TC2 - État final d'un système chimique

4 Détermination de la composition finale d'un système

- Avancement final ξ_f : c'est l'avancement une fois l'état final atteint, donc une fois que les quantités de matières n'évoluent plus.
- Avancement à l'équilibre ξ_{eq} : c'est l'avancement qui vérifie la relation $Q(\xi_{eq}) = K^{\circ}$ lorsque l'équilibre chimique est atteint (tout les réactifs sont encore présents).
- Avancement maximal ξ_{max} : c'est l'avancement si la transformation est totale, donc si l'un des réactifs est épuisé.

Exercice 1: transformation totale.

$$\operatorname{Zn}(s) + 2\operatorname{H}^{+}(\operatorname{aq}) \longrightarrow \operatorname{Zn}^{2+}(\operatorname{aq}) + \operatorname{H}_{2}(g)$$

Le système initial est composé de $m_0=0,11$ g de zinc et de $V_0=20$ mL d'une solution d'acide chlorhydrique (H⁺ + Cl⁻) de concentration $c_0=5$ mol.L⁻¹. On donne la masse molaire $M(\mathrm{Zn})=65,38$ g.mol⁻¹.

						• • •																					٠.		• •		 	 	
						• • •																					٠.		• •		 	 ٠.	
						• • • •		• • •		• • •						• •			• •		• •			• •			٠.		• •		 	 • •	
• • • • • •						• • •		• • •	• • •							• •			• •		• • •		٠	• •			٠.		• •	• •	 	 ٠.	 •
• • • • • •						• • •		• • •	• • •							• •			• •		• • •		٠	• •			٠.		• •	• •	 	 ٠.	 •
• • • • • •						• • •										• •			• •		• •			• •			٠.		• •		 	 • •	 •
• • • • • •						• • •										• •			• •		• •			• •			٠.		• •		 	 • •	 ٠
			• • • •	• • • •		• • •		• • •	• • •							• •			• •	• • •	• • •			• •			• •		• •	• •	 	 • •	 ٠
			• • • •	• • • •		• • •		• • •	• • •							• •			• •	• • •	• • •			• •			• •		• •	• •	 	 • •	 ٠
• • • • • •						• • • •		• • •	• • •				• • •			• •			• •		• •	• • •	• • •	• •	• • •	• • •	• •		• •	• •	 	 • •	 •
ercice	2:	équ	ıilib	re e	n so	luti	on	aqu	ieus	se.																							
				нС	O_{2}^{-}	(aq)	+ I	HN	O_2	(aq)) =	Н	СC	$_2$ H	I(a	q) -	+ 1	ON	$\frac{-}{2}($	aq)		-	K°	(25)	°)	= :	2, 8	30					

