확률통계 및 공통 알고리즘

5. 회귀분석

임채영

서울대학교

이번 강의에서 다룰 내용

- ▶ 단순선형회귀분석- 회귀계수의 추정, 결정계수, 회귀직선의 유의성 검정, 회귀계수의 유의성 검정, 평균반응에 대한 추론, 잔차분석
- ▶ 다중선형회귀분석 회귀계수의 추정, 결정계수, 유의성 검정, 범주형설명변수

선형 모형과 회귀분석

- ▶ 하나의 변수(설명변수, Explanatory variable)가 다른 하나의 변수(반응변수, Response variable)에 영향을 끼치는 관계를 설명하기 위한 모형을 생각해 볼 수 있다.
- ▶ 설명변수와 반응변수 간에는 다양한 함수 형태의 관계를 가정할 수 있는데, 특히 반응변수가 입력변수의 1차 함수 형태로 나타난다고 가정하는 경우, 선형 모형(Linear model)을 고려해볼 수 있다.

선형 모형 예시

자동차의 속도와 정지 시 제동 거리로 이루어진 자료의 산점도.

- ▶ '자동차의 제동 거리는 속도에 대한 직선 형태의 함수로 나타날 것이다' 라고 생각하면, 두 변수 간에 다음과 같은 선형 모형을 고려할 수 있다.
- ightharpoonup 거리 = β_0 + 속도 \times β_1

회귀분석

- ▶ 회귀분석 (Regression Analysis) 변수사이의 모형을 가정하고 자료를 이용하여 추정하는 분석 방법
- ► 선형회귀모형 (Linear regression model) 선형모형을 가정한 회귀모형

단순 선형회귀모형

▶ 단순선형회귀모형(Simple linear regression model) 하나의 설명변수에 대해 만들어진 선형 회귀모형

$$y = \beta_0 + \beta_1 x + \epsilon$$
, $E(\epsilon) = 0$, $Var(\epsilon) = \sigma^2$

회귀계수(Regression coefficient)
 모형의 계수들 (β₀, β₁)

단순 선형회귀모형의 가정

▶ 데이터 (*Y_i*, *X_i*)가 독립적으로 관측되었을때

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \epsilon_{i},$$

$$\epsilon_{i} \stackrel{i.i.d.}{\sim} (0, \sigma^{2})$$

$$E(Y_{i}|X_{i}) = \beta_{0} + \beta_{1}X_{i}$$

- ▶ 독립성, 선형성, 등분산성
- 추가로 오차의 분포가 정규분포라는 가정을 통해, 모회귀계수에 대한 추론을 할 수 있게 된다. (정규성 가정)

회귀계수의 추정

- ▶ 최소제곱법(method of least square) 오차 제곱합 $\sum_{i=1}^{n} \{Y_i - (\beta_0 + \beta_1 X_i)\}^2$ 을 최소화시키는 β_0, β_1 를 추정
- ▶ 이렇게 구해진 추정량을 최소제곱추정량(Least Square Estimator, LSE)이라 한다.

최소제곱법의 원리

▶ 구체적으로 오차의 제곱합 $\sum_{i=1}^{n} \{Y_i - (\beta_0 + \beta_1 X_i)\}^2$ 을 β_0, β_1 에 대해 각각 편미분하여 얻은 식을 0으로 놓은 연립방정식 (정규 방정식, normal equation)의 해를 구함

$$\begin{cases} -2\sum_{i=1}^{n}(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1}X_{i})=0\\ -2\sum_{i=1}^{n}X_{i}(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1}X_{i})=0 \end{cases}$$

- ightarrow $\hat{eta}_0=ar{Y}-\hat{eta}_1ar{X}$, $\hat{eta}_1=rac{S_{xy}}{S_{xx}}$
- 최소제곱회귀직선최소제곱법으로 추정한 회귀계수를 대입하여 만든 직선

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X = \bar{Y} + \hat{\beta}_1 (X - \bar{X})$$

 \hat{Y}_i : 반응변수의 기댓값인 $E(Y_i|X_i)$ 의 추정값, 즉, $\hat{Y}_i = E(Y_i|X_i)$

예시

20명의 수학능력시험의 국어영역과 영어영역의 점수가 아래와 같이 주어졌다고 하자.

학생 번호	1	2	3	4	5	6	7	8	9	10
국어	42	38	51	53	40	37	41	29	52	39
영어	30	25	34	35	31	29	33	23	36	30
학생 번호	11	12	13	14	15	16	.17	18	19	20
국어	45	34	47	35	44	48	47	30	29	34
영어	32	29	34	30	28	29	33	24	30	30

모국어에 관련된 어학 능력이 외국어에 관련된 어학 능력에 영향을 끼치는지 알아보기 위해, 국어 점수를 설명변수로 하고 영어 점수를 반응변수로 하는 단순회귀모형을 적합해보도록 한다.

