Transformer but for Graphs

Основной вопрос

Можем ли заставить это

Figure 1: The Transformer - model architecture.

Можем ли заставить на этом

Основной вопрос

Figure 1: The Transformer - model architecture.

Но перед этим немного про то как вообще работают с графами

AGGREGATE COMBINE состоит из 2х сложных шагов

$$a_i^{(l)} = \text{AGGREGATE}^{\;(l)}\left(\left\{h_j^{(l-1)}: j \in \mathcal{N}(v_i)\right\}\right), \quad h_i^{(l)} = \text{COMBINE}^{\;(l)}\left(h_i^{(l-1)}, a_i^{(l)}\right), \quad (1)$$

Для графовой задачи добавляем доп шаг:

$$h_G = \text{READOUT}\left(\left\{h_i^{(L)} \mid v_i \in G\right\}\right).$$

Но перед этим немного про то как вообще работают трансформеры

Работать в основном будем с Attention:

$$Q = HW_Q, \quad K = HW_K, \quad V = HW_V,$$
 $A = \frac{QK^{\top}}{\sqrt{d_K}}, \quad \text{Attn}(H) = \text{softmax}(A)V,$

Но перед этим немного про то как вообще работают трансформеры

Работать в основном будем с Attention:

Обратно к трансформерам: Как мы этого добьемся?

Добавляем ряд модификаций в self-attention

3 основные компоненты:

- Centrality Encoding
- Spatial Encoding
- Edge Encoding

Centrality Encoding

$$h_i^{(0)} = x_i + z_{\deg^-(v_i)}^- + z_{\deg^+(v_i)}^+,$$

Spatial Encoding

$$A_{ij} = \frac{(h_i W_Q)(h_j W_K)^T}{\sqrt{d}} + b_{\phi(v_i, v_j)},$$

Edge Encoding in the Attention

$$A_{ij} = rac{(h_i W_Q)(h_j W_K)^T}{\sqrt{d}} + b_{\phi(v_i, v_j)} + c_{ij}, ext{ where } c_{ij} = rac{1}{N} \sum_{n=1}^N x_{e_n} (w_n^E)^T,$$

Graphormer Layer

Дальше стандартный трансформер:

$$h^{'(l)} = MHA(LN(h^{(l-1)})) + h^{(l-1)}$$

 $h^{(l)} = FFN(LN(h^{'(l)})) + h^{'(l)}$

Special Node

Добавляем специальную [VNode], связанную со всеми вершинами в графе.

Для нее отдельные phi ([VNode], x_i). Так что выносим обучаемые параметры отдельно

Полезно для агрегации всей информации на графе

OGB Large-Scale Challenge

method	#param.	train MAE	validate MAE	
GCN [26]	2.0M	0.1318	0.1691 (0.1684*)	
GIN [54]	3.8M	0.1203	0.1537 (0.1536*)	
GCN-VN [26, 15]	4.9M	0.1225	0.1485 (0.1510*)	
GIN-vn [54, 15]	6.7M	0.1150	0.1395 (0.1396*)	
GINE-vn [5, 15]	13.2M	0.1248	0.1430	
DeeperGCN-VN [30, 15]	25.5M	0.1059	0.1398	
GT [13]	0.6M	0.0944	0.1400	
GT-Wide [13]	83.2M	0.0955	0.1408	
Graphormer _{SMALL}	12.5M	0.0778	0.1264	
Graphormer	47.1M	0.0582	0.1234	

GNN выносим ногами вперед

Table 2: Results on MolPCBA.

method	#param.	AP (%)
DeeperGCN-VN+FLAG [30]	5.6M	28.42±0.43
DGN [2]	6.7M	28.85±0.30
GINE-vn [5]	6.1M	29.17±0.15
PHC-GNN [29]	1.7M	29.47±0.26
GINE-APPNP [5]	6.1M	29.79±0.30
GIN-VN[54] (fine-tune)	3.4M	29.02±0.17
Graphormer-FLAG	119.5M	31.39±0.32

Table 3: Results on MolHIV.

method	#param.	AUC (%)	
GCN-GraphNorm [5, 8]	526K	78.83±1.00	
PNA [10]	326K	79.05±1.32	
PHC-GNN [29]	111K	79.34±1.16	
DeeperGCN-FLAG [30]	532K	79.42±1.20	
DGN [2]	114K	79.70±0.97	
GIN-VN[54] (fine-tune)	3.3M	77.80±1.82	
Graphormer-FLAG	47.0M	80.51±0.53	

Table 4: Results on ZINC.

method	#param.	test MAE
GIN [54]	509,549	0.526 ± 0.051
GraphSage [18]	505,341	0.398 ± 0.002
GAT [50]	531,345	0.384 ± 0.007
GCN [26]	505,079	0.367 ± 0.011
GatedGCN-PE [4]	505,011	0.214 ± 0.006
MPNN (sum) [15]	480,805	0.145 ± 0.007
PNA [10]	387,155	0.142 ± 0.010
GT [13]	588,929	0.226±0.014
SAN [28]	508, 577	0.139 ± 0.006
Graphormer _{SLIM}	489,321	0.122 ±0.006

Ablation

Node Relation Encoding		Centrality	Edge Encoding			valid MAE
Laplacian PE[13]	Spatial	Centrality	via node	via Aggr	via attn bias(Eq.7)	valid WIAL
	-	-		1570	8.7	0.2276
✓	_	4	¥3	-	8 2	0.1483
	/	-	-	-	-	0.1427
	/	/	-	-	2 .	0.1396
	/	/	/	-	-	0.1328
-	✓	✓	-	/	-	0.1327
	1	✓	-	-	1	0.1304

Transformers can be used on graphs!

И сюда их справились запихнуть...