#### Automates finis

Mohamed Tmar

5 mai 2019

#### Automates finis déterministes

Un automate fini déterministe est un quintuplet

$$A = (X, Q, q_0, F, \delta)$$
 où :

- X : un alphabet,
- Q: un ensemble fini non vide d'états,
- $q_0 \in Q$ : l'état initial,
- $F \subset Q$  : ensemble d'états finaux,
- $\bullet$   $\delta$  : fonction de transition :

$$\delta: \begin{array}{ccc} Q \times X & \to & Q \\ (q, x) & \mapsto & q' \in Q \end{array}$$

### Exemple

$$A = (X, Q, q_0, F, \delta)$$
 où :

- $X = \{a, b\},\$
- $Q = \{q_0, q_1, q_2, q_3\}$ ,
- $F = \{q_2, q_3\},$
- $\delta(q_0, a) = q_1$ ,  $\delta(q_0, b) = q_2$ ,  $\delta(q_1, a) = q_2$ ,  $\delta(q_1, b) = q_1$ ,  $\delta(q_2, a) = q_2$ ,  $\delta(q_2, b) = q_0$ ,  $\delta(q_3, a) = q_3$ ,  $\delta(q_3, b) = q_1$ .

#### Fonction de reconnaissance $\delta^*$

#### Exemple:

- $\delta(q_0, a) = q_1, \ \delta(q_0, b) = q_2, \ \delta(q_1, a) = q_2, \ \delta(q_1, b) = q_1,$  $\delta(q_2, a) = q_2, \ \delta(q_2, b) = q_0, \ \delta(q_3, a) = q_3, \ \delta(q_3, b) = q_1.$
- $\delta^*(q_1, abbab)$

$$\begin{array}{llll} \delta^*(q_1,abbab) &=& \delta^*(q_1,a.bbab) &=& \delta^*(\delta(q_1,a),bbab) \\ =& \delta^*(q_2,bbab) &=& \delta^*(q_2,b.bab) &=& \delta^*(\delta(q_2,b),bab) \\ =& \delta^*(q_0,bab) &=& \delta^*(\delta(q_0,b),ab) &=& \delta^*(q_2,ab) \\ =& \delta^*(\delta(q_2,a),b) &=& \delta^*(q_2,b) &=& \delta^*(q_2,b.\varepsilon) \\ =& \delta^*(\delta(q_2,b),\varepsilon) &=& \delta^*(q_0,\varepsilon) &=& q_0 \end{array}$$

# Propriétés de $\delta^*$

- $\forall q \in Q, u, v \in X^*, \delta^*(q, u.v) = \delta^*(\delta^*(q, u), v),$
- $\forall x \in X, q \in Q, \delta^*(q, x) = \delta(q, x),$
- $\forall x \in X, q \in Q, \delta(q, x) = q \Rightarrow \forall n \in \mathbb{N}, \delta^*(q, x^n) = q$
- $\forall w \in X^*, q \in Q, \delta^*(q, w) = q \Rightarrow \forall n \in \mathbb{N}, \delta^*(q, w^n) = q.$

### Langage reconnu par un AFD

• Soit  $A = (X, Q, q_0, F, \delta)$  un automate fini déterministe, le langage reconnu (ou accepté) par A est :

$$L(A) = \{ w \in X^*, \delta^*(q_0, w) \in F \}$$

- Soit L ⊂ X\*, L est régulier si ∃A = (X, Q, q<sub>0</sub>, F, δ) un AFD tel que L(A) = L.
- Propriétés :
  - $F = \emptyset \Rightarrow L(A) = \emptyset$ ,
  - $F = Q \Rightarrow L(A) = X^*$ ,
  - $q_0 \in F \Leftrightarrow \varepsilon \in L(A)$ ,
  - Soit  $A = (X, Q, q_0, F_A, \delta), B = (X, Q, q_0, F_B, \delta)$  deux AFD :
    - $F_A = Q F_B \Rightarrow L(A) = X^* L(B),$
    - $F_A \subset F_B \Rightarrow L(A) \subset L(B),$
    - $F_A \cap F_B = \emptyset \Rightarrow L(A) \cap L(B) = \emptyset.$



# Propriétés des langages réguliers

- Tout langage fini est régulier,
- Soient L un langage régulier,  $X^* L, L^n(\forall n \in \mathbb{N}), L^*$  sont réguliers,
- Soient  $L_1, L_2$  deux langages réguliers,  $L_1 \cap L_2, L_1 \cup L_2, L_1.L_2$  sont réguliers.

