DEPARTMENT OF ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY Institute for Data Processing and Electronics (IPE)

A Terabit sampling system with a photonics time-stretch ADC

Master Thesis of

Olena Manzhura

at the Institute for Data Processing and Electronics (IPE)

Reviewer: Prof. Dr. Anke-Susanne Müller (LAS)

Second Reviewer: Dr. Michele Caselle (IPE)

15.11.2020 - 14.05.2021

Erklärung zur Selbstständigkeit

Ich versichere, dass ich diese Arbeit selbstständ angegebenen Quellen und Hilfsmittel benutzt hal nen Stellen als solche kenntlich gemacht und wissenschaftlicher Praxis in der gültigen Fassun	be, die wörtlich oder inhaltlich übernomme- die Satzung des KIT zur Sicherung guter
Karlsruhe, den 14	.05.2021,Olena Manzhura
	Als Prüfungsexemplar genehmigt von
Karlsruhe, den 14.05.2021,	Prof. Dr. Anke-Susanne Müller (LAS)

Abstract

Zusammenfassung

Résumé

Contents

1.	Intro	oduction	1
2.	The	oretical Fundamentals	3
	2.1.	Synchrotron	3
		2.1.1. KARA	4
		2.1.1.1. KAPTURE-2	4
	2.2.	Optical Time Stretching Technique	6
		2.2.1. Applications	6
	2.3.	Analog-To-Digital-Converter	7
	2.4.	New Readout System	8
		2.4.1. Xilinx Zynq UltraScale+ RFSoC	8
		2.4.2. Requirements	8
3.	Dev	elopment of the system	9
	3.1.	Architecture	9
	3.2.	PCB-Layout	.0
4.	Con	clusions and Outlook 1	.1
Αp	pend	lix 1	.3
•	Α.	First Appendix Section	.3
Bil	bliogi	raphy 1	.5

List of Figures

2.1.	Electro-Magnetic spectrum	3
2.2.	General schema of KAPTURE (cf. [CAB ⁺ 17, p.2])	4
2.3.	Signal with sample points	5
3.1.	Edge-Coupled Coplanar Waveguide	10
3.2.	Coplanar Waveguide with Ground	10

List of Tables

9 1 D	
	•
3.1. Power consumption of components on the board	 č

List of abbreviations

KIT Karlsruhe Institute of Technology

IPE Institut für Prozessdatenverarbeitung und Elektronik

KARA Karlsruhe Research Accelerator

KAPTURE Karlsruhe Pulse Taking Ultra-fast Readout Electronics

ADC Analog-To-Digital-Converter

TAH Track-And-Hold

PLL Phase-Locked-Loop

DLL Delay-Locked-Loop

FMC FPGA Mezzanine Card

1. Introduction

2. Theoretical Fundamentals

2.1. Synchrotron

Figure 2.1.: Electro-Magnetic spectrum

2.1.1. KARA

- Located at the Karlsruhe Institute of Technology (KIT)
- Up to 184 electron packages (bunches) can be filled with a distance between two adjacent bunches of $2\,\mathrm{ns}$
- Operated by the Institute of Beam Physics and Technology (IBPT)

2.1.1.1. KAPTURE-2

KAPTURE (**Ka**rlsruhe **P**ulse **T**aking Ultra-fast **R**eadout **E**lectronics) is a system – integrated in KARA – designed to continuously sample ultra-short pulses generated by terahertz detectors. The newer version, KAPTURE-2, was designed for more accurate sampling for pulse repetition rates up to 2 GHz. The acquired data is processed by a FPGA and GPU architecture [CAB⁺17]. The general structure of the board is shown in Figure 2.2.

Figure 2.2.: General schema of KAPTURE (cf. [CAB+17, p.2])

The pulse from the THz detector is fed into a power splitter, which splits the signal into four identical pulses and distributes them to four channels, consisting of a respective Track-And-Hold (TAH) unit and a 12-bit ADC@500 MS/s. The sampling time of each unit can be adjusted individually with a Picosecond Delay Chip with a resolution of 3 ps (maximal delay range: 100 ps). The clock signal is provided by KARA, which cleared from jitter by a Phase-Locked-Loop (PLL). The clean clock signal is distributed to the delay chips with a fan-out. [CAB⁺17]

This results in the sampling of the signal as shown in Figure 2.3.

