Problem 1

(a) Use proof by induction:

Inductive Hypothesis: Assume that $digsum(x \bullet y) = digsum(x) + digsum(y)$ is true for all arbitrary strings x such that $0 \le |x| < |w|$ and any arbitrary string y, and that w is some arbitrary string

Base Case: prove for $x = \epsilon$:

$$\begin{aligned} digsum(x \bullet y) &= digsum(x) + digsum(y) \\ digsum(\epsilon \bullet y) &= digsum(\epsilon) + digsum(y) \end{aligned} & \text{Replace x with } \epsilon \\ digsum(y) &= 0 + digsum(y) \end{aligned} & \text{Definition of digsum} \\ digsum(y) &= digsum(y) \end{aligned} & \text{Additive Identity} \end{aligned}$$

Inductive Step: Let $w = a \cdot x$:

$$digsum(w \cdot y) = digsum(w) + digsum(y)$$

 $digsum((a \cdot x) \cdot y) = digsum(a \cdot x) + digsum(y)$ Replace w with ax
 $digsum(a \cdot (x \cdot y)) = digsum(a \cdot x) + digsum(y)$ Associative property of concatenation
 $a + digsum(x \cdot y) = a + digsum(x) + digsum(y)$ Definition of digsum
 $a + digsum(x) + digsum(y)$ Induction Hypothesis
 $= a + digsum(x) + digsum(y)$

: It has now been shown that digsum(xy) = digsum(x) + digsum(y) for all strings x and y.

(b) Use proof by induction:

Inductive Hypothesis: Assume that $digsum(x^R) = digsum(x)$ is true for all arbitrary strings x such that $0 \le |x| < |w|$, with w being some arbitrary string.

Base Case: prove for $x = \epsilon$

$$digsum(x^R) = digsum(x)$$

 $digsum(\epsilon^R) = digsum(\epsilon)$ Replace x with ϵ
 $digsum(\epsilon) = digsum(\epsilon)$ Definition of reversal
 $0 = 0$ Subtract from both sides

Inductive Step: Let $w = a \cdot x$:

$$digsum(w^R) = digsum(w)$$

 $digsum((a \cdot x)^R) = digsum(a \cdot x)$ Replace w with ax
 $digsum(x^R \cdot a) = digsum(a \cdot x)$ Definition of reversal
 $digsum(a) + digsum(x^R) = a + digsum(x)$ $digsum(xy) = digsum(x) + digsum(y)$ from problem 1A.

$$a + digsum(x^R) = a + digsum(x)$$

 $a + digsum(x) = a + digsum(x)$

Definition of digsum Inductive hypothesis

: It has now been shown that $digisum(x) = digisum(x^R)$ for all strings x.

Problem 2

- (a) '374' is a 3-digit string, therefore it can only be represented in the form 'ax' or 'axb':
 - Let '374' be represented in the form axb with a = 3, b = 4, and x = 7. We know that '374' is not in L_{odd} because, by definition, $a, b \in \{1,3,5,7,9\}$ must be true but $b = 4 \notin \{1,3,5,7,9\}$.
 - Let '374' be represented in the form ax then, with a = 3 and x = 74. It is not in L_{odd} in this case either, because $a \notin \{0, 2, 4, 6, 8\}$ as necessary. And $x = 74 \notin L_{odd}$ because if we represent '74' in the same ax form $x \notin \{1,3,5,7,9\} \rightarrow ax = 74 \notin L_{odd}$
- **(b)** Prove by induction:

Inductive Hypothesis: Suppose that for any $x \in L_{odd}$, digsum(x) is odd for any arbitrary string x such that 0 < |x| < |w|, with w being some arbitrary string.

Base Case: Let x = a where $a \in \{1, 3, 5, 7, 9\}$. Since x is only one digit long, that means the result of digsum(x) is simply equal to a. Because a is limited to 1, 3, 5, 7, or 9 (all odd numbers), the result of digsum(x) will also be odd.

Inductive Step: Let w be any arbitrary string in Lodd.

W can be composed in the following two ways:

- 1.) $w = a \cdot x \cdot b$; a, b $\in \{1,3,5,7,9\}$:
 - 1. $digsum(w) = digsum(a \cdot x \cdot b) = digsum(a) + digsum(x) + digsum(b)$. This is true by the theorem of problem 1A
 - 2. We know that digsum(a) and digsum(b) are both odd, because a and b are both odd-number one-character strings. We know that digsum(x) is odd by our inductive hypothesis.
 - 3. digsum(a) + dgisum(b) is an even number, because an odd number plus an odd number is an even number.
 - 4. (digsum(a) + digsum(b)) + digsum(x) is an even number plus an odd number, which results in an odd number (see below proof).
 - 5. digisum(w) is then an odd number from (1.)
- 2.) $w = a \cdot x$; $a \in \{0, 2, 4, 6, 8\}$:
 - 1. $digsum(w) = digsum(a \cdot x) = digsum(a) + digsum(x)$. This is true from the theorem of problem 1A.
 - 2. We know that digsum(a) is even because a is a one-character string of an even number, therefore digsum(a) is even because a is even
 - 3. We know that digsum(x) is an odd number by our inductive hypothesis
 - 4. digsum(a) + digsum(x) is an even number plus an odd number, which results in an odd number.
 - 4. digisum(w) is then an odd number from (1.)

 \therefore In both cases it is clearly shown then that for any $x \in L_{odd}$, digisum(x) is odd for all strings x.

Problem 3

Define "bar" operation as follows on
$$\Sigma = \{0,1\}$$

$$\frac{\overline{1} = 0}{\overline{0} = 1}$$

Define L_{bad} as follows:

- $a \in L_{bad}$ for $a \in \{0, 1\}$
- $bx \in L_{bad}$ for $(x \in L_{bad})$ and $(x \neq b \cdot b \cdot \overline{b} \cdot z)$, for any string z) and $(b \in \{0, 1\})$
- $xc \in L_{bad}$ for $(x \in L_{bad})$ and $(x \ne z \bullet \overline{c} \bullet c \bullet c)$, for any string z) and $(c \in \{0, 1\})$

Justification:

We can define L_{bad} recursively. We start off with our base case, either 0 or 1, to which we can build onto. Assume that Z is any string in L_{bad} . We then can make a new string from Z by either adding a character to the front (second bullet) or to the back (third bullet).

To add a character to the front three conditions must be satisfied: First, the string we are building onto must be a member of L_{bad} . Second, the character must be 0 or 1. Third, the string Z cannot have the character you wish to add twice in a row at the beginning. This means that if you wish to add a 0, Z cannot be of the form 001x, and if you wish to add a 1, Z cannot be of the form 110x, where x is any string. This is because adding the character in this case would result in 3 1's or 0's in a row, thereby eliminating it from L_{bad} .

The third bullet point about appending a character to the end uses the same logic as appending a character to the front, but just with the directions reversed.