

CompTIA Network+ N10-009 TTT Session 9:

Title

July 23, 2024

Instructor:
Don Tilley
Cybersecurity Instructor,
Program Director
Access Computer Training
dontilley130@gmail.com

Host:
Stephen Schneiter
Instructor Network Program Director
CompTIA
sschneiter@comptia.org

The CompTIA Instructor Network (CIN) is a worldwide community for instructors who provide CompTIA certification training.

Benefits of being a community member include:

- Communicate and collaborate with CompTIA staff and other instructors.
- Access resources for students to understand the value of getting certified.
- Receive complimentary training and tools from CompTIA to enrich your classroom.
- Become proficient at teaching CompTIA standards.
- Share best practices and resources with each other.

Join us for the morning session from 9:00 a.m. to 12:00 p.m. or the afternoon session from 1:00 p.m. to 4:00 p.m. Each session is \$99.00.

Lunch and refreshments provided

Workshop sessions:

- 1. Get In Sync with the new CompTIA Tech+ FC0-U71
- Teaching CompTIA Network+ N10-009 with the new CertMaster Perform
- 3. Tools for teaching CompTIA A+ 1100 Series

Each session provides:

- Access to official CompTIA content for the course
- Instructor led training and labs
- Certificate of completion provided at the end of session.

Hyatt Regency Atlanta
July 31 – August 1

If a bad organizational culture eats ethics for breakfast, then will AI steal your lunch money?

What: One-hour webinar investigating current industry AI trends

When: Thursday July 25th 10:00 a.m. CST

Where: ON24

Who: James Stanger, Chief Technology Evangelist

Register: https://bit.ly/CINPulse-AITrends

Complimentary Webinar Series for Instructors

The CompTIA DataX DY0-001 TTT series will cover:

DataX exam domains

Comprehensive understanding of key data science concepts

 Hands-on experience with key technology tools used by data science professionals

Instructional strategy to implement a DataX course

Preparation for DataX DY0-001 certification

What: 10-session webinar series

When: Aug 12 – Sept 11, 2024

Where: ON24

Network+ N10-009 TTT Session Outline	
Date	Topic
√ 06/20/2024	Introduction and Network Topologies
√ 06/25/2024	Cabling and Physical Installations
✓ 06/27/2024	Configuring Interfaces and Switches
√ 07/02/2024	Configuring Network Addressing
√ 07/09/2024	Configuring Routing and Advanced Switching
✓ 07/11/2024	Network Security
√ 07/16/2024	Network Security (Continued)
√ 07/18/2024	Wireless Networking
√ 07/23/2024	Troubleshooting and Management
07/25/2024	Emerging Technologies and Trends

SUPPORTING MANAGEMENT NETWORK

Learning Objectives

Explain the use of configuration and change management documentation.

Use discovery and monitoring tools to identify network assets.

Use event management to ensure network availability.

Use packet analysis and traffic metrics to troubleshoot performance issues.

ORGANIZATIONAL POLICIES AND DOCUMENTATION

Policies and Documentation

Importance of documentation

Facilitates troubleshooting

Ensures consistency

Supports scalability and upgrades

Supports staff overturn

Types of documentation

Configuration management

Backup management

Change management

Asset management

Network management

Configuration Management

Identify service assets

Consider a CMS solution

Determine an identification strategy

Establish a CI management plan

Monitor configuration drift

Network Device Backup Management

- Document backups and procedures
 - Maintain a regular backup schedule
- Audit and verify backups
- Maintain version history
- Configure remote logging of state data

Change Management

- Establish a comprehensive documentation protocol
- Ensure consistent use of templates
- Implement version control and access management
- Incorporate a feedback loop

Regularly review and update documentation

Asset Management - Inventory

Update inventory documentation regularly

Adopt asset management software tools

Record asset description, purchase date, service history, status, and location

Implement strict access controls to inventory documentation

Network Management

Physical network diagrams

Detail hardware components Record location information Specify cabling details

Logical network diagrams

Display protocols being used Organize by function vs physical location Identify interconnection points

IP address management

Use a consistent addressing scheme

Record IP addresses

Use automation tools

Activity: Worst Case Scenario

What if there wasn't documentation and....

- The network administrator left the company?
- There was a natural disaster?
- Primary systems crashed?

Poll Questions

What are the key components of an effective configuration management system for network devices?

How does change management documentation contribute to maintaining network stability and security?

