Chapter 5 Homework

1. Determine the value of k so that $f_{x,y}(x,y) = k(2+x+y^2)$ with support x=1,2,3 y=1,2,3 is a joint pmf.

The joint pmf of the random variables *X* and *Y* is given in the table. Use the table for questions 2 and 3.

				Х		
		0	1	2	3	4
	0	0.01	0.05	0.05	0.14	0.07
Υ	1	0.06	0.02	0.11	0.07	0.09
	2	0.18	0.05 0.02 0.03	0.04	0.05	0.03

2. a) Determine P(Y=2) b) Determine $f_{Y}(y)$ c) Determine $f_{X|y=1}(2)$ d) Determine $f_{X|y=2}(x)$

3. a) Determine P(X=3) b) Determine $f_X(x)$ c) Determine $f_{Y|_{X=3}}(1)$ d) Determine $f_{Y|_{X=2}}(y)$

The joint pmf of the random variables X, Y and Z is given in the table. Use the table for questions 4 - 9.

			Χ	
		1	2	3
	1	.001	.002	.003
Y	2	.006	.005	.004
	3	.007	.008	.009

Z=1

		X		
		1	2	3
	1	.07	.06	.01
Υ	2	.08	.05	.02
	3	.09	.04	.03

Z=2

		Х	
	1	2	3
1	.03	.01	.05
2	.02	.145	.04
3	.07	.06	.08

Z=3

4. a) Determine P(Y=2) b) Determine P(Z=2) c) Determine P(X=2) (No need to determine the marginals)

5. a) Determine P(Y=1) b) Determine P(Z=1) c) Determine P(X=1) (No need to determine the marginals)

6. a) Determine $f_{X,Y|z=1}(1,2)$ b) Determine $f_{X,Y|z=1}(1,2)$ c) Determine $f_{X,Y|z=2}(1,2)$ (No need to determine marginals)

7. a) Determine $f_{X,Y|z=1}(2,2)$ b) Determine $f_{X,Y|z=1}(2,2)$ c) Determine $f_{X,Y|z=2}(2,2)$ (No need to determine marginals)

8. a) Determine $f_{Y|x=1,z=1}(y)$ c) Determine $f_{Y|x=1,z=1}(y)$ d) Determine $f_{Y|z=1}(y)$

9. a) Determine $f_{Z|x=1,y=1}(z)$ c) Determine $f_{Z|x=1}(z)$ d) Determine $f_{Z|y=1}(z)$

Use $f_{x,y,z}(x,y,z) = \frac{1}{81}(x+xy+z)$ for x = 0,1,2 y = 0,1,2 z = 0,1,2 to answer problems 10 - 13.

10. a) Determine $f_{x,y}(1,2)$ b) D

b) Determine $f_{X,Y|z=1}$ (1,2)

c) Determine $f_{X,Y|z=2}$ (1,2)

11. a) Determine $f_{X,Y}(2,2)$

b) Determine $f_{X,Y|z=1}(2,2)$

c) Determine $f_{X,Y|z=2}$ (2,2)

12. a) Determine $f_{x,z}(x,z)$

b) Determine $f_{Y|x=1,z=1}(y)$

c) Determine $f_{Y|X=1}(y)$

d) Determine $f_{Y|z=1}(y)$

e) Determine $f_{Y|x,z}(y)$

f) Determine $f_{Y|X}(y)$

13. a) Determine $f_{x,y}(x,y)$

b) Determine $f_{Z|x=1,y=1}(z)$

c) Determine $f_{Z|x=1}(z)$

d) Determine $f_{z|y=1}(z)$

e) Determine $f_{Z|x,y}(z)$

f) Determine $f_{Z|x}(z)$

- 14. Determine k, so that $f_{X,Y}(x,y) = \begin{cases} k(x+y) & 0 < x < 1, \ 0 < y < 1 \\ 0 & otherwise \end{cases}$ is a joint pdf.
- 15. Determine k, so that $f_{X,Y}(x,y) = \begin{cases} kxy & 0 < x < 1, \ 0 < y < 1 \\ 0 & otherwise \end{cases}$ is a joint pdf.
- 16. Determine k, so that $f_{X,Y}(x,y) = \begin{cases} k(xy^2) & 0 < x < 1, \ 0 < y < 1 \\ 0 & otherwise \end{cases}$ is a joint pdf.
- 17. Determine k, so that $f_{X,Y}(x,y) = \begin{cases} kx & 0 < x < y < 1 \\ 0 & otherwise \end{cases}$ is a joint pdf.
- 18. Determine k, so that $f_{X,Y}(x,y) = \begin{cases} k(x+y) & 0 < x < y < 1 \\ 0 & otherwise \end{cases}$ is a joint pdf.
- 19. Determine k, so that $f_{X,Y}(x,y) = \begin{cases} kxy & 0 < x < y < 1 \\ 0 & otherwise \end{cases}$ is a joint pdf.
- 20 The joint pdf of X and Y is $f_{X,Y}(x,y) = \begin{cases} x+y & 0 < x < 1, \ 0 < y < 1 \\ 0 & otherwise \end{cases}$ (region below)
- a) Determine $f_X(x)$
- b) Determine $f_{y}(y)$
- c) Determine $f_{X|y}(x)$
- d) Determine $f_{X|y=.5}(x)$
- e) Determine $f_{Y|x}(y)$
- f) Determine $f_{Y|x=.25}(y)$
- g) Determine E[X] and Var[X]
- h) Determine E[Y]

