Министерство образования Республики Беларусь Белорусский национальный технический университет Факультет транспортных коммуникаций Кафедра «Геодезия и аэрокосмические геотехнологии»

Отчет по лабораторной работе №2(часть1) «Параметрический способ уравнивания нивелирных сетей» Вариант №3

Выполнил: ст.гр. 11405118

Авхутский Н.Г.

Проверил: старший преподаватель

Будо А.Ю.

Цель: выполнить уравнивание параметрическим способом сеть нивелирования IV класса. Вычислить уравненные высотные отметки, произвести обобщенную оценку точности полученных результатов, проверить наличие грубых ошибок в измерениях с помощью т-теста.

Исходные данные, использованные в ходе лабораторной работы, представлены в таблице 1.

Таблица 1 – Исходные данные

таслица т теходиме даниме							
От	до	Номер хода	h, м	Ѕ,км	Класс		
M01	Rp1	1	0,543	3,4	IV		
Rp1	Rp2	2	-1,418	5,6	IV		
Rp2	Rp3	3	2,336	2,7	IV		
Rp3	M02	4	-2,479	5,2	IV		
Rp4	Rp1	5	0,762	5	IV		
Rp2	Rp4	6	0,691	2,7	IV		
Rp4	Rp3	7	1,665	2,6	IV		
M02	Rp4	8	0,806	5,4	IV		
Высотные отметки исходных точек Н, м							
H_{M01}	102.	,566	H_{M02}	101,593			

УРАВНИВАНИЕ НИВЕЛИРНОЙ СЕТИ И ОПРЕДЕЛЕНИЕ УРАВНЕННЫХ ОТМЕТОК РЕПЕРОВ

Проанализируем нивелирную сеть, приведённую на рисунке 1.

- 1. В данной сети четыре избыточных измерений r = N t = 8 4 = 4.
- 2. По числу избыточных измерений необходимо составить четыре условных уравнения поправок.

Условные уравнения поправок будут иметь вид:

$$h_{1} + h_{6} + h_{5} - w_{1} = 0$$

$$h_{3} - h_{7} - h_{6} - w_{2} = 0$$

$$h_{7} + h_{4} + h_{8} - w_{3} = 0$$

$$h_{1} + h_{2} + h_{3} + h_{4} - (H_{M2} - H_{M1}) - w_{4} = 0$$

$$(1.1)$$

Создаём вектор невязок W

$$W = \begin{pmatrix} 0,035 \\ -0,020 \\ -0,008 \\ -0,045 \end{pmatrix}$$

Вычисляем допустимые невязки реперов по формуле(1.2) (для IV класса):

$$w_{\partial on} = 20 \cdot \sqrt{L} \tag{1.2}$$

где L – длина хода, км.

$$w_{1\partial on} = 0,073 \text{M}$$

 $w_{2\partial on} = 0,057 \text{M}$
 $w_{3\partial on} = 0,073 \text{M}$
 $w_{4\partial on} = 0,082 \text{M}$

Все невязки допустимы.

Назначим параметры

$$\begin{split} z_1 &= H_{Rp1}^0 = H_{M1} + h_1 \\ z_2 &= H_{Rp2}^0 = H_{M1} + h_1 + h_2 \\ z_3 &= H_{Rp3}^0 = H_{M2} - h_4 \\ z_4 &= H_{Rp4}^0 = H_{M2} + h_8 \\ z_1 &= z_2 = z_3 = z_4 = 0 \end{split}$$

где z – приближенное значение параметра.

