

ĐẠI HỌC BÁCH KHOA HÀ NỘI TRƯỜNG CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

BÀI 7 PHÉP BIẾN ĐỔI Z

Khoa Kỹ thuật máy tính

■ Nội dung bài học

- 1. Định nghĩa phép biến đổi Z
- 2. Miền hội tụ của biến đổi Z

■ Mục tiêu bài học

Sau khi học xong bài này, các em sẽ nắm được những vấn đề sau:

- Định nghĩa và ý nghĩa của phép biến đổi Z trong xử lý tín hiệu.
- Phương pháp xác định miền hội tụ cho biến đổi Z của các tín hiệu rời rạc.

1. Định nghĩa biến đổi Z

$$x(n) \stackrel{Z}{\longleftrightarrow} X(z)$$

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

$$X(z) = \dots + x(-2)z^2 + x(-1)z + x(0) + x(1)z^{-1} + x(2)z^{-2} + \dots$$

- Biến đổi Z chỉ tồn tại với các giá trị của Z làm cho chuỗi hội tụ
- Miền hội tụ (region of convergence ROC) của X(z) là tập các giá trị của Z làm cho X(z) có giá trị hữu hạn

Ví dụ

• Tính biến đổi Z và miền hội tụ với tín hiệu sau:

$$x_1(n) = \{1, 2, 5, 7, 0, 1\}$$

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

$$X_1(z) = 1 + 2z^{-1} + 5z^{-2} + 7z^{-3} + z^{-5}$$

ROC là toàn bộ mặt phẳng Z ngoại trừ điểm z=0

Ví dụ

Tính biến đổi Z và miền hội tụ với tín hiệu sau:

$$x_2(n) = \left(\frac{1}{2}\right)^n u(n)$$

$$X_2(z) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n z^{-n} = \sum_{n=0}^{\infty} \left(\frac{1}{2z}\right)^n$$

$$1 + A + A^2 + A^3 + \dots = \frac{1}{1 - A}, |A| < 1$$

$$X(z) = \frac{1}{1 - \frac{1}{2z}} = \frac{1}{1 - \frac{1}{2}z^{-1}} = \frac{Z}{Z - \frac{1}{2}}$$
 ROC: $|z| > \frac{1}{2}$

Nhận xét

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

- Biến đổi Z đơn giản chỉ là một biểu diễn khác của tín hiệu.
- Hệ số của z^{-n} trong phép biến đổi là giá trị của tín hiệu tại thời điểm n.
- Giá trị mũ của Z chứa thông tin về thời gian chúng ta cần để xác định các mẫu của tín hiệu.
- Nhờ biến đổi Z, ta có thể biểu diễn tín hiệu có chiều dài vô hạn trên miền thời gian ở dạng hữu hạn.

2. Miền hội tụ của biến đổi Z

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

- Region of Convergence ROC: miền giá trị của z để chuỗi luỹ thừa trong định nghĩa biến đổi Z hội tụ
- Áp dụng tiêu chuẩn Caushy để xác định miền hội tụ. Cụ thể, chuỗi có dạng

$$\sum_{n=0}^{\infty} u_n = u_0 + u_1 + u_2 + \cdots$$

sẽ hội tụ nếu thoả mãn điều kiện $\lim_{n \to \infty} \left| \mathbf{u_n} \right|^{1/n} < 1$

Xác định miền hội tụ

$$X(z) = X_1(z) + X_2(z) = \sum_{n = -\infty}^{-1} x(n)z^{-n} + \sum_{n = 0}^{\infty} x(n)z^{-n}$$

Áp dụng tiêu chuẩn Caushy cho

$$\lim_{n \to \infty} |x(n)z^{-n}|^{1/n} < 1 \implies \lim_{n \to \infty} |x(n)|^{1/n}|z^{-1}| < 1$$

- Giả thiết $\lim_{n\to\infty} |x(n)|^{1/n} = R_{x-}$
- Vậy X₂(z) hội tụ với các giá trị của z thoả mãn

$$|z| > R_{x-}$$

Miền hội tụ của $X_1(Z) = \sum_{n=-\infty}^{-1} x(n)z^{-n}$

- Tín hiệu phản nhân quả
- $X_1(z)$ hội tụ với các giá trị của z thoả mãn $|z| < R_{x+}$ với

$$R_{x+} = \frac{1}{\lim_{n \to \infty} |x(-n)|^{1/n}}$$

Miền hội tụ của biến đổi Z

• Trong trường hợp tổng quát, miền hội tụ của biến đổi Z là

$$0 \le R_{x-} < |z| < R_{x+} \le \infty$$

• Ví dụ: cho tín hiệu $x(n) = a^n u(n)$. Hãy xác định biến đổi z và miền hội tụ.

