CBR / AR / CF

데이터마이닝이론및응용 에이쁠원하조

> 2020147024 김우영 2020251009 김혜리 2020195053 노가원 2020147018 조윤영

- 데이터 및 변수
- CBR categorical target (classification)
- CBR continuous target (regression)
- AR
- CF

데이터 및 변수

CBR - categorical target Banking Dataset - Marketing Targets | Kaggle

1 - age (numeric) 2 - job : type of job (categorical:

"admin.","unknown","unemployed","management","hous emaid","entrepreneur","student", "blue-collar", "self-employed", "retired", "technician", "servi ces") 3 - marital: marital status (categorical:

"married", "divorced", "single"; note: "divorced" means divorced or widowed) 4 - education (categorical:

"unknown", "secondary", "primary", "tertiary") 5 - default: has credit in default? (binary: "yes", "no") 6 - balance: average yearly balance, in euros (numeric)

9 - contact: contact communication type (categorical: "unknown","telephone","cellular") 10 - day: last contact day of the month (numeric) 11 - month: last contact month of year (categorical: "jan", "feb", "mar", ..., "nov", "dec") 12 - duration: last contact duration, in seconds (numeric) # other attributes: 13 - campaign: number of contacts performed during this campaign and for this client (numeric, includes last contact) 14 - pdays: number of days that passed by after the client was last contacted from a previous campaign (numeric, -1 means client was not previously contacted) 15 - previous: number of contacts performed before this campaign and for this client (numeric) 16 - poutcome: outcome of the previous marketing campaign (categorical: "unknown"."other"."failure"."success") 17 - y - has the client subscribed a term deposit? (binary:

7 - housing: has housing loan? (binary: "yes", "no") 8 - loan: has personal loan? (binary: "yes", "no") # related with the last contact of the current campaign:

profit: the profit made by the startup(\$)

CBR - continuous target

50 Startups Data | Kaggle

R&D spend: amount the startup spends on research and development Administration: amount they spend on administration cost Marketing spend: amount the startup spend on marketing state: which state the startup is based in

Quantity: The quantities of each product per transaction Numeric

Date: The day and time when each transaction was

generated. Numeric. Price: Product price. Numeric.

AR

basket-analysis

Nominal.

CustomerID: 5-digit number assigned to each customer. Nominal.

Country: Name of the country where each customer resides. Nominal.

https://www.kaggle.com/datasets/aslanahmedov/market-

BillNo: 6-digit number assigned to each transaction.

Itemname: Product name, Nominal,

Reference

rating: 1~5 까지의 점수

rket-basket-analysis

user_id : 사용자 번호

book id:도서 번호

CF

- books.xlsx: book id에 따른 도서 제목(original title)

https://www.kaggle.com/datasets/aslanahmedov/ma

https://www.kaggle.com/datasets/prakharrathi25/b

Zygmuntz. "Zygmuntz/Goodbooks-10K: Ten

Thousand Books, Six Million Ratings," GitHub,

https://github.com/zvgmuntz/goodbooks-10k.

- KC, Manish. "Startup Success Prediction." Kaggle, 16

- Sept. 2020,
- https://www.kaggle.com/datasets/manishkc06/star

- tup-success-prediction.

- "Market Basket Analysis." Kaggle,

- https://www.kaggle.com/datasets/aslanahmedov/m
- arket-basket-analysis. Rathi, Prakhar. "Banking Dataset - Marketing

Targets." Kaggle, 19 Oct. 2020,

anking-dataset-marketing-targets.

CBR - categorical target (classification)

data: banking dataset - marketing targets

각 변수마다 범위 차이가 많이 나므로 scaling 진행

scaling이 진행된후 변수간 범위 차이가 줄어든것을 알 수 있다

y값의 분포가 unbalanced하다

```
7] print(y_resampled['target_y'].value_counts())

0 2376
1 2376
Name: target_y, dtype: int64
```

data set을 split한 후 y값의 분포를 balanced하게 맞춰츔

KNN classification

accurcy

0.7916540212443096

0.7596358118361153

0.791350531107739

=> 유클리드 거리 계산 방식 채택

Evaluation

- accuracy (정확도): 전체 중 모델이 바르게 분류한
 비율로 0.792 로 꽤 높다다
- precision (정밀도): 모델이 Positive라 분류한 것 중 실제값이 Positive인 비율로 0.325로 다소 낮다
- recall (재현도): 실제값이 Positive인 것 중 모델이 Positive라 분류한 비율로 0.790로 꽤 높다
- **f-1**: Precision과 Recall의 조화평균으로 0.461로 크게 높지 않다

f-1값에 따라 모델의 성능이 크게 좋다고 할 수 없다

CBR - continuous target (regression)

data설명 (data: start-up data)

