Disciplina - ci1030-ERE2-CiênciaDeDados - UFPR

Projeto de Mineração de Dados

Heloise Acco Tives - Matrícula: 202000144019

Roberta Samistraro Tomigian - GRR - 20171631

Link do vídeo

Link do github (Na pasta projeto)

Introdução

Os dados a serem utilizados nesse projeto trata-se do conjunto de dados darknet completo cobrindo o tráfego Tor e VPN disponibilizado publicamente pelo Canadian Institute for Cybersecurity através do link: https://www.unb.ca/cic/datasets/darknet2020.html.

O dataset é formado por 85 atributos e 141.530 registros, sendo distribuídos através de 6 atributos textuais e 79 atributos numéricos, conforme apresentado na seção de préprocessamento dos dados.

Entre os objetivos desde projeto tem-se identificação, a partir da análise do dataset através dos algorimos KNN, Random Forest e a rede neural MLP, de novas formas para categorizar o tráfego de rede e identificar padrões de malwares ou atividades maliciosas.

O Dataset

O dataset utilizado apresenta conjuntos de dados oriundos de tráfego capturado regular, VPN e Tor para sete categorias de aplicativos: Navegação (Firefox e Chrome), Chat (ICQ, AIM, Skype, Facebook e Hangouts), vEmail (SMTPS, POP3S e IMAPS), Transferência de arquivos (Skype, FTP sobre SSH (SFTP) e FTP sobre SSL (FTPS) usando Filezilla e um serviço externo), Streaming (Vimeo e Youtube), VoIP (Facebook, Skype e chamadas de voz do Hangouts) e P2P (uTorrent e Transmissão (BitTorrent)). A categorização desses dados pode ser conferida no "Label2" atributo 85 do dataset.

O atributo utilizado para guiar a execução dos algoritmos foi o "Label" - atributo 84, que se refere aos dados de identificação de tráfego TOR, Não-Tor, VPN e Não VPN. Sendo essas categorias o foco de aprofundamento deste estudo.

Pré-processamento dos dados

A atividade de pré-processmento dos dados envolveu o estudo do dataset a ser utilizado, a identificação de atributos a serem mantidos ou excluídos, como também a extração de características e adequação da base de dados de forma a possibilitar a execução do projeto.

Atributos e representação

Os rótulos dos atributos do dataset obtido são apresentados na tabela abaixo, juntamente com a identificação do tipo de dados (textual e numérico) e uma breve descrição sobre o que os dados se referem.

ld	Atributo	Tipo	Descrição
1	Flow ID	Textual	ID do fluxo
2	Src IP	Textual	IP de Origem
3	Src Port	Numérico	Porta de Origem
4	Dst IP	Numérico	IP de Destino
5	Dst Port	Textual	Porta de Destino
6	Protocol	Numérico	Protocolo
7	Timestamp	Textual	Marca temporal
8	Flow Duration	Numérico	Duração do fluxo em microssegundos
9	Total Fwd Packet	Numérico	Total de Pacotes enviados
10	Total Bwd packets	Numérico	Total de Pacotes recebidos
11	Total Length of Fwd Packet	Numérico	Tamanho total do pacote enviado
12	Total Length of Bwd Packet	Numérico	Tamanho total do pacote recebido
13	Fwd Packet Length Max	Numérico	Tamanho máximo do pacote enviado
14	Fwd Packet Length Min	Numérico	Tamanho mínimo do pacote enviado
15	Fwd Packet Length Mean	Numérico	Tamanho médio do pacote enviado
16	Fwd Packet Length Std	Numérico	Valor so desvio padrão do pacote enviado
17	Bwd Packet Length Max	Numérico	Tamanho máximo dos pacotes recebidos
18	Bwd Packet Length Min	Numérico	Tamanho mínimo dos pacotes recebidos
19	Bwd Packet Length Mean	Numérico	Tamanho médio dos pacotes recebidos
20	Bwd Packet Length Std	Numérico	Valor do desvio padrão dos pacotes recebidos
21	Flow Bytes/s	Numérico	Número de bytes do fluxo por segundo
22	Flow Packets/s	Numérico	Número de pacotes de fluxo por segundo
23	Flow IAT Mean	Numérico	Tempo médio entre dois pacotes enviados no fluxo
24	Flow IAT Std	Numérico	Valor do desvio padrão entre dois pacotes enviados no fluxo
25	Flow IAT Max	Numérico	Tempo máximo entre dois pacotes enviados no fluxo
26	Flow IAT Min	Numérico	Tempo mínimo entre dois pacotes enviados no fluxo
27	Fwd IAT Total	Numérico	Tempo total entre dois pacotes enviados enviados
28	Fwd IAT Mean	Numérico	Tempo médio entre dois pacotes enviados
29	Fwd IAT Std	Numérico	Valor do desvio padrão entre dois pacotes enviados
30	Fwd IAT Max	Numérico	Tempo máximo entre dois pacotes enviados

