```
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
```

Line Plot

```
In [2]: days=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
    tempertature=[36.6,37,37.7,39,40.1,43,43.4,45,45.6,40.1,44,45,46.8,47,47.5]

df=({"days":days,"tempertature":tempertature})#creating data frame
    sns.lineplot(x="days",y='tempertature',data=df)#to generate x and y axis names we provide
    plt.show() #and data is taken by dict comp
```


In [3]:
 tips_df=sns.load_dataset("tips")#Directly load from github
 tips_df

Out[3]:		total_bill	tip	sex	smoker	day	time	size
	0	16.99	1.01	Female	No	Sun	Dinner	2
	1	10.34	1.66	Male	No	Sun	Dinner	3
	2	21.01	3.50	Male	No	Sun	Dinner	3
	3	23.68	3.31	Male	No	Sun	Dinner	2
	4	24.59	3.61	Female	No	Sun	Dinner	4
	239	29.03	5.92	Male	No	Sat	Dinner	3
	240	27.18	2.00	Female	Yes	Sat	Dinner	2
	241	22.67	2.00	Male	Yes	Sat	Dinner	2
	242	17.82	1.75	Male	No	Sat	Dinner	2
	243	18.78	3.00	Female	No	Thur	Dinner	2

244 rows \times 7 columns

```
In [4]: sns.lineplot(x="total_bill",y="tip",data=tips_df)
Loading [MathJax]/extensions/Safe.js
```

```
Out[4]: <AxesSubplot:xlabel='total_bill', ylabel='tip'>
```



```
In [5]: sns.lineplot(x="total_bill",y="size",data=tips_df)
```

Out[5]: <AxesSubplot:xlabel='total_bill', ylabel='size'>

Out[6]: <Figure size 720x648 with 0 Axes> <Figure size 720x648 with 0 Axes>


```
Out[7]: <Figure size 720x648 with 0 Axes> <Figure size 720x648 with 0 Axes>
```

```
In [8]: sns.distplot(tips_df['size']) #here line in chart is known as KDE(Kernel Density Extimati #(KDE) is a non-parametric way to estimate the probability de plt.title("Histogram", fontsize=20)
```

Loading [MathJax]/extensions/Safe.js

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt y our code to use either `displot` (a figure-level function with similar flexibility) or `hi stplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[8]: Text(0.5, 1.0, 'Histogram')

In [9]: sns.distplot(tips_df['tip'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt y our code to use either `displot` (a figure-level function with similar flexibility) or `hi stplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[9]: <AxesSubplot:xlabel='tip', ylabel='Density'>

In [10]: sns.distplot(tips_df['total_bill'],bins=10)#bins used to discribe data in specified no. h

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt y our code to use either `displot` (a figure-level function with similar flexibility) or `hi stplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[10]: <AxesSubplot:xlabel='total_bill', ylabel='Density'>

Loading [MathJax]/extensions/Safe.js

In [11]: sns.distplot(tips_df['total_bill'],bins=100,hist=False)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt y our code to use either `displot` (a figure-level function with similar flexibility) or `kd eplot` (an axes-level function for kernel density plots).

warnings.warn(msg, FutureWarning)

Out[11]: <AxesSubplot:xlabel='total_bill', ylabel='Density'>

In [12]: sns.distplot(tips_df['total_bill'],bins=100,hist=True,kde=False)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt y our code to use either `displot` (a figure-level function with similar flexibility) or `hi stplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[12]: <AxesSubplot:xlabel='total_bill'>

In [13]:

sns.distplot(tips df['total bill'],bins=10,rug=True)#A rugplot is a graph that places a d plt.show()

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2103: FutureWarning: T he `axis` variable is no longer used and will be removed. Instead, assign variables direct ly to `x` or `y`.

warnings.warn(msg, FutureWarning)

In [14]:

from scipy.stats import norm

In [15]:

sns.distplot(tips df['total bill'],fit=norm,kde=False,color='r',axlabel='Total Bill',labe #norm is normalised/gaussian distribution fit plt.legend()

plt.title("Histogram of Total Bill")

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: distplot` is a deprecated function and will be removed in a future version. Please adapt y our code to use either `displot` (a figure-level function with similar flexibility) or `hi stplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

