# **Assignment 1 Nikolay Shivarov**

For this assignment I have used three tables with data from the website "Our world in data". The first one contains the life-expectancy in all countries in the world for different years. The link for this data is: <a href="https://ourworldindata.org/grapher/life-expectancy?tab=table">https://ourworldindata.org/grapher/life-expectancy?tab=table</a>. The second one contains the GDP per capita in all countries in the world, again for different years. The link is <a href="https://ourworldindata.org/grapher/gdp-per-capita-maddison">https://ourworldindata.org/grapher/gdp-per-capita-maddison</a>. Finally, the last one contains the overall GDP of the countries. The link is <a href="https://ourworldindata.org/grapher/national-gdp-wb">https://ourworldindata.org/grapher/national-gdp-wb</a>. All the files have the format of ".csv".

For this assignment I have decided that I should answer the questions, by only using the data from 2018. Firstly, it is not fair to compare countries from different periods. Secondly, what is happening now is more important than what was happening in the past. After doing that I am going to do absolutely the same with the year 1998. Before answering the questions, I had to remove a lot of rows and columns in the tables. From the three tables I removed the rows that had different year from 2018 and I also removed the rows, where the country code had a null value. In this way all the remaigning rows had the year 2018 and were showing a country not a region. From the new tables I only took the name of the country which had a column name Entity in all tables and the numerical values that were important: life-expectancy, GDP per capita, GDP. Then I did a natural join between table1 and table2 and between table1 and table3.

### This is the scatter plot for task A:



For task B we are going to print the countries which satisfy our condition:

| 511  | Andorra   | 82.9923 |
|------|-----------|---------|
| 1136 | Australia | 83.3871 |

| 1214  | Austria          | 81.6862 |
|-------|------------------|---------|
| 1835  | Belgium          | 81.4787 |
| 2051  | Bermuda          | 80.8253 |
| 3112  | Canada           | 82.0508 |
| 4318  | Cyprus           | 81.3820 |
| 4660  | Denmark          | 80.9900 |
| 6106  | Finland          | 81.6266 |
| 6325  | France           | 82.5909 |
| 6469  | French Polynesia | 82.7834 |
| 6757  | Germany          | 81.1717 |
| 6911  | Gibraltar        | 82.1540 |
| 6983  | Greece           | 81.3907 |
| 7214  | Guadeloupe       | 82.5015 |
| 7436  | Guernsey         | 82.3065 |
| 7946  | Hong Kong        | 85.2456 |
| 8208  | Iceland          | 82.7703 |
| 8584  | Ireland          | 82.0863 |
| 8734  | Israel           | 82.8232 |
| 8884  | Italy            | 83.1847 |
| 9100  | Japan            | 84.2971 |
| 9188  | Jersey           | 80.8284 |
| 10642 | Liechtenstein    | 83.1462 |
| 10932 | Luxembourg       | 81.8035 |
| 11053 | Macao            | 84.9285 |
| 11485 | Malta            | 83.3448 |
| 11629 | Martinique       | 82.5804 |
| 12257 | Monaco           | 86.4643 |
|       |                  |         |

| 13150 | Netherlands           | 81.7741 |
|-------|-----------------------|---------|
| 13296 | New Zealand           | 82.3803 |
| 14161 | Norway                | 82.7605 |
| 15053 | Portugal              | 81.3947 |
| 15197 | Qatar                 | 80.8982 |
| 15269 | Reunion               | 81.7661 |
| 16160 | San Marino            | 82.9479 |
| 16763 | Singapore             | 83.4576 |
| 16982 | Slovenia              | 81.3581 |
| 17342 | South Korea           | 83.3427 |
| 17536 | Spain                 | 83.1436 |
| 18034 | Sweden                | 82.5326 |
| 18180 | Switzerland           | 83.5615 |
| 19535 | <b>United Kingdom</b> | 81.1254 |

For task C we are going to use GDP per capita. In order to satisfy the conditions a country must be poorer than 55% of countries and have a higher life-expectancy than 60% of countries. Initially, I was considering conditions that were stricter, but there were no countries that satisfied them. Finally, I decided that a country is enough to have a little above median life-expectancy and a little below median GDP per capita. In this way the list of countries is still small, but at least it is not empty.

Entity \

1 Albania

16 Bosnia and Herzegovina

36 Cuba

44 Ecuador

1

Life expectancy (period) at birth - Sex: all - Age: 0 GDP per capita

| 16 | 77.0926 | 10460.5205 |
|----|---------|------------|
| 36 | 77.4962 | 8325.6310  |
| 44 | 77.0938 | 10638.8250 |

For task D we are going to count the number of countries that are in the top 20% for overall GDP. And then we are going to see how many of them are in the top 40% for life expectancy.

The results showed that 39 countries are in the top 20% for overall GDP, but only 25 of them have a high life expectancy. So having a high overall GDP does not guarantee high life expectancy.

For task E we are going to do the same as in task D, but we are going to use GDP per capita instead of GDP.

This time the results are very different every country that has a high GDP per capita has a high life expectancy.

