Artificial Intelligence and Machine Learning Barbara Caputo

Outline

- Support Vector Classification
 Large Margin Separation, optimization problem
- Properties
 Support Vectors, kernel expansion
- Soft margin classifier
 Dual problem, robustness

linear function

$$f(x) = \langle w, x \rangle + b$$

$$\frac{\langle x_+ - x_-, w \rangle}{2 \|w\|} =$$

$$\frac{\langle x_{+} - x_{-}, w \rangle}{2 \|w\|} = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] =$$

$$\frac{\langle x_{+} - x_{-}, w \rangle}{2 \|w\|} = \frac{1}{2 \|w\|} \left[\left[\langle x_{+}, w \rangle + b \right] - \left[\langle x_{-}, w \rangle + b \right] \right] = \frac{1}{\|w\|}$$

$$\underset{w,b}{\text{maximize}} \frac{1}{\|w\|} \text{ subject to } y_i \left[\langle x_i, w \rangle + b \right] \geq 1$$

 $\underset{w,b}{\operatorname{minimize}} \frac{1}{2} \|w\|^2 \text{ subject to } y_i \left[\langle x_i, w \rangle + b \right] \geq 1$

Primal optimization problem

Primal optimization problem

$$\underset{w,b}{\operatorname{minimize}}\,\frac{1}{2}\left\|w\right\|^{2}\ \mathrm{subject\ to}\ y_{i}\left[\left\langle x_{i},w\right\rangle +b\right]\geq1$$

Primal optimization problem

$$\underset{w,b}{\operatorname{minimize}} \frac{1}{2} \|w\|^2 \text{ subject to } y_i \left[\langle x_i, w \rangle + b \right] \ge 1$$

Lagrange function

constraint

$$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i} \alpha_{i} [y_{i} [\langle x_{i}, w \rangle + b] - 1]$$

Primal optimization problem

$$\underset{w,b}{\operatorname{minimize}} \frac{1}{2} \|w\|^2 \text{ subject to } y_i \left[\langle x_i, w \rangle + b \right] \ge 1$$

Lagrange function

constraint

$$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i} \alpha_{i} [y_{i} [\langle x_{i}, w \rangle + b] - 1]$$

Optimality in w, b is at saddle point with α

Lagrange function

$$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i} \alpha_i [y_i [\langle x_i, w \rangle + b] - 1]$$

Lagrange function

$$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{n} \alpha_i [y_i [\langle x_i, w \rangle + b] - 1]$$

$$\partial_w L(w, b, a) = w - \sum_i \alpha_i y_i x_i = 0$$

Lagrange function

$$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{n} \alpha_i [y_i [\langle x_i, w \rangle + b] - 1]$$

$$\partial_w L(w, b, a) = w - \sum_i \alpha_i y_i x_i = 0$$

$$\partial_b L(w, b, a) = \sum_i \alpha_i y_i = 0$$

Lagrange function

$$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{n} \alpha_i [y_i [\langle x_i, w \rangle + b] - 1]$$

$$\partial_w L(w, b, a) = w - \sum_i \alpha_i y_i x_i = 0$$

$$\partial_b L(w, b, a) = \sum_i \alpha_i y_i = 0$$

Lagrange function

$$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{n} \alpha_i [y_i [\langle x_i, w \rangle + b] - 1]$$

• Derivatives in w, b need to vanish

$$\partial_w L(w, b, a) = w - \sum_i \alpha_i y_i x_i = 0$$

$$\partial_b L(w, b, a) = \sum_i \alpha_i y_i = 0$$

• Plugging terms back into L yields

$$\underset{\alpha}{\text{maximize}} - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle + \sum_i \alpha_i$$

subject to
$$\sum \alpha_i y_i = 0$$
 and $\alpha_i \ge 0$

 $\underset{w,b}{\operatorname{minimize}} \frac{1}{2} \|w\|^2 \text{ subject to } y_i \left[\langle x_i, w \rangle + b \right] \geq 1$

 $\underset{w,b}{\operatorname{minimize}} \frac{1}{2} \|w\|^2 \text{ subject to } y_i \left[\langle x_i, w \rangle + b \right] \geq 1$

$$\underset{w,b}{\operatorname{minimize}} \frac{1}{2} \|w\|^2 \text{ subject to } y_i \left[\langle x_i, w \rangle + b \right] \ge 1$$

$$w = \sum_{i} y_{i} \alpha_{i} x_{i}$$

$$\max_{\alpha} = -\frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle x_{i}, x_{j} \rangle + \sum_{i} \alpha_{i}$$

subject to
$$\sum \alpha_i y_i = 0$$
 and $\alpha_i \ge 0$

Five minutes break

 $\underset{w.b}{\operatorname{minimize}} \frac{1}{2} \|w\|^2 \text{ subject to } y_i \left[\langle x_i, w \rangle + b \right] \geq 1$

$$\underset{w.b}{\operatorname{minimize}} \frac{1}{2} \|w\|^2 \text{ subject to } y_i \left[\langle x_i, w \rangle + b \right] \geq 1$$

