Lecture4: Diode (2)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Equilibrium (1)

- When the applied voltage is zero, no current occurs.
 - Many electrons in the "red" region. (Doped with Arsenic ions. "ntype")
 - Many holes in the "blue" region. (Doped with Boron ions. "p-type")
 - Due to the diffusion mechanism, they tend to spread over.
 - Then, we will have the net current! (It's not possible.)

Equilibrium (2)

- An electric field is built. (Built-in field)
 - It pushes the electrons back to the n-type region.
 - It pushes the holes back to the p-type region.
 - Direction of the electric field?
 - At equilibrium, drift (due to the electric field) and diffusion (due to the density difference) are exactly matched.

Forward bias

- We have a positive voltage at the anode.
 - Additional electric field from positive to 0 V
 - The external voltage opposes the built-in potential.
 - No sufficiently strong electric field to prevent the diffusion
 - It raises the diffusion currents substantially.

Reverse bias

- We have a negative voltage at the anode.
 - Additional electric field from 0 V to negative
 - The applied voltage enhances the field.
 - Even stronger electric field to prevent the diffusion
 - It prohibits the current flow.
- Highly nonlinear operation!

IV characteristics (1)

Review

- The diode current, I_D , is depedent on the diode voltage, V_D .
- Then, what is $I_D(V_D)$?
- Compare $V_D = 0.3 \text{ V}$, 0.4 V, and 0.5 V.
 - We know that the electric field for 0.5 V is weakest.
 - Of course, for 0.3 V, it is strongest.
 - Anyway, they are different by a constant voltage, 0.1 V.
 - Then, what about $I_D(0.3)$, $I_D(0.4)$, and $I_D(0.5)$?
 - Do you expect a linear dependence?

IV characteristics (2)

- Exponential dependence on V_D
 - V_D is normalized by the thermal voltage, $V_T = \frac{k_B T}{q}$.
 - At 300 K, V_T ≈ 0.002585 V = 25.85 mV.
 - Then, the diode current can be written as

$$I_D = I_S \left(\exp \frac{V_D}{V_T} - 1 \right)$$

– Here, the "reverse saturation current" (I_S) is a given constant. It's a small current.

IV characteristics (3)

Some limiting cases:

$$I_D = I_S \left(\exp \frac{V_D}{V_T} - 1 \right)$$

- When V_D is close to zero, $\exp \frac{V_D}{V_T} \approx 1 + \frac{V_D}{V_T}$ $I_D = I_S \frac{V_D}{V_T}$
- When V_D is negative and $V_D \ll -V_T$, $\exp \frac{V_D}{V_T} \approx 0$ $I_D = -I_S$
- When V_D is positive and $V_D \gg V_T$, $I_D = I_S \exp \frac{V_D}{V_T}$

General solution (1)

- Analyze the following circuit. (A diode-resistor combination)
 - Calculation of node voltages and terminal currents

General solution (2)

- Identify the nodes and apply the KCL.
 - Two nodes (red dots) are found.

$$I_V + I_D = 0$$

$$-I_D + I_R = 0$$

Equations for terminal IVs

$$\begin{aligned} V_{in} &= V_A \\ I_D &= I_S \left(\exp \left(\frac{V_{in} - V_{out}}{V_T} \right) - 1 \right) \\ I_R &= \frac{V_{out}}{R_1} \end{aligned}$$

General solution (3)

- Solve the set of equations.
 - After simple manipulation, it is easily found that

$$-I_S\left(\exp\left(\frac{V_A - V_{out}}{V_T}\right) - 1\right) + \frac{V_{out}}{R_1} = 0$$

- An nonlinear equation for V_{out} is obtained.
- The solution, V_{out} , can be visualized by drawing the following two curves.

$$y = I_S \left(\exp\left(\frac{V_A - x}{V_T}\right) - 1 \right)$$
$$y = \frac{x}{R_1}$$

Graphical solution (1)

- Assume that $V_A = 2 \text{ V}$, $I_S = 0.5 \text{ fA}$, and $R_1 = 270 \Omega$.
 - Draw two curves:

$$y = I_S \left(\exp\left(\frac{V_A - x}{V_T}\right) - 1 \right)$$
$$y = \frac{x}{R_1}$$

The answer is

$$V_{out} = 1.2287 \text{ V}.$$

0.77 V is applied to the diode.

Graphical solution (2)

- Reduce V_A to 1 V.
 - The answer is

 $V_{out} = 0.2687 \text{ V}.$

- 0.73 V is applied to the diode.
- Even smaller V_A?
 - For example, 0.5 V?

When $V_A = 0.5 \text{ V}$

- The same scale as before.
 - ???
 - What is V_{out} ?
- Not enough V_A
 - No current conduction

Dioide IV curves

• A diode with $I_S = 5 \times 10^{-16} \text{A}$ (Only different y scales)

Important observation

- In order to obtain 10x large current,
 - We must apply only 60 mV additionally. (300K)

Diode model

Two phases

Homework#2

- Due: 09:00, March 18
 - Submit your Homework answer sheet (hardcopy) directly to Mr.
 Suhyeong Cha, our TA.
 - His office: EECS building C-411
- Solve following problems of the 2018 mid-term exam.
 - P8
 - P9
 - P11
- Solve following problems of the 2017 mid-term exam.
 - P10
 - P11
 - P14
 - P17