ŘADA B – PRO KONSTRUKTÉRY

ČASOPIS PRO ELEKTRONIKU ROČNÍK XL/1991 ● ČÍSLO 4

V TOMTO SEŠITĚ

AMATÉRSKÉ RADIO ŘADA B

Vydavatel: Vydavatelství MAGNET-PRESS, s. p., 113 66 Praha 1, Vladislavova 26, tel. 26 06 51, Redakce: 113 66 Praha 1, Jungmannova 24, tel. 26 06 51. Šéfredaktor Luboš Kalousek, OK1FAC, linka 354, sekretariát linka 355.

Tiskne: Naše vojsko, tiskárna, závod 08, 160 05 Praha

Vlastina ul. č. 889/23.

Inzerce . . .

Rozšiřuje Poštovní novinová služba a vydavatelství MAGNÉT-PRESS s. p. Objednávky přijímá každá administrace PNS, pošta, doručovatel, předplatitelská střediska a administrace vydavatelství MAGNET--PRESS s. p., 113 66 Praha 1, Vladislavova 26, tel. 26 06 51-9. Půlroční předplatné 29,40 Kčs. Objednáv ky do zahraničí vyřizuje ARTIA, a. s., Ve smečkách 30, 111 27 Praha 1.

Inzerci přijímá osobně i poštou vydavatelství MAGNET--PRESS, inzertní oddělení, Vladislavova 26, 113 66 Praha 1, tel. 26 06 51-9, linka 294.

Za původnost a správnost příspěvku odpovídá autor. Nevyžádané rukopisy nevracíme.

Návštěvý v redakci ve středu od 9 do 16 hodin.

ISSN 0139-7087, číslo indexu 46 044. Toto číslo má vyjít podle plánu 19. 7. 1991. © Vvdavatelství MAGNET-PRESS 1991

GRUNDIG SE PŘEDSTAVUJE

V minulém čísle jsme představili firmu NOKIA, předního evropského výrobce nejen spotřební elektroniky. Pro dnešní představení jsme vybrali firmu Grundig a to poněkud netradičním způsobem: jako příběh "chlapce, který se proslavil". K tomu nás vedlo několik důvodů, z nichž nejpodstatnější je ten, že příběh zakladatele firmy. Maxe Grundiga, napovídá mnohé o tom, jaké vlastnosti musí mít ten, kdo chce něco dokázat - tenkrát jako dnes, i když dnes je doba poněkud jiná, než před válkou, kdy M. Grundig začínal. I tak je však jeho příběh, myslím, dostatečně poučný i pro dnešek, když ničím jiným, tak faktem, že "bez práce nejsou koláče".

Firmu GRUNDIG založil muž, iménem Max Grundig, který se narodil 7. května roku 1908 v Norimberku jako syn skladníka Emila Grundiga. Norimberk měl tehdy něco málo přes 300 tisíc obyvatel a v této tak trochu idylické době stál půl kilogramu chleba 17 feniků, půl kila hovězího masa 70 feniků, vejce 6 feniků a litr mléka 18 feniků. Otec Emil, jako skladník závodů Herkules, vydělával měsíčně 280 marek a uživit rodinu se čtyřmi dětmi nebylo za tehdejších podmínek nikterak snadné.

Školní docházku začal Max v době, kdy začínala první světová válka. V roce 1920 zemřel jeho otec, kterému tehdy bylo jen 41 let. Matka, o dva roky mladší, začala mít velké starosti, jak čtyři děti uživit. Dokud otec ještě žil, bylo rozhodnuto, že Max půjde studovat na gymnázium, ale za těchto okolností to bylo nemožné. A tak Max Grundig začal v dubnu 1922 svou kariéru jako učeň u firmy Hilpert, která prodávala instalatérské

Mezitím však ieho matka onemocněla vleklou chorobou a starost o děti i matku zůstala na něm. Musel především každý den zajišťovat oběd pro matku a sourozence a protože tramvaj mezitím podražila na 30 feniků, absolvoval pětikilometrovou cestu z domova do zaměstnání a zpět poklusem. Tuto cestu proběhl denně čtyřikrát a protože poslední přestávka u firmy trvala jen dvě hodiny, měl co dělat, aby všechno stihl.

Max se u firmy Hilpert dobře uvedl, naučil se dokonce psát na stroji a stenografovat a tak to za krátký čas dotáhl až na úředníka v kanceláři firmy. To se již psal rok 1924, druhý rok jeho učebního poměru, kdy se seznámil se začínající rozhlasovou technikou a kdy ho začaly velice zajímat rozhlasové přijímače. Elektronika ho tak zaujala, že v této době, kdy se většina součástek pro přijímače vyráběla doslova na koleně, se stal vášnivým amatérským bastlířem. V září 1926 navštívil rozhlasovou výstavu v Berlíně a snad již tehdy se rozhodl, že se v budoucnu bude tomuto oboru věnovat.

Následujícího roku 1927 zemřel švagr prokuristy firmy Hilpert, který měl elektroobchod ve Fürthu. Séf firmy Hilpert tento obchod zakoupil a jako vedoucího tam ustanovil Maxe Grundiga. Pro toho to znamenalo podstatné zlepšení životních podmínek, neboť v novém místě jeho výdělek dosahoval až 600 marek měsíčně a nezřídka dosáhl plné tisícovky. Ačkoli mu v té době bylò teprve devatenáct let, mohl si z úspor koupit první vlastní dopravní prostředek, motocykl značky Standard v červené barvě s chromovanou nádrží a byl na tento stroj velice pyšný. Týdně na něm odvážel panu Hilpertovi tržbu a jednoho dne se dozvěděl, že jeho šéf míní obchod ve Fürthu prodat začátkem listopadu 1930 inženýru Lockerovi od firmy AEG. To se Maxi Grundigovi jednak nelibilo. a jednak se mu nechtělo pracovat pro jiného majitele - tak došlo k roztržce a rozchodu s firmou Hilpert.

Protože měl Max našetřené nějaké peníze, rozhodl postavit se na vlastní nohy, přestože v té době se již schylovalo k hospodářské krizi. Mládí je však optimistické a tak si Max s možnými problémy velkou hlavu nedělal. V pozdějších letech se přiznal, že mu dosud běhá mráz po zádech, když si vzpomene, do čeho se tehdy s téměř holýma rukama pustil a jak to mohlo dopadnout.

A tak si za 150 marek měsíčně pronajal krám na Sterngasse, zaplatil nájem na tři měsíce dopředu a stal se sám sobě šéfem. Již v prosinci 1930 se v bavorských novinách objevil jeho inzerát v následujícím znění: "Rozhlasové přijímače, reproduktory a gramofonové desky značky Lumophon nakoupíte nejlépe a nejlevněji u firmy Radio-Vertrieb Fürth, Sterngasse 4. Navštivte naši výstavku, zdarma a nezávazně vám předvedeme všechny výrobky a obslouží vás naši odborníci. Čím dříve přijdete, tím lépe pro

Vážení čtenáři,

v poslední době se množí stížnosti na to, že nelze sehnat naše časopisy (AR řady A, řady B a Přílohy – ročenky) ve stáncích PNS. Je to způsobeno několika vlivy, z nichž nejhlavnější je asi ten, že PNS soustavně snižuje odběr našich časopisů a do některých svých prodejen je vůbec nedodává.

Naše vydavatelství MAGNET-PRESS proto nabízí všem soukromým podnikatelům i všem organizacím (např. prodejnám elektronického zboží, knižním prodejnám, obchodním domům atd.), které by chtěly rozšiřovat (prodávat) naše časopisy, možnost objednat AR řady A, řady B i Přílohy přímo ve vydavatelství a to od 10 kusů do neomezeného množství za velmi výhodných podmínek.

S nabídkami se obracejte na redakci AR, Jungmannova 24, 113 66 Praha 1.

Prosincovou přílohu AR lze objednat i jednotlivě v administraci vydavatelství Magnet-press do 15. 10. 1991.

Redakce

vás. Využijte výhodných měsíčních splátek."

V této začínající krizové době nebylo pochopitelně snadné prodat větší množství poměrně drahých přístroiů. Proto se Max soustředil především na prodej součástek, žárovek, elektronek a jiného drobnějšího sortimentu. V té době bylo mnoho přijímačů napájeno z akumulátorů a baterií, takže nabíjení žhavicích akumulátorů i prodej anodových baterií bylo velice výhodné a přineslo nezbytný zisk. Bylo také nutné chodit po okolí, zjišťovat ceny konkurence a snažit se, aby vlastní ceny byly vždy, byť jen o málo, nižší. A tak zásady: nižší ceny, vzorná obsluha, pohotový servis a výhodné platební podmínky způsobily, že přes krizovou dobu se obchodu poměrně dobře dařilo.

Ubíhaly roky, Max Grundig důsledně navštěvoval všechny výstavy i trhy, aby získal nejnovější informace z oboru. V době jeho nepřítomnosti vedla obchod jeho nejstarší sestra Wilhelmine, která se pak brzy stala bratrovou pravou rukou. Mezitím se hospodářská situace začínala zlepšovat, prodávalo se více a více přijímačů a pochopitelně se zvětšoval i počet oprav. A tak si Max Grundig najal nový, větší obchod na Schwabacherstrasse 1. V tomto obchodě zahájil prodej a služby v červnu 1934.

Zde, přes určité počáteční obtíže, dosáhl poprvé ročního obratu většího než milion marek. Prodával rozhlasové přijímače všech tehdy běžných značek a okolnosti ho přivedly na myšlenku, zařídit si také dílnu pro navíjení transformátorů. Mělo to velmi jednoduchý důvod. Ve Fürthu bylo tehdy steinosměrné napětí, zatímco v sousedním Norimberku bylo napětí střídavé. A protože se mnoho lidí stěhovalo sem i tam, byly poruchy jejich přístrojů zcela běžné a množství poškozených transformátorů bylo značné. V prvním patře domu na Schwabacherstrasse otevřel Max proto dílnu s navíječkami a tento dobrý nápad mu podstatným způsobem zvětšil zisky.

Firma tedy bohatla a její majitel si v roce 1935 koupil první vlastní automobil Opel Olympia a s matkou a sestrou se nastěhoval do nového bytu v Amalienstrasse 55. V té době se seznámil se subretou Anneliese Jürgensen z Flensburgu, se kterou se zakrátko oženil, ačkoli jejich vzájemné povahy byly naprosto odlišné. Manželství také neskončilo šťastně.

Pokud jde o transformátory, dostal Max Grundig další dobrý nápad. Pochopil, že současná situace v Německu vede k postupujícímu nedostatku surovin, kterých, vzhledem k horečnému zbrojení, bude stále méně. Nakoupil proto velké zásoby transformátorových plechů, drátů i materiálů na výrobu kostřiček a začal vyrábět celý sortiment nejrůznějších transformátorů. Všechno co vyrobil, bez problémů rozprodal. Znovu se přestěhoval, tentokrát do pěkného třípokojového bytu v Moststrasse 17, kde bydlel dalších čtrnáct let a to i v době, kdy již byl mnohonásobným milionářem a velkoprůmyslníkem.

V roce 1939 začala druhá světová válka. Firma Maxe Grundiga byla označena jako nepostradatelná pro vojenské účely a německá armáda se také stala největším zákazníkem jak zadáváním oprav vojenských přístrojů, tak i jako odběratel transformátorů

nejrůznějších typů. Firma proto měla stálý přísun zakázek a bez větších potíží přečkávala válečná leta. Max Grundig musel v letech 1941 až 1943 obléknout uniformu. avšak zůstal přidělen velitelství v Norimberku, takže mohl i občas dohlédnout na svůj podnik. Často si i po noční službě našel čas k další práci ve vlastní kanceláři a řešil nové obchodní možnosti. V té době se také poohlížel po dalších výrobních prostorách. Našel je v blízké vesnici Vach, kde byla volná dvě hospodářská stavení. Pro toto útočiště mimo město byl i druhý rozumný důvod: výrobní podniky ve městech byly totiž mnohem více ohroženy spojeneckým bombardováním.

Max Grundig přestěhoval do nových objektů navíječky a denně se opravovaly či navíjely stovky transformátorů. Počet navíječek se v té době rozrostl na více než sto a bylo nutno také zaměstnat mnohem více pracovníků, převážně děvčat z Ukrajiny. Max byl v roce 1943 propuštěn z vojenské služby a tak se mohl ihned znovu plně věnovat svému podniku. Jednoho dne ho pozval k rozhovoru zástupce firmy AEG s nabídkou, aby pro ně vyráběl transformátory. Na základě výhodné nabídky byla smlouva uzavřena, avšak požadavek AEG byl šokující: pět až deset tisíc transformátorů denně. Max Grundig to však dokázal zajistit. Zanedlouho se s obdobným požadavkem připojila i firma Siemens. Přestože obě zmíněné firmy velice účinně spolupracovaly, zůstává obdivuhodné, jak se v nejrůznějších tanečních sálech či kuželnících, přeměněných na výrobny, realizovaly kvalitní a technicky náročné výrobky.

Na jaře 1945 se přiblížila fronta a jedna z dílen ve vsi Vach zcela vyhořela. Všichni se ihned pustili do oprav, dokonce i zmíněná ukrajinská děvčata, ačkoli je zde již nikdo žádným násilím nedržel. A tak na konci války zde stál sedmatřicetiletý muž, který začal z ničeho a nyní zaměstnával téměř 200 lidí, s jměním, odhadovaným na 18 milionů marek a uvažoval, co bude s příštím Německem a jaké si má vůbec do budoucna dělat plány.

Přitom obchod ve Fürthu, ani dílny v tanečním sálu a kuželníku jako zázrakem neutrpěly žádné vážnější škody. Maxi Grundigovi se v té době přihlásili dva bývalí spolupracovníci Anton Lifka a Josef Güthlein a všichni začali obtížně přemísťovat vybavení dílen z Vachu do Fürthu. A začínali opět od začátku.

Nyní se však změnili zákazníci. Namísto bodrých i málomluvných bavorských občanů přicházeli sebevědomí muži v uniformách . US Army. Protože problém světelných sítí ve Fürthu a Norimberku zůstal stejný, přicházeli opět s "vyhořelými" transformátory či jinak poškozenými přístroji a firma Radio-Vertrieb pracovala zcela shodně jako před válkou. Jedinou změnou bylo, že se teď velmi často platilo v naturáliích. Když přístroj nebylo možné opravit, byl odkoupen za symbolickou cenu a pak se z několika vadných sestavil jeden bezvadný. Ten pak bylo možno vyměnit třeba za celý karton amerických cigaret, což, přepočteno na tehdejší černý kurs, činilo 70 až 100 marek.

S opravami však nebylo možno nadlouho vydržet a výroba transformátorů opět vyžadovala zvětšit výrobní prostory. V té době opět sehrála roli náhoda. Max Grundig se setkal s dávným známým, výrobcem hraček Christianem Götzem, který uvažoval nad prodejem své továrny. Max Grundig si po dohodě dvoupatrovou továrnu pronajal a opět tu rozběhl výrobu transformátorů.

Kromě toho zde začala také výroba prvních měřicích přístrojů Tubates a Novatest.

Trvalou Maxovou touhou však byla výroba rozhlasových přijímačů. Rozhodl se proto, že na trh uvede jednoduchou stavebnici dvoulampovky, kterou si každý bude moci levně koupit a sám sestrojit. Její cena nesměla převýšit 100 marek. Tento přístroj dostal jméno Heinzelmann a světlo světa spatřil v roce 1946. Produkce Heinzelmannů rychle stoupala a na základě tohoto obchodního úspěchu byl do výroby připraven nový přístroj, čtyřelektronkový superhet Weltklang.

Max Grundig mezitím zakoupil pozemek v Kurgartenstrasse, kde dnes stojí hlavní budova firmy. V roce 1948 sice ještě výroba Heinzelmannů pokračovala, ale vše již bylo připraveno pro novou výrobní éru. V nových dílnách firmy, která dostala nový název Grundig-Radio-Werke byl vyráběn již řečený třírozsahový superhet Weltklang, počet pracovníků se zvětšil na 650 a v únoru 1949 byl oslaven stotisící vyrobený přijímač.

Koncem roku 1949 byl vyvinut první kufříkový přijímač, jehož skříňka z plastické hmoty byla vylisována ve vlastní lisovně plastických hmot. Počet zaměstnanců i rozloha závodů vůčihledně rostly a zanedlouho opustil závod půlmiliontý přístroj. Koncem roku 1950 se firma Grundig stala největším evropským výrobcem rozhlasových přístrojů s ročním obratem téměř 50 milionů marek, podnik měl přes 3000 zaměstnanců a exportoval do mnoha světových zemí.

S rozhlasovými přijímači však nebylo možno vystačit. V roce 1951 převzal Grundig továrnu Lumophon, ve Schloss-strasse otevřel Werk II, v Goldbachstrasse Werk III a v Georgensgmündu Werk IV. Zde byly vyráběny skříně pro přijímače a později i pro televizory. Malá statistika produkce televizorů: v roce 1953 bylo vyrobeno 7500 kusů, v roce 1954 20 000 kusů a v dalších letech dosáhla roční produkce 250 000 kusů. V roce 1953 se na výstavě v Düsseldorfu objevila první televizní kamera této firmy pod názvem "Fernauge".

Kromě rozhlasových přijímačů začala firma vyrábět též celou řadu měřicích přístrojů a v osmdesátých letech uvedl Grundig na trh videomagnetofony a to velmi komfortní systém nazvaný Video 2000. Ten byl sice za několik let vytlačen podstatně jednodušším systémem VHS (který byl nesrovnatelně levnější) – to ovšem na technické vyzrálosti systému Video 2000 nic neubírá.

V roce 1981 se Max Grundig podruhé oženil, tentokrát s paní Chantal, která se narodila ve Francii a do manželství přivedla dceru Valérii. Maxi Grundigovi se v roce 1982 narodila dcera Maria-Alexandra.

V polovině osmdesátých let, především z důvodů vážné a nevyléčitelné nemoci, neměl Max Grundig již dostatek sil, aby se nadále věnoval namáhavé a vyčerpávající práci šéfa tak velkého podniku a proto závody Grundig převzal koncern Philips. Na sklonku roku 1989 tento neúnavný pracovník a zakladatel jednoho z největších radiotechnických koncernů po vleklé nemoci zemřel.

ELEKTRONICKÁ KUCHAŘKA

Dr. Ladislav Kubát

Slovo úvodem

Do tohoto čísla AR řady B jsem se snažil vybrat soubor jednodušších zapojení z nejrůznějších oborů elektroniky. Najít v zahraničních časopisech podobná zapojení je stále obtížnější, protože jsou zveřejňovány většinou složité konstrukce, zaměřené dosti jednostranně k počítačové a mikroprocesorové technice, velmi náročné na součástky, o nichž mnohdy nic nevíme a tak v našich podmínkách nesnadno uskutečnitelné i použitelné

Při výběru jsem bral v úvahu i podstatně změněnou situaci na trhu součástek. Jsme svědky téměř totálního krachu a rozpadu státního obchodu se součástkami. ELTOS zrušil několik svých prodejen a zbývající zejí prázdnotou - přitom výrobce TESLA má plné sklady. Na tomto smutném stavu se podepsal také rozpad RVHP. Jedinou naději pro amatéry vidím v soukromých obchodech se součástkami, kde se již blýská na lepší časy. Bylo otevřeno několik soukromých prodejen (včetně zásilkové služby), v nichž se prodává široký sortiment (i výrobky zahraničních výrobců) podstatně levnějších součástek, než jaké lze získat v dosavadních prodejnách, v nichž lze stále ještě slyšet dřívější slogan státního "neobchodu": nemáme, nevíme.

Proto jsem v zapojeních většinou ponechal původní součástky, které lze většinou nahradit i domácími součástkami, pokud jsou k dispozici, nebo použít originální zahraniční, popř. zahraniční ekvivalenty.

Trh s elektronikou se stal bohatším, jsou běžně k dostání výrobky, které před listopadem 1989 nebyly v prodeji a amatéři je pracně vyráběli. Individuálních vkusů a zálib je však tolik, že trh nikdy nemůže poskytnout vše – pro tyto individuální potřeby slouží i tento sešit vybraných zahraničních zapojení. Možná, že se najde i takový odvážný podnikatel – soukromník, který některé z uvedených zapojení začne vyrábět a předpokládám, že by mohl mít na "elektronickém" trhu úspěch.

POPLACHOVÁ ZAŘÍZENÍ

Signalizace nevypnutých světel automobilu

V tomto zapojení s mírně neobvyklým spouštěným oscilátorem se používá časovač 555 pro signalizaci situace, kdy opustíte svůj vůz a zapomenete vypnout světla (obr. 1).

Při zapnutí zapalování se aktivuje pomocný obvod napětím 12 V. Tím se otevře tranzistor T₁, na jehož kolektoru, spojeném s vývodem 4 obvodu 555 (reset), se napětí

Obr. 1. Signalizace nevypnutých světel u auta

zmenší k nule. Při zapnutém zapalování i světlech tedy obvod 555 nemůže kmitat. Po vypnutí zapalování se tranzistor T₁ zavře, napětí na vývodu 4 IO se zvětší. Pokud zůstala zapnutá světla, jsou napájena i obrysová světla, a signalizační obvod dostává napětí. Časovač 555 začíná okamžitě kmitat a reproduktor upozorní na skutečnost, že světla jsou zapnuta. Kdyby zůstala zapnuta jen obrysová světla, je výsledek stejný.

Paralelně s tranzistorem T₁ je účelné zapojit spínač S, kterým je možné signalizaci vypnout v případě, že potřebujeme parkovat se zapnutými parkovacími světly.

Jednoduché zabezpečovací zařízení

Neproblematické zapojení zabezpečovacího zařízení proti vloupání, které není náchylné k falešným poplachům, ale přesto dává možnost různě zpozdit jeho činnost při odchodu a příchodu, je na obr. 2. Vyžaduje, aby všechna čidla, zapojená ve smyčce (označeno v zapojení "smyčka"), byla v běžném stavu zapnuta.

Zapojení je založeno na použití IO_1 se šesticí Schmittových klopných obvodů. Je-li rozpojen startovací spínač S_1 , vstup IO_{1d} je ve stavu log. 1 (C_2 se nabíjí přes R_2) a jeho výstup přechází do stavu log. 0. Vstup IO_{1c} je tedy ve stavu log. 1 a jeho výstup je ve stavu log. 0, tím se otevře Ty, protože jeho řídicí elektroda je přes rezistor R_4 připojena na kladné napětí.

Když je Ty otevřen, smyčkou protéká proud přes R₁ a LED, která svítí, čímž indikuje, že je zabezpečovací zařízení zapnuto. Vstup IO_{1a} je držen ve stavu log. 0 přes diodu D_1 a smyčku. Vstup IO_{1b} je tedy ve stavu log. 1, jeho výstup ve stavu log. 0 a D_2 zajišťuje, že je na bázi budiče relé T_1 přes D_2 malé napětí.

Když "nepozvaný návštěvník" přeruší smyčku, dioda D_1 již nedrží vstup IO_{1c} ve stavu log. 0, a C_1 se nabíjí přes rezistor R_3 . Když náboj na C_1 překročí prahovou úroveň Schmittova obvodu IO_{1a} , k čemuž dojde asi po 20 sekundách po přerušení smyčky, jeho výstup přechází do stavu log. 0 a výstup IO_{1b} přechází do stavu log. 1. To umožní průtok proudu báze T_1 přes rezistor R_5 a relé sepne.

Kontakty relé mohou spustit libovolný druh poplašného obvodu, protože dávají řadu možností: v klidovém stavu sepnuté kontakty, přepnutí na zem, nebo přepnutí na +12 V.

Zpoždění činnosti poplachového zařízení při odchodu zajišťuje kombinace R_2 , C_2 . Odpor rezistoru R_2 můžete zvolit mezi 1,8 až 6,8 $M\Omega$ pro zpoždění asi 20 až 50 sekund. Zpoždění činnosti při vstupu zajišťuje kombinace R_3 , C_1 . Pro dosažení požadovaného zpoždění při vstupu můžete zvolit odpor rezistoru R_3 ve stejném rozsahu jako u R_2 .

"Protielektromotorická síla" relé neovlivní T₁, protože dioda D₄ bude touto "silou" relé Re polarizována opačně. Kromě toho tato dioda zvětšuje nutné předpětí T₁ asi o 0,5 V, takže jsou-li výstupy IO_{1b} a IO_{1c} ve stavu log. 0, diodami D₂ a D₃ neprotéká do báze tranzistoru žádný proud.

Pro napájení tohoto zabezpečovacího zařízení je vhodné použít akumulátor 12 V v těsném provedení s cyklickým dobíjením.

Zabezpečovací zařízení se vypne sepnutím spínače S₁. Tím se vstup IO_{1d} uzemní, což uvede jeho výstup do stavu log. 1, což způsobí přechod výstupu IO_{1c} do stavu log.

Obr. 2. Jednoduché zabezpečovací zařízení

0, tím se přes diodu D_3 zmenší napětí báze T_1 . Také na řídicí elektrodě Ty bude malé napětí. Přeruší-li se za tohoto stavu smyčka (otevřením např. hlídaných dveří, tj. přerušením sepnutého kontaktu ve smyčce), Ty se uvede do vypnutého stavu.

Poplachový obvod s třemi tóny

Tento poplachový obvod je založen na využití integrovaného obvodu Telefunken U450B pro generování tří tónů (obr. 3). Spuštění vyžaduje přivést na spouštěcí vývod IO (7) napětí log. 1. IO pak opakuje své tři tóny 800, 1067 a 1333 Hz rychlostí, stanovenou kombinací R₄, C₃.

Obr. 3. Poplašný obvod třítónový

Výstup obvodu budí bázi tranzistoru T_1 , jehož kolektorový signál budí piezoelektrický měnič. Může to být malý diskový typ, popř. piezoelektrický výškový reproduktor se zvukovodem (který dává dosti hlasitý signál). Kondenzátor C_2 musí být polystyrenový, nikoli keramický.

Kontrola teploty s možností poplachu

Teplotní čidlo (v originále přesné teplotní čidlo výrobce National Semiconductors typ LM335, jinak vhodná křemíková dioda) je zapojeno na vstup okénkového zapojení komparátoru a zajišťuje sledování teploty (obr. 4). Činnost obvodu indikují červená, žlutá a zelená svítivá dioda. K zapojení může být doplněn obvod pro buzení relé, který bude plnit poplachovou, nebo spínací funkci. Toto zapojení je na příklad ideální pro kontrolu teploty chladiče výkonového nízkofrekvenčního zesilovače.

Odporovými trimry P₁ a P₂ se nastavuje horní a dolní indikovaná teplotní mez. Čidlo LM335 (dioda) vytváří teplotně závislé referenční napětí, které se mění o 10 mV na stupeň Celsia. Meze komparátoru mohou být nastaveny tak, aby při teplotě pod 50 °C svítila zelená dioda, od 50 °C bude svítit žlutá LED, při teplotě vyšší než 80 °C bude svítit červená svítivá dioda. ZD₁ je Zenerova dioda 3V3

K zapojení pro kontrolu teploty může být doplněn budič relé, znázorněný čárkovaně. Celý obvod je napájen ze zdroje 12 V.

Vizuální indikace zvonění telefonu

Pro vizuální indikaci vyzváněcího proudu na telefonním vedení – jako doplněk modemu nebo telefonu – může být tento jednoduchý obvod (obr. 5) jen těžko překonán.

Obr. 5. Vizuální indikace zvonění telefonu

Používá integrovaný obvod pro indikaci vyzvánění, vyráběný firmou Texas Instruments pod označením TCM1520. Když se na vedení objeví impulsy vyzváněcího tónu, dioda LED bliká v rytmu těchto impulsů, a upozorní na vyzvánění. Pro spolehlivé upozornění je třeba použít diodu LED s velkým jasem.

Poplachové zařízení s piezoelektrickým měničem

Pro buzení piezoelektrického měniče se v tomto zapojení používá jediný IO se čtveřicí dvouvstupových Schmittových klopných obvodů NAND. Produkuje velmi hlasitý výstupní signál s pronikavým tónem (obr. 6).

Obvody IO_{1a} a IO_{1d} jsou zapojeny jako hradlové oscilátory s poměrem značka/mezera kolem 1:4, který je zajišťován diodami. Oscilátory jsou nastaveny na odlišné kmitočty, což způsobuje interferenci mezi oběma tóny: to vede při správném nastavení ke skutečně naléhavému a pronikavému zvuku.

Výstupy oscilátorů budí klopný obod, sestavený z IO_{1c} a IO_{1d}. Dvojčinné výstupy klopného obvodu budí piezoelektrický měnič nebo bzučák.

Obr. 6. Poplach s piezoelektrickým měničem

Stav log. 1 na vstupních bradlech oscilátory zapíná a stav log. 0 je vypíná. Místo logiky TTL může být také použit integrovaný obvod CMOS.

Indikátor výpadku ventilátoru

Pro zařízení, která jsou chlazena ventilátorem, může mít výpadek ventilátoru katastrofální důsledky. Počítače, napájecí zdroje a výkonové zesilovače často vyžadují použít ventilátorové chlazení. Blokování nebo omezení proudu chladicího vzduchu může mít také vážné následky.

Obr. 7. Indikátor výpadku ventilátoru

Obvod na obr. 7 zajišťuje přítomnost nebo absenci proudu vzduchu v některém vhodném místě a jeho výstup, který přechází při poruše ventilátoru do stavu log 0, může být použit pro zapnutí indikátoru nebo spuštění nějakého druhu poplachu.

Používají se dvě teplotní čidla (National Semiconductor LM335, nebo vhodná křemíková dioda), jedno v proudu vzduchu (IO₁), druhé jako reference (IO₂). Jejich výstupy jsou porovnávány na diferenčních vstupech operačního zesilovače IO₃. Předpětí IO₂ je nastaveno trimrem P₁ tak, že výstup IO₃ je za normálních okolností (při průtoku vzduchu kolem IO₁) kladný. Když se proud vzduchu zmenší nebo přestane, P₁ musí být nastaven tak, aby výstupní signál IO₃ se změnil na zápornou velikost.

NÍZKOFREKVENČNÍ TECHNIKA

Nízkofrekvenční umlčovač

Zapojení umlčovače je velmi vhodný doplněk přijímače pro potlačení šumu při příjmu na neobsazeném kanálu. Obvod je možné použít k doplnění přijímače, který toto vybavení nemá.

Obr. 8. Nízkofrekvenční umlčovač

Je-li přijímač naladěn na neobsazený kanál, je na výstupu detektoru značný šumový signál. V zapojení na obr. 8 se používá horní propust (IO₁) a (IO₂), aby se určilo, zda v kanálu je, nebo není užitečný signál, a to detekcí úrovně vysokofrekvenčního šumu. Není-li v kanálu signál, komparátor vypíná operační zesilovač (IO3), zapojený v sérii s nízkofrekvenční cestou přijímače. Jako aktivní součástky mohou být použity operační zesilovače typu MC3405/MC3505 Motorola, případně náš výrobek. Obvod IO1 je zapojen jako horní propust, zesilující šum nad hovorovým pásmem (k poklesu dochází kolem 3 kHz). Jeho vstupní signál se přivádí přímo z výstupu detektoru přijímače

Výstupní signál z IO₁ je usměrňován diodou D₁, usměrněným napětím se nabíjí kondenzátor C₄. Rezistor R₃ zajišťuje vhodnou vybíjecí časovou konstantu. Stejnosměrné napětí se přivádí na invertující vstup IO₂, který je zde zapojen jako komparátor. Neinvertující vstup IO₂ dostává proměnné stejnosměrné napětí přes potenciometr P₁, používaný k nastavení prahu umičovače.

Nízkofrekvenční signál přijímače prochází obvodem IO_3 , zapojeným jako invertující zesilovač. Neinvertující vstup IO_3 je připojen k výstupu komparátoru IO_2 , na němž se napětí mění od $+U_{cc}$ do 0 V.

Bez přítomnosti signálu vyvolá šum, procházející horní propustí, špičkově usměrněné napětí na rezistoru R₃. Bude-li toto napětí větší než mez, nastavená potenciometrem P₁, zablokuje výstupní signál IO₂ integrovaný obvod IO₃, a tím se také přeruší cesta nf signálu.

Při určování hodnot součástek postupujte takto: určete potřebné zesílení A_0 IO₁, mezní kmitočet horní propusti a jakost Q. Na výstupu usměrňovače budete potřebovat několik málo voltů. Mezní kmitočet může být 3 kHz až 5 kHz, Q bývá typicky menší než 10. Zvolte kapacity C_1 a C_2 , typicky menší nebo rovné 1 nF. Pak je možné vypočítat R_2 ze vztahu:

$$R_2 = (\frac{Q}{2\pi fC}) (2A_0 + 1)$$

Nyní vypočítejte C₃:

$$C_3 = \frac{C}{A_0}$$

a pak R₁:

$$R_1 = \frac{A_0}{2\pi \, QfC \, (2A_0 + 1)}$$

kde A_0 je zesílení obvodu IO_1 ,

f mezní kmitočet horní propusti a
 C kapacita kondenzátoru C₁ nebo
 C₂ (isou steiné).

