1. a) SIGHT OF
$$\frac{2^2}{4} + \frac{1}{4} + \frac{7}{83}$$

b T) (4.6) -4.14

II) $(1/2)$ -4.1

III) $(1/2$

ACCRET & SO CONS AS IT IS CONSISTEND THROUGHOUT

4. a)
$$f(b) = \frac{16-6}{\sqrt{16}^{7}} = \frac{5}{2}$$
 B)
 $y+5 = \frac{5}{2}(x-16)$ Al
o.E f.g $2y = 5x - 90$
b) SCAT OF $x^{\frac{1}{2}} - 6x^{-\frac{1}{2}}$ o.E B|
 $5(0+1)$ OF $\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{2}x^{\frac{1}{2}} - 6x^{-\frac{1}{2}} dx$ B|
 $f(a) = \frac{23}{3} \times 12x^{\frac{1}{2}} + C$ A2 -leeoo
 $-5 = \frac{2}{3} \times 16^{\frac{3}{2}} - 12 \times 16^{\frac{1}{2}} + C$ M|

$$C = \frac{1}{3}$$
 OR $f(\alpha) = \frac{1}{3} x^{\frac{3}{2}} - 12x^{\frac{1}{2}} + \frac{1}{3}$ A1

$$\frac{2-c}{\sqrt{x}} = -1$$

$$x + \sqrt{x} - 6 = 0$$

$$\sqrt{x} + 3 \cdot (\sqrt{x} - 2) = 0$$

$$\sqrt{x} = 2$$

$$x = 4$$

$$y = -\frac{55}{3}$$
Al

5.
$$(x + 3x\sqrt{3})^2 = 56 + 12\sqrt{3}$$
 MI
 $x^2(1+3\sqrt{3})^2$ or $x^2 + 6\sqrt{3}x^2 + 27x^2$ MI
SIGHT OF $28 + 6\sqrt{3}$ BI
 $\frac{56 + 12\sqrt{3}}{28 + 6\sqrt{3}} = 2$ AI
 $2 = \pm \sqrt{2}$ AI
 $y = \pm 3\sqrt{2}$ AI

6. a)
$$21 = \frac{u_3 + 1}{2}$$
 or $u_4 = 2u_{4+1} - 1$ M1
 $u_3 = 41$ Al
 $u_2 = 81$ Al
 $u_1 = 161$ or $k = 161$ Al

7. $k_{2}-q = 3(x+1)^{2}$ B1 $3x^{2} + (6-k)x + 12 = 0$ A1 $k_{1}+k_{2}+k_{3}+k_{1}+k_{2}=0$ or $k_{2}+k_{3}+k_{1}+k_{2}=0$ or $k_{3}+k_{2}+k_{3}+k_{2}=0$ or $k_{4}+k_{5}+k_{5}+k_{5}+k_{5}=0$ or $k_{4}+k_{5}+k_{5}+k_{5}=0$ or $k_{4}+k_{5}+k_{5}=0$ or $k_{4}+k_{5}+k_{5}=0$ or $k_{4}+k_{5}+k_{5}=0$ or $k_{4}+k_{5}=0$ or $k_{4}+k_{5}=$

8. a)
$$\frac{-2-(-4)}{3-0}$$
 of M
 $\frac{2}{3}$ Al
 $y=\frac{2}{3}x-4$ or $2x-3y-12=0$ Al

b)
$$(x_1 \frac{2}{3}x - 4)$$
 must be to GOODINATH B|

 $\sqrt{-4 - (\frac{2}{3}x - 4)]^2 + (o - x)^2} (= 3\sqrt{3})$ MI vise of FormitA

MI 444 Collection

 $\sqrt{\frac{4}{9}x^2 + x^2} (= 3\sqrt{3})$ AI

 $\sqrt{\frac{13}{9}x^2} (= 3\sqrt{3})$ AI

 $\sqrt{\frac{13}{9}x^2} = 117$ or $\frac{3}{9}x^2 = 9x$ B

MI

 $x^2 = 81$ MI

$$Q = \pm 9$$
 Al (9_12) (-9_1-10) Al A

WITH FULL ONCE