CSE215 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

• Function composition

Composition of functions

Composition of functions

Composition of functions

Definition

- Let $f: X \to Y$ and $g: Y \to Z$. Let the range of f is a subset of the domain of g.
- Define a new composition function $g \circ f : X \to Z$ as follows:

$$(g \circ f)(x) = g(f(x))$$
 for all $x \in X$,

The notation g • f is read as "g of f", "g after f", "g circle f", "g round f ", "g about f", "g composed with f", "g following f", "f then g", or "g on f", or "the composition of g and f".

A missing slide about function equality

- Let f and g two functions A -> B
- We say f = g if for any a in A, f(a) = g(a)
- We say f!=g if there exists a in A, f(a) != g(a)
- For example,
 - If $f(x) = (x+1)^2$, and $g(x) = x^2 + 2x + 1$. Then f = g.
 - If $f(x) = (x+1)^2$, and $g(x) = x^2 + 1$. Then f! = g.

Composition of functions: Example 1

Problem

• Let $f: \mathbb{Z} \to \mathbb{Z}$ be the successor function and let $g: \mathbb{Z} \to \mathbb{Z}$ be the squaring function. Then f(n) = n+1 for all $n \in \mathbb{Z}$ and $g(n) = n^2$ for all $n \in \mathbb{Z}$. Find $g \circ f$. Find $f \circ g$. Is $g \circ f = f \circ g$?

Composition of functions: Example 1

Problem

• Let $f: \mathbb{Z} \to \mathbb{Z}$ be the successor function and let $g: \mathbb{Z} \to \mathbb{Z}$ be the squaring function. Then f(n) = n + 1 for all $n \in \mathbb{Z}$ and $g(n) = n^2$ for all $n \in \mathbb{Z}$. Find $g \circ f$. Find $f \circ g$. Is $g \circ f = f \circ g$?

Solution

- $g \circ f$. $(g \circ f)(n) = g(f(n)) = g(n+1) = (n+1)^2 \text{ for all } n \in \mathbb{Z}.$
- $ullet f\circ g.$ $(f\circ g)(n)=f(g(n))=f(n^2)=n^2+1 \ ext{for all} \ n\in \mathbb{Z}.$
- $\bullet \ \, g \circ f \neq f \circ g. \\ \quad \text{E.g. } (g \circ f)(1) = 4 \text{ and } (f \circ g)(1) = 2$

- . Define $L: \mathbb{Z} \to \mathbb{Z}$ and $M: \mathbb{Z} \to \mathbb{Z}$ by the rules $L(a) = a^2$ and $M(a) = a \mod 5$ for all integers a.
 - **a.** Find $(L \circ M)(12)$, $(M \circ L)(12)$, $(L \circ M)(9)$, and $(M \circ L)(9)$.
 - b. Is $L \circ M = M \circ L$?

 An identity function I is a function that always returns itself: I(a) = a for any a of the domain of I.

Prove the following

Theorem

• If f is a function from a set X to a set Y, and I_X is the identity function on X, and I_Y is the identity function on Y, then $f \circ I_X = f$ and $I_Y \circ f = f$.

Consider two functions f and g, both mapping real numbers to real numbers $(f : \mathbb{R} \to \mathbb{R})$ and $g : \mathbb{R} \to \mathbb{R}$). If both the functions are injective (one-to-one), is the function f + g also injective? To clarify, the function f + g is defined such that it maps any real number x to the sum of f(x) and g(x).

Now, if the functions f and g are surjective (onto), does this guarantee that the function f + g (defined in the same way as above) is also surjective?