姓名:_____

大 连 理 工 大 学

学号: _____

院系:_____

____ 级___ 班

课程名称: <u>工程数值方法</u> 试卷: <u>A</u>考试形式: <u>闭卷</u>授课院(系): __运载 ___ 考试日期: 2016 年7月 20 日 试卷共 4页

	_	11	111	四	五.	六	七	总分
标准分	20	10	10	15	15	15	15	100
得 分								

装

得	
分	

- 一、(10分,每空2分)填空题
- 1. 4个互异节点的插值型求积公式最低代数精度为_3__,最高代数精度为

3. 复化 Simpson 求积公式
$$T = \frac{b-a}{6n} \left[f(a) + 4 \sum_{i=0}^{n-1} f(x_{i+\frac{1}{2}}) + 2 \sum_{i=0}^{n-1} f(x_i) + f(b) \right]$$
。 当 $f(x) = ax^2 + bx + C$ 时,则 $\int_a^b f(x) dx - S = \underline{0}$ 。

- 4. 2. 718281 作为自然对数 e 的近似值具有_____6_____位有效数字。
- 二、(20分, 每空2分)选择题
- 1. 求方程 $x^2 (10^4 + 1)x + 10^4 = 0$ 的根 x_1, x_2 时,取四位浮点数计算。 $x_1 = 10^4$ 则 $x_2 = (C)$ 。

(A)
$$\frac{1}{2}(10^4 + 1) - \sqrt{[\frac{1}{2}(10^4 + 1)]^2 - 10^4}$$
 (B) 0 (C) $\frac{10^4}{x_1}$ (D) $-x_1$

2. 求方程 x = g(x) 根的 Newton 迭代公式为 (B)。

(A)
$$x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)}$$
 (B) $x_{k+1} = x_k - \frac{x_k - g(x_k)}{1 - g'(x_k)}$

(C)
$$x_{k+1} = g(x_k)$$
 (D) $x_{k+1} = x_k - \frac{x_k - g(x_k)}{x_k - x_{k-1} - g(x_k) + g(x_{k-1})} (x_k - x_{k-1})$

订

得	
1.0	
分	
/,	

3. 关于积分 $\int_a^b f(x) dx$ 的 6 点 Gauss 求积公式中的求积系数 c_i $(i=0,1,\cdots,5)$,

成立 $\sum_{i=0}^{5} c_i =$ (A)。

- (B) 0

- (C) 1
- (D) c

4. 对任意初始向量 $oldsymbol{x}^{(0)}$ 及右端向量 $oldsymbol{f}$, Gauss-Seidel 迭代公式 $oldsymbol{x}^{(k+1)} = oldsymbol{B} x^{(k)} + oldsymbol{f}$ 收敛于方程组的精确解 x^* 的充要条件是 (A)。

- **A)** $\rho(B) < 1$
- (B) $\| \boldsymbol{B} \|_{\infty} < 1$ (C) $\| \boldsymbol{B} \|_{1} < 1$ (D) $\| \boldsymbol{B} \|_{2} < 1$

5. 若 n 阶方阵 A 的谱半径 $\rho(A) < 1$,则求解 Ax = b 的 Jacobi 迭代法和 Gauss--Seidel 迭代法(B)。

- (A) 都收敛
- (B) 无法判断收敛和发散
- (C) Jacobi 迭代法收敛而 Gauss--Seidel 迭代法发散
- (D) Jacobi 迭代法发散而 Gauss--Seidel 迭代法收敛

6. 用 Gauss 消去法求解线性方程组 $\begin{bmatrix} 5 & 2 & 2 \\ 3 & 9 & 5 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x \end{bmatrix} = \begin{bmatrix} 5 \\ 10 \\ 2 \end{bmatrix}$,则如下说法正确的

为(C)。

- (A)不能完成计算
- (B) 无法判断能否完成计算
- (C) 能完成计算
- (D) 需改用选主元 Gauss 消去法才能完成计算
- 7. 求解常微分方程初值问题的改进 Euler 法具有(B)精度。
- (A) 1 阶
- (B) 2 阶
- (D) 4 阶

8. 计算 \sqrt{a} 的迭代公式 $X_{k+1}=rac{3}{4}X_k+rac{a}{4X_k}$ 具有的收敛速度为(D)。

- (A) 平方收敛
- (B) 超线性收敛
- (C) 三阶收敛
- 9. 设 x_i (i = 0, 1, 2, 3, 4, 5) 为互异节点, $l_i(x)$ 为对应的5次Lagrange 插值基函数,

则 $\sum_{i=0}^{5} (x_i^5 - x^5) I_i(0) = (A)$

- (A) 0

- (B) 1 (C) x^5 (D) $l_i(0)$

10. 设 H(x) 为满足如下插值条件的插值多项式,

 $H(x_i) = f(x_i), H'(x_i) = f'(x_i), \quad (i = 0, 1, \dots, n), (x \, \mathbf{\Sigma} \, \mathbf{F}, \, i = 0, 1, \dots, n),$

则H(x)的次数为(D)。

- (A) 大于 2n+1 (B) 小于 2n+1 (C) 等于 2n+1 (D) 不超过 2n+1

三、(10 分) 求三次 Hermite 插值多项式 H(x), 使满足 H(-1)=-1, H(1)=1,

$$H'(0) = 0$$
, $H''(1) = 1$.

