

Universal Exact Compression of Differentially Private Mechanisms

Yanxiao Liu¹ Wei-Ning Chen² Ayfer Özgür² Cheuk Ting Li¹

yanxiaoliu@link.cuhk.edu.hk {wnchen, aozgur} @stanford.edu ctli@ie.cuhk.edu.hk ¹The Chinese University of Hong Kong ²Stanford University

Introduction

Local differential privacy (DP) [1].

Local randomizer $\mathcal{A}:\mathcal{X} o\mathcal{Z}$ with distribution $P_{Z|X}$ satisfies (ε, δ) -local DP if for any $x, x' \in \mathcal{X}$ and measurable set $\mathcal{S} \subseteq \mathcal{Z}$, $\Pr(Z \in \mathcal{S}|X = x) \le e^{\varepsilon} \cdot \Pr(Z \in \mathcal{S}|X = x') + \delta.$

Compression of DP mechanisms.

Objective: Compress DP mechanisms exactly (i.e., $Z \sim P_{Z|X}$) to near-optimal sizes, while ensuring privacy guarantees.

Prior works:

- · [2-5]: Compress ε -local DP mechanism **approximately**.
- · [6,7]: Dithered quantization tools ensure a correct simulated distribution, but only for additive noise mechanisms.

Poisson Functional Representation (PFR) [8]

Let $(T_i)_i$ be a Poisson process with rate 1, independent of $Z_i \overset{\text{i.i.d.}}{\sim}$ Q. Then $(Z_i, T_i)_i$ is a Poisson process with intensity measure $Q \times \lambda_{[0,\infty)}$. Fix distribution P absolutely continuous w.r.t Q. Let

$$\widetilde{T}_i \triangleq T_i \cdot \left(\frac{\mathrm{d}P}{\mathrm{d}Q}(Z_i)\right)^{-1}.$$

Theorem: $K \triangleq \arg\min_i \tilde{T}_i$ and $Z = Z_K$, then $Z \sim P$. Our contributions: Poisson private representation, which is:

- (a) **Exact**: simulates $P_{Z|X}$ exactly;
- (b) **Universal**: simulates any DP mechanism;
- (c) Communication-efficient: compresses $P_{Z|X}$ to

$$I(X; Z) + \log (I(X; Z) + 1) + O(1)$$
 bits.

(d) **Private**: ensures both local and central DP. **Poisson Private Representation** $(p_k \triangleq \Pr(K = k))$:

Poisson Private Representation (PPR)

Algorithm 1 (PPR).

Input: private $x \in \mathcal{X}$, (ε, δ) -local DP mechanism $P_{Z|X}$, reference distribution Q, parameter $\alpha > 1$.

(a) Generate shared randomness between user and server

$$(Z_i)_{i=1,2,\dots}\stackrel{\mathsf{i.i.d.}}{\sim} Q.$$

- (b) The user knows $(Z_i)_i, x, P_{Z|X}$ and performs:
- (1) Generate the Poisson process $(T_i)_i$ with rate 1.
- (2) Compute $\tilde{T}_i \triangleq T_i \cdot \left(\frac{dP_{Z|X}(\cdot|x)}{dQ}(Z_i)\right)^{-1}$.
- (3) Generate $K \in \mathbb{Z}_+$ with

$$\Pr\left(K = k\right) = \tilde{T}_k^{-\alpha} / \left(\sum_{i=1}^{\infty} \tilde{T}_i^{-\alpha}\right).$$

- (4) Compress and send K (e.g., by Elias delta code).
- (c) The server, which knows $(Z_i)_i, K$, outputs $Z = Z_K$.

Privacy guarantees

- **1 Thm 4.5**: If the mechanism $P_{Z|X}$ is ε -DP, then PPR $P_{(Z_i)_i,K|X}$ with $\alpha > 1$ is $2\alpha\varepsilon$ -DP.
- **Thm 4.8**: If $P_{Z|X}$ is (ε, δ) -DP, then PPR $P_{(Z_i)_i,K|X}$ is $(\alpha \varepsilon + \varepsilon)$ $\tilde{\varepsilon}, 2(\delta + \tilde{\delta})$)-DP, for $\alpha > 1$, $\tilde{\varepsilon} \in (0, 1]$ and $\tilde{\delta} \in (0, 1/3]$ s.t. $\alpha \le e^{-4.2}\tilde{\delta}\tilde{\varepsilon}^2/(-\ln\tilde{\delta}) + 1.$

Exactness

The output Z of PPR follows $P_{Z|X}$ exactly.

