Feature set analysis for chess 3UNN networks Tesis de Licenciatura

Martín Emiliano Lombardo

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

2024

Introducción

Ajedrez

- Dos jugadores
- Suma cero

Humano vs. Computadora

Ajedrez como árbol

Motores de ajedrez (Chess Engines)

- Exploran el árbol de juego (Minimax, MCTS, etc.)
- Utilizan funciones de evaluación en las hojas
- La evaluación se propaga hacia arriba, según el algoritmo

Función de evaluación

(adelanto) Feature set: ¿Cómo transformar la posición a un vector?

Motores de ajedrez (breve historia)

Plan

asdasd

- Text visible on slide 1
- Text visible on slide 2
- Text visible on slide 3
- Text visible on slide 4

asdasd

Contenido

- 1 Introducción
- 2 Engine
- 3 Feature set
 - Motivación
 - Definición
 - Operadores
 - Feature sets conocidos
 - Resumen
- 4 JUNN (NNUE)
- 5 Training
- 6 Experimentos
- 7 Conclusión

Engine

Feature set

Motivación

¿Cómo transformar la posición a un vector?

Definición

Definición

Un feature set S_P se define con un conjunto S y un predicado asociado P(e), donde:

- **S** es un conjunto de conceptos (rol, color, celda, número, etc.).
- P(e) es un predicado que determina si e está presente (o activo) en la posición (implícita).
- Cada elemento en S_P es un *feature*.
- Cada feature es un valor en el vector de entrada, valiendo 1 si está activo y 0 si no.

ŏ•o

FILES =
$$\{a, b, ..., h\}$$

RANKS = $\{1, 2, ..., 8\}$

SQUARES = $\{a1, a2, ..., h8\}$
 $\begin{cases} a1 & b1 & c1 & c1 & c1 & c1 & c1 & c1 \\ 6 & a6 & b6 & c6 & d6 & e6 & b8 & c5 & b6 \\ 5 & a5 & b5 & c5 & d5 & c5 & b5 & b5 \\ 4 & a4 & b4 & c4 & d4 & c4 & d4 & c4 \\ 2 & a2 & b2 & c2 & d2 & c2 & d2 & c2 \\ 1 & a1 & b1 & c1 & c1 & c1 & c1 & c1 & c1 \\ 2 & a2 & b2 & c2 & d2 & c2 & d2 & c2 \\ 1 & a1 & b1 & c1 & c1 & c1 & c1 & c1 \\ 2 & a2 & b2 & c2 & d2 & c2 & d2 & c2 \\ 3 & a3 & b2 & c3 & c3 & c3 & c3 & c3 \\ 4 & a4 & b4 & c4 & d4 & c4 & d4 & c4 \\ 2 & a2 & b2 & c2 & d2 & c2 & d2 & c2 \\ 3 & a3 & b2 & c3 & d3 & c3 & c3 & c3 \\ 4 & a4 & b4 & c4 & d4 & c4 & d4 & c4 & d4 & c4 \\ 2 & a2 & b2 & c2 & d2 & c2 & d2 & c2 \\ 3 & a3 & b2 & c3 & d3 & c3 & c3 & c3 \\ 4 & a4 & b4 & c4 & d4 & c4 & d4 & c4 & d4 & c4 \\ 2 & a2 & b2 & c2 & d2 & c2 & d2 & c2 & d2 \\ 3 & a3 & b2 & c3 & c3 & c3 & c3 & c3 & c3 \\ 4 & a4 & b4 & c4 & d4 & c4 & d4 & c4 & d4 & c4 \\ 2 & a2 & b2 & c2 & d2 & c2 & d2 & c2 & d2 \\ 2 & a2 & b2 & c2 & d2 & c2 & d2 & c2 & d2 \\ 2 & a2 & b2 & c2 & d2 & c2 & d2 & c2 & d2 \\ 2 & a2 & b2 & c2 & d2 & c2 & d2 & c2 & d2 \\ 2 & a2 & b2 & c2 & d2 & c2 & d2 & c2 \\ 2 & a3 & b2 & c3 & c3 & c3 & c3 & c3 & c3 \\ 2 & a2 & b2 & c2 & d2 & c2 & d2 & c2 & d2 \\ 2 & a2 & b2 & c2 & d2 & c2 & d2 & c2 \\ 2 & a2 & b2 & c2 & d2 & c2 & d2 & c2 \\ 2 & a2 & b2 & c2 & d2 & c2 & d2 & c2 \\ 2 & a2 & b2 & c2 & d2 & c2 & d2 & c2 \\ 2 & a2 & b2 & c2 & d2 & c2 & d2 & c2 \\ 2 & a2 & b2 & c2 & d2 & c2 & d2 & c2 \\ 2 & a2 & b2 & c2 & d2 & c2 & d2 & c2 \\ 2 & a2 & b2 & c2 & d2 & c2 & d2 & c2 \\ 2 & a2 & b2 & c2 & d2 & c2 & d2 & c2 \\ 2 & a2 & b2 & c2 & d2 & c2 & d2 & c2 \\ 2 & a2 & b2 & c2 & d2 & c2 & d2 & c2 \\ 2 & a2 & b2 & c2 & d2 & c2 & d2 & c2 \\ 2 & a2 & b2 & c2 & d2 & c2 & d2 & c2 \\ 2 & a3 & b2 & c3 & c3 & c3 & c3 & c3 \\ 2 & a2 & b2 & c3 & c3 & c3 & c3 & c3 \\ 2 & a2 & b2 & c3 & c3 & c3 & c3 & c3 \\ 2 & a2 & b2 & c3 & c3 & c3 & c3 & c3 \\ 2 & a2 & b2 & c3 & c3 & c3 & c3 & c3 \\ 2 & a2 & b2 & c3 & c3 & c3 & c3 & c3 \\ 2 & a2 & b2 & c3 & c3 & c3 & c3 & c3 \\ 2 & a3 & b2 & c3 & c3 & c3 & c3 & c3 \\ 2 & a3$

