Задание по курсу «Суперкомпьютерное моделирование и технологии»

Сентябрь 2022

Содержание

C	одержание	1
1	Введение	1
2	Математическая постановка задачи	1
3	Разностная схема решения задачи.	2
4	Метод решения системы линейных алгебраических уравнений.	5
5	Задание практикума.	6
6	Литература.	8
7	Приложение.	9

1 Введение

Требуется методом конечных разностей приближенно решить краевую задачу для уравнения Пуассона с потенциалом в прямоугольной области. Задание необходимо выполнить на ПВС Московского университета IBM Polus.

2 Математическая постановка задачи

В прямоугольнике $\Pi=\{(x,y): A_1\leqslant x\leqslant A_2,\, B_1\leqslant y\leqslant B_2\},$ граница Γ которого состоит из отрезков

$$\gamma_R = \{(A_2, y), B_1 \leqslant y \leqslant B_2\}, \quad \gamma_L = \{(A_1, y), B_1 \leqslant y \leqslant B_2\},
\gamma_T = \{(x, B_2), A_1 \leqslant x \leqslant A_2\}, \quad \gamma_B = \{(x, B_1), A_1 \leqslant x \leqslant A_2\},$$

рассматривается дифференциальное уравнение Пуассона с потенциалом

$$-\Delta u + q(x,y)u = F(x,y), \tag{1}$$

в котором оператор Лапласа

$$\Delta u = \frac{\partial}{\partial x} \left(k(x, y) \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(k(x, y) \frac{\partial u}{\partial y} \right).$$

Для выделения единственного решения уравнение дополняется граничными условиями. На каждом отрезке границы прямоугольника П задается условие одним из трех способов:

1. условия первого типа (условия Дирихле):

$$u(x,y) = \varphi(x,y); \tag{2}$$

2. условия второго типа (условия Неймана):

$$\left(k\frac{\partial u}{\partial n}\right)(x,y) = \psi(x,y),\tag{3}$$

3. условия третьего типа:

$$\left(k\frac{\partial u}{\partial n}\right)(x,y) + \alpha u(x,y) = \psi(x,y),\tag{4}$$

где n — единичная внешняя нормаль к границе прямоугольника. Заметим, что краевое условие второго типа (условие Неймана) содержится в краевом условии третьего типа (случай $\alpha=0$).

Функции F(x,y), $\varphi(x,y)$, $\psi(x,y)$, коэффициент k(x,y), потенциал q(x,y) и параметр $\alpha \geqslant 0$ считаются известными, функцию u(x,y), удовлетворяющую уравнению (1) и граничным условиям, определенным вариантом задания, требуется найти.

Замечание. Нормаль n не определена в угловых точках прямоугольника. Краевое условие второго и третьего типа следует рассматривать лишь в тех точках границы, где нормаль существует.

3 Разностная схема решения задачи.

Краевые задачи для уравнения Пуассона с потенциалом (1) предлагается численно решать методом конечных разностей. В расчетной области П определяется равномерная прямоугольная сетка $\bar{\omega}_h = \bar{\omega}_1 \times \bar{\omega}_2$, где

$$\bar{\omega}_1 = \{x_i = A_1 + ih_1, i = \overline{0, M}\}, \ \bar{\omega}_2 = \{y_j = B_1 + jh_2, j = \overline{0, N}\}.$$

Здесь $h_1 = (A_2 - A_1)/M$, $h_2 = (B_2 - B_1)/N$. Через ω_h обозначим множество внутренних узлов сетки $\bar{\omega}_h$, т.е. множество узлов сетки прямоугольника, не лежащих на границе Γ .

