Лекц №11

Муруй ба гадаргуу Splines, Curves and Surfaces

Боловсруулсан багш: Х.Хулан, Ч.Цэнд-Аюуш

Гөлгөр муруй ба гадаргуу (Smooth Curves and Surfaces)

Одоогийн байдлаар бид дараах зүйлсийг хийж чадна:

- Ирмэг, булан (lines, triangles, squares, ...)
- Тусгай дүрс (circles, ellipses, ...)

Ихэнх аппликейшнууд нь нарийн, гөлгөр smooth хэлбэрийг шаарддаг.

- Camera paths (камерийн зам), vector fonts (вектор фонт), ...
- Филтер функцүүдийг дахин тохируулах(filter functions)
- CAD design, object modeling (объект загварчлал), ...

Camera Paths/Камерийн зам

Flythrough of proposed Perth Citylink subway, https://youtu.be/rlJMuQPwr3E

Animation Curves/Хөдөлгөөнт муруй

Maya Animation Tutorial: https://youtu.be/b-o5wtZIJPc

Vector Fonts/Вектор фонт

The Quick Brown Fox Jumped Over The Lazy Dog

ABCDEFGHIJKLMNOPQRSDTUVWXYZ abcdefghijklmnopqrstuvwxyz 01234567890

Baskerville font - represented as cubic Bézier splines

CAD Design/CAD дизайн

3D Car Modeling with Rhinoceros

Splines

Бодит зураачийн Spline

http://www.alatown.com/spline-history-architecture/

Spline Topics/Spline сэдвүүд

Интерполяци

- Cubic Hermite интерполяци
- Catmull-Rom интерполяци

Bezier curves/Bezier муруй

Bezier surfaces/Bezier гадаргуу

Cubic Hermite Interpolation

Зорилго: Утгуудыг интерполяцлах

Ойролцоох хөрш интерполяци

Асуудал: утгууд нь тасралтгүй байна

Linear Interpolation/Шугаман интерполяци

Асуудал: Уламжлал тасралтгүй биш байна

Smooth Interpolation?

Cubic Hermite Interpolation

Оролт: values and derivatives at endpoints төгсгөлийн цэгүүд дэх утга уламжлалын утгууп байна.

Cubic Polynomial Interpolation

Cubic polynomial

$$P(t) = a t^3 + b t^2 + c t + d$$

Why cubic?

4 input constraints – need 4 degrees of freedom

$$P(0) = h_0$$
 $P(1) = h_1$
 $P(0) = h_2$
 $P(0) = h_3$

Cubic Polynomial Interpolation

Cubic polynomial

$$P(t) = a t^3 + b t^2 + c t + d$$

 $P^0(t) = 3a t^2 + 2b t + c$

Set up constraint equations

$$P(0) = h_0 = d$$

 $P(1) = h_1 = a + b + c + d$
 $P^{0}(0) = h_2 = c$
 $P^{0}(1) = h_3 = 3a + 2b + c$

Solve for Polynomial Coefficients/Олон гишүүнт коэффициентийн шийдэл

$$h_0 = d$$

$$h_1 = a + b + c + d$$

$$h_2 = c$$

$$h_3 = 3a + 2b + c$$

$$\begin{bmatrix} h_0 \\ h_1 \\ h_2 \\ h_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

Solve for Polynomial Coefficients/Олон гишүүнт коэффициентийн шийдэл

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} h_0 \\ h_1 \\ h_2 \\ h_3 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} h_0 \\ h_1 \\ h_2 \\ h_3 \end{bmatrix}$$

Hermite функцын матриц хэлбэр

$$P(t) = a t^{3} + b t^{2} + c t + d$$

$$= \begin{bmatrix} t^{3} & t^{2} & t & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

$$= \begin{bmatrix} t^{3} & t^{2} & t & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} h_{0} \\ h_{1} \\ h_{2} \\ h_{3} \end{bmatrix}$$

$$= H_{0}(t) h_{0} + H_{1}(t) h_{1} + H_{2}(t) h_{2} + H_{3}(t) h_{3}$$

Hermite функцын матрицын хэлбэр

$$P(t) = a t^3 + b t^2 + c t + d$$

$$= H_0(t) h_0 + H_1(t) h_1 + H_2(t) h_2 + H_3(t) h_3$$

Matrix rows = coefficient formulas

Hermite функцын матрицын хэлбэр

$$P(t) = a t^{3} + b t^{2} + c t + d$$

$$= \begin{bmatrix} t^{3} & t^{2} & t & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} h_{0} \\ h_{1} \\ h_{2} \\ h_{3} \end{bmatrix}$$

$$= H_{0}(t) h_{0} + H_{1}(t) h_{1} + H_{2}(t) h_{2} + H_{3}(t) h_{3}$$

Matrix columns = Hermite basis functions
Call this matrix the Hermite basis matrix

Hermite Үндсэн функц

$$H_0(t) = 2t^3 - 3t^2 + 1$$

$$H_1(t) = -2t^3 + 3t^2$$

$$H_2(t) = t^3 - 2t^2 + t$$

$$H_3(t) = t^3 - t^2$$

Хялбар функц

Хамгийн өргөн хэрэглэгддэг функц Хөдөлгөөнд аажуухан эхлээд аажуухан зогсоох (zero velocity)

Hermite Spline Интерполяци

Оролт: sequence of values and derivatives

Catmull-Rom Интерполяци

Catmull-Rom Интерполяци

Оролт: sequence of values

Catmull-Rom Интерполяци

Rule for derivatives:

Match slope between previous and next values

Өмнөх болон дараагийн утгуудын хоорондох налууг тааруулна

Catmull-Rom Interpolation

Дараагаар нь Hermite интерполяци ашиглана.

