→ BCG Task 3

Arnav Singh

Sub-task 1: Think through what key drivers of churn could be for our client

Sub-task 2: Build the features in order to get ready to model

▼ Import packages

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import os
import pandas as pd
import seaborn as sns
import datetime
import pickle
import warnings
warnings.filterwarnings("ignore")

sns.set(color_codes=True)
pd.set_option('display.max_columns',50)
```

→ Load data

```
date_cols=['date_activ','date_end','date_modif_prod','date_renewal']
train = pd.read_csv('train_clean.csv',parse_dates=date_cols)
train.head()
```

cons_gas_12m	cons_12m	channel_sales	id	
0	309275	Imkebamcaaclubfxadlmueccxoimlema	48ada52261e7cf58715202705a0451c9	0
54946	0	foosdfpfkusacimwkcsosbicdxkicaua	24011ae4ebbe3035111d65fa7c15bc57	1
0	4660	NaN	d29c2c54acc38ff3c0614d0a653813dd	2
0	544	foosdfpfkusacimwkcsosbicdxkicaua	764c75f661154dac3a6c254cd082ea7d	3
0	1584	Imkebamcaaclubfxadlmueccxoimlema	bba03439a292a1e166f80264c16191cb	4

history = pd.read_csv('history_clean.csv',parse_dates=['price_date'])
history.head()

	id	price_date	price_p1_var	price_p2_var	price_p3_var	рі
0	038af19179925da21a25619c5a24b745	2015-01-01	0.151367	0.0	0.0	
1	038af19179925da21a25619c5a24b745	2015-02-01	0.151367	0.0	0.0	
2	038af19179925da21a25619c5a24b745	2015-03-01	0.151367	0.0	0.0	
3	038af19179925da21a25619c5a24b745	2015-04-01	0.149626	0.0	0.0	
4	038af19179925da21a25619c5a24b745	2015-05-01	0.149626	0.0	0.0	

▼ Feature engineering

First we need to do the Feature Selection We will create the average consumption of the year as one new feature

```
mean_year=history.groupby(['id']).mean().reset_index()
```

```
mean_om=nistory[nistory[ price_date ]> שים-סט-כוטן j.grouppy([ ום j).mean().reset_index()
mean_3m=history[history['price_date']>'2015-10-01'].groupby(['id']).mean().reset_index()
#Combine the mean year in a single dataframe
mean year=mean year.rename(index=str,columns={'price p1 var':'mean year price p1 var',
                                                 'price_p2_var':'mean_year_price_p2_var',
                                                'price_p3_var':'mean_year_price_p3_var',
                                                'price_p1_fix':'mean_year_price_p1_fix',
                                                'price_p2_fix':'mean_year_price_p2_fix';
                                                'price_p3_fix':'mean_year_price_p3_fix',})
\verb|mean_year['mean_year_price_p1'] = \verb|mean_year['mean_year_price_p1_var'] + \verb|mean_year['mean_year_price_p1_fix']| \\
mean_year['mean_year_price_p2']=mean_year['mean_year_price_p2_var']+mean_year['mean_year_price_p2_fix']
mean_year['mean_year_price_p3']=mean_year['mean_year_price_p3_var']+mean_year['mean_year_price_p3_fix']
mean_6m=mean_6m.rename(index=str,columns={'price_p1_var':'mean_6m_price_p1_var',
                                                'price_p2_var': 'mean_6m_price_p2_var',
                                                'price p3 var': 'mean 6m price p3 var',
                                                'price_p1_fix':'mean_6m_price_p1_fix',
                                                'price_p2_fix':'mean_6m_price_p2_fix',
                                                'price_p3_fix':'mean_6m_price_p3_fix',})
\verb|mean_6m||'mean_6m_price_p1'| = \verb|mean_6m||'mean_6m_price_p1_var'| + \verb|mean_6m||'mean_6m_price_p1_fix'||
mean_6m['mean_6m_price_p2']=mean_6m['mean_6m_price_p2_var']+mean_6m['mean_6m_price_p2_fix']
mean_6m['mean_6m_price_p3']=mean_6m['mean_6m_price_p3_var']+mean_6m['mean_6m_price_p3_fix']
mean_3m=mean_3m.rename(index=str,columns={'price_p1_var':'mean_3m_price_p1_var',
                                                 'price_p2_var':'mean_3m_price_p2_var',
                                                'price_p3_var':'mean_3m_price_p3_var',
                                                'price_p1_fix':'mean_3m_price_p1_fix',
                                                'price p2 fix':'mean 3m price p2 fix'
                                                'price_p3_fix':'mean_3m_price_p3_fix',})
\verb|mean_3m|'mean_3m|price_p1'| = \verb|mean_3m|'mean_3m|price_p1_var'| + \verb|mean_3m|'mean_3m|price_p1_fix'| \\
mean_3m['mean_3m_price_p2']=mean_3m['mean_3m_price_p2_var']+mean_3m['mean_3m_price_p2_fix']
mean_3m['mean_3m_price_p3']=mean_3m['mean_3m_price_p3_var']+mean_3m['mean_3m_price_p3_fix']
history_new = pd.merge(mean_year,mean_6m, on='id',how='left')
history_new = pd.merge(mean_year,mean_3m, on='id',how='left')
history new.head()
```

	id	mean_year_price_p1_var	mean_year_price_p2_var	mean_ye
0	0002203ffbb812588b632b9e628cc38d	0.124338	0.103794	
1	0004351ebdd665e6ee664792efc4fd13	0.146426	0.000000	
2	0010bcc39e42b3c2131ed2ce55246e3c	0.181558	0.000000	
3	0010ee3855fdea87602a5b7aba8e42de	0.118757	0.098292	
4	00114d74e963e47177db89bc70108537	0.147926	0.000000	

Datetime

#Extract contract duration
#we will define the duration=date_end-date_activ
train['contract_duration']=((train['date_end']-train['date_activ'])/ np.timedelta64(1,'M')).astype(int)
train.head()

cons_gas_12m	cons_12m	channel_sales	id	
0	309275	Imkebamcaaclubfxadlmueccxoimlema	48ada52261e7cf58715202705a0451c9	0
54946	0	foosdfpfkusacimwkcsosbicdxkicaua	24011ae4ebbe3035111d65fa7c15bc57	1
0	4660	NaN	d29c2c54acc38ff3c0614d0a653813dd	2
0	544	foosdfpfkusacimwkcsosbicdxkicaua	764c75f661154dac3a6c254cd082ea7d	3
0	1584	Imkebamcaaclubfxadlmueccxoimlema	bba03439a292a1e166f80264c16191cb	4

#set the reference time to be 2016-01-01 #write a finction to caculate the month difference between datetime features

