Special Topics in Biostatistics and Bioinformatics Week II

Ege Ülgen, M.D.

10 March 2022

Reasons to explore data

- To understand data properties
- To find patterns in data
- To suggest modeling strategies
- To debug analyses
- To communicate results

Exploratory Data Analysis

- Visualization
- Summarization
- Showing the data

*without being misled

Examples of Visualization

Bar Charts

Figure 3. Graphs from position-angle experiment.

Figure 16. Log absolute error means and 95% confidence intervals for judgment types in position—length experiment (top) and position—angle experiment (bottom).

Box plots

Violin Plots

Figure 1. Common Components of Box Plot and Violin Plot. Total compensation for all academic ranks.

Figure 2. Comparison of Box Plots and Violin Plots fo Known Distributions. (a) Box plots; (b) violin plots.

Bimodal

Uniform

(b)

Normal

-30

Heat maps

Sets and intersections

Avoid being misled

Anscombe's quartet

Property	Value
Mean of x	9
Sample variance of $x: s_x^2$	11
Mean of y	7.50
Sample variance of $y: s_y^2$	4.125
Correlation between x and y	0.816
Linear regression line	y = 3.00 + 0.500x
Coefficient of determination of the linear regression $:R^2$	0.67

10 12

 x_3

16 18

10 12

 X_4

16 18

Test	p value			
T-test: Equal var.	0.035	0.050	0.026	0.063
T-test: Unequal var.	0.035	0.050	0.026	0.035
Wilcoxon	0.054	0.073	0.128	0.103

Avoid "Ridiculograms"

Scale - Basic Principles

• Be careful with scale

Scale - Basic Principles

• Use common scales and start at 0

A nice Resource

• http://blogs.nature.com/methagora/2013/07/data-visualization-points-of-view.html

Data Transformations

Reasons for need for symmetric data

- plots are easier to see this way
- most statistical methods are designed to work better for non-skewed data

Realistically, most omics data is skewed

Histogram of edata[, 1]

Realistically, most omics data is skewed

Realistically, most omics data is skewed

A common pre-processing technique is to remove features that don't have much data

```
low_genes = rowMeans(edata) < 5
filt edata = filter(edata,!low genes)</pre>
```

Histogram of log2(edata[, 1] + 1)

Histogram of log2(filt_edata[, 1] + 1)

Other transformations

Variance stabilizing transforms

which seek to remove a mean variance relationship among the data

Box-Cox transforms

which seek to make the data approximately Normally distributed

rlog transform

unique to genomics count data, this is a regularized version of the log transform that seeks to minimize differences at low count levels

Preprocessing

- Convert raw data to "processed", trying to remove technical artifacts
 - GC content bias
 - PCR duplicates
 - Probe sequence and fragment length
 - •
- highly platform/problem dependent

Normalization

- Remove technological biases
- Make samples comparable
- highly platform/problem dependent

Scaling data - Standardization

$$X_i' = \frac{X_i - center(X)}{scale(X)}$$

Center: mean/median Scale: sd/IQR/MAD

Scaling data – Min-Max Scaling

$$X_i' = \frac{X_i - \min(X)}{\max(X) - \min(X)}$$

Scaling in any interval [a,b]

$$x' = a + \frac{(x - \min(x))(b - a)}{\max(x) - \min(x)}$$

Quantile Normalization

Quantile Normalization

