Reconstruction

Nicolas SZAFRAN

UJF

2010/2011

Mini-projet

- Mini-projet
 - Présentation
 - Partie 1
 - Partie 2
 - Programmes pour les parties 1 et 2
 - Partie 3

- Mini-projet
 - Présentation
 - Partie 1
 - Partie 2
 - Programmes pour les parties 1 et 2
 - Partie 3

Cas des courbes

Données : nuage de points (proches d'une courbe)

Cas des courbes

Résultat : courbe (linéaire par morceaux)

Cas des surfaces

Données : nuage de points (proches d'une surface)

Cas des surfaces

Résultat : surface (triangulée)

Données : ensemble de N points P_i

Méthode

Données : ensemble de N points P_i

Etape 1 : lissage des points et détermination de normales orientées $\overrightarrow{n_i}$

Méthode

Méthode

Données : ensemble de N points P_i

Etape 1 : lissage des points et détermination de normales orientées $\overrightarrow{n_i}$

Etape 2 : utilisation d'un modèle implicite pour retrouver la courbe/la surface


```
Partie 1 : reconstruction d'une courbe à partir de données \{ \text{ points } P_i + \text{ normales orientées } \overrightarrow{n_i} \} Utilisation de l'approximation linéaire sur une grille régulière
```

```
Partie 1 : reconstruction d'une courbe à partir de données \{ \text{ points } P_i + \text{normales orientées } \overrightarrow{n_i} \} Utilisation de l'approximation linéaire sur une grille régulière
```

```
Partie 2 : reconstruction d'une courbe à partir de données \{ \text{ points } P_i \}
```

Le mini-projet

```
Partie 1 : reconstruction d'une courbe à partir de données \{ \text{ points } P_i + \text{ normales orientées } \overrightarrow{n_i} \} Utilisation de l'approximation linéaire sur une grille régulière
```

```
Partie 2 : reconstruction d'une courbe à partir de données \{ \text{ points } P_i \}
```

Utilisation de repères locaux pour le lissage des points P_i et détermination de normales orientées $\overrightarrow{n_i}$

Le mini-projet

```
Partie 1 : reconstruction d'une courbe à partir de données \{ \text{ points } P_i + \text{ normales orientées } \overrightarrow{n_i} \} Utilisation de l'approximation linéaire sur une grille régulière
```

```
Partie 2 : reconstruction d'une courbe à partir de données \{ \text{ points } P_i \}
```

Utilisation de repères locaux pour le lissage des points P_i et détermination de normales orientées $\overrightarrow{n_i}$

Utilisation de la partie 1 pour reconstruire la courbe.

```
Partie 3 : reconstruction d'une surface à partir de données \{ \text{ points } P_i \}
```

Le mini-projet

```
Partie 3 : reconstruction d'une surface à partir de données \{ \text{ points } P_i \}
```

Adaptation des parties 1 et 2 faites dans le cas des courbes

- Mini-projet
 - Présentation
 - Partie 1
 - Partie 2
 - Programmes pour les parties 1 et 2
 - Partie 3

Données : points P_i + normales orientées n_i

Les données et la grille régulière de pas g

Point de donnée P_i et point de la grille $X_{k,l}$ le plus proche

L'ensemble des points $G_j = \{X_{m,n}, \operatorname{Max}(|m-k|, |n-l|) \le 1\}$

4□ > 4□ > 4□ > 4□ > □
900

Nicolas SZAFRAN (UJF)

Distance signée < 0

Distance signée = 0

Distance signée > 0

Les données et la grille régulière de pas g

Ensemble des points de la grille avec leurs marques

Cellules actives

Triangulation des cellules actives

Courbe isovaleur

Courbe isovaleur

Courbe isovaleur

Choix du pas g de la grille régulière

Approximation linéaire sur une grille régulière

Choix du pas g de la grille régulière

Choisir
$$g \ge dmax = \underset{i}{\operatorname{Max}} \left(\underset{j \ne i}{\operatorname{Min}} d(P_i, P_j) \right)$$

Plan

- Mini-projet
 - Présentation
 - Partie 1
 - Partie 2
 - Programmes pour les parties 1 et 2
 - Partie 3

Points P_i proches d'une courbe C

Hypothèses sur l'ensemble de points P_i :

il existe deux valeurs r > 0 et e > 0

Hypothèses sur l'ensemble de points P_i :

il existe deux valeurs r > 0 et e > 0

(bruit) :
$$\forall P_i, \ d(P_i, C) = d(P_i, Q_i) \leq e$$

Hypothèses sur l'ensemble de points P_i :

il existe deux valeurs r > 0 et e > 0

(grain de l'échantillonnage) : $\forall P_i, \ \exists P_j \neq P_i \ \mathsf{tel} \ \mathsf{que} \ d(Q_i, Q_j) \leq r$

Nicolas SZAFRAN (UJF)