- ▶ X와 Y를 각각 국어성적과 영어성적이라 했을 때, 통계량 및 회귀계수는 다음과 같다.
- $\bar{x} = 40.75, \bar{y} = 30.25, S_{xx} = 1083.75, S_{xy} = 379.25$
- $\hat{\beta}_1 = \frac{379.25}{1083.75} = 0.3499, \ \hat{\beta}_0 = 30.25 \hat{\beta}_1 \cdot 40.75 = 15.9899$
- ▶ 즉, 적합된 회귀모형은 다음과 같다.

$$\hat{Y}_i = 15.9899 + 0.3499 \times x_i$$

▶ Python statmodels 모듈을 사용한 회귀분석 시행 결과

```
In [207]: kor = df(data=kor) # 모듈 및 저장시에는 pandas.DataFrame
    ...: eng = df(data=eng)
     ...: score =pd.concat([kor, eng], axis=1)
     ...: #axis= 0 : 한 열로 이어붙이기, 1 : 서로 다른 열로 구분해서 한치기
     ...: score model=sm.ols(formula='eng~kor', data=score) # ols : 모형화 함수
     ...: score_result=score_model.fit() # 모형화 결과(빈 괄호부분을 생략하면 결과를 볼 수 없다)
     ...: print(score result.summary()) #결과 정리 : 결과값은 이 과정을 통해 볼 수있다
                          OLS Regression Results
Dep. Variable:
                                      R-squared:
                                                                      0.573
Model:
                                OLS Adj. R-squared:
                                                                      0.549
Method:
                     Least Squares F-statistic:
                                                                      24.12
Date:
                    Tue, 19 Dec 2017 Prob (F-statistic):
                                                                   0.000113
Time:
                           22:13:08 Log-Likelihood:
                                                                    -44.376
No. Observations:
                                    ATC:
                                                                     92.75
Of Residuals:
                                 18
                                      BTC:
                                                                      94.74
Df Model:
Covariance Type:
                coef
                        std err
                                              P>|t|
                                                         [0.025
                                                                     0.9751
Intercept
             15.9899
                         2.950
                                    5.419
                                              0.000
                                                          9.791
                                                                     22.189
kor
              0.3499
                         0.071
                                    4.911
                                               0.000
                                                          0.200
                                                                      0.500
Omnibus:
                              1.491
                                      Durbin-Watson:
                                                                     2.023
Prob(Omnibus):
                              0.474 Jarque-Bera (JB):
                                                                     1.301
Skew:
                             -0.521
                                      Prob(JB):
                                                                      0.522
Kurtosis:
                              2.310
                                      Cond. No.
                                                                      233.
```

잔차 (residual)

▶ 잔차(residual)

$$\hat{\epsilon}_i = Y_i - \hat{Y}_i$$

- ▶ 오차 $\epsilon_1, \epsilon_2, \cdots, \epsilon_n$ 의 관측값 개념으로 생각할 수 있고, 이들은 오차분산 σ^2 의 크기에 따라 값이 크거나 작게 나타남
- 잔차의 크기가 작을 수록 최소제곱회귀직선이 실제 관측 결과를 잘 설명해준다고 생각할 수 있음

잔차제곱합 (Residual sum of square)

▶ 잔차제곱합(Residual sum of square, SSE)

$$SSE(=SS_{Res}) = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

ightharpoonup 오차분산 σ^2 추정에 사용

$$\hat{\sigma}^2 = MSE = \frac{SSE}{n-2} = \frac{1}{n-2} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

MSE (평균제곱오차, Mean squared error): SSE를
 잔차제곱합의 자유도 (표본의 수 - 회귀계수의 수)로 나눈값

편차의 분해

자료를 적합시킨 선형회귀모형이 관측자료를 얼마나 잘 설명하고 있는지 판단하기 위해 고려함

- ▶ 편차, *y_i* − *ȳ*: 관측값 *y_i*와 평균 *ȳ*의 차이
 - x_i (설명변수)가 없을때 y_i (반응변수)를 설명하는 \bar{y} 와의 차이
- ▶ 편차의 분해

$$y_i - \bar{y} = (y_i - \hat{y}_i) + (\hat{y}_i - \bar{y}) = \hat{\epsilon}_i + (\hat{y}_i - \bar{y})$$

- $-(y_i \hat{y}_i)$: 잔차, 회귀직선으로 설명하지 못하는 부분
- $-(\hat{y_i}-\bar{y})$ 는 회귀직선에 의해 설명되는 부분
- ▶ 두 종류의 편차를 더했다는 뜻에서 $y_i \bar{y}$ 를 총편차(total deviation)라고 부른다.

편차의 분해

그림으로 나타낸 편차의 분해

▶ 실선: 회귀직선에 의해 설명되는 편차

▶ 점선: 잔차

편차의 제곱합

- 반응변수 값의 변동 중 회귀직선을 통해 설명할 수 있는 변동을 구할수 있음
- ▶ 편차의 합은 그 특성상 무조건 0이 되므로, 편차의 제곱합을 사용

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

- 총제곱합 (Total sum of square, SST): 총편차의 제곱합, 자료 전체의 변동
- 회귀제곱합 (Regression sum of square, SSR): 회귀직선을 통해 설명할 수 있는 편차의 제곱합
- 잔차제곱합(SSE or *SS_{Res}*)

결정계수, *R*²

▶ 결정계수(Coefficient of determination, R²)

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

- 총 제곱합 중 회귀제곱합이 차지하는 비율
- 총제곱합 중 회귀제곱합의 부분이 클 수록 회귀모형이 관측결과를 잘 설명해주는 것이라 할 수 있다.