Рассмотрим линейное пространство H функций, заданных на сетке $\bar{\omega}_h$. Обозначим через w_{ij} значение сеточной функции $w \in H$ в узле сетки $(x_i, y_j) \in \bar{\omega}_h$. Будем считать, что в пространстве H задано скалярное произведение и евклидова норма

$$[u,v] = \sum_{i=0}^{M} h_1 \sum_{j=0}^{N} h_2 \rho_{ij} u_{ij} v_{ij}, \quad ||u||_E = \sqrt{[u,u]}.$$
 (5)

Весовая функция $ho_{ij} =
ho^{(1)}(x_i)
ho^{(2)}(y_j),$ где

$$\rho^{(1)}(x_i) = \begin{bmatrix} 1, & 1 \leqslant i \leqslant M - 1 \\ 1/2, & i = 0, \ i = M \end{bmatrix} \quad \rho^{(2)}(y_j) = \begin{bmatrix} 1, & 1 \leqslant j \leqslant N - 1 \\ 1/2, & j = 0, \ j = N \end{bmatrix}$$

В методе конечных разностей дифференциальная задача математической физики заменяется конечно-разностной операторной задачей вида

$$Aw = B, (6)$$

где $A: H \to H$ — оператор, действующий в пространстве сеточных функций, $B \in H$ — известная правая часть. Задача (6) называется разностной схемой. Решение этой задачи считается численным решением исходной дифференциальной задачи.

При построении разностной схемы следует аппроксимировать (приближенно заменить) все уравнения краевой задачи их разностными аналогами — сеточными уравнениями, связывающими значения искомой сеточной функции в узлах сетки. Полученные таким образом уравнения должны быть функционально независимыми, а их общее количество — совпадать с числом неизвестных, т.е. с количеством узлов сетки.

Уравнение (1) во всех внутренних точках сетки аппроксимируется разностным уравнением

$$-\Delta_h w_{ij} + q_{ij} w_{ij} = F_{ij}, \quad i = \overline{1, M - 1}, \ j = \overline{1, N - 1}, \tag{7}$$

в котором $F_{ij} = F(x_i, y_j), q_{ij} = q(x_i, y_j),$ разностный оператор Лапласа

$$\Delta_h w_{ij} = \frac{1}{h_1} \left(k(x_i + 0.5h_1, y_j) \frac{w_{i+1j} - w_{ij}}{h_1} - k(x_i - 0.5h_1, y_j) \frac{w_{ij} - w_{i-1j}}{h_1} \right) + \frac{1}{h_2} \left(k(x_i, y_j + 0.5h_2) \frac{w_{ij+1} - w_{ij}}{h_2} - k(x_i, y_j - 0.5h_2) \frac{w_{ij} - w_{ij-1}}{h_2} \right).$$

Введем обозначения правой и левой разностных производных по переменным $x,\,y$ соответственно:

$$\begin{split} w_{x,ij} &= \frac{w_{i+1j} - w_{ij}}{h_1}, \quad w_{\overline{x},ij} = w_{x,i-1j} = \frac{w_{ij} - w_{i-1j}}{h_1}, \\ w_{y,ij} &= \frac{w_{ij+1} - w_{ij}}{h_2}, \quad w_{\overline{y},ij} = w_{y,ij-1} = \frac{w_{ij} - w_{ij-1}}{h_2}, \end{split}$$

а также определим сеточные коэффициенты

$$a_{ij} = k(x_i - 0.5h_1, y_j), \quad b_{ij} = k(x_i, y_j - 0.5h_2).$$

С учетом принятых обозначений разностный оператор Лапласа можно представить в более компактном и удобном виде

$$\Delta_h w_{ij} = \left(aw_{\overline{x}}\right)_{x,ij} + \left(bw_{\overline{y}}\right)_{y,ij}.$$

Краевые условия первого типа аппроксимируются точно равенством

$$w_{ij} = \varphi(x_i, y_j). \tag{8}$$

Переменные w_{ij} , заданные равенством (8), исключаются из разностной схемы, а соответствующие узлы $P_{ij}(x_i, y_j)$ – из расчетной сетки $\overline{\omega}_h$. В скалярном произведении (5) слагаемые, отвечающие данным граничным узлам, считаются равными нулю.

