Darstellung rationaler Zahlen durch Ägyptische Brüche

Lars Berger

Universität der Bundeswehr München

18. Dezember 2019

Ägyptische Brüche

Lars Berger

Lilliani

Geschichte

Ägyptische Multiplikatio

Zerlegungsal

Greedy-Algorithmus

Farey-Folgen-Algorithmu:

Auswertung einiger

Methodik

Ergebnis

Theorie u

Theoretische Schranken

Ungeklärte theoretise Fragen

Inhalt

Einführung

Geschichte Ägyptische Multiplikation Ägyptische Division

Zerlegungsalgorithmen

Greedy-Algorithmus
Farey-Folgen-Algorithmus
Binär-Algorithmus

Auswertung einiger Testreihen

Methodik Nennenswerte Ergebnisse

Theorie und Ausblick

Theoretische Schranken Ungeklärte theoretische Fragen

Ägyptische Brüche

Lars Berger

Einführung

Geschichte ..

Ägyptische Division

Zerlegungsalgorithm

Greedy-Algorithmus
Farey-Folgen-Algorith

Binär-Algorithmus

Auswertung einige

Methodik

Ergebnis

Theorie und Ausblick

Zerlegungsalgorithm

Greedy-Algorithmus Farey-Folgen-Algorithmu

Binar-Aigoritimus

Auswertung einige Testreihen

Methodik

Ergebnisse

Theorie un Ausblick

Theoretische Schranken
Ungeklärte theoretische

Definition

Ein Bruch soll fortan ,,in ägyptischer Form" bzw. ,,Ägyptischer Bruch" heißen genau dann, wenn er in der Form

$$\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}, \quad n \in \mathbb{N}, n \ge 1$$

mit paarweise verschiedenen x_i , $i \in \{1, ..., n\}$, vorliegt.

Beispiel: 23 · 69

	1	69
	2	138
	4	276
	8	552
	16	1104
Summe:	0	0

Ägyptische Brüche

Lars Berger

Lilliui

Geschich

Ägyptische Multiplikation

7erlegungsal

Greedy-Algorithmus

Farey-Folgen-Algorith

uswertung ein

Auswertung einige Testreihen

Methodik

Ergebnisse

Ausblick

Beispiel: 23 · 69

	1	69
	2	138
	4	276
	8	552
\checkmark	16	1104
Summe:	16	1104

Ägyptische Brüche

Lars Berger

Lilliui

Geschich

Ägyptische Multiplikation

Zerlegungsal

Greedy-Algorithmus

Farey-Folgen-Algorith

Augwertung e

luswertung e

Methodik

Ergebniss

Theorie u Ausblick

Beispiel: 23 · 69

	1	69
	2	138
\checkmark	4	276
	8	552
\checkmark	16	1104
Summe:	20	1380

Ägyptische Brüche

Lars Berger

Eintur

Geschich

Ägyptische Multiplikation

7erlegungsal

Greedy-Algorithmus

Farey-Folgen-Algorithm

Auswertung ei

Testreihen

Methodik

Theorie

Ausblick

Beispiel: 23 · 69

	1	69
\checkmark	2	138
\checkmark	4	276
	8	552
\checkmark	16	1104
Summe:	22	1518

Ägyptische Brüche

Lars Berger

Eintur

Geschich

Ägyptische Multiplikation

7erlegungsal

Greedy-Algorithmus

Farey-Folgen-Algorithm

Auswertung einig

Testreihen

Freehniss

Ergebniss

Theorie u Ausblick

Beispiel: 23 · 69

\checkmark	1	69
\checkmark	2	138
\checkmark	4	276
	8	552
\checkmark	16	1104
Summe:	23	1587

Ägyptische Brüche

Lars Berger

Eintur

Geschich

Ägyptische Multiplikation

Zerlegungsal

Greedy-Algorithmus

Farey-Folgen-Algorithm

Auswertung ein

Auswertung einiger Testreihen

Methodik

TI......

