Random Forest for Classification Problems

Raphael Redmer, Arkadiusz Modzelewski, Burak Balaban

University of Bonn Research Module in Econometrics and Statistics

January 20, 2020

Overview

- From Tree to Random Forest
 - Decision Tree
 - Bagging
 - Random Forest
- 2 Mathematical Concept
 - Prediction Mechanism
 - Improvement over Decision Tree
- Simulation Study
- Real Data

Example

Tree Building Process

A tree is grown starting from the root node by repeatedly using the following steps on each node (also called binary splitting)[1]:

- (i) Find best split s for each feature X_m
- (ii) Find the best split of the node
- (iii) Repeat until stopping criterion got satisfied

Tree Building Process

A tree is grown starting from the root node by repeatedly using the following steps on each node (also called binary splitting)[1]:

- (i) Find best split s for each feature X_m
- (ii) Find the best split of the node
- (iii) Repeat until stopping criterion got satisfied

Tree Building Process

A tree is grown starting from the root node by repeatedly using the following steps on each node (also called binary splitting)[1]:

- (i) Find best split s for each feature X_m
- (ii) Find the best split of the node
- (iii) Repeat until stopping criterion got satisfied

Gini Measure

$$i(t) = \sum_{c \in C} p(c|t)(1 - p(c|t))$$

Information Entropy

$$i(t) = \sum_{c \in C} p(c|t)log(p(c|t))$$

where C is the set of classes c and t a node of the tree.

Bias Variance Trade-off

The Expected Generalization Error

$$y = f(x) + \epsilon$$
 and $\epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$

Estimate of f(x): $\hat{f}(x)$

The expected generalization error: $\mathbf{Err}(\hat{f}(x))$

The decomposition of a model's expected generalization error is

$$Err(\hat{f}(x)) = \sigma_{\epsilon}^2 + [Bias(\hat{f}(x))]^2 + Var(\hat{f}(x))$$

 σ_{ϵ}^2 is irreducible and independent of the model.

Trade-off between bias and variance

Aim: Decrease variance while keeping bias unincreased.

Bias Variance Trade-off

The Expected Generalization Error

$$y = f(x) + \epsilon$$
 and $\epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$

Estimate of f(x): $\hat{f}(x)$

The expected generalization error: $\mathbf{Err}(\hat{f}(x))$

The decomposition of a model's expected generalization error is

$$Err(\hat{f}(x)) = \sigma_{\epsilon}^2 + [Bias(\hat{f}(x))]^2 + Var(\hat{f}(x))$$

 σ_ϵ^2 is irreducible and independent of the model.

Trade-off between bias and variance

Aim: Decrease variance while keeping bias unincreased.

Bias Variance Trade-off

The Expected Generalization Error

$$y = f(x) + \epsilon$$
 and $\epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$

Estimate of f(x): $\hat{f}(x)$

The expected generalization error: $Err(\hat{f}(x))$

The decomposition of a model's expected generalization error is

$$Err(\hat{f}(x)) = \sigma_{\epsilon}^2 + [Bias(\hat{f}(x))]^2 + Var(\hat{f}(x))$$

 σ_{ϵ}^2 is irreducible and independent of the model.

Trade-off between bias and variance.

Aim: Decrease variance while keeping bias unincreased.

6/33

Bias-Variance Trade-off

Illustration

Decision trees generally have low bias and high variance.

Bagging Improvement

Bagging is:

- created for methods with high variance
- reduces variance and gives better predictions
- improvement of bagging: Random Forest

Bagging Ilustration

Random Forest

Definition

Definition (by L.Breiman [2])

A random forest is a classifier consisting of a collection of tree-structured classifiers $\hat{T}_{\theta_b}(\mathbf{x}), b=1,...,B$ where the θ_b are independent identically distributed random vectors and each tree casts a unit vote for the most popular class at input \mathbf{x} .

