• [Exercise 0.0.1] Can you construct a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^4$ such that $R(T) = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 + x_3 + x_4 = 0\}$?

Answer: You can easily check that the rank(T) is 3.

• [Exercise 0.0.1] Can you construct a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^4$ such that $R(T) = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 + x_3 + x_4 = 0\}$?

Answer: You can easily check that the rank(T) is 3.

Since T is a LT from from a finite dimensional vector space to another space. Using rank nullity theorem we have 2 = nullity(T) + 3.

• [Exercise 0.0.1] Can you construct a linear transformation $\mathcal{T}:\mathbb{R}^2 \to \mathbb{R}^4$ such that $R(T) = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 + x_3 + x_4 = 0\}$?

Answer: You can easily check that the rank(T) is 3.

Since T is a LT from from a finite dimensional vector space to another space. Using rank nullity theorem we have 2 = nullity(T) + 3.

Hence nullity(T) = -1 which is not possible. Hence there is no such type LT.

• [Exercise 0.0.2] Can you construct a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ such that $R(T) = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$?

• [Exercise 0.0.2] Can you construct a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ such that $R(T) = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$?

Answer: You can easily check that the rank(T) is 2. Using rank nullity theorem , nullity of such transformation if it exists should be 0. This says that it is possible to have such type of LT.

$$T(x_1, x_2) = (x_1 + x_2, -x_1, -x_2)$$
, it is clear that this T is a LT.

$$R(T) = \{ T(x_1, x_2) : (x_1, x_2) \in \mathbb{R}^2 \}$$

$$= \{ (x_1 + x_2, -x_1, -x_2) : x_1, x_2 \in \mathbb{R} \}$$

$$= \{ (x, y, z) \in \mathbb{R}^3 : x + y + z = 0 \}$$

Answer: Consider a LT $T : \mathbb{R}^n \to \mathbb{R}^n$ defined by T(x) = Ax.

Answer: Consider a LT $T : \mathbb{R}^n \to \mathbb{R}^n$ defined by T(x) = Ax.

$$Ker(T) = \{x \in \mathbb{R}^n : T(x) = 0\} = \{x \in \mathbb{R}^n : Ax = 0\}.$$

Answer: Consider a LT $T : \mathbb{R}^n \to \mathbb{R}^n$ defined by T(x) = Ax.

 $Ker(T) = \{x \in \mathbb{R}^n : T(x) = 0\} = \{x \in \mathbb{R}^n : Ax = 0\}.$ It is given that Ax = 0 system of equation has unique solution which is trivial.

Answer: Consider a LT $T : \mathbb{R}^n \to \mathbb{R}^n$ defined by T(x) = Ax.

 $Ker(T) = \{x \in \mathbb{R}^n : T(x) = 0\} = \{x \in \mathbb{R}^n : Ax = 0\}.$ It is given that Ax = 0 system of equation has unique solution which is trivial.

Hence $Ker(T) = \{0\}$. Therefore nullity of T is 0.

Answer: Consider a LT $T : \mathbb{R}^n \to \mathbb{R}^n$ defined by T(x) = Ax.

 $Ker(T) = \{x \in \mathbb{R}^n : T(x) = 0\} = \{x \in \mathbb{R}^n : Ax = 0\}.$ It is given that Ax = 0 system of equation has unique solution which is trivial.

Hence $Ker(T) = \{0\}$. Therefore nullity of T is 0.

T is one-one and $T: \mathbb{R}^n \to \mathbb{R}^n$ then T is onto.

Answer: Consider a LT $T: \mathbb{R}^n \to \mathbb{R}^n$ defined by T(x) = Ax.

 $Ker(T) = \{x \in \mathbb{R}^n : T(x) = 0\} = \{x \in \mathbb{R}^n : Ax = 0\}.$ It is given that Ax = 0 system of equation has unique solution which is trivial.

Hence $Ker(T) = \{0\}$. Therefore nullity of T is 0.

T is one-one and $T: \mathbb{R}^n \to \mathbb{R}^n$ then *T* is onto. That is, $R(T) = \{T(x) : x \in \mathbb{R}^n\} = \{Ax : x \in \mathbb{R}^n\} = \mathbb{R}^n$.

