Alex Iacob

Prof. Haller

CSCI 261 Section 2

February 25, 2021

Homework #2

E.1

a) Draw the adjacency matrix representation for the graph

	1	2	3	4	5	6
1	0	1	0	1	0	1
2	1	0	1	1	0	0
3	0	1	0	0	1	0
4	1	1	0	0	1	1
5	0	0	1	1	0	1
6	1	0	0	1	1	0

b) Draw the adjacency list representation for the graph.

1	2		>	4		>	6	X			
2	1		>	3		>	4	X			
3	2	1	>	5	X						
4	1	1	>	2		>	5		>	6	X
5	3		>	4		>	6	X			
6	1	1	>	4		>	5	X			

E.2

a) Show the DFS for the graph in Question 1 starting at Node 1. Assume that the lowest unmarked node is always chosen first.

DFS: 1, 2, 3, 5, 4, 6

b) Show a BFS for the graph in Question 1, assuming that the lowest number of vertices enter the queue first.

BFS: 1, 2, 4, 6, 3, 5

E.3

Find all topological orderings for the following graph. Show one ordering per line.

- 1) U, V, W, X, Y, Z
- 2) U, W, V, X, Y, Z
- 3) U, W, X, V, Y, Z
- 4) U, W, X, Y, V, Z

Text 3.1

Consider the directed acrylic graph above. How many topological orderings does it have?

- 1) A, B, C, D, E, F
- 2) A, B, D, C, E, F
- 3) A, B, D, E, C, F
- 4) A, D, B, C, E, F
- 5) A, D, B, E, C, F
- 6) A, D, E, B, C, F

Text 3.6

We have a connected graph G = (V, E), and a specific vertex $u \in V$. Suppose we compute a depth-first search tree rooted at u and obtain a tree T that includes all nodes of G. Suppose we then compute a breadth-first search tree rooted at u, and obtain the same tree T. Prove that G = T. (In other words, if T is both a depth-first search tree and a breadth-first search tree rooted at u, then G cannot contain any edges that do not belong to T.)

If we say that $e = \{a, b\} \subseteq G$ and $! \subseteq T$, then

- T is a DFS, which means that one of two ends must be an ancestor of the other.
- T is a BFS, which means the distance of the two nodes from u in T can differ by 1.
- Then if we consider the following:
 - If a is an ancestor of b
 - o If the distance from u to b in T is at most one greater than the distance from u to a
- Then a must be the direct parent of b in T.
- This means that $\{a, b\} \in T$, which is a contradiction.