Langages et Automates Lemme de l'étoile et horreurs cosmiques

Engel Lefaucheux

Prépas des INP

Lemme de l'étoile

Theorem (Théorème de Kleene)

Les langages reconaissables sont exactement les langages réguliers.

Theorem

Soit L un langage régulier. Il existe un entier N tel que tout mot w de L de longueur $|w| \ge N$ possède une factorisation w = xyz avec 0 < |y| telle que

- **1** $0 < |xy| \le N$ et
- ② $xy^nz \in L$ pour tout entier $n \ge 0$.

Lemme de l'étoile

Theorem (Théorème de Kleene)

Les langages reconaissables sont exactement les langages réguliers.

Theorem

Soit L un langage régulier. Il existe un entier N tel que tout mot w de L de longueur $|w| \geq N$ possède une factorisation w = xyz avec 0 < |y| telle que

- **1** $0 < |xy| \le N$ et
- 2 $xy^nz \in L$ pour tout entier $n \ge 0$.

Que signifie ce lemme, du point de vue de l'automate ?

Exemple

Theorem

Soit L un langage régulier. Il existe un entier N tel que tout mot w de L de longueur $|w| \ge N$ possède une factorisation w = xyz avec 0 < |y| telle que

- **1** $0 < |xy| \le N$ et
- 2 $xy^nz \in L$ pour tout entier $n \ge 0$.

Soit N = 5

Donner un mot de ce langage de longueur supérieur ou égal à 5

Preuve formelle

Soit \mathcal{L} un langage régulier et $\mathcal{A} = (Q, \Sigma, T, I, F)$ l'automate reconnaissant ce langage. Soit N le nombre d'états de \mathcal{A} .

Soit $w = w_1 \dots w_m \in \mathcal{L}$ avec $m \geq N + 1$. Comme w est accepté par \mathcal{A} , il existe un chemin

$$q_0 \xrightarrow{w_1} q_1 \xrightarrow{w_1} q_2 \xrightarrow{w_2} \dots \xrightarrow{w_m} q_m$$

où $q_0 \in I$ et $q_m \in F$.

Comme $m \geq N+1$, par le principe des tiroirs, il existe $1 \leq i < j \leq N+1$ tel que $q_i = q_j$. On fixe $x = w_1 \dots w_i$, $y = w_{i+1} \dots w_j$ et $z = w^{j+1} \dots w_m$. Au mot xy^kz correspond le chemin acceptant

$$q_0 \xrightarrow{w_1} q_1 \xrightarrow{w_1} \dots \xrightarrow{w_i} q_i (\xrightarrow{w_{i+1}} \dots \xrightarrow{w_j} q_j)^k \xrightarrow{w_{j+1}} \dots \xrightarrow{w_m} q_m$$

Exercice

Donner la constante N du lemme de l'étoile associée aux langages suivants

- a* b*
- $a + bb(a + b)^*$
- a^4b^3
- $b^*aa(b+a)$

Objectifs du cours

- Discuter de la modélisation de systèmes réels
 - Découvrir rapidement quelques formalismes plus poussés
- Discuter de la spécification de problèmes
 - Des mots, mais pas que

Un automate pour la machine à café

- les états peuvent correspondre aux situations du système
- les transitions peuvent correspondre aux évênements / actions
 - Mais selon les problèmes, on voudra potentiellement ne pas représenter toutes les actions
- le choix d'un état final dépend de la propriété des mots que l'on veut tester.

Diagnostic de la machine à café

- les pointillés sont des actions inobservables par l'utilisateur
 - Action réelle du système, mais traitée comme une ε -transition
- Diagnostic : est-ce que tout mot correspondant à un chemin fautif est éventuellement détecté comme fautif ?
 - plus d'états acceptants
 - on considère même des mots infinis

Un monde probabiliste

Le hasard est omniprésent dans un système

- actions de l'environement
- comportement intrinsèque du système.

Comment le représenter ?

Un monde probabiliste

Le hasard est omniprésent dans un système

- actions de l'environement
- comportement intrinsèque du système.

Comment le représenter ?

Première possibilité : chaque action a une probabilité → Chaîne de Markov étiquettée

Un monde probabiliste

Le hasard est omniprésent dans un système

- actions de l'environement
- comportement intrinsèque du système.

Comment le représenter ?

Première possibilité : chaque action a une probabilité

→ Chaîne de Markov étiquettée

Avec probabilité 1, une exécution contenant erreur contiendra également brûle.

