Notation	Meaning
T	True
F	False
\oplus	XOR
\	NOR
†	NAND
	Indicates the end of proof/solution
$\stackrel{d}{\equiv}$	Equivalent by definition
\mathbb{E}	Set of all even integers
0	Set of all odd integers
x * y	$(x,y) \in R$
$x \not * y$	$(x,y) \notin R$

(i) The formula $P \to Q$ is **neither** a tautology nor identically false.

X	Y	$P = (X \vee Y)$	$Q = \neg(X \land Y)$	$P \to Q$
Τ	Т	T	F	F
T	F	T	${ m T}$	${ m T}$
F	Т	${ m T}$	${ m T}$	${ m T}$
F	F	F	${ m T}$	Τ

(ii) The formula $P \to Q$ is **neither** a tautology nor identically false.

X	Y	$P = (X \vee Y)$	$Q = (\neg X \land \neg Y)$	$P \rightarrow Q$
Т	Τ	Τ	F	F
T	F	T	F	F
F	Τ	T	F	F
F	F	F	${ m T}$	Т

(iii) The formula $P \to Q$ is a **tautology**. Note that the second part of Q $(\neg X \lor X)$ is also a tautology.

X	Y	$P = (X \to Y)$	$Q = (\neg X \lor Y) \land (\neg X \lor X)$	$P \rightarrow Q$
T	Т	T	T	Т
T	F	${ m F}$	F	Т
F	Т	${ m T}$	${ m T}$	Т
F	F	Τ	${ m T}$	Т

(iv) The formula $P \to Q$ is a **tautology**.

	X	Y	$P = (X \to \neg Y)$	$Q = (Y \to \neg X)$	$P \to Q$
ſ	Τ	Т	F	F	Т
	Τ	F	T	${ m T}$	Τ
	F	Τ	T	${ m T}$	${ m T}$
	F	F	Т	Τ	Τ

(v) The formula $P \to Q$ is a **tautology**.

X	Y	Z	$P = (X \land (Y \lor Z))$	$Q = ((X \vee Y) \wedge (X \vee Z))$	$P \to Q$
Т	Т	Т	T	T	Τ
T	Τ	F	T	${ m T}$	Τ
T	F	Т	T	${ m T}$	Τ
T	F	F	F	${ m T}$	Т
F	Т	Τ	F	${ m T}$	Τ
F	Т	F	F	${ m F}$	Τ
F	F	Т	F	${ m F}$	Τ
F	F	F	F	F	Т

(vi) The formula $P \to Q$ is **neither** a tautology nor identically false.

X	Y	$P = (X \to Y)$	$Q = (\neg X \to \neg Y)$	$P \to Q$
T	Τ	T	T	Τ
T	F	F	T	${ m T}$
F	Τ	m T	F	\mathbf{F}
F	F	Т	Т	Τ

(vii) The formula $P \to Q$ is $\mathbf{neither}$ a tautology nor identically false.

X	Y	$P = (X \to Y)$	$Q = \neg(Y \to X)$	$P \to Q$
Τ	Т	${ m T}$	F	F
T	F	${ m F}$	${ m F}$	Τ
F	Т	T	${ m T}$	Τ
F	F	T	${ m F}$	F

(viii) The formula $P \to Q$ is a **tautology**.

X	Y	Z	$P = ((Y \to Z) \land (X \to Y))$	$Q = (X \to Z)$	$P \rightarrow Q$
T	Т	Т	T	F	Т
T	$\mid T \mid$	F	F	F	T
T	F	Т	F	ho	T
T	F	F	F	F	T
F	$\mid T \mid$	Т	Γ	m T	T
F	$\mid T \mid$	F	F	m T	T
F	F	Т	Γ	brack T	T
F	F	F	m T	Γ	Т

