INFRARED ABSORPTION BY CO2 And H20

David A. Gryvnak Darrell E. Burch

Ford Aerospace and Communications Corporation Aeronutronic Division Ford Road, Newport Beach, CA 92663

May 1978

Scientific Report for Period 4 October 1976 - 4 October 1977

Approved for public release; distribution unlimited

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE HANSCOM AFB, MASSACHUSETTS 01731

Best Available Copy

REPORT DOCUMENTATION PAGE A TOTAL CHARGE TRUCKING TO THE PAGE TO THE PAGE TO THE CONTROL OF THE PAGE TO THE PAGE	SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)						
APGLITE - 78-0154 4. TITLE (and Substitute) Scientific Report No. 1 INFRARED ABSORPTION BY CO2 and H2O AUTHOR(*) David A. Gryvnak Darrell E. Burch Performance and Communications Corporation Aeronutronic Division Pord Road, Newport Beach, CA 92663 10. CONTROLLING OFFICE NAME AND ADDRESS Hanscom APB, Massachusetts 01731 Contract Chenditor: Anthony P. D'agati 11. MONITORING ACERCY NAME a ADDRESS(** different from Controlling Office) Approved for public release; distribution unlimited. 15. DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 1/ different from Report) 16. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 1/ different from Report) 17. OISTRIBUTION STATEMENT (of the abstract entered in Block 20, 1/ different from Report) 18. SUPPLEMENTARY NOTES 19. RECYMBERT Continue on reverse side if necessary and identify by block number) 19. OISTRIBUTION STATEMENT (of the abstract entered in Block 20, 1/ different from Report) 19. SUPPLEMENTARY NOTES 19. SUPPLEMEN							
4. TITLE (and Submitte) 1. TITLE (and Submitt	I REPORT HUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG HUMBER				
Scientific Report No. 1 INFRARED ABSORPTION BY CO2 and H2O AUTHORIO David A. Oryvnak Darrell E. Burch Performing organization name and address Performing organization corporation Aeronutronic Division Ford Aerospace and Communications Corporation Aeronutronic Division Ford Road, Newport Beach, CA 92663 Contract Monitor: Anthony P. D'Agati May 1978 Authorio Approved for public release; distribution unlimited. Total Road, Newport Beach, CA 92663 Schedule Report Darte May 1978 Ill. Homeward-Aces May 1978 Ill. Homeward-Aces Schedule Schedule Schedule Report Inclassified Schedule Cattley Observation Schedule Report Inclassified Schedule Cattley Observation Unclassified Schedule Cattley Observation Schedule C	AFGL-TR-78-0154		From an antique order depth day to produce the second seco				
INFRARED ABSORPTION BY CO2 and H2O Author(s) David A. Cryvnak Darrell E. /Burch Derrell E. /Burch Derrel	4. TITLE (and Subtitle)		STYPE OF REPORT & PERIOD COVERED				
INFRARED ABSORPTION BY CO2 and H2O Legarobuna onc. necorr rouger		(9)	Scientific Report No. 1				
TAUTHOR(s) David A. Gryvnak Darrell E. Burch PERFORMING ORGANITATION NAME AND ADDRESS Ford Aerospace and Communications Corporation Aeronutronic Division Ford Road, Newport Beach, CA 92663 Air Force Geophysics Laboratories Hanscom AFB, Massachusetts 01731 Contract Monitor: Anthony P. D'Agati May 1878 May 1878 SECURITY CLASS. (of Inite report) Approved for public release; distribution unlimited. Distribution STATEMENT (of the abstract entered in Block 10, 11 different from Report) Approved for public release; distribution unlimited. NOISTRIBUTION STATEMENT (of the abstract entered in Block 10, 11 different from Report) 10. ABSTRACT (Continue on reverse side if necessary and identify by block number) Performance of the state of the state of the continuum Absorption Continuum Absorption ABSTRACT (Continue on reverse side if necessary and identify by block number) Spectral transmission data for CO2 are presented between approximately 495 and 835 cm 16 or a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0, 4 to 0.6 cm 17. Also included are data on the continuum absorption by 16,0 between 300 and 225 cm 17. Experimental data on the continuum absorption by 16,0 between 300 and 225 cm 18. Security of several			10/04/76-10/04/77				
TAUTHOR(s) David A. Gryvnak Darrell E. Burch PERFORMING ORGANITATION NAME AND ADDRESS Ford Aerospace and Communications Corporation Aeronutronic Division Ford Road, Newport Beach, CA 92663 Air Force Geophysics Laboratories Hanscom AFB, Massachusetts 01731 Contract Monitor: Anthony P. D'Agati May 1878 May 1878 SECURITY CLASS. (of Inite report) Approved for public release; distribution unlimited. Distribution STATEMENT (of the abstract entered in Block 10, 11 different from Report) Approved for public release; distribution unlimited. NOISTRIBUTION STATEMENT (of the abstract entered in Block 10, 11 different from Report) 10. ABSTRACT (Continue on reverse side if necessary and identify by block number) Performance of the state of the state of the continuum Absorption Continuum Absorption ABSTRACT (Continue on reverse side if necessary and identify by block number) Spectral transmission data for CO2 are presented between approximately 495 and 835 cm 16 or a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0, 4 to 0.6 cm 17. Also included are data on the continuum absorption by 16,0 between 300 and 225 cm 17. Experimental data on the continuum absorption by 16,0 between 300 and 225 cm 18. Security of several	INFRARED ABSORPTION BY CO2 and H2O	1 1 1 1 1 1 1 1 1 1 1 1	S. PERFORMING ORG. REPORT NOMBER				
David A. Gryvnak Darrell E. /Burch PERFORMING ORGANIZATION NAME AND ADDRESS Ford Aerospace and Communications Corporation Aeronutronic Division Ford Road, Newport Beach, CA 92663 II. CONTROLLING OFFICE NAME AND ADDRESS Hanscom AFB, Massachusetts 01731 CONTROLLING OFFICE NAME AND ADDRESS Hanscom AFB, Massachusetts 01731 CONTROLLING OFFICE NAME AND ADDRESS Hanscom AFB, Massachusetts 01731 CONTROLLING OFFICE NAME AND ADDRESS Hanscom AFB, Massachusetts 01731 CONTROLLING OFFICE NAME AND ADDRESS Hanscom AFB, Massachusetts 01731 CONTROLLING OFFICE NAME AND ADDRESS Hanscom AFB, Massachusetts 01731 CONTROLLING OFFICE NAME AND ADDRESS Hanscom AFB, Massachusetts 01731 CONTROLLING OFFICE NAME AND ADDRESS Hanscom AFB, Massachusetts 01731 CONTROLLING OFFICE NAME AND ADDRESS Hanscom AFB, Massachusetts 01731 CONTROLLING OFFICE NAME AND ADDRESS Hanscom AFB, Massachusetts 01731 CONTROLLING OFFICE NAME AND ADDRESS Hanscom AFB, Massachusetts 01731 CONTROLLING OFFICE NAME AND ADDRESS HANGE OFFI OFFI OFFI OFFI OFFI OFFI OFFI OFF		$\mathcal{A} = \mathcal{A}$					
Darrell E. Burch PERFORMING ORGANITATION NAME AND ADDRESS FOR Aerospace and Communications Corporation Aeromutronic Division Ford Road, Newport Beach, CA 92663 II. CONTROLLING OFFICE NAME AND ADDRESS Hanscom AFB, Massachusetts 01731 CONTROLLING CANCER CANCER OF DIVISION CONTROLLING AGENCY NAME & ADDRESS Hanscom AFB, Massachusetts 01731 CONTROLLING AGENCY NAME & ADDRESSHI different from Controlling Office) II. MONITORING AGENCY NAME & ADDRESSHI different from Controlling Office) III. MONITORING AGENCY NAME & ADDRESSHI different from Controlling Office) III. DECLASSIFICATION DOWNORADING III. DECLASSIFICATION DOWNORADING III. DISTRIBUTION STATEMENT (of the abetrect entered in Block 10, if different from Report) III. DISTRIBUTION STATEMENT (of the abetrect entered in Block 10, if different from Report) III. SUPPLEMENTARY NOTES ** KEY WORDS (Continue on reverse side if necessary and identify by block number) III. SUPPLEMENTARY NOTES ** KEY WORDS (Continue on reverse side if necessary and identify by block number) ** KEY WORDS (Continue on reverse side if necessary and identify by block number) ** KEY WORDS (Continue on reverse side if necessary and identify by block number) ** NET WORDS (Continue on reverse side if necessary and identify by block number) ** NET WORDS (Continue on reverse side if necessary and identify by block number) ** NET WORDS (Continue on reverse side if necessary and identify by block number) ** NET WORDS (Continue on reverse side if necessary and identify by block number) ** NET WORDS (Continue on reverse side if necessary and identify by block number) ** NET WORDS (Continue on reverse side if necessary and identify by block number) ** NET WORDS (Continue on reverse side if necessary and identify by block number) ** NET WORDS (Continue on reverse side if necessary and identify by block number) ** NET WORDS (Continue on reverse side if necessary and identify by block number) ** NET WORDS (Continue on reverse side if necessary and identify by block number) ** NET WORDS	7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(3)				
Darrell E. Burch PERFORMING ORGANITATION NAME AND ADDRESS FOR Aerospace and Communications Corporation Aeromutronic Division Ford Road, Newport Beach, CA 92663 II. CONTROLLING OFFICE NAME AND ADDRESS Hanscom AFB, Massachusetts 01731 CONTROLLING CANCER CANCER OF DIVISION CONTROLLING AGENCY NAME & ADDRESS Hanscom AFB, Massachusetts 01731 CONTROLLING AGENCY NAME & ADDRESSHI different from Controlling Office) II. MONITORING AGENCY NAME & ADDRESSHI different from Controlling Office) III. MONITORING AGENCY NAME & ADDRESSHI different from Controlling Office) III. DECLASSIFICATION DOWNORADING III. DECLASSIFICATION DOWNORADING III. DISTRIBUTION STATEMENT (of the abetrect entered in Block 10, if different from Report) III. DISTRIBUTION STATEMENT (of the abetrect entered in Block 10, if different from Report) III. SUPPLEMENTARY NOTES ** KEY WORDS (Continue on reverse side if necessary and identify by block number) III. SUPPLEMENTARY NOTES ** KEY WORDS (Continue on reverse side if necessary and identify by block number) ** KEY WORDS (Continue on reverse side if necessary and identify by block number) ** KEY WORDS (Continue on reverse side if necessary and identify by block number) ** NET WORDS (Continue on reverse side if necessary and identify by block number) ** NET WORDS (Continue on reverse side if necessary and identify by block number) ** NET WORDS (Continue on reverse side if necessary and identify by block number) ** NET WORDS (Continue on reverse side if necessary and identify by block number) ** NET WORDS (Continue on reverse side if necessary and identify by block number) ** NET WORDS (Continue on reverse side if necessary and identify by block number) ** NET WORDS (Continue on reverse side if necessary and identify by block number) ** NET WORDS (Continue on reverse side if necessary and identify by block number) ** NET WORDS (Continue on reverse side if necessary and identify by block number) ** NET WORDS (Continue on reverse side if necessary and identify by block number) ** NET WORDS	David A. Gryvnak		the state of the s				
Ford Aerospace and Communications Corporation Aeronutronic Division Ford Road, Newport Beach, CA 92663 11. CONTROLLING OFFICE NAME AND ADDRESS Air Force Geophysics Laboratories Hansom AFB, Massachusetts 01731 Contract Monitor: Anthony P. D'Agati 13. Homerof-PACES Contract Monitor: Anthony P. D'Agati 14. Honiforing Acency NAME's ADDRESS(II different from Controlling Office) Inclassified 15. DECLASS/ICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 18. Supplementary notes 19. Key words (Continue on reverse side if necessary and identify by block number) 19. Abstract (Continue on reverse side if necessary and identify by block number) 20. Abstract (Continue on reverse side if necessary and identify by block number) 21. Spectral transmission data for CO2 are presented between approximately 495 and 833/cm for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6 cm Also included are data on the continuum absorption by H20 between 300 and 825/cm Experimental data on the continuum absorption are compared with data calculated on the basis of several		/·'.	F19628-76-C-0302				
Ford Aerospace and Communications Corporation Aeronutronic Division Ford Road, Newport Beach, CA 92663 11. CONTROLLING OFFICE NAME AND ADDRESS Air Force Geophysics Laboratories Hansom AFB, Massachusetts 01731 Contract Monitor: Anthony P. D'Agati 13. Homerof-PACES Contract Monitor: Anthony P. D'Agati 14. Honiforing Acency NAME's ADDRESS(II different from Controlling Office) Inclassified 15. DECLASS/ICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 18. Supplementary notes 19. Key words (Continue on reverse side if necessary and identify by block number) 19. Abstract (Continue on reverse side if necessary and identify by block number) 20. Abstract (Continue on reverse side if necessary and identify by block number) 21. Spectral transmission data for CO2 are presented between approximately 495 and 833/cm for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6 cm Also included are data on the continuum absorption by H20 between 300 and 825/cm Experimental data on the continuum absorption are compared with data calculated on the basis of several	and the second second	<u> </u>	/				
Aeronutronic Division Ford Road, Newport Beach, CA 92663 11. CONTROLLING OFFICE NAME AND ADDRESS Air Force Geophysics Laboratories Hanscom AFB, Massachusetts 01731 Contract Monitor: Anthony P. D'Agati 12. Number Acades 59 13. SECURITY CLASS. (of this report) Unclassified 15. DECLASSIFICATION DOWNGRADING CE. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 10, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) 19. ABSTRACT (Continue on reverse side if necessary and identify by block number) 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) 21. ABSTRACT (Continue on reverse side if necessary and identify by block number) 22. ABSTRACT (Continue on reverse side if necessary and identify by block number) 23. ABSTRACT (Continue on reverse side if necessary and identify by block number) 24. Septimal transmission data for CO2 are presented between approximately 495 and 833 /cm 16 for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6 cm 17. Also included are data on the continuum absorption by H20 between 300 and 825 /cm 17. Experimental data on the continuum absorption are compared with data calculated on the basis of several	9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS				
Ford Road, Newport Beach, CA 92663 11. CONTROLLING OFFICE NAME AND ADDRESS ALT Force Geophysics Laboratories Hanscom AFB, Massachusetts 01731 Contract Monitor: Anthony P. D'Agati 12. Newser of AGES 59 13. Newser of AGES 59 14. MONITORING AGENCY NAME & ADDRESS/// different from Controlling Office) In Monitoring STATEMENT (of this Report) Approved for public release; distribution unlimited. 15. DECLASSIFICATION OOWNGRADING SCHEDULE 17. DISTRIBUTION STATEMENT (of the abotrect entered in Block 20, 11 different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) H2O, CO2 Atmospheric Transmission Line Shape Absorption Continuum Absorption 10. ABSTRACT (Continue on reverse side if necessary and identify by block number) Spectral transmission data for CO2 are presented between approximately 495 and 835/cm for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6 cm f. Also included are data on the continuum absorption by H2O between 300 and 825/cm f. Experimental data on H2O absorption are compared with data calculated on the basis of several		Corporation	62101F 1/1				
In CONTROLLING OFFICE NAME AND ADDRESS Air Force Geophysics Laboratories Hanscom AFB, Massachusetts 01731 Contract Monitor: Anthony P. D'Agati 13. MONITORING AGENCY NAME & ADDRESS/II dillerant from Controlling Office) Winclassified 15. SECURITY CLASS. (of this report) Unclassified 15. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 10, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identity by block number) 19. ABSTRACT (Continue on reverse side if necessary and identity by block number) 10. ABSTRACT (Continue on reverse side if necessary and identity by block number) 10. ABSTRACT (Continue on reverse side if necessary and identity by block number) Spectral transmission data for CO2 are presented between approximately 495 and 835/cm for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6 cm f. Also included are data on the continuum absorption by H20 between 300 and 825/cm f. Experimental data on H20 absorption are compared with data calculated on the basis of several		1/1/2	767Ø09AJ				
Air Force Geophysics Laboratories Hanscom AFB, Massachusetts 01731 Contract Monitor: Anthony P. D'Agati 13. NUMBER OF AGES Contract Monitor: Anthony P. D'Agati 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEOULE 15b. DECLASSIFICATION/DOWNGRADING 16c. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side II necessary and identity by block number) H2O, CO2 Atmospheric Transmission Line Shape Absorption Continuum Absorption 10. ABSTRACT (Continue on reverse side II necessary and identity by block number) Spectral transmission data for CO2 are presented between approximately 495 and 835/cm for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6 cm f. Also included are data on the continuum absorption by H2O between 300 and 825/cm Lexperimental data on H2O absorption are compared with data calculated on the basis of several		3 (19)	Some in the State of the State				
