4. Aproksymacja

Wprowadzenie (4.1)

Aproksymacja oznacza przybliżanie funkcji y = f(x) za pomocą "prostszej", należącej do określonej klasy funkcji y = F(x)

Przyczyny strosowania aproksymacji:

- funkcja *aproksymowana* y = f(x) wyrażona jest za pomocą skomplikowanej, niepraktycznej zależności analitycznej,
- znany jest tylko skończony zbiór wartości funkcji y = f(x), np. odczytanych w trakcie pomiaru.

Funkcji *aproksymującej* (*przybliżającej*) y=F(x) poszukuje się zwykle w określonej rodzinie funkcji np. wśród wielomianów.

Przybliżanie jednej funkcji przez inną powoduje pojawianie się błędów, zwanych *błędami aproksymacji* (*przybliżenia*).

Wprowadzenie (4.1)

W zależności od sposobu mierzenia błędu aproksymacji rozróżnia się dwa rodzaje:

- aproksymację jednostajną
- aproksymację średniokwadratową

Aproksymacja jednostajna (4.1.1)

Zakłada się, że funkcje y = f(x) oraz y = F(x) są określone i ciągłe w przedziale [a;b]. Błąd aproksymacji jest mierzony za pomocą *normy Czebyszewa*

$$||f - F|| = \sup_{a \le x \le b} ||f(x) - F(x)||.$$

Aproksymacja średniokwadratowa (4.1.2)

Wyróżnia sie dwa przypadki:

- aproksymacja ciągła - funkcja y=f(x) jest określona i ciągła w przedziale [a;b]. Błąd aproksymacji wyraża zależność

$$||f-F|| = \int_{a}^{b} w(x) [f(x)-F(x)]^{2} dx$$
,

gdzie y = w(x) to nieujemna, rzeczywista funkcja wagowa.

Wprowadzenie (4.1)

Aproksymacja średniokwadratowa (4.1.2)

- aproksymacja dyskretna - funkcja y = f(x) jest funkcją dyskretną tzn. Jej znane wartości można przedstawić za pomocą tabeli.

Tabela 4.1. Znane wartości funkcji dyskretnej

x_i	x_0	x_1	 x_n
$y_i = f(x_i)$	\mathcal{Y}_0	\mathcal{Y}_1	 \mathcal{Y}_n

Błąd aproksymacji wyraża zależność

$$||f-F|| = \sum_{i=0}^{n} w(x_i) [f(x_i) - F(x_i)]^2.$$

Funkcję aproksymującą wybiera się najczęściej w postaci wielomianu uogólnionego

$$F(x) = a_0 \varphi_0(x) + a_1 \varphi_1(x) + ... + a_m \varphi_m(x)$$

w którym funkcje $\varphi_0(x), \varphi_1(x), \ldots, \varphi_m(x)$ są wybranymi a priori funkcjami bazowymi m+1 wymiarowej przestrzeni liniowej. W takim przypadku zadanie aproksymacji sprowadza się do określenia współczynników a_0, a_1, \ldots, a_m .

Wprowadzenie (4.1)

Aproksymacja średniokwadratowa cd. (4.1.2)

W charakterze funkcji bazowych wybiera się najczęściej

- jednomiany $1, x, x^2, \ldots, x^m$ (baza jednomianów), gdyż zgodnie z *twierdzeniem Weierstrassa*, dla każdej funkcji y = f(x) określonej i ciągłej na domkniętym i ograniczonym odcinku [a;b] istnieje taki wielomian $W_m = a_0 + a_1 x + a_2 x^2 + \ldots, a_m x^m$, który przybliża jednostajnie funkcję y = f(x) na odcinku [a;b].
- funkcje trygonometryczne $1,\cos x,\sin x,\cos 2x$, $\sin 2x,\dots,\cos mx$, $\sin mx$ (baza trygonometryczna), gdyż zgodnie z *twierdzeniem Weierstrassa*, dla każdej funkcji y=f(x) określonej i ciągłej na R oraz okresowej o okresie 2π istnieje taki wielomian trygonometryczny

$$S_m(x) = \frac{a_0}{2} + \sum_{k=1}^{m} (a_k \cos kx + b_k \sin kx),$$

który przybliża jednostajnie funkcję y = f(x).

Aproksymacja średniokwadratowa dyskretna (4.2)

Zakłada się, że znane wartości funkcji aproksymowanej y=f(x) zostały zestawione w tabeli 4.1. Funkcja y=f(x) będzie aproksymowana wielomianem uogólnionym $F(x)=a_0 \varphi_0(x)+a_1 \varphi_1(x)+\ldots+a_m \varphi_m(x)$. Błąd aproksymacji jest obliczany z wzoru

$$||f - F|| = \sum_{i=0}^{n} w(x_i) [f(x_i) - F(x_i)]^2.$$

Zadaniem aproksymacji średniokwadratowej dyskretnej jest wyznaczenie takich współczynników $a_0, a_1, a_2, \ldots, a_m$ wielomianu F(x), przy których błąd aproksymacji $\|f - F\|$ jest najmniejszy. Zagadnienie to

przy których błąd aproksymacji $\|f-F\|$ jest najmniejszy. Zagadnienie to można rozwiązać stosując metodę najmniejszych kwadratów. W tym celu odległość $\|f-F\|$ rozpatruje się jako funkcję m+1 zmiennych niezależnych

$$a_0, a_1, a_2, \dots, a_m: \\ D_m(a_0, a_1, \dots, a_m) = \left\| f - F \right\| = \sum_{i=0}^n w(x_i) \left[y_i - \sum_{k=0}^m a_k \varphi_k(x_i) \right]^2.$$

Korzystając z warunku koniecznego istnienia minimum funkcji wielu zmiennych

$$\frac{\partial D_m(a_0, a_1, \dots, a_m)}{\partial a_j} = \sum_{i=0}^n 2 \cdot w(x_i) \left[y_i - \sum_{k=0}^m a_k \varphi_k(x_i) \right] \varphi_j(x_i) = 0$$

$$dla \quad j = 0, 1, \dots, m.$$

Aproksymacja średniokwadratowa dyskretna cd. (4.2)

Po uporządkowaniu składników względem a_k , $k=0,1,\ldots,m$ otrzymuje się

$$\sum_{k=0}^{m} \left(\sum_{i=0}^{n} w(x_i) \varphi_k(x_i) \varphi_j(x_i) \right) a_k = \sum_{i=0}^{n} w(x_i) \varphi_j(x_i) y_i \quad \text{dla} \quad j = 0, 1, ..., m.$$

