Part I: Linear Algebra ideas

Part II: Orthogonality of functions and Introduction to Fourier Series

(I) Key ideas from Linear Algebra (conclusion)

[Haberman Sect 5.5 App]

If you have a real matrix $L_{n\times n}$ that has a <u>complete set</u> of n eigenvectors, and you use the definition of the inner product as $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^T \mathbf{v}$ then:

- ullet From $\langle \mathbf{v}, \mathbf{L}\mathbf{u} \rangle = \langle \mathbf{L}^*\mathbf{v}, \mathbf{u} \rangle$, the adjoint is $\mathbf{L}^* = \mathbf{L}^T$
- ullet Find the eigenvalues from the determinant, $|{f L}-\lambda{f I}|=0$, and $\gamma_k=\lambda_k$
- ullet For eigenvectors $\phi_{m{k}}$ and adjoint eigenvectors $\psi_{m{k}}$ for each $m{\lambda}_{m{k}}$, do algebra for

$$(\mathbf{L} - \lambda_k \mathbf{I}) \phi_k = \vec{0}$$
 and $(\mathbf{L}^T - \lambda_k \mathbf{I}) \psi_k = \vec{0}$

- The eigenvectors are bi-orthogonal: $\langle \phi_k, \psi_j \rangle = 0$ for any $k \neq j$ and $\langle \phi_k, \psi_k \rangle \neq 0$ when both come from the k-th eigenmode
- ullet Any given $\mathbf{w} \in \mathbb{R}^n$ can be written as an "eigen-expansion" form:

$$\mathbf{w} = \sum_{k=1}^n c_k \phi_k$$
 with $c_k = rac{\langle \psi_k, \mathbf{w}
angle}{\langle \psi_k, \phi_k
angle}$

Need the ϕ_k 's to be a complete basis set. This property guarantees that all c_k coeffs in the expansion for any ${\bf w}$ can be uniquely determined.

Bi-orthogonality of ϕ, ψ 's de-couples calculations of c_k 's for each k.

Solving linear equations : $|\mathbf{L}\mathbf{u} = \mathbf{b}|$ for unknown \mathbf{u}

The **eigenvector expansion** method: start with the expansion formula for \mathbf{u} :

$$\mathbf{u} = \sum_{k=1}^{n} c_k \phi_k \qquad c_k = \frac{\langle \psi_k, \mathbf{u} \rangle}{\langle \psi_k, \phi_k \rangle}$$

 $\underline{\mathsf{But}}$ now $\mathbf u$ is NOT known, so can't work out numerator inner products in $c_k...$

So, indirect approach: Go back to the original problem \rightarrow

Do orthogonal projection of the **problem** onto each ψ_k for $k=1,2,\cdots,n$

Self-Adjoint problems : an important special case

If $L^* = L$ (symmetric real matrices, $L^T = L$) then some results simplify:

- ullet Adjoint eigenvalues $\gamma_k = \lambda_k$ (unchanged)
- Adjoint eigenvectors $\psi_k = \phi_k$ (only need to find one set of vectors!)
- ullet The set of eigenvectors is "self-orthogonal": $\phi_j \perp \phi_k$ for $j \neq k$ (see HW1Q3)
- The coefficients in the expansion for a given vector w simplify to

$$\mathbf{w} = \sum_{k=1}^n c_k \phi_k \qquad c_k = rac{\langle \phi_k, \mathbf{w}
angle}{|\phi_k|^2}$$

ullet The coefficients in the expansion for the solution of $\mathbf{L}\mathbf{u}=\mathbf{b}$ simplify to

$$\mathbf{u} = \sum_{k=1}^{n} c_k \phi_k \qquad c_k = rac{\langle \phi_k, \mathbf{b} \rangle}{\lambda_k |\phi_k|^2}$$

• Eigenvalues λ_k are all real numbers (see HW1Q3)

The self-adjoint version of the vector eigen-expansion carries over directly to yield Fourier series for expansions of functions...