Información sobre las piezas:

Roles = { △ Pawn, △ Knight, ♠ Bishop, ☒ Rook, ∰ Queen, ❖ King $Colors = {\bigcirc White, ullet Black}$

Definición

Ejemplo completo

ŏo•

	Feature set	
	$(FILES \times COLORS)_P$	$(\text{Files} \times \text{Roles})_Q$
Active features	$\langle a, \bigcirc \rangle, \langle a, \bullet \rangle, \langle c, \bullet \rangle,$	$\langle a, \& \rangle, \langle c, \& \rangle, \langle c, \& \rangle,$
	$\langle c, \bigcirc \rangle, \langle d, \bigcirc \rangle, \langle h, \bullet \rangle$	$\langle d, \& \rangle, \langle h, \& \rangle$

 $P(\langle f, c \rangle)$: there is a piece in file f with color c. $Q(\langle f, r \rangle)$: there is a piece in file f with role r.

Operación: Suma \oplus (concatenación)

Hay veces que es útil combinar información de dos feature sets

$$S_P,\, T_Q$$
 : feature sets $S_P\oplus T_Q=(S\cup T)_R$ where $R(e)=egin{cases} P(e) & ext{if } e\in S \ Q(e) & ext{if } e\in T \end{cases}$

Operadores

Operación: Producto \times (and)

$$S_P imes T_Q = (S imes T)_R$$
 where $R(\langle e_0, e_1
angle) = P(e_0) \ \land \ Q(e_1)$

Feature sets conocidos

Feature set: ALL

La codificación más natural de una posición de ajedrez

ALL:
$$(SQUARES \times ROLES \times COLORS)_P$$

 $P(\langle s, r, c \rangle)$: there is a piece in square s with role r and color c

- Es pequeño: $64 \times 6 \times 2 = 768$ features
- Es completo: contiene toda la información de la posición
- Es muy rápido computar cuáles features están activas

Feature set: KING-ALL ó "KA"

Los engines modernos usan variaciones del siguiente feature set. Permite entender la posición en relación a la posición del rey:

$$ext{KING-ALL} = ext{SQUARE}_{\mathcal{K}} imes ext{ALL}$$
 $\mathcal{K}(s)$: s is the square of the king of the side to move

- Es grande: $64 \times 768 = 49152$ features
- Es muy rápido como All
- Entrenarlo require un dataset más grande y lleva más tiempo (no me meto acá)

Feature sets: resumen

- **S**: set of concepts (roles, colors, squares, files, ranks, etc.).
- **P**(e): predicate that defines when the feature e is present in the (implicit) position.
- **S**_P: a feature set. Every element in S_P is a feature. Features that satisfy P are *active*.
- $S_P \times T_Q = (S \times T)_R$ where $R(\langle e_0, e_1 \rangle) = P(e_0) \wedge Q(e_1)$
- $S_P \oplus T_Q = (S \cup T)_R$ where $R(e) = \begin{cases} P(e) & \text{if } e \in S \\ Q(e) & \text{if } e \in T \end{cases}$

(AUNN) NNUE

ЗUИИ: Efficiently Updatable Neural Networks

ЗUИИ: **N**eural **N**etworks

- El input es un vector one-hot generado por el feature set.
 - Debe tener pocos features activos (rala): introduce una cota superior.
- La red es una *feedforward* clásica con dos capas ocultas.

Linear layer

Figure: Linear layer operation comparison. Figures from [18].

ЗUИИ: **E**fficient **U**pdates

Figure: Partial tree of feature updates (removals and additions) for $(SQUARES \times COLORS)$ (white's point of view) in a simplified 3x3

ЗИИИ: Tradeoff

motivacion comparacion de burns

Training

Experimentos

Setup de training

Recapitulando... ¿Qué hay que definir para entrenar una red?

- Feature set: determina la codificación y los patrones que se pueden aprender
- Dataset: datos de entrenamiento, visto anteriormente
- Arquitectura de la red: el tamaño de cada capa; L₁ y L₂
- **Método de entrenamiento**: PQR/target scores; determina el formato de las muestras y la loss function
- Hiperparámetros: learning rate, batch size, epochs, etc.

Setup de evaluación

¿Cómo evalúo el performance de una red entrenada?

- Loss (train y val.): indica la calidad de las predicciones.
 - Permite detectar overfitting y otros problemas
- Puzzle accuracy: porcentaje de movimientos acertados en puzzles de Lichess.
 - Sólo hay un movimiento correcto
 - Proxy (muy malo) de la fuerza de la red
- Elo relativo: la medida más común para comparar engines.
 - Se realizan torneos de 100ms por movimiento
 - El elo es calculado a partir de Ordo

Baseline: motivación

Busco fijar el setup de entrenamiento con valores razonables

- El feature set va a cambiar cada experimento
- El dataset está fijo
- El método de entrenamiento principal es target scores

Entonces queda por determinar...

- La arquitectura de la red $(L_1 \ y \ L_2)$
- Los hiperparámetros

Baseline: hiperparámetros

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

■ Learning rate: 0.0005

■ Exponential decay: 0.99

■ Batch size: 16384

■ **Epoch size**: 100 million

cada epoch realiza 6104 batches

■ **Epochs**: 256

cada run observa 25.6 billion samples

Baseline: experimento

Sólo queda buscar parámetros L_1 y L_2 razonables. Realizo una búsqueda en grilla con:

- \blacksquare L1 \in {256, 512, 1024, 2048}
- L2 ∈ {32, 64, 128, 256}

El feature set a utilizar es ALL[768].

Baseline: resultados

Baseline: conclusión

- L2=32. El performance cae dramáticamente si L2 aumenta, utilizo el más bajo.
 - Sería buena idea probar valores más chicos de L2.
- L1=512. Es el mejor valor para L2=64 y L2=128, y en margen de error para L2=32.
 - Además es el más rápido de entrenar.

