多変量解析

第10回 数量化2類

萩原•篠田 情報理工学部

数量化2類

質的変数

健常者かどうか吐き気と頭痛の有無から予測可能か?

質的変数

サンプル No.		ー 吐き気 X₁	 頭痛 X ₂
1	健常者	無	少
2	健常者	少	無
3	健常者	無	無
4	健常者	無	無
5	健常者	無	無
6	患者	少	多
7	患者	多	無
8	患者	少	少
9	患者	少	多
10	患者	多	少

質的変数、判別分析、 ダミー変数、予測式、 相関比、外的基準、 カテゴリ数量、基準化

数量化理論とは

程度、状態 または はい/いいえといった 質的データに数量を与え多変量データ解析を行う手法

重回帰分析 ←→ 数量化1類

判別分析 ←→ 数量化2類

主成分分析 ←→ 数量化3類

判別分析の手法 「固さ」と「甘さ」の組み合わせで産地が判別

2群の分散が等しい場合

線型判別関数

最もよく分離する<u>直線</u>を仮定し その直線のどちら側に来るかを判別 2群の分散が等しくない場合

マハラノビスの距離

各グループの分布状態を考慮し 各グループの中心からの距離で判別

線形判別:線形判別関数で定義される判別得点の正負で判別

判別得点 zを線形判別関数で定義 $z = a_0 + a_1 x_1 + a_2 x_2$

点
$$(p,q)$$
と境界線の距離 $\dfrac{|a_0+a_1p+a_2q|}{\sqrt{a_1^2+a_2^2}}$

判別得点 = 直線までの距離
$$\times \sqrt{a_1^2 + a_2^2}$$

数量化2類

質的データから質的な形で与えられる外的基準を判別したり 予測したりするための手法

A型とB型の2種類の血液型と性格について調べ

➡ 性格によるA型・B型の判別をする

アンケート調査票

項目1

あなたは楽天家ですか

1 はい 2 いいえ

項目2

あなたは堅実派だと思います か

1 はい 2 いいえ

項目3

あなたの血液型は

1 A型 2 B型

	アイ	テム	カテゴ	IJ	外的基準
被験者	楽ラ	天家 🔪	室	実派	★ 佐田
No.	1	2	1	2	血液型
1		レ	レ		
2		レ		レ	A型
3		レ	レ		A空
4	ン			レ	
1	レ			レ	
2	レ		レ		B型
3	レ			レ	

数量化1類

質的データから量的に測定される外的基準の予測や関係を調べる

野菜やタンパク質の「好き/嫌い」から

→ 体重を予測する

野菜とタンパク質のうち、どちらのアイテムが

→ より体重に影響を及ぼしているかを調べる

アンケート調査票

項目1 あなたは野菜が好きですか 1 はい 2 いいえ

項目2

あなたはタンパク質が好きで すか

1 はい 2 いいえ

項目3

あなたの体重は何Kgですか Kg

	アイ	デム	カテゴ	IJ	外的基準
被験者	野	菜	タンハ	∜ク質	★
No.	1	2	1	2	体重
1	レ			レ	57
2	レ		レ		65
3		レ	レ		51
4	レ		レ		54
5		レ	レ		45
6	レ			レ	67

数量化2類の判別式の求め方

各アイテムのカテゴリの反応から外的基準の判別を行う

ダミー変数 x_{ij} を導入

$$x_{ij} = \begin{cases} 1 & \cdots & \text{アイテム } i \text{ のカテゴリ} j \text{ に反応したとき } \\ 0 & \cdots & \text{その他} \end{cases}$$

アイテム	l 楽天家	アイテム2 堅実派		
カテゴリ1 はい	カテゴリ2 いいえ	カテゴリ1 はい	カテゴリ2 いいえ	
1	1	↑	↑	

$$Y = b_{11}x_{11} + b_{12}x_{12} + b_{21}x_{21} + b_{22}x_{22} + b_0$$
 b_{ij} : カテゴリ数量

ダミー変数間の多重共線性 $(x_{11} + x_{12} = 1, x_{21} + x_{22} = 1)$ により

$$Y = (b_{12} - b_{11})x_{12} + (b_{22} - b_{21})x_{22} + b_0 + b_{11} + b_{21}$$

$$Y = c_1 x_{12} + c_2 x_{22} + c_0$$
 を求めることにする ただし
$$\begin{cases} c_1 = b_{12} - b_{11} \\ c_2 = b_{22} - b_{21} \\ c_0 = b_0 + b_{11} + b_{21} \end{cases}$$

