11 מבוא ללמידה חישובית | סיכום הרצאה (20942)

מנחה: ד"ר שי מימון סמסטר: 2022א' נכתב על ידי: מתן כהן

Backpropagation 1

על פני כל שכבות הרשת. Gradient Descent מהות העניין הוא חישוב יעיל של של האוח אל פני כל שכבות החשב יעיל של ניזכר כי על מנת לחשב את הגרדיאנט של E_{in} יש צורך בנגזרת שלו ביחס למטריצת המשקלים

$$\frac{\partial E_{in}}{\partial W^{(\ell)}} = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial e_n}{\partial W^{(\ell)}}$$

נסמן:

- (\mathbf{x}_n,y_n) שגיאה על נקודה מסוימת e
- ℓ לעכבה j לנוירון $\ell-1$ משקל הקשת בין נוירון i משכבה $\ell-1$ לנוירון לשכבה $w_{ij}^{(\ell)}$

תחילה ניזכר כי:

$$\mathbf{s}_{j}^{\ell)} = \sum_{\alpha=0}^{d^{(\ell-1)}} w_{\alpha j}^{(\ell)} \mathbf{x}_{\alpha}^{(\ell-1)} \quad \Rightarrow \frac{\partial \mathbf{s}_{j}^{(\ell)}}{\partial w_{ij}^{(\ell)}} = \mathbf{x}_{i}^{(\ell-1)}$$

:כעת נבחין כי המקום בו המשקולת $w_{ij}^{(\ell)}$ משפיעה על משתני הכניסה לשכבה ℓ הוא

$$\frac{\partial e}{\partial w_{ij}^{(\ell)}} \stackrel{\text{chain rule}}{=} \frac{\partial \mathbf{s}_{j}^{(\ell)}}{\partial w_{ij}^{(\ell)}} \cdot \frac{\partial e}{\partial \mathbf{s}_{j}^{(\ell)}} \stackrel{\text{1.1}}{=} \mathbf{x}_{i}^{(\ell-1)} \cdot \frac{\partial e}{\partial \mathbf{s}_{j}^{(\ell)}}$$

:sensitivity -נסמן את ה

$$rac{\partial e}{\partial \mathbf{s}_{j}^{(\ell)}} = oldsymbol{\delta}_{j}^{(\ell)}$$

ונקבל:

$$\frac{\partial e}{\partial w_{ij}^{(\ell)}} = \mathbf{x}_i^{(\ell-1)} \cdot \boldsymbol{\delta}_j^{(\ell)}$$

בעזרת מה שהראינו נוכל לכתוב:

$$\frac{\partial e}{\partial W^{(\ell)}} = \underbrace{\mathbf{x}^{(\ell-1)}}_{\left(d^{(\ell-1)}+1\right)\times 1} \cdot \left(\underbrace{\boldsymbol{\delta}^{(\ell)}}_{d^{(\ell)}\times 1}\right)^T$$

כאשר הממד של התוצאה הוא

$$\left(d^{(\ell-1)} + 1\right) \times d^{(\ell)}$$

כעת נתמודד עם $oldsymbol{s}_j^{(\ell)}$, לשם כך נבחין כי נוכל להשתמש ב $oldsymbol{x}^{(\ell)}$ וכיוון שכל אלמנט $oldsymbol{s}_j^{(\ell)}$ משפיע רק על אלמנט בחין כי נוכל להשתמש ב $oldsymbol{x}^{(\ell)}$ וכיוון שכל אלמנט ביזה על מנת לכתוב:

$$\boldsymbol{\delta}_{j}^{(\ell)} = \frac{\partial e}{\partial \mathbf{s}_{j}^{(\ell)}} = \frac{\partial e}{\partial \mathbf{x}_{j}^{(\ell)}} \cdot \frac{\partial \mathbf{x}_{j}^{(\ell)}}{\partial \mathbf{s}_{j}^{(\ell)}} = \frac{\partial e}{\partial \mathbf{x}_{j}^{(\ell)}} \cdot \theta' \left(\mathbf{s}_{j}^{(\ell)} \right)$$