ld	Atributo	Tipo	Descrição
31	Fwd IAT Min	Numérico	Tempo mínimo entre dois pacotes enviados
32	Bwd IAT Total	Numérico	Tempo total entre dois pacotes recebidos
33	Bwd IAT Mean	Numérico	Tempo médio entre dois pacotes recebidos
34	Bwd IAT Std	Numérico	Valor do desvio padrão entre dois pacotes recebidos
35	Bwd IAT Max	Numérico	Tempo máximo entre dois pacotes recebidos
36	Bwd IAT Min	Numérico	Tempo mínimo entre dois pacotes recebidos
37	Fwd PSH Flags	Numérico	Número de vezes que a bandeira PSH foi definida em pacotes que foram enviados
38	Bwd PSH Flags	Numérico	Número de vezes que a bandeira PSH foi definida em pacotes que foram recebido
39	Fwd URG Flags	Numérico	Número de vezes que a bandeira URG foi definida em pacotes que foram enviados
40	Bwd URG Flags	Numérico	Número de vezes que a bandeira URG foi definida em pacotes que foram recebido
41	Fwd Header Length	Numérico	Total de bytes usados para cabeçalhos enviados
42	Bwd Header Length	Numérico	Total de bytes usados para cabeçalhos recebidos
43	Fwd Packets/s	Numérico	Número de pacotes enviados por segundo
44	Bwd Packets/s	Numérico	Número de pacotes recebidos por segundo
45	Packet Length Min	Numérico	Comprimento mínimo de um pacote
46	Packet Length Max	Numérico	Comprimento máximo de um pacote
47	Packet Length Mean	Numérico	Comprimento médio de um pacote
48	Packet Length Std	Numérico	Valoe do desvio padrão do comprimento dos pacotes
49	Packet Length Variance	Numérico	Valor da variância do comprimentos dos pacotes
50	FIN Flag Count	Numérico	Número de pacotes com FIN
51	SYN Flag Count	Numérico	Número de pacotes com SYN
52	RST Flag Count	Numérico	Número de pacotes com RST
53	PSH Flag Count	Numérico	Número de pacotes com PSH
54	ACK Flag Count	Numérico	Número de pacotes com ACK
55	URG Flag Count	Numérico	Número de pacotes com URG
56	CWE Flag Count	Numérico	Número de pacotes com CWR
57	ECE Flag Count	Numérico	Número de pacotes com ECE
58	Down/Up Ratio	Numérico	Taxa de download e upload
59	Average Packet Size	Numérico	Tamanho médio do pacote
60	Fwd Segment Size Avg	Numérico	Tamanho médio observado enviados
61	Bwd Segment Size Avg	Numérico	Taxa média do número de bytes em massa recebidos
62	Fwd Bytes/Bulk Avg	Numérico	Taxa média do número de bytes em massa enviados
63	Fwd Packet/Bulk Avg	Numérico	Taxa média do número de pacotes em massa enviados
64	Fwd Bulk Rate Avg	Numérico	Número médio de taxa em massa enviados
65	Bwd Bytes/Bulk Avg	Numérico	Taxa média do número de bytes em massa recebidos
66	Bwd Packet/Bulk Avg	Numérico	Taxa média do número de pacotes em massa recebidos
67	Bwd Bulk Rate Avg	Numérico	Número médio de taxa em massa recebidos
68	Subflow Fwd Packets	Numérico	Número médio de pacotes em um subfluxo enviados
69	Subflow Fwd Bytes	Numérico	Número médio de bytes em um subfluxo enviados
70	Subflow Bwd Packets	Numérico	Número médio de pacotes em um subfluxo recebidos
71	Subflow Bwd Bytes	Numérico	Número médio de bytes em um subfluxo recebidos
72	FWD Init Win Bytes	Numérico	Número total de bytes enviados na janela inicial enviados

