Bag of Words Classification

all about the

Our energy exploration, production, and distribution operations span the globe, with activities in more than 100 countries.

company

At TOTAL, we draw our greatest strength from our fast-growing oil and gas reserves. Our strategic emphasis on natural gas provides a strong position in a rapidly expanding market.

Our expanding refining and marketing operations in Asia and the Mediterranean Rim complement already solid positions in Europe, Africa, and the U.S.

Our growing specialty chemicals sector adds balance and profit to the core energy business.

aardvark	0
about	2
all	2
Africa	1
apple	0
anxious	0
•••	
gas	1
•••	
oil	1
•••	
Zaire	0

Naïve Bayes Learner

Train:

For each class c_i of documents

- 1. Estimate $P(c_i)$
- 2. For each word w_i estimate $P(w_i / c_j)$

Classify (doc):

Assign doc to most probable class

$$\underset{j}{\operatorname{arg\,max}} P(c_j) \prod_{w_i \in doc} P(w_i \mid c_j)$$

^{*} assuming words are conditionally independent, given class

The Problem

Want higher accuracy from fewer labeled examples

Opportunity 1:

• Use all that unlabeled data

Professor Faloutsos

my advisor

U.S. mail address:

Department of Computer Science University of Maryland College Park, MD 20742 (97-99: on leave at CMU)

Office: 3227 A.V. Williams Bldg.

Phone: (301) 405-2695 **Fax:** (301) 405-6707

Email: christos@cs.umd.edu

Christos Faloutsos

Current Position: Assoc. Professor of Computer Science. (97-98: on leave at CMU)

Join Appointment: Institute for Systems Research (ISR).

Academic Degrees: Ph.D. and M.Sc. (University of Toronto.); B.Sc. (Nat. Tech. U. Ath

Research Interests:

- · Query by content in multimedia databases;
- · Fractals for clustering and spatial access methods;
- · Data mining;

U.S. mail address:

Department of Computer Science University of Maryland College Park, MD 20742 (97-99: on leave at CMU)

Office: 3227 A.V. Williams Bldg.

Phone: (301) 405-2695 **Fax:** (301) 405-6707

Email: christos@cs.umd.edu

Christos Faloutsos

Current Position: Assoc. Professor of Computer Science. (97-98: on leave at CMU)

Join Appointment: Institute for Systems Research (ISR).

Academic Degrees: Ph.D. and M.Sc. (University of Toronto.); B.Sc. (Nat. Tech. U. Ath

Research Interests:

- · Query by content in multimedia databases;
- · Fractals for clustering and spatial access methods;
- · Data mining;

Professor Faloutsos

my advișor

U.S. mail address:

Department of Computer Science University of Maryland College Park, MD 20742 (97-99: on leave at CMU)

Office: 3227 A.V. Williams Bldg.

Phone: (301) 405-2695 **Fax:** (301) 405-6707

Email: christos@cs.umd.edu

Christos Faloutsos

Current Position: Assoc. Professor of Computer Science. (97-98: on leave at CMU)

Join Appointment: Institute for Systems Research (ISR).

Academic Degrees: Ph.D. and M.Sc. (University of Toronto.); B.Sc. (Nat. Tech. U. Ath

Research Interests:

- · Query by content in multimedia databases;
- · Fractals for clustering and spatial access methods;
- · Data mining;

CoTraining Algorithm #1

[Blum&Mitchell, 1998]

Given: labeled data L,

unlabeled data U

Loop:

Train g1 (hyperlink classifier) using L

Train g2 (page classifier) using L

Allow g1 to label p positive, n negative examps from U

Allow g2 to label p positive, n negative examps from U

Add these self-labeled examples to L

CoTraining: Experimental Results

- begin with 12 labeled web pages (academic course)
- provide 1,000 additional unlabeled web pages
- average error: using labeled data only 11.1%;
- average error: cotraining 5.0%

Typical run:

Example 2: Learning semantic lexicons [Riloff and Jones, 1999]

Learn which noun phrases represent locations:

"We have operations in bustling Kuwait City" x1 x2

- Classifier for x1:
 - "operations in ... NP"
- Classifier for x2:
 - rote dictionary: New York, Paris, Germany, ...

Learning semantic lexicons

[Riloff and Jones, 1999]

- "We are headquartered in Pittsburgh."
- "We are headquartered in sunny Tehran."
- "Our offices are located in downtown Tehran."

Example: Learning Locations

- 10 seed words:
 - United_States Germany England Switzerland
 France Canada Mexico Japan China Australia
- Top words added by bootstrapping:
 - Europe Greece Italy Singapore Finland UK
 North_America States de_Benelux Deutschland
 de_Benelux_seminars Asia/Pacific
 Middle_East/Africa U.S. Hong_Kong Spain
 Portugal World Philippines Countries Oregon...