Časová konstanta C₄R₃ musí být větší než pětinásobek typické periody změny vstupního signálu, její přiměřená velikost by měla být půl sekundy až několik sekund.

Zesílení IO₃ je nastaveno poměrem R₈ k R₇. Měl by to být pouze oddělovací stupeň se zesílením asi dvě, pokud je to však požadováno, může být zesílení podstatně větší. Vstup a výstup může vyžadovat kapacitní vazbu.

Zapojení je napájeno z jednoho napájecího napětí (5 až 15 V).

Nízkofrekvenční omezovač (Speech compression)

Pro omezení dynamického rozsahu nízkofrekvenčního signálu – často efektivně používaného v systémech místního rozhlasu a vysílačích – se používá stupeň s řízeným nebo omezeným zesílením.

Zesilovací stupeň s řízeným zesílením je již v principu složitější, než stupeň s omezením zesílení, nebo popř. omezovač. Nejjednodušší omezovače používají paralelní dvojici diod, zapojených proti sobě (antiparalelně) pro omezení rozkmitu napětí signálu na napětí diody v propustném směru (kolem 0,6 V). To vede k tomu, že je průběh vstupního signálu oříznut rovně pod vrcholem.

Obr. 9. Nf omezovač

Zapojení na obr. 9 používá pár antiparalelně zapojených diod ve zpětnovazební cestě jednostupňového tranzistorového zesilovače. Potenciometr P₁ umožňuje do jisté míry měnit charakteristiku omezení od mírných změn až po změny podstatné. Při nastavení potenciometru (proměnného rezistoru) na minimum odporu se dosáhne podstatného omezení, nastavení na maximum odporu vede k "měkkému"omezení.

Všimněte si, že zesílení stupně je možné měnit změnou poměru R₄ k R₅. Za tímto stupněm by měla následovat dolní propust pro zeslabení harmonických, generovaných při procesu omezování. Jako kondenzátory je nejlépe použít tantalové elektrolytické typy, je však možné použít i jiné typy s co nejmenším svodem. Jako tranzistor T₁ může být použit běžný tranzistor pro malé signály.

Tento obvod by měl být zapojen přímo za mikrofonní zesilovací stupeň.

Logaritmický kompresor

Zatímco omezovače omezují dynamický rozsah nízkofrekvenčního signálu po dosažení určité úrovně, zesilovač s charakteristikou vstup/výstup, která se blíží logaritmické křivce, dosahuje postupného omezování signálu v širokém dynamickém rozsahu, což vede k "měkčí" charakteristice komprese.

Zapojení na obr. 10 má velmi dobrou logaritmickou charakteristiku v dynamickém rozsahu kolem 60 dB. Dvojice antiparalelně zapojených diod je buzena proudovým generátorem, což vede k téměř dokonalé logaritmické přenosové charakteristice. Nejlepších výsledků se dosáhne při výběru diod tak, aby měly stejné charakteristiky v propustném směru.

Obr. 10. Logaritmický kompresor

Jako polarizované kondenzátory je možné použít tantalové elektrolytické kondenzátory nebo elektrolytické kondenzátory s malým svodem. Obvod R₇C₄ tvoří dolní propust. Tento stupeň by měl být zapojen přímo za mikrofonním zesilovačem.

Modulátor pro klíčování kmitočtovým posuvem (AFSK)

Posuv kmitočtu nízkofrevenčního oscilátoru mezi dvěma kmitočty je rozsáhle používanou technikou pro modulování vysílačů signály radiodálnopisu nebo paketového rádiového přenosu dat. Tato technika se běžně nazývá "audio frequency-shift keying", nebo AFSK. Pro velikost posuvu se používají různé standardy, běžný je posuv 170 Hz. Popisované zapojení vyhoví právě pro tento zdvih.

Dvojice kvalitních dvojitých operačních zesilovačů s vnitřní kompenzací (zjednodušení zapojení) je zapojena jako oscilátor a filtr (obr. 11). Kmitočet oscilátoru se posouvá přepínáním odporu v obvodu oscilátoru.

Oscilátor je zapojen s dvěma operačními zesilovači integrovaného obvodu IO₁ a příslušnými součástkami. Odpor ve zpětnovazební cestě se mění zapínáním a vypínáním tranzistoru T₁; T₁ je přepínán vstupem s logickými úrovněmi (méně než 0,8 V odpovídá stavu log. 0, více než 2 V odpovídá stavu log. 1)

Oběma odporovými trimry se nastavuje nižší, případně vyšší kmitočet. Nastavení se poněkud vzájemně ovlivňují.

Filtry jsou nastaveny na 1100 Hz a 1300 Hz, což vyhovuje pro posuv 170 Hz, přičemž se kmitočet oscilátoru mění mezi těmito dvěma kmitočty (řekněme 1300 Hz a 1130 Hz). Záleží na posuvu, ne na skutečných kmitočtech, protože tento modulátor je určen pro použití ve vysílači SSB.

Kondenzátory C₃ a C₇ musí být kvalitní metalizované polyesterové nebo polypropylenové kondenzátory. Důležité rezistory

v oscilátoru a filtrech jsou rezistory s kovovou vrstvou s přesností 1 nebo 2 %.

Nízkofrekvenční omezovač

Omezovače se používají k omezení maximální úrovně signálu, nízkofrekvenčních zařízení, u magnetofonů, vysílačů nebo i např. místního rozhlasu. Ačkoli omezovače obvykle způsobují určité zkreslení signálu, mohou zlepšit srozumitelnost řeči tím, že omezují dvnamický rozsah. Je pozoruhodné, jak může být tato technika jednoduchá.

Pro omezení kladných a záporných špiček nízkofrekvenčního signálu se používají dvě diody v antiparalelním zapojení (D₁ a D₂), obr. 12. Před omezovačem je zapojen duktory. Zesilovač je ideální pro malá bateriová zařízení, u nichž mohou být použity malé reproduktory o průměru asi 50 mm, určené pro tranzistorové přijímače.

Tranzistor BD140 (T₃) je třeba upevnit na malý chladič. Odpor rezistoru R₁ je třeba zvolit tak, aby se na obou reproduktorech dosáhlo stejného úbytku napětí (asi 1,5 V). Plného výstupního výkonu se dosáhne s reproduktory o impedanci 4 Ω, při impedanci 8 Ω je výkon zhruba poloviční.

Další logaritmický kompresor

Jiný způsob, jak dosáhnout logaritmického průběhu charakteristiky vstupní/výstupní signál u zesilovacího stupně (který může být oddělit zdroi signálu oddělovacím zesilovačem a vzájemně izolovat podřízené nf zesi-

V navrženém zapojení (obr. 15) se používá čtveřice operačních zesilovačů se vstupem s FET pro získání tří výstupů z jednoho zdroje. V originálu byl použit populární operační zesilovač TL074 (nebo LF347). Jeden z operačních zesilovačů tohoto integrovaného obvodu je použit jako vstupní oddělovací zesilovač, další tři jsou zapojeny jako sledovače napětí. Proti zkratu na výstupu operačních zesilovačů IO_{1b} až IO_{1d} jsou použity rezistory R₆, R₇ a R₈.

Předzesilovač pro stetoskop

Chcete si poslechnout zvukový doprovod .činnosti srdce"? Je to jednoduché, s použitím malého reproduktoru o průměru 50 mm pro tranzistorové přijímače jako mikrofonu a se zesilovačem s velkým zesílením na nízkých kmitočtech za současného potlačení signálů vf kmitočtů, získáte podle obr. 16 velmi účinný předzesilovač pro "stetoskop", který se zapojí před běžný nf zesilovač (do kteréhokoli vstupu nf zesilovače).

Potenciometr P₁ se používá k regulaci zesílení. Kondenzátor C1 potlačuje signály vysokých kmitočtů z "reproduktorového" mikrofonu, C2 omezuje zesílení operačního zesilovače na vyšších kmitočtech. Výstup je možné zapojit nejlépe do vstupu běžného nízkofrekvenčního zesilovače pro magneto-

MC1456 Obr. 14. Další logaritmický kompresor

BC547(PN100)

nízkofrekvenční zesilovač

Tento jednoduchý nízkofrekvenční výkonový zesilovač poskytuje výstupní výkon kolem jednoho wattu při napájecím napětí 6 V (obr. 13). Potřebujete k tomu však dva repro-

Obr. 13. Jednoduchý nf zesilovač

použit snad i jako kompresor), je zřejmý ze zapojení na obr. 14. Přechod tranzistoru mezi bází a emitorem má logaritmickou charakteristiku, které se zde využívá.

Tranzistor je zapojen ve zpětnovazební cestě operačního zesilovače. Je možné použít většinu běžných křemíkových tranzistorů pro malé signály. Dioda D1 omezuje rozkmit výstupního napětí. Potenciometr (odporový trimr) P1 se používá k nastavení výstupního ofsetu operačního zesilovače na nulu.

Budič pro několik nf zesilovačů

Pro buzení několika zesilovačů nebo nf zařízení z jednoho zdroje signálu je třeba

Obr. 16. Předzesilovač pro stetoskop

αž 12 V

tant.

fon, nebo do pomocného univerzálního vstupu; jako OZ lze použít v podstatě libovolný typ (např. 741).

Oddělovací zesilovač s malou výstupní impedancí

Tento jednoduchý oddělovací zesilovač má středně velkou vstupní impedanci a velmi malou výstupní impedanci. Komplementární pár tranzistorů n-p-n – p-n-p je zapojen jako přímo vázaný zesilovač se společným emitorem (obr. 17). To znamená velkou vstupní impedanci na bázi T1 a velmi malou výstupní

Obr. 17. Oddělovací zesilovač s malou výstupní impedancí

impedanci na rezistoru R₄ působením společné zpětnovazební cesty. Kondenzátor 1 nF rozšiřuje šířku pásma. Vstupní vazební kondenzátor může být zvolen tak, aby vyhověl dané aplikaci (volí se vzhledem ke kmitočtu vstupního signálu). Může být v rozsahu desítek nF až jednotek μF. Horní kmitočtová mez charakteristiky je v oblasti MHz.

Předpětí pro elektretovou mikrofonní vložku

K získání předpětí pro elektretovou mikrofonní vložku mohou být použity dvě diody, polarizované v propustném směru, podle obr. 18. Tyto vložky mají obvykle tři vývody

Obr. 18. Předpětí pro elektretovou mikrofonní vložku

 ty je třeba indentifikovat a pak lze připojit obvod předpětí podle obrázku. Nízkofrekvenční výstupní signál se získává ze třetího vývodu.

Symetrický mikrofonní předzesilovač

Integrovaný obvod National Semiconductor LM833, dvojitý velmi výkonný operační zesilovač s malým šumem, je ideální pro symetrický mikrofonní předzesilovač. Příklad jeho zapojení na obr. 19 je vhodný pro typický symetrický mikrofon s impedancí 600 Ω. Zesilovač má zisk kolem 40 dB. Další operační zesilovač (jedna polovina druhého obvodu LM833) je zapojen jako výstupní operační zesilovač (IO_{2A}). Rezistor R₁₂ chrání před zkraty na výstupu. K dosažení co nejmenšího šumu se doporučuje použít v obvodu rezistory s kovovou vrstvou.

-12V d

Nízkofrekvenční omezovač se zlepšenou symetrií

Problémem většiny nízkofrekvenčních omezovačů signálu je to, že generují pronikavé signály harmonických kmitočtů, což je způsobeno mimo jiné nesymetrickým charakterem většiny obvodů. Zapojení na obr. 20 uvedený nedostatek překonává použitím zvláště dobře přizpůsobené dvojice tranzistorů v obvodu LM394.

Tento obvod má oba tranzistory na jediné křemíkové destičce, což zajišťuje velmi dobrý souběh charakteristik. Tranzistor T_1 je zapojen jako vstupní stupeň, pracujicí se společným kolektorem. T_2 , jako výstupní stupeň, pracuje v zapojení se společnou bází. V tomto uspořádání vede přebuzení vstupu k symetrickému omezení signálu. Rezistory R_1 a R_3 tvoří dělič pro předpětí, R_2 a R_6 jsou rezistory, izolující báze. Obvod má jednotkové zesílení. Vstupní impedance je relativně značná.

Tranzistorová dvojice odpovídá tuzemskému výrobku z řady KC810 (510).

Obr. 20. Nf omezovač se zlepšenou symetrií

Potlačení hlasu zpěváka

Chtěli byste si zazpívat s vaším oblíbeným souborem, ale vadí vám v tom jeho zpěvák? S použitím zapojení na obr. 21 se můžete zpěváka zbavit. Zapojení je založeno na tom, že při stereofonním záznamu bývá zpěvák slyšet zpravidla ze středu mezi reproduktory, což znamená, že do obou kanálů je přiváděn stejný signál. Zpracujte tedy signály obou kanálů v zesilovači se zapojením podle obr. 21 a výstupní signál přiveďte nazpět do svého zesilovače v monofonním režimu – zpěvák zmizí!

Aby nebylo nutné používat zdroj se symetrickým napětím, je neinvertující vstup IO₁ napájen polovinou napětí zdroje z děliče R₃, R₅. Odporovým trimrem P₁ se nastavuje zpětná vazba tak, aby se dosáhlo maximálního potlačení "středového" stereofonního signálu. K napájení je možné použít baterii 9 V pro tranzistorové přijímače, nebo libovolný zdroj stejnosměrného napětí 9 V.

Obr. 19. Symetrický mikrofonní předzesilo-

vač

Obr. 21. Potlačení hlasu zpěváka

Hlasitý poslech telefonu

Tento nízkofrekvenční zesilovač umožní dosáhnout při běžném telefonním signálu hlasitosti dostatečné pro reproduktor, při tom však nevyžaduje žádné připojení k telefonnímu přístroji.

Snímací telefonní cívka, která je v zahraničí běžně k dostání, se upevní na mikrotelefon za sluchátko, nebo na telefonní přístroj v blízkosti linkového transformátoru. Cívku je možné nahradit cívkami ze sluchátek s velkou impedancí starého typu, nebo navinutím cívky s větším počtem závitů (asi 2000 a více) na železné nebo feritové jádro.

Signály indukované do cívky L1 (obr. 22) isou zesilovány tranzistorem T1, zapojeným jako zesilovač se společnou bází. Jeho kolektor je přímo vázán na neinvertující vstup IO1, jehož výstup budí báze komplementárních tranzistorů T2, T3 výstupního obvodu. Zpětnou vazbu zajišťuje R5, zesílení se řídí odporovým trimrem P₁. Předpětí pro T₁ se odebírá z děliče R2, R3. Kondenzátor C3 zajišťuje střídavé přemostění rezistoru v bázi T₁. Kondenzátor C₂ zabezpečuje zmenšení vlivu signálů vyšších kmitočtů (omezuje vliv vnějších signálů). Diody D1 a D₂ zajišťují potřebný rozdíl předpětí pro báze tranzistorů koncového stupně, který pracuje ve třídě B.

Přístroj může být napájen z libovolného zdroje o napětí od 6 do 18 V. Výstupní výkon je kolem 1 až 1,5 W. Je možné použít vhodný reproduktor 8 Ω; při návrhu typu reproduktoru počítejte s tím, že větší reproduktory jsou obvykle účinnější než menší!

Přepínání nf signálů stejnosměrným napětím

Tři zapojení na obr. 23 ukazují, jak mohou být diody použity pro přepínání nízkofrekvenčních obvodů tam, kde nemůžete, nebo nechcete použít mechanické přepínače. Tyto obvody jsou určeny pro přepínání signálů linkových úrovní (signály mají obecně

Obr. 22. Hlasitý poslech telefonu

Obr. 23. Přepínání nf signálu stejnosměrným napětím

mezivrcholové napětí kolem 1 V, obvykle maximálně 3 V), a impedance jsou střední až malé (10 k Ω nebo menší).

Zapojení na obr. 23a ukazuje, jak přepínat jediný kanál. Při rozpojeném spínači S₁ nemá dioda D₁ žádné předpětí a cesta signálu je tedy přerušena. Nf signál se nedostane na nf výstup. Při sepnutí spínače je D₁ polarizována v propustném směru. Působí jako zkrat a nf signál se dostává na výstup.

Obvod na obr. 23b ukazuje, jak upravit obvod a pro přepínání jednoho vstupu na jeden ze dvou výstupů, popř. na oba výstupy. Spínače S₁ a S₂ mohou být nezávislé, nebo mohou být nahrazeny jednopólovým dvoupolohovým přepínačem pro přepnutí buď na výstup A, nebo na výstup B.

Obvod na obr. 23c ukazuje, jak je možné přepnout jeden ze dvou vstupů na jeden výstup jednoduchou změnou polarity použitého předpětí. Když použijete kladné předpětí, bude na výstup připojen vstup B, při použití záporného předpětí je propojen pouze vstup A.

Zdokonalený "theremin"

Theremin je starý, lépe řečeno starobytý elektronický hudební nástroj, generující zvuky nikoli nepodobné klouzavým hvizdům. Používá dva oscilátory, zpočátku nastavené na stejný, nebo málo odlišný kmitočet - tedy s nulovým záznějem nebo v jeho blízkosti. Kmitočet jednoho z oscilátorů je možné měnit kapacitou ruky - pohyb jedné nebo obou rukou v blízkosti kapacitní elektrody mění kmitočet jednoho z oscilátorů a rozdíl mezi nimi se projevuje jako zázněj v nízkofrekvenční oblasti. Ten se pak zesiluje a budí reproduktor. Zdokonalení proti dříve popsaným zapojením spočívá v doplnění obvodu nízkofrekvenčním oscilátorem, jehož signál amplitudově moduluje nf výstupní signál a způsobuje určité vibráto, které zvyšuje "hudební" zajímavosti výstupního signálu. S trochou šikovnosti a praxe je možné dosáhnout docela zajímavých výsledků.

V tomto zapojení (obr. 24) tvoří stabilní oscilátor obvody IO_{1a} a IO_{1b} integrovaného obvodu 4049. Oscilátor je oddělen obvodem

Obr. 24. Zdokonalený theremin

IO1_{1c}, který přivádí signál na vývod 14 fázového komparátoru IO₂, fázového závěsu 4046. Oscilátor obvodu IO₂ je proměnný oscilátor (VCO), jehož kapacitu, určující kmitočet, tvoří deska, nad kterou budete pohybovat rukou.

Výstup oscilátoru 4049 je připojen na druhý vstup fázového komparátoru. Výstupní signál se odebírá z vývodu 2 IO₂ a vede na následující nf stupeň, používající integrovaný obvod (výkonový zesilovač) LM386, ke kterému je připojen reproduktor. Nulový kmitočet zázněje se nastavuje odporovým trimrem P₁.

Další oscilátor signálu nízkého kmitočtu používá IO_{1d} a IO_{1c} a pracuje jako oscilátor vibráta. Jeho výstup je oddělen obvodem IO_{11} , z něj se budí tranzistor T_1 . Ten amplitudově moduluje nízkofrekvenční signál tím, že přemosťuje potenciometr nastavení hlasitosti. Hloubka vibráta je nastavována odporovým trimrem P_2 . Kondenzátor C_6 zaobluje jinak pravoúhlé impulsy vibráta k dosažení lepšího efektu.

Jako kapacitní elektrodu stačí použít destičku materiálu pro plošné spoje čtvercového tvaru o rozměru strany několik centimetrů: Je zde určitá možnost experimentování. Je také možné použít malou teleskopickou anténu. Celá jednotka je napájena z baterie 9 V pro tranzistorové přijímače. K dosažení co nejlepších akustických vlastností je třeba použít reproduktor co největších rozměrů, přenášející co nejširší akustické pásmo.

Předzesilovač RIAA pro magnetodynamickou přenosku

Výborný předzesilovač pro magnetodynamickou přenosku je možné sestavit s použitím dvojitého operačního zesilovače typu LM833 National Semiconductor. Zapojení je jednoduché, používá běžně dostupné součástky a křivku RIAA dodržuje s tolerancí plus nebo minus 2 dB v kmitočtovém rozsahu od 30 Hz do 15 kHz. Vstupní citlivost je 3,2 mV, k přetížení dochází při 133 mV (obr. 25).

Použijete rezistory s kovovou vrstvou (1 %), kondenzátory by měly být jakostní pokovené, polyesterové nebo polypropylenové, na 50 V) obecně co nejmenších rozměrů. Protože kondenzátory s kapacitou větší než 1 μ F jsou velké, drahé a hůře se shánějí, byly na vstupu použity dva kondenzátory 1 μ F, zapojené paralelně. Všimněte si, že C_2 je tantalový. Člen R_1C_1 zajišťuje na vstupu potlačení vf rušení.

LM833 je dvojitý operační zesilovač, jeho druhá polovina je použita pro druhý kanál.

Obr. 25. Předzesilovač RIAA pro magnetickou přenosku

Nf zesilovač o výkonu 10 W

Jde o velmi jednoduchý, hospodárný nf výkonový zesilovač, dávající výkon 10 W, s minimálním počtem součástek (obr. 26). Výstupní obvod používá komplementární výstupní tranzistory, které mají poněkud menší předpětí. Přechodové zkreslení, které by jinak bylo značné, se vyrovnává silnou zápornou zpětnou vazbou, zavedenou rezistorem R₅.

Obr. 26. Nf zesilovač s výkonem 10 W

Použité tranzistory T₃ a T₄ mají "destičkové" pouzdro a musí být upevněny na malém chladiči. Jejich konstrukce umožňuje upevnit je jedním šroubem. Dioda D₁ může být přitmelena mezi ně, aby zajišťovala dobrou teplotní zpětnou vazbu (i když menší předpětí koncových tranzistorů T₃ a T₄ pomáhá zabránit přehřátí).

Mikrofonní směšovač

Tímto jednoduchým obvodem můžete směšovat signál o vysoké úrovní s mikrofonním signálem (o nízké úrovni) a výstup přivádět do nf zesilovače. Vstup pro vysokou úroveň (H) má mezi vstupem a výstupem jednotkové zesílení, zatímco vstup pro nízkou úroveň (L) má zesílení 100 (obr. 27).

Aby se předešlo potřebě symetrického napájení, neinvertující vstup IO_1 dostává předpětí rovné polovině napájecího napětí, které je blokováno kondenzátorem C_3 . Kondenzátory C_1 , C_2 a C_6 zajišťují střídavou vazbu. Kondenzátor C_4 kompenzuje IO_1 , C_5 je určen pro filtraci napájecí sběrnice. Zapojení může být napájeno z baterie 9 V pro tranzistorové přijímače (nezapomeňte na spínač!).

Reproduktor jako mikrofon

Malý reproduktor o průměru 50 mm můžete použít jako mikrofon, když si zhotovíte jednoduché zapojení předzesilovače podle obr. 28.

Obr. 28. Reproduktor jako mikrofon

Tranzistor T₁ je zapojen jako zesilovač s uzemněnou bází, přičemž reproduktor je zapojen do emitoru. Výstup je kapacitně vázán z kolektoru. Zapojení pracuje pozoruhodně dobře!

Fázový invertor s operačními zesilovači

Pokud navrhujete obvod nf zesilovače, kde je třeba použít fázový invertor a máte dostatek integrovaných operačních zesilovačů, zkuste zapojení na obr. 29. Má jednotkové zesílení pro oba výstupy a rovnoměrnou fázovou inverzi v celém nízkofrekvenčním pásmu. Může být použit dvojitý operační zesilovač, nebo dva operační zesilovače ze čtveřice v jednom pouzdru. Napájecí napětí může být libovolné v rozmezí pracovních napětí použitého typu operačních zesilovačů. Výstup by měl být vázán kapacitně.

Obr. 29. Fázový invertor s operačními zesilovači

Generátor nf růžového šumu

Zdroj růžového šumu, což je speciálně filtrovaný bílý šum, je široce používán při zkoušení v nf oblasti a je zvláště vhodný pro zjišťování vad reproduktorů, problémů akustiky místností, atd.

Stejně jako v generátoru bílého šumu se (obr. 30) jako zdroj šumu používá opačně polarizovaný přechod emitor-báze tranzistoru. Z T_1 se zde používá opačně polarizovaný přechod E-B, který je součástí obvodu báze T_2 , zesilovacího stupně se společným emitorem. Výstup z kolektoru T_2 se přivádí na neinvertující vstup IO_1 . Zpětnovazební obvod tohoto operačního zesilovače vytváří komplexní kmitočtovou charakteristiku, požadovanou pro dosažení růžového šumu na jeho výstupu.

Zapojení je napájeno ze zdroje $\pm 12 \text{ V}$. Kondenzátor C_2 zajišťuje filtraci napájení pro T_2 , C_1 uzavírá "střídavě" obvod zdroje šumu T_4 .

Jednoduché nízkofrekvenční AVC

Tento obvod (obr. 31) můžete doplnit k řadě nf výkonových zesilovačů, jako na příklad v přijímačích, aby se dosáhlo určitého automatického řízení hlasitosti pro udržení konstantnější úrovně nf výstupu.

Signál z reproduktoru se přivádí přes kondenzátor 1000 μ F (= 1 mF) na potenciometr 10 $k\Omega$, je usměrňován diodou D a výsledné se napětí se přivádí na bázi tranzistoru T.

Obr. 31. Jednoduché nf AVC

Usměrněný nf signál se mění v souladu se změnami hlasitosti nf signálu. Tím se mění proud báze tranzistoru T a tím i odpor mezi jeho kolektorem a zemí, čímž se potenciometr hlasitosti "přemosťuje" více při hlasitějších signálech a méně při signálech tichých. Tak je možné udržovat konstantnější nf úroveň. Kondenzátor 47 µF zajišťuje určité zpoždění, aby náhlá hlasitá pasáž po předcházející tiché nebyla reprodukována příliš hlasitě.

Generátor nf bílého šumu

Bílý šum se používá v obvodech generátorů elektronické hudby a zvukových efektů, stejně jako pro některé metody zkoušení v nízkofrekvenční oblasti. Opačně polarizovaný přechod emitorbáze tranzistoru je dobrým zdrojem bílého šumu, ale dává signál velmi nízké úrovně (řádu milivoltů). V zapojení podle obr. 32 se do emitoru tranzistoru T_1 přivádí předpětí přes rezistor R_1 . Vzniklé šumové napětí je kapacitně vázáno na neinvertující vstup IO_1 , který je zesiluje. Odporovým trimrem P_1 se nastavuje zesílení (maximální zesílení je 100).

l když je ve schématu uvedeno napájecí napětí \pm 9 V, může být (především vzhledem k typu T) použito napětí od 6 V až do 15 V.

Obr. 32. Generátor nf bílého šumu

Mikrofonní zesilovač s charakteristikou přizpůsobenou řeči

Při hovorové komunikaci zlepší úprava charakteristiky předzesilovače za mikrofonem srozumitelnost hovoru a zmenší snímání šumu pozadí, ovlivňujícího užitečný signál.

Obvod podle obr. 33 zajišťuje požadovaný sklon charakteristiky pod 300 Hz a nad 2 kHz. Signály vyšších kmitočtů jsou potlačovány mnohem rychleji, než signály nízkých kmitočtů.

Obr. 33 Mikrofonní zesilovač s charakteristikou přizpůsobenou řeči

Vstupní obvod používá JFET (aby se dosáhlo velké vstupní impedance), ten je přímo vázán s tranzistorem T_2 , zesilovacím stupněm se společným emitorem, který má zavedenu zpětnou vazbu do emitorového děliče T_1 . Zapojení je napájeno napětím $+12\ V$ a je vhodné pro použití s dynamickými mikrofony o malé nebo i velké impedanci. Použití mikrofonu s malou impedancí může však vyžadovat dodatečně zapojit vhodný rezistor na vstupním konektoru. Potenciometr P_1 umožňuje nastavit vhodnou výstupní úroveň.

Obvod tónové korekce

Vynikající stereofonní obvod pro nastavení tónových korekcí je možné sestavit s jediným obvodem LM833. Tento dvojitý operační zesilovač, k jehož přednostem patří malý šum i zkreslení, je pro takovou aplikaci ideální

Toto zapojení používá konvenční filtry pro zdůraznění nebo potlačení hloubek a výšek, ve schématu (obr. 34) je uvedena polovina stereofonního zapojení. Potenciometry P_1 a P_2 jsou dvojité.

Obr. 34. Obvod tónové korekce

Bod zlomu charakteristiky (3 dB) pro zdůraznění/potlačení (přibližně 17 dB) je na kmitočtu 30 Hz.

Bod zlomu charakteristiky (3 dB) pro zdůraznění/potlačení výšek je na kmitočtu asi 1 kHz, maximální zdůraznění/potlačení (přibližně 17 dB je na kmitočtu 10 kHz.

Obvod fázového posuvu

Experimentovat s efekty fázového posuvu v nf oblasti může být velmi zajímavé: T_1 na obr. 35 je zapojen jako fázový invertor, se vstupním signálem přivedeným do báze. Oba výstupy jsou vzájemně propojeny přes C_2 a P_1 , přičemž výstupní signál je odebírán ze společného bodu přes kondenzátor C_3 . Změna nastavení běžce potenciometru P_1 posouvá fázi zpracovávaného signálu, tj. zpožďuje či urychluje fázi.

Obr. 35. Obvod fázového posuvu

Obr. 36. Jednoduchý tranzistorový nf zesilovač

Jednoduchý tranzistorový nízkofrekvenční zesilovač

Tento jednoduchý tranzistorový nf zesilovač (obr. 36) může poskytnout výstupní výkon až 1,5 W, a to při použití běžných tranzistorů a bez použití chladiče. Má malé zkreslení a dobrou kmitočtovou charakteristiku. Je ideální pro použití v přijímačích a také jako dílenský zesilovač.

Výstupní obvoď tvoří komplementární dvojice, potřebné předpětí pro provoz tranzistorů T_4-T_5 vytváří T_2 . Tranzistor T_3 zajišťuje většinu zesílení, tranzistor T_1 se zavedenou zpětnou vazbou zabezpečuje základní "vstupní" zesílení. Kondenzátor C_6 udržuje napětí na rezistoru R_8 na téměř konstantní úrovni, aby se udržel konstantní proud tranzistorem T_2 (a tím také předpětí). Tranzistory T_2 , T_4 a T_5 jsou přitmeleny epoxidem na kousek hliníkového plechu o rozměru několika cm.

Citlivost pro výstup 1,5 W je efektivní napětí 1 V. Pro napájení může být použit zdroj napětí 9 až 15 V, při menším napětí se ovšem dosáhne menšího výkonu.

Koncové tranzistory by bylo možné nahradit našimi typy KC639/640.

ZAPOJENÍ PRO MOTORISTY

Voltmetr pro kontrolu autobaterie

V tomto zapojení (obr. 37) lze na stupnici měřidla s citlivostí 1 mA číst napětí mezi 10 a 15 V, takže je možné kontrolovat dobrý stav autobaterie.

Obr. 37. Voltmetr pro kontrolu autobaterie

Dvě Zenerovy diody tvoří protilehlé větve můstku, v jehož úhlopříčce je zapojeno měřidlo. Dokud bude vstupní napětí menší než asi 10 V, neprotéká větvemi můstku žádný proud. Proud měřidlem pak závisí na vstupním napětí. Maximální napětí, které lze číst na stupnici, se nastavuje odporovým trimrem $5~\mathrm{k}\Omega$. Malý počet použitých součástek umožňuje upevnit je přímo na vývody měřidla na zadní části jeho pouzdra.

Automatické zapínání poplašného zařízení v automobilu

Žádné zabezpečovací poplašné zařízení v automobilu není nic platné, když je nezapnete! Toto zjištění vedlo ke konstrukci automatického uvedení zabezpečení automobilu do pohotovostního stavu s potřebným zpožděním při vstupu i odchodu.

Když vstoupíte do vozu se zapnutým zabezpečovacím zařízením (obr. 38), stisknete tlačítko Tl. Tím se zapne tyristor Ty (který zůstane sepnut), rozsvítí se dioda LED_2 a sepne relé. Protože kontakty relé sepnuté v klidovém stavu uvádějí zabezpečovací zařízení do pohotovosti, sepnuté kontakty tlačítka zajistí, že poplach nevznikne.

Když se zapne zapalování, otevře se tranzistor T₁ a C₁ se vybije. Integrovaný obvod 555 je blokován, protože jeho vývod 2 je přes piezoelektrický bzučák připojen ke kladnému napájecímu napětí.

Když se spínač zapalování vypne, tranzistor T₁ se uzavře a C₁ se nabíjí přes R₃ – otevře se T₂. Zmenšující se kolektorové napětí spustí obvod 555 a bzučák zazní po dobu asi jedné sekundy, než se nabije C₁. To upozorňuje na to, že poplašné zařízení je v pohotovostním stavu.

Když začne pracovat IO₁, jeho výstup nabývá kladné velikosti, LED₁ se rozsvítí. Otevře se T₃, sepne relé a odpojí se napájecí

Obr. 38. Automatické zapínání poplachového zařízení v autě

sondy tyristoru Ty, který přestane vést. Relé zůstane sepnuto po dobu, která je stanovena nastavením potenciometru P₁. Když IO₁ dokončí svůj časovací cyklus, napětí na jeho vývodu se zmenší, dioda LED₁ zhasne, tranzistor T₃ se uzavře a odpadne kotva relé. Poplašné zařízení je uvedeno do stavu pohotovosti kontakty relé, sepnutými v klidovém stavu.

