Please add the following claim:

21. A composition comprising a compound of formula (III):

wherein

 E_1 is $-(CR_1R_1)_{m_1}W_1$;

G₁ is N₃, -CN, -OH, -OR₆a, -NO₂, or -(CR₁R₁)_{m1}W₂;

T₁ is -NR₁W₃, a heterocycle, or is taken together with U₁ or G₁ to form

a group having the structure

R_{6b}N ;

U1 is -X1W6;

J₁ and J_{1a} are independently R₁, Br, Cl, F, I, CN, NO₂ or N₃;

J2 and J2a are independently H or R1;

R₁ is independently H or alkyl of 1 to 12 carbon atoms;

R2 is independently R3 or R4 wherein each R4 is independently substituted with 0 to 3 R3 groups;

R3 is independently F, Cl, Br, I, -CN, N₃, -NO₂, -OR_{6a}, -OR₁, -N(R₁)₂,

 $-N(R_1)(R_{6b})$, $-N(R_{6b})_2$, $-SR_1$, $-SR_{6a}$, $-S(O)R_1$, $-S(O)_2R_1$, $-S(O)OR_1$, $-S(O)OR_{6a}$,

 $-S(O)_2OR_1$, $-S(O)_2OR_{6a}$, $-C(O)OR_1$, $-C(O)R_{6c}$, $-C(O)OR_{6a}$, $-OC(O)R_1$, $-N(R_1)(C(O)R_1)$,

 $-N(R_{6b})(C(O)R_1)$, $-N(R_1)(C(O)OR_1)$, $-N(R_{6b})(C(O)OR_1)$, $-C(O)N(R_1)_2$, $-C(O)N(R_{6b})(R_1)$,

 $-C(O)N(R_{6b})_2$, $-C(NR_1)(N(R_1)_2)$, $-C(N(R_{6b}))(N(R_1)_2)$, $-C(N(R_1))(N(R_1)(R_{6b}))$,

 $-C(N(R_{6b}))(N(R_1)(R_{6b})), -C(N(R_1))(N(R_{6b})_2), -C(N(R_{6b}))(N(R_{6b})_2),$

 $-N(R_1)C(N(R_1))(N(R_1)_2), -N(R_1)C(N(R_1))(N(R_1)(R_{6b})), -N(R_1)C(N(R_{6b}))(N(R_1)_2),$

 $-N(R_{6b})C(N(R_1))(N(R_1)_2), -N(R_{6b})C(N(R_{6b}))(N(R_1)_2), -N(R_{6b})C(N(R_1))(N(R_1)(R_{6b})),$

 $-N(R_1)C(N(R_{6b}))(N(R_1)(R_{6b})), -N(R_1)C(N(R_1))(N(R_{6b})_2),$

 $-N(R_{6b})C(N(R_{6b}))(N(R_{1})(R_{6b})), -N(R_{6b})C(N(R_{1}))(N(R_{6b})_{2}), -N(R_{1})C(N(R_{6b}))(N(R_{6b})_{2}), -N(R_{1})C(N(R_{6b})_{2}), -N(R_{1})C(N(R_{1}))(N(R_{1})_{2}), -N(R_{1})C(N(R_{1})_{2}), -N(R_{1})C(N(R_{1$

 $-N(R_{6b})C(N(R_{6b}))(N(R_{6b})_2)$, =O, =S, =N(R₁) or =N(R_{6b});

S/N 08/653,034

R4 is independently alkyl of 1 to 12 carbon atoms, alkenyl of 2 to 12 carbon atoms, or alkynyl of 2 to 12 carbon atoms;

R5 is independently R4 wherein each R4 is substituted with 0 to 3 R3 groups;

R5a is independently alkylene of 1 to 12 carbon atoms, alkenylene of 2 to 12 carbon atoms, or alkynylene of 2-12 carbon atoms which is substituted with 0-3 R3 groups;

R6a is independently H or a protecting group for hydroxyl or thio;

R_{6b} is independently H, a protecting group for amino or the residue of a carboxyl-containing compound;

R_{6c} is independently H or the residue of an amino-containing compound;

W1 is a group comprising an acidic hydrogen, a protected acidic group, or an R6c amide of the group comprising an acidic hydrogen;

W₂ is a group comprising a basic heteroatom or a protected basic heteroatom, or an R_{6b} amide of the basic heteroatom;

W3 is W4 or W5;

 W_4 is R_5 or $-C(O)R_5$, $-C(O)W_5$, $-SO_2R_5$, or $-SO_2W_5$;

W5 is carbocycle or heterocycle wherein W5 is independently substituted with 0 to 3 R2 groups;

W6 is a branched chain R5 group wherein said R5 is substituted with 1 to 2 R3 groups and wherein a OH, COOH, NH2, C(O)H, C(O)NH2, S(O)2OH, S(O)OH, N(H)(C(O)OH), C(N(H))NH2, N(H)C((NH2)N(H)), =O, or =NH group substitutes a terminal carbon distal to X_1 ;

 X_1 is -O-, -N(H)-, -N(R5)-, -N(OH)-, -N(OR5)-, -N(NH2)-, -N(N(H)(R5))-, -N(N(R5)2)-, -N(H)N(R5)-, -S-, -SO-, or -SO₂-; and

each m₁ is/independently an integer from 0 to 2;

and the salts, solvates, resolved enantiomers and purified diastereomers thereof. --