Parallel and Distributed Deep Learning

Shaohao Chen ORCD at MIT

Outline

- Basics of deep learning
- Parallel deep learning on a GPU
- ☐ Distributed deep learning on multiple GPUs
- Data parallelism
 - -- Zero Redundancy Optimizer
- Model parallelism
 - -- Pipeline parallelism
 - -- Tensor parallelism

Machine learning and deep learning

- Artificial intelligence
- Machine learning
 Statistical algorithms
 Learn from data
- Supervised learning: classification, regression
- Unsupervised learning: clustering

- Deep learning: deep neural network
- Cornerstones of DL: learning algorithms, big data, and high-performance computing.
- Computer vision: Convolutional Neural Network (CNN)
- Natural Language Processing (NLP): Large Language Model (LLM), transformer architecture

Access to ORCD clusters

Get started

https://orcd-docs.mit.edu/getting-started/

Log in Engaging

ssh <user>@eofe10.mit.edu

• Get an interactive session and set up environment

srun -t 120 -n 4 --gres=gpu:4 -p mit_normal_gpu --pty bash module load miniforge/23.11.0-0

Install PyTorch and Deepspeed

Install PyTorch, Deepspeed, and dependencies.

pip install fire loguru sh matplotlib

```
conda create -n ds
source activate ds
conda install PyTorch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 pytorch-cuda=12.4 -c PyTorch -c
nvidia
pip install deepspeed
pip install datasets tensorboard transformers
```

Convolutional Neural Network (CNN)

- CNN for CIFAR10 in PyTorch
- Load training and test datasets: CIFAR10, normalize, using torchvision
- Define a CNN: convolutional layers, nonlinear ReLU activation, pooling, fully connected layers, softmax

Train a neural network

- Training: adjust the model to minimize a loss function.
- Loss function: cross entropy

$$-rac{1}{N}\sum_{n=1}^N \left[y_n \log \hat{y}_n + (1-y_n) \log (1-\hat{y}_n)
ight]$$

- Optimizer: Stochastic Gradient Descent (SGD)
- Training data: batch or mini-batch (a randomly-picked subset of data), epoch (loop over all data).
- Train the network on the training data:
 - -- forward + backward + optimize

Test the network on the test data

Training on a GPU with PyTorch

Define a CUDA device

```
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
```

- Send the model to the GPU net.to(device)
- Training process:

```
for epoch in range(2): # loop over the dataset multiple times
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0): # get a batch of data

    # Send a batch of data to the GPU at every step
    inputs, labels = data[0].to(device), data[1].to(device)

    optimizer.zero_grad() # initialize gradients
    outputs = net(inputs) # forward pass
    loss = nn.CrossEntropyLoss(outputs, labels) # define loss function
    loss.backward() # backward pass
    optimizer.step() # optimize
```

What happens under the hood?

What about parallel?

- Training a neural network involves large-scale linear algebra computations.
- When PyTorch is built with CUDA support, it dynamically links to cuDNN and cuBLAS libraries.
- Linear algebra computations are optimized and parallelized in cuBLAS and thus accelerated on GPUs.

What about other platforms or libraries?

- Tensorflow: Python or CAPI, a steeper learning curve, less friendly to researchers, easier with Keras integration, better performance optimizations, better for developers.
- cuDNN: C API, a bridge between deep-learning platforms and GPUs.

Distributed Parallelism for Deep Learning

Distributed on multiple GPUs.

Data Parallelism

Each GPU gets a different batch of data

Process more data at the same time period.

Universal to different models. The model must fit within GPU memory.

Model Parallelism

A model is too big to be stored on a GPU.

Partition the model on multiple GPUs.

Tricky to design and implement.

Data Parallelism

- Each GPU has a copy of the model
- Each GPU gets a different batch of data
- Data sampling is handled by a Distributed Sampler
- Concurrently processing multiple batches of data

Data Parallel training at large scale may affect model quality

Communication in data parallel

- Gradients on each GPU are different because the input data is different.
- Gradients from each GPU are synchronized before the update.
- Synchronization is done with a bucketed Ring-AllReduce algorithm.
- Each GPU gets the averaged gradient, then models are updated locally.
- Overlap gradient computation with communication so GPUs are utilized efficiently.

