第3章 Fibered Categories

七条彰紀

2020年3月17日

目次

1	Fibered Categories.	2
1.1	Motivation	2
1.2	Definitions	2
1.3	Examples	5
1.4	Propositions	6
2	Cleavage	7
2.1	Split Fibration	8
3	Fiber of Fibered Categories	9
3.1	Motivation	9
3.2	Definition	9
3.3	Propositions	10
4	Grothendieck Construction	12
5	Category Fibered in Groupoids/Sets	13
5.1	Motivation	13
5.2	Definition	13
6	Equivalence of Fibered Categories	15
6.1	Definition	15
6.2	Propositions	15

1 Fibered Categories.

1.1 Motivation.

"family" あるいは "object on/over a base space" (例えば schemes over a scheme や sheaves on a scheme など) の抽象的な枠組が fibered category である. 今後は fibered category が提供する枠組を sheaves on a site の貼り合わせや stack の定義の為に活用する.

1.2 Definitions.

 $\mathcal{X}, \mathbf{B} :: \text{category}$ と関手 $\pi \colon \mathcal{X} \to \mathbf{B}$ を考える.

- π を projection あるいは fibration と呼ぶ.
- \mathcal{X} を fibered category と呼ぶ.
- $\pi(O) = P$ であるとき O は P の上にある (O is over P) という.

定義 1.1 (Cartesian Arrow, Cartesian Lifting, Cartesian Functor, Base Preserving Natural Transformation, [Ols16] and [Noo12])

- (i) 以下の性質 (Triangle Lifting という) を満たす $\mathcal X$ の射 $\phi\colon x\to y$ を cartesian arrow という:
 - (1) にあるような対象と射があるとき,(2) の様に射 $z \to y$ がただ一つ存在し,可換と成る.

(ii) $y \in \mathcal{X}, u \to \pi(y) \in \mathbf{B}$ に対し、以下の図式を満たす $^{\dagger 1}x \in \mathcal{X}$ と cartesian arrow :: $x \to y \in \mathcal{X}$ を、cartesian lifting(or cleavage) of $u \to \pi(y)$ と呼ぶ.

- (iii) 任意の $y \in \mathcal{X}$ と $u \to \pi(y) \in \mathbf{B}$ に対して cartesian lifting が存在する $\pi: \mathcal{X} \to \mathbf{B}$ を fibered category という. fibered category over \mathbf{B} が成す圏を $\mathbf{Fib}(\mathbf{B})$ とする.
- (iv) 二つの fibered category :: $\pi: \mathcal{X} \to \mathbf{B}, \pi': \mathcal{X}' \to \mathbf{B}$ について、 $\mathcal{X} \succeq \mathcal{X}'$ の間の射 (morphism of fibered categories, cartesian functor) とは、functor :: $g: \mathcal{X} \to \mathcal{X}'$ であって、 π, π' と整合的 $^{\dagger 2}$ であり、cartesian arrow を cartesian arrow に写すもの.

(v)

注意 1.2

少し圏論の言葉を整理しておく.

対象を 0-morphism (あるいは 0-cell) と呼ぶ時,非負整数 $k \ge 0$ について,k-morphism (cell) は (k-1)-morphism (cell) の間の射と定義できる.こうして k-morphism (cell) は階層を成す.そこで,ここで定義した性質を階層別にまとめると次のように成る.

arrow	arrow in a fibered category	(i) Cartesian Arrow, (ii) Cartesian Lifting
0-cell	fibered category	(iii) Existence of Cartesian Lifting
1-cell	functor between fibered categories	(iii) Morphism of Fibered Category
2-cell	nat. trans. between functors	(iv) Base-Preserving Natural Transformation

通常の圏同型を 1-iso と呼び $\stackrel{1}{\cong}$ と書く、この時、階層ごとの iso/equiv は以下のようなものである.