- (a) There exist 16 different binary logical connectives. There are 4 possible combinations of T and F that a binary connective can take in. Each combination can result in 2 outcomes (T or F), therefore $2^4 = 16$.
- (b) This section will make use of the following identities:
 - 1. $X \wedge Y \equiv \neg(\neg X \vee \neg Y)$
 - 2. $X \vee Y \equiv \neg(\neg X \wedge \neg Y)$
 - 3. $X \to Y \equiv \neg X \lor Y$
- (i) Consider the definition of XOR:

$$X \oplus Y \equiv (X \vee Y) \land \neg (X \land Y) \tag{1}$$

Let us transform equation (1) as follows:

$$(X \lor Y) \land \neg (X \land Y) \equiv (X \lor Y) \land (\neg X \lor \neg Y)$$
$$\equiv \neg (\neg X \land \neg Y) \land \neg (X \land Y)$$

(ii) Let us transform equation (1) as follows:

$$(X \lor Y) \land \neg (X \land Y) \equiv (X \lor Y) \land (\neg X \lor \neg Y)$$
$$\equiv \neg (\neg (X \lor Y) \lor \neg (\neg X \lor Y)) \tag{2}$$

(iii) Let us transform equation (2) as follows:

$$\neg(\neg(X \lor Y) \lor \neg(\neg X \lor Y)) \equiv \neg(\neg(\neg X \to Y) \lor \neg(X \to \neg Y))$$
$$\equiv \neg((\neg X \to Y) \to \neg(X \to \neg Y))$$

(c) By definition of NAND:

$$X \wedge Y \equiv \neg (X \uparrow Y)$$

Consider the truth table for NAND:

X	Y	$X \uparrow Y$
Т	Т	F
$\mid T \mid$	F	Τ
F	Т	Τ
F	F	Т

Notice that $X \uparrow X \equiv \neg X$. Hence:

$$\neg(X \uparrow Y) \equiv (X \uparrow Y) \uparrow (X \uparrow Y) \Leftrightarrow X \land Y \equiv (X \uparrow Y) \uparrow (X \uparrow Y)$$

Similarly, using the second and third identities, the remaining two connectives can be expressed as follows:

$$X \lor Y \equiv \neg(\neg X \land \neg Y)$$

$$\equiv \neg((X \uparrow X) \land (Y \uparrow Y))$$

$$\stackrel{d}{\equiv} (X \uparrow X) \uparrow (Y \uparrow Y)$$

$$X \to Y \equiv \neg X \lor Y$$

$$\equiv \neg(X \land \neg Y)$$

$$\stackrel{d}{\equiv} X \uparrow \neg Y$$

$$\equiv X \uparrow (Y \uparrow Y)$$

(d) By definition of NOR:

$$X \vee Y \equiv \neg(X \downarrow Y)$$

Consider the truth table for NOR:

X	Y	$X \downarrow Y$
Т	Т	F
T	F	F
F	Τ	F
F	F	Т

Notice that $X \downarrow X \equiv \neg X$. Hence:

$$\neg(X \downarrow Y) \equiv (X \downarrow Y) \downarrow (X \downarrow Y) \Leftrightarrow X \lor Y \equiv (X \downarrow Y) \downarrow (X \downarrow Y)$$

Similarly, using the second and third identities, the remaining two connectives can be expressed as follows:

$$X \wedge Y \equiv \neg(\neg X \vee \neg Y)$$

$$\stackrel{d}{\equiv} \neg X \downarrow \neg Y$$

$$\equiv (X \downarrow X) \downarrow (Y \downarrow Y)$$

$$X \to Y \equiv \neg X \vee Y$$

$$\equiv \neg \neg(\neg X \vee Y)$$

$$\stackrel{d}{\equiv} \neg(\neg X \downarrow Y)$$

$$\equiv ((X \downarrow X) \downarrow Y) \downarrow ((X \downarrow X) \downarrow Y)$$

4

- (a)
- (i) Let $y = x^2$, then the given predicate transforms into a tautology:

$$x^2 < x^2 + 1 \implies 0 < 1$$

Hence, the given statement is **true**.

(ii) The given statement is **false**. Consider a counterexample. Let y = -1, then:

$$x^2 < -1 + 1 \implies x^2 < 0$$

Since no such integer x exists, the above statement is false.

