Homework 4

Michael Brodskiy

Professor: D. Wood

October 12, 2023

- 1. Consider an infinite grounded conducting plane bent at a 90° angle between the yz and xz planes as shown, with a charge placed at x = 4a, y = a. Use appropriate image charge(s) to find an expression for the potential V(x, y, z) in the region x > 0, y > 0.
- 2. The boundary at x = 0 consists of two metal strips: one, from y = 0 to y = a/2 is held at a constant potential $+V_0$ and the other, from y = 2/a to y = a is held at a constant potential of V_0 . Solve for the potential V(x, y, z) inside the slot. Feel free to use the relevant results from Example 3.3 or from lecture as a starting point.
- 3. Consider a long (semi-infinite) rectangular conducting pipe oriented V_0 parallel to the z-axis, with dimensions $a \times b$ in the xy-plane. The pipe itself is grounded, and the rectangle at the closed end is at a constant potential V_0 . Find an expression for the potential everywhere inside the pipe (for z > 0).
- 4. Consider an empty spherical shell of charge of radius R where the potential on the surface is given by $V(R, \theta) = V_o \sin^2(\theta)$.

Hint: Express $\sin^2(\theta)$ as a polynomial function of $\cos(\theta)$.

- (a) Find $V(r, \theta)$ inside the shell.
- (b) Find $\vec{E}(R,\theta)$ just inside the shell.
- (c) Find $V(r, \theta)$ out of the shell.
- (d) Find $\vec{E}(R,\theta)$ just outside the shell.
- (e) Find $\sigma(R,\theta)$ on the shell. [answer: $\sigma = \frac{V_o \varepsilon_o}{3R} (7 15 \cos^2(\theta))$]
- 5. An empty spherical shell of radius R has potential V_0 on the upper hemisphere and V_0 on the lower hemisphere
 - (a) Calculate the first two non-zero terms of the expression for the potential outside of the sphere to obtain an approximate expression for $V(r, \theta)$ in this region.
 - (b) From this approximate expression, compute the value of $V(R,\theta)$ (on the surface of the shell) for $\theta = 0, \theta = \pi/4$, and $\theta = 3\pi/4$ compare the results with the exact values at those locations