Oznaczając przez (iloczyn skalarny)

$$(\varphi_j, \varphi_k) = \sum_{i=0}^n w(x_i) \varphi_j(x_i) \varphi_k(x_i) \qquad \text{dla } j, k = 0, 1, \dots, m,$$

$$(\varphi_j, f) = \sum_{i=0}^n w(x_i) \varphi_j(x_i) f(x_i)$$
 dla $j = 0, 1, ..., m$,

sprowadza się zagadnienie znalezienia optymalnych współczynników a_k , $k=0,1,\ldots,m$ do rozwiązania układu równań liniowych:

$$(\varphi_0, \varphi_0)a_0 + (\varphi_0, \varphi_1)a_1 + \dots + (\varphi_0, \varphi_m)a_m = (\varphi_0, f),$$

$$(\varphi_1, \varphi_0)a_0 + (\varphi_1, \varphi_1)a_1 + \dots + (\varphi_1, \varphi_m)a_m = (\varphi_1, f),$$

$$(\varphi_m, \varphi_0)a_0 + (\varphi_m, \varphi_1)a_1 + \dots + (\varphi_m, \varphi_m)a_m = (\varphi_m, f),$$

noszącego nazwę układu normalnego (układu równań normalnych).

Aproksymacja średniokw. dyskretna za pomocą wielomianów (4.3)

Jeśli w charakterze funkcji bazowych przyjmie się ciąg jednomianów $1, x, x^2, \ldots, x^m$, funkcja aproksymująca przybierze postać wielomianu

$$F(x) = a_0 + a_1 x + a_2 x^2 + ... + a_m x^m$$

a układ normalny będzie równy

$$s_{0}a_{0} + s_{1}a_{1} + \dots + s_{m}a_{m} = t_{0},$$

$$s_{1}a_{0} + s_{2}a_{1} + \dots + s_{m+1}a_{m} = t_{1},$$

$$s_{m}a_{0} + s_{m+1}a_{1} + \dots + s_{2m}a_{m} = t_{m},$$

gdzie:

$$s_k = \sum_{i=0}^n x_i^k$$
 dla $k = 0, 1, ...,$

$$t_k = \sum_{i=0}^{n} y_i x_i^k$$
 dla $k = 0,1,....$

Można wykazać, że jeżeli argumenty $x_0, x_1, x_2, \dots, x_n$ są różne i $m \leq n$, wyznacznik układu normalnego jest różny od zera — układ ma jednoznaczne rozwiązanie. Rozwiązując powyższy układ wyznacza się współczynniki $a_0, a_1, a_2, \dots, a_m$.

Aproksymacja średniokw. dyskretna za pomocą wielomianów cd. (4.3)

Przykład: W poniższej tabeli zostały odnotowane wyniki przeprowadzonego doświadczenia

x_{i}	0,00	0,50	1,00	1,50	2,00	2,50	3,00	3,50
$y_i = f(x_i)$	1,02	0,62	0,50	0,60	0,98	1,55	3,12	5,08

Przeprowadzający doświadczenie stwierdził, że badana funkcja jest zbliżona do funkcji kwadratowej oraz wartość f(2,5) jest obarczona zbyt dużym błędem. Wyznaczyć wartość funkcji y = f(x) dla x = 2,5.

Rozwiązanie: Ponieważ wartość funkcji f(2,5)=1,55 jest obarczona błędem grubym, nie będzie uwzględniana w obliczeniach. Zostaną one oparte na następującej funkcji tabelarycznej:

	0,00						
$y_i = g(x_i)$	1,02	0,62	0,50	0,60	0,98	3,12	5,08

Zgodnie z uwagą poczynioną przez przeprowadzającego eksperyment funkcja będzie przybliżana parabolą $F_2(x) = a_0 + a_1 x + a_2 x^2$. Współczynniki a_0 , a_1 , a_2 zostaną wyznaczone poprzez rozwiązanie układu równań liniowych

$$s_0 a_0 + s_1 a_1 + s_2 a_2 = t_0$$
,
 $s_1 a_0 + s_2 a_1 + s_3 a_2 = t_1$,
 $s_2 a_0 + s_3 a_1 + s_4 a_2 = t_2$.

Aproksymacja średniokw. dyskretna za pomocą wielomianów cd. (4.3)

W tabeli poniżej zestawiono obliczenia prowadzące do wyznaczenia współczynników s_i i t_i , $i\!=\!0,1,2$.

Tabela 4.3. Proces obliczania współczynników s_i i t_i .

x	g(x)	x_i^0	x_i^1	x_i^2	x_i^3	x_i^4	$y_i x_i^0$	$y_i x_i^1$	$y_i x_i^2$
0,0	1,02	1,000	0,000	0,000	0,000	0,000	1,020	0,000	0,000
0,5	0,62	1,000	0,500	0,250	0,125	0,063	0,620	0,310	0,155
1,0	0,50	1,000	1,000	1,000	1,000	1,000	0,500	0,500	0,500
1,5	0,60	1,000	1,500	2,250	3,375	5,063	0,600	0,900	1,350
2,0	0,98	1,000	2,000	4,000	8,000	16,000	0,980	1,960	3,920
3,0	3,12	1,000	3,000	9,000	27,000	81,000	3,120	9,360	28,080
3,5	5,08	1,000	3,500	12,250	42,875	150,063	5,080	17,780	62,230
		s_0	S_1	<i>S</i> ₂	S_3	S ₄	t_{0}	t_1	t_2
		7,000	11,500	28,750	82,375	253,188	11,920	30,810	96,235

Aproksymacja średniokw. dyskretna za pomocą wielomianów cd. (4.3)

Rozwiązując uklad równań

$$\begin{bmatrix} 7,000 & 11,500 & 28,750 \\ 11,500 & 28,750 & 82,375 \\ 28,750 & 82,375 & 253,188 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 11,920 \\ 30,810 \\ 96,235 \end{bmatrix}$$

Otrzymuje się: $a_0 = 1,124$, $a_1 = -1,495$, $a_2 = 0,739$.

Wielomian aproksymacyjny $F_2(x)$ ma postać

$$F_2(x) = 1,124 - 1,495 x + 0,739 x^2$$
.

