

SFH610A/617A

5.3 kV TRIOS[®] Optocoupler High Reliability

FEATURES

- Variety of Current Transfer Ratios at I_E=10 mA
 - SFH610A/617A-1, 40-80%
 - SFH610A/617A-2, 63-125%
 - SFH610A/617A-3, 100-200%
- SFH610A/617A-4, 160-320%
- · Low CTR Degradation
- · Good CTR Linearity Depending on Forward Current
- Withstand Test Voltage, 5300 V_{RMS}
- High Collector-Emitter Voltage, V_{CEO} =70 V
- Low Saturation Voltage
- · Fast Switching Times
- Field-Effect Stable by TRIOS (TRansparent IOn Shield)
- · Temperature Stable
- Low Coupling Capacitance
- · End-Stackable, .100" (2.54 mm) Spacing
- High Common-Mode Interference Immunity (Unconnected Base)
- · Underwriters Lab File #52744
- VDE 0884 Available with Option 1

DESCRIPTION

The SFH61XA features a high current transfer ratio, low coupling capacitance and high isolation voltage. These couplers have a GaAs infrared emitting diode emitter, which is optically coupled to a silicon planar phototransistor detector, and is incorporated in a plastic DIP-4 package.

The coupling devices are designed for signal transmission between two electrically separated circuits.

The couplers are end-stackable with 2.54 mm spacing.

Creepage and clearance distances of >8.0 mm are achieved with option 6. This version complies with IEC 950 (DIN VDE 0805) for reinforced insulation up to an operation voltage of 400 V_{RMS} or DC. Specifications subject to change.

Maximum Ratings

Emitter

2-228

Characteristics (T_A =25°C)

Description	Symbol		Unit	Condition			
Emitter (IR GaAs)							
Forward Voltage	V_{F}	1.25 (≤1.65)	V	I _F =60 mA			
Reverse Current	I_{R}	0.01 (≤10)	μА	V _R =6.0 V			
Capacitance	<i>C</i> ₀	13	pF	V _R =0 V, f=1.0 MHz			
Thermal Resistance	R _{thJA}	750	K/W				
Detector (Si Phototransistor)							
Capacitance	$C_{\sf CE}$	5.2	pF	V _{CE} =5 V, f=1.0 MHz			
Thermal Resistance	R _{thJA}	500	K/W				
Package							
Collector-Emitter Saturation Voltage	V_{CEsat}	0.25 (≤0.4)	V	I _F =10 mA, I _C =2.5 mA			
Coupling Capacitance	$C_{\mathbb{C}}$	0.4	pF				

Current Transfer Ratio ($I_{\rm C}/I_{\rm F}$ at $V_{\rm CE}$ =5.0 V) and Collector-Emitter Leakage Current by Dash Number

Description	-1	-2	-3	-4	
$I_{\rm C}/I_{\rm F}$ ($I_{\rm F}$ =10 mA)	40–80	63–125	100–200	160–320	%
$I_{\rm C}/I_{\rm F}$ ($I_{\rm F}$ =1.0 mA)	30 (>13)	45 (>22)	70 (>34)	90 (>56)	
Collector-Emitter Leakage Current, I_{CEO} V_{CE} =10 V	2.0 (≤50)	2.0 (≤50)	5.0 (≤100)	5.0 (≤100)	nA

Figure 1. Switching Times (Typical)
Linear Operation (without saturation)

Figure 2. Switching Operation (with saturation)

$I_{\rm F}$ =10 mA, $V_{\rm CC}$ =5.0 V, $T_{\rm A}$ =25°C

Load Resistance	R_{\perp}	75	Ω
Turn-on Time	t _{ON}	3.0	μs
Rise Time	t _R	2.0	
Turn-off Time	t _{OFF}	2.3	
Fall Time	t _F	2.0	
Cut-off Frequency	F _{CO}	250	kHz

			11			
Parameter	Sym.	-1 I _F =20 mA	-2 and -3 I_{F} =10 mA	-4 I _F =5.0 mA	Unit	
Turn-on Time	toN	3.0	4.2	6.0	μs	
Rise Time	t_{R}	2.0	3.0	4.6		
Turn-off Time	t _{OFF}	18	23	25		
Fall Time	t_{F}	11	14	15		

Figure 3. Current Transfer Ratio (typ.) vs. Temperature I_F =10 mA, V_{CC} =5.0 V

Figure 4. Output Characteristics (typ.) Collector Current vs. Collector-emitter Voltage T_A =25°C

Figure 5. Diode Forward Voltage (typ.) vs. Forward Current

Figure 6. Transistor capacitance (typ.) vs. collector-emitter voltage $T_{\rm A}$ =25°C, f=1.0 MHz

Figure 7. Permissible Pulse Handling Capability. Forward Current vs. Pulse Width Pulse cycle D=parameter, T_A =25°C

Figure 8. Permissible Power Dissipation vs. Ambient Temperature

Figure 9. Permissible Diode Forward Current vs. Ambient Temperature

