Dialog Management and System Evaluation

EE596B/LING580K -- Conversational Artificial Intelligence
Hao Fang
University of Washington
4/17/2018

Slides adapted from:

Andrew Maas, Spring 2017, CS224S/LING285 Spoken Language Processing (Lecture 10&11) Gina-Anne Levow, Spring 2017, LING 575 Spoken Dialog Systems (Lecture 4&5)

Dialog Manager

- Takes input from ASR/NLU components
- Communicates with backend database & services
- Determines what system does next
- Passes output to NLG/TTS modules

- Dialog Structure
- Dialog Initiative
- Conversational Grounding

Turn-taking

 Dialog is characterized by turn-taking.

Dialog Structure vs. Storytelling in Games

- Linear storytelling
- A fixed chronological order

Dialog Structure vs. Storytelling in Games

- Nonlinear storytelling
- Explore the world in any order

Dialog Structure vs. Storytelling in Games

Other non-linear structures

Dialog Structure

• Three-act structure

Beginning Middle End

Dialog Structure

- Three-act structure
- Dialog Macrogame Theory (Mann 2002)
 - http://wwwbcf.usc.edu/~billmann/dialogue /dtsite.htm
 - dialog as a sequence of games
 - 6 game acts
 - 15 frequently occurring games

Bid of Start A Game Accept Bid of Start

Reject Bid of Start

Bid of End A Game Accept Bid of End

Reject Bid of End

Dialog Structure

- Three-act structure
- Dialog Macrogame Theory (Mann 2002)
- Sounding Board (Fang et al. 2018)
 - social chat as a sequence of sub-dialogs
 - 3 stages
 - 10 coarse-grained actions

User Sounding Board

Negotiation

can we talk about rap music

sounds good

Hmm. I'm actually not very familiar with **rap music**. How about we talk about **disco**?

Execution

ha ha ha, you're so funny

Great. I read this funny thing online. Why can you always find a pirate at **disco** night? Because they love to shake their booty!

Termination

Let's discuss something else

Sure. We can talk about technology, sports, and movies.

Sub-dialog Cycle

- Dialog Structure
- Dialog Initiative
- Conversational Grounding

Dialog Initiative

• Initiative: who has control of conversation

System Initiative

- User knows what they can say
- System knows what user can say
- Simple to build
- OK for VERY simple tasks
 - entering a credit card
 - login name and password

User Initiative

- System is reactive but not proactive
- User knows what system can do
 - question answering
 - voice web search
- System doesn't
 - ask questions back
 - engage in clarification dialog
 - engage in confirmation dialog

Mixed Initiative

- Normal human-human dialog
 - initiative shifts back and forth between participants.
- Mix of control based on prompt type
- Open prompt: "How may I help you?"
 - open-ended, user can respond in any way
- Directive prompt: "Say yes to accept call, or no otherwise"
 - stipulates user response type

- Dialog Structure
- Dialog Initiative
- Conversational Grounding

Conversational Grounding

- Presumed a joint & collaborative communication
 - speaker & hearer mutually believe the same thing
- Speaker tries to establish and add to
 - common ground
 - mutual belief
- Hearer must ground speaker's utterances
 - indicate heard and understood
- Principle of Closure (Clark 1996) (Norman 1988)
 - agents performing an action require evidence that they have succeeded in performing it

Principle of Closure

- Non-speech closure example
 - push elevator button
 - light turns on
- Grounding in HCI
 - Users confused if system fails to ground (Stifelman et al., 1993), (Yankelovich et al, 1995)

A Human-Human Conversation

```
C_1:
           .. I need to travel in May.
A_1:
         And, what day in May did you want to travel?
C_2:
          OK uh I need to be there for a meeting that's from the 12th to the 15th.
A_2:
          And you're flying into what city?
C_3:
          Seattle.
          And what time would you like to leave Pittsburgh?
A<sub>3</sub>:
C_4:
          Uh hmm I don't think there's many options for non-stop.
          Right. There's three non-stops today.
A_4:
          What are they?
C_5:
A<sub>5</sub>:
          The first one departs PGH at 10:00am arrives Seattle at 12:05 their time. The
          second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the last
          flight departs PGH at 8:15pm arrives Seattle at 10:28pm.
         OK I'll take the 5ish flight on the night before on the 11th.
C_6:
         On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air flight
A_6:
          115.
C7:
          OK.
```

Sounding Board Conversation

- Indicate ASR/NLU errors
- Acknowledge user reaction

What's your opinion?

