Matematyka dyskretna (L)

Katarzyna Paluch

Instytut Informatyki, Uniwersytet Wrocławski

2020

Drzewo rozpinajęce

Niech G = (V, E) będzie grafem spójnym. Drzewo rozpinające grafu G to podgraf T = (V, E'), który jest drzewem. T zawiera wszystkie wierzchołki G.

Niech G=(V,E) będzie grafem niekoniecznie spójnym. Las rozpinający grafu G to podgraf F=(V,E'), który jest lasem, którego liczba spójnych skłądowych jest taka sama jak liczba spójnych skłądowych G.

MST

Niech G = (V, E) będzie grafem spójnym o nieujemnych wagach na krawędziach $c : E \to R \ge 0$.

Drzewo rozpinające grafu G to podgraf T=(V,E'), który jest drzewem. Waga drzewa rozpinającego $c(T)=\sum_{e\in E'}c(e)$.

Minimalne drzewo rozpinające (MST) grafu G to drzewo rozpinające G o minimalnej wadze.

Znajdowanie MST

Niech G=(V,E) będzie grafem spójnym o nieujemnych wagach na krawędziach $c:E\to R\geq 0$.

Algorytm Kruskala:

$$c(e_1) \leq c(e_2) \leq \ldots \leq c(e_m)$$
 (sortujemy krawędzie względem wagi) $T \leftarrow \emptyset$

kolejno dla każdego $i,1\leq i\leq m$ wykonaj następujące: jeśli dodanie e_i do T nie tworzy cyklu w T, dodaj e_i do T (w p.p. nie dodawaj e_i do T)

Znajdowanie MST

Niech G=(V,E) będzie grafem spójnym o nieujemnych wagach na krawędziach $c:E\to R\geq 0$.

Algorytm Kruskala:

$$c(e_1) \leq c(e_2) \leq \ldots \leq c(e_m)$$
 (sortujemy krawędzie względem wagi) $\mathcal{T} \leftarrow \emptyset$

kolejno dla każdego $i, 1 \leq i \leq m$ wykonaj następujące: jeśli dodanie e_i do T nie tworzy cyklu w T, dodaj e_i do T (w p.p. nie dodawaj e_i do T)

Zarys implementacji.

Algorytm Prima

Niech G=(V,E) będzie grafem spójnym o nieujemnych wagach na krawędziach $c:E\to R\geq 0$.

Algorytm Prima:

 $T \leftarrow \text{dowolny wierzchołek } u \in V$

Dopóki T nie jest drzewem rozpinającym wykonaj następujące: spośród krawędzi o jednym wierzchołku w T a drugim poza wybierz tę o najmniejszej wadze i dodaj ją do T

Algorytm Boruvki

Niech G=(V,E) będzie grafem spójnym o nieujemnych wagach na krawędziach $c:E\to R\geq 0$.

Algorytm Boruvki:

 $T \leftarrow V$ (wszystkie wierzchołki z V, zero krawędzi)

Dopóki T nie jest drzewem rozpinającym wykonaj następujące: dla każdej spojnej składowej C_i grafu T wykonaj następujące: spośród krawędzi o jednym wierzchołku w C_i a drugim poza wybierz tę o najmniejszej wadze i oznacz ją jako $e(C_i)$ dodaj wszystkie krawędzie $e(C_i)$ do T

Skojarzenie (matching)

Niech G=(V,E) będzie grafem spójnym. Skojarzenie grafu G to dowolny podzbiór krawędzi $M\subseteq E$ taki, że żadne dwie krawędzie z M nie mają wspólnego końca.

Zastosowania:

- rozlokowanie osób w pokojach 2-osobowych,
- przydział zadań pracownikom,
- przydział zadań maszynom.

Skojarzenie (matching)

Niech G=(V,E) będzie grafem. Skojarzenie grafu G to dowolny podzbiór krawędzi $M\subseteq E$ taki, że żadne dwie krawędzie z M nie mają wspólnego końca.

Skojarzenie największe grafu G to skojarzenie o maksymalnej liczbie krawędzi.

Ścieżka alternująca

Niech G = (V, E) będzie grafem spójnym, a M jakimś skojarzeniem w G. Wierzchołek $v \in V$ jest skojarzony w M, jeśli jest końcem jakiejś krawędzi z M.

Wierzchołek $v \in V$ jest nieskojarzony/ wolny w M, jeśli żadna krawędź z M nie jest z nim incydentna.

Ścieżka P w grafie G jest alternująca (względem M) jeśli krawędzie na P na przemian należą i nie należą do M.

Ścieżka P w grafie G jest powiększająca (względem M), jeśli jest alternująca (wzgl. M) i jej końce są nieskojarzone (w M).

Ścieżka alternująca

Niech G=(V,E) będzie grafem spójnym, a M jakimś skojarzeniem w G. Wierzchołek $v\in V$ jest skojarzony w M, jeśli jest końcem jakiejś krawędzi z M.

Wierzchołek $v \in V$ jest nieskojarzony/ wolny w M, jeśli żadna krawędź z M nie jest z nim incydentna.

Ścieżka P w grafie G jest alternująca (względem M) jeśli krawędzie na P na przemian należą i nie należą do M.

Ścieżka P w grafie G jest powiększająca (względem M), jeśli jest alternująca (wzgl. M) i jej końce są nieskojarzone (w M).

Skojarzenie doskonałe/ pełne grafu G to skojarzenie, w którym każdy wierzchołek z V jest skojarzony.

Cykl alternujący

Cykl C w grafie G jest alternujący (względem M) jeśli krawędzie na C na przemian należą i nie należą do M.

Jaką długość ma cykl alternujący?

Twierdzenie Berge'a

Skojarzenie największe

Skojarzenie M grafu G jest największe wtw, gdy G nie zawiera ścieżki powiększającej względem M.

Warunek Halla

Niech G = (V, E) będzie grafem a $W \subseteq V$ podzbiorem wierzchołków. Sąsiedztwo W oznaczane jako N(W) definujemy jako zbiór $\{v \in V : \exists_{w \in W} \{v, w\} \in E\}.$

Niech $G = (A \cup B, E)$ będzie grafem dwudzielnym.

Warunek Halla

Dla każdego $A' \subseteq A$ zachodzi $|N(A')| \ge |A'|$ oraz dla każdego $B' \subseteq B$ zachodzi $|N(B')| \ge |B'|$.

Skojarzenie doskonałe w grafie dwudzielnym

Niech $G = (A \cup B, E)$ będzie grafem dwudzielnym.

Warunek Halla

Dla każdego $A' \subseteq A$ zachodzi $|N(A')| \ge |A'|$ oraz dla każdego $B' \subseteq B$ zachodzi $|N(B')| \ge |B'|$.

Skojarzenie doskonałe w grafie dwudzielnym

Graf dwudzielny G zawiera skojarzenie doskonałe wtw, gdy spełniony jest w nim warunek Halla.

Skojarzenie doskonałe w grafie dwudzielnym

W pewnej grupie muzykujących osób Ania gra na skrzypcach, harfie, kontrabasie i wiolonczeli, Bartek gra na harfie i fortepianie, Cezary gra na fortepianie, Dąbrówka gra na harfie i Elwira gra na kontrabasie, skrzypcach, wiolonczeli i harfie.

Chcieliby zagrać utwór na fortepian, skrzypce, wiolonczelę, kontrabas i harfę. Czy uda im się dobrać skład?