Scaling with data parallel introduces communication overhead when syncing gradients

Distributed Data Parallel with PyTorch

Linear neural network

$$y = xA^T + b$$

model = torch.nn.Linear(20, 1)

- Set up GPU ID torch.cuda.set_device(rank)
- Apply DDP self.model = DistributedDataParallel(model, device_ids=[gpu_id])
- Spawn training processes on multiple GPUs

world_size = torch.cuda.device_count()

mp.spawn(main, args=(world_size, args.save_every, args.total_epochs, args.batch_size), nprocs=world_size)

Communication is under the hood. PyTorch calls NCCL.

Why big models?

- Transformer architecture
- -- Remove the sequential processing dependency of RNNs, such as Long Short-term Memory (LSTM).
- -- Enable language models to be trained with parallelism

 A dramatic increase in model sizes after the birth of Transformer.

Figure 3. Compute required for training transformer models.

Memory requirements by big models

Adam optimizer: 24 bytes per parameter for FP32

States	Bytes per parameter
Model parameters (weights)	4 bytes per parameter
Adam optimizer (2 states)	8 bytes per parameter
Gradients	4 bytes per parameter
Activations and temp memory (variable size)	8 bytes per parameter (high-end estimate)
TOTAL	= 4 + 20 bytes per parameter

• 1 billion parameters:

24 GB for FP32, 12 GB for FP16, 16 GB for mixed-precision (FP32 for optimizer states, FP16 for the rest)

Scale of compute with big models

Model size	Attention heads	Hidden size	Number of layers	Number of parameters (billion)	Model-parallel size	Number of GPUs	Microbatch size	Batch size	Achieved teraFIOP/s per GPU	Percentage of theoretical peak FLOP/s	Achieved aggregate petaFLOP/s		~6 weeks on 1 x DGX A100 ~2 weeks on 4 x DGX A100	
1.7B	24	2304	24	1.7	1	32	16	512	137	44%	4.4			
3.6B	32	3072	30	3.6	2	64	16	512	138	44%	8.8	1	~65 weeks on 1 x DGX A100 ~16 weeks on 4 x DGX A100	(E weeks on 1 v DCV A10
7.5B	32	4096	36	7.5	4	128	16	512	142	46%	18.2	l		
18B	48	6144	40	18.4	8	256	8	1024	135	43%	34.6			
39B	64	8192	48	39.1	16	512	4	1536	138	44%	70.8			
76B	80	10240	60	76.1	32	1024	2	1792	140	45%	143.8]	~5 years on 1 x DGX A100 ~1 year on 4 x DGX A100	
145B	96	12288	80	145.6	64	1536	2	2304	148	47%	227.1	<u> </u>		
310B	128	16384	96	310.1	128	1920	1	2160	155	50%	297.4	Ī		
530B	128	20480	105	529.6	280	2520	1	2520	163	52%	410.2]		
1T	160	25600	128	1008.0	512	3072	1	3072	163	52%	502.0	L		
		Weak	scaling t	:hroughput 1	for GPT model	s ranging	from 1 billi	on to 1	trillion paran	neters.			~69 years on 1 x DGX A100 ~17 year on 4 x DGX A100	

Zero Redundancy Optimizer (1)

- Operate within the data parallel framework, optimizing memory usage by distributing model states across data parallel workers.
- Partition tensors similar to tensor parallel. Each GPU stores only a slice of model parameters, gradients, and optimizer states.
- Communication: Each GPU receives other slices of parameters from other GPUs during the forward and backward pass.

