

Forschungspraktikum I und II Dr. Christian Czymara Advanced multi-level structures

AGENDA

- Beyond two levels
 - Nesting in nesting in nesting
 - Cross-classified models
- Applications
 - Spatial nesting
 - Temporal (and spatial) nesting
- Tutorial: Analyzing relationships of local wealth and feeling a sense of direction in one's life

EVALUTION

http://r.sd.uni-frankfurt.de/2a01c310

SPATIAL CLUSTERING

BEYOND COUNTRY CLUSTERING

- So far, we analyzed individuals in countries, with a special interest in the impact of country characteristics
- However, for many research questions, a more local impact is reasonable
- For example: Is it really *national* crime levels that shape my perceptions? Or rather crime that happens in my vicinity (neighborhood, city, state, ...)?
- Crucial question: Are data available on this level?
- The European Union has a geocoded system for comparison of local statistics: The NUTS regions

NOMENCLATURE DES UNITÉS TERRITORIALES STATISTIQUES

NOMENCLATURE OF TERRITORIAL UNITS FOR STATISTICS (NUTS)

- Within each country, there are three increasingly fine-grained NUTS levels
- Currently, there are 92 NUTS1 regions, 244 NUTS2 regions, and 1215 NUTS3 regions
- Example: Germany
 - NUTS1: 16 states (Bundesländer, e. g.: Hesse)
 - NUTS2: 39 government regions (Regierungbezirke, e. g.: Darmstadt)
 - NUTS3: 429 districts (Landkreise and kreisfreie Städte, e. g.: Frankfurt am Main)

GERMANY: NUTS 1

Source:

 https://en.wikipedia.org/wi
 ki/States_of_Germany

German states

Also known as:

Bundesländer (German)

(literally: 'Federated countries')

GERMANY: NUTS2

- Example: Hesse
- Source:
 <u>https://en.wikipedia.org/wiki/</u>
 /Darmstadt_(region)

Lage des Regierungsbezirks Darmstadt in Hessen

GERMANY: NUTS3

- Yellow: Kreisfreie Städte
- Source: <u>https://en.wikipedia.org/wiki/D</u> <u>istricts_of_Germany</u>

EXAMPLE: DOES ETHNIC DIVERSITY MAKE NATIVES WELCOMING OR HOSTILE?

- There is a large body of literature on the impact of out-group size on public attitudes toward immigration and immigrants
- However, different mechanisms plausible
 - More immigrants in a country → More threat (e.g. because of political discourses or selective media reporting) → More prejudice
 - More immigrants in ones local area → More contact → Less prejudice
- So-called modifiable areal unit problem
- Weber (2015) analyzes this question based on the European Values Study on country and NUTS3 levels

Figure 1. Percentage of foreign-born residents by NUTS-3 region in the EU-15. Source: Eurostat, national statistical offices, see Note 18 and Appendix 1.

Table 1. Predictors of perceived group threat (three-level analyses).

	Model I/2: NUTS-3 regions		Model 3/4: NUTS-2 regions		Model 5/6: NUTS-1 regions	
	With LUX B (SE)	Without LUX B (SE)	With LUX B (SE)	Without LUX B (SE)	With LUX B (SE)	Without LUX B (SE)
Intercept	.482 (.680)	003 (.702)	.916 (1.027)	.338 (1.031)	.236 (1.259)	467 (1.258)
Individual level						
Age	.002*** (.000)	.002*** (.000)	.002*** (.000)	.002*** (.000)	.002*** (.000)	.002*** (.000)
Gender (female)	038** (.013)	038** (.013)	040** (.013)	043** (.013)	041** (.013)	043** (.013)
Education	142*** (.005)	145*** (.005)	143*** (.005)	147*** (.005)	145*** (.005)	148*** (.005)
Immigrant background	407*** (.019)	397*** (.021)	410*** (.019)	401*** (.021)	417*** (.019)	409*** (.021)
Class (reference group: middle class)						
Working class	.013 (.014)	.011 (.015)	.015 (.015)	.013 (.015)	.020 (.015)	.018 (.015)
Upper class	120*** (.019)	131*** (.019)	125*** (.019)	136*** (.020)	120*** (.019)	144*** (.020)
Moving experience (reference group: non	-movers)					
Has moved to more diverse region	093*** (.027)	092*** (.027)	113*** (.028)	112*** (.027)	130*** (.027)	128*** (.027)
Has moved to less diverse region	103*** (.030)	102*** (.030)	098*** (.030)	097*** (.030)	086** (.030)	085** (.029)
Contextual levels						
Percentage of immigrants in region	007* (.003)	008* (.003)	004 (.004)	004 (.004)	009* (.004)	010* (.004)
Log(GDP per capita) in region	021 (.155)	.010 (.154)	108 (.238)	070 (.233)	.061 (.292)	.111 (.285)
Percentage of immigrants in country	.022 (.014)	.055* (.019)	.015 (.013)	.055* (.019)	.015 (.013)	.060* (.021)
Pseudo-R ²	.10	.11	.09	.11	.09	.11

