Appendices

Appendix A: Parameters used in model

	Category	Description	References				
Risks/Probabilities	Death from other causes	Nonparametric	UK Lifetables. [18]				
	Sensitivity and Specificity of TTE in	Jointly estimated from Dirichlet distribution	Table 2 of Providencia et al 2012 [6]				
	detecting ABN	(FN, TP, TN, FP) =					
		(5, 87, 83, 159)					
	Proportion of patients with ABN	Beta(2.5, 22.5) for CHADS ₂	Table 2 of Providencia et al 2012 [6]				
		Beta(0.5, 11.5) for CHA ₂ DS ₂ -VASc					
		(Both with prior of 0.5 added to both cell counts.)					
	Annual stroke risk by CHADS₂ score	Annual risks (95% Credible intervals) by CHADS₂	Friberg 2012[21]				
		were reported as follows:					
		0.6% (0.5% to 0.7%) for CHADS ₂ =0					
		3.0% (2.9% to 3.2%) for CHADS ₂ =1					
		4.2% (4.0% to 4.4%) for CHADS ₂ =2					
		7.1% (6.7% to 7.5%) for CHADS ₂ =3					
		11.1% (10.4% to 11.8%) for CHADS ₂ =4					
	Annual stroke risk in those with ABN	In the initial study four out of 50 patients with	Stroke Prevention 1988 [5]				
		identified ABN had a stroke. This was used to					
		produce a mean stroke rate of 8.0% and					
		bootstrapped 95% CrIs of 7.2% to 8.2%					

T		
Relative risk (RR) of stroke in patients	Indirect comparison simulation approach. One	Lip et al 2006 for RR of warfarin compared
receiving dabigatran.	thousand simulated values from a lognormal	with placebo [22]
	distribution representing the RR of warfarin	Eikelboom et al 2011 for RR of dabigatran
	compared with placebo were multiplied by 1000	compared with warfarin[14]
	simulated values from a lognormal distribution	
	comparing dabigatran with warfarin, to produce	
	1000 estimates of the RR of dabigatran compared	
	with placebo. Mean RRs and 95% CIs/CrIs are	
	shown below:	
	Reported RR warfarin vs. placebo: 0.33 (0.24 to	
	0.45)	
	Reported RR dabigatran vs. warfarin: 0.66 (0.53 to	
	0.82)	
	Derived RR dabigatran vs. placebo: 0.22 (0.15 to	
	0.32)	
Annual major bleeding risk for patients	Stratified by age. Credible interval calculated	Eikelboom et al 2011 [14]
receiving dabigatran	using simulation approach. Annual risk reported	
	separately for people under 75 years, and people	
	aged 75 years or older. Credible intervals were	
	calculated by assuming sample sizes of 3618 for	
	people aged under 75 years and 2419 for people	
	aged 75 years or older, then sampling repeatedly	
	and taking the values 2.5% and 97.5% of the way	
	along the distributions. The central estimates	
<u> </u>		

Г	1		,
		(95% Crls) are as follows:	
		Under 75: 2.1% (1.7 to 2.6%)	
		75 and older: 5.1% (4.2% to 6.0%)	
	Relative risk (RR) of stroke in patients	Reported RR warfarin vs. placebo: 0.33 (0.24 to	Lip et al 2006 [22]
	receiving warfarin	0.45)	
	Annual major bleeding risk for patients	Stratified by age. Credible interval calculated	Eikelboom et al 2011 [14]
	receiving warfarin	using simulation approach. Annual risk reported	
		separately for people under 75 years, and people	
		aged 75 years or older. Credible intervals were	
		calculated by assuming sample sizes of 3618 for	
		people aged under 75 years and 2419 for people	
		aged 75 years or older, then sampling repeatedly	
		and taking the values 2.5% and 97.5% of the way	
		along the distributions. The central estimates	
		(95% Crls) are as follows:	
		Under 75: 3.4% (2.5 to 3.6%)	
		75 and older: 4.4% (3.6% to 5.2%)	
	Relative risk (RR) of stroke in patients	Indirect comparison simulation approach. One	Lip et al 2006 for RR of warfarin compared
	receiving rivaroxaban	thousand simulated values from a lognormal	with placebo [22]
		distribution representing the RR of warfarin	Patel et al 2011 for RR of rivaroxaban
		compared with placebo were multiplied by 1000	compared with warfarin [23]
		simulated values from a lognormal distribution	
		comparing dabigatran with warfarin, to produce	
		1000 estimates of the RR of dabigatran compared	

