The LNM Institute of Information Technology Jaipur, Rajsthan

Math-II (2016-17), Quiz-2:

Name: Roll No:

Section: Tutorial Batch:

Time: 15 Minutes Maximum Marks: 10

1. If y_1 and y_2 are any two solutions of y'' + P(x)y' + Q(x)y = 0 on [a, b], then prove that their Wronskian is either identically zero or never zero on [a, b]. [5]

Sol. Let y_1 and y_2 are any two solutions of y'' + P(x)y' + Q(x)y = 0 on [a, b].

Then

$$y_1'' + P(x)y_1' + Q(x)y_1 = 0$$

$$y_2'' + P(x)y_2' + Q(x)y_2 = 0$$

Multiply y_2 in first equation and y_1 in second equation and then subtracting we get

$$\frac{dW}{dx} + P(x)W = 0$$

By solving we get $W = Ce^{-\int P(x)dx}$.

Since exponentiation never zero,

$$W \equiv 0 \text{ if } C = 0$$

 $W \neq 0 \text{ if } C \neq 0$

Hence the proof follows.

2. Work out first three coefficients of Lagrange polynomial expansion of x^4 . What would be the coefficient of x^6 in that expansion, give justification. [5]

(Note: $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 - 1)^n]$, is called the Rodrigues' formula for Legendre polynomial P_n of degree n.)

Sol. We can write down

$$x^4 = \sum_{n=0}^{\infty} a_n P_n(x)$$

where,

$$a_n = \frac{2n+1}{2} \int_{-1}^1 x^4 P_n(x) \ dx$$

Therefore,

$$a_0 = 1/5, a_1 = 0$$

 $a_2 = 4/7$

Coefficient of x^6 is

$$a_6 = \frac{2 \cdot 6 + 1}{2} \int_{-1}^{1} x^4 P_6(x) \ dx.$$

By using Rodrigue's formula for $P_6(x)$ and integrating by parts repeatedly we can observe that $a_6 = 0$.