

Goal| Develop a predictive model that combines various econometric measures and allows one to foresee a financial condition of a firm

Data Exploration

- Perform EDA and understand the characteristics of the data
- Identify the most important variables that affect the outcome

Data Cleaning

- Checking missing values and impute if needed
- Outliers analysis
- Transformations of variables

Model Building

- Developing a baseline model
- Comparison with multiple models
- Choosing the best model based on the evaluation criteria

Data Exploration Distribution of target variables and chi-square values are explored to understand the data better

Target variable distribution

- There are 65 columns in our dataset out of which there are 64 interval variables and one binary variable- class.
- We have a highly imbalanced dataset with only 2.2% of values having bankruptcy
- There are no missing values in our dataset

Chi-square values

_			
Input	Cramer's V	Prob	Chi-Square [
Attr57	0.096646	<.0001	93.4038
Attr16	0.068142	<.0001	46.4327
Attr29	0.057247	<.0001	32.7718
Attr59	0.052345	<.0001	27.4003
Attr26	0.047525	0.0002	22.5866
Attr50	0.02042	0.3835	4 1700

Attributes 57, 16, 29, 59 and 26 are the important variables that influence the target variable based on the chi-square plot and the p-values

Data Exploration | Outliers are observed across all the variables from the results of chi-square test

- Based on the results of the chi-square values, outliers are checked for the 5 most important variables
- There are outliers present for all the variables but would need to explore them further in order to understand their impact on the model

Baseline model Neural network with all features performs better than neural network with features selected based on chi-square

Model		Data		Target	False	True	False	True
Node	Model Description	Role	Target	Label	Negative	Negative	Positive	Positive
Neural2	NN Baseline	TRAIN	class		121	6839	7	32
Neural2	NN Baseline	VALIDATE	class		49	2927	7	18
Neural3	NN Feature Selected	TRAIN	class		151	6846	0	2
Neural3	NN Feature Selected	VALIDATE	class		67	2934	0	
1								

Model Selection Criteria:

I used ROC index, and number of false negatives as the two most important metrics given that the dataset is highly imbalanced

- Based on the chi-square values, I built 2 baseline modelsneural network with feature selection and neural network without feature selection
- I observed that neural network without feature selection has a better ROC, misclassification rate, and lesser false negatives indicating that all the variables are needed to accurately predict the output

Model Comparison | Ensemble model with logistic regression, gradient boosting and neural networks gave the best ROC score among all models

Model 1- Baseline Neural Network

Model 2- Model comparison

Model 3- arriving at ensemble

Bedel Televil	es hazed on Valids for Index (_VAUN_)							
		Tyte		Target	Palse	True	False	Total
forces Note	finite Description	Frite	Target	Little L	Regative	Megastive .	Feestake .	Frankley
Eurah I	Ensemble w Repl	TRAIN	15419		130	6046	9.1	1
Except 1	Ennemble w Sept	VALIDATE	15488		67	2994	0.1	100
Bacet.	Readlent Boosting w Repl	TRAIN	15411		1.53	6846		- 1
Bucet	Woodleat Sousting w Repl	VALUE ATE	45488		67	2994	9.1	- 4
Seural.	Neural Network w Repl	TRAIN	STATE		1.80	6946	20	1
Seural.	Neural Network w Repl	VALUEATE	TEARS		63.	2900	3	4.1
Fee	Legistic Regression- Formaco w Repl	TRAIN	11444		136	6839	4	27
Teg	Legistic Regression- Formaco e Repl	VALUEATE	12400		60	2924	10	7
Tree	Dectaton Tree o Repl	TRAIN	STARR		130	6636	11	11
Tree	Bertiston Tree o Repl	VALUEATE	STARR		56	2006	1	- 11
HISTorest.	MF Papert w Sepi	TEATE	\$1488		25	60-96	0.7	121
HISBYSTEEL.	MF Forest w Sept	VALIDATE	52488		66	2904	8.5	1
Eponti	Scadiest Boosting on Repl	TEATR	STARR		191	6640	4	11
Boosti	Scattent Sonsting to Repl	TRATTACTE	STARR		63	2932	2.5	4
Neural 4	Neural Network so Repl	TRAIN	class		121	6839	7	31
Neural 4	Reunal Metwork on Repl	VALIDATE	class		49	2927	7:	- 44
Fag2	legistic Segression- Forward we Repl	TRAIN	class		1.40	6836	38	11
Pag2	Legistic Regression- Forward to Repl	TRACTION	class		61	2925	1	
Treel	Decision Tree wo Repl	TRAIN	class		1.53	6846	2.	4
Tresi	Decision Tree so Repl	THEFT	class		67	2934	8	4
HTT#PorketS	MJ Forest we Repl.	TRAIN	class		1	6846	40	152
MINTER COST	MI Forest we Repl.	THERE	plans		68	2931	3	1
Encub12	Ensemble we Dept	TEATE	class		136	68-96	20	17
Encapo2	Engenble we Repl	THERETE	class		62	2931	1	1.

Model 2:

- The baseline model is compared against decision tree, logistic regression, gradient boosting and random forest
- The top 3 models obtained are Neural Network, Gradient boosting and logistic regression with forward propagation based on the ROC index

Model 3/ Final Model:

- The top 3 models ie logistic regression, gradient boosting and neural network is combined to arrive at the ensemble model
- Ensemble model gave an ROC score of 92.6% which is better than all the models

Model Tuning | Models without outlier replacement, transformations perform better than models with outlier and transformations

Final Model Obtained:

- Models are also tested with outlier treatment and transformations to check if we obtain better results in terms of ROC and false negatives, however this is not the case
- Model parameters for Neural Network like no of hidden units, activation function were changed to test the models but the default parameters gave the best results.

Final Results and Learnings

- **Data Partition:** Starting at a 60:40 ratio, as I increased the partition to 70:30, the validation ROC index improved since there was more data available for the model to train, but further increasing to 80:20, the validation ROC index decreased as the model was overfitting to the training dataset.
- **Neural Networks:** NN may be prone to overfitting since there are thousands of parameters to learn in a complex model and if the training data is limited then it may also be learning the noise in the data. Consequently, NNs work best for large datasets with lots of variables.
- **Ensemble methods:** While individual methods did not yield a significant improvement in and of themselves, ensembling the best-performing methods yielded the best possible model. Changing the parameters in the individual models may have improved the performance of the ensemble model.