МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет прикладной математики, информатики и механики

Кафедра нелинейных колебаний

Спектральный анализ операторных полиномов и разностных операторов высокого порядка

Бакалаврская работа

Направление 01.03.02 Прикладная математика и информатика Профиль Нелинейная динамика

Допущено к защите в ГЭК	2016
Зав. кафедрой	д. фм. н., профессор Задорожний В. Г.
Обучающийся	Харитонов В. Д.
Руководитель	д. фм. н., профессор Баскаков А. Г.

Оглавление

Введен	пие	3
Глава	1. О состояниях обратимости операторных поли-	
ном	ов	4
1.1.	Основные понятия и формулировки теорем	4
1.2.	Доказательства основных результатов	15
1.3.	Условия фредгольмовости разностного оператора	23

Введение

Глава 1

О состояниях обратимости операторных полиномов

1.1. Основные понятия и формулировки теорем

Пусть X, Y — комплексные банаховы пространства, $\operatorname{Hom}(X, Y)$ — банахово пространство линейных ограниченных операторов (гомоморфизмов), определенных на X со значениями в Y, $\operatorname{End} X = \operatorname{Hom}(X, X)$ — банахова алгебра эндоморфизмов пространства X.

Линейный оператор $\mathscr{A} \in \operatorname{End} X$, вида

$$\mathscr{A} = C_0 A^N + C_1 A^{N-1} + \ldots + C_N,$$

где $A, C_0, \ldots, C_N \in \text{End } X, N \in \mathbb{N}$, назовём *операторным полиномом* (порядка N с операторными коэффициентами $C_i, i = \overline{1, N}$, разложенным по степеням оператора A).

Наряду с оператором \mathscr{A} рассмотрим оператор $\mathbb{A} \in \operatorname{End} X^N$,

заданный матрицей вида

$$\mathbb{A} \sim \begin{pmatrix} A & -I & 0 & \cdots & 0 & 0 \\ 0 & A & -I & \cdots & 0 & 0 \\ 0 & 0 & A & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & A & -I \\ C_N & C_{N-1} & C_{N-2} & \cdots & C_2 & C_0 A + C_1 \end{pmatrix},$$

т. е. для $x \in X^N$, $x = (x_1, \dots, x_N)$, вектор $\mathbb{A}x = y = (y_1, \dots, y_N)$ определяется равенствами:

$$y_k = Ax_k - x_{k+1}, \quad k = \overline{1, N-1},$$

 $y_N = C_0 Ax_N + \sum_{k=1}^N C_k x_{N-k+1} = C_0 Ax_N + \sum_{j=1}^N C_{N-j+1} x_j.$

Оператор А можно представить в виде

$$\mathbb{A} = \mathbb{A}_0 \mathbb{S} + \mathbb{A}_1,$$

где операторы \mathbb{A}_0 , \mathbb{S} , $\mathbb{A}_1 \in \operatorname{End} X^N$ определяются соответственно

матрицами

$$\mathbb{A}_{0} \sim \begin{pmatrix} I & 0 & \cdots & 0 \\ 0 & I & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & C_{0} \end{pmatrix}, \quad \mathbb{S} \sim \begin{pmatrix} A & 0 & \cdots & 0 \\ 0 & A & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A \end{pmatrix}$$

$$\mathbb{A}_{1} \sim \begin{pmatrix} 0 & -I & 0 & \cdots & 0 & 0 \\ 0 & 0 & -I & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -I \\ C_{N} & C_{N-1} & C_{N-2} & \cdots & C_{2} & C_{1} \end{pmatrix}.$$

Определение 1. Пусть $B \in \text{Hom}(X_1, X_2)$ — линейный ограниченный оператор между банаховыми пространствами X_1, X_2 . Рассмотрим следующий набор его возможных свойств.

- 1) $\operatorname{Ker} B = \{x \in X_1 : Bx = 0\} = \{0\}$, т. е. B инъективный оператор;
- 2) $1 \leqslant n = \dim \operatorname{Ker} B < \infty$ (ядро конечномерно);
- 3) $\operatorname{Ker} B$ бесконечномерное подпространство в X_1 ;
- 4) $\operatorname{Ker} B$ дополняемое подпространство в X_1 ;
- 5) $\overline{{
 m Im}\, B}={
 m Im}\, B$ образ оператора B замкнут в X_2 , что эквивалентно положительности величины (называемой минимальным

модулем оператора B)

$$\gamma(B) = \inf_{x \in X_1 \backslash \operatorname{Ker} B} \frac{\|Bx\|}{\operatorname{dist}(x, \operatorname{Ker} B)},$$

где $\operatorname{dist}(x,\operatorname{Ker} B)=\inf_{x_0\in\operatorname{Ker} B}\|x-x_0\|$ — расстояние от вектора x до подпространства $\operatorname{Ker} B;$

- 6) оператор B равномерно инъективен (корректен), т. е. Ker $B = \{0\}$ и $\gamma(B) > 0$;
- 7) ${\rm Im}\, B$ замкнутое подпространство в X_2 конечной коразмерности

$$1 \leq \operatorname{codim} \operatorname{Im} B = \dim X_2 / \operatorname{Im} B < \infty;$$

- 8) $\operatorname{Im} B$ замкнутое подпространство в X_2 бесконечной коразмерности;
- 9) $\text{Im } B \neq X_2$, $\overline{\text{Im } B} = X_2$ (образ оператора B плотен в X_2 , но не совпадает со всем X_2);
- 10) $\overline{\operatorname{Im} B} \neq X_2$ (образ B не плотен в X_2);
- 11) $\text{Im } B = X_2 \text{ (оператор } B \text{ сюръективен});$
- 12) оператор B обратим (т. е. $\operatorname{Ker} B = \{0\}$ и $\operatorname{Im} B = X_2$).

Если для оператора B одновременно выполнены все условия из совокупности условий $\sigma = \{i_1, \ldots, i_k\}$, где $1 \leqslant i_1 < \ldots < i_k \leqslant 12$, то будем говорить, что оператор B находится в состоянии обратимости σ . Множество всех состояний обратимости оператора B обозначим символом $\operatorname{St}_{\operatorname{inv}} B$.

