- 1. Se consideră triunghiul ABC cu laturile $BC=2, AB=\sqrt{2}, AC=1+\sqrt{3}$. Să se calculeze $\cos \hat{A}$. (5 pct.)
 - a) $\frac{\sqrt{3}}{2}$; b) $\frac{1}{2}$; c) 0; d) $\sqrt{3}$; e) $\frac{\sqrt{2}}{2}$; f) 1.
- 2. Dacă z = 2 + i atunci $z + \bar{z}$ este: (5 pct.)
 - a) 3; b) 6; c) 1 + i; d) 5; e) 7i; f) 4.
- 3. Se dau vectorii $\vec{u} = 3\vec{i} + (\lambda 4)\vec{j}$ şi $\vec{v} = \lambda \vec{i} + \vec{j}$. Să se determine $\lambda \in \mathbb{R}$ astfel încât vectorii \vec{u} și \vec{v} să fie perpendiculari. (5 pct.)
 - a) $\lambda = -1$; b) $\lambda = 2$; c) $\lambda = 1$; d) $\lambda = \frac{1}{2}$; e) $\lambda = -\frac{3}{2}$; f) $\lambda = 0$.
- 4. Soluția ecuației $2\sin x 1 = 0, x \in \left[0, \frac{\pi}{2}\right]$ este: (5 pct.)
 - a) $\frac{\pi}{10}$; b) $\frac{\pi}{6}$; c) $\frac{2\pi}{5}$; d) 0; e) $\frac{\pi}{7}$; f) $\frac{\pi}{4}$.
- 5. Fie $\vec{w} = 2\vec{u} + 3\vec{v}$, unde $\vec{u} = 2\vec{i} + 3\vec{j}$ și $\vec{v} = \vec{i} 2\vec{j}$. Atunci $||\vec{w}||$ este: (5 pct.)
 - a) 6; b) 2; c) 0; d) 7; e) $\sqrt{5}$; f) -2.
- 6. Să se calculeze produsul $P = \sin 30^{\circ} \cdot \operatorname{tg} 45^{\circ} \cdot \cos 60^{\circ}$. (5 pct.)
 - a) 2; b) 0; c) $\sqrt{3}$; d) $\frac{\sqrt{2}}{2}$; e) $\frac{1}{4}$; f) 1.
- 7. Dacă $\cos x = \frac{3}{5}$, atunci $\sin^2 x$ este: (5 pct.)
 - a) 0; b) 1; c) $\frac{3}{2}$; d) $\frac{2}{5}$; e) $-\frac{16}{25}$; f) $\frac{16}{25}$.
- 8. Să se scrie ecuația dreptei ce trece prin punctele A(1,2), B(2,1). (5 pct.)
 - a) x y + 3 = 0; b) x + y 3 = 0; c) 2x + 3y 5 = 0; d) x = y; e) 3x + 5y = 2; f) x 4y 5 = 0.
- 9. Să se calculeze tg x știind că $\sin x \sqrt{3}\cos x = 0$. (5 pct.)
 - a) $\frac{\sqrt{3}}{2}$; b) -1; c) $\sqrt{2}$; d) 1; e) 2; f) $\sqrt{3}$.
- 10. Expresia $(\sin x + \cos x)^2 \sin 2x$ este egală cu: (5 pct.)
 - a) 1; b) 3; c) $\sin x$; d) 2; e) -1; f) $\cos x$.
- 11. Într-un triunghi ABC se dau $\hat{B} = 60^{\circ}$, $\hat{C} = 30^{\circ}$. Atunci $\sin \frac{\hat{A}}{2}$ are valoarea: (5 pct.)
 - a) 0; b) $\frac{\sqrt{3}}{2}$; c) $-\frac{\sqrt{2}}{2}$; d) $\frac{\sqrt{3}}{3}$; e) $\frac{\sqrt{2}}{2}$; f) 1.
- 12. Pentru $z=\frac{1}{2}+i\frac{\sqrt{3}}{2}$ calculați |z|. (5 pct.)
 - a) $\frac{1}{3}$; b) 2; c) $\frac{1}{4}$; d) -1; e) 0; f) 1.
- 13. Să se determine $m \in \mathbb{R}$ astfel încât dreapta mx + 4y + 2 = 0 să fie paralelă cu dreapta 3x 6y + 1 = 0. (5 pct.)
 - a) $m = \frac{1}{2}$; b) m = 2; c) $m = \frac{1}{2}$; d) m = -2; e) $m = \frac{2}{2}$; f) m = 1.
- 14. Fie A(-3,0), B(3,0), C(0,4) și fie S aria triunghiului ABC. Atunci: (5 pct.)
 - a) S = 15; b) S = 6; c) S = 16; d) S = 8; e) S = 12; f) S = 20.
- 15. Dacă punctele A(2,3), B(-1,4), C(m,m+3) sunt coliniare, atunci: (5 pct.)
 - a) $m = \frac{1}{3}$; b) $m = \frac{2}{3}$; c) $m = -\frac{1}{3}$; d) $m = -\frac{1}{2}$; e) $m = \frac{1}{2}$; f) m = 4.
- 16. Să se precizeze $m \in \mathbb{R}$ astfel încât dreapta de ecuație 2x my + 3 = 0 să treacă prin punctul M(1,2). (5 pct.)
 - a) $m = \frac{1}{3}$; b) $m = -\frac{3}{4}$; c) $m = \frac{1}{2}$; d) $m = \frac{2}{5}$; e) m = 0; f) $m = \frac{5}{2}$.

- 17. Dacă $E = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6}$, atunci valoarea $a = E^3$ este: (5 pct.) a) a = -1; b) a = 1 + i; c) a = 3i; d) a = 1; e) a = i; f) a = -1.
- 18. Să se determine vârful D al paralelogramului ABCD, cunoscându-se A(0,0), B(0,3), C(2,5). (5 pct.) a) D(-1,1); b) D(1,3); c) D(2,2); d) D(-2,2); e) D(3,3); f) D(2,1).