Random Forest is an extension and improvement over bagging:

- Like in bagging, multiple decision trees are built
- Improvement: an injection of randomness is made

Random Forest

Randomness in the model

Two key concepts that makes decision forest "random" are [3]:

- Random sampling of training data points when building trees
- Random subsets of variables considered when splitting nodes. Recommended number of variables:
 - For classification: $|\sqrt{n}|$
 - For regression: $\left|\frac{n}{3}\right|$

11/33

Algorithm 1: Random Forest for Regression or Classification [3]

- **1** For b = 1 to B:
 - Draw a bootstrap sample D_b of size N from the training data.
 - **6** Grow the Random Forest tree T_{D_h,θ_h} to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached:
 - **1** Select m variables denoted by θ_b at random from the n variables
 - Pick the best variable/split-point among the m
 - Split the node into two daughter nodes
- Output the ensemble of trees $\{T_{D_b,\theta_b}\}_{b=1}^B$

Section 2

Mathematical Concept

Prediction Mechanism

Let $D = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$ and $T_{D,\theta}$ is a fully grown tree trained on set D with using parameters θ . Random Forest estimate of an observation x^* is

Majority Voting

$$RF_{D,\theta_1,\theta_2,...,\theta_B}(x^*) = \operatorname*{argmax}_{c \in Y} \sum_{b=1}^B \mathbb{1}(\hat{T}_b(x^*) = c)$$

Soft Voting

$$\mathbf{RF}_{D,\theta_1,\theta_2,\dots,\theta_B}(x^*) = \underset{c \in Y}{\operatorname{argmax}} \frac{1}{B} \sum_{b=1}^B \hat{p}_{D,\theta_b}(Y = c | X = x^*)$$

where $\hat{p}_{D,\theta_b}(Y=c|X=x^*)$ is the probability estimates of a tree.

Prediction Mechanism

Let $D = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$ and $T_{D,\theta}$ is a fully grown tree trained on set D with using parameters θ . Random Forest estimate of an observation x^* is

Majority Voting

$$\textit{RF}_{D,\theta_1,\theta_2,...,\theta_B}(x^*) = \mathop{argmax}\limits_{c \in Y} \sum_{b=1}^B \mathbb{1}(\hat{T}_b(x^*) = c)$$

Soft Voting

$$\mathbf{RF}_{D,\theta_1,\theta_2,\dots,\theta_B}(x^*) = \underset{c \in Y}{\operatorname{argmax}} \frac{1}{B} \sum_{b=1}^{B} \hat{p}_{D,\theta_b}(Y = c | X = x^*)$$

where $\hat{p}_{D,\theta_b}(Y=c|X=x^*)$ is the probability estimates of a tree.

Prediction Mechanism

Let $D = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$ and $T_{D,\theta}$ is a fully grown tree trained on set D with using parameters θ . Random Forest estimate of an observation x^* is

Majority Voting

$$\textit{RF}_{D,\theta_1,\theta_2,...,\theta_B}(x^*) = \mathop{argmax}\limits_{c \in Y} \sum_{b=1}^B \mathbb{1}(\hat{T}_b(x^*) = c)$$

Soft Voting

$$RF_{D,\theta_1,\theta_2,...,\theta_B}(x^*) = \underset{c \in Y}{\operatorname{argmax}} \frac{1}{B} \sum_{b=1}^{B} \hat{p}_{D,\theta_b}(Y = c | X = x^*)$$

where $\hat{p}_{D,\theta_b}(Y=c|X=x^*)$ is the probability estimates of a tree.

→ □ → → □ → → □ → ○ ○ ○ ○

Majority Voting Illustration

Soft Voting Illustration

The Expected Generalization Error of $T_{D,\theta}$

Given D = (X, Y), the expected generalization error of $T_{D,\theta}$ is

$$Err(T_{D,\theta}(X)) = \mathbb{E}_{X,Y}\{L(Y,T_{D,\theta}(X))\}$$

where $L(Y, T_{D,\theta}(X))$ is the loss function.