外的基準を最も良く判別したい \Rightarrow <u>群間変動を最大</u>にするようカテゴリ数量 c_i を決定

 $Y = c_1 x_{12} + c_2 x_{22} + c_0$

判別分析

被験者 No.	外的 基準	アイ・ <i>x</i> ₁₁		アイ ⁻ x ₂₁		判別得点 Y	平均
1	グ	0	1	1	0	$Y_1^{(1)} = c_1 + c_0$	- (·) (1)
2	ル	0	1	0	1	$Y_2^{(1)} = c_1 + c_2 + c_0$	$\bar{Y}^{(1)} = \bar{x}_{12}^{(1)}c_1 + \bar{x}_{22}^{(1)}c_2 + c_0$
3	゚゚゚゚	0	1	1	0	$Y_3^{(1)} = c_1 + c_0$	$= \frac{3}{4}c_1 + \frac{2}{4}c_2 + c_0$
4	1	1	0	0	1	$Y_4^{(1)} = c_2 + c_0$	4 4
1	グル	1	0	0	1	$Y_1^{(2)} = c_2 + c_0$	$\bar{Y}^{(2)} = \bar{x}_{12}^{(2)}c_1 + \bar{x}_{22}^{(2)}c_2$
2		1	0	1	0	$Y_2^{(2)} = c_0$	$= \frac{0}{3}c_1 + \frac{2}{3}c_2 + c_0$
3	2	1	0	0	1	$Y_3^{(2)} = c_2 + c_0$	$-3^{c_1} \cdot 3^{c_2} \cdot c_0$
						全平均	$ \bar{Y} = \bar{x}_{12}c_1 + \bar{x}_{22}c_2 + c_0 = \frac{3}{7}c_1 + \frac{4}{7}c_2 + c_0 $

判別スコアの平均 = \bar{Y} グループ1における判別スコアの平均 = $\bar{Y}^{(1)}$ グループ2における判別スコアの平均 = $\bar{Y}^{(2)}$

 $\frac{\mathbf{2g動}}{SS_T} = \frac{\ddot{J} \mathcal{V} - \ddot{J} \ddot{J} \ddot{J} \ddot{J}}{SS_B} + \frac{\ddot{J} \mathcal{V} - \ddot{J} \ddot{J} \ddot{J} \ddot{J}}{SS_W}$

全変動 SS_T , 群間変動 SS_B , 相関比 SS_B/SS_T を計算

$$SS_{T} = \sum_{i=1}^{4} (Y_{i}^{(1)} - \bar{Y})^{2} + \sum_{i=1}^{3} (Y_{i}^{(2)} - \bar{Y})^{2} = \frac{2(6c_{1}^{2} - 5c_{1}c_{2} + 6c_{2}^{2})}{7}$$

$$SS_{B} = 4(\bar{Y}^{(1)} - \bar{Y})^{2} + 3(\bar{Y}^{(2)} - \bar{Y})^{2} = \frac{(9c_{1} - 2c_{2})^{2}}{84} \qquad \frac{SS_{B}}{SS_{T}} = \frac{(9c_{1} - 2c_{2})^{2}}{24(6c_{1}^{2} - 5c_{1}c_{2} + 6c_{2}^{2})}$$

全変動 SS_T と群間変動 SS_B の c_1 や c_2 による偏微分を計算

$$\frac{\partial SS_T}{\partial c_1} = \frac{2}{7} (12c_1 - 5c_2), \qquad \frac{\partial SS_B}{\partial c_1} = \frac{9}{42} (9c_1 - 2c_2),$$

$$\frac{\partial SS_T}{\partial c_2} = \frac{2}{7} (12c_2 - 5c_1), \qquad \frac{\partial SS_B}{\partial c_2} = \frac{-2}{42} (9c_1 - 2c_2)$$

$F(c_1, c_2) = \frac{SS_B}{SS_T}$ の最大値を与える (c_1, c_2)

$$\begin{cases} \frac{\partial F}{\partial c_1} = \frac{1}{SS_T} \left(\frac{\partial SS_B}{\partial c_1} - \frac{SS_B}{SS_T} \frac{\partial SS_T}{\partial c_1} \right) = 0 \\ \frac{\partial F}{\partial c_2} = \frac{1}{SS_T} \left(\frac{\partial SS_B}{\partial c_2} - \frac{SS_B}{SS_T} \frac{\partial SS_T}{\partial c_2} \right) = 0 \end{cases} \rightarrow \frac{\frac{\partial SS_T}{\partial c_1} \cdot \frac{\partial SS_B}{\partial c_2} - \frac{\partial SS_B}{\partial c_1} \cdot \frac{\partial SS_T}{\partial c_2}}{\frac{\partial SS_T}{\partial c_2}} = 0$$

