EC 2.101 - Digital Systems and Microcontrollers

Practice Sheet 2 (Lec 1 – Lec 12)

Q1. Three Variable Maps

a.
$$F(x, y, z) = \sum (0, 2, 4, 5, 6)$$

$$F = z' + xy'$$

b.
$$F(x, y, z) = \sum (3, 4, 5, 6, 7)$$

$$F = x + yz$$

c.
$$F(x, y, z) = x'yz + xy'z' + xyz'$$

F = x'yz + xz'

Q2. Four Variable Maps

a.
$$F(w, x, y, z) = \sum (1, 3, 4, 5, 6, 7, 9, 11, 13, 15)$$

	\sqrt{yz}			<u>y</u>		1	
wx	. /	00	01	11	10		
	00	m_0	1	<i>m</i> ₃ 1	m_2		
	01	1	<i>m</i> ₅	1	1 1		
	11	m_{12}	<i>m</i> ₁₃ 1	<i>m</i> ₁₅	m_{14}		x
w	10	m_8	<i>m</i> ₉ 1	1	m_{I0}		
	_			\overline{z}			

F = z + xw'

b.
$$F(A, B, C, D) = \sum (3, 7, 11, 13, 14, 15)$$

CD)	C			,	
AB	`\	00	01	11	10		
	00	m_{θ}	m_I	1	m_2		
	01	m_4	m_5	m ₇	m_6		מ
4	11	m ₁₂	1	1	m_{14} 1		В
A	10	m_8	m_g	1	m_{I0}		
	_			D			

$$F = CD + ABD + ABC$$

c.
$$F(w, x, y, z) = x'z + w'xy' + w(x'y + xy')$$

$$F = xy' + x'z + wx'y$$

d.
$$F(A,B,C,D) = AD' + B'C'D + BCD' + BC'D$$

F = AD' + C'D + BCD'

For product of maxterms representation, we need to optimize the zeros and write F' as a sum of minterms and take its complement.

$$F' = A'C'D' + A'B'C + CD$$

$$\Rightarrow F = (A'C'D')' \cdot (A'B'C)' \cdot (CD)' = (A + C + D)(A + B + C')(C' + D')$$

Q3. Multi-Level Circuits

a.
$$CD(B + C)A + (BC' + DE')$$
 using only NAND gates

$$F = ACD(B + C) + (BC' + DE')$$

$$F' = [ACD(B + C)]' [BC' + DE']'$$

$$F' = [ACD(B'C')']' [BC' + DE']'$$

$$F' = [CD(B'C')'A]' [[(BC')' (DE')]']'$$

b. CD(B + C)A + (BC' + DE') using only NOR gates

$$F = ACD(B + C) + (BC' + DE')$$

$$F' = [ACD(B + C) + (BC' + DE')]'$$

$$F' = [(A' + C' + D')'(B + C) + (B' + C)' + (D' + E)']'$$

$$F' = [((A' + C' + D') + (B + C)')' + (B' + C)' + (D' + E)']'$$

$$F' = [(A' + C' + D' + (B + C)')' + (B' + C)' + (D' + E)']'$$

c.
$$w(x + y + z) + xyz$$
 using only NAND gates

$$F = w(x + y + z) + xyz$$

 $F' = [w(x + y + z)]'[xyz]'$

F' = [w(x'y'z')')]'(xyz)'

Q4. Implement the following Boolean function F, together with the don't-care conditions d, using no more than two NOR gates:

$$F(A, B, C, D) = \sum (2, 4, 10, 12, 14)$$

 $d(A, B, C, D) = \sum (0, 1, 5, 8)$

$$F = B'D' + AD' + C'D'$$

 $F' = D + A'BC$
 $F = [D + A'BC]'$
 $F = [D + (A + B' + C')']'$

Q5. Design a half subtractor with 2 input variables, X(minuend) and Y(subtrahend) and 2 output variables, D(Difference) and B(Borrow)

Input v	ariables	Output variables		
X	Y	D	В	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	

From the minterms of the above table, it is clear that the Boolean expressions for the D and B are as follows:

