

$ au_{1}^{\#2}$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#2}$ α $t_1^{\#1}$ α $t_1^{\#2}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{2}{k^2 \left(r_3 + 2 r_5\right)}$	0	0	0
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 (2 r_3 + r_5)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{i \sqrt{2}}{k (1 + k^2) (2 r_3 + r_5)}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha^{eta}$	$ au_1^{\#1} + ^{lphaeta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

$f_{1^-}^{\#2}$	0	0	0	0	0	0	0
$f_{1^-}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^-}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{2}k^{2}(r_{3}+2r_{5})$	0	0	0
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<i>ikt</i> 2 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#2}{}_+\alpha\beta$	$\frac{\sqrt{2} t_2}{3}$	t 2 3	$-\frac{1}{3}ikt_2$	0	0	0	0
$\omega_1^{\#1}_{+\alpha\beta}$	2 (2		$-rac{1}{3}$ i $\sqrt{2}$ kt ₂	0	0	0	0
·	$\omega_1^{#1} +^{\alpha\beta}$	$\omega_1^{#2} + \alpha^{\beta}$	$f_1^{\#1} + \alpha \beta$	$\omega_{1}^{\#_1} \dagger^\alpha$	$\omega_1^{\#2} +^{\alpha}$	$f_{1}^{\#1} \dagger^{lpha}$	$f_1^{\#2} + \alpha$

 \sim

 $\tau_{1}^{\#2\alpha} == 0$

 $\sigma_{0}^{\#1} == 0$

Source constraints

SO(3) irreps

 $\tau_{0}^{\#1} == 0$

 $\tau_{0}^{\#2} == 0$

 \sim

 $\tau_{1}^{\#1}{}^{\alpha} == 0$

3

 $\sigma_1^{\#2\alpha} == 0$

 $^{\circ}$

 $\tau_1^{\#1}{}^{\alpha\beta} + ik \ \sigma_1^{\#2}{}^{\alpha\beta} == 0$

2

 $\sigma_{2}^{\#1}\alpha\beta\chi$ == 0

 $\tau_2^{\#1}\alpha\beta==0$

Total #:

0

0

0

0

0

 $\sigma_{2}^{\#1} + ^{\alpha \beta \chi}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	$-\frac{3k^2r_3}{2}$	0	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1}\dagger^{lphaeta\chi}$	0	0	0

?	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Quadratic pole Pole residue: Polarisations: 2	Pole residue: - Polarisations: 1 Square mass: - Spin: 0 Parity: C
e $-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)\rho^2} > 0$ 2	$-\frac{1}{2} > 0$ $-\frac{1}{2} > 0$ $-\frac{1}{2} > 0$ Odd

Unitarity conditions

 $r_2 < 0 \&\& r_3 < 0 \&\& r_5 < -\frac{r_3}{2} \&\& t_2 > 0 || r_2 < 0 \&\& r_3 < 0 \&\& r_5 > -2 r_3 \&\& t_2 > 0 ||$ $r_2 < 0 \&\& r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2} \&\& t_2 > 0$