- 1. Find the first five terms of the sequence defined by each of the following recurrence relations and initial conditions
 - (1) $a_n = 6a_{n-1}$, for $n \ge 1$, $a_0 = 2$
 - (2) $a_n = 2na_{n-1}$, for $n \ge 1$, $a_0 = -3$
 - (3) $a_n = a_{n-1}^2$, for $n \ge 2$, $a_1 = 2$
 - (4) $a_n = a_{n-1} + 3a_{n-2}$, for $n \ge 3$, $a_0 = 1$, $a_1 = 2$
 - (5) $a_n = na_{n-1} + n^2 a_{n-2}$, for $n \ge 2$, $a_0 = 1, a_1 = 1$
 - (6) $a_n = a_{n-1} + a_{n-3}$, for $n \ge 3$, $a_0 = 1, a_1 = 2, a_2 = 0$
- 2. Is the sequence $\{a_n\}$ a solution of the recurrence relation

$$a_n = 8a_{n-1} - 16a_{n-2}$$

if

- (1) $a_n = 0$?
- (2) $a_n = 1$?
- (3) $a_n = 2^n$?
- (4) $a_n = 4^n$?
- (5) $a_n = n4^n$?
- (6) $a_n = (-4)^n$?
- $(7) \quad a_n = n^2 \cdot 4^n?$
- 3. Solve each of the following recurrence relation with the given initial condition(s).
 - (1) $a_n = a_{n-1} + 2$, for $n \ge 1$, $a_0 = 3$
 - (2) $a_n = a_{n-1} 5$, for $n \ge 2$, $a_1 = 2$

- (3) $a_n = a_{n-1} + n$, for $n \ge 1$, $a_0 = 1$
- (4) $a_n = a_{n-1} + n 7$, for $n \ge 1$, $a_0 = 2$
- (5) $a_n = a_{n-1} + 2n + 3$, for n > 1, $a_0 = 4$
- (6) $a_n = a_{n-1} 2n + 1$, for $n \ge 2$, $a_1 = 1$
- (7) $a_n = 3a_{n-1}$, for $n \ge 1$, $a_0 = 2$
- (8) $a_n = 2a_{n-1} 1$, for $n \ge 1$, $a_0 = 3$
- (9) $a_n = 3a_{n-1} + 1$, for $n \ge 1$, $a_0 = 1$
- (10) $a_n = 5a_{n-1} + 2$, for $n \ge 2$, $a_1 = 2$
- 4. Solve each of the following recurrence relation with the given initial condition(s).
 - (1) $a_n = 5a_{n-1} + 6a_{n-2}$ for $n \ge 2$, $a_0 = 1$, $a_1 = 8$
 - (2) $a_n = 4a_{n-1} 4a_{n-2}$ for $n \ge 2$, $a_0 = 6$, $a_1 = 8$
 - (3) $a_n = -6a_{n-1} 9a_{n-2}$ for $n \ge 2$, $a_0 = 9$, $a_1 = 6$
 - (4) $a_n = 7a_{n-1} 10a_{n-2}$ for $n \ge 2$, $a_0 = 2$, $a_1 = 1$
 - (5) $a_n = 2a_{n-1} a_{n-2}$ for $n \ge 2$, $a_0 = 4$, $a_1 = 1$
 - (6) $a_n = 4a_{n-2} \text{ for } n \ge 2,$ $a_0 = 0, \quad a_1 = 4$
 - (7) $a_n = \frac{a_{n-2}}{4}$ for $n \ge 2$, $a_0 = 4$, $a_1 = 1$

Answers

- 1. Find the first five terms of the sequence defined by each of the following recurrence relations and initial conditions
 - $(1) \quad a_n = 6a_{n-1}, \quad a_0 = 2$

