

Les paysages de recombinaison de la Cione

Stage de M1 – Parcours BiM de l'INSA Lyon

Aurélie Fischer, encadrée par Laurent Duret et Julien Joseph

Pourquoi s'intéresser aux paysages de recombinaison ?

• La recombinaison meiotique

Mathilde Grelon, Meiotic recombination mechanisms, Comptes Rendus Biologies, Volume 339, Issues 7–8, 2016, Pages 247-251, ISSN 1631-0691, https://doi.org/10.1016/j.crvi.2016.04.003.

Pourquoi s'intéresser aux paysages de recombinaison ?

• Comprendre les mécanismes de recombinaison :

Pourquoi s'intéresser aux cartes de recombinaison?

• Comprendre les mécanismes de recombinaison :

Comment réaliser une carte de recombinaison ?

- o Méthodes par pédigré
 - → S'appuient sur des expériences avec des croisements
 - → Faible résolution de carte, mais plus fiables
- Méthodes plus récentes
 - → Algorithmes qui se basent sur les données de polymorphisme
 - → Calcul du déséquilibre de liaison
 - → Haute résolution de carte

Comment réaliser une carte de recombinaison ?

- Méthodes par pédigré
 - → S'appuient sur des expériences avec des croisements
 - → Faible résolution de carte, mais plus fiables
- Méthodes plus récentes
 - → Algorithmes qui se basent sur les données de polymorphisme
 - → Calcul du déséquilibre de liaison
 - → Haute résolution de carte

Problématique:

Est-ce que les méthodes basées sur le déséquilibre de liaison permettent de construire une carte de recombinaison fiable de la Cione?

Données de départ : la Cione

- Génome de 100Mb avec 14 Chromosomes
- 2 espèces à analyser :
 - 13 individus de Ciona intestinalis
 - 11 individus de Ciona robusta

C.intestinalis - © Y. Fontana / Station biologique de Roscoff (CNRS/UPMC)

On utilise les données de polymorphisme pour faire les cartes

- Etapes déjà réalisées : Séquençage \rightarrow Alignement \rightarrow Détection de variants
- Les variants répertoriés sont les SNPs (Single Nucleotide Polymorphism)

DONNEES DE

POLYMORPHISME

Filtrage des SNPs Phasage des SNPs Inférence des taux de recombinaison

Etape 1 – Filtrage des SNPs

On ne garde que les SNPs qui sont :

- o Bialléliques
- Sans insertions/délétions (indels)
- o Fréquence allélique > 10 %
- o Avec au maximum 50 % de génotype manquant

4 filtres:

- Bialléliques
- Sans indels
- Fréquence Allélique > 0.1
- 50 % max de génotype manquant

-1-DONNEES DE **POLYMORPHISME**

Filtrage des SNPs

Phasage des SNPs

Inférence des taux de recombinaison

Etape 2 – Phasage des SNPs

Qu'est-ce que le phasage ?

Etape 2 – Phasage des SNPs

Qu'est-ce que le phasage ?

Etape 2 – Phasage des SNPs

Qu'est-ce que le phasage ?

4 filtres:

- Bialléliques
- Sans indels
- Fréquence Allélique > 0.1
- 50 % max de génotype manquant

-1-DONNEES DE POLYMORPHISME

Filtrage des SNPs Phasage des SNPs

Inférence des taux de recombinaison

2 types de phasages

Phasage par trio

Phasage statistique

Etape 3 – Inférence des taux de recombinaison

On utilise 2 outils pour construire les cartes de recombinaison :

- LDhat
- LDhelmet

Etape 3 – Inférence des taux de recombinaison

On utilise 2 outils pour construire les cartes de recombinaison :

- LDhat
- LDhelmet

<u>Remarque :</u> les 2 outils emploient des algorithmes rjMCMC qui introduisent de la stochasticité dans les résultats.

→ Les cartes ne sont <u>pas parfaitement reproductibles</u> à partir d'un même jeu de données en entrée.

4 filtres:

- Bialléliques
- Sans indels
- Fréquence Allélique > 0.1
- 50 % max de génotype manquant

2 outils:

- o LDhat
- LDhelmet
- → Algos rjMCMC

-1-DONNEES DE POLYMORPHISME

Filtrage des SNPs Phasage des SNPs Inférence des taux de recombinaison

2 types de phasages

Phasage par trio

Phasage statistique

<u>Carte de recombinaison n°1 - SNPs phasés par trio – Taux inférés par LDhat</u>

Carte de recombinaison n°2 - SNPs phasés statistiquement – Taux inférés par LDhat

Différents aspects à regarder :

- Reproductibilité des cartes
- Comparaison entre le phasage statistique et le phasage par trio
- Comparaison entre LDhat et LDhelmet

