אלגברה לינארית 2

תוכן העניינים

3	מרחבי מכפלת פנימית	1
3	${f R}$ הגדרה של מכפלה פנימית מעל פעל מעל אררה של מכפלה פנימית מעל	
4	${\mathbb R}$ דוגמאות של מכפלה פנימית מעל	
5	\ldots המכפלות הפנימיות העיקריות מעל $\mathbb R$	
7	oxdotsמרחב מכפלה פנימית מעל $oxdots$	
7	דוגמאות של מרחבים אוניטריים	
9		
9	דוגמאות של הנורמה	
11	משפט פיתגורס, משפט קושי שוורץ, אי-שוויון משולש	
13	אורתוגונליות	
17	* העשרה: סכום ריבועי האלכסונים של במקבילית שווה לסכום ריבועי הצלעות של	
19	בסיסים אורתוגונליים	1 2
19	בסיסים אורתוגונליים	
26	אופרטור הטלה האורתוגונלי	
29	תהליך גרם שמידט	
34	*העשרה: משמעות גיאומטרית של ההיטל	
34	\star העשרה: משפט קייום בסיס אורתוגונלז \star	
36	ערכים עצמיים ווקטוירם עצמיים	, 3
36		
43	לכסון של מטריצה	
45	ערכים עצמיים של טרנספורמציות לינאריות	
57	שימושים של לכסון מטריצה	
61	משפטים נוספים הקשורים ללכסון של מטריצה	
64) 4
64	ŕ	
67	1 -	
73	איפוס פולינום על ידי מטריצה	
75	איפוס פולינום על ידי העתקה לינארית	
76		
80		
83	· · · · · · · · · · · · · · · · · · ·	
87	\dots משפטים: חילוק פולינומים, פולינום המינימלי ופולינומים שמתאפסים ע"י מטריצה \dots	

90	לוש מטריצה	שי 5
90	מטריצה משולשית עילית	
93	העתקות לינאריות ניתנות לשילוש	
93	תת מרחבים שמורים (אינווריאנטיים)	
94	*העתקה ניתנת לשילוש אא"ם קיימת סדרת תת מרחבים	
96	*אלגוריתם לשילוש מטריצה: פירוק שור	
102	רת ז'ורדן	6 צו
122	נתקות צמודות לעצמן	7 הע
122	העתקות צמודות לעצמן	
132	העתקות אוניטריות	
135	מטריצות מייצגות של העתקות אוניטירות	
142	נתקות נורמליות	8 הע
142	ערכים עצמיים של העתקות במרחבי מכפלות פנימיות	
144	העתקות ומטריצות נורמליות	
144	דוגמאות של העתקות נורמליות	
148	העתקה לכסינה אוניטרית ומטריצה לכסינה אוניטרית	
151	משפט לכסון אוניטרי	
152	שיטה המעשית ללכסון אוניטרי	
157	שימושים של משפט הלכסון האוניטרי	
	*הוכחת המשפט:	
159	A לכסינה אוניטרית אם"ם קבוצת ו"ע שלה בסיס א"נ A	
161	הוכחת משפט שור	
	הוכחת המשפט:	
163	נורמליות נשמרת תחת דמיון אוניטרי	
	הוכחת המשפט:	
164	מטריצה נורמלית ומשולשית היא אלכסונית	
164	הוכחת משפט לכסון אוניטרי	
167	שפט הפירוק הספקטרלי	9 מע
171	שימושים של הפירוק הספקטרלי	
173	מת	10 שו
173	 לכסון אורתוגונית	•
176	· · · · · · · · · · · · · · · · · · ·	

שעור 1 מרחבי מכפלת פנימית

${\mathbb R}$ הגדרה של מכפלה פנימית מעל 1.1

${\mathbb R}$ הגדרה 1.1 מכפלה פנימית מעל

יהי על אוג וקטורי מעל V המתאימה לכל זוג וקטורים על היא פונקציה V היא מכפלה פנימית על אוג וקטורי מעל מרחב וקטורי מעל אוג וקטורי מעל אוג וקטורי מעל בעל המסומן ב- (u,v) כך שמתקיימות התכונות הבאות. לכל על סקלר $u,v,w\in V$ סקלר ממשי המסומן ב-

:סימטריות (1

$$\langle u, \mathbf{v} \rangle = \langle \mathbf{v}, u \rangle$$
.

2) לינאריות ברכיב הראשון:

(N

$$\langle u + \mathbf{v}, w \rangle = \langle u, w \rangle + \langle \mathbf{v}, w \rangle$$
.

(1

$$\langle \lambda u, \mathbf{v} \rangle = \lambda \langle u, \mathbf{v} \rangle$$
.

:חיוביות (3

$$\langle u, u \rangle \ge 0$$

.u=0 אם ורק אם $\langle u,u \rangle = 0$ וגם

הגדרה 1.2 מרחב אווקלידי

. מרחב אוקלידי מסויימת נקרא מרחב אוקלידי עם מכפלה פנימית מסויימת על על על על על מרחב אוקלידי. מרחב אוקלידי

משפט 1.1 לינאריות ברכיב השני

יהי V מרחב וקטורי מעל $\mathbb R$ ו $\langle ,
angle$ מכפלה פנימית. אז

 $u, \mathbf{v}, w \in V$ לכל (1

$$\langle u, \mathbf{v} + w \rangle = \langle u, \mathbf{v} \rangle + \langle u, w \rangle$$

 $\lambda \in \mathbb{R}$ לכל $u, \mathrm{v} \in V$ ולכל סקלר (2

$$\langle u, \lambda \mathbf{v} \rangle = \lambda \langle u, \mathbf{v} \rangle$$
.

הוכחה:

$$\langle u, \lambda \mathbf{v} \rangle = \langle \lambda \mathbf{v}, u \rangle = \lambda \langle \mathbf{v}, u \rangle = \lambda \langle u, \mathbf{v} \rangle$$
.

(2

${\mathbb R}$ דוגמאות של מכפלה פנימית מעל 1.2

דוגמה 1.1

ע נגדיר, v =
$$egin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$
 , $u = egin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ נגדיר , $V = \mathbb{R}^n$

$$\langle u, \mathbf{v} \rangle = \sum_{i=1}^{n} x_i y_i .$$

 \mathbb{R}^n אז זה מכפלה פנימית מעל

דוגמה 1.2

ענדיר ,v =
$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$
 , $u = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, \mathbb{R}^n -ב יהיו לכל שני וקטורים לכל שני אינים. לכל שני וקטורים לכל

$$\langle u, \mathbf{v} \rangle = \sum_{i=1}^{n} \lambda_i x_i y_i$$
.

הוכיחו כי המכפלה הזאת היא מכפלה פנימית.

פתרון:

(1

$$\langle u, \mathbf{v} \rangle = \sum_{i=1}^{n} \lambda_i x_i y_i = \sum_{i=1}^{n} \lambda_i y_i x_i = \langle \mathbf{v}, u \rangle$$

נגדיר
$$w=egin{pmatrix} z_1 \ dots \ z_n \end{pmatrix}$$
 נגדיר (2

$$\langle u + \mathbf{v}, w \rangle = \sum_{i=1}^{n} \lambda_i (x_i + y_i) \cdot z_i = \sum_{i=1}^{n} \lambda_i (x_i \cdot z_i + y_i \cdot z_i) = \sum_{i=1}^{n} \lambda_i x_i \cdot z_i + \sum_{i=1}^{n} \lambda_i y_i \cdot z_i = \langle u, w \rangle + \langle \mathbf{v}, w \rangle$$

(3

$$\langle ku, \mathbf{v} \rangle = \sum_{i=1}^{n} \lambda_i(kx_i)y_i = \sum_{i=1}^{n} k \cdot \lambda_i x_i y_i = k \sum_{i=1}^{n} \lambda_i x_i y_i = k \langle u, \mathbf{v} \rangle$$

(4

$$\langle u, u \rangle = \sum_{i=1}^{n} \lambda_i x_i^2 \ge 0$$

 $0.1 \leq i \leq n$ לכל לכל $\lambda_i > 0$

$$\langle u,u
angle = \sum\limits_{i=1}^n \lambda_i x_i^2 = 0$$
 אם"ם $x_i = 0$, $\forall i$

${\mathbb R}$ המכפלות הפנימיות העיקריות מעל 1.3

הגדרה 1.3 מכפלה פנימית לפי בסיס

 $:\!\!V$ מרחב וקטורי נוצר סופית מעל $\mathbb R$. נבחר בסיס של

$$B = \{b_1, \dots, b_n\} .$$

 $u, \mathbf{v} \in V$ לכל

$$u = \sum_{i=1}^{n} x_i b_i$$
, $v = \sum_{i=1}^{n} y_i b_i$.

מכפלה פנימית לפי בסיס B מסומנת ($,)_B$ מסומנת

$$(u, \mathbf{v})_B = \sum_{i=1}^n x_i y_i .$$

קל להוכיח שזה מכפלה פנימית.

\mathbb{R}^n הגדרה 1.4 מכפלה פנימית הסטנדרטית של

לכל $u, \mathbf{v} \in \mathbb{R}^n$ לכל , $u, \mathbf{v} \in \mathbb{R}^n$

$$u = \sum_{i=1}^{n} x_i e_i$$
, $v = \sum_{i=1}^{n} y_i e_i$.

המכפלה פנימית הסטנדרטית מסומנת (,) ומוגדרת

$$(u, \mathbf{v}) = \sum_{i=1}^{n} x_i y_i .$$

הגדרה 1.5 העקבה של מטריצה ריבועית

מסומנת .A איברי האלכסון איברי סכום של העקבה של העקבה העקבה איברי לכל העקבה איברי העקבה אל

 $\operatorname{tr} A$.

משפט 1.2 תכונות של העקבה

 $:A,B\in\mathbb{F}^{n imes n}$ לכל

$$tr(A+B) = tr(A) + tr(B)$$
 (1

$$\lambda \in \mathbb{F}$$
 לכל $\operatorname{tr}(\lambda A) = \lambda \operatorname{tr}(A)$ (2

$$\operatorname{tr}(A^t) = \operatorname{tr}(A)$$
 (3

הגדרה 1.6 המכפלה הפנימית הסטנדרטית של מטריצות

תהיינה מטריצות היא פונקציה הפנימית המכפלה המכפלה . $A,B\in\mathbb{R}^{n\times m}$ תהיינה $A,B\in\mathbb{R}^{m\times m}$ שמוגדרת ע"י שמוגדרת ע"י

$$\langle A, B \rangle = \operatorname{tr} \left(B^t \cdot A \right) .$$

.המכפלה הזאת נקראת המכפלה הפנימית הסטנדרטית נקראת המכפלה המכפלה

דוגמה 1.3

הוכיחו כי המכפלה הפנימית הסטנדרטית של מטריצות בהגדרה הקודמת מקיינת את התכונות של מכפלה פנימית.

פתרון:

$$\langle A, B \rangle = \operatorname{tr}(B^t \cdot A) = \operatorname{tr}((A^t \cdot B)^t) = \operatorname{tr}(A^t \cdot B) = \langle B, A \rangle$$
.

(N (2

$$\langle A+B,C\rangle = \operatorname{tr}(C^t \cdot (A+B)) = \operatorname{tr}\left(C^t \cdot A + C^t \cdot B\right) = \operatorname{tr}\left(C^t \cdot A\right) + \operatorname{tr}\left(C^t \cdot B\right) = \langle A,C\rangle + \langle B,C\rangle \ .$$

(コ

$$\langle \lambda A, C \rangle = \operatorname{tr}(B^t \lambda A) = \operatorname{tr}(\lambda(B^t A)) = \lambda \operatorname{tr}(B^t A) = \lambda \langle A, B \rangle$$
.

(3

$$\langle A, A \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ji}^2 \ge 0$$

$$A=0$$
 אם"ם אם"ם, א i,j $a_{ji}=0$ אם"ם $\langle A,A \rangle=0$

הגדרה 1.7 המכפלה הפנימית הסטנדרטית של פונקציות

תהיינה הפטנדרטית המכפלה הפנימית פונקציות שמוגדרות שמוגדרות $g:\mathbb{R} \to \mathbb{R}$ ו המכפלה הפנימית הסטנדרטית פונקציות מוגדרת של פונקציות מוגדרת

$$\langle f, g \rangle = \int_a^b f(x)g(x) dx$$
.

${\mathbb C}$ מרחב מכפלה פנימית מעל 1.4

הגדרה 1.8 מכפלה פנימית מעל

יהי על אוג וקטורי מעל V המתאימה לכל זוג וקטורים על היא פונקציה V מרחב וקטורי מעל U. מכפלה פנימית על $u, {\bf v}, w \in V$ המסומן ב- $u, {\bf v}, w \in V$ כך שמתקיים התנאים הבאים. לכל וקטורים ב- $u, {\bf v}$ ולכל סקלר ב- ולכל $u, {\bf v}$ כך שמתקיים התנאים הבאים. לכל וקטורים ב- $u, {\bf v}$ ולכל סקלר ב- ולכל חשמתקיים התנאים התנאים המסומן ב- $u, {\bf v}$ כך שמתקיים התנאים הבאים. לכל וקטורים ב- $u, {\bf v}$ ולכל סקלר ב- ולכל חשמתקיים התנאים המסומן ב- $u, {\bf v}$ המחשמת המסומן ב- $u, {\bf v}$ המסומן ב- $u, {\bf v}$ המחשמת המסומן ב- $u, {\bf v}$ המסומן ב- $u, {\bf v}$ המחשמת המסומן ב- $u, {\bf v}$ המחשמת המחש

: הרמיטיות (1

- $\langle u, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, u \rangle} \ .$
-) לינאריות ברכיב הראשון:

(N

 $\langle u + \mathbf{v}, w \rangle = \langle u, w \rangle + \langle \mathbf{v}, w \rangle$

(1

$$\langle \lambda u, \mathbf{v} \rangle = \lambda \langle u, \mathbf{v} \rangle$$

u=0 אם ורק אם $\langle u,u \rangle = 0$ אם אי-שללי. (3 הוא מספר ממשי אי-שללי. הוא מספר ממשי אי-שללי.

הגדרה 1.9 מרחב אוניטרי

מרחב אוניטרי. מסויימת מסויימת עם יחד עם מכפלה על יחד עם מכפלה מכפלה מכפלה על מעל על מעל על יחד עם מכפלה מכפלה מכפלה מכפלה מעל על יחד עם מכפלה מכפלה

$\mathbb C$ משפט 1.3 לינאריות חלקית של מ"פ מעל

יהי V מרחב מכפלה פנימית. אזי

 $u, \mathbf{v}, w \in V$ א) לכל

 $\langle u, \mathbf{v} + w \rangle = \langle u, \mathbf{v} \rangle + \langle u, w \rangle$.

 $:\lambda$ ולכל סקלר $u,\mathbf{v}\in V$ לכל

 $\langle u, \mathbf{v} \rangle = \bar{\lambda} \, \langle u, \mathbf{v} \rangle$.

הוכחה:

(N

$$\langle u, \mathbf{v} + w \rangle = \overline{\langle \mathbf{v} + w, u \rangle} = \overline{\langle \mathbf{v}, u \rangle} + \overline{\langle w, u \rangle} = \overline{\langle \mathbf{v}, u \rangle} + \overline{\langle w, u \rangle} = \langle u, \mathbf{v} \rangle + \langle u, w \rangle .$$

(2

$$\langle u, \lambda \mathbf{v} \rangle = \overline{\lambda \, \langle \mathbf{v}, u \rangle} = \bar{\lambda} \, \overline{\langle \mathbf{v}, u \rangle} = \bar{\lambda} \, \langle u, \mathbf{v} \rangle \ .$$

1.5 דוגמאות של מרחבים אוניטריים

דוגמה 1.4

$$u=egin{pmatrix} x_1 \\ dots \\ x_n \end{pmatrix}, \mathbf{v}=egin{pmatrix} y_1 \\ dots \\ y_n \end{pmatrix} \in \mathbb{C}^n$$
 לכל

$$(u, \mathbf{v}) = \sum_{i=1}^{n} x_i \bar{y}_i .$$

הוכיחו שזאת מרחב מכפלה פנימית.

פתרון:

$$(u, \mathbf{v}) = \sum_{i=1}^{n} x_i \bar{y}_i = \sum_{i=1}^{n} \overline{\bar{x}}_i \bar{y}_i = \sum_{i=1}^{n} \overline{\bar{x}}_i y_i = \sum_{i=1}^{n} \overline{y}_i \overline{\bar{x}}_i = \overline{\sum_{i=1}^{n} y_i \bar{x}_i} = \overline{(\mathbf{v}, u)} .$$

$$(u + v, w) = \sum_{i=1}^{n} (x_i + y_i) \cdot \bar{z}_i = \sum_{i=1}^{n} x_i \cdot \bar{z}_i + \sum_{i=1}^{n} y_i \cdot \bar{z}_i = (u, w) + (v, w).$$
 (2)

$$(u,u) = \sum_{i=1}^{n} x_i \bar{x}_i = \sum_{i=1}^{n} |x_i|^2 \ge 0$$

$$.(u,u) = 0 \iff u = 0$$

. \mathbb{C}^n -ם פנימית הסטנדרטית המכפלה המכפלה נקראת זו נקראת מכפלה מכפלה בי

דוגמה 1.5

נתון

$$u = \begin{pmatrix} 1-i\\ 2+i \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 3+i\\ -i \end{pmatrix}$.

את חשבו $u,\mathbf{v}\in\mathbb{C}^2$

$$(u, \mathbf{v})$$
 (x

$$(\mathbf{v},u)$$
 (2

$$(u,u)$$
 (x

$$(u, (1+i)v)$$
 (7

פתרון:

$$(u, v) = (1 - i)(3 - i) + (2 + i) \cdot i = 3 - 4i - 1 + 2i - 1 = 1 - 2i$$

$$(\mathbf{v}, u) = (3+i)(1+i) - i(2-i) = 3+4i-1-2i-1 = 1+2i$$

$$(u, u) = (1 - i)(1 + i) + (2 + i)(2 - i) = 2 + 5 = 7$$

(†

$$(u, (1+i)v) = \overline{(1+i)}(u, v) = (1-i)(1-2i) = 1-3i-2 = -1-3i$$
.

1.6 הנורמה והמרחק

הגדרה 1.10 הנורמה

יהי $u \in V$ היא מספר ממשי אי-שללי הניתנת ע"י של וקטור והי $\|u\|$ של הנימית. הנורמה

$$||u|| = \sqrt{\langle u, u \rangle}$$

. הנורמה של בעצם האורך של וקטור \mathbb{R}^3 ו- \mathbb{R}^2 במרחבים

דוגמה 1.6

יהי $\lambda \in \mathbb{F}$, $u \in V$, \mathbb{F} מרחב מכפלה פנימית מעל שדה $\lambda \in \mathbb{F}$, מרחב מכפלה מעלה.

(N

$$\|\lambda u\| = |\lambda| \|u\|$$

(a

$$\left\| \frac{1}{\|u\|} u \right\| = 1$$

פתרון:

(×

$$\|\lambda u\| = \sqrt{(\lambda u, \lambda u)} = \sqrt{\lambda(u, \lambda u)} = \sqrt{\lambda \cdot \bar{\lambda}(u, u)} = \sqrt{|\lambda|^2(u, u)} = \lambda \|u\|$$
.

ב) לכן לפי סעיף א' $rac{1}{\|u\|}>0$ ב

$$\left\| \frac{1}{\|u\|} u \right\| = \frac{1}{\|u\|} \cdot \|u\| = 1$$

עבור כל וקטור יחידה λu כך ש- λ כך אפשר למצוא שפשר עבור כל וקטור יחידה.

 $u \to \frac{u}{\|u\|}$ לפעולה, $u \to \frac{u}{\|u\|}$ קוראים נרמול

. לוקטור היחידה $\frac{u}{\|u\|}$ קוראים הוקטור המנורמל

1.7 דוגמאות של הנורמה

דוגמה 1.7

במרחב $u=inom{i}{1+i}$ עם המכפלה הפנימית הסטנדרטית חשבו את הנורמה של הוקטור \mathbb{C}^2 וחשבו את הוקטור המנורמל.

פתרון:

$$||u|| = \sqrt{(u,u)} = \sqrt{i\overline{i} + (1+i)\overline{(1+i)}} = \sqrt{1+2} = \sqrt{3}.$$

ננרמל את הוקטור:

$$\frac{u}{\|u\|} = \frac{1}{\sqrt{3}} \begin{pmatrix} i \\ 1+i \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{3}}i \\ \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}}i \end{pmatrix}$$

דוגמה 1.8

[0,1] במרחב של הפונקציות הממשיות בקטע

$$\|f(x)\|=\sqrt{\int_0^1 f^2(x)\,dx}$$
 אלדוגמה, עבור $\|f(x)\|=\sqrt{\int_0^1 1^2\,dx}=1$
$$\|f(x)\|=\sqrt{\int_0^1 x^6\,dx}=\frac{1}{\sqrt{7}}\;.$$

ננרמל את הוקטור הזה:

$$\frac{f(x)}{\|f(x)\|} = \sqrt{7} \cdot x^3 .$$

אז

$$\|\sqrt{7}x^3\| = \sqrt{7} \cdot \frac{1}{\sqrt{7}} = 1$$
.

דוגמה 1.9

 $A=egin{pmatrix} 1&2\\3&0 \end{pmatrix}$ עם המכפלה הפנימית הסטנדרטית נקח $\mathbb{R}^{2 imes2}$ עם המכפלה הפנימית $\mathbb{R}^{2 imes2}$ עם המכפלה $\mathbb{R}^{2 imes2}$ עם המכפלה $\mathbb{R}^{2 imes2}$ עם המכפלה $\mathbb{R}^{2 imes2}$ עם המכפלה $\mathbb{R}^{2 imes2}$ עם המכפלה הפנימית הסטנדרטית נקח $\mathbb{R}^{2 imes2}$ עם המכפלה הפנימית הסטנדרטית המקטור:

$$\frac{1}{\sqrt{14}} \cdot A = \begin{pmatrix} \frac{1}{\sqrt{14}} & \frac{2}{\sqrt{14}} \\ \frac{3}{\sqrt{14}} & 0 \end{pmatrix}$$

1.8 משפט פיתגורס, משפט קושי שוורץ, אי-שוויון משולש

משפט 1.4 משפט פיתגורס המוכלל של ווקטורים במרחב מכפלה פנימית

לכל שני וקטורים במרחב מכפלה פנימית מתקיים: u, \mathbf{v}

(1

$$||u \pm \mathbf{v}||^2 = ||u||^2 \pm 2\text{Re}\langle u, \mathbf{v} \rangle + ||v||^2$$

(2

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2)$$

הוכחה:

(1

$$\|u+\mathbf{v}\|^2 = \langle u+\mathbf{v}, u+\mathbf{v} \rangle$$
 (הגדרה של המכפלה פנימית)
$$= \langle u, u+\mathbf{v} \rangle + \langle \mathbf{v}, u+\mathbf{v} \rangle$$
 (לינאריות)
$$= \langle u, u \rangle + \langle u, \mathbf{v} \rangle + \langle \mathbf{v}, u \rangle + \langle \mathbf{v}, \mathbf{v} \rangle$$
 (לינאריות חלקית)
$$= \langle u, u \rangle + \langle u, \mathbf{v} \rangle + \overline{\langle u, \mathbf{v} \rangle} + \langle \mathbf{v}, \mathbf{v} \rangle$$
 (הרמיטיות)
$$= \|u\|^2 + \langle u, \mathbf{v} \rangle + \overline{\langle u, \mathbf{v} \rangle} + \|\mathbf{v}\|^2$$
 (הגדרה של הנורמה)
$$= \|u\|^2 + 2\operatorname{Re}\langle u, \mathbf{v} \rangle + \|\mathbf{v}\|^2$$
 (ראו הסבר למטה) .

z=a+bi מספר לכל האחרון: לכל שלב האחרון

$$z + \bar{z} = (a + bi) + (a - bi) = 2a = 2$$
Re z .

(2

$$\begin{split} \|u+\mathbf{v}\|^2 + \|u-\mathbf{v}\|^2 &= \|u\|^2 + 2\mathrm{Re}\,\langle u,\mathbf{v}\rangle + \|\mathbf{v}\|^2 + \|u\|^2 - 2\mathrm{Re}\,\langle u,\mathbf{v}\rangle + \|\mathbf{v}\|^2 \\ &= 2\left(\|u\|^2 + \|\mathbf{v}\|^2\right) \end{split}$$

השוויון האחרון במרחב \mathbb{R}^2 מבטא את משפט גאומרטי: במקבילית, סכום ריבועי האלכסונים שווה לסכום ריבועי הארכועי הצלעות.

משפט 1.5 אי-שוויון קושי-שוורץ

לכל וקטורים u ו- v במרחב מכפלה פנימית מתקיים

$$|\langle u, \mathbf{v} \rangle| \le ||u|| \cdot ||\mathbf{v}||$$
.

 $0 \leq 0$ אז מקבלים $0 \leq 0$ הוכחה: אם

נניח ש- $\bar{0} \neq \bar{0}$ לכל סקלר .
 $u \neq \bar{0}$ מתקיים

$$\langle \lambda u + \mathbf{v}, \lambda u + \mathbf{v} \rangle \ge 0$$
, (#)

לפי משפט הקיטוב האגף השמאל הוא

$$\begin{split} \langle \lambda u + \mathbf{v}, \lambda u + \mathbf{v} \rangle &= & \|\lambda u\|^2 + 2 \mathrm{Re} \, \langle \lambda u, \mathbf{v} \rangle + \|\mathbf{v}\|^2 \\ &= & \|\lambda u\|^2 + \langle \lambda u, \mathbf{v} \rangle + \overline{\langle \lambda u, \mathbf{v} \rangle} + \|\mathbf{v}\|^2 \\ &= & \lambda \overline{\lambda} \|u\|^2 + \lambda \, \langle u, \mathbf{v} \rangle + \overline{\lambda} \overline{\langle u, \mathbf{v} \rangle} + \|\mathbf{v}\|^2 \end{split}$$

נציב זה באגף השמאל של (#) ונקבל

$$\lambda \bar{\lambda} \|u\|^2 + \lambda \langle u, \mathbf{v} \rangle + \bar{\lambda} \overline{\langle u, \mathbf{v} \rangle} + \|\mathbf{v}\|^2 \ge 0$$

נציב
$$ar{\lambda}=rac{-\langle u, {
m v}
angle}{\|u\|^2}$$
 , $\lambda=rac{-\overline{\langle u, {
m v}
angle}}{\|u\|^2}$ נציב

$$\frac{\overline{\langle u, \mathbf{v} \rangle} \langle u, \mathbf{v} \rangle}{\|u\|^2} - \frac{\overline{\langle u, \mathbf{v} \rangle} \langle u, \mathbf{v} \rangle}{\|u\|^2} - \frac{\overline{\langle u, \mathbf{v} \rangle} \langle u, \mathbf{v} \rangle}{\|u\|^2} + \|\mathbf{v}\|^2 \ge 0$$

 $||u||^2$ -נכפיל ב

$$-\left\langle u,\mathbf{v}\right\rangle \overline{\left\langle u,\mathbf{v}\right\rangle }+\|u\|^{2}\|\mathbf{v}\|^{2}\geq0$$

נציב
$$\langle u, {
m v}
angle \overline{\langle u, {
m v}
angle} = |\langle u, {
m v}
angle\,|^2$$
 נציב

$$|\langle u, \mathbf{v} \rangle|^2 \le ||u||^2 ||\mathbf{v}||^2$$

מש"ל.

.v -טו u- המתאימה המישור במישור הערחק בין המרחק הוא המרחק ווו $\|u-\mathbf{v}\|$ הביטוי במרחב אפשר השבר אפשר אפשר המרחק הביטוי

ישנה הכללה של מושג המרחק בכל מרחב מכפלה פנימית.

הגדרה 1.11 המרחק

יהיו ע"י מספר ממשי אי-שלילי המוגדר ע"י יהיו ע ו- יחוא מספר ממשי אי-שלילי המוגדר ע"י יהיו u ו- יהיו

$$d(u, \mathbf{v}) = \|u - \mathbf{v}\|$$

משפט 1.6 תכונות של המרחק ואי-שוויון המשולש

נראה כי מושג המרחק החדש מקיים תכונת בסיסית של המרחק המוכר במישור.

(1

$$d(u, \mathbf{v}) = d(\mathbf{v}, u)$$

הוכחה:

$$d(u, \mathbf{v}) = ||u - \mathbf{v}|| = ||(-1)(\mathbf{v} - u)|| = 1 \cdot ||\mathbf{v} - u|| = d(\mathbf{v}, u)$$

$$.u={
m v}$$
 אם ורק אם $d(u,{
m v})=0$. $d(u,{
m v})\geq 0$ (2

(3

$$d(u,\mathbf{v}) \le d(u,w) + d(w,\mathbf{v})$$

זאת תכונה הנקראת אי-שוויון המשולש.

u, v לפי משפט הקיטוב, לכל שני וקטורים u, v

$$\|u + \mathbf{v}\|^2 = \|u\|^2 + 2\text{Re}\langle u, \mathbf{v} \rangle + \|\mathbf{v}\|^2 \le \|u\|^2 + 2|\langle u, \mathbf{v} \rangle| + \|\mathbf{v}\|^2$$
 (#1)

:הסבר

גסמן
$$z=\langle u, {
m v}
angle = a+ib$$
 נסמן

$$.\bar{z} = a - ib$$

,
$$|\langle u, \mathbf{v} \rangle|^2 = z\bar{z} = a^2 + b^2$$
 נרשום . $|\langle u, \mathbf{v} \rangle| = \sqrt{a^2 + b^2}$ לכן לכן

$$|\langle u, \mathbf{v} \rangle| = \sqrt{a^2 + b^2}$$
 رکز

,
$$2{
m Re}\,\langle u,{
m v}
angle=2{
m Re}z=2a$$
 מצד שני שני ב $2{
m Re}(u,{
m v})=2a\leq 2\sqrt{a^2+b^2}=2|\,\langle u,{
m v}
angle\,|$ לכן נקבל

$$||u + v||^2 \le ||u||^2 + 2||u|| \cdot ||v|| + ||v||^2 = (||u|| + ||v||)^2$$

v במקום v:

$$||u - v||^2 \le (||u|| + ||v||)^2$$
.

לכן

$$||u - v|| \le ||u|| + ||v||$$
.

 ${f v}$ במקום ${f v}-w$ במקום u-w במקום ציב

$$||(u-w)-(v-w)|| \le ||u-w|| + ||v-w||$$
.

ז"א

$$||u - v|| \le ||u - w|| + ||v - w||$$
.

קיבלנו את אי-שוויון המשולש:

$$d(u, \mathbf{v}) < d(u, w) + d(\mathbf{v}, w)$$

1.9 אורתוגונליות

הגדרה 1.12 ווקטורים אורתוגונליים

וקטורים או מאונכים זה לזה (או מאונכים זה לזה) וקטורים $u, {
m v}$ במרחב מכפלה פנימית נקראים אורתוגונליים $u, {
m v}$

$$\langle u, \mathbf{v} \rangle = 0$$
.

:סימון

$$u \perp v$$
.

אט
$$\langle u, {
m v}
angle = 0$$
 אס (1

$$\langle \mathbf{v}, u \rangle = \overline{\langle u, \mathbf{v} \rangle} = \overline{0} = 0$$
,

כלומר יחס האורתוגונליות הוא סימטרי.

- .ע וקטור האפס אורתוגונל לכל וקטור ע
- עם המכפלה פנימית הסטנדרטית, מושג האורתוגונליות מתלכד עם מושג האורתוגונליות \mathbb{R}^n במרחב (3 המוגדר על סמך המכפלה סלקרית.

דוגמה 1.10

[0,1] במרחב הפונקציות הרציפות בקטע

$$f(x) = 2x - 1 , \quad g(x) = 2x^2 - 2x + \frac{1}{3}$$

$$(f,g) = \int_0^1 (2x - 1) \left(2x^2 - 2x - \frac{1}{3}\right) dx$$

$$= \int_0^1 \left(4x^3 - 6x^2 + \frac{8}{3}x - \frac{1}{3}\right) dx$$

$$= \left[x^4 - 2x^3 + \frac{4}{3}x^2 - \frac{1}{3}x\right]_0^1$$

$$= 0 .$$

 $.f(x)\perp g(x)$ לכן

דוגמה 1.11

במרחב \mathbb{C}^4 עם המכפלה הפנימית הסטנדרטית:

$$u = \begin{pmatrix} 1 \\ i \\ 1 \\ i \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} i \\ 1 \\ i \\ 1 \end{pmatrix}$$
$$(u, \mathbf{v}) = 1 \cdot \overline{i} + i \cdot \overline{1} + 1 \cdot \overline{i} + i \cdot \overline{1}$$
$$= -i + i - i + i$$
$$= 0$$

 $.u \perp v$ לכן

דוגמה 1.12

הוכיחו שאם ע \perp ע אז

$$||u + v||^2 = ||u||^2 + ||v||^2$$
 (x

$$\|u + \mathbf{v}\| = \|u - \mathbf{v}\|$$
 (2

פתרון:

(N

$$||u + v||^2 = ||u||^2 + 2\text{Re}\langle u, v \rangle + ||v||^2 = ||u||^2 + ||v||^2$$

.המשמעות הגאומטרית ב- \mathbb{R}^2 - משפט פיתגורס

(1

$$\|u-\mathbf{v}\|^2=\|u\|^2-2\mathrm{Re}\,\langle u,\mathbf{v}\rangle+\|\mathbf{v}\|^2=\|u\|^2+\|\mathbf{v}\|^2=\|u\|^2+\|\mathbf{v}\|^2+2\mathrm{Re}\,\langle u,\mathbf{v}\rangle$$
בגלל ש $\langle u,\mathbf{v}\rangle=0$. לכך .

$$||u - \mathbf{v}||^2 = ||u + \mathbf{v}||^2$$

ולכן

$$||u - \mathbf{v}|| = ||u + \mathbf{v}||$$

. האלכסונים של מלבן שווים אה לזה. \mathbb{R}^2 - האלכסונים של הגאומטרית ב-

הגדרה 1.13 ווקטור האורתוגונלי לתת-מרחב

נניח ש V מרחב מכפלה פנימית ו- ע $U \subset V$ תת-מרחב של V. נניח ש V אורתוגונלי ע אורתוגונלי ע אורתוגונלי לכל וקטור ווקטור $u \in U$. כלומר, אם

$$\langle \mathbf{v}|u\rangle = 0$$

.U בתחב אז לתת-מרחב אורתוגונלי הווקטור אז הווקטור, $u\in U$ לכל סימון:

$$\mathbf{v} \perp U$$
.

הגדרה 1.14 המשלים האורתוגונלי

נניח ש V מרחב מכפלה פנימית ו- U ע U ע תת-מרחב של U. נניח ש V מרחב מכפלה פנימית ו- U ע תת-מרחב של U אורתגונלי לכל ווקטור ב- U ומוגדר לפי התנאי שכל ווקטור ב- U^\perp אורתגונלי לכל ווקטור ב U^\perp כלומר:

$$\langle a|b\rangle = 0$$

 $.b \in U^{\perp}$ ולכל $a \in U$

דוגמה 1.13

נניח ש- U^{\perp} , כאשר המכפלה הפנימית מצאו בסיס משאים . $U=\mathrm{span}\{x\}$ ו- $V=\mathbb{R}_2[x]$ המכפלה הפנימית ש- $U=\mathrm{span}\{x\}$ ו- $U=\mathrm{span}\{x\}$ היא המכפלה הפנימית הסטנדרטית בקטע.

פתרון:

$$p(x)=a+bx+cx^2\in U^\perp$$
 וקטור וקטור

$$\langle x, p(x) \rangle = \langle x, a + bx + cx^2 \rangle = \int_0^1 dx \, x \cdot (a + bx + cx^2) = \left[\frac{ax^2}{2} + \frac{bx^3}{3} + \frac{cx^4}{4} \right]_0^1 = \frac{a}{2} + \frac{b}{3} + \frac{c}{4} = 0.$$

לכן

$$U^{\perp} = \{a + bx + cx^2 | 6a + 4b + 3c = 0 . \}$$

 $:\!\!U^\perp$ נמצא בסיס של

$$a = -\frac{2}{3}b - \frac{1}{2}c , \quad b, c \in \mathbb{R} .$$

לכן

$$a + bx + cx^2 = -\frac{2}{3}b - \frac{1}{2}c + bx + cx^2 = b\left(-\frac{2}{3} + x\right) + c\left(-\frac{1}{2} + x^2\right), \quad b, c \in \mathbb{R}.$$

לכן U^{\perp} נשים לב כי $\{1-2x^2,2-3x\}$ לכן

$$3=\dim(V)=\overbrace{\dim(U)}^{=1}+\overbrace{\dim(U^\perp)}^{=2}$$

$$V=U\oplus U^\perp$$
 לכן

דוגמה 1.14

באים: בסיס ל- U^{\perp} בכל אחד מהמקרים הבאים:

. ביחס ביחס למכפלה פנימית הסטנדרטית
$$U=\operatorname{span}\left\{inom{1+i}{i}\right\}$$
 , $V=\mathbb{C}^2$ (1

$$U=\mathrm{span}\left\{(x,x^2
ight\}$$
 , אינטגרלית בקטע ע ביחס למכפלה ביחס ל $U=\mathrm{span}\left\{(x,x^2
ight\}$

$$\mathbb{R}^{2 imes2}$$
 -ב הסטנדרטית ביחס למכפלה ביחס ביחס $U=\mathrm{span}\left\{egin{pmatrix}1&0\\0&0\end{pmatrix},egin{pmatrix}1&1\\0&0\end{pmatrix}
ight\}$, $V=\mathbb{R}^{2 imes2}$

פתרון:

$$. \binom{z_1}{z_2} \perp \binom{1+i}{i} \Leftrightarrow \binom{z_1}{z_2} \in U^{\perp} \text{ (1)}$$

$$\left(\binom{z_1}{z_2}, \binom{1+i}{i} \right) = z_1 \overline{(1+i)} + z_2 \overline{i} = 0 \quad \Rightarrow \quad z_2 = \frac{i}{1-i} z_1 = \left(-\frac{1}{2} + \frac{1}{2} i \right) z_1$$

לכן

$$U^{\perp} = \left\{ \begin{pmatrix} 1 \\ -\frac{1}{2} + \frac{1}{2}i \end{pmatrix} z \middle| z \in \mathbb{C} \right\} .$$

 $:U^{\perp}$ בסיס של

$$\left\{ \begin{pmatrix} 1\\ -\frac{1}{2} + \frac{1}{2}i \end{pmatrix} \right\}$$

$$p(x), x^2 = 0$$
 וגם $p(x), x = 0 \Leftrightarrow p(x) = a + bx + cx^2$ (2)

$$(p(x), x) = \int_0^1 (a + bx + cx^2)x \, dx = \left[\frac{ax^2}{2} + \frac{bx^3}{3} + \frac{cx^4}{4}\right]_0^1 1 = \frac{a}{2} + \frac{b}{3} + \frac{c}{4} = 0$$

$$(p(x), x^2) = \int_0^1 (a + bx + cx^2)x^2 dx = \left[\frac{ax^3}{3} + \frac{bx^4}{4} + \frac{cx^5}{5}\right]_0^1 1 = \frac{a}{3} + \frac{b}{4} + \frac{c}{5} = 0$$

לכן

$$U^{\perp} = \left\{ a + bx + cx^2 \middle| \begin{array}{cc} 6a + 4b + 3c & = 0 \\ 20a + 15b + 12c & = 0 \end{array} \right\}$$

$$\left(\begin{array}{ccc} 6 & 4 & 3 \\ 20 & 15 & 12 \end{array} \right) \xrightarrow{R_2 \to 3R_2 - 10R_1} \left(\begin{array}{ccc} 6 & 4 & 3 \\ 0 & 5 & 6 \end{array} \right) \xrightarrow{R_1 \to 5R_1 - 4R_2} \left(\begin{array}{ccc} 30 & 0 & -9 \\ 0 & 5 & 6 \end{array} \right) \to \left(\begin{array}{ccc} 1 & 0 & -\frac{3}{10} \\ 0 & 1 & \frac{6}{5} \end{array} \right)$$

 $.c \in \mathbb{R} \ b = -1.2c \ a = 0.3c$

$$a + bx + cx^2 = \frac{3}{10}c - \frac{12}{10}cx + cx^2 = c\left(\frac{3}{10} - \frac{12}{10}x + x^2\right), \quad c \in \mathbb{R}.$$

 $:\!\!U^\perp$ לכן נקבל בסיס של

$$B_{U^{\perp}} = \left\{ 3 - 12x + 10x^2 \right\}$$

$$.U = \mathrm{span}(A_1,A_2) \Leftarrow .A_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \text{ (3)}$$

$$U^\perp = \left\{B \in \mathbb{R}^{2 \times 2} \middle| (B,A_1) = 0 \right., (B,A_2) = 0\right\}$$

$$.B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$.B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow$$

$$(B,A_1) = \mathrm{tr}(A_1^t \cdot B) = \mathrm{tr}\left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = \mathrm{tr}\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} = a = 0$$

$$(B,A_2) = \mathrm{tr}(A_2^t \cdot B) = \mathrm{tr}\left(\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = \mathrm{tr}\begin{pmatrix} a & b \\ a & b \end{pmatrix} = a + b = 0$$

$$C = \left\{\begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix} \middle| c, d \in \mathbb{R}\right\}$$

$$C = \left\{\begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix} \middle| c, d \in \mathbb{R}\right\}$$

$$C = \left\{\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right\}.$$

1.10 * העשרה: סכום ריבועי האלכסונים של במקבילית שווה לסכום ריבועי הצלעות של

הוכחה:

(פיתגורס).
$$AC^2 = AE^2 + CE^2$$
 לכן
$$AC^2 = (AB + BE)^2 + CE^2$$

$$AC^2 = AB^2 + BE^2 + 2 \cdot AB \cdot BE + CE^2$$
 (*1)

בגלל ש CDFE מלבן. CD=EF . AB=CD=EF לכן לכן CD=AB

גם CE=DF (מרחק בין שנ ישרים מקבילים). לכן $\Delta AFD\cong \Delta BEC$ (משולשים חופפים). AF=BE לכן

נסתכל אל המשולש ישר זוית ΔDFB . נסתכל אל המשולש ישר אוית $BD^2=BF^2+DF^2$. DF=CE בגלל ש $BD^2=(EF-BE)^2+CE^2$ לכן EF=AB בגלל ש $BD^2=(AB-BE)^2+CE^2$ לכן

$$BD^{2} = AB^{2} + BE^{2} - 2 \cdot AB \cdot BE + CE^{2}$$
 (*2)

נחבר את הביטוים (1*)+(2*) ונקבל

$$AC^{2} + BD^{2} = AB^{2} + BE^{2} + 2 \cdot AB \cdot BE + CE^{2} + AB^{2} + BE^{2} - 2 \cdot AB \cdot BE + CE^{2}$$

$$\Rightarrow AC^{2} + BD^{2} = 2 \cdot AB^{2} + 2 \cdot BE^{2} + 2 \cdot CE^{2}$$

$$\Rightarrow AC^{2} + BD^{2} = 2 \cdot AB^{2} + 2 \cdot (BE^{2} + CE^{2})$$
 (*3)

 ΔBEC במשולש ישר זוית

(*3) פיתגורס). לכו נקבל ממשוואה א $BC^2 = BE^2 + CE^2$

$$AC^{2} + BD^{2} = 2 \cdot AB^{2} + 2 \cdot BC^{2}$$

$$\Rightarrow AC^{2} + BD^{2} = AB^{2} + AB^{2} + BC^{2} + BC^{2}$$

$$\Rightarrow AC^{2} + BD^{2} = AB^{2} + BC^{2} + CD^{2} + AD^{2}$$

לכן סכום ריבועי האלכסונים שווה לסכום ריבועי הצלעות.

שעור 2 בסיסים אורתוגונליים

2.1 בסיסים אורתוגונליים

הגדרה 2.1 קבוצת ווקטורים אורתוגונלית

נתון המרחב מכפלה פנימית V ונתונה הקבוצה של ווקטורים

$$\{u_1, u_2, \ldots, u_k .\}$$
.

הקבוצה נקראת אורתוגונלית אם כל שני ווקטורים שלה אורתוגונליים. כלומר:

$$\langle u_i, u_j \rangle = 0 , \qquad i \neq j .$$

הגדרה 2.2 קבוצת ווקטורים ואורתונורמלית

נתון המרחב מכפלה פנימית V ונתונה הקבוצה של ווקטורים

$$\{u_1, u_2, \dots, u_k\}$$
.

הקבוצה נקראת אורתונורמלית אם:

א) כל שני ווקטורים שלה אורתוגונליים, כלומר

$$\langle u_i, u_j \rangle = 0 , \qquad i \neq j ,$$

ב) כל ווקטור הוא ווקטור יחידה, כלומר

$$||u_i||=1.$$

דוגמה 2.1

. עם המכפלה אורתונורמלית. של \mathbb{R}^n עם אורתונורמלית של $\{e_1,\dots,e_n\}$ עם הסטנדרטי

פתרון:

, אין המכפלה הסקלרית מוגדרת ,
$$u=\begin{pmatrix}x_1\\ \vdots\\ x_n\end{pmatrix}$$
 , $\mathbf{v}=\begin{pmatrix}y_1\\ \vdots\\ y_n\end{pmatrix}\in\mathbb{R}^n$ מזכורת: נתונים שני ווקטורים \mathbf{R}^n

$$(u, \mathbf{v}) = \sum_{i=1}^{n} x_i y_i = x_1 y_1 + \ldots + x_n y_n.$$

 $:\mathbb{R}^n$ נרשום את הבסיס הסטנדרטי

$$\left\{ e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \right\}$$

(N

(1

$$(e_i, e_j) = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases},$$

כלומר כל שני ווקטורים אורתוגונליים.

$$||e_i|| = \sqrt{(e_i, e_i)} = 1$$
,

כלומר כל ווקטור בקבוצה הוא ווקטור יחידה.

. לכן הבסיס הסטנדרטי של \mathbb{R}^n הוא קבוצה אורתונורמלי

דוגמה 2.2

נתונה הקבוצה

$$\left\{ u_1 = \begin{pmatrix} 1+i \\ -1 \\ 1 \end{pmatrix}, u_2 = \begin{pmatrix} i \\ 1 \\ -i \end{pmatrix}, u_3 = \begin{pmatrix} 3+i \\ 4+3i \\ 5i \end{pmatrix} \right\}$$

. עם המ"פ הסטנדרטית עם המ"פ הסטנדרטית על ווקטורים ב-

- א) הוכיחו שהקבוצה אורתוגונלית.
- ב) מצאו את הקבוצה האורתנורומלית המתאימה לקבוצה זו.

פתרון:

(N

$$\langle u_1, u_2 \rangle = (1+i)\overline{i} - 1 \cdot 1 + 1(-\overline{i}) = (1+i)(-i) - 1 + 1(i) = -i + 1 - 1 + i = 0 \Rightarrow u_1 \perp u_2.$$

$$\langle u_1, u_3 \rangle = (1+i)(3-i) - 1(4-3i) + 1(-5i) = 4 + 2i - 4 + 3i - 5i = 0 \Rightarrow u_1 \perp u_3.$$

$$\langle u_2, u_3 \rangle = i(3-i) + 1(4-3i) - i(-5i) = 1 + 3i + 4 - 3i - 5 = 0 \Rightarrow u_2 \perp u_3.$$

לכן הקבוצה אורתוגונלית.

(Þ

$$||u_1||^2 = \langle u_1, u_1 \rangle = (1+i)(1-i) + (-1)(-1) + 1 \cdot 1$$
 = 4

$$||u_2||^2 = \langle u_2, u_2 \rangle = i(-i) + 1 \cdot 1 + (-i) \cdot i$$
 = 3.

$$||u_3||^2 = \langle u_3, u_3 \rangle = (3+i)(3-i) + (4+3i)(4-3i) + 5i(-5i) = 10 + 25 + 25 = 60$$
.

לכן קבוצת הווקטורים

$$\left\{ \frac{1}{2}u_1, \frac{1}{\sqrt{3}}u_2, \frac{1}{\sqrt{60}}u_3 \right\}$$

היא קבוצה אורתונורמלית.

משפט 2.1 קבוצת אורתוגונלית בת"ל

קבוצת אורתוגונלית במרחב מכפלה פנימית שלא מכילה את ווקטור האפס היא בלתי תלויה לינארית.

הוכחה: תהי $\{u_1,\ldots,u_k\}$ קבוצה אורתוגונלית. נניח ש

$$\alpha_1 u_1 + \ldots + \alpha_k u_k = 0 .$$

1 < j < k אז לכל

$$\left\langle \sum_{i=1}^k \alpha_i u_i \,,\, u_j \right\rangle = \langle 0 \,,\, u_j \rangle = 0 \,.$$

מצד שני

$$\left\langle \sum_{i=1}^{k} \alpha_i u_i , u_j \right\rangle = \sum_{i=1}^{k} \alpha_i \left\langle u_i , u_j \right\rangle .$$

הקבוצה אורתוגונלית, אז $(u_i,u_j)=0$ אם אם לכן בהסכום לעיל כל האיברים מתאפסים חוץ מהאיבר של הקבוצה אורתוגונלית, אז ווע לעונ לווע האיבר לכן לכן לווע האיבר של $(u_i,u_j)=0$

$$\left\langle \sum_{i=1}^{k} \alpha_i u_i, u_j \right\rangle = \alpha_j \left\langle u_j, u_j \right\rangle .$$

לכן

$$\alpha_j \langle u_j, u_j \rangle = 0$$
.

 $\langle u_j\,,\,u_j
angle
eq 0$ (נתון), אז $u_j
eq 0$

לכן בהכרח

$$\alpha_j = 0$$

 $1 \le j \le k$ לכל

משפט 2.2 קבוצת אורתוגונלית היא בסיס

. $\dim(V)=n$ ש כך מרחב מכפלה פנימית ער מרחב מרחב עניח

V טל מהווה בסיס של ווקטורים ב- מהווה בסיס של כל קבוצה אורתוגונלית של

 $\dim(V)=n$ נניח ש V מרחב מכפלה פנימית, הוכחה: נניח ש $U=\{u_1,\ldots,u_n\}\in V$ קבוצה אורתוגונלית. כל קבוצה אורתוגונלית היא בת"ל, לכן הקבוצה בת"ל. בקבוצה יש $\dim(U)=\dim(V)$ לכן הקבוצה מהווה בססי של V

הגדרה 2.3 בסיס אורתוגונלי ובסיס אורתונורמלי

- בסיס של V המורכב מווקטורים אורתוגונליים נקרא בסיס אורתוגונלי. \bullet
- בסיס של V המורכב מווקטורים אורתונורמליים נקרא בסיס אורתונורמלי. \bullet

דוגמה 2.3

עבור כל אחד של הקבוצות ווקטורים הבאות של \mathbb{R}^3 עם מ"פ סטנדרטית. בדקו אם הקבוצה היא בסיס אורתוגונלי. ובסיס אורתנורמלי.

$$\left\{u_1=egin{pmatrix}1\\0\\0\end{pmatrix},u_2=egin{pmatrix}1\\1\\0\end{pmatrix},u_3=egin{pmatrix}1\\1\\1\end{pmatrix}
ight\}$$
 (N

$$\left\{u_1=\begin{pmatrix}1\\2\\2\end{pmatrix},u_2=\begin{pmatrix}0\\1\\-1\end{pmatrix},u_3=\begin{pmatrix}4\\-1\\-1\end{pmatrix}\right\} \text{ (a)}$$

פתרון:

$$\langle u_1,u_2 \rangle = 1 \neq 0$$
 (x

לכן הקבוצה לא אורתוגונלית.