```
def calculatemonth(referencetime,dataframe,column):
    time_diff=referencetime-dataframe[column]
    months=(time_diff/np.timedelta64(1,'M')).astype(int)
    return months

referencetime=pd.to_datetime('2016-01-01')

train['activ_diff']=calculatemonth(referencetime,train,'date_activ')
train['end_diff']=calculatemonth(referencetime,train,'date_end')
train['modif_diff']=calculatemonth(referencetime,train,'date_modif_prod')
train['renewal_diff']=calculatemonth(referencetime,train,'date_renewal')
train.head()
```

	id	channel_sales	cons_12m	cons_gas_12m
0	48ada52261e7cf58715202705a0451c9	Imkebamcaaclubfxadlmueccxoimlema	309275	0
1	24011ae4ebbe3035111d65fa7c15bc57	foosdfpfkusacimwkcsosbicdxkicaua	0	54946
2	d29c2c54acc38ff3c0614d0a653813dd	NaN	4660	0
3	764c75f661154dac3a6c254cd082ea7d	foosdfpfkusacimwkcsosbicdxkicaua	544	0
4	bba03439a292a1e166f80264c16191cb	Imkebamcaaclubfxadlmueccxoimlema	1584	0

#Remove the date columns
train.drop(columns=['date_activ','date_end','date_modif_prod','date_renewal'],axis=1,inplace=True)

train.head()

cons_gas_12m	cons_12m	channel_sales	id	
0	309275	Imkebamcaaclubfxadlmueccxoimlema	48ada52261e7cf58715202705a0451c9	0
54946	0	foosdfpfkusacimwkcsosbicdxkicaua	24011ae4ebbe3035111d65fa7c15bc57	1
0	4660	NaN	d29c2c54acc38ff3c0614d0a653813dd	2
0	544	foosdfpfkusacimwkcsosbicdxkicaua	764c75f661154dac3a6c254cd082ea7d	3
0	1584	Imkebamcaaclubfxadlmueccxoimlema	bba03439a292a1e166f80264c16191cb	4

→ Categorical Data

▼ Binary encoding

```
#For the column has_gas,replace t for 1 and f for 0
train['has_gas']=train['has_gas'].replace(['t','f'],[1,0])
```

▼ one-hot encoding

```
train['channel_sales']=train['channel_sales'].fillna('null_values_channel')
train['channel_sales']=train['channel_sales'].apply(lambda x:x[:4])
categories_channel=pd.get_dummies(train[['channel_sales']])
categories_channel.drop(columns=['channel_sales_null'],inplace=True)
categories_channel.head()
```

	<pre>channel_sales_epum</pre>	channel_sales_ewpa	${\tt channel_sales_fixd}$	channel_sales_foos	cl
0	0	0	0	0	
1	0	0	0	1	
2	0	0	0	0	
3	0	0	0	1	
4	0	0	0	0	

```
#for the column origin_up, first fill the null value
train['origin_up']=train['origin_up'].fillna('null_values_origin')

train['origin_up']=train['origin_up'].apply(lambda x:x[:4])
categories_origin= pd.get_dummies(train[['origin_up']])
categories_origin.drop(columns=['origin_up_null'],inplace=True)
categories_origin.head()
```

	origin_up_ewxe	origin_up_kamk	origin_up_ldks	origin_up_lxid	origin_up_usap
0	0	0	1	0	0
1	0	0	0	1	0
2	0	1	0	0	0
3	0	1	0	0	0
4	0	1	0	0	0

#Use the common index to merge
train=pd.merge(train,categories_channel,left_index=True,right_index=True)
train=pd.merge(train,categories_origin,left_index=True,right_index=True)

train=train.drop(['channel_sales','origin_up'],axis=1)
train.head()

	id	cons_12m	cons_gas_12m	cons_last_month	forecast_cons_:
0	48ada52261e7cf58715202705a0451c9	309275	0	10025	26520
1	24011ae4ebbe3035111d65fa7c15bc57	0	54946	0	0
2	d29c2c54acc38ff3c0614d0a653813dd	4660	0	0	189
3	764c75f661154dac3a6c254cd082ea7d	544	0	0	47
4	bba03439a292a1e166f80264c16191cb	1584	0	0	240

Numerical Data

▼ Distribution transformation

From the previous EDA we can see that some features are highly skewed, we need to transform the distribution to normal-like distribution

```
#First for the cons_12, remove the negative values and apply a log tranformation
train.loc[train.cons_12m<0,'cons_12m']=np.nan
train['cons_12m']=train['cons_12m'].dropna()
train['log_cons_12m']=train['cons_12m'].apply(lambda x:np.log(1+x))
sns.distplot(train['log_cons_12m']);</pre>
```



```
train.loc[train.cons_gas_12m<0,'cons_gas_12m']=np.nan
train['cons_gas_12m']=train['cons_gas_12m'].dropna()
train['log_cons_gas_12m']=train['cons_gas_12m'].apply(lambda x:np.log(1+x))
sns.distplot(train['log_cons_gas_12m']);</pre>
```


train.loc[train.cons_last_month<0,'cons_last_month']=np.nan
train['cons_last_month']=train['cons_last_month'].dropna()
train['log_cons_last_month']=train['cons_last_month'].apply(lambda x:np.log(1+x))
sns.distplot(train['log_cons_last_month']);</pre>

train.loc[train.forecast_cons_12m<0,'forecast_cons_12m']=np.nan
train['forecast_cons_12m']=train['forecast_cons_12m'].dropna()
train['log_forecast_cons_12m']=train['forecast_cons_12m'].apply(lambda x:np.log(1+x))
sns.distplot(train['log_forecast_cons_12m']);</pre>

train.loc[train.forecast_cons_year<0,'forecast_cons_year']=np.nan
train['forecast_cons_year']=train['forecast_cons_year'].dropna()
train['log_forecast_cons_year']=train['forecast_cons_year'].apply(lambda x:np.log(1+x))
sns.distplot(train['log_forecast_cons_year']);</pre>

train.loc[train.forecast_meter_rent_12m<0,'forecast_meter_rent_12m']=np.nan
train['forecast_meter_rent_12m']=train['forecast_meter_rent_12m'].dropna()
train['log_forecast_meter_rent_12m']=train['forecast_meter_rent_12m'].apply(lambda x:np.log(1+x))
sns.distplot(train['log_forecast_meter_rent_12m'])</pre>

<AxesSubplot:xlabel='log_forecast_meter_rent_12m', ylabel='Density'>


```
train.loc[train.imp_cons<0,'imp_cons']=np.nan
train['imp_cons']=train['imp_cons'].dropna()
train['log_imp_cons']=train['imp_cons'].apply(lambda x:np.log(1+x))
sns.distplot(train['log_imp_cons']);</pre>
```


train=train.drop(['cons_12m','cons_gas_12m','cons_last_month','forecast_cons_12m','forecast_cons_year','forecast_meter_rent_12m','imp_cortrain.head()

	id	<pre>forecast_discount_energy</pre>	<pre>forecast_price_energy_p1</pre>	for
0	48ada52261e7cf58715202705a0451c9	0.0	0.095919	
1	24011ae4ebbe3035111d65fa7c15bc57	0.0	0.114481	
2	d29c2c54acc38ff3c0614d0a653813dd	0.0	0.145711	
3	764c75f661154dac3a6c254cd082ea7d	0.0	0.165794	
4	bba03439a292a1e166f80264c16191cb	0.0	0.146694	

→ High correlation variables

#Calculate correlation of variables
corr_train=train.corr()

As expected, num_years_antig has a high correlation with activ_diff, we can remove the num_years_antig since they are provides the same information.

train.drop(columns=['num_years_antig'],inplace=True)

Removing Outliers

As the previous EDA we can see that there have several outliers in the dataset, for simplisity, I will replace these outliers with the mean.

```
#I will use IQR method to detect outliers
def remove_outliers(df,col):
    df.loc[df[col]<0,col]=df[col].mean()</pre>
    q1=df[col].quantile(.25)
    q3=df[col].quantile(.75)
    iqr=q3-q1
    upper_bound=q3+(iqr*1.5)
    lower_bound=q1-(iqr*1.5)
    df = df[(lower\_bound < df[col]) | (df[col] < upper\_bound)]
remove_outliers(history_new,'mean_year_price_p1_var')
remove_outliers(history_new,'mean_year_price_p2_var')
remove_outliers(history_new,'mean_year_price_p3_var')
remove_outliers(history_new,'mean_year_price_p1_fix')
remove_outliers(history_new,'mean_year_price_p2_fix')
remove_outliers(history_new,'mean_year_price_p3_fix')
remove_outliers(history_new,'mean_year_price_p1')
remove_outliers(history_new,'mean_year_price_p2')
remove_outliers(history_new,'mean_year_price_p3')
remove_outliers(train,'log_cons_12m')
remove_outliers(train,'log_cons_gas_12m')
remove_outliers(train,'log_cons_last_month')
remove_outliers(train,'log_forecast_cons_12m')
remove_outliers(train,'log_forecast_meter_rent_12m')
remove_outliers(train,'log_forecast_cons_year')
remove_outliers(train,'log_imp_cons')
remove_outliers(train,'forecast_discount_energy')
remove_outliers(train, 'forecast_price_energy_p1')
remove_outliers(train,'forecast_price_energy_p2')
remove_outliers(train,'forecast_price_pow_p1')
remove_outliers(train, 'margin_gross_pow_ele')
remove_outliers(train,'margin_net_pow_ele')
remove_outliers(train, 'net_margin')
remove_outliers(train,'pow_max')
remove_outliers(train,'forecast_price_energy_p1')
```

id forecast_discount_energy forecast_price_energy_p1 for

Merge Data Together

```
df = pd.merge(train, history_new, on='id', how = 'left')
df.head()
```

```
0 48ada52261e7cf58715202705a0451c9
                                                                                       0.095919
                                                                  0.0
      1 24011ae4ebbe3035111d65fa7c15bc57
                                                                                        0.114481
                                                                  0.0
      2 d29c2c54acc38ff3c0614d0a653813dd
                                                                  0.0
                                                                                        0.145711
      3 764c75f661154dac3a6c254cd082ea7d
                                                                  0.0
                                                                                       0.165794
      4 bba03439a292a1e166f80264c16191cb
                                                                  0.0
                                                                                        0.146694
     5 rows × 54 columns
df =df.dropna()
df.isnull().sum().sort_values(ascending = False)
     mean_3m_price_p3
     activ_diff
                                     a
     origin_up_ewxe
                                     0
     channel_sales_usil
                                     0
     channel_sales_sddi
                                     0
     channel_sales_lmke
     channel_sales_foos
     channel_sales_fixd
                                     0
     channel_sales_ewpa
     channel_sales_epum renewal_diff
                                     0
                                     0
     modif diff
                                     0
     end_diff
                                     0
     contract_duration
                                     0
     mean_3m_price_p2
     churn
                                     0
     pow_max
     net_margin
     nb_prod_act
     margin_net_pow_ele
                                     0
     margin_gross_pow_ele
     has gas
     forecast_price_pow_p1
     {\tt forecast\_price\_energy\_p2}
     forecast_price_energy_p1
                                     0
     forecast_discount_energy
     origin_up_kamk
                                     0
     origin_up_ldks
     origin_up_lxid
     origin_up_usap
                                     0
     mean_3m_price_p1
                                     0
     mean_3m_price_p3_fix
                                     0
     mean_3m_price_p2_fix
     mean_3m_price_p1_fix
                                     0
     mean_3m_price_p3_var
                                     0
     mean_3m_price_p2_var
                                     0
     mean_3m_price_p1_var
     mean_year_price_p3
                                     0
     mean_year_price_p2
     mean_year_price_p1
mean_year_price_p3_fix
                                     0
     mean_year_price_p2_fix
                                     0
     mean_year_price_p1_fix
                                     0
     mean_year_price_p3_var
     mean_year_price_p2_var
                                     0
     mean_year_price_p1_var
     log_imp_cons
     log_forecast_meter_rent_12m
     log_forecast_cons_year
     log_forecast_cons_12m
     log cons last month
                                     0
     log_cons_gas_12m
                                     0
                                     0
     log_cons_12m
     id
                                     0
     dtype: int64
df=df.drop('id', axis = 1)
```

df.to_csv('feature_engineering.csv', index = False)

Colab paid products - Cancel contracts here

• ×

Modeling & Evaluation

Sub-Task 1:Build churn model(s) to try to predict the churn probability of any customer.

Sub-Task 2:Evaluate your model, using a holdout set, and with metrics of your choosing.

Sub-Task 3:Interpret the results and use them to formulate answers to the client's hypotheses and questions.

▼ Import packages

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
%matplotlib inline
sns.set(color_codes=True)

pd.set_option('display.max_columns', 100)
pd.set_option('display.max_rows', 100)
```