#### Automates finis non déterministes

Un automate fini non déterministe est un quintuplet

$$A = (X, Q, Q_0, F, \delta)$$
 où :

- X : un alphabet,
- Q: un ensemble fini d'états,
- $Q_0 \subset Q$ : ensemble d'état initiaux,
- $F \subset Q$ : ensemble d'états finaux,
- $\delta$ : fonction de transition :

$$\delta: \begin{array}{ccc} Q \times X & \to & 2^Q \\ (q, x) & \mapsto & Q' \in 2^Q \ (\subset Q) \end{array}$$



### Exemple

$$A = (X, Q, Q_0, F, \delta)$$
 où :

- $X = \{a, b\},\$
- $Q = \{q_0, q_1, q_2, q_3\},$
- $Q_0 = \{q_0, q_2\},$
- $F = \{q_2, q_3\},$
- $\delta(q_0, a) = \{q_1, q_2\}, \ \delta(q_0, b) = \{q_0, q_2, q_3\}, \ \delta(q_1, a) = \{q_2\}, \ \delta(q_1, b) = \emptyset, \ \delta(q_2, a) = \{q_0\}, \ \delta(q_2, b) = \{q_0, q_1\}, \ \delta(q_3, a) = \{q_3\}, \ \delta(q_3, b) = \emptyset.$

#### Fonction de reconnaissance $\delta^*$

$$\delta^*: \begin{array}{ccc} 2^Q \times X^* & \to & 2^Q \\ \delta^*: & \left(E,w\right) & \mapsto & \left\{ \begin{array}{ccc} E & \text{si } w = \varepsilon \\ \delta^*(\cup_{q \in E} \delta(q,x), u) & \text{si } \exists x \in X, \\ & u \in X^*, w = x.u. \end{array} \right.$$

# Fonction de reconnaissance $\delta^*$ : Exemple

$$\begin{array}{lll} \delta(q_0,a) = \{q_1,q_2\} & \delta^*(\{q_0,q_1,q_2\},abb) \\ \delta(q_0,b) = \{q_0,q_2,q_3\} & = \delta^*(\{q_0,q_1,q_2\},a.bb) \\ \delta(q_1,a) = \{q_2\} & = \delta^*(\bigcup_{q \in \{q_0,q_1,q_2\}} \delta(q,a),bb) \\ \delta(q_1,b) = \emptyset & = \delta^*(\delta(q_0,a) \cup \delta(q_1,a) \cup \delta(q_2,a),bb) \\ \delta(q_2,a) = \{q_0\} & = \delta^*(\{q_0,q_1,q_2\} \cup \{q_2\} \cup \{q_0\},bb) \\ \delta(q_2,b) = \{q_0,q_1\} & = \delta^*(\{q_0,q_1,q_2\},bb) \\ \delta(q_3,a) = \{q_3\} & = \delta^*(\{q_0,q_1,q_2\},b.b) \\ \delta(q_3,b) = \emptyset & = \delta^*(\bigcup_{q \in \{q_0,q_1,q_2\}} \delta(q,b),b) \\ \delta^*(\{q_0,q_1,q_2\},abb) & = \delta^*(\delta(q_0,b) \cup \delta(q_1,b) \cup \delta(q_2,b),b) \end{array}$$

# Fonction de reconnaissance $\delta^*$ : Exemple

$$\begin{array}{lll} \delta(q_{0},a) = \{q_{1},q_{2}\} \\ \delta(q_{0},b) = \{q_{0},q_{2},q_{3}\} & = \delta^{*}(\{q_{0},q_{2},q_{3}\} \cup \emptyset \cup \{q_{0},q_{1}\},b) \\ \delta(q_{1},a) = \{q_{2}\} \\ \delta(q_{1},b) = \emptyset \\ \delta(q_{2},a) = \{q_{0}\} \\ \delta(q_{2},b) = \{q_{0},q_{1}\} \\ \delta(q_{3},a) = \{q_{3}\} \\ \delta(q_{3},b) = \emptyset \\ \delta^{*}(\{q_{0},q_{1},q_{2},q_{3}\},\epsilon) \\ = \delta^{*}(\{q_{0},q_{1},q_{2},q_{3}\},\delta(q,b),\epsilon) \\ = \delta^{*}(\delta(q_{0},b) \cup \delta(q_{1},b) \cup \delta(q_{2},b) \\ \cup \delta(q_{3},b),\epsilon) \\ = \delta^{*}(\{q_{0},q_{2},q_{3}\} \cup \emptyset \cup \{q_{0},q_{1}\} \cup \emptyset,\epsilon) \\ = \delta^{*}(\{q_{0},q_{1},q_{2},q_{3}\},\epsilon) \\ = \{q_{0},q_{1},q_{2},q_{3}\},\epsilon) \\ = \{q_{0},q_{1},q_{2},q_{3}\} \end{array}$$