- i) Determine Var[Y]
- j) Determine Cov[X,Y]
- 21. The joint density of the random variables X and Y is $f_{X,Y}(x,y) = 2$ on S, where S is the region bounded by x = 0, x = 1, y = x, y = 1 - x.
- a) Determine $f_{y}(y)$

- b) Determine $f_{x}(x)$
- c) Determine E[X] and Var[X]
- d) Determine E[Y] and Var[Y]

22. Let X and Y be continuous random variables with joint CDF (not the pdf)

$$F(x, y) = \frac{1}{250} (20xy - x^2y - xy^2)$$
 for $0 \le x \le 5$ and $0 \le y \le 5$

- a) Determine $P(3 \le X)$ b) Determine $P(2 \le X)$ c) Determine $P\big[(2 \le X \le 3) \cap (1 \le Y \le 4)\big]$
- d) Determine $f_{\chi}(x)$ e) Determine $f_{\chi}(y)$

- a) Determine $f_{Y|x}(y)$
- b) Determine $f_{X|y}(x)$
- c) Determine $E[Y \mid x]$
- d) Determine $E[X \mid y]$

24. Suppose that the joint probability density function of the jointly continuous random variables X and Y is

$$f_{X,Y}(x,y) = \begin{cases} \frac{6}{11}x & \text{on the given region} \\ 0 & \text{otherwise} \end{cases}$$

Determine $f_{\gamma}(y)$

25. Let X and Y be continuous random variables with joint pdf $f_{X,Y}(x,y) = \begin{cases} 6x & 0 < x < y < 1 \\ 0 & otherwise \end{cases}$

Given that $E[X] = \frac{1}{2}$ and $E[Y] = \frac{3}{4}$, determine Cov[X,Y].

26. Given
$$f_{X,Y}(x,y) = \begin{cases} 12y^2 & 0 \le y \le x \le 1 \\ 0 & otherwise \end{cases}$$
 Determine $E[Y \mid x]$

27. Given $f_{X,Y}(x,y) = \begin{cases} 6x & 0 < x < y < 1 \\ 0 & otherwise \end{cases}$ and that $E[X] = \frac{1}{2}$ and $E[Y] = \frac{3}{4}$, determine Cov[X,Y].

28. Let X and Y be continuous random variables with joint pdf $f_{X,Y}(x,y) = \begin{cases} 6x & 0 < x < y < 1 \\ 0 & otherwise \end{cases}$.

Given that $E[X] = \frac{1}{2}$ and $E[Y] = \frac{3}{4}$, determine Cov[X,Y].

29. Determine Cov[X,Y] for the random variables in problem 23.

30. Determine Cov[X,Y] for the random variables in problem 24.

31. Given that V[X] = 1.2, V[Y] = 2.8 and Cov[X,Y] = 3:

a) Determine Vig[X+Yig] b) Determine Vig[X-Yig] c) Determine Vig[2X-4Yig]

d) Determine Vig[Y+Xig] e) Determine Vig[Y-Xig] f) Determine Vig[4Y-2Xig]

32. Given that $V\!\left[X\right]\!=\!1.2$, $V\!\left[Y\right]\!=\!2.8$ and $Cov\!\left[X,Y\right]\!=\!-3$:

a) Determine Vig[X+Yig] b) Determine Vig[X-Yig] c) Determine Vig[2X-4Yig]

d) Determine Vig[Y+Xig] e) Determine Vig[Y-Xig] f) Determine Vig[4Y-2Xig]

33. Given that V[X] = 2.1, V[Y] = 3.5 and Cov[X, Y] = -4:

a) Determine $V\big[X+Y\big]$ b) Determine $V\big[X-Y\big]$ c) Determine $V\big[2X-4Y\big]$

d) Determine Vig[Y+Xig] e) Determine Vig[Y-Xig] f) Determine Vig[4Y-2Xig]

34. Given that V[X] = 2.1, V[Y] = 1.5 and Cov[X, Y] = 5:

a) Determine Vig[X+Yig] b) Determine Vig[X-Yig] c) Determine Vig[2X-4Yig]

d) Determine Vig[Y+Xig] e) Determine Vig[Y-Xig] f) Determine Vig[4Y-2Xig]