Question number	Scheme	Marks	6
1.	$ \begin{vmatrix} (7-\lambda) & 6 \\ 6 & (2-\lambda) \end{vmatrix} = 0 $		
	$(7-\lambda)(2-\lambda)-36=0$	M1 A1	
	$\lambda^2 - 9\lambda + 14 - 36 = 0$		
	$\lambda^2 - 9\lambda - 22 = 0$		
	$(\lambda - 11)(\lambda + 2) = 0 \Rightarrow \lambda_1 = -2, \lambda_2 = 11$	M1 A1	(4)
2.	$9\left(\frac{e^{x} + e^{-x}}{2}\right) - 6\left(\frac{e^{x} - e^{-x}}{2}\right) = 7$	B1	
	$3e^{2x} - 14e^x + 15 = 0$	M1 A1	
	$(3e^x - 5)(e^x - 3) = 0$ $e^x = \frac{5}{3}, e^x = 3$	M1 A1	
	$x = \ln \frac{5}{3} \qquad x = \ln 3$	A1	(6)
3.	$s = \int_0^{2\pi} \left[x^2 + y^2 \right]^{\frac{1}{2}} dt$		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \overset{\bullet}{x} = a(1 - \cos t); \frac{\mathrm{d}y}{\mathrm{d}t} = \overset{\bullet}{y} = a\sin t$	M1 A1; A1	
	$s = \int_0^{2\pi} a \left[(1 - \cos t)^2 + \sin^2 t \right]^{\frac{1}{2}} dt = a \int_0^{2\pi} \left[2 - 2\cos t \right]^{\frac{1}{2}} dt$		
	$=2a\int_0^{\frac{\pi}{2}}\sin\left(\frac{t}{2}\right)dt, =-4a\left[\cos\left(\frac{t}{2}\right)\right]_0^{2\pi}=8a$	M1 A1 A1ft	(6)

6669/01: Further Pure Mathematics FP3

Question number	Scheme	Marks
4.	$x = 2 \sinh t$	B1
	$\sqrt{(x^2+4)} = (4\sinh^2 t + 4)^{\frac{1}{2}} = 2\cosh t$	
	$dx = 2 \cosh t dt$	
	$I = \int \sqrt{(x^2 + 4)} dx = 4 \int \cosh^2 t dt$	M1A1
	$=2\int(\cosh 2t+1)\mathrm{d}t$	
	$= \sinh 2t + 2t + c$	M1 A1
	$= \frac{1}{2}x\sqrt{(x^2+4)} + 2\operatorname{arsinh}\left(\frac{x}{2}\right) + c$	M1 A1ft (7)
5. (a)	$y = \arcsin x$	
	$\Rightarrow \sin y = x$	M1
	$\cos y \frac{\mathrm{d}y}{\mathrm{d}x} = 1$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - x^2}}$	M1 A1 (3)
(b)	$\frac{d^2y}{dx^2} = -\frac{1}{2}(1-x^2)^{\frac{-3}{2}}(-2x)$	
	$=x(1-x^2)^{\frac{-3}{2}}$	M1 A1
	$\left(1 - x^2\right) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = \left(1 - x^2\right) x \left(1 - x^2\right)^{-\frac{3}{2}} - x \left(1 - x^2\right)^{-\frac{1}{2}} = 0$	M1 A1 (4)

Question number	Scheme	Marks
6. (a)	$I_n = \int_0^{\frac{\pi}{2}} x^n \sin x \mathrm{d}x$	
	$= \left[x^{n} (-\cos x) \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} nx^{n-1} (-\cos x) dx$	M1 A1
	$= 0 + n \left\{ \left[x^{n-1} \sin x \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} (n-1) x^{n-2} \sin x dx \right\}$	A1
	$= n \left[\left(\frac{\pi}{2} \right)^{n-1} - (n-1)I_{n-2} \right]$ So $I_n = n \left(\frac{\pi}{2} \right)^{n-1} - n(n-1)I_{n-2}$	A1 (4)
(b)	$I_3 = 3\left(\frac{\pi}{2}\right)^2 - 3.2I_1$	
	$I_1 = \int_0^{\frac{\pi}{2}} x \sin x dx = \left[x(-\cos x) \right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \cos x dx$	M1
	$= \left[\sin x\right]_{0}^{\frac{\pi}{2}} = 1$	A1
	$I_3 = \left(3\right)\left(\frac{\pi}{2}\right)^2 - 6 = \frac{3\pi^2}{4} - 6$	M1 A1 (4)