0	df.des	cribe()				
Ľ÷		R&D Spend	Administration	Marketing Spend	Profit	
	count	50.000000	50.000000	50.000000	50.000000	
	mean	73721.615600	121344.639600	211025.097800	112012.639200	
	std	45902.256482	28017.802755	122290.310726	40306.180338	
	min	0.000000	51283.140000	0.000000	14681.400000	
	25%	39936.370000	103730.875000	129300.132500	90138.902500	
	50%	73051.080000	122699.795000	212716.240000	107978.190000	
	75%	101602.800000	144842.180000	299469.085000	139765.977500	
	max	165349.200000	182645.560000	471784.100000	192261.830000	

KNN regression

K=1~20까지 나타낸 그래프이다 MSE가 가장 작은 지점인 K=9가 적절한 선택으로 보여진다

neighbor=9이다

Evaluation

MSE: 296474517.8419266 RMSE: 17218.43540632907 MAE: 13312.95866968669 MAPE: 0.21775031279172735

MSE(Mean Squared Error)는 예측값과 실제값의 차이를 제곱하여 평균을 구한 값으로, 값이 작을수록 모델의 성능이 좋다고 평가됨. 이 모델에서 MSE는 296474517,8419266로, 오차의 크기가 크기 때문에 예측력이 낮다고 볼 수 있음

RMSE(Root Mean Squared Error)는 MSE에 루트를 씌운 값으로, 값이 작을수록 모델의 성능이 좋다고 평가됨. 이 모델에서 RMSE가 17218.43540632907으로, MSE와 비슷하게 예측력이 낮다고 평가할 수 있음

MAE(Mean Absolute Error)는 예측값과 실제값의 차이를 절대값으로 구한 후, 평균을 구한 값으로, 값이 작을수록 모델의 성능이 좋다고 평가됨. 이 모델에서 MAE가 13312.95866968669으로, MSE나 RMSE보다는 예측력이 나은 편이지만, 여전히 아주 좋은 것은 아님

MAPE(Mean Absolute Percentage Error)는 MAE를 실제값으로 나눈 비율을 백분율로 나타낸 값으로, 값이 작을수록 모델의 성능이 좋다고 평가됨. 이 모델에서 MAPE가 0.21775031279172735으로, 상대적으로 예측력이 좋은 편임

따라서, 이 모델의 평가 결과를 종합적으로 판단하면 예측력이 낮으며, 모델을 개선할 필요가 있음

Data/data.describe

data							
	BillNo	Itemname	Quantity	Date	Price	CustomerID	Countr
0	538385	WHITE HANGING HEART T-LIGHT HOLDER	6	01.12.2010 08:26	2,55	17850.0	United Kingdor
1	536365	WHITE METAL LANTERN	6	01.12.2010 08:26	3,39	17850.0	United Kingdo
2	536365	CREAM CUPID HEARTS COAT HANGER	8	01.12.2010 08:26	2,75	17850.0	United Kingdo
3	536365	KNITTED UNION FLAG HOT WATER BOTTLE	6	01.12.2010 08:26	3,39	17850.0	United Kingdo
4	536365	RED WOOLLY HOTTIE WHITE HEART.	6	01.12.2010 08:26	3,39	17850.0	United Kingdo
			-	-			
522059	581587	PACK OF 20 SPACEBOY NAPKINS	12	09.12.2011 12:50	0,85	12680.0	Fran
522060	581587	CHILDREN'S APRON DOLLY GIRL	6	09.12.2011 12:50	2,1	12680.0	Fran
522061	581587	CHILDRENS CUTLERY DOLLY GIRL	4	09.12.2011 12:50	4,15	12680.0	Fran
522062	581587	CHILDRENS CUTLERY CIRCUS PARADE	4	09.12.2011 12:50	4,15	12680.0	Fran
522063	581587	BAKING SET 9 PIECE RETROSPOT	3	09.12.2011 12:50	4,95	12680.0	Fran
522064 ro	ws × 7 col	lumns					

escribe()	
Quantity	CustomerID
522064.000000	388023.000000
10.090435	15316.931710
161.110525	1721.846964
-9600.000000	12346.000000
1.000000	13950.000000
3.000000	15265.000000
10.000000	16837.000000
80995.000000	18287.000000
	Quantity 522064.000000 10.090435 161.110525 -9600.000000 1.0000000 3.0000000