The decomposition of $\textit{Err}(T_{D,\theta})$ is

$$Err(T_{D,\theta}(X)) = Err(\phi_{\beta}(X)) + [Bias(T_{D,\theta}(X))]^2 + Var(T_{D,\theta}(X))$$

similarly

$$\operatorname{\textit{Err}}(\operatorname{\textit{RF}}_{D,\Theta}(X)) = \operatorname{\textit{Err}}(\phi_{\beta}(X)) + [\operatorname{\textit{Bias}}(\operatorname{\textit{RF}}_{D,\Theta}(X))]^2 + \operatorname{\textit{Var}}(\operatorname{\textit{RF}}_{D,\Theta}(X))$$

where
$$\Theta = \{\theta_1, \theta_2, \dots, \theta_B\}.$$

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・恵 ・ 夕久で

The Expected Generalization Error of $T_{D,\theta}$

Given D = (X, Y), the expected generalization error of $T_{D,\theta}$ is

$$Err(T_{D,\theta}(X)) = \mathbb{E}_{X,Y}\{L(Y,T_{D,\theta}(X))\}$$

where $L(Y, T_{D,\theta}(X))$ is the loss function.

The decomposition of $Err(T_{D,\theta})$ is

$$Err(T_{D,\theta}(X)) = Err(\phi_{\beta}(X)) + [Bias(T_{D,\theta}(X))]^2 + Var(T_{D,\theta}(X))$$

similarly

$$Err(RF_{D,\Theta}(X)) = Err(\phi_{\beta}(X)) + [Bias(RF_{D,\Theta}(X))]^2 + Var(RF_{D,\Theta}(X))$$

where $\Theta = \{\theta_1, \theta_2, \dots, \theta_B\}.$

◆ロト ◆御 ト ◆ 差 ト ◆ 差 ・ 夕 Q ()

The Expected Generalization Error of $T_{D,\theta}$

Given D = (X, Y), the expected generalization error of $T_{D,\theta}$ is

$$Err(T_{D,\theta}(X)) = \mathbb{E}_{X,Y}\{L(Y,T_{D,\theta}(X))\}$$

where $L(Y, T_{D,\theta}(X))$ is the loss function.

The decomposition of $Err(T_{D,\theta})$ is

$$Err(T_{D,\theta}(X)) = Err(\phi_{\beta}(X)) + [Bias(T_{D,\theta}(X))]^2 + Var(T_{D,\theta}(X))$$

similarly

$$Err(RF_{D,\Theta}(X)) = Err(\phi_{\beta}(X)) + [Bias(RF_{D,\Theta}(X))]^2 + Var(RF_{D,\Theta}(X))$$

where
$$\Theta = \{\theta_1, \theta_2, \dots, \theta_B\}.$$

◆□▶◆圖▶◆臺▶◆臺▶臺⑤②○

Residual Error

$$\operatorname{\textit{Err}}(\operatorname{\textit{RF}}_{D,\Theta}(X)) = \operatorname{\textit{Err}}(\phi_{\beta}(X)) + [\operatorname{\textit{Bias}}(\operatorname{\textit{RF}}_{D,\Theta}(X))]^2 + \operatorname{\textit{Var}}(\operatorname{\textit{RF}}_{D,\Theta}(X))$$

Theoretically, given the probability distribution of P(X,Y) Bayes Model ϕ_{β} i.e the best possible model can be derived and $\textit{Err}(\phi_{\beta})$ can be calculated [4].

For comparison of $Err(T_{D,\theta}(X))$ and $Err(RF_{D,\Theta}(X))$ the residual error is the same.

Residual Error

$$\operatorname{\textit{Err}}(\operatorname{\textit{RF}}_{D,\Theta}(X)) = \operatorname{\textit{Err}}(\phi_{\beta}(X)) + [\operatorname{\textit{Bias}}(\operatorname{\textit{RF}}_{D,\Theta}(X))]^2 + \operatorname{\textit{Var}}(\operatorname{\textit{RF}}_{D,\Theta}(X))$$

Theoretically, given the probability distribution of P(X,Y) Bayes Model ϕ_{β} i.e the best possible model can be derived and $\textit{Err}(\phi_{\beta})$ can be calculated [4].

For comparison of $Err(T_{D,\theta}(X))$ and $Err(RF_{D,\Theta}(X))$ the residual error is the same.

Residual Error

$$\operatorname{\textit{Err}}(\operatorname{\textit{RF}}_{D,\Theta}(X)) = \operatorname{\textit{Err}}(\phi_{\beta}(X)) + [\operatorname{\textit{Bias}}(\operatorname{\textit{RF}}_{D,\Theta}(X))]^2 + \operatorname{\textit{Var}}(\operatorname{\textit{RF}}_{D,\Theta}(X))$$

Theoretically, given the probability distribution of P(X,Y) Bayes Model ϕ_{β} i.e the best possible model can be derived and $Err(\phi_{\beta})$ can be calculated [4].

