Optimisation Non linèaire

Par

Professeur Abdellatif El Afia

Chapitre 4

Partie 2: Optimisation avec contraintes

- 1. Analyse Convexe
 - 1. Ensembles convexes
 - 2. fonctions convexes
 - 3. Hyperplan
 - 4. Théories de séparation
 - 5. Problème de programmation convexe
- 2. Conditions d'optimalité
 - 1. Multiplicateur de Lagrange
 - 2. Conditions de Karush-Kuhn-Tucker
- 3. Algorithmes primales

Optimisation avec contraintes Analyse Convexe Chapitre 4

- 1. Ensembles convexes
- 2. fonctions convexes
- 3. Hyperplan
- 4. Théories de séparation

Ensemble convexes

Définition: Etant donné deux points $x, y \in \mathbb{R}^n$,

• la **droite** passante par x et y est définie par l'ensemble

$$D(x,y) = \{ z \in \mathbb{R}^n : z = \theta x + (1-\theta)y, \theta \in \mathbb{R}^n \}$$

$$S(x,y) = \{ z \in \mathbb{R}^n : z = \theta x + (1-\theta)y, \theta \in [0,1] \}$$

• Un ensemble $X \subset \mathbb{R}^n$ est **convexe** si $\forall x, y \in X$ alors $S(x, y) \subset X$.

Ensemble non convexes

Définition : Etant donné un ensemble convexe $X \subset \mathbb{R}^n$, une fonction à valeur Réelles $f: X \to \mathbb{R}$ est convexe si $\forall (x, y) \in X \times X$

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y), \quad \forall \theta \in [0,1]$$

f est concave si -f est convexe

5

Définition:

Etant donné un ensemble convexe $X \subset \mathbb{R}^n$, une fonction à valeur réelles $f: X \to \mathbb{R}$ est:

strictement convexe si
$$\forall$$
 $(x, y) \in X \times X$

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y), \quad \forall \theta \in (0,1)$$

• concave si $\forall (x, y) \in X \times X$

$$f(\theta x + (1 - \theta)y) \ge \theta f(x) + (1 - \theta)f(y), \quad \forall \theta \in [0, 1]$$

• strictement concave si $\forall (x, y) \in X \times X$

$$f(\theta x + (1 - \theta)y) > \theta f(x) + (1 - \theta)f(y), \quad \forall \theta \in (0,1)$$

Proposition 1 : Soit $X \subset \mathbb{R}^n$ un ensemble convexe, si $f: X \to \mathbb{R}$ est convexe, alors l'ensemble $X_f(\xi) = \{x \in X : f(x) \le \xi\}$ est convexe pour $\forall \xi \in \mathbb{R}$

Preuve: Soient x et $y \in X_f(\xi)$ et $\theta \in (0,1)$. Alors, puisque f est convexe,

- $f(\theta x + (1 \theta)y) \le \theta f(x) + (1 \theta)f(y) \le \theta \xi + (1 \theta)\xi = \xi$
- \Rightarrow $(\theta x + (1 \theta)y) \in X_f(\xi)$. Donc $X_f(\xi)$ est convexe

Optimisation non lineaire-Abdellatif El Afia

Proposition 2: soit $X \subset \mathbb{R}^n$, si $f_i: X \to \mathbb{R}$ est convexe pour i = 1, ..., m et si $\lambda_1, ..., \lambda_m$ sont des scalaires non négatifs, alors $f(x) = \sum_{i=1}^m \lambda_i f_i(x)$ est convexe sur X.

Preuve:

Pour toute paire de points $x, y \in X$ et pour tout $\theta \in [0,1]$

$$f(\theta x + (1 - \theta)y) = \sum_{i=1}^{m} \lambda_i f_i(\theta x + (1 - \theta)y)$$

$$\leq \sum_{i=1}^{m} \lambda_i [\theta f_i(x) + (1 - \theta)y] \text{ puisque } f_i \text{ convexe et } \lambda_i \geq 0$$

$$= \theta \sum_{i=1}^{m} \lambda_i f_i(x) + (1 - \theta) \sum_{i=1}^{m} \lambda_i f_i(y)$$

$$= \theta f(x) + (1 - \theta) f(y)$$
Optimisation non lineaire-Abdellatif El Afia