Text(0.5, 1.0, 'Histogram of Total Bill') Out[15]:

In [16]:

```
sns.distplot(tips_df['total_bill'],hist_kws={'color':'g','linewidth':5,'edgecolor':'k','a
            kde_kws={'color':'b','linewidth':5,'alpha':0.9},
            fit=norm,fit_kws={'color':'m','linewidth':5,'alpha':0.9})
#hist kws used to pass diff arguments in key-value pair
#kde kws has no edgecolor support
sns.set()
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: distplot` is a deprecated function and will be removed in a future version. Please adapt y our code to use either `displot` (a figure-level function with similar flexibility) or `hi stplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

In [17]:

tips_df=sns.load_dataset("tips")#Directly load from github tips df

Out[17]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

Loading [MathJax]/extensions/Safe.js

	total_bill	tip	sex	smoker	day	time	size
239	29.03	5.92	Male	No	Sat	Dinner	3
240	27.18	2.00	Female	Yes	Sat	Dinner	2
241	22.67	2.00	Male	Yes	Sat	Dinner	2
242	17.82	1.75	Male	No	Sat	Dinner	2
243	18.78	3.00	Female	No	Thur	Dinner	2

244 rows × 7 columns

```
In [18]:
          sns.barplot(x=tips_df.day,y=tips_df.total_bill,label=['Day','Total Bill'])#agr data nhi u
          plt.title('Barplot', fontsize=20)
          plt.xlabel('Day', fontsize=15)
          plt.ylabel('Total Bill',fontsize=15)
          plt.legend()
```

<matplotlib.legend.Legend at 0x1aaf2319070> Out[18]:


```
In [19]:
          sns.barplot(x='day',y='total bill',hue='sex',data=tips df,alpha=1)
```

<AxesSubplot:xlabel='day', ylabel='total_bill'> Out[19]:

sns.barplot(x='day',y='total_bill',hue='sex',data=tips_df,estimator=np.max,ci=70)
#A confidence interval displays the probability that a parameter will fall
#between a pair of values around the mean
#estimator used to change the y-axis values

Out[21]: <AxesSubplot:xlabel='day', ylabel='total_bill'>

In [22]: sns.barplot(x='day',y='total_bill',hue='sex',data=tips_df,estimator=np.max,dodge=False)

Out[22]: <AxesSubplot:xlabel='day', ylabel='total_bill'>

kwargs={'alpha':0.9,'linestyle':':','linewidth':2,'edgecolor':'k'}
sns.barplot(x='day',y='total_bill',hue='sex',data=tips_df,estimator=np.max,**kwargs)
sns.set()

In [24]: df=sns.load_dataset('titanic')
 df

Out[24]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	c
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	
886	0	2	male	27.0	0	0	13.0000	S	Second	man	True	
887	1	1	female	19.0	0	0	30.0000	S	First	woman	False	
888	0	3	female	NaN	1	2	23.4500	S	Third	woman	False	
889	1	1	male	26.0	0	0	30.0000	С	First	man	True	
890	0	3	male	32.0	0	0	7.7500	Q	Third	man	True	

891 rows × 15 columns

In [25]: sns.scatterplot(x=df.survived,y=df.age,hue=df.who)

Out[25]: <AxesSubplot:xlabel='survived', ylabel='age'>


```
In [26]: sns.scatterplot(x='age',y='fare',hue='sex',data=df)
```

Out[26]: <AxesSubplot:xlabel='age', ylabel='fare'>


```
In [27]: sns.scatterplot(x='age',y='fare',hue='sex',data=df,style='who')
```

Out[27]: <AxesSubplot:xlabel='age', ylabel='fare'>

<Figure size 1152x720 with 0 Axes>

Heatmap used to represent 2D data

