Tecnoponta Treinamentos

click para ser redirecionado (http://www.tecnoponta.com.br/)

(https://www.canaldaeletronica.com.br)

Coloque seu nome

Coloque seu e-mail

Se cadastre aqui 产

Medições em componentes eletrônicos parte 5

🗎 24/03/2016 💄 Prof. José Carlos (https://www.canaldaeletronica.com.br/author/jose-Eletrônica (https://www.canaldaeletronica.com.br/category/sem-categoria/)

TWITTER HTTP://WWW.FACEBOOKTOPS///TWITTER.COMWHATSAPP://SEND?TEXT=MEDIÇÕES SHARER.PHP?U=HTTPS: /INTENT EM //WWW.CANALDAELETROMICATOLOMU.BIRTTPS: COMPONENTES //MEDICOES-EM- //WWW.CANALDAELETROMICAROMICOB

/MEDICOES-EM-COMPONENTES-ELETRONICOS-PARTE-5/& TEXT=MEDIÇÕES EM COMPONENTES PARTE 5 HTTPS://WWW.CANALDAELETRONICA.COM.BR
/MEDICOES-EMCOMPONENTESELETRONICOSPARTE-5/)

Nos **resistores SMD** ou **the model GPS** em superfície a sua codificação é muito similar ao resistor THT ou PTH, sera encontrado resistores de 3 (três) dígitos ou 4 (quatro) dígitos, sendo que sempre o ultimo digito sera o fator de multiplicação (expoente de 10) ou seja a quantidades de zeros que sera acrescentado a dezena ou a centena. Veja o exemplo:

Resistores SMD

122	1°Valor=1° número 2°Valor=2° número 3°Valor=Multiplicador	Neste exemplo o resistor tem um valor de: 1200 ohms = 1K2
1R6	1°Valor=1° número O "R" indica virgula 3°Valor=2° número	Neste exemplo o resistor tem o valor de: 1,6 ohms
R22	" R " indica " 0. " 2º Valor = 2º número 3ª Valor = 3º número	Neste exemplo o resistor tem o valor de: 0.22 ohms

Os **resistores SMD** com tolerância padrão são marcadas com um simples código de 3 (três) dígitos . Os dois primeiros números indicam os algarismos significativos, o terceiro é o expoente de dez, ou seja, os dois primeiros algarismos significativos devem ser multiplicados pelo o último que é um expoente de 10. Resistores com menos de 10 ohms não têm multiplicador, a letra "R" é utilizado em vez da indicação do ponto decimal.

Exemplos de código de 3 dígitos:

220 = 22 x 10
0
 (1) = 22Ω (não 220Ω)

471 = 47 × 10
1
 (10) = 470 Ω

102 = 10 x 10
2
 (100) = 1000Ω ou 1k 3R3 = 3.3Ω

Código com quatro dígitos

O código de 4 dígitos é utilizado para a marcação de montagem em superfície para resistores de precisão. É semelhante ao sistema anterior, a única diferença é o número de dígitos significativos: os primeiros três números sãos os dígitos significativos, e o quarto será o multiplicador, indicando a potência de dez em que os três dígitos significativos (a centena) devem ser multiplicados (ou quantos zeros para adicionar). Resistores de menos do que 100 ohms são marcados com a ajuda da letras 'R', que indica a posição do ponto decimal.

Exemplos de código de 4 dígitos:

4700 = 470 × 10 0 (1) = 470Ω (não 4700Ω)

2001 = $200 \times 10^{-1} (10) = 2000\Omega$ ou $2k\Omega$

1002 = 100 × 10 2 (100) = 10000Ω ou 10k

15R0 = 15.0Ω

Código EIA-96 smd marking method

Em alguns resistores aparece o código composto por três dígitos sendo o ultimo digito uma letra. O valor do resistor é definido pelos dois primeiros códigos em comparação com a tabela abaixo, o terceiro digito (letra) define o multiplicador.

