Du 12 au 16 octobre

L'ensemble du cours depuis le début d'année doit être connu. Les questions de cours suivantes, portant sur les chapitres récents, sont à travailler particulièrement. En gras, les questions rajoutées au programme de colles de la semaine.

Questions de cours à préparer : sur 8 points

- 1) Énoncer les deux inégalités triangulaires (sur des réels). Démontrer la deuxième.
- 2) Définir bornes et extremums d'une partie de R. Définir bornes et extremums globaux d'une fonction réelle.
- 3) Donner la définition de la dérivée en un point. Équation de la tangente en ce point.
- 4) Énoncer le théorème fondamental du calcul intégral et son corollaire.
- 5) Énoncer les deux inégalités triangulaires pour le module, démontrer la première.
- 6) Expressions de $\Re(z)$, $\Im(z)$ et |z| à l'aide de $z \in \mathbb{C}$ et \overline{z} . Étant donnés $z_1, z_2 \in \mathbb{C}$ de module 1 tels que $z_1z_2 \neq -1$, montrer que

$$Z = \frac{z_1 + z_2}{1 + z_1 z_2} \in \mathbb{R}$$

- 7) Expression pour $z \in \mathbb{C}^*$ de $\frac{1}{z}$ à l'aide de \overline{z} et |z|.

 Donner une condition nécessaire et suffisante portant sur z et \overline{z} pour que $z \in \mathbb{R}$, ou pour que $z \in i\mathbb{R}$.
- 8) Forme trigonométrique d'un nombre complexe. Définitions de $e^{i\theta}$ et de e^z pour $\theta \in \mathbb{R}, z \in \mathbb{C}$. Propriétés de l'exponentielle d'un nombre imaginaire.
- 9) Écrire sous forme trigonométrique $1 + e^{i\theta}$.
- 10) Énoncer les formules d'Euler et de Moivre. Au choix du colleur : développer $\cos(nx)$ ou $\sin(nx)$ (pour $n \le 5$) ou linéariser un produit de fonctions trigonométriques $\cos^p(x)\sin^q(x)$ ($p+q \le 5$).

Programme pour les exercices : sur 12 points

Études de fonctions réelles d'une variable réelle (notamment montrer qu'une telle fonction est bijective).

Utilisation de l'étude de fonctions pour l'obtention d'inégalités.

Nombres complexes : parties réelle/imaginaire, module, utilisations pour la trigonométrie.