

VARIANTA 017

Subjectul I

a)
$$|z| = 1.b$$
) DC = $\sqrt{2}$. c) A(3,4); d) $\Delta = \begin{vmatrix} 4 & 1 & 1 \\ 6 & 3 & 1 \\ 7 & 4 & 1 \end{vmatrix} = 0.e$) $V = \frac{4}{3}$. f) $v = -8$. g) $v = 8\sqrt{3}$.

Subjectul II

- 1. a) prin calcul direct. b) $(x y)^2 + (y z)^2 + (z x)^2 = 0 \Rightarrow x = y = z$.
- c) $(2^x)^2 + (3^x)^2 + (7^x)^2 = 2^x \cdot 3^x + 2^x \cdot 7^x + 3^x \cdot 7^x \Rightarrow 2^x = 3^x = 7^x \Rightarrow x = 0 \in \mathbb{R}$.
- d) (\forall) x \in \mathbb{Z}_6 este solutie a ecuatiei $\hat{x}^3 = \hat{x} \Rightarrow p = 1$. e) $x_1 + x_2 + x_3 + x_4 = 1$.
- 2. a) $f'(x) = \sin x + x \cos x$. b) $\int_0^1 f(x) dx = \sin 1 \cos 1$.
- c) $f(x) \ge 0, (\forall) x \in \left[0, \frac{\pi}{2}\right] \Rightarrow f$ monoton crescatoare. d) $\lim_{x \to 0} \frac{f(x) f(0)}{x} = f'(0) = 0$.
- e) $\lim_{x\to 0} \frac{f(x)}{x^2} = \lim_{x\to 0} \frac{\sin x}{x} = 1$.

Subjectul III

- a) calcul direct.
- b) calcul direct c) calcul direct

d)
$$S(A \cdot A^{t}) = 0 \Rightarrow a = -c \operatorname{si} b = -d \Rightarrow A = \begin{pmatrix} a & b \\ -a & -b \end{pmatrix} \Rightarrow \det A = 0.$$

$$e) S((A + xB)(A^{t} + xB^{t})) = S(A \cdot A^{t} + x(B \cdot A^{t} + A \cdot B^{t}) + x^{2}B \cdot B^{t}) = S(A \cdot A^{t}) +$$

$$+xS(B \cdot A^{t} + A \cdot B^{t}) + x^{2}S(B \cdot B^{t}) = S(A \cdot A^{t}) + x(S(B \cdot A^{t}) + S(A \cdot B^{t})) + x^{2}S(B \cdot B^{t}).$$

f) Avem
$$S((A + xB)(A^t + xB^t)) = S(A \cdot A^t) + xS(B \cdot A^t + A \cdot B^t) + x^2S(B \cdot B^t)$$
 este

o funcție polimomială de gradul 2 deoarece det $B \neq 0$ implica $S(B \cdot B^t) \neq 0$.

g) Din
$$S(B \cdot A^{t}) = S(B \cdot A^{t})^{t} = S(A \cdot B^{t})$$
 rezulta $\Delta = S(A \cdot B^{t}) \cdot S(B \cdot A^{t}) - S(A \cdot A^{t}) \cdot S(B \cdot B^{t})$

Din e) $\Rightarrow \Delta \leq 0$, adica inegalitatea ceruta.

Subjectul IV

$$a)f'_n(x) = nx^{n-1} + \frac{1}{x}.$$

b)
$$f'_n(x) > 0$$
, $(\forall)x > 0 \Rightarrow f_n$ strict crescatoare.

c)
$$\lim_{x\to 0} f_n(x) = -\infty$$
, $\lim_{x\to +\infty} f_n(x) = +\infty$.

- d) f'_n este pozitiva pe $(0, \infty) \Rightarrow f_n$ este strict crescatoare pe $(0, \infty)$, deci este injectiva. Din punctul c) rezulta ca f_n este surjectiva fiind continua. Deci f_n este bijectiva.
- e) Deoarece $f_n(1) = 1$ si $\lim_{x \to 0} f_n(x) = -\infty$ rezulta ca ecuatia $f_n(x) = 0$ are o solutie $x_n \in (0,1)$. Unicitatea solutiei rezulta din bijectivitatea lui f_n .

f)
$$x_{n+1}^{n+1} + \ln x_{n+1} = 0$$
 si $x_n^n + \ln x_n = 0$ si x_n , $x_{n+1} \in (0,1) \Rightarrow x_{n+1}^n - x_n^n + \ln x_{n+1} - \ln x_n > x_{n+1}^{n+1} - x_n^n + \ln x_{n+1} - \ln x_n = 0 \Rightarrow x_{n+1} > x_n$.

g) $\lim_{n\to\infty} x_n = l \in (0,1]$, deoarece sirul este monoton si marginit.

Daca presupunem $l \neq 1$ trecand la limita in relatia $x_n^n + \ln x_n = 0$ obtinem $0 + \ln l = 0 \Rightarrow l = 1$. Prin urmare l = 1.