LOCATING PARKS WITH A MULTIOBJECTIVE OPTIMIZATION METHOD

Alan Peral Professor Shahriari January 7, 2019

Pomona College

THE PROBLEM

· Large city

- · Large city
- \cdot Sports and recreation master plan

- · Large city
- · Sports and recreation master plan
- · Instituto Distrital de Recreación y Deporte

- · Large city
- · Sports and recreation master plan
- · Instituto Distrital de Recreación y Deporte
- · A challenge

2

· Candidate parcels

- · Candidate parcels
- · Number of beneficiaries

- · Candidate parcels
- · Number of beneficiaries
- · Geographic coverage

- · Candidate parcels
- · Number of beneficiaries
- · Geographic coverage
- · Sidewalk and road accessibility

- · Candidate parcels
- · Number of beneficiaries
- · Geographic coverage
- · Sidewalk and road accessibility
- · Positive and negative externalities provided by nearby facilities

- · Candidate parcels
- · Number of beneficiaries
- · Geographic coverage
- · Sidewalk and road accessibility
- · Positive and negative externalities provided by nearby facilities
- · Construction and parcel acquisition cost

- · Candidate parcels
- · Number of beneficiaries
- · Geographic coverage
- · Sidewalk and road accessibility
- · Positive and negative externalities provided by nearby facilities
- · Construction and parcel acquisition cost
- · Competing objectives

- · Candidate parcels
- Number of beneficiaries
- · Geographic coverage
- · Sidewalk and road accessibility
- · Positive and negative externalities provided by nearby facilities
- · Construction and parcel acquisition cost
- · Competing objectives
- · Community Based Operations Research

· Mid-20th century development

7

- · Mid-20th century development
- · Limited resources

- · Mid-20th century development
- · Limited resources
- · Competing activities

- · Mid-20th century development
- · Limited resources
- · Competing activities
- · Optimal

- · Mid-20th century development
- · Limited resources
- · Competing activities
- \cdot Optimal
- · Linear model

- · Mid-20th century development
- · Limited resources
- · Competing activities
- · Optimal
- · Linear model
- · Planning activities

$$\label{eq:maximize:} \begin{array}{ll} \text{Maximize:} & Z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n, \\ \text{subject to:} & a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \leq b_1 \\ & a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \leq b_2 \\ & & \vdots \\ & a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \leq b_m, \\ & x_1 \geq 0, x_2 \geq 0, \dots, x_n \geq 0 \end{array}$$

3

$$\label{eq:maximize:} \begin{array}{ll} \text{Maximize:} & Z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n, \\ \text{subject to:} & a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \leq b_1 \\ & a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \leq b_2 \\ & \vdots \\ & a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \leq b_m, \\ & x_1 \geq 0, x_2 \geq 0, \dots, x_n \geq 0 \end{array}$$

9

$$\label{eq:definition} \begin{split} \text{Maximize:} & \quad Z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n, \\ \text{subject to:} & \quad a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \leq b_1 \\ & \quad a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \leq b_2 \\ & \quad \vdots \\ & \quad a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \leq b_m, \\ & \quad x_1 \geq 0, x_2 \geq 0, \dots, x_n \geq 0 \end{split}$$

$$\label{eq:definition} \begin{array}{ll} \text{Maximize:} & Z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n, \\ \text{subject to:} & a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \leq b_1 \\ & a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \leq b_2 \\ & \vdots \\ & a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \leq b_m, \\ & x_1 \geq 0, x_2 \geq 0, \dots, x_n \geq 0 \end{array}$$

11

 \cdot m \times n grid

- \cdot m \times n grid
- · One block = one square

- \cdot m \times n grid
- · One block = one square
- · Every block same size

- \cdot m \times n grid
- · One block = one square
- · Every block same size
- Service area of a block is all bordering blocks (excluding candidate parcels)