ATT FORCE GEORGYS Laboratories Hanscom AFB, Massachusetts 01731 Contract Monitor: Anthony P. D'Agati 14. MONITORING AGENCY NAME & ADDRESS(II diliserent from Controlling Office) Unclassified 15. SECURITY CLASS. (of this report) Unclassified 15. DECLASSIFICATION OOWNGRADING SCHEDULE Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 10, If diliserent from Report) 18. SUPPLEMENTARY NOTES 19. SUPPLEMENTARY NOTES 19. ABSTRACT (Continue on reverse side if necessary and identify by block number) Absorption Continuum Absorption 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Spectral transmission data for CO ₂ are presented between approximately 495 and 835/cm for a variety of samples of CO ₂ mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6 cm for Experimental data on the continuum absorption by H ₂ O between 300 and 825/cm Experimental data on the dosorption are compared with data calculated on the basis of several		11	1, , ,				
CONTRACT (Continue on reverse side if necessary and identify by block number) H2. OSTRIBUTION STATEMENT (of this abstract entered in Block 20, if different from Report) **Supplementary notes **Supplementary notes **Attemption Continue on reverse side if necessary and identify by block number) H2. O. CO2 Atmospheric Transmission Line Shape Absorption Continuum Absorption 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) **Supplementary notes **Attemption Continue on reverse side if necessary and identify by block number) **Supplementary notes **Attemption Continue on reverse side if necessary and identify by block number) **Supplementary notes **Supplementary notes **Attemption Continue on reverse side if necessary and identify by block number) **Supplementary notes **Supplementary notes **Attemption Continuum absorption **Supplementary notes **Attemption Continuum absorption **Supplementary notes and identify by block number) **Attemption and identify by block number) **Supplementary notes and identify by block number) **			'l				
15. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION DOWNGRADING SCHEDULE 15. SECURITY CLASS. (of this report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 10, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) 19. H2O, CO2 Atmospheric Transmission Line Shape Absorption Continuum Absorption 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Spectral transmission data for CO2 are presented between approximately 495 and 835/cm for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6 cm f. Also included are data on the continuum absorption by H2O between 300 and 825/cm Experimental data on H2O absorption are compared with data calculated on the basis of several	Hanscom AFB, Massachusetts 01731	/ معرفات					
Unclassified 15a. DECLASSIFICATION/DOWNGRADING Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identity by block number) H2O, CO2 Atmospheric Transmission Line Shape Absorption Continuum Absorption 10. ABSTRACT (Continue on reverse side if necessary and identity by block number) Spectral transmission data for CO2 are presented between approximately 495 and 835/cm for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6/cm f. Also included are data on the continuum absorption by H2O between 300 and 825/cm f. Experimental data on H2O absorption are compared with data calculated on the basis of several	14. MONITORING AGENCY NAME & ADDRESSII different	from Controlling Office)	15. SECURITY CLASS. (of this report)				
Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abetrect entered in Block 10, 11 different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) H2O, CO2 Atmospheric Transmission Line Shape Absorption Continuum Absorption 10. ABSTRACT (Continue on reverse side if necessary and identify by block number) Spectral transmission data for CO2 are presented between approximately 495 and 835/cm ⁻¹ for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6 cm ⁻¹ . Also included are data on H2O absorption are compared with data calculated on the basis of several							
Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) 19. H2O, CO2 Atmospheric Transmission Line Shape Absorption 10. ABSTRACT (Continue on reverse side if necessary and identify by block number) 18. ABSTRACT (Continue on reverse side if necessary and identify by block number) 18. ABSTRACT (Continue on reverse side if necessary and identify by block number) 18. ABSTRACT (Continue on reverse side if necessary and identify by block number) 18. ABSTRACT (Continue on reverse side if necessary and identify by block number) 29. Continuum Absorption 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) 21. Experimental yes and identify by block number) 22. ABSTRACT (Continue on reverse side if necessary and identify by block number) 23. ABSTRACT (Continue on reverse side if necessary and identify by block number) 24. ABSTRACT (Continue on reverse side if necessary and identify by block number) 25. Experimental yes and identify by block number) 26. ABSTRACT (Continue on reverse side if necessary and identify by block number) 27. Experimental yes and identify by block number) 28. ABSTRACT (Continue on reverse side if necessary and identify by block number) 29. ABSTRACT (Continue on reverse side if necessary and identify by block number) 29. ABSTRACT (Continue on reverse side if necessary and identify by block number) 29. ABSTRACT (Continue on reverse side if necessary and identify by block number) 29. ABSTRACT (Continue on reverse side if necessary and identify by block number) 29. ABSTRACT (Continue on reverse side if necessary a	112 8 16 16 16		Unclassified				
Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) 19. H2O, CO2 Atmospheric Transmission Line Shape Absorption 10. ABSTRACT (Continue on reverse side if necessary and identify by block number) 18. ABSTRACT (Continue on reverse side if necessary and identify by block number) 18. ABSTRACT (Continue on reverse side if necessary and identify by block number) 18. ABSTRACT (Continue on reverse side if necessary and identify by block number) 18. ABSTRACT (Continue on reverse side if necessary and identify by block number) 29. Continuum Absorption 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) 21. Experimental yes and identify by block number) 22. ABSTRACT (Continue on reverse side if necessary and identify by block number) 23. ABSTRACT (Continue on reverse side if necessary and identify by block number) 24. ABSTRACT (Continue on reverse side if necessary and identify by block number) 25. Experimental yes and identify by block number) 26. ABSTRACT (Continue on reverse side if necessary and identify by block number) 27. Experimental yes and identify by block number) 28. ABSTRACT (Continue on reverse side if necessary and identify by block number) 29. ABSTRACT (Continue on reverse side if necessary and identify by block number) 29. ABSTRACT (Continue on reverse side if necessary and identify by block number) 29. ABSTRACT (Continue on reverse side if necessary and identify by block number) 29. ABSTRACT (Continue on reverse side if necessary and identify by block number) 29. ABSTRACT (Continue on reverse side if necessary a	$(C, V)_{P}$		154. DECLASSIFICATION DOWNGRADING				
Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (a) the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) H20, CO2 Atmospheric Transmission Line Shape Absorption Continuum Absorption 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Spectral transmission data for CO2 are presented between approximately 495 and 835/cm 1 for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6/cm 1. Also included are data on the continuum absorption by H20 between 300 and 825/cm 1. Experimental data on H20 absorption are compared with data calculated on the basis of several	The same of the sa	# 1	SCHEDULE				
'9. KEY WORDS (Continue on reverse side if necessary and identity by block number) H20, CO2 Atmospheric Transmission Line Shape Absorption Continuum Absorption 20. ABSTRACT (Continue on reverse side if necessary and identity by block number) Spectral transmission data for CO2 are presented between approximately 495 and 835/cm 1 for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6 cm 1. Also included are data on the continuum absorption by H20 between 300 and 825/cm 1. Experimental data on H20 absorption are compared with data calculated on the basis of several	Approved for public release, distr	TOUCTON GULTMILE					
H2O, CO2 Atmospheric Transmission Line Shape Absorption Continuum Absorption 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Spectral transmission data for CO2 are presented between approximately 495 and 835/cm for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6/cm for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6/cm for a variety of samples of continuum absorption by H2O between 300 and 825/cm for Experimental data on H2O absorption are compared with data calculated on the basis of several	17. DISTRIBUTION STATEMENT (of the abetract entered)	n Block 20, if different fro	m Report)				
H2O, CO2 Atmospheric Transmission Line Shape Absorption Continuum Absorption 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Spectral transmission data for CO2 are presented between approximately 495 and 835/cm for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6/cm for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6/cm for a variety of samples of continuum absorption by H2O between 300 and 825/cm for Experimental data on H2O absorption are compared with data calculated on the basis of several							
H2O, CO2 Atmospheric Transmission Line Shape Absorption Continuum Absorption 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Spectral transmission data for CO2 are presented between approximately 495 and 835/cm for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6/cm for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6/cm for a variety of samples of continuum absorption by H2O between 300 and 825/cm for Experimental data on H2O absorption are compared with data calculated on the basis of several			i				
H2O, CO2 Atmospheric Transmission Line Shape Absorption Continuum Absorption 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Spectral transmission data for CO2 are presented between approximately 495 and 835/cm for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6/cm for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6/cm for a variety of samples of continuum absorption by H2O between 300 and 825/cm for Experimental data on H2O absorption are compared with data calculated on the basis of several							
H2O, CO2 Atmospheric Transmission Line Shape Absorption Continuum Absorption 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Spectral transmission data for CO2 are presented between approximately 495 and 835/cm for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6/cm for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6/cm for a variety of samples of continuum absorption by H2O between 300 and 825/cm for Experimental data on H2O absorption are compared with data calculated on the basis of several							
Atmospheric Transmission Line Shape Absorption Continuum Absorption 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Spectral transmission data for CO2 are presented between approximately 495 and 835/cm ⁻¹ for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6/cm ⁻¹ . Also included are data on the continuum absorption by H2O between 300 and 825/cm ⁻¹ . Experimental data on H2O absorption are compared with data calculated on the basis of several	16. SUPPLEMENTARY NOTES						
Atmospheric Transmission Line Shape Absorption Continuum Absorption 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Spectral transmission data for CO2 are presented between approximately 495 and 835/cm ⁻¹ for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6/cm ⁻¹ . Also included are data on the continuum absorption by H2O between 300 and 825/cm ⁻¹ . Experimental data on H2O absorption are compared with data calculated on the basis of several							
Atmospheric Transmission Line Shape Absorption Continuum Absorption 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Spectral transmission data for CO2 are presented between approximately 495 and 835/cm ⁻¹ for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6/cm ⁻¹ . Also included are data on the continuum absorption by H2O between 300 and 825/cm ⁻¹ . Experimental data on H2O absorption are compared with data calculated on the basis of several	•						
Atmospheric Transmission Line Shape Absorption Continuum Absorption 20. ABSTRACT (Continue on reverse side if necessary and identity by block number) Spectral transmission data for CO2 are presented between approximately 495 and 835/cm ⁻¹ for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6/cm ⁻¹ . Also included are data on the continuum absorption by H2O between 300 and 825/cm ⁻¹ . Experimental data on H2O absorption are compared with data calculated on the basis of several							
Atmospheric Transmission Line Shape Absorption Continuum Absorption 20. ABSTRACT (Continue on reverse elde if necessary and identity by block number) Spectral transmission data for CO2 are presented between approximately 495 and 835/cm ⁻¹ for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6/cm ⁻¹ . Also included are data on the continuum absorption by H2O between 300 and 825/cm ⁻¹ . Experimental data on H2O absorption are compared with data calculated on the basis of several	'9. KEY WORDS (Continue on reverse side if necessary and	d identify by block number					
Atmospheric Transmission Line Shape Absorption Continuum Absorption 20. ABSTRAC† (Continue on reverse side if necessary and identity by block number) Spectral transmission data for CO2 are presented between approximately 495 and 835/cm for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6/cm l. Also included are data on the continuum absorption by H2O between 300 and 825/cm l. Experimental data on H2O absorption are compared with data calculated on the basis of several	,						
Absorption Continuum Absorption 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Spectral transmission data for CO2 are presented between approximately 495 and 835 cm for a variety of samples of CO2 mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6 cm f. Also included are data on the continuum absorption by H2O between 300 and 825 cm f. Experimental data on H2O absorption are compared with data calculated on the basis of several							
Continuum Absorption 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Spectral transmission data for CO ₂ are presented between approximately 495 and 835 cm ⁻¹ for a variety of samples of CO ₂ mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6 cm ⁻¹ . Also included are data on the continuum absorption by H ₂ O between 300 and 825 cm ⁻¹ . Experimental data on H ₂ O absorption are compared with data calculated on the basis of several		ne Shape					
Spectral transmission data for CO ₂ are presented between approximately 495 and 835/cm ⁻¹ for a variety of samples of CO ₂ mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6/cm ⁻¹ . Also included are data on the continuum absorption by H ₂ O between 300 and 825/cm ⁻¹ . Experimental data on H ₂ O absorption are compared with data calculated on the basis of several							
Spectral transmission data for CO ₂ are presented between approximately 495 and 835/cm ⁻¹ for a variety of samples of CO ₂ mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6/cm ⁻¹ . Also included are data on the continuum absorption by H ₂ O between 300 and 825/cm ⁻¹ . Experimental data on H ₂ O absorption are compared with data calculated on the basis of several	Continuum Absorption						
835/cm ⁻¹ for a variety of samples of CO ₂ mixed in dry air. Sample parameters cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6/cm ⁻¹ . Also included are data on the continuum absorption by H ₂ O between 300 and 825/cm ⁻¹ . Experimental data on H ₂ O absorption are compared with data calculated on the basis of several							
cover a wide range of pressures with the temperatures near 310 K. The spectral resolution varies from approximately 0.4 to 0.6 cm ⁻¹ . Also included are data on the continuum absorption by H2O between 300 and 825 cm ⁻¹ . Experimental data on H2O absorption are compared with data calculated on the basis of several	Spectral transmission data for CO ₂	are presented b	between approximately 495 and				
resolution varies from approximately 0.4 to 0.6 cm ⁻¹ . Also included are data on the continuum absorption by H2O between 300 and 825 cm ⁻¹ . Experimental data on H2O absorption are compared with data calculated on the basis of several	835/cm for a variety of samples	of CO2 mixed in	dry air. Sample parameters				
on the continuum absorption by H2O between 300 and 825/cm-1. Experimental data on H2O absorption are compared with data calculated on the basis of several	cover a wide range of pressures wi	tn the temperatu	res near 310 K. The spectral				
on H2O absorption are compared with data calculated on the basis of several							
theoretical line snapes. The nyu continuum absorption decreases more rapidly with increasing temperature than is predicted by line-change theoretical							
	theoretical line snapes. The H2O with increasing temperature than i	continuum absorp	ine-shape theories				