Obviously, there are countries with big populations that have big economies, but the people living there are not as rich as in other countries. For this reason, we see such different results in the last two tasks. We can conclude that nowadays, generally countries where the average person is rich have a high life expectancy.

## Now we will do the same for 1998

### This is the scatter plot for task A:



For task B we are going to print the countries which satisfy our condition:

| 491   | Andorra          | 79.4259 |
|-------|------------------|---------|
| 1116  | Australia        | 79.0275 |
| 1194  | Austria          | 77.7833 |
| 2031  | Bermuda          | 79.9490 |
| 3092  | Canada           | 78.6739 |
| 6305  | France           | 78.5885 |
| 6449  | French Polynesia | 78.3862 |
| 6737  | Germany          | 77.5768 |
| 6891  | Gibraltar        | 80.6635 |
| 6963  | Greece           | 78.2311 |
| 7416  | Guernsey         | 79.4038 |
| 7926  | Hong Kong        | 80.1369 |
| 8188  | Iceland          | 79.4529 |
| 8714  | Israel           | 78.4402 |
| 8864  | Italy            | 78.8062 |
| 9080  | Japan            | 80.6402 |
| 9168  | Jersey           | 78.5510 |
| 10622 | Liechtenstein    | 77.8321 |
| 11033 | Macao            | 80.3522 |
| 11465 | Malta            | 77.7172 |
| 12237 | Monaco           | 80.5857 |
| 13130 | Netherlands      | 77.9971 |
| 13276 | New Zealand      | 78.1725 |
| 14141 | Norway           | 78.4083 |
| 16140 | San Marino       | 80.0336 |

| 16743 | Singapore   | 77.9875 |
|-------|-------------|---------|
| 17516 | Spain       | 78.9428 |
| 18014 | Sweden      | 79.4155 |
| 18160 | Switzerland | 79.4749 |

For task C we are going to use GDP per capita. In order to satisfy the conditions a country must be poorer than 55% of countries and have a higher life-expectancy than 60% of countries. Initially, I was considering conditions that were stricter, but there were no countries that satisfied them. Finally, I decided that a country is enough to have a little above median life-expectancy and a little below median GDP per capita. In this way the list of countries is still small, but at least it is not empty as it was in the 2018 list. Albania and Cuba are in the list again.

\_\_ \_ \_ \_\_\_

Entity Life expectancy (period) at birth - Sex: all - Age: 0 \

1 Albania 74.9899

36 Cuba 75.5639

99 Montenegro 73.3662

GDP per capita

1 3873.3733

. \_\_ \_ \_

36 3415.5452

99 5522.1045

For task D we are going to count the number of countries that are in the top 20% for overall GDP. And then we are going to see how many of them are in the top 40% for life expectancy.

The results showed that 36 countries were in the top 20% for overall GDP, but only 19 of them had a high life expectancy. So having a high overall GDP did not guarantee high life expectancy in 1998.

For task E we are going to do the same as in task D, but we are going to use GDP per capita instead of GDP.

This time the results are very different. Only one country that had a high GDP per capita did not have high life expectancy.

We can conclude that for all the tasks the results in 2018 were very similar to those in 1998.

Here is the python code for 2018:

```
import pandas as pd
import numpy
import matplotlib.pyplot as plt
from pandas.plotting import table
df1 = pd.read csv("life-expectancy.csv")
df2 = pd.read csv("gdp-per-capita-maddison.csv")
df3 = pd.read csv("national-gdp-wb.csv")
pd.set option("display.max rows", None, "display.max columns", None)
df1 2018 = df1[(df1["Code"].notna()) & (df1["Year"] == 2018)]
countryLifeExp2018 = df1_2018[["Entity", "Life expectancy (period) at birth - Sex: all - Age: 0"]]
df2 2018 = df2[(df2["Code"].notna()) & (df2["Year"] == 2018)]
countryGdp2018 = df2 2018 [["Entity", "GDP per capita"]]
df3 2018 = df3[(df3["Code"].notna()) & (df3["Year"] == 2018)]
Gdp2018 = df3 2018 [["Entity", "GDP, PPP (constant 2017 international $)"]]
gdpLe2018 = pd.merge(countryLifeExp2018, countryGdp2018, on="Entity")
gdpLe2018overall = pd.merge(countryLifeExp2018, Gdp2018, on="Entity")
##A
plt.scatter(gdpLe2018["Life expectancy (period) at birth - Sex: all - Age: 0"], gdpLe2018["GDP
per capita"])
plt.title("GDP and Life expectancy in 2018")
```

```
plt.xlabel("Life expectancy")
plt.ylabel("GDP per capita in US dollars")
##B
averageAge = countryLifeExp2018["Life expectancy (period) at birth - Sex: all - Age: 0"].mean()
standardDeviationAge = countryLifeExp2018["Life expectancy (period) at birth - Sex: all - Age:
0"].std()
highAge = averageAge + standardDeviationAge
countriesHigherLifeExpectancy = countryLifeExp2018[countryLifeExp2018["Life expectancy
(period) at birth - Sex: all - Age: 0"] > highAge ]
print(countriesHigherLifeExpectancy[["Entity","Life expectancy (period) at birth - Sex: all - Age:
0"]])
##C
poorCountriesGdp = countryGdp2018["GDP per capita"].quantile(0.45)
highLifeExpectancy = countryLifeExp2018["Life expectancy (period) at birth - Sex: all - Age:
0"].quantile(0.6)
highLifePoor = gdpLe2018[(gdpLe2018["GDP per capita"] <= poorCountriesGdp) &
(gdpLe2018["Life expectancy (period) at birth - Sex: all - Age: 0"] >= highLifeExpectancy)]
print(highLifePoor[["Entity","Life expectancy (period) at birth - Sex: all - Age: 0","GDP per
capita"]])
##D
richCountriesOverallGdp = Gdp2018["GDP, PPP (constant 2017 international $)"].quantile(0.8)
richCountriesOverall = gdpLe2018overall[gdpLe2018overall["GDP, PPP (constant 2017
international $)"] > richCountriesOverallGdp]
richCountriesOverallHighLife = richCountriesOverall[richCountriesOverall["Life expectancy
(period) at birth - Sex: all - Age: 0"] > highLifeExpectancy]
##E
richCountriesGdp = countryGdp2018["GDP per capita"].quantile(0.8)
richCountries = gdpLe2018[gdpLe2018["GDP per capita"] > richCountriesGdp]
richCountriesHighLife = richCountries[richCountries["Life expectancy (period) at birth - Sex: all -
Age: 0"] > highLifeExpectancy]
```

