17.64

证明:对任意 10 阶群 G,分两种情况讨论:

- (1) 若 G 是 Abel 群,则由教材例 17.38 知,G 中存在 2 阶元 a 和 5 阶元 b。由教材例 17.6 知,|ab|=|a||b|=10。从而 $G=\langle ab\rangle\cong\mathbb{Z}_{10}$ 是循环群(易证,任何无限阶循环群都同构于整数加群,任何 n 阶循环群都同构于模 n 加群。所以 n 阶循环群在同构意义下是唯一的)。
- (2) 若 G 不是 Abel 群,则存在 5 阶元。这是因为:若不然,则 G 中所有非单位元都是 2 阶元,即,对任意 $x, y \in G$,有

$$(xy)^2 = e = x^2y^2$$
 $(x, y, xy \text{ as } 2 \text{ Mpd } 1 \text{ Mpd})$

$$\implies xyxy = xxyy \tag{(xy)^2 = x^2y^2}$$

$$\iff yx = xy$$
 (消去律)

所以 G 是 Abel 群,与前提矛盾。

设 $a \in G$ 是一个 5 阶元,记 $\langle a \rangle = A$ 。下面证明,除 $a^i (i=1,2,3,4)$ 外, G 中再无其它 5 阶元。

若不然,设 $b \notin A$ 也是一个 5 阶元,则 $B = \langle b \rangle$ 也是 G 的一个 5 阶子群。令 $H = A \cap B$,则 $H \leq A$ 。由 Lagrange 定理知,|H| 5。因为 $a \neq b$,所以 |H| 不可能等于 5,于是必有 |H| = 1。由习题 17.33(1) 知,

$$|AB| = \frac{|A||B|}{|A \cap B|} = 25 > 10$$

这与 $AB \subset G$ 矛盾。

这就是说,G-A中所有的元素只能是 2 阶元。

任取一个 2 阶元 b (显然有 $b \notin A$),则 $G = A \cup Ab$ 是 G 的陪集分解。这就是说, $G = \{e, a, a^2, a^3, a^4, ab, a^2b, a^3b, a^4b\}$ 。

下面来讨论它们之间的运算规律。注意到,对任意 a^i , i=1,2,3,4,都应有 $(a^ib)^2=e$ 。从而有 $a^iba^ib=e$,即 $ba^ib=(a^i)^{-1}=a^{5-i}$ 。

有了这个公式,就确定了 G 的运算表: G 中每一个元素都可以表示成 a^ib^j 的形式,其中 i=0,1,2,3,4, j=0,1。对任意 $a^ib^j,a^kb^r\in G$,可运用上述等式将 $a^ib^ja^kb^r$ 化成 a^sb^t 的形式(反复使用 $ba^ib=(a^i)^{-1}=a^{5-i}$,直至 b^j 一项被消去。若 r<j,可以利用 $a^ib^ja^kb^r=a^ib^ja^kb^re^n=a^ib^ja^kb^r+2n$,加大 r)。

上述讨论说明,任何非交换的 10 阶群都可以表示成 $G = \{a^i b^j \mid i \in \mathbb{Z}_5, j \in \mathbb{Z}_2\}$ 的形式,且 $|a| = 5, |b| = 2, ba^i b = a^{5-i}$ 。这就证明了在同构意义下,仅有上述一种形式的 10 阶非交换群。

综上所述,在同构意义下,10 阶群只有两个,一个是10 阶循环群 \mathbb{Z}_{10} ,另一个是二面体群 D_5 。 3

17.65 由习题 17.63 结论知, $|\operatorname{Inn} G| = 1$ 当且仅当 [G:C] = |G/C| = 1,即有 C = G。换言之, $\operatorname{Inn} G = \{I_G\}$ 当且仅当 G 为 Abel 群。

17.66

证明: 定义 $\varphi: G_1 \times G_2 \to G_2 \times G_1$,对任意 $\langle g_1, g_2 \rangle \in G_1 \times G_2$,令 $\varphi(\langle g_1, g_2 \rangle) = \langle g_2, g_1 \rangle$ 。 φ 显然是双射。由积代数定义易于验证 φ 是同态。从而有 $G_1 \times G_2 \cong G_2 \times G_1$ 。

17.67

 $^{^3}$ 正 n 边形的对称群称为**二面体群**(dihedral group),记作 D_n 。它具有结构: $G = \langle \sigma, \tau \mid \sigma^n = \tau^2 = I, \quad \tau \sigma \tau = \sigma^{-1} \rangle$ 。