Przetwarzanie obrazów

Mariusz Borawski
mariusz.borawski@wi.ps.pl
Politechnika Szczecińska
Wydział Informatyki
8 marzec, 2004

Materialy

- 1. Kuchariew G., *Przetwarzanie i analiza obrazów cyfrowych*, Szczecin 1997
- 2. Pratt W., *Digital image processing*, Wiley Interscience Publication, New York 2001

Przetwarzanie danych

Przetwarzanie obrazów - Przekształcanie obrazu w inny obraz, lub do postaci reprezentującej obraz wg określonego przepisu (algorytmu).

Obraz

Obraz - dwuwymiarowa funkcja intensywności nośnika informacji f(x,y).

Obraz kolorowy

Typy obrazów kolorowych

- 1. Bez mapy kolorów
- 2. Z mapą kolorów

Problem z przetwarzaniem obrazów z mapą kolorów. p2.m

Obraz jednokolorowy wielopoziomowy

Obraz dwupoziomowy

Dane obrazowe w postaci wektorowej

Obraz tekstowy

http://www.chris.com/ascii/index.html

Przetwarzanie obrazów

Konwersja obrazu do postaci cyfrowej

Obróbka i wydzielenie cech z obrazu

- ★Operacje na histogramie
 - rozciągnięcie wzdłuż krzywej
 - wyrównanie histogramu
 - itd.
- ★Lokalne metody obróbki obrazu
 - filtracja splotowa
 - filtry statystyczne
 - itd.
- - transformaty nieortogonalne
 - transformaty ortogonalne (Fouriera)
 - itd.

Operacje na histogramie

Operacje na histogramie mają na celu zmianę jasności pikseli w celu lepszego zobrazowania obrazu lub zmiany stosunków jasności pikseli kluczowych elementów obrazu. W rezultacie zmianie ulega histogramu danego obrazu.

Histogram - obliczanie

0	4	1	3
5	6	2	6
4	4	1	3
4	1	5	4

- 1. Ustalenie zakresu jasności lub przyjęcie domyślnego dla danej liczby bitów na piksel;
- 2. Określenie liczby przedziałów;
- 3. Wyznaczenie szerokości przedziałów poprzez podzielnie zakresu przez ich liczbę;
- 4. Obliczenie liczby pikseli o wartościach jasności należących do poszczególnych przedziałów.

Histogram - obliczanie

Histogram

Przedziały

Częstość wystąpień

<0;2>

0

2

1 1

3

5

(2;4>

4

4

4

4

7

(4;6>

5

6

6 5

4

Normalizacja histogramu

Z liczbą elementów:

$$H_n(b) = \frac{H(b)}{LiczbaElementowObrazu}$$

Z liczbą elementów i liczbą przedziałów:

$$H_n(b) = \frac{LiczbaPrzedzialow H(b)}{LiczbaElementowObrazu}$$

Normalizacja histogramu i rozkład

p3.m

Histogram dla obrazu

p4.m

Parametry liczone z histogramu

Średnia:

$$\overline{x} = \sum_{b=0}^{L-1} \left(p - \frac{p}{2b} \right) bH(b)$$

Dyspersja:

$$\left|\sigma_{b}^{2} = \sum_{b=0}^{L-1} \left[\left(p - \frac{p}{2b} \right) b - \overline{x} \right]^{2} H(b) \right|$$

Współczynnik asymetrii:

$$b_{S} = \frac{1}{\sigma_{b}^{3}} \sum_{b=0}^{L-1} \left[\left(p - \frac{p}{2b} \right) - \overline{x} \right]^{3} H(b)$$

H– histogram;

p – szerokość przedziału;

L – liczba przedziałów.

Parametry liczone z histogramu

Współczynnik ekscesu:
$$b_K = \frac{1}{\sigma_b^4} \sum_{b=0}^{L-1} \left[\left(p - \frac{p}{2b} \right) - \overline{x} \right]^4 H(b) - 3$$

Energia:

$$b_N = \sum_{b=0}^{L-1} [H(b)]^2$$

Entropia:

$$b_E = -\sum_{b=0}^{L-1} H(b) \log_2 [H(b)]$$

Parametry liczone z histogramu

p2b.m

Normalizacja obrazka

Normalizacja ma za zadanie ściągnąć cały zakres wartości do przedziału <0;255>.

$$X_{norm} = 255 \frac{X - min(X)}{max(X) - min(X)}$$

gdzie

X – macierz danych;

X_{norm} – znormalizowana macierz danych.

