Verjetnost z mero - definicije, trditve in izreki

Oskar Vavtar po predavanjih profesorja Matija Vidmarja 2021/22

Kazalo

1	Merljivost in mera 3	
	1.1	Merljive množice
	1.2	Mere
	1.3	Merljive preslikave in generirane σ -algebre 6
	1.4	Borelove množice na razširjeni realni osi $[-\infty, \infty]$
		in Borelova merljivost numeričnih funkcij
	1.5	Argumenti monotonega razreda
	1.6	Lebesque-Stieltjesova mera
2	Inte	egracija na merljivih prostorih 15
	2.1	Lebesgueov integral

1 Merljivost in mera

1.1 Merljive množice

Definicija 1.1. Naj bo $\mathcal{A} \subset 2^{\Omega}$ (t.j. $\mathcal{A} \in 2^{2^{\Omega}}$). Potem rečemo, da je \mathcal{A} zaprta za:

• c^Ω (t.j. za komplement v Ω)

$$\stackrel{\text{def}}{\iff} \quad \forall A: (A \in \Omega \implies \Omega \setminus A \in \mathcal{A});$$

• \cap (t.j. za preseke)

$$\stackrel{\text{def}}{\Longleftrightarrow} \quad A_1 \cap A_2 \in \mathcal{A} \ \text{brž ko je } \{A_1,A_2\} \subset A;$$

• ∪ (t.j. za unije)

$$\stackrel{\text{def}}{\Longleftrightarrow}$$
 $A_1 \cup A_2 \in \mathcal{A}$ brž ko je $\{A_1, A_2\} \subset A$;

• \ (t.j. za razlike)

$$\stackrel{\text{def}}{\Longleftrightarrow}$$
 $A_1 \setminus A_2 \in \mathcal{A}$ brž ko je $\{A_1, A_2\} \subset A$;

• $\sigma \cap$ (t.j. za števne preseke)

$$\stackrel{\text{def}}{\Longleftrightarrow} \quad \bigcap_{n \in \mathbb{N}} A_n \in \mathcal{A} \ \text{za vsako zaporedje } (A_n)_{n \in \mathbb{N}} \ \text{iz } \mathcal{A};$$

• $\sigma \cup$ (t.j. za števne unije)

$$\stackrel{\mathrm{def}}{\Longleftrightarrow} \quad \bigcup_{n\in\mathbb{N}} A_n \in \mathcal{A} \ \ \mathrm{za} \ \mathrm{vsako} \ \mathrm{zaporedje} \ (A_n)_{n\in\mathbb{N}} \ \mathrm{iz} \ \mathcal{A}.$$

Definicija 1.2. \mathcal{A} je σ -algebra na Ω

$$\stackrel{\text{def}}{\Longleftrightarrow} \quad (\Omega, \mathcal{A}) \text{ je merljiv prostor}$$

$$\stackrel{\text{def}}{\Longleftrightarrow} \quad \emptyset \in \mathcal{A} \text{ in } \mathcal{A} \text{ je zaprt za } \mathbf{c}^{\Omega} \text{ in za } \sigma \cup .$$

V primeru, da \mathcal{A} je σ-algebra na Ω :

- A je \mathcal{A} -merljiva $\stackrel{\text{def}}{\iff} A \in \mathcal{A}$;
- \mathcal{B} je pod- σ -algebra $\stackrel{\text{def}}{\Longleftrightarrow}$ \mathcal{B} je σ -algebra na Ω in $\mathcal{B} \subset \mathcal{A}$.

Trditev 1.1. Naj bo $\mathcal{A} \subset 2^{\Omega}$ zaprta za c^{Ω} in naj bo $\emptyset \in \mathcal{A}$. Potem je \mathcal{A} σ -algebra na Ω , če je \mathcal{A} zaprta za števne preseke, in v tem primeru je \mathcal{A} zaprta za \cap , \cup in \setminus .