Support Vector Machines

$$\underset{w,b}{\operatorname{minimize}} \frac{1}{2} \|w\|^2 \text{ subject to } y_i \left[\langle x_i, w \rangle + b \right] \ge 1$$

$$w = \sum_{i} y_{i} \alpha_{i} x_{i}$$

$$\max_{\alpha} = -\frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle x_{i}, x_{j} \rangle + \sum_{i} \alpha_{i}$$

subject to
$$\sum \alpha_i y_i = 0$$
 and $\alpha_i \ge 0$

Support Vectors

 $\underset{w,b}{\operatorname{minimize}} \frac{1}{2} \|w\|^2 \text{ subject to } y_i \left[\langle x_i, w \rangle + b \right] \ge 1$

Karush Kuhn Tucker Optimality condition $\alpha_i [y_i [\langle w, x_i \rangle + b] - 1] = 0$

$$\alpha_i = 0$$

$$\alpha_i > 0 \Longrightarrow y_i \left[\langle w, x_i \rangle + b \right] = 1$$

Weight vector w as weighted linear combination of instances

- Weight vector w as weighted linear combination of instances
- Only points on margin matter (ignore the rest and get same solution)

- Weight vector w as weighted linear combination of instances
- Only points on margin matter (ignore the rest and get same solution)
- Only inner products matter

- Weight vector w as weighted linear combination of instances
- Only points on margin matter (ignore the rest and get same solution)
- Only inner products matter
 - Quadratic program

- Weight vector w as weighted linear combination of instances
- Only points on margin matter (ignore the rest and get same solution)
- Only inner products matter
 - Quadratic program
 - We can replace the inner product by a kernel

- Weight vector w as weighted linear combination of instances
- Only points on margin matter (ignore the rest and get same solution)
- Only inner products matter
 - Quadratic program
 - We can replace the inner product by a kernel
- Keeps instances away from the margin

Example

Example

Number of Support Vectors: 3 (-ve: 2, +ve: 1) Total number of points: 15

Maximum robustness relative to uncertainty

- Maximum robustness relative to uncertainty
- Symmetry breaking

- Maximum robustness relative to uncertainty
- Symmetry breaking
- Independent of correctly classified instances

- Maximum robustness relative to uncertainty
- Symmetry breaking
- Independent of correctly classified instances
- Easy to find for easy problems

Soft Margin Classifiers

Large Margin Classifier

linear function

$$f(x) = \langle w, x \rangle + b$$

Large Margin Classifier

linear function

$$f(x) = \langle w, x \rangle + b$$

Large Margin Classifier

Convex optimization problem

Convex optimization problem

Convex optimization problem of slack

Hard margin problem

$$\underset{w,b}{\operatorname{minimize}}\,\frac{1}{2}\left\|w\right\|^2\ \text{subject to}\ y_i\left[\left\langle w,x_i\right\rangle+b\right]\geq 1$$

Hard margin problem

$$\underset{w,b}{\operatorname{minimize}}\,\frac{1}{2}\left\|w\right\|^2\ \text{subject to}\ y_i\left[\left\langle w,x_i\right\rangle+b\right]\geq 1$$

With slack variables

minimize
$$\frac{1}{2} \|w\|^2 + C \sum_{i} \xi_i$$

subject to $y_i [\langle w, x_i \rangle + b] \ge 1 - \xi_i$ and $\xi_i \ge 0$

Hard margin problem

$$\underset{w,b}{\operatorname{minimize}}\,\frac{1}{2}\,\|w\|^2\ \text{subject to}\ y_i\left[\langle w,x_i\rangle+b\right]\geq 1$$

With slack variables

minimize
$$\frac{1}{2} \|w\|^2 + C \sum_{i} \xi_i$$

subject to $y_i [\langle w, x_i \rangle + b] \ge 1 - \xi_i$ and $\xi_i \ge 0$

Problem is always feasible.

