Script 2a

Descriptive statistics at enrolment

Peter Kamerman

22 January 2020

Contents

Objective	1
Analysis notes Definitions of missingness	1 1 2
Import data	2
Quick look	2
Basic clean	3
Quick tabulation Analysis data set for the period 0 to 48 weeks	3
Basic summary	4
Study characteristics	5
Study site	5 6
Demographics	8
Age Sex Ancestry Education Employment	8 9 10 12 14
	16 16 17 18
Session information	19

Objective

To describe the demographic characteristics and disease status of the analysis cohort at study enrolment (week 0, baseline).

Analysis notes

Definitions of missingness

Data were regarded as **missing** when *pain in the last week* data were not present for one or more of weeks 0, 12, 24, 36, 48. Data also were classified as **missing** when there were inconsistencies in the data across the variables collected within

a week.

Definition of data inconsistencies

Pain was defined as pain in the last week being 'Yes', and pain at its worst being > 0. These two measurements were then the "gatekeeper" measurements, such that the two measurements both had to be positive ('Yes' and '> 0', respectively) in order for there to be any entries for site of pain and site of worst pain. Were the data were inconsistent (e.g., when there was no pain in the last week and pain at its worst = 0, but there were entries for site of pain and site of worst pain), then the site of pain and site of worst pain entries were marked as **inconsistent**.

Data also were considered **inconsistent** when pain in the last week = 'Yes', but site of worst pain = 'None'.

Lastly, data were considered **inconsistent** when *site of worst pain* was not listed as one of the pain locations for a given measurement week.

For analysis purposes, missing data in the *site of pain* columns were changed to 'No' (pain not present in the site). This approach was conservative, but we believed that the approach would have the least effect on the outcome, while still retaining as many participants as possible.

Import data

```
df <- read_rds('data-cleaned/data-ADVANCE.rds')</pre>
```

Quick look

```
head(df)
## # A tibble: 6 x 32
##
     ranid interval_name site_name pain_in_the_las... where_does_it_h...
##
     <chr> <ord>
                          <chr>>
                                     <chr>>
                                                       <chr>
## 1 01-0... 0 weeks
                          Wits RHI... No
                                                       <NA>
## 2 01-0... 12 weeks
                          Wits RHI... No
                                                       <NA>
## 3 01-0... 24 weeks
                          Wits RHI... No
                                                       <NA>
## 4 01-0... 36 weeks
                          Wits RHI... No
                                                       <NA>
## 5 01-0... 48 weeks
                          Wits RHI... No
                                                       <NA>
## 6 01-0... 0 weeks
                          Wits RHI... No
                                                       <NA>
## # ... with 27 more variables: pain_worst <dbl>, pain_now <dbl>,
## #
       head_pain <chr>, cervical_pain <chr>, shoulder_pain <chr>,
## #
       arm pain <chr>, hand pain <chr>, chest pain <chr>,
## #
       abdominal_pain <chr>, low_back_pain <chr>, buttock_pain <chr>,
##
       hip_groin_pain <chr>, leg_pain <chr>, genital_pain <chr>,
## #
       foot_pain <chr>, site_worst <chr>, age <dbl>, sex <chr>,
## #
       ancestry <chr>, education <chr>, employment_status <chr>, group <chr>,
## #
       cd4_cells.ul <dbl>, viral_load_cp.ml <dbl>, general_health <dbl>,
## #
       interval_numeric <dbl>, any_missing <chr>
glimpse(df)
## Observations: 5,265
## Variables: 32
## $ ranid
                              <chr> "01-0001", "01-0001", "01-0001", "01-000...
## $ interval_name
                              <ord> 0 weeks, 12 weeks, 24 weeks, 36 weeks, 4...
                              <chr> "Wits RHI Yeoville Research Centre", "Wi...
## $ site_name
                              <chr> "No", "No", "No", "No", "No", "No", "Yes...
## $ pain in the last week
```