Vnitřní osvětlení vozu se zpožděným vypnutím

Připojte toto jednoduché zapojení (obr. 39) paralelně k vnitřnímu osvětlení a dosáhnete toho, že světlo bude svítit ještě asi 20 sekund po otevření či zavření dveří, což je výhodné pro nalezení klíčů, vyjmutí zavazadel atd.

Obr. 39. Vnitřní osvětlení vozu se zpožděním vypnutím

Při otevření dveří se sepne dveřní spínač a vnitřní osvětlení se rozsvítí. Tím je časovací obvod zkratován. Když pak dveře zavřete, kondenzátor C₁ se bude pomalu nabíjet a bude dodávat proud báze pro tranzistor T₁, udržující v sepnutém stavu T₂, dodávající proud protékající žárovkou. Když se C₁ dostatečně nabíje, zmenší se proud protékající tranzistorem T₁, tranzistor T₂ se uzavře a žárovka vnitřního osvětlení přestane svítit.

Jako tranzistor T_1 lze použít např. tuzemský typ KF517 nebo KFY16, 18, popř. KC640.

Imitace poplašného zařízení

Instalování blikající indikační žárovky na přístrojové desce automobilu může odradit potenciální zloděje automobilů tím, že vzbudí dojem, že vůz je chráněn zabezpečovacím zařízením.

Obr. 40. Imitace poplašného zařízení

V zapojení (obr. 40) je použit integrovaný obvod se šesticí invertorů (4049), z nichž dva jsou zapojeny jako dvoustupňový generátor. Výstup generátoru budí ostatní čtyři paralelně zapojené invertory, jejichž výstupní signál ovládá činnost tranzistoru, zapínajícího a vypínajícího žárovku. Imitace poplašného zařízení se zapíná spínačem. Ideální k tomuto účelu je tlačítkový spínač. Některé

Obr. 41. Indikátor stavu autobaterie

typy spínače mají navíc vestavěnou žárovku a isou tedy pro tuto aplikaci velmi vhodné.

Indikátor stavu automobilové baterie

Tento velmi jednoduchý indikátor (obr. 41) stavu automobilové baterie nevyžaduje sledovat ručku měřidla. Obvod se nastavuje tak, že se na vývod určený pro připojení autobaterie přivede napětí – řekněme 12,5 V (podle údaje DMM nebo jiného spolehlivého měřicího přístroje) a potenciometr P₁ se nastaví tak, aby dioda LED svítila. Zmenší-li se napětí v palubní síti pod tuto úroveň, Zenerova dioda přejde do nevodivého stavu, tím se přeruší proud do báze tranzistoru. Přestane protékat kolektorový proud a dioda LED zhasne.

Pokud nebude dioda (nejlépe je umístit ji na přístrojovou desku) svítit, počítejte s potížemi při provozu auta. Nejvhodnější barvou LED je zelená. Jako potenciometr P₁ je nejvhodnější použít odporový trimr; k jemnému nastavení by bylo vhodné trimr nastavit, změřit jeho odpor a nahradit ho pevným rezistorem v sérii s odporovým trimrem s co nejmenším odporem.

DISPLEJE A INDIKÁTORY

S-metr s logaritmickou stupnicí

Mezifrekvenční obvody CA3189 (RCA) nebo LM3189 (National Semiconductor) pro přijímače FM jsou ideálním základem pro Smetr v přijímači. Mají vestavěn třístupňový širokopásmový zesilovač s detektory úrovně pro každý stupeň, který mají stejnosměrné napětí s velmi dobrou logaritmickou charakteristikou pro připojení měřidla.

Je to velmi jednoduché! Připojte vstup obvodu (obr. 42) k poslednímu mezifrekvenčnímu stupni přijímače (na malé impedanci). Použijte měřidlo 250 μ A. Odporovým trimrem P₁ se nastavuje maximální výchylka ručky měřidla. Kondenzátor C₅ do určité míry vyhlazuje rychlé změny signálu. Všechny přívody součástek musí být co nejkratší.

Pojďte si hrát!

Uvedené zapojení (obr. 43) má obdobnou funkci jako házení mincí. Sedmisegmentový displej ukazuje po stisknutí tlačítka T buďto "h" (místo "panny") nebo "t" (místo "orla").

Obr. 43. Pojďte si zahrát!

Zapojení používá integrovaný obvod typu 7400 se čtveřicí hradel NAND. Klopný obvod je sestaven z hradel IO_{1a} a IO_{1b}. Displej má trvale zapnuty segmenty *e*, *f* a *g*. Když je klopný obvod v určitém stavu, je zapnut segment *c* a displej ukazuje "h". Při nastavení do opačného stavu, je zapnut segment *d* a displej ukazuje "t".

Hradla IO_{1c} a IO_{1d} jsou zapojena jako dvoustupňový generátor, pracující na poměrně vysokém kmitočtu. Signálem generátoru se budí klopný obvod takovovu rychlostí, že změny na displeji nejsou viditelné, a displej zdánlivě zobrazuje "b". To znamená, že při přerušeném kontaktu tlačítka T₁ není možné rozeznat momentální stav klopného obvodu. Při každém stisknutí tlačítka se generátor zastaví a displej ukáže "pannu" nebo "orla".

Použitý displej je sedmisegmentová číslicovka se společnou anodou.

S-metr pro přijímač

Jednoduché zapojení na obr. 44 je možné snadno doplnit ke krátkovlnnému (nebo i jinému) přijímači, chceme-li indikovat relativní intenzitu pole. Vstupní signál se odebírá z obvodu AVC, neboť napětí AVC je u většiny přijímačů s polovodičovými součástkami kladné; není-li kladné je možné použít jednoduchý usměrňovač signálu z posledního mezifrekvenčního stupně.

Tranzistor T zajišťuje, že vstup bude mít velkou impedanci a dodává proměnný stejnosměrný signál na invertující vstup IO. Vý-

B/4 (Amatérské: AD 10

Obr. 44 S-metr pro přijímač

stup IO napájí obvod měřidla. Rezistory $R_{\rm S}$ a $R_{\rm G}$ zavádějí určitou zpětnou vazbu. Neinvertující vstup IO dostává předpětí, vyrovnávající ss předpětí, vznikajícímu na druhém vstupu klidovým zbytkovým proudem tranzistoru T.

Dělič P_1 , R_7 napájí kladný vývod měřidla, vyrovnává se tím klidová ss úroveň na výstupu IO; změnou nastavení odporového trimru P_1 je možné vynulovat měřidlo. Odporovým trimrem P_2 se nastavuje maximální výchylka ručky měřidla. Maximální výchylky ručky měřidla se dosáhne při napětí +2 V na vstupu.

Blikač s dvěma žárovkami

Toto jednoduché zapojení (obr. 45) střídavě zapíná dvě žárovky 12 V. Výkonový operační zesilovač je zapojen jako jednoduchý oscilátor, jehož kmitočet je určován kombinací R₃, C₁.

Obr. 45. Blikač se dvěma žárovkami

Neinvertující vstup operačního zesilovače dostává předpětí rovné polovině napájecího napětí. Při zapnutí se bude výstupní napětí IO zvětšovat směrem ke kladnému napájecímu napětí, a bude se nabíjet C_1 přes rezistor R_3 . Přesáhne-li napětí na C_1 napětí na vývodu 3 integrovaného obvodu IO, výstupní napětí IO se zmenší k nule a C_1 se bude vybíjet přes R_3 .

Výstupní napětí integrovaného obvodu se tedy bude měnit mezi 0 V a +12 V. Když bude na úrovni země, bude svítit horní žárovka; když bude +12 V, bude svítit dolní žárovka.

Doutnavkový blikač s bateriovým napájením

Potřebujete blikající doutnavkový indikátor, napájený z baterie? Tento jednoduchý obvod (obr. 46) je levný a používá běžné součástky.

Oscilátor s tranzistorem UJT (viz str. 160) napájí impulsy bázi T₁ přes kondenzátor C₂. Když se T₁ otevře, otevře se naplno i T₂, jehož proud protéká primárním vinutím (které je při obvyklém použití sekundárním vinutím) transformátoru Tr. Impulsy v primárním vinutí transformátoru vyvolávají v sekundárním vinutí napětí, které je dostatečné pro zapálení "neonové" doutnavky – a ta blikne. Když se tranzistory T₁ s T₂ vypnou (procházejí-li impulsy nulovou osou), vznikne "protielektromotorická" síla, která je zkratována diodou D₁, takže se tranzistor T₂ nemůže poškodit.

Transformátor Tr je levný síťový transformátor se sekundárním napětím 2× 3,5 V, který se dá běžně získat. Pro napájení obvodu stačí baterie 9 V určená pro tranzistorové přijímače.

Pokud chcete blikač spouštět a blokovat, zapínat a vypínat jako součást jiného bateriově napájeného zařízení, připojte bázi T₁ k zemi přes přechod kolektor-emitor tranzistoru, tím se blikač blokuje, pro jeho spuštění stačí toto spojení překlenout spojkou (spínačem).

Obr. 46. Doutnavkový blikač s bateriovým napájením

Indikátor stavu baterie

Společnost Intersil vyrábí řadu užitečných a zajímavých obvodů pro nejrůznější aplikace. V jednoduchém zapojení podle obr. 47 se obvod Intersil ICL8211 CPA používá pro velmi zajímavý indikátor stavu baterie.

Obr. 47. Indikátor stavu baterie

Odporový trimr P se nastaví tak, aby se, když se napětí baterie zmenší na kritickou, předem stanovenou velikost, rozsvítila dioda LED. Jednoduché! Jako potenciometr se doporučuje trimr s 10 nebo 20 otáčkami, umožňující přesné nastavení, popřípadě lze

po hrubém nastavení trimr změřit a nahradit rezistorem a trimrem s co nejmenším odporem.

Elektronická "koruna"

Mnoho elektronických zapojení pro "házení korunou" používá jednoduché obvody, které neumožňují skutečně náhodný výběr "panny" nebo "orla". Popisované zapojení (obr. 48) tímto problémem netrpí.

Obvod 555 (IO_1) osciluje na vysokém kmitočtu v oblasti kilohertzů. Kmitočet jeho výstupního signálu je hodinovým kmitočtem pro dvojitý klopný obvod D typu 7474 (IO_2), který má symetrický výstup. Výstupy Q_1 a \overline{Q}_1 střídavě zapínají a vypínají diody LED. Protože jde o děj velmi rychlý, nedá se určit, která z diod v daném okamžiku svítí.

Stisknete-li herní tlačítko Tl, zastavíte oscilátor v nějakém náhodném bodě. Hodinový signál pro IO₂ je přerušen a klopný obvod (IO₂) zůstane ve svém posledním stavu – který není možné předpovědět.

Uvolníte-li tlačítko, LED začnou opět střídavě svítit. Zapojení může být napájeno i ze zdroje 9 V (místo uvedeného napájení 12 V, jak je uvedeno ve schématu), pokud je to pro vás výhodnější.

Indikátor přerušené pojistky

Upozornění na přerušenou síťovou pojistku v určitém zařízení (jako na příklad ve výkonovém zesilovači místního rozhlasu) může skutečně ušetřit čas i potíže. Stačí jednoduše zapojit paralelně k pojistce doutnavku, jak ukazuje schéma (na obr. 49).

Obr. 49. Indikátor přerušení pojistky

Použijte objímku pro doutnavku, a upevněte ji na přední panel – bude to výborný indikátor závady. Pozor, některé doutnavky mají vestavěný rezistor! Pak je možné rezistor na obrázku buď zcela vypustit nebo zmenšit jeho odpor (podle druhu doutnavky).

Indikátor skutečné stereofonie

Některá vysílání FM a TV v zahraničí nejsou skutečným stereofonním vysíláním. Ani některé stereofonní videozáznamy nejsou provedeny v režimu skutečné stereofonie. Ani pilotní signál 19 kHz u FM stereofoních signálů není vždy zaručenou indikací skutečného "sterea". Zapojení na obr. 50

Amatérske AD 10 B/4

Obr. 50. Indikátor skutečné stereofonie

může být doplněno do tuneru, nebo přijímače, nebo do audiovizuálního systému a bude indikovat skutečný stereofonní signál.

Zapojení detekuje rozdíl mezi oběma kanály, který se u skutečných stereofonních signálů vždy vyskytuje. IO_{1b} vytváří virtuální zem na polovině napájecího napětí, která se používá jako referenční napětí pro vývod 3 integrovaného obvodu IO_{1a}, nastavující jeho výstup na vývodu 1.

Levý a pravý vstupní signál se přivádějí na vstupy operačního zesilovače IO_{1a}, který zesiluje jejich rozdíly. Jeho výstupní signál je kladný nebo záporný (vzhledem k virtuální zemi) a nabíjí C₃ přes diodu D₁, případně C₄ přes D₂.

Operační zesilovače IO_{1c} a IO_{1d} jsou zapojeny jako komparátory. Jeden nebo druhý sepne a přes hradlo OR z diod D_3 , D_4 vybudí obvod pro spínání diody LED. Přijde-li některý z výstupů IO_{1c} nebo IO_{1d} do stavu log. 1, tranzistor T_1 sepne a dioda LED v jeho kolektoru se rozsvítí. Kondenzátory C_3 a C_4 podrží své napětí v krátkých mezerách signálu, protože se vybíjejí jen pomalu přes paralelně k nim zapojené rezistory 1 $M\Omega$.

S použitím této jednotky můžete i přesně nastavit stereofonní váhu tak, že použijete monofonní signál a nastavíte vyvážení, aby dioda LED zhasla, což indikuje, že mezi oběma kanály není žádný rozdíl.

Blikač LED

Potřebujete blikající LED? Použijte toto jednoduché zapojení, které můžete sestavit ze součástek ze "šuplíku".

Dva tranzistory (obr. 51) jsou zapojeny jako astabilní multivibrátor v běžném zapojení, s kapacitou kondenzátoru C₁ zvolenou pro dosažení doby vypnutí a zapnutí kolem 1 sekundy. Při zapnutí napájení se C₁ jeví jako zkrat a báze T₂ dostane proudový impuls. Kondenzátor C₂ se jeví také jako zkrat, musí se však nabít přes LED a R₄, což si vyžádá určitou dobu. Proto zpočátku povede T₂, dioda LED bude svítit.

Kondenzátor C₂ se bude nabíjet přes R₂, dokud napětí na něm nepřekročí spínací napětí T₁, který se pak sepne. Mezitím se C₁ nabil a nyní se bude vybíjet přes přechod

Obr. 51. Blikač LED

kolektor – emitor T_1 a bází – emitor tranzistoru T_2 . Po vybití se C_1 začíná nabíjet přes R_3 v opačném směru. Dosáhne-li napětí na něm 0.5 V, tranzistor T_2 se opět otevře. Tranzistor T_1 se uzavře, protože napětí na C_2 obrátí předpětí pro T_1 . Kondenzátor C_1 se nyní nabíjí přes R_1 a C_2 se nabíjí přes R_2 .

Zvětší-li se napětí na C₂ nad 0,5 V, celý obvod se znovu překlopí, a cyklus se opakuje. Dioda bliká jednou za sekundu.

Zapojení může být napájeno ze zdroje o napětí mezi 4,5 a 12 V. Kondenzátor C₃ přemosťuje napájecí sběrnici.

Nejjednodušší blikač

Obvod blikače LM3909 (obr. 52) může být zdrojem impulsů pro žárovku 6 V pro kapesní svítilnu (s opakovacím kmitočtem 1 Hz). Je to výborný doplněk pro malou ruční svítilnu. Tento obvod pracuje také se žárovkami 4,5 V (použijete však baterii 4,5 V).

Obr. 52. Blikač s malou žárovkou

Blikač pro žárovku 6 V

Nemáte speciální integrovaný obvod? Nevadí! V tomto zapojení (obr. 53) je komplementární dvojice tranzistorů p-n-p, n-p-n zapojena jako neinvertující zesilovač se zpětnou vazbou z výstupu na vstup přes kondenzátor 10 μF a rezistor 2,2 k Ω . Osciluje na kmitočtu kolem 1 Hz a v tomto "tempu" rozsvěcuje a zháší žárovku.

Pro 12 V žárovku použijete baterii 12 V; jako tranzistory vyhoví i naše typy KC639, KC640.

SÍŤ A REGULACE VÝKONU

Detektor síťového vedení

Při renovaci domů je někdy třeba zjistit polohu síťového vedení ve zdi dříve, než se do zdi začne sekat. Umožní to tento jednoduchý přístroj (obr. 54).

Jako cívku pro indukční snímání brumového napětí je možné použít telefonní snímací cívku. Pole, které vzniká kolem síťových vodičů, indukuje do cívky malý proud o kmitočtu 50 Hz. Ten se zesiluje zesilovačem – filtrem a usměrňuje pro rozsvícení diody LED.

Obr. 53. Blikač pro žárovku 6 V

Použitý integrovaný obvod LM324 obsahuje čtveřici operačních zesilovačů. Aby nebylo nutné používat symetrické napájení, jeden operační zesilovač se používá pro rozdělení napájecího napětí na polovinu. Polovina napájecího napětí 9 V je ve styčném bodě rezistorů R₁ a R₂. Obvod IO_{1a} je zapojen jako sledovač napětí a dává na výstupu referenční napětí 4,5 V, které je možné zatížit odběrem proudu až desítek miliampér.

Snímací cívka je zapojena na vstup IO_{1b}. Tento operační zesilovač společně s IO_{1c} je zapojen jako dolní propust s velkým zesílením (každý 50). Malé napětí síťového brumu, indukovaného do L₁, je tedy značně zesíleno. Na diodě D₁ se zesílené napětí usměrní a dioda LED se rozsvítí.

Poloviční napětí z děliče R_1 , R_2 se přivádí na snímací cívku jako předpětí pro vstup IO_{1b} (virtuální zem). Kondenzátor C_2 omezuje signály vyšších kmitočtů na L_1 .

Obr. 54. Detektor síťového vedení

Cívkou L₁ se pohybuje v blízkosti povrchu zkoušené zdi; LED se rozsvítí maximálním jasem, když se cívka nachází v místě síťového vedení.

Úprava síťového napětí

Pokud se vám mění síťové napětí od jmenovité velikosti, můžete je nastavit použitím snižovacího transformátoru, jak ukazuje obr. 55.

Primární a sekundární vinutí transformátoru jsou zapojena do série, přičemž sekundární vinutí je zapojeno v sérii s výstupem, primární vinutí je zapojeno paralelně s přicházející "sítí". Podle potřeby zapojte sekundární vinutí tak, aby bylo výstupní napětí

Obr. 55. Úprava síťového napětí

větší o požadovanou velikost (nebo opačně menší). Když je např. síťové napětí o 10 % menší, použijete sekundární vývody 24 V zapojené tak, aby se výstupní napětí zvětšilo. Síťové napětí se tak zvětší o 24 V.

Když je síťové napětí větší o 5 %, použijete vývody pro 12 V, zapojené tak, aby se výstupní napětí zmenšilo. Těchto 12 V se od síťového napětí odečte.

Když bude použitý transformátor dimenzován pro sekundární proud 2 A, vyhoví toto zapojení pro zátěž až do 500 W.

Regulátor rychlosti otáčení vrtačky

Elektrické vrtačky jsou poháněny univerzálním motorem, jehož rychlost otáčení je možné měnit změnou části nebo fáze cyklu, při němž je triak Tc ve vodivém stavu. Jednoduchý obvod (obr. 56) řízení fáze v tomto zapojení umožňuje značnou změnu rychlosti Navíc "protielektromagnetická otáčení. síla" motoru vyvolává určitou zpětnou vazbu pro posuv fáze vpřed při zatížení motoru. Obvod je dimenzován pro regulaci vrtaček až do 500 VA. Triak a diak je třeba vybrat podle použité vrtačky stejně jako pojistku, L1 je odrušovací tlumivka pro velké proudové zatížení, kondenzátor C3 je buď na 220 V střídavého napětí nebo na 600 až 1000 V stejnosměrného napětí. Rychlost otáčení se řídí potenciometrem P.

Nejjednodušší regulátor rychlosti otáčení motoru dává možnost účinně regulovat rychlost univerzálních elektrických motorů, zvláště pro vrtačky. I dvourychlostní vrtačky mají totiž obvykle menší rychlost příliš velkou pro některé použití (jako je na příklad vrtání do plechu).

Obr. 56. Regulátor rychlosti otáčení vrtačky

Popsané zapojení (obr. 57) má minimální počet součástek a umožňuje změnu rychlosti otáčení až do 75 % maximální rychlosti otáčení motoru. Spínač dovoluje pracovat s plnou rychlostí otáčení.

Odporový dělič a D dodávají půlvlnné impulsy o nastavitelné amplitudě na spínací

Obr. 57. Nejjednodušší regulátor rychlosti otáčení motoru

elektrodu tyristoru Ty. Předpokládejme, že zpočátku motor stojí, katoda tyristoru je v nule a tyristor se sepne při první kladné půlvlně ze sítě. Motor se rozběhne a napětí na něm vznikající zmenší napětí mezi spínací elektrodou a katodou tyristoru. Jak se motor rozbíhá, dodávaný výkon se zmenšuje, dokud se rychlost otáčení motoru nestabilizuje na velikosti, stanovené nastavením potenciometru P.

Když motor pracuje se zátěží, bude se rychlost otáčení zpomalovat (a napětí na motoru se bude zmenšovat), doba otevření tyristoru v cyklu se však bude prodlužovat, a tak bude motor dostávat větší výkon, čímž se kompenzuje zatížení motoru, který se proto bude točit relativně konstantní rychlostí.

Dioda D chrání spínací elektrodu tyristoru před nadměrným inverzním napětím, které by mohlo tyristor zničit. Použitý tyristor musí mít poměrně citlivou spínací elektrodu. Když je pro efektivní spínání Ty třeba použít větší proud, pak je možné odpor rezistorů R_1 a R_2 zmenšit až na 4,7 k Ω . V zapojení byl použit tyristor 400 V/10 A.

OSCILÁTORY, SPÍNAČE, ČASOVAČE

Světelný spínač

Potřebujete něco zapnout, když se zmenší úroveň osvětlení? Nebo něco vypnout? Toto zapojení (obr. 58) používá fotorezistor pro detekci změn úrovně osvětlení. Změny jsou zesíleny operačním zesilovačem, jehož výstup spíná tranzistor, spínající relé.

Obr. 58. Světelný spínač

 $\rm R_1$ a fotorezistor $\rm R_1$ tvoří jednu větev můstku, druhou odpovídající větev tvoří $\rm R_2$: potenciometr P tvoří protější dvě větve. Když na fotorezistor dopadá světlo, jeho odpor je malý. Potenciometr se nastaví tak, aby rozdíl mezi invertujícím a neinvertujícím vstupem operačního zesilovače způsobil kladné výstupní napětí (vývod $6\,\rm IO)$. Tranzistor T tedy nedostává proud báze, relé není sepnuto.

Když se úroveň osvětlení zmenší, odpor fotorezistoru se zvětší, neinvertující vstup operačního zesilovače (vývod 3) dostane z výstupu můstku menší napětí, než dostává jeho invertující vstup (vývod 2) a výstupní napětí se zmenšuje k nule, čímž se sepne tranzistor T a relé.

Potenciometr P může být nastaven tak, že relé sepne pouze při zmenšení úrovně osvětlení o předem stanovenou velikost: ta může být malá, nebo dosti veliká. Zapojení je dostatečně citlivé, aby zjistilo změnu úrovně osvětlení při pohybu ruky kolem R_f. Jako P je nejvhodnější použít desetiotáčkový odporový trimr (nebo potenciometr).

Infračervený spínač

Dále popsaný jednoduchý malý infračervený spínač (obr. 59) je určen pro dálkové ovládání čehokoli. Zapojení používá běžný IR pár: infradiodu LED a infračervený diodový detektor, CQY89A (LD217)/BPW50. Obvod 555 generuje řadu impulsů pro IR LED. Tyto impulsy jsou pak detekovány detektorem BPW50, zesíleny zesilovačem s velkým zesílením, používajícím tranzistory T₁ a T₂. Výstupní signál T₂ je usměrňován zdvojovačem napětí, který dodává proud báze pro spínač relé T₃, který sepne relé.

Vysílač je uložen ve vhodné malé krabičce a je napájen z baterie 9 V pro tranzistorové přijímače. Přijímač je napájen ze stejnosměrného zdroje 12 V. Obě zapojení používají celkem běžné součástky.

Obr. 59. Infračervený spínač

Jednoduchý senzorový spínač

Zapojení na obr. 60 využívá malých proudů, protékajících odporem pokožky, když se prstem přemostí dva dotykové kontakty.

Obr. 60. Jednoduchý senzorový spínač

Vstupní obvod – tranzistory T_1 a T_2 – tvoří Darlingtonova dvojice, která má velmi velké zesílení (při použití tranzistorů BC459 bude zesílení této dvojice typicky 1000). Kolektorový proud této dvojice je odebírán přechodem báze-emitor tranzistoru T_3 , je-li kolektorový proud dostatečný pro vznik úbytku 0,6 V na rezistoru T_2 . Tranzistor T_3 sepne, dioda LED se rozsvítí.

Pro rozsvícení LED stačí odpor pokožky, přemosťující dotykové plošky, mezi jedním až dvěma megaohmy. Kondenzátor C_1 urychluje sepnutí tranzistorů T_1 a T_2 . Do kolektorového obvodu T_3 je možné místo R_4 a LED zapojit citlivé relé, popř. by bylo možné kolektorovým napětím ovládat Schmittův klopný obvod CMOS, jehož výstupem by se spínal budič relé.

Práh sepnutí obvodu je možné nastavit změnou odporu rezistoru R_2 . Zmenšení odporu R_2 tento práh zvyšuje (požaduje se menší odpor pokožky).

Obr. 61. Intervalový spínač I (hradla jsou typu NOR!)

Intervalový spínač

Tento druh časovače dodává impulsy pro spínání relé ve volitelných intervalech 5, 10, 15, 20, 25 nebo 30 sekund. Je ideální např. pro automatizovaný provoz projektu diapozitivů při přednáškách (obr. 61).

Základem zapojení je integrovaný obvod IO typu 4001, obsahující čtyři dvouvstupová hradla NOR (omylem jsou nakreslena jako NAND). Dvě hradla, IO_a a IO_b, jsou zapojena jako oscilátor s periodou určenou kapacitou kondenzátoru C₂ a některým z rezistorů R₁, R₂ atd., zvoleným přepínačem Př. Výstup IO_b spouští impulsní časovač, zahrnující IO_b, IO_d a C₃, R₇. Výstup IO_d přechází po spuštění tohoto stupně do stavu log. 1 asi na jednu sekundu a spíná tranzistor T, který krátce sepne relé. Kontakty relé sepnou kontakty projektoru, zajišťující promítnutí dalšího diapozitivu.

Použitý zdroj bude záviset na zvoleném relé: použijte zdroj 6 V pro relé na 6 V; některá relé pro 12 V budou možná pracovat i se zdrojem 9 V, ale některé typy budou vyžadovat pro spolehlivou funkci zdroj 12 V.

Intervalový spínač

Zapojení na obr. 62 je ideální jako automatický intervalový spínač pro promítání diapozitivů a podobné aplikace. IO_1 je zapojen jako generátor pravoúhlého signálu s malým poměrem mezi signálem a mezerou, který zajišťuje dioda v obvodu zpětné vazby. Výstup IO se skokově mění od napětí blízkého zemi až po napětí blízké napájecímu napětí, na jeho neinvertující vstup je připojena polovina napájecího napětí.

Obr. 62. Intervalový spínač II

Když je výstupní napětí IO kladné, otevírá se tranzistor T a relé spíná. Interval mezi impulsy je možné nastavit mezi přibližně pěti a třiceti sekundami (podle nastavení P). Dobu sepnutí relé určuje rezistor R₅.

Zapojení je vybaveno tlačítky pro spínání a zastavení. Tlačítko "sepnutí" dovolí sepnout relé mezi automatickými impulsy; stačí jeho krátké stisknutí (je možné použít i mžikové tlačítko). Tlačítko "zastavení" po dobu stisknutí zastavuje další spínání relé.

Generátor sekundových impulsů

V řadě obvodů je třeba použít spouštěcí impulsy v přibližně sekundových intervalech. S hradlem NAND CMOS je možné sestavit jednoduchý impulsní generátor, jehož schéma je na obr. 63. Na výstupu jsou impulsy o krátkém trvání v přibližně sekundovém intervalu, který je určován kombinací C, R₂. Obrácením diody D lze obrátit poměr značka – mezera. Nepoužije-li se rezistor R₁, dosáhne se ještě většího poměru značka – mezera, protože D bude vybíjet kondenzátor rychleji.

Kapacitní senzorový spínač

Tento digitální dotykový spínač využívá dvou dotykových plošek a jeho činnost závisí

Obr. 63. Generátor sekundových impulsů

Obr. 64. Kapacitní senzorový spínač

na kapacitě těla (obr. 64). Dvě hradla NOR obvodu 4001 (čtyři hradla CMOS NOR) jsou zapojena jako bistabilní klopný obvod.

Při zapnutí se rozsvítí jedna z dlod LED, řekněme LED₂ ("B"). Když se pak dotkneme dotykové plošky A, klopný obvod změní svůj stav a rozsvítí se LED₁ ("A"). Když se poté dotkneme plošky B, stav klopného obvodu se opět změní a znovu svítí LED₂.

Jednoduchý sinusový oscilátor

Tento jednoduchý sinusový oscilátor může být použit v celé řadě aplikací, v nichž se vyžaduje signál sinusového průběhu s pevným kmitočtem a s malým zkreslením (obr. 65).

Obr. 65. Jednoduchý sinusový oscilátor

Ke konstrukci může být použita většina operačních zesilovačů, na příklad 741. Hodnoty R a C je možné určit ze vzorce v závěru článku. Odporovým trimrem 5 kΩ se nastaví úroveň výstupního signálu. Bod označený 1/2 U může být napájen z dobře filtrovaného odporového děliče napájecího napětí, nebo z obvodu "půlení" napájecího napětí se sledovačem.

Kmitočet lze určit ze vztahu

$$f = \frac{1}{2\pi RC}$$

pro 1 kHz je přibližně R = 15 kΩ, C = 12 nF.

Přepínač s dotykovými senzory

Dvě hradla NAND CMOS jsou zapojena jako nulovací klopný obvod (obr. 66). Odpor pokožky je obecně menší, než odpor 10 M Ω rezistorů na vstupech hradel. Za předpokladu, že je klopný obvod ve stavu, kdy je na jeho výstupu (vývod 11) log. 0, přemostění kontaktů "zap" (povrchem prstu) způsobí změnu klopného obvodu a vývod 11 přejde do stavu log. 1. Pro dosažení opětné změny stavu se dotkněte prsty kontaktů "vyp". Výstupní signál může ovládat bázi tranzistoru jednoduchého budiče relé.

Obr. 66. Přepínač s dotekovými senzory

Teplotní dotekový spínač

Tento obvod je založen na snímání teploty diodou (podle teploty se mění její odpor), při změně teploty, způsobené dotykem prstu se zapne nebo vypne LED. Výstupní signál může také ovládat tranzistor, spínající relé (obr. 67).

Integrovaný obvod IO je zapojen jako komparátor. Jeho neinvertující (invertující) vstup sleduje úbytky napětí na R₁ (případně R₃). Potenciometr P je pečlivě nastaven tak,

Obr. 67. Teplotní dotekový spínač

aby rezistorem R₁ protékal poněkud větší proud, než přes R₃. Proto je na invertujícícm vstupu IO větší napětí než na jeho neinvertujícím vstupu, výstupní napětí je malé a LED tedy nesvítí.

Dotknete-li se diody D₂ a její teplota se zvýší teplem vašeho prstu, zvětší se mírně proud v propustném směru a na vývodu 2 bude tedy větší napětí než na vývodu 3. Napětí na výstupu 1 je skokem větší a dioda LED se rozsvítí. Po vzdálení prstu se dioda LED vypne.

Když je teplota okolí vysoká – nad průměrnou teplotou těla – pak bude LED svítit; můžete ji zhasnout dotykem na diodu D₂.

Generátor pro nácvik telegrafie

Starý známý oscilátor s dvojicí tranzistorů p-n-p, n-p-n je na obr. 68 zapojen tak, aby kmital ve středním akustickém pásmů a budil reproduktor 8 Ω (nebo je možné použít sluchátka s malou impedancí). Výšku tónu můžete nastavit trimrem P. Telegrafní klíč je zapojen v napájecím přívodu a jednoduše oscilátor zapíná a vypíná.

Pro dosažení příměřené hlasitosti stačí použít baterii 3 V. Je možné použít zdroj až do 9 V, pak se však hlasitost značně zvětší! Pokud by byla hlasitost příliš velká i při napájecím napětí 3 V, použijte ke zmenšení hlasitosti rezistor malého odporu (22 až 100 Ω), zapojený do série s reproduktorem.