```
In [29]:
           arr=np.linspace(1,10,12).reshape(4,3)
          arr
                                  1.81818182,
                                               2.63636364],
          array([[ 1.
Out[29]:
                 [ 3.45454545,
                                 4.27272727,
                                                5.09090909],
                                               7.54545455],
                 [ 5.90909091,
                                 6.72727273,
                 [ 8.36363636,
                                 9.18181818, 10.
                                                           ]])
In [30]:
           sns.heatmap(arr)
          <AxesSubplot:>
Out[30]:
                                                      - 9
                                                      - 6
          2
          3
                  0
                               1
                                           2
```

globalWarming df = pd.read csv("E:\\New folder\\Who is responsible for global warming.csv

2000

2001

2002

2003

Indicator Code

Load dataset

globalWarming df

Country

Name

Country

Code

Indicator

Name

In [31]:

Out[31]:

		Country Name	Country Code	Indicator Name	Indicator Code	2000	2001	2002	2003	
	0	United States	USA	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	20.178751	19.636505	19.613404	19.564105	19.65
	1	United Kingdom	GBR	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	9.199549	9.233175	8.904123	9.053278	8.98
	2	India	IND	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	0.979870	0.971698	0.967381	0.992392	1.02
	3	China	CHN	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	2.696862	2.742121	3.007083	3.524074	4.03
	4	Russian Federation	RUS	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	10.627121	10.669603	10.715901	11.090647	11.12
	5	Australia	AUS	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	17.200610	16.733367	17.370452	16.901959	17.02
	6	France	FRA	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	5.946665	6.153061	6.068664	6.115998	6.12
	7	Germany	DEU	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	10.095640	10.366287	10.058673	9.969355	9.89
	8	Canada	CAN	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	17.367115	16.985030	16.559378	17.461199	17.25
	9	Brazil	BRA	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	1.871118	1.898354	1.844380	1.762482	1.82
	10	Argentina	ARG	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	3.835574	3.568600	3.291548	3.525584	4.0€
	11	Pakistan	PAK	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	0.768458	0.764702	0.788668	0.804959	0.87
athJ	ax]/e	xtensions/Safe.	js							

	Country Name	Country Code	Indicator Name	Indicator Code	2000	2001	2002	2003	
12	Nepal	NPL	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	0.129282	0.135226	0.106877	0.113902	0.10
13	Bangladesh	BGD	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	0.211802	0.242020	0.246756	0.256602	0.26
14	Japan	JPN	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	9.622352	9.464309	9.573130	9.725282	9.90

In [32]:

globalWarming_df=globalWarming_df.drop(columns=['Country Code','Indicator Name','Indicato globalWarming_df.head(6)

Out[32]:	2000	2001	2002	2003	2004	:

	2000	2001	2002	2003	2004	2005	2006	2007
Country Name								
United States	20.178751	19.636505	19.613404	19.564105	19.658371	19.591885	19.094067	19.217898
United Kingdom	9.199549	9.233175	8.904123	9.053278	8.989140	8.982939	8.898710	8.617164
India	0.979870	0.971698	0.967381	0.992392	1.025028	1.068563	1.121982	1.193210
China	2.696862	2.742121	3.007083	3.524074	4.037991	4.523178	4.980314	5.334910
Russian Federation	10.627121	10.669603	10.715901	11.090647	11.120627	11.253529	11.669122	11.672457
Australia	17.200610	16.733367	17.370452	16.901959	17.026515	17.169711	17.651398	17.865260

In [33]:

sns.heatmap(globalWarming_df)

<AxesSubplot:ylabel='Country Name'> Out[33]:


```
plt.figure(figsize=(16,9))
sns.heatmap(globalWarming_df, vmin = 0, vmax = 21)
```

Out[34]: <AxesSubplot:ylabel='Country Name'>


```
In [35]: # change heatmap color using cmap

plt.figure(figsize=(16,9))

sns.heatmap(globalWarming_df, cmap="coolwarm")

#Possible values are: Accent, Accent_r, Blues, Blues_r, BrBG, BrBG_r, BuGn, BuGn_r, BuPu,
#PiYG_r, PuBu, PuBuGn, PuBuGn_r, PuBu_r, PuOr, PuOr_r, PuRd, PuRd_r, Purples, Purples_r,
#YlOrBr, YlOrBr_r, YlOrRd, YlOrRd_r, afmhot, afmhot_r, autumn, autumn_r, binary, binary_r
#gist_heat, gist_heat_r, gist_ncar, gist_ncar_r, gist_rainbow, gist_rainbow_r, gist_stern
# mako_r, nipy_spectral, nipy_spectral_r, ocean, ocean_r, pink, pink_r, plasma, plasma_r,
#twilight, twilight r, twilight shifted, twilight shifted r, viridis, viridis r, vlag, vl
```

Out[351: <AxesSubplot:ylabel='Country Name'>