Answer: $a_0 = 2$, $a_1 = 12$, $a_2 = 72$, $a_3 = 432$, $a_4 = 2592$

(2) $a_n = 2na_{n-1}, \quad a_0 = -3$

Answer: $a_0 = -3$, $a_1 = -6$, $a_2 = -24$, $a_3 = -144$, $a_4 = -1152$

(3) $a_n = a_{n-1}^2$, $a_1 = 2$

Answer: $a_0 = 2$, $a_1 = 4$, $a_2 = 16$, $a_3 = 256$, $a_4 = 65536$

(4) $a_n = a_{n-1} + 3a_{n-2}, \quad a_0 = 1, a_1 = 2$

Answer: $a_0 = 1$, $a_1 = 2$, $a_2 = 5$, $a_3 = 11$, $a_4 = 26$

(5) $a_n = na_{n-1} + n^2 a_{n-2}, \quad a_0 = 1, a_1 = 1$

Answer: $a_0 = 1, a_1 = 1, a_2 = 6, a_3 = 27, a_4 = 204$

- (6) $a_n = a_{n-1} + a_{n-3}$, $a_0 = 1, a_1 = 2, a_2 = 0$ Answer: $a_0 = 1, a_1 = 2, a_2 = 0, a_3 = 1, a_4 = 3$
- 2. Is the sequence $\{a_n\}$ a solution of the recurrence relation $a_n = 8a_{n-1} 16a_{n-2}$ if
 - (1) $a_n = 0$?

Answer: yes

Note that $\overline{LHS} = 0$ and RHS = 8(0) - 16(0) = 0. Since the both sides are the same, $a_n = 0$ is a solution.

(2) $a_n = 1$?

Answer: no

Note that LHS = 1 and RHS = 8(1) - 16(1) = -8. Since the both sides are NOT the same, $a_n = 0$ is not a solution.

(3) $a_n = 2^n$?

Answer: no

Note that $\overline{LHS} = 2^n$ and $RHS = 8(2^{n-1}) - 16(2^{n-2}) = 8 \cdot 2^{n-1} - 8 \cdot 2 \cdot 2^{n-2} = 8 \cdot 2^{n-1} - 8 \cdot 2^{n-1} = 0$. Since the both sides are NOT the same, $a_n = 2^n$ is not a solution.

(4)
$$a_n = 4^n$$
?

Answer: yes

Note that $LHS = 4^n$ and $RHS = 8(4^{n-1}) - 16(4^{n-2}) = 2 \cdot 4 \cdot 4^{n-1} - 4^2 \cdot 4^{n-2} = 2 \cdot 4^n - 4^n = 4^n$. Since the both sides are the same, $a_n = 4^n$ is a solution.

$$(5) \quad a_n = n4^n?$$

Answer: yes

Note that $LHS = n4^n$ and $RHS = 8((n-1)4^{n-1}) - 16((n-2)4^{n-2}) = 2 \cdot 4(n-1) \cdot 4^{n-1} - (n-2)4^2 \cdot 4^{n-2} = 2(n-1) \cdot 4^n - (n-2)4^n = 4^n[2(n-1) - (n-2)] = n4^n$. Since the both sides are the same, $a_n = n4^n$ is a solution.

(6)
$$a_n = (-4)^n$$
?

Answer: no

Note that $a_1 = -4$, $a_2 = 16$, and $a_3 = -64$. But $a_3 \neq 8a_2 - 16a_1$. So $a_n = (-4)^n$ is not a solution.

$$(7) \quad a_n = n^2 \cdot 4^n?$$

Answer: no

Note that $a_1 = 4$, $a_2 = 64$, and $a_3 = 574$. But $a_3 \neq 8a_2 - 16a_1$. So $a_n = n^2 \cdot 4^n$ is not a solution.