단순선형회귀모형에서의 결정계수

$$R^{2} = \frac{SSR}{SST} = \frac{(S_{xy})^{2}}{S_{xx}S_{yy}} = \left\{\frac{S_{xy}}{\sqrt{S_{xx}}\sqrt{S_{yy}}}\right\}^{2} = r^{2}$$

▶ 단순선형회귀모형

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 = \sum_{i=1}^{n} \{\hat{\beta}_1(x_i - \bar{x})\}^2 = \frac{(S_{xy})^2}{S_{xx}}$$

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 = S_{yy}$$

- ▶ 결정계수 R²은 표본상관계수 r의 제곱
- ▶ R²이 1에 가까울수록 산점도에서 점들이 직선 주위에 밀집되어 나타난다고 볼 수 있다. 즉, 회귀직선이 자료를 잘 설명한다고 해석할 수 있다.

예시

- 앞에서 다른 국어 성적과 영어 성적의 편차 제곱합을 구해보자.
- $S_{xx} = 1083.75, S_{xy} = 379.25, S_{yy} = 231.75$
- ► $SST = S_{yy} = 231.75$, $SSR = \frac{(S_{xy})^2}{S_{xx}} = 132.716$ SSE = SST - SSR = 99.034
- 총제곱합과 회귀제곱합을 통해 구한 결정계수와 앞서 구한 상관계수의 관계를 구해보자.

$$R^2 = \frac{132.716}{231.75} = 0.573 = (0.757)^2 = r^2$$

 즉, 앞서 적합한 단순선형회귀모형은 자료의 변동의 약 57.3% 를 설명한다고 볼 수 있고, 결정계수가 상관계수의 제곱으로 나타난다는 것 역시 확인해보았다.

단순회귀분석에서의 추론: 회귀직선의 유의성 검정

- ▶ 설명변수 x를 고려한 회귀직선이 의미가 있는지에 대한 검정
- ► SSR 의 값이 커질 수록 회귀직선의 유의하다는 증거가 강해지는것으로 해석
- SSR/ $\sigma^2 \sim \chi^2(1)$, SSE/ $\sigma^2 \sim \chi^2(n-2)$
- $F = \frac{SSR/1}{SSE/(n-2)} = \frac{MSR}{MSE} \sim F(1, n-2)$

F검정

- ▶ 귀무가설: H_0 : 회귀모형이 유의하지 않다.($\beta_1 = 0$)
- ▶ 대립가설 H_1 : 회귀모형이 유의하다. $(\beta_1 \neq 0)$
- ▶ 검정통계량 : $F = \frac{SSR/1}{SSE/(n-2)}$
- ▶ 검정통계량의 관측값 *f*₀.
- ▶ 유의확률: $P(F \ge f_0)$
- ▶ 유의수준 α 에서 기각역 : $F > F_{1-\alpha}(1, n-2)$
- **▶** $F \sim F(k_1, k_2)$ 일때, $P(F \leq F_p(k_1, k_2)) = p$.

분산분석표

▶ 분산분석표(Analysis of variance table)

회귀직선의 유의성 검정 과정을 표로 요약

요인	제곱합	자유도	평균제곱	F 값	유의확률
회귀	SSR	1	MSR = SSR / 1	$f_0 = M SR/M SE$	$P(F \ge f_0)$
잔차	SSE	n-2	MSE = SSE / (n-2)		
계	SST	n-1			

예시

앞서 국어성적을 x로 설정하고 영어성적을 y로 설정하여 적합한 회귀직선 $Y_i = 15.9899 + 0.3499 \times x_i + \epsilon_i$ 에 대한 F검정을 해보자.

▶ 회귀모형에 대한 가설

 H_0 : 회귀모형이 유의하지 않다. $(\beta_1=0)$

 H_1 : 회귀모형이 유의하다. $(\beta_1 \neq 0)$

	제곱합	자유도	평균제곱	F값	유의확률
회귀	132.716	1	132.716	24.122	< 0.001
잔차	99.034	18	5.502		
계	231.75				

▶ 분산분석표를 관측한 결과, 귀무가설을 기각할 수 있음을 확인할 수 있다. 즉, 적합된 회귀직선은 유의하다고 할 수 있다. ▶ statsmodels 패키지 안의 stats 서브패키지에 있는 anova 모듈 안의 anova_lm 함수를 활용하여 분산분석표를 얻을 수 있다.

```
In [208]: anova.anova lm(score_result)

C:\Users\user\Anaconda3\lib\site-packages\scipy\stats\_distn_infrastructure.py:879: RuntimeWarning: invalid value encountered in greater return (self.a < x) & (x < self.b)

C:\Users\user\Anaconda3\lib\site-packages\scipy\stats\_distn_infrastructure.py:879: RuntimeWarning: invalid value encountered in less return (self.a < x) & (x < self.b)

C:\Users\user\Anaconda3\lib\site-packages\scipy\stats\_distn_infrastructure.py:1821: RuntimeWarning: invalid value encountered in less_equal cond2 = cond0 & (x <= self.a)

Out[208]:

df sum_sq mean_sq F PR(>F)

kpr 1.0, 132.715629 132.715629 4.12174 0.000113
```

