Processing Law Enforcement Crime Scenes

Processing Law Enforcement Crime Scenes

- You must be familiar with criminal rules of search and seizure
- You should also understand how a search warrant works and what to do when you process one
- Law enforcement officer may search for and seize criminal evidence only with probable cause
 - Probable cause refers to the **standard** specifying whether a police officer has the right to make an arrest, conduct a personal or property search, or obtain a warrant for arrest
 - With probable cause, a police officer can obtain a search warrant from a judge that authorizes a search and the seizure of specific evidence related to the criminal complaint.

Processing Law Enforcement Crime Scenes

 The Fourth Amendment states that only warrants "particularly describing the place to be searched, and the persons or things to be seized" can be issued

Understanding Concepts and Terms Used in Warrants

Innocent information

- Unrelated information
- Often included with the evidence you're trying to recover
- Judges often issue a limiting phrase to the warrant
 - Allows the police to separate innocent information from evidence

Understanding Concepts and Terms Used in Warrants

Plain view doctrine

- Objects falling in plain view of an officer who has the right to be in position to have that view
 - Are subject to seizure without a warrant and may be introduced in evidence

"Knock and announce"

- With few exceptions, warrants require that officers knock and announce their identity
 - When executing a warrant

Preparing for a Search

Preparing for a Search

- Preparing for a computer search and seizure
 - Probably the most **important step** in computing investigations
- To perform these tasks
 - You might need to get answers from
 - the victim
 - an informant
 - could be a police detective assigned to the case, a law enforcement witness, or a manager or coworker of the person of interest to the investigation

Preparing for a Search

- Identifying the Nature of the case
- Identifying the Type of Computing
- Determining Whether You Can Seize a Computer
- Obtaining a Detailed Description of the Location
- Determining Who Is in Charge
- Using Additional Technical Expertise
- Determining the Tools You Need
- Preparing the Investigation Team

Identifying the Nature of the Case

- Start by identifying the nature of the case
 - Including whether it involves the private or public sector
- The nature of the case dictates how you proceed
 - And what types of assets or resources you need to use in the investigation

Identifying the Type of Computing System

- Difficult step because the crime scene isn't controlled
 - might not know what kinds of computers were used to commit a crime or how or where they were used
- If you can identify the computing system
 - Estimate the size of the drive on the suspect's computer
 - And how many computers to process at the scene
 - Determine which OSs and hardware are involved

Determining Whether You Can Seize a Computer

- Seizing the computers and taking them to your lab for further processing depend on the type of case and location of the evidence
- Law enforcement investigators need a warrant
- If removing the computers will irreparably harm a business
 - The computers should not be taken offsite

Determining Whether You Can Seize a Computer

- An additional complication
 - files stored offsite that are accessed remotely
 - online data storage services that rent space, which essentially can't be located physically
- If you aren't allowed to take the computers to your lab
 - Determine the resources you need to acquire digital evidence and which tools can speed data acquisition

Obtaining a Detailed Description of the Location

- More information about the location more efficient evidence
- Identify potential hazards
 - Interact with your HAZMAT team
- HAZMAT guidelines
 - A HAZMAT technician may need to acquire the image, following your instructions
 - You may need to put the target drive in a special HAZMAT bag
 - HAZMAT technician can decontaminate the bag
 - Check for high temperatures

Determining Who Is in Charge

- Corporate computing investigations
 - Require only one person to respond
- Law enforcement agencies
 - Handle large-scale investigations
 - Designate lead investigators

Using Additional Technical Expertise

- Look for specialists
 - OSs
 - RAID servers
 - Databases
- Finding the right person can be a challenge
- Educate specialists in investigative techniques
 - Prevent evidence damage

Determining the Tools You Need

- Prepare tools using incident and crime scene information
- Initial-response field kit
 - Lightweight
 - Easy to transport
- Extensive-response field kit
 - Includes all tools you can afford

