

Documento de diseño

Juan Esteban Guzmán Felipe González Isabela Mantilla

Profesor: Héctor Flórez

Introducción

Este documento presenta el diseño, implementación y pruebas realizadas para el Proyecto 3, cuyo objetivo principal fue transformar una interfaz basada en consola en una interfaz gráfica funcional y eficiente. Utilizando frameworks como Swing o JavaFX, se busca mejorar la experiencia del usuario mediante un diseño interactivo que incluye herramientas para la visualización de datos.

Justificación del Diseño

El diseño del sistema priorizó la claridad y organización lógica, facilitando tanto el desarrollo como el mantenimiento. Se mantuvieron y ampliaron las decisiones clave del Proyecto 2, incluyendo:

- **Organización Lógica y Claridad:** Cada entidad relevante fue representada como una clase independiente, cumpliendo roles específicos.
- Uso de Herencia y Polimorfismo: Se agruparon atributos y métodos comunes para extender funcionalidades en las subclases.
- **Persistencia de Datos:** Se mantuvo la serialización y el uso de archivos CSV, lo cual asegura la trazabilidad de los datos.
- **Interactividad y Retroalimentación:** Se ampliaron las funciones de retroalimentación entre profesores y estudiantes.
- **Gestión de Errores:** Los controles de error se adaptaron para una interfaz gráfica, mejorando la experiencia del usuario.
- Enfoque en la Experiencia del Usuario: La interfaz gráfica simplificó el acceso a funciones como inscripción, realización de actividades y retroalimentación.

Nuevas decisiones clave para el Proyecto 3 incluyen:

- Transformación a Interfaz Gráfica: La interfaz gráfica basada en Swing facilita la interacción del usuario.
- **Visualización de Actividades:** Se implementó un gráfico interactivo inspirado en las matrices de actividades de GitHub para representar datos de los estudiantes.
- Modularidad: Se organizó el sistema en módulos para mejorar la escalabilidad.

Diseño del Sistema

Diagrama de Clases Detallado

El sistema incluye las siguientes clases principales, organizadas de manera lógica para cumplir con los objetivos del proyecto:

- Consola: Clase heredada que manejaba la interacción basada en texto.
- Feedback: Administra los comentarios y retroalimentaciones de los usuarios.
- **GestorPersistencia:** Maneja la conexión con los archivos y la base de datos, asegurando que los datos sean almacenados y recuperados de manera eficiente.
- **PersistenciaLearningPath:** Especializada en la gestión de datos relacionados con los caminos de aprendizaje.

Diagrama de Clases de Alto Nivel

El diseño de alto nivel organiza el sistema en los siguientes módulos:

1. **Interfaz Gráfica:** Implementada en Swing, sirve como punto de interacción principal con los usuarios.

- 2. **Lógica de Dominio:** Incluye las reglas de negocio y los algoritmos principales.
- 3. **Persistencia:** Responsable del almacenamiento y recuperación de datos.

Análisis del Usuario Final

El análisis del usuario final es fundamental para diseñar un sistema que responda a las necesidades específicas de los actores involucrados. A continuación, se detalla el perfil y las expectativas de los dos grupos principales de usuarios del sistema: estudiantes y profesores.

Perfil del Usuario

1. Estudiantes:

- Descripción: Jóvenes en proceso de aprendizaje, interesados en completar rutas de aprendizaje para mejorar sus habilidades en áreas específicas.
- o **Habilidades tecnológicas:** Varían desde usuarios con conocimientos básicos hasta avanzados. Se busca que la interfaz sea intuitiva para todos los niveles.

Motivaciones:

- Completar actividades asignadas dentro de los plazos establecidos.
- Recibir retroalimentación sobre su progreso.
- Consultar estadísticas de desempeño personal para autoevaluarse.

Limitaciones:

- Tiempo limitado para realizar actividades debido a otros compromisos académicos.
- Posibles dificultades tecnológicas si el sistema no es claro o accesible.