Rozwiązanie zadania otrzyma się podstawiając x = 2.5

$$F_2(2,5)=1,124-1,495\cdot 2,5+0,739\cdot 2,5^2=2,0.$$

Aproksymacja średniokw. dyskretna wielomianami ortogonalnymi (4.4)

Układ wielomianów $\varphi_0(x)$, $\varphi_1(x)$,..., $\varphi_m(x)$ nazywany jest układem ortogonalnym z funkcją wagową $y\!=\!w(x)$ na zbiorze $X\!=\!\!\left\{x_{0,}^{}x_{1,}^{}\dots,x_{n}^{}\right\}$ wtedy i tylko wtedy gdy

$$(\varphi_j, \varphi_k) = \sum_{i=0}^n w(x_i) \varphi_j(x_i) \varphi_k(x_i) \begin{cases} = 0 & dla & j \neq k, \\ > 0 & dla & j = k. \end{cases}$$

Układ ortogonalny wielomianów jest układem funkcji liniowo niezależnych. Można zatem układ taki potraktować jako bazę pewnej podprzestrzeni funkcyjnej i aproksymować funkcję y=f(x) za pomoca liniowej kombinacji wielomianów tej bazy. W przypadku, gdy funkcje bazowe tworzą układ ortogonalny, tzn. $(\phi_j,\phi_k)=0$ dla j,k=0,1,...,m; $j\neq k$ układ równań normalnych przyjmuje postać

$$(\varphi_0, \varphi_0)a_0 = (\varphi_0, f),$$

$$(\varphi_1, \varphi_1)a_1 = (\varphi_1, f),$$

$$(\varphi_m, \varphi_m)a_m = (\varphi_m, f).$$

Aproksymacja średniokw. dyskretna wielomianami ortogonalnymi cd. (4.4)

Rozwiązanie powyższego układu równań określają wzory

$$a_{j} = \frac{(\varphi_{j}, f)}{(\varphi_{j}, \varphi_{j})} = \frac{\sum_{i=0}^{n} w(x_{i})\varphi_{j}(x_{i})f(x_{i})}{\sum_{i=0}^{n} w(x_{i})\varphi_{j}^{2}(x_{i})} \quad \text{dla } j = 0, 1, ..., m.$$

Błąd aproksymacji można wyznaczyć korzystając z zależności

$$D_{m}^{min} = \|f - F\| = \sum_{i=0}^{n} w(x_{i}) f^{2}(x_{i}) - \sum_{k=0}^{m} \frac{\left(\sum_{i=0}^{n} w(x_{i}) \varphi_{k}(x_{i}) f(x_{i})\right)^{2}}{\sum_{i=0}^{n} w(x_{i}) \varphi_{k}^{2}(x_{i})}.$$

Jak można zauważyć: $D_0^{min} \geqslant D_1^{min} \geqslant D_2^{min} \geqslant \dots$, co oznacza, że odchylenie średniokwadratowe maleje monotonicznie wraz ze wzrostem stopnia wielomianu aproksymującego.

Aproksymacja średniokw. dyskretna wielomianami ortogonalnymi cd. (4.4)

Układ wielomianów ortogonalnych $p_0, p_1, p_2, ..., p_m$ można otrzymać np. ortogonalizując ciąg jednomianów $x^0, x^1, x^2, ..., x^m$ za pomocą metody Grama-Schmidta:

Schmidta: $p_0 = x^0 = 1$, $p_i = x^i - \sum_{k=0}^{i-1} \frac{(x^i, p_k)}{(p_k, p_k)} p_k$, i = 1, ..., m.

Można pokazać, że wielomiany ortogonalne spełniają prostą zależność rekurencyjną tzw. regułę trójczłonową, która po uproszczeniach przyjmuje postać:

$$p_{-1}(x)=0$$
, $p_0(x)=1$, $p_{k+1}(x)=(x-\alpha_{k+1})p_k(x)-\beta_k p_{k-1}(x)$, $k=0,1,...$

gdzie β_0 dowolne oraz

$$\beta_{k} = \frac{\sum_{i=0}^{n} p_{k}^{2}(x_{i})}{\sum_{i=0}^{n} p_{k-1}^{2}(x_{i})} \qquad k = 1, 2, ..., \qquad \alpha_{k+1} = \frac{\sum_{i=0}^{n} x_{i} p_{k}^{2}(x_{i})}{\sum_{i=0}^{n} p_{k}^{2}(x_{i})} \qquad k = 0, 1, ..., ...$$

Wielomiany $p_0, p_1, p_2, \ldots, p_m$ tworzą na zbiorze $X = \{x_0, x_1, x_2, \ldots, x_n\}$ układ ortogonalny z funkcją wagową $y = w(x) \equiv 1$.

Funkcję y = f(x) można teraz przybliżać za pomoca wielomianu

$$F(x)=a_0 p_0(x)+a_1 p_1(x)+...+a_m p_m(x).$$

Aproksymacja średniokw. dyskretna wielomianami ortonormalnymi (4.5)

Układ wielomianów $\varphi_0(x)$, $\varphi_1(x)$,..., $\varphi_m(x)$ nazywany jest układem ortonormalnym z funkcją wagową $y=w(x)\equiv 1$ na zbiorze $X=[x_{0,}x_{1,}...,x_n]$ wtedy i tylko wtedy gdy

$$(\varphi_{j}, \varphi_{k}) = \sum_{i=0}^{n} w(x_{i}) \varphi_{j}(x_{i}) \varphi_{k}(x_{i}) = \sum_{i=0}^{n} \varphi_{j}(x_{i}) \varphi_{k}(x_{i}) \begin{cases} =0 & dla & j \neq k, \\ =1 & dla & j = k. \end{cases}$$

Układ równań normalnych redukuje się rówczas do zestawu równań pozwalających na bezpośrednie wyznaczenie wektora parametrów a_0 , a_1 , a_2 , ..., a_m .

$$a_{0} = (\varphi_{0}, f) = \sum_{i=0}^{n} \varphi_{0}(x_{i}) f(x_{i}),$$

$$a_{1} = (\varphi_{1}, f) = \sum_{i=0}^{n} \varphi_{1}(x_{i}) f(x_{i}),$$
...

$$a_{m} = (\varphi_{m}, f) = \sum_{i=0}^{n} \varphi_{m}(x_{i}) f(x_{i}).$$

Aproksymacja średniokw. dyskretna wielom. ortonormalnymi cd. (4.5) Aproksymacja za pomocą wielomianów Grama (4.5.1):

Zakłada się, że węzły funkcji aproksymowanej, oznaczone przez $u_{0}, u_{1}, \ldots, u_{n}$, są punktami podziału odcinka [-1;1] na n równych części tj.:

$$u_i = \frac{2i}{n} - 1$$
, $i = 0, 1, ..., n$.