Составим параметрические уравнения связи и вычислим приближенные значения измерений

$$h_1^0 = z_1 - H_{M1}$$
 $h_5^0 = z_1 - z_4$
 $h_2^0 = z_2 - z_1$ $h_6^0 = z_4 - z_2$
 $h_3^0 = z_3 - z_2$ $h_7^0 = z_3 - z_4$
 $h_4^0 = H_{M2} - z_3$ $h_8^0 = z_4 - H_{M2}$

Найдем элементы вектора свободных членов по формуле:

$$l_{n} = (h_{ghyy} - h_{yyy}) {1.3}$$

No	$h_{выч}$, м	$h_{u_{3M}}$, м	l, m
1	-102,566	0,543	-103,109
2	0	-1,418	1,418
3	0	2,336	-2,336
4	101,593	-2,479	104,072
5	0	0,762	-0,762
6	0	0,691	-0,691
7	0	1,665	-1,665
8	-101,593	0,806	-102,399

Составим параметрические уравнения поправок

$$\begin{cases} v_1 = a_{11} \cdot z_1 + a_{12} \cdot z_2 + a_{13} \cdot z_3 + a_{14} \cdot z_4 + l_1 \\ v_2 = a_{21} \cdot z_1 + a_{22} \cdot z_2 + a_{23} \cdot z_3 + a_{24} \cdot z_4 + l_2 \\ v_3 = a_{31} \cdot z_1 + a_{32} \cdot z_2 + a_{33} \cdot z_3 + a_{34} \cdot z_4 + l_3 \\ v_4 = a_{41} \cdot z_1 + a_{42} \cdot z_2 + a_{43} \cdot z_3 + a_{44} \cdot z_4 + l_4 \\ v_5 = a_{51} \cdot z_1 + a_{52} \cdot z_2 + a_{53} \cdot z_3 + a_{54} \cdot z_4 + l_5 \\ v_6 = a_{61} \cdot z_1 + a_{62} \cdot z_2 + a_{63} \cdot z_3 + a_{64} \cdot z_4 + l_6 \\ v_7 = a_{71} \cdot z_1 + a_{72} \cdot z_2 + a_{73} \cdot z_3 + a_{74} \cdot z_4 + l_7 \\ v_8 = a_{81} \cdot z_1 + a_{82} \cdot z_2 + a_{83} \cdot z_3 + a_{84} \cdot z_4 + l_8 \end{cases}$$

Создадим матрицу коэффициентов параметрических уравнений поправок A Для составления матрицы A используем формулу переноса ошибок

$$F = f(a,b)$$

$$m_F^2 = \left(\frac{\partial F}{\partial a}\right)^2 \cdot m_a^2 + \left(\frac{\partial F}{\partial b}\right)^2 \cdot m_b^2$$

В нашем случае дифференцируем параметрические уравнения связи по каждому параметру. Например, третья строка матрицы А рассчитывается следующим образом:

$$h_3 = z_3 - z_2$$

$$m_{h_3}^2 = \left(\frac{\partial f}{\partial z_1}\right)^2 \cdot m_{z_1}^2 + \left(\frac{\partial f}{\partial z_2}\right)^2 \cdot m_{z_2}^2 + \left(\frac{\partial f}{\partial z_3}\right)^2 \cdot m_{z_3}^2 + \left(\frac{\partial f}{\partial z_4}\right)^2 \cdot m_{z_4}^2$$

$$=0^{2} \cdot m_{z_{1}}^{2} + (-1)^{2} \cdot m_{z_{2}}^{2} + 1^{2} \cdot m_{z_{3}}^{2} + 0^{2} \cdot m_{z_{4}}^{2}$$

0 - 1 1 0

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Создадим диагональную матрицу весов P Где вес рассчитывается по формуле:

$$P = \left(\frac{1}{\sigma_0 \cdot \sqrt{L}}\right)^2 \tag{1.4}$$

где L – длина хода, км.

$$P = \begin{pmatrix} 735 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 446 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 926 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 481 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 500 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 926 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 962 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 463 \end{pmatrix}$$

Контрольные суммы S находим по формуле:

$$S_n = a_{n1} + a_{n2} + a_{n3} + a_{n4} + l_n (1.5)$$

Таблица 2 – Контрольные суммы S

1	1 J		
No	S	No	S
1	-102,109	5	-0,762
2	1,418	6	-0,691
3	-2,336	7	-1,665
4	103,072	8	-101,399

