Julia Nelson	Homework D.		
	Homework Assignment	ment 2	September 23, 2019
"bredge my h	onor that II		(d
HBnor S	system." Olle	ele abided b	y the Stevens
	system." I No	0500	1
Pg 67	1-8k /c.	- A) V S V S -	18:
	286	S-ply-se =	
#4(abcde)	ALGORITHM:	MURTER. (n)	
		Mystery (n)	ν. τ. Α . 1011 - σο . 10 τ . ο
a) This a	algorianm computes	S - 0	put: A wow-neg Int n
	L // / - n \ - n \ - /	7	to n do
	12 (h=1 -> 1)	1-n _S = S ←	5+1+1
Sum of	number n=2 -1:2	return 8	
	d up 50 n=3 -14273	-084=	
6)	1.4-1-	8=4/4=8	
The	pagic obeation	is multipli	cation
c) The	basic operacio	on is come	t executed n
tim	es.	,/	
G. Wes (n+n+Cs	
d) The	efficiency class	& of the	algorithm is O(n)
$N \leftarrow N$	because I has	executed n	times
8. (Sta-U)+(1+	{ 1+n+1 = n+2	2n3=00	No des
1	Vr . 1 - 1 - (0)X=	1000	9 =
e) fix	nd better efficience	y than O(n)→	single line of
1 7		0	oxionmetic seq. ⇒ \(\text{0}\)
			neure. How to do
3. E. 1 -	To P		compute
			(b
pg 76 (#larade)	SIMIS	KO OTO	$(\alpha) \times -(\alpha) \times$
10	(-5 = 0 707)		
#1 a) x(r)= x(n-1)+5 for n	>1, x(1)=0	Baxwade Sts.
	= x(n-2)+5+5	# -S */ -=)	2 = (2,0)× =
20+3	→ x(n-i)+ 5i	=0 if 1= n-1	-7.5)x =
75-27	- 2 - (- (- (- x) - 5	= x(n-(n-1)+	5 (n-1)
y(n-2)+5+5 = x(n-2)+2(5) = $x(1) + 5(n) - 5$			5 X =
) (I)	5)+5+5+5 = x(n-3)+3(5)	= x(1)+5.n-	V #1 H91
^(n-3)+5+5 +3 = ^(11-3)+>(>> X(n)= 5(n-1)
		0 5(n-1)	S. C. C.
	1 11-21 ()	1123111126-	
			1, 21

```
x(n) = 3x(n-1)
                                                                                                                                                                                                                                                                                               \Rightarrow 3^{2}(3 \times (n-3)) \Rightarrow
\Rightarrow 3^{3} \times (n-3)
                                                                                                                                    = 3.3 \times (n-2)
                                                                                                                                     =3^2x(n-2)
                                                                                                                                        =3^{i}x(n-i)
                                                                                                                                       (let i = n-1)
                                                                                                                                                             3 (n-1) x (n-(n-1))
                                                                                                                                                                = 3n-1 x (1)
                                                                                                                                                                  4 + 3 1-1
    0)
                                                                                                                                                                                                           \times (n-2) + (n-1) + n \times (n-3)^{4} (n-2)^{4} (n
                           x(n) = x(n-1) +n Brn>0 x(0)=0
                                                                 = \chi(n-2) + n + n
                                                                                                                                                           x (n-3)+(n+2)+ (n-1)+n K
                                                                                                                                -n)+ An = ×(n-i)+(n-i+1)+(n-i+2)...
                                                                                                                                                                                                                 =X(0) + 1 + 2 + ... +n
                                                                                                                                                                                                                              n (n+1)
d)
                           \chi(n) = \chi(n/2) + n
 abolet n=2k
                          Y(2°) 7 = 1+21+22+...+2K = 2K+1-1
x(1)=1 = 2/2K1-1
```

x(n)= 8x(n-1) & br h>1

6

x(1)=4

```
x(n)= x(n/3) +1
  e)
                                       8r n>1
                                       x(1) =1
                                  Solve for n= 3k
          x(3")= x(3/3)+1
                 = x(3k-1)+1
                 = x(3x-2)+1+1
                                      x (3x-3)+3
                 = X(3K-3)+1+1+1

→ × (3K-i)+i

                                            IF N= 3"
                                              K= log3n
                  let i=k
                    x(3K-K)+K
                    = X(3°) + K
                    = X(1)+K =
Pg 76 #3
                        Algorithm:
                                    Sin
                                      "Input: A positive int n
       S(n)=13+23+...+ n3
                                      1 output: Sum of the first n cubes
       #times Mutt. is executed
                                     if n=1 return 1
       X(n) = X(n-1) + 2 X(1) = 0
                                     erse
         = X(n-2) + 2+2 - x(n-2) + 22
                                       return S(n-1) + n+n+n
         = X(n-8)+2+2+2+ x(n-8)+23/
             \Rightarrow x(n-i)+2i
               let i= n-1
               X(n-(n-1)) + 2(n-1)
               = X(1) + 2(n-1)
                 = 0 + 2(n-1) | = 2(n-1)
    6
         Non recording som of Brown cubes
                             some # OF multipli cotions
            executes the
                           than being recursive, it could
              but rother
                       Per 100p
              USE A
                                841
                                                  (similar to question #4 pg 67)
                                for i < 2 00 n
                                S= 8+i*i*i
                             www S
```