CLAIMS

5

1. A combination comprising one or more products which activate dopaminergic neurotransmission in the brain and of one or more CB1 antagonist azetidine derivatives of formula I:

wherein

either A:

10 R is CR_1R_2 , $C=C(R_5)SO_2R_6$ or $C=C(R_7)SO_2$ alk; wherein either R_1 is hydrogen and R_2 is $-C(R_8)(R_9)(R_{10})$, $-C(R_8)(R_{11})(R_{12})$, $-CO-NR_{13}R_{14}$, $-CH_2-CO-NR_{13}R_{14}$, $-CH_2-CO-R_6$, $-CO-R_6$, $-CO-R_6$ cycloalkyl, $-SO-R_6$, $-SO_2-R_6$, $-C(OH)(R_{12})(R_6)$, 15 $-C(OH)(R_6)(alkyl), -C(=NOalk)R_6,$ $-C = NO - CH_2 - CH = CH_2 R_6$, $-CH_2 - CH (R_6) NR_{31}R_{32}$, $-CH_2 - CH_2 - CH_3 - C$ $C(=NOalk)R_6$, $-CH(R_6)NR_{31}R_{32}$, $-CH(R_6)NHSO_2alk$, -CH(R₆)NHCONHalk or -CH(R₆)NHCOalk; or R_1 is alkyl, NH- R_{15} , cyano, -S-alk- $NR_{16}R_{17}$, 20 $-CH_2-NR_{18}R_{19}$ or $-NR_{20}R_{21}$; and R_2 is $-C(R_8)(R_{11})(R_{12})$; R₃ and R₄, which are identical or different, independently are either alkyl, cycloalkyl, aryl chosen from phenyl, naphthyl or indenyl, 25 wherein aryl being unsubstituted or substituted by one or more halogen, alkyl, alkoxy, formyl, hydroxyl, trifluoromethyl, trifluoromethoxy, -CO-alk, cyano, -COOH, -COOalk, -CONR₂₂R₂₃, -CO-NH-NR₂₄R₂₅, 30 alkylsulfanyl, alkylsulfinyl, alkylsulfonyl,

alkylsulfanylalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, hydroxyalkyl or -alk-NR₂₄R₂₅; or heteroaryl chosen from benzofuryl, benzothiazolyl, benzothienyl, benzoxazolyl, chromanyl, 2,3-dihydroxybenzofuryl, 5 2,3-dihydrobenzothienyl, furyl, imidazolyl, isochromanyl, isoquinolyl, pyrrolyl, pyridyl, pyrimidinyl, quinolyl, 1,2,3,4tetrahydroisoquinolyl, thiazolyl and thienyl, 10 wherein heteroaryl is unsubstituted or substituted by one or more halogen, alkyl, alkoxy, hydroxyl, trifluoromethyl, trifluoromethoxy, cyano, -COOH, -COOalk, $-CO-NH-NR_{24}R_{25}$, $-CONR_{22}R_{23}$, $-alk-NR_{24}R_{25}$, alkylsulfanyl, alkylsulfinyl, alkylsulfonyl, 15 alkylsulfanylalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl or hydroxyalkyl; R₅ is hydrogen or alkyl; R_6 is Ar_1 or Het_1 ; 20 R7 is cycloalkyl, heterocycloalkyl or heterocyclenyl optionally substituted by -CSO-phenyl; R₈ is hydrogen or alkyl; R_9 is -CO-NR₂₆R₂₇, -COOH, -COOalk, -CH₂OH, 25 -NH-CO-NH-alk, -CH₂-NHR₂₈ or -NHCOOalk; R_{10} is Ar_1 or Het_1 ; R_{11} is $-SO_2$ -alk, $-SO_2$ -Ar₁ or $-SO_2$ -Het₁; R_{12} is hydrogen, Ar_1 or Het_1 ; R₁₃ is hydrogen or alkyl; 30 R₁₄ is Ar₁, Het₁, -alk-Ar₁ or -alk-Het₁; R₁₅ is alkyl, cycloalkyl or -alk-NR₂₉R₃₀; R_{16} and R_{17} , which are identical or different, independently are either hydrogen or alkyl; or

15

20

25

30

R₁₆ and R₁₇ taken together with the nitrogen atom to which they are attached form a saturated or unsaturated 3 to 10 ring membered mono- or 5 to 10 ring membered bicyclic heterocycle, optionally comprising one or more other heteroatoms chosen from oxygen, sulfur and nitrogen and optionally substituted by one or more alky1;

