Demystifying Earth Observation Foundation Models Overview & Demonstration with Pangaea

Sandy Kerr and Melanie Frost (606.3)

Overview

- Foundation Model (FM) Introduction
- FM Process for Earth Observation
- Pangaea Overview
- Pangaea Example
- Summary

FM Overview > FM Process > Pangaea > Example

Old Way: Al/ML Models

Your own data

Your labels

Your compute

Your model architecture

New model for every task

FM Overview

FM Process

Pangaea

New way: Foundation Models

Fine Tuning

- Less Compute
- Fewer Data
- Fewer Labels
- Pre-built architecture

Foundation Model (Encoder)

Image Source: Big Sky Mountain

Foundation Models

Image Source: NVIDIA

FM Overview FM Process

Pangaea

Process

Make Custom or Set up compute Choose existing **Choose Model** Dataset Train/Fine Tune Evaluate Model Adjust Hyperparameters

FM Overview FM Process Pangaea

Earth Observation Tasks

Semantic Segmentation

- Land Cover
- Land Class
- Object Detection

Continuous Prediction

- Canopy Height
- Bathymetry

Image Classification

- Object Detection
- Location ID

Change Detection

- Burn Scars
- Biomass

Generative

- Cloud Gap Filling
- Captioning

FM Overview

FM Process

Pangaea

Earth Observation FMs

Abbreviation	Title	Publication	Paper	Code & Weights
GeoKR	Geographical Knowledge-Driven Representation Learning for Remote Sensing Images	TGRS2021	GeoKR	<u>link</u>
-	Self-Supervised Learning of Remote Sensing Scene Representations Using Contrastive Multiview Coding	CVPRW2021	Paper	link
GASSL	Geography-Aware Self-Supervised Learning	ICCV2021	GASSL	link
SeCo	Seasonal Contrast: Unsupervised Pre- Training From Uncurated Remote Sensing Data	ICCV2021	SeCo	link
DINO-MM	Self-supervised Vision Transformers for Joint SAR-optical Representation Learning	IGARSS2022	DINO-MM	link
SatMAE	SatMAE: Pre-training Transformers for Temporal and Multi-Spectral Satellite Imagery	NeurlPS2022	SatMAE	link
RS-BYOL	Self-Supervised Learning for Invariant Representations From Multi-Spectral and SAR Images	JSTARS2022	RS-BYOL	null
GeCo	Geographical Supervision Correction for Remote Sensing Representation Learning	TGRS2022	GeCo	null
RingMo	RingMo: A remote sensing foundation model with masked image modeling	TGRS2022	RingMo	Code
RVSA	Advancing plain vision transformer toward remote sensing foundation model	TGRS2022	RVSA	link
RSP	An Empirical Study of Remote Sensing Pretraining	TGRS2022	RSP	link
MATTER	Self-Supervised Material and Texture Representation Learning for Remote Sensing Tasks	CVPR2022	MATTER	null
CSPT	Consecutive Pre-Training: A Knowledge Transfer Learning Strategy with Relevant Unlabeled Data for Remote Sensing Domain	RS2022	<u>CSPT</u>	link
-	Self-supervised Vision Transformers for Land-cover Segmentation and Classification	CVPRW2022	Paper	link
BFM	A billion-scale foundation model for	Arxiv2023	BEM	null

- Dozens of Earth Observation Foundation Models
- List of ~300 compiled by SkySense team: https://github.com/Jack-bo1220/Awesome-Remote-Bensing-Foundation-Models

... and more!

Pangaea

- Global and Inclusive Benchmark for Geospatial Foundation Models
- Hosted on Git, Modified by NASA iLab team
- Link:

 https://github.com/nasa nccs-hpda/ilab pangaea-bench

FM Overview > FM Process > Pangaea > Example

Pangaea

Datasets

- HLS Burn Scars
- MADOS
- PASTIS-R
- Sen1Floods11
- xView2
- Five Billion Pixels
- DynamicEarthNet
- CropTypeMapping-South Sudan
- SpaceNet 7
- AI4SmallFarms
- BioMassters

