Stochastische Prozesse und Zeitreihenanalyse

Typisches Vorgehen

- Kontinuierliches Zeitfenster
- Fehlende Werte imputiereren (Bsp. Kalman für Physikalische Grössen)
- Dekomposition (Zeitreihe Stationär)
 - Trend (Glattkomponente, Movingaverage, Tiefpass, TBATS, Strukturelle Modellierung, LOES)
 - Saisonalität (Fourier Koeffizient)
 - Residuum (weisses Rauschen) sobald keine Systematik

Stationarität: Würfel zu jedem Zeitpunkt in der Zeitreihe

- Mean = Konstant $\bar{x} = \frac{1}{N} \sum_{t=1}^{N} x_t$ Augmented Dickey Fuller Test
- Varianz = Konstant $-s^2 = \frac{1}{N} \sum_{t=1}^{N} (x_t \bar{x})^2$ Varianz vom Zeitpunkt t ist ein Würfelprozess
 - $-Var[x_t] < Var$ über gesamte Zeitrehe
- Autokovarianz bleibt konstant $-c_{\tau} = \frac{1}{N} \sum_{t}^{N} (x_{t} \bar{x})(x_{t+\tau} \bar{x})$ Autokovarianz = /math

 - Prüft, ob Zusammenhang über Zeit besteht und Zeitreihe nicht von Einflüssen wie Trend überschattet wird

Folgendes kann entfernt werden:

- Sensonalität vorhanden $\rightarrow \texttt{df-df.sensonalit}$ ät
- $Mean \neq 0 \rightarrow np.diff$

Weisses Rauschen

Unberechenbarer Fehler in den Daten. Somit kann geprüft werden, ob die Daten komplett dekomposiert wurden, wenn nur noch ein weisses Rauschen vorhanden

 $Y_t = Dekompositionen + WeissesRauschen$

- Mean = 0
- konstante Varianz
- Keine Korrelation zwischen Lag und Zeitreihe

Test mittels ACF (or ADF=?) Test

ARIMA Modelle

Wurden gemacht für Modelle mit einem Trend i = integrated, i(1) erstes Integral

	ACF	PACF
AR	Geometric	Significant till p lags
MA	Significant till p lags	Geometric
ARMA	Geometric	Geometric

Model	PACF	
White noise	The partial autocorrelation is 0 for all lags.	
Autoregressive model	The partial autocorrelation for an $AR(p)$ model is nonzero for lags less than or equal to p and 0 for lags greater than p .	
Moving-average model	If $\phi_{1,1}>0$, the partial autocorrelation oscillates to 0.	
	If $\phi_{1,1} < 0$, the partial autocorrelation geometrically decays to 0.	
Autoregressive–moving-average model	An ARMA(p, q) model's partial autocorrelation geometrically decays to 0 but only after lags greater than p.	