

PRISM WORLD

Std.: 10 (Marathi) <u>विज्ञान आणि तंत्रज्ञान - १</u>

Chapter: 8

Q.1 जोडी जुळवा.

1

'अ' गट	'ब' गट	
i. बॉक्साईट	अ. पारा	
ii. कॅसिटराईट	ब. ॲल्युमिनिअम	
	क. कथिल	

Ans

i. बॉक्साईट अँल्युमिनिअम ii. कॅसिटराईट कथिल

2

'अ' गट 'ब' गट
i. KBr अ. ज्वलनशील
ii. सोने ब. पाण्यात विद्राव्य
क. उच्च तन्यता

i. KBr पाण्यात विद्राव्य ii. सोने उच्च तन्यता Colours of your Dreams

3

Ans

'अ' गट	'ब' गट
i. गंधक	अ. ज्वलनशील
ii. निऑन	ब. पाण्यात विद्राव्य
	क. क्रियाशील नाही

Ans

 i. गंधक
 ज्वलनशील

 ii. निऑन
 क्रियाशील नाही.

4

'अ' गट	'ब' गट
i. कॅसिटराईट	अ. पारा
ii. सिनाबार	ब. ॲल्युमिनिअम
	क. कथिल

Ans

i. कॅसिटराईट	कथिल
ii. सिनाबार	पारा

Q.2 नाव / रेणूसूत्र लिहा.

1 राजधातूंना विरघळवणारे अभिक्रियाकारक.