. בצורה פשוטה. Backpropagation -כעת, אם נוכל לייצר מנגנון נוח לחישוב $m{\delta}$ נוכל להתמודד איתה בכל שכבה בעת ה $\mathbf{x}_j^{(\ell)}$ משפיע על כל $\mathbf{x}_j^{(\ell+1)}$ מהשכבה לשם כך נתבונן בביטוי $\mathbf{x}_j^{(\ell)}$ בו השתמשנו על מנת לבטא את $\mathbf{b}_j^{(\ell)}$ וזאת כאשר נזכור שכל $\mathbf{x}_j^{(\ell)}$ משפיע על כל הבאה:

$$\frac{\partial e}{\partial \mathbf{x}_j^{(\ell)}} = \sum_{k=1}^{d^{(\ell+1)}} \frac{\partial \mathbf{s}_k^{(\ell+1)}}{\partial \mathbf{x}_j^{(\ell)}} \cdot \frac{\partial e}{\partial \mathbf{s}_k^{(\ell+1)}} = \sum_{k=1}^{d^{(\ell+1)}} w_{jk}^{(\ell+1)} \boldsymbol{\delta}_k^{(\ell+1)}$$

 $: j = 1, \dots, d^{(\ell)}$ קיבלנו בסוף שלכל

$$\boldsymbol{\delta}_{j}^{(\ell)} = \theta' \left(\mathbf{s}_{j}^{(\ell)} \right) \sum_{k=1}^{d^{(\ell+1)}} w_{jk}^{(\ell+1)} \boldsymbol{\delta}_{k}^{(\ell+1)}$$

יכתב: \mathbf{v} יכתב j איבר i עד איבר איבר שהתסכלות על

$$[\mathbf{v}]_i^j$$

מכפלת איבר באיבר של וקטורים v, u תכתב:

 $\boldsymbol{v}\otimes\boldsymbol{u}$

 $:\!\! \delta^{(\ell)}$ ועל פי הסימון נוכל לכתוב את

$$oldsymbol{\delta}^{(\ell)} = heta'\left(\mathbf{s}^{(\ell)}
ight) \otimes \left[W^{(\ell+1)} oldsymbol{\delta}^{(\ell+1)}
ight]_1^{d^{(\ell)}}$$

כעת נוכל להסתכל על כלל התהליך.

Backpropagation -- תהליך ה

output- ועד שכבת input- משכבת ביזכר על מנת לחשב את מנת לחשב את לחשב את forward propagation ניזכר כי בהתחלה עשינו $\mathbf{x}^{(\ell-1)}$ בעזרת $\mathbf{x}^{(\ell)}$ את כאשר

 $oldsymbol{\delta}^{(\ell)}$ את נחשב את הדלתאות ישכבת ה-utput לאחור איש הדלתאות לחשב את הדלתאות backpropagation נרצה לחשב את הדלתאות $oldsymbol{\delta}^{(\ell+1)}$ בעזרת

ישנו דמיון בין שני התהליכים!

backpropagtaion-התחלת תהליך 1.1.1

• חשוב לזכור שבשכבה האחרונה אנחנו מדברים על סקלרים

ינרצה להתחיל עם $oldsymbol{\delta}^{(L)}$ זו השכבה האחרונה) ולכן על מנת לחשב את הדלתא:

$$\begin{split} \boldsymbol{\delta}^{(L)} &= \frac{\partial e}{\partial \mathbf{s}^{(L)}} \stackrel{\text{last layer}}{=} \frac{\partial e}{\partial s^{(L)}} \\ &= \frac{\partial}{\partial s^{(L)}} \left(x^{(L)} - y \right)^2 \\ &= 2 \left(x^{(L)} - y \right) \cdot \frac{\partial x^{(L)}}{\partial s^{(L)}} \\ &= 2 \left(x^{(L)} - y \right) \cdot \theta' \left(s^{(L)} \right) \end{split}$$

:כעת, אם heta היא $\left(s^{(L)}
ight)=1-\left(x^{(L)}
ight)^2$ הרי ש- anh היא היא

$$\boldsymbol{\delta}^{(L)} = 2\left(x^{(L)} - y\right) \cdot \left(1 - \left(x^{(L)}\right)^2\right)$$

 $:\!\! heta'\left(s^{(L)}
ight)=1$ -ש מדובר ברגרסיה והשתמשנו לדוגמה בפונקצית הזהות הרי $\boldsymbol{\delta}^{(L)} = 2\left(x^{(L)} - y\right)$

Backpropagation-אלגוריתם ה 1.1.2

Backpropagation to compute sensitivities $oldsymbol{\delta}^{(\ell)}$ אלגוריתם 1

Input: a data point (\mathbf{x}, y)

(1) Run forward propogation on \mathbf{x} to compute and save:

$$\mathbf{s}^{(\ell)}$$
 for $\ell = 1, \dots, L$;
 $\mathbf{x}^{(\ell)}$ for $\ell = 0, \dots, L$.

