

芯仑科技 SDK 使用说明

芯仑科技(上海)有限公司

目录

1	Cele	CeleX-5 SD K 使用步骤					
	1.1	安装	長 MIPI 转 USB3.0 驱动	3			
	1.1.	1	Windows	3			
	1.1.	2	Linux	4			
	1.2	运行	CeleX-5 Demo GUI	5			
	1.2.	2.1 Windows					
	1.2.	2	Linux				
	1.3	编译	】 CeleX-5 SDK 的 Source Code	5			
	1.3.	1	Windows				
	1.3.	2	Linux	6			
	1.4	编译	¥ CeleX-5 Demo GUI的 Source Code	6			
	1.5	编译	】 CeleX-5 Driver 的 Source Code	8			
	1.5.	1	Windows	8			
	1.5.	2	Linux	8			
	1.6	生瓦	艾 FPN 文件	8			
2	Cele	eX-5	Demo Kit GUI 的功能	9			
	2.1	Fixe	ed 与 Loop Mode 切换	10			
	2.2	录制	ij Sensor 数据功能	10			
	2.3	播放	女录制的 Bin 文件功能	11			
	2.4	生瓦	艾 FPN 功能	11			
	2.5	图像	象翻转功能	14			
	2.6	Bin	转视频功能	14			
	2.7	Bin	转 CSV 文件功能	15			
	2.8	Adv	vanced Settings	15			

1 CeleX-5 SDK 使用步骤

1.1 安装 MIPI 转 USB3.0 驱动

1.1.1 Windows

把 CeleX-5 Sensor 通过 USB 线连接到 PC 上,双击 **zadig-2.4.exe** 弹出如下图 1-1 所示的界面,选择 Options → List All Devices (图 1-2),然后选择设备 FX3(图 1-3),点击 Install Driver 或 Reinstall Driver(图 1-4)安装驱动,安装成功后会弹出图 1-5 所示的界面。

备注: 数据线必须连接 PC 上的 USB3.0 端口。

图 1-1

图 1-2

图 1-3

图 1-4

图 1-5

1.1.2 Linux

Linux 下安装 CeleX-5 Sensor 所需的驱动,将发布包 *Drivers/Linux/*目录下的压缩包解压,如图 1-6 所示,运行命令 "*sudo sh install.sh*"即可进行安装,如图 1-7。

图 1-6

sudo sh ./install.sh

图 1-7

1.2 运行 CeleX-5 Demo GUI

1.2.1 Windows

安装驱动程序后,用户可以从发布文件夹打开 Demo GUI,双击"CeleXDemo.exe"即可正常打开 Celex Demo GUI。打开后的界面如图 2-2 所示(第 2 章)。

备注: 如果 CeleXDemo.exe 无法打开,且 Windows 消息框显示缺失某些 dll 文件,这可能是由于缺少 Visual C ++支持包所造成的。可以在 *Drivers/Windows* 文件夹下安装 "vc redist.x86.exe"并再次尝试,则 CeleX Demo 应该可以正常工作。

1.2.2 Linux

安装驱动程序后,用户可以从以下文件夹打开 Demo GUI,打开终端,进入 CeleXDemo.sh 所在的目录,输入命令 "sudo sh CeleXDemo.sh",即可打开 CeleX-5 Demo GUI,打开后的界面如图 2-2 所示(第 2 章)。

\$ sudo sh CeleXDemo.sh

备注: 这里要用 root 权限打开 Demo,因为我们需要对 usb driver 进行读写操作,没有 root 权限可能会造成打开 usb 设备失败的问题。

1.3 编译 CeleX-5 SDK 的 Source Code

本 SDK 中会使用 OpenCV 库(版本为 3.3.0),所以在编译源码之前请先安装 OpenCV 库并配置好其编译环境。

1.3.1 Windows

在 Window 平台上,我们提供了 VS2015 的工程直接编译该源码,可以按照以下图示进

入 SDK 的 Source Code 目录:

备注:

- (1) 需要修改工程属性中关于 OpenCV 的 Include 和 Lib 的路径的设置, 否则会因为找不 到 OpenCV 的头文件和库而编译失败。
- (2) 编译完成后,会在工程所在的目录下自动创建一个 build/Windows 目录,编译生成的 库文件(CeleX.dll 和 CeleX.lib)会被自动导入到该目录下。

1.3.2 Linux

在 Linux 平台上,我们提供一个 Makefile 编译该代码,库文件(libCeleX.so)将生成在 当前目录下。

1.4 编译 CeleX-5 Demo GUI 的 Source Code

由于本 Demo 是用 Qt 开发的,所以在编译该代码之前要先安装 Qt(本 Demo 使用的 Qt 版本为: qt-opensource-windows-x86-msvc2015_64-5.6.3.exe)。由于 Qt 也是跨平台的,所以 Windows 和 Linux 平台上,都可以用 Qt Creator 打开 *CeleXDemo.pro* 即可编译。