Primal optimization problem

$$\begin{aligned} & \underset{w,b}{\text{minimize}} & \frac{1}{2} \left\| w \right\|^2 + C \sum_{i} \xi_i \\ & \text{subject to } y_i \left[\langle w, x_i \rangle + b \right] \geq 1 - \xi_i \text{ and } \xi_i \geq 0 \end{aligned}$$

Primal optimization problem

minimize
$$\frac{1}{2} \|w\|^2 + C \sum_i \xi_i$$

subject to $y_i [\langle w, x_i \rangle + b] \ge 1 - \xi_i$ and $\xi_i \ge 0$

$$L(w,b,\alpha) = \frac{1}{2} \left\| w \right\|^2 + C \sum_{i} \xi_i - \sum_{i} \alpha_i \left[y_i \left[\langle x_i, w \rangle + b \right] + \underbrace{\xi_i} - 1 \right] - \sum_{i} \eta_i \xi_i$$

Primal optimization problem

$$\begin{aligned} & \underset{w,b}{\text{minimize}} & \frac{1}{2} \left\| w \right\|^2 + C \sum_{i} \xi_i \\ & \text{subject to } y_i \left[\langle w, x_i \rangle + b \right] \geq 1 - \xi_i \text{ and } \xi_i \geq 0 \end{aligned}$$

Lagrange function

$$L(w,b,\alpha) = \frac{1}{2} \left\| w \right\|^2 + C \sum_{i} \xi_i - \sum_{i} \alpha_i \left[y_i \left[\langle x_i, w \rangle + b \right] + \underbrace{\xi_i} - 1 \right] - \sum_{i} \eta_i \xi_i$$

Optimality in w,b, ξ is at saddle point with α , η

Derivatives in w,b,ξ need to vanish

$$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 + C \sum_{i} \xi_i - \sum_{i} \alpha_i \left[y_i \left[\langle x_i, w \rangle + b \right] + \xi_i - 1 \right] - \sum_{i} \eta_i \xi_i$$

$$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 + C \sum_{i} \xi_i - \sum_{i} \alpha_i \left[y_i \left[\langle x_i, w \rangle + b \right] + \xi_i - 1 \right] - \sum_{i} \eta_i \xi_i$$

$$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 + C \sum_{i} \xi_i - \sum_{i} \alpha_i \left[y_i \left[\langle x_i, w \rangle + b \right] + \xi_i - 1 \right] - \sum_{i} \eta_i \xi_i$$

Lagrange function

$$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 + C \sum_{i} \xi_i - \sum_{i} \alpha_i \left[y_i \left[\langle x_i, w \rangle + b \right] + \xi_i - 1 \right] - \sum_{i} \eta_i \xi_i$$

• Derivatives in w, b need to vanish

$$\partial_w L(w, b, \xi, \alpha, \eta) = w - \sum_i \alpha_i y_i x_i = 0$$
$$\partial_b L(w, b, \xi, \alpha, \eta) = \sum_i \alpha_i y_i = 0$$
$$\partial_{\xi_i} L(w, b, \xi, \alpha, \eta) = C - \alpha_i - \eta_i = 0$$

Lagrange function

$$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 + C \sum_{i} \xi_i - \sum_{i} \alpha_i \left[y_i \left[\langle x_i, w \rangle + b \right] + \xi_i - 1 \right] - \sum_{i} \eta_i \xi_i$$

• Derivatives in w, b need to vanish

$$\partial_w L(w, b, \xi, \alpha, \eta) = w - \sum_i \alpha_i y_i x_i = 0$$
$$\partial_b L(w, b, \xi, \alpha, \eta) = \sum_i \alpha_i y_i = 0$$
$$\partial_{\xi_i} L(w, b, \xi, \alpha, \eta) = C - \alpha_i - \eta_i = 0$$

Plugging terms back into L yields

$$\underset{\alpha}{\text{maximize}} - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \left\langle x_i, x_j \right\rangle + \sum_i \alpha_i$$

subject to $\sum_{i} \alpha_{i} y_{i} = 0$ and $\alpha_{i} \in [0, C]$

bound influence

Karush Kuhn Tucker Conditions

Karush Kuhn Tucker Conditions

$$\max_{\alpha} \operatorname{maximize} - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle + \sum_i \alpha_i$$

$$\operatorname{subject to} \sum_i \alpha_i y_i = 0 \text{ and } \alpha_i \in [0, C]$$

$$w = \sum_i y_i \alpha_i x_i$$

$$\alpha_i = 0 \Longrightarrow y_i \left[\langle w, x_i \rangle + b \right] \ge 1$$

$$\alpha_i \left[y_i \left[\langle w, x_i \rangle + b \right] + \xi_i - 1 \right] = 0$$

$$\eta_i \xi_i = 0$$

$$0 < \alpha_i < C \Longrightarrow y_i \left[\langle w, x_i \rangle + b \right] = 1$$

$$\alpha_i = C \Longrightarrow y_i \left[\langle w, x_i \rangle + b \right] \le 1$$

That's all!