Landskeppni í eðlisfræði 2004 úrslitakeppni - fræðilegur hluti

28. febrúar 2004, fyrir hádegi. Leyfilegur tími er 180 mínútur.

Almennar leiðbeiningar

- 1. Opnið ekki verkefnaheftin fyrr en ykkur er sagt að gera það.
- 2. Einu leyfilegu hjálpargögnin eru óforritanlegar reiknivélar.
- 3. Verkefnunum skal svarað á sérstök svarblöð, ekki í verkefnaheftið. Merkið svarblöðin samkvæmt leiðbeiningum sem gefnar verða á töflu. Ef svarblöðin duga ekki má biðja um fleiri slík. Ekki verður farið yfir rissblöð.
- 4. Verkefnin eru alls sex og vægi hvers dæmis er 10 stig.
- 5. Ekki er endilega gert ráð fyrir að neinn keppandi geti svarað öllum verkefnunum. Þó að þið svarið aðeins hluta verkefnanna getur árangur vel verið góður. Sum verkefnin eru mjög erfið.
- 6. Verkefnin eru öll í nokkrum liðum. Ef einhverjum lið er svarað rangt og svarið notað í síðari liðum verður ekki dregið frá í seinni liðum svo framarlega sem útreikningarnir séu réttir.

1 Galíleó í skakka turninum

Gerum ráð fyrir því að Galíleó sé staddur í skakka turninum í Písa. Hann kastar fallbyssukúlu beint niður úr hæð H yfir jörðu með upphafshraða v_0 . Á nákvæmlega sama tíma kastar vinur hans annarri fallbyssukúlu beint upp frá jörðu með upphafshraða $2v_0$. Þegar kúlurnar rekast saman ferðast þær í sömu átt en fallbyssukúla Galíleós er á sjö sinnum meiri hraða en kúla vinarins. Sleppið áhrifum loftmótstöðu.

- (a) Á hvaða tíma rekast kúlurnar saman? Gefið svarið sem fall af H og v_0 eingöngu.
- (b) Í hvaða hæð yfir jörðu verður áreksturinn? Gefið svarið sem fall af H eingöngu.

2 Kassi á skábraut

Litlum kassa sem vegur 5,0 N er sleppt úr kyrrstöðu í 2,0 m hæð á núningslausri skábraut sem hallar um 30° miðað við lárétt. Kassinn rennur niður skábrautina og áfram eftir láréttu 1,5 m löngu núningslausu borði að annarri skábraut sem hallar um 30° upp. Seinni skábrautin hefur hrjúft yfirborð og á hana hefur verið festur gormur með kraftstuðul 20 N/m. Neðri endi gormsins er í 0,5 m hæð.

Núningsstuðullinn á milli kassans og hrjúfu skábrautarinnar er $\mu_k = 1/\sqrt{3}$ ef kassinn er á ferð en $\mu_s = 1/\sqrt{2}$ ef kassinn er kyrrstæður.

- (a) Hver er mesta hæð sem kassinn nær á hrjúfu skábrautinni?
- (b) Hversu oft rennur kassinn upp hrjúfu skábrautina?
- (c) Hvar stöðvast kassinn endanlega?

3 Stebbi skoðar tvístirni

Stebbi stjörnufræðingur skoðar tvístirni með stjörnunum A og B eins og sjá má á myndinni hér að ofan. Stjörnurnar ganga eftir hringlaga brautum um sameiginlega massamiðju.

(a) Ef m_A og m_B eru massar stjarnanna og r_A og r_B geislar hringferla þeirra, sýnið að

$$\frac{m_A}{m_B} = \frac{r_B}{r_A}.$$

Því miður fyrir Stebba getur hann ekki greint stjörnurnar A og B í sundur. Hann veit hins vegar að hann er að horfa á tvístirni frá hlið, því birtan frá stjörnunum breytist lotubundið með tíma eins og sýnt er á myndinni hér til hliðar. Stebbi getur einnig mælt litróf frá stjörnunum þar sem eru áberandi litrófslínur. Hann sér tvö róf sem færast lotubundið til í tíðni með sömu lotu og birtubreytingin en rófin eru í mótfasa hvort við annað.

Birta tvístirnisins sem fall af tíma. Mynstrið er lotubundið en hér er einungis sýnd ein lota.

(b) Stebbi velur sér vetnislínu sem hann sér í báðum rófunum. Fyrir stjörnu A er hámarkstíðnin á línunni $f_{A,\max}=4,56832\cdot 10^{14}$ Hz en lágmarkstíðnin $f_{A,\min}=4,56778\cdot 10^{14}$ Hz. Fyrir stjörnu B eru samsvarandi tíðnir $f_{B,\max}=4,56880\cdot 10^{14}$ Hz og $f_{B,\min}=4,56742\cdot 10^{14}$.

Finnið hraða stjarnanna A og B.

(c) Ef v_A og v_B tákna hraða stjarnanna, sýnið að

$$\frac{v_A}{v_B} = \frac{r_A}{r_B} = \frac{m_B}{m_A}.$$

3

(d) Finnið massa stjarnanna, m_A og m_B .

Gagnlegir fastar: $c = 3,00 \cdot 10^8 \text{ m/s}, G = 6,672 \cdot 10^{-11} \text{ N} \cdot \text{m}^2/\text{s}^2$.

