cs113 Lab1::By: Amuldeep Dhillon

cs113 lab1

Text written to file build.sh

doctex lab.doc

pptexenv latex lab.tex

| dvipdf lab.dvi

Bourne Shell

chmod 777 build.sh

ch1 Proposiational Calculus (Conjuntion)

Exploring compound propositions

• Conjunction: $p \wedge q$

p	q	$(p \wedge q)$
F	F	F
F	$\mid T \mid$	F
T	F	F
Т	Т	T

```
> fun AND (false,x) = false | AND (true,x) = x;
val truthValues = [(false,false),(false,true),(true,false),(true,true)];
map AND truthValues;
val AND = fn: bool * bool -> bool
> val truthValues =
    [(false, false), (false, true), (true, false), (true, true)]:
    (bool * bool) list
> val it = [false, false, false, true]: bool list
```

ch1 Proposiational Calculus (Disjunction)

Exploring compound propositions

• Disjunction: $p \lor q$

p	q	$(p \wedge q)$
F	F	F
F	$\mid T \mid$	T
T	F	T
Т	$\mid T \mid$	T

```
> fun OR (true,x) = true | OR (false,x) = x;
val truthValues = [(false,false),(false,true),(true,false),(true,true)];
map OR truthValues;
val OR = fn: bool * bool -> bool
> val truthValues =
    [(false, false), (false, true), (true, false), (true, true)]:
    (bool * bool) list
> val it = [false, true, true, true]: bool list
```

```
SML
```

ch1 Proposiational Calculus (Negation)

Exploring compound propositions

• Negation: $\sim p$

p	$\sim p$
F	T
$\mid T \mid$	F

```
fun\ NOT\ (true) = false\ |\ NOT(false) = true;
val\ truthValues = [(false), (true)];
map\ NOT\ truthValues;
```

```
> fun NOT (true) = false | NOT(false) = true;
val truthValues = [(false),(true)];
map NOT truthValues;
val NOT = fn: bool -> bool
> val truthValues = [false, true]: bool list
> val it = [true, false]: bool list
```

ch1 Proposiational Calculus (Exclusive OR)

Exploring compound propositions

• Exclusive OR: $p \oplus q$

p	q	$(p \oplus q)$
F	F	F
F	$\mid T \mid$	Γ
T	F	T
Т	$\mid T \mid$	F

```
> fun XOR(false,x) = x | XOR (true,x) = NOT x;
val truthValues = [(false,false),(false,true),(true,false),(true,true)];
map XOR truthValues;
val XOR = fn: bool * bool -> bool
> val truthValues =
    [(false, false), (false, true), (true, false), (true, true)]:
    (bool * bool) list
> val it = [false, true, true, false]: bool list
```

```
fun\ XOR(false,x) = x \mid XOR\ (true,x) = NOT\ x;

val\ truthValues = [(false,false),(false,true),(true,false),(true,true)];

map\ XOR\ truthValues;
```

ch1 Proposiational Calculus (Problem 1.18)

Using compound propositions

•
$$p \oplus q \equiv (p \lor q) \land \sim (p \land q)$$

p	q	$(p\oplus q)$	$((p \lor q) \land \sim (p \land q))$
F	F	F	F
F	$\mid T \mid$	T	T
T	F	T	T
Т	$\mid T \mid$	F	F

```
> fun f1(x,y) = XOR(x,y);
fun f2(x,y) = AND(OR(x,y),NOT(AND(x,y)));
map f1 truthValues;
map f2 truthValues;
val f1 = fn: bool * bool -> bool
> val f2 = fn: bool * bool -> bool
> val it = [false, true, true, false]: bool list
> val it = [false, true, true, false]: bool list
```

- Since the last two colums of the truth table are the same, the two propositions are equivalent

```
SML
```

```
fun f1(x,y) = XOR(x,y);

fun f2(x,y) = AND(OR(x,y),NOT(AND(x,y)));

map f1 truthValues;

map f2 truthValues;
```

ch1 Proposiational Calculus (Problem 1.13 a Part 1)

Using compound propositions

• Simplify $p \oplus p$ and $p \oplus (p \oplus p)$

p	$(p \oplus p)$	F
F	F	F
$\mid T \mid$	F	F

– Since the last two columns, "F" and " $p \oplus p$ " are identical the propositions are equivalent

```
SML
```

```
val \; truth Values2 = [(false,false),(true,true)];
fun \; p13a1(x,y) = XOR(x,y);
fun \; FALSE(x,y) = false;
map \; p13a11 \; truth Values2;
map \; p13a12 \; truth Values2;
val \; truth Values2 = [(false,false),(true,true)];
val \; truth Values2;
val \; truth Values2 = [(false,false),(true,true)];
```

ch1 Proposiational Calculus (Problem 1.13 a Part 2)

Using compound propositions

• Simplify $p \oplus p$ and $p \oplus (p \oplus p)$

p	$p \oplus (p \oplus p)$
F	F
$\mid T \mid$	_ T

- Since the column "p" and " $p \oplus (p \oplus p)$ are identical the propositions are equivalent

```
_{\rm SML}
```

```
val \ truthValues2 = [(false,false),(true,true)];

fun \ p13a21(x,y) = XOR(x,XOR(x,y));

fun \ p13a22(x,y) = x;

map \ p13a21 \ truthValues2;

map \ p13a22 \ truthValues2;
```

```
> val truthValues2 = [(false,false),(true,true)];
fun p13a21(x,y) = XOR(x,XOR(x,y));
fun p13a22(x,y) = x;
map p13a21 truthValues2;
map p13a22 truthValues2;
val truthValues2 = [(false, false), (true, true)]: (bool * bool) list
> val p13a21 = fn: bool * bool -> bool
> val p13a22 = fn: 'a * 'b -> 'a
> val it = [false, true]: bool list
> val it = [false, true]: bool list
```

ch1 Proposiational Calculus (Problem 1.13 b)