TABLE OF CONTENTS

Section			Page
1	INTRODUCTION		5
	Definitions, Symbols, and Nomenclature		6
2	ABSORPTION BY CO ₂ BETWEEN 500 AND 850 cm ⁻¹	•	9
	Background Experimental Results		9 10 11
3	H ₂ O CONTINUUM BETWEEN 330 AND 825 cm ⁻¹		49
	Laboratory Measurements Comparison of Measurements with Theory		49 51
4	REFERENCES		59

SECTION 1

INTRODUCTION

The experimental work reported herein has been performed primarily to obtain detailed absorption data to use as a check for the AFGL line-parameter listing and to serve as a basis for possible modifications to the listing. Section 2 provides extensive data that can be used to check the intensities, widths and shapes of the CO2 lines in the important 15 um band. Accurate information on these parameters is required because of the use of this band in remote sensing of the atmosphere from satellite-borne instruments and ground based instruments. The CO2 data included in this report complement the data presented by us in a previous report.

Section 3 shows several comparisons of calculated spectra with experimental spectra on the absorption by $\rm H_2O$ between approximately 330 cm⁻¹ and 600 cm⁻¹. Most of the experimental data used in the comparison were obtained by us and reported previously. Theoretical intensities, widths and positions of most of the $\rm H_2O$ absorption lines agree quite well with the experimental results. The most serious discrepancies occur in the intervals that are several cm⁻¹ from the nearest line of significant strength. The discrepancy is worse for samples of pure $\rm H_2O$ than for samples of $\rm H_2O + N_2$. This portion of the study is not yet complete. Additional work will be presented in a later report.

^{1.} R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee K. Fox, L. S. Rothman, and J. S. Garing; "AFCRL Atmospheric Absorption Line Parameters Compilation", AFCRL-TR-73-0096, 26 January 1973. (Associated with this report is a magnetic tape listing the line parameters.)

David A. Gryvnak, Darrell E. Burch, Robert L. Alt, and Dorianne K. Zgonc; "Infrared Absorption by CH4, H2O and CO2", Final Report No. AFGL-TR-76-0246 on Contract F19628-76-C-0067. Aeronutronic Report No. U-6275, December 1977.

^{3.} Darrell E. Burch, David A. Gryvnak, and Francis J. Gates; "Continuum Absorption by H₂O Between 330 and 825 cm⁻¹", Final Report No. AFCRL-TR-74-0377 on Contract F19628-74-C-0069. Aeronutronic Report No. U-6095, September 1974.

^{4.} Darrell E. Burch, David A. Gryvnak, and John D. Pembrook; "Infrared Absorption by H2O, NO2, and N2O4", Final Report No. AFCRL-TR-75-0420 on Contract No. F19628-75-C-0049. Aeronutronic Report No. U-6159, September 1975.

DEFINITIONS, SYMBOLS, AND NOMENCLATURE

The true transmittance of a gas sample that would be observed at wavenumber $\dot{}$ with infinite resolving power is given by

$$T' = \exp(-u\alpha), \quad \text{or} \quad (-1/u) \, \ell_n T' = \alpha.$$
 (1)

The absorption coefficient a has units consistent with u, which is defined by Equation (2). Because of the finite slitwidth of a spectrometer and variations in a with wavenumber due to line structure, the observed transmittance T may differ from T^{\dagger} at the same wavenumber. The quantity T represents a weighted average of T^{\dagger} over the interval passed by the spectrometer.

The absorber thickness, u, of a gas sample is given by

$$u(\text{molecules/cm}^2) = 2.69 \times 10^{19} \text{ p* (atm) L(cm) } (273/\theta),$$

= 7.34 x 10²¹ p* (L/\theta). (2)

The temperature 0 is in degrees Kelvin, and L is the geometrical path length through the sample. The density-equivalent-pressure p* of the absorbing gas may vary slightly from the partial pressure p at high pressures. The gas does not follow exactly the perfect gas law at the higher pressures for which the Van der Waals' equation of state is required. The deviation from the perfect gas law causes a non-linear relationship between the pressure and the density of the gas. For all of the pressures used in the present investigation, the following simple expression is sufficiently accurate:

$$p^{\kappa} = p(1 + c p). \tag{3}$$

The pressures are in atm, and c depends on the gas species and temperature. Near room temperature, c=0.005 atm⁻¹ for CO₂. For the H₂O samples studied, the difference between p* and p can be ignored.

Because of differences in the efficiencies of collisions with molecules of different gas species, the half-width α of a collision-broadened line depends on the partial pressure of each of the gas species present in a sample. The equivalent pressure P_e given by the following equation is a convenient parameter when dealing with absorption by a mixture that contains non-absorbing N_2 in addition to the absorbing gas species:

$$P_{c} = Bp + p_{N} = (B-1)p + P,$$
 (4)

where P is the total pressure, p_N is the partial pressure of N_2 , and p is the partial pressure of the absorbing gas species. The experimentally determined constant B is the ratio of the self-broadening ability to the broadening

ability of N₂. The equivalent pressure is therefore directly proportional to α , regardless of the relative concentrations of the absorbing gas and the N₂. We note that P_e approximates P for dilute mixtures of the absorbing gas species in N₂ (p ··· p_N). The CO₂ samples discussed in Section 2 consisted of CO₂ plus dry air; the dry air consisted of 79% N₂ and 21% O₂ to closely approximate the atmosphere. The same symbol, P_e, represents the equivalent pressure of these samples with p_{air} replacing p_N in Eq. (4).

Because of the proportional relationship between α and pressure, the absorption coefficient k due to a single absorption line is also proportional to pressure in the extreme wings of a line where $|\nu-\nu_0|\gg\alpha$. This linear relationship between pressure of a sample of fixed composition and the absorption coefficient in the wings has been demonstrated experimentally under many conditions; it is also predicted by most theoretical line shapes. It follows that the wing absorption coefficient C due to the extreme wings of several lines is proportional to pressure and is equal to the sum of all of the individual absorption coefficients (denoted by k) due to each line. Because wing absorption changes slowly with wavenumber, it is frequently called continuum absorption. Continuum absorption may also arise from dimers, such as $H_2O:H_2O$, or from pressure-induced bands. These two types of continuum have the same pressure dependence as absorption by line wings; therefore, in some cases we cannot distinguish which is the source of the absorption being measured.

The absorption coefficient due to local lines whose centers occur within a few cm⁻¹ of the point of observation is denoted by $\varkappa(local)$. This quantity may vary rapidly with wavenumber and depends on pressure because of collision-broadening of the absorption lines. At a given wavenumber, there may be absorption by local lines as well as by continuum. Therefore, for a pure H_2O sample, the total absorption coefficient \varkappa in Eq. (1) is given by

$$n + \kappa(local) + C_s^0 p. \qquad (pure H20)$$
 (5)

The normalized continuum coefficient C_S^0 is the value of C_S at a given temperature when p=1 atm. The subscript s denotes self-broadening of the lines. Since α_S^0 is proportional to p, and u is proportional to pL, it follows that $(-\frac{f_0}{f_0})$ for continuum due to the wings of lines is proportional to p^2L .

For a mixture of $H_2O + N_2$, Eq. (5) must be modified to account for broadening of the H_2O lines by N_2 .

$$= (local) + C_S^O p + C_N^O p_N .$$
 (6)

Several different line shapes have been proposed for collision-broadened absorption lines. Some of the most widely used shapes are represented by Eqs. (7) - (11). Each of these theoretical shapes has an apparent deficiency under some condition. Nevertheless, it is informative to compare the absorption coefficients predicted by the different shapes in different portions of the

spectrum. Near the line center where $|v - v_0| < |v_0|$ and $|v - v_0|$ is not more than a few times α , values of k given by all of the equations approach the value given by the simple Lorentz equation.

$$k = \frac{S}{\pi} \frac{\alpha}{(v - v_0)^2 + \alpha^2}$$
 Simple Lorentz (7)

$$= \frac{S}{\pi} \frac{v}{v_0} \frac{\alpha}{(v-v_0)^2 + \alpha^2} - \frac{\alpha}{(v+v_0)^2 + \alpha^2}$$
 Full Lorentz (8)

$$= \frac{s}{s} \frac{v}{v_0} \frac{2}{(v - v_0)^2 + \alpha^2} + \frac{\alpha}{(v + v_0)^2 + \alpha^2}$$
 VVW (9)

$$= \frac{S}{\pi} \frac{v}{v_0} \frac{1 - \exp(-\cosh v/\epsilon \theta)}{1 - \exp(-\cosh v_0/\epsilon \theta)} \frac{\alpha}{(v - v_0)^2 + \alpha^2} + \frac{\alpha}{(v + v_0)^2 + \alpha^2} MVVW (10)$$

$$= \frac{s}{\pi} \frac{4v^2\alpha}{(v^2 - v_0^2)^2 + 4v^2\alpha^2}$$
 Gross⁵ (11)

The names commonly associated with each of the shapes are indicated. Van Vleck-Weisskopf and modified Van Vleck-Weisskopf are abbreviated by VVW and MVVW, respectively. The line center is indicated by v_0 , the line intensity by S, the speed of light by c, Boltzmann's constant by script $\dot{\mathcal{L}}$, Planck's constant by h, and temperature (in Kelvins) by θ .

Consider the continuum at a wavenumber where the absorption is due to the wings ($|v-v_0| \gg \alpha$) of several lines the shapes of which are given by any one of the equations above. It follows from the above discussion that C_S^0/C_N^0 would be equal the ratio α_S^0/α_N^0 of the normalized half-widths for self-broadening and N2 broadening. Previous results of measurements at wavenumbers where most of the absorption is due to H2O lines centered between approximately 1 and 20 cm⁻¹ away from the point of the measurement indicate that this ratio is approximately 5. However, at wavenumbers where much of the absorption is apparently due to more distant lines, the ratio Cg/CN may be much greater than 5. These results indicate that the shapes of the extreme wings of self-broadened H2O lines are different from those of N2-broadened H2O lines. This subject is treated in considerable detail in Section 3.

^{5.} E. P. Gross, Phys. Rev. <u>97</u>, 395 (1955).

SECTION 2

ABSORPTION BY CO₂ BETWEEN 500 AND 850 cm⁻¹

BACKGROUND

In a previous report², we presented spectral data on the absorption by CO₂ between 500 and 850 cm⁻¹ for samples covering wide ranges of temperature, pressure and absorber thickness. The major purpose for these data was to provide a means of checking the intensitites, widths, and shapes of the CO₂ absorption lines in this spectral region. The line parameters are checked by comparing the spectral curves of transmittance obtained experimentally with calculated curves for an identical sample based on the line parameters on the AFGL line parameters tape. At any wavenumber the absorption may be due to several different lines from different bands. In many cases, the relative contributions by the various bands depend on the sample parameters temperature, pressure and absorber thickness. Thus, by varying each of these sample parameters over a wide range of values, the line parameters can be checked by comparing the experimental data with the calculated spectra.

The experimental data presented in the previous report were obtained with spectral slitwidths between approximately 1.2 cm⁻¹ and 4.2 cm⁻¹. The resolution was coarse enough to smooth-out most of the structure due to the individual lines in the P- and R-branches of the strong bands. The strong Q-branches were still quite apparent in many of the spectra, but the contours of the curves over the Q-branches were distorted significantly by the relatively coarse resolution. A few of the calculated spectra differed significantly from the corresponding experimental data, particularly near some of the Q-branches. Upon comparing the data, it became apparent that many of the line parameters could be checked more accurately with experimental spectra of several selected samples that were obtained with higher resolution. The data presented in this section were obtained for this purpose.

The spectral regions chosen for the additional study with higher resolution contain features, such as a weak Q-branch, that could not be observed accurately with coarse resolution. The sample parameters were selected so these features could be observed best. For example, a very weak Q-branch may not be observable in a coarse-resolution spectrum because it occurs among the P- or R-branch lines of a stronger band. However, the weak Q-branch can be made to stand out in a higher-resolution spectrum of a sample at low pressure. The amount of absorption by the many very weak lines in a Q-branch is much higher relative to that by attacker, well-separated lines for a low-pressure sample than for a high-pressure sample. Spectra were also obtained for a few high-pressure samples to provide information on the intensities of a few spectral features and on the shapes of the extreme wings of the absorption lines.

