Γεννήτριες Συναρτήσεις

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου

Επιμέλεια διαφανειών: Δ. Φωτάκης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

Αναπαράσταση Ακολουθιών

- Ακολουθία: αριθμητική συνάρτηση με πεδίο ορισμού το Ν.
- □ Με γενικό (ἡ «κλειστό») τύπο a_n: n-οστός όρος συναρτήσει n.
- Κωδικοποίηση σε δυναμοσειρά μιας (πραγματικής) μεταβλητής χ.
- \square Γεννήτρια Συνάρτηση (ΓΣ) Α(x) ακολουθίας \mathbf{a} : $A(x) = \sum_{n=0}^{\infty} \alpha_n x^n$
 - Συντελεστής του xⁿ αντιστοιχεί σε n-οστό όρο ακολουθίας α.
 - Επιλέγουμε διάστημα τιμών x ώστε σειρά να συγκλίνει.
 - Έτσι θεωρούμε ότι Α(x) ἀπειρα παραγωγίσιμη (αναλυτική).
 Παραγωγίζουμε/ολοκληρώνουμε την Α(x) ως πεπερασμένο ἀθροισμα.
- □ Κάθε ακολουθία α αντιστοιχεί σε μοναδική ΓΣ Α(x).
- **ΓΣ** A(x) αντιστοιχεί σε μοναδική ακολουθία: $\alpha_n = (1/n!)A^{(n)}(0)$
- Μετασχηματισμός και «αλγεβρικός» χειρισμός ακολουθιών και επίλυση των προβλημάτων που κωδικοποιούν.

- \square ΓΣ ακολουθίας 1, 1, 1, 1, : 1/(1-x)
- \square ΓΣ ακολουθίας $a_n = b \lambda^n : b/(1 \lambda x)$
- ΓΣ για πεπερασμένες ακολουθίες (υπόλοιποι όροι θεωρούνται 0).
 - **Σ** ακολουθίας 0, 0, 1, 2, 3, 4, 5: $x^2 + 2x^3 + 3x^4 + 4x^5 + 5x^6$
 - **ΓΣ** ακολουθίας $a_k = C(n, k): (1 + x)^n$
- \square ΓΣ ακολουθίας $a_n = n+1$:

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \Leftrightarrow \left(\frac{1}{1-x}\right)' = \left(\sum_{n=0}^{\infty} x^n\right)' \Leftrightarrow \frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} nx^{n-1} = \sum_{n=0}^{\infty} (n+1)x^n$$

- **ΓΣ** ακολουθίας $\beta_n = n : B(x) = x/(1-x)^2$
- Ακολουθία που αντιστοιχεί σε ΓΣ A(x) = 5/(1 4x): $a_n = 5 4^n$

- \square Ακολουθία αντιστοιχεί σε $\Gamma\Sigma$ $A(x) = 1/(1 x)^n$;
 - Γενικευμένο δυωνυμικό ανάπτυγμα (όταν η δεν είναι φυσικός):

$$(1+x)^n = \sum_{k=0}^{\infty} \frac{n(n-1)\cdots(n-k+1)}{k!} x^k$$

- lacksquare Ειδικότερα, αν η φυσικός: $\dfrac{1}{(1-x)^n} = \sum_{k=0}^\infty \binom{n+k-1}{k} x^k$
- Δηλαδή η 1/(1-x)ⁿ είναι η ΓΣ για συνδυασμούς k από n αντικείμενα με επανάληψη (ή διανομή k ίδιων αντικειμένων σε n διακ. υποδοχές).
- Με βάση γενικευμένο δυωνυμικό ανάπτυγμα,

$$\frac{1}{1+x} = \sum_{k=0}^{\infty} \frac{(-1)(-1-1)\cdots(-1-k+1)}{k!} x^k = \sum_{k=0}^{\infty} (-1)^k x^k$$