Using compound propositions

• Is $(p \oplus q) \oplus r \equiv p \oplus (q \oplus r)$

p	q	r	$((p \oplus q) \oplus r)$	$(p \oplus (q \oplus r))$
F	F	F	F	F
F	F	$\mid T \mid$	T	T
F	Т	F	T	T
F	Т	$\mid T \mid$	F	F
Т	F	F	T	T
T	F	$\mid T \mid$	F	F
Т	Т	F	F	F
Т	Т	Т	Т	Т

 Since the last columns are the same then the respective propositions are equivalent

```
> fun f13b1(x,y,z) = XOR(z,XOR(x,y));
fun f13b2(x,y,z) = XOR(x,XOR(y,z));
val truthValues3 =
[(false, false, false, false, true), (false, true, false), (false, true, true). (tr
ue.false.false).(true.false.true).(true.true.false).(true.true.true)];
map f13b1 truthValues3:
map f13b2 truthValues3;
val f13b1 = fn: bool * bool * bool -> bool
> val f13b2 = fn: bool * bool * bool -> bool
> val truthValues3
   [(false, false, false), (false, false, true), (false, true, false),
    (false, true, true), (true, false, false), (true, false, true),
    (true, true, false), (true, true, true)]: (bool * bool * bool) list
> val it = [false, true, true, false, true, false, false, true]; bool list
> val it = [false, true, true, false, true, false, false, true]: bool list
SML
fun f13b1(x,y,z) = XOR(z,XOR(x,y));
fun f13b2(x,y,z) = XOR(x,XOR(y,z));
val\ truthValues3 = [(false, false, false), (false, false, true),
(false, true, false), (false, true, true), (true, false, false),
(true, false, true), (true, true, false), (true, true, true)];
map f13b1 truth Values3;
map f13b2 truth Values3;
```

ch1 Proposiational Calculus (Problem 1.13 c)

Using compound propositions

• Is $(p \oplus q) \wedge r \equiv p(p \wedge r) \oplus (q \wedge r)$

p	q	r	$((p \oplus q) \wedge r)$	$\boxed{((p \wedge r) \oplus (q \wedge r))}$
F	F	F	F	F
F	F	$\mid T \mid$	F	F
F	Т	F	F	F
F	Т	$\mid T \mid$	${ m T}$	T
Т	F	F	F	F
Т	F	$\mid T \mid$	${ m T}$	T
Т	Т	F	F	F
Т	Т	T	F	F

 Since the last columns are the same then the respective propositions are equivalent

```
> fun f13c1(x,y,z) = AND(XOR(x,y),z);
fun f13c2(x,y,z) = XOR(AND(x,z),AND(y,z));
map f13b1 truthValues3;
map f13b2 truthValues3:
val f13c1 = fn: bool * bool * bool -> bool
> val f13c2 = fn: bool * bool * bool -> bool
> val it = [false, true, true, false, true, false, false, true]: bool list
> val it = [false, true, true, false, true, false, false, true]: bool list
SML
fun\ f13c1(x,y,z) = AND(XOR(x,y),z);
fun f13c2(x,y,z) = XOR(AND(x,z),AND(y,z));
map f13b1 truthValues3;
map f13b2 truth Values3;
```

ch1 Proposiational Calculus (Problem 1.17)

Using compound propositions

• Construct the truth table for $(p \land q) \lor (\sim p)$

p	q	$(p \wedge q)$	$\sim p$	$((p \land q) \lor \sim p)$
F	F	F	Т	T
F	$\mid T \mid$	F	${ m T}$	T
T	F	F	\mathbf{F}	F
T	$\mid T \mid$	T	F	T

fun
$$p17(x,y) = OR(AND(x,y),NOT(x));$$

map $p17$ truthValues;

```
> fun p17(x,y) = OR(AND(x,y),NOT(x));
map p17 truthValues;
val p17 = fn: bool * bool -> bool
> val it = [true, true, false, true]: bool list
```

ch1 Proposiational Calculus (Problem 1.19)

Using compound propositions

• Show that $p \lor \sim (p \land q)$ is a tautology

p	q	$(p \lor \sim (p \land q))$
F	F	T
F	$\mid T \mid$	T
T	F	T
T	$\mid T \mid$	T

```
> fun p19(x,y) = OR(x,NOT(AND(x,y)));
map p19 truthValues;
val p19 = fn: bool * bool -> bool
> val it = [true, true, true]: bool list
```

- Since the last column of the truth table is always "T", then the proposition is a tautology

$$fun \ p19(x,y) = OR(x,NOT(AND(x,y)));$$

 $map \ p19 \ truthValues;$

ch1 Proposiational Calculus (Problem 1.20)

Using compound propositions

• Show that $\sim p \land (p \land q)$ is a contradiction

p	q	$(\sim p \land (p \land q))$
F	F	F
F	$\mid T \mid$	F
T	F	F
Т	Т	F

```
> fun p20(x,y) = AND(NOT(x),AND(x,y));
map p20 truthValues;
val p20 = fn: bool * bool -> bool
> val it = [false, false, false, false]: bool list
```

- Since the last column of the truth table is always "F", then the proposition is a contradiction

$$fun \ p20(x,y) = AND(NOT(x),AND(x,y));$$

 $map \ p20 \ truthValues;$