Calculator project introduction

Kevin Wang

kevin.wang@auckland.ac.nz

303.154

2016

Simple calculator

- Project summary: a simple calculator that
 - Accepts and stores up to two digits integer input (value range?)
 for both operands
 - Performs
 - Two operands op: addition, subtraction, multiplication, or division on the operands
 - For the result of division, display integer quotient and remainder
 - Display the entered operands and computed results as integer values on the 7-segment displays
 - Keys on the keypad are used for entering digits and operations

Simple calculator

Simple calculator in reality

Matrix keypad

- Different to DIP switch and pushbutton, keypad provides coded inputs rather than raw on/off signal
- Assume no multiple key presses at the same time
- Questions:
 - How to handle variable numbers of input digits
 - How to differentiate numbers and operations
 - How to assign multiple roles to a single key

Mechanical switches

- If the switch is open, the Data signal = 1
- When the switch is now closed, it will bounces for some time, causing *Data* to oscillates between 1 and 0
- Bouncing persist for about 10 ms. Data alternates between 0 and 1, while you expect a clean signal
 - Lead into falsely recognised multiple presses
- Different mechanical devices may have different characteristics

Bouncing effect for DEO pushbutton

- Active low pushbutton
- Bouncing happens on the rising edge

Debouncer (cont'd)

Debouncer (cont'd)

Control unit FSM

 Who commands each individual component to reach harmonic overall operations

Register transfer action

Control signal	Register transfer	Comment
clear	A←o, B←o, R←o, OP←o, STATE←INITIAL	Initialize all registers to o and set FSM to the first state
ld_a	A←KEY_IN	Load operand A
disp_sel=oo (A)	DISPLAY←A	Display operand A it on 7-seg
ld_b	B←KEY_IN	Load operand B
disp_sel=01 (B)	DISPLAY←B	Display operand B on 7-seg
ld_op	OP←KEY_IN	Load operation
ld_r, op_sel=op	R←A op B	Load result of selected operation
disp_sel=10 (R)	DISPLAY←R	Display result on 7-seg

• FSM Design: in order to achieve the necessary register transfer actions, what control signals need to be outputted in each state?