Hypothèses sur l'ensemble de points P_i :

il existe deux valeurs r > 0 et e > 0

en général choisir r tel que r > e

Etape 1 - Voisinage E_i de P_i

Etape 1 - Voisinage E_i de P_i

Pour chaque point P_i ,

Etape 1 - Voisinage E_i de P_i

Pour chaque point P_i , déterminer $E_i = \{P_j, d(P_i, P_j) \le r\}$

Etape 1 - Voisinage E_i de P_i

Pour chaque point P_i , déterminer $E_i = \{P_j, d(P_i, P_j) \le r\}$ (d'après l'hypothèse sur r, $\operatorname{card}(E_i) \ge 2$)

Etape 2 - Repère local à E_i

Etape 2 - Repère local à E_i

Pour chaque point P_i ,

Etape 2 - Repère local à E_i

Pour chaque point P_i , déterminer $\Delta_i = \{M, <\overrightarrow{O_iM}, \overrightarrow{n_i}>=0\}$ avec $\|\overrightarrow{n_i}\|=1$ droite approchant au sens des m.c. l'ensemble de points E_i

◆ロト ◆卸 ▶ ◆重 ▶ ◆重 ▶ ■ 釣 へ ○

A l'issue de l'étape 2, ensemble de points P_i + normales $\overrightarrow{n_i}$ non orientées

\rightarrow orienter l'ensemble des normales $\overrightarrow{n_i}$

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Construction de G graphe de proximité de l'ensemble des points Pi

Arête
$$e = (i,j) \in G \iff \{d(P_i,P_j) \le r \text{ et } i \ne j\}$$

Graphe G non orienté

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Valuation du graphe : v(e), valeur de l'arête e=(i,j) $v(e)=1-|<\overrightarrow{n_i},\overrightarrow{n_i}>|$

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Calcul de A, arbre couvrant minimal du graphe G

Avant réorientation

Parcours de l'arbre Réorientation en cours (début ...)

Parcours de l'arbre Réorientation en cours (début ...)

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Parcours de l'arbre

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Parcours de l'arbre

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Parcours de l'arbre

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Parcours de l'arbre

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Parcours de l'arbre

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Parcours de l'arbre

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Parcours de l'arbre

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Parcours de l'arbre

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Parcours de l'arbre

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Parcours de l'arbre

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Parcours de l'arbre

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Parcours de l'arbre

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Parcours de l'arbre

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Parcours de l'arbre

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Parcours de l'arbre

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Parcours de l'arbre

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Parcours de l'arbre

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Parcours de l'arbre

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Parcours de l'arbre

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Parcours de l'arbre

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Parcours de l'arbre

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Parcours de l'arbre Réorientation en cours (... fin)

Parcours de l'arbre Réorientation en cours (... fin)

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Parcours de l'arbre Réorientation en cours (... fin)

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Etape 3 - Réorientation des normales $\overrightarrow{n_i}$

Réorientation terminée

Etape 4 - calcul de C à partir des $\{O_i, \overrightarrow{n_i}\}$

Etape 4 - calcul de C à partir des $\{O_i, \overrightarrow{n_i}\}$

Points O_i et normales orientées $\overrightarrow{n_i}$

Etape 4 - calcul de C à partir des $\{O_i, \overrightarrow{n_i}\}$

Plongement dans une grille régulière

Etape 4 - calcul de C à partir des $\{O_i, \overrightarrow{n_i}\}$

Points O_i et courbe reconstruite

Etape 4 - calcul de C à partir des $\{O_i, \overrightarrow{n_i}\}$

Points P_i et courbe reconstruite

Plan

- Mini-projet
 - Présentation
 - Partie 1
 - Partie 2
 - Programmes pour les parties 1 et 2
 - Partie 3

Les fichiers

lib_base2d.hpp, lib_base2d.cpp : librairie de base

- géométrie en 2D
- calcul d'éléments propres
- structure de données pour graphe valué et arbre
- calcul d'arbre couvrant minimal

xfig.hpp, xfig.cpp: librairie graphique

- création de figure au format vectoriel XFIG
- exportation sous forme d'images aux formats EPS, JPG, GIF.

prog_test2d.cpp : programme avec différents tests utilisant les deux librairies ci-dessus.

Makefile: compilation du programme

Plan

- Mini-projet
 - Présentation
 - Partie 1
 - Partie 2
 - Programmes pour les parties 1 et 2
 - Partie 3

Les fichiers (1)

lib_base3d.hpp, lib_base3d.cpp : librairie de base

- géométrie en 3D
- calcul de la valeur propre minimale d'une matrice symétrique 3 × 3
- structure de données pour graphe valué et arbre
- calcul d'arbre couvrant minimal

geomview.hpp, geomview.cpp: librairie graphique

création d'objets 3D au format vectoriel GEOMVIEW

prog_test3d.cpp : programme avec différents tests utilisant les deux librairies ci-dessus.

Makefile: compilation du programme

Les fichiers (2)

geomview.default : fichier d'options pour visualiser les objets GEOMVIEW.

nom. N. xxx. txt : jeux de données

- *N* : nombre de points
- xxx : type de données
 - pts : ensemble de points
 - pno : ensemble de points + normales orientées

Format d'un fichier de données :

- ligne 1 :
 - nombre de points
 - grain d'échantillonnage (→ pas de la grille)
 - lignes suivantes : les coordonnées des points
 - éventuellement lignes suivantes : les coordonnées des normales orientées

