

Decizie și Estimare în Prelucrarea Informației

Capitolul II. Elemente de teorie statistică a detecției

Introducere

- Detecția semnalelor = a decide care semnal este prezent dintre două sau mai multe posibilități
 - inclusiv că nu există nici un semnal
- Avem la dispoziție observații cu zgomot
 - semnalele sunt afectate de zgomot

Schema bloc a detecției semnalelor

Figure 1: Signal detection model

Conţinut:

- Sursa de informație: generează mesajele a_n cu probabilitățile $p(a_n)$
- ▶ Modulator: transmite semnalul $s_n(t)$ la mesajul a_n
- ► Canal: adaugă zgomot aleator
- **E**șantionare: prelevă eșantioane din semnalul $s_n(t)$
- ightharpoonup Receptor: **decide** ce mesaj a_n s-a fost receptionat

Scenarii practice

- Transmisie de date
 - ▶ nivele constante de tensiune (e.g. $s_n(t) = constant$)
 - ▶ modulație PSK (Phase Shift Keying): $s_n(t)$ = cosinus cu aceeași frecvență dar faze inițiale diferite
 - modulație FSK (Frequency Shift Keying): $s_n(t) = \text{cosinus cu frecvențe}$ diferite
 - modulație OFDM (Orthogonal Frequency Division Multiplexing): caz particular de FSK

Radar

- ▶ se emite un semnal; în cazul unui obstacol, semnalul se reflectă înapoi
- receptorul așteaptă posibilele reflecții ale semnalului emis și decide
 - nu este prezentă o reflecție -> nici un obiect
 - semnalul reflectat este prezent -> obiect detectat

Generalizări

- ▶ Decizie între mai mult de două semnale
- Numărul de eșantioane (observații):
 - un singur eşantion
 - mai multe esantioane
 - ▶ observarea întregului semnal continuu, pentru un timp *T*

Detecție unui semnal constant, 1 eșantion

- Cel mai simplu caz: detecția unui semnal constant afectat de zgomot, folosind un singur eșantion
 - ▶ două mesaje a₀ și a₁
 - mesajele sunt modulate cu semnale constante
 - pentru a_0 : se emite $s_0(t) = 0$
 - pentru a_1 : se emite $s_1(t) = A$
 - peste semnal se suprapune zgomot aditiv
 - esantionarea preia un singur esantion
 - decizie: se compară eșantionul cu un prag

Decizia pe bază de prag

- ▶ Valoarea eșantionului este r = s + n
 - s este semnalul adevărat ($s_0 = 0$ or $s_1 = A$)
 - ▶ *n* este un eșantion de zgomot
- n este o variabilă aleatoare continuă
- r este de asemenea o variabilă aleatoare
 - ▶ cum depinde distribuția lui r de cea a lui n
- ▶ Decizia se ia prin compararea lui r cu un prag T:
 - dacă r < T, se ia decizia D_0 : semnalul adevărat este s_0
 - ▶ dacă $r \ge T$, se ia decizia D_1 : semnalul adevărat este s_1

Ipoteze

- Receptorul decide între două ipoteze:
 - ▶ H_0 : semnalul adevărat este s_0 (s-a transmis a_0)
 - \vdash H_1 : semnalul adevărat este s_1 (s-a transmis a_1)
- Rezultate posibile
 - 1. Semnalul nu este prezent (s_0) , si nu este detectat
 - ▶ Decizia D_0 în ipoteza H_0
 - ▶ Probabilitatea sa este $P_n = P(D_0 \cap H_0)$
 - 2. **Alarmă falsă**: semnalul nu este prezent (s_0) , dar este detectat (eroare!)
 - ▶ Decizia D_1 în ipoteza H_0
 - ▶ Probabilitatea este $P_{fa}P(D_1 \cap H_0)$
 - 3. **Ratare**: semnalul este prezent (s_1) , dar nu este detectat (eroare!)
 - ▶ Decizia D_0 în ipoteza H_1
 - ▶ Probabilitatea este $P_m = P(D_0 \cap H_1)$
 - 4. Semnal detectat corect: semnalul este prezent, și este detectat
 - ▶ Decizia D_1 în ipoteza H_1
 - ▶ Probabilitatea este $P_d = P(D_1 \cap H_1)$

