PCT

世界知的所有権機関 際事務局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07C 235/38, C07D 207/33, 209/16, 209/18, 213/56, 239/26, 295/12, 303/36, 307/52, 307/54, 333/20, 333/24, A61K 31/13, 31/165, 31/17, 31/18, 31/335, 31/34, 31/38, 31/40, 31/44, 31/445, 31/495, 31/505, 31/535

(11) 国際公開番号

WO99/62867

(43) 国際公開日

1999年12月9日(09.12.99)

(21) 国際出願番号

PCT/JP99/02935

A1

(22) 国際出願日

1999年6月2日(02.06.99)

(30) 優先権データ

特願平10/154325

1998年6月3日(03.06.98)

特願平11/107647

1999年4月15日(15.04.99)

(71) 出願人(米国を除くすべての指定国について)

日産化学工業株式会社

(NISSAN CHEMICAL INDUSTRIES, LTD.)[JP/JP]

〒101-0054 東京都千代田区神田錦町3丁目7番地1 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

谷川啓造(TANIKAWA, Keizo)[JP/JP]

佐藤雅之(SATO, Masayuki)[JP/JP]

柳原一史(YANAGIHARA, Kazufumi)[JP/JP]

繁田幸宏(SHIGETA, Yukihiro)[JP/JP]

〒274-8507 千葉県船橋市坪井町722番地1

日産化学工業株式会社 中央研究所内 Chiba, (JP)

山下 徹(YAMASHITA, Toru)[JP/JP]

〒349-0294 埼玉県南埼玉郡白岡町大字白岡1470

日産化学工業株式会社 生物科学研究所内 Saitama, (JP)

生頼一彦(OHRAI, Kazuhiko)[JP/JP]

〒274-8507 千葉県船橋市坪井町722番地1

日産化学工業株式会社 中央研究所内 Chiba, (JP)

(74) 代理人

JP

粤 経夫, 外(HANABUSA, Tsuneo et al.)

〒101-0062 東京都千代田区神田駿河台1丁目6番地 お茶の水スクエアB館 萼特許事務所内 Tokyo、(JP)

AU, BR, CA, CN, CZ, IL, KR, LT, NO, NZ, RO, RU, SK, US, ZA, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI,

FR, GB, GR, IE, IT, LU, MC, NL, PT, SE)

添付公開書類

国際調査報告書

(54)Title: INDAN DERIVATIVES

(54)発明の名称 インダン誘導体

$$W^{-(CH_2)} \xrightarrow{\mathbf{R}^4} X^{-\mathbf{Y}-\mathbf{Z}} \xrightarrow{\mathbf{R}^6} \mathbb{R}^5$$

$$\mathbb{R}^1 \qquad \mathbb{R}^2 \mathbb{R}^3 \qquad (1)$$

(57) Abstract

Cardiac failure remedies containing as the active ingredient indan derivatives represented by general formula (I) or medicinally acceptable salts thereof, wherein R¹ is hydrogen, nitro, cyano, amino, C₁-C₆ alkylcarbonylamino or the like; R² and R³ are each independently C₁-C₆ alkyl or the like; R⁴ is hydrogen, or alternatively R⁴ together with R⁵ represents a bond or oxygen; R⁵ is hydrogen, or alternatively R⁵ together with R⁴ represents a bond or oxygen; R⁶ is hydrogen, hydroxyl, NR⁷R⁸ or the like; n is an integer of 0 to 4; X is C=O, CH₂, SO₂ or NR¹⁶; when X is C=O, CH₂ or SO₂, Y is NR¹⁷, while when X is NR¹⁶, Y is C=O; when Y is NR¹⁷, Z is absent, while when Y is C=O, Z is NR¹⁸; and W is aryl, a lactam ring or the like.

(57)要約

式(1)

$$W-(CH_2)_{\overline{n}}-X-Y-Z \qquad R^6 R^5$$

$$R^1 \qquad R^2 R^3 \qquad (1)$$

【式中、R¹は、水素原子、ニトロ基、シアノ基、アミノ基、C₁-。アルキルカルボニルアミノ基等を意味し、R゚及びR゚は、それぞれ独立してC₁-。アルキル基等を意味し、R゚は、水酸基若しくはC₁-。アルキルカルボニルオキシ基を意味するか又はR゚と一緒になって結合又は酸素原子を意味し、R゚は、水素原子を意味するか又はR'と一緒になって結合又は酸素原子を意味し、R゚は、水素原子、水酸基又はNR'R゚等を意味し、nは、0~4の整数を意味し、Xは、C=0、CH₂、SO₂又はNR¹゚を意味し、Yは、XがC=0、CH₂又はSO₂のとき、NR¹'を意味し、XがNR¹゚のとき、C=0を意味し、Zは、YがNR¹'のとき、存在せず、YがC=0のとき、NR¹'を意味し、Wは、芳香族基又はラクタム環等を意味する。〕により表されるインダン誘導体又はその医薬的に許容され得る塩を有効成分とする心不全治療薬の提供。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

AEAAAABABEFGAFGHIMATUZAAABBBEFFGHIMATUZAAAABBBFFGJAYAAAABBBFFGHIMATUZAAAABBBFFGHIMATUZAAAABBBFFGHIMATUZAAAABBBFFGHIMATUZAAAABABABAAAAABABABAAAAAAAAAAAAAAAAA	DEEFFGGGGGGGGHHILLITER アンフガ英ググガガギギギクハイアイスンイタ本ニ・ ドエスフフガ英ググガガギギギクハイアイスンイタ本ニ・ アンニニリロンンイスンイタ本ニ・ アンニーリロンンイスンイタ本ニ・ アンニーリーシンル ン アンニーリーシンル ン アンテアガドルラエ ラア ア ア・ヤチリネラエ ラア ア ア アート・イアイロケー ド アーシンル ン ア ア アート・イアイ トラア アート・ ア ア アート・イアイ トラア アート・ ア ア アート・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	K Z C L L L K C C L L L K C C L L L K R L L X D Y D Y D Y D Y D Y D Y D Y D Y D Y D	RSSSSSSTTTTTTTTUUUUVYUARSSSSSSSSSTTTTTTTTTUUUVYUARSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
CU キューバ	JP 日本	NL オランダ NO ノールウェー NZ ニュー・ジーランド PL ポーランド PT ボルトオル RO ルーマニア	2A 南アフリカ共和国

明細書

インダン誘導体

技術分野

本発明は、徐脈活性を有するインダン誘導体に関するものであり、ヒトを含む 哺乳動物に対する心不全治療の治療に用いられるものである。

背景技術

特開昭 63-264445 号公報には、インダン誘導体が阿片剤受容体、特に κ 受容体に強い親和性を有し、中枢鎮痛特性を有することを報告している。また 特開平 2-141 号公報は平滑筋弛緩作用を有する、ある種のインダン誘導体を 報告している。しかし、いずれの場合も徐脈作用に基づく心不全治療の可能性に ついては言及していない。

心臓の機能不全状態である心不全は、心臓収縮力の低下に基づく疾患であり、 その治療には、心筋収縮力を増加させる薬剤が臨床上使用されている。しかし、 これらの薬剤には、心拍数増加作用に基づく心筋エネルギー過剰消費が問題であ るとされ、長期投与の際の生命予後改善効果に課題があると言われている。した がって、心拍数を減少(徐脈)させることにより心筋エネルギー消費の負担を軽 減させる薬剤の開発が望まれている。

発明の開示

本発明者らは、インダン誘導体を鋭意探索した結果、驚くべきことに下記の式 (I)で表される化合物に強い徐脈作用があり、心不全治療剤として有用である ことを見いだし、本発明を完成した。

本発明は、式(I)

$$W-(CH_2)_{\overline{n}} X-Y-Z \qquad R^6 R^5$$

$$R^1 \qquad R^2 R^3 \qquad (I)$$

〔式中、R¹は、水素原子、ハロゲン原子、C1-6アルキル基(該アルキル基は、ハ ロゲン原子、カルボキシル基、C1-6アルコキシ基、C2-6アルコキシカルボニル基、 水酸基、ホルミル基、シアノ基又はニトロ基により任意に置換されていてもよい 。)、C1-6アルコキシ基(該アルコキシ基は、ハロゲン原子、カルボキシル基、 C₂-₁アルコキシカルボニル基、水酸基、フェニル基(該フェニル基は、ハロゲン 原子、水酸基、C1-4アルキル基又はC1-4アルコキシ基により任意に置換されてい てもよい)、ホルミル基、シアノ基又はニトロ基により任意に置換されていても よい。 \ 、C₁₋₆シクロアルキル基 (該シクロアルキル基は、ハロゲン原子、カル ボキシル基、C2-6アルコキシカルボニル基、水酸基、C1-6アルコキシ基、フェニ ル基(該フェニル基は、ハロゲン原子、水酸基、C1-1アルキル基又はC1-1アルコ キシ基により任意に置換されていてもよい)、ホルミル基、シアノ基又はニトロ 基により任意に置換されていてもよい。}、ニトロ基、シアノ基、ホルミル基、 カルボキシル基、水酸基、ホルムアミド基、シアナミド基、アミノ基、C₁₋₆アル キルアミノ基、ジC,-。アルキルアミノ基(該アルキルアミノ基及びジC,-。アルキ ルアミノ基は、ハロゲン原子、カルボキシル基、C2-6アルコキシカルボニル基、 水酸基、ホルミル基、シアノ基又はニトロ基により任意に置換されていてもよい 。)、C₁₋₆アルキルカルボニルアミノ基、C₁₋₆アルキルスルホニルアミノ基、ア ミノカルボニル基、C₁₋₆アルキルアミノカルボニル基、ジC₁₋₆アルキルアミノカ ルボニル基、C₁₋₆アルキルカルボニル基、C₁₋₆アルコキシカルボニル基、C₁₋₆ア ルキルカルボニルオキシ基、C1-6アルキルウレア基、C1-6アルキルチオウレア基、 アリールCュー。アルキルアミノ基、ジ(アリールCュー。アルキル)アミノ基、アリー ルカルボニルアミノ基、アリールCュー。アルキルカルボニルアミノ基、アリールス ルホニルアミノ基、アリールC₁₋₆アルキルスルホニルアミノ基、アリールC₁₋₆ア

ルキルアミノカルボニル基、ジ(アリールC₁₋₆アルキル)アミノカルボニル基、 アリールカルボニル基、アリールCュー。アルキルカルボニル基、アリールオキシカ ルボニル基、アリールC1-6アルキルオキシカルボニル基、アリールカルボニルオ キシ基、アリールC1-6アルキルカルボニルオキシ基、アリールウレア基、アリー ルC1-6アルキルウレア基、アリールチオウレア基又はアリールC1-6アルキルチオ ウレア基(該アリールC1-6アルキルアミノ基、ジ(アリールC1-6アルキル)アミ ノ基、アリールカルボニルアミノ基、アリールC₁₋₆アルキルカルボニルアミノ基、 アリールスルホニルアミノ基、アリールCi-6アルキルスルホニルアミノ基、アリ ールC₁₋₆アルキルアミノカルボニル基、ジ(アリールC₁₋₆アルキル)アミノカル ボニル基、アリールカルボニル基、アリールC1-6アルキルカルボニル基、アリー ルオキシカルボニル基、アリールCi-6アルキルオキシカルボニル基、アリールカ ルボニルオキシ基、アリールC₁₋₆アルキルカルボニルオキシ基、アリールウレア 基、アリールCュー。アルキルウレア基、アリールチオウレア基及びアリールCュー。ア ルキルチオウレア基は、何れもハロゲン原子、カルボキシル基、C2-6アルコキシ カルボニル基、水酸基、C1-6アルコキシ基、フェニル基(該フェニル基は、ハロ ゲン原子、水酸基、C1-4アルキル基又はC1-4アルコキシ基により任意に置換され ていてもよい)、ホルミル基、シアノ基又はニトロ基により任意に置換されてい てもよい}を意味し:

 R^2 及び R^3 は、それぞれ独立して C_{1-6} アルキル基(該アルキル基は、ハロゲン原子、 C_{1-6} アルコキシ基又は水酸基により任意に置換されていてもよい。)を意味するか又は R^2 と R^3 が一緒になってそれらが結合している炭素原子と共に C_{3-6} シクロアルキル基を形成し;

 R^4 は、水酸基若しくは C_{1-6} アルキルカルボニルオキシ基を意味するか又は R^6 と一緒になって結合を意味するか又は R^6 と一緒になって酸素原子を意味し;

R⁵は、水素原子を意味するか又はR¹と一緒になって結合を意味するか又はR¹と一緒になって酸素原子を意味し;

 R^6 は、水素原子、水酸基、 C_{1-6} アルコキシ基、 C_{1-6} アルキルカルボニルオキシ基又は NR^7R^8 $\{R^7$ 及び R^8 は、それぞれ独立して水素原子、 C_{1-6} アルキル基、 C_{2-6}

アルケニル基、 C_{2-6} アルキニル基、 C_{3-6} シクロアルキル基(該アルキル基、アルケニル基、アルキニル基及びシクロアルキル基は、何れもハロゲン原子、カルボキシル基、 C_{2-6} アルコキシカルボニル基、水酸基、 C_{1-6} アルコキシ基、フェニル基(該フェニル基は、ハロゲン原子、水酸基、 C_{1-6} アルキル基、 C_{1-6} アルコキシ基、ホルミル基、シアノ基、ニトロ基、アミノ基、 C_{1-6} アルキルアミノ基又はジ C_{1-6} アルキルアミノ基により任意に置換されていてもよい)により任意に置換されていてもよい)若しくはフェニル基(該フェニル基は、ハロゲン原子、水酸基、 C_{1-4} アルキル基又は C_{1-4} アルコキシ基により任意に置換されていてもよい)を意味するか又は、

又は、 R^{\dagger} と R^{8} が一緒になって、それらが結合している窒素原子と共に R^{15} (R^{15} は、 R^{10} と同じ意味を表す)により任意に置換されていてもよいピロリル基、ピラゾリル基、イミダゾリル基、1, 2, 3-トリアゾリル基、1, 2, 4-トリアゾリル基若しくは 1, 2, 3, 4-テトラゾリル基を形成する。)を意味し:

nは、0~4の整数を意味し;

X は、C=0 、CH₂ 、SO₂ 又はNR¹⁶ (R¹⁶ は、R¹¹ と同じ意味を表す)を意味し; Y は、X がC=0 、CH₂ 又はSO₂ のとき、NR¹¹ (R¹¹ は、R¹¹ と同じ意味を表す)を意味し、X がNR¹⁶のとき、C=0 を意味し;

Zは、YがNR¹7のとき、存在せず、YがC=Oのとき、NR¹゚(R¹゚は、R¹゚と同

じ意味を表す)を意味し; Wは、

$$(R^{9})_{m} \stackrel{[i]}{\underset{N}{\overset{}}} \qquad (R^{9})_{m} \stackrel{[i]}{\underset{N}{\overset{N}{\overset{N}}}} \qquad (R^{9})_{m} \stackrel{[i]}{\underset{N}{\overset{N}{\overset{N}}}} \qquad (R^{9})_{m} \stackrel{[i]}{\underset{N}{\overset{N}{\overset{N}}}} \qquad (R^{9})_{m} \stackrel{[i]}{\underset{N}{\overset{N}}} \qquad (R^{9})_{m} \stackrel{[i]}{\underset{N}{\overset{N}{\overset{N}}} \qquad (R^{9})_{m} \stackrel{[i]}{\underset{N}{\overset{N}}} \qquad (R^{9})_{m} \stackrel{[i]}{\underset{N}} \qquad (R^{9})_{m} \stackrel{[i]}{\underset{N}{\overset{N}}} \qquad (R^{9})_{m} \stackrel{[i]}{\underset{N}} \qquad (R^{9})_{m} \stackrel{[i]}{\underset{N}} \qquad (R^{9})_{m} \stackrel{[i$$

{式中、 R° は、水素原子、ハロゲン原子、 C_{1-6} アルキル基(該アルキル基はハロゲン原子又は C_{1-6} アルコキシ基で置換されていてもよい)、 C_{1-6} アルコキシ基(該アルコキシ基は、ハロゲン原子で置換されていてもよい)、フェニル基(該フェニル基は、ハロゲン原子、水酸基、 C_{1-4} アルキル基又は C_{1-4} アルコキシ基により任意に置換されていてもよい)、水酸基、ニトロ基、シアノ基、ホルミル基、ホルムアミド基、アミノ基、 C_{1-6} アルキルアミノ基、 C_{1-6} アルキルアルボニルアミノ基、 C_{1-6} アルキルカルボニルアミノ基、 C_{1-6} アルキルスルホニルアミノ基、アミノカルボニル基、 C_{1-6} アルキルカルボニル基、 C_{1-6} アルキルカルボニル基、カルボキシル基又はアリールカルボニル基を意味し;

mは、 $1 \sim 3$ の整数を意味し、mが2又は3の時、R 9 は同一又は異なっていてもよく:

 R^{12} は、水素原子又は C_{1-4} アルキル基を意味する)を意味する。〕により表されるインダン誘導体又はその医薬的に許容され得る塩に関する。

本発明化合物は、強い心拍数減少作用を有し、心機能の改善に有効であり、心 不全治療薬として用いることができる。

次に、本発明化合物(I)の各置換基を具体的に説明する。

なお、本明細書中「n」はノルマルを「i」はイソを、「s」はセカンダリーを、「t」はターシャリーを「c」はシクロを、「o」はオルトを、「m」はメタを、「p」はパラを意味する。

ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びョウ素原子が挙 げられる。好ましくは、フッ素原子、塩素原子及び臭素原子が挙げられる。

 C_{1-6} アルコキシ基としては、メトキシ、トリフルオロメトキシ、エトキシ、n-プロポキシ、i-プロポキシ、n-ブトキシ、i-ブトキシ、s-ブトキシ、t-ブトキシ、1-ペンチルオキシ、2-ペンチルオキシ、3-ペンチルオキシ、i-ペンチルオキシ、ネオペンチルオキシ、2,2-ジメチルプロポキシ、1-ヘキシルオキシ、2-ヘキシルオキシ、3-ヘキシルオキシ、1-メチル-n-ペンチルオキシ、1,1,2-トリメチル-n-プロポキシ、1,2,2-トリメチル-n-プロポキシ及び3,3-ジメチル-n-プトキシ等が挙げられる。好ましくは、メトキシ、エトキシ、n-プロポキシ及びi-プロポキ

シが挙げられる。

アリール基としては、フェニル、ビフェニリル、ナフチル、アントリル及びフェナントリル等が挙げられる。好ましくは、フェニル、ビフェニリル及びナフチルが挙げられる。

C₃₋₆シクロアルキル基としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル及びシクロオクチル等が挙げられる。好ましくは、シクロプロピル、シクロブチル及びシクロヘキシルが挙げられる。

 C_{1-6} アルキルアミノ基としては、メチルアミノ、エチルアミノ、n-プロピルアミノ、i-プロピルアミノ、c-プロピルアミノ、n-ブチルアミノ、i-ブチルアミノ、i-ブチルアミノ、c-ブチルアミノ、t-ブチルアミノ、t-ベンチルアミノ、t-ベンチルアミノ、t-ベンチルアミノ、t-ペンチルアミノ、t-ペンチルアミノ、t-ペンチルアミノ、t-ペンチルアミノ、t-ペンチルアミノ、t-ペンチルアミノ、t-ペンチルアミノ、t-ペンチルアミノ、t-ペンチルアミノ、t-ペンチルアミノ、t-ペンチルアミノ、t-ペンチルアミノ、t-ペンチルアミノ、t-ペンチルアミノ、t-ペンチルアミノ、t-ペンチルアミノ、t-ペンチルアミノ、t-パンチルアミノ、t-パンチルアミノ、t-パンチルアミノ、t-パンチルアミノ、t-パンチルアミノ、t-パンテンクでt-パンチルアミノ、t-プロピルアミノ

エチル(n- プロピル) アミノ、エチル(i- プロピル) アミノ、エチル(c- プロピ ル) アミノ、エチル(n- ブチル) アミノ、エチル(i- ブチル) アミノ、エチル(s-ブチル) アミノ、エチル(t- ブチル) アミノ、エチル(c- ブチル) アミノ、n-プ ロピル(i- プロピル) アミノ、n-プロピル(c- プロピル) アミノ、n-プロピル(n-ブチル) アミノ、n-プロピル(i- ブチル) アミノ、n-プロピル(s- ブチル) アミ ノ、n-プロピル(t- ブチル) アミノ、n-プロピル(c- ブチル) アミノ、i-プロピ ル(c- プロピル) アミノ、i-プロピル(n- ブチル) アミノ、i-プロピル(i- ブチ ル) アミノ、i-プロピル(s- ブチル) アミノ、i-プロピル(t- ブチル) アミノ、 i-プロピル(c- ブチル) アミノ、c-プロピル(n- ブチル) アミノ、c-プロピル(i-ブチル) アミノ、c-プロピル(s- ブチル) アミノ、c-プロピル(t- ブチル) アミ ノ、c-プロピル(c- ブチル) アミノ、n-ブチル(i- ブチル) アミノ、n-ブチル(s-ブチル) アミノ、n-ブチル(t- ブチル) アミノ、n-ブチル(c- ブチル) アミノ、 i-ブチル(s- ブチル) アミノ、i-ブチル(t- ブチル) アミノ、i-ブチル(c- ブチ ル) アミノ、s-ブチル(t- ブチル) アミノ、s-ブチル(c- ブチル) アミノ及びt-ブチル(c- ブチル) アミノ等が挙げられる。好ましくは、ジメチルアミノ、ジエ チルアミノ、ジ-n- プロピルアミノ、ジ-i- プロピルアミノ及びジ-n- ブチルア ミノが挙げられる。

アリールC₁₋₆アルキルアミノ基としては、ベンジルアミノ、o-メチルベンジルアミノ、m-メチルベンジルアミノ、p-メチルベンジルアミノ、o-クロルベンジルアミノ、o-クロルベンジルアミノ、o-フルオロベンジルアミノ、p-クロルベンジルアミノ、o-フルオロベンジルアミノ、p-メトキシベンジルアミノ、p-ニトロベンジルアミノ、p-シアノベンジルアミノ、p-メチルフェネチルアミノ、o-メチルフェネチルアミノ、m-メチルフェネチルアミノ、p-メチルフェネチルアミノ、o-クロルフェネチルアミノ、m-クロルフェネチルアミノ、p-フルオロフェネチルアミノ、p-フルオロフェネチルアミノ、p-コルオロフェネチルアミノ、p-ニトロフェネチルアミノ、p-シアノフェネチルアミノ、フェニルプロピルアミノ、フェニルブチルアミノ、フェニルペンチルアミノ、フェニルペキシルアミノ、ナフチニルブチルアミノ、フェニルペンチルアミノ、フェニルペキシルアミノ、ナフチ

ルアミノ、ビフェニリルアミノ、アントリルアミノ及びフェナントリルアミノが挙げられる。好ましくは、ベンジルアミノ、p-メチルベンジルアミノ、フェネチルアミノp-メトキシフェネチルアミノ及びフェニルプロピルアミノが挙げられる。 C1-6アルキルカルボニルアミノ基としては、メチルカルボニルアミノ、エチルカルボニルアミノ、n-プロピルカルボニルアミノ、i-プロピルカルボニルアミノ、n-ブチルカルボニルアミノ、i-ブチルカルボニルアミノ、S-ブチルカルボニルアミノ、1-ペンチルカルボニルアミノ、2-ペンチルカルボニルアミノ、3-ペンチルカルボニルアミノ、i-ペンチルカルボニルアミノ、ホオペンチルカルボニルアミノ、t-ペンチルカルボニルアミノ、1-ヘキシルカルボニルアミノ、2-ヘキシルカルボニルアミノ、スチルカルボニルアミノ、アミノ、2-ヘキシルカルボニルアミノ、エチルカルボニルアミノ、カープロピルカルボニルアミノ、i-プロピルカルボニルアミノ及びn-ブチルカルボニルアミノが挙げられる。

アリールカルボニルアミノ基としては、ベンゾイルアミノ、1-ナフチルカルボニルアミノ、2-ナフチルカルボニルアミノ、o-メチルベンゾイルアミノ、m-メチルベンゾイルアミノ、p-メチルベンゾイルアミノ、o-クロルベンゾイルアミノ、p-クロルベンゾイルアミノ、o-フルオロベンゾイルアミノ、p-フルオロベンゾイルアミノ、p-ストキシベンゾイルアミノ、p-よトキシベンゾイルアミノ、p-ニトロベンゾイルアミノ、p-シアノベンゾイルアミノ及びp-フェニルベンゾイルアミノ等が挙げられる。好ましくはベンゾイルアミノ及びp-フルオロベンゾイルアミノが挙げられる。

アリール C_{1-6} アルキルカルボニルアミノ基としてはフェニルアセチルアミノ、0-メチルフェニルアセチルアミノ、1-メチルフェニルアセチルアミノ、1-メチルフェニルアセチルアミノ、1-メチルフェニルアセチルアミノ、1-クロルフェニルアセチルアミノ、1-クロルフェニルアセチルアミノ、1-フェニルアセチルアミノ、1-フェニルアセチルアミノ、1-フェニルアセチルアミノ、1-フェニルアセチルアミノ、1-フェニルアセチルアミノ、1-フェニルプロピルカルボニルアミノ、1-フェニルブチルカルボニルアミノ、1-フェニルプロピルカルボニルアミノ、1-フェニルブチルカルボニルアミノ、1-フェニルブチルカルボニルアミノ、1-フェニルブチルカルボニルアミノ、1-フェニルブチルカルボニルアミノ、1-フェニルブチルカルボニルアミノ、1-フェニルブチルカルボニルアミノ、1-フェニルブチルカルボニルアミノ、1-フェニルブチルカルボニルアミノ、1-フェニルブチルカルボニルアミノ、1-フェニルブチルカルボニルアミノ、1-フェニルブチルカルボニルアミノ、1-フェニルブチルカルボニルアミノ、1-フェニルブチルカルボニルアミノ、1-フェニルブチルカルボニルアミノ、1-フェニルブチルカルボニルアミノ、1-フェニルブチルカルボニルアミノ、1-フェニルブチルカルボニルアミノ、1-フェニルブチルカルボニルアミノ、1-フェニルブリー・1-ア・エルアミノ、1-ア・エルアミノ、1-ア・エルア・フェニルア・フェールア・フェールア・フェニルア・フェニルア・フェールア・フェニルア・フェニルア・フェールア・フェールア・フェールア・フェールア・フェールア・フェールア・フェールア・フェールア・フェールア・フェールア・フェールア・フェールア・フェールア・フェールア・フェールア・フェールア・フェールア・フェールア・フェールア・フ

フェニルペンチルカルボニルアミノ及び6-フェニルヘキシルカルボニルアミノが 挙げられる。好ましくは、フェニルアセチルアミノ及び2-フェニルエチルカルボ ニルアミノが挙げられる。

 C_{1-6} アルキルスルホニルアミノ基としては、メチルスルホニルアミノ、エチルスルホニルアミノ、n-プロピルスルホニルアミノ、i-プロピルスルホニルアミノ、n-プチルスルホニルアミノ、n-プチルスルホニルアミノ、n-プチルスルホニルアミノ、n-プチルスルホニルアミノ、n-プチルスルホニルアミノ、n-ペンチルスルホニルアミノ、n-ペンチルスルホニルアミノ、n-ペンチルスルホニルアミノ、n-ペンチルスルホニルアミノ、n-ペンチルスルホニルアミノ、n-ペンチルスルホニルアミノ、n-ペンチルスルホニルアミノ、n-ペンチルスルホニルアミノ、n-ペンチルスルホニルアミノ、n-プロピルスルホニルアミノ、n-プロピルスルホニルアミノ、n-プロピルスルホニルアミノ、n-プロピルスルホニルアミノ、n-プロピルスルホニルアミノ、n-プロピルスルホニルアミノ、n-プロピルスルホニルアミノ、n-プロピルスルホニルアミノ、n-プロピルスルホニルアミノ、n-プロピルスルホニルアミノが挙げられる。

アリールスルホニルアミノ基としては、ベンゼンスルホニルアミノ及びp-トルエンスルホニルアミノが挙げられる。

 C_{1-6} アルキルアミノカルボニル基としては、メチルアミノカルボニル、エチルアミノカルボニル、n-プロピルアミノカルボニル、i-プロピルアミノカルボニル、n-ブチルアミノカルボニル、s-ブチルアミノカルボニル、s-ブチルアミノカルボニル、t-ブチルアミノカルボニル、t-ブチルアミノカルボニル、t-ペンチルアミノカルボニル、t-ペンチルアミノカルボニル、t-ペンチルアミノカルボニル、t-ペンチルアミノカルボニル、t-ペンチルアミノカルボニル、t-ペンチルアミノカルボニル、t-ペンチルアミノカルボニル、t-ペンチルアミノカルボニル、t-ペンチルアミノカルボニル、t-ペンチルアミノカルボニル、t-ペンチルアミノカルボニル、t-ペンチルアミノカルボニル、t-ペンチルアミノカルボニル、t-ペンチルアミノカルボニル、t-ペンチルアミノカルボニル、t-ペンチルアミノカルボニル、t-プロピルアミノカルボニル、t-プロピルアミノカルボニル、t-プロピルアミノカルボニル及びt-ブチルアミノカルボニルが挙げられる。

ジC₁₋₆アルキルアミノカルボニル基としては、ジメチルアミノカルボニル、ジエチルアミノカルボニル、ジ-n- プロピルアミノカルボニル、ジ-i- プロピルアミノカルボニル、ジ-n- ブチルアミノカルボ

ニル、ジ-i- ブチルアミノカルボニル、ジ-s- ブチルアミノカルボニル、ジ-t- ブチルアミノカルボニル、ジ-c- ブチルアミノカルボニル、ジ-1- ペンチルアミノカルボニル、ジ-3- ペンチルアミノカルボニル、ジ-3- ペンチルアミノカルボニル、ジ-i- ペンチルアミノカルボニル、ジ- ネオペンチルアミノカルボニル、ジ-t- ペンチルアミノカルボニル、ジ-c- ペンチルアミノカルボニル、ジ-1- ヘキシルアミノカルボニル、ジ-2- ヘキシルアミノカルボニル及びジ-3- ヘキシルアミノカルボニル等が挙げられる。

好ましくは、ジメチルアミノカルボニル、ジエチルアミノカルボニル、ジ-n-プロピルアミノカルボニル、ジ-i-プロピルアミノカルボニル、ジ-c-プロピルアミノカルボニル及びジ-n-ブチルアミノカルボニルが挙げられる。

アリールC₁₋₆アルキルアミノカルボニル基としては、ベンジルアミノカルボニル、o-メチルベンジルアミノカルボニル、m-メチルベンジルアミノカルボニル、p-クロルベンジルアミノカルボニル、p-クロルベンジルアミノカルボニル、p-クロルベンジルアミノカルボニル、p-フルオロベンジルアミノカルボニル、p-フルオロベンジルアミノカルボニル、p-メトキシベンジルアミノカルボニル、p-メトキシベンジルアミノカルボニル、p-エトロベンジルアミノカルボニル、p-シアノベンジルアミノカルボニル、フェネチルアミノカルボニル、フェネチルアミノカルボニル、p-メチルフェネチルアミノカルボニル、p-シアノフェネチルアミノカルボニル、フェネチルアミノカルボニル、フェネチルアミノカルボニル、フェニルプロピルアミノカルボニル、4-フェニルブチルアミノカルボニル、5-フェニルペンチルアミノカルボニル及び6-フェニルヘキシルアミノカルボニルが挙げられる。

好ましくは、ベンジルアミノカルボニル、p-メチルベンジルアミノカルボニル、p-クロルベンジルアミノカルボニル、p-フルオロベンジルアミノカルボニル及びフェネチルアミノカルボニルが挙げられる。

C₁₋₆アルキルカルボニル基としては、メチルカルボニル、エチルカルボニル、 n-プロピルカルボニル、i-プロピルカルボニル、n-ブチルカルボニル、i-ブチル カルボニル、s-ブチルカルボニル、t-ブチルカルボニル、1-ペンチルカルボニル、

