Online HW 0: Bases

Bart Snapp and Brad Findell

August 17, 2018

Contents

Home Base

Problems about numbers in various bases.

Problem 1 Explain why the following "joke" is "funny:" There are 10 types of people in the world. Those who understand base two and those who don't.

Problem 2 You meet some Tripod aliens, they tally by threes. Thankfully for everyone involved, they use the symbols 0, 1, and 2.

- (a) Can you explain how a Tripod would count from 11 to 201? Be sure to carefully explain what number comes after 22.
- (b) What number comes immediately before 10? 210? 20110? Explain your reasoning.

Problem 3 You meet some people who tally by sevens. They use the symbols O, A, B, C, D, E, and F.

- (a) What do the individual symbols O, A, B, C, D, E, and F mean?
- (b) Can you explain how they would count from DD to AOC? Be sure to carefully explain what number comes after FF.
- (c) What number comes immediately before AO? ABO? EOFFA? Explain your reasoning.

Problem 4 Now, suppose that you meet a hermit who tallies by thirteens. Explain how he might count. Give some relevant and revealing examples.

Problem 5 While visiting Mos Eisley spaceport, you stop by Chalmun's Cantina. After you sit down, you notice that one of the other aliens is holding a discussion on fractions. Much to your surprise, they explain that 1/6 of 36 is 7. You are unhappy with this, knowing that 1/6 of 36 is in fact 6, yet their

audience seems to agree with it, not you. Next the alien challenges its audience by asking, "What is 1/4 of 10?" What is the correct answer to this question, and how many fingers do the aliens have? Explain your reasoning.

Problem 6 When the first Venusian to visit Earth attended a sixth grade class, it watched the teacher show that

$$\frac{3}{12} = \frac{1}{4}.$$

"How strange," thought the Venusian. "On Venus, $\frac{4}{12} = \frac{1}{4}$." What base do Venusians use? Explain your reasoning.

Problem 7 When the first Martian to visit Earth attended a high school algebra class, it watched the teacher show that the only solution of the equation

$$5x^2 - 50x + 125 = 0$$

is x = 5.

"How strange," thought the Martian. "On Mars, x=5 is a solution of this equation, but there also is another solution." If Martians have more fingers than humans, how many fingers do Martians have on both hands? Explain your reasoning.

Problem 8 In one of your many space-time adventures, you see the equation

$$\frac{3}{10} + \frac{4}{13} = \frac{21}{20}$$

written on a napkin. How many fingers did the beast who wrote this have? Explain your reasoning.

Problem 9 What is the smallest number of weights needed to produce every integer-valued mass from 0 grams to say n grams? Explain your reasoning.

Problem 10 Starting at zero, how high can you count using just your fingers?

(a) Explain how to count to 10.

- (b) Explain how to count to 35.
- (c) Explain how to count to 1023.
- (d) Explain how to count to 59048.
- (e) Can you count even higher?

Explain your reasoning.

Algorithms

Problems about algorithms.

Problem 11 Explain what it means for an operation \star to be associative. Give some relevant and revealing examples and non-examples.

Problem 12 Consider the following pictures:

Jesse claims that these pictures represent $(2 \cdot 3) \cdot 4$ and $2 \cdot (3 \cdot 4)$.

- (a) Is Jesse's claim correct? Explain your reasoning.
- (b) Do Jesse's pictures show the associativity of multiplication? If so, explain why. If not, draw new pictures representing $(2\cdot 3)\cdot 4$ and $2\cdot (3\cdot 4)$ that do show the associativity of multiplication.

Problem 13 Explain what it means for an operation \star to be commutative. Give some relevant and revealing examples and non-examples.

Problem 14 Explain what it means for an operation \star to distribute over another operation \dagger . Give some relevant and revealing examples and non-examples.

Problem 15 Explain what it means for an operation \star to be closed on a set of numbers. Give some relevant and revealing examples and non-examples.

Author(s): Bart Snapp and Brad Findell

Problem 24 Here is an example of a standard addition algorithm:

 $\begin{array}{r}
 11 \\
 892 \\
 +398 \\
 \hline
 1290
 \end{array}$

- (a) Describe how to perform this algorithm.
- (b) Provide an additional relevant and revealing example demonstrating that you understand the algorithm.
- (c) Show the "behind-the-scenes" algebra that is going on here.