Preprocess

data_tmp = data.groupby('CustomerID')['Itemname'].apply(set).apply(list).to_list()
print(data_tmp[:10])

[['MEDIUM CERAMIC TOP STORAGE JAR'], ['MINI PAINT SET VINTAGE', 'CHRISTMAS METAL TAGS

te = TransactionEncoder()

te_ary = te.fit_transform(data_tmp) # df_tmp를 장바구니 형태로 변경 (fit과 transform을 동시에 진행) print(te_ary)

[[False False False ... False False False]
[False False False ... False False False]
[False False False ... False False False]

...
[False False False ... False False False]
[True False False ... False False False]

- [True False False ... False False False]
 [False False False ... False False False]]
- 1) DataFrame을 nested list(장바구니) 형태로 변경
- CustomerID가 동일한 Itemname을 하나의 리스트로 묶음

	COLOUR SPACEBOY PEN	COLOURED PARTY BALLOONS	DAISY PEGS IN WOOD BOX	12 EGG HOUSE PAINTED WOOD	HANGING EGGS HAND PAINTED	12 IVORY ROSE PEG PLACE SETTINGS	MESSAGE CARDS WITH ENVELOPES	PENCIL SMALL TUBE WOODLAND	PENCILS SMALL TUBE RED RETROSPOT	PENCILS SMALL TUBE SKULL	 ZINC STAR T- LIGHT HOLDER	ZINC SMEETHEART SOAP DISH	SNE
0	False	False	False	False	False	False	False	False	False	False	 False	False	
1	False	False	False	False	False	False	False	False	False	False	 False	False	
2	False	False	False	False	False	False	False	False	False	False	 False	False	
3	False	False	False	False	False	False	False	False	False	False	 False	False	
4	False	False	False	False	False	False	False	False	False	False	 False	False	

2)fit과 transform을 동시에 진행하여

nested list (장바구니)를 association rule을 찾기 위한 dataframe의 형태로 변경

1. Apriori Algorithm

구매량이 큰 품목 중 다른 품목과 같이 구매한 경우가 많은 품목

- REGENCY CAKESTAND 3 TIER (support = 0.202234)
- GREEN REGENCY TEACUP AND SAUCER (support = 0.088667)
- ROSES REGENCY TEACUP AND SAUCER (support=0.0970444)
- AND SAUCER'를 같이 구매한 경우가 많다. (support = 0.073307) • REGENCY CAKESTAND 3 TIER와 ROSES REGENCY TEACUP AND

GREEN REGENCY TEACUP AND SAUCER', 'ROSES REGENCY TEACUP

 REGENCY CAKESTAND 3 TIER와 ROSES REGENCY TEACUP AND SAUCER를 같이 구매한 경우가 많다. (support = 0.073307)

2. Confidence

- GREEN REGENCY TEACUP AND SAUCER을 산 사람이 ROSES REGENCY TEACUP AND SAUCER을 살 확률 (confidence = 0.826772) > ROSES REGENCY TEACUP AND SAUCER을 산 사람이 GREEN REGENCY TEACUP AND SAUCER을 살 확률 (confidence = 0.755396)
- ROSES REGENCY TEACUP AND SAUCER을 산 사람이 REGENCY CAKESTAND 3 TIER을 살 확률 (confidence = 0.755396) > REGENCY CAKESTAND 3 TIER을 산 사람이 ROSES REGENCY TEACUP AND SAUCER을 살 확률 (confidence = 0.362486)