#### Propriétés de $\delta^*$

- $\forall E \subset Q, u, v \in X^*, \delta^*(E, u.v) = \delta^*(\delta^*(E, u), v),$
- $\forall x \in X, q \in Q, \delta^*(\{q\}, x) = \delta(q, x),$
- $\forall x \in X, q \in Q, \delta(q, x) = \{q\} \Rightarrow \forall n \in \mathbb{N}, \delta^*(\{q\}, x^n) = \{q\},$
- $\forall w \in X^*, E \subset Q, \delta^*(E, w) = E \Rightarrow \forall n \in \mathbb{N}, \delta^*(E, w^n) = E$
- $\forall w \in X^*, E_1 \subset E_2 \subset Q, \delta^*(E_1, w) \subset \delta^*(E_2, w),$
- $\forall w \in X^*, E_1, E_2 \subset Q, \delta^*(E_1 \cup E_2, w) = \delta^*(E_1, w) \cup \delta^*(E_2, w),$
- $\forall w \in X^*, \delta^*(\emptyset, w) = \emptyset.$

#### Langage reconnu par un AFND

• Soit  $A = (X, Q, Q_0, F, \delta)$  un automate fini non déterministe, le langage reconnu (ou accepté) par A est :

$$L(A) = \{ w \in X^*, \delta^*(Q_0, w) \cap F \neq \emptyset \}$$

- Propriétés :
  - $F = \emptyset \Rightarrow L(A) = \emptyset$ ,
  - $Q_0 \cap F \neq \emptyset \Leftrightarrow \varepsilon \in L(A)$ ,
  - Soit  $A = (X, Q, Q_0, F_A, \delta), B = (X, Q, Q_0, F_B, \delta)$  deux AFD :  $-F_A \subset F_B \Rightarrow L(A) \subset L(B),$

### Passage AFND $\rightarrow$ AFD

- Soit  $A = (X, Q_A, Q_0, F_A, \delta_A)$  un automate fini non déterministe,
- Soit  $B = (X, Q_B, q_{Q_0}, F_B, \delta_B)$  un automate fini déterministe tel que :
  - $\bullet \ \ Q_B = \cup_{E \subset Q_A} \{q_E\},$
  - $F_B = \bigcup_{E \subset Q, E \cap F_A \neq \emptyset} \{q_E\},$
  - $\forall q_E \in Q_B, x \in X, \delta(q_E, x) = q_{\delta_A^*(E, x)}$
- $\bullet \ L(A) = L(B).$

# Passage AFND $\rightarrow$ AFD : états inaccessibles

- Si  $\exists E \subset Q_A, \forall w \in X^*, \delta_A^*(Q_0, w) \neq E$ , alors  $q_E$  est un état inutile,
- On initialise  $Q_B$  avec l'état initial  $(\{q_{Q_0}\})$ ,
- On rajoute seulement les états accessibles,

  - 2 Répéter,

Pour chaque  $q_E \in Q_B, x \in X, Q_B \leftarrow Q_B \cup \{q_{\delta_A^*(E,x)}\}$ , Tant que  $|Q_B|^{(t+1)} > |Q_B|^{(t)}$ .

#### Exemple

$$A = (X, Q_A, Q_0, F_A, \delta_A)$$
 où :

- $X = \{a, b\},$
- $Q_A = \{q_0, q_1, q_2, q_3\},$
- $Q_0 = \{q_0, q_2\},$
- $F_A = \{q_2, q_3\},$
- $\delta_A(q_0, a) = \{q_1, q_2\}, \ \delta_A(q_0, b) = \{q_0, q_2, q_3\},$ •  $\delta_A(q_1, a) = \{q_2\}, \ \delta_A(q_1, b) = \emptyset, \ \delta_A(q_2, a) = \{q_0\},$ •  $\delta_A(q_2, b) = \{q_0, q_1\}, \ \delta_A(q_3, a) = \{q_3\}, \ \delta_A(q_3, b) = \emptyset.$

| $\delta_{\mathcal{A}}$ | a             | Ь                 |
|------------------------|---------------|-------------------|
| $q_0$                  | $\{q_1,q_2\}$ | $\{q_0,q_2,q_3\}$ |
| $q_1$                  | $\{q_2\}$     | Ø                 |
| $q_2$                  | $\{q_0\}$     | $\{q_0,q_1\}$     |
| $\overline{q_3}$       | $\{q_3\}$     | Ø                 |

