Enhancing Credit Risk Assessment through Advanced Machine Learning Techniques

Phase 2 Review 2

Project Group No: 244

Group Supervisor – Dr. Preetam Suman

Group Members

- ☐ 21BCE10443 Harshit Varshney
- ☐ 21BCE11188 Adarsh Kanungo
- ☐ 21BCE10470 Giya Ambasta
- ☐ 21BCE10503 Saumadipta Chatterjee

Objective

Aim: The objective is to predict whether to approve or deny a loan application using customer data.

Purpose:

- Optimize the bank's lending strategy.
- Reduce the occurrence of non-performing loans.
- Assist the bank in making data-driven credit decisions.

Motivation:

Address existing gaps in credit risk modeling.

Clarity and Significance of the Problem Statement

Problem Statement:

 The bank faces challenges in accurately predicting credit risk for new and existing customers, leading to increased bad loans and impacting profitability.

Significance:

 Addressing this issue with advanced modeling will reduce loan defaults, improve profitability, and enhance customer profiling.

Feasibility and Scope of the Project

• Feasibility:

- Leverages available internal and external datasets (Bureau dataset, Internal product dataset).
- Machine learning models can be deployed to automate risk assessment.

Scope:

- Improves risk assessment for credit cards, personal loans, housing loans, etc.
- Can be scaled to other products and sectors of the bank's business.

Existing Projects

Similar Projects:

 Previous credit scoring systems rely on rule-based models or traditional scoring techniques like logistic regression.

Difference:

- Used 2 datasets 1.Bank Internal dataset 2.Cibil dataset for more accurate results
- Proposed model uses advanced ML techniques (e.g., random forest, XGBoost) to enhance prediction accuracy.

Initial Research Findings:

- Higher accuracy in predicting delinquencies compared to existing models.
- Improved risk segmentation based on customer behavior and profile data.

Some Basic Banking Terms

Asset: Loans like housing, personal, vehicle, and education loans. These are the bank's assets because they generate income through interest payments.

Liability: Products like current accounts, savings accounts, fixed deposits, and RDs. These are considered liabilities because the bank must pay interest on these accounts.

NPA (Non-Performing Asset): A loan is considered NPA when payments are overdue (Days Past Due, DPD) for more than 90 days. It indicates that the loan is in default.

Disbursed Amount: The amount of the loan granted to the customer.

Outstanding Principal (OSP): The remaining loan balance that the customer still owes. Ideally, it should be zero at the end of the loan term.

DPD (Days Past Due): The number of days a payment has been delayed. DPD should ideally be zero, meaning no payment delay.

PAR (Portfolio at Risk): The outstanding principal at risk when DPD is greater than zero, indicating potential for default.

Credit Risk Types:

- Non-delegate account (NDA): DPD = 0, meaning no payment delays.
- SMA1 (Special Mention Account 1): DPD is between 0-30 days.
- SMA2 (Special Mention Account 2): DPD is between 31-60 days.
- SMA3 (Special Mention Account 3): DPD is between 61-90 days.
- NPA (Non-Performing Asset): DPD is between 90-180 days.
- Written Off: DPD is greater than 180 days, meaning the loan is deleted from the bank's books, but recovery may still be pursued.

NPA Categories:

- **GNPA (Gross NPA)**: The total amount of NPA, typically between 3-5% of the bank's outstanding principal.
- NNPA (Net NPA): This is GNPA minus the provisioning amount (the amount set aside to cover potential losses), generally ranging from 0.01-0.06%. Lower NNPA reflects better financial health of the bank.

Datasets & Their Feature Description

Case Study 1: Internal product dataset containing 25 features related to the bank's customer loan product holdings.

Case Study 2: CIBIL dataset with features to predict loan priority using CIBIL scoring rules (P1, P2, P3, P4).

Datasets & Their Feature Description

Case Study 1: Internal product dataset containing 25 features related to the bank's customer loan product holdings.

Variable Name	Description
Total_TL	Total trade lines/accounts in Bureau
Tot_Closed_TL	Total closed trade lines/accounts
Tot_Active_TL	Total active accounts
Total_TL_opened_L6M	Total accounts opened in last 6 Months
Tot_TL_closed_L6M	Total accounds closes in last 6 months
pct_tl_open_L6M	Percent accounts opened in last 6 month
pct_tl_closed_L6M	percent accounts closed in last 6 months
pct_active_tl	Percent active accounts
pct_closed_tl	Percent closed accounts
Total_TL_opened_L12M	Total accounts opened in last 12 Months
Tot_TL_closed_L12M	Total accounts closed in last 12 months

pct_tl_open_L12M Percent accounts opened in last 12 months pct_tl_closed_L12M percent accounts closed in last 12 months

Tot_Missed_Pmnt Total missed Payments

Auto_TL Count Automobile accounts CC_TL Count of Credit card accounts

Consumer_TL Count of Consumer goods accounts

Gold_TL Count of Gold loan accounts
Home_TL Count of Housing loan accounts
PL_TL Count of Personal loan accounts

Secured_TL Count of secured accounts
Unsecured_TL Count of unsecured accounts
Other_TL Count of other accounts

Age_Newest_TL Age of newest opened account

Case Study 2: CIBIL dataset with features to predict loan priority using CIBIL scoring rules (P1, P2, P3, P4).

time_since_first_deliquency time_since_recent_deliquency

num_times_delinquent max_delinquency_level

max_recent_level_of_deliq

num_deliq_6mts num_deliq_12mts Time Since recent Payment made

Time since first Deliquency (missed payment)