```
In [36]: # annot (annotate) parameter to represent values
    plt.figure(figsize=(16,9))
    sns.heatmap(globalWarming_df, annot = True)
```

Out[36]: <AxesSubplot:ylabel='Country Name'>


```
In [37]: # annot_kws parameter
    plt.figure(figsize=(16,9))
```

Loading [MathJax]/extensions/Safe.js :Size':10,

```
'fontstyle':'italic',
           'color':"k",
           'alpha':0.6,
           'rotation': "horizontal",
           'verticalalignment':'center',
           'backgroundcolor':'w'}
sns.heatmap(globalWarming df, annot = True, annot kws= annot kws)
```

<AxesSubplot:ylabel='Country Name'> Out[37]:


```
In [38]:
          # linewidths parameter - divide each cell of heatmap
          plt.figure(figsize=(16,9))
          sns.heatmap(globalWarming df, linewidths=4,annot=True)
         <AxesSubplot:ylabel='Country Name'>
```

Out[38]:


```
In [39]: # linecolor parameter - change the color of heatmap line
   plt.figure(figsize=(16,9))
   sns.heatmap(globalWarming_df, linewidths=4, linecolor="k",annot=True)
```

Out[39]: <AxesSubplot:ylabel='Country Name'>


```
In [40]: # hide color bar with cbar parameter
    plt.figure(figsize=(16,9))
```

Loading [MathJax]/extensions/Safe.js alWarming_df, cbar = False,annot=True)

United States	20	20	20	20	20	20	19	19	18	17	17	17	16	16	17
United Kingdon	9.2	9.2	8.9	9.1	9	9	8.9	8.6	8.4	7.6	7.9	7.1	7.4	7.1	6.5
India		0.97	0.97	0.99	1	1.1	1.1	1.2	1.3	1.4	1.4	1.5	1.6	1.6	1.7
China		2.7	3	3.5	4	4.5	5	5.3	5.7	6	6.6	7.2	7.4	7.6	7.5
Russian Federation		11	11	11	11	11	12	12	12	11	12	12	13	12	12
Australia		17	17	17	17	17	18	18	18	18	18	18	17	16	15
		6.2	6.1	6.1	6.1	6.1	5.9	5.8	5.7	5.4	5.4	5.1	5.1	5.1	4.6
Nam															
Germany	10	10	10	10	9.9	9.7	9.9	9.5	9.5	8.8	9.3	9.1	9.2	9.4	8.9
Ö Canada	17	17	17	17	17	17	17	17	17	16	16	16			15
Brazi	1.9	1.9	1.8	1.8	1.8	1.9	1.8	1.9	2	1.9	2.1	2.2	2.3	2.5	2.6
Argentina	3.8	3.6	3.3	3.5	4.1	4.1	4.4	4.4	4.7	4.4	4.6	4.6	4.6	4.5	4.7
Pakistar	0.77	0.76	0.79	0.8	0.87	0.89	0.93	0.99	0.97	0.95	0.95	0.93	0.92	0.9	0.9
Nepa	0.13	0.14	0.11	0.11	0.11	0.12	0.099	0.1	0.13	0.16	0.19	0.2	0.21	0.24	0.28
Bangladesh	0.21	0.24	0.25	0.26	0.27	0.28	0.3	0.3	0.33	0.36	0.39	0.41	0.43	0.44	0.46
Japan	9.6	9.5	9.6	9.7	9.9	9.7	9.6	9.8	9.4	8.6	9.1	9.3	9.6	9.8	9.5
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014

```
In [41]:
          # change style and format of color bar with cbar kws parameter
          plt.figure(figsize=(14,14))
          cbar kws = {"orientation":"horizontal",
                      "shrink":1,
                      'extend':'min',
                      'extendfrac':0.1,
                      "ticks":np.arange(0,22),
                      "drawedges": True,
          sns.heatmap(globalWarming_df, cbar_kws=cbar_kws)
          #shrink: To change the size of the color bar
          #extend: To change the end of the color bar like pointed or not.
          #If you want pointed color bar both side then passes value 'both', for left 'min', right
          #extendfrac: To adjust the extension of the color bar.
          #The 'auto' value adjust pointer automatically, 'False' value for no pointer and float va
          #drawedges: To draw lines (edges) on the color bar.
```

Out[41]: <AxesSubplot:ylabel='Country Name'>


