序号	页码	原文	更正	
1	12	对 w_j 求偏导数并令其为 0 ,可得	这一问题可用最小二乘法求得拟合多项	
		$w_{j} = \frac{\sum_{i=1}^{N} x_{i} y_{i}}{\sum_{i=1}^{N} x_{i}^{j+1}} ,$	式系数的唯一解,记作 $w_0^*, w_1^*, \dots, w_M^*$. 求解过程这里不予叙述,读者可参阅有关材料.	
		$j=0,1,2,\cdots,M$		
		于是求得拟合多项式系数		
		$w_0^*, w_1^*, \cdots, w_M^*$.		
2	77	$F(-x+\mu) - \frac{1}{2} = -F(x-\mu) + \frac{1}{2}$	$F(-x+\mu) - \frac{1}{2} = -F(x+\mu) + \frac{1}{2}$	
3	161	$= \log P(Z \mid Y, \theta^{(i+1)}) = 0 (9.23)$	$= \log \left[\sum_{Z} P(Z \mid Y, \theta^{(i+1)}) \right] = 0 $ (9.23)	
4	198	$W_{i}(y_{i-1}, y_{i} \mid x) = \sum_{i=1}^{K} w_{k} f_{k}(y_{i-1}, y_{i}, x, i)$	$W_{i}(y_{i-1}, y_{i} \mid x) = \sum_{k=1}^{K} w_{k} f_{k}(y_{i-1}, y_{i}, x, i)$	
		(11.23)	(11.23)	
5	14	第 13,14 行 可以假设复杂的模型有较大的先验概 率,简单的模型有较小的先验概率.	第 13,14 行 可以假设复杂的模型有 <mark>较小</mark> 的先验概率, 简单的模型有 <mark>较大</mark> 的先验概率.	
6	141	(0.0715,0.0715,0.0715,0.0715,0.0715, 0.0715,0.1666,0.1666,0.1666,0.0715)	(0.07143,0.07143,0.07143,0.07143,0.07143, 0.07143,0.16667,0.16667,0.16667,0.07143)	
7	43	第 8 行 (参阅图 3.8)	第8行(参阅图 3.5)	
8	119	式(7.73)	式(7.73)	
		$f * g \bullet \sum_{i=1}^{m} \sum_{j=1}^{l} \alpha_{i} \beta_{j} K(x_{i}, z_{j})$	$f * g = \sum_{i=1}^{m} \sum_{j=1}^{l} \alpha_i \beta_j K(x_i, z_j)$	
9	163	式(9.28)	该编号移到164页第一公式后	

10	222	倒数第9行	倒数第9行
		式(B.23)	式(B.24)
11	35	表 2.2 第 6 列	表 2.2 第 6 列
		4	4
		x_3	x_3
		2	1
		0	0
		2	3
		0	-2
12	115	第4行	第4行
		损失函数[$y_i(wx_i + b)$] ₊	损失函数 $[-y_i(wx_i+b)]_+$
13	63	5.2.3 信息增益比 信息增益值的大小是相对训练数 据集而言的,并没有绝对意义。在分类问题困难时,也就是训练数据集的经验 熵大的时候,信息增益值会偏小。使用信息增益比 (information gain ratio) 可以对这一问题进行校正。这是特征选择的另一准则. 定义 5.3 (信息增益比) 特征 A 对训练数据集 D 的信息增益比 $g_R(D,A)$ 定义为其信息增益 $g(D,A)$ 与训练数据集 D 的经验熵 $H(D)$ 之比 $g_R(D,A) = \frac{g(D,A)}{H(D)}$ (5.10)	5.2.3 信息增益比 以信息增益作为划分训练数据集的特征,存在偏向于选择取值较多的特征的问题. 使用信息增益比(information gain ratio)可以对这一问题进行校正. 这是特征选择的另一准则. 定义 5.3 (信息增益比)特征 A 对训练数据集 D 的信息增益比 $g_R(D,A)$ 定义 为其信息增益 $g(D,A)$ 与训练数据集 D 关于特征 A 的值的熵 $H_A(D)$ 之比,即 $g_R(D,A) = \frac{g(D,A)}{H_A(D)}$ (5.10) 其中 $H_A(D) = -\sum_{i=1}^n \frac{ D_i }{ D } \log_2 \frac{ D_i }{ D }$ n 是特征 A 取值的个数.

