Statistics 104 — Sample Midterm

 $May\ 2015$

PROBLEM 1

The table below contains bus fares in 20 different cities

1.2	1.3	1.4	1.6	1.65	1.8	1.9	2.0	2.2	2.25
2.5	2.6	2.7	2.9	3.0	3.2	4.0	5.0	8	10

(a) Calculate sample mean \bar{Y} , standard deviation s and median $\hat{\theta}$.

(b) Carry out a t-test of the hypothesis $H_0: \mu = 3$ vs $H_a: \mu < 3$. Find the p-value and state your conclusions at $\alpha = 0.05$.

(c) Calculate the 95% t-interval for μ .

(d) Test the hypothesis $H_0: \theta = 3$ vs $H_a: \theta < 3$ using the binomial test at $\alpha = 0.05$. State your conclusion.

(e)	Find a 95% confidence interval for θ using the normal approximation to the binomial
	distribution.

(f) When should you use a nonparametric test and does this apply to the data in this problem?

PROBLEM 2

The data in the following table compare reaction times (in seconds) of participants in front of a computer screen. Participants in sample 1 have been given decaffeinated coffee while sample 2 has been given regular coffee.

sample	1	2	3	4	5	6	7	8
S1	4	6	7	9	11	13	14	30
S2	5	8	10	12				

(f) Ca	alculate the	exponential	scores a	and find	the p-val	lue for	the hypot	thesis in	ı (b).
--------	--------------	-------------	----------	----------	-----------	---------	-----------	-----------	--------

- (f) Test the hypothesis $H_0: \sigma_1=\sigma_2$ vs $H_a: \sigma_1>\sigma_2$ using the the Siegel-Tukey test at $\alpha=.05$.
- (g) Use the Kolomogorov-Smirnov statistic to test $H_0: F_X(x)=F_Y(x)$ vs $H_a: F_X(x)\neq F_Y(x)$ at $\alpha=0.05$.

Problem 3

(a) Restate the hypothesis $H_0: \mu_1 = \mu_2$ vs $H_a: \mu_1 < \mu_2$ in terms of $F_1(x)$ and $F_2(x)$. Be precise in your statement.

- (b) Suppose in part (a) the alternative hypothesis is two-sided. How can this alternative be expressed in terms of $F_1(x)$ and $F_2(x)$?
- (c) Explain the difference between a skewed distribution and a heavy-tailed distribution.

(d) Calculate the power for a normal test with known variance when testing $H_0: \mu = 0$ vs $H_a: \mu < 0$ when the true mean is $\mu = -5$ and the variance is $\sigma^2 = 9$ for a sample of size n = 15 from a normal distribution. Use $\alpha = .05$. Calculate the power of the binomial test for this problem.

(e) Calculate the power for the binomial test with known variance when testing H_0 : $\mu = 0$ vs H_a : $\mu < 0$ when the true mean is $\mu = -5$ and the variance is $\sigma^2 = 9$ for a sample of size n = 15 from a Laplace distribution. Use $\alpha = .05$.