W punktach tych funkcja aproksymowana f(x) przyjmuje wartości:

$$y_i = f(u_i)$$
, $i = 0, 1, ..., n$.

Wielomiany Grama są określone zależnościami rekurencyjnymi:

$$G_{-1}(u) = 0, G_{0}(u) = \alpha_{0} = \frac{1}{\sqrt{(n+1)}},$$

$$G_{k}(u) = \alpha_{k} \cdot u \cdot G_{k-1}(u) - \gamma_{k} G_{k-2}(u) dla k = 1, 2, ..., n-1,$$

$$\alpha_{k} = \frac{n}{k} \sqrt{\frac{4k^{2} - 1}{(n+1)^{2} - k^{2}}} dla k = 1, 2, ..., n-1,$$

$$\gamma_1$$
 jest dowolne, $\gamma_k = \frac{\alpha_k}{\alpha_{k-1}}$ dla $k=1,2,\ldots,n-1$.

Aproksymacja średniokw. dyskretna wielom. ortonormalnymi cd. (4.5) Aproksymacja za pomocą wielomianów Grama cd. (4.5.1):

Wielomiany Grama $G_k(u)=0, k=0,1,...,n-1$, tworzą układ ortonormalny na zbiorze:

 $X = \{u_{0}, u_{1}, \dots, u_{n}\} = \left\{-1, \frac{2}{n} - 1, \frac{4}{n} - 1, \dots, 1\right\}$

z funkcją wagową $y=w(x)\equiv 1$. Funkcję y=f(x) na odcinku [-1;1] można przybliżać stosując wielomian:

$$Q_m(u) = a_0 G_0(u) + a_1 G_1(u) + \dots + a_m G_m(u)$$
 $dla \quad m \le n-1.$

Przykład: Dokonać aproksymacji danych pomiarowych zamieszczonych w poniższej tablicy za pomocą wielomianu aproksymacyjnego rzedu m=2 zbudowanego z wielomianów Gramma.

$$Q_2(u) = a_0 G_0(u) + a_1 G_1(u) + a_2 G_2(u).$$

x_i	1,000	1,250	,	1,750	2,000	2,250	2,500
$f(x_i)$	-1,833	-0,010	1,130	1,501	1,123	0,010	-1,931

Stosując wielomian $Q_2(u)$ oszacować wartość funkcji f(x) dla x=2,125.

Aproksymacja średniokw. dyskretna wielom. ortonormalnymi cd. (4.5) Aproksymacja za pomocą wielomianów Grama cd. (4.5.1):

Rozwiązanie: Do rozwiązania powyższego zadania można użyć wielomianów Grama, ponieważ węzły są rozmieszczone równomiernie - h=0,25 oraz n=6. W pierwszej kolejnosci należy przekształcić przedział zmienności funkcji f(x) równy [1,0;2,5] na odcinek [-1;1], w którym to przedziale wielomiany Grama $G_i(u)$, i=0,1,..., są ortogonalne. Przekształcenia proste i odwrotne wyrażają zależności:

 $u = \frac{4}{3}x - \frac{7}{3}, \quad x = \frac{3}{4}u + \frac{7}{4}.$

gdzie: $1,0 \le x \le 2,5$ oraz $-1 \le u \le 1$. Wielomian aproksymacyjny

$$Q_2(u) = a_0 G_0(u) + a_1 G_1(u) + a_2 G_2(u).$$

przyjmuje postać:

$$Q_{2}(x) = a_{0}G_{0}\left(\frac{4}{3}x - \frac{7}{3}\right) + a_{1}G_{1}\left(\frac{4}{3}x - \frac{7}{3}\right) + a_{2}G_{2}\left(\frac{4}{3}x - \frac{7}{3}\right) = a_{0}G_{0}^{'}(x) + a_{1}G_{1}^{'}(x) + a_{2}G_{2}^{'}(x).$$

Aby skonstruować wielomiany Grama $G_0(u)$, $G_1(u)$, $G_2(u)$, konieczne jest wyznaczenie wartości zmiennych pomocniczych: α_0 , α_1 , α_2 , γ_2 , przy czym przyjmuje się, że $G_{-1}(u)=0$ oraz γ_1 jest dowolne.

Aproksymacja średniokw. dyskretna wielom. ortonormalnymi cd. (4.5) Aproksymacja za pomocą wielomianów Grama cd. (4.5.1):

Rozwiązanie cd.:

$$G_0'(x) = G_0(u) = \alpha_0 = \frac{1}{\sqrt{(n+1)}} = \frac{1}{\sqrt{(6+1)}} = 0,378, \qquad \alpha_1 = \frac{6}{1} \sqrt{\frac{4 \cdot 1^2 - 1}{(6+1)^2 - 1^2}} = 1,500,$$

$$\alpha_2 = \frac{6}{2} \sqrt{\frac{4 \cdot 2^2 - 1}{(6+1)^2 - 2^2}} = 1,7321, \qquad \qquad \gamma_2 = \frac{\alpha_2}{\alpha_1} = 1,1547.$$

Wielomiany $G_1(u)$ oraz $G_2(u)$ wyznacza się rekurencyjnie otrzymując zależności:

$$G_{1}(u) = \alpha_{0} \alpha_{1}(u) \rightarrow G_{1}'(x) = \alpha_{0} \alpha_{1} \left(\frac{4}{3}x - \frac{7}{3}\right) = 0,7559 x - 1,3229,$$

$$G_{2}(u) = \alpha_{0} \alpha_{1} \alpha_{2}(u)^{2} - \alpha_{0} \gamma_{2} \rightarrow G_{2}'(x) = \alpha_{0} \alpha_{1} \alpha_{2} \left(\frac{4}{3}x - \frac{7}{3}\right)^{2} - \alpha_{0} \gamma_{2}$$

$$= 1,7457 x^{2} - 6,1101 x + 4,9099.$$

Współczynniki wagowe a_0 , a_1 , a_2 wielomianu aproksymacyjnego $Q_2(x)$ oblicza się rozwiązując "zredukowany" układ równań normalnych:

Aproksymacja średniokw. dyskretna wielom. ortonormalnymi cd. (4.5) Aproksymacja za pomocą wielomianów Grama cd. (4.5.1):

