

EAST WEST UNIVERSITY

Name: B M Shahria Alam

ID : 2021-3-60-016

Course: MAT 102

Section: 01

Home-Assignment No: 01

1. a)
$$y'' - y' - 6y = e^{x} + 3x^{2} - - - - (i)$$

Lets y=emx is the solution of y"-y'-6y=0 --- (ii) so, equation (ii) becomes,

$$m^2 e^{mx} - m e^{mx} - 6 e^{mx} = 0$$

 $\Rightarrow e^{mx} (m^2 - m - 6) = 0$

Here,
$$e^{mx} \neq 0$$

So, A.E is
$$m^2 - m - 6 = 0$$

 $\Rightarrow m^2 - 3m + 2m - 6 = 0$
 $\Rightarrow m(m-3) + 2(m-3) = 0$
 $\Rightarrow (m-3)(m+2) = 0$
 $\therefore m = -3, 2$

: Complementary function is, $y_c = c_1 e^{-3x} + c_2 e^{3x}$

Let, Pareticulare solution is,

$$y_{p} = Ae^{x} + Bx^{2} + ex + E$$

$$y'_{p} = Ae^{x} + 2Bx + C$$

$$y''_{p} = Ae^{x} + 2B$$

: Equation (i) becomes,

Equation (i) becomes,

$$Ae^{x} + 2B - Ae^{x} - 2Bx - C - 6Ae^{x} - 6Bx^{2} - 6ex - 6E = e^{x} + 3x^{2}$$

$$\times \text{ and const}$$

Equiting the coefficient of ex, x,3, from the both sides,

witing the coefficient of E, 2, x solutions the coefficient of E, 2, x solutions and the coefficient of E, 2, x solutions are considered as
$$-6B = 3$$
 $-2B - 6C = 0$ $2B - C - 6E = 0$ $A = -6B = 3$ $A = -6B = 3$

$$y_{p} = -\frac{1}{6}e^{x} - \frac{1}{2}x^{2} + \frac{1}{6}x + \frac{7}{36}$$

: General solution is,

$$y = c_1 e^{-3x} + c_2 e^{2x} - \frac{1}{6} e^{x} - \frac{1}{3} x^2 + \frac{1}{6} x + \frac{7}{36}$$

1. b)
$$y''' + 9y' = -2n i n 3x + Con 3x + 3x - \cdots$$
 (i)

Leto, $y = e^{mx}$ in the polution of $y''' + 9y' = 0 - \cdots$ (ii)

equation (i) becomes,

 $m^3 e^{mx} + 9m e^{mx} = 0$
 $\Rightarrow e^{mx}(m^3 + 9m) = 0$

Here, $e^{mx} \neq 0$

A.E is $m^3 + 9m = 0$
 $\Rightarrow m(m^2 + 9) = 0$
 $\therefore m = 0$

Again, $m^2 + 9 = 0$
 $\therefore m = \pm 3i$
 $m = 0$, $\exists i$, $\exists i$, $\exists i$, $\exists i$
 $m = 0$, $\exists i$, $\exists i$

Complementary function is,

$$y_e = c_1 + e^{\circ} \left[c_2 c_0 a_3 x + c_3 a_1 a_2 x \right]$$

= $c_1 + c_2 c_0 a_3 x + c_3 a_1 a_2 x$

Leta.

to,

Parcticular polution in,
$$y_p = x (Aeop3x + Bnin3x) + x(ex + E)$$
 $y_p' = (Aeop3x + Bnin 3x) + x(3Beop3x - 3Anin3x) + 2ex + E$

$$y'''_p = (-3Anin 3x + 3Bcon 3x) + (3Bcon 3x - 3Anin 3x) +$$

$$x (-9Acon 3x - 9Bnin 3x) + 2e$$

$$y''' = (-9Acon 3x - 9Bnin 3x) + (-9Bnin 3x - 9Acon 3x)$$

$$+ (-9Acon 3x - 9Bnin 3x) + x(27Anin 3x - 27Bcon 3x)$$

-9A@003x-9Bnin3x-9Bnin3x-9Aeon3x-9Acon3x-9Bnin3x Equation (i) becomes, +27x Anin 3x - 27x Beon 3x + 9A con 3x + 9Bnin 3x + 27 x BCOP 3x - 27x Apin3x + 18Cx + 9 E = -2pin3x + con 3x + 3x

