

Programming with Python

Visualization

- Visualization in Python
- Matplotlib
- Pyplot
- Different plots in Matplotlib
- Seaborn
- Different plots in Seaborn
- Summary

Python Visualization

- Visual description of data.
- Provides better understanding of data.
- Python provides variety of libraries, e.g.: Matplotlib, Seaborn, ggplot, Plotly, etc.
- Helps to explore patterns, trends, and correlations.
- Helps to present reports, outcomes, and inferences in visual format.

G Great Learning

Matplotlib

- Python library for visualization
- Build on NumPy arrays
- "conda install -c conda-forge matplotlib"
- Pyplot class supports wide variety of plots

G Great Learning

- Matplotlib module that provides collection of functions for plotting
- Gives MATLAB like interface to matplotlib

Line Plot

```
import pandas as pd
from matplotlib import pyplot as plt

df = pd.read_csv("Week4_Profile_Data.csv")
plt.plot(df["Name"], df["Age"])
plt.xlabel("Name")
plt.ylabel("Age")
plt.title('Age of different persons')
plt.legend("Age")
plt.show()
```


Different plots in Matplotlib

Scatter Plot

```
plt.scatter(df["Name"], df["Age"])
plt.xlabel("Name")
plt.ylabel("Age")
plt.title('Age of different persons')
plt.legend("Age")
plt.show()
```

Age of different persons 60 55 50 45 30 Alex Anita Bliss Max Name

Bar plot

```
plt.bar(df["Name"], df["Age"])
plt.xlabel("Name")
plt.ylabel("Age")
plt.title('Age of different persons')
plt.legend("Age")
plt.show()
```


- Build on top of Matplotlib
- Integrated with Pandas data structure
- Command : conda install -c anaconda seaborn
- Makes statistical plots more attractive

Different plots in Seaborn

- Distribution plot for continuous data
 - displot()
 - histplot()
 - kdeplot()
- Categorical plots for categorical data
 - barplot()
 - countplot()
 - boxplot()
 - violinplot()
 - swarmplot()
 - stripplot()

Different plots in Seaborn

- Relational plots for checking relationship between two or more variables
 - joinplot()
 - pairplot()
 - scatterplot()
 - relplot()
 - lineplot()
 - heatmap()

Different plots in Seaborn

Displot

```
import seaborn as sns
import numpy as np
np.random.seed(1)
random_values = np.random.randn(50)
ax_grid = sns.displot(random_values)
plt.show()
```


Count plot

```
sns.set_theme(style="darkgrid")
titanic_values = sns.load_dataset("titanic")
ax_grid = sns.countplot(x="class", data=titanic_values)
```


Pair plot

penguins_data = sns.load_dataset("penguins")
sns.pairplot(penguins_data, hue="species")

flipper_length_mm

body_mass_g

- Creates an axis grid
- Each variable is represented as row on y-axis and as column on xaxis
- Pairwise relationship is represented through scatter plot
- Distribution is shown through displot

G Great Learning

Heat map in Seaborn

- Values are represented in terms of color encoded matrix
- Color maps (cmap=) can have different palette
- Values are directly proportional to color of each matrix
- i.e. low value has low intensity color

Heat map

```
sns.set_theme()
uniform_values = np.random.rand(14, 16)
ax_grid = sns.heatmap(uniform_values)
plt.show()
```


Summary

- Discussed visualization techniques in Python.
- Matplotlib and use of Pyplot module.
- Different plots associated with Matplotlib.
- Seaborn in Python
- Different plots associated with Seaborn.

Hands on

THANK YOU Happy learning