Axis encoding: motivación

Figure: Weights of **a neuron** in the L1 layer, which are connected to features in ALL where the role is Ξ Rook. The intensity represents the weight value, and the color represents the sign (although not relevant).

Axis encoding: motivación

La red detecta patrones parecidos a los movimientos de las piezas. Para hacerle la vida más fácil a la red, propongo agregar features como:

"there is a ○ White \(\mathbb{Z} \) Rook in the 4th rank"

Axis encoding: experimento

Depiction	Block name		Definition	Number of features
← →	Н	(FILES	\times Roles \times Colors) _P	96
‡	V	(Ranks	\times Roles \times Colors) _P	96
	D1	(Diags1	\times Roles \times Colors) _P	180
	D2	(Diags2	\times Roles \times Colors) _P	180

 $P(\langle x, r, c \rangle)$: there is a piece in x with role r and color c

Axis encoding: experimento

Depiction	Feature set	Number of features
$\longleftrightarrow \oplus \updownarrow$	$\mathrm{H}\oplus\mathrm{V}$	192
✓ ⊕ 🔨	$\mathrm{D}1\oplus\mathrm{D}2$	360
$\longrightarrow \oplus \ \ \downarrow \ \oplus \ \nearrow \ \oplus \ \searrow$	$H\oplus V\oplus D1\oplus D2$	552
$ALL \oplus \longleftrightarrow \oplus \updownarrow$	$\mathrm{All} \oplus \mathrm{H} \oplus \mathrm{V}$	960
$ALL \oplus \nearrow \oplus \searrow$	$\mathrm{All} \oplus \mathrm{D1} \oplus \mathrm{D2}$	1128
$ALL \oplus \longleftrightarrow \oplus \uparrow \oplus \nearrow \oplus \searrow$	$ALL \oplus H \oplus V \oplus D1 \oplus D2$	1320

Axis encoding: resultados

Feature set	Number of features	Val. loss	Rating elo (rel. to ALL)	Puzzles move acc.
←→ ⊕ ‡	192	0.005810	-384.3 ± 5.1	0.8618
✓ ⊕ \	360	0.006707	-444.1 ± 5.1	0.8517
	552	0.003907	-183.5 ± 4.1	0.8748
ALL (reference)	768	0.003134	0.0	0.8865
$ALL \oplus \longleftrightarrow \oplus \updownarrow$	960	0.003082	$\text{-27.1}\pm4.1$	0.8851
$ALL \oplus \nearrow \oplus \searrow$	1128	0.003087	$\text{-26.1} \pm 3.8$	0.8814
$\begin{array}{c} ALL \oplus \longleftrightarrow \oplus & \updownarrow \\ \oplus \swarrow & \oplus & \diagdown \end{array}$	1320	0.003067	-58.7 ± 3.7	0.8766

Pairwise axes: motivación

Las mismas dos features (par rojo y par azul)

Pairwise axes: motivación

Comparando con el experimento anterior, es más específico en vez de más general:

"there is a ● Black \(\mathbb{Z}\) Rook next to a \(\cap \) White \(\text{\text{\text{\text{\text{\text{\text{Rook next to a}}}}} \) file"

Pairwise axes: experimento

D.	Block name	Definition	Num. of features	
		$(RANKS \times (ROLES \times COLORS) \times (ROLES \times COLORS))_P$		
0-0	PH	$P(\langle r, r_1, c_1, r_2, c_2 \rangle)$: there is a piece in rank r with role r_1 and color c_1 to the left of a piece with role r_2 and color c_2	1152	
O PV		$({\rm Files}\times({\rm Roles}\times{\rm Colors})\times({\rm Roles}\times{\rm Colors}))_Q$		
	PV	$Q(\langle f, r_1, c_1, r_2, c_2 \rangle)$: there is a piece in file f with role r_1 and color c_1 below a piece with role r_2 and color c_2	1152	

