Basics of Probs and Stats

1. 随机事件与概率

梁雪吟

地球科学与资源学院 liangxueyin@email.cugb.edu.cn

March 17, 2023

Outline

- 🕕 概率论基础
 - 样本空间、随机事件及概率
- ② 概率的定义及其确定方法
 - 公理及性质
 - 计数原理
 - 四种概型
- ③ 条件概率、乘法公式与事件的独立性
 - 条件概率
 - 乘法公式
 - 独立性
- 4 全概率公式和贝叶斯公式
 - 全概率公式
 - 贝叶斯公式

1.1 概率论基础

样本空间和随机事件

- 随机现象:事先不可预知结果的现象(天气、掷硬币)
- 随机试验: 相同条件下随机观察、重复测量(可重复的随机现象)
- 样本点: 随机试验的结果,用 ω 表示
- 样本空间: 所有样本点组成的集合,用Ω表示
- 随机事件: 样本空间 Ω 的一个子集

事件和集合的语言

- *A* ⊂ *B* or *B* ⊃ *A*: A 发生 B 也发生
- A + B or $A \cup B$: A、B 至少发生一个
- AB or A ∩ B: A、B 同时发生
- A-B or A/B: A 发生, B 不发生。 $A-B=A\cup \bar{B}$
- Ā: A 的对立事件(逆事件)表示 A 不发生。
- $A \cap B = \emptyset$: AB 不相容,不会同时发生。

Tips:

通过 Venn 图理解记忆

事件和集合的语言

Question 1.1

写出连续扔两枚硬币的样本空间

Question 1.2

利用事件运算表示下列各事件:

- ABC 不多于一个出现
- AB 至少有一个出现, C 不出现

事件和集合的语言

Question 1.1

写出连续扔两枚硬币的样本空间:

假设 1 表示正面,0 表示反面。

$$\Omega = \{(0,0), (0,1), (1,0), (1,1)\}$$

Question 1.2

利用事件运算表示下列各事件:

- ABC **不多于一个出现**: $A\bar{B}\bar{C} + \bar{A}\bar{B}C + \bar{A}B\bar{C} + \bar{A}\bar{B}\bar{C}$
- AB **至少有一个出现**, C 不出现: $(A + B)\bar{C}$

事件的运算法则

- 分配律: A ∩ (B ∪ C) = (AB) ∪ (AC) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 交換律: A∩B=B∩A A∪B=B∪A
- 结合律: $A \cap (B \cap C) = (A \cap B) \cap C$ $A \cup (B \cup C) = (A \cup B) \cup C$
- 对偶律 (De-Morgan 公式): $\overline{A\cap B}=\bar{A}\cup \bar{B}$ $\overline{A\cup B}=\bar{A}\cap \bar{B}$

1.2 概率的定义及其确定方法

公理

- 非负性: 对于任意的事件 A, P(A) > 0;
- 正则性: 对于必然事件 Ω , $P(\Omega) = 1$;
- 可列可加性: 对于可列个互不相容的事件, $A_1,A_2,...,A_n,...$, 有 $P(\sum_i A_i) = \sum_i P(A_i).$

概率的性质

- P(A) < 1
- $P(\varnothing) = 0$
- (有限可加性): 对于有限个互不相容的事件, $A_1, A_2, ..., A_n$ 有 $P(\sum_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i);$
- $\mathbf{\ddot{z}} B \subset A$, $\mathbf{M} P(A B) = P(A) P(B)$;
- 加法公式: P(A + B) = P(A) + P(B) P(AB);

加法原理和乘法原理

- 分类相加
 - 做成某件事有 n 种途径可选择,每种途径有 m_n 种完成方法。
 - 从 A 地前往 B 地有三种交通工具: 飞机, 火车, 汽车可选择, 一天 类分别的班次为: 3、5、8, 所以旅行者到达 B 地可选择 8+5+3=16 种班次。
- 分步相乘(一件事一步不能做完)
 - 做成某件事需要通过 n 个步骤完成,每种步骤有 m_n 种完成方法。
 - 从 A 地前往 B 有 3 条路, B 地前往 C 地有 2 条路, 从 A 地前往 C 地(必须经过 B 地) 有 3×2=6 条路线可选择。
- P12 例 3