Différents aspects à regarder :

- Reproductibilité des cartes
- Comparaison entre le phasage statistique et le phasage par trio
- Comparaison entre LDhat et LDhelmet

Reproductibilité des cartes chez C.intestinalis

Corrélation entre 2 réplicats de carte du Chromosome 1 de C. intestinalis, avec les SNPs phasés par trio, sous LDhat

Reproductibilité des cartes chez C.intestinalis

<u>Distribution des coefficients de</u> Pearson

Corrélation entre 10 réplicats de carte de recombinaison du chromosome 1 de Ciona intestinalis réalisés sous LDhat, avec 2 jeux de SNPs

Différents aspects à regarder :

- Reproductibilité des cartes
- Comparaison entre le phasage statistique et le phasage par trio
- Comparaison entre LDhat et LDhelmet

Phasage par trio vs. phasage statistique chez C.intestinalis

Corrélation entre les deux cartes de recombinaison de C.intestinalis faites avec Ldhat (taux en rho/kb), l'une avec phasage statistique, l'autre avec phasage par trio.

Les points en rouge correspondent au chromosome 1.

Différents aspects à regarder :

- Reproductibilité des cartes
- Comparaison entre le phasage statistique et le phasage par trio
- Comparaison entre LDhat et LDhelmet

LDhat vs. LDhelmet chez C.intestinalis

Corrélation entre les deux cartes de recombinaison de C.intestinalis faites avec phasage statistique, l'une avec Ldhat (taux en rho/kb), l'autre avec Ldhelmet (taux en rho/bp)

4 - Conclusion

<u>But :</u> Est-ce que les méthodes basées sur le déséquilibre de liaison permettent de construire une carte de recombinaison fiable de la Cione ?

Conclusions:

- Les cartes sont quasiment reproductibles malgré la stochasticité introduite par les algorithmes rjMCMC
- Le phasage statistique : un bon compromis pour gagner en résolution sur la carte
- o LDhat et LDhelmet donnent des résultats très différents → au moins une des cartes est fausse.

Merci de votre attention

Annexes

Annexe 1- Résultats LDhelmet

<u>Carte de recombinaison n°3 - SNPs phasés par trio – Taux inférés par LDhelmet</u>

<u>Carte de recombinaison n°4 - SNPs phasés statistiquement – Taux inférés par LDhelmet</u>

Annexe 2 Reproductibilité des cartes chez C.robusta

<u>Distribution des coefficients de</u> <u>Pearson</u>

Corrélation entre 10 réplicats de carte de recombinaison du chromosome 1 de Ciona robusta réalisés sous LDhat, avec 2 jeux de SNPs

Annexe 3

Phasage par trio vs. phasage statistique chez C.robusta

Corrélation entre les deux cartes de recombinaison de C.robusta faites avec LDhat, l'une avec phasage statistique, l'autre avec phasage par trio.

Les points en rouge correspondent au chromosome 1.

Annexe 4 LDhat vs. LDhelmet chez C.robusta

Corrélation entre les deux cartes de recombinaison de C.robusta faites avec phasage statistique, l'une avec LDhat, l'autre avec LDhelmet

Annexe 5

LDhat vs. LDhelmet chez C.intestinalis (échelle log)

Corrélation entre les deux cartes de recombinaison de C.intestinalis faites avec phasage statistique, l'une avec LDhat, l'autre avec Ldhelmet (échelle logarithmique)

Annexe 6

LDhat vs. LDhelmet chez C.robusta (échelle log)

Corrélation entre les deux cartes de recombinaison de C.robusta faites avec phasage statistique, l'une avec LDhat, l'autre avec Ldhelmet (échelle logarithmique)

4 – Discussion

Quelle carte est la plus fiable ?

On se base sur les critères suivants :

- Corrélation avec le taux de GC
- Corrélation avec la longueur des chromosomes

Annexe 7A

Quelle carte est la plus fiable ? - Critère du taux de GC

	Echelle	1Mb	100kb	10kb	
<u>Carte nº1</u> Phasage par trio	C.intestinalis	0.19	0.31*	0.25*	
LDhat	C.robusta	0.02	-0.04	-0.09	
<u>Carte n°2</u> Phasage statistique LDhat	C.intestinalis	0.37*	0.30*	0.22*	
	C.robusta	0.10	-0.13*	-0.19*	
<u>Carte n°3</u> Phasage par trio LDhelmet	C.intestinalis	0.13	0.005	-0.03*	
	C.robusta	0.03	0.04	0.02	
<u>Carte n°4</u> Phasage statistique LDhelmet	C.intestinalis	0.07	0.01	-0.003	
	C.robusta	-0.04	-0.08*	-0.04*	