Answer: Consider a LT $T: \mathbb{R}^n \to \mathbb{R}^n$ defined by T(x) = Ax.

 $Ker(T) = \{x \in \mathbb{R}^n : T(x) = 0\} = \{x \in \mathbb{R}^n : Ax = 0\}.$ It is given that Ax = 0 system of equation has unique solution which is trivial.

Hence $Ker(T) = \{0\}$. Therefore nullity of T is 0.

T is one-one and $T: \mathbb{R}^n \to \mathbb{R}^n$ then T is onto. That is, $R(T) = \{T(x):$ $x \in \mathbb{R}^n$ } = { $Ax : x \in \mathbb{R}^n$ } = \mathbb{R}^n .

This implies for each $b \in \mathbb{R}^n$, there exists unique $x \in \mathbb{R}^n$ such that Ax = b.

• [Exercise 0.0.4] Let $T : \mathbb{V} \to \mathbb{V}$ be a linear map such that R(T) = Ker(T). What can you say about T^2 ?

• [Exercise 0.0.4] Let $T : \mathbb{V} \to \mathbb{V}$ be a linear map such that R(T) = Ker(T). What can you say about T^2 ?

Answer: T^2 is zero linear transformation. Here T^2 means $T \circ T$.

• [Exercise 0.0.4] Let $T : \mathbb{V} \to \mathbb{V}$ be a linear map such that R(T) = Ker(T). What can you say about T^2 ?

Answer: T^2 is zero linear transformation. Here T^2 means $T \circ T$.

Let $x \in \mathbb{V}$. Then $T^2(x) = T(T(x)) = 0$ as Ker(T) = R(T). Hence T^2 is zero LT.

Converse is not true. That is, there is a LT $T : \mathbb{V} \to \mathbb{V}$ such that $T^2 \equiv 0$ but $R(T) \neq Ker(T)$.

 $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (z, 0, 0). Then $T^2 \equiv 0$.

 $Ker(T) = \{(x, y, 0) : x, y \in \mathbb{R}\} \text{ and } R(T) = \{(x, 0, 0) : x \in \mathbb{R}. \text{ It is clear that } Ker(T) \neq R(T).$

Answer: Given $\mathbb V$ and $\mathbb W$ are two vector spaces over the field $\mathbb Q$.

Answer: Given \mathbb{V} and \mathbb{W} are two vector spaces over the field \mathbb{Q} .

To show that T is LT. That is to show $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$ for all $x, y \in \mathbb{V}$ and for all $\alpha, \beta \in \mathbb{Q}$.

Answer: Given \mathbb{V} and \mathbb{W} are two vector spaces over the field \mathbb{Q} .

To show that T is LT. That is to show $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$ for all $x, y \in \mathbb{V}$ and for all $\alpha, \beta \in \mathbb{Q}$.

It is enough to show $T(\alpha x) = \alpha x$ for all $x \in \mathbb{V}$ and for all $\alpha \in \mathbb{Q}$.

Answer: Given \mathbb{V} and \mathbb{W} are two vector spaces over the field \mathbb{Q} .

To show that T is LT. That is to show $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$ for all $x, y \in \mathbb{V}$ and for all $\alpha, \beta \in \mathbb{Q}$.

It is enough to show $T(\alpha x) = \alpha x$ for all $x \in \mathbb{V}$ and for all $\alpha \in \mathbb{Q}$.

Take α is a positive integer, that is $\alpha = m$. Then

Answer: Given \mathbb{V} and \mathbb{W} are two vector spaces over the field \mathbb{Q} .

To show that T is LT. That is to show $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$ for all $x, y \in \mathbb{V}$ and for all $\alpha, \beta \in \mathbb{Q}$.

It is enough to show $T(\alpha x) = \alpha x$ for all $x \in \mathbb{V}$ and for all $\alpha \in \mathbb{Q}$.