Question 2.1

- 1. 假设学号由八位数字组成,但第一位不能是 0 或 1. 一共可以有多少个不同的号码呢?
- 2. 小明在这些号码中随便选择一个,选中认识的同学的号码的概率有多大(假定每位同学都有且仅有一个号码,其中小明认识十位同学)?

Question 2.1

- 1. 假设学号由八位数字组成,但第一位不能是 0 或 1. 一共可以有多少个不同的号码呢?
- 2. 小明在这些号码中随便选择一个,选中认识的同学的号码的概率有多大 (假定每位同学都有且仅有一个号码,其中小明认识十位同学)?

Solution

- 1. 第一位有 8 种选择, 其余位有 10 种选择, 所以有 8×10^7 个不同学号
- 2. 样本空间 $\Omega = \{(a,b,c,d,e,f,g,h)|a \neq 0,1\}, |\Omega| = 8 \times 10^7$ 选中认识的同学的号码记为事件 A,则 |A| = 10

$$P(A) = \frac{|A|}{|\Omega|} = \frac{10}{8 \times 10^7} = \frac{1}{8 \times 10^6}$$

排列与组合

1.1 排列 Arrange

从 n 个不同对象中顺序选出 k 个排成一列的方法,称为 n 取 k 排列,记作 $A_n^k = \frac{n!}{(n-k)!}$

1.2 组合 Combine

从 n 个不同对象中不计顺序选出 k 个为一组的方法,称为 n 取 k 组合,记作 $C_n^k = \frac{n!}{k!(n-k)!}$

排列与组合——捆绑法

有 3 名小学生, 4 名初中生, 5 名高中生, 现举行升国旗仪式, 要求所有学生排成一列, 相同年级站在一起, 请问有多少种排队方式?

排列与组合——捆绑法

有 3 名小学生, 4 名初中生, 5 名高中生, 现举行升国旗仪式, 要求所有学生排成一列, 相同年级站在一起, 请问有多少种排队方式?

Solution

分类讨论: 1. 将不同类别的学生分别看作一个整体排一次 A_3^3 2. 对同一类别的学生进行内部排序 $A_3^3 A_4^4 A_5^5$ 共有 $A_3^3 A_4^4 A_5^5$ 种排序方法

排列与组合——二项式公式

组合系数为二项式展开系数

$$(a+b)^n = \sum_{i=0}^n C_n^i a^i b^{n-i}$$
 (1)

算两次

Question 2.3

有 m 个女生, n 个男生, 从中选出 k 人, 有多少种选法?

解:
$$C_{m+n}^k = \sum_{i=0}^k C_m^i C_n^{k-i}$$

男女一起选 = 男生女生分别选.

分割

n 个相异的物件分成 k 堆,各堆物件数分别为 $r_1...r_k$ 的分法分别是:

$$\frac{n!}{r_1!r_2!\dots r_k!}$$

证明

先从 n 个中取出 r_1 个作为第 1 堆, 取法有 $C(n, r_1)$ 种; 在剩余的 $n-r_1$ 中取出 r_2 个作为第 2 堆, 取法有 $C(n-r_1, r_2)$;……以此类推, 得到全部不同的分法为:

$$\prod_{k} C^{r_k}_{n-\sum_{i=1}^{k-1} r_j} \tag{2}$$

分割

n 双相异的鞋共 2n 只, 随机的分成 n 堆, 每堆 2 只, 问: "各堆自成一双鞋 "这个事件 E 发生的概率?

