Chapter 3: CONTEXT-FREE GRAMMARS AND PARSING -Part2

3.3 Parse Trees and Abstract Syntax Trees

3.3.1 Parse trees

1. Derivation V.S. Structure

- Derivations do not uniquely represent the structure of the strings
 - There are many derivations for the same string.
- The string of tokens:
 - (number number) * number
- There exist two different derivations for above string
- (1) $exp \Rightarrow exp \ op \ exp$ [$exp \rightarrow exp \ op \ exp$]
- (2) => $exp \ op \ number$ [$exp \rightarrow number$]
- (3) => exp * number [$op \rightarrow *$]
- (5) => $(exp \ op \ exp) * number [exp \rightarrow exp \ op \ exp]$
- (6) => $(exp \ op \ number) * number [exp \rightarrow number]$
- (7) => (exp number) * number $[op \rightarrow -]$
- (8) => (number number) * $number [exp \rightarrow number]$

- (1) $exp \Rightarrow exp \ op \ exp$ [$exp \rightarrow exp \ op \ exp$]
- (2) => (exp) op exp $[exp \rightarrow (exp)]$
- (3) => $(exp \ op \ exp) \ op \ exp$ $[exp \rightarrow exp \ op \ exp]$
- (4) => $(number\ op\ exp)\ op\ exp\ [exp\rightarrow number]$
- (5) => $(number exp) op exp [op \rightarrow -]$
- (6) => (number number) op exp $[exp \rightarrow number]$
- (7) => (number number) * exp $[op \rightarrow *]$
- (8) =>(number number) * number [$exp \rightarrow number$]

2. Parsing Tree

- A parse tree corresponding to a derivation is a labeled tree.
 - The interior nodes are labeled by non-terminals, the leaf nodes are labeled by terminals;
 - And the children of each internal node represent the replacement of the associated non-terminal in one step of the derivation.
- The example:
 - exp => exp op exp => number op exp => number + exp => number + number
- The example:
 - $exp \Rightarrow exp \ op \ exp \Rightarrow number \ op \ exp \Rightarrow number + exp \Rightarrow number + number$
- Corresponding to the parse tree:

- The above parse tree is corresponds to the three derivations:
- Left most derivation
- (1) exp => exp op exp
- (2) => number op exp
- (3) = number + exp
- (4) => number + number
 - Right most derivation
- (1) $exp => exp \ op \ exp$
- (2) => exp op number
- $(3) = \exp + number$
- (4) => number + number
 - Neither leftmost nor rightmost derivation
- (1) exp => exp op exp
- $(2) = \exp + \exp$
- (3) => number + exp
- (4) => number + number
 - Generally, a parse tree corresponds to many derivations
 - represent the same basic structure for the parsed string of terminals.
 - It is possible to distinguish particular derivations that are uniquely associated with the parse tree.
 - A leftmost derivation:
 - A derivation in which the leftmost non-terminal is replaced at each step in the derivation.
 - Corresponds to the *preorder* numbering of the internal nodes of its associated parse tree.
 - A rightmost derivation:
 - A derivation in which the rightmost non-terminal is replaced at each step in the derivation.
 - Corresponds to the *postorder* numbering of the internal nodes of its associated parse tree.
 - The parse tree corresponds to the first derivation.

Example: The expression (34-3)*42

• The parse tree for the above arithmetic expression

3.3.2 Abstract syntax trees

1. Why Abstract Syntax-Tree

- The parse tree contains more information than is absolutely necessary for a compiler
- For the example: 3*4

- The principle of syntax-directed translation
 - The meaning, or semantics, of the string 3+4 should be directly related to its syntactic structure as represented by the parse tree.
- In this case, the parse tree should imply that the value 3 and the value 4 are to be added.
- · A much simpler way to represent this same information, namely, as the tree

Tree for expression (34-3)*42

• The expression (34-3)*42 whose parse tree can be represented more simply by the tree:

- The parentheses tokens have actually disappeared
 - still represents precisely the semantic content of subtracting 3 from 34, and then multiplying by 42.

2. Abstract Syntax Trees or Syntax Trees

- Syntax trees represent abstractions of the actual source code token sequences,
 - The token sequences cannot be recovered from them (unlike parse trees).
 - Nevertheless they contain all the information needed for translation, in a more efficient form than parse trees.

Examples

- Example 3.8:
 - The grammar for simplified if-statements

statement \rightarrow if-stmt | other if-stmt \rightarrow if (exp) statement | if (exp) statement else statement exp \rightarrow 0 | 1

- The parse tree for the string:
 - if (0) other else other

- Using the grammar of Example 3.6
 statement → if-stmt / other
 if-stmt → if (exp) statement else-part
 else-part → else statement / ε
 exp → 0 | 1
 - This same string has the following parse tree:
 - if (0) other else other

- A syntax tree for the previous string (using either the grammar of Example 3.4 or 3.6) would be:
 - if (0) other else other

- Example 3.9:
 - The grammar of a sequence of statements separated by semicolons from Example 3.7:

stmt-sequence $\rightarrow stmt$; stmt-sequence/stmt $stmt \rightarrow s$

• The string *s*; *s*; *s* has the following *parse tree* with respect to this grammar:

• A possible syntax tree for this same string is:

 Bind all the statement nodes in a sequence together with just one node, so that the previous syntax tree would become

3.4 Ambiguity

1. What is Ambiguity

- Parse trees and syntax trees uniquely express the structure of syntax
- But it is possible for a grammar to permit a string to have more than one parse tree
- For example, the simple integer arithmetic grammar:

$$exp \rightarrow exp \ op \ exp/(\ exp \) \ | \ number$$
 $op \rightarrow + | - | *$
The string: 34-3*42

This string has two different parse trees.

