Chapter 7

Basic Algebraic Coding Theory

7.1 Linear Codes

Linear Codes

- Suppose that A is the input alphabet of a channel.
- A block error correcting code C is a subset of A^n , where n is called the block length.
- Most practical channel codes are linear codes, where A is a finite field.
- A code $\mathcal{C} \subset \mathcal{A}^n$ is linear if it is closed under linear combinations, in other words,

$$\alpha \mathbf{x} + \alpha' \mathbf{x}' \in \mathcal{C}, \quad \forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}, \ \forall \alpha, \alpha' \in \mathcal{A}.$$

- A linear code C is a subspace of A^n .
- A linear code with length n and dimension k is said to be an (n,k) code.

Generator Matrix

- For an (n, k) code C, a $k \times n$ matrix G, whose rows form a basis of C, is called a generator matrix for C.
- $\mathcal{C} = \langle G \rangle = \{ uG : u \in \mathcal{A}^k \}.$
- A generator matrix G of C is said to be *systematic* if $G = [I \ P]$, where I is a $k \times k$ identity matrix.

Dual Code and Parity-Check Matrix

• The dual code \mathcal{C}^{\perp} of a linear code \mathcal{C} is defined by

$$\mathcal{C}^{\perp} = \{ \mathbf{v} \in \mathcal{A}^n : \mathbf{v} \cdot \mathbf{x}^{\top} = 0, \forall \mathbf{x} \in \mathcal{C} \} = \{ \mathbf{v} : G\mathbf{v}^{\top} = \mathbf{0} \}.$$

- The dimension of \mathcal{C}^{\perp} is n-k.
- A generator matrix H of the dual code \mathcal{C}^{\perp} is also called a *parity-check matrix* of the original code \mathcal{C} .
- We can write

$$\mathcal{C} = \{ \mathbf{x} : H\mathbf{x}^{\top} = \mathbf{0} \}.$$

One practical reason to use linear codes is that it is easy for encoding. To record all the code words in a hard drive is not possible!

Why Linear Codes?

- The description of linear codes is simple.
- Encoding complexity $O(n^2)$, and even simpler if there exists a sparse generator matrix.
- Linear codes achieve the capacity.

Examples of Linear Codes

- Hamming codes (1950)
- Reed-Solomon codes (early 1950s)
- BCH codes (1959)
- Convolutional codes (1955)
- Turbo codes (1993)
- LDPC (1962, 1997)
- Fountain codes (1998)
- Polar codes (2006)

Hamming Distance

- Let \mathbb{A} be an alphabet of q elements.
- The *Hamming distance* of two vector $\mathbf{x}, \mathbf{y} \in \mathbb{A}^n$, denoted by $d(\mathbf{x}, \mathbf{y})$, is the number of coordinates i with different values.
- The Hamming distance is a metric since
 - 1. $d(\mathbf{x}, \mathbf{y}) \geq 0$, with equality iff $\mathbf{x} = \mathbf{y}$.
 - 2. $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$.
 - 3. $d(\mathbf{x}, \mathbf{y}) \le d(\mathbf{x}, \mathbf{z}) + d(\mathbf{y}, \mathbf{z})$.

Minimum Distance Decoding

- Consider a memoryless BSC with cross-over probability $\epsilon \leq 1/2$.
- The maximum likelihood (ML) decoding rule for received vector y reads

$$\begin{split} \hat{\mathbf{x}} &= \underset{\mathbf{x}: H\mathbf{x}^{\top} = 0}{\operatorname{argmax}} W_n(\mathbf{y}|\mathbf{x}) \\ &= \underset{\mathbf{x}: H\mathbf{x}^{\top} = 0}{\operatorname{argmax}} \prod_{i=1}^n W(y_i|x_i) \\ &= \underset{\mathbf{x}: H\mathbf{x}^{\top} = 0}{\operatorname{argmax}} \epsilon^{d(\mathbf{x}, \mathbf{y})} (1 - \epsilon)^{n - d(\mathbf{x}, \mathbf{y})} \\ &= \underset{\mathbf{x}: H\mathbf{x}^{\top} = 0}{\operatorname{argmin}} d(\mathbf{x}, \mathbf{y}). \end{split}$$

Syndrome Decoding

• Let $\mathbf{s} = H\mathbf{y}^{\top}$, which is called the syndrome. We further have

$$\hat{\mathbf{x}} = \underset{\mathbf{x}: H\mathbf{x}^{\top} = 0}{\operatorname{argmin}} w(\mathbf{x} - \mathbf{y})$$
$$= \mathbf{y} - \underset{\mathbf{e}: H\mathbf{e}^{\top} = \mathbf{s}}{\operatorname{argmin}} w(\mathbf{e})$$

ML decision problem

Is there $\mathbf{e} \in \{0,1\}^n$ such that $w(\mathbf{e}) \leq c$ and $H\mathbf{e}^{\top} = \mathbf{s}$?