1.2Mere

Definicija 1.3. Naj bo (Ω, \mathcal{F}) merljiv prostor in $\mu : \mathcal{F} \to [0, \infty]$. μ je mera na $(\Omega, \mathcal{F}) \stackrel{\text{def}}{\Longleftrightarrow}$

- $\bullet \ \mu(\emptyset) = 0;$
- $\mu\left(\bigcup_{n\in\mathbb{N}}\right)=\sum_{n\in\mathbb{N}}\mu(A_n)$ za vsako zaporedje $(A_n)_{n\in\mathbb{N}}$ iz \mathcal{F} , ki sestoji iz paroma disjunktnih dogodkov.

Lastnosti:

- Mera μ na (Ω, \mathcal{F}) je $kon\check{c}na \iff \mu(\Omega) < \infty$.
- Mera μ na (Ω, \mathcal{F}) je $verjetnostna^1 \stackrel{\text{def}}{\iff} \mu(\Omega) = 1$
- Mera μ na (Ω, \mathcal{F}) je σ -končna $\stackrel{\text{def}}{\iff}$ obstaja zaporedje $(A_n)_{n\in\mathbb{N}}$ v \mathcal{F} ,

$$\bigcup_{n\in\mathbb{N}} \ = \ \Omega \quad \text{in}$$

$$\mu(A_n) \ < \ \infty, \quad \forall n\in\mathbb{N}$$

 $(\Omega, \mathcal{F}, \mu)$ je prostor z mero $\stackrel{\mathrm{def}}{\Longleftrightarrow} \mu$ je mera na (Ω, \mathcal{F}) . Če je μ mera na (Ω, \mathcal{F}) potem je $\mu(\Omega)$ masa mere μ . Če je $A \in \mathcal{F}$, potem je:

• A je μ -zanemarljiv $\stackrel{\text{def}}{\Longleftrightarrow}$ $\mu(A) = 0;$ Tudi: μ je verjetnost.

• A je $\mu\text{-}trivialna \ \stackrel{\mathrm{def}}{\Longleftrightarrow} \ A$ ali $\Omega \setminus A$ je $\mu\text{-}zanemarljiva$

Če imamo poleg tega še lastnost $P(\omega)$ v $\omega \in A,$ potem

• $P(\omega)$ drži μ -skoraj povsod (μ -s.p.) v $\omega \in A \iff def$

$$A_{\neg P} := \{ \omega \in \Omega \mid \neg P(\omega) \in \mathcal{F} \text{ in } \mu(A_{\neg P}) = 0 \};$$

• $P(\omega)$ drži μ -skoraj gotovo (μ -s.g.) $\stackrel{\text{def}}{\Longleftrightarrow} P(\omega)$ drži μ -skoraj povsod in μ je verjetnostna.

Pdrži $\mu\text{-skoraj povsod na}\ A \iff P(\omega)$ drži $\mu\text{-skoraj povsod v}\ \omega\in A.$ Podobno za ostale.

Trditev 1.2. Naj bo μ mera na (Ω, \mathcal{F}) . Potem:

(i) μ je aditivna:

$$\mu(A \cup B) = \mu(A) + \mu(B)$$

za vsaki disjunktivni množici $A,B\in\mathcal{F}.$

(ii) μ je monotona:

$$\mu(A) \leq \mu(B),$$

če je $A \subset B$ in $A, B \in \mathcal{F}$

(iii) μ je zvezna od spodaj:

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \uparrow - \lim_{n\to\infty}\mu(A_n)$$

za vsako zaporedje $(A_n)_{n\in\mathbb{N}}$ iz \mathcal{F} , ki je nepadajoče glede na inkluzijo: $A_n\subset A_{n+1}\ \forall n\in\mathbb{N}$.

