## Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

# Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 1, zadanie nr 2

Eva Reszka, Mateusz Roszkowski, Dominika Zając

# Spis treści

| 1. | Wstęp                                         | 2 |
|----|-----------------------------------------------|---|
| 2. | Projekt                                       | 3 |
|    | 2.1. to-do                                    | 3 |
| 3. | Ćwiczenie laboratoryjne                       | 4 |
|    | 3.1. Przygotowanie do wykonania ćwiczenia     | 4 |
|    | 3.2. Wyznaczenie odpowiedzi skokowych procesu | 4 |
|    | 3.3. Algorytm DMC                             | 5 |

## 1. Wstęp

mozna napisac glupoty albo mozna wyrzucic

## 2. Projekt

Nya nya nya

#### 2.1. to-do

## 3. Ćwiczenie laboratoryjne

Można napisać o tym, że realizowane w MATLABie i jakie oznaczenia mają jakie rzeczy (W1 ma index 1, G1 jaki index i T1 jaki index)

#### 3.1. Przygotowanie do wykonania ćwiczenia

Przed rozpoczęciem pomiarów sprawdzono możliwość sterowania i pomiaru w komunikacji ze stanowiskiem. Punkt pracy grzałki G1 dla zespołu obliczony został wg. wzoru 3.1:

$$G1 = 25 + Z\%5 \tag{3.1}$$

gdzie Z to numer zespołu, zatem dla naszego zespołu Z02 punkt pracy wynosi:

$$G1 = 25 + 2\%5 = 27\tag{3.2}$$

Następnie określono wartość pomiaru temperatury T1 dla obliczonego punktu pracy. W tym celu moc wentylatora W1 ustawiono na 50%, a moc grzałki G1 na 27%, za pomocą funkcji sendControls([1,5], [50,27]). Wartość pomiaru temperatury odczytano korzystając z funkcji readMeasurements(1). Temperatura T1 ustabilizowała się na wartości 32.25°C

#### 3.2. Wyznaczenie odpowiedzi skokowych procesu

Zarejestrowano przebieg temperatury T1 dla trzech różnych zmian sygnału sterującego G1 rozpoczynając z punktu pracy (27%) do 10%, 35% i 50%. Otrzymane przebiegi zmian przedstawiono na Rys. 3.1.

Czy właściwości statyczne obiektu można określić jako (w przybliżeniu) liniowe? Jeśli tak wyznaczyć wzmocnienie statyczne procesu?



Rys. 3.1. Odpowiedzi skokowe procesu

## 3.3. Algorytm DMC