Theorem 7.1 The ML decision problem for BSC is NP-complete.

Hat Problem

- A number N of players are each wearing a hat, which may be of blue or red colours.
- Players can see the colors of all other players' hats, but not that of their own.
- Without any communication, some of the players must guess the color of their hat. Not all players are required to guess.
- All players who guess must decide at the same predetermined time, i.e., they don't know other's guess.
- Players win if at least one player guesses and all of those who guess do so correctly.
- How can the players maximise their chance of winning?

7.2 Minimum Distance 51

7.2 Minimum Distance

Minimum Distance

ullet The minimum distance of a code $\mathcal C$ is

$$d_{\min} \triangleq \min_{\mathbf{x} \neq \mathbf{y} \in \mathcal{C}} d(\mathbf{x}, \mathbf{y}).$$

Hamming Weight

- The *Hamming weight* of vector $\mathbf{z} \in \mathcal{A}^n$, denoted by $w(\mathbf{z})$, is the number of non-zero components in \mathbf{z} .
- Suppose \mathcal{A} is a finite field.
- For $\mathbf{x}, \mathbf{y} \in A^n$, $d(\mathbf{x}, \mathbf{y}) = w(\mathbf{x} \mathbf{y})$.
- For a linear code $d_{\min} = \min_{\mathbf{x} \neq \mathbf{0} \in \mathcal{C}} w(\mathbf{x})$.

Error Correction

• A code is t-error correcting if there exists a decoding algorithm such that the code can be decoded correctly for any t or less than t errors.

Theorem 7.2 A code is t-error correcting iff $d_{\min} \geq 2t + 1$.

Error Detection

- Decoder: return the correct codeword or announce errors.
- Example: CRC
- A code is c-error detecting if the code can detect correctly for any c or less than c errors.

Theorem 7.3 A code is c-error detecting iff $d_{\min} \geq c + 1$.

Erasure Correction

 A code is c-error correcting for erasure if the code can decode correctly for any c or less than c erasures.

Theorem 7.4 A code is c-error correcting for erasure iff $d_{\min} \ge c + 1$.

Intractability of Computing Minimum Distance

Theorem 7.5 The problem of computing the minimum distance of a binary linear code is NP-hard, and the corresponding decision problem is NP-complete.

7.3 Hamming Codes

All storage devices make errors!

- 1. magnetic tape
- 2. hard disk, floppy disk
- 3. optical disk
- 4. flash memory
- 5. distributed storage
- 6. cloud storage

Error Models

- $\bullet~$ Bit-flip errors.
- Erasure is also common in storage devices.
- More sophisticated error models can be obtained by investigating the underlying physical phenomenons of a particular storage devices.

Hamming's quesiton

If there exists only one bit flip, how to correct it?

Repetition codes:

- Repeat each bit three times
- Majority vote

(7,4) Hamming Code

- Encode each block of 4 bits to a 7-bit codeword.
- Generator matrix

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

• Encoding: $\mathbf{c} = [b_1 b_2 b_3 b_4] G$.

(7,4) Hamming Code

• Parity check matrix

$$H = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

- rank(H) = 3.
- $\dim(C) = 4$.
- The minimum (Hamming) weight of a codeword is 3.

General Hamming Codes

- Let m be a nonnegative integer, and $n = 2^m 1$.
- Let H be an $m \times n$ binary matrix whose columns are formed by all the nonzero m-tuples.

Theorem 7.6 The code \mathcal{C} with H as the parity-check matrix has the following properties:

- 1. The dimension of C is $k = 2^m m 1$.
- 2. The minimum weight of a non-zero codeword is 3.
- 3. A binary vector of length n is either a codeword, or one flip away from a unique codeword.

Proof. 1. H is full rank. 2. Any two columns of H are linearly independents, but not for some set of three columns of H. 3. Check that $2^k + 2^k n = 2^n$.

Syndrome Decoding for Hamming Codes

- Transmit $\mathbf{x} \in \mathcal{C}$.
- Receive $\mathbf{y} = \mathbf{x} + \mathbf{e}_i$.
- Calculate $H\mathbf{y}^{\top} = H\mathbf{x}^{\top} + H\mathbf{e}_{i}^{\top} = h_{i}$.
- So $H\mathbf{y}^{\top}$ tells the position of the error.

