Una sorgente gassosa emette luce di lunghezza d'onda $\lambda=0.55\,\mu m$. Assumendo che ogni molecola si comporti come un dipolo oscillante di momento elettrico massimo $p_0=1.6\times 10^{-29}$ C m, calcolare:

- a) la potenza emessa da una singola molecola
- b) il valore massimo e minimo dell'intensita' ad una distanza $r=1\,\mathrm{m}$ (e la loro direzione spaziale).

Soluzione

a) Formula per la potenza emessa da un dipolo oscillante (integrata su tutto l'angolo solido):

$$\mathcal{P} = \frac{\mu_0 \,\omega^4 \,p_0^2}{12 \,\pi \,c} = \frac{4}{3} \,\pi^3 \,c^3 \,\mu_0 \,\frac{p_0^2}{\lambda^4}$$
$$= \frac{4}{3} \,\pi^3 \,(3 \cdot 10^8 \,m/s)^3 (4\pi \cdot 10^{-7} \,H/m) \,\frac{(1.6 \cdot 10^{-29} \,C \,m)^2}{(0.55 \cdot 10^{-6} \,m)^4} = 3.9 \cdot 10^{-12} \,W.$$

b) L'intensità dell'onda emessa da un dipolo oscillante in un punto a distanza r dal centro del dipolo e ad un angolo θ rispetto all'asse del dipolo vale:

$$I(r,\theta) = \frac{3\mathcal{P}}{8\pi} \frac{\sin^2 \theta}{r^2}.$$

Ad una distanza r fissata, l'intensità varia al variare di θ . In particolare sarà massima all'equatore ($\theta = \pi/2$, $\sin \theta = 1$) e minima sull'asse del dipolo ($\theta = 0$, $\sin \theta = 0$):

$$I_{\text{max}}(r) = I\left(r, \theta = \frac{\pi}{2}\right) = \frac{3\mathcal{P}}{8\pi r^2}, \qquad I_{\text{max}}(r = 1 m) = \frac{3(3.9 \cdot 10^{-12} W)}{8\pi (1 m)^2} = 4.7 \cdot 10^{13} W/m^2,$$

$$I_{\text{min}}(r) = I(r, \theta = 0) = 0.$$

Un fascio sottile di luce monocromatica, inizialmente in aria $(n_{\rm aria}=1)$, incide con angolo $\phi=85^{\circ}$ su un prisma retto $(\alpha=90^{\circ})$ e viene da esso rifratto uscendo radente alla superficie del prisma.

- a) Calcolare l'indice di rifrazione del prisma per questa lunghezza d'onda.
- b) Qual è il limite superiore per l'indice di rifrazione che è possibile misurare con questo metodo e a quale angolo di incidenza corrisponde?

Soluzione

Guardando il triangolo al vertice del prisma si ricava:

$$\alpha + \bar{\theta}_1 + \bar{\theta}_2 = 180^\circ, \qquad \Rightarrow \qquad \alpha + (90^\circ - \theta_1) + (90^\circ - \theta_2) = 180^\circ, \qquad \Rightarrow \qquad \theta_1 + \theta_2 = \alpha$$

Dalla legge di Snell sulle due superfici di separazione si ha:

$$\sin \phi = n \sin \theta_1 \quad \left(\Rightarrow \sin \theta_1 = \frac{\sin \phi}{n} \right), \qquad n \sin \theta_2 = \sin \theta_3.$$

Richiedendo che il raggio uscente venga emesso all'angolo limite ($\theta_3 = 90^{\circ}$), la seconda equazione diventa:

$$n\,\sin\theta_2=1.$$

Mettendo insieme queste equazioni, si ha:

$$1 = n \sin \theta_2 = n \sin(\alpha - \theta_1) = n \left(\sin \alpha \cos \theta_1 - \cos \alpha \sin \theta_1 \right)$$
$$= n \left(\sin \alpha \sqrt{1 - \sin^2 \theta_1} - \cos \alpha \sin \theta_1 \right) = n \left(\sin \alpha \sqrt{1 - \frac{\sin^2 \phi}{n^2}} - \cos \alpha \frac{\sin \phi}{n} \right)$$
$$= \sin \alpha \sqrt{n^2 - \sin^2 \phi} - \cos \alpha \sin \phi.$$

