

VZ/

Sequentially Aggregated Convolutional Networks

Yiwen Huang*¹ Pinglai Ou*² Rihui Wu*³ Ziyong Feng⁴

¹Huazhong University of Science and Technology ²Virginia Tech ³University of Sydney ⁴DeepGlint

Problem and Motivation

Ever since the groundbreaking success of ResNet [1], **shortcut connections** have been regarded as a key component of modern deep networks. **The aggregation nature of shortcut connections was however often neglected.** What could we learn from this perspective and how would it help us design new network architectures?

Related Work

- Ensembles of relatively shallow networks [2, 3].
- Aggregated transformations [4, 5, 6].

Contribution

- Aggregation based convolutional layers.
- New interpretation of DenseNet-like architectures.
- Windowed aggregation.
- New SOTA results on ImageNet [7]. (compared to other models of similar complexity)

Paper, Code and Data:

https://github.com/GroupOfAlchemists/SeqConv

References

- [1] K. He et al. Deep residual learning for image recognition. In: CVPR. 2016.
- [2] A. Veit et al. Residual networks behave like ensembles of relatively shallow networks. In: NIPS. 2016.
- [3] G. Huang et al. Deep networks with stochastic depth. In: ECCV. 2016.
- [4] S. Xie et al. Aggregated residual transformations for deep neural networks. In: CVPR. 2017.
- [5] G. Huang et al. Densely connected convolutional networks. In: CVPR. 2017.
- [6] H. Liu et al. DARTS: Differentiable Architecture Search. In: ICLR. 2019.
- [7] J. Deng et al. Imagenet: a large-scale hierarchical image database. In: CVPR. 2009.
- [8] K. He et al. Identity mappings in deep residual networks. In: ECCV. 2016.

Regular Convolutional Layer:

 $x_1 = F(x_0) \tag{1}$

• Basic SeqConv Layer:

 $x_i = F_i([x_0, x_1, ..., x_{i-1}])$ (2)

Windowed SeqConv Layer:

 $x_i = F_i([x_{i-g'}, x_{i-g'+1}, ..., x_{i-1}])$ (3)

Eq.3 is equivalent to applying a sliding rectangular window ϕ across the channel dimension on Eq.2.

Application

SeqConv could be handily integrated into *any* backbone network, the following illustration shows a pre-activation residual block [8] with windowed SeqConv layers.

Efficiency of Windowed Aggregation

Weight visualization on trained WSeqConv layers indicates that the windowed aggregation mechanism has *much higher* overall utilization on aggregated feature groups than dense aggregation.

Experiments

By simply **replacing each convolutional layer** in ResNet [8] and ResNeXt [4], our SeqConv based models achieve **SOTA results** on ImageNet [7] classification.

	# params.	FLOPs	top-1 err	top-5 err
ResNet-101 [1]	44.5M	7.34G	22.44	6.21
DenseNet-264 [5]	33.3M	5.52G	22.15	6.12
ResNet-152	60.2M	10.82G	22.16	6.16
SeqResNet-B42	25.6M	5.33G	22.06	5.98
SeqResNeXt-24	26.2M	4.32G	21.92	5.82
ResNet-50	25.6M	3.86G	24.01	7.02
DenseNet-169	14.1M	3.22G	23.80	6.85
SeqResNet-B22	11.8M	2.73G	23.67	6.78
ResNet-50 *	25.6M	3.86G	23.9	-
SeqResNet-B22 *	11.8M	2.73G	23.35	6.68
ResNeXt-50 [4] *	25.0M	4.00G	22.2	-
ResNet-101 *	44.5M	7.34G	22.0	-
SeqResNet-B42 *	25.6M	5.33G	21.75	5.89
SeqResNeXt-24 *	26.2M	4.32G	21.50	5.73