GDP: gross domestic product; NUTS: Nomenclature des Unités Territoriales Statistiques; SE: standard error.

Source: European Values Study (2008), national statistical offices, own calculations.

Multi-level linear regression analyses (maximum likelihood). Dependent variable: Perceived threat of immigration. For coding of variables see text. N (individuals) = 22,683; N (NUTS-1) = 70; N (NUTS-2) = 207; N (NUTS-3) = 624; N (countries) = 15. For models without Luxembourg: N (individuals) = 21,073; N (NUTS-3) = 623; N (countries) = 14. Pseudo- $R^2 = ((\sigma_0^2 + \tau_{n0} + \tau_{p0}) - (\sigma_0^2 + \tau_{n0} + \tau_{p0}) / (\sigma_0^2 + \tau_{n0} + \tau_{p0})$, where $\sigma^2 = \text{Level-1}$ variance; $\tau_n = \text{Level-2}$ variance; and σ_0^2 , τ_{n0} , and τ_{p0} refer to the respective empty model (not shown).

^{*} p < .05; **p < .01; ***p < .001.

THREE-LEVEL MODELS

MULTIPLE RANDOM INTERCEPTS

- NUTS regions have a clear hierarchy: County > NUTS1 > NUTS2 > NUTS3
- Put differently, individuals are nested in NUTS3, which are nested in NUTS2, which are nested in NUTS1, which are nested in countries
- Three-level example: individual i in region j of country k
- Example: Erika Mustermann (level 1) is from Detmold (level 2) in Germany (level 3)
- Different situation could be a so-called cross-classified model, where individuals are nested in two independent higher-level groups simultaneously (more later)

MULTIPLE RANDOM INTERCEPTS

- $y_{ijk} = \beta_0 + u_{0j} + u_{0jk} + e_{ijk}$
- β_0 : Mean value across all countries and regions
- u_{0j} : Random intercept on country level (between country variance)
- u_{0jk} : Random intercept on regional level (within country / between regional variance)
- e_{ijk} : Ideosynchratic error (within region within country / between individual variance)
- We can now explain variance on each of these three levels

RANDOM EFFECTS SPECIFICATION WITH LME 4

Douglas Bates, Martin Mächler, Ben Bolker, Steve Walker

7

Formula	Alternative	Meaning
(1 g)	1 + (1 g)	Random intercept with fixed mean.
0 + offset(o) + (1 g)	-1 + offset(o) + (1 g)	Random intercept with a priori means.
(1 g1/g2)	(1 g1)+(1 g1:g2)	Intercept varying among g1 and g2 within g1.
(1 g1) + (1 g2)	1 + (1 g1) + (1 g2).	Intercept varying among g1 and g2.
x + (x g)	1 + x + (1 + x g)	Correlated random intercept and slope.
x + (x g)	1 + x + (1 g) + (0 + x g)	Uncorrelated random intercept and slope.

Table 2: Examples of the right-hand-sides of mixed-effects model formulas. The names of grouping factors are denoted g, g1, and g2, and covariates and a priori known offsets as x and o.