Zero Redundancy Optimizer (2)

- Further save GPU memory
 - -- Mixed precision: weights and gradients stored in FP16, optimizer states stored in FP32
 - -- Offloading to CPU
 - -- Checkpointing activations
- ZeRO is implemented in Deepspeed.
- Quick and easy: only need to change a few configurations in the configuration JSON.
 Does not require a code redesign or model refactoring.
- ZeRO may or may not be faster depending on the situation and configuration.
- Fully Sharded Data Parallel (FSDP): another name for the ZeRO concept, implemented in PyTorch.

Offloading to CPU

Offload CPU tensors not used in computation form GPU to CPU

- Training times will be slower due to slow data movement.
- Overlap communication with computation.

Model Parallelism

☐ Pipeline (Inter-Layer) Parallelism

- Split the model vertically
- Only one or several layers of the model are placed on a single GPU.
- Each GPU processes in parallel different stages of the pipeline and works on a small chunk of the batch.

☐ Tensor (Intra-Layer) Parallelism

- Split the model horizontally
- Each tensor is split into multiple shards, and each shard resides on its designated GPU.
- Each shard is computed in parallel on different GPUs and the results are synced at the end of the step.

Pipeline Parallelism (1)

- Naive pipeline parallel is sequentially processed.
- Leads to GPU underutilization.

Pipeline Parallelism (2)

Pipeline Parallelism (3)

Split batch into micro batches and pipeline executions to increase GPU utilization.

total time =
$$(m + p - 1) \times (t_f + t_b)$$

ideal time = $m \times (t_f + t_b)$
bubble time = $(p - 1) \times (t_f + t_b)$

bubble time overhead = $\frac{\text{bubble time}}{\text{ideal time}} = \frac{p-1}{m}$

p: number of pipeline stages

m: number of micro batches

 t_f : forward step time

 t_b : backward step time

$$speedup = \frac{t_1}{t_p} = \frac{m*p*(t_f + t_b)}{(m+p-1)(t_f + t_b)} = \frac{m*p}{m+p-1}$$

3 times speedup with 4 pipeline stages and 9 micro batches.

Data and Pipeline Parallel (1)

☐ Hybrid parallel: model parallel is applied with data parallel to obtain further acceleration.

- Data parallel
 - + pipeline parallel

https://www.deepspeed.ai/tutorials/pipeline/

Data and Pipeline Parallel (2)

- Strategy for 4 GPUs: two-way data parallel, two pipeline stages, and eight micro-batches.
- GPUs 0 and 2 are arranged in a pipeline and alternate forward (F) and backward (B) passes the same for GPUs 1 and 3.
- In the forward pass on a micro-batch, the activation is communicated to the next pipeline stage.
- In the backward pass on a micro-batch, the gradient with respect to the activation is communicated to the next pipeline stage.
- Each backward pass accumulates gradients locally, then a GPU will all-reduce (AR) gradients with its data-parallel counterpart (0 1, 2 3).
- Finally, the two pipeline stages update their model weights.

Data and Pipeline Parallel with Deepspeed

Alexnet: 5 convolutional layers + 2 fully connected hidden layers + 1 fully connected output layer.

```
net = AlexNet(num_classes=10)
```

• Set up a pipeline module

Set the micro batch size in the configuration JSON

```
"train_micro_batch_size_per_gpu":8,
```

• Run the program. The total number of GPUs must be divisible by the number of pipeline stages.

```
deepspeed train.py --deepspeed_config=ds_config.json -p 2 --steps=200
```

Tensor Parallelism

- Use to scale beyond data parallelism
- Less restrictive on the batch size (avoids bubble issue in pipelining)
- Reduces memory proportional to the number of workers (model dependent)
- Sharded computations work well for large matrices (e.g. Transformers)
- Large communication overhead. Does not scale well beyond the node boundary.

The implementation of TP depends on the neural network architecture.

A simple example of tensor parallelism

- When multiplying the input tensors with the first weight tensor, the matrix multiplication is equivalent to splitting the weight tensor column-wise, multiplying each column with the input separately, and then concatenating the separate outputs.
- The outputs are then transferred from the GPUs and concatenated together to get the final result.

is equivalent to

Transformer architecture

Attention is all you need

- Positional embedding. A word \rightarrow A vector in high-dimensional space.
- Extract Query, Key, and Value for search.
- Attention weighting/mask: cosine similarity between query and key
- Extract features with high attention: multiply attention mask and value.
- A self-attention head.
- Transformer: a neuro network built on multiple self-attention heads.

