# Molecular Networking and in-silico MS/MS Database: a workflow to dereplicate and visualize results

# I LC-MS/MS analysis of crude extract

- use ramp energy gradient or combined energies (ex: 15,30 and 45 eV) for optimal MS/MS spectrum coverage

# II Conversion of proprietary to .mzXML format

- use ProteoWizard (<a href="http://proteowizard.sourceforge.net/">http://proteowizard.sourceforge.net/</a>)

#### III Generate Molecular Networks on GNPS

- GNPS server : <a href="http://gnps.ucsd.edu">http://gnps.ucsd.edu</a>
- follow instructions at <a href="https://bix-lab.ucsd.edu/display/Public/">https://bix-lab.ucsd.edu/display/Public/</a> Molecular+Networking+Documentation for optimal parameters and MN visualization in Cytoscape
- Cytoscape is available at <a href="http://www.cytoscape.org/">http://www.cytoscape.org/</a>

# IV Fetch clustered data from the MN on GNPS

- In the GNPS results page, hit «Download Clustered Data». You will get a folder containing files as described on **Fig. I**
- the MN attributes file appears as an .out file in the folder. Let's call it cytoscape\_attributes.out
- the clustered spectra appears as a .mgf file in the folder. Let's call it your\_spectra.mgf

# Sturm 8







#### clusterinfo clusterinfogroup clusterinfosummary Export clusterinfosummarvgroup Download Clustered Data clusterinfosummarygroup\_attributes MN attributes file. Rename as you wish. Here we clusterinfosummarygroup\_attributes\_withIDs rename it to cytoscape\_attributes.out e7c73105b77f4b1087f2b65721883128..out clusterinfosummarygroup\_attributes\_withIDs\_arbitraryattribute METABOLOMICS-SNETS-6c20627c-download\_clustered\_spectra-main.mgf — MN clustered spectra file. Rename as you wish. Here we rename it to networkedges\_selfloop your\_spectra.mgf Fig. I params.xml

# **V** Library search in the ISDB

- The first step is to make sure you have a Linux based system, since Tremolo, wich is used for the spectral matching stage, runs under Linux. If you don't have a Linux-based system you can easily install Ubuntu on your Windows or Mac OS via a virtual machine. See instructions here: <a href="http://www.wikihow.com/Install-Ubuntu-on-VirtualBox">http://www.wikihow.com/Install-Ubuntu-on-VirtualBox</a>
- Download the UNPD-ISDB and scripts at <a href="http://oolonek.github.io/">http://oolonek.github.io/</a>
- in order to easily perform library search using Tremolo and merge results with the MN attributes file, we wrote a python script (treat.py) and a bash script (run.sh). These scripts and the UNPD\_ISDB files should be placed in your Linux system (respect folders names) as described in **Fig. 2**
- to adjust the library search parameters you nead to edit the **run.sh** file (open with text editor)

The important parameters to edit are seen on Fig. 3

- TOLERANCE: ± tolerance for parent mass search in Da. Set a small tolerance for dereplication using parent ion mass as prefilter, keeping in mind the resolution of your data. Increase to the wanted range for variable dereplication search (ex: 100 or 200 Da) Caution as this will also increase calculation times!
- SCORE\_THRESHOLD: should be kept low when using *in-silico* DB. Typically 0.2 to 0.3.
- -TOP\_K\_RESULTS: Defines the maximal number of results returned

To launch the search open a terminal window and navigate to the results folder. Type:

bash run.sh your\_spectra.mgf cytoscape\_attributes.out results.out



Fig. 2 Organization of the files & folders to run the ISDB library search

# Set the tolerance to be used
TOLERANCE=0.005
# Score threshold in Da
SCORE\_THRESHOLD=0.2
# Top K results
TOP\_K\_RESULTS=5

Fig. 3 Library search parameters to edit in run.sh

# VIII Visualize dereplication results in Cytoscape

- Install chemViz plugin for Cytoscape 2.8 (<a href="http://apps.cytoscape.org/apps/chemviz">http://apps.cytoscape.org/apps/chemviz</a>) or chemViz for Cytoscape 3.x (<a href="http://apps.cytoscape.org/apps/chemviz">http://apps.cytoscape.org/apps/chemviz</a>)
- In Cytoscape load your network then load the **results.out** file as attribute file with corresponding SMILES and IDs
- select nodes of interest, right click and under Chemoinformatic tools select Show structures window.

# Start exploring the network!

# **Examples of results visualization**



**Fig. A** - variable dereplication against the UNPD-ISDB indicates the possible presence of diterpenoids for this extract of *Salvia* sp.



**Fig. B** - structures can be viewed as a table wich can in turn be searched for substructures or exported.



**Fig. C** - here caffeoyl and coumarin glycosylated compounds seem to hide under this cluster.



Fig. D - structures can also be directly displayed on top of the nodes

#### Notes

- Outliers in the panel of proposed structures should be spotted (see **Fig. A** for ex.) and attention should be focussed on compounds of a common class or bearing common structural functionalities that can lead to similar MS/MS fragmentation data (sugars, aliphatic side chains etc ...)
- Merging orthogonal informations: phylogenetic data, comparison of hits logP with experimental retention times, input of exact mass for the molecular formula determination is the key to assess the relevance of the hits.
- More than an strict dereplication tool, using variable dereplication mode against the ISDB should be seen as an exploratory tool allowing to gain a feeling of the chemistry behind a cluster of metabolites.