Определение 2. Если оператор $B \in \text{Hom}(X_1, X_2)$ имеет конечномерное ядро (выполнено одно из условий 1), 2) определения 1) и замкнутый образ конечной коразмерности (одно из условий 7), 11)), то оператор B называется фредгольмовым. Если оператор B имеет замкнутый образ и конечно хотя бы одно из чисел dim Ker B, соdim Im $B = \dim X_2 / \operatorname{Im} B$, то оператор B называется полуфредгольмовым. Число ind $B = \dim \operatorname{Ker} B - \operatorname{codim} \operatorname{Im} B$ называется индексом фредгольмова (полуфредгольмова) оператора B.

Аналогичное определение даётся для замкнутых операторов, а также для линейных отношений. Благодаря введенному понятию состояний обратимости оператора, становится возможна более тонкая и разнообразная, чем общепринятая (см. [?]), классификация спектров линейных операторов.

Одним из основных результатов статьи является

Теорема 1. Множеества состояний обратимости операторов $\mathscr{A} \in \operatorname{End} X \ u \ \mathbb{A} \in \operatorname{End} X^N \ cosnadaюm:$

$$\operatorname{St}_{\operatorname{inv}} \mathscr{A} = \operatorname{St}_{\operatorname{inv}} \mathbb{A}.$$

Это равенство (содержащее множество утверждений) означает, что если одно из двенадцати условий определения 1 выполняется для

одного из операторов \mathscr{A} , \mathbb{A} , то оно выполняется и для другого.

Теорема 1 позволяет свести исследование свойств оператора $\mathscr{A} \in \operatorname{End} X$, связанных с обратимостью, к исследованию соответствующих свойств оператора \mathbb{A} , который в важных частных случаях изучен. В первую очередь это относится к разностным операторам первого порядка.

Теорема 2. Пусть оператор \mathscr{A} обратим. Тогда обратим и операторы $\mathbb{A} \in \operatorname{End} X^N$ и обратный \mathbb{A}^{-1} имеет матрицу $(\mathbb{A}^{-1})_{ij}$, $1 \leqslant i,j \leqslant N$ вида:

$$(\mathbb{A}^{-1})_{ij} = A^{i-1}D_j - A^{i-j-1}, \qquad i > j, \ j = \overline{1, N-1},$$

$$(\mathbb{A}^{-1})_{ij} = A^{i-1}D_j, \qquad i \leqslant j, \ j = \overline{1, N-1},$$

$$(\mathbb{A}^{-1})_{i,N} = A^{i-1} \mathscr{A}^{-1}, \qquad i = \overline{1, N},$$

$$D_j = \mathscr{A}^{-1} \sum_{k=0}^{N-j} C_k A^{N-k-j}, \quad i = \overline{1, N},$$

$$\mathbb{A}^{-1} \sim \begin{pmatrix} D_1 & D_2 & \cdots & D_{N-1} & \mathscr{A}^{-1} \\ AD_1 - I & AD_2 & \cdots & AD_{N-1} & A\mathscr{A}^{-1} \\ A^2D_1 - A & A^2D_2 - I & \cdots & A^2D_{N-1} & A^2\mathscr{A}^{-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ A^{N-1}D_1 - A^{N-2} & A^{N-1}D_2 - A^{N-3} & \cdots & A^{N-1}D_{N-1} - I & A^{N-1}\mathscr{A}^{-1} \end{pmatrix}.$$

Приводимая конструкция перехода от изучения исходного операторного полинома $\mathscr{A} = C_0 A^N + C_1 A^{N-1} + \ldots + C_N \in \operatorname{End} X$ к

изучению оператора $\mathbb{A} \in \operatorname{End} X^N$, является непосредственным обобщением известного из курсов дифференциальных и разностных уравнений приёма сведения дифференциального или разностного уравнения N-ого порядка к системе из N дифференциальных (разностных) уравнений. Для более специальных классов операторных полиномов аналог теоремы 2 получен в монографиях A. B. Антоневича [?, теорема 9.1], [?].

Непосредственно из теоремы 1 следует

Теорема 3. Оператор \mathscr{A} фредгольмов (полуфредгольмов) тогда и только тогда, когда фредгольмовым (полуфредгольмовым) является оператор \mathbb{A} . При условии фредгольмовости одного из них

$$\dim \operatorname{Ker} \mathscr{A} = \dim \operatorname{Ker} \mathbb{A}, \quad \dim \operatorname{Im} \mathscr{A} = \operatorname{codim} \operatorname{Im} \mathbb{A},$$

$$\operatorname{ind} \mathscr{A} = \operatorname{ind} \mathbb{A}.$$

Далее символом $l^p = l^p(\mathbb{Z};Y), \ 1 \leqslant p \leqslant \infty$ обозначим банахово пространство суммируемых со степенью p (ограниченных при $p = \infty$) двусторонних последовательностей векторов из банахова пространства Y. Нормы в этих пространствах определяются равенства-

ми:

$$||x|| = ||x||_p = \left(\sum_{n \in \mathbb{Z}} ||x(n)||^p\right)^{1/p}, \quad x \in l^p, \ p \in [1, \infty),$$
$$||x|| = ||x||_{\infty} = \sup_{n \in \mathbb{Z}} ||x(n)||, \quad x \in l^{\infty}.$$

В банаховом пространстве l^p рассмотрим разностное уравнение N-ого порядка:

$$C_0(k)x(k+N)+C_1(k)x(k+N-1)+\ldots+C_N(k)x(k) = f(k), \quad k \in \mathbb{Z}, \ x \in l^p,$$

$$(1.1.1)$$

где $f \in l^p$, а $C_i : \mathbb{Z} \to \operatorname{End} Y$, $i = \overline{0, N}$ — ограниченные операторнозначные функции, т. е. $C_i \in l^\infty(\mathbb{Z}; \operatorname{End} Y)$. Через S обозначим оператор сдвига последовательностей из $l^p : S \in \operatorname{End} l^p$, $(Sx)(k) = x(k+1), k \in \mathbb{Z}, x \in l^p$. Тогда уравнение (1.1.1) можно записать в операторном виде:

$$\mathscr{A}x = f$$

где разностный оператор $\mathscr{A}\in\operatorname{End} l^p$ определяется формулой

$$\mathscr{A} = \widetilde{C_0} S^N + \widetilde{C_1} S^{N-1} + \ldots + \widetilde{C_N}. \tag{1.1.2}$$

Операторы $\widetilde{C}_i \in \operatorname{End} l^p, i = \overline{0,N}$ есть операторы умножения на опе-

раторную функцию C_i :

$$(\widetilde{C}_i x)(k) = C_i(k)x(k), \quad k \in \mathbb{Z}, \ x \in l^p, \ k = \overline{0, N}.$$

Используя приём, описанный выше для операторных полиномов, построим по оператору $\mathscr A$ оператор $\mathbb A\in \operatorname{End} l^p(\mathbb Z;Y^N)$. При этом учитывается канонический изоморфизм пространств $l^p(\mathbb Z;Y)^N$ и $l^p(\mathbb Z;Y^N)$.