Question number	Scheme	Marks
7. (a)	$\mathbf{A}(x) = \begin{pmatrix} 1 & x & -1 \\ 3 & 0 & 2 \\ 1 & 1 & 0 \end{pmatrix}$	
	Cofactors $ \begin{pmatrix} -2 & 2 & 3 \\ -1 & 1 & x-1 \\ 2x & -5 & -3x \end{pmatrix} $	M1 A1 A1 A1
	Determinant = 2x - 3 - 2 = 2x - 5	M1 A1
	$A^{-1}(x) = \frac{1}{2x - 5} \begin{pmatrix} -2 & -1 & 2x \\ 2 & 1 & -5 \\ 3 & (x - 1) & -3x \end{pmatrix}$	M1 A1ft (8)
(b)	$\begin{pmatrix} p \\ q \\ r \end{pmatrix} = B^{-1} \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} = \frac{1}{1} \begin{pmatrix} -2 & -1 & 6 \\ 2 & 1 & -5 \\ 3 & 2 & -9 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$	M1 A1ft
	=(17,-13,-24)	M1 A1 (4)

Question number	Scheme	Mark	S
8. (a)	$\overrightarrow{AB} = (-1, 3, -1); \ \overrightarrow{AC} = (-1, 3, 1).$	M1 A1	
	$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 3 & -1 \\ -1 & 3 & 1 \end{vmatrix}$		
	= $\mathbf{i}(3+3) + \mathbf{j}(1+1) + \mathbf{k}(-3+3)$		
	$= 6\mathbf{i} + 2\mathbf{j}$	M1 A1 A1	
	Area of $\triangle ABC = \frac{1}{2} \left \overrightarrow{AB} \times \overrightarrow{AC} \right $		
	$= \frac{1}{2}\sqrt{36+4} = \sqrt{10} \text{ square units}$	M1 A1ft	(7)
(b)	Volume of tetrahedron $=\frac{1}{6} \left \overrightarrow{AD} \cdot \left(\overrightarrow{AB} \times \overrightarrow{AC} \right) \right $		
	$=\frac{1}{6} -12+8 $		
	$=\frac{2}{3}$ cubic units	M1 A1	(2)
(c)	Unit vector in direction $\overrightarrow{AB} \times \overrightarrow{AC}$ i.e. perpendicular to plane containing A , B , and C is		
	$\mathbf{n} = \frac{1}{\sqrt{40}} (6\mathbf{i} + 2\mathbf{j}) = \frac{1}{\sqrt{10}} (3\mathbf{i} + \mathbf{j})$	M1	
	$p = \left \mathbf{n} \cdot \overrightarrow{AD} \right = \frac{1}{\sqrt{10}} \left (3\mathbf{i} + \mathbf{j}) \cdot (-2\mathbf{i} + 4\mathbf{j}) \right $		
	$= \frac{1}{\sqrt{10}} \left -6 + 4 \right = \frac{2}{\sqrt{10}} \text{ units.}$	M1 A1	(3)

Question number	Scheme	Marks
9. (a)	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	
	$\frac{2x}{a^2} - \frac{2y}{b^2} \frac{\mathrm{d}y}{\mathrm{d}x} = 0$	M1 A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x}{a^2} \frac{b^2}{2y} = \frac{b^2}{a^2} \frac{a \sec \theta}{b \tan \theta} = \frac{b}{a \sin \theta}$	M1 A1
	Gradient of normal is then $-\frac{a}{b}\sin\theta$	
	Equation of normal: $(y - b \tan \theta) = -\frac{a}{b} \sin \theta (x - a \sec \theta)$	
	$ax\sin\theta + by = (a^2 + b^2)\tan\theta$	M1 A1 (6)
(b)	M: A normal cuts $x = 0$ at $y = \frac{(a^2 + b^2)}{b} \tan \theta$	M1 A1
	B normal cuts $y = 0$ at $x = \frac{a^2 + b^2}{a \sin \theta} \tan \theta$	
	$=\frac{\left(a^2+b^2\right)}{a\cos\theta}$	A1
	Hence M is $\left[\frac{\left(a^2+b^2\right)}{2a}\sec\theta, \frac{\left(a^2+b^2\right)}{2b}\tan\theta\right]$	M1
	Eliminating θ	M1
	$\sec^2\theta = 1 + \tan^2\theta$	
	$\left[\frac{2aX}{a^2 + b^2}\right]^2 = 1 + \left[\frac{2bY}{a^2 + b^2}\right]^2$ $4a^2X^2 - 4b^2Y^2 = \left[a^2 + b^2\right]^2$	A1
	$4a^2X^2 - 4b^2Y^2 = \left[a^2 + b^2\right]^2$	A1 (7)