ld	Atributo	Tipo	Descrição
73	Bwd Init Win Bytes	Numérico	Número total de bytes enviados na janela inicial recebidos
74	Fwd Act Data Pkts	Numérico	Contagem de pacotes com pelo menos 1 byte de carga útil de dados TCP enviado
75	Fwd Seg Size Min	Numérico	Tamanho mínimo do segmento observado enviados
76	Active Mean	Numérico	Tempo médio em que um fluxo estava ativo antes de ficar ocioso
77	Active Std	Numérico	Valoe do desvio padrão em que um fluxo estava ativo antes de ficar ocioso
78	Active Max	Numérico	Tempo máximo em que um fluxo ficou ativo antes de se tornar ocioso
79	Active Min	Numérico	Tempo mínimo em que um fluxo esteve ativo antes de se tornar ocioso
80	Idle Mean	Numérico	Tempo médio em que um fluxo ficou ocioso antes de se tornar ativo
81	Idle Std	Numérico	Valor do desvio padrão em que um fluxo estava ocioso antes de se tornar ativo
82	Idle Max	Numérico	Tempo máximo em que um fluxo ficou ocioso antes de se tornar ativo
83	Idle Min	Numérico	Tempo mínimo em que um fluxo ficou ocioso antes de se tornar ativo
84	Label	Textual	Rótulo 1
85	Label	Textual	Rótulo 2

Seleção de atributos e adequação do dataset

Após o estudo e entendimento do dataset, foram removidos os seguintes grupos de atributos:

- Atributos exclusivos dos registros. Ao todo são 3 atributos com essa característica, sendo os IDs: 1, 7 e 58.
- Atributos que se tratam de resultados estatísticos calculados a partir de atributos originais de valores mínimos e máximos, ou seja, os atributos referentes ao cálculo de desvio padrão, média e variância. Ao todo são 17 atributos com essa característica, sendo os IDs: 15, 16, 19, 20, 23, 24, 28, 29, 33, 34, 47, 48, 49, 76, 77, 80, 81.
- Atributos com todos os registros com valor 0. Ao todo são 13 atributos com essa característica, sendo os IDs: 38, 39, 40, 55, 56, 57, 62, 63, 64, 65, 70, 78, 79.
- 10 atributos considerados inconsistentesno estudo, sendo os IDs: 21, 22, 43, 44, 59, 60, 61, 68, 69 e 71

O atributo utilizado para guiar a execução dos algoritmos foi o "Label" - atributo 84, que se refere aos dados de identificação de tráfego TOR, Não-Tor, VPN e Não VPN. Sendo essas categorias o foco de aprofundamento deste estudo.

Para execução do projeto, o atributo 85 - "Label", precisou ser renomeado para Label 2.

Extração de características

A atividade de extração de características iniciou-se com a identificação dos tipos de atributos presentes no dataset, conforme pode ser verificado em detalhes na seção de "Atributos e Representação".

A extração das características através da execução das atividades de vetorização dos atributos textuais, inclusão dos atributos textuais e numéricos em uma única matriz e normalização da base criada. O código Python que utilizado para realização dessa etapa é demonstrado e explicado pa seção Criação de Modelos

Criação de Modelos

Comum a todos

```
from google.colab import files
   uploaded =files.upload()
         Choose Files No file chosen
                                         Upload widget is only available when the cell has been
        executed in the current browser session. Please rerun this cell to enable.
        Saving Darknet (1) CSV to Darknet (1) CSV
   Double-click (or enter) to edit
   import pandas as pd
   # Identificação do Dataset
   data path = "Darknet (1).CSV"
   # Leitura do CSV
   data = pd.read csv(data path, keep default na=False)
   # categorical = data.columns[(data.dtypes.values == np.dtype('float64'))]
   # data[categorical] = data[categorical].astype(int)
        /usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py:2718:
          interactivity=interactivity, compiler=compiler, result=result)
   # Separação dos atributos numéricos
   NUMERICAL ATTRIBUTES = ['SrcPort', 'DstPort', 'Protocol', 'FlowDuration', 'TotalFwdPac']
                             'TotalLengthofBwdPacket', 'FwdPacketLengthMax', 'FwdPacketLe
                             'BwdPacketLengthMin','FlowIATMax','FlowIATMin','FwdIATTota
                             'BwdIATMax', 'BwdIATMin', 'BwdURGFlags', 'FwdHeaderLength', 'Bw
                             'PacketLengthMin', 'PacketLengthMax', 'FINFlagCount', 'SYNFlag
                             'FwdSegSizeMin']
   # Separação dos atributos textuais
   TEXTUAL_ATTRIBUTES = ['Label2','SrcIP','DstIP']
   # Separação do rótulo usado para classificação
   LABEL = 'Label'
   # Separação dos atributos não usados
   UNUSED_ATTRIBUTES = ['FlowID','Timestamp','FwdPacketLengthMean','FwdPacketLengthSto
                          'BwdPacketLengthStd','FlowIATMean','FlowIATStd','FwdIATMean',
                          'BwdIATStd', 'PacketLengthMean', 'PacketLengthStd', 'PacketLengtl
                          'FlowBytess', 'SubflowFwdPackets', 'SubflowFwdBytes', 'SubflowBu
https://colab.research.google.com/drive/1lWuUT_WLHLatAUQ5T_6dSBIB6omZOczj?authuser=1#scrollTo=H07hyCsXZgyw&prin... 5/18
```