(2) $\delta^{(L)} \leftarrow 2(x^{(L)} - y)\theta'(s^{(L)})$

[Initialization]

$$\theta'\left(s^{(L)}\right) = \begin{cases} 1 - \left(x^{(L)}\right)^2 & \theta\left(s\right) = \tanh\left(s\right); \\ 1 & \theta\left(s\right) = s \end{cases}$$

(3) **for** $\ell = L - 1$ **to** 1 **do**

[Back-Propagation]

(a) Let
$$\theta'(\mathbf{s}^{(\ell)}) = [1 - \mathbf{x}^{(\ell)} \otimes \mathbf{x}^{(\ell)}]_1^{d^{(\ell)}}$$
 $\theta = \tanh$

(b) Compute the sensitivity $\delta^{(\ell)}$ from $\delta^{(\ell+1)}$:

$$oldsymbol{\delta}^{(\ell)} \leftarrow heta'\left(\mathbf{s}^{(\ell)}\right) \otimes \left[W^{(\ell+1)} oldsymbol{\delta}^{(\ell+1)}\right]_1^{d^{(\ell)}}$$

 $x=2, \;\; y=1$ ונקודה (L=3) ונקודה רשת עם 3

נבחין כי:

$$d^{(0)} = 1, \quad d^{(1)} = 2, \quad d^{(2)} = 1, \quad d^{(3)} = 1$$

 $t:\ell=1,\dots 3$ לכל לכל את נגדיר בשלב הראשון את

$$W^{(1)} = \begin{bmatrix} 0.1 & 0.2 \\ 0.3 & 0.4 \end{bmatrix}, \quad W^{(2)} = \begin{bmatrix} 0.2 \\ 1 \\ -3 \end{bmatrix}, \quad W^{(3)} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

ינבלת ה-forward propagation:

backpropagation -כעת נעבור ל

 $:\!\!\delta^{(3)}$ נשתמש בהגדרת ונחשב את heta= anh

$$\delta^{(3)} = 2\left(x^{(3)} - 1\right)\left(1 - \left(x^{(3)}\right)^2\right) = -1.855$$

נשתמש בלולאה:

for
$$\ell = L - 1$$
 to 1 **do**:

Let
$$\theta'(\mathbf{s}^{(\ell)}) = [1 - \mathbf{x}^{(\ell)} \otimes \mathbf{x}^{(\ell)}]_1^{d^{(\ell)}}$$

והטבלה:

$$\begin{array}{c|c|c}
\delta^{(3)} & \delta^{(2)} & \delta^{(1)} \\
\hline \left[-1.855\right] & \left[\left(1 - 0.9^2\right) \cdot 2 \cdot -1.855\right] = \left[-0.69\right] & \begin{bmatrix} -0.44 \\ 0.88 \end{bmatrix}
\end{array}$$

וכעת חישובי השגיאות:

$$\frac{\partial e}{\partial W^{(1)}} = \mathbf{x}^{(0)} \left(\boldsymbol{\delta}^{(1)} \right)^T = \begin{bmatrix} -0.44 & 0.88 \\ -0.88 & 1.75 \end{bmatrix}$$

$$\frac{\partial e}{\partial W^{(2)}} = \begin{bmatrix} -0.69 \\ -0.42 \\ -0.53 \end{bmatrix}$$

$$\frac{\partial e}{\partial W^{(3)}} = \begin{bmatrix} -1.85 \\ 1.67 \end{bmatrix}$$

1.2 מרכיבים הכל ביחד

 $g =
abla E_{in}(\mathbf{w})$ אלגוריתם 2 חישוב $E_{in}(\mathbf{w})$ והגרדיאנט

Input:
$$\mathbf{w} = \{W^{(1)}, \dots, W^{(L)}\}; \ \mathcal{D} = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N).$$
Output: error $E_{in}(\mathbf{w})$ and gradient $g = \{G^{(1)}, \dots, G^{(L)}\}.$

- (1) Initialize: $E_{in}=0$, and $G^{(\ell)}=0\cdot W^{(\ell)}$ for $\ell=1,\ldots,L$
- (2) **for** each data point (\mathbf{x}_n, y_n) , $n = 1, \dots, N$, **do**
 - (a) Compute $\mathbf{x}^{(\ell)}$ for $\ell = 0, \dots, L$

[forward propagation]

[backpropagation]