Normalizacja z wartościami progowymi

Dysponują histogramem obrazu możemy określić pozycje i szerokość zakresu w którym znajduje się większość danych. W tym celu wprowadza się próg określający minimalną częstość występowania elementów z lewej i prawej strony histogramu.

Normalizacja z wartościami progowymi

Normalizację z wartościami progowymi możemy przeprowadzić według wzoru:

$$X_{\text{norm}} = 255 \frac{X - X_{\text{L}}}{X_{\text{P}} - X_{\text{L}}}$$

gdzie

X_L – wartość minimalna;

Xp – wartość maksymalna.

Normalizacja z wartościami progowymi

histRGB.m – wszystkie kanały razem

histRGB b.m - kazdy kanał osobno

Rozciągnięcie histogramu wzdłuż krzywej

Rozciągnięcie histogramu wzdłuż zadanej krzywej zmienia rozkład jasności pikseli poprzez zmianę ich przyporządkowania do przedziałów histogramu. Przekłada to się na zmianę szerokości przedziałów histogramu:

$$de = f'(b) db$$

gdzie

b – jasność piksela przed rozciągnięciem histogramu;

e – jasność piksela przed rozciągnięciem histogramu;

f(b) – funkcja rozciągnięcia histogramu.

Tangens kąta nachylenia stycznej funkcji f(b) jest współczynnikiem zmiany szerokości przedziału.

Rozciągnięcie histogramu wzdłuż krzywej – interpretacja geometryczna

Rozciągnięcie histogramu wzdłuż krzywej – obliczanie

Całkując otrzymamy:

$$e = \int f'(b) db$$

Nowe wartości jasności pikseli możemy obliczyć:

$$o_{w} = \int f'(o) do$$

gdzie

o – wartość jasności piksela;

ow – wartość jasności piksela po rozciągnięciu histogramu.

czyli

$$o_w = f(o) + c$$

gdzie

c- stała.

Rozciąganie histogramu wzdłuż krzywej – funkcja liniowa

Najprostszą funkcją rozciągnięcia histogramu jest liniowa funkcja:

$$f(x) = \begin{cases} 0 & \text{dla } x < 0 \\ ax \\ E & \text{dla } x > E \end{cases}$$

gdzie

E – maksymalna dopuszczalna wartość jasności. przy czym *a* może mieć na przykład wartość:

$$a = \frac{E}{x_2 - x_1}$$

gdzie

x₁, x₂ – wartości ograniczające histogram od "dołu" i "góry".

Rozciąganie histogramu wzdłuż krzywej – funkcja liniowa

Koniec

Rozciąganie histogramu wzdłuż krzywej y = x + c

czb.m – wszystkie kanały razem

kolor.m – każdy kanał osobno

Rozciągnięcie histogramu wzdłuż zadanej – funkcja nieliniowa

Rozciąganie histogramu wzdłuż krzywej y = x^a z normalizacją wartości

korekcja.m

Wyrównanie histogramu

Wyrównanie histogramu ma na celu doprowadzenie do równomiernego rozłożenia wartości jasności w jego przedziałach. W rezultacie wszystkie słupki histogramu po wyrównaniu mają wysokość równa wartości średniej jasności pikseli.

Wyrównanie histogramu – algorytm

1. Obliczenie średniej częstości występowania elementów (czyli średniej wysokości słupków):

$$sr_{H} = \frac{\sum_{b=1}^{N} H(b)}{N}$$

gdzie

N – liczba przedziałów;

H – histogram.

Wyrównanie histogramu – algorytm

2. Obliczenie nowej szerokości przedziałów.

Możemy założyć, że pole powierzchni słupka nie ulegnie zmianie.

Wyrównanie histogramu – algorytm

3. Obliczenie granic przedziałów i zmiana wartości jasności tak aby znalazły się w odpowiednich przedziałach.

Wyrównanie histogramu

wyrownanie.m

Histogram dwuwymiarowy

Histogram dwuwymiarowy służy do badania statystycznych zależności miedzy sąsiednimi pikselami. Jest szczególnie przydatny w analizie tekstur.

Histogram dwuwymiarowy - obliczanie

$^{0}\!\mathrm{d}$	2	1	1
_2	Q	2	0
1	0	1	2
0	1	2	2

0	2	1	1
2	0	<u>Q</u>	0
1	0	1	2
0	1	2	2

	0	1	2
0	0	0	0
1	0	0	0
2	0	0	1

	0	1	2
0	0	1	0
1	0	0	0
2	0	0	1

	0	1	2
)	1	1	1
1	2	1	0
2	0	1	2

Histogram dwuwymiarowy dla tekstur