8

Proposition 3 : Soit $X \subset \mathbb{R}^n$ un ensemble convexe. Si $f: X \to \mathbb{R}$ est convexe, Si $x^1, ..., x^m \in X$, et si $\lambda_1, ..., \lambda_m$ sont des scalaires non négatifs tels que $\sum_{i=1}^m \lambda_i = 1$, alors: $f\left(\sum_{i=1}^m \lambda_i x^i\right) \leq \sum_{i=1}^m \lambda_i f(x^i)$ Preuve :

Si m = 2 nous retrouvons la définition de fonction convexe.

Procédons par induction et supposons que c'est vrai pour (m-1); si $\theta_1, \dots, \theta_{m-i} \ge 0$ tels que

$$\sum_{i=1}^{m-1} \theta_i = 1$$
 ,

alors 2i=1

•
$$\sum_{i=1}^{m-1} \theta_i x^i \in X \Longrightarrow f\left(\sum_{i=1}^{m-1} \theta_i x^i\right) \le \sum_{i=1}^{m-1} \theta_i f\left(x^i\right)$$

• Posant
$$\theta_i = \frac{\lambda_i}{\sum_{k=1}^{m-1} \lambda_k}$$
 on a $\sum_{i=1}^{m-1} \frac{\lambda_i}{\sum_{k=1}^{m-1} \lambda_k} = 1$, $\sum_{i=1}^{m-1} \frac{\lambda_i x^i}{\sum_{k=1}^{m-1} \lambda_k} \in X \Longrightarrow f\left(\sum_{i=1}^{m-1} \frac{\lambda_i x^i}{\sum_{k=1}^{m-1} \lambda_k}\right) \le \sum_{i=1}^{m-1} \frac{\lambda_i f(x^i)}{\sum_{k=1}^{m-1} \lambda_k}$

Par définition de convexité,

•
$$\sum_{k=1}^{m-1} \lambda_k \sum_{i=1}^{m-1} \frac{\lambda_i x^i}{\sum_{k=1}^{m-1} \lambda_k} + \lambda_m x^m \in X$$

$$\bullet \implies f\left(\sum_{k=1}^{m-1} \lambda_k \sum_{i=1}^{m-1} \frac{\lambda_i x^i}{\sum_{k=1}^{m-1} \lambda_k} + \lambda_m x^m\right) \le \sum_{k=1}^{m-1} \lambda_k f\left(\sum_{i=1}^{m-1} \frac{\lambda_i x^i}{\sum_{k=1}^{m-1} \lambda_k}\right) + \lambda_m f(x^m)$$

•
$$\Rightarrow f\left(\sum_{(i=1)}^{m-1} \lambda_i x^i + \lambda_m x^m\right) \leq \sum_{k=1}^{m-1} \lambda_k \sum_{i=1}^{m-1} \frac{\lambda_i f(x^i)}{\sum_{k=1}^{m-1} \lambda_k} + \lambda_m f(x^m)$$

Proposition 4:

soit $X \subset \mathbb{R}^n$ un ensemble convexe. $f: X \to \mathbb{R}$ est convexe si et seulement si $\varphi(\alpha) = f(y + \alpha(x - y))$ est une fonction convexe sur [0,1] pour toute paire de points $x, y \in X$.

Note: $\varphi(\alpha)$ dénote la restriction de f sur le segment de droite entre x et y.

Preuve:

Pour démontrer la nécessité, considérons la paire de points $x, y \in X$.

