

Programación Básica

Horarios:

Lunes de 2 a 4pm Salón 301 Miércoles de 4 a 6pm Salón 503 Jueves de 2 a 4pm Salón 412

Valores de los cortes

1 corte: 30%

2 corte: 40%

Final: 30%

1 firma vale=0.5 decimas

Por cada 3 puntos es una firma

Trabajo 10 agosto

Realizar un Mapa mental del syllabus de programación básica.

Trabajo 10 de agosto

Averiguar bibliografía de un libro de programación básica.

http://www.fdi.ucm.es/profesor/luis/Fp/FP.pdf

Trabajo 15 de agosto

Realizar una exposición grupal sobre las competencias digitales.

Trabajo 17 agosto

Consultar números decimales del 1 al 60 y pasarlos a binario, octal y hexadecimal.

Dec	Hex	Oct I	Bin	Dec	Hex	Oct	Bir	n	Dec	Hex	Oct	E	Bin	Dec	Hex	Oct	Bi	n
0	0	000 000	00000	16	10	020	00010	0000	32	20	040	001	00000	48	30	060	0110	0000
1	1	001000	00001	17	11	021	00010	0001	33	21	041	001	00001	49	31	0610	0110	0001
2	2	002000	00010	18	12	0220	00010	010	34	22	042	001	00010	50	32	0620	0110	0010
3	3	003 000	00011	19	13	023	00010	011	35	23	043	001	00011	51	33	063 (0011	0011
4	4	004000	00100	20	14	024	00010	100	36	24	044	001	00100	52	34	0640	0110	0100
5	5	005000	00101	21	15	025	00010	101	37	25	045	001	00101	53	35	0650	0110	0101
6	6	006 000	00110	22	16	026	00010	110	38	26	046	001	00110	54	36	066	0011	0110
7	7	007 000	00111	23	17	027	00010	111	39	27	047	001	00111	55	37	067	0011	0111
8	8	010000	01000	24	18	030	00011	000	40	28	050	001	01000	56	38	070	0011	1000
9	9	011 000	01001	25	19	031	00011	001	41	29	051	001	01001	57	39	071	0011	1001
10	A	012000	01010	26	1A	032	00011	010	42	2A	052	001	01010	58	3A	0720	0011	1010
11	В	013 000	01011	27	1B	033	00011	011	43	2B	053	001	01011	59	3B	073	0011	1011
12	C	014 000	01100	28	1C	034	00011	100	44	2C	054	001	01100	60	3C	074	0011	1100
13	D	015000	01101	29	1D	035	00011	101	45	2D	055	001	01101	61	3D	075	0011	1101
14	Ε	016 000	01110	30	1E	036	00011	1110	46	2E	056	001	01110	62	3E	076	0011	1110
15	F	017 000	01111	31	1F	037	00011	1111	47	2F	057	001	01111	63	3F	077	0011	1111

Trabajo 17 agosto

Realizar infografía sobre evolución de los computadores en software y hardware

- -Antecedentes
- -Personajes
- -Lenguajes de programación
- -Características

HISTORIA DEL

HADWARE

¿CUÁLES SON SUS ORÍGENES?

EL HARDWARE HA EXISTIDO DESDE LA INVENCIÓN DE LA COMPUTADORA. LOS PRIMEROS COMPONENTES DE HARDWARE SE FABRICABAN A PARTIR DE INTERRUPTORES Y COMPONENTES MECÁNICOS BÁSICOS.

A MEDIADOS DEL SIGLO XX, EL HARDWARE SE BASABA PRINCIPALMENTE EN LA TECNOLOGÍA DE TUBOS DE VACÍO, QUE FINALMENTE FUE REEMPLAZADA POR EL TRANSISTOR. DÉCADA DE 1960.

HOY EN DÍA, EL HARDWARE SE UTILIZA AMPLIAMENTE EN TODO TIPO DE SISTEMAS Y DISPOSITIVOS INFORMÁTICOS, DESDE COMPUTADORAS DE ESCRITORIO Y PORTÁTILES HASTA TELÉFONOS INTELIGENTES Y RELOJES INTELIGENTES.