Criteriul plauzibilității maxime (Maximum Likelihood)

- Se alege ipoteza care pare cea mai plauzibilă dat fiind eșantionul observat r
- ▶ Plauzibilitatea ("likelihood") unei observații r = densitatea de probabilitate a lui r dată fiind ipoteza H_0 sau H_1
- ▶ Plauzibilitatea în cazul ipotezei H_0 : $w(r|H_0)$
 - lacktriangleright r este doar zgomot, deci provine din distribuția zgomotului de pe canal
- ▶ Plauzibilitatea în cazul ipotezei H_1 : $w(r|H_1)$
 - ▶ r este A + zgomot, deci valoarea sa provine din distribuția (A + zgomot)
- Raportul de plauzibilitate

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} 1$$

Interpretare grafică

- ► Fie cazul în care zgomotul are distribuție normală
- ▶ Desen: cele două densități de probabilitate pentru H_0 și H_1

Decizia pe bază de prag

- ightharpoonup Decizie ML pe baza raportului de plauzibilitate = compararea lui r cu un prag T
- ▶ Pragul = punctul de intersecție a celor două distribuții

Zgomot cu distribuție normală

- lacktriangle Caz particular: zgomotul are distribuția normală $\mathcal{N}(0,\sigma^2)$
- ▶ Raportul de plauzibilitate este $\frac{w(r|H_1)}{r|H_0} = \frac{e^{\frac{(r-A)^2}{2\sigma^2}}}{e^{\frac{r^2}{2\sigma^2}}} \underset{H_0}{\overset{H_1}{\gtrless}} 1$
- ▶ Pentru distribuția normală, e preferabil să aplicăm logaritmul natural
 - logaritmul este o funcție monoton crescătoare, deci nu schimbă rezultatul comparatiei
 - ▶ dacă A < B, atunci log(A) < log(B)
- log-likelihood al unui observații = logaritmul plauzibilității (likelihood)
 - ▶ de obicei este vorba de logaritmul natural, dar poate fi orice bază

Testul "log-likelihood" în cazul ML

 Pentru zgomot cu distribuție normală, decizia ML înseamnă compararea log-likelihood

$$\frac{(r-A)^2}{r^2} \underset{H_0}{\overset{H_1}{\geqslant}} 1$$

Se extrage radicalul

$$\frac{|r-A|}{|r|} \underset{H_0}{\overset{H_1}{\geqslant}} 1$$

- |r A| = distanța de la r la A, |r| = distanța de la r la 0
- ▶ Decizie ML în zgomot normal: se alege valoarea 0 sau A cea mai apropiată de r
 - principiu foarte general, întâlnit în multe alte scenarii
 - principiul cel mai apropiat vecin ("nearest neighbor")
 - receptorul ML se mai numește receptor de distanță minimă ("minimum distance receiver")
 - echivalent cu setarea unui prag $T = \frac{A}{2}$

Generalizări

- Dacă zgomotul are altă distribuție?
 - ▶ Pragul T rămâne punctul de intersecție, oricare ar fi acela
 - ▶ Pot fi mai multe puncte de intersecție, deci mai multe praguri
 - ightharpoonup axa $\mathbb R$ este împărțită în **regiuni de decizie** R_0 și R_1
- ▶ Dacă distribuția zgomotului este diferită în cazurile H₀ și H₁?
 - Pragul T (sau pragurile) rămân punctele de intersecție, oricare ar fi acelea
- ▶ Dacă semnalul $s_0(t)$ (pentru ipoteza H_0 , simbolul a_0) nu este 0, ci o altă valoare constantă B?
 - Pragul T (sau pragurile) rămân punctele de intersecție, dar distribuțiile sunt centrate pe B și A
 - Pentru zgomot gaussian, se alege B sau A, cel mai apropiat de eșantion (pragul este la mijlocul distanței dintre B și A)

Generalizări

- Mai mult de două semnale?
 - ▶ De ex. 4 nivele de semnal posibile: -6, -2, 2, 6
 - Se alege cea mai plauzibilă ipoteză, pe baza celor 4 plauzibilități
 - ▶ Nu mai există un singur prag T, sunt în mod necesar mai multe