Soit $\alpha_1, \alpha_2 \in [0,1]$, alors :

$$\varphi(\theta\alpha_{1} + (1 - \theta)\alpha_{2}) = \varphi(\alpha_{2} + \theta(\alpha_{1} - \alpha_{2}))
= f[(\alpha_{2} + \theta(\alpha_{1} - \alpha_{2}))x + (1 - \alpha_{2} - \theta(\alpha_{1} - \alpha_{2}))y]
= f[(\alpha_{2} + \theta(\alpha_{1} - \alpha_{2}))x + (1 + \theta - \theta - \alpha_{2} - \theta(\alpha_{1} - \alpha_{2}))y]
= f[\theta(\alpha_{1}x + (1 - \alpha_{1})y) + ((1 - \theta)(\alpha_{2}x + (1 - \alpha_{2})y)]
\leq \theta f(\alpha_{1}x + (1 - \alpha_{1})y) + (1 - \theta)f(\alpha_{2}x + (1 - \alpha_{2})y)
\leq \theta \varphi(\alpha_{1}) + (1 - \theta)\varphi(\alpha_{2})$$

Donc φ est convexe sur [0,1]

Pour démontrer la suffisance, soient $x, y \in X$.

- $\varphi(\alpha) = f(\alpha x + (1 \alpha)y)$ est convexe sur [0,1] alors pour x = 1, y = 0 on a
- $\varphi(\alpha) = \varphi(\alpha.1 + (1 \alpha)0) \le \alpha \varphi(1) + (1 \alpha)\alpha(0) \ \forall \alpha \in [0,1]$
- $\Rightarrow f(\alpha x + (1 \alpha)y) \le \alpha f(x) + (1 \alpha)f(y) \quad \forall \alpha \in [0,1]$

Donc f est convexe.

Proposition 5:

Soit $X \subset \mathbb{R}^n$ un ensemble convexe. Soit $f: X \to \mathbb{R}$ une fonction convexe. Si \bar{x} est un minimum local de f sur X, alors \bar{x} est un minimum global de f sur X.

Preuve:

la preuve se fait par contradiction:

Supposant que $\exists \tilde{x} \in X$ tel que $f(\tilde{x}) < f(\bar{x})$. Puisque f est convexe, pour tout $\theta \in (0,1]$ on a:

$$f(\theta \tilde{x} + (1 - \theta)\bar{x}) \le \theta f(\tilde{x}) + (1 - \theta)f(\bar{x}) < \theta f(\bar{x}) + (1 - \theta)f(\bar{x}) = f(\bar{x})$$

Or pour $\theta > 0$ suffisamment petit, $x(\theta) = \theta \tilde{x} + (1 - \theta) \bar{x} \in V_{\varepsilon}(\bar{x}) \cap X$ Ainsi $f(x(\theta)) < f(\bar{x})$ où $x(\theta) \in V_{\varepsilon}(\bar{x}) \cap X$,

contredisant que \bar{x} est un minimum local de f sur X.

Proposition 6 : (Inégalité du Gradient). Soit $X \subset \mathbb{R}^n$ un ensemble convexe. Soit $f: X \to \mathbb{R}$ une fonction de classe C/X. Alors f est convexe sur X si et seulement si

$$f(x) \ge f(y) + \nabla f(y)^T (x - y) \ \forall x, y \in X$$

Preuve (nécessité)

Soit f convexe. Alors $\forall x, y \in X$ et $\forall \theta \in [0,1] f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y)$ ce qui s'écrit aussi sous la forme

$$f(y + \theta(x - y)) - f(y) \le \theta(f(x) - f(y))$$
 (4.1)

Se référant au théorème de Taylor, il existe un $\tau \in [0,1]$ tel que

•
$$f(y + \theta(x - y)) = f(y) + \nabla f[\tau(y + \theta(x - y)) + (1 - \tau)y]^T(y + \theta(x - y) - y)$$

•
$$\Rightarrow f(y + \theta(x - y)) - f(y) = \theta \nabla f[y + \tau \theta(x - y)]^T(x - y)$$
 (4.2)

Combinant les relations (4.1) et (4.2), pour tout $\theta \in [0,1]$

$$\theta \nabla f[y + \tau \theta(x - y)]^T(x - y) \le \theta (f(x) - f(y))$$

Si $\theta > 0$, nous pouvons diviser par θ de chaque côté de l'inéquation et obtenir

$$\nabla f[y + \tau \theta(x - y)]^T(x - y) \le (f(x) - f(y)) \quad \forall \theta \in (0, 1]$$

Par conséquent, $\lim_{\theta \to 0} \nabla f[y + \tau \theta(x - y)]^T(x - y) \le \lim_{\theta \to 0} (f(x) - f(y))$

Ou encore
$$\nabla f \left[y + \lim_{\theta \to 0} \tau \theta(x - y) \right]^T (x - y) \leq \left(f(x) - f(y) \right) = f(x) \leq f(y) + \nabla f(y)^T (x - y)$$

Preuve suffisance

Démontrons maintenant que la condition est suffisante.

