```
#univariate Analysis of diabetes dataset
print('MEAN:\n',df.mean())
print('MEDIAN:\n:',df.median())
print('MODE:\n:',df.mode())
print('STANDAR DEVIATION:\n:',df.std())
print('VARIANCE:\n:',df.var())
print('SKEWNESS:\n:',df.skew())
print('KURTOSIS:\n:',df.kurtosis())
df.describe()
OUTPUT
```

bisment on the

MEAN:	70871117	
Pregnancies	3.845	052
Glucose	120.894	531
BloodPressure	69.105	469
SkinThickness	20.536	458
Insulin	79.799	479
BMI	31.992	578
DiabetesPedigreeFu	nction 0.471	876
Age	33.2408	385
Outcome	0.3489	958
dtype: float64	THE AUGUST	
MEDIAN:		
: Pregnancies	3.00)00
Glucose	117.00	00(
BloodPressure	72.00	00(
SkinThickness	23.00	00
Insulin	30.50	000
DMI	32.00	

0.3725

29.0000

0.0000

BMI

Age

DiabetesPedigreeFunction

4. Use the diabetes data set from UCI Univariate analysis: Frequency, Mean, Median, Mode, Variance, Standard Deviation, Skewness and Kurtosis.

```
#Diabetes data set from UCI
#Univariate analysis: Frequency, Mean, Median, Mode, Variance, Standard
# Deviation, Skewness and Kurtosis.
import pandas as pd
import numpy as np
import statistics as st
# Load the data
df = pd.read_csv("diabetes.csv")
print(df.shape)
               applies been attitude all compressions on the day the
               equipped the cheek of our commission was any except at the commission.
print(df.info())
OUTPUT:
      (768, 9)
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 768 entries, 0 to 767
      Data columns (total 9 columns):
                            Non-Null Count Dtype
      # Column
                             768 non-null int64
        Pregnancies
      0
                            768 non-null
         Glucose
                                         int64
      1
         BloodPressure
                              768 non-null
                                            int64
         SkinThickness
                              768 non-null
                                            int64
                           768 non-null int64
         Insulin
```

6 DiabetesPedigreeFunction 768 non-null float64

768 non-null float64

7 Age 768 non-null int64

8 Outcome 768 non-null int64

dtypes: float64(2), int64(7)

memory usage: 54.1 KB

None

BMI

4	Glucose	0.173754	in in the
	BloodPressure	-1.843608	
	SkinThickness	0.109372	
	Insulin	2.272251	
	BMI	-0.428982	.11
	DiabetesPedigreeFunction	1.919911	11
	Age	1.129597	. 11111
	Outcome	0.635017	科開閉
	dtype: float64	arte in the	拉出到
	KURTOSIS:		
	: Pregnancies	0.159220	
	Glucose	0.640780	
	BloodPressure	5.180157	
	SkinThickness	-0.520072	
	Insulin	7.214260	1
	BMI	3.290443	
	DiabetesPedigreeFunction	5.594954	
	Age	0.643159	A STATE OF
	Outcome	-1.600930	
		-1.000/30	
	dtype: float64		

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	EWI	DiabetesPedigreeFunction	Age	Outcome	4
count	768.000000	768.000000	768.000000	768.000000	768.000000	768 000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69 105469	20 536458	79 799479	31,992578	0.471876	33 240685	0 348958	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	0.475951	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.076000	21.000000	0.000000	
25%	1.000000	99.000000	62,000000	0.000000	0 000000	27.300000	0.243750	24.000000	0 000000	
50%	3.000000	117.000000	72.000000	23.000000	30 500000	32.000000	0.372500	29 000000	0.000000	
78%	6 0000000	140.250000	60.000000	32 000000	127.250000	36,600000	0.626250	41.000000	1.000000	
max	17.000000	199.000000	122.000000	99 000000	846.000000	67.100000	2 420000	81.000000	1.000000	,

liabetes dataset in histogram

 $ata_X = df.copy(deep = True)$

 $ata_X = Data_X.drop(['Outcome'], axis = 1)$

port matplotlib.pyplot as plt

trcParams['figure.figsize'] = [40, 40]

Plotting Histogram of Data $Data_X.hist(bins = 40)$ 11)