MSEIRS Model

Vaibhav Amit Patel - 201401222 Tanmay Patel - 201401409

Model

Parameter	Explanation	Value
B	Birth rate per day	10
δ	Passive immune becomes	0.005 (200 days)
	susceptible rate	
μ_1	Death rate	0.002
μ_2	Death rate for infecteds	0.007
	and exposed	
β	A susceptible meets	0.6
	an infected at contact	
	rate of 10 it can go in latent	
	period with probability 0.06	
ϵ	Quarantined becomes infected	$0.071 \ (14 \ days)$
γ	Infected gets recovered	0.0667 (15 days)
ρ	Recovered becomes	0.001
	susceptible again	(1000 days)

TABLE I. Parameters used in the simulation

Model

$$\frac{dM}{dt} = B - (\delta - \mu_1)M$$

$$\frac{dS}{dt} = B + \delta M - \frac{\beta SI}{N} - \mu_1 S + \rho R$$

$$\frac{dE}{dt} = \frac{\beta SI}{N} - (\epsilon + \mu_2)E$$

$$\frac{dI}{dt} = \epsilon E - (\gamma + \mu_2)I$$

$$\frac{dR}{dt} = \gamma I - (\mu_1 + \rho)R$$

Parameter	Explanation	Value
B	Birth rate per day	10
δ	Passive immune becomes	0.005 (200 days)
	susceptible rate	
μ_1	Death rate	0.002
μ_2	Death rate for infecteds	0.007
	and exposed	
β	A susceptible meets	0.6
	an infected at contact	
	rate of 10 it can go in latent	
	period with probability 0.06	
ϵ	Quarantined becomes infected	0.071 (14 days)
γ	Infected gets recovered	0.0667 (15 days)
ρ	Recovered becomes	0.001
	susceptible again	(1000 days)

TABLE I. Parameters used in the simulation

Deterministic approach simulation result

Comparison

Modeling using cellular automaton - rules

Dead Recovered Infected Exposed Susceptible

Passive imm

Modeling using cellular automaton

Dead

Recovered

Infected

Exposed

Susceptible

Passive imm

Modeling using cellular automaton

Summary and Conclusion

- Modeling with MSEIRS model.
- The deterministic approach
- The cellular automaton approach
- Some things which do not depend on the local property, but depend on the overall number of people in the study, can not be included in the cellular automaton
- The rules for the automaton were good enough to produce almost the same results as in the deterministic model.

Thank you