Exercitii

- ▶ Un semnal poate avea două valori posibile, 0 sau 5. Receptorul ia un singur eșantion cu valoarea r=2.25
 - 1. Dacă zgomotul este gaussian, ce semnal este detectat pe baza criteriului plauzibilității maxime?
 - 2. Dar dacă semnalul 0 este afectat de zgomot gaussian $\mathcal{N}(0,0.5)$, iar semnalul 5 de zgomot uniform $\mathcal{U}[-4,4]$?
 - 3. Repetați a. și b. dacă valoarea 0 se înlocuiește cu -1
- ▶ Un semnal poate avea patru valori posibile: -6, -2, 2, 6. Fiecare valoare durează timp de o secundă. Semnalul este afectat de zgomot alb cu distribuție normală. Receptorul ia un singur eșantion pe secundă. Folosind criteriul plauzibilității maxime, decideți ce semnal s-a transmis, dacă receptorul primește eșantioanele următoare:

$$4, 6.6, -5.2, 1.1, 0.3, -1.5, 7, -7, 4.4$$

Dezavantaje ale criteriului plauzibilității maxime

- Raportul de plauzibilitate utilizează densitățile de probabilitate condiționate
 - ▶ condiționate de ipotezele H₀ sau H₁
- ▶ Condiționarea de ipotezele H_0 și H_1 ignoră probabilitatea celor două ipoteze H_0 și H_1
- Reamintire (TCI): regula lui Bayes

$$P(A \cap B) = P(B|A) \cdot P(A))$$

- Interpretare
 - ▶ Probabilitatea P(A) este extrasă din P(B|A)
 - P(B|A) nu mai conține nici o informație despre P(A), șansele ca A chiar să aibă loc
 - ► Exemplu: P(gol | șut la poartă)
- ▶ Practic: dacă $p(H_0) >> p(H_1)$, am vrea să împingem pragul T înspre H_1

Criteriul probabilității minime de eroare

- ▶ Se iau în calcul probabilitățile $P(H_0)$ și $P(H_1)$
- ► Se urmărește minimizarea probabilității totale de eroare P_e
 - ▶ erori = alarme false și ratări
- ▶ Există de asemenea un prag T astfel încât
 - decidem D_0 dacă r < T
 - decidem D_1 dacă $r \geq T$
- Trebuie să găsim valoarea lui T

Probabilitatea de eroare

▶ Probabilitatea unei alarme false

$$P(D_{1} \cap H_{0}) = P(D_{1}|H_{0}) \cdot P(H_{0})$$

$$= \int_{T}^{\infty} w(r|H_{0})dx \cdot P(H_{0})$$

$$= (1 - \int_{-\infty}^{T} w(r|H_{0})dx \cdot P(H_{0})$$

Probabilitatea unei ratări

$$P(D_0 \cap H_1) = P(D_0|H_1) \cdot P(H_1)$$
$$= \int_{-\infty}^{T} w(r|H_1) dx \cdot P(H_1)$$

Suma lor este

$$P_e = P(H_0) + \int_{-\infty}^{T} [w(r|H_1) \cdot P(H_1) - w(r|H_0) \cdot P(H_0)] dx$$

Probabilitatea de eroare minimă

- lacktriangle Urmărim minimizarea P_e , adică să minimizăm integrala
- Pentru a minimiza integrala, se alege T astfel încât pentru toți r < T, termenul din integrala este **negative**
 - ▶ integrarea pe întregul interval în care o funcție este negativă conduce la valoarea minimă
- ▶ Aṣadar, când $w(r|H_1) \cdot P(H_1) w(r|H_0) \cdot P(H_0) < 0$ avem r < T, adică decizia D_0
- ▶ Invers, dacă $w(r|H_1) \cdot P(H_1) w(r|H_0) \cdot P(H_0) > 0$ avem r > T, adică decizia D_1
- Astfel

$$w(r|H_{1}) \cdot P(H_{1}) - w(r|H_{0}) \cdot P(H_{0}) \underset{H_{0}}{\overset{H_{1}}{\gtrless}} 0$$

$$\frac{w(r|H_{1})}{w(r|H_{0})} \underset{H_{0}}{\overset{H_{1}}{\gtrless}} \frac{P(H_{0})}{P(H_{1})}$$