Оператор \mathbb{A} является разностным оператором первого порядка в пространстве $l^p(\mathbb{Z};Y^N)$ и задаётся равенством

$$(\mathbb{A}x)(k) = \mathcal{C}_0(k)x(k+1) + \mathcal{C}_1(k)x(k), \quad k \in \mathbb{Z}, \ x \in l^p(\mathbb{Z}; Y^N), \ (1.1.3)$$

где

$$\mathscr{C}_{0}(k) \sim \begin{pmatrix} I & 0 & \cdots & 0 \\ 0 & I & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & C_{0}(k) \end{pmatrix},$$

$$\mathscr{C}_{1}(k) \sim \begin{pmatrix} 0 & -I & 0 & \cdots & 0 & 0 \\ 0 & 0 & -I & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -I \\ C_{N}(k) & C_{N-1}(k) & C_{N-2}(k) & \cdots & C_{2}(k) & C_{1}(k) \end{pmatrix},$$

$$x(k) = (x_{1}(k), x_{2}(k), \cdots, x_{N}(k)), \quad x_{i} \in l^{p}, \ i = \overline{1, N}.$$

Итак, оператор А записывается в виде

$$\mathbb{A} = \mathbb{A}_0 \mathbb{S} + \mathbb{A}_1, \tag{1.1.4}$$

где $\mathbb{S} \in \operatorname{End} l^p(\mathbb{Z}; Y^n)$ — оператор сдвига в $l^p(\mathbb{Z}; Y^n)$, \mathbb{A}_0 , $\mathbb{A}_1 \in \operatorname{End} l^p(\mathbb{Z}; Y^n)$ — операторы умножения на функции \mathscr{C}_0 и \mathscr{C}_1 соответственно.

Согласно терминологии статьи [?], разностный оператор (1.1.4) является оператором с двухточечным спектром Бора. Поэтому к нему применимы полученные в статье результаты об обратимости,

представлении обратных (используя понятие экспоненциальной дихотомии). Имеют место оценки норм обратных операторов.

Из представлений (1.1.2), (1.1.4) разностных операторов $\mathscr{A} \in \operatorname{End} l^p(\mathbb{Z};Y), \, \mathbb{A} \in \operatorname{End} l^p(\mathbb{Z};Y^N)$ и теорем 1, 2, 3 следует

Теорема 4. Имеет место равенство

$$\operatorname{St}_{\operatorname{inv}} \mathscr{A} = \operatorname{St}_{\operatorname{inv}} \mathbb{A}.$$

B частности, оператор \mathscr{A} фредгольмов тогда и только тогда, когда фредгольмов оператор \mathbb{A} . При условии фредгольмовости одного из них

$$\dim \operatorname{Ker} \mathscr{A} = \dim \operatorname{Ker} \mathbb{A}, \quad \dim \operatorname{Im} \mathscr{A} = \operatorname{codim} \operatorname{Im} \mathbb{A},$$
$$\operatorname{ind} \mathscr{A} = \operatorname{ind} \mathbb{A}.$$

Следующее утверждение следует из результатов статей [?], [?].

Теорема 5. Если разностный оператор \mathscr{A} обратим в одном из банаховых пространств $l^p(\mathbb{Z};Y), 1 \leqslant p \leqslant \infty$, то он обратим в любом

из этих пространств. В частности, спектр $\sigma(\mathcal{A})$ оператора \mathcal{A} не зависит от пространства l^p , в котором он определен.

Оценки, полученные в [?] для решений разностных включений, позволяют получить оценки для функции Грина в представлении оператора \mathcal{A}^{-1} . Аналоги теорем 3, 4, 5 имеют место для разностных операторов высокого порядка, рассматриваемых в пространствах односторонних последовательностей. Соответствующие результаты для разностных операторов первого порядка получены в статьях [?, ?].

В §1.3 данной статьи получено (теорема 10) необходимое и достаточное условие фредгольмовости разностного оператора $\mathscr{A} \in \operatorname{End} l^p(\mathbb{Z};Y)$, $p \in [1,\infty]$ с $C_0(k) = I$ для всех $k \in \mathbb{Z}$. Для разностного оператора с постоянными операторными коэффициентами $\widetilde{C}_k \in \operatorname{End} Y$, $0 \leqslant k \leqslant N$, приведена формула обратного. В теореме 13 получено асимптотическое представление ограниченных решений однородного разностного уравнения.

1.2. Доказательства основных результатов

Пусть задан операторный полином $\mathscr{A}\in\operatorname{End} X,$ разложенный по степеням оператора A:

$$\mathscr{A} = C_0 A^N + C_1 A^{N-1} + \ldots + C_N,$$

где $A, C_0, \ldots, C_N \in \operatorname{End} X, N \in \mathbb{N}$, и соответствующий ему оператор $\mathbb{A} \in \operatorname{End} X^N$:

$$\mathbb{A} \sim \begin{pmatrix} A & -I & 0 & \cdots & 0 & 0 \\ 0 & A & -I & \cdots & 0 & 0 \\ 0 & 0 & A & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & A & -I \\ C_N & C_{N-1} & C_{N-2} & \cdots & C_2 & C_0 A + C_1 \end{pmatrix}.$$

В отличие от статьи [?], где изучались разностные операторы второго порядка, оператор C_0 из представления операторного полинома $\mathscr A$ может быть необратимым оператором. Столь общий случай (необратимого оператора C_0) позволяет получать аналоги теорем 1–4 для случая операторного полинома $\mathscr A$, где оператор A — замкнутый оператор с непустым резольвентным множеством (в частности, дифференциальный оператор). Следует отметить, что такой прием не применим к дифференциальным операторам второго порядка, рассматриваемых в статьях [?, ?]. В данной статье предложен иной (более простой) способ доказательства основных результатов статьи. Он состоит в сопоставлении операторному полиному порядка N оператора \widetilde{A} , заданного операторной матрицей порядка N+1, который имеет то же множество состояний обратимости.

