OpenFOAM 2206 Lecture 00 Introduction

汪洋 wangyangstayfoolish@gmail.com

July 2022

Overview

- ▶ Computational Fluid Dynamics,计算流体动力学
- ► Physical model, 物理模型
- ▶ Programming,计算机编程
- ▶ Operating systems,操作系统
- ► Software,应用软件

计算流体动力学

- ► hook
 - F. Moukalled L. Mangani M. Darwish The Finite Volume Method in Computational Fluid Dynamics An Advanced Introduction with OpenFOAM® and Matlab
 - H K Versteeg and W Malalasekera An Introduction to Computational Fluid Dynamics THE FINITE VOLUME METHOD
 - Sandip Mazumder Numerical Methods for Partial Differential Equations Finite Difference and Finite Volume Methods
 - Jasak, Hrvoje
 - Error analysis and estimation for the finite volume method with applications to fluid flows.

Imperial College London University of London, 1996.

计算流体动力学

▶ 理解不可压守恒型 N-S 方程

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{U}) = 0 \tag{1}$$

$$\frac{\partial \left(\rho \mathbf{U}\right)}{\partial t} + \nabla \cdot \left(\rho \mathbf{U} \mathbf{U}\right) = -\nabla p + \nabla \cdot \left(\mu \left((\nabla \mathbf{U}) + (\nabla \mathbf{U})^{T}\right)\right)
- \frac{2}{3}\mu \left(\nabla \cdot \mathbf{U}\right)\mathbf{I} + \rho \mathbf{g} + \mathbf{S}$$
(2)

- ▶ 理解由此对应的内容 积分形式、微分形式,守恒形式和不守恒形式。思考为什么会出现有限体积法。
- ▶ 理解网格、离散、系数矩阵、代数方程组求解

一点点可压

► Burgers 方程

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0 \tag{3}$$

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0 \tag{4}$$

它们也很意思,客观说,培养和水平可压的要高一些。

分析过程

- ▶ 物理模型和数学方程
 - ▶ 通过数学工具来描述自然界的物理现象
- ▶ 连续和离散
 - ▶ 连续的几何和离散的点
- ▶ 边界条件
 - ▶ 三类边界条件
- ▶ PDE 方程求解
 - ▶ 解析解
 - ▶ 数值解
- ▶ 求解稀疏矩阵方程组
 - ▶ 直接法
 - ▶ 间接法

有限体积法

$$\underbrace{\int_{V} [\nabla \cdot (\mathbf{U}\mathbf{U})] dV}_{convection\ term} = \underbrace{-\int_{V} \frac{\nabla p}{\rho} dV}_{grad\ p} + \underbrace{\int_{V} \nabla \cdot (\mu \nabla \mathbf{U}) dV}_{diffusion\ term} + \underbrace{\int_{V} \mathbf{g} dV}_{source\ term} \tag{5}$$

- ▶ 网格划分
- ▶ 边界条件确定
- ▶ 求解精度选取
- ▶ 离散数值格式选取
- ▶ 显式与隐式妥协

网格

- ▶ 结构化网格
- ▶ 非结构化网格

各项离散格式

- ▶ 扩散项
- ▶ 梯度项
- ▶ 对流项
- ▶ 时间项
- ▶ 源项

代数方程组求解

- ▶ Direct method 直接法
 - ▶ 消元法
 - ► LU 分解
- ▶ Iterative method 迭代法,间接法
 - ► Conjugate Gradient 共轭梯度
 - ► Multigrid 多重网格

应用软件

- OpenFOAM
- ► fluent
- ► Star CCM+
- ► COMSOL
- ▶ in house code

OpenFOAM 例子

▶ 一维标量输运方程

$$\frac{\partial T}{\partial t} + \mathbf{U} \cdot \nabla T = \Gamma \frac{\partial^2 T}{\partial x^2} \tag{6}$$

No	U[m/s]	Г	transport equation
1	(0 0 0)	$1e^{-6}$	$rac{\partial \Gamma}{\partial t} = \Gamma rac{\partial^2 \Gamma}{\partial x}$
2	(0 0 0)	$1e^{-4}$	
3	(0 0 0)	$1e^{-2}$	
4	(0 0 0)	$1e^0$	
5	(1 0 0)	0	$rac{\partial ext{T}}{\partial ext{t}} + extbf{U} \cdot abla ext{T} = 0$
6	(0.5 0 0)	0	
7	(2 0 0)	0	
8	(1 0 0)	$1e^{-6}$	$rac{\partial \mathrm{T}}{\partial \mathrm{t}} + \mathbf{U} \cdot abla \mathrm{T} = \Gamma rac{\partial^2 \mathrm{T}}{\partial \mathrm{x}}$
9	(1 0 0)	$1e^{-4}$	
10	(1 0 0)	$1e^{-2}$	
11	(1 0 0)	$1e^0$	

case1-4initial

case1-4middle

case1-4ending

case5-7initial

case5-7middle

case5-7ending

case8-11initial

case8-11middle

case8-11ending

致谢

非常感谢!