	with placebo. Mean RRs and 95% Cls/Crls are	
	shown below:	
	Reported RR warfarin vs. placebo: 0.33 (0.24 to	
	0.45)	
	Reported RR Rivaroxaban vs. warfarin: 0.88 (0.74	
	to 1.03)	
	Derived RR Rivaroxaban vs. placebo: 0.30 (0.20 to	
	0.41)	
Annual major bleeding risk for patients	The annual risk of bleeding given rivaroxaban was	Eikelboom et al 2011 [14]
receiving rivaroxaban	estimated indirectly by combining estimates of	Patel et al 2011 [23]
	the risk of bleed given warfarin compared with	
	placebo with estimates of the risk of bleed given	
	rivaroxiban compared with warfarin. The central	
	estimates (95% Crls) were estimated to be as	
	follows:	
	Under 75: 3.2% (2.5% to 4.0%)	
	75 or older: 4.6% (3.6% to 5.7%)	
Outcome following stroke	Simulation & mapping based approach described	Method described in report using results
	in an upcoming report.	published in Rivero-Arias et al 2010 [24]
	The proportion dying of a stroke (95% CrI) was	
	estimated to be 0.25 (0.23 to 0.27); the	
	proportion in an independent state was	
	estimated to be 0.56 (0.52 to 0.59); and the	
	proportion in an dependent state following a	

		stroke was estimated to be 0.19 (0.16 to 0.23).	
	Outcome following a major bleeding event	Previous estimates.	Simpson et al 2010 [25]
Utilities	Baseline utilities by age and gender	Regression based approach, described in full in the reference. HRQoL is estimated as a function of age and gender, using the equation for the general population.	Ara et al 2010 [26]
	Utility multiplier following stroke, utility multiplier following major non-fatal intracranial bleed	Simulation & mapping based approach described in an upcoming report. Utility multipliers (95% Crls) were estimated to be 0.822 (0.819 to 0.824) for an independent state following a stroke, and 0.482 (0.477 to 0.487) for	Method described in report results published in Rivero-Arias et al 2010 [24] See Table 2 for assumed mapping between Glasgow Outcome Scale (GOS) states and
		a dependent state following a stroke.	modified Rankin Scale (mRS) scores, and estimated utility multipliers associated with each state.
Costs	Annual cost of dabigatran Annual cost of rivaroxaban Annual cost of warfarin	£920. A fixed cost was assumed. £767. A fixed cost was assumed. £252 to £259 including monitoring costs. A uniform distribution was assumed.	NICE FAD, 2011 [27] London New Drugs Group [28] BNF [29]
	Cost of TTE Cost of death due to stroke Costs in stroke survivors	£66 £7,019 (95% Crl £6,975 to £7,064) Various. Differing according to dependent and	NHS Reference Costs [19] Sandercock et al 2002 [30] NHS Reference Costs [19]
		independent states. Subdivided into one-off and	NHS Stroke Strategy Impact Assessment [31]

	continuing costs. Estimates (95% Crls) are as	Unit Costs of Health and Social Care 2010 [32]
	follows:	
	Dependent stroke, one-off costs: £2830 (£2708 to	
	£2952)	
	Dependent stroke, continuing annual cost: £6386	
	(£5749 to £7023)	
	Independent stroke, one-off costs: £542 (£513 to	
	£571)	
	Independent stroke, continuing annual cost:	
	£3195 (£2871 to £3518)	
Costs of fatal bleed	Assumed identical to costs of death due to stroke	<u> </u>
Costs of nonfatal bleed	Major bleeds subdivided into gastrointestinal (GI)	NHS Reference Costs [19]
	and intracranial (IC). GI bleeds were assumed to	
	incur a one-off cost but no continuing costs. The	
	one-off cost (95% Crl) was £1261 (£1212 to	
	£1310).	
	For IC bleeds, the costs depended on the Glasgow	
	Outcome Scale (GOS) level of disability that they	
	cause, from GOS 2 (most severe) to GOS 5 (least	
	severe).	
	The one-off costs (95% Crls) used were as follows:	
	GOS 2: £46785 (£40895 to £53250)	
	GOS 3: £10096 (£8849 to £11363)	
	GOS 4: £27419 (£22582 to £32964)	
	- (35 ==== -,	

