

UNCLASSIFIED

AD NUMBER	
AD036272	
CLASSIFICATION CHANGES	
TO:	unclassified
FROM:	confidential
LIMITATION CHANGES	
TO:	Approved for public release; distribution is unlimited.
FROM:	Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; APR 1952. Other requests shall be referred to Bureau of Ordnance (Navy), Washington, DC 20350.
AUTHORITY	
30 Apr 1964, DoDD 5200.10; BUORD/JHU-APL ltr dtd 11 May 1967	

THIS PAGE IS UNCLASSIFIED

CONFIDENTIAL

APL/JHU TG 154-14
Copy No. 37

RAMJET TECHNOLOGY

Chapter 14 MATERIALS FOR RAMJET ENGINES AND COMPONENTS

4

C.W. BESSERER

The Johns Hopkins University
Applied Physics Laboratory

Published by

THE JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
Silver Spring Maryland

Operating under Contract N0ord 9389 with
the Bureau of Ordnance, Department of the Navy

This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18 U.S.C., Section 793 and 794. Its transmission or revelation of its contents to any person by an unauthorized person is prohibited by law.

CONFIDENTIAL

54AA 49350

NOTICE: THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE
NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING
OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 and 794.
THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN
ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

Chapter 14

**MATERIALS FOR RAMJET
ENGINES AND COMPONENTS**

by

C. W. Besserer

**The Johns Hopkins University
Applied Physics Laboratory**

**(Manuscript submitted for publication
April 1952)**

CONFIDENTIAL

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE SPYMASTER LAWS, TITLE 18, U.S.C., SECTION 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

5444 49850

CONFIDENTIAL

TABLE OF CONTENTS

NATURE OF THE MATERIALS PROBLEM	1
DESIGN CRITERIA	7
APPLICABLE MATERIALS	23
Properties of Applicable Materials	34
Materials for Fuel Cells	57
REFERENCES	54

CONFIDENTIAL

THE DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C. SECTIONS 770 AND 771. THE TRANSMISSION OR DISSEMINATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

14. MATERIALS FOR RAMJET ENGINES AND COMPONENTS

by

C. W. Besserer

14.1 NATURE OF THE MATERIALS PROBLEM

In few engineering problems are the parameters of any structural design so mutually dependent as in the design of the ramjet engine. The interdependence of load, deflection, temperature, and time creates two new problems, each of which requires a solution before suitable materials can be selected. These problems involve: (a) An evaluation of the mechanical properties of traditional aircraft materials for more severe boundary conditions, and (b) a search for new materials which can be used in areas in which the conventional aircraft materials are inadequate. Both of these problems are unusually troublesome; the first because the basic design problem (with exceptionally varied and numerous parameters) frequently is not fully understood by the designer or materials engineer. An example of this misunderstanding is encountered in the short-time versus long-time temperature problem, which is discussed on page 5. The second problem arises from the fact that materials in the development stage vary in their make-up and have a tendency to be erratic in their mechanical behavior.

- 1 -

CONFIDENTIAL

THIS DOCUMENT CONTAINS INFORMATION AFFIRMING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE SPYMADE LAW, TITLE 18, U.S.C., SECTION 702 AND 704. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW

CONFIDENTIAL

An educational problem in fabrication techniques, a careful evaluation of production and fabrication potential, and a re-examination of inspection and testing techniques are also involved in the use of new materials. The problem is exemplified by the development of usable titanium alloys for structural applications. In addition, materials used for guided missiles are subjected to other deleterious environments such as vibration, shock, humidity, sand and dust, salt spray, temperature, pressure, corrosion, fungus, and rain. These conditions are not usually encountered in the same combination as in more conventional applications.

The specialized requirements for ramjet-engine materials can be discussed more satisfactorily if the engine is considered to be made up of combustion-system components and diffuser-system components. This breakdown by function gives two different temperature zones for design Mach numbers from 1.6 to 2.4. In the first zone, temperature effects are due to hot gases from combustion, and in the second to aerodynamic heating.

The combustion-system components, which for many applications comprise the aft section of the missile, present several of the most complex engineering problems. Suitable metals must be selected which will withstand temperatures varying from 400° to 1800°F. The exact temperature or temperature gradient in any particular component or combustor subsystem obviously depends upon its function, location, and the length of exposure (which may vary from as little as three minutes to as long as three hours).

The tailpipe, which in many cases is also the external skin of the aft body of the missile, may also be the load carrying member. These loads may produce various combinations of bending as well as torsional and axial stresses. These

CONFIDENTIAL

CONFIDENTIAL

stresses may be steady-state or dynamic, depending on flight conditions, and may correspond to accelerations varying from one g to 30g over a very wide frequency regime. Deflections are associated with load and the manner of load application which, for aerodynamic and operational reasons, must be kept within the elastic range of the material. Since dynamic loads are involved, the problems of resonant-vibration conditions are always present, and frequently a design criterion demands that certain frequencies be avoided to prevent undesirable coupling.

Drag and pressure loads to which the nozzle is subjected result in large tensile stresses. Large thermal stresses may also be present, requiring that space allowances be made for expansion. Deflections of this component, however, are not critical. For long periods of flight, temperatures as high as 1500°F may cause a gradual but continuous erosion of nozzle materials from erosive action of the hot gases.

The combustor, which is perhaps subjected to the highest temperatures in the engine, is exposed to the drag and pressure loads which subject the structural components of the entire system to various combinations of membrane stresses. During a steady-state burning, temperatures from 500° to 1500°F may be encountered in various parts of the combustor. External pressures present a structural stability problem, not amenable to precise analysis, since the components contain a great many discontinuities in the form of holes and louvres.

Combustor accessories such as flameholders require materials having high-temperature strength combined with low erosion properties. A holder must be capable of serving its function without appreciable erosion, since burnout could affect the flame-holding stability, and of secondary importance the metal ions in the exhaust could have an attenuation effect on the guidance-intelligence signals.

CONFIDENTIAL

CONFIDENTIAL

In the diffuser system (as in the rest of the missile) load and deflection design criteria are keyed to the function of the component. The design temperatures are a function of Mach number, since components are subjected to aerodynamic heating. For antiaircraft missiles operating up to a Mach number of 2.2, this design temperature is between 350° and 450°F, depending on the type of guidance system used. Higher temperatures may require positive cooling action in this region of the missile, since it houses the electronic equipment and the fuel supply. For antiaircraft missiles operating in the regime of Mach numbers 1.8 to 2.2, it has been common practice for design purposes to use a temperature rate-of-rise of 30 deg/sec, which is considered to be conservative. Because of the low thermal capacity of the thin sheet-metal walls, diffuser materials generally reach equilibrium temperature in a matter of seconds. Frequently the limiting design criterion is stability, since the diffuser wall shell is loaded in bending and torsion. In this case, buckling in torsion or compressive buckling in bending is the measure of this stability.

High strength in a light weight, thin section of given aerodynamic shape is required in the diffuser entry lip. For Mach numbers in excess of 2.2, and for flight times in excess of a few minutes, the problem of erosion becomes overwhelmingly important. In many cases the intake lip must support other pieces of equipment, such as antennas or other intelligence elements, and for such designs there is an added requirement for a high degree of stiffness.

Attachment structures and struts are the remaining diffuser-system components which require a careful selection of materials. A considerable amount of these materials is required because of the nature of these members; hence, the strength-weight ratio is quite important.

CONFIDENTIAL

CONFIDENTIAL

Even though the materials used in missile construction will be subjected to high temperatures for only relatively short periods of time, the time-temperature problem is still a very critical one. It is in the time ranges of from a few seconds to as much as five or ten minutes that least is known about the mechanical properties of engineering materials. Because of weight considerations it is desirable to use design allowables as high as possible to take full advantage of thermal delays and the short flight times. The lack of data is partly the result of the newness of the application and partly the result of the current practice of using conservatively extrapolated data for design. It is well known that the physical properties of a material change with temperature, and that mechanical properties that yield point and modulus of elasticity vary downward with an increase of temperature. Design data which allow for creep are available in the literature, and, because this creep problem is solved by tolerating a known amount of plastic deformation over a long period of time (years), the mechanical property data associated with this phenomenon are based on long time periods and plastic deformations. On the other end of the scale, the entire subject of short-time high-temperature behavior of aircraft materials requires, and is receiving, further detailed investigation [3,33]. These investigation programs are usually disassociated from both the conventional creep problem and the very short-time, high-heating-rate problem typified by rocket-material requirements. As long-range missiles are designed, other temperature-time problems will appear. For example, one such problem which has already become evident is the little understood "creep buckling" which occurs in members loaded in compression with an eccentric load.

CONFIDENTIAL

CONFIDENTIAL

Selection of materials for the ramjet engine requires not only the consideration of conventional problems for designing high-speed airframes, but also the problem of storage corrosion and environment. A high degree of reliability combined with a minimum amount of maintenance presents contradictory but necessary design requirements.

CONFIDENTIAL

This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18, U.S.C., Sections 793 and 794. The transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law.

CONFIDENTIAL

14.2 DESIGN CRITERIA

It has been indicated that the "nature of the materials problem" for ramjet engines is very definitely a function of temperature and time in a measure beyond the requirements of more conventional applications. Before proceeding to a discussion of specific types of materials, it would be well to consider in general terms how some of the mechanical properties of materials are affected by temperature and load as a function of time. Time is important as a parameter even though the short flight times for antiaircraft missiles can take advantage of thermal inertias, and therefore utilize higher design allowables than if the material were thoroughly soaked for long periods at the operating temperatures. It can then be shown why certain types of materials are applicable to given components.

Structural materials must have strength and deformation properties adequate for the intended application. Figure 14.2-1 is a comparison of the average yield stresses for a number of structural materials at temperatures up to 2000°F. In general, the lightweight alloys are unfavorable when the temperature exceeds 400°F. In guided-missile structures the strength-weight criterion is important. (For a given geometry and loading condition, the material which gives the lightest member is the best choice.) In high-temperature applications, the strength of a material varies with the temperature, as does the choice of materials based on a strength-weight-temperature criterion. As an example of this, a diffuser wall, subject to bending, torsion and pressure loads, constructed of aluminum alloy, would be lightest up to 500°F; a similar wall of titanium alloy up to 900°F, and a stainless steel wall would be lightest above 900°F (based on yield failure). A comparison of strength-weight-ratio versus temperature for typical materials is shown in Fig. 14.2.2.

