Task Scheduling in a Mobile Cloud Computing

Overview

Introduction of data structure and rescheduling process

Some testing samples

Contributions & Code

1. Data Structure & Process

Class Node

- id: *node id (int)*
- Parents: immediate parents (list of node objects)
- children: immediate children (list of nodes objects)
- core_speed: speed of the node on each core
- cloud_speed: speed of the node on cloud
- assignment: core1/core2/core3/cloud
- start time: start time on the corresponding core/cloud
- finish time: finish time on the corresponding core/cloud
- ready time: ready time on the corresponding core/cloud
- priority_socre: *priority score of the node*
- _local_cloud(self): compute whether the node should be assigned to local or cloud initially
- _computation_cost: compute w_i in the section 3 in paper

1. Data Structure & Process

2. Testing Samples & Results

Test Sample 1:

TASK	Core 1	Core 2	Core 3
1	9	7	5
2	8	6	5
3	6	5	4
4	7	5	3
5	5	4	2
6	7	6	4
7	8	5	3
8	6	4	2
9	5	3	2
10	7	4	2

Test Sample 1

Step 1: Initial Assignment

Energy = 100.5 Time = 18

Test Sample 1 - Python

Step 2: after running outer loop + kernel algorithm many times:

Let $T_max = 27$

Energy = 24 Time = 28

Total Running Time with Python: 0.091(s)

Test Sample 2: our own sample

$$1 \le i \le N,$$

$$T_i^S = 3$$

$$T_i^C = 1$$

$$T_i^r = 1$$

TASK	Core 1	Core 2	Core 3
1	9	7	5
2	8	6	5
3	6	5	4
4	7	5	3
5	5	4	2
6	7	6	4
7	8	5	3
8	6	4	2
9	5	3	2
10	7	4	2

Test Sample 2 - Python

Step 1: Initial Assignment

Energy = 113 Time = 23

Test Sample 2 - Python

Step 2: after running outer loop + kernel algorithm many times:

Let $T_max = 27$

Energy = 31.5 Time = 25

Total Running Time with Python: 0.109(s)