WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

B17

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

G01N 33/566, 33/68

(11) International Publication Number: WO 98/45707

(43) International Publication Date: 15 October 1998 (15.10.98)

(21) International Application Number: PCT/US98/06774 (81)

(22) International Filing Date: 6 April 1998 (06.04.98)

08/833,488 7 April 1997 (07.04.97) US

(71) Applicant: HESKA CORPORATION [US/US]; 1825 Sharp Point Drive, Fort Collins, CO 80525 (US).

(72) Inventors: FRANK, Glenn, Robert; 10317 North County Road 13, Wellington, CO 80549 (US). RUSHLOW, Keith, E.; 1600 Dogwood Court, Fort Collins, CO 80525 (US).

(74) Agents: HANLEY, Elizabeth, A. et al.; Lahive & Cockfield, LLP, 28 State Street, Boston, MA 02109 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: METHOD TO DETECT CANINE IgE

(57) Abstract

(30) Priority Data:

The present invention includes a method to detect canine IgE using a canine Fc epsilon receptor (Fc_eR) to detect canine IgE antibodies in a biological sample from a canid. The present invention also relates to kits to perform such methods.

-			•	
			.•	,

10

METHOD TO DETECT CANINE IgE

Field of the Invention

The present invention relates to a novel method to detect canine epsilon immunoglobulin (IgE). The present invention also includes novel kits to detect canine IgE as well as methods to produce the detection reagent.

Background of the Invention

Diagnosis of disease and determination of treatment efficacy are important tools in medicine. In particular, detection of IgE production in an animal can be indicative of disease. Such diseases include, for example, allergy, atopic disease, hyper IgE syndrome, internal parasite infections and B cell neoplasia. In addition, detection of IgE production in an animal following a treatment is indicative of the efficacy of the treatment, such as when using treatments intended to disrupt IgE production.

Until the discovery of the present invention, detection of IgE in samples obtained from non-human animals has been hindered by the absence of suitable reagents for 15 detection of IgE. Various compounds have been used to detect IgE in IgE-containing compositions. In particular, antibodies that bind selectively to epsilon idiotype antibodies (i.e., anti-IgE antibodies) have been used to detect IgE. These anti-IgE antibodies, however, can cross-react with other antibody idiotypes, such as gamma isotype antibodies. The discovery of the present invention includes the use of a canine 20 Fc epsilon receptor (Fc_eR) molecule to detect the presence of IgE in a putative IgEcontaining composition. Canine high affinity Fc_eR consists of three protein chains, alpha, beta and gamma. Hayashi et al. have disclosed the nucleic acid sequence for the alpha chain (GenBank Accession No. D16413, submitted June 8, 1993). A canine Fc R molecule provides an advantage over, for example anti-IgE antibodies, to detect IgE because a canine Fc,R molecule can bind to a canine IgE with more specificity (i.e., less 25 idiotype cross-reactivity) and more sensitivity (i.e., affinity) than anti-IgE binding antibodies.

Thus, methods and kits are needed in the art that will provide specific detection of canine IgE using canine Fc_cR.

20

Summary of the Invention

The present invention includes detection methods and kits that detect canine IgE. One embodiment of the present invention is a method to detect canine IgE comprising: (a) contacting an isolated canine Fc_e receptor (Fc_eR) molecule with a putative canine IgE-containing composition under conditions suitable for formation of a Fc_eR molecule: IgE complex; and (b) determining the presence of IgE by detecting the Fc_eR molecule: IgE complex, the presence of the Fc_eR molecule: IgE complex indicating the presence of IgE. In particular, the canine Fc_eR molecule comprises at least a portion of a Fc_eR alpha chain that binds to canine IgE.

Another embodiment of the present invention is a method to detect canine flea allergy dermatitis comprising: (a) immobilizing a flea allergen on a substrate; (b) contacting the flea allergen with a putative canine IgE-containing composition under conditions suitable for formation of an antigen: IgE complex bound to the substrate; (c) removing non-bound material from the substrate under conditions that retain antigen: IgE complex binding to the substrate; and (d) detecting the presence of the antigen: IgE complex by contacting antigen: IgE complex with a canine Fc_cR molecule. In particular, the flea allergen is a flea saliva antigen.

The present invention also includes a kit for performing methods of the present invention. One embodiment is a kit for detecting IgE comprising a canine Fc_c receptor (Fc_cR) molecule and a means for detecting canine IgE. Another embodiment is a kit for detecting flea allergy dermatitis comprising a canine Fc_c receptor (Fc_cR) molecule and a flea allergen.

Detailed Description of the Invention

The present invention relates to the discovery that purified high affinity canine Fc epsilon receptor (i.e., Fc_eRI; referred to herein as Fc_eR) can be used in canine epsilon immunoglobulin (referred to herein as IgE or IgE antibody)-based detection (e.g., diagnostic, screening) methods and kits. The use of canine Fc_eR in diagnostic methods and kits is unexpected because the use of canine Fc_eR avoids complications presented by use of antibodies that bind to IgE (i.e., anti-IgE antibodies). Such complications include, for example, non-specific binding of anti-IgE antibodies to other classes of immunoglobulin such as gamma immunoglobulin (i.e., IgG).

20

25

30

One embodiment of the present invention is a method to detect a canine IgE using an isolated canine Fc_cR molecule. It is to be noted that the term "a" entity or "an" entity refers to one or more of that entity; for example, a protein refers to one or more proteins or at least one protein. As such, the terms "a" (or "an"), "one or more" and "at least one" can be used interchangeably herein. It is also to be noted that the terms "comprising", "including", and "having" can be used interchangeably. Furthermore, a compound "selected from the group consisting of" refers to one or more of the compounds in the list that follows, including mixtures (i.e., combinations) of two or more of the compounds.

According to the present invention, an isolated, or biologically pure, Fc_cR molecule, is a molecule that has been removed from its natural milieu. As such, "isolated" and "biologically pure" do not necessarily reflect the extent to which the molecule has been purified. An isolated canine Fc_cR molecule of the present invention can be obtained from its natural source (e.g., from a canine mast cell), can be produced using recombinant DNA technology or can be produced by chemical synthesis.

A $Fc_{\epsilon}R$ molecule (also referred to herein as $Fc_{\epsilon}R$ or $Fc_{\epsilon}R$ protein) of the present invention can be a full-length protein, a portion of a full-length protein or any homolog of such a protein, wherein the $Fc_{\epsilon}R$ molecule is capable of binding specifically to IgE. As used herein, a protein can be a polypeptide or a peptide. A $Fc_{\epsilon}R$ molecule of the present invention can comprise a complete $Fc_{\epsilon}R$ (i.e., alpha, beta and gamma $Fc_{\epsilon}R$ chains), an alpha $Fc_{\epsilon}R$ chain (also referred to herein as $Fc_{\epsilon}R$ α chain) or portions thereof. Preferably, a $Fc_{\epsilon}R$ molecule comprises at least a portion of a $Fc_{\epsilon}R$ α chain that binds to IgE, i.e., that is capable of forming an immunocomplex with an IgE constant region.

An isolated canine Fc_cR molecule of the present invention, including a homolog, can be identified in a straight-forward manner by the Fc_cR molecule's ability to form an immunocomplex with a canine IgE. Examples of Fc_cR homologs include Fc_cR proteins in which amino acids have been deleted (e.g., a truncated version of the protein, such as a peptide), inserted, inverted, substituted and/or derivatized (e.g., by glycosylation, phosphorylation, acetylation, myristoylation, prenylation, palmitoylation; amidation and/or addition of glycerophosphatidyl inositol) such that the homolog includes at least one epitope capable of forming an immunocomplex with an IgE.

 $Fc_{\epsilon}R$ homologs can be the result of natural allelic variation or natural mutation. $Fc_{\epsilon}R$ homologs of the present invention can also be produced using techniques known in the art including, but not limited to, direct modifications to the protein or modifications to the gene encoding the protein using, for example, classic or recombinant DNA techniques to effect random or targeted mutagenesis.

According to the present invention, a preferred canine $Fc_{\varepsilon}R$ α chain of the present invention is encoded by at least a portion of the nucleic acid sequence of the coding strand of a cDNA encoding a full-length Fc_cR α chain protein represented herein as SEQ ID NO:19, the portion at least encoding the IgE binding site of the $Fc_{\epsilon}R$ α chain 10 protein. Other suitable canine $Fc_{\varepsilon}R$ α chains useful in the present invention include those described herein in the Examples section. The double-stranded nucleic acid molecule including both the coding strand having SEQ ID NO:19 and the complementary non-coding strand (the nucleic acid sequence of which can be readily determined by one skilled in the art and is shown herein as SEQ ID NO:21) is referred to herein as $Fc_{\epsilon}R$ nucleic acid molecule $ncFc_{\epsilon}R\alpha 4_{991}$. Translation of SEQ ID NO:19 15 suggests that nucleic acid molecule $ncFc_cR\alpha 4_{991}$ encodes a full-length $Fc_{\varepsilon}R$ α chain protein of about 253 amino acids, referred to herein as $PcFc_{\epsilon}R\alpha 4_{253}$, represented by SEQ ID NO:20, assuming an open reading frame having an initiation (start) codon spanning from about nucleotide 35 through about nucleotide 37 of SEQ ID NO:19 and the 20 termination codon spans from about nucleotide 793 through about nucleotide 795 of SEQ ID NO:19. The coding region encoding PcFc_eRα4₂₅₃, excluding the stop codon, is represented by nucleic acid molecule ncFc_cRa4₇₅₉, having a coding strand with the nucleic acid sequence represented by SEQ ID NO:22 and a complementary strand with nucleic acid sequence SEQ ID NO:23. SEQ ID NO:19 encodes a signal peptide spanning from about amino acid 1 through about amino acid 24, as well as a mature 25 protein of about 229 amino acids, denoted herein as $PcFc_cR\alpha 4_{229}$, the amino acid sequence of which is represented herein as SEQ ID NO:24. The nucleic acid molecule encoding the apparent mature protein is referred to as $ncFc_{\varepsilon}R\alpha 4_{687}$, the nucleic acid sequence of the coding strand of which is denoted herein as SEQ ID NO:30. SEQ ID NO:19 also encodes a hydrophobic transmembrane domain which extends from about 30 amino acid 172 to about amino acid 228 of SEQ ID NO:24. Knowledge of these nucleic

25

30

acid and amino acid sequences allows one skilled in the art to make modifications to the respective nucleic acid molecules and proteins to, for example, develop a canine $Fc_{\epsilon}R$ α chain protein with increased solubility and/or a truncated protein capable of detecting canine IgE, e.g., $PcFc_{\epsilon}R\alpha 4_{197}$, spanning from about amino acid 1 to about amino acid 197 of SEQ ID NO:20, and having SEQ ID NO:28; or $PcFc_{\epsilon}R\alpha 4_{173}$, spanning from about amino acid 25 to about amino acid 197 of SEQ ID NO:20, and having SEQ ID NO:31.

Preferred Fc_cR molecules include PcFc_cRα4₂₅₃, PcFc_eRα4₂₂₉, PcFc_cRα4₁₉₇,
PcFc_eRα4₁₇₃ and allelic variants thereof, as well as PcFc_cRα1₁₉₇, PcFc_cRα2₁₉₇,
PcFc_cRα3₁₉₉ (which are disclosed in the Examples section) and allelic variants thereof.

Preferred nucleic acid molecules to encode a Fc_cR molecules include ncFc_cRα4₅₉₁,
ncFc_cRα4₆₈₇, ncFc_cRα4₉₉₁, ncFc_cRα4₇₅₉ and allelic variants thereof, as well as
ncFc_cRα1₆₀₉, ncFc_cRα1₅₉₁, ncFc_cRα2₆₀₉, ncFc_cRα2₅₉₁, ncFc_cRα3₆₁₇, ncFc_cRα3₅₉₇ (which
are disclosed in the Examples section) and allelic variants thereof. A preferred nucleic
acid sequence encoding a canine Fc_cR molecule includes SEQ ID NO:3, SEQ ID NO:6,
SEQ ID NO:8, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:16, SEQ ID NO:19, SEQ
ID NO:22, SEQ ID NO:24, SEQ ID NO:27, SEQ ID NO:30, and/or a nucleic acid
molecule comprising an allelic variant of a nucleic acid molecule comprising any of said
nucleic acid sequences.

An isolated canine Fc_cR molecule protein of the present invention can be produced by culturing a cell capable of expressing the protein under conditions effective to produce the protein, and recovering the protein. A preferred cell to culture is a recombinant cell that is capable of expressing the protein, the recombinant cell being produced by transforming a host cell with one or more nucleic acid molecules of the present invention. Transformation of a nucleic acid molecule into a cell can be accomplished by any method by which a nucleic acid molecule can be inserted into the cell. Transformation techniques include, but are not limited to, transfection, electroporation, microinjection, lipofection, adsorption, and protoplast fusion. A recombinant cell may remain unicellular or may grow into a tissue, organ or a multicellular organism. Transformed nucleic acid molecules of the present invention can remain extrachromosomal or can integrate into one or more sites within a chromosome of the transformed (i.e., recombinant) cell in such a manner that their

15

20

25

30

ability to be expressed is retained. Suitable and preferred nucleic acid molecules with which to transform a cell are as disclosed herein for suitable and preferred Fc_cR nucleic acid molecules per se. Particularly preferred nucleic acid molecules to include in recombinant cells of the present invention include $ncFc_cR\alpha 1_{609}$, $ncFc_cR\alpha 1_{591}$, $ncFc_cR\alpha 2_{609}$, $ncFc_cR\alpha 2_{591}$, $ncFc_cR\alpha 3_{617}$, $ncFc_cR\alpha 3_{597}$, $ncFc_cR\alpha 4_{591}$, $ncFc_cR\alpha 4_{687}$, $ncFc_cR\alpha 4_{991}$ and/or $ncFc_cR\alpha 4_{759}$.

Suitable host cells to transform include any cell that can be transformed with a nucleic acid molecule of the present invention. Host cells can be either untransformed cells or cells that are already transformed with at least one nucleic acid molecule. Host cells of the present invention either can be endogenously (i.e., naturally) capable of producing a canine Fc_cR molecule protein of the present invention or can be capable of producing such proteins after being transformed with at least one nucleic acid molecule of the present invention. Host cells of the present invention can be any cell capable of producing at least one protein of the present invention, and include bacterial, fungal (including yeast), parasite (including protozoa and ectoparasite), insect, other animal and plant cells.

Preferably, a recombinant cell is transfected with a recombinant molecule of the present invention. A recombinant molecule of the present invention includes at least one of any nucleic acid molecules heretofore described operatively linked to at least one of any transcription control sequence capable of effectively regulating expression of the nucleic acid molecule(s) in the cell to be transformed, examples of which are disclosed herein. Particularly preferred recombinant molecules include pVL-ncFc_εRα4₅₉₁, pVL-ncFc_εRα1₆₀₉, pVL-ncFc_εRα2₆₀₉, and pVL-ncFc_εRα3₆₁₇. Details regarding the production of Fc_εR molecule nucleic acid molecule-containing recombinant molecules are disclosed herein. Particularly preferred recombinant cells of the present invention include *S. frugiperda*:pVL-ncFc_εRα4₅₉₁, *Trichoplusia ni*:BV-ncFc_εRα4₅₉₁, *S. frugiperda*:pVL-ncFc_εRα3₆₀₈, *Trichoplusia ni*:BV-ncFc_εRα2₆₀₉, and *Trichoplusia ni*:BV-ncFc_εRα3₆₀₈, *Trichoplusia ni*:BV-ncFc_εRα3₆₀₉, and *Trichoplusia ni*:BV-ncFc_εRα3₆₀₉, and *Trichoplusia ni*:BV-ncFc_εRα3₆₀₉,

A Fc_cR molecule of the present invention can include chimeric molecules comprising a portion of a Fc_cR molecule that binds to an IgE and a second molecule that

10

15

enables the chimeric molecule to be bound to a substrate in such a manner that the $Fc_{\epsilon}R$ portion binds to IgE in essentially the same manner as a $Fc_{\epsilon}R$ molecule that is not bound to a substrate. An example of a suitable second molecule includes a portion of an immunoglobulin molecule.

A canine Fc_cR molecule of the present invention can be contained in a formulation, herein referred to as a Fc_cR formulation. For example, a canine Fc_cR molecule can be combined with a buffer in which the Fc_cR is solubilized, and/or with a carrier. Suitable buffers and carriers are known to those skilled in the art. Examples of suitable buffers include any buffer in which a Fc_cR can function to selectively bind to IgE, such as, but not limited to, phosphate buffered saline, water, saline, phosphate buffer, bicarbonate buffer, HEPES buffer (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid buffered saline), TES buffer (Tris-EDTA buffered saline), Tris buffer and TAE buffer (Tris-acetate-EDTA). Examples of carriers include, but are not limited to, polymeric matrices, toxoids, and scrum albumins, such as bovine serum albumin. Carriers can be combined with Fc_cR or conjugated (i.e., attached) to Fc_cR in such a manner as to not substantially interfere with the ability of the Fc_cR to selectively bind to IgE.

A canine $Fc_{\varepsilon}R$ molecule of the present invention can be bound to the surface of a cell expressing the Fc_cR. A preferred Fc_cR-bearing cell includes a recombinant cell expressing a nucleic acid molecule encoding a canine Fc_cR alpha chain of the present 20 invention. A more preferred recombinant cell of the present invention expresses a nucleic acid molecule that encodes at least one of the following proteins: PcFc_cRal₁₉₇. $PcFc_{\epsilon}R\alpha 2_{197}$, $PcFc_{\epsilon}R\alpha 3_{199}$, $PcFc_{\epsilon}R\alpha 4_{253}$, $PcFc_{\epsilon}R\alpha 4_{229}$, $PcFc_{\epsilon}R\alpha 4_{197}$ and $PcFc_{\epsilon}R\alpha 4_{173}$. An even more preferred recombinant cell expresses a nucleic acid molecule including 25 $\mathsf{ncFc}_{\epsilon}R\alpha1_{609},\,\mathsf{ncFc}_{\epsilon}R\alpha1_{591},\,\mathsf{ncFc}_{\epsilon}R\alpha2_{609},\,\mathsf{ncFc}_{\epsilon}R\alpha2_{591},\mathsf{ncFc}_{\epsilon}R\alpha3_{617},\,\mathsf{ncFc}_{\epsilon}R\alpha3_{597},$ $\text{ncFc}_c R\alpha 4_{591}$, $\text{ncFc}_c R\alpha 4_{687}$, $\text{ncFc}_c R\alpha 4_{991}$ and $\text{ncFc}_c R\alpha 4_{759}$, or allelic variants thereof, with a recombinant cell expressing a nucleic acid molecule comprising a nucleic acid sequence SEQ ID NO:3, SEQ ID NO:8, SEQ ID NO:13 or SEQ ID NO:27, or a nucleic acid molecule comprising an allelic variant of a nucleic acid molecule comprising SEQ ID NO:3, SEQ ID NO:8, SEQ ID NO:13 or SEQ ID NO:27, being even more preferred. 30

...

10

15

20

25

In addition, a Fc_eR formulation of the present invention can include not only a Fc_eR but also one or more additional antigens or antibodies useful in detecting IgE. As used herein, an antigen refers to any molecule capable of being selectively bound by an antibody. As used herein, specific binding of a first molecule to a second molecule refers to the ability of the first molecule to preferentially bind to (e.g., have higher affinity higher avidity for) the second molecule when compared to the ability of a first molecule to bind to a third molecule. The first molecule need not necessarily be the natural ligand of the second molecule. Examples of antibodies used in the present invention include, but are not limited to, antibodies that bind selectively to the constant region of an IgE heavy chain (i.e., anti-IgE isotype antibodies) or antibodies that bind selectively to an IgE having a specific antigen specificity (i.e., anti-IgE idiotypic antibodies). Examples of antigens used in the present invention include any antigen known to induce the production of IgE. Preferred antigens include allergens and parasite antigens. Allergens of the present invention are preferably derived from fungi, trees, weeds, shrubs, grasses, wheat, corn, soybeans, rice, eggs, milk, cheese, bovines (or cattle), poultry, swine, sheep, yeast, fleas, flies, mosquitos, mites, midges, biting gnats, lice, bees, wasps, ants, true bugs or ticks. A suitable flea allergen includes an allergen derived from a flea, and in particular a flea saliva antigen. Preferred flea saliva antigens include antigens such as those disclosed in PCT Patent Publication No. WO 96/11271, published April 18, 1996, by Frank et al. (this publication is incorporated by reference herein in its entirety), U.S. Patent Application Serial Nos. 08/319,590 (filed Oct. 7, 1994), 08/487,001 (filed June 7, 1995), 08/487,608 (filed June 7, 1995) and 08/630,822 (filed April 10, 1996), with flea saliva products and flea saliva proteins being particularly preferred. According to the present invention, a flea saliva protein includes a protein produced by recombinant DNA methods, as well as proteins isolated by other methods disclosed in PCT Patent Publication No. WO 96/11271, U.S. Patent Application Serial Nos. 08/319,590 (filed Oct. 7, 1994), 08/487,001 (filed June 7, 1995), 08/487,608 (filed June 7, 1995) and 08/630,822 (filed April 10, 1996).

Preferred general allergens include those derived from grass, Meadow Fescue,

Curly Dock, plantain, Mexican Firebush, Lamb's Quarters, pigweed, ragweed, sage, elm, cocklebur, Box Elder, walnut, cottonwood, ash, birch, cedar, oak, mulberry, cockroach,

25

Dermataphagoides, Alternaria, Aspergillus, Cladosporium, Fusarium, Helminthosporium, Mucor, Penicillium, Pullularia, Rhizopus and/or Tricophyton. More preferred general allergens include those derived from Johnson Grass, Kentucky Blue Grass, Meadow Fescue, Orchard Grass, Perennial Rye Grass, Redtop Grass, Timothy Grass, Bermuda Grass, Brome Grass, Curly Dock, English Plantain, Mexican Firebush, Lamb's Quarters, Rough Pigweed Short Ragweed, Wormwood Sage, American Elm, Common Cocklebur, Box Elder, Black Walnut, Eastern Cottonwood, Green Ash, River Birch, Red Cedar, Red Oak, Red Mulberry, Cockroach, Dermataphagoides farinae, Alternaria alternata, Aspergillus fumigatus, Cladosporium herbarum, Fusarium 10 vasinfectum, Helminthosporium sativum, Mucor recemosus, Penicillium notatum, Pullularia pullulans, Rhizopus nigricans and/or Tricophyton spp. Preferred parasite antigens include, but are not limited to, helminth antigens, in particular heartworm antigens, such as Di33 (described in U.S. Patent Application Serial No. 08/715,628, filed September 18, 1996, to Grieve et al.; this publication is incorporated by reference herein in its entirety). The term "derived from" refers to a natural allergen of such plants or organisms (i.e., an allergen directly isolated from such plants or organisms), as well as non-natural allergens of such plants or organisms that possess at least one epitope capable of eliciting an immune response against an allergen (e.g., produced using recombinant DNA technology or by chemical synthesis).

The present invention also includes canine Fc_eR mimetopes and use thereof to detect IgE. In accordance with the present invention, a "mimetope" refers to any compound that is able to mimic the ability of a canine Fc_eR molecule to bind to canine IgE. A mimetope can be a peptide that has been modified to decrease its susceptibility to degradation but that still retains IgE-binding activity. Other examples of mimetopes include, but are not limited to, carbohydrate-based compounds, lipid-based compounds, nucleic acid-based compounds, natural organic compounds, synthetically derived organic compounds, anti-idiotypic antibodies and/or catalytic antibodies, or fragments thereof. A mimetope can be obtained by, for example, screening libraries of synthetic compounds for compounds capable of binding to IgE. A mimetope can also be obtained by, for example, rational drug design. In a rational drug design procedure, the three-dimensional structure of a compound of the present invention can be analyzed by, for

example, nuclear magnetic resonance (NMR) or x-ray crystallography. The three-dimensional structure can then be used to predict structures of potential mimetopes by, for example, computer modeling. The predicted mimetope structures can then be produced by, for example, chemical synthesis, recombinant DNA technology, or by isolating a mimetope from a natural source. Specific examples of Fc_cR mimetopes include anti-idiotypic antibodies, oligonucleotides produced using Selex® technology, peptides identified by random screening of peptide libraries and proteins identified by phage display technology.

One embodiment of the present invention is a method to detect canine IgE which includes the steps of: (a) contacting an isolated canine Fc_c receptor (Fc_cR) molecule with 10 a putative canine IgE-containing composition under conditions suitable for formation of a Fc_eR molecule:IgE complex; and (b) detecting levels of IgE by detecting said Fc_eR molecule:IgE complex. Presence of such a FccR molecule:IgE complex indicates that the canine is producing IgE. The present method can further include the step of determining whether a canine IgE complexed with a canine $Fc_{\varepsilon}R$ molecule is heat labile. 15 Certain classes of IgE are heat labile when incubated at about 56°C for about 4 hours. Without being bound by theory, Applicants believe that heat labile forms of IgE bind to certain allergens and non-heat labile forms of IgE bind to other types of allergens. As such, detection of heat labile IgE compared with non-heat labile IgE can be used to discriminate between allergen sensitivities. For example, Applicants believe that canine 20 IgE antibodies that bind to certain flea allergens and heartworm allergens are heat labile while canine IgE antibodies that bind to certain plant allergens are not heat labile. Thus, the presence of non-heat labile IgE can indicate that an animal is sensitive to certain plant allergens but not to certain flea or heartworm allergens. Moreover, Applicants believe that identification of heat labile IgE and non-heat labile IgE using a canine FccR 25 suggests the presence of different sub-populations of IgE that may or may not have substantially similar structures to known IgE. As such, a Fc_eR molecule of the present invention may be useful for detecting molecules bound by the Fc, R molecule that are not identical to a known IgE.

10

15

20

As used herein, canine refers to any member of the dog family, including domestic dogs, wild dogs and zoo dogs. Examples of dogs include, but are not limited to, domestic dogs, wild dogs, foxes, wolves, jackals and coyotes.

As used herein, the term "contacting" refers to combining or mixing, in this case a putative IgE-containing composition with a canine Fc_eR molecule. Formation of a complex between a canine Fc_eR and a canine IgE refers to the ability of the Fc_eR to selectively bind to the IgE in order to form a stable complex that can be measured (i.e., detected). As used herein, the term selectively binds to an IgE refers to the ability of a Fc_eR of the present invention to preferentially bind to IgE, without being able to substantially bind to other antibody isotypes. Binding between a Fc_eR and an IgE is effected under conditions suitable to form a complex; such conditions (e.g., appropriate concentrations, buffers, temperatures, reaction times) as well as methods to optimize such conditions are known to those skilled in the art, and examples are disclosed herein. Examples of complex formation conditions are also disclosed in, for example, in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Labs Press, 1989; the reference Sambrook et al., *ibid.*, is incorporated by reference herein in its entirety.

As used herein, the term "detecting complex formation" refers to determining if any complex is formed, i.e., assaying for the presence (i.e., existence) of a complex. If complexes are formed, the amount of complexes formed can, but need not be, determined. Complex formation, or selective binding, between canine Fc_cR and canine IgE in the composition can be measured (i.e., detected, determined) using a variety of methods standard in the art (see, for example, Sambrook et al. *ibid.*), examples of which are disclosed herein.

In one embodiment, a putative canine IgE-containing composition of the present method includes a biological sample from a canine. A suitable biological sample includes, but is not limited to, a bodily fluid composition or a cellular composition. A bodily fluid refers to any fluid that can be collected (i.e., obtained) from an animal, examples of which include, but are not limited to, blood, serum, plasma, urine, tears, aqueous humor, central nervous system fluid (CNF), saliva, lymph, nasal secretions, milk and feces. Such a composition of the present method can, but need not be,

10

15

20

25

30

.,4

pretreated to remove at least some of the non-IgE isotypes of immunoglobulin and/or other proteins, such as albumin, present in the fluid. Such removal can include, but is not limited to, contacting the bodily fluid with a material, such as Protein G, to remove IgG antibodies and/or affinity purifying IgE antibodies from other components of the body fluid by exposing the fluid to, for example, Concanavalin A. In another embodiment, a composition includes collected bodily fluid that is pretreated to concentrate immunoglobulin contained in the fluid. For example, immunoglobulin contained in a bodily fluid can be precipitated from other proteins using ammonium sulfate. A preferred composition of the present method is serum.

In another embodiment, a composition of the present method includes an IgE-producing cell. Such a cell can have IgE bound to the surface of the cell and/or can secrete IgE. Examples of such cells include basophil cells and myeloma cells. IgE can be bound to the surface of a cell, for example by being either bound directly to the membrane of a cells or bound to a molecule (e.g., an antigen) bound to the surface of the cell.

A complex can be detected in a variety of ways including, but not limited to, use of one or more of the following assays: an enzyme-linked immunoassay, a radioimmunoassay, a fluorescence immunoassay, a chemiluminescent assay, a lateral flow assay, an agglutination assay, a particulate-based assay (e.g., using particulates such as, but not limited to, magnetic particles or plastic polymers, such as latex or polystyrene beads), an immunoprecipitation assay, a BioCore™ assay (e.g., using colloidal gold) and an immunoblotting assay (e.g., a western blot). Such assays are well known to those skilled in the art. Assays can be used to give qualitative or quantitative results depending on how they are used. Some assays, such as agglutination, particulate separation, and immunoprecipitation, can be observed visually (e.g., either by eye or by a machine, such as a densite meter or spectrophotometer) without the need for a detectable marker. In other assays, conjugation (i.e., attachment) of a detectable marker to the Fc R or to a reagent that selectively binds to the Fc_cR or to the IgE being detected (described in more detail below) aids in detecting complex formation. Examples of detectable markers include, but are not limited to, a radioactive label, a fluorescent label, a chemiluminescent label, a chromophoric label or a ligand. A ligand refers to a molecule

15

20

25

30

that binds selectively to another molecule. Preferred detectable markers include, but are not limited to, fluorescein, a radioisotope, a phosphatase (e.g., alkaline phosphatase), biotin, avidin, a peroxidase (e.g., horseradish peroxidase) and biotin-related compounds or avidin-related compounds (e.g., streptavidin or ImmunoPure® NeutrAvidin®).

Preferably, biotin is conjugated to an alpha chain of a Fc_cR. Preferably a carbohydrate group of the Fc_cR alpha chain is conjugated to biotin.

In one embodiment, a complex is detected by contacting a putative IgE-containing composition with a canine $Fc_{\epsilon}R$ molecule that is conjugated to a detectable marker. A suitable detectable marker to conjugate to a $Fc_{\epsilon}R$ molecule includes, but is not limited to, a radioactive label, a fluorescent label, a chemiluminescent label or a chromophoric label. A detectable marker is conjugated to a $Fc_{\epsilon}R$ molecule or a reagent in such a manner as not to block the ability of the $Fc_{\epsilon}R$ or reagent to bind to the IgE being detected. Preferably, a carbohydrate group of a $Fc_{\epsilon}R$ is conjugated to biotin.

In another embodiment, a Fc_eR molecule:IgE complex is detected by contacting a putative IgE-containing composition with a Fc_eR molecule and then contacting the complex with an indicator molecule. Suitable indicator molecules of the present invention include molecules that can bind to either the Fc_eR molecule or to the IgE antibody. As such, an indicator molecule can comprise, for example, a Fc_eR molecule, an antigen, an antibody and a lectin, depending upon which portion of the Fc_eR molecule:IgE complex is being detected. Preferred identifying labeled compounds that are antibodies include, for example, anti-IgE antibodies and anti-Fc_eR antibodies. Preferred lectins include those lectins that bind to high-mannose groups. More preferred lectins bind to high-mannose groups present on a Fc_eR molecule of the present invention produced in insect cells. An indicator molecule itself can be attached to a detectable marker of the present invention. For example, an antibody can be conjugated to biotin, horseradish peroxidase, alkaline phosphatase or fluorescein.

In one preferred embodiment, a $Fc_{\epsilon}R$ molecule: IgE complex is detected by contacting the complex with a reagent that selectively binds to a $Fc_{\epsilon}R$ molecule of the present invention. Examples of such a reagent include, but are not limited to, an antibody that selectively binds to a $Fc_{\epsilon}R$ molecule (referred to herein as an anti- $Fc_{\epsilon}R$ antibody) or a compound that selectively binds to a detectable marker conjugated to a

15

20

25

30

Fc_cR molecule. Fc_cR molecules conjugated to biotin are preferably detected using streptavidin, more preferably using ImmunoPure® NeutrAvidin® (available from Pierce, Rockford, IL).

In another preferred embodiment, a Fc_eR molecule: IgE complex is detected by contacting the complex with a reagent that selectively binds to an IgE antibody (referred to herein as an anti-IgE reagent). Examples of such an anti-IgE reagent include, but are not limited to, a secondary antibody that is an anti-isotype antibody (e.g., an antibody that selectively binds to the constant region of an IgE), an antibody-binding bacterial surface protein (e.g., Protein A or Protein G), an antibody-binding cell (e.g., a B cell, a T cell, a natural killer cell, a polymorphonuclear leukocyte cell, a monocyte cell or a macrophage cell), an antibody-binding eukaryotic cell surface protein (e.g., an Fc receptor), and an antibody-binding complement protein. Preferred anti-IgE reagents include, but are not limited to, D9 (provided by Doug DeBoer, University of Wisconsin), and CMI antibody #9, CMI antibody #19, CMI antibody #59 and CMI antibody #71 (available from Custom Monoclonal International, West Sacramento, CA). In particular, as used herein, an anti-IgE antibody includes not only a complete antibody but also any subunit or portion thereof that is capable of selectively binding to an IgE heavy chain constant region. For example, a portion of an anti-IgE reagent can include an Fab fragment or a F(ab')2 fragment, which are described in detail in Janeway et al., in Immunobiology, the Immune System in Health and Disease, Garland Publishing, Inc., NY, 1996 (which is incorporated herein by this reference in its entirety).

In one embodiment a complex can be formed and detected in solution. In another embodiment, a complex can be formed in which one or more members of the complex are immobilized on (e.g., coated onto) a substrate. Immobilization techniques are known to those skilled in the art. Suitable substrate materials include, but are not limited to, plastic, glass, gel, celluloid, paper, PVDF (poly-vinylidene-fluorid:), nylon, nitrocellulose, and particulate materials such as latex, polystyrene, nylon, nitrocellulose, agarose and magnetic resin. Suitable shapes for substrate material include, but are not limited to, a well (e.g., microtiter dish well), a plate, a dipstick, a bead, a lateral flow apparatus, a membrane, a filter, a tube, a dish, a celluloid-type matrix, a magnetic particle, and other particulates. A particularly preferred substrate comprises an ELISA

15.

20

25

30

plate, a dipstick, a radioimmunoassay plate, agarose beads, plastic beads, latex beads, immunoblot membranes and immunoblot papers. In one embodiment, a substrate, such as a particulate, can include a detectable marker.

A preferred method to detect canine IgE is an immunosorbent assay. An immunoabsorbent assay of the present invention comprises a capture molecule and an indicator molecule. A capture molecule of the present invention binds to an IgE in such a manner that the IgE is immobilized to a substrate. As such, a capture molecule is preferably immobilized to a substrate of the present invention prior to exposure of the capture molecule to a putative IgE-containing composition. An indicator molecule of the present invention detects the presence of an IgE bound to a capture molecule. As such, an indicator molecule preferably is not immobilized to the same substrate as a capture molecule prior to exposure of the capture molecule to a putative IgE-containing composition.

A preferred immunoabsorbent assay method includes a step of either: (a) binding a canine $Fc_{\epsilon}R$ molecule to a substrate prior to contacting a canine $Fc_{\epsilon}R$ molecule with a putative IgE-containing composition to form a canine $Fc_{\epsilon}R$ molecule-coated substrate; or (b) binding a putative canine IgE-containing composition to a substrate prior to contacting a canine $Fc_{\epsilon}R$ molecule with a putative IgE-containing composition to form a putative IgE-containing composition-coated substrate. Preferably, the substrate is a non-coated substrate, an antigen-coated substrate or an anti-IgE antibody-coated substrate.

Both a capture molecule and an indicator molecule of the present invention are capable of binding to an IgE. Preferably, a capture molecule binds to a different region of an IgE than an indicator molecule, thereby allowing a capture molecule to be bound to an IgE at the same time as an indicator molecule. The use of a reagent as a capture molecule or an indicator molecule depends upon whether the molecule is immobilized to a substrate when the molecule is exposed to an IgE. For example, a canine Fc_eR molecule of the present invention is used as a capture molecule when the Fc_eR molecule is bound to a substrate. Alternatively, a canine Fc_eR molecule is used as an indicator molecule when the Fc_eR molecule is not bound to a substrate. Suitable molecules for use as capture molecules or indicator molecules include, but are not limited to, a canine

WO 98/45707 PCT/US98/06774

-16-

Fc_eR molecule of the present invention, an antigen reagent or an anti-IgE antibody reagent of the present invention.

An immunoabsorbent assay of the present invention can further comprise one or more layers and/or types of secondary molecules or other binding molecules capable of detecting the presence of an indicator molecule. For example, an untagged (i.e., not conjugated to a detectable marker) secondary antibody that selectively binds to an indicator molecule can be bound to a tagged (i.e., conjugated to a detectable marker) tertiary antibody that selectively binds to the secondary antibody. Suitable secondary antibodies, tertiary antibodies and other secondary or tertiary molecules can be selected by those of skill in the art. Preferred secondary molecules of the present invention include an antigen, an anti-IgE idiotypic antibody and an anti-IgE isotypic antibody. Preferred tertiary molecules can be selected by a skilled artisan based upon the characteristics of the secondary molecule. The same strategy is applied for subsequent layers.

10

15

20

25

30

In one embodiment, a desired antigen is used as a capture molecule by being immobilized on a substrate, such as a microtiter dish well or a dipstick. Preferred antigens include those disclosed herein. A biological sample collected from an animal is applied to the substrate and incubated under conditions suitable (i.e., sufficient) to allow for antigen: IgE complex formation bound to the substrate (i.e., IgE in a sample binds to an antigen immobilized on a substrate). Excess non-bound material (i.e., material from the biological sample that has not bound to the antigen), if any, is removed from the substrate under conditions that retain antigen: IgE complex binding to the substrate. Preferred conditions are described generally in Sambrook et al., ibid. An indicator molecule that can selectively bind to an IgE bound to the antigen is added to the substrate and incubated to allow formation of a complex between the indicator molecule and the antigen IgE complex. The indicator molecule can be conjugated to a detectable marker (preferably to an enzyme label, to a colorimetric label, to a fluorescent label, to a radioisotope, or to a ligand such as of the biotin or avidin family). Excess indicator molecule is removed, a developing agent is added if required, and the substrate is submitted to a detection device for analysis. A preferred indicator molecule for this

15

embodiment is a canine $Fc_{\varepsilon}R$ molecule, preferably conjugated to biotin, to a fluorescent label or to an enzyme label.

