# NBTree: A Naive Bayes/Decision-Tree Hybrid

Darin Morrison

April 17, 2007

- Motivation
  - Problem and Solutions
- 2 Consideration of Existing Solutions
  - Naive-Bayes Classifiers
  - Decision-Trees
  - Learning Curves
- New Solution: NBTree
  - Definition of NBTree
  - Performance
- 4 Summary



- Motivation
  - Problem and Solutions
- 2 Consideration of Existing Solutions
  - Naive-Bayes Classifiers
  - Decision-Trees
  - Learning Curves
- New Solution: NBTree
  - Definition of NBTree
  - Performance
- 4 Summary

Problem How can we generate a classifier from an arbitrarily sized database of labeled instances, where attributes are not necessarily independent?

- Naive-Bayes Classifiers
- ② Decision-Trees (C4.5)
- 6

Problem How can we generate a classifier from an arbitrarily sized database of labeled instances, where attributes are not necessarily independent?

- Naive-Bayes Classifiers
- ② Decision-Trees (C4.5)
- (3)

Problem How can we generate a classifier from an arbitrarily sized database of labeled instances, where attributes are not necessarily independent?

- Naive-Bayes Classifiers
- ② Decision-Trees (C4.5)



Problem How can we generate a classifier from an arbitrarily sized database of labeled instances, where attributes are not necessarily independent?

- Naive-Bayes Classifiers
- Decision-Trees (C4.5)
- 3

- Motivation
  - Problem and Solutions
- 2 Consideration of Existing Solutions
  - Naive-Bayes Classifiers
  - Decision-Trees
  - Learning Curves
- New Solution: NBTree
  - Definition of NBTree
  - Performance
- 4 Summary

# Naive-Bayes Classifiers

#### Pros

- Fast
- Induced classifiers are easy to interpret
- Robust to irrelevant attributes
- Uses evidence from many attributes

#### Cons

- Assumes independence of attributes
- 2 Low performance ceiling on large databases

- Motivation
  - Problem and Solutions
- 2 Consideration of Existing Solutions
  - Naive-Bayes Classifiers
    - Decision-Trees
    - Learning Curves
- New Solution: NBTree
  - Definition of NBTree
  - Performance
- 4 Summary

### **Decision-Trees**

### Pros

- Fast
- Segmentation of data

#### Cons

- Fragmentation as number of splits becomes large
- Interpretability goes down as number of splits increase

- Motivation
  - Problem and Solutions
- 2 Consideration of Existing Solutions
  - Naive-Bayes Classifiers
  - Decision-Trees
  - Learning Curves
- New Solution: NBTree
  - Definition of NBTree
  - Performance
- 4 Summary

# Comparison between NB and C4.5 Learning Curves



Error bars represent 95% confidence intervals on accuracy



- Motivation
  - Problem and Solutions
- Consideration of Existing Solutions
  - Naive-Bayes Classifiers
  - Decision-Trees
  - Learning Curves
- New Solution: NBTree
  - Definition of NBTree
  - Performance
- 4 Summary

- $dom(makeNBTree) \triangleq Set LabeledInstance$
- $cod(makeNBTree) \triangleq Tree Split NBC$
- **⑤** For each attribute  $X_i$ , evaluate the utility,  $u(X_i)$ , of a split on attribute  $X_i$ . For continuous attributes, a threshold is also found at this stage.
- igcup Let  $j = argmax_i(u_i)$ , i.e., the attribute with the highest utility.
- If u<sub>j</sub> is not significantly better than the utility of the current node, create a Naive-Bayes classifier for the current node and return.
- Partition the set of instances T according to the test on X<sub>j</sub> If X<sub>j</sub> is continuous, a threshold split is used; if X<sub>j</sub> is discrete, a
- multi-way split is made for all possible values.
  - (ロ) (部) (注) (注) 注目 りの()

- $dom(makeNBTree) \triangleq Set LabeledInstance$
- $cod(makeNBTree) \triangleq Tree Split NBC$
- For each attribute  $X_i$ , evaluate the utility,  $u(X_i)$ , of a split on attribute  $X_i$ . For continuous attributes, a threshold is also found at this stage.
- ② Let  $j = argmax_i(u_i)$ , i.e., the attribute with the highest utility
  - node, create a Naive-Bayes classifier for the current node and
- Partition the set of instances T according to the test on X<sub>j</sub>. If I is continuous, a threshold split is used; if X<sub>j</sub> is discrete, a multi-way split is made for all possible values.

- $dom(makeNBTree) \triangleq Set LabeledInstance$
- $cod(makeNBTree) \triangleq Tree Split NBC$
- For each attribute  $X_i$ , evaluate the utility,  $u(X_i)$ , of a split on attribute  $X_i$ . For continuous attributes, a threshold is also found at this stage.
- **2** Let  $j = argmax_i(u_i)$ , *i.e.*, the attribute with the highest utility.
- If u<sub>j</sub> is not significantly better than the utility of the current node, create a Naive-Bayes classifier for the current node and return.
- Partition the set of instances T according to the test on X<sub>j</sub>. If X<sub>j</sub> is continuous, a threshold split is used; if X<sub>j</sub> is discrete, a multi-way split is made for all possible values.
- T that matches the test leading to the child.