NaN

NaN

Residual 18.0 99.034371 5.501910

회귀계수 (β1)의 유의성에 대한 검정

- 회귀계수의 최소제곱추정량의 성질을 이용하여 회귀계수의 유의성에 대한 검정 가능
- ▶ 단순선형회귀에서

$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{S_{xx}}\right)$$

$$t = \frac{\beta_1 - \beta_1}{\hat{\sigma}/\sqrt{S_{xx}}} \sim t(n-2)$$

회귀계수 유의성검정을 위한 t 검정

- ▶ 귀무가설: H_0 : 회귀계수가 유의하지 않다.($\beta_1 = b$)
- ▶ 대립가설 H_1 : 회귀계수가 유의하다.($\beta_1 \neq b$)
- ▶ 검정통계량 : $t = \frac{\hat{\beta}_1 b}{\hat{\sigma}/\sqrt{S_{XX}}}$
- ▶ 검정통계량의 관측값: t₀

 $T \sim t(k)$ 일때, $P(T \leq t_p(k)) = p$.

대립가설 <i>H</i> ₁	유의확률	유의수준 α의 기각역
$\beta_1 > b$	$P(T > t_0)$	$T > t_{1-\alpha}(n-2)$
$\beta_1 < b$	$P(T < t_0)$	$T<-t_{1-\alpha}(n-2)$
$\beta_1 \neq b$	$P(T > t_0)$	$ T > t_{1-\alpha/2}(n-2)$

예시

중고차의 사용 연수에 따라 중고차의 가격이 얼마나 달라지는 지에 대해 알아보기 위해, 중고차의 사용 연수를 설명변수(x, 단위: 1년), 가격을 반응변수(y, 단위: 100만원)로 하는 단순선형회귀모형을 고려해보자

사용년수 (x_i) 중고차가격 (y_i)	1.0	1.5	2.0	2.0	3.0	3.0	3.2	4.0	4.5	5.0	5.0	5.5
중고차가격 (y_i)	4.5	4.0	3.2	3.4	2.5	2.3	2.3	1.6	1.5	1.0	0.8	0.4

중고차의 사용 연수 및 가격 자료

- ► n = 12, \bar{x} = 3.308, \bar{y} = 2.292 S_{xx} = 24.649, S_{xy} = -21.169, $\hat{\sigma}^2$ = MSE = 0.0289
- $\hat{\beta}_1 = \frac{-21.169}{24.649} = -0.859, \hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x} = 5.133$
- ▶ 적합된 회귀모형:

$$\hat{Y}_i = 5.133 - 0.859 \times x_i$$

적합된 회귀모형의 회귀계수 β_1 이 유의한지에 대해 유의수준 5%에서

t 검정을 시행해보자.

- ▶ 회귀계수에 대한 가설
 - H_0 : 회귀계수 β_1 이 유의하지 않다.($\beta_1 = 0$)

 H_1 : 회귀계수 β_1 이 유의하다. $(\beta_1 \neq 0)$

▶ 검정통계량의 관측값 :

$$t_0 = \frac{\hat{\beta}_1 - 0}{\hat{\sigma}/\sqrt{S_{xx}}} = \frac{-0.859}{\sqrt{0.0289/24.649}} = -25.087$$

- ▶ 기각역: |t₀| > |t_{0.975}(10)| = 2.281
- ▶ 유의수준 5%에서 회귀계수가 유의하다고 볼 수 있다.

summary 명령어를 통해 나온 결과로부터 계수의 유의성검정 진행

In [209]: usedcar_model=sm.ols(formula='price~year', data=usedcar) # ols : 모형화 함수
...: usedcar_result=usedcar_model.fit() # 모형화 결과(빈 괄호부분을 생략하면 결과를 볼 수 있다.)
...: print(usedcar_result.summary()) #결과 정리 : 결과자은 이 과정을 통해 볼 수있다.

Dep. Variab	le:	c	rice	R-squa	red:		0.984
Model:			OLS		R-squared:		0.983
Method: Date: Time: No. Observations:		Least Squ	ares	F-stat	629.8		
		Tue, 19 Dec		Prob (F-statistic):		2.31e-10
		22:1	6:16				5.3366 -6.673
			12				
Df Residuals	5:		10	BIC:			-5.703
Df Model:			1				
Covariance 1	Гуре:	nonro	bust				
	coef	std err		t	P> t	[0.025	0.975]
	5.1329	0.123	41	.600	0.000	4.858	5.408
year	-0.8588	0.034	-25	.095	0.000	-0.935	-0.783
Omnibus:		6	.703	Durbir	n-Watson:		1.413
Prob(Omnibus	s):	6	.704	Jarque	-Bera (JB):		0.588
Skew:		6	.073	Prob(3	IB):		0.745
Kurtosis:		1	.926	Cond.	No		9.66

예시

이번에는 회귀계수의 값, 즉 연 평균 중고차 가격의 감소액이 80 만원을 초과하는지에 대해 검정해보도록 한다.