Ausblick

Beispiel: 117 ÷ 7

	1	7
	2	14
	4	28
	8	56
	16	112
Summe:	0	0

Ägyptische Brüche

Lars Berger

Emiur

Geschich:

Ägyptische Multiplikatio Ägyptische Division

Zerlegungsalı

Greedy-Algorithmus

Farey-Folgen-Algorith

Binar-Al

Auswertung einige

Methodik

Ergebniss

Theorie i

Theoretische Schranker

Beispiel: 117 ÷ 7

```
1 7
2 14
4 28
8 56
✓ 16 112
Summe: 16 112
```

Ägyptische Brüche

Lars Berger

Eintur

Geschicht

Agyptische Multiplikatio Ägyptische Division

Zerlegungsal

Greedy-Algorithmus

Farey-Folgen-Algo

Auswertung einige

Methodik

Ergebniss

Theorie u

Theoretische Schranken

$$\begin{array}{cccc}
1 & 7 \\
\frac{1}{7} & 1 \\
\frac{1}{14} & \frac{1}{2} \\
\frac{1}{28} & \frac{1}{4} \\
\vdots & \vdots
\end{array}$$

Ägyptische Brüche

Lars Berger

Emiun

Geschichte

Ägyptische Division

Zerlegungsale

Greedy-Algorithmus

Farey-Folgen-Algorithm

Auswertung einige

Testreihen

Methodik

Ergebnisse

Theorie un

Beispiel: 117 ÷ 7

	1	7
	2	14
	4	28
	8	56
\checkmark	16	112
	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{7} \\ 1 \end{array}$	$3 + \frac{1}{2}$
	$\frac{1}{7}$	1
	$\frac{1}{14}$	$\frac{\frac{1}{2}}{112}$
Summe:	16	112

Ägyptische Brüche

Lars Berger

Emiur

Geschich:

Agyptische Multiplikation Ägyptische Division

7erlegungsale

Greedy-Algorithmus

Farey-Folgen-Algorithm

Auswertung einiger

Methodik

Ergebniss

Theorie

Ausblick
Theoretische Schranken

Ungeklärte theoretische Fragen

Beispiel: 117 ÷ 7

	1	7
	2	14
	4	28
	8	56
\checkmark	16	112
\checkmark	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{7} \end{array}$	$3 + \frac{1}{2}$
	$\frac{1}{7}$	1
	$\frac{1}{14}$	$\frac{\frac{1}{2}}{115 + \frac{1}{3}}$
Summe:	$16 + \frac{1}{2}$	$115 + \frac{1}{2}$

Ägyptische Brüche

Lars Berger

Emiur

Geschichte

Ägyptische Division

7erlegungsalı

Greedy-Algorithmus

Farey-Folgen-Algorithi

Auswertung einiger

Methodik

Ergebnis

Theorie Ausblick

Beispiel: 117 ÷ 7

	1	7
	2	14
	4	28
	8	56
\checkmark	16	112
\checkmark	$\frac{\frac{1}{2}}{\frac{1}{7}}$	$3 + \frac{1}{2}$
\checkmark	$\frac{1}{7}$	1
	$\frac{1}{14}$	$\frac{\frac{1}{2}}{116 + \frac{1}{2}}$
Summe:	$16 + \frac{1}{2} + \frac{1}{7}$	$116 + \frac{1}{2}$

Ägyptische Brüche

Lars Berger

Einfüh

Geschicht

Ägyptische Multiplikatio Ägyptische Division

7erlegungsal

Greedy-Algorithmus

Farey-Folgen-Algorithm

Auswertung einiger

Methodik

Frachnica

Ergebniss

Theorie un Ausblick

Beispiel: $117 \div 7$

		1	7
		2	14
		4	28
		8	56
\checkmark		16	112
\checkmark		$\frac{1}{2}$ $\frac{1}{7}$	$3 + \frac{1}{2}$
\checkmark		$\frac{1}{7}$	1
\checkmark		$\frac{1}{14}$	$\frac{1}{2}$
Summe:	$16 + \frac{1}{2} + \frac{1}{7} +$	$\frac{1}{1/4}$	117