R₁₈ is hydrogen or alkyl;

- 10 R₁₉ is hydrogen, alkyl, cycloalkyl, cycloalkylalkyl, cycloalkylcarbonyl, -SO₂alk, -CO-NHalk or -COOalk; or
 - R₁₈ and R₁₉ taken with the nitrogen atom to which they are attached form a saturated or unsaturated 3 to 10 ring membered mono- or 5 to 10 ring membered bicyclic heterocycle, optionally comprising one or more heteroatoms chosen from oxygen, sulfur and nitrogen and optionally substituted by one or more alkyl;
 - -NR₂₀R₂₁ is a saturated or unsaturated monocyclic heterocycle having 3 to 8 ring members and optionally comprising another heteroatom chosen from oxygen, nitrogen and sulfur;
 - R_{22} and R_{23} , which are identical or different, independently are hydrogen or alkyl; or
 - R₂₂ and R₂₃ taken together with the nitrogen atom to which they are attached form a saturated mono- or bicyclic heterocycle having 3 to 10 ring members optionally comprising another heteroatom chosen from oxygen, sulfur and nitrogen and optionally being substituted by one more alkyl;
 - R₂₄ and R₂₅, which are identical or different, independently are hydrogen, alkyl, -COOalk,

cycloalkyl, alkylcycloalkyl, -alk-O-alk or hydroxyalkyl; or R_{24} and R_{25} taken together with the nitrogen atom to which they are attached form a saturated or 5 unsaturated and mono- or bicyclic heterocycle having 3 to 10 ring members optionally comprising another heteroatom chosen from oxygen, sulfur and nitrogen and optionally being substituted by one or more alkyl, 10 -COalk, -COOalk, -CO-NHalk, -CS-NHalk, oxo, hydroxyalkyl, -alk-O-alk or -CO-NH2; R_{26} and R_{27} , which are identical or different, independently are hydrogen, alkyl, hydroxyalkyl, cycloalkyl, cycloalkylalkyl, 15 -alk-COOalk, -alk-Ar₁, alk-Het₁, Het₁ or alk-N(alk)2; or R_{26} and R_{27} taken together with the nitrogen atom to which they are attached form a saturated or unsaturated and mono- or bicyclic heterocycle 20 having 3 to 10 ring members and optionally comprising one or more heteroatoms chosen from oxygen, sulfur and nitrogen and optionally substituted by one or more alkyl, alkoxy or halogen; 25 R₂₈ is -CH₂-alk, benzyl, -SO₂alk, -CONHalk, -COalk, cycloalkylalkylcarbonyl, cycloalkylcarbonyl or -CO-(CH₂)_nOH, wherein n is an integer from 1 to 3; R_{29} and R_{30} , which are identical or different, 30 independently are hydrogen or alkyl; or R₂₉ and R₃₀ taken together with the nitrogen atom to which they are attached form a saturated mono- or bicyclic heterocycle having 3 to 10 ring members optionally comprising another 35 heteroatom chosen from oxygen, sulfur and

nitrogen and optionally being substituted by one or more alkyl radicals; R_{31} and R_{32} , which are identical or different, independently are hydrogen, alkyl, Ar₁ or 5 -alk-Ar₁; or R_{31} and R_{32} taken together with the nitrogen atom to which they are attached form a heterocycle chosen from aziridinyl, azetidinyl, pyrrolidinyl and piperidinyl; 10 Ar₁ is phenyl or naphthyl optionally substituted by one or more substituents chosen from halogen, alkyl, alkoxy, -CO-alk, cyano, -COOH, -COOalk, -CONR₂₂R₂₃, -CO-NH-NR₂₄R₂₅, alkylsulfanyl, alkylsulfinyl, alkylsulfonyl, 15 alkylsulfanylalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, hydroxyalkyl, -alk-NR₂₄R₂₅, -NR₂₄R₂₅, alkylthioalkyl, formyl, hydroxyl, CF₃, OCF₃, Het₁, O-alk-NH-cycloalkyl or SO₂NH₂; Het1 is a saturated or unsaturated and mono- or 20 bicyclic heterocycle having 3 to 10 ring members and comprising one or more heteroatoms chosen from oxygen, sulfur and nitrogen and optionally substituted by one or more halogen, alkyl, alkoxy, alkoxycarbonyl, 25 $-CONR_{22}R_{23}$, hydroxyl, hydroxyalkyl, oxo or SO₂NH₂; or B: wherein R is CHR₃₃; wherein R_{33} is $-NHCOR_{34}$ or $-N(R_{35})-Y-R_{36}$; 30 Y is CO or SO2; R₃ and R₄, which are identical or different, are either aryl chosen from phenyl, naphthyl and indenyl, wherein aryl being unsubstituted or substituted by one or more halogen, alkyl, 35 alkoxy, formyl, hydroxyl, trifluoromethyl,