```
In [42]: # change y-axis labels using yticklabels parameter
    plt.figure(figsize=(16,9))
    country_code = ['USA', 'GBR', 'IND', 'CHN', 'RUS', 'AUS', 'FRA', 'DEU', 'CAN', 'BRA', 'ARG
    sns.heatmap(globalWarming_df, yticklabels = country_code, xticklabels = np.arange(0,15))
Out[42]: 

Out[42]:
```


Example 1:

```
In [44]:
          # import libraries
          import seaborn as sns # for data visualization
          import matplotlib.pyplot as plt # for data visualization
          import pandas as pd # for data analysis
          # load dataset and create DataFrame ready to create heatmap
          globalWarming df = pd.read csv("E:\\New folder\\Who is responsible for global warming.csv
          globalWarming df = globalWarming df.drop(columns=['Country Code', 'Indicator Name', 'Indi
          # set heatmap size
          plt.figure(figsize= (16,9))
          # create heatmap seaborn
          sns.heatmap(globalWarming df)
          plt.title("Heatmap of 'Who is responsible for global warming'", fontsize = 25)
          plt.xlabel("CO2 emissions (metric tons per capita) Per Year", fontsize = 20)
          plt.ylabel("Country Name", fontsize = 20)
          plt.show()
```


Example 2:

```
In [45]:
          # import libraries
          import seaborn as sns # for data visualization
          import matplotlib.pyplot as plt # for data visualization
          import pandas as pd # for data analysis
          # load dataset and create DataFrame ready to create heatmap
          globalWarming df = pd.read csv("E:\\New folder\\Who is responsible for global warming.csv
          globalWarming df = globalWarming df.drop(columns=['Country Code', 'Indicator Name', 'Indi
          # set heatmap size
          plt.figure(figsize= (16,9))
          # create heatmap seaborn
          cbar kws = {"orientation":"vertical",
                      "shrink":1,
                      'extend':'min',
                      'extendfrac':0.1,
                      "ticks":np.arange(0,22),
                      "drawedges": True,
                     } # color bar keyword arguments
          sns.heatmap(globalWarming df, vmin = 0, vmax = 21, cmap="coolwarm", annot = True, linewid
          plt.title("Heatmap of 'Who is responsible for global warming'", fontsize = 25)
          plt.xlabel("CO2 emissions (metric tons per capita) Per Year", fontsize = 20)
          plt.ylabel("Country Name", fontsize = 20)
          plt.show()
```


2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 CO2 emissions (metric tons per capita) Per Year

21

- 20 - 19

- 18

- 17 - 16

- 15

- 14 - 13

- 12

- 11 - 10

-9

-8 -7

-6 -5

> - 3 - 2

Example 3:

```
In [46]:
          # import libraries
          import seaborn as sns # for data visualization
          import matplotlib.pyplot as plt # for data visualization
          import pandas as pd # for data analysis
          # load dataset and create DataFrame ready to create heatmap
          flights = sns.load dataset("flights")
          flights df = flights.pivot("month", "year", "passengers")
          # set heatmap size
          plt.figure(figsize= (16,9))
          # create heatmap seaborn
          cbar kws = {"shrink":.8,
                      extend':'both'}
          sns.heatmap(flights df, cmap="inferno", annot = True, fmt = 'd', linewidth = 2, cbar kws=
          plt.title("Heatmap of 'Flights' Dataset", fontsize = 25)
          plt.xlabel("Years", fontsize = 20)
          plt.ylabel("Months", fontsize = 20)
          plt.show()
```


Example 4:

```
In [47]:
          # load dataset and create DataFrame ready to create heatmap
          flights = sns.load dataset("flights")
          flights df = flights.pivot("month", "year", "passengers")
          # set heatmap size
          plt.figure(figsize= (16,9))
          # create heatmap seaborn
          # When you want to find what's the relationship between multiple features and which featu
          #Machine Learning model building. Then take correlation of that dataset and visualize by
          cbar kws = {"shrink":.8,
                     'extend':'max',
                     'extendfrac':.2,
                     "drawedges": True
          sns.heatmap(flights df.corr(), cmap="inferno", annot = True, linewidth = 2, cbar kws=cbar
          plt.title("Heatmap Correlation of 'Flights' Dataset", fontsize = 25)
          plt.xlabel("Years", fontsize = 20)
          plt.ylabel("Months", fontsize = 20)
          plt.show()
```

Heatmap Correlation of 'Flights' Dataset 1951 1950 1949 0.97 0.94 0.91 0.91 0.91 0.94 0.93 1 0.95 0.91 0.9 0.89 0.95 1 0.95 0.96 0.88 0.93 0.95 0.94 0.93 0.9 0.93 0.89 0.94 0.95 1 0.92 0.94 0.96 0.94 0.95 0.95 0.91 0.95 0.89 1953 1952 0.91 0.96 0.92 1 0.86 0.94 0.96 0.96 0.96 0.96 0.96 0.93 0.86 0.97 0.88 0.94 1 0.91 0.88 0.93 0.93 0.91 0.9 0.89 1955 1954 Months 0.91 0.93 0.96 0.94 0.91 1 0.99 0.98 0.99 0.96 0.99 0.97 0.91 0.95 0.94 0.96 0.88 0.99 1 0.99 0.98 0.96 0.98 0.97 1956 0.94 0.95 0.94 0.96 0.93 0.98 0.99 1 1 0.98 0.98 0.98 1957 0.95 0.93 0.93 0.93 0.96 0.99 0.98 1 1 0.99 0.99 0.98 1958 0.91 0.9 0.91 0.96 0.91 0.96 0.96 1 0.98 0.99 0.98 0.98 1959 0.9 0.93 0.95 0.96 0.9 0.990.98 0.98 0.99 0.98 1 0.98 096 0.89 0.89 0.89 0.93 0.89 0.97 0.97 0.98 0.98 0.98 0.98 1

- 1.00

- 0.98

- 0.96

-0.94

- 0.92

- 0.90

- 0.88

1954

Years

1955

1956

1957

1958

1959

1960

In [49]:
sns heatmap correlation
#Corelation is a statiscal measure of relationship b/w two variable(X&Y).

Loading [MathJax]/extensions/Safe.js om -1 to 1

1949

1950

1951

1952

1953