Аппроксимация граничных условий третьего типа на правой и левой сторонах прямоугольника имеет вид:

$$(2/h_1)(aw_{\overline{x}})_{Mj} + (q_{Mj} + 2\alpha_R/h_1)w_{Mj} - (bw_{\overline{y}})_{y,Mj} = F_{Mj} + (2/h_1)\psi_{Mj},$$

$$-(2/h_1)(aw_{\overline{x}})_{1j} + (q_{0j} + 2\alpha_L/h_1)w_{0j} - (bw_{\overline{y}})_{y,0j} = F_{0j} + (2/h_1)\psi_{0j}, \ j = \overline{1, N-1}.$$
(9)

На верхней и нижней сторонах соответственно имеем:

$$(2/h_2)(bw_{\overline{y}})_{iN} + (q_{iN} + 2\alpha_T/h_2)w_{iN} - (aw_{\overline{x}})_{x,iN} = F_{iN} + (2/h_2)\psi_{iN},$$

$$-(2/h_2)(bw_{\overline{y}})_{i1} + (q_{i0} + 2\alpha_B/h_2)w_{i0} - (aw_{\overline{x}})_{x,i0} = F_{i0} + (2/h_2)\psi_{i0}, \ i = \overline{1, M-1}.$$
(10)

Здесь α_R , α_L , α_T , α_B — параметры в граничных условиях третьего типа, которые мы будем считать неизменными вдоль отрезков γ_R , γ_L , γ_T , γ_B соответственно.

Аппроксимация граничных условий второго типа на правой, левой, верхней, нижней сторонах прямоугольника Π получается из равенств (9),(10), если положить равными нулю параметры α_R , α_L , α_T , α_B соответственно.

Сеточных уравнений (7)-(10) недостаточно, чтобы определить разностную схему для задачи с граничными условиями (3),(4). Требуются сеточные уравнения для угловых точек прямоугольника Π . Они имеют следующий вид:

$$-(2/h_1)(aw_{\overline{x}})_{10} - (2/h_2)(bw_{\overline{y}})_{01} + (q_{00} + 2\alpha_L/h_1 + 2\alpha_B/h_2)w_{00} =$$

$$= F_{00} + (2/h_1 + 2/h_2)\psi_{00}$$
(11)

– в вершине $P(A_1, B_1)$ прямоугольника,

$$(2/h_1)(aw_{\overline{x}})_{M0} - (2/h_2)(bw_{\overline{y}})_{M1} + (q_{M0} + 2\alpha_R/h_1 + 2\alpha_B/h_2)w_{M0} = = F_{M0} + (2/h_1 + 2/h_2)\psi_{M0}$$
(12)

– в вершине $P(A_2, B_1)$ прямоугольника,

$$(2/h_1)(aw_{\overline{x}})_{MN} + (2/h_2)(bw_{\overline{y}})_{MN} + (q_{MN} + 2\alpha_R/h_1 + 2\alpha_T/h_2)w_{MN} = = F_{MN} + (2/h_1 + 2/h_2)\psi_{MN}$$
(13)

– в вершине $P(A_2, B_2)$ прямоугольника,

$$-(2/h_1)(aw_{\overline{x}})_{1N} + (2/h_2)(bw_{\overline{y}})_{0N} + (q_{0N} + 2\alpha_L/h_1 + 2\alpha_T/h_2)w_{0N} =$$

$$= F_{0N} + (2/h_1 + 2/h_2)\psi_{0N}$$
(14)

– в вершине $P(A_1, B_2)$ прямоугольника. Здесь

$$\psi_{00} = \frac{h_1 \psi(A_1 + 0, B_1) + h_2 \psi(A_1, B_1 + 0)}{h_1 + h_2}, \quad \psi_{M0} = \frac{h_1 \psi(A_2 - 0, B_1) + h_2 \psi(A_2, B_1 + 0)}{h_1 + h_2},$$

$$\psi_{MN} = \frac{h_1 \psi(A_2 - 0, B_2) + h_2 \psi(A_2, B_2 - 0)}{h_1 + h_2}, \quad \psi_{0N} = \frac{h_1 \psi(A_1 + 0, B_2) + h_2 \psi(A_1, B_2 - 0)}{h_1 + h_2},$$

где

$$\psi(x_0 \pm 0, y) = \lim_{x \to x_0 \pm 0} \psi(x, y), \quad \psi(x, y_0 \pm 0) = \lim_{y \to y_0 \pm 0} \psi(x, y).$$

Замечание. Разностные схемы (6), аппроксимирующие все описанные выше краевые задачи для уравнения Пуассона с положительным потенциалом, обладают самосопряженным и положительно определенным оператором A и имеют единственное решение при любой правой части.