CONFIDENTIAL

CONFIDENTIAL

Fig. 14.2-1 YIELD STRESS vs TEMPERATURE

CONFIDENTIAL

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ECONOMIC SPYING LAW, TITLE 18, U.S.C., SECTION 790 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

Specific Weights

Fig. 14.2-2 TEMPERATURE vs RATIO OF YIELD STRENGTH TO SPECIFIC WEIGHT

CONFIDENTIAL

CONFIDENTIAL

After the design environment has been carefully established, full advantage of special properties of certain materials can be realized. In particular, the cost of raw materials may be an important consideration. Figure 14.2-3 shows a comparison of strength-cost ratios versus temperature. It is important to note that this figure does not include consideration of fabrication and possible special tooling costs.

Since the structural material will be subjected to both static and dynamic loads, the strength criterion must be based on the same environment. Hence, the endurance limit of the material will be the appropriate measure of strength. The endurance limit is an indication of the metal's resistance to fatigue phenomenon, which for most engineering metals lies between 1/4 and 1/2 of the ultimate tensile strength of the material for ten million or more repetitions of the load. For the ferrous metals, the endurance limit is considered to approach a limit termed the fatigue strength, which is independent of the number of stress repetitions. This limit disappears at elevated temperature where, for all materials, the endurance limit is a function of the number of applications of the load. The measure of a material's resistance to static elastic deformation is the modulus of elasticity. This relationship, which approximates the ratio of stress to strain in the elastic range as a straight line, is also a function of temperature and decreases in value with an increase in temperature as shown in Fig. 14.2-4. For dynamic deformations, in addition to the modulus of elasticity, the density of the material must be considered, since accelerated masses give inertia forces. An ideal material for dynamic applications might be one as light as magnesium and as stiff as tungsten, but the selection of a material for a particular use is usually based on static rather than dynamic deformations as a structural design criterion.

CONFIDENTIAL

CONFIDENTIAL

Relative costs based on
36"x144"x 0.065" sheet
in carload lots (20 tons)

Fig. 14.2-3 TEMPERATURE vs RATIO OF STRENGTH TO COST

CONFIDENTIAL

THIS DOCUMENT CONTAINS INFORMATION APPERTAINING TO THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS. TITLE 18, U.S.C. SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

Fig. 14.2-4 MODULUS OF ELASTICITY vs TEMPERATURE

CONFIDENTIAL

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE SPYAGOVA LAWS, TITLE 18, U.S.C., SECTIONS 775 AND 776. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

Other mechanical and physical properties such as thermal expansion (Fig. 14.2-5), thermal conductivity (Fig. 14.2-6), and erosion resistance are also important in the selection of materials for ramjet engines and further, these properties increase in importance as missile flight times become longer. The problems of thermal expansion and thermal shock are especially important in built-up structures, particularly those involving several different materials. Consideration of corrosion problems in military applications requires careful selection of adjacent materials unless extraordinary protection precautions are taken. It is preferable to use materials as close to each other as possible in the galvanic series (Table 14.2-1), and in no case separated by more than one grouping.

Another mechanical property of considerable interest is ductility. Since the nature of missile structures leads to combined stresses and stress concentrations, materials with low notch sensitivities are desirable. A usable, but not complete measure of this property is ductility, which shows up in the mechanical properties most commonly as per cent elongation in a specified gage length, and less commonly, but more accurately as per cent reduction of test specimen area. These properties are also some measure of a material's "toughness" which indicate its ability to absorb energy before fracture and is therefore an important measure of workability. For purposes of comparison, Fig. 14.2-7 shows the relative ductility of several typical materials at room temperature. At elevated temperatures the ductility is invariably improved.

Detail design consideration must involve not only the initial temperature, but the actual temperature regime as a function of Mach number, altitude, and temperature history.

CONFIDENTIAL

CONFIDENTIAL

Fig. 14.2-5 THERMAL EXPANSION vs TEMPERATURE
FOR SEVERAL MATERIALS

CONFIDENTIAL

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE SPYSHIPAGE LAWS, TITLE 18, U.S.C., SECTIONS 701 AND 702. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS, IN ANY MANNER, TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

Fig. 14.2-6 THERMAL CONDUCTIVITY vs TEMPERATURE
FOR SEVERAL MATERIALS

CONFIDENTIAL

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE EXPIRATION LAWS, TITLE 10, U.S.C., SECTIONS 7762 AND 7764. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS, IN ANY MANNER, TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

TABLE 14.2-1 Galvanic Series in Sea Water

Corroded End (anodic, or least noble)
Magnesium
Magnesium Alloys
Silic
Galvanized Steel or Galvanized Wrought Iron
Aluminum (828N, 4B, 3B, 2B, 618-T, 636-T in this order)
Aleod
Cadmium
Aluminum (A17B-T, 17B-T, 24B-T in this order)
Wld Steel
Wrought Iron
Cast Iron
Ni-Bonelat
13 per cent Chromium Stainless Steel Type 410 (active)
17 per cent Chromium Stainless Steel Type 430 (active)
Mastellloy C
50-50 Lead Tin Solder
18-8 Stainless Steel Type 304 (active)
18-12-3 Stainless Steel Type 316 (active)
Lend
Tin
Muntz Metal
Manganese Bronze
Naval Brass
Molybdenum
Nickel (active)
Inconel (active)
Mastellloy A
Mastellloy B
Yellow Brass
Admiralty Brass
Aluminum Brasses
Red Brass
Copper
Silicon Bronze
90-10 Copper Nickel
70-30 Copper Nickel
Composite G-Bronze
Composite H-Bronze
Nickel (passive)
Inconel (passive)
Monel
13 per cent Chromium Stainless Steel Type 410 (passive)
17 per cent Chromium Stainless Steel Type 430 (passive)
18-8 Stainless Steel Type 304 (passive)
18-8-3 Stainless Steel Type 316 (passive)
Titanium
Protected End (cathodic, or most noble)

CONFIDENTIAL

CONFIDENTIAL

Fig. 14.2-7 RELATIVE DUCTILITIES FOR ANNEALED SHEET MATERIALS
AT ROOM TEMPERATURE

CONFIDENTIAL

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAW, TITLE 18, U.S.C., SECTIONS 770 AND 776. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS, IN ANY MANNER, TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

Use is made of several different "standard" days (Table 14.2-2) to obtain a starting point for establishing the temperature conditions for correcting the design allowables. Usually for structural design, the "standard" hot and cold days are used, since they represent an envelope of "worst design" conditions. Such standard days cannot exist meteorologically, but conditions at various places on and above the earth can and do match points on the standard day curves; consequently, it is desirable to use these for design. For calculating the performance of a missile, however, it is preferable to use polar and tropical days since these can exist meteorologically.

Any material has certain advantages and disadvantages in a given situation; however, the material selected will usually be a compromise based on the following:

1. It is satisfactory for statical loads,
2. it is satisfactory for dynamical loads,
3. it fulfills special requirements (such as corrosion resistance, damping capacity, etc.)
4. it is practical to fabricate on a production basis,
5. it is available (and is not a critical material in time of war).

A means of rating strategic and critical materials [1] is frequently of value in performing both preliminary and production design. In determining which one of several suitable materials should be selected for a specific application, consideration should be given to the current and possible future scarcity of the material.

This is a method of rating an element numerically according to its relative scarcity by applying material factors ("MF") to the element. Boron, which is considered abundant and noncritical, is given an "MF" of 1, while columbium, considered the most scarce and critical, is given an "MF" of 2200 (Table 14.2-3).

CONFIDENTIAL

CONFIDENTIAL

TABLE 14.2-2 Mach Number for Several Standard Days vs Altitude and Velocity

Velocity (ft./sec.)	Sea Level	Altitude (feet)						60,000
		10,000	20,000	30,000	40,000	50,000	60,000	
1200	Standard (NACA)	1.51	1.67	1.73	1.81	1.85	1.85	1.85
	Solt*	1.55	1.60	1.65	1.73	1.79	1.79	1.79
	Cold*	1.75	1.75	1.83	1.90	1.95	2.00	2.02
	Polar*	1.64	1.70	1.77	1.82	1.87	1.82	1.82
1300	Tropical*	1.56	1.62	1.68	1.75	1.83	1.91	1.94
	Standard (NACA)	1.70	1.76	1.83	1.91	1.95	1.95	1.95
	Solt*	1.64	1.69	1.75	1.82	1.89	1.89	1.89
	Cold*	1.85	1.85	1.93	2.00	2.05	2.11	2.13
1400	Polar*	1.73	1.80	1.87	1.92	1.97	1.92	1.92
	Tropical*	1.65	1.71	1.77	1.85	1.93	2.01	2.05
	Standard (NACA)	1.79	1.86	1.93	2.01	2.06	2.06	2.06
	Solt*	1.72	1.78	1.85	1.92	1.99	1.95	1.95
1500	Cold*	1.95	1.95	2.03	2.11	2.16	2.22	2.25
	Polar*	1.82	1.89	1.97	2.02	2.08	2.02	2.02
	Tropical*	1.74	1.80	1.87	1.94	2.03	2.12	2.16
	Standard (NACA)	1.88	1.95	2.02	2.11	2.16	2.16	2.16
1600	Solt*	1.81	1.87	1.94	2.02	2.09	2.09	2.09
	Cold*	2.05	2.05	2.14	2.21	2.27	2.33	2.36
	Polar*	1.92	1.99	2.07	2.12	2.19	2.12	2.12
	Tropical*	1.83	1.89	1.96	2.04	2.13	2.12	2.12
1700	Standard (NACA)	1.97	2.04	2.12	2.21	2.26	2.26	2.26
	Solt*	1.90	1.96	2.03	2.11	2.19	2.19	2.19
	Cold*	2.14	2.14	2.24	2.32	2.38	2.44	2.47
	Polar*	1.91	1.98	2.06	2.17	2.22	2.22	2.22
1800	Tropical*	1.81	1.88	1.95	2.03	2.14	2.23	2.28
	Standard (NACA)	2.08	2.14	2.22	2.31	2.37	2.37	2.37
	Solt*	1.95	2.05	2.12	2.21	2.29	2.29	2.29
	Cold*	2.24	2.24	2.34	2.42	2.49	2.53	2.53
1900	Polar*	2.10	2.15	2.27	2.32	2.39	2.32	2.32
	Tropical*	2.00	2.07	2.15	2.24	2.33	2.44	2.44
	Standard (NACA)	2.15	2.23	2.31	2.41	2.47	2.47	2.47
	Solt*	2.07	2.14	2.22	2.30	2.39	2.39	2.39
2000	Cold*	2.34	2.34	2.44	2.53	2.59	2.66	2.70
	Polar*	2.19	2.27	2.36	2.42	2.48	2.42	2.42
	Tropical*	2.09	2.16	2.24	2.33	2.43	2.54	2.59
	Standard (NACA)	2.24	2.32	2.41	2.51	2.57	2.57	2.57
2100	Solt*	2.16	2.22	2.31	2.40	2.49	2.49	2.49
	Cold*	2.44	2.44	2.54	2.63	2.70	2.78	2.81
	Polar*	2.28	2.36	2.46	2.52	2.59	2.52	2.52
	Tropical*	2.17	2.25	2.33	2.43	2.54	2.65	2.70

* Indicates Proposed Standard Days (see NAVF Mater Powerplants Manual No. 28).