	GOS 5: £1261 (£1211 to £1309)	
	GOS 4 and GOS 5 states were assumed not to	
	have ongoing costs. The ongoing annual costs	
	(95% Crls) of the other states were as follows:	
	GOS 2: £50047 (£49645 to £50343)	
	GOS 3: £33949 (£33843 to £33969)	

Table 1 Parameters used in model

GOS state	Assumed equivalent to	Utility multiplier
GOS 2: vegetative state	mRS 6: dead	0
GOS 3: severely disabled	mRS 4: moderately severely disabled; and mRS 5: severely disabled	0.226 (95% CI 0.221 to 0.231)
GOS 4: moderately disabled	mRS 2: slight disability and mRS 3: moderate disability	0.642 (95% CI 0.638 to 0.645)
GOS 5: good recovery	mRS 0: no symptoms and mRS 1: no significant disability	0.895 (95% CI 0.892 to 0.898)

Table 2 Assumed relationship between GOS and mRS, and estimated utility multipliers for each GOS state

Appendix B: Sensitivity and Specificity tables

The tables below show how the mean ICER of the TTE compared with the No TTE strategy varies for each of 121 joint configurations of TTE sensitivity and specificity. D indicates that the TTE strategy is dominated by the No TTE strategy. Numbers show the ICER to the nearest £1000 (i.e. 19.2 refers to an ICER of £19 200/QALY). The code in the top left of each table refers to the patient population and OAC strategy under evaluation. (For example, W_65_0_M refers to 65 year old males with warfarin as the OAC of choice.)

W	_50						Spec	ificity						
0_	_M	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1		
	0	D	D	D	D	D	D	D	D	D	D	∞		
	0.1	D	D	D	D	D	D	D	D	D	D	8.4		
	0.2	D	D	D	D	D	D	D	D	D	D	5.7		
	0.3	D	D	D	D	D	D	D	D	D	70.7	4.9		
vity	0.4	D	D	D	D	D	D	D	D	D	26.2	4.4		
Sensitivity	0.5	D	D	D	D	D	D	D	D	>99	17.1	4.2		
Ser	0.6	D	D	D	D	D	D	D	D	65.6	13.1	4.0		
	0.7	D	D	D	D	D	D	D	D	35.0	10.9	3.8		
	0.8	D	D	D	D	D	D	D	>99	24.5	9.5	3.8		
	0.9	D	D	D	D	D	D	D	63.9	19.2	8.5	3.7		
	1	D	D	D	D	D	D	>99	40.2	16.0	7.8	3.6		
						a) W_50_0_M								
_	W_65 Specificity 0_M 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0					1								
0_	0_M		0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1		
	0	D	D	D	D	D	D	D	D	D	D	∞		
	0.1	D	D	D	D	D	D	D	D	D	D	8.9		
	0.2	D	D	D	D	D	D	D	D	D	29.8	4.9		
>	0.3	D	D	D	D	D	D	D	D	62.8	13.9	3.6		
Sensitivity	0.4	D	D	D	D	D	D	D	>99	25.0	9.3	2.9		
nsit	0.5	D	D	D	D	D	D	>99	38.8	15.9	7.1	2.5		
Se	0.6	D	D	D	D	D	>99	56.6	23.4	11.8	5.8	2.3		
	0.7	D	D	D	D	D	80.4	32.1	16.9	9.4	5.0	2.1		
	0.8	D	D	D	D	>99	42.3	22.6	13.3	7.9	4.4	1.9		
	0.9	D	D	D	>99	54.5	28.9	17.5	11.0	6.9	4.0	1.8		
	1	D	D	>99	69.3	36.1	22.1	14.4	9.5	6.1	3.6	1.7		
I/I/	65					b) V	V_65_0 Specif							
	_63 _F	0	0.1	0.2	2 0.3	0.4	<u> </u>		0.7	0.8	0.9	1		
	0	D	D.1	D.2	. 0.3	D. 3	D.	D D	D	D D	D.5	∞		
ivit)	0.1	D	D	D	D	D	D	D	D	D	>99	8.1		
Sensitivity	0.2	D	D	D	D	D	D	D	D	>99	24.4	4.6		
Se	0.3	D	D	D	D	D	D		>99	39.8	12.9	3.4		