2. **Profesores:**

- o **Descripción:** Educadores responsables de diseñar y evaluar actividades para los estudiantes, así como de proporcionar retroalimentación constructiva.
- o **Habilidades tecnológicas:** Generalmente intermedias; esperan un sistema funcional sin requerir conocimientos técnicos avanzados.

Motivaciones:

- Diseñar rutas de aprendizaje que fomenten el desarrollo integral de los estudiantes.
- Evaluar el progreso de los estudiantes mediante herramientas visuales.
- Identificar tendencias y áreas de mejora para ajustar estrategias educativas.

o Limitaciones:

- Carga laboral elevada, lo que requiere herramientas rápidas y eficientes.
- Necesidad de personalización para adaptar actividades a diferentes grupos de estudiantes.

Necesidades del Usuario

Ambos grupos de usuarios tienen necesidades específicas que se consideraron durante el diseño del sistema:

• Estudiantes:

- o Una navegación clara para inscribirse en rutas de aprendizaje.
- Acceso a sus actividades y calificaciones en un solo lugar.
- o Visualización gráfica de su progreso para fomentar el aprendizaje autodirigido.

• Profesores:

- o Una interfaz para crear y gestionar rutas de aprendizaje fácilmente.
- Herramientas de análisis que permitan monitorear el desempeño de los estudiantes.
- o Funcionalidades para proporcionar retroalimentación directa e inmediata.

Escenarios de Uso

Se definieron escenarios concretos para guiar el diseño de la interfaz y las funcionalidades del sistema:

1. Estudiante realiza una actividad:

- o El estudiante inicia sesión en el sistema.
- o Navega a su panel de actividades y selecciona una tarea pendiente.
- o Realiza la actividad y recibe retroalimentación inmediata.

2. Profesor evalúa una actividad:

- El profesor accede al sistema e identifica actividades completadas por los estudiantes.
- o Revisa los resultados y proporciona retroalimentación personalizada.
- o Consultas estadísticas para evaluar tendencias en el rendimiento del grupo.

3. Estudiante consulta su progreso:

- Desde el panel principal, el estudiante accede a un gráfico interactivo que muestra su actividad a lo largo del tiempo.
- o Identifica áreas donde necesita mejorar y consulta sugerencias del profesor.

4. Profesor ajusta una ruta de aprendizaje:

- o Con base en el desempeño del grupo, el profesor modifica actividades dentro de una ruta para hacerla más efectiva.
- o Publica cambios y notifica a los estudiantes.

Diseño Centrado en el Usuario

Para responder a estas necesidades, se implementaron principios de diseño centrados en el usuario:

- **Intuición:** La interfaz gráfica utiliza un diseño limpio, con botones claros y accesos directos a las funciones más usadas.
- **Accesibilidad:** El sistema está diseñado para ser compatible con diferentes resoluciones de pantalla y dispositivos.
- **Feedback:** Se proporcionan mensajes de confirmación y advertencias en cada interacción crítica, mejorando la confianza del usuario en el sistema.
- **Eficiencia:** Funciones como búsquedas rápidas y gráficos interactivos reducen el tiempo necesario para realizar tareas.

Diagramas de Secuencia y Adicionales

- Diagrama de Caso de Uso: Describe cómo los usuarios interactúan con las funcionalidades del sistema.
- Diagrama de Paquetes: Representa la estructura lógica y la modularidad del sistema.

Implementación

La implementación incluyó:

- 1. **Migración de Consola a Swing:** Transformar las interacciones en texto a componentes gráficos.
- 2. **Integración de Feedback:** Ampliar las funcionalidades para permitir una retroalimentación más detallada.
- 3. **Gráfico de Actividades:** Un panel interactivo muestra la actividad de los estudiantes a lo largo del tiempo.
- 4. **Persistencia Mejorada:** Los métodos existentes se adaptaron para integrarse a la nueva estructura gráfica.