- ▶ 회귀계수에 대한 가설 $H_0: \beta_1 = -0.8, H_1: \beta_1 < -0.8$
- ▶ 검정통계량의 관측값 $t_0 = \frac{\hat{\beta}_1 (-0.8)}{\hat{\sigma}/\sqrt{S_{xx}}} = \frac{-0.859 (-0.8)}{\sqrt{0.0289/24.649}} = -1.719$
- ▶ 기각역 : t₀ < -t_{0.95}(10) = -1.812
- ▶ 통계량의 관측값이 기각역에 들어가지 못하므로, 유의수준 5% 에서 귀무가설을 기각하지 못한다.

예시: β_1 의 신뢰구간

▶ 앞서 구한 $Var(\hat{\beta}_1) = \frac{\sigma^2}{S_{xx}}$ 를 이용하여 회귀계수 $\hat{\beta}_1$ 에 대한 95% 신뢰구간을 구할 수 있다

$$\hat{\beta}_1 \pm t_{0.975} (12 - 2) \frac{\hat{\sigma}}{\sqrt{S_{xx}}} = -0.859 \pm 2.228 \cdot \sqrt{\frac{0.0289}{24.649}}$$

$$= -0.859 \pm 0.076 \Rightarrow (-0.935, -0.783)$$

▶ 중고차의 가격은 1년이 지날 때마다 평균적으로 783,000 원에서 935,000 사이로 감소한다고 신뢰수준 95%에서 결론내릴 수 있다.

t검정과 F검정의 관계

▶ 단순선형회귀분석에서,회귀모형의 유의성에 대한 F 검정 = 회귀계수의 유의성에 대한 t 검정

$$F = \frac{SSR/1}{SSE/(n-2)} = \frac{\hat{\beta}_1^2 S_{xx}}{MSE} = \left\{ \frac{\hat{\beta}_1 - 0}{\hat{\sigma}/\sqrt{S_{xx}}} \right\}^2 = T^2$$

 $T \sim t(n-2) \rightarrow T^2 \sim F(1, n-2)$

회귀직선의 상수항 (β_0) 에 대한 추론

- ▶ 상수항이 어떤값을 갖는지에 대한 유의성 검정을 최소제곱법 추정량 $\hat{\beta}_0$ 의 성질을 이용하여 할수 있다.
- $\hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x}$ 로부터
- ► $E(\hat{\beta}_0) = E(\bar{y}) E(\hat{\beta}_1\bar{x}) = \beta_0 + \beta_1\bar{x} \beta_1\bar{x} = \beta_0$
- $Var(\hat{\beta}_0) = Var(\bar{y} \hat{\beta}_1 \bar{x}) = Var(\bar{y}) + (\bar{x})^2 var(\hat{\beta}_1) 2Cov(\bar{y}, \hat{\beta}_1 \bar{x})$ $= \frac{\sigma^2}{n} + (\bar{x})^2 \frac{\sigma^2}{S_{xx}} = \sigma^2(\frac{1}{n} + \frac{(\bar{x})^2}{S_{xx}})$ $(\because Cov(\bar{y}, \hat{\beta}_1 \bar{x}) = \bar{x}Cov(\bar{y}, \hat{\beta}_1) = 0 임이 알려져 있다.)$
- $ightharpoonup \hat{eta}_0 \sim N\left(eta_0, \sigma^2\left(rac{1}{n} + rac{(ar{x})^2}{S_{xx}}
 ight)
 ight)$
- $T = \frac{\hat{\beta}_0 \beta_0}{\hat{\sigma} \sqrt{\frac{1}{n} + \frac{(\bar{x})^2}{S_{XX}}}} \sim t(n-2)$

ightharpoonup 귀무가설 H_0 : $\beta_0 = b$

▶ 검정 통계량:
$$T=rac{\hat{eta}_0-b}{\hat{\sigma}\sqrt{rac{1}{n}+rac{(ar{m{x}})^2}{S_{xx}}}}$$

▶ 검정통계량의 관측값: t₀

 $T \sim t(k)$ 일때, $P(T \leq t_p(k)) = p$.

대립가설 <i>H</i> ₁	유의확률	유의수준 α 의 기각역
$\beta_0 > b$	$P(T > t_0)$	$T > t_{1-\alpha}(n-2)$
$\beta_0 < b$	$P(T < t_0)$	$T<-t_{1-\alpha}(n-2)$
$\beta_0 \neq b$	$P(T > t_0)$	$ T > t_{1-\alpha/2}(n-2)$

$$eta_0$$
의 100(1 $-\alpha$)% 신뢰구간 ($\hat{eta}_0 - t_{1-\frac{\alpha}{2}}(n-2)\hat{\sigma}\sqrt{n^{-1}+ar{x}^2/S_{xx}}, \hat{eta}_0 + t_{1-\frac{\alpha}{2}}(n-2)\hat{\sigma}\sqrt{n^{-1}+ar{x}^2/S_{xx}}$)

