

โครงร่างโครงการวิศวกรรมสำรวจ

เรื่อง การแสดงผลความน่าเชื่อถือของเวลาในการเดินทาง Visualizing Travel Time Reliability

โดย

นางสาว ปัณฑิกา จันทราช 6231118021นาย ภานุวัฒน์ แสงสุริยะ 6231122421

ภาควิชาวิศวกรรมสำรวจ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

> อาจารย์ที่ปรึกษา ผศ.ดร. กรวิก ตนักษรานนท์

การแสดงผลความน่าเชื่อถือของเวลาในการเดินทาง Visualizing Travel Time Reliability

1. ความเป็นมาและความสำคัญของปัญหา

ในปัจจุบัน ปัญหาการจราจรนับเป็นปัญหาหลักในการเดินทางโดยเฉพาะในกรุงเทพมหานคร ทำให้ส่งผลถึงการใช้ชีวิตในประจำวันในการเดินทางไปยังสถานที่ต่างๆ อย่างเช่นโดยปกติในการไป สถานที่จาก A ไป B ใช้เวลาเพียง 20 นาทีแต่ในวันถัดไปใช้เวลาถึง 1 ชั่วโมง จะเห็นได้ว่าการเดินทาง ในปัจจุบันนั้นต้องแข่งกับเวลา ซึ่งเวลาเป็นสิ่งสำคัญต่อการดำเนินชีวิตประจำวัน หากมีการวางแผน เวลาที่ผิดพลาดในการไปนัดที่สำคัญอาจทำให้ผู้เดินทางสูญเสียโอกาสได้ ผู้เดินทางจึงต้องมีการเผื่อ เวลาที่มากขึ้นเพื่อให้ไปตามนัดได้ตรงเวลาจนบางครั้งเผื่อเวลาที่มากเกินความจำเป็น

เนื่องจากความไม่แน่นอนของเวลาการเดินทางนี้ การใช้แอปพลิเคชันที่มีอยู่อาจไม่เพียงพอใน การวางแผนเวลาในการเดินทาง จึงได้พัฒนาเป็นแอปพลิเคชันที่นำค่า Travel time reliability หรือ ค่าความน่าเชื่อถือของเวลาในการเดินทาง มาเป็นตัวชี้วัดและแสดงผลความแน่นอนของเวลาของถนน เส้นนั้น ๆ หากค่า Travel time reliability มีค่าสูงแสดงว่าถนนเส้นนั้นมีเวลาการเดินทางที่ใกล้เคียง กันในแต่ละวัน ทำให้ผู้ใช้งานสามารถวางแผนการเดินทางผ่านถนนแต่ละเส้นได้ อีกทั้งยังมีการ แสดงผลของ Planning time index เพื่อแสดงค่าเวลาการเดินทางทั้งหมดที่ควรออกเดินทาง

ดังนั้นในงานวิจัยนี้จึงมุ่งเน้นไปที่การแก้ปัญหาการวางแผนเวลาการเดินทางในชีวิตประจำวัน ไปจนถึงการวางแผนเวลาการเดินทางล่วงหน้าบนแอปพลิเคชัน นอกจากนี้ยังมีการแสดงผลข้อมูลการ ประมาณค่าเวลาในการเดินทางทั้งหมดและค่าความน่าเชื่อถือของเวลาในการเดินทางในรูปแบบกราฟ บนแอปพลิเคชัน อีกทั้งยังสามารถปรับค่า index ได้ตามความสำคัญของกิจกรรมที่ต้องดำเนินตาม สถานที่ต่างๆ เพื่อให้ผู้ใช้งานสามารถเดินทางไปยังสถานที่ต่างๆได้ตรงเวลาและไม่ต้องเผื่อเวลาที่มาก เกินความจำเป็น

2. วัตถุประสงค์

- 2.1) เพื่อแสดงผลค่า Travel time reliability ในรูปแบบกราฟเพื่อแสดงความน่าเชื่อถือของเวลา การเดินทางของถนนแต่ละช่วง
- 2.2) เพื่อวางแผนเวลาการเดินทางในชีวิตประจำวันของผู้ใช้งานแอปพลิเคชันให้ถูกต้องแม่นยำ มากขึ้น
- 2.3) เพื่อศึกษาการเปลี่ยนแปลงของค่า Travel time reliability ในแต่ละปี

3. ขอบเขตการวิจัย

นำข้อมูล Travel time index มาจัดทำ database แล้วนำมาทำการ visualization แบบ uncertainty ของ Travel time reliability และทำการออกแบบ Prototype Application สำหรับ การแสดงผลและใช้งาน

4. พื้นที่ศึกษา

ถนนพระรามที่ 4 และถนนที่ตัดกับถนนพระรามที่ 4 ช่วงเวลาที่ทำการศึกษา 1 มกราคม ค.ศ. 2019 - 31 ธันวาคม ค.ศ. 2020 ช่วงเวลา 6:00 – 21:00 น.