For comparison of $Err(T_{D,\theta}(X))$ and $Err(RF_{D,\Theta}(X))$ the residual error is the same.

Residual Error

$$\operatorname{\textit{Err}}(\operatorname{\textit{RF}}_{D,\Theta}(X)) = \operatorname{\textit{Err}}(\phi_{\beta}(X)) + [\operatorname{\textit{Bias}}(\operatorname{\textit{RF}}_{D,\Theta}(X))]^2 + \operatorname{\textit{Var}}(\operatorname{\textit{RF}}_{D,\Theta}(X))$$

Theoretically, given the probability distribution of P(X,Y) Bayes Model ϕ_{β} i.e the best possible model can be derived and $Err(\phi_{\beta})$ can be calculated [4].

For comparison of $Err(T_{D,\theta}(X))$ and $Err(RF_{D,\Theta}(X))$ the residual error is the same.

$$\operatorname{\textit{Err}}(\operatorname{\textit{RF}}_{D,\Theta}(X)) = \operatorname{\textit{Err}}(\phi_{\beta}(X)) + [\operatorname{\textit{Bias}}(\operatorname{\textit{RF}}_{D,\Theta}(X))]^2 + \operatorname{\textit{Var}}(\operatorname{\textit{RF}}_{D,\Theta}(X))$$

Bias² of Tree

$$Bias(T_{D,\theta}(X))]^2 = (\phi_{\beta}(X) - \mathbb{E}_D\{T_{D,\theta}(X)\})^2$$

Bias² of Random Forest

$$[Bias(\mathbf{RF}_{D,\Theta}(X))]^2 = (\phi_{eta}(X) - \mathbb{E}_{D,\Theta}\{\mathbf{RF}_{D,\Theta}(X))\})^2$$

We need $\mathbb{E}_{D,\theta}\{T_{D,\theta}(X))\}$ and $\mathbb{E}_{D,\Theta}\{RF_{D,\Theta}(X))\}$ for comparison.

$$\operatorname{\textit{Err}}(\operatorname{\textit{RF}}_{D,\Theta}(X)) = \operatorname{\textit{Err}}(\phi_{\beta}(X)) + [\operatorname{\textit{Bias}}(\operatorname{\textit{RF}}_{D,\Theta}(X))]^2 + \operatorname{\textit{Var}}(\operatorname{\textit{RF}}_{D,\Theta}(X))$$

Bias² of Tree

$$[Bias(T_{D,\theta}(X))]^2 = (\phi_{\beta}(X) - \mathbb{E}_D\{T_{D,\theta}(X)\})^2$$

Bias² of Random Forest

$$[Bias(\mathbf{RF}_{D,\Theta}(X))]^2 = (\phi_{\beta}(X) - \mathbb{E}_{D,\Theta}\{\mathbf{RF}_{D,\Theta}(X))\})^2$$

We need $\mathbb{E}_{D,\theta}\{T_{D,\theta}(X))\}$ and $\mathbb{E}_{D,\Theta}\{RF_{D,\Theta}(X))\}$ for comparison.

$$Err(RF_{D,\Theta}(X)) = Err(\phi_{\beta}(X)) + [Bias(RF_{D,\Theta}(X))]^2 + Var(RF_{D,\Theta}(X))$$

Bias² of Tree

$$[Bias(T_{D,\theta}(X))]^2 = (\phi_{\beta}(X) - \mathbb{E}_D\{T_{D,\theta}(X)\})^2$$

Bias² of Random Forest

$$[Bias(\mathbf{RF}_{D,\Theta}(X))]^2 = (\phi_{\beta}(X) - \mathbb{E}_{D,\Theta}\{\mathbf{RF}_{D,\Theta}(X))\})^2$$

$$Err(RF_{D,\Theta}(X)) = Err(\phi_{\beta}(X)) + [Bias(RF_{D,\Theta}(X))]^2 + Var(RF_{D,\Theta}(X))$$