Rozwiązanie cd.:

$$a_{0} = (G_{0}^{'}(x), f(x)) = \sum_{i=0}^{6} G_{0}^{'}(x_{i}) f(x_{i}) = \sum_{i=0}^{6} 0,378 \cdot f(x_{i}) = -0,0038,$$

$$a_{1} = (G_{1}^{'}(x), f(x)) = \sum_{i=0}^{6} G_{1}^{'}(x_{i}) f(x_{i}) = \sum_{i=0}^{6} (0,7559 x_{i} - 1,3229) \cdot f(x_{i}) = -0,0493,$$

$$a_{2} = (G_{2}^{'}(x), f(x)) = \sum_{i=0}^{6} G_{2}^{'}(x_{i}) f(x_{i})$$

$$= \sum_{i=0}^{6} (1,7457 x_{i}^{2} - 6,1101 x_{i} + 4,9099) f(x_{i}) = -3,4460.$$

Ostatecznie wielomian aproksymacyjny przyjmuje postać:

$$Q_2(x) = -0.0038 \cdot 0.378 - 0.0493 \cdot (0.7559 x - 1.3229) + -3.446 \cdot (1.7457 x^2 - 6.1101 x + 4.9099).$$

A po uporządkowaniu: $Q_2(x) = -16,8556 + 21,0180 x - 6,0158 x^2$

Oszacowanie wartość funkcji f(x) dla x=2,125 wynosi $Q_2(2,125)=0,6426$.

Aproksymacja średniokw. dyskretna wielom. ortonormalnymi cd. (4.5) Aproksymacja za pomocą wielomianów Grama cd. (4.5.1):

Rozwiązanie cd.:

Dane pomiarowe $f(x_i)$ oraz wielomian aproksymacyjny Grama $Q_2(x)$.

Zakładamy, że funkcja aproksymowana y = f(v) jest funkcją ciągłą, okresową o okresie głownym 2π oraz, że znane są jej wartości w węzłach v_0, v_1, \ldots, v_n będących punktami odcinka $[0; 2\pi]$ (okres główny f(v)) określonych wzorami.

 $v_i = \frac{2\pi}{n+1}i$ dla i = 0, 1, ..., n.

Ciąg funkcji $1,\cos(v),\sin(v),\cos(2v),\sin(2v),\dots,\cos(2v),\sin(2v),\dots$ zwany układem trygonometrycznym jest układem funkcji ortogonalnych na zbiorze $\begin{bmatrix} 2\pi & 4\pi & 2n\pi \end{bmatrix}$

 $V = \{v_{0}, v_{1}, \dots, v_{n}\} = \left\{0, \frac{2\pi}{n+1}, \frac{4\pi}{n+1}, \dots, \frac{2n\pi}{n+1}\right\}$

z funkcją wagową $y=w(v)\equiv 1$. Funkcję y=f(v) można przybliżać stosując wielomian trygonometryczny rzędu m:

$$S_m(v) = \frac{a_0}{2} + \sum_{k=1}^{m} (a_k \cos(kv) + b_k \sin(kv)).$$

Optymalne w sensie aproksymacji średniokwadratowej współczynniki a_k , $k=0,1,\ldots$, b_k , $k=1,2,\ldots$, wyraża się wzorami:

$$a_{k} = \frac{2}{n+1} \sum_{i=0}^{n} f(v_{i}) \cos(k v_{i}) = \frac{2}{n+1} \sum_{i=0}^{n} f\left(\frac{2\pi}{n+1}i\right) \cos\left(\frac{2k\pi}{n+1}i\right) \quad dla \quad k = 0, 1, \dots,$$

$$b_k = \frac{2}{n+1} \sum_{i=0}^{n} f(v_i) \sin(kv_i) = \frac{2}{n+1} \sum_{i=0}^{n} f\left(\frac{2\pi}{n+1}i\right) \sin\left(\frac{2k\pi}{n+1}i\right) \quad dla \quad k = 1, 2, \dots$$

Noszą one nazwę współczynników Fouriera. Wielomian trygonometryczny ze współczynnikami Fouriera nazywa się wielomianem Fouriera.

Dla funkcji y=f(v) ciągłej, *parzystej* i okresowej o okresie 2π z okresem głownym $[0;2\pi]$, współczynniki Fouriera $b_k=0$, dla $k=1,2,\ldots$. Wielomian aproksymacyjny upraszcza siędo postaci:

$$S_m(v) = \frac{a_0}{2} + \sum_{k=1}^m a_k \cos(kv).$$

Dla funkcji y=f(v) ciągłej, *nieparzystej* i okresowej o okresie 2π z okresem głownym $[0;2\pi]$, współczynniki Fouriera $a_k=0$,dla $k=0,1,\ldots$. Wielomian aproksymacyjny upraszcza się do postaci:

$$S_m(\mathbf{v}) = \sum_{k=1}^m b_k \sin(k \mathbf{v}).$$

Przykład: W tabeli poniżej podano wybrane wartości funkcji y = f(t) ciągłej dla $-\infty < t < \infty$, okresowej o okresie 2 z okresem głownym [-1;1].

	-1,00									
$y_i = f(t_i)$	0,00	0,40	0,80	1,20	1,60	2,00	1,60	1,20	0,80	0,40

Zbudować i wykreślić wielomian aproksymacyjny Fouriera stopnia 5.

Rozwiązanie: Funkcja y=f(t) jest ciągła i okresowa, węzły są rozmieszczone ze stałym krokiem h=0.2 (n=9). Ponieważ okres głowny funkcji jest równy $[-1\,;1]$ a wielomiany trygonometryczne są ortogonalne na odcinku $[0\,;2\,\pi]$, konieczne jest wyznaczenie przekształcenia odcinka $[-1\,;1]$ na $[0\,;2\,\pi]$. Przekształcenie takie (wraz z przekształceniem odwrotnym) ma postać: $v=\pi\cdot t+\pi$, $t=\frac{v}{\pi}-1$,

gdzie: $-1 \le t \le 1$ oraz $0 \le v \le 2\pi$. Jak mozna zauważyć y = f(t) jest funkcją parzystą, stad do jej aproksymacji można wykorzystać uproszczoną wersję wielomianu:

$$S_m(v) = \frac{a_0}{2} + \sum_{k=1}^m a_k \cos(kv).$$

Wyznaczanie współczynników wielomianu Fouriera:

$$\begin{split} a_0 &= \frac{2}{9+1} \sum_{i=0}^9 f\left(\frac{2\pi}{9}i\right) \cos\left(0\right) = 0, \\ 2 \cdot \left(0,0+0,4+0,8+1,2+1,6+2,0+\ldots+0,8+0,4\right) = 2,0000 \,, \\ a_1 &= \frac{2}{9+1} \sum_{i=0}^9 f\left(\frac{2\pi}{9}i\right) \cos\left(\frac{2\pi}{9}i\right) = 0, \\ 2 \cdot \left(0,0+0,3236+0,2472+\ldots+0,3236\right) = -0,8378 \,, \\ a_2 &= \frac{2}{9+1} \sum_{i=0}^9 f\left(\frac{2\pi}{9}i\right) \cos\left(\frac{4\pi}{9}i\right) = 0, \\ 2 \cdot \left(0,0+0,1236-0,6472+\ldots+0,1236\right) = 0,0000 \,, \\ a_3 &= \frac{2}{9+1} \sum_{i=0}^9 f\left(\frac{2\pi}{9}i\right) \cos\left(\frac{6\pi}{9}i\right) = 0, \\ 2 \cdot \left(0,0-0,1236-0,6472+\ldots-0,1236\right) = -0,1222 \,, \\ a_4 &= \frac{2}{9+1} \sum_{i=0}^9 f\left(\frac{2\pi}{9}i\right) \cos\left(\frac{8\pi}{9}i\right) = 0, \\ 2 \cdot \left(0,0-0,3236+0,2472+\ldots-0,3236\right) = 0,0000 \,, \\ a_5 &= \frac{2}{9+1} \sum_{i=0}^9 f\left(\frac{2\pi}{9}i\right) \cos\left(\frac{10\pi}{9}i\right) = 0, \\ 2 \cdot \left(0,0-0,4000+0,8000+\ldots-0,4000\right) = -0,0800 \,, \end{split}$$

Trygonometryczny wielomian aproksymacyjny ma postać:

$$S_5(t) = 1,0000 - 0,8378\cos(\pi \cdot t + \pi) - 0,1222\cos(3(\pi \cdot t + \pi)) - 0,0800\cos(5(\pi \cdot t + \pi)).$$

Funkcja aproksymowana f(t) oraz aproksymacyjny wielomian Fouriera $S_5(t)$.

Aproksymacja wielomianem Fouriera 5 rzędu $F_5(t)$ jedenastu węzłow f(t) — aproksymacja przechodzi w interpolację.

Zakłada się, że funkcja aproksymowana y=f(x) jest określona i ciągła w przedziale [a;b]. Funkcja ta zostaje poddana aproksymacji za pomocą wielomianu uogólnionego

$$F(x) = c_0 \varphi_0(x) + c_1 \varphi_1(x) + ... + c_m \varphi_m(x)$$

Zagadnienie aproksymacji średniokwadratowej ciągłej polega na znalezieniu takich współczynników c_0 , c_1 ,..., c_m , dla których odległość sensie metryki średniokwadratowej

$$|| f - F || = \int_{a}^{b} w(x) [f(x) - F(x)]^{2} dx$$

jest najmniejsza.

Zagadnienie to rozwiązuje sie stosując metodę najmniejszych kwadratów. Minimalizowana funkcja celu m+1 zmiennych niezależnych c_0, c_1, \ldots, c_m ma postać:

$$I_m(c_0, c_1, ..., c_m) = \| f - F \| = \int_a^b w(x) [f(x) - F(x)]^2 dx = \int_a^b w(x) \left[f(x) - \sum_{k=0}^m c_k \varphi_k(x) \right]^2 dx$$

Korzystając z warunku koniecznego istnienia minimum funkcji wielu zmiennych otrzymuje się

$$\frac{\partial I_m(c_0, c_1, ..., c_m)}{\partial c_j} = 2 \int_a^b w(x) \left[f(x) - \sum_{k=0}^m c_k \varphi_k(x) \right] \varphi_j(x) dx = 0 \quad \text{dla } j = 0, 1, ..., m$$

Po przekształceniach wyrażenia polegających między innymi na zamianie kolejności sumowania i całkowania oraz uporządkowaniu zależności względem otrzymuje się

$$\begin{split} \sum_{k=0}^m & \left(\int\limits_a^b w(x) \varphi_k(x) \varphi_j(x) dx\right) c_k = \int\limits_a^b w(x) \varphi_j(x) f(x) dx \quad \text{dla } j=0,1,\dots,m \;. \\ \text{Oznaczając przez} \quad g_{jk} & = \int\limits_a^b w(x) \varphi_j(x) \varphi_k(x) dx \quad \text{dla } j,k=0,1,\dots,m \;, \\ h_j & = \int\limits_a^b w(x) \varphi_j(x) f(x) dx \quad \text{dla } j=0,1,\dots,m \end{split}$$

(iloczyny skalarne) powyższe wyrażenie można zapisać w postaci układu normalnego równań liniowych

Rozwiązując ten układ równań znajdujemy optymalne współczynniki c_0, c_1, \ldots, c_m (przyjęte ogólne założenia odnośnie bazowych funkcji aproksymujących nie dają gwarancji istnienia rozwiązania).

Aproksymacja za pomocą wielomianów (4.7.1)

Jeśli w charakterze funkcji bazowych wykorzysta się ciąg jednomianów $1, x, x^2, \ldots, x^m$, funkcja aproksymująca przybierze postać wielomianu

$$F(x) = a_0 + a_1 x + a_2 x^2, \dots, a_m x^m,$$

Układ równań normalnych przyjmie postać:

$$s_0 a_0 + s_1 a_1 + \dots + s_m a_m = t_0,$$

 $s_1 a_0 + s_2 a_1 + \dots + s_{m+1} a_m = t_1,$
 $s_m a_0 + s_{m+1} a_1 + \dots + s_{2m} a_m = t_m,$

gdzie:
$$s_k = \int_a^b x^k dx = \frac{b^{k+1} - a^{k+1}}{k+1}$$
 dla $k = 0, 1, ...,$

$$t_k = \int_a^b x^k f(x) dx$$
 dla $k = 0, 1,$

Rozwiązując powyższy układ równań wyznaczamy współczynniki a_0 , a_1 , ..., a_m .

Aproksymacja za pomocą wielomianów (4.7.1)

<u>Przykład:</u> Znaleźć wielomian drugiego stopnia nalepiej przybliżający, w sensie metryki średniokwadratowej funkcję $f(x) = \sqrt{x}$ w przedziale [0; 2].

Aproksymacja za pomocą wielomianów (4.7.1)

<u>Przykład:</u> Znaleźć wielomian drugiego stopnia nalepiej przybliżający, w sensie metryki średniokwadratowej funkcję $f(x) = \sqrt{x}$ w przedziale [0; 2].