Ägyptische Brüche

Lars Berger

Emiur

Geschicht

Ägyptische Division

7erlegungsalı

Greedy-Algorithmus

Farey-Folgen-Algorithm

Auswertung einiger

Methodik

Ergebnisse

Theorie

Zerlegungsalgorithmen

Betrachtung einer Auswahl:

- ► Greedy-Algortihmus
- ► Farey-Folgen-Algorithmus
- ▶ Binäralgorithmus

Ägyptische Brüche

Lars Berger

Limani

Geschicht

Ägyptische Multiplik

Ägyptische Division

Zerlegungsalgorithm

Greedy-Algorithmus Farey-Folgen-Algorith

A

Auswertung einiger

Methodik

Ergebniss

Theorie un Ausblick

Der Greedy-Algorithmus

Ziel

$$\frac{a}{b} = \frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_i} = \sum_{i=1}^{l} \frac{1}{x_i}.$$

Ägyptische Brüche

Lars Berger

Elliuni

Geschicht

Ägyptische Multiplikati

Zerlegungsale

Greedy-Algorithmus

Farey-Folgen-Algorithm

Auswertung einiger Testreihen

Methodik

Theorie ur Ausblick

$$\frac{a}{b} = \frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_i} = \sum_{j=1}^{i} \frac{1}{x_j}.$$

Algorithmus

- 1. finde den größten, noch nicht verwendeten Stammbruch $\frac{1}{y}$, sodass $\frac{1}{y} \leq \frac{p}{q}$.
- 2. setze $\frac{1}{5}$ als weiteren Summanden des Ergebnisses
- 3. falls $\frac{p}{a} \frac{1}{x} > 0$, gehe zu Schritt 1 mit $\left(\frac{p}{a}\right) \leftarrow \left(\frac{p}{a} \frac{1}{x}\right)$.

Einführung

Ägyptische Multiplikation

Zerlegungsalgorithm

Greedy-Algorithmus

Auswertung einiger

Gesucht: Zerlegung für $\frac{5}{9}$.

-

Nebenrechnungen:

Ägyptische Brüche

Lars Berger

Lilliulli

Geschicht

Ägyptische Multiplikat

Ägyptische Division

Zerlegungsal

Greedy-Algorithmus

Farey-Folgen-Algorit

Binär-Al

Auswertung einige

Methodik

Ergebniss

T. .

Ausblick

Theoretische Schranker

Ungeklärte theoreti: Fragen

Gesucht: Zerlegung für $\frac{5}{a}$.

5

Nebenrechnungen:

$$\frac{1}{2} \leq \frac{5}{9} < \frac{1}{1}$$

Ägyptische Brüche

Lars Berger

Eintunr

Geschicht

Ägyptische Division

Zerlegungsale

Greedy-Algorithmus

Farey-Folgen-Algor

Auswertung einiger

Auswertung einige Testreihen

Methodik

Ergebniss

Ausblick

Gesucht: Zerlegung für $\frac{5}{9}$.

$$\frac{5}{9} > \frac{1}{2}$$

Nebenrechnungen:

$$\frac{1}{2} \leq \frac{5}{9} < \frac{1}{1}$$

Ägyptische Brüche

Lars Berger

Elliunr

Geschicht

Ägyptische Multiplikati

Zeriegungsarge

Greedy-Algorithmus

Binär-Al

Auswertung einiger

Testreihen

F---b-:--

Ergebniss

Ausblick

Gesucht: Zerlegung für $\frac{5}{a}$.