Bias² of Tree

Bias

$$[Bias(T_{D,\theta}(X))]^2 = (\phi_{\beta}(X) - \mathbb{E}_D\{T_{D,\theta}(X)\})^2$$

Bias² of Random Forest

$$[Bias(\mathbf{RF}_{D,\Theta}(X))]^2 = (\phi_{\beta}(X) - \mathbb{E}_{D,\Theta}\{\mathbf{RF}_{D,\Theta}(X))\})^2$$

We need $\mathbb{E}_{D,\theta}\{T_{D,\theta}(X)\}$ and $\mathbb{E}_{D,\Theta}\{RF_{D,\Theta}(X)\}$ for comparison.

Bias: The Expected Value

We can define
$$\mathbb{E}_D\{T_{D,\theta}(X)\}=\mu_{D,\theta}(X)$$

Random Forest Estimator for regression is;

$$RF_{D,\Theta}(X) = \frac{1}{B} \sum_{b=1}^{B} T_{D,\theta_b}(X)$$

$$\mathbb{E}_{D,\Theta}\{\mathbf{RF}_{D,\Theta}(X)\} = \mathbb{E}_{D,\Theta}\{\frac{1}{B}\sum_{b=1}^{B}T_{D,\theta_b}(X)\}$$

$$= \frac{1}{B}\sum_{b=1}^{B}\mathbb{E}_{D,\theta_b}\{T_{D,\theta_b}(X)\} \qquad (\theta'\text{s are i.i.d.})$$

$$= \mu_{D,\theta}(X)$$

Bias: The Expected Value

We can define $\mathbb{E}_D\{T_{D,\theta}(X)\}=\mu_{D,\theta}(X)$

Random Forest Estimator for regression is;

$$\mathbf{RF}_{D,\Theta}(X) = \frac{1}{B} \sum_{b=1}^{B} T_{D,\theta_b}(X)$$

Taking expectation gives;

$$\mathbb{E}_{D,\Theta}\{\mathbf{RF}_{D,\Theta}(X)\} = \mathbb{E}_{D,\Theta}\{\frac{1}{B}\sum_{b=1}^{B}T_{D,\theta_b}(X)\}$$

$$= \frac{1}{B}\sum_{b=1}^{B}\mathbb{E}_{D,\theta_b}\{T_{D,\theta_b}(X)\} \qquad (\theta'\text{s are i.i.d.})$$

$$= \mu_{D,\theta}(X)$$

20/33

Bias: The Expected Value

We can define $\mathbb{E}_D\{T_{D,\theta}(X)\}=\mu_{D,\theta}(X)$

Random Forest Estimator for regression is;

$$\mathbf{RF}_{D,\Theta}(X) = \frac{1}{B} \sum_{b=1}^{B} T_{D,\theta_b}(X)$$

Taking expectation gives;

$$\mathbb{E}_{D,\Theta}\{\mathbf{RF}_{D,\Theta}(X)\} = \mathbb{E}_{D,\Theta}\{\frac{1}{B}\sum_{b=1}^{B}T_{D,\theta_b}(X)\}$$

$$= \frac{1}{B}\sum_{b=1}^{B}\mathbb{E}_{D,\theta_b}\{T_{D,\theta_b}(X)\} \qquad (\theta'\text{s are i.i.d.})$$

$$= \mu_{D,\theta}(X)$$

Bias: The Expected Value

We can define $\mathbb{E}_D\{T_{D,\theta}(X)\}=\mu_{D,\theta}(X)$

Random Forest Estimator for regression is;

$$\mathbf{RF}_{D,\Theta}(X) = \frac{1}{B} \sum_{b=1}^{B} T_{D,\theta_b}(X)$$

Taking expectation gives;

$$\begin{split} \mathbb{E}_{D,\Theta}\{\pmb{RF}_{D,\Theta}(X)\} &= \mathbb{E}_{D,\Theta}\{\frac{1}{B}\sum_{b=1}^{D}T_{D,\theta_b}(X)\} \\ &= \frac{1}{B}\sum_{b=1}^{B}\mathbb{E}_{D,\theta_b}\{T_{D,\theta_b}(X)\} \qquad (\theta \text{'s are i.i.d.}) \\ &= \mu_{D,\theta}(X) \end{split}$$