Pairwise axes: experimento

Pairwise axes: experimento

Los feature sets a entrenar son:

- lacktriangle ALL \oplus PH (1920 features)
- lacktriangle ALL \oplus PV (1920 features)
- \blacksquare ALL \oplus PH \oplus PV (3072 features)

Pairwise axes: resultados

Feature set	Number of features	Val. loss min	Rating elo (rel. to ALL)
All (reference)	768	0.003134	0.0
All ⊕ 0-0	1920	0.003033	-38.2 ± 4.8
$ALL \oplus $	1920	0.002946	-8.4 ± 5.0
$ALL \oplus o - o \oplus \emptyset$	3072	0.002868	-37.6 ± 4.9

■ Reducir el número de pairs puede llevar a una mejora por sobre ALL (ej. △)

Mobility: motivación

- La mobilidad en ajedrez es una medida de la cantidad de movimientos que puede hacer un jugador en una posición.
- Un paper de Eliot Slater (1950) mostró que hay una correlación entre la mobilidad de un jugador y la cantidad de partidas ganadas.
- Se usa en funciones de evaluación hechas a mano.
- Propongo agregar mobilidad como features en la red.

Mobility: experimento

Hay dos maneras de codificar la mobilidad:

- Bitsets (por rol/color)
- Cantidades (por rol/color)

Mobility: experimento (bitsets)

Los features proveen **las celdas** a las que una pieza de determinado rol/color puede moverse.

La cantidad de features es $64 \times 6 \times 2 = 768$, la misma que ALL.

Mobility: experimento (counts)

Los features proveen **la cantidad de celdas** a las que una pieza de determinado rol/color puede moverse. Esto reduce la cantidad de features significativamente.

Piece role	Min	Max
∆ Pawn	0	8+
🛭 Knight	0	15+
🎍 Bishop	0	16+
□ Rook	0	25+
	0	25+
★ King	0	8

Mobility: experimento (counts)

Figure: Total mobility values for each piece on the board. Computed using 2 billion boards. The value 0 for the 🖄 Knight, 🙎 Bishop, 🖺 Rook,

Mobility: experimento

Block name	Definition	Number of features
	$(SQUARES \times ROLES \times COLORS)_P$	
MB	$P(\langle s, r, c \rangle)$: there is a piece of role r and color c that can move to square s	768
MC	$(\{0,1,\ldots\} \times \text{Roles} \times \text{Colors})_P$	
	$P(\langle m, r, c \rangle)$: the value of mobility for a piece of role r and color c is m	206

Los feature sets a entrenar son: $\rm ALL \oplus MB$ (1536 features) y $\rm ALL \oplus MC$ (974 features).

Mobility: resultados

Table: Mobility encodings results

Feature set	Number of features	Val. loss	Rating elo (rel. to ALL)
ALL (reference)	768	0.003134	0.0
$ALL \oplus MB$	1536	0.002824	-260.9 ± 5.4
$\overline{\text{All} \oplus \text{MC}}$	974	0.003032	-280.9 ± 5.6

- Las predicciones mejoran muy poco (el loss no se reduce tanto).
- Por ende, el costo de las actualizar los features es más alto al beneficio que aportan.
- MB tiene más updates que MC, pero menor loss que

Feature set statistics

Depiction	Feature block	Number of features	Average features		
Боргостоп			active per position	added per move	removed per move
+	All	768	14.68	0.98	0.60
← →	Н	96	14.68	0.60	0.43
1	V	96	14.68	0.61	0.43
	D1	180	14.68	0.77	0.52
	D2	180	14.68	0.77	0.52
0-0	РН	1152	8.23	0.92	0.57
_ }	PV	1152	8.30	0.83	0.53
MB MC	MB MC	768 206	48.93 12.00	5.68 2.34	4.35 1.48

PQR

:

Conclusión

Ajedrez

asdasd