CONFIDENTIAL

THIS DOCUMENT CONTAINS INFORMATION AFFILIATED WITH THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE SPYWARE LAWS, TITLE 18, U.S.C. SECTIONS 703 AND 704. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

TABLE 14. 2-3

Examples of Material Factors

	<u>Current Revised Draft</u>		<u>Current Revised Draft</u>
Aluminum (Al)	14	Manganese (Mn)	6
Antimony (Sb)	5	Molybdenum (Mo)	28
Beryllium (Be)	220	Nickel (Ni)	22
Boron (B)	1	Selenium (Se)	50
Cadmium (Cd)	4	Silicon (Si)	5
Cerium (Ce)	24	Silver (Ag)	2
Chromium (Cr)	5	Tantalum (Ta)	800
Cobalt (Co)	160	Tellurium (Te)	6
Columbium (Cb)	2200	Tin (Sn)	16
Copper (Cu)	8	Titanium (ferro)	2
Germanium (Ge)	4	Titanium (Ti)	70
Indium (In)	80	Tungsten (W)	70
Iron (Fe)	2	Vanadium (V)	5
Lead (Pb)	7	Zinc (Zn)	6
Lithium (Li)	80	Zirconium (Zr)	3
Magnesium (Mg)	16		

Synthetics

Acrylic resins (lucite, plexiglass)	2
Asbestos, long fiber	3
Cellulose acetate butyrate resin (tenite)	2
Cellulose acetate (plastacete, fibestose, etc.)	1
Glass cloth and glass mat (fiberglas)	2
Melamine-formaldehyde resins (melmac, plastim, etc.)	2
Phenolic resins (bakelite, durez, etc.)	3
Polystyrene resins (styon, bakelite, etc.)	2
Polyamides (nylon)	3
Polytetrafluoroethylene resin (teflon)	3

CONFIDENTIAL

CONFIDENTIAL

Using these material factors, material numbers ("MN") may be obtained for complex materials such as 24S aluminum alloy and 4130 steel. Of several complex materials suitable for a certain application, the one with the lowest "MN" should be chosen if scarcity must be considered.

An example of the method used in determining the "MN" of a complex material may be illustrated by 4130 steel.

TABLE 14.2-4

Elements A.I.S.I. 4130 Steel	Per Cent by Weight x "MF"
C	0.3 x 0 = 0
Mn	0.5 x 6 = 3.0
Si	0.3 x 5 = 1.5
Cr	1.0 x 5 = 5.0
Mo	0.2 x 28 = 5.6
Fe	97.7 x 2 = 195.4
	Total 210.5 carried to nearest whole number = 211 = "MN" for 4130 steel

A tabulation of material numbers for materials of interest to missile designers is found in Table 14.2-5. This list may be kept up to date by reviewing the quarterly or semi-annual changes made in material factors by the Research and Development Board.

CONFIDENTIAL

TABLE 14. 2-5

Material Numbers for Several Complex Materials

Aluminum Alloy	"MN"	Aircraft Quality Steels	"MN"
14S	1342		
17S	1348	No.	
24S	1351	(AISI unless otherwise specified)	
52S	1388		
61S	1373	1095	201
75S	1316	4130	213
		4340	252
356	1324	AMS 5350	294
		SAF 135 (nitr alloy)	234
Stainless Steel		Brass	
Type			
302	463	Naval brass	728
303	463	Commercial brass	730
321	517		
414	288		
Hastelloy X	1400		

CONFIDENTIAL

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL SECURITY OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE ACT, TITLE 18, U.S.C., SECTIONS 770 AND 771. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

14.3 APPLICABLE MATERIALS

In this section are covered some of the advantages and disadvantages of present and future ramjet-engine materials. Little will be included of the designer's problem of replacing conventional, production-tried materials with new materials which require different fabrication and tooling techniques and additional training. This educational problem might well be encountered at all technical and subtechnical levels in any stage of material application.

In considering materials for ramjet engines, it will again be convenient to divide the engine into a combustor system and a diffuser system, both of which are combinations of engine and airframe parts.

Materials for the combustor must, for the most part, retain their elastic-range mechanical properties at high temperatures. For design purposes the definition of a high temperature structure is 1500°F , but future requirements may be as high as 3000°F . Austenitic stainless steels of the AISI 302 and 321 types are frequently used for structures at these temperatures. These are low carbon steels with 18 per cent chrome and 8 per cent nickel and are ductile and suitable for the forming and welding techniques common to combustor components. At present no ferritic low alloy steel (which would be more workable, weldable, economical, and less critical) has been developed which can be used at 1500°F . The turbine industry, however, has succeeded in developing a chrome-molybdenum-vanadium ferritic steel good at 1000°F for high pressure turbine applications, indicating that progress is being made in this field. Also available are nonferrous alloys for high temperature service which are superior to stainless steel in their high temperature properties but are more difficult to fabricate, more costly, and

CONFIDENTIAL

CONFIDENTIAL

use more critical constituents. Two examples are Hastelloy X, a newly developed nickel-molybdenum alloy (low in strategic alloy content), and Inconel X, a chrome-nickel alloy. If combustor-wall temperatures are increased to 1800°F or above, it becomes necessary to turn to a pure metal like molybdenum, which is at present expensive and difficult to fabricate, or to one of the iron-chromium-nickel-cobalt alloys, such as Haynes alloy No. 25, which have the double disadvantage of being both expensive and composed of critical materials. A large amount of the current material research is being devoted to developing new high-temperature metallic alloys.

At temperatures above 1800°F such nonmetallic materials as technical ceramics may be considered. Special properties of several typical technical ceramics are given in Table 14.3-1. These materials have desirable high-temperature characteristics, but are usually brittle and suitable, almost without exception only for compressive stress loadings. Ceramic coatings are advantageous because they permit the use of less critical materials and may be used if the extra cost of processing and handling is not excessive. Substitution of light alloys for steels by using coatings is usually not feasible in combustor parts, since the working temperature exceeds the usual allowable values very rapidly. The ceramic merely flattens the rate of the temperature-rise curve, but does not act as a complete insulator. Metal-ceramic compositions combining the desirable mechanical properties of both materials may be useful for certain applications, but fabrication is limited to powder metallurgical processes because of the high melting temperatures. Some of these materials are extremely brittle, and cannot be used except under compressive loads. Special design techniques are thus required, and machining is usually done in the unsintered condition.

CONFIDENTIAL

CONFIDENTIAL

TABLE 14.3-1 Mechanical Properties of Typical Technical Ceramics

Annealing Temperature ($^{\circ}$ F)	Yield Point (lb/in ²)	Tensile Strength (lb/in ²)	Elongation (per cent)
(arc-cast, cold rolled from 0.052 to 0.020 inch)			
Longitudinal			
Cold Rolled			
1600	151,800	154,300	5
1700	126,500	131,500	12
1800	121,500	124,500	10
1900	111,000	117,300	13
2000	98,000	105,500	17
2100	74,400	88,800	29
2200	73,100	91,300	28
2300	75,500	90,600	26
2400	81,800	88,400	26
	75,400	78,800	39
Transverse			
1600	130,200	132,100	3
1700	120,900	120,900	2
1800	"	123,400	2
1900	113,700	114,700	8
2000	81,200	93,500	27
2100	86,700	91,500	16
2200	82,800	91,100	17
2300	55,000	89,400	16
2400	76,800	83,200	22

Tested in 1-inch gauge length, 1/2-inch wide.

CONFIDENTIAL

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE SPYSHIP LAW, TITLE 18, U.S.C., SECTION 793 AND 794. THE TRANSMISSION OR REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

Another possible solution to the extreme high-temperature problem in the combustor may lie in the application of protective coatings of existing high-temperature materials.

Diffuser-system components are at present subjected to maximum temperatures of about 450°F. Steel need not be considered until an operating temperature of about 900°F is reached, since competition with the lighter materials would require gauges impractical to fabricate for the required configurations. Light alloys are presently used for diffuser components. Typical design data are shown in Figs. 14.2-1, 14.3-1, 14.3-2, 14.3-3, and 14.3-4. Although the heating rates used to obtain data for Figs. 14.3-2 and 14.3-3 are higher than anticipated for antiaircraft missile structures (except the combustor), the data are consistent and adequate for design. Much more detail is given by the Munitions Board Aircraft Committee [73] from which these data were extracted. New aluminum alloys, at present in the development stage, offer the possibility of about 35 per cent higher strength properties at 600°F than alloys presently in use. A serious shortcoming of aluminum has been the poor weldability of some of its stronger alloys. Magnesium is another material which has strength-weight properties attractive to the designer. Typical design data for some of the alloys are shown in Figs. 14.3-5 and 14.3-6. Magnesium has notch sensitivity as good as aluminum and somewhat better fatigue properties. Recent advances in the field of magnesium-rare earth-zirconium alloys offer good high-temperature properties up to 600°F. Magnesium requires extra precautions to insure corrosion resistance.

In the temperature range between 500° and 900°F, titanium has the mechanical properties, strength, stiffness, and corrosion resistance, required for a good diffuser material. The mechanical

CONFIDENTIAL

CONFIDENTIAL

Fig. 14.3-1 EFFECT OF ELEVATED TEMPERATURES ON THE MECHANICAL PROPERTIES OF ALUMINUM ALLOYS 24S-T3 AND 75S-T6

CONFIDENTIAL

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE SPYSHIP LAW, TITLE 18, U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

FIG. 14.3-2 DESIGN CURVES FOR 24S-T3 ALUMINUM ALLOY SHEET AT 400°, 500°, AND 600°F

CONFIDENTIAL

THIS DOCUMENT CONTAINS INFORMATION APPERTAINING TO THE NATIONAL DEFENSE OF THE UNITED STATES WHICH IS UNCLASSIFIED. THE MAINTENANCE OF THE UNCLASSIFIED STATUS IS THE RESPONSIBILITY OF THE USER. TITLE 16, U.S.C., SECTIONS 703 AND 704. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

FIG. 14.3-3 DESIGN CURVES FOR 75S-T6 ALUMINUM ALLOY SHEET AT 300°, 400°, AND 500°F

CONFIDENTIAL

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE SPYSHIPAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS, IN ANY MANNER, TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

FIG. 14.3-4 STRESS VS TOTAL DEFORMATION CURVES FOR MAGNESIUM AND ALUMINUM BASE ALLOY SHEET UNDER LOAD FOR ONE MINUTE AT 500°F

This curve shows the total deformation produced by stresses acting for one minute. The highest points on each curve, if less than 7 per cent, generally indicate the limit of deformation before rupture.

