Instructor: Prof. A. Anandkumar

California Institute of Technology

Homework 1: Due Jan. 20th 2022

- 1 Statistics and Sufficient Statistics Consider experiments that produce n i.i.d. observation $Y_i \stackrel{i.i.d.}{\sim} p(y;\theta)$. For each of the following model, find the log-likelihood function $L(\mathbf{y};\theta)$ and a sufficient statistic of as "low dimension" as possible.
 - (a) Normal distribution with unknown mean $\mathcal{N}(\theta, 1)$.
 - (b) Exponential distribution with unknown mean $\mathcal{E}(\theta)$.
 - (c) Poisson distribution with unknown mean $\mathcal{P}(\theta)$.
 - (d) Bernoulli with unknown mean $\mathcal{B}(\theta)$.
 - (e) Uniform distribution $\mathcal{U}(0,\theta)$.
- 2 Gaussian Mixture Suppose that Y_i is an i.i.d. sequence drawn from $\mathcal{N}(\theta, 1)$, and $\mathbf{Y} = (Y_1, \dots, Y_n)$. We know that $t(\mathbf{Y}) = \sum_i Y_i$ is a sufficient statistic. Consider next the model involving a Bernoulli random variable $X \sim \mathcal{B}(\frac{1}{4})$ in which

$$Y \sim \begin{cases} \mathcal{N}(\theta, 1) & X = 0 \\ \mathcal{N}(\theta, 2) & X = 1 \end{cases}$$

- (a) Show that $(\sum_i Y_i, X)$ is a sufficient statistic.
- (b) Is $\sum_{i} Y_{i}$ a sufficient statistic?