Diploma of Health Sciences Diploma of Science

SLE155 Chemistry for the Professional Sciences

Q5 Che	emical	Equilib	rium
--------	--------	---------	------

[3+4=7 marks]

a) Consider the equilibrium:

$$CH_4(g) + 2 H_2S(g) \subset CS_2(g) + 4 H_2(g)$$

 $\Delta_r H^{\circ}$ is positive

In which direction will the equilibrium be shifted by the following changes? Explain.

1 mark each (½ for answer, ½ for explanation)

[3 marks]

(i) addition of CH₄(g)

Increasing $[CH_4]$ instantaneously decreases the value of Q by increasing the value of the bottom line of the equilibrium quotient expression. Therefore, the system shifts to the right to consume some of the added CH_4 , thereby increasing the value of Q.

(ii) increasing the temperature of the reaction mixture

As the forward reaction is endothermic, *K* increases as the temperature increases. *Q* therefore increases in order to maintain equilibrium and so the system shifts to the right.

(iii) decreasing the volume of the container at constant temperature

Q is proportional to $1/V^2$ and so decreasing V instantaneously increases the value of Q. The system therefore shifts to the left, thereby decreasing the value of Q. The side with fewer gas molecules is favoured.

Diploma of Health Sciences Diploma of Science

SLE155 Chemistry for the Professional Sciences

Q5 (continued) Chemical Equilibrium

[3+4=7 marks]

b) $K_c = 3.2 \times 10^{-34}$ for the following reaction at 25 °C

$$2 \text{ HCl(g)} \rightleftharpoons H_2(g) + Cl_2(g)$$

The reaction vessel initially contained 0.0500 mol L^{-1} HCl. Calculate the concentrations of H_2 and Cl_2 at equilibrium.

[4 marks]

The balanced chemical equation is: 2 $HCl(g) \rightleftharpoons H_2(g) + Cl_2(g)$, so

$$K_c = \frac{[H_2][CI_2]}{[HCI]^2} = 3.2 \times 10^{-34}$$

The concentration table is:

1 mark

	[HCI]	[H ₂]	[Cl ₂]
Initial	0.0500	0	0
Change	-2 x	+x	+x
Equilibrium	0.0500-2x	+x	+x

Substituting these equilibrium concentrations into the equilibrium constant expression gives:

$$K_{c} = \frac{[H_{2}][CI_{2}]}{[HCI]^{2}}$$

$$= \frac{(x)(x)}{(0.0500 - 2x)^{2}}$$

$$= 3.2 \times 10^{-34}$$

1 mark

Since K_c is small, we can assume that $(0.0500 - 2x) \approx 0.0500$. Thus:

$$\frac{x^2}{(0.0500)^2} = 3.2 \times 10^{-34}$$

1 mark

So:
$$x = 8.9 \times 10^{-19} \text{ M} = [\text{H}_2] = [\text{CI}_2]$$

[HCl] = $(0.0500 - x) \approx 0.0500 \text{ M}$

Concentrations of H_2 and Cl_2 at equilibrium will each be 8.9×10^{-19} mol L^{-1}

1 mark

(or calculation making the assumptions without using the table) Answer should be 2 significant figures.