Α

Major Project

On

TWEETS CATEGORIZATION AND COMPARISON OF RESULTS USING MACHINE LEARNING MODELS

(Submitted in partial fulfillment of the requirements for the award of Degree)

BACHELOR OF TECHNOLOGY

In

COMPUTER SCIENCE AND ENGINEERING

By

MUDASSAR AHMED KHAN (197R1A0593)

MD ABDUL RAHMAN (207R5A0511)

MD.VAHEED (197R1A0591)

Under the Guidance of

K.PRAVEEN KUMAR

(Assistant Professor)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

(Accredited by NAAC, NBA, Permanently Affiliated to JNTUH, Approved by AICTE, New Delhi) Recognized Under Section 2(f) & 12(B) of the UGCAct.1956, Kandlakoya (V),

Medchal Road, Hyderabad-501401.

2019-2023

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

This is to certify that the project entitled "TWEETS CATEGORIZATION AND COMPARISON OF RESULTS USING MACHINE LEARNING MODELS" being submitted by MUDASSAR AHMED KHAN(197R1A0593),MD ABDUL RAHMAN(207R5A0511) & MD.VAHEED(197R1A0591) in partial fulfillment of the requirements for the award of the degree of B.Tech in Computer Science and Engineering to the Jawaharlal Nehru Technological University Hyderabad, is a record of bonafide work carried out by them under our guidance and supervision during the year 2022-23.

The results embodied in this thesis have not been submitted to any other University or Institute for the award of any degree or diploma.

K.PRAVEEN KUMAR (Assistant Professor) INTERNAL GUIDE **Dr.A. Raji Reddy**DIRECTOR

Dr. K. Srujan Raju HOD **EXTERNAL EXAMINER**

Submitted for viva voce Examination held on

ACKNOWLEDGEMENT

Apart from the efforts of us, the success of any project depends largely on the encouragement and guidelines of many others. We take this opportunity to express our gratitude to the people who have been instrumental in the successful completion of this project.

We take this opportunity to express my profound gratitude and deep regard to my guide K. **Praveen Kumar**, Associate Professor for his exemplary guidance, monitoring, and constant encouragement throughout the project work. The blessing, help, and advice given by him shall carry us a long way in the journey of life on which we are about to embark.

We also take this opportunity to express a deep sense of gratitude to the Project Review Committee (PRC) **Dr. Punyaban Patel, Ms. K. Shilpa, Dr. T. Subha Mastan Rao & J. Narasimharao** for their cordial support, valuable information and guidance, which helped us in completing this task through various stages.

We are also thankful to **Dr. K. Srujan Raju**, Head of the Department of Computer Science and Engineering, **Dr. Ashuthosh Saxena**, Dean R&D, and **Dr. D T V Dharmajee Rao**, Dean Academics for providing encouragement and support for completing this project successfully.

We are obliged to **Dr. A. Raji Reddy**, Director for being cooperative throughout the course of this project. We also express our sincere gratitude to Sri. **Ch. Gopal Reddy**, Chairman for providing excellent infrastructure and a nice atmosphere throughout the course of this project.

The guidance and support received from all the members of **CMR Technical Campus** contributed to the completion of the project. We are grateful for their constant support and help.

Finally, we would like to take this opportunity to thank our family for their constant encouragement, without which this assignment would not be completed. We sincerely acknowledge and thank all those who gave support directly and indirectly in the completion of this project.

MUDASSAR AHMED KHAN (197R1A0593)
MD ABDUL RAHMAN (207R5A0511)
MD.VAHEED (197R1A0591)

ABSTRACT

In recent years, research on Twitter sentiment analysis, which analyzes Twitter data (tweets) to extract user sentiments about a topic, has grown rapidly. Many researchers prefer the use of machine learning algorithms for such analysis. This study aims to perform a detailed sentiment analysis of tweets based on ordinal regression using machine learning techniques. The proposed approach consists of first pre-processing tweets and using a feature extraction method that creates an efficient feature. Then, under several classes, these features scoring and balancing. Multinomial logistic regression (SoftMax), Support Vector Regression (SVR), Decision Trees (DTs), and Random Forest (RF) algorithms are used for sentiment analysis classification in the proposed framework. For the actual implementation of this system, a twitter dataset publicly made available by the NLTK corpora resources is used. Experimental findings reveal that the proposed approach can detect ordinal regression using machine learning methods with good accuracy. Moreover, results indicate that Decision Trees obtain the best results outperforming all the other algorithms.

