Это кэш.

Андрей Нагих (Инетра)

@andrnag

Сколько стадий кэша на пути НТТР запроса?

FRONTEND

Локальные данные компонентов

LocalStorage, SessionStorage, IndexedDB

ServiceWorker

ServiceWorker

- Frontend Proxy
- Семантика SharedWorker
- https://serviceworke.rs/caching-strategies.html

HTTP cache

HTTP cache

- Cache-Control
- Expires

- ETag
- Last-Modified

Vary

NETWORK

Proxy server, CDN

Proxy server, CDN

- Cache-Control: public
- Cache-Control: private

DNS cache

DNS cache

- A record
- TTL
- Zone refresh
- dig, nslookup

Router cache

L3 balancer

BACKEND

BACKEND

Balancer upstream cache

Balancer upstream cache

- Nginx
- bypass
- cache_key

"FrontCache" by app

Redis, Memcached

DB queries cache

Daemon memory state

Memoization

Memoization

- Параметры те же, Результат другой
- Параметры другие, Результат тот же

Page cache

DATABASE

Frequent queries cache

Indexes

DEVELOPMENT

Incremental build

Incremental build

- C/C++
- http://localhost:3000/webpack-dev-server
- PHP Smarty: Modified time

Source code indexing

IDE memory write cache

2 сложнейшие проблемы

- 0. Придумывание имён
- 1. Инвалидация кэша
- 2. Ошибки на единицу

Алгоритмы инвалидации

- Least Recently Used (LRU)
- Most Recently Used (MRU)
- Least Frequently Used (LFU)
- Application assisted

Когда нужен кэш?

- Расстояния при передаче данных
- Скорость работы механизмов
- Вычисления, которые нельзя ускорить

HARDWARE

- 3D компоновка чипов
- Intel: "Foveros" GPU и AI над CPU
- AMD: RAM над CPU

HDD to RAM cache

Scaled Latency

System Event	Actual Latency	Scaled Latency
One CPU cycle	0.4 ns	1 s
Level 1 cache access	0.9 ns	2 s
Level 2 cache access	2.8 ns	7 s
Level 3 cache access	28 ns	1 min
Main memory access (DDR DIMM)	~100 ns	4 min
Intel® Optane™ DC persistent memory access	~350 ns	15 min
Intel® Optane™ DC SSD I/O	<10 µs	7 hrs
NVMe SSD I/O	~25 µs	17 hrs
SSD I/O	50-150 μs	1.5-4 days
Rotational disk I/O	1-10 ms	1-9 months
Internet call: San Francisco to New York City	65 ms	5 years
Internet call: San Francisco to Hong Kong	141 ms	11 years

Выводы

- Без кэша мы не обойдёмся!
- Думай об инвалидации кэша
- Знай где твой кэш.

Спасибо!

Андрей Нагих Инетра, DRON

andrey@nagikh.ru
t.me/andrnag

https://bit.ly/andrnag

BRAIN

Fast system, Slow system

How vision works