(iii) The given statement is **false**. Suppose such y exists. Let x = y + 2, then:

$$(y+2)^{2} < y+1$$
$$y^{2} + 4y + 4 < y+1$$
$$y^{2} + 3y + 3 < 0$$

However, the quadratic $y^2 + 3y + 3$ is always positive for all integer numbers y, therefore the assumption leads to a contradiction, and no such y exists.

(iv) Let y = 2x, then:

$$(x < 2x) \to (x^2 < 4x^2)$$

 $(x > 0) \to (x^2 > 0)$

Since the above statement is a tautology, the given statement is **true**.

- (b)
- (i) Let x = -1, y = -1, then:

$$(-1)^2 < -1 + 1 \Leftrightarrow 1 < 0$$
 is false.

(ii) Let x = 2, y = 2, then:

$$2^2 < 4 + 1 \Leftrightarrow 4 < 5$$
 is true.

(iii) Let y = -1, then:

$$x^2 < -1 + 1 \Leftrightarrow x^2 < 0$$
 is identically false.

(iv) Let x = 0, then:

$$(y>0) \rightarrow (y^2>0)$$
 is a tautology.

(a) This section will make use of the following theorem: $|2^A| = 2^{|A|}$.

$$\begin{split} \left| 2^{\emptyset} \right| &= 2^{|\emptyset|} = 2^0 = 1 \\ \left| 2^{\{0\}} \right| &= 2^1 = 2 \\ \left| 2^{\{0\} \cup \{1\}} \right| &= \left| 2^{\{0,1\}} \right| = 2^2 = 4 \\ \left| 2^{\{0\} \cap \{1\}} \right| &= \left| 2^{\emptyset} \right| = 1 \\ \left| 2^{\{\emptyset,0,1\}} \right| &= 2^3 = 8 \\ \left| 2^{2^{2^{\{0,1\}}}} \right| &= 2^{\left| 2^{2^{\{0,1\}}} \right|} = 2^{2^{\left| 2^{\{0,1\}} \right|}} = 2^{2^4} = 2^{16} = 65536 \end{split}$$

(b)

(i) Let $B = \{(x, S) | x \in S, S \in 2^A\}$. Consider $P \subset 2^A$, which contains all subsets of $A = \{1, 2, 3, \ldots, n\}$ with cardinality 2:

$$P = \{\{1, 2\}, \{1, 3\}, \dots, \{1, n\}, \{2, 3\}, \{2, 4\}, \dots, \{n - 1, n\}\}\}$$

The cardinality of P is $\binom{n}{2}$, representing the number of ways to choose pairs from n elements. For an element of P, such as $S_1 = \{1, 2\}$, two pairs are contributed to B: $(1, S_1)$ and $(2, S_1)$. Similarly, each element of P contributes exactly two pairs to B. Thus, with $\binom{n}{2}$ elements in P, the total contribution to B is $2\binom{n}{2}$.

Likewise, all subsets of A with three elements each, contribute $3\binom{n}{3}$ pairs to B, those with four elements contribute $4\binom{n}{4}$ pairs, etc. Thus, generalizing the patter, the cardinality of B can be calculated as:

$$|B| = \sum_{x=0}^{n} x \binom{n}{x} \tag{3}$$

Notice that the sum starts at 0, since it corresponds to the empty set. When $S = \emptyset$, the statement $x \in S$ is not valid, hence no pair is contributed to B.

Now consider the binomial theorem:

$$(1+a)^n = \sum_{x=0}^n a^x \binom{n}{x}$$

Differentiating with respect to a gives:

$$n(1+a)^{n-1} = \sum_{x=0}^{n} x a^{x-1} \binom{n}{x}$$

Let a = 1, then:

$$n2^{n-1} = \sum_{x=0}^{n} x \binom{n}{x}$$

The right hand side of the above equation is equal to (3), hence the cardinality of B is:

$$|B| = n2^{n-1}$$

(ii) Let $B = \{(S, T) | S \in 2^A, T \in 2^A, S \cap T = \emptyset\}.$

Consider the smallest value of n = 2:

$$A = \{1, 2\}$$
$$2^{A} = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}\$$