# Exemple

| $\delta_{m{A}}$ | а                 | Ь                   |
|-----------------|-------------------|---------------------|
| 90              | $\{q_1, q_2\}$    | $\{q_0, q_2, q_3\}$ |
| 91              | {q <sub>2</sub> } | Ø                   |
| 92              | { <b>q</b> 0 }    | $\{q_0, q_1\}$      |
| a3              | {a <sub>2</sub> } | Ø                   |

| $\delta_{m{B}}$   | a                              | Ь                                      |
|-------------------|--------------------------------|----------------------------------------|
| $q_{\{q_0,q_2\}}$ | $q_{\{q_1,q_2\}} \cup \{q_0\}$ | $q_{\{q_0,q_2,q_3\}} \cup \{q_0,q_1\}$ |
|                   | $=q_{\{q_0,q_1,q_2\}}$         | $q_{\{q_0,q_1,q_2,q_3\}}$              |

|               |   | $\delta_{m{B}}$           | a                                                  | Ь                                                              |
|---------------|---|---------------------------|----------------------------------------------------|----------------------------------------------------------------|
| $\rightarrow$ | 0 | $q_{\{q_0,q_2\}}$         | q{q0,q1,q2}                                        | $q_{\{q_0,q_1,q_2,q_3\}}$                                      |
|               | 0 | $q_{\{q_0,q_1,q_2\}}$     | $q_{\{q_1,q_2\}\cup\{q_2\}\cup\{q_0\}}$            | $q_{\{q_0,q_2,q_3\}\cup\emptyset\cup\{q_0,q_1\}}$              |
|               |   |                           | $=q_{\{q_0,q_1,q_2\}}$                             | $q_{\{q_0,q_1,q_2,q_3\}}$                                      |
|               | 0 | $q_{\{q_0,q_1,q_2,q_3\}}$ | $q_{\{q_1,q_2\}\cup\{q_2\}\cup\{q_0\}\cup\{q_3\}}$ | $q_{\{q_0,q_2,q_3\}\cup\emptyset\cup\{q_0,q_1\}\cup\emptyset}$ |
|               |   |                           | $=q_{\{q_0,q_1,q_2,q_3\}}$                         | $=q_{\{q_0,q_1,q_2,q_3\}}$                                     |

### Optimisation d'AFD

- Réduire le nombre d'états dans un AFD,
  - Identifier tous les ensembles d'états équivalents (classes d'équivalence),
  - Fusionner les états équivalents en un état unique.
- Relation d'équivalence R :

$$\forall q, p \in Q, qRp \Leftrightarrow \forall w \in X^*, \delta^*(q, w) \in F \Leftrightarrow \delta^*(p, w) \in F$$

### Optimisation d'AFD

- R est une relation d'équivalence :
- Symétrique :

$$\forall q, p \in Q, \quad qRp, \\ \Leftrightarrow \quad \forall w \in X^*, \delta^*(q, w) \in F \Leftrightarrow \delta^*(p, w) \in F, \\ \Leftrightarrow \quad \forall w \in X^*, \delta^*(p, w) \in F \Leftrightarrow \delta^*(q, w) \in F, \\ \Leftrightarrow \quad pRq.$$

Réflexive :

$$\forall q \in Q, \quad \forall w \in X^*, \delta^*(q, w) \in F \Leftrightarrow \delta^*(q, w) \in F, \\ \Leftrightarrow qRq.$$

# Optimisation d'AFD (cont.)

#### Transitive :

$$\forall q, p, o \in Q, \quad qRp, pRo,$$

$$\Leftrightarrow \begin{cases} \forall w \in X^*, \delta^*(q, w) \in F \Leftrightarrow \delta^*(p, w) \in F, \\ \forall w \in X^*, \delta^*(p, w) \in F \Leftrightarrow \delta^*(o, w) \in F. \end{cases}$$

$$\Leftrightarrow \forall w \in X^*, \begin{cases} \delta^*(q, w) \in F \Leftrightarrow \delta^*(p, w) \in F, \\ \delta^*(p, w) \in F \Leftrightarrow \delta^*(o, w) \in F. \end{cases}$$

$$\Leftrightarrow \forall w \in X^*, \delta^*(q, w) \in F \Leftrightarrow \delta^*(p, w) \in F$$

$$\Leftrightarrow \delta^*(o, w) \in F,$$

$$\Rightarrow \forall w \in X^*, \delta^*(q, w) \in F \Leftrightarrow \delta^*(o, w) \in F,$$

$$\Leftrightarrow qRo.$$

# Relation d'équivalence $R_n$

•  $\forall n \in \mathbb{N}$ , on définit la relation  $R_n$  par :

$$\forall q, p \in Q, qRp, \Leftrightarrow \forall w \in X^*, |w| \leq n, \delta^*(q, w) \in F \Leftrightarrow \delta^*(p, w) \in F.$$

- R<sub>n</sub> est une relation d'équivalence,
- $\bullet \ R_{+\infty}=R,$
- $\bullet \ \exists n \in \mathbb{N}, R_n = R_{+\infty} = R,$
- Si  $R_n = R_{n+1}$  alors  $\forall m \ge n, R_n = R_m$ , dans ce cas  $R_n = R_{+\infty} = R$ .

