

Use of non-traditional data sources to nowcast migration trends through Artificial Intelligence technologies.

Diletta Goglia, Laura Pollacci, Alina Sîrbu Computer Science department, University of Pisa, Italy

Diletta Goglia

Postgraduate Student in MSc in Artificial Intelligence Computer Science department, University of Pisa, Italy

- www.dilettagoglia.netlify.app
- @dilettagoglia

Nowcasting flows with Facebook Social Connectedness

Country *i* Country *j*

Starting point: MIMI dataset

<u>Multi-aspect Integrated Migration Indicators</u> dataset (CC BY 4.0). Publicly available at <u>10.5281/zenodo.6493325</u>

- Non-trivial integration of scattered and heterogeneous data.
- Multidisciplinary variables and original indicators (economic, demographic, cultural and geographic), including Social Network Data.
- Demographers, sociologists, economists and researchers could explore and investigate trends.
- Possibility to develop complex models based on MIMI data.

Related works

- Goglia, D. (2022) "Multi-aspect Integrated Migration Indicators (MIMI) dataset v2.0", Zenodo, 10.5281/zenodo.6493325.
- Goglia, D., Pollacci, L., Sirbu, A. (2022) "Dataset of Multi-aspect Integrated Migration Indicators", ArXiv pre-print, https://arxiv.org/abs/2204.14223

Facebook connectivity & cross-border human mobility

Hypothesis: Facebook strength of connectivity between two countries is related to the bilateral contribution of migration flows.

We built a new indicator (BMI) to nowcast migration flows based on Facebook SCI.

Facebook Social Connectedness Index (SCI)

$$SCI_{i,j} = \frac{FB_Connections_{i,j}}{FB_Users_i * FB_Users_j}$$

- Non-traditional variable within the context of migration studies, included in MIMI for 2020 and 2021 connectivity.
- Provided by "Data for Good at Meta (previously Facebook)" on Humanitarian Data Exchange.
- Measures the **relative probability** that two individuals across two locations *i* and *j* are friends with each other on Facebook.
- Could be employed as a proxy of social connections across borders, to be studied as a possible driver of migration.
- **Symmetric** structure by definition of "friendship" concept.

Bidirectional Migration Index (BMI)

$$BMI_{i,j} = \frac{Flow_{i\to j}(t) + Flow_{j\to i}(t)}{Pop_i(t) * Pop_i(t)}$$

- *i* and *j* represent countries (NUT0 level).
- *t* is the **reference year**.
- Sum of direct and inverse contributions → symmetric function considering the sharing of both flows.
- Strong correlation with SCI for flows provided by Eurostat statistics.
- Can be computed also by sex and by age group.
 For couples of countries with inverse flow not available:
 Unidirectional Migration Index (asymmetric directed version of BMI).

$$UMI_{i,j} = \frac{Flow_{i,j}}{Pop_i * Pop_j}$$

Linear Regression

Analysis of migration drivers

- Model: Linear regression (Ordinary Least Squares model).
- **Task**: simple fit to determine which variables are relevant and to prove the importance of SCI on BMI prediction.
- Aim: feature selection for further neural models.

BMI 2019 of EUROSTAT migration flows by residence: true value VS linear regression predictions (best fit, model with $R^2 = 0.88$). Each data point in the plot represents a couple of countries.

Preliminary results

- Facebook strength of connectivity between two countries is strongly positively related to the amount of migration flows they share.
- Higher connectivity, more accurate migration prediction.

