Correction du TD

Données

Pour un système fermé, de température T, de pression P et de volume V subissant une transformation entre deux états d'équilibre (i) et (f), la variation d'entropie est :

♦ pour un gaz parfait,

$$\boxed{\Delta S = C_V \ln \frac{P_f}{P_i} + C_P \ln \frac{V_f}{V_i}} \quad \text{ou} \quad \boxed{\Delta S = C_V \ln \frac{T_f}{T_i} + nR \ln \frac{V_f}{V_i}} \quad \text{ou} \quad \boxed{\Delta S = C_P \ln \frac{T_f}{T_i} - nR \ln \frac{P_f}{P_i}}$$

♦ pour une phase condensée,

$$\Delta S = C \ln \frac{T_f}{T_i}$$

Méthode des mélanges dans un calorimètre

Un calorimètre de capacité thermique $C = 150 \,\mathrm{J \cdot K^{-1}}$ contient initialement une masse $m_1 = 200 \,\mathrm{g}$ d'eau à $\theta_1 = 20 \,\mathrm{^{\circ}C}$, en équilibre thermique avec le calorimètre. On plonge dans l'eau un bloc de fer de masse $m_2 = 100\,\mathrm{g}$ initialement à la température $\theta_2 = 80,0 \,^{\circ}\text{C}$.

Données

 $c_{\text{Fe}} = 452 \,\text{J} \cdot \text{K}^{-1} \cdot \text{kg}^{-1} \text{ et } c_{\text{eau}} = 4185 \,\text{J} \cdot \text{K}^{-1} \cdot \text{kg}^{-1}.$

1) Calculer la température d'équilibre T_f .

—— Réponse ——

solu

Calculer la variation d'entropie de l'eau, du fer et du calorimètre.

—— Réponse —

- 🔷 -

solu

3) En déduire l'entropie créée au cours de la transformation. Celle-ci est-elle réversible?

— Réponse –

solu

II | Équilibre d'une enceinte à deux compartiments

Une enceinte indéformable aux parois calorifugées est séparée en deux compartiments par une cloison étanche, diatherme et mobile sans frottement. Les deux compartiments contiennent un même gaz parfait. Dans l'état initial, la cloison est maintenue au milieu de l'enceinte. Le gaz du compartiment 1 est dans l'état (T_0, P_0, V_0) et le gaz du compartiment 2 dans l'état $(T_0, 2P_0, V_0)$. On laisse alors la cloison bouger librement jusqu'à ce que le système atteigne un état d'équilibre.

1) Exprimer les quantités de matière n_1, n_2 dans chaque compartiment en fonction de $n_0 = P_0 V_0 / R T_0$.

— Réponse —

— <> -2) Exprimer la température, le volume et la pression du gaz de chaque compartiment dans l'état final, en fonction de $n_0, T_0 \text{ et } V_0.$

——— Réponse -

solu

solu

Lycée Pothier

	solu
<u> </u>	——————————————————————————————————————
L	III Effet Joule
pe	Considérons une masse $m=100\mathrm{g}$ d'eau, dans laquelle plonge un conducteur de résistance $R=20\Omega$. L'ensemble rme un système Σ , de température initiale $T_0=20^{\circ}\mathrm{C}$. On impose au travers de la résistance un courant $I=1R$ endant une durée $\tau=10\mathrm{s}$. L'énergie électrique dissipée dans la résistance peut être traitée du point de vue de la remodynamique comme un transfert thermique $Q_{\mathrm{élec}}$ reçu par Σ .
Ī	Données
	\diamond Capacité thermique de la résistance : $C_R = 8 \mathrm{J \cdot K^{-1}}$
	\diamond Capacité thermique massique de l'eau : $c_{\text{eau}} = 4.18 \text{J}\cdot\text{g}^{-1}\cdot\text{K}^{-1}$.
,	La température de l'ensemble est maintenue constante. Quelle est la variation d'entropie du système? Quelle es l'entropie créée?
	solu
	Soft ♦
2)	Commenter le signe de l'entropie créée. Que peut-on en déduire à propos du signe d'une résistance?
	Réponse —
	solu
	Le même courant passe dans le même conducteur pendant la même durée, mais cette fois Σ est isolé thermiquement Calculer sa variation d'entropie et l'entropie créée.
	Réponse ————————————————————————————————————
	<u></u>
	Effet Joule
(id	On raisonne sur une quantité de matière $n=1\mathrm{mol}$ de gaz parfait qui subit la succession de transformation déalisées) suivantes :
	${f AB}$: détente isotherme de $P_{ m A}=2$ bar et $T_{ m A}=300$ K, jusqu'à $P_{ m B}=1$ bar en restant en contact avec un thermosta de température $T_0=T_{ m A}$;
\Diamond	BC : évolution isobare jusqu'à $V_{\rm C}=20.5{\rm L}$, toujours en restant en contact avec le thermostat à T_0 ;
\Diamond	CA : compression adiabatique réversible jusqu'à revenir à l'état A.
Oı	n suppose le gaz diatomique.
1)	Quel est le coefficient adiabatique? Représenter ce cycle en diagramme de WATT (P,V) . Réponse
	solu
	À partir du diagramme, déterminer le signe du travail total des forces de pression au cours du cycle. En déduire s'i
,	s'agit d'un cycle moteur ou d'un cycle récepteur.
,	Réponse
,	solu
,	Réponse —

