Most well-known and popular clustering algorithm:

Start with some initial cluster centers

- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster

K-means: an example

K-means: Initialize centers randomly

K-means: readjust centers

K-means: readjust centers

K-means: readjust centers

No changes: Done

Iterate:

- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster

How do we do this?

- Assign/cluster each example to closest center
 - iterate over each point:
 - get distance to each cluster center
 - assign to closest center (hard cluster)
- Recalculate centers as the mean of the points in a cluster

- Assign/cluster each example to closest center
 - iterate over each point:
 - get **distance** to each cluster center
 - assign to closest center (hard cluster)
- Recalculate centers as the mean of the points in a cluster

Distance measures

Euclidean

•

$$d(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

good for spatial data

- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster

- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster

Iterate:

- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster

Mean of the points in the cluster:

$$\mu(C) = \frac{1}{|C|} \sum_{x \in C} x$$

where:

$$x+y=\sum_{i=1}^{n} x_i + y_i$$
 $\frac{x}{|C|} = \sum_{i=1}^{n} \frac{x_i}{|C|}$

K-means loss function

K-means tries to minimize what is called the "k-means" loss function:

$$loss = \sum_{i=1}^{n} d(x_i, \mu_k)^2$$
 where μ_k is cluster center for x_i

that is, the sum of the squared distances from each point to the associated cluster center

Minimizing k-means loss

Iterate:

- 1. Assign/cluster each example to closest center
- 2. Recalculate centers as the mean of the points in a cluster

$$loss = \sum_{i=1}^{n} d(x_i, \mu_k)^2$$
 where μ_k is cluster center for x_i

Does this mean that k-means will always find the minimum loss/clustering?