台大電機系 光電實驗

實驗六.液晶與偏振實驗

助教: 陳薇琛

r08941038@ntu.edu.tw

電二館 351A

Display Applications

Cross-section of LCD panel

實驗項目(目的及步驟)

實驗目的

- 了解液晶顯示器的操作原理
- 認識何為偏振光

實驗步驟

- · 認識 線性偏振片 (Polarizer)
- 認識 λ/2 與 λ/4 plate (波片) 特性
- TN (Twisted Nematic)液晶層與 電壓的關係

Differential Form	Integral Form	Significance
$\mathbf{\nabla} \times \mathbf{E} = -\frac{\hat{c}\mathbf{B}}{\hat{c}t}$	$\oint_C \mathbf{E} \cdot d\ell = -\frac{d\Phi}{dt}$	Faraday's law
$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$	$\oint_{\mathcal{C}} \mathbf{H} \cdot d\boldsymbol{\ell} = I + \int_{S} \frac{\hat{c}\mathbf{D}}{\hat{c}t} \cdot d\mathbf{s}$	Ampère's circuital law
$\nabla \cdot \mathbf{D} = \rho$	$\oint_{S} \mathbf{D} \cdot d\mathbf{s} = Q$	Gauss's law
$\nabla \cdot \mathbf{B} = 0$	$\oint_{S} \mathbf{B} \cdot d\mathbf{s} = 0$	No isolated magnetic charge

Plane EM waves in a simple, nonconducting and source-free region

$$\nabla \times E = -\mu \frac{\partial H}{\partial t} \qquad \nabla \times H = \varepsilon \frac{\partial E}{\partial t} \qquad \nabla \cdot E = 0 \qquad \nabla \cdot H = 0$$

$$\nabla \times \nabla \times E = -\mu \frac{\partial}{\partial t} (\nabla \times \overset{\varpi}{H}) = -\mu \varepsilon \frac{\partial^2 E}{\partial t^2} = \nabla (\nabla \cdot \overset{\varpi}{E}) - \nabla^2 \overset{\varpi}{E} = -\nabla^2 \overset{\varpi}{E}$$

$$\Rightarrow \nabla^2 E - \mu \varepsilon \frac{\partial^2 E}{\partial t^2} = 0$$

$$\nabla^2 E - \mu \varepsilon \frac{\partial^2 E}{\partial t^2} = 0$$

Velocity of the plane EM wave: $v = \frac{1}{\sqrt{\mu \varepsilon}}$

$$\nu = \frac{1}{\sqrt{\mu\varepsilon}}$$

Wave number:

$$k = \omega/v = \omega \sqrt{\mu \varepsilon} = \frac{2\pi}{v/f} = \frac{2\pi}{\lambda}$$

Assume $E \propto e^{j\omega t}$ (phasor)

$$\Rightarrow \nabla^2 E + k^2 E = 0$$

Suppose E = E(z)

$$\Rightarrow \frac{d^2 E(z)}{dz^2} + k^2 E = 0$$

$$\Rightarrow E(z) = E_0^+ e^{-jkz} + E_0^- e^{jkz}$$

Traveling wave in +z-direction:

$$E_0^+(z,t) = \text{Re}[E_0^+e^{-jkz}\cdot e^{j\omega t}] = E_0^+\cos(\omega t - kz)$$

EX1: Polarizers

• Virtually all light sources used in optical displays are unpolarized

• Polarizer produces a beam of polarized light from a beam of unpolarized light

台大電機系 光電實驗

EX1: Polarizers

• Crossed polarizers = switch OFF

• Malus's law: $I(\theta) = I(0) \cos^2(\theta)$

Figure 1.3. Transmission of unpolarized light through two polarizers in series.

2021/4/22

EX2: Phase Retardation (相位延遲)

• Liquid crystal = Light valve

Phase Retardation Γ :

$$\Gamma = \frac{2\pi d}{\lambda/n_e} - \frac{2\pi d}{\lambda/n_o} = \frac{2\pi d(n_e - n_o)}{\lambda}$$

2021/4/22

EX2: Half-wave $(\lambda/2)$ plate

- A half-wave plate has phase retardation $\Gamma = \pi$
- (ne-no)d = Δ nd = λ /2 (or odd multiples 1,3,5...)

- Can rotate a linear polarization by an angle 2ψ
- •Note: rotation by 90° if $\psi = 45^{\circ}$

 ψ = input polarization angle relative to c axis

λ/2 plate

- Can change R to L (or L to R)
- •Circular polarization conversion regardless of ψ angle

EX2: Quarter-wave (λ/4) plate

- A half-wave plate has phase retardation $\Gamma = \frac{\pi}{2}$ (which depends on wavelength λ)
- (ne-no)d = Δ nd = λ /4 (or odd multiples 1,3,5...)

EX2: Quarter-wave (λ/4) plate

 $E_x = E_0 \cos(kz - \omega t)$

 $E_v = E_0 \cos(kz - \omega t - \pi/2)$

Figure 8.3 Right-circular light. (a) Here the electric field, which has a constant amplitude, rotates clockwise with the same frequency with which it oscillates. (b) Two perpendicular antennas radiating with a 90° phase difference produce circularly polarized electromagnetic waves.

EX3: TN (Twisted Nematic)

• By applying a small voltage, 0-5V, LC molecules align with E, twist structure disappears

Normally White

Experiment Setup (架構)

2021/4/22

實驗六.液晶與偏振實驗預報問題

- 比較normally white 和 normally black LCD的差别?(可以在上實驗課時觀察一下實驗中的液晶模組為哪一類型)
- · 生活中具有polarizer特性的現象與基本原理?

預報內容提醒:

- 實驗名稱
- •實驗目的
- 實驗架構
- •實驗原理

何為偏振光(比較線偏振,圓偏振,橢圓偏振差異)請用電場描述!

• 預報題目