Take α is a positive integer, that is $\alpha = m$. Then

$$f(mx) = f(x + \dots + x)$$
$$= f(x) + \dots + f(x)$$
$$= mf(x)$$

We now show that f(-x) = -f(x).

$$f(x+(-x))=f(x)+f(-x)$$

We now show that
$$f(-x) = -f(x)$$
.

$$f(x + (-x)) = f(x) + f(-x)$$

$$\implies f(0) = f(x) + f(-x)$$

$$\rightarrow$$
 $r(0) = r(x) + r(-x)$

We now show that f(-x) = -f(x).

$$f(x+(-x))=f(x)+f(-x)$$

$$\implies f(0) = f(x) + f(-x)$$

$$\implies f(-x) = -f(x)$$

$$f(-mx) = -f(mx)$$

$$f(-mx)=-f(mx)$$

$$=-mf(x)$$

$$f(-mx) = -f(mx)$$
$$= -mf(x)$$

Take $\alpha = \frac{m}{n}$ where n is positive integer.

$$f(mx) = f(n \times \frac{m}{n}x)$$

$$\implies mf(x) = nf(\frac{m}{n}x)$$

$$\implies f(\frac{m}{n}x) = \frac{m}{n}f(x).$$

$$f(-mx) = -f(mx)$$
$$= -mf(x)$$

Take $\alpha = \frac{m}{n}$ where *n* is positive integer.

$$\implies mf(x) = nf(\frac{m}{n}x)$$

 $f(mx) = f(n \times \frac{m}{n}x)$

$$\implies f(\frac{m}{n}x) = \frac{m}{n}f(x).$$

We have proved that $f(\alpha x) = \alpha f(x)$ for all $\alpha \in \mathbb{Q}$ and for all $x \in \mathbb{V}$.

$$f(-mx) = -f(mx)$$
$$= -mf(x)$$

Take $\alpha = \frac{m}{n}$ where n is positive integer.

$$f(mx) = f(n \times \frac{m}{n}x)$$

$$\implies mf(x) = nf(\frac{m}{n}x)$$

$$\implies f(\frac{m}{n}x) = \frac{m}{n}f(x).$$

We have proved that $f(\alpha x) = \alpha f(x)$ for all $\alpha \in \mathbb{Q}$ and for all $x \in \mathbb{V}$.

$$f(\alpha x + \beta y) = f(\alpha x) + f(\beta y)$$
$$= \alpha f(x) + \beta f(y).$$

Hence f is a linear transformation.

Cauchy's Functional Equation: f(x+y) = f(x)+f(y), where $f: \mathbb{R} \to \mathbb{R}$ be a function.

Cauchy's Functional Equation: f(x+y) = f(x)+f(y), where $f : \mathbb{R} \to \mathbb{R}$ be a function.

Solution of this equation is called additive function. Each solution of the above equation satisfying the following.

Cauchy's Functional Equation: f(x+y) = f(x)+f(y), where $f : \mathbb{R} \to \mathbb{R}$ be a function.

Solution of this equation is called additive function. Each solution of the above equation satisfying the following.

1. f is continuous (1821 by Cauchy), but in 1875 Darboux showed that no this not continuous always. If f is continuous at some point then it is continuous on \mathbb{R} .

Cauchy's Functional Equation: f(x+y) = f(x)+f(y), where $f : \mathbb{R} \to \mathbb{R}$ be a function.

Solution of this equation is called additive function. Each solution of the above equation satisfying the following.

- 1. f is continuous (1821 by Cauchy), but in 1875 Darboux showed that no this not continuous always. If f is continuous at some point then it is continuous on \mathbb{R} .
- 2. *f* is monotonic on any interval.

• [Exercise 0.0.6] Let $\mathbb V$ and $\mathbb W$ be two vector spaces over the field $\mathbb R$. f is a map from $\mathbb V$ to $\mathbb W$ such that f(x+y)=f(x)+f(y) for all $x,y\in\mathbb V$. Is f a linear transformation.

Cauchy's Functional Equation: f(x+y) = f(x)+f(y), where $f: \mathbb{R} \to \mathbb{R}$ be a function.

Solution of this equation is called additive function. Each solution of the above equation satisfying the following.