5. ข้อมูลที่ใช้ในการศึกษาวิจัย

5.1) ITIC Foundation และข้อมูล Travel Time index จาก Senior Project เรื่องการคาดการณ์ ความน่าเชื่อถือของเวลาในการเดินทางโดยใช้ข้อมูลระบบติดตามแท็กซี่สาธารณะ

6. แนวคิดและเหตุผลที่สำคัญ

แนวคิด Travel time reliability

Travel time reliability มีวิธีการคิดคือการนำค่าที่ Percentile 95th มาใช้สำหรับการคิดค่า Buffer index และ Planning time index

Buffer index เป็นการคำนวณเวลาที่ใช้เผื่อในการเดินทางโดยมีวิธีคือนำค่า 95th percentile ของ
 Travel time มาลบกับค่าเฉลี่ยของ Travel time ตามสูตรดังนี้

Travel Time Buffer Index (%) = 95th percentile travel time [minutes]- average travel time [minutes]

ตัวอย่างการคำนวณ

ค่าเฉลี่ยในการเดินทางจาก A ไป B ใช้เวลาทั้งหมด 20 นาที โดยมีค่าการเดินทางที่ 95th percentile อยู่ที่ 40 นาที และมีค่าเฉลี่ยอยู่ที่ 20 นาที จะได้ค่า Buffer index เป็น

$$BI = \frac{40 - 20}{20} = 1 = 100\%$$

Buffer time = $20 \times 1 = 20 \text{ min}$

ค่า buffer time จะเป็นค่าเผื่อเวลาในการเดินทาง ซึ่งในการหาค่าเวลาทั้งหมดจะได้เป็น

$$travel\ time = buffer\ time + average\ time = 20 + 20 = 40\ min$$

เพราะฉะนั้นผลที่ได้คือจะเป็นค่าที่ประมาณเวลาที่เดินทางทั้งหมดที่ควรเผื่อไว้

 Planning time index เป็นการคำนวณเวลาทั้งหมดที่ใช้ในการเดินทาง โดยมีวิธีการคิดคือนำ 95th percentile ของ travel time มาหารด้วย free-flow travel time ตามสูตรดังนี้

$$PTI = \frac{Travel\ Time_{95th\ percentile}}{Free\ Flow\ Travel\ Time}$$

 Travel time index เป็นการหาอัตราส่วนระหว่างค่าเฉลี่ยของ Travel time กับ free-flow travel คำนวณตามสูตรดังนี้

$$TTI = \frac{Average\ Travel\ Time}{Free\ Flow\ Travel\ Time}$$

• ส่วนในการแสดงผลแบบ uncertainty visualization ที่คาดว่าจะใช้ใน Histogram และ Box plot

แนวคิดการแสดงผล

ในการแสดงผลของ travel time index จะนำไปประยุกต์กับสูตรด้านบนและการแสดงผลแบบ uncertainty visualization โดยแบ่งเป็นขั้นตอนต่าง ๆ ดังนี้

- แบ่งช่วงเวลาเพื่อที่จะกำหนดค่า index ตามความเหมาะสม โดยเราจะแบ่งเวลาเป็นแต่ละชั่วโมง
 ของในแต่ละวันของในสัปดาห์นั้น ๆ แล้วนำค่า index ที่ได้ของแต่ละวันมาแสดงผลเปรียบเทียบ
 และหาค่าเฉลี่ยเพื่อที่จะทำนายค่า index ของสัปดาห์ต่อ ๆ ไป ซึ่งเราจะแบ่งการทำนายออกเป็น
 2 เงื่อนไข
 - หากค่า index ที่ได้ในของแต่ละชั่วโมง/วัน/สัปดาห์ มีค่าใกล้เคียงกัน เราจะนำค่าทั้งหมดมา เฉลี่ยเพื่อทำนายให้ได้ค่า index ในสัปดาห์ต่อ ๆ ไป

