AIS - COHOMOLOGY OF COMMUTATIVE ALGEBRAS

LECTURE MK1

LECTURE 1: KOSZUL COMPLEXES, GORENSTEIN RINGS AND POINCARÉ ALGEBRAS

Convention 1. R is always assumed to be a noetherian commutative ring with unity, unless mentioned otherwise.

Let M be a finitely generated R-module and $f \in M^* := \operatorname{Hom}_R(M, R)$. We want to define the Koszul complex $K_{\bullet}(M, f)$ in a coordinate free way. Recall the wedge product

$$\bigwedge M = \frac{\bigoplus_{n \geqslant 0} M^{\otimes n}}{\text{"A certain graded ideal"}} = \bigoplus_{i \geqslant 0} \bigwedge^i M$$

 $\bigwedge M$ is a skew commutative associative graded algebra.

Definition 2. We can view $\bigwedge M$ as a complex with the boundary maps given by

$$d: \bigwedge^i M \to \bigwedge^{i-1} M$$
 $x_1 \wedge \ldots \wedge x_i \mapsto \sum_{j=1}^i (-1)^j f(x_j) (x_1 \wedge \ldots \wedge \hat{x}_j \wedge \ldots \wedge x_i)$

It is easily checked that $d^2 = 0$ (this is the same computation as in the case of composition of boundary maps of the singular chain complex in topology). We call this complex the *Koszul complex* (with respect to M and $f \in M^*$) and denote it by $K_{\bullet}(M, f)$.

Observation 3. For homogeneous $x, y \in K_{\bullet}(M, f)$, $d(x \wedge y) = dx \wedge y + (-1)^{\deg(x)} x \wedge dy$. If $x \in K_1(M, f) \cong M$, then dx = -f(x).

Example 4. The form in which one has probably seen the Koszul complex is something like

$$0 \to R \xrightarrow{\binom{-b}{a}} R \oplus R \xrightarrow{(a \ b)} R$$

This is in fact a special case of the above definition. Put $M = R \oplus R$, with $(e_1 := (1,0), e_2 := (0,1))$ as a basis and let $f: M \to R$ be given by $e_1 \mapsto a$ and $e_2 \mapsto b$. A similar construction can be carried out for $R^{\oplus n}$ and this reduces to the (probably) more familiar version. For $x_1, \ldots, x_n \in R$, we will write $K_{\bullet}(x_1, \ldots, x_m, R)$ for the Koszul complex $K_{\bullet}(R^{\oplus n}, f)$, where $f: R^{\oplus n} \to R$, $e_i \mapsto x_i$.

Convention 5. From now on, we will assume that (R, \mathfrak{m}, k) is noetherian local, with maximal ideal \mathfrak{m} , residue field k and with minimal generating set $\{x_1, \ldots, x_n\}$ for \mathfrak{m} . We will write either of K^R_{\bullet} , K_{\bullet} or $K_{\bullet}(x_1, \ldots, x_n)$ to mean the same as $K_{\bullet}(x_1, \ldots, x_n, R)$

Remark 6. Recall that by NAK, any generating set of $\mathfrak{m}/\mathfrak{m}^2$ as a k-vector space can be lifted to a generating set of \mathfrak{m} . So, any two minimal generating sets of the maximal ideal of a noetherian local ring have the same finite number of elements.

Date: March 14, 2025.

Remark 7. If $\{y_1, \ldots, y_n\}$ is another minimal generating set for \mathfrak{m} , then using NAK, it can be shown that there exists an isomorphism $\phi: \mathbb{R}^n \to \mathbb{R}^n$ that makes the following diagram commute.

$$R^n \xrightarrow{e_i \mapsto x_i} R$$
 ϕ
 $R^n \xrightarrow{e_i \mapsto y_i} R$

By functoriality, $K_{\bullet}(x_1, \ldots, x_n, R) \cong K_{\bullet}(y_1, \ldots, y_n, R)$. This justifies the notation adopted in Convention 5.

Definition 8. Define $Z_i := \ker(K_i \to K_{i-1})$ (called the *i*-cycles of K_{\bullet}), $B_i := \operatorname{Im}(K_{i+1} \to K_i)$ (called the *i*-boundaries of K_{\bullet}), $Z := \bigoplus Z_i$ and $B := \bigoplus B_i$. Observe that Z is canonically a subalgebra of K_{\bullet} and that B is an ideal of Z. Define the Koszul homology of R as H(R) := Z/B. H(R) is canonically an R-algebra.

Example 9 (Characterisation of regular local rings). A noetherian local ring (R, \mathfrak{m}, k) is regular if and only if H(R) = k (in degree 0).

Example 10. Let (S, \mathfrak{n}, k) be a regular local ring and R = S/I. Then,

$$H_{\bullet}(R) = \operatorname{Tor}_{\bullet}^{S}(R, k)$$

The results holds in general but to simplify the argument, we will assume that $I \subseteq \mathfrak{n}^2$. This is to ensure $\operatorname{embdim}(R) = \operatorname{embdim}(S)$ as

$$\operatorname{embdim}(R) = \dim_k(\mathfrak{m}/\mathfrak{m}^2) = \dim_k(\mathfrak{n} + I/\mathfrak{n}^2 + I) = \dim_k(\mathfrak{n}/\mathfrak{n}^2) = \operatorname{embdim}(S)$$

Let x_1, \ldots, x_n be a minimal generating set of \mathfrak{n} . Then, $\overline{x}_1, \ldots, \overline{x}_n$ is a minimal generating set of \mathfrak{m} . Let $K^S_{\bullet} = K_{\bullet}(\overline{x}_1, \ldots, \overline{x}_n)$ and $K^S_{\bullet} = K_{\bullet}(x_1, \ldots, x_n)$. Then, $K^S_{\bullet} = K^S_{\bullet} \otimes_S R$. Hence,

$$H_i(R) = H_i(K_{\bullet}^R) = H_i(K_{\bullet}^S \otimes_S R) = \operatorname{Tor}_i^S(R, k)$$

If $F_{\bullet} \to R$ is a minimal free resolution of R as an S-module, then $\dim_k(H_i(R)) = \operatorname{rk}_S(F_i)$. Remark 11 (Depth Sensitivity of the Koszul Complex).

