

webpage la notes

|                                                                                                                                      |                   | eine Funktion $D$ auf der e ist $D$ eine 3-lineare Fu |              |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------|--------------|
| (a) $D(A) = A_{11}$<br>(b) $D(A) = A_{11}^2$<br>(c) $D(A) = A_{11}A$<br>(d) $D(A) = A_{13}A$<br>(e) $D(A) = 0$ ;<br>(f) $D(A) = 1$ . | $+3A_{11}A_{22};$ |                                                       |              |
|                                                                                                                                      |                   |                                                       |              |
| use B, =                                                                                                                             | 1 1               | blank<br>zeroes                                       | entrices are |
|                                                                                                                                      |                   |                                                       | •            |
|                                                                                                                                      |                   | 1                                                     |              |
| and $B_2 =$                                                                                                                          | 2 2 1             |                                                       |              |
|                                                                                                                                      |                   |                                                       |              |
|                                                                                                                                      |                   |                                                       |              |
| to show a                                                                                                                            | contradictie      | $m = \sqrt{b}$ (a)                                    | (6), (c)     |
| and (1)                                                                                                                              |                   |                                                       |              |
| $\mathcal{D}$                                                                                                                        |                   |                                                       |              |
| show mult                                                                                                                            | i lineari ty      | critorion .                                           | for (d)      |
| and (e)                                                                                                                              |                   |                                                       | 0            |
|                                                                                                                                      |                   |                                                       |              |

2. Beweise die folgende Proposition:

**Proposition** (Satz 10.2.3 des Skripts). Es sei  $A \in M_{n \times n}(K)$ , und es sei B eine Matrix, die wir von A durch die elementare Zeilenumformung X erhalten.

- (a) wenn X = P(r, s) fuer  $1 \le r < s \le n$ , dann gilt  $\det(B) = -\det(A)$ ;
- (b) wenn  $X = M(r, \lambda)$  fuer  $1 \le r \le n$  und  $\lambda \in K^{\times}$ , dann gilt  $\det(B) = \lambda \det(A)$ ;
- (c) wenn  $X = S(r, s, \lambda)$  fuer  $1 \le r, s \le n, r \ne s$  und  $\lambda \in K^{\times}$ , dann gilt  $\det(B) =$
- $\det(A)$ .

one properties of determinant functions (multi linearity and afternating) to show the results

3. Seien  $x_i$  und  $y_i$  Elemente eines Körpers mit  $x_i \neq y_j$  für alle i,j; und sei

$$F_n(x_1,\ldots,x_n,y_1,\ldots,y_n) := \det\left(\left(\frac{1}{x_i-y_j}\right)_{i,j=1,\ldots,n}\right).$$

(a) Beweisen Sie für alle  $n \ge 1$  die Rekursionsformel

$$F_n(x_1,\ldots,y_n) = \frac{\prod_{i=1}^{n-1} (x_n - x_i)(y_i - y_n)}{\prod_{i=1}^{n} (x_i - y_n) \prod_{i=1}^{n-1} (x_n - y_i)} F_{n-1}(x_1,\ldots,y_{n-1}).$$

Hint. Subtrahieren Sie die letzte Spalte von jeder anderen Spalte. Substrahieren Sie dann ein geeignetes Vielfache der letzten Zeile von jeder anderen Zeile.

(b) Leiten Sie daraus eine Formel für  $F_n(x_1, \ldots, y_n)$  her.

 $C_1 \rightarrow C_1 - C_1$  $C_2 \rightarrow C_2 - C_n$ 

$$C_{n-1} \rightarrow C_{n-1} - C_n$$

you should have all 1's in Cn at this point. · nou perform  $\mathbb{R}_1 \longrightarrow \mathbb{R}_1 - \mathbb{R}_n$  $\mathcal{P}_2 \rightarrow \mathcal{P}_2 - \mathcal{P}_3$ :  $\mathbb{R}_{n-1} \longrightarrow \mathbb{R}_{n-1} - \mathbb{R}_n$ do another round of factorisation. You should have reached the recursion formula.