(a) Compute
$$\mathbf{x}^{(\ell)}$$
 for $\ell = 0, \dots, L$
(b) Compute $\boldsymbol{\delta}^{(\ell)}$ for $\ell = L, \dots, 1$
(c) $E_{in} \leftarrow E_{in} + \frac{1}{N} \left(\mathbf{x}^{(L)} - y_n \right)^2$

(d) for $\ell = 1, ..., L$

(i)
$$G^{(\ell)}\left(\mathbf{x}_{n}\right)=\left[\mathbf{x}^{(\ell-1)}\left(\boldsymbol{\delta}^{(\ell)}\right)^{T}\right]$$

(ii)
$$G^{(\ell)} \leftarrow G^{(\ell)} + \frac{1}{N} G^{(\ell)} \left(\mathbf{x}_n \right)$$

כל התהליך הנ"ל נועד בשביל עדכון של **איטרציה אחת בלבד** - שיניב לנו סט משקלים חדש לכל שכבה באיטרציה הבאה:

$$W_{(t+1)}^{(\ell)} \leftarrow W_{(t)}^{(\ell)} - \eta G_{(t)}^{(\ell)}$$

1.3 בעיות נפוצות ושאלות פתוחות

בעיה. מה עושים כאשר פונקצית המטרה שלנו לא קונבקסית? הרי יכול להיות ש GD יתכנס לנקודת מינימום מקומית

פתרון. במקום להתחיל מנקודה אחת את תהליך ה GD, נתחיל מכמה נקודות ולהשתמש בסט הולידציה על מנת להשוות בין החזאים השונים שקיבלנו.

הערה. אם נאתחל את המשקולות כאפסים $(W^{(\ell)}=0)$ אז לכל ℓ נקבל $\delta^{(\ell)}=0$ וכתוצאה הנגזרות של השגיאה יהיו $\delta^{(\ell)}=0$ לאחר איטרציה אחת ולא נתקדם.

(tanh– הוא מצב בו ערכי Vanishing Gradient הוא מצב בו ערכי $|w_{ij}|$ יהיו מאוד גבוהים ובקצוות פונקצית האקטיבציה שלנו (נניח ב-Vanishing Gradient בעיה. $\delta^{(\ell)}$ וכתוצאה מכך הנגזרת של θ תתקרב מאוד ל-0 וכתוצאה מכך הנגזרת של

פתרון. שימוש בפונקציות אקטיבציה שונות (כמו ReLU או החלפת פונקצית האקטיבציה בשכבת המוצא בפונקציה לינארית

?ו.3.1 אז כיצד נאתחל את המשקלים?

מומלץ לאתחל את המשקלים בצורה **בלתי תלויה סטטיסטית** עם משתנה אקראי **נורמלי**, בעל **תוחלת** 0 ו**שונות קטנה**. בצורה זו המשקלים יהיו סביב נקודת האפּס, אך לא אפּס ממש.

1.3.2 סיום האלגוריתם

נהוג לשלב מספר קריטריוני עצירה

- מספר איטרציות
- שינוי קטן יחסית בשגיאה •
- השגיאה האבסולוטית קטנה מערך מסוים

Stochastic (Online, Sequential) Gradient Descent 2

תהליך ה- GD שדיברנו עליו עד כה נקרא Batch Gradient Descent והוא מחושב עבור כל סט הדוגמאות לפני עדכון GD המשקלים.

גרסה אחרת של GD היא גרסה סטוכאסטית שלו - GD היא גרסה סטוכאסטית שלו - GD מה גרסה אחרת של SGD:

- בכל פעם בוחרים באופן אקראי (אחיד) **דוגמה אחת** מסט הדוגמאות
- עבור הדוגמה הספציפית מחשבים את השגיאה ואת הגרדיאנט שמושפע מהדוגמה הספציפית הזו בלבד
 - בעזרת החישובים שלנו על הנקודה \mathbf{x}_n הספציפית שלנו על הפרמטרים: ullet

$$W^{(\ell)} = W^{(\ell)} - \eta G^{(\ell)}(\mathbf{x}_n)$$

Batch Gradient נקבל עדכונים מאוד רועשים אשר לאורך האימון יבטלו אחד את השני ויתכנסו לתוצאה טובה כמו • Descent

$$\eta \cdot \frac{1}{N} \sum_{n=1}^{N} \nabla e_n(\mathbf{w})$$

- המקורי משמע הוא חישובי גרדיאנט, אלא רק אחד, משמע הוא GD המקורי מאלגוריתם האלגוריתם N האלגוריתם שאין צורך למצוא $\frac{1}{2}$
 - הרעשים שמתקבלים מאופן הפעולה תורמים לנו בהתחמקות ממינימום מקומי!
 - אפשרי לשלב את 2 הטכניקות ולקחת תת-קבוצה של הדוגמאות ועליה לבצע GD •

