Omnidata: A Scalable Pipeline for Making Multi-Task Mid-Level Vision Datasets from 3D Scans

Group 6

Rishikesh Jadhav, Aniruddh Balram, Patrik Pordi, Jingxi Chen, Ji-Ze Jang, Quynh Thi Phung

Scribe: Rishikesh Jadhav

What problem are they trying to solve?

Data Scarcity: The datasets often focus on specific tasks like object recognition, leaving other vision tasks underrepresented.

Data Quality and Annotations: Generating high-quality annotations for vision tasks like surface normal estimation and depth estimation can be labor-intensive and costly

Lack of Diverse Vision Tasks: Existing datasets are often biased towards recognition tasks and may not cover a wide range of vision tasks, such as depth estimation, surface normal estimation, and panoptic segmentation

Limited Control over Data Generation: The authors recognize the need for more control over the data generation process, including factors like camera intrinsics, scene lighting, and data domain

Authors Solution:

Data Scarcity: Generating multi-task mid-level vision datasets from 3D scans.

Data Quality and Annotations: Automating annotation generation for tasks like surface normal and depth estimation.

Lack of Diverse Vision Tasks: Creating datasets that cover a wide range of vision tasks beyond recognition.

Limited Control over Data Generation: Providing control over data generation parameters to researchers for customization.

INTRODUCTION

The main concept is to create a pipeline for **Simple steps**: "steerable" (highly adaptable) computer vision datasets from 3D scans, leveraging mid-level cues for training vision models.

- - 1. Camera and Point Sampling
 - 2. View Sampling (Wide-baseline multi-view, Smooth trajectory sampling)
 - 3. Rendering Mid-level Cues

RELATED WORK

Static 3D Datasets: Many recent datasets rely on 3D scans, but they often focus on **specific domains**. **Omnidata** offers diversity across scenes and objects.

Vision-Focused Simulators: While simulators use 3D meshes, Omnidata bridges the gap between simulators and static vision datasets, prioritizing realism.

Linking 2D Images and 3D Meshes: Rely on hand-annotation, which is expensive and time-consuming.

Multi-Task Datasets: Existing multi-task learning (MTL) datasets often specialize in recognition tasks. Omnidata aims for a more comprehensive, real-world setting.

Data Augmentation + Domain Randomization(RL): Omnidata leverages a rich set of data augmentations, including including viewpoint consistency and Euclidean transforms, for static computer vision datasets, enhancing **model robustness**.

Auto Labeling: The pipeline harnesses the structure in 3D scans to efficiently compute and propagate labels, reducing annotation effort(basically the use pretrained models to reduce manual efforts).

PIPELINE OVERVIEW

- 1. The annotator generates camera locations and points-of-interest along the mesh. (Filtering- each camera sees at least one point, and each point is seen by a minimum number of cameras (default: 3)
- 2. For each camera and each point-of-interest, it creates a view from that camera fixated on the point.
- 3. For each space-point-view triplet, the annotator renders all the mid-level cues

How are all of these cues generated?

The pipeline uses some of the mid-level cues to produce others.

Mid-level cues provided for the starter set.

STARTER DATASET OVERVIEW

The starter data is generated from seven mesh-based datasets, categorized as follows:

Indoor scene datasets: Replica, HyperSim, Taskonomy, Habitat-Matterport (HM3D).

Aerial/outdoor datasets: BlendedMVG.

Diagnostic/Structured datasets: CLEVR.

Object-centric datasets: generated by placing Google Scanned Objects around buildings in the Replica dataset, following the approach used by ObjectNet for image diversity in classification(simulation).

The Starter Dataset is a large dataset annotated with Omnidata's annotator, containing a diverse range of images from various scenes

RESULTS

Dataset statistics

			Spaces	Points			
Dataset	Train	Val	Test	Train	Val	Test	
CLEVR	60,000	6,000	6,000	1	0	0	72,000
Replica	56,783	23,725	23,889	10	4	4	4,150
Replica + GSO	107,404	43,450	42,665	10	4	4	31,167
Hypersim	59,543	7,386	7,690	365	46	46	74,619
Taskonomy	3,416,314	538,567	629,581	379	75	79	684,052
BlendedMVG	79,023	16,787	16,766	341	74	73	112,576
Habitat-Matterport	8,470,855	1,061,021	-	800	100	-	564,328
Total (no CLEVR)	12,189,922	1,690,936	720,591	1,905	303	206	1,434,892

RESULTS

Zero-shot depth estimation

Method	Test Data	L1 Error (↓)	$\delta > 1.25(\downarrow)$	$\delta > 1.25^2 (\downarrow)$	$\delta > 1.25^3 (\downarrow)$
XTC [71]		1.180	85.28	71.86	60.22
MiDaSv3 [46]	OASIS [13]	0.8057	82.03	67.25	55.35
Omnidata		0.7901	81.00	65.22	52.93
XTC [71]		0.5279	70.41	49.90	36.28
MiDaSv3 [46]	NYU [53]	0.3838	63.84	41.65	28.97
Omnidata		0.2878	51.73	30.98	20.86