Пример аппроксимации краевой задачи. Пользуясь равенствами (7)-(14), соберем разностную схему для уравнения Пуассона с граничными условиями смешанного типа. Предположим, что на участках границы γ_R и γ_L заданы краевые условия третьего типа, на участке γ_B — условие Дирихле, на участке γ_T — условия Неймана. Во всех внутренних узлах сетки численное решение удовлетворяет равенству (7). На правой и левой сторонах прямоугольника используем условия (9), на верхней стороне имеем первое из равенств (10) при $\alpha_T = 0$. Эти уравнения справедливы во всех граничных точках, за исключением угловых. К полученной системе уравнений следует добавить равенства (13) и (14) — условия, которым удовлетворяет численное решение в вершинах (A_1, B_2) и (A_2, B_2) прямоугольника. Всюду на нижней границе решение определено равенством (8). Переменные w_{i0} , $i = 0, 1, 2, \ldots, M$ исключаются из

полученных ранее уравнений и система принимает вид:

$$-\Delta_h w_{ij} + q_{ij} w_{ij} = F_{ij}, \quad i = \overline{1, M-1}, \quad j = \overline{2, N-1},$$

$$-(aw_{\overline{x}})_{x,i1} - (1/h_2) \left((bw_{\overline{y}})_{i2} - (1/h_2)b_{i1}w_{i1} \right) + q_{i1}w_{i1} = F_{i1} + (1/h_2^2)b_{i1}\varphi_{i0}, \quad i = \overline{1, M-1},$$

$$(2/h_1)(aw_{\overline{x}})_{Mj} + \left(q_{Mj} + 2\alpha_R/h_1 \right) w_{Mj} - \left(bw_{\overline{y}} \right)_{y,Mj} = F_{Mj} + (2/h_1)\psi_{Mj}, \quad j = \overline{2, N-1},$$

$$-(2/h_1)(aw_{\overline{x}})_{1j} + \left(q_{0j} + 2\alpha_L/h_1 \right) w_{0j} - \left(bw_{\overline{y}} \right)_{y,0j} = F_{0j} + (2/h_1)\psi_{0j}, \quad j = \overline{2, N-1},$$

$$(2/h_2)(bw_{\overline{y}})_{iN} + q_{iN}w_{iN} - \left(aw_{\overline{x}} \right)_{x,iN} = F_{iN} + (2/h_2)\psi_{iN}, \quad i = \overline{1, M-1},$$

$$(2/h_1)(aw_{\overline{x}})_{MN} + (2/h_2)(bw_{\overline{y}})_{MN} + \left(q_{MN} + 2\alpha_R/h_1 \right) w_{MN} = F_{MN} + \left(2/h_1 + 2/h_2 \right) \psi_{MN},$$

$$-(2/h_1)(aw_{\overline{x}})_{1N} + (2/h_2)(bw_{\overline{y}})_{0N} + \left(q_{0N} + 2\alpha_L/h_1 \right) w_{0N} = F_{0N} + \left(2/h_1 + 2/h_2 \right) \psi_{0N},$$

$$(2/h_1)(aw_{\overline{x}})_{M1} + \left(q_{M1} + 2\alpha_R/h_1 \right) w_{M1} - (1/h_2) \left(\left(bw_{\overline{y}} \right)_{M2} - (1/h_2)b_{M1}w_{M1} \right) =$$

$$= F_{M1} + (2/h_1)\psi_{M1} + (1/h_2^2)b_{M1}\varphi_{M0},$$

$$-(2/h_1)(aw_{\overline{x}})_{11} + \left(q_{01} + 2\alpha_L/h_1 \right) w_{01} - (1/h_2) \left(\left(bw_{\overline{y}} \right)_{02} - (1/h_2)b_{01}w_{01} \right) =$$

$$= F_{01} + (2/h_1)\psi_{01} + (1/h_2^2)b_{01}\varphi_{00}.$$

Эти соотношения представляют собой систему линейных алгебраических уравнений с числом уравнений равным числу неизвестных и определяют единственным образом неизвестные значения $w_{ij}, i = 0, 1, 2, \ldots, M, j = 1, 2, \ldots, N$. Систему можно представить в операторном виде (6), в котором оператор A определен левой частью линейных уравнений, функция B – правой частью.

