Linear Models - Regression

Ananthan Ambikairajah

04 March, 2020

Administration

- ► Workshop materials (GitHub, Wattle)
- Attendance (quick *Rmarkdown* and *Github* demonstration)
- Feedback

Common statistical tests are linear models

See worked examples and more details at the accompanying notebook: https://lindeloey.github.io/tests-as-linear

	Common name	Built-in function in R	Equivalent linear model in R	Exact?	The linear model in words	Icon						
(x +	y is independent of x P: One-sample t-test N: Wilcoxon signed-rank	Ltest(y) wilcox.test(y)	Im(y ~ 1) Im(signed_rank(y) ~ 1)	√ for N >14	One number (intercept, i.e., the mean) predicts y. - (Same, but it predicts the signed rank of y.)) }						
: Im(y ~ 1	P: Paired-sample t-test N: Wilcoxon matched pairs	t.test(y ₁ , y ₂ , paired=TRUE) wilcox.test(y ₁ , y ₂ , paired=TRUE)	$\begin{array}{l} Im(y_2-y_1\sim 1)\\ Im(signed_rank(y_2-y_1)\sim 1) \end{array}$	f <u>or N ≥14</u>	One intercept predicts the pairwise $\mathbf{y}_{\mathbf{z}^{\mathbf{y}_{1}}}$ differences. - (Same, but it predicts the signed rank of $\mathbf{y}_{\mathbf{z}^{\mathbf{y}_{1}}}$)	Z →						
Simple regression:	y ~ continuous x P: Pearson correlation N: Spearman correlation	cor.test(x, y, method='Pearson') cor.test(x, y, method='Spearman')	Im(y ~ 1 + x) Im(rank(y) ~ 1 + rank(x))	for N >10	One intercept plus x multiplied by a number (slope) predicts y . - (Same, but with ranked x and y)	نعليسر						
	y ~ discrete x P: Two-sample t-test P: Welch's t-test N: Mann-Whitney U	Ltest(y ₁ , y ₂ , var.equal=TRUE) Ltest(y ₁ , y ₂ , var.equal=FALSE) wilcox.test(y ₁ , y ₂)	$Im(y\sim 1+G_2)^4$ gls(y ~ 1+G ₂ , weights= ⁸) ^A Im(signed_rank(y) ~ 1+G ₂) ⁴	√ for.N.≥11	An intercept for group 1 (plus a difference if group 2) predicts y. - (Same, but with one variance per group instead of one common.) - (Same, but it predicts the signed rank of y.)	*						
Multiple regression: Im(y ~ 1 + x ₁ + x ₂ +)	P: One-way ANOVA N: Kruskal-Wallis	aov(y ~ group) kruskal.test(y ~ group)	$\begin{split} & Im(y \sim 1 + G_2 + G_3 + + G_N)^A \\ & Im(rank(y) \sim 1 + G_2 + G_3 + + G_N)^A \end{split}$	for N ≥11	An intercept for group 1 (plus a difference if group × 1) predicts y . - (Same, but it predicts the <i>rank</i> of y .)	i , t i						
	P: One-way ANCOVA	aov(y ~ group + x)	$Im(y \sim 1 + G_2 + G_3 + + G_N + x)^A$	~	(Same, but plus a slope on x.) Note: this is discrete AND continuous. ANCOVAs are ANOVAs with a continuous x.	-						
	P: Two-way ANOVA	aov(y ~ group * sex)	$\begin{aligned} & Im(y-1+G_2+G_3++G_N+\\ & S_2+S_3*+S_K+\\ & G_2*S_2+G_3*S_3++G_N*S_K) \end{aligned}$	*	Interaction term: changing sex changes the y – group parameters. Note: Gh _x = is an <u>indicate.</u> (D _x = I) for each non-intercept levels of the group variable. Similarly for Si _x = for sex. The first line (with G) is man effect of group, the escond (with S) for sex and the third is the group × sex interaction. For the levels (e.g. mainfermals), line 2 would per to S' _x and the 3 would be S', multipled with each S.	[Coming]						
	Counts ~ discrete x N: Chi-square test	chisq.test(groupXsex_table)	Equivalent log-linear model glm(y ~ 1 + G ₂ + G ₃ + + G _N + S ₂ + S ₃ + + S _N + G ₂ *S ₂ +G ₃ *S ₃ ++G _N *S _N , family=) ⁴	*	Interaction term: (Same as Two-wey ANOVA.) Note: Run girn using the following arguments: size isodal., seatly-polizeon()) As finese-model, the Chi-square test is logi(y) = logi(y) = logi(q) = logi(g) + logi(q), where a and β, are proportions. See more into in the accompanying notebook.	Same as Two-way ANOVA						
M	N: Goodness of fit	chisq.test(y)	glm(y ~ 1 + G ₂ + G ₃ ++ G _N , family=) ^A	·	(Same as One-way ANOVA and see Chi-Square note.)	1W-ANOVA						

