

Page 1 of 89

Report No.: 1609060316RFC-2

# **FCC TEST REPORT**

Product

Hover Camera Passport

Trade mark

**HOVER CAMERA** 

Model/Type reference

HC-6428

**Report Number** 

: 1609060316RFC-2

Date of Issue

Sep. 14, 2016

FCC ID

2AIDWHCP6428

**Test Standards** 

47 CFR Part 15 Subpart E (2015)

Test result

**PASS** 

### Prepared for:

Shenzhen Zero Zero Infinity Technology Co., Ltd. 1607 Innovation Park, High-Tech Park of Nanshan dist. Shenzhen

### Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

> TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Tested by:

Devin La Kevin Liang

Reviewed by:

Senior Engineer

Senior Supervisor

Approved by:

Date:

Billy Li

**Technical Director** 

Shenzhen UnionTrust Quality and Technology Co., Ltd.



Page 2 of 89

Report No.: 1609060316RFC-2

## Version

| Version No. Date |               | Description |
|------------------|---------------|-------------|
| V1.0             | Sep. 14, 2016 | Original    |





## Content

|     |       |                                                       | Page |
|-----|-------|-------------------------------------------------------|------|
| 1   | GEN   | IERAL INFORMATION                                     | 4    |
|     | 1.1   | CLIENT INFORMATION                                    | 4    |
|     | 1.2   | GENERAL DESCRIPTION OF EUT                            |      |
|     | 1.3   | PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD     |      |
|     | 1.4   | DESCRIPTION OF SUPPORT UNITS                          |      |
|     | 1.5   | TEST LOCATION                                         |      |
|     | 1.6   | DEVIATION FROM STANDARDS                              | 6    |
|     | 1.7   | ABNORMALITIES FROM STANDARD CONDITIONS                |      |
|     | 1.8   | OTHER INFORMATION REQUESTED BY THE CUSTOMER           |      |
|     | 1.9   | MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)  |      |
| 2   | TES   | T SUMMARY                                             |      |
| 3   | EQU   | IIPMENT LIST                                          | 8    |
| 4   | TES   | T REQUIREMENT                                         | (    |
|     | 4.1   | TEST SETUP                                            |      |
|     | 7.1   | 4.1.1 For Conducted test setup                        |      |
|     |       | 4.1.2 For Radiated Emissions test setup               |      |
|     | 4.2   | TEST ENVIRONMENT                                      |      |
|     | 4.3   | SYSTEM TEST CONFIGURATION                             |      |
|     | 4.4   | TEST CONDITION                                        | 11   |
|     |       | 4.4.1 Test channel                                    |      |
|     |       | 4.4.2 Test mode                                       |      |
|     |       | 4.4.3 Duty Cycle                                      | 12   |
| 5   | RAD   | NO TECHNICAL REQUIREMENTS SPECIFICATION               | 14   |
|     | 5.1   | ANTENNA REQUIREMENT                                   | 14   |
|     | 5.2   | MAXIMUM CONDUCTED OUTPUT POWER                        |      |
|     | 5.3   | PEAK POWER SPECTRAL DENSITY                           | 16   |
|     | 5.4   | 6 DB BANDWIDTH                                        |      |
|     | 5.5   | 26 DB EMISSION BANDWIDTH                              |      |
|     | 5.6   | FREQUENCY STABILITY                                   |      |
|     | 5.7   | RADIATED EMISSIONS AND BAND EDGE MEASUREMENT          |      |
|     |       | Radiated Emission Test Data (Below 1 GHz Worst Case): |      |
|     |       | Band Edge Measurements (Radiated)                     |      |
|     | חריים |                                                       |      |
|     |       | IX 1 PHOTOGRAPHS OF TEST SETUP                        |      |
| A D | DEND  | NY 2 DUOTOCDADUS OF EUT CONSTRUCTIONAL DETAILS        | 00   |



## **1 General Information**

## 1.1 Client Information

| Applicant: Shenzhen Zero Zero Infinity Technology Co., Ltd. |                                                                |
|-------------------------------------------------------------|----------------------------------------------------------------|
| Address of Applicant:                                       | 1607 Innovation Park, High-Tech Park of Nanshan dist. Shenzhen |
| Manufacturer:                                               | Shenzhen Zero Zero Infinity Technology Co., Ltd.               |
| Address of Manufacturer:                                    | 1607 Innovation Park, High-Tech Park of Nanshan dist. Shenzhen |

1.2 General Description of EUT

| 2 Seneral Bescription of 201             |                                      |                                                                                       |  |  |  |  |
|------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------|--|--|--|--|
| Product Name:                            | Hover Camera Pa                      | Hover Camera Passport                                                                 |  |  |  |  |
| Model No.(EUT):                          | HC-6428                              | HC-6428                                                                               |  |  |  |  |
| Add. Mode No.:                           | N/A                                  |                                                                                       |  |  |  |  |
| Trade Mark:                              | HOVER CAMERA                         |                                                                                       |  |  |  |  |
| EUT Supports Radios application:         |                                      | .11b/g/n(HT20)<br>.11a/n(HT20&HT40)<br>.11a/n(HT20&HT40)                              |  |  |  |  |
| Power Supply:                            | AC adapter                           | Model:HKA03612030-2A<br>Input:100-240V~50/60Hz, 1.0A;<br>Output: 12.0V == 3A          |  |  |  |  |
|                                          | Charging Dock:                       | Model: H-320<br>Input:11-18V == 3A MAX; Output: 8.4V == 2.2A MAX                      |  |  |  |  |
|                                          | Battery 1:                           | Model: ZB-380                                                                         |  |  |  |  |
|                                          |                                      | Nominal Voltage:.7.4V == (Rechargeable LIPO Battery) Battery Capacity: 1100mAh/8.14Wh |  |  |  |  |
|                                          | Battery 2:                           | Model: ZB-381                                                                         |  |  |  |  |
|                                          |                                      | Nominal Voltage:.7.6V (Rechargeable LIPO Battery) Battery Capacity: 1360mAh/10.34Wh   |  |  |  |  |
| USB Micro-B Plug cable: 0.55m (shielded) |                                      |                                                                                       |  |  |  |  |
| Sample Received Date: Sep. 07, 2016      |                                      |                                                                                       |  |  |  |  |
| Sample tested Date:                      | Date: Sep. 08, 2016 to Sep. 14, 2016 |                                                                                       |  |  |  |  |

1.3 Product Specification subjective to this standard

| 10 110000000000000000000000000000000000 | iodiion cabjective to time ctandard                 |  |  |  |
|-----------------------------------------|-----------------------------------------------------|--|--|--|
| Type of Modulation:                     | 802.11a:OFDM(64QAM, 16QAM, QPSK, BPSK)              |  |  |  |
|                                         | 802.11n(HT20 & HT40): OFDM (64QAM, 16QAM,QPSK,BPSK) |  |  |  |
|                                         | 5150MHz to 5250MHz:                                 |  |  |  |
|                                         | 4 for 802.11a/n(HT20)                               |  |  |  |
| Operating Frequency /                   | 2 for 802.11n(HT40)                                 |  |  |  |
| Channel Number:                         | 5725MHz to 5850MHz:                                 |  |  |  |
|                                         | 5 for 802.11a/n(HT20)                               |  |  |  |
|                                         | 2 for 802.11n(HT40)                                 |  |  |  |
| Transmit Data Rate:                     | 802.11a:6M/ 9M/ 12M/ 18M/ 24M/ 36M/ 48M/ 54M bps    |  |  |  |
|                                         | 802.11n(HT20): up to MCS7(65Mbps)                   |  |  |  |
|                                         | 802.11n(HT40): up to MCS7(135Mbps)                  |  |  |  |
| Sample Type:                            | Portable production                                 |  |  |  |
| Maximum conduction                      | 802.11a: 13dBm(±1.5dB)                              |  |  |  |
| target average power:                   | 802.11n(HT20): 14dBm(±1.5dB)                        |  |  |  |
|                                         | 802.11n(HT40): 15dBm(±1.5dB)                        |  |  |  |



Page 5 of 89

Report No.: 1609060316RFC-2

| Test Software of EUT:                                   | Provided by the manufacturer                           |  |
|---------------------------------------------------------|--------------------------------------------------------|--|
| Antenna Type Chain 0: PIFA antenna Chain 1: PCB antenna |                                                        |  |
|                                                         | 5150MHz to 5250MHz:                                    |  |
|                                                         | Chain 0: -1.6 dBi gain                                 |  |
| Antenna Gain:                                           | Chain 1: 1.4 dBi gain                                  |  |
| Antenna Gain.                                           | 5725MHz to 5850MHz:                                    |  |
|                                                         | Chain 0: 1.5 dBi gain                                  |  |
|                                                         | Chain 1: 1.1 dBi gain                                  |  |
| Normal Test voltage:                                    | 7.4Vdc for DC power or battery                         |  |
| Extreme Test voltage:                                   | 6.4~8.4Vdc for DC power (declared by the manufacturer) |  |
| Operating Temperature:                                  | 5°C to +35°C (declared by the manufacturer)            |  |
| Software Version:                                       | 1-1.0-1.0.1                                            |  |
| Hardware Version:                                       | FAIPY_MB_V40                                           |  |

Operation Frequency each of channel

| For 802.11a/n( HT20) Operation in the 5150MHz ~5250 MHz band |           |         |           |         |           |         |           |
|--------------------------------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|
| Channel                                                      | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 36                                                           | 5180MHz   | 40      | 5200MHz   | 44      | 5220MHz   | 48      | 5240MHz   |

| For 802.11n( HT40) Operation in the 5150MHz ~5250 MHz band |           |         |           |  |  |  |
|------------------------------------------------------------|-----------|---------|-----------|--|--|--|
| Channel                                                    | Frequency | Channel | Frequency |  |  |  |
| 38                                                         | 5190MHz   | 46      | 5230MHz   |  |  |  |

| For 802.11a/n( HT20) Operation in the 5725MHz ~5850 MHz band |           |         |           |         |           |  |  |
|--------------------------------------------------------------|-----------|---------|-----------|---------|-----------|--|--|
| Channel                                                      | Frequency | Channel | Frequency | Channel | Frequency |  |  |
| 149                                                          | 5745MHz   | 153     | 5765MHz   | 157     | 5785MHz   |  |  |
| 161                                                          | 5805MHz   | 165     | 5825MHz   | N       | /A        |  |  |

| For 802.11n( HT40) Operation in the 5725MHz ~5850 MHz band |         |     |         |  |  |  |
|------------------------------------------------------------|---------|-----|---------|--|--|--|
| Channel Frequency Channel Frequency                        |         |     |         |  |  |  |
| 151                                                        | 5755MHz | 159 | 5795MHz |  |  |  |

## 1.4 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

| Description | Brand | Model No.               | Certification  | Supplied by |
|-------------|-------|-------------------------|----------------|-------------|
| Laptop      | Dell  | Inspiron 15 5000 series | FCC ID and DOC | UnionTrust  |
| 2) Cable    |       |                         |                |             |

2) Cable

| Cable No. | Description | Connector Type | Cable Type/Length | Supplied by |
|-----------|-------------|----------------|-------------------|-------------|



Page 6 of 89 Report No.: 1609060316RFC-2

| 1 | Antenna cable | SMA | 0.2m(Shielded) | Client     |
|---|---------------|-----|----------------|------------|
| 2 | Antenna cable | SMA | 0.2m(Shielded) | Client     |
| 3 | USB Cable     | USB | 1.2m(shielded) | UnionTrust |

### 1.5 Test Location

All tests were performed at:

Compliance Certification Services (Shenzhen) Inc.

