## **Supplementary information for**

Design and performance of the Climate Change Initiative Biomass global retrieval algorithm

by Santoro, M., Cartus, O., Quegan, Q., Kay, H., Lucas, R.M., Araza, A., Herold, M., Labrière, N., Chave, J., Rosenqvist, Å., Tadono, T., Kobayashi, K., Kellndorfer, J., Avitabile, V., Brown, H., Carreiras, J., Campbell, M.J., Cavlovic, J., da Conceição Bispo, P., Gilani, H., Khan, M.L., Kumar, A., Lewis, S.L., Liang, J., Mitchard, E.T.A., Pacheco Pascagaza, A.M., Phillips, O., Ryan, C.M., Salkia, P., Schepaschenko, D., Sukhdeo, H., Verbeeck, H., Vieilledent, G., Wijaya, A., Willcock, S., Seifert, F.M.



**Red boxes: Distributed Computing on AWS** 

Figure S1. Processing workflow for the ALOS-2 PALSAR-2 FB mode image dataset. The processing was implemented on the Amazon Web Services (AWS).



Figure S2. Flowchart of the Sentinel-1 data pre-processing



Figure S3. Map of the average correlation coefficient for Sentinel-1 backscatter observations (year 2020, VH-polarization) acquired in the same month.



Figure S4. Maps of average canopy height and corresponding number of ICESat GLAS LiDAR footprints for a grid cell spacing of 0.1°.



Figure S5. Tree cover for the year 2010 (Hansen et al., 2013).



Figure S6. Locations of forest inventory plots stratified by Tier. T



Figure S7. Map illustrating the coverage of AGB values at sub-national or national level based on NFI measurements and reports.



Figure S8. Map of the coefficient q in Eq. (3) per combination of Terrestrial Ecoregions of the World dataset and  $1^{\circ} \times 1^{\circ}$  grid cells, obtained through least squares regression of ICESat GLAS metrics of canopy height and canopy density within each ecoregion after filtering (Kay et al., 2021). Ecoregions in white had no footprints.



Figure S9. Strata used to split the database of AGB and LiDAR canopy height statistics.



Figure S10. Comparison of AGB estimated from Eq. (4) using published functions and functions developed in this study for tropical regions (top left panel) and extra-tropical regions (bottom left panel) (Asner and Mascaro, 2014; Coomes et al., 2017; Labriere et al., 2018; Labriere, unpublished; Jha et al., 2020; Dalponte et al., 2019; Santoro et al., 2021). The panels on the right hand-side shows predicted AGB for sites in Brazil (top right panel) and U.S. East (bottom right panel) using the AGB = f(h) functions derived in this study (solid curves) and published in literature (dashed curves) at C- and L-band.

## Tile: N46E011



Figure S11. Example of raster images of the estimates of  $\sigma_{gr}^0$  and  $\sigma_{veg}^0$  (bottom row) for the Sentinel-1 tiled image used in Fig. 9. The top row shows the image of the SAR backscatter and the image of the local incidence angle. The raster images of  $\sigma_{gr}^0$  and  $\sigma_{veg}^0$  show a slight decrease of the backscatter coefficients for increasing incidence angle following the quadratic function fitted to the five estimates of  $\sigma_{gr}^0$  and  $\sigma_{veg}^0$  for local incidence angle in Fig. 9.



Figure S12. Detailed views of the AGB map for the region of Bratsk, Central Siberia, (a) and along the Trans-Amazonian Highway, between the cities of Uruará and Altamira, Brazil (b). Panels (c) and (d) are optical imagery from Google Earth and serve as reference for each of the AGB maps. The region displayed in panels (a) and (c) consists of forests dominated by boreal coniferous species with AGB up to 200 Mg ha<sup>-1</sup>. Clear-cuts due to intensive logging, visible in the Google Earth image in the form of yellow rectangles, appear in the AGB map as white, i.e., with a value close to 0 Mg ha<sup>-1</sup>. The region displayed in panels (b) and (d) show a detail of the forest along the Trans-Amazonian Highway.



Fig. S13. Map of the spatial distribution of estimation errors at grid cell level. Errors are defined as the difference between map-based and plot-based average AGB per grid cell. The color bar is constrained between  $\pm$  150 Mg ha<sup>-1</sup> to enhance the contrast.



Fig. S14. Comparisons between the map-based and the plot-based AGB values spatially averaged to 0.1° (grey circles) used in Santoro et al. (2021). The data are grouped for the same regions as in Fig. 18. In each panel, the map-based AGBs were also binned over 10 Mg ha<sup>-1</sup> wide ranges with filled circles representing the median mapped AGB per bin. The color bars represent the number of grid cells within a given AGB interval. Each panel includes the root mean square difference (RMSD) between map and field inventory AGB relative to the mean value of the reference AGB and the bias, i.e. the difference between mean values of the map AGB and the reference AGB. The asterisks on the identity line represent the maximum AGB in each region.