$$= \frac{1}{SS_T} \left(\frac{\partial SS_B}{\partial c_2} - \frac{SS_B}{SS_T} \frac{\partial SS_T}{\partial c_2} \right) = 0$$

$$= \frac{1}{SS_T} \cdot \frac{\partial SS_B}{\partial c_2} - \frac{\partial SS_B}{\partial c_2} \cdot \frac{\partial SS_B}{\partial c_2} \cdot \frac{\partial SS_T}{\partial c_2} = 0$$

$$= \frac{1}{SS_T} \left(\frac{\partial SS_B}{\partial c_2} - \frac{SS_B}{SS_T} \frac{\partial SS_T}{\partial c_2} \right) = 0$$

$$= \frac{1}{SS_T} \cdot \frac{\partial SS_B}{\partial c_2} - \frac{\partial SS_B}{\partial c_2} \cdot \frac{\partial SS_B}{\partial c_2} \cdot \frac{\partial SS_T}{\partial c_2} = 0$$

$$= \frac{1}{SS_T} \cdot \frac{\partial SS_B}{\partial c_2} - \frac{SS_B}{SS_T} \cdot \frac{\partial SS_B}{\partial c_2} - \frac{SS_B}{SS_T} \cdot \frac{\partial SS_B}{\partial c_2} - \frac{SS_B}{SS_T} \cdot \frac{\partial SS_B}{\partial c_2} = 0$$

$$= \frac{1}{SS_T} \cdot \frac{\partial SS_B}{\partial c_2} - \frac{SS_B}{SS_T} \cdot \frac$$

$$u(x) = y(x) \cdot z(x)$$

$$u'(x) = \frac{du}{dx} = \frac{dy}{dx} \cdot z + y \cdot \frac{dz}{dx} = y'(x) \cdot z(x) + y(x) \cdot z'(x)$$

$$v(x) = \frac{1}{y(x)} = \{y(x)\}^{-1}$$

$$v'(x) = \frac{dv}{dx} = \frac{dv}{dy} \cdot \frac{dy}{dx} = (-1) \cdot \{y(x)\}^{-2} \cdot y'(x) = -\frac{y'(x)}{\{y(x)\}^{2}} = -\{v(x)\}^{2} \cdot y'(x)$$

$$w(x) = \frac{z(x)}{y(x)} = z(x) \cdot \{y(x)\}^{-1}$$

$$w'(x) = \frac{dw}{dx} = \frac{dz}{dx} \cdot \frac{1}{y} + z \cdot \frac{d}{dx} \left(\frac{1}{y}\right) = \frac{z'(x)}{y(x)} + z(x) \cdot \frac{-y'(x)}{\{y(x)\}^2} = \frac{z'(x) - w(x) \cdot y'(x)}{y(x)}$$

$$Y = c_1 x_{12} + c_2 x_{22} + c_0 = c_2 \left(\frac{c_1}{c_2} x_{12} + x_{22} + \frac{c_0}{c_2} \right) = c_2 \left(\frac{14}{3} x_{12} + x_{22} + \frac{c_0}{c_2} \right)$$

全平均
$$\bar{x}_{12}$$
と \bar{x}_{22} において $\bar{Y}=0$ \Rightarrow $\bar{Y}=\bar{x}_{12}c_1+\bar{x}_{22}c_2+c_0=c_2\left(\frac{3}{7}\frac{c_1}{c_2}+\frac{4}{7}+\frac{c_0}{c_2}\right)=0$ これを解いて $\frac{c_0}{c_2}=-\frac{18}{7}$

$$Y = c_1 x_{12} + c_2 x_{22} + c_0 = c_2 \left(\frac{c_1}{c_2} x_{12} + x_{22} + \frac{c_0}{c_2} \right) = c_2 \left(\frac{14}{3} x_{12} + x_{22} - \frac{18}{7} \right)$$

Yの正負で判別するため c_2 は任意の値でよい ここでは $c_2 = 1$ とする

以上より判別式は

$$Y = c_1 x_{12} + c_2 x_{22} + c_0 = \frac{14}{3} x_{12} + x_{22} - \frac{18}{7} = 4.667 x_{12} + x_{22} - 2.571$$

基準化(アイテム内のカテゴリ数量の平均が0となるようにする)