14	114	证明 可将最优化问题(7.63)写成问题 (7.60) \sim (7.62). 令 $1-y_i(w\Box x_i+b)=\xi_i$, $\xi_i\geq 0$ (7.64) 则 $y_i(w\Box x_i+b)\geq 1$. 于是 w,b , ξ_i 满足约束条件(7.61) \sim (7.62). 由(7.64)有 $\left[1-y_i(w\Box x_i+b)\right]_+=\left[\xi_i\right]_+=\xi_i$,所以最优化问题(7.63)可写成	证明 可将最优化问题(7.63)写成问题 (7.60) \sim (7.62). 令
15	第 159 页	利用 Jensen 不等式(Jensen inequality)	(7.62). 所以最优化问题(7.63)可写成 利用 Jensen 不等式(Jensen inequality) ① 脚注① 这里用到的是 $\log \sum_j \lambda_j y_j \geq \sum_j \lambda_j \log y_j , \qquad \text{其 中}$ $\lambda_j \geq 0$, $\sum_j \lambda_j = 1$.
16	,		$V_{jk}[\log(\frac{1}{\sqrt{2\pi}}) - \log\sigma_k - \frac{1}{2\sigma_k^2}(y_j - \mu_k)^2]$
	第 163 页	(原稿) 2. EM 算法的 E 步: 确定 Q 函数. $Q(\theta, \theta^{(i)}) = E[\log P(y, \gamma \theta) y, \theta]$ $= E\{\sum_{k=1}^{K} n_k \log \alpha_k + \sum_{j=1}^{N} \gamma_j e^{-jk} \}$	$\log(i)$] $\log(\frac{1}{\sqrt{2\pi}}) - \log \sigma_k - \frac{1}{2\sigma_k^2} (y_j - \mu_k)^2]$

		(修改稿) 加大括号		
		2. EM 算法的 E 步: 确定 Q 函数.		
		$Q(\theta, \theta^{(i)}) = E[\log P(y, \gamma \mid \theta) \mid y, \theta^{(i)}]$		
		$= E\{\sum_{k=1}^{K} \{n_k \log \alpha_k + \sum_{j=1}^{N} \gamma_{jk} [\log(\frac{1}{\sqrt{2\pi}}) - \log \sigma_k - \frac{1}{2\sigma_k^2} (y_j - \mu_k)^2]\}\}$		
	第	(原稿)		
	页	$Q(\theta, \theta^{(i)}) = \sum_{k=1}^{K} n_k \log \alpha_k + \sum_{k=1}^{N} \hat{\gamma}_{jk} \left[\log(\frac{1}{\sqrt{2\pi}}) - \log \sigma_k - \frac{1}{2\sigma_k^2} (y_j - \mu_k)^2 \right] $ (9.29)		
		(修改稿) 加上大括号,第二个和号的求和指标由 k 改为 i		
		$Q(\theta, \theta^{(i)}) = \sum_{k=1}^{K} \{ n_k \log \alpha_k + \sum_{j=1}^{N} \hat{\gamma}_{jk} [\log(\frac{1}{\sqrt{2\pi}}) - \log \sigma_k - \frac{1}{2\sigma_k^2} (y_j - \mu_k)^2] \}$		
	***	(9.29)		
17	第 73 页	(原稿)		
	算法	(4) 自上而下地访问内部结点 t ,如果有 $g(t) = \alpha$,进行剪枝,并对叶结点 t 以多数		
	5.7	表决法决定其类,得到树 T		
		(修改稿)		
		(4) 对 $g(t) = \alpha$ 的内部结点 t 进行剪枝,并对叶结点 t 以多数表决法决定其类,得		
		到树 T		
18	第 73	(原稿) (6) 如果 T 不是由根结点单独构成的树,则回到步骤(4).		
	算法	(修改稿)		
	5.7	(6) 如果 T_k 不是由根结点及两个叶结点构成的树,则回到步骤 (2) ;否则令 $T_k = T_n$		
19	第	(原稿)		
	205 页	(6) 计算 $g_{k+1} = g(w^{(k+1)})$, 若 $g_k = 0$, 则停止计算;		
	算法	(修改稿)		
	11.2	(6) 计算 $g_{k+1} = g(w^{(k+1)})$, 若 $g_{k+1} = 0$, 则停止计算;		
20	第	(原稿)		
	200 页	$\beta_{i}(y_{i} \mid x) = M_{i}(y_{i}, y_{i+1} \mid x)\beta_{i-1}(y_{i+1} \mid x) $ (11.30)		
		(修改稿)		
		$\beta_{i}(y_{i} \mid x) = M_{i+1}(y_{i}, y_{i+1} \mid x)\beta_{i+1}(y_{i+1} \mid x) $ (11.30)		