Puisque
$$\forall x, y \in X \ f(x) \ge f(y) + \nabla f(y)^T (x - y)$$

$$f(x) \ge f(\theta x + (1 - \theta)y) + \nabla f(\theta x + (1 - \theta)y)^T (x - \theta x - (1 - \theta)y) \ \textbf{(4.3)}$$

$$f(y) \ge f(\theta x + (1 - \theta)y) + \nabla f(\theta x + (1 - \theta)y)^T (y - \theta x - (1 - \theta)y) \ \textbf{(4.4)}$$

$$\textbf{(4.3)} \text{ et } \textbf{(4.4)} \text{ s'écrivent respectivement}$$

$$f(x) \ge f(\theta x + (1 - \theta)y) + (1 - \theta)\nabla f(\theta x + (1 - \theta)y)^{T}(x - y)$$
 (4.3)
$$f(y) \ge f(\theta x + (1 - \theta)y) - \theta\nabla f(\theta x + (1 - \theta)y)^{T}(x - y)$$
 (4.4)

Multiplions (4.3) par θ et (4.4) par $(1 - \theta)$

$$\theta f(x) \ge \theta f(\theta x + (1 - \theta)y) + \theta (1 - \theta)\nabla f(\theta x + (1 - \theta)y)^T (x - y)$$
$$(1 - \theta)f(y) \ge (1 - \theta)f(\theta x + (1 - \theta)y) - (1 - \theta)\theta\nabla f(\theta x + (1 - \theta)y)^T (x - y)$$

Et additionnons les deux relations résultantes :

$$\theta f(x) + (1 - \theta)f(y) \ge f(\theta x + (1 - \theta)y)$$

La figure suivant illustre l'inégalité du gradient pour une fonction $f: \mathbb{R} \to \mathbb{R}$

Dans ce cas l'inégalité du gradient devient

$$f(x) \ge g_y(x) = f(y) + f'(y)(x - y)$$

La droite $g_y(x) = f(y) + f'(y)(x - y)$ a les propriétés suivantes :

- $g_y(y) = f(y)$, $g'_y(y) = f'(y)$.
- Cette droite est une fonction support de f au point y.
- L'inégalité du gradient indique que la fonction prend toujours une valeur plus grande ou égale à celle de la fonction support en tout point y.

Corollaire 7: soit $X \subset \mathbb{R}^n$ un ensemble convexe. Soit $f: X \to \mathbb{R}$ une fonction convexe de classe C/X. Alors si $\nabla f(x^*)^T(x-x^*) \ge 0 \ \forall x \in X$, alors x^* est un minimum global de f sur X.

Preuve:

le résultat découle directement de l'inégalité du gradient. En effet, puisque f est convexe sur , alors $f(x) \ge f(x^*) + \nabla f(x^*)^T (x - x^*)$, $\forall x \in X$

Puisque par hypothèse $\nabla f(x^*)^T(x-x^*) \ge 0$, alors $f(x) - f(x^*) \ge \nabla f(x^*)^T(x-x^*) \ge 0$ D'où $f(x) \ge f(x^*)$ pour tout $x \in X$. Donc x^* est un minimum global de f sur X.

Conséquence: Si $\nabla f(x^*) = 0$, alors x^* est un minimum global de f sur X.

Pour $\forall f \in C^2/X$, il existe un critère pour vérifier la convexité qui est basé sur le Hessien $\nabla^2 f$.

Proposition 8:

Soient $X \subset \mathbb{R}^n$ un ensemble convexe dont l'intérieur est non vide, $f: X \to \mathbb{R}$, $f \in C^2/X$. Alors f est convexe sur X si et seulement si son Hessien $\nabla^2 f(x)$ est une matrice semi défini positive pour tout $x \in X$.