평균반응에 대한 추론

▶ 평균반응:

$$E(Y|X) = \beta_0 + \beta_1 X$$

▶ 평균반응의 추정량

$$\hat{Y} = \widehat{E(Y|X)} = \hat{\beta}_0 + \hat{\beta}_1 X$$

▶ 평균반응 추정량의 성질

$$E(\hat{Y}) = E(\hat{\beta}_0 + \hat{\beta}_1 x) = \beta_0 + \beta_1 x = E(Y)$$

$$Var(\hat{Y}) = Var(\hat{\beta}_0 + \hat{\beta}_1 x) = \sigma^2 \left[\frac{1}{n} + \frac{(x - \bar{x})^2}{S_{xx}} \right]$$

$$T = \frac{(\hat{\beta}_0 + \hat{\beta}_1 x) - (\beta_0 + \beta_1 x)}{\sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{(x - \bar{x})^2}{S_{xx}}\right]}} \sim t(n - 2)$$

▶ 평균반응의 100(1 – *α*)% 신뢰구간

$$(\hat{\beta}_0 + \hat{\beta}_1 x) \pm t_{1-\alpha/2} (n-2) \sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{(x-\bar{x})^2}{S_{xx}}\right]}$$

▶ 설명변수의 값이 표본평균으로부터 멀어질 수록 신뢰구간의 폭이 넓어진다

평균반응의 신뢰구간 도표. x값이 표본평균으로부터 멀어질 수록 신뢰구간의 폭이 넓어진다.

평균반응에 대한 검정

- ▶ 귀무가설: H_0 : $\beta_0 + \beta_1 x = \mu_0$
- ▶ 검정통계량: $T = \frac{(\hat{\beta}_0 + \hat{\beta}_1 x) \mu_0}{\sqrt{\hat{\sigma^2}[\frac{1}{n} + \frac{(x \bar{x})^2}{S_{xx}}]}}$
- ▶ 검정통계량의 관측값: t₀

 $T \sim t(k)$ 일때, $P(T \leq t_p(k)) = p$.

대립가설 <i>H</i> ₁	유의확 률	유의수준 α 의 기각역
$\beta_0 + \beta_1 x > \mu_0$	$P(T > t_0)$	$T > t_{1-\alpha}(n-2)$
$\beta_0 + \beta_1 x < \mu_0$	$P(T < t_0)$	$T<-t_{1-\alpha}(n-2)$
$\beta_0 + \beta_1 x \neq \mu_0$	$P(T > t_0)$	$ T >t_{1-\alpha/2}(n-2)$

예시

- 앞서 다루었던 중고차의 사용연수에 따른 가격 변화에 대한 회귀모형에서 사용 연수가 2.5년인 중고차의 평균 가격이 얼마정도 될 지에 대해 알아보고, 95% 신뢰구간을 구해보자.
- $E(Y|X=2.5) = \hat{\beta}_0 + \hat{\beta}_1 \times 2.5 = 5.133 0.859 \times 2.5 = 2.986$
- ▶ 95% 신뢰구간

$$\begin{array}{l} 2.986 \pm \textit{t}_{0.975}(10) \sqrt{0.0289 [\frac{1}{12} + \frac{(2.5 - 3.308)^2}{24.649}]} \\ = (2.860, 3.111) \end{array}$$

잔차분석 (Residual analysis)

- 잔차의 분포를 분석하여 단순선형회귀모형에 대한 가정이 타당한지 점검하여 모형의 적정성 여부를 검토
- ▶ 단순회귀모형의 가정

$$\left\{ egin{aligned} & Y_i = eta_0 + eta_1 x_i + \epsilon_i \ (\mbox{선형성}) \ & \epsilon_i \sim \emph{N}(0, \sigma^2)$$
이고, 서로 독립 (독립성, 등분산성, 정규성) \ \end{aligned}
ight.

스튜던트화 잔차

▶ 오차항의 성질

$$\tfrac{\epsilon_i}{sd(\epsilon_i)} = \{Y_i - (\beta_0 + \beta_1 x_i)\}/\sigma \sim_{\textit{iid}} \textit{N}(0,1), \ i = 1, 2, \cdots, n$$

▶ 스튜던트화 잔차(Studentized residual):

$$\hat{e}_{st,i} = \hat{\epsilon}_i / \hat{sd}(\hat{\epsilon}_i)$$

 스튜던트화 잔차를 마치 표준화된 오차항의 관측값처럼 생각하여 회귀모형의 가정을 검토.

잔차도

- ▶ 잔차도 (Residual plot) 설명변수의 값들을 x좌표로, 스튜던트화 잔차를 y좌표로 그린 산점도
- 잔차도를 통해 잔차의 분포를 파악하여 회귀모형의 가정이 맞는지를 판단.
 - 대략 0에 관하여 대칭적으로 나타난다.
 - 설명변수의 값에 따라 잔차의 산포가 크게 달라지지 않는다.
 - 점들이 특정한 형식을 가지고 나타나지 않는다.
 - 거의 모든 점이 ±2 범위 내에 나타난다.