List of common parametric (P) non-parametric (N) tests and equivalent linear models. The notation y = 1 + x is R shorthand for y = 1 b + a x which most of us learned in school. Models in similar colors are highly similar, but really, notice how similar they all are across colors if zo non-parametric models, he linear models are reasonable approximations for non-small sample sizes (see "Exact Coultim and click linis to see simulations). Other less accurate approximations exist, e.g., Wilcono for the signitest and Goodness-off-fit for the binnel set. The significant function is sizegate "active factor scale" active factor scale active factor scale active factor for sizegate and scale active factor for sizegate active factor for sizegate active factor factor

A See the note to the two-way ANOVA for explanation of the notation.

Same model, but with one variance per group; als (value - 1 + 6), weights = varident (form = -1(group), method="ML").

The Mean - A Very Simple Statistical Model

The Method of Least Squares

Linear Regression

▶ total error = sum of deviances = $\sum (x_i - \bar{x})$

- ▶ total error = sum of deviances = $\sum (x_i \bar{x})$
- sum of squared errors (SS) = $\sum (x_i \bar{x})(x_i \bar{x})$

- ▶ total error = sum of deviances = $\sum (x_i \bar{x})$
- sum of squared errors (SS) = $\sum (x_i \bar{x})(x_i \bar{x})$
- variance $(s^2) = \frac{SS}{N-1} = \frac{\sum_{i=1}^{N-1} (x_i \bar{x}_i)^2}{N-1}$

- ▶ total error = sum of deviances = $\sum (x_i \bar{x})$
- sum of squared errors (SS) = $\sum (x_i \bar{x})(x_i \bar{x})$
- $\triangleright \text{ variance } (s^2) = \frac{SS}{N-1} = \frac{\sum (x_i \bar{x})^2}{N-1}$
- standard deviation $(s) = \sqrt{\frac{\sum (x_i \bar{x})^2}{N-1}}$

Concept Check - Standard Error

$$\sigma_{\bar{X}} = \frac{s}{\sqrt{N}}$$

Constructing Simple Regressions in R

```
album data <- read.delim("Album Sales 1.dat", header = TRUE)
album_lm_1 <- lm(sales ~ 1 + adverts, data = album data)</pre>
summary(album lm 1)
##
## Call:
## lm(formula = sales ~ 1 + adverts, data = album_data)
##
## Residuals:
##
       Min
               1Q Median 3Q
                                          Max
## -152.949 -43.796 -0.393 37.040 211.866
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.341e+02 7.537e+00 17.799 <2e-16 ***
## adverts 9.612e-02 9.632e-03 9.979 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 65.99 on 198 degrees of freedom
## Multiple R-squared: 0.3346, Adjusted R-squared: 0.3313
## F-statistic: 99.59 on 1 and 198 DF, p-value: < 2.2e-16
```