iso.	$x \cong y$	\iff	2 つの arrow ϕ : $x \rightleftarrows y$: ψ が存在し、 $\psi \circ \phi = \mathrm{id}_x, \phi \circ \psi = \mathrm{id}_y$.
1-iso.	$x \stackrel{1}{\cong} y$	\iff	2 つの 1-cell ϕ : $x \rightleftarrows y$: ψ が存在し、 $\psi \circ \phi = \mathrm{id}_x, \phi \circ \psi = \mathrm{id}_y$.
1-equiv.	$x \stackrel{1}{\simeq} y$	\iff	2 つの 1-cell ϕ : $x \rightleftarrows y$: ψ が存在し, $\psi \circ \phi \cong \mathrm{id}_x, \phi \circ \psi \cong \mathrm{id}_y$.
2-iso.	$x \stackrel{2}{\cong} y$	\iff	2 つの 2 -cell ϕ : $x \rightleftarrows y$: ψ が存在し、 $\psi \circ \phi = \mathrm{id}_x, \phi \circ \psi = \mathrm{id}_y$.
2-equiv.	$x\stackrel{2}{\simeq}y$	\iff	2 つの 2 -cell ϕ : $x \rightleftarrows y$: ψ が存在し, $\psi \circ \phi \stackrel{1}{\cong} \mathrm{id}_x, \phi \circ \psi \stackrel{1}{\cong} \mathrm{id}_y$.

注意 1.3

 ${\bf Fib}({\bf B})$ は 2-category である. 2-category は 2-morphism (${\bf Fib}({\bf B})$ では natural transformation) に "vertical composition" と "horizontal composition" の二種類の合成が定まる圏である. 詳しくはこのノートでは触れない.

定義 1.4 (Base-Preserving Natural Transformation, HOM, Equivalence)

(i) 二つの fibered category :: π : $\mathcal{X} \to \mathbf{B}$, π' : $\mathcal{X}' \to \mathbf{B}$ の間の 2 つの射 g, g': $\mathcal{X} \to \mathcal{X}'$ と natural transformation :: α : $g \to g'$ を考える.

 $^{^{\}dagger 1}$ すなわち, $\pi(x)=u,\pi(x \to y)=u \to \pi(y)$ を満たす.

 $^{^{\}dagger 2}$ すなわち $\pi'\circ g=\pi$ を満たす.

任意の $x \in \mathcal{X}$ について, $\pi'(\alpha_x)$: $\pi'(g(x)) \to \pi'(g'(x))$ が恒等射になるとき, α を base-preserving natural transformation という.

(ii) $\mathcal{X}, \mathcal{X}' \in \mathbf{Fib}(\mathbf{B})$ について、 $\mathrm{HOM}_{\mathbf{B}}(\mathcal{X}, \mathcal{X}')$ を次の圏とする.

Object. morphism of fibered category $\mathcal{X} \to \mathcal{X}'$.

Arrows. base-preserving natural transformation.

(iii) morphism of fibered category :: $g: \mathcal{X} \to \mathcal{X}'$ が equivalence of fibered category であるとは, 別の morphism $h: \mathcal{X}' \to \mathcal{X}$ が存在し、 $h \circ g \succeq \mathrm{id}_{\mathcal{X}}$, $g \circ h \succeq \mathrm{id}_{\mathcal{X}'}$ の間に base-preserving isomorphism が存在すること^{†3}.

$$h \circ g \stackrel{2}{\cong} \mathrm{id}_{\mathcal{X}}, g \circ h \stackrel{2}{\cong} \mathrm{id}_{\mathcal{X}'}.$$

二つの fibrered category が equivalent であるとは、二つの間に equivalence of fibered category が存在するということである.

注意 1.5

2-morphism (2-cell) を base-preserving natural transformation に制限した fibered category の圏を ${\bf Fib}^{\rm bp}({\bf B})$ とすると、HOM は ${\rm Hom}_{{\bf Fib}^{\rm bp}({\bf B})}$ であるし、equivalence of fibered category は ${\bf Fib}^{\rm bp}({\bf B})$ での 2-iso である.

1.3 Examples.

例 1.6

morphism of schemes :: $f: X \to Y$ を取る. この f に対し、f の pullback が成す圏 $\Pi(f)$ を考えることが出来る. 以下のように定義する.