- หากค่า index ที่ได้มีค่าต่างกันมากเราจะไปตรวจสอบปัจจัยเสริมที่อาจทำให้ค่า index ต่างกันมากและตัดค่าที่เป็น outlier ออกไป
- 2. ตรวจสอบปัจจัยเสริมที่อาจทำให้ค่า index เพิ่มขึ้น โดยแต่ละปัจจัยจะมีค่า index ที่แตกต่างกัน ออกไป ตัวอย่างเช่น หากวันนั้นเป็นวันที่ฝนตกในช่วงเวลา 8:00 9:00 อาจจะทำให้ค่า index มากกว่าปกติ โดยเราจะเก็บข้อมูลของวันที่ฝนตกในวันและช่วงเวลานั้น ๆ มาลบกับค่าเฉลี่ยของ index ที่ไม่มีปัจจัยเสริมโดยเราจะได้ค่า index ของปัจจัยนั้น ๆ และนำค่าที่ได้เก็บไว้ใน database หากมีปัจจัยเสริมที่เกิดขึ้นในวันและเวลาเดียวกัน เราจะได้นำค่า index ที่ได้มาบวก เพิ่มกับค่า index ที่เก็บข้อมูลไว้ใน database ก็ได้จะเป็นค่า index ของวันที่เกิดเหตุการณ์นั้น
- 3. พัฒนาในรูปแบบของแอปพลิเคชัน ซึ่งในแอปพลิเคชันจะมีฟังก์ชันต่างๆ เริ่มแรกโดยให้ผู้ใช้งาน เลือกสถานที่ที่จะเดินทางไป ณ เวลานั้นๆ จากนั้นจะให้ผู้ใช้งานเลือกกิจกรรมที่ดำเนินการโดย สามารถปรับระดับความสำคัญของกิจกรรมนั้นได้ โดยแอปพลิเคชันจะมีการปรับค่า index ตาม ความสำคัญ หากกิจกรรมนั้นมีความสำคัญมากค่า index จะถูกคำนวณโดยใช้ 95th percentile เพื่อที่ให้ผู้ใช้งานได้ไปถึงตรงเวลา แต่ถ้าหากมีความสำคัญลดลงมาค่า percentile จะลดลงด้วย เมื่อผู้ใช้งานเลือกระดับความสำคัญแล้ว แอปพลิเคชันจะแสดงผลเป็นเวลาทั้งหมดที่ควรเดินทาง ซึ่งเวลาทั้งหมดจะได้มาจากการคำนวณ Planning time index และสามารถดูข้อมูลกราฟ เพิ่มเติมของ Travel time reliability ได้ นอกจากนี้ในแอปพลิเคชันยังสามารถวางแผนเวลา ล่วงหน้าได้ไปจนถึงรายสัปดาห์

7. ขั้นตอนการดำเนินงานวิจัย

- 7.1) นำข้อมูลที่ได้จาก senior project และ ITIC มาทำการวิเคราะห์และนำไปจัดทำฐานข้อมูล
- 7.2) ออกแบบ Prototype การแสดงผลข้อมูล และนำข้อมูลไปใช้งานโดยทำการออกแบบ Application หรือ Web application
- 7.3) นำ Prototype ไปให้ user ลองใช้งานเพื่อนำไปปรับปรุงและแก้ไขข้อบกพร่อง
- 7.4) สรุปผล เขียนรายงาน และนำเสนอ

8. ประโยชน์ที่คาดว่าจะได้รับ

- 8.1) ตัว Prototype Application สามารถตอบสนองการใช้งานได้อย่างดี
- 8.2) สามารถไปนัดสำคัญได้ตรงเวลา และวางแผนเวลาในการเดินทางได้อย่างถูกต้อง
- 8.3) สามารถแสดงผลค่าความน่าเชื่อถือของเวลาในการเดินทางโดยผู้ใช้งานสามารถใช้งานได้ อย่างสะดวกและเข้าใจง่าย

9. แผนการดำเนินงาน

รายละเอียด	ปี 2022			ปี 2023				
	ต.ค.	พ.ย.	ช.ค.	ม.ค.	ก.พ.	มี.ค.	เม.ย.	พ.ค.
ศึกษางานวิจัยที่เกี่ยวข้อง								
ศึกษาการทำ uncertainty visualization								
ทำการ visualization และออกแบบ Prototype								
test prototype application								
สรุปผลการทดลองและทำ final report								
นำเสนอผลงาน								

เอกสารอ้างอิง

Texas Transportation Institute with Cambridge Systematics, Inc. **Travel Time Reliability**. U.S. Department of Transportation, Federal Highway Administration

Claus O. Wilke. 2019. Fundamental of Data Visualization. O'Reilly Media, Inc.