Medical/Bio Research Topics I: Week 06 (11.04.2024)

Functional MRI (2): Data Processing

기능 자기공명영상 (2): 데이터 처리 방법

Brain Mapping with functional MRI (fMRI)

Task-based fMRI

Resting state fMRI

Analytical Variability in fMRI

- Variability of reported results [Botvinik-Nezer et al, 2020]
 - Resulted from different analysis pipelines
 - As strong factors, spatial smoothness, software package used, and methods of multiple test correction

[Botvinik-Nezer et al, 2020]

Analytical variability in whole brain statistical results

Preprocessing

- Numerous steps to clean and standardise fMRI data before modelling and statistical analysis based on the extraction of signals that are faithful to underlying neuronal activity
 - Identifies nuisance (non-neuronal) sources of variability and reduces their effect on fMRI data
 - Addresses particular imaging artifacts and the anatomical localisation of signals

- After preprocessing, it is assumed that fMRI signals are anatomically localised in terms of coordinates
 - Correction for unwanted variation
 - Difference in slice timing
 - Head motion
 - Inhomogeneity (small local inhomogeneities in the magnetic field based on differences in magnetic susceptibility between adjacent tissues or materials (such as air and brain tissue))-induced distortion
 - Normalisation
 - Smoothing

Frame-wise displacement

Estimated head motion

Normalisation and smoothing

Task-based fMRI: Segregation Analysis

- Mass univariate statistical analysis
- General linear model: $y = X\beta + e$
 - Observed fMRI time series ~ predicted fMRI time series + nuisance variables + error
 - y: observed fMRI time series
 - X: design matrix
 - **β**: parameter estimate
 - *e*: error

General linear model for functional segregation analysis in task-based fMRI

- Search of local brain activity
 - By statistical inferences under the null-hypothesis that predicted fMRI time series are no closer to observed fMRI time series than expected by chance
 - Requires correction for multiple tests

Thresholded t map

$$t = \frac{c^T \hat{\beta}}{\sqrt{\operatorname{var}(e) c^T (X^T X)^{-1} c^T}}$$

Search for local brain activity by statistical inferences

[Task-based fMRI: Segregation Analysis]

- 124 scans (372 seconds)
- Tasks
 - Motor execution
 - Motor imagery

[Park et al., 2015]

Predicted fMRI time series

- Input to machine learning models
 - Table of voxel-wise or region-wise activity values

Brain activity map

Resting State fMRI: Segregation Analysis

- Regional homogeneity [Zang et al., 2004]
 - Synchronization of time series between a given voxel and its neighbours
 - Neighbours: K nearest neighbours
 - Synchronization: Kendall's coefficient of concordance (KCC)

$$ext{KCC} = rac{\displaystyle\sum_{i=1}^{n} R_i^2 - n(\overline{R})^2}{rac{1}{12} K^2(n^3 - n)} = 12 rac{\displaystyle\sum_{i=1}^{n} \left(\overline{R}_i
ight)^2}{(n^3 - n)} - 3 rac{(n+1)}{(n-1)}$$

[https://fcp-indi.github.io/docs/latest/user/reho]

Different definitions of nearest neighbours

- Based on the hypothesis that intrinsic brain activity is manifested by clusters of voxels rather than single voxels
- Requires no pre-defined voxel or region
- Provides information about the local activity of regions throughout the brain

- Seed-based correlation [Biswal et al., 1995]
 - Synchronization of time series between a seed and all other voxels in the brain
 - Seed: pre-defined voxel or region
 - Synchronization: statistical association, particularly correlation
 - Based on the hypothesis that brain regions with similar activity patterns are likely to be communicating and sharing information
 - Often used to explore a set of brain regions that share similar patterns of activity

Extracting fMRI time series from the seed (primary motor cortex)

Seed-based correlation for the primary motor cortex

[Cousijn et al., 2014]

Time series synchronization explored by correlation with different seeds

- Independent component
 - Statistical source or factor that independent component analysis (ICA) aims to extract from multivariate data
 - Spatial map and its time course separated from fMRI data
 - Based on the hypothesis that the observed data are linear mixtures of the unknown independent components

[https://vocal.com/blind-signal-separation/independent-component-analysis/]

Independent component analysis for the cocktail party problem

[Beckmann et al., 2005]

Time series synchronization explored by independent component analysis (1)

[De Luca et al., 2006]

Time series synchronization explored by independent component analysis (2)

[Damoiseaux et al., 2006]

Time series synchronization explored by independent component analysis (3)

[Chen et al., 2008]

[Resting State fMRI: Segregation Analysis]

100 scans (200 seconds)

Centre voxel

Nearest neighbours

Regional homogeneity

Seed: posterior cingulate gyrus

Correlation with the posterior cingulate gyrus: default mode network

[Statistical Analysis of Resting State fMRI]

Regional homogeneity ~

```
Age +
```

Sex +

Education year +

Memory performance

Design matrix

Output Regression

Positive correlaton

Negative correlation

Correlation with the posterior cingulate gyrus ~

```
Age +
```

Sex +

Education year +

Memory performance

Output Regression

Positive correlaton

Negative correlation

- Input to machine learning models
 - Table of voxel-wise or region-wise synchronization (regional homogeneity, seed-based correlation, or independent component) values

 Time series synchronization (regional homogeneity, seed-based correlation, or independent component) map

Resting State fMRI: Integration Analysis

- Network
 - Set of nodes and edges
 - Nodes: pre-defined regions
 - Edges: connectivity (correlation or causality) between regions

[Honey et al., 2007]

Modes of brain connectivity

Pair-wise correlation of time series

Functional network or connectome

- Input to machine learning models
 - Table of region-to-region connectivity (correlation or causality)
 values

Functional network map