

Fig. 1.

Best Available Copy

246

Fig. 2(i)

Fig. 2(ii)

3/46

Fig. 3.

fd - tet

cleave with BstEII

fill in with Klenow

re-ligate

FDT&Bst

in vitro mutagenesis (oligo 1)

FDTPs/Bs

in vitro mutagenesis (oligo 2)

FDTPs/Xh

Oligo 1	(1653)	ACA ACT TTC AAC AGT TGA GGA GAC GGT GAC CCG CTT CTG CAG TTG GAC CTC AGC GGA GTG AGA ATA (1620)
Oligo 2	(1653)	ACA ACT TTC AAC AGT TTC CCG TTT GAT CTC GAG CTC CTG CAG TTG GAC CTC
Oligo 3	(170 ₄)	GTC GTC TTT CCA GAC GTT AGT

Fig. 4. 1

GENE III
 SIGNAL CLEAVAGE SITE
 (1624)
 A TCT CAC TCC GCT

GENE III
 (1650)
 GAA ACT GTT GAA AGT

Q V Q L Q V T V S S
 B TCT CAC TCC GCT CAG GTC CAA CTG CAG AAG CTT ACG GTC ACC GTC TCC TCA ACT GTT GAA AGT
 PstI BstEII

Q V Q L Q L E I K R
 C TCT CAC TCC GCT CAG GTC CAA CTG CAG GAG CTC GAG ATC AAA CGG
 PstI XbaI

Fig. 4.2

546

Fig. 5.

rbs M K Y L L P T A A

GCATGCAAATTCTATTTCAGGAGACAGTCATAATGAAATACCTATTGCCACGGCAGCC

10 20 30 40 50 60

SphI

PelB leader

A G L L L L A A O P A M A Q V Q L Q E S

GCTGGATTGTATTACTCGCTGCCAACAGCGATGGCCAGGTGCAGCTGCAGGAGTCA

70 80 90 100 110 120

PstI

G P G L V A P S Q S L S I T C T V S G F

GGACCTGGCTGGTGGCGCCCTCACAGAGCCTGTCCATCACATGCACCGTCTCAGGGTTC

130 140 150 160 170 180

S L T G Y G V N W V R Q P P G K G L E W

TCAATTAACCGGCTATGGTGTAAACTGGGTTCGCCAGCCTCCAGGAAAGGGCTGGAGTGG

190 200 210 220 230 240

VHD1.3

L G M I W G D G N T D Y N S A L K S R L

CTGGGAATGATTGGGTGATGGAAACACAGACTATAATTAGCTCTCAAATCCAGACTG

250 260 270 280 290 300

S I S K D N S . K S Q V F L K M N S L H T

AGCATCAGCAAGGACAACCTCCAAGAGCCAAGTTTCTAAAAATGAACAGCTGCACACT

310 320 330 340 350 360

D D T A R Y Y C A R E R D Y R L D Y W G

GATGACACAGCCAGGTACTACTGTGCCAGAGAGAGAGATTATAGGCTTGACTACTGGGGC

370 380 390 400 410 420

Linker Peptide

Q G T T V T V S S G G G G S G G G S G

CAAGGCACCACGGTCACCGTCTCCTCAggtgaggcggttcaggcggagggtggctctggc

430 440 450 460 470 480

BstEII

G G G S D I E L T Q S P A S L S A S V G

ggtggcggtatcgGACATCGAGCTCACTCAGTCTCCAGCCTCCCTTCTGCGTCTGTGGGA

490 500 510 520 530 540

SacI

E₄₅

Fig. 5 cont.

E T V T I T C R A S G N I H N Y L A W Y
 GAAACTGTCACCATCACATGTCGAGCAAGTGGGAATATTACAAATTATTTAGCATGGTAT
 550 560 570 580 590 600

Q Q K Q G K S P Q L L V Y Y T T T L A D
 CAGCAGAACAGGGAAAATCTCCTCAGCTCCTGGTCTATTATAACAACAACTTAGCAGAT
 610 620 630 640 650 660

VKD1.3
 G V P S R F S G S G S G T Q Y S L R I N
 GGTGTGCCATCAAGGTTCAAGTGGCAGTGGATCAGGAACACAATATTCTCTCAAGATCAAC
 670 680 690 700 710 720

S L Q P E D F G S Y Y C Q H F W S T P R
 AGCCTGCAACCTGAAGATTGGGACTTATTACITGTCAACATTTGGAGTACTCCTGG
 730 740 750 760 770 780

Myc Tag (TAG1)
 T F G G G T K L E I K R E Q K L I S E E
 ACGTTGGTGGAGGGACCAAGCTCGATCAAACGGGAACAAAAACTCATCTCAGAAGAG
 790 800 810 820 830 840
 XbaI

D L N * *
GATCTGAATTATAATGATCAAACGTAATAAGGATCCAGCTCGAATT
 850 860 870 880
 EcoRI

Fig. 6.