分割

n 双相异的鞋共 2n 只,随机的分成 n 堆,每堆 2 只,问:"各堆自成一双鞋"这个事件 E 发生的概率?(根据上述公式)

解答

2n 只鞋随机的分成 n 堆,每堆 2 只的分法为: $N = \frac{(2n)!}{2^n}$ 种有利于事件 E 的分法为: 把每一双鞋捆绑为一个整体看为一个物件,然后把这 n 个相异的物件分为 n 堆,每堆一件,分法有: M = n! 种于是, $P(E) = \frac{M}{N} = \frac{n!}{(2n)!}$

插空法

如果有 n 个男孩,m 个女孩,要求将这 n+m 个孩子不是排在一个圆周上,且女孩彼此不相邻,问此事件 E 发生的概率是多少 $P(m \le n)$

插空法

如果有 n 个男孩,m 个女孩,要求将这 n+m 个孩子不是排在一个圆周上,且女孩彼此不相邻,问此事件 E 发生的概率是多少 $?(m \le n)$

解

因为排成一个圆周,头和尾没有分别,固定一个人把其他人展开成直线 共有 (N-1)! 种排法;

所以,先把孩子不分性别一起排一共有: N=(m+n-1)! 种排法;

若先排男生,有: (n-1)! 种排法;

圆桌排完男生后,男生之间有 n 个空位;

在其中选出 m 个空位排女生,有: C_n^m 种选法;

将女生安排到空位,共有: m! 种排法。

所以, $M = (n-1)!C_n^m m!$

$$P(E) = \frac{M}{N} = \frac{(n-1)! C_n^m m!}{(m+n-1)!}$$

隔板法

将 n 个球放入 k 个不同的盒子,要使每个盒子都有球,请问有多少种不同的方法? 若不限制每个盒子必须有球,则又有多少种方法?

隔板法

将 n 个球放入 k 个不同的盒子,要使每个盒子都有球,请问有多少种不同的方法? 若不限制每个盒子必须有球,则又有多少种方法?

解

将 n 个球排成一排,在空隙处插入隔板。注意,只需要插入 k-1 块板。对应的方式为 C_{n-1}^{k-1}

延伸

实际上,这可看作方程 $x_1+x_2+...+x_k=n$ 求正整数解的问题(将 n 拆分成 n 个 1,问题就转化成将 n 个 1 分成 k 份的组合数)。 若不限制每个盒子必须有球,则化为该方程求非负整数解的问题。同理,记 $y_i=x_i+1$,则相当于讨论 $y_1+y_2+\cdots+y_k=n+k$ 的正整数解,又回到了上面的情况。

四种概型

- 古典概型: 基本事件的个数有限, 且每个事件可能性相同
- 几何概型: 均匀投点, 面积可测, 画图
- 超几何概型: 无放回取球
- 二项(伯努利)概型: 有放回取球

古典概型

- 1.3 一口袋装有外形相同的小球 15 个,其中红球 8 个,白球 7 个,从中无放回抽取 4 个,求下列概率:
- (1) 恰有 3 个红的, 1 个白的
- (2) 至少有 1 个红的
- (3) 至多有 1 个红的
- (4) 颜色相同

古典概型

- 1.3 一口袋装有外形相同的小球 15 个, 其中红球 8 个, 白球 7 个, 从中无放回抽取 4 个, 求下列概率:
- (1) 恰有 3 个红的, 1 个白的
- (2) 至少有 1 个红的
- (3) 至多有 1 个红的
- (4) 颜色相同
- 若改为有放回抽取呢(二项概型)

几何概型

从区间 (0,1) 中随机取两个数, 求两数之和小于 1.2 的概率。

几何概型

从区间 (0,1) 中随机取两个数, 求两数之和小于 1.2 的概率。

Solution

解 由已知,此题符合几何概型的特征:无限等可能结果.

