Theory Of Automata

(CS-3005)

Date: Feb 29 2024

Course Instructor(s)

Mr. Fraz Yousaf

Sessional-I Exam

Total Time: 1 Hours Total Marks: 25 Total Questions: 03

Semester: SP-2024 Campus: Lahore

Dept: Computer Science

Student Name	Roll No	Section	Student Signature
• ", ", ",			
Vetted by			Vetter Signature

CLO #:1 Identify formal language classes and prove language membership properties

Question1:

[3+2+2marks]

PART A

Give regular expression for the following language

L= $\{x \mid x \in \{a,b\}^* \text{ where every b is immediately followed by at least 3 a's} \}$

Ans: (at baaa)

PART B

How many strings of length less than 4 contains the language described by the regular expression (x+y)*y(a+ab)*?

a) 7

b) 10

(d) 12 d) 11

PART C

Is it possible that for any language (denoted by L) L*=L? If so what is L? (Yes/NO)

NO) L= { E}

Page 1 of 5

National University of Computer and Emerging Sciences

CLO x:2 pifferentiate and manipulate formal descriptions of languages, automata and grammars...

avestion 2: Your task is to modify a given finite state machine that currently accepts binary strings avestion 2: You reak is to modify the machine to accept strings whose reverse is divisible by 5 from the range 0 to 30, Once you've identified these strings, you should modify the machine so that it accepts all strings within the range from 0 to 30 where the reverse of the string is divisible by 5

Hint: Specifically, In the range from 0 to 30, there is only one unique string that you need to identify within the range from 0 to 30 (both inclusive) whose reverse is not divisible by 5 but the string itself is divisible by 5. $\Sigma = \{0,1\}^*$

Note: Marks will not be awarded for exceeding five states. [2+8marks]

Reverse Moltiple of 0000 NEED 0000 1010 0 1 0 1 O101 EDESIGN 1010 1 1 MACHINE 1111 FOR 00101 0100 THIS 44001 10011 0 4411 Final DFA:

Page 3 of 5

Question 3: Transform the provided NFA-epsilon language into an NFA. $\Sigma = \{0,1\}$ * Show Complete Working [8 marks]

National University of Computer and Emerging Sciences

(

Iva	nsition table	FOO NFA			
	0	1			
-7 No	$\mathcal{N}_1, \mathcal{N}_2$	9/0 9/2			
9,	N1, N2, N3, N4, N5	V3 V5			
Q ₂	Q1 Q2 Q13 Q4 Q5	V3 V5			
¥ V3	9/3,94,95	95			
* qu		95			
* ove	V5	95			
9395 95 95 9395 95					
94 939495 9495 9495 95					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
20 9 9192 1 9 9192	Quy Qu Good luck!	9 - 9 9 9 9 Page 5 of 5			
0-3 9/2 a1a14 a1a2 9394915 1-3 9/2 9/3 9/3 9/3					