CHARLES BABBAGE

CIENTÍFICO A QUIEN SE LE OCURRIÓ POR PRIMERA VEZ LA IDEA DE UNA

COMPUTADORA

JACK S. KILBY Y ROBERT NOYCE

CREADORES DEL PRIMER
CIRCUITO INTEGRADO
(CHIP)

JOHN MCCARTHY

CREADOR DEL TÉRMINO
"INTELIGENCIA ARTIFICIAL"
GRAN PIONERO EN ESTE
CAMPO, TRAJO MUCHOS
CAMPO, TRAJO MUCHOS
LOGROS

GENERACIONES DE HADWARE

DESDE LOS PRIMEROS SISTEMAS INFORMÁTICOS, EL HARDWARE HA SUFRIDO IMPORTANTES CAMBIOS, PARA PERMITIR ORDENADORES MÁS RÁPIDOS Y CAPACES DE REALIZAR UNA MAYOR VARIEDAD DE TAREAS. TENIENDO EN CUENTA LOS AVANCES MÁS SIGNIFICATIVOS, EXISTEN AL MENOS CUATRO GENERACIONES DE HARDWARE:

- PRIMERA GENERACIÓN (1945-1956). ERAN COMPUTADORAS QUE FUNCIONABAN CON TUBOS DE VACÍO.
- SEGUNDA GENERACIÓN (1957-1963). SE INVENTARON LOS TRANSISTORES, GRACIAS A
 LOS CUALES LAS DIMENSIONES DE LAS COMPUTADORAS SE REDUJERON
 SIGNIFICATIVAMENTE
- TERCERA GENERACIÓN (1964-1971). SE DESARROLLARON LOS PRIMEROS CIRCUITOS INTEGRADOS IMPRESOS EN CHIPS DE SILICIO, QUE PERMITIERON AUMENTAR LA VELOCIDAD Y EFICIENCIA DEL PROCESAMIENTO DE LA INFORMACIÓN.
- CUARTA GENERACIÓN (1971-1981). SURGIERON LOS MICROPROCESADORES QUE PERMITIERON CREAR UNA COMPUTADORA PERSONAL (PC).

FUENTE: HTTPS://CONCEPTO.DE/HARDWARE/#IXZZ8BEQMRPX6 HTTPS://WWW.ARIMETRICS.COM/GLOSARIO-DIGITAL/HARDWARE#:~:TEXT=HARDWARE%20Y%20SOFTWARE-,ORIGEN%20DEL% 20HARDWARE,DE%20CHARLES%20BABBAGE%20EN%201822.

HISTORIA DEL

SOFTWARE

¿CUÁLES SON SUS ORÍGENES?

EL SIGNIFICADO DE SOFTWARE SE REMONTA A LOS PRIMEROS MOMENTOS DE LA INFORMÁTICA, PRIMEROS CUANDO LOS **OPERADORES** PROGRAMABAN HUMANOS MÁQUINAS DIRECTAMENTE MEDIANTE EL USO DE TARJETAS PERFORADAS O INGRESANDO COMANDOS EN TERMINALES.

DESARROLLARON **PROGRAMAS** INFORMÁTICOS QUE PODÍAN AUTOMATIZAR TAREAS RUTINARIAS, AUMENTANDO TANTO LA EFICIENCIA COMO LA PRECISIÓN DE ESTOS SISTEMAS. HOY EN DÍA, DESEMPEÑA UN PAPEL VITAL EN TODO, DESDE NUESTRA VIDA DIARIA HASTA LOS SISTEMAS DE INFRAESTRUCTURA CRÍTICA, Y EVOLUCIONA CONSTANTEMENTE PARA SATISFACER LAS NECESIDADES DE LOS USUARIOS DE TODO EL MUNDO.

ADA LOVELACE

LA PRIMERA FLIE PROGRAMADORA EN EL MUNDO.

DENNIS RITCHIE

EL CREADOR DE UNIX Y DE UNOS DE LOS LENGUAJES MAS FAMOSOS EN EL MUNDO "C".

BILL GATES

CREADOR DE LA LLAMADA INDUSTRIA DEL SOFTWARE DF LA **EMPRESA** MICROSOFT.

GENERACIONES DE SOFTWARE

PRIMERA GENERACIÓN: LENGUAJE DE MÁQUINA

CADA COMPUTADORA TIENE UN SOLO LENGUAJE DE PROGRAMACIÓN QUE SU PROCESADOR PUEDE EJECUTAR; BUENO, ESE ES TU IDIOMA NATIVO O LENGUAJE DE MÁQUINA.