(iv) μ je števno subaditivna:

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) \leq \sum_{n\in\mathbb{N}}\mu(A_n)$$

za vsako zaporedje $(A_n)_{n\in\mathbb{N}}$ iz \mathcal{F} .

(v) Naj bo μ končna:

$$\mu(\Omega \setminus A) = \mu(\Omega) - \mu(A) \ \forall A \in \mathcal{F}.$$

Naprej, μ je zvezna od zgoraj:

$$\mu\left(\bigcap_{n\in\mathbb{N}}A_n\right) = \downarrow -\lim_{n\to\infty}\mu(A_n)$$

za vsako zaporedje $(A_n)_{n\in\mathbb{N}}$ iz \mathcal{F} , ki je nenaraščajoča glede na inkluzijo: $A_n\supset A_{n+1}\ \forall n\in N.$

(vi) Za vsak $A \in \mathcal{F}$ je

$$\mathcal{F}|_{A} := \{B \cap A \mid B \in \mathcal{F}\}$$

σ-algebra na A in $\mu_A := \mu\big|_{\mathcal{F}_A}$ je mera na (A, \mathcal{F}_A) .

Definicija 1.4. $\mu_A := \mu \big|_{\mathcal{F}_A}$ rečemo *mera* μ *zožana na* A oz. *zožitev* μ *na* A.

1.3 Merljive preslikave in generirane σ -algebre

Definicija 1.5. Naj bo $A \subset 2^{\Omega}$:

$$\sigma_{\Omega}(\mathcal{A}) \;:=\; \bigcap \{\mathcal{F} \in 2^{2^{\Omega}} \mid \mathcal{F} \text{ σ-algebra na } \Omega \text{ in } \mathcal{F} \supset \mathcal{A}\},$$

rečemo σ -algebra z A na Ω . Če sta \mathcal{B}_1 in \mathcal{B}_2 obe σ -algebri na Ω , potem definiramo

$$\mathcal{B}_1 \vee \mathcal{B}_2 := \sigma_{\Omega}(\mathcal{B}_1 \cup \mathcal{B}_2)$$

in ji rečemo skupek \mathcal{B}_1 in \mathcal{B}_2 . Bolj splošno, če imamo družino σ -algebr $(B_{\lambda})_{\lambda \in \Lambda}$ na Ω , potem postavimo

$$\bigvee_{\lambda \in \Lambda} \mathcal{B}_{\lambda} \ := \ \sigma_{\Omega} \left(\bigcup_{\lambda \in \Lambda} \mathcal{B}_{\lambda} \right).$$

Definicija 1.6. Naj bo $f: \Omega \to \Omega'$. Če je dana σ -algebra \mathcal{F}' na Ω' , potem definiramo

$$\sigma^{\mathcal{F}'}(f) := \{ f^{-1}(A) \mid A \in \mathcal{F}' \}.$$

Začetno strukturo f glede na \mathcal{F}' (tudi, σ -algebra generirana s f glede na \mathcal{F}'). Če je dana σ -algebra \mathcal{F} na Ω , potem definiramo

$$\sigma_{\mathcal{F}}^{\Omega'}(f) := \{ A' \in 2^{\Omega'} \mid f^{-1}(A') \in \mathcal{F} \}$$

končno strukturo f na Ω' glede na \mathcal{F} . Če sta dani σ -algebri \mathcal{F} na Ω in σ -algebra \mathcal{F}' na Ω , potem rečemo: f je \mathcal{F}/\mathcal{F}' -merljiva $\stackrel{\text{def}}{\Longleftrightarrow}$

$$f^{-1}(A') \in \mathcal{F}, \quad \forall A' \in \mathcal{F}.$$

Definicija 1.7. Če je \mathcal{F} σ -algebra na Ω in je \mathcal{F}' σ -algebra na Ω' , potem označimo

$$\mathcal{F}/\mathcal{F}' := \{ f \in \Omega'^{\Omega} \mid f \text{ je } \mathcal{F}/\mathcal{F}'\text{-merljiva} \}.$$