Введём в рассмотрение оператор $\widetilde{\mathbb{A}}$ из алгебры $\operatorname{End} X^{N+1}$.

$$\widetilde{\mathbb{A}} \sim \begin{pmatrix} A & -I & 0 & \cdots & 0 & 0 \\ 0 & A & -I & \cdots & 0 & 0 \\ 0 & 0 & A & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & A & -I \\ C_N & C_{N-1} & C_{N-2} & \cdots & C_1 & C_0 A \end{pmatrix}.$$

При доказательстве теорем 1 и 2 вначале соответствующие утверждения устанавливаются для операторов \mathscr{A} и $\widetilde{\mathbb{A}}$, а затем, используя представление оператора \mathscr{A} в виде

$$\mathscr{A} = (C_0 A + C_1) A^{N-1} + C_2 A^{N-2} + \ldots + C_N,$$

соответствующие результаты устанавливаются для операторов \mathscr{A} и $\mathbb{A}.$ Таким образом вычисляется матрица оператора $\mathbb{A}^{-1} \in \operatorname{End} X^N.$

Зададим операторы $\mathbb{B}, \mathcal{J}_1, \mathcal{J}_2, \mathcal{J}_3 \in \operatorname{End} X^{N+1}$ матрицами

$$\mathbb{B} \sim \begin{pmatrix} \mathscr{A} & 0 & \cdots & 0 \\ 0 & -I & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -I \end{pmatrix}, \qquad \mathscr{J}_{1} \sim \begin{pmatrix} 0 & I & 0 & \cdots & 0 \\ 0 & 0 & I & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & I \\ I & 0 & 0 & \cdots & I \end{pmatrix}$$
$$(\mathbb{B}x)_{1} = \mathscr{A}x_{1} = \sum_{k=0}^{N} C_{k}A^{N-k}x_{1}, \qquad (\mathscr{J}_{1}x)_{k} = x_{k+1}, \quad k = \overline{1, N},$$
$$(\mathbb{B}x)_{k} = -x_{k}, \quad k = \overline{2, N+1}; \qquad (\mathscr{J}_{1}x)_{N+1} = x_{1};$$
$$B_{i} = \sum_{l=0}^{N-i} C_{k}A^{N-k-i}, \quad i = \overline{1, N},$$

$$\mathcal{J}_{2} \sim \begin{pmatrix}
I & -B_{1} & -B_{2} & \cdots & -B_{N} \\
0 & I & 0 & \cdots & 0 \\
0 & 0 & I & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & I
\end{pmatrix}, \quad
\mathcal{J}_{3} \sim \begin{pmatrix}
I & 0 & 0 & \cdots & 0 & 0 \\
-A & I & 0 & \cdots & 0 & 0 \\
0 & -A & I & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ddots & I & 0 \\
0 & 0 & 0 & \cdots & -A & I
\end{pmatrix},$$

$$(\mathscr{J}_2 x)_1 = x_1 - \sum_{i=1}^N B_i x_{i+1},$$
 $(\mathscr{J}_3 x)_1 = x_1,$ $(\mathscr{J}_2 x)_k = x_k, \quad k = \overline{2, N+1};$ $(\mathscr{J}_3 x)_k = x_k - A x_{k-1}, \quad k = \overline{2, N+1}.$

Лемма 1. Состояния обратимости операторов $\widetilde{\mathbb{A}}$ и \mathbb{B} совпадают.

Доказательство. Непосредственно проверяется, что

$$\widetilde{\mathbb{A}} = \mathscr{J}_1 \mathscr{J}_2 \mathbb{B} \mathscr{J}_3,$$

причем ясно, что \mathcal{J}_i , $i=\overline{1,3}$ — обратимые операторы (\mathcal{J}_1 — оператор перестановки, \mathcal{J}_2 и \mathcal{J}_3 имеют верхнетреугольную и нижнетреугольную матрицы соответственно с обратимыми операторами на главной диагонали).

Таким образом, доказательство теоремы 1 сводится к доказательству следующей теоремы.

Теорема 6. Состояния обратимости операторов \mathscr{A} и \mathbb{B} совпадают.

Введем операторы $J_1 \in \mathrm{Hom}(X,X^{N+1}),\ J_2 \in \mathrm{Hom}(X^{N+1},X),$ действующие по правилам

$$(J_1 x)_1 = x,$$

 $(J_1 x)_k = 0, \quad k = \overline{2, N+1};$

$$J_2x = x_1, \quad x \in X^{N+1}.$$

Лемма 2. \mathcal{A} дра операторов \mathcal{A} и \mathbb{B} изоморфны. При этом

$$J_1(\operatorname{Ker} \mathscr{A}) = \operatorname{Ker} \mathbb{B};$$

 $J_2(\operatorname{Ker} \mathbb{B}) = \operatorname{Ker} \mathscr{A}.$

Заметим, что $\operatorname{Ker} \mathbb{B} = \operatorname{Ker} \mathscr{A} \times \{0\}^N$.

Доказательство. Отображение J_1 , очевидно, осуществляет изоморфизм, если рассматривать его как отображение между $\operatorname{Ker} \mathscr{A}$ и $\operatorname{Ker} \mathscr{B}$. При этом J_2 является обратным отображением к J_1 , если его рассмотреть как отображение между $\operatorname{Ker} \mathscr{B}$ и $\operatorname{Ker} \mathscr{A}$.

Обозначим символом \mathscr{P}_M множество ограниченных проекторов на подпространство M банахова пространства X.

Лемма 3. Пусть \mathbb{P} — ограниченный проектор на $\ker \mathbb{B}$. Тогда его матрица имеет вид

$$\begin{pmatrix} P & PD_2 & \cdots & PD_{N+1} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix},$$

где $D_k \in \operatorname{End} X$, $k = \overline{2, N+1}$ и $P \in \mathscr{P}_{\operatorname{Ker} \mathscr{A}}$. Верно и обратное: если $P \in \mathscr{P}_{\operatorname{Ker} \mathscr{A}}$, то оператор, заданный такой матрицей, является

 $проектором на Ker <math>\mathbb{B}$.

Доказательство. Пусть проектор \mathbb{P} задан матрицей $(P_{ij})_{n\times n}$. Покажем сначала, что $P_{ij}=0$ для любых j и всех i>1.