被験者	外的	アイ・	テム1	アイラ	<u>- 人2</u>
No.	基準	x_{11}	<i>x</i> ₁₂	x_{21}	x_{22}
1	グ	0	1	1	0
2	ル	0	1	0	1
3	゚゚゚゚゚゚゚゚゚゚゚	0	1	1	0
4		1	0	0	1
1	グル	1	0	0	1
2		1	0	1	0
3	プ 2	1	0	0	1
		$\frac{4}{7}b_{11}$ -	$+\frac{3}{7}b_{12}$	$\frac{3}{7}b_{21} +$	$\frac{4}{7}b_{22}$

$$\begin{cases} \bar{x}_{11}b_{11} + \bar{x}_{12}b_{12} = \frac{4}{7}b_{11} + \frac{3}{7}b_{12} = 0\\ \bar{x}_{21}b_{21} + \bar{x}_{22}b_{22} = \frac{3}{7}b_{21} + \frac{4}{7}b_{22} = 0 \end{cases}$$

$$b_{ij}, b_0 \ge c_{ij}, c_0$$
 関係式
$$\begin{cases} b_{12} - b_{11} = c_1 = \frac{14}{3} = 4.667 \\ b_{22} - b_{21} = c_2 = 1 \\ b_0 + b_{11} + b_{21} = c_0 = -\frac{18}{7} = -2.571 \end{cases}$$

上記の5式を解いて
$$b_{ij}$$
, b_0 を得る
$$Y = -2x_{11} + \frac{8}{3}x_{12} - \frac{4}{7}x_{21} + \frac{3}{7}x_{22} = -2x_{11} + 2.67x_{12} - 0.571x_{21} + 0.429x_{22}$$

$$(Y = \frac{14}{3}x_{12} + x_{22} - \frac{18}{7}, x_{11} + x_{12} = 1, x_{21} + x_{22} = 1)$$

新たな被験者Pさんのアンケート結果

地段	楽ヲ	F家	堅	実派	グループ
被験者	1	2	1	2	(血液型)
P		レ	レ		?

判別式

$$Y = \frac{14}{3}x_{12} + x_{22} - \frac{18}{7}, \quad x_{11} + x_{12} = 1, \ x_{21} + x_{22} = 1$$

基準化された判別式

$$Y = -2x_{11} + \frac{8}{3}x_{12} - \frac{4}{7}x_{21} + \frac{3}{7}x_{22} = -2x_{11} + 2.67x_{12} - 0.571x_{21} + 0.429x_{22}$$

$$x_{12}=1$$
, $x_{22}=0$ を代入して被験者P さんの判別スコアを計算

$$Y = \frac{14}{3}x_{12} + x_{22} - \frac{18}{7} = \frac{14}{3} - \frac{18}{7} = \frac{44}{21} > 0$$

$$Y = -2x_{11} + \frac{8}{3}x_{12} - \frac{4}{7}x_{21} + \frac{3}{7}x_{22} = \frac{8}{3} - \frac{4}{7} = \frac{44}{21} > 0$$

グループ1(A型)と予想(判定)

各被験者の判別得点を求めてみる $Y = \frac{14}{3}x_{12} + x_{22} - \frac{18}{7} = 4.667x_{12} + x_{22} - 2.571$

被験者) 外的基準	楽ヲ	モ家	堅乳	美派	判別得点	平均
No.		はい	いいえ	はい	いいえ	Y	十均
1		0	1	1	0	2.095	
2	グループ1	0	1	0	1	3.095	1.429
3	(A型)	0	1	1	0	2.095	1.429
4		1	0	0	1	-1.571	
1		1	0	0	1	-1.571	
2	グループ2 (B型)	1	0	1	0	-2.571	-1.905
3		1	0	0	1	-1.571	
平均		4/7	3/7	3/7	4/7	0.0	0.0

基準化された判別式

$$Y = -2x_{11} + \frac{8}{3}x_{12} - \frac{4}{7}x_{21} + \frac{3}{7}x_{22} = -2x_{11} + 2.67x_{12} - 0.571x_{21} + 0.429x_{22}$$

基準化されたカテゴリ数量と範囲

アイテム	カテゴリ	カテゴリ 数量	範囲
	1	-2	4.67
楽天家	2	2.67	4.07
四中心	1	-0.571	1.00
堅実派	2	0.429	1.00
相関比		0.5882	

