CS 302.1 - Automata Theory

Lecture 13

Shantanav Chakraborty

Center for Quantum Science and Technology (CQST)
Center for Security, Theory and Algorithms (CSTAR)
IIIT Hyderabad

 $HALT_{TM} = \{\langle M, w \rangle | M \text{ halts on input } w\}$. Is $HALT_{TM}$ decidable?

The Halting Problem: Does there exist a Total Turing Machine H that accepts as input a Turing Machine M and an input string w and outputs YES, if M(w) halts (accepts or rejects) and NO, if M(w) does not halt (loops forever), i.e.

$$H(\langle M,w \rangle) = \left\{ egin{array}{ll} {\sf ACCEPTS, if } M(w) \; {\sf HALTS, i.e. accepts or rejects} \\ {\sf REJECTS, if } M(w) \; {\sf does not HALT, i.e. loops infinitely} \end{array} \right.$$

NO! $A_{TM} \leq HALT_{TM}$

```
A = \text{On input } \langle M, w \rangle
      Run H(\langle M, w \rangle)
                                                                                                                                    Accept
                                                                                                                                                   ACCEPT
                                                                                                               Accept Run M
      If H rejects, output REJECT
                                                                               \langle M, w \rangle
                                                                  \langle M, w \rangle
                                                                                             H: Decider
                                                                                                              \langle M, w \rangle
      If H accepts,
                                                                                            for HALT_{TM}
            Run M(w)
                                                                                                                                                  REJECT
                                                                                                                          Reject
            If M(w) accepts, output ACCEPT
            If M(w) rejects, output REJECT
```

Generally,

- A language A reduces to another language B $(A \leq B)$ iff we can build a solver for A using a solver for B
- In terms of computability, suppose using B we can compute A. Then, if A is undecidable then so is B.
- We showed: $A_{TM} \leq HALT_{TM}$ to prove that $HALT_{TM}$ is undecidable.

Suppose, $A \leq B$

- If A is undecidable then B is undecidable.
- If B is decidable then A is decidable.

 $E_{TM} = \{\langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$. Is E_{TM} decidable?

NO! $\overline{A}_{TM} \leq E_{TM}$

Proof: Let T_E be the Turing Machine that decides E_{TM} . We shall prove that $\overline{A_{TM}} \leq E_{TM}$ by constructing a Turing Machine N for $\overline{A_{TM}}$ using T_E .

 $E_{TM} = \{\langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$

Proof: Let T_E be the Turing Machine that decides E_{TM} . We shall prove that $\overline{A_{TM}} \leq E_{TM}$ by constructing a Turing Machine N that decides $\overline{A_{TM}}$ using T_E .

$$N(\langle M, w \rangle) =$$

- Construct $\langle T_{\langle M, W \rangle} \rangle$, the encoding of $T_{\langle M, W \rangle}$ such that for any input x it works as follows:
 - Ignore x.
 - Run *M* on *w*
 - If *M* accepts *w*, accept *x*
 - If *M* rejects *w*, reject *x*
- Send $\langle T_{\langle M, w \rangle} \rangle$ to T_E and Output ACCEPT if T_E accepts REJECT if T_E rejects

- $\overline{A_{TM}} \leq E_{TM}$
- $\overline{A_{TM}}$ is undecidable
- E_{TM} is undecidable!

 $E_{TM} = \{\langle M \rangle | M \text{ is a Turing Machine and } L(M) = \Phi \}$

- $N(\langle M, w \rangle) =$
 - Construct $\langle T_{\langle M, w \rangle} \rangle$, the encoding of $T_{\langle M, w \rangle}$ such that for any input x it works as follows:
 - Ignore x.
 - Run M on w
 - If *M* accepts *w*, accept *x*
 - If *M* rejects *w*, reject *x*
 - Send $\langle T_{\langle M,w \rangle} \rangle$ to T_E and Output ACCEPT if T_E accepts REJECT if T_E rejects

Everything in one slide

Are Recursive languages closed under Union? If R_1 and R_2 are recursive, is $R_1 \cup R_2$ recursive?