trifluoromethoxy, -CO-alk, cyano, -COOH, -COOalk, -CONR₃₇R₃₈, -CO-NH-NR₃₉R₄₀, alkylsulfanyl, alkylsulfinyl, alkylsulfonyl, alkylsulfanylalkyl, alkylsulfinylalkyl, 5 alkylsulfonylalkyl, hydroxyalkyl or -alk-NR₃₇R₃₈; or heteroaryl chosen from benzofuryl, benzothiazolyl, benzothienyl, benzoxazolyl, chromanyl, 2,3-dihydrobenzofuryl, 2,3-dihydro-benzothienyl, pyrimidinyl, furyl, imidazolyl, isochromanyl, 10 isoquinolyl, pyrrolyl, pyridyl, quinolyl, 1,2,3,4-tetrahydroisoguinolyl, thiazolyl and thienyl, wherein heteroaryl being unsubstituted or substituted by halogen, 15 alkyl, alkoxy, hydroxyl, trifluoromethyl, trifluoromethoxy, cyano, -COOH, -COOalk, $-CO-NH-NR_{39}R_{40}$, $-CONR_{37}R_{38}$, $-alk-NR_{39}R_{40}$, alkylsulfanyl, alkylsulfinyl, alkylsulfonyl, alkylsulfanylalkyl, alkylsulfinylalkyl, 20 alkylsulfonylalkyl or hydroxyalkyl; R_{34} is -alk-SO₂-R₄₁, -alk-SO₂-CH=CH-R₄₁, Het₂ substituted by $-SO_2-R_{41}$ or phenyl substituted by $-SO_2-R_{41}$ or $-alk-SO_2-R_{41}$; R₃₅ is hydrogen or alkyl; 25 R₃₆ is phenylalkyl, Het₂ or Ar₂; R₃₇ and R₃₈, which are identical or different, independently are hydrogen or alkyl; or R₃₇ and R₃₈ taken together with the nitrogen atom to which they are attached form a saturated 30 mono- or bicyclic heterocycle having 3 to 10 ring members optionally comprising another heteroatom chosen from oxygen, sulfur and nitrogen and optionally being substituted by one or more alkyl;

30

35

- R₃₉ and R₄₀, which are identical or different, independently are hydrogen or alkyl, -COOalk, cycloalkyl, alkylcycloalkyl, -alk-O-alk or hydroxyalkyl; or
 R₃₉ and R₄₀ taken together with the nitrogen atom to
- R₃₉ and R₄₀ taken together with the nitrogen atom to which they are attached form a saturated or unsaturated and mono- or bicyclic heterocycle having 3 to 10 ring members optionally comprising another heteroatom chosen from oxygen, sulfur and nitrogen and optionally being substituted by one or more alkyl,

 -COalk, -COOalk, -CO-NHalk, -CS-NHalk, oxo, hydroxyalkyl, -alk-O-alk or -CO-NH₂;

R₄₁ is alkyl, Ar₂ or Het₂;

- Ar₂ is phenyl, naphthyl or indenyl radical, these radicals optionally being substituted by one or more halogen, alkyl, alkoxy, cyano, -CO-alk, -COOH, -COOalk, -CONR₄₂R₄₃, -CO-NH-NR₄₄R₄₅, alkylsulfanyl, alkylsulfinyl, alkylsulfonyl, -alk-NR₄₄R₄₅, -NR₄₄R₄₅, alkylthioalkyl, formyl, hydroxyl, hydroxyalkyl, Het₂, -O-alk-NH-cycloalkyl, OCF₃, CF₃, -NH-CO-alk, -SO₂NH₂, -HN-COCH₃, -NH-COOalk or Het₂ or else on two
 - adjacent carbon atoms by a dioxymethylene;
 Het2 is a saturated or unsaturated and mono- or
 bicyclic heterocycle having 3 to 10 ring
 members and comprising one or more
 heteroatoms chosen from oxygen, sulfur and
 nitrogen optionally substituted by one or
 more alkyl, alkoxy, vinyl, halogen,
 alkoxycarbonyl, oxo, hydroxyl, OCF3 or CF3,
 the nitrogenous heterocycles optionally being
 in their N-oxidized form;
 - R_{42} and R_{43} , which are identical or different, independently are hydrogen or alkyl; or