3. Lift

	entecedants	consequents	setecedent support	repport	support	confidence	1154	leverage	conviction
0	(OREEN RESENCY TEACUP AND SAUCER)	(ROBES RESENCY TEACUP AND SAUCER)	0.089687	0.097044	0.073307	0.826772	8.519515	0.064702	5.212514
1	(ROSES REGENCY TEACUP AND SAUCER)	(GREEN REGENCY TEACUP AND SAUCER)	0.097044	0.000647	0.073507	0.755399	8.519515	0.064702	9.725746
5	(LUNCH BAG GARS BLUE)	(LUNCH BAG RED RETROSPOT)	0.110542	0.122411	0.070980	0.642105	5.245487	0.057448	2.452067
4	(LUNCH BAS RED RETROSPOT)	(LUNCH BAG CARS BLUE)	0.122411	0.110642	0.070980	0.579848	5.245487	0.057445	2.119990
,	(PAPER CHANKIT VINTAGE CHRISTMAS)	[PAPER CHAIN KIT (6'S CHRISTMAS)	0.109680	0.541727	0.075401	0.883790	4.885285	0.069999	2.602680
6	(PAPER CHAINKIT SUS CHRISTIMAS)	(PAPER CHAIN KIT VINTAGE CHRISTMAS)	0.141727	0.108680	0.075401	0.532000	4.095295	0.059999	1.904600
2	(HEART OF WICKER LANGE)	(HEART OF WICKER SMALL)	0.112171	0.132185	0.070980	0.632780	4.787070	0.056152	2.363293
3	(HEART OF WICKER SMALL)	(HEART OF WICKER LARGE)	0.132185	0.112171	0.070980	0.836972	4.787000	0.068162	1,917440
	(RED HANGING HEART T-LIGHT HOLDER)	(WHITE HANGING HEART T-LIGHT HOLDER)	0.00021	0.196416	0.071212	0.807388	4.110589	0.053088	4.172031
9	(WHITE HANGING HEART T-LIGHT HOLDER)	(RED HANGING HEART T-LIGHT HOLDER)	0.196416	0.000201	0.071212	0.362589	4,110509	0.053688	1.430406
11	(ROSES RESENCY TEACUP AND SAUCER)	(RESENCY CAKESTAND 3 TIER)	0.097044	0.202294	196873.0	0.755396	3.735253	0.063681	3.261465
10	(REGENCY CAKESTAND 9 TIER)	(ROSES REGENCY TEACUP AND SAUCER)	0.202234	0.097044	0.073307	0.362486	9.795050	0.053661	1.419369

- GREEN REGENCY TEACUP AND SAUCER을 산 사람이 ROSES REGENCY TEACUP AND SAUCER을 살 확률에는 매우 큰 양의 상관관계가 있음 (lift = 8.519515)
- REGENCY CAKESTAND 3 TIER을 산 사람이 ROSES REGENCY TEACUP AND SAUCER을 살 확률에도 큰 양의 상관관계가 있음 (lift = 3.735253)


```
from sklearn.metrics.pairwise import cosine_similarity
    book_sim = cosine_similarity(df_scaled, df_scaled)
    # item by item 으로 구성된 행렬
    print(book_sim.shape)
    (7774, 7774)
[9] book_sim = pd.DataFrame(book_sim, index = df_scaled.index, columns = df_scaled.index)
book_sim.head()
                                                                                                            10 ...
     book_id
     book_id
               1.000000 0.141213 -0.029434 0.074984 -0.031170 0.024693 -0.001886 -0.038442 -0.002494 0.086905
                                                                                                                  ... -0.003820 0.001899 0.006276 0.016715 0.000849
                                                                                                                                                                      0.011151 0.000000 0.000000 0.000164 0.001537
               0.141213 1.000000 -0.074004 0.102229
                                                                                                                                                                                                             -0.002263
                                                     0.000193 -0.017613
                                                                                  -0.004163
                                                                                                      -0.018559
                                                                                                                                                             0.002926
                                                                                                                                                                      -0.002422
                                                                                                                                                                                                              0.000000
                                                                                                                                                                                                              0.013907
              -0.031170 -0.038082 0.000193 0.081551
                                                     1,000000 0.000000
                                                                                                                  ... -0.005163 -0.016530
                                                                                                                                         0.000000
                                                                                                                                                            0.018988 -0.006368 -0.009829 0.009459 -0.001555 0.012372
    5 rows × 7774 columns
```

유사도 평가 결과는 위와 같다. 각 도서가 유사한 정도를 표로 확인할 수 있다. 수치가 1에 가까울 수록 유사도가 높다.

0	book_sim[2].sort_values(ascending=False)[:10]					
	book_	id				
	2	1.000000				
	18	0.523581				
	23	0.523137				
	24	0.504721				
	27	0.452843				
	25	0.415714				
	21	0.409587				
	1	0.141213				
	10	0.113843				
	422	0.111169				
	Name:	2. dtype:	float64			

평가의 성능을 간략히 알아보기 위해 <Harry Potter and the Philosopher's Stone>와 유사한 도서들을 출력해 보았다. 출력된 결과는 왼쪽과 같다. 결과를 보면 출력된 도서의 Id는 18, 23, 24, 27, 25, 21에 해당하고 모두 0.4 이상의 유사값이 나왔는데, 이 도서들은 모두 Harry Potter 시리즈에 속하는 도서로 결과의 성능을 간략히 확인해볼 수 있었다.