- 1. f is continuous (1821 by Cauchy), but in 1875 Darboux showed that no this not continuous always. If f is continuous at some point then it is continuous on \mathbb{R} .
- 2. f is monotonic on any interval.
- 3. *f* is bounded on any interval.

Tutorial-III

Question: Existense of nonlinear solution over real number.

Tutorial-III

Question: Existense of nonlinear solution over real number.

Answer: Yes there is non-linear solution of Causchy Functional Equation.

There is a non-linear map from $\mathbb{R}(\mathbb{R})$ to $\mathbb{R}(\mathbb{R})$ such that f(x+y)=f(x)+f(y).

There is a non-linear map from $\mathbb{R}(\mathbb{R})$ to $\mathbb{R}(\mathbb{R})$ such that f(x+y)=f(x)+f(y).

We know that $\mathbb{R}(\mathbb{Q})$ is an infinite dimensional space.

There is a non-linear map from $\mathbb{R}(\mathbb{R})$ to $\mathbb{R}(\mathbb{R})$ such that f(x+y)=f(x)+f(y).

We know that $\mathbb{R}(\mathbb{Q})$ is an infinite dimensional space.

Let B be a basis of $\mathbb{R}(\mathbb{Q})$.

There is a non-linear map from $\mathbb{R}(\mathbb{R})$ to $\mathbb{R}(\mathbb{R})$ such that f(x+y)=f(x)+f(y).

We know that $\mathbb{R}(\mathbb{Q})$ is an infinite dimensional space.

Let B be a basis of $\mathbb{R}(\mathbb{Q})$.

Can we construct a basis B' from B which contains 1 and $\sqrt{2}$?

We know that $\mathbb{R}(\mathbb{Q})$ is an infinite dimensional space.

Let B be a basis of $\mathbb{R}(\mathbb{Q})$.

Can we construct a basis B' from B which contains 1 and $\sqrt{2}$?

Yes, we can construct a basis B' from B which contains 1 and $\sqrt{2}$. This basis contains exactly one rational number which is 1. If B' contains two rationals 1 and q, then they are linearly dependent which is not possible.

We know that $\mathbb{R}(\mathbb{Q})$ is an infinite dimensional space.

Let B be a basis of $\mathbb{R}(\mathbb{Q})$.

Can we construct a basis B' from B which contains 1 and $\sqrt{2}$?

Yes, we can construct a basis B' from B which contains 1 and $\sqrt{2}$. This basis contains exactly one rational number which is 1. If B' contains two rationals 1 and q, then they are linearly dependent which is not possible.

We can easily construct a linear transformation $f \mathbb{R}(\mathbb{Q})$ to $\mathbb{R}(\mathbb{Q})$ such that

$$f(x) = \begin{cases} 1 & \text{if } x = 1 \\ 0 & \text{if } x \in B' \text{ and irrational} \end{cases}$$

We know that $\mathbb{R}(\mathbb{Q})$ is an infinite dimensional space.

Let B be a basis of $\mathbb{R}(\mathbb{Q})$.

Can we construct a basis B' from B which contains 1 and $\sqrt{2}$?

Yes, we can construct a basis B' from B which contains 1 and $\sqrt{2}$. This basis contains exactly one rational number which is 1. If B' contains two rationals 1 and q, then they are linearly dependent which is not possible.

We can easily construct a linear transformation f $\mathbb{R}(\mathbb{Q})$ to $\mathbb{R}(\mathbb{Q})$ such that

$$f(x) = \begin{cases} 1 & \text{if } x = 1 \\ 0 & \text{if } x \in B' \text{ and irrational} \end{cases}$$

Since f is a map from $\mathbb R$ to $\mathbb R$ and it satisfies f(x+y)=f(x)+f(y) for all $x,y\in\mathbb R$ as f is a linear transformation from $\mathbb R(\mathbb Q)$ to $\mathbb R(\mathbb Q)$.

We know that $\mathbb{R}(\mathbb{Q})$ is an infinite dimensional space.

Let B be a basis of $\mathbb{R}(\mathbb{Q})$.

Can we construct a basis B' from B which contains 1 and $\sqrt{2}$?

