Sujet 1

I | Corde de Melde : superposition d'ondes

On considère une corde de Melde de longueur L. On interprète la vibration de la corde de la manière suivante : le vibreur émet une onde qui se propage en direction de la poulie où elle est réfléchie ; cette onde réfléchie se propage en direction du vibreur où elle est elle-même réfléchie ; l'onde réfléchie se propage en direction de la poulie où elle se réfléchit, et ainsi de suite. L'axe (Ox) est parallèle à la corde au repos ; le vibreur est en x = 0 et la poulie en x = L. Le vibreur émet une onde $s_0(x,t)$ telle que

$$s_0(0,t) = a_0 cos(\omega t)$$

La célérité des ondes sur la corde est c et on note $k = \omega/c$. On fait les hypothèses simplificatrices suivantes :

• lorsqu'une onde incidente s_i arrive sur la poulie en x = L, l'onde réfléchie s_r vérifie :

$$s_r(L,t) = -r \, s_i(L,t)$$

où r est un coefficient compris entre 0 et 1;

• lorsqu'une onde incidente s_i arrive sur le vibreur en x=0, l'onde réfléchie s'_r vérifie :

$$s'_r(0,t) = -r's'_i(0,t)$$

où r' est un coefficient compris entre 0 et 1.

1) Exprimer l'onde $s_0(x,t)$.

Déterminer r et r'.

- 2) Exprimer l'onde $s_1(x,t)$ qui apparaît par réflexion de l'onde s_0 sur la poulie, puis l'onde $s_2(x,t)$ qui apparaît par réflexion de s_1 sur le vibreur, puis l'onde $s_3(x,t)$ qui apparaît par réflexion de s_2 sur la poulie.
- 3) À quelle condition les ondes s_0 et s_2 sont-elles en phase en tout point ? Que constate-t-on alors pour les ondes s_1 et s_2 ? La condition précédente est supposée réalisée dans la suite.
- 4) Justifier l'expression suivante de l'onde totale existant sur la corde :

$$s(x,t) = a_0 \left\{ 1 + rr' + (rr')^2 + \dots + (rr')^n + \dots \right\} \cos(\omega t - kx) - r a_0 \left\{ 1 + rr' + (rr')^2 + \dots + (rr')^n + \dots \right\} \cos(\omega t - kx)$$

5) En quels points de la corde l'amplitude de la vibration est-elle maximale? Exprimer l'amplitude maximale A_{max} en fonction de a, r et r'. On rappelle la formule :

$$\sum_{n=0}^{\infty} (rr')^n = \frac{1}{1 - rr'}$$

- 6) En quels points l'amplitude est-elle minimale? Exprimer l'amplitude minimale A_{\min} .
- 7) Expérimentalement on trouve $\frac{A_{\min}}{a_0} \approx 1$ et $\frac{A_{\max}}{a_0} \approx 10$

Sujet 2

I Réflexion d'une onde acoustique sur un mur

Un haut-parleur, placé à l'origine x=0, émet une onde acoustique. Un auditeur se trouve à l'abscisse x et un mur à la distance L, avec L>x (cf schéma ci-contre). L'onde se réfléchit sur le mur et se propage à la vitesse c. On suppose que la réflexion n'engendre aucun déphasage supplémentaire et que l'amplitude réflechie est identique à l'amplitude de l'onde incidente. Par ailleurs, on admettra qu'il n'y a aucune réflexion

sur le haut-parleur (si bien que l'onde réfléchit sur le mur se propage vers $-\infty$). Le haut-parleur émet la surpression

$$p(t) = P_0 \cos(\omega t)$$

- 1) Exprimer les deux ondes $s_1(x,t)$ (onde arrivant directement sur l'auditeur) et $s_2(x,t)$ (onde arrivant sur l'auditeur après réflexion sur le mur) reçues par l'auditeur en fonction de P_0 , ω , L, t, c et x.
- 2) Montrer que le déphasage $\Delta \varphi = |\varphi_2 \varphi_1|$ entre les deux ondes au niveau de l'auditeur peut se mettre sous la forme

$$\Delta \varphi = \frac{2\omega}{c}(L - x)$$

3) En déduire l'expression générale des abscisses x de l'auditeur pour lesquelles il perçoit des interférences destructives. On introduira la longueur d'onde λ . On exprimera x en fonction de L, λ et un entier n uniquement.

On cherche à déterminer l'amplitude de l'onde résultante pour l'auditeur placé à l'abscisse x quelconque.

4) Rappeler, dans le cas général, l'expression de la formule de Fresnel donnant l'amplitude S(x) du signal à la position x résultant de la superposition des signaux $s_1(x,t)$ et $s_2(x,t)$. On fera apparaître les amplitudes S_1 et S_2 ainsi que le déphasage $\Delta \varphi$.

Simplifier l'expression obtenue afin de déduire l'expression de l'amplitude A de l'onde résultante au niveau de l'auditeur positionné à l'abscisse x quelconque en fonction de P_0 et $\Delta \varphi$.

- 5) L'auditeur se place à l'abscisse $x = L \lambda/8$. Calculer l'amplitude en fonction de P_0 . Commenter.
- 6) Calculer le contraste des interférences

$$C = \frac{A_M^2 - A_m^2}{A_M^2 + A_m^2}$$

où A_M est l'amplitude maximale et A_m l'amplitude minimale.

Sujet 3

I | Miroir de Lloyd

On dispose une source ponctuelle S monochromatique de longueur d'onde $\lambda=650\,\mathrm{nm}$ à une distance horizontale $L=45\,\mathrm{cm}$ d'un détecteur D. Initialement, un miroir de longueur L/3 positionné à égale distance de S et D se trouve en z=0 (même côte que S et D). On lâche le miroir à t=0 sans vitesse initiale. Il ne subit que les effets de la pesanteur.

La réflexion sur le miroir métallique s'accompagne d'un retard de phase égale à π . L'indice optique de l'air est supposé égal à 1.

On donne dans le tableau ci-dessous l'instant t_k auquel est mesuré le $k^{\text{ième}}$ maximum d'intensité par le détecteur D.

indice k	1	2	3	4	5	6	7	8	9
$t_k \text{ (ms)}$	7,42	9,77	11,11	12,08	12,86	13,53	14,10	14,62	15,00

- 1) Pour une position z(t) du miroir, représenter les deux rayons qui interfèrent au niveau du détecteur D.
- 2) Déterminer l'expression de la différence de marche δ_D entre ces deux ondes au point D. Pour cela, il pourra être utile de faire apparaître une source fictive S' image de S par le miroir. Simplifier cette expression dans le cas où $L \gg z(t)$. On rappelle qu'au premier ordre en $\epsilon \ll 1$, $\sqrt{1+\epsilon} \approx 1+\epsilon/2$.
- 3) En déduire l'expression de l'intensité en D en fonction du temps. On rappelle la formule de Fresnel

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(\Delta \phi)$$

- 4) Quelle est l'intensité reçue en D à t = 0?
- 5) Déterminer l'expression de l'instant t_k auquel est observé le $k^{\text{ième}}$ maximum d'intensité en D.
- 6) Á l'aide d'une régression linéaire, déterminer la valeur de q.