Ex

1. Déterminer la quantité de dihydrogène formé.

 $\text{Etat initial}: [\text{HCO}_2\text{H}]_0 = [\text{NO}_2^-]_0 = \text{c}_0 = 0, 01 \text{ mol.L}^{-1}; [\text{HCO}_2^-]_0 = [\text{HNO}_2]_0 = 2\text{c}_0 = 0, 02 \text{ mol.L}^{-1}; [\text{HCO}_2^-]_0 = [\text{HNO}_2]_0 = 2\text{c}_0 = 0, 02 \text{ mol.L}^{-1}; [\text{HCO}_2^-]_0 = [\text{HNO}_2]_0 = 2\text{c}_0 = 0, 02 \text{ mol.L}^{-1}; [\text{HCO}_2^-]_0 = [\text{HNO}_2]_0 = 2\text{c}_0 = 0, 02 \text{ mol.L}^{-1}; [\text{HCO}_2^-]_0 = [\text{HNO}_2]_0 = 2\text{c}_0 = 0, 02 \text{ mol.L}^{-1}; [\text{HCO}_2^-]_0 = [\text{HNO}_2]_0 = 2\text{c}_0 = 0, 02 \text{ mol.L}^{-1}; [\text{HCO}_2^-]_0 = [\text{HNO}_2]_0 = 2\text{c}_0 = 0, 02 \text{ mol.L}^{-1}; [\text{HCO}_2^-]_0 = [\text{HNO}_2]_0 = 2\text{c}_0 = 0, 02 \text{ mol.L}^{-1}; [\text{HCO}_2^-]_0 = [\text{HNO}_2]_0 = 2\text{c}_0 = 0, 02 \text{ mol.L}^{-1}; [\text{HCO}_2^-]_0 = [\text{HNO}_2]_0 = 2\text{c}_0 = 0, 02 \text{ mol.L}^{-1}; [\text{HCO}_2^-]_0 = [\text{HNO}_2]_0 = 2\text{c}_0 = 0, 02 \text{ mol.L}^{-1}; [\text{HCO}_2^-]_0 = [\text{HNO}_2]_0 = 2\text{c}_0 = 0, 02 \text{ mol.L}^{-1}; [\text{HCO}_2^-]_0 = [\text{HNO}_2]_0 = 2\text{c}_0 = 0, 02 \text{ mol.L}^{-1}; [\text{HCO}_2^-]_0 = [\text{HNO}_2]_0 = 2\text{c}_0 = 0, 02 \text{ mol.L}^{-1}; [\text{HCO}_2^-]_0 = [\text{HNO}_2]_0 = 2\text{c}_0 = 0, 02 \text{ mol.L}^{-1}; [\text{HCO}_2^-]_0 = [\text{HNO}_2]_0 = 2\text{c}_0 = 0, 02 \text{ mol.L}^{-1}; [\text{HCO}_2^-]_0 = [\text{HNO}_2]_0 = 2\text{c}_0 = 0, 02 \text{ mol.L}^{-1}; [\text{HCO}_2^-]_0 = [\text{HNO}_2]_0 = 2\text{c}_0 = 0, 02 \text{ mol.L}^{-1}; [\text{HCO}_2^-]_0 = [\text{HNO}_2]_0 = 2\text{c}_0 = 0, 02 \text{ mol.L}^{-1}; [\text{HCO}_2^-]_0 = [\text{HNO}_2]_0 = 2\text{c}_0 = 0, 02 \text{ mol.L}^{-1}; [\text{HCO}_2^-]_0 = [\text{HNO}_2]_0 = 2\text{c}_0 = 0, 02 \text{ mol.L}^{-1}; [\text{HCO}_2^-]_0 = [\text{HNO}_2]_0 = 2\text{c}_0 = 0, 02 \text{ mol.L}^{-1}; [\text{HCO}_2^-]_0 = [\text{HNO}_2]_0 = 2\text{c}_0 = 0, 02 \text{ mol.L}^{-1}; [\text{HCO}_2^-]_0 = 2\text{c}_0 = 0, 02 \text{ mol.L}^{-1};$

1. Dans quel sens évolue le système? 2. Déterminer l'avancement volumique $x_{\rm eq}$ à l'équilibre. En déduire la composition finale du système

Exercice 3: équilibre en phase gaz.

$${\rm C_2H_4(g) + H_2O(g) = C_2H_5OH(g)} \qquad K^{\circ}(573~{\rm K}) = 4,0 \times 10^{-3}$$

Le mélange initial est un mélange équimolaire des trois gaz (1,0 mol de chaque gaz). La pression totale à l'intérieur de l'enceinte qui permet la réalisation de la réaction est maintenue constante égale à p=70 bar.

- 1. Dans quel sens évolue le système?
- 2. Déterminer l'avancement molaire ξ_{eq} à l'équilibre.

