ChatGPT o1-preview >

0

4.3. Entanglement Entropy and the Page Curve

The entanglement entropy S of particle B is:

$$S = -\mathrm{Tr}_B\left(
ho_B\log
ho_B
ight),$$

with
$$ho_B=\mathrm{Tr}_A\left(|\Psi_{AB}\rangle\langle\Psi_{AB}|\right)$$
.

The **Page curve** describes how S evolves over time, initially increasing as entanglement builds and decreasing as the black hole evaporates, suggesting information is eventually released back into the universe.

5. Detailed Calculations

5.1. Entanglement Entropy Calculation

Step 1: Write the Density Matrix

$$|\Psi_{AB}
angle\langle\Psi_{AB}|=rac{1}{2}\left(|0
angle_A|1
angle_B+|1
angle_A|0
angle_B
ight)\left(\langle 0|_A\langle 1|_B+\langle 1|_A\langle 0|_B
ight).$$

Step 2: Partial Trace over Particle A

Compute $ho_B=\mathrm{Tr}_A\left(|\Psi_{AB}
angle\langle\Psi_{AB}|
ight)$:

$$ho_B = rac{1}{2} \left(|1
angle_B \langle 1|_B + |0
angle_B \langle 0|_B
ight) = rac{1}{2} I_B,$$

Message ChatGPT

ChatGPT can make mistakes. Check important info.