■ Άρα η ΓΣ A(x) = 1/(1+x) αντιστοιχεί στην ακολουθία $a_n = (-1)^n$

Πράξεις Ακολουθιών

- Πράξεις μεταξύ ακολουθιών:
 - lacksquare Διαβάθμιση με συντελεστή c: $(coldsymbol{lpha})_n = clpha_n$
 - lacksquare Γραμμικός συνδυασμός: $(coldsymbol{lpha}+doldsymbol{eta})_n=clpha_n+deta_n$
 - Δεξιά ολίσθηση κατά \mathbf{k} θέσεις: $(S^k \boldsymbol{\alpha})_n = \begin{cases} 0 & \text{ για } n=0,\ldots,k-1 \\ \alpha_{n-k} & \text{ για } n \geq k \end{cases}$
 - Αριστερή ολίσθηση κατά k θέσεις: $(S^{-k}\alpha)_n = a_{n+k}$
 - **Δ** Ακολουθία μερικών αθροισμάτων: $\gamma_n = \sum_{k=0}^n \alpha_k$
 - lacktriangle Ακολουθία συμπληρωματικών μερικών αθροισμάτων: $\delta_n = \sum_{k=n}^\infty \alpha_k$
 - lacksquare Ευθεία διαφορά: $(\Delta oldsymbol{lpha})_n = lpha_{n+1} lpha_n$
 - Aνάστροφη διαφορά (ολίσθ. ευθείας 1 θέση δεξιά): $(\nabla \alpha)_n = \alpha_n \alpha_{n-1}$
 - lacksquare Συνέλιξη: $(oldsymbol{lpha}*oldsymbol{eta})_n = \sum_{k=0}^n lpha_k eta_{n-k}$

Βασικές Ιδιότητες

- Γραμμική ιδιότητα:
 - H ακολουθία cα + dβ έχει ΓΣ την c A(x) + d B(x).
 - \blacksquare Η ΓΣ $rac{10-38x}{1-6x+8x^2} = rac{1}{1-4x} + rac{9}{1-2x}$ έχει αχολουθία την $4^n + 9 \cdot 2^n$
 - \blacksquare Η ΓΣ $\frac{9-47x}{1-10x+21x^2}=\frac{5}{1-3x}+\frac{4}{1-7x}$ έχει ακολουθία την $5\cdot 3^n+4\cdot 7^n$
- Ιδιότητα ολίσθησης:
 - Η ακολουθία S^k α έχει ΓΣ την x^k A(x), αφού:

$$x^{k}A(x) = \sum_{n=0}^{\infty} \alpha_{n}x^{n+k} = \sum_{n=0}^{k-1} 0x^{n} + \sum_{n=k}^{\infty} \alpha_{n-k}x^{n}$$

- Π.χ. 0, 0, 0, 0, 1, 1, 1, 1, ... έχει ΓΣ την x⁴/(1-x)
 0, 0, 1, 2, 4, ..., 2ⁿ⁻² έχει ΓΣ την x²/(1-2x)
- lacksquare Η ακολουθία S^{-k} lacksquare έχει ΓΣ την $x^{-k}\left(A(x)-\sum_{i=0}^{k-1}lpha_ix^i
 ight)$
- Π.χ. η ακολουθία α_n = 2ⁿ⁺³ έχει ΓΣ την