'ActiveMean', 'ActiveStd', 'IdleMean', 'FlowPacketss', 'IdleStd', 'FwdURGFlags','URGFlagCount','CWEFlagCount','ECEFlagCount','Fv 'FwdPacketBulkAvg','FwdBulkRateAvg','BwdBytesBulkAvg','Active 'BwdPacketss','AveragePacketSize','FwdSegmentSizeAvg','BwdSeg

```
label = data[LABEL].values
# Remoção dos atributos e rótulos não utilizados.
for a in UNUSED ATTRIBUTES:
    del data[a]
del data[LABEL]
```

#Verificação do tipo dos atributos para conferência dos tipos dos dados. data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 141530 entries, 0 to 141529 Data columns (total 39 columns):

#	Column	Non-Null Count	Dtype
0	SrcIP	141530 non-null	object
1	SrcPort	141530 non-null	int64
2	DstIP	141530 non-null	object
3	DstPort	141530 non-null	int64
4	Protocol	141530 non-null	int64
5	FlowDuration	141530 non-null	int64
6	TotalFwdPacket	141530 non-null	int64
7	TotalBwdpackets	141530 non-null	int64
8	TotalLengthofFwdPacket	141530 non-null	int64
9	TotalLengthofBwdPacket	141530 non-null	int64
10	FwdPacketLengthMax	141530 non-null	int64
11	FwdPacketLengthMin	141530 non-null	int64
12	BwdPacketLengthMax	141530 non-null	int64
13	BwdPacketLengthMin	141530 non-null	int64
14	FlowIATMax	141530 non-null	int64
15	FlowIATMin	141530 non-null	int64
16	FwdIATTotal	141530 non-null	int64
17	FwdIATMax	141530 non-null	int64
18	FwdIATMin	141530 non-null	int64
19	BwdIATTotal	141530 non-null	int64
20	BwdIATMax	141530 non-null	int64
21	BwdIATMin	141530 non-null	int64
22	BwdURGFlags	141530 non-null	int64
23	FwdHeaderLength	141530 non-null	int64
24	BwdHeaderLength	141530 non-null	int64
25	PacketLengthMin	141530 non-null	int64
26	PacketLengthMax	141530 non-null	int64
27	FINFlagCount	141530 non-null	int64
28	SYNFlagCount	141530 non-null	int64
29	RSTFlagCount	141530 non-null	int64
30	PSHFlagCount	141530 non-null	int64
31	ACKFlagCount	141530 non-null	int64
32	BwdPacketBulkAvg	141530 non-null	int64
33	BwdBulkRateAvg	141530 non-null	int64
34	FWDInitWinBytes	141530 non-null	int64
35	BwdInitWinBytes	141530 non-null	int64
36	FwdActDataPkts	141530 non-null	int64
37	FwdSegSizeMin	141530 non-null	int64
38	Label2	141530 non-null	object