\$ where_does_it_hurt_most <chr> NA, NA, NA, NA, NA, NA, "Hip/groin left"...

```
## $ pain_worst
                              <dbl> 0, 0, 0, 0, 0, 0, 3, 3, 5, 0, 0, 0, 0...
                              <dbl> NA, O, NA, O, NA, NA, O, 2, 4, NA, NA, O...
## $ pain_now
                              <chr> "No", "No", "No", "No", "No", "No", "No"...
## $ head pain
                              <chr> "No", "No", "No", "No", "No", "No", "No"...
## $ cervical_pain
## $ shoulder_pain
                              <chr> "No", "No", "No", "No", "No", "No", "No"...
                              <chr> "No", "No", "No", "No", "No", "No", "No"...
## $ arm_pain
                              <chr> "No", "No", "No", "No", "No", "No", "No"...
## $ hand_pain
                              <chr> "No", "No", "No", "No", "No", "No", "No"...
## $ chest_pain
                              <chr> "No", "No", "No", "No", "No", "No", "No"...
## $ abdominal_pain
                              <chr> "No", "No", "No", "No", "No", "No", "No"...
## $ low_back_pain
                              <chr> "No", "No", "No", "No", "No", "No",
## $ buttock_pain
                              <chr> "No", "No", "No", "No", "No", "No", "Yes...
## $ hip_groin_pain
                              <chr> "No", "No", "No", "No", "No", "No", "No"...
## $ leg_pain
                              <chr> "No", "No", "No", "No", "No", "No", "No"...
## $ genital_pain
                              <chr> "No", "No", "No", "No", "No", "No", "No"...
## $ foot_pain
                              <chr> "None", "None", "None", "None", "None", ...
## $ site_worst
## $ age
                              <dbl> 30, 30, 30, 30, 34, 34, 34, 34, 34, ...
                              <chr> "Male", "Male", "Male", "Male", "Male", ...
## $ sex
## $ ancestry
                              <chr> "Black", "Black", "Black", "Black", "Bla...
## $ education
                              <chr> "Secondary", "Secondary", "Secondary", "...
                              <chr> "Employed", "Employed", "Employed", "Emp...
## $ employment_status
                              <chr> "DTG + TAF + FTC", "DTG + TAF + FTC", "D...
## $ group
## $ cd4_cells.ul
                              <dbl> 642, NA, 525, NA, 668, 241, NA, 364, NA,...
## $ viral_load_cp.ml
                              <dbl> 641, 50, 50, 50, 50, 3851, 50, 50, 50, 5...
                              <dbl> 4, 4, 5, 5, 4, 3, 5, 3, 3, 3, 4, 5, 5, 5...
## $ general_health
## $ interval_numeric
                              <dbl> 0, 12, 24, 36, 48, 0, 12, 24, 36, 48, 0,...
                              <chr> "No", "No", "No", "No", "No", "No", "No"...
## $ any_missing
```

Basic clean

```
# Remove missing data
df %<>%
    filter(any_missing == 'No')

# Extract enrolment data
df %<>%
    filter(interval_name == '0 weeks')
```

Quick tabulation

Analysis data set for the period 0 to 48 weeks

```
# Tabulate data
xtabs(~interval_name, data = df)

## interval_name
## 0 weeks 12 weeks 24 weeks 36 weeks 48 weeks
## 787 0 0 0 0 0
```

Basic summary

skim(df) %>%

skimr::kable(caption = 'Quick summary')

Skim summary statistics

n obs: 787 n variables: 32

Variable type: character

variable	missing	complete	n	n_unique
abdominal_pain	0	787	787	2
ancestry	0	787	787	2
any_missing	0	787	787	1
arm _pain	0	787	787	2
$buttock_pain$	0	787	787	2
cervical_pain	0	787	787	2
$chest_pain$	0	787	787	2
education	4	783	787	4
$employment_status$	10	777	787	4
${ m foot}_{ m pain}$	0	787	787	2
genital_pain	0	787	787	2
group	0	787	787	3
hand_pain	0	787	787	2
head_pain	0	787	787	2
hip_groin_pain	0	787	787	2
$_{ m leg_pain}$	0	787	787	2
low_back_pain	0	787	787	2
pain_in_the_last_week	0	787	787	2
ranid	0	787	787	787
sex	0	787	787	2
$shoulder_pain$	0	787	787	2
$site_name$	0	787	787	2
$\operatorname{site_worst}$	0	787	787	14
$where_does_it_hurt_most$	636	151	787	25

Variable type: factor

variable	missing	complete	n	n_unique	top_counts	ordered
interval_name	0	787	787	1	0 w: 787, 12 : 0, 24 : 0, 36 : 0	TRUE

