CS57300 PURDUE UNIVERSITY OCTOBER 13, 2021

DATA MINING

ANNOUNCEMENT

- Midterm exam:
 - October 25 October 26: 24 hour exam, exam questions will be released on BrightSpace at 10am
 EST October 25, and you need to submit the answers to BrightSpace before 10am EST October 26.
 - ▶ Closed-book, closed-note; non-programmable calculator allowed
 - Question type: Multiple choice, T/F, short questions, application of data mining algorithms
 - You need to type all your answers (template will be provided)
 - You need to sign a honor statement
 - We will randomly sample 10% of the students and ask them to go through their answers with TAs after the exam

SVM: RECAP

SVM: KNOWLEDGE REPRESENTATION AND SCORING FUNCTION

- Linear SVM: $y = sign \left[\sum_{i=1}^{m} w_i x_i + b \right]$
- Margin = $d_+ + d_- = 2/||w||$
- Optimization problem
 - max 2/||w||
 - subject to

$$y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i + b) \ge 1, \forall i \in \{1, 2, ..., N\}$$

SVM LEARNING

Equivalent to minimize $\|\mathbf{w}\|^2/2$ subject to

$$y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i + b) \ge 1, \forall i \in \{1, 2, ..., N\}$$

- This is a quadratic optimization problem subject to linear constraints, there is a unique minimum
- Lagrangian function $L(\mathbf{w}, b, \lambda_i) = \frac{1}{2} ||\mathbf{w}||^2 + \sum_{i=1}^{N} \lambda_i (1 y_i(\mathbf{w}^\mathsf{T} \mathbf{x}_i + b))$

WHAT ABOUT LINEARLY NON-SEPARABLE DATA?

Introduce slack variables $\varepsilon_i \ge 0$ such that:

$$y_i(\mathbf{w}^\mathsf{T} \mathbf{x}_i + b) \ge 1 - \varepsilon_i, \forall i \in \{1, 2, ..., N\}$$

- $m{arepsilon}_i$ measures the amount of error
 - When $0 < \varepsilon_i \le 1$, data is between the margin, but classified correctly
 - When $\varepsilon_i > 1$, data is misclassified

"SOFT" MARGIN OPTIMIZATION

With slack variables the score function is:

$$\min_{\mathbf{w},\xi} ||\mathbf{w}||^2 + C \sum_{i}^{N} \xi_i$$

And new constraints:

$$y_i(x_i \cdot w + b) - (1 - \xi_i) \ge 0 \ \forall i$$

- If ξ are sufficiently large, then every constraint can be satisfied
- C is regularization parameter
 - > Small C means constraints can be ignored in order to find large margin
 - Large C means constraints cannot be ignored and result is small margin (C=∞ enforces hard margin)

SVM OPTIMIZATION

Constraint can be rewritten as:

$$y_i f(x_i) \ge 1 - \xi_i \ \forall i$$

▶ Together with $\xi_i \ge 0$, is equivalent to:

$$\xi_i = \max\left(0, 1 - y_i f(x_i)\right)$$

Hence we can use the following score in unconstrained optimization:

$$\min_{\mathbf{w}} ||\mathbf{w}||^2 + C \sum_{i}^{N} \left[\max\left(0, 1 - y_i f(x_i)\right) \right]$$

NEW OBJECTIVE

$$\min_{\mathbf{w}} ||\mathbf{w}||^2 + C \sum_{i}^{N} \left[\max\left(0, 1 - y_i f(x_i)\right) \right]$$

Hinge Loss

Points are in three categories:

- 1. $y_i f(x_i) > 1$ Point is outside margin. No contribution to loss
- 2. $y_i f(x_i) = 1$ Point is on margin. No contribution to loss. As in hard margin case.
- 3. $y_i f(x_i) < 1$ Point violates margin constraint. Contributes to loss

REWRITE THE OBJECTIVE FUNCTION

$$\min_{\mathbf{w}} ||\mathbf{w}||^2 + C \sum_{i}^{N} \left[\max\left(0, 1 - y_i f(x_i)\right) \right]$$

SVM OPTIMIZATION WITH SUB-GRADIENT

Rewrite optimization problem:

$$\min_{\mathbf{w}} \frac{1}{N} \sum_{i}^{N} \left(\frac{\lambda}{2} ||\mathbf{w}||^{2} + \left[\max \left(0, 1 - y_{i} f(x_{i}) \right) \right] \right)$$

- Now $\lambda = \frac{2}{N \cdot C}$, becomes the regularization parameter
- Hinge loss is not differentiable however—
 so must use sub-gradient for optimization

SUB-GRADIENT DESCENT

Iterative update for SVM weights using sub-gradient descent:

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \eta \frac{1}{N} \sum_{i}^{N} \left(\lambda \mathbf{w}_t + \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{x}_i, y_i; \mathbf{w}_t) \right)$$