需要注意的是,由于本 Demo 中也用到了 OpenCV 的一些接口,所以需要修改一下 *CeleXDemo.pro* 文件中关于 OpenCV 的路径设置,如下所示:

备注: Linux 下可能会遇到的编译错误

(1) OpenGL 错误

如果在编译的过程中,遇到以下错误,则需要安装 OpenGL 库(Qt 依赖 OpenGL 库), 否则跳过该步骤。在终端上输入命令: sudo apt-get install libgl1-mesa-dev

(2) udev 错误

如果在编译的过程中,遇到以下错误,这是因为 Opal Kelly 的驱动 FrontPanel SDK-v4.5.5 只提供了 Ubuntu12.04LTS 的版本,所以当我们在高版本的 Ubuntu 上使用时会遇到"libudev"版本不兼容的问题。

用户可以从以下链接中下载兼容的 libudev, 也可以从我们的发布包(*Drivers/Linux/libudev.zip*)中直接获取。下载链接: https://ubuntu.pkgs.org/12.04/ubuntu-main-i386/libudev0 175-0ubuntu9 i386.deb.html

解压 libudev.zip 后会看到以下内容:

libudev0_175-0ubuntu9_i386.deb

libudev0 175-0ubuntu9 amd64.deb

安装命令:

sudo dpkg -i libudev0 175-0ubuntu9 i386.deb

sudo dpkg -i libudev0 175-0ubuntu9 amd64.deb

1.5 编译 CeleX-5 Driver 的 Source Code

CeleX-5 Driver 用于获取 USB 端的数据, SDK 再通过 CeleX-5 Driver 来获取数据进行后续处理。

1.5.1 Windows

在 Windows 平台上,我们提供了 VS2015 的工程直接编译该源码,可以按照以下图示 进入 Driver 的 Source Code 目录:

备注:

(1) 编译完成后,会在工程所在的目录下自动创建一个 build/Windows 目录,编译生成的 库文件(CeleDriver.dll 和 CeleDriver.lib)会被自动导入到该目录下。

1.5.2 Linux

在 Linux 平台上,我们提供一个 Makefile 编译该代码,库文件(libCeleDriver.so)将生成在当前目录下。

1.6 生成 FPN 文件

固定模式噪声(FPN, Fixed Pattern Noise)是数字图像传感器上的特定噪声模式的术语,在较长的曝光镜头中经常可见,其中特定像素易于在一般背景噪声之上提供较亮的强度。如果不从图像中减去 FPN,则图像可能显示出高水平的背景噪声,因此变得粗糙。为了解决该问题,我们需要为 CeleX-5 Sensor 生成一个 FPN 文件,具体的操作步骤请参考 2.4 章节。

2 CeleX-5 Demo Kit GUI 的功能

打开 CeleXDemo.exe, 当没有连接 Sensor 设备时, 界面如图 2-1 所示; 当有 Sensor 设备连接时, 界面如图 2-2 所示。

图 2-1

图 2-2

2.1 Fixed 与 Loop Mode 切换

在 Fixed Mode 中,点击图 2-3-1 所示的红色框按钮 "*Enter Loop Mode*",可以进入 Loop Mode,其图像显示如图 2-4 所示。其中 Loop A 为第一个 loop,其模式为 Full-frame Picture 模式,Loop B 为第二个 loop,其模式为 Event 模式,Loop C 为第三个 loop,其模式为 Full-frame Optical-flow 模式。

在 Loop Mode 中,点击图 2-3-2 所示的红色框按钮 "*Enter Fixed Mode*",即可切换至 Fixed 模式(默认为 Event 模式)。

图 2-4 Sensor 工作在 Loop 模式

2.2 录制 Sensor 数据功能

点击图 2-5-1 中 "Start Recording Bin" 按钮即可开始录制 bin 数据,开始录制数据后,按钮上的文字会变成图 2-5-2 所示的 "Stop Recording Bin",那点击"Stop Recording Bin"按钮即停止录制 bin 数据。录制的 bin 文件就存在 CeleXDemo.exe 的同目录下,以MipiData YYYYMMDD HHMMSSSSS SensorMode ClockRate.bin 的形式命名,如下所示:

MipiData_20181114_111943514_F_100M.bin
MipiData_20181114_112128283_E_100M.bin
MipiData_20181114_112132217_FO1_100M.bin

其中, E表示录制的是 Event 模式下的数据, F是 Full-frame Picture 模式下的数据, FO1 是 Single Full-frame Optical-flow 模式下的数据。100MHz表示 Sensor 的工作频率为100MHz。