Составим матрицу коэффициентов нормальных уравнений N и найдем ее элементы. Матрица коэффициентов нормальных уравнений N имеет вид:

	a_1]	a_2]	a_3]	a ₄]	1]	S]	C
[pa ₁	N_{11}	N_{12}	N_{13}	N_{14}	\mathbf{B}_1	S_1	C_1
[pa ₂	N_{21}	N_{22}	N_{23}	N ₂₄	\mathbf{B}_2	\mathbf{S}_2	C_2
[pa ₃	N_{31}	N_{32}	N_{33}	N_{34}	\mathbf{B}_3	S_3	C_3
[pa ₄	N ₄₁	N ₄₂	N ₄₃	N ₄₄	\mathbf{B}_4	S ₄	C ₄

Расчёт матрицы коэффициентов нормальных уравнений N в матричном виде

$$N = A^T \cdot P \cdot A \tag{1.6}$$

Расчёт матрицы свободных членов нормальных уравнений В в матричном виде

$$B = A^T \cdot P \cdot l \tag{1.7}$$

Таблица 3 – Коэффициенты нормальных уравнений

	Two high the state of the state							
	a ₁]	a_2]	a ₃]	a ₄]	1]	S]	C]	
[pa ₁	1681,723	-446,429	0	-500	- 76829,477	102,109	102,109	
[pa ₂	-446,429	2298,280	-925,926	-925,926	3435,813	1,418	1,418	
[pa 3	0	-925,926	2368,234	-961,538	53798,540	-2,336	-2,236	
[pa	-500	-925,926	-961,538	2850,427	- 46064,798	103,072	103,072	

Для вычисления высот определяемых реперов, необходимо создать схему Гаусса и найти ее элементы.

Таблица 4 – схема Гаусса

	H_{Rp1}	H_{Rp2}	H_{Rp4}	H_{Rp4}	В	S	C
N_{I}	N_{II}	N_{12}	N_{13}	N_{14}	B_I	S_I	C_I
E_1	– 1	E_{12}	E_{13}	E_{14}	E_{BI}	E_{BI}	C_{I}
N_2		N_{22}	N_{23}	N_{24}	B_2	S_2	
$N_2^{(1)}$		$N_{22}^{(1)}$	$N_{23}^{(1)}$	$N_{24}^{(1)}$	$B_2^{(1)}$	$S_2^{(1)}$	$C_2^{(1)}$
E_2		- 1	E_{23}	E_{24}	E_{B2}	E_{S2}	C_2
N_3			N ₃₃	N ₃₄	B_3	S_3	
$N_3^{(2)}$			$N_{33}^{(2)}$	$N_{34}^{(2)}$	$N_3^{(2)}$	$N_3^{(2)}$	$C_3^{(2)}$
E_3			- 1	E_{34}	E_{B3}	E_{S3}	C_3
N_4				N_{44}	B_4	S_4	
$N_4^{(3)}$				$N_{44}^{(3)}$	$N_4^{(3)}$	$N_4^{(3)}$	$C_4^{(3)}$
E_4				– 1	E_{B4}	E_{S4}	C_4

 N_i – эквивалентная строка;

 $N_i^{(n)}$ – эквивалентная строка после n-го преобразования;

 E_i – элиминационная строка;

Например, элемент E_{23} рассчитывается, как

$$E_{23} = -\frac{N_{23}^{(1)}}{N_{22}^{(1)}}$$

Элемент $N_{33}^{(2)}$ рассчитывается, как

$$N_{33}^{(2)} = N_{13} \cdot E_{13} + N_{23}^{(1)} \cdot E_{23} + N_{33}$$

Непосредственно сами высоты вычисляются следующим образом.

$$\begin{split} H_{Rp4} &= E_{B4} \\ H_{Rp3} &= -E_{34} \cdot H_{Rp4} - E_{B3} \\ H_{Rp2} &= -E_{23} \cdot H_{Rp3} - E_{24} \cdot H_{Rp4} - E_{B2} \\ H_{Rp1} &= -E_{12} \cdot H_{Rp2} - E_{13} \cdot H_{Rp3} - E_{14} \cdot H_{Rp4} - E_{B1} \end{split} \tag{1.8}$$