2-ペンチルカルボニル、3-ペンチルカルボニル、i-ペンチルカルボニル、ネオペンチルカルボニル、t-ペンチルカルボニル、1-ヘキシルカルボニル、2-ヘキシルカルボニル及び3-ヘキシルカルボニルが挙げられる。好ましくは、メチルカルボニル、エチルカルボニル、n-プロピルカルボニル、i-プロピルカルボニル及びn-ブチルカルボニルが挙げられる。

アリールカルボニル基としては、ベンゾイル、p-メチルベンゾイル、p-t-ブチルベンゾイル、p-メトキシベンゾイル、p-クロルベンゾイル、p-ニトロベンゾイル及びp-シアノベンゾイルが挙げられる。好ましくは、ベンゾイル、p-ニトロベンゾイル及びp-シアノベンゾイルが挙げられる。

アリールC₁₋₆アルキルカルボニル基としては、フェニルアセチル、p-メチルフェニルアセチル、p-t-ブチルフェニルアセチル、p-メトキシフェニルアセチル、p-クロルフェニルアセチル、p-ニトロフェニルアセチル、p-シアノフェニルアセチル、フェネチルカルボニル、3-フェニルプロピル、4-フェニルブチル、5-フェニルペンチル及び6-フェニルヘキシルが挙げられる。好ましくはフェニルアセチル及びフェネチルカルボニルが挙げられる。

C₁₋₆アルコキシカルボニル基としては、メトキシカルボニル、エトキシカルボニル、n-プロポキシカルボニル、i-プロポキシカルボニル、n-ブトキシカルボニル、1-ペンチルオキシカルボニル、2-ペンチルオキシカルボニル、3-ペンチルオキシカルボニル、1-ペンチルオキシカルボニル、3-ペンチルオキシカルボニル、i-ペンチルオキシカルボニル、たーペンチルオキシカルボニル、1-ペキシルオキシカルボニル、2-ヘキシルオキシカルボニル、カースキシカルボニル、2-ヘキシルオキシカルボニル及び3-ヘキシルオキシカルボニル等が挙げられる。好ましくは、メトキシカルボニル、エトキシカルボニル、n-プロポキシカルボニル、i-プロポキシカルボニル、n-ブトキシカルボニル、i-ブトキシカルボニル、S-ブトキシカルボニル及びt-ブトキシカルボニルが挙げられる。

アリールオキシカルボニル基としては、フェノキシカルボニル、o-メチルフェ ノキシカルボニル、p-メチルフェノキシカルボニル、p-クロルフェノキシカルボ ニル、p-フルオロフェノキシカルボニル、p-メトキシフェノキシカルボニル、p-

ニトロフェノキシカルボニル、p-シアノフェノキシカルボニル、1 - ナフトキシ カルボニル及び2 - ナフトキシカルボニルが挙げられる。

アリール C_{1-6} アルキルオキシカルボニル基としては、ベンジルオキシカルボニル、0-メチルベンジルオキシカルボニル、p-メチルベンジルオキシカルボニル、p-クロルベンジルオキシカルボニル、p-フルオロベンジルオキシカルボニル、p-メトキシベンジルオキシカルボニル、p-ニトロベンジルオキシカルボニル、p-シアノベンジルオキシカルボニル、1-ナフトキシメチルカルボニル、2-ナフトキシメチルカルボニル及びピリジルメチルオキシカルボニルが挙げられる。

 C_{1-6} アルキルカルボニルオキシ基としては、メチルカルボニルオキシ、エチルカルボニルオキシ、n-プロピルカルボニルオキシ、i-プロピルカルボニルオキシ、n-プチルカルボニルオキシ、n-プチルカルボニルオキシ、n-プチルカルボニルオキシ、n-プチルカルボニルオキシ、n-プチルカルボニルオキシ、n-ペンチルカルボニルオキシ等が挙げられる。

好ましくは、メチルカルボニルオキシ、エチルカルボニルオキシ、n-プロピルカルボニルオキシ、i-プロピルカルボニルオキシ、n-ブチルカルボニルオキシ及びt-ブチルカルボニルオキシが挙げられる。

アリールカルボニルオキシ基としては、ベンゾイルオキシ、o-メチルベンゾイルオキシ、p-メチルベンゾイルオキシ、p-クロルベンゾイルオキシ、p-フルオロベンゾイルオキシ、p-メトキシベンゾイルオキシ、p-ニトロベンゾイルオキシ、p-シアノベンゾイルオキシ、1-ナフチルカルボニルオキシ及び2-ナフチルカルボニルオキシが挙げられる。

アリールC₁₋₆アルキルカルボニルオキシ基としては、ベンジルカルボニルオキシ、o-メチルベンジルカルボニルオキシ、p-メチルベンジルカルボニルオキシ、

p-クロルベンジルカルボニルオキシ、p-フルオロベンジルカルボニルオキシ、p-メトキシベンジルカルボニルオキシ、p-ニトロベンジルカルボニルオキシ、p-シアノベンジルカルボニルオキシ、1-ナフトキシメチルカルボニルオキシ、2-ナフトキシメチルカルボニルオキシ及びピリジルメチルオキシカルボニルオキシが挙げられる。

 C_{1-6} アルキルウレア基としては、メチルウレア、エチルウレア、n-プロピルウレア、i-プロピルウレア、n-プロピルウレア、n-ブチルウレア等が挙げられる。

アリールウレア基としては、フェニルウレア、o-メチルフェニルウレア、p-メ チルフェニルウレア、p-クロルフェニルウレア、p-フルオロフェニルウレア、p-メトキシフェニルウレア、p-ニトロフェニルウレア、p-シアノフェニルウレア、 1-ナフチルウレア及び2-ナフチルウレアが挙げられる。

アリールC₁₋₆アルキルウレア基としては、ベンジルウレア、o-メチルベンジルウレア、p-メチルベンジルウレア、p-クロルベンジルウレア、p-フルオロベンジルウレア、p-メトキシベンジルウレア、p-ニトロベンジルウレア、p-シアノベンジルウレア、1-ナフチルメチルウレア、2-ナフチルメチルウレア及びピリジルメチルウレアが挙げられる。

 C_{1-6} アルキルチオウレア基としては、メチルチオウレア、エチルチオウレア、n-プロピルチオウレア、i-プロピルチオウレア、i-プチルチオウレア、n-ブチルチオウレア、n-ブチルチオウレア、n-ブチルチオウレア、n-ブチルチオウレア、n-ベンチルチャー

及び3.3-ジメチル-n- ブチルチオウレア等が挙げられる。

アリールチオウレア基としては、フェニルチオウレア、o-メチルフェニルチオウレア、p-メチルフェニルチオウレア、p-クロルフェニルチオウレア、p-フルオロフェニルチオウレア、p-メトキシフェニルチオウレア、p-ニトロフェニルチオウレア、p-シアノフェニルチオウレア、1-ナフチルチオウレア及び2-ナフチルチオウレアが挙げられる。

アリールC₁₋₆アルキルチオウレア基としては、ベンジルチオウレア、o-メチルベンジルチオウレア、p-メチルベンジルチオウレア、p-クロルベンジルチオウレア、p-フルオロベンジルチオウレア、p-よトキシベンジルチオウレア、p-ニトロベンジルチオウレア、p-シアノベンジルチオウレア、1-ナフチルメチルチオウレア、2-ナフチルメチルチオウレア及びピリジルメチルチオウレアが挙げられる。

本発明に用いられる好ましい化合物としては、以下に挙げる化合物が挙げられる。

(1) R^2 及び R^3 が、共にメチル基であり、-X-Y-Z-の組み合わせが-C (0)-NH-、-C(0)-NMe-、-CH₂-NH-、-SO₂-NH-又は-NH-C(0)-NH-である式(I)で表されるインダン誘導体又はその医薬的に許容され得る塩。

(2) Wが

$$(R^9)_{\overline{m}}$$
, $(R^9)_{\overline{m}}$,

であり、 R^{9} が、水素原子、ハロゲン原子、 C_{1-6} アルキル基、 C_{1-6} アルコキシ基 (該アルコキシ基は、ハロゲン原子で置換されていてもよい)、水酸基、ニトロ 基、シアノ基、ホルミル基、アミノ基、 C_{1-6} アルキルアミノ基、 ${}^{\circ}$ ${}^{\circ$

)記載のインダン誘導体又はその医薬的に許容され得る塩。

(3) R¹が水素原子又はニトロ基である上記(2)記載のインダン誘導体又はその医薬的に許容され得る塩。

- (5) R^9 が、水素原子、ハロゲン原子、 C_{1-6} アルキル基、 C_{1-6} アルコキシ基(該アルコキシ基は、ハロゲン原子で置換されていてもよい)、水酸基、ニトロ基、シアノ基、ホルミル基、アミノ基、 C_{1-6} アルキルアミノ基、ジ C_{1-6} アルキルアミノ基、 C_{1-6} アルキルアミノ基、 C_{1-6} アルキルカルボニル基、 C_{1-6} アルコキシカルボニル基又はカルボキシル基である上記(4)記載のインダン誘導体又はその医薬的に許容され得る塩。
- (6) R'がR'と一緒になって結合を意味する上記(5) 記載のインダン誘導体又はその医薬的に許容され得る塩。
- (7) R^4 が水酸基であり、 R^5 が水素原子であり、 R^6 がアミノ基、 C_{1-6} アルキルアミノ基、ジ C_{1-6} アルキルアミノ基(該アルキルアミノ基及びジ C_{1-6} アルキルアミノ基は、ハロゲン原子、カルボキシル基、 C_{2-6} アルコキシカルボニル基、

- (8) Wが4-メトキシフェニル基である上記(6)記載のインダン誘導 体又はその医薬的に許容され得る塩。
- (9) R^6 がイソプロピルアミノ基又はシクロプロピルアミノ基であり、W が 4- メトキシフェニル基である上記(7)記載のインダン誘導体又はその医薬的に許容され得る塩。

以下に、本発明に用いることができる化合物の具体例を示すが、本発明はこれらに制限されるものではない。なお、「Me」はメチル基を、「Et」はエチル基を、「Pr」はプロピル基を、「Bu」はブチル基を、「Ac」はアセチル基(COCH、)を、「-」は結合をそれぞれ意味する。

化合物例 表 1

$$(CH_2)_{\overline{n}} = X - Y - Z + \begin{cases} R^8 \\ N - R^7 \\ R^5 \\ R^5 \\ R^2 \\ R^3 \end{cases}$$

						4	K	R		
R ¹	R ²	R ³	R ⁴	R ⁵	R ⁷	R ⁸	n	X	Υ	Z
Н	Me	Me	ОН	Н	-(Cł	12)4-	1	co	NH	-
F	Me	Me	ОН	Н	-(Ch	12)4-	1	CO	NH	-
Br	n-Pr	n-Pr	ОН	Н	-(Cł	12)4-	1	CO	NH	-
Me	Me	Me	ОН	Н	Et	Н	1	CO	NH	-
CF ₃	Me	Et	OH	Н	-(Cł	12)4-	2	CO	NH	CH ₂
CH ₂ CF ₃	Et	Me	OH	Н	-(Cł	12)4-	1	CO	NH	-
C ₂ F ₅	Me	Me		-	Me	Н	1	CO	NH	-
OMe	Me	Me	ОН	Н	-(Cł	12)4-	2	CO	ИН	-
OCF ₃	Me	Me	ОН	Н	-(Cł	12)4-	1	CO	NH	-
CH ₂ OMe	Me	Me	ОН	Н	-(Cł	12)4-	1	CO	NH	-
c-Pr	Me	Me	OH	Н	-(Cł	12)4-	3	CO	NH	-
NO ₂	Me	Me	ОН	·H	-(Cł	1 ₂) ₄ -	1	CO	NH	-
CN	Me	Me	ОН	Н	-(Cł	12)4-	1	CO	NH	-
CHO	Me	Me	ОН	Н	-(Cl	12)4-	1	CH ₂	NH	-
CO ₂ H	Me	Me	ОН	Н	-(Cl	12)4-	1	CO	NH	-
ОĤ	Me	Me	OH	Н	-(Cl	1 ₂) ₄ -	1	CH ₂	NH	CH ₂
CH ₂ OH	Me	Me		_	-(CI	H ₂) ₄ -	1	CO	NH	-
NHCHO	Ме	Me	ОН	Н	-(Cl	12)4-	1	NH	CO	NH
NHCN	Me	Me	ОН	Н	c-Pr	Н	1	CO	NH	-
NH ₂	Me	Me	OAc	Н	-(Cl	H ₂) ₄ -	1	CO	NH	-
NHMe	Me	Me	OAc	Н	-(Cl	12)4-	1	CO	NH	•
NMe ₂	Ме	Me	OAc	Н	-(Cl	H ₂) ₄ -	1	CO	NH	-
NHCOMe	Me	Me	ОН	Н	-(CI	H ₂) ₄ -	1	CO	NH	CH ₂
NHSO ₂ Me	Ме	Ме	ОН	Н	-(Cl	12)4-	1	CO	NH	-
CONH ₂	Me	Ме	ОН	Н	-(CI	H ₂) ₄ -	4	CO	ΝН	-
CONHMe	Me	Me	ОН	Н	-(Cl	H ₂) ₄ -	3	CO	NH	-
CONMe ₂	Me	Me	ОН	Н	-(CI	1 ₂₎₄ -	2	CO	NH	-
COMe	Me	Me	ОН	Н	Et	Н	1	CO	NH	-
CO ₂ Me	Me	Me	ОН	Н	Me	Н	1	CO	NH	-
CO ₂ Ph	Ме	Ме	OAc	Н	i-Pr	Н	1	CO	NH	-
CO ₂ CH ₂ Ph	Me	Ме	ОН	Н	-(Cl	H ₂) ₄ -	1	CO	NH	-

化合物例 表 2

N (CH₂)_n
$$X-Y-Z$$
 6 7 R^{8} R^{7} R^{5} R^{5} R^{5} R^{5} R^{1} R^{2} R^{3}

						4	R-	R		
R ¹	R ²	R ³	R ⁴	R ⁵	R ⁷	R ⁸	n	X	Υ	Z
Н	Me	Me	ОН	Н	-(CH	2)4-	1	СО	NH	•
F	Me	Me	ОН	Н	-(CH	2)4-	1	CO	NH	•
Br	n-Pr	n-Pr	ОН	Н	-(CH	2)4-	1	CO	NH	-
Me	Me	Me	ОН	Н	Et	Н	1	CO	ИН	-
CF ₃	Me	Et	ОН	Н	-(CH	l ₂₎₄ -	2	CO	NH	CH ₂
CH ₂ CF ₃	Et	Me	ОН	Н	-(CH		1	CO	NH	-
C ₂ F ₅	Me	Me		-	Me	Н	1	CO	NH	-
OMe	Me	Me	ОН	Н	-(CH	l ₂) ₄ -	2	CO	NH	-
OCF ₃	Me	Me	ОН	Н	-(CF	2)4-	1	CO	NH	-
CH ₂ OMe	Me	Me	ОН	Н	-(CF	2)4-	1	CO	NH	-
c-Pr	Me	Me	ОН	Н	-(CH	12)4-	3	CO	NH	-
NO ₂	Me	Me	OH	Н	-(CH	2)4-	1	CO	NH	-
CN	Me	Me	ОН	Н	-(CH	12)4-	1	CO	NH	-
CHO	Me	Me	ОН	Н	-(CH	12)4-	1	CH ₂	NH	-
CO ₂ H	Me	Me	ОН	Н	-(CH	12)4-	1	CO	NH	-
OH	Me	Me	ОН	Н	-(CH	12)4-	1	CH ₂	ΝН	CH ₂
CH ₂ OH	Me	Ме		_	-(CH	12)4-	1	CO	NH	-
NHCHO	Me	Me	ОН	Н	-(CH	12)4-	1	NH	CO	NH
NHCN	Me	Ме	ОН	Н	c-Pr	Н	1	CO	ΝН	•
NH ₂	Me	Me	OAc	Н	-(CH	12)4-	1	CO	NH	-
NHMe	Ме	Me	OAc	Н	-(CH	12)4-	1	CO	NH	-
NMe ₂	Me	Me	OAc	Н	-(CH		1	CO	NH	-
NHCOMe	Me	Ме	ОН	Н	-(CH		1	CO	NH	CH ₂
NHSO ₂ Me	Me	Ме	ОН	Н	-(CH		1	CO	ИН	-
CONH ₂	Ме	Me	ОН	Н	-(CF		4	CO	NH	-
CONHMe	Me	Ме	ОН	Н	-(CH		3	CO	NH	-
CONMe ₂	Ме	Me	ОН	Н	-(CF		2	CO	NH	-
COMe	Me	Ме	ОН	Н	Et	Н	1	CO	ИН	-
CO ₂ Me	Me	Me	ОН	Н	Me	Н	1	CO	NH	-
CO ₂ Ph	Ме	Ме	OAc	Н	i-Pr	Н	1	CO	NH	-
CO ₂ CH ₂ Ph	Me	Me	ОН	Н	-(CH	10)4-	1	CO	NH	-

化合物例 表3

$$(CH_2)_n - X - Y - Z \xrightarrow{6} \begin{array}{c} R^8 \\ N \\ R^5 \end{array}$$

						3	4 F	R ² R ³		
R ¹	R ²	R ³	R ⁴	R ⁵	R ⁷	R ⁸	n	Х	Υ	Z
Н	Me	Me	ОН	Н	-(CH	12)4-	1	СО	NH	-
F	Me	Ме	ОН	Н	-(CH		1	CO	NH	-
Br	n-Pr	n-Pr	ОН	Н	-(CH		1	CO	NH	•
Me	Me	Me	ОН	Н	Et	H	1	CO	NH	•
CF ₃	Me	Et	ОН	Н	-(CH	12)47	2	CO	NH	CH ₂
CH₂CF₃	Et	Ме	ОН	Н	-(CF	12)4-	1	CO	NH	-
C ₂ F ₅	Me	Me		-	Me	Н	1	CO	NH	-
OMe	Me	Me	ОН	Н	-(CH	12)4-	2	CO	NH	-
OCF ₃	Me	Me	ОН	Н	-(Cł	12)4-	1	CO	NH	-
CH ₂ OMe	Me	Me	ОН	Н	-(CH	1 ₂) ₄ -	1	CO	NH	-
c-Pr	Me	Me	ОН	Н	-(Cł	12)4-	3	CO	NH	-
NO ₂	Me	Me	OH	Н	-(Cł	12)4-	1	CO	NH	•
CN	Me	Me	ОН	Н	-(CF	1 ₂) ₄ -	1	CO	NH	-
CHO	Me	Me	ОН	Н		H ₂) ₄ -	1	CH ₂	NH	-
CO ₂ H	Me	Me	OH	Н	-(CH	12)4-	1	CO	NH	-
OH	Me	Me	ОН	Н	-	1 ₂)4-	1	CH ₂	NH	CH ₂
CH ₂ OH	Me	Me	_		-(Cł	H ₂) ₄ -	1	CO	NH	-
NHCHO	Me	Me	ОН	Н	-(Cł	H ₂) ₄ -	1	NH	CO	NH
NHCN	Me	Me	ОН	Н	c-Pr	Н	1	CO	NH	-
NH ₂	Me	Me	OAc	Н		H ₂) ₄ -	1	CO	NH	-
NHMe	· Me	Me	OAc	Н		7 ₂₎₄ -	1	CO	NH	•
NMe ₂	Me	Me	OAc	Н	-(Cl	H ₂) ₄ -	1	CO	NH	-
NHCOMe	Me	Me	OH	Н		H ₂) ₄ -	1	CO	NH	CH ₂
NHSO ₂ Me	Me	Me	ОН	Н		H ₂) ₄ -	1	CO	NH	•
CONH ₂	Me	Me	ОН	Н		H ₂) ₄ -	4	CO	NH	•
CONHMe	Me	Me	OH	Н		H ₂) ₄ -	3	CO	NH	-
CONMe ₂	Me	Me	OH	Н		H ₂) ₄ -	2	CO	NH	•
COMe	Me	Me	OH	Н	Et	Н	1	CO	NH	-
CO ₂ Me	Me	Me	OH	Н	Me	Н	1	CO	NH	-
CO ₂ Ph	Me	Me	OAc	Н	i-Pr	Н	1	CO	NH	-
CO ₂ CH ₂ Ph	Me	Me	ОН	Н	-(CI	H ₂)′ ₄ -	1	CO	NH	-

化合物例 表 4

					3 4	R2	R ³		
R ¹	R ²	R ³	R ⁴	R ⁵	R ⁷ R ⁸	n	X	Y	Z
Н	Me	Me	ОН	Н	-(CH ₂) ₄ -	1	СО	NH	
F	Me	Me	ОН	Н	-(CH ₂) ₄ -	1	CO	NH	-
Br	n-Pr	n-Pr	ОН	Н	-(CH ₂) ₄ -	1	CO	NH	•
Me	Me	Me	ОН	Н	Et H	1	CO	NH	-
CF ₃	Me	Et	ОН	Н	-(CH ₂) ₄ -	2	CO	NH	CH ₂
CH ₂ CF ₃	Et	Me	ОН	Н	-(CH ₂) ₄ -	1	CO	NH	-
C ₂ F ₅	Ме	Me		-	Me H	1	CO	NH	-
OMe	Ме	Me	ОН	Н	-(CH ₂) ₄ -	2	CO	NH	-
OCF ₃	Me	Me	OH	Н	-(CH ₂) ₄ -	1	CO	NH	•
CH ₂ OMe	Me	Me	OH	Н	-(CH ₂) ₄ -	1	CO	NH	-
c-Pr	Me	Me	OH	Н	-(CH ₂) ₄ -	3	CO	NH	•
NO ₂	Me	Me	OH	Н	-(CH ₂) ₄ -	1	CO	NH	-
CN	Me	Me	OH	Н	-(CH ₂) ₄ -	1	CO	NH	•
CHO	Me	Me	OH	Н	-(CH ₂) ₄ -	1	CH ₂	NH	-
CO ₂ H	Me	Me	OH	Н	-(CH ₂) ₄ -	1	CO	NH	-
ОН	Me	Me	OH	Н	-(CH ₂) ₄ -	1	CH ₂	NH	CH ₂
CH ₂ OH	Me	Me		-	-(CH ₂) ₄ -	1	CO	NH	-
NHCHO	Me	Me	OH	Н	-(CH ₂) ₄ -	1	NH	CO	NH
NHCN	Me	Me	OH	Н	c-Pr H	1	CO	NH	-
NH ₂	Me	Me	OAc	Н	-(CH ₂) ₄ -	1	CO	NH	-
NHMe	Me	Me	OAc	Н	-(CH ₂) ₄ -	1	CO	NH	-
NMe ₂	Me	Me	OAc	Н	-(CH ₂) ₄ -	1	CO	NH	-
NHCOMe	Me	Me	OH	Н	-(CH ₂) ₄ -	1	CO	NH	CH ₂
NHSO ₂ Me	Me	Me	OH	Н	-(CH ₂) ₄ -	1	CO	NH	-
CONH ₂	Me	Me	ОН	Н	-(CH ₂) ₄ -	4	CO	NH	-
CONHMe	Me	Me	OH	Н	-(CH ₂) ₄ -	3	CO	NH	•
CONMe ₂	Me	Me	ОН	Н	-(CH ₂) ₄ -	2	CO	NH	-
COMe	Me	Me	OH	Н	Et H	1	CO	NH	•
CO ₂ Me	Me	Me	OH	Н	Me H	1	CO	NH	•
CO ₂ Ph	Me	Me	OAc	Н	i-Pr H	1	CO	NH	•
CO ₂ CH ₂ Ph	Me	Ме	OH	Н	-(CH ₂) ₄ -	1	co	NH	<u> </u>

化合物例 表 5

										•
R ¹	R ²	R ³	R ⁴	R ⁵	R ⁷	R ⁸	n	X	Υ	Z
	Me	Me	ОН	Н	-(CH	2)4-	1	CO	NH	_
F	Ме	Me	ОН	Н	-(CH	2)4-	1	CO	NH	-
Br	n-Pr	n-Pr	ОН	Н	-(CH		1	CO	NH	-
Me	Me	Me	ОН	Н	Et	Н	1	CO	NH	-
CF ₃	Me	Et	ОН	Н	-(CH	l ₂₎₄ -	2	CO	ΝḤ	CH ₂
CH ₂ CF ₃	Et	Ме	ОН	Н	-(CH	l ₂) ₄ -	1	CO	NH	-
C ₂ F ₅	Me	Ме		_	Me	Н	1	CO	NH	-
OMe	Me	Me	OH	Н	-(CH	12)4-	2	CO	NH	-
OCF ₃	Me	Me	ОН	Н	-(CH	12)4-	1	CO	NH	-
CH ₂ OMe	Me	Me	ОН	Н	-(CH	12)4-	1	CO	NH	-
c-Pr	Me	Me	ОН	Н	-(CH	l ₂) ₄ -	3	CO	NH	-
NO ₂	Me	Me	ОН	Н	-(CH	12)4-	1	CO	NH	-
CN	Me	Me	ОН	Н	-(CH	12)4-	1	CO	NH	-
CHO	Me	Me	ОН	Н	-(CH	12)4-	1	CH ₂	NH	-
CO ₂ H	Me	Me	ОН	Н	-(CH		1	CO	NH	-
ОН	Me	Me	ОН	Н	-(CH		1	CH ₂	NH	CH ₂
CH ₂ OH	Me	Me		-	-(CF	12)4-	1	CO	NH	-
NHCHO	Me	Ме	OH	Н	-(CH	12)4-	1	NH	CO	NH
NHCN	Me	Me	ОН	Н	c-Pr		1	CO	NH	•
NH ₂ .	Me	Me	OAc	Н		12)4-	1	CO	NH	-
NHMe	Ме	Me	OAc	Н		12)4-	1	CO	NH	•
NMe ₂	Me	Me	OAc	Н		12)4-	1	CO	NH	-
NHCOMe	Me	Me	OH	Н		1 ₂) ₄ -	1	CO	NH	CH ₂
NHSO ₂ Me	Me	Me	OH	Н		1 ₂₎₄ -	1	CO	NH	-
CONH ₂	Me	Me	OH	Н		12)4-	4	CO	NH	-
CONHMe	Me	Me	ОН	Н		12)4-	3	CO	NH	-
CONMe ₂	Me	Me	OH	Н		1 ₂) ₄ -	2	CO	NH	•
COMe	Me	Me	OH	Н	Et	Н	1	CO	NH	-
CO ₂ Me	Me	Me	OH	Н	Me	Н	1	CO	NH	-
CO ₂ Ph	Me	Me	OAc	Н	i-Pr	Н	1	CO	NH	-
CO ₂ CH ₂ Ph	Me	Me	ОН	Н	-(Cl	12)4-	1	co	NH	-

化合物例 表 6

						•	K	K		
R ¹	R ²	R ³	R ⁴	R ⁵	R ⁷	R ⁸	n	X	Υ	Z
н	Me	Me	ОН	Н	-(CH	12)4-	1	co	NH	•
F	Ме	Me	ОН	Н	-(Cł	12)4-	1	CO	NH	•
Br	n-Pr	n-Pr	ОН	Н	-(CH	12)4-	1	CO	NH	-
Me	Me	Me	ОН	Н	Et	Н	1	CO	NH	-
CF ₃	Me	Et	ОН	Н	-(CH	12)4-	2	CO	NH	CH ₂
CH ₂ CF ₃	Et	Me	OH	Н	-(Cł	12)4-	1	CO	NH	-
C ₂ F ₅	Me	Me		-	Me	H	1	CO	NH	-
OMe	Me	Me	ОН	Н	-(Cł	H ₂) ₄ -	2	CO	NH	-
OCF ₃	Me	Me	ОН	Н	-(Cł	H ₂) ₄	. 1	CO	NH	•
CH ₂ OMe	Me	Me	OН	Н	-(Cł	1 ₂) ₄ -	1	CO	NH	-
c-Pr	Me	Me	ОН	Н	-(Cl	1 ₂) ₄ -	3	CO	NH	-
NO ₂	Me	Me	ОН	Н	-(Cl	H ₂) ₄ -	1	CO	ИН	-
CN	Ме	Me	ОН	Н	-(Cl	1 ₂) ₄ -	1	CO	NH	-
CHO	Me	Me	ОН	Н	-(Cl	12)4-	1	CH ₂	NH	-
CO ₂ H	Me	Me	ОН	Н	-(Cl	H ₂) ₄ -	1	CO	NH	-
оĤ	Me	Me	OH	Н	-(Cl	H ₂) ₄ -	1	CH ₂	NH	CH ₂
CH ₂ OH	Me	Me	_	_	-(Cl	H ₂) ₄ -	1	CO	NH	-
NHCHO	Me	Me	ОН	Н	-(Cl	H ₂) ₄ -	1	NH	CO	NH
NHCN	Me	Me	ОН	Н	c-Pr	Н	1	CO	NH	-
NH_2	Me	Ме	OAc	Н	-(CI	H ₂) ₄ -	1	CO	NH	-
NHMe	Me	Me	OAc	Н		H ₂) ₄ -	1	CO	NH	-
NMe ₂	Me	Me	OAc	Н		H ₂);-	1	CO	NH	-
NHCOMe	Ме	Me	ОН	Н		H ₂) ₄ -	1	CO	NH	CH ₂
NHSO ₂ Me	Me	Me	ОН	Н		H ₂) ₄ -	1	CO	NH	•
CONH ₂	Ме	Me	ОН	Н		H ₂) ₄ -	4	CO	NH	-
CONHMe	Ме	Me	ОН	Н		H ₂) ₄ -	3	CO	NH	-
CONMe ₂	Ме	Me	ОН	Н		H ₂) ₄ -	2	CO	NH	-
COMe	Me	Ме	ОН	Н	Ét	Н	1	CO	NH	-
CO ₂ Me	Me	Me	ОН	Н	Ме	Н	1	CO	NH	-
CO ₂ Ph	Me	Me	OAc	Н	i-Pr		1	CO	NH	-
CO ₂ CH ₂ Ph	Me	Me	ОН	Н		H ₂) ₄ -	1	CO	NH	-

化合物例 表7

						- 4	R	" R"	`	-
R ¹	R ²	R ³	R ⁴	R ⁵	R ⁷	R ⁸	n	×	Υ	Z
Н	Me	Me	ОН	Н	-(CH ₂)4-	1	co	NH	-
F	Me	Me	ОН	Н	-(CH ₂	2)4-	1	CO	NH	-
Br	n-Pr	n-Pr	OH	Н	-(CH ₂	2)4-	1	CO	NH	-
Me	Me	Me	ОН	Н	Et	H _.	1	CO	NH	-
CF ₃	Me	Et	ОН	Н	-(CH ₂	2)4-	2	CO	NH	CH ₂
CH ₂ CF ₃	Et	Me	ОН	Н	-(CH ₂	2)4-	1	CO	NH	-
C ₂ F ₅	Me	Me	_	-	Me	Н	1	CO	NH	-
OMe	Мe	Me	ОН	Н	-(CH ₂	2)4-	2	CO	NH	•
OCF ₃	Me	Me	ОН	Н	-(CH ₂	2)4-	1	CO	NH	-
CH ₂ OMe	Me	Me	OH	Н	-(CH ₂	2)4-	1	CO	NH	•
c-Pr	Ме	Me	OH	Н	-(CH ₂		3	CO	NH	-
NO ₂	Me	Me	ОН	Н	-(CH ₂	2)4-	1	CO	NH	-
CN	Me	Me	OH	Н	-(CH	2)4-	1	CO	NH	•
CHO	Me	Me	OH	Н	-(CH		1	CH ₂	NH	-
CO ₂ H	Me	Me	ОН	Н	-(CH		1	CO	NH	-
OH	Me	Me	ОН	Н	-(CH	2)4-	1	CH ₂	NH	CH ₂
CH ₂ OH	Me	Me		_	-(CH		1	CO	NH	
NHCHO	Me	Me	ОН	Н	-(CH		1	NH	CO	ИН
NHCN	Me	Me	ОН	Н	c-Pr		1	CO	NH	•
NH ₂	. Me	Me	OAc	Н	-(CH		1	CO	NH	•
NHMe	Me	Me	OAc	Н	-(CH	-	1	CO	NH	•
NMe ₂	Me	Me	OAc	Н	-(CH		1	CO	NH	-
NHCOMe	Me	Me	ОН	Н	-(CH		1	CO	NH	CH ₂
NHSO ₂ Me	Me	Me	ОН	Н	-(CH		1	CO	NH	-
CONH ₂	Me	Me	ОН	Н	-(CH	2)4-	4	CO	NH	-
CONHMe	Me	Me	ОН	Н	-(CH	2)4-	3	CO	NH	-
CONMe ₂	Me	Me	ОН	Н	-(CH	2)4-	2	CO	NH	•
COMe	Me	Me	OH	Н	Et	Н	1	CO	NH	-
CO ₂ Me	Me	Me	ОН	Н	Me	Н	1	CO	NH	-
CO ₂ Ph	Me	Me	OAc	Н	i-Pr	Н	1	CO	NH	-
CO ₂ CH ₂ Ph	Me	Ме	ОН	Н	-(CH	12)4-	1	CO	NH	•

