Consider the following table:

	Age		
Desire to travel abroad	Under 45	45 or older	
Yes	50%	50%	
No	50%	50%	
Column totals	100%	100%	
Number of participants	500	500	

- (a) Is there significant association between variables?
- (b) Measure the strength of association.

Ho: NO association
$$\chi^{2} = \sum_{i=1}^{\infty} \frac{(0i - E_{i})^{2}}{E_{i}} \sim \chi^{2}$$

$$E_{i}$$

$$0: \frac{(45 - 745)}{4 - 250} = 500$$

$$N = 250 = 250$$

$$\chi^{2}_{obs} = 0 < \chi^{2}_{cit}, 1, 0.95$$

$$\approx 8 \implies \text{not ujected Ho}$$

$$\chi^{2}_{n} = \sum_{i=1}^{2} g^{2} \qquad g \sim N(0.1)$$

$$\max \chi^{2} : \text{sov o}$$

$$\delta = \frac{2^{5}0^{2}}{2^{5}0} \cdot 4 = 1000$$

Cat:
$$\hat{\phi} = \sqrt{\frac{\chi^2}{N}} \in [0, 1]$$

$$\phi = 0.1$$
, $\phi = 0.9$

Let's introduced gender as the third variable.

	Gender					
	Mal	le age	Female age			
Desire to travel abroad	Under 45	45 or older	Under 45	45 or older		
Yes	60%	40%	35%	65%		
No	40%	60%	65%	35%		
Column totals	100%	100%	100%	100%		
Number of participants	300	300	200	200		

- (c) Is there significant association between variables within the subgroups?
- (d) Measure the strength of association.
- (e) Calculate Pearson residuals for Female under 45.

$$\frac{0/1 + \dots + 0/1}{1 + \dots + 1}$$

$$\frac{\chi_1 + \dots + \chi_h}{1 + \dots + \chi_h}$$

$$\frac{\chi_1 + \dots + \chi_h}{1 + \dots + \chi_h}$$

Tx 2 x 2 = 8

Let's introduced gender as the third variable.

				Gender		
			Male age		Female age	
	Desire to travel abroad		Jnder 45	45 or older	Under 45	45 or older
	Yes	1	60%	40%	35%	65%
	No	1	40%	60%	65%	35%
	Column totals	1	100%	100%	100%	100%
100	Number of participants		380	300	200	200

- (c) Is there significant association between variables within the subgroups?
- (d) Measure the strength of association.
- (e) Calculate Pearson residuals for Female under 45.

Goal: any relation

H

Eij = (h) (hri
N)

 $\chi^2 = \frac{30^2}{100} \cdot 4 = 36 \sim \chi^2_{1,0,9}$

0; y 70 130 N 130 70

E; y 100 100 N 100 100

prop in column

1.2.t. to laws

Holidays / One-time events La no wanterfactuel L> matching L, X, , . . . , X/K e xoja aus L wih Dr

$$\left(\begin{array}{c}
\chi_{1}^{1} + \dots + \chi_{h}^{1} \\
 & + \dots + \chi_{h}^{1}
\end{array}\right) = \frac{\chi_{1}^{1} + \dots + \chi_{h}^{1}}{y_{1}^{1} + \dots + y_{h}^{1}}$$

$$\left(\begin{array}{c}
\chi_{1}^{1} + \dots + \chi_{h}^{1} \\
 & + \dots + \chi_{h}^{1}
\end{array}\right)$$

$$\frac{\chi_{1}^{2} + ... + \chi_{n}^{2} + \chi_{1}^{2} + ... + \chi_{n}^{2} + ...}{y_{1}^{2} + ... + y_{n}^{2} + y_{1}^{2} + ... + y_{L}^{2} + ...}$$

 $E(R_i) \approx E(R_i)$