Расчёт вектора высот H в матричном виде

$$H = -N^{-1} \cdot B \tag{1.9}$$

$$H = \begin{pmatrix} 102,3898 \\ 104,0543 \\ 101,7085 \\ 103,1264 \end{pmatrix}$$

Далее вычисляем уравненные превышения

$$\begin{array}{ll} h_{1}^{yp} = H_{Rp1} - H_{M1} & h_{5}^{yp} = H_{Rp1} - H_{Rp4} \\ h_{2}^{yp} = H_{Rp2} - H_{Rp1} & h_{6}^{yp} = H_{Rp4} - H_{Rp2} \\ h_{3}^{yp} = H_{Rp3} - H_{Rp2} & h_{7}^{yp} = H_{Rp3} - H_{Rp4} \\ h_{4}^{yp} = H_{M2} - H_{Rp3} & h_{8}^{yp} = H_{Rp4} - H_{M2} \end{array}$$

Вычисляем уравненные поправки

$$h^{yp} = \begin{pmatrix} 0,560 \\ -1,418 \\ 2,346 \\ -2,461 \\ 0,737 \\ 0,681 \\ 1,664 \\ 0,797 \end{pmatrix} M \qquad v = \begin{pmatrix} 0,0174 \\ 0,0001 \\ 0,0098 \\ 0,0177 \\ -0,2254 \\ -0,0097 \\ -0,0095 \\ -0,0092 \end{pmatrix} M$$

Далее по уравненным превышениям рассчитаем невязки.

$$w_1 = h_1 + h_6 + h_5 = 0$$

$$w_2 = h_3 - h_7 - h_6 = 0$$

$$w_3 = h_7 + h_4 + h_8 = 0$$

$$w_4 = h_1 + h_2 + h_3 + h_4 - (H_{M2} - H_{M1}) = 0$$

Все невязки равны 0.

Проверяем отметки реперов вычислив их несколькими способами, т.е. через разные превышения:

$$\begin{cases} H_{Rp4} = H_{M1} + h_1^{yp} - h_5^{yp} = 102,3898\text{M} \\ H_{Rp4} = H_{M1} + h_1^{yp} + h_2^{yp} + h_6^{yp} = 102,3898\text{M} \\ H_{Rp4} = H_{M2} + h_8^{yp} = 102,3898\text{M} \end{cases}$$

ОЦЕНКА ТОЧНОСТИ ПАРАМЕТРИЧЕСКОГО СПОСОБА УРАВНИВАНИЯ

Рассчитаем ковариационную матрицу уравненных превышений

$$Q_{yp}^h = A \cdot N^{-1} \cdot A^T \tag{1.11}$$

$$Q_{yp}^{h} = \begin{pmatrix} 0.0009 & -0.0004 & -0.0001 & -0.0004 & 0.0004 & -0.0004 & -0.0001 & 0.0004 \\ -0.0004 & 0.0010 & -0.0003 & -0.0003 & -0.0006 & -0.0006 & 0.0001 & 0.0002 \\ -0.0001 & -0.0003 & 0.0006 & -0.0002 & -0.0001 & 0.0001 & 0.0003 & -0.0001 \\ -0.0004 & -0.0003 & -0.0002 & 0.0009 & 0.0002 & 0.0002 & -0.0003 & -0.0006 \\ 0.0004 & -0.0006 & -0.0001 & 0.0002 & 0.0008 & -0.0008 & 0.0002 & -0.0004 \\ -0.0001 & -0.0004 & 0.0003 & 0.0001 & -0.0002 & 0.0002 & -0.0003 & 0.0002 \\ -0.0001 & 0.0001 & 0.0003 & -0.0003 & 0.0002 & -0.0002 & 0.0006 & -0.0002 \\ 0.0004 & 0.0002 & -0.0001 & -0.0006 & -0.0004 & 0.0004 & -0.0002 & 0.0008 \end{pmatrix}$$