Jako T₁ a T₂ lze použít libovolnou dvojici (doplňkových) tranzistorů.

Obr. 68. Generátor pro nácvik telegrafie

Generátor signálu proměnného pravoúhlého průběhu s operačním zesilovačem

S tímto zapojením generátoru pravoúhlého napětí s operačním zesilovačem (obr. 69) můžete dosáhnout změny poměru značka – mezera ve velmi širokém rozsahu.

Zpětnovazební cesty pro nabíjení a vybíjení C₁ jsou odděleny diodami D₁ a D₂. Potenciometrem P₁ se mění velikost odporu, zapojeného v průběhu nabíjení a vybíjení

kondenzátoru C₁ a tím se mění poměr mezi značkou a mezerou. Možnost změny je v rozmezí 1:11 až 11:1.

Potenciometrem P₂ lze měnit kmitočet v poměru 10:1, od asi 650 Hz do 6,5 kHz. Potenciometr P₃ umožňuje řídit úroveň výstupního signálu.

Obr. 69. Generátor proměnného napětí pravoúhlého průběhu s OZ

Omezovací obvod pro domovní zvonek

Nemáte rádi návštěvníky, kteří zvoní, jako kdyby hořelo? "Vyřiďte je" je tímto jednoduchým obvodem (obr. 70).

Při připojení napájecího napětí se nabíjí C přes R₁. Tranzistor T není sepnut a zvukový signál není zapnut, protože přes T neprotéká kolektorový proud. Když se stiskne tlačítko Tl zvonku, drží se obvykle stisknuté po dobu jedné nebo dvou sekund, tím se přivede proud do báze tranzistoru, protože C se

Obr. 70. Omezovací obvod pro domovní zvonek

vybíjí přes R_2 po dobu stisknutí tlačítka. Přibližně za sekundu se kondenzátor C vybije a zvonění se zastaví. Po uvolnění tlačítka zvonku to nějakou dobu trvá, než se kondenzátor znovu nabije, takže když se tlačítko znovu stiskne v průběhu několika sekund, nic se nestane, protože C_1 není ještě dostatečně nabit, aby mohl opět sepnout tranzistor T. A navíc se i malý náboj C_1 vybije přes R_2 , což maří úsilí zvonícího.

Generátor napětí pravoúhlého průběhu s proměnnou střídou

V jednoduchém zapojení dvoustupňového oscilátoru s hradly CMOS (obr. 71) je možné s malou úpravou dosáhnout změny střídy ve velmi širokém rozsahu.

Časovací "rezistor" se skládá z potenciometru a dvou diod v uvedeném uspořádání. Když je výstup 4 ve stavu log. 1, horní dioda zkratuje horní rezistor 10 k Ω a horní část potenciometru a nabíjí se kondenzátor 15 nF přes dolní část potenciometru, dolní rezistor 10 k Ω a vývod 2 obvodu lO_b, který je ve stavu log. 0.

Obr. 71. Generátor napětí pravoúhlého průběhu s proměnnou střídou

Když je vývod 4 ve stavu log. 0, kondenzátor se vybíjí přes dolní diodu, horní část potenciometru, horní rezistor 10 k Ω a vývod

Poměr částí potenciometru, zvolený jeho běžcem, určuje periodu nabíjení a vybíjení a tím poměr značka: mezera. V tomto zapojení je možné dosáhnout změny 1:11 až 11:1. K dosažení nižšího kmitočtu lze použít větší kapacitu kondenzátoru. Pro zvýšení kmitočtu stačí použít kondenzátor menší kapacity.

Bipolární kombinace elektrolytických kondenzátorů

Když potřebujete bipolární kondenzátor o velké kapacitě, můžete zapojit dva elektrolytické kondenzátory o dvojnásobku požadované kapacity do série, a to se vzájemně opačnou polaritou (obr. 72). Rozdílné svodové proudy kondenzátorů však mohou ovlivnit výsledek, a může být obtížné dosáhnout potřebných kapacit.

Řešení je snadné: použijí se elektrolytické kondenzátory požadovaných kapacit, zapojené proti sobě, ale s paralelně zapojenými diodami, jak je uvedeno ve schématu. Jak jednoduché!

Obr. 72. Bipolární kombinace elektrolytických kondenzátorů

ZDROJE, NAPÁJENÍ

Stabilizátor pro obvody s bateriovým napájením

Tento stabilizační obvod (obr. 73) je ideální pro zařízení, napájená z baterií, protože potřebuje rozdíl mezi vstupním a výstupním napětím menší než půl voltu! V důsledku toho může dodávat stabilizované napětí i při dosti vybitých bateriích, případně můžete napájet zařízení s napětím 5 V z baterie 6 V atd. Obvod sám má velmi malou vlastní spotřebu.

Obr. 73. Stabilizátor pro obvody s bateriovým napájením

Zenerova dioda ZD je vybrána tak, aby se dosáhlo požadovaného výstupního napětí, které bude jen o málo větší než napětí Zenerovy diody. Výstupní napětí je možné jemně nastavit odporovým trimrem P. Stabilizátor může dodávat výstupní proudy asi do 300 mA při náhradě T₂ a T₃ tranzistory typu KC639, KC640.

Generátor záporného napětí

Máte k dispozici jen kladné napájecí napětí a potřebujete pro operační zesilovač nebo jiný speciální obvod záporné napětí? Zapojení na obr. 74 se skládá z oscilátoru a usměrňovače, který dodává záporné napětí, jehož velikost je téměř shodná s kladným napájecím napětím.

transformátor se sekundárním vinutím 18 V se středním vývodem (nebo dvěma vinutími o V)

Multivibrátor s tranzistory T₁ a T₂ budí báze spínacích tranzistorů T₁ a T₄. Ty střídavě připojují k oběma polovinám vinutí pro 9 V napěti baterie 12 V. Sekundární vinutí transformátoru se používá jako primární, vinutí 220 V se stává sekundárním, neboť z něj je napájen usměrňovač, zapojený jako celovlnný zdvojovač.

Oscilátor pracuje na kmitočtu kolem 1 kHz, na kterém transformátor ještě dobře pracuje. Pro usměrňovač není třeba použít žádné elektrolytické kondenzátory, což zmenšuje náklady, nároky na prostor a zlepšuje spolehlivost. C₃ a C₄ jsou polyesterové kondenzátory na napětí 400 V.

Napájecí napětí 5 V z baterie

Specializovaný výrobce polovodičů, Maxim, vyrábí malý ss-ss měnič (obr. 77), který vyrábí napájecí napětí 5 V z baterie 3 V. Jeho použití je velmi jednoduché. Co by mohlo být jednodušší, než toto zapojení?

Vf Tl je obyčejná vf tlumivka s indukčností

Obr. 77. Používání obvodů pro 5 V s napájením z baterie 3 V

PN200

Obr. 74. Generátor napětí záporné sběrnice

Dva invertory z obvodu 4069 (šest invertorů) jsou zapojeny jako oscilátor. Výstupní signál oscilátoru se používá pro buzení tranzistorů T_1 a T_2 tak, aby byly zapínány a vypínány střídavě. Když se T_1 zapíná, T_2 se vypíná a naopak. Kondenzátor C_2 se nabíjí na velikost kladného napájecího napětí přes D_1 (zmenšenou o úbytek napětí na diodě v propustném směru), D_2 je polarizována opačně. Když pak sepne T_2 , T_1 se vypíná. Tak je připojen kladný vývod C_2 k zemi, je opačné předpětí diody D_1 a C_4 se nabíjí na napětí na C_2 (menší o úbytek napětí na diodě D_2 v propustném směru).

Tranzistor T₂ se nyní vypíná a T₁ opět zapíná a při tom se doplňuje náboj na C₂. Když se pak opět otevře T₂, náboj C₂ doplní náboj na C₄, a tak dále. Dosažené záporné napětí je asi o 1,2 V menší, než kladné napájecí napětí. Maximální výstupní napětí je omezeno pouze maximálním dovoleným napětím pro obvod 4069 (15 V). Diody D₁ a D₂ by měly být schopny spínat při použité rychlosti – do odběru proudu kolem 50 mA ze záporné sběrnice jsou vhodné diody 1N914.

Na výstupu lze použít libovolné doplňkové křemíkové tranzistory malého nebo středního výkonu.

Zdroj vysokého napětí

Tento stejnosměrný konvertor (obr. 75) generuje stejnosměrné napřtí asi 600 V z baterie 12 V. Pro měnič není třeba použít zvláštní transformátor: Tr je běžný síťový

Obr. 76. Jednoduchý dílenský zdroj

U transformátoru je nejvhodnější používat vinutí pro 9 V, než např. jedno vinutí pro 12 V s vyvedeným středem, protože na spínacích tranzistorech dochází k určitému úbytku napětí mezi kolektorem a emitorem. Tranzistory T₃ a T₄ (KD3055) musí být upevněny na chladiči.

Jednoduchý dílenský zdroi

Tento jednoduchý, levný dílenský zdroj (obr. 76) je ideální pro pracovní stůl amatéra. Všechny součástky se dají v obchodě běžně koupit. Použitý transformátor je univerzální typ, který může dodávat až 1 A výstupního proudu.

Pro získání nestabilizovaného napětí asi 21 V se používá dvoucestný usměrňovač. Zenerova dioda a další dvě diody vytvářejí stabilizované referenční napětí pro obvod stabilizátoru. Rezistory R₁ až R₄ tvoří vhodné odbočky, které dělí referenční napětí pro dosažení výstupních napětí 4,5, 6, 9 a 12 V. Rezistor R₅ určuje proud Zenerovou diodou. Tranzistory T₁ T₂ a T₃ jsou zapojeny jako běžný sériový stabilizátor. Kondenzátor 10 μF, zapojený paralelně k výstupním svorkám, zajišťuje malou "střídavou" impedanci zdroje. Jako tranzistory T₁, T₂ lze použít libovolnou doplňkovou dvojici křemíkových tranzistorů.

asi 470 µH. Co k tomu dodat? Z obvodu lze odebírat proud v rozsahu desítek miliampér.

Zmenšení brumu

Populární zdroje stejnosměrného napětí, které jsou konstruovány jako celek se síťovou zástrčkou, jsou výborné pro bezpečné napájení celé řady elektronických zapojení a přístrojů. V některých aplikacích však má jejich výstupní napětí příliš velké zvlnění, které nepříznivě ovlivňuje citlivé obvody (zvláště nízkofrekvenční obvody a některé oscilátory).

Nabízí se jednoduchý způsob, jak tento nedostatek odstranit. V zapojení na obr. 78

Obr. 78. Zmenšení brumu

tranzistor násobí kapacitu kondenzátoru C svým proudovým zesilovacím činitelem (beta). Čím větší je zesílení T, tím lépe bude brum potlačen. Musíte však zvolit tranzistor, který bude vyhovovat pro proud, odebíraný napájeným obvodem.

Je-li proud 100 mA nebo menší, vyhoví např. BC549 (a fakticky znásobí kapacitu kondenzátoru C asi 500 až 1000krát!). Při větším odběru proudu (asi do 0,5 A) lze použít jako T např. 2N3643, popř. BD139, 2N(KD)3055 apod.

Kapacitu kondenzátoru můžete zvětšit až na 1000 μF (1 mF)

Napájecí zdroj se starými transformátory

Máte-li ve svých zásobách staré transformátory s různými sekundárními napětími a chcete-li je využít k dosažení požadovaného napájecího napětí, ukážeme vám, jak na to.

Síťová primární vinutí se zapojí paralelně (obr. 79) a sekundární v sérii přes diody D_1 a D_2 , aby se dosáhlo požadovaného napětí. Výstupní napětí bude špičkovou hodnotou

Obr. 79. Napájecí zdroj se starými transformátory

(1,41 násobek) efektivního napětí X a Y. Kapacita kondenzátoru C se volí obvyklým způsobem, aby se dosáhlo požadovaného vyhlazení. Kondenzátor by měl mít provozní napětí nejméně o 20 až 50 % větší (nebo i více), než je napětí stejnosměrného výstupu. Diody by měly být dimenzovány pro stejné, nebo větší napětí.

Napájecí zdroj s dvojitým elektrolytickým kondenzátorem

Dvojité elektrolytické kondenzátory se dost často nacházejí ve starých zásobách, nebo se dají koupit levně ve výprodeji. Mohou ušetřit místo v napájecím zdroji jako je celovlnný zdvojovač napětí na obr. 80. Stejnosměrné výstupní napětí je asi 2,8krát větší než efektivní napětí na sekundární straně transformátoru.

Obr. 80. Napájecí zdroj s dvojitým elektrolytickým kondenzátorem

Ochrana nabíječe akumulátorů

Diody usměrňovače v nabíječi akumulátorů je možné chránit proti zkratům a nesprávnému připojení akumulátoru zapojením na obr. 81. Je založeno na skutečnosti, že i vybitá olověná akumulátorová baterie má určité svorkové napětí. Bez toho nemůže být otevřen tyristor Ty. Nabíječ v typickém případě dává na výstupu půlvlnné impulsy usměrněného střídavého napětí a při správně při-

Obr. 81. Ochrana nabíječe akumulátorů

pojeném akumulátoru se Ty otevírá při každém cyklu usměrňovače, když jeho výstupní napětí překročí napětí baterie.

Není-li však na výstupních svorkách žádné napětí (je-li baterie odpojena nebo jsou zkratované vývody nebo je-li akumulátor připojen obráceně) tyristor nemůže vést. Také tehdy, je-li připojen akumulátor 6 V, tranzistor T nepovede a tedy nemůže vést ani Ty.

Ochrana proti přepětí u napájecího zdroje

Jistě nechcete, aby se poškodil váš bateriový přijímač nebo televizor při napájení ze síťového zdroje obvykle 13,8 V, u kterého může nastat závada, jejímž výsledkem bude přepětí na výstupních svorkách.

Obr. 82. Ochrana proti přepětí u napájecího zdroje

Zapojení na obr. 82 zkratuje výstup (pro napájení připojeného přístroje), když se na něm vyskytne přepětí. Když výstup zdroje přesáhne asi 15 V, začnou vést Zenerovy diody a připojená řídicí elektroda tyristoru Ty tento tyristor uvede do vodivého stavu. Sepnutí je velmi rychlé, tím se zkratuje zdroj a přeruší se pojistka. Tu je třeba volit podle proudu, odebíraného napájeným přístrojem.

Ochrana proti předpětí u třívývodového stabilizátoru

Stabilizátor se třemi vývody je možné doplnit o ochranu proti přepětí tak, že se využije proud jeho referenčního vývodu pro sepnutí tyristoru, zkratujícího výstup nestabilizovaného napětí do stabilizátoru (obr. 83).

Obr. 83. Ochrana proti přepětí u třívývodového stabilizátoru

Když nestabilizované vstupní napětí bude příliš velké, značně se zvětší proud referenčního zdroje a sepne tyristor. Odpor rezistoru ve vývodu referenčního zdroje je třeba zvolit tak, aby vzniklo dostatečné předpětí pro spuštění tyristoru. Použijte tyristor s dostatečnou citlivostí.

Velmi malé stabilizované napětí

Když potřebujete malé stabilizované napětí, můžete využít rozdílu mezi dvěma stabilizovanými napětími Zenerových diod, jak ukazuje příklad na obr. 84.

Rozdíl mezi 8,2 V a 6,8 V je 1,4 V. Při konstrukci je vždy třeba přesvědčit se, jsou-li obě Zenerovy diody zatíženy dostatečným proudem.

Obr. 84. Velmi malé stabilizované napětí

Přepěťová ochrana napájecího zdroje

Porouchá-li se ve stabilizovaném napájecím zdroji sériový stabilizátor, může se na výstup dostat plné nestabilizované napětí, což může mít ničivé účinky na všechna zařízení, která jsou k výstupu připojena. Zapojení na obr. 85 v případě poruchy stabilizátoru rychle odpojí výstup.

Zenerovu diodu ZD je třeba zvolit tak, aby její Zenerovo napětí bylo mírně větší než je maximální výstupní napětí zdroje. Když bude výstupní napětí překračovat maximální velikost asi o 1 V, Zenerova dioda povede, úbytek napětí na sériovém rezistoru sepne tyristor, který přejde do vodivého stavu. Tím se přeruší pojistka, zapojená v sérii se vstupem stabilizátoru. Kondenzátor, blokující spínací elektrodu tyristoru, brání sepnutí tyristoru rušivými špičkami.

Obr. 85. Přepěťová ochrana napájecího zdroje

VYSOKOFREKVENČNÍ OB-VODY

Rozbočovače pro televizi a video

Na obr. 86 jsou rozbočovače (1 na 2 a 1 na 3) pro televizní a video aplikace. Když máte dva televizory a jednu anténu, nebo chcete používat televizor a video s jednou anténou, pak je vhodné použít obvod A. Ten zajišťuje dobré oddělení mezi výstupem 1 a výstupem 2 a při tom minimální útlum mezi vstupem a oběma výstupy. Obvod B je podobný, je však určen pro případy, když potřebujeme tři výstupy.

Obr. 86. Rozbočovače pro TV a video

Když odpojíte přístroj z nepoužívaného výstupu, nahraďte tuto zátěž zátěží umělou, kterou tvoří rezistor 75 Ω (dobře vyhoví dva rezistory 150 Ω paralelně).

Produkt-detektor pro SSB

Dvojitý vyvážený modulátor (nebo čtyřkvadrantovou násobičku) LM1496 (LM1596) firmy National Semiconductor je možné použít jako vynikající produkt-detektor pro příjem s jedním postranním pásmem (obr. 87).

Signál BFO se přivádí do vstupu + pro nosnou obvodu 1496 (+ car.), přiměřená úroveň signálu je kolem 300 mV. Přicházející signál SSB z výstupu mezifrekvence přijímače se přivádí do vstupního portu + in. Zde by měla být úroveň signálu mezi 500 mV a 5 V. Kombinace R₁₁ – C₄ – C₅ zajišťuje odfiltrování zbytkových vysokofrekvenčních složek signálu.

Neobvyklý ví wattmetr

Tento vf wattmetr a umělá zátěž používá jako citlivý detektor malého vf výkonu (5 W a méně) solární článek. Kalibrovat lze takový wattmetr transformátorem o malém napětí!

Promlémem mnoha komerčních měřičů stojatého vlnění a vf výkonu je jejich nepříliš velká citlivost při malých výkonech a také poměrně vysoká cena, která neodpovídá experimentování s relativně levnými obvody vysílačů QRP.

Obr. 88. Neobvyklý vf wattmetr

Zapojení na obr. 88 je jednoduché, poměrně levné a lze s ním měřit i velmi malé vf výkony. Dvě malé žárovky s malou spotřebou jsou umístěny na povrchu malého slunečního článku (nebo "kousku" solární baterie). Ten snímá svit obou žárovek. Protože svit žárovek závisí na úrovni použitého vf výkonu a výstup článku napájí měřidlo, je svit žárovek přímým měřítkem vstupního výkonu.

Odpor rezistorů R_1 , R_2 a R_3 a jejich výkonové dimenzování bude záviset na odporu žárovek a očekávaném maximálním výkonu. Pro maximální výkon 5 W vyhoví tři rezistory 68 $\Omega/2$ W; žárovky mohou být v typickém případě 6 V, 100 mA. Při tom bude výsledná zátěž dosti blízká 50 Ω .

Pro kalibraci přístroje může být použit transformátor 15 V/1 A. Přivedení sekundárního napětí na vf vstup by mělo způsobit plnou výchylku ručky měřidla (nebo téměř plnou výchylku). Voltmetrem efektivní hodnoty je třeba ověřit, je-li na vf vstupu napětí 15 až 16 V. Plnou výchylku ručky měřidla je možné nastavit změnou vzdálenosti mezi žárovkami a solárním článkem. Pro kalibraci k měření menších výkonů je možné použít do série zapojený drátový potenciometr

 $1000~\Omega$ a pro kontrolu nastavených napětí použít efektivní voltmetr.

S tímto zapojením je možné dosáhnout přesnosti 5 až 10 %, což je pro experimentování zcela dostatečné.

Vf zaměřovač

Tento malý přístroj (obr. 89) může být použit při hledání ukrytých vysílačů (hon na lišku), když se dostanete do blízkosti vysílače a tradiční směrový přijímač selže, nebo jako monitor vysílače (při stabilní montáži). Není třeba žádné ladění. Přístroj je napájen z baterie 9 V.

Obr. 89. Vf zaměřovač

Smyčková anténa může mít libovolný vhodný rozměr – pro hon na lišku to může být kolem 250 mm, i méně. Na vhodném kousku materiálu pro plošné spoje můžete vyleptat kruhovou nebo čtvercovou velmi robustní anténu. Ostatní součástky můžete na této desce také umístit. Smyčka může mít délku vlny na určitém kmitočtu (jen v oblasti VHF, jinak by byla příliš velká), nebo lze použít skládaný dipól.

Pracovní bod tranzistoru T_1 je nastaven diodou D a rezistorem R_1 ; změna nastavení je možná potenciometrem P, kterým se měnícitlivost. Kombinace D – C_1 usměrňuje signál, zachycený smyčkovou anténou. Výstupní signál detektoru je stejnosměrně zesilován tranzistory T_1 a T_2 a způsobuje výchylku ručky měřidla v kolektorovém obvodu T_2 .

Obr. 90. Mf oscilátor

Obr. 91. Monitor telegrafního vysílání

自つと2

Případná amplitudová modulace přijímaného signálu je zesílena na kolektoru T₂. Kolektor je kapacitní vazbou spojen s bází T₃, T₃ signál opět zesílí a zesílený signál je přiveden na sluchátka dynamického typu (malé či střední impedance). Pokud se požaduje pouze indikace měřidlem, může být tento poslední stupeň vynechán.

Mf oscilátor

Běžný keramický mf rezonátor 455 kHz může být použit jako prvek, určující kmitočet oscilátoru pro slaďování, nebo záznějového oscilátoru BFO v jednoduchém zapojení na obr. 90.

Použitý rezonátor s dvěma vývody je kmitočtově závislou propustí pro zesilovací stupně. Na obr. 90 je zapojen mezi kolektor a bázi tranzistorového zesilovače pro dosažení zpětné vazby na kmitočtu rezonátoru. Kapacitní trimr C dává možnost poněkud doladit kmitočet v aplikacích pro BFO. Modulační signál může být na oscilátor případně přiveden z nf zdroje kapacitní vazbou s malou impedancí do emitoru T. Jako tranzistor mohou být použity různé typy tranzistorů malého výkonu.

Monitor telegrafního vysílání

Pro radioamatéry, kteří jsou nadšenými telegrafními operátory, poskytuje jednoduché zapojení na obr. 91 možnost monitorování vzdušnou cestou, které pracuje na všech pásmech, až do dvou metrů, a to bez nutnosti ladění. Poskytuje zvukovou i vizuální indikaci s použitím piezoelektrického měniče a diody LED.

Vysokofrekvenční signál je snímán anténou, která je připojena ke zdvojovači napětí, sestavenému ze dvou germaniových hrotových diod. Výstupním napětím zdvojovače se nabíjí C_2 , který dodává proud báze pro T_1 . Ten se otevírá na dobu trvání teček a čárek: C_2 rychle vybije asi na 0.5 V proudem báze T_1 při každém vf impulsu.

Za normálních okolností T₂ povede, protože dostává proud do báze přes R₂ a R₃. Tím je držen vývod 4 obvodu 555 na nízké úrovni, čímž je 555 blokován. Při každém vf impulsu T₁ spíná a T₂ je vypnut. Obvod 555 tedy bude oscilovat v době trvání každého vf impulsu. Je nastaven tak, aby osciloval na vysokém akustickém kmitočtu, který je reprodukován piezoelektrickým měničem. Při vypnutí T₂ každým vf impulsem se také rozsvítí LED proudem protékajícím přes R₄ a R₅.

Toto zapojení můžete napájet z libovolného zdroje o napětí 5 až 10 V. Pro zmenšení hlasitosti piezoelektrického měniče můžete zapojit rezistor do série mezi vývod obvodu 555 a měnič. Vyhoví rezistor s odporem několika set až tisíc ohmů. Jako anténu je možné použít krátký teleskopický "bič", na-

stavený na přiměřený příjem. Tento bič a diody C_1 a C_2 mohou být umístěny v blízkosti stabilní antény (pro nejlepší citlivost), zatímco zbytek zapojení může být umístěn ve vhodné krabičce v místnosti.

Pasívní měřič intenzity pole

Tento neladěný, nenapájený měřič intenzity pole je velmi užitečný při kontrole provo-

Obr. 92. Pasívní měřič intenzity pole

zu anténního systému, mobilních pojítek a antén, rádiových řídicích systémů, atd.

Signály přijímané teleskopickou prutovou anténou jsou usměrňovány germaniovou diodou. Kladné půlvlnné impulsy po odfiltrování vf složky tlumivkou nabíjejí ss napětím C₁, který dodává proud přes P do měřidla. Kondenzátor C₂ vyhlazuje signál při změnách modulace, dioda D₂ chrání měřidlo před přetížením při silných signálech. Změnou nastavení P se mění citlivost zapojení.

Měřidlo je vhodné umístit na čelní stěnu vhodné krabičky s teleskopickou anténou na horní části (nebo jinde podle předpokládaných aplikací). Spoje mezi D₁, Tl₁ a C₁ musí být krátké, aby přístroj pracoval správně i při vyšších kmitočtech. Diodu D₂ by bylo možné nahradit diodou LED s velkým jasem.

Stabilní širokopásmový vf zesilovač

Tento širokopásmový vf zesilovač (obr. 93) má dobré zesílení a stabilitu při šířce pásma od přibližně 100 kHz do asi 4 MHz. Vstupní zesilovač používá tranzistor typu JFET v zapojení se společnou elektrodou S, který je přímo vázán se stupněm s uzemněnou bází T2. Emitorový sledovač T3 pak zajišťuje výstup s malou impedancí. Druhý stupeň, s uzemněnou bází, zajišťuje vhodné zesílení a dobré oddělení mezi vstupem a výstupem a tedy dobrou stabilitu.

Všechny polarizované kondenzátory jsou tantalové elektrolytické typy. Blokovací kondenzátor napájecího napětí musí být keramický.

Odpor rezistoru R_1 určuje vstupní impedanci. Může být malý, pokud požadujete malou impedanci, nebo velký, až několik stovek kiloohmů, pro zdroj o velké impedanci. Podobně může být zvolen odpor rezistoru R_8 pro nastavení výstupní impedance — typicky může být v rozsahu 39 až 560 Ω . Mají-

li obvody připojené k výstupu střední až velkou impedanci, rezistor R₈ může být vynechán.

Při nastavování zesilovače se R_3 nastaví tak, aby na kolektoru T_1 bylo asi 10,5 V, což může být později mírně upraveno pro dosažení nejlepších výsledků. Trimr pak může být nahrazen rezistorem vhodného odporu. Jako T_2 a T_3 mohou být použity tranzistory nejrůznějších typů.

Oscilátor 455 kHz

Tento jednoduchý oscilátor (obr. 94) může být použit jako záznějový oscilátor přijímače, nebo jako generátor pro nastavování mf zesilovačů. Používá mf cívku typu běžně používaného v tranzistorových přijímačích.

Obr. 94. Oscilátor 455 kHz

Báze je připojena k odbočce laděného obvodu, předpětí je přivedeno na dolní konec cívky. Kolektor je zapojen do série s vazební cívkou s takovou fází, aby obvod osciloval. Zenerova dioda stabilizuje napětí báze – kolektor, aby tak byla stabilizována kapacita přechodu, což zlepšuje kmitočtovou stabilitu. Nízkofrekvenční modulační signál je možné připojit přes kondenzátor asi 220 nF, jak ukazuje schéma.

Krystalový oscilátor pro široký rozsah kmitočtů

Univerzální krystalem řízený oscilátor s oddělovacím zesilovačem (obr. 95) je určen pro krystaly provozované v jejich základním pracovním režimu (paralelní rezonance).

Krystal je zapojen ve zpětnovazební větvi tranzistoru T₁, jehož výstup je volně vázán kondenzátorem 10 pF a T₂, zapojeným jako emitorový sledovač, což zajišťuje velkou vstupní impedanci a tím minimální zátěž oscilátoru. Tranzistor T₃ je přímo vázán na T₂, je zapojen jako zesilovač se společným emitorem. Výstupní signál je z kolektoru odebírán přes kondenzátor 10 nF.

Oddělovací stupeň T₂, T₃ je širokopásmový zesilovač s malým zesílením T₁ tvoří

Obr. 95. Krystalový oscilátor pro široký rozsah kmitočtů

jednoduchý aperiodický oscilátor. Zapojení může být napájeno ze zdroje o napětí 7 V až 15 V. K dosažení nejlepší stability a malého výstupního šumu je vhodné použít stabilizovaný zdroj napájecího napětí.

Širokopásmový oddělovací zesilovač

Zapojení na obr. 96 je ideální oddělovací zesilovač pro vf oscilátory od 100 kHz až do 20 nebo 30 MHz. Má malé zesílení, velkou vstupní impedanci, poměrně malou výstupní impedanci a je naprosto stabilní.

Tranzistor T_1 je typ JFET a je zapojen jako emitorový sledovač. T_2 je na něj přímo vázán a zapojen jako zesilovač se společným emitorem a s výstupem z kolektoru.

Obr. 96. Širokopásmový oddělovací zesilovač

Pro nejlepší vf funkci se doporučuje použít všechny kondenzátory keramické, s malou vlastní indukčností. T₂ je vhodné volit podle kmitočtu zpracovávaného signálu.

Aktivní anténa pro příjem AM

Pokud máte potíže se slabým příjmem v rozhlasových pásmech AM, můžete s obvodem podle obr. 97 dosáhnout velkého zlepšení. Je to čtyřstupňový širokopásmový zesilovač s velkou impedancí, vhodný pro použití s vertikální prutovou anténou rozumných rozměrů.

Anténa je vázána přímo na řídicí elektrodu prvního stupně, používajícího tranzistor JFET T₁. Protože krátké prutové antény mají velkou impedanci v bodě napájení, byl tento

stupeň navržen též s velkou vstupní impedancí. T₁ je zapojen jako emitorový sledovač, signál je přes C₃ vázán do báze T₂, zapojeného jako stupeň se společným kolektorem. Toto zapojení umožnilo dobře oddělit vstupní a výstupní obvod.

Emitor T_2 je přímo vázán na další stupeň, T_3 , zapojený jako zesilovač se společným emitorem. Jeho kolektor je připojen přímo do báze tranzistoru T_4 , emitorového sledovače (zapojení se společným kolektorem). Stupeň s T_4 zajišťuje malou impedanci výstupu, který má kapacitní vazbu přes C_9 . Pro vysoké kmitočty se uplatňuje pouze část kolektorové zátěže T_3 , zatěžovací odpor je totiž složen ze dvou rezistorů, z nichž jeden je blokován kondenzátorem C_4 .

Celé zapojení je napájeno z malé baterie 9 V, protože odběr proudu je velmi malý.

Akustická indikace pro měřič poměru stojatých vln

Připojte tento jednoduchý oscilátor ke stejnosměrnému výstupu zpětného výkonu na měřiči SWR, získáte tak indikaci nf tónem,

Obr. 98. Akustická indikace pro měřič poměru stojatých vln

odpovídajícím velikosti SWR. Při minimálním SWR bude mít tón také minimální kmitočet. Oscilátorek je samozřejmě možné použít i pro jiné účely.

Přijímač AM s tranzistorem řízeným polem

Tento malý přijímač AM pro střední vlny pracuje velmi dobře, přestože má tak málo součástek (obr. 99).

Cívku L₁ a ladicí kondenzátor je možné použít ze zrušeného tranzistorového přijímače, L₁ je cívka feritové antény.

Tranzistor JFET, T₁ se používá jako emitorový sledovač přímo vázaný s tranzistorem T₂, který se zde používá jako zesilovač a detektor (v ohybu kolektorové charakteristiky). Nf signál se objeví na rezistoru R₂. C₁ blokuje detekovaný vf signál. Emitorový rezistor tranzistoru T₂, R₃, je přemostěn kondenzátorem C₂, který by pro nejlepší výsledky měl být tantalový. Pro dosažení dobré úrovně nf hlasitosti použijte sluchátka s velkou impedancí.

Zapojení může být napájeno baterií 9 V pro tranzistorové přijímače.

Obr. 99. Přijímač AM s tranzistorem FET

TV zesilovač s transformátory

TV zesilovač pro širokopásmový příjem s malým šumem je jednoduchý – obr. 100

Obr. 100. Zesilovač TV s transformátory

s jeho sestavením by neměly být potíže.
 Nevyžaduje žádné ladění.

Standardní symetrizační anténní člen Tr_1 pro TV přivádí vstupní signály ze souosého kabelu do báze T (BFY90). Předpětí báze tranzistoru zajišťuje dělič R_1 , R_2 , blokovaný kondenzátorem C_1 , přičemž proud protéká vinutím 300 Ω vstupního transformátoru.