				_		T _		_ 1			1	1 1	
	0.4	D	D	D	D	D		D	>99	54.5	21.0	9.0	2.8
}	0.5	D	D	D	D	D	-	99	68.6	28.8	14.4	7.0	2.5
	0.6	D	D	D	D	>99		2.0	36.5	19.8	11.1	5.8	2.3
,	0.7	D	D	D	>99	94.7		4.1	25.1	15.2	9.1	5.0	2.1
	8.0	D	D	>99	>99	51.4		0.3	19.2	12.4	7.8	4.5	2.0
	0.9	D	>99	>99	58.4	35.4		3.2	15.7	10.6	6.9	4.1	1.9
	1	>99	>99	65.4	40.4	27.2		8.9	13.3	9.2	6.1	3.7	1.8
						c)		5_0_I					
	_50		Sen										_
0_	<u>_M</u>	0	0.1	0.2		0.4	0.5	+		0.7	8.0	0.9	1
	0	D	D	D	D	D	D)	D	D	D	8
	0.1	D	D	D	D	D	D)	D	D	D	7.5
	0.2	D	D	D	D	D	D	[)	D	D	D	5.1
	0.3	D	D	D	D	D	D)	D	D	38.2	4.3
Specificity	0.4	D	D	D	D	D	D	+)	D	D	19.0	3.9
ecif	0.5	D	D	D	D	D	D	[)	D	82.0	13.3	3.6
Sp	0.6	D	D	D	D	D	D	[)	D	35.4	10.5	3.5
	0.7	D	D	D	D	D	D	[)	>99	23.2	8.9	3.3
	0.8	D	D	D	D	D	D	[) !	54.8	17.7	7.8	3.2
	0.9	D	D	D	<u>D</u>	<u>D</u>	D	>9	99 3	34.4	14.5	7.1	3.2
	1	D	D	D	<u>D</u>	<u>D</u>	D	78	3.5	25.5	12.4	6.5	3.1
		1				d)		_0_N					
R_	_50		Sensitivity										
0	_ <i>F</i>	0	0.1	0.2	0.2 0.3 0.4 0				.6	0.7	0.8	0.9	1
	0	D	D	D	D	D	D	١	D	D	D	D	∞
	0.1	D	D	D	D	D	D	١	D	D	D	D	7.5
	0.2	D	D	D	D	D	D		D	D	D	D	5.2
	0.3	D	D	D	D	D	D	ı	D	D	D	35.2	4.4
ity	0.4	D	D	D	D	D	D	ı	D	D	D	19.1	4.0
Specificity	0.5	D	D	D	D	D	D	ı	D	D	63.0	13.7	3.8
Spe	0.6	D	D	D	D	D	D		D	D	32.9	11.0	3.7
•	0.7	D	D	D	D	D		+		90.7	22.9	9.4	3.6
	0.8	D	D	D	D	D	D			46.8	17.9	8.3	3.5
	0.9	D	D	D	D	D	D	+		32.2	14.9	7.5	3.4
	1	D	D	D	D	D	D			24.8	12.9	6.9	3.4
1 D D D D D 0.7 24.8 12.9 6.9 3. e) R_50_0_F										3.7			
R_	65					-,		sitivi					
o_		0	0.1	0.2	0.3	0.4		0.5	0.6	0.7	0.8	0.9	1
	0	D	D	D	D	D		D	D	D	D	D	∞
		D	D	D	D	D		D	D	D	D	>99	8.0
_	0.1				-				D	D	>99		4.4
ficity	0.1	D	D	D	D	D		D					
ecificity	0.2	D	+		-				1			_	
Specificity			D D D	D D D	D D	D D		D D	D >99	>99	31.5	10.8	