Hamming Bound (Sphere-Packing Bound)

7.4 Reed-Solomon Codes 53

Theorem 7.7 For a block code $\mathcal{C} \subset \mathbb{A}^n$ satisfies

$$|\mathcal{C}| \le \frac{q^n}{\sum_{i=0}^t \binom{n}{i} (q-1)^i}$$

where $t = |(d_{\min} - 1)/2|$.

Binary Hamming codes achieve the Hamming bound.

7.4 Reed-Solomon Codes

Applications of Reed-Solomon Codes

- Burst error protection: in many scenarios, couple bits are treated as a symbol.
- Communications
- Storage
- Bar code

Reed-Solomon Codes

- The alphabet is the finite field \mathbb{F} with q elements, where $q \geq n$.
- Let $\alpha_1, \ldots, \alpha_n$ be *n* distinct elements of \mathbb{F} .
- Encoding:
 - For a message $\mathbf{m} = (m_0, \dots, m_{k-1})$, define polynomial

$$p_{\mathbf{m}}(x) = m_0 + m_1 x + \dots + m_{k-1} x^{k-1}.$$

- $-\mathbf{m}\mapsto (p_{\mathbf{m}}(\alpha_1),\ldots,p_{\mathbf{m}}(\alpha_n)).$
- Generator matrix:

$$G = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{k-1} & \alpha_2^{k-1} & \cdots & \alpha_n^{k-1} \end{bmatrix}$$

How to generate a systematic Reed-Solomon code?

Decoding of Reed-Solomon Codes

- The Reed-Solomon code with above parameters is a (n, k, n k + 1) code.
- Decoding algorithms:
 - Syndrome decoding (E.g. Berlekamp-Massey algorithm)
 - List decoding (Sudan and Guruswami's algorithms)
 - Soft decoding (Kötter and Vardy)

Welch-Berlekamp Algorithm

- Decoding problem:
 - Given: n pairs of field elements (α_i, r_i) , i = 1, ..., n, and a parameter k.
 - Task: Find a polynomial p(x) of degree less than k such that $p(\alpha_i) = r_i$ for at least (n+k)/2 values of $i \in \{1, \ldots, n\}$.
- Error polynomial E(x)
 - $-p(\alpha_i) \neq r_i \text{ implies } E(\alpha_i) = 0.$
 - Given E, p can be computed efficiently.
 - Such an E exists: $E(x) = \prod_{i:r_i \neq p(\alpha_i)} (x \alpha_i)$.
 - -E has degree equal to the number t of errors and the most significant coefficient is 1.
- Key equation: $r_i E(\alpha_i) = E(\alpha_i) p(\alpha_i)$ for i = 1, ..., n.

Welch-Berlekamp Algorithm

- Let Q(x) = E(x)p(x), which has degree k-1+t.
- \bullet Take the unknown coefficients of Q and E as variables and solve the linear system

$$r_i E(\alpha_i) = Q(\alpha_i), i = 1, \dots, n.$$

- Try $t = 0, 1, \dots, (n k)/2$.
- A solution exists, but may not be unique.

Suppose (E,Q) and (E',Q') are both solutions of the linear system. We have for $i=1,\ldots,n$

$$r_i E(\alpha_i) = Q(\alpha_i), \quad r_i E'(\alpha_i) = Q'(\alpha_i),$$

and hence

$$r_i E(\alpha_i) Q'(\alpha_i) = Q(\alpha_i) Q'(\alpha_i) = r_i E'(\alpha_i) Q(\alpha_i).$$

When $r_i \neq 0$, we obtain

$$E(\alpha_i)Q'(\alpha_i) = E'(\alpha_i)Q(\alpha_i).$$

When $r_i = 0$, we have

$$E(\alpha_i)Q'(\alpha_i) = E'(\alpha_i)Q(\alpha_i) = 0.$$

So for n values, E(x)Q'(x) and E'(x)Q(x) are the same.

Singleton Bound

Theorem 7.8 For a block code $\mathcal{C} \subset \mathcal{A}^n$ satisfies

$$|\mathcal{C}| \le q^{n - d_{\min} + 1}.$$

- Codes that achieve the Singleton bound is also called maximum distance separable (MDS) codes.
- Reed-Solomon codes are MDS.

Proof. Generate a matrix M of $|\mathcal{C}|$ rows and n columns. Remove any $d_{\min} - 1$ columns from the matrix. In the remaining part M', all the rows are different. Otherwise, suppose two rows are the same, and then the two rows in M are two codewords of distance at most $d_{\min} - 1$.