	R_{42} and R_{43} taken together with the nitrogen atom to
	which they are attached form a saturated
	mono- or bicyclic heterocycle having 3 to 10
	ring members optionally comprising another
5	heteroatom chosen from oxygen, sulfur and
	nitrogen and optionally being substituted by
	one or more alkyl;
	R_{44} and R_{45} , which are identical or different,
	independently are hydrogen, alkyl, -C00alk,
10	cycloalkyl, alkylcycloalkyl, -alk-0-alk or
	hydroxyalkyl; or
	$R_{44}\ \mbox{and}\ R_{45}$ taken together with the nitrogen atom to
	which they are attached form a saturated or
	unsaturated and mono- or bicyclic heterocycle
15	having 3 to 10 ring members optionally
	comprising another heteroatom chosen from
	oxygen, sulfur and nitrogen and optionally
	being substituted by one or more alkyl,
	-COalk, -COOalk, -CO-NHalk, -CS-NHalk, oxo,
20	hydroxyalkyl, -alk-O-alk or -CO-NH $_2$;
	or C: wherein
	R is CHR ₄₆ , wherein
	R_{46} is $-N(R_{47})R_{48}$, $-N(R_{47})-CO-R_{48}$ or $-N(R_{47})-SO_2R_{49}$;
	R_3 and R_4 , which are identical or different,
25	represent either an aryl chosen from phenyl,
	naphthyl and indenyl, wherein aryl being
	unsubstituted or substituted by one or more
	halogen, alkyl, alkoxy, formyl, hydroxyl,
	trifluoromethyl, trifluoromethoxy, -CO-alk,
30	cyano, -COOH, -COOalk, -CONR $_{50}$ R $_{51}$,
	-CO-NH-NR $_{52}$ R $_{53}$, alkylsulfanyl, alkylsulfinyl,
	alkylsulfonyl, alkylsulfanylalkyl,
	alkylsulfinylalkyl, alkylsulfonylalkyl,
	hydroxyalkyl or -alk-NR $_7$ R $_8$; or a heteroaryl
35	chosen from benzofuryl, benzothiazolyl,

benzothienyl, benzoxazolyl, chromanyl, 2,3dihydrobenzofuryl, 2,3-dihydrobenzothienyl, furyl, imidazolyl, isochromanyl, isoquinolyl, pyrrolyl, pyridyl, pyrimidyl, quinolyl, 5 1,2,3,4-tetrahydroisoquinolyl, thiazolyl and thienyl, wherein heteroaryl being unsubstituted or substituted by halogen, alkyl, alkoxy, hydroxyl, trifluoromethyl, trifluoromethoxy, cyano, -COOH, -COOalk, 10 $-CO-NH-NR_{52}R_{53}$, $-CONR_{50}R_{51}$, $-alk-NR_{52}R_{53}$, alkylsulfanyl, alkylsulfinyl, alkylsulfonyl, alkylsulfanylalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl or hydroxyalkyl; R_{47} is $-C(R_{54})(R_{55})-Het_3$, Het_3 , $-C(R_{54})(R_{55})-Ar_3$, Ar_3 , 15 cycloalkyl or norbornyl; R48 is hydrogen or hydroxyalkyl, -alk-COOalk, -alk-CONR₅₀R₅₁, -alk-NR₅₀R₅₁, alkoxy; Ar₃, Het₃, -CH₂Ar₃, -CH₂Het₃ or alkyl, optionally substituted with one or more halogen; 20 R₄₉ is hydroxyalkyl, -alk-COOalk, -alk-CONR₅₀R₅₁, -alk-NR₅₀R₅₁, alkoxy, Ar₃, Het₃, -CH₂Ar₃, -CH₂Het₃ or alkyl optionally substituted with one or more halogen; R_{50} and R_{51} , which are identical or different, 25 independently are hydrogen or alkyl; or R_{50} and R_{51} taken together with the nitrogen atom to which they are attached form a saturated mono- or bicyclic heterocycle having 3 to 10 ring members optionally comprising another 30 heteroatom chosen from oxygen, sulfur and nitrogen and optionally being substituted by one or more alkyl; R_{52} and R_{53} , which are identical or different,