No.10-1 Mingkeda Logistics Park, No.18 Huanguan South RD. Guan Ian Town, Baoan Distr, Shenzhen, Guangdong, China.

Compliance Certification Services (Shenzhen) Inc. has been accepted by the FCC, the FCC Registration Number is 441872.

Tested by: Darry Wu

### 1.6 Deviation from Standards

None

## 1.7 Abnormalities from Standard Conditions

None

## 1.8 Other Information Requested by the Customer

None.

1.9 Measurement Uncertainty (95% confidence levels, k=2)

| No. | Item                                      | Measurement Uncertainty |
|-----|-------------------------------------------|-------------------------|
| 1   | Radio Frequency                           | ±6.3 x 10 <sup>-8</sup> |
| 2   | RF power, conducted                       | ±0.52 dB                |
| 3   | Spurious emissions, radiated (Below 1GHz) | ±5.3 dB                 |
| 3   | Spurious emissions, radiated (Above 1GHz) | ±5.1 dB                 |
| 4   | Conduction emission (9KHz~150KHz)         | ±3.8 dB                 |
| 4   | Conduction emission (150KHz~30MHz)        | ±3.4 dB                 |
| 5   | Temperature                               | ±0.64 °C                |
| 6   | Humidity                                  | ±2.8 %                  |
| 7   | Supply voltages                           | ±0.49 %                 |



Page 7 of 89 Report No.: 1609060316RFC-2

## 2 Test Summary

| Test Item                                       | Test Requirement                                          | Test method                                               | Result           |
|-------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------|
| Antenna Requirement                             | 47 CFR Part 15 Subpart C<br>Section 15.203                | ANSI C63.10-2013                                          | PASS             |
| Maximum conducted output power                  | 47 CFR Part 15 Subpart E<br>Section 15.407 (a)(1)(3)      | KDB 789033 D02<br>v01r03Section E.3.a(Method<br>PM)       | PASS             |
| Peak Power Spectral Density                     | 47 CFR Part 15 Subpart E<br>Section 15.407 (a)(1)(3)      | KDB 789033 D02<br>v01r03Section F                         | PASS             |
| 6 dB bandwidth                                  | 47 CFR Part 15 Subpart E<br>Section 15.407 (e)            | KDB 789033 D02<br>v01r03Section C.2                       | PASS             |
| 26 dB emission bandwidth                        | 47 CFR Part 15 Subpart E<br>Section 15.407 (a) (2)(5)     | KDB 789033 D02<br>v01r03Section C.1                       | PASS             |
| Frequency stability                             | 47 CFR Part 15 Subpart E<br>Section 15.407 (g)            | ANSI C63.10-2013                                          | PASS             |
| Radiated Emissions and Band<br>Edge Measurement | 47 CFR Part 15 Subpart E<br>Section 15.407 (b)(1),(4),(6) | KDB 789033 D02<br>v01r03Section G.3, G.4, G.5,<br>and G.6 | PASS             |
| AC Power Line Conducted Emission                | 47 CFR Part 15 Subpart E<br>Section 15.407 (b)(6)         | ANSI C63.10-2013                                          | N/A <sup>1</sup> |

#### Remark:

Tx: In this whole report Tx (or tx) means Transmitter.Rx: In this whole report Rx (or rx) means Receiver.RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel.

Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp means Temperature.

Humid: In this whole report Humid means humidity.

Press: In this whole report Press means Pressure.

N/A: In this whole report not application

This EUT is powered by batteries, it need remove the battery from the EUT when charging, It doesn't transmitting while charging.

Page 8 of 89 Report No.: 1609060316RFC-2

# 3 Equipment List

| 3m (Semi-Anechoic Chamber)      |                |          |                  |                               |                  |  |  |
|---------------------------------|----------------|----------|------------------|-------------------------------|------------------|--|--|
| Equipment                       | Manufacturer   | Mode No. | Serial<br>Number | Cal. Due date<br>(mm-dd-yyyy) | Cal.<br>Interval |  |  |
| PSA Series Spectrum<br>Analyzer | Agilent        | E4446A   | US44300399       | 02-20-2017                    | 1 Year           |  |  |
| Turn Table                      | N/A            | N/A      | N/A              | N.C.R                         | N.C.R            |  |  |
| Controller                      | Sunol Sciences | SC104V   | 022310-1         | N.C.R                         | N.C.R            |  |  |
| Controller                      | СТ             | N/A      | N/A              | N.C.R                         | N.C.R            |  |  |
| Bilog Antenna                   | SCHAFFNER      | CBL6143  | 5063             | 02-21-2017                    | 1 Year           |  |  |
| Horn Antenna                    | SCHWARZBECK    | BBHA9120 | D286             | 02-20-2017                    | 1 Year           |  |  |
| Loop Antenna                    | COM-POWER      | AL-130   | 121044           | 02-20-2017                    | 1 Year           |  |  |
| High Noise Amplifier            | Agilent        | 8449B    | 3008A01838       | 02-21-2017                    | 1 Year           |  |  |
| Horn Antenna                    | Schwarzbeck    | BBHA9120 | D286             | 02-21-2017                    | 1 Year           |  |  |
| Temp. / Humidity<br>Meter       | Anymetre       | JR913    | N/A              | 02-21-2017                    | N.C.R            |  |  |
| Antenna Tower                   | SUNOL          | TLT2     | N/A              | N.C.R                         | N.C.R            |  |  |
| Test S/W                        | FARAO          |          | LZ-RF / CO       | CS-SZ-3A2                     |                  |  |  |

| Conducted RF test      |         |          |                  |                               |                  |  |
|------------------------|---------|----------|------------------|-------------------------------|------------------|--|
| Equipment Manufacturer |         | Mode No. | Serial<br>Number | Cal. Due date<br>(mm-dd-yyyy) | Cal.<br>Interval |  |
| Spectrum Analyzer      | Agilent | N9010A   | MY52221469       | 02-21-2017                    | 1 Year           |  |
| Power Meter            | Agilent | ML2495A  | 1204003          | 02-21-2017                    | 1 Year           |  |



# **4 Test Requirement**

## 4.1 Test setup

## 4.1.1 For Conducted test setup



## 4.1.2 For Radiated Emissions test setup

#### Radiated Emissions setup:



Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz



Figure 3. Above 1GHz

Page 10 of 89 Report No.: 1609060316RFC-2

#### 4.2 Test Environment

| Operating Environment: |           |  |
|------------------------|-----------|--|
| Temperature:           | 25.4 °C   |  |
| Humidity:              | 57 % RH   |  |
| Atmospheric Pressure:  | 99.95mbar |  |

## 4.3 System Test Configuration

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 7.4Vdc rechargeable LIPO battery(Model: ZB-380). Only the worst case data were recorded in this test report.

For STBC modes (2Tx), there are two transmission antennas. Both Chain 0 and Chain 1 used at the same time and antenna ports have uniform output powers. The Chain 0 and Chain 1 antenna ports cannot be used alone.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

| Frequency Band    | Mode           | Antenna Port      | Worst-case Orientation |
|-------------------|----------------|-------------------|------------------------|
|                   | GHz and 5.8GHz | N/A               | N/A                    |
| 5.2GHz and 5.8GHz |                | N/A               | N/A                    |
|                   | 2Tx STBC       | Chain 0 + Chain 1 | X-Portrait             |

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000MHz. The resolution is 1 MHz or greater for frequencies above 1000MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.



## 4.4 Test Condition

### 4.4.1 Test channel

| Test Mode         | Tx/Rx                      | RF Channel  |            |             |  |  |
|-------------------|----------------------------|-------------|------------|-------------|--|--|
| i est widde       | IX/KX                      | Low(L)      | Middle(M)  | High(H)     |  |  |
| 802.11a/n(HT20)   | 5150MHz ~5250 MHz          | Channel 36  | Channel 40 | Channel 48  |  |  |
| 002.11a/11(H120)  | 3 130MHZ ~3230 MHZ         | 5180MHz     | 5200MHz    | 5240MHz     |  |  |
| 802.11n(HT40)     | 5150MHz ~5250 MHz          | Channel 38  | N/A        | Channel 46  |  |  |
| 002.1111(11140)   | 3 1301VII 12 *3230 IVII 12 | 5190MHz     | N/A        | 5230MHz     |  |  |
| 802.11a/n(HT20)   | 5725MHz ~5850 MHz          | Channel149  | Channel157 | Channel165  |  |  |
| 002.114/11(11120) | 37 23WH 12 3030 WH 12      | 5745MHz     | 5785MHz    | 5825MHz     |  |  |
| 902 11n (UT40)    | 5725MHz ~5850 MHz          | Channel 151 | N/A        | Channel 159 |  |  |
| 802.11n (HT40)    | 3/23WITZ ~383U WITZ        | 5755MHz     | N/A        | 5795MHz     |  |  |

Transmitting mode:

Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

#### 4.4.2 Test mode

#### Pre-scan under all rate at lowest channel

| Channel/              |       | Maximum Conducted Average Power (Measured Value) |       |       |       |       |       |       |
|-----------------------|-------|--------------------------------------------------|-------|-------|-------|-------|-------|-------|
| Frequency (MHz)       |       | (dBm)                                            |       |       |       |       |       |       |
| Chain 0_802.11a       |       |                                                  |       |       |       |       |       |       |
| Data Rate (Mbps)      | 6     | 9                                                | 12    | 18    | 24    | 36    | 48    | 54    |
| 36(5180)              | 13.39 | 12.56                                            | 12.56 | 12.79 | 13.07 | 12.71 | 11.9  | 10.5  |
| Chain 0_802.11n(H     | T20)  |                                                  |       |       |       |       |       |       |
| Data Rate (Mbps)      | MCS 0 | MCS 1                                            | MCS 2 | MCS 3 | MCS 4 | MCS 5 | MCS 6 | MCS 7 |
| 36(5180)              | 13.22 | 12.98                                            | 13.52 | 13.67 | 13.62 | 13.53 | 11.21 | 10.47 |
| Chain 0_802.11n(HT40) |       |                                                  |       |       |       |       |       |       |
| Data Rate (Mbps)      | MCS 0 | MCS 1                                            | MCS 2 | MCS 3 | MCS 4 | MCS 5 | MCS 6 | MCS 7 |
| 38(5190)              | 15.26 | 15.04                                            | 14.12 | 13.33 | 12.98 | 13.01 | 10.4  | 9.6   |