Proof:

- Let M_1 and M_2 be the Total Turing Machines corresponding to R_1 and R_2 respectively.
- Using M, we construct a Total Turing Machine M' such that M' decides $R_1 \cup R_2$.

```
M' = \text{On input } w
\text{Run } M_1(w)
\text{Run } M_2(w)
If either of them accept, ACCEPT
If both rejects, REJECT
```

Recursive languages are **CLOSED under Union.**

Are Recursive languages closed under intersection? If R_1 and R_2 are recursive, is $R_1 \cap R_2$ recursive?

Proof:

- Let M_1 and M_2 be the Total Turing Machines corresponding to R_1 and R_2 respectively.
- Using M, we construct a Total Turing Machine M' such that M' decides $R_1 \cap R_2$.

```
M' = \text{On input } w
\text{Run } M_1(w)
\text{Run } M_2(w)
If both of them accept, ACCEPT
If either rejects, REJECT
```

Recursive languages are **CLOSED under Intersection**.

Are Recursive languages closed under complementation? If some language R is recursive, is \overline{R} also recursive?

Proof:

- If R is recursive then there exists a total TM M for R.
- Using M, we construct a Total Turing Machine \overline{M} such that \overline{M} decides \overline{R} .

$$\overline{M} = ext{On input } w$$
 $ext{Run } M(w).$
 $ext{If } M ext{ accepts, } REJECT$
 $ext{If } M ext{ rejects, } ACCEPT$

Recursive languages are **CLOSED under complementation**

L and \overline{L} are both Recursively Enumerable if and only if L is Recursive.

Proof: In one direction, the proof is trivial. That is, if L is Recursive then so is \overline{L} . As Recursive Languages $R \subseteq RE$, we have that both L and \overline{L} are in RE.

For the other direction: Let M_1 be the TM for L and M_2 be the TM for \overline{L} . Then, if $w \in L$, $M_1(w)$ accepts and if $w \notin L$, $M_2(w)$ accepts.

How do we build a Total Turing Machine for L? There is one problem: We can't run M_1 and M_2 one after the other as if some input M_1 gets stuck in an infinite loop and M_2 never gets control.

Idea: We use a time sharing technique – also known as **Dovetailing** to build a Total TM M' for L.

$$M'=$$
For $i=1,2,\cdots$
Run $M_1(w)$ for i steps.
Run $M_2(w)$ for i steps.
If M_1 accepts, M' outputs $ACCEPT$.
If M_2 accepts, M' outputs $REJECT$.

L is Recursive

Using Dovetailing it is easy to prove that:

- RE languages are closed under union and intersection
 - On input w, run $M_1(w)$ and $M_2(w)$ in parallel using dovetailing
 - For union: If either $M_1(w)$ or $M_2(w)$ accepts, ACCEPT
 - For intersection: If both $M_1(w)$ and $M_2(w)$ accept, ACCEPT

Set of all recursively enumerable Languages

Using Dovetailing it is easy to prove that:

- RE languages are closed under union and intersection
 - On input w, run $M_1(w)$ and $M_2(w)$ in parallel using dovetailing
 - For union: If either $M_1(w)$ or $M_2(w)$ accepts, ACCEPT
 - For intersection: If both $M_1(w)$ and $M_2(w)$ accept, ACCEPT

RE languages are **NOT closed** under complementation. Why?

- Well, we just proved that L and \overline{L} are both Recursively Enumerable, **iff** L is Recursive.
- But we know that there exists problems that are in RE but are not Recursive (e.g. A_{TM} , $HALT_{TM}$,...).
- So the complement of such problems are not in RE (e.g.: $\overline{A_{TM}}$, \overline{HALT}_{TM} , ...).

RE languages are **NOT closed** under complementation. Why?

- Well, we just proved that L and \overline{L} are both Recursively Enumerable, iff L is Recursive.
- But we know that there exists problems that are in RE but not Recursive (e.g.: A_{TM} , $HALT_{TM}$,...).
- So the complement of such problems are not in RE (e.g.: \overline{HALT}_{TM} , ...).

Suppose $L \in RE$ and M be the TM which recognizes L, i.e. $\mathcal{L}(M) = L$.

What if we try to build a TM \overline{M} that outputs the opposite of M?