EXPERIMENTAL

The experimental procedures were similar to those employed previously. All samples consisted of either pure CO₂ or of CO₂ plus dry air; the dry air consisted of 79% N₂ and 21% O₂ to match the atmosphere. The mixtures of CO₂ plus dry air were obtained pre-mixed from a commercial gas supplier in cylinders at total pressures of approximately 150 atm. Table 1 lists the mole concentrations of the CO₂ in the different mixtures studied. A concentration of 1.000 corresponds to pure CO₂; 0.153 corresponds to 15.3% CO₂ plus 84.7% dry air, etc. The concentration of each mixture was determined in the previous study.²

All of the samples were contained in a multiple-pass absorption cell with a base length of approximately 1 meter. The pathlength L through each sample is given in Table 1. Sample temperatures were maintained between 308 and 311 K to correspond approximately to the highest temperatures encountered in the atmosphere. The temperature of a given sample was uniform to less than \pm 1 K throughout the length of the cell. Also given in Table 1 are: the absorber thickness u, the CO2 partial pressure p, and the equivalent pressure $P_{\rm e}$ (= P + 0.30 p). The number of the figure in which the spectrum appears is given in the right-hand column of Table 1. The spectral region over which each sample was studied is also given in Table 1 along with the Resolution Schedule.

Table 2 relates the Resolution Schedule to the spectral slitwidth, which is based on a "triangular slit-function" and is equal to the full width of the triangle at half maximum. A grating with 40 grooves/mm was employed to obtain Resolution Schedules A and B; the grating used for Resolution Schedule C contained 75 grooves/mm.

The procedures employed in scanning and analyzing the spectral data are essentially the same as those used previously. All of the optical path external to the sample cell passed either through a vacuum or through non-absorbing N₂ to eliminate absorption by CO₂ or any other atmospheric gas. A Nernst glower served as the source of radiant energy. The detector contained a sensitive element of Ge:Cu and was cooled by liquid He.

A background curve that corresponded to 100% transmittance was scanned with the sample cell evacuated, either immediately before or after each sample spectrum was scanned. In order to check for possible sampling errors or changes in the signal level corresponding to 100% transmittance during a scan, portions of each spectrum were re-run and the results were compared with the spectrum that was to be reduced further. Separate samples having the same parameters were employed in the comparisons as further checks for possible sampling errors. Each sample spectrum and its corresponding background spectrum were digitized with the data related directly to detector signal punched on computer cards. A computer then calculated values of transmittance, integrated absorptance, etc.

Tables 2 and 4 list the absorption lines used to provide wavenumber

Sample No.		· 8	T (ED)	p (atm)	P (atm)	Pe (atm)	(molecules)	Spectral Range (cm)	Res. Sch.	71g. No.
1801	1.000	308	3291		7.697E CO	1.037£ 01	6.258E 23	494- 512	4	⊣.
uro2	1.000	308	3291				٥ (a •	٠.
HF03	0.153	308	3291	1.460F 00			538 5	494- 512	Q <	٠.
4097	0.153	308	3291	4.590E-01			v (٠ ،	•
1 10 S	1.000	310	3291	7.697E-01	7.697E-01	1.004E 00			1	64747
4806	000-1	310	1561	1.9215-01	1.921E-01	2. SOOE -01	1.499E 22		4	m
1407	0.153	310	3291	1.4625-01	9.553E-01	•	1:1 40F 22		4	m
HEOR	0.153	310	3291	3.644E-02	2.382E-01	2-4915-01			d	m
HE09	000-1	310	3291	3.000E 00	3.000E 00	3.955E 00	.372	535- 552	4	7
0187	1.000	308	416		7.6975 00	1.037E 01	7.911E 22	535- 558	٩	4
-	. 151-0	900	1961	1.4605 00	00.5396 00	00 3080 0	1.1495 23	535- 552	⋖	4
0.10		9 6	708			00 3066.6	9 4E	5-	⋖	4
	0 - 1 53	308	3291	4-389E-01	2.868E 00	3.001E 00	2	535- 552	4	. 4
4 12	0000	308	3291	2 - 408E-02	2-408E-02	3-1316-02			æ	s
WP15	0-153	310	3291	1 - 464E-01		1.001E 00			g:	٠,
7.05		;	Ċ	2.4445.00			2.857F 21	567- KT2	a	un
707	0.00500	2 6	1,70		10005 00	1.0035.00	. 952	-19	α	·
2 1 2	20000	; ;	24.4	1.2505-02			PROF	-	c n	9
6 12	200.0	5	2 4 4	3.7506-03	1000				a,	ø
HR20	0.00125	9 5	1648	1.250E-03	1.000E 00	1-000E 00	RADE	611- 632	6	9
HR21	0-153	308	3291	4.570E-03	2.987E-02	3-1245-02	3.586F 20			ر م
1822	1.000	310	1648	6.053E-03	6.0535-03	7.869E-03		269 -119		0 1
1 1 2 2 3	0.153	010	3291	0 - u	2.987E-02	3-124E-02				•
4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0000	010	3291	1.092E-03	1.092E-03	1 - 420E-03	0.0015 10	640- 640 640- 680	ى د	• •
	~	310	3241	7.939E-04	1.9212-03	2.009£-03				h
9247	0.00125	311	826	1.2506-03		1 - 000E 00	2.438E 19	640- 680	ပ	6
1521	0.900312	311	826	3.1206-04					ပ	σ.
150g	0.000039	31	926	3.910E-05	•000E	1.000E 00	. 626E		U I	σ
6641	• 153	314	826	-530E-0	٠		958E		יני	10
1230	0.00977	314	826	9.731E-03	9.961E-01	9.990E-01	1-880E 20	193- 110	ن د	10
16.87	0.90125	31.1	1648	1.250E-02	1.000F 01	1.000E 01	4.865E 20			01
-R32	0.00125	311	1648	3.750E-03	.000E		29E			10
4833	0-00125	31	1648	1.250E-03		1.000E 00	•864E	705- 770	٠	ខ
40.6	1.000	31.1	1648	•	4.803E-02	6.245E-02	1.869E 21	١,	υ i	=
1F35	1-000	311	1648	6.0798-03	079E	-3606		105- 775	υ	
1F36	0.153	310	3241	1.1476-03	7.5008-03	7.840E-03	-	705- 775		11
48.37	1.000	311	3291	7.347E 00	347E		-907E 2			:::
4838	•	311	3291	2.279E 00	2.279E 00	2.394E 00			ပေ	11 2
Ľ.	000	319	3291	89.7E	•	00 4E	6.023E 22	×	ا د	<u>.</u>
070	0.0385	31.1	3291	3-850F-01	1.000E G1	1.0126 01	CV	115- 838	U	3
17.41	0.60977	31	3291	9-1708-62	1.0005 01	1.00 35 01	7.596E 21	ec		21
. R42	1.000	1.	32.91	1.3216-01	10-31:6-1	2.5006-01		Œ		13
5467	6-153	311	3291	1-3047-1	9.564E-01	1.0011 00			Ų	ជ
15.44	1.000	311	3291	4.803E-02	4.8038-02	245E-	336	775- 838		2
(F 45	0.0345	311	3291	3.804E-02	9-8R2F-01	-396E		œ.		2

TABLE 2. RESOLUTION SCHEDULES

Spectral resolution

(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	
500	0.41			
520	0.44		•	
540	0.48			
560	0.52	0.42		
580		0.45		
600		0.49	0.26	
620		0.53	0.28	
640		0.57	0.31	
660		0.61	0.33	
680		•••	0.36	
700			0.38	
720			0.41	
740			0.43	
760			0.46	
780			0.49	
800			0.51	
820			0.54	
840			0.57	

TABLE 3. CALIBRATION DATA FOR 494-632 cm⁻¹ REGION

(cm ⁻¹)	Gas (b)	Reference (a)	(cm ⁻¹)	Gas (b)	Reference (n)
406 14	11.0	BC	555.85	Int	
486.14	н ₂ 0	BC ₁		Int	
488.13	Ińt		557.07		
490.13	Int		558.29	Int	
492.15	Int		559.53	Int	
494.19	H ₂ 0	BC	560.76	Int	
496.18	Int		562.00		
498.19	Int		563,25	н ₂ 0 н ₂ 0	BC
500.22	Int		567,23	H20	BC
502.26	н, 0	AF	569.27	H ² 0	BC
504.45	H ₂ 0	AF	571.35	H_2^20 H_2^20	AF
506.93	H ₂ 0	BC	576.11	н, 0	AF
509.36	Int		578.26	Int	
511.82	Int		580.41	Int	
514.30			582.56	Int	
	Int	ВС	584.71		AF
516.82	11 ₂ 0	DC .	304.71	н ₂ 0	Ar .
519.60	н, 0	ВС	587.26	Int	
521.70	Ińt		589.81	Int	
523.84	Int		592.37	Int	
525.98	н, 0	BC	594.96	н, 0	BC
528.00	Ińt		600.11	H ₂ O	BC
530.04	Int		604.45	н, 0	ВС
532.09	Int		606.76	Int	
534.17	Int		609.07	Int	
536.26	H ₀ 0	BC	611.39	Int	
541.07	H ₂ 0	AF	613.75	Int	
345.30		ВС	616.07	ил	ВС
546.30	н ₂ 0		620.57	н ₂ 0 н ₂ 0	
	H ² 0	BC		¹² 0	BC
547.83	, 5	BC	625.29	н ² 0	BC
549.98	H ² 0	BC	628.12	Iñt	
554.64	H ₂ 0	BC	630.98	Int	
			633.87	co,	D

⁽a) BC indicates that the center positions of the H₂O lines are from unpublished data by Benedict and Calfee (Ref. 6). D indicates that the center position of the CO₂ line is from Drayson (Ref. 7). AF refers to the AFGL line-parameters listing.

⁽b) Int denotes the positions of calibration points found by interpolation as discussed in the text.

calibration. Transmission spectra of appropriate samples of the calibration gas, either CO₂ or H₂O, were scanned with spectral slitwidths equal to or narrower than those used to obtain the data. Positions of the centers of the calibration lines were determined in terms of fiducial marks that were related directly to grating position. Absorption lines of H₂O were employed for the low-wavenumber side of the region from 486 cm⁻¹ to 625 cm⁻¹. The H₂O lines used are reasonably well isolated from other lines so that the center positions could be located accurately, and the points of maximum abosrption were nearly independent of the slitwidth. Many of the CO₂ lines in the 490-625 cm⁻¹ region are blended, making it difficult to determine their center positions accurately. All of the H₂O line positions from 486.14 to 625.29 cm⁻¹ are from unpublished data provided by Benedict and Calfee. The values listed for these lines agree within a few hundredths of a cm⁻¹ with the corresponding values in the AFGL listing of line parameters. I

The $\rm CO_2$ line positions are well-known throughout most of the spectral region and were used from approximately 609 cm⁻¹ to the high-wavenumber side of the band system. Three H₂O lines centered between 616 cm⁻¹ and 626 cm⁻¹ were used because their positions could be determined more accurately than those of nearby $\rm CO_2$ lines. Most of the $\rm CO_2$ lines listed in Table 4 are not "blended" enough with weaker adjacent lines to shift the apparent line centers significantly.

The computer program used to reduce the data has been written so that wavenumbers between the calibration lines are calculated on the basis of a linear relationship between wavenumber and the fiducial marks that indicate the grating position. On the original spectra as they are scanned by the spectrometer, the wavenumber scale deviates enough from this linear relationship to cause a significant error in the final calculated spectrum if the calibration lines are too far apart. In order to reduce such errors, we have generated additional calibration points between the CO₂ or H₂O calibration lines listed in Tables 3 and 4. These generated calibration points, indicated by "Int" in the tables, were determined by employing a second-order equation to interpolate between the CO₂ or H₂O calibration lines. If this more accurate method of interpolation had not been employed, systematic calibration errors as large as approximately 0.1 cm⁻¹ would have resulted in some places. With the accurately interpolated calibration points, any systematic errors resulting

^{6.} W. S. Benedict, Inst. for Molecular Physics, College Park Maryland, 90742; R. Calfee, Wave Propogation Labs., Environmental Research Labs, National Oceanic Atmospheric Administration, Boulder Colorado 80302 (Private Communication).

S. R. Drayson, "A Listing of Wavenumbers and Intensities of Carbon Dioxide Absorption Lines Between 12 and 20 mm". Technical Report 036350-4-T, National Aeronautics and Space Administration, Contract No. NSR 23-005-376, May 1973.

(cm ⁻¹)	Gas (b)	Band (c)	Line	Ref.	(cm ⁻¹)	Gas (b)	Band (c)	Line	Ref.
609,42	co	2	P11	D	71 9 . 25	Int			D
616.07	н 6	_		BC	722.3 5	Int			-
620.57	н ₂ б н ₂ о н ₂ о			BC	7 25.47	CO,	3	R5	
625.27	H ² 0			BC	734.71	CO ²	3 3 3	R17	D
629.44	င်ဝီ	1	P50	a	743.83	co_2^2	3	R29	
636.85	co ₂	1	P40	D	751.34	CO ₂	3	R39	D
639.81	1nt	. –			755.81	C02	, 3	R45	Ð
642.80	Int				760.27	CO	3	R51	D
645.86	CO2	1	P28	. D .	766.28	C02		(b) W	
648.87	Int	_			777.37	co_2^2	6	P18	
651.92	Int			*	788.32	co,	6	P4	D
655.00	CO	1	P16	D.	798.47	CO	6	R8	D
661.16	$\begin{array}{c} co_2 \\ co_2^2 \end{array}$	ī	P8	D	806.26	co_{2}^{2}	6	R18	D
665.51	Int	• •			812.48	co_{o}^{2}	6	R26	D
669.93	Int				820.27	CO ₂ CO ₂ CO ₂	6	R36	D
674.44	C202	1	R8	D D	826.51	CO ₂	6	R44	D
679.19	co_2^2	ī	R14	Ď	831,22	co^2	. 6	R50	D
687.16	co_2^2	î	R24	Ď	836.05	$\begin{array}{c} co_2^2 \\ co_2^2 \end{array}$		W (d)	
690.33	Int		112-4		842.04	Ext		, ,	
693.54	Int							•	
093.34	1116								
696.78	Int								
700.06	CO	1	R40	D					
706.58	co_2^2	1	R48	D					
713.13	co_2^2	1	R56	D					
	_ 2								

⁽a) D and BC indicate that the positions of the line centers are from Drayson (Ref. 7) or Benedict and Calfee (Ref. 6), respectively.

716.17

Int

(c) The CO₂ bands are identified by the energy levels involved and the band centers in the following table. All bands correspond to the most common isotope, 16 0 12 16 0.

· ·				°c -
Band No.	Energ	y Lev	els	(cm ⁻¹)
1	010:0	-	000:0	667.381
2	(100:0) II	-	010:1	618.029
3	(100:0) I		010:1	720.805
6	(110:1) I	-	(100:0)II	791.446
8	(110:1) I	-	020:2	741.724
13	(120:2) I		(110:1)11	828.230

(d) The W corresponding to the calibration point at 766.28 cm⁻¹ represents a weighted average of the positions of four CO₂ lines centered at 766.151, 766.190, 766.430, and 766.438 cm⁻¹. Similarly the point at 836.05 cm⁻¹ represents a weighted average of two lines centered at 835.951 and 836.132 cm⁻¹. Each line has been weighted in proportion to its intensity.