#### So, the worst-case data rates see table below:

|               |         | Worst-case data rates |                 |
|---------------|---------|-----------------------|-----------------|
| Mode          | SISO    | STBC Mode:            |                 |
|               | Chain 0 | Chain 1               | Chain 0+1       |
| 802.11a       | N/A     | N/A                   | 6 Mbps          |
| 802.11n(HT20) | N/A     | N/A                   | MCS 3(26Mbps)   |
| 802.11n(HT40) | N/A     | N/A                   | MCS 0(13.5Mbps) |



### 4.4.3 Duty Cycle

| Mode          | Data rates<br>(Mbps) | On Time<br>(msec) | Period<br>(msec) | Duty<br>Cycle<br>(linear) | Duty<br>Cycle<br>(%) | Duty<br>Cycle<br>Factor<br>(dB) | 1/ T<br>Minimum<br>VBW<br>(kHz) |
|---------------|----------------------|-------------------|------------------|---------------------------|----------------------|---------------------------------|---------------------------------|
| 802.11a       | 6                    | 2.0620            | 2.1000           | 0.98                      | 98.19                | 0.00                            | 0.01                            |
| 802.11n(HT20) | 26                   | 0.5074            | 0.5459           | 0.93                      | 92.95                | 0.32                            | 1.97                            |
| 802.11n(HT40) | 13.5                 | 0.9434            | 0.9788           | 0.96                      | 96.38                | 0.16                            | 1.06                            |

### Remark:

- 1) Duty cycle= On Time/ Period
- 2) Duty Cycle factor = 10 \* log(1/ Duty cycle)

#### The test plot as follows:











Page 14 of 89 Report No.: 1609060316RFC-2

# **5 Radio Technical Requirements Specification**

Reference documents for testing:

| No. | Identity                                                     | Document Title                                                                                                       |
|-----|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 1   | FCC Part15E (2015)                                           | Subpart C-Intentional Radiators                                                                                      |
| 2   | ANSI C63.10-2013                                             | American National Standard for Testing Unlicesed Wireless Devices                                                    |
| 3   | 789033 D02 General U-NII Test<br>Procedures New Rules v01r03 | Guidelines for compliance testing of unlicensed national information infrastructure (U-NII) device part 15 subpart E |
| 4   | 662911 D01 Multiple Transmitter<br>Output v02r01             | Emissions Testing of Transmitters with Multiple Outputs in the Same Band                                             |

## 5.1 Antenna Requirement

#### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 15.407(a)(1) (2) requirement:

The conducted output power limit specified in paragraph (a) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (a) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power and the peak power spectral density shall be reduced by the by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### **EUT Antenna:**

Both antenna in the interior of the equipment and no consideration of replacement. The Tx chains are correlated and the antenna gain is unequal among the chains and the best case directional gain of the antenna is 3.04dBi@5150MHz~5250MHz and 4.31dBi@5725MHz~5850MHz (See section 5.2).

### 5.2 Maximum conducted output power

Test Requirement:

Test Method:

47 CFR Part 15 Subpart E Section 15.407 (a)(1)(3) KDB 789033 D02 v01r03Section E.3.a(Method PM)

Limit:

- For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW (24 dBm)
- 2. For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W (30 dBm).

Test Procedure:

- Connected the EUT's antenna port to measure device by 10dB attenuator
- 2. Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of Tx on burst.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

**Test Setup:** Refer to section 4.1.1 for details. **Instruments Used:** Refer to section 3 for details

**Test Mode:** Transmitter mode

Test Results: Pass

**Test Data:** 



|         |                    | Мах     | imum Con | ducted Av | erage Pow  | er (dBm)             | _              |         |
|---------|--------------------|---------|----------|-----------|------------|----------------------|----------------|---------|
|         | Channel            | Measure | d Power  | Pow       | er with Du | ty Factor            | Power          |         |
| Mode    | Frequency<br>(MHz) | Chain 0 | Chain 1  | Chain 0   | Chain 1    | Total<br>(Chain 0+1) | Limit<br>(dBm) | Results |
|         | 36 (5180)          | 13.39   | 13.98    | 13.39     | 13.98      | 16.71                | 24             | Pass    |
|         | 40 (5200)          | 13.14   | 13.70    | 13.14     | 13.70      | 16.44                | 24             | Pass    |
|         | 48 (5240)          | 12.94   | 14.58    | 12.94     | 14.58      | 16.85                | 24             | Pass    |
| 802.11a | 149 (5745)         | 14.27   | 12.73    | 14.27     | 12.73      | 16.58                | 30             | Pass    |
|         | 157 (5785)         | 12.82   | 12.41    | 12.82     | 12.41      | 15.63                | 30             | Pass    |
|         | 165 (5825)         | 12.36   | 13.15    | 12.36     | 13.15      | 15.78                | 30             | Pass    |
|         | 36 (5180)          | 13.67   | 15.19    | 13.99     | 15.51      | 17.83                | 24             | Pass    |
|         | 40 (5200)          | 14.21   | 14.88    | 14.53     | 15.20      | 17.89                | 24             | Pass    |
| 802.11n | 48 (5240)          | 14.48   | 15.66    | 14.80     | 15.98      | 18.44                | 24             | Pass    |
| (HT20)  | 149 (5745)         | 15.33   | 13.71    | 15.65     | 14.03      | 17.93                | 30             | Pass    |
|         | 157 (5785)         | 13.93   | 14.58    | 14.25     | 14.90      | 17.60                | 30             | Pass    |
|         | 165 (5825)         | 13.04   | 13.05    | 13.36     | 13.37      | 16.38                | 30             | Pass    |
|         | 38 (5190)          | 15.26   | 15.58    | 15.42     | 15.74      | 18.59                | 24             | Pass    |
| 802.11n | 46 (5230)          | 14.83   | 16.35    | 14.99     | 16.51      | 18.83                | 24             | Pass    |
| (HT40)  | 151 (5755)         | 15.41   | 15.17    | 15.57     | 15.33      | 18.46                | 30             | Pass    |
|         | 159 (5795)         | 14.91   | 15.17    | 15.07     | 15.33      | 18.21                | 30             | Pass    |

#### Remark:

- 1. All the data attached was use the worst case data rate.
- 2. Total (Chain 0+1) =  $10*\log[(10^{\text{Chain 0/10}})+(10^{\text{Chain 1/10}})]$
- 3. Power with Duty Factor = Measured Power + Duty Cycle Factor
- 4. Directional gain and the maximum conducted output power see table below:

| Frequency | Chain 0<br>Antenna Gain<br>(dBi) | Chain 1<br>Antenna Gain<br>(dBi) | Correlated chains<br>directional gain<br>(dBi) | Power Limits<br>(dBm) |
|-----------|----------------------------------|----------------------------------|------------------------------------------------|-----------------------|
| U-NII-1   | -1.6                             | 1.4                              | 3.04                                           | 24                    |
| U-NII-3   | 1.5                              | 1.1                              | 4.31                                           | 30                    |

NOTE: The TX chains are correlated and the antenna gain is unequal among the chains.

The directional gain =  $10 \log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2 / N_{ANT}] dBi$ 



Page 16 of 89 Report No.: 1609060316RFC-2

## 5.3 Peak Power Spectral Density

Test Requirement:

47 CFR Part 15 Subpart E Section 15.407 (a)(1)(3)

**Test Method:** 

KDB 789033 D02 v01r03Section F

Limit:

- For mobile and portable client devices in the 5.15-5.25 GHz band, The maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.
- 2. For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

**Test Procedure:** 

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer.

Spectrum analyzer according to the following Settings:

#### 1. 5.15-5.25 GHz band:

Using method SA-2

- a) Set span to encompass the entire emission bandwidth (EBW) of the signal.
- b) Set RBW = 1 MHz, Set VBW ≥ 3 RBW, Detector = RMS
- c) Sweep time = auto, trigger set to "free run".
- d) Trace average at least 100 traces in power averaging mode.
- e) Record the max value and add 10 log (1/duty cycle)

#### 2. 5.725-5.85 GHz band:

- a) Set span to encompass the entire emission bandwidth (EBW) of the signal.
- b) Set RBW = 500 kHz, Set VBW ≥ 3 RBW, Detector = RMS
- c) Use the peak marker function to determine the maximum power level in any 500 kHz band segment within the fundamental EBW.
- d) Sweep time = auto, trigger set to "free run".
- e) Trace average at least 100 traces in power averaging mode.
- f) Record the max value and add 10 log (1/duty cycle)

Note: The cable loss and attenuator loss were offset into measure device

as an amplitude offset.

**Test Setup:** Refer to section 4.1.1 for details.

Instruments Used: Refer to section 3 for details

**Test Mode:** Transmitter mode

Test Results: Pass

Test Data:



|         |                    | I       | Peak Powe | er Spectra | dBm)        | 200                  |                |         |
|---------|--------------------|---------|-----------|------------|-------------|----------------------|----------------|---------|
|         | Channel _          | Measur  | ed PSD    | PS         | D with Duty | y Factor             | PSD            |         |
| Mode    | Frequency<br>(MHz) | Chain 0 | Chain 1   | Chain 0    | Chain 1     | Total<br>(Chain 0+1) | Limit<br>(dBm) | Results |
|         | 36 (5180)          | 0.878   | 3.045     | 0.878      | 3.045       | 5.106                | 11             | Pass    |
|         | 40 (5200)          | 0.462   | 1.315     | 0.462      | 1.315       | 3.920                | 11             | Pass    |
| 002 41  | 48 (5240)          | 0.555   | 1.262     | 0.555      | 1.262       | 3.933                | 11             | Pass    |
| 802.11a | 149 (5745)         | -1.968  | 0.074     | -1.968     | 0.074       | 2.182                | 30             | Pass    |
|         | 157 (5785)         | -2.214  | 0.044     | -2.214     | 0.044       | 2.070                | 30             | Pass    |
|         | 165 (5825)         | -3.339  | -0.503    | -3.339     | -0.503      | 1.317                | 30             | Pass    |
|         | 36 (5180)          | 1.280   | 2.810     | 1.600      | 3.130       | 5.442                | 11             | Pass    |
|         | 40 (5200)          | 0.739   | 2.157     | 1.059      | 2.477       | 4.836                | 11             | Pass    |
| 802.11n | 48 (5240)          | 1.105   | 2.118     | 1.425      | 2.438       | 4.971                | 11             | Pass    |
| (HT20)  | 149 (5745)         | -1.686  | 0.484     | -1.366     | 0.804       | 2.863                | 30             | Pass    |
|         | 157 (5785)         | -2.265  | 0.214     | -1.945     | 0.534       | 2.479                | 30             | Pass    |
|         | 165 (5825)         | -2.659  | -0.129    | -2.339     | 0.191       | 2.118                | 30             | Pass    |
|         | 38 (5190)          | -2.155  | 0.609     | -1.995     | 0.769       | 2.614                | 11             | Pass    |
| 802.11n | 46 (5230)          | -1.010  | 0.727     | -0.850     | 0.887       | 3.115                | 11             | Pass    |
| (HT40)  | 151 (5755)         | -3.166  | -3.179    | -3.006     | -3.019      | -0.002               | 30             | Pass    |
|         | 159 (5795)         | -3.189  | -4.040    | -3.029     | -3.880      | -0.423               | 30             | Pass    |

#### Remark:

- 1. All the data attached was use the worst case data rate.
- Total (Chain 0+1) = 10\*log[(10<sup>Chain 0/10</sup>)+(10<sup>Chain 1/10</sup>)]
   Power with Duty Factor = Measured Power + Duty Cycle Factor
- Directional gain and the maximum power spectral density see table below:

| Frequency | Chain 0<br>Antenna Gain<br>(dBi) | Chain 1<br>Antenna Gain<br>(dBi) | Correlated chains directional gain (dBi) | PSD Limits<br>(dBm) |
|-----------|----------------------------------|----------------------------------|------------------------------------------|---------------------|
| U-NII-1   | -1.6                             | 1.4                              | 3.04                                     | 11                  |
| U-NII-3   | 1.5                              | 1.1                              | 4.31                                     | 30                  |

NOTE: The TX chains are correlated and the antenna gain is unequal among the chains.