Ę

	Ans	राजधातूंना विरघळवणारे अभिक्रियाकारक - आम्लराज		
	2	धातूक भरडण्यासाठी वापरण्यात येणारे साधन.		
	Ans	धातूक भरडण्यासाठी वापरण्यात येणारे साधन बॉल मिल		
	3	अँल्युमिनिअमच्या सामान्य धातुकाचे रेणूसूत्र.		
	Ans	अँल्युमिनिअमच्या सामान्य धातुकाचे रेणूसूत्र - बॉक्साइड (Al₂O₃.nH₂O)		
	4	सोडिअमचे पा-यासोबतचे संमिश्र.		
	Ans	सोडिअमचे पा-यासोबतचे संमिश्र - सोडिअम - पारसंमिश्र (सोडिअम अमालाम)		
	5	आम्ल व आम्लारी या दोघांबरोबर अभिक्रिया होऊन क्षार व पाणी तयार करते ते ऑक्साइड.		
	Ans	आम्ल व आम्लारी या दोघांबरोबर अभिक्रिया होऊन क्षार व पाणी तयार करते ते ऑक्साइड - ॲल्युमिनिअम ऑक्साइड		
Q.3		रासायनिक अभिक्रिया समीकरणासह स्पष्ट करणे.	14	
	1	अँल्युमिनिअम हवेत उघडे ठेवले.		
	Ans	अँल्युमिनिअम हवेत उघडे ठेवल्यास त्याचा हवेतील ऑक्सिजनशी संयोग होतो. अँल्युमिनिअम ऑक्साइडचा संरक्षक थर तयार होतो. त्यामुळे आतील अँल्युमिनिअमचे क्षरण होत नाही.		
		4Al + $30_2 ightarrow 2Al_2O_3$ अँल्युमिनिअम ऑक्साइड		
	2	लोखंडाचा चुरा/भुकटी कॉपर सल्फेटच्या जलीय द्रावणात टाकली.		
	Ans	कॉपर सल्फेटच्या द्रावणाचा लोखंडाचा चुरा ठेवला. असता थोड्या वेळातच त्यावर तांबूस रंगाचा तांब्याचा थर चढतो, कॉपर सल्फेट द्रावणाचा रंग हळूहळू फिकट होतो व फेरस सल्फेट तयार होते.		
		Fe + $CuSO_4 \rightarrow FeSO_4$ + Cu लोह कॉपर सल्फेट फेरस सल्फेट तांबे		
	3	तांब्यांचे नाणे सिल्व्हर नायट्रेटच्या द्रावणात टाकले अस <mark>ता थोड</mark> ्यावेळात नाण्यावर चकाकी दिसते.		
	Ans	तांब्यांचे नाणे सिल्व्हर नायट्रेटच्या द्रावणात टाकले असता थोड्यावेळात नाण्यावर चकाकी दिसते. कारण i. तांबे चंडीपेक्षा जास्त क्रियाशील आहे. ii. जेव्हा तांब्याचे नाणे सिल्व्हरनायट्रेटच्या द्रावणात टाकले तेव्हा जास्त क्रियाशील तांबे चांदीला विस्थापित करते व स्वतः चांदीची जागा घेते. iii. विस्थापित चांदी तांब्याच्या नाण्यावर जमते. म्हणून नाणे चकाकाते.		
		iv. $Cu + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$		
	4	फेरीक ऑक्साइडची ॲल्युमिनिअमबरोबर अभिक्रिया घडवून आणली.		
	Ans	Fe ₂ O ₃ + 2AI →2Fe+ Al ₂ O ₃ +उष्णता फेरिक ऑक्साईड ॲंल्युमिनिअम लोह ॲंल्युमिनिअम ऑक्साईड		
	5	झिंक ऑक्साइड हे विरल हायड्रोक्लोरीक आम्लामध्ये विरघळविले.		
	Ans	झिंक ऑक्साईड पातळ हायड्रोक्लोरिक अँसिडमध्ये विरघळल्यास झिंक क्लोराईड आणि पाणी तयार होते.		
		ZnO + HCI $ ightarrow$ ZnCl $_2$ +H $_2$ O झिंक ऑक्साईड हायड्रोक्लोरिक ॲसिड झिंक क्लोराईड पाणी		
	6	अँल्युमिनाचे विद्युत अपघटन केले.		
	Ans	विद्युतप्रवाह जाऊ दिल्यावर ऋणाग्रावर ॲल्युमिनिअम जमा होते. वितळलेले ॲल्युमिनिअम विद्युत अपघटनीपेक्षा जड असल्याने टाकीच्या तळाशी जमा होते. येथूनच ते वेळोवेळी काढून घेतले जाते. ऑक्सिजन वायू धनाग्रापाशी मुक्त होतो.		
		धनाग्र अभिक्रिया 20 $^- o O_2$ + 4e $^-$ (ऑक्सिडीकरण) ऋणाग्र अभिक्रियाAI $^{3+}$ + 3e $^- o AI$ (I) (क्षरण)		
	7	जस्ताची विरल हायड्रोक्लोरीक आम्लाबरोबर क्रिया केली.		
	Ans	जस्ताची विरल हायड्रोक्लोरीक आम्लाबरोबर अभिक्रिया झाली असता झिंकक्लोराइड व हायड्रोजन वायू तयार होतो.		

2HCI

Zn +

ZnCl₂

जस्त हायड्रोक्लोरीक आम्ल झिंक क्लोराइड हायड्रोजन

Q.4 ओघतक्ता पूर्ण करणे.

1 खाली दिलेल्या धातूंचे जास्त क्रियाशील धातू, मध्यम क्रियाशील व कमी क्रियाशील यामध्ये वर्गिकरण करा. cu, zn, ca, Na, Li, Mg, Fe

Ans

जास्त क्रियाशील	मध्यम क्रियाशील	कमी क्रियाशील
cu, Na, Li, ca	zn, Mg, Fe	ca

Q.5 शास्त्रीय कारणे लिहा.

10

1 हिरवट पडलेली तांब्याची भांडी स्वच्छ करण्यासाठी लिंबाचा किंवा चिंचेचा वापर करतात.

