An English fragment

COGS 532, Spring 2023 April 24, 2023

1 The formalism

We define the components of our formalism.

Definition 1.1 (Vocabulary). The vocabulary of the grammar formalism consists of the following sets:

- i. a set of attribute symbols *A*;
- ii. a set of basic value symbols V^b ;
- iii. a set of decorations $D = \{u, x\}$;
- iv. the set of value symbols $V = \{v \mid v \in V^b \text{ or } v = {^\delta}v' \text{ for some } v' \in V^b \text{ and } \delta \in D\}$
- v. a set of variables X;

Definition 1.2 (Feature map). A feature map of a grammar, designated μ , is a function from A to $\mathcal{P}(V)$. It maps each attribute symbol to the set of possible values it can take.

Definition 1.3 (Feature structures). A possible feature structure defined in a grammar is some set

$$\{a: v \mid a \in A' \text{ and } v \in \mu(a)\}\$$
 for some $A' \subseteq A$

Note that Definition 1.3 guarantees that a feature structure can set a value for an attribute at most once. Also, it rules out nested feature structures, where the value of an attribute is also a feature structure.

Definition 1.4 (Merge). The operation Merge takes as input two feature structures F_1 and F_2 and returns a feature structure F_3 . The result is computed through the following steps:

- i. For each feature a: v in F_1 , if you find a feature u in F_2 delete the latter, and vice versa.
- ii. For each feature a: v in F_1 , if you find a feature x a: v in F_2 delete both features, and vice versa.
- iii. If there are no conflicts in feature structures, merge them into a single feature structure.

2 Notational conventions

Convention 2.1. An attribute value pair a: v is shortened to a^v .

Convention 2.2. When obvious, we omit the attribute. E.g. we write N instead of Cat^N.

 $^{^{1}\}mathcal{P}$ stands for the power set function.

3 Features

 $\begin{array}{lll} \text{Attribute} & \text{Value} & \text{Description} \\ \text{Cat} & \text{N,V,D,Adj,C,...} & \text{category} \end{array}$

Cmp 0, 1, 2, 3 Number of missing complements

Spc +,- Specified or not

 ϕ 0,1 Person, number

4 Lexicon

Lexicon 4.1 (nominal).

book	:=	[N, acc]	(1)
book	:=	[N, "Fin+]	(2)
blue	:=	$[^{u}N]$	(3)
the	:=	$[D, ^xN]$	(4)
a	:=	$[D, ^xN]$	(5)
John	:=	[D,Acc]	(6)
John	:=	$[D, ^{u}Fin^{+}]$	(7)
him/her	:=	[D,Acc]	(8)
s/he	:=	[D, "Fin ⁺]	(9)
to	:=	$[P, ^{x}D^{x}acc]$	(10)
of	:=	$[^{u}N, ^{x}D^{x}acc]$	(11)

Lexicon 4.2 (verbal).

sleep := [V] (1) love := [V, ^{x}D , ^{x}acc] (2) give := [V, ^{x}D , ^{x}acc , ^{x}P] (3)

Lexicon 4.3 (functional).

$$-s := [Fin^+, {}^xV, {}^xD]$$
 (1)
to := $[Fin^-, {}^xV]$ (2)

(1) Mary loves John.

(2) the blue book

 $[D, ^xN]$ the (1) := $[^{u}N]$ blue (2) := book [N, acc] (3) := blue book = [N,acc](4) the blue book $[\mathrm{D},\mathrm{acc}]$ (5) = (6)

(3) (the (wild (destruction (of Rome))))

the $[D, ^xN]$ (1) := $[^{u}N]$ wild (2) := destruction := [N, acc] (3) of $[^{u}N, ^{x}D, ^{x}acc]$ (4) := Rome [D, acc] (5) := of Rome $[^{u}N]$ (6) = destruction of Rome [N, acc] (7) = wild destruction of Rome [N, acc] (8) the wild destruction of Rome = [D, acc] (9)