Object. pullback diagram :: $\begin{array}{c} P \longrightarrow X \\ \downarrow \quad \text{p.b.} \quad \int f \\ Z \longrightarrow Y \end{array}$

Arrow. pullback diagram と整合的な射の組 ($Z \rightarrow Z', P \rightarrow P'$).

 $\Pi(f)$ から次のように projection が定まる.

 $^{^{\}dagger 3}$ 基本的には category of equivalence の定義と同じである.

$$\pi \colon \qquad \Pi(f) \qquad \to \qquad \mathbf{Sch}/Y$$

$$P \xrightarrow{\qquad \qquad } X$$

$$\downarrow \quad \text{p.b.} \quad \downarrow f \quad \mapsto \quad [Z \to Y]$$

$$Z \xrightarrow{\qquad \qquad } Y$$

ここで注意したいのは、 $\Pi(f)$ は pullback of f の同型類や代表ではなく、pullback of f 全てであることである。 したがって π : $\Pi(f) \to \mathbf{Sch}/Y$ は pullback of f を選択公理無しに扱う枠組を与えている.

例 1.7

category :: \mathbf{C} について, arrow category :: \mathbf{C}^{\rightarrow} を以下で定める.

Object. \mathbf{C} の射($[x \to u]$ の様に表記する).

すると Cartesian Lifting は ${\bf C}$ が pullback を持つことを意味し、Triangle Lifting は pullback の普遍性を意味する.

例 1.8

以下の関手は fibration である.

$$\pi \colon \mathbf{Sch}/X \to \mathbf{Sch}$$

$$[Y \to X] \mapsto Y$$

1.4 Propositions.

命題 1.9 ([Vis07] Prop3.4)

- (i) cartesian arrow の合成は cartesian arrow である.
- (ii) $\phi: x \to y, \psi: y \to z$ について、 $\psi \circ \phi, \psi:$ cartesian arrow ならば $\psi:$ cartesian arrow.

(証明). Triangle Lifting のみを用いて証明できる. 簡単なので証明は省略する.

次の命題の証明は Cartesian Lifting と Triangle Lifting の使い方をよく示している.

命題 1.10

 $\pi\colon\mathcal{X}\to\mathbf{B}$ を fibered category over \mathbf{B} とする. \mathcal{X} の射 $x\to y$ は以下のような二つの射の合成 $x\to z\to y$ に分解できる.

- $x \to z :: \text{ over id}_{\pi(x)}$.
- $z \to y :: \text{ cartesian, over } \pi(x \to y).$

(証明). $\pi(\phi)$ の cartesian lifting として以下の図式 (1) の z と $z \to y$ を得る. さらに Triangle Lifting により図式 (2) の通り $\mathrm{id}_{\pi(x)}$ 上の射 $x \to z$ を得る.

命題 1.11

 $\pi: \mathcal{X} \to \mathbf{B}$ を fibered category とする. \mathcal{X} の任意の cartesian morphism :: $\phi: x \to y$ について、 $\phi:$ iso と $\Phi:=\pi(\phi):$ iso は同値.

(証明). 以下の図式 (1) に Triangle Lifting を用いれば、 $\phi \circ \psi = \mathrm{id}_y$ なる射 $\psi \colon y \to x$ を得る. さらに図式 (2) に於いて、 $\phi \circ \mathrm{id}_x = \phi = \phi \circ \psi \circ \phi$ と Triangle Lifting の一意性から $\psi \circ \phi = \mathrm{id}_x$ を得る.

2 Cleavage

Cartesian lifting は普遍性 (Triangle Lifting) で特徴づけられている. なので同型を除いて一意であるが、厳密な意味で一意であるというものではない. どの Cartesian lifting を用いるか選んだものが Cleavage (分

裂, 劈開). これは Fibered category :: \mathcal{X} の Cartesian arrow の class を成す. Cleavage と fibration (resp. Fibered category) を併せたものを Cloven fibration (resp. Cloven fibered category) と呼ぶ. 選択公理によって、我々は常に Fibration を Cloven fibration にできる.