1. To express complicated functions as sums of simple "basis" functions, as

Generalized Fourier series expansions

$$f(x)$$
 " $=$ " $\sum_{m{k}} c_{m{k}} \phi_{m{k}}(x)$ on $a \leq x \leq b$

2. To express solutions of differential equations (DE) problems as Fourier series and reduce DE problems to simpler algebra for the $c_{m k}$ coefficients in $u(x) = \sum c_k \phi_k(x)$

Inner products for real-valued functions on an interval $a \leq x \leq b$

(Definition)
$$\left| \langle f,g
angle \equiv \int_a^b [f(x)g(x)]\sigma(x)\,dx
ight|$$

- \bullet $\sigma(x) \geq 0$: positive **weight function** ("weighted inner product")
- ullet Generalization for complex-valued fcns: $\langle f,g
 angle \equiv \int_{\hat{a}}^{b} [f(x)\overline{g(x)}]\sigma(x)\,dx$
- ullet Specifying $\sigma(x)$ and a,b defines the inner product for a problem.

$$\langle f,g
angle = \int_a^b [f(x)g(x)]\,dx$$
 "standard L^2 inner product on $[a,b]$ "

$$ullet$$
 The " $\underline{L^2 \ \mathsf{norm}}$ ": $(||f||_2)^2 = \langle f,f
angle = \left(\sqrt{\int_a^b f^2 \, dx}\right)^2 \geq 0$

• " $\underline{L^2}$ functions": also called "square integrable fcns", have <u>finite</u> $\underline{L^2}$ norm:

$$||f||_2 < \infty$$

 $m{L^2}$ fcns can blow-up as long as they aren't "too badly" behaved. Examples:

(a)
$$f(x)=x^{-1/4}$$
 on $0\leq x\leq 1$: $f(0) o\infty$ but

$$||f||_2^2 = \int_0^1 (x^{-1/4})^2 \, dx = 2x^{1/2}igg|_0^1 = 2$$
 Ok, L^2 fcn

(b)
$$f(x)=x^{-1/2}$$
 on $0\leq x\leq 1$: $f(0) o\infty$ and

$$||f||_2^2 = \int_0^1 (x^{-1/2})^2 \, dx = \ln(x)igg|_0^1 = \infty \qquad \mathsf{NOT} \; L^2$$

Fourier series theory and eigen-expansions are guaranteed to work for L^2 fcns

Orthogonality of functions on interval $a \leq x \leq b$ is defined using the σ -weighted inner product integral $ig|\langle f,g
angle=0ig|$

- ullet Assume $\{\phi_{m{k}}(x)\}$ is a complete set of basis functions
- General orthogonal projection works as usual for the expansion of fcns:

$$f(x)$$
 "=" $\sum_{m{k}} c_{m{k}} \phi_{m{k}}(x) \qquad c_{m{k}} = rac{\langle \psi_{m{k}}(x), f(x)
angle}{\langle \psi_{m{k}}(x), \phi_{m{k}}(x)
angle}$

ullet Assume that the $\phi_{m k}(x)$'s are the eigenfunctions of a self-adjoint linear operator $(L^*=L)$, so $\psi_{m k}=\phi_{m k}$ and the set of $\phi_{m k}$'s is "self-orthogonal"

(general case)
$$\langle \psi_j, \phi_k \rangle = 0$$
 for $j \neq k$ – "bi-orthogonal" (self-adjoint case) $\langle \phi_j, \phi_k \rangle = 0$ for $j \neq k$ – "self-orthogonal"

ullet For the self-adjoint (Fourier series) case we have $\left|c_k=rac{\langle \phi_k(x),f(x)
angle}{||\phi_k(x)||^2}
ight|$

$$c_k = rac{\langle \phi_k(x), f(x)
angle}{||\phi_k(x)||^2}$$

- IOU's: (1) What does "=" mean? and
 - (2) What is the self-adjoint operator L that gives the $\phi_k(x)$? (later)