

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Facultad de Ciencias

Programa de la asignatura

Denominación de la asignatura:

Análisis de Algoritmos

Clave:	Semestre:	Eje tema	Eje temático:			
1532	5	Comput	Computación Teórica			
Carácter	ácter: Obligatoria Horas Horas semana			Total de Horas		
Tipo: Teórica			Teoría:	Práctica:		
Tipo. Te	orica		4	2 6 96		
Modalidad: Curso			Duración del programa: Semestral			

Asignatura con seriación obligatoria antecedente: Matemáticas para Ciencias Aplicadas I; Álgebra Superior II; Gráficas y Juegos

Asignatura con seriación obligatoria subsecuente: Criptografía y Seguridad; Computación Concurrente

Asignatura con seriación indicativa antecedente: Probabilidad I; Álgebra Lineal I; Modelado y Programación;

Asignatura con seriación indicativa subsecuente: Complejidad Computacional; Compiladores; Inteligencia Artificial; Sistemas Operativos

Objetivo general:

Conocer para aplicar los conceptos de complejidad, justificación, análisis y diseño de algoritmos. Para desarrollar estos temas se revisan algoritmos de búsqueda, ordenamiento y algoritmos que involucran gráficas.

Índice te	mático			
Unidad	Towns	Horas		
	Temas	Teóricas	Prácticas	
	Conceptos básicos	7	3	
II	Justificación y diseño de algoritmos	13	7	
III	Algoritmos que involucran secuencias y conjuntos	20	10	
IV	Algoritmos para teoría de gráficas	12	6	
V	Temas selectos	12	6	
	Total de horas:	64	32	
	Suma total de horas:	96		

Contenido temático				
Unidad	Tema			
I Concepto	os básicos			
l.1	Problemas y algoritmos.			
1.2	Tipos de problemas.			
1.3	Complejidad.			
1.4	Modelos de cómputo.			
II Justifica	ción y diseño de algoritmos			
II.1	Notación asintótica.			
II.2	Algoritmos iterativos.			
II.3	Algoritmos recursivos.			
11.4	Diseño de algoritmos.			
III Algoritmos que involucran secuencias y conjuntos				
III.1	Diccionarios.			
III.2	Árboles binarios.			
III.3	Búsquedas.			
III.4	Ordenamientos.			
III.5	Cota mínima de ordenamiento.			
IV Algoritr	nos para teoría de gráficas			
IV.1	Árboles generadores.			
IV.2	Árboles generadores de peso mínimo.			
IV.3	La ruta más corta.			
IV.4	Teoría de redes.			
V Temas selectos				
V.1	Algoritmos deterministas y no-deterministas.			
V.2	Algoritmos para apareamiento de cadenas.			
V.3	Geometría computacional.			
V.4	Algoritmos de aproximación.			
V.5	Calendarización.			

Bibliografía básica:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest y Clifford Stein, *Introduction to Algorithms*. MIT Press, Third Edition, 2009.
- 2. Jon Kleinberg y Éva Tardos, Algorithm Design. Addison Wesley, 2005.

Bibliografía complementaria:

- 1. Steven S. Skiena, The Algorithm Design Manual. Springer, 2nd Edition, 2008.
- 2. Sanjoy Dasgupta, Christos Papadimitriou y Umesh Vazirani, Algorithms. McGraw-Hill, 2006.
- 3. Henry S. Warren. Hacker's Delight. Addison-Wesley Professional, 2002.
- 4. Ronald L. Graham, Donald E. Knuth y Oren Patashnik, *Concrete Mathematics: A Foundation for Computer Science*. Addison-Wesley Professional, 2nd Edition, 1994.

Sugerencias didácticas:		Métodos de evaluación:	
Exposición oral Exposición audiovisual Ejercicios dentro de clase Ejercicios fuera del aula Seminarios Lecturas obligatorias Trabajo de investigación Prácticas de taller o laboratorio Prácticas de campo	(X) (X) (X) (X) (X) (X) (X)	Exámenes parciales Examen final escrito Trabajos y tareas fuera del aula Exposición de seminarios por los alumnos Participación en clase Asistencia Seminario Otras: Prácticas de laboratorio. Proyectos de programación.	(X) () (X) () ()
Otras:		p. 09. d d	

Perfil profesiográfico:

Egresado preferentemente de la Licenciatura en Ciencias de la Computación o Matemático con especialidad en Computación. Es conveniente que posea un posgrado en la disciplina. Con experiencia docente.