Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (NEW) EXAMINATION - WINTER 2021

Date:15/12/2021 Subject Code:2150703

Subject Name: Analysis and Design of Algorithms

Time:02:30 PM TO 05:00 PM **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			MARKS
Q.1	(a)	Write the precise definition of Algorithm. Explain time and space	03
	(L.)	complexity of algorithm in brief.	0.4
	(b)	Find the maximum number from the following using divide and conquer strategy.	04
	(c)	Write algorithm for bubble sort. Apply bubble sort on the	07
		following data:	
		64, 12, 80, 34, 56, 17, 47, 73	
Q.2	(a)	Find out time complexity for the following pseudo code using O-	03
_	` '	notation.	
		for(i = 0; i < n; i++)	
		{	
		for(j = 0; j < n; j++)	
		{	
		if(i!=j)	
		x = x + 1;	
		}	
		}	
	(b)	Briefly discuss Huffman code.	04
	(c)	Sort the following data in ascending order using heap sort. Write	07
		all the necessary steps.	
		43, 34, 11, 56, 23, 90	
		OR	
	(c)	Write the Master theorem and explain the same in brief. Solve the	07
		following recurrence using it.	
		T(n) = 9T(n/3) + n	
Q.3	(a)	Write down the characteristics of Greedy Algorithm.	03
	(b)	Explain counting sort in brief.	04
	(c)	Discuss binary search with divide-and-conquer strategy.	07
		OR	

- Q.3 Write differences between dynamic programming and greedy (a) 03 strategy.
 - Multiply 1456 by 1024 by divide and conquer method. **(b)** 04
 - Explain 0/1 knapsack using suitable example. **07**
- **Q.4** Briefly explain assembly line scheduling problem. 03 (a) What is making change problem? Support your answer by taking 04
 - small example. Determine Longest Common Subsequence of {N,E,E,L,A,M} **07** (c) and $\{E,N,G,I,N,E,E,R,I,N,G\}$.

OR

Q.4	(a)	Explain the following terms with brief discussion:	03
		- articulation point	
		- directed graph	
	(b)	Explain naïve string matching algorithm with example.	04
	(c)	Find an optimal parenthesization of a matrix-chain product whose	07
		sequence of dimensions is {5, 2, 4, 5}	
Q.5	(a)	State pros and cons of breadth-first search.	03
	(b)	Explain 4-queens problem with backtracking.	04
	(c)	Discuss Kruskal's algorithm for minimum spanning tree.	07
		OR	
Q.5	(a)	Discuss NP-hard and NP-complete problems in brief.	03
	(b)	Write a brief note on topological sort.	04
	(c)	Explain Rabin-Karp algorithm.	07