Un monde probabiliste (2)

Deuxième possibilité : à chaque action est associé une distribution de probabilité indiquant l'état suivant

 \rightarrow Automate probabiliste

- lire b en q_0 mène en q_1
- lire a en q_0 mène en q_0 avec probabilité 0.3, en q_1 avec probabilité 0.2 et en q_3 avec probabilité 0.5

Chaque mot a une probabilité d'atteindre un état final.

Un monde probabiliste (2)

Deuxième possibilité : à chaque action est associé une distribution de probabilité indiquant l'état suivant

 \rightarrow Automate probabiliste

- lire b en q_0 mène en q_1
- lire a en q_0 mène en q_0 avec probabilité 0.3, en q_1 avec probabilité 0.2 et en q_3 avec probabilité 0.5

Chaque mot a une probabilité d'atteindre un état final. Quelle probabilité d'acceptation pour le mot aabbbb?

Langage probabiliste?

Comment définir un langage pour un automate probabiliste ?

Langage probabiliste?

Comment définir un langage pour un automate probabiliste ?

Traditionnellement, avec un seuil λ : le langage contient tous les mots dont la probabilité d'acceptation dépasse λ .

Langage probabiliste?

Comment définir un langage pour un automate probabiliste ?

Traditionnellement, avec un seuil λ : le langage contient tous les mots dont la probabilité d'acceptation dépasse λ .

Quel est le langage de l'automate ci-dessus avec le seuil $\lambda=0.5$?

Un monde temporisé

- Chaque évènement a un temps d'exécution
- Certaines questions sont fortement dépendantes du temps.

Comment le représenter ?

Une option: l'utilisation d'horloges

Un monde temporisé

- Chaque évènement a un temps d'exécution
- Certaines questions sont fortement dépendantes du temps.

Comment le représenter ?

Une option: l'utilisation d'horloges

- x est une horloge
- [x] remet x à 0

(a,4)(b,5)(a,8)(b,8.2)(a,18)(b,20) est-il accepté?

Un monde infini

- un système fini (les automates de ce cours) conserve une quantité d'information limitée
- l'environnement envoie une quantité d'information non bornée Comment retenir ces informations ?

Un monde infini

- un système fini (les automates de ce cours) conserve une quantité d'information limitée
- l'environnement envoie une quantité d'information non bornée

Comment retenir ces informations?

Une possibilité : l'utilisation d'une pile

- $\downarrow \alpha$ ajoute α sur la pile
- $\bullet \uparrow \alpha$
 - \bullet ne peut se prendre que si α est au sommet de la pile
 - ullet retire lpha du somme de la pile.

Quel langage pour cet automate?

Un monde infini

- un système fini (les automates de ce cours) conserve une quantité d'information limitée
- l'environnement envoie une quantité d'information non bornée

Comment retenir ces informations?

Une possibilité : l'utilisation d'une pile

- $\downarrow \alpha$ ajoute α sur la pile
- $\bullet \uparrow \alpha$
 - ullet ne peut se prendre que si lpha est au sommet de la pile
 - ullet retire lpha du somme de la pile.

Quel langage pour cet automate?

$$\{w \in \{a, b\}^* \mid \forall v, \text{ prefix de } w, |v|_a \ge |v|_b\}$$

Exercice

Construisez un automate à pile reconnaissant les langages suivants

- $\{a^nb^n \mid n \in \mathbb{N}\}$
- $\{a^nb^mc^md^n \mid n, m \in \mathbb{N}\}$

Le langage suivant peut-il être reconnu par un automate à pile : $\{a^nb^mc^nd^m\mid n,m\in\mathbb{N}\}$

Langage hors contexte

Les langages reconnus par les automates à pile sont appelés langages hors-contexte.

Theorem (Théorème de l'étoile des automates à pile)

Soit L un langage hors contexte. Il existe $N \in \mathbb{N}$ tel que pour tout mot $w \in L$, si $|w| \ge N$, alors w = uvwxy avec

- |vwx| ≤ N
- |vx| > 0
- pour tout $k \in \mathbb{N}$, $uv^n wx^n y \in L$

Donc pour $\{a^nb^mc^nd^m \mid n, m \in \mathbb{N}\}$?

Langage hors contexte

Les langages reconnus par les automates à pile sont appelés langages hors-contexte.

Theorem (Théorème de l'étoile des automates à pile)

Soit L un langage hors contexte. Il existe $N \in \mathbb{N}$ tel que pour tout mot $w \in L$, si $|w| \ge N$, alors w = uvwxy avec

- |vwx| ≤ N
- |vx| > 0
- pour tout $k \in \mathbb{N}$, $uv^n wx^n y \in L$

Donc pour $\{a^nb^mc^nd^m \mid n, m \in \mathbb{N}\}$?

Les langages hors contexte correspondent aux langages générés par des grammaire de type 2.