0.6	D	D	D	D	>99	59.1	28.2	15.7	9.0	4.8	1.9
0.7	D	D	D	>99	66.7	33.4	19.6	12.1	7.4	4.1	1.7
0.8	D	D	>99	73.8	38.4	23.4	15.2	9.9	6.3	3.6	1.6
0.9	D	>99	80.3	<u>43.2</u>	<u>27.1</u>	18.1	12.4	8.4	5.5	3.3	1.5
1	>99	86.3	47.7	<u>30.6</u>	<u>21.0</u>	14.8	10.5	7.3	4.9	3.0	1.4

f) R_65_0_M

R_	65		Sensitivity											
0_	_F	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1		
	0	D	D	D	D	D	D	D	D	D	D	8		
	0.1	D	D	D	D	D	D	D	D	D	77.0	7.3		
	0.2	D	D	D	D	D	D	D	D	65.3	17.4	4.1		
	0.3	D	D	D	D	D	D	>99	61.4	23.9	10.1	3.0		
city	0.4	D	D	D	D	D	>99	59.5	28.4	14.8	7.3	2.4		
Specificity	0.5	D	D	D	D	>99	58.3	31.7	18.6	10.9	5.8	2.1		
Spe	0.6	D	D	>99	>99	57.5	34.2	21.8	14.0	8.7	4.8	1.9		
	0.7	D	>99	>99	57.0	36.3	24.4	16.7	11.3	7.3	4.2	1.7		
	0.8	>99	93.2	56.6	37.9	26.6	19.0	13.6	9.5	6.3	3.7	1.6		
	0.9	87.0	56.2	39.3	<u>28.5</u>	<u>21.1</u>	15.6	11.5	8.2	5.6	3.4	1.5		
	1	56.0	40.4	30.1	22.9	<u>17.5</u>	13.3	10.0	7.3	5.0	3.1	1.5		

g) R_65_0_F

D_	65	Sensitivity											
0_M		0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	
	0	D	D	D	D	D	D	D	D	D	D	∞	
	0.1	D	D	D	D	D	D	D	D	D	44.1	6.8	
	0.2	D	D	D	D	D	D	D	>99	36.0	12.8	3.6	
	0.3	D	D	D	D	D	>99	84.7	33.4	16.2	7.6	2.5	
city	0.4	D	D	D	D	>99	62.0	32.0	18.3	10.5	5.5	1.9	
Specificity	0.5	D	D	>99	>99	52.3	31.2	19.8	12.7	7.9	4.3	1.6	
Spe	0.6	>99	>99	79.3	46.9	30.7	20.9	14.4	9.8	6.3	3.6	1.4	
	0.7	>99	66.5	43.5	30.3	21.8	15.8	11.4	8.0	5.3	3.1	1.2	
	0.8	58.8	41.1	30.0	22.4	16.9	12.7	9.4	6.7	4.5	2.7	1.1	
	0.9	39.3	29.8	22.9	<u>17.8</u>	<u>13.8</u>	10.6	8.0	5.8	4.0	2.4	1.0	
	1	29.6	23.4	18.6	<u>14.8</u>	<u>11.7</u>	9.2	7.0	5.2	3.6	2.2	1.0	

h) D_65_0_M

D_65						Se	nsitivit	У				
0_F		0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
	0	D	D	D	D	D	D	D	D	D	D	8
جړ	0.1	D	D	D	D	D	D	D	D	>99	28.3	6.2
Specificity	0.2	D	D	D	D	D	>99	>99	46.8	23.8	11.2	3.3
рәс	0.3	D	D	>99	>99	99.6	57.0	35.4	22.2	13.4	7.1	2.4
5	0.4	>99	>99	97.7	63.5	43.6	30.6	21.5	14.7	9.5	5.3	1.9
	0.5	96.6	67.9	49.8	37.2	28.0	21.0	15.5	11.0	7.4	4.3	1.6