Customizations

- Preprocessing
- Learning Rate
- Optimizer

Encoders

Base

- DOFA
- SSL4EO data2vec CROMA
- SSL4EO DINO
- Prithvi
- SSL4EO MAE
- RemoteCLIP
- SSL4EO MoCo
- OpenCV
- Scale-MAE
- ResNet
- SatlasNet
- Terramind

GFM

- ViT
- SpectralGPT

Criteria

- Cross Entropy
- Weighted Cross Entropy
- Dice
- MAE

Decoders

- CLS KNN
- CLS KNN Multilabel
- CLS Linear
- Reg Upernet
- Reg Upernet MT Linear
- Reg Upernet MT LTAE
- Seg Siamunet Conc
- Seg Siamunet Diff

- Seg Siamupernet Conc
- Seg Siamupernet Diff
- Seg Unet
- Seg Upernet
- Seg Upernet MT Linear
- Seg Upernet MT LTAE
- Seg Upernet MT None

Tasks

- Single Temporal Semantic
 Segmentation
- Multi-Temporal Semantic Segmentation
- Change Detection

- Single Temporal Regression
- Multi-Temporal Regression
- Linear Classification
- KNN Probe Classification

FM Overview

FM Process

Pangaea

- Download Repo
- Create VENV from .yaml

Choose or Make Custom Dataset

- Download
- Filter
- Tile
- Test/Train Split

Pangaea Process

Clone Repo & Set up conda environment

Choose:

- Encoder
- Decoder
- Task

Choose Model

- Notebooks
- Command line

- Visual Map
- Qualitative:
 - Accuracy/IOU
 - Precision/Recall
 - Confusion Matrix
- Quantitative:
 - R²
 - Scatterplots

Evaluate

Train/Fine Tune Model

Adjust Hyperparameters

- Data Preprocessing
- Learning Rate
- Optimizer
- Criteria

FM Overview

FM Process

Pangaea

Example: Using Foundation Models for Land Cover

FM Overview > FM Process > Pangaea > Example

Dataset Creation

- Landsat 8/9 SR
 - Bands 1-7 + QA Aerosol
 - June 25, 2024 July 28, 2024
 - Fewest Clouds
 - 019032, 019033, 019034, 020034
 - Spread of NLCD values
- NLCD 2024
- Filtered on QA Aerosol
 - No Clouds
 - No NA values
- Total 224x224x7 tiles:
 - 5,000 train tiles
 - 1,418 test/1,418 validate tiles
- Preprocess: Remove Outliers & Normalize

Foundation Models for Land Cover: Encoders

FM Overview

FM Process

Pangaea

Repo

https://github.com/nasa-nccs-hpda/ilab-pangaea-bench

FM Overview

Training Notebook

Task Options

Filename 1

```
# PRINT OPTIONS
task_options = get_folder_options("task")
print(task_options)
['change_detection', 'knn_probe', 'knn_probe_multi_label', 'linear_classification', 'linear_classification_multi_label', 'regression', 'segmentation']
task = "segmentation"
```

FM Overview FM Process

Evaluation Notebook

Class 4 – N/A
Class 3 – agriculture/grass/shrub

Class 2 – forest/wetland

Class 1 – developed

Class 0 – water

Evaluation Notebook

Classification Report:							
	precision	recall	f1-score	support			
Class 1	0.82	0.49	0.62	470			
Class 2	0.56	0.34	0.42	7191			
Class 3	0.50	0.47	0.48	12483			
Class 4	0.70	0.78	0.74	29707			
Class 5	0.40	0.30	0.34	149			
accuracy			0.64	50000			
macro avg	0.59	0.48	0.52	50000			
weighted avg	0.63	0.64	0.63	50000			

FM Overview > FM Process > Pangaea Example

Summary

- Go ahead and try it out! https://github.com/nasa-nccs-hpda/ilab-pangaea-bench
- We'll be adding extra functionality to notebooks
- We welcome comments, questions, suggestions for improvement there!

FM Overview > FM Process > Pangaea > Example

Questions?

AlphaEarth Foundations

- Google DeepMind
- Embeddings Only
- Dozens of different public sources— optical satellite images, radar, 3D laser mapping, climate simulations, and more
- 10x10 meter squares

https://deepmind.google/discover/blog/alphaearth-foundations-helps-map-our-planet-in-unprecedented-detail/