Problema 20. En un reactor se quema metano para formar dióxido de carbono y agua. Se alimentan 100 moles de metano y 250 moles de oxígeno molecular. A la salida se obtiene una corriente que contiene agua (120 moles), entre otros compuestos. Calcular:

- a) El flujo y la composición de la corriente de salida.
- b) El porcentaje de conversión.

$$\mathrm{CH_4} + 2\mathrm{O_2} \longrightarrow \mathrm{CO_2} + 2\mathrm{H_2O}$$



Como es un proceso continuo en estado estacionario reaccionante, entonces la ecuación general de balance en el sistema es:

• Reactivos:

$$\begin{aligned} \text{Entrada} + \frac{\text{Generaci\'on}}{\text{Consumo}} - \text{Salida} - \text{Consumo} &= \frac{\text{Acumulaci\'on}}{\text{Entrada}} = \text{Salida} + \text{Consumo} \end{aligned}$$

• Productos:

$$\label{eq:entrada} \begin{split} \text{Entrada} + \text{Generación} &- \text{Salida} - \frac{\text{Consumo}}{\text{Consumo}} = \frac{\text{Acumulación}}{\text{Entrada}} \\ &= \text{Salida} - \text{Generación} \end{split}$$

Por la reacción química sabemos que 100 moles de metano reaccionan con 200 moles de oxígeno, por lo que el reactivo limitante es el metano y el reactivo en exceso es el oxígeno. Sea  $\xi$  el grado de avance de la reacción.

Ecuaciones independientes (4):

• Balance de CH<sub>4</sub>:

Corriente 1 = Corriente 2 + Consumo  
100 mol 
$$CH_4 = B_1$$
 mol  $CH_4 + \xi$  mol  $CH_4$ 

• Balance de O<sub>2</sub>:

$$\begin{array}{l} \mbox{Corriente $1$} = \mbox{Corriente $2$} + \mbox{Consumo} \\ 250 \mbox{ mol } \mbox{O}_2 = \mbox{B}_2 \mbox{ mol } \mbox{O}_2 + 2\xi \mbox{ mol } \mbox{O}_2 \\ \end{array}$$

• Balance de CO<sub>2</sub>:

$$0 = \text{Corriente 2 - Generación}$$
 
$$0 \text{ mol } \mathrm{CO}_2 = \mathrm{B}_3 \text{ mol } \mathrm{CO}_2 \text{ - } \xi \text{ mol } \mathrm{CO}_2$$

## • Balance de H<sub>2</sub>O:

$$0 = \mbox{Corriente} \ 2 \mbox{- Generación}$$
 0 mol $\mbox{H}_2\mbox{O} = 120$  mol $\mbox{H}_2\mbox{O} \mbox{-} 2\xi$  mol $\mbox{H}_2\mbox{O}$ 

En donde hay 4 incógnitas =  $\{B_1, B_2, B_3, \xi\}$ . Entonces, el grado de libertad es:

$$\mathrm{GL}=\#$$
 Incógnitas -  $\#$  Ecuaciones independientes = 4 - 4 = 0

Por lo que el problema tiene solución única.

En el balance de  $H_2O$ :

$$0 \text{ mol } H_2O = 120 \text{ mol } H_2O$$
 -  $2\xi \text{ mol } H_2O$   $\xi \text{ mol } H_2O = \frac{120 \text{ mol } H_2O}{2} = 60 \text{ mol } H_2O$ 

En el balance de CH<sub>4</sub>:

$$100~mol~CH_4=B_1~mol~CH_4+60~mol~CH_4 \label{eq:charge}$$
  $B_1~mol~CH_4=100~mol~CH_4$  -  $60~mol~CH_4=40~mol~CH_4$ 

En el balance de  $O_2$ :

$$250 \ mol \ O_2 = B_2 \ mol \ O_2 + 2(60) \ mol \ O_2$$
 
$$B_2 \ mol \ O_2 = 250 \ mol \ O_2 - 2(60) \ mol \ O_2 = 130 \ mol \ O_2$$

En el balance de CO<sub>2</sub>:

0 mol 
$$CO_2 = B_3$$
 mol  $CO_2$  - 60 mol  $CO_2$   
 $B_3$  mol  $CO_2 = 60$  mol  $CO_2$ 

a) La corriente de salida es la Corriente 2:

| Cantidad molar (mol) |     |     | Fracción molar     |        |        |  |
|----------------------|-----|-----|--------------------|--------|--------|--|
| 1                    | 1   | 2   |                    | 1      | 2      |  |
| $\mathrm{CH}_4$      | 100 | 40  | $\mathrm{CH}_4$    | 0.2857 | 0.1143 |  |
| $O_2$                | 250 | 130 | $O_2$              | 0.7143 | 0.3714 |  |
| $CO_2$               | 0   | 60  | $CO_2$             | 0      | 0.1714 |  |
| $\rm H_2O$           | 0   | 120 | $_{\mathrm{H_2O}}$ | 0      | 0.3429 |  |
| Total                | 350 | 350 |                    |        |        |  |

Sabiendo que C = 12 g/mol, H = 1 g/mol y O = 16 g/mol se tiene que:

- $CH_4 = [12+1(4)] \text{ g/mol} = 16 \text{ g/mol}$
- $\bullet O_2 = [16(2)] = 32 \text{ g/mol}$
- $CO_2 = [12+16(2)] \text{ g/mol} = 44 \text{ g/mol}$
- $H_2O = [1(2)+16] \text{ g/mol} = 18 \text{ g/mol}$

| Cantidad másica (g) |      |      | Fracción másica |     |        |
|---------------------|------|------|-----------------|-----|--------|
|                     | 1    | 2    |                 | 1   | 2      |
| $CH_4$              | 1600 | 640  | $\mathrm{CH}_4$ | 0.2 | 0.0667 |
| $O_2$               | 8000 | 4160 | $O_2$           | 0.8 | 0.4333 |
| $CO_2$              | 0    | 2640 | $CO_2$          | 0   | 0.275  |
| $H_2O$              | 0    | 2160 | $\rm H_2O$      | 0   | 0.225  |
| Total               | 9600 | 9600 |                 |     |        |

$$Conversión de metano = \frac{Reactivo \ consumido}{Reactivo \ suministrado} \ x \ 100 \% = \frac{60 \ mol}{100 \ mol} \ x \ 100 \% = 60 \%$$