I heard you asked: what's your peanut? I'm not sure I know the answer

That's cool!

I'm happy you feel this is cool! Have you read this news? ...

That's sad.

I'm sorry to make your sad! Do you want to talk about something else?

Conversational Implicature

- Meaning more than just literal contribution
- Indirect speech acts

How about we talk about movies?

OK uh I don't watch movies very often.

Continue Switch Topic

Grice's Maxims

Quality Quantity Be truthful Be informative Grice's **Maxims** Relevance Manner Be relevant Be perspicuous

Dialog Manager Architectures

Example: A Trivial Airline Travel System

- Ask the user for a departure city
- Ask for a destination city
- Ask for a time
- Ask whether the trip is round-trip or not

Finite-state Dialog Manager

- System completely controls the conversation with the user
- It asks the user a series of questions
- Ignores (or misinterprets) anything the user says that is not a direct answer to the system's questions

System Initiative + Universals

- We can give users a little more flexibility by adding universals: commands you can say anywhere
- As if we augmented every state of FSA with these
 - Help (AMAZON.HelpIntent)
 - Start Over (AMAZON.StartOverIntent)
 - Repeat (AMAZON.RepeatIntent)
- This describes many implemented systems
- But still doesn't allow user much flexibility

Finite-state Dialog Manager

Advantages

- Straightforward to encode
- Clear mapping of interaction to model
- Well-suited to simple information access

Disadvantages

- Limited flexibility of interaction
 - constrained input single item
 - fully system controlled
 - restrictive dialog structure & order
- Ill-suited to complex problemsolving

```
FLIGHT FRAME:
           ORIGIN:
                 CITY: Boston
                 DATE: Tuesday
                 TIME: morning
            DEST:
                 CITY: San Francisco
           AIRLINE:
```

• Use the structure of the **frame** to guide dialogue

Slot	Question
ORIGIN	What city are you leaving from?
DEST	Where are you going?
DEPT DATE	What day would you like to leave?
DEPT TIME	What time would you like to leave?
AIRLINE	What is your preferred airline?

- Mixed initiative
- User can answer multiple questions at once
- System asks questions of user, filling any slots that user specifies
 - when frame is filled
 - when to query database
- If user answers 3 questions at once, system has to fill slots and not ask these questions again!
 - Avoids strict constraints on order of the finite-state architecture.

Advantages

- Relatively flexible input & orders
- Well-suited to complex information access
- Supports different types of initiative

Disadvantages

• Ill-suited to more complex problem-solving

Hierarchical Dialog Manager

- Master (Boss)
 - rank miniskills
 - long-term coherence
 - user engagement
- Miniskills (Minions)
 - greeting / goodbye / menu / topics
 - probe user personality
 - discuss a news article / movie
 - tell a fact / thought / advice / joke
 - ask / answer a question

Other Dialog Manager Architectures

- Classic Al Planning
- Information State (Markov Decision Process)
- Distributional (Neural Network)

Natural Language Generation

Natural Language Generation (NLG)

Natural Language Language Understanding

Abstract Representation

Natural Language Language Generation

Abstract Representation

NLG Modules

- Content planning
 - what to say
 - a module in dialog manager

- Language generation
 - how to say it
 - select syntactic structure and words
 - adjust prosody

NLG Approaches

- Template-based generation
 - most common in practical systems
 - "What time do you want to leave CITY-ORIG?"
 - "How about we talk about TOPIC?"
- Neural sequence models
 - recent research interest

System Evaluation

Motivation

- Goal: determine overall user satisfaction
- A metric to compare systems
 - can't improve it if we don't know where it fails
 - can't decide between two systems without a goodness metric
- A metric as an input to reinforcement learning
 - automatically improve system performance via learning

Dialog System Evaluation

- Extrinsic Evaluation: embedded in some external task
- Intrinsic Evaluation: evaluating the component as such
- What constitutes success or failure for a dialog system?