#### Relation entre $R_{n+1}$ et $R_n$

$$\forall p, q \in Q, \quad qR_{n+1}p,$$

$$\Leftrightarrow \quad \forall w \in X^*, |w| \leq n+1, \delta^*(q,w) \in F \Leftrightarrow \delta^*(p,w) \in F,$$

$$\Leftrightarrow \quad \begin{cases} \forall w \in X^*, |w| \leq n, \delta^*(q,w) \in F \Leftrightarrow \delta^*(p,w) \in F, \\ \forall w \in X^*, 0 < |w| \leq n+1, \delta^*(q,w) \in F \end{cases}$$

$$\Leftrightarrow \quad \begin{cases} \forall R_n p, \\ \forall x \in X, u \in X^*, |u| \leq n, \delta^*(q,xu) \in F \\ \Leftrightarrow \delta^*(p,xu) \in F, \end{cases}$$

$$\Leftrightarrow \quad \begin{cases} qR_n p, \\ \forall x \in X, u \in X^*, |u| \leq n, \delta^*(\delta(q,x),u) \in F \\ \Leftrightarrow \delta^*(\delta(p,x),u) \in F, \end{cases}$$

$$\Leftrightarrow \quad \begin{cases} qR_n p, \\ \forall x \in X, \delta(q,x) R_n \delta(p,x). \end{cases}$$

#### Relation entre $R_{n+1}$ et $R_n$

 $\bullet$   $R_0$ :

$$\forall q, p \in Q \quad qR_0p,$$

$$\Leftrightarrow \quad \forall w \in X^*, |w| \leq 0, \delta^*(q, w) \in F \Leftrightarrow \delta^*(p, w) \in F,$$

$$\Leftrightarrow \quad \delta^*(q, \varepsilon) \in F \Leftrightarrow \delta^*(p, \varepsilon) \in F,$$

$$\Leftrightarrow \quad q \in F \Leftrightarrow p \in F.$$

- 2 classes d'équivalence pour  $R_0$  : F et Q F.
- R<sub>1</sub>:

$$\forall q, p \in Q, \quad qR_1p,$$

$$\Leftrightarrow \begin{cases} qR_0p, \\ \forall x \in X, \delta(q, x)R_0\delta(p, x). \end{cases}$$

# Relation entre $R_{n+1}$ et $R_n$ (cont.)

• 
$$R_2$$
:  
 $\forall q, p \in Q, qR_2p,$ 
 $\Leftrightarrow \begin{cases} qR_1p, \\ \forall x \in X, \delta(q, x)R_1\delta(p, x). \end{cases}$ 

- . . .
- Jusqu'à  $R_n = R_{n-1}$ .

# AFD optimal

- $A = (X, Q, q_0, F, \delta)$  un AFD,
- $\{C_0, C_1 \dots C_n\}$  les classes d'équivalence de A,
- $A = (X, \{q_{C_0}, q_{C_1} \dots q_{C_n}\}, q_{C_{i,q_0 \in C_i}}, \{q_{C_i}, C_i \subset F\}, \delta_B)$  un AFD tel que :

$$\delta_B(q_{C_i},x) = q_{C_j} \Leftrightarrow \exists (\forall) q \in C_i, \delta(q,x) \in C_j,$$

• L(A) = L(B).