OBJECTIVE FUNCTIONS

· Maximize geographical coverage

OBJECTIVE FUNCTIONS

· Maximize geographical coverage

 f_1

OBJECTIVE FUNCTIONS

- \cdot Maximize geographical coverage f_1
- · Maximize people serviced

OBJECTIVE FUNCTIONS

- · Maximize geographical coverage
 - f_1
- · Maximize people serviced

 f_3

This is our 5×5 grid city

· Candidate parcels

· Candidate parcels: $\mathcal{I} = \{1, 3, 12, 15, 19, 21\}$

18

· Candidate parcels: $\mathcal{I} = \{1, 3, 12, 15, 19, 21\}; \ y_i, \ i \in \mathcal{I}$

19

· Candidate parcels: $\mathcal{I} = \{1, 3, 12, 15, 19, 21\}; \quad \mathbf{y}_{19} = \mathbf{1}$

Which candidate parcel will maximize geographical coverage?

Which candidate parcel will maximize geographical coverage?

Candidate 12

$$\cdot \ \mathcal{J} = \{2,4,6,7,\ldots,23,24,25\}$$

 \cdot $\mathcal{J}=\{2,4,6,7,\ldots,23,24,25\}$, the set of all blocks that would benefit from the construction of a new park

- $\cdot \mathcal{J} = \{2, 4, 6, 7, \dots, 23, 24, 25\}$
- $\cdot \ z_j, \ j \in \mathcal{J}, 1 \, \text{if block} \, j \, \text{is serviced by a selected parcel, 0 otherwise}$

$$\mathcal{J} = \{2, 4, 6, 7, \dots, 23, 24, 25\}$$

 $\mathcal{Z}_2 = \mathbf{Z}_6 = \mathbf{Z}_7 = \mathbf{1}, \quad \mathbf{Z}_4 = \mathbf{Z}_8 = \mathbf{Z}_9 = \dots = \mathbf{Z}_{24} = \mathbf{Z}_{25} = \mathbf{0}$

- $\cdot \mathcal{J} = \{2, 4, 6, 7, \dots, 23, 24, 25\}$
- · $z_j, \;\; j \in \mathcal{J},$ takes on value 1 if block j is serviced by a selected parcel, 0 otherwise
- \cdot \mathcal{W}_{j} , $j \in \mathcal{J}$, the set of candidate parcels that serve block j

·
$$\mathcal{J} = \{2, 4, 6, 7, \dots, 23, 24, 25\}$$

$$\cdot \ z_j, \ j \in \mathcal{J}$$

$$W_7 = \{1, 3, 12\}$$

 $z_{j}=1$ if block j is serviced by a selected parcel, 0 otherwise

$$\begin{split} \max \, f_1 &= \sum_{j \in \mathcal{J}} z_j \\ \mathrm{subject \ to \ } z_j &\leq \sum_{i \in \mathcal{W}_j} y_i, \quad j \in \mathcal{J} \\ \left| \mathcal{W}_j \right| z_j &\geq \sum_{i \in \mathcal{W}_j} y_i, \quad j \in \mathcal{J} \\ z_j &\in \{0,1\}, \quad j \in \mathcal{J} \\ y_i &\in \{0,1\}, \quad i \in \mathcal{I} \end{split}$$

 $z_j = 1$ if block j is serviced by a selected parcel, 0 otherwise

$$\begin{aligned} \max \ f_1 &= \sum_{j \in \mathcal{J}} z_j \\ \mathrm{subject \ to \ } z_j &\leq \sum_{i \in \mathcal{W}_j} y_i, \quad j \in \mathcal{J} \\ \left| \mathcal{W}_j \right| z_j &\geq \sum_{i \in \mathcal{W}_j} y_i, \quad j \in \mathcal{J} \\ z_j &\in \{0,1\}, \quad j \in \mathcal{J} \\ y_i &\in \{0,1\}, \quad i \in \mathcal{I} \end{aligned}$$

