User Manual for

mrMLM

multi-locus random-SNP-effect Mixed Linear Model tools for genome-wide association study

(version 4.0)

Zhang Ya-Wen, Li Pei, Zhang Yuan-Ming (soyzhang@mail.hzau.edu.cn)

Last updated on October 21, 2019

Disclaimer: While extensive testing has been performed by Yuan-Ming Zhang's Lab at Crop Information Center of College of Plant Science and Technology, Huazhong Agricultural University, the results are, in general, reliable, correct or appropriate. However, results are not guaranteed for any specific datasets. We strongly recommend that users validate the mrMLM results with other software packages, i.e., GEMMA, EMMAX, GAPIT v2 & PLINK.

Download website:

https://cran.r-project.org/web/packages/mrMLM/index.html

Citation:

Method or software	e References
mrMLM	Wang et al. <i>Scientific Reports</i> 2016, 6 :19444
ISIS EM-BLASSO	Tamba et al. <i>PLoS Computational Biology</i> 2017, 13(1): e1005357.
pLARmEB	Zhang et al. <i>Heredity</i> 2017, 118: 517–524
FASTmrEMMA	Wen et al. <i>Briefings in Bioinformatics</i> 2018, 19(4): 700–712. DOI: 10.1093/bib/bbw145
pKWmEB	Ren et al. <i>Heredity</i> 2018, 120(3): 418–428
FASTmrMLM	Tamba & Zhang, <i>bioRxiv</i> preprint first posted online 2018, doi: https://doi.org/10.1101/341784
	Zhang et al. <i>Genomics, Proteomics & Bioinformatics</i> , Resubmission
Software mrMLM	Zhang et al. <i>Genomics, Proteomics & Bioinformatics</i> , Resubmission

Note: These references are listed in section of References.

This work was supported by the National Natural Science Foundation of China (31571268, 31871242 and U1602261), Huazhong Agricultural University Scientific & Technological Self-innovation Foundation (Program No. 2014RC020), and State Key Laboratory of Cotton Biology Open Fund (CB2017B01 & CB2019B01).

INTRODUCTION

1.1 Why mrMLM?

mrMLM (multi-locus random-SNP-effect Mixed Linear Model) program is an R package for multi-locus genome-wide association studies (GWAS). At present this program (v4.0) includes six methods: 1) mrMLM, 2) FASTmrMLM (Fast multi-locus random-SNP-effect EMMA), 3) ISIS EM-BLASSO (Iterative Sure Independence Screening EM-Bayesian LASSO), 4) pLARmEB (polygenic-background-control-based least angle regression plus empirical Bayes), 5) pKWmEB (polygenic-background-control-based Kruskal-Wallis test plus empirical Bayes); and 6) fast mrMLM (FASTmrMLM).

In the mrMLM, FASTmrMLM, FASTmrEMMA and pKWmEB methods, the package qqman is used to draw the Manhattan and QQ plots. In the pLARmEB and ISIS EM-BLASSO methods, the package ggplot2 is used to draw the LOD score plot.

mrMLM 4.0 works well on Windows, Linux (desktop) and MacOS.

1.2 Getting started

The software package mrMLM runs only in the R software environment and can be freely downloaded from https://cran.r-project.org/web/packages/mrMLM.GUI/index.html, or requested from the maintainer, Dr Yuan-Ming Zhang at College of Plant Science and Technology, Huazhong Agri Univ (soyzhang@mail.hzau.edu.cn).

1.2.1 One-Click installation

Within R environment, the mrMLM software can be installed online using the below command:

install.packages("mrMLM")

1.2.2 Step-by-step installation

1.2.2.1 Install the add-on packages

Offline installation Users may download the below 49 packages from CRAN (https://cran.r-project.org/), github (https://github.com/) and google search.

assertthat, calibrate, cli, codetools, coin, colorspace, crayon, data.table, dichromat, digest, doParallel, foreach, ggplot2, glue, gtable, iterators, labeling, lars, lazyeval, lpsolve, magrittr, MASS, modeltools, multcomp, munsell, mvtnorm, ncvreg, openxlsx, pillar, plyr, qqman, R6, RColorBrewer, Rcpp, reshape2, rlang, sampling, sandwich, scales, sourcetools, stringi, stringr, sbl, TH.data, tibble, utf8, viridisLite, zip, zoo.

