

第6讲-完全性定理

一阶逻辑的完全性定理是数理逻辑的基本定理之一, 非常重要。它由*K. Gödel*于20世纪30年代证明。

本讲中我们给出带等词的一阶谓词演算的完全性定理,证明方法采用Henkin在20世纪50年代给出的方法,这里利用极大协调集的方法,故我们

- 首先引入无穷公式集的协调性和极大协调性,
- 然后定义带等词的一阶谓词演算Ge,
- 最后证明完全性定理。

设义为一阶语言,我们采用的语言是可数语言,即变元集为可数无穷集,从而全体项之集和全体公式之集皆为可数无穷集。

定义6.1 设厂为公式集

- 1) Γ 矛盾指存在 Γ 的有穷集 Δ 使 Δ \vdash 在G中可证;
- 2) Γ协调指Γ不矛盾;
- 3) Γ 协调(consistent)记为 $Con(\Gamma)$, Γ 矛盾记为 $Incon(\Gamma)$.

命题6.2. 以下四点等价:

- 1) $Incon(\Gamma)$;
- 2) 存在公式A,存在Γ的有穷子集 Δ ,使 $\Delta \vdash A$ 和 $\Delta \vdash \neg A$ 可证;
- 3) 对任何公式A,存在 Γ 的有穷子集 Δ ,使 $\Delta \vdash A$;
- 4) 对任何公式A,存在 Γ 的有穷子集 Δ ,使 $\Delta \vdash A$ 和 $\Delta \vdash \neg A$ 可证。 证明:
 - (1) ⇒ (2): 因为 $\Delta \vdash \neg \Box$ → $\Delta \vdash A$ 且 $\Delta \vdash \neg A$ 可证;
 - $(2) \Rightarrow (3)$:

因为 $\Delta \vdash A$ 且 $\Delta \vdash \neg A$ 可证 $\Rightarrow \Delta \vdash \Box$ 可证 $\Rightarrow \Delta \vdash B$ 可证;

- $(3) \Rightarrow (4)$ 易见;
- $(4) \Rightarrow (1):$ 因为 $\Delta \vdash A, \Delta \vdash \neg A$ 可证 $\Rightarrow \Delta \vdash \neg$ 可证。

我们同理可证:

命题6.3. 设Γ为公式集,以下四点等价:

- 1) $Con(\Gamma)$;
- 2) 对任何 Γ 的有穷子集 Δ , Δ ⊢在G中不可证;
- 3) 对任何公式A,对任何 Γ 的有穷子集 Δ , $\Delta \vdash A$ 不可证或 $\Delta \vdash \neg A$ 不可证;
- 4) 存在公式A,使对任何 Γ 的有穷子集 Δ , $\Delta \vdash A$ 不可证。

定义6.4. 设 Γ 为公式集, Γ 为极大协调的(maximally consistent)指

1) $Con(\Gamma)$ 和

2) 对任何公式集 Δ , 若 $Con(\Delta)$ 且 $\Gamma \subseteq \Delta$ 则 $\Gamma = \Delta$.

命题6.5. Γ为极大协调的 iff

- 1) $Con(\Gamma)$ 和
- 2) 对任何公式 A, 若 $Con(\Gamma \cup \{A\})$ 则 $A \in \Gamma$.

证明:

"⇒"设 Γ 为极大协调,从而 $Con(\Gamma)$, 现设 $Con(\Gamma \cup \{A\})$, 因为 $\Gamma \cup \{A\} \supseteq \Gamma$, 故 $\Gamma \cup \{A\} = \Gamma$, 因此 $A \in \Gamma$.

" \leftarrow " 设 $Con(\Gamma)$ 且对任何 A 有 $Con(\Gamma \cup \{A\}) \Rightarrow A \in \Gamma$, 现设 $Con(\Delta)$ 且 $\Gamma \subseteq \Delta$, 反设 $\Gamma \neq \Delta$, 从而有 $A \in \Delta - \Gamma$; $\Gamma \cup \{A\} \subseteq \Delta$, 从而 $Con(\Gamma \cup \{A\})$, 故 $A \in \Gamma$ 矛盾。

命题6.6. 设 Γ 为极大协调的 iff

- 1) $Con(\Gamma)$ 和
- 2) 对任何公式 $A, A \in \Gamma$ 或 $\neg A \in \Gamma$.