SGD -ל Batch Gradient Descent ל-

 $\eta = 0.01$ מידה קצב למידה שכבות עם 5 שכבות עם לשכבות רשת בעלת למידה 500

Variable Learning Rate Gradient Descent 3

 η היריסטיקה פשוטה שעוזרת בתהליך ה GD היא שינוי ערכי קצב הלמידה בכל צעד נתבונן בשגיאה

- η אם השגיאה קטנה נגדיל את ערך ullet
- η אם השגיאה לא קטנה נחזור צעד אחורה ונקטין את ערך ullet

Variable Learning Rate Gradient Descent אלגוריתם 3

- (1) Initialize $\mathbf{w}(0)$, and η_0 at t=0. Set $\alpha>1$ and $\beta<1$.
- (2) while stopping criterion has not been met do
 - (a) Let $\mathbf{g}(t) = \nabla E_{in}\left(\mathbf{w}(t)\right)$, and set $\mathbf{v}(t) = -\mathbf{g}(t)$
 - (b) if $E_{in}\left(\mathbf{w}(t) + \eta_t \mathbf{v}(t)\right) < E_{in}\left(\mathbf{w}(t)\right)$ then (i) accept: $\mathbf{w}(t+1) = \mathbf{w}(t) + \eta_t \mathbf{v}(t)$; $\eta_{t+1} = \alpha \eta_t$
 - (c) else
 - (i) reject: $\mathbf{w}(t+1) = \mathbf{w}(t)$; $\eta_{t+1} = \beta \eta_t$
 - (d) Iterate to the next step, $t \leftarrow t + 1$

ונזכור:

$$\alpha \approx 1.05 - 1.1$$
$$\beta \approx 0.5 - 0.8$$

Steepest Descent 4

השאלה הנשאלת היא מדוע בכלל להסתבך עם קביעת η אם אפשרי לעשות חישוב אנליטי? הרי אנחנו רוצים לרדת בכיוון המנוגד לגרדיאנט.

 E_{in} לכן, במקום לבחור η כלשהו, נבחר η אופטימלי שיביא למינימום את

Variable Learning Rate Gradient Descent 4 אלגוריתם

- (1) Initialize $\mathbf{w}(0)$, and η_0 at t=0.
- (2) while stopping criterion has not been met do
 - (a) Let $\mathbf{g}(t) = \nabla E_{in}(\mathbf{w}(t))$, and set $\mathbf{v}(t) = -\mathbf{g}(t)$
 - (b) Let $\eta^* = \operatorname{argmin}_{\eta} E_{in} \left(\mathbf{w}(t) + \eta \mathbf{v}(t) \right)$
 - (c) $\mathbf{w}(t+1) = \mathbf{w}(t) + \eta^* \mathbf{v}(t)$
 - (d) Iterate to the next step, $t \leftarrow t + 1$

Regularization and Validation

- עד כה ראינו שרשתות נוירונים זהו כלי חזק מאוד שכולל שימוש ב GD ויכול לקרב אותנו לכל פונקציה שרק נרצה משמע ישנה אופציה להתקל בהתאמת יתר (overfitting)
- גודל שכבת הכניסה אמנם אינו נתון לשינוי (גודל הקלט/פיצ'רים) וכך גם גודל שכבת היציאה (תלוי בבעיה אותה פותרים)
 - מספר וגודל השכבות החבויות הוא פרמטר הניתן לשינוי
 - ס המחשבה הראשונית היא להקטין את מספר דרגות החופש שלנו ברשת (מספר השכבות החבויות והנוירונים) ס
- o מאידך מה שנהוג לעשות זה בדיוק ההיפך לתת לרשת להיות כמה שיותר גדולה ולשלוט על התאמת היתר בעזרת ס רגולריזציה וולידציה

Weight Based Complexity Penalties

אחת שיטות הרגולריזציה המוכרות היא Weight decay - מה שמוכר לנו בתור ברשת הנוירונים נגדיר את השיטה בצורה דומה אך שונה

הגדרה. Weight squared decay - הוספת סכום ריבועי המשקולות בריבוע

$$E_{aug}(\mathbf{w}) = E_{in}(\mathbf{w}) + \frac{\lambda}{N} \sum_{\ell,i,j} \left(w_{ij}^{(\ell)} \right)^2$$

