PATENT SPECIFICATION

1 536 429 (11)

(22) Filed 25 March 1975 (21) Application No. 12420/75

(23) Complete Specification Filed 26 Feb. 1976

(44) Complete Specification published 20 Dec. 1978

(51) INT CL2 C09B 29/08

10

15

20

25

30

35

(52) Index at acceptance C4P 122 1A1B2 1F1 1F2

(72) Inventors VIOLET BOYD, BRIAN RIBBONS FISHWICK and DAVID JOHN WATSON

10

20

25

30

35 -

40

(54) DISPERSE MONOAZO DYESTUFFS

(71) We, IMPERIAL CHEMICAL INDUSTRIES LIMITED, Imperial Chemical House, Millbank, London SW1P 3JF, a British Company, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:-

This invention relates to disperse monoazo dyestuffs which are valuable for colouring synthetic textile materials, in particular aromatic polyester textile

In British Application No. 26808/72 (Ser. No. 1,413,322) there are described and claimed the disperse monoazo dyestuffs of the formula:-

wherein U is hydrogen, chlorine, bromine, cyano, lower alkyl, lower alkoxy or a group of the formula —CONT'T', —COOT' or —SO₂T';

V is hydrogen, chlorine, bromine, cyano or lower alkoxycarbonyl;

W is hydrogen, cyano, pitro, thickyone, abloring bromine or a group of the

W is hydrogen, cyano, nitro, thiocyano, chlorine, bromine or a group of the formula —SO₂NT¹T², —COOT³ or —SO₂T³;

Q is hydrogen, chlorine, bromine, lower alkoxy or a —COOT³ group;

R is cyano lower alkyl; 15

represents a lower alkylene radical;

X is cyano, lower alkoxy, lower alkoxy lower alkoxy lower alkoxy lower alkoxy lower alkoxy, chlorine, bromine, lower alkoxycarbonyl, lower alkycarbonyl, optionally substituted phenoxy carbonyl or optionally substituted

Y is lower alkoxycarbonyl, lower alkylcarbonyl, optionally substituted phenylcarbonyl, optionally substituted phenoxycarbonyl, phenyl lower alkoxycarbonyl, lower alkylsulphonyl, optionally substituted phenylsulphonyl or Noptionally substituted aminocarbonyl;

T¹ is hydrogen or alkyl; T² is hydrogen, alkyl, phenyl, phenylalkyl or cycloalkyl; and T³ is alkyl, phenyl, phenylalkyl or cycloalkyl. The said Application also describes and claims a process for the manufacture

of the said dyestuffs and their use for colouring synthetic textile materials.

It has now been found that the dyestuffs of the above formula wherein U is lower alkoxycarbonyl, W is nitro, Q is hydrogen and V is hydrogen or nitro are particularly valuable for colouring aromatic polyester textile materials as, when such dystuffs are applied by aqueous colouration processes, any unfixed dyestuff on the surface of the textile material can be readily removed by treatment in a warm aqueous solution of an alkali which does not contain a reducing agent (such

as sodium hydrosulphite). According to the present invention, there are provided the disperse monoazo 40 dyestuffs of the formula:-