4 Метод решения системы линейных алгебраических уравнений.

Приближенное решение системы уравнений (6) для сформулированных выше краевых задач может быть получено итерационным методом наименьших невязок. Этот метод позволяет получить последовательность сеточных функций $w^{(k)} \in H, k=1,2,\ldots$, сходящуюся по норме пространства H к решению разностной схемы, т.е.

$$||w - w^{(k)}||_E \to 0, \quad k \to +\infty.$$

Начальное приближение $w^{(0)}$ можно выбрать любым способом, например, равным нулю во всех точках расчетной сетки.

Метод является одношаговым. Итерация $w^{(k+1)}$ вычисляется по итерации $w^{(k)}$ согласно равенствам:

$$w_{ij}^{(k+1)} = w_{ij}^{(k)} - \tau_{k+1} r_{ij}^{(k)}, (15)$$

где невязка $r^{(k)} = Aw^{(k)} - B$, итерационный параметр

$$\tau_{k+1} = \frac{\left[Ar^{(k)}, r^{(k)}\right]}{\left\|Ar^{(k)}\right\|_E^2}.$$

В качестве условия остановки итерационного процесса следует использовать неравенство

$$\|w^{(k+1)} - w^{(k)}\|_E < \varepsilon,$$

где ε — положительное число, определяющее точность итерационного метода. Оценку точности приближенного решения сеточных уравнений (6) можно проводить в других нормах пространства сеточных функций, например, в максимум норме

$$||w||_C = \max_{x \in \overline{\omega}_h} |w(x)|. \tag{16}$$

5 Задание практикума.

Задача практикума заключается в восстановлении известной гладкой функции u(x,y) по ее образу $F(x,y) = -\Delta u + q(x,y)u$ и ее граничным значениям. Конкретное задание определяется набором граничных условий для уравнения Пуассона, явным видом коэффициента k(x,y), потенциала q(x,y) и функции u(x,y), которую следует численно получить.

Предлагается восстановить следующие гладкие функции:

1.
$$u_1(x,y) = \exp(1-(x+y)^2), \Pi = [-1,2] \times [-2,2],$$

2.
$$u_2(x,y) = \sqrt{4+xy}$$
, $\Pi = [0,4] \times [0,3]$,

3.
$$u_3(x,y) = 2/(1+x^2+y^2), \Pi = [-2,3] \times [-1,4],$$

4.
$$u_4(x,y) = 1 + \cos(\pi xy), \Pi = [0,2] \times [0,1],$$

Коэффициент k(x,y) можно выбрать из набора функций: $k_1(x,y) = 1$, $k_2(x,y) = 4 + x$, $k_3(x,y) = 4 + x + y$, $k_4(x,y) = 1 + (x+y)^2$.

В качестве потенциала следует взять одну из функций: $q_0(x,y) = 0$, $q_1(x,y) = 1$, $q_2(x,y) = x + y$, $q_3(x,y) = (x+y)^2$.

Для успешного выполнения задания требуется:

- 1. пользуясь явным видом функций u(x,y), k(x,y), q(x,y) определить правую часть уравнения Пуассона F(x,y) и граничные условия $\varphi(x,y), \psi(x,y)$;
- 2. с помощью равенств (7)-(14) собрать разностную схему для уравнения Пуассона с граничными условиями, заданными условиями задания;
- 3. разработать последовательный код программы, вычисляющий приближенное решение разностной схемы методом наименьших невязок, проверить точность схемы, выполнив расчеты на сгущающихся сетках

$$(M, N) = (20, 20), (40, 40), (80, 80), (160, 160);$$

- 4. разработать и реализовать алгоритм **двумерного** разбиения расчетной области Π на домены (подобласти) Π_{ij} так, чтобы
 - отношение количества узлов по переменым x и y в каждом домене принадлежало диапазону [1/2,2],
 - количество узлов по переменым x и y любых двух доменов отличалось не более, чем на единицу.
- 5. используя средства библиотеки MPI, разработать параллельный код программы, вычисляющий приближенное решение разностной схемы методом наименьших невязок, проверить качество работы алгоритма, выполнив расчеты на сетке (M,N)=(160,160) на одном, четырех и шестнадцати процессах, провести сравнение с последоватедьным вариантом алгоритма.