Цэг болон векторуудыг интерполяцлах

Цэгүүдийг утгуудын адил хялбар интерполяци хийнэ.

Catmull-Rom 3D control points po

p₃ • p₁

p₂

хялбар интерполяци хийнэ.

Catmull-Rom 3D tangent vectors

p₀

хялбар интерполяци хийнэ.

Catmull-Rom 3D space curve

p₀

Муруйг тодорхойлоход үндсэн функцүүд ашиглах нь

$$\mathbf{p}(t) = \sum_{i=0}^{n} \mathbf{p}_i F_i(t)$$

Иртерполяцийн ерөнхий
$$\mathbf{p}(t) = \sum_{i=0}^n \mathbf{p}_i F_i(t)$$
 томъёо
$$x(t) = \sum_{i=0}^n x_i F_i(t) \qquad y(t) = \sum_{i=0}^n y_i F_i(t) \qquad z(t) = \sum_{i=0}^n z_i F_i(t)$$

Коэффициент рі нь цэг & вектор, Зөвхөн Fi (t) утга бус харин интерполяцийн схемд зориулсан үндсэн функцүүд байна.

H_i(t) Hermite интерполяцыг бид өмнө үзсэн. Сі (t) Catmull-Rom -ын C_i(t) удахгүй үзэх ба Bézier схемийн Ві(t) хувьд дараа үзнэ. Үндсэн функц нь интерполяцийн схемийн шинж чанар(properties) юм.

Catmull-Rom муруйн матриц хэлбэр?

Hermite матриц хэлбэрийг ашигладаг.

• Цэг ба шүргэгч нь Catmull-Rom дүрмээр

өгөгдсөн байна. Hermite points

$$\mathbf{h}_0 = \mathbf{p}_1$$

$$\mathbf{h}_1 = \mathbf{p}_2$$

$$\mathbf{h}_2 = \frac{1}{2}(\mathbf{p}_2 - \mathbf{p}_0)$$

$$h_3 = \frac{1}{2}(p_3 - p_1)$$

Hermite tangents

$$P(t) = \begin{bmatrix} t^3 \\ t^2 \\ t \\ 1 \end{bmatrix}^T \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{p}_2 \\ \mathbf{p}_3 \end{bmatrix}$$

Catmull-Rom муруйн матриц хэлбэр

$$P(t) = \begin{bmatrix} t^3 \\ t^2 \\ t \\ 1 \end{bmatrix}^T \begin{bmatrix} -\frac{1}{2} & \frac{3}{2} & \frac{3}{2} & \frac{1}{2} \\ 1 & -\frac{5}{2} & 2 & -\frac{1}{2} \\ -\frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{p}_2 \\ \mathbf{p}_3 \end{bmatrix}$$
$$= C_0(t) \ \mathbf{p}_0 + C_1(t) \ \mathbf{p}_1 + C_2(t) \ \mathbf{p}_2 + C_3(t) \ \mathbf{p}_3$$

Matrix columns = Catmull-Rom basis functions

Catmull-Rom Үндсэн Функц

Catmull-Rom Spline

Оролт: sequence of points

Гаралт: spline that interpolates all points with C1 continuity

Bézier Curves/ Bézier муруй

Cubic Bézier муруйн матриц хэлбэр?

$$\mathbf{B}(t) = (1-t)\mathbf{P}_0 + t\mathbf{P}_1 \quad t \in [0,1].$$

Pierre Bézier 1910 – 1999

Paul de Casteljau b. 1930

3 цэг авч үзнэ. Шугаман интерполяц ашиглан цэг оруулах

Pierre Bézier 1910 – 1999

Paul de Casteljau b. 1930

2 ирмэгийг оруулна.

Pierre Bézier 1910 – 1999

Paul de Casteljau b. 1930

Рекурсив давталт

Pierre Bézier 1910 – 1999

Paul de Casteljau b. 1930

Муруйг тодорхойлох алгоритм

$$\mathbf{B}(t) = (1-t)^2 \mathbf{P}_0 + 2t(1-t)\mathbf{P}_1 + t^2 \mathbf{P}_2, \quad t \in [0,1].$$

Cubic Bézier Curve – de Casteljau

4 цэг авч үзнэ. Рекурсив шугаман интерполяци ижил байна

$$\mathbf{B}(t) = (1-t)^3 \mathbf{P}_0 + 3t(1-t)^2 \mathbf{P}_1 + 3t^2(1-t)\mathbf{P}_2 + t^3 \mathbf{P}_3, \quad t \in [0,1].$$

Муруйг дэд хэсгүүдэд хуваах de Casteljau Алгоритм

Дээд эрэмбийн (куб, 4 зэрэгт г.м) муруйнууд