- $dom(makeNBTree) \triangleq Set LabeledInstance$
- $cod(makeNBTree) \triangleq Tree Split NBC$
- For each attribute  $X_i$ , evaluate the utility,  $u(X_i)$ , of a split on attribute  $X_i$ . For continuous attributes, a threshold is also found at this stage.
- **2** Let  $j = argmax_i(u_i)$ , *i.e.*, the attribute with the highest utility.
- **1** If  $u_j$  is not significantly better than the utility of the current node, create a Naive-Bayes classifier for the current node and return.
- Partition the set of instances T according to the test on  $X_j$ . If  $X_j$  is continuous, a threshold split is used; if  $X_j$  is discrete, a multi-way split is made for all possible values.

- $dom(makeNBTree) \triangleq Set LabeledInstance$
- $cod(makeNBTree) \triangleq Tree Split NBC$
- **1** For each attribute  $X_i$ , evaluate the utility,  $u(X_i)$ , of a split on attribute  $X_i$ . For continuous attributes, a threshold is also found at this stage.
- 2 Let  $j = argmax_i(u_i)$ , *i.e.*, the attribute with the highest utility.
- If  $u_j$  is not significantly better than the utility of the current node, create a Naive-Bayes classifier for the current node and return.
- Partition the set of instances T according to the test on  $X_j$ . If  $X_j$  is continuous, a threshold split is used; if  $X_j$  is discrete, a multi-way split is made for all possible values.
- For each child, call the algorithm recursively on the portion of T that matches the test leading to the child.

- $dom(makeNBTree) \triangleq Set LabeledInstance$
- $cod(makeNBTree) \triangleq Tree Split NBC$
- **1** For each attribute  $X_i$ , evaluate the utility,  $u(X_i)$ , of a split on attribute  $X_i$ . For continuous attributes, a threshold is also found at this stage.
- 2 Let  $j = argmax_i(u_i)$ , *i.e.*, the attribute with the highest utility.
- If  $u_j$  is not significantly better than the utility of the current node, create a Naive-Bayes classifier for the current node and return.
- Partition the set of instances T according to the test on  $X_j$ . If  $X_j$  is continuous, a threshold split is used; if  $X_j$  is discrete, a multi-way split is made for all possible values.
- For each child, call the algorithm recursively on the portion of T that matches the test leading to the child.

## Utility

- Utility of Node Computed by discretizing the data and computing 5-fold cross-validation accuracy estimate of using NBC at node
- Utility of Split Computed by weighted sum of utility of nodes, where weight given to node is proportional to num of instances that reach node
- Significance Split is *significant* iff the relative reduction in error is greater than 5% and there are at least 30 instances in node

#### Intuition

 Attempt to approximate whether generalization accuracy for NBC at each leaf is higher than single NBC at current node



- Motivation
  - Problem and Solutions
- 2 Consideration of Existing Solutions
  - Naive-Bayes Classifiers
  - Decision-Trees
  - Learning Curves
- New Solution: NBTree
  - Definition of NBTree
  - Performance
- 4 Summary

# Graphs

| Dataset     | No    | Train  | Test   | Dataset       | No    | Train  | Test   | Dataset       | No    | Train | Test  |
|-------------|-------|--------|--------|---------------|-------|--------|--------|---------------|-------|-------|-------|
|             | attrs | size   | size   |               | attrs | size   | size   |               | attrs | size  | size  |
| adult       | 14    | 30,162 | 15,060 | breast (L)    | 9     | 277    | CV-10  | breast (W)    | 10    | 683   | CV-10 |
| chess       | 36    | 2,130  | 1,066  | cleve         | 13    | 296    | CV-10  | crx           | 15    | 653   | CV-10 |
| DNA         | 180   | 2,000  | 1,186  | flare         | 10    | 1,066  | CV-10  | german        | 20    | 1,000 | CV-10 |
| glass       | 9     | 214    | CV-10  | glass2        | 9     | 163    | CV-10  | heart         | 13    | 270   | CV-10 |
| ionosphere  | 34    | 351    | CV-10  | iris          | 4     | 150    | CV-10  | led24         | 24    | 200   | 3000  |
| letter      | 16    | 15,000 | 5,000  | monk1         | 6     | 124    | 432    | mushroom      | 22    | 5,644 | 3,803 |
| pima        | 8     | 768    | CV-10  | primary-tumor | 17    | 132    | CV-10  | satimage      | 36    | 4,435 | 2,000 |
| segment     | 19    | 2,310  | CV-10  | shuttle       | 9     | 43,500 | 14,500 | soybean-large | 35    | 562   | CV-10 |
| tic-tac-toe | 9     | 958    | CV-10  | vehicle       | 18    | 846    | CV-10  | vote          | 16    | 435   | CV-10 |
| vote1       | 15    | 435    | CV-10  | waveform-40   | 40    | 300    | 4,700  |               |       |       |       |



# Graphs



### **Statistics**

### Average Accuracy

**C4.5** 81.91%

Naive-Bayes 81.69%

**NBTree** 84.47%

### Number of Nodes per Tree

|        | C4.5 | NBTree |
|--------|------|--------|
| letter | 2109 | 251    |
| adult  | 2213 | 137    |
| DNA    | 131  | 3      |
| led24  | 49   | 1      |

### Summary

- NBTree appears to be a viable approach to inducing classifiers, where:
  - Many attributes are relevant for classification
  - Attributes are not necessarily independent
  - Database is large
  - Interpretability of classifier is important
- In practice, NBTrees are shown to scale to large databases and, in general, outperform Decision Trees and NBCs alone

### References



R. Kohavi.

Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree Hybrid

Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 1996.