Programación Funcional en Haskell

Demostraciones

Paradigmas de Lenguajes de Programación

Departamento de Ciencias de la Computación Universidad de Buenos Aires

10 de septiembre de 2024

Demostrando propiedades

Sean las siguiente definiciones:

doble :: Integer -> Integer

doble x = 2 * x

cuadrado :: Integer -> Integer

cuadrado x = x * x

¿Cómo probamos que doble 2 = cuadrado 2?

Solución

doble 2 $=_{\text{doble}}$ 2 * 2 $=_{\text{cuadrado}}$ cuadrado 2 \square

4 / 29

Igualdad de funciones

Queremos ver que:

curry . uncurry = id

Tenemos:

curry :: ((a, b) -> c) -> (a -> b -> c)

curry $f = (\langle x y \rightarrow f (x, y) \rangle)$

uncurry :: (a -> b -> c) -> ((a, b) -> c)

uncurry $f = ((x, y) \rightarrow f x y)$

(.) :: (b -> c) -> (a -> b) -> (a -> c)

 $(f \cdot g) x = f (g x)$

id :: a -> a

id x = x

¿Cómo hacemos?

Extensionalidad

Dadas f, $g :: a \rightarrow b$, probar f = g se reduce a probar:

 $\forall x :: a.f x = g x$

5/29

Algunas propiedades útiles

F = G

Volviendo al ejercicio...

Estas son algunas propiedades que podemos usar en nuestras demostraciones:

```
\forall F :: a \rightarrow b . \forall G :: a \rightarrow b . \forall Y :: b . \forall Z :: a .
                       \Leftrightarrow \forall x :: a.F x = G x
F = \x \rightarrow Y \Leftrightarrow \forall x :: a . F x = Y
(\x -> Y) Z =_{\beta} Y \text{ reemplazando } x \text{ por } Z
\xspace x -> F x =_n F
```

F, G, Y y Z pueden ser expresiones complejas, siempre que la variable x no aparezca libre en F. G, ni Z (más detalles cuando veamos Cálculo Lambda).

```
Ahora probemos:
```

```
curry . uncurry = id
```

```
Tenemos:
```

```
curry :: ((a, b) \rightarrow c) \rightarrow (a \rightarrow b \rightarrow c)
\{C\} curry f = (\xy \rightarrow f(x, y))
uncurry :: (a -> b -> c) -> ((a, b) -> c)
\{U\} uncurry f = (\(x, y) \rightarrow f x y)
(.) :: (b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)
\{COMP\}\ (f . g) x = f (g x)
id :: a -> a
{I} id x = x
```

7 / 29 8 / 29

Pares y unión disjunta/tipo suma

Pares y unión disjunta/tipo suma

Se define la siguiente función, que permite multiplicar pares y enteros entre sí (usando producto escalar entre pares).

```
prod :: Either Int (Int, Int) -> Either Int (Int, Int) -> Either Int (Int, Int)
\{P0\} prod (Left x) (Left y) = Left (x * y)
\{P1\} prod (Left x) (Right (y, z)) = Right (x * y, x * z)
\{P2\} prod (Right (y, z)) (Left x) = Right (y * x, z * x)
\{P3\} prod (Right (w, x)) (Right (y, z)) = Left (w * y + x * z)
¿Podemos probar esto?
```

∀p::Either Int (Int, Int). ∀q::Either Int (Int, Int). prod p q = prod q p

Recordemos los principios de extensionalidad para pares y sumas.

Dado p :: (a, b), siempre podemos usar el hecho de que existen x :: a, y :: b tales que p = (x, y).

De la misma manera, dado e :: Either a b. siempre podemos usar el hecho de que:

```
\blacksquare e = Left x con x :: a, o
■ e = Right y con y :: b.
```

9 / 29 10 / 29

Pares y unión disjunta/tipo suma

Funciones como estructuras de datos

Probemos enconces...

```
∀p::Either Int (Int, Int). ∀q::Either Int (Int, Int). prod p q = prod q p
```

Tenemos:

```
prod :: Either Int (Int, Int) -> Either Int (Int, Int) -> Either Int (Int, Int)
{PO} prod (Left x) (Left y) = Left (x * y)
{P1} prod (Left x) (Right (y, z)) = Right (x * y, x * z)
{P2} prod (Right (y, z)) (Left x) = Right (y * x, z * x)
{P3} prod (Right (w, x)) (Right (y, z)) = Left (w * y + x * z)
```

Se cuenta con la siguiente representación de conjuntos:

type Conj a = (a->Bool) caracterizados por su función de pertenencia. De este modo, si c es un conjunto y e un elemento, la expresión c e devuelve True si e pertenece a c y False en caso contrario.

Contamos con las siguientes definiciones:

Demostrar la siguiente propiedad:

∀c::Conj a.∀d::Conj a.intersección d (diferencia c d) = vacío

11/29

Inducción en los naturales

Inducción en listas

- Pruebo P(0)
- Pruebo que si vale P(n) entonces vale P(n+1).

- Pruebo P([])
- Pruebo que si vale P(xs) entonces para todo elemento x vale P(x:xs).

