FISIKA

By: Sri Rezeki Candra Nursari

Komposisi nilai Kelas A

```
UAS = 35% Open note/close
```

```
UTS = 30% Open note/close
```

```
• ABSEN = 5 %
```

• TUGAS = 30%

100%

Diperbolehkan bawa kalkultor,

Tetapi tidak boleh menggunakan kalkulator dari HP atau sejenisnya

Komposisi nilai Kelas B

```
• UAS = 35% Open note
```

- ABSEN = 5 %
- TUGAS = 30%

===============================

100%

MATERI

- Satuan besaran Fisika
- Gelombang berdasarkan medium (gelombang mekanik dan elektromagnetik)
- Gelombang berdasarkan arah getar dan arah rambat (gelombang transversal dan longitudinal)
- Gelombang berdasarkan amplitudo (gelombang berjalan, diam)

- Osilasi harmonic dan osilasi teredam
- Gelombang tali, Gelombang bunyi, Superposisi gelombang, Gelombang berdiri, Resonansi, Efek Doppler

SATUAN BESARAN FISIKA

- Besaran adalah segala sesuatu yang dapat diukur atau dihitung, dinyatakan dengan angka dan mempunyai satuan
- Syarat Besaran
 - Dapat diukur/dihitung
 - Dapat dinyatakan dengan angka angka atau mempunyai nilai
 - Mempunyai satuan

- Berdasarkan cara memperolehnya besaran dikelompokkan menjadi
 - Besaran Fisika
 - 1. Besaran Pokok (ditentukan berdasarkan para ahli Fisika)
 - Panjang (m), massa (kg), waktu (s), suhu (K), kuat arus listrik (a), intensitas cahaya (cd), jumlah zat (mol)
 - 2. Besaran turunan (diturunkan dari besaran pokok)
 - Gaya (N) → massa, panjang, waktu
 - Volume (meter kubik) → panjang, etc.
 - 2. Besaran Non Fisika

Besaran yang diperoleh dari perhitungan. Contoh: jumlah

Satuan

 Satuan adalah pembanding dalam suatu pengukuran besaran

- Besaran berdasarkan arah :
 - 1. Besaran vektor (mempunyai nilai dan arah)
 - Besaran kecepatan, percepatan, etc
 - Rumus $v = \frac{Jarak}{Waktu Tempuh}$ Atau
 - Contoh jarak dari rumah ke kampus (NIM Anda) km ditempuh dengan (tahun lahir Anda) jam

- Besaran berdasarkan arah :
 - 1. Besaran vektor (mempunyai nilai dan arah)
 - Besaran kecepatan, percepatan, etc

Rumus

 Contoh: kecepatan suatu mobil baiap setarting time konstan dari 22,7 m/s menjadi 63,1 m/s dalam waktu 2,25
 s. Berapakah percepatan rata-ratanya

- Besaran berdasarkan arah :
 - 2. Besaran sekalar (mempunyai nilai)
 - Besaran kelajuan → jarak yang ditempuh dibagi dengan waktu yang dibutuhkan untuk menempuh perjalanan jarak
 - v = u + at
 v² = u² + 2aS
 S = ut + ½ at²
 dimana u adalah kecepatan awal, v adalah kecepatan akhir, a percepatan, S adalah jarak tempuh, dan t adalah waktu untuk diambil untuk menempuh jarak

Sistem Satuan Internasional (SI)

- Dalam sistem SI ada 7 buah besaran dasar berdimensi dan 2 buah tambahan yang tidak berdimensi
 - Besaran Dasar

1.	Panjang	→ meter		\rightarrow m
2.	Massa	→ kilogram	→ kg	
3.	Waktu	→ sekon	\rightarrow s	
4.	Arus listrik	→ ampere	\rightarrow A	
5.	Suhu termodinamika	→ kelvin	\rightarrow k	
6.	Jumlah zat	→ mola	→ mol	
7.	Intensitas cahaya	→ kandela	\rightarrow cd	
- Be	saran Tambahan			
1.	Sudut datar	→ radian	\rightarrow rad	
2.	Sudut ruang	→ steradian	\rightarrow sr	