independently are hydrogen or alkyl, -COOalk,

10

15

30

cycloalkyl, alkylcycloalkyl, -alk-O-alk or hydroxyalkyl; or

- R₅₂ and R₅₃ taken together with the nitrogen atom to which they are attached form a saturated or unsaturated and mono- or bicyclic heterocycle having 3 to 10 ring members optionally comprising another heteroatom chosen from oxygen, sulfur and nitrogen and optionally being substituted by one or more alkyl,

 -COalk, -COOalk, -CO-NHalk, -CS-NHalk, oxo, hydroxyalkyl, -alk-O-alk or -CO-NH₂;
- R_{54} is hydrogen, hydroxyalkyl, -alk-COOalk, -alk-CONR₅₀R₅₁, -alk-NR₅₀R₅₁, alkoxyalkyl, Ar₃, Het₃, -CH₂Ar₃, -CH₂Het₃ or alkyl optionally substituted with one or more halogen;
- R_{55} is hydrogen or hydroxyalkyl, -alk-COOalk, -alk-CONR₅₀R₅₁, -alk-NR₅₀R₅₁, alkoxyalkyl or alkyl optionally substituted with one or more halogen; or
- 20 R₅₄ and R₅₅ taken together with the carbon atom to which they are attached form a saturated mono- or bicyclic ring having 3 to 10 ring members optionally comprising another heteroatom chosen from oxygen, sulfur and nitrogen and optionally being substituted by one or more alkyl;
 - Ar₃ is phenyl, naphthyl or indenyl, optionally being substituted by one or more halogen, alkyl, alkoxy, -CO-alk, cyano, -COOH, -COOalk, -CONR₅₆R₅₇, -CO-NH-NR₅₈R₅₉, alkylsulfanyl, alkylsulfinyl, alkylsulfonyl, -alk-NR₅₈R₅₉, -NR₅₈R₅₉, alkylthioalkyl, formyl, CF₃, OCF₃, Het₃, -O-alk-NH-cycloalkyl, SO₂NH₂, hydroxyl, hydroxyalkyl, -NHCOalk or -NHCOOalk

10

15

20

25

or on 2 adjacent carbon atoms by dioxymethylene;

- Het3 is a saturated or unsaturated and mono- or bicyclic heterocycle having 3 to 10 ring members and comprising one or more heteroatoms chosen from oxygen, sulfur and nitrogen optionally substituted by one or more alkyl, alkoxy, halogen, alkoxycarbonyl, oxo or hydroxyl, the nitrogenous heterocycles optionally being in their N-oxidized form;
- R_{56} and R_{57} , which are identical or different, independently are hydrogen or alkyl radical; or
- R₅₆ and R₅₇ taken together with the nitrogen atom to which they are attached form a saturated mono- or bicyclic heterocycle having 3 to 10 ring members optionally comprising another heteroatom chosen from oxygen, sulfur and nitrogen and optionally being substituted by one or more alkyl;
 - R_{58} and R_{59} , which are identical or different, independently are hydrogen or alkyl; or
 - R₅₈ and R₅₉ taken together with the nitrogen atom to which they are attached form a saturated mono- or bicyclic heterocycle having 3 to 10 ring members optionally comprising another heteroatom chosen from oxygen, sulfur and nitrogen and optionally being substituted by one or more alkyl;
- alk is an alkyl or alkylene radical; and wherein the alkyl, alkylene and alkoxy radicals have straight or branched chains and comprise 1 to 6 carbon atoms, the cycloalkyl radicals comprise 3 to 10 carbon atoms and the

heterocycloalkyl and heterocyclenyl radicals comprise 3 to 10 carbon atoms; or an optical isomer thereof or a pharmaceutically acceptable saltthereof.