13/29 14/29

En el caso general (inducción estructural)

Pasos a seguir

- \blacksquare Pruebo P para el o los caso(s) base (para los constructores no recursivos).
- Pruebo que si vale $P(Arg_1), \ldots, P(Arg_k)$ entonces vale $P(C|Arg_1|\ldots|Arg_k)$ para cada constructor C y sus argumentos recursivos Arg_1, \ldots, Arg_k . (Los argumentos no recursivos quedan cuantificados universalmente).
- Leer la propiedad, entenderla y convencerse de que es verdadera.
- Plantear la propiedad como predicado unario.
- Plantear el esquema de inducción.
- Plantear y resolver el o los caso(s) base.
- Plantear y resolver el o los caso(s) inductivo(s).

15/29

Desplegando foldr

Veamos que estas dos definiciones de length son equivalentes:

```
length1 :: [a] -> Int
{L10} length1 [] = 0
{L11} length1 (.:xs) = 1 + length1 xs
length2 :: [a] -> Int
{L2} length2 = foldr (\_ res -> 1 + res) 0
Recordemos:
foldr :: (a -> b -> b) -> b -> [a] -> b
{F0} foldr f z [] = z
{F1} foldr f z (x:xs) = f x (foldr f z xs)
```

Demostrando implicaciones

Queremos probar que:

```
Ord a \Rightarrow \forall e :: a . \forall ys :: [a] . (elem e ys <math>\Rightarrow e < maximum ys)
```

Antes que nada, ¿quién es P? ¿En qué estructura vamos a hacer inducción?

$$P(ys) = 0rd \Rightarrow \forall e :: a. (elem e ys \Rightarrow e \leq maximum ys)$$

Ahora bien, si no vale Ord a, la implicación de afuera es trivialmente verdadera (recordar que las implicaciones asocian a derecha). Además, si vale Ord a, también vale Eq a (por la jerarquía de clases de tipos en Haskell).

Suponemos que todo eso vale y vamos a probar lo que nos interesa.

17/29

Demostrando implicaciones (continúa)

Tenemos: elem :: Eq a => a -> [a] -> Bool {E0} elem e [] = False {E1} elem e (x:xs) = (e == x) || elem e xs maximum :: Ord a => [a] -> a {M0} maximum [x] = x {M1} maximum (x:y:ys) = if x < maximum (y:ys) then maximum (y:ys) else x Sabemos que valen Eq a y Ord a. Queremos ver que, para toda lista ys, vale: \(\forall e::a. \) (elem e ys \(\Rightarrow e \) < maximum ys)

Seguimos en el pizarrón.

Otra vuelta de tuerca

```
Dadas las siguientes definiciones:

length :: [a] -> Int

{L0} length [] = 0

{L1} length (x:xs) = 1 + (length xs)

foldl :: (b -> a -> b) -> b -> [a] -> b

{F0} foldl f ac [] = ac

{F1} foldl f ac (x:xs) = foldl f (f ac x) xs

reverse :: [a] -> [a]

{R} reverse = foldl (flip (:)) []

flip :: (a -> b -> c) -> (b -> a -> c)

{FL} flip f x y = f y x

Queremos probar que: ∀ys::[a] .length ys = length (reverse ys)
...que, por reverse, es lo mismo que:

∀ys::[a] .length ys = length (foldl (flip (:)) [] ys)

Avancemos hasta que nos trabemos.
```

19/29 20/29

Generalizando propiedades

¿Recuerdan esta función?

21/29 22/29

¿Está bien lo que hicimos?

Demostrando propiedades sobre árboles

23 / 29

24 / 29

¿Y ahora qué hacemos?

¡Necesitamos un lema!

```
\forall xs::[a].\forall ys::[a].length (xs++ys) = length xs + length ys
```

Una propiedad sobe árboles... y un lema sobre listas

```
Ahora sí:
cantNodos :: AB a -> Int
{CNO} cantNodos Nil = 0
{CN1} cantNodos (Bin i r d) = 1 + (cantNodos i) + (cantNodos d)
inorder :: AB a -> [a]
{I0} inorder Nil = []
{I1} inorder (Bin i r d) = (inorder i) ++ (r:inorder d)
length :: [a] -> Int
{L0} length [] = 0
{L1} length (x:xs) = 1 + (length xs)

Lema: \forall xs::[a] . \forall ys::[a] . length (xs++ys) = length xs + length ys

Queremos probar:

\forall t::AB a . cantNodos t = length (inorder t)
```

25/29 26/29

Demostremos el lema

```
(++) :: [a] -> [a] -> [a]
{C0} [] ++ ys = ys
{C1} (x:xs) ++ ys = x : (xs ++ ys)

length :: [a] -> Int
{L0} length [] = 0
{L1} length (x:xs) = 1 + (length xs)

Lema: ∀xs::[a] . ∀ys::[a] . length (xs++ys) = length xs + length ys
```

Últimas preguntas

Si quisiéramos demostrar una propiedad sobre el tipo Árbol23 a b mediante inducción estructural:

```
data Árbol23 a b =
Hoja a
| Dos b (Árbol23 a b) (Árbol23 a b)
| Tres b b (Árbol23 a b) (Árbol23 a b) (Árbol23 a b)

Para demostrar que vale \( \forall q : \text{Arbol23 a b} \text{.} P(q):
\( \text{Cuál es o cuáles son los casos base?} \)
\( \text{Cuál es o cuáles son los casos inductivos? } \text{iY la(s) hipótesis inductiva(s)?} \)
```

27/29 28/29