▼ Load Data

```
df=pd.read_csv("feature_engineering.csv")
df.head()
```

forecast_pr	<pre>forecast_price_energy_p2</pre>	orecast_price_energy_p1	orecast_discount_energy fo	f
	0.088347	0.095919	×	Saving
	0.098142	0.114481	0.0	1
	0.000000	0.145711	0.0	2
	0.087899	0.165794	0.0	3
	0.000000	0.146694	0.0	4

Splitting data

As we can see, the y(churn) is imbalanced

```
#Spliting dataset
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=10)
```

▼ Base Models

We are going to quickly test the fit of 6 different models

- Logistic Regression: basic linear classifier (good to baseline)
- · Random Forest: ensemble bagging classifier
- K-Nearest Neighbors: instance based classifier
- Support Vector Machines: maximum margin classifier

- · Gaussian Naive Bayes: probabilistic classifier
- XGBoost: ensemble (extreme!) boosting classifier

```
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive bayes import GaussianNB
from xgboost import XGBClassifier
from sklearn import model_selection
from sklearn.utils import class weight
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
def run_exps(X_train: pd.DataFrame , y_train: pd.DataFrame, X_test: pd.DataFrame, y_test: pd.DataFrame) -> pd.DataFrame:
    Lightweight script to test many models and find winners
    :param X train: training split
    :param y_train: training target vector
    :param X_test: test split
    :param y_test: test target vector
    :return: DataFrame of predictions
    dfs=[]
    models =[('LogReg', LogisticRegression()),
        ('RF', RandomForestClassifier ()),
        ('KNN', KNeighborsClassifier ()),
        ('SVM', SVC()),
('GNB', GaussianNB()),
        ('XGB', XGBClassifier(eval_metric='mlogloss'))
            ]
    results = []
    names = []
    scoring = ['accuracy'__'nnecision_weighted', 'recall_weighted', 'f1_weighted', 'roc_auc']
                                _ nign']
 Saving..
        kfold = model_selection.KFold(n_splits=5, shuffle=True, random_state=90210)
        cv_results = model_selection.cross_validate(model, X_train, y_train, cv=kfold, scoring=scoring)
        clf = model.fit(X_train, y_train)
       y_pred = clf.predict(X_test)
        print(name)
        print(classification_report(y_test, y_pred, target_names=target_names))
        results.append(cv_results)
        names.append(name)
        this_df = pd.DataFrame(cv_results)
        this_df['model'] = name
        dfs.append(this_df)
        final = pd.concat(dfs, ignore index=True)
    return final
run_exps(X_train,y_train,X_test,y_test)
```