Rozwiązanie: Poszukiwane są współczynniki a_0 , a_1 , a_2 (m=2) wielomianu

$$F_2(x) = a_0 + a_1 x + a_2 x^2$$
.

Dla ich znalezienia konieczne jest rozwiązanie następującego układu równań:

$$s_0 a_0 + s_1 a_1 + s_2 a_2 = t_0$$
,
 $s_1 a_0 + s_2 a_1 + s_3 a_2 = t_1$,
 $s_2 a_0 + s_3 a_1 + s_4 a_2 = t_2$,

gdzie:

$$s_0 = \int_0^2 dx = 2$$
, $s_1 = \int_0^2 x dx = 2$, $s_2 = \int_0^2 x^2 dx = \frac{8}{3}$,

$$s_3 = \int_0^2 x^3 dx = 4$$
, $s_4 = \int_0^2 x^4 dx = \frac{32}{5}$,

$$t_0 = \int_0^2 \sqrt{x} dx = \frac{4}{3} \sqrt{2}$$
, $t_1 = \int_0^2 x \sqrt{x} dx = \frac{8}{5} \sqrt{2}$, $t_2 = \int_0^2 x^2 \sqrt{x} dx = \frac{16}{7} \sqrt{2}$.

Aproksymacja za pomocą wielomianów (4.7.1)

Rozwiązanie (cd):

Rozwiązanie (cd): Ostatecznie układ równań przyjmuje postać
$$\rightarrow$$

$$\begin{bmatrix} 2 & 2 & \frac{8}{3} \\ 2 & \frac{8}{3} & 4 \\ 2 & \frac{8}{3} & 4 \\ a_0 = \frac{6}{35}\sqrt{2}, \ a_1 = \frac{24}{35}\sqrt{2}, \ a_2 = -\frac{\sqrt{2}}{7}. \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \frac{4}{3}\sqrt{2} \\ \frac{8}{3}\sqrt{2} \\ \frac{16}{7}\sqrt{2} \end{bmatrix}.$$

Wielomian aproksymacyjny wyraża zalezność:

$$F_2(x) = \frac{6}{35}\sqrt{2} + \frac{24}{35}\sqrt{2}x - \frac{\sqrt{2}}{7}x^2.$$

Tablica wartości funkcji $f(x) = \sqrt{x}$ oraz wielomianu aproksymującego $F_2(x)$

x	$f(x) = \sqrt{x}$	$y = F_2(x)$	$\sqrt{x} - F_2(x)$
0,0	0,000000	0,242437	-0,242437
0,2	0,447214	0,428305	0,018909
0,4	0,632456	0,598010	0,034445
0,6	0,774597	0,751553	0,023043
0,8	0,894427	0,888934	0,005493
1,0	1,000000	1,010153	-0,010153
1,2	1,095445	1,115208	-0,019763
1,4	1,183216	1,204102	-0,020886
1,6	1,264911	1,276833	-0,011922
1,8	1,341641	1,333401	0,008239
2,0	1,414214	1,373807	0,040406

Aproksymacja za pomocą wielomianów (4.7.1)

Rozwiązanie (cd): Wykresy funkcji f(x)oraz wielom. aproksymującego $F_2(x)$

Aproksymacja za pomocą wielomianów ortogonalnych (4.7.2)

Układ wielomianów $\varphi_0(x), \varphi_1(x), \ldots, \varphi_k(x), \ldots$ nazywany jest *układem ortogonalnym* z *funkcja wagową* y = w(x) na odcinku [a;b] wtedy i tylko wtedy, gdy iloczyny skalarne $g_{jk} = (\varphi_j(x), \varphi_k(x))$ spełniają warunki:

$$g_{jk} = (\varphi_j, \varphi_k) = \int_a^b w(x)\varphi_j(x)\varphi_k(x) \begin{cases} = 0 & \text{dla } j \neq k, \\ > 0 & \text{dla } j = k. \end{cases}$$

Układ ortogonalny jest układem funkcji liniowo niezależnych. Układ $\varphi_0(x), \varphi_1(x), \ldots, \varphi_k(x), \ldots$ można zatem potraktować jako bazę pewnej przestrzeni funkcyjnej i aproksymować funkcję f(x) za pomocą liniowej kombinacji funkcji bazy.

W przypadku, gdy funkcje $\varphi_0(x)$, $\varphi_1(x)$, ..., $\varphi_k(x)$, ... tworzą bazę ortogonalną $(\varphi_j, \varphi_k) = 0$ dla $j, k = 0, 1, ..., m; j \neq k$, wówczas układ równań normalnych

$$g_{00}c_0 + g_{01}c_1 + ... + g_{0m}c_m = h_0$$
, $g_{00}c_0 = h_0$, $g_{10}c_0 + g_{11}c_1 + ... + g_{1m}c_m = h_1$, upraszcza sie $g_{11}c_1 = h_1$, $g_{m0}c_0 + g_{m1}c_1 + ... + g_{mm}c_m = h_m$, $g_{mm}c_m = h_m$.

Aproksymacja za pomocą wielomianów ortogonalnych (4.7.2)

Ponieważ na mocy definicji ortogonalności $g_{jj} > 0$ dla j = 0, 1, ..., m, powyższy układ równań ma jednoznaczne rozwiązanie określone zależnościami:

$$c_{j} = \frac{h_{j}}{g_{jj}} = \frac{\int_{a}^{w} w(x)\varphi_{j} f(x)dx}{\int_{a}^{b} w(x)\varphi_{j}^{2}(x)dx} \quad \text{dla} \quad j = 0, 1, \dots, m.$$

Odchylenie średniokwadratowe funkcji aproksymowanej f(x) od aproksymującej F(x) wyraża się wzorem:

$$I_{m}^{\min} = \|f - F\| = \int_{a}^{b} w(x) f^{2}(x) dx - \sum_{k=0}^{m} \frac{\left(\int_{a}^{b} w(x) f(x) \varphi_{k}(x) dx\right)^{2}}{\int_{a}^{b} w(x) \varphi_{k}^{2}(x) dx}.$$

Z zależności wynika, że ze wzrostem stopnia wielomianu aproksymującego maleje monotonicznie odchylenie średniokwadratowe tj.:

$$I_0^{min} \geqslant I_1^{min} \geqslant I_2^{min} \dots$$

Czasami do aproksymacji używa się jednej funkcji analitycznej (lub kilku różnych funkcji). Jej postać dobiera się na podstawie apriorycznej wiedzy o przebiegu przybliżanej zależności lub w oparciu o ocenę wzrokową rozrzutu jej wartości umieszczonych w prostokątym układzie współrzędnych. Do często stosowanych funkcji należą:

Charakteryzują się one małą liczbą parametrów i oraz często łatwą interpretacją fizyczna.