- 6. провести исследование параллельных характеристик MPI-программы, выполнив расчеты на вычислительных комплексе IBM Polus, необходимые для заполнения таблицы 1 и таблицы 2 (см. приложение);
- 7. разработать гибридный MPI / OpenMP код программы, провести исследование параллельных характеристик гибридной программы и сравнить полученные результаты с программой, не использующей директивы OpenMP;
- 8. предоставить отчет о проделанной работе.

Отчет о выполнении задания должен содержать

- математическую постановку задачи;
- численные метод ее решения;
- краткое описание проделанной работы по созданию MPI программы и гибридной реализации MPI/OpenMP;
- результаты расчетов для разных размеров задач и на разном числе процессов (см. таблицу 1 и таблицу 2).
- рисунок точного решения и приближенного решения, полученного на сетке с наибольшим количеством узлов.
- сеточную норму разности между приближенным решением, полученным на сетке с наибольшим количеством узлов, и точным решением, вычисленным в узлах сетки.

6 Литература.

- 1. А.Н. Тихонов, А.А. Самарский. Уравнения математической физики. М. Изд. "Наука". 1977.
- 2. А.Н. Самарский, А.В. Гулин. Численные методы математической физики. М. Изд. "Научный мир". 2003.
- 3. Г.И. Марчук. Методы вычислительной математики. М. Изд. "Наука". 1989.
- 4. В.А. Ильин, Г.Д. Ким. Линейная алгебра и аналитическая геометрия. Изд. Московского университета. 2002.
- 5. IBM Polus http://hpc.cmc.msu.ru

7 Приложение.

Таблица 1: Таблица с результатами расчетов на ПВС IBM Polus (МРІ код).

Число процессов МРІ	Число точек сетки $M \times N$	Время решения	Ускорение
4	500×500		
8	500×500		
16	500×500		
32	500×500		
4	500×1000		
8	500×1000		
16	500×1000		
32	500×1000		

Таблица 2: Таблица с результатами расчетов на ПВС IBM Polus (MPI+OpenMP код).

Число процес-	Количество ОМР-	Число точек	Время	Ускорение
сов МРІ	нитей в процессе	сетки $(M \times N)$	решения	
1	4	500×500		
2	4	500×500		
4	4	500×500		
8	4	500×500		
1	4	500×1000		
2	4	500×1000		
4	4	500×1000		
8	4	500×1000		

Таблица 3: Варианты заданий

Вариант	Граничные условия			Решение	Коэфф.	Потенциал	
задания	γ_R	γ_L	γ_T	γ_B	u(x,y)	k(x,y)	q(x,y)
1	1 тип	1 тип	1 тип	1 тип	$u_1(x,y)$	$k_2(x,y)$	$q_3(x,y)$
2	1 тип	1 тип	1 тип	3 тип	$u_2(x,y)$	$k_3(x,y)$	$q_2(x,y)$
3	1 тип	1 тип	3 тип	3 тип	$u_3(x,y)$	$k_4(x,y)$	$q_1(x,y)$
4	3 тип	1 тип	3 тип	1 тип	$u_4(x,y)$	$k_3(x,y)$	$q_0(x,y)$
5	3 тип	3 тип	3 тип	1 тип	$u_3(x,y)$	$k_2(x,y)$	$q_1(x,y)$
6	3 тип	3 тип	3 тип	3 тип	$u_2(x,y)$	$k_1(x,y)$	$q_2(x,y)$
7	2 тип	2 тип	2 тип	1 тип	$u_1(x,y)$	$k_2(x,y)$	$q_3(x,y)$
8	3 тип	3 тип	2 тип	2 тип	$u_2(x,y)$	$k_3(x,y)$	$q_2(x,y)$
9	2 тип	2 тип	2 тип	2 тип	$u_3(x,y)$	$k_4(x,y)$	$q_1(x,y)$
10	3 тип	2 тип	3 тип	2 тип	$u_4(x,y)$	$k_3(x,y)$	$q_0(x,y)$

Замечание. Всюду в краевых условиях третьего типа коэффициенты α_R , α_L , α_T , α_B считать равными единице вдоль соответствующих участков границы прямоугольника Π .