Table 5-1 Tools in an initial-response field kit

Number needed	Tools
1	Small computer toolkit
1	Large-capacity drive
1	IDE ribbon cable (ATA-33 or ATA-100)
1	SATA cable
1	Forensic boot media containing your preferred acquisition utility
1	Laptop IDE 40- to 44-pin adapter, other adapter cables
1	Laptop computer
1	FireWire or USB dual write-protect external bay
1	Flashlight
1	Digital or 35mm camera with film and flash
10	Evidence log forms
1	Notebook or dictation recorder
10	Computer evidence bags (antistatic bags)
20	Evidence labels, tape, and tags
1	Permanent ink marker
10	External USB devices, such as a thumb drive, or a larger portable hard drive

Table 5-2 Tools in an extensive-response field kit

Number needed	Tools			
Varies	Assorted technical manuals, ranging from OS references to forensic analysis guides			
1	Initial-response field kit			
1	Portable PC with SCSI card for DLT tape drive or suspect's SCSI drive			
2	Electrical power strips			
1	Additional hand tools, including bolt cutters, pry bar, and hacksaw			
1	Leather gloves and disposable latex gloves (assorted sizes)			
1	Hand truck and luggage cart			
10	Large garbage bags and large cardboard boxes with packaging tape			
1	Rubber bands of assorted sizes			
1	Magnifying glass			
1	Ream of printer paper			
1	Small brush for cleaning dust from suspect's interior CPU cabinet			
10	USB thumb drives of varying sizes			
2	External hard drives (200 GB or larger) with power cables			
Assorted	Converter cables			
5	Additional assorted hard drives for data acquisition			

Preparing the Investigation Team

- Review facts, plans, and objectives with the investigation team you have assembled
- Goals of scene processing
 - Collect evidence
 - Secure evidence
- Slow response can cause digital evidence to be lost

Securing a Computer Incident or Crime Scene

Securing a Computer Incident or Crime Scene

- Goals
 - Preserve the evidence
 - Keep information confidential
- Define a secure perimeter
 - Use yellow barrier tape
 - Legal authority: keep unnecessary people out but don't obstruct justice or fail to comply with police officers
- Professional curiosity can destroy evidence
 - Involves police officers and other professionals who aren't part of the crime scene processing team

Seizing Digital Evidence at the Scene

Seizing Digital Evidence at the Scene

- Law enforcement can seize evidence
 - With a proper warrant
- Corporate investigators rarely can seize evidence
- When seizing computer evidence in criminal investigations
 - Follow standards
- Civil investigations follow same rules
 - Require less documentation though

Preparing to Acquire Digital Evidence

- The evidence you acquire at the scene depends on the nature of the case
 - And the alleged crime or violation
- Ask your supervisor or senior forensics examiner in your organization the following questions:
 - Do you need to take the entire computer and all peripherals and media in the immediate area?
 - How are you going to protect the computer and media while transporting them to your lab?
 - Is the computer powered on when you arrive?

Preparing to Acquire Digital Evidence

- Ask your supervisor or senior forensics examiner in your organization the following questions:
 - Is the suspect you're investigating in the immediate area of the computer?
 - Is it possible the suspect damaged or destroyed the computer, peripherals, or media?
 - Will you have to separate the suspect from the computer?

Processing an Incident or Crime Scene

Guidelines

- Keep a journal to document your activities
- Secure the scene
 - Remove people who are not part of the investigation
- Take video and still recordings of the area around the computer
 - Pay attention to details (cables and their connections)
- Sketch the incident or crime scene (components and their distance between them)
- Check computers as soon as possible

Handling a Running Computer

- Old rule: pull the plug
 - Don't cut electrical power to a running system unless it's an older Windows 9x or MS-DOS system
- Perform a live acquisition if possible
- When shutting down Win XP or later, or Linux/Unix, perform a normal shutdown, to preserve log files
- Save data from current applications as safely as possible
- Record all active windows or shell sessions
- Photograph the screen

Handling a Running Computer

- Make notes of everything you do when copying data from a live suspect computer
- Save open files to an external hard drive or a network share
 - If that is not possible, save them with new names
- Close applications and shut down the computer

Processing an Incident or Crime Scene

Guidelines

- Bag and tag the evidence, following these steps:
 - Assign one person to collect and log all evidence
 - Tag all evidence you collect with the current date and time, serial numbers or unique features, make and model, and the name of the person who collected it
 - Maintain two separate logs of collected evidence
 - Maintain constant control of the collected evidence and the crime or incident scene