Problem 25 Here is an example of the column addition algorithm:

 $\begin{array}{r}
 892 \\
 +398 \\
 \hline
 10 \\
 18 \\
 \hline
 11 \\
 \hline
 1290
 \end{array}$

- (a) Describe how to perform this algorithm.
- (b) Provide an additional relevant and revealing example demonstrating that you understand the algorithm.
- (c) Show the "behind-the-scenes" algebra that is going on here.

Problem 26 If you check out Problems ?? and ??, you will learn about "partial" algorithms.

- (a) Develop a "partial" algorithm for addition, give it a name, and describe how to perform this algorithm.
- (b) Provide a relevant and revealing example demonstrating that you understand the algorithm.
- (c) Show the "behind-the-scenes" algebra that is going on here.

Problem 27 Here is an example of the banker's addition algorithm:

$$\begin{array}{r}
 892 \\
 +398 \\
 \hline
 10 \\
 19 \\
 \hline
 12 \\
 \hline
 1290
 \end{array}$$

- (a) Describe how to perform this algorithm.
- (b) Provide an additional relevant and revealing example demonstrating that you understand the algorithm.
- (c) Show the "behind-the-scenes" algebra that is going on here.

Problem 28 Here is an example of a standard subtraction algorithm:

$$\begin{array}{r}
 8 \\
 8 \cancel{9}^{1} 2 \\
 \hline
 -378 \\
 \hline
 514
 \end{array}$$

- (a) Describe how to perform this algorithm.
- (b) Provide an additional relevant and revealing example demonstrating that you understand the algorithm.
- (c) Show the "behind-the-scenes" algebra that is going on here.

Problem 29 Here is an example of the subtraction by addition algorithm:

$$892$$
 -378
 514
 $8 + 4 = 12$ add 1 to 7 to get 8
 $8 + 1 = 9$
 $3 + 5 = 8$

- (a) Describe how to perform this algorithm.
- (b) Provide an additional relevant and revealing example demonstrating that you understand the algorithm.
- (c) Show the "behind-the-scenes" algebra that is going on here.

Problem 30 Here is an example of the Austrian subtraction algorithm:

$$\begin{array}{r}
 8 9^{1}2 \\
 \hline
 -3^{8} 7 8 \\
 \hline
 5 1 4
 \end{array}$$

- (a) Describe how to perform this algorithm.
- (b) Provide an additional relevant and revealing example demonstrating that you understand the algorithm.
- (c) Show the "behind-the-scenes" algebra that is going on here.

Problem 31 If you check out Problems ?? and ??, you will learn about "partial" algorithms.

- (a) Develop a "partial" algorithm for subtraction, give it a name, and describe how to perform this algorithm.
- (b) Provide a relevant and revealing example demonstrating that you understand the algorithm.
- (c) Show the "behind-the-scenes" algebra that is going on here.

Problem 32 Here is an example of a standard multiplication algorithm:

 $\begin{array}{r}
 23 \\
 634 \\
 \times 8 \\
 \hline
 5072
 \end{array}$

- (a) Describe how to perform this algorithm.
- (b) Provide an additional relevant and revealing example demonstrating that you understand the algorithm.
- (c) Show the "behind-the-scenes" algebra that is going on here.

Problem 33 Here is an example of the partial-products algorithm:

$$\begin{array}{r}
 634 \\
 \times 8 \\
 \hline
 4800 \\
 240 \\
 \hline
 32 \\
 \hline
 5072
\end{array}$$

- (a) Describe how to perform this algorithm.
- (b) Provide an additional relevant and revealing example demonstrating that you understand the algorithm.
- (c) Show the "behind-the-scenes" algebra that is going on here.

Problem 34 Here is an example of a standard division algorithm:

$$\begin{array}{r}
 97 R \\
 \hline
 8) 777 \\
 \hline
 72 \\
 \hline
 57 \\
 \hline
 56 \\
 \hline
 1
 \end{array}$$

- (a) Describe how to perform this algorithm.
- (b) Provide an additional relevant and revealing example demonstrating that you understand the algorithm.
- (c) Show the "behind-the-scenes" algebra that is going on here.

Problem 35 Here is an example of the partial quotients algorithm:

(a) Describe how to perform this algorithm.

- (b) Provide an additional relevant and revealing example demonstrating that you understand the algorithm.
- (c) Show the "behind-the-scenes" algebra that is going on here.

