1. Calculer
$$\sum_{i=1}^{13} i = 1 + 2 + 3 + \dots + 13$$
.

2. Calculer
$$\sum_{i=1}^{30} i = 1 + 2 + 3 + ... + 30$$
.

- 3. Donner une définition par récurence de la suite définie pour tout entier $n \ge 1$ par $S_n = \sum_{i=1}^n i$.
- **4.** Conjecturer une formule explicite pour S_n .
- 5. Démontrer cette conjecture.
- **6.** Calculer S_{63} .

7. Calculer
$$\sum_{i=14}^{30} i = 14 + 15 + ... + 30$$
.

- 8. Trouver une formule pour $\sum_{i=p}^{n} i = p + (p+1) + ... + (n-1) + n$.
- 9. Soit $(u_n)_{n\geq 0}$ la suite arithmétique de raison 2 telle que $u_5=1$.

Calculer
$$\sum_{i=5}^{21} u_i = u_5 + u_6 + ... + u_{20} + u_{21}$$
.

10. Donner une formule pour $\sum_{i=p}^{n} u_i = u_p + u_{p+1} + ... + u_{n-1} + u_n$ dans le cas où la suite (u_n) est arithmétique.