Definicija 1.8. Za $A \subset \Omega$ definiramo $\mathbb{1}_{A_{\Omega}} : \Omega \to \{0,1\},$

$$\mathbb{1}_{A_{\Omega}}(x) \ := \ \begin{cases} 1 \, ; & x \in A, \\ 0 \, ; & x \notin A, \end{cases}, \quad x \in \Omega,$$

ki ji rečemo indikatorska funkcija A na ambientnem prostoru $\Omega.^2$

Trditev 1.3. Za σ -algebre $\mathcal{F}, \mathcal{G}, \mathcal{H}$, kjer $f \in \mathcal{F}/\mathcal{G}$ in $g \in \mathcal{G}/\mathcal{H}$ je

$$g \circ f \in \mathcal{F}/\mathcal{H}$$
.

Trditev 1.4. Naj bo $f: \Omega \to \Omega'$:

- (i) Za σ -algebro \mathcal{F}' na Ω' je $\sigma^{\mathcal{F}'}(f)$ σ -algebra na Ω ; ona je najmanjša (glede na inkluzijo) σ -algebra \mathcal{G} na Ω , da je $f \in \mathcal{G}/\mathcal{F}'$.
- (ii) Za σ -algebro $\mathcal F$ na Ω je $\sigma_F^{\Omega'}(f)$ σ -algebra na Ω' ; ona je največja (glede na inkluzijo) σ -algebra $\mathcal G'$ na Ω , da je $f \in \mathcal F/\mathcal G$.

 $^{^2}$ Ponavadi namesto $\mathbbm{1}_{A_\Omega}$ pišemo le $\mathbbm{1}_A.$

(iii) Za σ -algebro \mathcal{F} na Ω in σ -algebro \mathcal{F}' na Ω' je

$$f \in \mathcal{F}/\mathcal{F}' \iff \sigma^{\mathcal{F}'}(f) \subset \mathcal{F} \iff \mathcal{F}' \subset \sigma^{\Omega'}_{\mathcal{F}}(f).$$

(iv) Naj bo $\mathcal{A}'\sigma 2^{\Omega'}$ ter \mathcal{F} σ -algebra na Ω . Potem je

$$f \in \mathcal{F}/\sigma_{\Omega'}(\mathcal{A}') \iff (f^{-1}(A') \in \mathcal{F}, \ \forall A' \in \mathcal{A}').$$

Velja tudi

$$\sigma^{\sigma_{\Omega'}(\mathcal{A}')}(f) = \sigma_{\Omega}(\{f^{-1}(A') \mid A' \in \mathcal{A}'\}).$$

Definicija 1.9. Sled \mathcal{A} na A definiramo kot

$$\mathcal{A}|_{A} := \{B \cap A \mid B \in \mathcal{A}\}.^{3}$$

Trditev 1.5 (Sledi komutirajo v generirani σ -algebri). Naj bo $\mathcal{A} \subset 2^{\Omega}$ in $A \subset \Omega$. Potem je

$$\sigma_A(\mathcal{A}|_A) = \sigma_{\Omega}(\mathcal{A})|_A.$$

Trditev 1.6. Naj bo $f: \Omega \to \Omega'$ in naj bo \mathcal{F} σ -algebra na Ω ter \mathcal{F}' σ -algebra na Ω' .

(i) Če je $A' \subset \Omega'$ in $f: \Omega \to A'$, potem je

$$f \in \mathcal{F}/\mathcal{F}' \iff f \in \mathcal{F}/(\mathcal{F}'|_{A'}).$$

(ii) Če je $A \in \Omega$ in $f \in \mathcal{F}/\mathcal{F}'$, potem

$$f|_A \in (\mathcal{F}|_A)/\mathcal{F}'.$$

(iii) Če je $(A_i)_{i\in\mathbb{N}}$ zaporedje v \mathcal{F} in $\Omega = \bigcup_{i\in\mathbb{N}} A_i$ in je $f|_{A_i} \in (\mathcal{F}|_{A_i})/\mathcal{F}'$ $\forall i\in\mathbb{N}$, potem je

$$f \in \mathcal{F}/\mathcal{F}'$$

.

 $^{^3{\}rm Zapis}$ je isti kot za zožitev, vendar ne pomeni isto.

1.4 Borelove množice na razširjeni realni osi $[-\infty, \infty]$ in Borelova merljivost numeričnih funkcij

Definicija 1.10. Definirajmo razširjeno realno os:

$$[-\infty, \infty] := \mathbb{R} \cup \{\infty\} \cup \{-\infty\}$$
$$[-\infty, a] := \{-\infty\} \cup (-\infty, a] \quad \text{za } a \in \mathbb{R} \cup \{-\infty\}$$

Relacijo \leq na $\mathbb R$ razširimo na $[-\infty,\infty]$ kot sledi:

$$-\infty \le x \le \infty \quad \forall x \in [-\infty, \infty].$$

Temu ustrezno imamo " $(<) := (\leq) \setminus (=)$ ", itd.

Definicija 1.11. Borelovo σ -algebro na $[-\infty, \infty]$ definiramo kot

$$\mathcal{B}_{[-\infty,\infty]} := \sigma_{[-\infty,\infty]}(\{[-\infty,a] \mid a \in \mathbb{R}\}).$$

Za $A \subset [-\infty, \infty]$ je

$$\mathcal{B}_A := \mathcal{B}_{[-\infty,\infty]}|_A$$

Borelova σ -algebra na A. Elementom Borelovih σ -algebra pravimo Borelove množice.

Definicija 1.12. Funkcija f je numerična, če je $\mathcal{Z}_f \in [-\infty, \infty]$.

Definicija 1.13. Če je funkcija f numerična:

- $\sigma(f) := \sigma^{\mathcal{B}_{[-\infty,\infty]}}(f);$
- če je \mathcal{F} σ -algebra na domeni f, je f \mathcal{F} -merljiva $\stackrel{\text{def}}{\Longleftrightarrow}$ f je $\mathcal{F}/\mathcal{B}_{[-\infty,\infty]}$ -merljiva;
- če je $g: \mathcal{D}_f \to [-\infty, \infty]$, je

$$g\wedge f\ :=\ \min\{g,f\}^4$$

$$g \vee f := \max\{g, f\}.$$

Definiramo pozitivni in negativni del f:

$$f^+ := f \vee 0$$

$$f^- := (-f) \vee 0$$

Opomba.

- $f = f^+ f^-$
- $|f| = f^+ + f^-$

Definicija 1.14. Dogovorimo se

$$0 \cdot (\pm \infty) := 0 =: (\pm \infty) \cdot 0$$
$$\infty + (-\infty) := 0 =: (-\infty) + \infty.$$

Preostanek aritmetike na $[-\infty, \infty]$ definiramo na naraven način, npr.

$$a \cdot \infty := \operatorname{sgn}(a) \cdot \infty \quad \operatorname{za} \ a \in [-\infty, \infty] \setminus \{0\}$$

$$a + \infty := \infty \quad \operatorname{za} \ a \in (-\infty, \infty]$$

$$\infty - \infty := \infty + (-\infty) = 0$$

$$itd.$$

Trditev 1.7. Če je $A \subset [-\infty, \infty]$ in je $f : A \to [-\infty, \infty]$ zvezna, potem je $f \in \mathcal{B}_A/\mathcal{B}_{[-\infty,\infty]}$. Če je $\{f,g\} \subset \mathcal{F}/\mathcal{B}_{[-\infty,\infty]}$ za σ -algebro \mathcal{F} , potem je

$$\{f+g, f\cdot g\}\subset \mathcal{F}/\mathcal{B}_{[-\infty,\infty]}$$

in

$$\{\{f \le g\}, \{f = g\}, \{f < g\}\} \subset \mathcal{F}$$

.

