(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

17 octobre 2002 (17.10.2002)

PCT

(10) Numéro de publication internationale WO 02/080869 A2

- (51) Classification internationale des brevets7: A61K 7/13, C09B 44/16, 44/20
- (21) Numéro de la demande internationale :

PCT/FR02/01153

- (22) Date de dépôt international: 3 avril 2002 (03.04.2002)
- (25) Langue de dépôt :

français

(26) Langue de publication :

français

- (30) Données relatives à la priorité : 01/04537 3 avril 2001 (03.04.2001) FR
- (71) Déposant (pour tous les États désignés sauf US) : L'OREAL [FR/FR]; 14, rue Royale, F-75008 Paris (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): VIDAL, Laurent [FR/FR]; 7, rue de Rungis, F-75013 Paris (FR). DAVID, Hervé [FR/FR]; 5 Avenue du Président Wilson, F-94340 Joinville le Pont (FR).
- (74) Mandataire: FEVRIER, Murielle; L'Oréal/D.P.I., 6, rue Bertrand Sincholle, F-92585 Clichy Cedex (FR).

- (81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée:

sans rapport de recherche internationale, sera republiée dès réception de ce rapport

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

(54) Title: NOVEL DYEING COMPOSITION FOR DYEING KERATINOUS FIBRES COMPRISING COMPRE TIONIC MONOAZO DYE

(54) Titre: NOUVELLE COMPOSITION TINCTORIALE POUR LA TEINTURE DES PIae (I) or (II). NANT UN COLORANT MONOAZOIQUE DICATIONIQUE PARTICULIER

(57) Abstract: The invention concerns a novel dyeing composition for dying key a dicationic monoazo dye, and the dyeing method using said composition an

(57) Abrégé: L'invention a pour objet une nouvelle composition ti des cheveux humains, comprenant un colorant monazoïque dicati composés nouveaux de formule (I) ou (II).

man hair, comprising kératiniques, en particulier dre la mettant en oeuvre et les

NOUVELLE COMPOSITION TINCTORIALE POUR LA TEINTURE DES FIBRES KERATINIQUES COMPRENANT UN COLORANT MONOAZOÏQUE DICATIONIQUE PARTICULIER

5

L'invention a pour objet une nouvelle composition tinctoriale pour la teinture des fibres kératiniques, en particulier des cheveux humains, contenant un colorant monoazoïque dicationique particulier, ainsi que le procédé de teinture des fibres kératiniques mettant en œuvre une telle composition. L'invention a aussi pour objet des colorants monocationiques diazoïques nouveaux.

10

15

20

25

30

Il est connu de teindre les fibres kératiniques êt en particulier les cheveux humains avec des compositions tinctoriales contenant des précurseurs de colorant d'oxydation, appelés généralement bases d'oxydation, tels que des ortho ou paraphénylènediamines, des ortho ou paraaminophénols et des composés hétérocycliques. Ces bases d'oxydation sont des composés incolores ou faiblement colorés qui, associés à des produits oxydants, donnent naissance par un processus de condensation oxydative à des composés colorés.

On sait également que l'on peut faire varier les nuances obtenues avec ces bases d'oxydation en les associant à des coupleurs ou modificateurs de coloration, ces derniers étant choisis notamment parmi les métadiamines aromatiques, les métadaminophénols, les métadiphénols et certains composés hétérocycliques tels que des composés indoliques.

La variété des molécules mises en jeu au niveau des bases d'oxydation et des coupleurs permet l'obtention d'une riche palette de couleurs.

Ce procédé de coloration d'oxydation consiste à appliquer sur le fibres kératiniques, des bases d'oxydation ou un mélange de bases d'oxydation et de coupleurs avec un agent oxydant, par exemple de l'eau oxygénée, à laisser pauser, puis à rincer les fibres. Les colorations qui en résultent sont permanentes, puissantes, et résistantes aux agents extérieurs, notamment à la lumière, aux intempéries, lavages, à la transpiration et aux frottements. Généralement appliquées à phus il permet d'obtenir une teinture et simultanément un éclaircissement de la fibre a d'engendrer une couleur unie dans le cas des cheveux gris naturellement pigmentés, de faire ressortir la couleur visible.

35

WO 02/080869 PCT/FR02/01153

Il est aussi connu de teindre les fibres kératiniques par une coloration directe. Le procédé classiquement utilisé en coloration directe consiste à appliquer sur les fibres kératiniques des colorants directs qui sont des molécules colorées et colorantes ayant une affinité pour les fibres, à laisser pauser, puis à rincer les fibres.

Il est connu par exemple d'utiliser des colorants directs du type nitrés benzèniques, anthraquinoniques, nitropyridiniques, des colorants du type azoïques, xanthéniques, acridiniques aziniques ou des colorants triarylméthane.

5

10

15

20

25

30

Les colorations qui en résultent sont des colorations particulièrement chromatique qui sont cependant temporaires ou semi-permanentes car la nature des interactions qui lient les colorants directs à la fibre kératinique, et leur désorption de la surface et/ou du cœur de la fibre sont responsables de leur faible puissance tinctoriale et de leur mauvaise tenue aux lavages ou à la transpiration. Ces colorants directs sont en outre généralement sensibles à la lumière du fait de la faible résistance du chromophore vis-à-vis des attaques photochimiques et conduisent dans le temps à un affadissement de la coloration des cheveux. En outre, leur sensibilité à la lumière est dépendante de leur répartition uniforme ou en agrégats dans la fibre kératinique.

Il est connu d'utiliser des colorants directs en combinaison avec des agents oxydants. Cependant, les colorants directs sont généralement sensibles à l'action des agents oxydants tels que l'eau oxygénée, et les agents réducteurs tels que le bisulfite de sodium, ce qui les rendent généralement difficilement utilisables dans les compositions de teinture directe éclaircissantes à base d'eau oxygénée et à base d'un agent alcalinisant ou dans des compositions de teinture d'oxydation en association avec des précurseurs du type bases d'oxydation ou coupleurs.

Par exemple, il a été proposé dans les demandes de brevets FR-1 584 965 et JP-062 711 435 de teindre les cheveux avec des compositions de teinture à base de colorants directs nitrés et/ou de colorants dispersés azoïques et d'eau oxygénée ammoniacale en appliquant sur les cheveux un mélange desdits colorants et dudit oxydant, réalisé juste avant l'emploi. Mais les colorations obtenues se sont révélées insuffisamment tenaces et disparaissent aux shampooings en laissant apparaître l'éclaircissement de la fibre capillaire. Une telle coloration devient inesthétique en évoluant au cours du temps.

On a également proposé dans les demandes de brevets JP-53 95693 et JP-55 022638 de teindre les cheveux avec des compositions à base de colorants directs cationiques de type oxazine et d'eau oxygénée ammoniacale, en appliquant sur les cheveux, dans une première étape, de l'eau oxygénée ammoniacale, puis dans une seconde étape, une composition à base du colorant direct oxazinique. Cette coloration n'est pas satisfaisante, en raison du fait qu'elle nécessite un procédé rendu trop lent par les temps de pause des deux étapes successives. Si par ailleurs on applique sur les cheveux un mélange extemporané du colorant direct oxazinique avec de l'eau oxygénée ammoniacale, on ne colore pas, ou du moins, on obtient une coloration de la fibre capillaire qui est presque inexistante.

Plus récemment, la demande de brevet FR 2 741 798 a décrit des compositions tinctoriales contenant des colorants directs comportant au moins un atome d'azote quaternisé du type azoïque ou azométhine, lesdites compositions étant à mélanger extemporanément à pH basique à une composition oxydante. Ces compositions permettent d'obtenir des colorations avec des reflets homogènes, tenaces et brillants. Cependant, elles ne permettent pas de teindre les fibres kératiniques avec autant de puissance qu'avec des compostions de coloration d'oxydation.

10

15

20

25

30

Il existe donc un réel besoin de rechercher des colorants directs chromatiques qui permettent de teindre les fibres kératiniques aussi puissamment que les colorants d'oxydation, qui soient aussi stables qu'eux à la lumière, soient également résistants aux intempéries, aux lavages et à la transpiration, et en outre, suffisamment stables en présence d'agents oxydants et réducteurs pour pouvoir obtenir simultanément un éclaircissement de la fibre soit par utilisation de compositions directes éclaircissantes les contenant, soit par l'utilisation de compositions de coloration d'oxydation les contenant. Il existe aussi un réel besoin de rechercher des colorants directs qui permettent de teindre les fibres kératiniques pour obtenir une gamme très large de couleurs, en particulier très chromatiques, sans oublier les nuances dites « fondamentale » comme les noirs et les marrons.

Ces buts sont atteints avec la présente invention qui a pour objet une composition pour la teinture des fibres kératiniques et en particulier des fibres

kératiniques humaines telles que les cheveux, comprenant au moins un colorant monoazoïque dicationique de formules (I) ou (II) suivantes :

$$Z_1-N=N-A_1-(A_3)_n-Z_2$$
 (I)

$$Z_1-N=N-A_2$$
 (II)

formules dans lesquelles

- n est égal à 0 ou 1,
- Z₁ représente un radical hétéroaromatique cationique à 5 ou 6 chaînons de formules (III) ou (IV) :

οù

10

15

- X représente NR₃, S ou O, Z représente CR₂ ou N et Y représente CR₄ ou N avec les conditions suivantes :

lorsque X est NR₃ ou O et Z est CR₂ alors Y est CR₄ ou N, lorsque X est S alors Z est N ou Y est N lorsque X est S et Z est N alors et Y est CR₄

- X₁ représente CR₆ ou N,
- m est un nombre entier égal à 0,1,2 ou 3,
- R₁, R₃ et R₅ représentent indépendamment l'un de l'autre une chaîne hydrocarbonée en C₁-C₁₀, saturée ou insaturée ; linéaire ou ramifiée pouvant former un cycle carboné ayant de 5 à 7 chaînons, éventuellement aromatique ; un ou plusieurs atomes de carbone pouvant être remplacés par un atome d'oxygène, d'azote, d'halogènes, de soufre ou par un groupement SO₂, à l'exception du carbone relié à l'atome d'azote du cycle de formule (III) ou (IV) ; les radicaux R₁, R₃ ou R₅ ne comportant pas de liaison peroxyde, ni de radicaux diazo, nitro ou nitroso ;
 - R₂, R₄ et R₆ représentent indépendamment l'un de l'autre un atome d'hydrogène ; une chaîne hydrocarbonée en C₁-C₁₀, saturée ou insaturée, linéaire ou

.5

25

ramifiée pouvant former un cycle carboné ayant de 5 à 7 chaînons, éventuellement aromatique; un ou plusieurs atomes de carbone pouvant être remplacés par un ou plusieurs atomes d'oxygène, d'azote, de soufre, ou par un groupement SO_2 ; les radicaux R_2 , R_4 ou R_6 ne comportant pas de liaison peroxyde, ni de radicaux diazo, nitro ou nitroso; les radicaux R_2 et R_4 peuvent former ensemble un cycle aromatique carboné.

- V représente un anion organique ou minéral,
- A₁ et A₃ représentent, indépendamment l'un de l'autre, un radical divalent
 de formules (V) ou (VI)

dans lesquelles

- n' est un nombre entier égal à 0, 1, 2 ou 3,
- n" est un nombre entier égal à 0 ou 1,
- 15 Y₁-Y₂ représente C-N ou N-N,
 - lorsque n = 0, alors la liaison a du groupement A₁ de la formule (V) est relié à la fonction Z₂ de la formule (I) ou,
 - lorsque n = 0, alors la liaison b' du groupement A₁ de la formule (VI) est reliée à la fonction Z₂ de la formule (I),
- lorsque n = 1, alors la liaison a du groupement A₁ de la formule (V) est reliée au C₁ du groupement A₃ de formule (V), la liaison a du groupement A₃ de formule (V) étant reliée à la fonction Z₂ de la formule (I) ou,
 - lorsque n = 1, alors la liaison a du groupement A₁ de la formule (V) est reliée au carbone porteur de la liaison a' du groupement A₃ de la formule (VI), la liaison b' étant reliée à la fonction Z₂ de la formule (I),

- lorsque n = 1, alors la liaison b' du groupement A₁ de la formule (VI) est reliée au carbone C₁ du groupement A₃ de formule (V), la liaison a étant reliée à la fonction Z₂ de la formule (I) ou,
- lorsque n = 1, alors la liaison b' du groupement A₁ de la formule (VI) est reliée au carbone porteur de la liaison a' du groupement A₃ de formule (VI), la liaison b' du groupement A₃ de la formule (VI) étant reliée à la fonction Z₂ de la formule (I),
- R₈ et R'₈ représentent indépendamment l'un de l'autre un groupe non cationique choisi parmi un atome hydrogène, une chaîne hydrocarbonée en C₁-C₁₀, linéaire ou ramifiée pouvant former un cycle carboné ayant de 5 à 7 chaînons, éventuellement aromatique; un ou plusieurs atomes de carbone de la chaîne hydrocarbonée pouvant être remplacés par un ou plusieurs atomes d'oxygène, d'azote, de soufre, ou par un groupement SO₂ à l'exception du carbone relié à l'atome d'azote; les radicaux R₈ ou R'₈ ne comportant pas de liaison peroxyde, ni de radicaux diazo, nitro ou nitroso;
- R₇, R₉, R'₇ et R'₉ représente indépendamment l'un de l'autre un groupe non cationique tel que défini pour R₂ ou un groupe cationique Z₃, à la condition qu'un seul des groupes R₇, R₉, R'₇ et R'₉ est cationique
- R₇ avec R₈, respectivement R'₇ avec R'₈ peuvent former ensemble un hétérocycle à 5 ou 6 chaînons saturé,
- Z₃ est un groupe cationique représenté par la formule (VII) suivante

