Computer Animation & Physical Simulation

Lecture 11: Soft-Body Simulation – Cloth II

XIAOPEI LIU

School of Information Science and Technology ShanghaiTech University

General Problem for Mass-Spring Model

Physical consistency

- Cannot recover the real underlying physics
- Could be problematic when handling unstructured triangular mesh

Mesh refinement

Cannot converge to the correct solution

I. Continuum Models

Deformation Measures

Approximate the fabric as a continuous medium

 If the regions of each polygon contains a sufficiently large number of woven structures

Definition of deformation

$$\phi:\Omega\subset \textbf{R}^3\to \textbf{R}^3$$

$$\mathbf{\varphi} = \bar{\mathbf{\varphi}} + u = id + u : \mathbf{\Omega} \to \mathbf{R}^3$$

Deformation Measures

Derivation

Consider two vector pairs in the un-deformed and deformed configuration

$$\bar{\mathbf{v}}_i = \bar{\mathbf{p}}_i - \bar{\mathbf{q}}$$
 $\mathbf{v}_i = \mathbf{p}_i - \mathbf{q}$

• Taylor series expansion

$$\begin{aligned} \mathbf{v}_i &= \mathbf{\phi}(\bar{\mathbf{q}} + \bar{\mathbf{v}}_i) - \mathbf{\phi}(\bar{\mathbf{q}}) \\ &= \mathbf{\phi}(\bar{\mathbf{q}}) + \nabla \mathbf{\phi}(\bar{\mathbf{q}}) \cdot \bar{\mathbf{v}}_i + O(\bar{\mathbf{v}}_i^2) - \mathbf{\phi}(\bar{\mathbf{q}}) \\ &\approx \nabla \mathbf{\phi}(\bar{\mathbf{q}}) \bar{\mathbf{v}}_i = (\nabla u(\bar{\mathbf{q}}) - \mathrm{id}) \bar{\mathbf{v}}_i \end{aligned}$$

Deformation Measures

Deformation definition

Deformation gradient

$$F = \nabla \varphi$$

A general deformation measure

$$\mathbf{v}_1 \cdot \mathbf{v}_2 - \bar{\mathbf{v}}_1 \cdot \bar{\mathbf{v}}_2 = \bar{\mathbf{v}}_1 \cdot (\nabla \mathbf{\phi}^T \nabla \mathbf{\phi} - id) \cdot \bar{\mathbf{v}}_2 + \mathbf{\phi} = \bar{\mathbf{\phi}} + u = id + u : \Omega \to \mathbf{R}^3$$

$$\varepsilon_G = \frac{1}{2} (\nabla \varphi^T \nabla \varphi - id) = \frac{1}{2} (\nabla u^T + \nabla u + \nabla u^T \nabla u) \longrightarrow$$

Symmetric Green strain tensor

$$\mathbf{\varepsilon}_C = \frac{1}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^T)$$

Linear approximation

linear Cauchy strain tensor

Internal Stress

The traction vector t

$$\mathbf{t} = \lim_{dA \to 0} \frac{d\mathbf{f}}{dA}$$

Cauchy stress tensor

$$\mathbf{t}(\mathbf{n}) = \sigma \mathbf{n}$$

Equilibrium and Dynamic Equations

- Equilibrium state
 - Internal and external forces are in equilibrium

$$\int_{\partial V} \mathbf{t} \, da + \int_{V} \mathbf{f} \, dv = \int_{\partial V} \mathbf{on} \, da + \int_{V} \mathbf{f} \, dv = 0$$

$$\operatorname{div} \mathbf{\sigma}(\mathbf{x}) + \mathbf{f}(\mathbf{x}) = 0$$

Dynamic state

$$\operatorname{div} \sigma(\mathbf{x}, \dot{\mathbf{x}}) + \mathbf{f}(\mathbf{x}) = \rho \ddot{\mathbf{x}}$$

Constitutive Relations

- In general
 - The relationship between stress and strain can be of high complexity
- Hyperelastic material
 - · Stresses in a body depend only on its current state of deformation
- Linear elasticity

$$\sigma = \mathcal{C} : \epsilon$$

$$\sigma = C : \varepsilon$$
 $\sigma_{ij} = C_{ijkl} \varepsilon_{kl}$

Constitutive Relations

Linear-elastic isotropic material

Governed by only two independent constants

$$C_{ijkl} = \lambda \delta_{ij} \delta_{kl} + 2\mu \delta_{ik} \delta_{jl}$$

• λ and μ are the Lamé constants

• Young modulus:
$$E = \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu}$$