# Exemple

|                | ↓              | 0              | 0              |                |                | 0              | 0              | 0              |                |                |                | 0              | 0              |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
|                | 91             | 92             | 93             | 94             | 95             | 96             | 97             | 98             | 9              | 910            | 911            | 912            | 913            |
| а              | <b>q</b> 2     | 94             | 95             | <b>9</b> 5     | 94             | 97             | <b>9</b>       | <b>q</b> 9     | 910            | 911            | 911            | 913            | 913            |
| Ь              | 93             | 92             | 92             | 96             | 96             | 98             | 97             | 912            | 9              | 9              | 911            | 913            | 912            |
| R <sub>0</sub> | $C_1$          | C <sub>2</sub> | C <sub>2</sub> | $C_1$          | C <sub>1</sub> | C <sub>2</sub> | $C_2$          | C <sub>2</sub> | C <sub>1</sub> | C <sub>1</sub> | C <sub>1</sub> | C <sub>2</sub> | C <sub>2</sub> |
| а              | C <sub>2</sub> | C <sub>1</sub> | C <sub>1</sub> | C <sub>1</sub> | C <sub>1</sub> | C <sub>2</sub> | C <sub>1</sub> | C <sub>1</sub> | $C_1$          | C <sub>1</sub> | C <sub>1</sub> | C <sub>2</sub> | C <sub>2</sub> |
| ь              | C <sub>2</sub> | C <sub>1</sub> | C <sub>1</sub> | C <sub>1</sub> | C <sub>2</sub> | C <sub>2</sub> |
| R <sub>1</sub> | $C_1$          | $C_2$          | C <sub>2</sub> | C <sub>3</sub> | C <sub>3</sub> | C <sub>4</sub> | $C_2$          | C <sub>2</sub> | C <sub>3</sub> | C <sub>3</sub> | C <sub>3</sub> | C <sub>4</sub> | C <sub>4</sub> |
| а              | C <sub>2</sub> | C <sub>3</sub> | C <sub>3</sub> | C <sub>3</sub> | C <sub>3</sub> | C <sub>2</sub> | C <sub>3</sub> | C <sub>4</sub> | C <sub>4</sub> |
| Ь              | C <sub>2</sub> | C <sub>2</sub> | C <sub>2</sub> | C <sub>4</sub> | C <sub>4</sub> | C <sub>2</sub> | $C_2$          | C <sub>4</sub> | C <sub>3</sub> | C <sub>3</sub> | C <sub>3</sub> | C <sub>4</sub> | C <sub>4</sub> |
| R <sub>2</sub> | C <sub>1</sub> | C <sub>2</sub> | C <sub>2</sub> | C3             | C <sub>3</sub> | C <sub>4</sub> | C <sub>2</sub> | C <sub>3</sub> | C <sub>4</sub> | C <sub>4</sub> | C <sub>4</sub> | C <sub>5</sub> | C <sub>5</sub> |
| a              | C <sub>2</sub> | C <sub>3</sub> | C <sub>3</sub> | C <sub>3</sub> | C <sub>3</sub> | C <sub>2</sub> | C <sub>4</sub> | C <sub>5</sub> | C <sub>5</sub> |
| Ь              | C <sub>2</sub> | C <sub>2</sub> | C <sub>2</sub> | C <sub>4</sub> | C <sub>4</sub> | C <sub>3</sub> | C <sub>2</sub> | C <sub>5</sub> | C <sub>4</sub> | C <sub>4</sub> | C <sub>4</sub> | C <sub>5</sub> | C <sub>5</sub> |
| R <sub>3</sub> | $C_1$          | $C_2$          | C <sub>2</sub> | C <sub>3</sub> | C <sub>3</sub> | C <sub>4</sub> | C <sub>5</sub> | C <sub>6</sub> | C <sub>7</sub> | C <sub>7</sub> | C <sub>7</sub> | C <sub>8</sub> | C <sub>8</sub> |
| a              | $C_2$          | C <sub>3</sub> | C <sub>3</sub> | C <sub>3</sub> | C <sub>3</sub> | C <sub>5</sub> | C <sub>7</sub> | C <sub>8</sub> | C <sub>8</sub> |
| ь              | C <sub>2</sub> | C <sub>2</sub> | C <sub>2</sub> | C <sub>4</sub> | C <sub>4</sub> | C <sub>6</sub> | C <sub>5</sub> | C <sub>8</sub> | C <sub>7</sub> | C <sub>7</sub> | C <sub>7</sub> | C <sub>8</sub> | C <sub>8</sub> |
| R <sub>4</sub> | $C_1$          | C <sub>2</sub> | C <sub>2</sub> | C <sub>3</sub> | C <sub>3</sub> | C <sub>4</sub> | C <sub>5</sub> | C <sub>6</sub> | C <sub>7</sub> | C <sub>7</sub> | C <sub>7</sub> | C <sub>8</sub> | C <sub>8</sub> |

|   |   | ↓              | 0              |                | 0              | 0              | 0              |                | 0              |
|---|---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
|   |   |                |                | C <sub>3</sub> | C <sub>4</sub> | C <sub>5</sub> | C <sub>6</sub> | C <sub>7</sub> |                |
| a | , | $C_2$          | C <sub>3</sub> | C <sub>3</sub> | C <sub>5</sub> | C <sub>7</sub> | C <sub>7</sub> | C <sub>7</sub> | C <sub>8</sub> |
| Ŀ | , | C <sub>2</sub> | C <sub>2</sub> | C <sub>4</sub> | C <sub>6</sub> | C <sub>5</sub> | C <sub>8</sub> | C <sub>7</sub> | C <sub>8</sub> |

# Théorème de l'étoile (de pompage, de gonflement)

- Soit  $A = (X, Q, q_0, F, \delta)$  un AFD,
- Niveau 0 :

$$\forall w \in X^*, |w| \ge |Q|,$$
  

$$\exists u, f, v \in X^*, w = ufv, f \ne \varepsilon,$$
  

$$\forall n \in \mathbb{N},$$
  

$$uf^n v \in L(A).$$

• Niveau 1:

$$\forall w \in X^*, |w| \ge |Q|,$$

$$\forall u, f, v \in X^*, w = ufv, |f| \ge |Q|,$$

$$\exists \alpha, g, \beta \in X^*, g \ne \varepsilon, f = \alpha g \beta,$$

$$\forall n \in \mathbb{N},$$

$$u \alpha g^n \beta v \in L(A).$$

# Théorème de l'étoile (de pompage, de gonflement)

#### • Niveau 2 :

```
\forall w \in X^*, |w| \ge |Q|,
\forall u, f, v \in X^*, w = ufv, |f| \ge |Q|,
\exists \alpha, g, \beta \in X^*, g \ne \varepsilon, |g| < |Q|, f = \alpha g \beta,
\forall n \in \mathbb{N},
u \alpha g^n \beta v \in L(A).
```

