Study guide

- (online notes) Know what the "least-squares problem" is, in both of its forms: finding the nearest linear combination to a given \vec{b} , and finding the best approximate solution to an inconsistent system $A\vec{x} = \vec{b}$.
- (online notes) Know the "normal equation," to solve the least-squares problem.
- (online notes) Understand how to encode linear regression as a least-squares problem, and solve it using the normal equation.
- 1. Find the linear combination of $\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$ and $\begin{pmatrix} 1\\-1\\0 \end{pmatrix}$ that is closest to $\begin{pmatrix} 5\\3\\7 \end{pmatrix}$.
- 2. Define a matrix A and vector \vec{b} as follows.

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 8 \\ 4 \\ 12 \\ 0 \end{pmatrix}$$

- (a) Verify that the linear system $A\vec{x} = \vec{b}$ is inconsistent.
- (b) Find the "least-squares" solution, i.e. the vector \vec{x} which minimizes $||A\vec{x} \vec{b}||$.

Note This is a bit different from the original way we formulated the least-squares problem. To translate, observe that $A\vec{x}$ is a linear combination of the *columns* of A, or check the online notes.

♣ 3. Suppose that $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ is a linearly independent set of vectors in \mathbb{R}^n , and let \vec{v}_{n+1} be some other vector in \mathbb{R}^n . Prove that $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n, \vec{v}_{n+1}\}$ is linearly dependent if and only if \vec{v}_{n+1} is a linear combination of the vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$.

Note Be very careful in your proof that you never assume that a number is nonzero without justifying why it must be so.

- ♣ 4. A square matrix A is called *orthogonal* if it is invertible and $A^{-1} = A^t$. (Note: read Theorem 15 in §1.6 of the book. We did not explicitly mention all of these facts in class, but a couple of them are useful here.)
 - (a) Prove that if A is orthogonal, then det $A = \pm 1$.
 - (b) Prove that if A is an orthogonal $n \times n$ matrix and \vec{v} is any vector in \mathbb{R}^n , then $||A\vec{v}|| = ||\vec{v}||$.
 - (c) Prove that if A is an orthogonal $n \times n$ matrix and \vec{u}, \vec{v} are any two nonzero vectors in \mathbb{R}^n , then the angle between $A\vec{u}$ and $A\vec{v}$ is the same as the angle between \vec{u} and \vec{v} .
 - (d) Prove that the product of two orthogonal matrices of the same size is orthogonal, and that the inverse of an orthogonal matrix is orthogonal.

Note Orthogonal matrices arise in physics and engineering, because they represent rigid motions (rotations, etc.), which is demonstrated by the properties discussed above.

- \clubsuit 5. Prove that if \vec{u} is a vector that is orthogonal to each vector in a list $\{\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_n\}$, then \vec{u} is also orthogonal to any linear combination of $\{\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_n\}$.
- ♣ 6. Prove that if $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ is a list of vectors, each of which is *nonzero*, and any two of which are orthogonal (that is, $\vec{v}_i \perp \vec{v}_j$ for all i, j with $i \neq j$), then $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ is a *linearly independent* set.
- ♣ 7. A list of $m \times 1$ column vectors $\{\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_n\}$ is called an *orthonormal set* if any two of the vectors in the list are orthogonal, and every vector in the list has length 1.
 - (a) Given an index $i \in \{1, 2 \dots, n\}$, what do these assumptions say about the dot product $\vec{v}_i \cdot \vec{v}_i$? If i and j are two different indices, what do the assumptions say about the dot product $\vec{v}_i \cdot \vec{v}_i$?
 - (b) Suppose that \vec{b} is another $m \times 1$ column vector. We can use \vec{b} to define the following linear combination of $\{\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_n\}$.

$$\vec{u} = (\vec{b} \cdot \vec{v_1})\vec{v_1} + (\vec{b} \cdot \vec{v_2})\vec{v_2} + \dots + (\vec{b} \cdot \vec{v_n})\vec{v_n}$$

Prove that if \vec{w} is any other linear combination of $\{\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_n\}$, then $(\vec{u} - \vec{w}) \perp (\vec{b} - \vec{u})$.

(c) Use the Pythagorean theorem for vectors (to be proved in class Monday 10/21) to deduce from part (b) that the vector \vec{u} is closer to \vec{b} than any other linear combination of $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$. (This can also be proved using the normal equation, which takes a particularly simple form when the vectors are orthonormal).