In one embodiment, a canine Fc_eR molecule is used as a capture molecule by being immobilized on a substrate, such as a microtiter dish well or a dipstick. A biological sample collected from an animal is applied to the substrate and incubated under conditions suitable to allow for Fc_eR molecule:IgE complex formation bound to the substrate. Excess non-bound material, if any, is removed from the substrate under conditions that retain Fc, R molecule: IgE complex binding to the substrate. An indicator molecule that can selectively bind to an IgE bound to the $Fc_{\varepsilon}R$ is added to the substrate and incubated to allow formation of a complex between the indicator molecule and the Fc, R molecule: IgE complex. Preferably, the indicator molecule is conjugated to a detectable marker, preferably to an enzyme label, to a colorimetric label, to a fluorescent label, to a radioisotope, or to a ligand such as of the biotin or avidin family. Excess indicator molecule is removed, a developing agent is added if required, and the substrate is submitted to a detection device for analysis. A preferred indicator molecule for this embodiment is an antigen that will bind to IgE in the biological sample or an anti-IgE isotype or idiotype antibody, either preferably being conjugated to fluorescein, an enzyme or biotin.

In one embodiment, an anti-IgE antibody (e.g., isotype- or idiotype-specific

20 antibody) is used as a capture molecule by being immobilized on a substrate, such as a
microtiter dish well or a dipstick. A biological sample collected from a canine is applied
to the substrate and incubated under conditions suitable to allow for anti-IgE
antibody:IgE complex formation bound to the substrate. Excess non-bound material, if
any, is removed from the substrate under conditions that retain anti-IgE antibody:IgE

25 complex binding to the substrate. A canine Fc_eR molecule is added to the substrate and
incubated to allow formation of a complex between the canine Fc_eR molecule and the
anti-IgE antibody:IgE complex. Preferably, the canine Fc_eR molecule is conjugated to a
detectable marker (preferably to biotin, an enzyme label or a fluorescent label). Excess
Fc_eR molecule is removed, a developing agent is added if required, and the substrate is
30 submitted to a detection device for analysis.

20

25

30

In one embodiment, an immunosorbent assay of the present invention does not utilize a capture molecule. In this embodiment, a biological sample collected from a canine is applied to a substrate, such as a microtiter dish well or a dipstick, and incubated under conditions suitable to allow for IgE binding to the substrate. Any IgE present in the bodily fluid is immobilized on the substrate. Excess non-bound material, if any, is removed from the substrate under conditions that retain IgE binding to the substrate. A canine Fc_cR molecule is added to the substrate and incubated to allow formation of a complex between the canine Fc_cR molecule and canine IgE. Preferably, the Fc_cR molecule is conjugated to a detectable marker (preferably to biotin, an enzyme label or a fluorescent label). Excess Fc_cR molecule is removed, a developing agent is added if required, and the substrate is submitted to a detection device for analysis.

Another preferred method to detect canine IgE is a lateral flow assay, examples of which are disclosed in U.S. Patent No. 5,424,193, issued June 13, 1995, by Pronovost ct al.; U.S. Patent No. 5,415,994, issued May 16, 1995, by Imrich et al; WO 94/29696, published December 22, 1994, by Miller et al.; and WO 94/01775, published January 20, 1994, by Pawlak et al.; each of these patent publications is incorporated by reference herein in its entirety. In one embodiment, a biological sample is placed in a lateral flow apparatus that includes the following components: (a) a support structure defining a flow path; (b) a labeling reagent comprising a bead conjugated to an antigen, the labeling reagent being impregnated within the support structure in a labeling zone; and (c) a capture reagent comprising a canine IgE-binding composition. Preferred antigens include those disclosed herein. The capture reagent is located downstream of the labeling reagent within a capture zone fluidly connected to the labeling zone in such a manner that the labeling reagent can flow from the labeling zone into the capture zone. The support structure comprises a material that does not impede the flow of the beads from the labeling zone to the capture zone. Suitable materials for use as a support structure include ionic (i.e., anionic or cationic) material. Examples of such a material include, but are not limited to, nitrocellulose (NC), PVDF and carboxymethylcellulose (CM). The support structure defines a flow path that is lateral and is divided into zones, namely a labeling zone and a capture zone. The apparatus can further comprise a sample receiving zone located along the flow path, more preferably upstream of the labeling

15

reagent. The flow path in the support structure is created by contacting a portion of the support structure downstream of the capture zone, preferably at the end of the flow path, to an absorbent capable of absorbing excess liquid from the labeling and capture zones.

In this embodiment, the biological sample is applied to the sample receiving zone which includes a portion of the support structure. The labeling zone receives the sample from the sample receiving zone which is directed downstream by the flow path. The labeling zone comprises the labeling reagent that binds to IgE. A preferred labeling reagent is an antigen conjugated, either directly or through a linker, to a plastic bead substrate, such as to a latex bead. The substrate also includes a detectable marker, preferably a colorimetric marker. Typically, the labeling reagent is impregnated to the support structure by drying or lyophilization. The sample structure also comprises a capture zone downstream of the labeling zone. The capture zone receives labeling reagent from the labeling zone which is directed downstream by the flow path. The capture zone contains the capture reagent, preferably a canine Fc_eR molecule of the present invention that immobilizes canine IgE complexed to the antigen in the capture zone. The capture reagent is preferably fixed to the support structure by drying or lyophilization. The labeling reagent accumulates in the capture zone and the accumulation is assessed visually or by an optical detection device.

In another embodiment, a lateral flow apparatus used to detect canine IgE

includes: (a) a support structure defining a flow path; (b) a labeling reagent comprising a canine Fc_eR molecule of the present invention, the labeling reagent impregnated within the support structure in a labeling zone; and (c) a capture reagent comprising an antigen, the capture reagent being located downstream of the labeling reagent within a capture zone fluidly connected to the labeling zone in such a manner that the labeling reagent

can flow from the labeling zone into the capture zone. The apparatus preferably also includes a sample receiving zone located along the flow path, preferably upstream of the labeling reagent. The apparatus preferably also includes an absorbent located at the end of the flow path.

One embodiment of the present invention is an inhibition assay in which the

presence of canine IgE in a putative canine IgE-containing composition is determined by adding such composition to a canine Fc_cR molecule of the present invention and an

10

15

20

25

30

isolated canine IgE known to bind to the $Fc_{\epsilon}R$ molecule. The absence of binding of the $Fc_{\epsilon}R$ molecule to the known IgE indicating the presence of IgE in the putative IgE-containing composition.

The present invention also includes kits to detect canine IgE based, for example, on the disclosed detection methods. One embodiment is a kit to detect canine IgE comprising a canine Fc_c receptor (Fc_cR) molecule and a means for detecting a canine IgE. Suitable and preferred canine Fc_cR molecules are disclosed herein. Suitable means of detection include compounds disclosed herein that bind to either the canine Fc_cR molecule or to a canine IgE. A preferred kit of the present invention further comprises a detection means including one or more antigens such as those disclosed herein, an antibody capable of selectively binding to canine IgE such as those disclosed herein and/or a compound capable of binding to a detectable marker conjugated to a canine Fc_cR molecule (e.g., avidin, streptavidin and ImmunoPurc® NeutrAvidin when the detectable marker is biotin).

A preferred embodiment of a kit of the present invention is a flea allergen kit comprising a flea allergen such as those disclosed herein. A particularly preferred flea allergen for use with a flea allergen kit includes a flea saliva product or a flea saliva protein.

Another preferred kit of the present invention is a general allergen kit comprising an allergen common to all regions of the United States and a canine Fc_eR molecule of the present invention. As used herein, a "general allergen" kit refers to a kit comprising allergens that are found substantially throughout the United States (i.e., essentially not limited to certain regions of the United States). A general allergen kit provides an advantage over regional allergen kits because a single kit can be used to test a canid from any geographical location in the United States. Suitable and preferred general allergens for use with a general allergen kit of the present invention include those general allergens disclosed herein.

Another preferred kit of the present invention is a food allergen kit comprising (a) a food allergen such as beef, chicken, pork, a mixture of fish, such as cod, halibut or and tuna, egg, milk, Brewer's yeast, whole wheat, corn, soybean, cheese and/or rice, and

10

15

2Ó

25

30

(b) a canine Fc∈R molecule of the present invention. Preferably, the beef, chicken, pork, fish, corn and rice, are cooked.

A preferred kit of the present invention is one in which the allergen is immobilized to a substrate. If a kit comprises two or more antigens, the kit can comprise one or more compositions, each composition comprising one antigen. As such, each antigen can be tested separately. A kit can also contain two or more diagnostic reagents for detecting canine IgE, additional isolated canine IgE antigens and/or antibodies as disclosed herein. Particularly preferred are kits used in a lateral flow assay format. It is within the scope of the present invention that a lateral flow assay kit can include one or more lateral flow assay apparatuses. Multiple lateral flow apparatuses can be attached to each other at one end of each apparatus, thereby creating a fan-like structure.

In particular, a method and kit of the present invention are useful for diagnosing abnormal conditions in animals that are associated with changing levels of canine IgE. Particularly preferred conditions to diagnose include allergies, parasitic infections and neoplasia. For example, a method and kit of the present invention are particularly useful for detecting flea allergy dermatitis (FAD), when such method or kit includes the use of a flea saliva antigen. FAD is defined as a hypersensitive response to fleabites. Preferably, a putative IgE-containing composition is obtained from an animal suspected of having FAD. In addition, methods and kits of the present invention are particularly useful for detecting helminth infection, in particular heartworm infection, when such methods or kits include the use of a helminth antigen, such as Di33. Preferably, a putative canine IgE-containing composition is obtained from a canine suspected of having a helminth infection.

The following examples are provided for the purposes of illustration and are not intended to limit the scope of the present invention.

EXAMPLES

It is to be noted that the Examples include a number of molecular biology, microbiology, immunology and biochemistry techniques considered to be known to those skilled in the art. Disclosure of such techniques can be found, for example, in Sambrook et al., *ibid.*, and related references.

Example 1

:3

This example describes the construction of recombinant baculoviruses expressing a truncated portion of the α chain of canine Fc_e receptor.

Recombinant molecules pVL-ncFc_eRα1₆₀₉, pVL-ncFc_eRα2₆₁₉, and pVLncFc_cRα3₆₁₇, each containing nucleic acid molecules encoding the extracellular domain of the canine Fc_εR α chain, operatively linked to baculovirus polyhedron transcription control sequences were produced in the following manner. Three different canine Fc R α chain extracellular domain nucleic acid molecule-containing fragments, each of about 608 to about 609 nucleotides were amplified by polymerase chain reaction (PCR) from 10 either a canine splenic mononuclear cell cDNA library or a canine lymph node mononuclear cell cDNA library, each library produced using standard techniques, using a forward primer CIERMet containing a BamHI site, having the nucleic acid sequence 5'-TGC GGA TCC AAT ATG CCT GCT TCC ATG GGA G-3' (denoted SEQ ID NO:1) and a reverse primer CIERSec containing an EcoRI site, having the nucleic acid 15 sequence 5'-TTG GAA TTC TTA CTC TTT TTT CAC AAT AAT GTT G-3' (denoted herein as SEQ ID NO:2). The resulting PCR products were digested with BamHI and EcoRI to produce the following nucleic acid molecules: $ncFc_eR\alpha I_{609}$ (also denoted $ncFc_cR\alpha LN4_{609}$), $ncFc_eR\alpha 2_{609}$ (also denoted $ncFc_cR\alpha SPL6_{609}$) and $ncFc_eR\alpha 3_{617}$ (also denoted ncFc_cR\alpha SPL3R₆₁₇). Nucleic acid molecule ncFc_cR\alpha 1₆₀₉ was obtained from the 20 PCR reaction derived from the canine lymph node mononuclear cell cDNA library. Nucleic acid molecules ncFc_cRα2₆₀₉ and ncFc_cRα3₆₁₇ were obtained from the PCR reaction derived from the canine splenic mononuclear cell cDNA library. Nucleic acid molecules ncFc_eR\alpha 1₆₀₉, ncFc_eR\alpha 2₆₀₉, and ncFc_eR\alpha 3₆₁₇ each were sequenced by the Sanger dideoxy chain termination method, using the PRISM[™] Ready Dye Terminator 25 Cycle Sequencing Kit with Ampli Taq DNA Polymerase, FS (available from the Perkin-Elmer Corporation, Norwalk, CT). Nucleic acid molecu'es ncFc_εRα1₆₀₉, ncFc_εRα2₆₀₉, and ncFc_eRa3₆₁₇ each contained an about 608 to an about 609 nucleotide fragment encoding the extracellular domain of the canine Fc R \alpha chain, the coding strands of which have nucleic acid sequences denoted SEQ ID NO:3, SEQ ID NO:8, and SEQ ID NO:13, respectively. The complement of SEQ ID NO:3 is represented herein by SEQ 30

15

20

25

ID NO:5. The complement of SEQ ID NO:8 is represented herein by SEQ ID NO:10. The complement of SEQ ID NO:13 is represented herein by SEQ ID NO:15.

Translation of SEQ ID NO:3 indicates that nucleic acid molecule $ncFc_{\epsilon}R\alpha 1_{609}$ encodes a $Fc_{\epsilon}R$ protein of about 197 amino acids, referred to herein as $PcFc_{\epsilon}R\alpha 1_{197}$. having amino acid sequence SEQ ID NO:4, assuming an open reading frame having a start codon spanning from about nucleotide 10 through about nucleotide 12 of SEQ ID NO:3 and a stop codon spanning from about nucleotide 601 through about nucleotide 603 of SEQ ID NO:3. This open reading frame, excluding the stop codon, comprises nucleic acid molecule $ncFc_{\epsilon}R\alpha 1_{591}$ of the present invention, the nucleic acid sequence of which is represented herein by SEQ ID NO:6. The complement of SEQ ID NO:6 is represented herein by SEQ ID NO:7.

Translation of SEQ ID NO:8 indicates that nucleic acid molecule $ncFc_eR\alpha 2_{609}$ encodes a Fc_eR protein of about 197 amino acids, referred to herein as $PcFc_eR\alpha 2_{197}$, having amino acid sequence SEQ ID NO:9, assuming an open reading frame having a start codon spanning from about nucleotide 10 through about nucleotide 12 of SEQ ID NO:8 and a stop codon spanning from about nucleotide 601 through about nucleotide 603 of SEQ ID NO:8. This open reading frame, excluding the stop codon, comprises nucleic acid molecule $ncFc_eR\alpha 2_{591}$ of the present invention, the nucleic acid sequence of which is represented herein by SEQ ID NO:11. The complement of SEQ ID NO:11 is represented herein by SEQ ID NO:12.

Translation of SEQ ID NO:13 indicates that nucleic acid molecule $ncFc_cR\alpha 3_{617}$ encodes a Fc_eR protein of about 199 amino acids, referred to herein as $PcFc_eR\alpha 3_{199}$, having amino acid sequence SEQ ID NO:14, assuming that the initiation codon spans from about nucleotide 10 through about nucleotide 12 of SEQ ID NO:13 and the last codon spans from about nucleotide 595 through about nucleotide 597 of SEQ ID NO:13. This open reading frame comprises nucleic acid molecule $ncFc_eR\alpha 3_{597}$ of the present invention, the nucleic acid sequence of which is represented herein by SEQ ID NO:16. The complement of SEQ ID NO:16 is represented herein by SEQ ID NO:17.

In order to produce baculovirus recombinant molecules capable of directing the production of PcFc_cR\alpha1₁₉₇, PcFc_cR\alpha2₁₉₇, and PcFc_cR\alpha3₁₉₉, nucleic acid molecules ncFc_cR\alpha1₆₀₉, ncFc_cR\alpha2₆₀₉, and ncFc_cR\alpha3₆₁₇ were subcloned into unique BamHI and

EcoRI sites of pVL1393 baculovirus shuttle plasmid (available from Pharmingen, San Diego, CA) to produce recombinant molecules referred to herein as pVL-ncFc_eR α 1₆₀₉, pVL-ncFc_eR α 2₆₀₉, and pVL-ncFc_eR α 3₆₁₇, respectively. The resultant recombinant molecules pVL-ncFc_eR α 1₆₀₉, pVL-ncFc_eR α 2₆₀₉, and pVL-ncFc_eR α 3₆₁₇ were verified for proper insert orientation by restriction mapping.

Recombinant molecules pVL-ncFc_εRα1₆₀₉, pVL-ncFc_εRα2₆₀₉, and pVL-ncFc_εRα3₆₁₇ were co-transfected with a linear BaculogoldTM baculovirus DNA (available from Pharmingen) into *S. frugiperda* Sf9 cells (available from Invitrogen Corp., San Dicgo, CA) using methods prescribed by the manufacturer to form recombinant cells *S. frugiperda*:pVL-ncFc_εRα1₆₀₉, *S. frugiperda*:pVL-ncFc_εRα2₆₀₉, and *S. frugiperda*:pVL-ncFc_εRα3₆₁₇. Recombinant baculoviruses were plaque purified and amplified from each transfection by methods well known to those skilled in the art, to produce recombinant baculoviruses BV-ncFc_εRα1₆₀₉, BV-ncFc_εRα2₆₀₉, and BV-ncFc_εRα3₆₁₇, respectively. Example 2

This example describes the production of $PcFc_{\epsilon}R\alpha 1_{197}$, $PcFc_{\epsilon}R\alpha 2_{197}$, and $PcFc_{\epsilon}R\alpha 3_{199}$ canine $Fc_{\epsilon}R\alpha$ chain proteins.

About 1.5 liter cultures of serum-free ex-Cell Medium (available from Invitrogen) were seeded with about 1 x 10⁶ Trichoplusia ni cells (High FiveTM cells; available from Invitrogen) per milliliters (ml) of medium. The cell cultures were inoculated with recombinant baculoviruses BV-ncFc_eRa1₆₀₉, BV-ncFc_eRa2₆₀₉, and BV-ncFc_eRa3₆₁₇, respectively, at multiplicities of infection (MOI) of about 2 to about 5 plaque forming units (pfu) per cell to produce recombinant cells Trichoplusia ni-BV-ncFc_eRa3₆₁₇. The infections were allowed to proceed at a controlled temperature of 27°C for 48 hours, to produce recombinant proteins of PcFc_eRa1₁₉₇, PcFc_eRa2₁₉₇, and PcFc_eRa3₁₉₉. Following infection, cells were separated from the medium by centrifugation, and the medium was frozen at -70°C.

Example 3

15

20

25

This example describes the binding of PcFc_eR\alpha 1₁₉₇, PcFc_eR\alpha 2₁₉₇, or PcFc_eR\alpha 3₁₉₉

30 protein to canine IgE.

About 4.5 ml of the culture media described immediately above containing PcFc_cRα1₁₉₇, PcFc_cRα2₁₉₇, or PcFc_cRα3₁₉₉, respectively, were loaded onto columns comprising a canine IgE monoclonal antibody (a gift from Chris Grant, Custom Monoclonals International, West Sacramento, CA) linked to sepharose 4B. Each column was washed with about 4 ml of carbonate buffer (0.1 M NaHCO₃, pH 8.3 and 0.5 M NaCl). Protein bound to the IgE on each column was cluted from the column using about 3 ml of 0.1 M glycine-HCl, pH 2.8. Each column was further washed with about 1 ml of carbonate buffer and then with about 4 ml of buffer comprising 0.1 M NaHCO₃, pH 8.3. The elution samples and wash samples from a given column were combined and concentrated to a volume of about 0.35 ml. The eluted protein from each column was resolved on separate 14% Tris-glycine polyacrylamide-SDS gcls. The gels were then stained with coomassie stain. A diffused band was observed at about 31 kilodaltons (kD).