#### Here is the python code for 1998:

```
import pandas as pd
import numpy
import matplotlib.pyplot as plt
from pandas.plotting import table
df1 = pd.read_csv("life-expectancy.csv")
df2 = pd.read csv("gdp-per-capita-maddison.csv")
df3 = pd.read csv("national-gdp-wb.csv")
pd.set option("display.max rows", None, "display.max columns", None)
df1 1998 = df1[(df1["Code"].notna()) & (df1["Year"] == 1998)]
countryLifeExp1998 = df1 1998[["Entity", "Life expectancy (period) at birth - Sex: all - Age: 0"]]
df2 1998 = df2[(df2["Code"].notna()) & (df2["Year"] == 1998)]
countryGdp1998 = df2 1998 [["Entity", "GDP per capita"]]
df3 1998 = df3[(df3["Code"].notna()) & (df3["Year"] == 1998)]
Gdp1998 = df3 1998 [["Entity", "GDP, PPP (constant 2017 international $)"]]
gdpLe1998 = pd.merge(countryLifeExp1998, countryGdp1998, on="Entity")
gdpLe1998overall = pd.merge(countryLifeExp1998, Gdp1998, on="Entity")
```

```
plt.scatter(gdpLe1998["Life expectancy (period) at birth - Sex: all - Age: 0"], gdpLe1998["GDP
per capita"])
plt.title("GDP and Life expectancy in 1998")
plt.xlabel("Life expectancy")
plt.ylabel("GDP per capita in US dollars")
##B
averageAge = countryLifeExp1998["Life expectancy (period) at birth - Sex: all - Age: 0"].mean()
standardDeviationAge = countryLifeExp1998["Life expectancy (period) at birth - Sex: all - Age:
0"].std()
highAge = averageAge + standardDeviationAge
countriesHigherLifeExpectancy = countryLifeExp1998[countryLifeExp1998["Life expectancy
(period) at birth - Sex: all - Age: 0"] > highAge ]
print(countriesHigherLifeExpectancy[["Entity","Life expectancy (period) at birth - Sex: all - Age:
0"]])
##C
poorCountriesGdp = countryGdp1998["GDP per capita"].quantile(0.45)
highLifeExpectancy = countryLifeExp1998["Life expectancy (period) at birth - Sex: all - Age:
0"].quantile(0.6)
highLifePoor = gdpLe1998[(gdpLe1998["GDP per capita"] <= poorCountriesGdp) &
(gdpLe1998["Life expectancy (period) at birth - Sex: all - Age: 0"] >= highLifeExpectancy)]
print(highLifePoor[["Entity","Life expectancy (period) at birth - Sex: all - Age: 0","GDP per
capita"]])
##D
richCountriesOverallGdp = Gdp1998["GDP, PPP (constant 2017 international $)"].quantile(0.8)
richCountriesOverall = gdpLe1998overall[gdpLe1998overall["GDP, PPP (constant 2017
international $)"] > richCountriesOverallGdp]
richCountriesOverall[richCountriesOverall[richCountriesOverall["Life expectancy
(period) at birth - Sex: all - Age: 0"] > highLifeExpectancy]
##E
richCountriesGdp = countryGdp1998["GDP per capita"].quantile(0.8)
```

 $rich Countries = gdpLe1998[gdpLe1998["GDP\ per\ capita"] > rich Countries Gdp]$ 

richCountriesHighLife = richCountries[richCountries["Life expectancy (period) at birth - Sex: all - Age: 0"] > highLifeExpectancy]