2.1 Split Fibration

Cleavage は Cartesian arrow の class であると書いたが、この class が圏を成すと綺麗である。そのような Cleavage を選べる Fibration を Split fibration と呼ぶ.

定義 2.1 ([Ols16])

 $\pi: \mathcal{X} \to \mathbf{B}$:: fibered category とする. splitting of π とは、以下を満たす subcategory :: $\mathbf{S} \subset \mathcal{X}$ のことである。

- (i) **S** は *X* の任意の対象を持つ.
- (ii) S の任意の射は cartesian.
- (iii) 任意の **B** の射 $f: U \to V$ と V 上の対象 $v \in \mathcal{X}$ について,f 上の射 $u \to v$ がただ一つ存在する.(すなわち,cartesian lifting が一意に存在する.)

この時, $\mathfrak{A}(\mathcal{X}, \mathbf{S})$ を split fibered category と呼ぶ.

任意の Fibration は Split fibration とは限らないが、 Split fibration と圏同値である.

定理 2.2

 $\pi: \mathcal{X} \to \mathbf{B}$:: fibered category とする. この時, split fibered category over \mathbf{B} :: $(\tilde{\mathcal{X}}, \mathbf{S})$ が存在し, 圏 同値 $\tilde{\mathcal{X}} \simeq \mathcal{X}$ が成立する.

(証明). ここでは圏と部分圏 $(\tilde{\mathcal{X}}, \mathbf{S})$ 及び関手 $\Phi: \tilde{\mathcal{X}} \to \mathcal{X}$ を構成するにとどめる. (TODO: これらがそれぞれ split fibered category over \mathbf{B} と equivalence であることはここでは確認しない.)

以下のように \tilde{X} を構成する.

Objects. object :: $U \in \mathbf{B}$ と morphism of fibered category :: $u : \mathbf{B}/U \to \mathcal{X}$ の組 (U,u). Arrows. 射 $(V,v) \to (U,u)$ は \mathbf{B} の射 $g : V \to U$ と base-preserving isomorphism :: $\alpha : v \to u \circ g$ の組 (g,α) .

まず projection functor が以下のように定まる.

$$\tilde{\pi} : \quad \tilde{\mathcal{X}} \quad \to \quad \mathbf{B}$$

$$(U, u) \quad \mapsto \quad U$$

この関手によって fibered category の構造が入る.

さらに次の関手によって equivalence が与えられる.

$$\Phi \colon \quad \tilde{\mathcal{X}} \quad \to \quad \mathcal{X}$$
$$(U, u) \quad \mapsto \quad u(\mathrm{id}_U)$$

これが equivalence であることは 2-Yoneda Lemma による.

最後に、splitting of $\tilde{\pi}$:: **S** が次で定められる.

Objects. $ilde{\mathcal{X}}$ と同じ.

Arrows. $\tilde{\mathcal{X}}$ の射で、 (g, id) と表されるもの。 すなわち、射 $(V, v) \to (U, u)$ は \mathbf{B} の射 $g \colon V \to U$ であって $v = u \circ g$ であるもの。

定義 2.3

圏 B に対し,

- Cloven fibration over B の圏を cFib(B),
- Split fibration over B の圏を $\mathbf{sFib}(B)$

と書く. ぞれぞれ忘却関手 $\mathbf{sFib}(\mathbf{B}) \to \mathbf{cFib}(\mathbf{B}), \mathbf{cFib}(\mathbf{B}) \to \mathbf{Fib}(\mathbf{B})$ をもつ.

3 Fiber of Fibered Categories

3.1 Motivation

3.2 Definition

定義 3.1 (Fiber)

 $\pi: \mathcal{X} \to \mathbf{B}$ を fibered category とする. 任意の $b \in \mathbf{B}$ について、以下で定める圏を \mathcal{X}_b あるいは $\mathcal{X}(b)$ と書き、fiber of π at (over) b と呼ぶ:

Object. $\pi(x) = b$ となる object :: $x \in \mathcal{X}$.