Table S1. Metadata of the Tier 1 field inventory dataset of AGB.

| ID           | Average<br>year | Average size ha | Biome                                                           | Reference / source                                                                                                                      |
|--------------|-----------------|-----------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| AFR_FOS      | 2013            | 0.25            | Tropical rainforest                                             | (Schepaschenko et al., 2019)                                                                                                            |
| AFR_GH<br>A  | 2010            | 0.1             | Tropical rainforest                                             | (Brown et al., 2020)                                                                                                                    |
| AFR_KE<br>N  | 2011            | 0.09            | Tropical and subtropical grasslands, savannas and shrublands    | n/a (private sharing)                                                                                                                   |
| AFR1         | 2010            | 0.5             | Tropical rainforest                                             | (Hirsh et al., 2013)                                                                                                                    |
| AFR12        | 2010            | 0.16            | Tropical rainforest                                             | (Avitabile et al., 2012)                                                                                                                |
| AFR15        | 2013            | 0.25            | Tropical dry and mosit forest                                   | (Vieilledent et al., 2016)                                                                                                              |
| AFR4         | 2012            | 0.13            | Tropical mountain system                                        | (DeVries et al., 2012)                                                                                                                  |
| AFR5         | 2012            | 0.08            | Tropical rainforest                                             | (Vaglio Laurin et al., 2016)                                                                                                            |
| AFR9         | 2016            | 0.13            | Tropical dry forest                                             | (Carreiras et al., 2012)                                                                                                                |
| ASI_IND      | 2018            | 0.5             | Tropical and subtropical dry broadleaf forest                   | n/a (private sharing)                                                                                                                   |
| ASI_NEP      | 2022            | 0.1             | Temperate broadleaf and mixed forests                           | (Khanal et al., 2023)                                                                                                                   |
| ASI_NEP 2    | 2022            | 0.1             | Temperate broadleaf and mixed forests                           | n/a (private sharing)                                                                                                                   |
| ASI_PAK      | 2022            | 0.1             | Temperate broadleaf and mixed forests                           | n/a (private sharing)                                                                                                                   |
| ASI1         | 2010            | 0.05            | Tropical mountain system and rainforest                         | (Avitabile et al., 2016)                                                                                                                |
| ASI2         | 2011            | 0.11            | Tropical dry forest                                             | (WWF and ÖBf, 2013)                                                                                                                     |
| ASI4         | 2010            | 0.02            | Tropical dry forest                                             | (Wijaya et al., 2015)                                                                                                                   |
| ASI9         | 2012            | 0.13            | Tropical rainforest                                             | (Avitabile, 2014)                                                                                                                       |
| AUS1         | 2012            | 0.1             | Subtropical steppe                                              | (Paul et al., 2016)                                                                                                                     |
| EU_FOS       | 2015            | 0.28            | Boreal forests                                                  | (Schepaschenko et al., 2019)                                                                                                            |
| EU_FOS       | 2016            | 0.2             | Different biomes                                                | (Schepaschenko et al., 2019)                                                                                                            |
| EU1          | 2011            | 0.01            | Temperate broadleaf and mixed forests and Boreal forests        | https://www.slu.se/en/<br>Collaborative-Centres-and-<br>Projects/the-swedish-national-<br>forest-inventory/listor/sample-<br>plot-data/ |
| EU2          | 2010            | 0.2             | Mediterranean forests                                           | https://www.miteco.gob.es/es/<br>biodiversidad/servicios/banco-<br>datos-naturaleza/informacion-<br>disponible/ifn3.html                |
| EU3          | 2013            | 0.06            | Temperate oceanic forest                                        | (Schelhaas et al., 2014)                                                                                                                |
| EU4          | 2010            | 0.06            | Temperate broadleaf and mixed forests and Mediterranean forests | (Cienciala et al., 2008)                                                                                                                |
| NAM_JU<br>NI | 2022            | 0.1             | Temperate woodlands                                             | (Campbell et al., 2024)                                                                                                                 |
| NAM_TU<br>ND | 2012            | 0.3             | Tundra                                                          | n/a (private sharing)                                                                                                                   |
| NAM1         | 2010            | 0.04            | Boreal coniferous forest                                        | (Liang et al., 2015)                                                                                                                    |

| NAM3         | 2010 | 0.03 | Temperate continental forest | n/a (private sharing)                                |
|--------------|------|------|------------------------------|------------------------------------------------------|
| NAM4         | 2010 | 0.04 | Temperate mountain system    | n/a (private sharing)                                |
| SAM_BAJ      | 2017 | 0.25 | Tropical rainforest          | (Pacheco-Pascagaza et al., 2018)                     |
| SAM_FO       | 2011 | 0.25 | Tropical rainforest          | (Schepaschenko et al., 2019)                         |
| SAM_GU<br>Y  | 2019 | 0.1  | Tropical rainforest          | n/a (private sharing)                                |
| SAM_TA<br>PA | 2010 | 0.5  | Tropical rainforest          | (Bispo et al., 2014)                                 |
| SAM2         | 2013 | 0.23 | Tropical rainforest          | https://<br>www.paisagenslidar.cnptia.embra<br>pa.br |
| SAM3         | 2011 | 0.13 | Tropical rainforest          | (Brown et al., 2014)                                 |
| SAM4         | 2014 | 0.15 | Tropical rainforest          | (Goodman et al., 2014)                               |
| SAM5         | 2014 | 0.6  | Tropical rainforest          | n/a (private sharing)                                |

Table S2. Metadata of the Tier 2 field inventory dataset of AGB.

| ID      | Average<br>year | Average size ha | Biome               | Reference / source                                   |
|---------|-----------------|-----------------|---------------------|------------------------------------------------------|
| AFR_FOS | 2014            | 1               | Tropical rainforest | (Schepaschenko et al., 2019)                         |
| AUS1    | 2010            | 1               | Subtropical steppe  | (Paul et al., 2016)                                  |
| AFR7    | 2012            | 1               | Tropical rainforest | (Lewis et al., 2013)                                 |
| AFR6    | 2010            | 1               | Tropical dry forest | (Willcock et al., 2014)                              |
| EU_FOS  | 2016            | 2               | Different biomes    | (Schepaschenko et al., 2019)                         |
| SAM_FO  | 2010            | 1               | Tropical rainforest | (Schepaschenko et al., 2019)                         |
| SAM_RF  | 2010            | 1               | Tropical rainforest | (Lopez□Gonzalez et al., 2011)                        |
| SAM_BAJ | 2017            | 1               | Tropical rainforest | (Pacheco-Pascagaza et al., 2018)                     |
| SAM2    | 2013            | 1               | Tropical rainforest | https://<br>www.paisagenslidar.cnptia.embra<br>pa.br |