$$x^{-3}\left[\frac{1}{1-2x} - 1 - 2x - 4x^2\right] = \frac{8}{1-2x}$$

Βασικές Ιδιότητες

- **Π** Μερικών αθροισμάτων: $\gamma_n = \sum_{k=0}^n \alpha_k$
 - Παρατηρούμε ότι $a_n = \gamma_n \gamma_{n-1}$
 - Aρα $A(x) = \Gamma(x) x\Gamma(x) \Rightarrow \Gamma(x) = A(x) / (1-x)$.
 - Π.χ. $y_n = n+1$ είναι ακολουθία μερικών αθροισμάτων της $a_n = 1$.
 - \square Άρα έχει ΓΣ την $\Gamma(x) = 1/(1-x)^2$
 - Ποια είναι η ΓΣ της $β_n = n(n+1)/2$;
 - Η $β_n$ αποτελεί την ακολουθία μερικών αθροισμάτων της $δ_n = n$, η οποία έχει ΓΣ την $D(x) = x/(1-x)^2$.
 - \square Άρα έχει ΓΣ την $B(x) = x/(1-x)^3$
- \square Συνέλιξη $\mathbf{a} * \mathbf{\beta}$ έχει ΓΣ την $\mathbf{A}(\mathbf{x}) \mathbf{B}(\mathbf{x})$.
 - lacksquare Ο συντελεστής του xⁿ στο A(x) B(x) είναι $(m{lpha}*m{eta})_n = \sum_{k=0}^n lpha_k eta_{n-k}$
 - Ποια είναι η ΓΣ της ακολουθίας $\alpha_n = \sum_{k=0}^n 3^k 2^{n-k}$
 - \Box Από ιδιότητα συνέλιξης, A(x) = 1/[(1-3x)(1-2x)]

Βασικές Ιδιότητες

- Ιδιότητα της Κλίμακας:
 - \blacksquare Η ακολουθία $\gamma_n = n a_n$ έχει ΓΣ την $\Gamma(x) = x A'(x)$, αφού

$$\Gamma(x) = xA'(x) = x \sum_{n=0}^{\infty} (\alpha_n x^n)' = x \sum_{n=0}^{\infty} n\alpha_n x^{n-1} = \sum_{n=0}^{\infty} (n\alpha_n) x^n$$

lacksquare Η ακολουθία lacksquare lacksquare lacksquare lacksquare Η ακολουθία lacksquare lacksquare lacksquare lacksquare $\Delta(x) = rac{1}{x} \int_0^x A(z) dz$

$$\Delta(x) = \frac{1}{x} \int_0^x A(z) dz = \frac{1}{x} \sum_{n=0}^{\infty} \int_0^x \alpha_n z^n dz = \frac{1}{x} \sum_{n=0}^{\infty} \frac{\alpha_n}{n+1} x^{n+1} = \sum_{n=0}^{\infty} \frac{\alpha_n}{n+1} x^n$$

Ποια είναι η ΓΣ της ακολουθίας $\beta = c \alpha + d$; B(x) = c A(x) + d/(1-x)Ποια είναι η ΓΣ της ακολουθίας $\beta_n = c^n a_n$; B(x) = A(cx)Ποια είναι η ακολουθία με ΓΣ την A(x) = 4x + 2/(1-3x); $a_0 = 2$, $a_1 = 10$, $a_n = 2 3^n$, yia $n \ge 2$. Ποια είναι η ακολουθία με ΓΣ την $A(x) = 2/(1 - 4x^2)$; Ανάλυση σε κλάσματα: A(x) = 1/(1-2x) + 1/(1+2x)Ακολουθία $a_n = 2^n + (-2)^n$ Ποια είναι η ακολουθία με ΓΣ την $A(x) = \frac{22x^3 - 9x^2 - 14x - 1}{(1+x)(1+3x)(1-2x)^2}$ Ανάλυση σε κλάσματα: $A(x) = \frac{1}{1+x} + \frac{1}{1+3x} - \frac{1}{1-2x} - \frac{2}{(1-2x)^2}$