ercice 4: rupture d'équilibre ${\rm PbL}_2({\rm s})={\rm Pb}^{2+}({\rm aq})+2{\rm I}^-({\rm aq}) \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$	Exercice 4: rupture d'équilibre	Exercice 4: rupture d'équilibre		
ercice 4: rupture d'équilibre ${\rm PbL}_2({\rm s})={\rm Pb}^{2+}({\rm aq})+2{\rm I}^-({\rm aq}) \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$	Exercice 4: rupture d'équilibre	Exercice 4: rupture d'équilibre		
ercice 4: rupture d'équilibre ${\rm PbI_2(s)=Pb^2+(aq)+2I^-(aq)} \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'éau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$	Exercice 4: rupture d'équilibre	Exercice 4: rupture d'équilibre		
ercice 4: rupture d'équilibre ${\rm PbI_2(s)=Pb^{2+}(aq)+2I^-(aq)} \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d´eau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$	Exercice 4: rupture d'équilibre	Exercice 4: rupture d'équilibre		
ercice 4: rupture d'équilibre ${\rm PbI_2(s)=Pb^{2+}(aq)+2I^-(aq)} \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$	Exercice 4: rupture d'équilibre	Exercice 4: rupture d'équilibre		
ercice 4: rupture d'équilibre ${\rm PbI}_2({\rm s})={\rm Pb}^{2+}({\rm aq})+2{\rm I}^-({\rm aq}) \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$	Exercice 4: rupture d'équilibre	Exercice 4: rupture d'équilibre		
ercice 4: rupture d'équilibre ${\rm PbI_2(s)=Pb^{2+}(aq)+2I^-(aq)} \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$	Exercice 4: rupture d'équilibre	Exercice 4: rupture d'équilibre		
ercice 4: rupture d'équilibre ${\rm PbI_2(s)=Pb^{2+}(aq)+2I^-(aq)} \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$	Exercice 4: rupture d'équilibre	Exercice 4: rupture d'équilibre		
ercice 4: rupture d'équilibre ${\rm PbI_2(s)=Pb^{2+}(aq)+2I^-(aq)} \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$	Exercice 4: rupture d'équilibre	Exercice 4: rupture d'équilibre		
ercice 4: rupture d'équilibre ${\rm PbI_2(s)=Pb^{2+}(aq)+2I^-(aq)} \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$	Exercice 4: rupture d'équilibre	Exercice 4: rupture d'équilibre		
ercice 4: rupture d'équilibre ${\rm PbI_2(s)=Pb^{2+}(aq)+2I^-(aq)} \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'éau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$	Exercice 4: rupture d'équilibre	Exercice 4: rupture d'équilibre		
ercice 4: rupture d'équilibre ${\rm PbI}_2({\rm s})={\rm Pb}^{2+}({\rm aq})+2{\rm I}^-({\rm aq}) \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$	Exercice 4: rupture d'équilibre	Exercice 4: rupture d'équilibre		
ercice 4: rupture d'équilibre ${\rm PbI_2(s)=Pb^{2+}(aq)+2I^-(aq)} \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$	Exercice 4: rupture d'équilibre	Exercice 4: rupture d'équilibre		
ercice 4: rupture d'équilibre ${\rm PbI}_2({\rm s})={\rm Pb}^{2+}({\rm aq})+2{\rm I}^-({\rm aq}) \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$	Exercice 4: rupture d'équilibre	Exercice 4: rupture d'équilibre		
ercice 4: rupture d'équilibre ${\rm PbI_2(s)=Pb^{2+}(aq)+2I^-(aq)} \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$	Exercice 4: rupture d'équilibre	Exercice 4: rupture d'équilibre		
ercice 4: rupture d'équilibre ${\rm PbI_2(s)=Pb^{2+}(aq)+2I^-(aq)} \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$	Exercice 4: rupture d'équilibre	Exercice 4: rupture d'équilibre		
ercice 4: rupture d'équilibre ${\rm PbI_2(s)=Pb^{2+}(aq)+2I^-(aq)} \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$	Exercice 4: rupture d'équilibre	Exercice 4: rupture d'équilibre		
ercice 4: rupture d'équilibre ${\rm PbI_2(s)=Pb^{2+}(aq)+2I^-(aq)} \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$	Exercice 4: rupture d'équilibre	Exercice 4: rupture d'équilibre		
ercice 4: rupture d'équilibre ${\rm PbI_2(s)=Pb^{2+}(aq)+2I^-(aq)} \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$	Exercice 4: rupture d'équilibre	Exercice 4: rupture d'équilibre		
ercice 4: rupture d'équilibre ${\rm PbI}_2({\rm s})={\rm Pb}^{2+}({\rm aq})+2{\rm I}^-({\rm aq}) \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$	Exercice 4: rupture d'équilibre	Exercice 4: rupture d'équilibre		
