CS112: Data Structures

Lecture 12 More Graphs

Review: Graphs

Generalization of trees

- Digraph (Directed Graph)
 - Like a tree but any vertex can point to any other

- Graph
 - like digraph but arcs have no direction

Graphs

Generalization of trees

- Weighted Graph
 - Positive integer weights on each edge

Applications

- Paths
 - On streets (eg mapquest)
- Electrical networks
 - On circuit boards
 - Power lines
- Constraints
 - Ordering constraints on building steps
 - Sudoku

Applications

- Relationships
 - Web page references
 - Friendships (online and real world)
- Etc, etc, etc

Notation

Arcs are named by the vertices they connect

Representing Graphs

- Adjacency list
 - for each node, linked list of edges

```
public Gnode{
    String data;
    Edge edges;
    Gnode nextNode;
    ...
}
```

Representing Graphs

- Adjacency list
 - for each node, linked list of edges

Representing Graphs

- Adjacency matrix
 - n x n boolean matrix: is there an arc?

From \To	A	В	C
A	F	T	\mathbf{T}
В	F	F	$oldsymbol{T}$
C	F	F	F

- Neighbors of a vertex: vertices that it shares an arc with
 - Neighbors of A are B and C
- Degree of a vertex: number of neighbors
 - Degree of A is 2, degree of B is 3

- In degree (in a digraph): number of vertices that have arcs to this vertex
 - In degree of B is 1
- Out degree (in a digraph): number of vertices that have arcs from this vertex
 - Out degree of B is 2

- (Simple) Path
 - Sequence of arcs(A,B),(B,C)
 - May not revisit a vertex(B,A),(A,C),(C,B),(B,D)
 - Except last vertex may =
 first
 (B,A),(A,C),(C,B)
- Vertex A is reachable from B if there is a path from B to A

- (Simple) Path
 - On digraph must follow arc directions

(A,B),(B,D)

(A,C),(C,B)

- A cycle is a path from a node back to itself
 - (A, B)(B, D)(D, A)
- A graph with no cycles is called acyclic

• Connected Graph
For any two vertices X and Y
there is a path from X to Y.

- Strongly Connected Digraph
 For any two vertices X and Y
 there is a path from X to Y.
 (Paths must follow arc
 directions)
- Weakly Connected Digraph
 Corresponding graph is
 connected (i.e., ignoring arc
 direction)

• Weighted graph: each arc has a numerical weight

- Need to mark vertices to prevent infinite loops
- Need driver in case not connected
- Otherwise like tree traversals

```
    Depth first
        dfsG(v)
        if (marked(v)) return;
        process v;
        mark v;
        for each vn in neighbors(v)
            dfsG(vn)
```

Need driver in case not connected
 For v in vertices
 dfsG(v)

DFS Graph Traversal

- Enters a vertex v
- Visits all vertices reachable from v (that have not yet been visited
- Leaves v

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$vn = \langle C \rangle$$

$$\mathbf{v} = \langle \mathbf{C} \rangle$$

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$vn = \langle C \rangle$$

$$\mathbf{v} = \langle \mathbf{C} \rangle$$

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$vn =$$

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$vn =$$

$$\mathbf{v} = \langle \mathbf{D} \rangle$$

Driver

$$\mathbf{v} = \langle \mathbf{B} \rangle$$

$$\mathbf{v} = \langle \mathbf{B} \rangle$$

Driver

$$\mathbf{v} = \langle \mathbf{C} \rangle$$

$$\mathbf{v} = \langle \mathbf{C} \rangle$$

Driver

$$\mathbf{v} = \langle \mathbf{D} \rangle$$

$$\mathbf{v} = \langle \mathbf{D} \rangle$$

- Time:
 - Visit each vertex
 - inspect each arc
 - driver

O(n + e) n vertices, e edges

Topological Sort

- Acyclic Digraph <=> partial order
- Topsort: find total order consistent with partial order

$$1 a=1;$$

$$3 c=a*b;$$

$$4 d=a+4;$$

$$5 c=c+d$$

Topological Sort

Acyclic Digraph <=> partial order

Topsort: find total order consistent with

Topsort Algorithms

- Most work by assigning numbers to vertices
 - vertex order = numerical order
- Depth first
- Breadth First

DFS Topsort Algorithm

- Algorithm:
 - Do DFS
 - Number vertices as you leave them
- Problem: leave vertex *after* leave reachable vertices, but needs number *smaller* than reachable vertices
 - Solution: number with decreasing numbers

BFS Topsort Algorithm

- Keep a "predecessor count" for each vertex
 - Initially: in degree
 - When a predecessor is numbered, decrement count of its successors

BFS Topsort Algorithm

- enqueue all sources
- while not queue.isEmpty

```
v = queue.dequeue()
number v (increasing numbers)
decrement predecessor counts of v's neighbors
if count becomes 0, enqueue neighbor
```