Communication Efficiency

Thm 4.3: For PPR with $\alpha > 1$, message K satisfies

$$\mathbb{E} \left[\log_2 K \right] \le D_{\mathsf{KL}} \left(P(\cdot | x) || Q(\cdot) \right) + \log_2(3.56) / \min \left((\alpha - 1)/2, 1 \right).$$

K can be encoded by a prefix-free code with expected length pprox $D_{\mathsf{KL}}(P(\cdot|x)||Q(\cdot))$ bits within a \log gap. If $X \sim P_X$ is random, take $Q = P_Z$ and the expected length $\approx I(X; Z)$ (near-optimal). **Corollary 4.4**: For $P_{Z|X}$ with ε -local DP, the compression size $\leq \ell + \log_2(\ell + 1) + 2$ (bits),

where $\ell \triangleq \varepsilon \log_2 e + \log_2(3.56) / \min((\alpha - 1)/2, 1)$.

Remarks

- The exactness of PPR follows from the PFR [8].
- While the algorithm requires infinite samples, it can be reparametrized to terminate in finite steps.
- When $\alpha = \infty$, PPR reduces to PFR.

Application: Metric Privacy and Laplace Mechanism

For a mechanism \mathcal{A} with $P_{Z|X}$ and a metric $d_{\mathcal{X}}$ over \mathcal{X} , it satisfies $\varepsilon \cdot d_{\mathcal{X}}$ -privacy [9] if $\forall x, x' \in \mathcal{X}$, $\mathcal{S} \subseteq \mathcal{Z}$, we have

$$\Pr(Z \in \mathcal{S} \mid X = x) \le e^{\varepsilon \cdot d_{\mathcal{X}}(x, x')} \Pr(Z \in \mathcal{S} \mid X = x').$$

PPR-compressed Laplace mechanism:

For Laplace mechanism $P_{Z|X}$ with $X \in \{x \in \mathbb{R}^d | \|x\|_2 \le C\}$ and proposal distribution $Q=\mathcal{N}(0,(\frac{C^2}{d}+\frac{d+1}{\varepsilon^2})\mathbb{I}_d)$, the output of PPR has MSE $\frac{d(d+1)}{\varepsilon^2}$, $2\alpha\epsilon \cdot d\chi$ -privacy and compression size $\leq \ell + \log_2(\ell+1) + 2$ bits, where $\ell \triangleq$

$$\frac{d}{2}\log_2\left(\frac{2}{e}\left(\frac{C^2\varepsilon^2}{d} + d + 1\right)\right) - \log_2\frac{\Gamma(d+1)}{\Gamma(\frac{d}{2}+1)} + \frac{\log_2(3.56)}{\min\{\frac{\alpha-1}{2}, 1\}}.$$

We compare with the discrete Laplace mechanism [9], d = 500.

Distributed Mean Estimation

Consider n users, each with data $X_i \in \mathbb{R}^d$. They use **Gaussian mechanism** and send $Z_i \sim \mathcal{N}(X_i, \frac{\sigma^2}{n}\mathbb{I}_d)$ to server, where $\sigma \geq 1$ $C\sqrt{2\ln(1.25/\delta)}/\varepsilon$. Server estimates mean as $\hat{\mu}(Z^n) = \frac{1}{n}\sum_i Z_i$. Using PPR to compress the Gaussian mechanism:

- $\hat{\mu}(Z^n) = \frac{1}{n} \sum_i Z_i$ is unbiased, has (ε, δ) -central DP.
- PPR satisfies $(2\alpha\sqrt{n}\varepsilon, 2\delta)$ -local DP for $\epsilon < 1/\sqrt{n}$.
- The average per-client communication cost is at most

$$\frac{d}{2}\log\left(\frac{n\varepsilon^2}{2d\log(1.25/\delta)} + 1\right) + \frac{\log_2(3.56)}{\min\{(\alpha - 1)/2, 1\}}$$
 bits.

Compare to CSGM [10] on distributed mean estimation:

References:

- [1] Kasiviswanathan, Lee, Nissim, Raskhodnikova and Smith, "What can we learn privately?" SIAM Journal on Computing, 2011.
- [2] Feldman and Talwar, "Lossless compression of efficient private local randomizers," ICML 2021.
- [3] Shah, Chen, Balle, Kairouz and Theis, "Optimal Compression of Locally Differentially Private Mechanisms,"
- [4] Triastcyn, Reisser and Louizos, "DP-REC: Private & Communication-Efficient Federated Learning,"
- [5] Bassily and Smith, "Local, private, efficient protocols for succinct histograms," STOC 2015.
- [6] Hegazy, Leluc, Li and Dieuleveut, "Compression with exact error distribution for federated learning," AISTATS
- [7] Shahmiri, Ling and Li, "Communication-efficient Laplace mechanism for differential privacy via random quantization," ICASSP 2024.
- [8] Li and El Gamal, "Strong Functional Representation Lemma and Applications to Coding Theorems," IEEE Trans. Inf. Theory, 2018.
- [9] Andrés, Bordenabe, Chatzikokolakis and Palamidessi, "Geo-indistinguishability: Differential privacy for location-based systems," CCS 2013
- [10] Chen, Song, Ozgur and Kairouz, "Privacy Amplification via Compression: Achieving the Optimal Privacy-Accuracy-Communication Trade-off in Distributed Mean Estimation," NeurIPS 2023