ÁLGEBRA 3 - CUESTIONARIOS PROFESOR: TEMA 4

PREGUNTA 1: Seleccionar la igualdad correcta: Si n divide a m, el grado $[\mathbb{Q}(z_m):\mathbb{Q}(z_n)]$ es:

- a) $\frac{\varphi(m)}{\varphi(n)}$
- b) $\varphi(m) + \varphi(n)$
- c) $\varphi(m) \varphi(n)$

SOLUCIÓN: a)

PREGUNTA 2: Seleccionar la afirmación correcta: Si K es un cuerpo de números, el grupo $G(x^5-1/K)$:

- a) Nunca es cíclico.
- b) Siempre es cíclico.
- c) A veces es cíclico y a veces no, depende de K.

SOLUCIÓN: c)

PREGUNTA 3: Seleccionar la afirmación correcta:

- a) $\mathbb{Q}(z_5) = \mathbb{Q}(z_{10})$ y $\Phi_5 = \Phi_{10}$
- b) $\mathbb{Q}(z_5) = \mathbb{Q}(z_{10}) \text{ y } \Phi_5 \neq \Phi_{10}$
- c) $\mathbb{Q}(z_5) \neq \mathbb{Q}(z_{10}) \text{ y } \Phi_5 \neq \Phi_{10}$

SOLUCIÓN: b)

PREGUNTA 4: "Si K es un cuerpo de números, $[K(z_n):K]=\varphi(n)$ " es:

- a) siempre cierta.
- b) siempre falsa.
- c) a veces verdad y a veces falsa, depende de K.

SOLUCIÓN: a)

PREGUNTA 5: La afirmación "Si $p \ge 2$ es un primo tal que p^2 divide a n, existe un subcuerpo $F \le \mathbb{Q}(z_n)$ tal que $[\mathbb{Q}(z_n):F]=p$ " es:

- a) siempre cierta.
- b) siempre falsa.
- c) a veces verdad y a veces falsa, depende de p y de n.

ÁLGEBRA 3 - CUESTIONARIOS PROFESOR : TEMA 5

PREGUNTA 1: Dados polinomios $g, h \in K[x]$, donde K es un cuerpo de números, si f = gh es su producto, seleccionar las afirmaciones correctas:

- a) El grupo G(f/K) es resoluble sí y solo sí los grupos G(g/K) y G(h/K) son resolubles.
- b) Si el grupo G(f/K) es resoluble, entonces G(g/K) y G(h/K) son resolubles. Pero el recíproco no necesariamente es cierto.
- c) Si los grupos G(g/K) y G(h/K) son resolubles, entonces G(f/K) es resoluble. Pero el recíproco no necesariamente es cierto.

SOLUCIÓN: -)

PREGUNTA 2: Seleccionar la afirmación correcta: Si $a, b, c \in \mathbb{Q}$, la ecuación $(x^2 + ax + b)^5 = c$:

- a) a veces es resoluble y a veces no, depende de a, b, c.
- b) siempre es resoluble sobre Q.
- c) nunca es resoluble sobre \mathbb{Q} .

SOLUCIÓN: b)

PREGUNTA 3: Si p > 0 es un primo, la afirmación $G(x^3 + px + p) \equiv S_3$:

- a) a veces verdad y a veces falsa, depende de p.
- b) es siempre cierta.
- c) es siempre falsa.

SOLUCIÓN: b)

PREGUNTA 4: Dada una torre radical de cuerpos de números $K \leq K_1 \leq \cdots \leq K_r = E$ y $f \in K[x]$, seleccionar las afirmaciones correctas:

- a) f(x) = 0 es resoluble sobre K sí y sólo sí lo es sobre E.
- b) si f(x) = 0 es resoluble sobre K, entonces lo es sobre E. Pero el recíproco no necesariamente es cierto.
- c) si f(x) = 0 es resoluble sobre E, entonces lo es sobre K. Pero el recíproco no necesariamente es cierto.

SOLUCIÓN: b)

PREGUNTA 5: Si $f \in \mathbb{Q}[x]$ es un polinomio de grado 5 que no es irreducible. La afirmación "f es resoluble sobre \mathbb{Q} " es:

- a) siempre cierta.
- b) siempre falsa.
- c) a veces verdad y a veces falsa, depende de f.

ÁLGEBRA 3 - CUESTIONARIOS PROFESOR : TEMA 6

PREGUNTA 1: Si los polígonos regulares de m y n lados son construibles, la afirmación "El polígono regular de m + n lados es construible" es:

- a) Siempre cierta.
- b) Siempre falsa.
- c) A veces verdad y a veces falsa, depende de m y n.