$$\frac{5}{9} > \frac{1}{2}$$

Nebenrechnungen:

$$\frac{5}{9} - \frac{1}{2} = \frac{1}{18}$$

Ägyptische Brüche

Lars Berger

Elliuni

Geschicht

Ämuntische Mul

Ägyptische Division

Zerlegungsalg

Greedy-Algorithmus

Farey-Folgen-Algor

Binär-Al

Auswertung einiger

Testreihen

Methodik

Ergebniss

Ausblick

Theoretische Schranken

Gesucht: Zerlegung für $\frac{5}{9}$.

$$\frac{5}{9} = \frac{1}{2} + \frac{1}{18}$$

Ägyptische Brüche

Lars Berger

Elliunr

Geschicht

Ägyptische Multiplika

Ägyptische Division

Zerlegungsal

Greedy-Algorithmus

Farey-Folgen-Algor

Binär-Algorithmus

Auswertung einiger

Testreihen

Errobnica

Ergebnis

Theorie ur Ausblick

Farey-Folgen

Definition

Sei $q \in \mathbb{N}$. Die Farey-Folge der Ordnung q, F_q , ist definiert als die aufsteigend sortierte Folge aller einmalig darin vorkommenden gekürzten Brüche $\frac{a}{b} \in \mathbb{Q}$, für die gilt: $0 \le a \le b \le q$, $b \ne 0$.

Ägyptische Brüche

Lars Berger

Einführung

Geschicht

Ägyptische Multiplikati

Ägyptische Division

Zerlegungsalgorithm

Greedy-Algorith

Farey-Folgen-Algorithmus

Auswertung einige

Auswertung einige Festreihen

Methodik

Ergebniss

Theorie und Ausblick

Farey-Folgen

Definition

Sei $q\in\mathbb{N}$. Die Farey-Folge der Ordnung q, F_q , ist definiert als die aufsteigend sortierte Folge aller einmalig darin vorkommenden gekürzten Brüche $\frac{a}{b}\in\mathbb{Q}$, für die gilt: $0\leq a\leq b\leq q,\ b\neq 0$.

Beispiel: F_5

$$F_5 = \left(\frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1}\right).$$

Ägyptische Brüche

Lars Berger

Einführung

Geschicht

Agyptische Multiplikatio

Zerlegungsalgorithm

Greedy-Algorithmus

Farey-Folgen-Algorithmus

Auswertung einiger

uswertung einige estreihen

Methodik

Ergebniss

Theorie un Ausblick

Algorithmus

Sei $\frac{p}{q} \in \mathbb{Q}_+$ in gekürzter Form der zu zerlegende Bruch.

- 1. Konstruiere F_q .
- 2. Sei $\frac{r}{s}$ der zu $\frac{p}{q}$ adjazente Bruch in F_q , sodass $\frac{r}{s} < \frac{p}{q}$. Aufgrund der Eigenschaften der Farey-Folge gilt dann

$$\frac{p}{q} = \frac{1}{qs} + \frac{r}{s},$$

wobei s < q, r < p.

3. Wiederhole dieses Vorgehen für $\frac{r}{s}$ solange, bis $s = 1 \Leftrightarrow r = 0$.

Der Farey-Folgen-Algorithmus: Rechenbeispiel

Gesucht: Zerlegung für $\frac{5}{9}$.

$$\frac{p}{q} = \frac{5}{9} = \frac{1}{qs} + \frac{r}{s}$$

Ägyptische Brüche

Lars Berger

Lilliulli

Geschichte

Ägyptische Multiplikatio

Zerlegungsalg

Greedy-A

Farey-Folgen-Algorithmus

Billar-Aigoriuli

Auswertung einiger

Methodik

Ergebnisse

Theorie und Ausblick

Der Farey-Folgen-Algorithmus: Rechenbeispiel

Gesucht: Zerlegung für $\frac{5}{9}$.

$$\frac{p}{q} = \frac{5}{9} = \frac{1}{qs} + \frac{r}{s}$$

$$F_{9rel} = \left(\frac{0}{1}, \frac{1}{2}, \frac{5}{9}, \frac{4}{7}, \frac{3}{5}, \frac{2}{3}, \frac{1}{1}\right)$$