Invertiamo ora la relazione per ottenere n in funzione di ϕ :

$$\sin \alpha \sqrt{n^2 - \sin^2 \phi} = 1 + \cos \alpha \sin \phi, \qquad n^2 - \sin^2 \phi = \frac{(1 + \cos \alpha \sin \phi)^2}{\sin^2 \alpha},$$

$$n = \sqrt{\frac{(1+\cos\alpha\sin\phi)^2}{\sin^2\alpha} + \sin^2\phi} = \frac{\sqrt{1+2\cos\alpha\sin\phi + \sin^2\phi}}{\sin\alpha}$$

La condizione di trovarsi all'angolo limite permette quindi di determinare l'indice di rifrazione tramite la misura dell'angolo di incidenza ϕ . Nel caso di prisma retto ($\alpha=90^o$, come nell'esercizio) la formula per n si semplifica:

$$n = \sqrt{1 + \sin^2 \phi}.$$

Ora possiamo rispondere ai quesiti dell'esercizio:

a) Con $\phi = 85^{\circ}$ otteniamo:

$$n = \sqrt{1 + \sin^2(85^o)} = 1.41.$$

b) La relazione tra l'indice di rifrazione n e l'angolo d'incidenza ϕ è monotona crescente nel range $[0^o, 90^o]$ per ϕ (per $\phi > 90^o$ non si ha raggio incidente). Questo implica che l'indice di rifrazione massimo misurabile $n_{\rm max}$ corrisponde al massimo angolo di incidenza possibile $\phi_{\rm max} = 90^o$.

Ponendo quindi $\phi = \phi_{\text{max}} = 90^{\circ}$ otteniamo per n_{max} :

$$n_{\max} = \frac{\sqrt{1 + 2\cos\alpha\sin\phi_{\max} + \sin^2\phi_{\max}}}{\sin\alpha} = \frac{\sqrt{2 + 2\cos\alpha}}{\sin\alpha} = \frac{\sqrt{2 + 2(2\cos^2\frac{\alpha}{2} - 1)}}{2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}}$$
$$= \frac{\sqrt{4\cos^2\frac{\alpha}{2}}}{2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}} = \frac{2\cos\frac{\alpha}{2}}{2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}} = \frac{1}{\sin\frac{\alpha}{2}}.$$

Nel caso di prisma retto si ha quindi:

$$n_{\text{max}} = \frac{1}{\sin \frac{90^{\circ}}{2}} = \sqrt{2} = 1.4142.$$

Per poter misurare indici di rifrazione maggiori, bisogna usare un prisma con angolo $\alpha < 90^o$.

Una lastra di vetro avente indice di rifrazione $n_3 = 1.5$ e' ricoperta da un sottile strato di materiale trasparente di spessore d, avente indice di rifrazione $n_2 = 1.8$. Una radiazione proveniente da un mezzo avente indice $n_1 = 1.2$ incide normalmente alla lastra. Determinare:

- a) il minimo spessore d affinche' nella riflessione venga eliminata la radiazione di lunghezza d'onda $\lambda = 400\,nm$.
- b) il valore minimo di d affinche' si abbia interferenza costruttiva per $\lambda = 500\,nm$.

Soluzione

Consideriamo l'interferenza tra il primo e il secondo raggio riflesso. Tra i due raggi c'e' una differenza di cammino ottico, dovuto al percorso del secondo raggio nel mezzo 2. Lo strato con indice di rifrazione n_2 viene percorso due volte dal secondo raggio riflesso, quindi la differenza di cammino ottico tra i due raggi riflessi è:

$$\Delta \delta = \delta_2 - \delta_1 = 2 \, n_2 \, d.$$

Questa differenza di cammino ottico produce un differenza di fase, che però riceve un contributo anche dallo sfasamento che il primo raggio riflesso acquisisce nell'interazione tra il mezzo 1 e 2. Infatti, essendo $n_1 = 1.2 < 1.8 = n_2$, il raggio I_1 è sfasato di π rispetto a I_i ; invece nella riflessione sulla superficie tra il mezzo 2 e il mezzo 3, il raggio I_2 non subisce sfasamenti, perchè $n_2 = 1.8 > 1.5 = n_3$. Quindi sommando i due contributi, otteniamo per la differenza di fase tra I_1 e I_2 :

$$\Delta \phi = \phi_2 - \phi_1 = \frac{2\pi}{\lambda_0} \Delta \delta - \pi = \frac{2\pi}{\lambda_0} 2 \, n_2 \, d - \pi.$$

dove λ_0 è la lunghezza d'onda nel vuoto.

