VE485, Optimization in Machine Learning (Summer 2020) Homework: 2. Convex Function

2. Convex Function

Lecturer: Xiaolin Huang xiaolinhuang@sjtu.edu.cn

Student: XXX xxx@sjtu.edu.cn

Problem 1

Definition of convexity. Suppose $f: \mathbb{R} \to \mathbb{R}$ is convex, and $a, b \in \mathbf{dom} f$ with a < b.

1. Show that

$$f(x) \leqslant \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b)$$

for all $x \in [a, b]$.

2. Show that

$$\frac{f(x) - f(a)}{x - a} \leqslant \frac{f(b) - f(a)}{b - a} \leqslant \frac{f(b) - f(x)}{b - x}$$

for all $x \in (a, b)$. Draw a sketch that illustrates this inequality.

3. Suppose f is differentiable. Use the result in 2 to show that

$$f'(a) \leqslant \frac{f(b) - f(a)}{b - a} \leqslant f'(b).$$

Note that these inequalities also follow from (3.2) in the textbook:

$$f(b) \ge f(a) + f'(a)(b-a), \qquad f(a) \ge f(b) + f'(b)(a-b).$$

4. Suppose f is twice differentiable. Use the result in 3 to show that $f''(a) \ge 0$ and $f''(b) \ge 0$.

Answer.

Problem 2

Composition with an affine function. Show that the following functions $f:\mathbb{R}^n\to\mathbb{R}$ are convex.

- 1. f(x) = ||Ax b||, where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $|| \cdot ||$ is a norm on \mathbb{R}^m .
- 2. $f(x) = -(\det(A_0 + x_1A_1 + \dots + x_nA_n))^{1/m}$, on $\{x \mid A_0 + x_1A_1 + \dots + x_nA_n > 0\}$, where $A_i \in \mathbf{S}^m$.
- 3. $f(X) = \mathbf{tr} (A_0 + x_1 A_1 + \dots + x_n A_n)^{-1}$, on $\{x \mid A_0 + x_1 A_1 + \dots + x_n A_n \succ 0\}$, where $A_i \in \mathbf{S}^m$. (Use the fact that $\mathbf{tr}(X^{-1})$ is convex on \mathbf{S}^m_{++} ; see exercise 3.18 in the text book.)

Answer.

2. Convex Function 2

Problem 3

Young's inequality. Let $f: \mathbb{R} \to \mathbb{R}$ be an increasing function, with f(0) = 0, and let g be its inverse. Define F and G as

 $F(x) = \int_0^x f(a) \, da, \qquad G(y) = \int_0^y g(a) \, da.$

Show that F and G are conjugates, which then leads to the Young's inequality,

$$xy \leqslant F(x) + G(y).$$

Answer.