	1,536,429	2.
	wherein	
	L ¹ represents optionally substituted lower alkyl;	
	L ² represents optionally substituted lower alkyl or optionally substituted amino,	
5	V ⁱ is hydrogen or nitro;	
•	Z is hydrogen or lower alkoxy;	5
	K' is lower alkyl or cyano lower alkyl.	•
	A and A' each independently represent laws 11.1	
	7 13 CYGIIO, IUWEF AIKOYV IOWEF AIKOYV lovion alla 1 11 11 1	
10	alkoxy lower alkoxy, chlorine, browne, lower alkoxycarbonyl, lower alkylcarbonyl, optionally substituted above.	
	alkylcarbonyl, optionally substituted phenoxycarbonyl, optionally substituted phenoxycarbonyl, optionally substituted	10
	phenylcarbonyl, optionally substituted phenoxycarbonyl, optionally substituted carbonyloxymethyl.	
	Throughout this Specification the terms "It was an	
15		
	respectively containing from 1 to 4 carbon atoms.	15
	As examples of the lower alkylene radical appropriate the second	
	be mentioned methylene, trimethylene, tetramethylene, propylene and, above all,	
20		
20	may be mentioned cyanomethyl, p -cyanopropyl, δ -cyanobutyl and, above all, β -cyanoethyl. As examples of the lower all β -cyanobutyl and β	20
	there may be mentioned methyl athyl anxionalizar represented by L. L. and R.	20
	As examples of substituted lower alkyl radicals represented by L ¹ and L ² there	
25		25
	alkyl such as β -ethoxyethyl and γ -methoxypropyl, phenyl lower alkyl such as benzyl and β -phenylethyl, and phenoxy lower alkyl such as phenoxymethyl.	
	As examples of the substituted amino assure as pnenoxymethyl.	•
0	mentioned lower alkylamino such as methylamino and ethylamino.	20
	ACAD MOWOVOL DICICITED INVITED INVITED INVITED IN INC. TO A CO. T. C. T.	30
	As specific examples of the groups represented by X1 there may be mentioned lower alkoxy such as methoxy, ethoxy, as here was not as methoxy.	
15	alkoxy such as A-ethoxy ethoxy, and mother alkoxy lower alkoxy lower	
	alkoxy such as β -ethoxyethoxy and γ -methoxypropoxy, lower alkoxy lower alkoxy lower alkoxy methoxycarbonyl, ethoxycarbonyl and β -by-methoxyethoxy, lower alkoxycarbonyl such as	35
	methoxycarbonyl, ethoxycarbonyl and n-butoxycarbonyl, lower alkoxycarbonyl such as acetyl and propionyl, ontionally, but as a certain acetyl and propionyl, ontionally, but as a certain acetyl and but acetyl and but acetyl and but acetyl acetyl and but acetyl acet	-
^		
0		40
	optionally substituted phenoxy such as phenoxy itself, tolyloxy and chlorophenoxy, and lower alkylcarbonyloxymethyl such as acetoxymethyl.	
	It is nowever preferred that X' is evand lower alleast.	
5		A.E
	A preferred class of the dyestuffs of the invention comprises the dyestuffs of the formula:—	45
	· · · · · · · · · · · · · · · · · · ·	•
	$COOL^3 \qquad NHCOCH_3$ $C_2N \longrightarrow N = N \longrightarrow N \subset C_2H_4, C.O-C_2H_4-X^2$	
	C.N.	
•	C ₂ H ₄ , c.o-c ₂ H ₄ -x ²	•
	`z' "	
)	wherein R ¹ has the meaning stated;	
	L' is lower alkyl	50
	Z ¹ is hydrogen or methoxy; and	50
	X ² is cyano, lower alkoxy, lower alkoxy lower alkoxy, lower	
	alkoxycarbonyl, lower alkylcarbonyl, hydroxymethyl or lower alkyl- carbonyloxy methyl.	
	The dyestuffs of the present invention can be obtained.	
		55
	1,413,322) and comprises diazotising an amine of the formula:—	
	,cooL'	•

5

10

15

20

25

30

35

40

45

50

5

10

15

20

25

30

35

40

45

50

and coupling the resulting diazo compound with a coupling component of the formula:-

wherein A, A¹, L¹, L², R¹, V¹, X¹ and Z have the meanings stated.

As specific examples of the said amines there may be mentioned the methyl, ethyl, n-propyl, iso-propyl, isobutyl, sec-butyl and n-butyl esters of 2-amino-5-nitrobenzoic acid and of 2-amino-3:5-dinitrobenzoic acid.

nitrobenzoic acid and of 2-amino-3:5-dinitrobenzoic acid.