Table S3. Metadata of the Tier 3 field inventory dataset of AGB.

| ID          | Average<br>year | Average size<br>ha | Biome               | Reference / source            |
|-------------|-----------------|--------------------|---------------------|-------------------------------|
| AUS1        | 2010            | 25                 | Subtropical steppe  | (Paul et al., 2016)           |
| EU_FOS      | 2014            | 16.25              | Boreal forests      | (Schepaschenko et al., 2019)  |
| SAM_FO<br>S | 2010            | 7.8                | Tropical rainforest | (Schepaschenko et al., 2019)  |
| SAM_RF      | 2010            | 6                  | Tropical rainforest | (Lopez□Gonzalez et al., 2011) |

Table S4. Metadata of the sub-national averages of AGB.

| Country        | No.<br>units | Type of unit       | Variable | Year      | Reference / URL                                                                                                                      |
|----------------|--------------|--------------------|----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------|
| Albania        | 1            | Country            | AGB      | ~ 2015    | (Avitabile and Camia, 2018)                                                                                                          |
| American Samoa | 1            | Country            | AGB      | 2012      | https://apps.fs.usda.gov/fiadb-api/evalidator                                                                                        |
| Argentina      | 6            | Ecoregion          | AGB      | 2017      | https://www.argentina.gob.ar/ambiente/bosques/segundo-<br>inventario-nacional-bosques-nativos                                        |
| Australia      | 8            | Territory          | AGB      | 2016      | https://www.agriculture.gov.au/abares/forestsaustralia/sofr/sofr-2018/                                                               |
| Bangladesh     | 5            | Socioeconomic zone | AGB      | 2016-2019 | (Henry et al., 2021)                                                                                                                 |
| Belarus        | 6            | Province           | GSV      | 2010      | http://www.metla.fi/julkaisut/workingpapers/2010/<br>mwp170.pdf                                                                      |
| Belize         | 1            | Country            | AGB      | 2018      | https://openknowledge.fao.org/server/api/core/bitstreams/bf057fe4-5bbb-49f1-a82d-2051716ec388/content                                |
| Bhutan         | 20           | Province           | GSV      | 2012-2015 | http://www.bhutantrustfund.bt/wp-content/uploads/2018/11/<br>National-Forest-Inventory-Report-VolI-DoFPS.pdf                         |
| Bosnia         | 1            | Country            | AGB      | ~ 2015    | (Avitabile and Camia, 2018)                                                                                                          |
| Brazil         | 6            | Ecoregion          | AGB      | 2018      | https://snif.florestal.gov.br/images/pdf/publicacoes/<br>Brazilian_Forests_2019_Ingles.pdf                                           |
| Bulgaria       | 1            | Country            | AGB      | ~ 2015    | (Avitabile and Camia, 2018)                                                                                                          |
| Burkina Faso   | 13           | Province           | AGC      | 2014      | http://cns.bf/IMG/pdf/<br>rapport_second_inventaire_forestier_national2.pdf                                                          |
| Cabo Verde     | 9            | Island             | AGB      | 2012      | http://www.caboverdeifn.ifer.cz/?page_id=79                                                                                          |
| Cambodia       | 3            | Ecoregion          | AGB      | 2014      | https://cambodia-redd.org/wp-content/uploads/2016/01/Forest-<br>biomass-in-Cambodia-from-field-plots-to-national-<br>estimates.pdf   |
| Canada         | 12           | Ecozone            | AGB      | 2006-2017 | https://nfi.nfis.org/en/standardreports                                                                                              |
| Chile          | 11           | Region             | GSV      | 2020      | https://ifn.infor.cl/index.php/descargas-recursos/descargas/category/2-documentos-inventario-forestal                                |
| China          | 31           | Province           | AGB      | 2014-2018 | http://www.china-ceecforestry.org/wp-content/uploads/<br>2019/08/Forest-Resources-in-China—The-9th-National-<br>Forest-Inventory.pdf |

