OLIMPIADA DE MADRID- 2011

(Tómese donde se necesite, g= 9,81 m s⁻²)

1. Un coche recorre 50 km	a 40 km/h; la	velocid	ad constante	e a la que	recorre lo	s siguientes	50 km para
que la velocidad media en lo	os 100 km total	es sea	50 km/h es	: :			
a) 66,7	b)			c)			d)
						A	
2. Dos partículas se encuent	tran en el punto	A más	alto de una	ı		EB	
circunferencia vertical de diá	metro 2R. Una	de las	partículas, la	1, se dej	а		
caer libremente y la otra des	sliza sin rozami	ento poi	r una rampa	de		4	c
inclinación α que corta a la	circunferencia e	en el pu	nto B; cuand	do la			
partícula 2 pase por el punto	B, la partícula	1 se e	ncontrará en	el punto:			
a) Centro de la circunfe	rencia	b)	<u>D</u>	c)	E	d)	С
3. Una catapulta lanza una	a piedra que a	alcanza	una altura	máxima d	de 40 m	a 190 m d	el punto de
lanzamiento (en suelo horizo	ntal). El ángulo	de lanz	amiento resp	pecto de la	a horizonta	l es (en °)	
a) 23°	b)		c)			d)	
				,			
4. Sobre un plano inclinado			-				·
masa 2 kg. La aceleración	•					r el plano de	derecha a
izquierda para que el cuerpo		n repos	•	lano es (e	en m/s²):		
a) 5,7	b)		c)			d)	
	. 75 daha da	، بازمانید د				- ć manda	م مناسکیا م
5. Un péndulo de longitud O					erticai cuy	o angulo en	er vertice es
de 30°.La velocidad tangenci		i dei per		m/s):		٦١.	
a) 0,71	b)		c)			d)	
6. Una persona de 80 kg de	ecide subir por	una es	calera autom	iática de l	oajada. Si	el piso super	ior está a 8
m de altura, la velocidad de	la escalera es	5 m/s	y su inclina	ción 15°,	el trabajo	mínimo que o	lebe realiza
para llegar en 10 s es (en k	ျ) း						
a) 8,9	b)		c)			d)	

7. Un satélite está orbitando alrededor de un planeta con una velocidad de $1,70x10^4$ m/s, en una órbita de radio $5,25x10^6$ m; la energía por unidad de masa mínima para que el satélite escape del campo gravitatorio del planeta es (en 10^8 J/kg):

a) 1,45	b)	с)		d)	
necesario para qu	e un cohete de		e desde el punto	(0,10) y (0,-10). El o (0,0) al punto (20 c; 1 UA= 150x10 ⁹ m.	
a) 49,4		b)	c)		d)
flotaría. Para que citadas, la proporc	no se hundies		de acero y c al debería ser (
a) 11	b)		c)	d)	
agua a 100 °C. La	a temperatura de s y latentes:	300 g de hielo a 0 equilibrio será (en º 1 cal g ⁻¹ ºC ⁻¹ ; vaporiza	C):	agua a 10 °C y 150 540 cal g ⁻¹ .	g de vapor de
→	_	una carga q positiva; s. Si se introdujese u	esta carga cub una carga 4q, y	ito signo, se introduce re la distancia AB en u de la misma masa que	un tiempo de 5
	a en llegar al pur	nto B un tiempo de (e	en s):		
a) 2,5 b)		c) d)			

12. Una bola 1 se carga con una carga Q = 10 μ C y se pone en contacto con otra bola 2 descargada, cargándose ésta con 2 μ C. Si vuelve reiteradamente a repetirse el proceso de cargar la primera con 10 μ C y contactarla con la segunda, la carga que finalmente adquirirá la bola 2 será (en μ C):

a) 2,5 b) c) d)