(b) follows by use of the recursion formula.

$$\det\begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \cdots & \frac{1}{n+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \cdots & \frac{1}{2} \end{pmatrix} = \frac{c_n^4}{c_{2n}}.$$

$$g_{ij} = \frac{1}{i + j - 1}$$

4. Sei K ein kommutativer Ring mit 1. Sei  $A \in M_{n \times n}(K)$ . Definiere  $M_{ij}$  als die Determinante der  $(n-1) \times (n-1)$ -Matrix, die sich aus der Streichung der Zeile i und Spalte j von A ergibt. Betrachte dann

$$C := ((-1)^{i+j} M_{ij})_{1 \le i, j \le n} \text{ und } \operatorname{adj}(A) := C^T = ((-1)^{i+j} M_{ji})_{1 \le i, j \le n}.$$

Sei ausserdem det die Determinantenfunktion auf  $n \times n\text{-}\mathrm{Matrizen}$ uber K. Zeige:

- (a)  $(\operatorname{adj} A)A = A(\operatorname{adj} A) = (\operatorname{det} A)I;$
- (b)  $\det(\text{adj } A) = \det(A)^{n-1};$
- (c)  $\operatorname{adj}(A^T) = (\operatorname{adj} A)^T$ .

 $(A^T$ ist die Transponierte von A.)

| a)             | groved           | ίη      | the                       | lecture   |       |
|----------------|------------------|---------|---------------------------|-----------|-------|
|                | 1                |         |                           |           |       |
| b              | vse              | (a)     | To                        | show      | Thi s |
| <i>,</i>       | · ·              | ,       |                           |           |       |
| c>             | Lile             | out     | an                        | arbitrary | )     |
|                | 1 1              | -11.0   | ΛЦ                        | 1         |       |
| and            | shou             | eguclit | y to                      | the       |       |
| COTHE          | sponding         | 1 (     | l element                 | on        | the   |
| right          | h                | and 3   | Le                        | ,         | •     |
| conne<br>right | shou<br>sponding | and s   | y to<br>l element<br>side | on        | the   |

5. Sei  $n \in \mathbb{N}_{\geq 2}$ . Zeige

$$\det\begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i).$$

Bemerkung: Produkte dieser Art werden Vandermonde Determinanten genannt und die obige Matrix wird Vandermonde Matrix genannt.

Hint. Benutze die Formel

$$x^{m} - y^{m} = (x - y)(x^{m-1} + x^{m-2}y + \dots + xy^{m-2} + y^{m-1})$$

und die vorhangehenden Übungen.

use a similar strategy as 3. establish a recursion

 $\begin{array}{ccc} \operatorname{por} \operatorname{fox} m & & & & \\ \mathbb{R}_2 & \longrightarrow & \mathbb{R}_2 - \mathbb{R}_1 & & & \\ \mathbb{R}_3 & \longrightarrow & \mathbb{R}_3 - \mathbb{R}_1 & & & & \end{array}$ 

 $\mathbb{R}_n \longrightarrow \mathbb{R}_n - \mathbb{R}_1$ 

factor out  $(n_i - n_i)$  from rows i=2 to i=n. Make we of the provided formula for this.

compute This product. Can you make use of this?

Single Choice. Pro Aufgabe ist genau eine Antwort korrekt.

1. Für welche 
$$x \in \mathbb{R}$$
 gilt det  $\begin{pmatrix} 1 & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{pmatrix} = 1$ ?

 $\det \begin{pmatrix} x^n & x^{n+2} & x^{2n} \\ 1 & x^n & a \\ x^{n+5} & x^{a+6} & x^{2n+5} \end{pmatrix} = 0, \text{ für alle } x \in \mathbb{R}$ 

2. Sei 
$$n \in \mathbb{N}$$
. Wenn

 $\bigcirc x = -2$ 

gilt, dann ist 
$$a$$
 gleich

$$\bigcirc$$
 n

$$\bigcap n-1$$

$$\bigcap n+1$$

$$\bigcirc$$
  $n+1$   
 $\bigcirc$  Keine der obigen Möglichkeiten

use non operations and effective factorisation for faster computation