| Colombia                         | 5  | Biogeografic region | AGB            | 2015-2019   | https://openknowledge.fao.org/server/api/core/bitstreams/bf057fe4-5bbb-49f1-a82d-2051716ec388/content                          |
|----------------------------------|----|---------------------|----------------|-------------|--------------------------------------------------------------------------------------------------------------------------------|
| Comores                          | 3  | Island              | AGB            | 2010        | https://www.fao.org/forest-resources-assessment/fra-2020/<br>country-reports/en/                                               |
| Congo                            | 5  | Ecoregion           | CO2 equivalent | 2014        | https://www.fao.org/3/cb2941fr/cb2941fr.pdf                                                                                    |
| Costa Rica                       | 11 | Life zone           | CO2 equivalent | 2014-2015   | https://www.sirefor.go.cr/Sirefor/publicaciones_tabla?<br>nombre=INF                                                           |
| Croatia                          | 1  | Country             | AGB            | $\sim 2015$ | (Avitabile and Camia, 2018)                                                                                                    |
| Cyprus                           | 1  | Country             | AGB            | ~ 2015      | (Avitabile and Camia, 2018)                                                                                                    |
| Democratic Republic of the Congo | 26 | Province            | AGB            | 2011-2016   | https://medd.gouv.cd/wp-content/uploads/2020/10/NERF-de-la-RDC.pdf                                                             |
| Dominican Republic               | 4  | Ecoregion           | AGB            | 2018        | https://fdocuments.ec/document/informe-final-inventario-<br>nacional-forestal-de-repblica-ndice-elaboracin.html                |
| Ecuador                          | 9  | Ecoregion           | AGC            | 2009-2013   | http://enf.ambiente.gob.ec/web_enf/?page_id=1239                                                                               |
| El Salvador                      | 4  | Ecoregion           | AGB            | 2018        | https://cidoc.marn.gob.sv/documentos/inventario-nacional-de-<br>bosques-de-el-salvador/                                        |
| Estonia                          | 1  | Country             | AGB            | ~ 2015      | (Avitabile and Camia, 2018)                                                                                                    |
| Ethiopia                         | 4  | Ecoregion           | AGB            | 2010        | https://redd.unfccc.int/files/<br>ethiopia_frel_3.2_final_modified_submission.pdf                                              |
| Fiji                             | 1  | Country             | AGB            | 2006        | http://fijireddplus.org/resources/publications/<br>NFI2006DraftReport.pdf                                                      |
| Finland                          | 19 | NFI unit            | AGB            | 2016-2020   | https://statdb.luke.fi/PxWeb/pxweb/en/LUKE/<br>LUKE04%20Metsa06%20Metsavarat/<br>1.29_Puuston_biomassa_metsa_ja_kitumaalla.px/ |
| French Guiana                    | 1  | Country             | AGB            | 2015        | https://openknowledge.fao.org/server/api/core/bitstreams/bf057fe4-5bbb-49f1-a82d-2051716ec388/content                          |
| Guam                             | 1  | Country             | AGB            | 2013        | https://apps.fs.usda.gov/fiadb-api/evalidator                                                                                  |
| Guatemala                        | 3  | Forest type         | AGB            | 2002-2003   | https://openknowledge.fao.org/server/api/core/bitstreams/bf057fe4-5bbb-49f1-a82d-2051716ec388/content                          |
| Honduras                         | 4  | Forest type         | AGC            | 2020        | https://icf.gob.hn/wp-content/uploads/2021/08/<br>Anuario_Estadistico_Forestal_de_Honduras_2021.pdf                            |
| Iceland                          | 1  | Country             | AGB            | $\sim 2015$ | (Avitabile and Camia, 2018)                                                                                                    |

| India            | 41 | State                | AGC              | 2016      | https://fsi.nic.in/isfr-2021/chapter-9.pdf                                                                                                   |
|------------------|----|----------------------|------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Indonesia        | 7  | Island               | AGB              | 2014      | http://ditjenppi.menlhk.go.id/kcpi/dokumen/<br>national_frel_final%20revisi_10des.pdf                                                        |
| Ivory Coast      | 3  | Ecoregion            | AGB              | 2014      | https://www.fao.org/3/i8019f/i8019f.pdf                                                                                                      |
| Japan            | 47 | Prefecture           | GSV              | 2013-2017 | https://www.rinya.maff.go.jp/j/keikaku/genkyou/h29/attach/pdf/3-13.pdf                                                                       |
| Kosovo           | 1  | Country              | AGB              | ~ 2015    | (Avitabile and Camia, 2018)                                                                                                                  |
| Laos             | 4  | Forest type          | AGB              | 2019      | https://nfms.maf.gov.la                                                                                                                      |
| Latvia           | 1  | Country              | AGB              | ~ 2015    | (Avitabile and Camia, 2018)                                                                                                                  |
| Liberia          | 15 | Province             | Total<br>biomass | 2018      | https://www.forestcarbonpartnership.org/system/files/documents/Liberia%20National%20Forest%20Inventory.pdf                                   |
| Liechtenstein    | 1  | Country              | AGB              | ~ 2015    | (Avitabile and Camia, 2018)                                                                                                                  |
| Luxembourg       | 1  | Country              | AGB              | ~ 2015    | (Avitabile and Camia, 2018)                                                                                                                  |
| Madagascar       | 4  | Ecoregion            | AGB              | 2017      | https://redd.unfccc.int/files/ 2017_frel_mdg_modified_submission.pdf                                                                         |
| Malawi           | 2  | Region               | Total<br>biomass | 2018      | https://cepa.rmportal.net/Library/inbox/national-forest-inventory-2018-report                                                                |
| Marshall Islands | 1  | Country              | AGB              | 2018      | https://apps.fs.usda.gov/fiadb-api/evalidator                                                                                                |
| Mexico           | 32 | State                | AGB              | 2005-2009 | (de Jong et al., 2010)                                                                                                                       |
| Micronesia       | 1  | Country              | AGB              | 2016      | https://www.fs.usda.gov/pnw/projects/pnw-fia-pacific-islands-inventory                                                                       |
| Mongolia         | 4  | Ecoregion            | AGB              | 2017      | http://forest-atlas.gov.mn/DataSetResults.aspx                                                                                               |
| Montenegro       | 1  | Country              | AGB              | ~ 2015    | (Avitabile and Camia, 2018)                                                                                                                  |
| Mozambique       | 10 | Province             | AGB              | 2018      | https://www.biofund.org.mz/wp-content/uploads/<br>2019/01/1548412245-<br>Relatório%20do%20%20IV%20Inventário%20Florestal%20N<br>acional.pdf  |
| Nepal            | 3  | Physiographic region | AGB              | 2017      | https://nepalindata.com/resource/STATE-OF-NEPAL%27S-FORESTS/                                                                                 |
| Nicaragua        | 4  | Forest type          | AGB              | 2007-2008 | https://cambioclimatico.ineter.gob.ni/bibliografia/<br>Mitigacion%20del%20cambio%20climatico/<br>Informe%20Final%20inventario%20forestal.pdf |