--- (B)_n... D (VII)

20

25

30

5

10

15

dans laquelle:

- B représente une chaîne hydrocarbonée comportant de 1 à 15 atomes de carbone, linéaire ou ramifiée, pouvant former un ou plusieurs cycles comportant de 3 à 7 chaînons éventuellement aromatiques, et dont un ou plusieurs atomes de carbone peuvent être remplacés par un atome d'oxygène, d'azote, de soufre, ou par un radical SO₂ à l'exception du carbone relié à l'atome d'azote; B ne comportant pas de liaison peroxyde ni de radicaux diazo, nitro ou nitroso,
- -le radical B est relié à D par l'un quelconque des atomes du radical D,
- n'" peut prendre la valeur 0 ou 1,
 - D est choisi parmi les groupes cationiques de formules (VIII) et (IX) suivantes :

10

15

20

25

7

dans lesquelles:

- p peut prendre la valeur 0 ou 1;
- T_1 , T_2 , T_3 et T_4 , indépendamment les uns des autres, représentent un atome d'oxygène ; un atome de soufre ; un atome d'azote non substitué ou substitué par un radical R_{14} ; ou un atome de carbone non substitué ou substitué par un ou deux radicaux R_{14} , identiques ou différents ;
- T_5 représente un atome d'azote ; ou un atome de carbone non substitué ou substitué par un radical R_{14} ;
- T_6 peut prendre les mêmes significations que celles indiquées ci-dessous pour le radical R_{14} , étant entendu que T_6 est différent d'un atome d'hydrogène ;
- T_1 ou T_5 peuvent, en outre, former avec T_6 un cycle saturé ou insaturé comportant de 5 à 7 chaînons, chaque chaînon étant non substitué ou substitué par un ou deux radicaux R_{14} identiques ou différents ;
- deux des radicaux adjacents T_1 , T_2 , T_3 , T_4 et T_5 peuvent en outre former un cycle comportant de 5 à 7 chaînons, chaque chaînon étant indépendamment représenté par un atome de carbone non substitué ou substitué par un ou deux radicaux R_{14} identiques ou différents, un atome d'azote substitué ou non substitué par un radical R_{14} , un atome d'oxygène ou un atome de soufre ;
- R₁₀, R₁₁, R₁₂, R₁₃ et R₁₄, identiques ou différents représentent un atome d'hydrogène ; une chaîne hydrocarbonée comportant de 1 à 10 atomes de carbone, linéaire ou ramifiée, éventuellement aromatiques, et dont un ou plusieurs atomes de carbone peuvent être remplacés par un atome d'oxygène, d'azote, de soufre, ou par un groupe SO₂, et dont un ou plusieurs atomes de carbone peuvent, indépendamment les uns des autres, être

10

15

20

25

substitués par un ou plusieurs atomes d'halogène; ledit radical ne comportant pas de liaison peroxyde ni de radicaux diazo, nitro ou nitroso;

- R_{10} , R_{11} et R_{12} peuvent également former, deux à deux avec l'atome d'azote quaternaire auquel ils sont rattachés, un ou plusieurs cycles saturés comportant de 5 à 7 chaînons, chaque chaînon étant indépendamment représenté par un atome de carbone non substitué ou substitué par un ou deux radicaux R_{14} identiques ou différents, un atome d'azote non substitué ou substitué par un radical R_{14} , un atome d'oxygène, ou un atome de soufre,

-lorsque n''' = 0, alors le groupement de formule (IX) peut être relié au composé de formule (V) et (VI) directement par l'atome d'azote de l'ammonium quaternaire, R_{13} représentant dans ce cas une simple liaison,

- V' représente un anion organique ou minéral,

• **Z**₂ représente une chaîne hydrocarbonée en C₁-C₁₀, linéaire ou ramifiée pouvant former un cycle carboné ayant de 5 à 7 chaînons, éventuellement aromatique; un ou plusieurs atomes de carbone pouvant être remplacés par un ou plusieurs atomes d'oxygène, d'azote, de soufre ou par un groupement SO₂. ledit radical Z₂ ne comportant pas de liaison peroxyde, ni de radicaux diazo, nitro ou nitroso; un groupe cationique Z₃ tel que défini ci-dessus, avec la réserve que Z₂ n'est pas cationique lorsque R₇, R₉, R₇' ou R₉' est cationique,

 $\bullet \qquad \textbf{A}_2 \text{ représente un radical de formule (X) correspondant à un radical aromatique carboné, pyridinique ou pyridazinique substitué par un radical hétéroaromatique cationique à 5 chaînons, éventuellement substitué par un ou plusieurs radicaux R₁₉ de même définition que R₂; un radical de formule (XI) :$

dans lesquelles

- r est un entier égal à 0 ou 1,
- q est un entier égal à 0, 1, 2 ou 3,
 - s est un entier égal à 0, 1, 2, 3, 4 ou 5, t est un entier égal à 0, 1 ou 2:
 - Y₃=Y₄ représente C=C, C=N ou N=N,
 - si r = 0 alors X représente O, S, NR_{18,} CR₂₀,
- 10 si r = 1 alors X représente CR₂₀,
 - R₁₅ et R₁₈ ont la même définition que R₁ définie ci-dessus,
 - R_{16} , R_{17} , R_{19} , R_{20} et R_{21} ont la même définition que R_2 définie ci-dessus,
 - V" représente un anion organique ou minéral,

avec la condition que dans la formule (I) un des groupes A1, Z2 et A3 est un groupe 15 cationique.

Selon l'invention, lorsqu'il est indiqué pour les groupes R₁, R₃, R₅, R₂, R₄, $R_{6},\ R_{8},\ R_{8}',\ R_{7},R'_{7},\ R_{9},R'_{9},B,\ R_{10}\ R_{11}\ R_{12}\ R_{13}\ R_{14}\ Z_{2}\ qu'un\ ou\ plusieurs\ des\ atomes\ de$ carbone peuvent être remplacés par un atome d'oxygène, d'azote, d'halogène, de soufre ou par un groupement SO2, et/ou que ces groupes sont insaturés, cela signifie

20. que l'on peut, à titre d'exemple, faire les transformations suivantes :

15

20

Selon la présente invention, les radicaux R₁, R₃ et R₅ sont de préférence choisis parmi un radical alkyle ou alcényle en C₁-C₄ pouvant être substitué par un ou plusieurs substituants hydroxy, amino éventuellement substitué, carboxyl , sulfonique; un radical phényle pouvant être substitué par un ou plusieurs atomes d'halogène, un ou plusieurs groupes alkyle en C₁-C₄, alkoxy en C₁-C₄, amino, hydroxy, trifluorométhyle, alkylamino en C₁-C₄, carboxy ou sulfonyle ; un radical benzyle pouvant être substitué par un ou plusieurs atomes d'halogène, un ou plusieurs groupes alkyle en C₁-C₄, alkoxy en C₁-C₄, amino, trifluorométhyle ; un hétérocycle choisi parmi l'imidazole, le thiazole, la pyridine ou la pyrimidine ; un radical (CH2)_p-T-(CH2)_q-V₁R' où p et q sont entiers, identiques ou différents, compris entre 1 et 3, R' représente H ou méthyle et T et V₁ désignent indépendamment un atome d'oxygène ou un radical NR" avec R" désignant un hydrogène ou un méthyle.

Selon la présente invention définie ci-dessus, on préfère pour R_1 , R_3 et R_5 plus particulièrement les radicaux méthyle ; éthyle ; hydroxyéthyle ; aminoéthyle ; carboxyméthyle ; phényle ; benzyle ; les hétérocycles choisis parmi pyridyle, imidazolyle, pyrimidinyle.

Plus particulièrement, les radicaux R_1 et R_3 sont choisis parmi les groupes méthyle; éthyle; phényle; hydroxyéthyle; aminoéthyle; carboxyméthyle; carboxyéthyle.

Les radicaux R₂, R₄ et R₆ sont de préférence choisis parmi un atome d'hydrogène ; un radical alkyle par exemple méthyle, éthyle ; un radical alkyle substitué

10

15

20

25

30

par un ou plusieurs hydroxy, amino ou un halogène comme hydroxyméthyle, 1,2-dihydroxyéthyle, 1,2-dihydroxypropyle, 2,3-dihydroxypropyle, hydroxyéthyle, aminométhyle, aminoéthyle, aminopropyle; trifluorométhyle; un radical phényle pouvant être substitué par un ou plusieurs substituants choisis parmi les radicaux alkyle, hydroxy, amino, alcoxy, carboxyle, trifluorométhyle, sulfonique; les radicaux benzyle et les benzyles substitués par un alcoxy, par exemple méthoxy, ou hydroxy notamment 2-méthoxybenzyle. 3-méthoxybenzyle, 4-méthoxybenzyle. hydroxybenzyle, 3-hydroxybenzyle, 4-hydroxybenzyle; un hétérocycle choisi parmi Npyrrolidinyle, N-pipéridinyle, N-morpholine, N-pipérazinyle ou N-imidazolyle ; un radical alcoxy comme méthoxy ou éthoxy; un radical phosphonyle; un radical siloxy un radical amino; un radical (di)alkylamino en C1-C4; un radical acyle; un radical acylamino ; un radical sulfonamide ; un radical uréido ; un radical sulfonylamino.

Les radicaux R_2 , R_4 et R_6 préférés sont l'hydrogène ; un radical alkyle choisi parmi méthyle, éthyle ; un radical alkyle substitué choisi parmi trifluorométhyle; hydroxyméthyle, hydroxyéthyle, aminométhyle, aminoéthyle ; un benzyle ; un phényl éventuellement substitué par un ou plusieurs radicaux choisis parmi les radicaux méthyle, hydroxy, amino, méthoxy ; 2-méthoxybenzyle ; 4-méthoxybenzyle ; 2-hydroxybenzyle ; 4-hydroxybenzyle ; un hétérocycle choisi parmi pyrrolidinyle, pipéridinyle ; un radical méthoxy ; un radical acyle ; ; un radical amino ; un radical (di)alkylamino en C_1 - C_4 ; Plus particulièrement, les radicaux R_2 R_4 et R_6 sont choisis parmi l'hydrogène ; méthyle ; éthyle ; trifluorométhyle ; phényle ; pyrrolidinyle ; méthoxy ; amino.

R₈ et R₈' sont de préférence choisis parmi un radical alkyle ou alcényle en C₁-C₄ pouvant être substitué par un ou plusieurs substituants hydroxy, amino éventuellement substitué, carboxyl; un radical phényle pouvant être substitué par un ou plusieurs atomes d'halogène, un ou plusieurs groupes alkyle en C₁-C₄, alkoxy en C₁-C₄, amino, hydroxy, trifluorométhyle, alkylamino en C₁-C₄, carboxy ou sulfonyle; un hétérocycle choisi parmi l'imidazole, le thiazole, la pyridine ou la pyrimidine; un radical (CH2)_p-T-(CH2)_q-V₁R' où p et q sont entiers, identiques ou différents, compris entre 1 et 3, R' représente H ou méthyle et T et V₁ désignent indépendamment un atome d'oxygène ou un radical NR" avec R" désignant un hydrogène ou un méthyle.

15

20

25

30

Selon la présente invention définie ci-dessus, on préfère pour R₈, R'₈ plus particulièrement les radicaux Hydrogène; méthyle; éthyle; hydroxyéthyle; aminoéthyle; carboxyméthyle; carboxyéthyle; phényle; les hétérocycles choisis parmi pyridynyle, imidazolyle, pyrimidinyle. Plus particulièrement, les radicaux R₈ et R'₈ sont choisis parmi les groupes hydrogène; méthyle; éthyle; phényle; hydroxyéthyle; aminoéthyle; carboxyméthyl; carboxyéthyle.

B est de préférence choisi parmi un radical alkyle éventuellement substitué choisi parmi méthyle, éthyle, propyle ; hydroxyméthyle, hydroxyéthyle, aminométhyle, aminométhyle; un méthoxybenzyle; un hétérocycle choisi parmi pipérazinyle. Plus particulièrement, le radical B est choisi parmi méthyle; éthyle; propyle ; phényle; pypérazinyle; triazine.

R₁₀, R₁₁, R₁₂, R₁₃ et R₁₄ sont de préférence choisis parmi un hydrogène ; un radical alkyle ou alcényle en C₁-C₄ pouvant être substitué par un substituant hydroxy, amino éventuellement substitué; un radical phényle pouvant être substitué par un ou plusieurs atomes d'halogène, un ou plusieurs groupes alkyle en C₁-C₄, alkoxy en C₁-C₄, amino, hydroxy, trifluorométhyle, alkylamino en C₁-C₄, carboxy ou sulfonyle ; un radical benzyle pouvant être substitué par un ou plusieurs atomes d'halogène, un ou plusieurs groupes alkyle en C₁-C₄, alkoxy en C₁-C₄, amino, trifluorométhyle ; un radical (poly)aminoalkyl en C₁-C₄; un radical (CH2)_p-T-(CH2)_q-VR' où p et q sont entiers, identiques ou différents, compris entre 1 et 3, R' représente H ou méthyle et T et V désignent indépendamment un atome d'oxygène ou un radical NR" avec R" désignant un hydrogène ou un méthyle, un radical sulfonyl.

