Propagation d'un signal

#chapitre18 #signal

Généralités sur les ondes

Onde

Propagation dans l'espace d'une perturbation d'une grandeur physique, sans transport de matière.

Classification des ondes

Mécaniques

Propagation dans un milieu matériel de l'oscillation des particules.

Transverses

Perpendiculaires à la direction (vagues).

Longitudinales

Parallèlement à la propagation (son).

Grandeur physique concerné

• Solide : Position et vitesse de la particule

• Liquide : Vitesse et pression

Electromagnétiques

Peuvent exister dans le vide, se propagent à c, perturbation du champ \overrightarrow{E} et \overrightarrow{B} .

De matière

Propres à la nature quantique de la matière.

Gravitationnelles

Propagation à c dans le vide, déformation de la géométrie de l'espace-temps.

Phénomène de propagation

$$c = \frac{d}{\tau}$$

- $s_+(x,t) = f(t-\frac{x}{c}) = \varphi(x-ct)$
- $s_-(x,t) = f(t+\frac{x}{c}) = \psi(x+ct)$

Ondes progressive

- $s(x,t) = A_0 \cos(\omega t kx + \varphi_0)$
- $k=rac{\omega}{c}$ (nombre d'ondes) $T=rac{2\pi}{\omega} \; \lambda=rac{2\pi}{k} \; \lambda=cT \; c=\lambda f$
- $\Delta \varphi = k(x_1 x_2)$

En phase : 2π

$$\Delta x = p\lambda$$

En opposition : $(2p+1)\pi$

$$\Delta x = p\lambda + rac{\lambda}{2}$$

Interférence entre deux signaux de même fréquence

$$A_{tot} = \sqrt{A_1^2 + A_2^2 + \underbrace{2A_1A_2\cos(\Deltaarphi)}_{ ext{Terme d'interference}}}$$

Terme d'interférence maximum :

 $\cos(\Delta\varphi)=1$: Constructive

Terme d'interférence minimum :

 $\cos(\Delta arphi) = -1$: Destructives

Terme d'interférence nul :

$$\cos(\Delta arphi) = 0$$
 : $\Delta x = rac{p}{2}\lambda + rac{\lambda}{4}$

Expérience de Young

Chemin optique

Distance parcourus par la lumière dans le vide dans le même temps qu'elle met pour joindre les deux points.

- $\mathcal{L}_{AB} = ct_{AB} = n AB$
- ullet $\Delta arphi = K_0 (arphi_{S_1 M} arphi_{S_2 M})$

Figure d'interférence

- $\Delta \varphi = k \frac{ax}{D}$
- $ullet \ I_{tot} = I_1 + I_2 + 2\sqrt{I_1I_2}\cos(\Deltaarphi)$

Constructive $(\Delta \varphi = 2p\pi)$

$$x_p = prac{\lambda D}{a}$$

Destructive $(\Delta \varphi = 2p\pi + \pi)$

$$x_p = \left(p + rac{1}{2}
ight)rac{\lambda D}{a}$$