	0.6	54.5	42.5	33.5	26.4	20.7	16.1	12.2	8.9	6.1	3.6	1.4	
	0.7	38.1	31.0	25.3	20.5	16.5	13.0	10.1	7.5	5.2	3.1	1.3	
	0.8	29.3	24.5	20.4	16.8	13.7	11.0	8.6	6.4	4.5	2.8	1.2	
	0.9	23.9	20.2	17.1	<u>14.3</u>	<u>11.8</u>	9.5	7.5	5.7	4.0	2.5	1.1	
	1	20.1	17.3	14.7	<u>12.4</u>	<u>10.3</u>	8.4	6.7	5.1	3.6	2.3	1.1	
i) D 65 0 F													

Table 3 Effect of assumed sensitivity and specificity of device on estimated cost effectiveness. D: dabigatran; W: Warfarin; R: rivaroxaban; M: Male; F: Female; 65: 65 years old; 50: 50 years old

Appendix C: Simulated clinical outcomes

Introduction

This appendix shows the simulated clinical outcomes for each of the patient, OAC and TTE strategies which were simulated. Values are presented to as many decimal places as are required to show differences in outcomes. Two different ages at diagnosis were simulated: aged 65 at diagnosis, and aged 50 years at diagnosis. All patients were assumed to have a CHADS₂ score of zero at diagnosis.

				Cause of Death (%)			Average Number of Events					
OAC	Patient population	Strategy	Life	Stroke	Bleed	Other	Dependent	Independent	ICH	NICH		
			Years				Strokes	Strokes				
	Male, 50 years old	Without TTE	28.840	11.7	1.3	87.1	0.120	0.242	0.010	0.075		
	iviale, 30 years old	With TTE	28.928	10.8	1.8	87.4	0.111	0.223	0.014	0.112		
	Female, 50 years old	Without TTE	31.633	13.5	1.6	84.9	0.139	0.278	0.012	0.091		
Warfarin	remaie, so years ord	With TTE	31.734	12.6	2.1	85.2	0.130	0.259	0.017	0.130		
374114111	Male, 65 years old	Without TTE	17.131	9.0	0.9	90.2	0.087	0.192	0.007	0.052		
	The state of the s	With TTE	17.204	8.0	1.3	90.7	0.078	0.172	0.010	0.079		
	Female, 65 years old	Without TTE	19.447	10.6	1.1	88.3	0.105	0.225	0.009	0.065		
		With TTE	19.531	9.6	1.6	88.8	0.096	0.205	0.012	0.095		
	Male, 50 years old	Without TTE	28.861	11.5	1.3	87.2	0.117	0.239	0.010	0.075		
		With TTE	28.963	10.5	1.8	87.6	0.108	0.219	0.014	0.113		
	Female, 50 years old	Without TTE	31.657	13.3	1.6	85.1	0.136	0.275	0.012	0.091		
Rivaroxaban		With TTE	31.772	12.4	2.1	85.5	0.127	0.255	0.017	0.130		
	Male, 65 years old	Without TTE	17.141	8.8	0.9	90.3	0.085	0.190	0.007	0.052		
	, 20 , 500	With TTE	17.221	7.8	1.3	90.9	0.076	0.169	0.010	0.080		
	Female, 65 years old	Without TTE	19.460	10.5	1.1	88.4	0.103	0.223	0.009	0.066		
	. ca.c, co years old	With TTE	19.554	9.4	1.6	89.0	0.093	0.201	0.012	0.096		
Dabigatran	Male, 65 years old	Without TTE	17.158	8.6	0.9	90.5	0.081	0.188	0.007	0.053		
	Female, 65 years old	With TTE	17.251	7.5	1.3	91.2	0.072	0.163	0.010	0.081		

Table 4 Simulated Clinical Outcomes

Appendix D: Scatterplots of estimated difference in costs and health outcomes from probabilistic sensitivity analysis

Table 5 Scatterplots of estimated differences in health outcomes (in QALYs) and cost between the TTE and no TTE strategy for the ten populations simulated. QALY: Quality-adjusted life years. TTE: transthoracic echocardiography

Appendix E: Summary of cost-effectiveness results of TTE compared with no TTE strategies for the 10 patient populations under consideration