Amino (N-) terminal amino acid sequencing analysis was performed on protein contained in the diffused band using standard procedures known to those in the art (sec, for example, Geisow et al., 1989, in *Protein Sequencing: A Practical Approach*, JBC Findlay and MJ Geisow (eds.), IRL Press, Oxford, England, pp. 85-98; Hewick et al., 1981, *J. Biol. Chem.*, Vol. 256, pp. 7990-7997). The N-terminal partial amino acid sequence of a protein contained in the band was determined to be S D T L K P T V X M N P P X N L I (as represented in standard single letter code, and denoted herein as SEQ ID NO:18; "X" represents any amino acid). Comparison of SEQ ID NO:18 and the amino acid sequence of the canine Fc_cR alpha chain reported in Hayashi et al., *ibid.*, indicated that PcFc_cRα1₁₉₇, PcFc_cRα2₁₉₇, and PcFc_cRα3₁₉₉, expressed in baculovirus, each bound to canine IgE antibodies.

25 Example 4

10

This example describes the isolation, by DNA hybridization, and sequencing of a nucleic acid molecule encoding the $Fc_{\epsilon}R$ α chain from Canis canis.

A. <u>Isolation of nucleic acid molecule ncFc_cRα4₉₉₁</u>

A nucleic acid molecule was isolated from a canine mast cell cDNA library by
the molecule's ability to hybridize with a ³²P-labeled probe derived from a PCR clone encoding the canine Fc_cR α chain. The canine mast cell cDNA library was prepared

15

20

25

30

using standard techniques. Using a modification of the protocol described in the cDNA Synthesis Kit, the mast cell cDNA library was screened, using duplicate plaque lifts, with a 12 P-labeled probe comprising ncFc_cR α 1₆₀₉ (SEQ ID NO:3). A plaque purified clone containing a canine nucleic acid molecule encoding the Fc_cR α chain was converted into a double stranded recombinant molecule, using the ExAssistTM helper phage and SOLRTM *E. coli* according to the *in vivo* excision protocol described in the ZAP-cDNA Synthesis Kit (available from Stratagene). Double-stranded plasmid DNA was prepared using an alkaline lysis protocol, such as that described in Sambrook et al., *ibid*. The plasmid comprised a canine Fc_cR α 4₉₉₁.

B. <u>Sequence analysis of nucleic acid molecule ncFc_cRα4₉₉₁</u>

The nucleic acid molecule ncFc_cRα4₉₉₁ was sequenced by standard Sanger dideoxy chain termination sequencing techniques (see, for example, Sambrook et al, *ibid.*). DNA sequence analysis, including the compilation of sequences and the determination of open reading frames, were performed using the MacVectorTM program (available from the Eastman Kodak Company, New Haven, CT), or the DNAsisTM program (available from Hitachi Software, San Bruno, CA). Protein sequence analysis, including the determination of molecular weight and isoelectric point (pI) was performed using the MacVectorTM program.

The nucleic acid sequence of the coding strand of ncFc_cRα4₉₉₁ is denoted herein as SEQ ID NO:19. Translation of SEQ ID NO:19 suggests that nucleic acid molecule ncFc_cRα4₉₉₁ encodes a full-length canine Fc_cR α chain protein of about 253 amino acids, referred to herein as PcFc_cRα4₂₅₃, having amino acid sequence SEQ ID NO:20, assuming an open reading frame in which the initiation codon spans from about nucleotide 35 through about nucleotide 37 of SEQ ID NO:19 and the termination codon spans from about nucleotide 794 through about nucleotide 796 of SEQ ID NO:19. The complement of SEQ ID NO:20 is represented herein by SEQ ID NO:21. The coding region encoding PcFc_cRα4₂₅₃, is represented by nucleic acid molecule ncFc_cRα4₇₅₉, having a coding strand with the nucleic acid sequence represented by SEQ ID NO:22 and a complementary strand with nucleic acid sequence SEQ ID NO:23. The amino acid

sequence of $PcFc_{\epsilon}R\alpha_{253}$ (i.e., SEQ ID NO:21) predicts that $PcFc_{\epsilon}R\alpha_{253}$ has an estimated molecular weight of about 28.5 kD and an estimated pI of about 9.62.

Analysis of SEQ ID NO: 20 suggests the presence of a signal peptide encoded by a stretch of amino acids spanning from about amino acid 1 through about amino acid 24. The proposed mature protein, denoted herein as PcFc_eRα4₂₂₉, contains about 229 amino acids, the sequence of which is shown as SEQ ID NO:24. The coding strand encoding PcFc_eRα4₂₂₉ is represented herein as SEQ ID NO:30. The amino acid sequence of PcFc_eRα4₂₂₉ (i.e., SEQ ID NO:24) predicts that PcFc_eRα4₂₂₉ has an estimated molecular weight of about 26 kD, an estimated pI of about 9.65 and five predicted asparagine-linked glycosylation sites extending from about amino acids 29-31, 42-44, 71-73, 135-137 and 148-150, respectively.

Comparison of amino acid sequence SEQ ID NO:20 with amino acid sequences reported in GenBank indicates that SEQ ID NO:20 showed the most homology, i.e., about 100% identity between SEQ ID NO:20 and a *Canis canis* Fc_εR α chain protein (GenBank accession number D16413). Comparison of amino acid sequence SEQ ID NO:22 with nucleic acid sequences reported in GenBank indicates that SEQ ID NO:22 showed the most homology, i.e., about 100% identity between SEQ ID NO:22 and a canine mRNA for Fc_εR α chain (GenBank accession D16413).

Example 5

10

15

20

25

30

This Example demonstrates the production of secreted canine FceR α chain protein in eukaryotic cells.

To produce a secreted form of a canine Fc_εR α chain, recombinant molecule pVL-ncFc_εRα4₅₉₁, containing a canine Fc_εR α chain nucleic acid molecule encoding a secreted form of canine Fc_εR α chain spanning nucleotides from about 35 through about 625 of SEQ ID NO:19 operatively linked to baculovirus polyhedron transcription control sequences, was produced in the following manner. A canine Fc_εR α chain nucleic acid molecule of about 591 nucleotides was PCR amplified from ncFc_εRα4₉₉₁ DNA using a sense primer canIgEr FWD having the nucleic acid sequence 5' GCG AAG ATC TAT AAA TAT GCC TGC TTC CAT GGG-3' (SEQ ID NO:25; *BglII* site shown in bold) and an antisense primer canIgEr REV having the nucleic acid sequence 5' GCA GGA ATT CTT ACT CTT TTT TCA CAA TAA TGT -3' (SEQ ID NO:26; *EcoRI* site shown

20

30

in bold). The N-terminal primer was designed from the pol h sequence of baculovirus with modifications to enhance expression in the baculovirus system.

The about 591 base pair PCR product (referred to as $ncFc_eR\alpha 4_{591}$) has a coding strand nucleic acid sequence denoted herein as SEQ ID NO:27. The complement of SEQ ID NO:27 is represented herein by SEQ ID NO:29. Translation of SEQ ID NO:27 indicates that nucleic acid molecule $ncFc_eR\alpha 4_{591}$ encodes a Fc_eR α chain protein of about 197 amino acids, referred to herein as $PcFc_eR\alpha 4_{197}$, having amino acid sequence SEQ ID NO:28. Nucleic acid molecule $ncFc_eR\alpha 4_{591}$ encodes a secretable form of the canine Fc_eR α chain. The processed protein product encoded by $ncFc_eR\alpha 4_{591}$ does not possess a leader sequence or transmembrane domain, and is referred to herein as $PcFc_eR\alpha 4_{173}$, represented herein by SEQ ID NO:31.

Nucleic acid molecule Bv-ncFc_eR α_{591} was digested with BgIII and EcoRI and subcloned into the unique BgIII and EcoRI sites of baculovirus shuttle plasmid pVL1392 (available from Pharmingen, San Diego, CA) to produce the recombinant molecule referred to herein as pVL-ncFc_eR α_{591} . The resultant recombinant molecule, pVL-ncFc_eR α_{591} , was verified for proper insert orientation by restriction mapping. The recombinant molecule pVL-ncFc_eR α_{591} was co-transfected with a BaculogoldTM baculovirus DNA into S. frugiperda Sf9 cells (available from Invitrogen) to form recombinant cells denoted S. frugiperda:pVL-ncFc_eR α_{591} . Recombinant baculovirus was plaque purified and amplified from each transfection by methods well known to those skilled in the art, to produce recombinant baculovirus BV-ncFc_eR α_{591} .

S. frugiperda: pVL-ncFc_cR α_{591} cells were cultured in order to produce a secreted canine Fc_cR α chain protein, PcFc_cR α 4₁₉₇ in the following manner. An about 1.5 liter cultures of serum-free ex-Cell Medium was seeded with about 1 x 10⁶ Trichoplusia ni cells (High FiveTM cells) per ml of medium. The cell culture was inoculated with recombinant baculovirus BV-ncFc_cR α_{591} at a multiplicity of infection (MOI) of about 2 to about 5 plaque forming units (pfu) per cell to produce recombinant cell Trichoplusia ni:BV-ncFc_cR α_{591} . The infection was allowed to proceed at a controlled temperature of 27°C for 48 hours, to produce recombinant protein of PcFc_cR α_{197} . Following infection, cells were separated from the medium by centrifugation, and the medium was frozen at 70°C.

SEQUENCE LISTING

	(1)	GENERA	L INFORMATION:
5		(i)	APPLICANT: (A) NAME: Heska Corporation (B) STREET: 1825 Sharp Point Drive (C) CITY: Fort Collins (D) STATE: CO (E) COUNTRY: US (F) POSTAL CODE (ZIP): 80525 (G) TELEPHONE: (970) 493-7272 (H) TELEFAX: (970) 484-9505
		(ii)	TITLE OF INVENTION: METHOD TO DETECT CANINE IGE
			NUMBER OF SEQUENCES: 31
15 20		(iv)	CORRESPONDENCE ADDRESS: (A) ADDRESSEE: LAHIVE & COCKFIELD, LLP (B) STREET: 28 STATE STREET (C) CITY: BOSTON (D) STATE: MA (E) COUNTRY: US (F) ZIP: 02109
25			COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: Windows 95 (D) SOFTWARE: ASCII DOS TEXT
	:	(vi)	CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: (C) CLASSIFICATION:
30		(vii)	PRIOR APPLICATION DATA: .(A) APPLICATION NUMBER: 08/833,488 (B) FILING DATE: 07-APR-1997
35		(viii)	ATTORNEY/AGENT INFORMATION: (A) NAME: Rothenberger, Scott D. (B) REGISTRATION NUMBER: 41,277 (C) REFERENCE/DOCKET NUMBER:
		(ix)	TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (617) 227-7400 (B) TELEFAX: (617) 742-4214
40	(2)	INFORM	ATION FOR SEQ ID NO:1:
, 45		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 nucleotides (B) TYPE: n_c eic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
		(ii)	MOLECULE TYPE: primer
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:1:

TGCGGATCCA ATATGCCTGC TTCCATGGGA

	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:2	:							
5		(i)		SEQU (A) (B) (C) (D)	LEN TYP STR	GTH: E: ANDE	34 nucl DNES	nuc eic	leot acid sing	ides						
		(ii	}	MOLE	CULE	TYP	E:	prim	er			•				
		(xi)	SEQU	ENCE	DES	CRIP	TION	: s:	EQ I	D NO	:2:				
	TTGG	AATT	ст т	'ACTC	TTTT	T TC	ACAA	TAAT	GTT	G						34
10	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:3	:							
15	·	(i)		SEQU (A) (B) (C) (D)	LEN TYP STR	GTH: E: ANDE	60 nucl DNES	9 nu eic S:	cleo acid sing	tide	s					
		(ii)	MOLE	CULE	TYP	E:	CDNA								
		(ix)	(A)	NAM	E/KE		CDS 10	603							
20		(ix		FEAT (A) (B)	NAM	E/KE	Y: N:	R = 187	A or	G						
25		(ix	:)	FEAT (A) (B)	NAM	IE/KE			= un	.know	n am	ino	acid			
		(xi	.)	SEQU	ENCE	E DES	CRIE	TION	l: S	EQ I	D NO):3:				
	GGAT	CCAA	TA TA	G CC et Pr 1	T GO	T TO	C AT	rG GC et Gl 5	A GG y Gl	SC CC .y Pr	T GC	a Le	G CT u Le 0	G u		42
30	TGG Trp	CTA Leu	GCG Ala	CTG Leu 15	CTG Leu	CTC Leu	TCC Ser	TCT Ser	CCA Pro 20	GGT Gly	GTC Val	ATG Met	TCA Ser	TCA Ser 25		84
35	GÁT Asp	ACC Thr	TTG Leu	AAA Lys	CCT Pro 30	ACA Thr	GTG Val	TCC Ser	ATG Met	AAC Asn 35	CCG Pro	CCA Pro	TGG Trp	AAT Asn		126
	ACA Thr 40	ATA Ile	TTG Leu	AAG Lys	GAT Asp	GAC Asp 45	AGT Ser	GTG Val	ACT Thr	CTT Leu	ACA Thr 50	TGT Cys	ACT Thr	GGG Gly		168
40	ι ∿C Asn	AAC Asn 55	TCC Ser	CTT Leu	GAA Glu	GTC Val	GRC Xaa 60	Ser	GCT Ala	GTG Val	TGG Trp	CTC Leu 65	CAC His	AAC Asn		210
	AAC Asn	ACT Thr	ACT Thr	Leu	CAA Gln	GAG Glu	ACG Thr	ACT Thr	Ser	CGT Arg	TTG Leu	GAC Asp	ATC Ile	AAT Asn	•	252

	AAA Lys	GCC Ala	CAA Gln	ATC Ile 85	CAG Gln	GAC Asp	AGT Ser	GGG Gly	GAG Glu 90	TAC Tyr	AGG Arg	TGT Cys	CGG Arg	GAA Glu 95	294
5	AAT Asn	AGA Arg	TCC	ATC Ile	CTG Leu 100	AGT Ser	GAT Asp	CCT Pro	GTG Val	TAC Tyr 105	CTA Leu	ACA Thr	GTC Val	TTC Phe	336
	ACA Thr 110	GAG Glu	TGG Trp	CTG Leu	ATC Ile	CTT Leu 115	CAA Gln	GCC Ala	TCT Ser	GCC Ala	AAC Asn 120	GTG Val	GTG Val	ATG Met	378
10	GAG Glu	GGT Gly 125	GAG Glu	AGC Ser	TTC Phe	CTC Leu	ATC Ile 130	AGG Arg	TGC Cys	CAT His	AGT Ser	TGG Trp 135	AAG Lys	AAT Asn	420
15	TTG Leu	AGG Arg	CTC Leu 140	ACA Thr	AAG Lys	GTG Val	ACC Thr	TAC Tyr 145	TAC Tyr	AAG Lys	GAT Asp	GGC Gly	ATC Ile 150	CCC Pro	462
	ATC Ile	AGG Arg	TAC Tyr	TGG Trp 155	TAC Tyr	GAG Glu	AAC Asn	TTC Phe	AAC Asn 160	ATC Ile	TCC Ser	ATT Ile	AGC Ser	AAC Asn 165	504
20	GTC Val	ACA Thr	ACC Thr	AAA Lys	AAC Asn 170	AGC Ser	GGC Gly	AAC Asn	TAT Tyr	TCC Ser 175	TGC Cys	TCA Ser	GGC Gly	CAG Gln	546
	ATC Ile 180	CAG Gln	CAG Gln	AAA Lys	GGC	TAC Tyr 185	ACC Thr	TCT Ser	AAA Lys	GTC Val	CTC Leu 190	AAC Asn	ATT Ile	ATT Ile	588
25	GTG Val	AAA Lys 195	AAA Lys	GAG Glu	TAA	GAAT	TC								609
	(2)	INE	FORM	OIT	1 FOF	SEÇ	Q ID	NO:4	! :						
30		(i)	1	SEQU (A) (B) (D)	LEN TYF	IGTH:	nucl	TERIS 7 an Leic line	ino acid	acid	ls				
		(ii	L)	MOLE	CULE	TYF	E:	prot	ein						
35		(i)	c)	FEAT (A) (B)		: E/KE		Xaa 60	= un	ıknow	m an	ino	acid	ì	
		(xi	L)	SEQU	JENCE	DES	CRIE	MOIT	1: S	EQ I	D NC	:4:			
	Met 1	Pro	Ala	Ser	Met 5	Gly	Gly	Pro	Ala	Leu 10	Leu	Trp	Leu	Ala	
40 ⁄	Leu 15	Leu	Leu	Ser	Ser	Pro 20	Gly	Val	Met	Ser	Ser 25	Asp	Thr	Leu	
	Lys	Pro 30	Thr	Val	Ser	Met	Asn 35	Pro	Pro	Trp	Asn	Thr 40	Ile	Len	
45	Lys	Asp	Asp 45	Ser	Val	Thr	Leu	Thr	Cys	Thr	Gly	Asn	Asn	Ser	11.

