

Topics

Introduction to Model Validation Techniques

What is model validation?

- Assessing how well your model generalizes to unseen data
- Prevents overfitting and underfitting

Common Techniques:

- **Hold-out validation:** Split data into train/test sets (e.g., 80/20)
- **K-fold cross-validation:** Rotate through K train/test splits for robust estimates
- **Stratified sampling:** Maintains class proportions in splits

Goal: Ensure your model performs well on real, unseen data.

Evaluating Model Performance and Metrics

Classification

(Metrics)

- Accuracy: Overall correctness of predictions
- Precision/Recall/F1: Quality and coverage of positive predictions
- AUC-ROC: Probability curve for distinguishing classes
- Confusion Matrix: Breakdown of true/false positives/negatives

Regression

(Metrics)

- R² Score: Proportion of variance explained by model
- MAE, RMSE: Average prediction errors

Best Practice

Always report multiple metrics and visualize them for every model.

Why does metric choice matter?

Different applications value metrics differently

Precision in fraud detection

Recall matters in health Diagnosis

• How to flag issues?

High accuracy + low recall

Model misses many positives (false negatives)

High recall + low precision

Model creates many false alarms (false positives)

What's a "good" score?

Depends on dataset, business context, and risk tolerance

Training Phase Monitoring

Accuracy over Time per Early stopping Loss curves epochs epoch/batch Watch for convergence Halt training if Detect Performance validation loss or divergence over/underfitting monitoring increases

Inference (Production) Monitoring

Make model available for real-world use

Why deploy?

Enable predictions via APIs or user-facing applications Integrate into business processes

Deployment Methods

01

Lightweight Python web framework

• How it works

Model loaded as a Python object

Receives HTTP requests with input data

Returns predictions as JSON

Sample Flask API Structure

Deploying with Streamlit – Interactive Web App

01

Streamlit:

Tool for turning Python scripts into shareable web apps

02 Why Streamlit?

- Easily Display predictions, charts, explanations
- Instant web UIs with minimal code

Sample Streamlit UI

Example Code

import streamlit as st input_val = st.number_input('Enter a value') if st.button('Predict')pred = model.predict([[input_val]]) st.write(f"Prediction: {pred[0]}")

Use Case:

Demos, prototyping, data science reporting

Type: REST API Users: Developers, other systems Interactivity: API calls only

Best for: Production integration

Objective

Make trained model accessible through Flask API and Streamlit app

Lab Steps

Prepare your trained model

Pickle/joblib save from Day 1 or Day 2

Flask Deployment

Write a /predict endpoint Test with curl or Postman

Streamlit Deployment

Create input form for user features
Display prediction and basic metrics

Test & Validate

Try several prediction examples
Confirm outputs are correct and responsive