Selon la présente invention définie ci-dessus, on préfère pour R_{10} , R_{11} , R_{12} , R_{13} et R_{14} plus particulièrement les radicaux méthyle ; éthyle ; isopropyle ; hydroxyéthyle ; aminoéthyle ; phényle ; benzyle ; les hétérocycles choisis parmi pyridynyle, imidazolyle, pyrimidinyle. Plus particulièrement, les radicaux R_{10} , R_{11} , R_{12} , R_{13} et R_{14} sont choisis parmi les groupes méthyle ; éthyle ; phényle ; hydroxyéthyle ; aminoéthyle ; carboxyméthyle ; carboxyéthyle.

Z1 est de préférence choisi parmi le groupe constitué des radicaux imidazolinium, triazolinium, thiazolinium, pyridinium, pyridazinium éventuellement substitué sur les atomes de carbone du cycle par un méthyl, un méthoxy, un carboxy,

10

15

20

25

30

un amino, un phényl, une pyrrolidine et sur l'atome d'azote par un méthyl, un 2hydroxyethyl, un carboxyméthyl, un carboxyethyl.

Z₂ est de préférence choisi parmi les radicaux imidazolium, pyridinium, pyridazinium, pyrimidinium, pyrazinium.

A₂ est de préférence choisi parmi les radicaux pyrazolyle, pyrrolyle, imidazolyle, triazolyle, thiadiazolyle, éventuellement substitué.

A₁, A₃ représentent indépendamment l'un de l'autre un radical aniline, aminopyridinyle, aminopyridazinyle éventuellement substitué par un atome d'hydrogène, par un radical alkyle par exemple choisi parmi méthyle, éthyle, un alkyl substitué par exemple hydroxyméthyle, hydroxyéthyle, 1,2-dihydroxyéthyle, 1,2-dihydroxypropyle, 2,3-dihydroxypropyle, aminométhyle, aminoéthyle, aminopropyle; par un radical trifluorométhyle; par un hétérocycle choisi parmi N-pyrrolidinyle, N-pipéridinyle, N-morpholine, N-pipérazinyle ou N-imidazolyle, par un radical alcoxy comme méthoxy ou éthoxy, par un radical phosphonyle, par un radical siloxy, par un radical 1,2-diaminoéthyle, par un radical 2,3-diaminopropyle, par un radical acyle, par un radical acylamino, par un radical sulfonamide, par un radical uréido, par un radical sulfonylamino.

Les couples (A₁, A₃) préférés sont choisis parmi (radical aniline, radical aniline), (radical aniline, radical aminopyridinyle), (radical aminopyridinyle, radical aniline), De façon indépendante, chacun des radicaux constituant ces couples, est éventuellement substitué par un atome d'hydrogène, ou par un radical alkyle choisi parmi méthyle, éthyle, ou par un radical alkyle éventuellement substitué choisi parmi hydroxyméthyle, 1,2-diaydroxyéthyle, aminométhyle, 2-aminoéthyle, 1,2-diaminoéthyle, 2,3-diaminopropyle ou par un hétérocycle choisi parmi pyrrolidinyle, pipéridinyle, ou par un radical méthoxy; amino; méthylamino; dimethylamino; 2-hydroxyethylamino

On choisira plus particulièrement les couples (A₁, A₃) suivants : (radical aniline, radical aniline) éventuellement subtitué par un radical méthyle, éthyle, ou par un radical hydroxyméthyle, 1,2-dihydroxyéthyle, aminométhyle, 2-aminoéthyle, 1,2-diaminoéthyle, 2,3-diaminopropyle ou par un radical pyrrolidinyle, pipéridinyle, ou par un radical méthoxy ; amino ; méthylamino ; dimethylamino ; 2-hydroxyethylamino

Dans le cadre de l'invention, les anions organiques ou minéraux des formules (I) ou (II) peuvent être choisi parmi un halogénure tel que chlorure, bromure.

fluorure, iodure ; un hydroxyde ; un sulfate ; un hydrogénosulfate ; un alkyl(C_1 - C_6)sulfate tel que par exemple un méthylsulfate ou un éthylsulfate ; un acétate ; un tartrate ; un oxalate ; un alkyl(C_1 - C_6)sulfonate tel que méthylsulfonate ; un arylsulfonate substitué ou non substitué par un radical alkyle en C_1 - C_4 tel que par exemple un 4-toluylsulfonate.

Dans le cadre de l'invention, les colorants azoiques de formule (I) sont de préférence choisis parmi les colorants suivants :

Composé	Z ₁	A ₁	A_3	n	Z ₂
1	2-imidazolinium			0	2-imidazolinium
2	2-imidazolinium			1	2-imidazolinium
3	2-imidazolinium		. ,	0	2-imidazolinium
4	2-imidazolinium	H	├	1	2-imidazolinium
5	2-imidazolinium	OMe		0	2-imidazolinium
6	2-imidazolinium	OMe		1	2-imidazolinium
7	2-imidazolinium	OMe N		0	2-imidazolinium
8	2-imidazolinium	OMe 		1	2-imidazolinium
9	2-imidazolinium	OMe MeO		0	2-imidazolinium

10	2-imidazolinium	OMe MeO		1	2-imidazolinium
11	2-imidazolinium	OMe MeO		0	2-imidazolinium
12	2-imidazolinium	OMe MeO		1	2-imidazolinium
13	2-imidazolinium		# E	0	2-imidazolinium
14	2-imidazolinium			1	2-imidazolinium
15	2-imidazolinium	⊢~N-H		0	2-imidazolinium
16	2-imidazolinium		├	1	2-imidazolinium
17	2-triazolinium			0	2-imidazolinium
18	2-triazolinium		H	1	2-imidazolinium
19	2-triazolinium		· . ·	0	2-imidazolinium
20	2-triazolinium			1	2-imidazolinium

	· · · · · · · · · · · · · · · · · · ·				
	2-triazolinium	OMe		0	2-imidazolinium
21	-	1 / H			
					•
	2-triazolinium	OMe	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	2-imidazolinium
			(" ">[\]	1	
22	,	{/ } \	\ <u>_</u> / \		
	2-triazolinium	OMe		0	2-imidazolinium
	2-u iazoimium			١٧	2-mindazommam
23		 	-		
•		\= _N \>			
	<u> </u>	OMo		ļ.,	2
	2-triazolinium	OMe	-	1	2-imidazolinium
24					
24			",		
r				L	
	2-triazolinium	OMe		0	2-imidazolinium
		1 / H		İ	· ·
25		 		1	
	•)		1	
		MeÓ		1	
	2-triazolinium	OMe	H	1	2-imidazolinium
36			 		
26		 			
				.	
		MeÓ	•		·
	2-triazolinium	OMe		o	2-imidazolinium
_		,			
. 27		├ ─(
)=N: Y			
		MeO			
	2-triazolinium	OMe		1	2-imidazolinium
			 	'	
28		├─ /	\= n' ≻		
1					
		MeÓ			
	2 triozolinium			 	2-imidazolinium
	2-triazolinium	<u> </u>		0	2-minuazonmum
29		 / / \ 		-	,
20					
				\perp	
	2-triazolinium	\		1	2-imidazolinium
		₁ / / Н	 		
30				.	
,			•		
L		<u> </u>			

	Y				
31	2-triazolinium			0	2-imidazolinium
32	2-triazolinium		⊢(N)	1	2-imidazolinium
33	3-pyridinium	├ ── !		0	2-imidazolinium
34	3-pyridinium	H		1	
35	3-pyridinium		•	0	2-imidazolinium
36	3-pyridinium			1	2-imidazolinium
37	3-pyridinium	OMe		0	2-imidazolinium
38	3-pyridinium	OMe	H	1	2-imidazolinium
39	3-pyridinium	OMe N		0	2-imidazolinium
40	3 ₅ pyridinium	ОМе	├	1	2-imidazolinium
41	3-pyridinium	OMe MeO		0	2-imidazolinium
42	3-pyridinium	OMe MeO		1	2-imidazolinium

43	3-pyridinium	OMe NeO		0	2-imidazolinium
44	3-pyridinium	OMe MeO	├	1	2-imidazolinium
45	3-pyridinium			0	2-imidazolinium
46	3-pyridinium			1	2-imidazolinium
47	3-pyridinium			0	2-imidazolinium
48	3-pyridinium			1	2-imidazolinium
49	2-imidazolinium			0	2-pyridinium
50	2-imidazolinium	OMe		0	2-pyridinium
51	2-imidazolinium	├		0	2-pyridinium
52	2-imidazolinium	OMe N			2-pyridinium
53	2-imidazolinium	OMe 		1	2-pyridinium

	2-imidazolinium	OMe		Ta	[2 mm;di=:
54	2-imdazoiiiiuii	MeO		0	2-pyridinium
55	2-imidazolinium	OMe 	├	1	2-pyridinium
56	2-imidazolinium	OMe Neo		0	2-pyridinium
57	2-imidazolinium	OMe MeO	├ ─ \	1	2-pyridinium
58	2-imidazolinium			0	2-pyridinium
59	2-imidazolinium			1	2-pyridinium
60	2-imidazolinium			0	2-pyridinium
61	2-imidazolinium			1	2-pyridinium
62	2-triazolinium			0	2-pyridinium
63	2-triazolinium			1	
64	2-triazolinium			0	2-pyridinium

65	2-triazolinium			1	2-pyridinium
66	2-triazolinium	OMe		0	
67	2-triazolinium	OMe		1	
. 68	2-triazolinium	OMe		0	2-pyridinium
69	2-triazolinium	OMe		1	2-pyridinium
70	2-triazolinium	OMe MeO		0	2-pyridinium
71	2-triazolinium	OMe MeO	├	1	2-pyridinium
72	2-triazolinium	OMe NeO		0	2-pyridinium
73	2-triazolinium	OMe MeO		1	2-pyridinium
74	2-triazolinium			0	2-pyridinium

75	2-triazolinium			1	2-pyridinium
76	2-triazolinium	⊢ N T		0	2-pyridinium
77	2-triazolinium			1	2-pyridinium
78	3-pyridinium	H		0	2-pyridinium
79	3-pyridinium	H	H	1	2-pyridinium
80	3-pyridinium	├		0	2-pyridinium
81	3-pyridinium	├	├	1	2-pyridinium
82	3-pyridinium	OMe		0	2-pyridinium
83	3-pyridinium	OMe	├	1	2-pyridinium
84	3-pyridinium	OMe 		0	2-pyridinium
85	3-pyridinium	OMe 		1	2-pyridinium
86	3-pyridinium	OMe MeO		0	2-pyridinium

	Ta	OMe			
87	3-pyridinium	OMe		1	2-pyridinium
	3-pyridinium	MeO OMe		0	2-pyridinium
88		MeO			
89	3-pyridinium	OMe MeO	├	1	2-pyridinium
			,	ļ.,	
90	3-pyridinium		·.	0	2-pyridinium
91	3-pyridinium		├ ── !	1	2-pyridinium
	3-pyridinium	1 Н		0	2-pyridinium
92	,				·
93	3-pyridinium			1	2-pyridinium
94	2-imidazolinium			0	3-pyridazinium
	2-imidazolinium	OMe		0	3-pyridazinium
95					
96	2-imidazolinium	├			3-pyridazinium
97	2-imidazolinium	OMe		0	3-pyridazinium

			· · · · · · · · · · · · · · · · · · ·		
98	2-imidazolinium	OMe 		1	3-pyridazinium
99	2-imidazolinium	OMe		1	3-pyridazinium
100	2-imidazolinium	OMe MeO		0	3-pyridazinium
101	2-imidazolinium	OMe MeO	├	1	3-pyridazinium
102	2-imidazolinium	OMe Neo		0	3-pyridazinium
103	2-imidazolinium	OMe MeO		1	3-pyridazinium
104	2-imidazolinium	⊢ N		0	3-pyridazinium
105	2-imidazolinium		H	1	3-pyridazinium
106	2-imidazolinium			0	3-pyridazinium
107	2-imidazolinium	- - - - - - - - - - - - - - - - - - -		1	3-pyridazinium

 	I			1.	12
108	2-triazolinium			0	
109	2-triazolinium			1	3-pyridazinium
110	2-triazolinium			0	3-pyridazinium
111	2-triazolinium		├	1	3-pyridazinium
112	2-triazolinium	OMe 		0	3-pyridazinium
113	2-triazolinium	OMe L		1	3-pyridazinium
114	2-triazolinium	OMe N		0	3-pyridazinium
115	2-triazolinium	OMe 	├	1	3-pyridazinium
116	2-triazolinium	OMe MeO		0	3-pyridazinium
117	2-triazolinium	OMe MeO		1	3-pyridazinium
118	2-triazolinium	OMe MeO		0	3-pyridazinium

	Ta				
119	2-triazolinium	OMe -		1	3-pyridazinium
		MeO			
120	2-triazolinium			0	3-pyridazinium
121	2-triazolinium			1	3-pyridazinium
122	2-triazolinium			0	3-pyridazinium
123	2-triazolinium		├	1	3-pyridazinium
124	3-pyridinium			0	3-pyridazinium
125	3-pyridinium			1	3-pyridazinium
126	3-pyridinium	├		0	3-pyridazinium
127	3-pyridinium			1	3-pyridazinium
128	3-pyridinium	OMe		0	3-pyridazinium
129	3-pyridinium	OMe	├	1	3-pyridazinium
130	3-pyridinium	OMe		0	3-pyridazinium

