

Massachusetts Institute of Technology Harvard Medical School Brigham and Women's Hospital VA Boston Healthcare System

HST 535

PRINCIPLES AND PRACTICE OF TISSUE ENGNEERING:

Introduction

M. Spector, Ph.D. and Fu-Zhai Cui

ELEMENTS FOR TISSUE ENGINEERING

Tissue Engineering Triad*

- MATRIX (SCAFFOLD)
 - Porous, absorbable biomaterials
 - Can serve to regulate cell function prior to is its absorption
- CELLS
- REGULATORS
 - Chemical: e.g., cytokines (growth factors)
 - Mechanical: e.g., mechanical loading and flow conditions in vitro (bioreactors)
 - * Used individually or in combination, but often with a matrix (i.e., with a biomaterial)

TISSUE ENGINEERING

Issues to be Addressed

- Should the tissue be produced in vitro, for subsequent implantation, or in vivo?
- What scaffold should be used?
 - Material of fabrication, pore characteristics, absorbability, mechanical properties?
 - How to be manufactured?
- What cells are to be used?
 - Source of cells?
 - Under what conditions can cells be expanded in number in vitro while retaining their phenotype?
- What regulators are required to stimulate cell proliferation and matrix synthesis or to facilitate differentiation of stem cells?

TISSUE ENGINEERING VS. REGENERATIVE MEDICINE*

TISSUE ENGINEERING

Regeneration In Vitro

Produce the fully formed tissue in vitro by seeding cells into a biomaterial matrix, and then implant the regenerated tissue into the body.

REGENERATIVE MED.

Regeneration In Vivo

Implant the biomaterial matrix with, or without seeded cells, into the body to facilitate regeneration of the tissue *in vivo*.

TISSUE ENGINEERING VS. REGENERATIVE MEDICINE

TISSUE ENGINEERING

Regeneration In Vitro

Advantages

 Evaluation of tissue prior to implantation

Disadvantages

- For incorporation, must be remodeling
- Stress-induced architecture cannot yet be produced in vitro

REGENERATIVE MED.

Regeneration In Vivo

Advantages

 Incorporation and formation under the influence of endogenous regulators (including mechanical strains)

Disadvantages

• Dislodgment and degrad. by mech. stresses *in vivo*

TISSUE ENGINEERING/REGEN. MED. Historical Perspective; Selected Milestones

- 1980 Yannas: Collagen-GAG matrix for dermal regeneration ("artificial skin"); Integra
- 1984 Wolter/Meyer: 1st use of the term, TE; endothel.like layer on PMMA in the eye
- 1991 Cima/Vacanti/Langer: Chondrocytes in a PGA scaffold; the ear on the nude mouse
- 1993 Langer/Vacanti: Science paper on TE; cells in matrices for tissue formation *in vitro*; PGA
- 1994 Brittberg/Peterson: NEJM paper on human autologous chondrocyte implantation; Carticel

Which Tissues Can Regenerate Spontaneously?

	Yes	No
Connective Tissues		
• Bone	$\sqrt{}$	
 Articular Cartilage, Ligament, Intervertebral Disc, Others 		√
Epithelia (e.g., epidermis)	$\sqrt{}$	
Muscle		
• Cardiac, Skeletal		V
• Smooth	$\sqrt{}$	
Nerve		√

FACTORS THAT CAN PREVENT REGENERATION

- Limited vascular invasion of large defects
 - e.g., bone does not regenerate in the central portion of large defects
- Collapse of surrounding tissue into the defect
 - e.g., periodontal defects
- Excessive mechanical strains in the reparative tissue
 - -e.g., unstable fractures

FACTORS THAT CAN PREVENT REGENERATION

- Limited vascular invasion of large defects
 - e.g., bone does not regenerate in the central portion of large defects
- Collapse of surrounding tissue into the defect
 - e.g., periodontal defects
- Excessive mechanical strains in the reparative tissue
 - -e.g., unstable fractures

ELEMENTS OF TISSUE ENGINEERING/ REGENERATIVE MEDICINE

- MATRIX (SCAFFOLD)
 - -Porous, absorbable synthetic (e.g., polyglycolic acid) and natural (e.g., collagen) biomaterials
- CELLS (Autologous or Allogeneic)
 - -Differentiated cells of same type as tissue
 - -Stem cells (e.g., bone marrow-derived)
 - -Other cell types (e.g., dermal cells)
- REGULATORS
 - -Growth factors or their genes
 - -Mechanical loading
 - -Static versus dynamic culture ("bioreactor")

CELL-MATRIX INTERACTIONS REQUIRED FOR TISSUE ENGINEERING

Connective Tissues (Musculoskeletal)	Mitosis ¹	Migration ²	Synthesis ³	Contract.4
Bone	+	+	+	+
Articular Cartilage	-	-	-	+
Ligament/Tendon	+	+	?	+
Intervertebral Disc	?	?	?	+
Meniscus	?	?	?	+

¹ Inadequate mitosis requires exogenous cells.

² Inadequate migration may require a scaffold.

³ Inadequate biosynthesis require growth factors or their genes.

⁴ Contraction?