در تقویت کننده های فیدبک دار زیر مطلوبست: $(\beta=100)$ الف - تعیین نقطه کار ترانزیستور ها ϕ - تعیین نوع فیدبک و ϕ فیدبک

 \mathbf{q} ہے۔ محاسبہ بھرہ ولتاڑ \mathbf{q} ، مقاومت ورودی \mathbf{q} ، مقاومت خروجی \mathbf{q} و فرکانس قطع پایین \mathbf{q} به روش فیدبک

توجه: مسائل ستاره دار تحویل داده شوند.

H) Ici = 117 x 12-0,7 01MA

1200 In 1200 In Marchard

Is of 10/1/100k 11 1-1/2

fL: Rci=Ri

Res = 8h 41k

Rcz = 1 11 [reit 10 11 10 11 1-16 11 18]

fc2 = 1 2 1 C2 RC2 x 1- BA

. نبس ری دی ا

با فرض: I_{C1}=0.6mA, I_{C2}=1mA, I_{C3}=4mA

$$A = R: x - \frac{(rr2+100 \times R2)}{re_1} \times \frac{1}{re_1 + R2} = A: x - \frac{100}{re_1}$$

GIR =
$$\infty$$
, $\beta = \frac{VP}{I_0} = \frac{1}{1}$, $R_1 = \frac{1}{1}$, $R_2 = \frac{1}{1}$

I by $x \pi y = V$:

I by $x \pi y = V$:

I by $x \pi y = V$:

 $V_{0} = (\frac{k_{11} z^{k}}{2}) \times \beta \times (\frac{k_{11} z^{k}}{2}) \times \beta \times (\frac{v_{1}}{2} + \beta \times 300) + 1^{k} \times (\frac{v_{1}}{2} + \delta \times 300) + 1^{k} \times (\frac{v_{1}}{2} + \delta \times 300) + 1^{k} \times (\frac{v_{1}}{$