证明:

"⇒":设 Γ 极大协调, 1)易见; 2)对于A, 反设 $A \notin \Gamma$ 且¬ $A \notin \Gamma$. 从而由命题6.5 知 $Incon(\Gamma \cup \{A\})$ 且 $Incon(\Gamma \cup \{\neg A\})$ 从而存在 Δ_1 和 Δ_2 ,其为 Γ 的有穷子集使 Δ_1 , $A \vdash$ 和 Δ_2 ,¬ $A \vdash$ 可证,从而 Δ_1 , $\Delta_2 \vdash$ 可证,因此 $Incon(\Gamma)$ 矛盾!

" \leftarrow ": 设 1)和2),由命题6.5 我们只需证若 $Con(\Gamma \cup \{A\})$,则 $A \in \Gamma$,由2)知 $A \in \Gamma$ 或 $\neg A \in \Gamma$ 成立,而 $\neg A \in \Gamma$ 与 $Con(\Gamma \cup \{A\})$ 矛盾,故 $\neg A \notin \Gamma$,因此 $A \in \Gamma$.

命题6.7. 设 Γ 为极大协调集,A 为公式,

存在 Γ 的有穷子集 Δ 使 Δ \vdash A 可证 iff A \in Γ .

证明: "⇒": 设 $\Delta \vdash A$ 可证,从而 $Con(\Gamma \cup \{A\})$,若不然 $Incon(\Gamma \cup A)$,则存在 Γ 的有穷子集 Δ' 使 Δ' , $A \vdash$ 可证, 故 Δ , $\Delta' \vdash$ 可证与 $Con(\Gamma)$ 矛盾! 故 $A \in \Gamma$ 。

"⇐":易见。

命题6.8.

- 1) 若 Γ 可满足,则 $Con(\Gamma)$;
- 2) 若 Γ 矛盾,则 Γ 不可满足.

证明: 1) 设 Γ 可满足,从而有 \mathbb{M} 和 σ 使 $\mathbb{M} \models_{\sigma} \Gamma$,反设 $Incon(\Gamma)$, 从而存在有穷 $\Delta \subseteq \Gamma$ 使 $\Delta \vdash A \land \neg A$ 可证。

 $:: \mathbb{M} \models_{\sigma} \Gamma, :: \mathbb{M} \models_{\sigma} \Delta, \text{ 从而 } \mathbb{M} \models_{\sigma} A \land \neg A \text{ } \mathcal{F} f \text{ } .$

2)为1)的逆否命题。

2020/5/17

П

命题6.9. 设 Γ 为有穷公式集且 $Con(\Gamma)$

- 1) 若 Γ ⊢ A 可证,则 $Con(\Gamma \cup \{A\})$;
- 2) 若 $\Gamma \vdash A$ 不可证,则 $Con(\Gamma \cup \{\neg A\})$.

证明:

- 1) 设 $\Gamma \vdash A \perp Con(\Gamma)$, 反设 $Incon(\Gamma \cup \{A\})$,从而 $\Gamma, A \vdash \Gamma$ 可证,故 $\Gamma \vdash \Gamma$ 证与 $Con(\Gamma)$ 矛盾!
- 2) 若 $Incon(\Gamma \cup \{\neg A\})$ 则 $\Gamma, \neg A \vdash$ 可证,从而 $\Gamma \vdash A$ 可证。 \Box

在以前给出一阶谓词演算的G系统中没有出现等词 $\stackrel{:}{=}$,现在我们给出带等词的一阶谓词演算Ge(有些教科书中记为 $G_{=}$)

定义6.10. Gentzen系统 Ge 由 G 加上3个等词公理组成:

- 1) 若 $\vdash s = s$, 这里s为任何项;
- 2) 若 $s_1 = t_1, \dots, s_n = t_n \vdash f(s_1, \dots, s_n) = f(t_1, \dots, t_n),$ 这里 f 为任何 n 元函数 $(n = 1, 2, \dots),$ 对于 $i \le n$, s_i 和 t_i 为任何项;
- 3) $s_1 = t_1, \dots, s_n = t_n, \quad p(s_1, \dots, s_n) \vdash p(t_1, \dots, t_n),$ 这里 p 为任何 n 元谓词(含等词)($n = 1, 2, \dots$), 对于 $i \le n$, s_i 和 t_i 为任何项。

约定6.11.

