

UNIVERSIDADE PRESBITERIANA MACKENZIE Faculdade de Computação e Informática

UNIDADE - FACULDADE DE COMPUTAÇÃO E INFORMÁTICA				
CURSO:		NÚCLEO TEMÁTICO:		
CIÊNCIA DA COMPUTAÇÃO/SISTEMAS DE INFORMAÇÃO		FUNDAMENTOS DE COMPUTAÇÃO		
INTELIGÊNCIA ARTIFICIAL		CÓDIGO DA DISCIPLINA		
		ENEC50534		
PROFESSOR(ES)	DRT	ETAPA		
ROGÉRIO DE OLIVEIRA	1115665	7°		
ROBERTO CASSIO	1121945			
CARGA HORÁRIA		SEMESTRE LETIVO		
4h/a (2 teoria 0 laboratório 2 EAD)		2022/2		

EMENTA

Inteligência Artificial: Conceito. Principais paradigmas. Linguagem e frameworks para IA e Aprendizado de Máquina. Conceito de aprendizagem de máquina e sua relação com a Ciência de Dados. Tipos de Aprendizagem. Aprendizado Supervisionado e não Supervisionado. Tarefas de Aprendizagem de Máquina. Medidas de desempenho dos modelos. Sobreajuste. Regressão Linear e Logística. K-vizinhos mais Próximos. Árvores de Decisão. Associação. Sistemas de Recomendação. Agrupamento. Redução de Dimensionalidade. Redes Neurais e Deep Learning. Processamento de Linguagem Natural e Inteligência Artificial Clássica.

OBJETIVOS

Preparar o aluno para que ele compreenda todo o processo da Inteligência Artificial focada em aprendizagem de Dados e seja capaz de aplicar os principais algoritmos em problemas reais.

FATOS E CONCEITOS	PROCEDIMENTOS E HABILIDADES	ATITUDES, NORMAS E VALORES
- Conhecer as principais subáreas,	- Desenvolver a capacidade de	- Valorizar a interdisciplinaridade
paradigmas e técnicas da	reconhecer oportunidades de	do conhecimento científico.
Inteligência Artificial e da	aplicação das técnicas de	
Aprendizagem de Máquina.	Inteligência Artificial e	- Estar atento para as tecnologias
	Aprendizagem de Máquina a	de ponta e às oportunidades de
- Ter contato com aplicações das	problemas de pesquisa e	inovação.
técnicas de Aprendizagem de	desenvolvimento.	
Máquina a problemas concretos		- Estar atento para identificar
encontrados nas organizações.	- Ser capaz de modelar um dado	oportunidades de resolução de
	problema de forma a torná-lo	problemas de pesquisa e do dia a
- Ter contato com os principais	tratável através de métodos e	dia das organizações por meio de
frameworks de Aprendizagem de	técnicas de Aprendizagem de	técnicas de Inteligência Artificial
Máguina.	Máguina, identificando as	e Aprendizagem de Máquina.
·	abordagens que podem	
	eventualmente ser usadas na	- Perceber o potencial de
	sua resolução.	desenvolvimento de novos
	,	negócios com o Aprendo de
	- Estar apto a implementar	Máquina.
	protótipos de soluções	, -
	baseadas nessas técnicas	

UNIVERSIDADE PRESBITERIANA MACKENZIE Faculdade de Computação e Informática

computacionais e usar frameworks Aprendizagem de Máquina.	

CONTEÚDO PROGRAMÁTICO

1. Introdução à Inteligência Artificial: conceito, história e paradigmas

- a. Programação x Aprendizado de Máquina; Aplicações
- b. Linguagens e ambientes de programação
- c. Modelos de Aprendizado Supervisionado, não Supervisionado e com Reforço

2. Regressão Linear

- a. Modelos Supervisionados
- b. Regressão Simples e Múltipla
- c. R2, medida de eficiência do modelo

3. Regressão Logística

- a. Tarefas de Aprendizado: Classificação
- b. Regressão Logística
- c. Métricas: acuracidade, precisão, recall

4. K-Vizinhos mais Próximos

- a. Modelo geral de estimadores com o sci-kitlearn
- b. K-vizinhos mais próximos e obtendo o melhor modelo

5. Árvores de Decisão

- a. Árvores de Decisão
- b. Outros modelos Supervisionados

6. Kmédias

- a. Aprendizado não Supervisionado
- b. Agrupamentos, Detecção de Anomalias, Associações

7. Clusterização Hierárquica

a. Aprendizado não Supervisionado e outros modelos de Clusterização

8. Regras de Associação

a. Técnica apriori e Aplicações

9. Sistemas de Recomendação

- a. Filtros de conteúdo e de usuário
- b. Redução de Dimensionalidade

10. Introdução às Redes Neurais

- a. Modelos MLP
- b. Introdução aos Modelos Deep Learning

METODOLOGIA

- Aulas expositivas
- Utilização do ambiente Mackenzie Virtual Moodle
- Conteúdos e Exercícios empregando Python notebooks e Ambiente Google Colaboratory

UNIVERSIDADE PRESBITERIANA MACKENZIE Faculdade de Computação e Informática

CRITÉRIO DE AVALIAÇÃO

N1 = .6 Atividade Avaliativa 1 + .4 Atividades 1

N2 = .6 Atividade Avaliativa 2 + .4 Atividades 2

Nota Intermediária

MI = .5 MI1 + .5 MI2 + partic Avalia (=até 0.5) + partic Aulas (=até 0.5)

CRITÉRIOS DE APROVAÇÃO

CONFORME REGULAMENTO ACADÊMICO VIGENTE

BIBLIOGRAFIA BÁSICA

AGGARWAL, Charu C. Artificial Intelligence: A Textbook. New York: Springer: 2021.

VANDERPLAS, Jake. Python Data Science Handbook. Sebastopol: O'Reilly, 2017.

GÉRON, Aurélien. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2 ed. Sebastopol: O'Reilly, 2019.

BIBLIOGRAFIA COMPLEMENTAR

BISHOP, Christopher M. Pattern Recognition and Machine Learning. Corr. 2nd. printing. New York: Springer, 2007.

CHOLLET, François. Deep Learning with Python, 2ed. Shelter Island: Manning, 2021.

GOODFELLOW, Ian; BENGIO, Yoshua, COURVILLE, Aaron. Deep Learning. Cambridge: MIT Press, 2016.

RASCHKA, Sebastian; MIRJALILI, Vahid. Python Machine Learning. 2 ed. Birmingham: Packt, 2017.

RUSSEL, Stuart; NORVIG, Peter. Artificial Intelligence: A Modern Approach. 3 ed. Upper Saddle River: Pearson, 2010.

TEIXEIRA-PINTO, A., HAREZLAK, J., Machine Learning for Biostatistics. Disponível em:

https://bookdown.org/tpinto_home/Introduction. Acesso: 01.02.2022

DE CASTRO, Leandro; FERRARI, Daniel G. Introdução à Mineração de Dados: Conceitos Básicos, Algoritmos e Aplicações, São Paulo: Saraiva, 2018.