dtypes: int64(36), object(3) memory usage: 42.1+ MB #Depois disso, divide-se o conjunto de dados em 5 partes. #(As 4 primeiras são para o conjunto de treinamento (80% solicitado) e a última, pa def split data(data): # Divisão dos dados em 5 partes. mid = int((len(data) + 1)/5)# Atribuição dos dados para treinamento e teste. # %cada classe, ver dist classe para vir todas train data = data[mid:] test data = data[:mid] # Retorno dos dados de treinamento e teste. return(train data, test data) train data, test data = split data(data) train label, test label = split data(label) test label RF = test label #Criação de um método para extrair recursos, dados um conjunto de treinamento e te from sklearn.feature extraction.text import TfidfVectorizer #extração de features dos atributos textuais def textual feature extraction(train data, test data, extractor=TfidfVectorizer(max vectorizer = extractor # treinamento vectorizer.fit(train data) # transforma treino e teste em features train features = vectorizer.transform(train data) test features = vectorizer.transform(test data) return(train features, test features) #Obtenção de atributos numéricos: train_features = train_data[NUMERICAL_ATTRIBUTES].values test features = test data[NUMERICAL ATTRIBUTES].values #Verificação do tamanho das bases: train features.shape, test features.shape ((113224, 36), (28306, 36)) #Obtenção de atributos textuais e união com a matriz de recursos já inicializada: import numpy as np # extração das features de cada atributo textual for a in TEXTUAL ATTRIBUTES: train_texts, test_texts = textual_feature_extraction(train_data[a], test_data[a]) train_features = np.concatenate((train_features, train_texts.toarray()), axis= test_features = np.concatenate((test_features, test_texts.toarray()), axis=1)

```
#Verificação do tamanho das bases:
    train features.shape, test features.shape
https://colab.research.google.com/drive/1|WuUT_WLHLatAUQ5T_6dSB|B6omZOczj?authuser=1#scrollTo=H07hyCsXZgyw&prin... 7/18
```

```
((113224, 246), (28306, 246))
#Criação de método de normalização, que normaliza o conjunto de treinamento e testo
from sklearn.preprocessing import MinMaxScaler
def normalization(train features, test features, scaler=MinMaxScaler()):
   # treinamento
    scaler.fit(train features)
    # transforma features normalizadas
    train features norm = scaler.transform(train features)
    test features norm = scaler.transform(test features)
    return(train features norm, test features norm)
train features norm, test features norm = normalization(train features, test featu
#A partir de agora, tem-se um conjunto de treinamento e um conjunto de teste pronto
train features norm.shape, test features norm.shape
    ((113224, 246), (28306, 246))
#Gráfico para demonstração do tamanho das classes.
import matplotlib.pyplot as plt
import numpy as np
classes = ['Classe de treinamento','Classe de teste']
data1 = len(train features norm)
data2 = len(test features norm)
df = [data1,data2]
porc1 = data1 / data2 * 20
porc2 = 100 - porc1
print("Quantidade de Registros Classe de Treinamento:", data1, "-", porc1, "%",
plt.bar(classes, df, color="grey")
plt.show()
```

Quantidade de Registros Classe de Treinamento: 113224 - 80.0 % Quantidade de Registros Classe de Teste: 28306 - 20.0 %

```
100000 -
80000 -
60000 -
```

```
# Cálculo média de erro absoluto
from sklearn.metrics import mean absolute error
def fn mean absolute error(label, pred):
  dic label = {'Non-Tor': 1.0, 'NonVPN': 2.0, 'Tor': 3.0, 'VPN': 4.0}
  label number = [dic label[i] for i in label]
  pred number = [dic label[i] for i in pred]
  print(mean absolute error(label number, pred number))
# Cálculo matriz de confusão
from sklearn.metrics import confusion matrix
def fn cunfusion matrix(train label, train pred):
  print(confusion matrix(train label,train pred))
# Cálculo da precisão
from sklearn.metrics import precision score
def fn precision score(label,pred):
  print(precision score(label,pred,average='micro')) ##'micro' ou None
# Cálculo da curva roc
import numpy as np
from sklearn import metrics
from sklearn import preprocessing
from sklearn.metrics import roc curve
def fn roc_curve(label, pred):
  dic label = {'Non-Tor': 1.0, 'NonVPN': 2.0, 'Tor': 3.0, 'VPN': 4.0}
  label_number = [dic_label[i] for i in label]
  pred_number = [dic_label[i] for i in pred]
  fpr, tpr, _ = roc_curve(label_number,pred_number,pos label=2)
  return fpr, tpr
```

```
# Gráfico da curva roc
import matplotlib.pyplot as plt
```

from ckloarn import datacets metrics model coloction cymhttps://colab.research.google.com/drive/1lWuUT_WLHLatAUQ5T_6dSBlB6omZOczj?authuser=1#scrollTo=H07hyCsXZgyw&prin... 9/18

```
3/12/2021
                                  Código Heloise Roberta.ipynb - Colaboratory
   TITUM SKLEATH IMPUTE MALASELS, MELITCS, MOMEL_SELECTION, SVM
   def fn_roc_curve_plot():
     train label roc,train pred roc = datasets.make classification(random state=0)
     X train, X test, y train, y test = model selection.train test split(train label
     clf = svm.SVC(random state=0)
     clf.fit(X train, y train)
     metrics.plot roc curve(clf, X train, y train)
     plt.show()
   # Cálculo kfold
   import numpy as np
   from sklearn.model selection import KFold
   from sklearn import metrics, model_selection
   def fn KFold(classifier, train features norm, train label):
     kf = KFold(n splits=5)
     i = 1
     for train index, test index in kf.split(train features norm):
       x train, x test = train features norm[train index], train features norm[test in
       y_train, y_test = train_label[train_index], train_label[test_index]
       classifier.fit(x train, y train)
       y pred = classifier.predict(x test)
       dic label = {'Non-Tor': 1.0, 'NonVPN': 2.0, 'Tor': 3.0, 'VPN': 4.0}
       label_number = [dic_label[i] for i in y_test]
       pred number = [dic label[i] for i in y pred]
       print('kfold[', i, ']:')
       fn precision score(label number, pred number)
       print(confusion matrix(label number, pred number))
       print(mean absolute error(label number, pred number))
       print('----')
```

