- MSNE: existence guaranteed but computationally hard.
- Another equilibrium concept: conrelated
- Nash eq. : every player picks strategies independently.
- If there were a trusted agent, who does the randomization and suggests the strategies to the individuals. The strategy will be called connelated strategy.
 - It will be an equilibrium if for every player it becomes self enforcing, i.e., they find that sug & following the suggestion is the best nesponse for them.

- The properties of the Handomizing device - common knowled

$$\frac{E \times .1: \quad C \quad F}{C \quad 2,1 \quad 0,0} \\
F \quad 0,0 \quad 1,2$$

EX.2 STOP O,O I,2Go 2,1 -10,-10

Trusted entity tosses a fair eoin (C,C),(F,F) W,P. 1/2

Defn. A structure convelated equilibrium TI:S -> [0,1] s.t.

Zπ(A) =1, is a joint probability distribution over the

AES strategy profiles s.t. YIEN and YSIESi

$$\sum \pi(s_i, \underline{s}_i) u_i(\underline{s}_i, \underline{s}_i) \gamma_i \sum \pi(\underline{s}_i, \underline{s}_i) u_i(\underline{s}_i, \underline{s}_i),$$

 $\underline{s}_i \in \underline{s}_i$
 $\underline{s}_i \in \underline{s}_i$
 $\underline{s}_i \in \underline{s}_i$

Explaining with Ex. 1: If & has been suggested by the trusted entity Expected payoff by listening to 6: 2 > (1, 10) 11 (6, 1)

$$= \frac{1}{b(c)} \left[\frac{1}{b(c)} (c,c) u_{1}(c,c) + \frac{1}{b(c,f)} u_{1}(c,f) \right]$$

$$= \frac{1}{\frac{1}{2}} \left[\frac{1}{2} \times 2 + \frac{1}{2} \times 0 \right] = 2$$

(F-2) Play F: \frac{1}{\phi(c)} [\phi(c,c) \pi_1(F,c) + \phi(c,F) \u_1(F,F)] $= \frac{1}{1/2} \left[\frac{1}{2} \times 0 + 0 \times 0 \right] = 0$ Better to play C. Ton ex. 2, 'y proble $\pi(s,s) = \pi(s,G) = \pi(G,s) = \frac{1}{3}$, $\pi(GG) = 0$ $\sum_{\Delta_{i} \in S_{i}} b(\Delta_{i} | S) = \sum_{\Delta_{i} \in S_{i}} \sum_{\Delta_{i} \in S_{i}} b(S, \Delta_{i}) = \sum_{\Delta_{i} \in S_{i}} \sum_{\Delta_{i} \in S_{i}} b(S, \Delta_{i}) = \sum_{\Delta_{i} \in S_{i}} b(S,$ = $\frac{1}{2/2}$ [p(s,s)u,(s,s)+p(s,q)u,(s,q)] = $\frac{3}{2}$ x $\frac{1}{3}$ x $1=\frac{1}{2}$ $\sum P(\underline{A}, |S) u_1(G, \underline{A}_1) = \frac{1}{2/3} [P(S,S) u_1(G,S) + P(S,G) u_1(G,G)]$ = $63/x \left[\frac{1}{3} \times 2 + \frac{1}{3} \times (-10)\right] = -4$ Interpretation of convelated equilibrium $\sum P(A_i | A_i) u_i(A_i, A_i) \geq P(A_i | A_i) u_i(A_i, A_i)$ 1: ES: > > (A:/4:) U:(A:, A:) 7 Z p(A:/4:) U:(A:/A:) 1; Esi Compute CE: Y1; ES: $\sum \pi(A) \cdot u_i(A_i, A_i) \rightarrow \sum \pi(A) \cdot u_i(A_i, A_i) \quad \forall A_i \in S_i$ $\in S_i$ $A_i \in S_i$ $A_i \in S_i$ $A_i \in S_i$ T(s) 7,0 m' inequalities n m² inequalities $\sum \pi(A) = 1$ | Feasibility LP 1ES FOR MSNE, # of support profiles were 2 mn mn exponentially larger. nlogm vs (MSNE) (CE)

Ex. Brother and Sister — two identical indivisible objects

- 2 chocolates. Sequence: Brother divides, sister either

accepts/rejects

Perfect information

Are (EFG) is represented by

(N, A, X, H, P, (ui)icn)

N: Set of players

A: set of possible actions

II: set of "sequences of actions" (histories)
satisfying

· empty sequence \$ \in \mathfrak{H}

• If $k \in \mathcal{H}$ an initial subsequence/subhistory $h' \in \mathcal{H}$ $h = (a^{(0)}, a^{(1)}, \dots, a^{(T-1)})$

 $h \in \mathcal{H}$ $h = (a^{(0)}, a^{(1)}, \dots, a^{(T-1)})$ A history is terminal if

(a) it is infinite, or

(b) $\neq a^{(T)}$ s.t. $(a^{(0)}, a^{(1)}, \dots, a^{(T-1)}, a^{(T)}) \in \mathcal{H}$.

- terminal history set is denoted by Z.

X: H\Z -> 2 has non-terminal history to action set mapping.

P: HIZ -> N Player function

u: Z - R utility of player i.

Explanation with the Brustian-Sister game.

$$N = \{B, S\}$$
, $A = \{2-0, 1-1, 0-2, Y, N\}$
 $H = \{4, (2-0), (1-1), (0-2), (2-0, Y), (2-0, N), (1-1, Y), (1-1, N), (0-2, Y), (0-2, N)\}$
 $= Z$, terminal.

 $X(\varphi) = \{2-0, 1-1, 0-2\}, X(2-0) = X(1-1) = X(0-2) = \{Y, N\}$
 $P(\varphi) = B$, $P(2-0) = P(1-1) = P(0-2) = S$
 $u_1(2-0, Y) = Z$, $u_2(2-0, Y) = 0$

Strategy set of agent i : complete contingency plan

 $S_i = X(h)$

wailable actions in that history

 $S_i = X(h)$ S_i histories where i is the player to play.

 $S_1 = \{2-0, 1-1, 0-2\}$ P1.1 plays only in distory ϕ S2 = {Y, N} x {Y, N} x {X, N} P1.2 plays in 3 histories = {xxx, xxn, xnx, xnn,, nnn}

Given strategies one can transform this game into a NFG. and find NE.

ma ging	NT NT	·	VNV	NNK	NYY	NYN	NNY	NNAN	
2-0	777	9.0	(2.0)	(2,0)	0,0	0,0	$(0, \delta)$	(0,0)	
2-0 1-1 20-2	(2,9)	2/0)	0.0	0.0	(1,1)	(1,1)	0,0	0,0	
1-1	1/1	1, (0,0	0,0		0.0	(0,2)	0,0	
9 0-2	0,2	0,0	0,2	0,0	0, 2	, , ,			

But this representation is wasteful

- Romes EFG is the compact succinct representation for ceretain games.
- Equilibrium ideas,