Evolution & Learning in GamesEcon 243B

Jean-Paul Carvalho

Lecture 17. Fast Convergence

The Very Long Run?

Based on notes by H. Peyton Young

Kreindler & Young (2013 GEB, 2014 PNAS)

- In the long run, the stochastic dynamic spends almost all the time in the stochastically stable states.
- However, the expected waiting time to reach a stochastically stable state grows exponentially as the error rate ε becomes arbitrarily small.
- ► Is SS only relevant in the very long run?

Intermediate Error Rates

In this lecture, we see that for intermediate values of ε there is:

- ► Sharp selection.
- ► Fast convergence.

These results hold when agents respond to:

- (a) the distribution of actions in the whole population,
- (b) random samples from the population,
- (c) their neighbors in a network.

Model

Population size *N*, large but finite.

 2×2 symmetric pure coordination game:

	A	B	
A	$1+\alpha$		0
	$1+\alpha$	0	
В	0		1
	0	1	

- \blacktriangleright (*B*, *B*) is the status quo.
- (A, A) is the innovation, with $\alpha > 0$ the payoff gain to the deviation.

General Coordination Game

Can generalize to any 2×2 symmetric coordination game:

		\boldsymbol{A}			В	
A			а			d
	а			С		
В			С			b
	d			b		

with α redefined as the normalized potential difference:

$$\alpha = \frac{(a-d) - (b-c)}{b-c}.$$

Strategy Revisions

- ► Time is discrete.
- ► Each period lasts $\tau = \frac{1}{N}$ units of time.
- ► Each period, one randomly chosen agent revises:
- Step 1. Gathers information on current play,
- Step. 2 Chooses a (myopic) noisy best response.

Logit Learning

- *Step 1.* Agent forms estimate *x* of adoption rate of *A*.
- (a) **Full information:** agent knows the current proportion of adopters in the population.
- (b) **Partial information:** agent randomly samples *d* other players.

Step 2. Noisy best response given by logit function:

$$Pr(Choose A|x) = \frac{e^{\beta(1+\alpha)x}}{e^{\beta(1+\alpha)x} + e^{\beta(1-x)}}.$$

Error rate (at zero adoption) is $\varepsilon = \frac{1}{1+e^{\beta}}$.

Logit Learning: $\alpha = 0.5$, $\beta = 3.5$

Logit Learning: $\alpha = 0.5$, various β

Convergence Times

- Study process $\Gamma_N(\alpha, \beta)$ starting from all- *B* state (status quo).
- ► State variable: adoption rate x(t) of innovation A.
- ▶ Define **waiting time** to adoption level p < 1:

$$T_N(\alpha, \beta, p) = \min\{t : x(t) \ge p\}.$$

Sample Adoption Path

$$\varepsilon = 5\%$$
, $\alpha = 100\%$, $p = 99\%$, $N = 1000$

Fast Convergence - definitions

Definition 1. The family $\Gamma_N(\alpha, \beta)$ exhibits *fast convergence* if the expected waiting time until a majority of agents play A is bounded independently of N, or

$$ET_N(\alpha, \beta, \frac{1}{2}) < S(\alpha, \beta)$$
 for all N .

Definition 2. The family $\Gamma_N(\alpha, \beta)$ exhibits *fast convergence* to p if the expected waiting time to adoption level p is bounded independently of N, or

$$ET_N(\alpha, \beta, p) < S(\alpha, \beta, p)$$
 for all N .

Fast Convergence - result

Theorem 16.1. Let

$$h(\beta) = \frac{e^{\beta - 1} + 4 - e}{\beta} - 2 \text{ for } \beta > 2$$

$$h(\beta) = 0 \text{ for } 0 < \beta \le 2$$

If $\alpha > h(\beta)$, then $\Gamma_N(\alpha, \beta)$ exhibits fast convergence.

Error Rate

Recall that the error rate ε is the probability of choosing A when you expect your opponent to choose B:

$$\varepsilon = \frac{e^0}{e^0 + e^\beta}.$$

- β = 2 means ε ≈ 12%.
- ▶ β = 3 means ε ≈ 5%.

Threshold for Fast Convergence

Pr(Choose
$$A|x) = f(x; \alpha, \beta) = \frac{e^{\beta(1+\alpha)x}}{e^{\beta(1+\alpha)x} + e^{\beta(1-x)}}.$$

Recall that the continuous-time mean logit dynamic is the differential equation:

$$\dot{x} = f(x; \alpha, \beta) - x \text{ with } x(0) = 0.$$

The logit equilibria are the fixed points:

$$f(x^*; \alpha, \beta) = x^*.$$

The key is to find combinations of α , β such that the lowest fixed point is greater than 1/2.

The status quo equilibrium disappears when α is big enough.

Let x_0 be the tangency point. Then:

$$f'(x_0; \alpha, \beta) = 1 \tag{1}$$

and

$$f(x_0; \alpha, \beta) = x_0. \tag{2}$$

Note that:

$$f'(x_0; \alpha, \beta) = \beta(2 + \alpha)f(x_0) (1 - f(x_0)) = 1.$$
 (3)

Combining (1) and (3) yields

$$x_0(1-x_0) = \frac{1}{\beta(2+\alpha)}.$$

If x_0 is small, x_0^2 is very small.

Hence

$$\beta(2+\alpha)x_0 \approx 1 \tag{4}$$

$$f(x_0) = \frac{e^{\beta(1+\alpha)x_0}}{e^{\beta(1+\alpha)x_0} + e^{\beta(1-x_0)}}$$
$$= \frac{1}{1 + e^{\beta-\beta(2+\alpha)x_0}} \approx \frac{1}{1 + e^{\beta-1}}$$
$$\approx x_0 \approx \frac{1}{\beta(2+\alpha)}.$$

Therefore,

$$\beta(2+\alpha) \approx e^{\beta-1}+1.$$

This defines the approximate combinations of α and β required to lift f(x) off the 45-degree line.

In fact, we need $\beta(2+\alpha) > e^{\beta-1} + 4 - e$.

Average Waiting Times

$$\varepsilon = 5\%$$
, $p = 99\%$

	N = 100	N = 1000	N = 10,000
$\alpha = 70\%$	33	101	> 8,000
$\alpha = 80\%$	25	36	35

$$\varepsilon = 10\%$$
, $p = 50\%$ (top row), $p = 90\%$ (bottom row)

	N = 100	N = 1000	N = 10,000
$\alpha = 4\%$	38	190	> 8,000
$\alpha = 25\%$	19	20	21

Partial Information

Analogous results hold when agents draw random *samples* from the population:

- ▶ Sample size $d < \infty$ fixed independently of N.
- ► Updating function becomes:

$$f_d(x; \alpha, \beta) = \sum_{k=0}^d {d \choose k} x^k (1-x)^{d-k} f\left(\frac{k}{d}; \alpha, \beta\right).$$

Theorem 16.2. Assume $d \ge 3$. If $\alpha > \min\{h(\beta), d-2\}$, the process exhibits fast convergence.

Payoff Heterogeneity

Now suppose agents choose exact best responses, but payoffs are perturbed by small shocks:

 Δ is the payoff gain from choosing *A*:

$$\Delta = (1 + \alpha)x - (1 - x).$$

Let ϵ_A and ϵ_B be i.i.d. (idiosyncratic) payoffs from playing A and B. Then:

$$Pr(Choose A|x) = Pr(\epsilon_A - \epsilon_B + \Delta > 0).$$

- ▶ If ϵ_A and ϵ_B are extreme value distributed, this is logit choice.
- ► For comparison, let us consider normally distributed payoff shocks, ϵ_A , $\epsilon_B \sim N(0, 1/\beta)$.

Fast Convergence

Response function (left) and fast diffusion threshold (right). Normally distributed payoff shocks (gray dots), and extreme value (black line) for d=15.

Conclusion

Evolutionary selection occurs within realistic time frames for plausible levels of error and/or payoff heterogeneity.

For the role of networks in fast convergence, see:

- ► Morris (2000 ReStud),
- Kreindler & Young (2014 PNAS),
- ► Arieli & Young (2016 Ecta).