Variabili Casuali e Distribuzioni di Probabilità

VARIABILI CASUALI

Definizione:

Una **variabile casuale** *X* è una variabile numerica il cui valore misurato può cambiare ripetendo lo stesso esperimento di misura

X può essere una variabile continua o discreta

VARIABILI CASUALI

Esempi di variabili continue:

- Il tempo, lo spazio, l'energia, la temperatura, la pressione, la corrente elettrica...
- Tutte le grandezze che possono essere messe in corrispondenza con il campo dei **numeri reali** (attraverso un'opportuna unità di misura)

Esempi di variabili discrete:

- Numero di giornate piovose, numero di pezzi difettosi in un lotto di produzione, pagine di un libro, numero di accessi a un *server*...
- Tutte le grandezze che possono essere messe in corrispondenza con il campo dei **numeri interi** (attraverso un'opportuna unità di misura)

PROBABILITÀ

La probabilità è utilizzata per quantificare numericamente la possibilità che un dato evento si realizzi.

Ad esempio, per stabilire se è facile o no che una misura fornisca un valore all'interno di un determinato intervallo.

Può essere interpretata come il **grado di fiducia** che un evento si realizzi, o come la sua **frequenza relativa di realizzazione**.

La probabilità è quantificata assegnando un **numero tra 0 e 1** (0% e 100%)

Più è alto il numero più l'evento è probabile:

0 = evento impossibile

1 = evento certo

Proprietà della funzione Probabilità

Se X è una variabile casuale

1. $P(X \in \Re) = 1$, dove \Re è l'insieme dei numeri reali

2. $0 \le P(X \in E) \le 1$ per ogni insieme (solitamente $E \in \Re$)

3. Se $E_1, E_2, ..., E_k$ sono insiemi mutuamente esclusivi, allora $P(X \in E_1 \cup E_2 \cup ... \cup E_k) = P(X \in E_1) + P(X \in E_2) + ... + P(X \in E_k)$

Mutuamente esclusivi (o disgiunti) ≡ insieme intersezione vuoto

Utilizzo delle proprietà della Probabilità

- 1. Mostra che il massimo valore di una probabilità è 1
- 2. Implica che una probabilità non può essere negativa
- 3. Può essere utilizzata per mettere in relazione la probabilità di un insieme E e del suo complementare E' (insieme degli elementi che non appartengono ad E):

$$E \cup E' = \Re, \quad 1 = P(X \in \Re) = P(X \in E \cup E') = P(X \in E) + P(X \in E')$$

$$P(X \in E') = 1 - P(X \in E)$$

Eventi

Il concetto di probabilità non è applicabile solo a insiemi di numeri, ma anche ad eventi: non sempre il valore misurato è ottenuto da un esperimento.

Gli eventi si possono classificare in categorie ed essere trattati esattamente allo stesso modo degli insiemi di numeri reali.

VARIABILI CASUALI CONTINUE

Funzione Densità di Probabilità (PDF)

La funzione densità di probabilità f(x) di una variabile casuale continua X è utilizzata per determinare la probabilità che X appartenga a un dato intervallo:

Funzione Densità di Probabilità

Un istogramma è un'approssimazione della funzione densità di probabilità: <u>l'area di ogni settore rappresenta la frequenza relativa</u> (probabilità) dell'intervallo in ascisse (classe) corrispondente.

Per $\Delta x \rightarrow 0$ l'istogramma tende alla curva continua f(x) che è la funzione densità di probabilità (PDF)

Proprietà della PDF

$$\int_{-\infty}^{+\infty} f(x) dx = P(-\infty < X < +\infty) = 1 \qquad AREA UNITARIA della PDF$$

f(x) è usata per calcolare aree e non valori puntuali:

se X è una variabile casuale continua, $P(X=x_0) = 0$, per ogni x_0

$$P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b)$$

ATTENZIONE: a volte ci si può confondere con la notazione, lasciando sottinteso un intervallo di valori (tipicamente la risoluzione dello strumento di misura)

ESEMPIO: V=1.74 V, con risoluzione 0.01 V significa 1.735 V $\leq V < 1.745$ V

Esempio di PDF

Distribuzione di probabilità uniforme

La variabile casuale X può assumere in maniera equiprobabile un qualsiasi valore x tra 0 e 20

Esempio di PDF

Distribuzione di probabilità esponenziale

La variabile casuale X può assumere solo valori > 12.5 e con una probabilità esponenziale decrescente

Funzione di Distribuzione Cumulativa

$$F(x) = \int_{-\infty}^{\Delta} f(u) du = P(x \in]-\infty, x]$$

$$P(a < X < b) = \int_{a}^{b} f(x) dx = \int_{-\infty}^{b} f(x) dx - \int_{-\infty}^{a} f(x) dx = F(b) - F(a)$$

Proprietà della cumulativa:

F(x) è monotona non decrescente

F(x)>0 per ogni x

$$\lim_{x\to +\infty} F(x) = 1$$

Valor Medio

Definizione:

Sia X una variabile casuale continua con PDF f(x).