Hyperplan

Définition:

- L'hyperplan spécifié par le point $a \in \mathbb{R}^n$ et le scalaire β est l'ensemble de \mathbb{R}^n : $H(a,\beta) = \{x \in \mathbb{R}^n : a^Tx = \beta\}$
- Les **demis espaces** (fermés) associés a l'hyperplan $H(a, \beta)$ sont les ensemble suivants de \mathbb{R}^n :

$$H^{+}[a,\beta] = \{x \in \mathbb{R}^{n} : a^{T}x \ge \beta\}$$

$$H^{-}[a,\beta] = \{x \in \mathbb{R}^{n} : a^{T}x \le \beta\}$$

Note: il est facile de vérifier que tous ces ensembles

Définition Hyperplan de séparation

L'hyperplan $H(a, \beta)$ sépare (Stricte) deux ensembles non vides X et Y si

$$a^T x \ge \beta \ (\boldsymbol{a^T} x > \boldsymbol{\beta})$$
 pour tout $x \in X$ (i.e., $X \subset H^+[a, \beta]$) $a^T y \le \beta \ (\boldsymbol{a^T} x > \boldsymbol{\beta})$ pour tout $y \in Y$ (i.e., $Y \subset H^-[a, \beta]$)

- $H(a^1, \beta_1)$ hyperplan de séparation
- $H(a^2, \beta_2)$ hyperplan de séparation stricte primisation non lineaire-Abdellatif El Afia

Définition

étant donné un ensemble non vide $X \subset \mathbb{R}^n$ l'hyperplan $H(a, \beta)$ est un **support** de X si :

- $H(a,\beta) \cap \bar{X} \neq \emptyset$ et
- $X \subset H^+[a, \beta]$ ou $X \subset H^-[a, \beta]$ (où \overline{X} dénote la **fermeture** de l'ensemble X)

Théorème 1 : Soient les vecteurs $x, y, a \in \mathbb{R}^n$. Si $a^T y < a^T x$, alors pour tout $\theta \in (0,1)$ on a : $a^T y < a^T (\theta x + (1 - \theta)y) < a^T x$

Preuve:

$$a^{T}(\theta x + (1 - \theta)y) < a^{T}(\theta x + (1 - \theta)x) = a^{T}x$$

$$a^{T}(\theta x + (1 - \theta)y) > a^{T}(\theta y + (1 - \theta)y) = a^{T}y$$

Théorème 2 : (Théorème de séparation)

Si $X \subset \mathbb{R}^n$ est un ensemble convexe non vide et si $y \notin X$, alors il existe un hyperplan qui sépare (strictement) X et y.

Preuve:

Il existe un point $x^0 \in \overline{X}$ tel que : $||x^0 - y|| = mi\underline{n}||x - y||$

$$(x^{0} - y)^{T}(x^{0} - y) \leq ((\theta x + (1 - \theta)x^{0}) - y)^{T}((\theta x + (1 - \theta)x^{0}) - y)$$

$$(x^{0} - y)^{T}(x^{0} - y) \leq ((x^{0} - y) + \theta(x - x^{0}))^{T}((x^{0} - y) + \theta(x - x^{0}))$$

$$(x^{0} - y)^{T}(x^{0} - y) \leq (x^{0} - y)^{T}(x^{0} - y) + 2\theta(x - x^{0})^{T}(x^{0} - y) + \theta^{2}(x - x^{0})^{T}(x - x^{0})$$

Par conséquent
$$\forall \theta \in [0,1]$$
, $2\theta(x-x^0)^T(x^0-y) + \theta^2(x-x^0)^T(x-x^0) \ge 0$
Mais alors ceci implique que $(x-x^0)^T(x^0-y) \ge 0$
 $(x-x^0)^T(x^0-y) < 0$, alors pour $\theta > 0$ suffisamment petit

$$2\tilde{\theta}|(x-x^0)^T(x^0-y)| > \tilde{\theta}^2|(x-x^0)^T(x-x^0)|$$

$$-2\tilde{\theta}(x-x_{-}^{0})^{T}(x^{0}-y) \geq \tilde{\theta}^{2}(x-x_{-}^{0})^{T}(x-x^{0})$$

