Lecture 2

Statistical inference: the normal curve and confidence intervals

Probability distributions

- We are now familiar with descriptive statistics; but statistical methods are mostly used for prediction
 - i.e. we collect samples mostly to predict characteristics of whole populations
- Extrapolation from sample to population relies on *probability* distributions:
 - a model or theory of how a variable 'behaves', e.g. its distribution around a mean
- In the following, we introduce the concept and uses of the Gaussian distribution (the 'normal' or 'bell curve')

Reasons for using the normal distribution

 Many characteristics of populations look 'bellshaped'

 Biological, social etc. traits are often bellshaped

The normal distribution

- The normal distribution is an equation that produces a bell-shaped curve; its main features are:
 - mean value is the most likely value (= peak)
 - Probability of value decreases with distance to mean
 - sum of all probabilities is 100% (=the whole sample)
- What kind of curve/distribution produces a bell-shaped curve?
- Let's try some exponential curves
 - i.e. curves where $y = e^{f(x)}$

Y equals e to the power f(x)

peak, symmetrical shape

The normal equation

- The equation $y = e^{-x^2}$ would work and produce a bell-shaped distribution
- The normal curve is a version of our curve:

$$N(0,1) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$
Mean,

Features:

- bell-shaped
- mean=0
- sd=1
- sum of frequencies (area under curve)=1=100%
- Statisticians have analytically extracted probabilities and intervals from normal curve
 - probability of being over +3 sd from mean: 0.1%

Standardisation: everything is 'normal'

- Real traits rarely have mean=0 and standard deviation=1
- That is not a problem: we can standardise variables so that everything you measure has mean=0 and sd=1
- How is this done? With z-scores

Calculating z-scores:

If mean height is 180cm and sd=10cm:

- 1) Subtract mean value from each case
 - mean (μ, mu) becomes 0:
 - mean case (180cm) now measures 0
 - a 170cm-tall person now measures 170-180

- if sd (σ, sigma) is 10cm and mean is 180cm:
- person measuring 170cm deviates -10cm/10cm=
 -1 standard deviation below the mean

Z- X, mean score
$$z = \frac{x_i - \mu}{\sigma \text{ sd}}$$
 -1 = 170-180 / 10

 z-score (=standardised residual) is therefore a samplespecific measure of a quantity

- a) In this example, if a man is z=2.3, how tall is he?
- b) What's 162cm in z-scores?

$$x = 162-180/10$$

 $x = -1.8$

Intervals and cumulative probability

- We are more interested in *intervals* of the normal curve than point values
- Why? What does it mean to ask 'what is the probability of being a millionaire in the UK?'
- It doesn't mean the probability of having exactly £1 million (=a point):
 - a millionaire is someone with £1 million or over (=an interval)
- Cumulative probability is the probability of an interval of values

Depends on the direction not mean

Estimating cumulative probability

Only lower intervals

- Command pnorm(test value, mean, sd) calculates
 cumulative probability from left to right, i.e. from -∞ to value x (the blue area) Neg infinite value up to the test value
 - Example: if
 - Test value = 170cm
 - mean = 180cm
 - sd =10cm

=15.9%

 then probability of being 170cm (=shorter than 170cm) is:

```
> pnorm(170,180,10)
[1] 0.1586553
```


Upper intervals

• We can use *pnorm* to estimate upper intervals too

1-pnorm to get the upper

Or

By symmetrical feature

Exercise:

- a) If mean = 180cm and sd= 10cm, what is the probability of someone being taller than 185cm?
- b) Provide answer in terms of z-score too

z=185-180/10

an upper interval

Probability of being 'extreme'

 We can also calculate probability of extreme values (i.e. too large or too small)

Exercise:

- a) what is the probability of being shorter than 175cm OR taller than 185 cm, with N(180, 10)?
- b) Provide answer in terms of zscore too

Z = 185-180 / 10

Now: Probability of *not* being an extreme case Confidence interval

(our most important example)

pnorm(187,180,10)-pnorm(173,180,10)