範囲:アイテム内のカテゴリ数量最大値一最小値

範囲の大小により

"各アイテムの外的基準に及ぼす影響の度合" を知ることができる

楽天家の範囲の方が堅実派の範囲より大きいので 血液型に及ぼす影響は楽天家の性格の方が大きい

ダミー変数による数量化 → 判別分析 (線形判別式による)

$$G_i$$
 の j 番目データの判別得点 $z_j^{(i)} = a_0 + x_{1j}^{(i)} a_1 + x_{2j}^{(i)} a_2$

$$G_i$$
 の判別得点の平均 $ar{z}^{(i)} = a_0 + ar{x}_1^{(i)} a_1 + ar{x}_2^{(i)} a_2$

判別得点の全平均
$$\bar{z} = a_0 + \bar{x}_1 a_1 + \bar{x}_2 a_2$$

全変動 SS_T = 群間変動 SS_B + 群内変動 SS_W

$$SS_T = \sum_{i=1}^{2} \sum_{j=1}^{n_i} \left(z_j^{(i)} - \bar{z} \right)^2 = \sum_{i=1}^{2} \sum_{j=1}^{n_i} \left\{ \left(x_{1j}^{(i)} - \bar{x}_1 \right) a_1 + \left(x_{2j}^{(i)} - \bar{x}_2 \right) a_2 \right\}^2$$

$$SS_B = \sum_{i=1}^{2} \sum_{j=1}^{n_i} (\bar{z}^{(i)} - \bar{z})^2 = \sum_{i=1}^{2} \sum_{j=1}^{n_i} \{ (\bar{x}_1^{(i)} - \bar{x}_1) a_1 + (\bar{x}_2^{(i)} - \bar{x}_2) a_2 \}^2$$

$$SS_W = \sum_{i=1}^{2} \sum_{j=1}^{n_i} \left(z_j^{(i)} - \bar{z}^{(i)} \right)^2 = \sum_{i=1}^{2} \sum_{j=1}^{n_i} \left\{ \left(x_{1j}^{(i)} - \bar{x}_1^{(i)} \right) a_1 + \left(x_{2j}^{(i)} - \bar{x}_2^{(i)} \right) a_2 \right\}^2$$

2群の分離を良くするには<mark>群間変動 SS_B /全変動 SS_T (=相関比)を最大にする</mark>

$$F(a_1, a_2) = \frac{SS_B}{SS_T}$$
 の最大化
$$G(a_1, a_2) = \frac{SS_W}{SS_B}$$
 の最小化

$$F(a_1, a_2) = \frac{SS_B}{SS_T} = \frac{SS_B}{SS_B + SS_W} = \frac{1}{1 + \frac{SS_W}{SS_B}} = \frac{1}{1 + G(a_1, a_2)}$$

別解 ベクトル表現
$$x_j^{(i)} = \begin{pmatrix} x_{1j}^{(i)} \\ x_{2j}^{(i)} \end{pmatrix}$$
 $\overline{x}^{(i)} = \begin{pmatrix} \overline{x}_1^{(i)} \\ \overline{x}_2^{(i)} \end{pmatrix}$ $\overline{x} = \begin{pmatrix} \overline{x}_1 \\ \overline{x}_2 \end{pmatrix}$ $a = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$

$$\overline{\boldsymbol{x}}^{(i)} = \begin{pmatrix} \overline{x}_1^{(i)} \\ \overline{x}_2^{(i)} \end{pmatrix}$$

$$\overline{x} = \begin{pmatrix} \bar{x}_1 \\ \bar{x}_2 \end{pmatrix}$$

$$a = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

$$SS_B = \sum_{i=1}^{2} \sum_{j=1}^{n_i} (\bar{z}^{(i)} - \bar{z})^2 = \sum_{i=1}^{2} \sum_{j=1}^{n_i} \{ (\bar{x}_1^{(i)} - \bar{x}_1) a_1 + (\bar{x}_2^{(i)} - \bar{x}_2) a_2 \}^2 = \sum_{i=1}^{2} \sum_{j=1}^{n_i} a' (\bar{x}^{(i)} - \bar{x}) (\bar{x}^{(i)} - \bar{x})' a$$

$$SS_W = \sum_{i=1}^2 \sum_{j=1}^{n_i} \left(z_j^{(i)} - \bar{z}^{(i)} \right)^2 = \sum_{i=1}^2 \sum_{j=1}^{n_i} \left\{ \left(x_{1j}^{(i)} - \bar{x}_1^{(i)} \right) a_1 + \left(x_{2j}^{(i)} - \bar{x}_2^{(i)} \right) a_2 \right\}^2 = \sum_{i=1}^2 \sum_{j=1}^{n_i} a' \left(x_j^{(i)} - \overline{x}^{(i)} \right) \left(x_j^{(i)} - \overline{x}^{(i)} \right)' a$$