<u>Table des coefficients de Pearson pour les corrélation avec le taux de GC</u>

(* : corrélations significatives au risque alpha de 5 %)

Annexe 7B

Quelle carte est la plus fiable ? - Critère du taux de GC

	Echelle	1Mb	100kb	10kb
<u>Carte n°1</u> Phasage par trio	C.intestinalis	0.19	0.31*	0.25*
LDhat	C.robusta	0.02	-0.04	-0.09
<u>Carte n°2</u> Phasage statistique LDhat	C.intestinalis	0.37*	0.30*	0.22*
	C.robusta	0.10	-0.13*	-0.19*
<u>Carte n°3</u> Phasage par trio LDhelmet	C.intestinalis	0.13	0.005	-0.03*
	C.robusta	0.03	0.04	0.02
Carte n°4 Phasage statistique LDhelmet	C.intestinalis	0.07	0.01	-0.003
	C.robusta	-0.04	-0.08*	-0.04*

<u>Table des coefficients de Pearson pour les corrélation avec le taux de GC</u>

(* : corrélations significatives au risque alpha de 5 %)

Annexe 8A

Quelle carte est la plus fiable ? - Critère de la longueur des chromosomes

	Espèce	Coefficient de Pearson
<u>Carte n°1</u> Phasage par trio	C.intestinalis	0.45
LDhat	C.robusta	-0.51
<u>Carte n°2</u> Phasage statistique	C.intestinalis	-0.21
LDhat	C.robusta	-0.71*
<u>Carte n°3</u> Phasage par trio	C.intestinalis	-0.64*
LDhelmet	C.robusta	-0.75*
<u>Carte n°4</u> Phasage statistique	C.intestinalis	-0.72*
LDhelmet	C.robusta	-0.63*

<u>Table des coefficients de Pearson pour les corrélation avec la longueur des chromosomes</u>

(* : corrélations significatives au risque alpha de 5 %)

Annexe 8B

Quelle carte est la plus fiable ? - Critère de la longueur des chromosomes

	Espèce	Coefficient de Pearson	
<u>Carte nº1</u> Phasage par trio	C.intestinalis	0.45	
LDhat	C.robusta	-0.51	
<u>Carte n°2</u> Phasage statistique	C.intestinalis	-0.21	
LDhat	C.robusta	-0.71*	
<u>Carte n°3</u> Phasage par trio	C.intestinalis	-0.64*	
LDhelmet	C.robusta	-0.75*	
Carte n°4	C.intestinalis	-0.72*	
Phasage statistique LDhelmet	C.robusta	-0.63*	

<u>Table des coefficients de Pearson pour les corrélation avec la longueur des chromosomes</u>

(* : corrélations significatives au risque alpha de 5 %)

Annexe 9 Le rapport r/mu chez la Cione

species	Group	Genome SizeMb	NbChrom	GeneticSize_cM	COrate_cM_Mb	Mut_per_bp_generation	RefMu	ratio_r_u
Mus_Musculus	Animals	2448.9	19	1381.0	0.6	5.4e-09	Long2018	1.0
Homo_sapiens	Animals	2771.0	22	3594.0	1.3	1.1e-08	Long2018	1.2
Drosophila_melanogaster	Animals	133.0	4	287.3	2.2	5.5e-09	Long2018	3.9
Oryza_sativa	Plants	362.9	12	1518.0	4.2	8.2e-09	Long2018	5.1
Arabidopsis_thaliana	Plants	123.5	5	422.5	3.4	5.9e-09	Long2018	5.8
Ficedula_albicollis	Animals	979.5	29	3014.0	3.1	4.6e-09	Long2018	6.7
Caenorhabditis_elegans	Animals	78.3	5	250.0	3.2	2.7e-09	Long2018	11.8
Daphnia_pulex	Animals	197.2	12	1206.0	6.1	4.0e-09	Long2018	15.3
Apis_mellifera	Animals	229.8	16	4115.0	17.9	5.0e-09	(1)	35.8
Ciona_intestinalis	Animals	123.0	14	4702.9	38.2	5.0e-09	(1)	76.4
Chlamydomonas_reinhardtii	Plants	120.4	17	1000.0	8.3	9.4e-10	Long2018	88.5
Plasmodium_falciparum	SAR	23.3	14	1630.4	70.1	2.4e-10	Long2018	2861.5
Schizosaccharomyces_Pombe	Fungi	12.6	3	2220.0	176.8	2.0e-10	Long2018	8837.6
Saccharomyces_cerevisiae	Fungi	12.1	16	4420.0	366.2	1.7e-10	Long2018	21928.0
Paramecium_tetraurelia	SAR	76.8	162	30543.6	397.7	2.0e-11	Sung2012	198832.4

Distribution du rapport r/mu chez différentes espèces eucaryotes