CONFIDENTIAL

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE SPYWARE LAWS, TITLE 18, U.S.C., SECTIONS 773 AND 774. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

FIG. 14.3-5 EFFECT OF ELEVATED TEMPERATURES ON THE MECHANICAL PROPERTIES OF TWO MAGNESIUM ALLOYS

Fig. 14.3-6 DESIGN CURVES FOR MAGNESIUM ALLOY MH AT 400° AND 500°F

CONFIDENTIAL

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE SPYSHIP LAW, TITLE 18, U.S.C., SECTIONS 773 AND 774. THE TRANSMISSION OR REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

properties of titanium and its alloys are not as well established as those for the more conventional materials, but continued use and tests have disclosed weaknesses which will eventually be corrected. Typical design data are given in Fig. 14.3-7 and additional detail information on titanium is given on page

A structural efficiency evaluation [35] of commercial titanium sheet and extruded 75S-T6 and 24S-T3 aluminum alloys with short-time loading indicated that titanium sheet is the more efficient at temperatures above 400°F. The evaluation is given for compressive loading without buckling, for column buckling, and for buckling of long plates in compression or shear. The evaluation extended from 80° to 600°F and also included magnesium ZK60A alloy and 18-8 stainless steel. The stress-strain tests were performed after the material was exposed to the test temperature for one hour, with loading at a strain rate of 0.002 in/in/min. For shorter times, and for titanium alloys other than the commercial grade, it appears that, for temperatures less than 400°F, the advantage also favors the titanium for the cases where allowable stress and not modulus is the determining factor.

Plastics offer another possible structural material for diffuser components. These plastics are used in the form of laminates in which many layers of fabric such as Fiberglas are bonded together with a high-temperature resin to form structural sheets of desired thickness with strength properties made to order. Presently available are glass-phenolic laminates capable of use on a favorable strength-weight basis at temperatures up to 500°F. These sheets are amenable to being formed and joined into complex structural members, but they may also be used as the skins of sandwich members with a light-weight metal or plastic core. Typical design data are given

CONFIDENTIAL

CONFIDENTIAL

FIG. 14.3-7 EFFECT OF ELEVATED TEMPERATURES ON THE MECHANICAL PROPERTIES OF ANNEALED AND COLD ROLLED TITANIUM

CONFIDENTIAL

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE EXEMPTION LAWS. TITLE 18, U.S.C., SECTIONS 1910 AND 1914. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

In Fig. 14.3-8. Although it is apparent that design allowables diminish rapidly with increase in temperature, the short flight times and high thermal inertia permit their use extensively, even for primary structures. One of the basic limitations for parts exposed to airflow is the readiness with which some of these materials tend to delaminate due to erosion in the wind-stream. The very low stiffness of plastics is a big disadvantage but buckling is usually eliminated by proper design. Fiberglas laminates appear usable for practically all structural elements of a guided missile including the tailplane if appropriate ceramic or metallic liners are used. The overwhelming advantage of plastic structures is the reduced fabricating costs due to less space being required for processing and the feasibility of using semi-skilled labor.

Much current research in this field is devoted to the development of reinforced, low pressure laminates, and their use in both secondary and primary structures should be greatly expanded.

Properties of Applicable Materials

Tabular information for conventional materials is included in Table 14.3-2 to permit easy comparison for preliminary design of structural elements of guided missiles. As is always good practice, final design allowables should be based on exact information obtained from the material manufacturers.

Titanium

Titanium is the newest material available for use in structural design as a possible replacement for both aluminum and stainless steel alloys for elevated temperature, high

CONFIDENTIAL

**Fig. 14.3-8 AVERAGE STRENGTHS OF PLASTIC LAMINATES
AT VARIOUS TEMPERATURES**

Glass cloth impregnated with two resins is indicated.

CONFIDENTIAL

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE SPYSHIP LAW, TITLE 18, U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

TABLE 14.3-2 (a) Condensed Tabulation of Mechanical Properties

Commercial Designation	Form	Condition	Tensile Strength (lb/in ²)	Yield Strength 0.2 per cent offset (lb/in ²)	Elongation (per cent in 2 inches)	Hardness (Rockwell)	Reference or Miscellaneous Information
SAA-4130	Sheet, Plate, tube, bar and rod	No. 511 specifications $t < 0.150$ inch	35,000	74,000	25.5	197	Elongation and hardness is for 1-inch rod
SAA-4130	Plate and bar	Annealed $t < 1.50$ inch	65,000	45,000	28.2	156	Elongation and hardness is for 1-inch rod
SAA-4130	Sheet, Plate, tube and rod	Heat treated	150,000	125,000	16	306	
18-8	Sheet and strip	Annealed	75,000	30,000			
18-8	Sheet and strip	Cold rolled 1/2 hard	150,000	110,000			
18-8	Sheet and strip	Cold rolled and heat treated 1/2 hard	150,000	120,000			
18-8	Type 304	-	Annealed	95,000	30,000	55-63	150
18-8	Type 314	-	Cold rolled	185,000	160,000	8	400
18-8	Type 316	-	Annealed	30/100,000	25/45,000	50-56	170/200
18-8	Type 316L	(see note G-025 1/2 inch 0.250 (see E-432 G-1712)	Annealed	100/140,000	40-50,000	35-56	140/241
18-8	Type 316L	(see notes G-025 1/2 inch 0.250 (see E-432 G-1712)	Annealed and aged	150/175,000	100/130,000	25-30	293/372

CONFIDENTIAL

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE
MEANING OF THE EXPIRATION LAW, TITLE 16, U.S.C., SECTIONS 703 AND 704. THE TRANSMISSION OR
THE REVEALATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

TABLE 14.3-2(a) CONTINUED

Commercial Designation	Form	Condition	Tensile Strength (lb/in ²)	Yield Strength 0.2 per cent offset (lb/in ²)	Fracture (per cent in 2 inches)	Hardness (Brinell)	Reference or Miscellaneous Information
Incoisel I	-	Annealed	126,000	55,000	56	175	Sample sheet
Incoisel I	-	Bent rolled	188,000	130,000	23	355	Sample sheet
Laminated Alloys							
245-71	Sheet and plate	Heat treated < 0.25% lace	55,000	48,000	15	-	
245-74	Rolled bar, rod and shapes	Heat treated	62,000	46,000	16	-	
245-73	Forging	Heat treated	54,000	42,000	12	-	
245-75	Forging	Heat treated, cold worked and aged	58,000	50,000	-	-	
245-74	Forged shapes	Heat treated < 0.25% lace	57,000	42,000	12	-	
245-72	Forged shapes	Heat treated, cold worked and aged	64,000	54,000	-	-	
245-76	Sheet	Wrought	72,000	57,000	14	130	
245-75	Alclad	Heat treated and rolled	67,000	53,000	11	-	
245-76	Alclad	Artificially aged	70,000	66,000	6	-	
245-74		Test material	70,800	79,300	-	-	
755-74	Sheet and plate	Heat treated and aged 0.040 - 0.249	77,000	67,000	6	-	

CONFIDENTIAL

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE SPYMANE LAWS, TITLE 18, U.S.C., SECTION 793 AND 794. THE TRANSMISSION OR DISCLOSURE OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

TABLE 14. 3-2(a) concluded

Commercial Designation	Form	Condition	Tensile Strength at 0.2 per cent offset (lb/in ²)	Elongation (per cent in 2 inches)	Remarks (Briefly)	Reference or Miscellaneous Information
755-75	Reinforced bar and shapes	Steel treated and aged up to 0.24% carbon	77,000	56,300	7	-
755-75	Reinforced bar and shapes	Steel treated and aged up to 0.24% carbon	78,000	70,000	7	-
755-75	Bar forged stock	Cross section area (in ²) 216	75,000	64,000	8	-
755-75	Die forgings	Plain bars 2 1/2 inches long	75,000	55,000	10	125
755-75	Sheet	Smooth	82,000	72,000	11	156
755-75	-	Textured material	90,500	79,300	-	-
Impression Alloy						
PS-1	Sheet	# 24	42,39,000	21-29,000	6-4	73
PS-1	Sheet	0	37,32,000	22,18,000	21-12	36
PS-1	Sheet	7	37,32,000	22,18,000	21-12	-
0-1	Extrusion	# 5	52,48,000	36,30,000	5-4	82
22-50A	Extrusion	7	45,42,000	38,31,000	12-5	75
0	Sheet	-	37,32,000	29,22,000	5-4	56

CONFIDENTIAL

This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18, U.S.C., Sections 793 and 794. The transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law.

