ESPACES PROJECTIFS

Table des matières

1. Retour au Fichier général	1
2. Espace projectif	1
2.1. TODO À ajouter	1
3. Fibré projectif (espace projectif i	relatif) 1
3.1. Propriété universelle	\sim 2
3.2. Suite exacte d'Euler	2
4. Références	2
4.1. Euler	2

1. RETOUR AU FICHIER GÉNÉRAL

2. Espace projectif

Reprendre le fichier Espace_projectif.tex en relisant attentivement pour voir si il n'y a pas d'erreurs

Erreur de dualité dans la suite exacte d'Euler

2.1. TODO À ajouter.

- Proj
- Euler exact sequence
- Chern class, Picard group ...
- Tautological bundle
- Universal bundle
- Canonical bundle
- Bezout thm
- Grothendieck-Birkoff thm

3. Fibré projectif (espace projectif relatif)

Soit (X, \mathcal{O}) une variété analytique, et E un fibré vectoriel sur X. On note $\mathbb{P}(E)$ le fibré des quotients de rang 1 de E:

$$\mathbb{P}(E)_x = \{ \phi : E_x \to \mathbb{C} \mid \phi \text{ surjective } \} = \mathbb{P}(E_x)$$

3.1. **Propriété universelle.** Le fibré projectif $\mathbb{P}(E)$ vérifie la propriété universelle **Proposition 1**

Pour tout $f: T \to X$, variété analytique au dessus de X, f se factorise par

$$\tilde{f}: T \to \mathbb{P}(E)$$

au dessus de X ssi $\exists F \to T$ fibré en droites et

$$\phi: f^*E \to F$$

morphisme surjectif de fibrés vectoriels sur T.

La correspondance est alors donnée par

- $F = f^* \mathcal{O}_E(1)$
- $\tilde{f}(t) = [F_t]$

Autrement dit

(1)
$$\operatorname{Mor}_X(T, \mathbb{P}(E)) \simeq \{ \text{ quotients de rang 1 de } f^*E \}$$

D'où $\mathbb{P}(E)$ représente le foncteur contravariant

$$(T \to X) \mapsto \{ \text{ quotients de rang 1 de } E \times_X T \}$$

dans la catégorie des variétés analytiques au dessus de X.

3.1.1. **ONGOING** Fibré tautologiques et universels. On définit le fibré en droites $\mathcal{O}_E(1)$ sur $\mathbb{P}(E)$ comme...?

Remarque on dit que E est ample sur X si $\mathcal{O}_E(1)$ est ample sur $\mathbb{P}(E)$ ((ref : Hartshorne mais pas AG))

3.1.2. Sections globales.

(2)
$$H^0(\mathbb{P}(E), \mathcal{O}_E(1)) \simeq E$$

3.2. Suite exacte d'Euler. On note $p: E \to X$ et $\mathbb{P}(p): \mathbb{P}(E) \to X$

(3)
$$0 \to \Omega_{\mathbb{P}(p)} \to \mathbb{P}(p)^* E \otimes \mathcal{O}_E(-1) \to \mathcal{O}_{\mathbb{P}(E)} \to 0$$

ou dualement

$$(4) 0 \to \mathcal{O}_{\mathbb{P}(E)} \to \mathbb{P}(p)^* E^* \otimes \mathcal{O}_E(1) \to T_{\mathbb{P}(p)} \to 0$$

4. Références

4.1. **Euler.**

- http://math.stanford.edu/~vakil/0506-216/216class3940.pdf ((référence douteuse par endroits))
- http://www.mimuw.edu.pl/~jarekw/SZKOLA/ample/ample5.pdf