 $-2\tilde{\theta}(x-x^0)^T(x^0-y) > \tilde{\theta}^2(x-x^0)^T(x-x^0)$ Et alors nous aurions que $2\tilde{\theta}(x-x^0)^T(x^0-y) + \tilde{\theta}^2(x-x^0)^T(x-x^0) < 0$

Preuve (suite):

Nous avons donc que $(x - x^0)^T (x^0 - y) \ge 0$

$$\Rightarrow x^{0^T}(x^0 - y) \le x^T(x^0 - y)$$
 (5.3)

Puisque $y \notin \bar{X}$,

$$||x^0 - y||^2 = (x^0 - y)^T (x^0 - y) > 0 \Longrightarrow y^T (x^0 - y) < x^{0^T} (x^0 - y)$$
 (5.4)

D'après le Théorème 1 avec les vecteurs $(x^0 - y)$, x^0 , y et utilisant la relation 5.4

$$y^{T}(x^{0} - y) < (\theta x^{0} + (1 - \theta)y)^{T}(x^{0} - y) < x^{0^{T}}(x^{0} - y)$$

Et avec
$$\theta = \frac{1}{2} \implies y^T (x^0 - y) < \frac{1}{2} (x^0 + y)^T (x^0 - y) < x^{0^T} (x^0 - y)$$

En utilisant maintenant la relation 5.3

$$y^{T}(x^{0} - y) < \frac{1}{2}(x^{0} + y)^{T}(x^{0} - y) < x^{0^{T}}(x^{0} - y) \le x^{T}(x^{0} - y)$$

Par conséquent nous avons que

$$y^{T}(x^{0} - y) < \frac{1}{2}(x^{0} + y)^{T}(x^{0} - y) < x^{T}(x^{0} - y)$$

Puisque cette relation est valable pour tout $x \in \overline{X}$, il s'ensuit que l'hyperplan $H(a,\beta)$ où $a = (x^0 - y)$ et $\beta = \frac{1}{2}(x^0 + y)^T(x^0 - y)$ sépare (strictement) \overline{X} et y.

Dans le théorème 2, la convexité de X est une condition suffisante pour assurer l'existence d'un hyperplan le séparant (strictement) de $y \notin \overline{X}$

Théorie de séparation: Théorème de Farkas

Théorème 3 : Étant donné:

• la matrice
$$A = \begin{pmatrix} \vdots & \vdots & \vdots \\ a^1 & \cdots & a^n \\ \vdots & \vdots & \vdots \end{pmatrix}$$
: $\forall i \in \{1, ..., n\} \ a^i \in \mathbb{R}^m, b \in \mathbb{R}^m$

•
$$H_1: \forall y \in \mathbb{R}^m$$
 tel que $y^T a^i \ge 0$ pour $\forall i \in \{1, ..., n\} \Rightarrow y^T b \ge 0, \Rightarrow \neg H_1 = \begin{cases} \exists y \in \mathbb{R}^m, \text{tel que} \\ y^T a^i \ge 0 \ \forall i = 1, ..., n, \end{cases}$ et $y^T b < 0$
• $H_2: \exists x = (x_1, ..., x_n) \ge 0$ tels que $b = a^1 x_1 + \cdots + a^n x_n = Ax, \Rightarrow \neg H_2 = \begin{cases} \exists x_1, ..., x_n \ge 0 \text{ tels que} \\ b = a^1 x_1 + \cdots + a^n x_n \end{cases}$

•
$$H_2: \exists x = (x_1, ..., x_n) \ge 0$$
 tels que $b = a^1 x_1 + ... + a^n x_n = Ax$, $\Rightarrow \neg H_2 = \begin{cases} \exists x_1, ..., x_n \ge 0 \text{ tels que} \\ b = a^1 x_1 + ... + a^n x_n \end{cases}$

une condition suffisante pour que H_2 soit vérifier est que H_1 soit vérifier

Preuve:

il faut démontrer que
$$H_2$$
:
$$\begin{cases} \forall y \in \mathbb{R}^m, \\ \text{si } \forall j \in \{1, ..., n\}: \ y^T a^j \ge 0 \\ \text{alors nécessairement } y^T b \ge 0 \end{cases} \Rightarrow H_1: \begin{cases} \exists x_1, ..., x_n \ge 0 \text{ tels que} \\ b = a^1 x_1 + \dots + a^n x_n \end{cases}$$

