fe2 * 24:
$$y'(x) = \frac{2-e^x}{3+2y_{11}} \Rightarrow (3\cdot2y)y' = 2\cdot e^x$$

or $(3+2y)dy = (2-e^x)dx$. Indepents to cyt

(a) $3y + y^2 = 2x - e^x + C$ General solution in an implicit form.

If $y(0) = 0 \Rightarrow 3\cdot 0 + 0^2 = 20 - e^x + C \Rightarrow C = 1$

So the solution to the Initial Value Profess

 $y' = \frac{2-e^x}{3+2y}$ is $y^2 + 3y + e^x - 2x - 1 = 0$ (in)

Note that (ax) can be which explicitly:

 $y_{12} = -3 \pm \sqrt{9 - (e^2 - 2x - 1)}$ but only $y = -3 + \sqrt{8 + 2x - e^x}$

solvefies $y(0) = 0$.

Done of y : Mex for which $y = -2x - e^x = 0$. For x in $[x, p]$

The maximum of $y(x)$ is attained at the same x for which $y = -2x - e^x = 0$. For x in $[x, p]$

The maximum of $y(x)$ is attained at the same x for which $y = -2x - e^x = 0$. For $y = -2x - e^x = 0$.

The maximum of $y(x)$ is attained at the same x for which $y = -2x - e^x = 0$. For $y = -2x - e^x = 0$.

The maximum of $y(x)$ is attained at the same x for which $y = -2x - e^x = 0$. For $y = -2x - e^x = 0$.

The maximum of $y(x)$ is attained at the same x for $y = -2x - e^x = 0$.

The maximum of $y(x)$ is attained at the same x for $y = -2x - e^x = 0$.

The maximum of $y(x)$ is attained at the same x for $y = -2x - e^x = 0$.

The maximum of $y(x)$ is attained at the same x for $y = -2x - e^x = 0$.

The maximum of $y(x)$ is attained at the same x for $y = -2x - e^x = 0$.

The maximum of $y(x)$ is attained at the same x for $y = -2x - e^x = 0$.

The maximum of $y(x)$ is attained at the same x for $y = -2x - e^x = 0$.

The maximum of $y(x)$ is attained at the same $y = -2x - e^x = 0$.

The maximum of $y(x)$ is attained at the same $y = -2x - e^x = 0$.

The maximum of $y(x)$ is attained at the same $y = -2x - e^x = 0$.

The maximum of $y(x)$ is attained at the same $y = -2x - e^x = 0$.

The maximum of $y(x)$ is attained at the same $y = -2x - e^x = 0$.

The maximum of $y = -2x - e^x = 0$.

The maximum of $y = -2x - e^x = 0$.

The maximum of $y = -2x - e^x = 0$.

The maximum of $y = -2x - e^x = 0$.

The maximum of $y = -2x - e^x = 0$.

The maximum of $y = -2x$