Zero-shot surface normal estimation (check AUC for Unet + Omnidata)

		Anglular Error°		% Within t°			Relative Normal		
Method	Training Data	Mean	Median	11.25°	22.5°	30°	AUC_o	AUC_p	
Hourglass [12]	OASIS [13]	23.91	18.16	31.23	59.45	71.77	0.5913	0.5786	
Hourglass [12]	SNOW [14]	31.35	26.97	13.98	40.20	56.03	0.5329	0.5016	
Hourglass [12]	NYU [54]	35.32	29.21	14.23	37.72	51.31	0.5467	0.5132	
PBRS [74]	NYU [54]	38.29	33.16	11.59	32.14	45.00	0.5669	0.5253	
UNet [50]	SunCG [55]	35.42	28.70	12.31	38.51	52.15	0.5871	0.5318	
UNet [50]	Omnidata	24.87	18.04	31.02	59.53	71.37	0.6692	0.6758	
Human (Approx.)	- '	17.27	12.92	44.36	76.16	85.24	0.8826	0.6514	

Qualitative comparison with MiDaS on zero-shot OASIS **depth estimation**

Rectangular boxes show regions useful for comparison.

Qualitative results of zero-shot surface normal estimation

Qualitative results of **panoptic segmentation** with PanopticFPNs trained on COCO and Omnidata

The Omnidata model trained jointly on Taskonomy, Replica, and Hypersim shows good performance on indoor scenes without people.

ILLUSTRATIVE DATA-FOCUSED ANALYSES (One For All)

Inter-dataset domain transfer performance for surface normal

estimation and panoptic

Segmentation(starter dataset test).

Image refocusing augmentation on

Taskonomy(for better generalization
performance).

	Surface normal estimation: L1 Error (↓)						Panoptic Quality (PQ) (†)			
Train/Test	Taskonomy	Replica	Hypersim	Replica+GSO	BlendedMV	G h. mean	Taskonomy*	Replica	Hypersim	h. mean
Taskonomy*	4.85	7.76	8.69	13.89	15.55	8.53	8.39	3.95	11.67	6.55
Replica	9.36	3.98	11.78	10.28	15.02	8.24	1.01	41.97	4.50	2.43
Hypersim	7.28	7.57	6.72	11.34	12.94	8.56	9.35	14.08	25.39	13.80
Replica+GSO	13.88	4.94	15.05	5.17	14.03	8.26	-	-	-	-
BlendedMVG	17.1	14.23	16.93	14.87	8.85	13.58	-	-	-	-
Omnidata	5.32	4.24	6.53	6.45	11.53	6.11	9.14	41.24	30.16	17.98

Are **Mid level Cues** as inputs useful???

Semantic segmentation results using models trained on Replica and tested on Replica, Hypersim and Taskonomy.

These models received mid-level cues as input(except RGB).

Input/Supervised Domains		Γ Mid-Le	vel	Predicted Mid-Level			
		s-Entropy	y (↓)	Cross-Entropy (↓)			
	Repl.	H.Sim	Task.	Repl.	H.Sim	Task.	
RGB	0.61	5.87	7.55	0.61	5.87	7.55	
(All Above) + Normals	0.47	4.47	6.12	0.61	5.44	7.12	
(All Above) + 3D Edges	0.46	4.47	6.75	0.54	5.06	6.49	
(All Above) + (2D Edges, Z-Depth, 3D Keypts)	0.46	3.86	6.04	0.53	4.9	6.13	

As we can see the models notably benefited from the mid-level cues.

CONCLUSION AND LIMITATION

Summary:

- This paper presented a way to generate better quality data for training visual learning tasks from 3D scans
- The authors show the improvement/effect by their "camera and point sampling" and "view sampling" on better FOV, viewing angle and viewing distance distribution for generated data.

Limitation:

- The "camera and point sampling" in the paper is to designed to densely sampling the 3D space, however this does not lead to better sampling in "semantic objects"
- For the **generated RGB** images from mesh, the quality may not be that high (or requires super fine-grained mesh -> huge storage space)

Resources and References

Resources:

Pipeline Code and Docs: Simplifies technology adoption.

Docker Container: Includes required software for easy setup.

PyTorch Dataloaders: Efficiently loads dataset.

Starter Dataset: Contains 14.5M labeled images.

Convenience Utilities: Aid data management and mesh filtering.

Pretrained Models: Includes MiDaS implementation.

References:

Link to the paper: https://arxiv.org/abs/2110.04994

Link to the website : https://omnidata.vision/

Link to the Video:

https://www.youtube.com/watch?v=jAXaASBB5N0

<u>&t=70s</u>