NOVA **IMS** 

> Information Management School

# COURSE OVERVIEW

**Data Science for Marketing** 

© 2021-2022 Nuno António





















## Theory classes + Course coordination

# HELLO!

### Nuno António





in www.linkedin.com/in/nunoantonio

 $\boldsymbol{R}^{\text{G}}$  www.researchgate.net/profile/nuno\_antonio



## **Practical classes**



### Ana Edmundo



aedmundo@novaims.unl.pt



www.linkedin.com/in/ana-edmundo



### Diogo Diogo



ddiogo@novaims.unl.pt



www.linkedin.com/in/diogodiogo



## Intended learning outcomes

- Understand the fundamental concepts associated with Data Science
- Recognize and identify Data Science applications in Marketing
- Understand a Data Science project lifecycle
- Identify the most common types of data and how to collect data from SQL databases
- Use Excel PowerPivot to do basic and intermediate data description/characterization tasks
- Use Python as an analytical tool
- Be able to execute basic and intermediate data preparation and preprocessing tasks
- Be able to use data visualization as both a data exploration tool and a communication tool
- Calculate and explain the most relevant performance measures used in association rules and describe the Apriori algorithm
- Calculate and explain data similarity and dissimilarity measures
- Calculate and interpret the RFM model



## Tentative schedule

#### W1 06 SEP Theory

Course overview Introduction to DS CRISP-DM

proc. model

### W2 13 SEP Theory

Common data types and SQL Data characterization/ description

#### W3 20 SEP Practice

SQL exercises

Data
characterization/
description
exercises

#### W4 27 SEP Practice

Data characterization /description exercises

#### W5 04 OCT Theory

Data understanding Communication and Data visualization

### W6 11 OCT Theory

Data preparation

#### W7 18 OCT Practice

Python quiz
Data
understanding
and
visualization

## W8

05 NOV Theory

Association rules

#### W9

08 NOV Practice

Association rules (including data underst. and preparation)

#### W10

15 NOV Theory

Data similarity and dissimilarity measures

#### W11 22 NOV Theory

RFM model

#### W12 29 NOV Practice

Data similarity and dissimilarity measures exercise

#### W13 06 DEC Practice

RFM model exercise

#### W14 Practice

Group project Q&A



## Extra classes

## For those not familiar with Python

- Saturday, 24 Sep. 15h 17h (online)
  - Tools setup
- Saturday, 01 Oct. 14h30 18h30 (hybrid)
  - Python Bootcamp 1/2
- Saturday, 08 Oct. 14h30 18h30 (hybrid)
  - Python Bootcamp 2/2



## Pedagogical model Fall 2022

- For now, all classes will be in hybrid mode (presential and online):
  - In presential classes:
    - A minimum of 5 students is required
    - If the minimum is not reached in one class, the class goes to fully online mode after that class
  - In online classes:
    - Students should have their webcams turned on or could be moved to the Zoom "waiting room"
    - As the classes will have a high practical component, it is recommended to use two screens or a large screen (one for zoom, one for running the exercises)
- Python introductory online courses:
  - If you are not familiarized Python, enroll and complete Datacamp's online courses announced on Moodle until week 3



## **Evaluation method**

| Python quiz                                                                                                                                                                                 | 10%  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <ul> <li>Group project:</li> <li>The minimum grade is 8.0 out of 20</li> <li>To be delivered in the exam season (to be defined according to the 1<sup>st</sup> season exam date)</li> </ul> | 50%  |
| <ul> <li>Exam:</li> <li>The minimum grade is 8.0 out of 20</li> <li>1<sup>st</sup> season and 2<sup>nd</sup> season have the same weight</li> </ul>                                         | 40%  |
| TOTAL                                                                                                                                                                                       | 100% |

Evaluation will be continuous and must include a practical component. Therefore, there will be no exam that alone corresponds to 100% of the grade



## Quiz and exam details

- Individual, with materials consultation (paper or device)
- Quizzes and exams are made online, in Moodle
- If done remotely (depends on the rules at the moment of the quiz/exam), uses proctoring software (Respondus Lockdown browser)
- Multiple choice questions:
  - Single answer questions (e.g., 1 point 4 possible answers):
    - Correct answer: full score of the question (e.g., 1 point)
    - Incorrect answer: negative (-1/possible answers- e.g.,-1/4 = -0.25)
  - Multiple answers questions:
    - Each correct answer: number correct questions/full score of the question
    - Each incorrect answer: -number correct questions/full score of the question
  - If no answer is given or if "I do not want to answer" is selected, the score will be 0 (zero)
- Typically, a quiz has 10 to 20 questions and an exam, 40 to 50 questions. The time to answer each question is 1 min. 30 sec.



## Group project (1/2)

### Objective:

To develop student's ability to build a Data Science project employing the CRISP-DM process model – more details in the respective notebook

- Students must organize themselves into groups of 2 to 4 students
- Students can be from different theoretical and practical classes



## Group project (2/2)

#### Deliverables:

- Python source code (Jupyter notebook or .py files) and/or Excel files.
  Python code should be commented to facilitate comprehension
- Powerpoint presentation
- Report:
  - Maximum of 20 pages (excluding appendixes)
  - The minimum font size is 10
  - Should describe the main outputs according to CRISP-DM, including a brief description of the problem, methods, results, and their discussion

#### Presentation:

- To be done in the exam season with all group members present
- Slots of 20 minutes per group
- 10 minutes of presentation, another 10 for discussion



## Bibliography

- [A] Miller, T. W. (2015). Marketing Data Science: Modeling Techniques in Predictive Analytics with R and Python, Pearson
- [B] Keller, G. and Gaciu, N. (2020). Statistics for Management and Economics (2nd edition), Cengage Learning
- [C] Han, J., Kamber, M., Pei, J. (2012). Data Mining Concepts and Techniques (Third edition), Morgan Kaufmann
- [D] Linoff, G. S., and Berry, M.J.A (2011). Data Mining Techniques for marketing, sales, and customer support (Third edition). Wiley Publishing, Inc.
- [E] Provost, F., and Fawcett, T. (2013). Data Science for Business, O'Reilly
- [F] Materials and references URLs provided in class by the instructors



## Communications

- Course instructors to students materials and logistics:
  - Announcements via Moodle (followed by email)
  - Moodle: publication of course materials
- Students to course instructors questions by priority order:
  - Check course materials
  - Post a question in Moodle (Forum) anyone can post and answer/help
  - Email
  - Meeting (available Monday and Thursday, 18h30-20h) (requires scheduling by email)
- Submissions (project deliverables, groups memberships, presentations' time slots selection):
  - Must be made via Moodle in the appropriate slots
  - Must be made before the deadlines

# Questions?

#### **Data Science for Marketing**

© 2021-2022 Nuno António (Rev. 2022-09-05)



