Mírnou zápornou zpětnou vazbu v obvodu T zavádí R_4 . Další transformátor, Tr_2 , stejný jako Tr_1 , přivádí signál na výstupní souosý konektor, kolektorové napětí pro T se přivádí přes vinutí 300 Ω výstupního transformátoru a je filtrováno rezistorem R_3 a kondenzátorem C_2 .

Zapojení může být napájeno z baterie 9 V nebo z jiného vhodného zdroje až do 15 V. Všechny přívody musí být krátké a vstup i výstup musí být umístěny tak, aby se zabránilo vazbě, která by mohla vést k nežádoucím oscilacím.

Laditelná cívka na toroidu

Nedostatkem toroidních cívek v laděných obvodech je skutečnost, že jejich indukčnost je více méně pevná. Vzdálením nebo přiblížením jednotlivých závitů na toroidu lze dosáhnout sice určité změny indukčnosti, často však pro praktické použití nedostatečné.

Přilepením malé cívkové kostřičky, laděné jádrem, k boku toroidu, a navinutím části závitů přes ni, jak ukazuje obr. 101, dosáhnete možnosti ladit cívky na toroidních jádrech

Obr. 101. Cívka s proměnnou indukčností (toroid)

Vf wattmetr s lineární stupnicí

Standardní můstkový vf reflektometr (měřič poměru stojatých vln) můžete upravit na jednoduchý vf wattmetr s lineární stupnicí (obr. 102) podle následujícího popisu.

Místo usměrňovačů, vytvářejících ss napětí odpovídající "dopřednému" a odraženému výkonu, detekovanému toroidním proudovým transformátorem z vedení k anténě, se použije diodový můstek, který je napájen jednak signálem, snímaným kon-

Obr. 102. Vf wattmetr s lineární stupnicí

denzátorem C₁ a jednak proudem protékajícím anténním svodem, snímaným toroidním transformátorem. Výsledkem je výstupní ss napětí, proporcionální výkonu na anténním svodu. Potenciometr P slouží k nastavení maximální výchylky měřidla M (50 μA).

Vedení mezi vysílačem a zátěží by mělo být krátké, jen tak dlouhé, aby mohl být na ně nasunut toroid, který má 18 závitů. Všechny spoje by měly být krátké, s výjimkou přívodu k P a měřidlu.

Citlivý měřič intenzity pole

Měřič intenzity pole podle obr. 103 pracuje dobře od velmi nízkých kmitočtů až po VHF. Jako přijímací anténa se používá krátký, teleskopický "bič". Signály jsou jednocestně usměrňovány diodou D₁, výsledné kladné impulsy jsou přiváděny do báze T₁, která dostává malé předpětí přes P₁ a R₃.

Měřidlo je zapojeno v úhlopříčce měřicího můstku, u něhož dráha kolektor – emitor a R₄ tvoří dolní větve, rezistory R₁ a R₂ horní větve. Proud protékající kolektorem tranzistoru přes R₁ způsobí nerovnováhu můstku a měřidlem pak protéká proud. Měřidlo se nuluje trimrem P změnou proudu do báze tranzistoru. Kondenzátor C₁ odstraňuje usměrněnou vf složku na kolektoru tranzistoru. Dioda D₂ přemosťující měřidlo brání jeho přetížení.

Obr. 103. Citlivý měřič intenzity pole

Pro napájení tohoto velmi citlivého přístroje stačí baterie 3 V. Dioda D_1 je germaniová (pro dosažení nejlepší citlivosti), ačkoli stačí i obyčejná křemíková dioda, jako je 1N914, za cenu určitého omezení citlivosti (při slabých signálech).

"Hradlový" krystalový oscilátor

Pro aplikace, v nichž je třeba zapínat a vypínat krystalem řízený oscilátor přepínačem a/nebo digitálním signálem, vyhoví obvod na obr. 104

Dvě hradla NAND obvodu 7400 tvoří krys-

Obr. 104. Hradlovaný krystalový oscilátor

talový oscilátor. Kapacitní trimr C_T umožňuje doladit kmitočet, pokud je to třeba, na požadovanou velikost. Jinak může být nahrazen kondenzátorem 33 pF. IO_{1a} je použit jako oddělovací obvod. Jeden ze vstupů IO_{1c} se používá pro vypnutí oscilátoru signálem úrovně log. 0, signálem log. 1 se oscilátor zapíná.

Širokopásmový zdvojovač kmitočtu

K rozšíření kmitočtového rozsahu signálního generátoru je velmi vhodný např. zdvojovač kmitočtu na obr. 105. Používá diodový můstkový usměrňovač, napájený vstupním transformátorem Tr. Tlumivka Tl a rezistor tvoří zátěž můstkového usměrňovače. C₁ zajišťuje stejnosměrné oddělení výstupu. Vstupní transformátor může být navinut na standardní feritové jádro pro symetrizační

Obr. 105. Širokopásmový zdvojovač kmito-

transformátory se dvěma děrami. Použijte tři kousky tenkého propojovacího vodiče o délce asi půl metru a zkruťte je dohromady (asi tři zkruty na centimetr). Pak naviňte tuto "trifilární" kombinaci kolem středního jádra feritu. Tato tři vinutí zapojte podle schématu. Jako diody byly v originálu použity Schottkyho diody H-P typ 5802-2800.

Všechny spoje musí být co nejkratší, aby byla kmitočtová charakteristika co nejvýhodnější. Tím se zajistí, že zapojení bude pracovat až do oblasti VHF. Vstupní a výstupní impedance je asi $50~\Omega$.

Krystalový oscilátor TTL

O krystalových oscilátorech, které používají logické obvody TTL, se často říká, že trpí nespolehlivým startem, přerušovaným kmitáním a dalšími problémy. Zapojení na obr. 106 pracuje však vždy spolehlivě!

Dvojice dvouvstupových hradel NAND je zapojena do série jako neinvertující oddělovací stupeň. Vazbu mezi vstupem a výstupem každého stupně tvoří rezistory 470 Ω . Krystal na svém rezonančním kmitočtu obra-

Obr. 106. Krystalový oscilátor TTL

cí fázi s nulovým posuvem, zajišťuje kladnou zpětnou vazbu a kmitá tedy pouze na tomto kmitočtu. Další hradlo se používá jako oddělovací stupeň.

Zapojení pracuje s logickými obvody řady 74, 74LS i 74HCT.

ZKOUŠECÍ – TESTOVACÍ PŘÍSTROJE

Převodník efektivní hodnoty na stejnosměrnou

Pokud váš digitální multimetr (nebo analogový multimetr) neměří efektivní hodnotu střídavého napětí, bude doplněk na obr. 107 velmi užitečný. venčních a rozhlasových přijímačů AM.

Se sluchátkem s velkou impedancí, připojeným do konektoru, je to sledovač signálu. Připojte krokosvorku k zemi obvodu a sondou kontrolujte body zkoušeného zapojení. Všechny vf signály jsou usměrněny diodou D₁ a nízkofrekvenční signál je zesilován tranzistory T₁ a T₂.

Při odpojení sluchátka se zapojení stává oscilátorem, jehož výstup je vyveden na sondu.

Jako C₁ a C₂ je třeba s ohledem na bezpečnost použít kondenzátory na 400 V. Přístroj odebírá velmi malý proud, takže baterie vydrží po dlouhou dobu, i když přístroj nevypnete. Je dokonce možné použít baterii 1,5 V.

Citlivý mikroampérmetr

V zapojení na obr. 109 je možné měřit proudy až do jednoho mikroampérmetru na plnou výchylku, což dovoluje snadno měřit i tak malé proudy, jako je 100 nanoampér.

Zapojení je založeno na použití přesného operačního zesilovače se vstupním J-FET (National Semisonductor LF13741). P₁ je odporový trimr pro počáteční vyrovnání of-

Obr. 107. Převodník efektivní hodnoty na ss napětí

V tomto zapojení konvertuje i efektivní hodnoty (RMS) na ss napětí převodník efektivní hodnoty AD736 firmy Analog Devices (IO). Přepínač Př₁ a R₁, R₂ vytvářejí požadované vstupní zeslabení, diody D₁ a D₂ zajišťují omezení proti přetížení. Přepínač Př₂ umožňuje volit střídavou nebo stejnosměrnou vazbu.

Výstup se připojuje ke vstupu multimetru, nastavenému na rozsah 200 mV. Zapojení může být napájeno z baterie 9 V pro tranzistorové přijímače.

Sledovač a generátor signálu

Pozoruhodně jednoduchý obvod na obr. 108 může být použit při opravách nízkofrek-

Obr. 108. Sledovač a generátor signálu

Obr. 109. Citlivý mikroampérmetr

setu. Opakované nastavení bude potřebovat integrovaný obvod jen zřídka. Potenciometrem P₂ se nastavuje nula měřidla.

Zesílení operačního zesilovače se volí přepínačem tak, aby výchylka ručky byla co největší (rezistor ve zpětné vazbě). Diody D_1 a D_2 omezují vstupní napětí na $0.6\ V$ a zajišťují tak určitou ochranu přístroje.

Ohmmetr s lineární stupnicí

Ohmmetr s lineární stupnicí je mnohem výhodnější než běžné ohmmetry, pokud jste ovšem ochotni vyklopit potřebnou částku za digitální multimetr. Zapojení na obr. 110 bude levnější!

Zdroj konstantního proudu, zahrnující T_1 a rezistor zvoleného rozsahu (R_4 až R_9) dodává konstantní proud pro invertující vstup operačního zesilovače IO. Neznámý rezistor se zapojí mezi invertující vstup operačního zesilovače a jeho výstup. Výstupní napětí bude lineárně úměrné poměru odporu měřeného rezistoru k odporu rezistoru zvoleného rozsahu.

 R_{10} omezuje maximální výstupní proud IO, diody D_1 a D_2 omezují napětí v obvodu měřidla a zamezují přetížení měřidla.

Všechny rezistory pro určení rozsahů jsou typy s přesností 1 nebo 2 %, měřidlo má třídu přesnosti asi 2, P dovoluje nastavit proud zdroje a tím i nulu měřidla. Pro napájení přístroje se používají dvě baterie 9 V nebo souměrný síťový zdroj s dobře vyhlazeným napětím ±9 V.

Elektronický teploměr

Elektronický teploměr na obr. 111 využívá levného obvodu National LM3911, který je vhodný pro měření teploty vzduchu, ale méně vhodný pro aplikace s kontaktním měřením teploty. Výstupní signál IO budí bázi tranzistoru, jehož kolektorový proud je nastaven tak, aby se na výstupu měnilo napětí o 10 mV na stupeň Kelvina. Záporný vývod obvodu LM3911 dostává napětí z přesné referenční diody Zenerova typu LM103 ($U_Z = 3,6 \text{ V}$).

Obr. 111. Elektronický teploměr

Jako $\rm R_2$ a $\rm R_3$ jsou specifikovány rezistory o přesnosti 0,1 %, mohou však být použity i rezistory 1 %, pokud je možné připustit menší přesnost měření.

Měřič kapacity s lineární stupnicí

Použitím zapojení na obr. 112 je možné zhotovit velmi šikovný přístroj, který je dobře mít v dílně po ruce. Určitě bude využit!

Kapacitu je možné měřit v podstatě s přesností použitého měřidla. Běžné panelové měřidlo má při třídě 2,5 přesnost 2,5 %, takže kapacitu kondenzátorů lze měřit s přesností lepší, než má většina běžných kondenzátorů.

 T_1 tvoří relaxační oscilátor UJT, dodávající na rezistoru R_4 krátké impulsy. Každý impuls

otevírá T₂, jehož kolektorové napětí se v době trvání impulsu zmenší a spouští obvod 555. T₁ osciluje na kmitočtu kolem 1 kHz, integrovaný obvod 555 je tedy spouš-

těn přibližně každou milisekundu.

Mezi spouštěcími impulsy je vývod 2 obvodu 555 držen ve stavu log. 1, čímž se nastavuje vnitřní klopný obvod, zapíná vnitřní pomocný tranzistor, zkratuje vývod 7 na zem a tím se zkratuje kondenzátor neznámé kapacity C_x .

Když se spustí 555, zkrat na $C_{\rm x}$ se uvolní a měřený kondenzátor se nabíjí přes jeden z rezistorů, zvolených přepínačem rozsahů. Napětí na $C_{\rm x}$ se pak exponenciálně zvětšuje po dobu, která je určena kapacitou $C_{\rm x}$ a odporem rezistoru zvoleného rozsahu, tedy:

$$t = 1.1 R_r C_x$$

kde $R_{\rm r}$ je odpor rezistoru rozsahu. Na konci této periody komparátor obvodu 555 nuluje klopný obvod, což způsobí sepnutí vnitřního pomocného tranzistoru, který $C_{\rm x}$ vybije. Vývod 3 obvodu 555 opět přechází do nuly a tento cyklus se opakuje při každém spuštění obvodu 555.

Protože rezistor rozsahu je pevný, poměr zapnutí k vypnutí výstupního impulsu bude určován kapacitou $C_{\rm x}$ neznámého kondenzátoru a bude nezávislý na kmitočtu oscilací

T₁. Vývod 3 obvodu 555 dodává proud přes R₆ a P₁ do měřidla, to ukazuje výchylku úměrnou poměru zapnutí a vypnutí. Protože výstupní napětí na vývodu 3 nemění své stavy od 0 V do napětí zdroje, je výstupní ss ofset kompenzován kladným napětím (na "kladném" vývodu měřidla), přiváděným z děliče R₁₃ – P₂. Potenciometr P₂ se tedy používá k nastavení nuly měřidla.

Všechny rezistory rozsahů jsou typy s přesností 1 %, ale vyhoví i přesností 2 %. Poloha 1 na přepínači rozsahů je určena pro kalibraci, kondenzátor C₃ je slídový nebo polyesterový s přesností 2 %. Toto uspořádání dovoluje nastavit trimrem P₁ plnou výchylku ručky měřidla bez připojení vnějšího kondenzátoru.

Další polohy přepínače rozsahů jsou: v poloze 2 100 pF na plnou výchylku, v poloze 3 1 nF, v poloze 4 10 nF, v poloze 5 100 nF a poloha 6 odpovídá 1 μF na plnou výchylku ručky.

Nastavení nuly se v praxi používá jen na rozsahu 100 pF. Spoje svorek C_x , Př $_1$ a 555 by měly být co nejkratší.

Když použijete jako měřidlo přístroj s citlivostí 500 μA, bude jeho plná výchylka odpovídat rozsahům 50 pF až 500 nF. Při použití obvodu 556 může být jedna jeho polovina použita jako náhrada tranzistorů T₁ a T₂.

Zkoušeč tranzistorů dobrý/vadný

Máte ve svých zásobách hodně použitých tranzistorů? Jednoduchý zkoušeč na obr. 113 vám umožní zjistit, který si ponechat, a které raději vyhodit.

Obr. 113. Zkoušeč tranzistorů dobrý – vadný

Zjistěte vývody báze, emitoru a kolektoru, přepněte přepínač podle typu tranzistoru do polohy p-n-p nebo n-p-n, tranzistor připojte. Při stisknutí tlačítka T_1 se pro tranzistory se středním a velkým zesílením rozsvítí dioda LED. Pokud se nerozsvítí nebo jenom slabě žhne, stiskněte T_2 , dioda LED by se měla rozsvíti, což indikuje součástku s malým zesílením. Stiskněte tlačítko Tl_3 pro kontrolu zbytkového proudu. LED nemá svítit vůbec, nebo jen slabě.

Identifikace hradel CMOS

Máte ve svých zásobách hodně hradel CMOS a potřebujete je roztřídit podle typů? Použijte jednoduchý tester na obr. 114.

Obr. 114. Indikace hradel CMOS

Standardní čtveřice hradel se naštěstí vyrábějí v pouzdrech DIL o 14 vývodech. Zasuňte je do zkušební objímky, stiskněte T_1 a údaj displeje:

- "A" znamená, že jde o hrdla AND,
- "A." znamená, že jde o hradla NAND,
- "O" znamená, že jde o hradla OR,
- "O." znamená, že jde o hradla NOR.

Elektronický teploměr

Základem tohoto velmi dobrého teploměru s rozsahem 0 až 100 °C je přesný proudový zdroj/snímač teploty LM334 firmy National Semiconductors. V zapojení na obr. 115 dodává IO₁ proměnné napětí na vstup přes-

Obr. 115. Elektronický teploměr

ného operačního zesilovače IO2.

Kombinace rezistorů $R_1-R_2-R_3-P_1$ zajišťuje potřebné předpětí pro IO_1 , potenciometrem P_1 se nastavuje 0 °C.

Protože měřidlo je ve zpětnovazebním obvodu IO₂ a R₄, P₂ určuje zpětnou vazbu, je potenciometr P₂ určen k nastavení maxima teplotního rozsahu. Použijte keramické odporové trimry a rezistory 1 %. Přístroj je možné kalibrovat například ponořením IO₁ do tající ledové vody pro nulový bod a do vody na počátku varu pro 100 °C.

Zkoušeč tranzistorů v zapojeném stavu (in-circuit)

Tento šikovný malý zkoušeč (obr. 116) dovoluje kontrolovat tranzistory zapojené v obvodech, což je ideální pro opravy a údržbu.

Vývody zkoušeče s označením báze, emitor, kolektor jsou opatřeny stiskacími háčkovými svorkami, takže je lze připojit k vývodům měřeného tranzistoru na desce s plošnými spoji nebo tam, kde je tranzistor umístěn.

Obr. 116. Zkoušeč tranzistorů v zapojeném stavu (in-circuit)

Zapojení tvoří jednoduchý zpětnovazební nízkofrekvenční oscilátor, s primárním vinutím transformátoru naladěným kondenzátorem C_1 a zpětnou vazbou báze – emitor, zajištěnou kondenzátorem C_2 a sekundárním vinutím Tr, což je běžný nízkofrekvenční transformátor. Proud báze dodává R_2 . Reproduktor může být malý typ o \varnothing 50 mm, vyhoví však každý reproduktor vhodného rozměru, dokonce ani jeho impedance není příliš důležitá.

Miniaturní generátor signálu

Integrovaný obvod LM3909 může být zapojen jako nízkofrekvenční impulsní generátor a použit jako zdroj signálu při hledání závad v elektronických přístrojích (obr. 117). Protože generátor může být napájen z baterie 1,5 V, může být zhotoven jako "tužkový", případně umístěn do pouzdra sondy. Zem generátoru se se zemí přístroje spojuje jediným vodičem s krokosvorkou, výstup signálu je na hrotu sondy. I když je spotřeba proudu sondy velmi malá, doporučujeme do přívodu kladného napětí baterie zapojit spínač.

Obr. 117. Miniaturní generátor signálu

Zkoušeč pro třídění tranzistorů n-p-n, p-n-p

Potřebujete roztřídit tranzistory ve svých zásobách na typy p-n-p a n-p-n? Žádný problém! Použijte zapojení na obr. 118.

Zapojení používá klopný obvod, který budí oddělovací stupně, jejichž výstupy napájejí dvě diody LED. Když připojíte tranzistor n-p-n, buzení IO_{1c} je blokováno, protože tranzistor vede vždy, když výstup IO_{1c} přejde do stavu log. 1, svítí tedy pouze LED 2. Kmitočet oscilací klopného obvodu IO_{1a} a IO_{1b} je velmi vysoký a setrvačnost zraku zajišťuje, že vidíme pouze trvale svítící diodu LED.

Obr. 119. Širokopásmový zkoušeč krystalů

krystaly s drátovými vývody použijte stiskací svorkv.

OBVODY S TRANZISTORY UJT

(případně s jejich náhradami běžnými tranzistory)

Zkoušečka propojení s akustickou indikací

Akustické zkoušečky jsou praktické – nemusíte sledovat stupnici měřidla, ale soustředíte se na to, kam připojujete sondy!

Tranzistor UJT (viz str. 160) je na obr. 120 zapojen jako jednoduchý oscilátor v nízko-frekvenční oblasti a používá jako zvukový výstup piezoelektrický měnič.

Když se propojí červená a černá sonda, uzavře se obvod oscilátoru, T₁ osciluje a napěťové impulsy na rezistoru budí piezoelektrický měnič – slyšíte tón. Výšku tónu oscilátoru můžete měnit změnou kapacity kondenzátoru 2,2 μF, nebo změnou odporu rezistoru R₁. Když je odpor zkoušeného obvodu kolem 1 kΩ, nebo větší, je výstupní tón nižší, než při propojení sond dokrátka.

Obr. 118. Zkoušeč pro třídění tranzistorů (p-n-p – n-p-n)

Při připojení tranzistoru p-n-p je buzení IO_{1b} blokováno, protože tranzistor vede, když je výstup IO_{1b} ve stavu log. 1 – a to dovoluje svítit pouze diodě LED 1.

Širokopásmový zkoušeč krystalů

Zkoušeč krystalů na obr. 119 pracuje s krystaly, které mají základní kmitočet až do 20 MHz (i vyšší).

T₁ je zapojen jako standardní "širokopásmový" Colpittsův oscilátor. Výstupní signál se odebírá z jeho emitoru a je usměrňován zdvojovačem napětí, který dodává proud do báze T₂. Když je krystal dobrý, bude oscilovat a výsledné usměrněné vf napětí sepne tranzistor T₂, jehož kolektorový proud rozsvítí diodu LED.

Zapojení může být napájeno z baterie 9 V pro tranzistorové přijímače, ale baterie 4,5 V nebo 6 V vyhoví také. Stiskněte tlačítko a sleduite diodu LED!

Pro připojení krystalů s paticí je možné paralelně propojit řadu objímek pro všechny typy krystalů, které mají být zkoušeny; pro

Obr. 120. Zkoušečka propojení s akustickou indikací

Zkoušeč krystalů s UJT

Zbyly vám v šuplíku nějaké krystaly a nevíte, jsou-li dobré či nikoli? Vyzkoušejte je jednoduchým zkoušečem krystalů dobrý/vadný na obr. 121.

V zapojení je použit dvoubázový tranzistor UJT (2N2646, DS2646), zapojený jako zpětnovazební oscilátor. Když krystal kmitá, vzniká na vf tlumivce v bázi 1 tranzistoru vf napětí. Toto napětí se usměrňuje germaniovou diodou, nabíjí C₃ a rozsvítí diodu LED. Nejlépe je použít LED s velkým jasem pro

Obr. 121. Zkoušečka krystalů s UJT

dosažení nejlepší citlivosti; tyto diody svítí při proudu menším než 1 mA.

Zapojení je napájeno z baterie 9 V pro tranzistorové přijímače. Pro připojení krystalů je možné zapojit paralelně několik objímek pro různé rozteče vývodů krystalů; pro krystaly s drátovými vývody použijte stiskací svorky. Pak stiskněte tlačítko na několik sekund a pozorujte, rozsvítí-li se dioda LED. Zapojení pracuje s krystaly do 7 až 8 MHz (maximální kmitočet závisí i na vlastnostech jednotlivých UJT). Krystaly pro harmonické kmitočty se základním kmitočtem v tomto rozsahu budou pracovat také. Přípravek je velmi vhodný pro zkoušení počítačových "hodinových" krystalů, televizních krystalů a ostatních nízkofrekvenčních krystalů.

Oscilátor UJT pro výcvik telegrafie

Sestavte si oscilátor pro nácvik morseovky s jedním UJT, tranzistorem a několika dalšími součástkami podle obr. 122!

Obr. 122. Oscilátor s UJT pro výcvik telegrafie

T₁ je zapojen jako konvenční oscilátor UJT, pracující na kmitočtu několika set Hz. Signál pilovitého průběhu na kondenzátoru C₁ má amplitudu několik voltů a přivádí se do báze výstupního zesilovače T₂ přes C₂ (stejnosměrné oddělení) a R₄. Proud báze pro T₂ zajišťuje rezistor R₅.

V zapojení je třeba použít reproduktor s velkou impedancí nebo dynamická sluchátka (která zajistí, že nácvik nebude nikoho rušit). Kontakty klíče se zapojí do kladného přívodu od baterie 9 V. Kondenzátor C₃ poněkud "zakulacuje" ostrý zvuk (který je výsledkem pilovitého průběhu signálu).

Sinusový oscilátor s UJT

Sinusový výstup z oscilátoru UJT je možné dosáhnout zapojením paralelního laděného obvodu do série s bází 2 (obr. 123). Relaxační kmitočet UJT se nastaví na rezonanční kmitočet laděného obvodu. Proudové impulsy báze 2, kterým vznikají při každém spuštění emitoru, rozkmitají obvod LC a tím vzniká relativně jakostní signál sinusového průběhu.

Elektronika proti psům

Zapojení na obr. 124 je obdobou různých přístrojů proti hlodavcům, tentokrát v aplikaci proti psům.

IO₁ je zapojen jako vysokofrekvenční oscilátor, generující úzké impulsy. Kmitočet může být nastaven trimrem P₁, střída se nastavuje potenciometrem P₂. Výstup IO₁ budí bázi T₁ přes R₅ a D₁, D₂. Impulsy na kolektoru T₁ budí reproduktor, vysokotónový piezoelektrický reproduktor se zvukovodem. Pracuje na kmitočtu vysoko nad rozsahem našeho sluchu a vydává velmi hlasité zvuky, dobře slyšitelné pro psy a ostatní zahradní čtyřnohé škůdce.

Obr. 124. Elektronikou proti psům

Diody D₁D₂ jsou použity pro vytvoření spínacího napětí pro T₁, protože výstupní signál IO₁ se nezmenšuje až k nule.

Výsledky je možné optimalizovat experimentováním s potenciometry.

Servosynchronizátor zábleskového zařízení

Pro dálkové spuštění pomocného zábleskového zařízení při fotografování bez zbytečných drátů na podlaze použijte obvod na obr. 125.

Obr. 125. Servosynchronizátor elektronického blesku

Při odpálení hlavního zábleskového přístroje se fototranzistor otevře a na R₁ se vytvoří impuls. Ten je kapacitně vázán na R₂ a tedy na řídicí elektrodu tyristoru T_y. Tyristor vede a zkratuje spouštěcí vývody synchronizátoru vzdáleného zábleskového zařízení.

Obr. 126. Zvuková synchonizace fotografického blesku (spoj $R_{\rm B},\ P_2$ nemá být spojen s $D_{\rm I},\ R_{\rm B})$

Zvuková synchronizace fotografického záblesku

Pro dosažení fotograficky efektních snímků můžete žastavit na snímku akce, které jsou doprovázeny zvukovým signálem – dopad míčku, rozbití žárovky atd. Zapojení na obr. 126 zachytí zvuk, zesílí jeho signál a spustí zábleskové zařízení po předem nastaveném zpoždění.

Zvuk snímaný krystalovým mikrofonem zesiluje a usměrňuje IO₁, T₁, D₁ a vytvářejí se kladné impulsy na kolektoru T₁. Ty se přivádějí na řídicí elektrodu tyristoru T_y, který se používá pro sepnutí synchronizátoru zábleskového zařízení. Potenciometrem P₁ se nastavuje citlivost, P₂ nastavuje zpoždění tak, amilisekundách po akci, nebo současně s akcí.

Zkontrolujte zapojení nejprve orientační zkouškou. Pak můžete potmě otevřít závěrku fotografického přístroje, a do toho! Opakujte s různými zpožděními pro dosažení různých efektů.

Zapojení pro ochranu polarity

Polaritu každého obvodu, který může být ohrožen nesprávnou polaritou připojení napájecího zdroje, je možné chránit použitím jednoduchého diodového můstku (obr. 127).

Obr. 127. Zapojení pro ochranu polarity

Diody musí být dimenzovány na napětí a proud, který se dá očekávat. Prevence je lepší – a levnější! – než odstraňování následků.

Digitální generátor kvadraturní fáze

Dvojitý klopný obvod J-K typu 7474 (obr. 128) může být zapojen pro dosažení dvou výstupů s fázovým rozdílem 90°. Kmitočet vstupního signálu musí být čtyřnásobkem kmitočtu výstupního.

Obr. 128. Digitální generátor kvadraturní fáze

Tajemné cvrkání

Chcete se pobavit na cizí účet? Zapojení podle obr. 129 můžete schovat v místnosti, přivést napájecí napětí a přístroj začne vydávat záhadné zvuky, které znějí jako rosnička nebo cvrček. Ale jakmile se rozsvítí světlo, aby se našel původce, cvrkání přestane!

Používají se čtyři obvody 555. IO₁ je spoušťový obvod ovládaný světlem. Ve tmě má fotorezistor velký odpor á výstup IO₁ přechází do stavu log. 1, protože dělič napětí, tvořený potenciometrem P₁ přivádí na spouštěcí a prahový vývod (vývody 2 a 6) úroveň log. 1. Stav log. 1 na vývodu 3 (tedy výstupu IO₁) dodává napájecí napětí pro IO₂, oscilátor s dlouhou periodou, jehož výstup nabývá úrovně log. 1 po dobu asi jedné sekundy vždy za několik sekund.

Obr. 129. Tajemné cvrkání

Vývod 3 IO₂ zapíná IO₃, nízkofrekvenční oscilátor, který zase zapíná a vypíná impulsně IO₄. Obvod IO₄ osciluje na nízkofrekvenčním kmitočtu, který je na slyšitelný tón převáděn piezoelektrickým měničem. IO₂ a IO₄ vytvářejí cvrkání, které se opakuje v souladu s periodou IO₂.

Když někdo rozsvítí, aby zjistil, co působí ty zvuky, odpor fotorezistoru se zmenší, úroveň vývodů IO₁, označených 2 a 6, poklesne k nule (jeho výstup také) tím je vypnut zbytek zapojení.

Celé zapojení je napájeno baterií 9 V pro tranzistorové přijímače. Výšku tónu je možné snížit zvětšením kapacity kondenzátoru mezi vývody 2 a 6 obvodu IO a zemí. Zvuk je pak více skřehotavý.

Zesilovač pro video

Když potřebujete přenést videosignál po delším koaxiálním vedení nebo vyrovnat ztráty v rozbočovačích, atd., pak je zesilovač na obr. 130 ideálním řešením.

Obr. 130. Zesilovač pro video

Zapojení má zisk kolem 6 dB (tj. zesílení asi 4) a má vstupní a výstupní impedanci 75 Ω . Všechny součástky jsou běžné. Zapojení používá přímou vazbu, kondenzátory C_1 a C_2 zajišťují stejnosměrné oddělení. T_1 a T_2 jsou zapojeny se společným emitorem se zpětnou vazbou zavedenou rezistorem R_5 , který je společný pro emitor T_1 a kolektor T_2 .

T₃ je zapojen jako stupeň se společným kolektorem, který zajišťuje oddělení výstupu a malou výstupní impedanci.

Při konstrukci dodržujte minimální délku všech spojů a umístění vstupu a výstupu na opačných stranách desky s plošnými spoji, aby se zabránilo nežádoucí zpětné vazbě. Zapojení je napájeno ze zdroje napětí 12 V, které by mělo být stabilizováno, aby se zabránilo nežádoucí modulaci videosignálu.

Nastavitelný stabilizátor se Zenerovou diodou

Napětí Zenerovy diody je možné upravit (obr. 131) zapojením až čtyř diod do série s ní, čímž se zvětší Zenerovo napětí o napětí na diodě v propustném směru (pro každou z dalších diod).

Obr. 131. Nastavitelný stabilizátor se Zenerovou diodou

Jedna dioda zvětší napětí o asi 0,6 V, dvě o 1,2 V, atd. Pokud by bylo třeba zapojit více než čtyři diody do série, pak je lépe použít další Zenerovu diodu v řadě, neboť jinak se stabilizační účinky zapojení poněkud zhorší.

Generátor signálu s obvodem 555

S obvodem 555 je možné sestrojit výborný injektor signálu pro zjišťování závad v nízko-frekvenčních a vysokofrekvenčních obvodech (obr. 132).

Obr. 132. Generátor signálu s obvodem 555

S vývody 2, 6 a 7 propojenými vzájemně a připojenými k časovací kombinaci RC P₁, R₁, C₁, generuje obvod 555 velmi úzké a velmi rychlé impulsy, které produkují harmonické kmitočty až do megahertzové oblasti.

Základní oscilační kmitočet se nastavuje potenciometrem P₁. Úroveň vstupního signálu se nastavuje potenciometrem P₂. Zapojení může být napájeno napětím z kontrolovaného přístroje v rozmezí mezi 5 až 15 V, popř. z baterie 6 V nebo 9 V.

Napětím řízený oscilátor (VCO) s 555

Zapojení (na obr. 133) napětím řízeného oscilátoru, používajícího obvod 555, je mimořádně jednoduché. Napětím řízené oscilátory jsou velmi užitečné v širokém rozsahu aplikací. Tento obvod umožňuje změnu kmitočtu v rozsahu více než 100:1.

Obr. 133. Napětím řízený oscilátor (VCO) s 555

Namísto připojení časovacího kondenzátoru ke kladnému napájecímu napětí jej připojte k proměnnému napětí. Tím se mění spouštěcí i prahové napětí a tedy perioda potřebná pro nabití kondenzátoru – a tím i kmitočet oscilátoru.

Zapojení má velmi dobrou lineární závislost mezi napětím a kmitočtem a rozsah několik dekád. S uvedenými hodnotami součástek se kmitočet výstupního signálu mění od asi jednoho impulsu za sekundu až do asi 150 impulsů za sekundu, když se vstupní napětí mění v rozsahu několika voltů.