(1

$$\langle u_1, u_2 \rangle = 0$$

 $\langle u_1, u_3 \rangle = 0$
 $\langle u_2, u_3 \rangle = 0$

 \mathbb{R}^3 של בסיס הקבוצה בת"ל ולכן הקבוצה בסיס של לכן הקבוצה אורתוגונלית, ולכן הקבוצה בסיס של הקבוצה בחים של הקבוצה בסיס של הקבוצה בחים הקבוצה בחים של הקבוצה בחים של הקבוצה בחים החים הקבוצה בחים הקבוצה בחים החים הקבוצה בחים החים הקבוצה בחים המוצדה בחים החים המוצה בחים המו

$$||u_1|| = \sqrt{1+4+4} = 3$$
, $||u_2|| = \sqrt{2}$, $||u_3|| = \sqrt{18}$.

לכן הקבוצה לא בסיס אורתונורמלי.

נבנה בסיס אורתונורמלי:

$$\left\{\frac{1}{3}u_1, \frac{1}{\sqrt{2}}u_2, \frac{1}{\sqrt{18}}u_3\right\}$$

דוגמה 2.4

במרחב עם מ"פ סטנדרטית, נתונה קבוצת ווקטורים הבאה: \mathbb{C}^4

$$\left\{ u_1 = \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2}i \\ \frac{1}{2} - \frac{1}{2}i \end{pmatrix}, u_2 = \begin{pmatrix} 0 \\ \frac{i}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \\ 0 \end{pmatrix}, u_3 = \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{-1}{2}i \\ \frac{-1}{2} + \frac{1}{2}i \end{pmatrix}, \right\}$$

בדקו אם הקבוצה אורתוגונלית ואורתונורמלית.

פתרון:

$$\langle u_1, u_2 \rangle = 0 + \frac{1}{2} \left(\frac{-i}{\sqrt{2}} \right) + \frac{1}{2} i \left(\frac{-1}{\sqrt{2}} \right) + \left(\frac{1}{2} - \frac{1}{2} i \right) \cdot 0 = \frac{-i}{\sqrt{2}} \neq 0$$

לכן הקבוצה אינה אורתוגונלית.

דוגמה 2.5

 $\mathbb{R}_3[x]$ במרחב ואורתונורמליות אורתוגונליות הבאות קבעו אם הקבוצות הבאות אורתוגונליות אורתוגונליות במרחב עם מ"פ האינטגרלית בקטע [0,1]:

$$\{1, x, x^2\}$$
 (x

$$\left\{1, x - \frac{1}{2}, x^2 - x + \frac{1}{6}\right\}$$
 (2

פתרון:

(N

$$u_1 - 1$$
, $u_2 = x$, $u_3 = x^2$.
 $\langle u_1, u_2 \rangle = \int_0^1 1 \cdot x \, dx = \left[\frac{x^2}{2} \right]_0^1 = \frac{1}{2} \neq 0$

לכן B_1 קבוצה לא אורתוגונלית.

(2

$$u_1 - 1$$
, $u_2 = x - \frac{1}{2}$, $u_3 = x^2 - x + \frac{1}{6}$.

$$\langle u_1, u_2 \rangle = \int_0^1 1 \cdot \left(x - \frac{1}{2} \right) dx = \left[\frac{x^2}{2} - \frac{x}{2} \right]_0^1 = 0$$

$$\langle u_1, u_3 \rangle = \int_0^1 1 \cdot \left(x^2 - x + \frac{1}{6} \right) dx$$

$$= \left[\frac{x^3}{3} - \frac{x^2}{2} + \frac{x}{6} \right]_0^1 = 0$$

$$\langle u_2, u_3 \rangle = \int_0^1 \left(x - \frac{1}{2} \right) \cdot \left(x^2 - x + \frac{1}{6} \right) dx = \int_0^1 \left(x^3 - x^2 + \frac{x}{6} - \frac{x^2}{2} + \frac{x}{2} - \frac{1}{12} \right) dx$$

$$= \int_0^1 \left(x^3 - \frac{3x^2}{2} + \frac{2x}{3} - \frac{1}{12} \right) dx = \left[\frac{x^4}{4} - \frac{x^3}{2} + \frac{x^2}{3} - \frac{x}{12} \right]_0^1 = \frac{1}{4} - \frac{1}{2} + \frac{1}{3} - \frac{1}{12} = 0$$

לכן הקבוצה אורתוגונלית.

$$||u_1||^2 = \langle u_1, u_1 \rangle = \int_0^1 1 \cdot 1 \, dx = [x]_0^1 = 1$$

$$||u_2||^2 = \langle u_2, u_2 \rangle = \int_0^1 \left(x - \frac{1}{2} \right)^2 dx = \int_0^1 \left(x^2 - x + \frac{1}{4} \right) dx = \left[\frac{x^3}{3} - \frac{x^2}{2} + \frac{x}{4} \right]_0^1 = \frac{1}{3} - \frac{1}{2} + \frac{1}{4} = \frac{1}{12}.$$

$$||u_3||^2 = \langle u_3, u_3 \rangle$$

$$= \int_0^1 \left(x^2 - x + \frac{1}{6} \right)^2 dx$$

$$= \int_0^1 \left(x^4 - 2x^3 + \frac{x^2}{3} + x^2 - \frac{x}{3} + \frac{1}{36} \right) dx$$

$$= \int_0^1 \left(x^4 - 2x^3 + \frac{4x^2}{3} - \frac{x}{3} + \frac{1}{36} \right) dx$$

$$= \left[\frac{x^5}{5} - \frac{x^4}{2} + \frac{4x^3}{9} - \frac{x^2}{6} + \frac{x}{36} \right]_0^1$$

$$= \frac{1}{5} - \frac{1}{2} + \frac{4}{9} - \frac{1}{6} + \frac{1}{36}$$

$$= \frac{36}{180} - \frac{90}{180} + \frac{80}{180} - \frac{30}{180} + \frac{5}{180}$$

$$= \frac{1}{180} .$$

לסיכום:

$$||u_1|| = 1, \quad ||u_2|| = \frac{1}{12}, \quad ||u_3|| = \frac{1}{180}.$$

לכן הקבוצה אינה אורתונורמלית.

נבנה קבוצה אורתונורמלית:

$$\{u_1, \sqrt{12} \cdot u_2, \sqrt{180} \cdot u_3\}$$
.

דוגמה 2.6

נתונה הקבוצה

$$A_1 = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} , \quad A_2 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} , \quad A_3 = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} .$$

. במרחב $\mathbb{R}^{3 imes 3}$ עם מ"פ הסטנדרטית. בדקו אם הקבוצה אורתוגונלית ואורתונורמלית

פתרון:

$$\langle A_1,A_2\rangle = \operatorname{tr}\left(A_2^t\cdot A_1\right) = \operatorname{tr}\left(\begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}\right) = \operatorname{tr}\begin{pmatrix} 2 & 2 & -2 \\ 0 & -2 & 2 \\ 0 & 0 & 0 \end{pmatrix} = 2 - 2 = 0 \ .$$

$$\langle A_1,A_3\rangle = \operatorname{tr}\left(A_3^t\cdot A_1\right) = \operatorname{tr}\left(\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}\right) = \operatorname{tr}\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ -1 & -3 & -4 \end{pmatrix} = 1 + 3 - 4 = 0 \ .$$

$$\langle A_2,A_3\rangle = \operatorname{tr}\left(A_3^t\cdot A_2\right) = \operatorname{tr}\left(\begin{pmatrix}1 & 0 & 0\\ 1 & 1 & 0\\ -1 & -1 & 1\end{pmatrix}\cdot \begin{pmatrix}2 & 0 & 0\\ 0 & -2 & 0\\ 0 & 0 & 0\end{pmatrix}\right) = \operatorname{tr}\begin{pmatrix}2 & 0 & 0\\ 2 & -2 & 0\\ -2 & 2 & 0\end{pmatrix} = 2-2=0 \ .$$

לכן הקבוצה אורתוגונלית.

$$||A_1||^2 = \langle A_1, A_1 \rangle = \operatorname{tr} \left(A_1^t \cdot A_1 \right) = \operatorname{tr} \left(\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 2 \\ 3 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \right) = \operatorname{tr} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 8 \\ 3 & 8 & 14 \end{pmatrix} = 20.$$

$$\|A_2\|^2 = \langle A_2, A_2 \rangle = \operatorname{tr} \left(A_2^t \cdot A_2 \right) = \operatorname{tr} \left(\begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right) = \operatorname{tr} \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & -0 & 0 \end{pmatrix} = 4 + 4 = 8 \ .$$

$$||A_3||^2 = \langle A_3, A_3 \rangle = \operatorname{tr}\left(A_3^t \cdot A_3\right) = \operatorname{tr}\left(\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}\right) = \operatorname{tr}\begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & -2 \\ -1 & -2 & 3 \end{pmatrix} = 6.$$

לכן הקבוצה לא אורתונורמלית. אבל הקבוצה הבאה

$$\left\{ \frac{1}{\|A_1\|} A_1, \frac{1}{\|A_2\|} A_2, \frac{1}{\|A_3\|} A_3 \right\} = \left\{ \frac{1}{\sqrt{20}} A_1, \frac{1}{\sqrt{8}} A_2, \frac{1}{\sqrt{6}} A_3 \right\}$$

כן קבוצה אורתונומלית

קודם הגדרנו מושג של היטל אורתוגונלי של ווקטור על תת מרחב. ניסחנו משפט שטוען את הדבר הבא:

 $u_0 \in V$ אם ע קיים פנימית, אז לכל ווקטור סופית, אז לכל ווקטור יחיד ע תת מרחב מכפלה פנימית, עו $U \subseteq V$ תת מרחב מכפלה של מרחב כך ש-

$$(\mathbf{v}-u_0)\perp U$$
.

. על על אהוכחנו את הוכחנו את על על \mathbf{v} על של קוראים קוראים u_0

נוכיח בהתחלה את קיומו של היטל בתנאי שלתת מרחב U קיים בסיס אורתונורמלי.

הגדרה 2.4 הגדרת ההיטל האורתוגונלי

נניח ש V מרחב מכפלה פנימית ונניח ש $U\subseteq V$ תת ונניח של

$$\{u_1,\ldots,u_k\}$$

ומוגדר $P_U(\mathbf{v})$ -ם מסומן של אורתוגונלי של י, ההיטל ווקטור אז לכל ווקטור אז לכל האורתוגונלי של י

$$P_U(\mathbf{v}) = \sum_{i=1}^k \frac{\langle \mathbf{v}, u_i \rangle}{\|u_i\|^2} u_i .$$

. U נקרא אופרטור האטלה אורתוגונלי על ראופרטור נקרא נקרא נקרא אופרטור אופרטור נקרא

משפט 2.3 משפט ההיטל האורתוגונלי

נניח ש V מרחב מכפלה פנימית, ו- $U\subseteq V$ תת מרחב נוצר סופית של V. נסמן את ההיטל האורתוגונלי עניח של כל ווקטור V בV על V בV ווקטור על V

$$\mathbf{v} - P_U(\mathbf{v})$$

U -אורתוגונלי לכל ווקטור ב-

כלומר

$$\langle \mathbf{v} - P_U(\mathbf{v}), u \rangle = 0$$

 $u \in U$ ולכל $\mathbf{v} \in V$

נסמן את האורתוגונליות של הווקטור $\mathbf{v}-P_U(\mathbf{v})$ ביחס לתת מרחב כך:

$$(\mathbf{v} - P_U(\mathbf{v})) \perp U$$
.

הוכחה: לפי הגדרת היטל אורתוגונלי, צריך להוכיח שווקטור

$$(\mathbf{v} - P_U(\mathbf{v})) \perp U$$
.

 $1, 1 \leq j \leq k$ נניח ש $\{u_1, \dots, u_k\}$ בסיס אורתוגונלי של

$$\begin{split} \langle \mathbf{v} - P_U(\mathbf{v}), u_j \rangle &= \left\langle \mathbf{v} - \sum_{i=1}^k \frac{\langle \mathbf{v}, u_i \rangle}{\|u_i\|^2} u_i, u_j \right\rangle \\ &= \langle \mathbf{v}, u_j \rangle - \left\langle \sum_{i=1}^k \frac{\langle \mathbf{v}, u_i \rangle}{\|u_i\|^2} u_i, u_j \right\rangle \\ &= \langle \mathbf{v}, u_j \rangle - \sum_{i=1}^k \frac{\langle \mathbf{v}, u_i \rangle}{\|u_i\|^2} \cdot \langle u_i, u_j \rangle \\ &= \langle \mathbf{v}, u_j \rangle - \sum_{i=1}^k \frac{\langle \mathbf{v}, u_i \rangle}{\|u_i\|^2} \langle u_i, u_j \rangle \, \delta_{ij} \\ &= \langle \mathbf{v}, u_j \rangle - \frac{\langle \mathbf{v}, u_j \rangle}{\|u_j\|^2} \, \langle u_j, u_j \rangle \\ &= \langle \mathbf{v}, u_j \rangle - \frac{\langle \mathbf{v}, u_j \rangle}{\|u_j\|^2} \cdot \|u_j\|^2 \\ &= \langle \mathbf{v}, u_j \rangle - \langle \mathbf{v}, u_j \rangle \\ &= 0 \; . \end{split}$$

 $L(\mathbf{v}-P_U(\mathbf{v}))\perp U$ הוכחנו

2.2 אופרטור הטלה האורתוגונלי

משפט 2.4 תכונות של אופרטור הטלה האורתוגונלי

V מרחב מכפלה פנימית ו- $U\subset V$ תת-מרחב של נניח ש- ניח שלים האורתוגונלי של U^\perp ב- U^\perp

אופרטור ההטלה האורתוגונלי P_U מקיים את התכונות הבאות:

- . העתקה לינארית P_U (1
- $P_U(w)=0$ מתקיים $w\in U^\perp$, ולכל ולכל א $P_U(u)=u$ מתקיים מתקיים (2

.
$$\operatorname{Ker}(P_U) = U^\perp$$
 וגם $\operatorname{Im}(P_U) = U$ (3

$$V=U\oplus U^{\perp}$$
 (4

$$P_U \circ P_U = P_U$$
 (5

לכל $\mathbf{v} \in V$ מתקיים כי

$$(\mathbf{v} - P_U(\mathbf{v})) \in U^{\perp}$$

הוכחה:

. העתקה לינארית P_U (1

 $\mathbf{v}_1,\mathbf{v}_2\in V$ לכל

$$P_{U}(\mathbf{v}_{1} + \mathbf{v}_{2}) = \sum_{i=1}^{k} \frac{\langle \mathbf{v}_{1} + \mathbf{v}_{2}, u_{i} \rangle}{\|u_{i}\|^{2}} u_{i}$$

$$= \sum_{i=1}^{k} \frac{\langle \mathbf{v}_{1}, u_{i} \rangle + \langle \mathbf{v}_{2}, u_{i} \rangle}{\|u_{i}\|^{2}} u_{i}$$

$$= \sum_{i=1}^{k} \frac{\langle \mathbf{v}_{1}, u_{i} \rangle}{\|u_{i}\|^{2}} u_{i} + \sum_{i=1}^{k} \frac{\langle \mathbf{v}_{2}, u_{i} \rangle}{\|u_{i}\|^{2}} u_{i}$$

$$= P_{U}(\mathbf{v}_{1}) + P_{U}(\mathbf{v}_{2})$$

$$P_{U}(\alpha \mathbf{v}) = \sum_{i=1}^{k} \frac{\langle \alpha \mathbf{v}, u_{i} \rangle}{\|u_{i}\|^{2}} u_{i}$$

$$= \sum_{i=1}^{k} \frac{\alpha \langle \mathbf{v}, u_{i} \rangle}{\|u_{i}\|^{2}} u_{i}$$

$$= \alpha \sum_{i=1}^{k} \frac{\langle \mathbf{v}, u_{i} \rangle}{\|u_{i}\|^{2}} u_{i}$$

$$= \alpha P_{U}(\mathbf{v})$$

.לכן P_U אופרטור לינארי

עכך של סקלרים סקלרים אז לכל על .U בסיס של בסיס בסקלרים (ניח ש- $\{u_1,\ldots,u_k\}$ בסיס על נניח של

אז .
$$u=lpha_1u_1+\ldots+lpha_ku_k$$

$$P_U(u) = \sum_{i=1}^k \alpha_i P_U(u_i)$$

 $j \leq j \leq k$ לכל

$$P_U(u_j) = \sum_{i=1}^k \frac{\langle u_j, u_i \rangle}{\|u_i\|^2} u_i$$
$$= \frac{\langle u_j, u_j \rangle}{\|u_j\|^2} u_j$$
$$= u_j.$$

$$P_U(u) = \sum_{i=1}^k \alpha_i u_i = u .$$

לכל $1 \leq i \leq k$ לכל מתקיים $w \in U^{\perp}$ לכל $w,u_i = 0$ מתקיים

$$P_U(w) = \sum_{i=1}^k \frac{\langle w, u_i \rangle}{\|u_i\|^2} u_i = 0$$

 $.U\subseteq \mathrm{Im}\,(P_U)$ לכך , $a=P_U(a)\in \mathrm{Im}\,(P_U)$ לפי תנאי, $a\in U$ לכל (3

, $a\in V$ בסיס אלכל של של אורתוגונלי בסיס אורתוגונלי אם אם לכל ווקטור אם לפי ההגדרה אל

$$P_U(a) = \sum_{i=1}^k \frac{\langle a, u_i \rangle}{\|u_i\|^2} u_i$$

.Im $(P_U) = U$ לכן

 $.U^\perp\subseteq\ker(P_U)$ בסעיף בסעיף מיר הוכחנו כי

. $\ker(P_U)\subseteq U^\perp$ נוכיח כי

נניח ש $v \in \ker(P_U)$ נניח ש

$$P_U(\mathbf{v}) = \sum_{i=1}^k \frac{\langle \mathbf{v}, u_i \rangle}{\|u_i\|^2} u_i = 0$$

 $1 \leq i \leq k$ לכל לכל אי $\langle {f v}, u_i
angle = 0$ בת"ל איז בהכרח בת"ל בת"ל בת"ל .v $\in U^\perp$ לכן

לכן $\dim(V) = \dim(\ker P_U) + \dim(\operatorname{Im} P_U)$ (4

 $\dim(V) = \dim\left(U^{\perp}\right) + \dim\left(U\right)$

מכאן נובע כי

$$U\cap U^{\perp}=\{0\}\ .$$

 $\mathbf{v} \in V$ לכל (5

$$P_U(\mathbf{v}) = u \in U$$
.

לכן

$$(P_U \circ P_U)(v) = P_U(P_U(v)) = P_U(u) = u$$
,

כלומר

$$P_U \circ P_U = P_U \ .$$

6) הוכחנו במשפט 2.3 כי

$$(\mathbf{v} - P_U(\mathbf{v})) \perp U$$

לכן

$$\mathbf{v} - P_U(\mathbf{v}) \in U^{\perp}$$
.

משפט 2.5 משפט הפיכות האורתוגונלי

נניח ש $V \subset V$ תת מרחב של על. אז $U \subset V$ מרחב של על. אז

$$V=U\oplus U^{\perp}$$
 (x

$$\left(U^{\perp}
ight)^{\perp}=U$$
 (2

הוכחה:

.2.4 הוכחנו במשפט
$$V=U\oplus U^\perp$$
 (א

(1

$$.U\subseteq \left(U^\perp
ight)^\perp$$
 נוכיח כי

$$u\in U$$
 נקח ע $u\in \left(U^\perp
ight)^\perp$ צ"ל

$$.u \in \left(U^\perp\right)^\perp \Leftarrow \langle u, \mathbf{v}
angle = 0$$
 , $\mathbf{v} \in U^\perp$ לכל

 $.ig(U^\perpig)^\perp\subseteq U$ צ"ל (2

נקח $w \in U^{\perp}$, $u \in U$ כך א' קיימים. $v \in \left(U^{\perp}\right)^{\perp}$ נקח

$$v = u + w$$
.

 $\langle u,w \rangle = 0$ נשים לב כי

$$\langle \mathbf{v}, w \rangle = \langle u + w, w \rangle$$
$$= \langle u, w \rangle + \langle w, w \rangle$$
$$= \langle w, w \rangle$$

$$w=0$$
 מכיוון ש $(w,w)=0$ ולכן $(v,w)=0$, אז נקבל כי $(v,w)=0$, לכן $v\in (U^\perp)^\perp$ ולכן $v\in (U^\perp)^\perp$ לכן $v=u\in U$ לכן הוכחנו כי $v=u\in U$.

2.3 תהליך גרם שמידט

משפט 2.6 תהליך גרם שמידט

נניח שV מרחב מכפלה פנימית ו- $U\subset V$ תת-מרחב של

$$\{v_1, v_2, \ldots, v_k .\}$$

כך: U כל של אורתוגונלי כסמן בסיס U כל.

$$\{u_1, u_2, \ldots, u_k\}$$
.

ניתן למצוא את כל הווקטורים בבסיס האורתוגונלי, באמצעות התהליך גרם שמידט:

$$u_{1} = \mathbf{v}_{1}$$

$$u_{2} = \mathbf{v}_{2} - \frac{\langle \mathbf{v}_{2}, u_{1} \rangle}{\|u_{1}\|^{2}} \cdot u_{1}$$

$$u_{3} = \mathbf{v}_{3} - \frac{\langle \mathbf{v}_{3}, u_{1} \rangle}{\|u_{1}\|^{2}} \cdot u_{1} - \frac{\langle \mathbf{v}_{3}, u_{2} \rangle}{\|u_{2}\|^{2}} \cdot u_{2}$$

$$\vdots$$

$$u_{k} = \mathbf{v}_{k} - \sum_{i=1}^{k-1} \frac{\langle \mathbf{v}_{k}, u_{i} \rangle}{\|u_{i}\|^{2}} \cdot u_{i}$$

$$\vdots$$

דוגמה 2.7

עם מכפלה פנימית סטנדרטית. $V=\mathbb{R}^4$

$$U = \operatorname{span} \left\{ \mathbf{v}_1 = \begin{pmatrix} -1\\0\\0\\1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 0\\-1\\0\\1 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 0\\0\\-1\\1 \end{pmatrix} \right\}$$

.U -מצאו בסיס אורתוגונלי ל

פתרון:

$$.V_1 = \operatorname{span}(u_1) \ .u_1 = \operatorname{v}_1$$
 נגדיר

$$\mathbf{v}_2 - \frac{\langle \mathbf{v}_2, u_1 \rangle}{\|u_1\|^2} \cdot u_1 = \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \end{pmatrix} \;.$$

$$.u_2=egin{pmatrix}1\\-2\\0\\1\end{pmatrix}$$
 אפשר לבחור

$$V_2 = \operatorname{span} \left\{ u_1, u_2 \right\} = \operatorname{span} \left\{ \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \end{pmatrix} \right\} .$$

$$\mathbf{v}_{3} - P_{V_{2}}(\mathbf{v}_{3}) = \mathbf{v}_{3} - \frac{\langle \mathbf{v}_{3}, u_{1} \rangle}{\|u_{1}\|^{2}} \cdot u_{1} - \frac{\langle \mathbf{v}_{3}, u_{2} \rangle}{\|u_{2}\|^{2}} \cdot u_{2}$$

$$= \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{6} \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \end{pmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ -3 \\ 1 \end{pmatrix}$$

ינגדיר
$$u_3=egin{pmatrix}1\\1\\-3\\1\end{pmatrix}$$
 בסיס אורתוגונלי:

$$\left\{ \begin{pmatrix} -1\\0\\0\\1 \end{pmatrix}, \quad \begin{pmatrix} 1\\-2\\0\\1 \end{pmatrix}, \quad \begin{pmatrix} 1\\1\\-3\\1 \end{pmatrix} \right\}$$

נבנה בסיס אורתונורמלי:

$$\left\{ \frac{1}{\sqrt{2}} u_1 = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \quad \frac{1}{\sqrt{6}} u_2 = \begin{pmatrix} \frac{1}{\sqrt{6}} \\ \frac{-2}{\sqrt{6}} \\ 0 \\ \frac{1}{\sqrt{6}} \end{pmatrix}, \quad \frac{1}{\sqrt{12}} u_3 = \begin{pmatrix} \frac{1}{\sqrt{12}} \\ \frac{1}{\sqrt{12}} \\ \frac{-3}{\sqrt{12}} \\ \frac{1}{\sqrt{12}} \end{pmatrix} \right\}$$

דוגמה 2.8

במרחב עם הבסיס מכפלה בקטע [0,1]. נתון הבסיס סטנדרטית מכפלה אינטגרלית אינטגרלית מכפלה מכפלה במרחב

$$\{e_1 = 1, e_2 = x, e_3 = x^2\}$$
.

מצאו בסיס אורתוגונלי.

פתרון:

$$u_1 = e_1 = 1 \text{ , } V_1 = \operatorname{span}(1)$$

$$u_2 = e_2 - \frac{\langle e_2, u_1 \rangle}{\|u_1\|^2} u_1 = x - \frac{1}{2}$$

$$\langle e_2, u_1 \rangle = \int_0^1 x \, dx = \frac{1}{2} \text{ , } \|u_1\|^2 = \int_0^1 1^2 dx = 1 \text{ .}$$

$$V_2 = \operatorname{span}\left(1, x - \frac{1}{2}\right) \text{ .}$$

$$u_3 = e_3 - \frac{\langle e_3, u_1 \rangle}{\|u_1\|^2} u_1 - \frac{\langle e_3, u_2 \rangle}{\|u_2\|^2} u_2$$

$$\langle e_3, u_1 \rangle = \int_0^1 x^2 dx = \frac{1}{3} , \qquad \langle e_3, u_2 \rangle = \int_0^1 x^2 \left(x - \frac{1}{2} \right) dx = \left[\frac{x^4}{4} - \frac{x^3}{6} \right]_0^1 = \frac{1}{12} .$$

$$||u_2||^2 = \int_0^1 \left(x - \frac{1}{2}\right)^2 dx = \int_0^1 \left(x^2 - x + \frac{1}{4}\right) dx = \left[\frac{x^3}{3} - \frac{x^2}{2} + \frac{x}{4}\right]_0^1 = \frac{1}{12}.$$

$$u_3 = x^2 - \frac{1}{3} - u_2 = x^2 - x + \frac{1}{6}$$
.

בסיס אורתוגונלי:

$$u_1 = 1$$
, $u_2 = x - \frac{1}{2}$, $u_3 = x^2 - x + \frac{1}{6}$.

נמצא בסיס אורתונורמלי:

$$||u_1||^2 = 1$$
, $||u_2||^2 = \frac{1}{12}$,

$$||u_3||^2 = \int_0^1 \left(x^2 - x + \frac{1}{6}\right)^2 dx$$

$$= \int_0^1 \left(x^4 - 2x^3 + \frac{4}{3}x^2 - \frac{1}{3}x + \frac{1}{36}\right) dx$$

$$= \left[\frac{x^5}{5} - \frac{x^4}{2} + \frac{4}{9}x^3 - \frac{1}{6}x^2 + \frac{1}{36}x\right]_0^1$$

$$= \frac{1}{180}.$$

בסיס אורתונורמלי:

$$\{u_1, \sqrt{12}u_2, \sqrt{180}u_3\}$$
.

דוגמה

L[-1,1] ביחס למכפלה פנימית אינטגרלית בקטע ביחס $U=\mathrm{span}(1,x,x^2)$ ביחס למרחב בסיס אורתונורמלי

פתרון:
$$\mathbf{v}_1 = 1, \mathbf{v}_2 = x, \mathbf{v}_3 = x^2$$
 נסמן

$$u_1 = 1$$
, $u_2 = \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, u_1 \rangle}{\|u_1\|^2} u_1$

$$\langle \mathbf{v}_2, u_1 \rangle = \int_{-1}^1 x \, dx = \left[\frac{x^2}{2} \right]_{-1}^1 = 0 \ .$$

לכן

$$u_2=x$$
.

$$u_3 = \mathbf{v}_3 - \frac{\langle \mathbf{v}_3, u_1 \rangle}{\|u_1\|^2} u_1 - \frac{\langle \mathbf{v}_3, u_2 \rangle}{\|u_2\|^2} u_2$$
.

$$||u_1||^2 = \int_{-1}^{1} 1 \, dx = [x]_{-1}^1 = 2$$
.

$$\langle \mathbf{v}_3, u_1 \rangle = \int_{-1}^1 x^2 dx = \left[\frac{x^3}{3} \right]_{-1}^1 = \frac{2}{3} .$$

$$\langle \mathbf{v}_3, u_2 \rangle = 0 .$$

$$||u_2||^2 = \int_{-1}^1 x^2 dx = \left[\frac{x^3}{3}\right]_{-1}^1 = \frac{2}{3}.$$

$$u_3 = x^2 - \frac{1}{3}.$$

בסיס אורתוגונלי:

$$u_1 = 1$$
, $u_2 = x$, $u_3 = x^2 - \frac{1}{3}$.

נחפש בסיס אורתונורמלי:

$$||u_1||^2 = 2 , ||u_2||^2 = \int_{-1}^1 x^2 dx = \left[\frac{x^3}{3}\right]_{-1}^1 = \frac{2}{3} .$$

$$||u_3||^2 = \int_{-1}^1 \left(x^2 - \frac{1}{3}\right)^2 dx$$

$$= \int_{-1}^1 \left(x^4 - \frac{2}{3}x^2 + \frac{1}{9}\right) dx$$

$$= \left[\frac{x^5}{5} - \frac{2}{9}x^3 + \frac{1}{9}x\right]_{-1}^1$$

$$= \frac{8}{45} .$$

בסיס אורתונורמלי:

$$\left\{ \frac{1}{\sqrt{2}} , \sqrt{\frac{3}{2}} x , \sqrt{\frac{45}{8}} \left(x^2 - \frac{1}{3} \right) \right\} .$$

דוגמה 2.10

מצאו בסיס אורתונורמלי למרחב
$$U=\mathrm{span}\left\{\mathbf{v}_1=\begin{pmatrix}2\\2i\\2\end{pmatrix},\mathbf{v}_2=\begin{pmatrix}2+2i\\0\\4\end{pmatrix}\right\}$$
 ביחס למכפלה הפנימית מצאו בסיס אורתונורמלי למרחב . \mathbb{C}^3 -הסטנדרטית ב-

פתרון:

$$u_{1} = \mathbf{v}_{1} = \begin{pmatrix} 2 \\ 2i \\ 2 \end{pmatrix} .$$

$$u_{2} = \mathbf{v}_{2} - \frac{\langle \mathbf{v}_{2}, u_{1} \rangle}{\|u_{1}\|^{2}} u_{1}$$

$$\langle \mathbf{v}_{2}, u_{1} \rangle = (2 + 2i) \cdot 2 + 0 + 8 = 12 + 4i$$

$$||u_1||^2 = 12$$
.

$$||u_2||^2 = \frac{16}{9} + \frac{4}{9} + 4 + 4 + \frac{4}{9} = \frac{32}{3}.$$

$$u_{2} = \begin{pmatrix} 2+2i \\ 0 \\ 4 \end{pmatrix} - \left(1+\frac{1}{3}i\right) \begin{pmatrix} 2 \\ 2i \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{4i}{3} \\ \frac{2}{3} - 2i \\ 2 - \frac{2}{3}i \end{pmatrix}$$

בסיס אורתונורמלי:

$$\frac{1}{\sqrt{12}}u_1$$
, $\sqrt{\frac{3}{32}}u_2$.

2.4 *העשרה: משמעות גיאומטרית של ההיטל

 ${
m v}$ יהי U ישר במישור, ותהי ${
m v}$ נקודה כלשהי במישור שאינה על U. בגיאומטריה מוכיחים כי אפשר להוריד אנך מ- ${
m v}$ על U, ואורך אנך זה הוא המרחק הקצר ביותר בין הנקודה ${
m v}$ לנקודה כלשהי בישר. מרחק זה נקרא גם המרחק בין ${
m v}$ ל- U. קיים טענה דומה גם במרחב מכפלה פנימית.

 $u_0 \in U$ המקיים עור עריך למצוא וקטור צריך למצוא ערים. ערת-מרחב לתת-מרחב ער אנך מוקטור יער אנך לתת-מרחב U

יהי ע אינו שייך ל- ע אינו שייך ל- ע יהי ע סופית של יהי ע תת-מרחב ווהי ע תת-מרחב ווהי ע יהי ע מרחב מכפלה פנימית ויהי ע תת-מרחב ווצר סופית של יהי ע מרחב מכפלה פנימית ויהי ע $U \subset V$

יי התנאי ע"י על ער ער על ער אורתוגונלי של האורתוגונלי ע"י התנאי ע"י התנאי גדיר את נגדיר את אורתוגונלי או

$$(\mathbf{v}-u_0)\perp U$$
.

 ${\bf U}$ על ע א יע להיטל פין המרחק המרחק , $d({\bf v},u_0)$ מוגדר להיות ${\bf U}$ ע א יע המרחק בין א המרחק בין

2.5 * העשרה: משפט קייום בסיס אורתוגונלז

הגדרה 2.5 קייום בסיס אורתוגונלי

לכל מרחב מכפלה פנימית V ממימד סופי קיים בסיס אורתוגונלי.

הוכחה: נניח

$$\{v_1,\ldots,v_n\}$$

בסיס של V. נגדיר סדרת מרחבים ווקטורים

$$V_1 = \operatorname{span}\left(\mathbf{v}_1\right) \subset V_2 = \operatorname{span}\left(\mathbf{v}_1, \mathbf{v}_2\right) \subset \ldots \subset V_n = \operatorname{span}\left(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\right) = V$$

 $.1 \leq i \leq n$ לכל

נגדיר

$$u_i = \mathbf{v}_i - P_{V_{i-1}}(\mathbf{v}_i) .$$

נוכיח באינדוקציה כי u_1,u_2,\dots,u_n בסיס אורתוגונלי. V_1 שבור i=1 הקבוצה $\{u_1\}$ בסיס אורתוגונלי של $\{u_1\}$ הקבוצה הקבוצת נניח שעבור $\{u_1,\dots,u_i\}$ הווקטורים $\{u_1,\dots,u_i\}$ אורתוגונלית. $u_{i+1}=\mathbf{v}_{i+1}-P_{V_i}(\mathbf{v}_{i+1})$ כאשר כי $1\leq i$ לכל $1\leq i$ לכל $1\leq i$ לכל במשפט 2.3 כי הוכחנו במשפט 2.3 כי $\mathbf{v}_{i+1}-P_{V_i}(\mathbf{v}_{i+1})$

שעור 3 ערכים עצמיים ווקטוירם עצמיים

3.1 ערכיים עצמיים, ווקטורים עצמיים של מטריצות

הגדרה 3.1 ערך עצמי ווקטור עצמי של מטריצה

יקרא (v $eq ar{0}$) מטריצה לוקטור אפס על אדה $\mathbf{v} \in F^n$ וקטור האפס . \mathbb{F} מטריצה ריבועית מעל אם אם אם $A \in \mathbb{F}^{n \times n}$ יקרא -עצמי של A אם קיים סקלר אם $\lambda \in \mathbb{F}$ כך ש

$$A \cdot \mathbf{v} = \lambda \mathbf{v}$$
.

A נקרא ערך עצמי של A ששייך לוקטור עצמי Δ . המשוואה הזאת נקראת ששייך לוקטור עצמי א נקרא גקרא ערך עצמי של

דוגמה 3.1

נתונה מטריצה

$$A = \left(\begin{array}{cc} 2 & 4 \\ 3 & 6 \end{array}\right) ,$$

המתאים: אחד מהוקטורים הבאים, הוא וקטור עצמי של A ומצאו את הערך עצמי המתאים:

$$u_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
 (x)

$$u_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$
 (ב)

$$u_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 (3)

פתרון:

(א)

$$A \cdot \mathbf{v}_1 = \begin{pmatrix} 2 & 4 \\ 3 & 6 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 16 \\ 24 \end{pmatrix} = 8 \begin{pmatrix} 2 \\ 3 \end{pmatrix} = 8u_1.$$

ולכן u_1 הוא הוקטור עצמי של A השייך לערך עצמי

$$\lambda_1 = 8$$
.

$$A \cdot \mathbf{v}_2 = \begin{pmatrix} 2 & 4 \\ 3 & 6 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0 \begin{pmatrix} -2 \\ 1 \end{pmatrix} = 0u_2.$$

ולכן u_2 הוא הוקטור עצמי של A השייך לערך עצמי

$$\lambda_2=0$$
.

$$A \cdot u_3 = \begin{pmatrix} 2 & 4 \\ 3 & 6 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \neq \lambda \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

A אינו וקטור עצמי של u_3

דוגמה 3.2

(X)

נתונה מטריצה

$$A = \left(\begin{array}{cc} 4 & 8 \\ 1 & 6 \end{array}\right) ,$$

ים: את הערך עצמי את ומצאו את וקטור עצמי הוא וקטור הבאים, הוא המתאים: מהוקטורים הבאים, הוא וקטור עצמי של אחד מהוקטורים הבאים, הוא וקטורים הבאים ה

$$u_1=egin{pmatrix} 4 \ 1 \end{pmatrix}$$
 (X)

$$u_2 = \begin{pmatrix} -4 \\ 1 \end{pmatrix}$$
 (2)

$$u_3 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 (3)

פתרון:

(メ)

(ロ)

$$A \cdot u_1 = \begin{pmatrix} 4 & 8 \\ 1 & 6 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 24 \\ 10 \end{pmatrix} \neq \lambda u_1.$$

A אינו וקטור עצמי של ולכן ולכן

$$A \cdot u_2 = \begin{pmatrix} 4 & 8 \\ 1 & 6 \end{pmatrix} \cdot \begin{pmatrix} -4 \\ 1 \end{pmatrix} = \begin{pmatrix} -8 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} -4 \\ 1 \end{pmatrix} = 2u_2.$$

ולכן אויך לערך עצמי של A השייך לערך עצמי ולכן u_2

$$\lambda = 2$$
.

$$A \cdot u_3 = \begin{pmatrix} 4 & 8 \\ 1 & 6 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 16 \\ 8 \end{pmatrix} = 8 \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 (x)

 $\lambda=8$ ולכן עצמי לערך עצמי של A השייך עצמי ולכן ולכן ולכן

דוגמה 3.3

הינם המטריצה של וקטורי עצמיים של הינם ו
$$u_2=\begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 , $u_1=\begin{pmatrix} 5 \\ 2 \end{pmatrix}$ הראו

$$A = \left(\begin{array}{cc} 5 & 0 \\ 2 & 0 \end{array}\right)$$

$$A \cdot u_1 = \begin{pmatrix} 5 & 0 \\ 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 2 \end{pmatrix} = \begin{pmatrix} 10 \\ 4 \end{pmatrix} = 2 \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$
$$A \cdot u_2 = \begin{pmatrix} 5 & 0 \\ 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

 $\lambda_2=0$ ו עצמי השייך לערך עצמי השייך לערך ווא וקטור ע $\lambda_1=2$ ו או וקטור עצמי השייך לערך ווא ולכן ווא ו

משפט 3.1

0 ערך עצמי של מטריצה יכול להיות

וקטור האפס לא יכול להיות וקטור עצמי של מטריצה.

משפט 3.2 המשוואה האופייני של מטריצה

$$A \cdot \mathbf{v} = \lambda \mathbf{v}$$
,

נעביר אגפים:

$$\bar{0} = \lambda \mathbf{v} - A \mathbf{v} \qquad \Rightarrow \qquad \bar{0} = (\lambda I - A) \mathbf{v}$$

כאשר I המטריצה היחידה של $\mathbb{F}^{n imes n}$. קיבלנו את המשוואה

$$(\lambda I - A) \mathbf{v} = \bar{0} .$$

.0 -שווה ($\lambda I-A$) אווה לא יכול להיות וקטור האפס. לכן הדטרמיננטה של המטריצה עצמי אז הוא לא יכול להיות וקטור האפס. לכן הדטרמיננטה של המטריצה ($\lambda I-A$) שווה ל- $\lambda I-A$

$$|\lambda I - A| = 0.$$

A המשוואה הזאת נקראת משוואת האופייני של

הצד שמאל נקרא **הפולינום האופייני של** A ומסומן $p_A(\lambda)$ כלומר

$$p_A(\lambda) = |\lambda I - A| .$$

משפט 3.3 סדר של פולינום האופייני

A מסדר A של $p_A(x)$ אם הפולינום האופייני $A\in\mathbb{F}^{n imes n}$

משפט 3.4 מרחב עצמי

תהי $A\in\mathbb{F}^{n imes n}$ ויהי λ ערך עצמי של A. נסמן ב- V_λ הקבוצה של כל הוקטורים עצמיים ששייכים לערך עצמי λ , בתוספת הוקטור האפס. $\mathbb{F}^{n imes n}$ תת-מרחב של $\mathbb{F}^{n imes n}$.

הוכחה: תרגיל בית.

$A-\lambda I$ משפט 3.5 מרחב עצמי של ערך עצמי λ שווה למרחב האפס של

תהי $A \in \mathbb{F}^{n imes n}$ מרחב העצמי של A ערך עצמי של A ויהי א

$$V_{\lambda} = \text{Nul}\left(A - \lambda I\right)$$
.

 $.V_{\lambda}\subseteq \mathrm{Nul}\,(A-\lambda I)$ נוכיח כי נוכיח הוכחה:

יהי את משוואת הערך עצמי A אשייך לערך עצמי איז וקטור עצמי של א וקטור עצמי איז אשייך לערך איז איז ו

$$A \cdot u = \lambda u \qquad \Rightarrow \qquad (A - \lambda I) \cdot u = \bar{0}$$

לכן $u\in V_\lambda$ לכן לכל וקטור אפס. אנכן $u\in \mathrm{Nul}(A-\lambda I)$ לכן $ar 0\in \mathbb F^n$ כאשר $V_\lambda\subseteq \mathrm{Nul}\,(A-\lambda I)$.

 $\operatorname{Nul}\left(A-\lambda I\right)\subseteq V_{\lambda}$ נוכיח כי

יהי $u \in \operatorname{Nul}(A - \lambda I)$ יהי

$$(A - \lambda I) u = \bar{0} \qquad \Rightarrow \qquad A \cdot u = \lambda u .$$

הגדרה 3.2 ריבוי אלגברי וריבוי גיאומטרי של ערך עצמי של מטריצה

 $.\lambda_i$ ערך עצמי , $A\in\mathbb{F}^{n imes n}$ תהי

הריבוי אלגברי של λ_i הוא הריבוי של λ_i הוא הריבוי אלגברי של האופייני האוח הריבוי אלגברי הריבוי הריבוי של

$$|\lambda I - A| = (\lambda - \lambda_1)^{m_1} \cdot (\lambda - \lambda_2)^{m_2} \quad \cdots \quad (\lambda - \lambda_i)^{m_i} \quad \cdots \quad (\lambda - \lambda_l)^{m_l} ,$$

 m_i אז הריבוי אלגברי של

הריבוי גיאומטרי שלו. כלומר המימד אם המימד הוא λ_i שלו. כלומר אם הריבוי גיאומטרי

$$V_{\lambda_i} = \{u_1, \dots, u_k\}$$

k הוא λ_i יש אוקטורים כי הריבוי ואומרים עצמיים אז ל- אז ל- אז ל- אוקטורים עצמיים ואומרים או

דוגמה 3.4

מצאו את כל הערכים עצמיים והוקטורים עצמיים של המטריצה

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} .$$

פתרון:

נרשום את הפולינום האופייני של המטריצה:

$$|\lambda I - A| = 0 \quad \Rightarrow \quad \begin{vmatrix} \lambda - 1 & -2 \\ -3 & \lambda - 2 \end{vmatrix} = 0 \quad \Rightarrow \quad (\lambda - 1)(\lambda - 2) - 6 = 0 \quad \Rightarrow \quad \lambda^2 - 3\lambda - 4 = 0$$

או שקול

$$(\lambda - 4)(\lambda + 1) = 0$$

ולכן לפולינום אופייני יש שני פתרונות:

$$\lambda = 4$$

$$.\lambda = -1$$

 $\lambda = 4$

$$(A-\lambda I\mid ar{0})\stackrel{\lambda=4}{=} (A-4I\mid ar{0}) = \left(egin{array}{cc|c} -3 & 2 & 0 \ 3 & -2 & 0 \end{array}
ight)
ightarrow \left(egin{array}{cc|c} -3 & 2 & 0 \ 0 & 0 & 0 \end{array}
ight)$$
 פתרון: $\begin{pmatrix} x \ y \end{pmatrix} = y \begin{pmatrix} 2 \ 3 \end{pmatrix}$: נסמן

$$V_4 = \operatorname{span}\left\{ \begin{pmatrix} 2 \\ 3 \end{pmatrix} \right\}$$
.

נסמן . $\lambda=4$ נסמן לערך עצמי השייך מרחב עצמי ו

$$u_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
.

 $\lambda=4$ הוא הוקטור עצמי ששייך לערך עצמי ווקטור ע u_1 .1 לכן הריכוי גיאומטרי של $\dim(V_4)=1$

 $\lambda = -1$

$$(A-\lambda I\mid ar{0}) \stackrel{\lambda=-1}{=} (A+I\mid ar{0}) = \left(egin{array}{cc|c} 2 & 2 & 0 \\ 3 & 3 & 0 \end{array}
ight)
ightarrow \left(egin{array}{cc|c} 1 & 1 & 0 \\ 0 & 0 & 0 \end{array}
ight)$$
 הפתרון הוא: $\begin{pmatrix} x \\ y \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ נסמן

$$V_{-1} = \operatorname{span}\left\{ \begin{pmatrix} -1\\1 \end{pmatrix} \right\} \ .$$

נסמן . $\lambda=-1$ נסמן להערך עצמי השייך עצמי אמרחב ע

$$u_2 = \begin{pmatrix} -1\\1 \end{pmatrix}$$

 $\lambda=-1$ הוא הוקטור עצמי ששייך לערך עצמי הוא הוקטור עצמי לוהא הוא u_2 .1 לכן הריכוי גיאומטרי של $\dim(V_{-1})=1$

דוגמה 3.5

מצאו את כל הערכים עצמיים והוקטורים עצמיים של המטריצה

$$A = \begin{pmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} .$$

פתרון:

נרשום את הפולינום האופייני של המטריצה:

$$|\lambda I - A| = 0 \quad \Rightarrow \quad \begin{vmatrix} \lambda - 2 & 0 & 0 & -1 \\ 0 & \lambda - 2 & 1 & 1 \\ 1 & 1 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = 0 \quad \Rightarrow \quad (\lambda - 1)(\lambda - 2)\left((\lambda - 2)^2 - 1\right) = 0 .$$

$$(\lambda - 1)(\lambda - 2)\left(\lambda^2 - 4\lambda + 4 - 1\right) = 0$$

$$(\lambda - 1)(\lambda - 2)\left(\lambda^2 - 4\lambda + 3\right) = 0$$

$$(\lambda - 1)(\lambda - 2)(\lambda^2 - 4\lambda + 3) = 0$$
$$(\lambda - 1)(\lambda - 2)(\lambda - 3)(\lambda - 1) = 0$$
$$(\lambda - 1)^2(\lambda - 2)(\lambda - 3) = 0$$

:קיימים 3 ערכים עצמיים

 $\lambda=1$ מריבוי אלגברי

 $\lambda=2$ מריבוי אלגברי

 $\lambda=3$ מריבוי אלגברי

 $\lambda = 1$

$$(A-\lambda I\mid\bar{0}) \ \stackrel{\lambda=1}{=} \ (A-I\mid\bar{0}) = \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 1 & -1 & -1 \mid 0 \\ -1 & -1 & 1 & 0 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 1 & -1 & -1 \mid 0 \\ -1 & -1 & 1 & 0 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 1 & -1 & -1 \mid 0 \\ 0 & -1 & 1 & 1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 1 & -1 & -1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 1 & -1 & -1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 1 & -1 & -1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 1 & -1 & -1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 1 & -1 & -1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 1 & -1 & -1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 1 & -1 & -1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 1 & -1 & -1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 1 & -1 & -1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0$$

$$V_1 = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

בבסיס של V_1 ישנם שני וקטורים. נסמן

$$u_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \qquad u_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix}.$$

 $\lambda=1$ ו- u_2 הם הוקטורים עצמיים ששייכים לערך עצמי ו- u_1 נון ש $\dim(V_1)=2$, הוא אומרים כי הריבוי גאומטרי של הערך עצמי

$$(A-2I\mid \bar{0}) = \begin{pmatrix} 0 & 0 & 0 & 1 \mid 0 \\ 0 & 0 & -1 & -1 \mid 0 \\ -1 & -1 & 0 & 0 \mid 0 \\ 0 & 0 & 0 & -1 \mid 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & -1 & 0 & 0 \mid 0 \\ 0 & 0 & -1 & -1 \mid 0 \\ 0 & 0 & 0 & -1 \mid 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 \mid 0 \\ 0 & 0 & -1 & -1 \mid 0 \\ 0 & 0 & 0 & -1 \mid 0 \end{pmatrix}$$

$$\rightarrow \quad \left(\begin{array}{ccc|c} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right) \quad \rightarrow \quad \left(\begin{array}{ccc|c} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right)$$

המרחב עצמי ששייך לערך עצמי המרחב
$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = y \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \ y \in \mathbb{R}. \ :$$
פתרון:

$$V_2 = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} \right\}$$

נסמן. נסמן יש וקטור אחד. נסמן בביס של

$$u_3 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} .$$

עד הערך אומטרי כי הריבוי אומרים אומרים לוון ש $\lambda=2$ כיוון א $\lambda=2$ אז אומטרי של הערך עצמי ששייך לערך עצמי לערך אומטרי אוא הוא $\lambda=2$ עצמי לערך.

 $\lambda = 3$

$$(A - 3I \mid \bar{0}) = \begin{pmatrix} -1 & 0 & 0 & 1 \mid 0 \\ 0 & -1 & -1 & -1 \mid 0 \\ -1 & -1 & -1 & 0 \mid 0 \\ 0 & 0 & 0 & -2 \mid 0 \end{pmatrix} \xrightarrow{R_1 \to -R_1 \atop R_2 \to -R_2} \begin{pmatrix} 1 & 0 & 0 & -1 \mid 0 \\ 0 & 1 & 1 & 1 \mid 0 \\ -1 & -1 & -1 & 0 \mid 0 \\ 0 & 0 & 0 & -2 \mid 0 \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 + R_2} \left(\begin{array}{cccc|c} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right)$$

המרחב עצמי ששייך לערך עצמי המרחב וא המרחב וא המרחב ב
$$egin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = z egin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \ z \in \mathbb{R}.$$
 פתרון:

$$V_3 = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix} \right\}$$

:דר אחד אחד יש וקטור אחד בבסיס של

$$u_4 = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix} .$$

אז אומרים כי הריבוי גאומטרי של הערך עצמי הוא $\dim(V_3)=1$ - כיוון ש- $\lambda=3$ כיוון עצמי ששייך לערך עצמי ששייך לערך אז הוא $\lambda=3$. הוא $\lambda=3$

3.2 לכסון של מטריצה

הגדרה 3.3 לכסינות של מרטיצות

תהי מטריצה אם קיימת מטריצה אלכסונית. כלומר אם היא דומה לכסינה אם תקרא לכסינה אם תקרא לכסינה אם חיימת אלכסונית. כלומר אם חיימת מטריצה אלכסונית בד $D\in\mathbb{F}^{n\times n}$ מכריצה אלכסונית ומטריצה אלכסונית בדי אלכסונית היא מטריצה אלכסונית בדי אלכסונית בדי מטריצה בדי מט

$$D = P^{-1}AP .$$

משפט 3.6 לכסינות של מרטיצות

. לכסינה A אז \mathbb{F}^n אז א בסיס של מהווה בסיס עצמיים עצמיים אז $A\in\mathbb{F}^{n\times n}$

נסמן הוקטורים עצמיים ב- $\{u_1,\dots,u_n\}$ ששייכים לערכים עצמיים $\lambda_1,\dots,\lambda_n$ בהתאמה (הערכים עצמיים לא בהכרח שונים זה מזה). מכאן נובע ש-

$$D = P^{-1}AP \qquad \Leftrightarrow \qquad A = PDP^{-1}$$

. מטריצה
$$P=\begin{pmatrix} |&|&&|\\u_1&u_2&\dots&u_n\\|&|&&|\end{pmatrix}$$
 מטריצה אלכסונית ו
$$D=\begin{pmatrix} \lambda_1&0&\dots&0\\0&\lambda_2&\dots&0\\\vdots&\vdots&\ddots&0\\0&0&\dots&\lambda_n \end{pmatrix}$$
 כאשר

הוכחה: $\lambda_i = \lambda_i u_i$ לכל $1 \leq i \leq n$ לכל

$$A \cdot P = \begin{pmatrix} | & | & | \\ A \cdot u_1 & A \cdot u_2 & \dots & A \cdot u_n \\ | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | \\ \lambda_1 u_1 & \lambda_2 u_2 & \dots & \lambda_n u_n \\ | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | \\ \lambda_1 u_1 & \lambda_2 u_2 & \dots & \lambda_n u_n \\ | & | & | & | \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

$$= PD.$$

 P^{-1} לכן הפיכה. לכן אז $\{u_1,\dots,u_n\}$ אז מהווים עצמיים עצמיים מהון כי הוקטורים. אז הפיכה. לכן הפיכה. לכן .AP=PD הפיכה. לכן קיימת ומותר להכפיל מצד שמאל ב- $.P^{-1}$. נקבל

$$A = P^{-1}PD .$$

משפט 3.7 קריטירון 1 ללכסינות של מטריצה

. אם ל- A יש A ערכים עצמיים שונים ב- \mathbb{F} , אז $A\in\mathbb{F}^{n\times n}$ תהי

הוכחה: תרגיל בית.