	eg	precision	recall	f1-score	support			
	.1:	•						
ma	alignant benign	0.91 0.33	1.00 0.00	0.95 0.01	2871 301			
	accuracy			0.90	3172			
	acro avg	0.62 0.85	0.50 0.90	0.48 0.86	3172 3172			
	J							
RF		precision	recall	f1-score	support			
ma	alignant	0.91	1.00	0.95	2871			
	benign	0.76	0.05	0.10	301			
	accuracy	0.04	0 53	0.91	3172			
	acro avg	0.84 0.90	0.53 0.91	0.53 0.87	3172 3172			
KNN								
KININ		precision	recall	f1-score	support			
	olianont	0.91	0.00	0.05	2871			
IIIe	alignant benign	0.91	0.99 0.03	0.95 0.05	301			
	accuracy			0.90	3172			
	accuracy acro avg	0.56	0.51	0.50	3172			
weigh	nted avg	0.84	0.90	0.86	3172			
SVM								
		precision	recall	f1-score	support			
ma	alignant	0.91	1.00	0.95	2871			
	benign	0.00	0.00	0.00	301			
i	accuracy			0.91	3172			
	acro avg	0.45 a 82	0.50 0.91	0.48 0.86	3172 3172			
Saving			×	0.00	3172			
Odvirig		precision		f1-score	support			
ma	alignant benign	0.94 0.13	0.50 0.70	0.65 0.21	2871 301			
	· ·							
	accuracy acro avg	0.53	0.60	0.52 0.43	3172 3172			
	nted avg	0.86	0.52	0.61	3172			
XGB								
		precision	recall	f1-score	support			
ma	alignant	0.92	0.99	0.95	2871			
	benign	0.64	0.12	0.21	301			
i		0.04			302			
	accuracy	0.04		0.91	3172			
	acro avg	0.78	0.56	0.58	3172 3172			
					3172			
	acro avg	0.78 0.89	0.56 0.91	0.58 0.88	3172 3172 3172	_weighted	test_recall_weighted	test _.
	acro avg	0.78 0.89	0.56 0.91 test_acc	0.58 0.88	3172 3172 3172	_weighted 0.801371	test_recall_weighted 0.895193	test
weig	acro avg	0.78 0.89 score_time	0.56 0.91 test_acc	0.58 0.88 curacy tes	3172 3172 3172			test_
weigh O 1	fit_time 0.181278 0.112731	0.78 0.89 score_time 0.015472 0.009289	0.56 0.91 test_acc	0.58 0.88 curacy tes 395193 006225	3172 3172 3172	0.801371	0.895193 0.906225	test _.
weight 0 1 2	fit_time 0.181278 0.112731 0.107510	0.78 0.89 score_time 0.015472 0.009289 0.008401	0.56 0.91 test_acc 0.8 0.9	0.58 0.88 curacy tes 395193 006225 911313	3172 3172 3172	0.801371 0.853343 0.831177	0.895193 0.906225 0.911313	test.
0 1 2 3	fit_time 0.181278 0.112731 0.107510 0.113473	0.78 0.89 score_time 0.015472 0.009289 0.008401 0.009013	0.56 0.91 test_acc 0.8 0.9	0.58 0.88 curacy tes 395193 006225	3172 3172 3172	0.801371 0.853343 0.831177 0.824947	0.895193 0.906225 0.911313 0.895546	test
weight 0 1 2	fit_time 0.181278 0.112731 0.107510	0.78 0.89 score_time 0.015472 0.009289 0.008401	0.56 0.91 test_acc 0.8 0.9	0.58 0.88 curacy tes 395193 006225 911313	3172 3172 3172	0.801371 0.853343 0.831177	0.895193 0.906225 0.911313	test _.
0 1 2 3	fit_time 0.181278 0.112731 0.107510 0.113473	0.78 0.89 score_time 0.015472 0.009289 0.008401 0.009013	0.56 0.91 test_acc 0.8 0.9	0.58 0.88 curacy tes 395193 306225 911313 395546	3172 3172 3172	0.801371 0.853343 0.831177 0.824947	0.895193 0.906225 0.911313 0.895546	test.
0 1 2 3 4	fit_time 0.181278 0.112731 0.107510 0.113473 0.106269	0.78 0.89 score_time 0.015472 0.009289 0.008401 0.009013 0.008844	0.56 0.91 test_acc 0.8 0.9 0.9	0.58 0.88 curacy tes 395193 306225 311313 395546 305400	3172 3172 3172	0.801371 0.853343 0.831177 0.824947 0.844854	0.895193 0.906225 0.911313 0.895546 0.905400	test
0 1 2 3 4 5	fit_time 0.181278 0.112731 0.107510 0.113473 0.106269 2.445273 2.435634	0.78 0.89 score_time 0.015472 0.009289 0.008401 0.009013 0.008844 0.100206 0.099173	0.56 0.91 test_acc 0.8 0.9 0.9 0.9	0.58 0.88 curacy tes 395193 306225 311313 395546 305400 399921 310165	3172 3172 3172	0.801371 0.853343 0.831177 0.824947 0.844854 0.893368 0.893356	0.895193 0.906225 0.911313 0.895546 0.905400 0.899921 0.910165	test_
0 1 2 3 4 5 6	fit_time 0.181278 0.112731 0.107510 0.113473 0.106269 2.445273 2.435634 2.356782	0.78 0.89 score_time 0.015472 0.009289 0.008401 0.009013 0.008844 0.100206 0.099173 0.124688	0.56 0.91 test_acc 0.8 0.9 0.9 0.9 0.9	0.58 0.88 2006225 2011313 395546 2005400 399921 2010165 2014466	3172 3172 3172	0.801371 0.853343 0.831177 0.824947 0.844854 0.893368 0.893356	0.895193 0.906225 0.911313 0.895546 0.905400 0.899921 0.910165 0.914466	test.
0 1 2 3 4 5 6 7 8	fit_time 0.181278 0.112731 0.107510 0.113473 0.106269 2.445273 2.435634 2.356782 2.648319	0.78 0.89 score_time 0.015472 0.009289 0.008401 0.009013 0.008844 0.100206 0.099173 0.124688 0.105518	0.56 0.91 test_acc 0.8 0.9 0.8 0.9 0.9 0.9	0.58 0.88 201313 306225 311313 395546 305400 399921 310165 314466	3172 3172 3172	0.801371 0.853343 0.831177 0.824947 0.844854 0.893368 0.893356 0.899455	0.895193 0.906225 0.911313 0.895546 0.905400 0.899921 0.910165 0.914466 0.900670	test.
0 1 2 3 4 5 6	fit_time 0.181278 0.112731 0.107510 0.113473 0.106269 2.445273 2.435634 2.356782	0.78 0.89 score_time 0.015472 0.009289 0.008401 0.009013 0.008844 0.100206 0.099173 0.124688	0.56 0.91 test_acc 0.8 0.9 0.8 0.9 0.9 0.9	0.58 0.88 2006225 2011313 395546 2005400 399921 2010165 2014466	3172 3172 3172	0.801371 0.853343 0.831177 0.824947 0.844854 0.893368 0.893356	0.895193 0.906225 0.911313 0.895546 0.905400 0.899921 0.910165 0.914466	test
0 1 2 3 4 5 6 7 8	fit_time 0.181278 0.112731 0.107510 0.113473 0.106269 2.445273 2.435634 2.356782 2.648319	0.78 0.89 score_time 0.015472 0.009289 0.008401 0.009013 0.008844 0.100206 0.099173 0.124688 0.105518	0.56 0.91 test_acc 0.8 0.9 0.9 0.9 0.9 0.9 0.9	0.58 0.88 201313 306225 311313 395546 305400 399921 310165 314466	3172 3172 3172	0.801371 0.853343 0.831177 0.824947 0.844854 0.893368 0.893356 0.899455	0.895193 0.906225 0.911313 0.895546 0.905400 0.899921 0.910165 0.914466 0.900670	test.
0 1 2 3 4 5 6 7 8	fit_time 0.181278 0.112731 0.107510 0.113473 0.106269 2.445273 2.435634 2.356782 2.648319 2.366336	0.78 0.89 score_time 0.015472 0.009289 0.008401 0.009013 0.008844 0.100206 0.099173 0.124688 0.105518 0.097486	0.56 0.91 test_acc 0.8 0.9 0.8 0.9 0.9 0.9 0.9	0.58 0.88 0.88 0.895193 006225 011313 095546 005400 099921 010165 014466 000670	3172 3172 3172	0.801371 0.853343 0.831177 0.824947 0.844854 0.893368 0.893356 0.899455 0.902254 0.891904	0.895193 0.906225 0.911313 0.895546 0.905400 0.899921 0.910165 0.914466 0.900670 0.908159	test.
weight 0 1 2 3 4 5 6 7 8 9 10	fit_time 0.181278 0.112731 0.107510 0.113473 0.106269 2.445273 2.435634 2.356782 2.648319 2.366336 0.029028	0.78 0.89 score_time 0.015472 0.009289 0.008401 0.009013 0.008844 0.100206 0.099173 0.124688 0.105518 0.097486 0.461501	0.56 0.91 test_acc 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	0.58 0.88 curacy tes 395193 306225 311313 395546 305400 399921 3010165 314466 300670 308159 389283	3172 3172 3172	0.801371 0.853343 0.831177 0.824947 0.844854 0.893368 0.893356 0.899455 0.902254 0.891904 0.825791	0.895193 0.906225 0.911313 0.895546 0.905400 0.899921 0.910165 0.914466 0.900670 0.908159 0.889283	test
weight 0 1 2 3 4 5 6 7 8 9 10 11 12	fit_time 0.181278 0.112731 0.107510 0.113473 0.106269 2.445273 2.435634 2.356782 2.648319 2.366336 0.029028 0.027826 0.031085	0.78 0.89 score_time 0.015472 0.009289 0.008401 0.009013 0.008844 0.100206 0.099173 0.124688 0.105518 0.097486 0.461501 0.458236 0.419473	0.56 0.91 test_acc 0.6 0.9 0.6 0.6 0.9 0.9 0.9 0.9	0.58 0.88 2013 0.6225 0.11313 0.06225 0.11313 0.05400 0.099921 0.01065 0.0670 0.08159 0.08159 0.08169 0.01064	3172 3172 3172	0.801371 0.853343 0.831177 0.824947 0.844854 0.893368 0.893356 0.899455 0.902254 0.891904 0.825791 0.846220 0.850707	0.895193 0.906225 0.911313 0.895546 0.905400 0.899921 0.910165 0.914466 0.900670 0.908159 0.889283 0.896769 0.901064	test
