Image denoising with multi-layer perceptrons

ESTEVE Nathan FATTOUHY Mohamed NGUYEN Louis VERNAY Amélie October 19, 2021

Noisy image

Table of content

Context	
MLP-based method	
Results	
Bounds	
Block-matching	
Conclusion	

Image denoising with multi-layer perceptrons, part 1: comparison with existing algorithms and with bounds, H. C. Burger, C. J. Schuler, S. Harmeling (2012)

Image denoising

Image denoising seeks to find a clean image given only its noisy version.

Trade-off

Image denoising requires to denoise patches separately:

- very small patches lead to a function that is easily modeled, but to bad denoising results;
- very large patches potentially lead to better denoising results, but the function might be difficult to model.

Figure 1: Image of Louis Augustin Cauchy with differents noises

MLP-based method

A multi-layer perceptron is a fully connected neural network.

Input layer Hidden layer 1 Hidden layer 2 Output layer

 x_{noisy} is a noisy version of a clean patch x; $f(x_{noisy})$ represents an estimate of x.

Weight initialization for MLP-based method

Weights w are sampled from an uniform distribution :

$$w \sim U \left[-\frac{\sqrt{6}}{\sqrt{n_j + n_{j+1}}}, \frac{\sqrt{6}}{\sqrt{n_j + n_{j+1}}} \right]$$

 n_j and n_{j+1} are the number of neurons in the input and output sides of the layer.

Loss function

The loss function used is the MSE:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (f(x_{noisy_i}) - x_{clean_i})^2,$$

where x_{clean} is a clean patch and $f(x_{noisy})$ the estimation of x_{clean} .

Peak Signal-To-Noise Ratio (PSNR)

PSNR $= 20 \times \log_{10} \left(\frac{m}{\sqrt{\rm MSE}} \right)$ (dB), where m is the maximum possible pixel value of a given image.

Results for AWG noise

image	KSVD	EPLL	BM3D	NLSC	MLP
Barbara	29.49dB	28.52 dB	$30.67 \mathrm{dB}$	$30.50\mathrm{dB}$	$29.52 \mathrm{dB}$
Boat	29.24dB	29.64 dB	29.86 dB	$29.86\mathrm{dB}$	$29.95\mathrm{dB}$
C.man	28.64dB	29.18 dB	29.40 dB	$29.46\mathrm{dB}$	$29.60\mathrm{dB}$
Couple	28.87dB	29.45 dB	$29.68 \mathrm{dB}$	29.63 dB	29.75 dB
F.print	27.24dB	27.11dB	$27.72\mathrm{dB}$	27.63 dB	$27.67 \mathrm{dB}$
Hill	29.20dB	29.57 dB	$29.81\mathrm{dB}$	29.80 dB	$29.84 \mathrm{dB}$
House	32.08dB	32.07 dB	$32.92 \mathrm{dB}$	$33.08 \mathrm{dB}$	32.52 dB
Lena	31.30dB	31.59 dB	$32.04\mathrm{dB}$	31.87 dB	$32.28 \mathrm{dB}$
Man	29.08dB	29.58 dB	29.58 dB	$29.62 \mathrm{dB}$	$29.85\mathrm{dB}$
Montage	30.91dB	31.18 dB	$32.24 \mathrm{dB}$	$32.15\mathrm{dB}$	31.97 dB
Peppers	29.69dB	30.08 dB	30.18 dB	$30.27 \mathrm{dB}$	$30.27 \mathrm{dB}$

Table 1: Results on 11 standard test images for $\sigma = 25$.

Results for AWG noise

Figure 2: BM3D and MLP performances (AWG noise $\sigma=$ 25)

Bounds

Clustering-based bounds

There exist inherent limits on denoising quality for images with rich geometric structure.

Bayesian framework

Bayesian bounds estimate how well any denoising algorithm can perform in a bayesian framework which depends on the patch size.

Other types of noise

Figure 3: MLP and BM3D performances on strip noise

Other types of noise

 $\textbf{Figure 4:} \ \ \mathsf{MLP} \ \ \mathsf{and} \ \ \mathsf{median} \ \ \mathsf{filtering} \ \ \mathsf{performances} \ \ \mathsf{on} \ \ \mathsf{salt} \ \ \mathsf{and} \ \ \mathsf{pepper} \ \ \mathsf{noise}$

Other types of noise

 $\textbf{Figure 5:} \ \ \mathsf{MLP} \ \ \mathsf{and} \ \ \mathsf{SA-DCT} \ \ \mathsf{performances} \ \ \mathsf{on} \ \ \mathsf{JPEG} \ \ \mathsf{Artifact}$

Block-matching

Block-matching

We look for the patches most similar to a reference patch.

Combine MLP and block-matching

We train MLPs that take as input a reference patch and its nearest neighbors (similar patches).

Results

Block-matching MLPs provide better results on images with repeating structure than plain MLPs.

However, BM3D and NLSC still provide better results on this kind of images.

Conclusion

- Excellent results BUT outperformed by BM3D and NLSC on images with a lot a regular structure.
- The MLP-based approach achieves excellent results, no matter the type of noise, especially with high levels of noise.
- The MLP-based approach shows that it is possible to significantly improve denoising quality on images with complex textures.
- Would it be possible to find an approach that would perform state-of-the-art results on every image?