Bias Comparison

$$\operatorname{\textit{Err}}(\operatorname{\textit{RF}}_{D,\Theta}(X)) = \operatorname{\textit{Err}}(\phi_{\beta}(X)) + [\operatorname{\textit{Bias}}(\operatorname{\textit{RF}}_{D,\Theta}(X))]^2 + \operatorname{\textit{Var}}(\operatorname{\textit{RF}}_{D,\Theta}(X))$$

Bias² of Tree

$$[Bias(T_{D,\theta}(X))]^2 = (\phi_{\beta}(X) - \mu_{D,\theta}(X))^2$$

Bias² of a Random Forest

$$[Bias(\mathbf{RF}_{D,\Theta}(X))]^2 = (\phi_{\beta}(X) - \mu_{D,\theta}(X))^2$$

Result: Ensembling trees has no effect on bias.

Bias Comparison

$$\operatorname{\textit{Err}}(\operatorname{\textit{RF}}_{D,\Theta}(X)) = \operatorname{\textit{Err}}(\phi_{\beta}(X)) + [\operatorname{\textit{Bias}}(\operatorname{\textit{RF}}_{D,\Theta}(X))]^2 + \operatorname{\textit{Var}}(\operatorname{\textit{RF}}_{D,\Theta}(X))$$

Bias² of Tree

$$[Bias(T_{D,\theta}(X))]^2 = (\phi_{\beta}(X) - \mu_{D,\theta}(X))^2$$

Bias² of a Random Forest

$$[Bias(\mathbf{RF}_{D,\Theta}(X))]^2 = (\phi_{\beta}(X) - \mu_{D,\theta}(X))^2$$

Result: Ensembling trees has no effect on bias.

Variance: Correlation Coefficient

$$\operatorname{\textit{Err}}(\operatorname{\textit{RF}}_{D,\Theta}(X)) = \operatorname{\textit{Err}}(\phi_{\beta}(X)) + [\operatorname{\textit{Bias}}(\operatorname{\textit{RF}}_{D,\Theta}(X))]^2 + \operatorname{\textit{Var}}(\operatorname{\textit{RF}}_{D,\Theta}(X))$$

 $\forall T_{D,\theta'}, T_{D,\theta''}$ such that $\theta' \neq \theta''$, the correlation coefficient can be written as follows

$$\rho(X) = \frac{\mathbb{E}_{D,\theta',\theta''}\{T_{D,\theta'}(X)T_{D,\theta''}(X)\} - \mu_{D,\theta}^2(X)}{\sigma_{D,\theta}^2(X)}$$

where
$$\sigma_{D,\theta}^2(X) = \mathbb{V}_{D,\theta}\{T_{D,\theta}(X)\}.$$

- Highly correlated trees $\implies \rho(X)$ is close to 1
- Non-correlated trees $\implies \rho(X)$ is close to 0

Variance: Correlation Coefficient

$$Err(RF_{D,\Theta}(X)) = Err(\phi_{\beta}(X)) + [Bias(RF_{D,\Theta}(X))]^2 + Var(RF_{D,\Theta}(X))$$

 $\forall T_{D,\theta'}, T_{D,\theta''}$ such that $\theta' \neq \theta''$, the correlation coefficient can be written as follows

$$\rho(X) = \frac{\mathbb{E}_{D,\theta',\theta''}\{T_{D,\theta'}(X)T_{D,\theta''}(X)\} - \mu_{D,\theta}^2(X)}{\sigma_{D,\theta}^2(X)}$$

where
$$\sigma^2_{D,\theta}(X) = \mathbb{V}_{D,\theta}\{T_{D,\theta}(X)\}.$$

- Highly correlated trees $\implies \rho(X)$ is close to 1
- Non-correlated trees $\implies \rho(X)$ is close to 0

Variance: Correlation Coefficient

$$Err(RF_{D,\Theta}(X)) = Err(\phi_{\beta}(X)) + [Bias(RF_{D,\Theta}(X))]^2 + Var(RF_{D,\Theta}(X))$$