	Ļeu	Glu	Val	Xaa 60	Ser	Ala	Val	Trp	Leu 65	His	Asn	Asn	Thr	Thr 70		
	Leu	Gln	Glu	Thr	Thr 75	Ser	Arg	Leu	Asp	Ile 80	Asn	Lys	Ala	Gln		
5	Ile 85	Gln	Asp	Ser	Gly	Glu 90	Tyr	Arg	Cys	Arg	Glu 95	Asn	Arg	Ser		
	Ile	Leu 100	Ser	Asp	Pro	Val	Tyr 105	Leu	Thr	<u>V</u> al	Phe	Thr 110	Glu	Trp		
10	Leu	Ile	Leu 115	Gln	Ala	Ser	Ala	Asn 120	Val	Val	Met	Glu	Gly 125	Glu		
	Ser	Phe	Leu	Ile 130	Arg	Cys	His	Ser	Trp 135	Lys	Asn	Leu	Arg	Leu 140		
	Thr	Lys	Val	Thr	Tyr 145	Tyr	Lys	Asp	Gly	Ile 150	Pro	Ile	Arg	Tyr		
15	Trp 155	Tyr	Glu	Asn	Phe	Asn 160	Ile	Ser	Ile	Ser	Asn 165	Val	Thr	Thr		
	Lys	Asn 170	Ser	Gly	Asn	Tyr	Ser 175	Cys	Ser	Gly	Gln	Ile 180	Gln	Gln		
20	Lys Glu	Gly	Tyr 185	Thr	Ser	Lys	Val	Leu 190		Ile		Val		Lys		
	(2)		FORM	ATIO	N FO	R SE	O ID	NO:	5:							
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 609 nucleotides															
		(i	i)	MOL	ECUL	E TY	PE:	CDN	Α							
30		(i	x)	FEA (A) (B)		S: ME/K CATI		Y = 422	Go	r T						
		(x	:i)	SEQ	UENC	E DE	SCRI	PTIC	N:	SEQ	ID N	10 : 5 :				
•	GAA	TTCT	TAC	TCTT	TTTT	CA C	AATA	ATGI	T G	AGGAC	TTT	GAC	GTGT	TAGC		50
35	GTG GAT TAT GCT	TCTG ACGI GCCA GGCA	TGC TCC CCT GGA	TAAT TTGT GATG TCAG	GGAG AGTA AGGA CCAC	AT G GG T AG C TC T	TTGA CACC TCTC CTGA	TTDAL OTTT: OCCA NAGAL	C TO T G! CT CO CT G!	GTAC AGCCT CATCA CTAGC	CAGT LAADT LACDA LOATE	T ACC A TTC C GTC A CAC	ETGAT ETTC FGGC FGAT	TGGG CAAC AGAG CACT		100 150 200 250 300
40	GGC TTC TG1	GATO CTTT GTGG! GAAG! GACAC	TATT AGCC AGTC	GATO ACAO ACAO	TCC# AGC# TGTC	AAA C AGA C CAT C	GTG# SYCG# CCTTC	AGT(ACTT(CAAT)	CG TO CA AC	CTCTT GGGA(GTATT	rgc <i>i</i> _ sttgʻ rcca'	. KG' I TC' I GG'	TAGT(CCAG' CGGG'	GTTG TACA TTCA	·· .	350 400 450 500 550
45	AGO	CAGCA CGGA	AGCG												٠,	600

	(2) Т	NFOR	MATI	ON F	OR S	EQ I	D NO	:6:							
5		(i)	SE(A)(B)(C)) L:) T:) S:	ENGT: YPE:	H: nu DEDNI	CTER: 591 : cleic ESS: lir	nucle c ac:	eoti	des		* *			
		(:	ii)	MOI	LECUI	LE T	YPE:	CDI	NA							
10		(:	ix)	FE! (A) (B)	_	ES: AME/I CATI		CDS								
		(i	ix)	FEA (A) (B)	ATURE NA LC		CEY:		R = A or G 179							
15		(i	x)	FEA (A) (B)	TURE NA LO	S: ME/K CATI	EY:	Xaa 60	. = ບ	ınkno	wn a	ımino	aci	.d		
			i)					PTIO								
20	ATG Met 1	CCT Pro	GCT Ala	TCC Ser	ATG Met 5	CIY	GGC Gly	CCT Pro	GCC Ala	CTG Leu 10	Leu	TGG	CTA Leu	GCG Ala	42	
	CTG Leu 15	CTG Leu	CTC Leu	TCC Ser	TCT Ser	CCA Pro 20	GIY	GTC Val	ATG Met	TCA Ser	TCA Ser 25	Asp	ACC Thr	TTG Leu	84	
25	-	30			501	Met	35	Pro	Pro	Trp	Asn	Thr 40	Ile	TTG Leu	126	
	_	•	GAC Asp 45		141	1111	Leu	50	Cys	Thr	Gly	Asn	Asn 55	Ser	168	
30			GTC Val	60	UCI	nia	VAI	Trp	65	His	Asn	Asn	Thr	Thr 70	210	
35	TTG Leu	CAA Gln	GAG Glu	ACG Thr	ACT Thr 75	TCA Ser	Arg	TTG Leu	Asp	TTE	Asn	AAA Lys	GCC Ala	CAA Gln	252	
	ATC Ile 85	CAG Gln	GAC Asp	AGT Ser	GGG Gly	GAG Glu 90	TAC Tyr	AGG Arg	TGT Cys	CGG Arg	GAA Glu 95	AAT Asn	AGA Arg	TCC Ser	294	
40	ATC Ile	CTG Leu 100	AGT Ser	GAT Asp	CCT Pro	GTG Val	TAC Tyr 105	CTA Leu	ACA Thr	GTC Val	TTC Phe	ACA Thr 110	GAG Glu	TGG Trp	336	
<i>(</i>	CTG Leu	ATC Ile	CTT Leu 115	CAA Gln	GCC Ala	TCT Ser	GCC Ala	AAC Asn 120	GTG Val	GTG Val	ATG Met	GAG Glu	GGT Gly 125	GAG Glu	378	
45	AGC Ser	TTC Phe	CTC Leu	ATC Ile 130	AGG Arg	TGC Cys	CAT His	AGT Ser	TGG Trp 135	AAG Lys	AAT Asn	TTG Leu	AGG Arg	CTC Leu 140	420	

	ACA AAG GTG Thr Lys Val	ACC TAC TAC AAG GAT GGC ATC CCC ATC AGG TAC Thr Tyr Tyr Lys Asp Gly Ile Pro Ile Arg Tyr 145	462									
5	TGG TAC GAG Trp Tyr Glu 155	AAC TTC AAC ATC TCC ATT AGC AAC GTC ACA ACC ASn Phe Asn Ile Ser Ile Ser Asn Val Thr Thr 160 165	504									
	AAA AAC AGO Lys Asn Ser 170	GGC AAC TAT TCC TGC TCA GGC CAG ATC CAG CAG Gly Asn Tyr Ser Cys Ser Gly Gln Ile Gln Gln 175	546									
10	AAA GGC TAC Lys Gly Tyr 185	C ACC TCT AAA GTC CTC AAC ATT ATT GTG AAA AAA T Thr Ser Lys Val Leu Asn Ile Ile Val Lys Lys 190	588									
	GAG Glu		591									
15	(2) INFORM	MATION FOR SEQ ID NO:7:										
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 591 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear											
	(ii)	MOLECULE TYPE: cDNA										
	(ix)	FEATURES: (A) NAME/KEY: Y = C or T (B) LOCATION: 413										
25	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:7:										
30 35	CTCTTTTTC ACAATAATGT TGAGGACTTT AGAGGTGTAG CCTTTCTGCT 50 GGATCTGGCC TGAGCAGGAA TAGTTGCCGC TGTTTTTGGT TGTGACGTTG 100 CTAATGGAGA TGTTGAAGTT CTCGTACCAG TACCTGATGG GGATGCCATC 150 CTTGTAGTAG GTCACCTTTG TGAGCCTCAA ATTCTTCCAA CTATGGCACC 200 TGATGAGGAA GCTCTCACCC TCCATCACCA CGTTGGCAGA GGCTTGAAGG 250 ATCAGCCACT CTGTGAAGAC TGTTAGGTAC ACAGGATCAC TCAGGATGGA 300 TCTATTTTCC CGACACCTGT ACTCCCCACT GTCCTGGATT TGGGCTTTAT 350 TGATGTCCAA ACGTGAAGTC GTCTCTTGCA AAGTAGTGTT GTTGTGGAGC 400 CACACAGCAG AGYCGACTTC AAGGGAGTTG TTCCCAGTAC ATGTAAGAGT 450											
	(2) INFO	RMATION FOR SEQ ID NO:8:										
40	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 609 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear										
4	(ii)	MOLECULE TYPE: cDNA	_									
45	(ix)	FEATURES: (A) NAME/KEY: CDS (B) LOCATION: 10604										

		(i	x)	FEA (A) (B)		S: ME/K CATI		Xaa 60,	= u 195	nkno , 19	wn a 6	mino	aci	đ	
5		(i:	x)	FEA(A)		S: ME/K CATI		K = 187	G o	гТ					
		(i:	x)	FEA' (A) (B)		S: ME/K CATI	EY: ON:	N = 592	unk , 59	nown 5, 5	nuc 96	leot	ide		
10		(x:	i)	SEQ	UENC	E DE	SCRI	PTIO	N:	SEQ	ID N	0:8:			
	GGA'	TCCA	AT A' M	TG Co et P: 1	CT Go	CT TO la So	CC A' er M	TG GG et G	GA GO	GC C	CT G	la L	TG C' eu L	TG eu	42
15	TGG Trp	CTA Leu	GCG Ala	CTG Leu 15	CTG Leu	CTC Leu	TCC Ser	TCT Ser	CCA Pro 20	GGT Gly	GTC Val	ATG Met	TCA Ser	TCA Ser 25	84
	GAT Asp	ACC Thr	TTG Leu	AAA Lys	CCT Pro 30	ACA Thr	GTG Val	TCC Ser	ATG Met	AAC Asn 35	CCG Pro	CCA Pro	TGG Trp	AAT Asn	126
20	ACA Thr 40	ATA Ile	TTG Leu	AAG Lys	GAT Asp	GAC Asp 45	AGT Ser	GTG Val	ACT Thr	CTT Leu	ACA Thr 50	TGT Cys	ACT Thr	GGG Gly	168
25	AAC Asn	AAC Asn 55	TCC Ser	CTT Leu	GAA Glu	GTC Val	GKC Xaa 60	TCT Ser	GCT Ala	GTG Val	TGG Trp	CTC Leu 65	CAC His	AAC Asn	210
	AAC Asn	ACT Thr	ACT Thr 70	TTG Leu	CAA Gln	GAG Glu	ACG Thr	ACT Thr 75	TCA Ser	CGT Arg	TTG Leu	GAC Asp	ATC Ile 80	AAT Asn	252
30	AAA Lys	GCC Ala	CAA Gln	ATC Ile 85	CAG Gln	GAC Asp	AGT Ser	GGG Gly	GAG Glu 90	TAC Tyr	AGG Arg	TGT Cys	CGG Arg	GAA Glu 95	294
	AAT Asn	AGA Arg	TCC Ser	ATC Ile	CTG Leu 100	AGT Ser	GAT Asp	CCT Pro	GTG Val	TAC Tyr 105	CTA Leu	ACA Thr	GTC Val	TTC Phe	336
35	ACA Thr 110	GAG Glu	TGG Trp	CTG Leu	ATC Ile	CTT Leu 115	CAA Gln	GCC Ala	TCT Ser	GCC Ala	AAC Asn 120	GTG Val	GTG Val	ATG Met	378
40	GAG Glu	GGT Gly 125	GAG Glu	AGC Ser	TTC Phe	CTC Leu	ATC Ile 130	AGG Arg	TGC Cys	CAT His	AGT Ser	TGG Trp 135	AAG Lys	AAT Asn	420
	TTG Leu	AGG Arg	CTC Leu 140	ACA Thr	AAG Lys	GTG Val	ACC Thr	TAC Tyr 145	TAC Tyr	AAG Lys	GAT Asp	GGC Gly	ATC Ile 150	CCC Pro	4:.2
45	ATC Ile	AGG Arg	TAC Tyr	TGG Trp 155	TAC Tyr	GAG Glu	AAC Asn	Phe	AAC Asn 160	ATC Ile	TCC Ser	ATT Ile	AGC Ser	AAC. Asn 165	504

	GTC Val	ACA Thr	ACC Thr	AAA Lys	AAC Asn 170	AGC Ser	GGC Gly	AAC Asn	Tyr	TCC Ser 175	TGC Cys	TCA Ser	GGC Gly	CAG Gln	546
5	ATC Ile 180	CAG Gln	CAG Gln	AAA Lys	GGC Gly	TAC Tyr 185	ACC Thr	TCT Ser	AAA Lys	GTC Val	CTC Leu 190	AAC Asn	ATT Ile	ATT Ile	588
	GTG Val	NAA Xaa 195	NNA Xaa	GAG Glu	TAA	GAAT	TC	·				. •			609
0	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:9	:						
	-	(i)		SEQU (A) (B) (D)	LEN TYP	CHA IGTH: PE: POLOG	19 amin	7 am	ino ids		ls				
5		(ii)	MOLE	CULE	TYP	E:	prot	ein						
		(ix	:)	FEAT (A) (B)		: E/KE ATIO		Xaa 60,				nino	acid	1	
		(xi)	SEQU	ENCE	DES	CRIF	PTION	: S	EQ I	D NO	9:9:			
.0	Met 1	Pro	Ala	Ser	Met 5	Gly	Gly	Pro	Ala	Leu 10	Leu	Trp	Leu	Ala	
	Leu 15	Leu	Leu	Ser	Ser	Pro 20	Gly	Val	Met	Ser	Ser 25	Asp	Thr	Leu	
25	Lys	Pro 30	Thr	Val	Ser	Met	Asn 35	Pro	Pro	Trp	Asn	Thr 40	Ile	Leu	
	Lys	Asp	Asp 45	Ser	Val	Thr	Leu	Thr 50	Cys	Thr	Gly	Asn	Asn 55	Ser	
	Leu	Glu	Val	Xaa 60	Ser	Ala	Val	Trp	Leu 65	His	Asn	Asn	Thr	Thr 70	
30	Leu	Gln	Glu	Thr	Thr 75	Ser	Arg	Leu	Asp	Ile 80		Lys	Ala	Gln	
	Ile 85		Asp	Ser		Glu 90		Arg	Cys	Arg	Glu 95		Arg	Ser	
35	Ile	Leu 100	Ser	Asp	Pro	Val	Tyr 105		Thr	Val	Phe	Thr 110		Trp	
	Leu	Ile	Leu 115		Ala	Ser	Ala	Asn 120	Val	Val	Met	: Glu	1 Gly 125	Glu	
√	Ser	Phe	Leu	11e 130		Cys	His	Ser	T., 2 135		. Asr	ı Lei	ı Arç	Leu 140	
40	Thr	Lys	Val	Thr	Tyr 145		Lys	qaA _, s	Gly	11e		o Ile	e Arg	Tyr.	• • \
	Trp		Glu	ı Asn	Phe	Asn 160		Ser	Tle	Sei	Ası		l Th	Thr	•

```
Lys Asn Ser Gly Asn Tyr Ser Cys Ser Gly Gln Ile Gln Gln
                                  175
      Lys Gly Tyr Thr Ser Lys Val Leu Asn Ile Ile Val Xaa Xaa
                                   190 195
  5
      Glu
            INFORMATION FOR SEQ ID NO:10:
      (2)
            (i)
                    SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 609 nucleotides
                     (B) TYPE: nucleic acid
 10
                     (C) STRANDEDNESS: single
                     (D) TOPOLOGY: linear
            (ii)
                    MOLECULE TYPE: cDNA
            (ix)
                    FEATURES:
                    (A) NAME/KEY: N = any nucleotide
15
                    (B) LOCATION: 14, 15, 18
            (ix)
                    FEATURES:
                    (A) NAME/KEY: M = A or C
(B) LOCATION: 422
                    SEQUENCE DESCRIPTION: SEQ ID NO:10:
            (xi)
20 GAATTCTTAC TCTNNTTNCA CAATAATGTT GAGGACTTTA GAGGTGTAGC
     CTTTCTGCTG GATCTGGCCT GAGCAGGAAT AGTTGCCGCT GTTTTTGGTT
                                                                            50
     GTGACGTTGC TAATGGAGAT GTTGAAGTTC TCGTACCAGT ACCTGATGGG
GATGCCATCC TTGTAGTAGG TCACCTTTGT GAGCCTCAAA TTCTTCCAAC
                                                                            100
                                                                            150
     TATGGCACCT GATGAGGAAG CTCTCACCCT CCATCACCAC GTTGGCAGAG
                                                                            200
25 GCTTGAAGGA TCAGCCACTC TGTGAAGACT GTTAGGTACA CAGGATCACT
     CAGGATGGAT CTATTTCCC GACACCTGTA CTCCCCACTG TCCTGGATTT
                                                                            300
     GGGCTTTATT GATGTCCAAA CGTGAAGTCG TCTCTTGCAA AGTAGTGTTG
                                                                            350
     TTGTGGAGCC ACACAGCAGA GMCGACTTCA AGGGAGTTGT TCCCAGTACA
                                                                            400
     TGTAAGAGTC ACACTGTCAT CCTTCAATAT TGTATTCCAT GGCGGGTTCA
TGGACACTGT AGGTTTCAAG GTATCTGATG ACATGACACC TGGAGAGGAG
AGCAGCAGCG CTAGCCACAG CAGGGCAGGG CCTCCCATGG AAGCAGGCAT
                                                                            450
                                                                            500
                                                                            600
     ATTGGATCC
     (2)
           INFORMATION FOR SEQ ID NO:11:
           (i)
                   SEQUENCE CHARACTERISTICS:
35
                   (A) LENGTH: 591 nucleotides
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
                    (D) TOPOLOGY: linear
           (ii)
                   MOLECULE TYPE: CDNA
40
           (ix)
                   FEATURES:
                   (A) NAME/KEY: Xaa = unknown amino acid
(B) LOCATION: 60, 195, 196
                                                               (ix)
                   FEATURES:
                   (A) NAME/KEY: K = G or T
(B) LOCATION: 179
45
           (ix)
                   FEATURES:
                   (A) NAME/KEY: N = unknown nucleotide (B) LOCATION: 583, 586, 587
```

(ix)

FEATURES:

				(A) (B)		E/KE' ATIO		CDS 15	91						
		(xi	.)	SEQU	ENCE	DES	CRIP	TION	: s	EQ I	D NO	:11:			
5											CTG ' Leu '				42
10											TCA (Ser / 25				84
											AAT . Asn :				126
15											GGG .				168
											AAC Asn				210
20						Ser					AAT Asn				252
25											GAA Glu 95				294
											TTC Phe				336
30											ATG Met				378
										Lys	AAT Asn				420
35						Tyr					CCC Pro				462
40		Туг					Ile				AAC Asn 165	Val		ACC Thr	504
4			ı Sei					Cys					Glr	CAG Gln	546
45	Lys	s Gl	TAC Y TY: 18	r Thi	TC: Sei	r AAA	A GT(C CTC L Lev 190	ı Ası	a Il	r ATT e Ile	r GTC e Val	NAZ Xaz 199	NNA Xaa	•
	GAG	غ													591

	(2)	INFOR	MATION F	OR SEQ	ID NO	:12:						
5		(i)	(A) I (B) T (C) S	CE CHAR ENGTH: YPE: n TRANDED	591 r ucleio NESS:	nucle aci	otic					
		(ii)	MOLECU	LE TYPE	: cDi	JA			•			
10		(ix)	FEATUR (A) N (B) L	ES: AME/KEY OCATION	: N =	any 6, 9	nuc	leot	ide			
		(ix)	(A) N	ES: AME/KEY: OCATION:	M =	: A o	r C					
		(xi)	SEQUEN	CE DESC	RIPTIC	N:	SEQ	ID N	0:12	:		
15	CTAAT CTTGT	rggaga ragtag	TGTTGAA	TGT TGAC GAA TAGT GTT CTCC TTG TGAC	TACCA	G TA	TTTT CCTG	TGGT	TGT	GACG TGCC	TTG ATC	50 100 150
20	ATCAC TCTAT	SCCACT TTTTCC STCCAA	CTGTGAA CGACACC ACGTGAA	GAC TCCA GAC TGTT TGT ACTC	TCACC AGGTA CCCAC	A CG	TTGG AGGA CCTG	CAGA TCAC GATT	TCA TGG	TTGA GGAT GCTT	AGG GGA TAT	200 250 300 350
25	CACAC	TGTCA	TCCTTCA GGTATCT	PTC AAGO ATA TTGT GAT GACA AGG GCCT	GAGTT ATTCC TGACA	G TTO A TGO	CCCA GCGG	GTAC GTTC	ATG	TAAG	AGT	400 450 500 550 591
	(2)			OR SEQ I					-			391
30		(i)	(A) Li (B) Ti (C) Si	CE CHARA ENGTH: PE: nu PRANDEDN OPOLOGY:	617 n cleic ESS:	ucled acid	otid d	es				
		(ii)	MOLECUI	LE TYPE:	CDN	A						
35		(ix)		ES: AME/KEY: DCATION:		.606						
		(xi)	SEQUENC	E DESCR	IPTIO	N: 5	SEQ :	ID NO	0:13	:		
40	GGATC	CAAT A'	TG CCT (et Pro A 1	GCT TCC	ATG G Met G 5	GA GO	GC CC	CT GO	la Le	rg cr eu Le	rg ≘u	42
	TGG C Trp L	TA GCG eu Ala	CTG CTC Leu Leu 15	CTC TC	C TCT r Ser	CCA Pro 20	GGT Gly	GTC Val	GTG Val	TCA Se.	TCA Jer 25	84
15	GAT A Asp T	CC TTG hr Leu	AAA CCT Lys Pro	ACA GTO	G TCC l Ser	ATG Met	AAC Asn 35	CCG Pro	CCA Pro	TGG Trp	AAT Asn	126
	ACA A Thr I 40	TA TTG le Leu	AAG GAT Lys Asp	GAC AG Asp Se 45	r GTG r Val	ACT Thr	CTT Leu	ACA Thr 50	TGT Cys	ACT Thr	GGG.	168