• Poisson ratio:
$$v = \frac{\lambda}{2(\lambda + \mu)}$$

Constitutive Relations

Meaning of Young modulus and Poisson ratio

Energy(Variational) Formulation

Total potential energy

$$\Pi = \Lambda - W$$

- Strain energy $\Lambda = \frac{1}{2} \int_V \boldsymbol{\sigma}^T \boldsymbol{\varepsilon} \ dV = \frac{1}{2} \int_V \boldsymbol{\varepsilon}^T \mathbf{D} \boldsymbol{\varepsilon} \ dV$
- Work $W = \int_{V} \mathbf{u} \cdot \mathbf{f}_{b} \ dV + \int_{\Gamma} \mathbf{u} \cdot \mathbf{f}_{s} \ dS + \sum_{i} \mathbf{u}_{i} \cdot \mathbf{p}_{i}$
- Determine the displacement

$$\delta\Pi(\mathbf{u}) = 0$$
, for all variations $\delta\mathbf{u}$

Energy(Variational) Formulation

Equilibrium state

$$\mathbf{K}\mathbf{u} = \mathbf{f}$$
 stiffness matrix

Dynamic state

$$\mathbf{M}\ddot{\mathbf{u}}(t) + \mathbf{D}\dot{\mathbf{u}}(t) + \mathbf{K}\mathbf{u}(t) + \mathbf{f} = 0$$
 mass matrix damping matrix

Plane Stress Analysis

Approximation

Basis function interpolation within a triangle element

$$\mathbf{u} = \sum_{i} N_{i} \tilde{\mathbf{u}}_{i}$$

$$N_{1} = 1 - \xi - \eta, \quad N_{2} = \xi, \quad N_{3} = \eta$$

$$\frac{\partial N_{i}}{\partial x_{j}} = \frac{\partial N_{i}}{\partial \xi} \frac{\partial \xi}{\partial x_{j}} + \frac{\partial N_{i}}{\partial \eta} \frac{\partial \eta}{\partial x_{j}}$$

Plane Stress Analysis

Approximation

Cauchy strain Over a single triangular element

$$\varepsilon = \begin{bmatrix} \frac{\partial}{\partial x} & 0\\ 0 & \frac{\partial}{\partial y}\\ \frac{\partial}{\partial y} & \frac{\partial}{\partial x} \end{bmatrix} \mathbf{u} = \sum_{i=0}^{3} \begin{bmatrix} \frac{\partial N_i}{\partial x} & 0\\ 0 & \frac{\partial N_i}{\partial y}\\ \frac{\partial N_i}{\partial y} & \frac{\partial N^i}{\partial x} \end{bmatrix} \tilde{\mathbf{u}}_i = \sum_{i=0}^{3} \mathbf{B}_i \tilde{\mathbf{u}}_i$$

Stiffness matrix

$$\mathbf{K} = \sum_{i} \int_{\Omega_{i}} \mathbf{B}_{i}^{T} \mathbf{C} \mathbf{B}_{i} \ d\Omega = \sum_{i} \mathbf{B}_{i}^{T} \mathbf{C} \mathbf{B}_{i} t A_{i}$$

II. Triangular Springs from Continuum Models

General Idea

- How to compute forces on discrete particles?
 - Energy formulations similar to continuum models
 - Possess equivalence to a continuum model on discrete particles
 - Equivalence between a continuum formulation of the membrane energy and the energy of a set of <u>triangular biquadratic springs</u>

II.a Springs and 1D Elasticity

Setup

- The bar is assumed to have constant cross-sectional area A
- The center of each cross-sections being on a straight line
- The rest configuration of the bar is $\Omega \subset {\rm I\!R}^3$
- After applying an axial load, each center of cross-sections X is moved

 $P(\eta)=X$

 $Q(\eta) = \phi(X)$

1A

into a new position

$$\Phi(\mathbf{X}) \in [0, \Phi(L)]$$

Derivation

 An infinitesimal material segment of length dx located around X is deformed into a segment of length

$$\frac{d\Phi}{dx}(X) dx$$

- Stretch ratio: $s = \frac{d\Phi}{dx}$
 - Equal 1: the deformation does not entail any local stretching