1) \vec{t} 表示 $(t_1 \cdots t_n)$, \vec{s} 表示 $(s_1 \cdots s_n)$, 即采用矢量记法;

2) $f(\vec{t})$ 表示 $f(t_1 \cdots t_n)$, 当 f 为 n 元函数;

3) $p(\vec{t})$ 表示 $p(t_1 \cdots t_n)$, 当 p 为 n 元谓词;

4) $(\vec{s} = \vec{t})$ 表示 $(\cdots((s_1 = t_1) \land (s_2 = t_2)) \land \cdots \land (s_n = t_n) \cdots)$ 。

命题6.12. 以下 矢列 在 Ge 中可证

1)
$$\vdash$$
 $(s = s);$

$$2) \vdash (s = t) \to (t = s);$$

3)
$$\vdash (s = t) \rightarrow (t = u \rightarrow s = u);$$

4)
$$\vdash (\vec{s} = \vec{t}) \rightarrow f(\vec{s}) = f(\vec{t});$$

5)
$$\vdash (\vec{s} = \vec{t}) \rightarrow (p(\vec{s}) \rightarrow p(\vec{t})).$$

这里s,t,u 为任何项,f 为任何 n 元函数, \vec{s} , \vec{t} 的长度为 n ,以及 p 为任何 n 元谓词。

证明: 1) 易见;

- 2) 和 3) 可由 1) 和 5) 在 G 中推出(证明留作习题);
- 4) 由等词公理 2) 即得; 5) 由等词公理 3) 即得. ___

 $\forall x(x = x), \forall \vec{x} \forall \vec{y}(\vec{x} = \vec{y} \rightarrow f(\vec{x}) = f(\vec{y})),$ 这里 f 为任何函数, $\forall \vec{x} \forall \vec{y} (\vec{x} = \vec{y} \rightarrow (p(\vec{x}) \rightarrow p(\vec{y})))$, 这里 p 为任何谓词。 我们有 $\Gamma \vdash \Delta$ 在 Ge 中可证 $\Leftrightarrow \Gamma e, \Gamma \vdash \Delta$ 在 G 中可证。 证明: 留作习题。

定理**6.14**(Soundness). 若 $\Gamma \vdash \Delta$ 在 Ge 中可证,则 $\Gamma \models \Delta$. 证明: 只需证3条等词公理是永真的, 而这是易见的。

以下将证明完全性定理:

若 $\Gamma \models \Delta$,则 $\Gamma \vdash \Delta$ 在 Ge 中可证。

2020/5/17

定义6.15(Henkin集). 设 Γ 为公式集, Γ 为 Henkin 集指

- 1) Γ极大协调;
- 2) 若 $\exists x.A \in \Gamma$ 则有项 t 使 $A[\frac{t}{x}] \in \Gamma$ 。

定义6.16. 设 \mathcal{L} 为一阶语言且 $\|\mathcal{L}\| = \aleph_0$, 令 $\mathcal{L}' = \mathcal{L} \cup \{c_n \mid n \in \mathbb{N}\}$. 定理6.17. 设 Φ 为公式集且 $Con(\Phi)$, 则存在 \mathcal{L}' 公式集 Ψ 使 $\Psi \supseteq \Phi$ 且 Ψ 为 \mathcal{L}' 的 Henkin 集。