Пусть $x \in X$, $y^j \in X^{N+1}$, $j = \overline{1, N+1}$ и $y_k^j = \delta_{kj}x$, $k = \overline{1, N+1}$, где δ_{kj} — символ Кронекера. По определению проектора $\mathbb{P}y^j \in \operatorname{Ker} \mathbb{B}$, а значит $(\mathbb{P}y^j)_i = 0$ для всех i > 1.

$$(\mathbb{P}y^j)_i = \sum_{k=0}^N P_{ik} y_k^j = \sum_{k=0}^N P_{ik} \delta_{kj} x = P_{ij} x = 0, \quad j = \overline{1, N+1}, \ i = \overline{2, N+1}.$$

Значит, в силу произвольности $x, P_{ij} = 0, j = \overline{1, N}, i = \overline{2, N+1}.$

Покажем, что P_{11} — проектор на $\ker A$. Проверим идемпотентность. Пусть $x\in X$. Тогда, поскольку $\mathbb{P}^2=\mathbb{P}$ для $\ker j=\overline{1,n},$ то

$$P_{1j}x = (\mathbb{P}y^j)_1 = (\mathbb{P}^2y_j)_1 = \sum_{k=0}^{N+1} P_{1k}(\mathbb{P}y^j)_k = P_{11}(\mathbb{P}y^j)_1 = P_{11}P_{1j}x.$$

Значит $P_{1j} = P_{11}P_{1j}, j = \overline{1, N+1}.$

Поскольку $\mathbb{P}y^1\in \mathrm{Ker}\,\mathbb{B},$ $P_{11}x=(\mathbb{P}y^1)_1\in \mathrm{Ker}\,A,$ а значит $\mathrm{Im}(P_{11})\subset \mathrm{Ker}\,A.$

Взяв $x \in \operatorname{Ker} A$ (следовательно, $y^1 \in \operatorname{Ker} \mathbb{B}$) получим

$$x = y_1^1 = (\mathscr{P}y^1)_1 = P_{11}x,$$

откуда $\operatorname{Ker} A \subset \operatorname{Im}(P_{11})$. Таким образом, $\operatorname{Im}(P_{11}) = \operatorname{Ker} A$ и $P_{11} \in \mathscr{P}_{\operatorname{Ker} A}$.

Обратное утверждение очевидно.

теоремы 6. Из лемм 2 и 3 следует, что свойства (1-4) определения 1 для операторов \mathscr{A} и \mathbb{B} выполняются или не выполняются одновременно.

Перейдём к рассмотрению свойств образов операторов \mathscr{A} и \mathbb{B} . Очевидно, что

$$\operatorname{Im} \mathbb{B} = \operatorname{Im} \mathscr{A} \times \underbrace{X \times \ldots \times X}_{N \text{ pas}}.$$

Отсюда сразу получаем, что образы этих операторов замкнуты или не замкнуты (плотны или не плотны, совпадают или не совпадают со всем пространством) одновременно (свойства (5), (9-10), (11) определения 1). Ясно, что свойства (6) и (12) также являются общими для рассматриваемых операторов в силу леммы 2.

Пусть подпространство $\operatorname{Im} \mathscr{A}$ замкнуто. Тогда можно рассматривать факторпространство $X/\operatorname{Im} \mathscr{A}$. Далее, поскольку пространство $X^{N+1}/\operatorname{Im} \mathbb{B}$ и пространство $(X/\operatorname{Im} \mathscr{A}) \times \{0\} \times \ldots \times \{0\}$ канонически изоморфны, свойства (7-8) для операторов \mathscr{A} и \mathbb{B} также выполняются или не выполняются одновременно.

теоремы 2. Рассмотрим разложение $\widetilde{\mathbb{A}} = \mathscr{J}_1 \mathscr{J}_2 \mathbb{B} \mathscr{J}_3$. Каждый из операторов в этом разложении обратим. Запишем обратные к ним

(проверяется непосредственно):

$$\mathcal{J}_{3}^{-1} \sim \begin{pmatrix} I & 0 & 0 & \cdots & 0 & 0 \\ A & I & 0 & \cdots & 0 & 0 \\ A^{2} & A & I & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ A^{N-1} & A^{N-2} & A^{N-3} & \ddots & I & 0 \\ A^{N} & A^{N-1} & A^{N-2} & \cdots & A & I \end{pmatrix}; \quad \mathcal{J}_{2}^{-1} \sim \begin{pmatrix} I & B_{1} & B_{2} & \cdots & B_{N} \\ 0 & I & 0 & \cdots & 0 \\ 0 & 0 & I & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & I \end{pmatrix};$$

$$\mathbb{B}^{-1} \sim \begin{pmatrix} \mathscr{A}^{-1} & 0 & \cdots & 0 \\ 0 & -I & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -I \end{pmatrix}; \qquad \mathscr{J}_{1}^{-1} \sim \begin{pmatrix} 0 & 0 & \cdots & 0 & I \\ I & 0 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & I & 0 \end{pmatrix}.$$

Тогда $\widetilde{\mathbb{A}}^{-1}=\mathscr{J}_3^{-1}\mathbb{B}^{-1}\mathscr{J}_2^{-1}\mathscr{J}_1^{-1}$. Перемножая соответствующие матрицы, получим матрицу для оператора $\widetilde{\mathbb{A}}^{-1}$, откуда нетрудно получить матрицу для оператора \mathbb{A}^{-1} .

1.3. Условия фредгольмовости разностного оператора

В этом параграфе получены необходимые и достаточные условия фредгольмовости разностного оператора вида (1.1.2), т.е. опера-

тора

$$\mathscr{A}: l^p \to l^p,$$

$$(\mathscr{A}x)(k) = x(k+N) + C_1(k)x(k+N-1) + \dots + C_N(k)x(k),$$

$$k \in \mathbb{Z}, \ x \in l^p = l^p(\mathbb{Z}, Y), \ p \in [1, \infty].$$

Условия получены на основе сопоставления разностному оператору \mathscr{A} порядка N разностного оператора первого порядка $A: l^p(\mathbb{Z}, Y^N) \to l^p(\mathbb{Z}, Y^N)$, определенного формулой (1.1.3), где $\mathscr{C}_0(k)$ — тождественный оператор в Y^N при любом $k \in \mathbb{Z}$. Эти условия описываются с использованием понятия экспоненциальной дихотомии дискретного семейства эволюционных оператоов, которое строится по операторной функции $\mathscr{C}_1: \mathbb{Z} \to \operatorname{End} Y^N$.

