Disscusion on Cyclic Groups OT 2

郑奘巍

zzw@smail.nju.edu.cn

2019年3月14日

问题

在二维平面上的"移动"构成循环群吗?若不是,请改造为循环群。 你能找到这个循环群的一些子群吗?他们是循环群吗? 二维平面的"移动"有哪些元素?

定义

ℝ*ℝ 二维平面/向量空间

定义

 $\{(\theta,r): \theta \in [0,360), r \in \mathbb{R}\}$ 极坐标

我们将分别考察他们是否有可能为循环群

定义

同构 (isomorphic): G 和 G' 为两个群,如果有一个 G 到 G' 的 双射 σ 满足 $\forall x, y \in G, \sigma(xy) = \sigma(x)\sigma(y)$,则称 G 与 G' 同构

同构的群拥有相同的性质。我们将在同构意义下考察循环群。

定义

直积: 令 $G = G_1 \times G_2$, G 中乘法定义为 $(a_1,b_1)(a_2,b_2) = (a_1a_2,b_1b_2)$, 可证 G 为群(可参考书本第九章)

书中告诉了我们, \mathbb{Z} 是循环群,其子群 $n\mathbb{Z}, n=0,1,2,\cdots$ 也是循环群(且循环群的子群也是循环群)。有没有除此之外的循环群呢?

Infinite cyclic group $G=\langle a \rangle$ is isomorphic to $(\mathbb{Z},+)$

证明.

Define $\phi: \mathbb{Z} \to G: \phi(k) = a^k$.

Discuss homomorphism, surjection, injection respectively.

Cyclic group of same order are isomorphic to each other.

证明.

$$G_1 = \langle a \rangle, G_2 = \langle b \rangle, |a| = |b| = k. \ \phi: G_1 \to G_2: \phi(a^n) = b^n.$$

Discuss homomorphism, surjection, injection respectively.

引理

平面移动群: ℝ∗ℝ 二维平面/向量空间

证明.

无限循环群必然可数,故此不为循环群

定义

$$\{(\theta,r):\theta\in[0,360),r\in\mathbb{R}\}$$
 极坐标

改造为群:

定义

平面移动群: $G = \mathbb{T} * \mathbb{R}$, \mathbb{R} 为实数加群, $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ 为圆群

利用 $e^{i\theta}$ 的形式可与 $[0,\frac{2}{\pi})$ 建立对应,从而不可数。也不为循环 群

改造为可数。由 Theorem 4.25 知 nth roots of unity 为 \mathbb{T} 的子群,且为循环群,记为 \mathbb{T}_n

定义

平面移动群: $\mathbb{Z} \times \mathbb{Z}$

定义

平面移动群: $\mathbb{T}_n \times \mathbb{Z}$

注意:以上两个群是同构的,以下仅讨论 $\mathbb{Z} \times \mathbb{Z}$

 $G = \mathbb{Z} \times \mathbb{Z}$ is not a cyclic group

证明.

Suppose to the contrary (a,b) is a generator, since $(1,0) \in G$, $\exists n,nb=0$. Thus b=0 but it cannot generate (0,1).

注意: 直积中只要有一个循环群是无限的, 以上论证均成立。

改造为有限:

定义

平面移动群: $\mathbb{Z}_n \times \mathbb{Z}_m$

$$Z_2 \times Z_2, Z_2 \times Z_3$$

Let G and H both be finite cyclic groups with orders $n=|G|=\langle x\rangle$ and $m=|H|=\langle y\rangle$ respectively. Then $G\times H$ is cyclic if and only if $\gcd(n,m)=1$.

证明.

"
$$\Leftarrow$$
 ": $|(x,y)|=k\Rightarrow (x,y)^k=e\Rightarrow x^k=e_G,y^k=e_H\Rightarrow n|k,m|k\Rightarrow nm|k$. And $(x,y)^nm=e$. Thus $k|nm$. So $|(x,y)|=nm$

" \Rightarrow ": $G \times H$ is cyclic, and (x,y) is one generator. First we prove that x generates G. In same way we know y generates H. Then we prove that $g \in G, |g| = m, h \in H, |h| = n$ then |(g,h)| = lcm(g,h).

Note

$$|G\times H|=|G||H|=mn=|\langle x,y\rangle|=lcm(|x|,|y|)=lcm(m,n).$$
 Thus $gcd(m,n)=1.$

最后,我们通过改造得到了两组二维平面移动的循环群(都只能表示部分方向):

- $ightharpoonup Z_n * Z_m, (n, m) = 1$
- $T_n * Z_m, (n, m) = 1$

由于其均同构于 Z_{nm} , 根据书上定理,其共有 $\phi(nm)$ 个生成元。对于 $b=a^k$, 子群 $\langle b \rangle$ 的阶数为 $\frac{n}{\gcd(k,mn)}$

定义

直积: 令 $G = G_1 \times G_2$, G 中乘法定义为 $(a_1,b_1)(a_2,b_2) = (a_1a_2,b_1b_2)$, 可证 G 为群(可参考书本第九章)

问题

在 $Z_3 \times Z_4$ 中,(1,2) 是生成元吗?若不是,其阶为多少?

问题

$$(x,y) \in Z_n \times Z_m, \ \ \ \ \ \ \ \ \ \ |\langle (x,y) \rangle|$$

Thank You!