Math 381H Test 2

Sara Patricia Huston

TOTAL POINTS

83 / 86

QUESTION 1

1 cardinality of power set 6 / 6

√ - 0 pts

![p1.jpeg](/files/5e8caec3-cb9f-44cc-9a78beb5785e4116)Correct

- 3 pts see solution key
- **0 pts** ok
- 1.5 pts see solution key

QUESTION 2

2 fewest number of edges 6 / 6

√ - 0 pts

![p3.jpg](/files/93f58797-7259-4776-85e3b1249261c01f)

![p2.jpeg](/files/f1e26c5d-8648-4054-800bf61bad6fcb6d)Correct

- 3 pts ex[plain your answer
- 6 pts see solution key
- 3 pts Click here to replace this description.

QUESTION 3

3 complete digraph 6/6

√ - 0 pts

![p3.jpeg](/files/2733b085-b062-47b3-a23c-

82ae4a628a3f)Correct

- 0.5 pts see solution key
- 2 pts see solution key
- 3 pts see solution key
- 6 pts see solution key
- 4 pts see solution key
- 1.5 pts see solution key

QUESTION 4

4 solve congruence 10 / 10

√ - 0 pts

![p4.jpeg](/files/b6a70283-5cd8-4f34-9476-4d8c7de02e91)Correct

- **5 pts** see solution key
- 10 pts see solution key
- 0.5 pts see solution key
- 7 pts see solution key
- 0.5 pts see solution key

QUESTION 5

5 determine inverse 10 / 10

√ - 0 pts

![p5.jpeg](/files/be1a0e92-9b28-4d9a-b866-0fd50eb6d81a)Correct

- **0.5 pts** see solution key
- 10 pts see solution key

QUESTION 6

6 True/False 6 / 6

√ - 0 pts

![p6.jpeg](/files/92364bb5-40e4-43f9-8fb0-8ce168aba8d8)Correct

- 3 pts see solution key
- **5 pts** see solution key
- 6 pts see solution key
- 2 pts see solution key
- 4 pts see solution key
- 1 pts see solution key

QUESTION 7

7 determine elements is equivalence class 6 / 6

√ - 0 pts

![p7.jpeg](/files/6e51d69b-30de-4c42-a89b-33bce55b85aa)Correct

- 2 pts see solution key
- 3 pts see solution key
- 6 pts see solution key
- 1 pts see solution key

QUESTION 8

8 choose relation 6 / 6

√ - 0 pts

![p8.jpeg](/files/61f7c078-6101-493a-85d4-80027cc9e510)Correct

- 3 pts see solution key

- 6 pts explain

QUESTION 9

9 divisible by 15 proof 12 / 15

√ - 0 pts

![p9.jpeg](/files/0f257c38-37d9-4fec-be98-

04938cac66cd)Correct

- 11 pts see solution key
- 7.5 pts see solution key
- $\sqrt{-3}$ pts see solution key
 - 5 pts see solution key
 - 6 pts see solution key
 - 9 pts see solution key
 - 8 pts see solution key
 - 10 pts see solution key
 - 7 pts see solution key
 - 0.25 pts see solution key

QUESTION 10

10 Z mod n proof 15 / 15

√ - 0 pts

![p10.jpeg](/files/224d9d62-5048-469b-b5ac-c3a22a3f5c73)Correct

- 3 pts see solution key
- 0.25 pts see solution key
- 6 pts see solution key
- 0.5 pts see solution key
- 10 pts see solution key
- 15 pts see solution key

Print Name Sava Huston

UNC email savahust@ad.unc

- 1. There are 8 questions on the test, worth a total of 80 points.
- 2. No credit will be given for correct answers without supporting work and/or explanation.
- Final answers must be clearly indicated. All supporting work must be legible and shown on these test pages.
- 4. All proofs must be written using correct notation and complete sentences where appropriate.
- 5. You may use a calculator.

I have neither given nor received any unauthorized help on this test, and I have conducted myself within the guidelines of the University Honor Code.

Pledge: (signature)

1. Let set $C = A \cup B$, with |A| = 42, |B| = 15, and $|A \cap B| = 6$.

Determine the cardinality of the power se o C. No need to simplify your answer.

6 points

(i) Determine the fewest number of edges that must be added to the digraph so that S is transitive on set A. Explain your answer.

Note: For this problem, use the following format.

transitive: must be loops at both ends if \leftrightarrow i.e, from and art, ara and frf

(ii) Complete the digraph below so that it illustrates the correct answer from part (i).

5. Let set A = $\{4,5,6,7,8,9,10,11\}$ Consider the equivalence R: $A \rightarrow A$ relation defined as follows.

For all $m,n \in A$, mRn means that \mathbb{Z}_m and \mathbb{Z}_n contain the same number of invertible elements. To be invertible, must be examine the elements of set A that are in the equivalence class [5] Revine to

Determine the elements of set A that are in the equivalence class $[5]_R$

You must show correct supporting work.