CONFIDENTIAL

TABLE 14.3-2(b)

Typical Properties of Cloth Base Polyester Laminates

Cloth	Tensile Strength (lb/in ²)	Compressive Strength (lb/in ²)	Shear Strength (lb/in ²)	Flexural Strength (lb/in ²)
(A) Square woven 0.003 inch t; 2 oz/sq yd	40,400	36,200	18,500	57,100
(B) Square woven 0.007 inch t; 6 oz/sq yd	40,600	25,300	19,300	53,200
(C) Square woven 0.015 t; 12 oz/sq yd	35,400	15,400	18,100	41,100
(D) Unidirectional fabric 0.009 inch t; 9 oz/sq yd (parallel) (cross)	34,600 47,800	47,100 39,800	25,600 20,300	107,400 68,800
(E) Long shaft satin weave 0.009 inch t; 9 oz/sq yd	36,800	35,900	18,600	61,200
(F) Long shaft satin weave 0.013 t; 12 oz/sq yd	49,400	26,900	19,000	57,900

CONFIDENTIAL

CONFIDENTIAL

TABLE 14. 3-2(c)

Thermosetting Plastic				
Type of Plastic	Direction ¹	Tensile Strength (lb/in ²)	Compressive Strength (lb/in ²)	Shear Strength (lb/in ²)
Grade B phenolic Resinite	Long (Cord) or Transverse	17,000 12,000	25,000 24,700	12,000 13,000
Grade C phenolic Resinite	Long (Cord) or Transverse	14,700 9,900	27,000 27,500	13,000 14,000
Grade XX phenolic Resinite	Long (Cord) or Transverse	18,100 13,700	23,000 23,400	12,300 13,300
High-strength paper phenolic Resinite	Long (Cord) or Long (Cord) ²	25,000 25,000	22,400 22,400	11,000 ² 15,200 ³
Phenolic Resinite, glue- and cotton-fiber-filled	Long (Cord) or Transverse	38,000 37,700	27,000 24,030	18,000 18,000
Resin (unreinforced compressive) resin	Long (Cord) or	30,000	26,000	8,800
Argonite Resinite	Long (Cord) or	15,700	17,300	8,700
Cast phenolic		10,000	20,000	6,200
Antifire-formic aldehyde resin Plasticized Unplasticized		7,800 9,400	21,000 22,000	9,300 9,400
Alkyd-type resin Unfilled	Long (Cord) or	4,300	15,100	4,000
Kraft paper	Long (Cord) or	13,000	11,200	9,800
Burlap paper	Long (Cord) or	9,900	11,100	8,600
Burlap burlap	Long (Cord) or	7,900	12,000	8,200
Burlap burlap	Long (Cord) or	7,700	10,800	8,500
Benzyl-formic aldehyde Fibrofene Resinite	Long (Cord) or Transverse	4,800 5,000	-	7,000 7,000
Thermoplastic Plastic				
Cellulose acetate, transparent		8,000	7,300	6,800
Cellulose acetate B3		6,400	5,800	5,700
Cellulose acetate B5		7,400	6,700	6,300
Cellulose acetate butyrate B1		4,900	4,500	3,700
Cellulose acetate butyrate B5		6,600	6,500	4,900
Polymerized methacrylate		8,600	12,100	8,200
Polyvinyl chloride acetate		9,600	12,400	10,000
Polyacrylene		3,700	10,200	6,100

¹ Direction of fiber plane and direction of loading for tension and compression.² Plutonium.³ Edges only.

"Shear Strength of Plastic Materials" Modern Plastic by R. T. Schwartz and R. Dugger, March 1944.

CONFIDENTIAL

This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18, U.S.C., Sections 793 and 794. The transmission or revelation of its contents, in any manner, to an unauthorized person is prohibited by law.

CONFIDENTIAL

strength-weight ratio applications. It is a light-weight, strong, corrosion-resistant metal which, for structural work at temperatures less than 900°F, approximately fits between steel and aluminum from consideration of density, modulus, and strength. For example, where titanium can be substituted, only 60 per cent as much weight is required for stainless steel, section for section. The main advantages of titanium as a structural material are:

1. Up to approximately 700°F, it has a higher strength-weight ratio than any other structural material,
2. It is virtually non-corrosive and non-erosive (much better than stainless steel or monel) in salt air, and
3. fabrication can be done with standard processes and machinery (but with some changes in tools, feeds, and speeds).

Disadvantages are:

1. High cost of raw material,
2. difficulty in rapidly processing high strength alloys,
3. difficulty in making ductile welds, and
4. Inconsistency of physical properties.

Nominal mechanical properties and chemical composition are given in Table 14.3-3 and Table 14.3-4. Titanium melts at temperatures between 2550° and 3150°F, depending on the alloying constituents; its density varies from 0.16 to 0.17 lb/in³ and hardness from 190 to 270 Brinell Hardness Number. Surface hardness comparable to nitrided steel is readily obtainable by appropriate heat treatment. The modulus of elasticity is about 16×10^6 lb/in² (approximately half that of steel) and drops to about 12×10^6 at 800°F (Fig. 14.2-4). Apparently cold-working changes the value of the modulus to a degree not usually encountered in

CONFIDENTIAL

CONFIDENTIAL

TABLE 14.3-3 Nominal Mechanical Properties for Titanium and Titanium Alloys

Commercial Designation	Form	Condition	Tensile Strength		Reduction of Area (per cent)	Hardness	
			0.2 per cent offset (lb/in ²)	Tension (lb/in ²)			
Ti-55 A	Sheet and Strip	Annealed	48,000	52,000	25.5	140	
Ti-55 C	Sheet and Strip	Annealed	51,000	56,000	24.5	140	
	Plate	Annealed	52,000	57,000	24.5	140	
	Bar	Annealed	52,000	57,000	24.5	140	
	Castings	As forged	125,000	145,000	11.5%	140	
		Castings	As cast	125,000	145,000	11.5%	140
Ti-55	Forgings, Bolt, Pin, Nut, Plate	Annealed	55,000	60,000	25.5	140	
	Sheet	Annealed	55,000	70,000	25.5	140	
	Plate	Annealed	55,000	70,000	25.5	140	
	Bar	Annealed	55,000	70,000	25.5	140	
	Cold-worked, 50 per cent as forged	115,000	125,000	25.5	140		
	Castings	As forged	115,000	125,000	25.5	140	
		As cast	115,000	125,000	25.5	140	
Ti-70C	Forgings	Annealed	55,000	60,000	25.5	140	
	Sheet	Annealed	55,000	70,000	25.5	140	
	Plate	Annealed	55,000	70,000	25.5	140	
	Bar	Annealed	55,000	70,000	25.5	140	
Ti-70C Ti	Forgings, Sheet, 0.040 in. thick	As forged	65,000	70,000	25.5	140	
		Cold-worked, 30 per cent as forged	120,000	130,000	25.5	140	
		Castings	As forged	120,000	130,000	25.5	140
		As cast	120,000	130,000	25.5	140	
Ti-100C 4	Sheet and Strip	Annealed	55,000	60,000	25.5	140	
	Plate	Annealed	55,000	60,000	25.5	140	
	Bar	Annealed	55,000	60,000	25.5	140	
	Cold-worked, 50 per cent as forged	115,000	120,000	25.5	140		
		Castings	As forged	115,000	120,000	25.5	140
		As cast	115,000	120,000	25.5	140	
Titanium Alloys	Sheet, 0.040 in. thick	Annealed, 1 hour at 1300°F	140,000	140,000	25.5	140	
		Cold-worked, 30 per cent as forged	160,000	160,000	25.5	140	
		Castings	As forged	145,000	150,000	25.5	140
		As cast	145,000	150,000	25.5	140	
		Annealed	145,000	150,000	25.5	140	
		As forged	145,000	150,000	25.5	140	
		Not forged	145,000	150,000	25.5	140	
		50 per cent reduction	151,000	165,000	25.5	140	
		Forged, shocked	152,000	162,000	25.5	140	
		Annealed	152,000	162,000	25.5	140	
Ti-175 A	Forgings, Pin, Plate	Annealed	120,000	125,000	25.5	140	
		Cold-worked, 30 per cent as forged	140,000	145,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	
Ti-175 C	Forgings, Bolt, Plate	Annealed	125,000	130,000	25.5	140	
		Cold-worked, 30 per cent as forged	145,000	150,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	
Ti-250 A	Sheet	As forged	125,000	130,000	25.5	140	
		Cold-worked, 30 per cent as forged	145,000	150,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	
Ti-250 C	Sheet	As forged	125,000	130,000	25.5	140	
		Cold-worked, 30 per cent as forged	145,000	150,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	
Ti-250 E	Sheet	As forged	125,000	130,000	25.5	140	
		Cold-worked, 30 per cent as forged	145,000	150,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	
Ti-250 F	Sheet	As forged	125,000	130,000	25.5	140	
		Cold-worked, 30 per cent as forged	145,000	150,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	
Ti-250 G	Sheet	As forged	125,000	130,000	25.5	140	
		Cold-worked, 30 per cent as forged	145,000	150,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	
Ti-250 H	Sheet	As forged	125,000	130,000	25.5	140	
		Cold-worked, 30 per cent as forged	145,000	150,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	
Ti-250 I	Sheet	As forged	125,000	130,000	25.5	140	
		Cold-worked, 30 per cent as forged	145,000	150,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	
Ti-250 J	Sheet	As forged	125,000	130,000	25.5	140	
		Cold-worked, 30 per cent as forged	145,000	150,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	
Ti-250 K	Sheet	As forged	125,000	130,000	25.5	140	
		Cold-worked, 30 per cent as forged	145,000	150,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	
Ti-250 L	Sheet	As forged	125,000	130,000	25.5	140	
		Cold-worked, 30 per cent as forged	145,000	150,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	
Ti-250 M	Sheet	As forged	125,000	130,000	25.5	140	
		Cold-worked, 30 per cent as forged	145,000	150,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	
Ti-250 N	Sheet	As forged	125,000	130,000	25.5	140	
		Cold-worked, 30 per cent as forged	145,000	150,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	
Ti-250 O	Sheet	As forged	125,000	130,000	25.5	140	
		Cold-worked, 30 per cent as forged	145,000	150,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	
Ti-250 P	Sheet	As forged	125,000	130,000	25.5	140	
		Cold-worked, 30 per cent as forged	145,000	150,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	
Ti-250 Q	Sheet	As forged	125,000	130,000	25.5	140	
		Cold-worked, 30 per cent as forged	145,000	150,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	
Ti-250 R	Sheet	As forged	125,000	130,000	25.5	140	
		Cold-worked, 30 per cent as forged	145,000	150,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	
Ti-250 S	Sheet	As forged	125,000	130,000	25.5	140	
		Cold-worked, 30 per cent as forged	145,000	150,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	
Ti-250 T	Sheet	As forged	125,000	130,000	25.5	140	
		Cold-worked, 30 per cent as forged	145,000	150,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	
Ti-250 U	Sheet	As forged	125,000	130,000	25.5	140	
		Cold-worked, 30 per cent as forged	145,000	150,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	
Ti-250 V	Sheet	As forged	125,000	130,000	25.5	140	
		Cold-worked, 30 per cent as forged	145,000	150,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	
Ti-250 W	Sheet	As forged	125,000	130,000	25.5	140	
		Cold-worked, 30 per cent as forged	145,000	150,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	
Ti-250 X	Sheet	As forged	125,000	130,000	25.5	140	
		Cold-worked, 30 per cent as forged	145,000	150,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	
Ti-250 Y	Sheet	As forged	125,000	130,000	25.5	140	
		Cold-worked, 30 per cent as forged	145,000	150,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	
Ti-250 Z	Sheet	As forged	125,000	130,000	25.5	140	
		Cold-worked, 30 per cent as forged	145,000	150,000	25.5	140	
		Castings	As forged	125,000	130,000	25.5	140
		As cast	125,000	130,000	25.5	140	

* See composition table (Table 14.3-1).