Now consider all possible pairs (U, k), where $U \in 2^A$ and $k \in \mathbb{N}$ represents the number of distinct subsets in 2^A with which U can be paired, such that U and each of these subsets have an empty intersection:

- 1. $(\emptyset, 4) \Leftrightarrow B = \{(\emptyset, \emptyset), (\emptyset, \{1\}), (\emptyset, \{2\}), (\emptyset, \{1, 2\}), \dots\}$
- 2. $(\{1\}, 2) \Leftrightarrow B = \{\dots, (\{1\}, \emptyset), (\{1\}, \{2\}), \dots\}$
- 3. $(\{2\}, 2) \Leftrightarrow B = \{\dots, (\{2\}, \emptyset), (\{2\}, \{1\}), \dots\}$
- 4. $(\{1,2\},1) \Leftrightarrow B = \{\dots,(\{1,2\},\emptyset)\}$

Let n=3, then:

$$A = \{1, 2, 3\}$$

$$2^{A} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\}$$

The pairs (U, k) are:

- 1. $(\emptyset, 8)$
- $2. (\{1\}, 4)$
- $3. (\{2\}, 4)$
- $4. (\{3\}, 4)$
- $5. (\{1,2\},2)$
- $6. (\{1,3\},2)$
- 7. $(\{2,3\},2)$
- 8. $(\{1,2,3\},1)$

Observe the emerging common pattern. Since each element can always form at least one pair, the total number of cases to be considered equals to $|2^A| = 2^{|A|}$ ($2^2 = 4$ when n = 2, and $2^3 = 8$ when n = 3). Furthermore, notice that k goes down by the factor of 2 with each extra element in U. Lastly, there are $\binom{n}{|U|}$ cases which are considered for each cardinality of U.

Thus, to calculate the cardinality of B, we have to find the sum of the product of k (the number of pairs for a given cardinality of U) and the number of possible ways to choose |U| elements from the collection of n elements:

$$|B| = \sum_{|U|=0}^{n} 2^{|U|} \binom{n}{n-|U|}$$

Let us denote |U| as x, and simplify the above sum using the fact that the number of ways to choose i elements from j elements equals to the number of ways to exclude j-i elements from j elements:

$$|B| = \sum_{x=0}^{n} 2^x \binom{n}{x} \tag{4}$$

Now consider the binomial theorem:

$$(a+b)^n = \sum_{x=0}^n a^{n-x} b^x \binom{n}{x}$$

Let a = 1 and b = 2:

$$(1+2)^n = \sum_{x=0}^n 1^{n-x} 2^x \binom{n}{x}$$
$$3^n = \sum_{x=0}^n 2^x \binom{n}{x}$$

Hence (4) equals to 3^n , leading to the final answer:

$$|B| = 3^n$$

Remark. The result can be interpreted intuitively as being analogous to the power set. Another way to calculate the cardinality of B is to find the number of triples of pair-wise disjoint sets $(S, T, A \setminus (S \cup T))$, as indicated by the given hint. In this case, there are three options for each element of A: it is either in T, S or it is excluded. Since there are n elements and each one has three choices, the total number of such triples is $3 \times 3 \times \cdots \times 3$ n times, i.e. 3^n .

5.

- (i) For each of the two arguments in the domain, there are three choices of images in the range, therefore there are $3^2 = 9$ maps for the given sets.
- (ii) The are 6 injective maps for the given sets.

Function	Image of 1	Image of 2
f_1	1	2
f_2	1	3
f_3	2	1
f_4	2	3
f_5	3	1
f_6	3	2

- (iii) There are **0** bijective maps for the given sets, since the number of elements in the domain does not match the number of elements in the range.
- (iv) Similar to (i), there are $2^3 = 8$ maps for the given sets.
- (v) There are 6 surjective maps for the given sets.

Function	Image of 1	Image of 2	Image of 3
f_1	1	2	1
f_2	1	2	2
f_3	2	1	1
f_4	2	1	2
f_5	1	1	2
f_6	2	2	1

This section will make use of the following structure:

Proposition P(n)

- 1. Base case.
- 2. Inductive hypothesis.
- 3. Inductive step.
- 4. Conclusion.