Trditev 1.8. Naj bo \mathcal{F} σ -algebra in $(f_n)_{n\in\mathbb{N}}$ zaporedje v $\mathcal{F}/\mathcal{B}_{[-\infty,\infty]}$. Potem je

$$\{\sup_{n\in\mathbb{N}} f_n, \inf_{n\in\mathbb{N}} f_n, \limsup_{n\to\infty} f_n, \liminf_{n\to\infty} f_n\} \subset \mathcal{F}/\mathcal{B}_{[-\infty,\infty]}.$$

Če je $f_n \geq 0 \ \forall n \in \mathbb{N}$, potem je

$$\sum_{n\in\mathbb{N}} f_n \in \mathcal{F}/\mathcal{B}_{[0,\infty]}.$$

Definicija 1.15. Naj bo \mathcal{F} σ -algebra. Za $\{f,g\} \subset \mathcal{F}/\mathcal{B}_{[-\infty,\infty]}$ je

$$\{f \lor g, f \land g, f^+, f^-, |f|\} \subset \mathcal{F}/\mathcal{B}_{[-\infty,\infty]}.$$

Za zaporedje $(f_n)_{n\in\mathbb{N}}$ v $\mathcal{F}/\mathcal{B}_{[-\infty,\infty]}$ je

 $\{\{f_n \text{ konverg., ko } n \to \infty\}, \{f_n \text{ konverg. v } \mathbb{R}, \text{ ko } n \to \infty\}, \{\lim_{n \to \infty} f_n = f_\infty\}\} \ \subset \ \mathcal{F}.$

1.5 Argumenti monotonega razreda

Definicija 1.16. Naj bo \mathcal{F} σ -algebra na Ω in $f:\Omega\to[0,\infty)$:

f je \mathcal{F} -enostavna $\stackrel{\mathrm{def}}{\Longleftrightarrow} f \in \mathcal{F}/\mathcal{B}_{[0,\infty)}$ in \mathcal{Z}_f je končna.

Trditev 1.9. Naj bo (Ω, \mathcal{F}) merljiv prostor in $f : \Omega \to [0, \infty]$. Potem je f \mathcal{F} -enostavna \iff

$$f = \sum_{i=1}^{n} c_i \mathbb{1}_{A_i},$$

za neke c_i , $i \in [n]$, iz $[0, \infty)$, neke A_i , $i \in [n]$, iz \mathcal{F} in nek $n \in \mathbb{N}$. Naprej; če je $f \in \mathcal{F}/\mathcal{B}_{[0,\infty]}$, potem je

$$\left((2^{-n} \lfloor 2^n f \rfloor) \wedge n \right)_{n \in \mathbb{N}}$$

zaporedje \mathcal{F} -enostavnih funkcij, ki ne padajo kf (celo enakomerno na vsaki množici na kateri je f omejena).

Posledica (Izrek o monotonem razredu). Naj bo \mathcal{F} σ -algebra na Ω in $\mathcal{M} \subset \mathcal{F}/\mathcal{B}_{[0,\infty]}$. Če je

$$\mathbb{1}_A \in \mathcal{M} \quad \forall A \in \mathcal{F}$$

in je \mathcal{M} zaprta za nenegativne linearne kombinacije (je stožec)⁵ in je \mathcal{M}

$$\{m_1, m_2\} \subset \mathcal{M}, \{c_1, c_2\} \subset (0, \infty) \Rightarrow c_1 m_1 + c_2 m_2 \in \mathcal{M}$$