Derivation

- The strain
 - A quantity that measures how different is this stretch ratio from the value 1
 - Positive implying extension of the material
 - Negative implying contraction
- A family of possible strain functions

$$\epsilon(C) = \left\{ \begin{array}{ll} \frac{1}{\alpha} \left(s^{\alpha} - 1 \right) & \text{if } \alpha \neq 0 \\ \log(s) & \text{if } \alpha = 0 \end{array} \right\}$$

- $\alpha = 1, \epsilon = s 1$: engineering strain
- $\alpha=2$ $\epsilon=1/2(s^2-1)$: Green-Lagrange strain
- $\alpha = 0$: Henky or natural strain

Derivation

- Hypothesis of a linear elastic material
 - Stress at each point is proportional to the strain at that point

$$\sigma = \lambda \epsilon$$

- λ: Stiffness parameter
- The work W to bring the material cross section around **X** to $\Phi(\mathbf{X})$ is

$$W = \frac{1}{2}\sigma\epsilon$$

Total energy required to deform the bar

$$W_{\Omega} = \int_{\Omega} \frac{1}{2} \sigma \epsilon \ dV = \frac{\lambda A}{2\alpha^2} \int_{0}^{L} \left(\left(\frac{d\mathbf{\Phi}}{dx} \right)^{\alpha} - 1 \right)^2 d\mathbf{X}$$

Derivation

If the segment [0,L] is parameterized by a function

$$\mathbf{X} = P(\eta), \eta \in [a, b] \subset \mathbb{R}$$

Its deformed segment by a function

$$\Phi(\mathbf{X}) = Q(\eta), \eta \in [a, b] \subset \mathbb{R}$$

• The deformation function can be written as

$$\mathbf{\Phi}(\mathbf{X}) = Q(P^{-1}(\mathbf{X}))$$

Total energy can be expressed as

$$W_{\Omega} = \frac{\lambda A}{2\alpha^2} \int_a^b \left(\left(\frac{dQ}{d\eta} \right)^{\alpha} - \left(\frac{dP}{d\eta} \right)^{\alpha} \right)^2 \left(\frac{dP}{d\eta} \right)^{(1-2\alpha)} d\eta$$

Stretching Energy of Deformable Curves

Consider a curved bar

- A curved bar Ω of cross-section **A** embedded in a Euclidean space \mathbb{R}^d , d>1
- The center line curve parameterized as $P(\eta)$
- Deformed into another curve parameterized as $\mathbf{Q}(\eta)$

$$W_{\Omega} = \frac{\lambda A}{2\alpha^2} \int_a^b \left(\left(\frac{dQ}{d\eta} \right)^{\alpha} - \left(\frac{dP}{d\eta} \right)^{\alpha} \right)^2 \left(\frac{dP}{d\eta} \right)^{(1-2\alpha)} d\eta$$

$$W_{\Omega} = \frac{\lambda A}{2\alpha^2} \int_a^b \left(\left\| \frac{d\mathbf{Q}}{d\eta} \right\|^{\alpha} - \left\| \frac{d\mathbf{P}}{d\eta} \right\|^{\alpha} \right)^2 \left\| \frac{d\mathbf{P}}{d\eta} \right\|^{(1-2\alpha)} d\eta$$

If the parameter $\boldsymbol{\eta}$ is the arc length of the reference curve

$$W_{\Omega} = \frac{\lambda A}{2\alpha^2} \int_{\Omega} \left(\left\| \frac{d\mathbf{Q}}{d\eta} \right\|^{\alpha} - 1 \right)^2 d\eta$$

Rayleigh-Ritz approach

- Equivalent to Galerkin weighted residual method
- Rely on the variational form (strain energy)
 - More convenient to derive symmetric analytical expressions
 - First discretize the stretching energy, then apply the principle of minimum potential energy

Approximation

The reference curve can be approximated with a set of line segments

$$\Omega^h = \bigcup_{i=1,..,N} S_i = [\mathbf{P}_i, \mathbf{P}_{i+1}]$$

Approximation

 Each reference segment $[P_i, P_{i+1}]$ is deformed into segment $[Q_i, Q_{i+1}]$

Parameterization

 Each segment in the reference/deformed configuration can be parameterized as a linear interpolation

$$\mathbf{P}(\eta) = (1 - \eta)\mathbf{P}_i + \eta\mathbf{P}_{i+1}$$
$$\mathbf{Q}(\eta) = (1 - \eta)\mathbf{Q}_i + \eta\mathbf{Q}_{i+1}$$