| Nigeria                  | 6  | Ecozone     | AGB | 2019      | https://www.fao.org/3/cb0037en/cb0037en.pdf                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------|----|-------------|-----|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| North Macedonia          | 1  | Country     | AGB | ~ 2015    | (Avitabile and Camia, 2018)                                                                                                                                                                                                                                                                                                                                                                                                      |
| Northern Mariana Islands | 1  | Country     | AGB | 2015      | https://www.fs.usda.gov/pnw/projects/pnw-fia-pacific-islands-inventory                                                                                                                                                                                                                                                                                                                                                           |
| Pakistan                 | 12 | Forest type | AGC | 2008-2012 | https://redd.unfccc.int/files/ 1. unfccc_frel_pakistan_final_with_proofreadfinal.pdf                                                                                                                                                                                                                                                                                                                                             |
| Palau                    | 1  | Country     | AGB | 2014      | https://apps.fs.usda.gov/fiadb-api/evalidator                                                                                                                                                                                                                                                                                                                                                                                    |
| Panama                   | 1  | Country     | AGB | 2013-2015 | https://chm.cbd.int/api/v2013/documents/05B386D2-5BCD-<br>A52D-6097-F853803CC619/attachments/205145/<br>Inventario%20Nacional%20Forestal%20-<br>%20Resultados%20Fase%20Piloto%202013-2015.pdf                                                                                                                                                                                                                                    |
| Papua New Guinea         | 1  | Country     | AGB | > 2010    | https://pngfa.gov.pg/images/articledocs/ National_Forest_Inventory/ Proceedings_of_the_second_NFI_Research_Conference_com pressed.pdf                                                                                                                                                                                                                                                                                            |
| Paraguay                 | 6  | Ecoregion   | AGC | 2014      | http://www.infona.gov.py/index.php?cID=296                                                                                                                                                                                                                                                                                                                                                                                       |
| Peru                     | 6  | Ecozone     | AGB | 2013-2018 | https://openknowledge.fao.org/server/api/core/bitstreams/bf057fe4-5bbb-49f1-a82d-2051716ec388/content                                                                                                                                                                                                                                                                                                                            |
| Puerto Rico              | 1  | Country     | AGB | 2019      | https://openknowledge.fao.org/server/api/core/bitstreams/bf057fe4-5bbb-49f1-a82d-2051716ec388/content                                                                                                                                                                                                                                                                                                                            |
| Republic of Korea        | 10 | Province    | GSV | 2014      | https://www.google.com/url? sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj RkbvRtZn6AhWYh_0HHeG5C7kQFnoECAUQAQ&url=http s%3A%2F%2Fwww.forest.go.kr%2Fkfsweb%2Fcmm%2Ffm s%2FFileDown.do%3Bjsessionid%3DNLnLiHubhFNUOX5D hDrmaHEZurg8MExsUujmYxegMKFeFV2IJg2pXlg5gjiYe8 wd.frswas01_servlet_engine5%3FatchFileId%3DFILE_00000 0000664384%26fileSn%3D1%26dwldHistYn%3DN%26bbsI d%3DBBSMSTR_1064&usg=AOvVaw0iCa_PPyQe6pgoOnv JOsjc |
| Russia                   | 83 | Province    | GSV | 2011-2020 | Private data sharing, courtesy of D. Schepaschenko (IIASA)                                                                                                                                                                                                                                                                                                                                                                       |
| Sudan                    | 3  | State       | GSV | 2017      | https://redd.unfccc.int/files/<br>sudan_frl_submission_to_unfccc_january_2020.pdf                                                                                                                                                                                                                                                                                                                                                |
| Suriname                 | 2  | Ecozone     | AGC | 2017      | https://sbbsur.com/wp-content/uploads/2017/04/                                                                                                                                                                                                                                                                                                                                                                                   |

|                                 |    |                     |              |           | TechnischrapportEmissieFactors_CarbonStocks.pdf                                                       |
|---------------------------------|----|---------------------|--------------|-----------|-------------------------------------------------------------------------------------------------------|
| Taiwan                          | 8  | Province            | GSV          | 2021      | https://www.forest.gov.tw/EN/0001465                                                                  |
| Tanzania                        | 25 | Province            | GSV          | 2015      | https://www.tfs.go.tz/uploads/NAFORMA_REPORT.pdf                                                      |
| Thailand                        | 3  | Forest type         | AGB          | 2013-2018 | https://redd.unfccc.int/files/thailand_frel_frl_report.pdf                                            |
| Togo                            | 4  | Ecoregion           | AGB          | 2015-2016 | https://redd.unfccc.int/files/<br>nrf_togo_06_1_20_rev_18_08_20_finale.pdf                            |
| Turkey                          | 1  | Country             | AGB          | ~ 2015    | (Avitabile and Camia, 2018)                                                                           |
| Uganda                          | 80 | Province (district) | AGB          | 2005      | https://www.nfa.go.ug/images/reports/<br>biomasstechnicalreport2009.pdf                               |
| Ukraine                         | 25 | Province            | GSV          | 2010      | Private data sharing, courtesy of D. Schepaschenko (IIASA)                                            |
| United Kingdom                  | 1  | Country             | AGB          | ~ 2015    | (Avitabile and Camia, 2018)                                                                           |
| United States                   | 50 | State               | AGB          | 2010-2021 | https://apps.fs.usda.gov/fiadb-api/evalidator                                                         |
| United States Virgin<br>Islands | 1  | Country             | AGB          | 2014      | https://openknowledge.fao.org/server/api/core/bitstreams/bf057fe4-5bbb-49f1-a82d-2051716ec388/content |
| Uruguay                         | 1  | Country             | AGB          | 2009-2016 | https://openknowledge.fao.org/server/api/core/bitstreams/bf057fe4-5bbb-49f1-a82d-2051716ec388/content |
| Vietnam                         | 5  | Forest type         | Total carbon | 2016      | https://redd.unfccc.int/files/ 2016_submission_frel_viet_nam.pdf                                      |
| Zambia                          | 1  | Country             | AGB          | 2009-2016 | https://redd.unfccc.int/files/zambia_frel-2020-<br>technical_assessment.pdf                           |