Exercise 1 - Simple Regression

The Theory - Regression Output

```
##
## Call:
## lm(formula = sales ~ 1 + adverts, data = album data)
##
## Residuals:
##
       Min
              10 Median 30
                                        Max
## -152.949 -43.796 -0.393 37.040 211.866
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.341e+02 7.537e+00 17.799 <2e-16 ***
## adverts 9.612e-02 9.632e-03 9.979 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 65.99 on 198 degrees of freedom
## Multiple R-squared: 0.3346, Adjusted R-squared: 0.3313
## F-statistic: 99.59 on 1 and 198 DF, p-value: < 2.2e-16
```

The Model - Assessing Goodness of Fit (R^2)

The Model - Assessing Goodness of Fit (R^2)

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{N - 1}}$$

$$R^2 = \frac{SS_M}{SS_T}$$

$$1-(1-R^2)\frac{n-1}{n-p-1}$$

$$F = \frac{MS_M}{MS_R}$$

$$r = \sqrt{R^2}$$

SS_T uses the differences between the observed data and the mean value of Y

SS_R uses the differences between the observed data and the regression line

SS_M uses the differences between the mean value of Y and the regression line

The Theory - Regression Output

```
##
## Call:
## lm(formula = sales ~ 1 + adverts, data = album data)
##
## Residuals:
##
       Min
              10 Median 30
                                        Max
## -152.949 -43.796 -0.393 37.040 211.866
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.341e+02 7.537e+00 17.799 <2e-16 ***
## adverts 9.612e-02 9.632e-03 9.979 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 65.99 on 198 degrees of freedom
## Multiple R-squared: 0.3346, Adjusted R-squared: 0.3313
## F-statistic: 99.59 on 1 and 198 DF, p-value: < 2.2e-16
```

The Theory - The Predictors

A.2 Critical values of the *t*-distribution

		Two-Tailed Test		One-Tailed Test	
	df	0.05	0.01	0.05	0.01
	1	12.71	63.66	6.31	31.82
	2	4.30	9.92	2.92	6.96
	3	3.18	5.84	2.35	4.54
	4	2.78	4.60	2.13	3.75
L. L.	5	2.57	4.03	2.02	3.36
$t = \frac{b_{observed} - b_{expected}}{SE_b}$	6	2.45	3.71	1.94	3.14
=	7	2.36	3.50	1.89	3.00
SE_b	8	2.31	3.36	1.86	2.90
	9	2.26	3.25	1.83	2.82
	10	2.23	3.17	1.81	2.76
	11	2.20	3.11	1.80	2.72
I.	12	2.18	3.05	1.78	2.68
$t = \frac{b_{observed}}{SE_{b}}$	13	2.16	3.01	1.77	2.65
$t = \frac{C}{C}$	14	2.14	2.98	1.76	2.62
SE_b	15	2.13	2.95	1.75	2.60
	16	2.12	2.92	1.75	2.58
	17	2.11	2.90	1.74	2.57
	18	2.10	2.88	1.73	2.55
	19	2.09	2.86	1.73	2.54
df = N - p - 1	20	2.09	2.85	1.72	2.53
ar = rv - p - 1	21	2.08	2.83	1.72	2.52
	22	2.07	2.82	1.72	2.51
	23	2.07	2.81	1.71	2.50
	24	2.06	2.80	1.71	2.49
	25	2.06	2.79	1.71	2.49
	26	2.06	2.78	1.71	2.48
	27	2.05	2.77	1.70	2.47
	28	2.05	2.76	1.70	2.47

2.05

2.76

1.70

2.46

29

Exercise 2 - Derive and Interpret the Output

```
##
## Call:
## lm(formula = sales ~ 1 + adverts, data = album data)
##
## Residuals:
##
       Min
               10 Median 30
                                         Max
## -152.949 -43.796 -0.393 37.040 211.866
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.341e+02 7.537e+00 17.799 <2e-16 ***
## adverts 9.612e-02 9.632e-03 9.979 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 65.99 on 198 degrees of freedom
## Multiple R-squared: 0.3346, Adjusted R-squared: 0.3313
## F-statistic: 99.59 on 1 and 198 DF, p-value: < 2.2e-16
```

Exercise 3 - Anscombe's Quartet

Thank You