设x,y是从区间(0,1) 内随机取出的两个数,则样本空间为

$$\Omega = \{(x,y) \mid 0 < x < 1, 0 < y < 1\},$$

所求事件为 $A = \{(x,y) \mid x+y < 1, 2\}$ (如图 1-2).

由几何概型的计算公式,有

$$P(A) = \frac{A \text{ in } \Box R}{\Omega \text{ in } \Box R} = \frac{1 - \frac{1}{2} \times 0.8^{2}}{1} = 0.68.$$

Figure 1: 几何概型

1.3 条件概率、乘法公式与事件的独立性

条件概率

- 已知 A 发生的条件下,发生 B 的概率: $P(B|A) = \frac{P(AB)}{P(A)}$, 若 $P(A) \neq 0$
- 条件概率满足概率的三条公理
- $P(\overline{B}|A) = 1 P(B|A)$, $\angle F(A) \neq 0$
- 条件概率反映事件之间的相互影响。
- 若 \mathbb{F} 中的 $A_1,A_2,...,A_n,...$ 互不相容,则:

$$P(\cup_{n=1}^{\infty} A_n | B) = \sum_{n=1}^{\infty} P(A_n | B)$$

乘法公式

- P(AB) = P(B|A)P(A);
- $P(A_1A_2 \cdot \cdot \cdot A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1A_2)...P(A_n|A_1...A_{n-1})$

乘法公式——官员受贿问题

某官员第一次收回没被查处的概率是 $q_1=98/100$,第一次没被查处后,第二次受贿没被查处的概率是 $q_2=96/98=0.9796$... 前 j-1 次没被查处后,第 j 次受贿不被查处的概率是 $q_j=(100-2j)(100-2(j-1))$,求他受贿 n 次不被查处的概率 P_n 。

乘法公式——官员受贿问题

某官员第一次收回没被查处的概率是 $q_1=98/100$,第一次没被查处后,第二次受贿没被查处的概率是 $q_2=96/98=0.9796...$ 前 j-1 次没被查处后,第 j 次受贿不被查处的概率是 $q_j=(100-2j)(100-2(j-1))$,求他受贿 n 次不被查处的概率 P_n 。

Question 3.2

用 A_j 表示该官员 j 次受贿没被查处,则 $A_1A_2,...,A_n$ 表示受贿 n 次都没有被查处 所以,

$$P_n = P(A_1 A_2, ..., A_n) = P(A_1)(A_2 | A_1)...P(A_n | A_1 ... A_{n-1})$$
 (3)

$$=q_1q_2...q_n \tag{4}$$

$$=\frac{100-2n}{100} \tag{5}$$

$$=1-\frac{n}{50}$$
 (6)

独立性 independent

- Define: P(AB) = P(A)P(B) 则事件 A, B 相互独立。
- 不可能事件、必然事件与任何事件独立
- 当 P(B)>0, 0< P(A)<1, A、B 独立当且仅当 $P(B|A)=P(B|\overline{A})=P(B)$, 即 B 事件发生概率不受 A 事件影响。
- A 与 B, A 和 \overline{B} , \overline{A} 和 B, \overline{A} 和 \overline{B} , 只要一个独立,则另三个也独立。
- 独立的性质: 若 A、B、C、D 相互独立,则 $A\overline{B}$ 和 $C\overline{D}$ 一定相互独立,但 $A\overline{B}$ 和 \overline{BCD} 不一定相互独立。(注意分组不能重合)

独立与互不相容

- $\frac{\mathbf{A}B}{\mathbf{A}} = \emptyset$ 与概率无关。
- P(A) > 0, P(B) > 0 时,A 与 B 相互独立 \Rightarrow AB 必相容。 $P(AB) = P(A)P(B) > 0, P(\emptyset) = 0$
- 对立 ⇒ 互不相容,但 A 互不相容 ⇒ 对立。

Example

事件 A 与 B 对立, 即 $B=\overline{A}$, 是指在一次试验中, A 与 B 必有一个发生, 且至多只有一个发生; 但 A 与 B 互不相容是指 $AB=\varnothing$, 即 A 与 B 可以同时不发生。例如,在一次考试中,及格与不及格总有一个发生,它们对立且不相容; 70 分与 80 分互不相容,但是不对立.