Game: "Documentation Puzzle" Match the following terms with their descriptions:

- 1. Configuration Management
- 2. Change Management
- Asset Management
- 4. Network Diagram
- A. Keeps track of all network equipment and their details B. Shows how network devices are connected and organized C. Ensures network device settings are properly recorded and maintained D. Controls and documents changes made to the network

HOST DISCOVERY & MONITORING

Network Discovery

Network Discovery

- Identifying network devices and services
- Network management and security auditing

Network Discovery Tools

- Nmap
- AngryIP
- PRTG

Nmap Scanning Techniques

Stealth Scans

- Evade detection
- Identify non-responsive hosts

Discovery Protocols

Cisco Discovery Protocol (CDP)

Cisco proprietary tool

Discovers how devices are connected in a network

> **Discovers OS version** and IP addresses

Detects information from directly connected CDP devices

Link Layer Discovery Protocol (LLDP)

IEEE standards-based protocol

Discovers how devices are connected in a network

> **Discovers OS version** and IP addresses

Detects information from all directly connected LLDP devices

Performance Monitoring

Tracks and analyzes the speed and efficiency of a network

Metrics tracking

- Bandwidth
- Throughput
- CPU and Memory
- Storage
- Latency
- Response Time
- Error Rate

Baseline establishment

- Based on historical value
- Compared to current performance

Threshold alerts

- Ensures optimal system performance
- Alerts when metrics deviate

Verifies that network devices and services are operational and accessible when needed

Early detection of outages

Preventing wider impact

Optimize server performance

Network stability

Security threats

External validation tools

Configuration Monitoring

 Verifies that all network appliances are in a known state

Production configuration

Backup configuration

Activity: Fill in the Blank

- monitoring verifies that network devices and services are operational and accessible when needed.
- monitoring verifies that all network appliances are in a known state.
- _____ monitoring tracks and analyzes the speed and efficiency of a network.

Poll Questions

How do network discovery tools like Nmap contribute to effective network management and security?

What are the key differences between performance monitoring and availability monitoring in network management?

Game: "Monitor Match-Up" Match the monitoring type with its primary purpose:

- 1. Performance Monitoring
- 2. Availability Monitoring
- 3. Configuration Monitoring
- 4. Network Discovery
- A. Finds and identifies devices on the network B. Checks if network devices are working and accessible C. Tracks how well the network is running (speed, efficiency) D. Makes sure network devices are set up correctly

SNMP

Simple Network Management Protocol

Components of SNMP

SNMP Messages

SNMP Security

SNMP v2c Security Tips

- Avoid transmitting plaintext community strings over networks.
- Use complex community strings; avoid defaults.
- Restrict operations via access control lists to known IPs.

•SNMP v3 Advancements

- Offers encryption and strong user authentication
- Uses username lists with access permissions instead of community strings

Auth modes

- authNoPriv: Authentication without encryption
- authPriv: Authentication with encryption using user credentials

Activity: True or False?

 An SNMP Manager is a hierarchical collection of managed resource information that is organized into categories like system, interface, IP, and more.

True? or False?

EVENT MANAGEMENT

Network Device Logs

Network Device Logs Defined

> Data sources for network monitoring, troubleshooting, security audits

> > Metadata

Network Device Log Usage

Troubleshooting & Performance

Pinpoint network issues

> Optimize performance

Security & **Compliance**

 Track unauthorized access, breaches

Critical for security policies, regulations compliance

•Log Management **Practices**

Regular review and analysis for issue prevention

Secure storage for data integrity and forensic use

Log Collectors

Objective

Centralize, simplify network log management

How It Works

Aggregate log data into single repository

Benefits

Centralized Management

Efficiency

Scalability

Syslogs

Objective

Provide a standardized protocol for sending log messages

Key Features

UDP Port 514:

PRI Code

Flexibility

Advantages

Widespread adoption

Simplifies integration

Syslog Severity Levels

Code	Level	Interpretation
0	Emergency	The system is unusable (kernel panic).
1	Alert	A fault requiring immediate remediation has occurred.
2	Critical	A fault that will require immediate remediation is likely to develop.
3	Error	A nonurgent fault has developed.
4	Warning	A nonurgent fault is likely to develop.
5	Notice	A state that could potentially lead to an error condition has developed.
6	Informational	A normal but reportable event has occurred.
7	Debug	Verbose status conditions used during development and testing.