weight 0 1 2 3 4 5 6 7 8 9 10 11	fit_time 0.181278 0.112731 0.107510 0.113473 0.106269 2.445273 2.435634 2.356782 2.648319 2.366336 0.029028 0.027826	0.78 0.89 score_time 0.015472 0.009289 0.008401 0.009013 0.008844 0.100206 0.099173 0.124688 0.105518 0.097486 0.461501 0.458236	0.56 0.91 test_acc 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	0.58 0.88 0.88 0.895193 006225 011313 095546 005400 099921 010165 014466 000670 008159 0889283	3172 3172 3172	0.801371 0.853343 0.831177 0.824947 0.844854 0.893368 0.893356 0.899455 0.902254 0.891904 0.825791 0.846220	0.895193 0.906225 0.911313 0.895546 0.905400 0.899921 0.910165 0.914466 0.900670 0.908159 0.889283 0.896769	test

```
final=run_exps(X_train,y_train,X_test,y_test)
bootstraps = []
for model in list(set(final.model.values)):
    model_df = final.loc[final.model==model]
    bootstrap = model_df.sample(n=30, replace=True)
    bootstraps.append(bootstrap)
bootstrap_df = pd.concat(bootstraps, ignore_index=True)
results_long = pd.melt(bootstrap_df,id_vars=['model'],var_name='metrics', value_name='values')
time_metrics = ['fit_time','score_time'] # fit time metrics
## PERFORMANCE METRICS
results_long_nofit = results_long.loc[~results_long['metrics'].isin(time_metrics)] # get df without fit data
results_long_nofit = results_long_nofit.sort_values(by='values')
## TIME METRICS
results_long_fit = results_long.loc[results_long['metrics'].isin(time_metrics)] # df with fit data
results_long_fit = results_long_fit.sort_values(by='values')
     LogReg
                   precision
                                recall f1-score
                        0.91
                                   1.00
                                             0.95
                                                       2871
        malignant
                        0.33
                                   0.00
                                             0.01
                                                        301
           benign
                                             0.90
                                                       3172
         accuracy
                        0.62
                                   0.50
        macro avg
                                             0.48
                                                       3172
                                             0.86
                                                       3172
     weighted avg
                        0.85
                                   0.90
     RF
                                 recall f1-score
                   precision
                                                    support
                        0.91
                                   1.00
                                             0.95
                                                       2871
        malignant
           benign
                        0.86
                                   0.06
                                             0.11
                                                        301
                                             0.91
                                                       3172
         accuracy
                        0.88
                                   0.53
                                             0.53
                                                       3172
        macro avg
     weighted avg
                        0.91
                                   0.91
                                             0.87
                                                       3172
                                 × 11 f1-score
                                                    support
 Saving..
        malignant
                        0.91
                                   9.99
                                             0.95
                                                       2871
           benign
                                   0.03
                                             0.05
                                                        301
                                             0.90
                                                       3172
         accuracy
        macro avg
                        0.56
                                   0.51
                                             0.50
                                                       3172
     weighted avg
                                                       3172
                        0.84
                                   0.90
                                             0.86
     SVM
                                 recall f1-score
                   precision
                                                    support
        malignant
                        0.91
                                   1.00
                                             0.95
                                                       2871
                                   0.00
                                             0.00
                                                        301
           benign
                        0.00
         accuracy
                                             0.91
                                                       3172
        macro avg
                        0.45
                                   0.50
                                             0.48
                                                       3172
     weighted avg
                        0.82
                                  0.91
                                             0.86
                                                       3172
     GNB
                   precision
                                 recall f1-score
                                                    support
                        0.94
                                   0.50
                                             0.65
                                                       2871
        malignant
                        0.13
                                   0.70
                                             0.21
                                                        301
           benign
         accuracy
                                             0.52
                                                       3172
                        0.53
                                   0.60
                                             0.43
                                                       3172
        macro avg
     weighted avg
                        0.86
                                   0.52
                                             0.61
                                                       3172
     XGB
                                 recall f1-score
                   precision
                                                    support
        malignant
                        0.92
                                   0.99
                                             0.95
                                                       2871
           benign
                                   0.12
                                             0.21
                                                        301
         accuracy
                                             0.91
                                                       3172
                        0.78
                                   0.56
                                             0.58
                                                       3172
        macro avg
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(20, 12))
sns.set(font_scale=2.5)
g = sns.boxplot(x="model", y="values", hue="metrics", data=results_long_nofit, palette="Set3")
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
plt.title('Comparison of Model by Classification Metric')
plt.savefig('./benchmark_models_performance.png',dpi=300)
```



```
Saving... X
```