As specific examples of the said coupling components there may be mentioned 2-(methoxy or ethoxy)-5-acetylamino-N-(methyl, ethyl, n-propyl, isopropyl, n-butyl or β -cyanoethyl)-N-[β -(β '-[cyano, methoxy, ethoxy or phenoxylethoxy-carbonyl)ethyl]aniline, 3-acetylamino-N-(methyl, ethyl, n-butyl, cyanomethyl, cyanopropyl, cyanobutyl or β -cyanoethyl)-N-[β -(β '-[cyano, methoxy, methoxy, ethoxy or phenoxylethoxycarbonyl)ethyl]aniline, 3-(acetylamino, propionylamino, n- or iso-butyrylamino)-N-(methyl, ethyl or β -cyanoethyl)-N-[β -(β '-[chloro, bromo, methoxycarbonyl, acetyl, benzoyl, phenoxycarbonyl, hydroxymethyl or acetoxymethyl]ethoxycarbonyl)ethyl]aniline and 3-(acetylamino or propionylamino)-N-(methyl, ethyl, or β -cyanoethyl)-N-[β -[β (β '-[β ''-methoxyethoxylethoxyamino)-N-(methyl, ethyl or β -cyanoethyl)-N-[β -[$\beta(\beta'-|\beta''$ -methoxyethoxy]ethoxy-

carbonyl)ethyl]aniline. The azo dyestuffs of the present invention are valuable for colouring synthetic textile materials, in particular aromatic polyester textile materials, by aqueous dyeing, padding or printing processes using the techniques which are conventionally employed in colouring synthetic textile materials. The said dyestuffs are particularly valuable for colouring aromatic polyester textile materials as any unfixed dyestuff can readily be removed from the surface of the textile material by treatment for a few minutes in a warm aqueous solution of an alkali, such as an aqueous solution of sodium carbonate, of pH in the range of 8 to 12. The resulting

scarlet to blue colourations have excellent fastness to the tests conventionally applied to such textile materials.

The invention is illustrated but not limited by the following Examples in which

the parts and percentages are by weight.

Example 1. A solution of 3.92 parts of methyl 2-amino-5-nitrobenzoate in a mixture of 60 parts of acetic acid and 5 parts of a concentrated aqueous solution of hydrochloric acid is cooled to 5°—10°C, 12 parts of a 14% aqueous solution of sodium nitrite are added, and the mixture stirred for 10 minutes at 5°—10°C. The resulting solution of the diazo compound is added to a stirred mixture of 6.66 parts of 3-acetylamino-N- $(\beta$ -cyanoethyl)-N- $[\beta$ - $(\beta'$ -methoxyethoxycarbonyl)ethyl]aniline, 500 parts of water and 10 parts of acetone at 0°—10°C, sodium acetate is added until the mixture is no longer acid to Congo Red, and the mixture is stirred for 4 hours at 5°C. The

precipitated dyestuff is then filtered off, washed with water and dried.

An aqueous dispersion of the dyestuff is prepared in conventional manner, and the resulting dispersion is then incorporated into a print paste which is applied to a woven aromatic polyester textile material after which the textile material is dried and then steamed to fix the dyestuff. The printed textile material is then treated in a warm aqueous solution of sodium of sodium carbonate of pH 11 to remove any unfixed dyestuff from the surface of the textile material, and the print is then rinsed in water and dried. A bright red print is obtained which has excellent fastness to

light, to rubbing and to wet and to dry heat treatments.

The following Table gives further Examples of the dyestuffs of the invention of the formula:-

$$o_2N$$
 $N = N - \sum_{i=1}^{N-1} N^{-i} + \sum_{i=1}^{N-1} N^{-i}$

the symbols of which have the values given in the respective columns of the Table, the shades obtained when the said dyestuffs are applied to an aromatic polyester textile material being given in the last column of the Table.

These dyestuffs were obtained by diazotising the appropriate amine of the formula:—

and coupling the resulting diazo compound with the approprate coupling component of the formula:—