(a)

$$P(n) = \sum_{1 \le i \le n} (2i - 1) = n^2, \forall n \in \mathbb{N}$$

1. Let n = 1, then:

$$2 \times 1 - 1 = 1^2$$
$$1 = 1$$

Hence, P(1) is true.

- 2. Let us assume that P(k) is true, where $k \in \mathbb{N}$ is an arbitrary fixed number.
- 3. Let n = k + 1, then:

$$\sum_{1 \le i \le k+1} (2i-1) = (k+1)^2$$
$$\sum_{1 \le i \le k} (2i-1) + 2(k+1) - 1 = (k+1)^2$$

Using the inductive hypothesis:

$$k^{2} + 2k + 2 - 1 = k^{2} + 2k + 1$$
$$k^{2} + 2k + 1 = k^{2} + 2k + 1$$

Hence P(k+1) is true.

4. The proposition P(k+1) has been proven to be true for some arbitrary $k \in \mathbb{N}$ under the assumption that P(k) is true. Since P(1) has also been shown to be true, by the principles of mathematical induction, P(n) is true for all $n \in \mathbb{N}$.

(b) $P(n) = \sum_{1 \le i \le n} i^2 = \frac{1}{6} n(n+1)(2n+1), \forall n \in \mathbb{N}$

1. Let n = 1, then:

$$1^{2} = \frac{1}{6}(1)(1+1)(2(1)+1)$$
$$1 = 1$$

Hence, P(1) is true.

- 2. Let us assume that P(k) is true, where $k \in \mathbb{N}$ is an arbitrary fixed number.
- 3. Let n = k + 1, then:

$$\sum_{1 \le i \le k+1} i^2 = \frac{1}{6}(k+1)(k+2)(2k+3)$$
$$\sum_{1 \le i \le k} i^2 + (k+1)^2 = \frac{1}{6}(2k^3 + 9k^2 + 13k + 6)$$

Using the inductive hypothesis:

$$\frac{1}{6}k(k+1)(2k+1) + k^2 + 2k + 1 = \frac{1}{3}k^3 + \frac{3}{2}k^2 + \frac{13}{6}k + 1$$
$$\frac{1}{3}k^3 + \frac{3}{2}k^2 + \frac{13}{6}k + 1 = \frac{1}{3}k^3 + \frac{3}{2}k^2 + \frac{13}{6}k + 1$$

Hence P(k+1) is true.

4. The proposition P(k+1) has been proven to be true for some arbitrary $k \in \mathbb{N}$ under the assumption that P(k) is true. Since P(1) has also been shown to be true, by the principles of mathematical induction, P(n) is true for all $n \in \mathbb{N}$.

(c) $\sum_{3 \le i \le n-2} i^2 = \sum_{1 \le i \le n-2} i^2 - \sum_{1 \le i \le 2} i^2 = \sum_{1 \le i \le n-2} i^2 - 5$

Using the result from part (b), the equation above transforms into:

$$\frac{1}{6}(n-2)(n-1)(2n-3) - 5 =$$

$$\frac{1}{6}(2n^3 - 9n^2 + 13n - 6) - 5 =$$

$$\frac{1}{3}n^3 - \frac{3}{2}n^2 + \frac{13}{6}n - 6, \forall n \in \mathbb{N}, n \ge 5$$

(d)

 $P(n): 7^n - 1$ is divisible by 6 for all $n \in \mathbb{N}_0$.

1. Let n = 0, then:

$$7^0 - 1 = 1 - 1 = 0$$

Since 0 is divisible by 6, P(0) is true.

- 2. Let us assume that P(k) is true, where $k \in \mathbb{N}_0$ is an arbitrary fixed number. Therefore, P(k) can be expressed as P(k) = 6m, where $m \in \mathbb{N}_0$.
- 3. Consider P(k+1) P(k):

$$7^{k+1} - 1 - 7^k + 1 =$$

$$7^k(7 - 1) =$$

$$6(7^k)$$

Thus P(k+1) can be expressed as follows:

$$P(k+1) = 6(7^k) + P(k)$$

Using the inductive hypothesis:

$$P(k+1) = 6(7^k) + 6m = 6(7^k + m)$$
 is divisible by 6.