WO.98/45707

	AAC Asn														210
5 -	AAC Asn														252
													CGG Arg		294
0													GTC Val		336
15													GTG Val		378
													AAG Lys		420
20													ATC Ile 150		462
					Tyr									AAC Asn 165	504
25						Ser					Cys			CAG Gln	546
30	ATC Ile 180	Gln	CAG Gln	AAA Lys	GGC Gly	TAC Tyr 185	Thr	TCT Ser	' AAA ' Lys	GTC Val	CTC Leu 190	Asn	ATT	ATT lle	588
			Lys			AAT Asn		AAGA	ATT	С					617
	(2)	IN	FORM	IATIC	ON FO	R SE	Q II	ONO:	:14:						
35		(i	.)	SE((A) (B)	LI T	CE CH ENGTH YPE: OPOLO	i: I	199 a ino a	amino	ac	ids				
		()	Li)	MO	LECU	LE T	YPE:	pr	otei	n					
40		()	ki)	SE	QUEN	CE DI	ESCR	II'TI	ON:	SEQ	ID	NO:1	4:		
¥	Met		o Ala	a Se		t Gl	y Gl	y Pr	o Al		u Le 0	u Tr	p Le	u Ala	
	Lei 1		u Le	u Se	r Se		o Gl 0	y Va	l Va	l Se		r As	p Th	ır Leu	
45	Ly		o Th O	r Va	l Se	r Me		n Pr	o Pr	o Ti	p As		ir Il	e Leu	

	ьys	Asp	45	ser	Val	Thr	Leu	Thr 50	Cys	Thr	Gly	Asn	Asn 55	Ser	
	Leu	Glu	Val	Asp 60	Ser	Ala	Val	Trp	Leu 65	His	Asn	Asn	Thr	Thr 70	
5	Leu	Gln	Glu	Thr	Thr 75	Ser	Arg	Leu	Asn	Ile 80	Asn	Lys	Ala	Gln	
	Ile 85	Gln	Asp	Ser	Gly	Glu 90	Tyr	Arg	Cys	Arg	Glu 95	Asn	Arg	Ser	
10	Ile	Leu 100	Ser	Asp	Pro	Val	Tyr 105	Leu	Thr	Val	Phe	Thr 110	Glu	Trp	
	Leu	Ile	Leu 115	Gln	Ala	Ser	λla	Asn 120	Val	Val	Met	Glu	Gly 125	Glu	
	Ser	Phe	Leu	Ile 130	Arg	Cys	His	Ser	Trp 135	Lys	Asn	Leu	Arg	Leu 140	
15	Thr	Lys	Val	Thr	Tyr 145	Tyr	Lys	Asp	Gly	Ile 150	Pro	Ile	Arg	Tyr	
	Trp 155	Tyr	Glu	Asn	Phe	Asn 160	Ile	Ser	Ile	Ser	Asn 165	Val	Thr	Thr	•
20	Lys	Asn 170	Ser	Gly	Asn	Tyr	Ser 175	Cys	Ser	Gly	Gln	Ile 180	Gln	Gln	
	Lys	Gly	Tyr 185	Thr	Ser	Lys	Val	Leu 190	Asn	Ile	Ile	Val	Lys 195	Lys	
	Ser	Lys	Asn												
	(2)	INF	ORMA	NOITA	FOF	SEÇ] ID	NO:1	.5 :						
25		(i)		SEQU (A) (B) (C) (D)	LEN TYF STF	IGTH : E :	61 nucl DNES	ERIS 7 nu eic Ss: line	clec acid sing	tide l	:s				
30	•	(ii	.)	MOLE	CULE	TYP	E:	CDNA							
		(xi	.)	SEQU	ENCE	DES	CRIF	TION	: s	EQ I	D NO	:15:			
35	TTTT CTGA CTTC TGGC GGAT	GGTT TGGG CAAC AGAG	GT GGA TATA	ACGT GCCA GGCA TGAA GATG	TGCT TGCT TCCT .CCTG .GGAT	A TO A AT T GT A TG C AG	TGGC GGAG AGTA AGGA CCAC	CTGA ATGT GGTC AGCT TCTG	GCA TGA CTC	AGDD. AGTT TTTG ACCC AGAC	TAG CTC TGA TCC	TTGC GTAC GCCT ATCA TAGG	TTTA CGCT CAGT CAAA CCAC TACA	GT AC TT GT .CA	50 100 150 200 250 300 350
40	TAGT CCAG CGGG GAGA	GTTG TACA TTCA GGAG	TT G TG T TG G	TGGA 'AAGA 'ACAC	ATTO GCCA GTCA TGTA GCGC	A TG C AC C AC G GT	TTCA AGCA TGTC TTCA	AACG GAGT ATCC AGGT	TGA CGA TTC	AGTC CTTC AATA	GTC AAG TTG	TCTT GGAG TATT	GCAA TTGT CCAT	AG TC	400 450 500 550 600

	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:1	6						
5		(i _.)		SEQU (A) (B) (C) (D)	LEN TYP STR	GTH:	59 nucl DNES	ERIS' 7 nu eic S: line	cleo acid sing	tide	s				
		(ii)	MOLE	CULE	TYP	E:	CDNA				·			
10		(ix)	FEAT (A) (B)	NAM	: E/KE ATIO		CDS 15	97						
		(xi)	SEQU	ENCE	DES	CRIP	TION	: S	EQ I	D NO	:16:			
								CCT Pro							42
15	CTG Leu 15							GTC Val							84
20	AAA Lys	CCT Pro 30	ACA Thr	GTG Val	TCC Ser	ATG Met	AAC Asn 35	CCG Pro	CCA Pro	TGG Trp	AAT Asn	ACA Thr 40	ATA Ile	TTG Leu	126
								ACA Thr 50							168
25								TGG Trp							210
								TTG Leu							252
30					-			AGG Arg							294
35								CTA Leu						TGG Trp	336
				Gln					Val					GAG Glu	378
40					Arg					Lys				CTC Leu 140	420
4						Tyr					Pro			TAC Tyr-	462
45		Tyr					Ile					\Val		A ACC r Thr	504

	AAA AAC AGC GGC AAC TAT TCC TGC TCA GGC CAG ATC CAG CAG Lys Asn Ser Gly Asn Tyr Ser Cys Ser Gly Gln Ile Gln Gln 170 175 180
5	AAA GGC TAC ACC TCT AAA GTC CTC AAC ATT ATT GTG AAA AAG 588 Lys Gly Tyr Thr Ser Lys Val Leu Asn Ile Ile Val Lys Lys 185 190 195
	AGT AAG AAT Ser Lys Asn 597
	(2) INFORMATION FOR SEQ ID NO:17:
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 597 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
15	(ii) MOLECULE TYPE: cDNA
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:
20	ATTCTTACTC TTTTTCACAA TAATGTTGAG GACTTTAGAG GTGTAGCCTT TCTGCTGGAT CTGGCCTGAG CAGGAATAGT TGCCGCTGTT TTTGGTTGTG ACGTTGCTAA TGGAGATGTT GAAGTTCTCG TACCAGTACC TGATGGGGAT GCCATCCTTG TAGTAGGTCA CCTTCTGTGAG CCTCAAATTC TTCCAACTAT GGAAGGATCA GCCACTCTGT GAAGACTGTT AGGTACACAG GATCACTCAG GATGGATCTA TTTTCCCGAC ACCTCTAACTCA GATCACTCAG GATGGATCTA TTTTCCCGAC ACCTCTAACTCAG GATCACTCAG 300
25	CTTTATTGAT GTTCAAACGT GAAGTCGTCT CCCACTGTCC TGGATTTGGG 350 TGGAGCCACA CAGCAGAGTC GACTTCAAGG GAGTTGTTC CAGTACATGT 450 AAGAGTCACA CTGTCATCCT TCAATATTGT ATTCCATGGC GGGTTCATGG 500 ACACTGTAGG TTTCAAGGTA TCTGATGACA CGACACCTGG AGAGGAGAGC 550 AGCAGCGCTA GCCACAGCAG GGCAGGGCCT CCCATGGAAG CAGGCAT 597 (2) INFORMATION FOR SEQ ID NO:18:
30	TON BEQ ID NO:18:
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: peptide
35	<pre>(ix) FEATURES: (A) NAME/KEY: Xaa = any amino acid (B) LOCATION: 9, 14</pre>
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
40	Ser Asp Thr Leu Lys Pro Thr Val Xaa Met Asn Pro Pro Xaa 1 5 10
v'	Asn Leu Ile 15
	(2) INFORMATION FOR SEQ ID NO:19:
45	(2) INFORMATION FOR SEQ ID NO:19: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 991 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

		(11)	MOLE	CULE	TYP	E:	CDNA							
		(ix		FEATO (A) (B)	NAM	: E/KE ATIO		CDS 35	796						
5		(xi)	SEQU	ENCE	DES	CRIP	TION	l: S	EQ I	D NO	:19:			
	CTCC	AGTC	CA C	STCGT.	ACGT	G GG	GGCC	ACGA	. GGA		G CC t Pr				43
0	TCC Ser	ATG Met 5	GGA Gly	GGC Gly	CCT (GCC Ala	CTG Leu 10	CTG Leu	TGG Trp	CTA Leu	GCG Ala	CTG (Leu 1	CTG (Leu	CTC Leu	85
	TCC Ser	TCT Ser	CCA Pro 20	GGT Gly	GTC . Val	ATG Met	TCA Ser	TCA Ser 25	GAT Asp	ACC Thr	TTG . Leu	AAA (Lys	Pro 30	ACA Thr	127
15	GTG Val	TCC Ser	ATG Met	AAC Asn 35	CCG Pro	CCA Pro	TGG Trp	AAT Asn	ACA Thr 40	ΛΤΑ Ile	TTG Leu	AAG (Lys .	GAT Asp	GAC Asp 45	169
20				CTT Leu											211
				GTG Val								Leu			253
25				CGT Arg											295
				TAC Tyr											337
30				TAC Tyr 105						Glu					379
35				GCC Ala							Glu				421
		Arg												GTG Val	463
40			Туз					Pro					Tyr	GAG Glu	505
7				n Ile					n Val					AGC Seř-	437
45					Cys					e Glr				TAC Tyr 185	589

	Thr	TCT	AAA Lys	GTC Val	CTC Leu 190	AAC Asn	ATT	ATT Ile	GTG Val	AAA Lys 195	AAA Lys	GAG Glu	CCC Pro	ACC Thr	631
5	AAG Lys 200	GIII	AAC Asn	AAG Lys	TAC Tyr	TCC Ser 205	GGG Gly	CTA Leu	CÀA Gln	TTC Phe	CTG Leu 210	ATC Ile	CCG Pro	TTG Leu	673
	GTG Val	GTG Val 215	vai	ATT Ile	CTG Leu	TTT Phe	GCT Ala 220	GTG Val	GAC Asp	ACA Thr	GGA Gly	CTG Leu 225	TTT Phe	ATC Ile	715
10	TCG Ser	ACC Thr	AAG Lys 230	CAG Gln	CAG Gln	TTG Leu	ACA Thr	GTG Val 235	CTC Leu	TTG Leu	CAG Gln	ATT Ile	AAG Lys 240	AGG Arg	757
15	ACC Thr	AGG Arg	AAG Lys	AAC Asn 245	AAA Lys	AAG Lys	CCA Pro	GAA Glu	CCC Pro 250	GGA Gly	AAG Lys	AAC Asn	TGA		796
	CTG	CTTC	ATT (TAAGI CGATO CAACO CGGCI	CAC	AC GO	GAA(GGTC'	r gca	AGTC	ATGG	CTT	rgca(7 3 3	846 896 946 991
20	(2)	IN	FORM	OITA	V FO	R SEÇ	aı ç	NO:	20:						
		(i))	SEQU (A) (B) (D)	LEI TYI	E CHA NGTH: PE: POLOC	2 :	53 ar	mino cid		is				
25		(i:	i)	MOLE		TYP									
25		(i:			ECULE	TYP	PE:	prot	ein	SEQ]	ID NO	0:20:	:		
25	Met 1	(x:	i)		JENCE	E TYPE	PE: SCRII	prot PTIO	ein N: S					Ala	
25	Leu 15	(xi	i) Ala Leu	SEQU Ser Ser	ECULE JENCE Met 5 Ser	E TYPE Cly Pro 20	PE: GCRII Gly Gly	prot PTION Pro Val	cein N: S Ala Met	Leu 10 Ser	Leu Ser 25	Trp Asp	Leu Thr	Leu	
	Leu 15 Lys	Pro Leu Pro 30	i) Ala Leu Thr	SEQU Ser Ser Val	JENCE Met 5 Ser Ser	E TYPE Gly Pro 20 Met	PE: GCRII Gly Gly Asn 35	PTION Pro Val	tein N: S Ala Met Pro	Leu 10 Ser Trp	Leu Ser 25 Asn	Trp Asp Thr 40	Leu Thr	Leu Leu	
30	Leu 15 Lys Lys	Pro Leu Pro 30	Ala Leu Thr Asp	SEQU Ser Ser Val	JENCE Met 5 Ser Ser Val	E TYPE Gly Pro 20 Met	CE: Gly Gly Gly Asn 35	PTION Pro Val Pro Thr	Ala Met Pro Cys	Leu 10 Ser Trp	Leu Ser 25 Asn	Trp Asp Thr 40 Asn	Leu Thr Ile Asn 55	Leu Leu Ser	
	Leu 15 Lys Lys	Pro Leu Pro 30 Asp	Ala Leu Thr Asp 45	SEQU Ser Ser Val Ser Asp	Met 5 Ser Ser Val	E TYPE E DES Gly Pro 20 Met Thr	Gly Gly Asn 35 Leu Val	PTION Pro Val Pro Thr 50	Met Pro Cys Leu 65	Leu 10 Ser Trp Thr	Ser 25 Asn Gly Asn	Trp Asp Thr 40 Asn Asn	Leu Thr Ile Asn 55	Leu Leu Ser Thr	
30	Leu 15 Lys Lys Leu	Pro Leu Pro 30 Asp Glu Gln	Ala Leu Thr Asp 45 Val	SEQUENT SET Val Ser Asp 60 Thr	Met 5 Ser Ser Val Ser	E TYPE E DES Gly Pro 20 Met Thr Ala	CE: GCRII Gly Gly Asn 35 Leu Val	PTION Pro Val Pro Thr 50 Trp	Ala Met Pro Cys Leu 65 Asp	Leu 10 Ser Trp Thr His	Ser 25 Asn Gly Asn	Trp Asp Thr 40 Asn Asn	Leu Thr Ile Asn 55 Thr	Leu Ser Thr 70 Gln	
30	Leu 15 Lys Lys Leu Leu	Pro Leu Pro 30 Asp Glu Gln	Leu Thr Asp 45 Val Glu Asp	SEQUENCE SET SET Val SET Asp 60 Thr SeT	Met 5 Ser Ser Val Ser Thr 75	E TYPE E DES Gly Pro 20 Met Thr Ala Ser Glu 90	CE: GCRII Gly Gly Asn 35 Leu Val Arg	PTION Pro Val Pro Thr 50 Trp Leu	Ala Met Pro Cys Leu 65 Asp Cys	Leu 10 Ser Trp Thr His Ile 80	Leu Ser 25 Asn Gly Asn Asn	Trp Asp Thr 40 Asn Asn Lys	Leu Thr Ile Asn 55 Thr Ala Arg	Leu Ser Thr 70 Gln Ser	
30	Leu 15 Lys Lys Leu Leu Ile 85	Pro Leu Pro 30 Asp Glu Gln Cln Leu 100	Leu Thr Asp 45 Val Glu Asp Ser	SEQUENT SET Val Ser Asp 60 Thr	Met 5 Ser Ser Val Ser Thr 75 Gly	E TYPE Cly Pro 20 Met Thr Ala Ser Glu 90 Val	CE: GCRIF Gly Gly Asn 35 Leu Val Arg Tyr	PTION Pro Val Pro Thr 50 Trp Leu Arg	Ala Met Pro Cys Leu 65 Asp Cys	Leu 10 Ser Trp Thr His Ile 80 Arg	Ser 25 Asn Gly Asn Asn Glu 95 Phe	Trp Asp Thr 40 Asn Asn Lys Asn Thr	Leu Thr Ile Asn 55 Thr Ala Arg	Leu Leu Ser Thr 70 Gln Ser Trp	•

Ser Phe Leu Ile Arg Cys His Ser Trp Lys Asn Leu Arg Leu Thr Lys Val Thr Tyr Tyr Lys Asp Gly Ile Pro Ile Arg Tyr Trp Tyr Glu Asn Phe Asn Ile Ser Ile Ser Asn Val Thr Thr Lys Asn Ser Gly Asn Tyr Ser Cys Ser Gly Gln Ile Gln Gln Lys Gly Tyr Thr Ser Lys Val Leu Asn Ile Ile Val Lys Lys 10 Glu Pro Thr Lys Gln Asn Lys Tyr Ser Gly Leu Gln Phe Leu Ile Pro Leu Val Val Ile Leu Phe Ala Val Asp Thr Gly 15 Leu Phe Ile Ser Thr Lys Gln Gln Leu Thr Val Leu Leu Gln Ile Lys Arg Thr Arg Lys Asn Lys Lys Pro Glu Pro Gly Lys Asn 20 (2) INFORMATION FOR SEQ ID NO:21: SEQUENCE CHARACTERISTICS: (A) LENGTH: 991 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single 25 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA SEQUENCE DESCRIPTION: SEQ ID NO:21: TTTTTTTTT TTTTTTTA TTTATCTAAC TGCCGTTTAT TGAGCACCTA CTATCACATG CCACTTAATC AGTTTGAGTT GGTTGAATGA AGCAGTTCTG 100 CAAAGCCATG ACTGCAGACC TTCCCGTGTG CATCGTGAGC TGCGTCTGAC 150 GATGGAGAAG CGATTGCTGA TGCTGATGTT TCTTAAGCAG CGGCATCAGT TCTTTCCGGG TTCTGGCTTT TTGTTCTTCC TGGTCCTCTT AATCTGCAAG AGCACTGTCA ACTGCTGCTT GGTCGAGATA AACAGTCCTG TGTCCACAGC 300 AAACAGAATC ACCACCACCA ACGGGATCAG GAATTGTAGC CCGGAGTACT
TGTTTTGCTT GGTGGGCTCT TTTTTCACAA TAATGTTGAG GACTTTAGAG 350 400 GTGTAGCCTT TCTGCTGGAT CTGGCCTGAG CAGGAATAGT TGCCGCTGTT 450 TTTGGTTGTG ACGTTGCTAA TGGAGATGTT GAAGTTCTCG TACCAGTACC TGATGGGGAT GCCATCCTTG TAGTAGGTCA CCTTTGTGAG CCTCAAATTC 550 TTCCAACTAT GGCACCTGAT GAGGAAGCTC TCACCCTCCA TCACCACGTT 600 GGCAGAGGCT TGAAGGATCA GCCACTCTGT GAAGACTGTT AGGTACACAG GATCACTCAG GATGGATCTA TTTTCCCGAL CCTGTACTC CCCACTGTCC TGGATTTGGG CTTTATTGAT GTCCAAACGT GAAGTCGTCT CTTGCAAAGT 650 700 750 AGTGTTGTTG TGGAGCCACA CAGCAGAGTC GACTTCAAGG GAGTTGTTCC CAGTACATGT AAGAGTCACA CTGTCATCCT TCAATATTGT ATTCCATGGC . 850 900 45 GGGTTCATGG ACACTGTAGG TTTCAAGGTA TCTGATGACA TGACACCTGG AGAGGAGACC AGCAGCGCTA GCCACAGCAG GGCAGGGCCT CCCATGGAAG 991