и is clearly that GNBs in our data poorly across alomast all the metrics, and the XGBoost and Random Forest fit the data very well

```
plt.figure(figsize=(20, 12))
sns.set(font_scale=2.5)
g = sns.boxplot(x="model", y="values", hue="metrics", data=results_long_fit, palette="Set3")
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
plt.title('Comparison of Model by Fit and Score Time')
plt.savefig('./benchmark_models_time.png',dpi=300)
```


From the figure above we can see that the SVM is slow to train and score, for the Random Forest and XGBoost, the XGBoost has faster fit time

```
metrics = list(set(results_long_nofit.metrics.values))
bootstrap_df.groupby(['model'])[metrics].agg([np.std, np.mean])
```

	test_recall_weighted		test_precision_weighted		test_accuracy		test_f1_weighted	
	std	mean	std	mean	std	mean	std	mean
model								
GNB	0.034210	0.492161	0.017498	0.851936	0.034210	0.492161	0.036219	0.585762
KNN	0.005488	0.896126	0.011259	0.839678	0.005488	0.896126	0.009748	0.860121
LogReg	0.006366	0.901387	0.020117	0.829054	0.006366	0.901387	0.009245	0.855589
RF	0.005747	0.906204	0.003423	0.892445	0.005747	0.906204	0.008587	0.867215
SVM	0.006412	0.902569	0.011626	0.814896	0.006412	0.902569	0.009308	0.856484
XGB	0.006330	0.907486	0.006454	0.885163	0.006330	0.907486	0.010578	0.877279

```
time_metrics = list(set(results_long_fit.metrics.values))
bootstrap_df.groupby(['model'])[time_metrics].agg([np.std, np.mean])
```


Based on the analysis of six models, I will focus on the XGBoost as continue refining model, not only because it has the best performing but also it has relativily fast train and score time

▼ Model Finetuning

```
from sklearn.model_selection import RandomizedSearchCV
import xgboost as xgb

#Create the random grid
params={
    'min_child_weight':[i for i in np.arange(1,15,1)],
    'gamma':[i for i in np.arange(0,6,0.5)],
    'subsample':[i for i in np.arange(0,1.1,0.1)],
    'colsample_bytree':[i for i in np.arange(0,1.1,0.1)],
    'max_depth':[i for i in np.arange(1,15,1)],
    'scale_pos_weight':[i for i in np.arange(0,0.15,0.01)],
    'learning_rate':[i for i in np.arange(0,0.15,0.01)],
    'n_estimators':[i for i in np.arange(0,2000,100)],
}

#Create model
xg=xgb.XGBClassifier(objective='binary:logistic',nthread=1,eval_metric='mlogloss')
```

```
#Random search of parameters, using 5
xg_random=RandomizedSearchCV(xg,param_distributions=params,
                            n_iter=1,scoring='roc_auc',
                            n jobs=4,cv=5,verbose=3,random state=1001)
xg_random.fit(X_train,y_train)
     Fitting 5 folds for each of 1 candidates, totalling 5 fits
     [Parallel(n_jobs=4)]: Using backend LokyBackend with 4 concurrent workers.
     [Parallel(n jobs=4)]: Done
                                  2 out of
                                             5 | elapsed:
                                                            10.5s remaining:
     [Parallel(n_jobs=4)]: Done
                                  5 out of
                                             5 | elapsed:
                                                            13.6s finished
     RandomizedSearchCV(cv=5,
                        estimator=XGBClassifier(base_score=None, booster=None,
                                                 colsample_bylevel=None,
                                                 colsample_bynode=None,
                                                 colsample_bytree=None,
                                                 eval_metric='mlogloss', gamma=None,
                                                 gpu_id=None, importance_type='gain',
                                                 interaction_constraints=None,
                                                 learning_rate=None,
                                                 max_delta_step=None, max_depth=None,
                                                 min_child_weight=None, missing=nan,
                                                 monotone_constraints..
                                              'n_estimators': [0, 100, 200, 300, 400,
                                                               500, 600, 700, 800,
                                                               900, 1000, 1100, 1200,
                                                               1300, 1400, 1500, 1600,
                                                               1700, 1800, 1900],
                                              'scale_pos_weight': [0.0, 0.01, 0.02,
                                                                   0.03, 0.04, 0.05,
                                                                   0.06, 0.07, 0.08,
                                                                   0.09, 0.1, 0.11,
                                                                   0.12, 0.13, 0.14],
                                              'subsample': [0.0, 0.1, 0.2,
                                                            0.30000000000000004, 0.4,
                                                            0.5, 0.6000000000000001,
                                                            0.7000000000000001, 0.8,
                                                            0.9, 1.0]},
                        random_state=1001, scoring='roc_auc', verbose=3)
 Saving..
best random={'subsample':0.8,
'scale_pos_weight':1,
'n estimators':1100,
'max_depth':12,
'learning_rate':0.01,
'gamma':4.0,
'colsample_bytree':0.60}
#Create a model with the parameters found
model_random=xgb.XGBClassifier(objective='binary:logistic',
                               nthread=1,eval_metric='mlogloss',**best_random)
fprs,tprs,score=[],[],[]
from sklearn.model selection import StratifiedKFold
cv=StratifiedKFold(n_splits=5,random_state=13,shuffle=True)
from sklearn import metrics
def compute_roc_auc(model_,index):
    y_predict=model_.predict_proba(X.iloc[index])[:,1]
    fpr,tpr,threholds=metrics.roc_curve(y.iloc[index],y_predict)
    auc_score=metrics.auc(fpr,tpr)
    return fpr,tpr,auc_score
for (train,test), i in zip(cv.split(X,y),range(5)):
    {\tt model\_random.fit(X.iloc[train],y.iloc[train])}
    _,_,auc_score_train=compute_roc_auc(model_random,train)
    fpr,tpr,auc_score=compute_roc_auc(model_random,test)
    score.append((auc_score_train,auc_score))
    fprs.append(fpr)
    tprs.append(tpr)
def plot_roc_curve(fprs,tprs):
    tprs_interp=[]
    aucs=[]
    mean_fpr=np.linspace(0,1,100)
    f,ax=plt.subplots(figsize=(18,10))
    for i,(fpr,tpr) in enumerate(zip(fprs,tprs)):
        tprs_interp.append(np.interp(mean_fpr,fpr,tpr))
        tprs_interp[-1][0]=0.0
```

```
roc_auc=metrics.auc(fpr,tpr)
        aucs.append(roc_auc)
        ax.plot(fpr,tpr,lw=2,alpha=0.3,
                label="ROC fold %d (AUC = %0.2f)" % (i, roc auc))
    plt.plot([0,1],[0,1],linestyle='--',lw=3,color='r',label="Rondom",alpha=.8)
    mean_tpr=np.mean(tprs_interp,axis=0)
    mean_tpr[-1]=1.0
    mean_auc=metrics.auc(mean_fpr,mean_tpr)
    std_auc=np.std(aucs)
    ax.plot(mean_fpr,mean_tpr,color='b',
            label=r"Mean ROC (AUC= %0.2f $\pm$ %0.2f)" % (mean_auc,std_auc),
           lw=4,alpha=.8)
    std_tpr=np.std(tprs_interp,axis=0)
    tprs_upper=np.minimum(mean_tpr+std_tpr,1)
    tprs_lower=np.maximum(mean_tpr-std_tpr,0)
    {\tt ax.fill\_between(mean\_fpr,tprs\_lower,tprs\_upper,color='grey',}\\
                   label=r'$\pm$ 1 std. dev.',alpha=.2)
    ax.set_xlim([-0.05,1.05])
    ax.set_ylim([-0.05,1.05])
    ax.set_xlabel('False Positive Rate(FPR)')
    ax.set_ylabel('True Positive Rate(TPR)')
    ax.set_title('ROC-AUC')
    ax.legend(loc='lower right')
    plt.show()
    return (f, ax)
plot_roc_curve(fprs,tprs)
plt.show()
```