Under the R environment, then, users find "Packages"—"Install package(s) from local files...", select all the above 49 packages, and install them offline.

1.2.2.2 Install mrMLM

Open R GUI, select "Packages"—"Install package(s) from local files..." and then find the mrMLM package which you have downloaded on your desktop.

User Manual file Users can decompress the mrMLM package and find the User Manual file (name: **Instruction.pdf**) in the folder of ".../mrMLM/inst/doc".

1.2.3 Run mrMLM

Once the software mrMLM is installed, users may run it using two commands: library("mrMLM")

mrMLM(***) (***: please see § 2.1.2 Example)

If users re-use the software mrMLM, users also use the above two commands.

- 2. Function
- 2.1 mrMLM()
- 2.1.1 Parameter settings

Parameter	Meaning	File format	Note				
fileGen	File path & name in your computer, i.e., fileGen="D:/Users/Genotype_num.csv"	*.csv; *.txt (Genotypic values. Row: markers; Column: individuals)	Tables 1~3				
filePhe	File path & name in your computer, i.e., filePhe="D:/Users/Phenotype.csv"	*.csv; *.txt (Phenotypic values. Row : individual; Column : traits)	Table 4				
fileKin	File path & name in your computer, i.e., fileKin="D:/Users/Kinship.csv" or fileKin=NULL	*.csv; *.txt (Kinship matrix. Row & Column : individuals)	Table 5				
filePS	File path & name in your computer,i.e., filePS="D:/Users/PopStr.csv" or filePS=NULL	*.csv; *.txt [Population structure. Row : individual; Column : sub-populations 1, 2,, k (No. of sub-populations)]	Table 6~8				
PopStrType	Three types of population structures: Q (Q matrix), PO	CA (Principal components), EvolPopStr (Evolutionary popul	ulation structure)				
fileCov	File path & name in your computer,i.e., fileCov="D:/Users/Covariate.csv" or fileCov=NULL	*.csv; *.txt (Covariate. Row : individual; Column : covariate 1, 2,, <i>k</i> (No. of covariate))	Table 9				
Genformat	Format for genotypic codes: Num (number), Cha (cha	racter) & Hmp (Hapmap), i.e., Genformat="Num"					
method	Six multi-locus GWAS methods. Users may select one to six methods. For example, method=c("mrMLM","FASTmrMLM","FASTmrEMMA","pLARmEB","pKWmEB","ISIS EM-BLASSO")						
Likelihood	This parameter is only for FASTmrEMMA, including restricted maximum likelihood (REML) and maximum likelihood (ML). Likelihood="REML" or Likelihood="ML"						
trait	Traits analyzed from number 1 to number 2. For example, trait=1:3 indicates that users analyze the first to third traits.						
SearchRadius	This parameter is only for mrMLM and FASTmrMLM, indicating Search Radius in search of potentially associated QTN. SearchRadius=20 indicates that only one potentially associated QTN was selected within 20 kb.						
CriLOD	Critical LOD score for significant QTN. CriLOD=3 indicates that the critical LOD score for significant QTN is set at 3.0.						
SelectVariable	This parameter is only for pLARmEB. SelectVariable=50 indicates that 50 potentially associated variables are selected from each chromosome. Users may change this number in real data analysis in order to obtain the best final results.						
Bootstrap	This parameter is only for pLARmEB, including FALSE & TRUE. Bootstrap=FALSE indicates the analysis of only real dataset; Bootstrap=TRUE indicates the analysis of both real dataset and four resampling datasets.						
DrawPlot	This parameter is for all the six methods, including FALSE and TRUE. DrawPlot=FALSE indicates no figure output: DrawPlot=TRUE indicates the output of the Manhattan, QQ and LOD score against genome position figures.						
Plotformat	This parameter is for all the figure files, including *.jpeg, *.png, *.tiff and *.pdf. Plotformat="jpeg" indicates the *.jpeg format of plot file.						
Resolution	This parameter is for all the figure files, including Low and High. Resolution="Low" indicates low figure resolution.						
dir	Save path in your computer, i.e, "D:/Users"						