Problem 36 Here is another example of the partial-quotients division algorithm:

 $\begin{array}{c}
4 \\
10 \\
10 \\
8
\end{array}$ $\begin{array}{c}
10 \\
8
\end{array}$ $\begin{array}{c}
80 \\
\hline
117 \\
80 \\
\hline
37 \\
32 \\
\hline
5
\end{array}$

- (a) Describe how to perform this algorithm—be sure to explain how this is different from the scaffolding division algorithm.
- (b) Provide an additional relevant and revealing example demonstrating that you understand the algorithm.
- (c) Show the "behind-the-scenes" algebra that is going on here.

Problem 37 Here is an example of a standard multiplication algorithm:

- (a) Describe how to perform this algorithm.
- (b) Provide an additional relevant and revealing example demonstrating that you understand the algorithm.

(c) Show the "behind-the-scenes" algebra that is going on here—you may assume that you already know the algebra behind the standard multiplication algorithm.

Problem 38 Here is an example of the addition algorithm with decimals:

 $\begin{array}{r}
 1 \\
 37.2 \\
 +8.74 \\
 \hline
 45.94
 \end{array}$

- (a) Describe how to perform this algorithm.
- (b) Provide an additional relevant and revealing example demonstrating that you understand the algorithm.
- (c) Show the "behind-the-scenes" algebra that is going on here.

Problem 39 Here is an example of the multiplication algorithm with decimals:

 $\begin{array}{r}
3.40 \\
\times .21 \\
\hline
340 \\
\hline
6800 \\
\hline
.7140
\end{array}$

- (a) Describe how to perform this algorithm.
- (b) Provide an additional relevant and revealing example demonstrating that you understand the algorithm.
- (c) Show the "behind-the-scenes" algebra that is going on here.

Problem 40 Here is an example of the division algorithm without remainder:

$$\begin{array}{r}
0.75 \\
4 \overline{\smash{\big)}\ 3.00} \\
\underline{28} \\
\underline{20} \\
\underline{20}
\end{array}$$

- (a) Describe how to perform this algorithm.
- (b) Provide an additional relevant and revealing example demonstrating that you understand the algorithm.
- (c) Show the "behind-the-scenes" algebra that is going on here.

Problem 41 In the following addition problem, every digit has been replaced with a letter.

$$\frac{\textit{MOON}}{+\textit{SUN}}$$

Recover the original problem and solution. Explain your reasoning. Hint: S=6 and U=5.

Problem 42 In the following addition problem, every digit has been replaced with a letter.

$$\frac{\textit{SEND}}{\textit{+MORE}} \\ \frac{\textit{+MORE}}{\textit{MONEY}}$$

Recover the original problem and solution. Explain your reasoning.

Problem 43 In the following subtraction problem, every digit has been replaced with a letter.

Recover the original problem and solution. Explain your reasoning.

Problem 44 In the following two subtraction problems, every digit has been replaced with a letter.

$$\begin{array}{cc} \textit{NINE} & \textit{NINE} \\ -\textit{TEN} & -\textit{ONE} \\ \hline \textit{TWO} & ALL \end{array}$$

Using both problems simultaneously, recover the original problems and solutions. Explain your reasoning.

Problem 45 In the following multiplication problem, every digit has been replaced with a letter.

$$\begin{array}{c} \textit{LET} \\ \times \textit{NO} \\ \hline \textit{SOT} \\ \textit{NOT} \\ \hline \textit{FRET} \end{array}$$

Recover the original problem and solution. Explain your reasoning.

Problem 46 The following is a long division problem where every digit except 7 was replaced by X.

$$\begin{array}{c} X7X \\ XX \overline{\smash{\big)} XXXXX} \\ \underline{X77} \\ \underline{X7X} \\ \underline{X7X} \\ \underline{X7X} \\ \underline{XX} \\ \underline{XX} \end{array}$$

Recover the digits from this long division problem. Explain your reasoning.

Problem 47 The following is a long division problem where the various digits were replaced by X except for a single 8. The double bar indicates that the remainder is 0.

$$\begin{array}{c} XX8XX\\ XXX \overline{\smash)}XXXXXXXX\\ \underline{XXX}\\ \overline{X}XXX\\ \underline{XXX}\\ \underline{XXX}\\ XXXX\\ \underline{XXXX}\\ XXXX\end{array}$$

Recover the digits from this long division problem. Explain your reasoning.

Polynomials

Problems about polynomials

Problem 48 Explain what is meant by a polynomial in a variable x.

Problem 49 *Given:*

$$3x^7 - x^5 + x^4 - 16x^3 + 27 = a_7x^7 + a_6x^6 + a_5x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x^1 + a_0$$

Find a_0 , a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , a_7 .

