Нейрон и его структура

Лекция 2

Функции активации нейронной сети

Название	Формула	Область значений
Пороговая	$f(s) = \begin{cases} 0, & s < \theta, \\ 1, & s \ge \theta \end{cases}$	0, 1
Знаковая (сигнатурная)	$f(s) = \begin{cases} 1, & s > 0, \\ -1, & s \le 0 \end{cases}$	-1, 1
Сигмоидальная (логистическая)	$f(s) = \frac{1}{1 + e^{-s}}$	(0, 1)
Полулинейная	$f(s) = \begin{cases} s, & s > 0, \\ 0, & s \le 0 \end{cases}$	$(0,\infty)$
Линейная	f(s) = s	$(-\infty,\infty)$
Радиальная базисная (гауссова)	$f(s) = \exp(-s^2)$	(0, 1)

Функции активации нейронной сети

Название	Формула	Область значений
Полулинейная с	$[0, s \le 0,$	(0, 1)
насыщением	$f(s) = \begin{cases} 0, & s \le 0, \\ s, & 0 < s < 1, \\ 1, & s \ge 1 \end{cases}$	
Линейная с насыщением	$f(s) = \begin{cases} -1, & s \le -1, \\ s, & -1 < s < 1, \\ 1, & s \ge 1 \end{cases}$	(-1, 1)
Гиперболический тангенс (сигмоидальная)	$f(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}}$	(-1, 1)
Треугольная	$f(s) = \begin{cases} 1 - s , & s \le 1 \\ 0, & s > 1 \end{cases}$	(0, 1)

2. МОДЕЛЬ НЕЙРОНА И АРХИТЕКТУРА СЕТИ

2.1. Модель нейрона

2.1.1. Простой нейрон

Элементарной ячейкой нейронной сети является нейрон. Структура нейрона с единственным скалярным входом показана на рис. 2.1, а.

Скалярный входной сигнал p умножается на скалярный весовой коэффициент w, и результирующий взвешенный вход w^*p является аргументом функции активации нейрона f, которая порождает скалярный выход a.

Нейрон, показанный на рис. 2.1, δ , дополнен скалярным смещением b. Смещение суммируется со взвешенным входом w^*p и приводит к сдвигу аргумента функции f на величину b. Действие смещения можно свести к схеме взвешивания, если представить, что нейрон имеет второй входной сигнал со значением, равным 1. Вход n функции активации нейрона по-прежнему остается скалярным и равным сумме взвешенного входа и смещения b. Эта сумма является аргументом функции активации f; выходом функции активации является сигнал a. Константы w и b являются скалярными параметрами нейрона. Основной принцип работы нейронной сети состоит в настройке параметров нейрона таким образом, чтобы поведение сети соответствовало некоторому желаемому поведению. Регулируя веса или параметры смещения, можно обучить сеть выполнять конкретную работу; возможно также, что сеть сама будет корректировать свои параметры, чтобы достичь требуемого результата.

Уравнение нейрона со смещением имеет вид

$$a = f(w * p + b * 1)$$
. (2.1)

Как уже отмечалось, смещение *b* – настраиваемый скалярный параметр нейрона, который не является входом, а константа 1, которая управляет смешение и параметрического порый не является входом.