2/3

MPSI3 - 2023/2024

	Réponse —
	solu
	∇ Corps en contact avec n thermostats quasi-statiques
	Un métal de capacité thermique C_p passe de la température initiale T_0 à la température finale $T_f = T_N$ par contacts accessifs avec une suite N thermostats de températures T_i étagées entre T_0 et T_f . On prendra le rapport $T_{i+1}/T_i = \alpha_0$ enstant.
L)	Exprimer pour chaque étape la variation d'entropie du corps ΔS en fonction de m, c et α .
	Réponse
2)	Calculer le transfert thermique reçu par le métal sur une étape en fonction de T_{i+1} et T_i , puis l'entropie échangée $S_{\rm ech}$ en fonction de m,c et α .
	Réponse —
3)	Calculer la variation d'entropie du corps ΔS , l'entropie échangée $S_{\rm ech}$ ainsi que l'entropie créée S_c sur l'ensemble en fonction de C_p , α et N .
	solu
	<u></u>
1)	Étudier S_{cr} pour $N \to \infty$. On exprimera α en fonction de T_f, T_i et N , et on utilisera le développement limité $\exp(x) = 1 + x + x^2/2$ pour x petit devant 1. Conclure.
	solu
_	
	VI Masse posée sur un piston
	Considérons une enceinte hermétique, diatherme, fermée par un piston de masse négligeable pouvant coulisser sans
P	On place une masse m sur le piston. Déterminer les caractéristiques du gaz une fois les équilibres thermique et mécanique atteints.
P	On place une masse m sur le piston. Déterminer les caractéristiques du gaz une fois les équilibres thermique et
P	On place une masse m sur le piston. Déterminer les caractéristiques du gaz une fois les équilibres thermique et mécanique atteints. Réponse solu
P(1)	On place une masse m sur le piston. Déterminer les caractéristiques du gaz une fois les équilibres thermique et mécanique atteints. Réponse Solu Déterminer le transfert thermique échangé Q et l'entropie créée.
P(1)	On place une masse m sur le piston. Déterminer les caractéristiques du gaz une fois les équilibres thermique et mécanique atteints. Réponse Solu Déterminer le transfert thermique échangé Q et l'entropie créée. Réponse Solu
P(1)	On place une masse m sur le piston. Déterminer les caractéristiques du gaz une fois les équilibres thermique et mécanique atteints. Réponse Solu Déterminer le transfert thermique échangé Q et l'entropie créée. Réponse Solu On réalise la même expérience, mais en N étapes successives, par exemple en ajoutant du sable « grain à grain » Déterminer l'entropie créée dans la limite $N \to \infty$.
P(1)	On place une masse m sur le piston. Déterminer les caractéristiques du gaz une fois les équilibres thermique et mécanique atteints. Réponse Déterminer le transfert thermique échangé Q et l'entropie créée. Réponse Solu On réalise la même expérience, mais en N étapes successives, par exemple en ajoutant du sable « grain à grain »