Il **valor medio** o **valore atteso** di X, indicato con μ o E(X), vale:

$$\mu = E[X] = \int_{-\infty}^{\Delta} x f(x) dx = E(X)$$

Varianza e Deviazione Standard

Definizione:

Sia X una variabile casuale continua con PDF f(x). La **varianza** di X, indicata con σ^2 o V(X), vale:

$$\sigma^{2} = E\left[\left(x - \mu\right)^{2}\right]^{\Delta} \int_{-\infty}^{+\infty} (x - \mu)^{2} f(x) dx =$$

$$= \int_{-\infty}^{+\infty} x^{2} f(x) dx - \mu^{2} = V(X)$$

La deviazione standard σ di X vale $\sigma = \sqrt{\sigma^2} = \sqrt{V(X)}$

Distribuzione Normale o Gaussiana

Definizione:

Una variabile casuale X con funzione di densità di probabilità

$$f(x) = g(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad \text{per } -\infty < x < +\infty$$

Ha una **distribuzione normale** (ed è chiamata variabile casuale normale), con **parametri** μ e σ , dove $-\infty < \mu < +\infty$ e $\sigma > 0$. Inoltre:

$$E(X) = \mu$$
 e $V(X) = \sigma^2$

Grafici di funzioni densità di probabilità normale per diversi valori dei parametri μ e σ^2 .

(μ indica "il centro" e σ "la larghezza" della curva a campana)

Probabilità associate ad una distribuzione normale

Grafici di g(z) e di Ф(z)

20

Proprietà di Ф(z)

Data la simmetria di $\Phi(z)$ rispetto all'origine $\mu = 0$, si ha che

$$\Phi(-z)=1-\Phi(z)$$
 (aree in grigio)

$$\Phi(z) + \Phi(-z) = 1$$
 (tutta l'area sotto la gaussiana)

essendo
$$\int_{-\infty}^{+\infty} f(z) = \Phi(+\infty) = 1$$

Tabella di valori di Ф(z)

\mathcal{Z}	$\Phi(z)$
-4	0,00003
-3,9	0,00005
-3,8	0,00007
-3,7	0,00011
-3,6	0,00016
-3,5	0,00023
-3,4	0,00034
-3,3	0,00048
-3,2	0,00069
-3,1	0,00097
-3	0,00135
-2,9	0,00187
-2,8	0,00256
-2,7	0,00347
-2,6	0,00466
-2,5	0,00621
-2,4	0,00820
-2,3	0,01072
-2,2	0,01390
-2,1	0,01786

\mathcal{Z}	$\Phi(z)$	
-2	0,02275	
-1,9	0,02872	
-1,8	0,03593	
-1,7	0,04457	
-1,6	0,05480	
-1,5	0,06681	
-1,4	0,08076	
-1,3	0,09680	
-1,2	0,11507	
-1,1	0,13567	
-1	0,15866	
-0,9	0,18406	
-0,8	0,21186	
-0,7	0,24196	
-0,6	0,27425	
-0,5	0,30854	
-0,4	0,34458	
-0,3	0,38209	
-0,2	0,42074	
-0,1	0,46017	

\mathcal{Z}	$\mathcal{D}(z)$	
0	0,50000	
0,1	0,53983	
0,2	0,57926	
0,3	0,61791	
0,4	0,65542	
0,5	0,69146	
0,6	0,72575	
0,7	0,75804	
0,8	0,78814	
0,9	0,81594	
1	0,84134	
1,1	0,86433	
1,2	0,88493	
1,3	0,90320	
1,4	0,91924	
1,5	0,93319	
1,6	0,94520	
1,7	0,95543	
1,8	0,96407	
1,9	0,97128	

A(_)