Рассмотрим разностный оператор первого порядка $\mathbb D$ из End $l^p(\mathbb Z,X)$ определенный формулой

$$(\mathbb{D}x)(n) = x(n) - U(n)x(n-1), \quad n \in \mathbb{Z}, x \in l^p(\mathbb{Z}, X),$$

где $U \in l^{\infty}(\mathbb{Z}, X)$, а X — комплексное банахово пространство.

По функции U построим дискретное семейство эволюционных операторов

$$\mathscr{U}: \Delta = \{(n,m) \in \mathbb{Z} \times \mathbb{Z} : m \leq n\} \to \operatorname{End} X,$$

определенное равенствами

$$\mathscr{U}(n,m) = \begin{cases} U(n)U(n-1)\dots U(m+1), & m < n, \\ I, & m = n, \end{cases}$$

где $m, n \in \mathbb{Z}$.

Определение 3. Будем говорить, что семейство эволюционных операторов \mathscr{U} допускает экспоненциальную дихотомию на множестве $\mathbb{J} \subset \mathbb{Z}$, если существуют ограниченная проекторнозначная функция $P \colon \mathbb{J} \to \operatorname{End} X$ и постоянные $M_0 \geqslant 1, \, \gamma > 0$ такие, что выполнены следующие условия

- 1. $\mathscr{U}(n,m)P(m) = P(n)\mathscr{U}(n,m)$, для всех $m \leqslant n, m, n \in \mathbb{J}$;
- 2. $\|\mathscr{U}(n,m)P(m)\| \leqslant M_0 \exp(-\gamma(n-m))$, для всех $m \leqslant n, m, n \in \mathbb{J}$;
- 3. для $m < n, m, n \in \mathbb{J}$, сужение $\mathscr{U}_{n,m} : X'(m) \to X'(n)$ оператора $\mathscr{U}(n,m)$ на область значений $X'(m) = \operatorname{Im} Q(m)$ дополнительного проектора Q(m) = I P(m) есть изоморфизм подпространств X'(m) и $X'(n) = \operatorname{Im} Q(n)$. Тогда полагаем оператор $\mathscr{U}(m,n)$ равным оператору $\mathscr{U}_{n,m}^{-1}$ на X'(n) и равным нулевому оператору на $X(n) = \operatorname{Im} P(n) \subset X$.
- 4. $\|\mathscr{U}(m,n)\| \leqslant M_0 \exp(\gamma(m-n))$ для всех $m \leqslant n$ из \mathbb{J} .

Пару проекторнозначных функций $P,Q: \mathbb{J} \to \operatorname{End} X$, участвующих в определении 3, назовём расщепляющей парой для семейства \mathscr{U} . Если P=0 или Q=0, то будем говорить, что для \mathscr{U} имеет место тривиальная экспоненциальная дихотомия на \mathbb{J} .

Теорема 7 (([?], [?])). Для того чтобы разностный оператор $\mathbb{D} \in \operatorname{End} l^p(\mathbb{Z}, X)$, определяемый функцией $U \in l^\infty(\mathbb{Z}, X)$, был обратим, необходимо и достаточно, чтобы семейство эволюционных операторов \mathscr{U} допускало экспоненциальную дихотомию на \mathbb{Z} . Если оператор \mathbb{D} обратим, то обратный к нему определяется формулой

$$(\mathbb{D}^{-1}y)(n) = \sum_{m=-\infty}^{\infty} G(n,m)y(m), \quad n \in \mathbb{Z}, y \in l^p(\mathbb{Z}, X),$$

где функция Грина $G \colon \mathbb{Z}^2 \to \operatorname{End} X$ имеет вид

$$G(n,m) = \begin{cases} \mathscr{U}(n,m)P(m), & m \leq n, \\ -\mathscr{U}(n,m)Q(m), & m > n, \end{cases}, \quad m, n \in \mathbb{Z}.$$

Этот результат для случая $p = \infty$ имеется в монографии Д. Хенри [?] (в статье [?] была устранена неточность в доказательстве аналога теоремы 7 из этой монографии).

Далее используется

Предположение 1. Существуют числа $a, b \in \mathbb{Z}, a \leq b$, такие, что семейство эволюционных операторов \mathscr{U} (построенное по функции

 $U: \mathbb{Z} \to \operatorname{End} X)$ допускает экспоненциальную дихотомию на множествах $\mathbb{Z}_{-,a} = \{n \in \mathbb{Z} : n \leqslant a\}, \ \mathbb{Z}_{b,+} = \{n \in \mathbb{Z} : n \geqslant b\}$ с расщепляющими парами проекторнозначных функций

$$P_-, Q_- \colon \mathbb{Z}_{-,a} \to \operatorname{End} X,$$

$$P_+, Q_+ \colon \mathbb{Z}_{b,+} \to \operatorname{End} X.$$

Определим оператор $\mathcal{N}_{b,a}$: Im $Q_{-}(a) \to \operatorname{Im} Q_{+}(b)$, равенством

$$\mathcal{N}_{b,a}x = Q_+(b)\mathcal{U}(b,a)x, \quad x \in \operatorname{Im} Q_-(a).$$

Этот оператор введён в рассмотрение в статьях [?], [?] и назван «узловым». Важность его обусловлена тем, что он действует между подпространствами «фазового» пространства X, а не в $l^p(\mathbb{Z}, X)$.

Имеет место следующая теорема ([?], [?]).

Теорема 8. Пусть для семейства эволюционных операторов $\mathscr{U}: \Delta \to \operatorname{End} X$, построенным по функции $U: \mathbb{Z} \to \operatorname{End} X$ выполнены условия предположения 1.

Тогда имеет место равенство

$$\operatorname{St}_{\operatorname{inv}} \mathbb{D} = \operatorname{St}_{\operatorname{inv}} \mathscr{N}_{b,a}.$$

B частности, для фредгольмовости разностного оператора \mathbb{D} , необходимо и достаточно, чтобы узловой оператор $\mathcal{N}_{b,a}\colon \operatorname{Im} Q_{-}(a) \to$

 ${
m Im}\, Q_+(b)$ являлся фредгольмовым оператором. При условии фредгольмовости узлового оператора имеют иместо равенства:

$$\dim \operatorname{Ker} \mathbb{D} = \dim \operatorname{Ker} \mathscr{N}_{b,a}, \quad \operatorname{codim} \operatorname{Im} \mathbb{D} = \operatorname{codim} \operatorname{Im} \mathscr{N}_{b,a},$$

$$\operatorname{ind} \mathbb{D} = \operatorname{ind} \mathscr{N}_{b,a}.$$

Рассмотрим разностный оператор (см. формулу (1.1.4))

$$\mathbb{D} = \mathbb{S}^{-1} \mathbb{A} = \mathbb{S}^{-1} (\mathbb{S} + \mathbb{A}_1) \in \operatorname{End} l^p(\mathbb{Z}, Y^N)$$
$$(\mathbb{D}x)(n) = x(n) + \mathscr{C}_1(n)x(n-1), \quad x \in l^p(\mathbb{Z}, Y^N).$$

Заметим, что его состояния обратимости совпадают с состояниями обратимости оператора \mathcal{A} .