5

Shade	Violet	j. a	Red	Scarlet	Bluish-red	Red		•	:	Bluish-red	Red	•	:		Rubine	Red	•
Χı	methoxy	•	cyano	β-methoxy- ethoxy	2	n-butoxy	methoxy	cyano	methoxy	phenoxy	bromine	chlorine	methoxy - carbonyl	methoxy		phenoxy- carbonyl	benzoyl
A¹	ethylene	2	methylene	ethylene	•	:	trimethylene	methylene	ethylene	trimethylene	ethylene	:		tetramethylene	ethylene		methylene
A	ethylene		•	.	2	trimethy lene	ethylene	trimethylene	β-methyl- ethylene	ethylene	•		ř.	=	•	:	:
R¹	ethyl		\(\beta\)-cyanoethyl	cyanomethy!	y-cyanopropyl	β -cyanoethyl	î		•	y-cyanopropyl	β -cyanoethyl			•	s-cyanobutyl	β -cyanoethyl	
Z	methoxy	ethoxy	hydrogen		2	:	•	•		. 2	٤.	2		:	=		"
L²	methy1	:	:	e e	£	β-chloro	ethyl	methyl	amino	methyl	ethyl	methyl		•		ç,	
٨١	hydrogen	c c				:	:	•	2	:	:	:	2	:	•	.	•
L¹	methyl	:	:		:	:	:		:	:	•	2	:	•	•	ć	
Example	2	8	4	8	9		∞	6	10	11	12	13	14	15	16	17	18

												_					
Shade	Red	Rubine	Red	:		•	Bluish-red	Rubine	•		2	:	:				
X¹	acetyl	2	ethoxy	β -(β '-methoxy-ethoxy)	cyano	methoxy	•	•		:	cyano	eta-nethoxy- ethoxy	methoxy- carbonyl	ethoxycarbonyl	acetyl	methoxy	à
Α1	methylene		ethylene	:		:	•	•	**		methylene	ethylene	methylene	2	2	ethylene	
A	ethylene			.				ethylene	=		•	~		:	2	*	
R¹	β-cyanoethy1	ethyl	β-cyanoethyl	î	•		methyl	ethyl	n-propyl	n-butyl	ethyl	•	•		-	β -cyanoethyl	"
Z	hydrogen	:	2		:	•		\$:	2	**	2	•	•	:	methoxy	ethoxy
L²	n b utyl	methyl		.	•	ethylamino	methyl	•	:	•	•	:	:		:	:	2
Λ.	hydrogen						:			:	:	:	:	:	:	•	•
Ľ	methyl	•	93	2	Ç.	8 .			2			:	:	:	2	•	:
Example	19	20	21	22	23	24	25	.92	27	28	29	30	31	32	33	34	35

	Τ																	
Shade	Rubine		:	•	Red	Rubine	Violet	Red		:	Rubine	2		Red	Violet	Red	:	:
X1	cyano	β-methoxy- ethoxy	methoxycarbonyl	acetyl	methoxy	:		2		hydroxymethy1		66	=	acetyloxymethyl	6	hydroxymethyl	methoxy	
A1	methylene	ethylone	methylene	•	ethylene	:		•	•	methylene		•	•	:		ethylene	•	:
Y	ethylene		<u>.</u>	•		2	•		•	•	£	:			:	ethylene	•	*
R¹	ethyl				β -cyanoethyl	•	ethyl	β -cyanoethyl	2		ethyl	\(\beta\)-cyanoethyl	ethyl	\beta-cyanoethyl	ethyl	β-cyanoethyl	:	:
Z	methoxy	•		•	hydrogen	methoxy	ŝ	hydrogen		•	:	ethoxy	methoxy	hydrogen	methoxy	hydrogen	:	
L²	methy]						:	:	•	2		•	ç.	:		methy!	benzyl	phenoxy- methyl
V¹	hydrogen	:	ç	2	:	•	:	2	:	2	:	:	2		ŝ	•	:	
Ľ	methyl	:		2	ethyl	:	ç	n-propyl	n-butyl	methy!	î	•				methyl		
Example	36	. 37	. 88	3.9	40	41	42	43	44	45	46	47	48	49	20	51	52	SS

