Name
Student ID
Recitation Instructor
Regitation Time

Directions

- 1. Write your name, student ID number, recitation instructor's name and recitation time in the spaces provided above.
- 2. Write your name, your student ID number and division and section number of your recitation section on your answer sheet, and fill in the corresponding circles.
- 3. Mark the letter of your answer for each question on the answer sheet as well as in the test papers.
- 4. The exam has 12 problems. Problem 1–8 are worth 8 points and problem 9–12 are worth 9 points each.
- 5. No books, notes or calculators may be used in this exam.

Key acdd each bedc

1. The projection of the vector $\mathbf{v} = \mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$ onto the vector $\mathbf{b} = \mathbf{i} + \mathbf{j}$ is

$$\mathbf{A.} \operatorname{proj}_{\mathbf{b}} \mathbf{v} = -\mathbf{i} - \mathbf{j}$$

B.
$$\operatorname{proj}_{\mathbf{b}} \mathbf{v} = \frac{1}{\sqrt{2}} (\mathbf{i} + \mathbf{j})$$

C.
$$\operatorname{proj}_{\mathbf{b}} \mathbf{v} = \frac{1}{2} (\mathbf{i} + \mathbf{j})$$

$$\mathbf{D.} \operatorname{proj}_{\mathbf{b}} \mathbf{v} = \frac{1}{\sqrt{2}} \left(\mathbf{i} - \mathbf{j} \right)$$

$$\mathbf{E.} \ \operatorname{proj}_{\mathbf{b}} \mathbf{v} = \frac{1}{2} \left(\mathbf{i} - \mathbf{j} \right)$$

2. The area of the triangle with vertices at (a, 0, 0), (0, 2a, 0) and (0, 0, 3a) is

A.
$$A = \frac{3a^2}{2}$$

B.
$$A = 5a^2$$

C.
$$A = \frac{7a^2}{2}$$

D.
$$A = 6a^3$$

E.
$$A = \frac{3a^3}{2}$$

3. The graph of the surface $x^2 - \frac{y^2}{4} + \frac{z^2}{9} = -1$ looks most like :

A z

- **4.** A line L contains the point (1,2,-1) and is perpendicular to the plane 3x+y-5z=1. What point on L intersects the plane y=0?
 - **A.** (9,0,-5)
 - **B.** (-9,0,5)
 - C. (5,0,-9)
 - **D.** (-5,0,9)
 - E. There is no point of intersection

- **5.** Find spherical coordinates (ρ, θ, ϕ) for the point P whose rectangular coordinates are $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \sqrt{3}\right)$:
 - **A.** $(1, \frac{\pi}{4}, \frac{\pi}{3})$
 - **B.** $\left(1, \frac{\pi}{3}, \frac{\pi}{4}\right)$
 - C. $\left(3, \frac{\pi}{4}, \frac{\pi}{4}\right)$
 - **D.** $\left(2, \frac{\pi}{3}, \frac{\pi}{4}\right)$
 - **E.** $(2, \frac{\pi}{4}, \frac{\pi}{6})$

6. The unit tangent vector to the curve $\mathbf{r}(t) = \langle \cos t, \sin 3t, e^t \rangle$ at the point (1,0,1) is:

$$\mathbf{A.} \quad \langle 0, \frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}} \rangle$$

$$\mathbf{B.} \quad \langle 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle$$

C.
$$\langle 0, \frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}} \rangle$$

D.
$$\langle 0, \frac{-1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \rangle$$

E.
$$\langle \frac{-\sqrt{3}}{10}, 0, \frac{1}{10} \rangle$$

7. Find the length of the curve

$$\mathbf{r}(t) = \langle 2t, \frac{4}{3}t^{\frac{3}{2}}, \frac{1}{2}t^2 \rangle, \ 0 \le t \le 2$$

- **A.** 2
- **B.** 4
- **C.** 6
- **D.** 8
- **E.** 10

8. Evaluate

$$\lim_{(x,y)\to(2,0)} x^2 e^{-y^2}$$

- **A.** -4
- **B.** 4
- \mathbf{C} . 0
- D. e^{-4}
- E. does not exist

9. Find the domain of

$$f(x,y) = \ln\left(\frac{x}{y+2}\right)$$

- **A.** $y \neq -2, \ x > 0$
- **B.** y > -2, x > 0 or y < -2, x < 0
- C. y > -2, x > 0
- **D.** y > 0, x > 0
- **E.** y > 0, x > 0 or y < -2, x < 0

- 10. Compute the tangent plane of the surface $z=2xy^2-\frac{x}{y}$ at (2,1,2)
 - **A.** z = x 5y + 5
 - **B.** z = x 6y
 - C. z = x + 5y 5
 - **D.** z = 2x + y 3
 - E. z = x + 10y 10

- **11.** If $z = x^2 + y^4$ and x = -2v and y = u v, compute $\frac{\partial z}{\partial v}$ at (u, v) = (2, 1).
 - **A.** -4
 - **B.** -12
 - \mathbf{C} . 0
 - **D.** 4
 - **E.** 12

- 12. Find the rate of change of the function f(x,y) = 2x + 3y at the point (1,2) in the direction of the vector $\mathbf{v} = 3\mathbf{i} + \mathbf{j}$.
 - **A.** $\frac{3}{10}$
 - **B.** $\frac{9}{10}$
 - C. $\frac{9}{\sqrt{10}}$
 - **D.** 9
 - **E.** $\frac{-3}{\sqrt{10}}$