Rezistor 1 kΩ mezi vývody 2–6 a 7 prodlužuje výstupní impulsy. Pokud nezáleží na šířce výstupních impulsů, může být vynechán

Blikač 555 se dvěma diodami LED

Protože výstupní obvod integrovaného obvodu 555 je komplementární, může být

Obr. 134. Blikač s 555 se dvěma diodami LED

Obr. 135. Levný generátor impulsů

zapojen tak, aby se při výstupním napětí blízkém nule rozsvítila dioda LED₁ a při výstupním napětí, blízkém napájecímu, dioda LED₂.

Integrovaný obvod 555 je na obr. 134 zapojen tak , aby LED blikaly pomalu a to v konvenčním astabilním zapojení, přičemž časová konstanta závisí na článku R₁, R₂ a C₁.

Rezistory R₃ a R₄ omezují proud, odebíraný svítivými diodami.

Obrázky 1 až 134 převzaty z časopisu ETI circuit cook book, č. 6.

DALŠÍ RŮZNÁ ZAPOJENÍ

Univerzální levný generátor impulsů

Zapojení na obr. 135 generuje pravoúhlé impulsy v kmitočtovém rozsahu 1 Hz až 100 kHz a nastavitelnou střídou od téměř 0 % až do téměř 100 %, nezávislou na kmitočtu. Protože napájecí napětí může být 5 až 15 V, je tento generátor vhodný pro zkoušení logických obvodů TTL i CMOS.

Při měření zesilovače, jako zdroj taktovacího signálu pro digitální zapojení, nebo pro řízení výkonu šířkovou modulací výkonového tranzistoru nebo FET, nebo prostě pro experimentování je tento měřicí generátor velmi vhodný, neboť je malý a levný, lze jej snadno a rychle postavit – je tedy všestranně užitečný.

Nejdůležitější součástkou zapojení podle obr. 135 je integrovaný obvod CMOS TLC556, který obsahuje dva časovací obvody 555 v provedení MOS na jednom čipu. Obr. 136 ukazuje zapojení časovacího obvodu 556, který je plně nahraditelný běžnými obvody 555).

Integrovaný obvod IO₁ je zapojen jako astabilní multivibrátor, na jehož výstupu (vývod *5*) je pravoúhlý signál. Jeho kmitočet závisí podle vztahu

$$f = \frac{1}{\ln 2 \cdot C_v(P_{1a} + R_1 + 2R_2)}$$

na poloze přepínače a běžce P_{1a} . Podle toho je možné generovat kmitočty mezi 1 Hz ($P_{1a}=1$ M Ω , $C_x=1$ μF) a 100 kHz ($P_{1a}=0$, $C_x=100$ pF): potenciometr umožňuje měnit kmitočet signálu v rozsahu jedné dekády. S kmitočtem se také mění poměr signál – mezera (střída). Když má potenciometr maximální odpor, prodlužuje se doba

signálu až o činitele 10, zatímco doba mezery zůstává stejná. Délka impulsu totiž závisí na nastavení potenciometru podle vztahu $C_x(R_1+R_2+P_{1a})ln$ 2, zatímco mezera se podle vztahu C_xR_2 ln 2 nemění. Když se přepínačem spojí vstup "threshold" (práh) se zemí, je časovací obvod vypnut.

Aby se změna kmitočtu neprojevovala na poměru signál – mezera, je použit další časovací obvod, který je startován náběžnou hranou impulsu na vývodu 5. Řetězec tří hradel hranu zpožďuje a invertuje. Na vstupech čtvrtého hradla je tedy stav log. 1 jen po dobu tohoto zpoždění a tak dlouho trvá také spouštěcí impuls, který je přiváděn na IO_{1b}.

Obvod IO_{1b} je na rozdíl od IO_{1a} zapojen jako monostabilní multivibrátor. Kmitočet výstupního signálu závisí pouze na kmitočtu spouštěcích impulsů, poměr signál – mezera však na poloze běžce potenciometru P₂; P_{1b}, P₃, R₃ a C₈ až C₁₂ zajišťují, aby nastavený čas přepnutí monostabilního klopného obvodu nebyl delší než časová konstanta IO_{1a}, nastavená P_{1a}, C₂ až C₆.

Tento bezproblémově reprodukovatelný generátor může být konstruován i na univerzální destičce, samozřejmě je také možné navrhnout malou desku s plošnými spoji. Při oživování je vhodné, pokud máte k dispozici osciloskop, nastavit P3 tak, aby při maximálním odporu P2 byl výstupní impuls o něco málo kratší, než je doba trvání periody výstupního signálu IO1a. Pak nemůže být IO nesprávně spouštěn. Při velmi krátkých dobách nabíjení a vybíjení mohou mít vliv i parazitní interní kapacity časovacích obvodů. Pro přesné dodržení kmitočtových dekád je třeba C2 a C8 experimentálně poněkud zmenšit; ve vzorku byly nakonec použity styroflexové kondenzátory 82 pF.

K napájení tohoto malého měřicího přístroje může být použita baterie 9 V, popř. stabilizovaný zdroj, nastavitelný v rozsahu 5 až 15 V. Obvod má bez zatížení odběr proudu kolem 0,3 mA (při 9 V).

Výstupní úroveň pravoúhlého signálu prakticky odpovídá napájecímu napětí generátoru. Pro řízení obvodů TTL musí proto být použito napájecí napětí 5 V, u obvodů CMOS volíme napájecí napětí stejné jaké má obvod, který má být řízen. Výstup impulsního generátoru může být zatížen výstupním proudem maximálně 10 mA, když je výstup ve stavu log. 1, a může přijmout proud 100 mA, když je ve stavu log. 0.

Elektor 11/1990

Obr. 136. Zapojení obvodu 556 a 555

Kompaktní síťový zdroj 10 A

Popisovaný zdroj v moderním provedení může být použit jako náhrada akumulátoru, na příklad při stacionárním provozu přístrojů s napájením 12 V, pro zkoušení zařízení autoelektroniky, případně pro nabíjení velkých akumulátorů. Výstupní napětí je nastavitelné v rozsahu 4 až 20 V, vzhledem ke stavebnicovému řešení může být proudový odběr snadno zvětšen na 20 A (i více).

Většina moderních napájecích zdrojů je konstruována s využitím integrovaných stabilizátorů napětí. Ty se vyrábějí v celé řadě variant, jsou levné, snadno dostupné a kromě toho umožňují kompaktní a přehlednou konstrukce napájecího zdroje pro odběr 10 A, používá nastavitelný třívývodový stabilizátor LM317 (výstupní proud max. 1,5 A). Neobvyklé je použití několika integrovaných obvodů v paralelním zapojení pro dosažení požadovaného maximálního výstupního proudu.

Obvod LM317

Před popisem zapojení vlastního zapojení přístroje uvedeme základní informace o integrovaném obvodu LM317. Jde o stabilizátor napětí se třemi vývody, jehož vnitřní stabilizační obvod udržuje napětí mezi výstupem a vstupem pro nastavení na konstantní úrovni 1,25 V – při dodržení podmínky, že výstupní proud je nejméně 5 mA, že je k dispozici napěťový rozdíl 3 V mezi výstupním a vstupním napětím, a že nebude překročen ztrátový výkon 15 W na obvodu. Když se totiž IO příliš oteplí, sepne ochranné zapojení, které stabilizátor vypne.

Obr. 137. Síťový zdroj

Výstupní napětí IO se nástavuje děličem napětí mezi výstupem, vstupem pro nastavení a kostrou (viz obr. 137). Protože napětí na R₁ je konstantní, 1,25 V, protéká rezisto-

rem R_1 také konstantní proud a podobně i rezistorem R_2 , pokud nepřihlížíme k malému zatížení vstupem pro nastavení. Protože proud oběma rezistory je trvale stejně velký, určuje poměr R_1 ku R_2 výstupní napětí:

$$U_{\text{výst}} = \frac{R_1 + R_2}{R_1} = 1,25 \text{ V}.$$

Čím větší je $\rm R_2$ v poměru k $\rm R_1$, tím větší je také výstupní napětí. Při $\rm R_2=0~\Omega$ bude na výstupu pouze 1,25 V. Když se zapojí několik stabilizátorů paralelně, pak se výstupní proud rozdělí a může pak být větší než 1,5 A pro jednotlivý obvod. Pro ideální rozdělení proudu by však všechny stabilizátory musely mít přesně stejné výstupní napětí. Protože toho dosáhnout v praxi nelze, je třeba do výstupů zařadít sériové rezistory $\rm R_s$. Za předpokladu, že $\rm R_s$ je malý proti $\rm R_1$, vypočítá se maximální výstupní proud podle vztahu

$$I_{\text{vyst}} = \frac{U_{\text{nast1}} - U_{\text{vyst1}} \frac{R_{1}}{R_{1} + R_{2}}}{R_{\text{s1}}} + \frac{U_{\text{nast2}} - U_{\text{vyst2}} \frac{R_{1}}{R_{1} + R_{2}}}{R_{\text{s2}}} + \dots$$

Protože v každém výrazu (který vyjadřuje dílčí proud jednou větví) jsou R_1 a R_2 konstantní, projeví se tolerance součástek v $U_{\rm nast}$ a $R_{\rm s}$ vždy v mírně odlišných výstupních napětích. Rozdíl napětí mezi IO a společnou výstupní svorkou otepluje $R_{\rm s}$. Kromě toho tím, že $R_{\rm s}$ je součástí napěťového děliče (tedy referenční napětí 1,25 V je úbytkem na R_1 a $R_{\rm s}$), je výstupní napětí závislé na výstupním proudu; tato závislost však při pečlivé stavbě nepřekročí 60 mV.

Stabilizace napětí

Napětí v tomto zdroji se nenastavuje jednoduše potenciometrem, ale stabilizačním zapojením, které je na obr. 138. Invertující vstup operačního zesilovače je spojen s pevným děličem napětí, a protože $R_4 = R_5$, je na něm napětí $U_{vyst}/2$. Na druhém vstupu je konstantní napětí, které vzniká výše popsaným konstantním proudem, protékajícím tranzistorem a R_3 , P_1 . Tranzistor, zapojený zde jako řízený odpor, je vždy otevřen tak, aby na obou vstupech operačního zesilovače byla stejná napětí. Změnou P_1 se nastavuje právě shoda obou napětí.

Obr. 138. Stabilizační zapojení

Celkové zapojení zdroje na obr. 139 má tři funkční bloky: transformátor s usměrňovači a elektrolytickými kondenzátory, destičku

osazenou stabilizátory LM317 a společnou destičku nastavení napětí s indikací proudu a napětí. Koncepce je stavebnicová: jednou malou destičkou nastavení je možné ovládat několik desek s LM317, např. jsou třeba tři destičky pro celkový proud 30 A. Dvě vinutí transformátoru 15 V jsou i s můstkovými usměrňovači zapojena paralelně a mohou dodávat 2 × 7.5 A = 15 A. Velikost transformátoru samozřejmě závisí na předpokládaném použití zdroje. Transformátor by měl být schopen dodávat 1,4krát větší proud, než je požadovaný výstupní proud. Filtrační elektrolytické kondenzátory musí mít kapacitu neiméně 1000 µF/1 A, tedy minimálně 10 000 μF pro 10 A. V popsaném zapojení byly použity kondenzátory dvojnásobné kapacity. Pokud jde o transformátor, sekundární st napětí 15 V stačí pro výstupní stejnosměrné napětí 12 V, st 18 V pro 15 V ss a st napětí 27 až 28 V pro 28 V ss. Podle usměrněného napětí je ovšem třeba volit i pracovní napětí kondenzátorů. Větší sekundární napětí než 28 V není možné použít, protože stabilizátor LM317T má maximální vstupní napětí 40 V (absolutní mezní hodnota).

Na destičce pro nastavení napětí je počítáno s vývody pro dva ručkové měřicí přístroje pro měření výstupního proudu a výstupního napětí. Tyto přístroje je možné nahradit

Obr. 140. Zapínací automatika

panelovými měřidly LCD nebo LED, na jejichž vstupy jsou zapojeny bočníky 1 kΩ. Pak je ovšem třeba zajistit napájení indikační jednotky (buď síťovým zdrojem, nebo dvěma bateriemi 9 V a použitím zapínací automatiky s vazebními optoelektrickými členy – viz obr. 140).

Konstrukční provedení zdroje je jednoduché a závisí do značné míry na použitých součástkách. Namáhané, proudově zatížené spoje se doporučuje zhotovit z kabelu o průřezu 2,5 mm², kabely lze připojovat nástrčkovými kontakty jako v automobilu. Obě měřidla je třeba ocejchovat (potenciometry P₂ a P₃). Při použití bězného lineárního potenciometru jako P₁ lze výstupní napětí nastavit v rozsahu 4 až 20 V, použije-li se na tomto místě odporový trimr, můžeme zdroj nastavit na pevné výstupní napětí (na příklad 13,8 V při náhradě automobilového akumulátoru).

Elektor 11/1990

Improvizovaný vysokonapěťový tranzistor

I když je možné tranzistory řady BC5xx realizovat téměř všechny běžné funkce, vyskytují se některé aplikace, které vyžadují speciální tranzistory. Když na příklad překročí spínané napětí asi 65 V, musí být použit tranzistor pro vysoké napětí. Při použití určitého triku v zapojení je možné použít pro větší napětí i tranzistory BC. Bohužel i zde platí, že nic není zadarmo. Za prvé je nutné zapojit do série několik tranzistorů, za druhé se zvětší svodový proud a za třetí se zvětší i zbytkové napětí kolektor - emitor. V řadě aplikací to však nevadí. Tři tranzistory zapojené do série je možné teoreticky použít pro napětí až do 145 V. V praxi by však takové zapojení (viz obr. 141) nemělo být používáno pro napětí větší než 100 V.

Obr. 141. Improvizovaný vn tranzistor

Předpokládejme, že $U_{\text{CE}}=100\,\text{V},\ I_{\text{max}}=2\,\text{mA},$ pak je proud báze 10 μA při proudovém zesílení 200. Tranzistor T_3 povede od úbytku napětí 0,68 V na rezistoru R_4 . Proud báze tranzistoru T_2 protéká také přes R_4 . Tím se zvětší úbytek napětí na R_4 na celkem 1,36 V. Proud báze T_1 protéká přes R_1 a nezpůsobuje žádný přídavný úbytek. Je však třeba ještě respektovat saturační napětí T_1 . Celkový úbytek napětí na děliči napětí tedy je : 3 . $10\,\mu\text{A}$. $68\,\text{k}\Omega$ + $0.2\,\text{V}$ = $2.2\,\text{V}$. Zvětšení odporu rezistorů R_2 až R_4 na 270 k Ω sice zmenší svodový proud, ale saturační napětí se zvětší na $8.3\,\text{V}$. Elektor 7-8/1988

Programovatelná posloupnost spínání

Pro jednoduché reléové řídicí obvody je možné použitím elektronických zpožďovacích stupňů stanovit posloupnost zapínání. Zapojení na obr. 142 ukazuje řídicí zapojení se dvěma relé. Počet reléových stupňů je možné v tomto zapojení libovolně zvětšit.

Doba zpoždění a tím pořadí spínání se určuje členy RC na vstupech invertorů CMOS s vlastnostmi klopných obvodů Schmittova typu. Výstup invertoru spíná přes Darlingtonův tranzistor relé. Funkční cyklus záčíná zapnutím spínače S_1 , který připojí členy RC přes diodu D_1 na napájecí napětí $+U_B$. Kondenzátory se nabíjí přes rezistory různou rychlostí (podle časové konstanty RC). Když dosáhne napětí na kondenzátoru prahu sepnutí klopného obvodu, přechází jeho výstup do nuly a otevře Darlingtonův tranzistor, relé přitáhne.

Při vypnutí přepne S₁ kondenzátory přes oddělené rezistory a diodu D₂ na kostru. Je proto možné zvolit odlišnou sekvenci vypnutí, než byla posloupnost zapnutí.

Provozní napětí integrovaného obvodu může být 5 až 15 V, mělo by však odpovídat napětí relé. Relé by neměla mít příliš velký odběr proudu, protože použité Darlingtonovy dvojice BC516 nemohou spínat větší proud než 400 mA. V praxi je možné zvolit relé, která vystačí s proudem 200 mA (i s menším proudem). Členy RC je možné dimenzovat podle požadovaného časového

Obr. 142. Programovatelná posloupnost spínání

zpoždění, rezistory lze volit o odporu 1 k Ω až 10 M Ω , kondenzátory s kapacitou 10 pF až 100 μ F. Elektor 7–8/1988

Obr. 143. Síťový zdroj s automatickým vypínáním

Síťový zdroj s automatickým vypínáním

Malá přenosná zařízení jako kazetové magnetofony, radiomagnetofony a podobná se většinou při napájení ze sítě vestavěným síťovým zdrojem nebo ze síťového zdroje spojeného se zástrčkou nevypínají správně, ale pouze se odpojí od síťového napětí. Síťový zdroj s jeho malým transformátorem s velkými ztrátami pak zůstává zbytečně dále v provozu. To neznamená jen plýtvání energií, ale také určité bezpečnostní riziko, protože mnohé, zvláště levnější síťové zdroje, se při trvalém provozu dosti ohřívají.

Příklad zapojení malého síťového zdroje na obr. 143 používá odpojovací automatiku pro automatické odpojení od sítě. Jak ukazuje obrázek, princip je, jak tomu často bývá, jednoduchý: Když protéká výstupní proud, je napětí na diodách D₁ a D₂ dostatečně velké, aby vybudilo tranzistor T₂, protože diodami neprotéká žádný proud. Proud báze T₁ nyní nabíjí kondenzátor C₂, takže po několika sekundách relé odpadne a odpojí celé zapojení včetně transformátoru od sítě. Když se připojený přístroj (zátěž) zase zapne, pak stačí krátce stisknout tlačítko, zapojené paralelně ke kontaktu relé, aby se síťový zdroj znovu zapnul.

Výstupní napětí síťového zdroje je možné nastavit přepínačem, popř. volitelně drátovými propojkami. Podle odporu mezi body ochrana proti nadměrné teplotě. Zkušební vzorek byl vestavěn do krytu, spojeného se síťovou zástrčkou. Elektor 7–8/1988

A a B je výstupní napětí 3,5 až 9 V (odpor přibližně 1 V/100 Ω). Relé musí být přirozeně vhodné pro spínání síťového napětí. Zatížitelnost transformátoru by měla být asi 1,5krát větší, než je největší požadovaný výstupní stejnosměrný proud (který může být až 1 A při $C_1 = 1500 \mu F$). Větší kapacita C_2 prodlužuje zpoždění odpojení, na příklad proto, že nebylo nutné při výměně kazety

znovu startovat přístroi tlačítkem. Podle vý-

stupního proudu by měl být integrovaný ob-

vod opatřen chladičem, aby nespínala

Monitor napájecího napětí

Aplikační "potenciál" známého časovacího obvodu 555 se zdá být nevyčerpatelný. V tomto případě jde o sledování přítomnosti provozního napětí, které je současně také provozním napětím monitorovacího obvodu. Výpadek provozního napětí aktivuje bzučák s vlastní rezervou chodu.

Zapojení na obr. 144 je vhodné všude tam, kde častěji vypadává síť a výpadek sítě (pokud zůstane nepovšimnut) může mít nepříjemné následky. Monitor může však i způsobit poplach, když bude v rozporu s pokyny (neúmyslně) hlídaný přístroj vypnut. Časovací obvod pracuje v základním zapojení jako monostabilní multivibrátor. Za běžného stavu je na výstupu (vývod 3) integrovaného obvodu log. 0 a zelená dioda D1 ukazuje provozní připravenost. Zmenší-li se napájecí napětí pod určitou velikost (nastavitelnou potenciometrem P₁), obvod 555 se překlopí, jeho výstup přechází do stavu log. 1. Na dobu asi 7 sekund se rozsvítí červená svítivá dioda D₂, kromě toho přitáhne relé a zapne se bzučák. Velký elektrolytický kondenzátorzapojený paralelně s bzučákem udrží poplach ještě po dobu asi 30 sekund po totálním výpadku sítě.

Pro překonání krátkodobých přerušení síťového napětí (rušivé špičky) je na běžci potenciometru P₁ připojen poměrně velký kondenzátor. Pokud se požaduje poplach i při krátkých přerušeních, kondenzátor se v zapojení prostě vynechá. Doba varování, určovaná časovačem, může být nastavena volbou časové konstanty R2, C3 libovolně, pro dobu překlopení monostabilního obvodu platí: $t = 1,1 R_2 C_3$. Elektor 7-8/1988

Schodišťový automat

Tento automatický spínač schodišťového osvětlení pracuje se zapojením, určeným pro třívodičové připojení s řízením typu L. Při tom se používá společné vedení S jako snímací vedení a jako výstupní vedení k žárovkám. Tlačítky se toto snímací/výstupní vedení S spojí s F, čímž se automat zapne a sepne kontakt, paralelně zapojený k tlačítku. Tím dostává žárovka napětí F po vedení S. Po uplynutí nastavené doby automat opět vypíná a opět používá vedení S, aby zjistil stisknutí některého z tlačítek.

Zapojení na obr. 145 pracuje se známým univerzálním časovacím obvodem 555 v monostabilním režimu. Napájecí napětí se získává přímo ze sítě přes C₁, R₁, D₁ a D₂. Kondenzátor C2 toto napětí vyhlazuje: D3 je omezuje na maximálně 12 V. Časovou konstantu určuje P₁, R₆ a C₅. Při uvedených hodnotách součástek je možné potenciometrem P1 nastavit časy mezi 30 sekundami a asi 12 minutami. Obvod IO1 budí přes R4 triak Tc. který je zapojen paralelně s tlačítky pro rozsvěcení žárovek. V zapnutém stavu spojuje vedení F se S přes pojistku Po₁. Pro překlopení IO1 je třeba přivést sestupnou hranu impulsu, která je generována D₄, R₃, R₅ a C₃; při vypnutém osvětlení dostává vedení S přes žárovky napětí N, to znamená, že na triaku je síťové střídavé napětí. Dioda D₄ tedy propouští půlvlny, které jsou kladné proti zemi obvodu (vedení F). Dostávají se na dělič napětí R₃, R₅ a vytvářejí na C₃ stejnosměrné napětí, které dioda D5 omezuje na 12 V. Při stisknutí jednoho z tlačítek není již síťové napětí na triaku Tc, ale na žárovkách. Dokud zůstane tlačítko stisknuto, vybíjí se C3 přes R5 a tím generuje sestupnou hranu, potřebnou pro překlopení. Výstup (vývod 3) se překlopí na 12 V a tím se sepne T₁. Časová konstanta R₅C₃ určuje potřebnou dobu stisknutí tlačítka. D5 zajišťuje nabití kondenzátoru C3 při vypnutí T1.

Protože zapojení je provozováno s napájením přímo ze sítě, je třeba dodržet známá bezpečnostní opatření. Triak může zpracovat proud max. 4 A a měl by být při velkém zatížení opatřen chladičem. Aby bylo možné dosáhnout také dlouhých zapínacích časů. nesmí mít kondenzátor C5 příliš velký svodový proud.

Zapojení pracuje správně jen tehdy, když jsou správně zapojeny F a N. To znamená, že N je spojeno s tím pólem síťového vedení. který je připojen k žárovkám. Je také nutné spojit S bezpodmínečně se síťovým vodičem, který vede k tlačítkům. Při výměně za starý schodišťový automat je nutné zkontrolovat, ide-li skutečně o třívodičové zapojení s řízením L a ne třeba o variantu s řízením N. Je možné také trvalé sepnutí osvětlení: k tomu slouží spínač S, který propojuje S s F. Tento spínač musí přirozeně zvládnout proud žárovek - včetně velkého zapínacího proudu žárovek - a síťové napětí. Při vhodném návrhu plošných spojů je možné celé zapojení umístit do krabice pod spínač. Elektor 7-8/1990

Voltmetr pro síťové napětí

Možnost kontrolovat síťové napětí je při současném stavu rozvodné sítě a naší energetiky nesporně užitečná. Bylo proto vyvinuto jednoduché zapojení, umožňující měřit s velkou rozlišovací schopností střídavá napětí v rozsahu 210 až 250 V (obr. 146). Ručkový měřicí přístroj je zapojen v můstkovém zapojení mezi dva referenční body. Jeden z nich je mezi C1 a D1 a díky použití Zenerovy diody je na něm referenční napětí. V průběhu záporné půlvlny je to 0,7 V. Na C2 je střední hodnota pulsujícího stejnosměrného napětí (asi 24 V). Rezistor R₁ omezuje proud do C1, když se zapojení připojí k síti

Obr. 146. Voltmetr pro síťové napětí

a R2 vybíjí C1, když se voltmetr opět od sítě odpojí.

Na druhé straně měřidla vytvářejí R₃, D₂ a C2 steinosměrné napětí, které odpovídá špičkové hodnotě síťového napětí. Ke kondenzátoru C3 je připojen řetězec děliče napětí R₅, R₆ a P₂. Mezi oběma pevnými rezistory se odebírá porovnávací napětí pro srovnávání s referenčním napětím 24 V. Pro minimální indikované napětí (střídavé napětí 210 V) se zde potenciometrem P2 nastavuje steiné napětí jako na D₁. U našeho prototypu to bylo 24,8 V; toto napětí však značně závisí na výrobních tolerancích D₁ a C₂. Když isou obě napětí stejná, neprotéká měřidlem žádný proud a výchylka ručky je tedy nulová (počátek stupnice). Když se vstupní napětí zvětší až na maximum, pak je napětí mezi R₅ a R₆ asi o 1,5 až 1,9 V větší než referenční napětí na diodě D₁. Potenciometr P₁ se nastaví tak, aby tento rozdíl napětí vyvolal průtok proudu 50 µA měřidlem (maximální výchylka ručky měřidla). Uvedené odpory rezistorů jsou určeny pro rozsah 210 až 230 V, pro indikaci rozsahu 230 až 250 V je třeba odpor rezistoru R_6 zmenšit na 6,8 k Ω . Pokud chceme měřit rozsah 210 až 250 V. musí být kromě R₆ změněn také potenciometr P2 (na 5 kΩ). S ohledem na dlouhodobý drift použitých součástek se doporučuje přístroj čas od času přecejchovat.

Přístroj je možné nastavovat pouze tehdy, je-li galvanicky oddělen od sítě – k tomu se doporučuje pòužít regulační oddělovací transformátor. Je také nezbytné přístroj vestavět do izolované skříňky, aby se bezpečně zamezilo dotyku s částmi, na nichž je síťové napětí.

Elektor 7-8/1988

Teploměr pro rybáře

Zapojení (obr. 147), které je možné snadno sestavit, je zvláštně užitečné pro sportovní rybáře: stupnice se 16 diodami LED ukazuje teplotu vody, kterou měří čidlo v určité hloubce vody. Se znalostí teploty může rybář zvolit vhodnou návnadu, protože určité druhy ryb dávají přednost určité teplotě vody.

Zapojení bodového indikátoru s diodami LED se skládá ze známého integrovaného obvodu UAA170 s vnějšími součástkami pro příslušný rozsah teplot (1 až 19 °C). Potenciometrem P₁ se z referenčního napětí 5.6 V odebírá prahové napětí (U_{ref max}) pro "nejhořejší" diodu LED (D₁₆), potenciometrem P₂ se nastavuje prahové napětí U_{ref min} pro "nejdolnejší" diodu LED (D1). Diody LED mohou být barevně odlišeny, aby se dosáhlo jednoznačného čtení teploty. Vstupní napětí se získává děličem napětí R₂/R₆. Rezistor R₆ tvoří teplotně závislý rezistor (termistor) v teplotním čidle sondy, jak je zřejmé z obrázku. Čím je vyšší teplota vody, tím menší je odpor termistoru a tím větší je také vstupní napětí Uin.

Vývody termistoru a k nim připájený kabel se nejprve izolují smršťovací trubičkou, zasunou do kousku mosazné trubičky a nakonec zalijí epoxidovou pryskyřicí tak, aby termistor částečně vyčníval. Zapojení by mělo být vestavěno společně s baterií 9 V a ochrannou diodou proti přepólování (D₁₈) do krabice, odolné proti stříkající vodě. Kabel, na kterém je zavěšena sonda, je výhodné označit značkami hloubky vody. A pak už: Petrův zdar!

Obr. 147. Teploměr pro rybáře

Stmívač pro žárovky 12 V

Obvod na obr. 148 se ideálně hodí pro stmívání žárovek 12 V až do 21 W, jak jsou používány při kempingové dovolené. Podle tvrzení autora stmívač pracuje i s běžnými "kempovačími" zářivkami (až do 16 W), když se paralelně k zářivce přidá mezi oba body označené ve schématu "L" svitkový kondenzátor 0,47 µF.

Zapojení stmívače v podstatě spočívá v astabilním multivibrátoru, zapojeném s operačním zesilovačem IO₁. Při velkém výstupním napětí se nabíjí kondenzátor C₂ přes R₅, D₂ a horní polovinu P₁, na 8 V, při malém výstupním napětí se může kondenzátor vybíjet pouze přes dolní polovinu P₁, D₃ a R₆. Poloha běžce potenciometru tedy určuje klíčovací poměr (poměr signál – mezera mezi 16 % a 92 %), kmitočet je asi 38 Hz.

Na výstupu operačního zesilovače je zapojen výkonový tranzistor FET (T₁), který se přiváděným napětím pravoúhlého průběhu otevírá a zavírá. Použitý tranzistor BUZ10 může bez chlazení stmívat žárovky 21 W, při větším výkonu až do 90 W musí být BUZ10 – pak je však lépe použít BUZ11 – upevněn izolovaně na chladiči odpovídalící velikosti.

Kondenzátor C₁, D₁ a R₁ slouží jako ochrana před nesprávnou polaritou napájecího napětí, vlastní spotřeba stmívače je pouze 2 mA. Stmívač lze vyřadit z funkce změnou polarity napájecího napětí, FET při tom pracuje jako dioda v propustném směru. *Elektor 7–8/1990*

Síťový zdroj s lineárním nastavením výstupního napětí

U většiny síťových napájecích zdrojů s nastavitelným výstupním napětím není vztah mezi polohou běžce nastavovacího potenciometru a výstupním napětím lineární. Proto je nutné výstupní napětí měřit, případně indikovat vestavěným měřicím přístrojem. Kdyby byl tento vztah lineární, stačila by stupnice s lineárním dělením na knoflíku potenciometru (podobně jako u řady generátorů funkcí).

Zapojení na obr. 149 má požadované vlastnosti. Jediný rozdíl proti běžným zapojením síťových zdrojů spočívá ve zkratu mezi běžcem a vývodem potenciometru, bližším k zemi. Tímto zkratovacím můstkem je možné zlepšit řadu obdobných zapojení. Samozřejmě je třeba dbát na to, aby byl použit potenciometr s lineární charakteristikou odporové dráhy. Ostatní údaje uvedeného zapojení: vstupní napětí 28 až 37 V; stabilizované výstupní napětí je nastavitelné od 2 do 25 V, výstupní proud je maximálně 2 A.

Pozor: Ztrátový výkon na výstupním tranzistoru může být až 50 W, proto je třeba použít dostatečně velký chladič (< 1,5 K/W). Elektor 7–8/1990

Nejjednodušší běžící světlo

Zapojení na obr. 150 ukazuje běžící světlo, které se na první pohled obejde bez oscilátoru - nebo vidíte někde ve schématu kondenzátor? Naproti tomu použití integrovaného obvodu 4017 (dekadický čítač s 10 dekódovanými výstupy) se zdá logické pro konstrukci běžícího světla s řadou diod LED. které se ideálně hodí pro konstrukci modelů. dekorativních svítících ornamentů a pro opticky aktivní módní šperky. Protože obvod 4017 neobsahuje žádný oscilátor, měl by v zapojení být použit někde ještě druhý integrovaný obvod s nejméně jedním členem RC. Také tam je, i když je "ukryt" uvnitř blikající svítivé diody D1. Dioda LED bliká na kmitočtu asi 3 Hz a taktovací signál pro obvod 4017 vzniká na předřadném rezistoru. Provozní napětí některých blikajících diod LED nesmí podstatně překročit 7 V, při provozu s předřadným rezistorem je napětí 9 V z malé baterie ještě tak právě přípustné, při větších napětích je vhodné použít blikající diodu LED typu TLB05160.

Při napájení ze sítě je možné napájecí napětí zmenšit na 6 až 7 V a pak je možné

Obr. 150. Nejjednodušší běžící světlo

použít jakoukoli svíticí (blikající) diodu. Pokud ovšem blikající LED nezískáte, je třeba zapojení doplnit o jednoduchý oscilátor s členem RC. I tak bude zapojení velmi jednoduché a stojí za vyzkoušení. Spotřeba proudu je asi 10 mA. Protože použitý integrovaný obvod nemůže dodávat velký výstupní proud, jsou odpory předřadných rezistorů pro diody LED dosti velké (1 k Ω). Diody LED s velkou účinností však dávají dobrý jas již od proudu 3 mA. E

Domácí telefon

Ve větším bytě nebo z bytu do zahrady, do garáže apod. je výhodné zavést telefon. Můžeme použít přístroj libovolný, klasický s otočnou stupnicí, nebo levně prodávané

Obr. 149. Síťový zdroj s lineárním nastavením výstupního napětí 91

Obr. 151. Domácí telefon (kontakt re_{1b} má být v opačné poloze)

tlačítkové typy, příp. typy smíšené, tedy jakýkoli telefonní přístroj.