Sistem Satuan Internasional (SI)

 \rightarrow Lx

• Besaran Jabaran

1.	Energi	→ joule	\rightarrow J	
2.	Gaya	→ newton	\rightarrow N	
3.	Daya	→ watt	\rightarrow W	
4.	Tekanan	→ pascal	→ Pa	
5.	Frekwensi	→ hertz	→ Hz	
6.	Beda potensial	→ volt	\rightarrow \vee	
7.	Muatan listrik	→ coulomb	\rightarrow C	
8.	Fluks magnit	→ weber	\rightarrow Wb	
9.	Tahanan listrik	→ farad	\rightarrow F	
10.	Induksi magnetik	→tesla	\rightarrow T	
11.	Induktansi	→ henry	\rightarrow Hb	
12.	Fluks cahaya	→ lumen		→ Lm

13. Kuat penerangan → lux

Satuan Statis Besar dan Statis Kecil

Besaran	Satuan		
	Statis Besar	Statis Kecil	
Panjang	meter	cm	
Gaya	kg gaya	gram gaya	
Massa	smsb	smsk	

Satuan Dinamis Besar dan Dinamis Kecil

Besaran	Satuan		
	Dinamis Besar	Dinamis Kecil	
Panjang	meter	cm	
Massa	kg	gr	
Waktu	sec / detik	sec	
Gaya	newton	dyne	
Usaha	N.m= joule	dyne.cm = erg	
Daya	joule/sec	erg/sec	

Sistem Satuan Inggris

Besaran	Satuan
Panjang	foot (kaki)
Massa	slug
Waktu	sec
Gaya	pound (lb)
Usaha	ft.lb
Daya	ft.lb/sec

Notasi Ilmiah (awalan yang digunakan dalam sistem SI)

Awalan	Simbol	Faktor
Exa	E	10 ¹⁸
Peta	Р	10 ¹⁵
Tera	T	10 ¹²
Giga	G	10 ⁹
Mega	M	10 ⁶
Kilo	k	10 ³
Deka	da	10 ¹
Desi	d	10 ⁻¹
Mili	m	10 ⁻³
Mikro	μ	10 ⁻⁶
Nano	n	10 ⁻⁹
Piko	р	10 ⁻¹²
Femto	f	10 ⁻¹⁵
Atto	a	10 ⁻¹⁸

Contoh

- Panjang
 - $-60.000 \text{ m} = 6 \text{ x } 10^4 \text{ m} = 60 \text{ km}$
- Waktu
 - $-0.003 \text{ s} = 3 \times 10^{-3} \text{ s} = 3 \text{ ms}$
- Volume
 - -1 liter = 10^{-3} m³
- Energi
 - $1 \text{ erg} = 10^{-7} \text{ joule}$

Analisis Dimensi

Dimensi

Besaran	Dimensi	Satuan (SI)
Luas	$[A] = L^2$	m ²
Volume	$[\mathbf{V}] = \mathbf{L}^3$	m^3
Kecepatan	[v] = L/t	m/s
Percepata n	[a] = L/t ²	m/s ²
Massa	[m] = M	kg

Konversi Satuan

Panjang	Massa	Waktu
1 m = 39,37 inchi = 3,281 kaki	1 amu = 1,66 x 10 ⁻²⁷ kg	1 jam = 3.600 s
1 yard = 0,9144 m	1 ton = 1.000 kg	1 hari = 86.400 s
1 inchi = 2,54 cm	$1 g = 10^{-3} kg$	1 tahun = 3,16 x 10 ⁷ s
$1 \text{ km} = 0.621 \text{ mil} = 10^3 \text{ m}$	1 slug = 14,59 kg	
1 mil = 5280 kaki		
$1 A = 10^{-10} m$		