משפט 3.8 קריטירון 2 ללכסינות של מטריצה: סכום המימדים של מרחבים העצמיים

A . $A \in \mathbb{F}^{n imes n}$ תהי שווה ל- מימם העצמיים השונים שווה ל- תהי

הוכחה: תרגיל בית.

משפט 3.9 קריטירון 3 ללכסינות של מטריצה

תהי $A\in\mathbb{F}^{n imes n}$. אם

- ו- בהכרח שונים, ו $\mathbb F$, לא בהכרח שונים, ו- מולינום האופייני שלה מתפרק למכפלה של גורמים לינאריים מעל
 - 2. הריבוי האלגברי של כל ערך עצמי שווה לריבוי הגיאומטרי שלו,
 - $.\mathbb{F}$ אז A לכסינה מעל

הוכחה: תרגיל בית.

3.3 ערכים עצמיים של טרנספורמציות לינאריות

הגדרה 3.4 אופרטור לינארי

יהי V מרחב וקטורי. טרנספורציה לינארי T:V o V נקראת אופרטור לינארי.

הגדרה 3.5 אופרטור לכסין

אלכסונית. $[T]_B$ -ש כך ער בסיס אס קיים לכסין נקראת נקראת לכסונית אופרטור לינארי יו $T:V \to V$

-טל V כך של $B=\{b_1,\ldots,b_n\}$ של מיים בסיס

$$T(b_1) = \lambda_1 b_1$$
, $T(b_2) = \lambda_2 b_2$, ... $T(b_n) = \lambda_n b_n$.

K

$$[T]_B = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

(לא כל ה- λ בהכרח שונים זה מזה)

הגדרה 3.6 ערך עצמי ווקטור עצמי של אופרטור לינארי

-ער ערך אם קיים וקטור $u \neq 0$ אופרטור לינארי של ערך עצמי אר ג נקרא ערך סקלר. אופרטור לינארי ו- λ סקלר. אופרטור לינארי ו

$$T(u) = \lambda u$$
.

נקרא u

 λ וקטור עצמי ששייך לערך עצמי

משפט 3.10

אופרטור לינארי מוקטורים אם"ם קיים הסיס אם" לכסינה אם"ם לכסינה אם" לכסינה אם" אופרטור לינארי $T:V \to V$

הוכחה: ⇒

-ע כך $U = \{u_1, \dots, u_n\}$ כך ש- מיים לכסינה. ז"א קיים בסיס T

$$T(u_1) = \lambda_1 u_1$$
, $T(u_2) = \lambda_2 u_2$, ..., $T(u_n) = \lambda_n u_n$.

X

$$[T]_U = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

(לא כל ה- λ בהכרח שונים זה מזה).

 \leq

-ע כך א $\lambda_1,\dots,\lambda_n$ פלרים סקלרים עצמיים. א"א קיימים שמורכב $U=\{u_1,\dots,u_n\}$ כך ש

$$T(u_1) = \lambda_1 u_1$$
, ... $T(u_n) = \lambda_n u_n$.

לכן

$$[T]_U = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

אלכסונית.

הגדרה 3.7 פולינום האופייני של אופרטור לינארי

תהי T:V o V המטריצה הלינוח לינארי. נניח שA המטריצה לינארי. אופרטור לינארי. נניח ש

$$p_T(\lambda) = |\lambda I - A|$$

T נקרא הפולינום האופייני של

הגדרה 3.8 ריבוי אלגברי וריבוי גיאומטרי של ערך עצמי של אופרטור לינארי

ערך עצמי. ו- λ ערך עצמי. T:V o V נניח

- . הריבוי האלגברי של λ הוא הריבוי של λ בפולינום האופייני.
- . λ הריבוי הגאומרטי של ל λ הוא הוא , $\dim(V_\lambda)$, כלומר, מספר הוקטורים העצמיים הבת"ל השייכים ל

דוגמה 3.6

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + 2y \\ 3x + 2y \end{pmatrix}$$

 $T(u) = \lambda u$ -פשו את הוקטורים עצמיים של T כך ש- חפשו את חפשו האח T לכסינה?

פתרון:

$$T\begin{pmatrix} x \\ y \end{pmatrix} = A\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + 2y \\ 3x + 2y \end{pmatrix}$$

. כאשר $A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$ כאשר אופרטור.

פולינום האופייני:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 \\ -3 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 2) - 6 = \lambda^2 - 3\lambda - 4 = (\lambda - 4)(\lambda + 1) = 0.$$

ערכים עצמיים:

$$\lambda = -1$$

$$\lambda = 4$$

 $\lambda = 4$

$$(A-4I)=inom{-3}{3}\quad 2 \ 3 \quad -2 \end{pmatrix} o inom{-3}{0}\quad 0$$
 פתרון: $V_4=\mathrm{span}\left\{inom{2}{3}
ight\}$ הוא $\lambda=4$ הוא $\lambda=4$ לכן המרחב עצמי שלו x ב- x y ברון: x ברון: x ברון המרחב עצמי שלו המרחב עצמי שלו x ברון: x ברון המרחב עצמי שלו המרחב עצמי שלו x ברון המרחב עצמי שלו המרחב עצמי שלו x ברון המרחב עצמי שלו המרחב עצמי שלו x

$$(A+I)=egin{pmatrix}2&2\\3&3\end{pmatrix} o egin{pmatrix}1&1\\0&0\end{pmatrix}$$
 נסמן הוקטור $.V_{-1}=$ span $\left\{egin{pmatrix}1\\-1\end{pmatrix}\right\}$ הוא $\lambda=-1$ המרחב עצמי של $.U_{-1}=$ המרחב עצמי של ב- $.U_{-1}=$ $.U_{-1}=$

$$\begin{pmatrix} u_1 & u_2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix} \to \begin{pmatrix} 2 & 1 \\ 0 & -5 \end{pmatrix}$$

לכסינה. לכן דסיס של בסיס לכסינה. לכן בסיס מהווים בסיס לכן לכ

$$T(u_1) = 4 \cdot u_1$$
, $T(u_2) = -1 \cdot u_2$.

משפט 3.11

יהי לינארי לינארי אופרטור $T:V \to V$ ויהי וקטורי מעל V אופרטור לינארי לכסיו.

B נניח ש- T לפי בסיס וניח ש- $[T]_B$ נניח ש-

יהיו $\lambda_1,\dots,\lambda_n$ הוקטורים עצמיים של T לפי בסיס B, ששייכים לערכים עצמיים u_1,\dots,u_n (הם לא בהכרח שונים זה מזה).

אז

$$[T]_B = PDP^{-1}$$

או באופן שקול

$$P^{-1}[T]_B P = D$$

$$D = egin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$
 -ו $P = egin{pmatrix} \mid & \mid & & \mid \\ u_1 & u_2 & \dots & u_n \\ \mid & \mid & & \mid \end{pmatrix}$ כאשר

הוכחה:

$$[T]_{B}P = [T]_{B} \begin{pmatrix} | & | & | \\ u_{1} & u_{2} & \dots & u_{n} \\ | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | \\ [T]_{B}u_{1} & [T]_{B}u_{2} & \dots & [T]_{B}u_{n} \\ | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | \\ \lambda_{1}u_{1} & \lambda_{2}u_{2} & \dots & \lambda_{n}u_{n} \\ | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | \\ \lambda_{1}u_{1} & \lambda_{2}u_{2} & \dots & \lambda_{n}u_{n} \\ | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | \\ u_{1} & u_{2} & \dots & u_{n} \\ | & | & | & | \end{pmatrix} \begin{pmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_{n} \end{pmatrix}$$

$$= PD,$$

כלומר, P^{-1} קיימת. לכן מותר להכפיל u_1,\dots,u_n בת"ל, אז P^{-1} הפיכה לכן מותר להכפיל מותר להכפיל מצד ימין ב- P^{-1} . נקבל: ולכן

$$[T]_B = PDP^{-1}$$

ומכאן נובע כי

$$P^{-1}[T]_B P = D$$

משפט 3.12

תהי א הריבוי האלגברי ו- k הריבוי האלגברי אם ערך עצמי. אם א הריבוי הגיאומטרי די העתקה לינארית ו λ_0 ערך עצמי. א $T:V\to V$ אז

$$k \leq m$$
.

במילים: הריבוי הגיאומטרי קטן או שווה לריבוי האלגברי.

k ערך עצמי מריבוי אלגברי m וריבוי גיאומטרי λ_0 ערך עצמי מריבוי אלגברי m וקטורים בת"ל בת"ל u_1,\dots,u_k ששייכים לערך עצמי k נשלים אותו לבסיס של k:

$$B = \{u_1, \dots, u_k, u_{k+1}, \dots, u_n\}$$
.

 $:\!B$ נחשב את המטריצה המייצגת של נחשב את המטריצה המייצגת נחשב את

$$T(u_1) = \lambda_0 u_1$$
, ..., $T(u_k) = \lambda_0 u_k$

לכן

$$[T]_{B} = \begin{pmatrix} \lambda_{0} & 0 & \cdots & 0 \\ 0 & \lambda_{0} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & * \\ 0 & 0 & \cdots & \lambda_{0} \\ \hline 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & A' \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

הופולינום הופייני של A הוא

$$p_A(\lambda) = |\lambda I - A| = \begin{pmatrix} \lambda - \lambda_0 & 0 & \cdots & 0 \\ 0 & \lambda - \lambda_0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & * \\ 0 & 0 & \cdots & \lambda - \lambda_0 \\ \hline 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \lambda I - A' \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

נחשב את הדטרמיננטה דרך העמודה הראשונה:

$$p_A(\lambda) = (\lambda - \lambda_0) \cdot \left| \begin{pmatrix} \lambda - \lambda_0 & \cdots & 0 \\ \vdots & \ddots & \vdots & * \\ 0 & \cdots & \lambda - \lambda_0 \\ \hline 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \lambda I - A' \\ 0 & \cdots & 0 \end{pmatrix} \right|$$

עד שנקבל

$$p_A(\lambda) = (\lambda - \lambda_0)^k |\lambda I - A'| = (\lambda - \lambda_0)^k p_{A'}(\lambda)$$

k -לכן הריבוי האלגברי גדול או שווה ל

דוגמה 3.7

$$A = \begin{pmatrix} -1 & 0 & 1\\ 0 & -1 & 3\\ -1 & 3 & 1 \end{pmatrix}$$

A מצאו את הערכים העצמיים ומרחבים עצמיים של

ב האם A לכסינה? אם כן, רשמו מטריצה אלכסונית D ומטריצה הפיכה P כך ש

$$D = P^{-1}AP.$$

פתרון:

N

$$|\lambda I - A| = \begin{vmatrix} \lambda + 1 & 0 & -1 \\ 0 & \lambda + 1 & -3 \\ 1 & -3 & \lambda - 1 \end{vmatrix} = (\lambda + 1) \begin{vmatrix} \lambda + 1 & -3 \\ -3 & \lambda - 1 \end{vmatrix} - \begin{vmatrix} 0 & 1 + \lambda \\ 1 & -3 \end{vmatrix}$$
$$= (\lambda + 1) ((\lambda + 1)(\lambda - 1) - 9) - (0 - (1 + \lambda))$$
$$= (\lambda + 1)(\lambda^2 - 1 - 9 + 1)$$
$$= (\lambda + 1)(\lambda^2 - 9)$$
$$= (\lambda + 1)(\lambda + 3)(\lambda - 3)$$

:ערכים עצמיים

.1 מריבוי אלגברי $\lambda=-1$

 $\lambda=3$ מריבוי אלגברי

.1 מריבוי אלגברי $\lambda=-3$

 $\lambda = -1$

$$(A+I) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 3 \\ 1 & 3 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 3 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 3 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

הוא
$$\lambda=-1$$
 עצמי השייך להערך אמי .
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} y, \quad y \in \mathbb{R} \,:$$
 פתרון:

$$V_{-1} = \operatorname{span}\left\{ \begin{pmatrix} 3\\1\\0 \end{pmatrix} \right\}$$

$$u_1=egin{pmatrix} 3 \ 1 \ 0 \end{pmatrix}$$
 הווקטור עצמי של $\lambda=-1$ הווקטור

 $\lambda=-1$ לכן הריבוי הגיאומטרי של הערך עצמי $\lambda=-1$ לכן הריבוי הגיאומטרי

 $\lambda = 3$

$$(A-3I) = \begin{pmatrix} -4 & 0 & 1 \\ 0 & -4 & 3 \\ -1 & 3 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} -4 & 0 & 1 \\ 0 & -4 & 3 \\ 0 & -12 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} -4 & 0 & 1 \\ 0 & -4 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון:
$$\lambda=3$$
 עצמי $\lambda=3$ המרחב עצמי השייך להערך עצמי z הוא המרחב .
$$\begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} \frac{z}{4}\\\frac{3}{4}z\\z \end{pmatrix} = z \begin{pmatrix} 1\\3\\4 \end{pmatrix} :$$

$$V_3 = \operatorname{span}\left\{ \begin{pmatrix} 1\\3\\4 \end{pmatrix} \right\}$$

הוא $\lambda=3$ הוא הערך עצמי של הוא

$$u_2 = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} .$$

 $\lambda=3$ הוא אלכן הריבוי גיאומטרי של הערך עצמי $\lambda=3$ לכן הריבוי גיאומטרי ל

 $\lambda = -3$

$$(A+3I) = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 3 \\ -1 & 3 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 3 \\ 0 & 6 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$

הוא
$$\lambda=-3$$
 אוא אפייך להערך עצמי השייך המרחב ו $\begin{pmatrix} x\\y\\z \end{pmatrix}=\begin{pmatrix} -\frac{1}{2}z\\-\frac{3}{2}z\\z \end{pmatrix}=z\begin{pmatrix} -\frac{1}{2}\\-\frac{3}{2}\\1 \end{pmatrix}$ פתרון:

$$V_{-3} = \operatorname{span} \left\{ \begin{pmatrix} -1 \\ -3 \\ 2 \end{pmatrix} \right\}$$

הוא $\lambda = -3$ הוא של הערך עצמי של הוקטור

$$u_3 = \begin{pmatrix} -1 \\ -3 \\ 2 \end{pmatrix} .$$

 $\lambda = -3$ לכן הריבוי גיאומטרי של הערך עצמי dim $V_{-3} = 1$

 $:\mathbb{R}^3$ לכן קיים בסיס של dim V_1+ dim V_3+ dim $V_{-3}=3$

$$u_1 = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$$
 , $u_2 = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$, $u_3 = \begin{pmatrix} -1 \\ -3 \\ 2 \end{pmatrix}$.

ומטריצה A לכסינה:

$$D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -3 \end{pmatrix} , \qquad P = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 3 & -3 \\ 0 & 4 & 2 \end{pmatrix} .$$

דוגמה 3.8

$$A = \begin{pmatrix} 5 & 2 & -2 \\ 2 & 5 & -2 \\ -2 & -2 & 5 \end{pmatrix}$$

A מצאו את הערכים העצמיים ומרחבים עצמיים של

ב האם P ומטריצה הפיכה חבריצה אלכסונית ב האם לכסינה? אם כן, רשמו ב האם ב

$$D = P^{-1}AP .$$

פתרון:

N

$$|\lambda I - A| = \begin{vmatrix} \lambda - 5 & -2 & 2 \\ -2 & \lambda - 5 & 2 \\ 2 & 2 & \lambda - 5 \end{vmatrix}$$

$$= (\lambda - 5) \begin{vmatrix} \lambda - 5 & 2 \\ 2 & \lambda - 5 \end{vmatrix} + 2 \begin{vmatrix} -2 & 2 \\ 2 & \lambda - 5 \end{vmatrix} + 2 \begin{vmatrix} -2 & \lambda - 5 \\ 2 & 2 \end{vmatrix}$$

$$= (\lambda - 5) ((\lambda - 5)^2 - 4) + 2 (-2(\lambda - 5) - 4) + 2 (-4 - 2(\lambda - 5))$$

$$= (\lambda - 5) (\lambda^2 - 10\lambda + 21) + 2 (-2\lambda + 6) + 2 (-2\lambda + 6)$$

$$= (\lambda - 5) (\lambda - 7) (\lambda - 3) - 4 (\lambda - 3) - 4 (\lambda - 3)$$

$$= (\lambda - 3) ((\lambda - 5) (\lambda - 7) - 8)$$

$$= (\lambda - 3) (\lambda^2 - 12\lambda + 35 - 8)$$

$$= (\lambda - 3) (\lambda^2 - 12\lambda + 27)$$

$$= (\lambda - 3) (\lambda - 9)(\lambda - 3)$$

 $\lambda=3$ ערך עצמי מריבוי אלגברי $\lambda=3$

 $\lambda=0$ ערד עצמי מריבוי אלגברי $\lambda=0$

 $\lambda = 3$

$$(A-3I)=\left(egin{array}{ccc}2&2&-2\\2&2&-2\\-2&-2&2\end{array}
ight)
ightarrow \left(egin{array}{ccc}1&1&-1\\0&0&0\\0&0&0\end{array}
ight)$$
 אוא $\lambda=3$ אוא $\lambda=3$ המרחב עצמי השייך להערך עצמי $\left(x\\y\\z
ight)=\left(x\\y\\z
ight)=\left(x\\y\\z
ight)=y\left(-1\\1\\0\end{pmatrix}+z\left(1\\0\\1\end{pmatrix}$ המרחב $V_3=\mathrm{span}\left\{\left(-1\\1\\0\end{pmatrix},\left(1\\0\\1\right)\right\}$

.2 הוא אז הריבוי הגיאומטרי של הערך עצמי $\lambda=3$ הוא אז הריבוי הגיאומטרי אז הריבוי הוא

 $\lambda = 9$

$$(A-9I) = \begin{pmatrix} -4 & 2 & -2 \\ 2 & 4 & -2 \\ -2 & -2 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} -2 & 1 & -1 \\ 0 & -3 & -3 \\ 0 & 3 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} -2 & 1 & -1 \\ 0 & -3 & -3 \\ 0 & 0 & 0 \end{pmatrix}$$

הוא $\lambda=9$ אפתרון: $\begin{pmatrix} x\\y\\z \end{pmatrix}=\begin{pmatrix} -z\\-z\\z \end{pmatrix}=z\begin{pmatrix} -1\\-1\\1 \end{pmatrix}$: הוא

$$V_9 = \operatorname{span}\left\{ \begin{pmatrix} -1\\-1\\1 \end{pmatrix} \right\}$$

.1 אז הריבוי הגיאומטרי של הערך עצמי הוא , $\dim(V_9)=1$

.dim $V_9 = 1$,dim $V_3 = 2$

 $\dim V_3 + \dim V_9 = 3 \ .$

:לכן קיים בסיס של \mathbb{R}^3 המורכב מוקטורים עצמיים

$$u_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
 , $u_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $u_3 = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$.

ומטריצה A לכסינה:

$$D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 9 \end{pmatrix} , \qquad P = \begin{pmatrix} -1 & 1 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix} .$$

$$D = P^{-1}AP$$

דוגמה 3.9

$$A = \begin{pmatrix} 1 & 0 & 12 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

פתרון:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & 0 & -12 \\ -1 & \lambda & 0 \\ 0 & 0 & \lambda - 1 \end{vmatrix}$$
$$= (\lambda - 1)\lambda(\lambda - 1) = 0$$

 $\lambda=0$ ערך עצמי מריבוי אלגברי $\lambda=0$

.2 ערך עצמי מריבוי אלגברי $\lambda=1$

 $\lambda = 1$

$$(A-I) = \begin{pmatrix} 0 & 0 & 12 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון: $\lambda=1$ עצמי $\lambda=1$ המרחב עצמי השייך להערך עצמי . $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} y \\ y \\ 0 \end{pmatrix} = y \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} :$

$$V_1 = \operatorname{span}\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix} \right\}$$

 $\lambda=1$ אז הריבוי הגיאומטרי של הערך עצמי dim $(V_1)=1$

 $\lambda = 0$

$$(A - 0 \cdot I) = \begin{pmatrix} 1 & 0 & 12 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון: $\lambda=0$ עצמי אפייך להערך אייך המרחב ו $\begin{pmatrix} x\\y\\z \end{pmatrix}=\begin{pmatrix} 0\\y\\0 \end{pmatrix}=y\begin{pmatrix} 0\\1\\0 \end{pmatrix}$:פתרון:

$$V_0 = \operatorname{span}\left\{ \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right\}$$

 $\lambda=0$ אז הערך איז הגיאומטרי הגיאומטרי הגיאומטרי אז $\dim(V_0)=1$.dim $V_0=1$,dim $V_1=1$

 $\dim V_1 + \dim V_0 = 2 < \dim(\mathbb{R}^3) .$

. לכסינה אל A לכן לא קיים בסיס של \mathbb{R}^3 המורכב מוקטורים עצמיים. לכן לא לכסינה

משפט 3.13 קריטירון 1 ללכסינות של אופרטור

n יש ל- T:V o U אם ל- . $\dim(V)=n$ מרחב עצמי מעל \mathbb{F} , ויהי ויהי T:V o V אופרטור לינארי. נניח ש- מרחב עצמיים שונים ב- \mathbb{F} , אז T לכסינה.

הוכחה: תרגיל בית.

משפט 3.14 קריטירון 2 ללכסינות של אופרטור: סכום המימדים של מרחבים העצמיים

יהי T . $\dim(V)=n$ -ש נניח לינארי. נניח אופרטור ל $T:V \to V$ ויהי היהי עצמי מעל $T:V \to V$ ויהי היהי עצמיים מעל סכום המימדים של המרחבים העצמיים השונים שווה ל- ח

הוכחה: תרגיל בית.

משפט 3.15 קריטירון 3 ללכסינות של אופרטור

יהי V מרחב עצמי מעל \mathbb{F} , ויהי $V \to V$ ויהי מעל מעל מרחב עצמי מעל

- ו- שונים, או בהכרח שונים, ו- \mathbb{F} מתפרק למכפלה של גורמים לינאריים מעל \mathbb{F} , לא בהכרח שונים, ו-
 - 2. הריבוי האלגברי של כל ערך עצמי שווה לריבוי הגיאומטרי שלו,

 $.\mathbb{F}$ אז לכסין מעל

הוכחה: תרגיל בית.

דוגמה 3.10

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

- \mathbb{R} לכסינה מעל A.
- ${\Bbb C}$ לכסינה מעל A לכסינה A

פתרון:

$$p_A(\lambda) = \begin{vmatrix} \lambda & -1 \\ 1 & \lambda \end{vmatrix} = \lambda^2 + 1$$

 $\mathbb R$ לא לכסינה אל A לכן מעל $\mathbb R$, לכן לינאריים לינאריים לגורמים לגורמים לא מתפרק לגורמים לינאריים מעל

.2

$$\lambda^2 + 1 = (\lambda - i)(\lambda + i) = 0$$

 $\lambda=1$ ערך עצמי מריבוי אלגברי $\lambda=i$

 $\lambda=-i$ ערך עצמי מריבוי אלגברי $\lambda=-i$

$$(A-iI)=\left(egin{array}{ccc} -i&1\\-1&-i\end{array}
ight) \; o\; \left(egin{array}{ccc} -i&1\\0&0\end{array}
ight)$$
 פתרון: $\lambda=i$ עצמי $\lambda=i$ אמר השייך להערך עצמי השייך $x=0$ הוא $x=0$ המרחב עצמי השייך $x=0$

 $V_i = \operatorname{span}\left\{ \begin{pmatrix} -i \\ 1 \end{pmatrix} \right\}$

1 אז הריבוי הגיאומטרי של הערך עצמי או $\dim(V_i)=1$

 $\lambda = -i$

$$(A+iI)=\left(egin{array}{cc} i&1\\-1&i\end{array}
ight) \;
ightarrow\; \left(egin{array}{cc} i&1\\0&0\end{array}
ight)$$
 פתרון: $\lambda=-i$ עצמי השייך להערך עצמי $. \left(egin{array}{cc} x\\y\end{array}
ight)=\left(egin{array}{cc} iy\\y\end{array}
ight)=y\left(egin{array}{cc} i\\1\end{array}
ight)$ המרחב עצמי השייך להערך עצמי $. \left(egin{array}{cc} y\\y\end{array}
ight)=y\left(egin{array}{cc} i\\1\end{array}
ight)$

1 אז הריבוי של הערך איז הגיאומטרי אז $\dim(V_{-i})=1$

$$P = \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}$$
 , $D = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $D = P^{-1}AP$.

משפט 3.16 וקטורים עצמיים ששייכים לערכים עצמיים שונים בת"ל

. נתון לערכים עצמיים שונים הם שונים שונים לערכים עצמיים של דיכים עצמיים שונים הם בת"ל. אופרטור לינארי. וקטורים עצמיים של

הוכחה: נתון:

אופרטוא לינארי, אופרטו
א $T:V\to V$

T של u_1, \ldots, u_n ערכים עצמיים שונים ששייכים שונים שונים עצמיים אונים ערכים אונים $\lambda_1, \ldots, \lambda_n$

צריך להוכית:

בת"ל. u_1, \ldots, u_n

<u>הוכחה</u>:

n נוכיח את הטענה ע"י אינדוקציה על

שלב הבסיס:

עבור n=1 לכן הוא בת"ל. $u_1 \neq \bar{0} : n=1$

שלב האינדוקציה:

נניח שעבור u_1,\dots,u_{n+1} וקטורים עצמיים ששייכים ל n ערכים עצמיים שונים הn, וקטורים עצמיים אונים האייכים עצמיים עצמיים עצמיים עצמיים עצמיים עצמיים עצמיים אונים עצמיים השייכים עצמיים אונים עצמיים עצמיים עצמיים עצמיים אונים עצמיים עצמי

$$\alpha_1 u_1 + \alpha_2 u_2 + \ldots + \alpha_n u_n + \alpha_{n+1} u_{n+1} = \bar{0}$$
(*)

XI

$$\alpha_1 T(u_1) + \alpha_2 T(u_2) + \ldots + \alpha_n T(u_n) + \alpha_{n+1} T(u_{n+1}) = \bar{0}$$

$$\alpha_1 \lambda_1 u_1 + \alpha_2 \lambda_2 u_2 + \ldots + \alpha_n \lambda_n u_n + \alpha_{n+1} \lambda_{n+1} u_{n+1} = \bar{0}$$
(*1)

 $:\lambda_{n+1}$ ב (*) נכפיל

$$\alpha_1 \lambda_{n+1} u_1 + \alpha_2 \lambda_{n+1} u_2 + \ldots + \alpha_n \lambda_{n+1} u_n + \alpha_{n+1} \lambda_{n+1} u_{n+1} = \bar{0}$$
 (*2)

(*1) מ (1*):

$$\alpha_1(\lambda_1 - \lambda_{n+1})u_1 + \alpha_2(\lambda_2 - \lambda_{n+1})u_2 + \ldots + \alpha_n(\lambda_n - \lambda_{n+1})u_n + \alpha_{n+1}(\lambda_{n+1} - \lambda_{n+1})u_n = \bar{0}$$

$$\alpha_1(\lambda_1 - \lambda_{n+1})u_1 + \alpha_2(\lambda_2 - \lambda_{n+1})u_2 + \ldots + \alpha_n(\lambda_n - \lambda_{n+1})u_n = \bar{0}$$
(*3)

לכן בת"ל. בת"ל. בת"ל. לכן לפי ההנחת האינדוקציה הוקטורים

$$\alpha_1(\lambda_1 - \lambda_{n+1}) = 0$$
 , ... , $\alpha_n(\lambda_n - \lambda_{n+1}) = 0$. (*4)

כל הערכים העצמיים שונים זה מזה, כלומר $\lambda_i - \lambda_{n+1} \neq 0$ לכל זה שונים שונים לכל הערכים העצמיים שונים אונים לכל מ

$$\alpha_1 = 0 , \ldots , \alpha_n = 0 . \tag{*5}$$

נציב (5*) ב- (*) ונקבל

$$\alpha_1 u_1 = \bar{0}$$

לכן $\alpha_1, \ldots, \alpha_{n+1}=0$ כי הוא וקטור עצמי לכן (*) לכן (מצקיים לכן $\alpha_1=0$ לכן עצמיים לכן $\alpha_1=0$ לכן $\alpha_1=0$ לכן $\alpha_1=0$ בת"ל. בת"ל.

3.4 שימושים של לכסון מטריצה

משפט 3.17 חזקה של מטריצה הדומה למטריצה אלכסונית

אם A לכסינה, אז קיימת מטריצה אלכסונית D ומטריצה הפיכה P כך ש $D=P^{-1}A$ לכ

$$A^n = PD^nP^{-1} .$$

הוכחה:

נוכיח את הטענה ע"י אינדוקציה.

שלב הבסיס:

$$A = PDP^{-1} \Leftarrow D = P^{-1}AP$$
 , $n = 1$ עבור

שלב האינדוקציה:

נגיש שעבור $A^n = PD^nP^{-1}$ מתקיים n מתקיים

$$A^{n+1} = (PD^nP^{-1}) \cdot PDP^{-1} = PD^{n+1}P^{-1}$$

דוגמה 3.11

נתונה המטריצה

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

- A מצאו את הערכים עצמיים והמרחבים עצמיים של $oldsymbol{1}$
- $A = P^{-1}A$ ע כך שP כך ומטריצה הפיכה P לכסינה? אם כן רשמו מטריצה אלכסונית D
 - A^{1001} את חשבו 3

פתרון:

$$|\lambda I - A| = \begin{vmatrix} \lambda & -1 & -1 \\ -1 & \lambda & 1 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1) \begin{vmatrix} \lambda & -1 \\ -1 & \lambda \end{vmatrix} = (\lambda - 1)(\lambda^2 - 1) = (\lambda - 1)^2(\lambda + 1) = 0$$

 $\lambda=1$ מריבוי אלגברי

 $\lambda=-1$ מריבוי אלגברי

 $\lambda = 1$

$$(A-I) = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} -1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} y+z \\ y \\ z \end{pmatrix} = y \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

מרחב עצמי:

$$V_1 = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

 $\lambda = -1$

$$(A+I) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & -2 \\ 0 & 0 & 2 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -y \\ y \\ 0 \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

מרחב עצמי:

$$V_{-1} = \operatorname{span}\left\{ \begin{pmatrix} -1\\1\\0 \end{pmatrix} \right\}$$

 ${\rm dim} V_1 + {\rm dim} V_{-1} = 2 + 1 = 3 = {\rm dim} \ \mathbb{R}^3$

לכן A לכסינה.

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} , \qquad P = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$A^{1001} = PD^{1001}P^{-1}$$

 $:P^{-1}$ נמצא את

$$\left(\begin{array}{ccc|c} 1 & 1 & -1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{array}\right)$$

$$P^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
 לכן
$$D^{1001} = \begin{pmatrix} 1^{1001} & 0 & 0 \\ 0 & 1^{1001} & 0 \\ 0 & 0 & (-1)^{1001} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$A^{1001} = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

משפט 3.18

אם $\lambda u = \lambda u$ השייך לערך עצמי λ , כלומר $A \cdot u = \lambda u$ אז וקטור עצמי של

$$A^n u = \lambda^n u$$
.

שלב הבסיס:

 $A\cdot u=\lambda u$ קטור עצמי של $A\cdot u=\lambda u$ קטור עצמי של A

שלב האינדוקציה:

נניח שעבור 1>1 אז $A^nu=\lambda^nu$, n>1

$$A^{n+1}u = A(A^nu) = A\lambda^n u = \lambda^n Au = \lambda^n \cdot \lambda u = \lambda^{n+1}u.$$

דוגמה 3.12

$$A = \begin{pmatrix} 0 & -4 & 0 \\ 1 & -4 & 0 \\ 1 & -2 & 1 \end{pmatrix}.$$

- A מצאו את הערך עצמי ווקטור עצמי של
- $A = P^{-1}A$ ע כך שP כך ומטריצה הפיכה P ומטריצה אלכסונית מטריצה אט כן רשמו מטריצה אלכסונית ב

$$A^{2023} \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$
 את חשבו את

פתרון:

$$|\lambda I - A| = \begin{vmatrix} \lambda & 4 & 0 \\ -1 & \lambda + 4 & 0 \\ -1 & 2 & \lambda - 1 \end{vmatrix} = (\lambda - 1) \begin{vmatrix} \lambda & 4 \\ -1 & \lambda + 4 \end{vmatrix} = (\lambda - 1)(\lambda^2 + 4\lambda + 4) = (\lambda - 1)(\lambda + 2)^2 = 0$$

 $\lambda=1$ מריבוי אלגברי $\lambda=1$

 $\lambda = -2$ מריבוי אלגברי $\lambda = -2$

 $\lambda = -2$

$$(A+2I) = \begin{pmatrix} 2 & -4 & 0 \\ 1 & -2 & 0 \\ 1 & -2 & 3 \end{pmatrix} \to \begin{pmatrix} 1 & -2 & 0 \\ 1 & -2 & 3 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2y \\ y \\ 0 \end{pmatrix} = y \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$

מרחב עצמי:

$$V_{-2} = \operatorname{span} \left\{ \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \right\}$$

 $\lambda = 1$

$$(A-I) = \begin{pmatrix} -1 & -4 & 0 \\ 1 & -5 & 0 \\ 1 & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & -4 & 0 \\ 0 & -9 & 0 \\ 0 & -6 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

פתרון:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix} = z \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

מרחב עצמי:

$$V_1 = \operatorname{span}\left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

 ${\rm dim} V_1 + {\rm dim} V_{-2} = 1 + 1 = 2 < {\rm dim} \ \mathbb{R}^3$

לכן A לא לכסינה.

וקטור עצמי השייך ל
$$\lambda=-2$$
, לכן $\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$

$$A^{2023} \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} = (-2)^{2023} \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} (-2)^{2024} \\ -2^{2023} \\ 0 \end{pmatrix}$$

3.5 משפטים נוספים הקשורים ללכסון של מטריצה

משפט 3.19 דטרמיננטה של מטריצה משולשית שווה למכפלה של איברי האלכסון הראשי

תהי מטריצה של $A\in\mathbb{F}^{n\times n}$ מטריצה משולשית עליונה או משולשית עליונה. הדטרמיננטה של $A\in\mathbb{F}^{n\times n}$ האיברים על האלכסון הראשי. כלומר

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix}, \qquad |A| = a_{11} \cdot a_{22} \cdot a_{33} \dots a_{nn}.$$

n אידוקציה על

שלב הבסיס:

עבור n=1 הטענה נכונה באופן טריוויאלי.

A כלומר נתון $A \in \mathbb{F}^{1 imes 1}$. נסמן A = (a) כלומר נתון . $A \in \mathbb{F}^{1 imes 1}$

$$|A|=a$$
.

מטריצה משולשית, והאיבר היחיד על האלכסון הראשי הוא a. לכן המכפלה של האיברים על האלכסון ראשי A פשוט שווה ל-a. לכן A שווה למכפלה של האיברים על האלכסון הראשי של

שלב האינקודציה:

n=N+1 נניח שהטענה נכונה עבור n=N (הנחת האינדוקציה). נוכיח אותה עבור

יונה: עליונה מטריצה $A \in \mathbb{F}^{N imes N}$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1,N} & a_{1,N+1} \\ 0 & a_{22} & a_{23} & \dots & a_{2,N} & a_{2,N+1} \\ 0 & 0 & a_{33} & \dots & a_{3,N} & a_{3,N+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a_{N,N} & a_{N,N+1} \\ 0 & 0 & 0 & \dots & 0 & a_{N+1,N+1} \end{pmatrix}$$

נחשב הדטרמיננטה על השורה האחרונה:

$$|A| = a_{N+1,N+1} \cdot \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1,N} \\ 0 & a_{22} & a_{23} & \dots & a_{2,N} \\ 0 & 0 & a_{33} & \dots & a_{3,N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{N,N} \end{vmatrix}$$

לפי ההנחת האינדוקציה הדטרמיננטה של מטריצה N imes N משולשית עליחונה שווה למכפלה של האיברים על האלכסון הראשי, לכן

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1,N} \\ 0 & a_{22} & a_{23} & \dots & a_{2,N} \\ 0 & 0 & a_{33} & \dots & a_{3,N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{N,N} \end{vmatrix} = a_{11} \cdot a_{22} \dots a_{N,N} .$$

לכן

$$|A| = a_{11} \cdot a_{22} \dots a_{N,N} \cdot a_{N+1,N+1}$$

משפט 3.20 ערכים העצמיים של מטריצה משולשית

הערכים העצמיים של מטריצה משולשית עליונה (או משולשית תחתונה) הם האיברים הנמצאים על האלכסון הראשי.

האיב. אז האלכסון הראשי. אז $\{lpha_1,lpha_2,\ldots,lpha_n\}$ היהיו משולשית, משולשית $A\in\mathbb{F}^{n imes n}$

$$\lambda I - A$$

גם מטריצה והאיברים על האלכסון הראשי הם $\{\lambda-\alpha_1,\lambda-\alpha_2,\dots,\lambda-\alpha_n\}$ הדטרמיננטה על האלכסון הראשי, לכן לכן מטריצה משולשית היא המכפלה של האיברים על האלכסון הראשי, לכן לכן

$$|\lambda I - A| = (\lambda - \alpha_1) \cdot (\lambda - \alpha_2) \dots (\lambda - \alpha_n)$$

לכן הפולינום האופייני הוא

$$p_A(\lambda) = (\lambda - \alpha_1) \cdot (\lambda - \alpha_2) \dots (\lambda - \alpha_n) = 0$$
.

השורשים הם

$$\lambda = \alpha_1, \quad \lambda = \alpha_2, \quad \dots \quad \lambda = \alpha_n$$
.

ז"א הערכים עצמיים שווים לאיברים על האלכסון הראשי.

הגדרה 3.9 הגדרת דמיון בין מטריצות

-ע כך $P\in\mathbb{F}^{n\times n}$ כך הפיכה מטריצה מטריצה אם דומות B ו- A ו- A נאמר ש- $A,B\in\mathbb{F}^{n\times n}$

$$B = P^{-1}AP .$$

משפט 3.21 פולינום האופייני של מטריצות דומות

אם A ו- B דומות אז יש להן אותו פולינום אופייני, ולכן אותם ערכים עצמיים.

הוכחה:

$$f_B(x) = |xI - B|$$

$$= |xI - P^{-1}AP|$$

$$= |P^{-1}xIP - P^{-1}AP|$$

$$= |P^{-1}(xI - A)P|$$

$$= |P^{-1}||xI - A||P|$$

$$= |P|^{-1}|xI - A||P|$$

$$= |xI - A||P|^{-1}|P|$$

$$= |xI - A|$$

$$= f_A(x)$$

משפט 3.22 קיום ווקטור עצמי של אופרטור לינארית

יהי תעקה לינארית. $T:V \to V$ ותהי וואר סופית מעל סופית מעל מרחב לינארית. $T:V \to V$ ותהי אחד של $T:V \to V$ העתקה לינארית.

הקבוצה . $u_1
eq ar{0} \in V$ יהי . $\dim(V) = n$ - נניח ש

$$\{u_1, T(u_1), T^2(u_1), \dots, T^n(u_1)\}$$

 a_0,\dots,a_n וקטורים. לכן הצירוף לינארי הבא מתקיים רק אם אחד המקדמים לכן הצירוף לכן הצירוף לינארי וקטורים. לכן הצירוף לינארי הבא מתקיים המקדמים וחדר וקטורים. לכן הצירוף לינארי הבא מתקיים המקדמים וחדר המקדמים לכן הצירוף לינארי הבא מתקיים המקדמים וחדר ה

$$a_0u_1 + a_1T(u_1) + a_2T^2(u_1) + \ldots + a_nT^n(u_1) = \bar{0}$$
 (*1)

נרשום את זה בצורה

$$(a_0 + a_1T + a_2T^2 + \ldots + a_nT^n) u_1 = \bar{0} .$$

בצד שמאל יש הצבת העתקה בפולינום מסדר n. לפי המשפט היסודי של האלגברה יש לפולינום הזה פירוק לגורמים לינאריים:

$$a_0 + a_1 z + a_2 z^2 + \ldots + a_n z^n = c(z - \lambda_1) \ldots (z - \lambda_n)$$

כ: (*1) את לפרק לפרן לכן לכן $1 \leq i \leq n$ את לה $c \neq 0 \in \mathbb{C}$

$$a_0 u_1 + a_1 T(u_1) + a_2 T^2(u_1) + \ldots + a_n T^n(u_1) = c (T - \lambda_1 I) \ldots (T - \lambda_n I) u_1 = \bar{0} .$$
 (*2

אז בהכרח הדטרמיננטה של המטריצה שמכפילה (*2) אז בהכרח למשוואה הומוגונית של $u_1 \neq 0$ למשוואה הומוגונית ב- ($c \neq 0 \in \mathbb{C}$ שווה לאפס. לפיכך u_1

$$|c(T - \lambda_1 I) \dots (T - \lambda_n I)| = c|T - \lambda_1 I| \dots |T - \lambda_n I| = 0.$$
 (*3)

. עבורו ערך עצמי אחד לכן ל- לכן ל- $|T-\lambda_i I|=0$ עבורו (1 $\leq i \leq n$) לכן קיים לכן לכן עבורו

שעור 4 משפט קיילי-המילטון ופולינום מינימלי

4.1 הצבה של מטריצה ריבועית בפולינם

הגדרה 4.1 הצבה של מטריצה ריבועית בפולינם

יהי . $\mathbb F$ מטריצה ריבועית מעל שדה $A\in\mathbb F^{n imes n}$

$$p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \ldots + \alpha_k x^k$$

פולינים p מוגדרת של הצבה של סקלרים. הצבה מסקלרים מוגדרת מוגדרת פוליניום כאשר

$$p(A) = \alpha_0 I + \alpha_1 A + \alpha_2 A^2 + \ldots + \alpha_k A^k$$

 $.\mathbb{F}^{n imes n}$ של המטריצה היחידה ל

דוגמה 4.1

$$.p(A)$$
 השבו את $.p(x)=2x^2-2x-4$ ו- $A=egin{pmatrix} 1 & 2 \ 3 & 4 \end{pmatrix}$ יהיו

פתרון:

$$p(x) = 2x^{2} - 2x - 4 = 2(x - 2)(x + 1) .$$

$$p(A) = 2(A - I_{2})(A + I_{2}) = 2\begin{pmatrix} -2 & 2 \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 2 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} 8 & 16 \\ 24 & 32 \end{pmatrix} .$$

דוגמה 4.2

תהי
$$p(x)$$
 פרקו $p(x)=x^3-2x^2-x+2\in\mathbb{R}_3[x]$ ו $A=\begin{pmatrix}1&-1&2\\3&-1&2\\1&-1&4\end{pmatrix}\in\mathbb{R}^{3 imes3}$ תהי השתמשו בפירוק זה כדי לחשב שוב את ההצבה של A ב- A

פתרון:

$$p(x) = (x-1)(x-2)(x+1) .$$

$$p(A) = (A-I_3)(A-2I_3)(A+I_3) = \begin{pmatrix} 0 & -1 & 2 \\ 3 & -2 & 2 \\ 1 & -1 & 3 \end{pmatrix} \begin{pmatrix} -1 & -1 & 2 \\ 3 & -3 & 2 \\ 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -1 & 2 \\ 3 & 0 & 2 \\ 1 & -1 & 5 \end{pmatrix} = \begin{pmatrix} 3 & -1 & 10 \\ -5 & 1 & 18 \\ 1 & -5 & 26 \end{pmatrix}$$

משפט 4.1

תהי
$$p(x)\in\mathbb{F}[x]$$
 מטריצה אלכסונית ויהי $D=\begin{pmatrix}\lambda_1&0&\dots&0\\0&\lambda_2&\dots&0\\ \vdots&\vdots&\ddots&\vdots\\0&0&\dots&\lambda_n\end{pmatrix}$ פולינום. אז

$$p(D) = \begin{pmatrix} p(\lambda_1) & 0 & \dots & 0 \\ 0 & p(\lambda_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & p(\lambda_n) \end{pmatrix}$$

הוכחה: תרגיל בית

4.2 משפט

. מעקיים: מתקיים: $B\in\mathbb{F}^{n\times n}$ נניח ש $B\in\mathbb{F}^{n\times n}$ ו- $A\in\mathbb{F}^{n\times n}$ הפיכה. מתקיים:

$$(BAB^{-1})^k = BA^kB^{-1}$$
.

הוכחה: נוכיח ע"י אינדוקציה.

k=1 בסיס: עבור

$$(BAB^{-1})^1 = BA^1B^{-1}$$
.

:מעבר

 $(BAB^{-1})^{k+1}=BA^{k+1}B^{-1}$ - נניח ש- ($BAB^{-1})^k=BA^kB^{-1}$ (ההנחת האינדוקציה). נוכיח ש-

$$(BAB^{-1})^{k+1} = (BAB^{-1})^k \cdot BAB^{-1}$$
 $= BA^k B^{-1} \cdot BAB^{-1}$ (ההנחת האינדוקציה)
 $= BA^k \cdot \underbrace{(B^{-1}B) \cdot AB^{-1}}_{=I}$
 $= BA^k \cdot I \cdot AB^{-1}$
 $= BA^k \cdot AB^{-1}$
 $= BA^{k+1}B^{-1}$.

משפט 4.3

-תהיינה $B=PAP^{-1}$ שטריצות דומות. כלומר קיימת P הפיכה כך ש- $A,B\in\mathbb{F}^{n\times n}$ מטריצות דומות. כלומר קיימת $Q(x)\in\mathbb{F}[x]$

$$Q(A) = PQ(B)P^{-1} .$$

$$Q(x) = \alpha_0 + \alpha_1 x + \ldots + \alpha_k x^k$$
 נסמן:

$$Q(A) = \alpha_0 I + \alpha_1 A + \dots + \alpha_k A^k$$

= \alpha_0 I + \alpha_1 (PBP^{-1}) + \dots + \alpha_k (PBP^{-1})^k
= \alpha_0 PP^{-1} + \alpha_1 (PBP^{-1}) + \dots + \alpha_k (PBP^{-1})^k

לכן נקבל (4.2 לפי משפט (PBP^{-1}) $^k = PB^kP^{-1}$

$$Q(A) = \alpha_0 P P^{-1} + \alpha_1 P B P^{-1} + \dots + \alpha_k P B^k P^{-1}$$

= $P \left(\alpha_0 I + \alpha_1 B + \dots + \alpha_k B^k \right) P^{-1}$
= $P Q(B) P^{-1}$.

משפט 4.4

 $A=PDP^{-1}$ -ש אלכסונית כך אלכסונית פיימת P הפיכה קיימת לכסינה, כלומר לכסינה, כלומר אז לכל $A\in\mathbb{F}^{n\times n}$ מתקיים נניח ש- $q(x)\in\mathbb{F}[x]$ אז אז לכל $D=\mathrm{diag}\,(\lambda_1,\dots,\lambda_n)$

$$q(A) = P \begin{pmatrix} q(\lambda_1) & 0 & \dots & 0 \\ 0 & q(\lambda_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q(\lambda_n) \end{pmatrix} P^{-1}$$

,4.3 לפי משפט $D=P^{-1}AP$ הוכחה: נסמן

$$P^{-1}q(A)P = q(P^{-1}AP) = q(D)$$
.

לפי משפט 4.1,

$$q(D) = \begin{pmatrix} q(\lambda_1) & 0 & \dots & 0 \\ 0 & q(\lambda_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q(\lambda_n) \end{pmatrix}$$

לכן נקבל

$$P^{-1}q(A)P = \begin{pmatrix} q(\lambda_1) & 0 & \dots & 0 \\ 0 & q(\lambda_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q(\lambda_n) \end{pmatrix} ,$$

מכאן נובע כי

$$q(A) = P \begin{pmatrix} q(\lambda_1) & 0 & \dots & 0 \\ 0 & q(\lambda_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q(\lambda_n) \end{pmatrix} P^{-1}.$$

דוגמה 4.3

$$A=\left(egin{array}{cc} 11 & -6 \ 20 & -11 \end{array}
ight)\in\mathbb{R}^{2 imes2}$$
 שבו את ההצבה של $A=\left(egin{array}{cc} 11 & -6 \ 20 & -11 \end{array}
ight)$

פתרון:

הם עמציים עמציים הם . $\lambda=1$ ו- ו- א הם עמציים עמציים הם הערכים עצמיים הם

$$V_{-1}=\operatorname{span}\left\{ \begin{pmatrix} 1\\2 \end{pmatrix} \right\} \;, V_1=\operatorname{span}\left\{ \begin{pmatrix} 3\\5 \end{pmatrix} \right\} \;.$$

$$D=\begin{pmatrix} -1 & 0\\0 & 1 \end{pmatrix} \; \text{-1} \; P=\begin{pmatrix} 1 & 3\\2 & 5 \end{pmatrix} \; \text{ and } \; A=PDP^{-1} \; \text{ and } \; A=$$

דוגמה 4.4

תהיינה $B\in\mathbb{F}[x]$ מטריצות דומות ויהי $\lambda\in\mathbb{F}$ סקלר. נניח ש $A,B\in\mathbb{F}^{n imes n}$ פולינום. הוכיחו:

$$p(B) = \lambda I_n$$
 אס"ם $p(A) = \lambda I_n$

הוכחה: 🚖

,4.3 לכן לפי . $B=C^{-1}AC$ א הפיכה כך הפיכה מו $C\in\mathbb{F}^{n\times n}$ לכן קיימת אדומות לכן דומות א

$$p(B) = p(C^{-1}AC) = C^{-1}p(A)C$$

אס
$$p(A) = \lambda I_n$$
 אס

$$p(B) = C^{-1}\lambda I_n C = \lambda I_n$$
.

 \triangleq

,4.3 לכן לפי
$$A=CBC^{-1}$$

$$p(A) = p(CBC^{-1}) = Cp(B)C^{-1}$$
.

לכן אם
$$p(B) = \lambda I_n$$
 לכן

$$p(A) = C\lambda I_n C^{-1} = \lambda I_n .$$

4.2 הצבת של העתקה לינארית בפולינום

הגדרה 4.2 הצבה של העתקה לינארית בפולינום

 $p(x)=lpha_0+lpha_1x+\dotslpha_kx^k$ - אופרטור לינארי אופרטור עניח שT:V o V אופרטור מעל " $\mathbb F$ מרחב וקטורי מעל פולינום. נגדיר את האופרטור הלינארי עp(T):V o V י"י

$$p(T) = \alpha_0 I_V + \alpha_1 T + \dots \alpha_k T^k$$

($u \in V$ לכל $I_V(u) = u$) כאשר הזהות האופרטור הזהות I_V לכל p נקראת ההצבה של p(T)

דוגמה 4.5

יהי אופרטור המוגדר $T:\mathbb{R}^2 o \mathbb{R}^2$ יהי

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - 3y \\ 2x + y \end{pmatrix} .$$

T תוך כדי שימוש של המטריצה המייצגת הסטנדרטית של תוך כדי שימוש תוך $p(x)=3x^2-4x-1$ חשבו את

פתרון:

שיטה 1

תהדרטית הסטנדרטית המייצגת המטריצה . $E=\left\{e_1=\begin{pmatrix}1\\0\end{pmatrix},e_2=\begin{pmatrix}0\\1\end{pmatrix}
ight\}$ הוא \mathbb{R}^2 הבסיס הסטנדרטי של .