### Expressions régulières et automates finis

- Une expression régulière est un motif qui décrit un langage,
- $\varepsilon$  est une expression régulière  $\{\varepsilon\}$ ,
- Tout symbole  $x \in X$  est une expression régulière  $\{x\}$ ,
- La concaténation de 2 expressions régulières est une expression régulière,
- L'union de 2 expressions régulières est une expression régulière,
- L'augmentatation d'une expression régulière est une expression régulière.
- Exemple :

$$((a \cup b).a.b \cup a.a^*.b.b^*)^*b.b^*$$

# Passage automate fini → expression régulière

- Soit  $A = (X, Q, Q_0, F, \delta)$  un AFND,
- Pour tout  $q \in Q$ , on définit L(A, q) = L(B) où  $B = (X, Q, \{q\}, F, \delta)$ ,
- $\forall q \in Q, x \in X, p \in \delta(q, x), x.L(A, p) \subset L(A, q),$
- $\forall q \in F, \varepsilon \subset L(A, q)$ ,
- $\bullet L(A) = \cup_{q \in Q_0} L(A, q).$

#### Théorème

- $\forall \alpha, \beta, \gamma \subset X^*$ ,
  - $\alpha = \beta \alpha \cup \gamma \Leftrightarrow \alpha = \beta^* \gamma$ ,
  - $\alpha = \alpha\beta \cup \gamma \Leftrightarrow \alpha = \gamma\beta^*$ .
- Exemple :  $L = ab^*L \cup aa \Leftrightarrow L = (ab^*)^*aa$



# Passage expression régulière → automate fini

- Soit  $A = (X, Q, Q_0, F, \delta)$  un AFND,
- On redéfinit la fonction  $\delta$  par :

$$\delta: \begin{array}{ccc} Q \times (X \cup \{\varepsilon\}) & \to & 2^{Q} \\ (q, x) & \mapsto & Q' \in 2^{Q} \ (\subset Q) \end{array}$$

•  $\delta(q, \varepsilon)$  est appelée  $\varepsilon$ transition.



#### Fonction de reconnaissance $\delta^*$

$$\delta^*: \begin{array}{cccc} 2^Q \times X^* & \to & 2^Q \\ \delta^*: & (E,w) & \mapsto & \begin{cases} \delta_F(E) & \text{si } w = \varepsilon \\ \delta^*(\delta_F(\cup_{q \in \delta_F(E)} \delta(q,x)), u) & \text{si } \exists x \in X, \\ & u \in X^*, w = x.u. \end{cases}$$

où  $\delta_F$  est définie par :

# Suppression des $\varepsilon$ transitions

• Soit M une matrice  $|Q| \times |Q|$  où :

$$M(i,j) = \left\{ egin{array}{ll} 1 & \textit{si } q_j \in \delta(q_i, arepsilon) \ \textit{ou } i = j, \ 0 & \textit{sinon}. \end{array} 
ight.$$

- Calculer M<sup>|Q|</sup>,
- Pour chaque  $M^{|Q|}(i,j) \neq 0, x \in X, \delta(q_i,x) \leftarrow \delta(q_i,x) \cup \delta(q_j,x),$
- Pour chaque  $q \in Q, \delta(q, \varepsilon) = \emptyset$ .