Yes, we can construct a basis B' from B which contains 1 and $\sqrt{2}$. This basis contains exactly one rational number which is 1. If B' contains two rationals 1 and q, then they are linearly dependent which is not possible.

We can easily construct a linear transformation $f \mathbb{R}(\mathbb{Q})$ to $\mathbb{R}(\mathbb{Q})$ such that

$$f(x) = \begin{cases} 1 & \text{if } x = 1 \\ 0 & \text{if } x \in B' \text{ and irrational} \end{cases}$$

Since f is a map from $\mathbb R$ to $\mathbb R$ and it satisfies f(x+y)=f(x)+f(y) for all $x,y\in\mathbb R$ as f is a linear transformation from $\mathbb R(\mathbb Q)$ to $\mathbb R(\mathbb Q)$.

 $\overline{f(\sqrt{2})=\sqrt{2}f(1).}$

 $f(\sqrt{2}) = \sqrt{2}f(1).$

 $0 = \sqrt{2}$ a contradiction. Hence f is non-linear from $\mathbb{R}(\mathbb{R})$ to $\mathbb{R}(\mathbb{R})$ satisfying f(x+y) = f(x) + f(y).

• [Exercise 0.0.8] Let f be a linear transformation from \mathbb{V} to \mathbb{W} . If S is a subspace of \mathbb{V} then f(S) is a subspace of \mathbb{W} . Moreover, if x_1, \ldots, x_k generates S then $f(x_1), \ldots, f(x_k)$ generates f(S).

Answer: Let $y_1, y_2 \in f(S)$ and $\alpha.\beta \in \mathbb{F}$. Then we have $x, x_2 \in S$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$. Take

$$\alpha y_1 + \beta y_2$$

$$= \alpha f(x_1) + \beta f(x_2)$$

$$= f(\alpha x_1 + \beta x_2).$$

Since S is a subsapce, we have $\alpha x_1 + \beta x_2 \in S$. Then $f(\alpha x_1 + \beta x_2) \in f(S)$. That is $\alpha y_1 + \beta y_2 \in f(S)$.

Tutorial-III Let $y \in f(S)$. Then f(x) = y for some $x \in S$. Since x_1, \dots, x_k generates S, we have $x = c_1 x_1 + \cdots + c_k x_k$.

 $y = f(x) = f(c_1x_1 + \dots + c_kx_k) = c_1f(x_1) + \dots + c_kf(x_k)$. y is a linear

combination of $f(x_1), \dots, f(x_k)$ and $f(x_1), \dots, f(x_k)$ are elements of f(S). Hence $f(x_1), \ldots, f(x_k)$ generates f(S).

• [Exercise 0.0.11] Let \mathbb{V} be a finite dimensional vector space over the field \mathbb{F} . Let $f,g\in\mathbb{V}^*$ be nonzero transformations. Then f and g are linearly dependent if and only if Ker(f)=Ker(g).

• [Exercise 0.0.11] Let $\mathbb V$ be a finite dimensional vector space over the field $\mathbb F$. Let $f,g\in\mathbb V^*$ be nonzero transformations. Then f and g are linearly dependent if and only if Ker(f)=Ker(g).

Answer: We first assume that f and g are LD. Then there exists $\alpha \in \mathbb{F} - \{0\}$ such that $f = \alpha g$. This implies Ker(f) = Ker(g).

We now assume that Ker(f) = Ker(g).

• [Exercise 0.0.11] Let \mathbb{V} be a finite dimensional vector space over the field \mathbb{F} . Let $f, g \in \mathbb{V}^*$ be nonzero transformations. Then f and g are linearly dependent if and only if Ker(f) = Ker(g).

Answer: We first assume that f and g are LD. Then there exists $\alpha \in \mathbb{F} - \{0\}$ such that $f = \alpha g$. This implies Ker(f) = Ker(g).

We now assume that Ker(f) = Ker(g). Notice that rank(f) = rank(g) = 1. Then $Nullity(f) = Nullity(g) = \dim(\mathbb{V}) - 1$. Let $\dim(\mathbb{V}) = n$.

• [Exercise 0.0.11] Let $\mathbb V$ be a finite dimensional vector space over the field $\mathbb F$. Let $f,g\in\mathbb V^*$ be nonzero transformations. Then f and g are linearly dependent if and only if Ker(f)=Ker(g).

