DHBW Duale Hochschule Baden-Württemberg

Rechnerarchitektur

Termin 2

Umgang mit dem Befehlssatz eines MU1 Prozessors

RECHNERARCHITEKTUR Termin 2 Umgang Befehlssatz eines MU1 Prozessors

S. Berninger Termin2 1/9

VorbereitungBereiten Sie die Lösungen daheim so vor, dass Sie die Ergebnisse zum Praktikumstermin präsentieren können.

Aufgabe1:

Zeichnen Sie für die untenstehenden Befehle den jeweiligen Datenfluss und füllen Sie die Steuerungstabelle aus.

Befehlstabelle für MU1

Instruction	Effekt
Reset	PC = 0
LDA S	ACC = [S]
STO S	[S] = ACC
ADD S	ACC = ACC + [S]
JUMP S	PC = S
JGE S	IF ACC >= 0 PC = S
JNE S	IF ACC = 0 PC = S
STOP	stop
CALL S	SP = SP-1, [SP] = PC, PC = S
RETURN	PC = [SP], SP = SP + 1
PUSH	SP = SP-1, [SP] = ACC
POP	ACC = [SP], SP = SP + 1
LDR S	ACC = [[S]]
STR S	[[S]] = ACC
MOV PC	PC = ACC
MOV SP	SP = ACC

Der Befehl Push

	In	put	S										(Out	put	:S							Description
Instruction	Opcode	/Reset	Step	ACC _z / Zero	ACC₁₅/Negativ	Step	Adress	ACCoe	ACC _{ie}	PC。	PC_ie	IRoe	R _e	SP。	SP _{ie}	DIN _{oe}	DINie	DOUT	DOUT _{ie}	ALU Function	MEMrq	RnW	
PUSH																							

Der Befehl Pop

	In	put	ts										(Out	put	:S							Description
Instruction	Opcode	/Reset	Step	ACC _z / Zero	ACC ₁₅ /Negativ	Step	Adress	ACCOE	ACCie	PC。	PÇ	Roe	₹ ĕ	SP _®	SP _i	DIN。	DINie	DOUT	DOUTie	ALU Function	MEMrq	RnW	
POP																							
ш.																							

Der LDR S Befehl

	In	put	ts										(Out	put	S							Description
Instruction	Opcode	/Reset	Step	ACCz/Zero	ACC₁₅/Negativ	Step	Adress	ACCoe	ACCie	PC。	PC _{ie}	IRoe	Rie	SP _o e	SP _{ie}	DIN _{oe}	DINie	DOUT	DOUTie	ALU Function	MEMrq	RnW	
LDR S																							

Der STR S Befehl

	In	put	ts										(Out	put	:S							Description
Instruction	Opcode	/Reset	Step	ACC _z / Zero	ACC₁₅/Negativ	Step	Adress	ACCoe	ACCie	PC。	PC_ie	IR _{oe}	R _e	SP。	SP _{ie}	DIN _{oe}	DINie	DOUT	DOUTie	ALU Function	MEMrq	RnW	
STR S																							

Der MOV PC Befehl

	In	put	ts										(Out	put	S							Description
Instruction	Opcode	/Reset	Step	ACC _z / Zero	ACC₁₅/Negativ	Step	Adress	ACCoe	ACCie	PC。	PC_le	R _{oe}	R _e	SP。	SP _{ie}	DIN _{oe}	DINie	DOUT	DOUTie	ALU Function	MEMrq	RnW	
MOV PC																							

Der MOV SP Befehl

	In	put	ts										(Out	put	S							Description
Instruction	Opcode	/Reset	Step	ACC _z / Zero	ACC₁₅/Negativ	Step	Adress	ACCoe	ACC _{ie}	PC。	PC_ie	IRoe	R _e	SP。	SP _{ie}	DIN _{oe}	DINie	DOUT	DOUTie	ALU Function	MEMrq	RnW	
MOV SP																							

Aufgabe2:

Versuchen Sie, das Beispielprogramm aus der Vorlesung mit den neuen Befehlen LDR S und STR S so umzuschreiben, dass sie keinen selbst modifizierenden Code mehr benötigen.

Loop: Add_instr:	LDA ADD STO LDA ADD STO LDA SUB STO JGE STP	Total Table Total Add_instr One Add_instr Count One Count Loop	; Accumulate total ; Begin at head of table ; ; Change address ; by modifying instruction! ; ; Count iterations ; Count down to zero ; ; If >= 0 repeat ; Halt execution
---------------------	---	--	--

;Data det	finitions	
Total	DEFW 0	; Total - initiallyzero
One	DEFW 1	; The number one
Count DE	EFW 4	; Loop counter (loop 5x)
Table	DEFW 39	; Loop counter (loop 5x) ; The numbers to total
	DEFW 25	•
	DEFW 4	
	DEFW 98	•
	DEFW 17	
		•