 $z_i = 1$ if block j is serviced by a selected parcel, 0 otherwise

$$\begin{split} \max \ f_1 &= \sum_{j \in \mathcal{J}} z_j \\ \text{subject to} \ z_j &\leq \sum_{i \in \mathcal{W}_j} y_i, \quad j \in \mathcal{J} \\ \left| \mathcal{W}_j \right| z_j &\geq \sum_{i \in \mathcal{W}_j} y_i, \quad j \in \mathcal{J} \\ z_j &\in \{0,1\}, \quad j \in \mathcal{J} \\ y_i &\in \{0,1\}, \quad i \in \mathcal{I} \end{split}$$

 $z_j = 1$ if block j is serviced by a selected parcel, 0 otherwise

$$\begin{split} \max \ f_1 &= \sum_{j \in \mathcal{J}} z_j \\ \mathrm{subject \ to} \ z_j \leq \sum_{i \in \mathcal{W}_j} y_i, \quad j \in \mathcal{J} \\ \left| \mathcal{W}_j \right| z_j \geq \sum_{i \in \mathcal{W}_j} y_i, \quad j \in \mathcal{J} \\ z_j \in \{0,1\}, \quad j \in \mathcal{J} \\ y_i \in \{0,1\}, \quad i \in \mathcal{I} \end{split}$$

 $z_j = 1$ if block j is serviced by a selected parcel, 0 otherwise

$$\begin{split} \max \ f_1 &= \sum_{j \in \mathcal{J}} z_j \\ \mathrm{subject \ to} \ z_j \leq \sum_{i \in \mathcal{W}_j} y_i, \quad j \in \mathcal{J} \\ \left| \mathcal{W}_j \right| z_j \geq \sum_{i \in \mathcal{W}_j} y_i, \quad j \in \mathcal{J} \\ z_j \in \{0,1\}, \quad j \in \mathcal{J} \\ y_i \in \{0,1\}, \quad i \in \mathcal{I} \end{split}$$

 $z_i = 1$ if block j is serviced by a selected parcel, 0 otherwise

$$\begin{split} \max \, f_1 &= \sum_{j \in \mathcal{J}} z_j \\ \mathrm{subject \ to \ } z_j &\leq \sum_{i \in \mathcal{W}_j} y_i, \quad j \in \mathcal{J} \\ \left| \mathcal{W}_j \right| z_j &\geq \sum_{i \in \mathcal{W}_j} y_i, \quad j \in \mathcal{J} \\ z_j &\in \{0,1\}, \quad j \in \mathcal{J} \\ y_i &\in \{0,1\}, \quad i \in \mathcal{I} \end{split}$$

 $z_{j}=1$ if block j is serviced by a selected parcel, 0 otherwise

 $y_{i}=1\, if$ candidate parcel i is selected to become a park, 0 otherwise

$$\begin{aligned} \max \ f_1 &= \sum_{j \in \mathcal{J}} z_j \\ \text{subject to} \ z_j &\leq \sum_{i \in \mathcal{W}_j} y_i, \quad j \in \mathcal{J} \\ \left| \mathcal{W}_j \right| z_j &\geq \sum_{i \in \mathcal{W}_j} y_i, \quad j \in \mathcal{J} \\ \\ p_{\text{max}} &\geq \sum_{i \in \mathcal{I}} y_i \\ z_j &\in \{0,1\}, \quad j \in \mathcal{J} \\ y_i &\in \{0,1\}, \quad i \in \mathcal{I} \end{aligned}$$

SWITCHING THE OBJECTIVE

SWITCHING THE OBJECTIVE

Which candidate parcel will maximize the number of beneficiaries?

SWITCHING THE OBJECTIVE

Which candidate parcel will maximize the number of beneficiaries?

 p_i , $i \in \mathcal{I}$

38

BOTH OBJECTIVES

Which candidate parcel will maximize the number of beneficiaries and the geographic coverage?