CODE	SIG FIGS						
01	100	25	178	49	316	73	562
02	102	26	182	50	324	74	576
03	105	27	187	51	332	75	590
04	107	28	191	52	340	76	604
05	110	29	196	53	348	77	619
06	113	30	200	54	357	78	634
07	115	31	205	55	365	79	649
08	118	32	210	56	374	80	665
09	121	33	215	57	383	81	681
10	124	34	221	58	392	82	698
11	127	35	226	59	402	83	715
12	130	36	232	60	412	84	732

	100						, 52
13	133	37	237	61	422	85	750
14	137	38	243	62	432	86	768
15	140	39	249	63	422	87	787
16	143	40	255	64	453	88	806
17	147	41	261	65	464	89	825
18	150	42	267	66	475	90	845
19	154	43	274	67	487	91	866
20	158	44	280	68	499	92	887
21	162	45	287	69	511	93	909
22	165	46	294	70	523	94	931
23	169	47	301	71	536	95	953
24	174	48	309	72	549	96	976

O Terceiro digito serve de multiplicador.

CODE	MULTIPLIER
z	0.001
Y or R	0.01
X or S	0.1
Α	1
B or H	10
С	100
D	1 000
Е	10 000
F	100 000

Exemplos:

Um resistor identificado com **01B** tem o valor de **1000\Omega**, **74E** tem o valor de **5760000\Omega** (5,76M Ω).

	EJEMPLOS EIA-96
01Y	100 x 0,01 = 1 Ω
12X	$130 \times 0,1 = 13\Omega$
01A	$100 \times 1 = 100 \Omega$
18B	150 x 10 = 1,5K
30C	200 x 100 = 20K
52D	340 x 1000 = 340K

Para os **resistores SMD** de 2% e 5% de tolerância utiliza-se uma letra seguida de dois **n**úmeros. A letra é o multiplicador e segue a mesma tabela dos resistores SMD de 1%.

Já os dois dígitos seguintes tem seus valores correspondentes descritos na tabela abaixo:

	2	%		5%			
Código	Valor	Código	Valor	Código	Valor	Código	Valor
01	100	13	330	25	100	37	330
02	110	14	360	26	110	38	360
03	120	15	390	27	120	39	390
04	130	16	430	28	130	40	430
05	150	17	470	29	150	41	470
06	160	18	510	30	160	42	510
07	180	19	560	31	180	43	560
08	200	20	620	32	200	44	620
09	220	21	680	33	220	45	680
10	240	22	750	34	240	46	750
11	270	23	820	35	270	47	820
12	300	24	910	36	300	48	910

Fazendo a medição

A medição do resistor deve ser feita diretamente na placa de circuito com a utilização do multímetro na escala de ohm e invertendo-se o sentido das ponteiras, se a leitura em um dos sentidos for maior que o valor do resistor mais a sua tolerância o mesmo deverá ser substituído.

Potência dos Resistores SMD

A potencia de um resistor SMD e definida pelo seu tamanho e comprimento, expresso em milímetros.

Package	Dim. mm (L×A)	Potência
0201	0.6 mm × 0.3 mm	1/20W
0402	1.0 mm × 0.5 mm	1/16W
0603	1.6 mm × 0.8 mm	1/16W
0805	2.0 mm × 1.25 mm	1/10W
1206	3.2 mm × 1.6 mm	1/8W
1210	3.2 mm × 2.5 mm	1/4W

Prof. José Carlos

Coloque seu nome

Coloque seu e-mail

Se cadastre aqui 🏲

Prof. José Carlos (https://www.canaldaeletronica.com.br)

Professor e coordenador dos cursos de eletrônica na escola Tecnoponta em São Paulo, administrador do Site Canal da Eletrônica. Com formação em eletrônica e eletricidade com mais de 30 anos de experiência, dedica parte de seu tempo capacitando profissionais para atuar no mercado de trabalho.

Website: https://www.canaldaeletronica.com.br (https://www.canaldaeletronica.com.br)

(https://www.facebook.com/canaldaeletronica)

10 Comentários

MARCOS LECI STEFANI

Boa noite Prof.! Efetuando reparo em uma placa de tv, encontrei dois resistores queimados, não tendo os valores dos mesmos, recorri ao esquema! muito bem checando os valores, um marca 30j, e outro 68j! Procurei por informações, mas nada! o Sr., tem ideia destes códigos? Desde já agradeço! Abraço!

Responder

Prof. José Carlos (https://www.canaldaeletronica.com.br)

1 09/11/2018

Olá Marcos, tudo bem?

Desculpe-me pela demora em responder sua pergunta!

Resistores SMD com dois números seguidos de uma letra em seu "corpo" usa um código especial chamado EIA-96 e que não possui a letra "J", porem onde você viu foi no esquema do televisor nesse caso o "J" é a tolerância, observe na tabela de código de cores que a coluna da tolerância pode também ser representada por letras (J=5%).

