

Curso: Engenharias

DISCIPLINA:Introdução aos Jogos EletrônicosSEMESTRE/ANO:02/2012CARGA HORÁRIA:60 horasCRÉDITOS:04PROFESSOR:Edson Alves da Costa JúniorTURMA:A

PLANO DE ENSINO

1 Objetivos da Disciplina

A disciplina **Introdução aos Jogos Eletrônicos** busca propiciar aos alunos conhecimentos na área de desenvolvimento de Jogos Eletrônicos. Esta área de estudo envolve desde *Game Design*, Programação, Arte (ou Criação), até questões relacionadas à comercialização. Entretanto, como esta é uma disciplina voltada para os alunos da Engenharia de Software da FGA, a maior parte do programa se concentrará nos fundamentos de programação para a criação de jogos de computadores.

2 Ementa do Programa

- I. Overview
 - i. História dos Jogos
 - ii. Jogos e a Sociedade
 - iii. Diversão
 - iv. Game Design
- II. Linguagens e Arquitetura
 - i. Arquitetura de Jogos
 - ii. SDL Simple DirectMedia Layer

- III. Fundamentos de Programação Aplicados a Jogos
 - i. Vetores e Matrizes
 - ii. Listas Encadeadas e Filas
 - iii. Filas de Prioridade
 - iv. Grafos e Máquinas de Estado Finitas
- IV. Tópicos Avançados
 - i. Detecção e Resolução de Colisão
 - ii. Pathfinding

3 Horário das aulas e atendimento

AULAS: terças e quintas, das 08:00 às 09:50 hrs.

ATENDIMENTO: segundas, das 08:00 às 11:50 hrs

4 Metodologia

A metodologia consiste em aulas expositivas, com o auxílio do quadro branco e projetor digital. A fim de fortalecer a aprendizagem da disciplina, as aulas serão complementadas com exercícios e atividades, presenciais e extra-classe.

Após as avaliações do curso, para o *feedback* contínuo do aluno, serão divulgados os gabaritos e as planilhas de correção de cada avaliação, para que o aluno possa identificar suas falhas e estudar para corrigí-las. As planilhas de correção individualizadas, que contém as notas dos alunos, serão disponibilizadas através da plataforma *Moodle* por meio de arquivos criptografados com senha personalizadas. As senhas devem ser requisitadas através do e-mail *edsonalves@unb.br*, com o assunto **Senha** e com o nome completo do aluno e matrícula na mensagem.

5 Critérios de Avaliação

A avaliação dos alunos será feita através de 3 (três) **Testes**, 3 (três) **Questionários**, 3 (três) **Avaliações**, 3 (três) **Provas** e 1 (um) **Jogo Eletrônico** desenvolvido pelo aluno.

5.1 Testes

Os **Testes** T_j são compostos de 10 questões de múltipla escolha, de acordo com o conteúdo ministrado até a aplicação dos mesmo. Cada questão terá **quatro** alternativas, sendo que apenas **uma** delas estará correta.

O aluno deverá marcar suas escolhas na **Folha de Respostas** que acompanhará o Teste: rasuras ou múltiplas marcações **anularão** a referida questão.

Cada Teste T_j será aplicado no **mesmo dia da Avaliação** A_j , nos **30 primeiros minutos** (após este tempo o Teste será **recolhido**). A menção obtida no mesmo será dada de acordo com a tabela abaixo:

Menção	Descrição	Número de questões certas
SR	Sem rendimento	0 (nenhuma) ou não comparecer
II	Inferior	1 ou 2
MI	Médio inferior	3 ou 4
MM	Médio	5 ou mais

Caso o aluno não atinja a menção **MM** em algum Teste, ele poderá **refazê-lo** nas datas de **reavaliação** marcadas no cronograma. No **Novo Teste** NT_j , a menção obtida será dada pela tabela abaixo:

Menção	Descrição	Número de questões certas
SR	Sem rendimento	0 (nenhuma)
II	Inferior	1 ou 3
MI	Médio inferior	4 ou 6
MM	Médio	7 ou mais

Um Novo Teste pode ser refeito **tantas vezes quanto for possível**, de acordo com as datas do **calendário**. A menção do Novo Teste NT_i **substituirá** a nota do Teste T_i .

5.2 Questionários

Se o aluno estiver com menção **MM** em um Teste T_j , ele poderá realizar o **Questionário** Q_j em uma data de **reavaliação**. O aluno deverá solicitar o questionário que deseja fazer (ou refazer) em uma enquete do *Moodle* até o final do **domingo da semana da reavaliação**.