Was the system easy to understand?
Did the system understand what you said?
Was it easy to find the message/flight/train you wanted?
Was the pace of interaction with the system appropriate?
Did you know what you could say at each point?
How often was the system sluggish and slow to reply to you?
Did the system work the way you expected it to?
Do you think you'd use the system in future?

PARADISE Framework

PARADISE Framework

- PARAdigm for Dialogue System Evaluation (Walker et al. 2000)
- Maximize Task Success

Task Success

- % of subtasks completed
- Correctness of each questions/answer/error message
- Correctness of total solution
 - Error rate in final slots
 - Generalization of Slot Error Rate
- Users' perception of whether task was completed

Efficiency Cost

- Polifroni et al. (1992), Danieli and Gerbino (1995) Hirschman and Pao (1993)
- Total elapsed time in seconds or turns
- Number of queries
- Turn correction ration: number of system or user turns used solely to correct errors, divided by total number of turns

Quality Cost

- # of times ASR system failed to return any sentence
- # of ASR rejection prompts
- # of times user had to barge-in
- # of time-out prompts
- Inappropriateness (verbose, ambiguous) of system's questions, answers, error messages

Concept Accuracy

- "Concept accuracy" or "Concept error rate"
- % of semantic concepts that the NLU component returns correctly
- I want to arrive in Austin at 5:00
 - DESTCITY: Boston
 - Time: 5:00
- Concept accuracy = 50%
- Average this across entire dialogue
- "How many of the sentences did the system understand correctly"
- Can be used as either quality cost or task success

PARADISE: Regress against user satisfaction

Regressing against user satisfaction

- Questionnaire to assign each dialog a "user satisfaction rating": this is dependent measure
- Set of cost and success factors are independent measures
- Use regression to train weights for each factor

Experimental Procedures

- Subjects given specified tasks
- Spoken dialogs recorded
- Cost factors, states, dialog acts automatically logged
- ASR accuracy, barge-in hand-labeled
- Users specify task solution via web page
- Users complete User Satisfaction surveys
- Use multiple linear regression to model User Satisfaction as a function of Task Success and Costs; test for significant predictive factors

Performance Functions from Three Systems

- ELVIS User Sat.= .21* COMP + .47 * MRS .15 * ET
- TOOT User Sat. = .35* COMP + .45* MRS .14*ET
- ANNIE User Sat.= .33*COMP + .25* MRS -.33* Help
 - COMP: User perception of task completion (task success)
 - MRS: Mean (concept) recognition accuracy (cost)
 - ET: Elapsed time (cost)
 - Help: Help requests (cost)

Evaluation Summary

- Best predictors of User Satisfaction:
 - Perceived task completion
 - mean recognition score (concept accuracy)
- Performance model useful for system development
 - Making predictions about system modifications
 - Distinguishing 'good' dialogues from 'bad' dialogues
 - As part of a learning model

Now that we have a success metric

- Could we use it to help drive learning?
- Learn an optimal policy or strategy for how the conversational agent should behave

Reward Propagation for Social Chatbots

Conversation-level Ratings

- Expensive
 - users may decline to rate the system
- Sparse
 - a dialog typically involves multiple topics (or tasks) which may contribute differently to the final conversation-level rating
- Noisy
 - individual characteristics may influence the way a user interacts with the system and the resulting rating
- Can we use the PARADISE framework?

Dialog Segmentation

- Micro-segments
- Sub-dialogs

Reward Propagation

• Step 1: Predictor Groups (predictive features)

Predictor Group	Micro- segm.	Sub- dial.	Conv.
Cost Turns	√	√	\checkmark
Engaged Turns	\checkmark	\checkmark	\checkmark
Engaged Topics		\checkmark	\checkmark
Topic Acceptance			✓

• Step 2: Learn a linear regression model

$$\mathcal{M}_0: r_0 \leftarrow \sum_i a_i f_i + b,$$

- f_i : conversation-level features
- *b*: bias

% engaged turns	0.25	% repair turns	-0.10
# accepted topics	0.07	# rejected topics	<u>-0.02</u>
# repair turns	<u>-0.08</u>	% accepted topics	0.01
# negotiation turns	<u>-0.09</u>	# engaged turns	0.37
# engaged topics	<u>-0.16</u>	% engaged topics	0.03

Table 6: Weights learned for selected predictors, ordered (row-by-row, left-to-right) based on the stepwise forward selection process. Underscored numbers indicate statistical significance (p < .05).