Questa differenza di fase è responsabile dell'interferenza tra il primo e il secondo raggio riflesso. Il raggio riflesso totale (trascurando riflessioni multiple oltre il secondo ordine) avrà quindi intensità

$$I_r = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \Delta \phi,$$

che quindi non è uguale alla somma I_1+I_2 ma varierà tra il valore minimo $I_r^{(\min)}=I_1+I_2-2\sqrt{I_1\,I_2}$ e il valore massimo $I_r^{(\max)}=I_1+I_2+2\sqrt{I_1\,I_2}$, a seconda dello sfasamento $\Delta\phi$, che a sua volta dipende dallo spessore d della lastra e dalla lunghezza d'onda λ_0^2 .

$$I_1 = R_{12} I_i,$$
 $I_2 = T_{12}^2 R_{23} I_i,$

 $^{^2}$ Volessimo calcolare le intensità I_1 e I_2 , dovremmo uasre le relazioni di Fresnel:

a) Consideriamo la lunghezza d'onda $\lambda_1 = 400\,nm$ nel mezzo 1. La lunghezza d'onda nel vuoto sarà:

$$\lambda_0 = \frac{c}{\nu} = \frac{n_1 v_1}{\nu} = n_1 \lambda_1 = (1.2)(400 \, nm) = 480 \, nm.$$

Per eliminare questa lunghezza d'onda, imponiamo che ci sia interferenza distruttiva:

$$\Delta \phi = \pi + 2 \, m \, \pi, \qquad m \in \mathbb{Z},$$

da cui segue

$$\frac{2\pi}{\lambda_0} \, 2 \, n_2 \, d - \pi = \pi + 2 \, m \, \pi; \qquad \Rightarrow \qquad d = \frac{m+1}{2n_2} \, \lambda_0.$$

Il valore minimo di d si ha per m=0 (per $d\leq 0$ di fatto non c'e' il mezzo 2 e quindi non ci sono riflessione multiple), per cui

$$d_{\min} = \frac{\lambda_0}{2n_2} = \frac{480 \, nm}{2 \cdot (1.8)} = 133 \, nm.$$

b) Ad una lunghezza d'onda $\lambda_1=500\,nm$ nel mezzo 1 corrisponde un lunghezza d'onda nel vuoto:

$$\lambda_0 = \frac{c}{\nu} = \frac{n_1 v_1}{\nu} = n_1 \, \lambda_1 = (1.2)(500 \, nm) = 600 \, nm.$$

Per avere interferenza costruttiva, dobbiamo avere

$$\Delta \phi = 2 \, m \, \pi, \qquad m \in \mathbb{Z},$$

da cui segue

$$\frac{2\pi}{\lambda_0} 2 n_2 d - \pi = 2 m \pi; \qquad \Rightarrow \qquad d = \frac{2m+1}{4n_2} \lambda_0.$$

Il valore minimo positivo di d si ha per m=0, per cui

$$d_{\min} = \frac{\lambda_0}{4n_2} = \frac{600 \, nm}{4 \cdot (1.8)} = 83 \, nm.$$

dove

$$R_{12} = \frac{(n_1 - n_2)^2}{(n_1 + n_2)^2}, \qquad T_{12} = \frac{4 n_1 n_2}{(n_1 + n_2)^2}, \qquad R_{23} = \frac{(n_2 - n_3)^2}{(n_2 + n_3)^2}.$$

In un esperimento di Young, la distanza tra le fenditure è $a=9\,\mu m$ e la luce usata ha lunghezza d'onda di $600\,nm$. Calcolare la posizione angolare dei massimi di interferenza fino all'ordine 3 nel caso che la luce incidente

- a) abbia direzione perpendicolare al piano delle fenditure
- b) formi un angolo $\alpha=8.63^{\circ}$ con la normale al piano delle fenditure.