Se realizaron pruebas exhaustivas en tres áreas clave:

- 1. **Funcionalidad:** Validar que cada módulo cumpla con su propósito sin errores.
- 2. Usabilidad: Recibir retroalimentación de usuarios para mejorar la experiencia.
- 3. **Escalabilidad:** Asegurar que el sistema pueda manejar grandes volúmenes de datos sin comprometer el rendimiento.

Casos de prueba

- Caso 1: Crear, editar y visualizar un Learning Path.
- Caso 2: Generar un gráfico interactivo de actividades.
- Caso 3: Guardar y recuperar datos desde la base de datos.

Conclusiones

El Proyecto 3 fue una oportunidad invaluable para aplicar conceptos de diseño de software orientado al usuario, enfocándonos en la usabilidad, escalabilidad y funcionalidad. Los resultados obtenidos no solo transformaron un sistema basado en consola en una solución gráfica moderna, sino que también establecieron una base sólida para futuros desarrollos. A continuación, se presentan los principales logros y aprendizajes del proyecto:

1. Principales Logros

1. Transformación a Interfaz Gráfica:

- La migración desde una interfaz de texto a una gráfica basada en Swing permitió mejorar significativamente la experiencia del usuario. Esta transformación facilita la interacción tanto para estudiantes como para profesores, reduciendo barreras tecnológicas.
- La inclusión de gráficos interactivos para visualizar actividades añade valor al sistema al convertir datos complejos en información accesible y comprensible.

2. Mejoras en la Experiencia del Usuario:

- Se logró un diseño intuitivo y amigable que simplifica tareas como la inscripción en rutas de aprendizaje, la consulta de progreso y la retroalimentación.
- Los usuarios pueden navegar de forma eficiente entre funciones críticas gracias a una interfaz bien estructurada.

3. Modularidad v Escalabilidad:

- La arquitectura del sistema se diseñó con un enfoque modular, lo que facilita la integración de nuevas funcionalidades y la resolución de problemas específicos sin afectar al resto del sistema.
- Este enfoque asegura que el sistema pueda evolucionar para adaptarse a necesidades futuras.

4. Pruebas Exhaustivas:

Se llevaron a cabo pruebas funcionales, de usabilidad y de rendimiento, lo que permitió garantizar la robustez del sistema. Estas pruebas identificaron áreas de mejora y aseguraron que el sistema operara de manera óptima bajo diferentes condiciones.

2. Principales Aprendizajes

1. Diseño Centrado en el Usuario:

 Comprender a los usuarios finales y sus necesidades fue clave para desarrollar un sistema eficiente. El análisis detallado del perfil y los escenarios de uso de estudiantes y profesores guió el diseño de la interfaz gráfica.

2. Importancia de la Documentación:

 La creación de diagramas y documentación técnica detallada ayudó a estructurar mejor el proceso de desarrollo y a mantener la coherencia entre los objetivos y la implementación.

3. Colaboración en Equipo:

o El trabajo en equipo permitió distribuir tareas de manera efectiva, aprovechando las fortalezas de cada integrante y garantizando un flujo de trabajo eficiente.

3. Áreas de Mejora

1. Optimización de Gráficos:

 Si bien los gráficos interactivos cumplen con su propósito, pueden mejorarse para soportar análisis más detallados, como filtros avanzados y comparativas entre usuarios.

2. Compatibilidad Multiplataforma:

 Aunque el sistema es funcional en computadoras, la inclusión de una versión web o móvil sería un gran paso para ampliar su accesibilidad.

3. Feedback Continuo:

 La retroalimentación de los usuarios finales debe convertirse en un proceso continuo para ajustar el sistema a las necesidades cambiantes de los estudiantes y profesores.

El Proyecto 3 no solo cumplió con los objetivos iniciales, sino que también destacó como un ejemplo de diseño y desarrollo de software centrado en el usuario. Las mejoras implementadas y las lecciones aprendidas servirán como base para proyectos futuros, fortaleciendo las habilidades técnicas y de diseño del equipo de trabajo. Este esfuerzo refleja el compromiso con la innovación y la calidad en el desarrollo de soluciones tecnológicas.