# Classification and Trends: Distribution of Electric Vehicle Types in Washington State

Name: Semiu Kolapo

Student Number: 501145293

Supervisor: Tamer Abdou

Date: April 1st 2024



## Why Electric Vehicle?

- Government of Canada committed to achieve 100% zero-emission vehicle sales by 2035
- Washington State's progressive policies
- Tesla

# Using ML to identify trends and distribution









#### **Initial Dataset**

- Electric Vehicles in Ontario By Forward Sortation Area
  - Total EVs by Forward Sortation Area (FSA)
- Insufficient Information
- High Bias
- Feature Engineering Constraints
- Lack of Diversity

# **Selected Dataset**

link



| VIN               | County       | City                        | State                | Postal<br>Code          | Model<br>Year       | Make                    | Model | Electric<br>Vehicle<br>Type |
|-------------------|--------------|-----------------------------|----------------------|-------------------------|---------------------|-------------------------|-------|-----------------------------|
| Electric<br>Range | Base<br>MSRP | Legislati<br>ve<br>District | DOL<br>Vehicle<br>ID | Vehicle<br>Locatio<br>n | Electric<br>Utility | 2020<br>Census<br>Tract | CAFV  |                             |



# **Approach**





#### **EDA**

#### **Missing Values**





-0.75



#### EDA using Sweetviz and Pandas Profiling Report







#### **Class Imbalance**



NearMiss approach is utilized due to its capacity to focus on selecting relevant majority class samples near the decision boundary, effectively reducing class imbalance while preserving vital information.



# **Initial Result**

|   | Model               | Accuracy | ROC-AUC  |
|---|---------------------|----------|----------|
| O | Random Forest       | 0.998801 | 0.999994 |
| 1 | XGBoost             | 0.998941 | 0.999983 |
| 2 | Naive Bayes         | 0.780491 | 0.727559 |
| 3 | Logistic Regression | 0.516097 | 0.514732 |



# **Feature Importance**

|   | Feature                                          | Importance |  |  |
|---|--------------------------------------------------|------------|--|--|
| 0 | Electric Range                                   | 0.453681   |  |  |
| 1 | Clean Alternative<br>Fuel Vehicle<br>Eligibility | 0.196643   |  |  |
| 2 | Model                                            | 0.160677   |  |  |
| 3 | Make                                             | 0.052106   |  |  |
| 4 | VIN (1-10)                                       | 0.040262   |  |  |

|   | Feature              | Importance   |  |
|---|----------------------|--------------|--|
| O | State                | 3.712071e-08 |  |
| 1 | Electric Utility     | 9.238881e-05 |  |
| 2 | Base MSRP            | 3.686047e-04 |  |
| 3 | Legislative District | 7.104148e-04 |  |
| 4 | Latitude             | 8.808175e-04 |  |



## **Final Result**

|   | Model                  | Accuracy               | Accuracy<br>w/ C-valid | ROC-AUC                | ROC-AUC<br>w/C-valid   |
|---|------------------------|------------------------|------------------------|------------------------|------------------------|
| O | XGBoost                | 0.991386718359<br>6794 | 0.99990578642<br>63935 | 0.99432234904<br>3133  | 0.999869277410<br>1849 |
| 1 | Random Forest          | 0.98207398229<br>38108 | 0.999837267463<br>7706 | 0.988427011390<br>7274 | 0.99986766798<br>20891 |
| 2 | Logistic<br>Regression | 0.781130718039<br>9288 | 0.781124738771<br>455  | 0.5                    | 0.5                    |
| 3 | Naive Bayes            | 0.780411279202<br>2223 | 0.780542327589<br>1603 | 0.50065678952<br>25318 | 0.500697523819<br>7879 |



## **Model Evaluation**



Ryerson University

# **Interpretation**

• After feature selection (drop), feature scaling XGBoost performed with the greatest accuracy of 0.99139

 After Cross Validation XGBoost accuracy increased to 0.9999059



#### **Conclusion**

- Can we predict the type of Electric Vehicle?
- BEVs vs PHEVs
- Which Machine Learning yield the most efficient and accurate result?
- Does Cross Validation within ML yield improve results?
- What can we do to improve our findings?
- Electric Vehicle distribution by country?
- Most common make?

- Using Machine Learning it is possible to predict the type of Electric Vehicle and its distribution
- XGBoost and Random Forest are the best performed among the ML algorithms that were selected.
- C-Validation increased all the ML algorithms
- Hyperuning, feature selection, handling categorical features
- King County stands out as the epicenter of electric vehicle adoption
- Tesla its impact in future production



# **Questions?**

