Fonctions Numériques Généralités

MPSI 2

Définition 0.0.1

On appelle Fonction numérique toute application de $\mathcal{F}(I,\mathbb{R},G)$ où:

- I est un intervalle réel.
- G est un graphe de I dans \mathbb{R} associé a cette application.

On écrit $f: I \longrightarrow \mathbb{R}$

$$x \longmapsto f(x)$$

Notation: $\mathcal{F}(I,\mathbb{R})$ désigne l'ensemble des applications de I vers \mathbb{R} .

1 Opérations

Soit f et g deux fonctions numérique définies sur I.

On pose : $\bullet f + g : I \longrightarrow \mathbb{R}$

$$x \longmapsto f(x) + g(x)$$

$$\bullet \ f \times g \colon I \longrightarrow \mathbb{R}$$

$$x \longmapsto f(x) \times g(x)$$

$$\bullet \forall \lambda \in \mathbb{R}, \ \lambda \dot{f} \colon I \longrightarrow \mathbb{R}$$

$$x \longmapsto \lambda \times f(x)$$

On définit ainsi deux lois internes et une loi externe: $(\mathcal{F}(I,\mathbb{R}), +, \times, \dot{})$ est une algèbre commutative.

Cela signifie que : $\bullet (\mathcal{F}(I,\mathbb{R}), +, \times)$ est un anneau commutatif.

 $\bullet(\mathcal{F}(I,\mathbb{R}), +, \dot{})$ est un espace véctoriel.

$$\bullet \forall (f, g, \lambda) \in \mathcal{F}(I, \mathbb{R})^2 \times \mathbb{R}, \ \lambda(f \times g) = (\lambda f) \times g = f \times (\lambda g)$$

Notations:

• $0_{\mathcal{F}(I,\mathbb{R})}$ désigne l'application : $I \longrightarrow \mathbb{R}$

$$x \longmapsto 0$$

• Si $f \in \mathcal{F}(I, \mathbb{R})$, on note $-f: I \longrightarrow \mathbb{R}$

$$x \longmapsto -f(x)$$

• Si $f \in \mathcal{F}(I, \mathbb{R})$ vérifie $\forall x \in I, \ f(x) \neq I$,

Alors on note $\frac{1}{f} \colon I \longrightarrow \mathbb{R}$

$$x \longmapsto \frac{1}{f(x)}$$

2 Relation d'ordre

Définition 2.0.2

Soit f et g deux fonctions numériques définies sur I. On note $f \leqslant g \iff \forall x \in I, \ f(x) \leqslant g(x)$

On définit alors une relation d'ordre partielle sur $\mathcal{F}(I,\mathbb{R})$.

Définition 2.0.3

- On dit que f est positive sur I si: $\forall x \in I, \ f(x) \ge 0$ On note alors $f \ge 0$
- ullet On procède de manière analogue pour f>0

Propriété 2.0.1

Soit $f_1,\ f_2,\ g_1,\ g_2$ des fonctions numériques définies sur I.

- $f_1 \leqslant f_2$ et $g_1 \leqslant g_2 \Longrightarrow f_1 + g_1 \leqslant f_2 + g_2$
- $(g_1 \geqslant 0 \text{ et } f_1 \geqslant f_2) \Longrightarrow f_1 \times g_1 \leqslant f_2 \times g_1$

Cela découle du fait que $(\mathbb{R}, +, \times, \leq)$ soit un corps totalement ordonné.

Définition 2.0.4

Soit f une fonction numérique définie sur I.

On pose $f^+: I \longrightarrow \mathbb{R}$

$$et \ f^- \colon I \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} f(x) & si \ f(x) \geqslant 0 \\ 0 & si \ f(x) < 0 \end{cases} \qquad x \longmapsto \begin{cases} 0 & si \ f(x) > 0 \\ -f(x) & si \ f(x) \leqslant 0 \end{cases}$$

 f^+ et f^- sont les parties positive et négative de f.

Remarques:

- f^+ et f^- sont toutes deux positives.
- $f = f^+ f^-$
- $|f| = f^+ + f^-$

Définition 2.0.5

Soit f une fonction numérique définie sur I.

L'image de f, F(I), est l'ensemble :

$$f(I) = \{ y \in \mathbb{R}, \ \exists x \in I, f(x) = y \}$$

Définition 2.0.6

Soit $f \in \mathcal{F}(I, \mathbb{R})$.

- On dit que f est bornée sur I si f(I) est borné. $\exists (a,b) \in \mathbb{R}^2, \ f(I) \subset [a,b]$
- On dit que \underline{f} est majorée sur \underline{I} si $f(\underline{I})$ est majoré. $\exists K \in \mathbb{R}, \ f \leq K$
- On dit que \underline{f} est minorée sur \underline{I} si $f(\underline{I})$ est minoré. $\exists k \in \mathbb{R}, \ k \leqslant \underline{f}$

Définition 2.0.7

Soit $f \in \mathcal{F}(I, \mathbb{R})$.

- $Si\ f$ est majorée sur I, on appelle borne supérieure de f sur I la borne supérieure de f(I)
- Si f est minorée sur I, on appelle borne inférieure de f sur I la borne inférieure de f(I)

Notation:
$$\sup_{x \in I} f(x) = \sup_{I} f = \sup_{I} (f(I))$$

$$\inf_{x \in I} f(x) = \inf_{I} f = \operatorname{Inf}(f(I))$$

Définition 2.0.8

Soit $f \in \mathcal{F}(I, \mathbb{R})$.

Soit J un sous-ensemble de I.

Soit x_0 un élément de J.

- f admet un maximum en x_0 sur J si: $\forall x \in J$, $f(x)leqslant f(x_0)$
- f admet un minimum en x_0 sur J si: $\forall x \in J$, $f(x_0) legslant f(x)$
- f présente un extremum en x_0 sur J si f admet un minimum ou un maximum en x_0 sur J.

3 Autres propriétés

3.1 Périodicité

Définition 3.1.1

Soit f une fonction numérique définie sur I. Soit p un réel. On dit que p est une période de f si: $\begin{cases} \forall x \in \mathbb{R}, \ x \in I \Rightarrow x + p \in I \\ \forall x \in I, \ f(x+p) = f(x) \end{cases}$

Notons G_f l'ensemble des périodes de f: $G_f = \{ p \in \mathbb{R}, \ \forall x \in I, \ f(x+p) = f(x) \}$ Alors G_f est un sous-groupe de $(\mathbb{R}, +)$

3.2 Parité

Définition 3.2.1

Soit $f \in \mathcal{F}(I, \mathbb{R})$.

• f est paire $sur\ I$ si: $\begin{cases}
\forall x \in \mathbb{R}, \ x \in I \Rightarrow -x \in I \\
\forall x \in I, \ f(x) = f(-x)
\end{cases}$ • f est impaire $sur\ I$ si: $\begin{cases}
\forall x \in \mathbb{R}, \ x \in I \Rightarrow -x \in I \\
\forall x \in I, \ f(x) = -f(-x)
\end{cases}$

Définition 3.2.2

Soit I un intervalle centré en 0.

Soit f une application définie sur I a valeurs dans \mathbb{R} .

On note $P: I \longrightarrow \mathbb{R}$ et $Imp: I \longrightarrow \mathbb{R}$

$$x \longmapsto \frac{f(x) = f(-x)}{2}$$
 $x \longmapsto \frac{f(x) - f(-x)}{2}$

P et Imp sont les parties Paire et Impaire de f.

Propriété 3.2.1

$$f = P + Imp$$

3.3 Fonctions k-Lipschitziennes

Définition 3.3.1

Soit f une fonction numérique définie sur I. Soit k un réel positif. On dit que f est k-lipschitzienne sur I si: $\forall (x,x') \in I^2, \ |f(x)-f(x')| \leqslant k \, |x-x'|$