· Maximize geographic coverage

- · Maximize geographic coverage
- · Maximize number of beneficiaries

$$\begin{aligned} \max \ f_1 &= \sum_{j \in \mathcal{J}} z_j \\ \max \ f_3 &= \sum_{i \in \mathcal{I}} p_i y_i \\ \text{subject to} \ z_j &\leq \sum_{i \in \mathcal{W}_j} y_i, j \in \mathcal{J} \\ \left| \mathcal{W}_j \right| z_j &\geq \sum_{i \in \mathcal{W}_j} y_i, j \in \mathcal{J} \\ p_{max} &\geq \sum_{i \in \mathcal{I}} y_i \\ z_j &\in \{0,1\}, j \in \mathcal{J} \\ y_i &\in \{0,1\}, i \in \mathcal{I} \end{aligned}$$

$$\begin{split} \max \, f_1 &= \sum_{j \in \mathcal{J}} z_j & \max \, f_3 &= \sum_{i \in \mathcal{I}} p_i y_i \\ \mathrm{subject \ to \ } z_j &\leq \sum_{i \in \mathcal{W}_j} y_i, j \in \mathcal{J} & \mathrm{subject \ to \ } z_j &\leq \sum_{i \in \mathcal{W}_j} y_i, j \in \mathcal{J} \\ \big| \mathcal{W}_j \big| \, z_j &\geq \sum_{i \in \mathcal{W}_j} y_i, j \in \mathcal{J} & \big| \mathcal{W}_j \big| \, z_j &\geq \sum_{i \in \mathcal{W}_j} y_i, j \in \mathcal{J} \\ p_{max} &\geq \sum_{i \in \mathcal{I}} y_i & p_{max} &\geq \sum_{i \in \mathcal{I}} y_i \\ z_j &\in \{0,1\}, j \in \mathcal{J} & z_j &\in \{0,1\}, j \in \mathcal{J} \\ y_i &\in \{0,1\}, i \in \mathcal{I} & y_i &\in \{0,1\}, i \in \mathcal{I} \end{split}$$

$$\begin{split} \max \, f_1 &= \sum_{j \in \mathcal{J}} z_j & \max \, f_3 &= \sum_{i \in \mathcal{I}} p_i y_i \\ \mathrm{subject \ to \ } z_j &\leq \sum_{i \in \mathcal{W}_j} y_i, j \in \mathcal{J} & \mathrm{subject \ to \ } z_j &\leq \sum_{i \in \mathcal{W}_j} y_i, j \in \mathcal{J} \\ \big| \mathcal{W}_j \big| \, z_j &\geq \sum_{i \in \mathcal{W}_j} y_i, j \in \mathcal{J} & \big| \mathcal{W}_j \big| \, z_j &\geq \sum_{i \in \mathcal{W}_j} y_i, j \in \mathcal{J} \\ p_{\text{max}} &\geq \sum_{i \in \mathcal{I}} y_i & p_{\text{max}} &\geq \sum_{i \in \mathcal{I}} y_i \\ z_j &\in \{0,1\}, j \in \mathcal{J} & z_j &\in \{0,1\}, j \in \mathcal{J} \\ y_i &\in \{0,1\}, i \in \mathcal{I} & f_3^* & f_3^* \end{split}$$

$$\begin{aligned} \max \, f_1 &= \sum_{j \in \mathcal{J}} z_j \\ \text{subject to } z_j &\leq \sum_{i \in \mathcal{W}_j} y_i, j \in \mathcal{J} \\ &|\mathcal{W}_j| \, z_j &\geq \sum_{i \in \mathcal{W}_j} y_i, j \in \mathcal{J} \\ &|\mathcal{W}_j| \, z_j &\geq \sum_{i \in \mathcal{W}_j} y_i, j \in \mathcal{J} \\ &p_{\text{max}} &\geq \sum_{i \in \mathcal{I}} y_i \\ &z_j &\in \{0,1\}, j \in \mathcal{J} \\ &y_i &\in \{0,1\}, i \in \mathcal{I} \end{aligned} \qquad \begin{aligned} \max \, f_3 &= \sum_{i \in \mathcal{I}} p_i y_i \\ \text{subject to } z_j &\leq \sum_{i \in \mathcal{W}_j} y_i, j \in \mathcal{J} \\ &|\mathcal{W}_j| \, z_j &\geq \sum_{i \in \mathcal{W}_j} y_i, j \in \mathcal{J} \\ &p_{\text{max}} &\geq \sum_{i \in \mathcal{I}} y_i \\ z_j &\in \{0,1\}, j \in \mathcal{J} \\ &y_i &\in \{0,1\}, i \in \mathcal{I} \end{aligned}$$