证明: 设 \mathcal{L} 的全体公式为 $\varphi_0, \varphi_1, \dots, \varphi_n, \dots (n \in \mathbb{N})$ 。令

$$\begin{cases} \Psi_0 = \Phi \\ \Psi_{n+1} = \begin{cases} \Psi_n & , 若 Incon(\Psi_n \cup \{\varphi_n\}) \\ \Psi_{n+1} = \{\varphi_n\} & , \\ \Psi_n \cup \{\varphi_n\} & , \\ \Psi_n \cup \{\varphi_n\} & , \\ A = A \end{cases} \end{cases}$$

$$\frac{1}{2} \exists x \in A$$

这里 c 为 $\{c_n \mid n \in \mathbb{N}\}$ 中不曾使用过的新常元。

而令

$$\Psi = \cup \{\Psi_n \mid n \in \mathbb{N}\}$$

我们有:

NANU TROS

- (1) $\Phi \subseteq \Psi$;
- (2) 对所有的 $n \in \mathbb{N}$, $Con(\Psi_n)$;
- (3) $Con(\Psi)$;
- (4) 在 Ψ_n 中出现的新常元是有穷的;
- (5) Ψ 极大协调;
- (6) Ψ为 Henkin 集。

证明如下:

- (1) $\Phi \subseteq \Psi$ 易见;
- (2) 对 n 归纳证明 $Con(\Psi_n)$ 如下:

奠基: n = 0 : $\Psi_0 = \Phi$: $Con(\Psi_0)$

归纳假设:设 $Con(\Psi_n)$

归纳步骤: 欲证 $Con(\Psi_{n+1})$

情况1. $Incon(\Psi_n \cup \{\varphi_n\})$, 从而 $\Psi_{n+1} = \Psi_n$, 故由 I.H.知 $Con(\Psi_{n+1})$;

情况2. $Con(\Psi_n \cup \{\varphi_n\})$ 且 φ_n 不呈形 $\exists x.A$, 从而 $Con(\Psi_{n+1})$;

情况3. $Con(\Psi_n \cup \{\varphi_n\})$ 且 φ_n 呈形 $\exists x.A$,

这时可设 $\varphi_n \equiv \exists x.A, \ \Psi_{n+1} = \Psi_n \cup \{\varphi_n, A[\frac{c}{x}]\},$

反设 $Incon(\Psi_{n+1})$,从而存在有穷集 $\Delta' \subseteq \Psi_{n+1}$ 使 $\Delta' \vdash$ 可证,

从而存在有穷集 $\Delta \subseteq \Psi_n$ 使 $\Delta, \exists x.A, A[\frac{c}{r}] \vdash 可证,$

使其证明树为T,在T中将c替换成新变元y,

从而 Δ , $\exists x.A$, $A[\frac{y}{x}] \vdash$ 可证。因此由 $\exists L$ 知 Δ , $\exists x.A \vdash$ 可证,与 $Con(\Psi_n \cup \{\varphi_n\})$ 矛盾。

(3) 欲证 $Con(\Psi)$ 反设 $Incon(\Psi)$, 从而存在 Ψ 的有穷子集 Δ 使 $\Delta \vdash$ 可证。

 $\therefore \Delta$ 有穷,不妨设 $\Delta = \{A_1, \dots, A_k\}$

 $\therefore A_i(i=1,2,\cdots,k) \in \Psi = \cup \{\Psi_n \mid n \in \mathbb{N}\},\$

故对每个 $i \le k$, 有 n_i 使 $A_i \in \Psi_{n_i}$, 因此有 l 使对每个 $i \le k$, $A_i \in \Psi_l$, 从而 $\Delta \subseteq \Psi_l$, 然而 $Con(\Psi_l)$, 与 $\Delta \vdash$ 可证矛盾。

(4) 对 n 归纳证明即可。

- (5) 欲证 Ψ 极大协调,由于已证 Ψ 协调,现只需证极大性。 由前命题知,只需证若 $Con(\Psi_n \cup \{\varphi_n\})$,则 $\varphi_n \in \Psi$. 设 $Con(\Psi \cup \{\varphi_n\})$,从而 $Con(\Psi_n \cup \{\varphi_n\})$, 从而 $\varphi_n \in \Psi_{n+1}$,因此, $\varphi_n \in \Psi$;
- (6) Ψ 为Henkin集,对于公式 $\exists x.A \in \Gamma$,设 $\exists x.A$ 为 φ_n , $\therefore \varphi_n \in \Psi \therefore Con(\Psi_n \cup \{\varphi_n\})$, 故 $A[\frac{c}{x}] \in \Psi_{n+1}$,从而 $A[\frac{c}{x}] \in \Psi_s$