The directional gain =  $10 \log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2]$  /NANT] dBi



#### The test plot as follows:





























Page 24 of 89 Report No.: 1609060316RFC-2

## 5.4 6 dB bandwidth

**Test Requirement:** 47 CFR Part 15 Subpart E Section 15.407 (e)

Test Method: KDB 789033 D02 v01r03Section C.2

Limit: Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII

devices shall be at least 500 kHz.

Test Procedure: The output from the transmitter was connected to an attenuator and then

to the input of the RF Spectrum Analyzer.

Spectrum analyzer according to the following Settings:

a) Set RBW = 100 kHz.

b) Set the video bandwidth (VBW) ≥ 3 \* RBW.

c) Detector = Peak.

d) Trace mode = max hold.

e) Sweep = auto couple.

f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The cable loss and attenuator loss were offset into measure device

as an amplitude offset.

Test Setup: Refer to section 4.1.1 for details.

Instruments Used: Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Test Data:

| Mode    | Channel<br>Frequency<br>(MHz) | Antenna<br>Port | 6 dB<br>Bandwidth<br>(MHz) | 99%<br>Bandwidth<br>(MHz) | 6 dB<br>Bandwidth<br>Limit | Result<br>(Pass / Fail) |
|---------|-------------------------------|-----------------|----------------------------|---------------------------|----------------------------|-------------------------|
|         | 440 (5745)                    | Chain 0         | 16.26                      | 16.474                    | > 500 kHz                  | Pass                    |
|         | 149 (5745)                    | Chain 1         | 16.02                      | 16.563                    | > 500 kHz                  | Pass                    |
| 222.44  | (57 (5705)                    | Chain 0         | 16.05                      | 16.440                    | > 500 kHz                  | Pass                    |
| 802.11a | 157 (5785)                    | Chain 1         | 16.35                      | 16.708                    | > 500 kHz                  | Pass                    |
|         | ( /)                          | Chain 0         | 15.97                      | 16.387                    | > 500 kHz                  | Pass                    |
|         | 165 (5825)                    | Chain 1         | 15.92                      | 16.942                    | > 500 kHz                  | Pass                    |
|         |                               | Chain 0         | 17.28                      | 17.696                    | > 500 kHz                  | Pass                    |
|         | 149 (5745)                    | Chain 1         | 16.35                      | 17.755                    | > 500 kHz                  | Pass                    |
| 802.11n |                               | Chain 0         | 16.95                      | 17.666                    | > 500 kHz                  | Pass                    |
| (HT20)  | 157 (5785)                    | Chain 1         | 17.26                      | 17.895                    | > 500 kHz                  | Pass                    |
|         |                               | Chain 0         | 17.26                      | 17.604                    | > 500 kHz                  | Pass                    |
|         | 165 (5825)                    | Chain 1         | 16.93                      | 17.911                    | > 500 kHz                  | Pass                    |
| 802.11n |                               | Chain 0         | 35.06                      | 36.075                    | > 500 kHz                  | Pass                    |
| (HT40)  | 151 (5755)                    | Chain 1         | 32.53                      | 37.500                    | > 500 kHz                  | Pass                    |



Page 25 of 89

Report No.: 1609060316RFC-2

|            | Chain 0 | 33.26 | 36.011 | > 500 kHz | Pass |
|------------|---------|-------|--------|-----------|------|
| 159 (5795) | Chain 1 | 31.38 | 42.197 | > 500 kHz | Pass |

#### The test plot as follows:



### Shenzhen UnionTrust Quality and Technology Co., Ltd.













Page 28 of 89 Report No.: 1609060316RFC-2

### 5.5 26 dB emission bandwidth

Test Requirement: 47 CFR Part 15 Subpart E Section 15.407 (a) (2)(5)

**Test Method:** KDB 789033 D02 v01r03Section C.1 **Limit:** None; for reporting purposes only.

Test Procedure: The output from the transmitter was connected to an attenuator and then

to the input of the RF Spectrum analyzer.

Spectrum analyzer according to the following Settings:
a) Set RBW = approximately 1 % of the emission bandwidth.

b) Set the VBW > RBW.c) Detector = Peak.

d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1 %.

Note: The cable loss and attenuator loss were offset into measure device

as an amplitude offset.

Test Setup: Refer to section 4.1.1 for details.

Instruments Used: Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

**Test Data:** 

| Mode    | Channel<br>Frequency (MHz) | Antenna Port | 26 dB emission<br>bandwidth<br>(MHz) | 99%<br>Bandwidth<br>(MHz) |
|---------|----------------------------|--------------|--------------------------------------|---------------------------|
|         | 00 (5400)                  | Chain 0      | 27.74                                | 16.704                    |
|         | 36 (5180)                  | Chain 1      | 22.86                                | 16.611                    |
| 202.44  | 40 (5000)                  | Chain 0      | 22.14                                | 16.609                    |
| 802.11a | 40 (5200)                  | Chain 1      | 23.73                                | 16.584                    |
|         | 48 (5240)                  | Chain 0      | 21.95                                | 16.614                    |
|         |                            | Chain 1      | 21.19                                | 16.504                    |
|         | 36 (5180)                  | Chain 0      | 29.34                                | 17.926                    |
|         |                            | Chain 1      | 25.41                                | 17.921                    |
| 802.11n |                            | Chain 0      | 25.19                                | 17.848                    |
| (HT20)  | 40 (5200)                  | Chain 1      | 25.81                                | 17.927                    |
|         |                            | Chain 0      | 25.77                                | 17.876                    |
|         | 48 (5240)                  | Chain 1      | 31.28                                | 17.989                    |
|         |                            | Chain 0      | 55.46                                | 36.128                    |
| 802.11n | 38 (5190)                  | Chain 1      | 62.59                                | 36.150                    |
| (HT40)  |                            | Chain 0      | 60.14                                | 36.129                    |
|         | 46 (5230)                  | Chain 1      | 67.53                                | 36.201                    |





#### The test plot as follows:















Page 32 of 89 Report No.: 1609060316RFC-2

## 5.6 Frequency stability

**Test Requirement:** 47 CFR Part 15 Subpart E Section 15.407 (g)

Test Method: ANSI C63.10-2013

Limit: The frequency of the carrier signal shall be maintained within band of

operation.

**Test Procedure:**a) To ensure emission at the band edge is maintained within the authorized band, those values shall be measured by radiation emissions at

upper and lower frequency points, and finally compensated by frequency

deviation as procedures below.

b) The EUT was operated at the maximum output power, and connected to the spectrum analyzer, which is set to maximum hold function and peak detector. The peak value of the power envelope was measured and noted. The upper and lower frequency points were respectively measured

relatively 10 dB lower than the measured peak value.

c) The frequency deviation was calculated by adding the upper frequency point and the lower frequency point divided by two. Those detailed values

of frequency deviation are provided in table below.

Test Setup: Refer to section 4.1.1 for details.

Instruments Used: Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

**Test Data:** 

#### Remark:

The EUT this time and previous (FCC ID: 2AIDWHC-6428) all the RF circuit board are the same, the only differences are the RF output power and power supply circuit board of UAV. After assessment, this differences does not affect the test results, so the following test data from the original report with report No. 16WS0525027F-01 Rev0 (FCC ID: 2AIDWHC-6428).

|               | Frequency Stability Versus Temp. |              |                |           |         |                  |  |  |
|---------------|----------------------------------|--------------|----------------|-----------|---------|------------------|--|--|
| Tomp          | Power                            | Measured Fre | quency (GHz)   | Frequency | Result  |                  |  |  |
| Temp.<br>(°C) | Supply<br>(Vdc)                  | Chain 0      | Chain 1        | Chain 0   | Chain 1 | (Pass /<br>Fail) |  |  |
|               |                                  | Operatin     | g Frequency: 5 | 180 MHz   |         |                  |  |  |
| 35            | 7.4                              | 5.1799805    | 5.1799715      | -3.7645   | -5.5019 | Pass             |  |  |
| 20            | 7.4                              | 5.1799785    | 5.1799725      | -4.1506   | -5.3089 | Pass             |  |  |
| 5             | 7.4                              | 5.1799795    | 5.1799735      | -3.9575   | -5.1158 | Pass             |  |  |
|               |                                  | Operatin     | g Frequency: 5 | 190 MHz   |         |                  |  |  |
| 35            | 7.4                              | 5.1899770    | 5.1899900      | -4.4316   | -1.9268 | Pass             |  |  |
| 20            | 7.4                              | 5.1899765    | 5.1899845      | -4.5279   | -2.9865 | Pass             |  |  |
| 5             | 7.4                              | 5.1899760    | 5.1899835      | -4.6243   | -3.1792 | Pass             |  |  |
|               | Operating Frequency: 5200 MHz    |              |                |           |         |                  |  |  |
| 35            | 7.4                              | 5.1999870    | 5.1999875      | -2.5000   | -2.4038 | Pass             |  |  |
| 20            | 7.4                              | 5.1999850    | 5.1999855      | -2.8846   | -2.7885 | Pass             |  |  |