	(2)	IN	IFORM	LATIC	N FO	R SE	Q II	NO:	22:						
5		(i	. }.	(A) (B) (C)	LE TY SI	E CH CNGTH PE: RAND	I: 7 nuc EDNE	59 n leic	ucle aci	otic					
		(i	i)·	MOL	ECUL	E TY	PE:	CDN	Ά						
10		(i	x)	FEA (A) (B)	TURE NA LO	S: ME/K CATI	EY: ON:	CDS							
		(x	i)	SEQ	UENC	E DE	SCRI	PTIO	N:	SEQ	ID N	0:22	:		
	ATG Met 1	CCT Pro	GCT Ala	TCC Ser	ATG Met 5	GGA Gly	GGC Gly	CCT Pro	GCC Ala	CTG Leu 10	CTG Leu	TGG Trp	CTA Leu	GCG Ala	42
15	CTG Leu 15	CTG Leu	CTC Leu	TCC Ser	TCT Ser	CCA Pro 20	GGT Gly	GTC Val	ATG Met	TCA Ser	TCA Ser 25	GAT Asp	ACC Thr	TTG Leu	84
20	AAA Lys	CCT Pro 30	ACA Thr	GTG Val	TCC Ser	ATG Met	AAC Asn 35	CCG Pro	CCA Pro	TGG Trp	AAT Asn	ACA Thr 40	ATA Ile	TTG Leu	126
	AAG Lys	GAT Asp	GAC Asp 45	AGT Ser	GTG Val	ACT Thr	CTT Leu	ACA Thr 50	TGT Cys	ACT Thr	GJA GGG	AAC Asn	AAC Asn 55	Ser	168
25	CTT Leu	GAA Glu	GTC Val	GAC Asp 60	TCT Ser	GCT Ala	GTG Val	TGG Trp	CTC Leu 65	CAC His	AAC Asn	AAC Asn	ACT Thr	ACT Thr 70	210
	TTG Leu	CAA Gln	GAG Glu	ACG Thr	ACT Thr 75	TCA Ser	CGT Arg	TTG Leu	GAC Asp	ATC Ile 80	AAT Asn	AAA Lys	GCC Ala	CAA Gln	252
30	ATC Ile 85	CAG Gln	GAC Asp	AGT Ser	GGG Gly	GAG Glu 90	TAC Tyr	AGG Arg	TGT Cys	CGG Arg	GAA Glu 95	AAT Asn	AGA Arg	TCC Ser	294
35	ATC Ile	CTG Leu 100	AGT Ser	GAT Asp	CCT Pro	GTG Val	TAC Tyr 105	CTA Leu	ACA Thr	GTC Val	TTC Phe	ACA Thr 110	GAG Glu	TGG Trp	336
	CTG Leu	ATC Ile	CTT Leu 115	CAA Gln	GCC Ala	TCT Ser	GCC Ala	AAC Asn 120	GTG Val	GTG Val	ATG Met	GAG Glu	GGT Gly 125	GAG Glu	378
10	AGC Ser	TTC Phe	CTC Lou	ATC Ile 130	AGG Arg	TGC Cys	CAT His	AGT Ser	TGG Trp 135	AAG Lys	AAT Asn	TTG Leu	AGG Arg	CTC Leu 140	420
,	ACA Thr	AAG Lys	GTG Val	ACC Thr	TAC Tyr 145	TAC Tyr	AAG Lys	GAT Asp	GGC Gly	ATC Ile 150	CCC Pro	ATC Ile	AGG Arg		462
15	TGG Trp 155	TÀC Tyr	GAG Glu	AAC Asn	TTC Phe	AAC Asn 160	ATC Ile	TCC Ser	ATT	AGC Ser	AAC Asn 165	GTC Val	ACA Thr	ACC Thr	504

(ii)

MOLECULE TYPE: protein

			Ser	GGC Gly											546
5				ACC Thr										AAA Lys	588
				AAG Lys 200											630
10														GGA Gly	672
15														CAG Gln	714
			Arg			Lys								AAG Lys	756
20	AAC Asn														759
	(2)	IN	FORM	ATIO	N FO	R SE	Q ID	NO:	23:		•				
		(i	·)	SEQ	UENC	Е СН	ARAC	TERI	STIC	'S:	*				
25				(A) (B) (C) (D)	TY ST	NGTH PE: RAND POLO	nuc EDNE		aci sir		es				
		(i	i)	MOL	ECUL	E TY	PE:	CDN	IA						
		(×	i)	SEÇ	UENC	E DE	SCRI	PTIC	N:	SEQ	ID N	10:23	3:		
30	AGA GCA CTI AGO	AGCAC AAAC <i>I</i> IGTTI STGT <i>I</i>	TGT AGAA TTGC AGCC	TCAC TTGC	TGCT CACC TGCC TGCT	GC I AC C GCT C	TGGT AACC TTTT ATCTC	CGAC GGAT TTC! GGCC	AC AC	AAACI GGAAT ATAAT GCAG(AGTCO LTGT? OTTG? LTAAE	TGT A GCC A AGC A GT	TGTC(CCGG! GACT' TGCC(CACA AGTA ITAG GCTG	50 100 150 200 250
35	TC: TT: AG:	rgato rtcci ggcao gatoi	GGGG AACT GAGG ACTC	ATGO ATGO CTTO AGGO	CATO SCACO SAAGO ATGG!	CT TO A SAT COATC	rgta(Atga(Cagc(ratt'	STAGO SGAAO CACTO TTCCO	GT C. GC TO CT G CG A	ACCT' CTCA TGAA CACC'	TTGT(CCCT(GACT(TGTA	G AGG C CAG G TT C TC	CCTC. TCAC AGGT. CCCA	AGTA AAAT CACG ACAC CTGT CAAA	300 350 400 450 500
40	GT: CC: GC: GG:	AGTG' CAGT GGGT'	TTGT ACAT TCAT GAGA	TGT(GTA GGA	GGAG(AGAG' CACT(CCA (CCA (CTA (CACA CACT GGTT	GCAG. GTCA TCAA	AG T TC C GG T	CGAC TTCA ATCT	TTCA ATAT GATG	A GG T GT A CA	GAGT ATTC TGAC	TGTT CATG ACCT TGGA	600 650 700 750
45	(2) I	NFOR	ITAM	ON F	or s	EQ I	D NO	:24:					·•.	
		(i)	SE (A (B) Т	CE C ENGT YPE: OPOL	Η: aπ	229 ino	amir acid	no ac 1	ids				

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:
- Ser Asp Thr Leu Lys Pro Thr Val Ser Met Asn Pro Pro Trp 1 5 10
- Asn Thr Ile Leu Lys Asp Asp Ser Val Thr Leu Thr Cys Thr 15 20 25
 - Gly Asn Asn Ser Leu Glu Val Asp Ser Ala Val Trp Leu His 30 35 40
 - Asn Asn Thr Thr Leu Gln Glu Thr Thr Ser Arg Leu Asp Ile 45 50 55
- 10 Asn Lys Ala Gln Ile Gln Asp Ser Gly Glu Tyr Arg Cys Arg
 - Glu Asn Arg Ser Ile Leu Scr Asp Pro Val Tyr Leu Thr Val 75 80
- Phe Thr Glu Trp Leu Ile Leu Gln Ala Ser Ala Asn Val Val 85 90 95
 - Met Glu Gly Glu Ser Phe Leu Ile Arg Cys His Ser Trp Lys $100 \ 105 \ 105$
 - Asn Leu Arg Leu Thr Lys Val Thr Tyr Tyr Lys Asp Gly Ile 115 120 125
- 20 Pro Ile Arg Tyr Trp Tyr Glu Asn Phe Asn Ile Ser Ile Ser 130 135 140
 - Asn Val Thr Thr Lys Asn Ser Gly Asn Tyr Ser Cys Ser Gly 145 150
- Gln Ile Gln Gln Lys Gly Tyr Thr Ser Lys Val Leu Asn Ile
 155 160 165
 - Ile Val Lys Lys Glu Pro Thr Lys Gln Asn Lys Tyr Ser Gly
 170 175 180
 - Leu Gln Phe Leu Ile Pro Leu Val Val Val Ile Leu Phe Ala 185 190 195
- 30 Val Asp Thr Gly Leu Phe Ile Ser Thr Lys Gln Gln Leu Thr 200 205 210
 - Val Leu Leu Gln Ile Lys Arg Thr Arg Lys Asn Lys Lys Pro $215 \ \ 220$
- 35 Glu Pro Gly Lys Asn

- (2) INFORMATION FOR SEQ ID NO:25:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: primer

,																
		(xi)	S	EQUE	NCE	DESC	RIPT	: MOI	SE	Q ID	NO:	25:				
	GCGAA	GATC'	TA T	TAAA'	'ATGC	CTG	CTTC	CAT	GGG		,				3	33
	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	10:26	:							
5		(i)	((A) (B) (C)	LENC TYPE STRA	CHAR STH: E: n ANDED OLOGY	33 ucle NESS	nucl eic a S: s	eoti cid ingl							
		(ii)	N	OLEC	ULE	TYPE	:: r	orime	r							
0		(xi)	5	EQUE	ENCE	DESC	RIPT	:NOI	SE	Q II	NO:	26:				
	GCAG	GAATT	C TI	TACTO	TTT	TTC	ACA	AATA	TGT				,		:	3 3
	(2)	INFO	RMAT	пои	FOR	SEQ	ID N	10:27	<i>'</i> :							
5		(i)		(A) (B) (C)	LENG TYPI STR	CHAF GTH: E: r ANDEI OLOGY	59: nucle ONES	l nuc eic a S: s	cleot acid singl	ides	3					
		(ii)	1	MOLE	CULE	TYPE	Ξ: (CDNA							-	
20		(ix)			NAM	: E/KE ATIO			91				٠.			
		(xi))	SEQU	ENCE	DES	CRIP	TION	: S	EQ I	ои о	:27:				
25	ATG Met 1	CCT (GCT Ala	TCC Ser	ATG Met 5	GGA (Gly (GGC	CCT Pro	GCC (Ala	CTG Leu 10	CTG Leu	TGG Trp	CTA Leu	GCG Ala		42
	CTG Leu 15	CTG (Leu)	CTC Leu	TÇC Ser	TCT Ser	CCA Pro 20	GGT Gly	GTC Val	ATG Met	TCA Ser	TCA Ser 25	GAT Asp	ACC Thr	TTG Leu		84
30		CCT Pro												TTG Leu		126
	AAG Lys	GAT Asp	GAC Asp 45	AGT Ser	GTG Val	ACT Thr	CTT Leu	ACA Thr 50	TGT Cys	ACT Thr	GGG Gly	AAC Asn	AAC Asn 55	TCC Ser		168
35		GAA Glu														210
40	TTG Leu	CAA Gln	GAG Glu	ACG Thr	ACT Thr 75	TCA Ser	C /T Arg	TTG Leu	GAC Asp	ATC Ile 80	AAT Asn	AAA Lys	GCC Ala	CAA Gln		252
		Gln										Asn		TCC Ser		294

	ATC Ile	CTG Leu 100	AGT Ser	GAT Asp	CCT Pro	GTG Val	TAC Tyr 105	CTA Leu	ACA Thr	GTC Val	TTC Phe	ACA Thr 110	GAG Glu	TGG Trp	336
5	CTĠ Leu	ATC Ile	CTT Leu 115	CAA Gln	GCC Ala	TCT Ser	GCC Ala	AAC Asn 120	GTG Val	GTG Val	ATG Met	GAG Glu	GGT Gly 125	GAG Glu	378
	AGC Ser	TTC Phe	CTC	ATC Ile 130	AGG Arg	TGC Cys	CAT His	AGT Ser	TGG Trp 135	AAG Lys	AAT Asn	TTG Leu	AGG Arg	CTC Leu 140	420
10	ACA Thr	AAG Lys	GTG Val	ACC Thr	TAC Tyr 145	TAC Tyr	AAG Lys	GAT Asp	GGC Gly	ATC Ile 150	CCC Pro	ATC Ile	AGG Arg	TAC Tyr	462
15	TGG Trp 155	TAC Tyr	GAG Glu	AAC Asn	TTC Phe	AAC Asn 160	ATC Ile	TCC Ser	ATT Ile	AGC Ser	AAC Asn 165	GTC Val	ACA Thr	ACC Thr	504
	AAA Lys	AAC Asn 170	AGC Ser	GGC Gly	AAC Asn	TAT Tyr	TCC Ser 175	TGC Cys	TCA Ser	GGC Gly	CAG Gln	ATC Ile 180	CAG Gln	CAG Gln	546
20	AAA Lys	GGC Gly	TAC Tyr 185	ACC Thr	TCT Ser	AAA Lys	GTC Val	CTC Leu 190	AAC Asn	ATT Ile	ATT Ile	GTG Val	AAA Lys 195	AAA Lys	588
	GAG Glu											÷			591
	(2)	INE	FORM	OIT	, FOF	SEC	מד נ	NO - 2	٥.						
						. 02,	2 10	140.2	. 0 :						
25		(i)			JENCE LEN TYE	CHA	ARACT		STICS nino sid		ls		·		
25)	SEQU (A) (B) (D)	JENCE LEN TYE	E CHA IGTH: PE: POLOC	ARACT : 19 amir GY:	TERIS 96 am	STICS nino cid		ls				
30		(i)	i)	SEQU (A) (B) (D)	JENCE LEN TYE TOE	E CHA IGTH: PE: POLOC E TYE	ARACT amir GY:	TERIS 06 and 10 according	STICS nino id ear ein	acio):28:			
	Met 1	(i) (ii)	i) · .	SEQUAL (A) (B) (D) MOLE	JENCE LEN TYE TOE	E CHA IGTH: PE: POLOC E TYR	ARACT amir GY: PE:	TERIS of an action act	STICS sino sid ear sein	acio	D NO			Ala	·
	1	(i) (ii (xi Pro	i) i) Ala	SEQU (A) (B) (D) MOLE SEQU	JENCE LEN TYE TOE ECULE	E CHA IGTH: PE: POLOC E TYPE E DES Gly 5	ARACT amin GY: PE: GCRII	TERIS Of an no ac line prot PTION Pro	STICS wino cid ear cein	acid SEQ I	ID NO Leu 10	Trp	Leu		
	Leu	(i) (ii) (xi) Pro	i) .i) Ala Leu	SEQUANCE (A) (B) (D) MOLE SEQUANCE (Ser	JENCE LEN TYE TOE ECULE JENCE Met	E CHA JGTH: POLOC E TYR E DES Gly 5	ARACT amir GY: PE: GCRII Gly Gly 20	PTION Pro	STICS nino dear ear ein H: S	ació SEQ I Leu Ser	Leu 10 Ser	Trp Asp 25	Leu Thr	Leu	
30	Leu Lys	(i) (xi Pro Leu 15	i) Ala Leu Thr	SEQUANCE SEQUANCE SEQUANCE SET	JENCE LEN TYE TOE ECULE JENCE Met	E CHAIGTH: PE: POLOG E TYPE Gly S Pro	ARACT amir GY: PE: GCRII Gly Gly 20 Asn	PTION Pro Val	STICS nino id ear ein H: S Ala Met	SEQ I Leu Ser	Leu 10 Ser Asn	Trp Asp 25	Leu Thr Ile 40	Leu Leu	
30	Leu Lys	(i) (xi Pro Leu 15 Pro	i) Ala Leu Thr 30 Asp	SEQUANCE (A) (B) (D) MOLE SEQUANCE (A) (B) (D) MOLE SEQUANCE (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	JENCE LEN TYE TOE ECULE JENCE Met Ser	E CHAIGTH: PE: POLOG E TYPE Gly Fro Met	ARACTION OF THE PROPERTY OF T	PTION Pro Val Pro 35	STICS nino id ear ein N: S Ala Met Pro	acid EEQ I Leu Ser Trp	Leu 10 Ser Asn	Trp Asp 25 Thr Asn	Leu Thr Ile 40 Asn	Leu Leu Ser 55	
30 35 40	Lys Lys - eu	(i) (ii) (xi) Pro Leu 15 Pro Asp Glu	i) Ala Leu Thr 30 Asp	SEQUANCE (A) (B) (D) MOLE SEQUANCE (B)	JENCE LEN TYE TOE ECULE JENCE Met Ser Val Ser	E CHAIGTH: PE: POLOCE TYPE Gly Fro Met Thr	ARACTION OF THE PROPERTY OF T	PTION Pro Val Pro 35 Thr	STICS ino id ear ein I: S Ala Met Pro Cys 50 Leu	EQ ILeu Ser Trp Thr His 65	Leu 10 Ser Asn Gly	Asp 25 Thr Asn	Leu Thr Ile 40 Asn	Leu Leu Ser 55	

	Ile	Leu	Ser 100	Asp	Pro	Val	Tyr	Leu 105	Thr	Val	Phe	Thr	Glu 110	Trp	
	Leu	Ile	Leu	Gln 115	Ala	Ser				Val	Met	Glu	Gly	Glu 125	
5	Ser	Phe	Leu	Ile	Arg 130	Cys	His	Ser	Trp	Lys 135	Asn	Leu	Arg	Leu	
	Thr 140	Lys	Val	Thr	Tyr	Tyr 145	Lys	Asp	Gly	Ile	Pro 150	Ile	Arg	Tyr	
10	Trp	Tyr 155	Glu	Asn	Phe	Asn	Ile 160		Ile	Ser	Asn	Val 165	Thr	Thr	
	Lys	Asn	Ser 170	Gly	Asn	Tyr	Ser	Cys 175	Ser	Gly	Gln	Ile	Gln 180	Gln	
	Lys	Gly	Tyr	Thr 185	Ser	Lys	Val	Leu	Asn 190		Ile	.Val	Lys	Lys 195	
15	Glu														
	(2)	IN	FORM	ATIO	N FO	R SE	Q ID	NO:	29:						
20		(i)	(A) (B) (C)	LE TY ST	NGTH PE: RAND	ARAC : 5 nuc EDNE GY:	91 n leic SS:	ucle aci sin	otid d gle	es	· .			
		(i	i)	MOL	ECUL	E TY	PE:	cDN	A						
		(x	i)	SEQ	UENC	E DE	SCRI	PTIC)N:	SEQ	ID N	0:29):		
25	GGA CTA	TCTG ATGG	GCC AGA	ACAA TGAG TGTT GTCA	CAGG	AA T	AGTI TCGI	GCC CACC	C TO	TTTT CCTC	TGGT	TGT GGA	GACC	TTG CATC	50 100 150 200
30	TGA ATC TCT	TGAC AGCC ATTT TGTC	GAA ACT TCC CAA	GCTC CTGT CGAC ACGT	TCAC GAAC ACCI GAAC	CCC T SAC T FGT A	CCAT TGTT! CTC! TCTC!	CACO AGGT! CCCAC CTTG(CA CO AC AC CT GO CA A	STTG(CAGG! CCCT(AGTA(CAGA ATCAC SGAT STGT	A GGC TCA TGC TGC TGT	CTTGA AGGAT EGCTT FGTGA	AAGG rgga	250 300 350 400 450
35	TAC	GTT	CAA	GCAC	ATCT(GAT (GACA!	TGAC.	AC C	TGGA	GAGG:	A GA			500 550 591
	(2)) II	NFOR	MATI	ON F	OR SI	EQ I	ои о	:30:						•
		(:	i)	SEG (A) L	ENGT		687	nucl	eoti	des		•		
40				(B (C (D) S	TRAN	nu DEDN OGY :	ESS:		ngle					
V		(ii)	МО	LECU	LE T	YPE:	cD	NA					٠.	•
		(ix)	FE	ATUR	ES:									
15				(A	.) N	AME/	KEY:	CI	S	,					***

