For this assignment you will use simulation to study the performance of OLS and IVLS coefficient estimators, as well as two different estimators of the error variance. Consider the model

$$Y_i = X_i \beta + \epsilon_i,$$

$$X_i = U_i + 2V_i + \delta_i.$$
(1)

Due: 5pm Mon 19 Feb 2024

Everything in sight is scalar. The vectors

$$(U_i, V_i, \epsilon_i, \delta_i), i = 1, \ldots, n,$$

are iid across i. Each vector is normal with mean zero. For each i we take the three random objects (1) U_i , (2) V_i , and (3) (ϵ_i, δ_i) to be mutually independent; furthermore,

$$Var(U_i) = Var(V_i) = 1,$$

 $Var(\epsilon_i) = Var(\delta_i) = \sigma^2,$ and $Cov(\epsilon_i, \delta_i) = \rho.$

In (1), the variable X_i is endogenous (explain why), and (U_i, V_i) are instruments (explain why).

Suppose $\beta = 3$, $\sigma^2 = 1$, and $\rho = 3/4$. For each of 1,000 simulation runs, generate n = 100 independent realizations of the vector $(U_i, V_i, \epsilon_i, \delta_i, X_i, Y_i)$ according to (1) and (2). Use OLS to obtain the estimate $\hat{\beta}_{OLS}$, and IVLS to obtain $\hat{\beta}_{IVLS}$. Plot the histogram for each estimator; report the mean, SD, and RMSE in each case. What are the relative merits of OLS versus IVLS? For each simulation, estimate the error variance σ^2 in two ways: first using the residuals obtained from plugging $\hat{\beta}_{IVLS}$ into (1), then using the residuals from the transformed equation

$$(Z'Z)^{-1/2}Z'Y = (Z'Z)^{-1/2}Z'X\beta + \eta.$$

Here Z is the $n \times 2$ matrix of instruments, X is the $n \times 1$ design matrix, and Y is the $n \times 1$ vector of responses. What is the appropriate denominator in each case? Plot the histograms for the two estimators and report sample means and SDs. Comment briefly.