▼ Grid search with cross validation

```
from sklearn.model_selection import GridSearchCV

param_grid={'subsample':[0.7],
   'scale_pos_weight':[1],
   'n_estimators':[1100],
   'min_child_weight':[1],
   'max_depth':[12,13,14],
   'learning_rate':[0.005,0.01],
   'gamma':[4.0],
   'colsample_bytree':[0.6]}
```

```
xg=xgb.XGBClassifier(objective='binary:logistic',eval_metric='mlogloss')
\verb|grid_search=GridSearchCV| (estimator=xg, \verb|param_grid=param_grid|,
                              cv=5,n_jobs= -1,verbose=2,scoring='roc_auc')
grid_search.fit(X_train,y_train)
     Fitting 5 folds for each of 6 candidates, totalling 30 fits
     [Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
     [Parallel(n_jobs=-1)]: Done 30 out of 30 | elapsed: 19.0min finished
     GridSearchCV(cv=5,
                   estimator=XGBClassifier(base_score=None, booster=None,
                                            colsample bylevel=None,
                                            colsample_bynode=None,
                                            colsample_bytree=None,
eval_metric='mlogloss', gamma=None,
gpu_id=None, importance_type='gain',
                                            interaction_constraints=None,
                                            learning_rate=None, max_delta_step=None,
                                            max_depth=None, min_child_weight=None,
                                            missing=nan, monotone_constraints=None,
                                            reg_alpha=None, reg_lambda=None,
                                            scale_pos_weight=None, subsample=None,
                                            tree_method=None, validate_parameters=None,
                                            verbosity=None),
                   n jobs=-1,
                   param_grid={'colsample_bytree': [0.6], 'gamma': [4.0],
                                'learning_rate': [0.005, 0.01],
                                'max_depth': [12, 13, 14], 'min_child_weight': [1],
                                'n_estimators': [1100], 'scale_pos_weight': [1],
                                'subsample': [0.7]},
                   scoring='roc_auc', verbose=2)
best_grid=grid_search.best_params_
best grid
     {'colsample_bytree': 0.6,
       'σamma'· 1 Ω
 Saving..
       min chila weight : 1,
       'n estimators': 1100,
       'scale_pos_weight': 1,
       'subsample': 0.7}
model grid=xgb.XGBClassifier(objective='binary:logistic',
                              nthread=1,eval_metric='mlogloss',**best_grid)
fprs,tprs,score=[],[],[]
for (train,test), i in zip(cv.split(X,y),range(5)):
    model_grid.fit(X.iloc[train],y.iloc[train])
    _,_,auc_score_train=compute_roc_auc(model_grid,train)
    fpr,tpr,auc_score=compute_roc_auc(model_grid,test)
    score.append((auc_score_train,auc_score))
    fprs.append(fpr)
    tprs.append(tpr)
plot_roc_curve(fprs,tprs)
plt.show()
```


▼ Understanding the model

Saving... X

xgb.plot_importance(model_grid,ax=ax);

▼ Partial dependence plot

→ SHAP Feature importance

shap.summary_plot(shap_values,X_test,plot_type='bar')

#Partial dependence plot
shap.dependence_plot('contract_duration',shap_values,X_test)

▼ SHAP Single prediction

```
shap.initjs()
shap.force_plot(explainer.expected_value,shap_values[3171], X_test.iloc[3171,:],link='logit')
```


Saving... X