```
#-1:Negative(X->Increases,Y->Decreases)
            #0:No effect
            #1:Positive(X->Increases, Y->Increases)
            plt.figure(figsize=(16,9))
            sns.heatmap(globalWarming df.corr(), annot = True)
           <AxesSubplot:>
 Out[49]:
                                                                                                 -1.000
           2000
                                              0.99 0.99 0.99
                                                             0.98 0.98 0.97 0.96 0.96 0.96
                                                                      0.97 0.96 0.96 0.96
           2001
                  1
                       1
                                 1
                                      1
                                           1
                                              0.99
                                                   0.99
                                                        0.99
                                                             0.98 0.98
                                                                                                 -0.995
           2002
                       1
                                 1
                                      1
                                           1
                                               1
                                                   0.99
                                                        0.99
                                                             0.98 0.98 0.97 0.97 0.97 0.97
                       1
                                      1
                                           1
                                               1
                                                    1
                                                             0.98 0.98
                                                                       0.98 0.97 0.97 0.97
                                 1
                                                        0.99
           2003
                                                                                                 -0.990
           2004
                       1
                                      1
                                           1
                                               1
                                                    1
                                                        0.99
                                                             0.99 0.99
                                                                       0.98 0.97 0.98 0.98
                  1
                                 1
                       1
                                      1
                                               1
                                                    1
                                                             0.99 0.99
                                                                       0.98 0.98 0.98 0.98
           2005
                  1
                                 1
                                           1
                                                         1
                                                                                                 - 0.985
                                           1
                                               1
                                                    1
                                                         1
                                                                       0.99 0.98 0.98 0.98
                     0.99
                                 1
                                                             0.99
                                                                 0.99
           2006
                 0.99
           2007
                 0.99 0.99 0.99
                                 1
                                      1
                                           1
                                               1
                                                    1
                                                         1
                                                              1
                                                                   1
                                                                       0.99
                                                                            0.99 0.99 0.99
                                                                                                 - 0.980
                 0.99 0.99 0.99 0.99
                                    0.99
                                           1
                                               1
                                                    1
                                                         1
                                                              1
                                                                   1
                                                                       0.99
                                                                            0.99 0.99 0.99
           2008
                0.98 0.98 0.98 0.98 0.99 0.99
                                                    1
                                                         1
                                                              1
                                                                   1
           2009
                                              0.99
                                                                        1
                                                                            0.99
                                                                                0.99 0.99
                                                                                                 -0.975
           2010
                0.98 0.98 0.98 0.99 0.99
                                              0.99
                                                    1
                                                         1
                                                              1
                                                                   1
                                                                        1
                                                                             1
                                                                                 0.99
                                                                                     0.99
                0.97 0.97 0.97 0.98 0.98 0.98 0.99
                                                   0.99
                                                              1
                                                                   1
                                                                             1
                                                                                  1
                                                                                       1
           2011
                                                        0.99
                                                                        1
                                                                                                 - 0.970
           2012 0.96 0.96 0.97 0.97 0.97 0.98 0.98
                                                                             1
                                                   0.99
                                                        0.99
                                                             0.99
                                                                   1
                                                                        1
                                                                                  1
                                                                                       1
           2013 0.96 0.96 0.97 0.97 0.98 0.98
                                             0.98
                                                   0.99
                                                        0.99
                                                             0.99
                                                                  0.99
                                                                        1
                                                                             1
                                                                                  1
                                                                                       1
                                                                                                 - 0.965
                0.96 0.96 0.97 0.97 0.98 0.98 0.98
                                                  0.99
                                                        0.99
                                                                                  1
                                                                                       1
           2014
                                                             0.99
                                                                  0.99
                                                                        1
                                                                             1
                2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
 In [50]:
            from sklearn.datasets import load breast cancer
            cancer dataset = load breast cancer()
            cancer dataset
           {'data': array([[1.799e+01, 1.038e+01, 1.228e+02, ..., 2.654e-01, 4.601e-01,
 Out[501:
                    1.189e-01],
                   [2.057e+01, 1.777e+01, 1.329e+02, ..., 1.860e-01, 2.750e-01,
                   [1.969e+01, 2.125e+01, 1.300e+02, ..., 2.430e-01, 3.613e-01,
                    8.758e-02],
                   [1.660e+01, 2.808e+01, 1.083e+02, ..., 1.418e-01, 2.218e-01,
                    7.820e-02],
                   [2.060e+01, 2.933e+01, 1.401e+02, ..., 2.650e-01, 4.087e-01,
                    1.240e-01],
                   [7.760e+00, 2.454e+01, 4.792e+01, ..., 0.000e+00, 2.871e-01,
                    7.039e-02]]),
            0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,
                   1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,
                   1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,
                   1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,
                   0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
                   1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,
                   1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,
                   <u>0. 0. 1. 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, </u>
Loading [MathJax]/extensions/Safe.js
```

```
1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,
       1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0,
       0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
       0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,
       1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1,
       1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1,
       1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
       1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
       1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1,
       1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1]),
 'frame': None,
 'target names': array(['malignant', 'benign'], dtype='<U9'),
 'DESCR': '.. breast cancer dataset:\n\nBreast cancer wisconsin (diagnostic) dataset\n---
of Instances: 569\n\n :Number of Attributes: 30 numeric, predictive attributes and the
class\n\n :Attribute Information:\n - radius (mean of distances from center to p
oints on the perimeter)\n