- Simplified notations
 - Length of the rest segment $L_i = \|\mathbf{P}_i \mathbf{P}_{i+1}\|$
 - Length of the deformed segment $|l_i| = \|\mathbf{Q}_i\mathbf{Q}_{i+1}\|$

- Stretching energy
 - Stretching energy of each line segment

$$W_{\Omega} = \frac{\lambda A}{2\alpha^2} \int_a^b \left(\left\| \frac{d\mathbf{Q}}{d\eta} \right\|^{\alpha} - \left\| \frac{d\mathbf{P}}{d\eta} \right\|^{\alpha} \right)^2 \left\| \frac{d\mathbf{P}}{d\eta} \right\|^{(1-2\alpha)} d\eta$$

$$W_{\Omega_h}(S_i) = \frac{\lambda A L_i^{(1-2\alpha)}}{2\alpha^2} \left(l_i^{\alpha} - L_i^{\alpha} \right)^2$$

- Engineering (quadratic) strain $\alpha = 1$
 - The stretching energy therefore corresponds to the energy of a spring of stiffness $\lambda A/L_i$

Stretching energy

- Stretching energy of each line segment
 - Green-Lagrange strain $\alpha = 2$
 - The stretching energy is a biquadratic function of the deformed segment length and of the deformed position

$$W_{\Omega_h}(S_i) = \frac{\lambda A}{8L_i^3} \left(l_i^2 - L_i^2 \right)^2$$

- This expression resembles a (quadratic) spring energy but with squared lengths
- Coined as a tensile <u>biquadratic spring</u>
- Rewritten of stretching energy

$$W_{\Omega_h}(S_i) = \lambda A L_i \ w(s)$$

Study on engineering and biquadratic springs

$$W_{\Omega_h}(S_i) = \lambda A L_i \ w(s)$$

Engineering (quadratic) spring

$$w(s) = w_Q(s) = 1/2(1-s)^2$$

Biquadratic springs

$$w(s) = w_Q(s) = 1/2(1-s)^2$$
 $w(s) = w_B(s) = 1/8(1-s^2)^2$
 $w(s) = w_B(s) = 1/8(1-s^2)^2$

- Analysis
 - Extension: biquadratic springs being far more stiffer than quadratic springs
 - Compression: both have their unphysical aspects

Linear Elasticity: Small Displacements Hypothesis

Even more restrictive hypothesis

 Assume that all vertex displacement is small compared to the edge length

$$\mathbf{U}_i = \mathbf{Q}_i - \mathbf{P}_i$$

For small displacements, approximation

$$l_{i}^{\alpha} \approx L_{i}^{\alpha} + \alpha L_{i}^{(\alpha-2)} (\mathbf{U}_{i+1} - \mathbf{U}_{i}) \cdot (\mathbf{P}_{i+1} - \mathbf{P}_{i})$$

$$(s^{\alpha} - 1)/\alpha \approx (\mathbf{U}_{i+1} - \mathbf{U}_{i}) \cdot (\mathbf{P}_{i+1} - \mathbf{P}_{i})/L_{i}^{2}$$

$$W_{\Omega_{h}}(S_{i}) = \frac{\lambda A L_{i}^{(1-2\alpha)}}{2\alpha^{2}} (l_{i}^{\alpha} - L_{i}^{\alpha})^{2} \longrightarrow W_{\Omega_{h}}^{\text{Linear}}(S_{i}) = \frac{\lambda A}{L_{i}^{3}} ((\mathbf{U}_{i+1} - \mathbf{U}_{i}) \cdot (\mathbf{P}_{i+1} - \mathbf{P}_{i}))^{2}$$