Ans हिरवट पडलेली तांब्याची भांडी स्वच्छ करण्यासाठी लिंबाचा किंवा चिंचेचा वापर करतात. कारण

- i. दमट हवेत तांब्याची कार्बन डायॉक्साइड बरोबर क्रिया होते व हिरव्या रंगाचे कॉपर कार्बोनेट तयार होते.
- ii. चिंचेमध्ये टार्टरीक आम्ल तर लिंबामध्ये सायट्कि आम्ल असते.
- iii. कार्बोनेटची आम्लाबरोबर क्रिया होते.
- iv. त्यामुळे हिरवा थर निघून जातो. व भांडी पुन्हा चकचकीत दिसतात.
- 2 अँल्युमिनाच्या विद्युत अपघटनामध्ये वेळोवेळी धनाग्र बदलण्याची आवश्यकता असते.

Ans i. अँल्युमिना म्हणजे अँल्युमिनिअम ऑक्साइड (Al₂O₃)

- ii. यात स्टीलच्या टाकीला आतून ग्रॅफाइटचे अस्तर लावतात. हे अस्तर ऋणाग्राचे कार्य करते.
- iii. वितळलेल्या विद्युत अपघटनी पदार्थात बुडवलेल्या ग्राफाइटच्या कांड्या धनाग्राचे (अँनोड) कार्य करतात.
- iv. अँल्युमिनिअमच्या विद्युत अपघटनात ऋणाग्राकडे अँल्युमिनिअम (द्रवरुप) गोळा होतो.
- v. तर धनाग्राकडे ऑक्सिजन मुक्त होते.
- vi. तापमान उच्च असते. त्यामुळे कार्बन (ग्राफाइट) व ऑक्सिजनच्या संयोगाने कार्बन डायॉक्साइड मुक्त होतो. म्हणून ग्राफाइडच्या कांड्या वारंवार बदलाव्या लागतात.
- 3 साधारणपणे आयिनक संयुगाचे द्रवणांक उच्च असतात.
- Ans i. आयनिक संयुगांमध्ये आंतररेष्वीय आकर्षण बल जास्त असते.
 - ii. त्यामुळे त्यावर मात करण्यासाठी बरीच ऊर्जा लाग<mark>ते. म्हणून</mark> आयनिक संयुगांचा विलयनबिंदू व उत्कलनबिंदू उच्च असतो.
- सोडिअम हा कायम रॉकेलमध्ये ठेवतात.

Ans i. सोडिअम अतिशय क्रियाशील धातू आहे.

- ii. हवेतील आर्द्रता, ऑक्सिजन यांच्या बरोबर सोडिअमची कक्षतापमानाला सुद्धा अभिक्रिया होते.
- iii.सोडिअम केरोसिन मध्ये अविद्राव्य आहे तसेच त्याची केरोसिनबरोबर अभिक्रिया होत नाही.
- iv.सोडिअमची घनता केरोसिनपेक्षा जास्त आहे. म्हणून हवेशी संपर्क येऊ नये म्हणून सोडिअम केरोसिनखाली साठवतात.
- फेनतरणात पाईन वृक्षाचे तेल वापरले जाते.
- Ans i. फेनतरण पद्धती ही धातुकांमधील कणांच्या परस्परविरोधी जलस्नेही आणि जलविरोधी या दोन गुणधर्मांवर आधारित आहे.
 - ii. यामध्ये धातुंच्या सल्फाइडचे कण त्यांच्या जलविरोधी गुणधर्मामुळे प्राधान्याने तेलाने भिजतात.
 - iii.तर मृदा अशुद्धी ह्या त्यांच्या जलस्नेही गुणधर्मामुळे पाण्याने भिजतात.
 - iv.तेल व पाणी एकत्र ढवळले असता खुप फेस (फेन) तयार होतो.
 - v. या फेसामुळे तळाशी बसतात.
 - म्हणून फेनतरण पद्धतीने धातुकाचे संहतीकरण करताना त्यात पाडून तेल मिसळतात.