Processing an Incident or Crime Scene

Guidelines

- Look for information related to the investigation
 - Passwords, passphrases, PINs, bank accounts
 - Look at papers, in drawers, in trash cans
- Collect documentation and media related to the investigation
 - Hardware, software, backup media, documentation, manuals

Processing Data Centers with RAID Systems

- Sparse acquisition
 - Technique for extracting evidence from large systems
 - Extracts only data related to evidence for your case from allocated files
 - And minimizes how much data you need to analyze
- Drawback of this technique
 - It doesn't recover data in free or slack space

Using a Technical Advisor

- Technical advisor
 - Can help you list the tools you need to process the incident or crime scene
 - Person guiding you about where to locate data and helping you extract log records
 - Or other evidence from large RAID servers
 - Can help create the search warrant by itemizing what you need for the warrant

Technical Advisor Responsibilities

- Know aspects of the seized system
- Direct investigator handling sensitive material
- Help secure the scene
- Help document the planning strategy for search and seizure
- Conduct ad hoc trainings
- Document activities
- Help conduct the search and seizure

Documenting Evidence in the Lab

- Record your activities and findings as you work
 - Maintain a journal to record the steps you take as you process evidence
- Goal is to be able to reproduce the same results
 - When you or another investigator repeat the steps you took to collect evidence
- A journal serves as a reference that documents the methods you used to process digital evidence

Processing and Handling Digital Evidence

- Maintain the integrity of digital evidence in the lab
 - As you do when collecting it in the field
- Steps to create image files:
 - Copy all image files to a large drive
 - Start your forensics tool to analyze the evidence
 - Run an MD5 or SHA-1 hashing algorithm on the image files to get a digital hash
 - Secure the original media in an evidence locker

Storing Digital Evidence

Storing Digital Evidence

- The media you use to store digital evidence usually depends on how long you need to keep it
- CD-Rs or DVDs
 - The ideal media
 - Capacity: up to 17 GB
 - Lifespan: 2 to 5 years
- Magnetic tapes
 - Capacity: 40 to 72 GB
 - Lifespan: 30 years
 - Costs: drive: \$400 to \$800; tape: \$40

Storing Digital Evidence

Evidence Retention and Media Storage Needs

- To help maintain the chain of custody for digital evidence
 - Restrict access to lab and evidence storage area
- Lab should have a sign-in roster for all visitors
 - Maintain logs for a period based on legal requirements
- You might need to retain evidence indefinitely
 - Check with your local prosecuting attorney's office or state laws to make sure you're in compliance
 - You cannot retain child pornography evidence, however

Evidence Retention and Media Storage Needs

Item description:				
Item tag number:				
Person	Date logged out	Time logged out	Date logged in	Time logged in

Figure 5-7 A sample log file

Documenting Evidence

- Create or use an evidence custody form
- An evidence custody form serves the following functions:
 - Identifies the evidence
 - Identifies who has handled the evidence
 - Lists dates and times the evidence was handled
- You can add more information to your form
 - Such as a section listing MD5 and SHA-1 hash values

Documenting Evidence

- Include any detailed information you might need to reference
- Evidence bags also include labels or evidence forms you can use to document your evidence

Cyclic Redundancy Check (CRC)

- Mathematical algorithm that determines whether a file's contents have changed
- Most recent version is CRC-32
- Not considered a forensic hashing algorithm

Message Digest 5 (MD5)

- Mathematical formula that translates a file into a hexadecimal code value, or a hash value
- If a bit or byte in the file changes, it alters the digital hash

- Three rules for forensic hashes:
 - You can't predict the hash value of a file or device
 - No two hash values can be the same
 - If anything changes in the file or device, the hash value must change
- Secure Hash Algorithm version 1 (SHA-1)
 - A newer hashing algorithm
 - Developed by the National Institute of Standards and Technology (NIST)

- In both MD5 and SHA-1, collisions have occurred
- Most computer forensics hashing needs can be satisfied with a nonkeyed hash set
 - A unique hash number generated by a software tool, such as the Linux md5sum command
- Keyed hash set
 - Created by an encryption utility's secret key
- You can use the MD5 function in FTK Imager to obtain the digital signature of a file
 - Or an entire drive