1)
$$f_1(x) = ax^b + c$$
,

2)
$$f_2(x) = e^{ax^2 + bx + c}$$
,

3)
$$f_3(x) = ae^{bx} + c$$
,

4)
$$f_{A}(x) = ax + b,$$

5)
$$f_5(x) = ax^2 + bx + c$$
,

6)
$$f_6(x) = \frac{ax+b}{cx+d},$$

7)
$$f_7(x) = \frac{1}{ax^2 + bx + c}$$
,

8)
$$f_8(x) = \frac{x}{ax^2 + bx + c}$$
,

9)
$$f_9(x) = a + \frac{b}{x} + \frac{c}{x^2}$$
,

10)
$$f_{10}(x) = ax^b e^{cx}$$
,

11)
$$f_{11}(x) = ae^{bx} + ce^{dx}$$
.

<u>Dobór postaci analitycznej funkcji aproksymującej w oparciu o ocenę wzrokową rozrzutu jej wartości umieszczonych w prostokątym układzie współrzędnych (4.4.1)</u>

<u>Dobór postaci analitycznej funkcji aproksymującej w oparciu o ocenę</u> <u>wzrokową rozrzutu jej wartości umieszczonych w prostokątym układzie</u> <u>współrzędnych (4.4.2)</u>

<u>Dobór postaci analitycznej funkcji aproksymującej w oparciu o ocenę</u> <u>wzrokową rozrzutu jej wartości umieszczonych w prostokątym układzie</u> <u>współrzędnych (4.4.3)</u>

<u>Dobór postaci analitycznej funkcji aproksymującej w oparciu o ocenę</u> <u>wzrokową rozrzutu jej wartości umieszczonych w prostokątym układzie</u> <u>współrzędnych (4.4.4)</u>

<u>Przykład:</u> W trakcie badań pewnego zjawiaka fizycznego zebrano następujacy zestaw danych:

Tabela wartości funkcji f(x)

x_{i}	1,000	1,250	1,500	1,750	2,000	2,250	2,500
$f(x_i)$	0,160	0,990	3,095	4,485	3,075	1,010	0,145

Zebrane pomiary wykeślono w prostokątnym układzie współrzędnych.

W wyniku oceny wzrokowej rozrzutu ich wartości zdecydowano, że najlepszym przybliżeniem danych będzie funkcja: $F(x) = e^{-(\alpha x^2 + \beta x + \gamma)}$ (kształt funkcji gęstości rozkładu normalnego (prawdopod.)). Należy wyznaczyć parametry α , $\beta i \gamma$.

Rozwiązanie: Wybrana funkcja jest nieliniowa (rownież względem współczynników α, β i γ) stąd, rozwiązanie takiego zadania aproksymacyjnego jest trude. Zastosowanie do powyższej zależności przekształcenia w postaci obustronnego logarytmowania, sprowadza zagadnienie do aproksymacji za pomocą jednomianów

$$G(x)=\ln(F(x))=-\alpha x^2-\beta x-\gamma$$
.

Stosując podstawienia $a_2 = -\alpha$, $a_1 = -\beta$, $a_0 = -\gamma$, otrzymuje się postać wielomianu drugiego stapnia najlepiej przybliżającego (w sensie najmniejszych kwadratów) funkcję $g(x) = \ln(f(x))$.

$$G(x)=a_2x^2+a_1x+a_0.$$

Tabela funkcji g(x) ma postać:

Tabela wartości funkcji g(x)

I .	I				2,000		
$g(x_i) = \ln(f(x_i))$	-1,833	-0,010	1,130	1,501	1,123	0,010	-1,931

Rozwiązanie (CD): Współczynniki a_2, a_1 i a_0 wyznaczy się rozwiązując układ równań normalnych

$$s_0 a_0 + s_1 a_1 + s_2 a_2 = t_0$$
,

$$s_1 a_0 + s_2 a_1 + s_3 a_2 = t_1$$
,

$$s_2 a_0 + s_3 a_1 + s_4 a_2 = t_2$$
.

gdzie:
$$s_k = \sum_{i=0}^n x_i^k$$
 dla $k = 0,1,...,$ $t_k = \sum_{i=0}^n y_i x_i^k$ dla $k = 0,1,....$

Tabela: wyznaczanie współczynników s_i , t_i

x_i	$f(x_i)$	$g(x_i)$	x_i^0	x_i^1	x_i^2	x_i^3	x_i^4	$y_i x_i^0$	$y_i x_i^1$	$y_i x_i^2$
1,00	0,160	-1,833	1,000	1,000	1,000	1,000	1,000	-1,833	-1,833	-1,833
1,25	0,990	-0,010	1,000	1,250	1,563	1,953	2,441	-0,010	-0,013	-0,016
1,50	3,095	1,130	1,000	1,500	2,250	3,375	5,063	1,130	1,695	2,542
1,75	4,485	1,501	1,000	1,750	3,063	5,359	9,379	1,501	2,626	4,596
2,00	3,075	1,123	1,000	2,000	4,000	8,000	16,000	1,123	2,247	4,493
2,25	1,010	0,010	1,000	2,250	5,063	11,391	25,629	0,010	0,022	0,050
2,50	0,145	-1,931	1,000	2,500	6,250	15,625	39,063	-1,931	-4,828	-12,069
		_	s_0	S_1	s_2	S_3	S_4	t_{0}	t_1	t_2
			7,000	12,250	23,188	46,703	98,574	-0,010	-0,083	-2,236

Rozwiązanie (CD): Powyższy układ równań przyjmuje postać

$$7,000 a_0 + 12,250 a_1 + 23,188 a_2 = -0,010,$$

 $12,250 a_0 + 23,188 a_1 + 46,703 a_2 = -0,083,$
 $23,188 a_0 + 46,703 a_1 + 98,574 a_2 = -2,236.$

Rozwiązaniem układu są wartości:

$$a_2 = -6.015$$
, $a_1 = 21.016$, $a_0 = -16.854$.

Poszukiwane parametry funkcji aproksymującej są równe:

$$\alpha = 6.015$$
, $\beta = -21.016$, $\gamma = 16.854$.

