1. Концептуална архитектура

Оваа архитектура обезбедува преглед на високо ниво на одговорностите, компонентите и нивните интеракции на апликацијата на ниво на домен. Обезбедува усогласување со функционалните и нефункционалните барања на системот.

Компоненти:

- **GUI(Кориснички интерфејс)**: Им овозможува на корисниците да иницираат преземање податоци, да прегледуваат обработени податоци за акции и да комуницираат со системот.
- Платфорфма за обработка на податоци (филтри):
 - о Филтер 1: Презема шифри на издавачи од веб-страницата на Македонската берза.
 - о Филтер 2: Проверува кои податоци се последно зачувани во базата.
 - о Филтер 3: Ги презема податоците кои недостасуваат.
 - о Филтер 4: Ги форматира и зачувува податоците во базата.
- База на податоци: Чување на податоците за издавачите и историските податоци за акции.
- Надворешен систем (Веб-страница на берзата): Извлекува податоци за акциите од вебстраницата на Македонската берза.

Конектори:

- Проток на податоци:
 - о Секвенцијален проток низ филтрите на платформата.
 - о Двонасочна комуникација помеѓу GUI и бекендот (платформа и база на податоци).

Наратив за сценарио

- Корисникот го иницира процесот преку GUI:
 - о На пример, внесува име за кое што сака да види податоци.
- GUI испраќа барање до платформата:
 - о Преку REST API, барање се праќа до Филтер 1.
- Платформата го обработува барањето низ филтрите:
 - Презема податоци, проверува постоечки записи, презема недостасувачки податоци и зачувува.
- Базата на податоци враќа одговор:
 - о Резултатите се враќаат до GUI за прикажување.

Дијаграм:

2. Извршна архитектура

Извршната архитектура се фокусира на тоа како системот ќе функционира во текот на неговото извршување. Ова вклучува процеси, нишки и како тие ќе комуницираат.

Процеси:

1. Процес на веб-сервер:

о Комуницира со корисничкиот интерфејс и ја координира обработката на податоците.

2. Процес на платформа:

о Користи филтри за обработка на податоците.

3. Процес на база на податоци:

 Базата на податоци ќе извршува SQL прашања за да чува, враќа или менува податоци на серверот.

Конкурентност:

1. Мултитрединг:

о Секој филтер се извршува во своја нишка за да се подобри перформансот.

2. Асинхрона комуникација:

о GUI и Backend ќе комуницираат асинхроно за да се овозможи одзивност на апликацијата.

Дијаграм:

3. Имплементациска архитектура

Имплементациската архитектура го опишува изборот на технологии и како тие се распределени во системот. Таа прикажува како компонентите од концептуалната и извршната архитектура ќе бидат имплементирани со конкретни технологии.

Технолошки компоненти:

1. **Frontend(GUI)**:

- HTML/CSS и JavaScript ќе се користат за креирање на структуриран и стилски кориснички интерфејс.
- о React.js ќе се користи за динамично ажурирање на податоците на страната.

2. Backend(Server):

o Python (Flask/Django) за управување со API и координација на процесите.

3. Платформа за обработка на податоците:

• Python функции за обработка на податоци (BeautifulSoup за парсирање HTML и Playwright за понапредни можности за оптимизација на преземањето податоци).

4. База на податоци:

• SQLite за прототипирање.

5. Контејнеризација:

о Docker за пакување на апликацијата и нејзината инфраструктура во контејнери.