tentamos de tudo, mas não está funcionando o gráfico da curva roc

plot roc curve(classifier, x test, pred number)

▼ KNN

i+=1

```
# KNN Treino
from sklearn.neighbors import KNeighborsClassifier
# inicialização do classificador -> configuração para 3 vizinhos.
clf_knn = KNeighborsClassifier(n_neighbors=3)
# treino do classificador
clf_knn.fit(train_features_norm, train_label)
# previsão da classe de teste
test_pred = clf_knn.predict(test_features_norm)
train_pred = clf_knn.predict(train_features_norm)
# print train pred and real labels shape
print(train_pred.shape, train_label.shape)

(113224,) (113224,)
```

```
# Erro - KNN - Treino
fn_mean_absolute_error(train_label, train_pred)
    0.0009273652229209355
# Matriz de Confução - KNN - Treino
fn cunfusion matrix(train label, train pred)
     [[76488
                13
                       0
                              01
          10 21912
                              11
     [
                      14
           4
                53 1333
                              0]
      [
      [
           1
                 1
                       0 13394]]
# Precisão - KNN - Treino
fn_precision_score(train_label,train_pred)
    0.9991432911750159
# Curva Roc - KNN - Treino
fn_roc_curve(train_label, train_pred)
     (array([0.
                       , 0.14672407, 0.16132637, 0.16206032, 1.
      array([0.00000000e+00, 4.55850846e-05, 6.83776268e-04, 9.99544149e-01,
             1.00000000e+00]))
# Gráfico curva ROC KNN - Treino
# fn roc curve plot()
# Cross validation correto já plotando o gráfico de roc para cada uma das pastas
fn KFold(clf knn, train features norm, train label)
     kfold[ 1 ]:
    0.9980128063590197
     [[22591
                 1
                             421
           0
                 9
                       0
                              01
     ſ
           0
                 2
                              01
                       0
           0
                 0
                       0
                              0]]
    0.005696621770810334
    kfold[ 2 ]:
    0.9994700816957386
     [[22622
                1
                      111
           0
                11
                       01
     Γ
           0
                0
                       0]]
      [
    0.0015014351954073747
    kfold[ 3 ]:
    0.8704349746080813
     [[16043
                 0
                       0
                              0]
               299
                      11
                              0]
      [
           0
      [
           0
                 0
                       0
                              01
             1928
         977
                      18
                          3369]]
    0.30099359682049015
```

```
kfold[ 4 ]:
    0.8429233826451755
     [[ 5248
             0
                             11
     [ 2532 12739
                     156
                           6781
         56
               70
                     372
                             2]
         37
                10
                     15
                           729]]
    0.19328770147935526
    kfold[ 5 ]:
    0.9376876876876877
     [[9898
             43
                  0
                         0]
     [ 377 4929
                  12
                     184]
     [ 295 161 159 273]
       11
             55
                   0 6247]]
    0.08686627804274863
# Vizinhos KNN
from sklearn.neighbors import KNeighborsClassifier
# inicialização do classificador -> configuração para 3 vizinhos.
clf knn = KNeighborsClassifier(n neighbors=3)
# teste do classificador
clf knn.fit(test features norm, test label)
# previsão da classe de teste
test_pred_nei = clf_knn.predict(test_features_norm)
# print test pred and real labels shape
print(test pred nei.shape, test label.shape)
     (28306,) (28306,)
# Erro - KNN - Teste
fn mean absolute error(test label, test pred)
    0.3313431781247792
# Matriz de Confução - KNN - Teste
fn_cunfusion_matrix(test_label, test_pred)
     [[16854
                             01
                 1
             1926
                             01
     [
          0
                       0
     ſ
          0
                 1
                       1
                             01
     [ 2592
              751
                      99 6081]]
# Precisão - KNN - Teste
fn_precision_score(test_label,test_pred)
    0.8783296827527732
# Curva Roc - KNN - Teste
fn_roc_curve(test_label,test_pred)
                       , 0.23051554, 0.23430629, 0.26285064, 1.
     (array([0.
                                                                        ]),
     array([0., 0., 0., 1., 1.]))
```

```
#Gráfico curva ROC KNN - Teste
# fn_roc_curve_plot()
fn KFold(clf knn, test features norm, test label)
    kfold[ 1 ]:
    0.9242317202401978
                       0]
    [[ 68
           0
                 0
                0 3271
        39 416
        1
           0
                   0
                       11
     [ 61
              0
                   0 474911
    0.15524549629106324
    kfold[2]:
    0.9395866454689984
    [[ 896 0 0]
             32
       20
                   1]
     [ 253 68 4391]]
    0.1619855149266914
    kfold[ 3 ]:
    1.0
    [[5661]]
    0.0
    kfold[ 4 ]:
    0.9938173467585232
    [[5625 35]
         0
             1]]
     ſ
    0.018547959724430314
    kfold[5]:
    0.991697579932874
    [[4523 1
                  46]
         0 1091
     [
                   01
         0
              0
                   0]]
    0.02455396573043632
```

