Lineaire Algebra

Jasper Vos Huiswerkset 7 27 oktober 2025

Studentnr: *s2911159*

Opgave 6.3.3

Geef generatoren voor de kernel van matrix A uit Example 6.10. Uit Example 6.10 hebben we de row echelon form:

$$A' = \begin{pmatrix} 0 & 1 & 0 & 2 & 0 & -5 \\ 0 & 0 & 1 & -2 & 0 & 3 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

De pivots staan in kolommen $j_1 = 2, j_2 = 3, j_3 = 5$, dus kolommen zonder pivot zijn $k \in \{1, 4, 6\}$. We construeren voor elke kolom zonder pivot een generator w_k volgens Propositie 6.19.

Generator w_1 : Voor kolom 1 nemen we $x = (1, x_2, x_3, 0, x_5, 0)^{\top}$ met $x_1 = 1$. Dan moet A'x = 0:

Rij 3:
$$x_5 = 0$$

Rij 2:
$$x_3 = 0$$

Rij 1:
$$x_2 = 0$$

Dus $w_1 = (1, 0, 0, 0, 0, 0)^{\top}$.

Generator w_4 : Voor kolom 4 nemen we $x = (0, x_2, x_3, 1, x_5, 0)^{\top}$ met $x_4 = 1$. Dan moet A'x = 0:

Rij 3:
$$x_5 = 0$$

Rij 2:
$$x_3 - 2 \cdot 1 = 0 \implies x_3 = 2$$

Rij 2:
$$x_3 - 2 \cdot 1 = 0$$
 \Longrightarrow $x_3 = 2$
Rij 1: $x_2 + 2 \cdot 1 = 0$ \Longrightarrow $x_2 = -2$

Dus $w_4 = (0, -2, 2, 1, 0, 0)^{\top}$.

Generator w_6 : Voor kolom 6 nemen we $x = (0, x_2, x_3, 0, x_5, 1)^{\top}$ met $x_6 = 1$. Dan moet A'x = 0:

Rij 3:
$$x_5 + 1 = 0 \implies x_5 = -1$$

Rij 2: $x_3 + 3 = 0 \implies x_3 = -3$

Rij 2:
$$x_3 + 3 = 0 \implies x_3 = -3$$

Rij 1:
$$x_2 - 5 = 0 \implies x_2 = 5$$

Dus $w_6 = (0, 5, -3, 0, -1, 1)^{\top}$.

Volgens Propositie 6.3 geldt ker $A = \ker A'$, dus:

$$\ker A = L(w_1, w_4, w_6)$$

met

$$w_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad w_4 = \begin{pmatrix} 0 \\ -2 \\ 2 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad w_6 = \begin{pmatrix} 0 \\ 5 \\ -3 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

Opgave 6.3.5

Zij $A \in \operatorname{Mat}(m \times n, F)$ een matrix en $f_A : F^n \to F^m$ de geassocieerde lineaire afbeelding.

(1) Als f_A injectief is, dan $m \ge n$

Bewijs. Veronderstel f_A is injectief. Breng A in row echelon form A' via elementaire rijoperaties. Volgens Propositie 6.6 is $f_{A'}$ ook injectief.

Volgens Propositie 6.20 is $f_{A'}$ injectief \Leftrightarrow elke kolom van A' bevat een pivot. Dus A' heeft n pivots, en elke pivot staat in een andere rij. Hieruit volgt dat A' minstens n rijen heeft, dus $m \ge n$.

(2) Als A inverteerbaar is, dan m = n

Bewijs. Veronderstel A is inverteerbaar. Dan bestaat $A^{-1} \in Mat(n \times m, F)$ zodat:

$$A \cdot A^{-1} = I_m$$
$$A^{-1} \cdot A = I_n$$

Merk op dat $f_A \circ f_{A^{-1}} = f_{AA^{-1}} = f_{I_m} = \mathrm{id}_{F^m}$ surjectief is. Dus f_A is surjectief, wat betekent dat im $f_A = F^m$. Ook geldt $f_{A^{-1}} \circ f_A = f_{A^{-1}} \circ f_A = f_{I_m} = \mathrm{id}_{F^m}$ injectief is. Dus f_A is injectief, wat betekent dat $\ker f_A = \{0\}$.

Ook geldt $f_{A^{-1}} \circ f_A = f_{A^{-1}A} = f_{I_n} = \mathrm{id}_{F^n}$ injectief is. Dus f_A is injectief, wat betekent dat $\ker f_A = \{0\}$. Omdat f_A injectief is, volgt uit deel (1) dat $m \geq n$. Omdat f_A surjectief is, moet dim(im f_A) = m.

Breng A in row echelon form A'. Dan heeft A' precies n kolommen en elke kolom bevat een pivot (want f_A injectief). Dus A' heeft n niet-nul rijen. Maar im $A' = \text{im } A = F^m$ heeft dimensie m.

Aangezien de n niet-nul rijen van A' de row space opspannen en $\dim(R(A')) = m$, volgt $n \ge m$.

Combineren we $m \ge n$ en $n \ge m$, dan m = n.