SEGUNDA GENERACIÓN: LENGUAJE ENSAMBLADOR

EVITO QUE LOS PROGRAMADORES TUVIERAN QUE PROGRAMAR DIRECTAMENTE EN CÓDIGO BINARIO, SE DESARROLLARON PROGRAMAS PARA TRADUCIR INSTRUCCIONES A CÓDIGO DE MÁQUINA. ESTOS PROGRAMAS SE DENOMINARON ENSAMBLADORES O DE BAJO NIVEL

TERCERA GENERACIÓN: LENGUAJES DE ALTO NIVEL
ESTOS IDIOMAS SON SIMILARES AL INGLÉS Y FACILITAN EL TRABAJO DE LOS
DESARROLLADORES DE SOFTWARE PARA QUE NO SE TENGA QUE CENTRAR EN EL
FUNCIONAMIENTO INTERNO DEL PROCESADOR COMO EN LOS LENGUAJES DE
GENERACIONES ANTERIORES Y PUEDEN MANEJAR MEJOR LA APLICACIÓN QUE ESTÁN PROGRAMANDO.

CUARTA GENERACIÓN: LENGUAJES ORIENTADOS AL USUARIO

EL SOFTWARE DE ESTOS LENGUAJES GENERA LA MAYOR PARTE DEL FLUJO DE UN PROGRAMA DE FORMA AUTOMÁTICA. UN PROGRAMADOR QUE TRABAJA EN UN LENGUAJE DE TERCER NIVEL ESCRIBE INSTRUCCIONES SOBRE QUÉ HACER Y CÓMO HACERLO TENIENDO INTERFAZ GRÁFICA PARA USAR DE FORMA FÁCIL Y SENCILLA.

LOS LENGUAJES NATURALES ESTÁN MÁS CERCA DEL LENGUAJE HUMANO QUE SUS PREDECESORES, LOS LENGUAJES 4GL. CADA VEZ HAY MÁS PROGRAMAS DE BASES DE DATOS QUE SE PUEDEN CONSULTAR UTILIZANDO HERRAMIENTAS DE CONSULTA EN LENGUAJE NATURAL.

HTTP://CV.UOC.EDU/MODULS/XW02_79049_00373/WEB/MAIN/M4/V2_2.HTML. HTTP://WWW.TIPOSDESOFTWARE.COM/HISTORIA-DEL-SOFTWARE.HTM

Sistemas numéricos

Los sistemas numéricos son métodos o notaciones que representan números utilizando símbolos o combinaciones de dígitos. Los sistemas más comunes son el decimal (base 10), binario (base 2), octal (base 8) y hexadecimal (base 16). Cada sistema tiene su base específica y utiliza diferentes dígitos para representar valores, lo que permite realizar operaciones matemáticas y expresar cantidades de manera diversa.

Los sistemas binarios, octal y hexadecimal son sistemas numéricos alternativos utilizados para representar números.

Sistema Binario (Base 2):

El sistema binario utiliza dos símbolos: 0 y 1. Cada posición en un número binario representa una potencia de 2. Es ampliamente utilizado en sistemas informáticos y digitales debido a su naturaleza de representar estados de encendido/apagado (0 y 1).

Sistema Octal (Base 8):

El sistema octal utiliza ocho símbolos: 0, 1, 2, 3, 4, 5, 6 y 7. Cada posición en un número octal representa una potencia de 8. Aunque fue utilizado más comúnmente en el pasado, hoy en día su uso es menos frecuente, especialmente en informática.

Sistema Hexadecimal (Base 16):

El sistema hexadecimal utiliza dieciséis símbolos: 0-9 y A-F (donde A representa 10, B representa 11, y así sucesivamente hasta F que representa 15). Cada posición en un número hexadecimal representa una potencia de 16. Se utiliza comúnmente en informática y programación, especialmente para representar valores binarios de manera más compacta y legible.

