

Investigação Operacional

Apresentação da Cadeira

Julho, 2017

Um camponês está na margem de um rio e quer passar para a outra margem um lobo, uma cabra e uma couve. O seu velho barco só aguenta com o seu peso e o de uma das coisas que tem de transportar.

Quantas viagens terá que fazer, sabendo que se deixar o lobo sozinho com a cabra, o lobo come a cabra e se deixar a cabra sozinha com a couve, a cabra come a couve?

Objectivos da cadeira

O objectivo principal desta cadeira é analisar, de forma científica, através da sua formulação, resolução e implementação, alguns dos problemas frequentes na área de Gestão.

O que queremos discutir!

- Origem e Natureza da Investigação Operacional
- O Modelo da Programação Linear
- Método Simplex
- Dualidade
- Pós- optimização, análise de sensibilidade
- Problemas particulares de PL
 - O Problema de transportes
 - Problema da designação
 - Filas de espera
 - Transpedição

Avaliações.

Bibliografia básica

- 1. Silva, E.M., Silva, E.M.; Valter, G.; Murolo, A. C.: Pesquisa Operacional. Editora Atlas S.A. 1998.
- 2. Ackoff, R.L. & Sasieni, M.W.: Pesquisa Operacional, Rio de Janeiro, Livros Técnicos e Científicos, 1971
- 3. Bronson, R.: Pesquisa Operacional. McGraw Hill Schaum.
- **4. Ramalhete, M**.: Programação Linear, vol I e II. McGraw Hill Schaum.
- **5. Ehrlich, P.J**.: Engenharia Económica. Avaliação e Selecção de Projectos de Investimento. III Edição.

Estec Escola Superior Técnica

Exemplo 2:

- Uma empresa fabrica dois produtos P₁ e P₂. O lucro unitário do produto P₁ é de 1000 unidades monetárias e o lucro unitário de P₂ é de 1800 u.m. A empresa precisa de 20 horas para fabricar uma unidade de P₁ e de 30 horas para fabricar uma unidade de P₂.
- O tempo anual de produção disponível para isso é de 1200 horas. A demanda esperada para cada produto é de 40 unidades anuais para P1 e 30 unidades anuais para P2.
 - Qual é o plano óptimo de produção para que a empresa maximize seu lucro nesses itens?
 - Construa o modelo de programação linear para esse caso.

Estec Escola Superior Técnica

Exemplo 3:

- Para uma boa alimentação, o corpo necessita de vitaminas e proteínas. A necessidade mínima de vitaminas é de 32 unidades por dia e a de proteínas é de 36 unidades por dia. Uma pessoa tem disponível carne e ovos para se alimentar. Cada unidade de carne contém 4 unidades de vitaminas e 6 unidades de proteínas. Cada unidade de ovo contém 8 unidades de vitaminas e 6 unidades de proteínas. Cada unidade de carne custa 3 u.m. e cada unidade de ovo custa 2.5 u.m.
 - Qual é a quantidade diária de carne e ovos que deve ser consumida para suprir as necessidades de vitaminas e proteínas com menor custo possível?

Exemplo 4:

- Uma empresa produz três tipos de portas a partir de um determinado material. Sabendo que diariamente a empresa dispõe de 500 kg de material e 600 horas de trabalho, determinar *um plano óptimo de produção* que corresponda ao maior lucro.
 - A tabela seguinte indica a quantidade de material e horas de trabalho necessárias para a produção de uma porta de cada tipo, assim como o lucro unitário de cada uma delas:

Recursos	Porta 1	Porta 2	Porta 3
Quantidade de material	8 kg	4kg	3 kg
Horas de Trabalho	7 horas	6 horas	8 horas
Lucro Unitário	50 Euros	40 Euros	55 Euros

Exemplo 5:

- A empresa "Türe" produz artigos de vidro de alta qualidade: *janelas* e *portas*, em três secções de produção:
 - Secção de Serralharia.....: para produzir as estruturas de alumínio.
 - **Secção de Carpintaria....**: para produzir as estruturas de madeira.
 - Secção de Vidro e Montagem: para produzir o vidro e montar as portas e janelas.
- Devido à diminuição dos lucros, o gerente decidiu reorganizar a produção, e propõe produzir só 2 produtos que têm uma melhor aceitação entre os clientes:
 - *Produto 1.* Uma porta de vidro com estrutura de alumínio.
 - *Produto 2.* Uma janela grande com estrutura de madeira.
- O departamento de Marketing da empresa concluiu que a empresa pode vender tanto de qualquer dos dois produtos, tendo em conta a *capacidade de produção disponível*.
- Como ambos os produtos partilham a capacidade de produção da secção 3, o gerente solicitou ao *Departamento de Investigação Operacional* da empresa a resolução deste problema. O Departamento de IO formulou o problema, utilizando os seguintes dados:
 - a capacidade de produção por minuto de cada secção a ser utilizada na produção destes produtos.
 - a capacidade de produção por minuto de cada secção, a ser utilizada para produzir uma unidade de cada produto.
 - Os lucros unitários para cada produto em Euros.
- Determine o plano de produção que permite obter o maior lucro possível.

Exemplo 5:

Estes dados estão resumidos na seguinte tabela:

Capacidade utilizada por
unidade de produção

	41110466 46		
Secção Nº	Produto 1	Produto 2	Capacidade disponível
1	1	0	4
2	0	2	12
3	3	2	18
Lucro unitário (em Euros)	3	5	