Example: Learning Locations

- Top rules learned by bootstrapping:
 - offices in ?x
 - facilities in ?x
 - operations in ?x
 - loans in ?x
 - operates in ?x
 - locations in ?x
 - producer in ?x

CoTraining Setting

```
learn f: X \to Y

where X = X_1 \times X_2

where x drawn from unknown distribution

and \exists g_1, g_2 \ (\forall x)g_1(x_1) = g_2(x_2) = f(x)
```

• If

- x1, x2 conditionally independent given y
- f is PAC learnable from noisy *labeled* data

Then

 f is PAC learnable from weak initial classifier plus unlabeled data

Rote CoTraining error given m examples

CoTraining setting: learn $f: X \to Y$ where $X = X_1 \times X_2$ where x drawn from unknown distribution and $\exists g_1, g_2 \ (\forall x) g_1(x_1) = g_2(x_2) = f(x)$

$$E[error] \leq \sum_{j} p_{j} (1 - p_{j})^{m}$$

Where p_j is probability that a randomly drawn example will fall into the jth connected component of the graph of U+L

How many unlabeled examples suffice?

Want to assure that connected components in the underlying distribution, G_D , are connected components in the observed sample, G_S

 $O(log(N)/\alpha)$ examples assure that with high probability, G_S has same connected components as G_D [Karger, 94]

N is size of G_D , α is min cut over all connected components of G_D

What if CoTraining Assumption Not Perfectly Satisfied?

What if CoTraining Assumption Not Perfectly Satisfied?

What if CoTraining Assumption Not Perfectly Satisfied?

- Idea: Want classifiers that produce a *maximally consistent* labeling of the data
- If learning is an optimization problem, what function should we optimize?

What Objective Function?

$$E = E1 + E2$$

$$E1 = \sum_{\langle x, y \rangle \in L} (y - \hat{g}_1(x_1))^2$$

$$E2 = \sum_{\langle x, y \rangle \in L} (y - \hat{g}_2(x_2))^2$$

$$Error on labeled examples$$

What Objective Function?

$$E = E1 + E2 + c_3 E3$$

$$E1 = \sum_{\langle x,y \rangle \in L} (y - \hat{g}_1(x_1))^2$$

$$E2 = \sum_{\langle x,y \rangle \in L} (y - \hat{g}_2(x_2))^2$$

$$E3 = \sum_{x \in U} (\hat{g}_1(x_1) - \hat{g}_2(x_2))^2$$

$$Example 2$$

$$Example 3$$

$$Example 4$$

$$Example 3$$

$$Example 4$$

$$Example 4$$

$$Example 5$$

$$Example 6$$

$$Example 7$$

$$Example 7$$

$$Example 8$$

$$Example 8$$

$$Example 9$$

$$Exam$$

What Objective Function?

$$E = E1 + E2 + c_3E3 + c_4E4$$

$$E1 = \sum_{\langle x,y \rangle \in L} (y - \hat{g}_1(x_1))^2$$

$$E2 = \sum_{\langle x,y \rangle \in L} (y - \hat{g}_2(x_2))^2$$

$$E3 = \sum_{x \in U} (\hat{g}_1(x_1) - \hat{g}_2(x_2))^2$$

$$E4 = \left(\left(\frac{1}{|L|} \sum_{\langle x,y \rangle \in L} y\right) - \left(\frac{1}{|L| + |U|} \sum_{x \in L \cup U} \frac{\hat{g}_1(x_1) + \hat{g}_2(x_2)}{2}\right)\right)^2$$

What Function Approximators?

What Function Approximators?

$$\hat{g}_1(x) = \frac{1}{1 + e^{\sum_{j=1}^{\infty} w_{j,1} x_j}}$$

$$\hat{g}_1(x) = \frac{1}{1 + e^{\sum_{j=1}^{w_{j,1}x_j}}} \qquad \hat{g}_2(x) = \frac{1}{1 + e^{\sum_{j=1}^{w_{j,2}x_j}}}$$

- Move away from rote learning
- Same fn form as Naïve Bayes, Max Entropy
- Use gradient descent to simultaneously learn g1 and g2, directly minimizing E = E1 + E2 + E3 + E4
- No word independence assumption

Gradient CoTraining

$$\hat{g}_1(x) = \frac{1}{1 + e^{\sum_{j}^{\sum_{i} w_{j,1} x_j}}}$$

$$\hat{g}_1(x) = \frac{1}{1 + e^{\sum_{j} w_{j,1} x_j}} \qquad \hat{g}_2(x) = \frac{1}{1 + e^{\sum_{j} w_{j,2} x_j}}$$

Gradient

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots \frac{\partial E}{\partial w_n} \right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

Classifying Jobs for FlipDog

Gradient CoTraining

Classifying FlipDog job descriptions: SysAdmin vs. WebProgrammer

Gradient CoTraining

Classifying Upper Case sequences as Person Names

	25 labeled 5000 unlabeled	2300 labeled 5000 unlabeled	
·			
Using labeled data only	.76	.87	
Cotraining	.85	.89 *	
Cotraining without fitting class priors (E4)	.73 *		
	* sensitive to w	* sensitive to weights of error terms E3 and E4	

Potential CoTraining Domains

- Web page classification [Blum, Mitchell 98]
- Semantic lexicon generation [Riloff, Jones 99], [Collins, Singer 99]
- Word sense disambiguation [Yarowsky 95]
- Speech recognition [de Sa, Ballard 98]
- Multimedia classification ??
- Robotic perception ??
- Models of human learning ??