Corresponding to the two leftmost derivations

```
exp => exp op exp
exp \Rightarrow exp \ op \ exp
                               =>number op exp
=> exp \ op \ exp \ op \ exp,
                               =>number - exp
=> number op exp op exp
                               =>number - exp op exp
=>number - exp op exp
                               =>number - number op exp
=> number - number op exp
                               =>number - number * exp
=> number - number * exp
                               => number - number *
=> number - number *
                                  number
  number
```

The associated syntax trees are

2. An Ambiguous Grammar

- A grammar that generates a string with two distinct parse trees
- Such a grammar represents a serious problem for a parser
 - Not specify precisely the syntactic structure of a program
- In some sense, an ambiguous grammar is like a non-deterministic automaton
 - Two separate paths can accept the same string
- Ambiguity in grammars cannot be removed nearly as easily as non-determinism in finite automata
 - No algorithm for doing so, unlike the situation in the case of automata
- Ambiguous grammars always fail the tests that we introduce later for the standard parsing algorithms
 - A body of standard techniques have been developed to deal with typical ambiguities that come up in programming languages.

3. Two Basic Methods dealing with Ambiguity

- One is to state a rule that specifies in each ambiguous case which of the parse trees (or syntax trees) is the correct one, called a disambiguating rule.
 - The advantage: it corrects the ambiguity without changing (and possibly complicating) the grammar.
 - The disadvantage: the syntactic structure of the language is no longer given by the grammar alone.
- The alternative is to Change the grammar into a form that forces the construction of the correct parse tree, thus removing the ambiguity.
- Of course, in either method we must first decide which of the trees in an ambiguous case is the correct one.

4. Remove The Ambiguity in Simple Expression Grammar

- Simply state a disambiguating rule that establishes the relative precedence of the three operations represented.
 - The standard solution is to give addition and subtraction the same precedence, and to give multiplication a higher precedence.

Handout: Lecture#4

- A further disambiguating rule is the associativity of each of the operations of addition, subtraction, and multiplication.
 - Specify that all three of these operations are left associative
- Specify that an operation is nonassociative
 - A sequence of more than one operator in an expression is not allowed.
- For instance, writing simple expression grammar in the following form: fully parenthesized expressions

```
exp \rightarrow factor \ op \ factor \ | \ factor \ | \ factor \ | \ factor \ | \ op \rightarrow + \ | \ |
```

- Strings such as 34-3-42 and even 34-3*42 are now illegal, and must instead be written with parentheses
 - such as (34-3) -42 and 34- (3*42).
- Not only changed the grammar, also changed the language being recognized.

3.4.2 Precedence and Associativity

1. Group of Equal Precedence

• The precedence can be added to our simple expression grammar as follows:

```
exp \rightarrow exp \ addop \ exp \ | \ term
addop \rightarrow + | -
term \rightarrow term \ mulop \ term \ | factor
mulop \rightarrow *
factor \rightarrow (exp) | number
```

- Addition and subtraction will appear "higher" (that is, closer to the root) in the parse and syntax trees
 - Receive lower precedence.

2. Precedence Cascade

- Grouping operators into different precedence levels.
 - Cascade is a standard method in syntactic specification using BNF.
- Replacing the rule
 - $exp \rightarrow exp \ addop \ exp \ | term$
 - by $exp \rightarrow exp$ addop term |term
 - or $exp \rightarrow term \ addop \ exp \ /term$
 - A left recursive rule makes operators associate on the left
 - A right recursive rule makes them associate on the right

3. Removal of Ambiguity

- Removal of ambiguity in the BNF rules for simple arithmetic expressions
 - write the rules to make all the operations left associative
 exp → exp addop term |term
 addop → + |
 - $term \rightarrow term \ mulop \ factor \ / factor \ mulop \rightarrow *$

 $factor \rightarrow (exp) / number$

New Parse Tree

• The parse tree for the expression 34-3*42 is

• The parse tree for the expression 34-3-42

- The precedence cascades cause the parse trees to become much more complex
- The syntax trees, however, are not affected

3.4.3 The dangling else problem

1. An Ambiguity Grammar

• Consider the grammar from:

statement \rightarrow if-stmt | other if-stmt \rightarrow if (exp) statement | if (exp) statement else statement exp \rightarrow 0 | 1

• This grammar is ambiguous as a result of the optional else. Consider the string if (0) if (1) other else other

This string has two parse trees:

2. Dangling else problem

- Which tree is correct depends on associating the single else-part with the first or the second if-statement.
 - The first associates the else-part with the first if-statement;
 - The second associates it with the second if-statement.
- This ambiguity called dangling else problem
- · This disambiguating rule is the most closely nested rule
 - implies that the second parse tree above is the correct one.