Abraço Prof.José Carlos

Abraão J.Ferreira (http://abraaoferreira.com.br)

15/05/2018

Desculpe o inconveniente mais observei um pequeno erro na tabela de código EIA-96 code "63" esta "422" valor que corresponde ao code "61" no caso o code "63" seria 442.

Prof. José Carlos (https://www.canaldaeletronica.com.br)

23/05/2018

Ola Abraão!

Você tem toda razão existe um erro de digitação que sera prontamente corrigido.

Continue acompanhando o canal da eletrônica!

Um grande abraço.

Prof. José Carlos.

• Responder

rodrigo

17/12/2017

Showw!!

Responder

Prof. José Carlos (https://www.canaldaeletronica.com.br)

Olá Rodrigo!

Continue acompanhando o canal da eletrônica.

Abraço!

Prof. José Carlos.

Marcos Araujo

Gostei muito de todas as aulas, não vejo a hora das novas aulas!!!

Responder

Prof. José Carlos (https://www.canaldaeletronica.com.br)

21/01/2017

Ola Marcos tudo bem?

Fico contente que tenha gostado da aula. É um prazer enorme recebe-lo aqui no canal.

Um forte Abraço e até a próxima.

Prof. José Carlos.

Responder

02/08/2022 17:52 9 of 13

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

● Comentário	
Nome *	
Z E-mail *	
⊒ Website	

□ Salvar meus dados neste navegador para a próxima vez que eu comentar.

Esse site utiliza o Akismet para reduzir spam. Aprenda como seus dados de comentários são processados (https://akismet.com/privacy/).

Publicar Comentário

Sobre o Autor

Professor e coordenador dos cursos de eletrônica na escola Tecnoponta em São Paulo, administrador do Site Canal da Eletrônica. Com formação em eletrônica e eletricidade com mais de 30 anos de experiência, dedica parte de seu tempo capacitando profissionais para atuar no mercado de trabalho.

Click aqui e receba um e-Book grátis de-bonus/https://www.canaldaeletronica.com.br/pagina-

(http://afiliados.e-goi.com/home/aff/egoifaneHBH)

f (https://www.facebook.com/canaldaeletronica)

G+(https://plus.google.com/100940973452346770864)

(https://www.youtube.com/channel/UCxjJniw3CpT38kfwUmKySaw)

Buscar por:

Top Artigos

- Medições em componentes eletrônicos parte 1 (https://www.canaldaeletronica.com.br/medicoes-em-componentes-eletronicos-parte-1/)
- → Medições em componentes eletrônicos parte 2 (https://www.canaldaeletronica.com.br/medicoes-em-componentes-eletronicos-parte-2/)
- → Medições em componentes eletrônicos parte 3 (https://www.canaldaeletronica.com.br/medicoes-em-componentes-eletronicos-parte-3/)
- Medições em componentes eletrônicos parte 4 (https://www.canaldaeletronica.com.br/medicoes-em-componentes-eletronicos-parte-4/)
- Medições em componentes eletrônicos parte 5 (https://www.canaldaeletronica.com.br/medicoes-em-componentes-eletronicos-parte-5/)

Comentários

- Prof. José Carlos (https://www.canaldaeletronica.com.br) em Estrutura de um laboratório de eletrônica (https://www.canaldaeletronica.com.br/estrutura-de-um-laboratorio-de-eletronica /#comment-841)
- Helder em Estrutura de um laboratório de eletrônica (https://www.canaldaeletronica.com.br /estrutura-de-um-laboratorio-de-eletronica/#comment-809)
- Prof. José Carlos (https://www.canaldaeletronica.com.br) em Qual a diferença entre

- componentes elétricos e eletrônicos? (https://www.canaldaeletronica.com.br/qual-a-diferenca-entre-componentes-eletricos-e-eletronicos/#comment-319)
- Pricila em Qual a diferença entre componentes elétricos e eletrônicos?
 (https://www.canaldaeletronica.com.br/qual-a-diferenca-entre-componentes-eletricos-e-eletronicos/#comment-318)
- Prof. José Carlos (https://www.canaldaeletronica.com.br) em Fonte chaveada x Fonte linear vantagem e desvantagem (https://www.canaldaeletronica.com.br/fonte-chaveada-x-fonte-linear-vantagem-e-desvantagem/#comment-186)

Arquivos

Selecionar o mês 🔻 os direitos reservados ao Canal da Eletrônica - Prof. José Carlos