MH-Z14A 二氧化碳传感器

产品描述

MH-Z14A 二氧化碳气体传感器(以下简称传感 器)是一个通用智能小型传感器,利用非色散红外 (NDIR) 原理对空气中存在的 CO2 进行探测,具有很好 的选择性和无氧气依赖性,寿命长。内置温度补偿;同 时具有数字输出、模拟输出及 PWM 输出,方便使用。 该传感器是将成熟的红外吸收气体检测技术与精密光路 设计、精良电路设计紧密结合而制作出的高性能传感 产品特点。9947294.

- 产品特点

 → 气室采用镀金处理,防水防腐蚀

 → 高灵敏度、低功耗

 → 优异的稳定性

 → 温度补偿,卓越的线性输出

 → 提供串口(UART)、模拟(DAC)、PWM 波形等输出方式
- ▶ 使用寿命长
- 抗水汽干扰、不中毒

产品应用场合

- 暖通制冷设备
- 空气质量监控设备
- 空气净化设备 智能家居

技术指标

表 1

产品型号	MH-Z14A				
检测气体	二氧化碳				
供电电压	4.5∼5.5V DC				
平均电流	<60mA (@5V 供电)				
峰值电流	150 mA(@ 5V 供电)				
接口电平	3.3V(兼容 5V)				
测量范围	0~10000ppm 范围内可选(详见表 2)				
	串口(UART)(TTL 电平)				
输出信号	PWM				
	模拟输出(DAC)(0.4~2V)(0~2.5V)				
预热时间	3min				
响应时间	T ₉₀ < 120s				
工作温度	0~50℃				
工作湿度	0~95%RH(无凝结)				
重 量	15 g				
寿 命	>5 年				
输出信号 预热时间 响应时间 工作温度 工作湿度 重 量	串口(UART)(TTL 电平) PWM 模拟输出(DAC)(0.4~2V)(0~2.5V) 3min T90 < 120s 0~50℃ 0~95%RH(无凝结) 15 g				

常用量程和精度

表 2

气体名称	分子式	量程	精度
		0~2000ppm	+/50000+20/ 法粉估)
二氧化碳	CO ₂	0~5000ppm	±(50ppm+3%读数值)
		0~10000ppm	±10%读数值

引脚定义

图 2 引脚定义

MH-Z14A 引脚定义图 表 3

引脚名称	引脚说明
1,15,17,23	电源正极(Vin)
2,3,12,16,22	电源负极(GND)
4,5,21	模拟输出(0.4~2 V)或(0~2.5V)
6,26	PWM
8,20	HD(校零,低电平7秒以上有效)
7,9 COW	NC
11,14,18,24	UART(RXD)TTL 电平数据输入
10,13,19,25	UART(TXD)TTL 电平数据输出

. 67		-//\
PWM 输出	N	coc
假设测量范围为 0~2000ppm	W W	bbac
CO ₂ 浓度输出范围	* * No. Xo	0~2000ppm
周期	K3 - 124	1004ms±5%
周期起始段高电平输出	15995	2ms(理论值)
中部周期	MOD ,	1000ms±5%
周期结束段低电平输出	5'	2ms(理论值)

通过 PWM 获得当前 CO₂ 浓度值的计算公式: Cppm=2000×(TH-2ms)/(TH+TL-4ms)

Cppm 为通过计算得到的 CO2 浓度值,单位为 ppm

TH 为一个输出周期中输出为高电平的时间

串口输出(UART)

硬件连接

将传感器的 Vin-GND-RXD-TXD 分别接至用户的 5V-GND-TXD-RXD。(用户端须使用 TTL 电平,如果是 RS232 电平,须进行转换)。

软件设置

将串口波特率设置为 9600, 数据位设置为 8 位, 停止位设置为 1 位、奇偶校验位设置为无。

shop1599A729A.t

	m.	
	C. CO.	协议命令接口列表及含义
	0x86	读取气体浓度值
Ċ	0x87	校准零点(ZERO)
	0x88	校准跨度点(SPAN)
	0x79	开启/关闭 自动校零功能
	0x99	设置量程
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

70								
0x86-读取气	体浓度值	1	x. 半~~ak					
发送命令		,	O ATT					
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
起始字节	编号	命令〇〇	-	-	-	* o	. co	校验值
0xFF	0x01	0x86	0x00	0x00	0x00	0x00	0x00	0x79
返回值					文学》	N.		
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
起始字节	编号	浓度高8 位	浓度低8 位	-	159gh	-	-	校验值
0xFF	0x86	HIGH	LOW	- 200	6, -	-	-	校验和
气体浓度值	= HIGH * 256	+ LOW		9,				

0x87-零点校准命令								
发送命令								
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
起始字节	编号	命令	-	-	-	-	-	校验值
0xFF	0x01	0x87	0x00	0x00	0x00	0x00	0x00	校验和
无返回值	注:零点指的	是 400ppm,	发送零点校准	命令前请确保	传感器在 400	ppm 浓度下	稳定运行 20	分钟以上。

0x88-校准 SPAN 点命令								
发送命令								
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
起始字节	编号	命令	SPAN 高 8 位	SPAN 低 8 位	-	-	-	校验值
0xFF	0x01	0x88	HIGH	LOW	0x00	0x00	0x00	校验和

无返回值。 例: 若 SPAN 值为 2000ppm, 那么 HIGH = 2000 / 256; LOW = 2000 % 256

注:校准 SPAN 值前请先校准零点。

发送 SPAN 校准命令前请保证传感器在相应浓度下稳定运行 20 分钟以上。

建议使用 2000ppm 作为 SPAN 值进行校准。如果需要用更低的值作为跨度值,请选择 1000ppm 以上的值。

0x79-开启/关闭 自动校零 发送命令 Byte1 Byte0 Byte2 Byte5 Byte7 Byte8Byte3 Byte4 Byte6 起始字节 编号 校验值 命令 0xFF 0x01 0x79 0xA0/0x000x000x000x000x00校验和

无返回值

注: Byte3 为 0xA0 时,开启自动校准功能; Byte3 为 0x00 时,关闭自动校准功能。 传感器出厂默认为开启自动校零功能。

0x99-设置量程								
发送命令								
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
起始字节	编号	命令	量程高8 位	量程低8 位	O _{IU} -	-	-	校验值
0xFF	0x01	0x99	HIGH A	LOW	0x00	0x00	0x00	校验和

无返回值

注: 量程点须在 2000、5000、10000 三个值中选择。

量程高 8 位 = 量程 / 256; 量程低 8 位 = 量程 % 256。

校验和计算方法

校验和 = (取反(Byte1+Byte2+Byte3+Byte4+Byte5+Byte6+Byte7))+1

例:

					1.74	A -		
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
起始字节	编号	命令	_	_	159-	-	_	校验值
0xFF	0x01	0x86	0x00	0x00	0x00	0x00	0x00	校验和

计算如下:

1、从 Byte1 加至 Byte7: 0x01 + 0x86 + 0x00 + 0x00 + 0x00 + 0x00 + 0x00 =

0x87 2、取反: 0xFF - 0x87 = 0x78

3、对取反后加 1: 0x78 + 0x01 = 0x79

```
C语言计算校验和例程
char getCheckSum(char *packet)
    char i, checksum;
    for( i = 1; i < 8; i++)
        checksum += packet[i];
    checksum = 0xff - checksum;
    checksum += 1;
    return checksum;
```

为方便用户校准零点,传感器有三种校零方式:手动校零、命令校零和自动校零。零点校准功能都是

指校准 400ppm。

手动校准零点

手动校准零点是将传感器的 HD 引脚输入低电平(0V)进行校准零点,低电平需持续 7 秒以上。校准零点前请确保传感器在 400ppm 浓度下稳定运行 20 分钟以上。

命令校准(请参照串口零点校

准命令)自动校准功能

自动校准功能是指传感器在连续运行一段时间后,根据环境浓度智能判断零点并自行校准。 校准周期为自上电运行起,每 24 小时,自动校准一次。自动校准的零点是 400ppm。

自动校零功能适合用于办公环境,家庭环境。但不适用于农业大棚、养殖场、冷库等场所,在这 类场所应关闭自动校零功能,关闭后请用户定期对传感器进行零点检测,必要时进行命令校零或手动校 零。

注意事项

- ▶ 在传感器的焊接、安装、使用等过程中应避免其镀金塑胶腔体承受任何方向的压力。
- ▶ 传感器如需放置于狭小空间,此空间应通风良好,特别是两扩散窗应处在通风良好的位置。
- ▶ 传感器应远离热源,并避免阳光直射或其他热辐射。
- ▶ 传感器应定期校准,校准周期建议不大于 6 个月。
- ▶ 不要在粉尘密度大的环境长期使用传感器。
- ▶ 为保证传感器能够正常工作,供电电压须保持在 4.5V~5.5V DC 范围中,供电电流须不低于 150mA,不在此范围内,可以会传感器故障,传感器输出浓度偏低或传感器不能正常工作。
- ▶ 手动校准零点或发送命令校准零点时,须在稳定的气体环境(400ppm)下连续工作 20 分钟以上。