131	3-pyridinium	OMe		1	3-pyridazinium
132	3-pyridinium	OMe MeO	·	0	3-pyridazinium
133	3-pyridinium	OMe MeO	H	1	3-pyridazinium
134	3-pyridinium	OMe NeO		0	3-pyridazinium
135	3-pyridinium	OMe MeO		1	3-pyridazinium
136	3-pyridinium			0	3-pyridazinium
137	3-pyridinium		H	1	3-pyridazinium -
138	3-pyridinium	H. H.		0	3-pyridazinium
139	3-pyridinium			1	3-pyridazinium

De préférene, les composés préférés et qui peuvent être synthétisés selon le mode opératoire décrit dans les exemples sont choisis parmi

Composé	Z ₁	A ₁	A ₃	n	Z ₂
1	2-imidazolinium	H		0	<u> </u>
2	2-imidazolinium			1	2-imidazolinium
3	2-imidazolinium	├		0	
4	2-imidazolinium			1	2-imidazolinium
9	2-imidazolinium	OMe H MeO	· .	0	2-imidazolinium
10	2-imidazolinium	OMe MeO	H	1	2-imidazolinium
11	2-imidazolinium	OMe NeO	·	0	2-imidazolinium
12	2-imidazolinium	OMe MeO		1	2-imidazolinium
13	2-imidazolinium			0	2-imidazolinium
14	2-imidazolinium			1	2-imidazolinium
17	2-triazolinium	├		0	2-imidazolinium

18	2-triazolinium			1	2-imidazolinium
25	2-triazolinium	OMe MeO		0	2-imidazolinium
26	2-triazolinium	OMe MeO		1	2-imidazolinium
29	2-triazolinium			0	2-imidazolinium
30	2-triazolinium			1	2-imidazolinium
34	3-pyridinium			1	2-imidazolinium
41	3-pyridinium	OMe MeO		0	2-imidazolinium
45	3-pyridinium			0	2-imidazolinium
49	2-imidazolinium		,	0	2-pyridinium
50	2-imidazolinium				2-pyridinium
51	2-imidazolinium	├		0	2-pyridinium

	2-imidazolinium	OMe	T	10	2-pyridinium
54	2-imidazonimum			ľ	2-pyridimum
	ļ	MeÓ			
61	2-imidazolinium		├	1	2-pyridinium
78	3-pyridinium			0	2-pyridinium
79	3-pyridinium		H	1	2-pyridinium
86	3-pyridinium	OMe MeO		0	2-pyridinium
87	3-pyridinium	OMe MeO		1	2-pyridinium
94	2-imidazolinium		. •	0	3-pyridazinium
95	2-imidazolinium		├	1	3-pyridazinium
100	2-imidazolinium	OMe MeO		0	3-pyridazinium
101	2-imidazolinium	OMe MeO	├	1	3-pyridazinium
105	-2-imidazolinium			1	-3-pyridazinium —

		,			
109	2-triazolinium			1	3-pyridazinium
116	2-triazolinium	OMe MeO		0	
121	2-triazolinium			1	3-pyridazinium
124	3-pyridinium			0	3-pyridazinium
125	3-pyridinium		├	1	3-pyridazinium
130	3-pyridinium	OMe N.		0	3-pyridazinium
131	3-pyridinium	OMe		1	3-pyridazinium
132	3-pyridinium	OMe MeO		0	3-pyridazinium
133	3-pyridinium	OMe MeO	├	1	3-pyridazinium
136	3-pyridinium				3-pyridazinium
137	3-pyridinium			1	3-pyridazinium

La concentration en colorant cationique azoïque de formule (I) peut varier entre 0,001 et 5% en poids environ par rapport au poids total de la composition tinctoriale, et de préférence entre environ 0,05 et 2%.

La composition de l'invention peut de plus comprendre un agent oxydant. Cet agent oxydant peut être n'importe quel agent oxydant utilisé de façon classique pour la décoloration des fibres kératiniques. L'agent oxydant est choisi de préférence parmi le peroxyde d'hydrogène, le peroxyde d'urée, les bromates de métaux alcalins, les persels tels que les perborates et les persulfates. L'utilisation du peroxyde d'hydrogène est particulièrement préférée.

5

10

15

20

25

30

La composition selon l'invention peut de plus comprendre une base d'oxydation. Cette base d'oxydation peut être choisie parmi les bases d'oxydation classiquement utilisées en teinture d'oxydation, par exemple les paraphénylènediamines, les bis-phénylalkylènediamines, les para-aminophénols, les ortho-aminophénols et les bases hétérocycliques.

Parmi les paraphénylènediamines, on peut plus particulièrement citer à titre d'exemple, la paraphénylènediamine, paratoluylènediamine, la 2-chloro paraphénylènediamine. 2,3-diméthyl paraphénylènediamine. la la 2.6-diméthyl 2,6-diéthyl paraphénylènediamine, la paraphénylènediamine, la 2,5-diméthyl paraphénylènediamine. la N,N-diméthyl paraphénylènediamine, la N,N-diéthyl paraphénylènediamine, la N,N-dipropyl paraphénylènediamine, la 4-amino N,N-diéthyl 3-méthyl aniline, la N,N-bis-(β-hydroxyéthyl) paraphénylènediamine, la 4-N,N-bis-(βhydroxyéthyl)amino 2-méthyl aniline, la 4-N,N-bis-(β-hydroxyéthyl)amino 2-chloro aniline, la 2-β-hydroxyéthyl paraphénylènediamine, la 2-fluoro paraphénylènediamine, la 2-isopropyl paraphénylènediamine, la N-(β-hydroxypropyl) paraphénylènediamine, la 2-hydroxyméthyl paraphénylènediamine. la N,N-diméthyl 3-méthyl paraphénylènediamine, la N,N-(éthyl, β-hydroxyéthyl) paraphénylènediamine, la N-(β,ydihydroxypropyl) paraphénylènediamine, la N-(4'-aminophényl) paraphénylènediamine, la N-phényl paraphénylènediamine, la 2-β-hydroxyéthyloxy paraphénylènediamine, la 2-β-acétylaminoéthyloxy paraphénylènediamine, la N-(β-méthoxyéthyl) paraphénylènediamine, la 4 aminophenyl pyrrolidine, le 2 thiényl paraphénylène diamine, le 2-β hydroxyéthylamino 5-amino toluène et leurs sels d'addition avec un acide.

15

20

25

30

Parmi les paraphénylènediamines citées .ci-dessus, la paraphénylènediamine, la paratoluylènediamine, la 2-isopropyl paraphénylènediamine, 2-β-hydroxyéthyl paraphénylènediamine, la la 2-β-hydroxyéthyloxy paraphénylènediamine. 2,6-diméthyl paraphénylènediamine, la la 2,6-diéthyl paraphénylènediamine, la 2,3-diméthyl paraphénylènediamine, la N,N-bis-(βparaphénylènediamine, la 2-chloro paraphénylènediamine, 2-β-acétylaminoéthyloxy paraphénylènediamine, et leurs sels d'addition avec un acide sont particulièrement préférées.

Parmi les bis-phénylalkylènediamines, on peut citer à titre d'exemple, le N,N'-bis-(β-hydroxyéthyl) N,N'-bis-(4'-aminophényl) 1,3-diamino propanol, la N,N'-bis-N,N'-bis-(4'-aminophényl) éthylènediamine. (β-hydroxyéthyl) la N,N'-bis-(4aminophényl) tétraméthylènediamine, N,N'-bis-(β-hydroxyéthyl) N.N'-bis-(4aminophényl) tétraméthylènediamine, N,N'-bis-(4-méthyl-aminophényl) tétraméthylènediamine, la N,N'-bis-(éthyl) N,N'-bis-(4'-amino, 3'-méthylphényl) éthylènediamine, le 1,8-bis-(2,5-diamino phénoxy)-3,6-dioxaoctane, et leurs sels d'addition avec un acide.

Parmi les para-aminophénols, on peut citer à titre d'exemple, le para-aminophénol, le 4-amino 3-méthyl phénol, le 4-amino 3-fluoro phénol, le 4-amino 3-hydroxyméthyl phénol, le 4-amino 2-méthyl phénol, le 4-amino 2-hydroxyméthyl phénol, le 4-amino 2-aminométhyl phénol, le 4-amino 2-fluoro phénol, le 4-amino 2-fluoro phénol, et leurs sels d'addition avec un acide.

Parmi les ortho-aminophénols, on peut citer à titre d'exemple, le 2-amino phénol, le 2-amino 5-méthyl phénol, le 2-amino 6-méthyl phénol, le 5-acétamido 2-amino phénol, et leurs sels d'addition avec un acide.

Parmi les bases hétérocycliques, on peut citer à titre d'exemple, les dérivés pyridiniques, les dérivés pyrimidiniques et les dérivés pyrazoliques.

Parmi les dérivés pyridiniques, on peut citer les composés décrits par exemple dans les brevets GB 1 026 978 et GB 1 153 196, comme la 2,5-diamino pyridine, la 2-(4-méthoxyphényl)amino 3-amino pyridine, la 2,3-diamino 6-méthoxy pyridine, la 2-(β-méthoxyéthyl)amino 3-amino 6-méthoxy pyridine, la 3,4-diamino pyridine, et leurs sels d'addition avec un acide.

15

20

25

30

Parmi les dérivés pyrimidiniques, on peut citer les composés décrits par exemple dans les brevets DE 2 359 399 ; JP 88-169 571 ; JP 05 163 124 ; EP 0 770 375 ou demande de brevet WO 96/15765 comme la 2,4,5,6-tétra-aminopyrimidine, la 4-hydroxy 2,5,6-triaminopyrimidine, la 2-hydroxy 4,5,6-triaminopyrimidine, la 2,4-dihydroxy 5,6-diaminopyrimidine, la 2,5,6-triaminopyrimidine, et les dérivés pyrazolo-pyrimidiniques tels ceux mentionnés dans la demande de brevet FR-A-2 750 048 et parmi lesquels on peut citer la pyrazolo-[1,5-a]-pyrimidine-3,7-diamine; la 2,5diméthyl pyrazolo-[1,5-a]-pyrimidine-3,7-diamine; la pyrazolo-[1,5-a]-pyrimidine-3,5diamine; la 2,7-diméthyl pyrazolo-[1,5-a]-pyrimidine-3,5-diamine; le 3-amino pyrazolo-[1,5-a]-pyrimidin-7-ol; le 3-amino pyrazolo-[1,5-a]-pyrimidin-5-ol; le 2-(3-amino pyrazolo-[1,5-a]-pyrimidin-7-ylamino)-éthanol, le 2-(7-amino pyrazolo-[1,5-a]-pyrimidin-3-ylamino)-éthanol, le 2-[(3-amino-pyrazolo[1,5-a]pyrimidin-7-yl)-(2-hydroxy-éthyl)amino]-éthanol, le 2-[(7-amino-pyrazolo[1,5-a]pyrimidin-3-yl)-(2-hydroxy-éthyl)-amino]éthanol, la 5,6-diméthyl pyrazolo-[1,5-a]-pyrimidine-3,7-diamine, la 2,6-diméthyl pyrazolo-[1,5-a]-pyrimidine-3,7-diamine, la 2, 5, N 7, N 7-tetraméthyl pyrazolo-[1,5-a]pyrimidine-3,7-diamine, la 3-amino-5-méthyl-7-imidazolylpropylamino pyrazolo-[1,5-a]pyrimidine et leurs sels d'addition avec un acide et leurs formes tautomères, lorsqu'il existe un équilibre tautomérique.

Parmi les dérivés pyrazoliques, on peut citer les composés décrits dans les brevets DE 3 843 892, DE 4 133 957 et demandes de brevet WO 94/08969, WO 94/08970, FR-A-2 733 749 et DE 195 43 988 comme le 4,5-diamino 1-méthyl pyrazole, le 4,5-diamino 1-(β-hydroxyéthyl) pyrazole, le 3,4-diamino pyrazole, le 4,5-diamino 1-(4'-chlorobenzyl) pyrazole, le 4,5-diamino 1,3-diméthyl pyrazole, le 4,5-diamino 3-méthyl 1-phényl pyrazole, le 4,5-diamino 1-méthyl 3-phényl pyrazole, le 4,5-diamino 3-méthyl pyrazole, le 4,5-diamino 3-méthyl pyrazole, le 4,5-diamino 3-tert-butyl 1-méthyl pyrazole, le 4,5-diamino 1-tert-butyl 3-méthyl pyrazole, le 4,5-diamino 1-éthyl 3-méthyl pyrazole, le 4,5-diamino 1-éthyl 3-hydroxyméthyl pyrazole, le 4,5-diamino 3-hydroxyméthyl 1-isopropyl pyrazole, le 4,5-diamino 3-méthyl 1-isopropyl pyrazole, le 4,5-diamino 3-méthyl 1-isopropyl pyrazole, le 4,5-diamino 1-méthyl 4-méthyl pyrazole, le 1-méthyl 3,4,5-triamino pyrazole, le 3,5-diamino 1-méthyl 4-

WO 02/080869

10

15

20

25

30

méthylamino pyrazole, le 3,5-diamino 4-(β-hydroxyéthyl)amino 1-méthyl pyrazole, et leurs sels d'addition avec un acide.