Page 33 of 89 Report No.: 1609060316RFC-2

| 5                             | 7.4 | 5.1999820 | 5.1999840 | -3.4615 | -3.0769 | Pass |  |
|-------------------------------|-----|-----------|-----------|---------|---------|------|--|
| Operating Frequency: 5230 MHz |     |           |           |         |         |      |  |
| 35                            | 7.4 | 5.2299795 | 5.2299840 | -3.9197 | -3.0593 | Pass |  |
| 20                            | 7.4 | 5.2299790 | 5.2299840 | -4.0153 | -3.0593 | Pass |  |
| 5                             | 7.4 | 5.2299785 | 5.2299840 | -4.1109 | -3.0593 | Pass |  |

|    |                               | Operatin  | g Frequency: 52 | 240 MHz |         |      |  |  |
|----|-------------------------------|-----------|-----------------|---------|---------|------|--|--|
| 35 | 7.4                           | 5.2400140 | 5.2399800       | 2.6718  | -3.8168 | Pass |  |  |
| 20 | 7.4                           | 5.2400010 | 5.2399810       | 0.1908  | -3.6260 | Pass |  |  |
| 5  | 7.4                           | 5.2399940 | 5.2399815       | -1.1450 | -3.5305 | Pass |  |  |
|    |                               | Operatin  | g Frequency: 57 | 745 MHz |         |      |  |  |
| 35 | 7.4                           | 5.7449765 | 5.7449590       | -4.0905 | -7.1366 | Pass |  |  |
| 20 | 7.4                           | 5.7449760 | 5.7449625       | -4.1775 | -6.5274 | Pass |  |  |
| 5  | 7.4                           | 5.7449755 | 5.7449645       | -4.2646 | -6.1793 | Pass |  |  |
|    |                               | Operatin  | g Frequency: 57 | 755 MHz |         |      |  |  |
| 35 | 7.4                           | 5.7549500 | 5.7549720       | -8.6881 | -4.8653 | Pass |  |  |
| 20 | 7.4                           | 5.7549515 | 5.7549730       | -8.4275 | -4.6916 | Pass |  |  |
| 5  | 7.4                           | 5.7549520 | 5.7549730       | -8.3406 | -4.6916 | Pass |  |  |
|    |                               | Operatin  | g Frequency: 57 | 785 MHz |         |      |  |  |
| 35 | 7.4                           | 5.7849795 | 5.7850115       | -3.5436 | 1.9879  | Pass |  |  |
| 20 | 7.4                           | 5.7849785 | 5.7850195       | -3.7165 | 3.3708  | Pass |  |  |
| 5  | 7.4                           | 5.7849770 | 5.7850250       | -3.9758 | 4.3215  | Pass |  |  |
|    |                               | Operatin  | g Frequency: 57 | 795 MHz |         |      |  |  |
| 35 | 7.4                           | 5.7949710 | 5.7949790       | -5.0043 | -3.6238 | Pass |  |  |
| 20 | 7.4                           | 5.7949805 | 5.7949745       | -3.3650 | -4.4003 | Pass |  |  |
| 5  | 7.4                           | 5.7949855 | 5.7949720       | -2.5022 | -4.8318 | Pass |  |  |
|    | Operating Frequency: 5825 MHz |           |                 |         |         |      |  |  |
| 35 | 7.4                           | 5.8249945 | 5.8250315       | -0.9442 | 5.4077  | Pass |  |  |
| 20 | 7.4                           | 5.8249870 | 5.825035        | -2.2318 | 6.0086  | Pass |  |  |
| 5  | 7.4                           | 5.8249830 | 5.8250385       | -2.9185 | 6.6094  | Pass |  |  |



Frequency Stability Versus Temp. Measured Frequency (GHz) Frequency Drift (ppm) Result **Power** Temp. (°C) (Pass / Supply (Vdc) Chain 0 Chain 1 Chain 0 Chain 1 Fail) **Operating Frequency: 5180 MHz** 8.4 5.1800105 5.1800110 2.0270 2.1236 Pass 20 7.4 5.1799745 5.1800100 -4.92281.9305 Pass 6.4 5.1800335 5.1800185 6.4672 3.5714 Pass **Operating Frequency: 5190 MHz** 5.1900085 2.4085 8.4 5.1900125 1.6378 Pass 20 7.4 5.1899665 5.1900120 -6.4547 2.3121 **Pass** 6.4 5.1900315 5.1900045 6.0694 0.8671 Pass **Operating Frequency: 5200 MHz** 5.1999805 8.4 5.1999825 -3.3654-3.7500 Pass 7.4 5.2000070 20 5.2000105 1.3462 2.0192 **Pass** 6.4 5.1999790 5.1999800 -4.0385-3.8462**Pass Operating Frequency: 5230 MHz** 5.2300335 5.2300210 4.0153 8.4 6.4054 **Pass** 7.4 5.2300105 5.2300140 2.0076 2.6769 Pass 20 6.4 5.2300290 5.5449 5.2300190 3.6329 **Pass Operating Frequency: 5240 MHz** 8.4 5.2399665 5.2399750 -6.3931 -4.7710 **Pass** 7.4 20 5.2399675 5.2400105 -6.20232.0038 **Pass** 6.4 5.2399675 5.2399765 -6.2023-4.4847**Pass Operating Frequency: 5745 MHz** 8.4 5.7450090 5.7449670 -5.7441 Pass 1.5666 20 7.4 5.7450215 5.7450075 3.7424 1.3055 **Pass** 6.4 5.7450135 5.7449700 2.3499 -5.2219**Pass Operating Frequency: 5755 MHz** 8.4 5.7550080 1.8245 5.7550105 1.3901 **Pass** 7.4 5.7550345 20 5.7550170 5.9948 2.9540 **Pass** 6.4 5.7550170 5.7549960 2.9540 -0.6950Pass **Operating Frequency: 5785 MHz** 8.4 5.7849775 5.7850035 -3.88940.6050 **Pass** 20 7.4 5.7850415 5.7850065 7.1737 1.1236 Pass



Page 35 of 89 Report No.: 1609060316RFC-2

|    | 6.4                           | 5.7849900 | 5.7849900       | -1.7286 | -1.7286 | Pass |  |  |
|----|-------------------------------|-----------|-----------------|---------|---------|------|--|--|
|    | Operating Frequency: 5795 MHz |           |                 |         |         |      |  |  |
|    | 8.4                           | 5.7950080 | 5.7950005       | 1.3805  | 0.0863  | Pass |  |  |
| 20 | 7.4                           | 5.7949995 | 5.7950225       | -0.0863 | 3.8827  | Pass |  |  |
|    | 6.4                           | 5.7950090 | 5.7950010       | 1.5531  | 0.1726  | Pass |  |  |
|    |                               | Operatin  | g Frequency: 58 | 325 MHz |         |      |  |  |
|    | 8.4                           | 5.8250020 | 5.8250320       | 0.3433  | 5.4936  | Pass |  |  |
| 20 | 7.4                           | 5.8250050 | 5.8250065       | 0.8584  | 1.1159  | Pass |  |  |
|    | 6.4                           | 5.8249890 | 5.8250350       | -1.8884 | 6.0086  | Pass |  |  |



Page 36 of 89 Report No.: 1609060316RFC-2

## 5.7 Radiated Emissions and Band Edge Measurement

Test Requirement: Test Method: Limit: 47 CFR Part 15 Subpart E Section 15.407 (b)(1),(4),(6) KDB 789033 D02 v01r03Section G.3, G.4, G.5, and G.6

#### 1. Limits of Radiated Emission and Bandedge Measurement

Radiated emissions that fall in the restricted bands must comply with the general emissions limits in 15.209(a) as below table. Other emissions shall be at least 20 dB below the highest level of the desired power.

| least 20 ab below the f | Field strength       | Limit        |            | Measurement     |
|-------------------------|----------------------|--------------|------------|-----------------|
| Frequency               | (microvolt/meter)    |              | Remark     | distance (m)    |
|                         | (ITIICIOVOIGITICICI) | (аБр (/////) |            | alotarioo (iii) |
| 0.009MHz-0.490MHz       | 2400/F(kHz)          | -            | -          | 300             |
| 0.490MHz-1.705MHz       | 24000/F(kHz)         | -            | -          | 30              |
| 1.705MHz-30MHz          | 30                   | -            | -          | 30              |
| 30MHz-88MHz             | 100                  | 40.0         | Quasi-peak | 3               |
| 88MHz-216MHz            | 150                  | 43.5         | Quasi-peak | 3               |
| 216MHz-960MHz           | 200                  | 46.0         | Quasi-peak | 3               |
| 960MHz-1GHz             | 500                  | 54.0         | Quasi-peak | 3               |
| Above 1GHz              | 500                  | 54.0         | Average    | 3               |

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

#### Remark:

- a) The lower limit shall apply at the transition frequencies.
- b) Emission level (dBuV/m) = 20 log Emission level (uV/m).
- c) For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

#### 2. Limits of Unwanted Emission Out of the Restricted Bands

| Applicable To                                                | Limit                  |                                     |  |
|--------------------------------------------------------------|------------------------|-------------------------------------|--|
| 789033 D02 General U-NII Test<br>Procedures New Rules v01r03 | Field Stre             | Field Strength at 3 m               |  |
|                                                              | PK: 74 (dBµV/m)        | AV: 54 (dBμV/m)                     |  |
| Applicable To                                                | EIRP Limit             | Equivalent Field<br>Strength at 3 m |  |
| 15.407(b)(1)                                                 | PK: -27<br>(dBm/MHz)   | PK: 68.2 (dBµV/m)                   |  |
| 15.407(b)(4) Beyond 10 MHz of the band edg                   | PK: -27<br>e (dBm/MHz) | PK: 68.2 (dBµV/m)                   |  |
| 15.407(b)(4)<br>Within 10 MHz of band edge                   | PK: -17<br>(dBm/MHz)   | PK: 78.2 (dBµV/m)                   |  |

**Test Procedure:** 

- a) The EUT was placed on the top of a rotating table 0.8 meters (for below 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both



Page 37 of 89

horizontal and vertical polarizations of the antenna are set to make the measurement.

Report No.: 1609060316RFC-2

- d) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f) The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

## Remark:

- The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for RMS Average (Duty cycle < 98 %) for Average detection (AV) at frequency above 1 GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz (Duty cycle ≥ 98 %) or ≥ 1/T(duty cycle is < 98%) for Average detection (AV) at frequency above 1 GHz.</p>
- All modes of operation were investigated and the worst-case emissions are reported.