Problem 50 *Given:*

$$6x^5 + a_4x^4 - x^2 + a_0 = a_5x^5 - 24x^4 + a_3x^3 + a_2x^2 - 5$$

Find a_0 , a_1 , a_2 , a_3 , a_4 , a_5 .

Problem 51 Is it true that polynomials are equal if and only if their coefficients are equal? Explain your reasoning.

Problem 52 Is it true that numbers are equal if and only if their digits are equal? Explain your reasoning.

Problem 53 Explain how to add two polynomials. Explain, in particular, how "collecting like terms" is an application of the properties of arithmetic.

Problem 54 Explain how to multiply two polynomials.

Problem 55 Here is an example of the polynomial division algorithm:

Author(s): Bart Snapp and Brad Findell

$$\begin{array}{r}
x-3 \\
x^2 + 3x + 1 \overline{\smash)x^3 + 0x^2 + x + 1} \\
\underline{x^3 + 3x^2 + x} \\
-3x^2 + 0x + 1 \\
\underline{-3x^2 - 9x - 3} \\
9x + 4
\end{array}$$

- (a) Describe how to perform this algorithm.
- (b) Provide an additional relevant and revealing example demonstrating that you understand the algorithm.
- (c) Show the "behind-the-scenes" algebra that is going on here.

Problem 56 State the Division Theorem for polynomials. Give some relevant and revealing examples of this theorem in action.

Problem 57 Given a polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

can you find two numbers L and U such that $L \leq p(x) \leq U$ for all x? If so, explain why. If not, explain why not.

Problem 58 Consider all polynomials of the form

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where the a_i 's are integers. If you substitute an integer for x will you always get an integer out? Explain your reasoning.

Problem 59 Consider the following polynomial:

$$p(x) = \frac{x^2}{2} + \frac{x}{2}$$

Will p(x) always returns an integer when an integer is substituted for x? Explain your reasoning.

Problem 60 Fix some integer value for x and consider all polynomials of the form

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Where the a_i 's are integers greater than or equal to 0. Which numbers can be represented by such polynomials? Explain your reasoning.

Problem 61 Find a polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

such that a_i 's are integers greater than or equal to 0 and less than 2 such that p(2) = 35. Discuss how your answer compares to the representation of 35 in base two. Explain your reasoning.

Problem 62 Find a polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

such that a_i 's are integers greater than or equal to 0 and less than 7 such that p(7) = 234. Discuss how your answer compares to the representation of 234 in base seven. Explain your reasoning.

Problem 63 Find a polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

such that a_i 's are integers greater than or equal to 0 and less than 10 such that p(10) = 18. Discuss how your answer compares to the representation of 18 in base ten. Explain your reasoning.

Problem 64 Find a polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

such that a_i 's are integers greater than or equal to 0 and less than 15 such that p(15) = 201. Discuss how your answer compares to the representation of 201 in base fifteen. Explain your reasoning.

Problem 65 Fix some integer value for x and consider all polynomials of the form

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Where the a_i 's are integers greater than or equal to 0 and less than x. Which numbers can be represented by such polynomials? Explain your reasoning. Big hint: Base x.

Problem 66 Fix some integer value for x and consider all polynomials of the form

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Where the a_i 's are integers greater than or equal to 0 and less than 10. Which numbers can be represented by such polynomials? Explain your reasoning.

Problem 67 Consider $x^2 + x + 1$. This can be thought of as a "number" in base x. Express this number in base (x + 1), that is, find b_0 , b_1 , b_2 such that

$$b_2(x+1)^2 + b_1(x+1) + b_0 = x^2 + x + 1.$$

Explain your reasoning.

Problem 68 Consider $x^2 + 2x + 3$. This can be thought of as a "number" in base x. Express this number in base (x - 1), that is, find b_0 , b_1 , b_2 such that

$$b_2(x-1)^2 + b_1(x-1) + b_0 = x^2 + 2x + 3.$$

Explain your reasoning.

Problem 69 Consider $x^3 + 2x + 1$. This can be thought of as a "number" in base x. Express this number in base (x-1), that is, find b_0 , b_1 , b_2 , b_3 such that

$$b_3(x-1)^3 + b_2(x-1)^2 + b_1(x-1) + b_0 = x^3 + 2x + 1.$$

Explain your reasoning.

Problem 70 If the polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

is thought of as a "number" in base x, describe two different ways to find the base (x-1) coefficients of p(x).