예시1

중고차의 사용 연수와 가격에 대한 자료를 이용하여 잔차도를 그린 결과

예시2

자료	10	8	13	9	11	14	6	4	12	7	5
Α	8.04	6.95	7.58	8.81	8.33	9.96	7.24	4.26	10.84	4.82	5.68
자료	10	8	13	9	11	14	6	4	12	7	5
В	9.14	8.14	8.74	8.77	9.26	8.10	6.13	3.10	9.13	7.26	4.74

- ▶ 각 자료를 바탕으로 회귀직선 및 R² 계산
 - 자료 A의 회귀직선 :y = 3.00 + 0.500x, $R^2 = 0.6665$, F = 17.990
 - 자료 B의 회귀직선 :y = 3.00 + 0.500x, $R^2 = 0.6662$, F = 17.965

두 자료의 산점도 및 최소제곱회귀곡선.

▶ 산점도의 형태는 확연하게 다름

▶ 두 자료의 스튜던트화 잔차를 이용한 잔차도

▶ 자료 B의 경우, 스튜던트화 잔차가 0에 관하여 비대칭적으로 나타난 것을 확인

다중회귀분석 (Multiple regression analysis)

- ▶ 두 개 이상의 설명변수의 영향을 받는 경우
- ► 두 개 이상의 설명변수를 사용하는 선형회귀모형 : 다중회귀선형모형(Multiple linear regression model)
- ▶ k개의 설명변수를 갖는 선형 모형의 가정

$$\begin{cases} Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + \epsilon_i \\ \epsilon_i \sim_{iid} \mathbf{N}(0, \sigma^2) \end{cases}$$

 \triangleright $\beta_0, \beta_1, \beta_2, \cdots, \beta_k$ 는 회귀계수, σ^2 오차분산

▶ 최소제곱법을 이용하여 β_i 추정

$$\sum_{i=1}^{n} \{ Y_i - (\beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_k X_{ik}) \}^2$$

위의 식을 최소화하는 회귀계수들을 편미분을 이용하여 만들어진 정규방정식을 이용하여 구함

회귀계수 추정량

ightharpoonup 선형회귀모형의 행렬을 이용한 식: $oldsymbol{Y} = oldsymbol{X}eta + \epsilon$

$$Y = (y_1, y_2, \dots, y_n)^T$$

$$X = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{pmatrix}$$

$$\beta = (\beta_0, \beta_1, \beta_2, \dots, \beta_k)$$

$$\epsilon = (\epsilon_1, \epsilon_2, \dots, \epsilon_n)^T$$

▶ 최소제곱법을 통한 회귀계수의 최소제곱추정량

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{Y}$$

다중회귀분석에서의 회귀직선 유의성 검정

- ▶ 귀무가설:
- \vdash $H_0: \beta_1 = \beta_2 = \cdots = \beta_k = 0$
- ▶ 대립가설: H₁: 적어도 하나의 회귀계수는 0이 아니다.
- ▶ 단순회귀분석에서의 회귀직선의 유의성 검정과 마찬가지로 F = MSR/MSE를 이용

요인	제곱합	자유도	평균제곱	F 값	유의확률
회귀	SSR	k	MSR = SSR / k	M SR/M SE	$P(F \ge f)$
잔차	SSE	n-k-1	MSE = SSE / (n - k - 1)		
계	SST	n-1			

다중회귀분석의 결정계수

전체 자료의 변동중에 회귀직선으로 설명되는 변동의 비율

- $ightharpoonup R^2 = \frac{SSR}{SST}$
- 결정계수는 설명변수의 개수 k에 대한 증가함수로, 설명변수의 유의성 여부와 관계없이 설명변수의 개수가 많아지면 그 값이 증가하게 되는 단점
- 단점을 보완하기 위해 수정된 결정계수(Adjusted R-Square, R_{adj})를 사용

$$R_{adj} = 1 - \frac{SSE/(n-k-1)}{SST/(n-1)} = 1 - \frac{(1-R^2)(n-1)}{n-k-1}$$

예시 - 붓꽃 데이터 (iris dataset)

- ▶ 150 송이의 붓꽃들의 꽃받침(Sepal) 길이, 꽃받침 너비, 꽃잎 (Petal) 길이, 꽃잎 너비, 품종을 기록한 dataset
- ▶ 붗꽃의 다른 수치형 변수들(꽃잎 너비, 꽃받침 길이, 꽃잎 길이) 이 붗꽃의 꽃받침 너비에 영향을 주는지 알아보기 위해, 다중회귀선형모형을 적합해보도록 하자.

회귀모형을 적합 결과

In [407]: iris_result = sm.ols(formula='SepalWidth ~ SepalLength+PetalLength+PetalWidth', data=iris).fit() ...: print(iris_result.summary())

	OLS Regres	sion Results	
Dep. Variable:	SepalWidth	R-squared:	0.524
Model:	OLS	Adj. R-squared:	0.514
Method:	Least Squares	F-statistic:	53.58
Date:	Wed, 20 Dec 2017	Prob (F-statistic):	2.06e-23
Time:	16:35:24	Log-Likelihood:	-32.100
No. Observations:	150	AIC:	72.20
Df Residuals:	146	BIC:	84.24
Df Model:	3		
Covariance Type:	nonrohust		