Ägyptische Brüche

Lars Berger

Einführung

Geschichte

Ägyptische Multiplikatio

Zerlegungsale

Greedy-Alg

Farey-Folgen-Algorithmus

Binär-Al

Auswertung einiger

Testreihen

IVIETNOGIK

Ergebniss

Theorie un Ausblick

Der Farey-Folgen-Algorithmus: Rechenbeispiel

Gesucht: Zerlegung für $\frac{5}{9}$.

$$\frac{p}{q} = \frac{5}{9} = \frac{1}{qs} + \frac{r}{s}$$

$$F_{9rel} = \left(\frac{0}{1}, \frac{1}{2}, \frac{5}{9}, \frac{4}{7}, \frac{3}{5}, \frac{2}{3}, \frac{1}{1}\right)$$

$$\Rightarrow \frac{r}{5} = \frac{1}{2}$$

Ägyptische Brüche

Lars Berger

Einführung

Geschichte

Ägyptische Multiplikatio

Zerlegungsalgorithm

Greedy-Algo

Farey-Folgen-Algorithmus

Auswertung einiger

Methodik

Ergebniss

Theorie un Ausblick

Einführung

Geschichte

Agyptische Multiplikatio Ägyptische Division

Zerlegungsalgorithm

Greedy-Algori

Farey-Folgen-Algorithmus

. . . .

Auswertung einiger Festreihen

Methodil

Ergebniss

Theorie un Ausblick

Theoretische Schranker
Ungeklärte theoretische
Fragen

Gesucht: Zerlegung für $\frac{5}{9}$.

$$\frac{p}{q} = \frac{5}{9} = \frac{1}{qs} + \frac{r}{s}$$

$$F_{9rel} = \left(\frac{0}{1}, \frac{1}{2}, \frac{5}{9}, \frac{4}{7}, \frac{3}{5}, \frac{2}{3}, \frac{1}{1}\right)$$

$$\Rightarrow \frac{r}{s} = \frac{1}{2}$$

$$\frac{5}{9} = \frac{1}{9 \cdot 2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{18}$$

Der Binäralgorithmus

Algorithmus

Sei $\frac{p}{a} \in \mathbb{Q}_+$ in gekürzter Form und $k \in \mathbb{N}$.

- 1. Finde $N_{k-1} < q < N_k$ wobei $N_k = 2^k$ ist.
- 2. Falls $q = N_k$, schreibe p als Summe von Teilern von N_k , hier d; genannt:

$$\frac{p}{q} = \sum_{i=1}^{j} \frac{d_i}{N_k} = \sum_{i=1}^{j} \frac{1}{\frac{N_k}{d_i}}$$

Ägyptische Brüche

Lars Berger

Einführung

Zerlegungsalgorithm

Binär-Algorithmus

Auswertung einiger

Aushlick

3. Sonst seien $s, r \in \mathbb{N}, 0 \le r < q$ so gewählt, dass:

$$pN_k = qs + r$$
.

Es folgt:

$$\frac{p}{q} = \frac{pN_k}{qN_k} = \frac{qs+r}{qN_k} = \frac{s}{N_k} + \frac{r}{qN_k}.$$

- 4. Schreibe $s = \sum d_i$ und $r = \sum d'_i$, wobei d_i , d'_i jeweils paarweise verschiedene Teiler von N_k sind.
- 5. Erhalte den Ägyptischen Bruch:

$$\sum \frac{1}{\frac{N_k}{d_i}} + \sum \frac{1}{\frac{qN_k}{d_i'}}.$$

Einführung

Geschicht

Ägyptische Multiplikation Ägyptische Division

Zerlegungsalgorithm

Greedy-Algorithmus
Farev-Folgen-Algorithm

Binär-Algorithmus

Auswertung einiger

Auswertung einiger Testreihen

Methodik

Ergebniss

Theorie un Ausblick

Gesucht: Zerlegung für $\frac{5}{9}$.