Números octales

Suma:

$$+\frac{7560(8)}{752(8)}$$

10532(8)

$$+\frac{7654(8)}{762(8)}$$

0656(8)

Resta:

$$-\frac{5752(8)}{327(8)}$$

5423(8)

Multiplicación:

$$\frac{x_{23(8)}^{756(8)}}{1252(8)}$$

$$x^{6321(8)}_{632(8)}$$

5173272(8)

División:

$$\frac{{\binom{7635(8)}{721(8)}}}{122(8)}$$

Números binarios

Suma:

$$+\frac{^{11101(2)}_{1101(2)}}{101010(2)}$$

$$+ {}^{10101(2)}_{1010(2)} \over 1011(2)$$

Resta:

$$\frac{-\frac{1110(2)}{100(2)}}{1010(2)}$$

$$\frac{-\frac{10011(2)}{1101(2)}}{110(2)}$$

Multiplicación:

$$x_{1010(2)}^{111101(2)}$$

$$1001100010(2)$$

$$\frac{x_{101(2)}^{11100(2)}}{10001100(2)}$$

División:

Números hexadecimales:

Suma

$$+{}^{ABF8(16)}_{FBA7(16)}$$
 $1A79F(16)$

Resta

$$-\frac{BBCA(16)}{7A8(16)}$$
 $B422(16)$

Multiplicación

$$x^{45A5(16)}_{7BF(16)}$$
 $21BBED2(16)$

División

$$f_{F6(16)}^{A1E81E(16)}$$
 $f_{F6(16)}^{A87D(16)}$

Trabajo

Realizar dos ejercicios por cada operación básica en binario, octal y hexadecimal.

Binarios:

Suma

$$\frac{+^{10101(2)}_{0010(2)}}{10101(2)}$$

$$+^{11100(2)}_{1100(2)}$$

$$101000(2)$$

$$+ {}^{10110(2)}_{11110(2)}$$

$$110100(2)$$

Resta

$$\frac{-\frac{101101(2)}{10101(2)}}{11000(2)}$$

$$\frac{-\frac{110011(2)}{01110(2)}}{1101(2)}$$

$$-\frac{0110011(2)}{001110(2)}$$

$$001101(2)$$

Multiplicación

$$\begin{array}{r}
x^{101110(2)} \\
101(2) \\
\hline
11100110(2)
\end{array}$$

$$x_{110(2)}^{101011(2)}$$

$$100000010(2)$$

$$\begin{array}{r} x^{110011(2)} \\ \hline 101(2) \\ \hline 11111111(2) \end{array}$$

División

$$\frac{{\binom{11110(2)}{101(2)}}}{110(2)}$$

$$\frac{\binom{1101110(2)}{100(2)}}{11011(2)}$$

$$\frac{{\binom{1011101(2)}{110(2)}}}{0111(2)}$$

Conversión

Octales

Suma

$$\frac{+_{13457(8)}^{56371(8)}}{72050(8)} \quad \frac{+_{5670(8)}^{674532(8)}}{702422(8)} \quad \frac{+_{12765(8)}^{763265(8)}}{776242(8)}$$

Resta

Multiplicación

$$\begin{array}{c|c} x^{125672(8)} & x^{65312(8)} \\ \hline 36125732(8) & 10672422(8) \end{array}$$

$$\begin{array}{r}
x^{23154(8)}_{442(8)} \\
\hline
10783110(8)
\end{array}$$

División

$${7635(8) \atop 721(8)} / {3504(8) \atop 42(8)} / {45382(8) \atop 25(8)} \ 10.5(8) \ 66(8) \ 1622(8)$$

Conversión

$$540(8) = 49(10)$$

Hexadecimal

Suma

$$\frac{+^{AAB91(16)}_{B1245(16)}}{1BBFD6(16)} \quad \frac{+^{B2345(16)}_{2F2CA(16)}}{E261F(16)} \quad \frac{+^{CD235(16)}_{32C2(16)}}{D14F7(16)}$$

Resta

Multiplicación

$$\begin{array}{c|c} x_{23(16)}^{5529(16)} & x_{54(16)}^{ECO1(16)} \\ \hline BA49B(16) & 4D7054(16) \end{array}$$

$$\begin{array}{r}
x^{8011(16)} \\
BA(16) \\
\hline
4D7054(16)
\end{array}$$

División

$${ { { }^{4DB2F0(16)}_{50(16)}} \ { { }^{10DE50(16)}_{A2(16)}} \ { { }^{156C03(16)}_{2B(16)}} } }$$

Habilidades de pensamiento

Son los procesos mentales qué permiten a las personas procesar cualquier tipo de información; adquirir conocimientos y resolver problemas.

Estas cosas son importantes porque permiten a los humanos pensar y actuar de determinadas maneras, adquiriendo conocimientos; Desarrollar las habilidades, actitudes y competencias necesarias para el desarrollo del pensamiento lógico.