 $^{^5}$ Pomeni:

zaprta za nepadajoče limite⁶ potem je

$$\mathcal{M} = \mathcal{F}/\mathcal{B}_{[0,\infty]}.$$

Trditev 1.10 (Doob-Dynkinova faktorizacijska lema). Naj bo $X:\Omega\to A,$ (A,\mathcal{A}) merljiv prostor. Potem je

$$Y \in \sigma^{\mathcal{A}}(X)/\mathcal{B}_{[-\infty,\infty]} \iff \exists h \in \mathcal{A}/\mathcal{B}_{[-\infty,\infty]}, \text{ da je } Y = h \circ X = h(X).$$

Definicija 1.17. Naj bo $\mathcal{D}\subset 2^{\Omega}.$ D je Dynkinov sistem (tudi $\lambda\text{-sistem})$ na Ω $\stackrel{\mathrm{def}}{\Longleftrightarrow}$

- $\Omega \in \mathcal{D}$,
- $B \setminus A \in \mathcal{D}$ brž ko je $\mathcal{D} \ni A \subset B \in \mathcal{D}$,
- če je $(A_i)_{i\in\mathbb{N}}$ je nepadajoče zaporedje v \mathcal{D} je tudi $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{D}$.

 \mathcal{D} je π -sistem $\stackrel{\text{def}}{\Longleftrightarrow}$ \mathcal{D} je zaprt za \cap .

Trditev 1.11. Naj bo $\mathcal{D} \subset 2^{\Omega}$. Potem je \mathcal{D} Dynkinov sistem \iff

- $\Omega \in \mathcal{D}$,
- \mathcal{D} zaprta za \mathbf{c}^{Ω} .
- $(A_i)_{i\in\mathbb{N}}$ zaporedje iz $\mathcal{D}, A_i \cap A_j = \emptyset$ za $i \neq j$ iz $\mathbb{N} \Longrightarrow \bigcup_{n\in\mathbb{N}} A_i \in \mathcal{D}$.

 \mathcal{D} je σ -algebra na $\Omega \iff \mathcal{D}$ je λ -sistem na Ω in π -sistem.

Definicija 1.18. Za $\mathcal{L} \subset 2^{\Omega}$ postavimo

$$\lambda_{\Omega}(\mathcal{L}) \; := \; \bigcap \{ \mathcal{D} \in 2^{2^{\Omega}} \; | \; \mathcal{D} \; \text{je λ-sistem in $\mathcal{D} \supset \mathcal{L}$} \}.$$

$$\lim_{n\to\infty} f_n \in \mathcal{M}$$

⁶Pomeni: $(f_n)_{n\in\mathbb{N}}$ nepadajoče zaporedje iz \mathcal{M} , potem je

Trditev 1.12. Naj bo \mathcal{L} π -sistem in $\mathcal{L} \subset 2^{\Omega}$. Potem je

$$\lambda_{\Omega}(\mathcal{L}) = \sigma_{\Omega}(\mathcal{L}).$$

Posledica (π - λ izrek/Dynkinova lema). Naj bo \mathcal{L} π -sistem in \mathcal{D} λ -sistem na Ω , $\mathcal{L} \subset \mathcal{D}$. Potem je

$$\sigma_{\Omega}(\mathcal{L}) \subset \mathcal{D}.$$

Trditev 1.13. Naj bosta μ, ν meri na merljivem prostoru $(E, \mathcal{E}), \mathcal{L} \subset \mathcal{E}$ π sistem, $\sigma_E(\mathcal{L}) = \mathcal{E}$. Predpostavimo, da je $\mu|_{\mathcal{L}} = \nu|_{\mathcal{L}}$ in da obstaja zaporedje $(L_n)_{n \in \mathbb{N}}$ iz \mathcal{L} , ki je nepadajoče ali sestoji iz paroma disjunktnih množic, in za katerega je

- $\bullet \ \mu(L_n) = \nu(L_n) < \infty,$
- $\bullet \bigcup_{n\in\mathbb{N}} L_n = E.$

Potem je

$$\mu = \nu$$

.