2.1.2 Example

The full codes

mrMLM(fileGen="D:/Users/Genotype_num.csv",filePhe="D:/Users/Phenotype.csv",fileKin=NULL,filePS=NULL, PopStrType=NULL,fileCov=NULL,Genformat="Num",method=c("mrMLM","FASTmrMLM","FASTmrEMMA", "pLARmEB","pKWmEB","ISIS EM-BLASSO"),Likelihood="REML",trait=1:3,SearchRadius=20,CriLOD=3, SelectVariable=50,Bootstrap=FALSE,DrawPlot=FALSE, Plotformat="jpeg",Resolution="Low",dir="D:/Users")

The reduced codes

 $\label{lem:mrmlm} {\tt mrmlm} \mbox{\sc Menotype_num.csv"}, \qquad {\tt filePhe="D:/Users/Phenotype.csv"}, \qquad {\tt Genformat="Num"},$

It should be noted that users must set "fileGen", "filePhe", "Genformat", "method", "trait", "CriLOD" and "dir", and the other eight parameters can be default in function, including PopStrType="Q"; Likelihood="REML"only for FASTmrEMMA; SearchRadius=20 only for mrMLM and FASTmrMLM; SelectVariable=50 & Bootstrap=FALSE only for pLARmEB; DrawPlot=TRUE; Plotformat= "jpeg"; Resolution= "Low".

2.1.3 Dataset format

Numeric format for dataset "fileGen" (Table 1) The first column, named "rs#", stands for marker ID, i.e., "PZB00859.1". The second column, named "chrom", stands for chromosome, i.e., numeric variable "1". The third column, named "pos", stands for the position (bp) of SNP on the chromosome. The fourth column, named "genotype for code 1", indicates reference base for code variable x = 1. Among the remaining columns, each column lists all the genotypes for one individual, and the first row shows the individual names. For each marker, homozygous genotypes are expressed by 1 and -1, respectively, and the heterozygous and missing genotypes are indicated by zero. If the base for the first individual is missing, the base firstly observed in this row is what we list. Note that the genotype with code 1 will be also appeared in the Result files.

rs# chrom genotype for code 1 33-16 Nov-38 A4226 A4722 pos PZB00859.1 157104 C 1 1 1947984 C PZA01271.1 1 -1 1 -1 1 PZA03613.2 1 2914066 G 1 1 1 PZA03613.1 2914171 T 1 1 1 1 1 PZA03614.2 2915078 1 1 G 1 1 PZA03614.1 2915242 T 1 1 1 PZA02117.1 223466480 1 1 -1 1 A 1 PZA00403.5 223466873 T 1 1 0 1 1

Table 1. The numeric format of the genotypic dataset

Character format for dataset "fileGen" (Table 2) The first three columns are same as those in Table 1. The differences are that the marker values are character, such as A, T, C, G and N, and the other notations are heterozygous genotypes. The "N" indicates the missing of genotypes. The first rows from the fourth to last columns are

individual name.

Table 2. The character format of the genotypic dataset

rs#	chrom	pos	33-16	Nov-38	A4226	A4722
PZB00859.1	1	157104	С	С	С	С
PZA01271.1	1	1947984	С	G	С	G
PZA03613.2	1	2914066	G	G	G	G
PZA03613.1	1	2914171	Т	T	T	T
	:	:	:	:	:	:

Hapmap format for dataset "fileGen" (Table 3) Please see the TASSEL software in details. Here we introduce simply. The first eleven columns describe the specific information of markers and individuals, and these column names must be "rs#", "alleles", "chrom", "pos", "strand", "assembly#", "center", "protLSID", "assayLSID", "panelLSID" and "QCcode". In the "rs#" (1st), "chrom" (3rd) and "pos" (4th) columns, the information has been described as the above. The values of marker genotypes should be character, such as AA, TT, CC, GG, NN, AC and AG, where the "NN" indicates the missing or unknown of genotypes. In the 2nd and 5th to 11th columns, "NA" indicates no information available. All the individual genotypic information will be showed from the 12th to last columns. In each column, individual name is listed in the first row, i.e., "33-16", and the others are the genotypes (character).