Linear elastic model

II.b Membrane Energy on Triangle Meshes

Membrane Energy

The energy to deform a piece of cloth

- Membrane energy
 - Characterize the resistance to in-plane stretching
 - Generalize the stretching energy for curves
- Bending energy
 - Measures the resistance to change in the surface normal orientation
- We consider $\Phi(\Omega)$
 - A two-dimensional domain $\Omega\subset {\rm I\!R}^2$ being deformed into another domain
 - Right Cauchy-Green deformation tensor

$$\mathbf{C} = \nabla \mathbf{\Phi}^T \nabla \mathbf{\Phi}$$

Membrane Energy

Green-Lagrange strain tensor

Defined based on Cauchy-Green deformation tensor

$$\mathbf{E} = 1/2(\mathbf{C} - \mathbf{I})$$

- Invariant to translations or rotations
- Appropriate for describing deformations under large displacements
- Assumption
 - Isotropic St Venant Kirchhoff membrane
 - Linear relationship between stress and strain
 - Density of membrane energy

$$W(\mathbf{X}) = \frac{\lambda}{2} (\mathrm{t} r \mathbf{E})^2 + \frac{\mu}{2} \mathrm{t} r \mathbf{E}^2$$
 λ and μ : Lamé coefficients of the material

Membrane Energy

- Isotropic St Venant Kirchhoff membrane
 - Lamé coefficients of the material
 - Related to the physically meaningful Young modulus and Poisson coefficient
 - Young modulus E: quantify the stiffness of the material
 - Poisson coefficient µ: characterize the material compressibility
 - Relation

$$\lambda = \frac{E\nu}{1-\nu^2} \qquad \mu = \frac{E(1-\nu)}{1-\nu^2}$$

• Total membrane energy $W_{\Omega} = \int_{\Omega} W(\mathbf{X}) \ d\Omega = \int_{\Omega} \left(\frac{\lambda}{2} (\mathrm{tr} \mathbf{E})^2 + \frac{\mu}{2} \mathrm{tr} \mathbf{E}^2 \right) \ d\Omega$

Deformation Function on a Linear Triangle

Domain discretization

- The integration of first derivatives of the deformation function
 - Discretized Φ into a simplicial surface
 - A set of triangles $\{T_i\}, i = \{1,..,p\}$
 - A set of vertices $\{\mathbf{P}_i\}, i \in \{1,..,n\}$
 - Linear triangle element for discretization

$$\mathbf{Q}_i = \mathbf{\Phi}_h(\mathbf{P}_i)$$

Deformation Function on a Linear Triangle

Deformation of a single triangle

$$\{\mathbf{P}_1,\mathbf{P}_2,\mathbf{P}_3\} \longrightarrow \{\mathbf{Q}_1,\mathbf{Q}_2,\mathbf{Q}_3\}$$

- Definition
 - Area of the rest/deformed triangle: A_P (resp. A_Q)
 - Edge lengths: l_i (resp. L_i)
 - Three angles: α_i (resp. β_i)
- Parameterization of point inside a triangle

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{P}_{1x} & \mathbf{P}_{2x} & \mathbf{P}_{3x} \\ \mathbf{P}_{1y} & \mathbf{P}_{2y} & \mathbf{P}_{3y} \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{bmatrix} = [\overline{\mathbf{P}}] \overline{\mathbf{E}}$$

Deformation Function on a Linear Triangle

Deformation of a single triangle

Inverse relation defines the barycentric coordinates

$$\begin{bmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{bmatrix} = \begin{bmatrix} \mathbf{D}_{1x} & \mathbf{D}_{1y} & \eta_1^0 \\ \mathbf{D}_{2x} & \mathbf{D}_{2y} & \eta_2^0 \\ \mathbf{D}_{3x} & \mathbf{D}_{3y} & \eta_3^0 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = [\overline{\mathbf{D}}] \overline{\mathbf{X}}$$

- \mathbf{D}_i is the ith shape vector of triangle T_P
- η_i^0 is the ith barycentric coordinate of the origin of the coordinate frame

Deformation Function on a Linear Triangle

Deformation of a single triangle

Introduce the centroid G

$$\eta_i = 1/3$$

The barycentric coordinates

$$\mathbf{X} = \sum_{i=1}^{3} \eta_i(\mathbf{X}) \ \mathbf{P}_i = \sum_{i=1}^{3} \left(\frac{1}{3} + \mathbf{D}_i \cdot (\mathbf{X} - \mathbf{G}) \right) \ \mathbf{P}_i$$

Deformation function

$$\mathbf{\Phi}(\mathbf{X}) = \sum_{i=1}^{3} \eta_i(\mathbf{X}) \ \mathbf{Q}_i = \sum_{i=1}^{3} \left(\frac{1}{3} + \mathbf{D}_i \cdot (\mathbf{X} - \mathbf{G}) \right) \ \mathbf{Q}_i$$