La composition selon l'invention peut contenir de plus un ou plusieurs coupleurs conventionnellement utilisés pour la teinture de fibres kératiniques. Parmi ces coupleurs, on peut notamment citer les métaphénylènediamines, les méta-aminophénols, les métadiphénols, les coupleurs naphtaléniques et les coupleurs hétérocycliques.

A titre d'exemple, on peut citer le 2-méthyl 5-aminophénol, le 5-N-(β-hydroxyéthyl)amino 2-méthyl phénol, le 6-chloro-2-méthyl-5-aminophénol, le 3-amino phénol, le 1,3-dihydroxy benzène, le 1,3-dihydroxy 2-méthyl benzène, le 4-chloro 1,3-dihydroxy benzène, le 2,4-diamino 1-(β-hydroxyéthyloxy) benzène, le 2-amino 4-(β-hydroxyéthylamino) 1-méthoxybenzène, le 1,3-diamino benzène, le 1,3-bis-(2,4-diaminophénoxy) propane, la 3-uréido aniline, le 3-uréido 1-diméthylamino benzène, le sésamol, le 1-β-hydroxyéthylamino-3,4-méthylènedioxybenzène, l'α-naphtol, le 2 méthyl-1-naphtol, le 6-hydroxy indole, le 4-hydroxy indole, le 4-hydroxy N-méthyl indole, la 2-amino-3-hydroxy pyridine, la 6- hydroxy benzomorpholine la 3,5-diamino-2,6-diméthoxypyridine, le 1-N-(β-hydroxyéthyl)amino-3,4-méthylène dioxybenzène, le 2,6-bis-(β-hydroxyéthylamino)toluène et leurs sels d'addition avec un acide.

Dans la composition de la présente invention, le ou les coupleurs sont en général présents en quantité comprise entre 0,001 et 10 % en poids environ du poids total de la composition tinctoriale et plus préférentiellement de 0,005 à 6 %. La ou les bases d'oxydation sont présentes en quantité de préférence comprise entre 0,001 à 10 % en poids environ du poids total de la composition tinctoriale, et plus préférentiellement de 0,005 à 6 %.

D'une manière générale, les sels d'addition avec un acide utilisables dans le cadre des compositions tinctoriales de l'invention pour les bases d'oxydation et les coupleurs sont notamment choisis parmi les chlorhydrates, les bromhydrates, les sulfates, les citrates, les succinates, les tartrates, les lactates, les tosylates, les benzènesulfonates, les phosphates et les acétates.

La composition tinctoriale conforme à l'invention peut en outre contenir des colorants directs différents de ceux de formule (I), ces colorants pouvant notamment

WO 02/080869 PCT/FR02/01153

être choisis parmi les colorants nitrés de la série benzénique, les colorants directs cationiques, les colorants directs azoïques, les colorants directs méthiniques.

Le milieu approprié pour la teinture appelé aussi support de teinture est généralement constitué par de l'eau ou par un mélange d'eau et d'au moins un solvant organique pour solubiliser les composés qui ne seraient pas suffisamment solubles dans l'eau. A titre de solvant organique, on peut par exemple citer les alcanols inférieurs en C₁-C₄, tels que l'éthanol et l'isopropanol; les polyols et éthers de polyols comme le 2-butoxyéthanol, le propylèneglycol, le monométhyléther de propylèneglycol, le monoéthyléther et le monométhyléther du diéthylèneglycol, ainsi que les alcools aromatiques comme l'alcool benzylique ou le phénoxyéthanol, et leurs mélanges.

Les solvants peuvent être présents dans des proportions de préférence comprises entre 1 et 40 % en poids environ par rapport au poids total de la composition tinctoriale, et encore plus préférentiellement entre 5 et 30 % en poids environ.

10

15

20

25

30

La composition tinctoriale conforme à l'invention peut également renfermer divers adjuvants utilisés classiquement dans les compositions pour la teinture des cheveux, tels que des agents tensio-actifs anioniques, cationiques, non-ioniques, amphotères, zwittérioniques ou leurs mélanges, des polymères anioniques, cationiques, non-ioniques, amphotères, zwittérioniques ou leurs mélanges, des agents épaississants minéraux ou organiques, et en particulier les épaississants associatifs polymères anioniques, cationiques, non ioniques et amphotères, des agents antioxydants, des agents de pénétration, des agents séquestrants, des parfums, des tampons, des agents dispersants, des agents de conditionnement tels que par exemple des silicones volatiles ou non volatiles, modifiées ou non modifiées, des agents filmogènes, des céramides, des agents conservateurs, des agents opacifiants.

Ces adjuvants ci dessus sont en général présents en quantité comprise. pour chacun d'eux entre 0,01 et 20 % en poids par rapport au poids de la composition.

Bien entendu, l'homme de l'art veillera à choisir ce ou ces éventuels composés complémentaires de manière telle que les propriétés avantageuses attachées intrinsèquement à la composition de teinture d'oxydation conforme à l'invention ne soient pas, ou substantiellement pas, altérées par la ou les adjonctions envisagées.

10

15

20

25

30

Le pH de la composition tinctoriale conforme à l'invention est généralement compris entre 3 et 12 environ, et de préférence entre 5 et 11 environ. Il peut être ajusté à la valeur désirée au moyen d'agents acidifiants ou alcalinisants habituellement utilisés en teinture des fibres kératiniques ou bien encore à l'aide de systèmes tampons classiques.

Parmi les agents acidifiants, on peut citer, à titre d'exemple, les acides minéraux ou organiques comme l'acide chlorhydrique, l'acide orthophosphorique, l'acide sulfurique, les acides carboxyliques comme l'acide acétique, l'acide tartrique, l'acide lactique, les acides sulfoniques.

Parmi les agents alcalinisants on peut citer, à titre d'exemple, l'ammoniaque, les carbonates alcalins, les alcanolamines telles que les mono-, di- et triéthanolamines ainsi que leurs dérivés, les hydroxydes de sodium ou de potassium et les composés de formule (III) suivante :

dans laquelle W est un reste propylène éventuellement substitué par un groupement hydroxyle ou un radical alkyle en C_1 - C_4 ; R_a , R_b , R_c et R_d , identiques ou différents, représentent un atome d'hydrogène, un radical alkyle en C_1 - C_4 ou hydroxyalkyle en C_1 - C_4 .

La composition tinctoriale selon l'invention peut se présenter sous des formes diverses, telles que sous forme de liquides, de crèmes, de gels, ou sous toute autre forme appropriée pour réaliser une teinture des fibres kératiniques, et notamment des cheveux humains.

L'invention a aussi pour objet un procédé de teinture directe qui comprend l'application d'une composition tinctoriale contenant un colorant de formule (I) telle que définie précédemment sur les fibres kératiniques. Après un temps de pause, les fibres kératiniques sont rincées laissant apparaître des fibres colorées.

L'application sur les fibres de la composition tinctoriale contenant le colorant cationique azoïque de formule (I) ou (II) peut être mise en œuvre en présence d'agent oxydant ce qui provoque la décoloration de la fibre. Cet agent oxydant peut être ajouté à la composition contenant le colorant cationique azoïque au moment de l'emploi ou

10

15

20

25

30

PCT/FR02/01153

directement sur la fibre kératinique. Selon un mode de réalisation particulier, la composition contenant le colorant cationique azoïque de formule (I) est exempte de base d'oxydation et de coupleur.

L'invention a aussi pour objet un procédé de teinture d'oxydation permanente qui comprend l'application sur les fibres d'une composition tinctoriale qui comprend un colorant de formule (I), au moins une base d'oxydation et optionnellement au moins un coupleur, en présence d'un agent oxydant.

La base d'oxydation, le coupleur et l'agent oxydant sont tels que définis précédemment.

Dans le cadre de la teinture d'oxydation permanente, il est aussi possible d'utiliser comme agent oxydant des enzymes parmi lesquelles on peut citer les peroxydases, les oxydo-réductases à 2 électrons telles que les uricases et les oxygénases à 4 électrons comme les laccases.

La couleur peut être révélée à pH acide, neutre ou alcalin et l'agent oxydant peut être ajouté à la composition de l'invention juste au moment de l'emploi ou il peut être mis en œuvre à partir d'une composition oxydante le contenant, appliquée sur les fibres simultanément ou séquentiellement à la composition tinctoriale.

Dans le cas de la teinture d'oxydation permanente ou de la teinture directe, la composition tinctoriale est mélangée, de préférence au moment de l'emploi, à une composition contenant, dans un milieu approprié pour la teinture, au moins un agent oxydant, cet agent oxydant étant présent en une quantité suffisante pour développer une coloration. Le mélange obtenu est ensuite appliqué sur les fibres kératiniques. Après un temps de pause de 3 à 50 minutes environ, de préférence 5 à 30 minutes environ, les fibres kératiniques sont rincées, lavées au shampooing, rincées à nouveau puis séchées.

La composition oxydante peut également renfermer divers adjuvants utilisés classiquement dans les compositions pour la teinture des cheveux et tels que définis précédemment.

Le pH de la composition oxydante renfermant l'agent oxydant est tel qu'après mélange avec la composition tinctoriale, le pH de la composition résultante appliquée sur les fibres kératiniques varie de préférence entre 3 et 12 environ, et encore plus préférentiellement entre 5 et 11. Il peut être ajusté à la valeur désirée au

15

20

moyen d'agents acidifiants ou alcalinisants habituellement utilisés en teinture des fibres kératiniques et tels que définis précédemment.

La composition qui est finalement appliquée sur les fibres kératiniques peut se présenter sous des formes diverses, telles que sous forme de liquides, de crèmes, de gels ou sous toute autre forme appropriée pour réaliser une teinture des fibres kératiniques, et notamment des cheveux humains.

Un autre objet de l'invention est un dispositif à plusieurs compartiments ou "kit" de teinture dans lequel un premier compartiment renferme la composition tinctoriale de l'invention et un deuxième compartiment renferme la composition oxydante. Ce dispositif peut être équipé d'un moyen permettant de délivrer sur les cheveux le mélange souhaité, tel que les dispositifs décrits dans le brevet FR-2 586 913 au nom de la demanderesse.

Enfin l'invention a également pour objet les colorants azoïques cationiques de formule (I) ou (II) telle que définie précédemment dans lesquels R₈ est l'hydrogène. Ces composés peuvent être obtenus à partir des procédés de préparation décrits par exemple dans les documents EP 810824, GB 9619573, RO 106572, J.Chem. Res.., Synop. (1998), (10), 648-649, DE 19721619, US 5852179, Synth. Commun 1999, 29(13), 2271-2276, Org. Lett., 2001, 3, 2583, Org. Lett., 2001, 3, 2757J. Chem. Soc., Perkin Trans. 1, 1998, 2615-2622 et références issues de ces publications. En particulier, les composés de formule (II) peuvent être obtenus de la façon suivante :

Voie 1:

D'une façon générale, le composé <u>1</u> est dans une première étape réduit en composé <u>2</u> en présence d'hydrogène sous pression et de palladium. Ce composé réagit par la suite en présence de nitrite de sodium pour fournir un sel de diazonium qui peut être condensé sur l'imidazole et ainsi fournir le composé <u>3</u>. La double cationisation s'effectue en présence de diméthylsulfate dans l'acétate d'éthyle pour fournir le composé <u>4</u>.

10

Voie 2:

D'une façon générale, le composé <u>1</u> choisit de façon adéquate pourra réagir avec un système hétéroaromatique à 5 chaînons tel que défini dans les revendications (ici un imidazole) en présence de base à reflux. Une alternative peut être proposé en utilisant un catalyseur au cuivre, une base, et un ligand, le 1,2-diaminocyclohexane à reflux. Le composé <u>3</u> est obtenu par réduction du composé <u>2</u> en utilisant du palladium sous pression d'hydrogène. Le composé <u>3</u> réagit par la suite en présence de nitrite de sodium pour fournir un sel de diazonium qui peut être condensé sur l'imidazole et ainsi fournir le composé <u>4</u>. La double cationisation s'effectue en présence de diméthylsulfate dans l'acétate d'éthyle pour fournir le composé <u>5</u>.

Les exemples qui suivent servent à illustrer l'invention sans toutefois présenter un caractère limitatif.

EXEMPLES DE SYNTHESE

Exemple n°1 : préparation d'un composé de formule :

Dans un ballon tout équipé on charge 0,05 g de composé (1), 0,04 g de composé (2), 0,3 ml de triéthylamine et 0.8 ml de DMF sec. Le mélange est laissé à température ambiante pendant 1 heure puis porté à 45°C. Le mélange réactionnel est ensuite filtré sur büchner. Le précipité est lavé avec quelques gouttes d'éthanol. Un volume V d'acétate d'éthyle est alors ajouté à la solution filtrée. Un nouveau précipité est formé puis filtré sur büchner. Celui-ci est alors séché sous vide. Après purification, une poudre de couleur rouge très foncée brillante est obtenue. On obtient ainsi un colorant donnant une teinture fushia

Les caractéristiques en absorption UV de ce produit sont les suivantes : UV (acétonitrile-eau 50/50) $\lambda_{max} = 513 \text{ nm}$

20 Analyses:

5

RMN 1H: (400MHz-DMSO) ppm:

3.99 (s-3H); 4.02 (s-3H); 4.11(s-3H); 7.24(d-2H, J=9.13 Hz); 7.30 (m-3H); 7.45 (d-2H, J=9.75 Hz); 7.63 (s-2H); 8.05 (d-2H, J=12 Hz)

Exemple n°2 : préparation d'un composé de formule :

Dans un ballon tout équipé on charge 0,05 g de composé (1), 0,037 g de composé (3), 0,3 ml de triéthylamine et 0,8 ml de DMF sec. Le mélange est laissé à température ambiante pendant 1 heure puis porté à 45°C. Le mélange réactionnel est ensuite filtré sur büchner. Le précipité est lavé avec quelques gouttes d'éthanol. Un volume V d'acétate d'éthyle est alors ajouté à la solution filtrée. Un nouveau précipité est formé puis filtré sur büchner. Celui-ci est alors séché sous vide. Après purification, une poudre de couleur rouge très foncée brillante est obtenue.