OAC	Patient	Strategy	Mean Cost	Mean	ICER (95% Crl), £/QALY	TTE
	Population		(£)	QALY		dominated?
Warfarin	Male,	No TTE	2459	13.60	-26 489	Yes
	Aged 50	TTE	4712	13.51	(-26 552 to -26 408)	
	Female,	No TTE	2815	14.27	-34 078	Yes
	Aged 50	TTE	5405	14.19	(-34 175 to -33 952)	
	Male,	No TTE	1527	9.12	66 793	No
	Aged 65	TTE	2467	9.13	(66 217 to 67 599)	
	Female,	No TTE	1974	9.94	39 485	No
	Aged 65	TTE	3106	9.97	(39 291 to 39 754)	
Rivaroxaban	Male,	No TTE	2449	13.61	-34 060	Yes
	Aged 50	TTE	4614	13.54	(-34 170 to -33 910)	
	Female,	No TTE	2779	14.27	-47 535	Yes
	Aged 50	TTE	5315	14.22	(-47 773 to -47 271)	
	Male,	No TTE	1510	9.12	30 310	No
	Aged 65	TTE	2393	9.15	(30 179 to 30 487)	
	Female,	No TTE	1955	9.95	22 751	No
	Aged 65	TTE	3039	9.99	(22 681 to 22 844)	
Dabigatran	Male,	No TTE	1487	9.13	14 728	No
	Aged 65	TTE	2321	9.18	(14 693 to 14 782)	
	Female,	No TTE	1942	9.95	12 314	No
	Aged 65	TTE	2946	10.01	(12 290 to 12 348)	

Table 6 Summary of cost effectivness results. ICER: Incremental cost effectivness ratio. TTE: transthoracic echocardiography; QALY: Quality-adjusted life year. Dominated: the strategy is both more expensive and less effective than the strategy to which it is compared

Appendix F: Cost effectiveness acceptability frontiers

Introduction

This section presents cost-effectiveness acceptability frontiers (CEAFs) of the with- and without-TTE strategies for each of the scenarios presented in appendix D and elsewhere. CEAFs differ from cost-effectiveness acceptability curves (CEACs) as they plot, for each willingness-to-pay threshold, only the option with the highest expected net benefit. They therefore show uncertainty in the adoption decision. As there are only two options (the With TTE Strategy and the Without TTE Strategy) there is no loss of information, as the cost effectiveness of each option is simply the complement of (i.e. one minus) the other option.

Table 7 Scatterplots of estimated differences in health outcomes (in QALYs) and cost between the TTE and no TTE strategy for the ten populations simulated. QALY: Quality-adjusted life years. TTE: transthoracic echocardiography

Appendix G: Full Incremental Analyses

Introduction

This appendix presents full incremental analyses, including efficiency frontiers, for the following four patient groups:

- Males, aged 50 years at diagnosis
- Females, aged 50 years at diagnosis
- Males, aged 65 years at diagnosis
- Females, aged 65 years at diagnosis

Males, aged 50 years at diagnosis

The cost-effectiveness plane for this patient group is shown in Figure 1. Of the four strategies evaluated, the No TTE strategy, using Rivaroxaban as the OAC of choice, is estimated to dominate all the other three options.

Figure 1 Cost-effectiveness plane of mean costs and mean QALYs for males aged 50 years at diagnosis. Warf: Warfarin; Riv: Rivaroxaban; TTE: Transthoracic Echocardiography

Females, aged 50 years at diagnosis

The cost-effectiveness plane for this patient group is shown in Figure 2. As for males of the same age, of the four strategies evaluated, the No TTE strategy, using Rivaroxaban as the OAC of choice, is estimated to dominate all the other three options. However, the differences in estimated cost and QALY benefit between this option and the No TTE strategy using Warfarin as the OAC of choice are extremely small.

Figure 2 Cost-effectiveness plane of mean costs and mean QALYs for females aged 50 years at diagnosis. Warf: Warfarin; Riv: Rivaroxaban; TTE: Transthoracic Echocardiography

Males, aged 65 years at diagnosis

The cost-effectiveness plane for this patient group is shown in Figure 3. Of the six strategies evaluated, the No TTE strategy using dabigatran as the OAC of choice (Dab, No TTE) is estimated to be the lowest cost option, and so forms the start of the efficiency frontier. The equivalent TTE strategy (Dab, TTE) forms the next and final part of the efficiency frontier, with an ICER, compared

with Dab, No TTE, of £14 728 / QALY, as shown in Appendix E. All other options are ruled out by simple or extended dominance.