Figure 2.3.: Signal with sample points

2.2. Optical Time Stretching Technique

2.2.1. Applications

${\bf 2.3.}\ \, {\bf Analog\text{-}To\text{-}Digital\text{-}Converter}$

2.4. New Readout System

2.4.1. Xilinx Zynq UltraScale+ RFSoC

2.4.2. Requirements

Delay chip

The necessary step size for the delay chips, when using 16 ADC@2 GS/s in time-interleaving mode, is: $\frac{2\,{\rm GS/s}}{16}=31\,{\rm ps}$

3. Development of the system

3.1. Architecture

In a first step, a new front-end board needs to be developed for the new system. This will be plugged onto the Xilinx ZCU216 Evaluation Board.

Power Supply for Track-And-Hold amplifiers

For the Track-And-Hold amplifiers a new power supply unit – the ADP1741 (Analog Devices) – should be used. It is necessary to think about the amount of power supply chips needed. As a rule of thumb, the power supply should provide twice the maximum power needed by the components it drives. The power consumption/maximum current for the respective components on the THERESA board is listed in Table 3.1.

Table 3.1.: Power consumption of components on the board

	-			
V_{cc} (V)	I_{max} (A)	P_{max} (W)	$\#_{parts}$	I_{tot}^{1} (A)
2	0.221	0.442	16	3.536
-5	-0.242	1.21		3.872
-3.3	0.185	-0.611	16	2.96
3.3	0.234^{2}	0.772	2	0.468
3.3	0.590^{3}	1.947	1	0.590
3.3	0.03	0.198	1	0.03
	2 -5 -3.3 3.3 3.3	$ \begin{array}{ccc} 2 & 0.221 \\ -5 & -0.242 \\ -3.3 & 0.185 \\ 3.3 & 0.234^2 \\ 3.3 & 0.590^3 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

 $^{^{1}}$ for 16 ADCs

The maximal current which the ADP1741 can provide @2 V is 2 A. This means, with one Track-And-Hold amplifier requiring a maximal current of 0.221 A, one ADP1741 can handle four units according to the rule mentioned beforehand $(I_{max_ADP1741} = 2 \text{ A} > 2 * I_{tot}, I_{tot} = 4 \times 0.221 \text{ A} = 0.884 \text{ A}).$

NB6L295

Dual Channel Programmable Delay Chip.

- Two individual variable delay channels
- Dual Delay: minimal delay 3.2 ns
- Total Delay Range: 3.2 ns to 8.8 ns per Delay Channel
- 11 ps Increments in 511 steps
- 100 ps Typical Rise and Fall Times

 $^{^2\}mathrm{All}$ Outputs and RF-Buffer

 $^{^3 \}mathrm{All} \ \mathrm{CLKs}$

3.2. PCB-Layout

Surface Coplanar Waveguide with Ground

Figure 3.1.: Edge-Coupled Coplanar Waveguide

Surface Coplanar Waveguide with Ground

The characteristic impedance of a coplanar waveguide is given as follows [Wad91]:

$$Z_0 = \frac{60.0\pi}{\sqrt{\epsilon_{eff}}} \frac{1.0}{\frac{K(k)}{K(k')} + \frac{K(k_1)}{K(k'_1)}}$$
(3.1)

It comprises of the following components, with K(k) being an elliptical integral of the first kind (see also [BSMM99, p. 430]):

$$k = a/b (3.2)$$

$$k' = \sqrt{1.0 - k^2} \tag{3.3}$$

$$k_1' = \sqrt{1.0 - k_1^2} \tag{3.4}$$

$$k_1 = \frac{\tanh(\frac{\pi a}{4.0h})}{\tanh(\frac{\pi b}{4.0h})} \tag{3.5}$$

$$\epsilon_{eff} = \frac{1.0 + \epsilon_r \frac{K(k')}{K(k)} \frac{K(k_1)}{K(k'_1)}}{1.0 + \frac{K(k')}{K(k)} \frac{K(k_1)}{K(k'_1)}}$$
(3.6)

Figure 3.2.: Coplanar Waveguide with Ground

4. Conclusions and Outlook

Appendix

A. First Appendix Section

 ${\bf LVCMOS}\,$ Low voltage complementary metal oxide semiconductor

LVDS Low-voltage differential signaling

 ${f LVPECL}$ Low-voltage positive emitter-coupled logic

Bibliography

- [BSMM99] Bronstein, Semendjajew, Musiol und Mühlig: Taschenbuch der Mathematik. Verlag Harri Deutsch, 1999.
- [CAB+17] Caselle, M., L.E. Ardila Perez, M. Balzer, A. Kopmann, L. Rota, M. Weber, M. Brosi, J. Steinmann, E. Bründermann und A. S. Müller: KAPTURE-2. A picosecond sampling system for individual THz pulses with high repetition rate. Journal of Instrumentation, 12, 2017.
- [Wad91] Wadell, Brian C.: Transmission Line Design Handbook. Artech House, 1991.