

RF Exposure Evaluation Declaration

Product Name: EZ-BT WICED Module

Model No. : CYBT-423028-02

IC : 7922A-3028

Applicant: Cypress Semiconductor

Address: 198 Champion Ct, San Jose, California 95134

United States

Date of Receipt: Jan. 29, 2018

Test Date Jan. 30, 2018~ Feb. 08, 2018

Issued Date : Mar. 07, 2018

Report No. : 1812166R-RF-CA-P20V01

Report Version: V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF any agency of the government.

The test report shall not be reproduced without the written approval of DEKRA Testing and Certification (Suzhou) Co., Ltd.

Test Report Certification

Issued Date: Mar. 07, 2018

Report No.: 1812166R-RF-CA-P20V01

Product Name : EZ-BT WICED Module
Applicant : Cypress Semiconductor

Address : 198 Champion Ct, San Jose, California 95134

United States

Manufacturer : Cypress Semiconductor

Address : 198 Champion Ct, San Jose, California 95134

United States

Model No. : CYBT-423028-02

IC : 7922A-3028 EUT Voltage : DC 1.8-3.6V

Applicable Standard : RSS-102: Issue 5, 2015

Test Result : Complied

Performed Location : DEKRA Testing and Certification (Suzhou) Co., Ltd.

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou,

215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

IC Lab Code: 4075B

Documented By :

(Adm. Specialist: Kitty Li)

Reviewed By : Frank he

(Senior Engineer: Frank He)

Approved By : Harry

(Engineering Manager: Harry Zhao)

1. RF Exposure Evaluation

1.1. Limits

From RSS-102 Issue 5, Section 2.5.1 Exemption
No SAR Evaluation Required if power is below the following threshold:

Table 1: SAR evaluation – Exemption limits for routine evaluation based on frequency and separation distance 4,5

Frequency	Exemption Limits (mW)						
(MHz)	At separation	At separation	At separation	At separation	At separation		
	distance of	distance of	distance of	distance of	distance of		
	≤5 mm	10 mm	15 mm	20 mm	25 mm		
≤300	71 mW	101 mW	132 mW	162 mW	193 mW		
450	52 mW	70 mW	88 mW	106 mW	123 mW		
835	17 mW	30 mW	42 mW	55 mW	67 mW		
1900	7 mW	10 mW	18 mW	34 mW	60 mW		
2450	4 mW	7 mW	15 mW	30 mW	52 mW		
3500	2 mW	6 mW	16 mW	32 mW	55 mW		
5800	1 mW	6 mW	15 mW	27 mW	41 mW		

Frequency	Exemption Limits (mW)						
(MHz)	At separation	t separation At separation At separation		At separation	At separation		
	distance of	distance of distance of		distance of	distance of		
	30 mm	35 mm	40 mm	45 mm	≥50 mm		
≤300	223 mW	254 mW	284 mW	315 mW	345 mW		
450	141 mW	159 mW	177 mW	195 mW	213 mW		
835	80 mW	92 mW	105 mW	117 mW	130 mW		
1900	99 mW	153 mW	225 mW	316 mW	431 mW		
2450	83 mW	123 mW	173 mW	235 mW	309 mW		
3500	86 mW	124 mW	170 mW	225 mW	290 mW		
5800	56 mW	71 mW	85 mW	97 mW	106 mW		

1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18 and 78% RH.

1.3. Test Result of RF Exposure Evaluation

Product	:	EZ-BT WICED Module			
Test Item	:	RF Exposure Evaluation			
Test Site	:	AC-6			

Antenna Gain:

Model No.		N/A				
Antenna manufacturer		N/A				
Antenna Delivery		1*TX+1*F	₹X	☐ 2*TX+2*RX ☐ 3*TX+3*RX		
Antenna technology		SISO				
		MIMO		Basic		
				CDD		
	Ш			Sectorized		
				Beam-forming		
Antenna Type		External		Dipole		
				Sectorized		
		Internal		PIFA		
				РСВ		
			\boxtimes	Ceramic Chip Antenna		
				Monopole Antenna		
	Ant Gain					
Antenna Technology		(dBi)				
⊠ siso	Ant1:-1					

Maximum measured transmitter power:

Frequency (MHz)	Pout	Pout	Maximum	Pout
	Conducted	Conducted	Antenna	EIRP
	(dBm)	(mW)	Gain (dBi)	(mW)
Bluetooth	4.8	3.02	-1	2.02

EIRP= PConducted+ Antenna Gain
Threshold for no SAR evaluation in 5mm is 4.00 mW
Maximum TX Power is 3.02mW Conducted and 2.02mW EIRP
Maximum TX Power is 2.02mW
Conclusion: No SAR evaluation required since maximum Transmitter Pout (both conducted and EIRP) is below IC threshold

The End