L. Vandenberghe EE236C (Spring 2016)

3. Conjugate gradient method

- conjugate gradient method for linear equations
- convergence analysis
- conjugate gradient method as iterative method
- applications in nonlinear optimization

Unconstrained quadratic minimization

with $A \in \mathbf{S}^n_{++}$

- equivalent to solving linear equation Ax = b
- residual r = b Ax is negative gradient: $r = -\nabla f(x)$

Conjugate gradient method (CG)

- invented by Hestenes and Stiefel around 1951
- the most widely used iterative method for solving Ax = b, with A > 0
- can be extended to non-quadratic unconstrained minimization

Krylov subspaces

Definition: a sequence of nested subspaces $(\mathcal{K}_0 \subseteq \mathcal{K}_1 \subseteq \mathcal{K}_2 \subseteq \cdots)$

$$\mathcal{K}_0 = \{0\}, \qquad \mathcal{K}_k = \operatorname{span}\{b, Ab, \dots, A^{k-1}b\} \quad \text{for } k \ge 1$$

if $\mathcal{K}_{k+1} = \mathcal{K}_k$, then $\mathcal{K}_i = \mathcal{K}_k$ for all $i \geq k$

Key property: $A^{-1}b \in \mathcal{K}_n$ (even when $\mathcal{K}_n \neq \mathbf{R}^n$)

• from Cayley-Hamilton theorem,

$$p(A) = A^n + a_1 A^{n-1} + \dots + a_n I = 0$$

where
$$p(\lambda) = \det(\lambda I - A) = \lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n$$

therefore

$$A^{-1}b = -\frac{1}{a_n} \left(A^{n-1}b + a_1 A^{n-2}b + \dots + a_{n-1}b \right)$$

Krylov sequence

$$x^{(k)} = \operatorname*{argmin}_{x \in \mathcal{K}_k} f(x), \quad k \ge 0$$

- from previous page, $x^{(n)} = A^{-1}b$
- CG is a recursive method for computing the Krylov sequence $x^{(0)}$, $x^{(1)}$, ...
- we will see there is a simple two-term recurrence

$$x^{(k+1)} = x^{(k)} - \alpha_k \nabla f(x^{(k)}) + \gamma_k (x^{(k)} - x^{(k-1)})$$

Example

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 10 \end{bmatrix}, \quad b = \begin{bmatrix} 10 \\ 10 \end{bmatrix} \quad \overset{\mbox{\scriptsize \$}}{\mbox{\scriptsize \ast}} \begin{array}{c} 0 \\ -2 \end{array}$$

Residuals of Krylov sequence

optimality conditions in definition of Krylov sequence:

$$x^{(k)} \in \mathcal{K}_k, \quad \nabla f(x^{(k)}) = Ax^{(k)} - b \in \mathcal{K}_k^{\perp}$$

• hence, the residual $r_k = b - Ax^{(k)}$ satisfies

$$r_k \in \mathcal{K}_{k+1}, \qquad r_k \in \mathcal{K}_k^{\perp}$$

(the first property follows from $b \in \mathcal{K}_1$ and $x^{(k)} \in \mathcal{K}_k$)

the (nonzero) residuals form an orthogonal basis for the Krylov subspaces:

$$\mathcal{K}_k = \text{span}\{r_0, r_1, \dots, r_{k-1}\}, \qquad r_i^T r_j = 0 \quad (i \neq j)$$

Conjugate directions

the 'steps' $v_i = x^{(i)} - x^{(i-1)}$ in the Krylov sequence satisfy

$$v_i^T A v_j = 0$$
 for $i \neq j$, $v_i^T A v_i = v_i^T r_{i-1}$

(proof on next page)

- ullet the vectors v_i are 'conjugate': orthogonal for inner product $\langle v,w \rangle = v^T A w$
- in particular, if $v_i \neq 0$, it is independent of v_1, \ldots, v_{i-1}

the (nonzero) vectors v_i form a 'conjugate' basis for the Krylov subspaces:

$$\mathcal{K}_k = \operatorname{span}\{v_1, v_2, \dots, v_k\}, \qquad v_i^T A v_i = 0 \quad (i \neq j)$$

Proof of properties on page 3-6 (assume j < i)