Les caractéristiques en absorption UV de ce produit sont les suivantes :

UV (acétonitrile-eau 50/50)

 $\lambda_{\text{max}} = 516 \text{ nm}$

15

10

5

Analyses:

Masse ESI+: $m/z = 398[M^{2^{+}}]$ $m/z = 200[M^{2^{+}}/2 + H]$

20 RMN 1H : (400MHz-DMSO) ppm :

4.01 (s-6H); 7.09 (m-1H); 7.30 (m-1H); 7.44 (m-5H); 7.74 (s-2H); 8 (m-4H); 8.36 (m-1H); 10.14 (s-2H).

15

20

On obtient ainsi un colorant donnant une teinture fushia.

EXEMPLES DE TEINTURE

5 On a préparé les compositions tinctoriales suivantes (teneurs en mole):

Exemple	3
Colorant azoïque de l'exemple 1	5x10⁴ mole
Polyéthylène glycol 8 OE	12 g
Alcool benzylique	10 g
Tampon Borate q.s.p	100 g
рН	9,05

Au moment de l'emploi, chaque composition est mélangée avec un poids égal d'eau oxygénée à 20 volumes (6% en poids).

Chaque mélange obtenu est appliqué sur des mèches de cheveux gris à 90 % de blancs, permanentés (BP) ou naturel (BN) (1 g de mèche pour 10 g de solution). Après 20 min de pose, les mèches sont rinçées, lavées avec un shampooing standard, rinçées à nouveau puis séchées.

Chaque mèche est évaluée avant et après la teinture dans le système L*a*b*, au moyen d'un spectrophotomètre CM 2002 MINOLTA ®, (Illuminant D65).

Dans l'espace L*a*b*, la clarté est indiquée par la valeur L* sur une échelle de 0 à 100 alors que les coordonnées chromatiques sont exprimées par a* et b* qui indiquent deux axes de couleur, a* l'axe rouge-vert et b* l'axe jaune-bleu.

Selon ce système, plus la valeur de L est élevée, plus la couleur est claire et peu intense. Inversement, plus la valeur de L est faible, plus la couleur est foncée ou très intense.

Les résultats de teinture suivants ont été obtenus.

	Cheve	ux nat	urels	Cheveux permanentés				
	L*	a*	b*	L*	a*	b*		
Exemple 1	19,9	6,9	-2,24	20,4	4,90	-3,05		

REVENDICATIONS

1. Composition pour la teinture des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux, comprenant au moins un colorant monoazoïque dicationique de formules (I) ou (II) suivantes :

$$Z_1-N=N-A_1-(A_3)_n-Z_2$$
 (I)

$$Z_1$$
-N=N- A_2 (II)

formules dans lesquelles

10 •

5

- n est égal à 0 ou 1,
- Z_1 représente un radical hétéroaromatique cationique à 5 ou 6 chaînons de formules (III) ou (IV) :

U

15

25

- X représente NR₃, S ou O, Z représente CR₂ ou N et Y représente CR₄ ou N avec les conditions suivantes :

lorsque X est NR₃ ou O et Z est CR₂ alors Y est CR₄ ou N, lorsque X est S alors Z est N ou Y est N lorsque X est S et Z est N alors et Y est CR₄

- 20 X₁ représente CR₆ ou N,
 - m est un nombre entier égal à 0,1,2 ou 3,
 - R₁, R₃ et R₅ représentent indépendamment l'un de l'autre une chaîne hydrocarbonée en C₁-C₁₀, saturée ou insaturée ; linéaire ou ramifiée pouvant former un cycle carboné ayant de 5 à 7 chaînons, éventuellement aromatique ; un ou plusieurs atomes de carbone pouvant être remplacés par un atome d'oxygène, d'azote, d'halogènes, de soufre ou par un groupement SO₂, à l'exception du carbone relié à

l'atome d'azote du cycle de formule (III) ou (IV) ; les radicaux R_1 , R_3 ou R_5 ne comportant pas de liaison peroxyde, ni de radicaux diazo, nitro ou nitroso ;

- R_2 , R_4 et R_6 représentent indépendamment l'un de l'autre un atome d'hydrogène ; une chaîne hydrocarbonée en C_1 - C_{10} , saturée ou insaturée, linéaire ou ramifiée pouvant former un cycle carboné ayant de 5 à 7 chaînons, éventuellement aromatique ; un ou plusieurs atomes de carbone pouvant être remplacés par un ou plusieurs atomes d'oxygène, d'azote, de soufre, ou par un groupement SO_2 ; les radicaux R_2 , R_4 ou R_6 ne comportant pas de liaison peroxyde, ni de radicaux diazo, nitro ou nitroso ; les radicaux R_2 et R_4 peuvent former ensemble un cycle aromatique carboné,
- V représente un anion organique ou minéral,
- A₁ et A₃ représentent, indépendamment l'un de l'autre, un radical divalent de formules (V) ou (VI)

$$(R7)_{n'}$$

$$(R9)_{n''}$$

$$(V)$$

15

10

dans lesquelles

- n' est un nombre entier égal à 0, 1, 2 ou 3,
- n" est un nombre entier égal à 0 ou 1,
- Y₁-Y₂ représente C-N ou N-N,
- lorsque n = 0, alors la liaison a du groupement A₁ de la formule (V) est relié à la fonction Z₂ de la formule (I) ou,
 - lorsque n = 0, alors la liaison b' du groupement A₁ de la formule (VI) est reliée à la fonction Z₂ de la formule (I),
- lorsque n = 1, alors la liaison a du groupement A₁ de la formule (V) est reliée au
 C₁ du groupement A₃ de formule (V), la liaison a du groupement A₃ de formule
 (V) étant reliée à la fonction Z₂ de la formule (I) ou,

- lorsque n = 1, alors la liaison a du groupement A₁ de la formule (V) est reliée au carbone porteur de la liaison a' du groupement A₃ de la formule (VI), la liaison b' étant reliée à la fonction Z₂ de la formule (I),
- lorsque n = 1, alors la liaison b' du groupement A₁ de la formule (VI) est reliée au carbone C₁ du groupement A₃ de formule (V), la liaison a étant reliée à la fonction Z₂ de la formule (I) ou,
 - lorsque n = 1, alors la liaison b' du groupement A₁ de la formule (VI) est reliée au carbone porteur de la liaison a' du groupement A₃ de formule (VI), la liaison b' du groupement A₃ de la formule (VI) étant reliée à la fonction Z₂ de la formule (I),
- 10 R₈ et R'₈ représentent indépendamment l'un de l'autre un groupe non cationique choisi parmi un atome hydrogène, une chaîne hydrocarbonée en C₁-C₁₀, linéaire ou ramifiée pouvant former un cycle carboné ayant de 5 à 7 chaînons, éventuellement aromatique; un ou plusieurs atomes de carbone de la chaîne hydrocarbonée pouvant être remplacés par un ou plusieurs atomes d'oxygène, d'azote, de soufre, ou par un groupement SO₂ à l'exception du carbone relié à l'atome d'azote; les radicaux R₈ ou R'₈ ne comportant pas de liaison peroxyde, ni de radicaux diazo, nitro ou nitroso;
 - R_7 , R_9 , R'_7 et R'_9 représente indépendamment l'un de l'autre un groupe non cationique tel que défini pour R_2 ou un groupe cationique Z_3 , à la condition qu'un seul des groupes R_7 , R_9 , R'_7 et R'_9 est cationique,
- R₇ avec R₈, respectivement R'₇ avec R'₈ peuvent former ensemble un hétérocycle à 5 ou 6 chaînons saturé,
 - Z₃ est un groupe cationique représenté par la formule (VII) suivante

$$--$$
 (B)_n... D (VII)

dans laquelle:

25 .

- B représente une chaîne hydrocarbonée comportant de 1 à 15 atomes de carbone, linéaire ou ramifiée, pouvant former un ou plusieurs cycles comportant de 3 à 7 chaînons éventuellement aromatiques, et dont un ou plusieurs atomes de carbone peuvent être remplacés par un atome d'oxygène, d'azote, de soufre, ou par un radical SO₂ à l'exception du carbone relié à l'atome d'azote; B ne comportant pas de liaison peroxyde ni de radicaux diazo, nitro ou nitroso,

30

-le radical B est relié à D par l'un quelconque des atomes du radical D.

15

20

25

- n" peut prendre la valeur 0 ou 1,
- D est choisi parmi les groupes cationiques de formules (VIII) et (IX) suivantes :

dans lesquelles:

- p peut prendre la valeur 0 ou 1;

- T_1 , T_2 , T_3 et T_4 , indépendamment les uns des autres, représentent un atome d'oxygène ; un atome de soufre ; un atome d'azote non substitué ou substitué par un radical R_{14} ; ou un atome de carbone non substitué ou substitué par un ou deux radicaux R_{14} , identiques ou différents ;

 - T₅ représente un atome d'azote ; ou un atome de carbone non substitué ou substitué par un radical R₁₄;

- T_6 peut prendre les mêmes significations que celles indiquées ci-dessous pour le radical R_{14} , étant entendu que T_6 est différent d'un atome d'hydrogène;

- T_1 ou T_5 peuvent, en outre, former avec T_6 un cycle saturé ou insaturé comportant de 5 à 7 chaînons, chaque chaînon étant non substitué ou substitué par un ou deux radicaux R_{14} identiques ou différents ;

- deux des radicaux adjacents T_1 , T_2 , T_3 , T_4 et T_5 peuvent en outre former un cycle comportant de 5 à 7 chaînons, chaque chaînon étant indépendamment représenté par un atome de carbone non substitué ou substitué par un ou deux radicaux R_{14} identiques ou différents, un atome d'azote substitué ou non substitué par un radical R_{14} , un atome d'oxygène ou un atome de soufre ;

- R₁₀, R₁₁, R₁₂, R₁₃ et R₁₄, identiques ou différents représentent un atome d'hydrogène ; une chaîne hydrocarbonée comportant de 1 à 10 atomes de carbone, linéaire ou ramifiée, éventuellement aromatiques, et dont un ou plusieurs atomes de carbone peuvent être remplacés par un atome

d'oxygène, d'azote, de soufre, ou par un groupe SO₂, et dont un ou plusieurs atomes de carbone peuvent, indépendamment les uns des autres, être substitués par un ou plusieurs atomes d'halogène; ledit radical ne comportant pas de liaison peroxyde ni de radicaux diazo, nitro ou nitroso;

5

- R_{10} , R_{11} et R_{12} peuvent également former, deux à deux avec l'atome d'azote quaternaire auquel ils sont rattachés, un ou plusieurs cycles saturés comportant de 5 à 7 chaînons, chaque chaînon étant indépendamment représenté par un atome de carbone non substitué ou substitué par un ou deux radicaux R_{14} identiques ou différents, un atome d'azote non substitué ou substitué par un radical R_{14} , un atome d'oxygène, ou un atome de soufre,

10

-lorsque n''' = 0, alors le groupement de formule (IX) peut être relié au composé de formule (V) et (VI) directement par l'atome d'azote de l'ammonium quaternaire, R₁₃ représentant dans ce cas une simple liaison,

15

20

25

- V' représente un anion organique ou minéral,
- Z_2 représente une chaîne hydrocarbonée en C_1 - C_{10} , linéaire ou ramifiée pouvant former un cycle carboné ayant de 5 à 7 chaînons, éventuellement aromatique; un ou plusieurs atomes de carbone pouvant être remplacés par un ou plusieurs atomes d'oxygène, d'azote, de soufre ou par un groupement SO_2 . ledit radical Z_2 ne comportant pas de liaison peroxyde, ni de radicaux diazo, nitro ou nitroso; un groupe cationique Z_3 tel que défini ci-dessus,

avec la réserve que Z₂ n'est pas cationique lorsque R₇, R₉, R₇' ou R₉' est cationique,

A₂ représente un radical de formule (X) correspondant à un radical aromatique carboné, pyridinique ou pyridazinique substitué par un radical hétéroaromatique cationique à 5 chaînons, éventuellement substitué par un ou plusieurs radicaux R₁9 de même définition que R₂; un radical de formule (XI):

dans lesquelles

20

25

- r est un entier égal à 0 ou 1,
- 5 q est un entier égal à 0, 1, 2 ou 3,
 - s est un entier égal à 0, 1, 2, 3, 4 ou 5, t est un entier égal à 0, 1 ou 2.
 - Y₃=Y₄ représente C=C, C=N ou N=N,
 - si r = 0 alors X représente O, S, NR_{18,} CR₂₀,
- 10 si r = 1 alors X représente CR₂₀,
 - R₁₅ et R₁₈ ont la même définition que R₁ définie ci-dessus,
 - R₁₆, R₁₇, R₁₉, R₂₀ et R₂₁ont la même définition que R₂ définie ci-dessus,
 - V" représente un anion organique ou minéral,
- avec la condition que dans la formule (I) un des groupes A₁, Z₂ et A₃ est un groupe cationique.
 - 2. Composition selon la revendication 1 dans laquelle les radicaux R₁, R₃ et R₅ sont choisis parmi un radical alkyle ou alcényle en C₁-C₄ pouvant être substitué par un ou plusieurs substituants hydroxy, amino éventuellement substitué, carboxyl; un radical phényle pouvant être substitué par un ou plusieurs atomes d'halogènes, un ou plusieurs groupes alkyle en C₁-C₄, alkoxy en C₁-C₄, amino, hydroxy, trifluorométhyle, alkylamino en C₁-C₄, carboxy ou sulfonyle; un radical benzyle pouvant être substitué par un ou plusieurs atomes d'halogènes, un ou plusieurs groupes alkyle en C₁-C₄, alkoxy en C₁-C₄, amino, trifluorométhyle; un hétérocycle choisi parmi l'imidazole, le thiazole, la pyridine ou la pyrimidine; un radical (CH2)_p-T-(CH2)_q-V₁R' où p et q sont entiers, identiques ou différents, compris entre 1 et 3, R' représente H ou méthyle et T et V₁ désignent indépendamment un atome d'oxygène ou un radical NR" avec R" désignant un hydrogène ou un méthyle.