5

35

- 2. The combination according to claim 1, wherein the compound of formula (I) is chosen from the following compounds:
- N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-(pyrid-3-yl)methylsulfonamide or
- 10 (pyrid-3-yl)methylsulfonamide or N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-(3,5-difluorophenyl)methylsulfonamide, or a pharmaceutically acceptable salt thereof.
- 15 3. The combination according to claim 1, wherein the product which activates dopaminergic neurotransmission in the brain is chosen from the following compounds:
- duodopa, levodopa, dopadose, CHF1512, PNU-95666, ropinirole, pramipexole, rotigotine, spheramine, TV1203, uridine, rasagiline, selegiline, SL340026, tolcapone or entacapone.

bromocriptine, cabergoline, adrogolide, BAM-1110,

- 25 4. The combination according to claim 1, wherein the product which activates dopaminergic neurotransmission in the brain is levodopa and the CB1 antagonist is N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-(pyrid-3-yl)methylsulfonamide.
 - 5. The combination according to claim 1, wherein the product which activates dopaminergic neurotransmission in the brain is ropinirole and the CB1 antagonist is $N-\{1-[bis(4-$

chlorophenyl)methyl]azetidin-3-yl}-N-(pyrid-3-yl)methylsulfonamide.

6. The combination according to claim 1, wherein the product which activates dopaminergic neurotransmission in the brain is bromocriptine and the CB1 antagonist is N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-(pyrid-3-yl)methylsulfonamide.

10

15

35

- 7. The combination according to claim 1, wherein the product which activates dopaminergic neurotransmission in the brain is pramixepole and the CB1 antagonist is N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-(pyrid-3-
- 8. The combination according to claim 1, wherein the product which activates dopaminergic
- neurotransmission in the brain is rasagiline and the CB1 antagonist is N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-(pyrid-3-yl)methylsulfonamide.

yl) methylsulfonamide.

- The combination according to claim 1, wherein the product which activates dopaminergic neurotransmission in the brain is entacapone and the CB1 antagonist is N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-(pyrid-3-yl)methylsulfonamide.
 - 10. The combination according to claim 1, characterized in that the product which activates dopaminergic neurotransmission in the brain is levodopa and the CB1 antagonist is

- N-{1-[bis(4-chloro-phenyl)methyl]azetidin-3-yl}-N-(3,5-difluorophenyl)-methylsulfonamide.
- The combination according to claim 1, wherein the product which activates dopaminergic neurotransmission in the brain is ropinirole and the CB1 antagonist is N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-(3,5-difluorophenyl)methylsulfonamide.

35

- 12. The combination according to claim 1, wherein the product which activates dopaminergic neurotransmission in the brain is bromocriptine and the CB1 antagonist is
- N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-(3,5-difluorophenyl)methylsulfonamide.
 - 13. The combination according to claim 1, wherein the product which activates dopaminergic
- neurotransmission in the brain is pramixepole and the CB1 antagonist is
 N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-
 - (3,5-difluorophenyl)methylsulfonamide.
- 25 14. The combination according to claim 1, whrein the product which activates dopaminergic neurotransmission in the brain is rasagiline and the CB1 antagonist is N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-
- 30 (3,5-difluorophenyl)methylsulfonamide.
 - 15. The combination according to claim 1, wherein the product which activates dopaminergic neurotransmission in the brain is entacapone and the CB1 antagonist is

- N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-(3,5-difluorophenyl)methylsulfonamide.
- 16. A method of treating Parkinson's disease in a
 patient comprising administering to said patient a
 therapeutically effective amount of a combination
 of a product which activates dopaminergic
 neurotransmission in the brain and one or more CB1
 antagonists of formula (I) as defined in claim 1,
 optionally in combination with a pharmaceutically
 acceptable carrier.
- 17. The method according to claim 16, wherein the compound of formula (I) as defined in claim 1 is chosen from the following compounds:

 N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-(pyrid-3-yl)methylsulfonamide, or

 N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-(3,5-difluorophenyl)methylsulfonamide, or a pharmaceutically acceptable salt thereof.
- 18. The method according to claim 16, wherein the product which activates dopaminergic neurotransmission in the brain is chosen from the following compounds:

 bromocriptine, cabergoline, talipexole, adrogolide, BAM-1110, duodopa, levodopa, dopadose, CHF1301, CHF1512, PNU-95666, ropinirole, pramipexole, rotigotine, spheramine, TV1203, uridine, rasagiline, selegiline, SL340026, tolcapone or entacapone.
- 19. The method according to claim 16, wherein said product and said compound of formula (I) as defined in claim 1 are administered either

simultaneously, separately or spread out over time.