Recall the membrane energy

$$\mathbf{C} = \nabla \mathbf{\Phi}^T \nabla \mathbf{\Phi}$$
 $\mathbf{E} = 1/2(\mathbf{C} - \mathbf{I})$ $W(\mathbf{X}) = \frac{\lambda}{2} (\mathrm{t}r\mathbf{E})^2 + \frac{\mu}{2} \mathrm{t}r\mathbf{E}^2$

Invariants of Green Lagrange Strain Tensor

Rewrite the invariants

Two invariants (with respect to translation and rotation)

$$tr\mathbf{E}$$
 $tr\mathbf{E}^2$ $\mathbf{E} = 1/2(\mathbf{C} - \mathbf{I})$

As a function of the two triangles shape

$$\nabla \mathbf{\Phi} = \left[\frac{\partial \mathbf{\Phi}_i}{\partial x_j} \right] = \sum_{i=1}^3 \mathbf{Q}_i \otimes \mathbf{D}_i$$

$$\mathbf{C} = \nabla \mathbf{\Phi}^T \nabla \mathbf{\Phi} = \sum_{i=1}^3 \sum_{j=1}^3 (\mathbf{Q}_i \cdot \mathbf{Q}_j) (\mathbf{D}_i \otimes \mathbf{D}_j) \qquad \mathbf{t} r \mathbf{E} = 1/2 (\mathbf{t} r \mathbf{C} - 2)$$

$$\mathbf{t} r \mathbf{C} = \sum_{i=1}^3 \sum_{j=1}^3 (\mathbf{Q}_i \cdot \mathbf{Q}_j) (\mathbf{D}_i \cdot \mathbf{D}_j)$$

Invariants of Green Lagrange Strain Tensor

Rewrite the invariants

After a set of derivations

$$tr\mathbf{C} = \frac{1}{2\mathcal{A}_P} \left(l_1^2 \cot \alpha_1 + l_2^2 \cot \alpha_2 + l_3^2 \cot \alpha_3 \right)$$
$$tr\mathbf{E} = \frac{(l_1^2 - L_1^2) \cot \alpha_1 + (l_2^2 - L_2^2) \cot \alpha_2 + (l_3^2 - L_3^2) \cot \alpha_3}{2\mathcal{A}_P}$$

$$tr\mathbf{E}^{2} = (tr\mathbf{E})^{2} - 2\det\mathbf{E} = \frac{1 + 2tr\mathbf{E} + 2(tr\mathbf{E})^{2} - \det\mathbf{C}}{2}$$

$$\det \mathbf{\Phi} = \mathcal{A}_Q / \mathcal{A}_P \qquad \qquad \Delta^2 l_i = (l_i^2 - L_i^2)$$

$$tr\mathbf{E}^{2} = \frac{\sum_{i \neq j} 2\Delta^{2} l_{i} \Delta^{2} l_{j} - \sum_{i=1}^{3} (\Delta^{2} l_{i})^{2}}{64\mathcal{A}_{P}^{2}}$$

Membrane Energy and Triangular Biquadratic Springs

Total energy from energy density

$$W(\mathbf{X}) = \frac{\lambda}{2} (\operatorname{tr} \mathbf{E})^2 + \frac{\mu}{2} \operatorname{tr} \mathbf{E}^2$$

$$W_{TRBS}(T_P) = \int_{T_P} W(\mathbf{X}) \ d\mathbf{X} = \mathcal{A}_P W(\mathbf{G})$$

$$= \sum_{i=1}^3 \frac{(\Delta^2 l_i)^2 (2 \cot^2 \alpha_i (\lambda + \mu) + \mu)}{64 \mathcal{A}_P} + \sum_{i=1} \frac{2\Delta^2 l_i \Delta^2 l_j (2 \cot \alpha_i \cot \alpha_j (\lambda + \mu) - \mu)}{64 \mathcal{A}_P} \qquad \Delta^2 l_i = (l_i^2 - L_i^2)$$

Membrane Energy and Triangular Biquadratic Springs

TRiangular Biquadratic Springs (TRBS)

$$W_{TRBS}(T_P) = \sum_{i=1}^{3} \frac{(\Delta^2 l_i)^2 (2\cot^2 \alpha_i (\lambda + \mu) + \mu)}{64 \mathcal{A}_P} + \sum_{i \neq j} \frac{2\Delta^2 l_i \Delta^2 l_j (2\cot \alpha_i \cot \alpha_j (\lambda + \mu) - \mu)}{64 \mathcal{A}_P}$$