Interpretare

- Similar cu criteriul plauzibilității maxime, dar depinde de probabilitățile celor două ipoteze (cazuri, simboluri)
 - ► Când una dintre ipoteze este mai probabilă decât cealaltă, pragul este împins în favoarea sa, înspre cealaltă ipoteză
- ▶ De asemenea bazat pe raportul de plauzibilitate, ca și primul criteriu

Criteriul probabilității minime de eroare - zgomot gaussian

▶ Presupunând că zgomotul este gaussian (normal), $\mathcal{N}(0, \sigma^2)$

$$w(r|H_1) = e^{\frac{(r-A)^2}{2\sigma^2}}$$

 $w(r|H_0) = e^{\frac{r^2}{2\sigma^2}}$

Se aplică logaritmul natural

$$\frac{(r-A)^2}{2\sigma^2} - \frac{r^2}{2\sigma^2} \underset{H_0}{\overset{H_1}{\geqslant}} \ln\left(\frac{P(H_0)}{P(H_1)}\right)$$

Echivalent

$$(r-A)^2 \underset{H_0}{\overset{H_1}{\gtrless}} (r-0)^2 + \underbrace{2\sigma^2 \cdot \ln\left(\frac{P(H_0)}{P(H_1)}\right)}_{C}$$

Exerciții

- ▶ O sursă de informație furnizează două mesaje cu probabilitățile $p(a_0)=\frac{2}{3}$ și $p(a_1)=\frac{1}{3}$. Mesajele se transmit prin semnale constante cu valorile -5 (a_0) și 5 (a_1) . Semnalele sunt afectate de zgomot alb cu distribuție gaussiană $\mathcal{N}(0,\sigma^2=1)$ Receptorul ia un singur eșantion cu valoarea r. Decizia se face prin compararea valorii r cu un prag T, astfel: dacă r < T se decide că s-a transmis mesajul a_0 , altfel se decide mesajul a_1 .
 - 1. Să se găsească valoarea pragului ${\cal T}$ conform criteriul probabilității minime de eroare
 - 2. Dar dacă semnalul 5 este afectat de zgomot uniform $\mathcal{U}[-4,4]$?

Minimum risk (cost) criterion

- ▶ What if we care more about one type of errors (e.g. false alarms) than other kind (e.g. miss)?
- Minimum risk (cost) criterion: assign costs to decisions, minimize average cost
 - $ightharpoonup C_{ij} = {\sf cost}$ of decision D_i when true hypothesis was H_j
 - $C_{00} = \cos t$ for good detection D_0 in case of H_0
 - $C_{10} = \text{cost for false alarm (detection } D_1 \text{ in case of } H_0)$
 - $C_{01} = \text{cost for miss (detection } D_0 \text{ in case of } H_1)$
 - $ightharpoonup C_{11} = {\sf cost}$ for good detection D_1 in case of H_1
- ▶ The risk = the average cost

$$R = C_{00}P(D_0 \cap H_0) + C_{10}P(D_1 \cap H_0) + C_{01}P(D_0 \cap H_1) + C_{11}P(D_1 \cap H_1)$$

Minimum risk criterion: minimize the risk R

Computations

- ▶ Proof on table:
 - ▶ Use Bayes rule
 - Notations: $w(r|H_i)$ (likelihood)
 - Probabilities: $\int_{R_i} w(r|H_j)dV$
- Conclusion, decision rule is

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geq}} \frac{(C_{10} - C_{00})p(H_0)}{(C_{01} - C_{11})p(H_1)}$$

Interpretation

- Similar to ML and to minimum probability of error criteria
 - also uses a likelihood ratio test
- ▶ Both probabilities and the assigned costs can move threshold towards one side or the other
- ▶ If $C_{10} C_{00} = C_{01} C_{11}$, reduces to previous criterion (minimum probability of error)
 - e.g. if $C_{00} = C_{11} = 0$, and $C_{10} = C_{01}$

In gaussian noise

- ▶ If the noise is gaussian (normal), then similar to other criteria, apply logarithm
- Equivalently

$$(r-A)^2 \underset{H_0}{\overset{H_1}{\gtrless}} (r-0)^2 + \underbrace{2\sigma^2 \cdot \ln\left(\frac{(C_{10}-C_{00})p(H_0)}{(C_{01}-C_{11})p(H_1)}\right)}_{C}$$