Arrow. $\pi(\phi) = \mathrm{id}_b$ となる arrow :: $\phi \in \mathcal{X}$.

morphism of fibered category :: $g: \mathcal{X} \to \mathcal{Y}$ から fiber の間に誘導される射を $g_B: \mathcal{X}_B \to \mathcal{Y}_B$ と書く.

注意 3.2

標語的には次のように定義されている.

$$\mathcal{X}_b = \mathcal{X}(b) := ``\pi^{-1} (b \bowtie id)"$$

また, morphism of schemes :: $f: X \to B$ の fiber が $f^{-1}(b)$ と表現されることと比較せよ。

 \mathcal{X} は上で定義した fiber と cartesian lifting によって contravariant functor に成ることが予想される. しかしこれは一般には正しくない. 正確には、fibered category の fiber は一般に psuedo-functor となる. このことは後に証明する.

定義 3.3 (Psuedo-functor (weak 2-functor))

(以下の URL を参照せよ: https://stacks.math.columbia.edu/tag/003G.) 2-圏 \mathbf{C} から 2-圏 \mathbf{D} への psuedo-functor :: $F: \mathbf{C} \to \mathbf{D}$ とは, \mathbf{C} の object を \mathbf{D} の object へ, \mathbf{C} の arrow を \mathbf{D} の arrow へ対応させるものであり,以下を満たす.

- (a) 任意の $c \in \mathbb{C}$ について 2-isomorphism $\alpha_c \colon F(\mathrm{id}_c) \to \mathrm{id}_{F(c)}$ が存在する.
- (b) 任意の $f: c \to d, g: d \to e \in \mathbf{C}$ について 2-isomorphism $\alpha_{g,f}: F(g \circ f) \to F(g) \circ F(f)$ が存在する.
- (c) $f: x \to y, g: y \to z, h: z \to w$ について以下の等式が成り立つ.

3.3 Propositions

補題 3.4

 $\pi: \mathcal{X} \to \mathbf{B}$ を fibered category とする. 任意の \mathbf{B} の射 $f: b \to b'$ と $x \in \mathcal{X}(b')$ について、f と x に対する cartesian lifting は、同型を除いて一意に存在する.

(証明). 存在は fibered category の定義から明らか. 一意性は cartesian lifting が普遍性を持つことを Triangle Lifting を用いて示せば良い. ■

補題 3.5

 $\pi: \mathcal{X} \to \mathbf{B}$ を fibered category とする. このとき, fiber of π は psuedo-functor である.

(証明). $b \in \mathbf{B}$ について、 $\mathcal{X}(b)$ は既に既に定義した。 \mathbf{B} の射 $\phi \colon b' \to b$ について、関手 $\mathcal{X}(\phi) \colon \mathcal{X}(b) \to \mathcal{X}(b')$ は次のように定められる。まず $u \in \mathcal{X}(b)$ について、 $\mathcal{X}(\phi)(u)$ は ϕ による u の pullback :: ϕ^*u (cartesian lifting of ϕ) である。次に $\mathcal{X}(b)$ の射 $\lambda \colon u \to v$ ($\mathcal{X}(b)$ の定義から $\pi(\lambda) = \mathrm{id}$ を満たす)について、下の図式に triangle lifting を用いて $\phi^*u \to \phi^*v$ を得る。

定義 (3.3) にある条件 (a) については、各 $b \in \mathbf{B}$ について、命題 (1.11) を用いれば同型の存在が分かる. 条件 (b) については、各 $f: c \to d, g: d \to e \in \mathbf{C}$ と各 $b \in \mathbf{B}$ について補題 (3.4) を用いれば $\mathcal{X}(g \circ f)(b) \cong \mathcal{X}(f) \circ \mathbf{B}(g)(b)$ が得られる. あとはこの同型が自然である(すなわち自然変換を定める)ことを確かめれば良い.

この事実は次のセミナーで用いる.