化合物例 表 8

						4	K- K	\$		
R ¹	R ²	R ³	R ⁴	R ⁵	R ⁷	R ⁸	n	X	Υ	Z
Н	Me	Me	ОН	Н	-(CF	12)4-	1	CO	NH	-
F	Me	Ме	ОН	Н	-(CF	12)4-	1	CO	NH	-
Br	n-Pr	n-Pr	ОН	Н	-(CH	1 ₂) ₄ -	1	CO	NH	•
Me	Me	Me	ОН	Н	Et	Н	1	CO	NH	-
CF ₃	Me	Et	ОН	Н	-(CF	12)4-	2 .	CO	NH	CH ₂
CH ₂ CF ₃	Et	Me	ОН	Н	-(Cł	12)4-	1	CO	NH	-
C ₂ F ₅	Me	Me		-	Me	Н	1	CO	NH	-
OMe	Me	Me	OH	Н	-(CH	12)4-	2	CO	NH	-
OCF ₃	Me	Me	ОН	Н	-(Cł	12)4-	1	CO	NH	•
CH ₂ OMe	Ме	Me	OH	Н	-(Cł	1 ₂₎₄ -	1	CO	NH	-
c-Pr	Me	Me	ОН	Н	-(Cł	1 ₂₎₄ -	3	CO	NH	-
NO ₂	Me	Me	OH	Н	-(Cł	1 ₂) ₄ -	1	CO	NH	•
CN	Me	Me	ОН	Н		12)4-	1	CO	NH	-
CHO	Me	Me	ОН	Н		H ₂) ₄ -	1	CH ₂	NH	•
CO₂H	Me	Me	OH	Н		1 ₂₎₄ -	1	CO	NH	•
ОН	Me	Me	OH	Н		1 ₂) ₄ -	1	CH ₂	NH	CH ₂
CH ₂ OH	Me	Me		-	-	H ₂) ₄ -	1	CO	NH	
NHCHO	Me	Me	ОН	Н	-(Cl	H ₂) ₄ -	1	NH	CO	NH
NHCN	Me	Me	ОН	Н	c-Pr	Н	1	CO	NH	-
NH ₂	Me	Me	OAc	Н		Ⅎ ₂)₄-	1	CO	NH	-
NHMe	Me	Me	OAc	Н		H ₂) ₄ -	1	CO	NH	•
NMe ₂	Me	Me	OAc	Н		H ₂) ₄ -	1	CO	NH	•
NHCOMe	Me	Me	ОН	Н		H ₂) ₄ -	1	CO	NH	CH ₂
NHSO ₂ Me	Me	Me	ОН	Н		H ₂) ₄ -	1	CO	NH	•
CONH ₂	Me	Me	ОН	Н		H ₂) ₄ -	4	CO	NH	•
CONHMe	Me	Me	OH	Н		H ₂) ₄ -	3	CO	NH	•
CONMe ₂	Me	Me	ОН	Н		H ₂) ₄ -	2	CO	NH	•
COMe	Me	Me	OH	Н	Et	Н	1	CO	NH	-
CO ₂ Me	Me	Me	ОН	Н	Me	Н	1	CO	NH	-
CO ₂ Ph	Me	Me	OAc	Н	i-Pr	Н	1	CO	NH	-
CO ₂ CH ₂ Ph	Me	Me	ОН	Н	-(C	H ₂) ₄ -	1	со	NH	-

化合物例 表 9

					4	R" R			•
R ¹	R ²	R ³	R ⁴	R ⁵	R ⁷ R ⁸	n	Х	Y	Z
Н	Me	Me	ОН	Н	-(CH ₂) ₄ -	1	CO	NH	•
F.	Ме	Me	ОН	Н	-(CH ₂) ₄ -	1	CO	NH	-
Br	n-Pr	n-Pr	ОН	Н	-(CH ₂) ₄ -	1	CO	NH	-
Me	Me	Me	ОН	Н	Et H	1	CO	NH	-
CF ₃	Me	Et	ОН	Н	-(CH ₂) ₄ -	2	CO	ΝH	CH ₂
CH ₂ CF ₃	Et	Ме	ОН	Н	-(CH ₂) ₄ -	1	CO	NH	-
C ₂ F ₅	Me	Me	_	_	Me H	1	CO	NH	-
OMe	Ме	Me	ОН	Н	-(CH ₂) ₄ -	2	CO	NH	-
OCF ₃	Me	Me	ОН	Н	-(CH ₂) ₄ -	1	CO	NH	-
CH ₂ OMe	Ме	Me	ОН	Н	-(CH ₂) ₄ -	1	CO	NH	-
c-Pr	Me	Me	OH	Н	-(CH ₂) ₄ -	3	CO	NH	-
NO ₂	Me	Me	OH	Н	-(CH ₂) ₄ -	1	CO	NH	-
CN	Me	Me	OH	Н	-(CH ₂) ₄ -	1	CO	NH	-
CHO	Me	Me	OH	Н	-(CH ₂) ₄ -	1	CH ₂	NH	-
CO ₂ H	Me	Me	OH	Н	-(CH ₂) ₄ -	1	CO	NH	-
ОH	Me	Me	OH	Н	-(CH ₂) ₄ -	1	CH ₂	NH	CH ₂
CH ₂ OH	Me	Me	-	_	-(CH ₂) ₄ -	1	CO	NH	-
NHCHO	Me	Me	ОН	Н	-(CH ₂) ₄ -	1	NH	CO	NH
NHCN	Me	Me	OH	Н	c-Pr H	1	CO	NH	-
NH ₂	. Me	Me	OAc	Н	-(CH ₂) ₄ -	1	CO	NH	•
NHMe	Me	Me	OAc	Н	-(CH ₂) ₄ -	1	CO	NH	-
NMe ₂	Me	Me	OAc	Н	-(CH ₂) ₄ -	1	CO	NH	-
NHCOMe	Me	Ме	ОН	Н	-(CH ₂) ₄ -	1	CO	NH	CH ₂
NHSO ₂ Me	Me	Ме	OH	Н	-(CH ₂) ₄ -	1	CO	NH	-
CONH ₂	Me	Me	OH	Н	-(CH ₂) ₄ -	4	CO	NH	-
CONHMe	Me	Me	OH	Н	-(CH ₂) ₄ -	3	CO	NH	•
CONMe ₂	Me	Me	ОН	Н	-(CH ₂₎₄ -	2	CO	NH	. -
COMe	Me	Me	OH	Н	Et H	1	CO	NH	-
CO ₂ Me	Me	Ме	ОН	Н	Me H	1	CO	NH	-
CO ₂ Ph	Me	Me	OAc	Н	i-Pr H	1	CO	NH	-
CO ₂ CH ₂ Ph	Me	Me	ОН	Н	-(CH ₂) ₄ -	1	CO	NH	

化合物例 表10

					5 4	$R^2 R^3$,		
R ¹	R ²	R ³	R ⁴	R ⁵	R ⁷ R ⁸	n	X	Υ	Z
Н	Me	Me	ОН	Н	-(CH ₂) ₄ -	1	СО	NH	-
F	Me	Me	ОН	Н	-(CH ₂) ₄ -	1	CO	NH	-
Br	n-Pr	n-Pr	ОН	Н	-(CH ₂) ₄ -	1	CO	NH	-
Me	Me	Ме	ОН	Н	Et H	1	CO	NH	-
CF ₃	Me	Et	ОН	H	-(CH ₂) ₄ -	2	CO	NH	CH ₂
CH ₂ CF ₃	Et	Me	ОН	Н	-(CH ₂) ₄ -	1	CO	NH	-
C ₂ F ₅	Me	Me		_	Me H	1	CO	NH	-
OMe	Me	Me	ОН	Н	-(CH ₂) ₄ -	2	CO	NH	-
OCF ₃	Me	Me	ОН	Н	-(CH ₂) ₄ -	1	CO	ИН	-
CH ₂ OMe	Ме	Me	ОН	Н	-(CH ₂) ₄ -	1	CO	NH	-
c-Pr	Me	Ме	ОН	Н	-(CH ₂) ₄ -	3	CO	NH	-
NO ₂	Me	Me	OH	Н	-(CH ₂) ₄ -	1	CO	NH	-
CN	Me	Ме	ОН	Н	-(CH ₂) ₄ -	1	CO	NH	-
CHO	Me	Ме	OH	Н	-(CH ₂) ₄ -	1	CH ₂	NH	•
CO ₂ H	Me	Me	OH	Н	-(CH ₂) ₄ -	1	CO	NH	-
ОH	Me	Ме	OH	Н	-(CH ₂) ₄ -	1	CH ₂	NH	CH ₂
CH ₂ OH	Me	Ме		-	-(CH ₂) ₄ -	1	CO	NH	-
NHCHO	Me	Me	ОН	Н	-(CH ₂) ₄ -	1	NH	CO	NH
NHCN	Me	Me	OH	Н	c-Pr H	1	CO	NH	-
NH_2	Ме	Me	OAc	Н	-(CH ₂) ₄ -		CO	NH	-
NHMe	Me	Me	OAc	Н	-(CH ₂) ₄ -		CO	NH	-
NMe ₂	Me	Me	OAc	Н	-(CH ₂) ₄ -		CO	NH	-
NHCOMe	Me	Me	OH	Н	-(CH ₂) ₄ -		CO	NH	CH ₂
NHSO ₂ Me	Me	Me	OH	Н	-(CH ₂) ₄ -	1	CO	NH	-
CONH ₂	Me	Me	OH	Н	-(CH ₂) ₄ -		CO	NH	•
CONHMe	Me	Me	OH	Н	-(CH ₂) ₄ -		CO	NH	•
CONMe ₂	Me	Me	ОН	Н	-(CH ₂) ₄ -		CO	NH	•
COMe	Me	Me	OH	Н	Et H	1	CO	NH	•
CO ₂ Me	Me	Me	ОН	Н	Me H	1	CO	NH	-
CO ₂ Ph	Me	Me	OAc	Н	i-Pr H	1	CO	NH	-
CO ₂ CH ₂ Ph	Ме	Me	ОН	Н	-(CH ₂) ₄ -	. 1	CO	NH	-

化合物例 表11.

$$N = N - (CH_2)_{n} - X - Y - Z = \begin{cases} R^{8} & R^{7} \\ & R^{5} \\ & R^{5} \end{cases}$$

$$R^{1} = \begin{pmatrix} R^{8} & R^{7} \\ & R^{5} \\ & R^{2} & R^{3} \end{pmatrix}$$

R ¹	R ²	R ³	R ⁴	R ⁵	R ⁷	R ⁸	n	X	Υ	Z
Н	Me	Me	ОН	Н	-(CH	2)4-	1	CO	NH	-
F	Me	Me	ОН	Н	-(CH		1	CO	NH	-
Br	n-Pr	n-Pr	ОН	Н	-(CH		1	CO	NH	-
Me	Me	Me	ОН	Н	Et	Н	1	CO	NH	-
CF ₃	Me	Et	ОН	Н	-(CH	2)4-	2	CO	NH	CH ₂
CH ₂ CF ₃	Et	Me	ОН	Н	-(CH		1	CO	NH	-
C ₂ F ₅	Me	Me		_	Me	Н	1	CO	NH	-
OMe	Me	Me	ОН	Н	-(CH	2)4-	2	CO	NH	-
OCF ₃	Me	Me	ОН	Н	-(CH	2)4-	1	CO	NH	-
CH ₂ OMe	Me	Ме	ОН	Н	-(CH		1	CO	NH	-
c-Pr	Me	Me	ОН	Н	-(CH	2)4-	3	CO	NH	-
NO ₂	Me	Ме	ОН	Н	-(CH	2)4-	1	CO	NH	-
CN	Me	Ме	ОН	Н	-(CH	12)4-	1	CO	NH	-
CHO	Me	Ме	ОН	Н	-(CH	2)4-	1	CH ₂	NH	-
CO ₂ H	Me	Me	ОН	Н	-(CH	12)4-	1	CO	NH	-
OH	Me	Me	ОН	Н	-(CF	12)4-	1	CH ₂	NH	CH ₂
CH ₂ OH	Me	Me		_	-(CH		1	CO	NH	-
NHCHO	Me	Me	ОН	Н	-(CF	12)4-	1	ИН	CO	NH
NHCN	Me	Ме	ОН	Н	c-Pr	Н	1	CO	NH	•
NH ₂	. Me	Me	OAc	Н	-(CH	H ₂) ₄ -	1	CO	NH	•
NHMe	Me	Me	OAc	Н	-(CH	12)4-	1	CO	NH	-
NMe ₂	Me	Me	OAc	Н		H ₂) ₄ -	1	CO	NH	•
NHCOMe	Me	Me	ОН	Н		H ₂) ₄ -	1	CO	NH	CH ₂
NHSO ₂ Me	Me	Ме	ОН	Н		12)4-	1	CO	NH	-
CONH ₂	Me	Me	ОН	Н		H ₂) ₄ -	4	CO	ИН	-
CONHMe	Me	Me	ОН	Н		H ₂) ₄ -	3	CO	NH	-
CONMe ₂	Me	Me	ОН	Н		H ₂) ₄ -	2	CO	NH	-
COMe	Me	Me	ОН	Н	Ét	Н	1	CO	NH	-
CO ₂ Me	Me	Me	ОН	Н	Me	Н	1	CO	NH	-
CO ₂ Ivie CO ₂ Ph	Me		OAc		i-Pr	Н	1	CO	NH	-
CO ₂ CH ₂ Ph	Me		OH	Н		H ₂) ₄ -	1	CO	NH	-
CO2CH2FII	1410									

化合物例 表12

化合物例 表13

$$(CH_2)_{n} - X - Y - Z \xrightarrow{5}_{4} \frac{R^8 \cdot R^7}{R^5}$$

R ¹ R ² R ³ R ⁴ R ⁵ R ⁷ R ⁸ n	X	Υ	Z
H Me Me OH H -(CH ₂) ₄ - 2	CO	NH	CH ₂
	CO	NH	CH ₂
	CO	NH	CH ₂
	CO	NH	CH ₂
CF ₃ Me Me OH H -(CH ₂) ₄ - 1	CO	NH	-
CH ₂ CF ₃ Me Me(CH ₂) ₄ - 1	CO	NH	CH ₂
C ₀ F ₅ Me Me OH H -(CH ₂) ₄ - 1	CO	NH	CH ₂
OMe Me Me OH H -(CH ₂) ₄ - 1	CO	NH	CH ₂
OCF ₃ Me Me OH H -(CH ₂) ₄ - 1	CO	NH	CH ₂
CH ₂ OMe Me Me OH H -(CH ₂) ₄ - 1	CH ₂	NH	-
c-Pr Me Me OH H n-Pr H 1	CH ₂	NH	-
NO ₂ Me Me OH H -(CH ₂) ₄ - 1 (CH ₂	NH	-
CN Me Me OH H -(CH ₂) ₄ - 1	CH ₂	NH	-
CHO Me Me OH H -(CH ₂) ₄ - 1	CH ₂	NH	-
CO ₂ H Me Me OH H -(CH ₂) ₄ - 1	CH ₂	NH	-
OH Me Me OH H -(CH ₂) ₄ - 1	CO	NH	-
CH ₂ OH Me Me OH H c-Pr H 1	CH ₂	NH	CH ₂
NHCHO Me Me OH H -(CH ₂) ₄ - 2	CH ₂	NH	CH ₂
NHCN Me Me OH H n-Bu H 2	CH ₂	NH	CH ₂
NH ₂ Me Me OH H -(CH ₂) ₄ - 4	CH ₂	NH	CH ₂
NHMe Me Me OH H -(CH ₂) ₄ - 3 (CH ₂	NH	CH ₂
	SO_2	NH	-
NHCOMe Et Et OH H -(CH ₂) ₄ - 1	SO_2	NH	-
NHSO ₂ Me Me Me OH H i-Pr H 1	SO_2	NH	-
CONH ₂ Me Me — -(CH ₂) ₄ - 1	SO_2	NH	-
CONHMe Me Me OAc H -(CH ₂) ₄ - 1	SO ₂	NH	-
CONMe ₂ Me Me OH H -(CH ₂) ₄ - 1	SO_2	NH	-
COMe Me Me OH H -(CH ₂) ₄ - 1	NH	CO	NH
CO ₂ Me Me Me OH H -(CH ₂) ₄ - 1	ИН	CO	NH
CO ₂ Ph Me Me OH H -(CH ₂) ₄ - 1	NH	CO	NH
CO ₂ CH ₂ Ph Me Me OH H -(CH ₂) ₄ - 1	NH	co	NH

化合物例 表14

$$(CH_2)_{\overline{n}} X - Y - Z \xrightarrow{f} R^{8} R^{7} R^{5}$$

$$R^{1}_{5} \xrightarrow{2} R^{4}$$

	5 4 /\							
R ¹	R ⁴	R ⁵	R ⁷	. R ⁸	n	Х	Y	Z
Н	ОН	Н	Н	Н	1	CO	NH	CH ₂
F	ОН	Н	Ph	Н	1	CO	NH	CH ₂
Br		_	Me	Н	2	CO	NH	CH ₂
Me	ОН	Н	Et	Н	2	CO	NH	CH ₂
CF ₃	ОН	Н	n-Pr	Н	1	CO	ИН	CH ₂
CH ₂ CF ₃	ОН	Н	i-Pr	Н	1	CO	NH	CH ₂
C ₂ F ₅	ОН	Н	n-Bu	Н	1	CO	NH	CH ₂
OMe	ОН	Н	t-Bu	Н	1	CH ₂	ΝН	-
OCF ₃	ОН	Н	CH=CH ₂	Н	1	CH ₂	NH	-
CH ₂ OMe	ОН	Н	CH₂CCH	Н	1	CH ₂	NH	-
c-Pr	OH	Н	c-Pr	Н	1	CH ₂	NH	-
NO ₂	ОН	Н	Et	Н	1	CH ₂	NH	-
CN	ОН	Н	i-Pr	Н	1	CH ₂	NH	-
CHO	ОН	Н	p-MeOPh	Ħ	1	CH ₂	NH	-
CO ₂ H	ОН	Н	c-Pentyl	Н	1	CH ₂	NH	-
OH	ОН	Н	CH ₂ CH ₂ Ph	Н	4	CH ₂	NH	CH ₂
CH ₂ OH	ОН	Н	CH ₂ Ph	Н	2	CH ₂	NH	CH ₂
NHCHO	ОН	Н	Ph	Н	1	CH ₂	NH	CH2
NHCN	ОН	Н	Ph	н	1	CH ₂	NH	CH ₂
NH ₂	_	_	CH ₂ CH ₂ Ph	Н	1	CH ₂	NH	CH2
NHMe		_	-(CH ₂) ₅ -		1	SO ₂	NH	-
NMe ₂	ОН	Н	-(CH ₂) ₂ O(C		1	SO_2	NH	-
NHCOMe	ОН	Н	-(CH ₂) ₂ NH(C		1	SO_2	NH	-
NHSO ₂ Me	ОН	H	i-Pr	Н	1	SO_2	NH	-
CONH ₂	ОН	H	c-Pr	Н	1	SO ₂	NH	-
CONHMe	ОН	H	Me	Н	1	NH	CO	NH
CONMe ₂	ОН	Н	Et	Н	1	NH	CO	NH
COMe	ОН	Н	n-Pr	Н	1	NH	CO	NH
CO ₂ Me	ОН	Н	i-Pr	н	1	NH	CO	NH
CO ₂ IVIE CO ₂ Ph	ОН	Н	c-Pr	 Н	1	NH	CO	NH
CO ₂ CH ₂ Ph	ОН	Н	i-Bu	 H	1	NH	CO	NH

化合物例 表15

				4				
R ¹	R ⁴	R ⁵	R ⁷	R ⁸	n	Х	Υ	Z
Н	ОН	Н	Н	н	0	NH	СО	NH
F	ОН	Н	Ph	н	2	CO	NH	-
Br	_	_	Me	Н	2	CO	NH	•
Me	ОН	Н	Et	Н	3	CO	NH	-
CF ₃	ОН	Н	n-Pr	H [.]	4	CO	NH	-
CH ₂ CF ₃	ОН	Н	i-Pr	Н	3	CO	NH	•
C ₂ F ₅	ОН	Н	n-Bu	Н	4	CO	NH	-
OMe	ОН	Н	t-Bu	Н	0	CO	NH	-
OCF ₃	ОН	Н	CH=CH ₂	Н	2	CO	NH	-
CH ₂ OMe	ОН	Н	CH ₂ CCH	Н	2	CO	NH	-
c-Pr	ОН	Н	c-Pr	H	0	CO	NH	-
NO ₂	ОН	Н	Et	Н	2	CO	NH	-
CN	ОН	Н	i-Pr	Н	2	CO	NH	•
CHO	ОН	Н	p-MeOPh	Н	3	CO	NH	-
CO ₂ H	ОН	Н	c-Pentyl	Н	4	CO	NH	-
оĤ	OH	Н	CH ₂ CH ₂ Ph	Н	3	CO	NH	-
CH ₂ OH	ОН	Н	CH ₂ Ph	н	2	CO	NH	•
NHCHO	ОН	Н	Ph	Н	2	CO	NH	•
NHCN	ОН	Н	Ph	Н	2	CO	NH	•
NH ₂		_	CH ₂ CH ₂ Ph	Н	3	CO	NH	-
NHMe		_	-(CH ₂) ₅ -		2	CO	NH	-
NMe ₂	ОН	Н	-(CH ₂) ₂ O(Cl	12)2-	2	CO	NH	-
NHCOMe	OH	Н	-(CH ₂) ₂ NH(CI	H ₂) ₂ -	3	CO	NH	-
NHSO ₂ Me	OH	Н	i-Pr	Н	2	CO	NH	•
CONH ₂	ОН	Н	c-Pr	Н	2	CO	NH	-
CONHMe	ОН	Н	Me	Н	2	CO	ИН	-
CONMe ₂	ОН	Н	Et	Н	2	CO	NH	-
COMe	ОН	Н	n-Pr	Н	2	CO	NH	-
CO ₂ Me	ОН	Н	i-Pr	Н	2	CO	NH	•
CO ₂ Ph	OH	Н	c-Pr	Н	2	CO	NH	-
CO ₂ CH ₂ Ph	ОН	Н	i-Bu	Н	2		NH ——	<u>.</u>

化合物例 表16

R ¹	R ⁴	R ⁵	R ⁷	R ⁸	n	X	Υ	Z
Н	ОН	Н	CH=CH ₂	н	1	CO	NH	-
F	ОН	Н	CH ₂ CCH	Н	1	CO	NH	-
Br		-	c-Pr	Н	1	CO	NH	-
Me	ОН	Н	Et	Н	2	CO	NH	-
CF ₃	ОН	Н	i-Pr	Н.	2	CO	NH	-
CH ₂ CF ₃	ОН	Н	p-MeOPh	н	2	CO	NH	-
C ₂ F ₅	ОН	н	c-Pentyl	н	1	CO	NH	-
OMe	OH	Н	CH ₂ CH ₂ Ph	Н	1	CO	NH	-
OCF ₃	ОН	Н	CH ₂ Ph	Н	1	CO	NH	-
CH ₂ OMe	ОН	Н	Ph	н	1	CO	NH	-
c-Pr	ОН	Н	Ph	Н	1	CO	NH	-
NO ₂	ОН	Н	CH ₂ CH ₂ Ph	Н	1	CO	NH	-
CN	ОН	Н	Me	Н	1	CO	NH	-
CHO	ОН	Н	Et	н	1	CO	NH	-
CO ₂ H	ОН	Н	n-Pr	Н	1	CO	NH	-
OH	ОН	Н	i-Pr	Н	1	NH	CO	NH
CH ₂ OH	ОН	Н	c-Pr	н	1	CO	NH	-
NHCHO	ОН	Н	i-Bu	Н	1	CO	NH	-
NHCN	ОН	Н	Н	Н	1	CO	NH	-
NH ₂			Ph	Н	1	CH ₂	NH	-
NHMe		_	Me	Н	1	CH ₂	NH	-
NMe ₂	ОН	Н	Et	Н	1	CH ₂	NH	-
NHCOMe	ОН	Н	n-Pr	Н	1	CH ₂	NH	-
NHSO ₂ Me	ОН	Н	i-Pr	Н	1	CH ₂	NH	-
CONH ₂	ОН	H	n-Bu	Н	1	CO	NH	-
CONHMe	ОН	Н	t-Bu	Н	1	CO	NH	-
CONMe ₂	ОН	Н	-(CH ₂) ₅ -		1	CO	NH	-
COMe	ОН	Н	-(CH ₂) ₂ O(C		1	CO	NH	-
CO ₂ Me	ОН	н	-(CH ₂) ₂ NH(C		1	CO	NH	-
CO ₂ Me CO ₂ Ph	ОН	Н	i-Pr	H	1	CO	NH	-
CO ₂ CH ₂ Ph	ОН	Н	c-Pr	н	1	CO	ИН	-
		·						

化合物例 表 1 7.

			5	4 /	<u> </u>			
R ¹	R ⁴	R ⁵	R ⁷	R ⁸	n	X	Υ	Z
н	ОН	Н	CH=CH ₂	Н	1	co	ΝН	-
F	ОН	Н	CH ₂ CCH	Н	1	CO	NH	-
Br		-	c-Pr	Н	1	CO	NH	-
Me	ОН	Н	Et	Н	2	CO	ŅН	-
CF ₃	ОН	Н	i-Pr	Ή	2	CO	NH	-
CH ₂ CF ₃	ОН	Н	p-MeOPh	Н	2	CO	NH	-
C ₂ F ₅	ОН	Н	c-Pentyl	Н	1	CO	NH	-
OMe	ОН	Н	CH ₂ CH ₂ Ph	Н	1	CO	NH	•
OCF ₃	ОН	Н	CH ₂ Ph	Н	1	CO	NH	-
CH ₂ OMe	ОН	Н	Ph _	Н	1	CO	NH	-
c-Pr	ОН	Н	Ph	Н	1	CO	NH	-
NO ₂	ОН	Н	CH ₂ CH ₂ Ph	Н	1	CO	NH	•
CN	ОН	Н	Me	·H	1	CO	NH	-
СНО	ОН	Н	Et	Н	1	CO	ΝН	-
CO ₂ H	ОН	Н	n-Pr	Н	1	CO	NH	-
оĤ	ОН	Н	i-Pr	Н	1	NH	CO	NH
CH ₂ OH	ОН	Н	c-Pr	Н	1	CO	ИН	-
NHCHO	ОН	Н	i-Bu	Н	1	CO	NH	-
NHCN	ОН	Н	Н	Н	1	CO	NH	-
NH ₂		_	Ph	ŀН	1	CH ₂	NH	-
NHMe ´	_	_	Me	Н	1	CH ₂	NH	•
NMe ₂	ОН	Н	Et	Н	1	CH ₂	NH	•
NHCOMe	ОН	Н	n-Pr	Н	1	CH ₂	ИН	-
NHSO ₂ Me	ОН	Н	i-Pr	Н	1	CH ₂	NH	•
CONH ₂	ОН	Н	n-Bu	Н	1	CO	ИН	•
CONHMe	ОН	Н	t-Bu	Н	1	CO	NH	•
CONMe ₂	ОН	Н	-(CH ₂) ₅	-	1	CO	NH	. -
COMe	ОН	Н	-(CH ₂) ₂ O(CH ₂) ₂ -		1	CO	NH	-
CO ₂ Me	ОН	Н	-(CH ₂) ₂ NH(C		1	CO	ΝН	-
CO ₂ Ph	ОН	Н	i-Pr	Н	1	CO	ΝН	•
CO ₂ CH ₂ Ph	ОН	Н	c-Pr	Н	1	CO	NH	-

化合物例 表18

$$\begin{array}{c}
 & R^{8} \\
 & R^{5}
\end{array}$$

$$\begin{array}{c}
 & R^{5} \\
 & R^{5}
\end{array}$$

$$\begin{array}{c}
 & R^{5} \\
 & R^{5}
\end{array}$$

				4 4	, ,			
R ¹	R ⁴	R ⁵	R ⁷	R ⁸	n	Х	Υ	Z
н	ОН	Н	CH=CH ₂	Н	1	co	NH	-
F	ОН	Н	CH ₂ CCH	н	1	CO	NH	-
Br		_	c-Pr	Н	1	CO	NH	-
Me	ОН	Н	Et	Н	2	CO	NH	-
CF ₃	ОН	Н	i-Pr	Н	2	CO	NH	-
CH ₂ CF ₃	ОН	Н	p-MeOPh	Н	2	CO	NH	-
C ₂ F ₅	ОН	Н	c-Pentyl	Н	1	CO	NH	•
OMe	ОН	Н	CH ₂ CH ₂ Ph	Н	1	CO	NH	-
OCF ₃	ОН	Н	CH ₂ Ph	Н	1	CO	NH	-
CH ₂ OMe	ОН	Н	Ph	· H	1	CO	NH	-
c-Pr	ОН	Н	Ph	Н	1	CO	NH	-
NO ₂	ОН	Н	CH ₂ CH ₂ Ph	Н	1	CO	NH	-
CN	ОН	Н	Ме	Н	1	CO	NH	-
CHO	ОН	Н	Et	Н	1	CO	ΝН	-
CO ₂ H	ОН	Н	n-Pr	Н	1	CO	ΝН	•
о́н	ОН	Н	i-Pr	Н	1	NH	CO	NH
CH ₂ OH	ОН	Н	c-Pr	, H	1	CO	NH	-
NHCHO	ОН	Н	i-Bu	Н	1	CO	NH	-
NHCN	ОН	Н	Н	Н	1	CO	NH	•
NH ₂		_	Ph	Н	1	CH ₂	ИН	-
NHMe	_	_	Me	Н	1	CH ₂	NH	-
NMe ₂	ОН	Н	Et	Н	1	CH ₂	NH	-
NHCOMe	ОН	Н	n-Pr	Н	1	CH ₂	NH	-
NHSO ₂ Me	ОН	Н	i-Pr	Н	1	CH ₂	NH	-
CONH ₂	ОН	Н	n-Bu	Н	1	CO	NH	-
CONHMe	ОН	Н	t-Bu	Н	1	CO	NH	-
CONMe ₂	ОН	Н	-(CH ₂) ₅	-	1	CO	NH	•
COMe	ОН	Н	-(CH ₂) ₂ O(C		1	CO	NH	-
CO ₂ Me	ОН	H	-(CH ₂) ₂ NH(C		1	CO	NH	-
CO ₂ Ph	ОН	H	i-Pr	H	1	CO	NH	-
CO ₂ CH ₂ Ph	ОН	н	c-Pr	Н	1	CO	NH	-

化合物例 表19.

$$\begin{array}{c|c}
 & R^{8} & R^{7} \\
 & R^{5} & R^{5} \\
 & R^{1} & 3 & 2 \\
 & R^{4} & 3 & 3 \\
\end{array}$$

				4 '	` `		<u> </u>	
R ¹	R ⁴	R ⁵	R ⁷	R ⁸	n	X	Υ	Z
Н	ОН	Н	CH=CH ₂	Н	1	CO	NH	-
F	ОН	Н	CH ₂ CCH	Н	1	CO	NH	-
Br		_	c-Pr	H	1	CO	NH	- .
Me	ОН	Н	Et	Н	2	CO	NH	•
CF ₃	ОН	Н	i-Pr	Н	2	CO	NH	-
CH ₂ CF ₃	ОН	Н	p-MeOPh	Н	2	CO	NH	-
C ₂ F ₅	ОН	Н	c-Pentyl	H	1	CO	NH	-
OMe	ОН	Н	CH ₂ CH ₂ Ph	H	1	CO	NH	-
OCF ₃	ОН	Н	CH ₂ Ph	Н	1	CO	NH	-
CH ₂ OMe	ОН	Н	Ph	Н	1	CO	ИН	-
c-Pr	ОН	Н	Ph	Н	1	CO	NH	-
NO ₂	ОН	Н	CH ₂ CH ₂ Ph	Н	1	CO	NH	-
CN	ОН	Н	Me	Н	1	CO	ИН	-
СНО	ОН	Н	Et	H	1	CO	NH	-
CO ₂ H	ОН	Н	n-Pr	Н	1	CO	NH	-
OH	ОН	Н	i-Pr	Н	1	NH	CO	Ν
CH ₂ OH	ОН	Н	c-Pr	Н	1	CO	NH	-
NHCHO	ОН	Н	i-Bu	Н	1	CO	ΝН	-
NHCN	ОН	Н	Н	Н	1	CO	NH	-
NH ₂	_	_	Ph	н	1	CH ₂	ИН	-
NHMe		_	Ме	Н	1	CH ₂	NH	-
NMe ₂	ОН	н	Et	Н	1	CH ₂		-
NHCOMe	ОН	Н	n-Pr	H	1	CH ₂		-
NHSO ₂ Me	ОН	Н	i-Pr	Н	1	CH ₂	NH	-
CONH ₂	ОН	Н	n-Bu	Н	1	CO	NH	-
CONHMe	ОН	Н	t-Bu	Н	1	CO	ΝН	-
CONMe ₂	ОН	Н	-(CH ₂) ₅		1	CO	NH	-
COMe	ОН	н	-(CH ₂) ₂ O(C		1	CO	NH	-
CO ₂ Me	ОН	Н	-(CH ₂) ₂ NH(C		1	CO	NH	-
CO ₂ Nie CO ₂ Ph	ОН	н	i-Pr	<u>.</u> Н	1	CO	NH	-
CO ₂ CH ₂ Ph	ОН	Н	c-Pr	H	1	CO	NH	-
	On		. .					