解: 所求三次 Hermite 的插值多项式为

$$H_3(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

由插值条件得到以下方程组

$$H_3(-1) = a_0 - a_1 + a_2 - a_3 = -1$$

$$H_3(1) = a_0 + a_1 + a_2 + a_3 = 1$$

$$H_3'(0) = a_1 = 0$$

$$H_3''(1) = 2a_2 + 6a_3 = 1$$

解上述方程组

$$a_0 = \frac{5}{2}, a_1 = 0, a_2 = -\frac{5}{2}, a_3 = 1$$

故得
$$H_3(x) = \frac{5}{2} - \frac{5}{2}x^2 + x^3$$

四、(15 分) 用最小二乘原理确定经验公式 $y = ax^b$ 中的参数 a 和 b, 使该函数曲线

与下列数据相拟合。

Xi	1	2	3	4
Уi	10 ²	10 ^{2. 5}	10 ^{3.4}	10 ⁴

解:对经验公式 $y = ax^b$ 两边取对数,得

$$\lg y = \lg a + b \lg x$$

令
$$w = \lg y$$
, $A = \lg a$, $z = \lg x$, 则得 $w = A + bz$, 将数据 (x_i, y_i) 转化为对应的 (x_i, w_i) , 得下表

\mathcal{X}_{i}	1	2	3	4
$w_{ m i}$	2	2.5	3.4	4

按题意,得矛盾方程组Aw = b

其中
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}$$
, $b = \begin{bmatrix} 2 \\ 2.5 \\ 3.4 \\ 4 \end{bmatrix}$, $w = \begin{Bmatrix} A \\ b \end{Bmatrix}$

其法方程为
$$A^T A w = A^T b$$
,即 $\begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix} \begin{bmatrix} A \\ b \end{bmatrix} = \begin{bmatrix} 11.9 \\ 33.2 \end{bmatrix}$

解得
$$\begin{cases} A \\ b \end{cases} == \begin{cases} 1.25 \\ 0.69 \end{cases}$$
 $\therefore a = 10^A = 10^{1.25}$ 。拟合曲线为 $y = 10^{1.25} x^{0.69}$

五、(15 分) 确定下列求积公式的待定参数,使其代数精度尽量高,并 指明所构造出的求积公式具有的代数精度,

$$\int_{-2h}^{2h} f(x) dx \approx A_{-1} f(-h) - A_0 f(0) + A_1 f(h)$$

解:将f(x)=1,x, x^2 分别代入公式两端并令其左右相等,得

$$\begin{cases} A_{-1} - A_0 + A_1 = 4h \\ -hA_{-1} + hA_1 = 0 \\ h^2 A_{-1} + h^2 A_1 = 2(2h)^3 / 2 \end{cases}$$

解得 $A_{-1} = A_1 = \frac{8h}{3}$, $A_0 = \frac{4}{3}h$, 所求公式至少具有 2 次代数精度。

又由于

$$\int_{-2h}^{2h} x^3 dx = \frac{1}{4} x^4 \bigg|_{-2h}^{2h} = 0 = \frac{8}{3} h \Big[(-h)^3 + (h)^3 \Big],$$

$$\int_{-2h}^{2h} x^4 dx = \frac{1}{5} x^5 \Big|_{-2h}^{2h} = \frac{64}{5} h^5 \neq \frac{16}{3} h^5 = \frac{8}{3} h \Big[(-h)^4 + (h)^4 \Big] .$$

故
$$\int_{-2h}^{2h} f(x) dx \approx \frac{8h}{3} f(-h) - \frac{4h}{3} f(0) + \frac{8h}{3} f(h)$$
 具有 3 次代数精度。

评分标准: (1) 每个系数 4 分(若系数不对,按方程可酌情加 1-3 分),(2) 验证精度正确 6 分

六、(15 分)利用矩阵的杜立特尔(Doolittle)分解法解方程组

得 分

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 14 \\ 2x_1 + 5x_2 + 2x_3 = 18 \\ 3x_1 + x_2 + 5x_3 = 20 \end{cases}$$

由矩阵乘法得 $u_{11}=1$, $u_{12}=2$, $u_{13}=3$, $l_{21}=2$, $u_{22}=1$, $u_{23}=-4$,

$$l_{31} = 3$$
, $l_{32} = -5$, $u_{33} = -24$

曲 **L** y=**b**,
$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -5 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 14 \\ 18 \\ 20 \end{bmatrix}, \ \ \mbox{得} \ y = \begin{bmatrix} 14 \\ -10 \\ -72 \end{bmatrix}$$

曲 **Ux=y**,
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -4 \\ 0 & 0 & -24 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 14 \\ -10 \\ -72 \end{bmatrix}$$
,得 $x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

评分标准: (1) 矩阵分解形式 1 分, (2) L 矩阵 4 分, (3) U 矩阵 4 分, (4) y 向量 3 分, (5) x 向量 3 分 (若 y 向量省略, x 向量正确可加 6 分)

七、(15 分)用改进的欧拉(Euler)方法计算初值问题 y' = x + y, y(0) = 1,

 $x \in [0,0.6]$ 的解的近似值,取h = 0.2。保留 4 位有效数字。

解: 改进的 Euler 法格式为

$$\begin{cases} \widetilde{y}_{i+1} = y_i + hf(x_i, y_i) \\ y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, \widetilde{y}_{i+1})] \end{cases}$$

由
$$y' = x + y$$
 得 $f(x, y) = x + y$ 。于是有

$$\tilde{y}_{i+1} = y_i + h(x_i + y_i) = y_i + 0.2(x_i + y_i)$$

$$y_{i+1} = y_i + \frac{h}{2}(x_i + y_i + x_{i+1} + \widetilde{y}_{i+1}) = y_i + 0.1(x_i + y_i + x_{i+1} + \widetilde{y}_{i+1})$$

计算结果如表

i	x_i	Уi
0	0	1
1	0.2	1.2400
2	0.4	1.5768
3	0.6	2.0317

评分标准: (1) 给出改进的 Euler 法一般公式得 4 分, (2) 列出改进的 Euler 具体公式加 5 分, (3) 结果每步正确加 2 分。