Correction du devoir maison N°7

Exercice 64 p.289

1. – Pour la ville de Rome :

 $\frac{11+16+18+\ldots}{12}\simeq 21,8$ donc la température moyenne de Rome est d'environ 21,8°C. De plus l'écart-type des températures est d'environ 7,6.

- Pour la ville de Chicago : $32 + 39 + 41 + \dots$

 $\frac{32+39+41+\dots}{12}\simeq 54{,}9$ donc la température moyenne de Chicago est d'environ 54,9°C.

En degré Celsius, cela donne $\frac{5}{9} \times (54.9 - 32) \simeq 12.7^{\circ}$ C.

L'écart-type des températures est d'environ 18,3. Cependant pour déterminer l'écart-type en degré, le plus naturel pour vous est de le recalculer en remplaçant chaque température par celle en degré Celsius.

Pour info, soustraire 32 à toutes les valeurs ne modifie par l'écart-type. Par contre multiplier toutes les valeurs par $\frac{5}{9}$ fait que l'écart-type est multiplié par ce même facteur. Donc en degrés Celsius, l'écart-type vaut environ $\frac{5}{9} \times 18,3 \simeq 10,2$.

Donc on peut conclure qu'il fait meilleur en moyenne à Rome par rapport à Chicago. Les températures de Chicago sont par ailleurs un peu plus homogènes que celles de Rome (l'écart-type étant moins élevé).

2. Rome bénéficie d'un climat méditerranéen alors qu'à Chicago, des courant d'air froid venu du pôle Nord fait que la température est beaucoup plus faible.

Exercice 69 p. 291

- 1. Par rapport à l'ensemble des valeurs, 6 et -5 sont des valeurs extrêmes. Or l'effectif de la valeur 6 est important ce qui va influencer la moyenne. On peut donc penser que la moyenne sera supérieure à la médiane.
- 2. Calcul de la moyenne : $\frac{-5 \times 2 + 0 \times 5 + \dots}{26} \simeq 2{,}15$

Calcul de la médiane, sachant que l'effectif total est de 26 :

 $\frac{26}{2}=13$ donc la médiane est la moyenne entre la $13^{\rm ème}$ et la $14^{\rm ème}$ valeur. Chacun de ces deux valeurs est un 2 (on la trouve facilement avec les effectifs cumulés croissants). La médiane vaut alors $\frac{2+2}{2}=2.$

- 3. $\frac{26}{4} = 6,5$ donc le premier quartile est la 7ème valeur. Ainsi $Q_1 = 0$.
 - $3 \times \frac{26}{4} = 19,5$ donc le premier quartile est la $20^{\text{ème}}$ valeur. Ainsi $Q_3 = 6$.

Exercice 87 p. 112

1. (a) Pour tout réel x, $C(x) = 2000 + 80x - x^2$ et $(-x+20)(x-60) + 3200 = -x^2 + 60x + 20x - 1200 + 3200$ = $-x^2 + 80x + 2000$.

Donc C(x) = (-x + 20)(x - 60) + 3200.

(b) $C(x) \ge 3200$ équivaut à $C(x) - 3200 \ge 0$ $\iff (-x + 20)(x - 60) + 3200 - 3200 \ge 0$ $\iff (-x + 20)(x - 60) \ge 0$

Pour résoudre cette inéquation, on construit un tableau de signes sur \mathbb{R} . On résout $-x + 20 = 0 \iff -x = -20 \iff x = 20$ et $x - 60 = 0 \iff x = 60$

x	$-\infty$	20		60	$+\infty$
signe de $-x + 20$	+	Ф	_		_
signe de $x + 60$			_	ф	+
signe du produit	_	0	+	0	_

Donc l'ensemble des solutions de $(-x+20)(x+60) \ge 0$ qui est équivalent à $C(x) \ge 3200$, sur l'intervalle [0 ; 100], est l'intervalle [20 ; 60].

Le chiffre d'affaires et donc supérieur à $3200 \in lorsqu'on$ baisse le prix entre 20 et 60 %.

2. (a) Pour tout réel x, $C(x) < 1100 \iff 2000 + 80x - x^2 < 1100 \iff -x^2 + 80x + 900$ et $(-x - 10)(x - 90) < 0 \iff -x^2 + 90x - 10x + 900 < 0$ $\iff -x^2 + 80x + 900 < 0$. Donc $C(x) < 1100 \iff (-x - 10)(x - 90) < 0$.

(b) On résout (-x - 10)(x - 90) < 0

Pour résoudre cette inéquation, on construit un tableau de signes sur \mathbb{R} . On résout $-x-10=0 \iff -x=10 \iff x=-10$

et
$$x - 90 = 0 \iff x = 90$$

x	$-\infty$	-10		90	$+\infty$
signe de $-x - 10$	+	ф	_		_
signe de $x + 90$	_		_	ф	+
signe du produit	_	Ф	+	0	_

Donc l'ensemble des solutions de (-x-10)(x+90) < 0 qui est équivalent à C(x) < 1100, sur l'intervalle [0; 100], est l'intervalle [90; 100].

Le chiffre d'affaires et donc inférieur à $1100 \in lorsqu'on$ baisse le prix de plus de 90 %.