- First tem
 - Energy of three tensile biquadratic springs, preventing edges from stretching
- Second term
 - Angular biquadratic springs, preventing changes in vertex angles

Membrane Energy and Triangular Biquadratic Springs

- TRiangular Biquadratic Springs (TRBS)
 - Rewriting the equations

$$W_{TRBS}(T_P) = \sum_{i=1}^{3} \frac{k_i^{T_P}}{4} (l_i^2 - L_i^2)^2 + \sum_{i \neq j} \frac{c_k^{T_P}}{2} (l_i^2 - L_i^2) (l_j^2 - L_j^2)$$

$$k_i^{T_P} = \frac{2\cot^2\alpha_i(\lambda + \mu) + \mu}{16\mathcal{A}_P} = \frac{E(2\cot^2\alpha_i + 1 - \nu)}{16(1 - \nu^2)\mathcal{A}_P}$$
 Tensile stiffness
$$c_k^{T_P} = \frac{2\cot\alpha_i\cot\alpha_j(\lambda + \mu) - \mu}{16\mathcal{A}_P} = \frac{E(2\cot\alpha_i\cot\alpha_j + \nu - 1)}{16(1 - \nu^2)\mathcal{A}_P}$$
 Angular stiffness

Force Computation

Apply Rayleigh-Ritz analysis

- Triangular surface should evolve by minimizing its membrane energy
- Along the opposite derivative of that energy with respect to the nodes of the system

$$\mathbf{F}_{i}^{TRBS}(T_{P}) = -\left(\frac{\partial W(T_{P})}{\partial \mathbf{Q}_{i}}\right)^{T} = \sum_{j \neq i} k_{k}^{T_{P}} \Delta^{2} l_{k} (\mathbf{Q}_{j} - \mathbf{Q}_{i}) + \sum_{j \neq i} (c_{j}^{T_{P}} \Delta^{2} l_{i} + c_{i}^{T_{P}} \Delta^{2} l_{j}) (\mathbf{Q}_{j} - \mathbf{Q}_{i})$$

Cloth Animation

With damping:
$$(\Delta^2 l_i)^{\text{Damped}} = \Delta^2 l_i + \zeta (\mathbf{v}_j - \mathbf{v}_k) \cdot (\mathbf{Q}_j - \mathbf{Q}_k)$$

III. Data-Driven Constitutive Model for Cloth Simulation

Data Driven Approach

Previous cloth simulation approach

- Use linear and isotropic elastic models with manually selected stiffness parameters
- Do not allow differentiating the behavior of distinct cloth materials
- More realistically animate cloth?
 - Data-driven approach
 - Measure cloth parameters through optimization
 - Create natural and realistic clothing wrinkles and shapes for a range of different materials

Planar stretching model

- Assumption
 - The scale of threads and their interweaving patterns are significantly smaller than elastic behaviors
 - Linear anisotropic model obtained by generalizing Hooke's law

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{uu} \\ \sigma_{vv} \\ \sigma_{uv} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{12} & c_{22} & c_{23} \\ c_{13} & c_{23} & c_{33} \end{bmatrix} \begin{bmatrix} \varepsilon_{uu} \\ \varepsilon_{vv} \\ \varepsilon_{uv} \end{bmatrix} = \mathbf{C}\boldsymbol{\varepsilon}$$

stiffness tensor matrix

Planar stretching model

- Experimental observation
 - Woven composite fabrics are orthotropic
 - When the local coordinate system is aligned with the warp-weft directions, C can be simplified

$$\mathbf{C} = \begin{bmatrix} c_{11} & c_{12} & 0 \\ c_{12} & c_{22} & 0 \\ 0 & 0 & c_{33} \end{bmatrix}$$

• Shearing resistance is separable from the stretching resistance

Planar stretching model

- Formulation
 - Instead of treating C as a constant matrix, formulate C as a piecewise linear function $C(\epsilon)$ of the strain tensor ϵ

$$\boldsymbol{\varepsilon} = [\varepsilon_{uu}, \varepsilon_{vv}, \varepsilon_{uv}]^{\mathrm{T}}$$