Answer: We first assume that f and g are LD. Then there exists $\alpha \in \mathbb{F} - \{0\}$ such that $f = \alpha g$. This implies Ker(f) = Ker(g).

We now assume that Ker(f) = Ker(g). Notice that rank(f) = rank(g) = 1. Then Nullity(f) = Nullity(g) = dim(V) - 1. Let dim(V) = n.

Let $\{u_1, \ldots, u_{n-1} \text{ is a basis of } Ker(f) = Ker(g)$. We extend it to a basis for \mathbb{V} which is $\{u_1, \ldots, u_{n-1}, u_n\}$.

• [Exercise 0.0.11] Let $\mathbb V$ be a finite dimensional vector space over the field $\mathbb F$. Let $f,g\in\mathbb V^*$ be nonzero transformations. Then f and g are linearly dependent if and only if Ker(f)=Ker(g).

Answer: We first assume that f and g are LD. Then there exists $\alpha \in \mathbb{F} - \{0\}$ such that $f = \alpha g$. This implies Ker(f) = Ker(g).

We now assume that Ker(f) = Ker(g). Notice that rank(f) = rank(g) = 1. Then $Nullity(f) = Nullity(g) = \dim(\mathbb{V}) - 1$. Let $\dim(\mathbb{V}) = n$.

Let $\{u_1, \ldots, u_{n-1} \text{ is a basis of } Ker(f) = Ker(g)$. We extend it to a basis for \mathbb{V} which is $\{u_1, \ldots, u_{n-1}, u_n\}$.

 $f(u_i) = g(u_i) = 0$ for $i = 1, \ldots, n-1$ and $f(u_n), g(u_n)$ are non-zero.

Since $f(u_n)$ and $g(u_n)$ are two nonzero elements of \mathbb{F} , they are LD and $f(u_n) = \alpha g(u_n)$ for some non-zero $\alpha \in \mathbb{F}$.

10

Let $x \in \mathbb{V}$. Then $x = c_1u_1 + \cdots + c_{n-1}u_{n-1} + c_nu_n$.

Let $x \in \mathbb{V}$. Then $x = c_1u_1 + \cdots + c_{n-1}u_{n-1} + c_nu_n$.

$$f(x) = c_n f(u_n)$$
 and $g(x) = c_1 g(u_n)$. Then $f(x) = \alpha g(x)$ for all $x \in \mathbb{V}$.

Let $x \in \mathbb{V}$. Then $x = c_1u_1 + \cdots + c_{n-1}u_{n-1} + c_nu_n$.

$$f(x)=c_nf(u_n)$$
 and $g(x)=c_1g(u_n)$. Then $f(x)=\alpha g(x)$ for all $x\in \mathbb{V}$.

Hence f and g are linearly dependent.

• [Exercise 0.0.13] Let $\mathbb V$ be a finite dimensional vector space over the field $\mathbb F$. Let $T \in \mathbb L(\mathbb V,\mathbb V)$ such that $rank(T^2) = rank(T)$. Prove that $Ker(T) \cap R(T) = \{0\}$.

• [Exercise 0.0.13] Let \mathbb{V} be a finite dimensional vector space over the field \mathbb{F} . Let $T \in \mathbb{L}(\mathbb{V}, \mathbb{V})$ such that $rank(T^2) = rank(T)$. Prove that $Ker(T) \cap R(T) = \{0\}$.

We show that $R(T) = R(T^2)$. Let $y \in R(T^2)$.

Then there exists $x \in \mathbb{V}$ such that $T^2(x) = y$. T(T(x)) = y, this implies $y \in R(T)$.

Hence $R(T^2) \subseteq R(T)$. They have same dimension. Therefore $R(T^2) = R(T)$.

• [Exercise 0.0.13] Let $\mathbb V$ be a finite dimensional vector space over the field $\mathbb F$. Let $T \in \mathbb L(\mathbb V,\mathbb V)$ such that $rank(T^2) = rank(T)$. Prove that $Ker(T) \cap R(T) = \{0\}$.