3. Solve each of the following recurrence relation with the given initial condition(s).

(1)
$$a_n = a_{n-1} + 2$$
, for $n \ge 1$, $a_0 = 3$

Answer: $a_n = 2n + 3, n \ge 0$

(2)
$$a_n = a_{n-1} - 5$$
, for $n \ge 2$, $a_1 = 2$

Answer: $a_n = -5n + 7, n \ge 1$

(3)
$$a_n = a_{n-1} + n$$
, for $n \ge 1$, $a_0 = 1$

Answer: $a_n = \frac{1}{2}n^2 + \frac{1}{2}n + 1, \quad n \ge 0$

(4)
$$a_n = a_{n-1} + n - 7$$
, for $n \ge 1$, $a_0 = 2$

Answer: $a_n = \frac{1}{2}n^2 - \frac{13}{2}n + 2, \quad n \ge 0$

(5)
$$a_n = a_{n-1} + 2n + 3$$
, for $n \ge 1$, $a_0 = 4$

Answer: $a_n = n^2 + 4n + 4, \quad n \ge 0$

(6)
$$a_n = a_{n-1} - 2n + 1$$
, for $n \ge 2$, $a_1 = 1$

Answer: $a_n = -n^2 + 2, \quad n \ge 1$

(7)
$$a_n = 3a_{n-1}$$
, for $n \ge 1$, $a_0 = 2$

Answer:
$$a_n = 2 \cdot 3^n, n \ge 0$$

(8)
$$a_n = 2a_{n-1} - 1$$
, for $n \ge 1$, $a_0 = 3$

Answer:
$$a_n = 2^{n+1} + 1, \quad n \ge 0$$

(9)
$$a_n = 3a_{n-1} + 1$$
, for $n \ge 1$, $a_0 = 1$

Answer:
$$a_n = \frac{1}{2} \cdot 3^{n+1} - \frac{1}{2}, \quad n \ge 0$$

(10)
$$a_n = 5a_{n-1} + 2$$
, for $n \ge 2$, $a_1 = 2$

Answer:
$$a_n = \frac{1}{2} \cdot 5^n - \frac{1}{2}, \quad n \ge 1$$

4. Solve each of the following recurrence relation with the given initial condition(s).

(1)
$$a_n = 5a_{n-1} + 6a_{n-2}$$
 for $n \ge 2$, $a_0 = 1$, $a_1 = 8$

Answer:
$$a_n = \frac{9}{7} \cdot 6^n - \frac{2}{7} (-1)^n, \quad n \ge 0$$

(2)
$$a_n = 4a_{n-1} - 4a_{n-2}$$
 for $n \ge 2$, $a_0 = 6$, $a_1 = 8$

Answer:
$$a_n = (6-2n) \cdot 2^n$$
, $n \ge 0$ or $a_n = (3-n) \cdot 2^{n+1}$, $n \ge 0$

(3)
$$a_n = -6a_{n-1} - 9a_{n-2}$$
 for $n \ge 2$, $a_0 = 9$, $a_1 = 6$

Answer:
$$a_n = (9 - 11n) \cdot (-3)^n, \quad n \ge 0$$

(4)
$$a_n = 7a_{n-1} - 10a_{n-2}$$
 for $n \ge 2$, $a_0 = 2$, $a_1 = 1$

Answer:
$$a_n = 3 \cdot 2^n - 5^n, \quad n \ge 0$$

(5)
$$a_n = 2a_{n-1} - a_{n-2}$$
 for $n \ge 2$, $a_0 = 4$, $a_1 = 1$

Answer:
$$a_n = 4 - 3n, n \ge 0$$

(6)
$$a_n = 4a_{n-2}$$
 for $n \ge 2$, $a_0 = 0$, $a_1 = 4$

Answer:
$$a_n = 2^n - (-2)^n, n \ge 0$$

(7)
$$a_n = \frac{a_{n-2}}{4}$$
 for $n \ge 2$,
 $a_0 = 4$, $a_1 = 1$

Answer:
$$a_n = 3 \cdot (\frac{1}{2})^n + (-\frac{1}{2})^n, \quad n \ge 0$$