化合物例 表 2 0

				4				
R ¹	R ⁴	R ⁵	R ⁷	R ⁸	n	X	Y	Z ——
Н	ОН	Н	CH=CH ₂	Н	1	CO	NH	-
F	ОН	Н	CH ₂ CCH	Н	1	CO	NH	-
Br		<u>.</u>	c-Pr	Н	1	CO	NH	-
Me	ОН	н	Et	Н	2	CO	NH	•
CF ₃	ОН	н	i-Pr	H	2	CO	NH	-
CH ₂ CF ₃	ОН	Н	p-MeOPh	Н	2	CO	NH	•
C ₂ F ₅	ОН	Н	c-Pentyl	Н	1	CO	NH	-
OMe	ОН	H	CH ₂ CH ₂ Ph	Н	1	CO	NH	-
OCF ₃	ОН	Н	CH ₂ Ph	Н	1	CO	NH	-
CH ₂ OMe	ОН	Н	Ph	Н	1	CO	ИН	-
c-Pr	ОН	Н	Ph	Н	1	CO	NH	•
NO ₂	ОН	Н	CH ₂ CH ₂ Ph	Н	1	CO	NH	-
CN	ОН	Н	Me	Н	1	CO	NH	-
CHO	ОН	Н	Et	Н	1	CO	NH	-
CO ₂ H	ОН	Н	n-Pr	Н	1	CO	NH	•
оĥ	ОН	Н	i-Pr	Н	1	NH	CO	NH
CH ₂ OH	ОН	Н	c-Pr	Н	1	CO	ИН	•
NHCHO	ОН	Н	i-Bu	Н	1	CO	NH	•
NHCN	OH	Н	Н	Н	1	CO	NH	•
NH_2		_	Ph	Ĥ	1	CH ₂	NH	•
NHMe	_		Me	Н	1	CH ₂		•
NMe ₂	ОН	Н	Et .	Н	1	CH ₂		-
NHCOMe	ОН	Н	n-Pr	H	1	CH ₂		-
NHSO ₂ Me	ОН	Н	i-Pr	Н	1	CH ₂		-
CONH ₂	ОН	Н	n-Bu	Н	1	CO	ИН	-
CONHMe	ОН	Н	t-Bu	Н	1	CO	ИН	-
CONMe ₂	ОН	Н	-(CH ₂) ₅ -		1	CO	ИН	-
COMe	ОН	Н	-(CH ₂) ₂ O(CH	12)2-	1	CO	ИН	-
CO ₂ Me	ОН	Н	-(CH ₂) ₂ NH(Cl		1	CO	NH	•
CO ₂ Ph	ОН	Н	i-Pr	Н	1	CO	NH	-
CO ₂ CH ₂ Ph	ОН	Н	c-Pr	Н	1	CO	NH	-
0020112111	٠.,							

化合物例 表21

		K 5	4	/\		•	
R ⁴	R ⁵	R ⁷	R ⁸	n	×	Υ	Z
ОН	Н	CH=CH ₂	Н	1	co	NH	-
ОН	Н	CH ₂ CCH	Н	1			•
	-	c-Pr	Н	1			•
ОН	Н	Et	Н	2			-
ОН	Н	i-Pr	H	2			•
ОН	Н	p -M eOPh	Н	2			-
OH	Н	c-Pentyl	Н	1			-
ОН	Н	CH ₂ CH ₂ Ph	Н	1			•
ОН	Н	CH ₂ Ph	Н	1			-
ОН	Н	Ph	Н	1			-
ОН	Н	Ph	Н	1			•
ОН	Н	CH ₂ CH ₂ Ph	Н	1			•
ОН	Н	Ме	Н	1			-
ОН	Н	Et	Н	1			-
ОН	Н	n-Pr	Н	1			-
OH	Н	i-Pr	Н	1			NH
OH	Н	c-Pr	Н	1			-
ОН	Н	i-Bu	Н	1			-
ОН	Н	Н	Н	1			-
		Ph	Н	1	_		-
_	_	Me	H Ì	1	_		-
ОН	Н	Et	Н	1	_		-
ОН	Н	n-Pr	Н	1	_		-
ОН	Н	i-Pr	Н	1	_		-
ОН	Н	n-Bu	Н	1			-
ОН	Н	t-Bu	Н	1			-
ОН	Н	-(CH ₂) ₅ -		1			
ОН	Н		12)2-	1			-
ОН	Н	-(CH ₂) ₂ NH(CH	12)2-	1			-
ОН	Н	i-Pr	Н	1			•
ОН	Н	c-Pr	Н	1	C O	NH	•
	다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다	OH O	R ⁴ R ⁵ R ⁷ OH H CH=CH ₂ OH H CH ₂ CCH —— c-Pr OH H Et OH H p-MeOPh OH H c-Pentyl OH H CH ₂ Ph OH H Bt OH H CH ₂ CH ₂ Ph OH H CH ₂ CH ₂ Ph OH H CH ₂ CH ₂ Ph OH H Bt OH H C-Pr OH H G-Pr	R ⁴ R ⁵ R ⁷ R ⁸ OH H CH=CH ₂ H OH H CH ₂ CCH H — c-Pr H OH H Et H OH H p-MeOPh H OH H c-Pentyl H OH H CH ₂ CH ₂ Ph H OH H Ph H OH H Ph H OH H Ph H OH H CH ₂ CH ₂ Ph H OH H CH ₂ CH ₂ Ph H OH H CH ₂ CH ₂ Ph H OH H I-Pr H OH H OH H I-Pr H	R ⁴ R ⁵ R ⁷ R ⁸ n OH H CH=CH ₂ H 1 OH H CH ₂ CCH H 1 — c-Pr H 1 OH H Et H 2 OH H p-MeOPh H 2 OH H c-Pentyl H 1 OH H CH ₂ CH ₂ Ph H 1 OH H CH ₂ CH ₂ Ph H 1 OH H CH-Pr H 1 OH H CH-Pr H 1 OH H CH-Pr H 1 OH H H H 1 OH H H 1-Pr H 1 OH H 1-Pr H 1 OH H 1-Pr H 1 OH H 1-Bu H 1 OH H 1-Bu H 1 OH H 1-Pr H 1	R ⁴ R ⁵ R ⁷ R ⁸ n X OH H CH=CH ₂ H 1 CO OH H CH ₂ CCH H 1 CO OH H Et H 2 CO OH H P-MeOPh H 2 CO OH H C-Pentyl H 1 CO OH H CH ₂ CH ₂ Ph H 1 CO OH H CH ₂ CH ₂ Ph H 1 CO OH H CH ₂ CH ₂ Ph H 1 CO OH H CH ₂ CH ₂ Ph H 1 CO OH H CH ₂ CH ₂ Ph H 1 CO OH H CH ₂ CH ₂ Ph H 1 CO OH H CH ₂ CH ₂ Ph H 1 CO OH H CH ₂ CH ₂ Ph H 1 CO OH H CH ₂ CH ₂ Ph H 1 CO OH H C-Pr H 1 CO OH H I-Pr H 1 CO OH H I-Bu H 1 CO OH H I-Bu H 1 CO OH H I-Pr H 1 CH ₂ OH H I-Pr H 1 CO OH H I-Pr H 1 CH ₂ OH H I-Pr H 1 CO	R ⁴ R ⁵ R ⁷ R ⁸ n X Y OH H CH=CH ₂ H 1 CO NH OH H CH ₂ CCH H 1 CO NH OH H Et H 2 CO NH OH H i-Pr H 2 CO NH OH H c-Pentyl H 1 CO NH OH H CH ₂ CH ₂ Ph H 1 CO NH OH H CH ₂ CH ₂ Ph H 1 CO NH OH H CH ₂ CH ₂ Ph H 1 CO NH OH H CH ₂ CH ₂ Ph H 1 CO NH OH H CH ₂ CH ₂ Ph H 1 CO NH OH H CH CH ₂ CH ₂ Ph H 1 CO NH OH H CH CH ₂ CH ₂ Ph H 1 CO NH OH H CH CH ₂ CH ₂ Ph H 1 CO NH OH H CH CH ₂ CH ₂ Ph H 1 CO NH OH H CH CH ₂ CH ₂ Ph H 1 CO NH OH H CH CH ₂ CH ₂ Ph H 1 CO NH OH H CH CH ₂ CH ₂ Ph H 1 CO NH OH H C-Pr H 1 CO NH OH H I-Pr H 1 CO NH OH H I-Pr H 1 CO NH OH H I-Bu H 1 CO NH OH H I-Bu H 1 CO NH OH H I-Pr H 1 CH ₂ NH OH H I-Pr H 1 CO NH OH H I-Pr H 1 CH ₂ NH OH H I-Pr H 1 CO NH

化合物例 表22

			5	4 4	/ \ 			
R ¹	R ⁴	R ⁵	R ⁷	R ⁸	n	X	Υ	Z
Н	ОН	Н	CH=CH ₂	Н	1	СО	NH	-
F	ОН	Н	CH ₂ CCH	Н	1	CO	NH	•
Br			c-Pr	Н	1	CO	NH	-
Me	ОН	Н	Et	Н	2	CO	NH	•
CF ₃	ОН	Н	i-Pr	Н	2	CO	NH	-
CH ₂ CF ₃	ОН	Н	p-MeOPh	H	2	CO	NH	-
C ₂ F ₅	ОН	Н	c-Pentyl	. н	1	CO	NH	-
OMe	ОН	Н	CH ₂ CH ₂ Ph	H	1	.ÇO	NH	-
OCF ₃	ОН	Н	CH ₂ Ph	Н	1	CO	NH.	•
CH ₂ OMe	ОН	Н	Ph	. H	1	CO	NH	-
c-Pr	ОН	Н	Ph	Н	1	CO	NH	•
NO ₂	ОН	Н	CH ₂ CH ₂ Ph	` H	1	CO	NH	-
CN	ОН	Н	Me	. H	1	CO	ИН	-
CHO	ОН	Н	Et	Н	1	CO	NH	-
CO ₂ H	ОН	Н	. n-Pr	Н	1	CO	NH	-
OH	ОН	Н	i-Pr	Н	1	NH	CO	NH
CH ₂ OH	ОН	Н	c-Pr	Н	1	CO	NH	•
NHCHO	ОН	Н	i-Bu	Н	1	CO	NH	-
NHCN	OH	Н	H	Н	1	CO	NH	-
NH ₂	_	_	Ph	Н	1	CH ₂	NH	-
NHMe.			Me	ŤΗ	1	CH ₂	NH	-
NMe ₂	ОН	H	Et	Н	1	CH ₂	NH	-
NHCOMe	ОН	Н	n-Pr	· H	1	CH ₂	NH	-
NHSO ₂ Me	ОН	Н	i-Pr	Н	1	CH ₂	NH	-
CONH ₂	ОН	Н	n-Bu	Н	1	CO	NH	-
CONHMe	ОН	Н	t-Bu	Н	1	CO	NH	-
CONMe ₂	ОН	Н	-(CH ₂) ₅ -		1	CO	NH	-
COMe	ОН	Н	-(CH ₂) ₂ O(C	H ₂) ₂ -	1	CO	NH	•
CO ₂ Me	ОН	Н	-(CH ₂) ₂ NH(C	$H_2)_2$	1	CO	NH	-
CO ₂ Ph	ОН	Н	i-Pr	H	1	CO	NH	-
CO ₂ CH ₂ Ph	ОН	Н	c-Pr	Н	1	CO	NH	

化合物例 表23.

$$(CH_{2})_{n} - X - Y - Z \xrightarrow{6} \begin{array}{c} R^{8} \\ N \\ R^{5} \\ \end{array}$$

				4.	-			
R ¹	R ⁴	R ⁵	R ⁷	R ⁸	n	X	Υ	Z
Н	ОН	Н	CH=CH ₂	Н	1	co	ΝН	-
F	ОН	Н	CH₂CCH	Н	1	CO	NH	-
Br		_	c-Pr	Н	1	CO	NH	•
Me	ОН	Н	Et	Н	2	CO	NH	-
CF ₃	ОН	Н	i-Pr	·H	2	CO	NH	-
CH ₂ CF ₃	ОН	Н	p- MeOPh	Н	2	CO	NH	-
C ₂ F ₅	ОН	Н	c-Pentyl	Н	1	CO	NH	-
OMe	ОН	Н	CH ₂ CH ₂ Ph	Н	1	CO	NH	-
OCF ₃	ОН	Н	CH ₂ Ph	Н	1.	CO	NH	-
CH₂OMe	ОН	Н	Ph	ļΗ	1	CO	ИН	-
c-Pr	ОН	Н	Ph	Н	1	CO	NH	-
NO ₂	ОН	Н	CH ₂ CH ₂ Ph	Н	1	CO	NH	-
CN	ОН	Н	Me	н	1	CO	NH	-
CHO	ОН	Н	Et	Н	1	CO	NH	-
CO₂H	ОН	Н	n-Pr	Н	1	CO	ΝН	-
оĤ	ОН	Н	i-Pr	Н	1	NH	CO	NH
CH ₂ OH	ОН	Н	c-Pr	Н	1	CO	NH	-
NHCHO	ОН	Н	i-Bu	Н	1	CO	NH	-
NHCN	ОН	Н	Н	Н	1	CO	NH	-
NH ₂	-	_	Ph	Н	1	CH ₂	ИН	-
NHMe '	_	_	Ме	Н	1	CH ₂	NH	-
NMe ₂	ОН	Н	Et	Н	1	CH ₂	ИН	-
NHCOMe	ОН	Н	n-Pr	Н	1	CH ₂	NH	-
NHSO ₂ Me	ОН	Н	i- Pr	Н	1	○ H ₂	ΝН	-
CONH2	ОН	Н	n-Bu	Н	1	CO	ΝН	-
CONHMe	ОН	Н	t-Bu	Н	1	C O	NH	-
CONMe ₂	ОН	Н	-(CH ₂) ₅ -		1	CO	NH	•
COMe	ОН	Н	-(CH ₂) ₂ O(Cl		1	CO	NH	-
CO ₂ Me	ОН	Н	-(CH ₂) ₂ NH(C		1	CO	NH	-
CO ₂ Ph	ОН	Н	i-Pr	Н	1	CO	NH	•
CO ₂ CH ₂ Ph	ОН	Н	c-Pr	Н	1	CO	ИН	•

化合物例 表24

			5	4	/ \ 			
R ¹	R ⁴	R ⁵	R ⁷	R ⁸	n	X	Υ	Z
Н	ОН	Н	CH=CH ₂	н	1	CO	NH	-
F	ОН	Н	CH ₂ CCH	Н	1	CO	NH	-
Br		_	c-Pr	Н	1	CO	NH	-
Me	ОН	Н	Et	Н	2	CO	NH	-
CF ₃	ОН	Н	i-Pr	н	2	CO	NH	-
CH ₂ CF ₃	ОН	Н	p-MeOPh	Н	2	CO	NH	-
C ₂ F ₅	ОН	Н	c-Pentyl	Н	1	CO	NH	-
OMe	ОН	Н	CH ₂ CH ₂ Ph	Н	1	CO	NH	-
OCF ₃	ОН	Н	CH ₂ Ph	Н	1	CO	ИН	-
CH ₂ OMe	ОН	Н	Ph	н	1	CO	ΝН	-
c-Pr	ОН	Н	Ph	н	1	CO	ИН	-
NO ₂	ОН	Н	CH ₂ CH ₂ Ph	Н	1	CO	NH	-
CN	ОН	Н	Me	Н	1	CO	NH	-
CHO	ОН	Н	Et	Н	1	CO	NH	-
CO ₂ H	ОН	Н	n-Pr	Н	1	CO	NH	-
ОĤ	ОН	Н	i-Pr	Н	1	NH	CO	NH
CH ₂ OH	ОН	Н	c-Pr	Н	1	CO	NH	-
NHCHO	ОН	Н	i-Bu	Н	1	CO	NH	-
NHCN	ОН	Н	Н	Н	1	CO	NH	-
NH ₂		_	Ph	Н	1	CH ₂	NH	-
NHMe		_	Me	Н	1	CH ₂	NH	-
NMe ₂	ОН	Н	Et	Н	1	CH ₂	NH	-
NHCOMe	ОН	Н	n-Pr	Н	1	CH ₂	NH	-
NHSO ₂ Me	ОН	Н	i-Pr	Н	1	CH ₂	NH	-
CONH ₂	ОН	Н	n-Bu	Н	1	CO	NH	-
CONHMe	ОН	Н	t-Bu	Н	1	CO	NH	-
CONMe ₂	ОН	Н	-(CH ₂) ₅ -		1	CO	NH	-
COMe	ОН	Н	-(CH ₂) ₂ O(CH	2)2-	1	CO	NH	-
CO ₂ Me	ОН	Н	-(CH ₂) ₂ NH(CH		1	CO	NH	-
CO ₂ Ph	ОН	Н	i-Pr	Н	1	CO	ИН	-
CO ₂ CH ₂ Ph	ОН	Н	c-Pr	_H	1	CO	NH	-

化合物例 表25

$$\begin{array}{c|c}
H \\
N \\
(CH_2)_n \\
X-Y-Z \\
R^1 \\
5 \\
4
\end{array}$$

$$\begin{array}{c}
R^8 \\
N \\
R^7 \\
R^5 \\
2 \\
R^4 \\
\end{array}$$

				5 4	/\			
R ¹	R ⁴	R ⁵	R ⁷	R ⁸	n	×	Υ	Z
Н	ОН	н	CH=CH ₂	Н	1	СО	NH	•
F	ОН	Н	CH ₂ CCH	Н	1	CO	NH	-
Br			c-Pr	Н	1	CO	NH	-
Me	ОН	Н	Et	Н	2	CO	NH	-
CF ₃	ОН	Н	i-Pr	•н	2	CO	NH	•
CH ₂ CF ₃	ОН	Н	p-MeOPh	Н	2	CO	ΝH	-
C ₂ F ₅	ОН	Н	c-Pentyl	н	1	CO	NH	-
OMe	ОН	Н	CH ₂ CH ₂ Ph	Н	1	CO	NH	-
OCF ₃	ОН	Н	CH₂Ph	Н	1	CO	NH	-
CH ₂ OMe	ОН	Н	Ph	Н	1	CO	NH	-
c-Pr	ОН	Н	Ph	Н	1	CO	NH	-
NO ₂	ОН	Н	CH ₂ CH ₂ Ph	Н	1	CO	NH	-
CN	ОН	Н	Me	Н	1	CO	NH	-
CHO	ОН	Н	Et	Н	1	CO	NH	-
CO ₂ H	ОН	Н	n-Pr	Н	1	CO	NH	-
ОН	OH	Н	i-Pr	Н	1	NH	CO	ΝН
CH ₂ OH	ОН	Н	c-Pr	Н	1	CO	NH	-
NHCHO	ОН	Н	i-Bu	Н	1	CO	NH	-
NHCN	ОН	Н	Н	Н	1	CO	NH	-
NH ₂		_	Ph	Н	1	CH ₂	NH	-
NHMe [*]		-	Me	Н	1	CH ₂	NH	-
NMe ₂	ОН	Н	Et	Н	1	CH ₂	NH	-
NHCOMe	ОН	Н	n-Pr	Н	1	CH ₂	NH	-
NHSO ₂ Me	ОН	Н	i-Pr	Н	1	CH ₂	NH	-
CONH ₂	ОН	Н	n-Bu	Н	1	CO	NH	-
CONHMe	ОН	Н	t-Bu	Н	1	CO	NH	•
CONMe ₂	ОН	Н	-(CH ₂) ₅ -		1	CO	NH	.
COMe	ОН	Н	-(CH ₂) ₂ O(CH	2)2-	1	CO	NH	-
CO ₂ Me	ОН	Н	-(CH ₂) ₂ NH(CF	2)2-	1	CO	NH	-
CO₂Ph	ОН	Н	i-Pr	Н	1	CO	NH	-
CO ₂ CH ₂ Ph	ОН	Н	c-Pr	Н	1	CO	NH	-

化合物例 表26

				4	/ \			
R ¹	R ⁴	R ⁵	R ⁷	R ⁸	n	Х	Y	Z
Н	ОН	Н	CH=CH ₂	Н	1	СО	NH	-
F	ОН	Н	CH ₂ CCH	Н	1	CO	NH	-
Br		_	c-Pr	Н	1	CO	NH	-
Me	ОН	Н	Et	Н	2	CO	NH	-
CF ₃	ОН	Н	i-Pr	Н	2	CO	NH	-
CH ₂ CF ₃	ОН	Н	p-MeOPh	Н	2	CO	NH	-
C ₂ F ₅	ОН	Н	c-Pentyl	Н	1	CO	NH	-
OMe	ОН	Н	CH ₂ CH ₂ Ph	Н	1	CO	NH	-
OCF ₃	ОН	Н	CH ₂ Ph	Н	1	CO	NH	-
CH ₂ OMe	ОН	Н	Ph	Н	1	CO	NH	-
c-Pr	ОН	Н	Ph	Н	1	CO	NH	-
NO ₂	ОН	Н	CH ₂ CH ₂ Ph	Н	1	CO	NH	-
CN	ОН	Н	Me	Н	1	CO	NH	-
CHO	ОН	Н	Et	Н	1	CO	NH	-
CO ₂ H	ОН	Н	n-Pr	Н	1	CO	NH	-
оĤ	ОН	Н	i-Pr	Н	1	NH	CO	NH
CH ₂ OH	ОН	Н	c-Pr	Н	1	CO	NH	-
NHCHO	ОН	Н	i-Bu	Н	1	CO	NH	-
NHCN	ОН	Н	н	Н	1	CO	NH	-
NH ₂	_	_	Ph	Н	1	CH ₂	NH	-
NHMe		_	Me	Н	1	CH ₂	NH	-
NMe ₂	ОН	Н	Et	н	1	CH ₂	NH	-
NHCOMe	ОН	Н	n-Pr	Н	1	CH ₂	NH	-
NHSO ₂ Me	ОН	Н	i-Pr	Н	1	CH ₂	NH	-
CONH ₂	ОН	Н	n-Bu	H	1	co	NH	-
CONHMe	ОН	н	t-Bu	Н	1	CO	NH	-
CONMe ₂	ОН	Н	-(CH ₂) ₅ -	••	1	CO	NH	-
COMe	ОН	н	-(CH ₂) ₂ O(Cl	10)0-	1	CO	NH	-
CO ₂ Me	ОН	Н	-(CH ₂) ₂ NH(CI		1	CO	NH	-
CO ₂ Ph	ОН	Н	i-Pr	12)2 H	1	CO	NH	-
CO ₂ CH ₂ Ph	ОН	Н	c-Pr	H	1	CO	NH	-

化合物例 表 2 7.

化合物例 表28

$$(CH_2)_{n} - X - Y - Z \xrightarrow{6} \begin{array}{c} R^8 \\ N \\ R^5 \end{array}$$

R ¹	R ²	R ³	1							
		n	R ⁴	R ⁵	R ⁷	R ⁸	n	X	Y	Z
CN	Me	Me	ОН	Н	Н	н .	1	СО	NH	CH ₂
NO ₂	Ме	Me		_	-(CH ₂) ₄ -		1	CO	NH	CH ₂
NO_2	Ме	Me	ОН	Н	Me	Н	1	CO	NH	CH ₂
NO ₂	CF ₃	CF ₃	ОН	Н	Me	Me	2	CO	NH	CH ₂
	Me	Me	ОН	Н	Et	Н	1	CO	NH	CH ₂
NO_2	Me	Me	ОН	Н	Et	Et	1	CO	NH	CH ₂
NO ₂	Me	Me	ОН	Н	n-Pr	Н	1	CO	NH	CH ₂
NO_2	Ме	Me	OH	Н	i-Pr	Н	1	CO	NH	CH ₂
NO ₂	Ме	Me		_	Me	Me	1	CH ₂	NH	-
NO_2	Ме	Me	ОН	Н	-(CH ₂) ₄ -		1	CH ₂	NH	-
NO_2	Me	Me	OH	Н	Me	Н	1	CH ₂	NH	-
NO_2	Ме	Me	ОН	Н	Et	Н	1	CH_2	NH	-
NO_2	Me	Ме	ОН	Н	n-Pr	Н	1	CH ₂	NH	-
NO_2	Me	Me	ОН	Н	i-Pr	Н	1	CH ₂	NH	-
CN (CF ₃	CF ₃	ОН	Н	Et	Et	1	CH ₂	NH	CH ₂
CN	Me	Me	ОН	Н	-(CH ₂) ₄ -		1	CH ₂	NH	CH ₂
CN	Me	Me	ОН	Н	Me	Н	1	CH ₂	NH	CH ₂
CN	Me	Me	ОН	Н	Et	Н	2	CH ₂	NH	CH ₂
CN	Me	Me	ОН	Н	n-Pr	Н	2	CH ₂	NH	CH ₂
CN	Me	Me	ОН	Н	i-Pr	Н	2	CH ₂	NH	CH ₂
NO_2	Ме	Ме	ОН	Н	Me	Me	1	SO ₂	NH	-
NO_2	Me	Me	ОН	Н	-(CH ₂) ₄ -		1	SO_2	NH	-
NO_2	Ме	Me	ОН	Н	Me	Н	1	SO_2	NH	-
NO_2	Ме	Ме	ОН	Н	Et	Н	1	SO_2	NH	-
NO_2	Ме	Me	ОН	Н	n-Pr	Н	1	SO_2	NH	-
NO_2	Me	Me	ОН	Н	i-Pr	Н	1	SO ₂	NH	-
NO_2	Ме	Me	ОН	Н	-(CH ₂) ₄ -		0	NH	CO	NH
NO ₂	Ме	Me	ОН	Н	Me	Н	1	NH	CO	NH
NO ₂	Ме	Me	ОН	Н	Et	Н	1	NH	CO	NH
	Ме	Me	ОН	Н	n-Pr	Н	1	NH	CO	NH
_	Ме	Ме	ОН	Н	i-Pr	Н	1	NH	co	NH

化合物例 表29

化合物例 表30

$$(CH_2)_{\overline{n}} - X - Y - Z \xrightarrow{6} \begin{array}{c} R^8 \\ N - R^7 \\ R^5 \\ R^1 \\ 5 \\ 4 \\ R^2 \\ R^3 \end{array}$$

							4	R" R"		
R ¹	R ²	R ³	R ⁴	R ⁵	R ⁷	R ⁸	n	Х	Υ	Z
NO ₂	CF ₃	CF ₃	ОН	Н	i-Pr	Н	3	СО	NH	CH ₂
NO_2	Me	Me			-(C	H ₂) ₄ -	3	CO	NH	CH ₂
NO_2	Me	Me	ОН	Н	Me	Н	3	CO	NH	CH ₂
CO ₂ Me	Me	Ме	ОН	Н	Me	Me	3	CO	NH	CH ₂
NO_2	Me	Ме	ОН	Н	Et	Н	3	CO	NH	CH ₂
CO ₂ Me	Me	Ме	ОН	Н	Et	Εt	3	CO	NH	CH ₂
NO_2	Me	Ме	OH	Н	n-Pr	Н	3	CO	NH	CH ₂
NO_2	Me	Ме	OH	Н	i-Pr	Н	3	CO	NH	CH ₂
CO ₂ Me	Me	Me	_		Me	Me	3	CH ₂	NH	-
NO_2	Me	Me	ОН	Н	-(C	H ₂) ₄ -	3	CH ₂	NH	-
NO_2	Me	Ме	ОН	Н	Me	Н	3	CH ₂	NH	-
NO_2	Me	Me	ОН	Н	Et	Н	3	CH ₂	NH	-
NO_2	Me	Me	ОН	Н	n-Pr	Н	3	CH ₂	NH	-
NO_2	Me	Ме	ОН	Н	i-Pr	Н	3	CH ₂	NH	, - -
CO ₂ Me	Me	Me	ОН	Н	Et	Et	4	CH ₂	NH	CH ₂
NO_2	Me	Me	OH	Н	-(C	H ₂) ₄ -	3	CH ₂	NH	CH ₂
NO_2	Me	Ме	ОН	Н	Me	Н	3	CH ₂	NH	CH ₂
NO_2	Me	Me	ОН	Н	Et	Н	3	CH ₂	NH	CH ₂
NO ₂	Me	Me	OH	Н	n-Pr	Н	4	CH ₂	NH	CH ₂
NO_2	Me	Me	ОН	Н	i-Pr	Н	3	CH ₂	NH	CH ₂
NO_2	Me	Me	OH	Н	Me	Ме	3	SO_2	NH	-
CO ₂ Me	Me	Me	ОН	Н	-(Cl	H ₂) ₄ -	3	SO_2	NH	-
NO_2	Me	Me	ОН	Н	Me	Н	3	SO_2	NH	-
NO_2	Me	Me	ОН	Н	Et	Н	3	SO_2	NH	-
NO_2	Me	Me	ОН	Н	n-Pr	Н	4	SO_2	NH	-
NO_2	Me	Ме	ОН	Н	i-Pr	Н	3	SO ₂	NH	-
NO ₂	Me	Me	ОН	Н	-(CI	H ₂) ₄ -	3	NH	CO	NH
NO ₂	Me	Ме	ОН	Н	Me	Н	3	NH	CO	NH
NO ₂	Ме	Me	ОН	Н	Et	Н	3	NH	CO	NH
CO ₂ Me	Me	Ме	ОН	Н	n-Pr	Н	4	NH	CO	NH
NO ₂	Me	Ме	ОН	Н	i-Pr	Н	3	NH	CO	NH

化合物例 表 3 1.