SOLUCIÓN: c)

PREGUNTA 2: Si los polígonos regulares de m y n lados son construibles, la afirmación "El polígono regular de mn lados es construible" es:

- a) Siempre cierta.
- b) Siempre falsa.
- c) A veces verdad y a veces falsa, depende de m y n.

SOLUCIÓN: a)

PREGUNTA 3: Sea C la curva en el plano de ecuación $y = x^{24}$, R, R', R'' las rectas de ecuaciones y = 4, y = 8 e y = 16 respectivamente. Selecciona las opciones ciertas sobre la posibilidad de construir con regla y compás, partiendo de los puntos dato (0,0) y (0,1), los puntos de las intersecciones indicadas:

- a) $C \cap R$
- b) $C \cap R'$
- c) $C \cap R''$

SOLUCIÓN: b)

PREGUNTA 4: C es la curva en plano definida por una ecuación bicuadrática $y = x^4 + ax^2 + b$ y C' es la parábola definida por la ecuación $y = cx^2 + d$, donde $a, b, c, d \in \mathbb{Z}$. La afirmación, "Los puntos de la intersección $C \cap C'$ son construibles con regla y compás partiendo sólo de los puntos dato (0,0) y (0,1)" es:

- a) siempre falsa.
- b) a veces verdad y a veces falsa, depende de C y C'.
- c) siempre cierta.

SOLUCIÓN: -)

PREGUNTA 5: Selecciona en cual de los cuerpos la representación geométrica de todos sus números en el plano se puede construir con regla y compás a partir de los puntos dato (0,0) y (1,0):

- a) $\mathbb{Q}(\sqrt[8]{2}, i\sqrt[6]{3})$
- b) $\mathbb{Q}(\sqrt[12]{2}, i\sqrt{3})$
- c) $\mathbb{Q}(\sqrt[8]{2}, i\sqrt[8]{3})$

ÁLGEBRA 3 - CUESTIONARIOS PROFESOR: TEMA 7

PREGUNTA 1: Seleccionar la afirmación correcta:

- a) Existe un cuerpo con 36 elementos.
- b) Existe un cuerpo con 75 elementos.
- c) Existe un cuerpo con 81 elementos.

SOLUCIÓN: c)

PREGUNTA 2: Seleccionar la afirmación correcta:

- a) Existe un cuerpo con 16 elementos y su característica es 2.
- b) Existe un cuerpo con 125 elementos y su característica es 3.
- c) Existe un cuerpo con 16 elementos y su característica es 4.

SOLUCIÓN: a)

PREGUNTA 3: Seleccionar la afirmación correcta:

- a) $(\alpha, x^3 + x + 2)$ es una clave para \mathbb{F}_9 .
- b) $(\alpha, x^2 + 1)$ es una clave para \mathbb{F}_9 .
- c) $(\alpha, x^2 + x + 1)$ es una clave para \mathbb{F}_9 .

SOLUCIÓN: b)

PREGUNTA 4: El cuerpo \mathbb{F}_9 está descrito por la clave $(\alpha, x^2 + x + 2)$. Seleccionar la afirmación correcta sobre el elemento $\alpha^{-2} = (\alpha^2)^{-1}$:

- a) $\alpha^{-2} = 1 + \alpha$.
- b) $\alpha^{-2} = 1 + 2\alpha$.
- c) $\alpha^{-2} = 2 + \alpha$.

SOLUCIÓN: c)

PREGUNTA 5: El retículo de subcuerpos del cuerpo \mathbb{F}_{64} :

- a) tiene 4 elementos y su forma es cuadrada.
- b) tiene 4 elementos, todos en línea.
- c) tiene más de 4 elementos.

SOLUCIÓN: a)

PREGUNTA 6: El retículo de subcuerpos del cuerpo \mathbb{F}_{531441} :

- a) tiene 6 elementos.
- b) tiene menos de 6 elementos.
- c) tiene más de 6 elementos.

PREGUNTA 7: Selecciona la afirmación correcta:

- a) El polinomio $x^3+x+1\in\mathbb{F}_2[x]$ no tiene ninguna raíz en $\mathbb{F}_{1024}.$
- b) El polinomio $x^2+1\in\mathbb{F}_2[x]$ no tiene ninguna raíz en $\mathbb{F}_{1024}.$
- c) El polinomio $x^3+x^2+1\in\mathbb{F}_2[x]$ tiene alguna raíz en $\mathbb{F}_{1024}.$