## References

Asner, G.P., Mascaro, J., 2014. Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric. Remote Sensing of Environment 140, 614–624. <a href="https://doi.org/10.1016/j.rse.2013.09.023">https://doi.org/10.1016/j.rse.2013.09.023</a>

Avitabile, V., Baccini, A., Friedl, M.A., Schmullius, C., 2012. Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda. Remote Sensing of Environment 117, 366–380. <a href="https://doi.org/10.1016/j.rse.2011.10.012">https://doi.org/10.1016/j.rse.2011.10.012</a>

Avitabile, V., 2014. Carbon stocks of vegetation in the Vu Gia Thu Bon river basin, central Vietnam (Technical Report), Land Use and Climate Change Interactions in Central Vietnam (LUCCi) project. Jena.

Avitabile, V., Camia, A., 2018. An assessment of forest biomass maps in Europe using harmonized national statistics and inventory plots. Forest Ecol Manag 409, 489–498. https://doi.org/10.1016/j.foreco.2017.11.047

Bispo, P.C., Santos, J.R., Valeriano, M.M., Touzi, R., Seifert, F.M., 2014. Integration of polarimetric PALSAR attributes and local geomorphometric variables derived from SRTM for forest biomass modeling in central Amazonia. Canadian Journal of Remote Sensing 40, 26–42. https://doi.org/10.1080/07038992.2014.913477

Brown, H.C.A., Berninger, F.A., Larjavaara, M., Appiah, M., 2020. Above-ground carbon stocks and timber value of old timber plantations, secondary and primary forests in southern Ghana. Forest Ecology and Management 472, 118236. <a href="https://doi.org/10.1016/j.foreco.2020.118236">https://doi.org/10.1016/j.foreco.2020.118236</a>

Brown, S., Goslee, K., Casarim, F., Harris, N.L., Petrova, S., 2014. Sampling Design and Implementation Plan for Guyana's REDD+ Forest Carbon Monitoring System (FCMS): Version 2. Submitted by Winrock International to the Guyana Forestry Commission, GFC 02/08/2010 Addendum. Guyana Forestry Commission.

Carreiras, J.M.B., Melo, J.B., Vasconcelos, M.J., 2013. Estimating the above-ground biomass in miombo savanna woodlands (Mozambique, East Africa) using L-band synthetic aperture radar data. Remote Sensing 5, 1524–1548. <a href="https://doi.org/10.3390/rs5041524">https://doi.org/10.3390/rs5041524</a>

Cienciala, E., Apltauer, J., Exnerová, Z., Tatarinov, F., 2008. Biomass functions applicable to oak trees grown in Central-European forestry. J. For. Sci. 54, 109–120. <a href="https://doi.org/10.17221/2906-JFS">https://doi.org/10.17221/2906-JFS</a>

Coomes, D.A., Dalponte, M., Jucker, T., Asner, G.P., Banin, L.F., Burslem, D.F.R.P., Lewis, S.L., Nilus, R., Phillips, O.L., Phua, M.-H., Qie, L., 2017. Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data. Remote Sensing of Environment 194, 77–88. <a href="https://doi.org/10.1016/j.rse.2017.03.017">https://doi.org/10.1016/j.rse.2017.03.017</a>

Dalponte, M., Jucker, T., Liu, S., Frizzera, L., Gianelle, D., 2019. Characterizing forest carbon dynamics using multi-temporal lidar data. Remote Sensing of Environment 224, 412–420. https://doi.org/10.1016/j.rse.2019.02.018

de Jong, B., Anaya, C., Masera, O., Olguín, M., Paz, F., Etchevers, J., Martínez, R.D., Guerrero, G., Balbontín, C., 2010. Greenhouse gas emissions between 1993 and 2002 from land-use change and forestry in Mexico. Forest Ecology and Management 260, 1689–1701. https://doi.org/10.1016/j.foreco.2010.08.011

DeVries, B., Avitabile, V., Kooistra, L., Herold, M., 2012. Monitoring the impact of REDD+ implementation in the Unesco Kafa biosphere reserve.

Goodman, R.C., Phillips, O.L., Baker, T.R., 2014. The importance of crown dimensions to improve tropical tree biomass estimates. Ecological Applications 24, 680–698. https://doi.org/10.1890/13-0070.1

Hirsh, F., Jourget, J.-G., Feintrenie, L., Bayol, N., Atyi, R.E., 2013. Projet pilote REDD+ de la Lukénie. (No. Document de Travaille 111). CIFOR, Bogor, Indonesia.