An Example

For example:

• Note that, if we wanted we *could* associate the else-part with the first if-statement by using brackets {...} in C, as in

if
$$(x != 0)$$

{ if $(y = = 1/x)$ ok = TRUE; }
else $z = 1/x$;

3. A Solution to the dangling else ambiguity in the BNF

```
statement \rightarrow matched-stmt | unmatched-stmt | matched-stmt \rightarrow if (exp) matched-stmt else matched-stmt | other unmatched-stmt \rightarrow if (exp) statement | if (exp) matched-stmt else unmatched-stmt exp \rightarrow 0 | 1
```

- Permitting only a matched-stmt to come before an else in an if-statement, thus
 - forcing all else-parts to be matched as soon as possible.

The associated parse tree for our sample string now becomes

Which indeed associates the else part with the second if-statement

3.5 Extended Notations: EBNF and Syntax Diagrams

3.5.1 EBNF Notation

1. Special Notations for Repetitive Constructs

- Repetition
 - $A \rightarrow A \alpha/\beta$ (left recursive), and
 - $-A \rightarrow \alpha A \mid \beta$ (right recursive)
 - where α and β are arbitrary strings of terminals and non-terminals, and
 - In the first rule β does not begin with A and
 - In the second β does not end with A
- Notation for repetition as regular expressions use, the asterisk * .

$$A \rightarrow \beta \alpha^*$$
, and

$$A \rightarrow \alpha^* \beta$$

• EBNF opts to use curly brackets {...} to express repetition

$$A \rightarrow \beta \{\alpha\}$$
, and

$$A \rightarrow \{\alpha\} \beta$$

• The problem with any repetition notation is that it obscures how the parse tree is to be constructed, but, as we have seen, we *often* do not care.

Examples

- Example: The case of statement sequences
- The grammar as follows, in right recursive form:

stmt-Sequence → stmt; stmt-Sequence | stmt

 $stmt \rightarrow s$

In EBNF this would appear as

stmt-sequence $\rightarrow \{ stmt; \} stmt$ (right recursive form) stmt-sequence $\rightarrow stmt \{ ; stmt \}$ (left recursive form)

A more significant problem occurs when the associativity matters

 $exp \rightarrow exp \ addop \ term \ | \ term$

 $exp \rightarrow term \{ addop term \}$

(imply left associativity)

 $exp \rightarrow \{term\ addop\} term$

(imply right associativity)

2. Special Notations for Optional Constructs

- Optional construct are indicated by surrounding them with square brackets [...].
- The grammar rules for if-statements with optional else-parts would be written as follows in EBNF:

statement \rightarrow if-stmt / other if-stmt \rightarrow if (exp) statement [else statement] $exp \rightarrow 0 \mid 1$

- stmt-sequence → stmt; stmt-sequence / stmt is written as
- stmt-sequence → stmt [; stmt-sequence]

3.5.2 Syntax Diagrams

- Syntax Diagrams:
 - Graphical representations for visually representing EBNF rules.
- An example: consider the grammar rule factor→(exp)/ number
- The syntax diagram:

- Boxes representing terminals and non-terminals.
- Arrowed lines representing sequencing and choices.
- Non-terminal labels for each diagram representing the grammar rule defining that Non-terminal.
- A round or oval box is used to indicate terminals in a diagram.
- A square or rectangular box is used to indicate non-terminals.
- A repetition : $A \rightarrow \{B\}$

• An optional : $A \rightarrow [B]$

Examples

• Example: Consider the example of simple arithmetic expressions.

```
Handout: Lecture#4
exp \rightarrow exp \ addop \ term \ | \ term
addop \rightarrow + | -
```

 $mulop \rightarrow *$ $factor \rightarrow (exp) \mid number$

- This BNF includes associativity and precedence
- The corresponding EBNF is

 $term \rightarrow term \ mulop \ factor \ / factor$

```
exp \rightarrow term \{ addop term \}
addop \rightarrow + | -
term \rightarrow factor \{ mulop factor \}
```

 $mulop \rightarrow *$

 $factor \rightarrow (exp) / numberr$,

• The corresponding syntax diagrams are given as follows:

Examples

• Example: Consider the grammar of simplified if-statements, the BNF

 $Statement \rightarrow if\text{-}stmt / other$ if-stmt \rightarrow if (exp) statement | if (exp) statement else statement $exp \rightarrow 0 \mid 1$ and the EBNF

 $statement \rightarrow if\text{-}stmt / other$ if-stmt \rightarrow if (exp) statement [else statement] $exp \rightarrow 0 \mid 1$

The corresponding syntax diagrams are given in following figure.