化合物例 表32

			-	5 4 / \	
R ⁴	R ⁵	R ⁷	R ⁸	R ⁹	m
ОН	Н	c-Pr	Н	p-OEt	1
OH	Н	-(CH ₂) ₄ -	•	p-OMe	1
OH	Н	Me	Ме	p-OMe	1
ОН	Н	Me	Me	m,p-(OMe) ₂	2
OH	Н	Et	Н	p-OMe	1
OH	Н	Et	Et	p-OMe	1
ОН	Н	c-Pr	Н	p-OMe	1
OH	H	i-Pr	Н	p-OMe	1
OH	Н	c-Pr	Н	p-OMe	2
OH	Н	-(CH ₂) ₄ -	-	m,p-(OMe) ₂	2
OH	Н	Me	Н	p-F	1
OH	Н	Et	Н	m,p-(OMe) ₂	2
OH	Н	n-Pr	Н	p-NHMe	1
OH	Н	i-Pr	Н	m,p-(OMe) ₂	2
OH	Н	c-Pr	Н	$m,p-(OMe)_2$	2
OH	Н	-(CH ₂) ₄ -	•	m-OMe	1
OH	Н	c-Pr	Н	m-OMe	1
OH	Н	Et	Н	m-OMe	1
ОН	Н	c-Pr	Н	o-OMe	1
OH	Н	i-Pr	Н	m-OMe	1
ОН	Н	c-Pr	Н	p-NO ₂	1
OH	Н	-(CH ₂) ₄ -	-	p-CN	1
OH	Н	Me	Н	p-NMe ₂	1
		Et	Н	p-Me	1
ОН	Н	c-Pr	Н	p-OH	1
OH	Н	i-Pr	Н	p-Cl	1
OH	Н	-(CH ₂) ₄ -	-	p-Ac	1
OH	Н	Me	Н	p-CO ₂ Me	1
ОН	Н	Et	Н	p-NHAc	1
ОН	Н	c-Pr	Н	p-NHAc	1
ОН	Н	i-Pr	Н	p-NHAc	1

化合物例 表33.

$$(R^9)_m$$
 $CH_2-X-Y-Z$
 G_2N
 G_2N
 G_3
 R^8
 R^7
 R^5
 G_2
 R^8
 R^7
 R^5
 R^5
 R^5

				- 4 5	4	/ \		
R ⁴	R ⁵	R ⁷	R ⁸	R ⁹	m	Х	Υ	Z
ОН	Н	Et	Н	p-OMe	1	СО	NMe	-
ОН	Н	c-Pr	Н	m,p-OCH ₂ O-	1	CO	NH	-
ОН	Н	Me	Н	p-OMe	1	CO	NH	CH ₂
ОН	Н	Me	Ме	p-F	1	CO	NH	CH ₂
ОН	Н	Et	Н	p-OMe	1	CO	NH	CH ₂
ОН	Н	Et	Et	p-Me	1	CO	NH	CH ₂
OH	Н	n-Pr	Н	m,p-(OMe) ₂	2	CO	NH	CH ₂
ОН	Н	i-Pr	Н	p-OMe	1	CO	NH	CH ₂
_	-	Me	Me	p-Br	1	CH ₂	NH	-
ОН	Н	-(CH ₂)4-	m,p-(OMe) ₂	2	CH ₂	NH	-
ОН	Н	Me	Н	m,p-Me ₃	3	CH ₂	NH	-
ОН	Н	Et	Н	m,p-(OMe) ₂	2	CH ₂	NH	-
ОН	Н	n-Pr	Н	p-NMe ₂	1	CH ₂	NH	-
ОН	Н	c-Pr	Н	р-ОМе	1	CH ₂	NH	-
ОН	Н	Et	Et	p-NHMe	1	CH ₂	NH	CH ₂
ОН	Н	-(CH ₂)4-	m-OMe	1	CH ₂	NH	CH ₂
ОН	H	Me	Н	p-NH ₂	1	CH ₂		CH ₂
OH	Н	Et	Н	p-NHCONH ₂	1	CH ₂	NH	CH ₂
ОН	Н	n-Pr	Н	p-CN	1	CH ₂	NH	CH ₂
ОН	H	i-Pr	Н	p-NO ₂	1	CH ₂	NH	CH ₂
ОН	Н	Me	Me	p-Ac	1	SO_2	NH	-
ОН	Н	-(CH ₂)4-	p-CO ₂ Me	1	SO_2	· NH	-
ОН	Н	Me	H	p-CONH ₂	1	SO_2	NH	-
OH	Н	Et	Н	p-COPh	1	SO_2	NH	-
ОН	Н	n-Pr	Н	p-NHAc	1	SO ₂	NH	-
ОН	Н	i-Pr	Н	p-CF ₃	1	SO_2	NH	-
OH	Н	-(CH	12)4-	p-OMe	1	NH	CO	ŅН
ОН	Н	Me	Н	p-OMe	1	NH	CO	NH
ОН	Н	Et	Н	m,p-(OMe) ₂	2	NH	CO	NH
ОН	Н	n-Pr	Н	p-OCF ₃	1	NH	CO	NH
OH	Н	i-Pr	Н	p-OMe	1	NH	CO	NH

化合物例 表34

R4 R5 R7 R8 R9 m n OH H H H p-Cl 1 2 OH H H p-OMe 1 2 OH H i-Pr H m,p-(OMe) ₂ 2 1 OH H i-Pr H m,p-OMe 1 2 OH H c-Pr H p-OMe 1 2 OH H i-Pr H p-OMe 1 2 OH H i-CH ₂) ₄ - p-F 1 1 OH H i-CH ₂) ₄ - p-F 1 1 OH H i-Pr H m,p-(OMe) ₂ 2 2		4					
OH H Me H p-OMe 1 2 OH H i-Pr H m,p-(OMe) ₂ 2 1 OH H Et H p-OMe 1 2 OH H c-Pr H p-OMe 1 2 OH H i-Pr H p-OMe 1 2 OH H c-Pr H p-OMe 1 2 OH H i-Pr H p-OMe 1 2 OH H i-Pr H p-OMe 1 2 OH H i-Pr H p-OMe 1 2 OH H -(CH ₂) ₄ - p-OMe 1 2 OH H -(CH ₂) ₄ - p-F 1 1 OH H Et H m,p-(OMe) ₂ 2 2 OH H n-Pr H p-NHMe 1 2 OH H n-Pr H m,p-(OMe) ₂ 2 2 OH H n-Pr H m,p-(OMe) ₂ 2 2 OH H m-Pr H m,p-(OMe) ₂ 1 2 OH H c-Pr H m,p-(OMe) ₂ 1 2 OH H m-OMe 1 2 OH H m-OMe 1 2 OH H m-OMe 1 2 OH H m-Pr H o-OMe 1 2 OH H n-Pr H m-OMe 1 2 OH H n-Pr H p-NOe 1 2 OH H r-(CH ₂) ₄ - p-NO ₂ 1 1 OH H c-Pr H p-NMe ₂ 1 1 OH H r-(CH ₂) ₄ - p-Cl 1 1 OH H r-(CH ₂) ₄ - p-Ac 1 4 OH H r-(CH ₂) ₄ - p-Ac 1 4 OH H r-(CH ₂) ₄ - p-Ac 1 4 OH H r-(CH ₂) ₄ - p-Ac 1 4 OH H r-(CH ₂) ₄ - p-Ac 1 4 OH H r-(CH ₂) ₄ - p-Ac 1 1	R ⁴	R ⁵	R ⁷	R ⁸	R ⁹	m	n
	OH.	Н	Н	Н	p-Cl	1	2
OH H Me H p-OMe 1 2 OH H i-Pr H m,p-(OMe) ₂ 2 1 OH H Et H p-OMe 1 2 OH H c-Pr H p-OMe 1 2 OH H i-Pr H p-OMe 1 2 OH H -(CH ₂) ₄ - p-OMe 1 2 OH H -(CH ₂) ₄ - p-F 1 1 OH H Et H m,p-(OMe) ₂ 2 2 OH H n-Pr H p-NHMe 1 2 OH H i-Pr H m,p-(OMe) ₂ 2 2 OH H n-Pr H m,p-(OMe) ₂ 2 2 OH H m-Pr H m,p-(OMe) ₂ 2 2 OH H c-Pr H m,p-(OMe) ₂ 2 2 OH H m-OMe 1 2 OH H m-OMe 1 2 OH H m-OMe 1 2 OH H m-Pr H p-OMe 1 2 OH H m-Pr H p-OMe 1 2 OH H n-Pr H p-NO ₂ 1 1 OH H c-Pr H p-NMe ₂ 1 1 OH H c-Pr H p-NMe ₂ 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-NO ₂ 1 1 OH H c-Pr H p-NO ₂ 1 1	O)	•	1	2
OH H i-Pr H m,p-(OMe) ₂ 2 1 OH H Et H p-OMe 1 2 OH H c-Pr H p-OMe 1 2 OH H -(CH ₂) ₄ - p-OMe 1 2 OH H i-Pr H p-OMe 1 2 OH H -(CH ₂) ₄ - p-OMe 1 2 OH H -(CH ₂) ₄ - p-F 1 1 OH H Et H m,p-(OMe) ₂ 2 2 OH H n-Pr H p-NHMe 1 2 OH H n-Pr H m,p-(OMe) ₂ 2 2 OH H m,p-r H p-NHMe 1 2 OH H i-Pr H m,p-(OMe) ₂ 2 2 OH H c-Pr H m,p-(OMe) ₂ 2 2 OH H m-OMe 1 3 OH H Et H m-OMe 1 2 OH H m-Pr H o-OMe 1 2 OH H m-Pr H o-OMe 1 2 OH H m-Pr H p-NO ₂ 1 1 OH H i-Pr H m-OMe 1 2 OH H n-Pr H p-NO ₂ 1 1 OH H c-Pr H p-NMe ₂ 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-NO ₂ 1 1	ОН	н			•	1	2
OH H Et H p-OMe 1 2 OH H c-Pr H p-OMe 1 2 OH H -(CH ₂) ₄ - p-OMe 1 2 OH H i-Pr H p-OMe 1 2 OH H i-Pr H p-OMe 1 2 OH H -(CH ₂) ₄ - m,p-(OMe) ₂ 2 2 OH H -(CH ₂) ₄ - p-F 1 1 OH H Et H m,p-(OMe) ₂ 2 2 OH H n-Pr H p-NHMe 1 2 OH H i-Pr H m,p-(OMe) ₂ 2 2 OH H c-Pr H m,p-(OMe) ₂ 2 2 OH H m-OMe 1 2 OH H n-Pr H m-OMe 1 2 OH H n-Pr H p-NO ₂ 1 1 OH H c-Pr H m-OMe 1 1 OH H c-Pr H p-NMe ₂ 1 1 OH H -(CH ₂) ₄ - p-CN 1 2 OH H c-Pr H p-NMe ₂ 1 1 OH H -(CH ₂) ₄ - p-Me 1 1 OH H -(CH ₂) ₄ - p-Me 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-NO ₂ 1 1 OH H m-Pr H p-NO ₂ 1 1		Н		н	m,p-(OMe) ₂	2	1
OH H C-Pr H p-OMe 1 2 OH H -(CH ₂) ₄ - p-OMe 1 2 OH H i-Pr H p-OMe 1 2 OH H -(CH ₂) ₄ - m,p-(OMe) ₂ 2 2 OH H -(CH ₂) ₄ - p-F 1 1 OH H Et H m,p-(OMe) ₂ 2 2 OH H n-Pr H p-NHMe 1 2 OH H i-Pr H m,p-(OMe) ₂ 2 2 OH H c-Pr H m,p-(OMe) ₂ 2 2 OH H m-OMe 1 2 OH H m-Pr H m-OMe 1 3 OH H Et H m-OMe 1 2 OH H n-Pr H p-NMe 1 2 OH H n-Pr H p-NO ₂ 1 1 OH H c-Pr H p-NMe ₂ 1 1		Н	Et	Н	p-OMe	1	2
OH H -(CH ₂) ₄ - p-OMe 1 2 OH H i-Pr H p-OMe 1 2 OH H -(CH ₂) ₄ - m,p-(OMe) ₂ 2 2 OH H -(CH ₂) ₄ - p-F 1 1 OH H Et H m,p-(OMe) ₂ 2 2 OH H n-Pr H p-NHMe 1 2 OH H i-Pr H m,p-(OMe) ₂ 2 2 OH H c-Pr H m,p-(OMe) ₂ 2 2 OH H m-OMe 1 2 OH H m-OMe 1 2 OH H m-Pr H m-OMe 1 2 OH H n-Pr H p-NMe 1 2 OH H n-Pr H m-OMe 1 2 OH H r-(CH ₂) ₄ - p-NO ₂ 1 1 OH H c-Pr H p-NMe ₂ 1 1		Н	c-Pr	Н	p-OMe	1	2
OH H i-Pr H p-OMe 1 2 OH H -(CH ₂) ₄ - m,p-(OMe) ₂ 2 2 OH H -(CH ₂) ₄ - p-F 1 1 OH H Et H m,p-(OMe) ₂ 2 2 OH H n-Pr H p-NHMe 1 2 OH H i-Pr H m,p-(OMe) ₂ 2 2 OH H c-Pr H m,p-(OMe) ₂ 2 2 OH H m-OMe 1 2 OH H Me H m-OMe 1 3 OH H Et H m-OMe 1 2 OH H m-Pr H o-OMe 1 2 OH H m-Pr H o-OMe 1 2 OH H n-Pr H p-NOMe 1 2 OH H n-Pr H n-OMe 1 2 OH H r-(CH ₂) ₄ - p-NO ₂ 1 1 OH H c-Pr H p-NMe ₂ 1 1 OH H c-Pr H p-NMe ₂ 1 1 OH H c-Pr H p-NMe ₂ 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-NO ₂ 1 2 OH H m-(CH ₂) ₄ - p-Ccl 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H r-(CH ₂) ₄ - p-Ac 1 4 OH H m-Pr H p-NO ₂ 1 1 OH H r-(CH ₂) ₄ - p-Ac 1 4 OH H m-Pr H p-NO ₂ 1 1		Н	-(CH ₂)4-	p-OMe	1	
OH H -(CH ₂) ₄ - m,p-(OMe) ₂ 2 2 OH H -(CH ₂) ₄ - p-F 1 1 OH H Et H m,p-(OMe) ₂ 2 2 OH H n-Pr H p-NHMe 1 2 OH H i-Pr H m,p-(OMe) ₂ 2 2 OH H c-Pr H m,p-(OMe) ₂ 2 2 OH H -(CH ₂) ₄ - m-OMe 1 2 OH H Me H m-OMe 1 3 OH H Et H m-OMe 1 2 OH H n-Pr H o-OMe 1 2 OH H n-Pr H p-NO ₂ 1 1 OH H -(CH ₂) ₄ - p-NO ₂ 1 1 OH H c-Pr H p-NMe ₂ 1 1 OH H c-Pr H p-NMe ₂ 1 1 OH H -(CH ₂) ₄ - p-Cl 1 1 OH H -(CH ₂) ₄ - p-Cl 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ac 1 4 OH H m-Pr H p-NO ₂ 1 2 OH H m-Pr H p-NO ₂ 1 2 OH H n-Pr H p-NO ₂ 1 1		Н	i-Pr	Н	p-OMe	1	
OH H -(CH ₂) ₄ - p-F 1 1 1 OH H Et H m,p-(OMe) ₂ 2 2 OH H n-Pr H p-NHMe 1 2 OH H i-Pr H m,p-(OMe) ₂ 2 2 OH H c-Pr H m,p-(OMe) ₂ 2 2 OH H -(CH ₂) ₄ - m-OMe 1 2 OH H Me H m-OMe 1 3 OH H Et H m-OMe 1 2 OH H n-Pr H o-OMe 1 4 OH H i-Pr H m-OMe 1 2 OH H n-Pr H p-NO ₂ 1 1 OH H c-Pr H p-NMe ₂ 1 1 OH H c-Pr H p-NMe ₂ 1 1 OH H -(CH ₂) ₄ - p-Cl 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ac 1 4 OH H m-CCH ₂) ₄ - p-Ac 1 4 OH H m-Pr H p-NO ₂ 1 1 OH H c-Pr H p-NO ₂ 1 1		_	Me	Me	p-OMe		
OH H Et H m,p-(OMe) ₂ 2 2 OH H n-Pr H p-NHMe 1 2 OH H i-Pr H m,p-(OMe) ₂ 2 2 OH H c-Pr H m,p-(OMe) ₂ 2 2 OH H -(CH ₂) ₄ - m-OMe 1 2 OH H Me H m-OMe 1 3 OH H Et H m-OMe 1 2 OH H n-Pr H o-OMe 1 4 OH H i-Pr H m-OMe 1 2 OH H r-(CH ₂) ₄ - p-NO ₂ 1 1 OH H c-Pr H p-NMe ₂ 1 1 OH H c-Pr H p-NMe ₂ 1 1 OH H -(CH ₂) ₄ - p-Cl 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-NO ₂ 1 2 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H r-(CH ₂) ₄ - p-Ac 1 4 OH H me H p-CO ₂ Me 1 2 OH H n-Pr H p-NO ₂ 1 1	ОН	Н	-(CH ₂)4-	$m,p-(OMe)_2$		
OH H n-Pr H p-NHMe 1 2 OH H i-Pr H m,p-(OMe) ₂ 2 2 OH H c-Pr H m,p-(OMe) ₂ 2 2 OH H -(CH ₂) ₄ - m-OMe 1 2 OH H Me H m-OMe 1 3 OH H Et H m-OMe 1 2 OH H n-Pr H o-OMe 1 4 OH H i-Pr H m-OMe 1 2 OH H -(CH ₂) ₄ - p-NO ₂ 1 1 OH H -(CH ₂) ₄ - p-CN 1 2 OH H c-Pr H p-NMe ₂ 1 1 OH H -(CH ₂) ₄ - p-Me 1 1 OH H -(CH ₂) ₄ - p-Cl 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H m-CCH ₂) ₄ - p-Ac 1 4 OH H m-CCH ₂) ₄ - p-Ac 1 4 OH H m-CCH ₂) ₄ - p-Ac 1 2 OH H m-CCH ₂) ₄ - p-Ac 1 2 OH H m-CCH ₂) ₄ - p-Ac 1 2 OH H m-CCH ₂) ₄ - p-Ac 1 2 OH H n-Pr H p-NO ₂ 1 1	ОН	Н	-(CH ₂	2)4-	p-F		
OH H i-Pr H m,p-(OMe) ₂ 2 2 OH H c-Pr H m,p-(OMe) ₂ 2 2 OH H -(CH ₂) ₄ - m-OMe 1 2 OH H Me H m-OMe 1 3 OH H Et H m-OMe 1 2 OH H n-Pr H o-OMe 1 4 OH H i-Pr H m-OMe 1 2 OH H -(CH ₂) ₄ - p-NO ₂ 1 1 OH H c-Pr H p-NMe ₂ 1 1 OH H -(CH ₂) ₄ - p-Cl 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-NO ₂ 1 2 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H r-(CH ₂) ₄ - p-Ac 1 4 OH H Me H p-CO ₂ Me 1 2 OH H i-Pr H p-NO ₂ 1 1	ОН	Н	Et	Н	m,p-(OMe) ₂		
OH H c-Pr H m,p-(OMe) ₂ 2 2 OH H -(CH ₂) ₄ - m-OMe 1 2 OH H Me H m-OMe 1 3 OH H Et H m-OMe 1 2 OH H n-Pr H o-OMe 1 4 OH H i-Pr H m-OMe 1 2 OH H -(CH ₂) ₄ - p-NO ₂ 1 1 OH H c-Pr H p-NMe ₂ 1 1 OH H -(CH ₂) ₄ - p-CN 1 2 OH H -(CH ₂) ₄ - p-Me 1 1 OH H -(CH ₂) ₄ - p-Cl 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ac 1 4 OH H me H p-CO ₂ Me 1 2 OH H m-Pr H p-NO ₂ 1 1	OH	Н	n-Pr	Н	•		
OH H -(CH ₂) ₄ - m-OMe 1 2 OH H Me H m-OMe 1 3 OH H Et H m-OMe 1 2 OH H n-Pr H o-OMe 1 4 OH H i-Pr H m-OMe 1 2 OH H -(CH ₂) ₄ - p-NO ₂ 1 1 OH H -(CH ₂) ₄ - p-CN 1 2 OH H c-Pr H p-NMe ₂ 1 1 OH H -(CH ₂) ₄ - p-Me 1 1 OH H -(CH ₂) ₄ - p-Cl 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ac 1 4 OH H m-OMe 1 2 OH H m-CCH ₂) ₄ - p-Ac 1 4 OH H m-CCH ₂) ₄ - p-Ac 1 2 OH H m-CCH ₂) ₄ - p-Ac 1 2 OH H n-Pr H p-NO ₂ 1 1	ОН	Н	i-Pr	Н			
OH H Me H m-OMe 1 3 OH H Et H m-OMe 1 2 OH H n-Pr H o-OMe 1 4 OH H i-Pr H m-OMe 1 2 OH H -(CH ₂) ₄ - p-NO ₂ 1 1 OH H -(CH ₂) ₄ - p-CN 1 2 OH H c-Pr H p-NMe ₂ 1 1 OH H -(CH ₂) ₄ - p-Me 1 1 OH H -(CH ₂) ₄ - p-Cl 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H p-CO ₂ Me 1 2 OH H Me H p-CO ₂ Me 1 2 OH H i-Pr H p-NO ₂ 1 1	ОН	Н			• •		
OH H Et H m-OMe 1 2 OH H n-Pr H o-OMe 1 4 OH H i-Pr H m-OMe 1 2 OH H -(CH ₂) ₄ - p-NO ₂ 1 1 OH H -(CH ₂) ₄ - p-CN 1 2 OH H c-Pr H p-NMe ₂ 1 1 OH H -(CH ₂) ₄ - p-Me 1 1 OH H -(CH ₂) ₄ - p-Cl 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H p-CO ₂ Me 1 2 OH H Me H p-CO ₂ Me 1 2 OH H i-Pr H p-NO ₂ 1 1 OH H n-Pr H p-NO ₂ 1 1	ОН	Н	-(CH	2)4-		-	
OH H n-Pr H o-OMe 1 4 OH H i-Pr H m-OMe 1 2 OH H -(CH ₂) ₄ - p-NO ₂ 1 1 OH H -(CH ₂) ₄ - p-CN 1 2 OH H c-Pr H p-NMe ₂ 1 1 OH H -(CH ₂) ₄ - p-Me 1 1 OH H -(CH ₂) ₄ - p-Cl 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H r-(CH ₂) ₄ - p-Ac 1 4 OH H Me H p-CO ₂ Me 1 2 OH H i-Pr H p-NO ₂ 1 1 OH H n-Pr H p-NO ₂ 1 1	ОН	Н	Me	Н			
OH H i-Pr H m-OMe 1 2 OH H -(CH ₂) ₄ - p-NO ₂ 1 1 OH H -(CH ₂) ₄ - p-CN 1 2 OH H c-Pr H p-NMe ₂ 1 1 OH H -(CH ₂) ₄ - p-Me 1 1 OH H -(CH ₂) ₄ - p-Cl 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ph 1 1 OH H p-CO ₂ Me 1 2 OH H i-Pr H p-NO ₂ 1 1 OH H n-Pr H p-NO ₂ 1 2	ОН	Н		Н			
OH H -(CH ₂) ₄ - p-NO ₂ 1 1 OH H -(CH ₂) ₄ - p-CN 1 2 OH H c-Pr H p-NMe ₂ 1 1 OH H -(CH ₂) ₄ - p-Me 1 1 OH H -(CH ₂) ₄ - p-Cl 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ac 1 4 OH H Me H p-CO ₂ Me 1 2 OH H i-Pr H p-NO ₂ 1 1 OH H n-Pr H p-NHAc 1 2	ОН	Н	n-Pr	Н			
OH H -(CH ₂) ₄ - p-CN 1 2 OH H c-Pr H p-NMe ₂ 1 1 OH H -(CH ₂) ₄ - p-Me 1 1 OH H -(CH ₂) ₄ - p-Cl 1 1 OH H c-Pr H p-Ph 1 1 OH H c-Pr H p-Ac 1 4 OH H Me H p-CO ₂ Me 1 2 OH H i-Pr H p-NO ₂ 1 1 OH H n-Pr H p-NHAc 1 2	OH	Н	i-Pr	Н			
OH H c-Pr H p-NMe ₂ 1 1 OH H -(CH ₂) ₄ - p-Me 1 1 OH H -(CH ₂) ₄ - p-Cl 1 1 OH H c-Pr H p-Ph 1 1 OH H -(CH ₂) ₄ - p-Ac 1 4 OH H Me H p-CO ₂ Me 1 2 OH H i-Pr H p-NO ₂ 1 1 OH H n-Pr H p-NHAc 1 2	ОН	Н	-(CH	2)4-	•		
OH H -(CH ₂) ₄ - p-Me 1 1 1 OH H -(CH ₂) ₄ - p-Cl 1 1 OH H c-Pr H p-Ph 1 1 OH H -(CH ₂) ₄ - p-Ac 1 4 OH H Me H p-CO ₂ Me 1 2 OH H i-Pr H p-NO ₂ 1 1 OH H n-Pr H p-NHAc 1 2	ОН	Н	-(CH	2)4-	•		
OH H -(CH ₂) ₄ - p-Cl 1 1 OH H c-Pr H p-Ph 1 1 OH H -(CH ₂) ₄ - p-Ac 1 4 OH H Me H p-CO ₂ Me 1 2 OH H i-Pr H p-NO ₂ 1 1 OH H n-Pr H p-NHAc 1 2	ОН	Н	c-Pr	Н	• –		
OH H c-Pr H p-Ph 1 1 OH H -(CH ₂) ₄ - p-Ac 1 4 OH H Me H p-CO ₂ Me 1 2 OH H i-Pr H p-NO ₂ 1 1 OH H n-Pr H p-NHAc 1 2	ОН	Н	•		•		
OH H -(CH ₂) ₄ - p-Ac 1 4 OH H Me H p-CO ₂ Me 1 2 OH H i-Pr H p-NO ₂ 1 1 OH H n-Pr H p-NHAc 1 2	ОН	Н	-(CH		•	_	-
OH H Me H p-CO ₂ Me 1 2 OH H i-Pr H p-NO ₂ 1 1 OH H n-Pr H p-NHAc 1 2	ОН	Н	c-Pr	Н	•	•	
OH H i-Pr H p-NO ₂ 1 1 OH H n-Pr H p-NHAc 1 2	ОН	Н	-(CH		•	•	
OH H n-Pr H p-NHAc 1 2	ОН	Н	Ме		• –	-	
On 11 11 11 11 11 11 1	ОН	Н	i-Pr				
OH H i-Pr H p-NHCONH ₂ 1 2	ОН	Н			•		
	ОН	Н	i-Pr	Н	p-NHCONH ₂	1	

化合物例 表35.

化合物例 表36

$$(R^9)_m \xrightarrow{O \qquad R^8 \qquad R^7} R^7$$

$$(CH_2)_n \xrightarrow{C-N} \xrightarrow{G} \xrightarrow{C-N} \xrightarrow{G} \xrightarrow{1} \xrightarrow{R^5} R^5$$

					4 /	`	
R ¹	R ⁴	R ⁵	R ⁷	R ⁸	R ⁹	m	n
NO ₂	ОН	н	c-Pr	Н	m-Ph	1	1
CO ₂ Me		_	-(CH ₂)4-	p-OMe	1	2
CO ₂ Me	OH	Н	Me	Н	p-OMe	1	1
CO ₂ Et	OH	Н	Me	Me	p-F	1	1
CO ₂ Me	OH	Н	Et	Н	p-OMe	1	1
NO ₂	OH	Н	c-Pr	Н	o-Ph	1	1
CO ₂ Me	ОН	Н	n-Pr	Н	$m,p-(OMe)_2$	2	1
CO ₂ Me	OH	Н	i-Pr	Н	p-OMe	1	1
NO ₂	ОН	Н	Et	Н	p-NO ₂	1	1
CO ₂ Et	ОН	Н	-(CH	2)4-	$m,p-(OMe)_2$	2	1
CO ₂ Me	ОН	Н	Me	Н	m,p-Me ₃	3	1
CO ₂ Me	ОН	Н	Et	Н	m,p-(OMe) ₂	2	1
CO ₂ Et	ОН	Н	n-Pr	Н	p-NMe ₂	1	1
CO ₂ Et	ОН	Н	i-Pr	Н	p-t-Bu	1	2
CO ₂ Et	ОН	Н	Et	Et	p-NHMe	1	1 -
CO ₂ H	ОН	Н	-(CH ₂	2)4-	m-OMe	1	1
CO ₂ H	ОН	Н	Me	Н	p-NH ₂	1	1
CO ₂ H	ОН	Н	Et	Н	p-NHCONH ₂	1	1
Ac	ОН	Н	n-Pr	Н	p-CN	1	1
CO ₂ H	ОН	Н	i-Pr	Н	p-NO ₂	1	1
CO ₂ H	ОН	Н	Me	Me	p-Ac	1	3
Ac	ОН	Н	-(CH ₂	2)4-	p-CO ₂ Me	1	1
Ac	ОН	Н	Me	Н	p-CONH ₂	1	1
Ac	ОН	Н	Εt	Н	p-COPh	1	1
Ac	ОН	Н	n-Pr	н	p-NHAc	1	1
Ac	ОН	Н	i-Pr	Н	p-CF ₃	1	4
Ac	ОН	Н	-(CH ₂	2)4-	р-ОМе	1	1
CO ₂ Me	OH	Н	Ме	Н	р-ОМе	1	1
CO ₂ Me		Н	Et	Н	m,p-(OMe) ₂	2	1
CO ₂ Me		Н	n-Pr	Н	p-OCF ₃	1	1
CO ₂ Me		Н	i-Pr	Н	p-OMe	1	1

化合物例 表37

化合物例 表38

化合物例 表39

			*		4	KH		
R ¹	R ²	R ³	R ⁹	m	n	Х	Υ	·Z
Н	Me	Me	p-OMe	1	1	CO	NH	-
F	Me	Me	p-OMe	1	1	CO	NH	-
Br	n-Pr	n-Pr	p-OMe	1	1	CO	NH	-
Me	Me	Me	$m,p-(OMe)_2$	2	1	CO	NH	-
CF ₃	Me	Et	p-OMe	1,	2	CO	NH	CH ₂
CH ₂ CF ₃	Et	Me	p-OMe	1	1	CO	NH	-
C ₂ F ₅	Me	Me	p-OMe	1	1	CO	NH	-
OMe	Me	Me	p-OMe	1	2	CO	NH	-
OCF ₃	Me	Me	p-OMe	2	1	CO	NH	-
CH ₂ OMe	Me	Me	m,p-(OMe) ₂	2	1	CO	NH	-
c-Pr	Me	Me	p-F	1	3	CO	NH	-
NO ₂	Me	Me	р-ОМе	1	1	CO	NH	-
CN	Ме	Me	p-NHMe	1	1	CO	NH	-
CHO	Ме	Me	m,p-(OMe) ₂	2	1	CH ₂	NH	-
CO ₂ H	Ме	Me	m,p-(OMe) ₂	2	1	CO	NH	-
OH	Me	Me	m-OMe	1	1	CH ₂	NH	CH ₂
CH ₂ OH	Ме	Me	m-OMe	1	1	CO	NH	-
NHCHO	Me	Me	m-OMe	1	1	NH	CO	NH
NHCN	Ме	Me	o-OMe	1	1	CO	NH	-
NH_2	Me	Ме	m-OMe	1	1	CO	NH	-
NHMe	Ме	Me	p-NO ₂	1	1	CO	NH	-
NMe ₂	Me	Me	p-CN	1	1	CO	NH	-
NHCOMe	Me	Me	p-NMe ₂	1	1	CO	ИН	CH ₂
NHSO ₂ Me	Ме	Me	p-Me	1	1	CO	NH	-,
CONH ₂	Me	Me	p-OH	1	4	CO	NH	-
CONHMe	Me	Me	p-CI	1	3	CO	NH	-
CONMe ₂	Me	Me	p-Ac	1	2	CO	NH	-
COMe	Me	Me	p-CO ₂ Me	1	1	CO	NH	•
CO ₂ Me	Me	Me	p-NHAc	1	1	CO	NH	-
CO ₂ Ph	Ме	Ме	p-NHAc	1	1	CO	NH	-
CO ₂ CH ₂ Ph	Me	Me	p-NHAc	1	1	CO	NH	•

化合物例 表 4 0

$$(R^9)_m$$
 $(CH_2)_m$ $X-Y-Z$ $\begin{pmatrix} 7 & 1 & O \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & &$

					4	R ² R ³		
R ¹	R ²	R ³	R ⁹	m	n	×	Υ	Z
Н	Me	Me	p-OMe	1	1	co	NH	-
F	Ме	Me	p-OMe	1	1	CO	NH	-
Br	n-Pr	n-Pr	p-OMe	1	1	CO	NH	-
Me	Me	Me	$m,p-(OMe)_2$	2	1	CO	NH	-
CF ₃	Me	Et	p-OMe	1	2	CO	NH	CH ₂
CH ₂ CF ₃	Et	Me	p-OMe	1	1	CO	NH	-
C ₂ F ₅	Ме	Me	p-OMe	1	1	CO	NH	•
OMe	Ме	Me	p-OMe	1	2	CO	NH	•
OCF ₃	Me	Ме	p-OMe	2	1	CO	NH	-
CH ₂ OMe	Me	Ме	m,p-(OMe) ₂	2	1	CO	NH	•
c-Pr	Ме	Me	p-F	1	3	CO	NH	-
NO ₂	Me	Me	p-OMe	1	1	CO	NH	-
CN	Me	Ме	p-NHMe	1	1	CO	NH	•
CHO	Me	Ме	m,p-(OMe) ₂	2	1	CH ₂	NH	-
CO ₂ H	Me	Me	m,p-(OMe) ₂	2	1	CO	NH	-
OH	Me	Me	m-OMe	1	1	CH ₂	NH	CH ₂
CH ₂ OH	Me	Me	m-OMe	1	1	CO	NH	-
NHCHO	Me	Me	m-OMe	1	1	NH	CO	NH
NHCN	Me	Me	o-OMe	1	1	CO	NH	-
NH ₂	Me	Me	m-OMe	1	1	CO	NH	-
NHMe	Me	Me	p-NO ₂	1	1	CO	NH	-
NMe ₂	Me	Me	p-CN	1	1	CO	NH	-
NHCOMe	Me	Me	p-NMe ₂	1	1	CO	NH	CH ₂
NHSO ₂ Me	Ме	Me	p-Me	1	1	CO	NH	-
CONH ₂	Ме	Me	p-OH	1	4	CO	NH	-
CONHMe	Ме	Me	p-Cl	1	3	CO	NH	-
CONMe ₂	Мe	Me	p-Ac	1	2	CO	NH	-
COMe	Ме	Me	p-CO ₂ Me	1	1	CO	NH	-
CO ₂ Me	Ме	Me	p-NHAc	1	1	CO	NH	•
CO ₂ Ph	Me	Ме	p-NHAc	1	1	CO	NH	-
CO ₂ CH ₂ Ph	Me	Me	p-NHAc	1	1	CO	NH	•

本発明化合物は、1位と2位に不斉炭素を有しており、該不斉炭素に基づく光 学異性体が存在するが、ラセミ体と同様に光学活性体も本発明の用途に用いるこ とができる。又、1位と2位の立体配置に基づくシス又はトランス異性体も包含 するが、好ましくはトランス異性体である。又、塩の形成可能な化合物であると きはそのその医薬的にそして獣医薬的に許容され得る塩も有効成分として用いる ことができる。

医薬的に許容し得る塩としては塩酸塩、臭化水素酸塩、硫酸塩、メタンスルホン酸塩、酢酸塩、安息香酸塩、酒石酸塩、リン酸塩、乳酸塩、マレイン酸塩、フマル酸塩、リンゴ酸塩、グルコン酸塩及びサリチル酸塩等が挙げられる。好ましくは、塩酸塩及びメタンスルホン酸塩が挙げられる。

[本発明化合物の製造方法]

次に本発明化合物の製造方法を説明する。

一般式 (I) で表される化合物のうち、XがC=0、YがNH、Zが結合を意味する一般式 (I-1a) で表される化合物及び一般式 (I-1b) で表される化合物は、既知の方法 (J. M. Evansら、J. Med. Chem. 1984, 27, 1127、J. Med. Chem. 1986, 29, 2194、J. T. NorthらJ. Org. Chem. 1995, 60, 3397や、特開昭 56-57785号公報、特開昭 56-57786号公報、特開昭 58-188880号公報、特開平 2-141号公報など)に記載の方法に従って製造することができる。

一般式(I-1a)で表される化合物は、反応式1に示すように、一般式(1)で表される化合物と一般式(2)で表される酸塩化物を塩基の存在下反応させるか、又は一般式(1)で表される化合物と一般式(3)で表されるカルボン酸を縮合剤を用いて反応させることにより製造することができる。

反応式1 (X-Y-Z=CONH-の場合)

(式中、R¹、R²、R³、W及びnは前記に同じ。)

一般式(1)で表される化合物と一般式(2)で表される化合物の反応に用いる溶媒としては下記のものが挙げられる:ベンゼン、トルエンによって代表される芳香族系溶媒;酢酸エチル、酢酸メチルに代表されるエステル系溶媒;ジメチルスルホキシドによって代表されるスルホキシド系溶媒;ジメチルホルムアミド又はジメチルアセトアミドによって代表されるアミド系溶媒;エチルエーテル、ジメトキシエタン、1,4-ジオキサン又はテトラヒドロフランによって代表されるエーテル系溶媒;ジクロロメタン、クロロホルム、ジクロロエタンによって代表されるハロゲン系溶媒。又、無溶媒の条件で反応を行うこともできる。好ましくはハロゲン系溶媒、アミド系溶媒が挙げられる。

反応温度は、通常-20 \mathbb{C} から用いられる反応溶媒の還流温度までであり、好ましくは、-10 \mathbb{C} ~ 30 \mathbb{C} である。

反応原料のモル比は、一般式 (2) で表される化合物/一般式 (1) で表される化合物は $0.5\sim4.0$ の範囲であり、好ましくは $1.0\sim2.0$ の範囲であ

る。

また、塩基/一般式(2)で表される化合物は、 $0.5\sim2.0$ の範囲であり、 好ましくは、 $1.0\sim1.5$ の範囲である。

用いる塩基としては、炭酸カリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、水酸化ナトリウムなどの無機塩基、トリエチルアミン、エチルジイソプロピルアミン、ピリジン、2、6-ルチジン、2、6-ジ-t-ブチルピリジン、N-メチルモルホリン、プロトンスポンジ等の有機塩基が挙げられる。好ましくはトリエチルアミン、エチルジイソプロピルアミンが挙げられる。

一般式(1)で表される化合物と一般式(3)で表される化合物の反応に用いる溶媒としては下記のものが挙げられる:ベンゼン、トルエンによって代表される芳香族系溶媒;酢酸エチル、酢酸メチルに代表されるエステル系溶媒;ジメチルスルホキシドによって代表されるスルホキシド系溶媒;ジメチルホルムアミド又はジメチルアセトアミドによって代表されるアミド系溶媒;エチルエーテル、ジメトキシエタン、1,4-ジオキサン又はテトラヒドロフランによって代表されるエーテル系溶媒;ジクロロメタン、クロロホルム、ジクロロエタンによって代表されるハロゲン系溶媒。又、無溶媒の条件で反応を行うこともできる。好ましくはハロゲン系溶媒が挙げられる。

反応温度は、通常 -20 ℃から用いられる反応溶媒の還流温度までであり、好ましくは、-10 ℃~30 ℃である。

反応原料のモル比は、一般式(3)で表される化合物/一般式(1)で表される化合物は $0.5\sim4.0$ の範囲であり、好ましくは $1.0\sim2.0$ の範囲である。

用いる縮合剤としては、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、N-エチル-N'-3-ジメチルアミノプロピルカルボジイミド、カルボニルジイミダゾールが挙げられる。

また、これらの縮合剤にN-ヒドロキシスクシンイミド、1-ヒドロキシベンゾ

トリアゾール、3-ヒドロキシ-4-オキソ-3, 4-ジヒドロ-1, 2, 3-ベンゾトリアジンを添加しても良い。

一般式 (I-1b) で表される化合物は、反応式 2 に示すように、一般式 (I-1a) で表される化合物を水の存在下、N-プロモコハク酸イミド (NBS) で一般式 (4) で表されるプロモヒドリンとした後、塩基の存在下でエポキシ化するか又は、一般式 (I-1a) で表される化合物を過酸化物により直接エポキシ化することにより製造することができる。

<u>反応式 2</u> (X-Y-Z=CONH-の場合)

(式中、R¹, R², R³, W及びnは前記に同じ。)

一般式 (I-1a) で表される化合物とNBSの反応に用いる溶媒としては下記のものが挙げられる: ベンゼン、トルエンによって代表される芳香族系溶媒;酢酸エチル、酢酸メチルに代表されるエステル系溶媒; ジメチルスルホキシドによ

って代表されるスルホキシド系溶媒;ジメチルホルムアミド又はジメチルアセト アミドによって代表されるアミド系溶媒;エチルエーテル、ジメトキシエタン、 1,4-ジオキサン又はテトラヒドロフランによって代表されるエーテル系溶媒; ジクロロメタン、クロロホルム、ジクロロエタンによって代表されるハロゲン系 溶媒。好ましくは、スルホキシド系溶媒が挙げられる。

反応温度は、通常-20 \mathbb{C} から用いられる反応溶媒の還流温度までであり、好ましくは、-10 \mathbb{C} ~ 30 \mathbb{C} である。

反応原料のモル比は、NBS/一般式(I-1a)で表される化合物は $0.5\sim4.0$ の範囲であり、好ましくは $1.0\sim3.0$ の範囲である。

一般式(4)で表される化合物と塩基の反応に用いる溶媒としては下記のもの が挙げられる。

ベンゼン、トルエンによって代表される芳香族系溶媒、酢酸エチル、酢酸メチルに代表されるエステル系溶媒、ジメチルスルホキシドによって代表されるスルホキシド系溶媒、ジメチルホルムアミド又はジメチルアセトアミドによって代表されるアミド系溶媒、エチルエーテル、ジメトキシエタン、1、4ージオキサン又はテトラヒドロフランによって代表されるエーテル系溶媒、ジクロロメタン、クロロホルム、ジクロロエタンによって代表されるハロゲン系溶媒、メタノール、エタノール、又はプロパノールによって代表されるアルコール系溶媒が挙げられる。又、水中で反応を行うこともできる。又、混合溶媒として用いても良い。好ましくは、エーテル系溶媒/水の混合溶媒が挙げられる。

反応温度は、通常-20 \mathbb{C} から用いられる反応溶媒の還流温度までであり、好ましくは、-10 \mathbb{C} ~ 30 \mathbb{C} である。

反応原料のモル比は、塩基/一般式(4)で表される化合物は $0.5 \sim 4.0$ の範囲であり、好ましくは $1.0 \sim 2.0$ の範囲である。

用いる塩基としては、炭酸カリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、水酸化ナトリウムなどの無機塩基が挙げられる。好ましくは水酸化カリウム、水酸化ナトリウムが挙げられる。

一般式 (I-la) で表される化合物と過酸化物の反応に用いる溶媒としては下記のものが挙げられる。

ベンゼン、トルエンによって代表される芳香族系溶媒、酢酸エチル、酢酸メチルに代表されるエステル系溶媒、ジメチルスルホキシドによって代表されるスルホキシド系溶媒、ジメチルホルムアミド又はジメチルアセトアミドによって代表されるアミド系溶媒、エチルエーテル、ジメトキシエタン、1、4ージオキサン又はテトラヒドロフランによって代表されるエーテル系溶媒、ジクロロメタン、クロロホルム、ジクロロエタンによって代表されるハロゲン系溶媒、メタノール、エタノール、又はプロパノールによって代表されるアルコール系溶媒が挙げられる。又、水中で反応を行うこともできる。好ましくは、ハロゲン系溶媒が挙げられる。

反応温度は、通常-20 \mathbb{C} から用いられる反応溶媒の還流温度までであり、好ましくは、-10 \mathbb{C} ~ 30 \mathbb{C} \mathbb{C} である。

反応原料のモル比は、過酸化物/一般式 (I-1a) で表される化合物は0.5 ~ 4.0 の範囲であり、好ましくは $1.0 \sim 2.0$ の範囲である。

用いる過酸化物としては、過酸化水素、過安息香酸、m-クロル過安息香酸、過酢酸、トリフルオロ過酢酸等が挙げられる。好ましくはm-クロル過安息香酸が挙げられる。

また、一般式 (I-1b) で表される化合物の光学活性体の合成は、不斉合成による方法 (特表平5-507645号公報、特願平5-301878号公報、特願平7-285983号公報、欧州特許535377号公開公報、米国特許5420314号) を利用することより達成される。

即ち、一般式 (I-1a) で表される化合物を、上記公報記載のサレンマンガン錯体の存在下、酸化剤を用いて反応させることにより製造することができる。

用いる酸化剤としては次亜塩素酸ナトリウム、次亜塩素酸カルシウム、ヨードソ安息香酸ナトリウム、m-クロル過安息香酸等が挙げられる。好ましくは、次亜塩素酸ナトリウム、ヨードソ安息香酸ナトリウムが挙げられる。

また、本反応に軸配位子を添加しても良い。用いる軸配位子としては、N-メチルモルホリン-N-オキシド、4-フェニルピリジン-N-オキシド、4-メチルピリジン-N-オキシド、ピリジン-N-オキシド、ジメチルスルホキシド、トリフェニルホスフィン、トリフェニルホスフィンオキシド等が挙げられる。好ましくは4-フェニルピリジン-N-オキシドが挙げられる。

一般式(I-1b)で表される化合物はまた、反応式3に示すように、一般式(5)で表される化合物のアセチル基を塩基を用いて脱保護し、一般式(6)で表される化合物とした後、一般式(7)で表される酸塩化物を塩基の存在下反応させるか又は、一般式(8)で表されるカルボン酸を縮合剤を用いて反応させることによっても製造することができる。

反応式 3 (X-Y-Z=CONH-の場合)

(式中、R¹, R², R³, W及びnは前記に同じ。)

一般式(6)で表される化合物は、一般式(5)で表される化合物に塩基を作用させることにより製造される。

この反応に用いる溶媒としては下記のものが挙げられる:ベンゼン、トルエンによって代表される芳香族系溶媒:酢酸エチル、酢酸メチルに代表されるエステル系溶媒;ジメチルスルホキシドによって代表されるスルホキシド系溶媒;ジメチルホルムアミド又はジメチルアセトアミドによって代表されるアミド系溶媒;エチルエーテル、ジメトキシエタン、1、4-ジオキサン又はテトラヒドロフランによって代表されるエーテル系溶媒;ジクロロメタン、クロロホルム、ジクロロエタンによって代表されるハロゲン系溶媒;メタノール、エタノール、又はプロパノールによって代表されるアルコール系溶媒。又、水中で反応を行うこともできる。又、混合溶媒として用いても良い。好ましくは、アミド系溶媒/水の混合溶媒及びアルコール系溶媒/水の混合溶媒が挙げられる。

反応温度は、通常-20 ℃から用いられる反応溶媒の還流温度までであり、好ましくは、0 ℃~反応溶媒の還流温度までである。

反応原料のモル比は、塩基/一般式(5)で表される化合物は $0.5 \sim 4.0$ の範囲であり、好ましくは $1.0 \sim 2.0$ の範囲である。

用いる塩基としては、炭酸カリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、水酸化ナトリウムなどの無機塩基が挙げられる。好ましくは水酸化カリウム、水酸化ナトリウムが挙げられる。

一般式(6)で表される化合物と一般式(7)で表される酸塩化物の反応及び一般式(6)で表される化合物と一般式(8)で表されるカルボン酸の反応は、 反応式1で示した条件と同様の条件で行うことができる。

一般式 (I) で表される化合物のうち、X が CH_2 、Y がNH、Z が結合を意味する一般式 (I-2a) で表される化合物及び一般式 (I-2b) で表される化合物のうち一般式 (I-2a) で表される化合物は、反応式 4 で示すように、一般式 (I-1a) で表される化合物を還元剤を用いて還元することにより製造する

ことができる。

反応式4 (X-Y-Z=CH₂NH-の場合)

(式中、R¹、R²、R³、W及びnは前記に同じ。)

一般式(I-1a)で表される化合物と還元剤の反応に用いる溶媒としては下記のものが挙げられる:ベンゼン、トルエンによって代表される芳香族系溶媒;酢酸エチル、酢酸メチルに代表されるエステル系溶媒;ジメチルスルホキシドによって代表されるスルホキシド系溶媒;ジメチルホルムアミド又はジメチルアセトアミドによって代表されるアミド系溶媒;エチルエーテル、ジメトキシエタン、1、4-ジオキサン又はテトラヒドロフランによって代表されるエーテル系溶媒;ジクロロメタン、クロロホルム、ジクロロエタンによって代表されるハロゲン系溶媒;メタノール、エタノール、又はプロパノールによって代表されるアルコール系溶媒。又、水中で反応を行うこともできる。好ましくは、エーテル系溶媒が挙げられる。

反応温度は、通常 -20 \mathbb{C} から用いられる反応溶媒の還流温度までであり、好ましくは、-10 \mathbb{C} ~ 30 \mathbb{C} である。

反応原料のモル比は、還元剤/一般式(I-1a)で表される化合物は $0.5\sim$ 4.0の範囲であり、好ましくは $1.0\sim2.0$ の範囲である。

用いる還元剤としては、水素化アルミニウムリチウム、水素化ホウ素ナトリウム等が挙げられる。好ましくは水素化アルミニウムリチウムが挙げられる。

一般式 (I-2b) で表される化合物は、得られた一般式 (I-2a) で表される化合物に対して、反応式 2 に示したエポキシ化法と同様の条件を用いることにより製造することができる。

一般式(I-2a)で表される化合物は、反応式 5 に示すように、一般式(1)で表される化合物を塩基の存在下、一般式(9)で表される化合物と反応させるか、又は一般式(1)で表される化合物に一般式(10)で表される化合物を反応させて一般式(11)で表されるイミン化合物とし、これを適当な還元剤を用いて還元することによっても製造することができる。

反応式 5 (X-Y-Z=CH₂NH-の場合)・

(式中、R¹, R², R³, W及びnは前記に同じ。)

一般式(1)で表される化合物と一般式(9)で表される化合物の反応に用いる溶媒としては下記のものが挙げられる:ベンゼン、トルエンによって代表される芳香族系溶媒;酢酸エチル、酢酸メチルに代表されるエステル系溶媒;ジメチルスルホキシドによって代表されるスルホキシド系溶媒;ジメチルホルムアミド又はジメチルアセトアミドによって代表されるアミド系溶媒;エチルエーテル、ジメトキシエタン、1,4-ジオキサン又はテトラヒドロフランによって代表さ

れるエーテル系溶媒;ジクロロメタン、クロロホルム、ジクロロエタンによって 代表されるハロゲン系溶媒。又、無溶媒の条件で反応を行うこともできる。好ま しくはハロゲン系溶媒、アミド系溶媒が挙げられる。

反応温度は、通常 -20 \mathbb{C} から用いられる反応溶媒の還流温度までであり、好ましくは、0 \mathbb{C} \sim 還流温度である。

反応原料のモル比は、一般式(9)で表される化合物/一般式(1)で表される化合物は $0.5\sim4.0$ の範囲であり、好ましくは $1.0\sim2.0$ の範囲である。

また、塩基/一般式 (9) で表される化合物は、 $0.5 \sim 2.0$ の範囲であり、 好ましくは、 $1.0 \sim 1.5$ の範囲である。

用いる塩基としては、炭酸カリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、水酸化ナトリウム、水素化ナトリウムなどの無機塩基、トリエチルアミン、エチルジイソプロピルアミン、ピリジン、2、6-ルチジン、2、6-ジ-t-ブチルピリジン、N-メチルモルホリン、プロトンスポンジ等の有機塩基が挙げられる。好ましくはトリエチルアミン、エチルジイソプロピルアミンが挙げられる。

一般式(1)で表される化合物と一般式(10)で表される化合物の反応に用いる溶媒としては下記のものが挙げられる:ベンゼン、トルエンによって代表される芳香族系溶媒;酢酸エチル、酢酸メチルに代表されるエステル系溶媒;ジメチルスルホキシドによって代表されるスルホキシド系溶媒;ジメチルホルムアミド又はジメチルアセトアミドによって代表されるアミド系溶媒;エチルエーテル、ジメトキシエタン、1,4ージオキサン又はテトラヒドロフランによって代表されるエーテル系溶媒;ジクロロメタン、クロロホルム、ジクロロエタンによって代表されるハロゲン系溶媒;メタノール、エタノール、又はプロパノールによって代表されるアルコール系溶媒。又、好ましくは芳香族系溶媒及びアルコール系溶媒が挙げられる。

反応温度は、通常-20℃から用いられる反応溶媒の還流温度までであり、好

ましくは、0℃~還流温度である。

反応原料のモル比は、一般式(10)で表される化合物/一般式(1)で表される化合物は $0.5\sim4.0$ の範囲であり、好ましくは $1.0\sim2.0$ の範囲である。

この反応は、一般に反応系中に、脱水剤、例えばモレキュラーシーブス等を共 存させた方が好ましい。

反応溶媒として水と混和しない芳香族系溶媒等を用いる場合には、共沸脱水等を行って系外に水を分離した方が好ましく、又この時、触媒量の酸、例えばパラトルエンスルホン酸を共存させると良い結果が得られる場合がある。

この時の酸の量は、一般式(1)で表される化合物に対して、 $0.1 \sim 20 \text{ m}$ o 1%の範囲、好ましくは $0.1 \sim 5 \text{ mo} 1\%$ 用いれば充分である。

一般式 (11) で表される化合物を単離することなく、一般式 (1) で表される化合物と一般式 (10) で表される化合物及び反応溶媒よりなる溶液に直接還元剤を加えて一般式 (I-2a) で表される化合物を製造することもできる。

一般式(11)で表される化合物と還元剤の反応に用いる溶媒としては下記のものが挙げられる:ベンゼン、トルエンによって代表される芳香族系溶媒;酢酸エチル、酢酸メチルに代表されるエステル系溶媒;ジメチルスルホキシドによって代表されるスルホキシド系溶媒;ジメチルホルムアミド又はジメチルアセトアミドによって代表されるアミド系溶媒;エチルエーテル、ジメトキシエタン、1、4ージオキサン又はテトラヒドロフランによって代表されるエーテル系溶媒;ジクロロメタン、クロロホルム、ジクロロエタンによって代表されるハロゲン系溶媒;メタノール、エタノール、又はプロパノールによって代表されるアルコール系溶媒。又、水中で反応を行うこともできる。好ましくは、エーテル系溶媒が挙げられる。

反応温度は、通常-20 \mathbb{C} から用いられる反応溶媒の還流温度までであり、好ましくは、-10 \mathbb{C} ~ 30 \mathbb{C} である。

反応原料のモル比は、還元剤/一般式(11)で表される化合物は $0.5 \sim 4.0$ 0の範囲であり、好ましくは $1.0 \sim 2.0$ の範囲である。

用いる還元剤としては、水素化アルミニウムリチウム、水素化ホウ素ナトリウム、等が挙げられる。好ましくは水素化アルミニウムリチウムが挙げられる。

一般式(I)によって表される化合物のうち、 $XがSO_2$ 、YがNH、Zが結合を意味する一般式(I-3a)で表される化合物及び一般式(I-3b)で表される化合物のうち一般式(I-3a)で表される化合物は、反応式 6 で示すように、一般式(1)で表される化合物と一般式(1 2)で表される化合物を塩基の存在下反応させることによって製造することができる。

反応式 6 (X-Y-Z=SO₂NH-の場合)

$$R^1$$
 R^2 R^3

(式中、R¹, R², R³, W及びnは前記に同じ。)

一般式 (I-3a) で表される化合物は、反応式 1 で示した一般式 (1) で表される化合物と一般式 (2) で表される化合物から一般式 (I-1a) で表され

る化合物を製造する方法と同様の条件で反応を行うことができる。

一般式 (I-3b) で表される化合物は、得られた一般式 (I-3a) で表される化合物に対して、反応式 2 に示したエポキシ化法と同様の条件を用いることにより製造することができる。

一般式(I)で表される化合物のうち、XがNH、YがC=0、ZがNHを意味する一般式(I-4a)で表される化合物及び一般式(I-4b)で表される化合物のうち一般式(I-4a)で表される化合物は、反応式 Tに示すように、一般式(T1)で表される化合物と一般式(T3)で表される化合物を反応させることによって得る事ができる。

反応式7 (X-Y-Z=NHCONHの場合)

$$\begin{array}{c}
H_2N \\
R^1 \quad R^2 \quad R^3
\end{array}$$

$$(1) \quad W-(CH_2)_{\overline{n}}-NCO \quad W-(CH_2)_{\overline{n}}-N-C-NH$$

$$\begin{array}{c}
R^1 \quad R^2 \quad R^3
\end{array}$$

$$(I-4a) \quad (I-4b)$$

(式中、R¹, R², R³, W及びnは前記に同じ。)

一般式(1)で表される化合物と一般式(13)で表される化合物の反応に用いる溶媒としては下記のものが挙げられる:ベンゼン、トルエンによって代表される芳香族系溶媒;酢酸エチル、酢酸メチルに代表されるエステル系溶媒;ジメチルスルホキシドによって代表されるスルホキシド系溶媒;ジメチルホルムアミド又はジメチルアセトアミドによって代表されるアミド系溶媒;エチルエーテル、ジメトキシエタン、1,4ージオキサン又はテトラヒドロフランによって代表されるエーテル系溶媒;ジクロロメタン、クロロホルム、ジクロロエタンによって代表されるハロゲン系溶媒;メタノール、エタノール、又はプロパノールによって代表されるアルコール系溶媒。又、無溶媒の条件で反応を行うこともできる。好ましくはハロゲン系溶媒、アミド系溶媒が挙げられる。

反応温度は、通常-20 ℃から用いられる反応溶媒の還流温度までであり、好ましくは、0 ℃~反応溶媒の還流温度までである。

反応原料のモル比は、一般式(13)で表される化合物/一般式(1)で表される化合物は $0.5\sim4.0$ の範囲であり、好ましくは $1.0\sim2.0$ の範囲である。

一般式(I-4b)で表される化合物は、得られた一般式(I-4a)で表される化合物に対して、反応式2に示したエポキシ化法と同様の条件を用いることにより製造することができる。

一般式(I)で表される化合物のうち、 R^6 がアミノ基若しくは C_{1-6} アルキルアミノ基、 C_{3-6} シクロアルキルアミノ基、アリール C_{1-6} アルキルアミノ基、ジ(アリール C_{1-6} アルキル)アミノ基、I-ピロリジニル基、I-ピペリジル基、I-ピペラジニル基、I-モルホリノ基を意味する一般式(I-c)で表される化合物は、反応式 I-Eので表される化合物は、反応式 I-Eので表される化合物、一般式(I-D)で表される化合物、一般式(I-D)で表される化合物は、I-Dので表される化合物は一般式(I-D)で表される化合物と一般式(I-D)で表される化合物に含まれる。)で表される化合物と一般式(I-D)で表されるアミン化合物を不活性溶媒中反応させることにより製造する

ことができる。

反応式8

W-(CH₂)_n-X-Y-Z
$$R^{1} R^{2} R^{3}$$
(I-b)

(式中、R¹, R², R³, R⁷, R⁸, W, X, Y, Z及びnは前記に同じ。)

一般式(I-b)で表される化合物と一般式(14)で表されるアミン化合物の反応に用いる溶媒としては下記のものが挙げられる。

ジメチルスルホキシドによって代表されるスルホキシド系溶媒、ジメチルホルムアミド又はジメチルアセトアミドによって代表されるアミド系溶媒、エチルエーテル、ジメトキシエタン又はテトラヒドロフランによって代表されるエーテル系溶媒、ジクロロメタン、クロロホルム、ジクロロエタンによって代表されるハロゲン系溶媒、メタノール、エタノール、又はプロパノールによって代表されるアルコール系溶媒が挙げられる。又、無溶媒の条件で反応を行うこともできる。好ましくはアルコール系溶媒が挙げられる。

反応温度は、通常-20 ℃から用いられる反応溶媒の還流温度までであり、好ましくは、60 ℃ ~100 ℃である。

反応原料のモル比は、一般式(14)で表される化合物/一般式(1-b)で表される化合物は $0.5\sim20.0$ の範囲であり、好ましくは $1.0\sim10.0$ の範囲である。

一般式 (I-c) で表される化合物のうち、XがC=0、YがNH、Zが結合を意味する一般式 (I-1c) で表される化合物は、反応式 9 に示すように、一般式 (16) で表される化合物 (一般式 (16) で表される化合物は既知の方法、例えばSmith, J. G. らOrg. Prep. Proc. Int., 123-131, 10, 1978、Buckle, D. R. らJ. Med. Chem., 919-926, 34, 1991、Stock, L. M. らJ. Am. Chem. Soc., 4247, 94, 1972、特開平 2-141号公報などに記載の方法に従って合成できる)のアセチル基を通常の方法により脱保護することによって得られる一般式 (17) で表される化合物に対して、塩基の存在下一般式 (7) で表される酸塩化物を反応させるか、又は一般式 (17) で表される化合物に対して一般式 (8) で表されるカルボン酸を縮合剤を用いて反応させることにより製造することができる。

<u>反応式 9</u> (X-Y-Z=CONH-の場合)

$$W-(CH_2)_n - C-NH$$

$$R^1 \qquad R^2 \qquad R^3$$

$$(I-1c)$$

(式中、 R^1 , R^2 , R^3 , R^7 , R^8 , W及びnは前記に同じであるが、 R^1 及び R^8 は水素原子を表さない。)

一般式(15)で表される化合物と一般式(14)で表される化合物の反応は、 反応式8で示した条件と同様の条件で行うことができる。

一般式(16)で表される化合物の脱保護の反応は、反応式3で示した条件と 同様の条件で行うことができる。

一般式(17)で表される化合物と一般式(7)で表される化合物の反応及び 一般式(17)で表される化合物と一般式(8)で表される化合物の反応は、反 応式1で示した条件と同様の条件で行うことができる。

一般式 (I) で表される化合物のうち、 R^6 がアミノ基を意味する一般式 (I - d) で表される化合物は、反応式 1 0 に示すように、一般式 (I - b) で表される化合物をアンモニアで処理することによって容易に製造することができる。

(一般式 (I-b) で表される化合物から一般式 (I-d) で表される化合物への変換は既知であり、例えば特開昭 58-67683号公報、特開昭 58-188880号公報及び特開昭 58-201776号公報に記載された方法に準じて達成できる。)

反応式10

W-(CH₂)_n-X-Y-Z
$$\begin{array}{cccc}
R^1 & R^2 & R^3 \\
\hline
 & & & & & \\
 & & & & & \\
 & & & & & \\
\end{array}$$
(I-b)

(式中、R¹, R², R³, W, X, Y, Z及びnは前記に同じ。)

この反応に用いる溶媒としては、下記のものが挙げられる:ジメチルスルホキシドによって代表されるスルホキシド系溶媒、ジメチルホルムアミド又はジメチルアセトアミドによって代表されるアミド系溶媒;エチルエーテル、ジメトキシエタン又はテトラヒドロフランによって代表されるエーテル系溶媒;ジクロロメタン、クロロホルム又はジクロロエタンによって代表されるハロゲン系溶媒;又はメタノール、エタノールによって代表されるアルコール系溶媒。好ましくはアルコール系溶媒を用いるのが良い。

本反応は、耐圧ガラスチューブやオートクレーブ中で行うのが好ましい。

一般式(I-d)で表される化合物はまた、反応式 1 1 に示すように、一般式(1 9)で表されるアジド化合物を経由する方法(一般式(I-b)で表される化合物から一般式(I-d)で表される化合物への変換は既知であり、例えばBuckle, D. R. らJ. Med. Chem., 919-926, 34, 1991. に記載された方法に準じて達成できる。)によっても製造することができる。

反応式11

$$W-(CH_2)_{\overline{n}}-X-Y-Z$$

$$R^1 \qquad R^2 \quad R^3$$

$$(\text{ I-b })$$

(式中、R¹, R², R³, W, X, Y, Z及びnは前記に同じ。)

一般式(19)で表される化合物は、一般式(I-b)で表される化合物を不活性溶媒中、アジ化ナトリウム、アジ化リチウム、トリメチルシリルアジド等のアジド化合物と反応させることにより製造することができる。

この反応に用いる溶媒としては、下記のものが挙げられる:ジメチルスルホキシドによって代表されるスルホキシド系溶媒;ジメチルホルムアミド又はジメチルアセトアミドによって代表されるアミド系溶媒;エチルエーテル、ジメトキシエタン又はテトラヒドロフランによって代表されるエーテル系溶媒;ジクロロメタン、クロロホルム又はジクロロエタンによって代表されるハロゲン系溶媒;ベ