Os Questionários seguirão a mesma estrutura e correção dos Testes, e serão compostos de questões mais aprofundadas no conteúdo. O tempo de realização é o mesmo: **30 minutos**. A menção obtida nos mesmos será dada de acordo com a tabela abaixo:

Menção	Descrição	Número de questões certas
MI	Médio inferior	0 ou 1
MM	Médio	2 ou 4
MS	Médio superior	5 ou 6
SS	Superior	7 ou mais

A menção do Questionário Q_j substituirá a menção do Teste T_j . Caso o aluno deseje refazer o Questionário Q_j , a menção obtida no Novo Questionário NQ_j será dada pela tabela abaixo:

Menção	Descrição	Número de questões certas
MM	Médio inferior	de 0 a 2
MM	Médio inferior	de 3 a 6
MS	Médio superior	7 ou 8
SS	Superior	9 ou 10

Um Novo Questionário pode ser refeito tantas vezes quanto for possível, de acordo com as datas do calendário. A menção do Novo Questionário NQ_j substituirá a nota do Teste T_j .

5.3 Avaliações

As **Avaliações** A_j são compostas de 4 **problemas**, de acordo com o conteúdo ministrado até a aplicação das mesmas. Cada problema terá um **contexto**, uma descrição das **entradas válidas**, uma descrição das **saídas** esperadas e exemplos de entradas e saídas **corretas**.

O aluno deverá **implementar** a solução do problema no computador. As soluções devem ser nomeadas da seguinte maneira:

(matrícula sem barra)_P(número do problema).(c ou cpp)

As soluções devem ser entregues em um arquivo .*zip*, cujo nome deve ser **a matrícula do aluno sem barra**. O professor receberá este arquivo em um *pendrive* e marcará, na Avaliação do aluno, **quantos problemas foram recebidos**.

A Avaliação será corrigida por uma **série de testes unitários automáticos**, que alimentarão o programa com **entradas válidas** e comparará as saídas obtidas com as **saídas corretas**. Um problema será dado como correto se obtiver sucesso em **todos os testes unitários**.

Cada Avaliação A_j será aplicado no **mesmo dia do Teste** T_j , após o Teste, com duração de **80 minutos**. A menção obtida na Avaliação será dada de acordo com a tabela abaixo:

Menção	Descrição	Número de problemas certos
SR	Sem rendimento	Não comparecer
II	Inferior	0
MI	Médio inferior	1
MM	Médio	2 ou mais

Caso o aluno não atinja a menção MM em alguma Avaliação, ele poderá **refazê-la** nas datas de **reavaliação** marcadas no cronograma. Na **Nova Avaliação** NA_j , a menção obtida será dada pela tabela abaixo:

Menção	Descrição	Número de problemas certos
SR	Sem rendimento	0
II	Inferior	1
MI	Médio inferior	2
MM	Médio	3 ou mais

Uma Nova Avaliação pode ser refeita **tantas vezes quanto for possível**, de acordo com as datas do **calendário**. A menção da Nova Avaliação NA_j **substituirá** a nota da Avaliação A_j .

5.4 Provas

Se o aluno obtiver menção MM em uma Avaliação A_j , ele poderá realizar a **Prova** P_j em uma data de **reavaliação**. O aluno deverá solicitar a prova que deseja fazer (ou refazer) em uma enquete do *Moodle* até o final do **domingo da semana da reavaliação**.

As Provas seguirão a mesma estrutura e correção das Avaliações, e serão compostos de problemas mais aprofundadas no conteúdo. O tempo de realização é o mesmo: **80 minutos**. A menção obtida nos mesmos será dada de acordo com a tabela abaixo:

Menção	Descrição	Número de problemas certos
MI	Médio inferior	0
MM	Médio	1
MS	Médio superior	2
SS	Superior	3 ou mais

A menção da Prova P_j substituirá a menção da Avaliação A_j . Caso o aluno deseje **refazer** a Prova P_j , a menção obtida na **Nova Prova** NP_j será dada pela tabela abaixo:

Menção	Descrição	Número de problemas certos
MI	Médio inferior	0
MM	Médio	1 ou 2
MS	Médio superior	3
SS	Superior	4

Uma Nova Prova pode ser refeita **tantas vezes quanto for possível**, de acordo com as datas do **calendário**. A menção da Nova Prova NP_i **substituirá** a nota da Avaliação A_i .

