CSCI 340 Data Structures and Algorithm Analysis

Heaps

Thanks to Dr. Rada Mihalcea of the University of North Texas for sharing her slides

Heaps

♠ A heap is a binary tree that stores key-element pairs at its nodes and satisfies two properties:

Min-Heap: key(parent) ≤ key(child)
 [OR Max-Heap: key(parent) >= key(child)]

This set of slides uses min-heap for exampels.

Heap or Not a Heap?

What are Heaps Useful for?

- To implement priority queues
- ♣ Priority queue = a queue where all elements have a "priority" associated with them
- ❖ Remove in a priority queue removes the element with the smallest priority
 - **□** insert
 - **□** removeMin
- HeapSort
 - In-place
 - **Effecient**

Heap Properties

A heap storing n keys has height $h = \lfloor \log n \rfloor$, which is $O(\log n)$

Abstract Data Type for Min Heap

objects: n > 0 elements organized in a binary tree so that the value in each node is at least as large as those in its children method:

Heap Create(MAX_SIZE)::= create an empty heap that can hold a maximum of max_size elements

Boolean HeapFull(heap, n)::= if (n==max_size) return TRUE else return FALSE

Heap Insert(heap, item, n)::= if (!HeapFull(heap,n)) insert item into heap and return the resulting heap else return error

Boolean HeapEmpty(heap, n)::= if (n>o) return FALSE else return TRUE

Element Delete(heap,n)::= if (!HeapEmpty(heap,n)) return one instance of the smallest element in the heap and remove it from the heap else return error

Insert 6

♦ Add key in next available position

Begin Upheap

- Terminate upheap when
 - **≅** reach root
 - key child is greater than key parent

Remove element from priority queues? removeMin()

Begin downheap

- Terminate downHeap when
 - reach leaf level
 - key child is greater than key parent

Consider building a heap using the following numbers:

14, 9, 8, 25, 5, 11, 27, 16, 15, 4, 12, 6, 7, 23, 20

♦ build (n + 1)/2 trivial one-element heaps


```
    [1]
    [2]
    [3]
    [4]
    [5]
    [6]
    [7]

    14
    9
    8
    25
    5
    11
    27
```

```
      [8]
      [9]
      [10]
      [11]
      [12]
      [13]
      [14]
      [15]

      16
      15
      4
      12
      6
      7
      23
      20
```

• build three-element heaps on top of them

					[6]		
14	9	8	25	5	11	27	-

[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]
16	15	4	12	6	7	23	20

• downheap to preserve the order property

[2] [3] 25 5 23 8 15 20 16 12 27

now form seven-element heaps

DownHeap to preserve the order property

	1						[8]							
14	4	6	15	5	7	20	16	25	9	12	11	8	23	27

now the last step

DownHeap to preserve the order property

							[8]							
4	5	6	15	9	7	20	16	25	14	12	11	8	23	27

Heap Implementation

- Using arrays
- Parent = k; Children = 2k, 2k+1
- Why is it efficient?

More details

- Arr[1] stores the root, and Arr[k] stores the parent of Arr[2k] and Arr[2k+1], where index instarts at 1.
 - This is by default in these slides and in this class
 - For a node stored at Arr[k], its parent must be at Arr[k/2]
- Or Arr[0] stores the root, and Arr[k] stores the parent of Arr[2k+1] and Arr[2k+2], where index starts at 0.
- Consider the index of n/2 where n is the number of elements

e.g.
$$9/2 = 4$$
, $10/2 = 5$

Insert into a heap

```
// assume heap's first position in the vector is at [1]
// last position is at [heap size]
InsertHeap (heap vector v, int heap size, element e)
   if (heap is not full)
      Increase heap size by 1
      v[heap size] ← e // append to last position
      // the following is upHeap
      i \leftarrow \text{heap size}
      While (i > 1 \&\& v[i/2] > v[i])
          Swap v[ i ] and v[ i/2 ] //[i/2] is parent
          i \leftarrow i/2; // go to parent
```

Deletion from a heap

```
deleteHeap(heap vector v, int heap size)
  if heap is not empty
     v[1] \leftarrow v[heap size]
     heap size <-- heap size - 1
     // the following is downHeap
     parent← 1 // parent and child are indexes
     child ← 2 X parent // left child of parent
     while child is no greater than heap size
        if ( child is less than heap size
             AND v[ child ] > v[ child + 1 ] )
             increase child by 1 // becomes right child
        if ( v[ parent ] < v[ child ] )</pre>
            swap v[ parent ] and v[ child ];
            parent ← child // move down
            child ← 2 x parent // left child
```

Build a heap

- Build a heap out of a vector v of n elements (index starts at 1)
- Location n/2 stores the last non-leaf node.
- Algorithm of building a heap:

For index k from n/2 down to 1

Restore the heap property by **downHeap** for the tree whose root is v[k]

• This algorithm works for any *n* where a tree is not necessarily a full tree.

Build a heap

More examples

Build a **min-heap** and a max-heap using the following sequence of data:

10, 7, 9, 3, 17, 25, 5, 21, 15, 28, 14

10 7 9 3 17 25 5 21 15 28 14 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

(a)

10 7 9 3 14 25 5 21 15 28 17 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

10 7 9 3 14 25 5 21 15 28 17 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

(b)

10 7 5 3 14 25 9 21 15 28 17 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

(d)

10 3 5 7 14 25 9 21 15 28 17
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

(e)

3 7 5 10 14 25 9 21 15 28 17 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

3 10 5 7 14 25 9 21 15 28 17
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

(f)

(g)

More examples: Insert 2 to current heap

3 7 5 10 14 25 9 21 15 28 17 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

3 7 5 10 14 25 9 21 15 28 17 2 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

(a)

3 7 2 10 14 5 9 21 15 28 17 25 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

(c)

3 7 5 10 14 2 9 21 15 28 17 25 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

(b)

More examples: remove/delete/extract min

2 7 3 10 14 5 9 21 15 28 17 25 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

25 7 3 10 14 5 9 21 15 28 17
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

(a)

3 7 5 10 14 25 9 21 15 28 17 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

3 7 25 10 14 5 9 21 15 28 17
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

(b)

HeapSort - sort a sequence of data

- Step 1: Build a max-heap
- Step 2: repetitive call to deleteHeap()

* Running time? -- consider a full tree

$$n = 2^k-1 \Longrightarrow k = \lceil \log_2(n+1) \rceil$$

height of heap: $O(\log_2 n)$

HeapSort

More examples

Sort the following sequence of data:

10 7 9 3 17 25 5 21 15 28 14

First major step: build a max-heap

10 7 9 3 17 25 5 21 15 28 14 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

28 21 25 15 17 9 5 3 10 7 14 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

2nd major step: a series of deletion (max) operations

21	17 [2]	14	15	7	9	5	3	10	25	28
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]

5 3 7 9 10 14 15 17 21 25 28
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

3 5 7 9 10 14 15 17 21 25 28 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]