Observations:

- The quality of the test error estimate err_Q in the hold-out method greatly depends on the random split of the data set D into a training set and a test set.
- A poorly executed split can adversely affect the model evaluation.
- One way to mitigate the bias of the random split of D is to perform the split-train-test cycle multiple times.

In the leave-one-out method we split the data set D of size l into l partitions of size l such that,

$$D = Q_1 \cup Q_2 \cup \ldots \cup Q_{l-1} \cup Q_l,$$

and

$$Q_i \cap Q_j = \emptyset,$$

where $Q_i = \{(\overline{x}_i, y_i)\}$ and $Q_j = \{(\overline{x}_j, y_j)\}$ for $i, j = 1, \dots, l$ and $i \neq j$.

Each partition Q_i is used systematically for testing exactly once whereas the remaining partitions are used for training. Let $P_i = D - Q_i$ be the training set with respect to the test partition Q_i with $i = 1, \ldots, l$, then we can compute the error for each test partition as

$$\operatorname{err}_{Q_i}\left[\hat{f}_{P_i}[k,\lambda,C]\right] = \mathcal{L}\left(y_i,\hat{f}_{P_i}[k,\lambda,C](\overline{x}_i)\right),$$

where $\hat{f}_{P_i}[k,\lambda,C]$ is the model trained on data set P_i with parameters k, λ , and C.

The test error err_{Q_i} is computed as the loss over the single element in the test partition Q_i .

The leave-one-out error (LOOE) is the average error over all partitions,

$$\mathsf{LOOE}_D\left[k,\lambda,C\right] = \frac{1}{l} \sum_{i=1}^l \mathsf{err}_{Q_i} \left[\hat{f}_{P_i}[k,\lambda,C]\right].$$

Observation: The leave-one-out error is an error estimate only in terms of the *model* parameters.

We can compute the set of parameters that minimizes the leave-one-out error over all partitions as,

$$(k^*, \lambda^*, C^*) = \underset{k, \lambda, C}{\operatorname{argmin}} \mathsf{LOOE}_{D}[k, \lambda, C],$$

and this parameter set gives rise to the optimal model

$$\hat{f}_{D}[k^*, \lambda^*, C^*].$$

Observation: For a data set D of length l we have to build l models for each parameter set evaluation. This implies that for most real-world data sets whose lengths is in the thousands and perhaps millions of observations this approach becomes unfeasible.

A good compromise between the potential bias of the hold-out method and the computational complexity of the leave-one-out method is N-fold cross-validation.

Here we split the data set D into N partitions or *folds* with $N \ll l$ such that

$$D = Q_1 \cup Q_2 \cup \ldots \cup Q_{N-1} \cup Q_N,$$

and

$$Q_i \cap Q_j = \emptyset,$$

with $|Q_i| = |Q_j| = l/N$ for $i, j = 1, \ldots, N$ and $i \neq j$.

We will use each fold for testing exactly once and the remaining folds are used to train the models. Let Q_i be a fold of the dataset D, then we can construct our corresponding training set P_i as

$$P_i = D - Q_i$$

with i = 1, ..., N. We can compute the error of some fold Q_i as

$$\operatorname{err}_{Q_i}\left[\hat{f}_{P_i}[k,\lambda,C]\right] = \frac{1}{|Q_i|} \sum_{(\overline{x}_j,y_j) \in Q_i} \mathcal{L}\left(y_j,\hat{f}_{P_i}[k,\lambda,C](\overline{x}_j)\right),$$

where $\hat{f}_{P_i}[k, \lambda, C]$ is the model trained on dataset P_i with parameters k, λ , and C.

We compute the *cross-validated error* (CVE) of the parameter set k, λ , and C as the average over the individual fold errors,

$$\mathsf{CVE}_D\left[k,\lambda,C\right] = \frac{1}{N} \sum_{i=1}^N \mathsf{err}_{Q_i}\left[\hat{f}_{P_i}[k,\lambda,C]\right].$$

And we find the optimal parameter set by minimizing the cross-validated error,

$$(k^*, \lambda^*, C^*) = \underset{k, \lambda, C}{\operatorname{argmin}} \mathsf{CVE}_D[k, \lambda, C].$$

The optimal model $\hat{f}_D[k^*, \lambda^*, C^*]$ can then be constructed using the full data set D.

ID	Kernel	Cost Constant	Training Error	Cross-Validated Error
1	Linear	0.01	2.46%	3.51%
2	Linear	0.10	1.41%	2.46%
3	Linear	1.00	1.23%	2.81%
4	Linear	10.00	0.88%	3.34%
5	Linear	100.00	0.35%	3.34%
6	Linear	1000.00	0.35%	3.87%
7	Polynomial, degree $= 3$	10.00	2.81%	4.39%
8	Polynomial, degree $= 3$	100.00	0.53%	3.34%
9	Polynomial, degree $= 3$	1000.00	0.00%	5.45%

