0. 一些背景知识		
1.线性回归		
1.1 什么是模型		
1.2 数学表示		
1.3几何展示		
1.3.1怎么来的呢?		
2. 梯度下降		
2.1整体流程:		
2.2coding time		
3.总结:		

0. 一些背景知识

- 离散变量预测, 为分类 ===> 线性回归
- 连续变量预测, 为回归 ===> 逻辑回归

1.线性回归

如何对某一套房子进行估值?

- 多少室多少厅
- 离地铁距离多远
- 价格
- 朝北还是朝南
- 等等

例子:

	x1	x2	x3	x4	у
商品房	室	厅	距离地铁	朝向	价格
龙湖春天	1	1	2. 1	1	10000
帝景居	2	3	1	1	2000
竹林小雅室	3	1	0. 5	0	10001

3 x 4 样本数 和 特征数

1.1 什么是模型

c.g. y 0.5 x1 + 0.5 x2 + 0.002 x5 + x4

给定一个新的户型,我们怎么对该户型的价格进行定位。

* 值得思考的问题:

- 系数意味着什么? 大小以为着什么?
- 单位有没有影响?
- 我们的模型真的只是线性模型吗?
- 每个特征的尺度问题?

1.2 数学表示

• 假设待求解的目标值为 $h_{\theta}(x)$, 影响目标值的因素分别表示为 θ_i , 则有

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$h(x) = \sum_{i=0}^{n} \theta_i x_i = \theta^T x$$

- 如何衡量模型的好坏?
 - > 预测值与真实值越接近越好

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{\mathbf{A}} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

思考?

- 还有其他衡量模型的方法吗?
- theta0为何没有对应x0呢?
- 得到衡量模型的方法后,我们的目标是什么? minimize J(theta)
- 最后一条公式里的n是什么? i 是什么? h theta 是什么?
- 为什么我这里会优先选择平方根?(比赛: 误差项分析 概率 分布 线性回归)

1.3几何展示

1.3.1怎么来的呢?

思考: 有什么方法求local minimum 呢?

- 1.一元线性模型的优化方法,普通最小二乘法 (直接方法)
- 2.多元线性模型的优化方法,矩阵形式最小二乘法(直接方法)
- 3.迭代逼近的优化方法,梯度下降法(迭代法)

详情请见《常见的三种优化方法》