Scale MatMul Value Linear Linear Positional Encoding

Successful in sequence modeling problems

- LLM: predict the next word. Bidirectional Encoder Representations from Transformers (BERT),
 Generative pre-trained transformer (GPT)
- Predict protein structure from DNA sequence (AlphaFold)
- Video/audio production

Tensor Parallel for Transformer (1)

- A transformer block consists of a feed-forward (MLP) layer and a self-attention layer.
- Split matrices in the MLP and self-attention layers.
- The matrix multiplications in both attention and MLP happen through sharded computations.

Multilayer perceptron (MLP)

Self-attention

Tensor Parallel for Transformer (2)

• Minimal communication: 4 x all-reduce in the forward and backward pass of a single tensor parallel transformer layer.

• Larger communication overhead than DP or PP: more frequently.

Data and Tensor Parallel with PyTorch (1)

- Llama2 (Large Language Model Meta AI): built on transformer architecture.
- Hybrid parallel: Tensor Parallel within each node + Fully Sharded Data Parallel (FSDP) across nodes.
- Group GPUs for TP and DP

```
device_mesh = init_device_mesh("cuda", (dp_size, tp_size), mesh_dim_names=("dp", "tp"))
```

Create the model and send it to GPUs

```
model = Transformer.from_model_args(simple_llama2_config).to("cuda")
```

Set up a tensor parallel module

```
Parallelize_module(
    module=transformer_block,
    device_mesh=tp_mesh,
    parallelize_plan=layer_tp_plan
)
```

Apply FSDP to the model

```
sharded_model = FSDP(model, device_mesh=dp_mesh, use_orig_params=True)
```

Data and Tensor Parallel with PyTorch (2)

TP plan: specify how to shard feed-forward and self-attention layers, column-wise or row-wise.

```
layer tp plan = {
  "attention norm": SequenceParallel(),
  "attention": PrepareModuleInput(
    input layouts=(Shard(1), None),
    desired input layouts=(Replicate(), None),
  "attention.wg": ColwiseParallel(),
  "attention.wk": ColwiseParallel(),
  "attention.wv": ColwiseParallel(),
  "attention.wo": RowwiseParallel(output layouts=Shard(1)),
  "ffn norm": SequenceParallel(),
  "feed forward": PrepareModuleInput(
    input_layouts=(Shard(1),),
    desired input layouts=(Replicate(),),
  "feed forward.w1": ColwiseParallel(),
  "feed forward.w2": RowwiseParallel(output layouts=Shard(1)),
  "feed forward.w3": ColwiseParallel(),
```

- Sequence parallel: a variant of TP that performs sharded computations on layer normalization.
- Communications (e.g. allreduce) will happen under the hood.

Hybrid model parallelism

GPU Affinity grouping example for PP + TP + DP

- Communication overhead: PP < DP < TP
- Network: fast Nvlinks within a node, Infiniband across nodes

2 nodes, 8 GPUs per node

- Tensor parallel = 2
- Pipeline parallel = 4
- Data parallel = 2

Which Strategy To Use When

- ☐ Single-node Multi-GPU
- The model fits into a single GPU: DP (distributed DP)
- The model doesn't fit into a single GPU: PP, TP, ZeRO, PP + DP, or TP + DP
- The largest layer does not fit into a single GPU: TP or ZeRO.
- ☐ Multi-node Multi-GPU
- ZeRO (easy)
- PP + TP + DP (tricky but faster)

Best to experiment to find the winner on your particular setup.

What is not covered ...

- Mixed-precision training
- Save GPU memory by offloading to CPU
- Activation Checkpointing
- Sequence parallelism
- Hybrid model parallelism: PP + TP + DP
- Distributed inference