Applications of Handshake lemma

longhuan@sjtu.edu.cn

握手定理(回顾)

• **握手定理**: 给定无向图 G = (V, E),有 $\sum_{v \in V} \deg_G(v) = 2|E|$

• 推论: 无向图中,度数 为奇数的点一定是有偶 数多个。

$$1 + 3 + 4 + 4 = 12 = 2 \times 6$$

Sperner 引理

- 已知平面上的一个三角形ABC。
- 任意划分成若干小的不重叠三角 形。
- 用●、●、●依次对A、B、C三 个顶点着色。
- 对其余顶点着色:
 - BC边上的点用·色或·色
 - AB边上的点用●色或●色
 - AC边上的点用•色或•色
 - 其它内部顶点: 任意着色

Sperner's lemma的证明

Sperner's lemma的证明

- 构造图G = (V, E)
 - V: 每个闭合的连续平面(小三角形)抽象为一个点,外面的开放平面也抽象为一个点,外面的开放平面也抽象为一个点,用▲表示,取名为v。
 - E: 两个▲之间有一条 边当且仅当原对应平 面相邻且邻边顶点着 色为●和•。

Sperner's lemma的证明

- 构造图G = (V, E)
- G中顶点的度数:
 - V在ABC内(非v)度数非0的情况:

- V在ABC内(非v)的点在其余情况下度数均为0。
- V在ABC外的点(点v)的度数: 就是AC边上的颜色改变次数,
- _C 易证其必为**奇数**。
- 根据**握手定理**, **G**中必还有度数 为奇的点,即情况①必发生。 6

引理的一般形式

• Spernner's lemma (Sperner, 1928): 对任意n维单形体(n-simplex)进行分割并用n+1种颜色去着色,则任何合适的单形体分割着色方案下,都必有一个包含所有不同颜色的单元。

• 例:

$$-n = 0$$

$$-n=3$$
 四面体

Application(1) – Fix point

- Δ is a triangle in the plane.
- $f: \Delta \to \Delta$ is continuous: $\forall a \in \Delta, \forall \epsilon > 0, \exists \delta > 0$ $(b \in \Delta \land dist(a, b) \leq \delta$ $\to dist(f(a), f(b)) \leq \epsilon.)$
- Planar Brouwer's fixed point theorem: Every $A_1 = (1,0)$ continuous function $f: \Delta \to \Delta$ has a fixed point.

Application(2) – HEX game

Proposition: To any given type (outer face is a square, all inner faces are triangles), there must be a winner.

- R = the set of vertices marked red.
- B = the set of vertices marked blue.

Labelling vertex v:

- 1: if the vertex belongs to *R* and there is an all-red path from *a* to *v*.
- 2: if the vertex belongs to *B* and there is an all-blue path from *b* to *v*.
- 3: otherwise.

Observation: If the proposition fails, then both *c* and *d* must be labelled by 3.

Observation: If the proposition fails, then both *c* and *d* must be labelled by 3.

- A triangle contains three different labels
 {1, 2, 3} will lead to contradiction.
- If both *c* and *d* have label 3, then there must be such an triangle.
- Either *c* is labeled 1 or *d* is labeled 2.
- Either RED wins or BLUE wins.

哈密顿回路

• 19世纪英国数学家哈密顿(Sir William Hamilton)提出的问题:正凸12面体,把20个项点比作世界上20个城市,30条棱表示这些城市间的交通路线。问题:能否周游过野,即从某个城市出发,经过每城一次且只一次最后返回出发地。

哈密顿图

- 哈密顿回路(Hamiltonian cycle): 如果一个环经过图上所有点正好一次,则此环被称为哈密顿环。
- 哈密顿图(Hamiltonian graph): 含有哈密顿 环的图,被称为哈密顿图。
- 哈密顿路径(Hamiltonian path): 如果一条路径经过图上所有点正好一次,则此路径被称为哈密顿路径。
- 仅考虑简单图(无环、无重边)。

• 例:

- G_1 , G_2 , G_3 都含有哈密顿路径
- 仅 G_1 , G_2 含哈密顿回路, 是哈密顿图

哈密顿回路 → 哈密顿路径, 反之不成立。

- 定理(Smith):对3-正则图,包含图上任意 边e的哈密顿回路必有偶数条。
- 证明: (Thomason 1978)

- 定理(Smith):对3-正则图,包含图上任意 边e的哈密顿回路必有偶数条。
- 证明: (Thomason 1978)
 - 图G是3-正则图, $e = \{v_1, v_2\}$ 是一条固定的边,不失一般性,假设原图中有含有e 的哈密顿回路。
 - -构造图G'=(V',E')
 - V'中的每一点,代表一条从 v_1 开始,以e 为第一条 边的哈密顿路径(由前提假设知V'非空)
 - 构造E':

构造E′

- v_p ∈ V' 代表哈密顿路径P;
- v_n 在G中度数为3,故必存在 1 < k < n 1满足 $\{v_k, v_n\}$ ∈ E(G);
- $P' = v_1 v_2 \dots v_k v_n v_{n-1} \dots v_{k+1}$ 是哈密顿路径。 $v_{p'} \in V'$;
- $-\{v_p,v_{p\prime}\}\in E'_{\circ}$

 v_p

G'

- $\triangleright E'$ 中任意 ν_p 的度数至多为2:
- $\geq deg(v_p) = 1$ 当且仅当原始用 到的哈密顿*路径*实际上是图G 中一个哈密顿回路。
- ▶ 根据握手定理,度数为奇数 的点必有偶数个,故必存在 另一点 $deg(v_q) = 1$ 。
- $> v_q$ 对应图G中的另一条哈密顿 回路,得证。

 $deg(v_p)=2$

$$deg(v_p) = 1$$

- 1 12348765(1)
- 2 12348567
- ③ **12348765**

- 1 12348765(1)
- 2 12348567
- 3 12348765

③ 12376584(1)