Step 2: Learn a linear regression model

$$r_0 = 0.1f_1 + 0.2 f_2$$

- f_1 : number of engaged turns
- f_2 : percentage of engaged turns

Step 3: Project the reward

$$\hat{r}_s = \sum_i a_i g_i$$

	# Turns	f_1	f_2	\hat{r}_0
conversation	100	30	.30	3.06
	# Turns	g_1	g_2	\hat{r}_s
sub-dial. 1 (sports)	60	15	.25	1.55
sub-dial. 2 (tech.)	30	6	.20	0.64
sub-dial. 3 (science)	10	9	.90	1.08

$$r_0 = 0.1f_1 + 0.2 f_2$$

Reward Propagation

Reward Aggregation: A Case Study

• Step 4: Average all segment-level rewards for sub-dialogs about the same topic.

Domain	Count	Mean	Std. Dev.
TECHNOLOGY	780	0.16	0.25
SCIENCE	972	0.14	0.29
MOVIES	112	0.09	0.27
SPORTS	1336	0.07	0.25
POLITICS	504	0.05	0.28

Challenges & Looking Ahead

Challenges in Dialog Management

Implementation

- underspecified or overly complex theories
- implementation is driven by technical limitations and specific tasks

Comparison

- multiple system modules involved (ASR, NLU, NLG, TTS, backend services)
- domain-specific evaluation metrics

Data collection & annotation

- expensive
- chicken-and-egg issue, i.e., need to have an initial system for data collection

Looking Ahead

- Improvement in speech technologies
- Accessible NLP techniques
- More choices on data collection and annotation
- Combination of science, engineering & art

Upcoming Classes

Upcoming Classes

- April 19: Project proposal presentation
- April 24: Project consulting session + Guest Lecture by Vicky Zayats
- April 26: Lab 2 Checkoff
- May 1: Paper presentation (2 teams)
- May 8: Guest Lecture on Knowledge Graph by Alex Marin
- May 15: Paper presentation (2 teams)
- May 22: Paper presentation (1 team) + Project consulting session

Topics

- The presentation should focus on 1-2 relevant topics and cover several papers.
- Example topics:
 - Language Understanding
 - Dialog Management
 - Language Generation
 - Dialog Analysis
 - End-to-end Systems
 - Reinforcement Learning
 - •

Some keywords & survey papers

- Neural conversation model
 - sequence-to-sequence model
 - attention model
- Partially Observed Markov Decision Process (POMDP)
 - Reinforcement Learning
- Schatzmann et al. 2006. "A Survey of Statistical User Simulation Techniques for Reinforcement-Learning of Dialogue Management Strategies"
- Lemon et al. 2007. "Machine Learning for Spoken Dialogue Systems"
- Frampton et al. 2009. "Recent research advances in reinforcement learning in spoken dialogue systems"

Where to find papers?

Journals

- IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP)
- Transactions of the Association for Computational Linguistics (TACL)
- Dialogue & Discourse

Conferences & Workshops

- Special Interest Group on Discourse and Dialogue (SIGdial)
- INTERSPEECH
- ACL, EMNLP, NAACL, EACL, COLING
- ICML, NIPS, ICLR

Other courses

- http://courses.washington.edu/ling575/SPR2017/index.html
- http://web.stanford.edu/class/cs224s/syllabus.html
- https://dialog-systems-class.github.io/readings.html

Format

- 10% of your final grade
- Each team leads a discussion
 - Week 6 (May 1): 2 teams
 - Week 7 (May 8): Guest Lecture
 - Week 8 (May 15): 2 teams
 - Week 9 (May 22): 1 team + Project Consulting Session
- 50min presentation & discussion
- All team members need participate in the presentation.