Let $s := \operatorname{embdim}(R) - \operatorname{depth}(R)$. Then, $H_i(R) = 0$ for all i > s and $H_s(R) \neq 0$.

Proposition 12. Let $y \in \mathfrak{m}$ be a non-zerodivisor in R. Then,

(1) For all i, there is an exact sequence

$$0 \to H_i(R) \to H_i(R/(y)) \to H_{i-1}(R) \to 0$$

(2) Let $s = \operatorname{embdim}(R) - \operatorname{depth}(R)$. Then, $H_{i+1}(R/(y)) \cong H_i(R)$ for all $i \geq s$.

Proof. See [Mat89, Theorem 16.4] for (1). (2) follows from (1).

Corollary 13. Let t = depth(R), y_1, \ldots, y_t be a maximal regular sequence, $J = (y_1, \ldots, y_t)$, n = embdim(R) and s = n - t. Then,

$$H_s(R) = H_n(R/J) = \ker((R/J) \xrightarrow{(\pm x_1 \pm x_2 \dots \pm x_n)^T} (R/J)^n)$$

$$= 0 :_{R/J} \mathfrak{m}$$

$$= \operatorname{Hom}_R(k, R/J)$$

Definition 14. R is said to be *Gorenstein* if it is Cohen-Macaulay and $H_s(R) \cong k$, where $s := \operatorname{embdim}(R) - \operatorname{depth}(R)$. (Recall Convention 5)

The following are well-known equivalent reformulations, possibly under further assumptions.

Proposition 15.

- (1) Let (R, \mathfrak{m}, k) be an artinian local ring. Then, the following are equivalent
 - (a) R is Gorenstein
 - (b) $(0:_R \mathfrak{m}) \cong k$
 - (c) R is an injective R-module
- (2) R is Gorenstein if and only if R/(y) is Gorenstein for all non-zerodivisors $y \in \mathfrak{m}$.
- (3) R is Gorenstein if and only if the injective dimension of R as a module over itself is finite.

Definition 16. A finite dimensional associative (and not necessarily commutative) graded k-algebra $A = \bigoplus_{i=0}^{g} A_i$, with (assuming for safety) $A_0 = k$, is called a *Poincaré algebra* if

$$A_i \to \operatorname{Hom}_k(A_{g-i}, A_g)$$

 $a \mapsto [b \mapsto ab]$

is an isomorphism of A_0 -modules for all i.

Example 17. Let $R = R_0 \oplus R_1 \oplus \ldots \oplus R_g$ (with g > 0 and $R_g \neq 0$) be a standard graded artinian k-algebra with $R_0 = k$. So, R is local with maximal ideal $\mathfrak{m} := \bigoplus_{1 \leqslant i \leqslant g} R_i$. Assume that R is Gorenstein. Since $R_g\mathfrak{m} = 0$, $R_g \subseteq \operatorname{soc}(R)$. Since R is Gorenstein, local and artininan, dimension of $\dim_k(\operatorname{soc}(R)) = 1$ and since $R_g\mathfrak{m} = 0$, $\operatorname{soc}(R) = R_g$. Let $a \in R_i$ be non-zero. Then, since R is artinian (in which case the socle is an essential submodule), $(a) \cap \operatorname{soc}(R) \neq (0)$. Since R is Gorenstein, $\operatorname{soc}(R) \subseteq (a)$. Hence, there exists $b \in R_{g-i}$ such that ab generates $\operatorname{soc}(R)$. This means that the map $R_i \to \operatorname{Hom}_k(R_{g-i}, R_g)$ induced by multiplication is injective for all i. If it is further assumed that R is a finite dimensional over k, then by a dimension argument, we conclude that $R_i \to \operatorname{Hom}_k(R_{g-i}, R_g)$ is an isomorphism for all i and that R is a Poincaré algebra.

Example 18. Let V be a finite dimensional k-vector space with an ordered basis (v_1, \ldots, v_n) . We will show that $\bigwedge V$ is a Poincaré algebra. Clearly, the multiplication map $k \cong \bigwedge^0 V \to \operatorname{Hom}_k(\bigwedge^n V, \bigwedge^n V) \cong \operatorname{Hom}_k(k, k)$ is an isomorphism. Fix $i \geqslant 1$ and let $\mu := \sum_{1 \leqslant j_1 < j_2 < \ldots < j_i \leqslant n} \alpha_{j_1, \ldots, j_n}(v_{j_1} \wedge \ldots \wedge v_{j_i}) \in \bigwedge^i V$ be non-zero with $\alpha_{k_1, \ldots, k_n} \neq 0$ for some $1 \leqslant k_1 < \ldots < k_n \leqslant n$. Then, $\mu \wedge (v_1 \wedge \ldots \wedge \hat{v}_{j_1} \ldots \wedge \hat{v}_{j_n} \wedge \ldots \wedge v_n) \neq 0$. Thus, the map $\bigwedge^i V \to \operatorname{Hom}_k(\bigwedge^{n-i} V, \bigwedge^n V)$ is injective. Comparing dimensions as k-vector spaces, it is further an isomorphism.

REFERENCES

[Mat89] Matsumura, Hideyuki. Commutative ring theory. No. 8. Cambridge university press, 1989.