100;0) y se mueve con una	a velocidad de 3,00x10 ⁵ i m/	s; una partícula idéntica est	á en el punto (100;			
1,5) y se mueve con la velocidad - 3,00x10 ⁵ i m/s. Cuando ambas partículas tienen la misma coordenada						
x, actúa un campo magnétic	co perpendicular a sus velocio	lades; si ambas partículas col	lisionan frontalmente			
la intensidad del campo mag	gnético (en T) es:					
a) 0,2	b)	c)	d)			
14. Una espira circular de ra	adio 1,2 m está recorrida por	una corriente de 6 A; otra es	spira de r= 2 cm es			
coplanaria y concéntrica con	la anterior, y tiene una resiste	encia de 2 Ω . Manteniendo co	nstante la intensidad			
I= 6 A, si en 0,5 s se gira	a la espira pequeña alrededor	de su diámetro hasta que lo	os planos de ambas			
espiras sean perpendiculares	, la corriente media que circula	por la espira pequeña será (e	en nA):			
(Considérese que el radio de	e la menor es mucho menor qu	ie el de la primera). μ _o = 4πx1	10 ⁻⁷ TmA ⁻¹			
a) 3,9	b)	c)	d)			
15. Una masa de 600 g os	scila en el extremo de un res	orte vertical con f= 1 Hz y A	= 5 cm; cuando se			
añade otra masa de 300 g	sin variar la amplitud, la frecue	encia tiene un valor de (en s ⁻¹):			
a) 0,82	b)	c)	d)			
16. Un profesor mantiene qu	ue en su clase, de 25 alumno	s, el nivel de intensidad sono	ra no supere los 64			
dB. Si cada alumno cuando habla lo hace con el mismo nivel medio de intensidad sonora, y todos lo hacen						
a la vez, el máximo nivel de intensidad sonora individual con el que podría hablar cada alumno para no						
superar el nivel total de 64 dB es (en dB):.						
a) 50	b)	c)	d)			
17. Un láser está en el fonde	o de un depósito de benceno	(n= 1,501) y dirige un haz had	cia la superficie superior			
con un ángulo de 45° con la	a normal. Por encima de la su	uperficie del benceno existe in	icialmente aire, pero se			
introduce un gas y se va au	umentando progresivamente la	presión hasta que el haz láse	er sale del benceno; en			
ese momento, el índice de refracción del gas es:						
a) 1,061	b)	c)	d)			

13. En un instante dado un ión de sodio de masa $\cong 4 \times 10^{-26}$ kg y carga $+1,60 \times 10^{-19}$ C está en el punto (-

18. Sentados en la peluquería delante de un espejo a una distancia de 1,20 m, nos colocan un espejo pequeño para enseñarnos la nuca, que se coloca a 30 cm de ésta; vemos nuestra nuca a una distancia de (en m):

PROBLEMAS ABIERTOS

EXP1 Una barra de cobre de L= 1,20 m y sección recta A = (4,8±0,1) cm² está aislada térmicamente, y sus extremos se mantienen con una diferencia de temperaturas de Δ T= (100,0±0,5) °C mediante dos baños térmicos adecuados. La conductividad térmica del cobre es K = (401±1) W m⁻¹ °C⁻¹ y la *ley de Fourier* establece que para una barra metálica homogénea la transferencia calorífica es $Q' = KA\frac{\Delta T}{L}$. Calcular el valor de la transferencia calorífica Q´ con su incertidumbre, y establecer cuál debería ser la precisión de la medida de la longitud de la barra para que la transferencia calorífica Q´ se determinase con una incertidumbre no mayor del 4%.

$$Q' = (16,0 \pm 0,4) W$$

EXP2 Cuando un objeto cae libremente en un fluido se ve sometido a una fuerza de resistencia proporcional a la velocidad de caída, $F=K\,v^\gamma$, de tal forma que a partir de cierto momento el objeto cae con una velocidad constante, la *velocidad crítica*, que resultaría de la condición expresada por $m\,g=K\,v_c^{\ \gamma}$.

Se desea medir, para cuerpos esféricos, la constante K característica del fluido y el exponente γ , para lo cual se deja caer una esfera hueca que se va rellenando con diferentes masas, y se mide su *velocidad crítica* de caída. Se obtiene la siguiente tabla de valores para diferentes masas de la esfera.

V(m/s)	2,20	1,99	1,90	1,71	1,29
m (kg)	100,5	74,8	70,0	51,2	25,0

Mediante la ecuación que expresa el valor de la velocidad crítica en función de la masa d la bola, calcular los valores de los coeficientes K y γ .

$$\ln V_c = \frac{1}{\gamma} \ln mg - \frac{1}{\gamma} \ln K$$

$$\gamma = 2.6$$

$$K = 126 \text{ kg m}^{-1.6} \text{ s}^{0.6}$$