20. A pharmaceutical composition comprising one or more products which activate dopaminergic neurotransmission in the brain and one or more CB1 antagonists of formula (I) as defined in claim 1 in combination with a compatible and pharmaceutically acceptable vehicle.

10

- 21. The pharmaceutical composition according to claim 20, wherein the compound of formula (I) as defined in claim 1 is chosen from the following compounds: N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-(pyrid-3-yl)methylsulfonamide, or
- (pyrid-3-yl)methylsulfonamide, or
 N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N(3,5-difluorophenyl)methylsulfonamide, or a
 pharmaceutically acceptable salt thereof.
- 20 22. The pharmaceutical composition according to claim 20, wherein the product which activates dopaminergic neurotransmission in the brain is chosen from the following compounds: bromocriptine, cabergoline, talipexole,
- adrogolide, BAM-1110, duodopa, levodopa, dopadose, CHF1301, CHF1512, PNU-95666, ropinirole, pramipexole, rotigotine, spheramine, TV1203, uridine, rasagiline, selegiline, SL340026, tolcapone or entacapone.

30

23. The pharmaceutical composition according to claim 20, wherein the product which activates dopaminergic neurotransmission in the brain is levodopa and the CB1 antagonist is

- N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-(pyrid-3-yl)methylsulfonamide.
- 24. The pharmaceutical composition according to claim
 20, wherein the product which activates
 dopaminergic neurotransmission in the brain is
 ropinirole and the CB1 antagonist is
 N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N(pyrid-3-yl)methylsulfonamide.

35

- 25. The pharmaceutical composition according to claim 20, wherein the product which activates dopaminergic neurotransmission in the brain is bromocriptine and the CB1 antagonist is N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-
- N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-(pyrid-3-yl)methylsulfonamide.
- 26. The pharmaceutical composition according to claim 20, wherein the product which activates dopaminergic neurotransmission in the brain is pramixepole and the CB1 antagonist is N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-

(pyrid-3-yl) methylsulfonamide.

- 25 27. The pharmaceutical composition according to claim 20, wherein the product which activates dopaminergic neurotransmission in the brain is rasagiline and the CB1 antagonist is N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-(pyrid-3-yl)methylsulfonamide.
 - 28. The pharmaceutical composition according to claim 20, wherein the product which activates dopaminergic neurotransmission in the brain is entacapone and the CB1 antagonist is

- N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-(pyrid-3-yl)methylsulfonamide.
- 29. The pharmaceutical composition according to claim 20, wherein the product which activates dopaminergic neurotransmission in the brain is levodopa and the CB1 antagonist is N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-(3,5-difluorophenyl)methylsulfonamide.

35

- 30. The pharmaceutical composition according to claim 20, wherein the product which activates dopaminergic neurotransmission in the brain is ropinirole and the CB1 antagonist is
- N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-(3,5-difluorophenyl)methylsulfonamide.
 - 31. The pharmaceutical composition according to claim 20, wherein the product which activates
- dopaminergic neurotransmission in the brain is bromocriptine and the CB1 antagonist is N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-(3,5-difluorophenyl)methylsulfonamide.
- 25 32. The pharmaceutical composition according to claim 20, wherein the product which activates dopaminergic neurotransmission in the brain is pramixepole and the CB1 antagonist is N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-(3,5-difluorophenyl)methylsulfonamide.
 - 33. The pharmaceutical composition according to claim 20, wherein the product which activates dopaminergic neurotransmission in the brain is rasagiline and the CB1 antagonist is

 $N-\{1-\{bis(4-chlorophenyl)methyl\}azetidin-3-yl\}-N-(3,5-difluorophenyl)methylsulfonamide.$

34. The pharmaceutical composition according to claim 20, wherein the product which activates dopaminergic neurotransmission in the brain is entacapone and the CB1 antagonist is N-{1-[bis(4-chlorophenyl)methyl]azetidin-3-yl}-N-(3,5-difluorophenyl)methylsulfonamide.

10

- 35. The pharmaceutical composition according to claim 20 for a simultaneous use, separate use or use spread out over time.
- 15 36. The pharmaceutical composition according to claim 20 wherein the CB1 antagonist of formula (I) as defined in claim 1 is present in an amount of from about 0.1 mg to about 500 mg.