Variable type: numeric

variable	missing	complete	n	mean	sd	p0	p25	p50	p75	p100
age	0	787	787	32.77	7.65	14	27	32	38	62
${\rm cd4_cells.ul}$	0	787	787	333.25	224.05	1	173.5	290	441.5	1721
$general_health$	4	783	787	3.45	0.82	1	3	3	4	5
$interval_numeric$	0	787	787	0	0	0	0	0	0	0
pain_now	629	158	787	2	2.13	0	0	2	3	9
$pain_worst$	0	787	787	0.88	2.08	0	0	0	0	10
$viral_load_cp.ml$	0	787	787	98611.6	386719.99	50	5704.5	25853	85574	9475772

Study characteristics

Study site

```
# Plot
site_count <- ggplot(data = df) +</pre>
    aes(x = site_name) +
   geom_bar() +
   labs(subtitle = 'Study site: count',
         y = 'Count') +
    scale_x_discrete(labels = c('Hillbrow', 'Yeoville')) +
    theme(axis.title.x = element_blank())
site_prop <- df %>%
    group_by(site_name) %>%
    summarise(count = n()) %>%
   ggplot(data = .) +
   aes(x = '')
        y = count,
        fill = site_name) +
   geom_col(position = position_fill()) +
   labs(subtitle = 'Study site: proportion',
         y = 'Proportion') +
    scale_fill_manual(values = c('#666666', '#CCCCCC'),
                      labels = c('Hillbrow', 'Yeoville')) +
    theme(legend.title = element_blank(),
          legend.text = element_text(size = 12),
          legend.position = 'top',
          axis.title.x = element_blank())
site_count + site_prop
```

Study site: count

Study site: proportion

Table 4: Study site: summary statistics

site_name	count	n	missing	proportion
Hillbrow	41	787	0	0.052
Yeoville	746	787	0	0.948

Treatment group allocation

```
# Plot
group_count <- ggplot(data = df) +</pre>
   aes(x = group) +
    geom_bar() +
   labs(subtitle = 'Treatment: count',
         y = 'Count') +
   scale_x_discrete(labels = c('DTG+TAF+FTC',
                                 'DTG+TDF+FTC'.
                                 'EFV+TDF+FTC')) +
    theme(axis.title.x = element_blank(),
          axis.text.x = element_text(angle = 40, hjust = 1))
group_prop <- df %>%
   group_by(group) %>%
    summarise(count = n()) %>%
   ggplot(data = .) +
    aes(x = 'All',
        y = count,
        fill = group) +
    geom_col(position = position_fill()) +
    labs(subtitle = 'Treatment: proportion',
         y = 'Proportion') +
    scale_fill_grey(guide = guide_legend(ncol = 1),
                    labels = c('DTG+TAF+FTC',
                                'DTG+TDF+FTC',
                                'EFV+TDF+FTC')) +
    theme(legend.title = element_blank(),
          legend.text = element_text(size = 12),
          legend.position = 'top',
          axis.title.x = element_blank())
group_count + group_prop
```

Treatment: count

Treatment: proportion

Table 5: Study group allocation: summary statistics

group	count	proportion	missing	n
$\overline{\mathrm{DTG} + \mathrm{TAF} + \mathrm{FTC}}$	262	0.333	0	787
DTG + TDF + FTC	274	0.348	0	787
EFV + TDF + FTC	251	0.319	0	787

Demographics

Age

```
# Plot
ggplot(data = df) +
   aes(x = 'Data',
        y = age) +
   geom_sina() +
   labs(subtitle = 'Age: density plot',
        y = 'Age (years)') +
   theme(axis.title.x = element_blank(),
        axis.text.x = element_blank())
```

Age: density plot


```
# Numeric summary
df %>%
    select(age) %>%
    skim() %>%
    skim() %>%
    skimr::kable(caption = 'Age: summary statistics')
```

Skim summary statistics

n obs: 787 n variables: 1

Variable type: numeric

variable	missing	complete	n	mean	sd	p0	p25	p50	p75	p100
age	0	787	787	32.77	7.65	14	27	32	38	62