SIEM Overview

Definition

Analyzes security alerts from applications and network devices in real-time

Purpose

Integrates security information management (SIM) and security event management (SEM)

Key Functions

Log Aggregation **Event Correlation** Alerting

SIEM Overview

- Event Management Capabilities
- Real-time visibility
- Threat detection and response
- Compliance management
- •Implementation Benefits
- Enhanced security posture
- Reduced incident response time
- Improved efficiency

SIEM Example

Activity: Matching

Audit Logs

Application Logs

System Logs

Performance/ Traffic Logs

Metrics for compute, storage, network

•OS events, configuration, kernel processes

Service-specific data (DNS, HTTP)

Authentication and authorization attempts

Poll Questions

How do log collectors and syslogs contribute to effective network management and troubleshooting?

What are the key components of a SIEM system, and how does it enhance network security?

Game: "Event Management Puzzle"

- Arrange the following steps in the correct order for handling a network event:
- 1. Analyze event data
- 2. Collect logs from devices
- 3. Prioritize the event
- 4. Take appropriate action
- 5. Generate alert if necessary

PACKET CAPTURE & ANALYSIS

Packet Capture

Definition & Purpose

Recording network traffic for analysis and troubleshooting

Key Concepts

Use libpcap library for capturing packets

Filtering capabilities to capture specific data

Practical Application

Demonstrating how to initiate a packet capture session and important command lines (e.g., `tcpdump -i eth0`)

Packet Analysis Tools

Overview

Tools that assist in analyzing captured network packets

Used to diagnose issues or monitor network health.

Featured Tools

tcpdump Wireshark

ngrep

Packet Capture Analyzer Example

Capture Analysis Techniques

Analysis Objectives

- Understanding traffic flow
- Identifying misconfigurations
- Detecting anomalies

Wireshark Analysis Features

- Frame-by-frame header and payload examination
- Use of Follow TCP Stream to reconstruct session data

Statistical Tools

- Conversations and Protocol Hierarchy
- Traffic analysis

Poll Questions

How does packet capture and analysis contribute to network troubleshooting and security?

What are the key components of effective traffic monitoring, and how do they help optimize network performance?

TRAFFIC MONITORING

Traffic Monitoring

Definition

Continuously observing and analyzing the flow of traffic across a network to ensure optimal performance and security

Key Points

Identifies traffic volume trends

Monitors performance to detect anomalies

Helps in capacity planning and network design adjustments

Common Performance Issues

Typical problems that affect network efficiency and user experience

Types of Common Issues

- Packet loss, delays, and jitter affecting quality of service (QoS)
- Bandwidth bottlenecks leading to slow data transfer rates
- Misconfigured network hardware
- Outdated infrastructure

Information extracted from data packets that provides insights into the traffic flow within a network

Key Points

- Includes source/destination IPs, packet sizes, and timestamps
- Essential for network performance analysis and troubleshooting
- Used in traffic profiling and anomaly detection

Monitoring Flow Data Example

Traffic Testing Tools

Definition

Applications that simulate network traffic and test the performance of network components

Key Points

Identify network bottlenecks and capacity limits

Includes packet generators, network emulators, and throughput testers

Examples: Wireshark, iperf, and NetFlow **Analyzer**

Bandwidth Management

Definition

Techniques to control traffic flow in a network to optimize or guarantee performance

Key Points

Allocates bandwidth so essential services have priority

Prevents network congestion and ensures fair usage

Methods: Rate limiting and traffic policing

Traffic Shaping

Definition

Prioritizing network traffic to ensure critical applications receive their required bandwidth

Key Points

Delaying packets to regulate traffic flow and reduce congestion

Tools for traffic management: QoS, DiffServ, and MPLS

Ensures high priority services maintain performance

Activity: Two Truths and a Lie

Bandwidth bottlenecks lead to slow data transfer rates.

Bandwidth management is used to control traffic flow in a network to optimize or guarantee performance.

Bandwidth management tools include QoS, DiffServ, and MPLS.

Game: "Traffic Tools Matchup"

- Match the tool or technique with its primary use:
- 1. Packet Capture
- 2. Flow Data Analysis
- 3. Traffic Shaping
- 4. Bandwidth Management
- A. Controls overall network traffic flow B. Records individual data packets for detailed examination C. Prioritizes certain types of network traffic D. Provides overview of traffic patterns and trends

Summary

Implement configuration and change management practices

Maintain a detailed network asset inventory with diagrams

Deploy network analyzers for performance and activity insights

Configure endpoints for log collection

Define metrics to monitor network health, traffic, and device performance

Discussion time: Please type your questions in chat

- Questions over content.
- Share you experience.
- What would you like to see different moving forward?

Thank You!

Let's keep the conversation going in the CompTIA Instructor Forum: https://cin.comptia.org