2,4,6

316

2,4,5,6,8

 $[5]_R = \{5, 8, 10\}$

prime = n-1

11-1=10

need (c,c)

6 points

6. Consider the set $S = \{a,b,c\}$. Choose the relations on S that are symmetric and transitive, but NOT reflexive. Explain your answer.

Relation I

Relation II

O Tonly

O II only

O I and II

(Both): NOT reflexive: NO civiles on all points

symmetric: arrows go both ways: relation 1 (x) relation 11(x)

transitive: double arrow needs two loops around both points (x) relation and relation 2

7. Let $n \in \mathbb{Z}$, with n > 0. Use **modular arithmetic** to prove the given statement.

If *n* is odd, then $4^n + 5^n + 6^n$ is divisible by 15.

Show: 4"+5"+6"

Your proof must use correct notation and complete sentences.

You may **NOT** use an induction proof.

n = 1 (mod 2)

means:

odd

n=2k+) for some k & Z

13K+1 + 2 + P SK+1 (mod 12)

- (42) - 4 + 25 -5 (62) - 6

= 16 (mod 15) = 10 k (mod 15) = 6 k (mod 15)

4 + 10 0 05 + 6 0 0 b = 10(mod 13) = 6(mod K)

4 + 10.5 + 6.6

4 + 50 + 36

= 90 = 0 (mod 13)

thus, 155 = 4" +5" +6"

i.e, divisible by 15

266 SCLOD MONK TON

acaver rension.

8. Let w, t, n_1 , n_2 be positive integers, with $gcd(n_1, n_2) = d$. Prove the given statement.

If
$$w \pmod{n_1} \equiv t \pmod{n_2}$$
, then $w \equiv t \pmod{d}$.

```
If n is odd, then yn + 5n + 6n is divisible
   by 15.
odd means:
    n=1(mod 2)
    N= SK+1 ton some RES
      42K+1 + 52K+1 + 62K+1
   = (4^2)^k \cdot 4 + (5^2)^k \cdot 5 + (6^2)^k \cdot 6
   = 16 04 + 25 05 + 36 06 (mod 15)
     = 1 (mod u) = 10 (mod 15) + = 6 (mod 15)
= 1 (mod u) = 10 (mod 15) = 6 (mod 15)
        = 4 + 10.5 + 6.6
           4 + 50 + 36
= 5 (mod 15) = 6 (mod 15)
            15 =0 (mod 15)
8. = W (modni) = + (modnz)
     gcd (n, n2) = d
     i.e, n,=dk nz=ds for some
                                    V,SEZ
   M+ EN = F+ th
                            for some
   W + tak = t + fas
                                 +1+ 22
      W-t= fds-tdk
       M-F = 9(t2-fK)
        W-t = dR
              i.e, WEt (mod d)
```

3. i)
$$18x = 11 \pmod{101}$$
 $18x = -90 \pmod{101}$
 $gcd(101,18) = 1$
 $x = -5 \pmod{101}$
 $x = 9b \pmod{101}$
 $x = 101 k + 9b$

for some $k \in \mathbb{Z}$

(neck:

 $18 \cdot 9b = 1728 = 11 \pmod{101}$

4. False

 $x = 4 \quad n = 9$
 $y = 5$
 $4x = 1 \pmod{9}$
 $x = -2$
 $4 \cdot -2 = -8 = 1 \pmod{9}$
 $1.e. \quad y \text{ is invertible in}$
 $29 \pmod{4,9} = 1$
 $5x = 1 \pmod{9}$
 $x = 2$
 $5 \cdot 2 = 10 = 1 \pmod{9}$

1.e, 5 is invertible

q is NOT inventibue

in 2 bc gcd (9,9)= 9 ≠1

in 29 (gcd 5,9)

x+4 is 4+5=9

3. i	1x (41	d			
	t	Ó	101			
	O	l	18	5		
***************************************	١	-5	11	١		
-	0-1-1	1+5.1	٦	1		
4044	1 +1.1	-3-01	닉	١		
,	-1-5.1	6+11.1	3	1		
**	218.1	-11-121	1		mentament iz zilo kirinanga	
101=18.5+11						
18=11.1+7						
11=7-1+4						
7=4-1+3						
4=3-1+1						
3=1.3+0						
5 (101) + 18(-28)= 1						
=0(wad 101) =(101) + 18 (-58) = 1 (wad 10)						
18(-58)=1(wad 101)						
18-1=-58 (wod 101)						
18-1 = 73 (mod 101)						
	18-1	in.	Z101	=(-	13)	

Soura