偏微分=0

$$\frac{\partial G}{\partial \boldsymbol{a}} = \frac{1}{SS_B} \left(\frac{\partial SS_W}{\partial \boldsymbol{a}} - \frac{SS_W}{SS_B} \frac{\partial SS_B}{\partial \boldsymbol{a}} \right) = \begin{pmatrix} \frac{\partial G}{\partial a_1} \\ \frac{\partial G}{\partial a_2} \end{pmatrix} = \frac{1}{SS_B} \left\{ \begin{pmatrix} \frac{\partial SS_W}{\partial a_1} \\ \frac{\partial SS_W}{\partial a_2} \end{pmatrix} - \frac{SS_W}{SS_B} \begin{pmatrix} \frac{\partial SS_B}{\partial a_1} \\ \frac{\partial SS_B}{\partial a_2} \end{pmatrix} \right\} = 0$$

$$\frac{\partial SS_W}{\partial \boldsymbol{a}} = G \frac{\partial SS_B}{\partial \boldsymbol{a}} \quad \blacksquare$$

$$\therefore \frac{\partial SS_W}{\partial \boldsymbol{a}} = G \frac{\partial SS_B}{\partial \boldsymbol{a}} \qquad \Longrightarrow \qquad \bigg| \sum_{i=1}^2 \sum_{j=1}^{n_i} (\boldsymbol{x}_j^{(i)} - \overline{\boldsymbol{x}}^{(i)}) (\boldsymbol{x}_j^{(i)} - \overline{\boldsymbol{x}}^{(i)})' \boldsymbol{a} = G \sum_{i=1}^2 \sum_{j=1}^{n_i} (\overline{\boldsymbol{x}}^{(i)} - \overline{\boldsymbol{x}})' \overline{\boldsymbol{a}} \bigg|$$

$$\frac{\partial SS_W}{\partial \boldsymbol{a}} = 2\sum_{i=1}^2 \sum_{j=1}^{n_i} (\boldsymbol{x}_j^{(i)} - \overline{\boldsymbol{x}}^{(i)}) (\boldsymbol{x}_j^{(i)} - \overline{\boldsymbol{x}}^{(i)})' \boldsymbol{a}$$

$$\frac{\partial SS_{W}}{\partial \boldsymbol{a}} = 2 \sum_{i=1}^{2} \sum_{j=1}^{n_{i}} (\boldsymbol{x}_{j}^{(i)} - \overline{\boldsymbol{x}}^{(i)}) (\boldsymbol{x}_{j}^{(i)} - \overline{\boldsymbol{x}}^{(i)})' \boldsymbol{a} \qquad \frac{\partial SS_{W}}{\partial a_{1}} = 2 \sum_{i=1}^{2} \sum_{j=1}^{n_{i}} (\boldsymbol{x}_{1j}^{(i)} - \overline{\boldsymbol{x}}_{1}^{(i)}) \{ (\boldsymbol{x}_{1j}^{(i)} - \overline{\boldsymbol{x}}_{1}^{(i)}) a_{1} + (\boldsymbol{x}_{2j}^{(i)} - \overline{\boldsymbol{x}}_{2}^{(i)}) a_{2} \}$$

$$\frac{\partial SS_W}{\partial a_2} = 2\sum_{i=1}^{2} \sum_{j=1}^{n_i} \left(x_{2j}^{(i)} - \bar{x}_2^{(i)} \right) \left\{ \left(x_{1j}^{(i)} - \bar{x}_1^{(i)} \right) a_1 + \left(x_{2j}^{(i)} - \bar{x}_2^{(i)} \right) a_2 \right\}$$

$$\frac{\partial SS_B}{\partial \boldsymbol{a}} = 2\sum_{i=1}^2 \sum_{j=1}^{n_i} (\overline{\boldsymbol{x}}^{(i)} - \overline{\boldsymbol{x}}) (\overline{\boldsymbol{x}}^{(i)} - \overline{\boldsymbol{x}})' \boldsymbol{a}$$

$$\frac{\partial SS_B}{\partial a_1} = 2\sum_{i=1}^2 \sum_{i=1}^{n_i} \left(\bar{x}_1^{(i)} - \bar{x}_1 \right) \left\{ \left(\bar{x}_1^{(i)} - \bar{x}_1 \right) a_1 + \left(\bar{x}_2^{(i)} - \bar{x}_2 \right) a_2 \right\}$$

$$\frac{\partial SS_B}{\partial a_2} = 2 \sum_{i=1}^{2} \sum_{i=1}^{n_i} \left(\bar{x}_2^{(i)} - \bar{x}_2 \right) \left\{ \left(\bar{x}_1^{(i)} - \bar{x}_1 \right) a_1 + \left(\bar{x}_2^{(i)} - \bar{x}_2 \right) a_2 \right\}$$