Table 3. The hapmap format of the genotypic dataset

rs#	alleles	chrom	pos	strand	assembly#	center	protLSID	assayLSID	panelLSID	QCcode	33-16	
PZB00859.1	A/C	1	157104	+	AGPv1	Panzea	NA	NA	maize282	NA	СС	•••
PZA01271.1	C/G	1	1947984	+	AGPv1	Panzea	NA	NA	maize282	NA	СС	•••
PZA03613.2	G/T	1	2914066	+	AGPv1	Panzea	NA	NA	maize282	NA	GG	•••
PZA03613.1	A/T	1	2914171	+	AGPv1	Panzea	NA	NA	maize282	NA	TT	
PZA03614.2	A/G	1	2915078	+	AGPv1	Panzea	NA	NA	maize282	NA	GG	•••
PZA03614.1	A/T	1	2915242	+	AGPv1	Panzea	NA	NA	maize282	NA	TT	•••
PZA02117.1	A/G	1	223466480	+	AGPv1	Panzea	NA	NA	maize282	NA	AA	
	:	:	:	:	:	:	:	:	:	:	•	

Before implementing GWAS, the above character genotypes should be transferred into numeric information, here the homozygous genotype of each marker for the first

individual is transferred into 1, another homozygous genotype for this marker is transferred into -1, and heterozygous and missing genotypes are transferred into zero. If the base for the first individual is missing, the base firstly observed in this row is what we list.

Format for the dataset "filePhe" (Table 4) The Phenotypic file should be a file with *.csv or *.txt format. The first column lists individual ID, i.e., "B46", and "<Phenotype>" should be showed in the first row. Among the other columns, each column lists all the observations for the trait, its trait name is showed in the first row, i.e., "trait1", and phenotypic values are in the corresponding rows of their individuals.

Table 4. The format of Phenotypic dataset

<phenotype></phenotype>	trait1	trait2	trait3
B46	42	43.02	44.32
B52	72.5	71.88	72.8
B57	41	41.7	41.42
B64	74.5	74.43	74.5
:	•	:	:

The format for dataset "fileKin" (Table 5) The Kinship file should be a file with *.csv or *.txt format. In the first column in Table 5, "263" is sample size (n), and "33-16", "Nov-38" and "A4226" are individual ID. Note that "n" is the number of common individuals between the phenotypic and genotypic datasets. All the kinship coefficients are listed as an $n \times n$ matrix.

fileKin=NULL indicates that the Kinship matrix is calculated by the software mrMLM. Here only the above n individuals are used to calculate the Kinship matrix. fileKin="D:/Users/Kinship.csv" means that the K matrix with name Kinship.csv is uploaded from the folder "D:/Users". If the number and order of individuals in Kinship.csv are not consistent with those of the above n individuals, our software may match the K matrix in order that the number and order of the transferred K matrix are consistent with those in the above n individuals.

Table 5. The format of the Kinship dataset

263					
33-16	1.00809	0.45954	0.50677	0.42503	0.45591
Nov-38	0.45954	1.03352	0.43048	0.47044	0.39597
A4226	0.50677	0.43048	1.01717	0.45409	0.43775
A4722	0.42503	0.47044	0.45409	0.89002	0.34874
A188	0.45591	0.39597	0.43775	0.34874	1.0099
A214N	0.34693	0.33421	0.39779	0.29244	0.33058
A239	0.43593	0.46499	0.40323	0.36691	0.39597
A272	0.34874	0.40505	0.31423	0.3887	0.44138
A441-5	0.47952	0.44138	0.47226	0.47952	0.49224
A554	0.39779	0.45954	0.5431	0.48679	0.4214
	:	:	•	•	