BFS Topsort Algorithm

Keep predecessor count for each vertex

- Find vertex with count == 0
 - number it
 - decrement counts of neighbors

New: Shortest Path

- weighted digraph
 - weights are all > 0
- "length" of a path = sum of weights of arcs on path
- given start vertex, end vertex, find shortest path from start to end

Dijkstra's Algorithm

- Grow a tree of paths from start
 - tree is subgraph of original digraph
 - grow it one vertex at a time
 - only add a vertex when we know where to put it so that path to vertex from root in tree is shortest in digraph
 - when we add end vertex to tree the shortest
 path from start to end is given by path in tree

Node	Status	LinK	Distance
A	Tree		0
В	Fringe	A	5
C	Fringe	A	4
D	Fringe	A	7
E			
F			

Node	Status	LinK	Distance
A	Tree		0
В	Fringe	A	5
C	Tree	A	4
D	Fringe	A	7
E			
F	Fringe	C	12

Node	Status	LinK	Distance
A	Tree		0
В	Tree	A	5
C	Tree	A	4
D	Fringe	В	6
E			
F	Fringe	C	12

Node	Status	LinK	Distance
A	Tree		0
В	Tree	A	5
C	Tree	A	4
D	Tree	В	6
E	Fringe	D	7
F	Fringe	С	12

Node	Status	LinK	Distance
A	Tree		0
В	Tree	A	5
C	Tree	A	4
D	Tree	В	6
E	Tree	D	7
F	Fringe	E	9

Node	Status	Link	Distance
A	Tree		0
В	Tree	A	5
C	Tree	A	4
D	Tree	В	6
E	Tree	D	7
F	Tree	Е	9

Dijkstra's Algorithm

- How can we be sure we are attaching vertex at right point?
 - assume tree so far is shortest paths
 - choose vertex X and arc (Y, X), Y in tree and X not:
 - choose X and Y such that path start, ..., Y,X has minimum weight of all possible X and Y

Dijkstra's Algorithm

- But what if some other path is shorter?
 - Other path must include some vertices in tree, some not in tree
 - Let (A,B) be arc in this shorter path such that
 A is in tree and B is not
 - Path start, ..., A,B is longer than path we have found start, ..., Y, X so path start,..., A,B,..., X must be longer than path start,..., Y, X

New: Minimum Spanning Tree

- Spanning Tree: a subgraph with
 - All the nodes
 - Some of the edges
 - A tree, I.E., one path between any pair of nodes
- Minimum spanning tree
 - A spanning tree
 - With minimum total edge weight

Node	Status	Link	Weight
A	Tree		0
В	Fringe	A	5
C	Fringe	A	4
D	Fringe	A	7
E			
F			

Node	Status	Link	Weight
A	Tree		0
В	Fringe	A	5
C	Tree	A	4
D	Fringe	A	7
E			
F	Fringe	C	8

Node	Status	Link	Weight
A	Tree		0
В	Tree	A	5
C	Tree	A	4
D	Fringe	В	1
E			
F	Fringe	C	8

Node	Status	Link	Weight
A	Tree		0
В	Tree	A	5
C	Tree	A	4
D	Tree	A	6
E	Fringe	D	1
F	Fringe	C	8

Node	Status	Link	Weight
A	Tree		0
В	Tree	A	5
C	Tree	A	4
D	Tree	A	6
E	Tree	D	1
F	Fringe	E	2

Node	Status	Link	Distance
A	Tree		0
В	Tree	A	5
C	Tree	A	4
D	Tree	В	1
E	Tree	D	1
F	Tree	E	2

Proof

- Suppose we have just added node Y and edge XY to the tree.
- Suppose there is some spanning tree T that does not include XY with lower weight than any that does include XY. Let AB be an edge on that tree with A in current partial tree and B not. AB must have greater weight than XY.
- Let T' be T but with XY instead of AB. T' is still a spanning tree, with less weight than T
- Contradiction

PERT Algorithm

- PERT (Project Evaluation and Review Technique)
 - Graph representing steps of a job
 - Edges: predecesors "must be done before"
 - Vertices: tasks labeled with time taken

Critical Path

- Suppose each task is started as soon as all predecessor finish
 - Suppose a task takes longer than specified: will entire job take longer?

Yes: task on critical path

No: not on critical path

Critical Path

Slack

Algorithm

- Define:
 - EFT Earliest finish time
 - LFT Latest finish time
 - EST Earliest start time
 - LST Latest start time
- Process tasks in topsort order
 - EST(n)=max(EFT(p), p in predecessors of n)
 - EFT(n) = EST(n) + Time(n)

Algorithm

- Process tasks in reverse topsort order
 - LFT(n)=min(LST(p), p in Successors of n)
 - -LST(n) = EFT(n) Time(n)
- On critical path if LFT == EFT and LST
 == ESTs