⁽b) CO₂ and H₂O refer to the gas used for calibration. Int or Ext denotes the positions of calibration points found by interpolation or extrapolation, respectively, as discussed in the text.

from the linear-wavenumber interpolation performed by the computer are no greater than approximately 0.002 to 0.03 cm⁻¹. Such errors are smaller than other errors involved in the calibration. In some of the intervals between adjacent CO₂ or H₂O lines, more interpolated calibrations points were used than were required to produce the desired accuracy. The original deck of computer cards used for calibration data contained only the points that correspond to the H₂O and CO₂ lines. Data for six calibration points were included on each card. In a few cases a complete new calibration card with six calibration points was added by including four or five interpolated points to complete a new card, the new card was inserted in the deck, making it possible to use original calibration cards that followed in the deck. The calibration point indicated by Ext in Table 4 was found by extrapolating with a second-order equation beyond the last CO₂ calibration line.

The combined calibration errors in the spectra are believed to be less than 0.1 cm⁻¹. With only one exception, all of the points corresponding to the H2O and CO2 calibration lines fell on a smooth curve of fiducial mark position vs wavenumber, indicating consistency among the points. The lone exception to this was the H2O line centered at 504.45 cm⁻¹. This point would fit the smooth curve better if it were plotted at 504.35 cm⁻¹, approximately 0.1 cm⁻¹ from the value commonly accepted as the line center. Although it seems unlikely, this apparent discontinuity in the calibration may be due to a faulty grating drive in the spectrometer. Because of this hight inconsistency in the calibration data, the wavenumber calibration may be less accurate between this 504.45 cm⁻¹ H2O line and either of the adjacent calibration lines than in the remainder of the spectral region.

RESULTS

The results of the $\rm CO_2$ transmission measurements are presented in detail in the form of spectral plots of transmittance and tables of the cumulative integrated absorptance, \int A dv.(A = 1-T, where T is the experimentally observed transmittance.) Figures 1 through 6 show spectral plots of transmittance for Samples HR01 through HR22; these plots were obtained with either Resolution Schedule A or B. The caption of each figure includes the total pressure P, the equivalent pressure $\rm P_e$, the absorber thickness u, and the temperature P for each sample represented. Listings of the parameters occur in the same order, from top to bottom, as the corresponding spectral curves. Some of the sample parameters that are not listed in the figure captions are given in Table 1. The spectral plots of transmittance for samples HR23 through HR45 are presented in Figures 7 through 13. A few of the transmittance plots for a single sample extend over more than one panel in a figure. A short portion of each spectrum in these cases is represented by a dashed curve.

Tables 5 through 16 show detailed data on the cumulative integrated absorptance $\int A \, d\nu$. Each column represents a single sample with the important sample parameters listed at the top of the column. The lower limit of integration, ν' , is the first value of ν listed in each table. The value tabulated for ν represents the value of the integral from ν' to ν . The value of the integral

between two values of ν that are listed is equal to the difference between the corresponding values of the integral. The data are of, course, based on experimental curves obtained with finite spectral resolution; therefore, the integral values may differ from the true integrated absorptance that would be determined with infinite resolving power. Each of the separate tables represents the samples studied over a given spectral region.

Spectral place of transmittance from 494 to 512 cm. 1 for Samples HRO1 - HRO3.

Figure 2. Spectral plot of transmittance from 505 to 580 cm⁻¹ for Sample HR05.

Figure 3. Spectral plots of transmittance from 542 to 550 cm⁻¹ for Samples HRO5 - HRO8.

Figure 4. Spectral plots of transmittance from 535 to 552 $\rm cm^{-1}$ for Samples HR09 - HR13.

Picare v. Special plats of transmittance from 567 to 632 cm⁻¹ for Samples HR14 - HR17.

Spectral plots of transmittance from 611 to 632 cm⁻¹ for Samples HR18 - HR22, Figure 6.

24

Figure 8. Spectral plot of transmittance from 690 to 775 cm⁻¹ for Sample HR23.

Figure 9. Spectral plots of transmittance from 640 to 689 cm⁻¹ for Sumpley 8K, 4 + 302 s.

27

Special plots of transmittance from 70% to 7% cmml for Samples HR34 - HR36. 1 (25)

figure 12. Spectral plots of transmittance from 775 - 838 cm⁻¹ for Samples HR42 - HR45.

TABLE 5

y Adr

HR05 310. 3291. 1.00000 0.769737 1.004278 6.023E 22			0. 0. 0.005 0.005	0.028 0.032 0.041 0.065	0.246 0.314 0.363
HR04 308. 3291. 0.15300 3.000000 3.138987	• o		0.027 0.027 0.064	0.074 0.082 0.091 0.113	0.246 0.298 0.334
HR03 308- 3291- 0-15300 9-539474 9-990351	00.	0.017 0.025 0.039	0.057 0.081 0.113 0.161	0.285 0.326 0.379 0.446 0.561	0.824 1.010 1.142 1.271
HR02 308. 3291. 1.00000 3.000000 3.954990	.07	0.217	0.343 0.407 0.480 0.555 0.644	0.728 0.808 0.901 1.016	1.681 1.999 2.226 2.433
HF01 308. 3291. 1.00000 7.697368 10.368593	÷ • •	0.400 0.603 0.815	1.030 1.257 1.497 1.749 2.016	2.295 2.581 2.902 3.272 3.779	4.565 5.236 5.804 6.351
Sam. No. Temp (K) Path (cm) Conc. r (atm) c (atm) u (*/cm²)	(cm ⁻¹) 494.00 495.00	00°867 00°267 00°867	499.00 500.00 501.00 502.00 503.00	504.00 505.00 506.00 507.00 508.00	\$10.00 \$10.00 \$11.00 \$12.00

* The units of u are molecules/cm², abbreviated here by $(^{3}/cm^{2})$.

TABLE	6	JAdv
-------	---	------

Sam. No. Temp (K) Path (cm) Conc. P (atm) P (atm) u (#/cm²)*	HR05 310. 3291. 1.00000 0.769737 1.004278 6.023E 22	Sam. No. Temp (K) Path (cm) Conc. p (atm) P (acm) U (#/cm ²)*	HR05 310. 3291. 1.00000 0.769737 1.004278 6.023E 22
(cm ⁻¹) 505.00 506.00 507.00 508.00 509.00	0. 0.010 0.033 0.060 0.215	(cm ⁻¹) 545.00 546.00 547.00 548.00 549.00	5.406 6.348 7.038 7.407 7.700
510.00	0.287	\$50.00	7.978
511.00	0.332	\$51.00	8.181
512.00	0.360	\$52.00	8.488
513.00	0.415	\$53.00	8.804
514.00	0.463	\$54.00	9.074
516.00 517.00 518.00 519.00	0.495 0.570 0.654 0.701 0.809	555,00 556.00 557.00 558.00 559.00	9.494 9.827 10.199 10.689 11.035
520.00	0.927	560.00	11.552
521.00	0.989	561.00	12.095
522.00	1.135	562.00	12.610
523.00	1.270	563.00	13.280
524.00	1.350	564.00	13.879
\$25.00	1.526	565.00	14.598
\$26.00	1.700	566.00	15.272
\$27.00	1.816	567.00	16.048
\$28.00	2.034	568.00	16.756
\$29.00	2.223	569.00	17.590
530.00	2.335	570.00	18.422
531.00	2.564	571.00	19.149
532.00	2.735	572.00	20.000
533.00	2.861	573.00	20.786
534.00	3.097	574.00	21.629
535.00	3.231	575.00	22.526
536.00	3.399	576.00	23.394
537.00	3.643	577.00	24.346
538.00	3.754	578.00	25.271
539.00	3.908	579.00	26.215
540.00 541.00 542.00 543.00 544.00	4.066 4.147 4.276 4.397 4.575	580.00	27.187

^{*} The units of u are molecules/cm², abbreviated here by (4/cm²).

32

~
ш
둤
AB
H

	IABLE	<u>_</u>	Adr	
San. No.	HROS	HR06	HR07	HE08
Temp (K)	310.	310.	310.	310.
Path (cm)	3291.	3291.	3291.	3291.
Conc.	1.00000	1.00000	0.15300	0.15300
P (atm)	0.769737	0.192105	0.955263	0.238158
P (atm),	1.004278	0.249962	0.999240	0.249097
u_(#/cm_)*	6.023E 22	1-499E 22	1-140E 22	2.841E 21

	0.	0.002	0.010	0.248	0.403	0.464	0.491	0.511	0.533
	•	0.031	0.083	0.683	1.174	1.398	1.492	1.568	1.643
	0.	0.026	0.055	0.639	1.126	1.363	1.463	1.545	1.631
	0	0.121	0.299	1.131	2.072	2,762	3,131	3.425	3,703
(c=_t)	242.00	543.00	244.00	245.00	246.00	247.00	543.00	249.00	550.00

* The units of u are molecules/cm², abbreviated here by $(^{\#}/\text{cm}^{2})$.

The second secon

The second of th

2	Adr
•	ω
	TABLE

No.	HR09		HRII	HRIP	or i
	3291.	308• 416•	3291.	308.	308 291
	1.00000	_	.153	.15	.1530
	•	.69736	.5394	.539	.86842
	3.954990	• 36859	6066	9.990351	Q.
	2.372E 23	.911E 2	<u></u>	89 4E	451E 2
			,	0	•
	0.621	4		0.133	0.140
	30		.90	.27	.31
	80.	.03	.32	.39	.42
	.42	,36	.71	.50	. 54
	. 98	89,	٠	.62	.66
	67.	.02	50	.74	.75
	4.051	2,401	5.943	0.872	0.860
	.66	- 87	6.5	• 05	.97
	8 7.	. 58	æ N	-42	
	47	. 55	2.7	•	• 02
	7.478	.53	27	3.111	2.907
	97.	07.	5	\$	٠,
	. 36	30	0	30	62.
	~	7.632		4.221	• 05
	3.95	,14	2	4.3	, 24
	11.722	8.649	768.6	779.7	4.437
	2.54	17	52	86	• 68

. The units of u are molecules/om , abbreviated here by (#/cm),

TABLE	9	SA dv
• • •		

Sam. No.	HR14	HR15	HR16	HR17
Temp (K)	308•	310•	310.	310.
Path (cm)	3291 •	3291•	3291•	1648.
Conc.	1.00000	0.15300	0 • 1 5 3 0 0	0.00500
P (atm)	0.024079	0.956579	0.239474	1.000000
Pe (atm) 2. *	0.031306	1.000617	0.250474	1.001500
u (#/cm ²) *	1.890E 21	1 - 1 42E 22	2.857E 21	1-952F 20
V				
(cm ⁻¹)				
567.00	0.	0.	0.	0.
568.00	0.042	0.258	0.070	J.
569.00	0.100	0.619	0.179	0.
570.00	0.166	1.040	0.308	0.014
571.00	0.202	1.308	0.374	0.024
6 3 3 4 6				
572.00	0.276	1.800	0.542	0.042
573.00	0.321	2.149	0.629	0.058
574.úð	0.389	2.585	0.765	0.077
575.00	0.480	3.154	0.973	0.103
576.00	0.530	3.554	1.075	Ü.124
577.00	0.643	4.196	1.336	0.162
578.00	0.736	4.802	1.552	U.198
579.00	0.803	5.343	1.703	0.218
580,00	0.915	6.111	1.995	0.268
581.00	1.015	6.732	2.187	0.307
582.00	1.255	7.624	3 4 3 4	0.447
583.00	1.396	8.465	2.626 2.968	0.367 0.435
584.00	1.470	9.143	3.156	0.470
585.00	1.615	9.997	3.510	0.541
586.00	1.765	10.842	3.883	0.631
			3.003	0.05
587.00	1.851	11.642	4.119	0.680
5 8 8.00	2.033	12.577	4.578	0.807
589.00	2.167	13.436	4.923	0.905
590.00	2.283	14.339	5.242	0.981
591.00	2.473	15.294	5.739	1.137
592.00	2.623	16.202	6.096	1.240
593.00	2.794	17.162	6.532	1.372
594.00	3.035	18.133	7.096	1.579
595.00	3.202	19.094	7.500	1.682
596.00	3.529	20.093	8.206	1.917
33 34	, 50=	24 22 -		
397.00	4.083	21.093	9.074	2.273
5 98. 00	4.470	22.088	9.731	2.611
599.00	4.714	23.082	10.342	2.884
600.00	4.941	24.070	10.881	3.079
601.00	5.112	25.055	11.340	3.262

^{*} The units of u are molecules/cm 2 , abbreviated here by ($^{\#}/\mathrm{cm}^2$).

	TABL	E 9	Adv	(cont.)
		_	W	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Sam. No.	HR14	HR15	HR1 6	HR17
Temp (K)	308•	310•	310.	310.
Path (cm) Conc.	3291.	3291.	3291.	1648•
_	1.00000	0.15300	0.15300	0.00500
	0 • 02 40 7 9 0 • 0 3 1 3 0 6	0.956579	0.239474	1.000000
P _e (atm) u (#/cm ²)*	1.890E 21	1 • 000617 1 • 1 42E 22	0.250474 2.857E 21	1.001500 1.952E 20
V	1.0702 21	101422 22	2.03.12 21	149328 80
(cm ⁻¹)				
602.00	5.375	26.051	12.002	3.556
603.00	5.572	27.046	12.537	3.746
604.00	5.783	28.040	13.092	3.966
605.00	6.094	29.039	13.820	4.293
606.00	6.282	30.037	14.360	4.455
607.00	6.567	31.034	15.054	4.752
608.00	6.912	32.034	15.794	5.055
609.00	7.119	33.034	16.377	5.225
610.00	7.403	34.034	17.101	5.550
611.00	7.688	35.034	17.768	5.783
612.00	7.941	36.034	18.434	6 01 0
613.00	8.231	37.034	19.154	6.010 6.300
614.00	8.514	38.034	19.822	6.498
615.00	8.887	39.034	20.620	6.764
616.00	9.460	40.034	21,536	7.149
44.00	40.554			
617.00	10.234	41.034	22.527	7.875
618.00	11.201	42.034	23.527	d.851
619.00	11.564	43.034	24.323	9.315
620.00 621.00	11,880 12,173	44.034 45.034	25.036 25.679	
021,00	12.173	47.034	67.014	4.740
622.00	12.430	46.034	26.307	10.018
623.00	12.846	47.034	27.149	10.409
624.00	13.182	48.034	27.895	10.749
625.00	13.573	49.034	28.727	
626.00	14.084	50.034	29.661	11.678
627.00	14.539	51.034	30.567	12,192
628.00	15.027	52.034	31.514	
629.00	15.576	53.034	32.485	
630.00	16.154	54.034	53.467	
631.00	16.780	55.034	34.449	
632.00	17.412	56.034	35.434	15.395

. 1 3

^{*} The units of u are molecules/cm 2 , abbreviated here by ("/cm 2).