** Per cent elongation to 4 inches/lbs.

CONFIDENTIAL

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES. IT IS AN OFFICIAL RECORD. ITS TRANSMISSION OR DISCLOSURE TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

TABLE 14.3-4 Composition of Commercial Titanium and Titanium Alloys

Designation	Producer	Metallic Composition (per cent)						
		C	N	Al	Cr	Fe	Si	V
Commercial Titanium								
Ti-65 A	Titanium Metals	0.02 max	Trace	0.02	—	3.10	—	0.02 max
Ti-75 A	Titanium Metals	0.02 max	—	0.02	—	3.10	—	0.02 max
TC-55	Res-Cro	0.2 max	(a)	—	—	(a)	—	—
EST Grade 200	Hallcrest-Sharon	0.25 max	—	—	—	—	—	—
TC-70	Res-Cro	0.2 max	(a)	—	—	(a)	—	—
EST Grade IV	Hallcrest-Sharon	0.3-0.8	—	—	—	—	—	—
Ti-130 A	Titanium Metals	0.02 max	Trace	—	—	9.1	—	0.02 max
Titanium Alloys								
Ti-Al-79	Aluminum-Titanium Alloy EST 2 Al-2 Fe	—	—	2	—	2	—	—
Aluminum-Extruded Alloy TC-130 B	Hallcrest-Sharon	0.5	—	(a)	—	(a)	4	—
Commercial-Aluminum Alloy EST 3 Al-5 Cr	Res-Cro	0.2 max	(a)	(a)	—	—	—	—
Commercial-Titanium Alloys	Hallcrest-Sharon	0.5	—	—	3	5	—	—
Ti-150 A	Titanium Metals	0.02	0.20	0.02	—	2.7	1.3	0.02 max
Ti-175 A	Titanium Metals	0.02	0.5	0.04	—	3.0	1.3	0.02 max
Titanium-Aluminum-Vanadium alloy	—	—	—	—	—	—	—	—
Ti-150 B	Titanium Metals	0.02 max	Trace	0.02	—	8	—	5
Iron-vanadium alloy EST 2.5 Fe-2.5 V	Hallcrest-Sharon	0.5	—	(a)	—	2.5	—	2.5
Extruded alloy TC-130 A	Res-Cro	0.2 max	(a)	(a)	—	(a)	7	—

(a) Prev designations to 209 series

NOTE: The Hallcrest-Sharon Titanium Corp. has changed the designation of its alloys as follows:

Old	New
L-2851	EST Grade III
L-2749	EST Grade IV
L-2748	EST 3 Al-5 Cr
L-2841	EST 2.5 Fe-2.5 V
L-2852	EST 2 Al-2 Fe

CONFIDENTIAL

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE SPYSHIP LAW, TITLE 18, U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

other engineering materials and this, in part, accounts for the variation of 5 to 15 per cent (depending on the temperature) in the experimental values. The endurance limit of titanium is very good with values generally exceeding 50 per cent of the tensile strength, and preliminary information on impact properties indicates a very high impact resistance over the temperature range of 0° to 600-800°F. Considerable scatter of the data gives evidence of variation in the material as received from the mill but, on the whole, titanium shows no severe notch sensitivity and does show a gradual rather than an abrupt change from ductile to brittle fracture as a function of temperature.

Commercially pure titanium and alloys respond to cold-work, although generally it is preferable to achieve strength by alloying rather than by work-hardening because of the attendant loss in ductility. For guided-missile components where exposure to the higher temperatures is for very short periods, design allowables can be based on work-hardened values.

Currently, commercial titanium and titanium alloys can be obtained in the forms shown in Table 14.3-5. The variety is adequate for preliminary design, but the manufacturers should be consulted for additional information.

Forging of titanium and its alloys may be accomplished by conventional procedures, but more force and heavier dies are usually required. A sheet can be formed by bending, spinning, drawing, cupping, stretch forming, and extruding. The metal is most easily worked at elevated temperatures (500-1200°F) but for most operations room temperature and techniques applicable to working stainless steel usually suffice. Anodizing improves wire drawing and may improve some of the other forming operations.

Titanium may be machined by using much the same methods usually applied to stainless steels. The material is springy and tough even in the annealed state and, because of the tendency to work-harden, requires sharp tools, heavy machines, and heavy positive feeds for cutting operations.

CONFIDENTIAL

CONFIDENTIAL

TABLE 14. 3-5 Available Forms of Titanium and Titanium Alloys

Designation	Sheet	Strip	Plate	Wire	Bars	Rod	Forging Billets	Forgings	Forgings	Welded Tubing
Commercial Titanium										
Ti-75 A	x	x	x	x	x	x	x	x	x	x
Titanium Alloys ^a										
HST 2 Al-2 Fe	x						x	x	x	x
TC-130 B		x	x		x		x	x	x	x
HST 3 Al-5 Cr				x	x	x	x	x	x	x
Ti-150 A				x	x	x	x	x	x	x
Ti-175 A				x	x	x	x	x	x	x
Ti-150 B				x	x	x	x	x	x	x
HST 2.5 Fe-2.5 V				x	x	x	x	x	x	x
TC-130 A										

^a See composition table.

CONFIDENTIAL

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE SPYWARE LAWS, TITLE 18, U.S.C., SECTIONS 703 AND 704. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

Titanium can be welded with ease, but its affinity for oxygen, nitrogen, and hydrogen requires shielded arc welding. Sheet stock may be spot and seam-welded and even flash-butt welding has been used. Welding techniques have been receiving considerable attention recently and new developments will improve application of most processes. Brazing and soldering techniques have not yet been developed, but appear feasible. Casting of titanium has been accomplished on a commercial basis, and permanent mold casting of small parts has been successful. Additional development is required to permit the casting of large sizes.

Molybdenum

Molybdenum with its unique combination of outstanding high-temperature properties and availability is one of the most promising metals for use at temperatures above 1600°F, and if above 3000°F stresses are not excessive. As a heat-resistant material, molybdenum could be employed as a pure metal or as a major constituent of an alloy. Molybdenum cannot be melted and cast by conventional means, but chemically-prepared powder can be consolidated into ingots suitable for working into usable forms by either powder metallurgy or arc-casting techniques. Since ingot sizes up to 1000 lbs have been produced, it appears that size is no longer a major limitation to the use of molybdenum as an engineering material. The melting point of molybdenum is very high, 4750°F, which is exceeded only by tungsten and tantalum. Its density is 0.368 lb/in³; its specific heat and coefficient of thermal expansion are about half that of steel (e.g., 3.0×10^{-6} in/in/ $^{\circ}$ F at 70°F); and its thermal conductivity is three to five times greater (e.g., 0.28 Btu/ft²/sec/ $^{\circ}$ F/in). These characteristics provide molybdenum with

CONFIDENTIAL

CONFIDENTIAL

advantageous heat-transfer and thermal-shock properties, especially useful where non-uniform temperature conditions and temperature-cycling effects are involved. Dimensional stability is consequently greater and thermal stress problems are reduced.

Molybdenum also has a high modulus of elasticity, making it favorable for applications where rigidity requirements prevail. This modulus is not seriously affected by elevated temperatures (see Fig. 14.2-4), but does vary somewhat with grain direction and cold-work. Considerable variation exists in the published data on strength properties of molybdenum (typical values are given in Fig. 14.2-1, Table 14.3-6, and Table 14.3-7), and it is clear that the mechanical properties vary with impurities in the basic metal and also with the fabrication history.

The room-temperature ductility of molybdenum is relatively good, increasing with temperature. In the present stage of development it cannot be considered as a ductile metal suitable for comprehensive structural usage. Molybdenum appears to be very brittle under many conditions and is quite "strain-rate" and "notch" sensitive. Tests indicate a sharp decrease in impact strength occurs below room temperature. Appropriate consideration must therefore be taken when designing for impact loads which occur during winter transportation. The creep and rupture strength of molybdenum is high, compared to other pure metals used in high-temperature alloys, and it is superior to conventional alloys used above 1600°F.

The major problem to be overcome in the application of molybdenum as a heat-resistant metal is the rapidity of surface oxidation. At 1800°F, for example, in slow-flowing air, molybdenum oxidizes at the rate of 0.02 to 0.05 inch of thickness per hour. Various methods of providing adequate surface protection are being investigated, and some are moderately successful.

CONFIDENTIAL

CONFIDENTIAL

TABLE I4. S-6 Tensile Properties of Molybdenum at Elevated Temperatures

Testing Temperature (°F)	Condition	Tensile Strength (lb/in ²)	Yield Strength 0.2 per cent	Proportional Limit	Elongation (per cent in 2 inches)	Reduction in Area (per cent)
(arc-cast, hot rolled to 1/2-inch-diameter bars)						
80	As rolled	95,140	-	-	3	2
	Stress relieved	91,000	84,850	-	10	9
	Recrystallized	67,500	63,500	-	46	36
1600	As rolled	61,400	50,100	26,000	18	72
	Stress relieved	50,600	44,500	21,500	22	81
	Recrystallized	34,400	11,600	3,500	46	84
1800	As rolled	49,900	40,500	23,000	19	81
	Stress relieved	40,500	35,600	22,500	32	81
	Recrystallized	29,000	10,500	5,700	49	75
1950	As rolled	38,000	31,600	24,000	29	83
	Stress relieved	31,400	22,800	16,500	36	84
	Recrystallized	21,500	8,550	4,100	35	52

NOTE: The test bars were sprayed with aluminum to prevent oxidation while testing at elevated temperatures. Except where noted, the test bars were brought to temperature with the furnace and held for 20 minutes before testing. They were loaded at the rate of 1000 lb/in²/min. The hot-rolled material had been annealed at 1800°F for 20 minutes and then machine straightened while warm. The best stress-relieving temperature, on the basis of combined tensile strength and ductility, was 1850°F. A satisfactory temperature to recrystallize the as-rolled material was 2250°F.