图 2-5-2

2.3 播放录制的 Bin 文件功能

点击"*Playback*"按钮,选择一个 Bin 文件播放,其中图像显示的内容,跟录制 Bin 数据时的 Sensor 模式有关。

用户可以选择该 Bin 文件的各种 Pic 模式进行显示,也可以选择显示方式以及设置建帧时长(Frame Time)或是刷新频率(Display FPS)等参数。

2.4 生成 FPN 功能

固定模式噪声(FPN, Fixed Pattern Noise)是数字图像传感器上的特定噪声模式的术语,在较长的曝光镜头中经常可见,其中特定像素易于在一般背景噪声之上提供较亮的强度。如果不从图像中减去 FPN,则图像可能显示出高水平的背景噪声,因此变得粗糙。为了解决该问题,我们需要为 CeleX-5 Sensor 生成一个 FPN 文件,具体的操作步骤如下:

(1) 将 Sensor 的工作模式切换至 Full-frame Picture 模式。

(2) 由于 FPN 生成操作必须在光照均匀的环境下进行,所以我们可以通过取下光学镜头并用一张白纸(薄纸或 A4 打印纸)覆盖裸露的 Sensor 来实现这种情况。确保纸张均匀地完全覆盖传感器,并且纸张保持静止。 **备注:** 如果你是在阳光下而不是 LED 灯下操作,效果会更好。

(3) 执行 FPN 生成操作之前,请检查图像屏幕,确保其显示正常,不要太暗或太亮。只需在裸露的 Sensor 上放置更多或更少的纸张,或者在 GUI 窗口上打开或关闭"亮度"滑块,即可更改照明。备注:下图中的第 3 幅图就是正常亮度的图。

点击 GUI 窗口中的"Generate FPN"按钮, 当你在指定目录下看到 FPN 3.txt 文件时 表明 FPN 文件成功生成了。备注:不同的 ISO 档位对应了不同的 FPN 文件, ISO 一 共有六档,默认是第三档,对应了FPN 3.txt 文件。用户可以通过调整 Configuration 设置中的 ISO 档位来获取更亮或更暗的图像。

RESET	Generate FPN	Change FPN	Start Recording Bin	Playback	Enter Loop Mode	Configurations
	Configuration Sett	tings				
	Sensor Speed Clock:		100		100	
	Sensor Contr Brightness:		s:		1023	
	Threshold:	50	171		511	
	ISO:	1	4		6	

(5) 生成相应 ISO 设置下的 FPN 文件后,我们通过点击"Change FPN"按钮可以选择 切换到相应的 FPN。备注:如果按照步骤生成了 FPN 文件,但是切换后图像清晰度 没有提高,检查确认当前 ISO 与 FPN 是否对应;检查选择的 FPN 路径是否包含中 文路径。

RESET Generate FPN Change FPN Start Recording Bin Playback Enter Loop Mode

2.5 图像翻转功能

通过点击 "Rotate_LR"和 "Rotate_UD" 按钮对图像进行左右或者上下翻转。

2.6 Bin 转视频功能

点击 "ConvertBin2Video" 按钮,可以将录制的 Bin 文件转换出与该文件同名的视频文件。Windows 下生成.mkv 格式的视频文件,Linux 下生成.mp4 格式的视频文件。选择不同的图片格式,可以转换出该 Bin 相应的图片格式视频。例如:选择去噪的图片格式,可以将 Event-Address Only 模式的 Bin 文件转换成去噪后的图像视频。

2.7 Bin 转 CSV 文件功能

点击 "ConvertBin2CSV" 按钮,可以将录制好的 Bin 文件转换成 CSV 文件。对于 Event-Address_Only 模式,该文件将 Bin 数据存储为像素的 Row,Colum,TimeStamp 信息。对于 Event-Intensity 模式,该文件将 Bin 数据存储为像素的 Row,Colum,Intensity, Polarity, TimeStamp 信息。

2.8 Advanced Settings

点击 "Advanced Settings" 按钮,可以进行更多高级设置。在进行 Bin 文件录制操作时,可以选择关闭画面显示以保证数据的完整性(由于显示画面时数据的解析会非常耗时,可能导致数据的丢失)。用户也可以根据自己的需要,通过"BinFile Time Duration"来设置录制单个 Bin 文件的时长(单位为分钟),一旦 Bin 文件到达设定的时长,文件会自动保存并新建下一个新文件。

在进行 Bin 文件回放时,用户可以进行保存图片操作。通过设置"SavePic Count Interval" 参数可以设置保存图片的间隔(如果间隔设置为 0,每一帧图像都会被保存;如果间隔设置成 2,则每隔 2 张会保存一张)。

此外,还开放了一个分辨率的设置。用户可以通过修改"Resolution Parameter"来关闭掉一些行的显示。该功能的详细介绍可见 CeleX5_SDK_Reference 文档。