ercice 4: rupture d'équilibre ${\rm PbI_2(s)=Pb^{2+}(aq)+2I^-(aq)} \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$	Exercice 4: rupture d'équilibre	Exercice 4: rupture d'équilibre		
ercice 4: rupture d'équilibre ${\rm PbI_2(s)=Pb^{2+}(aq)+2I^-(aq)} \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$	Exercice 4: rupture d'équilibre	Exercice 4: rupture d'équilibre		
ercice 4: rupture d'équilibre ${\rm PbI_2(s)=Pb^{2+}(aq)+2I^-(aq)} \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$	Exercice 4: rupture d'équilibre	Exercice 4: rupture d'équilibre		
ercice 4: rupture d'équilibre ${\rm PbI_2(s)=Pb^{2+}(aq)+2I^-(aq)} \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$	Exercice 4 : rupture d'équilibre	Exercice 4 : rupture d'équilibre		
ercice 4: rupture d'équilibre ${\rm PbI_2(s)=Pb^{2+}(aq)+2I^-(aq)} \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$	Exercice 4 : rupture d'équilibre	Exercice 4: rupture d'équilibre		
ercice 4 : rupture d'équilibre ${\rm PbI_2(s) = Pb^{2+}(aq) + 2I^-(aq)} \qquad K^\circ = 10^{-8}$ dissous $m_0 = 1$ g de solide dans $V_0 = 10$ L d'eau pure. On donne les masses molaires $M({\rm Pb}) = 207, 2$ g.mol $^{-1}$	Exercice 4 : rupture d'équilibre	Exercice 4 : rupture d'équilibre		
${\rm PbI_2(s)=Pb^{2+}(aq)+2I^-(aq)} \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$				
${\rm PbI_2(s)=Pb^{2+}(aq)+2I^-(aq)} \qquad K^\circ=10^{-8}$ dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M({\rm Pb})=207,2$ g.mol $^{-1}$				
dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M(\mathrm{Pb})=207,2$ g.mol $^{-1}$	$DbL(a) = Db^{2+}(aa) + Dl^{-}(aa) $ $k^{\circ} = 10^{-8}$		Exercice 4 : rupture d'équilibre	
	$1 \text{ bl}_2(s) = 1 \text{ b}^{-1}(aq) + 21 (aq) \qquad K = 10$	$PbI_2(s) = Pb^{2+}(aq) + 2I^{-}(aq)$ $K^{\circ} = 10^{-6}$		
T(1) = 120, 0 S. Mor.	On dissous $m_0 = 1$ g de solide dans $V_0 = 10$ L d'eau pure. On donne les masses molaires $M(Pb) = 207, 2$ g.mol ⁻¹ et $M(I) = 126, 9$ g mol ⁻¹			q) $K^{\circ} = 10^{-8}$
. Déterminer la composition finale du système.	50 m(1) = 120, 0 g.mor		${\rm PbI_2(s)} = {\rm Pb^{2+}(aq)} + 2{\rm I^-(a}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d´eau pure. On	
	1. Déterminer la composition finale du système.	et $M(I) = 126,9 \text{ g.mol}^{-1}$.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d´eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$.	
		et $M(I) = 126,9 \text{ g.mol}^{-1}$.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d´eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$.	
		et $M(I) = 126,9 \text{ g.mol}^{-1}$. 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d´eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(Pb) = 207, 2 \text{ g.mol}^{-1}$
	1. Déterminer la composition finale du système.	et $M(I) = 126,9 \text{ g.mol}^{-1}$. 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d´eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(Pb) = 207, 2 \text{ g.mol}^{-1}$
	1. Déterminer la composition finale du système.	et $M(\mathbf{I})=126,9~\mathrm{g.mol^{-1}}.$ 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(Pb) = 207, 2 \text{ g.mol}^{-1}$
	1. Déterminer la composition finale du système.	et $M(\mathbf{I})=126,9~\mathrm{g.mol^{-1}}.$ 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(Pb) = 207, 2 \text{ g.mol}^{-1}$
	1. Déterminer la composition finale du système.	et $M(\mathbf{I})=126,9~\mathrm{g.mol^{-1}}.$ 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(Pb) = 207, 2 \text{ g.mol}^{-1}$
	1. Déterminer la composition finale du système.	et $M(\mathbf{I})=126,9~\mathrm{g.mol^{-1}}.$ 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(Pb) = 207, 2 \text{ g.mol}^{-1}$
	1. Déterminer la composition finale du système.	et $M(\mathbf{I})=126,9~\mathrm{g.mol^{-1}}.$ 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d´eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(Pb) = 207, 2 \text{ g.mol}^{-1}$