נקבל .
$$[T]_E=egin{pmatrix} |T(e_1)]_E&=\left(egin{bmatrix} |T(e_1)]_E&[T(e_1)]_E \\ |T(e_1)]_E&=\left(egin{bmatrix} 1\\ 2 \end{pmatrix} \end{array}
ight., \qquad [T(e_2)]_E=\left(egin{bmatrix} -3\\ 1 \end{pmatrix}
ight.,$$

לכן
$$[T]_E=egin{pmatrix} 1 & -3 \ 2 & 1 \end{pmatrix}$$
 לכן

$$[p(T)]_E = p([T]_E) .$$

 $:p\left([T]_E
ight)$ נחשב

$$p([T]_E) = 3([T]_E)^2 - 4[T]_E - I_3 = 3\begin{pmatrix} 1 & -3 \\ 2 & 1 \end{pmatrix}^2 - 4\begin{pmatrix} 1 & -3 \\ 2 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -20 & -6 \\ 4 & -20 \end{pmatrix}$$

 $u = \begin{pmatrix} x \\ y \end{pmatrix}$ לכן לכל וקטור

$$\begin{split} \left[p(T)u\right]_E &= \left[p(T)\right]_E \cdot \left[u\right]_E \\ &= p\left(\left[T\right]_E\right) \left[u\right]_E \\ &= \begin{pmatrix} -20 & -6 \\ 4 & -20 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \\ &= \begin{pmatrix} -20x - 6y \\ 4x - 20y \end{pmatrix} \end{split}$$

שיטה 2

$$p(T) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 3T^{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix} - 4T \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= 3T \begin{pmatrix} 1 \\ 2 \end{pmatrix} - 4 \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= 3 \begin{pmatrix} -5 \\ 4 \end{pmatrix} - 4 \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} -15 \\ 12 \end{pmatrix} - 4 \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} -20 \\ 4 \end{pmatrix} .$$

$$p(T) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 3T^{2} \begin{pmatrix} 0 \\ 1 \end{pmatrix} - 4T \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= 3T \begin{pmatrix} -3 \\ 1 \end{pmatrix} - 4 \begin{pmatrix} -3 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= 3 \begin{pmatrix} -6 \\ -5 \end{pmatrix} - 4 \begin{pmatrix} -3 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} -18 \\ -15 \end{pmatrix} - \begin{pmatrix} -12 \\ 4 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} -6 \\ -20 \end{pmatrix} .$$

$$p(T) \begin{pmatrix} x \\ y \end{pmatrix} = p \begin{pmatrix} x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} -20x - 6y \\ 4x - 20y \end{pmatrix}$$

דוגמה 4.6

יהי $T:\mathbb{R}^2 o\mathbb{R}^2$ אופרטור שמוגדר ע"י

$$Tinom{x}{y}=inom{x-3y}{2x+y}$$
 .
$$p(x)=3x^2-4x+1$$
 עבור $p(T)$

פתרון:

$$[T]_E = \begin{pmatrix} 1 & -3 \\ 2 & 1 \end{pmatrix}$$
 לכן

$$p(x) = 3x^{2} - 4x + 1 = (3x - 1)(x - 1)$$

$$p([T]_{E}) = (3[T]_{E} - I)([T]_{E} - I)$$

$$= \left(3\begin{pmatrix} 1 & -3 \\ 2 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) \left(\begin{pmatrix} 1 & -3 \\ 2 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right)$$

$$= \begin{pmatrix} 2 & -9 \\ 6 & 2 \end{pmatrix} \begin{pmatrix} 0 & -3 \\ 2 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} -18 & -6 \\ 4 & -18 \end{pmatrix}$$

$$p(T)\begin{pmatrix} x \\ y \end{pmatrix} = p([T]_{E}) \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -18 & -6 \\ 4 & -18 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -18x - 6y \\ 4x - 18y \end{pmatrix}.$$

דוגמה 4.7

ע"י שמוגדר ע"י $T:\mathbb{R}^2 o \mathbb{R}^2$ יהי $p(x)=2x^2+3x-4 \in \mathbb{R}[x]$ נסמן

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - y \\ x + 2y \end{pmatrix} .$$

.p(T) חשבו את

פתרון:

$$p(T) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 2T^2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 3T \begin{pmatrix} 1 \\ 0 \end{pmatrix} - 4 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= 2T \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 3T \begin{pmatrix} 1 \\ 1 \end{pmatrix} - 4 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= 2 \begin{pmatrix} 0 \\ 3 \end{pmatrix} + 32 \begin{pmatrix} 1 \\ 1 \end{pmatrix} - 4 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} -1 \\ 9 \end{pmatrix}$$
$$p(T) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -9 \\ 8 \end{pmatrix}$$
$$p(T) \begin{pmatrix} x \\ y \end{pmatrix} = p \begin{pmatrix} x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$= x \begin{pmatrix} -1 \\ 9 \end{pmatrix} + y \begin{pmatrix} -9 \\ 8 \end{pmatrix}$$
$$= \begin{pmatrix} -x - 9y \\ 9x + 8y \end{pmatrix}$$

דוגמה 4.8

יהי $T:\mathbb{R}^2 o\mathbb{R}^2$ אופרטור שמוגדר ע"י

$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x - 2y \\ 3x + 7y \end{pmatrix} .$$

T תוך כדי שימוש של המטריצה המייצגת הסטנדרטית של תוך כדי $p(x)=5x^2-6x+1$ חשבו את חשבו את

פתרון:

שיטה 1

הבסיס הסטנדרטי של \mathbb{R}^2 הוא \mathbb{R}^2 הוא \mathbb{R}^2 ההגדרה של המטריצה המייצגת הסטנדרטית הבסיס הסטנדרטי $E=\left\{e_1=\begin{pmatrix}1\\0\end{pmatrix},e_2=\begin{pmatrix}0\\1\end{pmatrix}\right\}$ הוא \mathbb{R}^2 ה \mathbb{R}^2 הוא \mathbb{R}^2 הוא \mathbb{R}^2 הוא \mathbb{R}^2 הוא \mathbb{R}^2 הוא

$$[T(e_1)]_E = {2 \choose 3}$$
, $[T(e_2)]_E = {-2 \choose 7}$,

לנו נקבל לינאריים: ניתן לפרק ניתן ניתן (p(x)את לפרק (ניתן $[T]_E = \begin{pmatrix} 2 & -2 \\ 3 & 7 \end{pmatrix}$ לכו לכו נקבל לכו ניתן היים:

$$p(x) = 5x^2 - 6x + 1 = (5x - 1)(x - 1) .$$

 $:p\left([T]_{E}
ight)$ את בפירוק הזה בפירוק

$$p([T]_E) = (5([T]_E) - I_2)([T]_E - I_2)$$

$$= \left(5\begin{pmatrix} 2 & -2 \\ 3 & 7 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) \left(\begin{pmatrix} 2 & -2 \\ 3 & 7 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right)$$

$$= \begin{pmatrix} 9 & -10 \\ 15 & 34 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 3 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} -21 & -78 \\ 117 & 174 \end{pmatrix}$$

 $u = \begin{pmatrix} x \\ y \end{pmatrix}$ לכן עבור וקטור

$$\begin{aligned} \left[p(T)u \right]_E &= \left[p(T) \right]_E \cdot \left[u \right]_E \\ &= \begin{pmatrix} -21 & -78 \\ 117 & 174 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \\ &= \begin{pmatrix} -21x - 78y \\ 117x + 174y \end{pmatrix} \end{aligned}$$

שיטה 2

$$p(T) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 5T^2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} - 6T \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= 5T \begin{pmatrix} 2 \\ 3 \end{pmatrix} - 6 \begin{pmatrix} 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= 5 \begin{pmatrix} -2 \\ 27 \end{pmatrix} - 6 \begin{pmatrix} 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} -21 \\ 117 \end{pmatrix}$$

$$p(T) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 5T^2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} - 6T \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= 5T \begin{pmatrix} -2 \\ 7 \end{pmatrix} - 6 \begin{pmatrix} -2 \\ 7 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= 5 \begin{pmatrix} -18 \\ 43 \end{pmatrix} - 6 \begin{pmatrix} -2 \\ 7 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} -90 \\ 215 \end{pmatrix} + \begin{pmatrix} 12 \\ -42 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} -78 \\ 174 \end{pmatrix} .$$

$$p(T) \begin{pmatrix} x \\ y \end{pmatrix} = p \begin{pmatrix} x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} -21x - 78y \\ 117x + 174y \end{pmatrix}$$

בדיוק כמו הפתרון המתקבל ע"י שיטה 1.

דוגמה 4.9

 $T:\mathbb{R}^3 o\mathbb{R}^3$ נגדיר $T:\mathbb{R}^3$

$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3y + z \\ 2x - y + z \\ x + y + z \end{pmatrix} .$$

 \mathbb{R}^3 נסמן E יהי $p(x)=x^2+x-2\in\mathbb{R}[x]$ נסמן

 $[p(T)]_E$ א חשבו את

p(T) את למצוא אי כדי בסעיף א' כדי בחישוב בחישוב היעזרו

פתרון:

סעיף א
$$p(x)=(x-1)(x+2)$$
 כ- $p(x)$ את לפרק את ($T]_E=\begin{pmatrix} 0&3&1\\2&-1&1\\1&1&1 \end{pmatrix}$ לכן לכן יינון א

$$[p(T)]_E = ([T]_E - I_3)([T]_E + 2I_3) = \begin{pmatrix} -1 & 3 & 1 \\ 2 & -2 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 3 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 5 & 1 & 5 \\ 1 & 5 & 3 \\ 4 & 4 & 2 \end{pmatrix}$$

סעיף ב לכן

$$\begin{split} p(T) \begin{pmatrix} x \\ y \\ z \end{pmatrix} &= [p(T)]_E \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} \\ &= x \left[p(T) \right]_E \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + y \left[p(T) \right]_E \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + z \left[p(T) \right]_E \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \\ &= x \begin{pmatrix} 5 & 1 & 5 \\ 1 & 5 & 3 \\ 4 & 4 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + y \begin{pmatrix} 5 & 1 & 5 \\ 1 & 5 & 3 \\ 4 & 4 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 5 & 1 & 5 \\ 1 & 5 & 3 \\ 4 & 4 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \\ &= x \begin{pmatrix} 5 \\ 1 \\ 4 \end{pmatrix} + y \begin{pmatrix} 1 \\ 5 \\ 4 \end{pmatrix} + z \begin{pmatrix} 5 \\ 3 \\ 2 \end{pmatrix} \\ &= \begin{pmatrix} 5x + y + 5z \\ x + 5y + 3z \\ 4x + 4y + 2z \end{pmatrix} \end{split}$$

4.5 משפט

$$T(u) = \lambda u$$

111

$$p(T)(u) = p(\lambda)u$$
.

הוכחה: ראו משפט 3.18 למעלה:

$$p(T)(u) = (\alpha_0 + \alpha_1 T + \dots + \alpha_k T^k) (u)$$

$$= (\alpha_0 + \alpha_1 T(u) + \dots + \alpha_k T^k(u))$$

$$= (\alpha_0 + \alpha_1 \lambda u + \dots + \alpha_k \lambda^k u)$$

$$= (\alpha_0 + \alpha_1 \lambda u + \dots + \alpha_k \lambda^k) u$$

$$= p(\lambda)u.$$

4.3 איפוס פולינום על ידי מטריצה

הגדרה 4.3 איפוס פולינום ע"י מטריצה

תהי p(x) את מאפסת כי $A\in\mathbb{F}[x]$ אומרים את תהי $A\in\mathbb{F}^{n\times n}$

$$p(A) = 0_{n \times n}$$

 $.\mathbb{F}^{n imes n}$ מטריצה האפס של $0_{n imes n}$

משפט 4.6 מטריצות דומות מאפסות אותו פולינום

B י"י אם"ם הוא מתאפס ע"י אם מתאפס ע"י או הפולינום או הפולינום B -ו אם אם אם אם הוא מתאפס ע"י

f(B) = 0 נוכיח שf(A) = 0. נוכיח ש

נסמן

$$f(x) = \alpha_k x^k + \ldots + \alpha_1 x + \alpha_0 ,$$

X

$$f(A) = \alpha_k A^k + \ldots + \alpha_1 A + \alpha_0 I = 0.$$

ו C מטריצות דומות לכן קיימת מטריצה הפיכה B ו A

$$A = C^{-1}BC .$$

לכן

$$\alpha_k(C^{-1}BC)^k + \ldots + \alpha_1(C^{-1}BC) + \alpha_0I = 0$$
.

לכן נקבל (4.2 לפי משפט ($C^{-1}BC)^k=C^{-1}B^kC$

$$C^{-1} \left(\alpha_k B^k + \ldots + \alpha_1 B + \alpha_0 I \right) C = 0.$$

ונקבל C^{-1} -ומצד ימין ב- C^{-1} ומצד מצד מצד מצד הפיכה אז נכפיל מצד שמאל ב- C

$$\alpha_k B^k + \ldots + \alpha_1 B + \alpha_0 I = 0 .$$

קיבלנו ש

$$f(B) = 0.$$

4.7 משפט

 $A \in \mathbb{F}^{n imes n}$ תהי

לכל $p(x)\in\mathbb{F}[x]$ מסדר מאפס פולינום שונה אם"ם קיים מסדר אם"ל אם"ל אם מסדר אם לכל אם הקבוצה אם הקבוצה p(A)=0

הוכחה:

-סעיף א. קיימים סקלרים כך א $A^n \in \mathrm{sp}\{I_n,A,A^2,\dots,A^{n-1}\}$ אז קיימים סקלרים כך ש

$$A^{n} = \alpha_{0}I_{n} + \alpha_{1}A + \alpha_{2}A^{2} + \ldots + \alpha_{n-1}A^{n-1}$$

ז"א

$$A^{n} - \alpha_{n-1}A^{n-1} - \alpha_{n-2}A^{n-2} - \dots - \alpha_{1}A - \alpha_{0}I_{n} = 0$$

לכן A מאפסת את

$$p(x) = x^n - \alpha_{n-1}x^{n-1} - \ldots - \alpha_1x - \alpha_0 \in \mathbb{F}[x] .$$

נניח ש-A מאפסת את הפוליניום

$$Q(x) = \beta_n x^n + \beta_{n-1} x^{n-1} + \ldots + \beta_1 x + \beta_0 \in \mathbb{F}[x]$$

מסדר n, כלומר Q(A)=0. נניח ש n

$$\beta_n A^n = -(\beta_{n-1} A^{n-1} + \ldots + \beta_1 A + \beta_0 I_n)$$

 $:\beta_n$ נחלק שני האגפים ב

$$A^{n} = -\left(\frac{\beta_{n-1}}{\beta_n}A^{n-1} + \ldots + \frac{\beta_1}{\beta_n}A + \frac{\beta_0}{\beta_n}I_n\right)$$

 $A^n \in \operatorname{sp}\{I_n,A,A^2,\ldots,A^{n-1}\}$ קיבלנו כי

-שינם כולם אפסים כך ת"ל. אז קיימים סקלירם אפסים כך ת"ל. אז $\{I_n,A,A^2,\ldots,A^n\}$ נניח ש

$$\alpha_0 I_n + \alpha_1 A + \alpha_2 A^2 + \ldots + \alpha_{n-1} A^{n-1} + \alpha_n A^n = 0$$

מכאן A מאפסת $\sum\limits_{i=0}^{n} \alpha_i x^i$ שהוא פולינום שונה מאפס מסדר לכל היותר.

להיפך, נניח ש- p(A)=0 אינו פולינום האפס כך ש $p(x)=\sum_{i=0}^n \alpha_i x^i$ אז להיפך, להיפך

$$\alpha_0 I_n + \alpha_1 A + \ldots + \alpha_n A^n = 0$$

הוא צירוף לנארי לא טריוויאלי.

4.4 איפוס פולינום על ידי העתקה לינארית

הגדרה 4.4 איפוס פולינום על ידי העתקה לינארית

יהי p(T)=0 אם p(x) אם מאפס את $p(x)\in\mathbb{F}[x]$ כאשר $p(x)\in\mathbb{F}[x]$ כאשר $p(x)\in\mathbb{F}[x]$ את העתקת האפס.

דוגמה 4.10

יע"י המוגדר
$$T:\mathbb{R}^2 o \mathbb{R}^2$$
 נתון

$$T(x,y) = (-y,x)$$

חשבו את f(x) כאשר f(T) הפולינום

$$f(x) = x^3 - x^2 + x - 1 .$$

פתרון:

$$T^{2}(x,y) = T(T(x,y)) = T(-y,x) = (-x,-y)$$

 $T^{3}(x,y) = T(T^{2}(x,y)) = T(-x,-y) = (y,-x)$

לכן

$$f(T) = (y, -x) - (-x, -y) + (-y, x) - (x, y) = (0, 0) .$$

(Cayley-Hamilton) משפט קיילי-המילטון 4.5

משפט 4.8 משפט קיילי-המילטון

תהי $A \in \mathbb{F}^{n imes n}$ הוא הפולינום האופייני של $A \in \mathbb{F}^{n imes n}$

$$p_A(A) = 0_{n \times n}$$

 $\mathbb{F}^{n imes n}$ מטריצה האפס של $0_{n imes n}$

דוגמה 4.11

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 נתונה

$$.p_A(A) = 0$$
 -בדקו ש-

. תשבו את A^2 ללא חישוב ישיר.

פתרון:

(N

$$p_A(\lambda) = |\lambda - A| = \begin{vmatrix} \lambda - 1 & -1 \\ -1 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 - 1 = \lambda^2 - 2\lambda$$

$$p_A(A) = A^2 - 2A = A(A - 2I)$$

$$= \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}$$

$$= \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

לכן $p_A(A)=0$ לכן לפילי-המילטון

$$A^2 - 2A = 0 \qquad \Rightarrow \qquad A^2 = 2A = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$$

דוגמה 4.12

. מצאו את משפט קיילי משפט בעזרת את את $A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$ מטריצה נתונה מטריצה $A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$

פתרון:

הפולינום האופייני של A הוא:

$$p_A(\lambda) = \begin{vmatrix} \lambda - 1 & -2 \\ -1 & \lambda - 3 \end{vmatrix} = (\lambda - 1)(\lambda - 3) - 2 = \lambda^2 - 4\lambda + 1$$

לכן

$$p_A(A) = A^2 - 4A + I = 0 \implies 4A - A^2 = I \implies A(4I - A) = I$$
 . (*)

ולכן $AI-A=A^{-1}$ ונקבל A^{-1} ב- A^{-1} , ולכן $AI-A=A^{-1}$, ולכן AI=A

$$A^{-1} = 4I - A = 4 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ -1 & 1 \end{pmatrix}$$
.

דוגמה 4.13

נתונה מטריצה

$$A = \begin{pmatrix} -3 & 1 & -1 \\ -5 & 3 & -1 \\ -6 & 6 & -4 \end{pmatrix}$$

 A^{-1} -ו A^3 את ושבו המילטון המילי קיילי במשפט היילי

פתרון:

הפולינום האופייני של A הוא

$$p_{A}(\lambda) = \begin{vmatrix} \lambda + 3 & -1 & 1 \\ 5 & \lambda - 3 & 1 \\ 6 & -6 & \lambda + 4 \end{vmatrix}$$

$$= (\lambda + 3) \begin{vmatrix} \lambda - 3 & 1 \\ -6 & \lambda + 4 \end{vmatrix} + \begin{vmatrix} 5 & 1 \\ 6 & \lambda + 4 \end{vmatrix} + \begin{vmatrix} 5 & \lambda - 3 \\ 6 & -6 \end{vmatrix}$$

$$= (\lambda + 3) ((\lambda - 3)(\lambda + 4) + 6) + (5(\lambda + 4) - 6) + (-30 - 6(\lambda - 3))$$

$$= (\lambda + 3)(\lambda + 3)(\lambda - 2) + 5\lambda + 14 - 6\lambda - 12$$

$$= (\lambda + 3)(\lambda + 3)(\lambda - 2) - \lambda + 2$$

$$= (\lambda + 3)(\lambda + 3)(\lambda - 2) - (\lambda - 2)$$

$$= (\lambda - 2) ((\lambda + 3)(\lambda + 3) - 1)$$

$$= (\lambda - 2) (\lambda^{2} + 6\lambda + 8)$$

$$= (\lambda - 2)(\lambda + 2)(\lambda + 4)$$

$$= \lambda^{3} + 4\lambda^{2} - 4\lambda - 16$$

:ערכים עצמיים

 $\lambda=2$ מריבוי אלגברי

 $\lambda = -2$ מריבוי אלגברי λ

 $\lambda = -4$ מריבוי אלגברי

נבדוק אם A הפיכה דרך הדטרמיננטה:

$$|A| = p_A(0) = -16 \neq 0$$

A לכן

לפי משפט קיילי-המילטון,

$$p_A(A) = 0 \implies A^3 + 4A^2 - 4A - 16I_3 = 0 \implies A^3 = -4A^2 + 4A + 16I_3$$

$$A^{2} = \begin{pmatrix} -3 & 1 & -1 \\ -5 & 3 & -1 \\ -6 & 6 & -4 \end{pmatrix} \cdot \begin{pmatrix} -3 & 1 & -1 \\ -5 & 3 & -1 \\ -6 & 6 & -4 \end{pmatrix} = \begin{pmatrix} 10 & -6 & 6 \\ 6 & -2 & 6 \\ 12 & -12 & 16 \end{pmatrix}$$

לכן

$$A^{3} = -4 \begin{pmatrix} 10 & -6 & 6 \\ 6 & -2 & 6 \\ 12 & -12 & 16 \end{pmatrix} + 4 \begin{pmatrix} -3 & 1 & -1 \\ -5 & 3 & -1 \\ -6 & 6 & -4 \end{pmatrix} + \begin{pmatrix} 16 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 16 \end{pmatrix} = \begin{pmatrix} -36 & 28 & -28 \\ -44 & 36 & -28 \\ -72 & 72 & -64 \end{pmatrix}$$

לפי משפט קיילי-המילטון,

$$p_A(A) = 0 \implies A^3 + 4A^2 - 4A - 16I_3 = 0 \implies I_3 = \frac{1}{16}A^3 + \frac{1}{4}A^2 - \frac{1}{4}A = \left(\frac{1}{16}A^2 + \frac{1}{4}A - \frac{1}{4}I_3\right)A$$

7"%

$$A^{-1} = \frac{1}{16}A^{2} + \frac{1}{4}A - \frac{1}{4}I_{3}$$

$$= \frac{1}{16}\begin{pmatrix} 10 & -6 & 6 \\ 6 & -2 & 6 \\ 12 & -12 & 16 \end{pmatrix} + \frac{1}{4}\begin{pmatrix} -3 & 1 & -1 \\ -5 & 3 & -1 \\ -6 & 6 & -4 \end{pmatrix} - \begin{pmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{4} \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{3}{8} & -\frac{1}{8} & \frac{1}{8} \\ -\frac{7}{8} & \frac{3}{8} & \frac{1}{8} \\ -\frac{3}{4} & \frac{3}{4} & -\frac{1}{4} \end{pmatrix}$$

דוגמה 4.14

יתהי הבאות. הוכיחו את הוכיחו $A \in \mathbb{F}^{n \times n}$

N.

$$A^n \in \operatorname{sp}\left\{I_n, A, A^2, \dots, A^{n-1}\right\}$$

ב. אם A הפיכה אז

$$A^{-1} \in \text{sp}\left\{I_n, A, A^2, \dots, A^{n-1}\right\}$$

ג. עבור

$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

 A^{-2} ואת את מצאו הופכיות, מטריצות מטריצות מטריצות מבלי

פתרון:

סעיף א. לפי משפט ק"ה A מאפסת את $p_A(x)$ כלומר

$$p_A(A) = A^n + \alpha_{n-1}A^{n-1} + \ldots + \alpha_1A + \alpha_0I_n = 0$$
.

לכן

$$A^{n} = -\alpha_{n-1}A^{n-1} - \ldots - \alpha_{1}A - \alpha_{0}I_{n} \in \operatorname{sp}\left\{I_{n}, A, A^{2}, \ldots, A^{n-1}\right\}.$$

סעיף ב. לפי משפט ק"ה A מאפסת את $p_A(x)$, כלומר

$$p_A(A) = A^n + \alpha_{n-1}A^{n-1} + \ldots + \alpha_1A + \alpha_0I_n = 0$$
,

לכן

$$-\alpha_0 I_n = A^n + \alpha_{n-1} A^{n-1} + \ldots + \alpha_1 A .$$
 (*)

(*) מכיוון ש- A הפיכה אז α_0^{-1} ו $\alpha_0 \neq 0$ ו הפיכה אA הפיכוון ש- וויס. $|A| = p_A(0)$ ב $\frac{-1}{\alpha_0}A^{-1}$ ב

$$A^{-1} = -\frac{1}{\alpha_0} A^{n-1} - \frac{\alpha_{n-1}}{\alpha_0} A^{n-2} - \dots - \frac{\alpha_1}{\alpha_0} I_n . \tag{#}$$

לכן קיבלנו כי

$$A^{-1} \in \text{sp}\left\{I_n, A, A^2, \dots, A^{n-1}\right\}$$
.

סעיף ג.

$$p_{A}(\lambda) = |\lambda I_{3} - A|$$

$$= \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$= (\lambda - 1) \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} + 2 \begin{vmatrix} -2 & -2 \\ -2 & \lambda - 1 \end{vmatrix} - 2 \begin{vmatrix} -2 & \lambda - 1 \\ -2 & -2 \end{vmatrix}$$

$$= (\lambda - 5)(\lambda + 1)^{2}$$

$$= \lambda^{3} - 3\lambda^{2} - 9\lambda - 5$$

$$p_A(A) = A^3 - 3A^2 - 9A - 5I_n = 0 \quad \Rightarrow \quad I_n = \frac{1}{5}A^3 - \frac{3}{5}A^2 - \frac{9}{5}A = A\left(\frac{1}{5}A^2 - \frac{3}{5}A - \frac{9}{5}I_3\right)$$

אזי

$$A^{-1} = \frac{1}{5}A^2 - \frac{3}{5}A - \frac{9}{5}I_3 . \tag{*1}$$

לכן
$$A^2 = \left(\begin{array}{ccc} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{array}\right)$$

$$A^{-1} = \frac{1}{5} \begin{pmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{pmatrix} - \frac{3}{5} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} - \frac{9}{5} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -\frac{3}{5} & \frac{2}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{3}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{2}{5} & -\frac{3}{5} \end{pmatrix}$$

(נקבל: A^{-1} ב (*1) בי את שני אגפי (1*) למצוא את ל-2 נכפיל את נכפיל את אני למצוא את

$$A^{-2} = \frac{1}{5}A - \frac{3}{5}I_3 - \frac{9}{5}A^{-1} = \frac{1}{5}\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} - \frac{3}{5}\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \frac{9}{5}\begin{pmatrix} -\frac{3}{5} & \frac{2}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{3}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{2}{5} & -\frac{3}{5} \end{pmatrix} = \frac{1}{25}\begin{pmatrix} 17 & -8 & -8 \\ -8 & 17 & -8 \\ -8 & -8 & 17 \end{pmatrix}.$$

משפט 4.9 משפט קיילי-המילטון עבור העתקות

יהי V מרחב וקטורי מעל שדה $\mathbb F$ ויהי ויהי T:V o V אופרטור. $\mathbb F$ מאפס את הפולינום האופייני שלה.

דוגמה 4.15

יע"י שמוגדר $T:\mathbb{R}^3 o \mathbb{R}^3$ נתון אופרטור לינארי

$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -6x+y+12z \\ -8x+2y+15z \\ -2x+5z \end{pmatrix}$$
הוכיחו ש- $T^{-1} \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$ הפיך באמצעות משפט ק"ה וחשבו T

פתרון:

הממ"ס היא

$$A = [T]_E = \begin{pmatrix} -6 & 1 & 12 \\ -8 & 2 & 15 \\ -2 & 0 & 5 \end{pmatrix} .$$

אז הפולינום האופייני

$$p_{A}(x) = |xI - A|$$

$$= \begin{vmatrix} x+6 & -1 & -12 \\ 8 & x-2 & -15 \\ 2 & 0 & x-5 \end{vmatrix}$$

$$= 2 \begin{vmatrix} -1 & -12 \\ x-2 & -15 \end{vmatrix} + (x-5) \begin{vmatrix} x+6 & -1 \\ 8 & x-2 \end{vmatrix}$$

$$= 2 (15+12x-24) + (x-5) ((x+6)(x-2)+8)$$

$$= -18+24x + (x-5) (x^{2}+4x-4)$$

$$= x^{3}-x^{2}+2.$$

האיבר החופשי שונה מאפס לכן T הפיך. לפי משפט ק"ה:

$$T^3 - T^2 + 2I = 0$$

:כאשר האגף הימין הוא אופרטור האפס. נפעיל T^{-1} על המשוואה ונקבל

$$T^2 - T + 2T^{-1} = 0$$

לכן

$$T^{-1} = -\frac{1}{2}T^2 + \frac{1}{2}T$$

4.6 הפולינום המינימלי של מטריצה

הגדרה 4.5 פולינום המינימלי

תהי פולינום מתוקן מצורה. הפולינום מתוקן מטריצה $A \in \mathbb{F}^{n \times n}$

$$m(x) = \alpha_0 + \alpha_1 x_1 + \ldots + \alpha_{k-1} x^{k-1} + x^k$$
, (#)

:כאשר $k \geq 1$ כך ש

- m(A) = 0 (1
- A שמתאפסים ע"י שמתאפסים ע"י היא הסדר הנמוכה ביותר מבין הפולינומים מצורה (#) א היא הסדר הנמוכה k

 $m_A(x)$ -ב A ב- מינימלי של הפולינום המינימלי

מסקנה 4.1 פולינום מינימלי של טריצה אלכסונית

אם $D \in \mathbb{R}^{n imes n}$ אם

$$D = \begin{pmatrix} \lambda_1 & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & \lambda_1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \lambda_2 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & \lambda_2 & \dots & 0 \\ 0 & 0 & 0 & 0 & 0 & \dots & 0 \\ \vdots & & & & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & \lambda_k & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 & \lambda_k \end{pmatrix}$$

אם $\lambda_1, \lambda_2, \ldots, \lambda_k$ האיברים השונים על האלכסון ($k \leq n$) אז הפולינום המינימלי של

$$m_D(x) = (x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_k)$$
.

משפט 4.10 ל- $m_A(x)$ ול- $p_A(x)$ יש בדיוק אותם גורמים אי-פריקים.

ל- פריקים. אי-פריקים. כלומר בדיוק אותם אותם אי-פריקים. כלומר ל- $m_A(\boldsymbol{x})$

$$m_A(\lambda) = 0 \quad \Leftrightarrow \quad p_A(\lambda) = 0 .$$

הוכחה:

$$.m_A(\lambda)=0$$
 נניח ש

(נוסחת איוקליד לחיוק פולינומים). אז מא לפע $m_A(x)=m_A(x)$ כאשר מאט לפע לפע מאט איוקליד לחיוק פולינומים). אז $m_A(x)=m_A(x)$ הוא הפולינים המינימלי של $m_A(x)$

 $\mathbf{w} = q(A)\mathbf{v} \neq \bar{\mathbf{0}}$ ער ש- \mathbf{v} פרים עורים ענגדיר וקטורים

$$\bar{0} = m_A(A)\mathbf{v} = (A - \lambda I)q(A)\mathbf{v} = (A - \lambda I)\mathbf{w}$$
,

לכן

$$A\mathbf{w} = \lambda \mathbf{w}$$
.

Aשל א עצמי עצמי לערך ששייך של א וקטור עצמי א ז"א א וקטור עצמי א א ו

$$.p_A(\lambda)=0$$
 לכן

 $p_A(\lambda)=0$ נניח ש $\rho_A(\lambda)=0$ אז λ ערך עצמי של λ ערך עצמי שייך לערך עצמי λ . אז נניח ש- ש

 $Aw = \lambda w$.

לכן

$$m_A(A)\mathbf{w} = m_A(\lambda)\mathbf{w}$$
.

 $m(\lambda)$ w = 0 לכן $m_A(A) = 0$

 $m_A(\lambda)=0$ וקטור עצמי אז $ar{0}\neqar{0}$ אי, לכן w

משפט 4.11 מטריצה מאפסת הפולינום המינימלי של מטריצה שאליה היא דומה

תהיינה $m_B(x)$ היהי אורי. יהי $m_A(x)$ הפולינום המינימלי של $A,B\in\mathbb{F}^{n\times n}$ הפולינום המינימלי של A,B מטריצות דומות אז המינימלי של A,B אם A,B מטריצות או

$$m_A(B) = 0$$

-1

$$m_B(A)=0$$
.

:4.3 אפט $A=PBP^{-1}$ -פימת P הפיכה לכן קיימת B ו- B ו- B

$$m_A(A) = P \cdot m_A(B) \cdot P^{-1}$$

 $:P^{-1}$ -ם אז נכפיל מצד ימין ב- P ומצד שמאל ב- P

$$P^{-1} \cdot m_A(A) \cdot P = m_A(B) .$$

 $m_A(B) = 0$ לכן $m_A(A) = 0$

משפט 4.12 למטריצות דומות יש אותו פולינום מינימלי

. תהיינה $A,B\in\mathbb{F}^{n imes n}$ מטריצות דומות. ל-A ו- B יש אותו פולינום מינימלי

הוכחה: A ו- B ו- B ו- B ו- B ו- B ו- B הוכחה: B ו- B ו- B ו- B ו- B הפולינום המינימלי של B ו- B הפולינום המינימלי של B ו- B אותם ערכים עצמיים אז B ו- B ו- B אותם ערכים עצמיים אז B ו- B ו- B אותם ערכים עצמיים אז אותם ערכים עצמיים אותם ערכים ער

$$m_A(x) = (x - \lambda_1)^{d_1} \dots (x - \lambda_k)^{d_k} , \qquad m_B(x) = (x - \lambda_1)^{e_1} \dots (x - \lambda_k)^{e_k} .$$

. לפי משפט 4.11 לפי משפט $m_{B}(A)=0$ ו- $m_{A}(B)=0$ למעלה) ו- B

. הים. m_B -ו m_A הפולינומים ולכן ולכל לכל לכל לכל $d_i=e_i$ ים השלילה דרך נוכיח כעת כעת לכל

 $d_i
eq e_i$ נניח כי עבור אחד הגורמים,

אם $m_B(x)$ - אז מתקיים ש- B מאפסת פולינום מדרגה מתך אז מתקיים ש- $m_A(B)=0$ אם אז $d_i < e_i$ אם אם אז מתקיים ש- $m_B(x)$ הוא הפולינום המינימלי של

בסתירה $m_A(x)$ -ם יותר מ- $m_B(A)=0$, כיוון ש- $m_B(A)=0$, אז מתקיים ש- $m_A(x)$, מאפסת פולינום מדרגה מוכה יותר מ- $m_A(x)$, בסתירה לכך כי $m_A(x)$ הוא הפולינום המינימלי של

משפט A 4.13 לכסינה אא"ם לפולינום מינימלי יש גורמים לינאריים שונים

תהי אם"ם כל הגורמים האי-פריקים A .A לכסינה מעל $\mathbb F$ אם"ם כל הגורמים האי-פריקים של A הפולינום המינימלי של $M_A(x)$ הם לינאריים ושונים.

כלומר A לכסינה אם"ם $m_A(x)$ מתפרק ל-

$$m_A(x) = (x - \lambda_1) \dots (x - \lambda_i) \dots (x - \lambda_k)$$
.

הוכחה: נניח ש- A לכסינה.

A יהיו השונים של $\lambda_1,\ldots,\lambda_k$ יהיו

-קיימת P הפיכה ו- D אלכסונית כך ש

$$A = PDP^{-1} \ .$$

4.1 לפי משפט 4.12 הפולינום המינימלי של A שווה לפולינום המינימלי של הפולינום המינימלי של $m_D(x) = (x-\lambda_1)\dots(x-\lambda_k)$

$$m_A(x) = m_D(x) = (x - \lambda_1) \dots (x - \lambda_k)$$
.

4.7 תרגילים על הפולינום המינימלי

דוגמה 4.16

. לכסינה A אז m(x)=(x-1)(x-2) אם הפולינום המינימלי של מטריצה A הוא

דוגמה 4.17

נניח A מטריצה מעל $\mathbb R$ כך שהפולינום המינימלי שלה הוא

$$m_A(x) = (x-1)(x-2)^2$$

A לא לכסינה.

דוגמה 4.18

נניח ש

$$p_A(x) = (x-1)^2(x-2)^2$$

אז

$$m_A(x) \neq (x-1)(x-2)(x-3)$$

 $m_A(x) \nmid p_A(x)$ כי

נניח ש

$$p_A(x) = (x-1)(x-2)x$$

X

$$m_A(x) = (x-1)(x-2)x$$
.

דוגמה 4.20

נניח ש

$$p_A(x) = (x-1)^2(x-2)^2$$

 m_A מהן האפשרויות עבור

פתרון:

ישנן 4 אפשרויות:

$$(x-1)(x-2)$$
, $(x-1)^2(x-2)$, $(x-1)(x-2)^2$, $(x-1)^2(x-2)^2$.

(אם A נתונה אפשר לבדוק איזה מהם מתאפס ע"י A. יש להציב את בכל אחד מהפולינומים)

דוגמה 4.21

$$A = egin{pmatrix} 2 & 1 & 0 & 0 \ 0 & 2 & 0 & 0 \ 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 5 \end{pmatrix}$$
 מצאו את הפולינום המינימלי של

פתרון:

$$p_A(x) = (x-2)^3(x-5)$$
.

האפשרויות ל- $m_A(x)$ הם

$$f_1(x) = (x-2)(x-5)$$
, $f_2(x) = (x-2)^2(x-5)$, $f_3(x) = (x-2)^3(x-5)$.

:A נציב את

$$.m_A(x) = f_2(x) = (x-2)^2(x-5)$$
 לכן

תהיינה

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} , \qquad B = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$$

B ו- B דומות?

פתרון:

$$p_A(x) = (x-2)^2 = p_B(x)$$

אלכסונית. B לא לכסינה, כי עבור הערך עצמי $\lambda=2$ הריבוי אלגברי שווה B לא לכסונית. A

$$A - 2I = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 \Rightarrow $\dim V_2 = 1$.
 $m_A(x) = x - 2$, $m_B(x) = (x - 2)^2$.

. לכן A ו- B לא דומות

דוגמה 4.23

. תהי שכל של הפולינום המינימלי. אורש של הפולינום המינימלי. הוכיחו שכל ערך עצמי של $A \in \mathbb{F}^{n \times n}$

A ערך עצמי של λ_0 אז גניח ש λ_0 ערך עצמי של

$$p_A(x) = (x - \lambda_0)^k \cdot q(x) ,$$

ז"א הוא מופיע גם ב- $m_A(x)$. לכן, לפי משפט 4.10, הוא מרם אי פריק פריק ($x-\lambda_0$). לכן, לפי $p_A(x)$ הוא מופיע גם ב-

$$m_A(x) = (x - \lambda_0)^l \cdot t(x) .$$

7"%

$$m_A(\lambda_0) = 0$$
.

 $f(x)=x^2+4x+3$ יהי $m_A(x)=(x-1)^2$ אלה הוא שלה המינימלי שהפולינום המינימלי שהפולינום המינימלי שלה הוכיחו כי המטריצה והפיכה.

פתרון:

$$(A-I)^2 = 0 \iff m_A(A) = 0$$

$$f(A) = A^2 + 4A + 3I = (A^2 - 2A + I) + 6A + 2I = (A - I)^2 + 6A + 2I = 6A + 2I.$$

נוכיח כי $|6A+2I| \neq 0$ בדרך השלילה.

ננית ש|6A+2I|=0 אז

$$|6A + 2A| = \left|6(A + \frac{2}{6}I)\right| = 6^n \left|A + \frac{1}{3}I\right| = 0$$

ערך עצמי של הפולינום המינימלי. להיות חייב להיות לכן המינימלי. ערך עצמי א $\lambda=-\frac{1}{3}$ א"ג $\lambda=-\frac{1}{3}$

דוגמה 4.25

$$A = egin{pmatrix} 0 & 1 & 0 \ -4 & 4 & 0 \ -2 & 1 & 2 \end{pmatrix}$$
 מצאו את הפולינום המינימלי

פתרון:

הפולינום האופייני של A הוא

$$p_A(\lambda) = (\lambda - 2)^3 = \lambda^3 - 6\lambda^2 + 12\lambda - 8$$
.

לכו האפשרויות בשביל הפולינום מינימלי הן

$$f_1(x) = x_2$$
, $f_2(x) = (x-2)^2$, $f_3(x) = (x-2)^3$.

$$f_1(A) = A - 2I = \begin{pmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ -2 & 1 & 0 \end{pmatrix} \neq 0$$

$$f_2(A) = (A - 2I)^2 = \begin{pmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ -2 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ -2 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

לכן הפולינום המינימלי הוא

$$m_A(x) = (x-2)^2 .$$

מצאו את הפולינום המינימלי והפולינום האופייני של המטריצה

$$A = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} = 4I \ .$$

פתרון:

הפולינום האופייני של A הוא

$$p_A(x) = (x-4)^3$$
.

מטריצה סקלרית (מטריצה סקלירת היא מצורה αI כאשר היא מצורה סקלירת (מטריצה סקלירת מטריצה A סלרית הוא A לכן הפולינם המינימלי של $m_A(x)=(x-\alpha)$

$$m_A(x) = x - 4 .$$

4.8 *משפטים: חילוק פולינומים, פולינום המינימלי ופולינומים שמתאפסים ע"י מטריצה

משפט 4.14

הפולינום המינימלי הוא יחיד.

הוכחה: נניח שיש שני פולינומים $f_1(x) \neq f_2(x)$ ו- $f_2(x)$ ו- $f_1(x)$ מאותו סדר, כלומר

$$f_1(x) = \alpha_0 + \alpha_1 x + \ldots + \alpha_{k-1} x^{k-1} + x^k$$
,

$$f_2(x) = \beta_0 + \beta_1 x + \ldots + \beta_{k-1} x^{k-1} + x^k$$
.

כך ש
$$f_2(A)=0$$
 ר- ו $f_1(A)=0$ אז

$$(f_1 - f_2)(A) = 0 .$$

... מסדר קטן מ- פולינום מסדר פולינום (f_1-f_2)(x)

משפט 4.15 משפט חילוק של פולינומים

יחידים כך ש תימים פולינמים (אז הייr(x),q(x) פוליניומים פול (ש אז היי פוליניומים כך ש פוליניומים כך פוליניומים פוליניו

$$f(x) = q(x) \cdot g(x) + r(x)$$

כאשר

$$\deg r(x) < \deg g(x), \qquad \deg g(x) \le \deg f(x) \ .$$

משפט 4.16 פולינום שמתאפס ע"י A מחלק את הפולינום המינימלי

תהי f(A)=0 אם פולינום. אם f(x) איז היבועית ריבועית מטריצה $A\in\mathbb{F}^{n\times n}$

$$m_A(x) \mid f(x)$$
.

הוכחה: נחלק את f(x) ב- $m_A(x)$ ב- $m_A(x)$ הוכחה:

$$f(x) = m_A(x) \cdot q(x) + r(x)$$

נאשר $\log r(x) < \deg m_A(x)$ כאשר

$$f(A) = q(A)m_A(A) + r(A) .$$

$$.r(A) = 0$$
 לכן $m_A(A) = 0$ ו $f(A) = 0$

A מתאפס ע"י מתאפס אבל הוא א פולינום האפס או הוא א פולינום האפס או הוא א r(x) מתאפס או הוא א או או או א הפולינום האפס או הוא לא פולינום המינימלי וו $m_A(x)$ הוא הפולינום המינימלי וווח א לפוע המתאפס או הוא הפולינום המינימלי וווח המתאפס א"י לפוע"י א.

לכן r(x) אם"ם r(x) אם"ם, r(x) = 0 פולינום האפס.

 $m_A(x) \mid f(x) \mid f(x) = q(x) \cdot m_A(x)$ -כלומר קיבלנו ש

מסקנה 4.2 פולינום המינימלי מחלק את הפולינום האופייני

תהי $A\in\mathbb{F}^{n imes n}$ מטריצה ריבועית. אם $p_A(x)$ הפולינום האופייני ו- מטריצה ריבועית. אם $A\in\mathbb{F}^{n imes n}$

$$m_A(x) \mid p_A(x)$$
.

הוכחה: לפי משפט קיילי המילטון , $p_A(A)=0$, הפולינום המינימלי מחלק לפי לפי לפי המילטון המילטון . $p_A(A)=0$, המילטון המילטון לפי משפט קיילי המילטון . $m_A(x)|p_A(x)$

A משפט $p_A(x)$ בחזקת הסדר של משפט $p_A(x)$ משפט מחלק כל פולינום המתאפס ע"י

 $p_A(x)$ תהי $A\in\mathbb{F}^{n imes n}$ מטריצה ריבועית. יהי $p_A(x)$ הפולינום האופייני של $A\in\mathbb{F}^{n imes n}$ מטריצה ריבועית. יהי לומר אם f(A)=0 הלומר אם

$$p_A(x) \mid f^n(x)$$
.

.deg $p_A(x) = n$:הוכחה:

.deg $p_A(x) \leq \deg f^n(x)$ ולכן ,deg $f(x) \geq 1$ אינו פולינום קבוע, ז"א ולכן ,f(x) אינו פולינום קבוע, ז"א ולכן ,f(x) ב- f(x) ב- $f^n(x)$ ע"י האלגוריתם איוקלידי:

$$f^{n}(x) = q(x)p_{A}(x) + r(x)$$
, (*1)

 $\deg r(x) < \deg p_A(x) \le \deg f^n(x)$

ונקבל (ביב אה ב- (ו*) נציב הה ב- $p_A(x) = q_1(x) m_A(x)$ אא $m_A(x) | p_A(x)$

$$f^{n}(x) = q_{1}(x)q(x)m_{A}(x) + r(x)$$
 (*2)

 $.m_A(x)\mid f^n(x)$ לכן $f^n(A)=0$ לכן f(A)=0 לכן $.m_A(x)\nmid f^n(x)$ אז $.m_A(x)\neq 0$ סתירה. $.m_A(x)\neq 0$

A משפט 4.18 גורם אי-פריק של הפולינום הואפייני מחלק כל פולינום המתאפס ע"י

תהי $(x-\lambda_0)$ אם $A\in\mathbb{F}^{n imes n}$ גורם אי פריק של $A\in\mathbb{F}^{n imes n}$ תהי $A\in\mathbb{F}^{n imes n}$ מטריצה ריבועית. יהי $A\in\mathbb{F}^{n imes n}$ הפולינום האפס ע"י A, כלומר אם $A\in\mathbb{F}^{n imes n}$ אז $A\in\mathbb{F}^{n imes n}$ פולינום המתאפס ע"י A, כלומר אם $A\in\mathbb{F}^{n imes n}$

$$(x-\lambda_0)\mid f(x)$$
.

הוכחה:

A אם $(x-\lambda_0)$ גורם אי-פריק של אי $p_A(x)$ אז אייפריק של אייפריק אורם אי

- כך שq(x), r(x) ב- q(x), r(x). כלומר לפי משפט חילוק פולינומים קיימים פולינומים יחידים q(x), r(x) כך ש

$$f(x) = q(x)(x - \lambda_0) + r(x)$$

.deg $r(x) < \deg (x - \lambda_0) \le \deg f(x)$ כאשר

.deg r(x) = 0 אז deg $(x - \lambda_0) = 1$

. סקלר כאשר $r(x)=c\in\mathbb{F}$ כאשר סקלר פולינום פולינום r(x)

יהי λ_0 וקטור עצמי השייך ל- λ_0 אז

$$0 = f(A)\mathbf{v} = q(A)(A - \lambda_0 I)\mathbf{v} + c\mathbf{v}$$

אז, λ_0 -א הוא הוקטור עצמי השייך ל ${
m v}$

$$(A - \lambda_0)\mathbf{v} = A\mathbf{v} - \lambda_0\mathbf{v} = \lambda_0\mathbf{v} - \lambda_0\mathbf{v} = 0$$

לכן c=0, ואז נקבל

$$f(x) = q(x)(x - \lambda_0) ,$$

 $(x-\lambda_0)\mid f(x)$ א"ז.

שעור 5 שילוש מטריצה

5.1 מטריצה משולשית עילית

משפט 5.1 ערכים עצמיים ופולינום אופייני של מטאיצה משולשית

תהי A מטריצה משולשית מעל שדה \mathbb{F} . כלומר

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & a_{24} & \dots & a_{2n} \\ 0 & 0 & a_{33} & a_{34} & \dots & a_{3n} \\ 0 & 0 & 0 & a_{44} & \dots & a_{4n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix} .$$

XI

(1

$$p_A(x) = (x - a_{11})(x - a_{22}) \dots (x - a_{nn})$$
,

 \mathbb{F} כלומר, הפולינום האופייני מתפרק לגורמים לינאריים (לא בהכרח שונים) מעל

2) איברי האלכסון של מטריצה משולשית עליונה הם הערכים עצמיים.

המספר הפעמים שכל ערך עצמי מופיע באלכסון הוא הריבוי האלגברי של הערך עצמי.

הוכחה:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & a_{24} & \dots & a_{2n} \\ 0 & 0 & a_{33} & a_{34} & \dots & a_{3n} \\ 0 & 0 & 0 & a_{44} & \dots & a_{4n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix}$$
 (1

$$p_{A}(\lambda) = |A - \lambda I| = \begin{vmatrix} a_{11} - \lambda & a_{12} & a_{13} & a_{14} & \dots & a_{1n} \\ 0 & a_{22} - \lambda & a_{23} & a_{24} & \dots & a_{2n} \\ 0 & 0 & a_{33} - \lambda & a_{34} & \dots & a_{3n} \\ 0 & 0 & 0 & a_{44} - \lambda & \dots & a_{4n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & a_{nn} - \lambda \end{vmatrix}$$

$$= (a_{11} - \lambda)(a_{22} - \lambda)\dots(a_{nn} - \lambda) \tag{**}$$

. לפי (*), החם הערכים עצמיים של A. כל איבר על האלכסון הראשי מופיע בפולינום האופייני. $a_{11}, a_{22}, \dots a_{nn}$ (*), לפי לכן המספר הפעמים שאיבר מסוים מופיע על האלכסון הראשי שווה למספר הפעמים שהוא מופיע בפולינום

האופייני. מאותה מידה המספר הפעמים שאיבר מסוים מופיע על האלכסון הראשי שווה לריבוי אלגברי של הערך עצמי.

הגדרה 5.1 מטריצה ניתנת לשילוש

תהי $A\in\mathbb{F}^{n\times n}$ אם אומרים שA אומרים שA ניתנת לשילוש מעל A אם אומריצה משולשית עליונה, כלומר אם קיימת מטריצה P הפיכה כך ש

$$M = P^{-1}AP$$

מטריצה משולשית. P נקראת מטריצה משלשת.

דוגמה 5.1

 $M=egin{pmatrix}1&-1\0&1\end{pmatrix}$ - הפיכה ו- $P=egin{pmatrix}1&1\1&0\end{pmatrix}$ כי קיימת $\mathbb R$ כי קיימת $A=egin{pmatrix}0&1\-1&2\end{pmatrix}$ הפיכה ו- P=AP=M מטריצה כך ש- P=AP=M

$$P^{-1}AP = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$$

-בנוסף קיימת $M=\begin{pmatrix}1&rac{1}{2}\\0&1\end{pmatrix}$ -הפיכה ו- $P=\begin{pmatrix}2&0\\2&1\end{pmatrix}$ משולשית כך ש $:P^{-1}AP=M$

$$P^{-1}AP = \begin{pmatrix} 2 & 0 \\ 2 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{pmatrix}$$

משפט 5.2 תנאי לשילוש

 $A \in \mathbb{F}^{n \times n}$ תהי

אם A ניתנת לשילוש מעל $\mathbb F$ אז הפולינום האופייני של A מתפרק לגורמים לינאריים (לא בהכרח שונים) מעל $\mathbb F$.

