Linear Regression with Normal Equations Algorithm (with Lasso)

Table of Contents

Clearing and closing the figures	1
Loading data set and visualizing it	
Performing feature selection to avoid regularization	
Creating training and testing datasets for the learning algorithm	
Applying normal equations	
Training accuracy of our algorithm using Normal equations	2
Testing our learnt algorithm using Normal equations	2

Clearing and closing the figures

```
close all;
clc;
clear all;
```

Loading data set and visualizing it

```
fprintf('Loading dataset...\n\n');
load('comp.mat');
Loading dataset...
```

Performing feature selection to avoid regularization

```
fprintf('Linear Regression using Gradient Descent....\n');
fprintf('Performing feature selection using Lasso....\n');
P = lasso(comp(:,1:7),comp(:,8));

% 3 important features selected having performed lasso to get the relevant
% features

X(:,1) = comp(:,2);
X(:,2) = (comp(:,3).^2) / 4;
X(:,3) = comp(:,7);
% disp(size(X));

[X, mu, sigma] = normalize(X);

Linear Regression using Gradient Descent....
```

Performing feature selection using Lasso.....

Creating training and testing datasets for the learning algorithm

```
Xtrain = X(1:180,:); % disp(size(Xtrain));
Xtest = X(181:end,:); % disp(size(Xtest));
ytrain = comp(1:180,8); % disp(size(ytrain));
ytest = comp(181:end,8); % disp(size(ytest));
m = length(ytrain);
% adding intercept term
Xtrain = [ones(m,1) Xtrain];
% disp(size(Xtrain));
```

Applying normal equations

```
fprintf('Linear Regression using Normal equations....\n');
% Acquiring parameters using normal equations
[theta] = normalEqn(Xtrain, ytrain);
Linear Regression using Normal equations....
```

Training accuracy of our algorithm using Normal equations

```
% Applying learnt parameters on test data
pricetr = Xtrain * theta;

% Showing algorithm accuracy
errortr = abs(pricetr - ytrain) ./ ytrain; % error between actual and
predicted
accuracytr = 100 - (mean(errortr) * 100); % percentage accuracy
obtained
fprintf('Training accuracy on training set: %f\n', accuracytr);
Training accuracy on training set: 83.532594
```

Testing our learnt algorithm using Normal equations

```
% Applying learnt parameters on test data
Xtest = [ones(size(Xtest,1),1) Xtest];
%disp(size(Xtest));
pricete = Xtest * theta;

% Showing algorithm accuracy
errorte = abs(pricete - ytest) ./ ytest; % error between actual and
predicted values
```

Linear Regression with Normal Equations Algorithm (with Lasso)

```
accuracyte = 100 - (mean(errorte) * 100); % percentage accuracy
  obtained
fprintf('Testing accuracy on test set: %f\n', accuracyte);
Testing accuracy on test set: 82.554708
```

Published with MATLAB® R2016b