Time Since recent Delinquency
Number of times delinquent

Maximum delinquency level

Maximum recent level of delinquency

Number of times delinquent in last 6 months Number of times delinquent in last 12 months

max_deliq_6mts Maximum delinquency level in last 6 months max_deliq_12mts Maximum delinquency level in last 12 months

num_times_30p_dpd Number of times 30+ dpd
num_times_60p_dpd Number of times 60+ dpd
num_std Number of standard Payments

num_std_6mts Number of standard Payments in last 6 months num_std_12mts Number of standard Payments in last 12 months

num_sub Number of sub standard payments - not making full payments

num_sub_6mts Number of sub standard payments in last 6 months num sub 12mts Number of sub standard payments in last 12 months

num_dbt Number of doubtful payments

num_dbt_6mts Number of doubtful payments in last 6 months num_dbt_12mts Number of doubtful payments in last 12 months

num_lss Number of loss accounts

num_lss_6mts Number of loss accounts in last 6 months num_lss_12mts Number of loss accounts in last 12 months

recent_level_of_deliq Recent level of delinquency

tot_enq Total enquiries

CC_enq Credit card enquiries

CC_enq_L6m Credit card enquiries in last 6 months
CC enq L12m Credit card enquiries in last 12 months

PL_enq Personal Loan enquiries

PL_enq_L6m Personal Loan enquiries in last 6 months
PL_enq_L12m Personal Loan enquiries in last 12 months

time_since_recent_enq
enq_L12m
Enquiries in last 12 months
enq_L6m
Enquiries in last 6 months
enq L3m
Enquiries in last 3 months

MARITALSTATUS Marital Status EDUCATION Education level

AGE Age

GENDER

NETMONTHLYINCOME

Time_With_Curr_Empr Time with current Employer pct of active TLs ever Percent active accounts ever

pct_currentBal_all_TL Percent current balance of all accounts

CC_utilization Credit card utilization
CC Flag Credit card Flag

PL_utilization Peronal Loan utilization PL_Flag Personal Loan Flag

pct_PL_enq_L6m_of_L12m Percent enquiries PL in last 6 months to last 12 months pct CC enq L6m of L12m Percent enquiries CC in last 6 months to last 12 months

pct_PL_enq_L6m_of_ever Percent enquiries PL in last 6 months to last 6 months pct_CC_enq_L6m_of_ever Percent enquiries CC in last 6 months to last 6 months

max_unsec_exposure_inPct Maximum unsecured exposure in percent

HL_Flag Housing Loan Flag
GL_Flag Gold Loan Flag

last_prod_enq2 Lates product enquired for first_prod_enq2 First productd enquired for

Credit_Score Applicant's credit score

Approved_Flag Priority levels

Feature Engineering & EDA

The Phase 1 of capstone project so far has focused on the initial and crucial steps of data processing, which include dataset cleaning, feature engineering, and exploratory data analysis (EDA). The main aim was to prepare the dataset for further analysis by handling missing values, identifying important features, and gaining insights into the data through visualizations and statistical methods.

The code primarily involves:

- ❖ Data Cleaning: Null values, represented as -99999, were identified and appropriately handled based on the banking requirements.
- **Feature Engineering**: Multiple features were transformed and prepared for analysis, ensuring the integrity and relevance of data.
- **Exploratory Data Analysis**: Insights were drawn from both categorical and numerical features, testing associations with the target variable using chi-square tests, and multicollinearity was checked with VIF analysis.

> The first step is to load the necessary Python libraries that help with data handling, statistical tests, and multicollinearity checks.

Two Excel files, case_study1.xlsx (internal product data) and case_study2.xlsx (CIBIL data), are loaded into Python and copied into dataframes df1 and df2 for further analysis.

The code identifies missing values (represented as -99999) in both datasets. In df1, rows where the oldest account age is -99999 are removed. In df2, columns with more than 10,000 missing values are dropped, and remaining rows with null values are also removed.

The two datasets are merged based on a common column PROSPECTID. This ensures that we have a unified dataset with no missing values, ready for analysis.

The code then checks which columns contain categorical data (e.g., "Marital Status"). This is important for statistical tests later.

Multicollinearity

- Happens when two or more Independent Variables are correlated
- This leads to lower the accuracy of our model
- Needs to be removed by some method (eg- VIF)

Example

Chi-Square Test for Categorical Features:

For each categorical feature (like Marital Status, Education, Gender, etc.), a chi-square test is performed to check if it is associated with the loan approval flag (Approved_Flag). This test helps determine which categorical features have a significant relationship with the target variable.

Checking Multicollinearity with VIF:

For numerical columns, multicollinearity is checked using the Variance Inflation Factor (VIF).

Multicollinearity occurs when two or more features are highly correlated, and removing such features can improve the model's accuracy. The code removes any features with a VIF value greater than 6.

ANOVA Test for Numerical Features:

Finally, the code performs an ANOVA test on numerical features to check whether they have a significant relationship with the target variable. Only features with a p-value less than or equal to 0.05 are kept for further analysis.

Finally we have our single Dataset Ready for Modeling

Here we have done Encoding Categorical Features:Ordinal encoding is applied to the EDUCATION feature. One-hot encoding is applied to categorical variables like MARITALSTATUS, GENDER, and others.

Then we have described the data for checking the data type after label encoding and also we have checked that our target variable count after label encoding to check for dataset is balanced or imbalanced

Confusion Matrix

Accuracy, Recall, Precision, F1 score

$$F1 \text{ score} = \frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$

Applied Random forest Model

Applied Xgboost model

Applied Decision Tree

Thank You