Рассчитаем ковариационную матрицу уравненных отметок реперов

$$Q_{yp}^{H} = N^{-1} (1.12)$$

$$Q_{yp}^{H} = \begin{pmatrix} 0.0009 & 0.0005 & 0.0004 & 0.0004 \\ 0.0005 & 0.0011 & 0.0007 & 0.0007 \\ 0.0004 & 0.0007 & 0.0009 & 0.0006 \\ 0.0004 & 0.0007 & 0.0006 & 0.0008 \end{pmatrix}$$

СКП единицы веса

$$\mu = \sqrt{\frac{V^T \cdot P \cdot V}{N - t}} \tag{1.13}$$

$$V^T \cdot P \cdot V = 0,911$$
$$\mu = 0,477$$

СКП превышений

$$\begin{pmatrix} m_{h_1} \\ m_{h_2} \\ m_{h_3} \\ m_{h_4} \\ m_{h_5} \\ m_{h_6} \\ m_{h_7} \\ m_{h_8} \end{pmatrix} = \mu \cdot \begin{pmatrix} \sqrt{Q_{yp11}^h} \\ \sqrt{Q_{yp22}^h} \\ \sqrt{Q_{yp33}^h} \\ \sqrt{Q_{yp44}^h} \\ \sqrt{Q_{yp55}^h} \\ \sqrt{Q_{yp66}^h} \\ \sqrt{Q_{yp77}^h} \\ \sqrt{Q_{yp77}^h} \\ \sqrt{Q_{yp88}^h} \end{pmatrix} = \begin{pmatrix} 0,0139 \\ 0,0148 \\ 0,0120 \\ 0,0146 \\ 0,0138 \\ 0,0116 \\ 0,0114 \\ 0,0139 \end{pmatrix}$$

СКП реперов

$$\begin{pmatrix} m_{H_1} \\ m_{H_2} \\ m_{H_3} \\ m_{H_4} \end{pmatrix} = \mu \cdot \begin{pmatrix} \sqrt{Q_{yp11}^H} \\ \sqrt{Q_{yp22}^H} \\ \sqrt{Q_{yp33}^H} \\ \sqrt{Q_{yp44}^H} \end{pmatrix} = \begin{pmatrix} 0.0139 \\ 0.0157 \\ 0.0146 \\ 0.0139 \end{pmatrix}$$

ПОИСК ГРУБЫХ ОШИБОК В ИЗМЕРЕНИЯХ

Для того, чтобы найти грубые ошибки в измерениях, используем апостериорный метод, а конкретнее τ – тест. Он заключается в сравнении нормативных поправок с коэффициентом τ .

Для начала для оценки теоретического значения стандарта определяем величину χ^2 для нижнего интервала и для верхнего.

И получили соответственно 0.484 и 11.143.

Найдем нормативные поправки по формуле:

$$S_{V_i} = \frac{|V_i|}{\mu \cdot \sqrt{Q_{V_i}}} \tag{1.14}$$

где V_i – i-тая поправка;

 $Q_{Vi}-i$ -ый элемент ковариационной матрицы поправок. Ковариационной матрица поправок вычисляется следующим образом:

$$Q_V = P^{-1} \cdot Q_{yp}^h \tag{1.15}$$

Матрица нормативных поправок:

$$S_{V} = \begin{pmatrix} 1,6140\\0,0078\\0,9653\\1,0997\\1,5643\\0,9159\\0,0523\\0,5315 \end{pmatrix}$$

Коэффициент τ вычисляется по формуле:

$$\tau = \frac{t \cdot \sqrt{r}}{\sqrt{r - 1 + t^2}} \tag{1.16}$$

где r — число степеней свободы;

t — коэффициент Стьюдента (с вероятностью $P\!\!=\!\!0,\!95$). $\tau=\!1,\!903$.

После проведения сравнения нормативных поправок с коэффициентом τ с учетом следующего условия: $S_{vi} \leq \tau$, было выявлено отсутствие грубых ошибок в исходных измерениях, так как условие выполнялось.

Вывод: В данной работе было выполнено уравнивание параметрическим способом нивелирной сети IV класса, вычислены уравненные высотные отметки. Произведена обобщенная оценка точности полученных результатов и проверено наличие грубых ошибок с помощью т-теста, который не выявил грубых ошибок в измерениях.