Ejercicios para entrenar la habilidad de pensamiento

Encontrar las 8 diferencias en cada imagen:

A partir de la imagen e intenta decir el color y no la palabra

Trabajo

Realizar mapa conceptual de las habilidades de pensamiento.

Competencias steam

- · Science tecnology engineer art mathematics
- Surgió en 1990
- Método científico
- Uso de tecnologías digitales
- Metodologías científicas

Desarrollo de habilidades de pensamiento

- · Permite adquirir conocimientos
- Resolver problemas
- ¿Por qué es importante?
- Nos prepara para la vida
- Potencia pensamientos lógicos
- Estructurar habilidades y actitudes

Algoritmos

Es un conjunto de procedimientos lógicos o matemáticos que se pueden seguir para resolver un problema en un número limitado de pasos.

Sus características son:

Un algoritmo debe ser preciso e indicar el orden en el que se completa cada paso.

Se debe definir el resultado del algoritmo. Si sigue el algoritmo dos veces con los mismos datos de entrada, obtendrá los mismos resultados cada vez.

Un algoritmo debe ser finito. Si se sigue un algoritmo, entonces el algoritmo debe completarse en un punto determinado, es decir, el algoritmo debe tener un número limitado de pasos.

Seudocódigo

En algoritmos expresados más formalmente, se utiliza como representación intermedia, antes de ser traducido o codificado con un lenguaje de programación.

Diagrama de flujo

Es una representación gráfica del algoritmo. Donde se expresan los pasos del algoritmo, mediante un esquema con símbolos predefinidos.

Cuadro sobre los tipos de datos

Tipos de datos	Características				
Numéricos	Entero: Son números sin parte fraccionaria y con estos se pueden realizar la suma, resta, multiplicación y división.				
Lógico	Booleano: Tipo de dato de verdad, True o false, un dato desconocido es un valor nulo.				
	Cadena: Es el conjunto de características incluyendo letras, datos alfanuméricos, números, espacios entre otros.				
Carácter	Carácter: Representado por comillas y toma un valor de los caracteres representados en la máquina.				

Operadores	Representación y significado				
Relacionales	Comparan datos numéricos, de serie, lógicos, de caracteres. Verdadero (1) o Falso (0). Sentencia If				
Aritméticos	Usa datos numéricos e indican las operaciones matemáticas. (+) (-)(*) (/)(pow)(%)(sqrt).				
Lógicos	Combinan dos valores booleanos y devolver un resultado verdadero, falso o nulo. (&&) es y (II) es o (I) es No.				

Diagrama de flujo Pseudocódigo INICIO Inicio Z, Y Lea Z, Y (Variables) Z-Y=P Haga Z - Y = P (Proceso)Р Muestre Р FIN Fin Diagrama de flujo INICIO Pseudocódigo Inicio Z, Y Lea A, B, C, D Z-Y=P Haga A+B+C+D=Z Muestre Р Z Fin FIN

Operaciones Primitivas: Se realizan directamente en el lenguaje de programación. Tipos de datos (+) Suma (-) Resta (*) Multiplicación (/) División Carácter numérico (<) Menor (>) Mayor (<=) Menor o igual (>=) Mayor o igual (i=) Distinto que Realizar seudocódigo que pida el nombre a la persona y le desee feliz día Definir $\pi = 3.1416$ Iva= 16% Seudocódigo Inicio Lea Nomb= David Haga "¿Cómo te llamas?" + nomb

Variables y Constantes

Variable: Son contenedores que se utilizan para almacenar información que puede cambiar durante la ejecución del programa.

Constantes: A diferencia de las variables, las constantes son valores que no pueden ser modificados una vez que se les asigna un valor inicial. Se utilizan para representar valores fijos que no cambiarán a lo largo de la ejecución del programa.

Reglas de prioridad

Expresiones matemáticas que contienen dos o más operadores necesitan un conjunto de reglas que determinar el orden en la ejecución de sus operaciones.

Sintaxis

Son las reglas y estructuras gramaticales que deben seguirse al escribir código en un lenguaje de programación específico.

Estructuras de control

Las estructuras de control en programación son bloques de código que permiten controlar el flujo de ejecución del programa. Estas estructuras son fundamentales para tomar decisiones, repetir acciones y controlar el comportamiento del código en función de diferentes condiciones.

Hay tres tipos principales de estructuras de control:

Hay tres tipos principales de estructuras de control:

Estructuras de control condicionales:

if: Permite ejecutar un bloque de código si una condición es verdadera.

else: Se utiliza junto con "if" para ejecutar un bloque de código cuando la condición del "if" es falsa.

else if (en algunos lenguajes): Permite comprobar múltiples condiciones después de un "if" inicial.

Estructuras de control de bucles:

for: Se utiliza para ejecutar un bloque de código un número específico de veces.

while: Ejecuta un bloque de código mientras una condición sea verdadera.

do-while (en algunos lenguajes): Similar al "while", pero garantiza que el bloque de código se ejecute al menos una vez antes de verificar la condición.

Estructuras de control de salto:

break: Se utiliza para salir de un bucle.

continue: Permite pasar a la siguiente iteración de un bucle, omitiendo parte del código restante en esa iteración.

goto (en algunos lenguajes): Permite saltar a una etiqueta específica en el código.

Ejercicios en DFD 1.Desarrolle un programa que al escribir la hora, si la hora es menor que las 12 del día indique buenos días; de lo contrario diga buenas tardes. INICIO Preguntar la hora Si la hora es menor que 12 └─ Mostrar "Buenos días" Si no └─ Mostrar "Buenas tardes" FIN 2. Desarrolle un programa que pregunte la edad el año de nacimiento y calcule la edad ;si la edad es mayor de 18 año, le permita el ingreso al concierto musical, de lo contrario diga aun no eres mayor de edad INICIO Preguntar el año de nacimiento Calcular la edad (año actual - año de nacimiento) Si la edad es mayor o igual a 18

4. Desarrollo un programa que solicite 3 números en 3 variables A, B y C. Y determine cual es el mayor y cual es el menor.

INICIO

1

Solicitar tres números: A, B y C

Encontrar el mayor y el menor entre A, B y C

1

Mostrar el número mayor y el número menor

I

FIN

Estructura condicional simple

Es evaluar una condición y realizar una acción si esa condición es verdadera. Es una manera de controlar el flujo del programa basado en una única evaluación.

Estructura condicional doble

Es evaluar una condición y realizar una acción si esa condición es verdadera, y otra acción si la condición es falsa. Es una forma de controlar el flujo del programa cuando se tienen dos posibles resultados basados en una única evaluación.

Bucles

Los bucles son estructuras fundamentales en programación que permiten ejecutar repetidamente un bloque de código mientras se cumple una condición específica o por un número determinado de veces. Estos son algunos de los bucles más comunes:

Bucle for:

El bucle for se utiliza para iterar sobre una secuencia de valores conocida, como una colección de elementos, durante un número específico de veces.

Cuadro sobre los tipos de datos

Tipos de datos	Características					
Numéricos	Entero: Son números sin parte fraccionaria y con estos se pueden realizar la suma, resta, multiplicación y división.					
Lógico	Booleano: Tipo de dato de verdad, True o false, un dato desconocido es un valor nulo.					
	Cadena: Es el conjunto de características incluyendo letras, datos alfanuméricos, números, espacios entre otros.					
Carácter	Carácter: Representado por comillas y toma un valor de los caracteres representados en la máquina.					

Operadores	Representación y significado				
	Comparan datos numéricos, de				
	serie, lógicos, de caracteres.				
Relacionales	Verdadero (1) o Falso (0).				
Relacionales	Sentencia If				
Aritméticos	Usa datos numéricos e indican las operaciones matemáticas. (+) (-)(*) (/)(pow)(%)(sqrt).				
Antineticos					
	Combinan dos valores booleanos y				
	devolver un resultado verdadero,				
Lógicos	falso o nulo.				
	(&&) es y (II) es o (I) es No.				

Problemas computacionales

Decisiones:

En C++, tanto la estructura if como la estructura switch son herramientas fundamentales para el control de flujo en un programa, permitiendo tomar decisiones basadas en condiciones específicas.

IF.

La estructura if es una construcción que evalúa una condición y ejecuta un bloque de código si esa condición es verdadera.

SWITCH

La estructura switch evalúa el valor de una variable y ejecuta un bloque de código específico dependiendo del valor que tenga esa variable.

Entrada y salida de datos:

Bibliotecas

Es un conjunto de funcionalidades predefinidas que se pueden utilizar en un programa para realizar tareas específicas sin necesidad de volver a escribir todo el código desde cero. Estas bibliotecas contienen conjuntos de funciones, clases y/o definiciones que están diseñadas para ser reutilizadas en diferentes programas.

Ejemplos:

#include <iostream> // Incluir la biblioteca estándar iostream

#include <vector> // Incluir la biblioteca estándar vector

PRINTE

Es una función de salida comúnmente utilizada en C++. Se encuentra en la biblioteca estándar de C, <cstdio>, y se usa para imprimir texto y datos formateados en la consola o en otro flujo de salida. Su sintaxis básica es:

printf("formato", argumentos);

Ejercicios en c++:

1. Realizar una resta, Multiplicación y División.

```
    ▶ Run
    • Debug
    ■ Stop
    • Share
    ■ Save
    {} Beautify
    ±

 main.cpp
      using namespace std;
      int main() {
    float num1, num2, resultado_resta;
           cout << "Ingrese dos numeros para la resta: ";</pre>
           cin >> num1 >> num2;
           resultado_resta = num1 - num2;
           cout << "La resta es: " << resultado_resta << endl;</pre>
V 2' 5
Ingrese dos numeros para la resta: 900 500
                                                                            input
a resta es: 400
 ..Program finished with exit code 0
Press ENTER to exit console.
 ► Run O Debug Stop Share Save {} Beautify
      /*****Realizame una multiplicacion en c++
      using namespace std;
      int main() {
  float num1, num2, resultado_multiplicacion;
           cout << "Ingrese dos numeros para la multiplicacion: ";
cin >> num1 >> num2;
           resultado_multiplicacion = num1 * num2;
           cout << "La multiplicacion es: " << resultado_multiplicacion << endl;</pre>
Ingrese dos numeros para la multiplicacion: 700 40
La multiplicacion es: 28000
                                                                         input
  ..Program finished with exit code 0
```

2. Don Carlos tiene una tienda y necesita que realices un programa que al escribir el costo de producto y realice el valor del IVA y posteriormente totalice el pago

3. María tiene un descuento del 10% de la compra total de los productos, es necesario realizar el total de las compras y posteriormente aplique el descuento y le indique cuanto ha ahorrado.

4. Calcular el área de un triángulo, conociendo la fórmula Área=Base*Altura/2

5. Ingrese el sueldo de tres empleados y aplicarles a cada uno un incremento de 10%, 20% y 30% respectivamente y poner los nuevos valores del sueldo de cada uno.

Trabajo

Realizar una calculadora en c++ y crear un programa que calcule los diferentes volumenes de figura.

Calculadora

```
hare H Save {} Beautify
         *************************
      #include <iostream>
using namespace std;
      int main() {
           char operador:
           float num1, num2, resultado;
           cout << "Ingrese el primer número: ";
cin >> num1;
           cout << "Ingrese el operador (+, -, *, /): ";
cin >> operador;
           cout << "Ingrese el segundo número: ";
cin >> num2;
           switch (operador) {
                   resultado = num1 + num2;
                   resultado = num1 - num2;
 Y 2 3
                                                                        input
Ingrese el primer número: 80
Ingrese el operador (+, -, *, /): *
Ingrese el segundo número: 60
El resultado es: 4800
 ..Program finished with exit code 0
Press ENTER to exit console.
```

Volumenes

```
Run O Debug ■ Stop C Share H Save {} Beautify ±
                                                                                                                                       Language C++
                                                                                                                                                            √ 🚯 🗘
         #include <iostream>
#include <cmath>
using namespace std;
  10 const float PI = 3.14159;
 12 // Función para calcular el volumen de un cubo
13 float volumenCubo(float lado) {
14 return lado * lado * lado;
  17 // Función para calcular el volumen de una esfera
18 float volumenEsfera(float radio) {
19 return (4.0 / 3.0) * PI * pow(radio, 3);
       // Función para calcular el volumen de un cilindro float volumenCilindro(float radio, float altura) {
          return PI * pow(radio, 2) * altura;
      int main() {
                                                                                     input
Calculadora de volúmenes:
1. Volumen de un cubo
2. Volumen de una esfera
3. Volumen de un cilindro
Seleccione la figura (1-3): 1
Ingrese el lado del cubo: 5
```

El volumen del cubo es: 125