We show that $R(T) = R(T^2)$. Let $y \in R(T^2)$.

Then there exists $x \in \mathbb{V}$ such that $T^2(x) = y$. T(T(x)) = y, this implies $y \in R(T)$.

Hence $R(T^2) \subseteq R(T)$. They have same dimension. Therefore $R(T^2) = R(T)$.

Using rank-nullity theorem, we have $Nullity(T^2) = Nullity(T)$. We notice that $Ker(T) \subseteq Ker(T^2)$. Hence $Ker(T^2) = Ker(T)$.

• [Exercise 0.0.13] Let $\mathbb V$ be a finite dimensional vector space over the field $\mathbb F$. Let $T \in \mathbb L(\mathbb V,\mathbb V)$ such that $rank(T^2) = rank(T)$. Prove that $Ker(T) \cap R(T) = \{0\}$.

We show that $R(T) = R(T^2)$. Let $y \in R(T^2)$.

Then there exists $x \in \mathbb{V}$ such that $T^2(x) = y$. T(T(x)) = y, this implies $y \in R(T)$.

Hence $R(T^2) \subseteq R(T)$. They have same dimension. Therefore $R(T^2) = R(T)$.

Using rank-nullity theorem, we have $Nullity(T^2) = Nullity(T)$. We notice that $Ker(T) \subseteq Ker(T^2)$. Hence $Ker(T^2) = Ker(T)$.

Let $x \in Ker(T) \cap R(T) = \{0\}$. To show that x = 0. Then T(x) = 0 and T(y) = x.

$$T^2(y) = T(T(y)) = T(x) = 0$$
. Hence $y \in Ker(T^2)$. Therefore $y \in Ker(T)$. $T(y) = 0$. Hence $x = 0$.

• [Exercise 0.0.15] Let $\mathbb V$ be a finite dimensional vector space over the filed $\mathbb F$ and let $\mathbb W$ be a subspace of $\mathbb V$. If f is a linear functional on $\mathbb W$. Prove that there is a linear functional g on $\mathbb V$ such that g(v)=f(v) for all $v\in \mathbb W$.

• [Exercise 0.0.15] Let $\mathbb V$ be a finite dimensional vector space over the filed $\mathbb F$ and let $\mathbb W$ be a subspace of $\mathbb V$. If f is a linear functional on $\mathbb W$. Prove that there is a linear functional g on $\mathbb V$ such that g(v) = f(v) for all $v \in \mathbb W$.

Let $\{v_1, \ldots, v_k\}$ be a basis of \mathbb{W} . Then $f(v_i) = \alpha_i$ for $i = 1, \ldots, k$ where $\alpha_1, \ldots, \alpha_k \in \mathbb{F}$.

• [Exercise 0.0.15] Let $\mathbb V$ be a finite dimensional vector space over the filed $\mathbb F$ and let $\mathbb W$ be a subspace of $\mathbb V$. If f is a linear functional on $\mathbb W$. Prove that there is a linear functional g on $\mathbb V$ such that g(v)=f(v) for all $v\in \mathbb W$.

Let $\{v_1, \ldots, v_k\}$ be a basis of \mathbb{W} . Then $f(v_i) = \alpha_i$ for $i = 1, \ldots, k$ where $\alpha_1, \ldots, \alpha_k \in \mathbb{F}$.

We extend $\{v_1,\ldots,v_k,\ldots,v_n\}$ to a basis for $\mathbb V$ which is $\{v_1,\ldots,v_k,\ldots,v_n\}$.

Let $\{v_1, \ldots, v_k\}$ be a basis of \mathbb{W} . Then $f(v_i) = \alpha_i$ for $i = 1, \ldots, k$ where $\alpha_1, \ldots, \alpha_k \in \mathbb{F}$.

We extend $\{v_1, \ldots, v_k, \ldots, v_n\}$ to a basis for \mathbb{V} which is $\{v_1, \ldots, v_k, \ldots, v_n\}$.

We know that there exists a unique linear transformation g such that $g(v_i) = \alpha_i$ for i = 1, ..., k and $g(v_i) = \beta_i$ for i = k + 1, ..., n, Where $\beta_i \in \mathbb{F}$ for i = k + 1, ..., n.

