Problemas Tema 2. Topología I

Doble grado en Informática y Matemáticas Curso 2020–21

- 1.— Sea $f:(X,T)\to (Y,T')$ una aplicación entre dos espacios topológicos. Probar que son equivalentes:
 - 1. f es continua.
 - 2. $f^{-1}(B') \in T$ para todo elemento B' de una base \mathcal{B}' de T'.
 - 3. $f^{-1}(S') \in T$ para todo elemento S' de una subbase S' de T'.
- **2.** Sea $f:(X,T)\to (Y,T')$ una aplicación entre dos espacios topológicos. ¿Es equivalente la continuidad de f a alguna de las dos siguientes propiedades?

 - 1. $\overline{f^{-1}(C)} \subset f^{-1}(\overline{C})$ para todo $C \subset Y$. 2. $f^{-1}(\operatorname{int}(C)) \subset \operatorname{int}(f^{-1}(C))$ para todo $C \subset Y$.
- **3.** Sean f, g dos aplicaciones continuas de un espacio topológico (X, T) en (\mathbb{R}, T_u) . Probar que f + g y fg son aplicaciones continuas.
- **4.** Sea $f_i:(X,T)\to(Y,d), i\in\mathbb{N}$, una sucesión de aplicaciones continuas de un espacio topológico (X,T) en un espacio métrico (Y,d). Supongamos que $\{f_i\}_{i\in\mathbb{N}}$ converge uniformemente a una función $f: X \to Y$. Probar que $f: (X,T) \to (Y,d)$ es continua.

(La sucesión f_i converge uniformemente a f si para todo $\epsilon > 0$, existe $i_0 \in \mathbb{N}$ tal que $d(f_i(x), f(x)) < \epsilon$ para todo $i \ge i_0$ y todo $x \in X$).

5.— Una aplicación $f:(X,d)\to (Y,d')$ entre espacios métricos es lipschitziana si existe una constante K > 0 tal que:

$$d'(f(x), f(y)) \leq K d(x, y), \quad \forall x, y \in X.$$

Probar que una aplicación lipschitziana es continua.

- **6.** Sea (X,d) un espacio métrico y $x \in X$. Probar que la aplicación $f:(X,d) \to X$ (\mathbb{R}, d_u) definida por f(z) = d(z, x) para todo $z \in X$ es lipschitziana. $(d_u$ es la distancia usual en \mathbb{R}).
- **7.** Sea (X,d) un espacio métrico y $A \subset X$. Probar que la aplicación $\delta_A: (X,d) \to X$ (\mathbb{R}, d_u) definida por:

$$\delta_A(z) = \inf\{d(z, a) : a \in A\}$$

es lipschitziana y, por tanto, continua.

- **8.** Sean (X,T), (Y,T') dos espacios topológicos, $U,V\subset X$ conjuntos abiertos tales que $X = U \cup V$. Probar que $f: (X,T) \to (Y,T')$ es continua si y sólo si $f|_U:(U,T_U)\to (Y,T')$ y $f|_V:(V,T_V)\to (Y,T')$ son continuas.
- 9. Consideramos el conjunto:

$$A = \{(x, y) \in \mathbb{R}^2 : xy = 1\}.$$

- 1. Probar que A es un conjunto cerrado en \mathbb{R}^2 con la topología usual.
- 2. Sea $p:\mathbb{R}^2\to\mathbb{R}$ la aplicación p((x,y))=x. Probar que p(A) no es cerrado en \mathbb{R} con la topología usual.
- **10.** Sea $f: \mathbb{R} \to \mathbb{R}$ una función monótona estrictamente creciente y continua. Probar que es un homeomorfismo.
- **11.** Sean $a, b, c, d \in \mathbb{R}$, con a < b. Probar que los subconjuntos (a, b), $(-\infty, c)$, $(d, +\infty)$ y \mathbb{R} son homeomorfos con la topología inducida por la usual de \mathbb{R} .
- 12.— Probar que las traslaciones son homeomorfismos de \mathbb{R}^n con la distancia usual.
- 13.— Probar que las bolas en \mathbb{R}^n con las distancias asociadas a las normas

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}, \quad ||x||_1 = \sum_{i=1}^n |x_i|, \quad ||x||_\infty = \max\{|x_i| : i = 1, \dots, n\}$$

son homeomorfas.