1.6 Lebesque-Stieltjesova mera

Izrek 1.1 (Lebesque-Stieltjesov izrek). Naj bo $F : \mathbb{R} \to \mathbb{R}$, nepadajoča in zvezna z desne (ca'd). Potem obstaja natanko ena mera μ na $\mathcal{B}_{\mathbb{R}}$, da je

$$\mu([a,b]) = F(b) - F(a) \quad \forall a \le b \in \mathbb{R}.$$

Definicija 1.19. μ iz prejšnjega izreka rečemo mera prirejena F v Lebesque-Stieltjesovem smislu in jo označimo z dF. V posebne primernu primeru, ko je $F = \mathrm{id}_{\mathbb{R}}$ ji rečemo Lebesqueva mera in jo označimo

$$\mathscr{L} := d(\mathrm{id}_{\mathbb{R}}).$$

Trditev 1.14. Naj bo $F:\mathbb{R}\to\mathbb{R}$ ca'd,nepadajoča. Potem je $dF\colon$

 $\bullet \ \sigma$ -končna \iff je Fomejena:

$$dF(\mathbb{R}) = \lim_{n \to \infty} dF((-n, n])$$

• verjetnostna $\iff \lim_{\infty} F - \lim_{-\infty} F = 1.$

Za $x \in \mathbb{R}$ je

$$dF(\{x\}) = F(x) - F(x^{-}),$$

$$\{x\} = \bigcap_{n \in \mathbb{N}} (x - \frac{1}{n}, x].$$

2 Integracija na merljivih prostorih

2.1 Lebesgueov integral

Definicija 2.1. Naj bo $(\Omega, \mathcal{F}, \mu)$ prostor z mero $f \in \mathcal{F}/\mathcal{B}_{[-\infty, \infty]}$.

(a) Za f, ki je \mathcal{F} -enostavna postavimo

$$\int f \, d\mu \ := \ \sum_{a \in \mathcal{Z}_f} d\mu(\{f = a\}) \ = \ \sum_{a \in \mathcal{Z}_f} d\mu(f^{-1}(\{a\})).$$

(b) Za $f \ge 0$, ki ni \mathcal{F} -enostavna postavimo

$$\int f \, d\mu := \sup \{ \int g \, d\mu \mid g \le f, \ g \ \mathcal{F}\text{-enostavna} \}.$$

(c) Za $\neg (f \ge 0)$, ki ni \mathcal{F} -enostavna postavimo

$$\int f \, d\mu \ := \ \int f^+ \, d\mu - \int f^- \, d\mu.$$

Dogovor.

$$\mu[f] = \mu^x[f(x)] := \int f(x) \, \mu(dx) := \int f \, d\mu$$

Če je še $A \in \mathcal{F}$, potem označimo še

$$\mu[f;A] := \mu^x[f(x);x \in A] := \int_A f(x)\,\mu(dx) := \int_A f\,d\mu := \int f\mathbb{1}_A\,d\mu.$$

Integral f proti μ je dobro definiran $\stackrel{\operatorname{def}}{\Longleftrightarrow}$

$$\int f^+ d\mu \wedge \int f^- d\mu < \infty;$$

fje $\mu\text{-integrabilna} \stackrel{\text{def}}{\Longleftrightarrow}$

$$\int f^+ d\mu \ \lor \int f^- d\mu \ < \ \infty.$$

Definicija 2.2. Naj bo $(\Omega, \mathcal{F}, \mu)$ prostor z mero:

$$\mathcal{L}^1(\mu) := \{ f \in \mathcal{F}/\mathcal{B} \mid f \text{ je μ-integrabilna} \}.$$

Za
$$g:\Omega\to\mathbb{C}$$
z $\{\Re(g),\Im(g)\}\subset\mathcal{L}^1(\mu)$ je

$$\int g\,d\mu \ := \ \int \Re(g)\,d\mu + i \int \Im(g)\,d\mu.$$