## 1. I numeri

## 1.1. Sistemi numerici

Sia N un insieme non vuoto, in cui si fissa un elemento detto zero, indicato con 0, ed una funzione + da  $\mathbb{N}$  in  $\mathbb{N}$ . Indicata con  $a^+$  l'immagine di a tramite + al variare di  $a \in \mathbb{N}$ , si dice che  $a^+$  é elemento successivo, o successore, di a. Si assuma che per l'insieme  $\mathbb N$  valgano i seguenti assiomi, detti Assiomi di Peano:

- 1.  $0 \neq a^+ \ \forall a \in \mathbb{N}$ . Ovvero, non esiste alcun elemento di  $\mathbb{N}$  avente 0 come successore;
- 2. La funzione + é iniettiva. Ovvero, non esistono due  $a_1, a_2 \in S$  distinti che abbiano uno stesso  $a^+$  come successore;
- 3. Se  $S \subseteq \mathbb{N}, 0 \in S$  e  $s^+ \in S$   $\forall s \in S$ , allora  $S = \mathbb{N}$ . Ovvero, se S é un sottoinsieme anche improprio di  $\mathbb N$  che contiene (almeno) 0 e che, per ciascun elemento di S, ne contiene anche l'immagine tramite +, allora S e  $\mathbb N$  sono lo stesso insieme.

L'insieme  $\mathbb{N}$  cosí definito prende il nome di **insieme dei numeri naturali**.

**Principio 1.1.1** (Principio di induzione): Dato un numero fissato  $n_0 \in \mathbb{Z}$ , sia P(n) una proposizione dipendente da  $n \in \mathbb{Z}$ , con  $n \geq n_0$ . Si supponga che siano verificate le seguenti ipotesi:

- 1.  $P(n_0)$  é vera;
- 2.  $\forall n$ , supponendo che sia vera P(n) é possibile dimostrare che lo sia anche P(n+1).

Allora P(n) é vera  $\forall n \in \mathbb{Z}$ 

## Principio di induzione

Si consideri la seguente proposizione, dipendente da n:

$$\sum_{i=1}^{n} (2i - 1) = n^2, \forall n \ge 1$$

É possibile applicarvi il principio di induzione ponendo  $n_0=1.$  Nello specifico:

- P(1) é vera. Infatti,  $\sum_{i=1}^1 (2i-1)=(2\cdot 1)-1=2-1=1$  e  $1^2=1$ ; Supponendo che sia vera P(n), si dimostri che é vera P(n+1), ovvero che sia vera  $\sum_{i=1}^{n+1} (2i-1) = (n+1)^2$ . Si ha:

$$\sum_{i=1}^{n+1} (2i-1) = (2(n+1)-1) + \sum_{i=1}^{n} (2i-1) = 2n+1 + \sum_{i=1}^{n} (2i-1) = 2n+1 + n^2$$

Che é peró proprio la formula per il calcolo del quadrato di binomio. Pertanto  $n^2+1+2n=\left(n+1\right)^2=\sum_{i=1}^{n+1}(2i-1)$ 

Essendo verificate entrambe le ipotesi del principio di inudzione, si ha che P(n) é vera  $\forall n \geq 1$