Q.6 जास्तीचे प्रश्न (Not to be Use)

1 नामनिर्देशित आकृती काढा.

फेनतरण पद्धती.

ç

नामनिर्देशित आकृती काढा. चुंबकीय विलगीकरण पद्धती.

4 नामनिर्देशित आकृती काढा. जलशक्तीवर आधारित विलगीकरण.

- उदाहरणांसहीत खनिजांचे स्पष्टीकरण द्या.
- Ans i. पृथ्वीच्या कवचा मध्ये नैसर्गिकरित्या उद्भणारे घटक किंवा संयुगे खनिज म्हणून ओळखले जातात.
 - ii. बहुतेक सर्वच खनिजे संयुक्तरित्या सापडतात.
 - iii.एक विशिष्ट धातू निर्सगामध्ये निरनिराळ्या मिश्र स्वरुपात सापडतो.
 - iv. उदा. क्रायोलाइट, बॉक्साइट हे अँल्युमिनिअमचे खनिजे आहेत.
- उदाहरणांसहीत स्पष्टीकरण द्या. धातुके
- Ans i. ज्या खनिजांपासून सोयीस्करपणे आणि फायदेशीररीत्या धातू वेगळा करता येतो त्याला धातुक म्हणतात.
 - ii. अशाप्रकारचे बरीच खनिजे असु शकतात ज्यामधून धातू काढले जाऊ शकतात.
 - iii. उदा. अँल्युमिनिअमचे त्याच्या बॉक्साइड या धातुकापासून निष्कर्षण केले जाते. म्हणून, बॉक्साइड हा अँलुयमिनिअमचा धातू आहे.
- मृदा अशुद्धी. 3
- Ans i. धातूकांमध्ये धातूच्या संयुगाबरोबर माती, वाळू आणि खडकीय पदार्थ अशा अनेक प्रकारच्या अशुद्धी असतात. या अशुद्धींना मृदा
 - ii. उदा. बॉक्साइड धातू मध्ये सिलिका, फेरिक ऑक्साइड, टायटेनिअम ऑक्साइड सारखे अशुद्ध धातू असतात.
 - iii. विलगीकरणाच्या विविध पद्धती वापरून धातुंचे त्यांच्या धातूकांपासून निष्कर्षण करता येते.
- Ans i. खनिजांपासून धातुंचे निष्कर्षण व उपयोगासाठी शुद्धीकरण यासंबंधीचे विज्ञान आणि तंत्रज्ञान म्हणजे धातुविज्ञान होय.
 - iii. धातुकांपासून धातू मिळवण्यात सर्वसाधारणपणे खालील पाय-या (टप्पे) येतात.
 - अ) धातुक दळून त्याची भुकटी करणे
 - ब) धातुकाचे संहतीकरण
 - क) संहत धातुकापासून धातूचे निष्कर्षण
 - ड) धातूचे शुद्धीकरण

उत्तरे स्पष्टीकरणासह लिहिणे. **Q.8**

खालील विधान पर्यायानुसार पूर्ण करा. ॲल्युमिनिअमच्या निष्कर्षणात धातूकाच्या संहतीकरणात अपक्षालणाचा उपयोग Of your Dreams

- Ans i. अपक्षालन ही धातूच्या संहतीकरणाची एक पद्धत आहे.
 - ii. यामध्ये धातुक एका निवडक द्रावणात बराच वेळ भिजवत ठेवतात.
 - iii. द्रावणाबरोबर विशिष्ट रासायनिक अभिक्रिया होऊन धातुक त्यात विरघळते माग मृदा अशुद्धीची अभिक्रिया न झाल्याने ती विरघळत नाही व ती वेगळी करता येते.
 - iv. बॉक्साइडचे अपक्षालन करताना NaOH किंवा Na_2CO_3 चा वापर करतात.
- खालील विधान पर्यायानुसार पूर्ण करा. 2 ॲल्युमिनिअमच्या निष्कर्षणात.