14.— Sea A un subconjunto no vacío de un espacio topológico (X,T). Probar que la topología inducida T_A es la topología inicial definida por la aplicación inclusión $i_A:A\to X$.

Concluir que una aplicación $f:(Y,T')\to (A,T_A)$ es continua si y sólo si $i_A\circ f:(Y,T')\to (X,T)$ es continua.

15.— Sean (X,T), (Y,T') espacios topológicos y $f:(X,T)\to (Y,T')$ una aplicación continua. Se define el grafo de f como el subconjunto G(f) de $X\times Y$ definido por:

$$G(f) = \{(x, f(x)) : x \in X\}.$$

Probar que (X,T) es homeomorfo a G(f) con la topología inducida en G(f) por la topología producto $T \times T'$.

- **16.** Se considera la aplicación $f: \mathbb{R} \to \mathbb{S}^1$ definida por $f(t) = (\cos t, \sin t)$. Se define en \mathbb{R} la relación de equivalencia xRy sy y sólo si f(x) = f(y) (si y solo si x y es un múltiplo entero de 2π).
 - 1. Probar que existe una aplicación $g:\mathbb{R}/R\to\mathbb{S}^1$ tal que $g\circ p=f,$ donde $p:\mathbb{R}\to\mathbb{R}/R$ es la proyección.
 - 2. Probar que g es un homeomorfismo cuando se consideran en \mathbb{R}/R la topología cociente y en \mathbb{S}^1 la topología inducida por la topología usual.
- 17.— Sea $X=[0,1]\times[0,1]$ con la topología inducida por la usual de \mathbb{R}^2 . Se define la relación de equivalencia en X:

$$(x,y)R(x',y') \Leftrightarrow y = y', |x - x'| = 0, 1.$$

Probar que X/R es homeomorfo al cilindro $\mathbb{S}^1 \times [0,1]$.

- **18.** Sea (X,T) un espacio topológico. Probar que es Hausdorff si y sólo si el subconjunto $\Delta = \{(x,x) : x \in X\} \subset X \times X$ es cerrado en $(X \times X, T \times T)$.
- **19.** Sea $f,g:(X,T)\to (Y,T')$ dos aplicaciones continuas. Supongamos que (Y,T') es Hausdorff. Probar que:

- 1. El conjunto $\{x \in X : f(x) = g(x)\}$ es cerrado en X.
- 2. El grafo de f, $G(f) = \{(x, f(x)) : x \in X\}$, es cerrado en $X \times Y$.
- 3. Si f y g coinciden en un conjunto denso de X, entonces f = g.
- **20.** Sea (X,T) un espacio topológico y \sim una relación de equivalencia en X. Se considera el subconjunto $R \subset X \times X$ definido por:

$$R = \{(x, x') \in X \times X : x \sim x'\}.$$

Probar:

- 1. Si $(X/\sim, T/\sim)$ es un espacio Hausdorff, entonces R es un subconjunto cerrado de $(X\times X, T\times T)$.
- 2. Si R es un subconjunto cerrado de $X \times X$ y la aplicación $\pi: X \to X/\sim$ es abierta, entonces $(X/\sim, T/\sim)$ es un espacio de Hausdorff.
- **21.** En $\mathbb{R}^{n+1} \setminus \{0\}$ consideramos la relación de equivalencia:

$$xRy \Leftrightarrow \exists \lambda \neq 0 : x = \lambda y.$$

El espacio cociente $(\mathbb{R}^{n+1} \setminus \{0\})/R$ es el espacio proyectivo real $\mathbb{P}_n(\mathbb{R})$ de dimensión n. Si se considera en \mathbb{S}^n la relación de equivalencia $x \sim y \Leftrightarrow x = \pm y$, probar que $\mathbb{P}_n(\mathbb{R})$ y \mathbb{S}^n/\sim son homeomorfos.