 $:W^{(\ell)}$ הרגולריזציה הנ"ל נקראת כך כיוון שבעת הגזירה נקבל איבר התלוי ב

$$\frac{\partial E_{aug}(\mathbf{w})}{\partial W^{(\ell)}} = \frac{\partial E_{in}(\mathbf{w})}{\partial W^{(\ell)}} + \frac{2\lambda}{N} W^{(\ell)}$$

. ובעדכון האפס (decay) מה שיגרור דעיכה (decay) ובמינוס (כדי ללכת נגד כיוון הגרדיאנט – מה שיגרור דעיכה וובעדכון האפס.

Weight Elimination

תפקידה "להעלים" משקלים קטנים

Weight Elimination הגדרה.

$$E_{aug}(\mathbf{w}, \lambda) = E_{in}(\mathbf{w}) + \frac{\lambda}{N} \sum_{\ell, i, j} \frac{\left(w_{ij}^{(\ell)}\right)^2}{1 + \left(w_{ij}^{(\ell)}\right)^2}$$

:הנגזרת

$$\frac{\partial E_{aug}}{\partial w_{ij}^{(\ell)}} = \frac{\partial E_{in}}{\partial w_{ij}^{(\ell)}} + \frac{2\lambda}{N} \cdot \frac{\left(w_{ij}^{(\ell)}\right)^2}{\left(1 + \left(w_{ij}^{(\ell)}\right)^2\right)^2}$$

Early Stopping

שיטת נוספת לרגולריזציה - כוללת הפעלת GD אך במקום לבצע המון איטרציות, עוצרים בנקודה בה השגיאה על סט הולידציה עולה.

מהות שיטה זו לרגולריזציה מושתתת על העובדה **שמספר איטרציות מוגבל גורר מספר היפתוזות מוגבל** - משמע אנחנו לא נבדוק את כלל ההיפותזות שלנו, אלא נתמקד בתת-קבוצה של היפותזות!

הערה. שיטה זו קשורה מאוד לשיטת Weight decay כיוון שעצם העובדה שאנחנו מגבילים את האיטרציות גורמת לכך שהמשקולות תשארנה נמוכות וקרובות לאפס.

דוגמה לשימוש ברגולריזציה

500 דוגמאות, רשת נוירונים עם שכבה חבויה אחת בעלת 10 נוירונים, 2 פיצ'רים

Approximation vs Generalization 6

אפשר להראות שאם נבחר מספיק נוירונים עבור רשת בעלת 2 שכבות נוכל לקרב כל פונקציה שנרצה. באופן כללי ניתן לרשום את החזאי של רשת כזו:

$$h(\mathbf{x}) = \theta \left(w_{01}^{(2)} + \sum_{j=1}^{m} w_{j1}^{(\ell)} \theta \left(\sum_{i=0}^{d} w_{ij}^{(1)} x_i \right) \right)$$

בצורה יותר נוחה:

$$h(\mathbf{x}) = heta\left(w_0 + \sum_{j=1}^m w_j heta\left(\mathbf{v}_j^T \mathbf{x}\right)
ight)$$

heta מאידך, נוכל להשתמש בפרספטרון עם טרנס' לא לינארית ולבנות פרספטרון שתלוי לא לינארית בפיצ'רים שלנו ופונקצית לא לינארית ולקבל:

$$\mathbf{x} = \mathbf{\Phi}(\mathbf{x}) \to \mathbf{z} = [1, \phi_1(\mathbf{x}), \phi_2(\mathbf{x}), \dots, \phi_m(\mathbf{x})]^T$$
$$h(\mathbf{x}) = \theta \left(w_0 + \sum_{j=1}^M w_j \phi_j(\mathbf{x}) \right)$$

אך הדבר **השונה** הוא עצם העובדה שהטרנספורמציה מופעלת **אך ורק** על הפיצ'רים שלנו: $\phi_j\left(\mathbf{x}\right)$ לעומת רשת הנוירונים שפועלת גם על המשקולות $\theta\left(\mathbf{v}_j^T\mathbf{x}\right)$ – משמע בעזרת רשת הנוירונים אנחנו מתאימים את עצמנו **הרבה יותר טוב** למידע שלנו כי לומדים את ה- w_{ij} בהתאם לדוגמאות לעומת הפרספטרון בו קבענו את ϕ_i עוד לפני האימון!