#### Suppression des $\varepsilon$ transitions

|            |             |     |                | a                         |                       | Ŀ                   | ,                                                                   |                               | ε                 |                |    |      |
|------------|-------------|-----|----------------|---------------------------|-----------------------|---------------------|---------------------------------------------------------------------|-------------------------------|-------------------|----------------|----|------|
|            |             | 9   | o {            | $\{q_1, q_2\}$            |                       | $\{q_0, q_2, q_3\}$ |                                                                     |                               | $\{q_1\}$         |                |    |      |
|            |             | q   | 1              | {q <sub>2</sub> }         |                       | Ø                   |                                                                     |                               | [qo, q:           | }              |    |      |
|            |             | q   | 2              | {q <sub>0</sub> }         |                       | $\{q_0, q_1\}$      |                                                                     |                               | Ø                 |                |    |      |
|            |             | q   | 3              | {q <sub>3</sub> }         |                       | Ø                   |                                                                     |                               | {q <sub>2</sub> } |                |    |      |
|            |             |     |                |                           |                       |                     |                                                                     |                               |                   |                |    |      |
|            |             | 90  | 91             | 92                        | <i>q</i> <sub>3</sub> | _                   |                                                                     | /                             | 90                | 91             | 92 | 93   |
|            | 90          | 1   | 1              | 0                         | 0                     | _                   |                                                                     | 90                            | 16                | 16             | 11 | 15   |
| <i>M</i> = | 91          | 1   | 1              | 0                         | 1                     | M                   | =                                                                   | <b>91</b>                     | 16                | 16             | 15 | 16   |
|            | 92          | 0   | 0              | 1                         | 0                     |                     |                                                                     | 92                            | 0                 | 0              | 1  | 0    |
|            | 93          | 0   | 0              | 1                         | 1                     | _                   |                                                                     | 93                            | 0                 | 0              | 5  | 1    |
|            |             |     |                |                           |                       |                     |                                                                     |                               |                   |                |    |      |
|            |             |     | а              |                           |                       |                     |                                                                     |                               |                   | Ь              |    |      |
| 90         | $\{q_{1},$  |     |                | ∪ { <i>q</i> <sub>0</sub> |                       | $\{q_3\}$           | $\{q_0,q_2,q_3\}\cup\emptyset\cup\{q_0,q_1\}\cup\emptyset$          |                               |                   |                |    |      |
|            |             |     |                | $, q_{2}, q$              |                       |                     | $= \{q_0, q_1, q_2, q_3\}$                                          |                               |                   |                |    |      |
| 91         | $\{q_{2}\}$ |     |                | ∪ { <i>q</i> <sub>0</sub> |                       | $\{q_3\}$           | $\emptyset \cup \{q_0, q_2, q_3\} \cup \{q_0, q_1\} \cup \emptyset$ |                               |                   |                |    | .}∪∅ |
|            |             | = { | 90, <b>91</b>  | , q <sub>2</sub> , q      | 3 }                   |                     |                                                                     |                               | {q0,              |                |    |      |
| 92         |             |     | { q₀           | }                         |                       |                     |                                                                     |                               |                   | o, <b>q</b> 1} |    |      |
| 93         |             | -{  | $q_3\} \cup$   | $\{q_{0}\}$               |                       |                     |                                                                     | $\emptyset \cup \{q_0, q_1\}$ |                   |                |    |      |
|            |             | -   | = { <i>q</i> o | , <b>q3</b> }             |                       |                     | $= \{q_0, q_1\}$                                                    |                               |                   |                |    |      |
|            |             |     |                |                           |                       |                     |                                                                     |                               |                   |                |    |      |

#### Union de 2 AFND

- Soient  $A = (X, Q_A, Q_{0A}, F_A, \delta_A)$  et  $B = (X, Q_B, Q_{0B}, F_B, \delta_B)$ 2 AFND où  $Q_A \cap Q_B = \emptyset$ ,
- Soient  $C = (X, Q_A \cup Q_B \cup \{q_0\}, \{q_0\}, F_A \cup F_B, \delta)$  où  $q_0 \notin Q_A \cup Q_B$  et

$$(Q_A \cup Q_B \cup \{q_0\}) \times \\ (X \cup \{\varepsilon\}) \quad \rightarrow \quad 2^{Q_A \cup Q_B \cup \{q_0\}} \\ \delta : \\ (q,x) \quad \mapsto \quad \begin{cases} \delta_A(q,x) & \text{si } q \in Q_A, \\ \delta_B(q,x) & \text{si } q \in Q_B, \\ Q_{0A} \cup Q_{0B} & \text{si } q = q_0, x = \varepsilon, \\ \emptyset & \text{sinon.} \end{cases}$$

•  $L(C) = L(A) \cup L(B)$ .



#### Concaténation de 2 AFND

- Soient  $A = (X, Q_A, Q_{0A}, F_A, \delta_A)$  et  $B = (X, Q_B, Q_{0B}, F_B, \delta_B)$ 2 AFND où  $Q_A \cap Q_B = \emptyset$ .
- Soient  $C = (X, Q_A \cup Q_B, Q_{0A}, F_B, \delta)$  où :

• L(C) = L(A).L(B).

Institut Supérieur d'Informatique et de Multimédia de Sfax ◆□ → ◆□ → ◆ ■ → ◆ ■ ・ ◆ へ ○ ○

#### Augmention d'un AFND

- Soient  $A = (X, Q, Q_0, F, \delta_A)$  un AFND,
- Soient  $B = (X, Q \cup \{q_0\}, Q_0 \cup \{q_0\}, F \cup \{q_0\}, \delta)$  où  $q_0 \notin Q_0$ :

$$Q \cup \{q_0\} \times \ (X \cup \{\varepsilon\}) \rightarrow 2^{Q \cup \{q_0\}}$$
 $\delta: \qquad \qquad \begin{cases} \delta_A(q,x) & \text{si } q \in Q_A - F_A, \\ \delta_A(q,x) \cup Q_0 & \text{si } q \in F_A, \\ \emptyset & \text{si } q = q_0 \text{ et } x = \varepsilon. \end{cases}$ 

•  $L(B) = (L(A))^*$ .