	1. Déterminer la composition finale du système.	et $M({\rm I})=126,9~{\rm g.mol^{-1}}.$ 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(Pb) = 207, 2 \text{ g.mol}^{-1}$
	1. Déterminer la composition finale du système.	tet $M({\rm I})=126,9~{ m g.mol^{-1}}.$ 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(\mathrm{Pb}) = 207, 2 \mathrm{~g.mol}^{-1}$
	1. Déterminer la composition finale du système.	et $M(\mathbf{I})=126,9~\mathrm{g.mol^{-1}}.$ 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(\mathrm{Pb}) = 207, 2 \mathrm{~g.mol}^{-1}$
	1. Déterminer la composition finale du système.	et $M(\mathbf{I})=126,9~\mathrm{g.mol^{-1}}.$ 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(\mathrm{Pb}) = 207, 2 \mathrm{~g.mol}^{-1}$
	1. Déterminer la composition finale du système.	et $M(I) = 126, 9 \text{ g.mol}^{-1}$. 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(\mathrm{Pb}) = 207, 2 \mathrm{~g.mol}^{-1}$
	1. Déterminer la composition finale du système.	et $M({ m I})=126,9~{ m g.mol^{-1}}.$ 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(\mathrm{Pb}) = 207, 2 \mathrm{~g.mol}^{-1}$
	1. Déterminer la composition finale du système.	at $M(\mathbf{I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d´eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(Pb) = 207, 2 \text{ g.mol}^{-1}$
	1. Déterminer la composition finale du système.	at $M({ m I})=126,9~{ m g.mol^{-1}}.$ 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d´eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(\mathrm{Pb}) = 207, 2 \mathrm{~g.mol}^{-1}$
	1. Déterminer la composition finale du système.	at $M({ m I})=126,9~{ m g.mol^{-1}}.$ 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d´eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(\mathrm{Pb}) = 207, 2 \mathrm{~g.mol}^{-1}$
		et $M(I) = 126,9 \text{ g.mol}^{-1}$.	${\rm PbI_2(s)=Pb^{2+}(aq)+2I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d´eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$.	
	On dissous $m_0 = 1$ g de solide dans $V_0 = 10$ L d'eau pure. On donne les masses molaires $M(Pb) = 207, 2$ g.mol ⁻¹			q) $K^{\circ}=10^{-8}$
				q) $K^{\circ}=10^{-8}$
				(a) $K^{\circ} = 10^{-8}$
$M(1) = 126 \text{ y g mol}^{-1}$				q) $K^{\circ}=10^{-8}$
				$K^{\circ} = 10^{-8}$
			Exercice 4: rupture d'équilibre	
	$I \text{ DI}_2(s) = I \text{ D}^{-1}(\text{aq}) + 2I^{-1}(\text{aq})$ $I = I0$	${ m PbI_2(s)} = { m Pb^{2+}(aq)} + 2{ m I^-(aq)} \qquad K^{\circ} = 10^{-8}$	Exercice 4: rupture d'équilibre	
	$1 \text{ DI}_2(s) = 1 \text{ D}^{-1}(aq) + 21 \text{ (aq)} \qquad K = 10$	${ m PbI_2(s)} = { m Pb^{2+}(aq)} + 2{ m I^-(aq)} \qquad K^{\circ} = 10^{-8}$	Exercice 4: rupture d'équilibre	
				$K^{\circ} = 10^{-8}$
$M(1) = 126.9 \text{ g mol}^{-1}$				q) $K^{\circ} = 10^{-8}$
				q) $K^{\circ} = 10^{-8}$
				q) $K^{\circ} = 10^{-8}$
$M(1) = 126.9 \text{ g mol}^{-1}$	On dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On donne les masses molaires $M(\mathrm{Pb})=207,2$ g.mol $^{-1}$			q) $K^{\circ}=10^{-8}$
				$K^{\circ} = 10^{-8}$
				q) $K^{\circ}=10^{-8}$
$V(1) = 126 \text{ y s mol}^{-2}$				q) $K^{\circ}=10^{-8}$
				α) V° = 10-8
				ω) V° 10-8
				g) $K^{\circ}=10^{-8}$
$M(1) = 126.9 \text{ g mol}^{-1}$				q) $K^{\circ}=10^{-8}$
n(1) = 120, 0 g.mor			$\mathrm{PbI}_2(s) = \mathrm{Pb^{2+}(aq)} + 2\mathrm{I^-(a}$	
	$P(1) = 126.9 \text{ g mol}^{-1}$		${\rm PbI_2(s)} = {\rm Pb^{2+}(aq)} + 2{\rm I^-(a}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d´eau pure. On	
	$\frac{10}{11} \frac{11}{11} = \frac{120}{120} \frac{1}{120} $		${\rm PbI_2(s)} = {\rm Pb^{2+}(aq)} + 2{\rm I^-(a}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d´eau pure. On	
			${\rm PbI_2(s)} = {\rm Pb^{2+}(aq)} + 2{\rm I^-(a}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d´eau pure. On	
. Déterminer la composition finale du système.	30 In (1) = 120,0 S.mor .		${\rm PbI_2(s)} = {\rm Pb^{2+}(aq)} + 2{\rm I^-(a}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d´eau pure. On	