定理6.18. 若 Γ 为Henkin集,则 Γ 为Hintikka集。

证明: 设 Γ 为Henkin集,对照Hintikka集的定义逐条验证如下:

- (1) 这里因为 $Con(\Gamma)$;
- (2) 设 $\neg \neg A \in \Gamma$, $\because \neg \neg A \vdash A$ 可证, $\therefore \Gamma \vdash A$ 可证, $Z \because \Gamma$ 极大协调, $\therefore A \in \Gamma$;
- (3) 设 $A \rightarrow B \in \Gamma$, 反设¬ $A \notin \Gamma \coprod B \notin \Gamma$, 由命题 $6.6, A \in \Gamma \coprod \neg B \in \Gamma$, $\therefore A, A \rightarrow B \vdash B$ 可证, $\therefore B \in \Gamma$ 矛盾;
- (4) 设 $\neg(A \rightarrow B) \in \Gamma$, $\because \neg(A \rightarrow B) \vdash A, \neg(A \rightarrow B) \vdash \neg B$ 可证, $\therefore A \in \Gamma$ 且 $\neg B \in \Gamma$ (由命题6.7);
- (5) 设 $A \land B \in \Gamma$, $A \land B \vdash A$, $A \land B \vdash B$ 可证, $A, B \in \Gamma$;

- (6) $\neg (A \land B) \in \Gamma$, 反设 $\neg A \notin \Gamma \coprod \neg B \notin \Gamma$, 从而由命题6.6知 $A \in \Gamma \coprod B \in \Gamma$, $\therefore A, B \vdash A \land B$ 可证, $\therefore A \land B \in \Gamma \supset \neg (A \land B) \in \Gamma \nearrow \pi$;
- (7)~(8) 同理可证;
- (9) 设 $\forall x.A \in \Gamma$, $\because \forall x.A \vdash A\left[\frac{t}{x}\right]$ 可证, $\therefore A\left[\frac{t}{x}\right] \in \Gamma$;
- (10) 设 $\neg \forall x. A \in \Gamma$, $\because \neg \forall x. A \vdash \exists x. \neg A$ 可证, $\therefore \exists x. \neg A \in \Gamma$, 又 $\because \Gamma$ 为Henkin集, \therefore 有 t 使 $\neg A[\frac{t}{x}] \in \Gamma$;
- (11)~(12) 同理可证;
- (13)~(17)由命题 6.7 即得。

П

定理6.19. 若 Γ 协调,则 Γ 可满足。

证明: Γ协调

- \Rightarrow 存在Henkin集 Ψ ⊇ Γ
- ⇒ 存在 Ψ 使 $\Psi \supseteq \Gamma$ 且 Ψ 为Hintikka集
- ⇒ 存在 Ψ 使 $\Psi \supseteq \Gamma$ 且 Ψ 可满足
- ⇒ Γ可满足.

定理**6.20** (Completeness). $\Gamma \vdash A \Leftrightarrow \Gamma \vDash A$

证明: "⇒"为Soundness;

" \leftarrow " \ominus Γ \vdash A

情况1. $Incon(\Gamma)$, 易见 $\Gamma \vdash A$ 可证;

情况2. $Con(\Gamma)$,反设 $\Gamma \vdash A$ 不可证,从而 $Con(\Gamma \cup \{\neg A\})$, 故有 M 和 σ 使 M $\models_{\sigma} \Gamma \cup \{\neg A\}$ 与 M $\models_{\sigma} A$ 矛盾。

定理**6.21** (Compactness). 设 Γ 为公式集,若对任何 Γ 的有穷子集 Δ ,有 Δ 可满足,则 Γ 可满足。

证明: 反设 Γ 不可满足,则 $Incon(\Gamma)$, 从而存在 Γ 的有穷子集 Δ 使 $\Delta \vdash A \land \neg A$, 从而 Δ 不可满足,矛盾。

我们将在第十四讲给出Compactness(紧性)定理的纯语义证明, 一个直接证明。

The End of Lecture 6