$$X(z) = \sum_{n=0}^{\infty} a^n z^{-n} = \sum_{n=0}^{\infty} (az^{-1})^n = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}$$

- MHT: |z| > |a|, $R_{x-} = |a|$, $R_{x+} = \infty$
- Điểm không: z = 0
- Điểm cực: z = a
- Miền hội tụ không chứa điểm cực

$$R_{x-} = \lim_{n \to \infty} |x(n)|^{1/n}$$

$$R_{x+} = \frac{1}{\lim_{n \to \infty} |x(-n)|^{1/n}}$$

Ví dụ

Xác định biến đổi Z của tín hiệu

$$x(n) = -\alpha^{n}u(-n-1) = \begin{cases} 0 & n \ge 0 \\ -\alpha^{n} & n \le -1 \end{cases}$$

ROC:
$$|z| < |\alpha|$$

Im(z)

$$x(n) = -\alpha^{n}u(-n-1) \stackrel{Z}{\longleftrightarrow} X(z) = \frac{1}{1-\alpha z^{-1}} = \frac{Z}{Z-\alpha}$$

Nhận xét

- Tín hiệu nhân quả α^n u(n) và tín hiệu phản nhân quả $-\alpha^n$ u(-n 1) có cùng biểu thức biến đổi Z.
- Như vậy chỉ riêng biểu thức biến đổi Z sẽ không đủ để xác định tín hiệu trên miền thời gian.

Một tín hiệu rời rạc x(n) chỉ được xác định duy nhất bởi hai thành phần:

- **❖** X(z)
- ❖ Miền hội tụ X(z)

Tổng kết: tín hiệu có chiều dài hữu hạn

Tổng kết: tín hiệu có chiều dài vô hữu hạn

4. Tổng kết

- Biến đổi Z cho phép biểu diễn lại tín hiệu trên miền biến số phức. Ưu điểm quan trọng của biến đổi Z là cho phép biểu diễn tín hiệu có chiều dài vô hạn về dạng hữu hạn.
- Miền hội tụ của biến đổi Z là miền giá trị của Z để chuỗi luỹ thừa trong định nghĩa biến đổi Z hội tụ. Cùng với biểu thức biến đổi Z, miền hội tụ giúp xác định duy nhất tín hiệu rời rạc x(n) tương ứng trên miền thời gian.

5. Bài tập

- Bài tập 1
 - ☐ Tính biến đổi Z và miền hội tụ đối với các tín hiệu sau:

a.
$$x_1(n) = \{1, 2, 5, 7, 0, 1\}$$

b.
$$x_2(n) = \delta(n)$$

c.
$$x_3(n) = \delta(n - k), k > 0$$

d.
$$x_4(n) = \delta(n + k), k > 0$$

Bài tập về nhà

- Bài tập 2
 - ☐ Tính biến đổi Z và tìm miền hội tụ của các tín hiệu sau:
 - a. $x(n) = (\cos \omega_0 n)u(n)$
 - b. $x(n) = (\sin \omega_0 n)u(n)$
 - c. $x(n) = (3^{n+1} 1)u(n)$
 - d. $x(n) = 2^{-n}u(n) + 3^{n+1}u(n)$

Bài tập về nhà

- Bài tập 3
 - ☐ Tính biến đổi Z và ROC của các tín hiệu sau. Sau đó nhận xét về sự thay đổi của ROC:
 - a. $x(n) = 2^n u(n)$
 - b. $y_1(n) = 3^n x(n)$
 - c. $y_2(n) = \left(\frac{1}{3}\right)^n x(n)$
 - d. $y_3(n) = e^{j\pi n/2}x(n)$

Bài tập về nhà

- Bài tập 4
 - ☐ Tính biến đổi Z và ROC của các tín hiệu sau:
 - a. $x(n) = a^n(\cos \omega_0 n)u(n)$
 - b. $x(n) = a^n(\sin \omega_0 n)u(n)$
 - c. Dãy dốc đơn vị $u_r(n)$

CÁC TÍNH CHẤT CỦA BIẾN ĐỔI Z

Tài liệu tham khảo:

- Nguyễn Quốc Trung (2008), Xử lý tín hiệu và lọc số, Tập 1, Nhà xuất bản Khoa học và Kỹ thuật, Chương 1 Tín hiệu và hệ thống rời rạc.
- J.G. Proakis, D.G. Manolakis (2007), Digital Signal Processing, Principles, Algorithms, and Applications, 4th Ed, Prentice Hall, Chapter 1 Introduction.

Chúc các bạn học tốt!