Zvedneme-li jeden ze dvou telefonů, druhý telefon začne zvonit. Zvonit přestane tehdy, když volaný telefon zvedne, nebo volající znovu položí sluchátko. Po položení sluchátek je spojení přerušeno.

Zapojení domácího telefonu je na obr. 151. K napájení použijeme malý transformátor 3 až 5 VA se sekundárním vinutím 2× 18 V. Jeho střední vývod použijeme pro indikaci zapnutého stavu pomocí R₁, D₄ a svítivé zelené diody D_s. Napětí 36 V přes diody D₁ a D, přivádíme na cívky relé Re, a Re,. Sériově s vinutím relé jsou zapojeny oba tělefonní přístroje. V klidové poloze, kdy jsou sluchátka položena, cívky relé jsou bez proudu, kontakty relé jsou v klidové poloze (jak jsou nakresleny na obr. 151). Každé z relé má mít tři přepínací kontakty. Nejlépe jsou použitelná relé RP210, na která je navržena deska s plošnými spoji, je možné použít i relé LUN (bude třeba pozměnit vedení spojů na desce s plošnými spoji), příp. můžeme použít relé libovolné se třemi přepínacími kontakty.

Zvedneme sluchátko prvního telefonu, tím přes přístroj protéká proud, relé Re₁ sepne, přes jeho kontakty re_{1a} a přeš re_{3a} a re_{2a} – které zatím jsou v klidovém stavu – se přes kondenzátor C₂ dostane střídavé napětí 36 V, 50 Hz na druhý telefonní přístroj, který začne zvonit. Zvedneme-li jeho sluchátko, relé Re₂ také přitáhne, jeho kontakty re_{2a} odpojí vyzváněcí napětí od druhého telefonního přístroje a oba telefony spojí přes C₂ – tím je uskutečněno hovorové spojení mezi oběma telefony. Přes re_{1b}, R₂ začne svítit D₆, indikuje hovor. Zároveň relé Re₃ přitáhne a odpojí vyzváněcí napětí po dobu, co nebudou položena obě sluchátka.

Celé zařízení včetně transformátoru i relé RP210 je umístěno na desce s plošnými spoji (obr. 152). Na schématu nejsou uvedeny odpory rezistorů R₃, R₄ a R₅, ty musíme vypočítat podle použitých relé (které mohou být na 12, 24 i 36 V, příp. i jiné). Použijeme-li relé kupř. 12 V, pak budeme počítat:

 $U_{\rm R}$ =12 V, $R_{\rm R}$ =200 Ω – vinutím relé proté-ká proud: $I_{\rm R}$ = $U_{\rm R}/R_{\rm R}$ =12/200=60 mA. Na R₃ až R₅ má vzniknout spád napětí: $U_{\rm E}$ = $U_{\rm B}$ - $U_{\rm R}$ = 45 V – 12 V = 33 V. Přes R₃ až R₅ má protékat proud vinutí relé 60 mA, tedy $R_{\rm E}$

= 33/0,0 = 550 Ω , to je odpor rezistorů R_3 až R_5 . Ještě jejich zatížení: P=I $^2R_R=0,06^2.550 = 2$ W. Takto můžeme vypočítat odpor rezistorů R_3 až R_5 k libovolnému relé. Nebudou-li relé spínat energicky, odpor rezistorů R_3 až R_5 zmenšíme. Máme-li k dispozici hotový transformátor 35 až 36 V bez středního vývodu, pak indikaci stavu zapnutí (D_4, D_5, R_1) připojíme přímo na vývod A sekundárního vinutí transformátoru a zvětšíme odpor rezistoru R_1 asi na 4,7 k Ω .

Desku se spoji 135 × 85 mm umístíme do vhodné krabičky, na jejím čelním panelu budou dvě kontrolní svítivé diody (zelená D₅ a červená D₆), dvě svorky nebo miniaturní konektory pro dva telefonní přístroje, příp. spínač síťového napětí. Vedení ke druhému telefonnímu přístroji může být libovolné délky.

Ampérmetr do automobilu

Každý motorista ví, jak důležitý je pro spolehlivost provozu stav akumulátoru. Vět-šina vozidel je sice vybavena kontrolkou dobíjení (lépe nedobíjení) akumulátoru, ale tato informace nedává dostatečnou jistotu o stavu baterie, jak si většina řidičů již jistě ověřila. Existuje řada jednoduchých voltmetrů, které mají stupnici od asi 10 V do 16 V a umožňují tak měřit napětí na svorkách akumulátoru za provozu. To už dovoluje lépe posoudit stav akumulátoru, i toto řešení má

však řadu nedostatků, jak dále ukážeme. V průběhu doby života akumulátoru se jeho vnitřní odpor mění, což má značný vliv na režim, ve kterém je akumulátor provozován. Můžeme to ukázat na příkladu. Nový akumulátor mívá vnitřní odpor asi 0,05 Ω. Když alternátor s příslušným usměrňovačem dodává napětí 14 V, lze počítat s nabíjecím proudem:

$$\frac{14 - 12}{0,05} = 40 \text{ A}.$$

Takový proud je příliš velký, a pokud by se neomezil, doba života akumulátoru by se značně zkrátila. Proto je součástí elektrických obvodů automobilu regulátor, který snimá na svorkách akumulátoru nabíjecí proud nebo napětí a reguluje činnost alternátoru tak, aby se zmenšilo jeho výstupní napětí a tím i nabíjecí proud. Standardní nabíjecí proud má odpovídat jedné desetině ampérhodinové kapacity, tedy pro akumulátor o kapacitě 50 Ah je to 5 A.

Stejný akumulátor mívá po několika letech provozu vnitřní odpor asi $0,15~\Omega$. Nabíjecí proud by tedy byl:

$$\frac{14-12}{0,15}=13\,A.$$

Bez ohledu na funkci regulátoru potřebuje tento akumulátor pro dobití mnohem delší dobu.

TLC271

BPW22(KPX81)

UAA170

D1

100 mA +12 ož 15 V

Po

Po

Rt
Rt
Rg
100 mA +12 ož 15 V

Tloon/25 V

Obr. 153. Palubní ampérmetr pro auto

Zřejmě je tedy lepší měřit proud akumulátoru. U svého vozu pak budete znát běžné a typické proudy a když se projeví nějaký rozdíl, je možné zjistit vadnou součást: alternátor, regulátor, akumulátor (nebo jen utáhnout vývod u akumulátoru). Není to nic nového, před desítkami let byl ampérmetr běžnou součástí palubní desky většiny automobilů. V moderních vozech se tyto užitečné 'doplňky někam vytratily, snad pro choulostivost ručkových měřídel, snad ve snaze nerozptylovat zbytečně pozornost řidiče.

Popsaná konstrukce je založena na měření napětí na bočníku (rezistoru o velmi malém odporu), který je zapojen do série s akumulátorem. Realizace takového bočníku není jednoduchá. Musí mít velmi malý odpor, musí vydržet velké proudové zatížení (např. startovacím proudem) a nezhoršovat funkci obvodu. Proto jsme se rozhodli použít jako bočník vodič, který již v automobilu existuje, a propojuje "zemní" vývod akumulátoru s kostrou vozu. Je to vodič značného průřezu o délce asi 0,5 metru (podle typu vozu). Odpor tohoto vodiče můžeme určit ze vzorce:

 $R = \varrho \frac{1}{S}$

kde R je odpor v Ω , ϱ je specifický odpor mědi (= 1,7.10⁻⁸ Ω /metr, I = délka vodiče v metrech, S = průřez v m². Pro vodič o průřezu 16 mm² a délce 50 cm to bude:

$$R = \frac{1.7 \cdot 10^{-8} \times 0.5}{16 \cdot 10^{-6}} \doteq 0.5 \text{ m}\Omega.$$

Při proudu 10 A vznikne na tomto vodiči tedy úbytek napětí 0,5 mV. Protože běžný ručkový milivoltmetr není pro použití v automobilu nejvhodnější, používá navržená konstrukce elektronický milivoltmetr s indikací řadou svítivých diod.

Vstupní zesilovač používá operační zesilovač, jehož výběr je výsledkem určitého kompromisu. Pro spolehlivé řízení diod LED je třeba zesílit vstupní signál řádově stokrát. přitom však vstupní nesymetrie 2 mA způsobí na výstupu OZ rozdíl 200 mA, což už není zanedbatelné. OZ musí pracovat při nesymetrickém napájení (stabilizované napětí asi 5 V) a to není zcela běžné. A konečně OZ musí být dostatečně teplotně stabilní, protože provozní teploty v automobilu se pohybují v dosti širokém rozmezí. Při širší možnosti výběru by byl optimální operační zesilovač TLC271 Texas Instruments. Je to obvod typu Lin-CMOS s velmi malou klidovou spotřebou, vyhoví pro předpokládané napájení a jeho ofset, i když není zanedbatelný, je stabilní. Udávaná stabilita 0,7 µV/°C. To v teplotním rozsahu 0 až 60 °C znamená 42 µV a při uvažované citlivosti 5 mV na 10 A znamená chybu indikace menší než 0,1 A, což je pro naši aplikaci zanedbatelné. Z operačních zesilovačů je možné použít i některé jiné, s podobnými parametry, ale na úkor přesnosti.

Stupnice sestavená z diod LED je řízena obvodem UAA170 (Siemens). Tento obvod může řídit (podle velikosti vstupního napětí) až 16 diod LED. Uživatel při tom může podle potřeby nastavit minimální a maximální indikovaný údaj, který bude zapínat první a poslední LED.

Schéma popisovaného přístroje je na obr. 153. Ve schématu jsou po levé straně součásti elektrického zapojení automobilu, tedy především kabel, spojující akumulátor s kostrou, akumulátor a připojení k pojistkové skříňce. Napětí, vznikající na svorkách kabelu, který je používán jako bočník, je označeno jako $U_{\rm vst}$ a má kladnou nebo zápornou polaritu podle toho, je-li akumulátor nabíjen nebo vybíjen. Diody D_{15} a D_{16} slouží k omezení maximální velikosti tohoto napětí na ± 0.7 V. (Napětí $U_{\rm vst}$ by mohlo být větší např. při špatném kontaktu kabelu a vývodu akumulátoru.)

Napájecí napětí obvodu je přivedeno od kladného pólu akumulátoru přes pojistku, která je umístěna co nejblíže k akumulátoru. Toto napětí je přiváděno na příslušný vývod obvodu UAA170, C₁ zajišťuje přídavnou filtraci. Na vývodu 14 je stabilizované napětí asi 5 V, které může být zatíženo odběrem až 5 mA max. Toto napětí se používá pro napájení vstupního zesilovače, který tak bude méně ovlivněn kolísáním palubního napětí. S ohledem na možnost odebírat relativně malý proud z IO musí mít použitý operační zesilovač malou spotřebu.

Předzesilovač pracuje s nesymetrickým napájením 5 V. Klidové výstupní napětí musí být tedy nastaveno na polovinu kladného napájecího napětí, tedy asi na 2,5 V. Proto je k invertujícímu vstupu přivedeno napětí z děliče R₃ = R₄. Totéž zajišťují rezistory R₁ a R₂. Potenciometr P₁ přitom současně umožňuje vyrovnat ofset zesilovače, případně nesymetrii rezistorů vstupních děličů. Měl by mít co neimenší odpor dráhy v poměru k odporům rezistorů R₁ až R₄, aby bylo možné pro nastavení využít celé jeho odporové dráhy. Tím se dosáhne dostatečně jemného a přesného nastavení. Potenciometr P2 je určen pro nastavení zesílení. Pokud by náhodou nebylo zesílení dostatečné, stačí zvětšit odpor rezistoru R5 (tento jev by se mohl vyskytnout tehdy, kdyby kabel, používaný jako bočník, měl velký průřez, nebo byl příliš krátký). Kondenzátor C3 se používá pro filtraci napájení IO1, C2 zajišťuje správnou charakteristiku dolní propusti, omezující možnost vlivu impulsních rušení.

Na displeji je použito jen jedenáct diod LED, protože to zajišťuje dostatečnou přesnost. Konstruktér předpokládal v matici čtyři řádky a čtyři sloupce, což by vedlo ke dvanácti diodám, jednu z těchto sekcí jsme však vynechali. To vysvětluje použití diod D₁₂, D₁₃ D₁₄ ve schématu, které nahrazují jednu diodu LED, aby při zapojení pouze jedenácti diod nebyly řídicí proudy nesymetrické. Byla použita jedna žlutá LED (D6) ve středu stupnice, signalizující klidový stav, pět červených LED (D7 až D11) indikujících vybíjecí proud a pět zelených LED (D1 až D5) pro nabíjení. Výstupní napětí operačního zesilovače může dosáhnout 1 až 4 V. Tomuto rozmezí také odpovídá nastavení vstupních napětí U_{\min} a U_{\max} obvodu UAA170 rezistorovými děliči (Re. R. a Re, Ro). Buzení diod LED kolem středu bude symetrické, takže při odběru proudu blízkém nule bude svítit dioda D₆.

Pro přizpůsobení jasu diod LED okolnímu osvětlení jsme použili typický obvod, navržený výrobcem, který je tvořen rezistory R₁₀, R₁₁, R₁₂ a fototranzistorem typu BPW22.

Celé zapojení je realizováno na desce s plošnými spoji. Diody svým umístěním simulují průběh stupnice ručkového měřidla. V krycí destičce (nebo vičku krabičky) je třeba vyvrtat díry pro diody LED a fototranzistor. Zařízení se připojuje třemi vodiči: ke kladnému napětí palubní sítě (nezapomenout na pojistku), k "zemnímu" vývodu akumulátoru a ke spoji akumulátoru a kostry. Zvláště oba poslední přívody musí mít spolehlivý kontakt.

Nastavení a vyzkoušení ampérmetru je jednoduché. Je třeba jen upozornit na to, že při Uvst větším než Umax svítí jen D11. Na druhé straně, když U_{vst} je menší než U_{min}, není svícení diod přesně definováno. Po připojení k napětí se potenciometrem P1 nastaví střední poloha tak, aby svítila pouze žlutá dioda D₆. Pak je třeba přístroj kalibrovat. Velmi jednoduchým a dostatečným přesným způsobem je: zapnout klopená světla a spočítat odebíraný výkon, který je podle typu vozidla asi 120 W, což při napětí akumulátoru 12 V odpovídá odběru 10 A. Pak nastavíme potenciometr tak, aby při tomto proudu svítila dioda D₈ - tím je přístroj "kalibrován" na přibližně 5 A na jednu djodu LED. Pro předpokládanou aplikaci není vyžadována extrémní přesnost. Přesto se doporučuje chránit desku s plošnými spoji před kondenzací vlhkosti, protože by to mohlo značně ovlivnit přesnost indikace

Používání ampérmetru je jednoduché. Po zapnutí zapalování ukáže ampérmetr základní odběr proudu, při startování motoru je odběr proudu špičkový. Po nastartování se akumulátor dobíjí. Diody svítí chvíli nedefinovaně, pak začne pracovat regulátor, postupně se rozsvítí D₁, D₂, D₃, D₄ a D₅, po několika minutách se indikace ustálí na D₆. To znamená, že akumulátor je dobíjen mírným proudem. Po rozsvícení světel se na okamžik rozsvítí D₈, protože žárovky mají studená vlákna, pak se rozsvítí D₇ a regulátor dále vyrovná dobíjecí proud akumulátoru na "normální" velikost.

Electronique pratique č. 141.

Přenosný digitální čítač otáček

Popisovaný přístroj dovoluje jednoduše a snadno měřit rychlosti otáčení, interval měření je krátký a dostatečně přesný. Použití displeje s tekutými krystaly umožnilo dosáhnout malé spotřeby, proto lze čítač napájet i z baterií a používat nezávisle na síti.

Obecně je možné k realizaci takového přístroje použít několik principů. V minulosti se používaly analogové principy, využívalo se tachymetrického generátoru, mechanicky spojeného s měřeným motorem, jehož výstupní signál byl měřen ručkovým měřidlem. S nástupem elektroniky se začalo používat optické snímání rychlosti otáčení měřeného hřídele, bylo možné využít analogového vyhodnocení s použítím převodníku kmitočet – napětí. Při této metodě se však dosahuje menší přesnosti měření. Popisovaná konstrukce proto využívá principů digitálních, i když tyto metody mají určitá omezení.

Pokud vyjdeme z požadavku, aby bylo dosaženo přesnosti jedné otáčky za minutu a na měřeném hřídeli máme jednu značku, pak by interval měření (tedy doba do prvního čtení) byl roven jedné minutě. Když by byla požadována rozlišovací schopnost měření deset otáček za minutu, bude potřebný interval měření šest sekund. To je stále ještě příliš mnoho. Přijatelným kompromisem je

Obr. 154. Blokové schéma přenosného digitálního čítače otáček

indikace v krocích po 50 otáčkách za minutu, což vede k přijatelnému intervalu měření 1,2 sekundy. Přesnost měření je poměrně dobrá, protože při 2000 ot/min je 2,5 %, a při 10 000 ot/min je 0,5 %.

Měření probíhá, jako by se počet základních impulsů násobil padesáti. Na příklad pro rychlost otáčení 7550 otáček za minutu přístroj zaznamená za 1,2 s:

$$n = \frac{1,2}{60}$$
 . $7550 = \frac{9060}{60}$ = 151 impuls.

Čítání a indikaci realizuje první čítač, dělicí dvěma, jehož binární výsledek, 0 nebo 1, odpovídá indikaci 0 nebo 5. Druhý čítač dělí deseti, jeho výstupy BCD ovládají převodník BCD na sedmisegmentový displej, ukazující dekadickou hodnotu 0 až 9. Stejně je tomu i u třetího čítače. Výsledkem je indikovaný údaj, který je třeba násobit deseti. Tak pro rychlost otáčení 7550 ot/min bude indikována hodnota 755. To ovšem platí pro jednu značku na hřídeli, pokud se používají značky dvě, údaj displeje se násobí činitelem 5, činitelem 10/3 v případě tří značek atd. (obecně činitelem 10/n, kde n je počet značek na hřídeli).

Blokové schéma je na obr. 154. Měření rychlosti otáčení je založeno na snímání rozdílu v odrazu infračerveného paprsku od povrchu otočné části. Odraz může být způsoben světlou ploškou na tmavém povrchu (nebo naopak). Výsledný signál se zesiluje a tvaruje, než se přivede na třístupňový čítač, o kterém jsme se již zmínili.

Regulovatelná časová základna generuje periodický signál o intervalu 1,2 s, který zajišťuje postupně:

- uložení hodnoty zaznamenané čítačem do paměti,
- vynulování čítačů.

Synchronizační obvod zajišťuje koincidenci spouštění časové základny s impulsy, které dodává systém k měření rychlosti otáčení. Při nulové rychlosti otáčení, nebo při špatném optickém nastavení je obvod synchronizace vyřazen. To dovoluje volný chod časové základny pro zobrazení údaje "0 0 0".

Schéma zapojení je na obr. 155. Napájení přístroje zajišťuje baterie 9 V, při spotřebě proudu kolem 20 až 25 mA. K dosažení

Obr. 155. Digitální čítač otáček

dobré stability časové základny je napájecí napětí stabilizováno na 6 V. K tomu slouží Zenerova dioda D₇ stabilizující napětí báze tranzistor n-p-n na 6,8 V, takže na emitoru je-stabilizované napětí 6,2 V. Toto napětí je také vhodné pro napájení displeje LCD.

Pro detekci rychlosti otáčení se používá infračervená dioda s konstantním světelným tokem, který je omezován rezistorem R₂. V praktickém provedení je tato dioda umístěna paralelně s fototranzistorem. Ten snímá část odražené světelné energie. Odrážející povrchem je otáčející se součást, jejíž rychlost otáčení chceme měřit. Když na její poměrně tmavý povrch naneseme bílou značku, intenzita snímaného světelného paprsku se při každém průchodu před optickou sondou značně mění. To způsobí napěťové změny na emitorovém rezistoru R₃, které jsou signálem, používaným k určení rychlosti otáčení.

Signál zesiluje a tvaruje univerzální integrovaný obvod typu 741. Odporový trimr P₁ zajišťuje nastavitelnou zpětnou vazbu, určující zesílení tohoto stupně. Jeho výstupní signál se přivádí na tranzistor p-n-p, T₂, na jehož výstupu jsou kladné impulsy. Nemají dosud vyhovující tvar vlivem kondenzátoru C₅, který má vyloučit malé změny odráženého paprsku, způsobené nerovnoměrným zbarvením pozadí mimo oblast značky. Proto je tento signál dále tvarován hradlem AND (část IO₂), zapojeným jako Schmittův klopný obvod. Strmých náběhových hran impulsů se dosahuje kladnou zpětnou vazbou, zavedenou rezistorem R₁₃.

Integrovaný obvod IO₃ obsahuje dva oddělené čtyřbitové binární čítače. Jeden z nich je používán pro dělení dvěma vstupního signálu, přiváděného na hodinový vstup. Výstup Q1A dodává signál na vstup A enab-

le druhého čítače v pouzdru IO₄, které obsahuje také dva oddělené čítače, ale na rozdíl od IO₃ jde o čítače BCD, které dělí deseti. Výstup Q4A prvního čítače je připojen na vstup enable B druhého čítače BCD v tomto pouzdru.

Celková kapacita čítání této soustavy je tedy 2 × 10 × 10 = 200. Informace o výsledcích čítání se realizují takto:

- výstup Q1A obvodu IO₃: stav log. 0 je na displeji indikován jako 5. Toto místo odpovídá desítkám otáček za minutu;
- výstupní signál Q1A, Q2A, Q3A a Q1A obvodu IO₁ jsou dekódovány dekodérem BCD/7 segmentů pro zobrazení 0 až 9 na displeji. Tento údaj odpovídá stovkám otáček za minutu;
- pro výstupní signály Q1Bm Q2B, Q3B a Q4B obvodu IO₄ platí to, co bylo uvedeno

výše. Tento údaj odpovídá tisícům otáček za minutu. Dále bude uvedeno, jak jsou tyto čítače opakovaně nulovány a jejich stav před nulováním ukládán do paměti.

Obvody časové základny zahrnují první dvě hradla NAND obvodu IO₅, tvoří astabilní multivibrátor, řízený vstupem 1 prvního hradla. Když je tento vstup ve stavu log. 0, výstup prvního hradla je stále ve stavu log. 1 a výstup druhého hradla je ve stavu log. 0. V tomto stavu je multivibrátor blokován. Naproti tomu, když je na řídicí vstup přiveden stav log. 1, multivibrátor kmitá. Tak se periodicky nabíjí a vybíjí kondenzátor C₁₂ přes rezistor R₂₃ a potenciomety P₂ a P₃. Výsledkem je signál pravoúhlého průběhu na výstupu druhého hradla, jehož perioda závisí na součáskách obvodu. Může být vyjádřena vztahem:

$$T = 2.2 (R_{23} + P_2 + P_3) C_{12}$$

Dále uvádíme, že kmitočet této časové základny bude dělen 16. Když vyjdeme z požadavku, aby byla perioda čítání rovna opakovaně 1,2 sekundy, musí být perioda *T* rovna 1,2 s/16, to jest 75 ms.

Odpor P₂ je asi desetkrát větší, než odpor P₃. Potenciometry slouží k hrubému a jemnému nastavení. Je třeba poznamenat, že odpor rezistoru R₂₂ nemá vliv na určení kmitočtu oscilátoru multivibrátoru, má však vliv na větší spolehlivost a stabilitu.

Napětí pravoúhlého průběhu multivibrátoru prochází Schmittovým klopným obvodem (druhé hradlo obvodu IO₂) a pak je přivedeno na hodinový vstup binárního čítače B obvodu IO₁. Ten čítá v rytmu kladných impulsů. Na výstupu Q4B vzniká záporná hrana na konci šestnácti základních impulsů. To je přirozené: čítač přechází za stavu 1111 do stavu 0000.

Synchronizované řízení časové základny je nutné k dosažení dobré stability indikované hodnoty při konstantní rychlosti otáčení. K tomu je třeba, aby "okénko" měření bylo synchronizováno impulsy detekovanými optickým snímačem rychlosti otáčení. Za tím účelem je třetí hradlo AND ovbodu IO₂ zapojeno jako paměťový prvek. Před začátkem

B/4 Amatérske AD D

měření času je jeho výstup ve stavu log. 0. Jeho vstup 8 je obecně ve stavu log. 1, která je opakovaně nulována krátkodobým převodem do stavu log. 0. K tomu se ještě vrátíme. Před začátkem měření je řízení multivibrátoru ve stavu log. 0. Další kladný impuls klopného obvodu (čtvrté hradlo AND obvodu IO2), přesněji jeho náběžná hrana, je zpracován derivačním obvodem, který tvoří kondenzátor C₁₈, rezistory R₁₆, R₁₇ a diodu D₃. Výsledkem je velmi krátký impuls log. 1 na vstupu 9 třetího hradla AND obvodu IO2, jehož výstup okamžitě přechází do stavu log. 1. Vzhledem k tomu, a díky blokování přes diodu D₄, se tento stav udržuje, i když krátký řídicí impuls skončí. Multivibrátor se tedy rozbíhá. Dále pak uvidíme, jak bude opět zastaven a bude očekávat následující start v synchronizaci s impulsy z optického sní-

Až dosud popsané zapojení má však slabinu: uvidíme, že ve skutečnosti je to konec měření, který spouští periodické ukládání výsledků čítání do paměti a jejich nulování. Pokud tedy nedojde k začátku "okénka", není ani jeho konec: když rotace skončí, nebo když je optický snímač špatně orientován, pak popsaná synchronizace, založená na této detekci, zabrání opětnému spouštění časové základny. Bez dalšího opatření by se však údaj displeje nezměnil. Je proto vhodné v takovém případě potlačit vliv synchronizace. Tuto funkci zajišťuje integrační obvod, který tvoří kondenzátor C7, rezistory R14, R15 a dioda D1. Při otáčení měřeného hřídele je na kondenzátoru C7 udržováno zvětšené napětí díky impulsům, které generuje klopný obvod AND obvodu IO2. Mezi dvěma po sobě následujícími impulsy se C7 sice zvolna vybíjí rezistorem R₁₅, ale napětí na něm se nezmenší na velikost, dostatečně malou pro změnu stavu prvního hradla obvodu IO9, jehož výstup tak je trvale ve stavu log. 0.

Přestane-li se měřený hřídel otáčet, C₇ se vybije a na výstupu prvního hradla NAND obvodu IO₁ je stav log. 1, který (přes diodu D₂) zabezpečuje nepřetržitou funkci multivibrátoru. Nulování čítačů využívá náběžné hrany kladného impulsu řízení multivibrátoru, která je zpracována derivačním obvodem (kondenzátorem C₉ a rezistor R₁₈). To má za následek přivedení krátkého kladného impulsu na vstupy reset A obvodu IO₃ a reset A a B obvodu IO₄. Výsledkem je okamžité vynulování těchto čítačů na počátku "okénka" měření. V následujícím odstavci uvidíme, že toto vynulování nastane těsně po skončení fáze uložení stavu čítačů do paměti.

Čtení stavu čítačů je odvozeno od konce intervalu měření, který nastane v okamžiku závěrné hrany na výstupu Q4B obvodu IO₃. Tato závěrná hrana v důsledku inverze třetím hradlem NAND obvodu IO₅ se stane náběžnou a je přivedena na derivační obvod C₁₀ a R₁₉. Vznikající kladný impuls je tvarován prvním klopným obvodem AND obvodu IO₂. Tento signál řídí ukládání stavu čítačů do paměti. Tuto operaci realizují integrované

obvody dekodérů BCD na sedmisegmentové zobrazení v pouzdrech $\rm IO_6$, $\rm IO_7$ a $\rm IO_8$. Čtvrté hradlo NAND obvodu $\rm IO_5$ tento signál invertuje. Výsledný záporný impuls má za následek vymazání paměťového hradla (třetí) AND obvodu $\rm IO_2$, důsledkem je zablokování multivibrátoru.

Dekódování a zobrazení výsledků měření zajišťuje zapojení podle obr. 156. Výsledky měření jsou nepřetržitě přiváděny na vstupy BCD tří dekodérů CD4543, které mohou být použity pro napájení displejů typu LED (a to pro typy se společnou anodou nebo katodou). V prvním případě se připojí vstup "CP" na úroveň log. 0, ve druhém případě se tento vstup připojí na úroveň log. 1. V naší aplikaci je však použit displej typu LCD a na příslušné segmenty je třeba připojit střídavé napětí pravoúhlého průběhu v kmitočtovém rozsahu 30 až 60 Hz. Toto napětí je generováno multivibrátorem, zapojeným se třetím a čtvrtým hradlem NAND obvodu IO₉. Výstup tohoto multivibrátoru je třeba připojit současně na COM displeje a vstupy CP dekodérů (při použití displeje 4DR822 jsou vývody 37 až 40 zapojeny jinak).

Když je vstup "IB" ve stavu log. 0, je indikace displeje trvalá, když je ve stavu log. 1, indikace displeje je přerušena. Vstup "EL", který řídí paměťovou funkci, je obecně ve stavu log. 0. V důsledku toho zůstává indikace displeje ve stavu, odpovídajícím stavu čítačů v okamžiku, kdy tento vstup opouští úroveň log. 1. To již zmíněná paměťová funkce, indikace zůstává beze změny bez ohledu na stav čítačů. Poznamenejme také, že výstup Q1A obvodu IO3 je připojen ke vstupům A₁ a A₃ obvodu IO₆, a vstupy A₂ a A4 jsou trvale ve stavu log. 0. To odpovídá hodnotě 0, když je Q1A ve stavu log. 0, a dekadické hodnotě 5, když je na Q1A log. 1. Upozorňujeme také, že všechny nepoužívané segmenty displeje s tekutými krystaly, jako tečky a různé symboly, jsou systematicky připojeny k "zemi" displeje.

V praktické realizaci byly použity dvě desky s plošnými spoji, spodní modul je vyhrazen logickému zpracování signálu a jeho zesílení, na horním modulu jsou umístěny součástky čítačů, dekódování a displeje. Rozmístění součástek bylo navrženo tak, aby nebylo nutné použít dvouvrstvovou desku.

Optická sonda pro snímání rychlosti otáčení byla sestavena s použitím nf stereofonního konektoru tak, že infračervená dioda byla umístěna rovnoběžně s fototranzistorem tak, aby obě tyto součástky byly od sebe opticky izolovány (na příklad navléknutím černé plastikové trubičky). Použití konektoru umožňuje např. rychle odpojit sondu či použít prodlužovací kabel atd.

Nastavení je jednoduché. Začneme s nastavovacími prvky ve střední poloze. Toto nastavení potenciometru P₁ vyhoví ve většině případů v praxi. Jde o nastavení zesílení, které je třeba zvětšit obvykle pouze při malém kontrastu značky na hřídeli proti pozadí. Zbývá tedy nastavit časovou základnu potenciometry P₂ a P₃. K tomu stačí namířit optický snímač na zářivku ze vzdálenosti

několika metrů. Přístroj bude detekovat impulsy 100 Hz, což odpovídá teoretické rychlosti otáčení 6000 otáček za minutu. Potenciometr P₂ nastavíme tedy tak, aby se dosáhlo na displeji indikace 600 (případně 595, 600 nebo 605). Potenciometrem P₃ je pak možné přesně nastavit údaj na displeji na 600

Nastavit měřič rychlosti otáčení lze i při zaměření snímače na stínítko televizní obrazovky ze vzdálenosti několika centimetrů. V tomto případě jde o světelné impulsy o kmitočtu 50 Hz. To odpovídá indikaci displeie 300.

Závěrem upozorňujeme, že kromě univerzálního použití je možné tento přístroj instalovat stabilně do automobilu a používat pro stálou indikaci rychlosti otáčení motoru. Přístroj může být napájen z automobilové baterie, optická sonda se umístí v blízkosti měřeného místa a propojí s přístrojem prodlužovacím kabelem.

Electronique pratique č. 134

Řízení (a)synchronních motorů

Výkonové měniče kmitočtu se staly již téměř klasickou oblastí aplikace výkonové elektroniky. Při tom jde většinou o "kilowatty", nákladná a složitá zařízení. Pokud se však omezíme na výkony běžné v elektronice – kolem 100 W – pak je možné prakticky realizovat techniku měničů kmitočtů pro řízení rychlosti otáčení jednofázových elektromotorů jednoduchým zapojením.

