 8 Graphs - Clustering (10 credits)

Let $\mathbf{A} \in \{0,1\}^{N \times N}$ be the adjacency matrix of an undirected graph (i.e. symmetric adjacency matrix) generated by a stochastic block model with $\pi = \begin{bmatrix} a & 1-a \end{bmatrix}^T$, $\eta = \begin{bmatrix} p & q \\ q & p \end{bmatrix}$ and parameters $a, p, q \in [0,1]$.

0 1 2	a) Assume that $p,q,a\in[0,1]$ are known and fixed. Can $\Pr(\mathbf{z}\mid\mathbf{A},\eta,\pi)$, the probability mass function of community assignments \mathbf{z} given \mathbf{A} , be evaluated in polynomial time? That is, can it be evaluated in $\mathcal{O}(N^c)$, where N is the number of nodes and $c\in\mathbb{R}_+$? Justify your answer.

b) Now assume that p = 0. Further assume that **A** is a connected graph (i.e. each pair of nodes (i, j) is connected by a path). Propose a procedure for finding the most likely community assignment, i.e.

$$\max_{\mathbf{z} \in \{0,1\}^N} \Pr(\mathbf{z} \mid \mathbf{A}, \eta, \pi)$$

in polynomial time $\mathcal{O}(N^c)$. Justify your answers.

Problem 9 Limitations of Graph Neural Networks (6 credits)

What is overs	moothing and v	What badboo it.				
						F
						_
The Personal	ized Propagati	on of Neural Pre	edictions (PPNF) architecture is	designed to ove	ercome the
The Personal	ized Propagati smoothing. Brie	on of Neural Pre	edictions (PPNF o key building b	e) architecture is locks.	designed to ove	ercome the
The Personal	ized Propagati smoothing. Brie	on of Neural Pre	edictions (PPNF o key building b	e) architecture is locks.	designed to ove	ercome the
The Personal	ized Propagati smoothing. Brie	on of Neural Pre	edictions (PPNF o key building b	e) architecture is locks.	designed to ove	ercome the
The Personal	ized Propagati smoothing. Brie	on of Neural Pre	edictions (PPNF o key building b	') architecture is locks.	designed to ove	ercome the
The Personal	ized Propagati smoothing. Brie	on of Neural Pre	edictions (PPNF o key building b	e) architecture is locks.	designed to ove	ercome the
The Personal	ized Propagati smoothing. Brie	on of Neural Pre	edictions (PPNF o key building b	architecture is locks.	designed to ove	ercome the
The Personal blem of overs	ized Propagati smoothing. Brie	on of Neural Pre	edictions (PPNF o key building b	e) architecture is locks.	designed to ove	ercome the
The Personal blem of overs	ized Propagati smoothing. Brie	on of Neural Pre	edictions (PPNF o key building b	architecture is locks.	designed to ove	ercome the
The Personal blem of overs	ized Propagati smoothing. Brie	on of Neural Pre	edictions (PPNF o key building b	architecture is locks.	designed to ove	ercome the
The Personal	ized Propagati smoothing. Brie	on of Neural Pre	edictions (PPNF o key building b	e) architecture is locks.	designed to ove	ercome the
The Personal	ized Propagati smoothing. Brie	on of Neural Pre	edictions (PPNF o key building b	architecture is locks.	designed to ove	ercome the
The Personal	ized Propagati smoothing. Brie	on of Neural Pre	edictions (PPNF o key building b	architecture is locks.	designed to ove	ercome the
The Personal	ized Propagati smoothing. Brie	on of Neural Pre	edictions (PPNF o key building b	e) architecture is locks.	designed to ove	ercome the
The Personal	ized Propagati smoothing. Brie	on of Neural Pre	edictions (PPNF o key building b	architecture is locks.	designed to ove	ercome the
The Personal	ized Propagati smoothing. Brie	on of Neural Pre	edictions (PPNF o key building b	e) architecture is locks.	designed to ove	ercome the
The Personal	ized Propagati smoothing. Brie	on of Neural Pre	edictions (PPNF o key building b	e) architecture is locks.	designed to ove	ercome the

Problem 10 Page Rank (8 credits)

Recall the spam farm discussed in our exercise. It consists of the spammer's own pages S_{own} with target page t and k supporting pages, as well as links from the accessible pages S_{acc} to the target page. **Different from the exercise**, every page within S_{own} has a link to every other page within S_{own} (see Fig. 10.1).

Figure 10.1

Let n be the total number of pages on the web, E the set of all edges, r_p the PageRank score of a page p and d_p the degree of a page p. Let $x_{\text{acc}} = \sum_{p \in S_{\text{acc}}, (p,t) \in E} \frac{r_p}{d_p}$ be the amount of PageRank contributed by the accessible pages. We are using PageRank with teleports, where $(1-\beta)$ is the teleport probability.

	r_t of the target page r_t	as a function of x_{acc} , k , β ,	n. You do not have to si	mplify.
	er modify the edges of	f the k supporting pages to	o increase the PageRan	k score r_t of
How can the spamme				
How can the spamme target page? Justify	/ your answer.			
How can the spamme target page? Justify	y your answer.			
How can the spamme target page? Justify	y your answer.			
How can the spamme e target page? Justify	y your answer.			
How can the spamme e target page? Justify	y your answer.			_
How can the spamme target page? Justify	y your answer.			
How can the spamme target page? Justify	y your answer.			
How can the spamme target page? Justify	y your answer.			
How can the spamme target page? Justify	y your answer.			
How can the spamme target page? Justify	y your answer.			
How can the spamme target page? Justify	y your answer.			

Additional space for solutions—clearly mark the (sub)problem your answers are related to and strike out invalid solutions.