 $\forall T_{D,\theta'}, T_{D,\theta''}$ such that $\theta' \neq \theta''$, the correlation coefficient can be written as follows

$$\rho(X) = \frac{\mathbb{E}_{D,\theta',\theta''}\{T_{D,\theta'}(X)T_{D,\theta''}(X)\} - \mu_{D,\theta}^2(X)}{\sigma_{D,\theta}^2(X)}$$

where $\sigma_{D,\theta}^2(X) = \mathbb{V}_{D,\theta}\{T_{D,\theta}(X)\}.$

- Highly correlated trees $\implies \rho(X)$ is close to 1
- Non-correlated trees $\implies \rho(X)$ is close to 0

Variance Comparison

$$\operatorname{\textit{Err}}(\operatorname{\textit{RF}}_{D,\Theta}(X)) = \operatorname{\textit{Err}}(\phi_{\beta}(X)) + [\operatorname{\textit{Bias}}(\operatorname{\textit{RF}}_{D,\Theta}(X))]^2 + \operatorname{\textit{Var}}(\operatorname{\textit{RF}}_{D,\Theta}(X))$$

Variance of Random Forest

$$\mathbb{V}_{D,\Theta}\{\mathbf{RF}_{D,\Theta}(X)\} = \rho(X)\sigma_{D,\theta}^2(X) + \frac{1-\rho(X)}{B}\sigma_{D,\theta}^2(X)$$

$$\implies \mathbb{V}_{D,\Theta}\{\mathbf{RF}_{D,\Theta}(X)\} = \rho(x)\sigma_{D,\theta}^2(X) < \sigma_{D,\theta}^2(X) = \mathbb{V}_{D,\theta}\{T_{D,\theta}(X)\}.$$

Variance Comparison

$$\operatorname{\textit{Err}}(\operatorname{\textit{RF}}_{D,\Theta}(X)) = \operatorname{\textit{Err}}(\phi_{\beta}(X)) + [\operatorname{\textit{Bias}}(\operatorname{\textit{RF}}_{D,\Theta}(X))]^2 + \operatorname{\textit{Var}}(\operatorname{\textit{RF}}_{D,\Theta}(X))$$

Variance of Random Forest

$$\mathbb{V}_{D,\Theta}\{\mathbf{RF}_{D,\Theta}(X)\} = \rho(X)\sigma_{D,\theta}^2(X) + \frac{1-\rho(X)}{B}\sigma_{D,\theta}^2(X)$$

As $B \to \infty$, $\mathbb{V}_{D,\Theta}\{RF_{D,\Theta}(X)\}$ converges to $\rho(X)\sigma_{D,\theta}^2(X)$.

Due to randomization $\rho(X) < 1$

$$\implies \mathbb{V}_{D,\Theta}\{\mathbf{RF}_{D,\Theta}(X)\} = \rho(x)\sigma_{D,\theta}^2(X) < \sigma_{D,\theta}^2(X) = \mathbb{V}_{D,\theta}\{T_{D,\theta}(X)\}.$$

Result: Ensembling trees decreases the variance

Variance Comparison

$$\operatorname{\textit{Err}}(\operatorname{\textit{RF}}_{D,\Theta}(X)) = \operatorname{\textit{Err}}(\phi_{\beta}(X)) + [\operatorname{\textit{Bias}}(\operatorname{\textit{RF}}_{D,\Theta}(X))]^2 + \operatorname{\textit{Var}}(\operatorname{\textit{RF}}_{D,\Theta}(X))$$

Variance of Random Forest

$$\mathbb{V}_{D,\Theta}\{\mathbf{RF}_{D,\Theta}(X)\} = \rho(X)\sigma_{D,\theta}^2(X) + \frac{1-\rho(X)}{B}\sigma_{D,\theta}^2(X)$$

As $B \to \infty$, $\mathbb{V}_{D,\Theta}\{RF_{D,\Theta}(X)\}$ converges to $\rho(X)\sigma_{D,\theta}^2(X)$.