Let $\{v_1, \ldots, v_k\}$ be a basis of \mathbb{W} . Then $f(v_i) = \alpha_i$ for $i = 1, \ldots, k$ where $\alpha_1, \ldots, \alpha_k \in \mathbb{F}$.

We extend $\{v_1,\ldots,v_k,\ldots,v_n\}$ to a basis for $\mathbb V$ which is $\{v_1,\ldots,v_k,\ldots,v_n\}$.

We know that there exists a unique linear transformation g such that $g(v_i) = \alpha_i$ for i = 1, ..., k and $g(v_i) = \beta_i$ for i = k + 1, ..., n, Where $\beta_i \in \mathbb{F}$ for i = k + 1, ..., n.

Let $x \in \mathbb{W}$. Then $x = c_1v_1 + \cdots + c_kv_k$. Therefore $f(x) = c_1\alpha_1 + \cdots + c_k\alpha_k$ and

• [Exercise 0.0.15] Let $\mathbb V$ be a finite dimensional vector space over the filed $\mathbb F$ and let $\mathbb W$ be a subspace of $\mathbb V$. If f is a linear functional on $\mathbb W$. Prove that there is a linear functional g on $\mathbb V$ such that g(v) = f(v) for all $v \in \mathbb W$.

Let $\{v_1, \ldots, v_k\}$ be a basis of \mathbb{W} . Then $f(v_i) = \alpha_i$ for $i = 1, \ldots, k$ where $\alpha_1, \ldots, \alpha_k \in \mathbb{F}$.

We extend $\{v_1, \ldots, v_k, \ldots, v_n\}$ to a basis for \mathbb{V} which is $\{v_1, \ldots, v_k, \ldots, v_n\}$.

We know that there exists a unique linear transformation g such that $g(v_i) = \alpha_i$ for i = 1, ..., k and $g(v_i) = \beta_i$ for i = k + 1, ..., n, Where $\beta_i \in \mathbb{F}$ for i = k + 1, ..., n.

Let $x \in \mathbb{W}$. Then $x = c_1v_1 + \cdots + c_kv_k$. Therefore $f(x) = c_1\alpha_1 + \cdots + c_k\alpha_k$ and

$$g(x) = g(c_1v_1 + \dots + c_kv_k) = c_1g(v_1) + \dots + c_kg(v_k)$$

$$g(x) = c_1\alpha_1 + \dots + c_k\alpha_k = f(x).$$

• [Exercise 0.0.12] Let $A \in \mathbb{M}_n(\mathbb{F})$. Let $T : \mathbb{M}_n(\mathbb{F}) \to \mathbb{M}_n(\mathbb{F})$ defined by T(B) = AB for all $B \in \mathbb{M}_n(\mathbb{F})$. Then prove that there exists a basis Q in

$$\mathbb{M}_n(\mathbb{F}) \text{ such that } [T]_Q = \begin{bmatrix} A & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & A & \cdots & \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & A \end{bmatrix}$$

• [Exercise 0.0.12] Let $A \in \mathbb{M}_n(\mathbb{F})$. Let $T : \mathbb{M}_n(\mathbb{F}) \to \mathbb{M}_n(\mathbb{F})$ defined by T(B) = AB for all $B \in \mathbb{M}_n(\mathbb{F})$. Then prove that there exists a basis Q in

$$\mathbb{M}_n(\mathbb{F}) \text{ such that } [T]_Q = \begin{bmatrix} A & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & A & \cdots & \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & A \end{bmatrix}$$

We use E_{ij} to denote the matrix size n whose ijth entry is 1 and rest of the entries are zero.

Let $Q = \{E_{11}, E_{21}, \dots, E_{n1}, E_{12}, E_{22}, \dots, E_{n2}, \dots, E_{1n}, E_{2n}, \dots, E_{nn}\}$. Q is a basis of $\mathbb{M}_n(\mathbb{F})$.

Just check that
$$[T]_Q = \begin{bmatrix} A & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & A & \cdots & \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & A \end{bmatrix}$$
.