הומות דומות $M=P^{-1}AP$ ניתנת לשילוש. אז קיימת P הפיכה ו- $M=P^{-1}AP$ משולשית כך ש- $M=P^{-1}AP$ למטריצות דומות יש אותו פוליניום האופייני, לכן

$$p_A(x) = p_M(x) .$$

הגורמים של $p_A(x)$ לינאריים של מטריצה משולשית, כי M מטריצה שונים) כי לא בהכרח שונים של $p_M(x)$ לינאריים (לא בהכרח שונים).

דוגמה 5.2

. ניתנת שA כי הוכיחו הוכיחו לינאריים על גורמים ממכפלה מתפרק מתפרק מתפרק מתפרק מתפרק . גורמים לינאריים מעל $A\in\mathbb{F}^{2 imes2}$

פתרון:

. λ מתפרק לגורמים לינאריים, לכן קיים לפחות ערך עצמי אחד א יהי ווקטור עצמי השייך לערך עצמי יהי p(A) ז"א

$$A \cdot u_1 = \lambda u_1$$
.

נשלים את $B=\{u_1,u_2\}$ נקבל בסיס \mathbb{F}^2 של לבסיס את נשלים את נשלים את נשלים אל

$$A \cdot u_1 = \lambda u_1 + 0 \cdot \mathbf{v_1}$$
$$A \cdot u_2 = \alpha_1 u_1 + \alpha_2 \cdot \mathbf{v_2}$$

מייצגת את הטרנספורמציה המייצגת ביחס לבסיס ביחס $T_A:\mathbb{F}^2 o\mathbb{F}^2$ המטריצה המייצגת את מייצגת את מייצגת את ביחס $T_A:\mathbb{F}^2 o\mathbb{F}^2$ המייצגת של $T:\mathbb{F}^2 o\mathbb{F}^2$

$$[T_A]_B = \begin{pmatrix} | & | \\ T(b_1) & T(b_2) \\ | & | \end{pmatrix} = \begin{pmatrix} \lambda & \alpha_1 \\ 0 & \alpha_2 \end{pmatrix} .$$

נסמן ב- E לבסיס המעבר המטריצה המטריצה $P_{E \to B}$ -ב

$$[T_A]_B = P_{E \to B}[T_A]_E P_{E \to B}^{-1}$$

כלומר

$$\begin{pmatrix} \lambda & \alpha_1 \\ 0 & \alpha_2 \end{pmatrix} = P_{E \to B} A P_{E \to B}^{-1}$$

. דומה שולשית משולשית A -שולשית

דוגמה 5.3

ומטריצה עבור A ומטריצה משולשית עבור R ניתנת לשילוש ניתנת לשילוש $A=\begin{pmatrix} 5 & -\frac{3}{2} \\ 6 & -1 \end{pmatrix}$ מטריצה משולשית אונים. $A=\begin{pmatrix} 5 & -\frac{3}{2} \\ 6 & -1 \end{pmatrix}$ משלשת פור אונים.

פתרון:

 $\stackrel{,}{A}$ נמצא את הערכים עמציים של

$$\begin{vmatrix} \lambda - 5 & \frac{3}{2} \\ -6 & \lambda + 1 \end{vmatrix} = (\lambda - 5)(\lambda + 1) + 9 = \lambda^2 - 4\lambda + 4 = (\lambda - 2)^2$$

.2 יש ערך עצמי אחד $\lambda=2$ מריבוי אלגברי

 $\lambda = 2$ נמצא את הוקטור עצמי השייך לערך עצמי

$$\begin{pmatrix} 5 - \lambda & -\frac{3}{2} \\ 6 & -1 - \lambda \end{pmatrix} \stackrel{\lambda=2}{=} \begin{pmatrix} 3 & -\frac{3}{2} \\ 6 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & -\frac{3}{2} \\ 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -1 \\ 0 & 0 \end{pmatrix}$$

 $:\mathbb{R}^2$ פתרון u_1 את נשלים את נשלים $u_1=inom{1}{2}$ נשלים עצמי הוא לכן הוקטור אכן $y\in\mathbb{R}$, $x=rac{1}{2}y$

$$u_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 , $u_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$A \cdot u_1 = 2u_1$$

$$A \cdot u_2 = \begin{pmatrix} 5 & -\frac{3}{2} \\ 6 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -\frac{3}{2} \\ -1 \end{pmatrix} = -\frac{3}{2}u_1 + 2u_2$$

לכן A דומה למטריצה

$$M = \begin{pmatrix} 2 & -\frac{3}{2} \\ 0 & 2 \end{pmatrix} .$$

המטריצה המשלשת היא

$$P = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} .$$

5.2 העתקות לינאריות ניתנות לשילוש

הגדרה 5.2 העתקה לינארית ניתנת לשילוש

יהי לשילוש ניתן נוצר (עקרא ניתן לשילוש היהי אופרטור. אופרטור. $T:V\to V$ ויהי שדה שדה ניתן לשילוש מעריצה לעקרא בסיס משלש של של שעבורו המטריצה המייצגת לעקרא מטריצה משולשית של שעבורו המטריצה המייצגת לעקרא מטריצה משולשית עליונה. הבסיס נקרא בסיס עבור Bעבור B

משפט 5.3 תנאי לקיום שילוש מטריצה

יהי V מרחב וקטורי נוצר סופית מעל שדה $\mathbb F$ ויהי V o V אופרטור. אם T ניתנת לשילוש אז הפולינום האופייני של T מתפרק לגורמים לינאריים (לא בהכרח שונים) מעל T.

משפט 5.4 קיום שילוש

. ניתנת לשילוש T , $T\in \mathrm{Hom}(V)$ ולכל מעל V מעל וקטורי מרחב לכל

 \mathbb{C} הוכחה: כל פולינום מתפרק לגורמים לינאריים מעל

(אינווריאנטיים) ד.3 תת מרחבים שמורים

הגדרה 5.3 העתקה לינארית ניתנת לשילוש

T מרחב על של V נקרא תת מרחב V אופרטור. תת מרחב וקטורי מעל אדה ביהי ויהי אופרטור ויהי אופרטור ויהי אופרטורי מעל אדה ביהי ויהי אופרטורי מרחב $T:V \to V$ נקרא תת מרחב שמור אם על ביא מרחב ויהי אופרטורי מרחב וויהי אופרטורי מרחב ווירי מרחב וויהי אופרטורי אופרטורי מרחב וויהי אופרטורי איי אופרטורי איי אופרטורי

דוגמה 5.4

$$W = \{\bar{0}\} \subseteq V$$

 $T:V \to V$ תת מרחב שמור לכל

דוגמה 5.5

, $u\in V_\lambda$ אז לכל אז לאופרטור ביחס א ביחס של אופרטו $W=V_\lambda$ אם א

$$T(u) = \lambda u \in V_{\lambda}$$

 V_{λ} לכן

T:V o V הוא תת מרחב שמור לכל

דוגמה 5.6

T:V o V הוכיחו כי לכל אופרטור

- אט T שמור. $\ker T$ שמור.
- בור. T במרחב T שמור.

פתרון:

א) אביך להוכיח שT ker שמור.

$$u \in \ker T$$
 לכל

$$T(u) = \bar{0} \in \ker(T)$$

לכן תת מרחב T שמור.

בור. T שמור. Im שמור ווא T שמור.

$$u \in \operatorname{Im} (T)$$
 לכל

$$T(u) \in \operatorname{Im}(T)$$

לכן T הוא תת מרחב T שמור.

דוגמה 5.7

תת מרחב $V_1=\mathrm{span}(u)$ נסמן λ . נסמן שייך לערך ששייך ששייך לערך עצמי אופרטור T שמור.

פתרון:

$$T(u_1) \subseteq V_1$$
 צריך להוכיח ש

$$.u\in V_1$$
 נקח

$$\Leftarrow$$

קיים u=lpha u כך ש $lpha\in\mathbb{F}$ קיים

$$T(u) = \alpha T(u) = \alpha \cdot \lambda u \in \operatorname{sp}(u) = V_1$$

5.4 *העתקה ניתנת לשילוש אא"ם קיימת סדרת תת מרחבים

משפט 5.5 העתקה ניתנת לשילוש אא"ם קיימת סדרת תת מרחבים T שמורים

יהי V מרחב וקטורי n -ממדי מעל שדה $\mathbb F$, ויהי V o V אופרטור. T ניתנת לשילוש אם"ם קיימת סדרה של תת מרחבים $V_1 \subset V_2 \subset \ldots \subset V_{n-1} \subset V_n = V$ שמור וגם dim $(V_i) = i$

הוכחה: נוכיח אם

נניח ש $[T]_U$ שעבורו שניים בסיס בסיס אז קיים בסיס לשילוש. אז ניתנת לשילוש. $U=\{u_1,\ldots,u_n\}$

$$[T]_U = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & a_{24} & \dots & a_{2n} \\ 0 & 0 & a_{33} & a_{34} & \dots & a_{3n} \\ 0 & 0 & 0 & a_{44} & \dots & a_{4n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

לכן

$$T(u_1) = a_{11}u_1$$
,

$$T(u_2) = a_{12}u_1 + a_{22}u_2 ,$$

:

$$T(u_n) = a_{1n}u_1 + a_{2n}u_2 + \ldots + a_{nn}u_n$$
.

$$\operatorname{dim}(V_i)=i$$
 אז $V_i=\operatorname{span}(u_1,\ldots,u_i)$ נסמן

$$V_1\subset V_2\subset\ldots\subset V_n=V$$
 לכן, $T(u_1),\ldots,T(u_i)\in V_i$ בנוסף

$$u \in V_i$$
 לכן לכל . $u = \alpha_1 u_1 + \ldots + \alpha_i u_i$ יהי . $u \in V_i$ יהי

$$T(u) = \alpha_1 T(u_1) + \ldots + \alpha_i T(u_i) \in V_i$$

. אמור T שמור תת מרחב V_i א"ג

נוכיח רק אם

נניח שקיימת סדרת תת מרחבים T שמורים $V_1\subset V_2\subset\ldots\subset V_{n-1}\subset V_n=V$ כך ש

 $.\dim(V_i) = i \ \forall i$

נבנה בסיס של V את הבסיס של V את הבסיס לבנה בסיס על על $U=\{u_1,\dots,u_n\}$ הוא נבנה בסיס על אינדוקציה על ע"י אינדוקציה על ת

:n=1 עבור

 $.V_1$ אם מהווה בסיס של $.u_1\in V_1$ מהווה לכן קיים וקטור לכן ליים $.u_1\in V_1$

הנחת אינדוקציה:

 $\{u_1, \dots, u_i\}$ של בטיס וניח שעבור 1 < i < n

$$.\dim(V_{i+1}) = \dim(V_i) + 1$$

 $.V_{i+1}$ בסיס של $\{u_1,\ldots,u_i,u_{i+1}\}$ בח"ל. לכן, קיים $u_1,\ldots,u_i,u_{i+1}\in V_{i+1}$ אז $u_{i+1}\in V_{i+1}/V_i$ בחיס של הוכחנו דרך אינדוקציה כי קיים בסיס $\{u_1,\ldots,u_n\}$ של $U=\{u_1,\ldots,u_n\}$ בסיס של $.V_i$

כעת, כיוון ש- V_i תת מרחבים T שמורים, מקבלים

$$T(u_1) = a_{11}u_1 ,$$

$$T(u_2) = a_{12}u_1 + a_{22}u_2 ,$$

$$T(u_3) = a_{13}u_1 + a_{23}u_2 + a_{33}u_3 ,$$

$$\vdots$$

$$T(u_n) = a_{1n}u_1 + a_{2n}u_2 + a_{3n}u_3 + \ldots + a_{nn}u_n .$$

לכן

$$[T]_U = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & a_{24} & \dots & a_{2n} \\ 0 & 0 & a_{33} & a_{34} & \dots & a_{3n} \\ 0 & 0 & 0 & a_{44} & \dots & a_{4n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

מטריצה משולשית.

5.5 *אלגוריתם לשילוש מטריצה: פירוק שור

דוגמה 5.8

נתונה
$$T$$
מטריצה משולשית מטריצה הפיכה $A=\left(\begin{array}{ccc} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right)$ נתונה

$$T = P^{-1}AP$$

פתרון:

:A שלב 1: נמצא ערכים עמצים של

$$|A-\lambda I|=-\lambda^3+2\lambda^2+\lambda-2=-(\lambda-2)(\lambda-1)(\lambda+1)=0\ .$$

$$\lambda=2\ ,\lambda=-1\ ,\lambda=1\ \text{ in Exercise}$$
 הערכים עמציים הם

 $\lambda = 1$ שלב 2: נמצא הוקטור עצמי השייך חערך עצמי

$$\left(\begin{array}{ccc} 0 & 1 & 2 \\ 0 & 0 & 0 \\ 1 & 1 & -1 \end{array}\right) \rightarrow \left(\begin{array}{ccc} 1 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{array}\right)$$

$$u_1=egin{pmatrix} 3 \ -2 \ 1 \end{pmatrix}$$
 הוא $\lambda=1$ עצמי השייך לערך עצמי הוקטור לכן לכן ג $z\in\mathbb{R}$ $(x,y,z)=(3,-2,1)z$ פתרון:

 $:\mathbb{R}^3$ שלב u_1 לבסיס של נשלים את שלב ::

$$\left\{ \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

ואז נגדיר את המטריצה

$$U_1 = \left(\begin{array}{rrr} 3 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right)$$

שלב 4: נגדיר

$$U_1^{-1}AU_1 = \begin{pmatrix} \frac{1}{3} & 0 & 0 \\ \frac{2}{3} & 1 & 0 \\ -\frac{1}{3} & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{3} & \frac{2}{3} \\ 0 & \frac{5}{3} & \frac{4}{3} \\ 0 & \frac{2}{3} & -\frac{2}{3} \end{pmatrix}$$

שלב 5:

$$\begin{pmatrix} 1 & \frac{1}{3} & \frac{2}{3} \\ 0 & \frac{5}{3} & \frac{4}{3} \\ 0 & \frac{2}{3} & -\frac{2}{3} \end{pmatrix} , \qquad A_1 = \begin{pmatrix} \frac{5}{3} & \frac{4}{3} \\ \frac{2}{3} & -\frac{2}{3} \end{pmatrix}$$

עכשיו נחזור על שלבים 1-5 עבור המטריצה עכשיו עכשיו

 $:A_1$ שלב ב': נמצא ערכים עמצים של

$$|A_1 - \lambda I| = \lambda^2 - \lambda - 2 = (\lambda - 2)(\lambda + 1) = 0$$
.

 $\lambda = 2$, $\lambda = -1$ הערכים עמציים הם

 $\lambda = -1$ שלב 2': נמצא הוקטור עצמי השייך חערך עצמי

$$\left(\begin{array}{cc} \frac{8}{3} & \frac{4}{3} \\ \frac{2}{3} & \frac{1}{3} \end{array}\right) \rightarrow \left(\begin{array}{cc} 8 & 4 \\ 2 & 1 \end{array}\right) \rightarrow \left(\begin{array}{cc} 2 & 1 \\ 0 & 0 \end{array}\right)$$

 $\mathbf{u}_1=\begin{pmatrix} -\frac{1}{2}\\1 \end{pmatrix}$ הוא $\lambda=-1$ עצמי לערך עצמי השייך לכן הוקטור לכן . $y\in\mathbb{R}$ $(x,y)=(-\frac{1}{2},1)y$:פתרון

 $:\mathbb{R}^2$ שלב 2': נשלים את u_1 לבסיס של

$$\left\{ \begin{pmatrix} -\frac{1}{2} \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

ואז נגדיר את המטריצה

$$M_2 = \begin{pmatrix} -\frac{1}{2} & 0\\ 1 & 1 \end{pmatrix}$$

ואת המטריצה

$$U_2 = \begin{pmatrix} 1 & 0 \\ 0 & M_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

שלב 4': נגדיר

$$M_2^{-1}A_1M_2 = \begin{pmatrix} -2 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} \frac{5}{3} & \frac{4}{3} \\ \frac{2}{3} & -\frac{2}{3} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & -\frac{8}{3} \\ 0 & 2 \end{pmatrix}$$

קיבלנו מטריצה משולשית עילית אז התהליך מסתיים כאן.

$$(U_1 U_2)^{-1} A(U_1 U_2) = \begin{pmatrix} 1 & \frac{1}{2} & \frac{2}{3} \\ 0 & -1 & -\frac{8}{3} \\ 0 & 0 & 2 \end{pmatrix} = T$$

-לכן מצאנו P הפיכה ו T משולשית כך ש

$$P^{-1}AP = T$$

דוגמה 5.9

נתונה
$$T$$
 מצאו מטריצה הפיכה $A=\begin{pmatrix}3&1&2&0\\0&7&4&0\\0&0&1&0\\0&0&1&2\end{pmatrix}$ נתונה $A=\begin{pmatrix}3&1&2&0\\0&7&4&0\\0&0&1&2\end{pmatrix}$

$$T = P^{-1}AP$$

פתרון:

:A שלב 1: נמצא ערכים עמצים של

$$|A-\lambda I|=\lambda^4-13\lambda^3+53\lambda^2-83\lambda+42=(\lambda-7)(\lambda-3)(\lambda-2)(\lambda-1)=0$$
 .
$$.\lambda=7 \ ,\lambda=3 \ ,\lambda=2 \ ,\lambda=1 \$$
הערכים עמציים הם $\lambda=1$

 $\lambda = 1$ שלב 2: נמצא הוקטור עצמי השייך חערך עצמי

$$\begin{pmatrix} 2 & 1 & 2 & 0 \\ 0 & 6 & 4 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 2 & 0 \\ 0 & 6 & 4 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 2 & 0 \\ 0 & 3 & 2 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $u_1=\lambda$ הוא אויך לערך עצמי השייך לכן הוקטור הוא אכן $w\in\mathbb{R}$ (x,y,z,w)=(2,2,-3,3)w פתרון:

$$\begin{pmatrix} 2\\2\\-3\\3 \end{pmatrix}$$

 \mathbb{R}^4 שלב 3: נשלים את u_1 לבסיס של

$$\left\{ \begin{pmatrix} 2\\2\\-3\\3 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right\}$$

ואז נגדיר את המטריצה

$$U_1 = \left(\begin{array}{cccc} 2 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 \end{array}\right)$$

שלב 4: נגדיר

$$U_1^{-1}AU_1 = \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ \frac{3}{2} & 0 & 1 & 0 \\ -\frac{3}{2} & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 & 2 & 0 \\ 0 & 7 & 4 & 0 \\ 0 & 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{2} & 1 & 0 \\ 0 & 6 & 2 & 0 \\ 0 & \frac{3}{2} & 4 & 0 \\ 0 & -\frac{3}{2} & -2 & 2 \end{pmatrix}$$

שלב 5:

$$\begin{pmatrix} 1 & \frac{1}{2} & 1 & 0 \\ 0 & 6 & 2 & 0 \\ 0 & \frac{3}{2} & 4 & 0 \\ 0 & -\frac{3}{2} & -2 & 2 \end{pmatrix} , \qquad A_1 = \begin{pmatrix} 6 & 2 & 0 \\ \frac{3}{2} & 4 & 0 \\ -\frac{3}{2} & -2 & 2 \end{pmatrix}$$

עכשיו נחזור על שלבים 1-5 עבור המטריצה A_1 המתקבל.

 $:A_1$ שלב 1': נמצא ערכים עמצים של

$$|A_1-\lambda I|=-\lambda^3+12\lambda^2-41\lambda+42=-(\lambda-7)(\lambda-3)(\lambda-2)=0$$
 .
$$.\lambda=7 \ ,\lambda=3 \ ,\lambda=2$$
 הערכים עמציים הם

 $\lambda = 2$ שלב 2': נמצא הוקטור עצמי השייך חערך עצמי שלב 2': נמצא הוקטור ע

$$\mathbf{u}_1 = egin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 הוא $\lambda = 2$ עצמי לערך עצמי השייך לערך עצמי

 $:\mathbb{R}^3$ שלב 2': נשלים את u_1 לבסיס של

$$\left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}$$

ואז נגדיר את המטריצה

$$M_2 = \left(\begin{array}{ccc} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{array}\right)$$

ואת המטריצה

$$U_2 = \left(\begin{array}{ccc} 1 & 0 \\ 0 & M_2 \end{array}\right) = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array}\right)$$

שלב 4': נגדיר

$$M_2^{-1}A_1M_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 6 & 2 & 0 \\ \frac{3}{2} & 4 & 0 \\ -\frac{3}{2} & -2 & 2 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & -2 & -\frac{3}{2} \\ 0 & 4 & \frac{3}{2} \\ 0 & 2 & 6 \end{pmatrix}$$

קיבלנו מטריצה משולשית עילית אז התהליך מסתיים כאן.

שלב 2':

$$\begin{pmatrix} 2 & -2 & -\frac{3}{2} \\ 0 & 4 & \frac{3}{2} \\ 0 & 2 & 6 \end{pmatrix} , \qquad A_2 = \begin{pmatrix} 4 & \frac{3}{2} \\ 2 & 6 \end{pmatrix} .$$

עכשיו נחזור על שלבים A_2 עבור המטריצה 1'-5' עבור אלבים עכשיו נחזור על

 $:A_2$ שלב ב": נמצא ערכים עמצים של

$$|A_2 - \lambda I| = \lambda^2 - 10\lambda + 21 = -(\lambda - 7)(\lambda - 3) = 0$$
.

 $\lambda = 7$, $\lambda = 3$ הערכים עמציים הם

 $\lambda=3$ נמצא הוקטור עצמי השייך חערך עצמי נמצא ישלב צ": נמצא נמצא הוקטור עצמי

$$\mathbf{w}_1 = inom{-rac{3}{2}}{1}$$
 הוא $\lambda = 3$ הוא לערך עצמי השייך לערך איז הוקטור איי

 \mathbb{R}^2 שלב 3": נשלים את w_1 לבסיס של

$$\left\{ \begin{pmatrix} -\frac{3}{2} \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

ואז נגדיר את המטריצה

$$M_3 = \left(\begin{array}{cc} -\frac{3}{2} & 0\\ 1 & 1 \end{array}\right)$$

ואת המטריצה

$$U_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & M_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{3}{2} & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

שלב 4": נגדיר

$$M_3^{-1} A_2 M_3 = \begin{pmatrix} -\frac{2}{3} & 0\\ \frac{2}{3} & 1 \end{pmatrix} \begin{pmatrix} 4 & \frac{3}{2}\\ 2 & 6 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} & 0\\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -1\\ 0 & 7 \end{pmatrix}$$

קיבלנו מטריצה משולשית עילית אז התהליך מסתיים כאן.

$$(U_1 U_2 U_3)^{-1} A(U_1 U_2 U_3) = \begin{pmatrix} 1 & 0 & -1 & \frac{1}{2} \\ 0 & 2 & \frac{3}{2} & -\frac{3}{2} \\ 0 & 0 & 3 & -1 \\ 0 & 0 & 0 & 7 \end{pmatrix} = T$$

-לכן מצאנו P הפיכה וT הפיכה Pלכן מצאנו לכן $P^{-1}AP=T$

$$P^{-1}AP = T$$

שעור 6 צורת ז'ורדן

n מטריצת ז'ורדן נילפוטנטית יסודית מסדר 6.1 הגדרה

$$E=\{e_1,\ldots,e_n\}=\left\{egin{pmatrix}1\\0\\\vdots\\0\end{pmatrix},\ldots,egin{pmatrix}0\\\vdots\\1\end{pmatrix}
ight\}$$
יהי $E=\{e_1,\ldots,e_n\}=\left\{egin{matrix}1\\0\\\vdots\\0\end{pmatrix},\ldots,egin{pmatrix}0\\\vdots\\1\end{pmatrix}
ight\}$ יהי תודבת $E=\{e_1,\ldots,e_n\}=\{e_1,\ldots,e_n\}$

$$J_n(0) = \begin{pmatrix} | & | & | & | \\ \bar{0} & e_1 & e_2 & \dots & e_{n-1} \\ | & | & | & | \end{pmatrix}$$

שהעמודה ה-אשונה שלה היא וקטור האפס ושלכל $i \leq i \leq n$ העמודה היא וקטור האפס ושלכל היא i העמודה הראשונה שלה היא וקטור האפס ושלכל היא i בלומר:

$$J_n(0) = \begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & & \\ & & \ddots & \ddots & & \\ & & & \ddots & 1 & \\ & & & & 0 \end{pmatrix}$$

הגדרה 6.2 בלוק ז'ורדן

מצורה k imes k מטריצה מטריצה אוא $\lambda \in \mathbb{F}$, $k \in \mathbb{N}$, $J_k(\lambda)$ בלוק ז'ורדן

$$J_k(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & 0 & \dots & 0 \\ 0 & \lambda & 1 & 0 & \dots & 0 \\ 0 & 0 & \lambda & 1 & \dots & 0 \\ \vdots & & & \ddots & \ddots & \vdots \\ \vdots & & & & \ddots & 1 \\ 0 & 0 & 0 & 0 & \dots & \lambda \end{pmatrix}$$

דוגמה 6.1

$$J_4(2) = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

דוגמה 6.2

 $J_4(2)$ מצאו את הפולינום האופייני של

פתרון:

משולשית עליונה, לכן הפולינום האופייני מתפרק לגורמים לינאריים, והערכים עצמיים נמצאים על האלכסון $J_4(2)$ הראשי. לכן נקבל

$$P_{J_4(2)} = (\lambda - 2)(\lambda - 2)(\lambda - 2)(\lambda - 2) = (\lambda - 2)^4$$
.

יש ערך עצמי יחיד $\lambda=2$ מריבוי אלגברי λ . נמצא את הריבוי הגאומטרי:

$$(A - 2I_{4\times 4}) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

משפט 6.1 בלוק ז'ורדן לא לכסין

.לא לכסין לא $J_k(\lambda)$

הוכחה:

$$J_k(\lambda_1) = \begin{pmatrix} \lambda_1 & 1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_1 & 1 & 0 & \dots & 0 \\ 0 & 0 & \lambda_1 & 1 & \dots & 0 \\ \vdots & & & \ddots & \ddots & \vdots \\ \vdots & & & & \ddots & \ddots & 1 \\ 0 & 0 & 0 & 0 & \dots & \lambda_1 \end{pmatrix}$$

משולשית עליונה. לכן הפולינום האופייני מתפרק לגורמים לינאריים, והערכים עצמיים נמצאים על האלכסון $J_k(\lambda_1)$ הראשי (משפט 3.19).

$$p_{J_k(\lambda_1)}(\lambda) = \underbrace{(\lambda - \lambda_1) \dots (\lambda - \lambda_1)}_{k} = (\lambda - \lambda_1)^k$$

 $:\!\!V_{\lambda_1}$ אמר את המרחב הא מריבוי אלגברי מריבוי $\lambda=\lambda_1$ יחיד: עצמי יש ערך עצמי אלגברי $\lambda=\lambda_1$

$$(A - \lambda_1 I_{k \times k}) = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \vdots & & & \ddots & \ddots & \vdots \\ \vdots & & & & \ddots & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

. נקבל אל המטריצה ולכן אלגברי, ולכן מהריבוי אלומרטי אוומרטי אוומרטי מיש . dim $V_{\lambda_1}=k-1$ נקבל כי

הגדרה 6.3 צרות ז'ורדן

צורת ז'ורדן היא מטריצה ריבועית $A\in\mathbb{F}^{n\times n}$ שעל האלכסון הראשי שלה יש בלוקים ז'ורדן ו- 0 בכל מקום אחר.

$$A = \operatorname{diag}\left(J_{k_1}(\lambda_1), J_{k_2}(\lambda_2), \dots, J_{k_l}(\lambda_l)\right) = \begin{pmatrix} J_{k_1}(\lambda_1) & 0 & \dots & 0 \\ 0 & J_{k_2}(\lambda_2) & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & J_{k_l}(\lambda_l) \end{pmatrix}$$

דוגמה 6.3

$$\operatorname{diag} \left(J_2(1), J_3(0) \right) = \begin{pmatrix} J_1(1) & 0 \\ 0 & J_3(0) \end{pmatrix} = \begin{pmatrix} \begin{array}{c|cccc} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 \end{array} \right)$$

- בורת ז'ורדן היא משולשית.
- מטריצה אלכסונית היא בצורת ז'ורדן.
- 3) צורת ז'ורדן היא הצורה הקרובה ביותר למטירצה אלכסונית.

תהי A מטריצה ריבועית מסדר 2×2 עם ערך עצמיי אחד, λ מריבוי אלגברי 2. יהי אז מטריצה ריבועית מסדר ישנן שתי אפשרויות:

- $\dim(V_{\lambda})=2$ (1) (הריבוי גאומרטי)
- (בוי גאומרטי 1). $\dim(V_{\lambda})=1$ (2)

 $\dim(V_{\lambda}) = 2$:(1) מקרה

השייכים u_2 , u_1 עצמיים עצמיים יהיו שני אלגברי שווה לריובי אומטרי. יהיו שני וקטורים עצמיים A לכסינה כי לכל ערך עצמי ביו אלגברי אלגברי ווה לריובי אומטרי. $A\cdot u_2=\lambda u_1$ ו- $A\cdot u_1=\lambda u_1$ לערך עצמי λ

$$A \cdot \begin{pmatrix} | & | \\ u_1 & u_2 \\ | & | \end{pmatrix} = \begin{pmatrix} | & | \\ A \cdot u_1 & A \cdot u_2 \\ | & | \end{pmatrix} = \begin{pmatrix} | & | \\ \lambda u_1 & \lambda u_2 \\ | & | \end{pmatrix} = \begin{pmatrix} | & | \\ u_1 & u_2 \\ | & | \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$$

$$D=egin{pmatrix} \lambda & 0 \ 0 & \lambda \end{pmatrix}$$
 -ו $P=egin{pmatrix} 1 & u_1 \ u_1 & u_2 \ | & | \end{pmatrix}$ נסמן

$$A \cdot P = PD$$
 \Rightarrow $A = PDP^{-1}$

לכסינה. למטריצה אלכסונית ולכן A

 $\dim(V_{\lambda})=1$:(2) מקרה

לא לכסינה אז A לא לכסינה אבל היא אווה לריובי אווה לריובי אז A לא לכסינה אבל היא לא לכסינה אבל היא לורדן לורדן $J_2(\lambda)$.

יש וקטור עצמי אחד, השייך השייך אחד, כלומר עצמי יש וקטור ע

$$A \cdot u_1 = \lambda u_1 \qquad \Rightarrow \qquad (A - \lambda I) \cdot u_1 = 0 .$$

-נגדיר וקטור u_2 כך ש

$$(A - \lambda I) \cdot u_2 = u_1 \qquad \Rightarrow \qquad A \cdot u_2 = \lambda u_2 + u_1 .$$

מכאן

$$(A - \lambda I)^2 u_2 = (A - \lambda I) \cdot u_1 = 0.$$

לכן נקבל

$$A \cdot \begin{pmatrix} | & | \\ u_1 & u_2 \\ | & | \end{pmatrix} = \begin{pmatrix} | & | \\ A \cdot u_1 & A \cdot u_2 \\ | & | \end{pmatrix} = \begin{pmatrix} | & | \\ \lambda u_1 & \lambda u_2 + u_1 \\ | & | \end{pmatrix} = \begin{pmatrix} | & | \\ u_1 & u_2 \\ | & | \end{pmatrix} \cdot \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} .$$

נשים לב שהמטריצה בסוף היא $P=egin{pmatrix} |&1&u_1\\u_1&u_2\\|&&| \end{pmatrix}$ נסמן נשים לב שהמטריצה בסוף היא $\int_0^\lambda \frac{1}{\lambda}=J_2(\lambda)$ אז קיבלנו

$$A \cdot P = P \cdot J_2(\lambda)$$
 \Rightarrow $A = PJ_2(\lambda)P^{-1}$.

A נקראת בסיס ז'ורדן של $\{u_1,u_2\}$ נקראת הקבוצת הקבוצת וקטורים

דוגמה 6.4

$$A=PJP^{-1}$$
 -פך כך פר מצאו איורדן J ומטריצה מצאו איורדן . $A=\left(egin{array}{cc} 2 & 3 \\ 0 & 2 \end{array}
ight)$ תהי

פתרון:

הפולינום האופיינו הוא:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & -3 \\ 0 & \lambda - 2 \end{vmatrix} = (2 - \lambda)^2 = 0$$

לכן יש ערך עצמי אחד, $\lambda=2$, מירבוי אלגברי 2. נמצא את המרחב עצמי:

$$(A-2I) = \left(\begin{array}{cc|c} 0 & 3 & 0 \\ 0 & 0 & 0 \end{array}\right) \to \left(\begin{array}{cc|c} 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

לכן
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 לכן

$$V_2 = \operatorname{span}\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$$
 .

נסמן ב- $\dim(V_\lambda)=1<2$. $\lambda=2$ עצמי של ערך עצמי של ערך עצמי של ערך לא לכסינה. לכן $u_1=\begin{pmatrix}1\\0\end{pmatrix}$. עצמי $u_1=\begin{pmatrix}1\\0\end{pmatrix}$

$$(A - \lambda I) \cdot u_2 = u_1 .$$

$$.u_2 = \begin{pmatrix} x \\ y \end{pmatrix}$$
 נסמן

$$(A-2I)\cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 3 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & \frac{1}{3} \\ 0 & 0 & 0 \end{pmatrix}$$

$$.u_2 = \begin{pmatrix} 1 \\ \frac{1}{3} \end{pmatrix}$$
 $x = 1$ ונקבל $x \in \mathbb{R}$ $u_2 = \begin{pmatrix} x \\ \frac{1}{3} \end{pmatrix}$
$$.J = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$$
, $P = \begin{pmatrix} 1 & 1 \\ u_1 & u_2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & \frac{1}{3} \end{pmatrix}$

דוגמה 6.5

$$A=PJP^{-1}$$
 -פיכה P כך ומטריצה זיורדן איורדן פורת מצאו או אורת $A=\begin{pmatrix}4&0&1\\0&4&0\\0&0&4\end{pmatrix}$ תהי

פתרון:

הפולינום האופיינו הוא:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 4 & 0 & -1 \\ 0 & \lambda - 4 & 0 \\ 0 & 0 & \lambda - 4 \end{vmatrix} = (\lambda - 4)^3 = 0$$

 $A = PJP^{-1} .$

עצמי: את המרחב עצמי .3 מירבוי אלגברי אחד, $\lambda=4$ אחד, אחד, לכן יש ערך א

$$(A-4I)=egin{pmatrix} 0&0&1&0\0&0&0&0\0&0&0&0 \end{pmatrix}$$
 אכן $\begin{pmatrix} x\y\z\end{pmatrix}=\begin{pmatrix} x\y\z\end{pmatrix}=x\begin{pmatrix} 1\0\0\end{pmatrix}+y\begin{pmatrix} 0\1\0\end{pmatrix}$ אכן $V_4=\mathrm{span}\left\{\begin{pmatrix} 1\0\0\end{pmatrix},\begin{pmatrix} 0\1\0\end{pmatrix}
ight\}$.

נרשום . $u_2=\begin{pmatrix}1\\0\\0\end{pmatrix}$, $u_1=\begin{pmatrix}0\\1\\0\end{pmatrix}$ ב- V_4 ב- בבסיס של A לכסינה. נסמן הוקטורים בבסיס של A ב- . $\dim(V_\lambda)=2<3$ וקטור עצמי $\lambda=4$ כצירוף לינארי של הבסיס הזה:

$$w_1 = \alpha_1 u_1 + \alpha_2 u_2 .$$

 w_2 לפי:

$$(A-4I) \cdot w_2 = w_1 = \alpha_1 u_1 + \alpha_2 u_2$$
.

נסמן $w_2 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ נסמן נסמן

$$(A-4I) \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \alpha_2 \\ \alpha_1 \\ 0 \end{pmatrix}$$

נרכיב את המטריצה המורחבת של המשוואה:

$$\left(\begin{array}{ccc|c}
0 & 0 & 1 & \alpha_2 \\
0 & 0 & 0 & \alpha_1 \\
0 & 0 & 0 & 0
\end{array}\right)$$

יש פתרון כאשר x,y נבחור x,y נבחור x,y ונקבל את הפתרון הפתרון $\alpha_2=1$ ונקבל $\alpha_2=1$ יש פתרון כאשר $\alpha_1=0$

$$.w_2=egin{pmatrix}1\\1\\1\end{pmatrix}$$
 ונקבל $x=1,y=1$ כל ערך. נציב

 $u_3=egin{pmatrix}1\\1\\1\end{pmatrix}$ אורדן מהוקטורים עצמיים עצמיים $u_2=egin{pmatrix}1\\0\\0\end{pmatrix}$, $u_1=egin{pmatrix}0\\1\\0\end{pmatrix}$ נבנה בסיס ז'ורדן מהוקטורים עצמיים

$$.J = \begin{pmatrix} | & | & | \\ u_1 & u_2 & u_3 \\ | & | & | \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
$$.J = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 0 & 4 \end{pmatrix}$$

$$A = PJP^{-1} .$$

שימו לב שבדוגמה הזאת J צורת ז'ורדן מצורה

$$J = \operatorname{diag}(J_1(\lambda), J_2(\lambda)) = \operatorname{diag}(J_1(4), J_2(4))$$
.

דוגמה 6.6

$$A=PJP^{-1}$$
 -כך ש- $A=\begin{pmatrix} 4&1&1\\0&4&1\\0&0&4 \end{pmatrix}$ תהי תהי $A=\begin{pmatrix} 4&1&1\\0&0&4 \end{pmatrix}$ מצאו צורת זיורדן $A=\begin{pmatrix} 4&1&1\\0&0&4 \end{pmatrix}$

הפולינום האופיינו הוא:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 4 & -1 & -1 \\ 0 & \lambda - 4 & -1 \\ 0 & 0 & \lambda - 4 \end{vmatrix} = (\lambda - 4)^3 = 0$$

לכן יש ערך עצמי אחד, $\lambda=4$, מירבוי אלגברי 3. נמצא את המרחב עצמי:

$$(A-4I)=\left(egin{array}{cc|c}0&1&1&0\\0&0&1&0\\0&0&0&0\end{array}
ight)$$
 אכן
$$\left(\begin{matrix}x\\y\\z\end{matrix}
ight)=\left(\begin{matrix}x\\0\\0\end{matrix}
ight)=x\left(\begin{matrix}1\\0\\0\end{matrix}
ight)$$
 הפתרון הוא
$$V_4=\mathrm{span}\left\{\left(\begin{matrix}1\\0\\0\end{matrix}
ight)\right\}\ .$$

 $.u_1=egin{pmatrix}1\\0\\0\end{pmatrix}$ -ב V_4 של בבסים של הוקטור לכסינה. נסמן הוקטור לכסינה. לכסינה. לכסינה. לכסינה. נסמן הוקטור בבסים של A

$$(A-4I)\cdot u_2=u_1.$$

$$u_2 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 נסמן

$$(A - 4I) \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$lpha \in \mathbb{R}$$
 , $u_2 = egin{pmatrix} lpha \ 1 \ 0 \end{pmatrix}$ הפתרון הוא

$$(A-4I)\cdot u_3=u_2.$$

$$u_3 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 נסמן

$$\left(\begin{array}{ccc|c} 0 & 1 & 1 & \alpha \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 0 & 1 & 0 & \alpha - 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

:ונקבל הבסיס ה' ונקבל (ציב
$$\beta=1$$
 , $lpha=1$ נציב (ציב $\beta\in\mathbb{R}$ $u_3=egin{pmatrix} eta & -1 \\ 1 \end{pmatrix}$ ונקבל הבסיס ה'ורדן:

$$\left\{ u_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, u_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, u_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

$$,P = \begin{pmatrix} | & | & | \\ u_1 & u_2 & u_3 \\ | & | & | \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\
 .J = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix} = \begin{pmatrix} 4 & 1 & 0 \\ 0 & 4 & 1 \\ 0 & 0 & 4 \end{pmatrix}$$

$$A = PJP^{-1} .$$

שימו לב שבדוגמה הזאת J צורת ז'ורדן מצורה

$$J = J_3(\lambda) = J_3(4)$$
.

משפט 6.2 משפט ז'ורדן

יים לינאריים מתפרק לגורמים אופריטור לינארי מעל שדה $\mathbb F$ מניח שהפולינום אופריטור לינארי מעל אופרטור לינאריים T:V o V

$$p(x) = (\lambda - \lambda_1)^{n_1} (x - \lambda_2)^{n_2} \dots (x - \lambda_l)^{n_l}$$

כאשר אפולינום המינימלי לכל $i \neq j$ לכל עבור $\lambda_i \neq \lambda_j$ נניח אפולינום המינימלי הוא

$$m(x) = (x - \lambda_1)^{m_1} (x - \lambda_2)^{m_2} \dots (x - \lambda_l)^{m_l}$$

כאשר ז'ורדן מצורת מטריצה מצורת יש ל- T יש ל- i לכל $1 \leq m_i \leq n_i$ כאשר

$$\begin{pmatrix}
\beta_1 & 0 & \\
& \beta_2 & \\
& & \ddots & \\
0 & & \beta_l
\end{pmatrix}$$

 λ_i כאשר β_i מתאים לערך עצמי

$$\beta_i = \operatorname{diag} \left(J_{a_1}(\lambda_i), J_{a_2}(\lambda_i), \dots, J_{a_s}(\lambda_i) \right) = \begin{pmatrix} J_{a_1}(\lambda_i) & 0 & \dots & 0 \\ 0 & J_{a_2}(\lambda_i) & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & J_{a_s}(\lambda_i) \end{pmatrix}$$

כאשר

- $a_1 = m_i$ (1
- $a_1 \geq a_2 \geq a_3 \geq \ldots \geq a_s$ (2
- $a_1 + a_2 + \ldots + a_s = n_i$ (3
- λ_i הוא הריבוי הגאומרטי של s (4

לכן, שתי מטריצות דומות אם ורק אם יש להן אותה צורת ז'ורדן עד כדי סדר הבלוקים.

דוגמה 6.7

היא

$$\begin{pmatrix} \beta_1 & 0 \\ 0 & \beta_2 \end{pmatrix}$$

 $\lambda = 2$ נמצא β_1 נמצא

 $.eta_1$ יש שתי אפשרויות עבור

$$eta_1=egin{pmatrix} J_2(2) & 0 & 0 \ 0 & J_1(2) & 0 \ 0 & 0 & J_1(2) \end{pmatrix}$$
 in $eta_1=egin{pmatrix} J_2(2) & 0 \ 0 & J_2(2) \end{pmatrix}$

 $: \lambda = 3$ עבור β_2

$$\beta_2 = \begin{pmatrix} J_2(3) & 0\\ 0 & J_1(3) \end{pmatrix}$$

 $\lambda=2$ יש למצוא את הירבוי הגאומטרי לקבוע eta_1 יש למצוא את

 $\lambda=2$ של הגאומרי לריבוי שווה β_1 ב- מספר מספר מספר

דוגמה 8.8

. נתון הפולינום האופייני $p(x)=(x-2)^3(x-5)^2$ מצאו את הצורות ז'ורדן האפשריות

פתרון:

האפשרויות של הפולינום המינימלי הן

$$(x-2)(x-5)\;,\quad (x-2)(x-5)^2\;,\quad (x-2)^2(x-5)\;,\quad (x-2)^2(x-5)^2\;,\quad (x-2)^3(x-5)\;,\quad (x-2)^3(x-5)^2\;.$$

לכן האפשרויות לצורת ז'ורדן הן:

$$m(x) = (x-2)(x-5)$$

$$\begin{pmatrix} J_1(2) & & & & & \\ & J_1(2) & & & & \\ & & J_1(2) & & & \\ & & & J_1(5) & & \\ & & & & & J_1(5) \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 5 \end{pmatrix}$$

$$m(x) = (x-2)^2(x-5)$$

$$\begin{pmatrix} J_2(2) & & & & \\ & J_1(2) & & & \\ & & J_1(5) & & \\ & & & J_1(5) \end{pmatrix} = \begin{pmatrix} \begin{array}{c|c} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ \hline 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 5 \end{array} \end{pmatrix}$$

$$m(x) = (x-2)^3(x-5)$$

$$\begin{pmatrix} J_3(2) & & & \\ & J_1(5) & & \\ & & & J_1(5) \end{pmatrix} = \begin{pmatrix} \begin{array}{cccc} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 5 \end{array} \end{pmatrix}$$

 $m(x) = (x-2)(x-5)^2$

$$\begin{pmatrix} J_1(2) & & & & \\ & J_1(2) & & & \\ & & J_1(2) & & \\ & & & J_2(5) \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 5 & 0 \end{pmatrix}$$

 $m(x) = (x-2)^2(x-5)^2$

$$\begin{pmatrix} J_2(2) & & & \\ & J_1(2) & & \\ & & J_2(5) \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 5 & 5 \end{pmatrix}$$

 $m(x) = (x-2)^3(x-5)^2$

$$\begin{pmatrix} J_3(2) \\ J_2(5) \end{pmatrix} = \begin{pmatrix} \begin{array}{c|cccc} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ \hline 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 0 & 5 \end{array} \end{pmatrix}$$

דוגמה 6.9

יש אותו פולינום מינימלי ופולינום אופייני: B -ו A למטריצות

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} , \qquad p_A(x) = x^4 , \qquad m_A(x) = x^2 .$$

מטריצות A ו- B לא דומות אבל

- ,יש אותם ערכים עצמיים B ו- A יש אותם ערכים עצמיים
 - אבל |A| = |B|
 - $.rank(A) \neq rank(B) \bullet$

בדוגמה היו שתי מטריצות לא דומות עם אותם p(x) ו- p(x) ו- p(x) אותם ערכים עצמיים וגם אותה דרגה.

3 imes 3 משפט 6.3 צורת ז'ורדן של מטריצה

עבור מטריצות 3×3 צורות פולינום אופייני הן:

$$p(x) = (x - a)(x - b)(x - c)$$
, $p(x) = (x - a)^{2}(x - b)$, $p(x) = (x - a)^{3}$.

מקרה 1:

$$p(x) = (x-a)(x-b)(x-c)$$
, $m(x) = (x-a)(x-b)(x-c)$.

קיימת צורת ז'ורדן אחת:

$$\begin{pmatrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{pmatrix}$$

מטריצה אלכסונית. הצ'ורת ז'ורדן היא

$$\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} = \begin{pmatrix} J_1(a) & 0 & 0 \\ 0 & J_1(b) & 0 \\ 0 & 0 & J_1(c) \end{pmatrix}$$

מקרה 2:

$$p(x) = (x-a)^2(x-b)$$

ישנן שתי אפשרויות לפולינום המינימלי:

$$m(x) = (x - a)(x - b)$$
 \forall $m(x) = (x - a)^{2}(x - b)$

$$m(x) = (x - a)(x - b)$$

קיימת צורת ז'ורדן אחת:

$$\begin{pmatrix} J_1(a) & 0 & 0 \\ 0 & J_1(a) & 0 \\ 0 & 0 & J_1(b) \end{pmatrix} = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix}$$

$$\underline{m(x) = (x-a)^2(x-b)}$$

קיימת צורת ז'ורדן אחת:

$$\begin{pmatrix} J_2(a) & 0 \\ 0 & J_1(b) \end{pmatrix} = \begin{pmatrix} a & 1 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix}$$

מקרה 3:

$$p(x) = (x - a)^3$$

m(x) -אז ישנן 3 אפשרויות ל

$$(x-a)$$
, $(x-a)^2$, $(x-a)^3$.

$$m(x) = (x - a)$$

קיימת צורת ז'ורדן אחת:

$$\begin{pmatrix} J_1(a) & 0 & 0 \\ 0 & J_1(a) & 0 \\ 0 & 0 & J_1(a) \end{pmatrix} = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix}$$

$$m(x) = (x - a)^2$$

קיימת צורת ז'ורדן אחת:

$$\begin{pmatrix} J_2(a) & 0 \\ 0 & J_1(a) \end{pmatrix} = \begin{pmatrix} a & 1 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix}$$

$$m(x) = (x - a)^3$$

קיימת צורת ז'ורדן אחת:

$$(J_3(a)) = \begin{pmatrix} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{pmatrix}$$

ז"א לכל פולינום מינימלי כאן יש צורת ז'ורדן אחת. לכן כל שתי מטריצות מסדר 3×3 עם אותו פולינום אופייני ואותו פולינום מינימלי הן דומות אחת לשניה.

דוגמה 6.10

מצאו את צורת ז'ורדן ובסיס מז'רדן אל מטריצה

$$A = \begin{pmatrix} 1 & -3 & 4 \\ 4 & -7 & 8 \\ 6 & -7 & 7 \end{pmatrix}$$

$$p_{A}(x) = |xI - A|$$

$$= \begin{vmatrix} x - 1 & 3 & -4 \\ -4 & x + 7 & -8 \\ -6 & 7 & x + 7 \end{vmatrix}$$

$$= (x - 1) \begin{vmatrix} x + 7 & -8 \\ 7 & x + 7 \end{vmatrix} - 3 \begin{vmatrix} -4 & -8 \\ -6 & x + 7 \end{vmatrix} - 4 \begin{vmatrix} -4 & x + 7 \\ -6 & 7 \end{vmatrix}$$

$$= (x - 1) ((x + 7)^{2} + 56) - 3(-28 - 4x + 48) - 4(-28 - 6(7 + x))$$

$$= -(x + 1)^{2}(x - 3)$$

האפשרויות לפולינום המינימלי הן:

$$m(x) = (x+1)(x-3)$$
 או $m(x) = (x+1)^2(x-3)$.