$$f_1^* = 8$$
 blocks

 f_3^*

$$\begin{split} \max f_1 &= \sum_{j \in \mathcal{J}} z_j & \max f_3 &= \sum_{i \in \mathcal{I}} p_i y_i \\ \text{subject to } z_j &\leq \sum_{i \in \mathcal{W}_j} y_i, j \in \mathcal{J} & \text{subject to } z_j &\leq \sum_{i \in \mathcal{W}_j} y_i, j \in \mathcal{J} \\ & |\mathcal{W}_j| \, z_j \geq \sum_{i \in \mathcal{W}_j} y_i, j \in \mathcal{J} & |\mathcal{W}_j| \, z_j \geq \sum_{i \in \mathcal{W}_j} y_i, j \in \mathcal{J} \\ & p_{\text{max}} \geq \sum_{i \in \mathcal{I}} y_i & p_{\text{max}} \geq \sum_{i \in \mathcal{I}} y_i \\ & z_j \in \{0,1\}, j \in \mathcal{J} & z_j \in \{0,1\}, j \in \mathcal{J} \\ & y_i \in \{0,1\}, i \in \mathcal{I} & f_1^* = 8 \text{ blocks}, \end{split}$$

47

COMPROMISE THRESHOLD

 \cdot compromise threshold: (1 - $\alpha_{\rm k})$

COMPROMISE THRESHOLD

- · compromise threshold: $(1 \alpha_k)$
- \cdot α_{k} maximum acceptable deterioration for objective k

COMPROMISE THRESHOLD

- · compromise threshold: $(1 \alpha_k)$
- · α_k maximum acceptable deterioration for objective k
- · k = 1, 3

COMPROMISE THRESHOLD

- · compromise threshold: $(1 \alpha_k)$
- · α_k maximum acceptable deterioration for objective k
- $\cdot k = 1, 3$
- \cdot α_1 = 40% means objective function 1 must be at least 60% as optimal as the solution acquired in isolation

$$\begin{split} \max \, f_3 &= \sum_{i \in \mathcal{I}} p_i y_i \\ \mathrm{subject \ to \ } z_j \leq \sum_{i \in \mathcal{W}_j} y_i, j \in \mathcal{J} \\ \left| \mathcal{W}_j \right| z_j \geq \sum_{i \in \mathcal{W}_j} y_i, j \in \mathcal{J} \\ p_{max} &\geq \sum_{i \in \mathcal{I}} y_i \\ \sum_{j \in \mathcal{J}} z_j \geq (1 - \alpha_1) f_1^* \\ z_j &\in \{0, 1\}, j \in \mathcal{J} \\ y_i &\in \{0, 1\}, i \in \mathcal{I} \end{split}$$

SOLUTION

A DAUNTING EXAMPLE

50	55		40	60	85	65	120	105	95	85		65	45	
	50	45	60	110	120	95	110		100	65	75	40	45	30
80	75	55	70	105	130	115		105	115	80	50	65	50	
165		65		65	80	95	110	105		70	55	45		25
225	200	70	75	100		100	105	120	105	55		20	25	15
250	120		85	105	100	110	70	80	70	65	50	15	5	10
200	100	180	155	125	105	80		95	75	40	45	35		15
250			145		235	100	80	135	95	70		50	45	20
300		265	205	235	505	500	245	175	80	85	65	30		25
305	255	275	215	225	400	405	410	500	305		45	50	40	30