Jha, N., Tripathi, N.K., Chanthorn, W., Brockelman, W., Nathalang, A., Pélissier, R., Pimmasarn, S., Ploton, P., Sasaki, N., Virdis, S.G.P., Réjou-Méchain, M., 2020. Forest aboveground biomass stock and resilience in a tropical landscape of Thailand. Biogeosciences 17, 121–134. https://doi.org/10.5194/bg-17-121-2020

Labriere, N., Tao, S., Chave, J., Scipal, K., Toan, T.L., Abernethy, K., Alonso, A., Barbier, N., Bissiengou, P., Casal, T., Davies, S.J., Ferraz, A., Herault, B., Jaouen, G., Jeffery, K.J., Kenfack, D., Korte, L., Lewis, S.L., Malhi, Y., Memiaghe, H.R., Poulsen, J.R., Rejou-Mechain, M., Villard, L., Vincent, G., White, L.J.T., Saatchi, S., 2018. In Situ Reference Datasets From the TropiSAR and AfriSAR Campaigns in Support of Upcoming Spaceborne Biomass Missions. IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 11, 3617–3627. https://doi.org/10.1109/JSTARS.2018.2851606

Lewis, S.L., Sonké, B., Sunderland, T., Begne, S.K., Lopez-Gonzalez, G., Van Der Heijden, G.M.F., Phillips, O.L., Affum-Baffoe, K., Baker, T.R., Banin, L., Bastin, J.-F., Beeckman, H., Boeckx, P., Bogaert, J., De Cannière, C., Chezeaux, E., Clark, C.J., Collins, M., Djagbletey, G., Djuikouo, M.N.K., Droissart, V., Doucet, J.-L., Ewango, C.E.N., Fauset, S., Feldpausch, T.R., Foli, E.G., Gillet, J.-F., Hamilton, A.C., Harris, D.J., Hart, T.B., De Haulleville, T., Hladik, A., Hufkens, K., Huygens, D., Jeanmart, P., Jeffery, K.J., Kearsley, E., Leal, M.E., Lloyd, J., Lovett, J.C., Makana, J.-R., Malhi, Y., Marshall, A.R., Ojo, L., Peh, K.S.-H., Pickavance, G., Poulsen, J.R., Reitsma, J.M., Sheil, D., Simo, M., Steppe, K., Taedoumg, H.E., Talbot, J., Taplin, J.R.D., Taylor, D., Thomas, S.C., Toirambe, B., Verbeeck, H., Vleminckx, J., White, L.J.T., Willcock, S., Woell, H., Zemagho, L., 2013. Above-ground biomass and structure of 260 African tropical forests. Phil. Trans. R. Soc. B 368, 20120295. https://doi.org/10.1098/rstb.2012.0295

Henry, M., Iqbal, Z., Johnson, K., Akhter, M., Costello, L., Scott, C., Jalal, R., Hossain, Md.A., Chakma, N., Kuegler, O., Mahmood, H., Mahamud, R., Siddique, M.R.H., Misbahuzzaman, K., Uddin, M.M., Al Amin, M., Ahmed, F.U., Sola, G., Siddiqui, Md.B., Birigazzi, L., Rahman, M., Animon, I., Ritu, S., Rahman, L.M., Islam, A., Hayden, H., Sidik, F., Kumar, M.F., Mukul, R.H., Nishad, H., Belal, A.H., Anik, A.R., Khaleque, A., Shaheduzzaman, Md., Hossain, S.S., Aziz, T., Rahaman, Md.T., Mohaiman, R., Meyer, P., Chakma, P., Rashid, A.Z.M.M., Das, S., Hira, S., Jashimuddin, M., Rahman, M.M., Wurster, K., Uddin, S.N., Azad, A.K., Islam, S.M.Z., Saint-André, L., 2021. A multi-purpose National Forest Inventory in Bangladesh: design, operationalisation and key results. For. Ecosyst. 8, 12. https://doi.org/10.1186/s40663-021-00284-1

Liang, J., Zhou, M., Tobin, P.C., McGuire, A.D., Reich, P.B., 2015. Biodiversity influences plant productivity through niche–efficiency. Proc Natl Acad Sci USA 112, 5738–5743. https://doi.org/10.1073/pnas.1409853112

Lopez Gonzalez, G., Lewis, S.L., Burkitt, M., Phillips, O.L., 2011. ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. J Vegetation Science 22, 610–613. https://doi.org/10.1111/j.1654-1103.2011.01312.x

Pacheco-Pascagaza, A.M., Garcia, M., Rodriguez-Veiga, P., Balzter, H., 2018. The Use of Multifrequency SAR Data for Assessing Levels of Forest Disturbance in Bajo Calima Colombia, in: IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. Presented at the IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, IEEE, Valencia, pp. 7015–7018. https://doi.org/10.1109/IGARSS.2018.8518871

Paul, K.I., Roxburgh, S.H., Chave, J., England, J.R., Zerihun, A., Specht, A., Lewis, T., Bennett, L.T., Baker, T.G., Adams, M.A., Huxtable, D., Montagu, K.D., Falster, D.S., Feller, M., Sochacki, S., Ritson, P., Bastin, G., Bartle, J., Wildy, D., Hobbs, T., Larmour, J., Waterworth, R., Stewart, H.T.L., Jonson, J., Forrester, D.I., Applegate, G., Mendham, D., Bradford, M., O'Grady, A., Green, D., Sudmeyer, R., Rance, S.J., Turner, J., Barton, C., Wenk, E.H., Grove, T., Attiwill, P.M., Pinkard, E., Butler, D., Brooksbank, K., Spencer, B., Snowdon, P., O'Brien, N., Battaglia, M., Cameron, D.M., Hamilton, S., Mcauthur, G., Sinclair, J., 2016. Testing the generality of above-ground biomass allometry across plant 2106-2124. functional types at the continent scale. Global Change Biology https://doi.org/10.1111/gcb.13201

Santoro, M., Cartus, O., Fransson, J.E.S., 2021. Integration of allometric equations in the water cloud model towards an improved retrieval of forest stem volume with L-band SAR data in Sweden. Remote Sensing of Environment 253, 112235. https://doi.org/10.1016/j.rse.2020.112235

Schelhaas, M.J., Clerkx, A.P.P.M., Daamen, W.P., Oldenburger, J.F., Velema, G., Schnitger, P., Schoonderwoerd, H., Kramer, H., 2014. Zesde Nederlandse Bosinventarisatie; Methoden en basisresultaten (No. Alterra rapport 2545). Wageningen, Alterra Wageningen UR (University & Research Centre).