Due to randomization $\rho(X) < 1$

$$\implies \mathbb{V}_{D,\Theta}\{\mathbf{RF}_{D,\Theta}(X)\} = \rho(x)\sigma_{D,\theta}^2(X) < \sigma_{D,\theta}^2(X) = \mathbb{V}_{D,\theta}\{T_{D,\theta}(X)\}.$$

Result: Ensembling trees decreases the variance

Variance Comparison

$$\operatorname{\textit{Err}}(\operatorname{\textit{RF}}_{D,\Theta}(X)) = \operatorname{\textit{Err}}(\phi_{\beta}(X)) + [\operatorname{\textit{Bias}}(\operatorname{\textit{RF}}_{D,\Theta}(X))]^2 + \operatorname{\textit{Var}}(\operatorname{\textit{RF}}_{D,\Theta}(X))$$

Variance of Random Forest

$$\mathbb{V}_{D,\Theta}\{\mathbf{RF}_{D,\Theta}(X)\} = \rho(X)\sigma_{D,\theta}^2(X) + \frac{1-\rho(X)}{B}\sigma_{D,\theta}^2(X)$$

As $B \to \infty$, $\mathbb{V}_{D,\Theta}\{RF_{D,\Theta}(X)\}$ converges to $\rho(X)\sigma_{D,\theta}^2(X)$.

Due to randomization $\rho(X) < 1$

$$\implies \mathbb{V}_{D,\Theta}\{\mathbf{RF}_{D,\Theta}(X)\} = \rho(x)\sigma_{D,\theta}^2(X) < \sigma_{D,\theta}^2(X) = \mathbb{V}_{D,\theta}\{T_{D,\theta}(X)\}.$$

Result: Ensembling trees decreases the variance.

Section 3

Simulation Study

Simulation Study Linear DGP

The linear DGP generates the data tuples (y, x_1, x_2, x_3) as follows:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon,$$

whereas

- $(\beta_0, \beta_1, \beta_2, \beta_3) = (0.3, 5, 10, 15)$
- $x_1, x_2, x_3 \sim \mathcal{N}(0, 3)$
- $\epsilon \sim \mathcal{N}(0, 1)$

Simulation Study

Linear DGP Results

Simulation Study Non-Linear DGP

The non-linear DGP generates the data tuples (y, x_1, x_2) as follows:

$$y = \beta_0 + \beta_1 \mathbb{1}(x_1 \ge 0, x_2 \ge 0) + \beta_2 \mathbb{1}(x_1 \ge 0, x_2 < 0) + \beta_3 \mathbb{1}(x_1 < 0) + \epsilon,$$

whereas

- $(\beta_0, \beta_1, \beta_2, \beta_3) = (0.3, 5, 10, 15)$
- $x_1, x_2 \sim \mathcal{N}(0, 3)$
- $\epsilon \sim \mathcal{N}(0, 1)$

are the same as in the previous DGP.

Simulation Study

Non-Linear DGP Results

Section 4

Real Data

Real Data

Outline

Data: Titanic data

Method used:

- Random Forest
- Adaptive Boosting
- Gradient Boosting

Goal: Predict which passengers survived the Titanic shipwreck given characteristics of passengers

Real Data

Results

Random Forest

Adaptive Boosting

Gradient Boosting

Accuracy: 84.32%

Accuracy: 82.8%

Accuracy: 82.8%

	D_{pred}	S_{pred}					D_{pred}	S_{pred}
D_{real}	88%	12%	D_{real}	86%	14%		85%	
S_{real}	21%	79%	S_{real}	21%	79%	S_{real}	20%	80%

where D stands for died and S is for survived.

Contact Data

- Burak Balaban
 O/burakbalaban/
 burak balaban@uni-bonn.de
- Raphael Redmer
 RaRedmer/
 ra.redmer@outlook.com
- Arkadiusz Modzelewski
 ArcadiusM/
 arcadius.modzelewski@gmail.com

The link to presentation's repository:

References

- L. Breiman et al. Classification and Regression Trees. The Wadsworth and Brooks-Cole statistics-probability series. Taylor & Francis, 1984. ISBN: 9780412048418. URL: https://books.google.de/books?id=JwQx-W0mSyQC.
- Leo Breiman. "Random forests". In: *Machine learning* 45.1 (2001), pp. 5–32.
- Jerome Friedman, Trevor Hastie, and Robert Tibshirani. *The elements of statistical learning*. Vol. 1. 10. Springer series in statistics New York, 2001.
- Gilles Louppe. "Understanding random forests". In: *University of Liège* (2014).