Fig. 7.

526

Fig. 8.

Fig. 9.

^{9/26}
Fig. 10.

M	K	Y	L	L	F	T	A	A											
<u>GCATGCTATTCTATTTCTAGGGTACACTCATATTGAAATACCTATTGCTTAAGGGCT-GCC</u>																			
10	20	30	40	50	60														
A	G	L	L	L	A	A	Q	P	A	M	A	Q	V	Q	L	Q	E	S	
<u>GCTGGATTGTATTACTCGCTGCCAACCAAGGGATGGCCAGGGTCAGCTGC-GGAGTC</u>																			
70	80	90	100	110	120														
G	P	G	L	V	A	P	.S	Q	S	L	S	I	T	C	T	V	S	G	F
<u>GGACCTGGCTGGTGGGGGCGCTCACAGAGCCTGTCATCACATGCAACGGTCTCAAGGGTC</u>																			
130	140	150	160	170	180														
S	L	T	G	Y	G	V	N	W	V	R	Q	P	P	G	K	G	L	E	W
<u>TCTATTAACGGCTATGGTGTAACCTGGGTCCGCAGCCCTCCAGAAAGGGCTGGGTGG</u>																			
190	200	210	220	230	240														
L	G	M	I	W	G	D	G	N	T	D	Y	N	S	A	L	K	S	R	L
<u>CTGGGAATGATTGGGGTGATGAAACACAGACTATAATTAGCTCTCAAATCCAGACTG</u>																			
250	260	270	280	290	300														
S	I	S	K	D	N	S	K	S	Q	V	F	L	K	M	N	S	L	H	T
<u>AGCATCAGCAAGGACAACCTCCAAGAGCCAGTTCTAAAAATGAACAGTCTGCACACT</u>																			
310	320	330	340	350	360														
D	D	T	A	R	Y	Y	C	A	R	E	R	D	Y	R	L	D	Y	W	G
<u>GATGACACAGGCCAGGTACTACTGTGOCAGAGAGAGAGATTATAGGCTTGACTACTGGGC</u>																			
370	380	390	400	410	420														
Q	G	T	T	V	T	V	S	S	A	S	T	K	G	P	S	V	F	P	L
<u>CAAGCCACCACGGTCACCGTCTCTCAAGCTCCACCAAGGGGCCATCGGTCTCCCGCTG</u>																			
430	440	450	460	470	480														
A	P	S	S	K	S	T	S	G	G	T	A	A	L	G	C	L	V	K	D
<u>GCACCCCTCTCAAGAGCAACCTCTGGGGCACAGGGGCCATGGCTGCTGGTCAAGGAC</u>																			
490	500	510	520	530	540														

١٥

Fig. 10 cont. (1)

Y F P E P V T V S W N S G A L T S G V H
 TACTTCCCCCAACCCGTCACCGTGCTGGGATCTCAGGCGCCCTGAACAGCGGCGTGCGAC
 550 560 570 580 590 600

T P P A V L Q S S G L Y S L S S V V T V
ACCTTGGCTGTCATGCTCTGACTCTCAGCGTGTCACGTG
610 620 630 640 650 660

P S S S L G T Q T Y I C N V N H K P S N
 CCCTCCAGCAGCTGGCACCCGACCTACATCTGCAACGTGAATCACAAGCCAGAAC
 670 680 690 700 710 720

T K V D K K V E P K S S * *
 ACCAAGGTCCACAACTTAAGTGGGGPAATTCATAATAACCCGGGAGCTTGCATGCA
 730 740 750 760 770 780.