TABLE 10 JAdr

HR22 310. 1648. 1.00000 0.006053 0.007869 2.363£ 20	80.	0.155	0.372 0.591 1.165 1.360	1.423 1.473 1.569 1.636	1.810 1.902 1.999 2.115	2.358
HR21 308. 3291. 0.15300 0.029868 0.031240	10	0.330	0.763 1.220 2.082 2.289	2.545 2.653 2.853 3.004 3.175	3.411 3.629 4.137 4.427	4.747
HR20 310. 1648. 0.00125 1.000000 1.000375	0.07	0.229	0.438 0.757 1.587 1.846	1.990 2.061 2.167 2.301 2.443	2.624 2.815 3.035 3.268 3.564	3.870
HR19 310. 1648. 0.00125 3.001125 1.464E 20	23	0.500	1.336 2.023 2.998 3.605	4.111 4.349 4.683 5.020 5.409	5.872 6.378 6.928 7.513	8.877 9.585
HR18 310. 1648. 0.00125 10.000000 10.003751 4.880£ 20	.62	1.248 1.884 2.592	3.452 4.437 5.437 6.415	7.952 8.649 9.383 10.161	11.853 12.755 13.685 14.638	16.595
Sam. No. Temp (K) Path (cm) Conc. P (atm) P (atm) u (#/cm²) *	; (cm ⁻¹) 611. 00 612. 00		615.00 617.00 613.00 619.00 623.00	621.00 622.00 623.00 624.00 625.00	626.00 627.00 628.00 629.00 630.00	631.00

* The units of u are molecules/cm , abbreviated here by ($^{4}/^{2}$).

TABLE 11 JAdv

	HR23	310.	3291.	0.15300	0.029868	.03124	3.563E 20		4.65		× × × ×	2.6.7	52.759	• 85	2.91	3.03	3.12	5 3 5 5		5.55	3.41	3.53	3.66	53.728	3.85	3.97	70.7	54.148	4.27	4.35	4.50	40.7	5.09	55.193	5.26
	Sam, No.	Temp (K)	Path (cm)	Conc.	p (atm)	(atm),	u (‡/cm²)%	·	\neg	, ,) • · ·	75.0	23.	24.0	25.0	26.0	27.0	CC & ~ ~		0.47	30.0	31.0	32.0	733.00	34.0	35.0	36.0	737.00	34.0	39.0	0.07	41.0	42.0	743.00	0.47
(F	HRP3	310.	~	8	0.029868	4	3.563F 20		81. 7	•	ς · · · ·	2.40	26.370	7.37	8.36	9.15	6	30 612	•	 8	1.97	2,58	3.21	00.7		5.24	5.95	36.482	7.23	7.78	338	3.06	9.50	40.132	0.72
	Sam. No.	Temp (K)	Path (cm)	Conc.	p (atm)	(atm),	u (÷/cm²)*	-	\cap c) (• • •	٠. و	7.0	ဆိ	0.6	70.0	71.0	72.0	00.4		74.0	75.0	76.0	77.0	30	0.0	0°08	81.0	682.00	83.0	84.0	(x) ≥ (x)	56.0	0.78	658.00	0.69
	HARB	_	Š	0.15300	2	.0312	53E			•	-	• 23	0.365	. 4 B	. 66	95	200	2000	٠ . • د	. 47	.63	77.	80	10	3.263	. 42	69.	3.912	.14	. 43	74	. (17	. ×0		12
	Sar. No.	Temp (K)	Path (cm)	Conc.	P (atm)	P (atm)	u (11/cm) *	· ·	\cap	۰ رو) -	> 0	613.00	0.4	5.0	16.0	•	- 0	> (19.0	20.0	21.0	22.0	23.0	00.250	25.0	26.0	627.00	28.0	29.0	30.0	31.0	32.0	×.	0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.463 6.898 6.898 7.352 7.727 8.235 6.92.00 6.92.00 6.92.00 6.92.00 6.92.00 6.92.00 6.92.00 6.92.00 6.92.00 6.92.00 6.93.00 6.93.00 6.93.00 6.93.00 7.01.00 7.01.00 7.02.00 7.03.00 7.00 7
00000000000000000000000000000000000000	6.463 6.898 7.552 691.0 7.552 8.235 8.235 8.693 694.0 9.593 694.0 9.593 698.0 1.095 702.0 2.804 702.0 2.804 7.02.0 2.804 7.03.0 3.566 7.03.0 7
	66.8896 88.23.88 88.23.88 88.23.89 90.09

* The units of u arc molecules/cm², abbreviated here by $(\#/cm^2)$. 775.60

		IABLE	12	AU'V	
• *			V ·	uros	HR28
Sam. No.	HR24	HR25	HR26	HR27	311.
Temp (K)	310.	310.	311 •	311.	826.
Path (cm)	3291•	3291 •	826.	826.	0.000039
Conc.	1.00000	0 • 1 5 3 0 0	0.00125	0.000312	1.000000
P (atm)	0.001092	0.001921	1.000000	1.000000	1.000018
P (atm) u (#/cm ²)*	0.001420	0.002009	1.000375	1.000094	7.626E 17
u (#/cm) *	8.514E 19	2.291E 19	2 · 438E 19	6.085E 18	1.0205 11
v ₋₁ .					
(cm ⁻¹) '	0.	0.	0.	0.	0.
640.00	0.057	0.016	0.290	0.108	0.017
641.00	0.138	0.051	0.797	0.341	0.057
642.00	0.218	0.085	1.235	0.543	0.095
643.00 644.00	0.276	0.098	1.570	0.671	0.110
044.00	0.210	0.010	. • • •		
645.00	0.365	0.136	2.145	0.959	0.163
646.00	0.449	0.173	2.634	1.201	0.207
647.00	0.508	0.186	3.026	1.357	0.229
648.00	0.662	0.272	3.722	1.727	0.300
649.00	0.867	0.398	4.375	2.084	0.373
650.00	1.034	0.476	4.964	2.341	0.413
651.00	1.180	0.544	5.673	2.732	0.496
652.00	1.278	0.579	6.216	3.010	0.552
653.00	1.389	0.603	6.750	3.249	0.593
654.00	1.512	0.649	7.473	3.658	0.676
				2 011	0.725
655.00	1.605	0.673	8.030	3.911 4.192	0.723
656.00	1.694	0.696	8.593	4.591	0.858
657.00	1.809	0.746	9.331	4.803	0.894
658.00	1.887	0.772	9.853 10.455	5.118	0.955
659.00	1.982	0.814	10.433	7.110	0.777
660.00	2.080	0.867	11.141	5.482	1.026
661.00	2.146	0.891	11.598	5.647	1.050
662.00	2.235	0.931	12.180	5.942	1.103
663.00	2.433	1.050	12.827	6.251	1.155
664.00	2.577	1.119	13.240	6.387	1.175
665.00	2.704	1.181	13.764	6.601	1.209
666.00	2.832	1.232	14.189	6.738	1.231
667.00	2.901	1.247	14.783	6.968	
668.00 '	3.501	1.771		7.854	
669.00	4.164	2.306	16.758	8.836	2.5.52
. 70. 00		2 525	17 7/1	0.410	2 751
670.00	4.489		17.741	9.618	2.751
671.00	4.625		18.491	9.945	2.803
672.00	4.766		19.207 19.875	10.315 10.653	2.875 2.947
673.00	4.878	2.720			2.981
674.00	4.955	2.744	20.402	10.863	6.701
675.00	5.081	2.804	21.190	11.302	3.077
. 676.00	5.162			11.591	
677.00	5.254			11.912	
678.00	5.377			12.382	
679.00	5.440	2.957	23.784		3.351
00.080	5.558	3.021	24.530	13.037	3.451

^{*} The units of u are molecules/cm 2 , abbreviated here by ($\#/\text{cm}^2$).

TABLE 13	JAdv
----------	------

Sam. No.	HR29	HR30	HR31	HR32	HR33
Temp (K)	31.4•	314.	311•	311.	311•
Path (cm)	826•	886•	1648.	1648.	1648.
Conc.	0.15300	0.00977	0.00125	0.00125	0.00125
P (atm)	1.000000	0.996053	10.000000	3.000000	1.000000
Pe(atm) ₂	1.046043	0.998973	10.003751	3.001125	1.000375
u (#/cm) "	2.958F 21	1.880E 20	4.865E 20	1 . 459E 20	4.864E 19
7,					·
(cm ⁻¹)					
105.00	0.	0.	0 .	J.	Ú.
706.00	1.000	0.707	0.994	0.755	0.325
707.00	2.000	1.410	1.989	1.539	0.679
708.00	3.000	2.017	2.975	2.185	0.918
709.00	4.000	2.680	3.954	2.877	1.228
710.00	5.000	3.277	4.922	3.494	1.479
711.00	6.000	3.836	5.872	4.052	1.691
712.00	7.000	4.372	6.806	4.606	1.901
713.00	7.988	4.307	7.703	5.041	2.050
714.00	8.985	5.351	8.581	5.528	2.254
715.00	9.951	5.712	9.421	5.891	2.370
716.00	10.914	6.092	10.231	6.244	2.495
717.00	11.894	6.501	11.036	0.597	2.625
718.00	12.875	6.821	11.878	6.912	2.716
719.û0	13.873	7.471	12.834	7.488	2.958
720.00	14.873	8.399	13.833	8.385	3.533
721.00	15.873	9.353	14.832	9.362	4.387
722.00	16.849	9.715	15.792	9.840	4.518
723.00	17.737	9.885	16.544	10.017	4.556
724.00	18.613	10.084	17.158	10.183	4.604
725.00	19.419	10.229	17.718	10.326	4.637
726.00	20.312	10.492	18.284	10.535	4.711
727.00	21.158	10.702	18.860	10.721	4.766
728.00	21.992	10.911	19.454	10.918	4.823
729.00	22.929	11.248	20.083	11.194	4.931
730.00	23.756	11.434	20.715	11.398	4.981
731.00	24.653	11.728	21,370	11.656	5.073
732.00	25 .570	12.074	22.046	11.965	5.193
733.00	26.418	12.260	22.713	12.186	5.242
734.00	27.337	12.580	23.397	12.479	5.351
735.00	28.242	12.919	24.086	12,792	5.469
736.00	29.095	13.095	24.7	13.007	5.516
737.00	30.01/	13.425	30.63/	13.306	5.628
738.00	30,921	13.744	26,117	13.605	5.741
739.00	51.799	13.933	26.774	13.816	5.788

^{*} The units of u are molecules/cm 2 , abbreviated here by ($\#/\text{cm}^2$).

		TABLE	13 <i>S</i>	v Ad√ (ce	ont.)
			'V '		
Sam. No.	HR29	HR 30	HR31	HR32	HR33
Temp (K)	31 4• 826•	31 4 • 82 6 •	311.	311.	311.
Path (em) Conc.	0+15300	0.00977	1648. 0.00125	1648. 0.00125	1648 • 0 • 00125
P (atm)	1.000000	0.996053	10.000000	3.000000	1.000000
Pe(atm)2.	1.046043	0.998973	10.003751	3.001125	1.000375
$u^{e}(\#/cm^{2})^{*}$	2.958E 21	1.880F 20	4.865E 20	1.459E 20	4.864E 19
-1.					
(cm ⁻¹)	• • • • •	4			
740.00	32.741	14.275	27.455	14.122	5.902
741,00 742.00	33.695 34.683	14.629	28.193	14.442	6.021
743.00	35.560	15.124 15.420	29.038 29.682	14.887 15.151	6.186
744.00	36.325	15.649	30.228	15.354	6.281 6.352
	30.323	134047	20.650	17.577	0.572
745.00	36.991	15.778	30.719	15.491	6.381
746.00	37.792	16.022	31.198	15.687	6.453
747.00	38.498	16.207	31.634	15.84ป	6.504
748.00	39.110	16.329	32.036	15.951	0.532
749.00	39.874	16.532	32.422	10.102	6.585
250 00	/0.536	14 401	73 7/3	4 / 247	_
750.00 751.00	40.528 41.073	16.691	32.767	16.217	6.024
752.00	41.788	16.787 16.952	33.078	16.300	6.643
753.00	42.367	17.075	53.574 33.634	16.410 16.494	6.682 4.709
754.00	42.843	17.157	33.866	16.556	6.708 6.720
		, , , ,	33.000	10,570	0.720
755.00	43.476	17.284	34.086	16.634	6.746
756.00	43.989	17.380	34.281	16.694	6.764
757.00	44,476	17.452	34.472	16.744	6.777
758.00	45.049	17.559	34.656	16.807	6.793
759.00	45.485	17.636	34.793	16.850	6.810
760.00	45.752	17.683	34.909	15.878	6.014
761.00	46.167	17,752	35.017	16.912	6.825
762.00	46.521	17.811	35,112	16.941	0.632
7 o3. 00	46.709	17.849	35.194	16.961	6.835
764.00	47.047	17.904	35,273	16.987	6.843
765.00	1.7 t17	17 0/9	15 7	49 003	,
766.00	47.313 47.478	17.948 17.979	55.344 45.402	17.007	6.847
767.00	47.743	18.020	35.407 35.466	17.024	6,849
768.00	47.954	18.054	35.520	17.042 17.058	6.853 6.356
769.00	48.102	18.082	35.569	17.073	6.856 6.857
-					3,03,
770.00	48.305	18.114	35.617	17.088	6.857

^{*} The units of u are molecules/cm 2 , abbreviated here by (#/cm 2).