• $v_i^T A v_j = 0$ because

$$v_j = x^{(j)} - x^{(j-1)} \in \mathcal{K}_j \subseteq \mathcal{K}_{i-1}$$

and

$$Av_i = A(x^{(i)} - x^{(i-1)}) = -r_i + r_{i-1} \in \mathcal{K}_{i-1}^{\perp}$$

 $\bullet \ \ \mbox{the expression} \ v_i^T A v_i = v_i^T r_{i-1} \ \mbox{follows from the fact that} \ t=1 \ \mbox{minimizes}$

$$f(x^{(i-1)} + tv_i) = f(x^{(i-1)}) + \frac{1}{2}t^2v_i^T Av_i - tv_i^T r_{i-1}$$

(since $x^{(i)} = x^{(i-1)} + v_i$ minimizes f over the entire subspace \mathcal{K}_i)

Conjugate vectors

instead of v_i , we will work a sequence p_i of scaled vectors v_i :

$$p_i = \frac{\|r_{i-1}\|_2^2}{v_i^T r_{i-1}} v_i$$

ullet scaling factor is chosen to satisfy $r_{i-1}^T p_i = \|r_{i-1}\|_2^2$; equivalently,

$$-\nabla f(x^{(i-1)})^T p_i = \|\nabla f(x^{(i-1)})\|_2^2$$

• using $v_i^T A v_i = v_i^T r_{i-1}$ (page 3-6), we can write the scaling factor as

$$\frac{\|r_{i-1}\|_2^2}{v_i^T r_{i-1}} = \frac{\|r_{i-1}\|_2^2}{v_i^T A v_i} = \frac{p_i^T A p_i}{\|r_{i-1}\|_2^2}$$

with this notation we can write the update as

$$x^{(i)} = x^{(i-1)} + \alpha p_i, \qquad \alpha = \frac{\|r_{i-1}\|_2^2}{p_i^T A p_i}$$

Recursion for p_k

 $p_k \in \mathcal{K}_k = \operatorname{span}\{p_1, p_2, \dots, p_{k-1}, r_{k-1}\}$, so we can express p_k as

$$p_1 = \delta r_0, \qquad p_k = \delta r_{k-1} + \beta p_{k-1} + \sum_{i=1}^{k-2} \gamma_i p_i \quad (k > 1)$$

• $\gamma_1 = \cdots = \gamma_{k-2} = 0$: take inner products with Ap_j for $j \leq k-2$, and use

$$p_j^T A p_i = 0$$
 for $j \neq i$, $p_j^T A r_{k-1} = 0$

(second equality because $Ap_j \in \mathcal{K}_{j+1} \subseteq \mathcal{K}_{k-1}$ and $r_{k-1} \in \mathcal{K}_{k-1}^{\perp}$)

- ullet $\delta=1$: take inner product with r_{k-1} and use $r_{k-1}^Tp_k=\|r_{k-1}\|_2^2$
- hence, $p_k = r_{k-1} + \beta p_{k-1}$; inner product with Ap_{k-1} shows that

$$\beta = -\frac{p_{k-1}^T A r_{k-1}}{p_{k-1}^T A p_{k-1}}$$

Basic conjugate gradient algorithm

Initialize: $x^{(0)} = 0$, $r_0 = b$

For k = 1, 2, ...

1. if k=1, take $p_k=r_0$; otherwise, take

$$p_k = r_{k-1} + \beta p_{k-1}$$
 where $\beta = -\frac{p_{k-1}^T A r_{k-1}}{p_{k-1}^T A p_{k-1}}$

2. compute

$$\alpha = \frac{\|r_{k-1}\|_2^2}{p_k^T A p_k}, \qquad x^{(k)} = x^{(k-1)} + \alpha p_k, \qquad r_k = b - A x^{(k)}$$

if r_k is sufficiently small, return $x^{(k)}$

Improvements

Step 2: compute residual recursively:

$$r_k = r_{k-1} - \alpha A p_k$$

Step 1: simplify the expression for β by using

$$r_{k-1} = r_{k-2} - \frac{\|r_{k-2}\|_2^2}{p_{k-1}^T A p_{k-1}} A p_{k-1}$$

taking inner product with r_{k-1} gives

$$\beta = -\frac{p_{k-1}^T A r_{k-1}}{p_{k-1}^T A p_{k-1}} = \frac{\|r_{k-1}\|_2^2}{\|r_{k-2}\|_2^2}$$

this reduces number of matrix-vector products to one per iteration (product Ap_k)

Conjugate gradient algorithm

Initialize: $x^{(0)} = 0$, $r_0 = b$

For k = 1, 2, ...

