k-Nearest Neighbors

- Sonal Ghanshani

K-Nearest Neighbours (kNN)

- K-nearest neighbours is an algorithm that classifies data points by a majority vote of its k neighbours.
- It is used to assign a data point to clusters based on similarity measurement.
- A new input point is classified in the category such that it has the most number of neighbours from that category.

K-Nearest Neighbours Algorithm

- Calculate the distance of the unknown data points with other training data points i.e. choose the number of k and a distance metric.
- Identify k-nearest neighbours.
- Use category of nearest neighbours to find the category of the new data points based on majority vote.

Computing Distance and Determining Class

• For the Nearest Neighbour Classifiers, the distance between two points is expressed in the form of Euclidean distance, which is calculated by:

(d) =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

- You can determine the class from the nearest neighbour list by:
- Taking the majority number of votes of class labels among the knearest neighbours

Nearest Neighbour

K-nearest neighbors of a record x are data points that have the k smallest distance to x

Computing Distance and Determining Class

For a customer with

Age	Salary
30	50

Predict the Credit Rating for k = 3 and k = 5

Data

Sorting the distances in ascending orde			
		Credit	

Age	Salary	Credit Rating
25	36	Fair
25	69	Excellent
27	69	Fair
28	63	Excellent
28	80	Poor
30	54	Excellent
31	65	Fair
32	48	Fair
32	77	Excellent
33	55	Poor
33	35	Poor
33	65	Fair
33	75	Fair
37	51	Fair
37	61	Excellent
38	31	Poor
39	39	Excellent
40	35	Excellent
40	69	Poor
40	70	Excellent

Age	Salary	Credit Rating	distance
25	36	Fair	25.2389
25	69	Fair	28.3196
27	69	Fair	29.8329
28	63	Excellent	27.2947
28	80	Poor	38.4187
30	54	Excellent	26.3059
31	65	Fair	30.8869
32	48	Fair	28.0713
32	77	Excellent	38.8973
33	55	Poor	29.4279
33	35	Poor	32.6497
33	65	Fair	32.6497
33	75	Fair	38.2884
37	51	Fair	33.0151
37	61	Excellent	34.7851
38	31	Poor	38.9487
39	39	Excellent	36.6879
40	35	Excellent	39.0000
40	69	Poor	40.7063
40	70	Excellent	41.1825

Age	Salary	Credit Rating	distance
25	36	Fair	25.23885893
30	54	Excellent	26.30589288
28	63	Excellent	27.29468813
32	48	Fair	28.0713377
25	69	Fair	28.31960452
33	55	Poor	29.42787794
27	69	Fair	29.83286778
31	65	Fair	30.88689042
33	35	Poor	32.64965543
33	65	Fair	32.64965543
37	51	Fair	33.01514804
37	61	Excellent	34.78505426
39	39	Excellent	36.68787266
33	75	Fair	38.28837944
28	80	Poor	38.41874542
32	77	Excellent	38.89730068
38	31	Poor	38.94868419
40	35	Excellent	39
40	69	Poor	40.70626487
40	70	Excellent	41.18252056

For k = 3, the predicted Credit Rating is 'Excellent' and

For k = 5, the predicted Credit Rating is 'Fair'

Choosing the Value of k

- When choosing the value of k, keep the following points in mind:
 - If its value is too small, neighbourhood is sensitive to noise points
 - If its value is too large, neighbourhood may include points from other classes

Essentially

Basic idea

 If it walks like a duck, quacks like a duck, then it's probably a duck

Rote-learner

 Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly

Lazy vs. Eager Learning

Lazy vs. Eager Learning

- Lazy vs. eager learning
 - Lazy learning (kNN): Simply stores training data (or only minor processing) and waits until it is given a test tuple
 - Eager learning (Decision Tree): Given a set of training set, constructs a classification model before receiving new (e.g., test) data to classify
- Lazy: less time in training but more time in predicting
- Accuracy
 - Lazy method effectively uses a richer hypothesis space since it uses many local linear functions to form its implicit global approximation to the target function
 - Eager: must commit to a single hypothesis that covers the entire instance space

Model Validation

Accuracy Matrix

Sensitivity, recall, hit rate, or true positive rate (TPR)

$$ext{TPR} = rac{ ext{TP}}{P} = rac{ ext{TP}}{ ext{TP} + ext{FN}}$$

Specificity or true negative rate (TNR)

$$ext{TNR} = rac{ ext{TN}}{N} = rac{ ext{TN}}{ ext{TN} + ext{FP}}$$

ROC - AUC

Application

When to Consider k-Nearest Neighbours

- Less than 20 features (attributes) per instance, typically normalized
- Lot of training data

• Advantages:

- Training is very fast
- Learn complex target functions
- Do not lose information

Disadvantages:

- Slow at query time
- Easily misled by irrelevant features (attributes)