Hence P(k+1) is true.

4. The proposition P(k+1) has been proven to be true for some arbitrary $k \in \mathbb{N}_0$ under the assumption that P(k) is true. Since P(0) has also been shown to be true, by the principles of mathematical induction, P(n) is true for all $n \in \mathbb{N}_0$.

(e)

$$P(n): 2n+1 \le 2^n, \forall n \in \mathbb{N}, n \ge 3$$

1. Let n = 3, then:

$$2(3) + 1 \le 2^3$$

7 < 8

Hence, P(3) is true.

- 2. Let us assume that P(k) is true, where $k \in \mathbb{N}$ is an arbitrary fixed number.
- 3. Consider P(k):

$$2k + 1 \le 2^k \quad \times 2$$
$$4k + 2 \le 2^{k+1}$$

Now consider the statement $2k + 3 \le 4k + 2$:

$$2k + 3 \le 4k + 2$$
$$2k \ge 1$$
$$k \ge \frac{1}{2}$$

Thus, the above statement is true for all $k \in \mathbb{N}, k \geq 3$. Therefore, using the principle of transitivity:

$$2k + 3 \le 2^{k+1}$$
$$2(k+1) + 1 \le 2^{k+1}$$

Hence P(k+1) is true.

4. The proposition P(k+1) has been proven to be true for some arbitrary $k \in \mathbb{N}$ under the assumption that P(k) is true. Since P(3) has also been shown to be true, by the principles of mathematical induction, P(n) is true for all $n \in \mathbb{N}$, $n \geq 3$.

7.

This section will make use of the following structure:

Relation R on \mathbb{Z} .

- 1. Check if R is reflexive (for any $x \in \mathbb{Z}, x * x$).
- 2. Check if R is symmetric (if x * y, then y * x).
- 3. Check if R is transitive (if x * y and y * z, then x * z).

Furthermore, the following facts will be utilized:

- 1. If $a \in \mathbb{E}$ and a = b + c, then it must be the case that either both $b, c \in \mathbb{E}$ or both $b, c \in \mathbb{O}$.
- 2. If $a \in \mathbb{E}$ and a = bc, then it must be the case that either $b \in \mathbb{E}$ or $c \in \mathbb{E}$.

(i)

$$R = \{x * y \mid (x + y) \in \mathbb{O}\}$$

- 1. $\forall x \in \mathbb{Z}(x+x=2x \in \mathbb{E}) \implies x \not * x \implies R$ is irreflexive.
- 2. If $(x+y) \in \mathbb{O}$, then $x+y=(y+x) \in \mathbb{O} \implies y*x \implies R$ is symmetric.
- 3. Suppose $x \in \mathbb{E}$ and $(x + y) \in \mathbb{O}$. Moreover, suppose $z \in \mathbb{E}$ and $(y + z) \in \mathbb{O}$. Then $(x + z) \in \mathbb{E} \implies x \not * z \implies R$ is **intransitive**.

(ii)
$$R = \{x * y \mid (x + y) \in \mathbb{E}\}$$

- 1. $\forall x \in \mathbb{Z}(x+x=2x \in \mathbb{E}) \implies x*x \implies R$ is reflexive.
- 2. If $(x+y) \in \mathbb{E}$, then $x+y=(y+x) \in \mathbb{E} \implies y*x \implies R$ is symmetric.
- 3. Consider the case when $x, y \in \mathbb{O}$. Then $(x+y) \in \mathbb{E}$, and for $(y+z) \in \mathbb{E}$ to be true, $z \in \mathbb{O}$ must be true. Therefore, $(x+z) \in \mathbb{E} \implies x*z$.

Now consider an alternative case when $x, y \in \mathbb{E}$. Then $(x+y) \in \mathbb{E}$, and for $(y+z) \in \mathbb{E}$ to be true, $z \in \mathbb{E}$ Therefore, $(x+z) \in \mathbb{E} \implies x*z$.

