

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

Q&A

1. Construct right-linear or left-linear grammars for the regular language of binary strings in which every 0 is followed by 11. Construct a parse tree for the string 0111011

Solution:

LHS			RHS
S	\rightarrow	1S	
S	\rightarrow	011S	
S	\rightarrow	λ	

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

2. Match the Regular expression with regular grammar.

Regular Expression	Regular Grammar
0*(1(0+1))*	S->0S A λ
	A->1B
	B->0A 1A 0 1
0*(10)*1(0)*	S->0A
	A->10A0 B
	B->1
(0+10*10*)*	S->1A 0S λ
	A->1S 0A
(1+0)*10(1+0)*	S->0S 1A
	A->1A 0B
	B->1A 0B λ
(0+1(01*0)*1)*	S->0S 1A λ
	A->1S 0B
	B->0A 1B

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

3. Convert the automata to regular grammar.

Solution:

S-0A|1C

C->1S|0B

B->0C|1A

A->0S|1B| λ

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

4. Convert the regular grammar to finite automata.

S->A|B

A->01A| λ

B->10B| λ

Solution:

NFA:

DFA:

