Suites Réelles

Comparaison avec une suite gomtrique MPSI 2

Suites et sries gomtriques 1

Définition 1.0.1

On appelle suite gomtrique de raison a toute suite telle que:

$$\begin{cases} u_0 \in \mathbb{R} \\ \forall n \in \mathbb{N}, \ u_{n+1} = a \, u_n \end{cases}$$

Remarques:

- C'est quivalent a dire $\forall n \in \mathbb{N}, \ u_n = a^n u_0$
- Si $u_0 = 0$ alors la suite est nulle.
- Si $u_0 \neq 0$ alors l'tude de la suite est ramene a l'tude de a^n à une constante multiplicative prs.

tude de
$$(a^n)_{n\in\mathbb{N}}$$

tude de $(a^n)_{n\in\mathbb{N}}$ • Si a>1 alors $\exists h\in\mathbb{R}^{+*}, a=1+h$

De plus,
$$(h+1)^n = \sum_{k=0}^n \binom{n}{k} h^k$$

En particulier, $(1+h)^n \ge nh$
Or par minoration, $a^n \xrightarrow[n \to +\infty]{} +\infty$

- Si a = 1 alors $(a_n)_{n \in \mathbb{N}}$ est stationnaire a 1.
- $\underline{\overline{\text{Si } a = -1}}$ alors $(a_n)_{n \in \mathbb{N}}$ diverge.
- $\overline{\text{Si} 1 < a} < 1$ alors $|a|^n = \frac{1}{\left(\frac{1}{|a|}\right)^n}$

et $\frac{1}{|a|^n} > 1$ donc d'aprs le premier point, $\frac{1}{|a|^n} \underset{n \to +\infty}{\longrightarrow} +\infty$

D'où
$$|a|^n \xrightarrow[n \to +\infty]{} 0$$

Ainsi, comme $|a|^n = |a^n|, a^n \underset{n \to +\infty}{\longrightarrow} 0$

• Si a < -1 alors $|a|^n \xrightarrow[n \to +\infty]{} + \infty$ et a^n change de ighe en fonction de la parit de n.

Donc $(a^n)_{n\in\mathbb{N}}$ diverge.

Définition 1.0.2

On appelle srie gomtrique toute suite de terme gnral:

$$\begin{cases} u_n = \sum_{k=0}^n a^k \\ n \in \mathbb{N} \\ a \in \mathbb{R} \end{cases}$$

tude de u_n

• $\underline{\text{Si } a = 1}$ alors $u_n = n + 1$ et $u_n \underset{n \to +\infty}{\longrightarrow} +\infty$