Asynchronní a synchronní motory s kotvou nakrátko patří díky své jednoduché, robustní konstrukci, výhodným provozním parametrům a příznivým cenovým relacím k nejčastěji používaným motorům v technice elektrických pohonů. Mají však jednu závažnou nevýhodu: není možné bez dalších opatření regulovat rychlost jejich otáčení. Zmenšování provozního napětí je nevhodnou metodou, kterou se nedá dosáhnout regulace rychlosti otáčení v širším rozsahu a nezávisle na okamžitém zatížení. Protože u obou typů těchto motorů je rychlost otáčení přímo závislá na kmitočtu provozních napětí, musí se pro dosažení uspokojivé regulace měnit kmitočet napájecího napětí motoru.

Z principu synchronního i asynchronního motoru, kterým se nebudeme podrobněji zabývat, vyplývá, že kmitočet a rychlost otáčení jsou vzájemně vázány přibližně konstantním činitelem. Pro praktickou aplikaci je třeba dále vědět, že konstantní by také měl být poměr mezi napětím a kmitočtem, podle vztahu *Ulf* = konstanta. Vychází se přitom z požadavku, že i při změně kmitočtu je třeba dodržet původní magnetický tok ve statoru motoru, tedy sycení magnetického materiálu. Při jeho zvětšení by se nadměrně oteploval motor, bylo-li by menší, změnil by se točivý moment motoru.

Má-li být tedy změněn kmitočet, pak je třeba podle uvedeného vztahu změnit napětí motoru ve stejném poměru. Platí to však jen v určitých mezích: při velmi nízkých kmitočtech se uplatňují činné ztráty vinutí motoru. Aby se tyto ztráty vyrovnaly, nemělo by se napětí motoru zmenšovat v přesně stejném poměru jako kmitočet. Také ve směru k vyš-

Obr. 157. Řízení synchronních a asynchronních motorů (diody v T₁ a T₂, a to i v obr. 160; jsou správně zapojeny obráceně)

ším kmitočtům existují hranice: s rostoucím kmitočtem se totiž zvětšují ztráty v železe. Při zvětšování napětí motoru je třeba dbát i na to, aby nebylo překročeno průrazné napětí vinutí motoru.

Zapojení obvodu pro řízení rychlosti otáčení motoru je na obr. 157. S ohledem na jednoduchost zapojení a napětí motoru by mělo být používáno jen pro motory s malým zatížením (např. motory ventilátorů).

U zvoleného zapojení se síťové napětí usměrňuje diodami D3 až D6. Vzniká tím steinosměrné napětí $\sqrt{2}$. 220 V = 311 V. Tímto napětím je napájeno můstkové zapojení, jehož polovina je řízena. To má bohužel za následek, že napětí motoru může být maximálně 311 V/2, otáčivý moment motoru je proto menší, než při přímém provozu ze sítě. Předností je to, že pro motor není příliš nebezpečné, když nesouhlasí přesně poměr U/f. O napětí motoru bude ještě řeč dále. Nejprve však popíšeme zbytek zapojení. Důležitou součástkou je IO₁. Součástí tohoto integrovaného obvodu je multivibrátor a klopný obvod. Multivibrátor pracuje v uvedeném zapojení jako astabilní. Obvod určující kmitočet je zapojen mezi vývody 1 a 3. Obvod určující kmitočet je zapojen mezi vývody 1 až 3. Použití dvou diod (D₁ a D₂) umožňuje nezávisle stanovit rychlost nabíjení a vybíjení kondenzátoru C1. Takto generovaný signál pravoúhlého průběhu má konstantní šířku impulsu 9 ms. Kmitočet tohoto pravoúhlého signálu se dělí dvěma klopným obvodem, který je součástí integrovaného obvodu. Na obou výstupech klopného obvodu tak vzniká symetrický pravoúhlý signál s kmitočtem proměnným od 4,6 Hz do 50 Hz. Tři výstupní signály obvodu IO1 (vývody 10, 11 a 13) se převádějí dvěma hradly NAND na dva impulsní signály, které se nemohou časově překrývat. Tím je zajištěno, že tranzistory T₁ a T₂ nemohou být otevřeny současně - protože to by nevyhnutelně způsobilo zkrat ve výkonové části. Impulsy obou hradel NAND se proudově zesilují tranzistory T3 a T4 a přivádějí do primárního vinutí transformátoru. V obou sekundárních vinutích se indukuje efektivní střídavé napětí kolem 1 V. které stačí vybudit výstupní tranzistory (popsané signály jsou na obr. 158). Je zřejmé, že signály Y a B mají odstup nejméně 1 ms. To zaručuje, že oba výkonové tranzistory nemohou být sepnuty současně. Průběh napětí na motoru je idealizován v praxi nebude mít přesně pravoúhlý tvar. Vrcholová hodnota tohoto napětí dosáhne maximálně poloviční velikosti napájecího napětí (156 V). Efektivní hodnota napětí závisí na šířce impulsu a lze ji snadno vypočítat ze vztahu

$$U_{\text{ef}} = \frac{9 \text{ ms}}{9 + (1 \text{ až } 100) \text{ ms}}$$

Efektivní hodnota napětí je nepřímo úměrná době periody, případně přímo úměrná kmitočtu. Tím je splněna kladená podmínka U/f = konstanta. Pro motor na 220 V to znamená: *U/f* = 220 V/50 Hz = 4,4 V/Hz. Ve skutečnosti není poměr U/f v našem zapojení konstantní - v oblasti dolních kmitočtů je poněkud větší, aby se tím kompenzoval při těchto kmitočtech větší vliv činného odporu statorového vinutí. Při vyšších kmitočtech je tento poměr poněkud menší, protože k 50 Hz je vztaženo příliš malé napájecí stejnosměrné napětí. S tím spojená ztráta točivého momentu při velkých rychlostech otáčení by ve většině aplikací však neměla působit problémy, protože u většiny strojů je požadován největší točivý moment v dolní části pracovních rychlostí otáčení.

Při konstrukci tohoto zařízení, které pracuje s napětím až 311 V, je třeba zvláštní opatrnosti. Aby se předešlo průrazům, musí být mezi vodiči (a plošnými spoji!), které vedou toto napětí dodržena minimální vzdálenost 6 mm. Použije-li se k realizaci zkušební destička, je na ní třeba podle potřeby odstranit některé vodivé dráhy (plošné spoje). Je také výhodné použít jak pro řídicí část, tak pro výkonovou část zvláštní desku s plošnými spoji.

Na závěr ještě některé varianty výkonové části. Jsou to návrhy, které nebyly v laboratoři vyzkoušeny. Mohou však být užitečné čtenářům, kteří rádi experimentují. V popsaném případě (obr. 159) je motor napájen napětím z "polovičního můstku". Kondenzátory C2 a C3 tvoří pasívní část můstku a mají na napětí pro motor velký vliv. Čím větší výkon má připojený motor, tím větší musí být také kapacita obou kondenzátorů, aby se udržel tvar výstupního napětí (a tím jeho efektivní hodnota). Pro kontrolu je možné pozorovat tvar napětí na motoru osciloskopem. Zde je však třeba nejvyšší opatrnosti! Často se zapomíná na to, že u některých osciloskopů je zem měřicího vstupu přímo spojena s ochranným zemněním. To může při měření vést ke zkratu. Aby se tomu zabránilo, musí být popisovaný obvod připojen k síti přes oddělovací transformátor.

Provoz motoru 100 W vyžaduje na místè C_2 a C_3 použít kondenzátory s minimální kapacitou 25 μF (bylo to vyzkoušeno na prototypu). K dosažení maximálního točivého momentu při výstupním kmitočtu 50 Hz by bylo třeba použít stejnosměrné napájecí napětí

$$U = 2 \cdot 220 \text{ V} \quad \frac{9+1}{9} = 489 \text{ V}.$$

V takovém případě by muselo být použito pro napájení obvodu síťové střídavé napětí 489 V/ $\sqrt{2}$ = 346 V. Takové napětí však není v každé zásuvce k dispozici. Je ovšem možné použít stejnosměrné napájecí napětí 2 . 311 V. Toho by bylo možné dosáhnout použitím zdvojovače napětí na vstupu (viz obrázek 159). Protože je toto napětí příliš velké, bylo by nutné změnit poměr impuls/ mezera tak, aby na motoru bylo maximální $U_{\rm ef}$ = 220 V. Je však třeba si uvědomit, že používané impusly s vrcholovým napětím kladou značné nároky na izolaci připojeného motoru. Každý motor si takové napětí nedá bez následků líbit.

Elegantnější metodou je (při ponechání dvoucestného usměrnění) rozšířit "poloviční můstek" na úplný můstek (obr. 160). Největší napětí, které se pak vyskytuje, zůstává omezeno na 311 V, ale vrcholová hodnota napětí na motoru se zvětší ze 156 V se 311 V

Závěrem je třeba ještě jednou upozornit na to, že v každém případě musí být dodržen pevný vztah mezi poměrem impuls/mezera, kmitočtem a napájecím napětím můstku.

Elektor 3/1990

Obr. 158. Tvary signálů při řízení motorů

Obr. 159. Zdvojovače napětí pro řízení motorů

Obr. 160. Úplný můstek pro řízení motorů

Automatický odpojovač síťového napětí

Vliv elektrických a magnetických polí na lidský organismus je nesporný. Mezi zastánci čistoty biologického prostředí a vědci jsou však rozdíly v názoru na přípustné dávky. To neplatí jen na výkonové vysílače ve velkých městech, ale i na vlivy síťového napětí, které působí v bytě i na pracovišti. Takže se musíme sami rozhodnout, je-li pro pocit pohody pro Vás výhodné, když budete odpojovat síťové napětí ve své ložnici, bytě, nebo z přívodu ke stolní lampě v kanceláři. Jedno je však jisté: s popsaným zapojením to technicky není žádný problém.

Člověk žije v "elektrickém prostředí", povrch naší planety je ovlivňován elektrickými a magnetickými poli a to od statických až po signály velmi vysokých kmitočtů. Magnetické pole země je každému známé. Méně je již známé, že mezi zemí a ionosférou ie potenciál až 250 kV, a že z kosmu dopadá kosmické záření, vytvářející "pozadí" v kmitočtovém pásmu od asi 300 MHz až do 350 Mhz. Na to jsou živé bytosti na zeměkouli za mnoho set miliónů let zvyklé, ale jak to vypadá s "elektrickým smogem", umělými elektrickými a magnetickými poli, které v civilizovaném světě generujeme na tolika

Fyzici a lékaři vypracovali doporučení, která platí pro trvalý pobyt v blízkosti elektrických záření. Německý lékař dr. Hubert Palm uvádí vzorec, podle kterého by měla být dodržena vzdálenost od síťových vedení a elektrických přístrojů v jižním směru 1.20 m. v ostatních směrech 0,30 m.

Většinu času strávíme v zaměstnání a v posteli. Téměř ve všech ložnicích jsou u hlavy lůžek síťové zásuvky, kam se připojují svítidla, rozhlasové přijímače, elektrické hodiny, atd., aby byly na dosah.

Pokud věříte tomu, že blízkost síťového napětí může ovlivnit pocit pohody, případně zdravotní stav, pak popisované zapojení umožňuje automaticky odpojit síťové napětí, když není používán spotřebič. Toto zařízení se zapojí do přívodu sítě do ložnice, nebo ke zvlášť exponovaným spotřebičům. Když isou všechny spotřebiče vypnuty, je na vedení připojeno jen malé, biologicky neškodné steinosměrné napětí. Když se zapne spotřebič, pak se na dobu jeho používání automaticky připojí síťové napětí. Zapojení ovšem omezuje přípustný spínaný proud. Proto je opatřeno zásuvkou a zástrčkou, aby je bylo možné v případě potřeby snadno přemostit. V zařízení je vestavěn síťový filtr, který omezuje pronikání vysokofrekvenčního rušení. Za jedinou malou nevýhodu je možné považovat, že při provozu přístrojů a dalších spotřebičů přes tento obvod vzniká na diodách odpojovače úbytek napětí asi 1,6 V, tedy 0,7 % síťového napětí. Při relativně krátké době používání připojených spotřebičů je však tato ztráta energie zanedbatelná.

Zapojení je na obr. 161. Obvod transformátoru s dvoucestným usměrněním diodami D₁ a D₂ generuje na kondenzátoru C₁ v klidovém stavu, to znamená při vypnutých spotřebičích, steinosměrné napětí asi 12 V. Přes rezistor R₅, který omezuje zkratový proud, se přes klidové kontakty relé Re₁ toto stejnosměrné napětí přivádí na síťové svorky výstupní svorkovnice K2 (a tím na všechny připojené spotřebiče). Když jsou všechny spotřebiče vypnuty, pak neprotéká žádný proud, zapojení zůstává v klidovém, vyčká-

Když se zapne některý z připojených spotřebičů (s minimálním odběrem 3.5 W), proud protéká jeho vnitřním odporem, který na výkonových křemíkových diodách D4 až D₆ způsobí v propustném směru úbytek napětí asi 2,4 V. Přes rezistor R3 dostává proud svítivá dioda optoelektronického vazebního členu IO2, která vybudí přijímací tranzistor v IO₂. Tím se přes R₂ nabije kondenzátor C₂ na 2/3 U_B. Časovací obvod IO₁ typu 555 (případně v technologii MOS 7555 nebo TLC555) sepne po výkonovém zesílení tranzistorem T₁ v zapojení emitorového zesilovače relé. Relé přitahuje, výstupní zásuvka se přes pracovní kontakty relé spojí se vstupním síťovým napětím svorkovnice K1 a spotřebič je v provozu. Dioda D3 zajišťuje, aby mohly projít obě půlvlny střídavého proudu. Optoelektronický vazební člen je tedy řízen jen během jedné půlvlny, napětí na vstupu spuštění časovacího obvodu udržuje kondenzátor C2.

Vypneme-li spotřebič, diodami D₄ až D₆ neprotéká proud, není tedy buzena dioda v IO2. Přijímací tranzistor IO2 zůstane zavřen, kondenzátor C2 se pomalu vybíjí přes rezistor R₁. Asi po 100 ms se napětí zmenší pod dolní mez napětí vstupního komparátoru, relé odpadá. Dioda D7 chrání tranzistor a integrovaný obvod před zničením při vypnutí relé (indukčnost cívky). Přes klidové kontakty relé se na výstupní svorky opět přivádí vnitřní stejnosměrné napětí, používané pro ziištění stavu spotřebičů. Je tak opět dosaženo klidového stavu zapojení.

Amatérské: AD 10 B/4

Obr. 161. Automatický odpojovač síťového napětí

Diody D₃ až D₆ je možné zatížit maximálním trvalým proudem 1 A; pro ochranu těchto diod a kontaktů relé před přetížením je síťová cesta jištěna pojistkami Po, a Po, Primární vinutí transformátoru je jištěno pojistkou Po3 až za oběma síťovými pojistkami.

V klidovém stavu je tedy na výstupní síťové vedení připojeno malé, konstantní stejnosměrné napětí 12 V. To však samo o sobě je z hlediska bioelektroniky jen částečný úspěch. Při každém vypnutí mechanického přepínače, kterým prochází proud, vzniká vysokofrekvenční rušivé napětí v pásmu 100 MHz. Zdrojů takového rušení je mnoho: etážové topení, chladničky a mrazničky, spínače světla a přístroje atd. Kromě toho působí ještě vyšší harmonické triakových regulací, které se používají ve stmívačích, topidlech, přístrojích pro domácnost a ve vrtačkách s regulací rychlosti otáčení. Tyto rušivé signály, vznikající v domácnosti i rušivé signály, které přicházejí zvenku přes domovní síťovou přípojkou, je třeba vyloučit. Odpojení obou síťových vodičů nestačí, protože vf signály přicházejí také kapacitní a indukční vazbu přes ochranný zemnicí vodič. Přípustným opatřením je vysokofrekvenční oddělení ochranného vodiče mezi K1 a K2 vzduchovou tlumivkou. Při použití kovového krytu je nutné bezpodmínečně kryt spojit s ochranným vodičem, kromě toho autoři doporučují kryt "uzemnit" přes speciální bezpečný kondenzátor 220 nF (např. na trubku nebo těleso ústřední topení). Podle bioelektronických názorů má toto uzemnění velký význam pro odpojovač sítě.

Aby nenastávala rezonance L₁ s kondenzátorem 220 nF (při 70 kHz), je třeba paralelně s kondenzátorem 220 nF zapojit rezistor 12 Ω/5 W. Tento rezistor musí být dimenzován na větší výkon proto, aby bez porušení přenesl případné indukované proudy prostorové smyčky, tvořené ochranným vodičem a trubkovým rozvodem ústředního topení. Odrušovací filtr na vstupu sítě do zapoiení má z bioelektronického hlediska výhodu i tehdy, když je na výstupu odpojovače přístroj, který je v provozu. Cívku L1 si můžeme snadno zhotovit sami. Na papírovou trubku o průměru 25 mm a délky 50 mm se navine drátem 1,5 mm², který se používá pro ochranné vodiče (žlutozelená izolace) do tří vrstev asi po 15 závitech. Textilní lepicí páskou se pak zajistí vinutí i vývody. Pro přímou montáž na desku s plošnými spoji se hodí i běžné odrušovací tlumivky na toroidním jádru o indukčnosti asi 40 μH (s malou impedancí) s dostatečným průřezem drátu (pro zatížitelnost větší než 1 A). Nezapomeňte proměřit, zda je dostatečně malý odpor ochranného vodiče propojení mezi vstupní zástrčkou připojovacího kabelu až po výstupní zásuvku K2 - závisí na tom vaše bezpečnost. Pro kontrolu funkce se doporučuje do zásuvky odpojovaného vedení vestavět kontrolní doutnavku - pak je vždy vidět, jestli je a kdy je síťové vedení odpoje-

Nakonec ještě upozornění: radiobudík na vašem nočním stolku možná bude mít takový odběr, že odpojovač nebude odpojovat, a pak by stavba odpojovače vlastně ani neměla smysl. Ale člověk, žijící úmyslně v biologicky co nejlepším prostředí, stejně nebude chtít používat přístroje s trvalým odběrem ze sítě – a konečně, pořád ještě jsou k dispozici budíky mechanické . . .

Jednoduchý a výkonný programátor

Elektronické diáře, jejichž používání se postupně rozšiřuje, se stávají běžnými pomůckami stejně jako elektronické kapesní kalkulátory vizitkového formátu, které mohou být diářem nahrazeny. Tyto přístroje kromě výpočetní funkce nabízejí další zajímavé možnosti, jako je telefonní seznam, nebo denní rozvrh – poslední funkce využívá popisovaný programátor, dovolující v dlouhém období samočinně zapínat a vypínat zvolený spotřebič. Z četných aplikací je možné uvést topení, simulaci přítomnosti v bytě, osvětlení výkladní skříně atd.

Běžné modely elektronických diářů jsou charakterizovány pamětí, schopnou zaznamenat až 150 telefonních čísel s příslušnými jmény. Pokud se používá pouze funkce, "diář", může tato paměť pojmout až 200 základních programových údajů, jako minuty, hodiny, data, měsíce a podle potřeby kódové označení schůzky nebo jednání. Samozřejmě existují i mnohem dokonalejší typy o větší kapacitě, které mohou být použity pro podrobnější programování.

Programátor využívá toho, že po naprogramování určitého záznamu se ozve při naprogramovaném datu, hodině a minutě přerušovaný zvukový signál, který trvá kolem třiceti sekund. Signál může být kdykoli ukončen stisknutím příslušného tlačítka. Souběžně s tím se na displeji zobrazí naprogramovaný záznam, i když je diář vypnut, protože vnitřní hodiny pracují neustále.

Možnost využít tohoto principu pro programování libovolného spotřebiče spočívá v realizaci obvodu rozhraní, které bude Schopné zareagovat na příjemný zvukový signál sepnutím nebo rozpojením kontaktů relé, ovládajícího spotřebič.

Pro přerušení obvodu ovládaného spotřebiče bylo použito velmi jednoduché kódování: stačí naprogramovat záznam. Jakmile zazní první zvukový signál, je zjištěn elektronickými logickými obvody a kontakty relé se rozpojí.

Naproti tomu pro sepnutí kontaktů relé byl použit způsob, zlepšující spolehlivost. Mohli jsme například předpokládat, že když je relé v určité poloze, může následující programování tuto polohu změnit, tedy podobně, jako u bistabilního klopného obvodu. Toto řešení však nebylo použito, protože v případě chyby programování, přerušení proudu, nebo jiných příčin by vznikl chybový stav, který by při dalším ovládání pokračoval (zapnutí namísto vypnutí a naopak). Proto je pro sepnutí relé třeba naprogramovat dva záznamy v minutovém intervalu, který je minimálním krokem programování. Relé sepne při druhém zvukovém signálu.

Příklad: sepnutí relé 15. září v 21 hodin, jeho vypnutí 16. září v 6 hodin 30 minut se bude programovat třemi následujícími záznamy:

- 15/09/20.59 A čekání (nebo rozpojení, pokud bylo relé předtím sepnuto),
- 15/09/21.00 B sepnutí.
- 16/09/06.30 rozpojení.

Funkce obvodu rozhraní je popsána v blokovém schématu na obr. 162. Zvukový signál je detekován elektretovým mikrofonem. Po zesílení a tvarování je signál zpracován v několika krocích. Příliš krátkodobé signály, které mohou pocházet z jiných zdrojů zvuku, jsou vyloučeny. Např. tlesknutí rukou nemá na zařízení žádný vliv. Signály vznikající při zvukovém "pípání" diáře se integrují. Počátek tohoto signálu způsobí systematické vymazání paměti a současně je aktivován čítač. Udělá tedy další krok. Při sérii signálů, odpovídající programování druhé zprávy, čítač udělá další krok. Do paměti je uloženo sepnutí výstupního relé.

Kdyby nenásledoval další signál např. po dvou minutách, nebo lépe ještě později, čítač by byl vynulován a nemohl by dosáhnout stavu 2.

Zapojení elektronických obvodů je na obr. 163. Zařízení je napájeno běžným síťovým zdrojem. Síťové napětí napájí transformátor, jeho sekundární napětí se usměrňuje, filtruje a stabilizuje tranzistorem T₁, jehož bázové napětí je stabilizováno Zenerovou diodou se Zenerovým napětím 9,5 V. Zapnutí indikuje dioda LED. Signály přijímané elektretovým mikrofonem zpracuje předzesilovač s tranzistorem T₂ v zapojení se společným emitorem. Emitorový rezistor R₆ je blokován kondenzátorem C₅ (lepší zesílení signálů akustických kmitočtů). Zesílený signál se z kolek-

toru T_2 přivádí na invertující vstup operačního zesilovače 741. Potenciometrem P_2 je možné měnit zápornou zpětnou vazbu (dosáhnout požadovaného zesílení). Signál z výstupu operačního zesilovače se přivádí do báze tranzistoru T_3 (p-n-p). Jeho báze je polarizována tak, že v klidovém stavu je na kolektoru nulové napětí. Připojený kondenzátor integruje zvukové signály. Zvukový signál odpovídá úrovni log. 1 (s určitým zvlněním).

První hradlo AND obvodu IO₂ dává na výstupu stav log. 1 v době trvání akustických signálů, vysílaných diářem. Vždy na počátku stavu log. 1 se přes rezistor R₁₄ nabíjí kondenzátor C₉. To způsobuje určité časové zpoždění: úrovně log. 1 dodávané druhým hradlem AND jsou reprodukovány s mírným zpožděním. Toto uspořádání vede k tomu, že nebudou brány v úvahu signály, považované za příliš krátké.

Impulsy úrovně log. 1 nabíjejí kondenzátor C_{10} . V průběhu úrovní log. 0 se tento kondenzátor může vybíjet jen přes rezistor R_{15} vzhledem k opačně polarizované diodě D_{\uparrow} . Výsledkem je to, že na výstupu třetího hradla je trvalá úroveň log. 1 v průběhu vysílání akustických signálů.

Náběžná hrana impulsu, dodávaného třetím hradlem AND, je zpracována derivačním obvodem C₁₁ a R₁₈. V důsledku toho se na vstup 6 druhého hradla NOR integrovaného obvodu IO₄ přivádí krátký kladný impuls na počátku signálu. Toto hradlo tvoří s prvním hradlem NOR monostabilní klopný obvod. Připomeňme, že takový klopný obvod má na výstupu úroveň log. 1, její doba trvání je zcela nezávislá na délce řídicího impulsu. Doba trvání tohoto impulsu je asi 80 sekund. Později uvidíme, proč je důležité, aby byl tento impuls delší než jednu minutu, ale kratší než dvě minuty, aby se zachovala maximální jemnost kroku programování.

Při úrovni log. 1 na výstupu monostabilního klopného obvodu je na výstupu druhého hradla NOR úroveň log. 0, která se přivádí na nulovací vstup čítače IO₃ typu CD4017. Čítač je připraven ke změně stavu, když je jeho vstup nulování ve stavu log. 0, je-li ve stavu log. 1, čítač zůstává blokován. Od počátku signálu je čítač IO₃ uveden do stavu aktiva-

Obr. 162. Blokové schéma programátoru

B/4 Amatérské AD 11

ce, omezeného asi na 80 sekund. Po uplynutí této doby je čítač znovu zablokován.

Systematické nulování paměti je zajištěno následujícím postupem: kladný řídicí impuls pro monostabilní klopný obvod se současně přivádí na vstup 8 třetího hradla NOR integrovaného obvodu IO₄, které tvoří se čtvrtým hradlem paměťový obvod s velmi jednoduchou funkcí:

 každý kladný impuls na výstupu 13 zablokuje výstup třetího hradla ve stavu log. 1; to je zavedení paměťové funkce,

 každý kladný impuls na vstupu 8 způsobí okamžitý přechod výstupu do stavu log. 0; to je vynulování paměti.

Na začátku signálu tedy bude paměť vyma-

Vždy na počátku signálu je náběžná hrana z třetího hradla v IO₂ přivedena na Schmittův klopný obvod (tvořený čtvrtým hradlem). Ten na výstupu dává impuls se závěrnou hranou a rychlým poklesem (díky urychlení překlopení hradla zpětnou kladnou vazbou zavedenou rezistorem R₁. Kladná náběžná hrana způsobí změnu stavu čítače IO₃ o jeden krok. Ten má na výstupu 4 krátký stav log. 1 při začátku první série impulsů a od začátku druhé série, to znamená o minutu později. Čítač je stále ve stavu aktivace a nemůže být ještě vynulován, takže paměťová funkce se může realizovat.

Upozorněme nakonec, že kondenzátor C₁₂ zavádí mírné zpoždění při registraci náběžné hrany klopným obvodem. Proto je čítač ve stavu aktivace ještě dříve, než je na jeho hodinový vstup přiveden první impuls.

Spínací relé je zapojeno v kolektoru tran-

zistoru T_4 , jehož báze je napájena přes rezistor R_{20} z výstupu paměťového obvodu. Jde o relé 12 V, které je napájeno přímo z nestabilizovaného napětí na kladném vývodu kondenzátoru C_1 . Dioda D_3 chrání T_4 před přepětím, způsobeným indukčností v obvodu. Svítivá dioda indikuje sepnutí relé – to přivádí přímo na výstup síťové napětí pro ovládaný přístroj.

Konstrukční provedení není kritické, je ovšem třeba upozornit na to, že přístroj pracuje se síťovým napětím – je tedy nutné dodržet všechny zásady a předpisy pro bezpečnost přístroje a obsluhy. Elektronický diář se při tom vkládá do vhodně upraveného výřezu. Potenciometr se nastaví do střední polohy. Dosažená citlivost snímání signálů by měla být dostatečná. Pokud tomu tak není, stačí otočit hřídelí potenciometru ve směru otáčení hodinových ruček. Pak už zbývá pouze naprogramovat elektronicky diář popsaným způsobem a ověřit celkovou funkci.

Electronique pratique č. 140

NEZAPOMEŇTE,

že koncem července vyjde konstrukční příloha AR – Katalog moderních integrovaných obvodů a tranzistorů zahraniční výroby. Katalog vyjde v omezeném nákladu. Rozsah 80 stran, výjimečná cena – 15 Kčs!

UPOZORNĚNÍ

Upozorňujeme, že uzávěrka konkursu na nejlepší konstrukce, jehož podmínky byly uveřejněny v AR A3/91 na str. 96, je 5. září 1991.

OPRAVA

Opravte si, prosím, nebo doplňte v AR B1/91:

- T_4 a T_5 na obr. 117 jsou tranzistory typu DNL1.8A nebo DNN1.8A, kondenzátor 50 μF je třeba nahradit propojkou,

– kondenzátor před potenciometrem 100 k Ω /G (GAIN) nemá mít kapacitu 15 μ F, ale 15 nF,

 na obr. 120 je třeba ze zapojení vypustit kondenzátor 270 nF,

- na obr. 121 není potenciometr 10 k Ω /N (5 k Ω /N) určen k řízení hlasitosti, ale prezence.

Konečně u obr. 18b je třeba horní vývod z "dualu", zapojený na 1. kontakt paketu č. 3 a č. 2, přepojit u paketu č. 3 na druhý kontakt; pak bude přepínač fungovat tak, jak má.

Tranzistory UJT

V zahraničních časopisech často najdeme zapojení, kde se používá tranzistor UJT (unijunction-transistor), u nás se používá i název dvoubázová dioda. Součástka se používá iiž od začátku šedesátých let, v r. 1969 se proslýchalo, že i u nás je připravena k sériové výrobě, avšak dosud ji z tuzemské výroby nikdo na trh neuvedl. Teoretické základy funkce UJT lze najít v časopisu Sdělovací technika č. 6/1969. Jedná se o jednopřechodový křemíkový tranzistor s upravenou vodivostí materiálu; UJT se chová jinak, než běžný tranzistor. Na obr. 1 je jeho schématická značka. Jeho charakteristika se podobá charakteristice negativního odporu. Vývody se obvykle označují jako E-emitor, B1báze 1, B2-báze 2. Odpor B1 při proudu E řádu mikroampérů je veliký, při větším proudu (až 50 mA) se zmenší asi na 15 až 30 Ω. Této vlastnosti lze využívat v nesčetných aplikacích, z nichž i na stránkách AR bylo několik desítek. Hlavní možností použití UJT spočívají v oblasti generátorů nesinusových kmitů, schodovitého napětí, obdélníkových i pilovitých kmitů, multivibrátorů, impulsních generátorů, komparátorů, řídicích obvodů tyristorů a triaků, proudových

čidel, časovacích obvodů, převodníků napětí-kmitočet, děličů kmitočtu, stabilizátorů atd.

Na obr. 2 je obecné zapojení UJT. V klidovém stavu se přes P nabíjí kondenzátor C. Dosáhne-li napětí na kondenzátoru C určité úrovně, jeho náboj se přes E velmi rychle vybije cestou B1 a na výstupu dostaneme řídicí impuls, který se používá v nejrůznějších aplikacích. Na B1 je možné připojit zátěž přímo (reproduktor, transformátor, LED apod.), nebo signál odebírat pro jiné použití.

Protože je u nás UJT téměř nedostupný, můžeme místo něj použít náhradní zapojení (podle obr. 3) ze dvou komplementárních křemíkových tranzistorů, kde R₂ mění svou funkci (nemůže být zátěží) vzhledem k obr. 2. Výstup z emitoru T₂ proti zemi může být zatížen.

Univerzálním typem UJT je 2N2646 (jeho cena je u firmy Conrad 2,40 DM). Další běžné typy jsou: 2N2647, 2N2840, 2N4870 (1,95 DM), 2N4871 (2,45 DM), 2N6027 (0,65 DM) apod.

INZERCE

Inzerci přijímá osobně a poštou Vydavatelství Magnet-Press inzertní oddělení (inzerce ARB), Vladislavova 26, 113 66 Praha 1, tel. 26 06 51–9 linka 295. Uzávěrka tohoto čísla byla 20. 5. 1991, do kdy jsme museli obdržet úhradu za inzerát. Neopomeňte uvést prodejní cenu, jinak inzerát neuveřejníme.

PRODEJ

BFT66 (240), BFQ65 (95), sadu zahr. T a IO pro druž. tuner z přílohy ARB 90 (600). P. Nedoma, Havlíčkova 20, 678 18 Blansko.

Dodám různé součástky, seznam zašlu proti ofrankované obálce. M. Lhotský, Komenského 465, 431 51 Klášterec n. Ohří.

ARB roztriedené do nasl. tématických skupín (po 10 ks à 50): antény a technika VKV, rozhlasové prijímače, HIFI a hud. nástroje, IO a aplikovaná elektronika, meracie prístroje a meranie, zaujímavé zapojenia, IO a μP. A. Švec, Trnavského 18, 841 01 Bratislava.

SL1452 (680), SL1451 (740), SL1454 (690), TDA5660P (220), PAV fil. 480 MHz OFWY6950 (680), sat. kon. SCE-975 Maspro-Jap. F = 1,3 dB max. (3500), F. Krunt, Řepová 554, 196 00 Praha 9, tel. 68 70 870.

RŮZNÉ

Stavebnice dekodérů FILMNET a RTL-4. Každá stavebnice obsahuje desku s plošnými spoji, součástky a manual. Cena jednoho dekodéru je 2000 Kčs. Dekodéry mají vstup a výstup video a pracují s automatickým přepínáním po celých 24 hod. Ultimate electronics, postbus 1501, 3500 BM Utrecht-Holland.