

HYPOTHESIS TESTING

INFERENTIAL STATISTICS

........

prepared by:

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Hypothesis Test

Rejection Region

Critical Value and Z-score

p-Value

HYPOTHESIS TEST

HYPOTHESIS

A <u>hypothesis</u> is an initial <u>assumption</u> formed before collecting data, and it serves as a statement about a <u>population</u> parameter rather than about the sample data.

HYPOTHESIS TEST

A <u>hypothesis test</u> is simply comparing reality to an assumption and asking, "<u>Did things</u>
<a href="mailto:change?"

Null Hypothesis (H_o)

Represents **no change**, no effect, or the status quo.

Alternative Hypothesis (H_a)

Represents the possibility that things did change or that there is a **significant difference**.

IS YOUR DATA GUILTY?

Hypothesis testing is like a legal system where the defendant is assumed **innocent** until proven guilty.

TYPES OF ERROR

1. Type I Error

Rejecting the null hypothesis when it is actually true. The risk of making type I error is denoted by α (e.g., 0.05).

2. Type II Error

Failing to reject the null hypothesis when it is actually false. The risk of making a type II error is denoted by β (e.g. 0.20)

 H_0 : Innocent

A fitness tracker company claims their device measures heart rate with 95% accuracy compared to medical-grade monitors. An independent lab wants to verify this claim.

Null Hypothesis

$$H_o$$
: $\mu_o = 95$

The average accuracy is 95%.

<u>Alternative Hypothesis</u>

*H*_a:
$$\mu_o \neq 95$$

The average accuracy differs from 95%.

A manufacturer claims that their new energy-efficient LED bulbs have an average lifespan of **at least 25,000 hours**. A consumer group suspects that the actual lifespan is shorter and decides to test this claim.

Null Hypothesis

 H_o : $\mu_o = 25,000$

The average lifespan of the LED is 25,000 hours.

Alternative Hypothesis

 H_a : $\mu_o < 25,000$

The average lifespan of the LED is less than 25,000 hours.

A study suggests that storing apples in a controlled atmosphere **extends** their shelf life beyond **30 days**. A food scientist wants to verify if this method truly increases shelf life compared to conventional storage.

Null Hypothesis

$$H_o$$
: $\mu_o = 30$

Controlled-atmosphere storage shelf life is 30 days.

Alternative Hypothesis

$$H_a$$
: $\mu_o > 30$

Controlled-atmosphere storage increases shelf life beyond 30 days.

REJECTION REGION

SIGNIFICANCE LEVEL

The <u>significance level</u> (α) determines the threshold for deciding whether to <u>reject</u> the null hypothesis (H_o).

Typical values for α

0.01

0.05

0.1

Standard Normal Distribution

REJECTION REGION

Two-sided Test

One-sided Test

$$H_a$$
: $\mu_1 \neq \mu_o$

$$H_o$$
: $\mu_1 = \mu_o$

$$H_a$$
: $\mu_1 < \mu_o$

REJECTION REGION

Two-sided Test

rejection region $\alpha/2$ μ_1 μ_o rejection region

$$H_a$$
: $\mu_1 \neq \mu_o$

One-sided Test

$$H_o$$
: $\mu_1 = \mu_o$

$$H_a$$
: $\mu_1 > \mu_0$

CRITICAL VALUE AND Z-SCORE

CRITICAL VALUE AND Z-SCORE

lowercase **z**

z refers to the <u>critical value</u> obtained from the standard normal distribution table (ztable).

uppercase **Z**

Z is a standardized variable associated with the test called the **Z-score**.

Formula

$$Z = rac{\overline{x} - \mu_o}{\sigma/\sqrt{n}}$$

One-sided Test

Two-sided Test

$$\alpha = 0.05$$

$$z_{0.025} = 1.96$$

Null Hypothesis

$$H_o$$
: $\mu_o = 95$

The average accuracy is 95%.

Alternative Hypothesis

*H*_a:
$$\mu_o \neq 95$$

The average accuracy differs from 95%.

One-sided Test

$$\alpha = 0.05$$

$$z_{0.05} = 1.645$$

Null Hypothesis

$$H_o$$
: $\mu_o = 25,000$

The average lifespan of the LED is 25,000 hours.

Alternative Hypothesis

$$H_a$$
: $\mu_o < 25,000$

The average lifespan of the LED is less than 25,000 hours.

One-sided Test

$$\alpha = 0.05$$

$$z_{0.05} = 1.645$$

Null Hypothesis

$$H_o$$
: $\mu_o = 30$

Controlled-atmosphere storage shelf life is 30 days.

Alternative Hypothesis

$$H_a$$
: $\mu_o > 30$

Controlled-atmosphere storage increases shelf life beyond 30 days.

A manufacturing process is claimed to have an average defect rate of **10.32** units, with a known standard deviation of **3.17** units. The Statistical Process Control (SPC) department suspects this claim may no longer be valid and collects a **random sample** of **30** production units to test whether the true average **defect rate differs** significantly from **10.32**.

<u>Dataset</u>

<u>defects-data-30-samples.csv</u>

Solution

Two-sided Test

z~N(0,1) 95 % CI −1.96 1.23 1.96

$$\alpha = 0.05$$

$$z_{0.025} = 1.96$$

Solution

P-VALUE

P-VALUE

The <u>p-value</u> (probability value) is the <u>smallest</u> <u>level of significance</u> at which we can still reject the null hypothesis, given the observed sample statistic.

One-sided Test

p-value = 1 – value from the table

Two-sided Test

p-value = $(1 - value from the table) <math>\times 2$

Hypothesis Test

Reject H_o if **p-value** $\leq \alpha$

Fail to reject H_o if p-value $> \alpha$

P-VALUE

The <u>p-value</u> (probability value) is the <u>smallest</u> <u>level of significance</u> at which we can still reject the null hypothesis, given the observed sample statistic.

One-sided Test

p-value = 1 – value from the table

Two-sided Test

p-value = $(1 - value from the table) <math>\times 2$

Cumulative Distribution Function (CDF)

cdf () returns the probability that a random variable \mathbf{Z} (Z-score) from a standard normal distribution is less than or equal to a given critical value (\mathbf{z}).

Syntax

One-sided Test

p_value = 1-stats.norm.cdf(Z_score)

Two-sided Test

p_value = 2*(1-stats.norm.cdf(Z_score))

A manufacturing process is claimed to have an average defect rate of **10.32** units, with a known standard deviation of **3.17** units. The Statistical Process Control (SPC) department suspects this claim may no longer be valid and collects a **random sample** of **30** production units to test whether the true average **defect rate differs** significantly from **10.32**.

Dataset

<u>defects-data-30-samples.csv</u>

Solution

Two-sided Test

z~N(0,1) 95 % CI −1.96 1.23 1.96

$$\alpha = 0.05$$

$$z_{0.025} = 1.96$$

Solution

LABORATORY