LIST OF FIGURES/TABLES

FIGURE NO	FIGURE NAME	PAGE NO
Figure 4.1	Project Architecture for classifying the sentimental analysis of tweets.	12
Figure 4.3	Use Case Diagram for classifying the sentimental analysis of tweets	14
Figure 4.4	Class Diagram for classifying the sentimental analysis of tweets	15
Figure 4.5	Sequence diagram for classifying the sentimental analysis of tweets	16
Figure 4.6	Activity diagram for classifying the sentimental analysis of tweets	17

LIST OF SCREENSHOTS

SCREENSHOT NO	SCREENSHOT NAME	PAGE NO
Screenshot 6.1	Load NLTK Datasets	25
Screenshot 6.2	Read NLTK Tweets Data	25
Screenshot 6.3	Run SVR Algorithm	26
Screenshot 6.4	Run Random Forest Algorithm	26
Screenshot 6.5	Run Decision Tree Algorithm	27
Screenshot 6.6	Detect Sentiment Type	27
Screenshot 6.7	Screen uploading test tweets file	28
Screenshot 6.8	Prediction results	28
Screenshot 6.9	Accuracy graph	29

TABLE OF CONTENTS

ABSTR	RACT		i
LIST O	F FIG	GURES/TABLES	ii
LIST OF SCREENSHOTS		iii	
1.	INTE	RODUCTION	1
	5.1.	Project Scope	2
	5.2.	Project Purpose	2
	5.3.	Project Features	2
2.	LITI	ERATURE SURVEY	3
3.	SYS'	TEM ANALYSIS	6
	3.1.	Introduction	6
	3.2.	Problem Definition	6
	3.3.	Existing System	6
		3.3.1 Disadvantages of the Existing System	7
	3.4.	Proposed System	7
		3.4.1 Advantages Of Proposed System	7
	3.5.	Feasibility Study	7
		3.5.1 Economic Feasibility	8
		3.5.2 Technical Feasibility	8
		3.5.3 Social Feasibility	8
	3.6	Hardware And Software Requirements	9
		3.6.1 Hardware Requirements	9
		3.6.2 Software Requirements	9
	3.7	Algorithms	9
		3.7.1 Decision Tree Algorithm	9
		3.7.2 Support Vector Machine Algorithm	10
		3.7.3 Random Forest	10

	3.8	Software Requirement Specifications	10
		3.8.1 Functional Requirements	10
		3.8.2 Non Functional Requiremen	ts 10
4.	ARC	CHITECTURE	12
	4.1.	Project Architecture	12
	4.2.	Project Description	12
	4.3.	Use Case Diagram	14
	4.4.	Class Diagram	15
	4.5.	Sequence Diagram	16
	4.6.	Activity Diagram	17
5.	IMP	PLEMENTATION	18
	5.1.	Source Code	18
6.	RES	SULTS	25
7.	TES	STING	30
	7.1.	Introduction To Testing	30
		7.1.1. Unit Testing	30
		7.1.2. Integration Testing	30
		7.1.3. Functional Testing	31
	7.2.	Test Cases	32
8.	CON	NCLUSION & FUTURE SCOPE	33
	8.1.	Project Conclusion	33
	8.2.	Future Scope	33
9.	BIBI	LIOGRAPHY	34
	9.1.	References	34
	9.2.	Github Link	35
10.	PAI	PER PUBLICATION	36
11.	CER	TIFICATES	43

1. INTRODUCTION

,

2.LITERATURE SURVEY

3. SYSTEM ANALYSIS

4. ARCHITECTURE

5.IMPLEMENTATION

8.CONCLUSION	

9.BIBLIOGRAPHY

10.PAPER PUBLICATION

11.CERTIFICATES