Name:	Date:	Class:

Dimensional Analysis Worksheet: SI Base Units

In physics, **dimensional analysis** helps verify equations, convert units, and understand relationships between physical quantities. All physical quantities can be expressed using **seven SI base units**.

The 7 SI Base Quantities

Quantity	SI Unit	Symbol	Dimensional Symbol
Length	meter	m	[L]
Mass	kilogram	kg	[M]
Time	second	s	[T]
Electric Current	ampere	A	[I]
Temperature	kelvin	K	$[\Theta]$
Amount of Substance	mole	mol	[N]
Luminous Intensity	candela	cd	$[I]$

Part A: Basic Dimensions

Write the dimensional formula for each quantity below:

- 1. Velocity (m/s): _____
- 2. Acceleration (m/s²): _____
- 3. Force (F = ma): _____
- 4. Energy $(E = F \cdot d)$:
- 5. Power (P = E/t):
- 6. Pressure (P = F/A): _____
- 7. Charge ($Q = I \cdot t$): _____
- 8. Potential Difference (V = E/Q):

Part B: Unit Conversions Using Dimensional Analysis

Convert the following quantities. Show your work using conversion factors.

- 1. Convert 120 km/hr to m/s.
- 2. Convert 5.0 grams per cubic centimeter (g/cm³) to kg/m³.
- 3. Convert 72,000 seconds into days.
- 4. A car travels 60 miles/hour. What is this in meters per second?

Part C: Apply Dimensional Analysis

1. The formula for the period of a pendulum is:

$$T = 2\pi \sqrt{\frac{L}{g}}$$

where T is time, L is length, and g is acceleration due to gravity. Verify the dimensional consistency of this equation.

2. Suppose you are given an equation for force:

$$F = mv$$

Is this dimensionally correct? Explain why or why not.

3. A student proposes that the equation for kinetic energy is:

$$KE = \frac{1}{2}mv^3$$

Use dimensional analysis to determine whether this formula is valid.

4. The Stefan-Boltzmann Law relates the power P radiated by a blackbody to its temperature T:

$$P = \sigma A T^4$$

where σ is the Stefan-Boltzmann constant, A is surface area, and T is temperature. Use dimensional analysis to determine the dimensions of the constant σ .

Hint: Power has dimensions $[ML^2T^{-3}]$, Area has $[L^2]$, and Temperature has $[\Theta]$.