



# ToRA: A Tool-Integrated Reasoning Agent for Mathematical Problem Solving

Zhibin Gou<sup>1,2</sup> Yujiu Yang<sup>1</sup> Zhihong Shao<sup>1,2</sup> Minlie Huang<sup>1</sup> Yeyun Gong<sup>2</sup> Nan Duan<sup>2</sup> Yelong Shen<sup>2</sup> Weizhu Chen<sup>2</sup>

<sup>1</sup>Tsinghua University

<sup>2</sup>Microsoft



#### Background



#### **LLM4Math**

- > (a). Rationale based (e.g. CoT prompting)
  - Semantic analysis, planning, and abstract reasoning...
  - Computation, symbolic manipulation, and algorithmic processing
- > (b). Program based (e.g. PAL prompting)
  - Rigorous operations, outsource intricate calculations to specialized tools like equation solvers

How about (a) + (b) ? 
$$\Rightarrow$$



### **Background**

高級人工智能学院 Gaoling School of Artificial Intelligence

Problem: Suppose that the sum of the squares of two complex numbers x and y is 7 and the sum of their cubes is 10. List all possible values for x + y, separated by commas.

We are given that  $x^2 + y^2 = 7$  and  $x^3 + y^3 = 10$ . We can factor  $x^3 + y^3$  to get  $(x + y)(x^2 - xy + y^2)$ .

Thus, we can write 10 = (x + y)(7). It follows that x + y must divide 10.

The only possibilities are that x + y is 1, 2, 5 or 10.

#### import math

def solution():
 x = symbols('x'), y = symbols('y')

 $x^{**}2 + y^{**}2 = 7$  $x^{**}3 + y^{**}3 = 10$ 

x = (-1 + math.sqrt(17)) / 2y = (-1 - math.sqrt(17)) / 2

# Get all possible values for x+y result = [x + y, -x - y]



>>> SyntaxError: cannot assign to expression.



(a) Rationale-based



(b) Program-based



Let's use 'Sympy' to calculate and print all possible values for x + y,

 $r_1$ 

 $a_1$ 

from sympy import symbols, Eq, solve, simplify

def possible\_values():

x, y = symbols('x y')

eq1 = Eq $(x^*2 + y^*2, 7)$ 

eq2 = Eq $(x^*3 + y^*3, 10)$ 

solutions = solve((eq1,eq2), (x, y))

sums = [simplify(sol[0] + sol[1]) for sol in

solutions]

return sums

print(possible\_values())



Removing duplicates, the possible values for x + y are \boxed{-5, 1, 4}.

V



(c) Tool-integrated Reasoning

(Format used by ToRA)



#### Contributions



- ➤ They propose TORA, a series of Tool-integrated Reasoning Agents designed to solve challenging mathematical problems.
  - Seamlessly integrating natural language reasoning with the utilization of tools.
  - Curate interactive tool-use trajectories on mathematical datasets. Use output space shaping to further refine models.
  - Significantly outperform open-source models. On MATH, Significantly outperform **GPT-4**'s CoT result, and is competitive with **GPT-4** solving problems with program.





#### **Method: Overview**





- ①. Prompt LLMs like **GPT-4** to generate Tool-integrated Reasoning trajectories (**TORA-CORPUS**) and use this corpus to fine-tune a model **M**.
- ②. Sample diverse tool-use trajectories with **M**, keep the valid ones, correct the invalid ones with a teacher model. Retrain **M** with all data.





①. Prompt LLMs like **GPT-4** to generate Tool-integrated Reasoning trajectories (**TORA-CORPUS**) and use this corpus to fine-tune a model **M**.

Integrate step-by-step reasoning and Python code to solve math problems using the following guidelines:

- Analyze the question and write functions to solve the problem; the function should not take any arguments.
- Present the final result in LaTeX using a '\boxed{}' without any units.
- Utilize the 'pi' symbol and 'Rational' from Sympy for \$\pi\$ and fractions, and simplify all fractions and square roots without converting them to decimal values.

Here are some examples you may refer to:

---

Question: Convert the point \$(0, -3 \sqrt{3}, 3)\$ in rectangular coordinates to spherical coordinates. Enter your answer in the form \$ (\rho,\theta,\phi),\$ where \$\rho > 0,\$ \$0 \le \theta < 2 \pi,\$ and \$0 \le \phi \le \pi.\$



```
Solution:
To convert the point (x, y, z) in rectangular coordinates to spherical
   coordinates $(\rho, \theta, \phi)$, we use the following formulas:
1. \rho = \sqrt{x^2 + y^2 + z^2}
2. \theta = \arctan{\frac{y}{x}}
3. \phi = \arccos{\frac{z}{\rho}}
Let's write a function:
'''python
from sympy import sqrt, atan2, acos, pi
def rectangular_to_spherical():
  x, y, z = 0, -3*sqrt(3), 3
  rho = sqrt(x**2 + y**2 + z**2)
  theta = atan2(y, x)
  phi = acos(z/rho)
  return rho, theta, phi
spherical_coordinates = rectangular_to_spherical()
print (spherical_coordinates)
'''output
(6, -pi/2, pi/3)
The required form of the answer is $(\rho, \theta, \phi)$, where $\rho >
   0$, $0 \le \theta < 2\pi$, and $0 \le \phi \le \pi$. Since our
   initial output has \theta = -\pi/2, which doesn't meet the
   condition for $\theta$, we add $2\pi$ to adjust its value.
```