Since both cases have shown that x * z, R is **transitive**.

(iii)
$$R = \{x * y \mid xy \in \mathbb{O}\}$$

- 1. Let x=2, then $x^2=4\in\mathbb{E}\implies x\not *x\implies R$ is irreflexive.
- 2. If $xy \in \mathbb{O}$, then $xy = yx \in \mathbb{O} \implies y * x \implies R$ is symmetric.
- 3. If $xy, yz \in \mathbb{O}$, then $x, y, z \in \mathbb{O}$ must be true. Therefore $xz \in \mathbb{O} \implies x * z \implies R$ is **transitive**.

(iv)
$$R = \{x * y \mid (x + xy) \in \mathbb{E}\}\$$

1. Consider $x \in \mathbb{E}$: $x + x^2 = x(1+x) \in \mathbb{E} \implies x * x$.

Now consider $x \in \mathbb{O}$: $x + x^2 = x(1+x) \in \mathbb{E}$ because $(1+x) \in \mathbb{E} \implies x * x$.

Since both cases have shown that x * x, R is **reflexive**.

2. Consider $x \in \mathbb{E}$: if $(x + xy) \in \mathbb{E}$ is true, then $y \in \mathbb{E}$ must also be true. Therefore $y + yx = y(1 + x) \in \mathbb{E} \implies y * x$.

Now consider $x \in \mathbb{O}$: if $(x+xy) \in \mathbb{E}$ is true, then $y \in \mathbb{O}$ must also be true. Therefore $y+yx=y(1+x) \in \mathbb{E}$ because $(1+x) \in \mathbb{E} \implies y*x$.

Since both cases have shown that y * x, R is **symmetric**.

3. Consider the case when $x, y \in \mathbb{E}$. Then $x + xy = x(1 + y) \in \mathbb{E}$, $y + yz = y(1 + z) \in \mathbb{E}$ and $x + xz = x(1 + z) \in \mathbb{E} \implies x * z$.

Moreover, consider the case when $x, y \in \mathbb{O}$. Then $x + xy = x(1 + y) \in \mathbb{E}$, and for $y + yz = y(1 + z) \in \mathbb{E}$ to be true, $z \in \mathbb{O}$ must be true. Therefore $x + xz = x(1 + z) \in \mathbb{E} \implies x * z$.

Furthermore, consider the case when $x \in \mathbb{E}, y \in \mathbb{O}$. Then $x + xy = x(1 + y) \in \mathbb{E}$, and for $y + yz = y(1 + z) \in \mathbb{E}$ to be true, $z \in \mathbb{O}$ must be true. Therefore $x + xz = x(1 + z) \in \mathbb{E} \implies x * z$.

Lastly, consider the case when $x \in \mathbb{O}$, $y \in \mathbb{E}$. Then $x+xy=x(1+y)\in \mathbb{O} \implies x \not * y$, therefore this case is invalid.

Since none of the cases have disproved that x * z, R is **transitive**.

Consider the following relation R on the set A:

$$R = \{X * Y \mid X \subset Y\}$$

(a) Since every set is a subset of itself, $X * X \implies R$ is reflexive. This implies that R is not asymmetric, and consequently that it is **not strict partial order**.

Furthermore, if $X \subset Y$ and $Y \subset X$, then X must be equal to Y, therefore R is antisymmetric.

Lastly, if $X \subset Y$ and $Y \subset Z$, then $X \subset Z \implies X * Z$, hence R is transitive.

Since R has been shown to be reflexive, antisymmetric and transitive, it is **partial order**.

- (b) Consider $\{b\}, \{c\} \in A$. Since neither $\{b\} \subset \{c\}$, nor $\{c\} \subset \{b\}$ is true, R is **not total order**.
- (c) $\{b\}, \{c\} \in A$ are the **minimal elements** because there are no elements in A that are the subsets of these sets.
- $\{a,b,c\}\in A$ is the **maximal element** because there are no elements in A that contain this set.