Results of OLS Backward Elimination Stepwise Linear Regression

Bidirectional Migration Index

	By citizenship (148 couples, 14 countries)				By residence (1114 couples, 63 countries)			
Y	ESTAT BMI 2019 cit, without sci 2020		ESTAT BMI 2019 cit, with sci 2020		ESTAT BMI 2019 res, without sci 2020		ESTAT BMI 2019 res, with sci 2020	
Model n.	1	11	1	6	1	10	1	11
Feature	coef, P> t	coef, P> t	coef, P> t	coef, P> t	coef, P> t	coef, P> t	coef, P> t	coef, P> t
Intercept	-0.0005		0.0409 ***	0.0412 ***	0.0187 ***	0.0210 ***	0.1079 ***	0.1075 ***
sci_2020			0.0438 ***	0.0438 ***			0.1090 ***	0.1092 ***
geodesic_distance_ km	-0.0161 **	-0.0114 ***	-0.0023	-0.0021	-0.0025		9.253e-05	
gdp_diff_2018	0.0074 **	0.0064 **	0.0032 ***	0.0033 ***	0.0040 ***	0.0039 ***	0.0018 ***	0.0016 ***
gdp_mean_2018	-0.0091 *	-0.0074 **	-0.0117 ***	-0.0116 ***	0.0058 ***	0.0055 ***	0.0005	
neighbours	0.0075 **	0.0081 ***	-0.0021 *	-0.0020 **	0.0138 ***	0.0140 ***	-0.0011	-0.0012 *
share_rel	0.0078 ***	0.0070 ***	0.0014	0.0013	0.0006		-0.0005 *	-0.0005 *
share_lang	-0.0024		-0.0013 *	-0.0014 **	0.0020 ***	0.0020 ***	0.0004	0.0004
PDI_diff	-0.0038	-0.0034	0.0020	0.0020	-0.0025 *	-0.0026 *	-0.0006	
IDV_diff	-0.0067 **	-0.0065 **	-0.0021 *	-0.0021 *	-0.0012		-0.0017 ***	-0.0017 ***
UAI_diff	0.0014		-0.0033 *	-0.0033 *	0.0003		0.0006	
MAS_diff	-0.0103 ***	-0.0088 ***	-0.0021 *	-0.0021 *	-0.0051 ***	-0.0050 ***	-0.0017 ***	-0.0018 ***
fb_users_diff	-0.0018		-0.0023 *	-0.0024 ***	0.0066	0.0068	-0.0007	
fb_users_perc_diff	0.0025		0.0043 ***	0.0044 ***	-0.0006		-8.071e-05	
fb_users_perc_mea n	0.0028	0.0049	0.0025	0.0026 *	0.0054 ***	0.0055 ***	0.0044 ***	0.0047 ***
fb_users_mean	-0.0134 **	-0.0145 ***	-0.0005		-0.0114 *	-0.0112 *	-0.0010	-0.0016 **
area_diff	-0.0019		0.0002		-0.0029		0.0012	
area_mean	0.0036		0.0004		0.0034		-0.0011	
share_cont	0.0005				0.0047 ***	0.0063 ***	0.0010	0.0011 ***
R2 (centered)	0.574	0.560	0.949	0.949	0.363	0.361	0.880	0.880
AIC	-846.3	-855.7	-1158.	-1164.	-6321.	-6332.	-8179.	-8191.
BIC	-795.4	-825.7	-1104.	-1119.	-6231.	-6276.	-8084.	-8136.

- Dependent variable (y) is BMI \rightarrow Symmetric indicator \rightarrow Independent variables are undirected.
- Four different models: flows by citizenship / residence, including / not including SCI.
- Substantial improvement in models with SCI.
- SCI positively and strongly relevant feature.

Results of OLS Backward Elimination Stepwise Linear Regression (II)

Unidirectional Migration Index

		<u> </u>					
		By citizenship (748 couples, 200+ countries)					
у		MI 2019 cit, t sci 2020	ESTAT UMI 2019 cit, with sci 2020				
Model n.	1	20	1	18			
Feature	coef, P> t	coef, P> t	coef, P> t	coef, P> t			
intercept	-0.0027		0.2080 ***	0.2072 ***			
sci_2020			0.2024 ***	0.2024 ***			
origin_PDI	-0.0056		-0.0009				
destination_PDI	0.0012		0.0036*				
origin_IDV	-0.0053		-0.0011				
destination_IDV	-0.0021		-0.0051				
origin_UAI	-0.0033		-0.0017				
destination_UAI	-0.0033		-0.0049 *	-0.0023 *			
origin_MAS	-0.0035	-0.0053	-0.0005				
destination_MAS	0.0022		-0.0002				
origin_area	0.0002		0.0004				
destination_area	-0.0017		-0.0040 *	-0.0020 *	GDP proxy		
origin_fb_users	-0.0012		-0.0012				
destination_fb_users	-0.0038	-0.0071 ***	0.0036				
origin_fb_users_perc	0.0054	0.0043	0.0039 *	0.0025	GDP proxy		
destination_fb_users_perc	0.0012		0.0010				
geodesic_distance_km	-0.0114 *	-0.0111 ***	-0.0025	-0.0038 **			
origin_gdp_2018	0.0007		-0.0015				
destination_gdp_2018	0.0026		0.0026				
gdp_diff_2018	-0.0002		-0.0018				
neighbours	-0.0049		0.0042 **	0.0040 **			
share_cont	0.0010		0.0017				
share_rel	0.0031	0.0033 **	0.0009	0.0013 *			
share_lang	0.0084 ***	0.0077 ***	0.0010	0.0012			
R2 (centered)	0.115	0.103	0.780	0.777			
AIC	-3043.	-3065.	-4081.	-4100.			
BIC	-2941.	-3037.	-3975.	-4059.			