Hence, the spherical coordinates for the point  $(0, -3\sqrt{3}, 3)$  are \$

\boxed{(6, \frac{3\pi}{2}, \frac{\pi}{3})}\$.





#### Algorithm 1 Inference of Tool-Integrated Reasoning

**Require:** problem q, model  $\mathcal{G}$ , prompt  $\wp$ , external tools  $\mathcal{E}$ , stop condition  $Stop(\cdot)$ , maximum iteration rounds n 1:  $\tau_0 \leftarrow$  ""

- 2: for  $i \leftarrow 1$  to n do
- 3:  $r_i \sim \mathbb{P}_{\mathcal{G}}(\cdot | \wp \oplus q \oplus \tau_{i-1})$
- 4: **if**  $Stop(r_i)$  **then**
- 5: **return**  $\tau_{i-1} \oplus r_i$
- 6: end if
- 7:  $a_i \sim \mathbb{P}_{\mathcal{G}}(\cdot|\wp \oplus q \oplus \tau_{i-1} \oplus r_i)$
- 8:  $o_i \leftarrow \mathcal{E}(a_i)$
- 9:  $\tau_i \leftarrow \tau_{i-1} \oplus r_i \oplus a_i \oplus o_i$
- 10: end for
- 11: return  $\tau_n$

- ⊳ Program Generation (Eq. 2)
  - ▶ Tool Execution

$$\mathcal{M} = \arg\min_{\theta} \sum_{i=1}^{n-1} -\log \mathbb{P}_{\theta}(r_{i+1}a_{i+1}|q, r_{1}...o_{i})$$

 $\tau_i$ : trajectory until *i*-th step

 $r_i$ : natural language

 $a_i$ : program

 $o_i$ : output





②. Sample diverse tool-use trajectories with M, keep the valid ones, correct the invalid ones with a teacher model. Retrain M with all data. (GPT4  $\Rightarrow$  M)



Observe that trajectories with wrong answers are mostly incorrect **halfway**, and the preceding reasoning is still plausible.