Q matrix format for dataset "filePS" (Table 6) The Q matrix dataset in Table 6 consists of a $(n+2) \times (k+1)$ matrix, where n is the number of the above common individuals and k is the number of sub-populations. In the first column, " $\langle PopStr \rangle$ " and " $\langle ID \rangle$ " should present in the first and second rows, respectively; "33-16", "Nov-38" and "4226" are individual ID. In the 2nd to (k+1)-th columns, " Q_1 " to " Q_k " indicate sub-populations. In the third row, "0.014", "0.972" and "0.014" are the posterior probabilities of the "33-16" individual in the 1st, 2nd and 3rd subpopulations, respectively. When the Q matrix is uploaded to the software, the software will automatically delete the column whose sum is the smallest.

Table 6. The format of the filePS dataset

<popstr></popstr>			
<id></id>	Q1	Q2	Q3
33-16	0.014	0.972	0.014
Nov-38	0.003	0.993	0.004
A4226	0.071	0.917	0.012
A4722	0.035	0.854	0.111
A188	0.013	0.982	0.005
A214N	0.762	0.017	0.221
A239	0.035	0.963	0.002
A272	0.019	0.122	0.859
•	:	•	:

Principal components format for dataset "filePS" (Table 7)

The principal

component dataset in Table 7 consists of a $(n+2) \times (k+1)$ matrix, where n is the number of the common individuals and k is the number of principal components. In the first column, " $\langle PCA \rangle$ " and " $\langle ID \rangle$ " should present in the first and second rows, respectively; "33-16", "Nov-38" and "A4226" are individual ID. In the 2nd to (k+1)-th columns, " PC_1 " to " PC_k " indicate the first to k-th principal components. In the second column, "0.306", …, "0.216" are the scores of the first principal component for the 1st to 9-th individuals, respectively.

Table 7. The dataset format of principal components

<pca></pca>			
<id></id>	PC1	PC2	PC3
33-16	0.306	0.029	0.226
Nov-38	-0.708	-2.071	1.413
A4226	-2.330	0.116	-0.824
A4722	1.059	0.470	-1.315
A188	-2.376	1.087	-0.135
A214N	-2.346	0.516	0.666
A239	-0.099	-0.318	-0.473
A272	-0.053	0.093	-0.275
A441-5	0.216	-0.535	-0.159
•	•	•	:

Evolutionary population structure format for dataset "filePS" (Table 8) The evolutionary population structure dataset in Table 8 consists of a $(n+2) \times 2$ matrix, where n is the number of the common individuals. In the first column, " $\langle EvolPopStr \rangle$ " and " $\langle ID \rangle$ " should present in the first and second rows, respectively; "33-16", "Nov-38" and "A4226" are individual ID. In the second column, "EvolType" indicates the evolutionary type, i.e., the evolutionary types for individuals "33-16" and "A4722" are "A" and "B", respectively.

Table 8. The dataset format of evolutionary population structure

<evolpopstr></evolpopstr>	
<id></id>	EvolType
33-16	A
A4722	В
A188	A
A239	В
:	•

filePS=NULL indicates no inclusion of population structure in the genetic model.

filePS="D:/Users/PopStr.csv" means that population structure dataset with name PopStr.csv is uploaded from the folder "D:/Users". If the number and order of individuals in PopStr.csv aren't consistent with those of the above common individuals, our software may match the population structure matrix in order that the number and order of new matrix are consistent with those in the above common individuals.

The format for dataset "fileCov" (Table 9) The "Covariate" dataset consists of the $(n+2) \times (k+1)$ matrix, where n is the number of the common individuals and k is the number of covariates. In the first column, "<Covariate>" and "<ID>" should present in the first and second rows, respectively. If covariate is categorical, it should be named as Cate_covariate*. If covariate is continuous, it should be named as Con_covariate* (Table 9).

fileCov=NULL indicates no inclusion of covariates in the genetic model. fileCov="D:/Users/covariate.csv" means that the covariates with name covariate.csv are uploaded from the folder "D:/Users". If the number and order of individuals in the uploaded file are not consistent with those in the above common individuals, our software need to change the number and order of individuals in order to match the above datasets.