Sex

```
# Plot
sex_count <- ggplot(data = df) +</pre>
    aes(x = sex) +
    geom_bar() +
    labs(subtitle = 'Sex: count',
         y = 'Count') +
    theme(axis.title.x = element_blank())
sex_prop <- df %>%
    group_by(sex) %>%
    summarise(count = n()) %>%
    ggplot(data = .) +
    aes(x = 'Data',
        y = count,
        fill = sex) +
    geom_col(position = position_fill()) +
    labs(subtitle = 'Sex: proportion',
         y = 'Proportion') +
    scale_fill_grey() +
    theme(legend.title = element_blank(),
          legend.text = element_text(size = 12),
          legend.position = 'top',
          axis.title.x = element_blank(),
          axis.text.x = element_blank())
sex_count + sex_prop
```



```
# Numeric summary
df %>%
    select(sex) %>%
```

```
mutate(sex = factor(sex)) %>%
skim() %>%
skimr::kable(caption = 'Sex: summary statistics')
```

n obs: 787 n variables: 1

Variable type: factor

variable	missing	complete	n	n_unique	top_counts	ordered
sex	0	787	787	2	Fem: 457, Mal: 330, NA: 0	FALSE

Table 8: Sex: summary statistics 2

sex	count	n	missing	proportion
Female	457	787	0	0.581
Male	330	787	0	0.419

Ancestry

```
# Plot
anc_count <- ggplot(data = df) +</pre>
    aes(x = ancestry) +
    geom_bar() +
    labs(subtitle = 'Ancestry: count',
         y = 'Count') +
    theme(axis.title.x = element_blank())
anc_prop <- df %>%
    group_by(ancestry) %>%
    summarise(count = n()) %>%
    ggplot(data = .) +
    aes(x = 'Data',
        y = count,
        fill = ancestry) +
    geom_col(position = position_fill()) +
    labs(subtitle = 'Ancestry: proportion',
         y = 'Proportion') +
    scale_fill_grey() +
    theme(legend.title = element_blank(),
          legend.text = element_text(size = 12),
          legend.position = 'top',
          axis.title.x = element_blank(),
          axis.text.x = element_blank())
```

Ancestry: count

Ancestry: proportion


```
# Numeric summary
df %>%
    select(ancestry) %>%
    mutate(ancestry= factor(ancestry)) %>%
    skim() %>%
    skimr::kable(caption = 'Ancestry: summary statistics')
```

Skim summary statistics

n obs: 787 n variables: 1

Variable type: factor

variable	missing	complete	n	n_unique	top_counts	ordered
ancestry	0	787	787	2	Bla: 786, Col: 1, NA: 0	FALSE

Table 10: Ancestry: summary statistics 2

ancestry	count	n	missing	proportion
Black	786	787	0	0.999

ancestry	count	n	missing	proportion
Coloured	1	787	0	0.001

Education

```
# Plot
edu count <- df %>%
   mutate(education = str_replace_na(education)) %>%
   mutate(education = factor(education,
                               levels = c('No schooling', 'Primary',
                                          'Secondary', 'Tertiary',
                                          'NA'),
                              ordered = TRUE)) %>%
    ggplot(data = .) +
    aes(x = education,
        fill = education) +
   geom_bar() +
    labs(subtitle = 'Education: count',
         y = 'Count') +
        scale_fill_manual(values = c(rep('#666666', 4), '#FF0000')) +
    theme(legend.position = 'none',
          axis.title.x = element_blank(),
          axis.text.x = element_text(angle = 30, hjust = 1))
grey_pal <- colorRampPalette(colors = c('#CCCCCC', '#000000'),</pre>
                             interpolate = 'linear')
grey_red <- c(rev(grey_pal(4)), '#FF0000')</pre>
edu_prop <- df %>%
   mutate(education = str_replace_na(education)) %>%
   mutate(education = factor(education,
                              levels = c('No schooling', 'Primary',
                                          'Secondary', 'Tertiary',
                                          'NA'),
                              ordered = TRUE)) %>%
    group_by(education) %>%
    summarise(count = n()) %>%
    ggplot(data = .) +
    aes(x = 'Data',
        y = count,
        fill = education) +
    geom_col(position = position_fill()) +
   labs(subtitle = 'Education: proportion',
         y = 'Proportion') +
    scale_fill_manual(values = grey_red,
                      guide = guide_legend(ncol = 2)) +
    theme(legend.title = element_blank(),
          legend.text = element_text(size = 12),
          legend.position = 'top',
          axis.title.x = element_blank(),
          axis.text.x = element_blank())
edu_count + edu_prop
```

