

TFG del Grado en Ingeniería Informática

Diseño de un sistema económico IoT de monitorización de invernaderos de cannabis medicinal

Presentado por José Luis Caballero Martínez-Quintanilla en Universidad de Burgos — 16 de febrero de 2024

> Tutor: Alejandro Merino Gómez Tutor: Carlos Cambra Baseca

D. Alejandro Merino Gómez, profesor del departamento de Digitalización, área de Systems Engineering and Automation y D. Carlos Cambra Baseca, profesor del departamento de Digitalización del área de Computer Science and Artificial Intelligence,

Exponen:

Que el alumno D. José Luis Caballero Martínez-Quintanilla, con DNI 48471169-A, ha realizado el Trabajo final de Grado en Ingeniería Informática titulado Diseño de un sistema económico IoT de monitorización de invernaderos de cannabis medicinal.

Y que dicho trabajo ha sido realizado por el alumno bajo la dirección del que suscribe, en virtud de lo cual se autoriza su presentación y defensa.

En Burgos, 16 de febrero de 2024

 V° . B° . del Tutor: V° . B° . del co-tutor:

D. Merino Gómez, Alejandro D. Cambra Baseca, Carlos

Resumen

El presente trabajo de fin de grado aborda el diseño de un sistema económico basado en el Internet de las cosas (IoT) para la monitorización de invernaderos destinados al cultivo de cannabis medicinal. El objetivo principal es mejorar la eficiencia y la calidad del cultivo mediante la implementación de sensores y dispositivos conectados que permitan la recolección y análisis de datos en tiempo real.

El hardware seleccionado para este proyecto incluye la Raspberry Pi Pico W como unidad central, una pantalla OLED 128x64 para la visualización de información, el sensor DHT22 para la medición de la temperatura y humedad ambiente, el sensor BH1750 para evaluar la intensidad lumínica, y un sensor de humedad de suelo para monitorear las condiciones de la tierra.

A lo largo del trabajo, se detalla el proceso de integración de estos componentes, se describen las tecnologías utilizadas para la comunicación y el manejo de datos, y se presenta la interfaz de usuario diseñada para la visualización de información relevante. Se destacan también las consideraciones económicas que han llevado a la elección de cada componente, buscando una solución asequible sin comprometer la calidad de los resultados.

Los resultados obtenidos demuestran la viabilidad y eficacia del sistema propuesto, ofreciendo a los agricultores de cannabis medicinal un instrumento práctico y accesible para mejorar la gestión de sus invernaderos. Este trabajo contribuye al campo emergente de la agricultura inteligente y sostenible, abriendo posibilidades para futuras investigaciones y aplicaciones en el ámbito de la monitorización agrícola basada en IoT.

Descriptores

Raspberry Pi Pico W, Micropython, Autónomo, Sistema Domótico, Bot, Telegram, Python . . .

Abstract

This project deals with the design of an economic system based on the Internet of Things (IoT) for the monitoring of greenhouses for the cultivation of medical cannabis. The main objective is to improve the efficiency and quality of the crop through the implementation of sensors and connected devices that allow the collection and analysis of data in real time.

The hardware selected for this project includes the Raspberry Pi Pico W as the central unit, a 128x64 OLED screen for displaying information, the DHT22 sensor for measuring ambient temperature and humidity, the BH1750 sensor for evaluating light intensity, and a soil moisture sensor for monitoring soil conditions.

Throughout the paper, the integration process of these components is detailed, the technologies used for communication and data management are described, and the user interface designed for the visualization of relevant information is presented. It also highlights the economic considerations that led to the choice of each component, seeking an affordable solution without compromising the quality of the results.

The results obtained demonstrate the feasibility and effectiveness of the proposed system, offering medical cannabis farmers a practical and accessible tool to improve the management of their greenhouses. This work contributes to the emerging field of smart and sustainable agriculture, opening possibilities for future research and applications in the field of IoT-based agricultural monitoring.

Keywords

Raspberry Pi Pico W, Micropython, Autonomous, Domotic System, Bot, Telegram, Python . . .

Índice general

Índice general	iii
Índice de figuras	iv
Índice de tablas	v
4. Técnicas y herramientas 4.1. Entorno Software	1 1
Bibliografía	3

Índice de figuras

Índice de tablas

4. Técnicas y herramientas

4.1. Entorno Software

Thonny

Thonny [1]

Bibliografía

[1] Thonny. Python ide for beginners. https://thonny.org/.