Nous allons plutôt démontrer la contraposé de l'implication :

$$\begin{cases}
\exists x_1, \dots, x_n \ge 0 \text{ tels que} \\
b = a^1 x_1 + \dots + a^n x_n
\end{cases} \Rightarrow \begin{cases}
\exists y \in \mathbb{R}^m, \text{ tel que} \\
y^T a^i \ge 0 \ \forall i = 1, \dots, n, \\
\text{et } y^T b < 0
\end{cases}$$

Théorie de séparation: Théorème de Farkas

Considérons l'ensemble $Z = \{z \in \mathbb{R}^m : \exists x_1, ..., x_n \ge 0 \text{ tel que } z = a^1x_1 + \cdots + a^nx_n\}$ Il est facile de démontrer que Z est convexe. Il est aussi possible de démontrer que Z est un ensemble fermé (i.e. $Z = \overline{Z}$), soit $z^1, z^2 \in Z$

- $\Rightarrow z^1 = a^1 x_1^1 + \dots + a^n x_n^1, \ z^2 = a^1 x_1^2 + \dots + a^n x_n^2$
- $\theta z^1 + (1 \theta)z^2 = a^1[\theta x_1^1 + (1 \theta)x_1^2] + \dots + a^n[\theta x_n^1 + (1 \theta)x_n^2] \Longrightarrow \theta z^1 + (1 \theta)z^2 \in Z$ Puisque par hypothèse de la contraposé $b \notin Z = \overline{Z}$, alors par le **théorème 2**. $\exists H(p,\beta)$ qui sépare strictement Z et $b: p^T b < \beta < p^T z, \forall z \in Z$ (5.5)

Or $0 \in Z$, ce qui implique que $\beta < 0$ et par conséquent que $p^Tb < 0$ Egalement, $p^Tz \ge 0 \ \forall z \in Z$, en effet $\exists \tilde{z} \in Z$ tel que $p^T\tilde{z} < 0$, alors puisque Z est un cône (i.e., si $z \in Z$ alors $\forall \lambda \ge 0 \ \lambda z \in Z$), nous aurions que $p^T(\lambda \tilde{z}) \xrightarrow{\lambda \to \infty} -\infty$ contredisant (5.5).

Comme il est facile de vérifier que $a^j \in Z$, j = 1, ..., n

$$Z = \{z \in \mathbb{R}^m : \exists x_1, ..., x_n \ge 0 \text{ tel que } z = a^1 x_1 + \dots + a^n x_n \}$$

Il s'ensuit que $p^T a^j \ge 0, j = 1, ..., n$

Nous avons donc démontré la contraposé puisque $p \in \mathbb{R}^m$ Tel que $p^T a^j \ge 0, j = 1, ..., n$ et $p^T b < 0$

Théorie de séparation: Théorème d'alternatives

Théorème 4: Soit A une matrice $m \times n$, exactement une des deux alternatives suivantes est vérifiée :

- I. Le système Ax = b, $x \ge 0$ possède une solution $x \in \mathbb{R}^n$
- II. Le système $A^T y \ge 0$, $b^T y < 0$ possède une solution $y \in \mathbb{R}^m$

Preuve:

il est facile de vérifier que les deux alternatives ne peuvent tenir en même temps, Car autrement la relation suivante serait satisfaite : $0 > b^T y = x^T A^T y \ge 0$

Une contradiction.

Dénotons par $a_{\bullet j}$, j = 1, ..., n, la j^{ième} colonne de A

Considérant l'alternative (II), celle-ci est vérifiée ou elle ne l'est pas.

Dans le cas où elle ne l'est pas, il s'ensuit que le système $A^Ty \ge 0$, $b^Ty < 0$ ne possède pas de solution $y \in \mathbb{R}^m$

i.e., le système $a_{\bullet j}^T y \ge 0, j = 1, ..., n, b^T y < 0$ ne possède pas de solution $y \in \mathbb{R}^m$ si $a_{\bullet j}^T y \ge 0, j = 1, ..., n$, alors nécessairement $b^T y \ge 0$.