Education: count

Education: proportion


```
# Numeric summary
df %>%
    select(education) %>%
    mutate(education = factor(education)) %>%
    skim() %>%
    skimr::kable(caption = 'Education: summary statistics')
```

Skim summary statistics

n obs: 787 n variables: 1

Variable type: factor

variable	missing	complete	n	n_unique	top_counts	ordered
education	4	783	787	4	Sec: 661, Ter: 62, Pri: 56, No: 4	FALSE

```
select(education, count, n, missing, proportion) %>%
filter(education != 'NA') %>%
knitr::kable(caption = 'Education: summary statistics 2')
```

Table 12: Education: summary statistics 2

education	count	n	missing	proportion
No schooling	4	783	4	0.005
Primary	56	783	4	0.072
Secondary	661	783	4	0.844
Tertiary	62	783	4	0.079

Employment

```
# Plot
emp count <- df %>%
   mutate(employment_status = str_replace_na(employment_status)) %>%
   mutate(employment_status = factor(employment_status,
                                      levels = c('Employed', 'Not Employed',
                                                  'Self-Employed', 'Schooling',
                                                  'NA'),
                                      ordered = TRUE)) %>%
   ggplot(data = .) +
   aes(x = employment_status,
       fill = employment_status) +
   geom_bar() +
   labs(subtitle = 'Employment: count',
        y = 'Count') +
   scale_fill_manual(values = c(rep('#666666', 4), '#FF0000')) +
   theme(legend.position = 'none',
         axis.title.x = element_blank(),
         axis.text.x = element_text(angle = 30, hjust = 1))
emp_prop <- df %>%
   mutate(employment_status = str_replace_na(employment_status)) %>%
   mutate(employment_status = factor(employment_status,
                                      levels = c('Employed', 'Not Employed',
                                                  'Self-Employed', 'Schooling',
                                                  'NA'),
                                      ordered = TRUE)) %>%
   group_by(employment_status) %>%
   summarise(count = n()) %>%
   ggplot(data = .) +
   aes(x = 'Data',
       y = count,
       fill = employment_status) +
   geom_col(position = position_fill()) +
   labs(subtitle = 'Employment: proportion',
         y = 'Proportion') +
   scale fill manual(values = grey red,
                      guide = guide_legend(ncol = 2)) +
   theme(legend.title = element_blank(),
         legend.text = element_text(size = 12),
         legend.position = 'top',
          axis.title.x = element_blank())
```

Employment: count

Employment: proporti


```
# Numeric summary
df %>%
    select(employment_status) %>%
    mutate(employment_status = factor(employment_status)) %>%
    skim() %>%
    skim() %>%
```

Skim summary statistics

n obs: 787 n variables: 1

Variable type: factor

variable	missing	complete n r		n_unique	top_counts	ordered
employment_status	10	777	787	4	Emp: 474, Not: 261, Sel: 36, NA: 10	FALSE

```
df %>%
    group_by(employment_status) %>%
    summarise(count = n()) %>%
    mutate(n = sum(count),
        missing = sum(is.na(df$employment_status)),
```

```
n = n - missing) %>%
mutate(proportion = round(count / n, 3)) %>%
select(employment_status, count, n, missing, proportion) %>%
filter(employment_status != 'NA') %>%
knitr::kable(caption = 'Employment status: summary statistics 2')
```

Table 14: Employment status: summary statistics 2

employment_status	count	n	missing	proportion
Employed	474	777	10	0.610
Not Employed	261	777	10	0.336
Schooling	6	777	10	0.008
Self-Employed	36	777	10	0.046

Clinical

CD4 T-cell count

CD4: density plot


```
# Numeric summary
df %>%
    select(cd4_cells.ul) %>%
    skim() %>%
    skimr::kable(caption = 'CD4 T-cell count: summary statistics')
```

n obs: 787 n variables: 1

Variable type: numeric

variable	missing	complete	n	mean	sd	p0	p25	p50	p75	p100
$\overline{\mathrm{cd4}}$ _cells.ul	0	787	787	333.25	224.05	1	173.5	290	441.5	1721