Ακολουθία $a_n = (-1)^n + (-3)^n - 2^n - (n+1)2^{n+1}$

Εφαρμογές

- ... των ΓΣ είναι πολλές και σημαντικές. Μεταξύ άλλων:
 - Υπολογισμός αθροισμάτων.
 - Επίλυση προβλημάτων συνδυαστικής.
 - Επίλυση αναδρομικών εξισώσεων.
- Μεθοδολογία επίλυσης προβλημάτων:
 - Διατύπωση με βάση μια ακολουθία (ή συνδυασμό ακολουθιών) ώστε ο «κλειστός» τύπος για τον n-οστό όρο να δίνει τη λύση.
 - Υπολογισμός της ΓΣ της ακολουθίας (με βάση ιδιότητες ΓΣ).
 - Ανάπτυγμα ΓΣ και υπολογισμός έκφρασης για n-οστό όρο.
- Υπολογισμός αθροίσματος $\sum_{k=0}^{n} 3^k 2^{n-k}$
 - ΓΣ αντίστοιχης ακολουθίας \mathbf{a} είναι η $\mathbf{A}(\mathbf{x}) = 1/[(1-3\mathbf{x})(1-2\mathbf{x})]$
 - Ανάλυση σε κλάσματα: A(x) = 3/(1-3x) 2/(1-2x)
 - $A\theta \rho o i \sigma \mu a = a_n = 3^{n+1} 2^{n+1}$

Υπολογισμός Αθροισμάτων

- Υπολογισμός αθροίσματος $\sum_{k=0}^{n} k^2$
 - Ακολουθία $a_n = n$ έχει ΓΣ την $A(x) = x/(1-x)^2$
 - Ιδιότητα κλίμακας: $β_n = n^2$ έχει ΓΣ την $B(x) = x(1+x)/(1-x)^3$
 - Άθροισμα αντιστοιχεί στην ακολουθία μερικών αθροισμάτων της ακολουθίας β, η οποία έχει ΓΣ την $\Gamma(x) = x(1+x)/(1-x)^4$
 - Χρησιμοποιούμε $(1-x)^{-4} = \sum_{k=0}^{\infty} {4+k-1 \choose k} x^k = \sum_{k=0}^{\infty} {k+3 \choose 3} x^k$
 - ... και έχουμε: $\frac{x^2}{(1-x)^4} = \sum_{k=0}^{\infty} \binom{k+1}{3} x^k$ και $\frac{x}{(1-x)^4} = \sum_{k=0}^{\infty} \binom{k+2}{3} x^k$
 - **Δ**θροισμα = $\binom{n+1}{3} + \binom{n+2}{3} = \frac{(2n+1)(n+1)n}{6}$
- Ομοίως να υπολογισθεί το άθροισμα $\sum_{k=0}^{n} k^3$

Προβλήματα Συνδυαστικής

- Συνήθεις ΓΣ χρησιμοποιούνται για την κωδικοποίηση και επίλυση προβλημάτων συνδυασμών.
 - Για κάθε αντικείμενο Α, κωδικοποιούμε στον εκθέτη της μεταβλητής χ πόσες φορές μπορούμε να το επιλέξουμε.
 - \Box 1+x+x²+x³+...+x^p: μπορούμε να επιλέξουμε το A 0, 1, ..., p φορές (μπορεί άπειρο άθροισμα).
 - Σε αυτή τη φάση κωδικοποιούνται οι περιορισμοί.
 - Δπαριθμητής για (επιλογές) αντικειμένου Α.
 - Απαριθμητές για διαφορετικά αντικείμενα πολλαπλασιάζονται (κανόνας γινομένου) και δίνουν ΓΣ για συνδυασμούς από η αντικείμενα.
 - Ο συντελεστής του x^k στη ΓΣ αντιστοιχεί στον #συνδυασμών k από η αντικείμενα (υπό τους περιορισμούς που έχουμε θέσει).
 - Η ΓΣ κωδικοποιεί όλα τα ενδεχόμενα του πειράματος και #τρόπων να προκύψει κάθε ενδεχόμενο.

- Συνδυασμοί από η αντικείμενα χωρίς επαναλήψεις:
 - Απαριθμητής για κάθε αντικείμενο: 1+χ
 - ΓΣ $(1+x)^n$. Συντελεστής $x^k = C(n, k)$.
- Συνδυασμοί από η αντικείμενα με απεριόριστες επαναλήψεις:
 - Απαριθμητής για κάθε αντικείμενο: $1+x+x^2+x^3+...=1/(1-x)$
 - ΓΣ $1/(1-x)^n$. Συντελεστής $x^k = C(n+k-1, k)$.
- Συνδυασμοί από η αντικείμενα με απεριόριστες επαναλήψεις ώστε κάθε αντικείμενο να επιλεγεί τουλάχιστον 1 φορά:
 - Απαριθμητής για κάθε αντικείμενο: $x+x^2+x^3+...=x/(1-x)$
 - $\Gamma\Sigma$ xⁿ/(1-x)ⁿ . Συντελεστής x^k = C(k-1, n-1).

