RoBERTa

RoBERTa: A Robustly Optimized BERT Pretraining Approach. Yinhan Liu et al. 2019. [PDF]

1总览

BERT提出之后,涌现出了XLNet、ALICE、XLM、MT-DNN等后续工作,成绩都在BERT的基础上得到了进一步的提升。然而本文认为那是因为**BERT其实根本没有得到充分的训练**(否则成绩和这些后来居上者相当),为此本文从模型设计选择(design choice)、训练策略、语料等方面入手,重新对BERT进行了预训练,得到RoBERTa。实验结果表明RoBERTa在GLUE、RACE和SQuAD都达到了SOTA.

2主要工作

RoBERTa在每个部分都做了一点点修改,除了Text Encoding外其他的小修改都得到了轻微的提升,最后它将所有的修改合在一起得到最佳模型。具体修改包括:

- · 修改了超参数:将adam的 β_2 参数从0.999改为0.98
- · 加入了混合精度
- · 加大batch size: 从BERT的batch_size从256改为2K甚至8K,训练步数从1M降到500K
- · 在更长的序列上训练,修改输入格式: FULL-SENTENCES+移除NSP任务
- · 将BERT静态遮掩改为动态遮掩
- ·增加新的预训练数据集CC-NEWS,语料从16G文本到160G文本
- · Text Encoding: 采用更大的byte-level的BPE词典

接下来,将挑选出几个点进行详细阐述。

2.1 byte-level text encoding

BPE(Byte-Pair Encoding)是Sennrich在2016年提出的文本编码方法 ,BPE将字词统一成子词单元(subword units),通过在训练语料上的统计分析抽取得到。BPE的词汇表大小一般从1w到10w个子词不等,而其中unicode字符的占比很大。

Radford在GPT2 里提出了一种更巧妙的BPE实现版本,该方法使用bytes(字节)作为基础的子词单元,这样便把词汇表的大小控制到了5w。它可以**在不需要引入任何未知字符前提下对任意文本进行编码**。

BERT原始版本使用一个字级(character-level)的BPE词汇表,大小是3w,是用启发式分词规则对输入进行预处理学习得到的。

之前的实验结果表明,这些文本编码的实验性能区别不大,可能Radford BPE Encoding在某些任务上的终端性能略微差点,但是RoBerta作者坚信通用的编码模式比性能上的轻微损失更重要,所以在实验中采用了byte-level text encoding。

3实验结果

在SQuAD、MNLI-m和SST-2上的实验结果:

Model	SQuAD 1.1/2.0	MNLI-m	SST-2	RACE			
Our reimplementation (with NSP loss):							
SEGMENT-PAIR	90.4/78.7	84.0	92.9	64.2			
SENTENCE-PAIR	88.7/76.2	82.9	92.1	63.0			
Our reimplementation (without NSP loss):							
FULL-SENTENCES	90.4/79.1	84.7	92.5	64.8			
DOC-SENTENCES	90.6/79.7	84.7	92.7	65.6			
BERT _{BASE}	88.5/76.3	84.3	92.8	64.3			
$XLNet_{BASE} (K = 7)$	-/81.3	85.8	92.7	66.1			
$XLNet_{BASE} (K = 6)$	- /81.0	85.6	93.4	66.7			

RoBERTa对比BERT有明显的提升,但是和XLNet差距不大。

在GLUE上的结果:

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16 G B	8K	100K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
BERT _{LARGE} with BOOKS + WIKI XLNet _{LARGE}	13GB	256	1M	90.9/81.8	86.6	93.7
with BOOKS + WIKI	13 GB	256	1 M	94.0/87.8	88.4	94.4
+ additional data	126GB	2K	500K	94.5/88.8	89.8	95.6

对于单任务单模型,RoBERTa九个任务均达到SOTA;

在SQuAD上的结果:

	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task si	Single-task single models on dev									
$BERT_{LARGE}$	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	-
$XLNet_{LARGE}$	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	-
RoBERTa	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	91.3	-
Ensembles on test (from leaderboard as of July 25, 2019)										
ALICE	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8	86.3
MT-DNN	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0	87.6
WI NIA	00 0/00 0	00 <i>C</i>	00.2	069	04 0	Ω2 Λ	<i>(</i> 7 0	Ω1 <i>C</i>	AA 4	00 1

RoBERTa的成绩还可以。

在RACE上的对比结果:

Model	Accuracy	Middle	High
Single models	s on test (as o	of July 25, 2	2019)
$BERT_{LARGE}$	72.0	76.6	70.1
$XLNet_{LARGE}$	81.7	85.4	80.2
RoBERTa	83.2	86.5	81.3

从实验结果上看,RoBERTa均达到了SOTA.

4总结

RoBERTa其实本质上只是一个调参达到最优的BERT,和XLNet不相上下。

带给我们的意义就是:RoBERTa再一次证明BERT才是众多预训练模型中的首选和扛鼎之作,也是那个真正引起质变的模型。