ンゼン、トルエンによって代表される芳香族系溶媒。好ましくは、芳香族系溶媒 を用いるのが良い。

反応温度は、通常、氷冷下から用いられる反応溶媒の還流温度までである。 反応原料のモル比、アジド化合物/一般式(I-b)で表される化合物は、 $0.5\sim5.0$ の範囲であり、好ましくは、 $1.0\sim2.0$ の範囲である。

一般式(19)で表される化合物と還元剤の反応に用いる溶媒としては下記のものが挙げられる:ベンゼン、トルエンによって代表される芳香族系溶媒、酢酸エチル、酢酸メチルに代表されるエステル系溶媒;ジメチルスルホキシドによって代表されるスルホキシド系溶媒;ジメチルホルムアミド又はジメチルアセトアミドによって代表されるアミド系溶媒;エチルエーテル、ジメトキシエタン、1、4-ジオキサン又はテトラヒドロフランによって代表されるエーテル系溶媒;ジクロロメタン、クロロホルム、ジクロロエタンによって代表されるハロゲン系溶媒;メタノール、エタノール、又はプロパノールによって代表されるアルコール系溶媒。又、水中で反応を行うこともできる。好ましくは、エーテル系溶媒及びアルコール系溶媒が挙げられる。

反応温度は、通常 -20 \mathbb{C} から用いられる反応溶媒の還流温度までであり、好ましくは、-10 \mathbb{C} ~ 30 \mathbb{C} \mathbb{C} である。

反応原料のモル比は、還元剤/一般式 (I-1a) で表される化合物は $0.5 \sim 4.0$ の範囲であり、好ましくは $1.0 \sim 2.0$ の範囲である。

但し、接触水添の場合、用いる触媒の量は、 $0.1\sim50$ 重量%、好ましくは、 $1\sim10$ 重量%の範囲である。

用いる還元剤としては、水素化アルミニウムリチウム、水素化ホウ素ナトリウム等が挙げられる。好ましくは水素化アルミニウムリチウムが挙げられる。

又、接触水添の条件を用いることができ、水素ガスの存在下、触媒、例えば、 パラジウム - 炭素 (5%、10%)、パラジウムブラック、酸化白金等が用いら れる。

一般式(I)で表される化合物のうち、R'及びR''が一緒になって、それらが結合している窒素原子と共にピロリル基である一般式(I-f)で表される化合物は、反応式 1 2 に示すように、一般式(I-d)で表される化合物を一般式(2 0)で表される化合物と酸触媒の存在下、不活性溶媒中反応させることにより製造することができる。

反応式12

$$W-(CH_2)_{\overline{n}}X-Y-Z \qquad NH_2$$

$$R^1 \qquad R^2 \qquad R^3$$

$$(I-d)$$

$$(20)$$
 $(R^{15})_{0}$
 $W-(CH_{2})_{n}-X-Y-Z$
 R^{1}
 R^{2}
 R^{3}
 $(I-f)$

(式中、 R^1 , R^2 , R^3 , R^{15} , X, Y, Z, W及びnは前記に同じ。oは $0 \sim 4$ の整数を表し、oが2, 3及び4の時、 R^{15} は同一でも異なっていてもよい。)

この反応に用いる溶媒としては、下記のものが挙げられる:ジメチルスルホキシドによって代表されるスルホキシド系溶媒;ジメチルホルムアミド又はジメチルアセトアミドによって代表されるアミド系溶媒;エチルエーテル、ジメトキシエタン又はテトラヒドロフランによって代表されるエーテル系溶媒;ジクロロメタン、クロロホルム又はジクロロエタンによって代表されるハロゲン系溶媒。又、無溶媒の条件で反応を行うこともできる。又、酸触媒をそのまま溶媒として用いてもよい。

反応温度は、通常、氷冷下から用いられる反応溶媒の還流温度までである。好ましくは、還流温度である。

反応原料のモル比、一般式(20)で表される化合物/一般式(I-d)で表される化合物は、 $0.5\sim4.0$ の範囲であり、好ましくは、 $1.0\sim2.0$ の範囲である。

用いる酸触媒としては、塩酸、硫酸、蟻酸、酢酸及びプロピオン酸等が挙げられる。

一般式(I) で表される化合物のうち、R'及びR'が一緒になって、それらが結合している窒素原子と共にピラゾリル基である一般式(I-g) で表される化合物及び一般式(I-g')で表される化合物は、反応式13に示すように、一般式(I-b) で表される化合物から2工程で製造することができる。

反応式13

$$W-(CH_{2})_{n}-X-Y-Z$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$(I-b)$$

$$W-(CH_{2})_{n}-X-Y-Z$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$(21)$$

$$NH_{2}NH_{2}\cdot H_{2}O$$

$$R^{15}\cdot R^{15}\cdot R^{15}\cdot$$

$$R^{15"}$$
 $R^{15'}$ R^{15} R^{15}

(式中、 R^1 , R^2 , R^3 , R^{15} , X, Y, Z, W及びnは前記に同じ。 R^{15} 及び R^{15} はそれぞれ R^{15} と同じ意味を表す。)

一般式(21)で表される化合物は、一般式(I-b)で表される化合物とヒドラジン1水和物を、不活性溶媒中反応させることにより製造することができる。この反応に用いる溶媒としては、下記のものが挙げられる:ジメチルスルホキシドによって代表されるスルホキシド系溶媒;ジメチルホルムアミド又はジメチルアセトアミドによって代表されるアミド系溶媒;エチルエーテル、ジメトキシエタン又はテトラヒドロフランによって代表されるエーテル系溶媒;ジクロロメタン、クロロホルム又はジクロロエタンによって代表されるハロゲン系溶媒又はメタノール、エタノールによって代表されるアルコール系溶媒。好ましくは、ア

ルコール系溶媒が良い。

反応温度は、通常、氷冷下から用いられる反応溶媒の還流温度までであり、好ましくは、40 $^{\circ}$ $^{$

反応原料のモル比、ヒドラジン1水和物/一般式(I-b)で表される化合物は、 $0.5\sim10.0$ の範囲であり、好ましくは、 $1.0\sim2.0$ の範囲である。

一般式 (I-g) で表される化合物及び一般式 (I-g') で表される化合物は、一般式 (21) で表される化合物に一般式 (22) で表される化合物を不活性溶媒中反応させることにより製造することができる。

この反応に用いる溶媒としては、下記のものが挙げられる:ジメチルスルホキシドによって代表されるスルホキシド系溶媒;ジメチルホルムアミド又はジメチルアセトアミドによって代表されるアミド系溶媒;エチルエーテル、ジメトキシエタン又はテトラヒドロフランによって代表されるエーテル系溶媒;ジクロロメタン、クロロホルム又はジクロロエタンによって代表されるハロゲン系溶媒;メタノール、エタノールによって代表されるアルコール系溶媒。又、無溶媒の条件で反応を行うこともできる。

反応温度は、通常、氷冷下から用いられる反応溶媒の還流温度までである。

反応原料のモル比、一般式(22)で表される化合物/一般式(21)で表される化合物は、 $0.5\sim5.0$ の範囲であり、好ましくは、 $1.0\sim2.0$ の範囲である。

一般式(I-g)で表される化合物と一般式(I-g')で表される化合物は、 再結晶法やクロマトグラフ法等有機化学上公知の分離手段により分離する。

一般式(I)で表される化合物のうち、 R^1 及び R^8 が一緒になって、それらが結合している窒素原子と共にイミダゾリル基である一般式(I-h)で表される化合物は、反応式 1.4 に示すように、一般式(I-b)で表される化合物と一般式(2.3)で表される化合物を不活性溶媒中、水素化ナトリウム存在下で反応させることにより製造することができる。

反応式14

W-(CH₂)
$$\overline{R}$$
X-Y-Z
$$R^{1} \qquad R^{2} \qquad R^{3}$$
(I-b)

(式中、 R^1 , R^2 , R^3 , R^{15} , X, Y, Z, W及びnは前記に同じ。rは $0 \sim 3$ の整数を表し、rが2及び3の時、 R^{15} は同一でも異なっていてもよい。)

この反応に用いる溶媒としては、下記のものが挙げられる:ジメチルスルホキシドによって代表されるスルホキシド系溶媒;ジメチルホルムアミド又はジメチルアセトアミドによって代表されるアミド系溶媒;エチルエーテル、ジメトキシエタン又はテトラヒドロフランによって代表されるエーテル系溶媒;ジクロロメタン、クロロホルム又はジクロロエタンによって代表されるハロゲン系溶媒;ベンゼン、トルエンによって代表される芳香族系溶媒。好ましくは、芳香族系溶媒を用いるのが良い。

反応温度は、通常、氷冷下から用いられる反応溶媒の還流温度までである。

反応原料のモル比、一般式(23)で表される化合物/一般式(I-b)で表される化合物は、 $0.5\sim5.0$ の範囲であり、好ましくは、 $1.0\sim2.0$ の範囲である。

又、本反応系中に相間移動触媒、例えば18-クラウン-6等を共存させると

良い結果が得られる場合がある。

一般式 (I) で表される化合物のうち、R'及び R^* が一緒になって、それらが結合している窒素原子と共に1, 2, 4-トリアゾリル基である一般式 (I-i) で表される化合物及び一般式 (I-i') で表される化合物は、反応式 1.5 に示すように、一般式 (I-b) で表される化合物と一般式 (2.4) で表される化合物を不活性溶媒中、水素化ナトリウム存在下で反応させることにより製造することができる。

反応式15

$$W-(CH_{2})_{n}-X-Y-Z$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$(I-b)$$

$$W-(CH_{2})_{n}-X-Y-Z$$

(式中、R¹, R², R³, R¹⁵, X, Y, Z, W及びnは前記に同じ。sは0~2の

整数を表し、sが2の時、R¹⁵は同一でも異なっていてもよい。)

この反応に用いる溶媒としては、下記のものが挙げられる:ジメチルスルホキシドによって代表されるスルホキシド系溶媒;ジメチルホルムアミド又はジメチルアセトアミドによって代表されるアミド系溶媒;エチルエーテル、ジメトキシエタン又はテトラヒドロフランによって代表されるエーテル系溶媒;ジクロロメタン、クロロホルム又はジクロロエタンによって代表されるハロゲン系溶媒;ベンゼン、トルエンによって代表される芳香族系溶媒。好ましくは、芳香族系溶媒を用いるのが良い。

反応温度は、通常、氷冷下から用いられる反応溶媒の還流温度までである。

反応原料のモル比、一般式(24)で表される化合物/一般式(I-b)で表される化合物は、 $0.5\sim5.0$ の範囲であり、好ましくは $1.0\sim2.0$ の範囲である。

又、本反応系中に相間移動触媒、例えば18-クラウン-6等を共存させると 良い結果が得られる場合がある。

一般式(I)で表される化合物のうち、R'及びR''が一緒になって、それらが結合している窒素原子と共に 1, 2, 3- トリアゾリル基である一般式(I- j) で表される化合物及び一般式(I- j) で表される化合物は、反応式 1 6 に示すように、一般式(I- b) で表される化合物と一般式(2 5) で表される化合物と一般式(2 5) で表される化合物を不活性溶媒中、水素化ナトリウム存在下で反応させることにより製造することができる。

反応式16

$$W-(CH_{2})_{n}-X-Y-Z$$

$$R^{15}$$

$$(I-b)$$

$$W-(CH_{2})_{n}-X-Y-Z$$

(式中、R¹, R², R³, R¹5, R¹5', X, Y, Z, W及びnは前記に同じ。)

この反応に用いる溶媒としては、下記のものが挙げられる:ジメチルスルホキシドによって代表されるスルホキシド系溶媒;ジメチルホルムアミド又はジメチルアセトアミドによって代表されるアミド系溶媒;エチルエーテル、ジメトキシエタン又はテトラヒドロフランによって代表されるエーテル系溶媒;ジクロロメタン、クロロホルム又はジクロロエタンによって代表されるハロゲン系溶媒;ベンゼン、トルエンによって代表される芳香族系溶媒。好ましくは、芳香族系溶媒

を用いるのが良い。

反応温度は、通常、氷冷下から用いられる反応溶媒の還流温度までである。

反応原料のモル比、一般式(25)で表される化合物/一般式(I-b)で表される化合物は、 $0.5\sim5.0$ の範囲であり、好ましくは、 $1.0\sim2.0$ の範囲である。

又、本反応系中に相間移動触媒、例えば18-クラウン-6等を共存させると 良い結果が得られる場合がある。

一般式 (I-j) で表される化合物及び一般式 (I-j') で表される化合物はまた、反応式 1 7 に示すように、一般式 (I-b) で表される化合物から 2 工程で製造することもできる。

反応式17

(式中、R¹, R², R³, R¹⁵, R¹⁵', X, Y, Z, W及びnは前記に同じ。)

一般式 (I-b) とアジド化合物との反応は、反応式 1 1 で示した条件と同様の条件で行うことができる。

一般式 (I-j) で表される化合物及び一般式 (I-j))で表される化合物は、一般式 (19) で表される化合物と一般式 (26) で表される化合物を不活

性溶媒中反応させることにより製造することができる。

この反応に用いる溶媒としては、下記のものが挙げられる:ジメチルスルホキシドによって代表されるスルホキシド系溶媒;ジメチルホルムアミド又はジメチルアセトアミドによって代表されるアミド系溶媒;エチルエーテル、ジメトキシエタン又はテトラヒドロフランによって代表されるエーテル系溶媒;ジクロロメタン、クロロホルム又はジクロロエタンによって代表されるハロゲン系溶媒;ベンゼン、トルエンによって代表される芳香族系溶媒。好ましくは、芳香族系溶媒を用いるのが良い。

反応温度は、通常、5 \mathbb{C} から1 4 0 \mathbb{C} までである。好ましくは、8 0 \mathbb{C} から1 2 0 \mathbb{C} である。

反応原料のモル比、一般式(26)で表される化合物/一般式(19)で表される化合物は、 $0.5\sim5.0$ の範囲であり、好ましくは、 $1.0\sim2.0$ の範囲である。

本反応は、耐圧ガラスチューブやオートクレーブ中で行うのが好ましい。

一般式(I)で表される化合物のうち、 R^4 が C_{1-6} アルキルカルボニルオキシ基である一般式(I-k)で表される化合物は、反応式18に示すように、一般式(I-c)で表される酸塩化物を不活性溶媒中、塩基の存在下一般式(27)で表される化合物と反応させるか、又は一般式(I-c)で表される化合物に対してカルボン酸一般式(28)で表される化合物を縮合剤を用いて反応させることにより製造することができる。

反応式18

$$W-(CH_2)_{\overline{n}}-X-Y-Z$$

$$R^8 N$$

$$R^7$$

$$R^2$$

$$R^3$$

$$(I-c)$$

(式中、R¹, R², R³, R⁷, R⁸, X, Y, Z, W及びnは前記に同じ。R² は C₁₋₆ アルキル基を意味する。)

一般式(I-c)で表される化合物と一般式(27)で表される化合物の反応及び一般式(I-c)で表される化合物と一般式(28)で表される化合物の反応は、反応式1で示した条件と同様の条件で行うことができる。

一般式(I)で表される化合物の合成中間体である一般式(I)で表される化合物の製造は、反応式19に示す方法により達成できる。

反応式19

(式中、R1, R2及びR3は前記に同じ。)

即ち、一般式(1)で表される化合物は一般式(30)で表される化合物を酸の存在下、脱水反応を行なうことによって得られる。用いる酸としては、硫酸、リン酸、硫酸水素カリウム、シュウ酸、p-トルエンスルホン酸、p-トルエンスルホン酸ピリジニウム、三フッ化ホウ素エーテル錯体などが挙げられる。

好ましくは硫酸を用いるのが良い。

一般式 (30) で表される化合物は一般式 (29) で表される化合物 (一般式 (29) で表される化合物は既知か、あるいはSmith, J. G. らOrg. Prep. Proc. Int., 123-131, 10, 1978、Buckle, D. R. らJ. Med. Chem., 919-926, 34, 1991、Stock, L. M. らJ. Am. Chem. Soc., 4247, 94, 1972、特開平 2-1 4 1号公報などに記載の方法に準じて合成できる。) を還元剤を用いて還元することにより得られる。

用いる還元剤としては水素化ジイソブチルアルミニウム、水素化リチウムアルミニウム、水素化トリメトキシアルミニウムリチウム、水素化トリエトキシアルミニウムリチウム、水素化トリーt-ブトキシアルミニウムリチウム、などのアルミニウム試薬、トリメチルシラン、トリエチルシランなどのアルキルシリル試薬、水素化ホウ素リチウム、水素化ホウ素ナトリウム、水素化トリーs-ブチルホウ素リチウム、水素化トリーs-ブチルホウ素カリウム、ボラン、などのホウ素試薬が挙げられる。

好ましくは水素化ホウ素ナトリウムを用いるのが良い。

R¹がニトロ基である一般式(1')で表される化合物の合成は以下のように しても達成できる。

即ち、一般式(1')で表される化合物は一般式(34)で表される化合物を 酸の存在下、脱水反応を行なうことによって得られる。

用いる酸としては、硫酸、リン酸、硫酸水素カリウム、シュウ酸、p-トルエンスルホン酸、p-トルエンスルホン酸ピリジニウム、三フッ化ホウ素エーテル錯体などが挙げられる。

好ましくは硫酸を用いるのが良い。

一般式(34)で表される化合物は一般式(33)で表される化合物をニトロ 化剤を用いてニトロ化することにより得られる。

用いるニトロ化剤としては、硝酸、混酸(硝酸と硫酸の混合物)、硝酸ナトリウム/硫酸、硝酸カリウム/硫酸、硝酸アセチル、ニトロニウムトリフルオロメタ

ンスルホナート、ニトロニウムテトラフルオロボラートが挙げられる。 好ましくは混酸、硝酸アセチルを用いるのが良い。

一般式(33)で表される化合物は一般式(32)で表される化合物を塩化アセチル、無水酢酸などのアセチル化剤を用いることで得られる。

一般式 (3 2) で表される化合物は一般式 (3 1) で表される化合物 (一般式 (3 1) で表される化合物は既知か、あるいはSmith, J. G. らOrg. Prep. Proc. Int., 123-131, 10, 1978、Buckle, D. R. ら J. Med. Chem., 919-926, 34, 1991 、Stock, L. M. ら J. Am. Chem. Soc., 4247, 94, 1972 、特開平 2 - 1 4 1 号公報などに記載の方法に進じて合成できる。) を還元剤を用いて還元することにより得られる。

用いる還元剤としては水素化ジイソブチルアルミニウム、水素化リチウムアルミニウム、水素化トリメトキシアルミニウムリチウム、水素化トリエトキシアルミニウムリチウム、水素化トリーtーブトキシアルミニウムリチウム、などのアルミニウム試薬、トリメチルシラン、トリエチルシランなどのアルキルシリル試薬、水素化ホウ素リチウム、水素化ホウ素ナトリウム、水素化トリーsーブチルホウ素リチウム、水素化トリーsーブチルホウ素が挙げられる。

好ましくは水素化ホウ素ナトリウムを用いるのが良い。

一般式(I)で表される化合物のうち光学活性体の合成は、ラセミ体を光学分割する方法(特開平3-141286号公報、米国特許5097037号公開公報、欧州特許409165号公開公報)を利用することにより達成される。

又、一般式(15)で表される化合物及び一般式(I-b)で表される化合物の光学活性体の合成は、不斉合成による方法(特表平5-507645号公報、特開平5-301878号公報、特開平7-285983号公報、欧州特許535377号公開公報、米国特許5420314号公開公報)を利用することにより達成される。

前述したように、本発明者らは一般式(I)で表される化合物には強い心拍数減少作用を有していることを見い出した。

心抑制作用がなく心拍数減少作用を有し、この作用に基づく心筋酸素消費の減少が心筋の運動負担を軽減し抗狭心症作用を示し、さらに有効不応期の延長により抗不整脈作用をもつと考えられる。

そのため、本発明に係る化合物は、心臓運動にかかわる酸素消費あるいはエネルギー消費あるいは代謝を考慮した上での心臓血管疾患の治療及び心拍数減少作用を主に考えた治療にも有用であることが期待される。

例えば、ヒトを含む哺乳動物の抗心不全剤として、あるいは心不全を誘発する 心臓血管疾患の治療剤、例えば虚血性心疾患治療剤、抗体液貯留剤、肺高血圧症 治療剤、弁膜症治療剤、先天性心疾患治療剤、心筋疾患治療剤、肺水腫治療剤、 労作性狭心症治療剤、心筋梗塞治療剤、抗不整脈剤、抗心房細動剤として有用で ある。

本発明は、これらの治療に一般式(I)で表わされる化合物の有効な量を含む 医薬組成物又は獣医薬組成物を提供する。

本発明に係る化合物の投与形態としては、注射剤(皮下、静脈内、筋肉内、腹腔内注射)、軟膏剤、坐剤、エアゾール剤等による非経口投与又は錠剤、カプセル剤、顆粒剤、丸剤、シロップ剤、液剤、乳剤、懸濁液剤等による経口投与をあげることができる。

本発明に係る化合物を含有する上記の医薬的又は獣医薬的組成物は、全組成物の重量に対して、本発明に係る化合物を約0.01~99.5%、好ましくは、約0.1~30%を含有する。

本発明に係る化合物に又は該化合物を含有する組成物に加えて、他の医薬的に 又は獣医薬的に活性な化合物を含ませることができる。

また、これらの組成物は、本発明に係る化合物の複数を含ませることができる。本発明化合物の臨床的投与量は、年令、体重、患者の感受性、症状の程度等により異なるが、通常効果的な投与量は、成人一日0.003~1.5g、好ましくは、0.01~0.6g程度である。しかし必要により上記の範囲外の量を用いることもでき

る。

本発明化合物は、製薬の慣用手段によって投与用に製剤化される。

即ち、経口投与用の錠剤、カプセル剤、顆粒剤、丸剤は、賦形剤、例えば白糖、乳糖、ブドウ糖、でんぷん、マンニット;結合剤、例えばヒドロキシプロピルセルロース、シロップ、アラビアゴム、ゼラチン、ソルビット、トラガント、メチルセルロース、ポリビニルピロリドン;崩壊剤、例えばでんぷん、カルボキシメチルセルロース又はそのカルシウム塩、微結晶セルロース、ポリエチレングリコール;滑沢剤、例えばタルク、ステアリン酸マグネシウム又はカルシウム、シリカ;潤滑剤、例えばラウリル酸ナトリウム、グリセロール等を使用して調製される。

注射剤、液剤、乳剤、懸濁剤、シロップ剤及びエアゾール剤は、活性成分の溶剤、例えば水、エチルアルコール、イソプロピルアルコール、プロピレングリコール、1,3-ブチレングリコール、ポリエチレングリコール;界面活性剤、例えばソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンと脂肪酸エステル、水素添加ヒマシ油のポリオキシエチレンエーテル、レシチン;懸濁剤、例えばカルボキシメチルナトリウム塩、メチルセルロース等のセルロース誘導体、トラガント、アラビアゴム等の天然ゴム類;保存剤、例えばパラオキシ安息香酸のエステル、塩化ベンザルコニウム、ソルビン酸塩等を使用して調製される。

経皮吸収型製剤である軟膏には、例えば白色ワセリン、流動パラフィン、高級 アルコール、マクロゴール軟膏、親水軟膏、水性ゲル基剤等が用いられる。

坐剤は、例えばカカオ脂、ポリエチレングリコール、ラノリン、脂肪酸トリグ リセライド、ココナット油、ポリソルベート等を使用して調製される。

[発明を実施するための最良の形態]

以下、本発明を実施例にて詳述するが、本発明は、これらの実施例に何ら限定 されるものではない。

[参考例]

参考例1 6-アミノ-3,3-ジメチル-1-インダノール

6-アミノ-3,3-ジメチル-1-インダノン(この化合物は既知でありSmith, J., G. and Massicotte, M., P. *Org. Prep. Proc. Int.* 123-131, *10*, 1978.の方法に準じて合成できる)(6.56 g, 37 mmol)のメタノール溶液(330 mL)に 19 ℃で水素化ホウ素ナトリウム(2.1 g, 56 mmol)を加え、20℃で30分間撹拌した。

反応終了後、溶媒を留去し残渣に水を加え酢酸エチルで抽出した。

有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を留去し得られた残渣を酢酸エチル: ヘキサン=1:5溶液で再結晶し、目的物6.17 g (収率94%)を白色結晶として得た。

"H NMR (400 MHz, CDCl₃) δ : 1.17 (s, 3H), 1.34 (s, 3H), 1.78 (dd, A part of AB, J = 12.9 and 6.1 Hz, 1H), 2.35 (dd, B part of AB, J = 12.9 and 7.0 Hz, 1H), 3.50 (br. s, 3H), 5.16 (t, J = 7.0 Hz, 1H), 6.62 - 6.70 (m, 2H), 6.97 (d, J = 8.1 Hz, 1H).

MS (EI) m/z 177 [M] + (bp), 144, 120;

mp. 117.8-117.9℃

参考例2 6-アセタミド-3,3-ジメチル-1-インデン

6-アミノ-3,3-ジメチル-1-インダノール (6 g, 34 mmol) に濃硫酸:水=1:3溶液 (60 mL) を加え,110 ℃で 30 分間撹拌した。

参考例46ーアセタミドー3.3-ジメチルー1ーインダノン

6-アミノー3,3-ジメチルー1-インダノン(4.2 g, 24 mmol)のトルエン溶液(25 mL)に室温で無水酢酸(2.7 g, 26.4 mmol)を加え1時間撹拌した。

反応終了後、反応液に水 (100 mL)を加えトルエンで抽出 (200 mL, 100 mL), 有機層を 1規定塩酸水溶液、飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナト リウムで乾燥した。

溶媒を留去し、目的物3.1 g(収率 59.4 %) を白色無定形物として得た。

¹H NMR (60 MHz, CDC1₃) δ: 1.40 (s, 6H), 2.20 (s, 3H), 2.57 (s, 2H), 7.0

5-8.00 (m, 3H), 8.87 (brs, 1H).

参考例 5 6ーアセタミドー3,3-ジメチルー1ーインダノール

上記反応で得た粗製の 6-アセタミド-3,3-ジメチル-1-インダノン(1.5 g, 6.9 mmol) のメタノール溶液(75 mL)に室温で水素化ホウ素ナトリウム(78 0 mg, 20.7 mmol)を加え 10 分間撹拌した。

反応終了後、反応液をロータリーエバポレーターを用いて溶媒を留去し、残渣に水(100 mL)を加え酢酸エチルで抽出(200 mL, 100 mL),有機層を飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。

溶媒を留去し、目的物1.5 g (収率99 %) を白色無定形物として得た。
¹H NMR (400 MHz, CDCl₃) δ : 1.17 (s, 3H), 1.35 (s, 3H), 1.81 (dd, A part of AB, J = 13.0 and 6.2 Hz, 1H), 2.13 (s, 3H), 2.34 (dd, B part of AB, J = 13.0 and 7.0 Hz, 1H), 2.54 (brs, 1H), 5.18 (m, 1H), 7.10 (d, J = 8 H

反応終了後、反応液を氷冷下で 4NNaOH水溶液を用いて中和し、酢酸エチル、 クロロホルムで抽出後、有機層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水 硫酸ナトリウムで乾燥した。

溶媒を留去し、6-アミノ-3、3-ジメチル-1-インデンの粗物(7.28 g)を得た。 続いて得られた粗物のトルエン溶液(27 mL)に無水酢酸(5.2 g, 51 mmol) を加え室温で 10 分間撹拌した。反応終了後、反応液に飽和炭酸水素ナトリウム 水溶液(100 mL)を加え、トルエンで抽出後、有機層を飽和塩化ナトリウム水溶 液で洗浄し、無水硫酸ナトリウムで乾燥した。

溶媒を留去後、得られた残渣を酢酸エチル:ヘキサン=1:11 溶液で再結晶し、 目的物5.66 g(収率 82.7 % (2 段階))を白色結晶として得た。

¹H NMR (400 MHz, CDC1₃) δ : 1.29 (s, 6H), 2.17 (s, 3H), 6.38 (d, J = 5.3 Hz, 1H), 6.57 (d, J = 5.3 Hz, 1H), 7.09 - 7.18 (m, 3H), 7.50 (d, J = 1.4 Hz, 1H).

MS (EI) m/z 201[M]⁺, 159, 144 (bp);

mp. 130.7 - 130.9 ℃

参考例3 6-アミノ-3,3-ジメチル-1-インデン

6-アセタミド-3,3-ジメチル-1-インデン(1.0 g, 4.97 mmol)のエタノール溶液(10 mL)に室温で濃塩酸(1 mL)を加え,90℃で 8時間加熱還流した。

反応終了後,反応液を 1*N*水酸化ナトリウム水溶液で中和し、酢酸エチルで抽出後、無水硫酸ナトリウムで乾燥した。

溶媒を留去後、得られた残渣を中圧シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル = 3:1)で精製し、目的物653~mg(収率82%)を無色油状物として得た。

MS (EI) m/z 159 [M]⁺, 144 (bp).

z, 1H), 7.36-7.38 (m, 1H), 7.49 (s, 1H), 7.68 (brs, 1H); MS (EI) m / z; 219 [M]⁺, 205 (bp), 163.

参考例6 6-アセタミド-1-アセトキシ-3,3-ジメチルインダン

6-アセタミド-3,3-ジメチル-1-インダノール(1.32 g, 6.02 mmol)のテトラヒドロフラン溶液(26 mL)にN,N-ジメチルアミノピリジン(約 10 mg)、無水酢酸(1.14 mL, 12.04 mmol)、トリエチルアミン(1.68 mL, 12.04 mmol)を加え室温で 1時間撹拌した。

反応終了後、反応液に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽 出、有機層を飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥し た。

溶媒を留去し、目的物1.59 g(収率 86%)を白色無定形物として得た。
¹H NMR (400 MHz, CDC1₃) δ : 1.25 (s, 3H), 1.35 (s, 3H), 1.96 (dd, A part of AB, J = 13.7 and 4.2 Hz, 1H), 2.06 (s, 3H), 2.16 (s, 3H), 2.37 (dd, B part of AB, J = 13.7 and 7.1 Hz, 1H), 6.12 (dd, J = 7.1 and 4.2 Hz, 1H), 7.14 (d J = 8.2 Hz, 1H), 7.43 (d, J = 2.0 Hz, 1H), 7.53 (dd, J = 8.2 and 2.0 Hz, 1H), 7.61 (brs, 1H);

MS (EI) m / z; 261 [M]⁺, 219 (bp), 202, 186, 144.

<u>参考例76-アセタミド-1-アセトキシ-3,3-ジメチル-5-ニトロ-イン</u> <u>ダン</u>

6-アセタミド-1-アセトキシ-3,3-ジメチルインダン (1.55 g, 5.93 mmo 1) の酢酸溶液 (15.5 mL) に 22 ℃で発煙硝酸 (3.1 mL) を滴下し、 22 ℃で 1 時間撹拌した。

続いて濃硫酸 (15 mg) を加え 30 分間撹拌し、無水酢酸 (7.8 mL) を加え、1 時間撹拌した。

反応終了後、反応液に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽 出、飽和塩化ナトリウム水溶液で洗浄、無水硫酸ナトリウムで乾燥した。

溶媒を留去後、得られた残査を中圧シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル = 3:1)で精製し、目的物780~mg(収率42.9~%)を黄色油状物として得た。

¹H NMR (400 MHz, CDC1₃) δ : 1.29 (s, 3H), 1.40 (s, 3H), 1.97 (dd, A part of AB, J = 13.5 and 7.3 Hz, 1H), 2.12 (s, 3H), 2.28 (s, 3H), 2.50 (dd, B part of AB, J = 13.5 and 5.7 Hz, 1H), 6.17 (t, J = 6.4 Hz, 1H), 8.00 (s, 1H), 8.65 (s, 1H), 10.25 (brs, 1H);

MS (EI) m / z; 306 [M] $^+$, 261(bp), 204.