定理 3.6 (2-Yoneda Lemma (Fibered Yoneda Lemma))

 $\pi: \mathcal{X} \to \mathbf{B}::$ fibered category とする. 以下のように関手を定める.

$$Y : \mathbf{B} \rightarrow \mathbf{Fib}(\mathbf{B})$$
 $U \mapsto \mathbf{B}/U$

ここで \mathbf{B}/U は例 (1.8) にあるとおり fibered category over \mathbf{B} である.

この時, 圏同値 $\mathrm{HOM}_{\mathbf{U}}(Y(U),\mathcal{X}) \to \mathcal{X}(U)$ が成り立つ.

注意 3.7

この定理から、 $\mathcal{X}(U)$ を「空間」 \mathcal{X} の U-rational points と考えることが出来る。また、この定理から関手 Y が $U \in \mathbf{B}$ の fibered category over \mathbf{B} への「昇格」を与えていることが分かる.

系 3.8

圏同値 $U, V \in \mathbf{B}$ について $Y(U) \simeq Y(V)$ と $U \cong V$ は同値.

4 Grothendieck Construction

今, fibered category から fiber として psuedo-functor を構成した. 実はこの逆が出来る.

定義 4.1 (Grothendieck Construction, [Ols16], [Noo12])

psuedo-functor :: $P: \mathbf{B} \to \mathbf{Cat}/\mathbf{B}$ について、以下のように圏 $\int P$ を定義する.

Object. $b \in \mathbf{B} \ \succeq x \in P(b)$ の組 (b, x).

Arrow. $\phi: b \to b' \ \succeq \Phi: P(\phi)(x) \to x'$ の組 (ϕ, Φ) .

射の合成は $(\psi, \Psi) \circ (\phi, \Phi) = (\psi \circ \phi, \Phi \circ P(\psi)(\Phi))$ で与えられる.

この圏によって以下の関手が定まる.

$$\int : \left\{ \begin{array}{ccc} \text{psuedo-functor} \\ \mathbf{B} \to \mathbf{Cat} \end{array} \right\} \quad \to \quad \mathbf{sFib}(\mathbf{B}) \\
P \qquad \qquad \mapsto \qquad \int P$$

例 4.2

scheme :: S について, representable functor :: \underline{S} は \mathbf{Sch}/S に対応する.

例 4.3

presheaf of set :: $F \colon \mathbf{C} \to \mathbf{Set}$ は $\bigsqcup_{c \in \mathbf{C}} F(c)$ に対応する.

注意 4.4

David I. Spivak "Category theory for scientists" によると、Grothendieck Construction を最初に構成したのは Grothendieck ではない。例えば MacLane が以前から扱っている。

定義 4.5 (weak/strict 2-equivalence)

関手 $F: \mathbf{C} \to \mathbf{D}$ が weak 2-equivalence であるとは,以下が成り立つこと:逆向きの関手 $\mathbf{C} \leftarrow \mathbf{D}: G$ と二つの自然変換 $\alpha: GF \to \mathrm{id}_{\mathbf{C}}, \beta\colon FG \to \mathrm{id}_{\mathbf{D}}$ が存在し,

- 各 $c \in \mathbf{C}, d \in \mathbf{D}$ について α_c, β_d は同型であり,
- 射 $\phi \in Arr(\mathbf{C}), \psi \in Arr(\mathbf{D})$ について $\alpha_{\phi}, \beta_{\psi}$ も同型.

 $\alpha_{\phi}, \beta_{\psi}$ が恒等射であるときは strict 2-equivalence という.

定理 **4.6** (Grothendieck Construction give Category Equivalence) Grothendieck Construction

$$\int \colon \left\{ \begin{matrix} \text{psuedo-functor} \\ \mathbf{B} \to \mathbf{Cat} \end{matrix} \right\} \to \mathbf{cFib}(\mathbf{B})$$

は strict 2-equivalence である. また、このあとに忘却関手 $\mathbf{cFib}(\mathbf{B}) \to \mathbf{Fib}(\mathbf{B})$ を続けると、weak 2-equivalence となる.