Schepaschenko, D., Chave, J., Phillips, O.L., Lewis, S.L., Davies, S.J., Réjou-Méchain, M., Sist, P., Scipal, K., Perger, C., Herault, B., Labrière, N., Hofhansl, F., Affum-Baffoe, K., Aleinikov, A., Alonso, A., Amani, C., Araujo-Murakami, A., Armston, J., Arroyo, L., Ascarrunz, N., Azevedo, C., Baker, T., Bałazy, R., Bedeau, C., Berry, N., Bilous, A.M., Bilous, S.Yu., Bissiengou, P., Blanc, L., Bobkova, K.S., Braslavskaya, T., Brienen, R., Burslem, D.F.R.P., Condit, R., Cuni-Sanchez, A., Danilina, D., del Castillo Torres, D., Derroire, G., Descroix, L., Sotta, E.D., d'Oliveira, M.V.N., Dresel, C., Erwin, T., Evdokimenko, M.D., Falck, J., Feldpausch, T.R., Foli, E.G., Foster, R., Fritz, S., Garcia-Abril, A.D., Gornov, A., Gornova, M., Gothard-Bassébé, E., Gourlet-Fleury, S., Guedes, M., Hamer, K.C., Susanty, F.H., Higuchi, N., Coronado, E.N.H., Hubau, W., Hubbell, S., Ilstedt, U., Ivanov, V.V., Kanashiro, M., Karlsson, A., Karminov, V.N., Killeen, T., Koffi, J.-C.K., Konovalova, M., Kraxner, F., Krejza, J., Krisnawati, H., Krivobokov, L.V., Kuznetsov, M.A., Lakyda, I., Lakyda, P.I., Licona, J.C., Lucas, R.M., Lukina, N., Lussetti, D., Malhi, Y., Manzanera, J.A., Marimon, B., Junior, B.H.M., Martinez, R.V., Martynenko, O.V., Matsala, M., Matyashuk, R.K., Mazzei, L., Memiaghe, H., Mendoza, C., Mendoza, A.M., Moroziuk, O.V., Mukhortova, L., Musa, S., Nazimova, D.I., Okuda, T., Oliveira, L.C., Ontikov, P.V., Osipov, A.F., Pietsch, S., Playfair, M., Poulsen, J., Radchenko, V.G., Rodney, K., Rozak, A.H., Ruschel, A., Rutishauser, E., See, L., Shchepashchenko, M., Shevchenko, N., Shvidenko, A., Silveira, M., Singh, J., Sonké, B., Souza, C., Stereńczak, K., Stonozhenko, L., Sullivan, M.J.P., Szatniewska, J., Taedoumg, H., ter Steege, H., Tikhonova, E., Toledo, M., Trefilova, O.V., Valbuena, R., Gamarra, L.V., Vasiliev, S., Vedrova, E.F., Verhovets, S.V., Vidal, E., Vladimirova, N.A., Vleminckx, J., Vos, V.A., Vozmitel, F.K., Wanek, W., West, T.A.P., Woell, H., Woods, J.T., Wortel, V., Yamada, T., Nur Hajar, Z.S., Zo-Bi, I.C., 2019. The Forest Observation System, building a global reference dataset for remote sensing of forest biomass. Sci Data 6, 198. https://doi.org/10.1038/s41597-019-0196-1

Vaglio Laurin, G., Hawthorne, W., Chiti, T., Di Paola, A., Cazzolla Gatti, R., Marconi, S., Noce, S., Grieco, E., Pirotti, F., Valentini, R., 2016. Does degradation from selective logging and illegal activities differently impact forest resources? A case study in Ghana. iForest 9, 354–362. <a href="https://doi.org/10.3832/ifor1779-008">https://doi.org/10.3832/ifor1779-008</a>

Vieilledent, G., Gardi, O., Grinand, C., Burren, C., Andriamanjato, M., Camara, C., Gardner, C.J., Glass, L., Rasolohery, A., Rakoto Ratsimba, H., Gond, V., Rakotoarijaona, J.-R., 2016. Bioclimatic envelope models predict a decrease in tropical forest carbon stocks with climate change in Madagascar. J Ecol 104, 703–715. https://doi.org/10.1111/1365-2745.12548

Wijaya, A., Liesenberg, V., Susanti, A., Karyanto, O., Verchot, L.V., 2015. Estimation of Biomass Carbon Stocks over Peat Swamp Forests using Multi-Temporal and Multi-Polratizations SAR Data. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-7/W3, 551–556. https://doi.org/10.5194/isprsarchives-XL-7-W3-551-2015

Willcock, S., Phillips, O.L., Platts, P.J., Balmford, A., Burgess, N.D., Lovett, J.C., Ahrends, A., Bayliss, J., Doggart, N., Doody, K., Fanning, E., Green, J.M., Hall, J., Howell, K.L., Marchant, R., Marshall, A.R., Mbilinyi, B., Munishi, P.K., Owen, N., Swetnam, R.D., Topp-Jorgensen, E.J., Lewis, S.L., 2014. Quantifying and understanding carbon storage and sequestration within the Eastern Arc Mountains of Tanzania, a tropical biodiversity hotspot. Carbon Balance Manage 9, 2. <a href="https://doi.org/10.1186/1750-0680-9-2">https://doi.org/10.1186/1750-0680-9-2</a>

WWF and ÖBf, 2013. Xe Pian REDD+ project document. Gland, Switzerland.