TABLE 14

1	
JAdv	/

Sam. No. Temp (K) Path (cm) Conc. P (atm) P (atm) u (#/cm ²)*	HR34	MR35	HR36
	311.	311.	310+
	1648.	1648.	3291+
	1.00000	1.00000	0+15300
	0.048026	0.006079	0+007500
	0.062448	0.007903	0+007844
	1.869E 21	2.366E 20	8+946E 19
(cm ⁻¹) 705.00 706.00 707.00 708.00 709.00	0. 0.720 1.374 1.991 2.650	0. 0.116 0.228 0.319 0.438	0. 0.084 0.160 0.218 0.293
710.00	3.242	0.536	0.357
711.00	3.865	0.630	0.414
712.00	4.440	0.721	0.470
713.00	4.919	0.791	0.513
714.00	5.514	0.887	0.576
715.00	5.917	0.945	0.615
716.00	6.366	1.008	0.657
717.00	6.882	1.093	0.710
718.00	7.355	1.165	0.758
719.00	8.139	1.322	0.863
720.00	9.097	1.626	1.066
721.00	10.070	2.195	1.487
722.00	10.627	2.281	1.544
723.00	10.932	2.324	1.574
724.00	11.264	2.369	1.607
725.00	11.498	2.401	1.632
726.00	11.869	2.459	1.670
727.00	12.154	2.496	1.699
728.00	12.462	2.538	1.730
729.00	12.887	2.601	1.774
730.00	13.129	2.633	1.799
731.00	13.494	2.687	1.834
732.00	13.890	2.746	1.874
733.00	14.126	2.774	1.895
734.00	14.511	2.831	1.933
735.00	14.861	2.886	1.972
736.00	15.091	2.911	1.987
737.00	15.474	2.967	2.025
738.00	15.863	3.030	2.064
739.00	16.198	3.074	2.091

^{*} The units of u are molecules/cm², abbreviated r re by (r/cm^2) .

	TABLE	14 JA	$\mathrm{d} u$ (cont.
Sam. No. Temp (K) Path (cm) Conc. P (atm) P (atm) u (#/cm²)*	HR34	HR35	HR36
	311•	311•	310.
	1648•	1648•	3291.
	1•00000	1•00000	0.15300
	0•048026	0•006079	0.007500
	0•062448	0•007903	0.007844
	1•869E 21	2•366E 20	8.946E 19
(cm ⁻¹) 740.00 741.00 742.06 743.00 744.00	16.652 17.168 17.907 18.200 18.433	3.148 3.239 3.455 3.498 3.530	2.137 2.197 2.341 2.370 2.392
745.00	18.571	3.543	2.401
746.00	18.852	3.581	2.427
747.00	19.076	3.607	2.445
748.00	19.229	3.626	2.455
749.00	19.492	3.660	2.477
750.00	19.710	3.685	2.494
751.00	19.847	3.699	2.503
752.00	20.090	3.733	2.522
753.00	20.282	3.756	2.537
754.00	20.410	3.770	2.545
755.00	20.628	3.799	2.564
756.00	20.807	3.822	2.579
757.00	21.000	3.847	2.593
758.00	21.274	3.889	2.619
759.00	21.405	3.905	2.628
760.00	21.470	5.910	2.633
761.00	21.619	3.931	2.647
762.00	21.747	3.949	2.659
763.00	21.799	3.955	2.662
764.00	21.933	3.974	2.676
765.00	22.036	3.989	2.686
766.00	27.089	3.998	2.692
767.00	22.192	4.015	2.703
768.00	22.279	4.027	2.713
769.00	22.337	4.036	2.720
770.00	22.431	4.050	2.732
771.00	22.504	4.060	2.738
772.00	22.583	4.073	2.747
773.00	22.650	4.084	2.754
774.00	22.696	4.093	2.760
775.00	22.759	4.103	2.769

775.00 22.759 4.103 2.769 \star The units of u are molecules/cm², abbreviated here by (*/cm²).

	7	TABLE I	5 \int \begin{pmatrix} \hat{A} & \ha	せん	
Sam. No. Temp (K) Path (cm) Conc. P (atm) P (atm) u (#/cm ²)*	HR37	HR38	HR39	HR40	HR41
	311.	311.	310•	311.	311+
	3291.	3291.	3291•	3291.	3291+
	1.00000	1.00000	1•00000	0.03850	0+00977
	7.347368	2.278947	0•769737	10.000000	10+000000
	9.881420	2.994365	1•004278	10.116406	10+029368
	5.907E 23	1.790E 23	6•023E 22	2.997E 22	7+596E 21
V-1) 775.00 776.00 777.00 778.00 779.00	0. 1.000 2.000 3.000 4.000	0. 0.987 1.966 2.951 3.929	0. 0.714 1.293 2.007 2.670	0.662 1.283 1.883 2.449	0. 0.247 0.477 0.699 0.899
780.00	5.000	4.902	3.282	2.987	1.086
781.00	6.000	5.880	3.949	3.500	1.262
782.00	7.000	6.828	4.470	3.983	1.427
783.00	8.000	7.770	5.021	4.438	1.582
784.00	9.000	8.706	5.570	4.861	1.726
785.00	10.000	9.592	5.969	5.259	1.859
786.00	11.000	10.482	6.418	5.633	1.986
787.00	12.000	11.345	6.828	5.985	2.100
788.00	13.000	12.149	7.131	6.324	2.213
789.00	14.000	12.968	7.483	6.667	2.331
790.00	15.000	13.768	7.753	7.069	2.470
791.00	16.000	14.708	8.191	7.704	2.768
792.00	17.000	15.702	9.111	8.659	3.546
793.00	18.000	16.702	10.088	9.628	4.211
794.00	19.000	17.692	10.851	10.362	4.504
795.00	20.000	18.567	11.215	10.826	4.659
796.00	21.000	19.422	11.616	11.207	4.786
797.00	22.000	20.257	11.983	11.553	4.913
798.00	23.000	21.061	12.274	11.892	5.032
799.00	24.000	21.947	12.735	12.246	5.155
800.00 801.00 802.00 803.00 804.00	25.000 26.000 27.000 28.000 29.000	22.775 23.613 24.516 25.334 26.214	13.063 13.416 13.900 14.182 14.616	14.112	5.675 5.809
805.00	30.000	27.099	15.062	14,494	5.941
806.00	31.000	27.908	15.334	14.873	6.065
807.00	32.000	28.788	15.775	15.253	6.195
808.00	33.000	29.628	16.158	15.619	6.315
809.00	34.000	30.415	16.436	15.978	6.440

^{*} The units of u are molecules/cm², abbreviated here by $(\#/\text{cm}^2)$.

		TABLE	15 SA	dv (co	nt.)
Sam. No.	HR37	HR38	HR39	HR40	HR41
Temp (K)	311.	311.	310.	311.	311.
Path (cm)	3291•	3291 •	3291•	3291.	3291.
Conc.	1.00000	1.00000	1.00000	0.03850	0.00977
P (atm)	7-347368	2.278947	0.769737	10.000000	10-000000
P _a (atm) ₂	9.881420	2.994365	1.004278	10-116406	10.029368
$u^{e(\#/cm^2)^*}$	5.907E 23	1.790E 23	6.023E 22	2.997E 22	7.596E 21
(cm ⁻¹)					
810.00	35.000	31.283	16.873	16.332	6.557
811.00	36.000	32.068	17.197	16.661	6.669
812,00	36.998	32.818	17.458	16.980	6.774
813.00	37.995	33.650	17.863	17.295	6.876
814.00	38.991	34.342	18.094	17.576	6.972
• • • •					
815,00	39.986	35.066	18.369	17.851	7.063
816.00	40.981	35.815	18.711	18.110	7.149
817.00	41.974	36.409	18.880	18.338	7.222
818.00	42.965	37.084	19.151	18.565	7.294
819.00	43.953	37.719	19.410	18.768	7.361
820.00	44.933	38.224	19.543	18.950	7.421
821.00	45.908	38.815	19.775	14.126	7.476
822.00	46.873	39.320	19.959	19.281	7.526
823.00	47.820	39,728	20.063	19.423	7.577
824.00	48.760	40.224	20.250	19.555	7.626
825.00	49.673	40.570	20.355	19.675	7.667
826.00	50.574	40.919	20.449	19.782	7.707
827 . 00	51,477	41.297	20.576	19.883	7.745
00.858	52.410	41.643	20.673	20.017	7.788
829.00	53.402	42,425	21.096	20.277	7.870
830.00	54.345	42.910	21.259	20.424	7.922
831,00	55.195	43.182	21.324	20.516	7.957
632.00	55.992	43.438	21.395	20.590	7.984
833.00	56.748	43.648	21.452	20.655	8.011
834.00	57.471	43.832	21,490	20.717	8.036
835.00	58.182	44.029	21.540	20.779	8.060
836.00	58.871	44.194	21.579	20.836	8.079
837.00	59.546	44.364	21.621	20.893	8.097
838.00	60.210	44.530	21.665	20.944	8.118

^{*} The units of u are molecules/cm 2 , abbreviated here by ($^{\#}/\text{cm}^2$).

	TAE	BLE 16	SAd√	
Sam. No. Temp (K)	HR42 311+	HR43	HR44 311•	HR45
Path (cm) Conc.	3291 • 1 • 00000	3291 •	3291.	3291.
P (atm)	0.192105	0•15300 0•956579	1 • 00000 0 • 0 48026	0+03850 0+988158
	0.249962	1.000617	0.062448	0.999580
Pe(atm) ue(#/cm ²) ^t	1 . 49 4E 22	1 - 1 3BE 22	3.733E 21	2.957E 21
(cm)				
775.00	0.	0.	0.	J.
776.00	0.266	0.299	0.100	0.099
777.00	0.431	0.505	0.156	0.163
778.00	0.685	0.802	0.251	0.257
779.00	0.908	1.035	0.327	0.327
780,00	1.093	1.242	0.394	0.389
781.00	1.313	1.477	0.477	Ü.463
782.00	1.465	1.636	0.533	0.515
783.00	1.634	1.812	0.593	ŭ.574
784.00	1.815	1.991	0.656	0.632
785.00	1.918	2.100	0.697	0.671
786.00	2.054	2.237	0.752	Ŭ.716
787.00	2.180	2.359	0.806	0.756
788.00	2.254	2.433	0.842	0.785
789.00	2.359	2.526	0.883	0.822
790.00	2.432	2.591	0.917	0.855
791.00	2.539	2.715	0.963	0.909
792.00	3.196	3.458	1.425	1.412
793.00	3.911	4.188	1.753	1.750
794.0G	4.207	4.481	1.861	1.848
795.00	4.310	4.584	1.897	1.889
796.00	4.441	4.718	1,948	1.938
797.00	4.550	4.843	1.990	1.984
798.00	4.630	4.938	2.018	2.021
799.00	4.777	5.109	2.079	2.084
00.00	4.860	5.223	2.114	2.124
801.00	4.960	5.340	2.149	2.166
802.00	5.108	5.526	2.201	2.229
803.00	5.162	5.610	2.217	2.259
804.00	5.287	5.771	2.260	2.313
805,00	5.419	5.935	2.305	2.370
806.00	5.470	6.005	2.321	2.396
807.00	5.604	6.163	2.365	2.449
808.00	5.714	6.300	2.404	2,492
809.00	5.772	6.381	2.425	2.519

^{*} The units of u are molecules/cm 2 , abbreviated here by ($\#/\text{cm}^2$).

	TABI	LE 16	∫Adv	(cont.)
Sam. No.	HR42	HR43	HR44	HR 45
Temp (K)	311•	311•	311.	311.
Path (cm)	3291 •	3291•	3291.	3291.
Conc.	1.00000	0-15300	1.00000	0.03850
P (atm)	0-192105	0.956579	0.048026	0.988158
Pe(atm) ₂	0.249962	1.000617	0-062448	0.999580
u (#/cm) "	1.494E 22	1.138E 22	3.733E 21	2.95/E 21
(cm ⁻¹) 810.00	5.898	6.544	2.470	2.571
811.00	5.985	6.660	2.502	2.605
812.00	6.037	6.740	2.520	2.629
813.00	6.157	6.884	2.561	2.673
814.00	6.213	6.953	2.575	2.695
815.00	6.284	7.040	2.598	2.723
816.00	6.388	7.153	2.633	2.759
817.00	6.427	7.202	2.644	2.777
818.00	6.506	7.291	2.674	2.806
819.00	6.582	7.372	2.701	2.835
820.00	6.613	7.409	2.714	2.851
821.00	6.678	7.474	2.737	2.875
822.00	6.728	7.521	2.750	2.888
823.00	6.749	7.542	2.760	2.898
824.00	6.801	7.587	2.785	2.916
825.00	6.830	7.612	2.797	2.928
826.00	6.853	7.634	2.807	2.936
827.00	6.884	7.656	2.810	2.937
\$28.00	6.905	7.675	2.813	2.941
829.00	7.053	7.803	2.865	2.975
830.00	7.098	7.837	2.876	2.986
831.00	7.113	7.849	2.878	2.992
832.00	7.133	7.861	2.883	2.999
833.00	7.147	7.867	2.886	3.008
834.00	7.159	7.871	2.890	3.015
35.00	7.174	7.876	2.893	3.021
836.00	7.183	7.878	2.895	3.023
837.00	7.196	7.881	2.895	3.023
838.00	7.209	7.881	2.895	3.023

^{*} The units of u are molecules/cm 2 , abbreviated here by ($^{\#}/\text{cm}^2$).

SECTION 3

H₂O CONTINUUM BETWEEN 330 AND 825 cm⁻¹

This section compares calculated values of the $\rm H_2O$ continuum with experimental values determined previously in our laboratory. It was pointed out in the previous reports that the continuum absorption cannot be determined theoretically from the known line parameters: center position, intensity and half-width. Much of the discrepancy between theory and experiment undoubtedly results from uncertainties in the shapes of the extreme wings of the individual $\rm H_2O$ lines. Self-broadened $\rm H_2O$ lines apparently are shaped differently from $\rm N_2$ -broadened $\rm H_2O$ lines of the same half-width. In addition, the shapes of the extreme wings of the lines show a temperature dependence that is not predictable by simple line-shape theory.

A primary objective of the laboratory work and of the work reported here has been to determine a reliable method of calculating the H2O absorption by any atmospheric path of interest if the temperature, pressure and H2O vapor density are known. The AFGL line parameters compilation is to be used as a basis for the calculations. An empirical continuum is being determined to include in the calculations to bring about agreement between theory and experiment. Although much of the discrepancy between theoretical and experimental results is undoubtedly due to errors in the assumed line shapes, we have not attempted to determine a single line shape that would produce the amount of absorption that is observed. Such a task is probably impossible, and it is not likely that a single shape can be used to characterize all lines. Many of the lines that contribute significantly to the absorption at a given wavenumber may be centered more than a hundred cm⁻¹ away; thus, the shapes would need to be known far into the wings. Any possible absorption by H2O:H2O dimers would also complicate the calculations. Dimer absorption is included, without necessarily being identified as such, in the empirical continuum discussed below.