**Test Setup:** Refer to section 4.1.2 for details.

Instruments Used: Refer to section 3 for details

**Test Mode:** Transmitter mode

Test Results: Pass

Test Data:



## Radiated Emission Test Data (Below 1 GHz Worst Case):









6

667.2900

Mode 802.11n(HT40) **Antenna** Chain 0+1 151 Channel Ant. Polar. Horizontal 80.0 dBuV/m Limit1: 0.0 30.000 224.00 806.00 1000.00 MHz 127.00 321.00 418.00 515.00 612.00 709.00 No. Reading Correct Result Limit Margin Remark Frequency Factor(dB/m) (dBuV/m) (dBuV/m) (dB) (MHz) (dBuV) 40.00 1 31.9400 27.66 -12.80 14.86 -25.14 peak 2 288.9900 39.22 -20.46 18.76 46.00 -27.24 peak 3 301.6000 39.32 -19.51 19.81 46.00 -26.19 peak 4\* 375.3200 37.88 -16.82 21.06 46.00 -24.94 peak 5 484.9300 28.99 -14.3614.63 46.00 -31.37 peak

26.65

-12.19

14.46

46.00

-31.54







## Radiated Emission Test Data (Above 1GHz):













6\*

9874.000

Mode 802.11a Chain 0+1 **Antenna** 40 Vertical Channel Ant. Polar. 80.0 dBuV/m Limit1: 40 1000.000 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 MHz .No. Reading Correct Result Limit Margin Remark Frequency (dBuV/m) (MHz) (dBuV) Factor(dB/m) (dBuV/m) (dB) 1 1391.000 36.90 -7.09 29.81 74.00 -44.19 peak 2 3652.000 32.56 0.12 32.68 74.00 -41.32 peak 3 5607.000 37.42 74.00 31.51 5.91 -36.58 peak 4 7205.000 30.97 8.10 39.07 74.00 -34.93 peak 5 8480.000 31.02 9.39 40.41 74.00 -33.59 peak

31.26

11.62

42.88

74.00

-31.12

-31.97

peak

74.00



6\*

9619.000

Mode 802.11a Chain 0+1 **Antenna** 48 Channel Ant. Polar. Horizontal 80.0 dBuV/m Limit1: 40 0.0 1000.000 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 MHz .No. Reading Correct Result Limit Margin Remark Frequency (dBuV/m) (MHz) (dBuV) Factor(dB/m) (dBuV/m) (dB) 1 2241.000 34.25 -3.68 30.57 74.00 -43.43 peak 2 3414.000 33.12 -0.6632.46 74.00 -41.54 peak 3 4638.000 3.80 74.00 -39.09 31.11 34.91 peak 4 6474.000 31.11 6.85 37.96 74.00 -36.04 peak 5 9.53 8225.000 30.59 40.12 74.00 -33.88 peak

31.15

10.88







6\*

9364.000

Mode 802.11a Chain 0+1 **Antenna** 149 Ant. Polar. Channel Horizontal 80.0 dBuV/m Limit1: 40 0.0 1000.000 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 MHz .No. Reading Correct Result Limit Margin Remark Frequency (MHz) (dBuV) Factor(dB/m) (dBuV/m) (dBuV/m) (dB) 1 1850.000 35.27 -5.95 29.32 74.00 -44.68 peak 2 35.35 4604.000 31.66 3.69 74.00 -38.65 peak 3 5386.000 37.27 74.00 -36.73 31.60 5.67 peak 4 6933.000 31.41 7.59 39.00 74.00 -35.00 peak 5 7766.000 31.30 9.19 40.49 74.00 -33.51 peak

30.87

10.15

41.02

74.00

-32.98



802.11a Chain 0+1 Mode **Antenna** Channel 149 Ant. Polar. Vertical 80.0 dBuV/m Limit1: 40 1000.000 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 MHz

| .No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|------|-----------|---------|--------------|----------|----------|--------|--------|
|      | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1    | 2683.000  | 34.27   | -1.93        | 32.34    | 74.00    | -41.66 | peak   |
| 2    | 4179.000  | 33.13   | 2.22         | 35.35    | 74.00    | -38.65 | peak   |
| 3    | 5777.000  | 31.50   | 5.99         | 37.49    | 74.00    | -36.51 | peak   |
| 4    | 6933.000  | 31.04   | 7.59         | 38.63    | 74.00    | -35.37 | peak   |
| 5    | 8344.000  | 30.98   | 9.46         | 40.44    | 74.00    | -33.56 | peak   |
| 6*   | 12118.000 | 30.77   | 15.03        | 45.80    | 74.00    | -28.20 | peak   |



Mode 802.11a Chain 0+1 **Antenna** 157 Ant. Polar. Horizontal Channel 80.0 dBuV/m Limit1: 40 0.0 1000.000 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 MI No. Reading Correct Result Limit Remark Frequency Margin (dBuV) Factor(dB/m) (dBuV/m) (dBuV/m) (dB) (MHz) 1 1391.000 38.58 -7.09 31.49 74.00 -42.51 peak 2 1714.000 39.70 -6.4533.25 74.00 -40.75 peak 3 2666.000 35.35 74.00 -40.61 -1.96 33.39 peak 4 4145.000 32.68 2.10 34.78 74.00 -39.22 peak 5 5386.000 31.81 5.67 37.48 74.00 -36.52 peak

31.68

6\*

6491.000

6.88

38.56

74.00

-35.44







5

6\*

8344.000

10265.000

Mode 802.11a Chain 0+1 **Antenna** Channel 165 Ant. Polar. Horizontal 80.0 dBuV/m Limit1: 40 1000.000 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 MHz .No. Reading Correct Result Limit Margin Remark Frequency (MHz) (dBuV) Factor(dB/m) (dBuV/m) (dBuV/m) (dB) 1 2105.000 35.39 -4.4230.97 74.00 -43.03 peak 2 2564.000 36.07 -2.1433.93 74.00 -40.07 peak 3 5573.000 37.70 74.00 -36.30 31.80 5.90 peak 4 6967.000 31.58 7.65 39.23 74.00 -34.77 peak

31.39

31.12

9.46

12.80

40.85

43.92

74.00

74.00

-33.15

-30.08

peak



6\*

9313.000

Mode 802.11a Chain 0+1 **Antenna** Vertical Channel 165 Ant. Polar. 80.0 dBuV/m Limit1: 40 1000.000 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 MHz .No. Frequency Reading Correct Result Limit Margin Remark (MHz) (dBuV) Factor(dB/m) (dBuV/m) (dBuV/m) (dB) 1 2598.000 35.70 -2.08 33.62 74.00 -40.38 peak 2 3941.000 32.86 1.34 34.20 74.00 -39.80 peak 3 5216.000 37.23 74.00 -36.77 31.87 5.36 peak 4 5743.000 32.09 5.97 38.06 74.00 -35.94 peak 5 7460.000 31.09 8.60 39.69 74.00 -34.31 peak

31.24

10.00

41.24

74.00

-32.76



6\*

8871.000

Mode 802.11n(HT20) Chain 0+1 **Antenna** 36 Ant. Polar. Channel Horizontal 80.0 dBuV/m Limit1: 40 0.0 1000.000 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 MHz .No. Reading Correct Result Limit Margin Remark Frequency (MHz) (dBuV) Factor(dB/m) (dBuV/m) (dBuV/m) (dB) 1 1680.000 35.49 -6.53 28.96 74.00 -45.04 peak 2 2870.000 33.52 -1.5931.93 74.00 -42.07peak 3 3754.000 74.00 -40.75 32.70 0.55 33.25 peak 4 5539.000 30.82 5.89 36.71 74.00 -37.29 peak 5 6.52 6270.000 30.55 37.07 74.00 -36.93 peak

30.64

9.17

39.81

74.00

-34.19























6\*

10282.000

Mode 802.11n(HT20) Chain 0+1 **Antenna** Channel 149 Ant. Polar. Horizontal 80.0 dBuV/m Limit1: 40 0.0 1000.000 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 MHz .No. Reading Correct Result Limit Margin Remark Frequency (MHz) (dBuV) Factor(dB/m) (dBuV/m) (dBuV/m) (dB) 1 1782.000 36.96 -6.31 30.65 74.00 -43.35 peak 2 2666.000 35.59 -1.9633.63 74.00 -40.37 peak 3 4519.000 34.99 74.00 -39.01 31.58 3.41 peak 4 5760.000 32.39 5.98 38.37 74.00 -35.63 peak 5 7749.000 31.71 9.16 40.87 74.00 -33.13 peak

31.22

12.85

44.07

74.00

-29.93



6\*

8667.000

Mode 802.11n(HT20) Chain 0+1 **Antenna** 149 Ant. Polar. Vertical Channel 80.0 dBuV/m Limit1: 40 1000.000 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 MHz .No. Reading Correct Result Limit Margin Remark Frequency (MHz) (dBuV) Factor(dB/m) (dBuV/m) (dBuV/m) (dB) 1 1187.000 38.46 -7.8430.62 74.00 -43.38 peak 2 2666.000 34.85 -1.9632.89 74.00 -41.11 peak 3 4026.000 74.00 -39.77 32.55 1.68 34.23 peak 4 6151.000 31.17 6.32 37.49 74.00 -36.51 peak 5 7.62 6950.000 31.04 38.66 74.00 -35.34 peak

31.21

9.28

40.49

74.00

-33.51

peak

-30.27



10282.000

Mode 802.11n(HT20) Chain 0+1 **Antenna** 157 Channel Ant. Polar. Horizontal 80.0 dBuV/m Limit1: MANA 40 0.0 1000.000 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 MHz No. Frequency Reading Correct Result Limit Margin Remark (dBuV) Factor(dB/m) (dBuV/m) (dBuV/m) (MHz) (dB) 1 2054.000 34.66 -4.7029.96 74.00 -44.04 peak 2 3329.000 33.67 -0.81 32.86 74.00 -41.14 peak 3 4978.000 36.47 74.00 -37.53 31.56 4.91 peak 4 6253.000 37.94 31.45 6.49 74.00 -36.06 peak 5 8395.000 31.29 9.43 40.72 74.00 -33.28 peak 6\*

43.73

74.00

30.88



6\*

8361.000

Mode 802.11n(HT20) Chain 0+1 **Antenna** 157 Vertical Channel Ant. Polar. 80.0 dBuV/m Limit1: 0.01000.000 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 MHz No. Frequency Reading Correct Result Limit Margin Remark (dBuV) Factor(dB/m) (dBuV/m) (dBuV/m) (MHz) (dB) 1 1204.000 39.50 -7.78 31.72 74.00 -42.28peak 2 31.21 -42.791765.000 37.56 -6.3574.00 peak 3 2394.000 34.10 74.00 -39.90 36.94 -2.84peak 4 2615.000 35.16 74.00 37.21 -2.05-38.84 peak 5 4791.000 31.93 4.30 36.23 74.00 -37.77 peak

41.24

74.00

peak

-32.76

31.79



6\*

10928.000

Mode 802.11n(HT20) Chain 0+1 **Antenna** Channel 165 Ant. Polar. Horizontal 80.0 dBuV/m Limit1: 40 0.0 1000.000 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 MHz No. Frequency Reading Correct Result Limit Margin Remark (dBuV) Factor(dB/m) (dBuV/m) (dBuV/m) (MHz) (dB) 1 1714.000 37.11 -6.4530.66 74.00 -43.34 peak 2 33.25 2683.000 35.18 -1.9374.00 -40.75peak -39.16 3 4077.000 34.84 74.00 32.98 1.86 peak 4 6984.000 7.67 74.00 32.02 39.69 -34.31 peak 5 8565.000 31.49 9.34 40.83 74.00 -33.17 peak

45.32

74.00

peak

-28.68

30.46

peak

-28.49



6\*

11982.000

Mode 802.11n(HT20) Chain 0+1 **Antenna** Vertical Channel 165 Ant. Polar. 80.0 dBuV/m Limit1: 40 0.0 1000.000 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 MHz No. Frequency Reading Correct Result Limit Margin Remark (dBuV) Factor(dB/m) (dBuV/m) (dBuV/m) (MHz) (dB) 1 2513.000 34.29 -2.2432.05 74.00 -41.95 peak 2 4230.000 34.37 31.97 2.40 74.00 -39.63 peak 3 6287.000 37.83 74.00 -36.17 31.29 6.54 peak 4 8803.000 9.21 40.35 31.14 74.00 -33.65 peak 45.07 5 10537.000 31.43 13.64 74.00 -28.93 peak