CONFIDENTIAL

CONFIDENTIAL

TABLE 14.3-7 Directional Properties and Effect of Annealing Temperature
on Cold Rolled Molybdenum Sheet at Room Temperature

Annealing Temperature °F	Annealing Time Sec.		Annealing Time Sec.		Annealing Time Sec.		Annealing Time Sec.		Annealing Time Sec.		Annealing Time Sec.	
	0.1	0.2	0.5	1.0	2.0	5.0	10.0	20.0	50.0	100.0	200.0	500.0
1000	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1
1100	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9
1200	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7
1300	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5
1400	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3
1500	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2
1600	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1
1700	0.02	0.04	0.08	0.15	0.25	0.4	0.7	1.2	2.0	3.5	6.0	10.0
1800	0.01	0.02	0.04	0.08	0.15	0.25	0.4	0.7	1.2	2.0	3.5	6.0
1900	0.005	0.01	0.02	0.04	0.08	0.15	0.25	0.4	0.7	1.2	2.0	3.5
2000	0.002	0.005	0.01	0.02	0.04	0.08	0.15	0.25	0.4	0.7	1.2	2.0
2100	0.001	0.002	0.005	0.01	0.02	0.04	0.08	0.15	0.25	0.4	0.7	1.2
2200	0.0005	0.001	0.002	0.005	0.01	0.02	0.04	0.08	0.15	0.25	0.4	0.7
2300	0.0002	0.0005	0.001	0.002	0.005	0.01	0.02	0.04	0.08	0.15	0.25	0.4
2400	0.0001	0.0002	0.0005	0.001	0.002	0.005	0.01	0.02	0.04	0.08	0.15	0.25
2500	0.00005	0.0001	0.0002	0.0005	0.001	0.002	0.005	0.01	0.02	0.04	0.08	0.15

CONFIDENTIAL

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE SPYSHIP LAW, TITLE 18, U.S.C., SECTION 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CONFIDENTIAL

Most of the processes can be classified under the general types of either "diffusion" coatings or ceramic coatings [46,48]. The former are typified by a surface covering (applied by electroplating, vapor phase deposition, or cladding) with a metal that has better resistance to oxidation than molybdenum or one that forms an oxidation resistant alloy with it. These coatings usually fail because of the diffusion of the molybdenum into the protective layer. Life of over 5000 hours at 1800°F, and over 300 hours at 3100°F has been reported with coatings of molybdenum distilicide 2 mils thick. The coatings have also shown good service under load and when subjected to thermal cycling, and are useful up to 3300°F, the melting temperature.

Some ceramic coatings have also shown promise. Coatings developed by the Bureau of Standards show no deterioration when exposed in air at 1650°F for 70 hours. Both diffusion and ceramic coatings provide adequate protection for usage not involving severe shock or impact loading.

The development of oxidation-resistant alloys is also being investigated, although this approach does not appear to offer much promise. The amounts of alloying additions required to provide adequate protection are sufficient to make the alloys completely unworkable.

Most procedures for forming molybdenum are conventional. As a result of the high transition temperature, forming operations such as shearing, bonding, crimping, drawing, upsetting, and spinning should be performed at elevated temperatures to minimize the occurrence of brittle cracks. Many forming operations on molybdenum cause cracks when carried out at room temperature, but it can be readily worked at temperatures of about 400°F. However, sheet can be cold-rolled to a thickness of 0.001 inch at room temperature, but for cross-rolled molybdenum sheet between 0.020 and 0.040 inch sheet thickness, working

CONFIDENTIAL

CONFIDENTIAL

should take place within the temperature range of 200° to 325°F; for heavier stock, 900° to 1000°F temperatures should be employed. Molybdenum can be spun by the customary procedures at temperatures from 200° to 400°F. Cross-rolled sheet usually is specified for drawing, spinning, and forming operations to insure that the sheet has sufficient ductility for forming in all directions. In machinability, molybdenum more nearly resembles SAE 1040 steel heat-treated to Rockwell C30 than any other material.

Molybdenum parts are generally joined by riveting with molybdenum rivets or by brazing with copper or silver solders. For high-temperature applications, tantalum foil has been employed as a brazing material, the operation being performed under water to prevent oxidation of the tantalum [46]. A nickel-chromium alloy containing 2 to 3 per cent boron (Wall-Colmonoy No. 6) has been reported to be a good brazing alloy for service up to 2000°F. Resistance or arc welding techniques have been successful, but the weldment is usually brittle and reinforcement is required for parts to be formed after welding. Spot or seam welding can be used.

Materials for Fuel Cells

The selection of materials suitable for use as fuel cells require consideration of several factors.

1. The tensile strength must be great enough to withstand the dynamic movement of the fuel within the tank,
2. It must be impervious to hydrocarbons for long periods of time to permit fueled stowage as well as factory tests without subsequent flushing,

CONFIDENTIAL

CONFIDENTIAL

3. it must be extremely flexible to permit easy installation and reliable operation,
4. it must have a high degree of wearability (or abrasion) and tear resistance to permit cycling for test purposes without potential rupture when subjected to flight loads and dynamics,
5. it must be light in weight and small in volume, and
6. it must have adequate high temperature resistance since parts of the cell can be in intimate contact with the tank walls. The cooling effect of the fuel itself helps to ameliorate this problem, however.

Typical tests made to select a fuel cell for an antiaircraft missile are shown in Table 14.3-8. As a result of these tests, a cell made of neoprene coated (4 oz/yd²) nylon fabric has been developed. This cell is adequate for use between temperatures of -40° and 500°F; although the melting point of nylon is 480°F, the neoprene coating increases the allowable operating temperature. The cell withstands repeated cycling without damage to either the fabric or the seams.

Plastic cells fabricated from Teflon or Kel-F are very good, but fabrication of unusual shapes is difficult due to the difficulty of making reliable joints. With simple geometrical configurations and closures by means of mechanical means such as clamps or sealing rings, very satisfactory fuel cells can be made from plastics of this type.

CONFIDENTIAL

TABLE 14-3-8 TYPICAL TESTS MADE TO SELECT A FUEL CELL FOR AN ANTIAIRCRAFT MISSILE

Composition	Test Results	
	Temperature	Physical
(A) Neoprene-coated No. 115 glass cloth of 0.004-inch gauge. Plain lap seams. Spread-neoprene coating. Improved seams.	Probably suitable up to 500°F.	Cell cracked during installation. Not recommended for as much as a single flight. Seams did not stand flexing.
(B) Neoprene-coated No. 128 glass cloth of 0.007-inch gauge. Spread-neoprene coating. Improved seams.	Probably suitable up to 500°F.	Recommended for use only where limited testing is required. Glass cloth cannot take repeated flexing.
(C) W553RN standard aircraft cell construction with 0.009-inch gauge. Nylon fabric style A2634.	5% per cent reduc- tion in strength was exposed to 370°F hot plate test for 3 minutes.	Propylene oxide caused undue swelling of the Buta-II compartment. When used with kerosene, the cells were successfully tested for many cycles.

Silicose, thiotol, and GA-5 were eliminated as possible materials because of
failure to meet either temperature or fuel resistance requirements.

CONFIDENTIAL

CONFIDENTIAL

REFRENCES

1. Panel on Ordnance Materials, Committee on Ordnance, Research and Development Board, Department of Defense, Method of Rating Strategic and Critical Materials, OOM 109/6 (Corrected), 1952.
2. Study and Evaluation of the High Temperature Properties of Some Aluminum Alloys, Air Force Serial TSEAM-M-4938, 1945.
3. Armour Research Foundation, Determination of Physical Properties of Non-Ferrous Structural Sheet Material at Elevated Temperatures, AF TR 6517, Part I, 1951.
4. Andrews, C. W., Metal Progr. 58, 85, 1950.
5. Anderson, H. L., Effect of Temperature on the Tensile Properties of 75S-T, Alcon Report 9-44-20, 1944.
6. Battelle Memorial Institute, Investigation of Compressive Creep Properties of Aluminum Columns at Elevated Temperatures, Progress Report G-1416, 1950.
7. Craig, C. M., Eastwood, L. W., and Lorig, C. H., An Appraisal of the Usefulness of Aluminum Alloys for Aircraft and Supersonic Vehicle Construction, Project Rand Report, 1948.
8. Cross, H. C., Comparison of British and American Aluminum-Base Alloys at Elevated Temperatures (Restricted), 1949.
9. Department of the Army, Corps of Engineers, Fort Belvoir, The Aluminum Symposium, Symposia on Materials and Design for Light-Weight Construction, March 30, 1951.
10. Doerr, D. C., Determination of Physical Properties of Non-Ferrous Structural Sheet Materials at Elevated Temperatures, AF TR 6517, Supplement 1, 1952.
11. Dorn, J. E., Compressive Properties of Aluminum Alloy Sheet at Elevated Temperatures, ASTM Preprint, 1946.
12. Dorn, J. E., Stress Rupture and Creep Tests on Aluminum Alloy Sheet at Elevated Temperatures, American Institute of Mining and Metallurgical Engineering Technical Publication No. 2033, 1946.

CONFIDENTIAL

CONFIDENTIAL

13. Dorn, J. E., Final Report on Study of the Forming Properties of Aluminum Alloy Sheet at Elevated Temperatures, Part II, Stress Rupture and Creep Tests in Tension at Elevated Temperatures, University of California, Report W-216, 1945.
14. Howell, F. M., The Mechanical Properties of Alcoa Wrought Aluminum Alloy Products at Various Temperatures (Commercially Restricted), Alcoa Report 9-47-9, 1947.
15. Howell, F. M., Some Mechanical Properties of Selected Currently Available Aluminum and Magnesium Alloy Products at Various Temperatures, Alcoa Report 9-47-5 (14 ST, 24 ST, 61 ST and 75 ST), 1947.
16. Howell, F. M., Tensile Properties of XB 18S-T at Elevated Temperatures, Alcoa Report 9-45-2, 1945.
17. Howell, F. M., Properties of Wrought Aluminum Alloys at Elevated Temperatures, Metals and Alloys, 8, 284, (1935).
18. Kempf, L. W., Dean, W. A., and Wrege, R. B., Investigation of Aluminum Alloys for Application at Elevated Temperatures, Alcoa Cleveland Laboratories, Report 4-45-6, 1945.
19. McGee, J. C., ML Aluminum Casting Alloy - A Material for Elevated Temperatures, CADo Tech. Data Dig., 16, 6, (1951).
20. McGee, J. C., Properties of ML Aluminum Alloy, Air Force Air Materiel Command, Wright-Patterson Air Force Base, TR 5750, 1948.
21. McGee, J. C., The Development of ML Aluminum Alloy for Elevated Temperature Service, AF TR 5603, 1947.
22. Meikle, G., The Tensile Properties of Two Aluminum Alloys at Elevated Temperatures, Royal Aircraft Establishment, England Technical Note MET 96 Addendum, 1950.
23. Miller and Guarnieri, Trans. Am. Soc. Metals, 41, 167, (1949).
24. Naval Ordnance Test Station, Tensile Properties of Metals While Being Heated at High Rates (Restricted), NAVORD Report No. 1178, Part 2. Aluminum Alloys (NOTS-319), 1950.
25. Naval Research Laboratory, The Development of Aluminum Alloys for Elevated Temperature Applications, NRL Report M-2855, 1946.