DI MOUEL:	2
Covariance Type:	nonrobust

Covariance Ty	pe:	nonrobus				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.0431	0.271	3.855	0.000	0.508	1.578
SepalLength	0.6071	0.062	9.765	0.000	0.484	0.730
PetalLength	-0.5860	0.062	-9.431	0.000	-0.709	-0.463
PetalWidth	0.5580	0.123	4.553	0.000	0.316	0.800
Omnibus:		0.73	B Durbin-	-Watson:		1.889
Prob(Omnibus)	:	0.69	L Jarque-	Bera (JB):		0.426
Skew:		-0.10	Prob(JE	3):		0.808
Kurtosis:		3.16	Cond. N	lo.		82.1

▶ 데이터로 적합한 (fitted) 회귀직선

 $SepalWidth = 1.0431 + 0.6071 \cdot SepalLength$

 $-0.586 \cdot PetalLength + 0.558 \cdot PetalWidth$

- 해석예시: 다른 설명변수가 고정되어 있을때, 꽃잎의 길이 (Petal Length)가 1 (cm)증가할때, 반응변수인 꽃받침의 너비 (Sepal Width)가 -0.586cm만큼 감소
- ▶ 회귀직선의 유의성에 대한 F 검정
 - F statistics = 53.58
- ▶ 각각의 회귀계수 및 상수항에 대한 t검정
- 모두 유의하게 나타남
- ▶ 결정계수, *R*²=0.524

잔차분석

- ▶ 설명변수의 개수가 여러개이므로, 설명변수를 x좌표로 두고 잔차를 나타내는 것이 적절하지 않다.
- ▶ 대신 평균반응의 추정값 ŷ를 x좌표로 사용

잔차도 예시

범주형 설명변수

- ▶ 설명변수가 범주형 변수(categorical variable)인 경우
- ▶ Python이나 R과 같은 통계분석 프로그램에서 회귀모형을 적합할때 내부적으로 지시변수(Indicator variable) 개념 사용
- ▶ 지시변수란, 범주에 따라 0과 1 중 하나의 값을 배정하는 정수 형태의 변수
- ▶ 범주의 갯수가 p개일 때, p 1개의 지시변수 필요

범주형 설명변수 예시

- ▶ 붓꽃자료에서 범주형 변수 품종 (Species)의 경우 3개의 범주 (Setosa, Versicolor, Virginica)가 있다.
- ▶ 품종을 추가한 선형 회귀모형 SepalWidth = $\beta_0 + \beta_1$ SepalLength + β_2 PetalLength + β_4 PetalWidth + λ_1 Ind_{versicolor} + λ_2 Ind_{virginica}
- ▶ 지시변수의 계수를 통해, 품종에 따라 상수항이 서로 다른 회귀직선이 된다

붓꽃 자료에 범주형 설명변수인 '품종'을 추가한 회귀모형을 적합해본 결과

In [441]: result_with_cate = sm.ols(formula='SepalWidth ~ SepalLength+PetalLength+PetalWidth+Species',
data=iris).fit()
 ...: print(result with cate.summary())

Dep. Variable: SepalWidth R-squared: 0.635 Model: OLS Adi. R-squared: 0.622 Method: Least Squares F-statistic: 50.14 Date: Wed, 20 Dec 2017 Prob (F-statistic): 7.15e-30 Time: 17:11:13 Log-Likelihood: -12,154 No. Observations: 150 ATC: 36.31 Df Residuals: BIC: 144 54.37 Df Model: 5

OLS Regression Results

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.6572	0.256	6.475	0.000	1.151	2.163
Species[T.versicolor]	-1.1603	0.193	-6.003	0.000	-1.542	-0.778
Species[T.virginica]	-1.3983	0.277	-5.045	0.000	-1.946	-0.850
SepalLength	0.3778	0.066	5.761	0.000	0.248	0.507
PetalLength	-0.1876	0.083	-2.246	0.026	-0.353	-0.023
PetalWidth	0.6257	0.123	5.072	0.000	0.382	0.870

Omnibus:	8.540	Durbin-Watson:	2.024
Prob(Omnibus):	0.014	Jarque-Bera (JB):	10.898
Skew:	-0.356	Prob(JB):	0.00430
Kurtosis:	4.112	Cond. No.	122.

▶ 적합한 회귀직선

 $SepalWidth = 1.6572 + 0.3778SepalLength - 0.1876PetalLength + 0.6257PetalWidth - 1.1603Ind_{versicolor} - 1.3983Ind_{virginica}$

- ▶ 품종이 Versicolor일때의 회귀직선

 SepalWidth = (1.6572 1.1603) + 0.3778SepalLength 0.1876PetalLength + 0.6257PetalWidth
- ▶ 품종이 Virginica일때의 회귀직선

 SepalWidth = (1.6572 1.3983) + 0.3778SepalLength 0.1876PetalLength + 0.6257PetalWidth
- ► 품종이 Setosa일때의 회귀직선
 SepalWidth = 1.6572 + 0.3778SepalLength 0.1876PetalLength + 0.6257PetalWidth

2차원 도표를 그리기 위해 반응변수를 '꽃받침의 너비', 설명변수를 '꽃잎의 너비'와 '품종'으로 축소시킨 회귀모형의 회귀직선. 품종에 따라 상수항이 다른 것을 확인할 수 있다.