SOMME DE VARIABLES ALÉATOIRES

Résumé

Étudier une variable aléatoire, c'est bien. Étudier deux variables aléatoires, c'est mieux. Étudier la somme de ces deux variables aléatoire, c'est ce que l'on veut!

A Attention

Dans tout le chapitre, on considère une expérience aléatoire dans un univers Ω fini.

1 Somme de variables aléatoires réelles

Définition 1 | Variable aléatoire réelle

Une **variable aléatoire réelle** X sur Ω est une fonction définie sur Ω et à valeurs dans R.

Exemple 2 On lance une pièce de monnaie et on regarde la face apparente, on gagne 10 € si pile et on perd 10 € si face.

L'univers des possibles est $\Omega = \{\text{pile}; \text{face}\}\$. Appelons X la variable aléatoire égale au gain en €.

X ne peut prendre que deux valeurs :

$$X(pile) = 10$$
 $X(face) = -10.$

Définition 3 | Produit par un réel

Soient X une variable aléatoire réelle sur Ω et $a \in \mathbb{R}$. La variable aléatoire Y = aX est définie sur Ω par :

$$Y(\omega)=aX(\omega).$$

Exemple 4 Dans l'exemple précédent, notons Y la variable aléatoire égale au gain de l'adversaire du joueur (casino, croupier, etc.). Nous avons Y = -X.

Définition 5 | Somme

Soient X et Y deux variables aléatoires réelles sur Ω . La variable aléatoire Z = X + Y est définie sur Ω par :

$$Z(\omega) = X(\omega) + Y(\omega)$$
.

Exemple 6 Toujours dans le même exemple, si on note Z la somme X+Y alors Z=0.

2 Indicateurs usuels

Notons ici que $\Omega = \{\omega_1; \dots; \omega_r\}$ et que X prend les valeurs x_1, \dots, x_s , avec $r \neq 0$, $s \neq 0$ et les x_i distincts.

Lemme 7 | Espérance d'une variable aléatoire

$$\mathbb{E}[X] = \sum_{k=1}^{r} X(\omega_k) \times \mathbb{P}\left(\{\omega_k\}\right)$$

Démonstration. On sait, par définition que $\mathbb{E}[X] = \sum_{i=1}^{s} x_i \times \mathbb{P}(X = x_i)$.

Il "suffit" donc de décomposer chaque événement $\{X = x_i\}$ en réunion disjointe de $\{\omega_k\}$.

Théorème 8 | Linéarité de l'espérance

Soient X, Y deux variables aléatoires réelles et a, b deux réels.

$$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$$

Démonstration. Notons Z = aX + bY. Nous avons donc: $\forall \omega \in \Omega, Z(\omega) = aX(\omega) + bY(\omega)$. En appliquant le lemme précédent à Z, on a :

$$\mathbb{E}[Z] = \sum_{k=1}^{r} Z(\omega_k) \times \mathbb{P}\left(\{\omega_k\}\right)$$

$$= \sum_{k=1}^{r} (aX(\omega) + bY(\omega)) \times \mathbb{P}\left(\{\omega_k\}\right)$$

$$= a\sum_{k=1}^{r} X(\omega_k) \times \mathbb{P}\left(\{\omega_k\}\right) + b\sum_{k=1}^{r} Y(\omega_k) \times \mathbb{P}\left(\{\omega_k\}\right) \quad \text{par linéarité de la somme}$$

$$= a\mathbb{E}[X] + b\mathbb{E}[Y]$$

Propriété 9

Soient X une variable aléatoire réelle et $a \in \mathbb{R}$.

$$Var(aX) = a^2 Var(X)$$

Démonstration. Notons Y = aX. Par définition, $Var(Y) = \mathbb{E}[(Y - \mathbb{E}[Y])^2]$.

$$Var(Y) = \mathbb{E}\left[(Y - \mathbb{E}[Y])^2 \right]$$

$$= \mathbb{E}\left[(aX - \mathbb{E}[aX])^2 \right]$$

$$= \mathbb{E}\left[(aX - a\mathbb{E}[X])^2 \right]$$
par linéarité de l'espérance
$$= \mathbb{E}\left[a^2 (X - \mathbb{E}[X])^2 \right]$$

$$= a^2 \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right]$$
par linéarité de l'espérance
$$= a^2 \text{Var}(X)$$

Théorème 10 | Somme indépendante

Soient *X* et *Y* deux variables aléatoires réelles **indépendantes**.

$$Var(X + Y) = Var(X) + Var(Y)$$

Démonstration. Admise.

3 Application à la loi binomiale

Propriété 11

Soit $X \sim \mathcal{B}(n, p)$.

Il existe n variables aléatoires X_i indépendantes de loi $\mathcal{B}(p)$ telles que :

$$X = X_1 + \cdots + X_n$$

Démonstration. Admise.

Propriété 12 | Espérance

Si $X \sim \mathcal{B}(n, p)$, alors:

$$\mathbb{E}[X] = np.$$

Démonstration. On se sert de la propriété précédente, si $X = X_1 + \cdots + X_n$ avec les $X_i \sim \mathcal{B}(p)$ indépendantes.

$$\mathbb{E}[X] = \mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n] = p + \dots + p = np$$

Propriété 13 | Variance et écart-type

Soit $X \sim \mathcal{B}(n, p)$.

$$ightharpoonup Var(X) = np(1-p)$$

Démonstration. Si $X = X_1 + \cdots + X_n$ avec les $X_i \sim \mathcal{B}(p)$ indépendantes,

$$Var(X) = Var(X_1 + \dots + X_n) = Var(X_1) + \dots + Var(X_n) = p(1-p) + \dots + p(1-p) = np(1-p)$$