Figure 3 Cost-effectiveness plane of mean costs and mean QALYs for males aged 65 years at diagnosis. Warf: Warfarin; Riv: Rivaroxaban; Dab: Dabigatran; TTE: Transthoracic Echocardiography

Females, aged 65 years at diagnosis

The cost-effectiveness plane for this patient group is shown in Figure 4. As for males of the same age, of the six strategies evaluated, the strategy Dab, No TTE is estimated to be the cheapest, and so forms the start of the efficiency frontier. The next and final option in the frontier is the strategy Dab, TTE, with an ICER of £12 314 / QALY, as shown in Appendix E. All other options are estimated to be ruled out by simple or extended dominance. However, the absolute differences in costs and QALYs between the Riv. No TTE and Dab. No TTE options are extremely small.

Figure 4 Cost-effectiveness plane of mean costs and mean QALYs for females aged 65 years at diagnosis. Warf: Warfarin; Riv: Rivaroxaban; Dab: Dabigatran; TTE: Transthoracic Echocardiography

Appendix H: Additional Exploratory Analysis – the relationship between true prevalence of LAABN and mean ICER

Introduction

This appendix illustrates how the ICER of the TTE with the No TTE strategies change, for each of the four patient groups, and each of the OACs, as a function of the estimated proportion of the patients with LA ABN, here defined as true proportion high risk (TPHR). In this sensitivity analysis, TPHR is varied between 0 and 20%.

As before, it is assumed that the OACs to be considered are warfarin and rivaroxaban for persons aged 50 years at diagnosis; and warfarin, rivaroxaban and dabigatran for person aged 65 years at diagnosis.

It is seen in all analyses (Figure 5 to Figure 8) that higher estimates of TPHR lead to lower ICERs and so greater cost-effectiveness of using TTE for the OAC decision at any given willingness to pay threshold. It is also seen that the rank order of the cost-effectiveness of each OAC is preserved; i.e. that at any TPHR, rivaroxaban has a lower ICER than warfarin in persons aged 50 at diagnosis, and dabigatran is estimated to have the lowest ICER in persons aged 65 at diagnosis.

Persons aged 50 years at diagnosis

Figure 5 shows how the mean ICER varies for males aged 50 years at diagnosis; Figure 6 presents the equivalent estimates for females. Gender has a smaller influence on the relationship between TPHR and ICER than the OAC assumed to be prescribed if the feature were identified. Where warfarin is assumed to be the OAC of choice, using TTE in this way is not estimated to be cost-effective at a high willingness-to-pay threshold of £30,000/QALY. By contrast, the ICER of TTE is estimated to be below £30,000/QALY when rivaroxaban is assumed to be the OAC prescribed following a positive identification

Figure 5 Relationship between mean ICER and True Proportion High Risk (TPHR) for males aged 50 years at diagnosis, if either warfarin or rivaroxaban was the OAC of choice

Figure 6 Relationship between mean ICER and True Proportion High Risk (TPHR) for females aged 50 years at diagnosis, if either warfarin or rivaroxaban was the OAC of choice

Persons aged 65 years at diagnosis

Figure 7 shows how the mean ICER varies for males aged 65 years at diagnosis; Figure 8 presents the equivalent estimates for females. Dabigatran is now assumed to be an option for these patient groups, and uses of TTE involving dabigatran are estimated to have lower ICERs regardless of the TPHR level assumed. At higher TPHR estimates, the differences in ICERs in TTE strategies involving different OAC options decreases, and is substantially below £20,000/QALY regardless of OAC assumed. As with the scenarios involving persons diagnosed at the aged of 50 years, the OAC assumed appears to have much greater effect on estimated cost effectiveness than gender.

Figure 7 Relationship between mean ICER and true proportion high risk (TPHR) for males aged 50 years at diagnosis, if either warfarin, dabigatran or rivaroxaban was the OAC of choice

Figure 8 Relationship between mean ICER and True Proportion High Risk (TPHR) for females aged 65 years at diagnosis, if either warfarin, dabigatran or rivaroxaban was the OAC of choice