Viral load

```
# Plot
ggplot(data = df) +
   aes(x = 'Data',
        y = viral_load_cp.ml) +
   geom_sina() +
   scale_y_log10() +
   labs(subtitle = 'Viral load: density plot',
        y = 'log10(Viral load (copies/mL))') +
   theme(axis.title.x = element_blank(),
        axis.text.x = element_blank())
```

Viral load: density plot


```
# Numeric summary
df %>%
    select(viral_load_cp.ml) %>%
```

```
skim() %>%
skimr::kable(caption = 'Viral load: summary statistics')
```

n obs: 787 n variables: 1

Variable type: numeric

variable	missing	complete	n	mean	sd	p0	p25	p50	p75	p100
viral_load_cp.ml	0	787	787	98611.6	386719.99	50	5704.5	25853	85574	9475772

Perception of health (baseline)

```
# Plot
ggplot(data = df) +
   aes(x = 'Data',
        y = general_health) +
   geom_sina() +
   scale_y_continuous(limits = c(0, 5)) +
   labs(subtitle = 'General health: density plot',
        y = 'General health') +
   theme(axis.title.x = element_blank(),
        axis.text.x = element_blank())
```

- ## Warning: Removed 4 rows containing non-finite values (stat_sina).
- ## Warning: Removed 57 rows containing missing values (geom_point).

General health: density plot


```
# Numeric summary
df %>%
```

```
select(general_health) %>%
skim() %>%
skimr::kable(caption = 'General health: summary statistics')
```

n obs: 787 n variables: 1

Variable type: numeric

variable	missing	complete	n	mean	sd	p0	p25	p50	p75	p100
general_health	4	783	787	3.45	0.82	1	3	3	4	5

```
# Mode
xtabs(~general_health, data = df) %>%
knitr::kable(caption = 'General health: modal distribution')
```

Table 18: General health: modal distribution

${\tt general_health}$	Freq
1	5
2	43
3	435
4	195
5	105
4	195

Session information

```
sessionInfo()
```

```
## R version 3.6.1 (2019-07-05)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Mojave 10.14.6
##
## Matrix products: default
## BLAS:
          /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                               datasets methods
                                                                    base
##
## other attached packages:
   [1] patchwork_0.0.1 skimr_1.0.7
##
                                        ggforce_0.3.1
                                                        magrittr_1.5
##
   [5] forcats_0.4.0
                        stringr_1.4.0
                                        dplyr_0.8.3
                                                        purrr_0.3.3
##
   [9] readr_1.3.1
                        tidyr_1.0.0
                                        tibble_2.1.3
                                                        ggplot2_3.2.1
## [13] tidyverse_1.2.1
##
## loaded via a namespace (and not attached):
##
   [1] tidyselect_0.2.5 xfun_0.10
                                          haven_2.1.1
                                                           lattice_0.20-38
##
   [5] colorspace_1.4-1 vctrs_0.2.0
                                          generics_0.0.2
                                                           htmltools_0.4.0
```

##	[9]	yaml_2.2.0	utf8_1.1.4	rlang_0.4.2	pillar_1.4.2
##	[13]	glue_1.3.1	withr_2.1.2	tweenr_1.0.1	modelr_0.1.5
##	[17]	readxl_1.3.1	lifecycle_0.1.0	munsell_0.5.0	gtable_0.3.0
##	[21]	cellranger_1.1.0	rvest_0.3.4	evaluate_0.14	labeling_0.3
##	[25]	knitr_1.25	fansi_0.4.0	highr_0.8	broom_0.5.2
##	[29]	Rcpp_1.0.3	scales_1.0.0	backports_1.1.5	jsonlite_1.6
##	[33]	farver_1.1.0	hms_0.5.1	digest_0.6.23	stringi_1.4.3
##	[37]	polyclip_1.10-0	grid_3.6.1	cli_2.0.0	tools_3.6.1
##	[41]	lazyeval_0.2.2	crayon_1.3.4	pkgconfig_2.0.3	zeallot_0.1.0
##	[45]	MASS_7.3-51.4	xml2_1.2.2	<pre>lubridate_1.7.4</pre>	assertthat_0.2.1
##	[49]	rmarkdown_1.16	httr_1.4.1	rstudioapi_0.10	R6_2.4.1
##	[53]	nlme 3.1-141	compiler 3.6.1		