RE languages are **NOT closed** under complementation. Why?

```
\overline{M} = \text{On input } w
\text{Run } M(w).
\text{If } M(w) \text{ accepts, output REJECT}
\text{If } M(w) \text{ rejects, output } ACCEPT
\text{If } M(w) \text{ loops, .....}
```


Co-Recursively Enumerable Language/co-Turing Recognizable (Co-RE/ \overline{RE} /nRE): A language C is Co-Recursively Enumerable (co-RE/ \overline{RE} /nRE) or Co-Turing Recognizable if

 $\forall \omega \in C, M(\omega)$ doesn't reject (accepts or loops forever) $\forall \omega \notin C, M(\omega)$ rejects

If $L \in RE$, $\bar{L} \in co\text{-}RE$ and vice versa

co-RE

Co-Recursively Enumerable Language (Co-RE/ \overline{RE} /nRE): $C \in \text{Co-RE}$ if

 $\forall \omega \in C, M(\omega)$ doesn't reject $\forall \omega \notin C, M(\omega)$ rejects

- RE: Halts and accepts if $w \in L$. May loop when $w \notin L$.
- co-RE: May loop when $w \in L$. Halts and rejects if $w \notin L$.

Note: Every Recursive Language R, is both in RE and co-RE, i.e. $R \subseteq RE \cap co$ -RE

Is $R = RE \cap co - RE$?

We have to prove the following: If $L \in RE$ and $L \in co$ -RE, then L is Recursive

Proof: Let M be a TM such that L(M) = L. As $L \in co\text{-}RE$, there also exists a \overline{M} (that outputs the opposite of M) that halts and outputs reject whenever $w \notin L$. We shall construct a Total Turing Machine D by using M and \overline{M} .

 $D= ext{On input } w$ $\operatorname{Run} M(w) ext{ and } \overline{M}(w) ext{ in parallel}$ $\operatorname{If} M(w) ext{ accepts, output } ACCEPT$ $\operatorname{If} \overline{M}(w) ext{ rejects, output } REJECT$

So $R = RE \cap co-RE$

Completely undecidable languages: Languages L for which there exists at least one instance $w \in L$, for which the TM enters into an infinite loop.

So, languages that are in co-RE but are not recursive are completely undecidable.

Completely undecidable languages: Languages L for which there exists at least one instance $w \in L$, for which the TM enters into an infinite loop.

If $L \in RE$ but is not Recursive (partially decidable), then $\overline{L} \in co\text{-}RE$ but is not recursive. So Complement of any partially decidable language is completely undecidable

• E.g.: $A_{TM} \in RE$ and so $\overline{A_{TM}} \in co\text{-}RE$ and is **completely undecidable**

$$A_{TM} = \{\langle M, w \rangle | M \text{ accepts input } w\}$$

$$\overline{A_{TM}} = \{\langle M, w \rangle | M \text{ doesn't accept input } w\}$$

• Similarly, $\overline{HALT_{TM}}$ is also completely undecidable

$$\overline{HALT_{TM}} = \{\langle M, w \rangle | M \text{ doesn't halt on input } w\}$$

Completely undecidable languages: Languages L for which there exists at least one instance $w \in L$, for which the TM enters into an infinite loop.

Summing up

We have the following:

- Recursive Languages are closed under complement, union & intersection
- *RE* is closed under union & intersection but not complement
- $L \in RE$ and $\overline{L} \in RE$, iff L is Recursive.
- If $L \in RE$ then $\overline{L} \in co\text{-}RE$.
- If $L \in co$ -RE then $\overline{L} \in RE$.
- $R = RE \cap co-RE$
- If $L \in RE$ but is not Recursive, then L is partially decidable
- If $L \in co\text{-}RE$ but is not Recursive, then L is completely undecidable.

Note that there are languages outside of $RE \cup co\text{-}RE$.

E.g.: $REGULAR_{TM} = \{\langle M \rangle | L(M) \text{ is regular}\}$

Everything in one slide

The Road ahead to Complexity Theory...

- We finished up by looking at problems that are decidable/undecidable.
- There are many things that I couldn't cover:
 - Several cool problems that can be proven to be decidable/undecidable and classified to be in R, RE, co-RE etc
 - Mapping reduction, Recursion Theorem, Rice's Theorem
- Problems that are not computable are highly likely to never be solved on feasible computational devices.
- In how much time/space can computable problems be solved in? Complexity Theory: classify problems according to their hardness.
- Million dollar problems waiting to be solved!
- E.g.: Quantum computers model how nature computes at the fundamental level: provably faster than classical machines on several problems and most likely violates the Extended Church Turing Thesis.

Thank You!