CSC 211: Computer Programming Number Systems, Further look into DataTypes

Michael Conti

Department of Computer Science and Statistics University of Rhode Island

Summer 2025

Number Systems

Administrative Notes

Number systems

- · A way to represent numbers
 - ✓ numbers are expressed in a certain base
- Why study number systems in CS?
 - √ to understand data representation
- Examples of number systems
 - √ binary
 - ✓ decimal
 - ✓ octal
 - √ hexadecimal

Positional number systems

assuming base **b**:

$$\dots d_2b^2 + d_1b^1 + d_0b^0 + d_{-1}b^{-1} + d_{-2}b^{-2}\dots$$

$$43.23 = 4 \cdot 10^{1} + 3 \cdot 10^{0} + 2 \cdot 10^{-1} + 3 \cdot 10^{-2}$$

Decimal number system

- Base 10
- · Symbols

0123456789

$$456 = 4 \cdot 10^2 + 5 \cdot 10^1 + 6 \cdot 10^0$$

Binary number system

- Base 2
- · Symbols

01

Most Significant Bit Least Significant Bit

$$1010 = (1 \cdot 2^3) + (0 \cdot 2^2) + (1 \cdot 2^1) + (0 \cdot 2^0)$$

Binary to Decimal?

100101000

2 ⁰	21	22	2 ³	24	2 ⁵	2 ⁶	27	28
1	2	4	8	16	32	64	128	256

Try these ..

10011101 11010011 1111111

What is a **bit**? What is a **byte**?

- · A bit can only have two values (states)
 - ✓ easy to embed into physical devices
- **Transistor**
 - processors have billions of transistors
 - ✓ transistors can be switched **on** and **off**

Moore's Law – The number of transistors on integrated circuit chips (1971-2018) Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles appro

This advancement is important as other aspects of technological progress - such as processing speed or the price of electronic products - are

Decimal to other bases

- Repeatedly divide by base
 - ✓ collect remainders
 - ✓ output in reverse order

57₁₀

 $\sqrt{3} / 2 = 1 R 1$

 $\sqrt{1} / 2 = 0 R 1$

Decimal to other bases

- Another way to convert:
- ·57₁₀

111001₂

2 ⁰	21	22	23	24	2 ⁵	2 ⁶	2 ⁷	28
1	2	4	8	16	32	64	128	256

Hexadecimal number system

- Base 16
- · Symbols

0123456789ABCDEF

$$4A1C = (4 \cdot 16^3) + (10 \cdot 16^2) + (1 \cdot 16^1) + (12 \cdot 16^0)$$

1 D Bx16

Hexadecimal to decimal

A010F

Binary to hexadecimal

Hex	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
Bin	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Dec	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0ct	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17

10011101

11010011

11111111

Humans think in base 10. Computers think in base 2. Humans use base 16 to easily manipulate data in base 2.

Color codes

Shades of yellow color chart

Color	HTML / CSS Color Name	Hex Code #RRGGBB	Decimal Code (R,G,B)
	lightyellow	#FFFFE0	rgb(255,255,224)
	lemonchiffon	#FFFACD	rgb(255,250,205)
	lightgoldenrodyellow	#FAFAD2	rgb(250,250,210)
	papayawhip	#FFEFD5	rgb(255,239,213)
	moccasin	#FFE4B5	rgb(255,228,181)
	peachpuff	#FFDAB9	rgb(255,218,185)
	palegoldenrod	#EEE8AA	rgb(238,232,170)
	khaki	#F0E68C	rgb(240,230,140)
	darkkhaki	#BDB76B	rgb(189,183,107)
	yellow	#FFFF00	rgb(255,255,0)
	olive	#808000	rgb(128,128,0)
	greenyellow	#ADFF2F	rgb(173,255,47)
	yellowgreen	#9ACD32	rgb(154,205,50)

What is the color code of 'greenyellow' in binary?

https://www.rapidtables.com/web/color/Yellow_Color.html

Forensic Analysis

31 oct = 25 dec?

Going back to C++ ...

Integer literals in C++

Memory Locations and Bytes

```
int d = 42;
int o = 052;
int x = 0x2a;
int X = 0X2A;
int b = 0b101010; // C++14
```

- **decimal-literal** is a non-zero decimal digit (1, 2, 3, 4, 5, 6, 7, 8, 9), followed by zero or more decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
- octal-literal is the digit zero (0) followed by zero or more octal digits (0, 1, 2, 3, 4, 5, 6, 7)
- hex-literal is the character sequence 0x or the character sequence 0X followed by one or more hexadecimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, A, b, B, c, C, d, D, e, E, f, F)
- **binary-literal** is the character sequence **0b** or the character sequence **0B** followed by one or more binary digits (0, 1)

https://en.cppreference.com/w/cpp/language/integer_literal

byte 1
byte 2
byte 3
byte 4
byte 5
byte 6
byte 7
byte 8
byte 9

3 byte location with address 1
2 byte location with address 6
byte 7
byte 8
byte 9

from: Problem Solving with C++, 10th Edition, Walter Savitch

T	Size in	Format	Value range						
Туре	bits		Approximate	Exact					
	8	signed		-128 to 127					
character	0	unsigned		0 to 255					
Character	16	unsigned		0 to 65535					
	32	unsigned		0 to 1114111 (0x10ffff)					
	16	signed	± 3.27 · 10 ⁴	-32768 to 32767					
	16	unsigned	0 to 6.55 · 10 ⁴	0 to 65535					
	32	signed	± 2.14 · 10 ⁹	-2,147,483,648 to 2,147,483,647					
integer		unsigned	0 to 4.29 · 10 ⁹	0 to 4,294,967,295					
	64	signed	± 9.22 · 10 ¹⁸	-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807					
		unsigned	0 to 1.84 · 10 ¹⁹	0 to 18,446,744,073,709,551,615					
floating	32	IEEE- 754 &	 min subnormal: ± 1.401,298,4 · 10⁻⁴⁵ min normal: ± 1.175,494,3 · 10⁻³⁸ max: ± 3.402,823,4 · 10³⁸ 	 min subnormal: ±0x1p-149 min normal: ±0x1p-126 max: ±0x1.fffffep+127 					
point	64	IEEE- 754 ₽	 min subnormal: ± 4.940,656,458,412 · 10⁻³²⁴ min normal: ± 2.225,073,858,507,201,4 · 10⁻³⁰⁸ max: ± 1.797,693,134,862,315,7 · 10³⁰⁸ 	 min subnormal: ±0x1p-1074 min normal: ±0x1p-1022 max: ±0x1.fffffffffffp+1023 					

https://en.cppreference.com/w/cpp/language/types