M K Y L L P T A A A G . L
AATTCTATTCAAGGACACAGTCATATGAAATACTATTGCTAACGGCAGCGCTGGAT
790 800 810 820 830 840

L L L A A Q P A M A D I E L T Q S P A S
TGTATTACTAGCTGCCAACCAACGAGCGTTGGCGGACATCGAGCTcAccCAGTCTCCAGCCT
850 860 870 880 890 900

L S A S V G E T V T I T . C R A S G N I H
 CACCTTCTGGCTCTGIGGGAGA^AACTGTACCCATCACATGTCCAGCAAGTGGAATATT
 910 920 930 940 950 960

N Y L A W Y Q Q K Q G K S P Q L L V Y Y
 ACAATTATTTAGCATGGTATCAGCAGAAACAGGGAAATCTCCTCAGCTCTGGTCATT
 970 980 990 1000 1010 1020

Fig. 10 cont. (2)

1146

T	T	T	L	A	D	G	V	P	S	R	F	S	G	S	G	S	G	T	Q	
ATACAACAACCTTACGAGATGGTGTGCCTATGAGTTCACTGGCGCTGGCTTCGAAAC																				
1030	1040	1050	1060	1070	1080															

Y	S	L	K	I	N	S	L	Q	P	E	D	F	G	S	Y	Y	C	Q	H
AATATTCTCTCAAGATCAACAGCCTGCAGCCTGAAGATTGGGAGTTATTACTGTCAAC																			
1090	1100	1110	1120	1130	1140														

F	W	S	T	P	R	T	F	G	G	G	T	K	L	E	I	K	R	T	V
ATTTTGAGACTACTCTCGAACGTTGGTGGAGCCACCAAGCTCGAGATCAAACGGACTG																			
1150	1160	1170	1180	1190	1200														

A	A	P	S	V	F	I	F	P	P	S	D	E	Q	L	K	S	G	T	A
TGGCTGCACCACATCTGCTTCACTCTCCCGCCATCTGATGAGCTTGAAATCTGGAACTG																			
1210	1220	1230	1240	1250	1260														

S	V	V	C	L	L	N	N	F	Y	P	R	E	A	K	V	Q	W	K	V
CCTCTGTTGTTGCTGCTGCTGATAACTCTATCCAGAGAGGCAAAAGTACAGTGGAAAGG																			
1270	1280	1290	1300	1310	1320														

D	N	A	L	Q	S	G	N	S	Q	E	S	V	T	E	Q	D	S	K	D
TGGATAACGCCCTCCAATGGGTAACCTCCAGGAGAGTGTACAGAGGACAGGAAGG																			
1330	1340	1350	1360	1370	1380														

S	T	Y	S	L	S	S	T	L	T	L	S	K	A	D	Y	E	K	H	K
ACAGCACCTACAGCCTAGCAGCAACCTGAGCTGAGCTGAGCTGACAGAGGACAGGAAGG																			
1390	1400	1410	1420	1430	1440														

V	Y	A	C	E	V	T	H	Q	G	L	S	S	P	V	T	K	S	F	N
AAAGTCTAAGGCTGCGAAGTCACCCATCAGGGCTGAGCTGGCGGTACAAAGACCTCA																			
1450	1460	1470	1480	1490	1500														

R	G	E	S	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
ACCGCGGAGAGTCATAGTAAGATTTC																			
1510	1520																		

12
25

Fig. 10 cont. (3)

FabD1.3 in pUC19

Fig. 11.

15/46

Fig. 12.

三

Fig. 13.

15
46

Fig. 14.

Fig. 15.

5' END

TCT CAC AGT GCA CAA ACT GTT GAA CGG ACA CCA GAA ATG CCT GTT CTG
 ApaL1

3' END

K A A L G L K
 AAA GCC GCT CTG GGG CTG AAA GCG GCC GCA GAA ACT GTT GAA AGT etc.
 Not I

Fig. 16(1)

Fig. 16(2)

A (1834) 5' GAG GGT GGT GGC TCT
 " " " C " "
 " " " C " "
 " " " C " ACT 3' (1839)

B (2284) 5' - GGC GGC GGC TCT
 - GGT GGT GGT "
 - " GGC GGC "
 GAG " " GGC "
 " " " GGT "
 " " " GGC "
 " " " GGT "
 - " " GGC " 3' (2379)

Reverse complement of mutagenic
 oligo G3Bamlink

5' GAG GGT GGC GGA TCC
 T
 GAG GGT GGC GG 3'

1) PRIMARY PCR

2) ASSEMBLY PCR

3) ADDING RESTRICTION SITES

VHBKAPA10

15
46

Fig. 18.