Example

ightharpoonup Example at blackboard: random noise with $N(0,\sigma^2)$, one sample

Generalization: two non-zero levels

- ▶ What if the s_0 signal is not 0, but another constant signal $s_0 = B$
- ▶ Noise distribution $w(r|H_0)$ is centered on B, not 0
- Otherwise, everything else stays the same
- ▶ Performance is defined by the gap between the two levels (A B)
 - ▶ same performance if $s_0 = 0$, $s_1 = A$ or if $s_0 = -\frac{A}{2}$ and $s_1 = fracA2$

Differential vs single-ended signalling

Single-ended signaling: one signal is 0, other is non-zero

•
$$s_0 = 0$$
, $s_1 = A$

▶ Differential signaling: use two non-zero levels with different sign, same absolute value

Which is better?

Differential vs single-ended signalling

- ▶ If gap difference between levels is the same, performance is the same
- ► Average power of a signal = average squared value
- ▶ For differential signal: $P = \left(\pm \frac{A}{2}\right)^2 = \frac{A^2}{4}$
- ► For signal ended signal: $P = P(H_0) \cdot 0 + P(H_1)(A)^2 = \frac{A^2}{2}$
- ▶ assuming equal probabilities of 0 and 1, $P(H_0) = P(H_1) = \frac{1}{2}$
- ▶ Differential uses half the power of single-ended (i.e. better)

Summary of criteria

- \blacktriangleright We have seen decision based on 1 sample r, between 2 constant levels
- All decisions are based on a likelihood-ratio test

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} K$$

- lacktriangle Different criteria differ in the chosen value of K (likelihood threshold)
- Depending on the noise distributions, the real axis is partitioned into regions
 - region R_0 : if r is in here, decide D_0
 - region R_1 : if r is in here, decide D_1
 - e.g. $R_0 = (-infty, \frac{A+B}{/}2], R_1 = (\frac{A+B}{/}2, \infty)$ (ML)

Receiver Operating Characteristic

- ► The receiver performance is usually represented with "Receiver Operating Characteristic" graph
- ▶ It is a graph of correct detection probability $P_d = P(D_1|H_1)$ as a function of false alarm probability $P_{fa} = P(D_1 \cap H_0)$
- Picture here

Receiver Operating Characteristic

- ▶ There is always a **tradeoff** between good P_d and bad P_{fa}
 - ▶ to increase P_d one must also increase P_{fa}
 - ▶ if we want to make sure we don't miss any real detections (increase P_d), we pay by increasing the chances of false alarms
- ▶ Different criteria = different likelihood thresholds K = different points on the graph = different tradeoffs
 - but the tradeoff cannot be avoided
- ▶ How to improve the receiver?
 - i.e. increase P_D while keeping P_{fa} the same

Performance of likelihood-ratio decoding in WGN

- WGN = "White Gaussian Noise"
- Assume equal probabilities $P(H_0) = P(H_1) = \frac{1}{2}$
- ▶ All decisions are based on a likelihood-ratio test

$$\frac{w(r|H_1)}{w(r|H_0)} \overset{H_1}{\gtrless} K$$

► Detection probability is

$$\begin{split} P_D = & P(D_1|H_1)P(H_1) \\ = & P(H_1) \int_T^\infty w(r|H_1) \\ = & P(H_1)(F(\infty) - F(T)) \\ = & P(H_1) \left(1 - \frac{1}{2} \left(1 + erf\left(\frac{r - A}{\sqrt{2}\sigma}\right)\right)\right) \\ = & \frac{1}{4} \left(1 - erf\left(\frac{r - A}{\sqrt{2}\sigma}\right)\right) \end{split}$$

Performance of likelihood-ratio decoding in WGN

► False alarm probability is

$$\begin{split} P_{fa} = & P(D_1|H_0)P(H_0) \\ = & P(H_0) \int_T^\infty w(r|H_0) \\ = & P(H_0)(F(\infty) - F(T)) \\ = & P(H_0) \left(1 - \frac{1}{2} \left(1 + erf\left(\frac{r-0}{\sqrt{2}\sigma}\right)\right)\right) \\ = & \frac{1}{4} \left(1 - erf\left(\frac{r-0}{\sqrt{2}\sigma}\right)\right) \end{split}$$

Therefore