- #λύσεων εξίσωσης $z_1+z_2+z_3+z_4=30$ στους φυσικούς αν z_1 άρτιος, θετικός ≤ 10 , z_2 περιττός ≤ 11 , $3 \leq z_3 \leq 10$, $0 \leq z_4 \leq 15$.
 - $A(x) = (x^2 + x^4 + ... + x^{10})(x + x^3 + ... + x^{11})(x^3 + x^4 + ... + x^{10})(1 + x + x^2 + ... + x^{15})$
 - Ζητούμενο δίνεται από συντελεστή x³⁰ που είναι 185.
 - Ο συντελεστής του x³⁰ στην A(x) **δεν** ταυτίζεται με αυτόν στην $A'(x)=(x^2+x^4+x^6+...)(x+x^3+x^5+...)(x^3+x^4+x^5+...)(1+x+x^2+x^3+...)$
- Κέρματα 20 λεπτών, 50 λεπτών, 1 ευρώ και 2 ευρώ. Συνδυασμοί με συνολική αξία η ευρώ ώστε τουλάχιστον ένα κέρμα από κάθε είδος.
 - Κωδικοποιούμε στον εκθέτη την αξία των κερμάτων (σε λεπτά).
 - $A(x) = (x^{20} + x^{40} + ...)(x^{50} + x^{100} + ...)(x^{100} + x^{200} + ...)(x^{200} + x^{400} + ...)$
 - Το ζητούμενο δίνεται από τον συντελεστή του χ¹⁰⁰ⁿ

- #διανομών 2n+1 ίδιων μπαλών σε 3 διακεκριμένες υποδοχές ώστε κάθε υποδοχή να έχει ≤ η μπάλες.
 - H $\Gamma\Sigma$ sival A(x) = $(1+x+x^2+...+x^n)^3 = (1-x^{n+1})^3/(1-x)^3$
 - Το ζητούμενο δίνεται από τον συντελεστή του x²ⁿ⁺¹
 - Με πράξεις:

$$A(x) = (1 - 3x^{n+1} + 3x^{2n+2} - x^{3n+3}) \frac{1}{(1-x)^3}$$
$$= (1 - 3x^{n+1} + 3x^{2n+2} - x^{3n+3}) \left(\sum_{k=0}^{\infty} {k+2 \choose 2} x^k\right)$$

Ο συντελεστής του x²ⁿ⁺¹ είναι

$$\binom{2n+3}{2} - 3\binom{n+2}{2} = \frac{n(n+1)}{2}$$

- ΓΣ για τη διανομή 20 μαρκαδόρων, 6 μαύρων, 10 πράσινων, και 4 κόκκινων, σε 2 καθηγητές ώστε κάθε καθηγητής να πάρει 10 μαρκαδόρους και τουλάχιστον 1 από κάθε χρώμα.
 - Διανομή στον 1° καθηγητή (σύμφωνα με περιορισμούς) καθορίζει τι θα πάρει ο 2ος καθηγητής με μοναδικό τρόπο.
 - Αρκεί να διατυπώσουμε τη ΓΣ για τον 1° καθηγητή.
 - $(x+x^2+x^3+x^4+x^5)(x+x^2+...+x^9)(x+x^2+x^3)$
 - Το ζητούμενο δίνεται από τον συντελεστή του x¹⁰ που είναι 15.