前ページより
$$\sum_{i=1}^{2} \sum_{j=1}^{n_i} (x_j^{(i)} - \overline{x}^{(i)}) (x_j^{(i)} - \overline{x}^{(i)})' a = G \sum_{i=1}^{2} \sum_{j=1}^{n_i} (\overline{x}^{(i)} - \overline{x}) (\overline{x}^{(i)} - \overline{x})' a$$

$$\sum_{i=1}^{2} \sum_{j=1}^{n_{i}} (x_{j}^{(i)} - \overline{x}^{(i)}) (x_{j}^{(i)} - \overline{x}^{(i)})' a = \sum_{i=1}^{2} \sum_{j=1}^{n_{i}} \begin{pmatrix} (x_{1j}^{(i)} - \overline{x}_{1}^{(i)})^{2} & (x_{1j}^{(i)} - \overline{x}_{1}^{(i)}) (x_{2j}^{(i)} - \overline{x}_{2}^{(i)}) \\ (x_{2j}^{(i)} - \overline{x}_{1}^{(i)}) (x_{1j}^{(i)} - \overline{x}_{1}^{(i)}) & (x_{2j}^{(i)} - \overline{x}_{2}^{(i)})^{2} \end{pmatrix} \begin{pmatrix} a_{1} \\ a_{2} \end{pmatrix}$$

$$= \sum_{i=1}^{2} (n_{i} - 1) \begin{pmatrix} Var(x_{1}^{(i)}) & Cov(x_{1}^{(i)}, x_{2}^{(i)}) \\ Cov(x_{2}^{(i)}, x_{1}^{(i)}) & Var(x_{2}^{(i)}) \end{pmatrix} \begin{pmatrix} a_{1} \\ a_{2} \end{pmatrix} = S_{W}a$$

右辺

$$G \sum_{i=1}^{2} \sum_{j=1}^{n_{i}} (\overline{x}^{(i)} - \overline{x}) (\overline{x}^{(i)} - \overline{x})' a = G \left\{ n_{1} (\overline{x}^{(1)} - \overline{x}) (\overline{x}^{(1)} - \overline{x})' + n_{2} (\overline{x}^{(2)} - \overline{x}) (\overline{x}^{(2)} - \overline{x})' \right\} a$$

$$= G \left(\frac{n_{1} n_{2}}{n_{1} + n_{2}} \right)^{2} \left(\frac{1}{n_{1}} - \frac{1}{n_{2}} \right) (\overline{x}^{(1)} - \overline{x}^{(2)}) (\overline{x}^{(1)} - \overline{x}^{(2)})' a = k (\overline{x}^{(1)} - \overline{x}^{(2)})$$

 $\bar{x} = \frac{n_1 \bar{x}^{(1)} + n_2 \bar{x}^{(2)}}{n_1 + n_2}$

$$k = G\left(\frac{n_1n_2}{n_1 + n_2}\right)^2 \left(\frac{1}{n_1} - \frac{1}{n_2}\right) \left(\overline{\boldsymbol{x}}^{(1)} - \overline{\boldsymbol{x}}^{(2)}\right)' \boldsymbol{a} = G\left(\frac{n_1n_2}{n_1 + n_2}\right)^2 \left(\frac{1}{n_1} - \frac{1}{n_2}\right) \left\{ \left(\bar{\boldsymbol{x}}_1^{(1)} - \bar{\boldsymbol{x}}_1^{(2)}\right) a_1 + \left(\bar{\boldsymbol{x}}_2^{(1)} - \bar{\boldsymbol{x}}_2^{(2)}\right) a_2 \right\}$$

したがって

$$k = 1 \ge L T$$

$$S_W a = k \left(\overline{x}^{(1)} - \overline{x}^{(2)} \right) \quad a = S_W^{-1} \left(\overline{x}^{(1)} - \overline{x}^{(2)} \right)$$