⇒ -18A con 3x - 18B sin 3x + 18cx + 9E = -2 sin 3x + con 3x + 3x

Equiting the coefficient of consx, nin3x and x, constant From both nide;

$$-18A = 1$$
 $-18B = -2$ $18C = 3$ $9E = 0$
 $\Rightarrow A = -\frac{1}{18}$ $\therefore B = \frac{1}{9}$ $\therefore C = \frac{1}{6}$ $\therefore E = 0$

$$\therefore y_{p} = \varkappa(-\frac{1}{18}\cos 3\varkappa + \frac{1}{9}\sin 3\varkappa) + \varkappa(\frac{\varkappa}{6})$$

$$= \varkappa(-\frac{1}{18}\cos 3\varkappa + \frac{1}{9}\sin 3\varkappa) + \frac{\varkappa^{2}}{6}$$

The general polution is, $y = e_1 + e_2 \cos 3\pi + e_3 \sin 3\pi - \frac{x}{18} \cos 3x + \frac{x}{9} \sin 3x + \frac{x^2}{6}$

C)
$$y''-y'-2y=(x-4)e^x+x----(i)$$

Let, $y=e^{mx}$ in the solution of $y''-y'-2y=0----(ii)$
equation (ii) becomes,

$$m^{2}e^{mx} - me^{mx} - 2e^{mx} = 0$$

=> $e^{mx}(m^{2} - m - 2) = 0$

Here,
$$e^{mx} \neq 0$$

A.E is $m^2 - m - 2 = 0$

$$\Rightarrow m^2 + 2m + m - 2 = 0$$

$$\Rightarrow m(m-2) + 1(m-2) = 0$$

$$\Rightarrow (n-2)(m+1) = 0$$

$$\therefore m = 2, -1$$

:. Complementary function is, $y_e = c_1 e^{3x} + c_2 e^{3x}$

: Particular solution.
$$y_p = (Ax-B)e^x + Cx + E$$

$$y_p' = (Ax-B)e^x + Ae^x + C$$

$$y_p'' = (Ax-B)e^x + 2Ae^x$$

equation (i) becomes,

Nation (i) becomes,

$$Axe^{x}-Be^{x}+2Ae^{x}-Axe^{x}+Be^{x}-Ae^{x}-C-2Axe^{x}+2Be^{x}-2Cx-2E$$

$$=(x-4)e^{x}+x$$

$$\Rightarrow -2Ae^{x}x + Ae^{x} + 2Be^{x} - 2cx - e - 2E = xe^{x} - 4e^{x} + x$$

Equiting the coefficient of xex, ex, comfant from both side;

$$-2A = 1$$

$$\therefore A = -\frac{1}{2}$$

$$\therefore B = -\frac{7}{4}$$

$$\therefore C = -\frac{1}{2}$$

$$\therefore E = \frac{1}{4}$$

:
$$y_p = (-\frac{1}{2}x - \frac{7}{4})e^x - \frac{1}{2}x + \frac{1}{4}$$

: The general polution is; y = e,e2x + e,e-x - 1/2 xe2 - 7/2 ex - x + 1/4

d)
$$y^{9} - y'' = ze^{-x} + 5$$
 (i)

Lets, $y = e^{mx}$ is the solution $y^{4} - y'' = 0$ (ii)

equation (ii) becomes,

 $m^{4}e^{mx} - m^{2}e^{mx} = 0$
 $\Rightarrow e^{mx}(m^{4} - m^{2}) = 0$

Here,
$$e^{mx} \neq 0$$
A.E.is $m^4 - m^2 = 0$

$$A \cdot E i \rho m^{4} - m^{2} = 0$$
 $m^{2} (m^{2} - 1) = 0$

Here,
$$m^2 - 1 = 0$$

: $m = \pm 1$

$$m = 0, 0, 1, -1$$

:. Complementary function in $ye = e_1 + e_2 x + c_2 e^x + c_4 e^{-x}$ Lets.

Pareticular solution is,
$$y_p = A \times e^{-x} + B \times^2$$

$$y'_p = A e^{-x} - A \times e^{-x} + 2B \times e^{-x} + 2B \times e^{-x} + A \times e^{-x} + 2B \times e^{-x} + A \times e^{-x} + 2B \times e^{-x} + A \times e^{x} + A \times e^{-x} + A \times e^{-x} + A \times e^{-x} + A \times e^{-x} + A \times e^{x$$

Equation (i) becomes,

$$-4Ae^{-x} + 4xe^{-x} + 2Ae^{-x} - 4xe^{-x} + 5$$

$$\Rightarrow -4Ae^{-x} + 2Ae^{-x} - 2B = 2e^{-x} + 5$$

Equiting the coefficient of e-x, compant from both side,

$$-4A + 2A = 2$$

$$-2B = 5$$

$$\Rightarrow -2A = 2$$

$$\therefore A = -1$$

: General polution is, y = c1+c2x+c3ex+c4ex-xex- = x2