Ägyptische Brüche

Lars Berger

Limani

Geschicht

Ägyptische Multiplikat

Zerlegungsale

Greedy-Algorithm

Binär-Algorithmus

Auswertung einiger

Methodik

Ergebnisse

Theorie ur Ausblick

Theoretische Schranker

Gesucht: Zerlegung für $\frac{5}{9}$.

$$8 < 9 < 16 \Rightarrow N_{k} = 16$$

Ägyptische Brüche

Lars Berger

Lilliulli

Geschicht

Ägyptische Multiplil

Ägyptische Division

Zerlegungsalg

Greedy-Algorithmus

Farey-Folgen-Algori Binär-Algorithmus

Auswertung einiger

Testreihen

Errobnic

Ergebnis

Theorie und Ausblick

Gesucht: Zerlegung für $\frac{5}{9}$.

$$8<9<16 \Rightarrow N_k=16$$

5

Ägyptische Brüche

Lars Berger

Lilliuli

Geschicht

Ägyptische Division

Zerlegungsalg

Greedy-Algorithmus

Farey-Folgen-Algorit Binär-Algorithmus

Auswertung einiger

Auswertung einiger Testreihen

rvietnoa

Ausblick

Gesucht: Zerlegung für $\frac{5}{9}$.

$$8 < 9 < 16 \Rightarrow N_k = 16$$

$$\frac{5}{9} = \frac{5 \cdot 16}{0.16}$$

Ägyptische Brüche

Lars Berger

Elliun

Geschicht

Ägyptische Multiplika

Ägyptische Division

Zerlegungsalg

Greedy-Algorithm

Binär-Algorithmus

Auswertung einiger

Methodik

Ergebni

Theorie u

Gesucht: Zerlegung für $\frac{5}{a}$.

$$8 < 9 < 16 \Rightarrow N_{k} = 16$$

$$\frac{5}{9} = \frac{5.16}{9.16} = \frac{9.8+8}{9.16}$$

Ägyptische Brüche

Lars Berger

Lilliulli

Geschicht

Ägyptische Multiplika

Ägyptische Division

Zerlegungsalg

Greedy-Algorithmus

Farey-Folgen-Algorithm Binär-Algorithmus

Auswertung einiger

Testreihen

E---b-:--

Ergebnis

Theorie u Ausblick

Gesucht: Zerlegung für $\frac{5}{9}$.

$$8 < 9 < 16 \Rightarrow N_k = 16$$

$$\frac{5}{9} = \frac{5.16}{9.16} = \frac{9.8+8}{9.16} = \frac{8}{16} + \frac{8}{144}$$

Ägyptische Brüche

Lars Berger

Elmium

Geschicht

Ägyptische Multiplikatio

7erlegungsal

Greedy-Algorithmus

Farey-Folgen-Algorithm Binär-Algorithmus

Auswertung einiger

Testreihen

E---b-:-

Ergebnis

Ausblick

Gesucht: Zerlegung für $\frac{5}{a}$.

$$8 < 9 < 16 \Rightarrow N_{k} = 16$$

$$\frac{5}{9} = \frac{5 \cdot 16}{9 \cdot 16} = \frac{9 \cdot 8 + 8}{9 \cdot 16} = \frac{8}{16} + \frac{8}{144} = \frac{1}{2} + \frac{1}{18}.$$

Ägyptische Brüche

Lars Berger

Lilliulli

Geschicht

Ägyptische Multiplikat

Ägyptische Division

Zerlegungsalg

Greedy-Algorithm

Binär-Algorithmus

Auswertung einiger

Testreihen

Methodik

Ergebnis

Theorie ur Ausblick

Datensatzform: $M_q = \left\{ rac{p}{q} \, | \, (\, 2 \leq p < q) \wedge (\mathsf{ggT}(p,q) = 1)
ight\}$

Enthaltene Informationen:

- die durchschnittliche Anzahl der Summanden, avgTerms(q)
- das Minimum der Anzahl der Summanden, minTerms(q)
- das Maximum der Anzahl der Summanden, maxTerms(q)
- das Minimum des jeweils größten Nenners, minDenom(q)
- ▶ das Maximum des jeweils größten Nenners, maxDenom(q).