判断下列说法是否正确, 并说明理由

- (1) 若 A,B 不相容,则有 P (AB) = P (A)P (B)。
- (2) 若 P(A),P(B) 均大于 0, A,B 独立,则 A,B 相容。

判断下列说法是否正确, 并说明理由

- (1) 若 A,B 不相容,则有 P (AB) = P (A)P (B)。
- (2) 若 P(A),P(B) 均大于 0, A,B 独立,则 A,B 相容。

解答

显然 (1) 错 (2) 对.

甲、乙、丙三人进行投篮练习,每人一次,如果他们的命中率分别为0.8,0.7,0.6,计算下列事件的概率:(1)只有一人投中;(2)最多有一人投中;(3)最少有一人投中

甲、乙、丙三人进行投篮练习,每人一次,如果他们的命中率分别为0.8,0.7,0.6,计算下列事件的概率:(1)只有一人投中;(2)最多有一人投中;(3)最少有一人投中

解答

设事件 $A \times B \times C$ 分别表示 "甲投中"、"乙投中"、"丙投中",显然 $A \times B \times C$ 相互独立. 设 A_i 表示 "三人中有 i 人投中", i = 0, 1, 2, 3, 依题意

$$= 0.2 \times 0.3 \times 0.4 = 0.024$$

$$P(A_3) = P(ABC) = P(A)P(B)P(C)$$

$$= 0.8 \times 0.7 \times 0.6 = 0.336$$

$$P(A_2) = P(AB\bar{C}) + P(A\bar{B}C) + P(\bar{A}BC)$$

$$= 0.8 \times 0.7 \times 0.4 + 0.8 \times 0.3 \times 0.6 + 0.2 \times 0.7 \times 0.6 = 0.452$$

 $P(A_0) = P(\bar{A}\bar{B}\bar{C}) = P(\bar{A})P(\bar{B})P(\bar{B})$

Question 接上

解答

解:

(1)

$$P(A_1) = 1 - P(A_0) - P(A_2) - P(A_3) = 1 - 0.024 - 0.452 - 0.336 = 0.188$$

(2)
$$P(A_0 + A_1) = P(A_0) + P(A_1) = 0.024 + 0.188 = 0.212$$

(3)
$$P(\overline{A_0}) = 1 - P(A_0) = 1 - 0.024 = 0.976$$

1.4 全概率公式和贝叶斯公式

全概率公式

全概率公式

若 $A_1, A_2, ..., A_n$ 构成一个完备事件组,且 $P(A_1) \ge 0, \forall i$,则对任意事件 B, \mathbf{f} $P(B) = \sum_{i=1}^{n} P(A_i)P(B|A_i)$

- 完备事件组(前提,必须声明出来):
 - 互不相容
 - 和为必然事件
 - 构成样本空间的一个划分
 - 每一个试验中,完备事件组中有且仅有一个事件发生
- 已知原因求结果
- P(B) 后发生的事 (结果事件), P(A_i) 先发生的事 (原因事件), $\sum_{i=1}^{n} P(A_i)P(B|A_i)$ 把所有原因下导致结果发生的可能性求和。

全概率公式

你参加一个王者荣耀单挑比赛,其中 50% 是黄金选手,你赢他们的概率为 0.3; 25% 为白银选手,你赢他们的概率是 0.4; 剩下的是英勇黄铜选手,你赢他们的概率是 0.618。从他们中间随机选择一名选手与你比赛你的胜算有多大?

全概率公式

你参加一个王者荣耀单挑比赛,其中 50% 是黄金选手,你赢他们的概 率为 0.3; 25% 为白银选手, 你赢他们的概率是 0.4; 剩下的是英勇黄铜 选手, 你赢他们的概率是 0.618。从他们中间随机选择一名选手与你比 赛你的胖算有多大?

