Inferential Statistics: Hypothesis Testing

Satishkumar L. Varma

ORCiD: 0000-0002-5203-8655

Department of Information Technology SVKM's Dwarkadas J. Sanghvi College of Engineering Vile Parle, Mumbai 400056

Table of Contents

References Learning Objectives

Descriptive Statistics

Need for performing statistical analysis Statistical Analysis Descriptive Statistics

Inferential Statistics

Hypotheses Testing: Why?

Hypotheses Testing and Procedures

Hypotheses Testing: How?

References

- 1. Walker, H. W. "Degrees of Freedom," Journal of Educational Psychology. 31(4) (1940) 253-269.
- 2. Pandy, S., and Bright, C. L., Social Work Research 32(2), June 2008.

Learning Objectives

At the end of this presentation we should be able to

- ▶ LO1:Give real-life scenario problem to be solved by Statistics
- LO2:Classify statistical analysis methods with its purpose
- LO3:Define the process of hypotheses testing
- ▶ LO5:List standard test used in hypotheses test
- ▶ LO4:Make decision using hypotheses testing

Key Concept(s) to be covered

- Statistical measures
- Statistical analysis methods
- Hypotheses testing

Need for performing statistical analysis

Need for performing statistical analysis of experimental observations

- no proper sampling procedures and design of experiments
- don't know entire sample space and parameters of distribution
- want to derive conclusion form finite sample (observation) set
- sample set is assumed to be representative of entire s-space

Important terms

- Population: set of all possible outcomes
- Sample set: finite set of observations in an experiment
- ▶ Inference: conclusion derived regarding population s-set

Statistical Analysis

Descriptive Statistics

- Graphical: Organizing and presenting the data
 - Example: histogram, box plot, probability plot
- Numerical: Summarizing the sample set
 - Example: mean, median, mode, range, quartile, variance, standard deviation

Inferential Statistics

- Estimation: Estimate parameters of the pdf along with its confidence region
- ightharpoonup Hypotheses testing: Making judgements about f(x) and its parameters

Descriptive Statistics

Descriptive Statistics: Numerical

Numerical: Summarizing the sample set

Descriptive Statistics: Graphical

► Graphical: Organizing and presenting the data

Motivation for Hypotheses Testing

Motivation for Hypotheses Testing

- Social case: Are women more likely to change the mobile service provider than men?
- Medical case: Is the incidence of diabetes greater among males than females?
- ▶ Engineering case: Has the performance of HDD decreases from its original value due to # write operations?
- Business case: Will an investment in mutual fund yield annual returns greater than desired value?

Hypotheses Testing

A statement or postulate about the parameters of a distribution

- Null Hypothesis (H_0): default postulate (rejected if s-set provide sufficient evidence)
- ▶ Alternate Hypothesis(H_10orH_a): accepted if the H_0 is rejected

Procedure in Hypotheses Testing

- Identify parameter of interest which we wish to test
- State the null and alternative hypotheses
- Choose kind of test need to perform
- ► Find test statistics (is a function of the s-set of observations)
- Choose test criterion (threshold)

Compare the t-statistics to reject or accept the null hypothesis

Types of Hypotheses Test

No hypotheses test is perfect. Test performance depends on

- Extent of variability in data
- ► Sample size (# of observations)
- ► Test statistics (function of observations)
- ► Threshold (test criterion)
 - Two sided test

$$H_0: \mu = 0$$

$$H_1:\; \mu \neq 0$$

· Test statistic standard normal RV z

$$H_0: \mu = 0$$

$$H_1: \mu > 0$$

Test statistic standard normal RV z

Error in Hypotheses Testing

Two types of error

- ► Typically the Type 1 error probability is controlled
- ► Test statistics (function of observations)
- ▶ Controlled by choosing the criterion (Threshold) from distribution of test statistic

Decision →	H ₀ is not rejected	H ₀ is rejected
Truth ↓		
H ₀ is true	Correct Decision $Pr = I - \alpha$	Type I error Pr = α
H _I is true	Type II error $Pr = \beta$	Correct Decision Pr = 1 - β

Hypotheses Testing: How?

Graphical: Organizing and presenting the data

Justify why the above is an active learning strategy

Active Learning Strategy: Think-Pair-Share

- ► They are required to think deeply about the content they were familiarized in out-of-class and do higher order thinking.
- Students are actively engaged in classroom by discussing their answer with their neighbour.
- Students learn from each other.
- Students tackle large and ill-structured problems.
- Students are able to consider multiple points of view.
- Feedback is provided either through peer discussion or Teacher summary.

Hypotheses Testing: Why? Hypotheses Testing and Procedures Hypotheses Testing: How?

Thank You.