(証明). [Vis07] §3.1.3 に詳しい証明がある. あるいは、P. T. Johnstone "Sketches of an Elephant: A Topos Theory Compendium vol.1 (Oxford Logic Guides 43)" に証明がある. ■

注意 4.7

 $\mathbf{Fib}(\mathbf{B})$ と "anafunctor" の圏が strict 2-equivalence である, という述べ方もあるようだが, "anafunctor" を用いる理由が特に無いので、このノートでは導入しない.

注意 4.8

この定理から、psuedo-functor の理論と fibered category の理論は殆ど同じ、と言える. また、今後現れる stack などは psuedo-functor に対して定義され、一見、fibered category の理論は扱う必要性がなくなる.

しかし実際には、fibered category の方が psuedo-functor より構成しやすい、あるいは全体の性質を理解しやすいという面がある。また技術的な有利としては、fibered category は cleavage (例えば pullback, fiber product 等)を選択する必要がなく、例えば、pullback の貼り合わせ(貼り合わせの際には同型での変形が必要に成る)を自然に扱うことが出来る^{†4}.

また,直観としては, fibered category は family である. ここから得られる fiber は正に fiber of family である. そのため fibered category は大域的, psuedo-functor は局所的だと考えられる.

(TODO: あとで分かったらもっと追記する.)

5 Category Fibered in Groupoids/Sets

5.1 Motivation

Category Fibered in Groupoids は「綺麗すぎる」fibered category であるが、我々が研究する範囲では珍しいものではない。

5.2 Definition

定義 **5.1** (Groupoid)

任意の射が同型射である圏を groupoid と呼ぶ.

注意 5.2

^{†4} もう少し具体的な例としては、trivial family の貼り合わせで出来る locally trivial family も扱える. 詳しい例は私の Deformation Theory に関するノートを読んで欲しい.

群は対象がただ一つで任意の射が同型であるものとみなせるため, groupoid にはこの名前がある.

群以外の極めて単純な groupoid として、集合を射が恒等射しかない圏(離散圏)とみなしたものがある. そのため、逆に恒等射しか無い圏も set と呼ぶ.

定義 5.3 (Category fibered in groupoids/sets)

 $\pi: \mathcal{X} \to \mathbf{B}$ を fibered category とする. 任意の $b \in \mathbf{B}$ について, π の b における fiber $\mathcal{X}(b)$ が groupoid (set) であるとき, \mathcal{X} を category fibered in groupoids (sets) と呼ぶ.

category fibered in groupoids は次のように定義しても同値である.

定義 5.4 (Category fibered in groupoid (Another Definition))

任意の射が cartesian である fibered category を category fibered in groupoids と呼ぶ. すなわち、以下の 2 条件が成立する圏 \mathcal{X} と関手 π : $\mathcal{X} \to \mathbf{B}$ を category fibered in groupoids と呼ぶ.

(i) 以下の図式 (1) において、上の箱と下の箱が π で対応し、下の箱にある図式が可換であるとする。この時、図式 (2) のように上の箱にある図式を可換にし、 π での対応を保つ射 $z \to x$ がただ一つ存在する。

(ii) $y \in \mathcal{X}, u \to \pi(y) \in \mathbf{B}$ に対し、以下の図式を満たす $^{\dagger 5}x \in \mathcal{X}$ と射 $x \to y \in \mathcal{X}$ が存在する.

6 Equivalence of Fibered Categories

Fibered category の一般論の最後に、この直後に扱うことと成る Equivalence を扱う. この節では fibered categories :: $\pi: \mathcal{X} \to \mathbf{B}, \pi': \mathcal{X}' \to \mathbf{B}$ と、これらの間の射 $g: \mathcal{X} \to \mathcal{X}'$ を考える.

6.1 Definition

定義 6.1 (Equivalence)

g が equivalence of fibered categories であるとは、別の射 $h: \mathcal{X}' \to \mathcal{X}$ が存在し、 $g \circ h, h \circ g$ がそれ ぞれ恒等関手と base-preserving isomorphic であるということである.

この時, $\mathcal{X} \simeq \mathcal{X}'$ と書き, h は psuedo-inverse of g と呼ばれる.