1. if k=1, take $p_k=r_0$; otherwise, take

$$p_k = r_{k-1} + \beta p_{k-1}$$
 where $\beta = \frac{\|r_{k-1}\|_2^2}{\|r_{k-2}\|_2^2}$

2. compute

$$\alpha = \frac{\|r_{k-1}\|_2^2}{p_k^T A p_k}, \qquad x^{(k)} = x^{(k-1)} + \alpha p_k, \qquad r_k = r_{k-1} - \alpha A p_k$$

if r_k is sufficiently small, return $x^{(k)}$

Outline

- conjugate gradient method for linear equations
- convergence analysis
- conjugate gradient method as iterative method
- applications in nonlinear optimization

Notation

$$minimize \quad f(x) = \frac{1}{2}x^TAx - b^Tx$$

Optimal value

$$f(x^*) = -\frac{1}{2}b^T A^{-1}b = -\frac{1}{2}||x^*||_A^2$$

Suboptimality at x

$$f(x) - f^* = \frac{1}{2} ||x - x^*||_A^2$$

Relative error measure

$$\tau = \frac{f(x) - f^*}{f(0) - f^*} = \frac{\|x - x^*\|_A^2}{\|x^*\|_A^2}$$

here, $||u||_A = (u^T A u)^{1/2}$ is A-weighted norm

Error after k steps

• $x^{(k)} \in \mathcal{K}_k = \operatorname{span}\{b, Ab, A^2b, \dots, A^{k-1}b\}$, so $x^{(k)}$ can be expressed as

$$x^{(k)} = \sum_{i=1}^{k} c_i A^{i-1} b = p(A)b$$

where $p(\lambda) = \sum_{i=1}^k c_i \lambda^{i-1}$ is some polynomial of degree k-1 or less

• $x^{(k)}$ minimizes f(x) over \mathcal{K}_k ; hence

$$2(f(x^{(k)}) - f^*) = \inf_{x \in \mathcal{K}_k} \|x - x^*\|_A^2 = \inf_{\deg p < k} \|(p(A) - A^{-1})b\|_A^2$$

we now use the eigenvalue decomposition of A to bound this quantity

Error and spectrum of A

eigenvalue decomposition of A

$$A = Q\Lambda Q^T = \sum_{i=1}^n \lambda_i q_i q_i^T$$
 $(Q^T Q = I, \quad \Lambda = \mathbf{diag}(\lambda_1, \dots, \lambda_n))$

• define $d = Q^T b$

expression on previous page simplifies to

$$2(f(x^{(k)}) - f^*) = \inf_{\deg p < k} \| (p(A) - A^{-1})b \|_A^2$$

$$= \inf_{\deg p < k} \| (p(\Lambda) - \Lambda^{-1}) d \|_{\Lambda}^2$$

$$= \inf_{\deg p < k} \sum_{i=1}^n \frac{(\lambda_i p(\lambda_i) - 1)^2 d_i^2}{\lambda_i}$$

$$= \inf_{\deg q \le k, \ q(0) = 1} \sum_{i=1}^n \frac{q(\lambda_i)^2 d_i^2}{\lambda_i}$$

Error bounds

Absolute error

$$f(x^{(k)}) - f^* \leq \left(\sum_{i=1}^n \frac{d_i^2}{2\lambda_i}\right) \inf_{\deg q \leq k, \ q(0)=1} \left(\max_{i=1,\dots,n} q(\lambda_i)^2\right)$$
$$= \frac{1}{2} ||x^*||_A^2 \inf_{\deg q \leq k, \ q(0)=1} \left(\max_{i=1,\dots,n} q(\lambda_i)^2\right)$$

(equality follows from $\sum_i d_i^2/\lambda_i = b^T A^{-1} b = \|x^\star\|_A^2$)

Relative error

$$\tau_k = \frac{\|x^{(k)} - x^*\|_A^2}{\|x^*\|_A^2} \le \inf_{\deg q \le k, \ q(0) = 1} \left(\max_{i = 1, \dots, n} q(\lambda_i)^2 \right)$$

Convergence rate and spectrum of A

• if A has m distinct eigenvalues $\gamma_1, \ldots, \gamma_m$, CG terminates in m steps:

$$q(\lambda) = \frac{(-1)^m}{\gamma_1 \cdots \gamma_m} (\lambda - \gamma_1) \cdots (\lambda - \gamma_m)$$

satisfies $\deg q=m, q(0)=1, q(\lambda_1)=\cdots=q(\lambda_n)=0$; therefore $\tau_m=0$

- if eigenvalues are clustered in m groups, then τ_m is small can find $q(\lambda)$ of degree m, with q(0)=1, that is small on spectrum
- if x^{\star} is a linear combination of m eigenvectors, CG terminates in m steps take q of degree m with $q(\lambda_i)=0$ where $d_i\neq 0$; then

$$\sum_{i=1}^{n} \frac{q(\lambda_i)^2 d_i^2}{\lambda_i} = 0$$

Other bounds

we omit the proofs of the following results

ullet in terms of condition number $\kappa = \lambda_{\mathrm{max}}/\lambda_{\mathrm{min}}$

$$\tau_k \le 2 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^k$$

derived by taking for q a Chebyshev polynomial on $[\lambda_{\min}, \lambda_{\max}]$

• in terms of sorted eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$

$$\tau_k \le \left(\frac{\lambda_k - \lambda_n}{\lambda_k + \lambda_n}\right)^2$$

derived by taking q with roots at $\lambda_1, \ldots, \lambda_{k-1}$ and $(\lambda_1 + \lambda_n)/2$

Outline

- conjugate gradient method for linear equations
- convergence analysis
- conjugate gradient method as iterative method
- applications in nonlinear optimization

Conjugate gradient method as iterative method

In exact arithmetic

- CG was originally proposed as a direct (non-iterative) method
- in theory, terminates in at most *n* steps

In practice

- due to rounding errors, CG method can take many more than n steps (or fail)
- CG is now used as an iterative method
- \bullet with luck (good spectrum of A), good approximation in small number of steps
- attractive if matrix-vector products are inexpensive

Preconditioning

ullet make change of variables y=Bx with B nonsingular, and apply CG to

$$B^{-T}AB^{-1}y = B^{-T}b$$

- \bullet if spectrum of $B^{-T}AB^{-1}$ is clustered, PCG converges fast
- trade-off between enhanced convergence, cost of extra computation
- the matrix $C = B^T B$ is called the *preconditioner*

Examples

- diagonal $C = \mathbf{diag}(A_{11}, A_{22}, \dots, A_{nn})$
- incomplete or approximate Cholesky factorization of A
- good preconditioners are often application-dependent

Naive implementation

define $\tilde{A}=B^{-T}AB^{-1}$ and apply algorithm of page 3-12 to $\tilde{A}y=B^{-T}b$

Initialize:
$$y^{(0)} = 0$$
, $\tilde{r}_0 = B^{-T}b$

For
$$k = 1, 2, ...$$

1. if k=1, take $\tilde{p}_k=\tilde{r}_0$; otherwise, take

$$ilde{p}_k = ilde{r}_{k-1} + eta ilde{p}_{k-1} \quad ext{where} \quad eta = rac{\| ilde{r}_{k-1}\|_2^2}{\| ilde{r}_{k-2}\|_2^2}$$

2. define $\tilde{A} = B^{-T}AB^{-1}$ and compute

$$\alpha = \frac{\|\tilde{r}_{k-1}\|_{2}^{2}}{\tilde{p}_{k}^{T}\tilde{A}\tilde{p}_{k}}, \qquad y^{(k)} = y^{(k-1)} + \alpha \tilde{p}_{k}, \qquad \tilde{r}_{k} = \tilde{r}_{k-1} - \alpha \tilde{A}\tilde{p}_{k}$$

if \tilde{r}_k is sufficiently small, return $B^{-1}y^{(k)}$

Improvements

ullet instead of $y^{(k)}$, \tilde{p}_k compute iterates and steps in original coordinates

$$x^{(k)} = B^{-1}y^{(k)}, p_k = B^{-1}\tilde{p}_k,$$

• compute residuals in original coordinates:

$$r_k = B^T \tilde{r}_k = b - Ax^{(k)}$$

• compute squared residual norms as

$$\|\tilde{r}_{k-1}\|_2^2 = r_{k-1}^T C^{-1} r_{k-1}$$

ullet extra work per iteration is solving one equation to compute $C^{-1}r_{k-1}$

Preconditioned conjugate gradient algorithm

Initialize: $x^{(0)} = 0$, $r_0 = b$

For k = 1, 2, ...

- 1. solve the equation $Cs_k = r_{k-1}$
- 2. if k = 1, take $p_k = s_k$; otherwise, take

$$p_k = s_k + \beta p_{k-1}$$
 where $\beta = \frac{r_{k-1}^T s_k}{r_{k-2}^T s_{k-1}}$

3. compute

$$\alpha = \frac{r_{k-1}^T s_k}{p_k^T A p_k}, \qquad x^{(k)} = x^{(k-1)} + \alpha p_k, \qquad r_k = r_{k-1} - \alpha A p_k$$

if r_k is sufficiently small, return $x^{(k)}$

Outline

- conjugate gradient method for linear equations
- convergence analysis
- conjugate gradient method as iterative method
- applications in nonlinear optimization

Applications in optimization

Nonlinear conjugate gradient methods

- extend linear CG method to nonquadratic functions
- local convergence similar to linear CG
- limited global convergence theory

Inexact and truncated Newton methods

- use conjugate gradient method to compute (approximate) Newton step
- less reliable than exact Newton methods, but handle very large problems

Conjugate gradient method 3-24

Nonlinear conjugate gradient

minimize
$$f(x)$$

(*f* convex and differentiable)

Modifications needed to extend linear CG algorithm of page 3-12

- replace $r_k = b Ax^{(k)}$ with $-\nabla f(x^{(k)})$
- ullet determine lpha by line search

Fletcher-Reeves CG algorithm

CG algorithm of page 3-12 modified to minimize non-quadratic convex f

Initialize: choose $x^{(0)}$

For k = 1, 2, ...

1. if k=1, take $p_1=-\nabla f(x^{(0)})$; otherwise, take

$$p_k = -\nabla f(x^{(k-1)}) + \beta_k p_{k-1}$$
 where $\beta_k = \frac{\|\nabla f(x^{(k-1)})\|_2^2}{\|\nabla f(x^{(k-2)})\|_2^2}$

2. update $x^{(k)} = x^{(k-1)} + \alpha_k p_k$ where

$$\alpha_k = \operatorname*{argmin}_{\alpha} f(x^{(k-1)} + \alpha p_k)$$

if $\nabla f(x^{(k)})$ is sufficiently small, return $x^{(k)}$

Some observations

Interpretation

- first iteration is a gradient step
- general update is gradient step with momentum term

$$x^{(k)} = x^{(k-1)} - \alpha_k \nabla f(x^{(k-1)}) + \frac{\alpha_k \beta_k}{\alpha_{k-1}} (x^{(k-1)} - x^{(k-2)})$$

it is common to restart the algorithm periodically by taking a gradient step

Line search

- with exact line search, reduces to linear CG for quadratic f
- exact line search in step 2 implies $\nabla f(x^{(k)})^T p_k = 0$
- therefore in step 1, p_k is a descent direction at $x^{(k-1)}$:

$$\nabla f(x^{(k-1)})^T p_k = -\|\nabla f(x^{(k-1)})\|_2^2 < 0$$

Variations

Polak-Ribière: in step 1, compute β from

$$\beta = \frac{\nabla f(x^{(k-1)})^T (\nabla f(x^{(k-1)}) - \nabla f(x^{(k-2)}))}{\|\nabla f(x^{(k-2)})\|_2^2}$$

Hestenes-Stiefel

$$\beta = \frac{\nabla f(x^{(k-1)})^T (\nabla f(x^{(k-1)}) - \nabla f(x^{(k-2)}))}{p_{k-1}^T (\nabla f(x^{(k-1)}) - \nabla f(x^{(k-2)}))}$$

formulas are equivalent for quadratic f and exact line search

Interpretation as restarted BFGS method

BFGS update (page 2-5) with $H_{k-1} = I$:

$$H_k^{-1} = I + (1 + \frac{y^T y}{s^T y}) \frac{ss^T}{y^T s} - \frac{ys^T + sy^T}{y^T s}$$

where
$$y = \nabla f(x^{(k)}) - \nabla f(x^{(k-1)})$$
 and $s = x^{(k)} - x^{(k-1)}$

- ullet $\nabla f(x^{(k)})^T s = 0$ if $x^{(k)}$ is determined by exact line search
- quasi-Newton step in iteration k is

$$-H_k^{-1}\nabla f(x^{(k)}) = -\nabla f(x^{(k)}) + \frac{y^T \nabla f(x^{(k)})}{y^T s} s$$

this is the Hestenes-Stiefel update

nonlinear CG can be interpreted as L-BFGS with $m=1\,$

References

- S. Boyd, Lecture notes for EE364b, Convex Optimization II.
- G. H. Golub and C. F. Van Loan, *Matrix Computations* (1996), chapter 10.
- J. Nocedal and S. J. Wright, *Numerical Optimization* (2006), chapter 5.
- H. A. van der Vorst, *Iterative Krylov Methods for Large Linear Systems* (2003).

Conjugate gradient method 3-30