#### **ECE284 Fall 21 W2S2**

Low-power VLSI Implementation for Machine Learning

**Prof. Mingu Kang** 

## **UCSD Computer Engineering**

### HW1 Graded & HW2 Posted & Typo in Slides

#### HW1 graded

- Sign extension
- Unused wire
- Parallel if loop
- Reset use case

#### HW2 posted

- gedit, and using 4 spaces
- PDF download from jupyter notebook

#### Typo corrected

- W2S1 slides with purple box

#### **Batch Size Choice**

#### Software

- Pros: fast run-time
- Cons: Large memory consumption -> cause memory fault error (check with "nvidia-smi" command)

#### Hardware

- More data re-use opportunity
- Large latency

## **Multi layer Perceptron**



Input layer generation from 2D image



#### **Convolutional Neural Network**



### **Convolution Layer within Single Channel**



Kernel Filter

| 1,   | 1,0                    | 1,  | 0 | 0 |
|------|------------------------|-----|---|---|
| 0,0  | 1,                     | 1,0 | 1 | 0 |
| 0,,1 | <b>O</b> <sub>×0</sub> | 1,  | 1 | 1 |
| 0    | 0                      | 1   | 1 | 0 |
| 0    | 1                      | 1   | 0 | 0 |

**Image** 

Stride = 1



Convolved Feature

Why convolution?

- capture the Spatial or temporal dependency well
- reduced the data volume in kernel

## Convolution Layer across Channels (Color Image)



Kernel Channel #1

308



- We need "num out ch" such sets of filters







Kernel Channel #3



Output

#### **Convolution calculation across channel**

Kernel Channel #2

-498

### 3D Representation of Convolution



- C: number of input channels, F: number of output channels
- For each output channel, different kernel filters are required

### Convolutional Neural Network for Color Image



### Three Data Reuse Opportunities

- 1. Filter (kernel) reuse across input feature map coordinate in convolution
- 2. Input feature map reuse across output channels
- 3. Filter (kernel) reuse across data points in the batch

Y.Chen, "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks", JSSC16

- Still has difficulty as:
- 1. Convolution kernel is compute-intensive whereas
- 2. Fully-connected layer is memory-bounded

#### **Pooling Layer**





Max pooling operation

Why max or average pooling?

- extract dominant feature
- reduce the computation power by reducing dimension

### (Optional Layers) Dropout Layer



#### Dropout layer

- makes a certain node zero with a probability of p during training
- helps the "overfitting" and co-adaptation problems
- only during training

### (Optional Layers) Batch Normalization

$$y = rac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + eta$$

#### Batchnorm layer

- The mean and standard-deviation are calculated per-channel over the mini-batches during training
- $\gamma$  (default: 1) and  $\beta$  (default: 0) are learnable parameter
- does not update during inference, but just calculate with fixed mean and var

#### **Batchnorm Visualization**



- The last value during the training is used for inference

## [CODE] Batch-normalization Demo (Example 1)

- Input is 2D data
- Check the mean with manual calculation
- Difference during training vs. inference

## [CODE] CNN for MNIST (Example 2)

- Introducing GPU use-case
- padding option in conv
- dropout
- Check point save and load
- Network size calculation
  - 1<sup>st</sup> conv output size = 28 (3 1) = 26
- $2^{\text{nd}}$  conv output size =  $26 (3 1) = 24 \rightarrow \text{max pool} \rightarrow 12$
- fc1 input = 12<sup>2</sup> \* input channel (64) = 9216 (Analyze page 5 as well in the same way)
- Pre-hook use-case

#### **CIFAR10 Dataset**

airplane automobile bird cat deer dog

### **ImageNet Dataset**



## ImageNet Accuracy Trend



- Total 1000 classes:

Full list of classes Link

# [CODE] CNN Training for CIFAR10 (Example3)