Random Forest

```
[ ] 4 14 cells hidden
```

MLP

```
#MLP Treino
from sklearn.neural_network import MLPClassifier
clf_mlp = MLPClassifier(solver='lbfgs', max_iter=200)
clf_mlp.fit(train_features_norm, train_label)
train_pred = clf_mlp.predict(train_features_norm)
print(train_pred.shape, train_label.shape)
```

ſ

0

```
(113224,) (113224,)
# Matriz de Confusão - MLP - Treino
fn cunfusion matrix(train label, train pred)#(train label, train pred)
     [[76477
                24
                       0
                             0]
          11 21922
                       4
                             01
      [
      [
          3
                79 1308
                             01
      [
           0
                 0
                       0 13396]]
# Precisão - MLP - Treino
fn precision score(train label, train pred)
    0.9989313219812054
#Erro - MLP - Teste
fn_mean_absolute_error(train_label, train_pred)
    0.0010951741680209142
# Curva Roc - MLP - Treino
fn roc curve(train label, train pred)
                       , 0.14674598, 0.16107441, 0.16220272, 1.
      array([0.00000000e+00, 0.00000000e+00, 1.82340338e-04, 9.99498564e-01,
             1.00000000e+00]))
# Gráfico curva ROC - MLP - Treino
# fn roc curve plot()
# Cross validation correto já plotando o gráfico de roc para cada uma das pastas
fn KFold(clf mlp, train features norm, train label)
    kfold[ 1 ]:
    0.9994700816957386
     [[22624
                 0
                       0
                            101
          0
                 9
                       0
                             0]
     [
           0
                 2
                       0
                             01
      Γ
           0
                 0
                             011
      ſ
    0.0014131154780304704
    kfold[ 2 ]:
    0.9999558401413116
     [[22633
                0
                       11
          0
                11
                       01
     ſ
      [
           0
                 0
                       011
    0.0001324795760653566
    kfold[ 3 ]:
    0.8092294104658865
     [[16043
                       0
                             01
                 0
           0
               310
                       0
                             0]
      [
```