Einführung

Geschichte

Ägyptische Multiplikation Ägyptische Division

Zerlegungsalgorithm

Greedy-Algorithmus Farey-Folgen-Algorithmus

Auswertung einiger

l estreihen Methodik

Ergebnisse

Theorie und Ausblick

Durchschnittliche Anzahl der Terme

Ägyptische Brüche

Lars Berger

Eintun

Geschich

Agyptische Multiplikatio

Zerlegungsal

Greedy-Algorithmus

Farey-Folgen-Algorithmi

Auswertung einiger

Methodik

Ergebnisse

Theorie u

Minimum der größten Nenner

Ägyptische Brüche

Lars Berger

Einfüh

Geschicht

Agyptische Multiplikation

Zerlegungsalı

Greedy-Algorithmus

Auswertung einiger Testreihen

Ergebnisse

Ligebilisse

Ausblick

Maximum der größten Nenner

Ägyptische Brüche

Lars Berger

Einführ

Geschichte

Agyptische Multiplikatio Ägyptische Division

Zerlegungsalg

Greedy-Algorithmus

binar-Aigoritimus

Auswertung einiger Testreihen

Ergebnisse

Theorie und Ausblick

Bekannte theoretische Schranken

Berechnung von $\frac{2}{n}$

Sei $n \in \mathbb{N}$ ungerade. $\frac{2}{n}$ lässt sich für jedes n als Summe zweier Stammbrüche notieren, nämlich:

$$\frac{2}{n} = \frac{1}{\left\lceil \frac{n}{2} \right\rceil} + \frac{1}{n \cdot \left\lceil \frac{n}{2} \right\rceil}.$$

Ägyptische Brüche

Lars Berger

Elliun

Geschicht

Agyptische Multiplikation

Zerlegungsal

Greedy-Algorithmu

Farey-Folgen-Algorithmu Binär-Algorithmus

Auswertung einiger

Methodik

Ergebniss

Theorie und Ausblick

Bekannte theoretische Schranken

Berechnung von $\frac{2}{n}$

Sei $n \in \mathbb{N}$ ungerade. $\frac{2}{n}$ lässt sich für jedes n als Summe zweier Stammbrüche notieren, nämlich:

$$\frac{2}{n} = \frac{1}{\left\lceil \frac{n}{2} \right\rceil} + \frac{1}{n \cdot \left\lceil \frac{n}{2} \right\rceil}.$$

Berechnung von $\frac{3}{n}$

$$\frac{3}{n} = \frac{1}{n} + \frac{1}{\left\lceil \frac{n}{2} \right\rceil} + \frac{1}{n \cdot \left\lceil \frac{n}{2} \right\rceil}.$$

Ägyptische Brüche

Lars Berger

Einführung

Geschicht

Ägyptische Multiplikation

Zerlegungsalgorithm

Greedy-Algorithmus

Binär-Algorithmus

Auswertung einiger

Methodik

Ergebniss

Theorie un Ausblick

Theoretische Schranken

Sonstige Ansätze und offene Fragen

Weitere Ansätze und Fragen umfassen u.a.:

- ► Thesen für $\frac{4}{n}$, $\frac{5}{n}$ usw.
- allgemeingültige Schranken für
 - ► Größe der Nenner
 - Anzahl der Summanden
- Zulassen auch negativer Terme
- Umgang mit Polynomen.

Ägyptische Brüche

Lars Berger

Einführung

Geschichte

Ägyptische Multiplik

Ägyptische Divi

Zerlegungsalgorithm

Greedy-Algorithr

Farey-Folgen-Algorithmu

Auswertung einiger

Testreihen

Methodik

Ergebniss

Theorie u

Ausblick