- where η is the learning rate as per usual
- Each iteration cycles through the data:

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \frac{\eta}{N} (\lambda \mathbf{w}_t - y_i \mathbf{x}_i)$$
 if $y_i f(\mathbf{x}_i) < 1$ $\leftarrow \mathbf{w}_t - \frac{\eta}{N} \lambda \mathbf{w}_t$ otherwise

SVM EXAMPLE

Intercept	Age>40	Income=high	Student=yes	Credit=fair	BuysComp?
1	0	1	0	1	-1
1	0	1	0	0	-1
1	0	1	0	1	+1
1	1	0	0	1	+1
1	1	0	1	1	+1
1	1	0	1	0	-1
1	0	0	1	0	+1
1	0	0	0	1	-1
1	0	0	1	1	+1
1	1	0	1	1	+1
1	0	0	1	0	+1
1	0	0	0	0	+1
1	0	1	1	1	+1
1	1	0	0	0	-1

$$BC = +1$$
 if $\begin{bmatrix} \mathbf{w}^T \mathbf{x} \end{bmatrix} > 0$
 $BC = -1$ otherwise

$$\mathbf{x} = [Int, A, I, S, CR]$$

$$\mathbf{w} = [w_0, w_A, w_I, w_S, w_{CR}]$$

SVM parameters = w

- Score function: margin + hinge loss on errors
- Estimate w to maximize margin, while minimizing errors

SVM LEARNING

Score function: soft margin (includes hinge loss on errors)

$$\min_{\mathbf{w}} \frac{1}{N} \sum_{i}^{N} \left(\frac{\lambda}{2} ||\mathbf{w}||^{2} + \left[\max \left(0, 1 - y_{i} f(x_{i}) \right) \right] \right)$$

Estimate w by minimizing objective function using gradient descent

Gradient descent:

Start at some **w**, e.g., $\mathbf{w} = [0,0,0,0,0]$

Make predictions given current **w**: $\forall i \ \widehat{y}_i = \mathbf{w}^T \mathbf{x}_i$

Calculate gradient for each parameter: $\forall j \ \nabla_j = \frac{1}{N} \left[\sum_{i=1}^n (\lambda w_j - \nabla_{ji}) \right]$

where $\nabla_{ji} = y_i x_{ij}$ if $y_i \hat{y}_i < 1$; 0 otherwise

Move parameters in direction of gradient: $\forall j \ w_j^{new} = w_j - \eta \nabla_j$

Repeat until stopping criteria is met

SVM PREDICTION

Intercept	Age>40	Income=high	Student=yes	Credit=fair	BuysComp?
1	0	1	0	1	-1
1	0	1	0	0	-1
1	0	1	0	1	+1
1	1	0	0	1	+1
1	1	0	1	1	+1
1	1	0	1	0	-1
1	0	0	1	0	+1
1	0	0	0	1	-1
1	0	0	1	1	+1
1	1	0	1	1	+1
1	0	0	1	0	+1
1	0	0	0	0	+1
1	0	1	1	1	+1
1	1	0	0	0	-1
1	0	1	0	0	?

What is the probability that new person will buy a computer?

$$\mathbf{x} = [1, 0, 1, 0, 0]$$

 $\mathbf{w} = [-.5, 1.2, 3, -2, 0.7]$

$$\mathbf{x}^T\mathbf{w} = 2.5$$

$$BC = +1$$

BEYOND LINEAR SVM

Hardly linearly-separable!

PROJECTING TO HIGHER DIMENSIONAL SPACE

Data that is not linearly separable in lower-dimensional space is more likely to be linearly separable when projected onto higher dimensions

$$X_1 = x_1^2, X_2 = x_2^2, X_3 = \sqrt{2}x_1x_2$$

EMPOWERING SVM

- Project data into a higher-dimensional space
- Find a hyperplane in the higher-dimensional space that can almost linearly separate the training examples
- Project the hyperplane back to the original lower-dimensional space to get the non-linear decision boundary!
- Which higher-dimensional space should I project the data into?

THE KERNEL TRICK

- You only need to know the dot products between data points to learn SVM and make prediction with SVM (related to primal-dual of optimization problems)
 - Given a training dataset, you only need to know $\mathbf{x_i}^T \mathbf{x_j}$ for any two data points $\mathbf{x_i}$ and $\mathbf{x_j}$ in the training example to learn the linear SVM
 - After a linear SVM is learned, given a test data point \mathbf{x} , you only need to know $\mathbf{x}^{\mathsf{T}}\mathbf{x}_{\mathsf{i}}$ for all the data points \mathbf{x}_{i} in the training example to make predictions
- Given a projection function $x \to \phi(x)$
 - The linear SVM in the higher-dimensional space can be learned and used as long as we know $\phi(\mathbf{x})^T\phi(\mathbf{y})$