- Dependent variable (y) is UMI \rightarrow Asymmetric indicator \rightarrow Direction preserved in independent variables (distinction kept between origin and destination).
- Strong improvement in the model with SCI.
- SCI is again a very relevant feature, with positive coefficient.
- Other relevant features are different w.r.t. the previous model.
- GDP does not appear but remains significant since approximated by the presence of «country area» and «FB users» variables.

Predictive models

New task: nowcast and predict migration flows with Machine Learning models.

- Feed Forward Artificial Neural Network (Multi-layer Perceptron)
- Random Forest

- Supervised Learning environment (regression task)
- Dataset split: 80% Training, 20% Test
- Hyperparameter tuning
- Nested K-Fold Cross Validation
- Randomized Grid Search

Standard structure of MLP

Dataset split

- 1. 891 records
- 2. 223 records

Model performance outcome on nowcasting

BMI 2019 of EUROSTAT migration flows by residence: true values VS predicted model predictions.

Model comparison

	Metric	Learning (regression) model			
	Metric	Random Forest	Multi-layer Perceptron		
Validation	MSE	0.00005	0.00003		
	RMSE	0.007	0.006		
	MAE	0.003	0.003		
	R ² (average on 5 folds)	0.85	0.84		
Test	MSE	0.00003	0.00005		
	RMSE	0.006	0.006		
	MAE	0.002	0.003		
	R ² (best model)	0.88	0.73		

Feature importance

Random Forest model with best hyperparameter configuration.

HumMingBird

Conclusion

Results

 Facebook strength of connectivity proved to be relevant for nowcasting country to country migration flows

Limitations

 Concrete applications in filling the gaps of traditional migration data are still far away, due to the limitations of non-traditional sources (e.g., selection bias)

Scheduled work

- Exploit a time window of past flows (e.g. 5 years of migration timeseries data) to predict future migration
- Nowcasting
 Unidirectional Migration
 Index (UMI)
- Further models: Support Vector Machin, XGBoost
- Restrict countries to FB penetration over a certain threshold

Future improvements

- Nowcast / predict migration for a specific age group or by gender
- Include other nontraditional sources from Meta

AI4MIG

Want more? Scan me!

Contact

Diletta Goglia

Postgraduate Student in MSc in Artificial Intelligence Computer Science department, University of Pisa, Italy

- <u>■ d.goglia@studenti.unipi.it</u>
- www.dilettagoglia.netlify.app
- <u>@dilettagoglia</u>

COORDINATOR

HIVA - Research Institute for Work and Society, KU Leuven (BE)

PARTNERS

University of Utrecht, Department of Information and Computing Sciences (NL) • University of Salamanca, Faculty of Social Sciences (ES) • Otto-Friedrich-University of Bamberg, Geographic Migration and Transition Studies (DE) • CESSDA ERIC (NO) • EKKE - National Centre for Social Research (GR) • IEN - Institute of Economic Sciences, Data Center Serbia for Social Sciences (RS) • Malmö University, Malmö Institute for Studies of Migration, Diversity and Welfare (SE) • Turkcell Technology (TR) • GMV NSL Limited (UK) • MPG - Migration Policy Group (BE) • ENOMW - European Network of Migrant Women (BE) • White Research (BE) • University of Pisa, Department of Computer Science (IT) • CNR - National Research Council (IT) • VUB - Vrije Universiteit Brussel, Interface Demography, Department of Sociology (BE) • University of Zurich, Department of Social Anthropology and Cultural Studies (CH) • CILD - Italian Coalition for Civil Liberties and Rights (IT) • Caritas International (BE)

VISIT: http://www.hummingbird-H2020.eu
CONTACT US: HumMingBird@kuleuven.be

FOLLOW US:

