Problem Set #50

Jayden Li

February 8, 2024

Problem 9

(a) I think Cartesian is easier.

Cartesian:
$$y = \frac{\pi}{6}x$$

Polar: $r \sin \theta = \frac{\pi}{6}(r \cos \theta)$
 $\tan \theta = \frac{\pi}{6}$
 $\theta = \arctan \frac{\pi}{6} + \pi n$

(b) I think Cartesian is easier.

Cartesian: x = 3

Polar: $r \cos \theta = 3$ $\boxed{r = 3 \sec \theta}$

Problem 10

$$r_1 = 3 + \cos \theta = 2 = r^2$$
$$\cos \theta = -1$$
$$\theta \in \left\{ \frac{2\pi}{3}, \frac{4\pi}{3} \right\}$$

Let A be the point with $\theta = \frac{2\pi}{3}$ and B be the point with $\theta = \frac{4\pi}{3}$. Any line from A to the origin must satisfy $\theta = \frac{2\pi}{3}$ or $\theta = \frac{2\pi}{3} + \pi$ (because a line rotated 180° is the same line). When $\theta = \frac{2\pi}{3}$, $r_1 = 3 + 2\cos\frac{2\pi}{3} = 3 + (-1) = 2$, which is A. When $\theta = \frac{2\pi}{3} + \pi$, $r_1 = 3 + 2\cos\left(\frac{5\pi}{3}\right) = 3 + 1 = 4$.

Therefore C has rectangular coordinates $(r_1 \cos \theta, r_2 \sin \theta) = \left(4 \cos \frac{5\pi}{3}, 4 \sin \frac{5\pi}{3}\right) = (2, -2\sqrt{3}).$

B has polar coordinates $\left(2, \frac{4\pi}{3}\right)$ and rectangular coordinates $\left(2\cos\frac{4\pi}{3}, 2\sin\frac{4\pi}{3}\right) = (-1, -\sqrt{3})$. The equation of BC is:

$$y - y_0 = \frac{y_1 - y_0}{x_1 - x_0} (x - x_0)$$
$$y + 2\sqrt{3} = \frac{-2\sqrt{3} + \sqrt{3}}{2 + 1} (x - 2)$$
$$y = -\frac{\sqrt{3}}{3}x + \frac{2\sqrt{3}}{3} - \frac{6\sqrt{3}}{3}$$
$$y = -\frac{\sqrt{3}}{3}x - \frac{4\sqrt{3}}{3}$$

Substituting into r_2 :

$$r_{2} = 2$$

$$x^{2} + y^{2} = r^{2}$$

$$x^{2} + \left(-\frac{\sqrt{3}}{3}x - \frac{4\sqrt{3}}{3}\right)^{2} = 4$$

$$x^{2} + \frac{3}{9}x^{2} + 2\left(\frac{\sqrt{3}}{3}x\right)\left(\frac{4\sqrt{3}}{3}\right) + \frac{48}{9} - 4 = 0$$

$$x^{2} + \frac{1}{3}x^{2} + \frac{8}{3}x + \frac{4}{3} = 0$$

$$4x^{2} + 8x + 4 = 0$$

$$x^{2} + 2x + 1 = 0$$

$$(x+1)^{2} = 0$$

$$x = -1$$

There is only one intersection between the line BC and the circle given by r_2 , and the intersection has x = -1, which is the x-coordinate of B. Therefore BC is a tangent line of r_2 at point B.