参考例8 6-アミノー3,3-ジメチルー5-二トロー1-インデン

$$O_2N$$

6-アセタミド-1-アセトキシ-3,3-ジメチル-5-二トローインダン (75 0 mg, 2.45 mmo1) に 33 % 硫酸水溶液 (15 mL) を加え、110 ℃で 8時間加熱還流した。

反応終了後、1 規定水酸化ナトリウム水溶液で pH 13にし、酢酸エチルで抽出、

飽和塩化ナトリウム水溶液で洗浄、無水硫酸ナトリウムで乾燥した。

溶媒を留去後、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル = 5:1)で精製し、目的物419 mg (収率83.7%)を茶色油状物として得た。

¹H NMR (400 MHz, CDCl₃) δ :1.32 (s, 6H), 6.18 (brs, 2H), 6.39 (dd, J = 5 .5 and 0.7 Hz, 1H), 6.64 (d, J = 5.5 Hz, 1H), 6.66 (s, 1H), 8.01 (s, 1H); MS (EI) m / z; 204 [M]⁺, 189, 158, 143 (bp).

[合成例]

合成例 1 6-(4'- メトキシベンジルカルボキシアミド)-3,3-ジメチル-1-インデン

6-アミノ-3,3-ジメチル-1-インデン(653 mg, 4.1 mmol)のクロロホルム溶液(13 mL)に室温で 4-メトキシフェニル酢酸クロリド(0.94 mL, 6.15 mmol)を加え、室温で 1時間撹拌した。

続いて、ジイソプロピルエチルアミン (1.07 mL, 6.15 mmol) を加え、室温で30 分間撹拌した。

反応終了後、反応液に酢酸エチルを加え、有機層を 1N塩酸、1N水酸化ナトリウム水溶液、飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。

溶媒を留去後、得られた残渣を中圧シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル = 3:1)で精製、エタノール:水 = 5:4溶液で再結晶し、目的物を白色結晶1.01 g (収率80%)として得た。

¹H NMR (400 MHz, CDC1₃) δ : 1.26 (s, 6H), 3.68 (s, 2H), 3.82 (s, 3H), 6. 35 (d, J = 5.5 Hz, 1H), 6.54 (d, J = 5.5 Hz, 1H), 6.92 (d, J = 8.4 Hz, 2H), 7.1 - 7.2 (m, 2H), 7.25 (d, J = 8.4 Hz, 2H), 7.42 (s, 1H).

MS (EI) m/z 307 [M] + (bp), 278, 149;

mp. 170.6 - 171.2 ℃

<u>合成例 2 1R *, 2S*-6-(4'-メトキシベンジルカルボキシアミド)-1, 2-エポキシ-3, 3- ジメチルインダン</u>

6-(4'-メトキシベンジルカルボキシアミド)-3,3-ジメチル-1-インデン (800 mg, 2.61 mmol)の 1,2-ジクロロエタン溶液 (40 mL)に 4-(3-フェニルプロピル) -ピリジンオキシド (64 mg, 0.26 mmol) を室温で加え、続いて (*R,S*)-サレンマンガン錯体 (35)

(この化合物は既知であり米国特許 5 4 2 0 3 1 4 に準じて合成できる。) (135 mg, 0.13 mmol), 次亜塩素酸ナトリウム水溶液 (3.92 mmol, 1.7 mol/kg, 1.5 e q)を加え室温で 1.5時間撹拌した。

反応終了後、反応液に酢酸エチルを加え、有機層を水、飽和塩化ナトリウム水 溶液で洗浄し、無水硫酸ナトリウムで乾燥した。

溶媒を留去後、得られた残渣を中圧シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル = 2:1)で精製し、目的物600 mg(収率71%)を白色無定形物として得た。

 $[\alpha]^{24}$ _D -24.7 (c 0.384, CHCl₃).

¹H NMR (400 MHz, CDCl₃) δ : 1.18 (s, 3H), 1.36 (s, 3H), 3.65 (s, 2H), 3.68 (d, J = 2.7 Hz, 1H), 3.82 (s, 3H), 4.16 (d, J = 2.7 Hz, 1H), 6.92 (d, Θ 1 J = 8.6 Hz, 2H), 7.04 (d, J = 8.1 Hz, 1H), 7.63 (d, J = 1.8 Hz, 1H). MS (EI) m/z 323 [M] + (bp), 293, 175.

合成例 3 1R *, 2S*-6-(4'- メトキシベンジルカルボキシアミド)-1-シクロプロピルアミノ -3, 3-ジメチル-2-インダノール

 $1R^*$, $2S^*$ -6-(4'-メトキシベンジルカルボキシアミド)-1, 2-エポキシ-3, 3-ジメチルインダン (250 mg, 0.77 mmol)の 1-プロパノール溶液 (5 ml) にシクロプロピルアミン (429 μ L, 6.18 mmol) を室温で加え、 80° で 9時間撹拌した。

反応終了後、溶媒を留去し、得られた残渣を分取用シリカゲル薄層クロマトグラフィー(クロロホルム:メタノール = 10:1)で精製し、目的物252mg(収率 85.7%)を白色無定形物として得た。

[α]²⁴_D +1.8 (c 0.944, CHCl₃); H NMR (400 MHz, CDCl₃) δ : 0.41-0.53 (m, 4H), 1.06 (s, 3H), 1.3 (s, 3H), 2.4-2.55 (m, 3H), 3.65 (s, 2H), 3.77 (d, J = 8.2 Hz, 1H), 3.81 (s, 3H), 3.92 (d, J = 8.2 Hz, 1H), 6.91 (d, J = 8.6 Hz, 2H), 7.04 (d, J = 8.1 Hz, 1H), 7.16-7.25 (m, 3H), 7.31 (s, 1H), 7.5 (s, 1H).

MS (EI) m/z 380 $[M]^+$ (bp), 351, 324, 177.

<u>合成例 4 1S *, 2S*-6-(4'- メトキシベンジルカルボキシアミド)-1-シクロプロ</u> ピルアミノ -3, 3-ジメチル-2-インダノール塩酸塩

1S*, 2S*-6-(4'-メトキシベンジルカルボキシアミド)-1, シクロプロピルアミノ-3, 3-ジメチル-2-インダノール (100 mg, 0.263 mmol) のメタノール溶液 (1 m Lに氷冷下、10 %塩酸メタノール溶液 (1 mL) を滴下、0 ℃で 30 分間撹拌した。 反応終了後、溶媒を留去し、目的物110 mg (収率 100 %) を白色固形物として得た。

合成例 5 6-(4'-メトキシベンジルカルボキシアミド)-3,3-ジメチル-5-ニトロ-1-インデン

6-アミノ-3,3-ジメチル-6-ニトロ-1-インデン(400 mg, 1.96 mmol) のクロロホルム溶液(8 mL)に 24 ℃でジイソプロピルエチルアミン(1.0 mL, 5.88 mmol)、 4-メトキシフェニル酢酸クロリド(0.9 mL, 5.88 mmol)を加え、24 ℃で1 時間撹拌した。

反応終了後、反応液に水を加え、酢酸エチルで抽出、有機層を 1N塩酸水溶液、 1N水酸化ナトリウム水溶液、飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナ トリウムで乾燥した。

溶媒を留去後、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル = 6:1)で精製し、目的物468 mg(収率 67.8 %)を黄色固形物として得た。

¹H NMR (400 MHz, CDC1₃) δ : 1.32 (s, 6H), 3.76 (s, 2H), 3.82 (s, 3H), 6.

65 (d, J = 5.5 Hz, 1H), 6.69 (d, J = 5.5 Hz, 1H), 6.94 (AA'BB' type, J = 8.8 and 2.2 Hz, 2H), 7.28 (AA'BB' type, J = 8.8 and 2.0 Hz, 2H), 8.07 (s, 1H), 8.67 (s, 1H), 10.53 (s, 1H);

MS (EI) m / z; 352 [M]⁺, 306, 204, 148 (bp), 121.

合成例 $6 (1R^*, 2S^*) - 6 - (4^* - \cancel{1} + \cancel$

6-(4'-メトキシベンジルカルボキシアミド)-3,3-ジメチル-5-ニトロー1-インデン (354 mg, 1.00 mmol)の 1,2-ジクロロエタン溶液 (7.1 mL) に 4-(3-フェニルプロピル) -ピリジンオキシド (25 mg, 0.10 mmol) を室温で加え、続いて(*R*,*S*)-サレンマンガン錯体 (46) (52 mg, 0.05 mmol),次亜塩素酸ナトリウム水溶液 (882 mg, 1.7 mol/kg, 1.5 mmol) を加え室温で 1.5時間撹拌した。

反応終了後、反応液に水(50 mL)、酢酸エチル(100 mL)を加え、セライト 濾過した。

続いて酢酸エチルで抽出し、有機層を飽和塩化ナトリウム水溶液で洗浄、無水 硫酸ナトリウムで乾燥した。

溶媒を留去後、得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル = 5:1) で精製し、目的物281mg(収率 76.2%)を黄色油状物として得た。

¹H NMR (400 MHz, CDCl₃) δ : 1.23 (s, 3H), 1.40 (s, 3H), 3.76 (s, 2H), 3.77 (d, J = 2.6 Hz, 1H), 3.83 (s, 3H), 4.25 (d, J = 2.6 Hz, 1H), 6.90-6.99 (m, 2H), 7.25-7.30 (m, 2H), 7.92 (s, 1H), 8.89 (s, 1H), 10.31 (brs, 1H); MS (EI) m / z; 368 [M]⁺, 322, 205, 148, 122 (bp), 91.

合成例 7 (15*, 25°)-6-(4'-メトキシベンジルカルボキシアミド)-1-シク

ロプロピルアミノー3,3-ジメチルー5-ニトロー2-インダノール

続いてシクロプロピルアミン (163 μ L, 2.35 mmo1)を追加し、80 $^{\circ}$ で 5時間 撹拌した。

反応終了後、溶媒を留去し、得られた残渣を分取用薄層クロマトグラフィー(ヘキサン: 酢酸エチル = 1:2)で精製し、目的物205 mg(収率82.2%)を黄色 無定形物として得た。

¹H NMR (400 MHz, CDCl₃) δ : 0.45-0.60 (m, 4H), 1.11 (s, 3H), 1.36 (s, 3H), 1.92-2.00 (brs, 2H), 2.50-2.57 (m, 1H), 3.75 (s, 2H), 3.82 (s, 3H), 3.83 (d, J = 8.6 Hz, 1H), 4.10 (dd, J = 8.6 and 1.3 Hz, 1H), 6.93-7.00(m, 2H), 7.24-7.28 (m, 2H), 7.92 (s, 1H), 8.76 (s, 1H), 10.32 (s, 1H); MS (EI) m / z; 425 [M]⁺,379, 361, 148, 121 (bp), 91; [α]²⁰_D +37.6 (c 0.68, CHCl₃).

合成例 8 $(1S^*, 2S^*)$ -6-(4'-メトキシベンジルカルボキシアミド)-1-シクロプロピルアミノー3,3-ジメチルー5-ニトロー2-インダノール塩酸塩

(15*, 25*)-6-(4'-メトキシベンジルカルボキシアミド)-1-シクロプロピルアミノ-3,3-ジメチル-5-ニトロ-2-インダノール(106 mg, 0.25 mmol)のメタノール溶液(1 mL)に氷冷下、10 %塩酸メタノール溶液(1 mL)を滴下し、0 ℃で 30 分間撹拌した。

反応終了後、溶媒を留去し、目的物115 mg (収率 100 %)・を黄色固形物として得た。

〔製剤例〕

製剤例1 錠剤

合成例 4	1 0 g
乳 糖	2 6 0 g
微結晶セルロース	6 0 0 g
コーンスターチ	3 5 0 g
ヒドロキシプロピルセルロース	1 0 0 g
СМС — Са	1 5 0 g
ステアリン酸マグネシウム	3 0 g
全 量 1,	500g

上記成分を常法により混合したのち1錠中に1mgの活性成分を含有する糖衣錠10,000錠を製造する。

製剤例2 カプセル剤

合成例 410g乳糖440g微結晶セルロース1,000gステアリン酸マグネシウム50g全量1,500g

上記成分を常法により混合したのちゼラチンカプセルに充塡し、1カプセル中に1mgの活性成分を含有するカプセル剤10,000カプセルを製造する。

製剤例3 軟カプセル剤

全 量 2,	0	0	0	g
ポリソルベート(Polysorbate)80		1	0	g
ハッカ油			1	g
飽和脂肪酸トリグリセライド 1,	5	0	0	g
P E G 4 0 0	4	7	9	g
合成例 4		1	0	g

上記成分を混合したのち常法により3号軟ゼラチンカプセルに充塡し、1カプセル中に1mgの活性成分を含有する軟カプセル剤10,000カプセルを製造する。

製剤例4 軟膏

全 量	100.0g
1-メントール	0.5g
エチルパラベン	0. 1 g
白色ワセリン	68.4g
セタノール	20.0g
流動パラフィン	1 0. 0 g
合成例 4	1. 0 g

上記成分を常法により混合し、1%軟膏とする。

製剤例 5 坐剤

合成例 4 1 g

ウィッテップゾールH15* 478g

ウィッテップゾールW35* 520g

ボリソルベート(Polysorbate)80 1 g

全 量 1,000g

「* トリグリセライド系化合物の商標名

ウィッテップゾール=Witepsol」

上記成分を常法により溶融混合し、坐剤コンテナーに注ぎ冷却固化して1 mg の活性成分を含有する1g坐剤1,000個を製造する。

製剤例 6 注射剤

合成例 4

1 mg

注射用蒸留水

5 m L

用時、溶解して用いる。

〔薬理試験例〕

心拍数に及ぼす効果

(試験方法)

ハートレー系雄性モルモットより心臓を摘出し、95%0½/5%CO½を通気したKrebs Henseleit液中において右心房を分離した。標本は、31℃に維持した栄養液を満たしたオルガンバス中に1gの張力をかけて懸垂した。

栄養液を交換しながらの平衡化の後、標本にイソプロテレノールを累積的に適用して最大反応を求めた。薬物洗浄後、栄養液を交換しながら 6 0 分間の平衡化を行った後、各化合物を適用して作用を観察した。

結果は、各化合物 10μ M、 30μ M、 100μ M及び 300μ M適用時における作用を、あらかじめ得たイソプロテレノールによる最大反応を 100% として変化率%で表した。

(結果)

本発明化合物は、濃度依存的な心拍数減少作用を示した。

化合物の活性

合成例番号		心拍数変	变化率 (%)	
L MOVIE J	10 μ M	30 μ M	100 μ M	300 μ M
1	-15	-100	-100	-100
2	-3.8	-5.3	-10.7	-81
4	-11.6	-23.9	-43.5	-73.9

産業上の利用可能性

本発明化合物は、心拍数減少作用を示し、心機能の改善に有用である。従って、本発明は、有用な心不全治療剤を提供することができる。

請求の範囲

1. 式(I)

$$W-(CH_2)_{\overline{n}}-X-Y-Z \qquad R^6 R^5$$

$$R^1 \qquad R^2 R^3 \qquad (1)$$

「式中、R'は、水素原子、ハロゲン原子、C₁₋₆アルキル基(該アルキル基は、ハ ロゲン原子、カルボキシル基、C1-6アルコキシ基、C2-6アルコキシカルボニル基、 水酸基、ホルミル基、シアノ基又は二トロ基により任意に置換されていてもよい 。)、C1-6アルコキシ基(該アルコキシ基は、ハロゲン原子、カルボキシル基、 Cz-aアルコキシカルボニル基、水酸基、フェニル基(該フェニル基は、ハロゲン 原子、水酸基、C,-,アルキル基又はC,-,アルコキシ基により任意に置換されてい てもよい)、ホルミル基、シアノ基又はニトロ基により任意に置換されていても よい。}、C3-6シクロアルキル基 {該シクロアルキル基は、ハロゲン原子、カル ボキシル基、C2-6アルコキシカルボニル基、水酸基、C1-6アルコキシ基、フェニ ル基(該フェニル基は、ハロゲン原子、水酸基、C1-4アルキル基又はC1-4アルコ キシ基により任意に置換されていてもよい)、ホルミル基、シアノ基又はニトロ 基により任意に置換されていてもよい。〉、ニトロ基、シアノ基、ホルミル基、 カルボキシル基、水酸基、ホルムアミド基、シアナミド基、アミノ基、Cュー。アル キルアミノ基、ジC₁₋₆アルキルアミノ基(該アルキルアミノ基及びジC₁₋₆アルキ ルアミノ基は、ハロゲン原子、カルボキシル基、Cz-6アルコキシカルボニル基、 水酸基、ホルミル基、シアノ基又は二トロ基により任意に置換されていてもよい 。)、C₁₋₆アルキルカルボニルアミノ基、C₁₋₆アルキルスルホニルアミノ基、ア ミノカルボニル基、C₁₋₆アルキルアミノカルボニル基、ジC₁₋₆アルキルアミノカ ルボニル基、C1-6アルキルカルボニル基、C1-6アルコキシカルボニル基、C1-6ア ルキルカルボニルオキシ基、C1-6アルキルウレア基、C1-6アルキルチオウレア基、

アリールC、-。アルキルアミノ基、ジ(アリールC、-。アルキル)アミノ基、アリー ルカルボニルアミノ基、アリールC1-6アルキルカルボニルアミノ基、アリールス ルホニルアミノ基、アリールC1-6アルキルスルホニルアミノ基、アリールC1-6ア ルキルアミノカルボニル基、ジ(アリールC₁₋₆アルキル)アミノカルボニル基、 アリールカルボニル基、アリールC」-6アルキルカルボニル基、アリールオキシカ ルボニル基、アリールC1-6アルキルオキシカルボニル基、アリールカルボニルオ キシ基、アリールC,_。アルキルカルボニルオキシ基、アリールウレア基、アリー ルC₁₋₆アルキルウレア基、アリールチオウレア基又はアリールC₁₋₆アルキルチオ ウレア基{該アリールC、-。アルキルアミノ基、ジ(アリールC、-。アルキル)アミ ノ基、アリールカルボニルアミノ基、アリールC1-6アルキルカルボニルアミノ基、 アリールスルホニルアミノ基、アリールCュー。アルキルスルホニルアミノ基、アリ ールC1-6アルキルアミノカルボニル基、ジ(アリールC1-6アルキル)アミノカル ボニル基、アリールカルボニル基、アリールC1-6アルキルカルボニル基、アリー ルオキシカルボニル基、アリールC_{L-6}アルキルオキシカルボニル基、アリールカ ルボニルオキシ基、アリールC₁₋₆アルキルカルボニルオキシ基、アリールウレア 基、アリールCュー。アルキルウレア基、アリールチオウレア基及びアリールCュー。ア ルキルチオウレア基は、何れもハロゲン原子、カルボキシル基、C2-6アルコキシ カルボニル基、水酸基、C₁₋₅アルコキシ基、フェニル基(該フェニル基は、ハロ ゲン原子、水酸基、C1-4アルキル基又はC1-4アルコキシ基により任意に置換され ていてもよい)、ホルミル基、シアノ基又はニトロ基により任意に置換されてい てもよい を意味し;

 R^* 及び R^3 は、それぞれ独立して C_{1-6} アルキル基(該アルキル基は、ハロゲン原子、 C_{1-6} アルコキシ基又は水酸基により任意に置換されていてもよい。)を意味するか又は R^* と R^3 が一緒になってそれらが結合している炭素原子と共に C_{3-6} シクロアルキル基を形成し;

R'は、水酸基若しくはC₁₋₆アルキルカルボニルオキシ基を意味するか又はR'と 一緒になって結合を意味するか又はR'と一緒になって酸素原子を意味し;

R⁵は、水素原子を意味するか又はR⁴と一緒になって結合を意味するか又はR⁴と

一緒になって酸素原子を意味し;

 R^6 は、水素原子、水酸基、 C_{1-6} アルコキシ基、 C_{1-6} アルキルカルボニルオキシ 基又はNR 7 R 6 (R^7 及び R^8 は、それぞれ独立して水素原子、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基、 C_{3-6} シクロアルキル基(該アルキル基、アル ケニル基、アルキニル基及びシクロアルキル基は、何れもハロゲン原子、カルボ キシル基、 C_{2-6} アルコキシカルボニル基、水酸基、 C_{1-6} アルコキシ基、フェニル 基(該フェニル基は、ハロゲン原子、水酸基、 C_{1-4} アルキル基、 C_{1-4} アルコキシ 基、ホルミル基、シアノ基、ニトロ基、アミノ基、 C_{1-6} アルキルアミノ基又はジ C_{1-6} アルキルアミノ基により任意に置換されていてもよい)により任意に置換さ れていてもよい)若しくはフェニル基(該フェニル基は、ハロゲン原子、水酸基、 C_{1-4} アルキル基又は C_{1-4} アルコキシ基により任意に置換されていてもよい)を意 味するか又は、

又は、 R^7 と R^8 が一緒になって、それらが結合している窒素原子と共に R^{18} (R^{18} は、 R^{19} と同じ意味を表す)により任意に置換されていてもよいピロリル基、ピラゾリル基、イミダゾリル基、1, 2, 3-トリアゾリル基、1, 2, 4-トリアゾリル基若しくは1, 2, 3, 4-テトラゾリル基を形成する。}を意味し; nは、 $0 \sim 4$ の整数を意味し;

Xは、C=0、CH2、SO2 又はNR16(R16は、R16と同じ意味を表す)を意味し;

Yは、XがC=0、CH2 又はSO2のとき、NR1'(R1'は、R1'と同じ意味を表す)を意味し、XがNR16のとき、C=0を意味し;

Zは、YがNR¹¹のとき、存在せず、YがC=0 のとき、NR¹³(R¹³は、R¹¹と同じ意味を表す)を意味し;

Wは、

{式中、 R° は、水素原子、ハロゲン原子、 C_{1-6} アルキル基(該アルキル基はハロゲン原子又は C_{1-6} アルコキシ基で置換されていてもよい)、 C_{1-6} アルコキシ基(該アルコキシ基は、ハロゲン原子で置換されていてもよい)、フェニル基(該フェニル基は、ハロゲン原子、水酸基、 C_{1-4} アルキル基又は C_{1-4} アルコキシ基により任意に置換されていてもよい)、水酸基、ニトロ基、シアノ基、ホルミル基、ホルムアミド基、アミノ基、 C_{1-6} アルキルアミノ基、 C_{1-6} アルキルカルボニルアミノ基、 C_{1-6} アルキルスルホニルアミノ基、アミノカ

ルボニル基、 C_{1-6} アルキルアミノカルボニル基、 $ジC_{1-6}$ アルキルアミノカルボニル基、 C_{1-6} アルキルカルボニル基、 C_{1-6} アルコキシカルボニル基、アミノスルホニル基、 C_{1-6} アルキルスルホニル基、カルボキシル基又はアリールカルボニル基を意味し;

mは、 $1 \sim 3$ の整数を意味し、mが 2 又は 3 の時、R⁹は同一又は異なっていてもよく:

R'' は、水素原子又はC₁₋₄アルキル基を意味する)を意味する。〕により表されるインダン誘導体又はその医薬的に許容され得る塩。

- R*及びR*が、共にメチル基であり、-X-Y-Z-の組み合わせが-C
 (0)-NH-、-C(0)-NMe-、-CH₂-NH-、-SO₂-NH-又は-NH-C(0)-NH-である請求項1記載のインダン誘導体又はその医薬的に許容され得る塩。
 - 3. 式中、Wが

$$(R^9)_{m}$$
 $(R^9)_{m}$ $(R^9)_{m}$

であり、 R^s が、水素原子、ハロゲン原子、 C_{1-6} アルキル基、 C_{1-6} アルコキシ基(該アルコキシ基は、ハロゲン原子で置換されていてもよい)、水酸基、ニトロ基、シアノ基、ホルミル基、アミノ基、 C_{1-6} アルキルアミノ基、 $ジC_{1-6}$ アルキルアミノ基、 V_{1-6} アルキルアミノ基、 V_{1-6} アルキルアミノ基、アルギールスルボニルアミノ基、アミノカルボニル基、 V_{1-6} アルキルアルボニル基、 V_{1-6} アルキルアミノカルボニル基、 V_{1-6} アルキルカルボニル基、 V_{1-6} アルキルカルボニル基、 V_{1-6} アルコキシカルボニル基、 V_{1-6} アルキルカルボニル基、 V_{1-6} アルコキシカルボニル基、 V_{1-6} アルキルカルボニル基又はカルボキシル基である請求項2記載のインダン誘導体又はその医薬的に許容され得る塩。

- 4. R¹ が水素原子又はニトロ基である請求項3記載のインダン誘導体又はその医薬的に許容され得る塩。
- 5. R'がR'と一緒になって結合を意味するか、 R'がR'と一緒になって 酸素原子とともにエポキシ基を意味するか又はR'が水酸基、R'が水素原子で、R'

がアミノ基、 C_{1-6} アルキルアミノ基、ジ C_{1-6} アルキルアミノ基 {該アルキルアミノ基 { IST ルアミノ 基 { IST ルアル コキシカルボニル 基 、水酸基、ホルミル基、シアノ 基 Y はニトロ 基 により任意に置換されていてもよい。 } 、 C_{1-6} シクロアルキルアミノ基、アリール C_{1-6} アルキルアミノ基、ジ(アリール C_{1-6} アルキル)アミノ基 { IST リール C_{1-6} アルキルアミノ 基 (IT リール C_{1-6} アルキル)アミノ基は、何れも R^{19} (R^{19} は、ハロゲン原子、カルボキシル基、 C_{2-6} アルコキシカルボニル基、水酸基、 C_{1-6} アルコキシ基、フェニル基(該フェニル基は、ハロゲン原子、水酸基、 C_{1-6} アルコキシ基、フェニル基(は C_{1-4} アルコキシ基により任意に置換されていてもよい)、ホルミル基、シアノ基又はニトロ基を意味する)により任意に置換されていてもよい } 、1ーピロリジニル基、1-10 により任意に置換されていてもよい } 、1ーピロリジニル基又は1ーモルホリノ基である請求項 4 記載のインダン誘導体又はその医薬的に許容され得る塩。

- 6. R° が、水素原子、ハロゲン原子、 C_{1-6} アルキル基、 C_{1-6} アルコキシ基(該アルコキシ基は、ハロゲン原子で置換されていてもよい)、水酸基、ニトロ基、シアノ基、ホルミル基、アミノ基、 C_{1-6} アルキルアミノ基、 $\Im C_{1-6}$ アルキルアミノ基、 $\Im C_{1-6}$ アルキルオルボニル基、 $\Im C_{1-6}$ アルキルカルボニル基、 $\Im C_{1-6}$ アルコキシカルボニル基又はカルボキシル基である請求項 $\Im C_{1-6}$ 記載のインダン誘導体又はその医薬的に許容され得る塩。
- 7. R'がR⁵と一緒になって結合を意味する請求項 6 記載のインダン誘導体 又はその医薬的に許容され得る塩。
- 8. R'が水酸基であり、R°が水素原子であり、R°がアミノ基、 C_{1-6} アルキルアミノ基、 ${\mathcal O}_{1-6}$ アルキルアミノ基 {該アルキルアミノ基及び ${\mathcal O}_{1-6}$ アルキルアミノ基は、ハロゲン原子、カルボキシル基、 C_{2-6} アルコキシカルボニル基、水酸基、ホルミル基、シアノ基又はニトロ基により任意に置換されていてもよい。 }又は C_{1-6} シクロアルキルアミノ基である請求項 6 記載のインダン誘導体又はその医薬的に許容され得る塩。
- 9. Wが 4 メトキシフェニル基である請求項7記載のインダン誘導体又はその医薬的に許容され得る塩。

10. R⁶がイソプロピルアミノ基又はシクロプロピルアミノ基であり、Wが 4-メトキシフェニル基である請求項8記載のインダン誘導体又はその医薬的に 許容され得る塩。

- 11. 請求項1記載のインダン誘導体又はその医薬的に許容され得る塩を有効成分として含有することを特徴とする医薬。
- 12. 請求項1記載のインダン誘導体又はその医薬的に許容され得る塩を有効成分として含有することを特徴とする心不全治療薬。

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP99/02935

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁶ C07C235/38, C07D207/33, 20 303/36, 307/52, 307/54, 333	3/20, 333/24, A61K31/13,	39/26, 295/12, 31/165, 31/17,		
According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED				
Minimum documentation searched (classification system followed	by classification symbols)			
Int.Cl ⁶ C07C235/38, C07D207/33, 20 303/36, 307/52, 307/54, 333	9/16, 209/18, 213/56, 2			
Documentation searched other than minimum documentation to the	e extent that such documents are include	d in the fields searched		
Electronic data base consulted during the international search (nar CA (STN), REGISTRY (STN)	ne of data base and, where practicable, so	earch terms used)		
C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category* Citation of document, with indication, where ap	· · · · · · · · · · · · · · · · · · ·	Relevant to claim No.		
A JP, 10-87650, A (Nissan Chem 7 April, 1998 (07. 04. 98)	ical Industries,Ltd.),	1-12		
& WO, 98/04542, A1 & ZA, 9				
& AU, 9736349, A & NO, 990 & CZ, 9900244, A3	0265, A			
& C2, 3300244, A3		·		
·				
	•			
		,		
Further documents are listed in the continuation of Box C.	See patent family annex.	L		
* Special categories of cited documents: "T" later document published after the international filing date or prior				
A document defining the general state of the art which is not considered to be of particular relevance the principle or theory underlying the invention				
"E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is "X" document of particular relevance; the claimed invention considered novel or cannot be considered to involve an				
cited to establish the publication date of another citation or other special reason (as specified) "Y" when the document is taken alone document of particular relevance; the claimed invention call document of particular relevance				
"O" document referring to an oral disclosure, use, exhibition or other considered to involve an inventive step when the document is combined with one or more other such documents, such combined with one or more other such documents, such combined with one or more other such documents, such combined with one or more other such documents.		documents, such combination		
"P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family				
Date of the actual completion of the international search 4 August, 1999 (04. 08. 99)	Date of mailing of the international sea 17 August, 1999 (1			
Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer	, , , , , , , , , , , , , , , , , , , ,		
Provincia No.	Telephone No			

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP99/02935

A. (Continuation) CLASSIFICATION OF SUBJECT MATTER

31/18, 31/335, 31/34, 31/38, 31/40, 31/44, 31/445, 31/495, 31/505, 31/535

B. (Continuation) FIELDS SEARCHED

31/18, 31/335, 31/34, 31/38, 31/40, 31/44, 31/445, 31/495, 31/505, 31/535

Form PCT/ISA/210 (extra sheet) (July 1992)

国際出願番号 PCT/JP99/02935

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl. ⁶ C07C235/38, C07D207/33, 209/16, 209/18, 213/56, 239/26, 295/12, 303/36, 307/52, 307/54, 333/20, 333/24, A61K31/13, 31/165, 31/17, 31/18, 31/335, 31/34, 31/38, 31/40, 31/44, 31/445, 31/495, 31/505, 31/535				
B. 調査を行				
調査を行った最 Int. Cl.º CO7	B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl. CO7C235/38, CO7D207/33, 209/16, 209/18, 213/56, 239/26, 295/12, 303/36, 307/52, 307/54, 333/20, 333/24, A61K31/13, 31/165, 31/17, 31/18, 31/335, 31/34, 31/38, 31/40, 31/44, 31/445, 31/495, 31/505, 31/535			
最小限資料以外	トの資料で調査を行った分野に含まれるもの			
国際調査で使用	用した電子データベース (データベースの名称、	調査に使用した用語)		
CA (STN), REGISTRY (STN)			
	 3と認められる文献			
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連すると	さは、その関連する箇所の表示	関連する 請求の範囲の番号	
А	JP, 10-87650, A(日産化学工業株式会社 &WO, 98/04542, A1 &ZA, 9706654, A &AU &CZ, 9900244, A3		1-12	
			-	
□ C欄の続き	きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。	
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又に論の理解のために引用するもの「X」特に関連のある文献であって、当該文献のみで教の新規性又は進歩性がないと考えられるもの「Y」特に関連のある文献であって、当該文献と他の「上の文献との、当業者にとって自明である組合もよって進歩性がないと考えられるもの「&」同一パテントファミリー文献		発明の原理又は理 当該文献のみで発明 えられるもの 当該文献と他の1以 自明である組合せに		
国際調査を完	了した日 04.08.99	国際調査報告の発送日 17.08	8 .99	
日本	の名称及びあて先 国特許庁(ISA/JP) 郵便番号100-8915 都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 爾見 武志 電話番号 03-3581-1101	内線 3443	