    texture (standard deviation of gray-scale values)\n

                                - smoothness (local variation in radius lengths)\n
- perimeter\n
               - area∖n
- compactness (perimeter^2 / area - 1.0)\n - concavity (severity of concave portion
                        - concave points (number of concave portions of the contour)\n
s of the contour)\n
symmetry\n
                  - fractal dimension ("coastline approximation" - 1)\n\n
n, standard error, and "worst" or largest (mean of the three\n
                                                              worst/largest value
s) of these features were computed for each image,\n resulting in 30 features. For
instance, field 0 is Mean Radius, field\n
                                            10 is Radius SE, field 20 is Worst Radiu
            - class:\n
                                    WDBC-Malignant\n
                                                                   - WDBC-Benian\n
     :Summary Statistics:\n\n
                              \n
             radius (mean):
Min
      Max\n
6.981 28.11\n
                                                  9.71
                                                         39.28\n
                texture (mean):
                                                                   perimeter (mea
                     43.79 188.5\n area (mean):
                                                                         143.5 250
1.0\n
                                         0.053 0.163\n compactness (mean):
        smoothness (mean):
                                                  0.0
0.019 0.345\n concavity (mean):
                                                         0.427\n concave points
(mean):
                    0.0
                           0.201\n
                                     symmetry (mean):
                                                                       0.106 0.30
                                               0.097\n
4\n
      fractal dimension (mean):
                                        0.05
                                                         radius (standard error):
0.112 2.873\n texture (standard error):
                                                  0.36
                                                         4.885\n
                                                                   perimeter (stand
                    0.757 21.98\n
                                    area (standard error):
ard error):
                                                                       6.802 542.2
\n
     smoothness (standard error):
                                       0.002 0.031\n compactness (standard erro
r):
          0.002 0.135\n concavity (standard error):
                                                              0.0
                                                                    0.396\n
ave points (standard error): 0.0
                                     0.053\n symmetry (standard error):
0.008 0.079\n
             fractal dimension (standard error):
                                                  0.001 0.03\n
                                                                  radius (worst):
7.93
      36.04\n
                texture (worst):
                                                   12.02 49.54\n
                                                                  perimeter (wors
t):
                    50.41 251.2\n area (worst):
                                                                        185.2 425
4.0\n
        smoothness (worst):
                                          0.071 0.223\n
                                                           compactness (worst):
                                                         1.252\n concave points
0.027 	1.058\n concavity (worst):
                                                  0.0
(worst):
                    0.0 0.291\n
                                   symmetry (worst):
                                                                        0.156 0.66
      fractal dimension (worst):
                                        0.055 0.208\n
                                                         _____
                           :Missing Attribute Values: None\n\n :Class Distributio
========\n\n
n: 212 - Malignant, 357 - Benign\n\n :Creator: Dr. William H. Wolberg, W. Nick Street,
                       :Donor: Nick Street\n\n :Date: November, 1995\n\nThis is a c
Olvi L. Mangasarian\n\n
opy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets.\nhttps://goo.gl/U2Uwz2\n\nFea
tures are computed from a digitized image of a fine needle\naspirate (FNA) of a breast mas
s. They describe\ncharacteristics of the cell nuclei present in the image.\n\nSeparating
plane described above was obtained using\nMultisurface Method-Tree (MSM-T) [K. P. Bennett,
"Decision Tree\nConstruction Via Linear Programming." Proceedings of the 4th\nMidwest Arti
ficial Intelligence and Cognitive Science Society, \npp. 97-101, 1992], a classification me
thod which uses linear\nprogramming to construct a decision tree. Relevant features\nwere
selected using an exhaustive search in the space of 1-4\nfeatures and 1-3 separating plane
s.\n\nThe actual linear program used to obtain the separating plane\nin the 3-dimensional
<u>space is that described in:</u>\n[K. P. Bennett and O. L. Mangasarian: "Robust Linear\nProgram
```

```
ming Discrimination of Two Linearly Inseparable Sets",\nOptimization Methods and Software
1, 1992, 23-34].\n\nThis database is also available through the UW CS ftp server:\n\nftp f
tp.cs.wisc.edu\ncd math-prog/cpo-dataset/machine-learn/WDBC/\n\n.. topic:: References\n\n
- W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction \n
east tumor diagnosis. IS&T/SPIE 1993 International Symposium on \n
                                                                      Electronic Imaging:
Science and Technology, volume 1905, pages 861-870,\n
                                                         San Jose, CA, 1993.\n
angasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and \n
                                                                             prognosis via
linear programming. Operations Research, 43(4), pages 570-577, \n
                                                                      July-August 1995.\n
- W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques\n
agnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) \n
                                                                                 163-17
1.',
```

\cap		+	Γ	5	1	1	÷
U	u	L	L	J	+	1	

:	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	di
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597	
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809	
5	12.45	15.70	82.57	477.1	0.12780	0.17000	0.1578	0.08089	0.2087	

 $6 \text{ rows} \times 31 \text{ columns}$

```
In [52]: #https://indianaiproduction.com/seaborn-pairplot/
#To see more on pairplots use it cuz it takes much time to load
```