$\tau \to \ell \gamma$ at Belle II

Braden Moore

School of Physics

The University of Melbourne

A thesis submitted for the degree of

Master of Science

2016

Contents

1	Lep	ton Flavour Violation and the Standard Model						
	1.1	1 Introduction						
	1.2	LFV a	and the Standard Model	1				
	1.3	Other LFV						
	1.4	Hints of LFV beyond the Standard Model						
		1.4.1	Neutrino mixing	3				
		1.4.2	$h \to \tau \mu \text{ excess} \dots \dots$	3				
		1.4.3	Models predicting $\tau \to \ell \gamma$	5				
	1.5	Search	nes for $\tau \to \ell \gamma$	6				
		1.5.1	Belle searches	7				
		1.5.2	Babar searches	7				
	1.6	Future	e searches	8				
		1.6.1	Belle II	8				
2	The	Belle	and Belle II detectors	9				
	2.1	Silicon	ı Vertex Detector	9				
	ງ ງ	Contre	al Drift Chambar	0				

	2.3	Electro	omagnetic Calorimeter	9		
	2.4	Time-o	of-flight/Cerenkov aerogel chamber	10		
	2.5	K-long	g/muon detector	10		
	2.6	Particl	le identification (PID)	10		
	2.7	Super-KEKB				
	2.8	Beam backgrounds				
		2.8.1	Synchrotron radiation	12		
		2.8.2	Beam-gas scattering	12		
			2.8.2.1 Coulomb scattering	13		
			2.8.2.2 Bremsstrahlung	13		
		2.8.3	Touschek scattering	13		
3	Moi	nte Ca	rlo production and background types	14		
	3.1	Event	generation	14		
	3.2	Event	scaling	15		
	3.2		scaling			
	3.3	Version		16		
4	3.3	Version	n differences	16		
4	3.3 3.4 Rec	Version Implemonstru	n differences	16 17		
	3.3 3.4 Rec	Version Implementationstrue	n differences	16 17 20 23		
	3.3 3.4 Rec	Version Implementationstrue	n differences	16 17 20 23		
	3.3 3.4 Rec	Version Implement tope Signal	n differences	16 17 20 23 23 23		

		5.2.1	Tau-pair processes	27
		5.2.2	Mu-pair processes	28
		5.2.3	Bhabha	29
		5.2.4	Continuum and $B\bar{B}$	30
6	Pres	selectio	on	33
	6.1	Muon	mode	33
	6.2	Electro	on mode	35
7	Cor	relatio	n	38
8	Sign	al opti	imisation	39
9	Sign	ıal regi	ion and event selection	42
10	Con	clusior	ı	43
	10.1	Future	improvements	43
	10.2	Workin	ng group status	44
	10.3	Expect	ted impact on Belle II	44

Acknowledgements

See ya, folks.

I acknowledge Basement Steve, the traditional custodian of our lands (the basement).

Chapter 1

Lepton Flavour Violation and the Standard Model

1.1 Introduction

Lepton flavour violation (LFV) is an exciting field of research at the frontier of particle physics. Searches for LFV can probe a wide variety of new physics (NP) scenarios. We will not be looking at all LFV; in this literature review we specifically cover charged LFV of the form $\tau \to \ell \gamma$. Of the tau processes, these modes are predicted to be the most sensitive to NP. We choose to investigate tau LFV rather than, say, muon LFV, for two main reasons. Firstly, the tau processes have predicted branching fractions of $\sim 5-6$ orders of magnitude greater than the analogous muon processes, due to the differences in mass [?]. The decay $\tau \to \mu \gamma$ has a predicted branching fraction ~ 6 orders of magnitude greater than the analogous $\mu \to e \gamma$! Secondly, if this NP introduces Higgs-like particles, we would observe the NP more strongly in the tau sector, since taus couple more strongly to Higgs than do muons.