4 Bland í poka

Tólúen er litlaust, fljótandi kolvatnsefni sem er meðal annars notað við framleiðslu á sprengiefninu TNT. Tólúen þenst út ef það er hitað og rúmmálið má skrifa sem

$$V(T) = V_0(1 + \alpha T)$$

þar sem V_0 er rúmmálið við 0° C og $\alpha = 0,001$ C⁻¹.

Vísindamaður á tilraunastofu er með tólúen í tveimur einangrandi bollum. Í öðrum bollanum eru 300 ml við 0°C en rúmmálið í hinum bollanum er 100 ml og hitastigið 100°C. Nú blandar vísindamaðurinn öllum vökvanum varlega saman í nýtt ílát án þess að tapa neinum varma.

- (a) Hvert verður lokahitastigið?
- (b) Hvert verður heildarrúmmálið eftir blöndun?

Í næstu tilraunastofu er annar vísindamaður að rannsaka eitraða lofttegund sem hegðar sér eins og kjörgas. Hann er með 300 ml af gasinu við 0°C og 100 ml við 100°C í sitthvorri blöðrunni. Þrýstingurinn í blöðrunum er sami og loftþrýstingurinn á tilraunastofunni. Nú blandar vísindamaðurinn öllu gasinu varlega saman í nýja blöðru.

- (c) Hvert verður lokahitastigið?
- (d) Hvert verður heildarrúmmálið eftir blöndun?

5 Rafrás

a) Höfum rás eins og á mynd. Gefum okkur að $R_1=R_5=1\,\Omega,\,R_2=R_4=2\,\Omega$ og $R_3=4\,\Omega.$ Hvert er heildarviðnámið milli A og B?

b) Skiptum nú út viðnámum R_1 og R_5 fyrir tvo þétta með rýmdina $C=10~\mu {\rm F}$ hvor. Spenna $V=10~{\rm V}$ er sett á milli A og B. Hver er straumurinn í viðnáminu R_3 eftir að þéttarnir hafa hlaðist upp?

- c) Finnið hleðsluna á þéttinum, sem er tengdur A, þegar hann er fullhlaðinn.
- d) Nú er spennugjafinn aftengdur og klippt er á rásina í punktunum D og E. Þetta gerist á tíma t=0. Hver er straumurinn í viðnámi R_3 á tíma $t=120\,\mu\text{s}$?

6 Drude-líkanið

Í þessu verkefni ætlum við að skoða leiðni málma út frá líkani sem Paul Drude setti fram árið 1900, þremur árum eftir að Thomson uppgötvaði rafeindina. Í Drude-líkaninu er litið á málminn sem rafeindagas og honum lýst með hreyfifræði gasa.

Látum N vera fjölda rafeinda í rúmmálinu V og n = N/V vera rafeindaþéttleika málmsins.

Annar mikilvægur mælikvarði á rafeindaþéttleikann er stikinn r_s . Hann er skilgreindur sem geisli (radíus) kúlu sem hefur sama rúmmál og hver rafeind hefur til umráða í málminum. Gert er ráð fyrir því að rafeindirnar skipti heildarrúmmálinu jafnt á milli sín.

(a) Finnið tengslin á milli r_s og n.

Ef rafsvið E er sett yfir vírbút með þverskurðarflatarmál A kemur fram straumur I. Leiðni vírsins, σ , er skilgreind með jöfnunni

$$I = A\sigma E$$
.

Gerum ráð fyrir því að allar rafeindirnar í vírnum ferðist með sama hraða v_d .

(b) Sýnið að

$$I = A n e v_d$$

þar sem $e = 1,602 \cdot 10^{-19}$ C er rafeindahleðslan.

Skoðum nú 1,00 m langan koparvírbút þar sem spennumunurinn á milli endanna er 2,00 V. Gefin er leiðni kopars $\sigma=5,88\cdot10^5(\Omega~{\rm cm})^{-1}$ og $r_s=1,41\cdot10^{-10}$ m.

(c) Finnið hraða rafeindanna v_d .

Rafeindir eru Fermíeindir og samkvæmt skammtafræði fylgir þeim svokölluð Fermí
orka E_F . Sýna má að þessi orka er eingöngu háð rafeindaþéttleikanum og náttúrulegum föstum og eru tengslin

$$E_F = rac{\hbar^2}{2m_e} \left(rac{9\pi}{4r_s^3}
ight)^{2/3}$$

þar sem $\hbar=6,582\cdot 10^{-16}$ eV·s er fasti Plancks og $m_e=9,109\cdot 10^{-31}$ kg er massi rafeindarinnar.

(d) Finnið Fermíorkuna fyrir kopar, mælda í rafeindavoltum.

Skammtafræðin leiðir einnig í ljós að meðalhreyfi
orka rafeinda $K_{\text{meðal}}$ í málminum er tengd Fermíorkunni

$$K_{\text{me\delta al}} = \frac{3}{5} E_F$$
.

- (e) Notið þetta til að finna meðalhraða rafeinda í kopar $v_{
 m me\delta al}$
- (f) Berið saman hraðana v_d og $v_{\text{meðal}}$ fyrir kopar. Útskýrið muninn.

Athugið: Hér er ekki ætlast til þess að þið kunnið skammtafræði. Hegðunin sem hér um ræðir á sér hliðstæðu í náttúrunni og í klassískri eðlisfræði. Drude-líkanið er hálf-klassískt svo þið þurfið einungis að notast við klassíska kunnáttu til að svara þessu verkefni.

6