Table 9. The format of the fileCov dataset

<covariate></covariate>				
<id></id>	Cate_covariate1	Cate_covariate2	Con_covariate1	Con_covariate2
33-16	A	С	349.5	374
Nov-38	В	С	205	452
A4226	A	D	300	374
A4722	A	D	190	452
A188	В	С	213	374
:	:	:	:	:

2.1.4 Result

At the work directory of your R, two Result files for the *i*th trait, "*i*_intermediate result.csv" and "*i*_Final result.csv", will appear.

In the intermediate result from the mrMLM method, the results include: Trait ID,

Trait name, method, reference sequence number (rs#, marker name), chromosome, marker's position (bp) in the chromosome, SNP effect (γ_k , Effect), -log₁₀(P), and genotype for code 1.

In the **Final result** from the mrMLM method, the results include: Trait ID, Trait name, method, reference sequence number (rs#, marker names), chromosome, marker's position (bp) in the chromosome, QTN effect, LOD score, -log₁₀(P), the proportion of phenotypic variance explained by significant QTN (r²), minor allelic frequency, genotype for code 1, residual error variance, and total phenotypic variance.

3. References

- Zhang Yuan-Ming, Mao Yongcai, Xie Chongqing, Howie Smith, Luo Lang, Xu Shizhong*. Mapping quantitative trait loci using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L.). Genetics 2005, 169: 2267–2275. DOI: 10.1534/genetics.104.033217
- Wang Shi-Bo, Feng Jian-Ying, Ren Wen-Long, Huang Bo, Zhou Ling, Wen Yang-Jun, Zhang Jin, Jim M. Dunwell, Xu Shizhong*, Zhang Yuan-Ming*. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. *Scientific Reports* 2016, 6: 19444. DOI: 10.1038/srep19444
- Tamba Cox Lwaka, Ni Yuan-Li, Zhang Yuan-Ming*. Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies. *PLoS Computational Biology* 2017, 13(1): e1005357, DOI: 10.1371/journal.pcbi.1005357
- Zhang Jin*, Feng Jian-Ying*, Ni Yuan-Li, Wen Yang-Jun, Niu Yuan, Tamba Cox Lwaka, Yue Chao, Song Qi-Jian, Zhang Yuan-Ming*. pLARmEB: Integration of least angle regression with empirical Bayes for multi-locus genome-wide association studies. *Heredity* 2017, 118: 517–524. DOI:10.1038/hdy.2017.8
- Ren Wen-Long[#], Wen Yang-Jun[#], Jim M. Dunwell, Zhang Yuan-Ming*. pKWmEB: Integration of Kruskal-Wallis test with empirical Bayes under polygenic background control for multi-locus genome-wide association study. *Heredity* 2018, 120: 208–218. https://doi.org/10.1038/s41437-017-0007-4
- 6. Wen Yang-Jun, Zhang Hanwen, Ni Yuan-Li, Huang Bo, Zhang Jin, Feng Jian-Ying, Wang Shi-Bo, Jim M. Dunwell, Zhang Yuan-Ming*, Wu Rongling*. Methodological implementation of mixed linear models in multi-locus genome-wide association studies. *Briefings in Bioinformatics* 2018, 19(4): 700–712. https://doi.org/10.1093/bib/bbw145
- 7. Tamba Cox Lwaka, Zhang Yuan-Ming*. A fast mrMLM algorithm for multi-locus genome-wide association studies. *bioRxiv* 2018, doi: https://doi.org/10.1101/341784, online (June 7, 2018)
- Zhang Ya-Wen, Tamba Cox Lwaka, Wen Yang-Jun, Li Pei, Ren Wen-Long, Ni Yuan-Li, Gao Jun, Zhang Yuan-Ming*. mrMLM v4.0: An R platform for multi-locus genome-wide association studies. *Genomics*, *Proteomics & Bioinformatics*, resubmission