A נבדוק איזה מהם מתאפס ע"י

$$(A+I)(A-3) = \begin{pmatrix} 2 & -3 & 4 \\ 4 & -6 & 8 \\ 6 & -7 & 8 \end{pmatrix} \begin{pmatrix} -2 & -3 & 4 \\ 4 & -10 & 8 \\ 6 & -7 & 4 \end{pmatrix} \neq 0$$

לכן $m(x) = (x+1)^2(x-3)$ הצורת ז'ורדן היא

$$\begin{pmatrix} J_2(-1) & 0 \\ 0 & J_1(3) \end{pmatrix} = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

 $\lambda=-1$ ערך עצמי. נמצא וקטור עצמי המז'רדן: $\lambda=-1$ ערך עצמי. נמצא את הבסיס המז'רדן:

$$(A+I) = \begin{pmatrix} 2 & -3 & 4 \\ 4 & -6 & 8 \\ 6 & -7 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -3 & 4 \\ 0 & 0 & 0 \\ 0 & 2 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -3 & 4 \\ 0 & 2 & -4 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -3 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 2 & 0 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

 $z \in \mathbb{R} \ (x,y,z) = (z,2z,z)$:פתרון

$$V_{-1} = \operatorname{span}\left\{ \begin{pmatrix} 1\\2\\1 \end{pmatrix} \right\}$$

 $.u_1 = egin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ -ב V_{-1} של

$$(A+I)u_2 = u_1$$

$$u_2 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 נסמן

$$(A+I) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix}
2 & -3 & 4 & | & 1 \\
4 & -6 & 8 & | & 2 \\
6 & -7 & 8 & | & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & -3 & 4 & | & 1 \\
6 & -7 & 8 & | & 1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & -3 & 4 & | & 1 \\
0 & 2 & -4 & | & -2 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
2 & -3 & 4 & | & 1 \\
0 & 2 & -4 & | & -2 \\
0 & 0 & 0 & | & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & 0 & -2 & | & -2 \\
0 & 1 & -2 & | & -1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & -1 & | & -1 \\
0 & 1 & -2 & | & -1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

z=1 נציב . $z\in\mathbb{R}$ (x,y,z) = (-1+z,-1+2z,z) (נציב

$$u_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

 $: \lambda = 3$ נחפש הוקטור עצמי ששייך לערך עצמי

$$(A-3I) = \begin{pmatrix} -2 & -3 & 4 \\ 4 & -10 & 8 \\ 6 & -7 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} -2 & -3 & 4 \\ 0 & -16 & 16 \\ 0 & -16 & 16 \end{pmatrix} \rightarrow \begin{pmatrix} -2 & -3 & 4 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} -2 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

 $.z \in \mathbb{R}$ $(x,y,z) = (\frac{1}{2}z,z,z)$

$$u_3=\begin{pmatrix}1\\2\\2\end{pmatrix}$$

$$P=\begin{pmatrix}|&|&|\\u_1&u_2&u_3\\|&|&|\end{pmatrix}=\begin{pmatrix}1&0&1\\2&1&2\\1&1&2\end{pmatrix}$$
 איז הבסיס ג'ורדן היא
$$J=\begin{pmatrix}J_2(-1)&0\\0&J_1(3)\end{pmatrix}=\begin{pmatrix}&-1&1&0\\0&0&3\end{pmatrix}$$
 לכן המרוצה ז'ורדן היא
$$J=\begin{pmatrix}J_2(-1)&0\\0&J_1(3)\end{pmatrix}=\begin{pmatrix}&0&1&0\\0&0&3\end{pmatrix}$$

דוגמה 6.11

מצאו את צורת ז'ורדן אל מטריצה

$$A = \begin{pmatrix} -4 & 2 & 10 \\ -4 & 3 & 7 \\ -3 & 1 & 7 \end{pmatrix}$$

 $A = PJP^{-1}$

 $.P^{-1}AP=J$ מעל $\mathbb C$ ומטריצה ומטריצה פ

$$p_{A}(x) = |x - IA|$$

$$= \begin{vmatrix} x + 4 & -2 & -10 \\ 4 & x - 3 & -7 \\ 3 & -1 & x - 7 \end{vmatrix}$$

$$= (x + 4) \begin{vmatrix} x - 3 & -7 \\ -1 & x - 7 \end{vmatrix} + 2 \begin{vmatrix} 4 & -7 \\ 3 & x - 7 \end{vmatrix} - 10 \begin{vmatrix} 4 & x - 3 \\ 3 & -1 \end{vmatrix}$$

$$= (x + 4) (x^{2} - 10x + 21 - 7) + 2 (4x - 28 + 21) - 10 (-4 - 3x + 9)$$

$$= (x + 4)(x^{2} - 10x + 14) + 2 (4x - 7) - 10 (-3x + 5)$$

$$= x^{3} - 10x^{2} + 14x + 4x^{2} - 40x + 56 + 8x - 14 + 30x - 50$$

$$= x^{3} - 6x^{2} + 12x - 8$$

$$= (x - 2)^{3}.$$

האפשרויות לפולינום המינימלי הן:

$$m(x) = (x-2)$$
 או $m(x) = (x-2)^2$ או $m(x) = (x-2)^3$.

A נבדוק איזה מהם מתאפס ע"י

$$(A-2I) \neq 0$$
, $(A-2I)^2 = \begin{pmatrix} -6 & 2 & 10 \\ -4 & 1 & 7 \\ -3 & 1 & 5 \end{pmatrix} \begin{pmatrix} -6 & 2 & 10 \\ -4 & 1 & 7 \\ -3 & 1 & 5 \end{pmatrix} \neq 0$

לכן $m(x) = (x-2)^3$ לכן

$$J = (J_3(2)) = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

 $\lambda=2$ ערך עצמי. נמצא את המרחב עצמי ששייך ל $\lambda=2$ ערך עצמי את הבסיס המז'רדן:

$$(A-2I) = \begin{pmatrix} -6 & 2 & 10 \\ -4 & 1 & 7 \\ -3 & 1 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} -6 & 2 & 10 \\ -4 & 1 & 7 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -3 & 1 & 5 \\ -4 & 1 & 7 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -3 & 1 & 5 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} -3 & 0 & 6 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

 V_2 של בבסיס את נסמן הוקטור . $V_2=\left\{egin{pmatrix}2\\1\\1\end{pmatrix}
ight\}$ המרחב עצמי הוא לכן המרחב עצמי הוא . $z\in\mathbb{R}$ (x,y,z)=(2z,z,z) :ב-

$$u_1 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$

 $u_2 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ נסמן

$$(A-2I) \cdot u_2 = u_1 \qquad \Rightarrow \qquad \begin{pmatrix} -6 & 2 & 10 \\ -4 & 1 & 7 \\ -3 & 1 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix}
-6 & 2 & 10 & | & 2 \\
-4 & 1 & 7 & | & 1 \\
-3 & 1 & 5 & | & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
-3 & 1 & 5 & | & 1 \\
-4 & 1 & 7 & | & 1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
-3 & 1 & 5 & | & 1 \\
0 & -1 & 1 & | & -1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
-3 & 0 & 6 & 0 \\
0 & -1 & 1 & | & -1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & -1 & | & 1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

נסמן $.z \in \mathbb{R}$,(x,y,z) = (2z,z+1,z) נסמן

$$u_2 = \begin{pmatrix} 2\alpha \\ 1+\alpha \\ \alpha \end{pmatrix} , \qquad \alpha \in \mathbb{R} .$$

$$\begin{pmatrix} -6 & 2 & 10 & 2\alpha \\ -4 & 1 & 7 & 1+\alpha \\ -3 & 1 & 5 & \alpha \end{pmatrix} \xrightarrow{R_1 \to \frac{1}{2} \cdot R_1} \begin{pmatrix} -3 & 1 & 5 & \alpha \\ -4 & 1 & 7 & 1+\alpha \\ -3 & 1 & 5 & \alpha \end{pmatrix}$$

$$R_2 \to 3R_2 - 4R_3 \qquad \begin{pmatrix} -3 & 1 & 5 & \alpha \\ -4 & 1 & 7 & 1+\alpha \\ -3 & 1 & 5 & \alpha \end{pmatrix}$$

$$\xrightarrow{R_1 \to -\frac{1}{3} \cdot R_1} \quad \begin{pmatrix} 1 & 0 & -2 & -1 \\ 0 & -1 & 1 & 3 - \alpha \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$u_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

לכן המטריצה של הבסיס ז'ורדן היא

$$P = \begin{pmatrix} | & | & | \\ u_1 & u_2 & u_3 \\ | & | & | \end{pmatrix} = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 2 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$

והצורת ז'ורדן היא

$$J = J_3(2) = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{array}\right) .$$

דוגמה 6.12

$$A=PJP^{-1}$$
 - מצאו צורת זיורדן J ומטריצה הפיכה $A=\begin{pmatrix}4&1&1&0&0\\0&4&1&0&0\\0&0&4&0&0\\0&0&0&2&3\\0&0&0&0&2\end{pmatrix}$ תהי

פתרון:

הפולינום האופיינו הוא:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 4 & -1 & -1 & 0 & 0\\ 0 & \lambda - 4 & -1 & 0 & 0\\ 0 & 0 & \lambda - 4 & 0 & 0\\ 0 & 0 & 0 & \lambda - 2 & -3\\ 0 & 0 & 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 4)^3 (\lambda - 2)^2 = 0$$

:הערכים עצמיים הם

 $\lambda=2$ מירבוי אלגברי $\lambda=2$

 $\lambda=4$ מירבוי אלגברי

 $:V_2$ נמצא את המרחב עצמי

$$(A-2I) = \begin{pmatrix} 2 & 1 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

אכן
$$s\in\mathbb{R}$$
 , $egin{pmatrix} x \\ y \\ z \\ s \\ t \end{pmatrix} = egin{pmatrix} 0 \\ 0 \\ 0 \\ s \\ 0 \end{pmatrix} = s \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$ אכן הפתרון הוא

$$V_2 = \operatorname{span} \left\{ egin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}
ight\} \; .$$

$$.u_1 = egin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
 לכן A לכסינה. נסמו הוקטור עצמי . $\dim(V_2) = 1 < 2$

$$(A-2I)\cdot u_2=u_1.$$

$$u_2 = \begin{pmatrix} x \\ y \\ z \\ s \\ t \end{pmatrix}$$
נסמן

$$(A - 2I) \cdot \begin{pmatrix} x \\ y \\ z \\ w \\ s \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

$$\left(\begin{array}{cccc|cccc}
2 & 1 & 1 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)$$

$$u_2=egin{pmatrix}0\\0\\0\\rac{1}{3}\end{pmatrix}$$
 ונקל $lpha=0$ ונקל פתרון. נציב $lpha=0$ ונקל $lpha\in\mathbb{R}$, $u_2=egin{pmatrix}0\\0\\0\\rac{1}{3}\end{pmatrix}$ לכן $lpha=0$ נמצא את המרחב עצמי $lpha$:

$$\left(\begin{array}{cccccccc}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 3 & 0 \\
0 & 0 & 0 & 0 & -2 & 0
\end{array}\right)$$

לכן
$$\begin{pmatrix} x \\ y \\ z \\ s \\ t \end{pmatrix} = \begin{pmatrix} x \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 לכן הפתרון הוא

$$V_4 = \operatorname{span} \left\{ \begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix} \right\} .$$

$$.u_3 = egin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 לכן A לא לכסינה. נסמו הוקטור עצמי . $\dim(V_4) = 1 < 3$

$$(A-4I)\cdot u_4=u_3.$$

$$.u_4 = \begin{pmatrix} x \\ y \\ z \\ s \\ t \end{pmatrix}$$
נסמן

$$(A - 4I) \cdot \begin{pmatrix} x \\ y \\ z \\ s \\ t \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\left(\begin{array}{cccc|cccc}
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 3 & 0 \\
0 & 0 & 0 & 0 & -2 & 0
\end{array}\right)$$

$$eta \in \mathbb{R}$$
 , $u_4 = egin{pmatrix} eta \ 1 \ 0 \ 0 \ 0 \end{pmatrix}$ לכנן

$$(A-4I)\cdot u_5=u_4.$$

$$.u_5 = \begin{pmatrix} x \\ y \\ z \\ s \\ t \end{pmatrix}$$
נסמן

$$(A - 4I) \cdot \begin{pmatrix} x \\ y \\ z \\ s \\ t \end{pmatrix} = \begin{pmatrix} \beta \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\left(\begin{array}{cccccccc}
0 & 1 & 1 & 0 & 0 & \beta \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 3 & 0 \\
0 & 0 & 0 & 0 & -2 & 0
\end{array}\right)$$

לכל β קיים פתרון. נציב $\beta=0$ ונקבל

$$.u_5=egin{pmatrix}0\-1\1\0\0\end{pmatrix}$$
 ונקבל $\gamma=0$ נציב $\gamma\in\mathbb{R}$, $u_5=egin{pmatrix}\gamma\-1\1\0\0\end{pmatrix}$

$$P = \begin{pmatrix} | & | & | & | & | \\ u_1 & u_2 & u_3 & u_4 & u_5 \\ | & | & | & | & | \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 \end{pmatrix} ,$$

$$J = \begin{pmatrix} J_2(2) & 0 \\ 0 & J_3(4) \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 4 & 1 & 0 \\ 0 & 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix} .$$

$$A = PJP^{-1} .$$

שעור 7 העתקות צמודות לעצמן

7.1 העתקות צמודות לעצמן

הגדרה 7.1 העתקה הצמודה

תהי העתקה לינארית

$$T:V\to V$$

. במרחב מכפלה פנמית על הנוצר הופית. במרחב הכפלה פנמית $\bar{T}:V\to V$ היימת העתקה לינארית העתקה לינארית

$$\langle T(u), \mathbf{v} \rangle = \langle u, \bar{T}(\mathbf{v}) \rangle$$
.

.T נקראת העתקה הצמודה של $ar{T}$

משפט 7.1 נוסחת העתקה הצמודה

תהי העתקה לינארית

$$T:V\to V$$

במרחב מכפלה פנמית V הנוצר סופית. יהי $\{b_1,\dots,b_n\}$ בבסיס אורתונורמלי של V. אז ההעתקה הצמודה של T ניתנת ע"י הנוסחה

$$\bar{T}(\mathbf{v}) = \sum_{i=1}^{n} \overline{(T(b_i), \mathbf{v})} b_i$$
.

הוכחה:

$$(T(u), \mathbf{v}) = (u, \bar{T}(\mathbf{v})) . \tag{*1}$$

 $:\!B$ בסיס לפי לפי הוקטור נרשום אורתנומרמלי. בסיס $B=\{b_1,\dots,b_n\}$ יהי

$$u = \sum_{i=1}^{n} \alpha_i b_i \qquad \Rightarrow \qquad T(u) = \sum_{i=1}^{n} \alpha_i T(b_i) , \qquad (*2)$$

לכן

$$(T(u), \mathbf{v}) = \sum_{i=1}^{n} \alpha_i (T(b_i), \mathbf{v}) . \tag{*3}$$

 $:\!B$ לפי הבסיס לפי לפי לפי הוקטור

$$\bar{T}(\mathbf{v}) = \sum_{i=1}^{n} \beta_i b_i . \tag{*4}$$

לפי הנוסחה של המכפלה פנימית הסטנדרטית:

$$(u, \bar{T}(\mathbf{v})) = \sum_{i=1}^{n} \alpha_i \bar{\beta}_i . \tag{*5}$$

לכןת נובע מ- (1*),(3*), ו- (5*) כי

$$\sum_{i=1}^{n} \alpha_i \left(T(b_i), \mathbf{v} \right) = \sum_{i=1}^{n} \alpha_i \bar{\beta}_i \quad \Rightarrow \quad \bar{\beta}_i = \left(T(b_i), \mathbf{v} \right) \quad \Rightarrow \quad \beta_i = \overline{\left(T(b_i), \mathbf{v} \right)} . \tag{*6}$$

נציב ב- (+4) ונקבל

$$\bar{T}(\mathbf{v}) = \sum_{i=1}^{n} \overline{(T(b_i), \mathbf{v})} b_i . \tag{*7}$$

דוגמה 7.1

ע"י שמוגדרת ע $T:\mathbb{R}^2 o\mathbb{R}^2$ תהי

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - y \\ x - y \end{pmatrix} .$$

 $.ar{T}$ מצאו את

פתרון:

$$T(e_1) = T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $T(e_2) = T \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$

ינסמן וקטור עבימית הסטנדרטית. לפי הנוסחה לפי כלשהו. עב $\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$ נסמן וקטור

$$(T(e_1), \mathbf{v}) = x + y$$
, $(T(e_2), \mathbf{v}) = -x - y$,

לכן

$$\bar{T}(\mathbf{v}) = \sum_{i=1}^{2} \overline{(T(e_i), \mathbf{v})} e_i$$

$$\bar{T} \begin{pmatrix} x \\ y \end{pmatrix} = (x+y)e_1 + (-x-y)e_2 = \begin{pmatrix} x+y \\ -x-y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

דוגמה 7.2

ע"י שמוגדרת ע"י $T:\mathbb{R}^2 o\mathbb{R}^2$

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} i & 1 \\ 3 & 2+3i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ix+y \\ 3x+(2+3i)y \end{pmatrix}.$$

 $ar{T}$ מצאו את

פתרון:

$$T(e_1) = T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} i \\ 3 \end{pmatrix}$$
, $T(e_2) = T \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2+3i \end{pmatrix}$

$$(T(e_1), \mathbf{v}) = \left(\begin{pmatrix} i \\ 3 \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} \right) = i\bar{x} + 3\bar{y} , \qquad (T(e_2), \mathbf{v}) = \left(\begin{pmatrix} 1 \\ 2+3i \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} \right) = \bar{x} + (2+3i)\bar{y} ,$$

לכן

$$\bar{T}(\mathbf{v}) = \sum_{i=1}^{2} \overline{(T(e_i), \mathbf{v})} e_i = \overline{(T(e_1), \mathbf{v})} e_1 + \overline{(T(e_2), \mathbf{v})} e_2$$

$$\bar{T} \begin{pmatrix} x \\ y \end{pmatrix} = \overline{(i\bar{x} + 3\bar{y})} e_1 + \overline{(\bar{x} + (2+3i)\bar{y})} e_2$$

$$= (-ix + 3y) \begin{pmatrix} 1 \\ 0 \end{pmatrix} + (x + (2-3i)y) \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} -ix + 3y \\ x + (2-3i)y \end{pmatrix}$$

$$= \begin{pmatrix} -i & 3 \\ 1 & 2-3i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

דוגמה 7.3

ע"י שמוגדרת ע"י $T:\mathbb{R}_2[x] o \mathbb{R}_2[x]$

$$T(a+bx+cx^2) = 3b + (a+c)x + (a+b+2c)x^2$$
.

 $ar{T}$ מצאו את

פתרון:

$$E = \{e_1 = 1, \; e_2 = x, \; e_3 = x^2\}$$
 בססי סטנדרטי של $\mathbb{R}_2[x]$ הינו

$$T(e_1) = T(1) = x + x^2$$
, $T(e_2) = T(x) = 3 + x^2$, $T(e_3) = T(x^2) = x + 2x^2$.

נסמן המכפלה הפנימית לפי לפי לפי לפי כלשהו. עב $\mathbf{v}=a+bx+cx^2\in\mathbb{R}_2[x]$ נסמן וקטור

$$(T(e_1), \mathbf{v}) = (x + x^2, a + bx + cx^2)$$

$$= \int_0^1 (x + x^2) (a + bx + cx^2) dx$$

$$= \int_0^1 (ax + ax^2 + bx^2 + bx^3 + cx^3 + cx^4) dx$$

$$= \frac{a}{2} + \frac{a}{3} + \frac{b}{3} + \frac{b}{4} + \frac{c}{4} + \frac{c}{5}$$

$$= \frac{5a}{6} + \frac{7b}{12} + \frac{9c}{20}.$$

$$(T(e_2), \mathbf{v}) = (3 + x^2, a + bx + cx^2)$$

$$= \int_0^1 (3 + x^2) (a + bx + cx^2) dx$$

$$= \int_0^1 (3a + ax^2 + 3b + bx^3 + 3c + cx^4) dx$$

$$= 3a + \frac{a}{3} + 3b + \frac{b}{4} + 3c + \frac{c}{5}$$

$$= \frac{10a}{3} + \frac{13b}{4} + \frac{16c}{5}.$$

$$(T(e_3), \mathbf{v}) = (x + 2x^2, a + bx + cx^2)$$

$$= \int_0^1 (x + 2x^2) (a + bx + cx^2) dx$$

$$= \int_0^1 (ax + 2ax^2 + bx^2 + 2bx^3 + cx^3 + 2cx^4) dx$$

$$= \frac{a}{2} + \frac{2a}{3} + \frac{b}{3} + \frac{b}{2} + \frac{c}{4} + \frac{2c}{5}$$

$$= \frac{7a}{6} + \frac{5b}{6} + \frac{13c}{20}.$$

לכן

$$\bar{T}(\mathbf{v}) = \sum_{i=1}^{3} \overline{(T(e_i), \mathbf{v})} e_i = \overline{(T(e_1), \mathbf{v})} e_1 + \overline{(T(e_2), \mathbf{v})} e_2 + \overline{(T(e_3), \mathbf{v})} e_3$$

$$\bar{T}(a + bx + cx^2) = \overline{\left(\frac{5a}{6} + \frac{7b}{12} + \frac{9c}{20}\right)} e_1 + \overline{\left(\frac{10a}{3} + \frac{13b}{4} + \frac{16c}{5}\right)} e_2 + \overline{\left(\frac{7a}{6} + \frac{5b}{6} + \frac{13c}{20}\right)}$$

$$= \left(\frac{5a}{6} + \frac{7b}{12} + \frac{9c}{20}\right) + \left(\frac{10a}{3} + \frac{13b}{4} + \frac{16c}{5}\right) x + \left(\frac{7a}{6} + \frac{5b}{6} + \frac{13c}{20}\right) x^2$$

הגדרה 7.2 העתקה צמודה לעצמה

העתקה לינארית

$$T:V\to V$$

במרחב מכפלה פנמית נקראת העתקה צמודה לעצמה אם

$$\bar{T} = T$$
,

u, v כלומר לכל

$$\langle T(u), \mathbf{v} \rangle = \langle u, T(\mathbf{v}) \rangle$$
.

- . העתקה העתקה במרחב אוקלידי ($\mathbb{F}=\mathbb{R}$) נקראת במרחב העתקה סימטרית.
 - . היא הרמיטית, ($\mathbb{F}=\mathbb{C}$) היא נקראת במרחב אוניטרי, במרחב

הגדרה 7.3 מטריצה צמודה לעצמה

מטריצה צמודה לעצמה ($\mathbb{F}=\mathbb{C}$ או $\mathbb{F}=\mathbb{R}$) $A\in\mathbb{F}^{n imes n}$ מטריצה ריבועית $A=ar{A}$.

מטריעה כזו נקראת סימטרית. $\mathbb{F}=\mathbb{R}$ מטריצה ullet

. מטריצה כזו נקראת הרמיטית $\mathbb{F}=\mathbb{C}$ מטריצה ullet

משפט 7.2 העתקה צמודה לעצמה אם"ם המטריצה המייצגת צמודה לעצמה

יהי V במרחב מכפלה פנימית. העתקה $T:V \to V$ צמודה לעצמה אם"ם המטריצה המייצגת של בבסיס אורתונורמלי כלשהו של V היא צמודה לעצמה.

דוגמה 7.4

עניח ש- הסטנדרטית שמוגדרת ע"י עם מכפלה פנימית נעתקב במרחב $T:\mathbb{R}^n o \mathbb{R}^n$ נניח ש- נניח

$$T(u) = A \cdot u$$
.

הוכיחו כי T צמודה לעצמה אם"ם A סימטרית.

פתרון:

המטריצה המייצגת של ההעתקה היא T . $[T]_E=A$ צמודה לעצמה אם"ם המטריצה המייצגת צמודה לעצמה, $A=A^t$ בלוםר אם T .לכן $A=A^t$ ממשית, אז $A=A^t$ לעצמה לעצמה אם"ם $A=A^t$ כלוםר אם לעצמה אם"ם

דוגמה 7.5

נניח ש- די מטנדרטית שמוגדרת ע"י עם מכפלה פנימית נעתקב במרחב $T:\mathbb{C}^n o \mathbb{C}^n$ נניח ש

$$T(u) = A \cdot u$$
.

הוכיחו כי T צמודה לעצמה אם"ם A הרמיטית.

פתרון:

המטריצה המייצגת של ההעתקה היא T . $[T]_E=A$ אמודה לעצמה אם"ם המטריצה המייצגת צמודה לעצמה, כלוםר אם $ar{A}=A$, כלוםר אם A הרמיטית. לכן T צמודה לעצמה אם"ם A

דוגמה 7.6

הוכיחו כי ההעתקה הזהות $I_V:V o V$ צמודה לעצמה.

פתרון:

המטריצה המייצגת של ההעתקה הזהות היא המטריצה היחידה I. צמודה לעצמה בגלל ש- $ar{I}=I$ לכן ההתקה הזהות I_V צמודה לעצמה.

דוגמה 7.7

הוכיחו כי ההעתקה האפס V:V o V צמודה לעצמה.

פתרון:

 $ar{0}_{n imes n} = 0_{n imes n}$ במודה לעצמה בגלל ש- $0_{n imes n}$ המטריצה המייצגת של ההעתקה הזהות היא המטריצה האפס $0_{n imes n}$ צמודה לעצמה.

דוגמה 7.8

. $\overline{\alpha I}=\alpha I$ צמודה לעצמה אם"ם אם"ב $S_{lpha}({f v})=lpha\cdot{f v}$ שמוגדרת ע"י אם"ם אם"ם אם"ם הוכיחו כי ההעתקה סקלרית

פתרון:

המטריצה המייצגת של

$$[S_{\alpha}] = \alpha I .$$

המטירצה המייצגת צמודה לעצמה אם"ם

$$\bar{\alpha}\bar{I} = \alpha I$$

 $ar{lpha}=lpha$ כלומר אם

דוגמה 7.9

במרחב עם המכפלה הפנימית הסטנדרטית, נתון בסיס במרחב \mathbb{R}^2

$$B = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix} \right\} .$$

? אימטרית T האם האם $[T]_B=\begin{pmatrix}0&0\\-1&1\end{pmatrix}$ המייצגת עם הטריצה אם $T:\mathbb{R}^2\to\mathbb{R}^2$ האם לינארית נתון ההעתקה לינארית

פתרון:

שיטה 1

נבחר בסיס אורתונורמלי:

$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 , $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

 $.e_2 = b_1 + b_2$, $e_1 = -b_2$ אי

לכן

$$[T(b_1)]_B = 0 \cdot b_1 - b_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $[T(b_2)]_B = 0 \cdot b_1 + b_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$

לכן

$$T(e_1) = -T(b_2) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = e_1 + 0 \cdot e_2$$
.

$$T(e_2) = T(b_1) + T(b_2) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0 \cdot e_1 + 0 \cdot e_2$$
.

לכן

$$[T]_E = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

מטריצה סימטרית, לכן T העתקה סימטרית.

שיטה 2

$$[T]_B = P_{E \to B}[T]_E P_{E \to B}^{-1}$$

$$\left(\begin{array}{c|c} B \mid E\end{array}\right) = \left(\begin{array}{cc|c} 1 & -1 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right) \rightarrow \left(\begin{array}{cc|c} 1 & -1 & 1 & 0 \\ 0 & 1 & -1 & 1\end{array}\right) \rightarrow \left(\begin{array}{cc|c} 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 1\end{array}\right)$$

$$:P_{E \rightarrow B}^{-1} \text{ (arx mode)} .P_{E \rightarrow B} = \left(\begin{array}{cc|c} 0 & 1 \\ -1 & 1\end{array}\right)$$

$$\left(\begin{array}{cc|c} 0 & 1 & 1 & 0 \\ -1 & 1 & 0 & 1\end{array}\right) \rightarrow \left(\begin{array}{cc|c} -1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right) \rightarrow \left(\begin{array}{cc|c} 1 & -1 & 0 & -1 \\ 0 & 1 & 1 & 0\end{array}\right) \rightarrow \left(\begin{array}{cc|c} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 0\end{array}\right)$$

$$.P_{E \rightarrow B}^{-1} = \left(\begin{array}{cc|c} 1 & -1 \\ 1 & 0\end{array}\right) \rightarrow \left(\begin{array}{cc|c} 0 & 1 \\ -1 & 1\end{array}\right)$$

$$:P_{E \rightarrow B}^{-1} = \left(\begin{array}{cc|c} 1 & -1 \\ 1 & 0\end{array}\right) \left(\begin{array}{cc|c} 0 & 0 \\ -1 & 1\end{array}\right)$$

$$:P_{E \rightarrow B}^{-1} = \left(\begin{array}{cc|c} 1 & -1 \\ 1 & 0\end{array}\right) \left(\begin{array}{cc|c} 0 & 1 \\ -1 & 1\end{array}\right)$$

$$:P_{E \rightarrow B}^{-1} = \left(\begin{array}{cc|c} 1 & -1 \\ 1 & 0\end{array}\right) \left(\begin{array}{cc|c} 0 & 0 \\ -1 & 1\end{array}\right) \left(\begin{array}{cc|c} 0 & 1 \\ -1 & 1\end{array}\right)$$

$$:P_{E \rightarrow B}^{-1} = \left(\begin{array}{cc|c} 1 & -1 \\ 1 & 0\end{array}\right) \left(\begin{array}{cc|c} 0 & 0 \\ -1 & 0\end{array}\right) \left(\begin{array}{cc|c} 0 & 1 \\ -1 & 1\end{array}\right)$$

$$:P_{E \rightarrow B}^{-1} = \left(\begin{array}{cc|c} 1 & -1 \\ 1 & 0\end{array}\right) \left(\begin{array}{cc|c} 0 & 0 \\ -1 & 0\end{array}\right) \left(\begin{array}{cc|c} 0 & 1 \\ -1 & 1\end{array}\right)$$

$$:P_{E \rightarrow B}^{-1} = \left(\begin{array}{cc|c} 1 & -1 \\ 1 & 0\end{array}\right) \left(\begin{array}{cc|c} 0 & 0 \\ -1 & 0\end{array}\right) \left(\begin{array}{cc|c} 0 & 1 \\ -1 & 1\end{array}\right)$$

דוגמה 7.10

הוכיחו או הפריכו ע"י דוגמה נגדית:

- אט אם T+S אם אם אודה לעצמן במודות איז אם T+S אם אם אודה לעצמה.
- בט אסקלר ממשי. אז lpha אם אם $lpha \neq 0$ צמודה לעצמה ו- $lpha T \neq 0$ אם אם $T \neq 0$
 - . אמודה לעצמה מודה מאז $\alpha T \neq 0$ אז $\alpha = \bar{\alpha} \neq 0$ אמודה לעצמה $T \neq 0$ אם
 - . אם $T_1 \cdot T_2$ אם אז דעמהה לעצמן ו- T_2 אם אם $T_1 \cdot T_2$ אם לעצמה.
- T_1 אם T_2 ו- T_2 מתחלפות (ז"א $T_1 \cdot T_2 T_1$ אם וועמן איז $T_2 \cdot T_1$ אם וועמן וועמן וויש $T_1 \cdot T_2 T_1$ אם אם וויש אם וועמן וויש
 - . אם T צמודה לעצמה, אז T^2 צמודה לעצמה T

פתרון:

א) טענה נכונה. הוכחה:

$$\overline{T+S} = \overline{T} + \overline{S} = T + S$$
.

לכן (נתון) לעצמה אמודה לעצמה lpha T

$$\overline{\alpha T} = \bar{\alpha} \bar{T} = \alpha T$$
.

נעיב ונקבל . $ar{T}=T$ צמודה לעצמה (נתון) לכן T

$$\bar{\alpha}T = \alpha T \qquad \Rightarrow \qquad (\bar{\alpha} - \alpha)T = 0 .$$

 $ar{lpha}=lpha$ נתון) לכן $ar{lpha}-lpha=0$ לכן T
eq 0

ג) טענה נכונה. הוכחה:

לכן (נתון) לעצמה לעצמה T

$$\overline{\alpha T} = \bar{\alpha} \bar{T} = \bar{\alpha} T \ .$$

(נתון). נציב ונקבל $ar{lpha}=lpha$

$$\overline{\alpha T} = \alpha T \ .$$

:טענה לא נכונה. דוגמה נגדית

$$T_1: \mathbb{R}^2 \to \mathbb{R}^2 , \qquad [T_1]_E = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$T_2: \mathbb{R}^2 \to \mathbb{R}^2 , \qquad [T_2]_E = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

אבל אבל סימטריות העתקות ר T_2 ו- ו- T_1

$$[T_1 \cdot T_2]_E = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

. לא סימטרית, לכן $T_1 \cdot T_2$ אינה אינה לעצמה.

:ה) טענה נכונה. הוכחה

נניח כי תעקה אמודה לעצמה לעצמה נניח לעצמן. נניח אמודות אמודה לעצמה ונניח כי , $T_2:V o V$, $T_1:V o V$ נניח כי $T_1 \cdot T_2 = T_2 \cdot T_1 \ .$

$$\overline{T_1 \cdot T_2} = \overline{T}_2 \cdot \overline{T}_1 = T_2 \cdot T_1 = T_1 \cdot T_2 .$$

אז

לכן $T_1 \cdot T_2$ צמודה לעצמה.

ו) טענה נכונה. הוכחה:

נניח אז העתקה צמודה לעצמה. אז העתקה אמודה לעצמה, אז העתקה אמודה לעצמה. אז העתקה אמודה לעצמה. אז א $T_2:V\to V$

$$\overline{T_1 \cdot T_2} = T_1 \cdot T_2 \ .$$

מצד שני,

$$\overline{T_1 \cdot T_2} = \bar{T}_2 \cdot \bar{T}_1 = T_2 \cdot T_1 \ .$$

לכן

$$T_1 \cdot T_2 = T_2 \cdot T_1$$
.

ל) טענה נכונה. הוכחה:

$$\overline{(TT)} = \bar{T} \cdot \bar{T} = T \cdot T .$$

דוגמה 7.11

 $T\cdot ar{T}$ ו- $ar{T}\cdot ar{T}$ העתקה לינארית. הוכיחו כי T:V o V ו- T:V o V והעתקה עמודה לעצמה.

פתרון:

$$\overline{T\cdot \bar{T}} = \overline{\bar{T}}\cdot \bar{T} = T\cdot \bar{T} \ .$$

לכן $T\cdot ar{T}$ העתקה צמודה לעצמה.

מאותה מידה:

$$\overline{\bar{T}\cdot T} = \bar{T}\cdot \overline{\bar{T}} = \bar{T}\cdot T \ .$$

לכן $ar{T} \cdot T$ העתקה צמודה לעצמה.

הגדרה 7.4 העתקה אנטי-סימטרית

תהי העתקה לינארית

 $T:V\to V$

במרחב אוקלידי V. במצב

 $\bar{T} = -T$

אז T נקראת אנטי-סימטרית.

הגדרה 7.5 העתקה אנטי-הרמיטית

תהי העתקה לינארית

 $T:V\to V$

במרחב אוניטרי V במצב

 $\bar{T} = -T$

אז T נקראת אנטי-הרמיטית.

כל מספר מרוכב iy הדומה iy מספר ממשי iy מספר מספר מחום ב הוא סכום על העתקה z=x+iy בדומה לכך, כל העתקה לינארית iy היא סכום של שתי העתקות, שאחת מהן צמודה לעצמה והשני אנטי-סימטרית או אנטי-הרמיטית. נוכיח את הטענה הזאת במשפט הבא.

משפט 7.3

תהי T:V o V העתקה לינארית כלשהי.

. היא סכום של שתי העתקות, שאחת מהן צמודה לעצמה והשני אנטי-סימטרית או אנטי-הרמיטית T

הוכחה: נניח $T:V \to V$ העתקה לינארית. נתבונן בהעתקות

$$T_1 = \frac{1}{2} (T + \bar{T}) , \qquad T_2 = \frac{1}{2} (T - \bar{T}) .$$

X

$$T = T_1 + T_2$$
.

$$\bar{T}_1 = \frac{1}{2} \left(\overline{T + \overline{T}} \right) = \frac{1}{2} \left(\overline{T} + \overline{\overline{T}} \right) = \frac{1}{2} \left(\overline{T} + T \right) = T_1.$$

. צמודה לעצמה T_1 צמודה

$$\bar{T}_2 = \frac{1}{2} \left(\overline{T - \bar{T}} \right) = \frac{1}{2} \left(\bar{T} - \overline{\bar{T}} \right) = \frac{1}{2} \left(\bar{T} - T \right) = -\frac{1}{2} \left(T - \bar{T} \right) = -T_2.$$

. אנטי-הרמיטית T_2 אנטי

משפט 7.4

תהי המקיימת לינארית המקיימת $T:V \rightarrow V$ תהי

$$\langle T(u), \mathbf{v} \rangle = 0$$

.T=0 אז $.u,\mathbf{v}\in V$ לכל

אם לעצמה המקיימת $T:V \to V$ אם (2

$$\langle T(u), u \rangle = 0$$

.T=0 אז $.u\in V$ לכל

הוכחה:

(1

$$\langle T(u), \mathbf{v} \rangle = 0$$

לכל $\mathbf{v} = T(u)$ נבחר $u, \mathbf{v} \in V$ לכל

$$\langle T(u), T(u) \rangle = 0 \qquad \Rightarrow \qquad T(u) = 0$$

.T=0 לכל $.u\in V$ לכל

 $u, \mathbf{v} \in V$ לפי הנתון לכל (2

$$\langle T(u+\mathbf{v}), u+\mathbf{v}\rangle = 0 \ , \qquad \langle T(\mathbf{v}), \mathbf{v}\rangle = 0 \ , \qquad \langle T(u), u\rangle = 0 \ .$$

מצד שני,

$$\begin{split} \langle T(u+\mathbf{v}), u+\mathbf{v} \rangle &= \langle T(u), u \rangle + \langle T(u), \mathbf{v} \rangle + \langle T(\mathbf{v}), u \rangle + \langle T(\mathbf{v}), \mathbf{v} \rangle \\ 0 &= 0 + \langle T(u), \mathbf{v} \rangle + \langle T(\mathbf{v}), u \rangle + 0 \\ 0 &= \langle T(u), \mathbf{v} \rangle + \langle T(\mathbf{v}), u \rangle \end{split}$$

 $u, v \in V$ לכן לכל

$$\langle T(u), \mathbf{v} \rangle + \langle T(\mathbf{v}), u \rangle = 0$$

נקבל ($\mathbb{F}=\mathbb{R}$ נקבל) נקבל מרחב אוקלידי (ז"א

$$\langle T(u),{
m v}
angle=\langle u,T({
m v})
angle$$
 (כי T צמודה לעצמה) (לפי הסימטריות של מכפלה פנימית במרחב אוקלידי)

לכן

$$\langle T(u),{
m v}
angle+\langle T({
m v}),u
angle=2\,\langle T(u),{
m v}
angle=0$$
 כל (T(u), v) לכל (T(u), v) לכל לכל לפי סעיף. לכל לכל לפי

:u במקרה של מרחב אוניטרי (ז"א ב $\mathbb{F}=\mathbb{C}$) נציב בשוויון שקיבלנו קודם iu במקרה של

$$\langle T(iu), \mathbf{v} \rangle + \langle T(\mathbf{v}), iu \rangle = 0$$

לכן

$$i \langle T(u), \mathbf{v} \rangle - i \langle T(\mathbf{v}), u \rangle = 0 \qquad \Rightarrow \qquad \langle T(u), \mathbf{v} \rangle - \langle T(\mathbf{v}), u \rangle = 0$$

וגם

$$\langle T(u), \mathbf{v} \rangle + \langle T(\mathbf{v}), u \rangle = 0$$

נחבר את שני השוויונים ונקבל:

$$2\langle T(u), \mathbf{v} \rangle = 0 \qquad \Rightarrow \qquad T = 0$$

7.2 העתקות אוניטריות

z נשים לב שעבור מספר מרוכב

$$|z| = 1 \quad \Leftrightarrow \quad z \cdot \bar{z} = 1 \ .$$

נגדיר מושג דומה עבור העתקות לינאירות.

הגדרה 7.6 העתקה אוניטרית

נוצר העתקה העתקה אוניטרית אם עוצר פנימית נקראת מכפלה מכפלה במרחב ווצר עוצר מכפלה מכפלה במרחב ווצר אוניטרית אם T:V o V

$$T \cdot \bar{T} = \bar{T} \cdot T = I$$

. כאשר I העתקה הזהות

. העתקה אוניטרית במרחב אוקלידי (כלומר כאשר $\mathbb{F}=\mathbb{R}$) נקראת במרחב אוקלידי העתקה

$$T^{-1}=ar{T}$$
 ו- התנאי $T\cdot T=T\cdot ar{T}=I$ פירושו ש- מיכה ו- 1

גורר את $S\cdot T=I$ אם V ל- S אז השוויון S,T העתקות ו- S,T העתקות לינאריות מ- V ל- S או אוויונות $T\cdot \bar T=I$ אוניטרית מספיק לבדוק רק אחד השוויונות $T\cdot \bar T=I$ או $T\cdot \bar T=I$

דוגמה 7.12

נניח כי V מרחב מכפלה פנימית של \mathbb{C}^1 עם המכפלה הפנימית הסטנדרטית

$$\langle z, w \rangle = z \cdot \bar{w} .$$

. הוכיחו: $lpha\in\mathbb{C}$ כאשר $T(z)=lpha\cdot z$ הוכיחו $T:\mathbb{C}^1 o\mathbb{C}^1$ הוכיחו

$$.lphaar{lpha}=1$$
 אם T אוניטרית אז

$$z\in\mathbb{C}^1$$
 לכל $\|T(z)\|=\|z\|$ לכל אוניטרית אז דאם T

$$z,w\in\mathbb{C}^1$$
 לכל $\langle T(z),T(w)
angle=\langle z,w
angle$ אם אוניטרית אז

פתרון:

אז
$$T(z) = \alpha z$$
 א

$$\bar{T}(z) = \bar{\alpha}z$$
.

מכאן

$$(\bar{T}T)(z) = \bar{T}(T(z)) = \bar{T}(\alpha z) = \bar{\alpha} \cdot \alpha z$$
.

 $ar{lpha}\cdotlpha=1$ לכן $ar{T}\cdot T=I$ אם"ם

1 -שווה ל α שווה ל-

 $\|T(z)\|$ ג נחשב את

$$||T(z)||^2 = \langle T(z), T(z) \rangle = \langle \alpha z, \alpha z \rangle = \alpha \cdot \bar{\alpha} \langle z, z \rangle = \langle z, z \rangle = ||z||^2.$$

. $\|T(z)\|=\|z\|$ כלומר

 $z,w\in\mathbb{C}^1$ לכל

$$\langle T(z), T(w) \rangle = \langle \alpha z, \alpha w \rangle = \alpha \cdot \bar{\alpha} \langle z, w \rangle = \langle z, w \rangle ,$$

 $\langle T(z), T(w) \rangle = \langle z, w \rangle$ כלומר

בדוגמה הקודמת מצאנו כי העתקה שומרת על הנורמה ועל המכפלה הפנימית של וקטורים.

התכונות האלה (שמירה על נורמה ועל מכפלה פנימית) מתקיימות לכל העתקה אוניטרית.

כל אחת מהתכונות האלה שקולה לכך שהעתקה תהיה אוניטרית.

7.5 משפט

עבור העתקה לינארית T:V o V במרחב מכפלה פנימית נוצר סופית, התנאים הבאים שקולים:

- .העתקה אוניטרית T (1)
 - u, v לכל (2)

$$\langle T(u), T(v) \rangle = \langle u, v \rangle$$
.

 $u \in V$ לכל (3)

$$||T(u)|| = ||u||$$

$(1)\Rightarrow(2)$:הוכחה

נניח ש- $u,v\in V$ אוניטרית. נבחר T אוניטרית

$$\langle T(u), T(v) \rangle = \langle u, \overline{T} \cdot T(v) \rangle = \langle u, I(v) \rangle = \langle u, v \rangle$$
.

 $(2) \Rightarrow (3)$

נתון שלכל $\langle T(u), T({
m v})
angle = \langle u, {
m v}
angle$, תון שלכל שלכל , $u, {
m v}$

$$||T(u)||^2 = \langle T(u), T(u) \rangle = \langle u, u \rangle = ||u||^2$$
.

 $(3) \Rightarrow (1)$

$$0 = ||T(u)||^2 - ||u||^2$$
$$= \langle T(u), T(u) \rangle - \langle u, u \rangle$$
$$= \langle \bar{T} \cdot T(u), u \rangle - \langle u, u \rangle$$

לכן

$$\langle \bar{T} \cdot T(u), u \rangle = \langle u, u \rangle$$

 $.ar{T}\cdot T=I$ לכן

משפט 7.6

 $u \in V$ עבור העתקה לינארית T התנאי שלכל

$$||T(u)|| = ||u||$$

 $u, \mathbf{v} \in V$ שקול לתנאי שלכל

$$||T(u) - T(v)|| = ||u - v||$$
.

הוכחה:

ננית $\|u\| = \|T(u)\| = \|u\|$ לכל $u \in V$ גקח (1) ננית $u \in V$ אז

$$||T(u - v)|| = ||u - v|| \Rightarrow ||T(u) - T(v)|| = ||u - v||.$$

נגיח $\|u-v\|$ נגדיר $\|T(u)-T(v)\|=\|u-v\|$ נגיח (2) נניח

$$||T(u) - T(0)|| = ||T(u)|| = ||u - 0|| = ||u||$$
.

הפירוש הגאומטרי של השוויון $\|T(u)-T(\mathbf{v})\|=\|u-\mathbf{v}\|$ הוא שהמרחק בין וקטורים שווה למרחק בין תמונותיהם. מהמשפט נובע כי העתקה אוניטרית שומרת על מרחקים.

נראה במשפט הבא אפיון נוסף של העתקות אוניטריות.

משפט 7.7

יהי T:V o V העתקה לינארית. מכפלה פנימית נוצר סופית, ותהי

- Aאט אורתונורמלי אורתונורמלי אם $B=\{b_1,\dots,b_n\}$ אם אוניטרית, ואם אם T אם אורתונורמלי אז גם $\{T(b_1),\dots,T(b_n)\}$ בסיס אורתונורמלי.
- ב) אוניטרית. T אוניטרית אורתונורמלי, אז T אוניטרית של V אוניטרית אורתונורמלי, אז אוניטרית.

הוכחה:

(N

$$\langle T(b_i),T(b_j)
angle=\langle b_i,b_j
angle=egin{cases} 0&i
eq j&,\ 1&i=j&. \end{cases}$$
לכן $\{T(b_1),\dots,T(b_n)\}$ בסיס אורתונורמלי.

, $u, {
m v} \in V$ ו- $B = \{b_1, \dots, b_n\}$ בסיסים אורתונורמליים. לכל בסיסים ונניח ש-

$$u = \sum_{i=1}^{n} \alpha_i b_i$$
, $\mathbf{v} = \sum_{i=1}^{n} \beta_i b_i$.

77

$$\langle u, \mathbf{v} \rangle = \sum_{i=1}^{n} \alpha_i \bar{\beta}_i .$$

$$\langle T(u), T(v) \rangle = \left\langle \sum_{i=1}^{n} \alpha_i T(b_i), \sum_{i=1}^{n} \beta_i T(b_i) \right\rangle = \sum_{i=1}^{n} \alpha_i \bar{\beta}_i$$

. לכן T העתקה אוניטרית. $\langle T(u), T(\mathbf{v}) \rangle = \langle u, \mathbf{v} \rangle$ ז"א

7.3 מטריצות מייצגות של העתקות אוניטירות

לכן . $[ar{T}]_B=ar{A}$ אז . $[T]_B=A$ נניח אורתונורמלי. בסיס אוניטרית, בסיס אוניטרית, דיש העתקה אוניטרית, ו

$$[T\bar{T}]_B = [T]_B \cdot [\bar{T}]_B = A \cdot \bar{A} = I$$

וגם

$$[\bar{T}T]_B = [\bar{T}]_B \cdot [T]_B = \bar{A} \cdot A = I$$

הגדרה 7.7

תהי A מטריצה ריבועית מעל שדה \mathbb{F} . ל-A קוראים מטריצה אוניטרית אם

$$A \cdot \bar{A} = \bar{A} \cdot A = I$$

 $A^{-1}=ar{A}$ (תנאי שקול)

אם אורתוגונלית, ז"א כאשר קוראים מטריצה אוניטרית אוניטרית אוניטרית האוניטרית אוניטרית אוניטר

$$A \cdot A^t = A^t \cdot A = I \ ,$$

או, באופן שקול:

$$A^{-1} = A^t .$$

דוגמה 7.13

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(\mathbf{v}) = A \cdot \mathbf{v}$

לכן $A\cdot A^t=I$ אם א אורתוגונלית, אז $A=[T]_E$ כאשר

$$|A| \cdot |A^t| = |A|^2 = 1$$

לכן

$$|A|=\pm 1.$$

בנוסף, אם A אורתוגונלית, אז

$$A^{-1} = A^t .$$

נסמן

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \Rightarrow \quad A^{-1} = \frac{1}{|A|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

.|A|=1 המקרה

$$A^{-1}=egin{pmatrix} d&-b\\-c&a \end{pmatrix}=A^t=egin{pmatrix} a&c\\b&d \end{pmatrix}$$
 .
$$a=d\ ,c=-b\$$
לכן $A=A_1=egin{pmatrix} a&-b\\b&a \end{pmatrix}$

 $.a^2 + b^2 = 1$ כאשר

|A| = -1 המקרה

במקרה של |A|=-1 נקבל

$$A^{-1}=-egin{pmatrix} d&-b\\-c&a \end{pmatrix}=A^t=egin{pmatrix} a&c\\b&d \end{pmatrix}$$
 ,
$$d=-a\ ,b=c\$$
 לכן $A=A_2=egin{pmatrix} a&b\\b&-a \end{pmatrix}$

 $a^2 + b^2 = 1$ כאשר

כך ש: (0 $\leq \phi < 2\pi$) ϕ יחידה אווית אווית נובע שקיימת $a^2 + b^2 = 1$ הזה, מהשוויון הזה,

$$b = \sin \phi \ , \qquad a = \cos \phi \ .$$

לכן ניתן לרשום:

$$A_{1} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$

$$A_{2} = \begin{pmatrix} \cos \phi & \sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$

 $\mathbb{R}^{2 imes 2}$ באנו צורה של כל המטריצות האורתוגונליות ב

המשמעות הגאומטרית של העתקה $u o A_i u$ היא הסיבוב של המישור האווית של העתקה של העתקה לב כי

$$A_2 = \begin{pmatrix} \cos \phi & \sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

כלומר

$$A_2 = A_1 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

היא המטריצה הסטנדרטית של העתקה השיקוף של המישור ביחס לציר ה- x. לכן פירושה היא $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ היא המטריצה שיקוף המישור ביחס לציר ה- x, ולאחר מכן סיבוב בזווית ϕ נגד כיוון השעון.

. נרשום את צנאי האוניטריות של מטריצה A בעזרת קואורדינטות

משפט 7.8

- אם A מטריצה אוניטרית מסדר n מעל שדה \mathbb{F} , אז גם שורותיה וגם עמודותיה מהוות בסיס (1 אורתונורמלי של \mathbb{F}^n ביחס למכפלה הפנימית הסטנדרטית ב-
- \mathbb{F}^n אם שורות (או עמודות) של מטריצה ריבועית מסדר n מעל מטריצה אורתונורמלי של (2) אם שורות בסיס אורתונורמלי אז המטריצה אוניטרית.

הוכחה: נסמן

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} , \qquad \bar{A} = \begin{pmatrix} \bar{a}_{11} & \bar{a}_{21} & \cdots & \bar{a}_{n1} \\ \bar{a}_{12} & \bar{a}_{22} & \cdots & \bar{a}_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ \bar{a}_{1n} & \bar{a}_{2n} & \cdots & \bar{a}_{nn} \end{pmatrix} .$$

נניח ש $A\cdot ar{A}$ אוניטרית. אז $A\cdot ar{A}=I$ וגם $A\cdot ar{A}=I$ וגם אוניטרית. אז אוניטרית.

$$(A\bar{A})_{ij} = (a_{i1} \quad \cdots \quad a_{in}) \cdot \begin{pmatrix} \bar{a}_{j1} \\ \vdots \\ \bar{a}_{jn} \end{pmatrix} = \sum_{k=1}^{n} a_{ik} \bar{a}_{jk}$$

לכן מטריצה A אוניטרית כאשר

$$\sum_{k=1}^{n} a_{ik} \bar{a}_{jk} = \begin{cases} 1 & i=j\\ 0 & i \neq j \end{cases}$$

הביטוי j -הביטוי ה- j של מטריצה \mathbb{F}^n של הפנימית ב- \mathbb{F}^n של השורה ה- j של מטריצה $\sum_{k=1}^n a_{ik} \bar{a}_{jk}$ אוניטרית, אז שורות A הן בסיס אורתונורמלי של A

 $:\!\!ar{A}A$ באופן דומה, האיבר ה- (i,j) של המטריצה

$$(\bar{A}A)_{ij} = (\bar{a}_{1i} \quad \cdots \quad \bar{a}_{ni}) \cdot \begin{pmatrix} a_{1j} \\ \vdots \\ a_{nj} \end{pmatrix} = \sum_{k=1}^{n} \bar{a}_{ki} a_{kj}$$

A אאת המכפלה הפנימית הסטנדרטית של עמודות מטריצה

.i
eq j עבור 0 -שווה ל- i=j עבור עבור ל- 0 עבור המכפלה הזאת

A מהוות בסיס אורתונורמלי של

 $:A\cdot ar{A}$ של (i,j) אז האיבר \mathbb{F}^n נניח ששורות מטריצה A מהוות בסיס אורתונורמלי של

$$(A\bar{A})_{ij} = (a_{i1} \quad \cdots \quad a_{in}) \cdot \begin{pmatrix} \bar{a}_{j1} \\ \vdots \\ \bar{a}_{jn} \end{pmatrix} = \sum_{k=1}^{n} a_{ik} \bar{a}_{jk} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} .$$

אוניטרית. $A \Leftarrow Aar{A} = I$ ז"א

נניח כעת, שעמודות A מהוות בסיס אורתונורמלי. אז

$$(\bar{A}A)_{ij} = \sum_{k=1}^{n} \bar{a}_{ki} a_{kj} = \begin{cases} 1 & i=j \\ 0 & i \neq j \end{cases} .$$

ז"א $A \Leftarrow \bar{A} \cdot A = I$ אוניטרית.