CONFIDENTIAL

CONFIDENTIAL

26. Powell, R. W., Hickman, R. J., and Barber, C. R., Metallurgia, 41, 15, (1949).
27. Roberts, W. M. and Heimerl, G. J., Elevated-Temperature Compressive Stress-Strain Data for 24S-T3 Aluminum Alloy Sheet and Comparisons with Extruded 75S-T6 Aluminum Alloy, NACA TN-1837, 1949.
28. Creep and Tensile Properties of Commercial Purity Aluminum from Room Temperature to 180°C, Royal Aircraft Establishment, England, (M10507/105), RAE Report MET50, 1950.
29. Thorpe, P. L., Tremain, G. R., and Ridley, P. W., Mechanical Properties of Some Wrought and Cast Aluminum Alloys at Elevated Temperatures, Inst. Metals - J.V. 77, 111, (1950).
30. Thorpe, P. L., Mechanical Properties of Aluminum Alloys at Elevated Temperatures (Restricted), Ministry of Supply, England, Scientific and Technical Memo S & M 9/47, 1947.
31. Tremain, G. R., Mechanical Properties of Aluminum Alloys over the Temperature Range 100-250°C (Restricted), Ministry of Supply, England, Scientific and Technical Memo TM 22/47, 1947.
32. Wyman, L. L., High Temperature Properties of Light Alloys (NA-137), Part I - Aluminum, NDRC/OSRD Final Report, 1944.
33. Barrett, F., Compressive Properties of Titanium Sheet at Elevated Temperatures, NACA TN 2038, 1950.
34. Everhart, J. L., Materials and Methods, 34, 89, (1951).
35. Heimerl, G. J. and Barrett, F., A Structural-Efficiency Evaluation of Titanium at Normal and Elevated Temperatures, NACA TN 2269, 1951.
36. Metallurgical Advisory Committee on Titanium Status Bulletin on Unclassified Titanium Research and Development of Army Ordnance Corps, Status Bulletin No. P4, Watertown Arsenal, Watertown, Massachusetts, 1952.
37. Michalos, G. P., Bur. Ships Jour. 1, September (1952).
38. Office of Technical Services, Selected Bibliography on Titanium, U. S. Department of Commerce SB-20 Addendum 1, 1951.
39. Office of Technical Services, Selected Bibliography on Titanium, U. S. Department of Commerce SB-20 Revised, 1950.

- 56 -

CONFIDENTIAL

THIS DOCUMENT CONTAINS INFORMATION APPERTAINING TO THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAW, TITLE 18, U.S.C. SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW

CONFIDENTIAL

40. Society of Automotive Engineers, Aeronautical Materials Specifications: AMS 4900 and 4901 - Titanium Sheet and Strip, AMS 4908 - Titanium Alloy Sheet, AMS 4921 - Titanium, AMS 4925 - Titanium Alloy, 1952.
41. Wheelon, O. A., Design and Manufacturing Techniques with Titanium, S. A. E. National Aeronautic Meeting, Los Angeles, October 4, 1951. S. A. E. Quart. Trans., 6, 373, (1952).
42. Williams, W. L., Report on Elevated Temperature Properties of Titanium, United States Naval Engineering Station E.E.S. Report 4A(g) 066876, NS-013-118, 1951
43. Bechtold, J. H. and Scott, H., Metal Progr. 61, 82, (1952).
44. Ham, J. L. and Herzig, A. J., Arc-Cast Molybdenum Base Alloys - Second Annual Report NR 034-401, Climax Molybdenum Company of Michigan under contract to Office of Naval Research, Navy Department, 1951.
45. Ham, J. L., Arc-Cast Molybdenum Base Alloys - First Annual Report NR 031-331, Climax Molybdenum Company of Michigan under contract to Office of Naval Research, Navy Department, 1950.
46. Harwood, J. J., Molybdenum, Our Most Promising Refractory Metal, Product Eng., 23, (1952).
47. Long, R. A., Dike, K. C., and Berr, H. R., Some Properties of High-Purity Sintered Wrought Molybdenum Metal at Temperatures up to 2400°F, NACA TN 2319, 1951.
48. Parke, R. M., Molybdenum, A New High Temperature Material, Metal Progr. 60, (1951).
49. Parke, R. M., Molybdenum as a Heat Resistant Metal, Battelle Memorial Institute under contract to Office of Naval Research, 1950.
50. Semchyson, M. and Hostetter, H. E., Arc-Cast Molybdenum Base Alloys - Third Annual Report NR 034-401. Climax Molybdenum Company of Michigan under contract to Office of Naval Research, Navy Department, 1952.
51. Wachtell, R. L., An Investigation of the Alloys of Aluminum and Molybdenum. AF TR 6601, Part 2, 1952.
52. Air Force, AIA Conference on Developments Concerning Aircraft Glass Fiber Plastic Laminates. December 11-12, 1951.

CONFIDENTIAL

CONFIDENTIAL

53. Aircraft Industries Association ARTC-ER-52-17A. Summary of Discussions, December 11-12, 1951, Concerning Plastic Laminates. February 20, 1952.
54. Black, G. and Sanders, H., Product Eng., 18, 85, (1947).
55. Bureau of Mines, College Park, Maryland, Ceramic Parts for Rockets and Guided Missiles. Sponsored by Navy Department, Bureau of Ordnance Section Re9, under Contract No. 02786. Report No. 11 (Confidential), Period 1 April - 30 June 1951.
56. Ceramic Coatings, Machine Design, 24, 122, (1952).
57. Dow Corning Corporation, Development of Low Pressure Laminates of Glass Fabric and Silicone Resins, Technical Report No. 6223, 1952.
58. Guide Prepared for Use with Heat-Resisting Metals in Ceramic Coating Applications, Design News, 6, 8, (1952).
59. Lidman, W. G. and Hamjian, H. J., Product Eng., 22, 1947, (1951).
60. Michaelson, H. B., Product Eng., 22, 120, (1951).
61. Thielke, N. R., Refractory Materials for Use in High-Temperature Areas of Aircraft, Wright Air Development Center, Technical Report 53-9, 1953.
62. Warren, F., Mechanical Properties of Plastic Laminates, United States Department of Agriculture Report No. 1820-A, 1953.
63. Allegheny Ludlum Steel Corporation, Stainless Steel Handbook, Pittsburgh, Pa., 1951.
64. Dullond, T. C., Engineering Materials Manual, 1951.
65. Flock, E. F. and Halpern, C., Bibliography of Books and Published Reports on Gas Turbines, Jet Propulsion, and Rocket Power Plants, U. S. Department of Commerce - National Bureau of Standards - NBS Circular 509, 1951.
66. Fletcher, E. E., Beck, R. L., Westerman, A. B., Elsea, A. R., and Manning, G. K., Alloys for High-Temperature Service, Battelle Memorial Institute, Final Report, 1952.
67. Goodyear Aircraft Corporation, Comparative Tests of Heat-Resistant Materials for Rocket Cases, GER-2580, 1951.

CONFIDENTIAL

CONFIDENTIAL

68. Graham, G. R. and Goodwin, H. B., **Short Time Tensile Properties of Inconel X and 25-20-2% Silicon Stainless Steel at Elevated Temperature**, Applied Physics Laboratory, The Johns Hopkins University, CM-510, 1948.
69. International Nickel Company, **Inconel "X", A High Strength, High Temperature Alloy**, Data and Information, 1949.
70. Lipson, C., Noll, G. C., and Clock, L. S., **Stress and Strength of Manufactured Parts**, McGraw-Hill Book Co., Inc., New York, 1950.
71. Lorell, J., **A Criterion for Choosing Rocket Motor Materials (Restricted)**, Jet Propulsion Laboratory, California Institute of Technology, Memorandum No. 4-24, 1948.
72. Miller, B. A., Winward, J. M., and Smith, W. K., **High-Heating-Rate Strength of Three Heat-Resistant Metals**, Naval Ordnance Test Station, NAVORD 2017, 1953.
73. Munitions Board Aircraft Committee, **Strength of Metal Aircraft Elements**, ANC-5 and Amendments, 1951.
74. Naval Ordnance Test Station, **Tensile Properties of Metals while being Heated at High Rates, Part 3. Comparison of Results from High-Heating-Rate Tests with Results from Rocket Firing Tests (Restricted)**, NOTS-336, NAVORD Report No. 1178, Part 3, 1950.
75. Office of Naval Research, **High Temperature Materials**, Navy Department NAVEXOS P-734 (Confidential), 1949.
76. Rosenholtz, J. L. and Smith, D. T., *Jour. Applied Phys.*, 21, 393, (1950).
77. Stanley, F. R., *Jour. Aero. Sci.*, 16, 133, (1949).
78. Tsien, Hsue-Shen, *Aero Dig.*, 60, 120, (1950).
79. United States Steel, **Steels for Elevated Temperature Service**, 1949.
80. Brown, D. I., **Metals for Tomorrow**, (Reprinted from *The Iron Age*), 170, 1952.
81. Lazan, B. J. and Blatherwick, A. A., **Fatigue Properties of Aluminum Alloys at Various Direct Stress Ratios**, Wright Air Development Center, Technical Report 53-307, Part I - Rolled Alloys, 1952

CONFIDENTIAL

CONFIDENTIAL

82. Lazan, B. J. and Demer, L. J., Damping, Elasticity, and Fatigue Properties of Temperature-Resistant Materials, Wright Air Development Center, Technical Report 52-269, 1952.
83. Lewis, W. J., Rieppel, P. S., and Voldrick, C. B., Brazing Titanium to Titanium and to Mild and Stainless Steels, Wright Air Development Center, Technical Report 52-313, Part I, 1952.
84. Shevlin, T. S., Development, Properties, and Investigation of a Cermet Containing 28% Alumina and 72% Chromium, Wright Air Development Center, Technical Report 53-17, 1952.
85. Metallurgical Advisory Committee on Titanium Status Bulletin on Unclassified Titanium Research and Development of Army Ordnance Corps, Status Bulletin No. P7, Watertown Arsenal, Watertown, Massachusetts, 1952.
86. Work, C. E. and Dolan, T. J., The Influence of Temperature and Rate of Strain on the Properties of Metals in Torsion, Wright Air Development Center, Technical Report 53-16, 1953.
87. Air Force Serial TSEAM-M-4938 (EO 605-183), Study of the High Temperature Properties of DCK Aluminum Alloys, 1946.
88. Everhart, J. L., Materials and Methods, 35, 121, (1952).
89. Everhart, J. L., Materials and Methods, 35, 119, (1952).
90. Parke, R. H., Metal Progr., 61, 92, (1952). (Table originally supplied by Climax Molybdenum Company.)

CONFIDENTIAL