		(x	i)	SEQ	UENC	E DE	SCRI	PTIO	N:	SEQ	ID N	0:30	:		
	TCA Ser 1	GAT Asp	ACC Thr	TTG Leu	AAA Lys 5	CCT Pro	ACA Thr	GTG Val	TCC Ser	ATG Met 10	AAC Asn	CCG Pro	CCA Pro	TGG Trp	42
5	AAT Asn 15	ACA Thr	ATA Ile	TTG Leu	AAG Lys	GAT Asp 20	GAC Asp	AGT Ser	GTG Val	ACT Thr	CTT Leu 25	ACA Thr	TGT Cys	ACT Thr	84
10	Cly	30	ASII	ser	Leu	GIU	GTC Val 35	Asp	Ser	Ala	Val	Trp 40	Leu	His	126
	ASII	ASII	45	Inr	red	GIN	GAG Glu	Thr 50	Thr	Ser	Arg	Leu	Asp 55	Ile	168
15	ASII	гур	Ala	60	TIE	Gin	GAC Asp	Ser	Gly 65	Glu	Tyr	Arg	Суѕ	Arg 70	210
	GAA Glu	AAT Asn	AGA Arg	TCC Ser	ATC Ile 75	CTG Leu	AGT Ser	GAT Asp	CCT Pro	GTG Val 80	TAC Tyr	CTA Leu	ACA Thr	GTC Val	252
20	85	1111	GIU	Trp	reu	90 11e	CTT Leu	Gln	Ala	Ser	Ala 95	Asn	Val	Val	294
25	ATG Met	GAG Glu 100	GGT Gly	GAG Glu	AGC Ser	TTC Phe	CTC Leu 105	ATC Ile	AGG Arg	TGC Cys	CAT His	AGT Ser 110	TGG Trp	AAG Lys	336
	AAT Asn	TTG Leu	AGG Arg 115	CTC Leu	ACA Thr	AAG Lys	GTG Val	ACC Thr 120	TAC Tyr	TAC Tyr	AAG Lys	GAT Asp	GGC Gly 125	ATC Ile	378
30	CCC Pro	ATC Ile	AGG Arg	TAC Tyr 130	TGG Trp	TAC Tyr	GAG Glu	AAC Asn	TTC Phe 135	AAC Asn	ATC Ile	TCC Ser	ATT Ile	AGC Ser 140	420
	AAC Asn	GTC Val	ACA Thr	ACC Thr	AAA Lys 145	AAC Asn	AGC Ser	GGC Gly	AAC Asn	TAT Tyr 150	TCC Ser	TGC Cys	TCA Ser	GGC Gly	462
35	CAG Gln 155	ATC Ile	CAG Gln	CAG Gln	AAA Lys	GGC Gly 160	TAC Tyr	ACC Thr	TCT Ser	AAA Lys	GTC Val 165	CTC Leu	AAC Asn	ATT Ile	504
40	ATT Ile	GTG Val 170	AAA Lys	AAA Lys	GAG Glu	CCC Pro	ACC Thr 175	AAG Lys	CAA Gln	AAC Asn	AAG Lys	TAC Tyr 180	TCC Ser	GGG Gly	546
,	CTA Leu	CAA Gln	TTC Phe 185	CTG Leu	ATC Ile	CCG Pro	TTG Leu	GTG Val 190	GTG Val	GTG Val	T.	CTG Leu	TTT Phe 195	GCT Ala	588
45	GTG Val	GAC Asp	ACA Thr	GGA Gly 200	CTG Leu	TTT Phe	ATC Ile	Ser	ACC Thr 205	AAG Lys	CAG Gln	CAG Gln	TTG Leu	ACA Thr 210	630

	GTG Val	CTC Leu	TTG Leu	CAG Gln	ATT Ile 215	AAG Lys	AGG Arg	ACC Thr	AGG Arg	AAG Lys 220	AAC Asn	AAA Lys	AAG Lys	CCA Pro	672
5		CCC Pro												•	687
	(2)	INE	FORMA	MOIT	FOR	SEQ	DI	NO:3	1:						
10		(i)		SEQU (A) (B) (D)	TYF	IGTH:	17 amir	TERIS 73 and 10 ac	ino id		ls				
		(ii	Ĺ)	MOLE	CULE	TYF	E:	prot	ein						
		(xi	L)	SEQU	JENCE	DES	CRÍI	OITS	1: 5	SEQ I	D NO	:31:	:		
15	Ser 1	Asp	Thr	Leu	Lys 5	Pro	Thr	Val	Ser	Met 10	Asn	Pro	Pro	Trp	
	Asn 15	Thr	Ile	Leu	Lys	Asp 20	Asp	Ser	Val	Thr	Leu 25	Thr	Cys	Thr	
•	Gly	Asn 30	Asn	Ser	Leu	Glu	Val 35	qzA	Ser	Ala	Val	Trp 40	Leu	His	
20	Asn	Asn	Thr 45	Thr	Leu	Gln	Glu	Thr 50	Thr	Ser	Arg	Leu	Asp 55	Ile	
	Asn	Lys	Ala	Gln 60	Ile	Gln	Asp	Ser	Gly 65	Glu	Tyr	Arg	Cys	Arg 70	
25	Glu	Asn	Arg	Ser	Ile 75	Leu	Ser	Asp	Pro	Val 80	Tyr	Leu	Thr	Val	
	Phe 85	Thr	Glu	Trp	Leu	Ile 90	Leu	Gln	Ala	Ser	Ala 95	Asn	Val	Val	
	Met	Glu 100	Gly	Glu	Ser	Phe	Leu 105	Ile	Arg	Cys	His	Ser 110	Trp	Lys	
30	Asn	Leu	Arg 115	Leu	Thr	Lys	Val	Thr 120	Tyr	Tyr	Lys	Asp	Gly 125		
	Pro	Ile	Arg	Tyr 130	Trp	Tyr	Glu	Asn	Phe 135		Ile	Ser	Ile	Ser 140	
35	Asn	Val	Thr	Thr	Lys 145	Asn	Ser	Gly	Asn	Tyr 150		Cys	Ser	Gly	
	Gln 155	Ile	Gln	Gln	Lys	Gly 160	Tyr	Thr	Ser	Lys	Val 165		Asn	lle	
√	Ile	Val 170		Lys	Glu										

WO 98/45707 PCT/US98/06774

-55-

While various embodiments of the present invention have been described in detail, it is apparent that modifications and adaptations of those embodiments will occur to those skilled in the art. It is to be expressly understood, however, that such modifications and adaptations are within the scope of the present invention, as set forth in the following claims.

15

What is claimed is:

- 1. A method to detect canine IgE comprising:
- (a) contacting an isolated canine Fc_{ϵ} receptor ($Fc_{\epsilon}R$) molecule with a putative canine IgE-containing composition under conditions suitable for formation of a $Fc_{\epsilon}R$ molecule:IgE complex; and
- (b) determining the presence of IgE by detecting said $Fc_{\epsilon}R$ molecule: IgE complex, the presence of said $Fc_{\epsilon}R$ molecule: IgE complex indicating the presence of IgE.
- 2. A kit for detecting IgE comprising a canine $Fc_{\epsilon}R$ molecule and a means 10 for detecting canine IgE.
 - 3. A method to detect canine flea allergy dermatitis comprising:
 - (a) immobilizing a flea allergen on a substrate;
 - (b) contacting said flea allergen with a putative canine IgE-containing composition under conditions suitable for formation of an antigen: IgE complex bound to said substrate;
 - (c) removing non-bound material from said substrate under conditions that retain antigen: IgE complex binding to said substrate; and
 - (d) detecting the presence of said antigen: IgE complex by contacting said antigen: IgE complex with a canine Fc_cR molecule.
- 4. A kit for detecting flea allergy dermatitis comprising a canine Fc_ε receptor molecule and a flea allergen.
 - 5. The invention of Claims 1, 2, 3 or 4, wherein said Fc_cR molecule comprises at least a portion of a Fc_cR alpha chain that binds to canine IgE.
- The invention of Claims 1, 2, 3 or 4, wherein said Fc_εR molecule
 comprises a protein selected from the group consisting of PcFc_εRα1₁₉₇, PcFc_εRα2₁₉₇,
 PcFc_εRα3₁₉₉, PcFc_εRα4₂₅₃, PcFc_εRα4₂₂₉, PcFc_εRα4₁₇₃ and PcFc_εRα4₁₉₇.
 - 7. The invention of Claims 1, 2, 3 or 4, wherein said Fc_cR molecule is encoded by a nucleic acid molecule selected from the group consisting of $ncFc_cR\alpha 1_{609}$, $ncFc_cR\alpha 1_{591}$, $ncFc_cR\alpha 2_{609}$, $ncFc_cR\alpha 2_{591}$, $ncFc_cR\alpha 3_{617}$, $ncFc_cR\alpha 3_{597}$, $ncFc_cR\alpha 4_{591}$,
- 30 $\text{ncFc}_{\epsilon}\text{R}\alpha4_{687}$, $\text{ncFc}_{\epsilon}\text{R}\alpha4_{991}$ and $\text{ncFc}_{\epsilon}\text{R}\alpha4_{759}$.

15

- 8. The invention of Claims 1, 2, 3 or 4, wherein said Fc_cR molecule is encoded by a nucleic acid molecule selected from the group consisting of: a nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO:3, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:16, SEQ ID NO:19, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:27 and SEQ ID NO:30, and a nucleic acid molecule comprising an allelic variant of a nucleic acid molecule comprising any of said nucleic acid sequences.
 - 9. The invention of Claims 1, 2, 3 or 4, wherein said Fc_cR molecule is conjugated to a detectable marker.
- 10. The invention of Claims 1, 2, 3 or 4, wherein said Fc_cR molecule is conjugated to a detectable marker selected from the group consisting of a radioactive label, a fluorescent label, a chemiluminescent label, a chromophoric label and a ligand.
- 11. The invention of Claims 1 or 3, wherein said putative canine IgE-containing composition comprises a bodily fluid selected from the group consisting of serum, blood and plasma.
- 12. The method of Claim 1 further comprising the step selected from the group consisting of: binding said canine Fc_eR molecule to a substrate prior to performing step (a) to form a Fc_eR molecule-coated substrate; and binding said putative IgE-containing composition to a substrate prior to performing step (a) to form a putative IgE-containing composition-coated substrate, wherein said substrate to be bound to said composition is selected from the group consisting of a non-coated substrate, an antigen-coated substrate and an anti-IgE antibody-coated substrate.
- 13. The method of Claim 12, wherein said antigen is selected from the group consisting of an allergen and a parasitic antigen.
- 25 14. The invention of Claims 13 or 30, wherein said allergen is derived from material selected from the group consisting of fungi, trees, weeds, shrubs, grasses, wheat, corn, soybean, rice, eggs, milk, cheese, bovine, poultry, swine, sheep, yeast, fleas, flies, mosquitos, mites, midges, biting gnats, lice, bees, wasps, ants, true bugs and ticks.
- 15. The invention of Claims 3 or 4, wherein said flea allergen is a flea saliva 30 antigen.

15

20

- 16. The invention of Claims 3 or 4, wherein said flea allergen is selected from the group consisting of flea saliva products and flea saliva proteins.
- 17. The method of Claim 12, further comprising removing non-bound material from said antigen-coated substrate or said antibody-coated substrate under conditions that retain antigen or antibody binding to said substrate.
- 18. The method of Claim 12 or 33, wherein said substrate comprises an ELISA plate, a dipstick, a radioimmunoassay plate, agarose beads, plastic beads, latex beads, immunoblot membranes and immunoblot papers.
 - 19. The invention of Claims 12 or 32, wherein said substrate is latex beads.
- 10 20. The method of Claim 1, wherein said step of detecting comprises performing assays selected from the group consisting of enzyme-linked immunoassays, radioimmunoassays, immunoprecipitations, fluorescence immunoassays, chemiluminescent assay, immunoblot assays, lateral flow assays, agglutination assays and particulate-based assays.
 - 21. The method of Claim 1, wherein said step of detecting comprises:
 - (a) contacting said canine Fc_cR molecule: IgE complex with an indicator molecule that binds selectively to said Fc_cR molecule: IgE complex;
 - (b) removing substantially all of said indicator molecule that does not selectively bind to $Fc_{\varepsilon}R$ molecule: IgE complex; and
 - (c) detecting said indicator molecule, wherein presence of said indicator molecule is indicative of the presence of IgE.
 - 22. The method of Claim 21, wherein said indicator molecule comprises a compound selected from the group consisting of a Fc_cR molecule, an antigen, an antibody and a lectin.
 - 23. The method of Claim 1, said method comprising the steps of:
 - (a) immobilizing said canine $Fc_{\epsilon}R$ molecule on a substrate;
 - (b) contacting said canine Fc_εR molecule with said putative IgE-containing composition under conditions suitable for formation of a Fc_εR molecule:IgE complex bound to said substrate;
- 30 (c) removing non-bound material from said substrate under conditions that retain Fc_εR molecule:IgE complex binding to said substrate; and

- (d) detecting the presence of said Fc_cR molecule:IgE complex.
- 24. The method of Claim 23, wherein the presence of said $Fc_{\epsilon}R$ molecule: IgE complex is detected by contacting said $Fc_{\epsilon}R$ molecule: IgE complex with a compound selected from the group consisting of an antigen and an antibody that binds selectively to IgE.
- 25. The method of Claim 24, wherein said compound comprises a detectable marker.
 - 26. The method of Claim 1, said method comprising the steps of:
 - (a) immobilizing a desired antigen on a substrate;
- (b) contacting said antigen with said putative IgE-containing composition under conditions suitable for formation of an antigen: IgE complex bound to said substrate;
 - (c) removing non-bound material from said substrate under conditions that retain antigen: IgE complex binding to said substrate; and
- 15 (d) detecting the presence of said antigen: IgE complex by contacting said antigen: IgE complex with said canine Fc_eR molecule.
 - 27. The method of Claim 1, said method comprising the steps of:
 - (a) immobilizing an antibody that binds selectively to IgE on a substrate;
- 20 (b) contacting said antibody with said putative IgE-containing composition under conditions suitable for formation of an antibody:IgE complex bound to said substrate;
 - (c) removing non-bound material from said substrate under conditions that retain antibody: IgE complex binding to said substrate; and
- 25 (d) detecting the presence of said antibody: IgE complex by contacting said antibody: IgE complex with said canine Fc_eR molecule.
 - 28. The method of Claim 1, said method comprising the steps of:
 - (a) immobilizing said putative IgE-containing composition on a substrate;

- (b) contacting said composition with said canine $Fc_{\epsilon}R$ molecule under conditions suitable for formation of a $Fc_{\epsilon}R$ molecule: IgE complex bound to said substrate;
- (c) removing non-bound material from said substrate under
 conditions that retain Fc_εR molecule: IgE complex binding to said substrate; and
 - (d) detecting the presence of said Fc_eR molecule:IgE complex.
 - 29. The method of Claim 28, wherein said canine $Fc_{\epsilon}R$ molecule comprises a detectable marker.
- 30. The kit of Claim 2, wherein said detection means further comprises an antigen selected from the group consisting of an allergen and a parasite antigen, wherein said antigen induces IgE antibody production in canids.
 - 31. The kit of Claim 2, wherein said detection means comprises an antibody that selectively binds to canine IgE.
- 32. The kit of Claim 2, wherein said detection means detects said canine 15 Fc_eR molecule.
 - 33. The kit of Claim 30, wherein said antigen is immobilized on a substrate.
 - 34. The kit of Claim 30, wherein said parasite antigen is a heartworm antigen.
 - 35. The kit of Claim 2 further comprising an apparatus comprising:
 - (a) a support structure defining a flow path;
- 20 (b) a labeling reagent comprising a bead conjugated to said antigen, wherein said labeling reagent is impregnated within the support structure in a labeling zone; and
 - (c) a capture reagent comprising said $Fc_{\varepsilon}R$ molecule, wherein said capture reagent is located downstream of said labeling reagent within a capture zone fluidly connected to said labeling zone in such a manner that said labeling reagent can flow from said labeling zone into said capture zone.
 - 36. The kit of Claim 35, wherein said apparatus further comprises a sample receiving zone located along said flow path.
- 37. The kit of Claim 35, wherein said apparatus further comprises an30 absorbent located at the end of said flow path.

- 38. The kit of Claim 36, wherein said sample receiving zone is located upstream of said labeling reagent.
 - 39. The kit of Claim 35, wherein said bead comprises a latex bead.

INTERNATIONAL SEARCH REPORT

onal Application No

PCT/US 98/06774 CLASSIFICATION OF SUBJECT MATTER C 6 G01N33/566 G011 G01N33/68 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) GOIN CO7K Documentation searched other than minimum occumentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Ρ,Χ WO 97 20859 A (IDEXX LAB INC) 12 June 1997 1 - 39see claims 6,7,10-14,16-27,29,30 see page 1. line 13 - line 21 see page 6, line 15 - line 16 see page 15, line 3 - line 16 see page 29, line 12 - line 25 1-39 Χ WO 95 16203 A (GENENTECH INC ; TAI WAI FEI DAVID (US); LOWE JOHN (US); JARDIEU PAU) 15 June 1995 see claims 1,8,14-16 see page 4. line 18 - page 6, line 9 see page 12, line 25 - page 13, line 5 see page 13, line 14 - line 19 see page 23, line 9 - page 24, line 38 Χ Further documents are listed in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents : "T" later document published after the international filling date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of particular relevance invention earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered, to document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the "O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu ments, such combination being obvious to a person skilled other means document published prior to the international filing date but later than the priority date claimed in the art. "3" document member of the same patent family Date of the actual completion of theinternational search Date of mailing of the international search report 28/07/1998 14 July 1998 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Form PCT/ISA/210 (second sheet) (July 1992)

Fax: (+31-70) 340-3016

Routledge, B

INTERNATIONAL SEARCH REPORT

Inter anal Application No PCT/US 98/06774

C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/US 98	/06//4
Category	Citation of document, with indication where appropriate, of the relevant passages		Relevant to claim No.
X	WO 94 29696 A (QUIDEL CORP) 22 December 1994 cited in the application see claims see the whole document		20-39

INTERNATIONAL SEARCH REPORT

information on patent family members

Inte onal Application No PCT/US 98/06774

Patent document cited in search report	t	Publication date	1	Patent family member(s)	Publication date		
WO 9720859	Α	12-06-1997	· AU	1146897 A	27-06-1997		
WO 9516203	A	15-06-1995	AT	157455 T	15-09-1997		
			CA	2176811 A	15-06-1995		
		•	DE	69405251 D	02-10-1997		
			DE	69405251 T	05-02-1998		
			DK	733207 T	20-04-1998		
			EP	0733207 A	25-09-1996		
			ES	2108566 T	16-12-1997		
			JP	9506435 T	24-06-1997		
			US	5714338 A	03-02-1998		
WO 9429696	 А	22-12-1994	EP	0705426 A	10-04-1996		
			JP	8511621 T	03-12-1996		