| Model              | Size      | Tools | ZS* | GSM8k | MATH ✓   | GSM-Hard<br>× | SVAMP         | TabMWP<br>× | ASDiv    | MAWPS | AVG        |
|--------------------|-----------|-------|-----|-------|----------|---------------|---------------|-------------|----------|-------|------------|
| Used for training? |           |       |     |       |          |               |               |             |          |       |            |
|                    |           |       |     |       | Propriet | ary Models    |               |             |          |       |            |
| GPT-4              |           | X     | X   | 92.0  | 42.5     | 64.7          | 93.1          | 67.1        | 91.3     | 97.6  | 78.3       |
| GPT-4 (PAL)        | -         | 1     | X   | 94.2  | 51.8     | 77.6          | 94.8          | 95.9        | 92.6     | 97.7  | 86.4       |
| ChatGPT            |           | X     | X   | 80.8  | 35.5     | 55.9          | 83.0          | 69.1        | 87.3     | 94.6  | 72.3       |
| ChatGPT (PAL)      | -         | 1     | X   | 78.6  | 38.7     | 67.6          | 77.8          | 79.9        | 81.0     | 89.4  | 73.3       |
| Claude-2           | -         | X     | X   | 85.2  | 32.5     | -             | -             | -           | -        | -     | -          |
| PaLM-2             | 540B      | X     | X   | 80.7  | 34.3     | -             | -             | -           | -        | -     | -          |
|                    |           |       |     |       | Open-So  | urce Models   |               |             |          |       |            |
| LLaMA-2            | 7B        | X     | X   | 13.3  | 4.1      | 7.8           | 38.0          | 31.1        | 50.7     | 60.9  | 29.4       |
| LLaMA-2 SFT        | 7B        | X     | 1   | 41.3  | 7.2      | 16.1          | 31.9          | 27.8        | 47.4     | 60.0  | 33.1       |
| LLaMA-2 RFT        | 7B        | X     | 1   | 51.2  | -        | -             | 100 Table     | -           |          | -     | -          |
| Platypus-2         | 7B        | X     | X   | 14.4  | 5.4      | 8.6           | 36.7          | 26.5        | 47.9     | 58.4  | 28.3       |
| WizardMath         | 7B        | X     | 1   | 54.9  | 10.7     | 20.6          | 57.3          | 38.1        | 59.1     | 73.7  | 44.9       |
| CodeLLaMA (PAL)    | 7B        | 1     | X   | 34.0  | 16.6     | 33.6          | 59.0          | 47.3        | 61.4     | 79.6  | 47.4       |
| Toolformer†        | <b>7B</b> | 1     | 1   | -     | -        | -             | 29.4          | -           | 40.4     | 44.0  | -          |
| TORA 🚳             | 7B        | 1     | 1   | 68.8  | 40.1     | 54.6          | 68.2          | 42.4        | 73.9     | 88.8  | 62.4       |
| TORA-CODE          | <b>7B</b> | 1     | 1   | 72.6  | 44.6     | 56.0          | 70.4          | 51.6        | 78.7     | 91.3  | 66.5 (+19) |
| LLaMA-2            | 13B       | X     | X   | 24.3  | 6.3      | 13.6          | 43.1          | 39.5        | 56.3     | 70.4  | 36.2       |
| LLaMA-2 SFT        | 13B       | X     | 1   | 51.1  | 9.2      | 22.3          | 46.3          | 35.8        | 58.6     | 75.0  | 42.6       |
| LLaMA-2 RFT        | 13B       | X     | 1   | 55.3  |          | -             | 10-11-00-20-4 | -           | man Town |       | -          |
| Platypus-2         | 13B       | X     | X   | 23.7  | 7.1      | 14.3          | 50.7          | 45.3        | 55.1     | 69.6  | 38.0       |
| WizardMath         | 13B       | X     | 1   | 63.9  | 14.0     | 28.4          | 64.3          | 46.7        | 65.8     | 79.7  | 51.8       |
| CodeLLaMA (PAL)    | 13B       | 1     | X   | 39.9  | 19.9     | 39.0          | 62.4          | <u>59.5</u> | 65.3     | 86.0  | 53.1       |
| TORA 🚳             | 13B       | 1     | 1   | 72.7  | 43.0     | 57.3          | 72.9          | 47.2        | 77.2     | 91.3  | 65.9       |
| TORA-CODE          | 13B       | 1     | 1   | 75.8  | 48.1     | 60.5          | 75.7          | 65.4        | 81.4     | 92.5  | 71.3 (+18  |
| LLaMA-1 RFT        | 34B       | X     | 1   | 57.9  | -        | -             | -             | -           | -        | -     | -          |
| CodeLLaMA (PAL)    | 34B       | 1     | X   | 53.3  | 23.9     | 49.4          | 71.0          | 63.1        | 72.4     | 91.5  | 60.7       |
| TORA-CODE          | 34B       | 1     | 1   | 80.7  | 50.8     | 63.7          | 80.5          | 70.5        | 84.2     | 93.3  | 74.8 (+14) |
| LLaMA-2            | 70B       | X     | X   | 57.8  | 14.4     | 36.0          | 73.6          | 57.5        | 76.0     | 92.4  | 58.2       |
| LLaMA-2 SFT        | 70B       | X     | 1   | 69.3  | 14.9     | 39.0          | 64.0          | 53.0        | 71.3     | 84.8  | 56.6       |
| LLaMA-2 RFT        | 70B       | X     | /   | 64.8  |          | - 7           | -             |             | -        | -     | -          |
| Platypus-2         | 70B       | X     | X   | 45.9  | 15.0     | 24.6          | 74.3          | 47.3        | 72.7     | 91.1  | 53.0       |
| WizardMath         | 70B       | X     | 1   | 81.6  | 22.7     | 50.3          | 80.0          | 49.8        | 76.2     | 86.2  | 63.8       |
| LLaMA-2 (PAL)      | 70B       | 1     | X   | 55.2  | 18.3     | 50.0          | 74.6          | <u>59.5</u> | 71.9     | 92.8  | 60.3       |
| TORA 🚳             | 70B       | 1     | 1   | 84.3  | 49.7     | 67.2          | 82.7          | 74.0        | 86.8     | 93.8  | 76.9 (+13) |