45.51

74.00

30.86







Chain 0+1 Mode 802.11n(HT40) **Antenna** 38 Ant. Polar. Vertical Channel 80.0 dBuV/m Limit1: 1000.000 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 MHz

| 1000.000 2700.00 4400.00 0100.00 7000.00 3300.00 11200.00 12300.00 14000.00 |           |         |              |          |          |        | 10000.00 M112 |
|-----------------------------------------------------------------------------|-----------|---------|--------------|----------|----------|--------|---------------|
| .No.                                                                        | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark        |
|                                                                             | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |               |
| 1                                                                           | 1085.000  | 38.19   | -8.23        | 29.96    | 74.00    | -44.04 | peak          |
| 2                                                                           | 2326.000  | 37.62   | -3.21        | 34.41    | 74.00    | -39.59 | peak          |
| 3                                                                           | 3363.000  | 33.34   | -0.75        | 32.59    | 74.00    | -41.41 | peak          |
| 4                                                                           | 5420.000  | 31.32   | 5.73         | 37.05    | 74.00    | -36.95 | peak          |
| 5                                                                           | 7205.000  | 30.45   | 8.10         | 38.55    | 74.00    | -35.45 | peak          |
| 6*                                                                          | 9262.000  | 30.90   | 9.85         | 40.75    | 74.00    | -33.25 | peak          |

peak

-31.39



9840.000

Mode 802.11n(HT40) Chain 0+1 **Antenna** Channel 46 Ant. Polar. Horizontal 80.0 dBuV/m Limit1: Lory share was the state of the 40 0.0 1000.000 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 MHz No. Frequency Reading Correct Result Limit Margin Remark (dBuV) Factor(dB/m) (dBuV/m) (dBuV/m) (MHz) (dB) 1 2394.000 35.00 -2.8432.16 74.00 -41.84 peak 2 3040.000 -1.29-42.31 32.98 31.69 74.00 peak 3 4264.000 30.74 33.26 74.00 -40.74 2.52 peak 4 5131.000 35.97 74.00 30.76 5.21 -38.03 peak 5 7664.000 31.09 8.99 40.08 74.00 -33.92 peak 6\*

31.09

11.52

42.61

peak

-33.61



6

8259.000

Mode 802.11n(HT40) Chain 0+1 **Antenna** Vertical Channel 46 Ant. Polar. 80.0 dBuV/m Limit1: 40 0.0 1000.000 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 MHz No. Frequency Reading Correct Result Limit Margin Remark (dBuV) Factor(dB/m) (dBuV/m) (dBuV/m) (MHz) (dB) 1 1391.000 38.42 -7.09 31.33 74.00 -42.67peak 2 -2.842394.000 35.51 32.67 74.00 -41.33 peak 3 3873.000 32.14 74.00 -40.81 1.05 33.19 peak 4 5760.000 5.98 37.29 31.31 74.00 -36.71 peak 5\* 7749.000 31.24 9.16 40.40 74.00 -33.60 peak

30.88

9.51

40.39





peak

-30.01



6\*

10265.000

Mode 802.11n(HT40) Chain 0+1 **Antenna** Vertical Channel 151 Ant. Polar. 80.0 dBuV/m Limit1: 40 0.0 1000.000 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 MHz No. Frequency Reading Correct Result Limit Margin Remark (dBuV) Factor(dB/m) (dBuV/m) (dBuV/m) (MHz) (dB) 1 1442.000 36.89 -6.98 29.91 74.00 -44.09peak 2 35.22 33.26 2666.000 -1.9674.00 -40.74peak -38.84 3 4434.000 74.00 32.04 3.12 35.16 peak 4 6253.000 37.84 31.35 6.49 74.00 -36.16 peak 5 7579.000 31.55 8.83 40.38 74.00 -33.62 peak

43.99

74.00

31.19



0.0

| 1000.000 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 MHz |           |         |              |          |          |        |        |
|------------------------------------------------------------------------------------------|-----------|---------|--------------|----------|----------|--------|--------|
| .No.                                                                                     | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|                                                                                          | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1                                                                                        | 2207.000  | 34.91   | -3.87        | 31.04    | 74.00    | -42.96 | peak   |
| 2                                                                                        | 3261.000  | 33.68   | -0.92        | 32.76    | 74.00    | -41.24 | peak   |
| 3                                                                                        | 4315.000  | 32.59   | 2.70         | 35.29    | 74.00    | -38.71 | peak   |
| 4                                                                                        | 6950.000  | 32.26   | 7.62         | 39.88    | 74.00    | -34.12 | peak   |
| 5                                                                                        | 8327.000  | 31.46   | 9.47         | 40.93    | 74.00    | -33.07 | peak   |
| 6*                                                                                       | 10894.000 | 30.20   | 14.75        | 44.95    | 74.00    | -29.05 | peak   |



802.11n(HT40) Chain 0+1 Mode **Antenna** Channel 159 Ant. Polar. Vertical 80 N dBuV/m Limit1: 40 0.0 1000.000 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 MHz No. Frequency Reading Correct Result Limit Margin Remark Factor(dB/m) (dBuV/m) (MHz) (dBuV) (dBuV/m) (dB) 1 2564.000 34.63 -2.1432.49 74.00 -41.51 peak 2 4281.000 32.04 2.58 34.62 74.00 -39.38 peak 3 6559.000 30.98 6.99 37.97 74.00 -36.03 peak 4 8480.000 30.84 9.39 40.23 74.00 -33.77peak

#### Note:

5

6\*

10537.000

11506.000

1) Through Pre-scan transmitting mode with all kind of modulation and data rate, find the 6Mbps of rate is the worst case of 802.11a; MCS3 of rate is the worst case of 802.11n(HT20); MCS0 of rate is the worst case of 802.11n(HT40) and then Only the worst case is recorded in the report.

44.71

46.06

74.00

74.00

-29.29

-27.94

peak

peak

13.64

14.86

- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

  Final Test Level = Receiver Reading Correct Factor
  - Correct Factor = Preamplifier Factor Antenna Factor Cable Factor
- 3) Scan from 9kHz to 40GHz, the disturbance above 10GHz and below 30MHz was very low, the amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 4) Snce peak data above 1GHz are lower the average limit, so the average data are pass, no need for testing.

31.07

31.20



### **Band Edge Measurements (Radiated)**



| Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 802.11a              |                       | Antenna Ant. Polar.          |                                     | Chain 0+1                                                                                                                                    |                   |                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------|
| Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36                   |                       |                              |                                     | Vertic                                                                                                                                       | cal               |                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | <b>Detector: Peak</b> |                              |                                     |                                                                                                                                              | Detector: AV      |                                                                            |
| # Agilent  Ref 117 dBpV  #Peak Log 10 dB/ 00ffst 10 dB/ U0ffst 10 dB/ 10 dB/ 00ffst 10 dB/ 10 | Type<br>Freq<br>Freq | 5.183 7 GHz 102       | and house and all the second | Stop 5.210 0 GHz<br>2 ms (1001 pts) | # Agilent  Ref 117 dBpV  #Peak Log 18 dB/ Offst 10 dB  LgAv  M1 \$2 Start 4,500 0 GHz #Res BH 1 MHz  Marker Trace Type 1 (1) Freq 2 (1) Freq | 5.186 6 GHz 90.91 | R T Mkr1 5.186 6 GHz 90.91 dBpV  Stop 5.210 0 GHz Sweep 55.36 s (1001 pts) |
| Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | у                    | Peak level            |                              | ak Limit                            | AV level                                                                                                                                     | AV Limit          | Conclusion                                                                 |
| (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | (dBuv/m)              | (di                          | Buv/m)                              | (dBuv/m)                                                                                                                                     | (dBuv/m)          |                                                                            |
| 5150.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | 56.95                 |                              | 74                                  | 45.07                                                                                                                                        | 54                | Pass                                                                       |



Mode 802.11a **Antenna** Chain 0+1 149 Channel Ant. Polar. Horizontal **Detector: Peak** 20.0 dBm Limit1: 10 0 -10 -20 -30 -50 -60.d 5775.00 MHz 5625.000 5640.00 5655.00 5670.00 5685.00 5700.00 5715.00 5730.00 5745.00

| Frequency | Peak level              | Peak Limit   | Margin         |            |
|-----------|-------------------------|--------------|----------------|------------|
| (MHz)     |                         |              |                | Conclusion |
| 5677.0000 | ( <b>dBm)</b><br>-39.05 | (dBm)<br>-27 | (dB)<br>-12.05 | Pass       |
| 5723.7500 | -30.47                  | -17          | -13.47         | Pass       |



5725.000

Mode 802.11a **Antenna** Chain 0+1 149 Channel Ant. Polar. Vertical **Detector: Peak** 20.0 dBm Limit1: www.hymwa -20 -60 5625.000 5640.00 5655.00 5670.00 5685.00 5700.00 5715.00 5730.00 5745.00 5775.00 MHz **Frequency** Peak level **Peak Limit** Margin Conclusion (MHz) (dBm) (dBm) (dB) Pass 5687.250 -40.04 -27.00 -13.04 **Pass** 

-17.00

-9.20

-26.20



5911.6667

Mode 802.11a **Antenna** Chain 0+1 165 Channel Ant. Polar. Horizontal **Detector: Peak** 10.0 dBm Limit1: 0 -10 -20 -30 -40 -50 -60 -70.0 5750.000 5775.00 5800.00 5900.00 5925.00 6000.00 MHz 5825.00 5850.00 5875.00 5950.00 **Frequency** Peak level **Peak Limit** Margin Conclusion (MHz) (dBm) (dBm) (dB) Pass 5851.6667 -38.04 -17.00-21.04

-27.00

-10.59

Pass

-37.59



5852.5000

5913.3333

Mode 802.11a **Antenna** Chain 0+1 Channel 165 Ant. Polar. Vertical **Detector: Peak** 10.0 dBm Limit1: 0 -10 -20 -30 -40 -50 -60 -70.0 5750.000 5775.00 5800.00 5825.00 5850.00 5875.00 5900.00 5925.00 5950.00 6000.00 MHz **Frequency** Peak level **Peak Limit** Margin Conclusion (MHz) (dBm) (dBm) (dB)

-17.00

-27.00

-21.52

-9.93

**Pass** 

Pass

-38.52

-36.93



5150.00

58.92



46.33

54

**Pass** 

74

| Mode                                                                                                                       |      | 802.11n(HT2                                 | 20)                                            | Ar                                 | ntenna                                                                                                                     |              | Chain (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )+1        |
|----------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------|------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Channel                                                                                                                    |      | 36                                          |                                                | Ant                                | Ant. Polar.                                                                                                                |              | Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
|                                                                                                                            |      | Detector: Pea                               | ık                                             |                                    |                                                                                                                            | D            | etector: AV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| # Agilent  Ref 117 dBpV  Peak Log 10 dB/ Offst 10 dB  LgAv  M1 S2 Start 4.500 0 GHz  *Res BW 1 MHz  Marker Trace (1) 2 (1) | Type | #UBW 3 MHZ  X fixis 5.184 4 GHz 5.150 0 GHz | Swee<br>Papiltude<br>184.51 dBpU<br>58.50 dBpU | Mkr1 5.184 4 GHz 104.51 dBpV  \$ 5 | # Agilent  Ref 117 dBµV  *Peak Log 10 dB/ Offst 10 dB  LgRv  M1 S2 Start 4.500 0 GHz  *Res BH 1 MHz  Marker Trace 11 2 (1) | *Atten 10 dE | VBM 2 kHz St Replitut 2 kHz 94.21 dB 94 | μU         |
| Frequenc                                                                                                                   | ;y   | Peak level                                  | F                                              | eak Limit                          | AV leve                                                                                                                    | ı            | AV Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Conclusion |
| (MHz)                                                                                                                      |      | (dBuv/m)                                    |                                                | (dBuv/m)                           | (dBuv/m                                                                                                                    | 1)           | (dBuv/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Conclusion |
| 5150.00                                                                                                                    |      | 58.50                                       |                                                | 74                                 | 46.88                                                                                                                      |              | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pass       |



Mode 802.11n(HT20) **Antenna** Chain 0+1 149 Channel Ant. Polar. Horizontal **Detector: Peak** 20.0 dBm Limit1: 10 0 -10 -20 -30 -40 -50 -60.0 5625.000 5640.00 5700.00 5775.00 MHz 5655.00 5670.00 5685.00 5715.00 5730.00 5745.00 **Frequency** Peak level **Peak Limit** Margin Conclusion

|   | (MHz)     | (dBm)  | (dBm)  | (dB)   | Conclusion |
|---|-----------|--------|--------|--------|------------|
|   | 5674.2500 | -38.59 | -27.00 | -11.59 | Pass       |
|   | 5724.5000 | -24.49 | -17.00 | -7.49  | Pass       |
| ٠ |           |        |        |        |            |
|   |           |        |        |        |            |



| Mode       |                                  | 802.11n( | HT20)                                        |        | An           | tenna   |        |                | Chai    | n 0+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|------------|----------------------------------|----------|----------------------------------------------|--------|--------------|---------|--------|----------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Channel    |                                  | 149      | ı                                            |        | Ant. Polar.  |         |        | Vertical       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|            |                                  |          |                                              |        | Detecto      | r: Peak | [      |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| 20.0 dBm   |                                  |          |                                              |        |              |         |        |                |         | Limit1: —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|            |                                  |          |                                              |        |              |         |        |                |         | Limiti: —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 10         |                                  |          |                                              |        |              |         |        |                | MANAMAN |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| 0          |                                  |          |                                              |        |              |         |        |                |         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|            |                                  |          |                                              |        |              |         |        |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| -10        |                                  |          |                                              |        |              |         |        | 1              |         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| -20        |                                  |          |                                              |        |              |         |        | Sylva of Wally |         | W/V/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|            |                                  |          |                                              |        |              |         |        | syw            |         | \frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fin}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fin}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\fin}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\f |    |
| -30        |                                  |          |                                              |        |              |         |        |                |         | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| -40        |                                  |          | 1<br>**<br>********************************* |        |              |         | WWW    |                |         | Mu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| hipman     | <i>ኢ.</i> /ብ <sub>ራ</sub> /ጥያላኒላ | Mandild  | andy and the said                            | M      | up paramenta | W.~~\\\ | 7      |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| -50        |                                  |          |                                              |        |              |         |        |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| -60.0      |                                  |          |                                              |        |              |         |        |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| 5625.000 5 | 640.00                           | 5655.00  | 5670.00                                      | 5685.0 | 0 5700       | 0.00 5  | 715.00 | 5730.00        | 5745.00 | 5775.00 MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | łz |
| Freque     | ncy                              | P        | eak level                                    |        | Peal         | k Limit |        | Margir         | 1       | Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| (MHz       |                                  |          | (dBm)                                        |        |              | Bm)     |        | (dB)           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| 5673.0     | 000                              |          | -39.33                                       |        | -2           | 7.00    |        | -12.33         |         | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| 5723.2     | 500                              |          | -22.27                                       |        | -1           | 7.00    |        | -5.27          |         | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1  |



Mode 802.11n(HT20) **Antenna** Chain 0+1 Channel 165 Ant. Polar. Horizontal **Detector: Peak** 10.0 dBm Limit1: 0 -10 -20 -30 -40 -50 -60 -70.Q 5750.000 5775.00 5800.00 5900.00 5925.00 5950.00 6000.00 MHz 5825.00 5850.00 5875.00 **Frequency** Peak level **Peak Limit** Margin Conclusion (MHz) (dBm) (dBm) (dB) 5852.5000 -39.41 -17.00 -22.41**Pass** 5932.5000 -38.66 -27.00 -11.66 Pass



802.11n(HT20) Mode **Antenna** Chain 0+1 Channel 165 Ant. Polar. Vertical **Detector: Peak** 10.0 dBm Limit1: 0 -10 -20 -30 -40 -50 -60 -70.0 5750.000 5775.00 5800.00 5825.00 5850.00 5875.00 5900.00 5925.00 5950.00 6000.00 MHz

| Frequency | Peak level | Peak Limit | Margin | Conclusion |  |
|-----------|------------|------------|--------|------------|--|
| (MHz)     | (dBm)      | (dBm)      | (dB)   | Conclusion |  |
| 5850.8333 | -39.02     | -17.00     | -22.02 | Pass       |  |
| 5913.3333 | -38.83     | -27.00     | -11.83 | Pass       |  |





| Mode                                                                                                                        |                      | 802.11n(HT40)     | Aı                                                                                                      | ntenna                                                                                                                                     | Chain (      | D+1        |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|
| Channel                                                                                                                     |                      | 38                | An                                                                                                      | t. Polar.                                                                                                                                  | Vertical     |            |
|                                                                                                                             |                      | Detector: Peak    |                                                                                                         |                                                                                                                                            | Detector: AV |            |
| # Agilent  Ref 117 dBµV  Peak Log 10 dB/ Offst 10 dB  LgAv  M1 S2 Start 4.500 0 GHz  Res BN 1 MHz  Marker Trace 1 (1) 2 (1) | Type<br>Freq<br>Freq | 5.193 0 GHz 101.9 | Mkr1 5.193 0 GHz 101.96 dBpV  1  Stop 5.250 0 GHz  Sweep 1.267 ms (1001 pts)  splittede 16 dBpV 33 dBpV | # Agilent  Ref 117 dBµV  Peak Log 10 dB/ Offst 10 dB  LgAv  M1 S2 Start 4.500 0 GHz  Res BW 1 MHz  Marker Trace Type 2 (1) Freq 2 (1) Freq | Atten 10 dB  | BµV        |
| Frequenc                                                                                                                    | у                    | Peak level        | Peak Limit                                                                                              | AV level                                                                                                                                   | AV Limit     | Conclusion |
| (MHz)                                                                                                                       |                      | (dBuv/m)          | (dBuv/m)                                                                                                | (dBuv/m)                                                                                                                                   | (dBuv/m)     | Conclusion |
| 5150.00                                                                                                                     |                      | 66.63             | 74                                                                                                      | 52.66                                                                                                                                      | 54           | Pass       |



Mode 802.11n(HT40) **Antenna** Chain 0+1 Channel 151 Ant. Polar. Horizontal **Detector: Peak** 10.0 dBm Limit1: 0 -10 -20 -30 -40 -50 -60 -70.d 5625.000 5640.00 5655.00 5670.00 5685.00 5700.00 5715.00 5730.00 5745.00 5775.00 MHz

| Frequency | Peak level | Peak Limit | Margin |            |
|-----------|------------|------------|--------|------------|
|           |            |            |        | Conclusion |
| (MHz)     | (dBm)      | (dBm)      | (dB)   |            |
| 5714.7500 | -28.38     | -27.00     | -1.38  | Pass       |
| 5724.5000 | -23.02     | -17.00     | -6.02  | Pass       |



802.11n(HT40) Mode **Antenna** Chain 0+1 Channel 151 Ant. Polar. Vertical **Detector: Peak** 10.0 dBm Limit1: 0 -10 -20 -30 -40 -50 -60 -70.0 5775.00 MHz 5625.000 5640.00 5655.00 5670.00 5685.00 5700.00 5715.00 5730.00 5745.00

| Frequency | Peak level | Peak Limit | Margin | Conclusion |  |
|-----------|------------|------------|--------|------------|--|
| (MHz)     | Hz) (dBm)  |            | (dB)   | Conclusion |  |
| 5714.0000 | -29.82     | -27.00     | -2.82  | Pass       |  |
| 5722.0000 | -25.21     | -17.00     | -8.21  | Pass       |  |



5854.5833

5898.7500

Mode 802.11n(HT40) **Antenna** Chain 0+1 Channel 159 Ant. Polar. Horizontal **Detector: Peak** 10.0 dBm Limit1: 0 -10 -20 -30 -40 -50 -60 -70.0 5875.00 5750.000 5775.00 5800.00 6000.00 MHz 5825.00 5850.00 5900.00 5925.00 5950.00 **Frequency** Peak level **Peak Limit** Margin Conclusion (MHz) (dBm) (dBm) (dB)

-17.00

-27.00

-21.05

-10.60

**Pass** 

**Pass** 

-38.05

-37.60



Mode 802.11n(HT40) **Antenna** Chain 0+1 Channel 159 Vertical Ant. Polar. **Detector: Peak** 10.0 dBm Limit1: 0 -10 -20 -30 -40 -50 -60 -70.Q

| Frequency | Peak level | Peak Limit | Margin | Conclusion   |  |
|-----------|------------|------------|--------|--------------|--|
| (MHz)     | (dBm)      | (dBm)      | (dB)   | 331131431011 |  |
| 5855.8333 | -37.60     | -17.00     | -20.60 | Pass         |  |
| 5930.8333 | -38.81     | -27.00     | -11.81 | Pass         |  |

5875.00

5900.00

5925.00

5950.00

6000.00 MHz

#### Note:

5750.000 5775.00

5800.00

5825.00

5850.00

- 1) Through Pre-scan transmitting mode with all kind of modulation and data rate, find the 6Mbps of rate is the worst case of 802.11a; MCS3 of rate is the worst case of 802.11n(HT20); MCS0 of rate is the worst case of 802.11n(HT40) and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading - Correct Factor Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor



## APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

See test photographs attached in Appendix 1 for the actual connections between Product and support equipment.

# APPENDIX 2 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS

Refer to Appendix 2 for EUT external and internal photographs.

\*\*\* End of Report \*\*\*

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of UnionTrust, this report can't be reproduced except in full.