The experimental data cover a wide range of temperatures, making it possible to study the temperature dependence. Unfortunately, no data have been obtained at reduced temperatures because of the limitations on the maximum H₂O partial pressure that can be achieved at low temperatures. Data covering the wide range of temperatures make it possible to determine the temperature dependence so that some extrapolation to lower temperatures is probably valid.

The following discussion is limited mostly to self-broadening. Analysis of the data on N2-broadening is continuing; the results will be presented in a future report along with additional data on self-broadening.

LABORATORY MEASUREMENTS

Table 17, repeated here from one of our previous reports, 3 summarizes much

TABLE 17 $\label{eq:h20} {\rm H_20} \ {\rm CONTINUUM} \ {\rm COEFFICIENT} \ {\rm FOR}$ SELF-BROADENING AND ${\rm N_2}\text{-BROADENING}$

Y							
cm-1	Multiply all values by 10 ⁻²⁴ molecules ⁻¹ cm ² atm ⁻¹				c°,	$c_s^{\alpha}/c_{N_{\alpha}}^{\alpha}$	
1	C] s	c_{N_2}	
	430 K	s 296 K	430 K	с ^о N _{2 296 к}	430 K	296 К	
337.9		16000		1530		10.5	
366.0		9790		385*		25.4	
389.0		7830		291*		26.9	
411.0		6300		140*		45.0	
430.0	2400		349		6.9		
433.7	4520	5700	645	160**	7.0	35.6	
439.0		5600	043	160*	,.0	35.0	
440.1	2950	3000	378	100	7.8	33.0	
448.8	3420	5100	432	117*	7.9	12 (
465.4	2320	7100		117		43.6	
403.4	2320		296		7.8		
475.1	2640	4300	349	157 <u>*</u>	7.6	27.4	
482.6	2320	3950	353	166*	6.6	23.6	
498.0	1200	3050	110	55.3*	10.9	55.2	
531.6	762	2380	62	33.6 [%]	12.3	70.8	
559.2	573	1750	44	20.2	13.1	86.6	
579.0	972	1680	138	54.7		30.7	
597.0	670	1500	65	26.7	10.3	56.2	
611.4		1170		12.2*	10.5	95.9	
629.0	330	1100	29	13.0*	13.0	84.6	
656.0	219	1000		15.0	13.0	04.0	
683.5	171	930*					
725.5	120	700*					
764.6	97	570*			-		
790.0	87	540 <i>*</i>					
822.0	68	420*					
		720					
	•						

The estimated errors for C_s^o and C_N^o are \pm 5% except for values marked * and ** which indicate \pm 10% and \pm 20%, respectively.

of the H₂O continuum data on which the following discussion is based. The values listed represent all of the absorption except for that due to lines centered less than approximately 1 cm⁻¹ away. The small amount of absorption due to lines centered closer than about 1 cm⁻¹ has been accounted for and subtracted from the observed absorption. Thus, the lines contributing to the absorption represented are centered several half-widths from the point of observation so that the contribution to the absorption coefficient by each line is proportional to the pressure. (See Equation (7)).

At 296 K, C_s^0 is generally much greater than at the higher temperature, a result that agrees with previous results^{8,9} in other spectral regions. If the major portion of the absorption at the wavenumbers investigated for pure H_2O is due to the extreme wings of the absorption lines, these results indicate that the influence of temperature on the shapes of the self-broadened lines is greater than that predicted by simple theories on collision broadening. This unpredictably strong negative temperature dependence provides a basis for attributing the absorption to dimers because it is known that the concentration of dimers of any molecule decreases rapidly with increasing temperature. However, some of the results shown below in this report, as well as other results of ours shown previously, indicate that the extreme wings of absorption lines have an unpredictably strong negative temperature dependence. Therefore, it seems likely that some of the absorption attributed by many to dimers may be due to the extreme wings of lines with shapes that are not well understood.

COMPARISON OF MEASUREMENTS WITH THEORY

Figure 14 compares a segment of a typical experimental spectrum with a corresponding spectrum calculated for the same sample of pure H₂O. The calculated spectrum represented by the upper curve was computed by a line-by-line method with the AFGL line parameters serving as the basis. The spectrum was then "degraded" to correspond to the finite spectral slitwidth (0.4 cm⁻¹) of the spectrometer used to scan the laboratory spectrum. Laboratory measurements agree quite well in the narrow regions of strong absorption with this calculated spectrum based on the line-by-line method. Serious discrepancies occur, however, in the narrow regions of weak absorption between the absorption lines.

In order to produce better agreement between calculated and observed spectra, we have added an empirical continuum to the calculated absorption; the result is represented by the dotted curve in Figure 14. The empirical continuum contains no spectral structure and is nearly constant over the spectral interval shown.

^{8.} Darrell E. Burch, "Investigation of the Absorption of Infrared Radiation by Atmospheric Gases." Semi-Annual Technical Report, Contract F19628-69-C-0263. Aeronutronic Report No. U-4784, Jan. 1970.

^{9.} Darrell E. Burch, David A. Gryvnak and Gerald H. Piper; "Infrared Absorption by H₂O and N₂O." Final Report Contract No. F19628-73-C-0011. Aeronutronic Report No. U-6026, July 1973.

Figure 14. Comparison of calculated spectra with a laboratory spectrum of pure H2O. The solid curve represents the laboratory measurement; the upper curve represents the calculated spectrum based on the Lorentz line shape. An empirical continuum has been added to the calculated spectrum to produce the dotted curve. P = p = 0.0207 atm; P = 296 K, and u = 1.48 x 10²¹ molecules/cm².

Spectral plot of C_S^o for H_2O samples at $296^\circ K$. \blacksquare , laboratory measurements; O, values calculated by summing the contributions by all H_2O lines centered more than 1 cm⁻¹ from the wavenumber of measurement. That +'s and the curve represent $^{\circ}C_S^o$, the empirical continuum. Figure 15.

Addition of the empirical continuum has only a very small influence on the calculated spectrum near the centers of the absorption lines; the most influence is observed in the narrow windows between the lines. Although addition of the empirical continuum greatly improved the agreement with the laboratory measurements, it is apparent that slightly better agreement would be obtained in this spectral interval if somewhat less empirical continuum had been included. Much of the remainder of this section deals with the determination of an empirical continuum for pure H2O in the 300-800 cm⁻¹ region.

The solid squares in Figure 15 represent values of CQ obtained from laboratory measurements as described above at wavenumbers where most of the absorption is due to lines centered more than approximately 2 cm-1 from the point of measurement. Values calculated without any empirical continuum are represented by the circles; these values were found by including the calculated contributions for all $\rm H_2O$ lines. Computer time was greatly reduced by treating all of the lines centered above $1000~\rm cm^{-1}$ as a single, equivalent line centered at 1595 cm⁻¹. A previous calculation indicated only a very small contribution in the 300-800 cm⁻¹ region by these lines for which $v_0 > 1000$ cm⁻¹. Therefore, representing this small contribution by a single line introduced negligible error in the calculations. A Lorentz line shape was assumed for all lines. As discussed previously, contributions by lines centered closer than 1 cm⁻¹ from a point of calculation are not included in either the laboratory data or the calculated values of CQ. Each of the values represented by the +'s was obtained by subtracting the calculated value represented by the circle from the corresponding laboratory value represented by a solid square. Thus, a + sign represents the value of "extra" continuum, or empirical continuum, required to bring about agreement between calculated and experimental values.

The curve drawn through the +'s represents the empirical continuum for pure H_2O samples at 296 K. Values from this smooth curve are used to represent the empirical continuum coefficient, ${}^{e}C_{s}^{O}$, in transmission calculations. At any wavenumber, the total attenuation coefficient for pure H_2O (no N_2 or other broadening gas) is given by

$$\mu(\text{molecules}^{-1}\text{cm}^2) = \Sigma k(\text{for all 1ines}) + {}^{e}\text{C}_{s}^{o} p.$$
(12)

In this last step of the calculation, all of the lines, including those centered within 1 cm $^{-1}$, are included. The contribution by the empirical continuum is equal to the pressure of $\rm H_2O$ vapor times the normalized empirical continuum coefficient.

Figures 16 and 17 show data similar to those in Figure 15, except each figure corresponds to a different sample temperature. Data at the elevated temperatures, 338 K and 430 K, were not obtained over the entire spectral region included in the study at 296 K. The empirical continuum curves in Figures 15-17 have been redrawn together in Figure 18 for easy comparison. A very strong negative temperature dependence is apparent. For example, near 500 cm⁻¹ the empirical continuum represented by Figure 18 is only approximately 20% as great at 430 K as it is at 296 K. The calculated line contribution (represented by the circles)

Figure 16. Spectral plot of C_S^0 for H_2O samples at 338°K. , laboratory measurements; O, values calculated by summing the contributions by all H_2O lines centered more than 1 cm^{-1} from the wavenumber of measurement. The +'s and the curve represent ${}^{e}C_S^0$, the empirical continuum.

Spectral plot of C_S for H₂O samples at 430°K. , is aboratory measurements; O, values calculated by summing the contributions by all H₂O lines centered more than 1 cm⁻¹ from the wavenumber of measurement. The +'s and the curve more than 1 cm $^{-1}$ from the wavenumber of measurement, represent $^{\rm e}C_{\rm s}^{\rm o}$, the empirical continuum, Figure 17.

Figure 18. Spectral plots of the empirical continuum for pure HoO samples at three different temperatures.

increases with increasing temperature because the intensities of most of the lines in the 300-800 cm⁻¹ region increase with increasing temperature. Thus, as the temperature increases, the empirical continuum is responsible for a decreasing fraction of the absorption.

It is of interest that nearly all of the +'s in either Figure 15 or 16 fall within +10% of the corresponding smooth curve based on the points. The deviation from the smooth curve is greater for the 430 K samples represented by Figure 17 because the laboratory data are somewhat less accurate and the empirical continuum produces a smaller fraction of the absorption. Note that many of the calculated values represented by the circles would not fall near a single smooth curve. The points that would fall furthest above a smooth curve represent wavenumbers where strong absorption lines are centered within about 3-10 cm⁻¹; therefore, the absorption is greater than at other wavenumbers that are further from very strong lines. These points of greater absorption were included to help in providing information about the nature of the "extra" absorption represented by the empirical continuum and about the relative shapes of self-broadened and No-broadened HoO lines. It is informative that essentially the same amount of empirical continuum is required to provide agreement between theory and experiment at the wavenumbers of very low absorption as at those points where the calculated absorption coefficient may be 2-5 times greater.

Although the source of the extra absorption, represented here by the empirical continuum, cannot be determined unambiguously, a few of its characteristics can be inferred. The strong negative temperature dependence of the continuum coefficient observed in the spectral region studied here, as well as in the 8-12 µm window, has led many people to believe that the absorption is due to dimers, or to clusters of several H₂O molecules. However, it is significant that no spectral structure has been observed in the infrared that can be assigned with certainty to dimers. Absorption by the extreme wings of individual H₂O lines probably should not be ruled out as a major source of the continuum on the basis that present line shape theories do not predict the strong negative temperature coefficient that is observed. In other laboratory studies of the absorption by H₂O, CO₂, and N₂O, we have found that absorption by the extreme wings of the lines decreases faster with increasing temperature than is predicted by present theories. The temperature dependence observed for CO₂ and N₂O continuum absorption is less than has been observed for H₂O, nevertheless it is quite significant.

If the empirical continuum is, in fact, due to "super-Lorentzian" absorption by the lines, the super-Lorentzian behavior must occur over a large portion of the extreme wings of each line. For example, assume that each line was super-Lorentzian only over the region 5 cm⁻¹ $< |v-v_0| < 10$ cm⁻¹ and Lorentzian, or sub-Lorentzian, elsewhere. In this case, the empirical continuum would not be represented by a smooth curve; instead, it would vary with wavenumber, depending on the intensities of the lines centered within the 5-10 cm⁻¹ range. The empirical continuum represented by the curve in Figure 15 decreases gradually with increasing v in much the same way as the average intensities of the lines decrease. This strongly suggests that the source of the continuum is-related directly to the lines.

SECTION 4

REFERENCES

- R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, and J. S. Garing; "AFCRL Atmospheric Absorption Line Parameters Compilation", AFCRL-TR-73-0096, 26 January 1973. (Associated with this report is a magnetic tape listing the line parameters.)
- 2. David A. Gryvnak, Darrell E. Burch, Robert L. Alt, and Dorianne K. Zgonc; "Infrared Absorption by CH₄, H₂O and CO₂", Final Report No. AFGL-TR-76-0246 on Contract F19628-76-C-0067. Aeronutronic Report No. U-6275, December 1977.
- 3. Darrell E. Burch, David A. Gryvnak, and Francis J. Gates; "Continuum Absorption by H₂O Between 330 and 825 cm⁻¹", Finel Report No. AFCRL-TR-74-0377 on Contract F19628-74-C-0069. Aeronutronic Report No. U-6095, September 1974.
- 4. Darrell E. Burch, David A. Gryvnak, and John D. Pembrook; "Infrared Absorption by H₂O, NO₂, and N₂O₄", Final Report No. AFCRL-TR-75-0420 on Contract No. F19628-75-C-0049. Aeronutronic Report No. U-6159, September 1975.
- 5. E. P. Gross, Phys. Rev. <u>97</u>, 395 (1955).
- 6. W. S. Benedict, Inst. for Molecular Physics, College Park Maryland, 90742; R. Calfee, Wave Propogation Labs., Environmental Research Labs, National Oceanic Atmospheric Administration, Boulder Colorado 80302 (Private Communication).
- 7. S. R. Drayson, "A Listing of Wavenumbers and Intensities of Carbon Dioxide Absorption Lines Between 12 and 20 μ m". Technical Report 036350-4-T, National Aeronautics and Space Administration, Contract No. NSR 23-005-376, May 1973.
- 8. Darrell E. Burch, "Investigation of the Absorption of Infrared Radiation by Atmospheric Gases." Semi-Annual Technical Report, Contract F19628-69-C-0263. Aeronutronic Report No. U-4784, Jan. 1970.
- 9. Darrell E. Burch, David A. Gryvnak and Gerald H. Piper; "Infrared Absorption by H₂O and N₂O." Final Report Contract No. F19628-73-C-0011. Aeronutronic Report No. U-6026, July 1973.