Donc par le Théorème 11, il existe un vecteur $x \in \mathbb{R}^n$, $x \ge 0$ tel que $Ax = a_{\bullet 1}x_1 + \dots + a_{\bullet n}x_n = b$, et **l'alternative** (I) tient.

Illustration du cas où le système Ax = b, $x \ge 0$ possède une solution

$$c^T d = ||c|| ||d|| \cos \theta$$

$$a_{\bullet 1}^{\mathsf{T}} y \ge 0$$
et
$$a_{\bullet 2}^{\mathsf{T}} y \ge 0$$

Le système $A^T y \ge 0$, $b^T y < 0$ ne possède pas de solution.

Illustration du cas où le système Ax = b, $x \ge 0$ ne possède pas une solution

Problème de programmation convexe

Définition:

Un problème de programmation convexe est un problème d'optimisation sous la forme

$$(P) \begin{cases} Min & f_0(x) \\ s.t & f_i(x) \le 0 \quad i \in I_1 \\ h_i(x) = a_i^T x + b_i = 0 \quad i \in I_2 \\ x \in \mathbb{R}^n \end{cases}$$

Où $f_0(x)$, $\{f_i(x)\}_{i\in I_1}$ sont des fonctions convexes continues sur \mathbb{R}^d et $\{h_i(x)\}_{i\in I_2}$ sont des fonctions linéaires

Théorème:

- Le domaine réalisable, D_F , est convexe $D_F = \{x \in \mathbb{R}^d \big| f_i(x) \le 0 \mid i \in I_1, h_i(x) = 0 \mid i \in I_2\}$
- L'ensemble solution de (P) est un ensemble fermé convexe
- Si x^* est la solution locale de (P) alors x^* est aussi la solution globale
- Si la fonction objectif $f_0(x)$ est strictement convexe alors la solution de (P) est unique

Problème de programmation convexe

Definition: (Problème de programmation quadratique (QP))

$$(QP) \begin{cases} Min & \frac{1}{2}x^{T}Qx + c^{T}x \\ s.t & \bar{A}x - \bar{b} \leq 0 \\ & Ax - b = 0 \\ & x \in \mathbb{R}^{n} \end{cases}$$

Où $Q \in \mathbb{R}^{n \times n}$ $c \in \mathbb{R}^n$, $\bar{A} \in \mathbb{R}^{m \times n}$, $A \in \mathbb{R}^{p \times n}$, $\bar{b} \in \mathbb{R}^m$, $b \in \mathbb{R}^p$ Si Q est semi-défini positif, alors le problème QP est une programmation convexe

Théorème:

- L'ensemble $D_F = \{x \in \mathbb{R}^d | \bar{A}x \bar{b} \le 0, Ax b = 0\}$ est convexe
- L'ensemble solution de (QP) est un ensemble fermé convexe
- Si x^* est la solution locale de(QP)alors x^* est aussi la solution globale
- Si Q est définie positive alors La solution de (QP) est unique

Problème de programmation convexe

Definition:

Considérons le problème de programmation convexe (P) avec la variable x divisée sous la forme $x = (x_1, x_2) \in \mathbb{R}^n$.

- $x_1^* \in \mathbb{R}^{m_1}$ est appelé sa solution par rapport à x_1 s'il existe un $x_2^* \in \mathbb{R}^{n-m_1}$ tel que $x^* = (x_1^*, x_2^*)$ est sa solution
- L'ensemble de toutes les solutions par rapport à x_1 est appelé l'ensemble de solutions par rapport à x_1

Théorème:

Si le problème de programmation convexe (P) avec la variable $x=(x_1,x_2)\in\mathbb{R}^n$, alors

- son ensemble solution par rapport à x_1 est un ensemble fermé convexe
- Si $f_0(x) = F_1(x_1) + F_2(x_2)$ où est strictement convexe de la variable x_1 alors la solution de (P) par rapport à x_1 est unique lorsqu'elle a une solution