Определение 4. Семейство эволюционных операторов $\mathscr{U}_1: \mathbb{Z}^2 \to \operatorname{End} Y^N$, построенное по функции $-\mathscr{C}_1: \mathbb{Z} \to \operatorname{End} Y^N$, назовем ce-мейством эволюционных операторов для однородного разностного уравнения

$$x(k+N)+C_1(k)x(k+N-1)+\ldots+C_N(k)x(k) = 0, \quad k \in \mathbb{Z}, \ x \in l^p(\mathbb{Z}, Y).$$

$$(1.3.1)$$

Из теорем 7 и 8 получаем следующие утверждения.

Теорема 9. Для того чтобы разностный оператор $\mathscr{A} \in \operatorname{End} l^p$, $p \in [1, \infty]$, определенный формулой (1.1.2), был обратим, необходи-

мо и достаточно, чтобы семейство эволюционных операторов \mathcal{U}_1 , построенное для разностного уравнения (1.3.1), допускало экспоненциальную дихотомию на \mathbb{Z} .

Теорема 10. Пусть для семейства эволюционных операторов $\mathscr{U} = \mathscr{U}_1 \colon \Delta \to \operatorname{End} Y^N$, построенного для разностного уравнения (1.3.1), выполнены условия предположения 1.

Тогда имеет место равенство

$$\operatorname{St}_{\operatorname{inv}} \mathscr{A} = \operatorname{St}_{\operatorname{inv}} \mathscr{N}_{b,a}.$$

B частности, для фредгольмовости разностного оператора $\mathscr{A} \in \operatorname{End} l^p$ необходимо и достаточно, чтобы узловой оператор $\mathscr{N}_{b,a}$ являся фредгольмовым оператором. При условии фредгольмовости узлового оператора имеют место равенства:

$$\dim \operatorname{Ker} \mathscr{A} = \dim \operatorname{Ker} \mathscr{N}_{b,a}, \quad \operatorname{codim} \operatorname{Im} \mathscr{A} = \operatorname{codim} \operatorname{Im} \mathscr{N}_{b,a},$$

$$\operatorname{ind} \mathscr{A} = \operatorname{ind} \mathscr{N}_{b,a}.$$

Отметим, что в условиях теоремы 10 узловой оператор $\mathcal{N}_{b,a}$ действует между подпространствами банахова пространства Y^N .

Следствие 1. Если оператор \mathscr{A} фредгольмов в одном из пространств l^p , $p \in [1, \infty]$, то он фредгольмов и в остальных, и его индекс не зависит от значения p.

В условиях следующей теоремы будем использовать следующее

Предположение 2. Существуют пределы

$$\lim_{n \to +\infty} C_i(n) = C_i^{\pm} \in \operatorname{End} X, \quad i = \overline{1, N}.$$

Под спектром операторного пучка

$$L^{\pm}(\lambda) = \lambda^N + C_1^{\pm} \lambda^{N-1} + \ldots + C_N^{\pm}, \quad \lambda \in \mathbb{C},$$

будем понимать множество таких комплексных чисел λ , что $L^{\pm}(\lambda)$ — необратимый в End Y оператор.

Теорема 11. В условиях предположения 2 разностный оператор \mathscr{A} обратим, если спектральные радиусы $r(L^{\pm}) = \max{\{|\lambda| : \lambda \in \sigma(L^{\pm})\}}$ операторных пучков L^{\pm} меньше единицы.

Доказательство. Непосредственно из теоремы 1 следует, что спектры $\sigma(\mathscr{C}_1^{\pm})$ операторов $\mathscr{C}_1^{\pm} \in \operatorname{End} Y^N$, заданных матрицами

$$\mathscr{C}_{1}^{\pm} \sim \begin{pmatrix} 0 & -I & 0 & \cdots & 0 & 0 \\ 0 & 0 & -I & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -I \\ C_{N}^{\pm} & C_{N-1}^{\pm} & C_{N-2}^{\pm} & \cdots & C_{2}^{\pm} & C_{1}^{\pm} \end{pmatrix},$$

совпадают со спектрами $\sigma(L^{\pm})$ операторных пучков L^{\pm} , поэтому $r(\mathscr{C}_1^{\pm}) = r(L^{\pm}) < 1$. Операторы \mathscr{C}_1^{\pm} являются пределами последовательности $\mathscr{C}_1(n)$ в равномерной операторной топологии. Тогда из [?, теорема 3] следует, что оператор $\mathbb D$ обратим, следовательно обратим и оператор $\mathscr A$.

Пусть теперь оператор $\mathscr{A} \in \operatorname{End} l^p$ имеет вид:

$$(\mathscr{A}x)(k) = C_0x(k+N) + C_1x(k+N-1) + \dots + C_Nx(k),$$

 $k \in \mathbb{Z}, \ x \in l^p = l^p(\mathbb{Z}, Y), \ p \in [1, \infty],$

то есть $C_i(k) \equiv C_i \in Y^N, \ i = \overline{0,N}$ — постоянные функции. В этом случае разностный оператор $\mathbb A$ задан выражением

$$(\mathbb{A}y)(k) = \mathscr{C}_0 y(k+1) + \mathscr{C}_1 y(k), \quad k \in \mathbb{Z}, \ y \in l^p(\mathbb{Z}; Y^N),$$

где

$$\mathscr{C}_0 \sim \begin{pmatrix} I & 0 & \cdots & 0 \\ 0 & I & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & C_0 \end{pmatrix}, \quad \mathscr{C}_1 \sim \begin{pmatrix} 0 & -I & 0 & \cdots & 0 & 0 \\ 0 & 0 & -I & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -I \\ C_N & C_{N-1} & C_{N-2} & \cdots & C_2 & C_1 \end{pmatrix}.$$

Введём в рассмотрение операторнозначную функцию $H\colon \mathbb{T} \to \operatorname{End} X$:

$$H(\gamma) = \gamma^N C_0 + \gamma^{N-1} C_1 + \ldots + C_N, \quad \gamma \in \mathbb{T} = \{\lambda \in \mathbb{C} : |\lambda| = 1\}.$$

Эту функцию назовём характеристической функцией оператора \mathscr{A} . Множество $\rho(H)$, состоящее из таких $\gamma \in \mathbb{T}$, что оператор $H(\gamma)$ обратим, назовём резольвентным множеством функции H, а дополнение к нему, $s(H) = \mathbb{T} \setminus \rho(H) - c$ ингулярным множеством этой функции.