注意 6.2

比較すれば分かるとおり、equivalence of fibered categories は、通常の圏同値の定義に"base-preserving"という条件が追加されただけである.

6.2 Propositions

命題 6.3

fibered とは限らない圏 ${f C}, {f D}$ とその間の関手 $F\colon {f C} \to {f D}$ について,F が圏同値であることは以下の 2 条件が同時に成立することと同値.

Fully Faithfulness.

任意の $c, c' \in \mathbf{C}$ について,

関手 F が与える class の対応 $\operatorname{Hom}_{\mathbf{C}}(c,c') \to \operatorname{Hom}_{\mathbf{D}}(F(c),F(c'))$ は全単射である.

Essential Surjectivity.

任意の $d \in \mathbf{D}$ について、 $F(c) \cong d$ となる対象 $c \in \mathbf{C}$ が存在する.

(証明). [Awo10] Prop7.26 を参照せよ.

命題 **6.4** ([Ols16] Prop3.1.18, 3.1.10)

 $b \in \mathbf{B}$ について, g を $\mathcal{X}(b)$ に制限して得られる関手を g_b : $\mathcal{X}(b) \to \mathcal{X}'(b)$ とする.

- (a) g :: fully faithful \iff 任意の $b \in \mathbf{B}$ について, g_b :: fully faithful.
- (b) g :: equivalence \iff 任意の $b \in \mathbf{B}$ について, g_b :: equivalence \dagger^7 .

 $^{^{\}dagger 5}$ すなわち, $\pi(x)=u,\pi(x \to y)=u \to \pi(y)$ を満たす.

 $^{^{\}dagger 6}$ https://stacks.math.columbia.edu/tag/003V

(証明). いずれも \Longrightarrow は自明なので \Longleftarrow を示す.

(i) の証明の概略は以下の通り、まず $\operatorname{Hom}_{\mathbf{C}}(c,c'), \operatorname{Hom}_{\mathbf{D}}(F(c),F(c'))$ を

$$\begin{aligned} \operatorname{Hom}_{\mathbf{C}}(c,c') &= \bigsqcup_{h \in \operatorname{Hom}_{\mathbf{B}}(\pi(c),\pi(c'))} \left\{ \begin{matrix} \operatorname{morphisms} \ c \to c', \\ \operatorname{over} \ h \end{matrix} \right\}, \\ \operatorname{Hom}_{\mathbf{D}}(F(c),F(c')) &= \bigsqcup_{h \in \operatorname{Hom}_{\mathbf{B}}(\pi(c),\pi(c'))} \left\{ \begin{matrix} \operatorname{morphisms} \ F(c) \to F(c'), \\ \operatorname{over} \ h \end{matrix} \right\} \end{aligned}$$

と分解する. そして各 h について session 4 の命題 4.2 (射は cartesian arrow e id に写る射の合成に分解できる) を用いる. すると各成分について全単射を構成できる.

参考文献

- [Awo10] Steve Awodey. Category Theory. 2nd ed. Oxford Logic Guides. Oxford University Press, U.S.A., Aug. 2010.
- [Noo12] Behrang Noohi. A Quick Introduction to Fibered Categories and Topological Stacks. Augast 23, 2012. URL: http://www.maths.qmul.ac.uk/~noohi/papers/quick.pdf.
- [Ols16] Martin Olsson. Algebraic Spaces and Stacks. American Mathematical Society Colloquium Publications 62. Amer Mathematical Society, Apr. 2016. ISBN: 978-1-4704-2798-6. URL: https://doi.org/10.1365/s13291-017-0172-7.
- [Sta19] The Stacks Project Authors. Stacks Project. 2019. URL: https://stacks.math.columbia.edu.
- [Vis07] Angelo Vistoli. "Notes on Grothendieck Topologies, Fibered Categories and Descent Theory". In: (May 24, 2007). arXiv: math/0412512. URL: http://arxiv.org/abs/math/0412512 (visited on 02/15/2020).

^{†7} こちらは通常の圏同値