10

15

- 3. Composition selon la revendication 2 dans laquelle R_1 , R_3 et R_5 sont choisis parmi les radicaux méthyle ; éthyle ; hydroxyéthyle ; aminoéthyle ; carboxyméthyle ; carboxyéthyle ; phényle ; benzyle ; les hétérocycles choisis parmi pyridyle, imidazolyle, pyrimidinyle.
- **4.** Composition selon l'une quelconque des revendications 1 à 3 dans laquelle R_1 et R_3 sont choisis parmi les groupes méthyle; éthyle; phényle; hydroxyéthyle; aminoéthyle; carboxyméthyl; carboxyéthyle.
- 5. Composition selon l'une quelconque des revendications 1 à 4 dans laquelle les radicaux R₂, R₄ et R₆ sont choisis parmi un atome d'hydrogène ; un radical alkyle ; un radical alkyle substitué par un ou plusieurs hydroxy, amino ou un halogène ; un radical phényle pouvant être substitué par un ou plusieurs substituants choisis parmi les radicaux alkyle, hydroxy, amino, alcoxy, carboxyle, trifluorométhyle, sulfonique ; les radicaux benzyle ;les radicaux benzyles substitués par un alcoxy, hydroxy ; un hétérocycle choisi parmi N-pyrrolidinyle, N-pipéridinyle, N-morpholine, N-pipérazinyle ou N-imidazolyle ; un radical alcoxy ; un radical phosphonyle ; un radical siloxy ; un radical amino ; un radical (di)alkylamino en C₁-C₄ ; un radical acyle ; un radical acylamino ; un radical sulfonamide ; un radical uréido ; un radical sulfonylamino.
- 6. Composition selon la revendication 5 dans laquelle R₂, R₄ et R₆ sont l'hydrogène; un radical alkyle choisi parmi méthyle, éthyle; un radical alkyle substitué choisi parmi trifluorométhyle; hydroxyméthyle, hydroxyéthyle, aminométhyle, aminoéthyle; un benzyle; un phényl éventuellement substitué par un ou plusieurs radicaux choisis parmi les radicaux méthyle, hydroxy, amino, méthoxy; 2-méthoxybenzyle; 4-méthoxybenzyle; 2-hydroxybenzyle; 4-hydroxybenzyle; un hétérocycle choisi parmi pyrrolidinyle, pipéridinyle; un radical méthoxy; un radical acyle; un radical amino; un radical (di)alkylamino en C₁-C₄.
 - 7. Composition selon la revendication 6 dans laquelle R_2 , R_4 et R_6 sont choisis parmi l'hydrogène; méthyle; éthyle; trifluorométhyle; phényle; pyrrolidinyle; méthoxy; amino.
- 8. Composition selon l'une quelconque des revendications précédentes dans laquelle R₈ et R₈' sont choisis parmi un radical alkyle ou alcényle en C₁-C₄ pouvant être substitué par un ou plusieurs substituants hydroxy, amino éventuellement

10

15

20

25

30

substitué, carboxyl; un radical phényle pouvant être substitué par un ou plusieurs atomes d'halogènes, un ou plusieurs groupes alkyle en C_1 - C_4 , alkoxy en C_1 - C_4 , amino, hydroxy, trifluorométhyle, alkylamino en C_1 - C_4 , carboxy ou sulfonyle; un hétérocycle choisi parmi l'imidazole, le thiazole, la pyridine ou la pyrimidine; un radical (CH2)_p-T-(CH2)_q-V₁R' où p et q sont entiers, identiques ou différents, compris entre 1 et 3, R' représente H ou méthyle et T et V₁ désignent indépendamment un atome d'oxygène ou un radical NR" avec R" désignant un hydrogène ou un méthyle.

- **9.** Composition selon la revendication 8 dans laquelle R₈ et R'₈ sont choisis parmi les radicaux Hydrogène; méthyle; éthyle; hydroxyéthyle; aminoéthyle; carboxyméthyle; carboxyéthyle; phényle; les hétérocycles choisis parmi pyridynyle, imidazolyle, pyrimidinyle, de préférence parmi l'hydrogène; méthyle; éthyle; phényle; hydroxyéthyle; aminoéthyle; carboxyméthyl; carboxyéthyle.
- 10. Composition selon l'une quelconque des revendications précédentes dans laquelle B est choisi parmi un radical alkyle éventuellement substitué choisi parmi méthyle, éthyle, propyle ; hydroxyméthyle, hydroxyéthyle, aminométhyle, aminoéthyle ; un méthoxybenzyle ; un hétérocycle choisi parmi pipérazinyle, de préférence parmi un radical méthyle ; éthyle ; propyle ; phényle ; pypérazinyle ; triazine.
- 11. Composition selon l'une quelconque des revendications précédentes dans laquelle R₁₀, R₁₁, R₁₂, R₁₃ et R₁₄ sont choisis parmi un hydrogène; un radical alkyle ou alcényle en C₁-C₄ pouvant être substitué par un substituant hydroxy, amino éventuellement substitué; un radical phényle pouvant être substitué par un ou plusieurs atomes d'halogènes, un ou plusieurs groupes alkyle en C₁-C₄, alkoxy en C₁-C₄, amino, hydroxy, trifluorométhyle, alkylamino en C₁-C₄, carboxy ou sulfonyle; un radical benzyle pouvant être substitué par un ou plusieurs atomes d'halogènes, un ou plusieurs groupes alkyle en C₁-C₄, alkoxy en C₁-C₄, amino, trifluorométhyle; un radical (poly)aminoalkyl en C₁-C₄; un radical (CH2)_p-T-(CH2)_q-V₁R' où p et q sont entiers, identiques ou différents, compris entre 1 et 3, R' représente H ou méthyle et T et V₁ désignent indépendamment un atome d'oxygène ou un radical NR" avec R" désignant un hydrogène ou un méthyle, un radical sulfonyl.
- 12. Composition selon la revendication 11 dans laquelle R_{10} , R_{11} , R_{12} , R_{13} et R_{14} sont choisis parmi les radicaux méthyle ; éthyle ; isopropyle ; hydroxyéthyle ; aminoéthyle ; phényle ; benzyle ; les hétérocycles choisis parmi pyridynyle,

` 5

10

15

20

25

30

imidazolyle, pyrimidinyle, de préférence parmi les radicaux méthyle; éthyle; phényle; hydroxyéthyle; aminoéthyle; carboxyméthyl; carboxyéthyle.

- 13. Composition selon l'une quelconque des revendications 1 à 12 dans laquelle Z1 est choisi parmi les radicaux imidazolinium, triazolinium, pyridinium, pyridazinium éventuellement substitué sur les atomes de carbone du cycle par un méthyle, un méthoxy, un carboxy, un amino, un phényle, une pyrrolidine et sur l'atome d'azote par un méthyl, un 2-hydroxyethyl, un carboxyméthyl, un carboxyethyl.
- 14. Composition selon l'une quelconque des revendications précédentes dans laquelle Z_2 est choisi parmi radicaux imidazolium, pyridinium, pyridinium, pyrimidinium, pyrazinium
- 15. Composition selon l'une quelconque des revendications 1 à 14 dans laquelle A_2 est choisi parmi les radicaux pyrazolyle, pyrrolyle, imidazolyle, triazolyle, thiadiazolyle, éventuellement substitué.
- 16. Composition selon l'une quelconque des revendications 1 à 15 dans laquelle A₁, A₃ représentent indépendamment l'un de l'autre un radical aniline, aminopyridinyle, aminopyridazinyle éventuellement substitué par un atome d'hydrogène, par un radical méthyle, éthyle, hydroxyméthyle, hydroxyéthyle, 1,2-dihydroxypropyle, 2,3-dihydroxypropyle, aminométhyle, aminoéthyle, aminopropyle; par un radical trifluorométhyle; par un hétérocycle choisi parmi N-pyrrolidinyle, N-pipéridinyle, N-morpholine, N-pipérazinyle ou N-imidazolyle, par un radical alcoxy, par un radical phosphonyle, par un radical siloxy, par un radical 1,2-diaminoéthyle, par un radical 2,3-diaminopropyle, par un radical acyle, par un radical sulfonamide, par un radical uréido, par un radical sulfonylamino.
- 17. Composition selon la revendication 16 dans laquelle A_1 , A_3 sont choisis parmi les couples (A_1 , A_3) suivants (radical aniline, radical aniline), (radical aniline), radical aniline).
- 18. Composition selon la revendication 17 dans laquelle le couple (A₁, A₃) est le couple (radical aniline, radical aniline) éventuellement subtitué par un radical méthyle, éthyle ou par un radical hydroxyméthyle, 1,2-dihydroxyéthyle, aminométhyle, 2-aminoéthyle, 1,2-diaminoéthyle, 2,3-diaminopropyle ou par un radical pyrrolidinyle,

pipéridinyle, ou par un radical méthoxy ; amino ; méthylamino ; dimethylamino ; 2-hydroxyethylamino.

19. Composition selon l'une quelconque des revendications 1 à 18 dans laquelle le colorant azoique correspond à la formule (I) dans laquelle Z1 est un groupe imidazolium, n est égal à 1, le couple A1,A3 est un couple (radical aniline, radical aniline) et Z_2 est choisi parmi les radicaux imidazolium, pyridinium, pyridinium, pyrimidinium, pyrazinium, de préférence pyridinium ou pyrimidinium.

20. Composition selon l'une quelconque des revendications 1 à 19 dans laquelle le colorant azoique de formule (I) est choisi parmi

Composé	Z ₁	A ₁	A ₃	n	Z ₂
1	2-imidazolinium			0	2-imidazolinium
2	2-imidazolinium	H	H	1	2-imidazolinium
3	2-imidazolinium	├		0	2-imidazolinium
4	2-imidazolinium		├	1	2-imidazolinium
5	2-imidazolinium	OMe		0	2-imidazolinium
6	2-imidazolinium	OMe	├ ── !	1	2-imidazolinium
7	2-imidazolinium	OMe		0	2-imidazolinium
8	2-imidazolinium	OMe	├	1	2-imidazolinium

	2-imidazolinium	OMe	r		10: 11 1: 1
9	2-imidazoiinium	MeO		0	2-imidazolinium
10	2-imidazolinium	OMe MeO	├│	1	2-imidazolinium
11	2-imidazolinium	OMe NeO		0	2-imidazolinium
12	2-imidazolinium	OMe MeO		1	2-imidazolinium
13	2-imidazolinium			0	2-imidazolinium
14	2-imidazolinium		H	1	2-imidazolinium
15	2-imidazolinium			0	2-imidazolinium
16	2-imidazolinium			1	2-imidazolinium
17	2-triazolinium			0	2-imidazolinium
18	2-triazolinium			1	
19	2-triazolinium			0	2-imidazolinium

			·····		
20	2-triazolinium			1	2-imidazolinium
21	2-triazolinium	OMe		0	2-imidazolinium
22	2-triazolinium	OMe		1	2-imidazolinium
23	2-triazolinium	OMe		0	2-imidazolinium
24	2-triazolinium	OMe		1	2-imidazolinium
25	2-triazolinium	OMe MeO		0	2-imidazolinium
26	2-triazolinium	OMe MeO	├	1	2-imidazolinium
27	2-triazolinium	OMe NeO		0	2-imidazolinium
28	2-triazolinium	OMe MeO		1	2-imidazolinium
29	2-triazolinium			0	2-imidazolinium

	<u> </u>		·		
30	2-triazolinium			1	2-imidazolinium
31	2-triazolinium			0	2-imidazolinium
32	2-triazolinium			1	2-imidazolinium
33	3-pyridinium	H		0	2-imidazolinium
34	3-pyridinium			1	2-imidazolinium
35	3-pyridinium			0	2-imidazolinium
36	3-pyridinium		├	1	2-imidazolinium
37	3-pyridinium	OMe		0	2-imidazolinium
38	3-pyridinium	OMe 	├	1	2-imidazolinium
39	3-pyridinium	OMe	,	0	2-imidazolinium
40	3-pyridinium	OMe 		1	2-imidazolinium
. 41	3-pyridinium	OMe MeO		0	2-imidazolinium
		MeÓ			