- 100 (μη διακεκριμένοι) επιβάτες κατεβαίνουν σε 4 (διακεκριμένες) στάσεις. Γεννήτρια Συνάρτηση όταν:
- Δεν υπάρχουν περιορισμοί.
 - #ακεραίων λύσεων της $z_1+z_2+z_3+z_4=100$ με z_1 , z_2 , z_3 , $z_4\geq 0$.
 - $(1+x+x^2+x^3+...)^4 = 1/(1-x)^4$
 - Ζητούμενο δίνεται από συντελεστή χ¹⁰⁰ που είναι C(103, 3)
- #επιβ. 3^n στάση \geq #επιβ. 2^n στάση \geq #επιβ. 1^n στάση.
 - Πρέπει $z_2 = z_1 + \kappa$, $\kappa \ge 0$, και $z_3 = z_2 + \lambda = z_1 + \kappa + \lambda$, $\lambda \ge 0$.
 - #ακεραίων λύσεων της $3z_1+2\kappa+\lambda+z_4=100$ με z_1 , κ, λ, $z_4 \ge 0$.
 - $(1+x^3+x^6+...+x^{99})(1+x^2+x^4+...+x^{100})(1+x+x^2+...+x^{100})^2$
 - Ζητούμενο δίνεται από συντελεστή χ¹⁰⁰ που είναι 30787

Εκθετικές Γεννήτριες Συναρτήσεις

- ... για προβλήματα διατάξεων.
 - Διακεκριμένα αντικείμενα σε διακεκριμένες θέσεις.
 - Αναζητούμε τον συντελεστή τον συντελεστή του x^k/k! (ουσιαστικά πολλαπλασιάζουμε τον συντελεστή του x^k με k!)
 - Λαμβάνουμε υπόψη διατάξεις στον σχηματισμό των απαριθμητών.
- Διατάξεις k αντικειμένων από n χωρίς επανάληψη.
 - $P(n, k) = C(n, k) \times k!$
 - Το P(n, k) προκύπτει ως συντελεστής του xk/k! στο (1+x)n

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k = \sum_{k=0}^n \frac{n!}{(n-k)!k!} x^k = \sum_{k=0}^n \frac{n!}{(n-k)!} \frac{x^k}{k!}$$

Εκθετικές Γεννήτριες Συναρτήσεις

- Εκθετική Γεννήτρια Συν. Ε(x) ακολουθίας **α**: $E(x) = \sum_{n=0}^{\infty} \alpha_n \frac{x^n}{n!}$
 - Συντελεστής του $x^n/n!$ αντιστοιχεί σε n-οστό όρο ακολουθίας a.
- **Εκθετική»** γιατί στην ακολουθία 1, 1, 1, ... αντιστοιχεί η Εκθετική ΓΣ (ΕΓΣ) ex λόγω της ταυτότητας:

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

- Εκθετικός απαριθμητής για μεταθέσεις η διαφορ. αντικ.: $x^n = n! \frac{x^n}{n!}$
- Εκθετικός απαριθμητής για μεταθέσεις n ίδιων αντικειμένων: $x^n/n!$
- ΕΓΣ για μεταθέσεις η αντικειμένων σε κ ομάδες με ίδια αντικείμενα με πληθάριθμο ομάδων n_1 , n_2 , ..., n_k :

$$\frac{x^{n_1}}{n_1!} \cdot \frac{x^{n_2}}{n_2!} \cdot \dots \cdot \frac{x^{n_k}}{n_k!} = \frac{x^n}{n_1! \dots n_k!} = \frac{n!}{n_1! \dots n_k!} \cdot \frac{x^n}{n!}$$

- ΕΓΣ για διανομή k διακεκριμένων αντικειμένων σε η διακεκριμένες υποδοχές χωρίς περιορισμούς και χωρίς να έχει σημασία η σειρά στις υποδοχές.
 - Ισοδύναμα, ΕΓΣ για διατάξεις k από n με απεριόριστες επανάληψεις.
 - Εκθετικός απαριθμητής για κάθε υποδοχή: $1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots = e^x$
 - Εκθετική ΓΣ: e^{nx} και ο συντελεστής $x^k/k!$ είναι n^k

