CSCI 6370 IR and Web Search ASSIGNMENT 4 Due is 06/29/2020 23:59 Ulvi Bajarani Student ID 20539914

E-mail: ulvi.bajarani01@utrgv.edu

Answers of the Assignment 4

Answer 1. The HITS Algorithm answers.

Note: For an easy calculation, the matrix view is provided.

Initial authority a_0 for P_1 , P_2 , P_3 , P_4 is $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$ Initial hubs h_0 for P_1 , P_2 , P_3 , P_4 is $\begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}$

Using the scheme provided in the assignment, we can create an Adjacent Matrix (A):

Adjacency Matrix (A)

Using the Adjacent Matrix (A) provided above, we can create an Transpose Matrix (A^T) :

Matrix Transposition (A^T)

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

For the a_k , we should calculate $a_k = (A^T \times A) \times a_{k-1}$. For the h_k , we should calculate $h_k = (A \times A^T) \times h_{k-1}$. This is done at the each k step. The matrix of $A^T \times A$ and $A \times A^T$ are provided below:

Matrix Multiplication $(A^T \times A)$

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

Matrix Multiplication $(A \times A^T)$

$$\begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The steps of the calculation:

	Authorities (k=1)	Hubs (k=1) Author	orities (k=1, normalized)	Hubs (k=	=1, normalized)
P_1	2	4	0.365148371670111	0.7302	296743340221
P_2	1	3	0.182574185835055	0.5477	722557505166
P_3	4	2	0.730296743340221	0.3651	148371670111
P_4	3	1	0.547722557505166	0.1825	574185835055
	Authorities (k=2)	Hubs $(k=2)$	Authorities (k=2, norma	alized)	Hubs (k=2, normalized)
P_1	1.09544511501033	2.37346441585572	0.342997170285017	7	0.743160535617539
P_2	0.182574185835055	1.82574185835055	0.057166195047503	3	0.571661950475029
P_3	2.37346441585572	1.09544511501033	0.743160535617539)	0.342997170285017
P_4	1.82574185835055	0.182574185835055	0.571661950475029)	0.057166195047503
	Authorities (k=3)	Hubs $(k=3)$	Authorities (k=3, norma	alized)	Hubs (k=3, normalized)
P_1	1.08615770590256	2.40098019199512	0.335091269106517	7	0.740728068551244
P_2	0.057166195047503	1.8864844365676	0.017636382584554	4	0.582000625290265
P_3	2.40098019199512	1.08615770590256	0.740728068551244	4	0.335091269106517
P_4	1.8864844365676	0.057166195047503	0.582000625290265	ó	0.017636382584554

	Authorities (k=4)	Hubs $(k=4)$	Authorities (k=4, normalized)	Hubs (k=4, normalized)
P_1	1.07581933765776	2.39854803149927	0.331394514948728	0.738846787426673
P_2	0.017636382584554	1.90472931913177	0.005432696966373	0.58673127236824
P_3	2.39854803149927	1.07581933765776	0.738846787426673	0.331394514948728
P_4	1.90472931913177	0.017636382584554	0.58673127236824	0.005432696966373
	Authorities (k=5)	Hubs $(k=5)$	Authorities (k=5, normalized)	Hubs (k=5, normalized)
P_1	1.0702413023754	2.39581936217031	0.329619989073432	0.737880280108545
P_2	0.005432696966373	1.91230933216315	0.001673197914078	0.588965665755573
	0.0001020000010	1.51200505210010	0.001010101010	0.00000000100010
P_3	2.39581936217031	1.0702413023754	0.737880280108545	0.329619989073432

Answer 2. The PageRank Algorithm answers. The initial values are:

	E (Initial)	R (Initial)	Out links
P_1	0.0375	0.25	2
P_2	0.0375	0.25	2
P_3	0.0375	0.25	1
P_4	0.0375	0.25	1

The calculation steps:

$$\begin{array}{c} R'\ (i=1) \qquad c(i=1) \qquad R'=R'c\ (i=1) \\ P_1 \quad 0.5375 \quad 0.714285714285714 \quad 0.383928571428571 \\ P_2 \quad 0.4125 \quad 0.714285714285714 \quad 0.294642857142857 \\ P_3 \quad 0.2875 \quad 0.714285714285714 \quad 0.205357142857143 \\ P_4 \quad 0.1625 \quad 0.714285714285714 \quad 0.116071428571429 \\ \hline R'\ (i=2) \qquad c(i=2) \qquad R'=R'c\ (i=2) \\ P_1 \quad 0.358928571428572 \quad 0.883280757097791 \quad 0.317034700315457 \\ P_2 \quad 0.434821428571429 \quad 0.883280757097791 \quad 0.384069400630915 \\ P_3 \quad 0.153571428571429 \quad 0.883280757097791 \quad 0.135646687697161 \\ P_4 \quad 0.184821428571429 \quad 0.883280757097791 \quad 0.163249211356467 \\ \hline R'\ (i=3) \qquad c(i=3) \qquad R'=R'c\ (i=3) \\ P_2 \quad 0.331664037854889 \quad 0.910461693114095 \quad 0.306275579809004 \\ P_2 \quad 0.331664037854889 \quad 0.910461693114095 \quad 0.30196740145042 \\ P_3 \quad 0.200749211356467 \quad 0.910461693114095 \quad 0.182774466862928 \\ P_4 \quad 0.229534700315458 \quad 0.910461693114095 \quad 0.208982551877648 \\ \hline R'\ (i=4) \qquad c(i=4) \qquad R'=R'c\ (i=4) \\ P_1 \quad 0.429257018740576 \quad 0.807992318648453 \quad 0.301714235157268 \\ P_3 \quad 0.246482551877648 \quad 0.807992318648453 \quad 0.199156008598008 \\ P_4 \quad 0.18848370072521 \quad 0.807992318648453 \quad 0.152293382376404 \\ \hline \end{array}$$