19/46

Fig. 19.

Fig. 20.

20
45

Fig. 21.

Fig. 22.

SUBSTITUTE SHEET

2/45

Fig. 23.

D

M

M

Digitized by Google

Fig. 24 cont.

25
26

Fig. 25.

HEAVY CHAIN

	A	B	C	D	E	F	G	H
a	(2)		(1)					
b		(1)		(1)	(1)			
c		(1)					(1)	
d			(7)	(1)			(1)	
e	(2)				(2)			
f				(1)				
g								(1)

OD_{405nm} in ELISA

0.2-0.9

0.9-2.0

>2.0

.25
.45

Fig. 26(a)

Fig. 26(b)

26
46

Fig. 27

27
146

Fig. 28.

25
46

Fig. 29.

53
46

Fig. 32.

Fig. 33.

5/
46

Fig. 34.

$\frac{52}{46}$

Fig. 35.

Fig. 36.

Fig. 37.

SUBSTITUTE SHEET

5-
26

Fig. 38.

Fig. 39.

Fig. 40.

35
46

Fig. 41.

09162000 20094755

Fig. 42.

5745

Fig. 43.

Fig. 44 (i)

Fig. 44 (iii)

33
fig 44

640	650	660	670	680	690	700	710	720
GGGACAGGCTGCCCTCACGGCCACAGAACCTGAGGTAGGGCATTATATTTCTGTCCTATGGT								
CCTCTGTTCCGACGGAGCGGTAGTGTCCCGTGTCTGACTCTACTCCCTGACTCTGTCCTG								
GlyAspLysAlaLeuThrIleThrGlyAlaGlnThrGluAspGluAlaIleTyrPheCysAlaLeuTrpTyrSerAlaIleTrpVal								
730	740	750	760	770				
TTCGGGGCAAGAACTGACTGTCCTCGAGAGTCAAAAGGGGGCGC								
ANGCCACCTCCCTTGACTGAGAGGCTCTAGTGTGCCCCGGCG								
PheIleValGlyIleThrLysLeuThrValLeuGluIleLysArgAlaAla								

45
26

Fig. 45.

Fig. 46.

Fig. 47.

Fig. 48.

C. Sequence of linker region

3' Human CH1 and hinge

K P S N T K V D K K V E P K S S T K T H T
A A C C C C A G C A A C A C U A A G G T C G A A G G A A G T T G A G G C C A A A C T T C A A C I P A G C G C A C A C A

myc peptide tag

S G G E Q K L I S E E D L N * *

T C A G G A G G T G A A C A G A A G G T C A T C T C A G A A G A G G A T C T G A A T T A A T A A G G G A G C T T G C A T G C A

pelB leader

M K Y L L P T A A A G L

A A T I C T A T T C A A G G A G A C A G T C A T A A T G A A A T A C C I A T T G C C T A C G G C A G C C G C T G G A T T G T

5' V_k

L L P A A Q P A M A D I E L T Q S P

T A T T A C C T G C T G C C A A C C A G C A G G A T G G C C G A C A T G A G G T T C A C C C A G T C T C C

45
46

Fig. 49.

44
Fig. 50.

SUBSTITUTE SHEET

45/46

Fig. 51.

Fig. 53.

Fig. 52.

CDR 1

D1.3 DIQMTQSPASLSASVGETVTITCRA¹⁴⁶
M1F DIELTQSPSSLSASLGERVSLLTCRA¹⁴⁶
M21 DIELTQSPAI.MAASPGEKVTITCSVSSSISSNLIWYQQKSETSPKWIYGTSNL¹⁴⁶

CDR 2

D1.3 GVPQRSTGGSGCTQYSLKINSIQLQPEDFGSYYCQHFWSTPRTFGGGTKLEIKR
M1F GVPKRFSGSRSGSDYSLTISSLESEDFDYCLQYASSPWTFGGGT¹⁴⁶TKLEIKR
M21 GVPVRFSGSGSGTYSLTISSMEAEDAA¹⁴⁶ATYYCQQMSSSYPLTFCGAGTKLEIKR

CDR 3

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.