We will say that an *enriched* subset of V is one that contains at most one node not in X. There are $O(2^k n)$ enriched subsets. The overall approach will be based on *dynamic programming*: For each enriched subset Y, we will compute the following information, building it up in order of increasing |Y|.

- The cost f(Y) of the minimum spanning tree on Y.
- The cost q(Y) of the minimum Steiner tree on Y.

Consider a given Y, and suppose it has the form $X' \cup \{i\}$ where $X' \subseteq X$ and $i \notin X$. (The case in which $Y \subseteq X$ is easier.) For such a Y, one can compute f(Y) in time $O(n^2)$.

Now, the minimum Steiner tree T on Y either has no extra nodes, in which case g(Y) = f(Y), or else it has an extra node j of degree at least 3. Let T_1, \ldots, T_r be the subtrees obtained by deleting j, with $i \in T_1$. Let p be the node in T_1 with an edge to j, let $T' = T_2 \cup \{j\}$, and let $T'' = T_3 \cdots T_r \cup \{j\}$. Let Y_1 be the nodes of Y in T_1 , Y' those in T', and Y'' those in T''. Each of these is an enriched set of size less than |Y|, and T_1 , T', and T'' are the minimum Steiner trees on these sets. Moreover, the cost of T is simply

$$g(Y_1) + g(Y') + g(Y'') + w_{jp}$$
.

Thus we can compute g(Y) as follows, using the values of $g(\cdot)$ already computed for smaller enriched sets. We enumerate all partitions of Y into Y_1 , Y_2 , Y_3 (with $i \in Y_1$), all $p \in Y_1$, and all $j \in V$, and we determine the value of

$$g(Y_1) + g(Y_2 \cup \{j\}) + g(Y_3 \cup \{j\}) + w_{jp}$$
.

This can be done by looking up values we have already computed, since each of Y_1, Y', Y'' is a smaller enriched set. If any of these sums is less than f(Y), we return the corresponding tree as the minimum Steiner tree; otherwise we return the minimum spanning tree on Y. This process takes time $O(3^k \cdot kn)$ for each enriched set Y.

 $^{^{1}}$ ex420.690.864