Seminar on Moduli Theory Lecture 15

Neeraj Deshmukh

December 11, 2020

Last Week

- Grassmannian of a coherent sheaf
- Outline of proof of representability

Theorem (Grothendieck)

Let $\pi:X\to S$ be a projective morphism with S Noetherian. Then for any coherent sheaf E on X and any polynomial $\phi\in\mathbb{Q}[t]$, the functor $\mathfrak{Quot}_{E/X/S}^{\phi(t)}$ is representable by a projective S-scheme.

What if *X* is proper?

Hironaka's example: A proper threefold over $\ensuremath{\mathbb{C}}$ which is not projective

Hironaka's example

Hironaka's Example with a $\mathbb{Z}/2$ -action

 X_G parametrises a closed subgroup of \mathfrak{Hilb}_X^n

Castelnuovo-Mumford Regularity

Definition

Let $\mathcal F$ be a coherent sheaf on $\mathbb P^n_k$. Let m be an integer. $\mathcal F$ is said to be m-regular if we have

$$H^i(\mathbb{P}^n_k,\mathcal{F}(m-i))=0$$
 for each $i\geq 1$.

Theorem (Mumford)

Given any non-negative integers p and n, there exists a polynomial $F_{p,n}$ in n+1-variables with the following property: If $\mathcal{F} \subset \oplus^p \mathcal{O}_{\mathbb{P}^n_l}$ is any coherent subsheaf with Hilbert polynomial

$$\chi(\mathcal{F},r) = \sum_{i=0}^{n} a_i \begin{pmatrix} r \\ i \end{pmatrix},$$

then \mathcal{F} is $F_{p,n}(a_0,\ldots,a_n)$ -regular.