. Déterminer la composition finale du système.		et $M(I) = 126,9 \text{ g.mol}^{-1}$.	${\rm PbI_2(s)=Pb^{2+}(aq)+2I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d´eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$.	
ı v		et $M(I) = 126,9 \text{ g.mol}^{-1}$.	${\rm PbI_2(s)=Pb^{2+}(aq)+2I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d´eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$.	
		et $M(I) = 126,9 \text{ g.mol}^{-1}$.	${\rm PbI_2(s)=Pb^{2+}(aq)+2I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d´eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$.	
		et $M(I) = 126,9 \text{ g.mol}^{-1}$.	${\rm PbI_2(s)=Pb^{2+}(aq)+2I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d´eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$.	
	1. Déterminer la composition finale du système.	et $M(I) = 126,9 \text{ g.mol}^{-1}$. 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d´eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(Pb) = 207, 2 \text{ g.mol}^{-1}$
	1. Déterminer la composition finale du système.	et $M(\mathbf{I})=126,9~\mathrm{g.mol^{-1}}.$ 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(Pb) = 207, 2 \text{ g.mol}^{-1}$
	1. Déterminer la composition finale du système.	et $M(\mathbf{I})=126,9~\mathrm{g.mol^{-1}}.$ 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(Pb) = 207, 2 \text{ g.mol}^{-1}$
	1. Déterminer la composition finale du système.	et $M(\mathbf{I})=126,9~\mathrm{g.mol^{-1}}.$ 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(Pb) = 207, 2 \text{ g.mol}^{-1}$
	1. Déterminer la composition finale du système.	et $M(\mathbf{I})=126,9~\mathrm{g.mol^{-1}}.$ 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d´eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(Pb) = 207, 2 \text{ g.mol}^{-1}$
	1. Déterminer la composition finale du système.	tet $M({\rm I})=126,9~{ m g.mol^{-1}}.$ 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(\mathrm{Pb}) = 207, 2 \mathrm{~g.mol}^{-1}$
	1. Déterminer la composition finale du système.	et $M(\mathbf{I})=126,9~\mathrm{g.mol^{-1}}.$ 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(\mathrm{Pb}) = 207, 2 \mathrm{~g.mol}^{-1}$
	1. Déterminer la composition finale du système.	et $M(\mathbf{I})=126,9~\mathrm{g.mol^{-1}}.$ 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(\mathrm{Pb}) = 207, 2 \mathrm{~g.mol}^{-1}$
	1. Déterminer la composition finale du système.	et $M(I) = 126, 9 \text{ g.mol}^{-1}$. 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(\mathrm{Pb}) = 207, 2 \mathrm{~g.mol}^{-1}$
	1. Déterminer la composition finale du système.	et $M({ m I})=126,9~{ m g.mol^{-1}}.$ 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(\mathrm{Pb}) = 207, 2 \mathrm{~g.mol}^{-1}$
	1. Déterminer la composition finale du système.	at $M({ m I})=126,9~{ m g.mol^{-1}}.$ 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d´eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(Pb) = 207, 2 \text{ g.mol}^{-1}$
	1. Déterminer la composition finale du système.	at $M({ m I})=126,9~{ m g.mol^{-1}}.$ 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d´eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(Pb) = 207, 2 \text{ g.mol}^{-1}$
	1. Déterminer la composition finale du système.	at $M({ m I})=126,9~{ m g.mol^{-1}}.$ 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d´eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(\mathrm{Pb}) = 207, 2 \mathrm{~g.mol}^{-1}$
	1. Déterminer la composition finale du système.	et $M(\mathbf{I})=126,9~\mathrm{g.mol^{-1}}$. 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d'eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(\mathrm{Pb}) = 207, 2 \mathrm{~g.mol}^{-1}$
	1. Déterminer la composition finale du système.	et $M(\mathbf{I})=126,9~\mathrm{g.mol^{-1}}.$ 1. Déterminer la composition finale du système.	${\rm PbI_2(s)}={\rm Pb^{2+}(aq)}+2{\rm I^-(aq)}$ On dissous $m_0=1$ g de solide dans $V_0=10$ L d´eau pure. On et $M({\rm I})=126,9$ g.mol $^{-1}$. 1. Déterminer la composition finale du système.	donne les masses molaires $M(\mathrm{Pb}) = 207, 2 \mathrm{~g.mol}^{-1}$

Exercice 5: transformation quasi-total	ale
---	-----