MDS conjecture

- There exist linear MDS codes over \mathbb{F}_q of length n=q+1.
- (Bush 1952) If $k \ge q + 1$, then for any MDS codes $n \le k + 1$.
- (MDS conjecture, Segre 1955) If $k \le q$ then for any MDS codes $n \le q+1$, unless $q=2^h$ and k=3 or k=q-1, in which case $n \le q+2$.

$$G = \begin{bmatrix} 1 & 1 & \cdots & 1 & 0 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_n & 0 \\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_n^2 & \vdots \\ \vdots & \vdots & \ddots & \vdots & 0 \\ \alpha_1^{k-1} & \alpha_2^{k-1} & \cdots & \alpha_n^{k-1} & 1 \end{bmatrix} \quad G = \begin{bmatrix} 1 & 0 & \cdots & 0 & 1 \\ 0 & 1 & \cdots & 0 & 1 \\ 0 & 0 & \ddots & \vdots & 1 \\ 0 & 0 & \cdots & 1 & 1 \end{bmatrix} \quad G = \begin{bmatrix} 1 & 1 & \cdots & 1 & 0 & 0 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_q & 0 & 1 \\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_q^2 & 1 & 0 \end{bmatrix}$$

7.5 Greedy algorithms

Gilbert-Varshamov Bound (Sphere-Covering Bound)

Theorem 7.9 There exists a code $\mathcal{C} \subset \mathcal{A}^n$ such that

$$|\mathcal{C}| \ge \frac{q^n}{\sum_{i=0}^{d_{\min}-1} \binom{n}{i} (q-1)^i}.$$

Theorem 7.10 There exists a linear code $\mathcal{C} \subset \mathcal{A}^n$ with dimension k such that

$$k \ge n - \log_q \sum_{i=0}^{d_{\min}-1} \binom{n}{i} (q-1)^i.$$

For any $\mathbf{x} \in \mathcal{A}^n$, let

$$\mathcal{B}(\mathbf{x}) = \{ \mathbf{y} \in \mathcal{A}^n : d(\mathbf{x}, \mathbf{y}) \le d_{\min} - 1 \}.$$

We have

$$|\mathcal{B}(\mathbf{x})| = \sum_{i=0}^{d_{\min}-1} \binom{n}{i} (q-1)^i.$$

Proof of Theorem 7.9. There exists a code C of minimum distance d_{\min} such that

$$\mathcal{A}^n \subset \cup_{\mathbf{x} \in \mathcal{C}} \mathcal{B}(\mathbf{x}),$$

since otherwise, we can add certain $\mathbf{x} \in \mathcal{A}^n \setminus (\cup_{\mathbf{x} \in \mathcal{C}} \mathcal{B}(\mathbf{x}))$ to \mathcal{C} without changing the minimum distance. Hence,

$$|\mathcal{A}^n| \leq |\cup_{\mathbf{x} \in \mathcal{C}} \mathcal{B}(\mathbf{x})| \leq |\mathcal{C}||\mathcal{B}(\mathbf{x})|,$$

which leads to the theorem.

Proof of Theorem 7.10. For $\mathcal{B}, \mathcal{C} \in \mathcal{A}^n$, define

$$\mathcal{B} \oplus \mathcal{C} = \{b + c : b \in \mathcal{B}, c \in \mathcal{C}\}.$$

There exists a code C of minimum distance d_{\min} such that

$$\mathcal{A}^n \subset \mathcal{C} \oplus \mathcal{B}(\mathbf{0}),$$

where $\mathbf{0}$ is the all zero vector in \mathcal{A} . Otherwise, i.e., there exists $\mathbf{x} \in \mathcal{A}^n \setminus (\mathcal{C} \oplus \mathcal{B}(\mathbf{0}))$, we claim that $\mathcal{C} \oplus \langle \mathbf{x} \rangle$ is a linear code of the same minimum distance. For certain $\mathbf{c} \in \mathcal{C}$ and $\alpha \neq 0$, if the weight of $\mathbf{c} + \alpha \mathbf{x}$ is less than d_{\min} , i.e., $\mathbf{c} + \alpha \mathbf{x} \in \mathcal{B}(\mathbf{0})$, then $\mathbf{x} \in \mathcal{C} \oplus \mathcal{B}(\mathbf{0})$, a contradiction. Hence,

$$|\mathcal{A}^n| < |\mathcal{C} \oplus \mathcal{B}(\mathbf{0})| < |\mathcal{C}||\mathcal{B}(\mathbf{0})|,$$

which leads to the theorem.

Asymptotic Gilbert-Varshamov Bound

- Let $\delta = d/n$.
- For a fixed rate r, 0 < r < 1,

$$\delta^*(r) = \lim \sup_{n \to \infty} \max\{d(C)/n : C \in \mathcal{C}(n, 2^{\lfloor nr \rfloor})\}.$$

Theorem 7.11
$$h(\delta^*(r)) \ge 1 - r$$
.

Proof. Using G-V bound and $\binom{n}{n\delta} \approx 2^{nh(\delta)}$.