Island Problem

- Given a bitmap of aerial photographer of archipelago (chain of islands)
 - Bitmap is black & white
 - · White means land
 - Black means sea
- Find the largest possible square land

Island Problem

- Input
 - 2D array of Boolean called "Land"
 - Size m x n
 - Land[x][y] is true when cell x,y is a land
- Output
 - x,y the top-left coordinate of the largest square land and s, the size of the largest square land

Example

X-axis

(0,0)

0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	1	0	0	0	0
0	1	1	0	0	0	1	1	1	0
0	1	1	1	1	0	1	1	1	0
0	1	1	1	1	0	1	1	1	0
0	0	1	1	1	1	0	0	1	1
0	1	1	1	1	1	0	0	1	1
0	0	1	1	1	1	0	0	0	0
1	0	1	1	1	1	1	1	0	0
0	0	0	1	0	0	0	0	0	0

Y-axis

Example: Some of 2x2 square

0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	1	0	0	0	0
0	1	1	0	0	0	1	1	1	0
0	2x2		1	1	0	1	242		0
0			1	1	0	1	2x2		0
0	0	1	1	2.	₇ 2	0	0	1	1
0	1	1	1	23	X Z	0	0	1	1
0	0	22	₇ 2	1	1	0	0	0	0
1	0			1	1	1	1	0	0
0	0	0	1	0	0	0	0	0	0

Solution: The largest square

0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	1	0	0	0	0
0	1	1	0	0	0	1	1	1	0
0	1	1	1	1	0	1	1	1	0
0	1	1	1	1	0	1	1	1	0
0	0					0	0	1	1
0	1		1 -	- A		0	0	1	1
0	0		4 2	4		0	0	0	0
1	0					1	1	0	0
0	0	0	1	0	0	0	0	0	0

Example

0	0	0	0	0	0	0	0	1	1	
0	0	0	0	0	1	0	0	0	0	
0	1	1	0	0	0	0				
0	1	1	1	1	0	3x3				
0	1	1	1	1	0					
0	0	1				0	0	1	1	
0	1			3x3		0	0	1	1	
0	0					0	0	0	0	
1	0				1	1	1	0	0	
0	0	0	1	0	0	0	0	0	0	

- What should be our subproblem?
 - Smaller maps?
 - Divide maps by half?
 - Smaller square?

- What if we find all possible square?
 - How the solution of n x n square constitute the solution of $(n+1) \times (n+1)$?

	0	0	0	0	0	0	0	0	1	1
	0	0	0	0	0	1	0	0	0	0
	0	1	1	0	0	0	1	1	1	0
Land		1	1	1	1	0	1	1	1	0
here		1	1	1	1	0	1	1	1	0
	0	0	1		3x3			0	1	1
	0	1					0	0	1	1
	0 0		3		3x3		0	0	0	0
	1	0	X				1	1	0	0
	0	0	0	1	0	0	0	0	0	0

	0	0	0	0	0	0	0	0	1	1
	0	0	0	0	0	1	0	0	0	0
	0	1	1	0	0	0	1	1	1	0
Land		1	1	1	1	0	1	1	1	0
here		1	1	1	1	0	1	1	1	0
	0	0	1	1	1	1	0	0	1	1
	0	1	1	1	1	1	0	0	1	1
	0	0	1	2.	x2	1	0	0	0	0
	1	0	1x1	1x1		1	1	1	0	0
	0	0	0	1	0	0	0	0	0	0

Recursion

- b2[x][y] ขนาดของสี่เหลี่ยมจัตุรัสใหญ่ที่สุด ที่มีมุมล่างขวาอยู่ที่ ตำแหน่ง x,y (input คือ Land[x][y], m, n)
- Biggest[x,y] =
 - Min(Biggest[x+1,y+1], Biggest[x ,y+1], Biggest[x+1,y]) + 1 if Land[x,y]

- 0 if not land[x,y]

0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	1	0	0	0	0
0	2	1	0	0	0	3	2	1	0
0	2	3	2	1	0	2	2	1	0
0	1	3	2	1	0	1	1	1	0
0	0	4	3	2	1	0	0	2	1
0	1	3	3	2	1	0	0	1	1
0	0	2	2	2	1	0	0	0	0
1	0	1	1	1	1	1	1	0	0
0	0	0	1	0	0	0	0	0	0