Homework 2

This problem will help you remember the idea of implementing Comparable in java (read SW 1.4)

Problem 1[20 points]. (*Die.java*) Implement a data type Die in Die.java that represents a six-sided die and supports the following API:

method	description	
Die()	constructs a die	
<pre>void roll()</pre>	rolls the die	
<pre>int value()</pre>	returns the face value of the die	
boolean equals(Die that)	returns true if this and that die have the same face value, and false otherwise	
String toString()	returns a string representation of the current face value of the die, ie,	

```
$ java Die 3 3 5

* *

* *

false
true
```

These problems will help you understand the Analysis of Algorithms (read CLRS)

Problem 1. [5 points] (True or False): No comparison-based sorting algorithm can do better than $\Omega(n \log n)$ in the worst-case

Problem 2 [10 points]. Prove $o(g(n)) \cap w(g(n))$ is the empty set. [note: $o \rightarrow$ little-oh and $w \rightarrow$ little omega)

Problem 3.[25 points] Consider functions f(n) and g(n) as given below. Use the most precise asymptotic notation to show how function f is related to function g in each case (i.e., $f \in ?(g)$). For example, if you were given the pair of functions f(n) = n and $g(n) = n^2$ then the correct answer would be: $f \in o(g)$. To avoid any ambiguity between O(g) and o(g) notations due to writing, use Big-O(g) instead of O(g).

f(n)	g(n)	Relation
$n^3 + 2n + 1$	$\frac{1}{100}n^3 + n\log n$	1
2^n	n^{1000}	3
$\log_2 n$	$\log_3 n$	
2 ⁿ	3 ⁿ	
0.5^{n}	1	ı

Problem 4.[10 points] In each of the pairs of the functions below, verify using the definition of "big Oh", whether f(n) = O(g(n)), g(n) = O(f(n)) or both.

(a)
$$f(n) = 20n^2 + 14n + 7$$
 $g(n) = 50n$

$$g(n) = 50n$$

(b)
$$f(n) = n^2$$

$$g(n) = 2^n$$

Submitting Information:

- Use the code I provided for each problem. DON'T DELETE ANY FUNCTION
- You should have each problem in a separate .java files (ex: Die.java, hw2.doc).
- Submit your work on Canvas in one Zip file.
- The deadline is Wednesday, Feb 26th at 11.55PM