Soluzione

a) Lo sfasamento è dovuto solo alla diferenza di cammino percorso dopo le fenditure.

$$\Delta \phi = k \, a \, \sin \theta = \frac{2\pi \, a}{\lambda} \, \sin \theta.$$

Avremo dei massimi di interferenza per

$$\Delta \phi = 2 \, m \, \pi, \qquad m \in \mathbb{Z}.$$

Quindi, risolvendo per θ :

$$\theta = \arcsin\left(\frac{\lambda}{a}m\right).$$

Fino all'ordine 3 $(m = 0, \pm 1, \pm 2, \pm 3)$ avremo

m	-3	-2	-1	0	1	2	3
θ	-11.54^{o}	-7.66^{o}	-3.82^{o}	0	3.82^{o}	7.66^{o}	11.54^{o}

La figura di interferenza è simmetrica intorno a $\theta = 0$.

b) In caso di incidenza obliqua lo sfasamento riceve un contributo anche dalla differenza di cammino percorso prima delle fenditure.

29

$$\Delta \phi = k a \sin \theta - k a \sin \alpha = \frac{2\pi a}{\lambda} (\sin \theta - \sin \alpha).$$

Avremo dei massimi di interferenza per

$$\Delta \phi = 2 \, m \, \pi, \qquad \qquad m \in \mathbb{Z}.$$

Quindi, risolvendo per θ :

$$\theta = \arcsin\left(\frac{\lambda}{a}m + \sin\alpha\right).$$

Fino all'ordine 3 $(m=0,\pm 1,\pm 2,\pm 3)$ avremo

Come si vede, in questo caso perdiamo la simmetria intorno al valore di $\theta=0.$

Due onde elettromagnetiche di uguale ampiezza massima E_0 , polarizzate parallelamente tra loro, vengono emesse da due sorgenti A e B coerenti ed in fase e si propagano verso un punto Mequidistante da A e da B. Sul percorso MB viene posta una lastrina di spessore $0.9 \mu m$. Quando l'onda si propaga nella lastrina la sua equazione è

$$E = E_0 \sin \left[2\pi \left(\frac{x}{3 \cdot 10^{-7}} - 5 \cdot 10^{14} t \right) \right]$$

Determinare che tipo di interferenza si ha nel punto M.

Soluzione

Si tratta di due sorgenti uguali che compiono lo stesso percorso, per cui se non ci fosse la lastra avremmo intensità massima.

Il campo elettrico è definito come

$$E = E_0 \sin \left[k(x - vt) \right] = E_0 \sin \left[2\pi \left(\frac{x}{3 \cdot 10^{-7}} - 5 \cdot 10^{14} t \right) \right]$$

con

$$k = \frac{2\pi}{\lambda} \implies \lambda = 3 \cdot 10^{-7} m,$$

 $v = 15 \cdot 10^7 m/s \implies n = \frac{c}{v} = 2.$

Adesso è necessario calcolare la lunghezza d'onda nel vuoto λ_0 :

$$n = \frac{c}{v} = \frac{cT}{vT} = \frac{\lambda_0}{\lambda} \quad \Rightarrow \quad \lambda_0 = n\lambda = 6 \cdot 10^{-7} m.$$

Consideriamo le fasi con cui le onde elettromagnetiche arrivano in M.

Per il percorso AM: $\varphi = 2\pi \frac{A\overline{M}}{\lambda_0}$. Per il percorso BM: $\varphi' = 2\pi \left(\frac{B\overline{M} - d}{\lambda_0} + \frac{d}{\lambda}\right)$.

Lo sfasamento in M diventa quindi

$$\Delta \varphi = \varphi' - \varphi = 2\pi \left[\frac{BM - d}{\lambda_0} + \frac{d}{\lambda} - \frac{AM}{\lambda_0} \right] = 2\pi \left(\frac{d}{\lambda} - \frac{d}{\lambda_0} \right) = \frac{2\pi d}{\lambda_0} (n - 1);$$

sostituendo, si ottiene:

$$\Delta \varphi = \frac{2\pi \cdot 9 \cdot 10^{-7} m}{6 \cdot 10^{-7} m} (2 - 1) = 3\pi.$$

Lo sfasamento è un multiplo intero dispari di π , per cui le due onde arrivano su M in opposizione di fase e si avrà una interferenza distruttiva.