たがって
$$k = 1$$
として $S_{W}a = k(\overline{x}^{(1)} - \overline{x}^{(2)})$ $a = S_{W}^{-1}(\overline{x}^{(1)} - \overline{x}^{(2)})$
$$\begin{pmatrix} a_{1} \\ a_{2} \end{pmatrix} = S_{W}^{-1}\begin{pmatrix} \overline{x}_{1}^{(1)} - \overline{x}_{1}^{(2)} \\ \overline{x}_{2}^{(1)} - \overline{x}_{2}^{(2)} \end{pmatrix}$$

説明	楽天家 No	堅実派 No	
変数患者	$x_1^{(1)}$	$x_2^{(1)}$	
1	1	0	
2	1	1	
3	1	0	
4	0	1	
$\bar{x}^{(1)}$	0. 750	0.500	
Var	0.250	0.333	
Cov	-0.167		

G2 (B型)

説明	楽天家 No	堅実派 No
変数患者	$x_2^{(2)}$	$x_2^{(2)}$
1	0	1
2	0	0
3	0	1
$\bar{\chi}^{(2)}$	0	0.667
Var	0	0.333
Cov	()

全体総平均

	楽天家 No	堅実派 No
	\bar{x}_1	\bar{x}_2
\bar{x}	0.429	0.571

$$S_{W} = \sum_{i=1}^{2} (n_{i} - 1) \begin{pmatrix} Var\left(x_{1}^{(i)}\right) & Cov\left(x_{1}^{(i)}, x_{2}^{(i)}\right) \\ Cov\left(x_{2}^{(i)}, x_{1}^{(i)}\right) & Var\left(x_{2}^{(i)}\right) \end{pmatrix} = 3 \begin{pmatrix} 0.250 & -0.167 \\ -0.167 & 0.333 \end{pmatrix} + 2 \begin{pmatrix} 0.000 & 0.000 \\ 0.000 & 0.333 \end{pmatrix}$$

$$\begin{pmatrix} \bar{x}_{1}^{(1)} - \bar{x}_{1}^{(2)} \\ \bar{x}_{2}^{(1)} - \bar{x}_{2}^{(2)} \end{pmatrix} = \begin{pmatrix} 0.750 - 0.000 \\ 0.500 - 0.667 \end{pmatrix} = \begin{pmatrix} 0.750 \\ -0.167 \end{pmatrix}$$

$$= \begin{pmatrix} 0.75 & -0.5 \\ -0.5 & 1.667 \end{pmatrix}$$

$${a_1 \choose a_2} = \mathbf{S}_{\mathbf{W}}^{-1} {\bar{x}_1^{(1)} - \bar{x}_1^{(2)} \choose \bar{x}_2^{(1)} - \bar{x}_2^{(2)}} = {1.667 \choose 0.500} {0.500 \choose 0.7501} {0.750 \choose -0.167} = {1.167 \choose 0.250}$$

総平均では判別得点
$$\mathbf{z} = \mathbf{0}$$
となる $a_0 = -a_1 \bar{x}_1 - a_2 \bar{x}_2 = -0.623$

$$z = a_1 x_1 + a_2 x_2 + a_0 = 1.167 x_1 + 0.25 x_2 - 0.623$$
 $z > 0 \cdots$ グループ1(A型

以上より
$$z=a_1x_1+a_2x_2+a_0=1.167x_1+0.25x_2-0.623$$
 $z>0 \cdots グループ1 (A型)$ $z<0 \cdots グループ2 (B型)$ 先ほどの判別式 $Y=4.667x_{12}+x_{22}-2.571$ $Y=4$ 正負を判定するため実質的に同等

数量化2類

- ① 数量化2類とは何か
- ② アンケート調査で下記のデータを得た。 各アイテムのカテゴリの反応から外的基準の判別を行う式を1次式で表現せよ。 判別式: Y、ダミー変数: x_{ij} 、カテゴリ数量: a_{ij} 、定数項: a_0 を用いよ。
- ③ カテゴリ数量 a_{ij} と定数項 a_0 の決定方法を述べよ。
- ④ カテゴリー数量の基準化を行い予測式を求めよ。
- ⑤ アイテムの外的基準に与える影響の大きさを検討せよ。

アンケート調査票 項目1 あなたは楽天家ですか 1 はい 2 いいえ 項目2 あなたは堅実派だと思います か 1 はい 2 いいえ

項目3

あなたの血液型は 1 A型 2 B型

	アイテム		カテゴリ		外的基準
被験者	楽天家 🔪		堅実派		◆ 血液型
No.	1	2	1	2	皿/校至
1		レ	レ		
2		レ		レ	A型
3		レ	レ		
4	レ			レ	
1	レ			レ	
2	レ		レ		B型
3	レ			レ	