TEMPORAL SPATIAL CLUSTERING: REPEATED CROSS-NATIONAL DATA

REPEATED CROSS-NATIONAL DATA

- Many cross-national survey programs are repeated every few years
 - Called Repeated Cross-Sectional Data
 - Or macro-panel / pseudo-panel data
 - I will call it Repeated Cross-National Data
- →Different individuals in each wave
- →But: panel data on the country-level
- However, this means that the data structure is quite complex
 - Individuals nested in countries (see cross-sectional case)
 - Time (country-years) nested in countries (see panel data)

TIME SERIES OF COUNTRY A

RANDOM EFFECTS STRUCTURE FOR REPEATED CROSS-NATIONAL DATA

DATA STRUCTURE

- The data we analyzed so far were hierarchical with two levels: individuals (level 1) nested in countries (level 2)
- Now, we have four potential levels:
 - Countries (Norway, Estonia, Sweden etc.) → C
 - Years (2002, 2004, 2006 etc.) → Y
 - Country-years (Norway 2002, Norway 2004, Estonia 2002 etc.) → CY
 - Individuals → I
- Thus, possible statistical dependencies are more complex
 - I nested in C (people in Sweden share something that separates them from people in France)
 - I nested in Y (people in 2010 share something that separates them from people in 2018)
 - CY nested in C (France in 2002 shares something with France in 2008 that separates it from UK in 2002)
 - CY nested in Y (France in 2002 shares something with UK in 2002 that separates it from France in 2008)
 - •
- Ignoring each of the possible statistical dependencies within clusters will lead to an underestimation of standard errors (too significant effects, see first session on HLMs)

- Various ways to account for the different kinds of clustering
- The most complex approach would model individuals (level 1) nested in country-years (level 2) and country-years as crossclassified in both countries (level 3) and years (also level 3)
- With random effects for countries, years and country-years (see Schmidt-Catran & Fairbrother 2015: 25)

- Such a RE structure is very complex and might face problems of convergence
- Research interest are often in variables on the C and the CY level, less on the Y level
- Modeling CY nested in Y accounts for similarities of respondents interviewed at the same time point, independent of country (individuals interviewed in 2010 more similar those interviewed in 2004 and 2010)
- However, often, there are no variables that only vary on this level (over time but not across countries)
- That must be something that happens over time and affects all countries similarly (COVID-19? A meteor?)

- Hence, Schmidt-Catran & Fairbrother (2015) suggest to ignore the clustering on the Y level (but not on the CY level!)
- Without Y, the RE structure simplifies to

- Which is a three level structure: Individuals are nested in countryyears, which are nested in countries
- This accounts for all relevant dependencies of such a data structure

- For cross-sectional comparative data, we had two levels: I in C
- · ... and one random intercept, accounting for clustering of I in C
- Now we have three levels: I in CY in C
- Thus, need two random intercepts:
 - One for clustering of I in CY
 - One for clustering of CY in C

A THREE-LEVEL RE MODEL FOR RCND

- $y_{ijt} = \beta_0 + \beta x_{ijt} + \gamma z_{jt} + \delta z_j + u_j + u_{tj} + e_{ijt}$
- Indexes
 - i: individual-level
 - *j*: country-level
 - t: time-level
- x_{ijt} : individual-level variable (effect: β)
- z_{it} : time-varying country-level variable (effect: γ)
- z_i : time-constant country-level variable (effect: δ)

RANDOM EFFECTS PARAMETERS

- $y_{ijt} = \beta_0 + \beta x_{ijt} + \gamma z_{jt} + \delta z_j + u_j + u_{jt} + e_{ijt}$
- u_i : Random effect on country level (level 3 error)
- → Variance between countries
- u_{it} : Random effect on country-year level (level 2 error)
- → Variance within countries / between country-years
- e_{ijt} : Idiosyncratic error (level 1 error)
- → Variance within country-years / between individuals

LITERATURE

• Schmidt-Catran & Fairbrother (2015). The random effects in multilevel models: Getting them wrong and getting them right. European Sociological Review, 32 (1), 23-38.