Shade	Violet	10101	.		Red ·	•	:	:		n :	Ξ.	â · â	:	Reddish-blue	Violet	Greenish-blue	Rubine	Greenish-blue
Xı	ethoxycarbonyl	scetul	accivi.	propionyloxy- methyl	propylcarbonyloxy methyl	methoxy	<u>.</u>	•			: :			:			hydroxymethyl	
A1	methylene		2		2	•	•	ĉ	:				•		•	=	methylene	•
A	ethylene	:		â		6		:	•		•					•	•	
R¹	ethyl			·	β-cyanoethyl	•	:	•	\$	2			:	e e	ethyl		cyanoethyl	ethyl
2	methoxy	ethoxy	•	:	hydrogen	:		2		:	:	:	:	methoxy	hydrogen	methoxy	hydrogen	methoxy
L ²	methyl				:	2 .	:	2	:	•	:	:		•	2:	•		:
Vı	hydrogen		:		•		. :		nitro		hydrogen	:	:	nitro		:	:	•
-11	methyl	:	•	:	ć .	β-methoxy ethoxy	β -chloro ethyl	eta-cyano ethyl	methyl	ethy!	isopropyl	β-methyl- n-propyl	a-methyl- n-propyl	methyl				-
Example	. 54	55	. 95	ţ)s	58	59	09	61	. 62	63	49	99	99	67	89 (69	02

WHAT WE CLAIM IS:-

1. Disperse monoazo dyestuffs of the formula:—

wherein L¹ represents optionally substituted lower alkyl; L² represents optionally substituted lower alkyl or optionally substituted 5 amino, V¹ is hydrogen or nitro; Z is hydrogen or lower alkoxy; 10 R1 is lower alkyl or cyano lower alkyl; 10 A and A' each independently represent lower alkylene; and X' is cyano, lower alkoxy, lower alkoxy lower alkoxy, lower alkoxy lower alkoxy lower alkoxy, chlorine, bromine, lower alkoxycarbonyl, lower alkylcarbonyl, optionally substituted phenoxycarbonyl, optionally substituted phenoxy, hydroxymethyl or lower alkyl 15 15 carbonyloxymethyl. 2. Disperse monoazo dyestuffs as claimed in Claim 1 wherein A and A1 each represent ethylene. 3. Disperse monoazo dyestuffs as claimed in Claim 1 or Claim 2 wherein R1 is 20 β -cyanoethyl. 20 4. Disperse monoazo dyestuffs as claimed in any one of the preceding claims wherein L¹ and L² are lower alkyl. 5. Disperse monoazo dyestuffs as claimed in Claim 4 wherein L2 is methyl. 6. Disperse monoazo dyestuffs as claimed in any one of the preceding claims wherein X1 is cyano, lower alkoxy, lower alkoxy lower alkoxy, lower alkoxy-25 25 carbonyl, lower alkylcarbonyl, hydroxymethyl or lower alkylcarbonyloxymethyl. 7. Disperse monoazo dyestuffs as claimed in Claim 1 of the formula: -N = N - R'

C₂H₄.C.o-c₂H₄-x² wherein R1 is as defined in Claim 1, L3 is lower alkyl, Z1 is hydrogen or methoxy and 30 X2 is cyano, lower alkoxy, lower alkoxy lower alkoxy, lower alkoxycarbonyl, lower 30 alkylcarbonyl, hydroxymethyl or lower alkylcarbonyloxy methyl. 8. Disperse monoazo dyestuffs according to Claim 1 as hereinbefore described with reference to any one of Examples 1 to 70. 9. Process for the manufacture of disperse monoazo dyestuffs as claimed in 35 Claim 1 which comprises diazotising an amine of the formula:-35 and coupling the resulting diazo compound with a coupling component of the

formula:

wherein A, A¹, L¹, L², R¹, V¹, X¹ and Z as defined in Claim 1.

10. Process as claimed in Claim 9 as hereinbefore described with reference to 40 40 any one of Examples 1 to 70. 11. Process for the colouration of synthetic textile materials which comprises applying a dyestuff as claimed in Claim 1 by an aqueous dyeing, padding or printing 45 45 10

12. Process as claimed in Claim 11 wherein the synthetic textile material is an aromatic polyester textile material.

13. Process as claimed in Claim 12 wherein the coloured material is subsequently treated with an aqueous solution of an alkali of pH from 8 to 12.

D. VINCENT, Agent for the Applicants.

Printed for Her Majesty's Stationery Office by the Courier Press, Learnington Spa, 1978. Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.