$\boldsymbol{\mathcal{Z}}$	$\Phi(z)$	
2	0,97725	
2,1	0,98214	
2,2	0,98610	
2,3	0,98928	
2,4	0,99180	
2,5	0,99379	
2,6	0,99534	
2,7	0,99653	
2,8	0,99744	
2,9	0,99813	
3	0,99865	
3,1	0,99903	
3,2	0,99931	
3,3	0,99952	
3,4	0,99966	
3,5	0,99977	
3,6	0,99984	
3,7	0,99989	
3,8	0,99993	
3,9	0,99995	

Intervalli a ±(1/2/3)σ

Sul Libro e anche sul sito WEB della Didattica è disponibile una tabella di valori di $\Phi(z)$ con passo 0.01

Intervallo	Intervallo	Intervallo
$\mu\!\!\pm\!1\sigma$	$\mu\!\!\pm\!2\sigma$	μ±3σ
$\Phi(1)$ - $\Phi(-1)$ =	$\Phi(2)$ - $\Phi(-2)$ =	$\Phi(2)$ - $\Phi(2)$ =
0.84134-	0.97725-	0.99865-
0.15866=	0.02275=	0.00135=
0.68268	0.95450	0.99730
\downarrow	\downarrow	\downarrow
68.3 %	95.5 %	99.7 %

Ricordando che $\Phi(\pm z)=1$ - $\Phi(\mp z)$ si ha che $\Phi(\pm z)=1$ - $\Phi(z)=P(-z \le Z \le z)=2\Phi(+z)$ - 1

VARIABILI CASUALI DISCRETE

Sono possibili misure solo in punti discreti

Funzione di Probabilità

La **funzione di probabilità** $f(x_j)$ di una variabile casuale discreta X, con possibili valori $x_1, x_2, ..., x_n$, è definita come

$$f(x_j) = P(X = x_j)$$

È dunque una funzione definita solo in un sottoinsieme finito di punti $\{x_i\} \in \Re$.

A differenza della PDF <u>la funzione di probabilità è</u> "puntualmente non nulla".

Esempio di funzione di probabilità

Si considera la **trasmissione di 4 bit**. Riportiamo la **probabilità di sbagliare** x **bit** per i possibili valori di x su 4 bit trasmessi. Sia X il numero di bit sbagliati e f(x) la sua funzione di probabilità.

Nel problema si considera P(errore su 1 bit) = 0.1.

Il calcolo di $P(X=x_i)$ sarà effettuato con la distribuzione binomiale.

Funzione di Distribuzione Cumulativa

La funzione di Distribuzione Cumulativa F(x) di una variabile casuale discreta X, è definita come

$$F(x) = P(X \le x) = \sum_{x_j \le x} f(x_j)$$

F(x) è definita su tutto l'asse reale e quindi anche per i valori di $x \neq x_j$ con $x \in \{\Re\}$; in particolare anche per valori $x < \min\{x_j\}$ e per $x > \max\{x_j\}$.

Es. di distribuzione cumulativa

Si riconsidera la trasmissione di 4 bit. Riportiamo la distribuzione cumulativa di X. Prima del primo evento possibile F(x)=0 e dopo l'ultimo evento possibile F(x)=1.

La funzione di distribuzione cumulativa è discontinua e l'ampiezza dei salti nei valori $x=x_i$ è pari a $P(X=x_i)$.

Valor Medio

Definizione:

Sia X una variabile casuale discreta con funzione di probabilità f(x), per cui $P(X=x_i) = f(x_i)$.

Il **valor medio** o **valore atteso** di X, indicato con μ o E(X), vale:

$$\mu \stackrel{\Delta}{=} E(X) \stackrel{\Delta}{=} \sum_{j=1}^{n} x_j f(x_j)$$
 "BARICENTRO"

dove *n* sono i possibili valori di *X*.

Rispetto alla media campionaria/aritmetica di n dati, adesso è la funzione di probabilità $f(x_i)$ che contiene il fattore 1/n.

Varianza e Deviazione Standard

Definizione:

Sia X una variabile casuale discreta con funzione di probabilità f(x), per cui $P(X=x_i) = f(x_i)$.

La **varianza** di X, indicata con σ^2 o V(X), vale:

$$\sigma^{2} = V(X) = \sum_{i=1}^{\Delta} (x_{i} - \mu)^{2} f(x_{i}) = \sum_{i=1}^{n} x_{i}^{2} f(x_{i}) - \mu^{2}$$

La deviazione standard σ di X vale $\sigma = \sqrt{\sigma^2} = \sqrt{V(X)}$

Rispetto alla varianza campionaria (dell'intera popolazione) di n dati, adesso è la funzione di probabilità $f(x_i)$ che contiene il fattore 1/n.