VLSI Architectures for Digital Signal Processoring

Dr Noor Mahammad Sk

High Performance Reconfigurable Computing System Engineering Group Indian Institute of Information Technology Design and Manufacturing (IIITDM) Kancheepuram, Chennai – 600127.

High Performance Circuit Design

- High speed Adder Circuits
 - Carry Ripple Inherently Sequential
 - Carry Look ahead Parallel version
 - You should understand the conversion portion
- Multipliers
 - Wallace-tree multipliers

High Performance Circuit Design

- Performance of a circuit
 - Circuit depth maximum level in the topological sort.
 - Circuit Size Number of combinational elements.
- Optimize both for high performance.
- Both are inversely proportional so a balance to be arrived.

Carry Ripple Adder

- Given two n-bit numbers
 - (a(n-1), a(n-2), a(n-3), ..., a(0)) and
 - (b(n-1), b(n-2), b(n-3),..., b(0)).
- ◆ A full adder adds three bits (a, b, c), where 'a' and 'b' are data inputs and 'c' is the carry-in bit.
- It outputs a sum bit 's' and a carry-out bit 'co'

Full Adder

n-bit Carry Ripple Adder

- Circuit Depth is 'n'.
- Circuit area is 'n' times size of a Full Adder

6

Carry Lookahead Adder

- The depth is 'n' because of the carry.
- Some interesting facts about carry

a(j)	b(j)	c(j)	c(j+1)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

If
$$a(j) = b(j)$$
 then
 $c(j+1) = a(j) = b(j)$
If $a(j) <> b(j)$ then
 $c(j+1) = c(j)$

Carry Lookahead Circuit

a(j)	b(j)	c(j)	Status x(j+1)
0	0	0	Kill (k)
0	0	1	
0	1	c(j) = 0	Dropagato (p)
0	1	c(j) = 1	Propagate (p)
1	0	c(j) = 0	Dropagato (p)
1	0	c(j) = 1	Propagate (p)
1	1	0	Gonorato (g)
1	1	1	Generate (g)

Carry Lookahead Circuit

$$x(j+1)$$

x(j)

(*)	k	р	g
k	k	k	g
р	k	р	g
g	k	g	g

New (j+1)th carry status as influenced by x(j)

(*) is associative

Carry Calculations

- A prefix computation
 - y(0) = x(0) = k
 - y(1) = x(0) (*) x(1)
 - y(2) = x(0) (*) x(1) (*) x(2)
 - **.....**
 - y(n) = x(0) (*) x(1) (*) x(n)
- ◆ Let [i,j] = x(i) (*) x(i+1) (*) ... x(j)
- \bullet [i,j] (*) [j+1,k] = [i,k]
 - By associative property

Parallel Prefix Circuit

- Input x(0), x(1), ... x(n) − for an n-bit CLA, where x(0) = k.
- Each x(i) is a 2-bit vector
- To compute the prefix (*) and pipeline the same.
- y(i) = x(0) (*) x(1) (*) ... x(i)
- We can use the Recursive Doubling Technique described as follows

11

An 8-node Carry Lookahead Adder

Parallel Prefix Circuit

Parallel Techniques: Recursive Doubling

Finding Prefix sum of '8' numbers

Recursive Doubling (Step 1)

Finding Prefix sum of '8' numbers

STEP 1

Recursive Doubling (Step 2)

Recursive Doubling (Step 3)

- Prefix Sum of n numbers in log n steps
- Recursive Doubling is applicable:
 - Operators like Min, Max, Mul etc. that is associative

17

Prefix Calculation Based on Recursive Doubling Technique

Pipeline Prefix Calculation Based on Recursive Doubling Technique

Outcome of Above Method

- Depth of the circuit reduced from O(n) to O(log₂ n)
- ◆Size is still O(n)
- This results in a Fast Adder

Multipliers

- Simple grade-school multiplication method.
 - Concept of partial-products
- Partial products generated in parallel and carry save addition results in faster array multiplier

21

Grade School Multiplication

$$1110 = m(0)$$
 $0000 = m(1)$
 $1110 = m(2)$
 $1110 = m(3)$

Array Multiplier

- Combination circuit
- Product generated in one micro-operation
- Requires large number of gates
- Became feasible after integrated circuits developed
- Needed for 'j' multiplier and 'k' multiplicand bits
 - jxk AND gates
 - -1 k-bit adders to produce product of j +k bits

23

2-bit by 2-bit Array Multiplier

24

4-bit by 3-bit array multiplier

Carry Save Addition

- Given three n-bit numbers x, y and z.
- ◆The circuit computes a n-bit number 'u' and a (n+1)bit number 'v' such that
 - x+y+z = u + v