משפט 7.9

עבור העתקה לינארית T:V o V (כאשר V מרחב מכפלה פנימית נוצר סופית) התנאים הבאים שקולים זה לזה:

א) אוניטרית, ז"א T

$$\bar{T} \cdot T = T \cdot \bar{T} = 1$$

 $:u,\mathbf{v}\in V$ לכל

$$\langle T(u), T(v) \rangle = \langle u, v \rangle$$
.

 $:u\in V$ לכל (ג

$$||T(u)|| = ||u||.$$

 $:u,\mathbf{v}\in V$ לכל (ד

$$||T(u) - T(v)|| = ||u - v||$$
.

- . מעבירה בסיס אורתונורמלי כלשהו של V לבסיס אורתונורמלי T
- . המטריצה המייצגת של T לפי בסיס אורתונורמלי מסוים של V היא אוניטרית.

דוגמה 7.14

עבור אילו ערכים של lpha המטריצה הנתונה היא אורתוגונלית? אוניטרית?

$$A=egin{pmatrix} lpha & rac{1}{2} \ -rac{1}{2} & lpha \end{pmatrix}$$
 (N

$$A=egin{pmatrix} lpha & 0 \ 1 & 1 \end{pmatrix}$$
 (2

פתרון:

(N

$$A = \begin{pmatrix} \alpha & \frac{1}{2} \\ -\frac{1}{2} & \alpha \end{pmatrix} , \qquad \bar{A} = A = \begin{pmatrix} \bar{\alpha} & \frac{1}{2} \\ -\frac{1}{2} & \bar{\alpha} \end{pmatrix}$$

$$A \cdot \bar{A} = \begin{pmatrix} \alpha \bar{\alpha} + \frac{1}{4} & \frac{1}{2}(\bar{\alpha} - \alpha) \\ \frac{1}{2}(\alpha - \bar{\alpha}) & \alpha \bar{\alpha} + \frac{1}{4} \end{pmatrix} = \begin{pmatrix} |\alpha|^2 + \frac{1}{4} & \frac{1}{2}(\bar{\alpha} - \alpha) \\ \frac{1}{2}(\alpha - \bar{\alpha}) & |\alpha|^2 + \frac{1}{4} \end{pmatrix}$$

 $lpha=\pmrac{\sqrt{3}}{2}$ לכן $lpha=\pmrac{\sqrt{3}}{2}$, איי המטריצה אורתוגונלית עבור , $|lpha|^2=rac{3}{4}$ לכן , $|lpha|^2+rac{1}{4}=1$, $lpha=ar{lpha}\in\mathbb{R}$

ב) המכפלה הפנימית של העמודות שווה ל- 1 לכן העמודות לא מהוות בסיס אורתונורמלי. לכן A לא אורתוגונלית ולא אוניטרית.

דוגמה 7.15

אסטנדרטית). הוכיחו כי קיימת היא סטנדרטית). הוכיחו כי קיימת (המכפלה הפנימית היא הוכיחו כי קיימת וקטור $\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$ יהי יהי

$$\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$
 אוניטרית שהעמודה הראשונה שלה היא מטריצה

$$\begin{pmatrix} \frac{1}{2} + \frac{1}{2}i \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}$$
 מצאו מטריצה אוניטרית מסדר 3, שהעמודה הראשונה שלה היא

פתרון:

א) נשלים את הוקטור הנתון לבסיס אורתונורמלי של \mathbb{F}^n ונשים אותם בעמודות המטריצה. המטריצה המתקבלת אוניטרית.

יוקטור יחידה כי
$$\mathbf{v}_1=egin{pmatrix} rac{1}{2}+rac{1}{2}i\\ -rac{1}{2}\\ -rac{1}{2} \end{pmatrix}$$
 (ב

$$\langle \mathbf{v}_1, \mathbf{v}_1 \rangle = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = 1$$
.

 $:\mathbb{C}^3$ נשלים את לבסיס לבסיס את v_1

$$\mathbf{v}_{1} = \begin{pmatrix} \frac{1}{2} + \frac{1}{2}i \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} , \quad \mathbf{v}_{2} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} , \quad \mathbf{v}_{3} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} .$$

נבנה בסיס אורתונורמלי (נשתמש בתהליך גרם-שמידט):

$$u_{1} = \mathbf{v}_{1} .$$

$$\langle \mathbf{v}_{2}, u_{1} \rangle = \frac{1}{2} - \frac{1}{2}i .$$

$$u_{2} = \mathbf{v}_{2} - \frac{\langle \mathbf{v}_{2}, u_{1} \rangle}{\|u_{1}\|^{2}} u_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - \left(\frac{1}{2} - \frac{1}{2}i\right) \begin{pmatrix} \frac{1}{2} + \frac{1}{2}i \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{4} - \frac{1}{4}i \\ \frac{1}{4} - \frac{1}{4}i \end{pmatrix}$$

$$u_{3} = \mathbf{v}_{3} - \frac{\langle \mathbf{v}_{3}, u_{1} \rangle}{\|u_{1}\|^{2}} u_{1} - \frac{\langle \mathbf{v}_{3}, u_{2} \rangle}{\|u_{2}\|^{2}} u_{2}$$

$$\langle \mathbf{v}_{3}, u_{1} \rangle = -\frac{1}{2} .$$

$$\langle \mathbf{v}_3, u_2 \rangle = \frac{1}{4} + \frac{1}{4}i .$$

$$\|u_2\|^2 = \frac{1}{4} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{1}{2} .$$

$$u_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} \frac{1}{2} + \frac{1}{2}i \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} - \begin{pmatrix} \frac{1}{2} + \frac{1}{2}i \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{4} - \frac{1}{4}i \\ \frac{1}{4} - \frac{1}{4}i \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}$$

$$\|u_3\|^2 = \frac{1}{16} + \frac{1}{16} = \frac{1}{8} .$$

בסיס אורתנורמלי:

$$\hat{u}_1 = \begin{pmatrix} \frac{1}{2} + \frac{1}{2}i \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} , \qquad \hat{u}_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}i \\ \frac{1}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}i \end{pmatrix} , \qquad \hat{u}_3 = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} ,$$

$$\hat{u}_3 = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} ,$$

$$\hat{u}_4 = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} ,$$

$$\hat{u}_5 = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} ,$$

$$\hat{u}_7 = \begin{pmatrix} 0 \\ \frac{1}{2} + \frac{1}{2}i & \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{2} & \frac{1}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}i & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & \frac{1}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}i & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\text{derivate}$$

דוגמה 7.16

T:V o V העתקה על הבאים התנאים התנאים נתבונן

- אוניטרית. T
- ב) צמודה לעצמה. T
 - $T^{2} = I$ (a)

הוכיחו כי קיום כל שני תנאים מאלה שרשומים גורר קייום התנאי השלישי.

פתרון:

 $(k) \Leftarrow (k)$ ו- $(k) \Leftrightarrow (k)$

נתון: T אוניטרית וצמודה לעצמה. אז

$$T^2 = T \cdot T$$
 $= \bar{T} \cdot T$ (צמודה לעצמה T) $= I$ (כי T אוניטרית)

(ב) (ב) (ב) (א)

 $T^2=I$ -נניח: T צמודה לעצמה ו

צריך להוכיח: T אוניטרית.

$$ar{T} \cdot T = T \cdot T$$
 (צמודה לעצמה) $=I$ (לפי הנתון)

לכן T אוניטרית.

(ב) \Leftarrow (ב) (ב) נוכיח:

 $T^2=I$ -נניח: T אוניטרית ד

. צריך להוכיח: T צמודה לעצמה

$$\bar{T} \cdot T = I \quad \Rightarrow \quad \bar{T} \cdot T^2 = T$$

לכן נקבל $T^2=I$

$$\bar{T} = T$$
.

דוגמה 7.17

- א) הוכיחו כי מכפלת העתקות אוניטריות היא העתקה אוניטרית.
 - ב) תהי T העתקה אוניטרית. מתי lpha T היא העתקה לינארית?
 - אוניטרית? האם סכום העתקות אוניטריות היא העתקה אוניטרית?
 - . אוניטריות T^{-1} ו- \bar{T} אוניטריות העתקה אוניטרית. הוכיחו ל

פתרון:

. גניח כי T_1, T_2 העתקות אוניטריות

111

$$(T_1T_2) \cdot \overline{(T_1T_2)} = T_1 (T_2\overline{T}_2) \, \overline{T}_1 = T_1\overline{T}_1 = I .$$

(2

$$(\alpha T)\left(\overline{\alpha T}\right) = \alpha T \cdot \bar{\alpha} \bar{T} = \alpha \bar{\alpha} T \cdot \bar{T} = \alpha \bar{\alpha} = 1$$

 $|\alpha|^2=1$ אס"ם

- לא T+(-T)=0 אבל העתקה אוניטרית. אז לפי סעיף (ב), גם T אוניטרית. אבל אוניטרית. אז לפי סעיף אוניטרית.
 - אוניטרית (נתון) לכן T

$$T \cdot \bar{T} = \bar{T} \cdot T = I$$

 $ar{T}\cdot T=I$ נקח את הצמודה של

$$\overline{\bar{T}\cdot T} = \bar{I} \qquad \Rightarrow \qquad \bar{T}\cdot \overline{\bar{T}} = \bar{T}\cdot T = I \ .$$

. לכן $ar{T}$ אוניטרית

אוניטרית, לכן T

$$\bar{T} \cdot T = I \qquad \Rightarrow \qquad T^{-1} = \bar{T} \ .$$

שעור 8 העתקות נורמליות

8.1 ערכים עצמיים של העתקות במרחבי מכפלות פנימיות

משפט 8.1 ערכים עצמיים של העתקה צמודה לעצמה ממשיים

כל הערכים עצמיים של העתקה (מטריצה) צמודה לעצמה הם ממשיים.

מצד שני

$$\langle T(\mathbf{v}),\mathbf{v} \rangle = \langle \mathbf{v}, \bar{T}(\mathbf{v}) \rangle$$
 (הגדרה של העתקה צמודה)
$$= \langle \mathbf{v}, T(\mathbf{v}) \rangle$$
 צמודה לעצמה) T $= \langle \mathbf{v}, \lambda \mathbf{v} \rangle$ (T ווקטור עצמי של \mathbf{v}) $= \bar{\lambda} \langle \mathbf{v}, \mathbf{v} \rangle$ (לינאריות חלקית של מכפלה פנימית)

נשווה ביניהם:

$$\lambda \left< \mathbf{v}, \mathbf{v} \right> = \bar{\lambda} \left< \mathbf{v}, \mathbf{v} \right> \quad \Rightarrow \quad (\lambda - \bar{\lambda}) \left< \mathbf{v}, \mathbf{v} \right> = 0 \; .$$

$$.\lambda = \bar{\lambda} \Leftarrow (\lambda - \bar{\lambda}) = 0 \Leftarrow \left< \mathbf{v}, \mathbf{v} \right> \neq 0 \Leftarrow \mathbf{v} \neq 0 \Leftarrow \mathbf{v} \neq 0 \Leftrightarrow \mathbf$$

משפט 8.2 ערכים עצמיים של העתקה אנטי-הרמיטית מדומים

. אם T העתקה אנטי-הרמיטית אז כל הערכים העצמיים של הם מספרים מדומים.

הוכחה:

מצד שני

$$\langle T(\mathbf{v}),\mathbf{v}
angle = \langle \mathbf{v}, \bar{T}(\mathbf{v})
angle$$
 (הגדרה של העתקה צמודה)
$$= \langle \mathbf{v}, -T(\mathbf{v})
angle$$
 (ד) אנטי-הרמיטית)
$$= - \langle \mathbf{v}, T(\mathbf{v})
angle$$

$$= - \langle \mathbf{v}, \lambda \mathbf{v}
angle$$
 (ד) אוקטור עצמי של T (ד) ווקטור עצמי של T (ד) ווקטור עצמי של T (ד) ווקטור עצמי של T (ד) אוקטית של מכפלה פנימית)

נשווה ביניהם:

$$\lambda \left< \mathbf{v}, \mathbf{v} \right> = -\bar{\lambda} \left< \mathbf{v}, \mathbf{v} \right> \quad \Rightarrow \quad (\lambda + \bar{\lambda}) \left< \mathbf{v}, \mathbf{v} \right> = 0 \; .$$

$$.\lambda = -\bar{\lambda} \Leftarrow (\lambda + \bar{\lambda}) = 0 \Leftarrow \left< \mathbf{v}, \mathbf{v} \right> \neq 0 \Leftarrow \mathbf{v} \neq 0 \Leftarrow \mathbf{v} \neq 0 \Leftrightarrow \mathbf{v} \neq 0 \Leftrightarrow$$

משפט 8.3 פולינום אופייני של העתקה צמודה לעצמה מתפרק לגורמים לינארים ממשיים

תהי T העתקה (מטריצה) צמודה לעצמה.

- .הפולינום האופייני של T מתפרק לגורמים לינאריים.
 - ממשיים. T ממשיים של הפולינום האופייני של

המטריצה המייצגת (תהי $T:V \to V$ העתקה וקטורי מעל שדה $\mathbb F$ המטריצה ותהי ותהי $T:V \to V$ העתקה לינארית. תהי וקטורי מעל שדה $\mathrm{dim}(V)=n$ של ביחס לבסיס B. עם $T:V \to V$ או מייצגת ותהי ותהי וליטורי מעל שדה $T:V \to V$ המטריצה המייצגת והי של די מייצגת והייצגת והייצגת

אם מקדמים מסדר אם מסדר מסדר פולינום האופייני של ו $[T]_B$ של האופייני אז הפולינום אז הפולינום או $\mathbb{F}=\mathbb{C}$

$$m_T(x) = a_0 + a_1 x + \dots x^n ,$$

 $.1 \leq i \leq n$, $a_i \in \mathbb{C}$ כאשר

לפי המשפט היסודי של האלגברה יש לפולינום הזה פירוק לגורמים לינאריים:

$$m_T(x) = a_0 + a_1 x + a_2 x^2 + \ldots + x^n = (x - \lambda_1) \ldots (x - \lambda_n)$$
,

 $.1 \leq i \leq n \ \lambda_i \in \mathbb{C}$

השורשים של הערכים הערכים העצמיים לT אם אם פון משפט 3.1, לפי הערכים הערכים הערכים הערכים ממשיים של הם מספרים ממשיים. T

 $1 \leq i \leq n$, $\lambda_i \in \mathbb{R}$ כלומר,

אם מקדמים מסדר עם מסדר פולינום ווא פולינום או הפולינום האופייני של $\mathbb{F}=\mathbb{R}$ אם

$$m_T(x) = a_0 + a_1 x + \dots x^n ,$$

 $\mathbb{F}=\mathbb{C}$ מכאן המקרה דבר של אותה אותה מכאן מכאן מכאן . $1\leq i\leq n$, $a_i\in\mathbb{R}$ כאשר

1 משפט 8.4 ערך מוחלט של כל ערך עצמי של העתקה אוניטרית שווה

יהי V מרחב מכפלה פנימית מעל שדה $\mathbb C$, ויהי T העתקה V o V אוניטרית. אז הערך מוחלט של כל ערך עצמי של T שווה ל T.

הוכחה:

X

 $T({f v})=\lambda {f v}$ ז"א י"א אוניטרית, ונניח אייך עצמי של אוניטרית, ונניח אייד אוניטרית, ונניח אוניטרית, ונניח אייד אוניטרית, ונניח אייד אוניטרית, ונניח אייד אוניטרית, ונניח אייד אוניטרית, ונניח אוניטרית, ונניח אייד אוניטרית, ונניח אוניטרית, ונוניח אוניטרית, ונוניח אוניטרית, ונוניח אוניטרית, וווויטרית, וווויטרית, וווויטרית, וווויטרית, ווווויטרית, וווווויטרית, ווווויטרית, וווווויטרית, וווווויטרית, ווווויטרית, וווווויטרית, ווווויטרית, וווווויטרית, ווווויטרית, ווווויטרית, וווווויטרית,

$$\langle T({
m v}), T({
m v})
angle = \langle \lambda {
m v}, \lambda {
m v}
angle \qquad (T$$
 ווקטור עצמי של יוקטור עצמי של מכפלה פנימית) ולינאריות של מכפלה פנימית) ולינאריות חלקית של מכפלה פנימית)

מצד שני

$$\langle T({
m v}), T({
m v})
angle = \langle {
m v}, \bar T T({
m v})
angle$$
 (הגדרה של העתקה צמודה)
$$= \langle {
m v}, I({
m v})
angle$$
 אוניטרית)
$$= \langle {
m v}, {
m v}
angle$$

נשווה ביניהם:

$$\lambda \bar{\lambda} \langle \mathbf{v}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{v} \rangle \quad \Rightarrow \quad (\lambda \cdot \bar{\lambda} - 1) \langle \mathbf{v}, \mathbf{v} \rangle = 0 .$$

$$|\lambda|^2=1 \Leftarrow \lambda \bar{\lambda}=1 \Leftarrow (\lambda \cdot \bar{\lambda}-1)=0 \Leftarrow \langle {
m v}, {
m v}
angle \neq 0 \Leftarrow {
m v} \neq 0 \Leftarrow {
m v}$$
 ווקטור עצמי

8.2 העתקות ומטריצות נורמליות

הגדרה 8.1 העתקה נורמלית

העתקה נורמלית מכפלה פנימית מכפלה במרחב במרחב וורמלית אם T:V o V

$$T \cdot \bar{T} = \bar{T} \cdot T \ .$$

מטריצה נורמלית לקראת גורמלית אם $A\in\mathbb{F}^{n imes n}$

$$A \cdot \bar{A} = \bar{A} \cdot A$$
.

8.3 דוגמאות של העתקות נורמליות

דוגמה 8.1

הוכיחו: העתקה (מטריצה) צמודה לעצמה היא נורמלית.

פתרון:

אם
$$ar{T}=T$$
 צמודה לעצמה אז $ar{T}=T$, לכן

$$T\cdot \bar{T} = T^2 = \bar{T}\cdot T$$
 .

דוגמה 8.2

העתקה (מטריצה) אנטי-הרמיטית היא נורמלית.

פתרון:

אם
$$ar{T} = -T$$
 אנטי-הרמיטית, אז $ar{T} = -T$, לכן

$$T \cdot \bar{T} = T \cdot (-T) = (-T) \cdot T = \bar{T} \cdot T .$$

דוגמה 8.3

העתקה (מטריצה) אוניטרית היא נורמלית.

פתרון:

אם T אוניטרית, אז

$$T \cdot \bar{T} = I$$
 . (#1)

:T -מצד ימין ב-

$$T \cdot \bar{T} \cdot T = I \cdot T \qquad \Rightarrow \qquad T \cdot (\bar{T} \cdot T) = T \; .$$
 (#2)

מכאן

$$\bar{T} \cdot T = I$$
 . (#3)

:(#3) -ו (#1) לכן מ-

$$T \cdot \bar{T} = I = \bar{T} \cdot T$$
.

דוגמה 8.4

$$A = egin{pmatrix} 3 & -1 & -\sqrt{2} \\ -1 & 3 & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} & 2 \end{pmatrix}$$
 קבעו אם המטריצה

- א) אורתוגונלית,
 - ב) סימטרית,
- ,אנטי-סימטרית
 - נורמלית.

בתרון:

$$A = \begin{pmatrix} 3 & -1 & -\sqrt{2} \\ -1 & 3 & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} & 2 \end{pmatrix}$$

- אינה אורתוגונלית. A
 - ב) אינה סימטרית.
- אינה אנטי-סימטרית. A

(†

$$A \cdot A^t = A^t \cdot A = \begin{pmatrix} 12 & -4 & 0 \\ -4 & 12 & 0 \\ 0 & 0 & 8 \end{pmatrix}$$

לכן A נורמלית.

דוגמה 8.5

מטריצה $A = \begin{pmatrix} 2 & 2i \\ 2 & 4+2i \end{pmatrix}$ אינה אוניטרית, אינה הרמיטית, ואינה אנטי-הרמיטית, אבל היא נורמלית כי

ולכן
$$ar{A}=egin{pmatrix}2&2\\-2i&4-2i\end{pmatrix}$$

$$A \cdot \bar{A} = \bar{A} \cdot A = \begin{pmatrix} 8 & 8 + 8i \\ 8 - 8i & 24 \end{pmatrix}$$

דוגמה 8.6

מטריצה
$$ar{A}=\begin{pmatrix}1&0\\-i&3\end{pmatrix}$$
 אינה נורמלית כי $A=\begin{pmatrix}1&i\\0&3\end{pmatrix}$ ולכן
$$A\cdot \bar{A}=\begin{pmatrix}1&i\\0&3\end{pmatrix}\cdot\begin{pmatrix}1&0\\-i&3\end{pmatrix}=\begin{pmatrix}2&3i\\-3i&9\end{pmatrix}$$

$$\bar{A}\cdot A=\begin{pmatrix}1&0\\-i&3\end{pmatrix}\cdot\begin{pmatrix}1&i\\0&3\end{pmatrix}=\begin{pmatrix}1&i\\-i&10\end{pmatrix}$$

ראינו קודם (במשפט 8.5) כי הנומרליות היא תנאי הכרחי ללכסינות אונטריות. האם זה תנאי מספיק?

.במקרה של $\mathbb{F}=\mathbb{R}$ זה לא נכון

דוגמה נגדית: A אבל A אינה לכסינה כי מטריצה מטריצה מטריצה אינה $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ אבל כי

$$p_A(\lambda) = \lambda^2 - 2\lambda + 2$$

. אינו מתפרק לגורמים לינאריים מעל $\mathbb R$. לכן A גם לא לכסינה אורתוגונלית.

אותה המטריצה מעל $Q=\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} & \frac{i}{\sqrt{2}} \end{pmatrix}$ אותה המטריצה מעל $Q=\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} & \frac{i}{\sqrt{2}} \end{pmatrix}$ אנחנו נוכיח בהמשך שנומרליות היא תנאי הכרחי ומספיק ללכסון אוניטרי מעל

דוגמה 8.7

הוכיחו או הפריחו: כל מטריצה סימטרית (לאו דווקא ממשית) היא נורמלית.

פתרון:

דוגמה נגדית:

$$A = \begin{pmatrix} 1 & i \\ i & 2 \end{pmatrix}$$

סימטרית (לא הרמיטית).

$$\bar{A} = \begin{pmatrix} 1 & -i \\ -i & 2 \end{pmatrix}$$

$$A \cdot \bar{A} = \begin{pmatrix} 1 & i \\ i & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & -i \\ -i & 2 \end{pmatrix} = \begin{pmatrix} 1 & i \\ -i & 5 \end{pmatrix}$$

$$\bar{A} \cdot A = \begin{pmatrix} 1 & -i \\ -i & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & i \\ i & 2 \end{pmatrix} = \begin{pmatrix} 2 & -i \\ i & 5 \end{pmatrix}$$

. לכן $A\cdot ar{A}
eq ar{A}\cdot A$ נורמלית,

דוגמה 8.8

. מטריצה וורמלית פי תיא מטריצה כי הוכיחו מטריצה אוניטרית. מטריצה ער מטריצה מטריצה מטריצה מטריצה אוניטרית. מטריצה אוניטרית וורמלית וו

פתרון:

נסמן $B=ar{Q}AQ$ נסמן

$$B \cdot \bar{B} = (\bar{Q}AQ) \cdot \overline{(\bar{Q}AQ)}$$

$$= (\bar{Q}AQ) \cdot (\bar{Q}\bar{A}Q)$$

$$= \bar{Q}A \underbrace{Q\bar{Q}}_{=I} \bar{A}Q$$

$$= \bar{Q}A\bar{A}Q$$

$$= \bar{Q}\bar{A}AQ \qquad (הי A \ \text{tiradefin}) A \qquad (¬) \ .$$

$$\bar{B} \cdot B = \overline{(\bar{Q}AQ)} \cdot (\bar{Q}AQ)$$

$$= (\bar{Q}\bar{A}Q) \cdot (\bar{Q}AQ)$$

$$= \bar{Q}\bar{A}\underbrace{Q\bar{Q}}_{=I}AQ$$

$$= \bar{Q}\bar{A}AQ.$$

. ולכן $B \cdot ar{B} = ar{B} \cdot B$ ז"א

דוגמה 8.9

 λ העתקה נורמלית ב- V. אז $T-\lambda I$ היא העתקה נורמלית לכל סקלר T

פתרון:

$$\begin{split} (T-\lambda I)\cdot\overline{(T-\lambda I)} &= (T-\lambda I)\cdot\left(\bar{T}-\bar{\lambda}I\right) \\ &= T\bar{T}-\bar{\lambda}T-\lambda\bar{T}+(\lambda\bar{\lambda})I \\ \hline (T-\lambda I)\cdot(T-\lambda I) &= \left(\bar{T}-\bar{\lambda}I\right)\cdot(T-\lambda I) \\ &= \bar{T}T-\lambda\bar{T}-\bar{\lambda}T+(\lambda\bar{\lambda})I \end{split}$$

מכאן . $T\cdot ar{T}=ar{T}\cdot T$ מכאן נרומלית, לכן

$$(T - \lambda I) \cdot \overline{(T - \lambda I)} = \overline{(T - \lambda I)} \cdot (T - \lambda I)$$

לכן $T - \lambda I$ העתקה נורמלית.

ראינו קודם (במשפט 8.5) שנורמליות היא תנאי הכרחי ללכסינות אוניטריות. ז"א אם מטריצה לכסינה אוניטרית, אז היא נורמלית. נוכיח בהמשך שבמקרה של מרוכבים, שנורמליות היא גם תנאי מספיק ללכסינות אוניטריות. כלומר אם מטריצה נורמלית אז היא לכסינה אוניטרית מעל $\mathbb C$.

במקרה של \mathbb{R} , התנאי הזה לא מספיק. ראינו קודם דוגמה (18.7) נגדית. דרוש תנאי נוסף.

8.4 העתקה לכסינה אוניטרית ומטריצה לכסינה אוניטרית

הגדרה 8.2 העתקה לכסינה אוניטרית

-ט כך Q נקראת אוניטרית אם קיימת אוניטרית לכסינה אוניטרית לכסינה A . $A \in \mathbb{F}^{n \times n}$

$$D = Q^{-1}AQ$$

.כאשר D מטריצה אלכסונית

נקראת T . $\mathbb F$ ממדי מעל שדה n ממדי מכפלה פנימית מרחב לארית על ידי $T:V\to V$ מרחב לינארית על תהי העתקה לכסינה אוניטרית אם קיים בסיס אורתונורמלי $B=\{u_1,\dots,u_n\}$ של ע"י מטריצה אלכסונית.

. במקרה של $\mathbb{F}=\mathbb{R}$ למטריצה (העתקה) לכסינה אוניטרית קוראים $\mathbb{F}=\mathbb{R}$

משפט 8.5 העתקה לכסינה אוניטרית היא נורמלית

תהי T:V o V העתקה נורמלית, כלומר לכסינה אוניטרית. אז T העתקה נורמלית, כלומר

$$T \cdot \bar{T} = \bar{T} \cdot T$$
.

הוכחה: נניח כי $V \to V$ היא העתקה לכסינה אוניטרית. לכן (משפט 7.8) היא העתקה לרונורמלי $T:V \to V$ קיים בסיס אורתונורמלי $T:V \to V$ כך ש- $T|_B$ אלכסונית. נרשום

$$[T]_B = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} .$$

אזי

$$[\bar{T}]_B = \overline{[T]_B} = \begin{pmatrix} \bar{\lambda}_1 & & & \\ & \bar{\lambda}_2 & & \\ & & \ddots & \\ & & & \bar{\lambda}_n \end{pmatrix}$$

, לכן העריצות אלכסונית. מטריצות אלכסוניות מתחלפות, (ראו דוגמה 10.10), לכן אלכסונית. מטריצות אלכסוניות מתחלפות, אלכסוניות מתחלפות, ליאו מתחלפות מתחלפות אלכסוניות מחלפות אלכסוניות מתחלפות מתחלפות אלכסוניות מתחלפות אלכסוניות מתחלפות מתחלפות אלכסוניות מתחלפות מתחלפות אלכסוניות מתחלפות מתחלפות אלכסוניות מתחלפות מתחלפות מתחלפות אלכסוניות מתחלפות מתחלפות אלכסוניות מתחלפות מתחלם מתחלפות מתחלפות מתחלפות מתחלפות מתחלפות מתחלפות מתחלפות מתחלפו

$$\left[T\cdot\bar{T}\right]_B = \left[\bar{T}\cdot T\right]_B \quad \Rightarrow \quad T\cdot\bar{T} = \bar{T}\cdot T \ .$$

יאה מעבילה עבור מטריצות: תוצאה אוניטרית. לכך ש- T לכסינה לכך הכרחי לכך אוניטרית. תוצאה אוניטרית.

אם מטריצה ריבועית A לכסינה אוניטרית. אז

$$A \cdot \bar{A} = \bar{A} \cdot A$$

משפט 8.6 העתקה לכסינה אורתוגונלית היא נורמלית וסימטרית

 \mathbb{R} יהי V מרחב וקטורי מעל \mathbb{R} ותהי ותהי T:V o V ותהי מעל שדה על מרחב וקטורי מעל מעל אור וו

- העתקה נורמלית. T (1
- . העתקה סימטרית T (2

 \mathbb{R} מטריצה לכסינה אורתוגונלית מעל שדה $A \in \mathbb{R}^{n imes n}$

- .העתקה נורמלית A
- .העתקה סימטרית A (4

הוכחה:

כבר הוכחנו זאת למעלה במשפט 8.5. T לכסין אורתוגונלי אז קיים בסיס אורתוגונלי U של V כך שהמטריצה (בר הוכחנו זאת למעלה במשפט 8.5. אלכסונית:

$$[T]_B = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} .$$

מכאן

$$[\bar{T}]_B = \overline{[T]_B} = \begin{pmatrix} \bar{\lambda}_1 & & & \\ & \bar{\lambda}_2 & & \\ & & \ddots & \\ & & & \bar{\lambda}_n \end{pmatrix}$$

אלכסונית. מטריצות אלכסוניות מתחלפות לכן

$$[\bar{T}]_B \cdot [T]_B = [T]_B \cdot [\bar{T}]_B$$

ולכן T נורמלי.

B לפי בסיס אורתוגונלי המייצגת על כך על Bשל אורתוגונלי בסיס אורתוגונלי אז קיים בסיס אורתוגונלי לכסין אורתוגונלי אל אורתוגונלי אורתוגונלי אלכסונית:

$$[T]_B = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} .$$

אופרטור ממרחב וקטורי מעל $\mathbb R$ למרחב וקטורי מעל $\mathbb R$ לכן $\mathbb R^{n imes n}$, כלומר האיברים של המטריצה T אופרטור ממרחב וקטורי מעל $\mathbb R$ למרחב וקטורי מעל $\mathbb R$ אופרטור ממשיים, כלומר $[T]_B=\overline{[T]_B}=\overline{[T]_B}=[T]_B$, לכן $[T]_B=\overline{[T]_B}=[T]_B$ לכן $[T]_B=\overline{[T]_B}$ לכן $[T]_B=\overline{[T]_B}$

-ט אלכסונית פך אורתוגונלית א קיימת Q אורתוגונלית אלכסונית כך אלכסונית א לניח ש- $A \in \mathbb{R}^{n \times n}$

$$A = Q \cdot D \cdot Q^t .$$

לכן $ar{A} = A^t$ לכן $A \in \mathbb{R}^{n \times n}$

$$A\cdot ar{A}=A\cdot A^t=\left(QDQ^t
ight)\left(QDQ^t
ight)^t$$

$$=QD\underbrace{Q^tQ}_{=I}D^tQ^t \qquad (q^tQ=I)^t \qquad (Q^tQ=I)$$

מצד שני

$$ar{A}\cdot A=A^t\cdot A=\left(QDQ^t
ight)^t\cdot \left(QDQ^t
ight)$$
 $=QD^t\underbrace{Q^tQ}_{=I}DQ^t$ (הגדרה של השיחלוף) $=QD^tIDQ^t$ $=QD^tDQ^t$ $=QD^tDQ^t$ $=QDDQ^t$ $=D^tDQ^t$ $=D^tDQ^t$ $=D^tDQ^t$ $=D^tDQ^t$ $=D^tDQ^t$ $=D^tDQ^t$ $=D^tDQ^t$

-ט כך שלכסונית ו- D אלכסונית אז קיימת אורתוגונלית. אז לכסינה אורתוגונלית אלכסונית כך ש

$$A = Q \cdot D \cdot Q^t \ .$$

לכן
$$ar{A} = A^t$$
 לכן $A \in \mathbb{R}^{n imes n}$

$$ar{A}=A^t=ig(QDQ^tig)^t$$
 $=QD^tQ^t$ (הגדרה של השיחלוף) $=QDQ^t$ ($D^t=D$ אלכסונית אז D) $=A$.

דוגמה 8.10

תהי $ar{T}$ לכסינה אוניטרית. הוכיחו כי לכסינה אוניטרית.

פתרון:

-ט כך B כך אורתונורמלי בסיס אורתונורמלי לפי לפי לפי לכסינה אוניטרית לכן לפי משפט T

$$[T]_B = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} .$$

מכאן

$$[\bar{T}]_B = \overline{[T]_B} = \begin{pmatrix} \bar{\lambda}_1 & & & \\ & \bar{\lambda}_2 & & \\ & & \ddots & \\ & & & \bar{\lambda}_n \end{pmatrix} .$$

קיבלנו כי בבסיס אורתונורמלי B, המטריצה המייצגת של $ar{T}$ אלכסונית. ז"א קיים בסיס אורתונורמלי שבו המטריצה המייצגת של $ar{T}$ אלכסונית, לכן $ar{T}$ לכסינה אוניטרית (לפי הגדרה 8.2).

8.5 משפט לכסון אוניטרי

משפט 8.7 משפט לכסון אוניטרי

- תהי $V \to V$ העתקה לינארית במרחב מכפלה פנימית אוניטרי נוצר סופית. $T:V \to V$ לכסינה אוניטרית אם"ם היא נורמלית.
- מכפלה פנימית אוקלידי נוצר סופית. $T:V \to V$ תהי לינארית במרחב אם"ם אם"ם אם אם $T:V \to V$ לכסינה אורתונורמלית מעל $\mathbb R$ אם"ם היא סימטרית.
 - .(ממשית או מרוכבת) מטריצה איניטריא $A \in \mathbb{F}^{n \times n}$ מטריצה מטריצה אוניטרית אם"ם היא מורמלית.
- . מטריצה ריבועית ממשית. A לכסינה אורתוגונלית אם"ם היא סימטרית $A \in \mathbb{R}^{n \times n}$ תהי

למה 8.1 ווקטור עצמי וערך עצמי של העתקה וצמודתה

 λ אם יוקטור עצמי של העתקה נורמלית T, השייך לערך עצמי של יי ${\bf v}$ אם ייד של ${\bar \tau}$ הוא ערך עצמי של ${\bar T}$ ו- י הוא הוא גם וקטור עצמי של ${\bar \lambda}$ השייך ל

 $\|T(\mathbf{v})\| = \|ar{T}(\mathbf{v})\|$ מתקיים עלכל $\mathbf{v} \in V$ מוכיח קודם שלכל

$$\begin{split} \|T(\mathbf{v})\| &= \langle T(\mathbf{v}), T(\mathbf{v}) \rangle \\ &= \langle \mathbf{v}, \bar{T}T(\mathbf{v}) \rangle \\ &= \langle \mathbf{v}, T\bar{T}(\mathbf{v}) \rangle \\ &= \langle \bar{T}(\mathbf{v}), \bar{T}(\mathbf{v}) \rangle \\ &= \|\bar{T}(\mathbf{v})\|^2 \; . \end{split}$$

נניח כעת ש- v וקטור עצמי:

$$T(\mathbf{v}) = \lambda \mathbf{v}$$
.

XI

$$(T - \lambda I)(\mathbf{v}) = 0.$$

לכן

$$||(T - \lambda I)(\mathbf{v})|| = 0.$$

לכן (8.9 הוכחנו ראו העתקה העתקה לורמלית (-או דוגמה אוכחנו לכן לכן הוכחנו כי

$$||(T - \lambda I)(\mathbf{v})|| = ||\overline{(T - \lambda I)}(\mathbf{v})||,$$

ז"א

$$\|\overline{(T-\lambda I)}(\mathbf{v})\| = \|\overline{T}(\mathbf{v}) - \overline{\lambda}I\mathbf{v}\| = 0.$$

לכן

$$\bar{T}(\mathbf{v}) - \bar{\lambda}\mathbf{v} = 0 \qquad \Rightarrow \qquad \bar{T}(\mathbf{v}) = \bar{\lambda}\mathbf{v} \ .$$

 $.ar{\lambda}$ אייך לערך עצמי ז"א $ext{v}$ הוא וקטור עצמי השייך

משפט 8.8 וקטורים עצמיים של העתקה נורמלית של ערכים עצמיים שונים אורתוגונליים

תהי T העתקה נורמלית במרחב מכפלה פנימית V מעל V. וקטורים עצמיים של T השייכים לערכים עצמיים שונים, אורתוגונליים זה מזה.

 $\lambda_1
eq \lambda_2$, λ_1, λ_2 וקטורים עצמיים של T השייכים עצמיים עצמיים $\mathbf{v}_1, \mathbf{v}_2$ וקטורים עצמיים של

$$T(\mathbf{v}_1) = \lambda_1 \mathbf{v}_1 , \qquad T(\mathbf{v}_2) = \lambda_2 \mathbf{v}_2 .$$

XI

$$\langle T(\mathbf{v}_1), \mathbf{v}_2 \rangle = \langle \lambda_1 \mathbf{v}_1, \mathbf{v}_2 \rangle = \lambda_1 \, \langle \mathbf{v}_1, \mathbf{v}_2 \rangle$$

וגם

$$\langle T(\mathbf{v}_1), \mathbf{v}_2 \rangle = \langle \mathbf{v}_1, \bar{T}(\mathbf{v}_2) \rangle = \langle \mathbf{v}_1, \bar{\lambda}_2 \mathbf{v}_2 \rangle = \lambda_2 \langle \mathbf{v}_1, \mathbf{v}_2 \rangle$$

ז"א

$$\lambda_1 \langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \lambda_2 \langle \mathbf{v}_1, \mathbf{v}_2 \rangle \qquad \Rightarrow \qquad (\lambda_1 - \lambda_2) \langle \mathbf{v}_1, \mathbf{v}_2 \rangle = 0 .$$

$$\langle {
m v}_1, {
m v}_2
angle = 0$$
 לכן $\lambda_1
eq \lambda_2$

8.6 שיטה המעשית ללכסון אוניטרי

תהי $A\in\mathbb{F}^{n\times n}$ מטריצה נורמלית. במקרה ש $\mathbb{F}=\mathbb{R}$ נניח גם ש- A סימטרית. אז $A\in\mathbb{F}^{n\times n}$ היא לכסינה אוניטרית, במקרה שווה לריבוי אלגברי של כל ערך עצמי שווה לריבוי היא לכסינה. לכן הפולינום האופייני מתפרק לגורמים לינאריים וריבוי אלגברי של כל ערך עצמי שווה לריבוי הגאומטרי. כלומר אם

$$|A - \lambda I| = (\lambda - \lambda_1)^{n_1} \cdots (\lambda - \lambda_k)^{n_k}$$

כאשר אופייני, אז הפולינום האופייני, אז $\lambda_1, \cdots \lambda_k$ כאשר

$$\dim(V_{\lambda_i}) = n_i$$

$$V_i = \{ \mathbf{v} \in \mathbb{F}^n | A \cdot \mathbf{v} = \lambda_i \mathbf{v} \}$$
 כאשר

בעזרת תהליך גרם-שמידט, נבנה ב- V_{λ_i} בסיס אורתונורמליים B_i בסיס אורתונורמליים אורתונורמליים אורתונורמליים לזה

נתבונן בקבוצת וקטורין

$$B = B_1 \cup B_2 \cup \cdots \cup B_k$$
.

. האיברים של B הם וקטורים עצמיים. \mathbb{F}^n האיברים אורתונורמלי אורתונורמלי

דוגמה 8.11

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

פתרון:

נבדוק אם A מטריצה נורמלית:

$$A \cdot A^t = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

$$A^t \cdot A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

 $AA^t = A^t A \kappa^n$

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & -1 \\ 1 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 + 1 = \lambda^2 - 2\lambda + 2 = 0$$

 V_{λ_1} נמצא את המרחב עצמיים: . $\lambda_1=1+i, \lambda_2=1-i$ נמצא את

$$A\mathbf{v} - \lambda_1 \mathbf{v} = 0 \quad \Rightarrow \quad (A - (1+i))\mathbf{v} = 0 \quad \Rightarrow \quad \begin{pmatrix} -i & 1 \\ -1 & -i \end{pmatrix} \mathbf{v} = 0$$

$$\left(\begin{array}{cc|c} -i & -1 & 0 \\ 1 & -i & 0 \end{array}\right) \xrightarrow{iR_2 + R_1} \left(\begin{array}{cc|c} -i & -1 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

x=iy לכן -ix=y פתרון:

$$V_{\lambda_1} = \operatorname{span}\left\{ \begin{pmatrix} i \\ 1 \end{pmatrix} \right\}$$

 $:V_{\lambda_1}$ בסיס אורתונורמלי

$$B_{\lambda_1} = \operatorname{span}\left\{ \begin{pmatrix} \frac{i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \right\}$$

 $:V_{\lambda_2}$ נמצא את המרחב עצמי

$$A\mathbf{v} - \lambda_2 \mathbf{v} = 0 \quad \Rightarrow \quad (A - (1 - i))\mathbf{v} = 0 \quad \Rightarrow \quad \begin{pmatrix} i & 1 \\ -1 & i \end{pmatrix} \mathbf{v} = 0$$

$$\left(\begin{array}{cc|c} i & -1 & 0 \\ 1 & i & 0 \end{array}\right) \xrightarrow{iR_2 - R_1} \left(\begin{array}{cc|c} i & -1 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

.x = -iy לכן ix = y

$$V_{\lambda_2} = \operatorname{span}\left\{ egin{pmatrix} -i \\ 1 \end{pmatrix}
ight\}$$

 $:V_{\lambda_2}$ בסיס אורתונורמלי של

$$B_{\lambda_2} = \operatorname{span} \left\{ \begin{pmatrix} \frac{-i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \right\}$$

לכן

$$B = \operatorname{span} \left\{ \begin{pmatrix} \frac{i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} \frac{-i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \right\}$$

בסיס אורתונורמלי של \mathbb{C}^2 . לכן

$$Q = \begin{pmatrix} \frac{i}{\sqrt{2}} & \frac{-i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
$$D = \begin{pmatrix} 1+i & 0 \\ 0 & 1-i \end{pmatrix}$$
$$D = \bar{Q} \cdot A \cdot Q$$

דוגמה 2.12

$$A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

פתרון:

נבדוק אם A מטריצה נורמלית:

$$A \cdot \bar{A} = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\bar{A} \cdot A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

. לכן A נורמלית. א"ז א"א $A\bar{A}=\bar{A}A$

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 1 & 0 \\ -1 & 1 - \lambda & 0 \\ 0 & 0 & 1 - \lambda \end{vmatrix} = (1 - \lambda) \left((1 - \lambda)^2 + 1 \right) = (\lambda - 1) \left(\lambda^2 - 2\lambda + 2 \right) = (1 - \lambda)(\lambda - 1 - i)(\lambda - 1 + i)$$

 $\lambda=1$ ערכים עצמיים: $\lambda_1=1, \lambda_2=1+i, \lambda_3=1-i$ נמצא את המרחב עצמיי

$$A\mathbf{v} - \lambda_1 \mathbf{v} = 0 \quad \Rightarrow \quad (A - 1)\mathbf{v} = 0 \quad \Rightarrow \quad \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mathbf{v} = 0$$

$$\left(\begin{array}{ccc|c} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) \xrightarrow{R_2 \leftrightarrow R_1} \left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

לכן $x=0,y=0,z\in\mathbb{C}$ לכן

$$V_1 = \operatorname{span}\left\{ \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$

 $: \lambda = 1 + i$ נמצא את המרחב עצמי

$$A\mathbf{v} - \lambda_2 \mathbf{v} = 0 \quad \Rightarrow \quad (A - (1+i)) \mathbf{v} = 0 \quad \Rightarrow \quad \begin{pmatrix} -i & 1 & 0 \\ -1 & -i & 0 \\ 0 & 0 & -i \end{pmatrix} \mathbf{v} \mathbf{v} = 0$$

$$\begin{pmatrix} -i & 1 & 0 & 0 \\ -1 & -i & 0 & 0 \\ 0 & 0 & -i & 0 \end{pmatrix} \xrightarrow{R_2 \to iR_2 - R_1} \begin{pmatrix} -i & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -i & 0 \end{pmatrix} \xrightarrow{R_1 \to iR_1, R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 בתרון:
$$x = -iy, z = 0 :$$

$$V_{1+i} = \operatorname{span}\left\{ \begin{pmatrix} -i\\1\\0 \end{pmatrix} \right\}$$

 $\lambda = 1 - i$ נמצא את המרחב עצמי

$$A\mathbf{v} - \lambda_3 \mathbf{v} = 0 \quad \Rightarrow \quad (A - (1 - i)) \mathbf{v} = 0 \quad \Rightarrow \quad \begin{pmatrix} i & 1 & 0 \\ -1 & i & 0 \\ 0 & 0 & i \end{pmatrix} \mathbf{v} \mathbf{v} = 0$$

$$\begin{pmatrix} i & 1 & 0 & 0 \\ -1 & i & 0 & 0 \\ 0 & 0 & i & 0 \end{pmatrix} \xrightarrow{R_2 \to iR_2 + R_1} \begin{pmatrix} i & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & i & 0 \end{pmatrix} \xrightarrow{R_1 \to -iR_1, R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & -i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

x = iy, z = 0 :פתרון

$$V_{1-i} = \operatorname{span}\left\{ \begin{pmatrix} i \\ 1 \\ 0 \end{pmatrix} \right\}$$

הבסיס אורתונורמלי:

$$B = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} \frac{-i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}, \begin{pmatrix} \frac{i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix} \right\}$$

בסיס אורתונורמלי של \mathbb{C}^2 . לכן

$$Q = \begin{pmatrix} 0 & \frac{-i}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \end{pmatrix}$$

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1+i & 0 \\ 0 & 0 & 1-i \end{pmatrix}$$

$$D = \bar{Q} \cdot A \cdot Q$$

דוגמה 8.13

$$A = \begin{pmatrix} 5 & -1 & -1 \\ -1 & 5 & -1 \\ -1 & -1 & 5 \end{pmatrix}$$

פתרון:

. מטריצה אורתוגונלית, לכן מטריצה אורתוגונלית
$$A = \begin{pmatrix} 5 & -1 & -1 \\ -1 & 5 & -1 \\ -1 & -1 & 5 \end{pmatrix}$$

$$|A - \lambda I| = \begin{vmatrix} 5 - \lambda & -1 & -1 \\ -1 & 5 - \lambda & -1 \\ -1 & -1 & 5 - \lambda \end{vmatrix}$$
$$= -(\lambda - 6)^{2}(\lambda - 3) = 0$$

ערכים עצמיים:

 $\lambda=6$ מריבוי אלגברי

 $\lambda = 3$ מריבוי אלגברי

 $:\lambda=6$ נמצא את המרחב עצמי

$$\left(\begin{array}{ccc|c}
-1 & -1 & -1 & 0 \\
-1 & -1 & -1 & 0 \\
-1 & -1 & -1 & 0
\end{array}\right) \rightarrow \left(\begin{array}{ccc|c}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)$$

לכן $y,z\in\mathbb{R}$,x=-y-z לכן

$$\begin{pmatrix} -y - z \\ y \\ z \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} .$$

$$V_6 = \operatorname{span} \left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\} .$$

 $: \lambda = 3$ נמצא את המרחב עצמי

$$A\mathbf{v} - 3\mathbf{v} = 0 \quad \Rightarrow \quad (A - 3I)\mathbf{v} = 0 \quad \Rightarrow \quad \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \mathbf{v} = 0$$

$$\left(\begin{array}{ccc|c} 2 & -1 & -1 & 0 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 2 & 0 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

 $x=z,y=z,z\in\mathbb{R}$:פתרון

$$\begin{pmatrix} z \\ z \\ z \end{pmatrix} = z \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$V_3 = \operatorname{span}\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$$

בסיס של וקטורים עצמיים:

$$\mathbf{v}_1 = \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} -1\\0\\1 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

 $:V_6$ נבנה בסיס אורתוגונלי של

 $w_1 = v_1$.

$$w_2 = \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, w_1 \rangle}{\|w_1\|^2} w_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{-1}{2} \\ \frac{-1}{2} \\ 1 \end{pmatrix}.$$

 $:V_3$ נבנה בסיס אורתוגונלי של

 $:\mathbb{R}^3$ לכן בסיס אורתונורמלי של

$$u_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\1\\0 \end{pmatrix} , \quad u_{2} = \sqrt{\frac{2}{3}} \begin{pmatrix} \frac{-1}{2}\\-\frac{1}{2}\\1 \end{pmatrix} , \quad u_{3} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

$$D = \begin{pmatrix} 6 & 0 & 0\\0 & 6 & 0\\0 & 0 & 3 \end{pmatrix}$$

$$Q = \begin{pmatrix} \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}}\\\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}}\\0 & \frac{1}{2\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$

$$D = \bar{Q} \cdot A \cdot Q$$

8.7 שימושים של משפט הלכסון האוניטרי

הוכחנו כי אם T העתקה צמודה לעצמה, אז כל השורשים של הפולינום האופייני הם ממשיים (משפט 8.1), וגם אם הוכחנו כי אם T אוניטרית אז הערך המוחלט של כל ערך עצמי שווה ל- 1 (משפט 8.4).

ניתן גם להוכיח את המשפט ההפוך.

משפט 8.9 אם שורשי פוליניום אופייני ממשיים אז ההעתרה צמודה לעצמה

תהי T העתקה נורמלית במרחב מכפלה פנימית V נוצר סופית.

. אם כל שורשי הפולינום האופייני של T ממשיים, אז T העתקה צמודה לעצמה

Q הייסת לפי כל בסיס B, קיימת המייצגת המייצגת לפי כל בסיס אוניטרית. ז"א אם הוכחה: T נורמלית לכן היא לכסינה אוניטרית. ז"א אם אוניטרית ו- D אלכסונית כך ש-

$$[T]_B = QDQ^{-1} \quad \Rightarrow \quad [T]_BQ = QD$$
.

$$[T]_B$$
 באשר עצמיים עצמיים עצמיים של $D=egin{pmatrix} \lambda_1 & & & & & \\ & \ddots & & & & \\ & & \lambda_n \end{pmatrix}$ -ו $Q=egin{pmatrix} |& & & & & \\ u_1 & \cdots & u_n & & \\ & & & & | & \\ & & & & | & \end{pmatrix}$ באשר ברים של D הם הערכים עצמיים.

$$[\bar{T}]_B = \overline{[T]_B} = \overline{QD\bar{Q}} = Q\bar{D}\bar{Q}$$
.

אם הערכים עצמיים של $ar{D}=D$ ממשיים אז אם ונקבל

$$[\bar{T}]_B = QD\bar{Q} = [T]_B$$
,

. כלומר $ar{T}=T$ ולכן לעצמה לעצמה

משפט 1 אם ערך מוחלט של שורשי פולינום אופייני שווה אם ערך מוחלט של משפט 8.10

תהי V העתקה נורמלית במרחב מכפלה פנימית V נוצר סופית.

