微分流形

苏可铮 2012604

October 22, 2022

习题 1. 证明: 映射 $f: T^2 = S^1 \times S^1 \to \mathbb{R}^3$

$$f(e^{i\theta}, e^{i\phi}) = ((a + b\cos\phi)\cos\theta, (a + b\cos\phi)\sin\theta, b\sin\phi), \ \theta, \phi \in [0, 2\pi]$$

是一个嵌入

证明. 考虑矩阵

$$\left(\frac{\partial f_i}{\partial x_j}\right)_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant m}}$$

则显然有 $rank_p f \equiv 2, \forall p \in T^2, \$ 则 f 为浸入

又映射 f 的像集 $f(T^2)$ 为 R^3 中的圆环面(如下图所示)

Figure 1: R³ 中的圆环面

显然映射 f 是连续的单射,若将陪域限制在 $f(T^2)$ 上时,就得到了连续的双射 $\hat{f}:T^2\to f(T^2)$

则要证明 $f:T^2\to\mathbb{R}^3$ 是嵌入映射,只需证明 $\hat{f}:T^2\to f(T^2)$ 是同胚映射即只需要证明 $\hat{f}^{-1}:f(T^2)\to T^2$ 连续

定义映射 $q: \mathbb{R}^3 \to \mathbb{R}^2$

$$(x, y, z) \rightarrow \left(e^{iacrtan\frac{y}{x}}, e^{iarccos\frac{x^2+y^2+z^2-a^2-b^2}{2ab}}\right)$$

则 g 的限制映射 $g|_{f(T^2)}$ 连续,从而得到 $\hat{f}^{-1}:f(T^2)\to T^2$ 就是将限制映射 $g|_{f(T^2)}$ 也限制在 T^2 上所得到的,即 $\hat{f}^{-1}:f(T^2)\to T^2$ 连续

综上得证: 映射 $f:T^2=S^1\times S^1\to\mathbb{R}^3$ 是一个嵌入 Tips: 更一般的有,对任意 $n\in\mathbb{Z},\,T^n$ 可以嵌入到欧氏空间 R^{n+1} 中

习题 2. 证明: 逆映射定理

证明. 不妨假设 $M^n=N^n=\mathbb{R}^n, p=q=0$

通过复合一个可逆的线性映射,我们也不妨假设 f 在原点的 Jacobian 为单位矩阵,即 $Jf(0) = I_n$,这时在原点附近 f 是恒同映射的小扰动,扰动项可定义为:

$$g: \mathbb{R}^n \to \mathbb{R}^n, g(x) = f(x) - x, x \in \mathbb{R}^n$$

由 Jg(0) = 0 知存在 $\epsilon > 0$,使得

$$||Jg(x)|| \leqslant \frac{1}{2}, \forall x \in \overline{B_{\epsilon}(0)}$$

由多元向量值函数的拟微分平均值定理,有

$$||g(x_1) - g(x_2)|| \le ||Jg(\xi)|| \cdot ||x_1 - x_2|| \le \frac{1}{2} ||x_1 - x_2||, \forall x_1, x_2 \in \overline{B_{\epsilon}(0)}$$

设 $y \in \overline{B_{\frac{\epsilon}{5}}(0)}$, 我们来解方程

$$f(x) = y, x \in B_{\epsilon}(0)$$

这等价于在 $B_{\epsilon}(0)$ 中寻找 $g_y(x) = x + y - f(x)$ 的不动点,我们利用压缩映像原理来找不动点,首先有:

$$g_y(x) \leqslant ||y|| + ||g(x)|| < \frac{\epsilon}{2} + \frac{1}{2}||x|| \leqslant \epsilon, \forall x \in \overline{B_{\epsilon}(0)}$$

这说明 $g_y(\overline{B_{\epsilon}(0)}) \subset B_{\epsilon}(0)$, 映射 $g_y : \overline{B_{\epsilon}(0)} \to B_{\epsilon}(0) \subset \overline{B_{\epsilon}(0)}$ 为压缩映射:

$$||g_y(x_1) - g_y(x_2)|| = ||g(x_2) - g(x_1)|| \le \frac{1}{2}||x_1 - x_2||, \forall x_1, x_2 \in \overline{B_{\epsilon}(0)}$$

从而方程在 $B_{\epsilon}(0)$ 中有唯一解,记为 x_y ,故有 $x_y \in B_{\epsilon}(0)$

记 $U=f^{-1}(B_{\frac{\epsilon}{2}}(0))\cap B_{\epsilon}(0)$, $V=B_{\frac{\epsilon}{2}}(0)$,则上面的论述表明, $f|_{U}:U\to V$ 为一一的 C^{k} 映射,其逆 $h(y)=x_{y}$ 满足方程

$$y - g(h(y)) = h(y)$$

我们有

 $(1)h: V \to U$ 为连续映射: 当 $y_1, y_2 \in V$ 时

$$||h(y_1) - h(y_2)|| \leqslant ||y_1 - y_2|| + ||g(h(y_1)) - g(h(y_2))|| \leqslant ||y_1 - y_2|| + \frac{1}{2}||h(y_1) - h(y_2)||$$

从而 $||h(y_1) - h(y_2)|| \le 2||y_1 - y_2||$, 即 h 为 Lipschitz 连续映射

 $(2)h:V\to U$ 为可微映射: 设 $y_0\in V$, 则对 $y\in V$ 有

$$h(y) - h(y_0) = (y - y_0) - [g(h(y)) - g(h(y_0))] = (y - y_0) - Jg(h(y_0)) \cdot (h(y) - h(y_0)) + o(||h(y) - h(y_0)||)$$

即

$$h(y) - h(y_0) = [I_n + Jg(h(y_0))]^{-1} = [Jf(h(y))]^{-1}, \forall y \in V$$

 $(3)h:V\to U$ 为 C^k 映射:有 (2) 知

$$Jh(y) = [I_n + Jg(h(y_0))]^{-1} = [Jf(h(y))]^{-1}, \forall y \in V$$

由 f 为 C^k 映射以及上式可依次提升 h 的可微次数,即 h 为 C^k 映射 综上得证:存在 U,V 使得 $f|_U:U\to V$ 为 C^k 的微分同胚

习题 **3.** 证明: 若 M^m 为紧致微分流形且可以嵌入到 \mathbb{R}^{m+1} ,则 $M^m \times \mathbb{S}^n$ 可以嵌入到 \mathbb{R}^{n+m+1} ,作为推论可知 \mathbb{T}^n 可以嵌入到 \mathbb{R}^{n+1}

证明. □