### **Experiments**



#### > Ablation Study.





## **Experiments**



| Model                            | Size | Tool | Intermediate<br>Algebra | Precalculus  | Geometry      | Number<br>Theory | Counting & Probability | Prealgebra   | Algebra      | Overall      |
|----------------------------------|------|------|-------------------------|--------------|---------------|------------------|------------------------|--------------|--------------|--------------|
|                                  |      |      |                         |              | Proprietary M | odels            |                        |              |              |              |
| ChatGPT (PAL) 🥏<br>GPT-4 (PAL) 👶 | -    | 1    | 18.5<br>32.8            | 19.2<br>29.3 | 23.2<br>38.0  | 48.5<br>58.7     | 43.0<br>61.0           | 62.7<br>73.9 | 45.4<br>59.1 | 38.7<br>51.8 |
|                                  |      |      |                         | (            | pen-Source N  | odels            |                        |              |              |              |
| WizarMath                        | 7B   | X    | 6.2                     | 6.0          | 6.5           | 7.6              | 9.5                    | 18.1         | 16.3         | 11.2         |
| TORA-CODE                        | 7B   | 1    | 35.1 (+28.9)            | 31.0 (+25.0) | 24.0 (+17.5)  | 50.7 (+43.1)     | 30.6 (+21.1)           | 55.0 (+36.9) | 61.7 (+45.4) | 44.6 (+33.4) |
| w/o Shaping                      | 7B   | 1    | 29.7 (-5.4)             | 25.1 (-5.9)  | 17.7 (-6.3)   | 46.9 (-3.8)      | 32.3 (+1.7)            | 51.9 (-3.1)  | 55.7 (-6.0)  | 40.2 (-4.4)  |
| w/o Rationale                    | 7B   | /    | 25.5 (-9.6)             | 14.7 (-16.3) | 15.4 (-8.6)   | 45.9 (-4.8)      | 29.7 (-0.9)            | 51.0 (-4.0)  | 52.4 (-9.3)  | 36.8 (-7.8)  |
| WizarMath                        | 13B  | X    | 6.4                     | 6.6          | 11.5          | 9.6              | 11.0                   | 28.5         | 21.1         | 15.0         |
| TORA-CODE                        | 13B  | 1    | 35.7 (+29.3)            | 31.1 (+24.5) | 25.7 (+14.2)  | 55.6 (+46.0)     | 39.5 (+28.5)           | 58.7 (+30.2) | 66.7 (+45.6) | 48.1 (+33.1) |
| w/o Shaping                      | 13B  | 1    | 32.8 (-2.9)             | 26.0 (-5.1)  | 24.0 (-1.7)   | 52.6 (-3.0)      | 38.4 (-1.1)            | 55.6 (-3.1)  | 61.2 (-5.5)  | 44.6 (-3.5)  |
| w/o Rationale                    | 13B  | 1    | 27.1 (-8.6)             | 15.8 (-15.3) | 16.3 (-9.4)   | 50.4 (-5.2)      | 36.9 (-2.6)            | 55.3 (-3.4)  | 56.5 (-10.2) | 40.2 (-7.9)  |
| TORA-CODE                        | 34B  | 1    | 38.9                    | 34.6         | 27.3          | 57.8             | 41.4                   | 63.7         | 67.7         | 50.8         |
| w/o Shaping                      | 34B  | /    | 34.0 (-4.9)             | 29.9 (-4.7)  | 24.6 (-2.7)   | 55.6 (-2.2)      | 41.6 (+0.2)            | 63.8 (+0.1)  | 61.4 (-6.3)  | 47.4 (-3.4)  |
| w/o Rationale                    | 34B  | 1    | 28.3 (-10.6)            | 15.8 (-18.8) | 18.0 (-9.3)   | 52.4 (-5.4)      | 40.7 (-0.7)            | 58.6 (-5.1)  | 57.5 (-10.2) | 41.9 (-8.9)  |
| WizarMath                        | 70B  | X    | 9.1                     | 13.4         | 16.9          | 16.5             | 19.2                   | 42.7         | 35.0         | 24.1         |
| TORA 🚳                           | 70B  | 1    | 37.1 (+28)              | 30.4 (+17)   | 30.1 (+13.2)  | 54.6 (+38.1)     | 40.3 (+21.1)           | 64.9 (+22.2) | 66.6 (+31.6) | 49.7 (+25.6) |
| w/o Shaping                      | 70B  | /    | 33.8(-3.3)              | 28.9(-1.5)   | 27.1(-3)      | 53.0(-1.6)       | 38.0(-2.3)             | 62.2(-2.7)   | 64.2(-2.4)   | 47.3(-2.4)   |
| w/o Rationale                    | 70B  | /    | 26.7(-10.4)             | 14.7(-15.7)  | 20.3(-9.8)    | 48.9(-5.7)       | 39.2(-1.1)             | 59.8(-5.1)   | 57.6(-9)     | 41.5(-8.2)   |



#### Conclusion



- ➤ Presents TORA, a series of novel Tool-integrated Reasoning Agents that synergistically combines natural language rationale with program-based tool-use for mathematical problem solving.
- ➤ TORA achieves state-ofthe-art performance on 10 diverse mathematical reasoning tasks, substantially outperforming existing rationale-based and program-based approaches.





