SOLUCIÓN ► La matriz aumentada para este sistema es

$$\begin{pmatrix}
0 & 2 & 3 & | & 4 \\
2 & -6 & 7 & | & 15 \\
1 & -2 & 5 & | & 10
\end{pmatrix}$$

El elemento 1,1 de la matriz no se puede hacer 1 como antes porque al multiplicar 0 por cualquier número real el resultado es 0. En su lugar se puede usar la operación elemental por renglones iii) intercambiar dos renglones, para obtener un número distinto a cero en la posición 1,1. Se puede intercambiar el renglón 1 con cualquiera de los otros dos; sin embargo, al intercambiar los renglones 1 y 3 queda un 1 en esa posición. Al hacerlo se obtiene lo siguiente:

$$\begin{pmatrix} 0 & 2 & 3 & | & 4 \\ 2 & -6 & 7 & | & 15 \\ 1 & -2 & 5 & | & 10 \end{pmatrix} \xrightarrow{R_1 \rightleftarrows R_3} \begin{pmatrix} 1 & -2 & 5 & | & 10 \\ 2 & -6 & 7 & | & 15 \\ 0 & 2 & 3 & | & 4 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 1 & -2 & 5 & | & 10 \\ 0 & -2 & -3 & | & -5 \\ 0 & 2 & 3 & | & 4 \end{pmatrix}$$

Es necesario detenerse aquí porque, como se ve, las últimas dos ecuaciones son

$$-2x_2 - 3x_3 = -5$$
$$2x_2 + 3x_3 = 4$$

lo cual es imposible (si $-2x_2 - 3x_3 = -5$, entonces $2x_2 + 3x_3 = 5$, no 4), por lo que no existe alguna solución. Se puede proceder como en los últimos dos ejemplos para obtener una forma más estándar:

Ahora la última ecuación es $0x_1 + 0x_2 + 0x_3 = -1$, lo cual también es imposible ya que $0 \neq -1$. Así, el sistema (1.2.9) no tiene solución. En este caso se dice que el sistema es **inconsistente**.

Definición 1.2.1

Sistemas inconsistentes y consistentes

Se dice que un sistema de ecuaciones lineales es **inconsistente** si no tiene solución. Se dice que un sistema de ecuaciones lineales es **consistente** si tiene al menos una solución.

Se analizarán de nuevo estos tres ejemplos. En el ejemplo 1.2.1 se comenzó con la matriz de coeficientes

$$A_1 = \begin{pmatrix} 2 & 4 & 6 \\ 4 & 5 & 6 \\ 3 & 1 & -2 \end{pmatrix}$$

En el proceso de reducción por renglones, A_1 se "redujo" a la matriz

$$R_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$