बॉक्साइटमध्ये असलेले घटक, मृदा अशुद्धी

- Ans i. ॲल्युमिनिअमचे त्याच्या मुख्य धातुक बॉक्साइट (Al₂O₃.nH₂O) पासून निष्कर्षण केले जाते.
 - ii. बॉक्साइटमध्ये 30% ते 70% इतके Al₂O₃ आणि उरलेला भाग मृदा अशुद्धीचा असतो.
 - iii. तो वाळु(SiO2), फेरिक ऑक्साइड (Fe2O3) आणि टिटॅनिअम ऑक्साइड (TiO2) पासून बनलेला असतो.
- खालील विधान पर्यायानुसार पूर्ण करा.

ॲल्युमिनिअमच्या निष्कर्षणात

बॉक्साइटचे हॉलच्या पद्धतीने ॲल्युमिनामध्ये रूपांतर करण्याची रासायनिक अभिक्रिया

- Ans i. हॉलच्या प्रक्रियेत धातुकाची भुकटी करुन घेतात आणि नंतर जलीय सोडीअम कार्बोनेटसोबत सारसंग्राहकात तापवुन पाण्यात विद्राव्य असे सोडिअम अँल्युमिनेट तयार होते.
 - ii. त्यानंतर अविद्राव्य अशुद्धी गाळून या गलितास गरम करुन त्यामधून CO2 वायु प्रवाहित करुन त्याचे उदासिनीकरण करण्यात
 - iii. यामुळे ॲंल्युमिनिअम हायड्रॉक्साइडचे अवक्षेपण घडून येते.
 - iv. $Al_2O_3.2H_2O + Na_2CO_3 \rightarrow 2 NaAlO_2 + CO_2 + 2 H_2O$.
 - v. 2 NaAlO₂ + 3 H₂O + CO₂ \rightarrow 2Al(OH)₃ + Na₂CO₃.
 - vi. मिळालेला AI(OH)3 चा अवक्षेपित गाळून, धुवून कोरडा करतात आणि नंतर 1000°C तापमानाला तापवून निस्तापन करुन अँल्युमिना मिळवतात.

5

Q.9 प्रश्नाचे उत्तर विस्तृत स्वरूपात लिहिणे.

- 1 'अ' धातूचे इलेक्ट्रॉन संरुपण (2, 8, 1) आहे. 'ब' धातूचे इलेक्ट्रॉन संरुपण (2, 8, 2) आहे.
 - i. यापैकी कोणत्या धातू जास्त क्रियाशील आहे. या धातूंची नावे लिहा.
 - ii. या धातूची विरल हायड्ॉक्लोरिक आम्लाबरोबर अभिक्रिया लिहा.
- Ans i. 'A' या धातूचे इलेक्ट्रॉसंरुप (2, 8, 1) म्हणजे अणूक्रमांक 11 आहे. हा सोडिअम आहे. 'B' चे इलेक्ट्रॉन संरुपण (2, 8, 2) म्हणजे अणूक्रमांक 20 आहे. हा मॅग्नेशिअम पेक्षा जास्त क्रियाशील आहे. कारण सोडिअमच्या बाह्यतम कक्षेत एक इलेक्ट्रॉन आहेत. मॅग्नेशिअमच्या बाह्यतम कक्षेत दोन इलेक्ट्रॉन आहेत.
 - ॥. या धातूंची विरल हायडोक्लोरिक आम्लाबरोबर क्रिया झाली असता संगत क्षार व हायडोजन वायू तयार होतो.

2 Na + 2HCl
$$ightarrow$$
 2NaCl + H2 \uparrow सोडिअम क्लोराइड Mg + 2HCl $ightarrow$ MgCl $_2$ + H2 \uparrow मॅग्नेशिअम क्लोराइड