5.5 Jogo Eletrônico

O **Jogo Eletrônico** deverá ser desenvolvido, ao longo do semestre, por um grupo de **1 a 4 integrantes**. Os grupos serão montados **na primeira semana** de curso, e não poderão ser alterados após esta data.

O jogo deve ser desenvolvido para plataforma *Linux*, e deverá ser do gênero *Tower Defense* (por exemplo, *Plants vs. Zombies, Radiant Defense, Final Fantasy Crystal Defense*, dentre outros).

O jogo deverá ter três entregas parciais, nos **dias das avaliações** marcadas no cronograma. A **entrega final** também está marcada no cronograma do curso.

A entrega final será avaliada com uma menção, que fará parte da menção final. A não-entrega do jogo finalizado acarretará na reprovação dos alunos do grupo.

5.6 Critérios de Aprovação

Para ser aprovado no curso, o aluno deve atender as critérios abaixo:

- Ter 75% de presença nas aulas;
- Ter menção final igual a MM, MS ou SS.

A menção final MF será dada pela menor dentre as médias obtidas nos **testes**, nas **avaliações** e no **jogo eletrônico**, ou seja,

$$MF = \min\{T_j, A_j, JE\}$$

Observações:

- i. Uma vez que cada Teste e cada Avaliação poderão ser feitos no mínimo em **duas oportunidades, não haverão** outras reposições além das **reavaliações** previstas no calendário.
- ii. Em cada data de reavaliação, poderam ser feitos **apenas um** Teste ou Questionário **e apenas uma** Avaliação ou Prova.

6 Cronograma

Semana	Aula	Data	Conteúdo
01	1 2	30/10 01/11	Apresentação do curso. História dos jogos Jogos e sociedade
02	3 4	06/11 08/11	Diversão Game Design
03	5	13/11 15/11	Linguagens de programação e de script Feriado
04	6 7	20/11 22/11	Arquitetura do Jogo Desenvolvimento em ambiente Linux: Ferramentas
05	- 8	27/11 29/11	Avaliação 01 Desenvolvimento em ambiente Linux: APIs
06	9	04/12 06/12	Desenvolvimento em ambiente Linux: Distribuição de software Prova 01 e Reavaliação
07	-	11/12 13/12	Início do ECT- γ 2012 Fim do ECT- γ 2012
08	10 11	18/12 20/12	Introdução à SDL SDL: Manipulação de pixels e imagens
09	-	25/12 03/01	Recesso de Final de Ano Fim do Recesso
10	12 13	08/01 10/01	SDL: Animações SDL: Dispositivos de entrada e eventos
11	14 15	15/01 17/01	SDL: Threads SDL: Áudio
12	- 16	22/01 24/01	Avaliação 02 Fundamentos de Programação: Vetores e Matrizes
13	17 -	29/01 31/01	Fundamentos de Programação: Listas, Pilhas e Filas Prova 02 e Reavaliação
14	18 19	05/02 07/02	Fundamentos de Programação: Hash Fundamentos de Programação: Árvores binárias

Semana	Aula	Data	Conteúdo
15	20 21	12/02 14/02	Fundamentos de Programação: Grafos Fundamentos de Programação: Máquina de Estados Finitos
16	- 22	19/02 21/02	Avaliação 03 Fundamentos de Programação: Aplicação a jogos - Parte I
17	23	26/02 28/02	Fundamentos de Programação: Aplicação a jogos - Parte II Prova 03 e Reavaliação
18	-	05/03 07/03	Reavaliação Final Apresentação e entrega dos jogos. Fim das aulas
19	-	12/03 14/03	Entrega das menções finais. Revisão de notas Fim do semestre

7 Bibliografia

LIVROS TEXTOS

HALL, Jonh R. Programming Linux Games, No Starch Press, San Franscisco, 2001.

PENTON, Ron. Data Structures for Game Programmers, The Premier Press, 2004.

ERICSON, Christer. *Real-Time Collision Detection*, Morgan Kaufmann, 2005.

LITERATURA COMPLEMENTAR

RABIN, Steve. *Introduction to Game Development*, Charles River Media, 2008.

BUCKLAND, Mat. Programming Game AI by Example, Wordware Publishing, 2004.

PAZERA, Ernest. Focus on SDL, The Premier Press, 2003.

MILLINGTON, Ian. Game Physics Engine Development, Morgan Kaufmann, 2007.

BETHKE, Erik. Game Development and Production, Wordware Publishing, 2003.