STA 360/601: Homework 3 Answers

Daniel Li

1 Sampling from the Posterior

From the lecture slides, we know the posterior of θ_2 is Ga(68,45). We sample from the posterior distribution with S=10,100,1000, and calculate the mean, 95% central credible interval, and $\Pr(\theta_2<1.5)$ for each of the three cases. Results are shown in the figure below and in Table 1.

Table 1: Sample Summaries

S	Mean	95% Credible Interval	$\Pr(\theta_2 < 1.5)$
10	1.57	[1.33, 1.93]	0.60
100	1.53	[1.16, 1.98]	0.47
1000	1.52	[1.15, 1.91]	0.48
Actual	1.51	[1.18, 1.89]	0.49

2 Minimum Sample Size

2.1 Method 1

For the Monte Carlo estimate of the posterior mean, $\bar{\theta}$, we sample S independent draws from the posterior and take the mean of these S draws. One way to go about this problem is to using the following properties of the gamma distribution. For $X_i \sim Ga(a_i,b)$ for i=1,...,n:

$$\sum_{i=1}^{n} X_{i} \sim Ga\left(\sum_{i=1}^{n} a_{i}, b\right)$$

$$cX_{i} \sim Ga\left(a, \frac{b}{c}\right)$$

This means that for S draws from our posterior Ga(68,45), the distribution of Monte Carlo estimate of the posterior mean should be $\bar{\theta} \sim Ga(68S,45S)$. We can increase S until at least 95% of the mass is between $\frac{68}{45} \pm 0.001$. This method suggests we need 128,998 draws.

2.2 Method 2

A second method would be to use the central limit theorem, which tells us that $\bar{\theta} \approx N\left(E(\theta \mid y), \frac{Var(\theta \mid y)}{S}\right)$. Note that in this case, we know $E(\theta \mid y) = \frac{68}{45}$ and $Var(\theta \mid y) = \frac{68}{45}$. Using the normal approximation, we can increase S until at least 95% of the mass is between $\frac{68}{45} \pm 0.001$. This method also suggests we need 128,998 draws.

2.3 Method 3

We can also draw S samples, calculate the sample mean, and repeat this for a total of 10,000 (or more) times. We can then calculate the proportion of sample means that are within $\frac{68}{45} \pm 0.001$. We can increase S until this proportion is at least 0.95. We find that for S = 128,998, this proportion is ≈ 0.9511 .