Теорема 12. Разностный оператор \mathscr{A} с постоянными коэффициентами C_i , $i = \overline{0,N}$, обратим тогда и только тогда, когда сингулярное множество s(H) его характеристической функции пусто. Если $s(H) = \varnothing$, то обратный оператор $\mathscr{A}^{-1} \in \operatorname{End} l^p$ представим в виде

$$(\mathscr{A}^{-1}x)(k) = (G*x)(k) = \sum_{n \in \mathbb{Z}} G(k-n)x(n), \quad k \in \mathbb{Z}, \ x \in l^p. \ (1.3.2)$$

Функция G принадлежит банаховой алгебре $l^1(\mathbb{Z}, \operatorname{End} Y)$ (со свёрткой функций в качестве умножения) и допускает представление вида

$$G(n) = \frac{1}{2\pi} \int_{\mathbb{T}} (H(\gamma))^{-1} \gamma^n d\gamma, \quad n \in \mathbb{Z}.$$

Доказательство. Разностный оператор первого порядка А с по-

стоянными коэффициентами обратим тогда и только тогда, когда сингулярное множество его характеристической функции $\mathcal{H}(\gamma) = \gamma \mathcal{C}_0 + \mathcal{C}_1$ пусто (иначе говоря, спектр линейного операторного пучка не содержит точек единичной окружности) [?, теорема 3]. Запишем матрицу оператора $\mathcal{H}(\gamma)$:

$$\mathcal{H}(\gamma) \sim \begin{pmatrix} \gamma I & -I & 0 & \cdots & 0 & 0 \\ 0 & \gamma I & -I & \cdots & 0 & 0 \\ 0 & 0 & \gamma I & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \gamma I & -I \\ C_N & C_{N-1} & C_{N-2} & \cdots & C_2 & \gamma C_0 + C_1 \end{pmatrix}.$$

Из теоремы 1 следует, что состояния обратимости операторов $\mathscr{H}(\gamma)$ и $H(\gamma)$ совпадают. Значит $s(H)=s(\mathscr{H})$. Отсюда получаем первое утверждение теоремы.

Заметим, что G(n) представляют собой коэффициенты Фурье функции $(H(\gamma))^{-1}$, которая является голоморфной в окрестности единичной окружности как резольвента полиномиального операторного пучка. Следовательно, её ряд Фурье сходится абсолютно, откуда и следует, что $G \in l^1(\mathbb{Z}, \operatorname{End} Y)$. Благодаря этому, оператор \mathscr{A}^{-1} , задаваемый формулой (1.3.2), определен корректно. Непосредственная проверка показывает, что этот оператор является обратным к

оператору \mathscr{A} .

Предположение 3. Все решения однородного разностного уравнения

$$x(k+N) + C_1 x(k+N-1) + \ldots + C_N x(k) = 0, (1.3.3)$$

рассматриваемого на \mathbb{Z}_+ ограничены.

В условиях предположения 3 любое решение $x \in l^{\infty}(\mathbb{Z}_+,Y)$ однородного уравнения удовлетворяет равенствам

$$\begin{pmatrix} x(n) \\ x(n+1) \\ \vdots \\ x(n+N-2) \\ x(n+N-1) \end{pmatrix} = \begin{pmatrix} 0 & I & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & I \\ -C_N & -C_{N-1} & \cdots & -C_2 & -C_1 \end{pmatrix}^n \begin{pmatrix} x(0) \\ x(1) \\ \vdots \\ x(N-2) \\ x(N-1) \end{pmatrix}.$$

Тогда из ограниченности всех решений однородного уравнения и теоремы БанахаШтейнгауза следует, что

$$\sup_{n\geqslant 0}\|\mathscr{C}_1^n\|=M(\mathscr{C}_1)<\infty.$$

Следовательно, спектральный радиус оператора \mathscr{C}_1 не превосходит единицы, т.е.

$$\sigma(\mathscr{C}_1) \subset \{\lambda \in \mathbb{C} : |\lambda| \geqslant 1\}.$$

Теперь можно применить результат из [?, теорема 1]:

Теорема 13. Пусть выполнены условия предположения 3 и

$$\sigma(\mathscr{C}_1) \cap \mathbb{T} = \{\gamma_1, \dots, \gamma_m\}.$$

Тогда существуют операторнозначные функции $A_k \in l^{\infty}(\mathbb{Z}_+, \operatorname{End} Y^N)$, $k = \overline{1,m}$, такие что для любого решения $x \colon \mathbb{Z}_+ \to Y$ уравнения 1.3.3 имеют место следующие представления

$$(x(n), x(n+1), \dots, x(n+N-1)) = \left(\sum_{k=1}^{m} \gamma_k^n A_k(n)\right) (x(0), x(1), \dots, x(N-1)), \quad n \in \mathbb{Z}$$

Функции $A_k,\ k=\overline{1,m}$ обладают следующими свойствами:

- 1. операторы $A_k(n) \in \operatorname{End} Y^N$, $n \in \mathbb{Z}_+$ принадлежат наименьшей замкнутой подалгебре $\mathscr{A}_{\mathscr{C}_1}$ из $\operatorname{End} Y^N$, содержащей оператор \mathscr{C}_1 ;
- 2. $\lim_{n\to\infty} ||A_k(n+1) A_k(n)|| = 0;$
- 3. $\lim_{n\to\infty} \|\mathscr{C}_1 A_k(n) \gamma_k A_k(n)\| = 0;$
- 4. $\lim_{n\to\infty} \|A_k(n)A_j(n)\| = 0$ das $k \neq j, k, j = \overline{1,m}$.

В заключение отметим, что основные результаты статьи (теоремы 1-5) имеют место для разностных операторов, действующих в весовых пространствах последовательностей векторов (см. статьи [?], [?], [?]).