Exercise:

- a) If mean = 180cm and sd= 10cm, what is the probability of someone being between 173cm and 187cm?
- b) Provide answer in terms of zscore too

Z = -0.7/0.7

Statistical testing

- In order to proceed to prediction and statistical testing, we need to define confidence intervals
- Confidence intervals are 'acceptable' ranges of variation, i.e. intervals including the values not differing too much from a population mean or expected value
- Confidence intervals are based on conventionally-defined 'margins of error' establishing what 'too much' means

From 'rare' to 'not one of us'

- Suppose someone tells you that they've found 5cm-tall people on a Pacific island
- Let's calculate the probability of a hypothetical 5cm tall human
- If our reference population has mean height=180cm and sd=10, the probability of someone being 5cm is 7.2 x 10⁻⁶⁹!

- If probability is that small, it is likely that the creatures they've found is not human, i.e., they do not belong in our sample or distribution
- (bear in mind: probability is small, but not zero!)

From confidence interval...

 With mean=180cm and sd=10cm, normal curve predicts that about 16% of people are shorter than 170cm; that's short, but 'human'

• But if you are 5cm tall, probability is 7.2 x 10⁻⁶⁷%; common sense says this case is too low or 'extreme' (=not human)

Question is: where, between 16% and 7.2 x 10^{-67} %, do we draw the boundary between

- being rare but in the distribution (=one of us)
- being from another distribution? (=not ne of us)

...to 95% confidence interval

- Answer: there is no objective limit
 - accepted limit is set conventionally:
- Most often, boundary is set at 5%
 - or less frequently, 1%
 - then, if a value is over 5% likely, i.e. within a 95% confidence interval around mean, it is accepted as part of that distribution; not 'rare'
 - if it is less than 5% likely, it is too 'rare'; it is defined as not in the distribution
- The conventional value of 5% defines a 95% confidence interval
 - it excludes 2.5% cases on each side, i.e. too low or too high, as not belonging in the distribution
 - It defines confidence or belief that the case belongs in the distribution

Boundaries of the 95% CI

• So if we define our CI at 95%, how much do you need to deviate from the mean to be in the 'too extreme' 5%?

Exercise:

Estimate approximate lower and upper boundaries of the 95% CI using the *pnorm* function.

Present the values in z-scores and cm (assuming mean = 180cm and sd = 10cm)

Boundaries of the 95% CI

- in order to be within the 95% 'acceptable' values, values must be between z=-1.96 and z=1.96
 - if values less than z=-1.96 (*lower boundary*) or over z=1.96 (*the upper boundary*), they are outside confidence interval ('too extreme')

Tip: also try function *qnorm*:

- > qnorm(0.025)
- > qnorm(0.975)

To learn about qnorm (or any function):

> ?qnorm

Boundaries of the 95% CI

Remember: if a value is about 2 standard deviations above or below mean, it is outside the 95% confidence interval

 = difference is larger than expected for a case in that sample

99% sure one event would happen, z-score should be 2.575 qnorm(0.005)

Exercise:

Estimate approximate lower and upper boundaries of the **99% CI**

Present the values in z-scores and cm (assuming mean = 180cm and sd = 10cm)

Exercises

1) Create a file with !Kung adult women only

Tips

a) use function *subset* to create a new file

b) Make a histogram of adult female weight; does the distribution look normal?

Use new file or:

- c) How many adult females with missing weight data?

pnorm

Tip: function *summary*

- d) How many adult females with weight data?
- e) Calculate mean and sd for adult female weight. Based on z-scores, calculate the probability of an adult woman being
 - i) under 40 kg
 - ii) over 60 kg

```
mean=0, sd=1
```

2) Take a standardised normal distribution; what is the probability of a value being

- a) Less than z=-3sd pnorm(-3,0,1)
- b) greater than z=+3sd?
- c) which confidence interval would those probabilities define?

Answers to final exercises:

1)

- c) 68
- d) 264 68

2)

- a) 0.001349898
- b) 0.001349898
- c) 99.73% CI