01

```
38 3997
                         1972]]
     [
                    285
    0.37063369397217927
    kfold[ 4 ]:
    0.9337160521086333
    [[ 5248 0 0
                            1]
          3 14763 1325
                           14]
     [
          0
               87
                   378
                           35]
               22
                    14
                          755]]
     [
    0.06796202252152793
    kfold[ 5 ]:
    0.9367602897014662
    [[9897 44
                  0
                        0]
                  60 4921
         3 4947
       11 215 85 5771
                  29 6283]]
        1
             0
    0.08554142377671789
#MLP Teste
from sklearn.neural network import MLPClassifier
clf_mlp = MLPClassifier(solver='lbfgs', max_iter=200)
clf mlp.fit(test features norm, test label)
test_pred = clf_mlp.predict(test_features_norm)
print(test pred.shape, test label.shape)
    (28306,) (28306,)
#Erro - MLP - Teste
fn_mean_absolute_error(test_label, test_pred)
    0.00017664099484208294
# Matriz de Confusão - MLP - Teste
fn cunfusion matrix(test label, test pred)
    [[16855]
                            01
          1 1924
     [
                      0
                            1]
     [
          0
                2
                      0
                            01
     [
                0
                      0
                        9523]]
# Precisão - MLP - Teste
fn_precision_score(test_label,test_pred)
    0.9998586872041263
# Curva Roc - MLP - Teste
fn_roc_curve(test_label,test_pred)
                       , 0.36099318, 0.36106899, 1.
     array([0.00000000e+00, 5.19210800e-04, 9.99480789e-01, 1.00000000e+00]))
# Gráfico curva ROC - MLP - Teste
```

```
# fn_roc_curve_plot()
fn KFold(clf mlp, test features norm, test label)
    kfold[ 1 ]:
    0.9418933239138114
       68 0 0
                        0]
         0 456 0
                     326]
         0
             1
                   0
                        1]
             0
     [
         1
                   0 4809]]
    0.11603673613564111
    kfold[ 2 ]:
    0.9977035859388801
    [[ 896
            0
                 01
             52
                   01
         0
            12 4700]]
    0.004416180886769122
    kfold[ 3 ]:
    1.0
    [[5661]]
    0.0
    kfold[ 4 ]:
    1.0
    [[5660
              01
              1]]
     [
         0
    0.0
    kfold[ 5 ]:
    0.9994700582935877
                   31
    [[4567 0
         0 1091
                   01
         0 0
                   0]]
    0.001589825119236884
```

Avaliação de Resultados

Para criação dos modelos, foi utilizada uma base de treinamento contendo 80% dos registros do dataset, corespondendo a 113.224 registros. A avaliação dos modelos ocorreu com a execução dos 20% restantes do dataset, ou seja 28.306 registros

Os seguintes resultados foram obtidos com a execução dos algoritmos KNN, Ramdom Forest e a Rede Neural MLP

Erro Matriz de Confusão Precisão **Curva Roc**

	Erro	Matriz de Confusão	Precisão	Curva Roc
KNN Treino	0.09%	[764881300] [1021912141] [45313330] [11013394]	99.91%	(array([0, 0.14672407, 0.16132637, 0.16206032, 1]), array([0.000000000e+00, 4.55850846e-05, 6.83776268e-04, 9.99544149e-01, 1.00000000e+00]), array([5., 4., 3., 2., 1.]))
KNN Teste	33.13%	[168541 0 0] [01926 0 0] [01 0] [01 0] [2592751996081]	87.83%	(array([0, 0.23051554, 0.23430629, 0.26285064, 1]), array([0., 0., 0., 1., 1.]), array([5., 4., 3., 2., 1.]))
Ramdom Forest Treino	0.02%	[76497400] [02193700] [21813700] [00013396]	99.98%	(array([0, 0.14674598, 0.16170977, 0.16197268, 1]), array([0, 0, 0, 0.99995441, 1]), array([5., 4., 3., 2., 1.]))
Random Forest Teste	0.01%	[16855000] [0192600] [0020] [0009523]	99.99%	(array([0, 0.36099318, 0.36103108, 0.36106899, 1]), array([0., 0., 0., 1., 1.]), array([5., 4., 3., 2., 1.]))
MLP Treino	0.109%	[76446311113] [02193007] [1173962317] [19651513693]]	99.89%	(array([0, 0.14674598, 0.16107441, 0.16220272, 1]), array([0.00000000e+00, 0.00000000e+00, 1.82340338e-04, 9.99498564e-01, 1.00000000e+00]), array([5., 4., 3., 2., 1.]))
MLP Teste	0.018%	[168550 0 0] [01926 0 0] [0 1 1 0] [0 0 9523]]	99.98%	(array([0, 0.36099318, 0.36106899, 0.36106899, 1]), array([0., 0., 5.19210800e-04, 9.99480789e-01, 1.]), array([5., 4., 3., 2., 1.]))

Na análise dos resultados dos parâmetros executados para cada algoritmo, percebeu-se que o Ramdon Forest apresentou melhor precisão, menor erro e mais adequada classificação dos registros. O KNN apresentou resultado satisfatório, próximo ao do Random Forest durante o treinamento, mas o resultado do teste foi inferior. Além disso foi percebido também que o KNN apresentou bastante lentidão quando executado para uma grande base de dados. O MLP pelo fato de ser sensível à escalabilidade, não se mostrou muito efeciente no dataset de entrada. Uma possível explicação para isso, seria que temos uma grande quantidade de atributos que

levou a muitos erros na classificação. O projeto desenvolvido foi bastante desafiador, sendo que os resultados obtidos foram considerados satisfatórios.