A DAUNTING EXAMPLE

50	55		40	60	85	65	120	105	95	85		65	45	
	50	45	60	110	120	95	110		100	65	75	40	45	30
80	75	55	70	105	130	115		105	115	80	50	65	50	
165		65		65	80	95	110	105		70	55	45		25
225	200	70	75	100		100	105	120	105	55		20	25	15
250	120		85	105	100	110	70	80	70	65	50	15	5	10
200	100	180	155	125	105	80		95	75	40	45	35		15
250			145		235	100	80	135	95	70		50	45	20
300		265	205	235	505	500	245	175	80	85	65	30		25
305	255	275	215	225	400	405	410	500	305		45	50	40	30

Maximum number of blocks = 40

A DAUNTING EXAMPLE

50	55		40	60	85	65	120	105	95	85		65	45	
	50	45	60	110	120	95	110		100	65	75	40	45	30
80	75	55	70	105	130	115		105	115	80	50	65	50	
165		65		65	80	95	110	105		70	55	45		25
225	200	70	75	100		100	105	120	105	55		20	25	15
250	120		85	105	100	110	70	80	70	65	50	15	5	10
200	100	180	155	125	105	80		95	75	40	45	35		15
250			145		235	100	80	135	95	70		50	45	20
300		265	205	235	505	500	245	175	80	85	65	30		25
305	255	275	215	225	400	405	410	500	305		45	50	40	30

Maximum number of blocks = 40

Maximum number of beneficiaries = 6690

SOME SOLUTIONS

0.9 0.1 5855 (87.5) 37 (92.5) 0.85 0.15 6035 (90.2) 35 (87.5) 0.8 0.2 6345 (94.8) 33 (82.5) 0.75 0.25 6395 (95.6) 30 (75.0) 0.7 0.3 6575 (98.2) 28 (70.0) 0.65 0.35 6575 (98.2) 28 (70.0) 0.6 0.4 6640 (99.3) 25 (62.5) 0.55 0.45 6690 (100) 22 (55.0)	$(1-\alpha_1)$	Allowable deterioration	# beneficiaries (% of max)	# blocks served (% of max)
0.8 0.2 6345 (94.8) 33 (82.5) 0.75 0.25 6395 (95.6) 30 (75.0) 0.7 0.3 6575 (98.2) 28 (70.0) 0.65 0.35 6575 (98.2) 28 (70.0) 0.6 0.4 6640 (99.3) 25 (62.5)	0.9	0.1	5855 (87.5)	37 (92.5)
0.75 0.25 6395 (95.6) 30 (75.0) 0.7 0.3 6575 (98.2) 28 (70.0) 0.65 0.35 6575 (98.2) 28 (70.0) 0.6 0.4 6640 (99.3) 25 (62.5)	0.85	0.15	6035 (90.2)	35 (87.5)
0.7 0.3 6575 (98.2) 28 (70.0) 0.65 0.35 6575 (98.2) 28 (70.0) 0.6 0.4 6640 (99.3) 25 (62.5)	0.8	0.2	6345 (94.8)	33 (82.5)
0.65 0.35 6575 (98.2) 28 (70.0) 0.6 0.4 6640 (99.3) 25 (62.5)	0.75	0.25	6395 (95.6)	30 (75.0)
0.6 0.4 6640 (99.3) 25 (62.5)	0.7	0.3	6575 (98.2)	28 (70.0)
, ,	0.65	0.35	6575 (98.2)	28 (70.0)
0.55 0.45 6690 (100) 22 (55.0)	0.6	0.4	6640 (99.3)	25 (62.5)
	0.55	0.45	6690 (100)	22 (55.0)

BOGOTÁ, COLOMBIA

$$\max\, f_1 = \sum_{j \in \mathcal{J}} z_j$$

$$\max\, f_1 = \sum_{j \in \mathcal{J}} z_j$$

$$\max \, f_2 = \sum_{i \in \mathcal{I}} \left(\sum_{\{k \in \mathcal{E}_{\mathcal{P}}: d_{ik} \leq r^e\}} \left(1 - \frac{d_{ik}}{r^e} \right) y_i - \sum_{\{k \in \mathcal{E}_{\mathcal{N}}: d_{ik} \leq r^e\}} \left(1 - \frac{d_{ik}}{r^e} \right) y_i \right)$$

$$\max \, f_1 = \sum_{j \in \mathcal{J}} z_j$$

$$\max \, f_2 = \sum_{i \in \mathcal{I}} \left(\sum_{\{k \in \mathcal{E}_{\mathcal{P}}: d_{ik} < r^e\}} \left(1 - \frac{d_{ik}}{r^e} \right) y_i - \sum_{\{k \in \mathcal{E}_{\mathcal{N}}: d_{ik} < r^e\}} \left(1 - \frac{d_{ik}}{r^e} \right) y_i \right)$$

$$\max f_3 = \sum_{i \in \mathcal{I}} p_i y_i$$

$$\begin{split} \max \, f_2 &= \sum_{i \in \mathcal{I}} \left(\sum_{\left\{k \in \mathcal{E}_{\mathcal{P}}: d_{ik} \leq r^e\right\}} \left(1 - \frac{d_{ik}}{r^e} \right) y_i - \sum_{\left\{k \in \mathcal{E}_{\mathcal{N}}: d_{ik} \leq r^e\right\}} \left(1 - \frac{d_{ik}}{r^e} \right) y_i \right) \\ &\max \, f_3 = \sum_{i \in \mathcal{I}} p_i y_i \\ &\max \, f_4 = \sum v_i y_i \end{split}$$

 $\max f_1 = \sum z_j$

$$\begin{split} \max \, f_2 &= \sum_{i \in \mathcal{I}} \left(\sum_{\left\{k \in \mathcal{E}_{\mathcal{P}}: d_{ik} \leq r^e\right\}} \left(1 - \frac{d_{ik}}{r^e} \right) y_i - \sum_{\left\{k \in \mathcal{E}_{\mathcal{N}}: d_{ik} \leq r^e\right\}} \left(1 - \frac{d_{ik}}{r^e} \right) y_i \right) \\ &\max \, f_3 = \sum_{i \in \mathcal{I}} p_i y_i \\ &\max \, f_4 = \sum_{i \in \mathcal{I}} v_i y_i \\ &\max \, f_5 = \sum_{i \in \mathcal{I}} e_i y_i \end{split}$$

 $\max f_1 = \sum z_j$

$$\begin{split} \max \, f_1 &= \sum_{j \in \mathcal{J}} z_j \\ \max \, f_2 &= \sum_{i \in \mathcal{I}} \left(\sum_{\{k \in \mathcal{E}_{\mathcal{P}}: d_{ik} \leq r^e\}} \left(1 - \frac{d_{ik}}{r^e} \right) y_i - \sum_{\{k \in \mathcal{E}_{\mathcal{N}}: d_{ik} \leq r^e\}} \left(1 - \frac{d_{ik}}{r^e} \right) y_i \right) \\ \max \, f_3 &= \sum_{i \in \mathcal{I}} p_i y_i \\ \max \, f_4 &= \sum_{i \in \mathcal{I}} v_i y_i \\ \max \, f_5 &= \sum_{i \in \mathcal{I}} e_i y_i \\ \min \, f_6 &= \sum_{i \in \mathcal{I}} (c_i^l + c_i^b) y_i \end{split}$$

BOGOTÁ, COLOMBIA

· Park location case study

- · Park location case study
- · Community Based Operations Research

- · Park location case study
- · Community Based Operations Research
- · Linear program

- · Park location case study
- · Community Based Operations Research
- · Linear program
- · Multiobjective problem

- · Park location case study
- · Community Based Operations Research
- · Linear program
- · Multiobjective problem
- · Worked through an example

- · Park location case study
- · Community Based Operations Research
- · Linear program
- · Multiobjective problem
- · Worked through an example
- · Solutions

- · Park location case study
- · Community Based Operations Research
- · Linear program
- · Multiobjective problem
- · Worked through an example
- · Solutions
- · Difficult process!