	14		· · · · · · · · · · · · · · · · · · ·		
42	3-pyridinium	OMe MeO		1	2-imidazolinium
43	3-pyridinium	OMe NeO		0	2-imidazolinium
44	3-pyridinium	OMe MeO		1	2-imidazolinium
45	3-pyridinium			0	2-imidazolinium
46	3-pyridinium		├ ─ 	1	2-imidazolinium
47	3-pyridinium			0	2-imidazolinium
48	3-pyridinium			1	2-imidazolinium
49	2-imidazolinium			0	2-pyridinium
50	2-imidazolinium	OMe		0	2-pyridinium
51	2-imidazolinium	├	•		2-pyridinium
52	2-imidazolinium	OMe N		0	2-pyridinium

	12:	OMe		T	10
53	2-imidazolinium			1	2-pyridinium
54	2-imidazolinium	OMe MeO		0	2-pyridinium
55	2-imidazolinium	OMe		1	2-pyridinium
. 56	2-imidazolinium	OMe Neo		0	2-pyridinium
57	2-imidazolinium	OMe MeO	├	1	2-pyridinium
58	2-imidazolinium			0	2-pyridinium
59	2-imidazolinium		├│	1	2-pyridinium
60	2-imidazolinium		·	0	2-pyridinium
61	2-imidazolinium		├	1	2-pyridinium
62	2-triazolinium			·	2-pyridinium
63	2-triazolinium			1	2-pyridinium

		_	•		_
64	2-triazolinium			0	2-pyridinium
				<u> </u>	
65	2-triazolinium			1	2-pyridinium
	2-triazolinium	OMe		o	2-pyridinium
66	·				
	2-triazolinium	OMe	1 () 1	1	2-pyridinium
67				•	
	2-triazolinium	OMe		o	2-pyridinium
68					
·	2-triazolinium	OMe	1 () 1	1	2-pyridinium
69					
-	2-triazolinium	OMe		0	2-pyridinium
70		MeO			2 p)
71	2-triazolinium	OMe MeO		1	2-pyridinium
	2-triazolinium	OMe		0	2-pyridinium
72		MeO			
73	2-triazolinium	OMe MeO		1	2-pyridinium
	12.1.1.1			<u> </u>	2
74	2-triazolinium			0	2-pyridinium

			<u> </u>		·
75	2-triazolinium			1	2-pyridinium
76	2-triazolinium			0	2-pyridinium
77	2-triazolinium		├	1	2-pyridinium
78	3-pyridinium	H		0	2-pyridinium
79	3-pyridinium		H	1	777.
80	3-pyridinium			0	
81	3-pyridinium			1	2-pyridinium
82	3-pyridinium	OMe		0	2-pyridinium
83	3-pyridinium	OMe	├	1	2-pyridinium
84	3-pyridinium	OMe		0	
85	3-pyridinium	OMe		1	2-pyridinium
86	3-pyridinium	OMe		0	2-pyridinium
	_	MeÓ		<u> </u>	

	14	- 011:	r	Τ.	12
87	3-pyridinium	OMe 		1	2-pyridinium
	3-pyridinium	MeO OMe		0	2-pyridinium
88		MeO			
89	3-pyridinium	OMe MeO		1	2-pyridinium
90	3-pyridinium			0	2-pyridinium
91	3-pyridinium		├	1	2-pyridinium
92	3-pyridinium			0	2-pyridinium
93	3-pyridinium			1	2-pyridinium
94	2-imidazolinium			0	3-pyridazinium
95	2-imidazolinium	OMe		0	3-pyridazinium
96	2-imidazolinium				3-pyridazinium
97	2-imidazolinium	OMe		0	3-pyridazinium

	10	OMe		-	
98	2-imidazolinium			1	3-pyridazinium
99	2-imidazolinium	OMe	├	1	3-pyridazinium
100	2-imidazolinium	OMe MeO		0	3-pyridazinium
101	2-imidazolinium	OMe MeO	├	1	3-pyridazinium
102	2-imidazolinium	OMe N MeO		0	3-pyridazinium
103	2-imidazolinium	OMe MeO		1	3-pyridazinium
104	2-imidazolinium			0	3-pyridazinium
105	2-imidazolinium	⊢ N	H	1	3-pyridazinium
106	2-imidazolinium			0	3-pyridazinium
107	2-imidazolinium			1	3-pyridazinium

	10		r	т_	12
	2-triazolinium	/__		0	3-pyridazinium
108		\ <u> </u>		l	
				<u> </u>	
	2-triazolinium	1 / H	/ Л Н	1	3-pyridazinium
100					
109					·
	2-triazolinium	1 () 1		0	3-pyridazinium
		├─ /		•	
110	·	\=n \			
	2		<u></u>	-	2
	2-triazolinium	/__\\	├ / \ _#	1	3-pyridazinium
111					
'''		,			
	2-triazolinium	OMe		0	3-pyridazinium
112		ı ∕√\ н		ļ ·	
112	1	 			
	2-triazolinium	OMe		1	3-pyridazinium
			├─ /	Ι'	'
113		├─ / ′ }}─Ñ			
	2-triazolinium	OMe		0	3-pyridazinium
	2-mazoninum			١٧	3-pyridazimum
114		<u></u>			
		_N \	,		,
			· · · · · · · · · · · · · · · · · · ·	$oxed{oxed}$	•
	2-triazolinium	OMe		1	3-pyridazinium
145				}	
115			N		
			· 	l.	
	2-triazolinium	OMe		0	3-pyridazinium
		,			
116		 			}
		MeO			
 	2-triazolinium	OMe	1 ()	1	3-pyridazinium
		/	 	'	
117	`	 			
		<i>></i> =/ ン			
		MeÓ			
	2-triazolinium	OMe		-	3-pyridazinium
	2-triazoiinium			U	3-pyridazinium
118		<u> </u> // \\			
- · · · · · · · · · · · · · · · · · ·					·
		MeO			

119	2-triazolinium	OMe MeO		1	3-pyridazinium
120	2-triazolinium			0	3-pyridazinium
121	2-triazolinium			1	3-pyridazinium
122	2-triazolinium			0	3-pyridazinium
123	2-triazolinium			1	3-pyridazinium
124	3-pyridinium			0	
125	3-pyridinium			1	3-pyridazinium
126	3-pyridinium			0	3-pyridazinium
127	3-pyridinium		├	1	3-pyridazinium
128	3-pyridinium	OMe		0	3-pyridazinium
129	3-pyridinium	OMe 	├ ── !	1	3-pyridazinium
130	3-pyridinium	OMe N		0	3-pyridazinium

			•		•
131	3-pyridinium	OMe		1	3-pyridazinium
132	3-pyridinium	OMe MeO		0	3-pyridazinium
133	3-pyridinium	OMe MeO		1	3-pyridazinium
134	3-pyridinium	OMe NeO			3-pyridazinium
135	3-pyridinium	OMe MeO		1	3-pyridaziņium
136	3-pyridinium			0	3-pyridazinium
137	3-pyridinium			1	3-pyridazinium
138	3-pyridinium			0	3-pyridazinium
139	3-pyridinium			1	3-pyridazinium

21. Composition selon la revendication 20 dans laquelle le colorant azoique de formule (I) est choisi parmi :

					. Care
Composé	Z ₁	A ₁	A ₃	n	Z ₂
1	2-imidazolinium			0	2-imidazolinium
2	2-imidazolinium			1	2-imidazolinium
3	2-imidazolinium	├		0	2-imidazolinium
4	2-imidazolinium	├	├	1	2-imidazolinium
9	2-imidazolinium	OMe MeO		0	2-imidazolinium
10	2-imidazolinium	OMe MeO		1	2-imidazolinium
11	2-imidazolinium	OMe NeO		0	2-imidazolinium
12	2-imidazolinium	OMe MeO	├	1	2-imidazolinium
13	2-imidazolinium			0	2-imidazolinium
14	2-imidazolinium		├ ── !	1	2-imidazolinium
17	2-triazolinium	H		0	2-imidazolinium

	2-triazolinium			T-	2-imidazolinium
10	2-11102011110111	 	├ //	1	2-imidazoiinium
18	:				
	2-triazolinium	OMe		10	2-imidazolinium
0.5		/ √			
25				1	
	1	MeO			
	2-triazolinium	OMe		1	2-imidazolinium
26	2 diazonnum	H	├('	2-imidazoiiiiuiii
20		 			
		MeO			
	2-triazolinium	(35.)	P	<u>_</u>	2-imidazolinium
	2-uiazviiliuiii			0	z-miluazolimum
29		 ~_> \			,
					-
	2-triazolinium		L/\t	1	2-imidazolinium
30		├ / > #			
					-
	3-pyridinium	1 / H	H	1	2-imidazolinium
24		 	 		
34)			
	3-pyridinium	OMe		0	2-imidazolinium
41		// _\			
		MeÓ			
	3-pyridinium	\	,	0	2-imidazolinium
45		├ ─ \			
	2-imidazolinium	1 / 1		0	2-pyridinium
4.5		 ~_>-_			
49					
	2-imidazolinium	L/\L	├ ∕\}	1	2-pyridinium
50					
	2			<u> </u>	
	2-imidazolinium	 		0	2-pyridinium
51		<u> </u>		1	
L	l				

54	2-imidazolinium	OMe MeO		0	2-pyridinium
61	2-imidazolinium		├	1	2-pyridinium
78	3-pyridinium	├		0	2-pyridinium
79	3-pyridinium		H	1	2-pyridinium
86	3-pyridinium	OMe MeO		0	2-pyridinium
87	3-pyridinium	OMe MeO	├	1	2-pyridinium
94	2-imidazolinium			0	3-pyridazinium
95	2-imidazolinium			1	3-pyridazinium
100	2-imidazolinium	OMe MeO		0	3-pyridazinium
101	2-imidazolinium	OMe MeO	├	1	3-pyridazinium
105	2-imidazolinium			1_	3-pyridazinium

109	2-triazolinium	H		1	3-pyridazinium
116	2-triazolinium	OMe MeO		0	3-pyridazinium
121	2-triazolinium		├	1	3-pyridazinium
124	3-pyridinium	H		0	·
125	3-pyridinium			1	3-pyridazinium
130	3-pyridinium	OMe		0	3-pyridazinium
131	3-pyridinium	OMe		1	3-pyridazinium
132	3-pyridinium	OMe MeO		0	3-pyridazinium
133	3-pyridinium	OMe MeO	├	1	3-pyridazinium
136	3-pyridinium		,		3-pyridazinium
137	3-pyridinium			1	3-pyridazinium

15

20

30

- **22.** Composition selon l'une quelconque des revendications 1 à 21 comprenant de plus une base d'oxydation.
- 23. Composition selon la revendication 22 dans laquelle la base d'oxydation est choisie parmi les paraphénylènediamines, les bisphénylalkylènediamines, les para-aminophénols, les ortho-aminophénols, les bases hétérocycliques, et leurs sels d'addition avec un acide.
- **24.** Composition selon l'une quelconque des revendications 22 ou 23 dans laquelle la ou les bases d'oxydation sont présentes en quantité comprise entre 0,001 et 10 %, de préférence entre 0,005 et 6 %.
- 10 **25.** Composition selon l'une quelconque des revendications 1 à 24 comprenant au moins un coupleur.
 - 26. Composition selon la revendication 25 dans laquelle le coupleur est choisi parmi métaphénylènediamines, les méta-aminophénols, les métadiphénols, les coupleurs naphtaléniques et les coupleurs hétérocycliques et leur sel d'addition avec un acide.
 - **27.** Composition selon l'une quelconque des revendications 1 à 26 comprenant de plus un agent oxydant, de préférence le peroxyde d'hydrogène.
 - 28. Procédé de teinture d'oxydation des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux, caractérisé en ce qu'on applique sur les fibres au moins une composition tinctoriale telle que définie à l'une quelconque des revendications 1 à 21.
 - 29. Procédé selon la revendication 28 dans lequel la composition tinctoriale contient un agent oxydant.
- 30. Procédé selon la revendication 28 dans lequel l'agent oxydant est
 mélangé au moment de l'emploi à la composition tinctoriale.
 - **31.** Procédé selon l'une quelconque des revendications 29 ou 30 dans lequel l'agent oxydant est appliqué sur les fibres sous forme de composition oxydante simultanément ou séquentiellement à la composition tinctoriale.
 - 32. Procédé de teinture d'oxydation des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux, caractérisé en ce qu'on applique sur les fibres au moins une composition tinctoriale telle que définie selon l'une quelconque des revendications 1 à 21, comprenant de plus au moins une base d'oxydation et optionnellement au moins un coupleur, en présence d'un agent-oxydant.
- 33. Procédé selon la revendication 32 dans lequel l'agent oxydant est
 35 mélangé au moment de l'emploi à la composition tinctoriale.

- **34.** Procédé selon la revendication 32 dans lequel l'agent oxydant est appliqué sur les fibres sous forme de composition oxydante simultanément ou séquentiellement à la composition tinctoriale.
- 35. Dispositif à plusieurs compartiments ou "kit" de teinture à plusieurs compartiments, dans lequel un premier compartiment contient une composition telle que définie à l'une quelconque des revendications 1 à 26 et un deuxième compartiment contient une composition oxydante.
- **36.** Composés monoazoïques dicationiques de formule (I) ou (II) telle que définie selon l'une quelconque des revendications 1 à 21 et R_8 est l'hydrogène.