21	第	(原稿)		
	196 页	倒数第 11 行 $\lambda_2=0.5$		
		(修改稿)		
		$\lambda_2 = 0.6$		
22	第	(原稿)		
	208 页	第 9 行 $\delta_2(1) = \max\{1 + \lambda_2 t_2, 0.5 + \lambda_4 t_4\} = 1.6$ $\Psi_2(1) = 1$		
		(修改稿)		
		$\delta_2(1) = \max\{1 + \lambda_2 t_2 + \mu_3 s_3, 0.5 + \lambda_4 t_4 + \mu_3 s_3\} = 2.4 \qquad \Psi_2(1) = 1$		
		(原稿)		
		第 12 行 $\delta_3(1) = \max\{1.6 + \mu_5 s_5, 2.5 + \lambda_3 t_3 + \mu_3 s_3\} = 4.3$ $\Psi_3(1) = 2$		
		(修改稿)		
		$\delta_3(1) = \max\{2.4 + \mu_5 s_5, 2.5 + \lambda_3 t_3 + \mu_3 s_3\} = 4.3 \Psi_3(1) = 2$		
		(原稿)		
		第 13 行 $\delta_3(2) = \max\{1.6 + \lambda_1 t_1 + \mu_4 s_4, 2.5 + \lambda_5 t_5 + \mu_4 s_4\} = 3.2$ $\Psi_3(2) = 1$		
		(修改稿)		
		$\delta_3(2) = \max\{2.4 + \lambda_1 t_1 + \mu_4 s_4, 2.5 + \lambda_5 t_5 + \mu_4 s_4\} = 3.9 \Psi_3(2) = 1$		
23	第	(原稿)		
	156 页式	式(9.5)左端 $\mu^{(i+1)}$		
		(修改稿)		
		$\mu_j^{(i+1)}$		
24	第	(原稿)		
	198 页	这样,给定观测序列 x ,标记序列 y 的非规范化概率可以通过 $n+1$ 个矩阵		
		的乘积 $\prod_{i=1}^{n+1} M_i(y_{i-1}, y_i x)$ 表示,		
		(修改稿)		
		这样,给定观测序列 x ,相应标记序列 y 的非规范化概率可以通过该序列		
		$n+1$ 个矩阵 <mark>适当元素</mark> 的乘积 $\prod_{i=1}^{n+1} M_i(y_{i-1},y_i \mid x)$ 表示.		

	K*K*	. p- x2.	
25	第	(原稿)	
	200	T(-1) $T(-1)$ $T(-1)$	(11.07)
	页	$\alpha_i^T(y_i \mid x) = \alpha_{i-1}^T(y_{i-1} \mid x) M_i(y_{i-1}, y_i \mid x), i = 1, 2, \dots, n+1$	(11.27)
	,	(原稿)	
		$\beta_{i}(y_{i} \mid x) = M_{i}(y_{i}, y_{i+1} \mid x)\beta_{i+1}(y_{i+1} \mid x)$	(11.30)
		(修改稿)	
		$\alpha_i^T(y_i \mid x) = \alpha_{i-1}^T(y_{i-1} \mid x)[M_i(y_{i-1}, y_i \mid x)], i = 1, 2, \dots, n+1$	(11.27)
		(修改稿)	
		$\beta_i(y_i \mid x) = [M_i(y_i, y_{i+1} \mid x)]\beta_{i+1}(y_{i+1} \mid x)$	(11.30)
26	第 29	(原稿)(公式右边的 x 少了下标 i)	
	页,	$\min_{w,b} L(w,b) = -\sum_{x \in M} y_i(w \bullet x + b)$	
	倒 数	w,b $x_i \in M$	
		(修改稿)	
	行 公	$\min_{w,b} L(w,b) = -\sum_{x_i \in M} y_i(w \bullet x_i + b)$	
	式	$x_i \in M$	