.אם כל שורשי הפולינום האופייני של T שווים בערכם ל- 1, אז T העתקה אוניטרית

המטריצה $[T]_B$ המלכסונית. היא לכסינה אוניטרית, לכן לכן אוניטרית ו- D אלכסונית. אוניטרית לכסינה אוניטרית ו- D אלכסונית לפי כל בסיס להיימת אוניטרית ו- D אלכסונית כך ש-

$$[T]_B = QD\bar{Q}$$
.

$$[T]_B$$
 באשר Q הם הווקטורים העצמיים של $D=\begin{pmatrix}\lambda_1&&&\\&\ddots&&\\&&\lambda_n\end{pmatrix}$ -ו $Q=\begin{pmatrix}|&&|\\u_1&\cdots&u_n\\&&|\end{pmatrix}$ כאשר הם הערכים עצמיים. נניח ש

$$D \cdot \bar{D} = \begin{pmatrix} |\lambda_1|^2 & & \\ & \ddots & \\ & & |\lambda_n|^2 \end{pmatrix} = I .$$

לכן

$$[T]_B[\bar{T}]_B = (QD\bar{Q}) \cdot (\overline{QD\bar{Q}}) = QD\underbrace{\bar{Q}Q}_{-I} \bar{D}\bar{Q} = Q\underbrace{D\bar{D}}_{=I} \bar{Q} = Q\bar{Q} = I.$$

. לכן T אוניטרית

דוגמה 8.14

תהי U ו- ו- ו- והכיחו כי אם U ו- העתקה הרמיטית במרחב מכפלה אוניטרית העתקה וו- U העתקה הרמיטית הוכיחו העתקה אוניטרית במרחב וו- U העתקה די וו- וו- אז $T=H\cdot U$ אז

הוכחה: נתון:

.
$$ar{H}=H$$
 הרמיטית לכן H .
 $ar{U}\cdot U=U\cdot ar{U}=I$ אוניטרית, לכן U

צריך להוכיח:

. נורמלית
$$T = H \cdot U = U \cdot H$$

הוכחה:

$$T\cdot ar{T}=(H\cdot U)\cdot (ar{U}\cdot ar{H})$$
 (הגדרה של הצמודה)
$$=H\cdot U\cdot ar{U}\cdot ar{H}$$
 (ת ו H מתחלפות)
$$=H\cdot ar{H}$$
 (ת אוניטרית)
$$=H^2$$
 אוניטרית H) .

$$ar{T} \cdot T = \overline{(H \cdot U)} \cdot (U \cdot H)$$
 $= ar{U} \cdot ar{H} \cdot U \cdot H$ (הגדרה של הצמודה) $= ar{U} \cdot ar{H} \cdot H \cdot U$ (שודה לעצמה $= ar{U} \cdot H \cdot H \cdot U$ (שודה לעצמה $= ar{U} \cdot U \cdot H \cdot H$ (שוניטרית) $= H \cdot H$ (שוניטרית) $= H^2$.

לכן $T\cdot ar{T}=ar{T}\cdot T$ נורמלית.

8.8 *הוכחת המשפט:

לכסינה אוניטרית אם"ם קבוצת ו"ע שלה בסיס א"נ A

משפט A 8.11 לכסינה אוניטרית אם"ם קבוצת ווקטורים עצמיים שלה בסיס אורתונורמלי

מטריצה $A\in\mathbb{F}^{n imes n}$ לכסינה אוניטרית אם"ם קיים בסיס אורתונורמלי של $A\in\mathbb{F}^{n imes n}$ (ביחס למכפלה הפנימית הסטנדרטית של \mathbb{F}^n), שכל איבריו הם ווקטורים עצמיים של A.

A אוניטרית את הבסיס הזה, הרשומים כעמודות, יוצרים מטריצה המלכסנת אוניטרית את

-הוכחה: נניח ש- A לכסינה אוניטרית. אז קיימת Q אוניטרית וA אלכסונית כך ש

$$A=QDQ^{-1}$$
 \Leftrightarrow $AQ=QD$
$$.D=\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$
 -ו $Q=\begin{pmatrix} \mid & & \mid \\ u_1 & \cdots & u_n \\ \mid & & \mid \end{pmatrix}$ נרשום

מכאו

$$(A \cdot u_1 \quad \cdots \quad A \cdot u_n) = (\lambda_1 u_1 \quad \lambda_2 u_2 \quad \cdots \quad \lambda_n u_n)$$

לכן נקבל כי

$$A \cdot u_1 = \lambda_1 u_1, \qquad \cdots \qquad , A \cdot u_n = \lambda_n u_n .$$

A בנוסף אוניטירת לכן הקבוצה של העמודות של $\{u_1,\cdots,u_n\}$ היא בסיס אורתונורמלי של עוניסף $\{u_1,\cdots,u_n\}$ שמורכב מווקטורים עצמיים של אורתונורמלי לכן מצאנו בסיס אורתונורמלי

A של עצמיים עצמיים מווקטורים של על $U=\{u_1,\cdots,u_n\}$ נניח שקיים בסיס אורתונורמלי

$$A \cdot u_1 = \lambda_1 u_1, \qquad \cdots \qquad , A \cdot u_n = \lambda_n u_n .$$

 $\dim U = \dim V$ בסיס של U

לכן A לכסינה.

:כרשום Q אוניטרית. Q אוניטרית. ברפט: . $Q=\begin{pmatrix} |&&&|\\u_1&\cdots&u_n\\|&&&|\end{pmatrix}$ נרשום נרשום על העמודות של העמודות הקבוצה על העמודות אוניטרית.

$$AQ = \begin{pmatrix} | & & | \\ Au_1 & \cdots & Au_n \\ | & & | \end{pmatrix} = \begin{pmatrix} | & & | \\ \lambda_1 u_1 & \cdots & \lambda_n u_n \\ | & & | \end{pmatrix} = \begin{pmatrix} | & & | \\ u_1 & \cdots & u_n \\ | & & | \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

נגדיר
$$D=egin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$
 קיבלנו כי

$$AQ = QD \quad \Rightarrow \quad A = QDQ^{-1}$$
.

לכן A לכסינה אוניטרית.

משפט T 8.12 לכסין אוניטרי אם"ם קבוצת ווקטורים עצמיים שלו בסיס אורתונורמלי

תהי העתקה לינארית $T:V \to V$, כאשר V מרחב מכפלה פנימית n ממדי מעל $T:V \to V$ לכסינה אוניטרית אם"ם קיים בסיס אורתונורמלי של \mathbb{F}^n (ביחס למכפלה הפנימית הסטנדרטית של \mathbb{F}^n), שכל איבריו הם ווקטורים עצמיים של T.

.זהו בסיס שבו T מיוצגת ע"י מטריצה אלכסונית

המטריצה המייצגת פריעה ש- $B=\{u_1,\cdots,u_n\}$ כלימת בסיס אורתונורמלי אז קיימת המייצגת לכסינה אוניטרית. אז קיימת בסיס אורתונורמלי $[T]_B$ אלכסונית. נסמן

$$[T]_B = D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} .$$

 \mathbb{F}^n של E לפי הבסיס הסטנדרטי של $[T]_E$,T של המייצגת המייצגת נרשום

$$[T]_E = Q[T]_B Q^{-1}$$
,

$$[T]_{E}Q = Q[T]_{B} \Rightarrow \begin{pmatrix} | & | & | \\ [T]_{E}[u_{1}]_{E} & \cdots & [T]_{E}[u_{n}]_{E} \end{pmatrix} = \begin{pmatrix} | & | & | \\ \lambda_{1}[u_{1}]_{E} & \cdots & \lambda_{n}[u_{n}]_{E} \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} | & | & | \\ [T(u_{1})]_{E} & \cdots & [T(u_{n})]_{E} \end{pmatrix} = \begin{pmatrix} | & | & | \\ \lambda_{1}[u_{1}]_{E} & \cdots & \lambda_{n}[u_{n}]_{E} \end{pmatrix}.$$

מצאנו כי

$$T(u_1) = \lambda_1 u_1$$
, \cdots $T(u_n) = \lambda_n u_n$.

T מורכב מווקטורים עצמיים של $B=\{u_1,\cdots,u_n\}$ לכן הבסיס האורתונורמלי

T של עצמיים עצמיים מווקטורים של אורתונורמלי וניח שקיים של אורתונורמלי ווורמלי וווחמלי וווחמלי וווחמלי וווחמלי וווחמלי וווחמלי וווחמלי וווחמלי וווחמלי וווחמלי

$$T(u_1) = \lambda_1 u_1, \quad \cdots, T(u_n) = \lambda_n u_n,$$

לכן

$$[T]_E \cdot [u_1]_E = \lambda_1 [u_1]_E, \qquad \cdots \qquad , [T]_E \cdot [u_n]_E = \lambda_1 [u_n]_E.$$

. $\dim U = \dim V$ בסיס של B

בן T לכסינה.

$$[T]_E Q = \begin{pmatrix} | & & | \\ [T]_E [u_1]_E & \cdots & [T]_E [u_n]_E \end{pmatrix} = \begin{pmatrix} | & & | \\ \lambda_1 u_1 & \cdots & \lambda_n u_n \\ | & & | \end{pmatrix} = \begin{pmatrix} | & & | \\ u_1 & \cdots & u_n \\ | & & | \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

נגדיר
$$D=egin{pmatrix} \lambda_1&0&\cdots&0\\0&\lambda_2&\cdots&0\\ dots&dots&\ddots&dots\\0&0&\cdots&\lambda_n \end{pmatrix}$$
 מצאנו כי

$$[T]_E Q = QD \quad \Rightarrow \quad [T]_E = QDQ^{-1} \ .$$

המטריצה המיצגת של T לפי הבסיס בסיס B לבסיס הסנדרטי B. לכן מהטריצה D היא המטריצה לבסיס לבסיס בסיס B לבסיס בסיס B נסמן בסיס אורתונורמלי לכן B לכסינה בסיס B נסמן בסיס אורתונורמלי לכן B לכסינה בסיס אוניטרית.

8.9 הוכחת משפט שור

משפט 8.13 תזכורת: מטריצה ניתנת לשילוש

תהי A של אופייני של A מתפרק לגורמים הפולינום האופייני של A מתפרק לגורמים לינאריים בשדה A . $A\in\mathbb{F}^{n\times n}$ לינאריים בשדה \mathbb{F}

הוכחה: ההוכחה נתונה במשפט 10.10.

משפט 8.14 משפט שור

. (לא בהכרח שונים המה) אול ערכים עצמיים אל ערכים ויהיו ויהיו אונים ההכרח אונים אל $A\in\mathbb{F}^{n\times n}$

-ש מטריצה Q אוניטרית כך ש

$$A = QB\bar{Q}$$

כאשר

$$B = \begin{pmatrix} \lambda_1 & b_{12} & \cdots & b_{1n} \\ 0 & \lambda_2 & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

ובפרט B משולשית עליונה.

במילים פשוטות, כל מטריצה ריבועית A דומה אוניטרית למטריצה משולשית עליונה שבו איברי האלכסון הראשי הם הערכים עצמיים של A.

 $A=QBar{Q}\Leftrightarrow B=ar{Q}AQ$. נשים לב כי

A אשר הערכים עצמיים של $\lambda_2,\dots,\lambda_n$ ויהיו ווקטור ששייך לערל ששייך לערל ששייך איז אוקטור עצמי של ווקטור עצמי של

נגדיר q_1 כל ווקטורים אורתונורמליים אשר אורתונורים ל- q_2,\ldots,q_n יהיו

$$Q_1 = \begin{pmatrix} | & & | \\ q_1 & \cdots & q_n \\ | & & | \end{pmatrix} .$$

.מכאו Q_1 אוניטרית ז"א $ar{Q}_1Q_1=I$ מכאו

$$AQ_{1} = \begin{pmatrix} | & | & & | \\ Aq_{1} & Aq_{2} & \cdots & Aq_{n} \\ | & | & & | \end{pmatrix} = \begin{pmatrix} | & | & & | \\ \lambda_{1}q_{1} & Aq_{2} & \cdots & Aq_{n} \\ | & | & & | \end{pmatrix} = Q_{1} \begin{pmatrix} \lambda_{1} & * \\ 0 & A_{2} \end{pmatrix}$$

לכן

$$\bar{Q}_1 A Q_1 = \begin{pmatrix} \lambda_1 & * \\ 0 & A_2 \end{pmatrix} \tag{*}$$

 $\lambda_2,\dots,\lambda_n$ הם A_2 של עצמיים עצמיים כי הערכים נוכיח כי

$$|\lambda I - A| = |\bar{Q}_1(\lambda I - A)Q_1| = |\lambda \bar{Q}_1 Q_1 - \bar{Q}_1 A Q_1| = \begin{vmatrix} \lambda - \lambda_1 & * \\ 0 & \lambda I - A_2 \end{vmatrix}$$

 $\lambda_2,\dots,\lambda_n$ הם A_2 של עצמיים עצמיים ומכאן ומכאן

שאר ההוכחה היא באינדוקציה.

בסיס: עבור n=1 הטענה מתקיימת.

.k+1 מעבר: נניח כי הטענה מתקיים עבור .k נוכיח אותה עבור

תהי $A \in \mathbb{F}^{k imes k}$ לפי $A \in \mathbb{F}^{k imes k}$

$$\bar{Q}_1 A Q_1 = \begin{pmatrix} \lambda_1 & * \\ 0 & A_2 \end{pmatrix}$$

באשר $B_2=egin{pmatrix} \lambda_2&*&\cdots&*\\0&\lambda_2&\cdots&*\\ \vdots&&&\\0&0&\cdots&\lambda_n \end{pmatrix}$ -ו אוניטרית ו- Q_2 אוניטרית אינדוקציה Q_2 אוניטרית אינדוקציה $A_2\in\mathbb{F}^{k\times k}$ כך ש-

$$A_2 = Q_2 B_2 \bar{Q}_2$$
.

נגדיר

$$Q = Q_1 \begin{pmatrix} 1 & 0 \\ 0 & Q_2 \end{pmatrix} .$$

$$AQ = AQ_1 \begin{pmatrix} 1 & 0 \\ 0 & Q_2 \end{pmatrix} = Q_1 \begin{pmatrix} \lambda_1 & * \\ 0 & A_2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & Q_2 \end{pmatrix} = Q_1 \begin{pmatrix} \lambda_1 & * \\ 0 & A_2 Q_2 \end{pmatrix} = Q_1 \begin{pmatrix} \lambda_1 & * \\ 0 & Q_2 B_2 \end{pmatrix}$$

$$= Q_1 \begin{pmatrix} 1 & 0 \\ 0 & Q_2 \end{pmatrix} \begin{pmatrix} \lambda_1 & * \\ 0 & B_2 \end{pmatrix} = QB$$

 $A=QBar{Q}$ לפיכך

8.10 הוכחת המשפט: נורמליות נשמרת תחת דמיון אוניטרי

למה 8.2 נורמליות נשמרת תחת דמיון אוניטרי

 $\mathbb F$ מעל מעל עדה ענימית נוצר-סופית מכפלה לינארית במרחב העתקה לינארית העתקה $T:V\to V$ תהי תהי Qהעתקה אוניטרית.

. נורמלית אם"ם $QTar{Q}$ נורמלית T

$$T=ar{Q}SQ$$
 אוניטרית אז Q $.S=QTar{Q}$ הוכחה: נגדיר

$$\Rightarrow (\bar{Q}SQ) \cdot \overline{(\bar{Q}SQ)} = \overline{(\bar{Q}SQ)} \cdot (\bar{Q}SQ)$$

 $T\bar{T} = \bar{T}T$

$$\Rightarrow \qquad \bar{Q}S\underbrace{Q\bar{Q}}_{-I}\bar{S}Q = \bar{Q}\bar{S}\underbrace{Q\bar{Q}}_{-I}SQ$$

$$\Rightarrow \qquad \bar{Q}S\bar{S}Q = \bar{Q}\bar{S}SQ$$

$$\Rightarrow$$
 $S\bar{S} = \bar{S}S$.

8.11 הוכחת המשפט: מטריצה נורמלית ומשולשית היא אלכסונית

למה 8.3 מטריצה נורמלית ומשולשית היא אלכסונית

תהי ריבועית. $A \in \mathbb{F}^{n \times n}$

אלכסונית. אם A מטריצה משולשית וגם נורמלית אז A

הוכחה: נוכיח ע"י אינדוקציה.

. בסיס: עבור n=1 הטענה נכונה באופן טריוויאליn=1

הנחת האינדוקציה:

נניח שהטענה נכונה עבור $n \geq 2$, נוכיח אותה עבור $n \geq 2$, נוכיח אותה עבור אז $A \in \mathbb{F}^{n \times n}$ נניח שהטענה נכונה עבור אות אותה עליונה.

$$A = \begin{pmatrix} a_{11} & \bar{\mathbf{x}} \\ 0 & A' \end{pmatrix} , \qquad \bar{A} = \begin{pmatrix} a_{11} & 0 \\ \bar{\mathbf{x}} & \bar{A}' \end{pmatrix}$$

.כאשר $A' \in \mathbb{F}^{n-1 \times n-1}$ משולשית עליונה

$$A \cdot \bar{A} = \begin{pmatrix} |a_{11}|^2 + ||\mathbf{x}||^2 & \mathbf{y} \\ & \mathbf{y} & A' \cdot \bar{A}' \end{pmatrix} , \qquad \bar{A} \cdot A = \begin{pmatrix} |a_{11}|^2 & \mathbf{y} \\ & \mathbf{y} & \mathbf{x}\bar{\mathbf{x}} + \bar{A}' \cdot A' \end{pmatrix}$$

אם A' גם, A' משולישת עליונה, לכן לפי . $ar{A}'\cdot A=A'\cdot ar{A}'$ ו- ג0 אז בי א בי או אם אם $A\cdot ar{A}=ar{A}\cdot A$ אלכסונית. לכן A אלכסונית. לכן A אלכסונית.

8.12 הוכחת משפט לכסון אוניטרי

משפט 8.15 משפט לכסון אוניטרי

- תהי $T:V \to V$ העתקה לינארית במרחב מכפלה פנימית אוניטרי נוצר סופית. $T:V \to V$ לכסינה אוניטרית אם"ם היא נורמלית.
- . מטריצה אם"ם אם לכסינה אוניטרית ממשית או מרוכבת). או מטריצה ריבועית מטריצה אוניטרית או מרוכבת) תהי או מטריצה אוניטרית אם אוניטרית משית או תהי
 - . מטריצה ריבועית ממשית. A לכסינה אורתוגונלית אם"ם היא סימטרית. $A \in \mathbb{R}^{n \times n}$

הוכחה:

רק אם:

. לכל הטענות 4-1, את הכיוון "רק אם" הוכחנו כבר לעיל. נשאר להוכיח את הכיוון השני "אם".

רק אם:

:כעת נוכיח כי אם T נורמלית אז היא לכסינה אוניטרית:

למה 1.8: כל מטריצה דומה אוניטרית למטריצה משולשית אוניטרית למטריצה משולשית אוניטרית למטריצה משולשית ב-2
$$Sar Q$$
 עורמלית נשמרת אוויון אוניטרי אוויון אוניטרי אוויון אוניטרי אוויון אוניטרי אווין אוניטרי אוניטרי למטריצה אלכסונית S דומה אוניטרי למטריצה אלכסונית. T דומה אוניטרי למטריצה אלכסונית.

נניח ש $V \to V$ כאשר T מרחב ווקטורי מעל $\mathbb R$. נניח כי T נורמלית, כלומר $T : V \to V$ נניח כי $T : V \to V$ מעיף הקודם) הוכחנו שאם T נורמלית אז היא לכסינה אוניטרית. ז"א $Q \in \mathbb R$ אוניטרית ו- $Q \in \mathbb R$ ש- $Q \in \mathbb R$ ו- $Q \in \mathbb R$ במקרה פרטי שT = Q אופרטור במרחב אוקלידי, אז $Q \in \mathbb R$ ו- $Q \in \mathbb R$ כך ש- $Q \in \mathbb R$ בפרט, $Q \in \mathbb R$ תהיה לכסינה אורתוגונלית:

$$[T]=QDar{Q}=QDQ^t$$
 ,
$$QQ^t=I\ .$$
 כאשר $QQ^t=I$.
$$[T]^t=\left(QDQ^t\right)^t=QD^tQ^t=QDQ^t=[T]\ .$$
 לכן T סימטרית.

. נורמלית. $A\in\mathbb{C}^{n\times n}$, $T(u)=A\cdot u$ כאשר (1) מקרה פרטי של

. סימטרית אל פרטי של (2) איז א $A \in \mathbb{R}^{n imes n}$, $T(u) = A \cdot u$ כאשר (2) מקרה פרטי של

שעור 9 משפט הפירוק הספקטרלי

ניתן לסכם את כל המושגים הנלמדים על העתקות נורמליות במשפט הבא:

משפט 9.1 סכום ישר של מרחבים עצמיים של העתקה נורמלית

T העתקה נורמלית במרחב מכפלה אוניטרי V ויהיו ויהיו מכפלה במרחב במרחב העצמיים העתקה ויהי אוניטרי ל- $\lambda_1,\dots,\lambda_k$ בהתאמה, אזי אוניטרים העצמיים העצמיים העצמיים העצמיים ל- V_1,\dots,V_k הם התת-מרחבים העצמיים השייכים ל-

$$V=V_1\oplus V_2\oplus \cdots \oplus V_k$$
 (1

$$.i \neq j$$
 לכל $V_i \perp V_i$ (2

הוכחה:

נורמלית ולכן לכסינה אוניטרי (משפט לכסון אוניטרי 8.15). לכן סכום המימדים של כל התת-מרחביים T (1 העצמיים שווה למימד של V, כלומר

$$\dim{(V)}=\dim{(V_1)}+\ldots+\dim{(V_k)}$$
 .
$$\{\mathrm{v}_{i1},\ldots,\mathrm{v}_{in_i}\}$$
 בסיס של V_i . אז הקבוצה $\{\mathrm{v}_{i1},\ldots,\mathrm{v}_{in_i}\}$

 $u \in V$ היא בסיס של V. ז"א כל וקטור של V הוא צירוף לינארי של הוקטורים העצמיים. לכן לכל

$$u \in V_1 + V_2 + \ldots + V_k$$
.

$$\lambda_i u = \lambda_j u \quad \Rightarrow \quad (\lambda_i - \lambda_j) u = 0$$

. סתירה, א $\lambda_i=\lambda_j$ כי הוא וקטור עצמי לכן $u
eq ar{0}$

לכו

$$V = V_1 \oplus \cdots \oplus V_k$$
.

עבור T נורמלית, וקטורים עצמיים השייכים לערכים עצמיים שונים הם אורתוגונלים (משפט 8.8), לכן לכוT . $\forall i
eq i \ V_i \perp V_i$

המטרה שלנו היא לנסח משפט שקול הידוע בשם "משפט הפירוק הספקטרלי". אנחנונראה כי כל עתקה נורמלית במרחב מכפלה פנימית נוצר סופית היא צירוף לינארי של הטלת אורתוגונלית על המרחבים העצמיים שלה. המקדמים של הצירוף הלינארי הם הערכים העצמיים של ההעתקה. נראה את זה קודםם בדוגמה.

דוגמה 9.1

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$T(\mathbf{v}) = \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix} \cdot \mathbf{v}$$

. העתקה סימטרית במרחב אוקלידי, לכן היא נורמלית T

$$T - \lambda I = \begin{vmatrix} 3 - \lambda & 2 \\ 2 & -\lambda \end{vmatrix} = \lambda^2 - 3\lambda - 4 = (\lambda + 1)(\lambda - 4) = 0$$

 $\lambda_2 = -1$, $\lambda_1 = 4$ ערכים עצמיים:

 $\lambda = 4$

$$\begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix} \xrightarrow{R_1 \to -R_1} \begin{pmatrix} 1 & -2 \\ 2 & -4 \end{pmatrix} \xrightarrow{R_2 - 2R_1} \begin{pmatrix} 1 & -2 \\ 0 & 0 \end{pmatrix}$$
$$\cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2y \\ y \end{pmatrix} = y \begin{pmatrix} 2 \\ 1 \end{pmatrix} . y \in \mathbb{R} , x = 2y$$
$$V_4 = \operatorname{span} \left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$$

$$.V_4$$
 בסיס של $\mathrm{v}_1=egin{pmatrix}2\\1\end{pmatrix}$

 $\lambda = -1$

$$\begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix} \xrightarrow{R_1 \to \frac{1}{4} \cdot R_1} \begin{pmatrix} 1 & \frac{1}{2} \\ 2 & 1 \end{pmatrix} \xrightarrow{R_2 - 2R_1} \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & 0 \end{pmatrix}$$

$$\cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \cdot y \\ y \end{pmatrix} = y \begin{pmatrix} -\frac{1}{2} \\ 1 \end{pmatrix} . y \in \mathbb{R} , x = -\frac{1}{2}y$$

$$V_{-1} = \operatorname{span} \left\{ \begin{pmatrix} -1 \\ 2 \end{pmatrix} \right\}$$

 $.V_{-1}$ בסיס של ${
m v}_2=inom{-1}{2}$, ${
m v}\in\mathbb{R}^2$ לכן לכל $.\mathbb{R}^2$ לכן לכל של י $.{
m v}_1,{
m v}_2$

 $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 \ .$

מכאן

$$\mathbf{v} = \alpha_1 \lambda_1 \mathbf{v}_1 + \alpha_2 \lambda_2 \mathbf{v}_2 = 4\alpha_1 \mathbf{v}_1 - \alpha_2 \mathbf{v}_2 \ .$$

נשים לב ש- $-\alpha_2 {
m v}_2$ -ו V_1 של י על (2.4 הגדרה 1.4) ההיטל האורתוגונלי האורתוגונלי האורתוגונלי האורתוגונלי ו- $\alpha_1 {
m v}_1$ ההיטל האורתוגונלי של י על על V_2

אם נוכל לרשום את על תת המרחב אורתוגונלית ההטלה העתקת את (i=1,2) את נסמן ב-

$$P_1(\mathbf{v}) = \alpha_1 \mathbf{v}_1 , \qquad P_2(\mathbf{v}) = \alpha_2 \mathbf{v}_2 .$$

מכאן

$$T(\mathbf{v}) = 4P_1(\mathbf{v}) + (-1)P_2(\mathbf{v}) = (4P_1 - P_2)(\mathbf{v})$$
.

 $.T = 4P_1 - P_2$ כלומר

ומקדמי T ומקדמי ו- P_2 על המרחבים העצמיים של T ומקדמי ומקדמי ווא ההעתקה היא צירוף לינארי של הטלות אורתוגונליות ווא היארוף הם העצמיים המתאימים.

במילים אחרות, כדי להפעיל את T על וקטור v, צריך להטיל אותו על המרחבים V_1 ו- V_2 , לכפול את במילים אחרות, כדי להפעיל את הוקטורים המתקבלים.

נשים לב: ההטלות וח P_2 ו- ו- ו- P_1 ההטלות שתי לב: ההטלות לב: ההטלות וחים לבי

$$P_1 + P_2 = I$$
 (1

$$P_1 \cdot P_2 = P_2 \cdot P_1 = 0$$
 (2

<u>הוכחה:</u>

$$\mathbf{v} \in V$$
 לכל (1

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 = P_1(\mathbf{v}) + P_2(\mathbf{v}) = (P_1 + P_2)(\mathbf{v})$$

$$.P_1 + P_2 = I$$
 לכן

(2

$$(P_1 \cdot P_2)(\mathbf{v}) = P_2(P_1(\mathbf{v})) = P_2(\alpha_1 \mathbf{v}_1) = 0$$

.
$$lpha_1$$
יי בי V_2 כי

$$P_1 \cdot P_2 = P_2 \cdot P_1 = 0$$
 (3

המשפט הבא הנקרא "המשפט הפירוק הספקטרלי" מכליל את הדוגמה האחרונה.

משפט 9.2 משפט הפירוק הספקטרלי

תהי להערכים העצמיים השונים ל $\lambda_1,\dots,\lambda_k$ יהיו עוצר פופית נורמלית במרחב אוניטרי עוצר לוצר פופית האימים לכל הערכים העצמיים המתאימים. לכל ויהיו לכל המרחבים העצמיים העצמיים המתאימים. לכל ויהיו אזי עונילית על אזי

$$T = \lambda_1 P_1 + \ldots + \lambda_k P_k$$
 (1

$$I = P_1 + \ldots + P_k$$
 (2)

$$P_i \cdot P_j = 0$$
 , $i \neq j$ לכל (3

$$P_i^2=P_i$$
 , i לכל (4

$$ar{P}_i = P_i$$
 , i לכל (5

הוכחה:

כאשר
$$(1 \leq i \leq k)$$
 $\mathbf{v}_i \in V_i$ כאשר

$$T(\mathbf{v}) = T(\mathbf{v}_1) + \ldots + T(\mathbf{v}_k) = \lambda_1 \mathbf{v}_1 + \ldots + \lambda_k \mathbf{v}_k = \lambda_1 P_1(\mathbf{v}) + \ldots + \lambda_k P_k(\mathbf{v}) = (\lambda_1 P_1 + \ldots + \lambda_k P_k) \ (\mathbf{v}) \ .$$
לכן

$$T = \lambda_1 P_1 + \ldots + \lambda_k P_k$$
.

$$\mathbf{v} \in V$$
 לכל (2

$$(P_1 + \dots + P_k)(\mathbf{v}) = P_1(\mathbf{v}) + \dots + P_k(\mathbf{v}) = \mathbf{v}_1 + \dots + \mathbf{v}_k = \mathbf{v}$$

$$.P_1+\ldots+P_k=I$$
 לכן

$$\mathbf{v} \in V$$
 ולכל $i
eq j$ גכל (3

$$(P_i P_j)(v) = P_i(P_j(v)) = P_i(v_j) = 0$$

$$.i
eq j$$
 לכל לכל לכך לכל ער לכן לכל $V_i \perp V_j$ כי

$$\mathbf{v} \in V$$
 לכל (4

$$P_i^2(\mathbf{v}) = P_i(P_i(\mathbf{v})) = P_i(\mathbf{v}_i) = \mathbf{v}_i = P_i(\mathbf{v})$$

$$P_i^2=P_i$$
 לכן

$$u,\mathbf{v}\in V$$
 לכל (5

$$u = u_1 + \ldots + u_k$$
, $v = v_1 + \ldots + v_k$

כאשר (
$$1 \leq i \leq k$$
) $u_i, v_i \in V_i$ כאשר

$$\langle P_i(\mathbf{v}), u \rangle = \langle \mathbf{v}_i, u_1 + \ldots + u_k \rangle = \langle \mathbf{v}_i, u_i \rangle$$

מצד שני:

$$\langle \mathbf{v}, P_i(u) \rangle = \langle \mathbf{v}_1 + \ldots = + \mathbf{v}_k, u_i \rangle = \langle \mathbf{v}_i, u_i \rangle$$

ז"א

$$\langle P_i(\mathbf{v}), u \rangle = \langle \mathbf{v}, P_i(u) \rangle$$

$$ar{P_i} = P_i$$
 לכל $u, \mathbf{v} \in V$ לכל

9.1 שימושים של הפירוק הספקטרלי

דוגמה 9.2

נתונה העתקה
$$T = \sum\limits_{i=1}^k \lambda_i P_i$$
 אזי

$$T^{2} = \left(\sum_{i=1}^{k} \lambda_{i} P_{i}\right)^{2}$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{k} \lambda_{i} \lambda_{j} P_{i} P_{j}$$

$$= \sum_{i=1}^{k} \lambda_{i}^{2} P_{i}^{2}$$

$$= \sum_{i=1}^{k} \lambda_{i}^{2} P_{i}$$

קל להוכיח באינדוקציה:

$$T^n = \sum_{i=1}^k \lambda_i^n P_i$$

דוגמה 9.3

 $: \mathbb{F} = \mathbb{C}$ במקרה של

$$\bar{T} = \overline{\left(\sum_{i=1}^{k} \lambda_i P_i\right)}$$

$$= \sum_{i=1}^{k} \bar{\lambda}_i \bar{P}_i$$

$$= \sum_{i=1}^{k} \bar{\lambda}_i P_i$$

לכן, אם כל העריכם עצמיים הם ממשיים, אז

$$\bar{T} = \sum_{i=1}^{k} \bar{\lambda}_i P_i$$
$$= \sum_{i=1}^{k} \lambda_i P_i = T$$

כלומר T צמודה לעצמה.

דוגמה 9.4

אם כל הערכים העצמיים מקיימים וקבל אם כל הערכים העצמיים אם

$$T \cdot \bar{T} = \left(\sum_{i=1}^{k} \lambda_i P_i\right) \cdot \left(\sum_{i=1}^{k} \bar{\lambda}_i P_i\right)$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{k} \lambda_i \bar{\lambda}_j P_i P_j$$

$$= \sum_{i=1}^{k} |\lambda_i|^2 P_i^2$$

$$= \sum_{i=1}^{k} |P_i|$$

$$= I$$

. אוניטרית T

שעור 10 שונות

10.1 לכסון אורתוגונית

הגדרה 10.1 מטריצה לכסינה אורתוגונלית

-כך שלכסונית אורתוגונלית ומטריצה מטריצה אורתוגונלית אן קיימת אורתוגונלית אורתוגונלית לכסינה אורתוגונלית אורתוגונלית או

$$A = UDU^{-1} = UDU^t .$$

הגדרה 10.2 מטריצה סימטרית

מטריע סימטרית נקראת נקראת אם $A \in \mathbb{F}^{n \times n}$ מטריצה

$$A = A^t$$
.

משפט 10.1 מטריצה לכסינה אורתוגונלית היא סימטירת

מטריעה מטירצה מטריצה אורתוגונלית היא שלכסינה שלכסינה אורתוגונלית שלכחינה $A \in \mathbb{F}^{n \times n}$

הוכחה: נניח כי A לכסינה אורתוגונלית.

-ז"א קיימת D אלכסונית ו- U אורתוגונלית כך ש

$$A = UDU^{-1} = UDU^t .$$

לפיכד

$$A^{t} = (UDU^{t})^{t} = (U^{t})^{t} D^{t}U^{t} = UDU^{t} = A$$
.

משפט 10.2 תנאי מספיק למטירצה סימטרית

מטריצה אם ורק אם היא מטירצה איט $A \in \mathbb{R}^{n imes n}$

$$(Ax, y) = (x, Ay)$$

 \mathbb{R}^n לכל , $x,y\in\mathbb{R}^n$ כאשר המכפלה הפנימית הסטנדרטית לכל

הוכחה: נניח כי A סימטרית. אזי

$$(Ax, y) = (Ax)^t y = x^t A^t y = (x, A^t y) = (x, Ay)$$

נניח כי (Ax,y)=(x,Ay). נרשום

$$A = \begin{pmatrix} | & | & & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & & | \end{pmatrix}$$

A באשר של המטריצה $a_i \in \mathbb{R}^n$ כאשר

$$(Ae_i,e_j)=(a_i,e_j)=A_{ji}=\ A$$
 של (j,i) -רכיב ה-

$$(e_i,Ae_j)=(e_i,a_j)=A_{ij}=\ A$$
 של (i,j) -רכיב ה-

לכן

$$(Ae_i, e_j) = (e_i, Ae_j) \quad \Rightarrow \quad A_{ji} = A_{ij} \quad \Rightarrow \quad A^t = A .$$

A סימטרית.

כלל 10.1 תכונות של מספרים מרוכבים

- z=a+i כל מסםר בעורה ניתן לרשום בצורה $z\in\mathbb{C}$ כאשר z
 - $i^2 = -1 \bullet$
- $ar{z}=a-ib$ נתון מסםר מרוכב $z\in\mathbb{C}$ מצורה z=a+ib מצורה $z\in\mathbb{C}$
 - $ar{z}=z$ אם ורק אם $z\in\mathbb{R}$
 - $\mathbb{R} \subseteq \mathbb{C}$ •
 - $|z|=\sqrt{a^2+b^2}$ ומוגדר ומון מסומן של של הערך מוחלט . $z\in\mathbb{C}$
 - $.z\bar{z} = a^2 + b^2 = |z|^2 \bullet$
 - $\overline{zw}=ar{z}ar{w}$ מתקיים $z,w\in\mathbb{C}$ לכל

משפט 10.3 הערכים עצמיים של מטריצה סימטרית ממשיים

. ממשיים A סימטרית אז כל הערכים עצמיים של $A \in \mathbb{R}^{n \times n}$

. (לא בהכרח שונים) $\lambda_1,\dots,\lambda_n$ לפי עצמיים איים ל-4 יש ערכים הפירוק הפרימרי, ל-8 יש ערכים עצמיים

: ממשי:
$$a=ar{u}Au$$
 הסקלר הסקלר , $u=egin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \in \mathbb{C}^n$ לכל

$$a = (u^*)^t A u = (u^*)^t A^t u$$
 (סימטרית) אינטרית) (משפט 2.10.2) $= (Au^*)^t u = u^t (Au^*)$ (10.2) $= u^t A^* u^*$ (ממשיי) $= a^*$.

יניח כי
$$\lambda_i$$
 ווקטור עצמי של A ששייך ווקטור $u=\begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \in \mathbb{C}^n$ נניח כי

$$\bar{u}Az = \bar{u}\lambda_i u = \lambda_i \bar{u}u = \lambda_i (\bar{u}, u) = \lambda_i (|z_1|^2 + \dots + |z_n|^2)$$

 $.(|z_1|^2+\cdots+|z_n|^2)\neq 0 \Leftarrow z_k\neq 0\;\exists \Leftarrow u\neq 0 \Leftarrow u$ ווקטור עצמי עצמי ווקטור ע ממשי, ו- $\bar{u}Az$ ממשי, ו- $(|z_1|^2+\cdots+|z_n|^2)$ ממשי.

משפט 10.4 מטריצה ממשית לכסינה אורתוגונלית אם"ם היא סימטרית

. נתונה מטריתה מטריתה אם ורק אם ורק אורתוגונלית לכסינה לכסינה מטריתה מטריתה מטריתה לתונה $A \in \mathbb{R}^{n \times n}$

הוכחה: נניח כי A לכסינה אורתוגונלית.

-ט"א קיימת D אלכסונית ו- U אורתוגונלית כך ש

$$A = UDU^{-1} = UDU^t .$$

אזי

$$A^{t} = (UDU^{t})^{t} = (U^{t})^{t} D^{t}U^{t} = UDU^{t} = A$$
.

נניח כי היא לכסינה אורתוגונלית. נוכיח באמצעות אינדוקציה על $A \in \mathbb{R}^{n \times n}$ כי מטרית. נוכיח כי

שלב הבסיס

עבור $a \in \mathbb{R}$ כאשר A = a סקלר, כלומר $A \in \mathbb{R}^{1 imes 1}$

$$A = a = UDU^t$$

. אלכסונית $D=(a)\in\mathbb{R}^{1 imes 1}$ - אורתוגונלית ע $U=(1)\in\mathbb{R}^{1 imes 1}$ כאשר

שלב האינדוקציה

נניח כי כל מטריצה סימטרית מסדר (n-1) imes (n-1) imes (n-1) לכסינה אורתוגונלית (ההנחת האינדוקציה).

לכל מטריצה קיימת לפחות ווקטור עצמי אחד.

 $\|\mathbf{v}_1\|=1$ לכן נניח כי λ_1 ווקטור עצמי של A ששייך לערך עצמי λ_1 ונניח כי $\lambda_1\in\mathbb{R}$ סימטרית לכן $\lambda_1\in\mathbb{R}$ (משפט 10.3).

 $:\mathbb{R}^n$ נשלים $\{\mathrm{v}_1\}$ לבסיס של

$$\{\mathbf v_1,\mathbf v_2,\ldots,\mathbf v_n\}$$
 .

 $:\mathbb{R}^n$ נבצע התהליך של גרם שמידט כדי להמיר בסיס זו לבסיס שמידט מידט על נבצע התהליך

$$B = \{u_1, u_2, \dots, u_n\} ,$$

. וכן הלאה
$$u_2=\mathrm{v}_2-rac{(\mathrm{v}_2,u_1)}{\|u_1\|^2}u_1$$
 , $u_1=\mathrm{v}_1$ כאשר

נגדיר

$$P = \begin{pmatrix} | & | & & | \\ u_1 & u_2 & \cdots & u_n \\ | & | & & | \end{pmatrix} .$$

.B נשים לב כי P היא המטריצה המעבר המעבר המטריצה לבסיס נשים לב $P^{-1}=P^t$ לכו אורתוגונלי לכו P

נתבונן על המטריצה $P^{-1}AP=P^tAP$ נשים לכ כי היא סימטרית.

$$(P^t A P)^t = P^t A^t (P^t)^t = P^t A^t P = P^t A P.$$

והעמודה הראשונה הינה

$$P^{-1}APe_1 = P^{-1}Au_1 = P^{-1}\lambda_1u_1 = \lambda_1P^{-1}u_1 = \lambda_1[u_1]_B = \lambda_1\begin{pmatrix} 1\\0\\ \vdots\\0 \end{pmatrix} = \begin{pmatrix} \lambda_1\\0\\ \vdots\\0 \end{pmatrix}.$$

לפי ההנחת האינדוקציה B לכסינה אורתוגונלית.

 $B = U'D'U'^{-1} = U'D'U'^t$ שלכסונית כך ש- $D' \in \mathbb{R}^{(n-1) imes (n-1)}$ אורתוגונלית ו- אורתוגונלית ו- $U' \in \mathbb{R}^{(n-1) imes (n-1)}$

לכן

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & B \end{pmatrix} = \begin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & U'D'U'^{-1} \end{pmatrix} = \begin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix} \begin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & D' \end{pmatrix} \begin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U'^{-1} \end{pmatrix} = \begin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix} \begin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & D' \end{pmatrix} \begin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix}^{-1}$$

 $:P^{-1}$ -ב ומצד ימין בP ומצד ימין ב

$$A=Pegin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix} egin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & D' \end{pmatrix} egin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix}^{-1} P^{-1} \\ \mathbf{n} & D = egin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & D' \end{pmatrix} -\mathbf{1} \ U = Pegin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix}$$
נגדיר

 $A = UDU^{-1} .$

. נשים לכ בי A אורתוגונלית ו- D אלכסונית לפיכך אורתוגונלית ו- עשים לכ בי אורתוגונלית ו- עשים לכ

10.2 שילוש לכיסון של מטריצה לפי פולינום מינימלי

הגדרה 10.3 צמצום של העתקה

.V שמור של תת-מרחב תת-מרחב מניח כי $T:V\to V$ ונתונה אופרטור ווקטורי עניח מרחב מניח נניח כי Vווקטור של אופרטור עניח נניח כי ע

נגדיר קבוצת פולינומים $g\in S_{T}\left(\mathbf{v},W\right)$ פולינום אכל כך את מקיים את פולינומים פולינומים אכל פולינומים את מ

$$g(T)\mathbf{v} \in W$$
.

T המנחה תקרא תקרא $S_T(\mathbf{v},W)$ הקבוצה

הגדרה 10.4

. מינימלי. T-מינימם ביותר ב- $S_T\left(\mathbf{v},W\right)$ נקרא מנחה-T מינימלי. הפולינום המתוקן של דרגה הקטנה ביותר ב-

משפט 10.5

נניח כי T המנחה-T מינימלי. ע ד conductor $S_T\left(\mathbf{v},W\right)$ נניח כי

$$f \in S_T(\mathbf{v}, W) \Leftrightarrow g \mid f$$
.

, אוקליד, $g \nmid f$ נוכיח כי $g \nmid f$ נוכיח כי $g \mid f$ נוכיח כי $f \in S_T (\mathbf{v}, W)$ נניח כי נניח כי

$$f(x) = g(x)q(x) + r(x)$$
 \Rightarrow $f(x) - q(x)g(x) = r(x)$.

 $\deg(r) < \deg(g) \leq \deg(f)$ כאשר

תת-מרחב T שמור. g(T)ע פון לכן גם g(T)ע פון לכן גם $f,g\in S_T$ עת-מרחב אור. f(T)ע פותר המקיים אור. אור המקיים המקיים אור. אור המקיים אור. אור המקיים המקיים אור. אור המקיים אור המקיים אור. אור המקיים אור המקיים אור. אור המקיים אור המקיים אור המקיים אור. אור המקיים אור המקיים אור המקיים אור. אור המקיים אור המקיים אור המקיים אור המקיים אור. אור המקיים אור המקיים אור המקיים אור המקיים אור. אור המקיים אור המקיים

נניח כי $g\mid f$ נניח כי f(T)v = q(T)g(T)v $\Leftarrow f(x)=q(x)g(x)$ \Leftarrow f(T)v $\in W$ לכן g(T)v $\in W$ תת-מרחב g(T)v $\in W$ לכן g(T)v $\in W$

משפט 10.6

 $g \mid m_T$ נניח כי T-conductor G נניח כי G המנחה-G מינימלי של G. אז T-conductor G

הוכחה: נוכיח כי $g\mid m_T$ דרך השלילה.

(נניח כי $g \nmid m_T$ לפי כלל אוקליד:

$$m_T(x) = q(x)g(x) + r(x) ,$$

 $\deg(r) < \deg(g) \le \deg(m_T)$

$$0 = m_T(T) = g(T)q(T) + r(T) = 0 + r(T) \implies r(T) = 0$$

בסתירה לכך כי $m_T(T)$ הפולינום המינימלי.

משפט 10.7

 $.m_T \in S_T(\mathbf{v}, W)$

 $g\mid m_T$,10.6 מינימלי . לפי משפט ,10.6 המנחה g(x) המנחה: נניח כי $m_T\in S_T(\mathbf{v},W)$,10.5 לכן לפי משפט

משפט 10.8

 $lpha \in V
otin W$ נניח כי $M \subset V$ מרחב ווקטורי $T:V \to V$ אופרטור. נניח כי $W \subset V$ תת מרחב $T:V \to V$ שמור. קיים כך ש-

$$(T - \lambda)\alpha \in W$$

T ערך עצמי של λ

הוכחה:

Uנוכיח כי המנחה-T המינימלי של Ω ל- U הוא פולינום לינארי

נניח כי β כל ווקטור שב- V אבל לא ב- W, כלומר W - אבל לא ב- W יהי W המנחה- W המינימלי של לW ל- W המשפט המנימלי של לW ו- W פולינום. W בולינום און W השפט אור בי W ו- W פולינום משפט אור בי W ו- W פולינום.

 $.\alpha = h(T)\beta \notin W$ לכן לכן 'פר ע- ש- ביותר כך הפולינום של דרגה קטנה ביותר כך g

לכן

$$(T - \lambda_i I)\alpha = (T - \lambda_i)h(T)\beta = g(T)\beta \in W$$

etaבגלל ש- g(T) המנחה המינימלי של

משפט 10.9

לכסינה אם ורק אם m_T מתפרק לגורמים לינאריים שונים:

$$m_T(x) = (x - \lambda_1) \cdots (x - \lambda_n)$$
.

 $m_T(x) = (x - \lambda_1) \cdots (x - \lambda_n)$ נניח כי

 $W\neq V$ -ו עצמיים על הווקטורים עורים כאשר $W=\mathrm{span}\{u_1,\ldots,u_k\}$ נניח כי $\beta=(T-\lambda_iI)\alpha\in W$ הווקטור עצמי ל של הערך עצמי עוער עצמי $\alpha\notin W$ קיים פאר 10.8 לפי

 $1 \leq i \leq k$ לכל לכל ד $u_i = \lambda_i u_i$ כאשר הא $\beta = u_1 + \ldots + u_k$ אז א $\beta \in W$ מכיוון ש-

לכן

$$h(T)\beta = h(\lambda_1)u_1 + \ldots + h(\lambda_k)u_k \in W . \tag{*}$$

h לכל פולינום

$$m_T(x)\beta = (x - \lambda_i)q(x) \tag{**}$$

. כאשר q(x) פולינום

לפי מפשט השארית,

$$q(x) = (x - \lambda_i)h(x) + q(\lambda_i) \tag{***}$$

כאשר q(x) פולינום. לכן

$$q(T)\alpha - q(\lambda_i)\alpha = h(T)(T - \lambda_i I)\alpha = h(T)\beta$$
(****)

 $.h(T)eta\in W$,(*), לפי

-מכיוון ש

$$0 = m_T(T)\alpha = (T - \lambda_i)q(T)\alpha,$$

 $q(T)\alpha\in W$ ווקטור עצמי של T ששייך לערך עצמי λ_i אז ווקטור עצמי של כלומר

 $.q(\lambda_i)\alpha \in W$,(****), לכן לפי

$$g(\lambda_i)=0$$
 אבל אבל $q(\lambda_i)=0$ אבל

אז לפי (**), לא כל השורשים של m_T שונים. סתירה!

משפט 10.10

(לא בהכרח שונים): מתפרק לגורמים לינאריים שם ורק אם m_T מתפרק לינאריים (לא בהכרח שונים):

$$m_T(x) = (x - \lambda_1)^{r_1} \cdots (x - \lambda_k)^{r_k}$$
.

 $m_T(x)=(x-\lambda_1)^{r_1}\cdots(x-\lambda_k)^{r_k}$ נניח כי נניח כי אנחנו רוצים למצוא בסיס $\beta_1,\ldots\beta_n$ כך ש

$$[T]_{\beta}^{\beta} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

נדרוש כי

$$T(\beta_i) = a_{1i}\beta_1 + \ldots + a_{ii}\beta_i .$$

 $.T(eta_i) \in \{eta_1, \ldots, eta_i\}$ א"ר

 $.W=\{0\}\subset V$ יהי

 $.(T-\lambda_1)\alpha\in\{0\}$ -כך ש
- פך משפט $\exists\alpha\in V\notin\{0\}$ סלפי משפט לפי

א"ז

$$(T - \lambda_1 I)\alpha = 0 \quad \Rightarrow \quad T\alpha = \lambda_1 \alpha ,$$

T ווקטור עצמי של lpha

$$[T(eta_1)]_eta=egin{pmatrix} \lambda_1 \ 0 \ dots \ 0 \end{pmatrix}$$
 אז $eta_1=lpha$ נבחור $eta_1=lpha$

יהי T מרחב תת מרחב לב כי נשים $W_1=\{\beta_1\}\subset V$ יהי יהי $(T-\lambda_2)\alpha\in W_1$ כך שר כך $\exists \alpha\in V\notin W_1$ 10.8 לפי משפט

ז"א

$$(T - \lambda_2 I)\alpha = k\beta_1 \quad \Rightarrow \quad T(\alpha) = k\beta_1 + \lambda_2 \alpha$$

 $T(eta_2)=keta_1+\lambda_2eta_2$ גבחור $eta_2=lpha$ אז $eta_2=lpha$

. שימו לב, $\{\beta_1,\beta_2\}$ לכן לכן לכן ה', $\beta_1\in W$ -ו $\beta_2\notin W_1$ בלתי שימו לב, שימו לינארית

$$.[T(\beta_2)]_{\beta} = \begin{pmatrix} k \\ \lambda_2 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

נמשיד עם התהליד הזה:

יהי W_i מרחב W_i נשים לב כי . $W_i=\{\beta_1,\ldots,\beta_i\}\subset V$ יהי יהי $\exists \alpha\in V\notin W_i$ 10.8 לפי משפט 10.8 כך ש

7"%

$$(T - \lambda_j I)\alpha = c_1 \beta_1 + \ldots + c_i \beta_i \quad \Rightarrow \quad T(\alpha) = c_1 \beta_1 + \ldots + c_i \beta_i + \lambda_j \alpha \alpha.$$

 $.\{\beta_1,\ldots,\beta_i\}$ -ם לינאריית לינאר בלתי בלתי לכן $\alpha\notin W_i$ שימו לב, שימו שימו

 $.\beta_{i+1}=\alpha$ נבחור

$$.[T(\beta_{i+1})]_{\beta} = \begin{pmatrix} c_1 \\ \vdots \\ c_i \\ \lambda_j \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

נניח כי T ניתנת לשילוש.

לכסין. [T] איים בסיס עבורו המטריצה המייצגת \Leftarrow

. מתפרק שונים). הפולינום האופייני של T מתפרק לגורמים לינאריים (לא בהכרלח שונים).

מתפרק לגורמים ליניאריים (לא בהכרח שונים). $m \Leftarrow m \mid p$