- Its values are not intuitive enough to demonstrate the actual deformation
- Re-parameterize using eigenvalue decomposition

$$2\begin{bmatrix} \varepsilon_{uu} & \varepsilon_{uv} \\ \varepsilon_{uv} & \varepsilon_{vv} \end{bmatrix} = \mathbf{R}_{\varphi}^{\mathrm{T}} \begin{bmatrix} (\lambda_{\max} + 1)^2 - 1 & 0 \\ 0 & (\lambda_{\min} + 1)^2 - 1 \end{bmatrix} \mathbf{R}_{\varphi}$$

Planar stretching model

- Formulation
 - Experimental notice
 - λ_{min} has significantly less influence on ${f C}$
 - Simplify the parameterization using only

$$\lambda_{max}$$
 φ

$$\mathbf{C}(\lambda_{max}, \varphi)$$

Planar stretching model

- Formulation
 - Each data point contains four parameters, c_{11} , c_{12} , c_{22} and c_{33}

$$\mathbf{C} = \left[\begin{array}{ccc} c_{11} & c_{12} & 0 \\ c_{12} & c_{22} & 0 \\ 0 & 0 & c_{33} \end{array} \right]$$

Full stretching model has 24 parameters

Linearly interpolating data points

The interpolated result is a stiffness tensor

Planar stretching model

 The four stiffness parameters for the Gray Interlock material shown in the polar space

Planar stretching model

 The four stiffness parameters for the Ivory Rib Knit material shown in the polar space

Bending model

- How to measure bending
 - From the bending force model [Bridson, 2003]

$$F_i = k \sin(\theta/2) (h_1 + h_2)^{-1} |E| u_i$$

Piecewise linear k according to

$$\alpha = \sin(\theta/2)(h_1 + h_2)^{-1}$$

- Approximate half of the curvature in a simple fashion
- Linear interpolation in the polar space

Measurement

Stretching measurement

Measurement

Bending measurement

Optimization

Problem formulation

- Let f_i^* be shape features captured from the i-th test
- $f_i(p_0, p_1, ..., p_n)$ be corresponding features generated by cloth simulation
- Our goal
 - Find optimal parameters to minimize captured and simulated features

$$\{p_0, p_1, \dots, p_n\} = \underset{\{p_0, p_1, \dots, p_n\}}{\operatorname{arg \, min}} \sum_{i=1}^T w_i \left\| f_i^* - f_i(p_0, p_1, \dots, p_n) \right\|$$

$$w_i = \min(||f_{rest} - f_i||^{-1}, 10^6)$$

Database

An elastic model database of ten different cloth materials

		8			
Color & Name	Ivory Rib Knit	Pink Ribbon Brown	White Dots on Black	Navy Sparkle Sweat	Camel Ponte Roma
Composition	95% Cotton	100% Polyester	100% Polyester	96% Polyester	60% Polyester
	5% Spandex			4% Spandex	40% Rayon
Common Usage	Underwear	Blanket	Tablecloth	Sweater	Jacket
Density (kg/m ²)	0.276	0.228	0.128	0.224	0.284
Error (mm)	1.92	1.66	2.42	3.24	1.67
				To D. H. C.	
Color & Name	Gray Interlock	11oz Black Denim	White Swim Solid	Tango Red Jet Set	Royal target
Composition	60% Cotton 40% Polyester	99% Cotton 1% Spandex	87% Nylon 13% Spandex	100% Polyester	65% Cotton 35% Polyester
Common Usage	T-shirt	Jeans	Swimsuit	Fashion dress	Pants
Density (kg/m ²)	0.187	0.324	0.204	0.113	0.220
Error (mm)	2.58	2.30	1.57	2.06	0.89

Gray interlock

Tango red jet set

Pink ribbon brown

Royal target

Cloth draping over a sphere

Data-Driven Elastic Models for Cloth: Modeling and Measurement

SIGGRAPH 2011

Huamin Wang James F. O'Brien Ravi Ramamoorthi

University of California, Berkeley

IV. Data-Driven Up-sampling for Cloth Simulation

Physics-Inspired Upsampling for Cloth Simulation in Games

Given coarse and fine simulations

• Learning the up-sampling operator to add dynamic details

Real-Time Cloth Simulation

Physics-Inspired Upsampling for Cloth Simulation in Games SIGGRAPH 2011

Ladislav Kavan Dan Gerszewski Adam W. Bargteil Peter-Pike Sloan

Next Lecture : Soft-Body Simulation – Deformable Solids