Carry Save Addition Example

Carry Save Adder Circuit

Carry Save Addition based Multiplication

				0	0	0	0	=	0
				1	1	1	0	=	m(0)
			0	0	0	0		=	m(1)
			0	1	1	1	0	=	u(1)
			0	0	0			=	v(1)
		1	1	1	0			=	m(2)
		1	1	0	1	1	0	=	u(2)
		0	1	0					v(2)
	1	1	1	0				=	m(3)
	1	0	1	0	1	1	0	=	u(3)
	1	1	0					=	v(3)
1	0	1	1	0	1	1	0	=	р

Wallace Tree Multipliers

- While multiplying two n-bit numbers a total of n partial products have to be added.
- Use floor(n/3) carry save adders and reduce the number to ceil(2n/3).
- Apply it recursively.
- \bullet O(log n) depth circuit of size O(n²).

8-bit Wallace Tree Multiplication

8-bit Wallace Tree Multiplication

Floating Point Arithmetic

Dr Noor Mahammad Sk

Floating Point Numbers

- \bullet B = b₀ . b₋₁ b₋₂ ... b_{-(n-1)}
- \bullet F(B) = -b₀ x 2⁰ + b₋₁ x 2⁻¹ + b₋₂ x 2⁻² + ... + b_{-(n-1)} x 2⁻⁽ⁿ⁻¹⁾
- IEEE Standards for floating point numbers
 - \bullet ± X₁ . X₂ X₃ X₄ X₅ X₆ X₇ x 10 \pm Y1Y2
 - Single Precision (32 bits)
 - Value represented = ± 1 . M x $2^{E'-127}$ (E' = E + 127)
 - Where E stands for Exponent
 - Double Precision (64 bits)
 - Value represented = ± 1 . M x $2^{E'-1023}$ (E' = E + 1023)

34

Single Precision

- Not Normalized
 - 0.0010110 ... x 2⁹
- Normalized
 - 1.0110 ... x 2⁶

Double Precision

- Single Precision
 - $1 \le E' \le 254 \ (-126 \le E \le 127)$
- Double Precision
 - $1 \le E' \le 2046 \ (-1022 \le E \le 1023)$

Example

0 00101000 001010... 0

Value represented = $+ 1.0010110 ...0 \times 2^{-87}$

0 10000101 0110...

Value represented = $+ 1.0110 \dots \times 2^6$

IEEE 754 Format Interpretation

			Single Pre	cision	Double Precision	
	Sign	Fraction	Biased Exponent	Value	Biased Exponent	Value
Positive Zero	0	0	0	0	0	0
Negative Zero	1	0	0	0	0	0
Plus Infinity	0	0	255 (all 1's)	+∞	2047 (all 1's)	+∞
Minus Infinity	1	0	255 (all 1's)	-∞	2047 (all 1's)	-∞
Not a Number	0 or 1	≠0	255 (all 1's)	NaN	2047 (all 1's)	NaN
Positive normalized nonzero	0	M	0 <e'<255< td=""><td>2^{E'-127} (1.M)</td><td>0 <e'<2047< td=""><td>2^{E'-1023} (1.M)</td></e'<2047<></td></e'<255<>	2 ^{E'-127} (1.M)	0 <e'<2047< td=""><td>2^{E'-1023} (1.M)</td></e'<2047<>	2 ^{E'-1023} (1.M)
Negative normalized nonzero	1	M	0 <e'<255< td=""><td>-2^{E'-127} (1.M)</td><td>0 <e'<2047< td=""><td>-2^{E'-1023} (1.M)</td></e'<2047<></td></e'<255<>	-2 ^{E'-127} (1.M)	0 <e'<2047< td=""><td>-2^{E'-1023} (1.M)</td></e'<2047<>	-2 ^{E'-1023} (1.M)
Positive denormalized	0	M ≠ 0	0	-2 ^{E'-127} (0.M)	0	-2 ^{E'-1023} (0.M)
Negative denormalized	1	M ≠ 0	0	-2 ^{E'-127} (0.M)	0	-2 ^{E'-1023} (0.M)

Floating Point Add/ Subtract

- Check for zeros
- Align the mantissa
- Add or subtract mantissas
- Normalize the result

Multiplication

- Check for zeros
- Add the exponents
- Multiply the mantissas
- ◆ Normalize the product

Floating Point Division

- Check for zeros
- Initialize registers and evaluate the sign
- Align the dividend
- Subtract the exponents
- Divide the mantissas

Thank You!!

noor@iiitdm.ac.in