- Το ίδιο με περιορισμό καμία υποδοχή να μην μείνει κενή (k ≥ n):
 - Εκθετικός απαριθμητής για κάθε υποδοχή: $e^x 1$
 - Εκθετική ΓΣ: $(e^x 1)^n$
 - Συντελεστής του $\mathbf{x}^{\mathbf{k}}/\mathbf{k}!$ είναι ίσος με $\sum_{k=0}^{\infty}(-1)^{\ell}\binom{n}{\ell}(n-\ell)^{k}$
- Εφαρμογές:
 - Πρόγραμμα μελέτης 4 μαθημάτων για 7 ημέρες ώστε κάθε μάθημα να μελετηθεί τουλάχιστον 1 ημέρα.
 - «Διανομή» 7 διακ. ημερών σε 4 διακ. μαθήματα ώστε κανένα μάθημα να μην μείνει «κενό».
 - \Box #«διανομών»: $4^7 4 \times 3^7 + 6 \times 2^7 4 = 8400$
 - Ανάθεση 20 μεταπτ. φοιτητών σε 5 εργαστήρια ώστε κάθε εργαστήριο να δεχθεί τουλάχιστον 1 φοιτητή.
 - #«αναθέσεων»: $5^{20} 5 \times 4^{20} + 10 \times 3^{20} 10 \times 2^{20} + 5$

- #πενταδικών συμβ/ρών μήκους η με άρτιο πλήθος από 1:
 - Εκθετικός απαριθμητής για καθένα από τα ψηφία 0, 2, 3, 4:

$$1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = e^x$$

Εκθετικός απαριθμητής για ψηφίο 1:

$$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots = \frac{e^x + e^{-x}}{2}$$

- Εκθετική ΓΣ: $e^4(e^x + e^{-x})/2 = (e^{5x} + e^{3x})/2$
- Συντελεστής του $x^n/n!$ είναι $(5^n + 3^n)/2$

- #πενταδικών συμβ/ρών μήκους η με άρτιο πλήθος 1 και περιττό πλήθος 0 όπου τα 2, 3, 4 εμφανίζονται τουλάχιστον 1 φορά.
 - Εκθετικός απαριθμητής για καθένα από τα ψηφία 2, 3, 4: ex 1
 - Εκθετικός απαριθμητής για ψηφίο 1: $(e^x + e^{-x})/2$
 - Εκθετικός απαριθμητής για ψηφίο 0:

$$\frac{x}{1!} + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots = \frac{e^x - e^{-x}}{2}$$

- Εκθετική ΓΣ: $(e^x 1)^3 [(e^x + e^{-x})/2] [(e^x e^{-x})/2]$
- Συντελεστής του xⁿ/n! είναι

$$(5^n - 3 \times 4^n + 3^{n+1} - 2^n + (-2)^n - 3 \times (-1)^n - 1)/4$$

- ΕΓΣ για διανομή k διακεκριμένων αντικειμένων σε η διακεκριμένες υποδοχές χωρίς περιορισμούς και όταν έχει σημασία η σειρά στις υποδοχές.
 - Επειδή έχει σημασία η σειρά σε κάθε υποδοχή, κατά το σχηματισμό του απαριθμητή, πολλαπλασιάζουμε το x^k/k! με k!
 - Ο εκθετικός απαριθμητής για κάθε υποδοχή είναι:

$$1 + 1!\frac{x}{1!} + 2!\frac{x^2}{2!} + 3!\frac{x^3}{3!} + 4!\frac{x^4}{4!} + 5!\frac{x^5}{5!} + \dots = \frac{1}{1 - x}$$

- H (E)ΓΣ είναι $1/(1 x)^n$
- Το ζητούμενο δίνεται από τον συντελεστή του xk/k!, που είναι:

$$\binom{n+k-1}{k} \times k! = \frac{(n+k-1)!}{(n-1)!}$$