解答

选手段位为黄金 (A_1) 、白银 (A_2) 、英勇黄铜 (A_3) 构成一个完备事件组, 且 $P(A_3) = 1 - P(A_1) - P(A_2) = 1 - 0.5 - 0.25 = 0.25$ 故可以使用全概 率公式.

记事件 B 为你获胜,由全概率公式可以得到:

$$P(B) = P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + P(A_3)P(B|A_3)$$

= 0.5 \times 0.3 + 0.25 \times 0.4 + 0.25 \times 0.618 = 0.4045

贝叶斯公式

设
$$A_1,A_2,...,A_n$$
 构成一个完备事件组,且 $P(A_1)\geq 0, \forall i,$ 则对任意事件 B,若有 $P(B)>0$,有 $P(A_m|B)=\frac{P(A_m)P(B|A_m)}{P(B)}=\frac{P(A_m)P(B|A_m)}{\sum\limits_{i}^{n}P(A_i)P(B|A_i)}$

- 已知原因求结果:已经观察到了结果事件 B.那么导致 B 发生的是 哪个原因?
- 理解:此种原因下发生 B 的概率除以所有原因导致 B 发生的原因。

你参加一个王者荣耀单挑比赛,其中 50% 是黄金选手,你赢他们的概率为 0.3; 25% 为白银选手,你赢他们的概率是 0.4; 剩下的是英勇黄铜选手,你赢他们的概率是 0.618。现在已知你赢了,求你遇到黄金选手的概率是多大?

你参加一个王者荣耀单挑比赛,其中 50% 是黄金选手,你赢他们的概 率为 0.3; 25% 为白银选手, 你赢他们的概率是 0.4; 剩下的是英勇黄铜 选手, 你赢他们的概率是 0.618。现在已知你赢了, 求你遇到黄金选手 的概率是多大?

解答

记选手段位为黄金 (A_1) 、白银 (A_2) 、英勇黄铜 (A_3) 构成一个完备事件 组, $P(A_3) = 1 - P(A_1) - P(A_2) = 1 - 0.5 - 0.25 = 0.25$ 故可以使用贝 叶斯公式.

记事件 B 为你获胜, 由贝叶斯公式可以得到:

$$P(A_1|B) = \frac{P(A_1)P(B|A_1)}{P(B)} = \frac{P(A_1)P(B|A_1)}{\sum_{i=1}^{3} P(A_i)P(B|A_i)}$$
$$= \frac{0.5 \times 0.3}{0.4045} \approx 0.3708$$

(假阳性问题)设对于新冠肺炎的检出率为 0.95,如果被检人有这种病,其检查结果为阳性的概率为 0.95;如果该人没有这种病,其检查结果为阴性的概率为 0.95。现在假定某市市民患有这种病的概率为 0.001,并从这个总体中随机抽取一个人进行检测,检查结果为阳性。现在问这个人患这种病的概率有多大?

(假阳性问题)设对于新冠肺炎的检出率为 0.95, 如果被检人有这种病, 其检查结果为阳性的概率为 0.95; 如果该人没有这种病, 其检查结果为 阴性的概率为 0.95。现在假定某市市民患有这种病的概率为 0.001, 并 从这个总体中随机抽取一个人进行检测, 检查结果为阳性。现在问这个 人患这种病的概率有多大?

解答

记事件 A 为此人患有这种疾病,事件 B 为经检验这个人为阳性,利用 贝叶斯公式可得:

$$\begin{split} P(A|B) &= \frac{P(A)P(B|A)}{P(A)P(B|A) + P(\bar{A})P(B|\bar{A})} \\ &= \frac{0.001 \times 0.95}{0.001 \times 0.95 + 0.999 \times 0.05} \approx 0.0187 \end{split}$$

Thank You March 17, 2023