#### A Major Project Report on

# ADVANCED NEURAL NETWORK ARCHITECTURE FOR DETECTING FRAUD IN INTERNET LOAN APPLICATIONS

Submitted in partial fulfilment of the requirements

### **BACHELOR OF TECHNOLOGY**

IN

## COMPUTER SCIENCE AND ENGINEERING

Submitted by

Batch: 02

GADDAM SHRIYA REDDY

(20UJ1A0514)

Under the esteemed guidance of

Dr. V. MANISARMA Ph. D

**Professor & HOD** 

Department of Computer Science and Engineering

Malla Reddy Engineering College and Management Sciences



# MALLA REDDY ENGINEERING COLLEGE AND MANAGEMENT SCIENCES

(Approved by AICTE New Delhi & Affiliated to JNTU Hyderabad) Kistapur, Medchal Dist.- 501401.

2020-2024

Affiliated to



# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KUKATPALLY, HYDERABAD - 85.

# MALLA REDDY ENGINEERING COLLEGE AND MANAGEMENT SCIENCES

(Approved by AICTE New Delhi & Affiliated to JNTU Hyderabad) Kistapur, Medchal Dist.501401.



# **CERTIFICATE**

This is to certify that the Mini project report entitled "ADVANCED NEURAL NETWORK ARCHITECTURE FOR DETECTING FRAUD IN INTERNET LOAN APPLICATIONS" submitted by

#### GADDAM SHRIYA REDDY

20UJ1A0514

To the department of COMPUTER SCIENCE AND ENGINEERING, MALLA REDDY ENGINEERING COLLEGE AND MANAGEMENT SCIENCES, in partial fulfilment for the award of BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE AND ENGINEERING during the academic year 2020-2024.

#### **Internal Guide**

**Head of The Department** 

Dr. V. MANISARMA Ph. D Professor & HOD Dept. of Computer Science and Engineering Dr. V. MANISARMA Ph. D Professor & HOD Dept. of Computer Science and Engineering

**EXTERNAL EXAMINER** 

#### ACKNOWLEDGEMENT

The satisfaction and euphoria that accompany the successful completion of any task would be incomplete without the mention of the people who made it possible, whose constant guidance and encouragement crowned our efforts with success. It is a pleasant aspect that I have now the opportunity to express my guidance to all of them.

I am thankful to Mr. V. MALLA REDDY chairman of "Malla Reddy Engineering College and Management Sciences" for accepting me and providing me with an opportunity to do a project in their esteemed organization.

I am thankful to **Mr. V. RAGHAVENDER REDDY** director of "Malla Reddy Engineering College and Management Sciences" helping me to undergo project work as a part of the university curriculum.

I am thankful to Principal **Dr. S. SUBBARATNAM** Ph.D. Malla Reddy Engineering College and Management Science helped me to undergo project work as a part of the university curriculum.

My special thanks to **Dr. V. MANISARMA** Ph.D Professor & Head in Computer Science and Engineering and internal guide for guiding me in the right way to complete my project at the right time.

As a gesture of respect for our **Family Members** and support I received from them, I dedicate this work to them.

And, I would like to express our heartfelt thanks to Faculty Members of the Computer Science and Engineering Department, Lab Technicians And Friends, one and all who has helped me directly or indirectly in successful completion of the Major Project.

GADDAM SHRIYA REDDY (20UJ1A0514)



### MALLA REDDY ENGINEERING COLLEGE AND

### MANAGEMENT SCIENCES

(Approved by AICTE New Delhi & Affiliated to JNTU Hyderabad) Kistapur, Medchal Dist.- 501401.

#### **DECLARATION**

I GADDAM SHRIYA REDDY (20UJ1A0514), student of 'Bachelor of Technology in Computer Science And Engineering, during the session: 2020-2024, Malla Reddy Engineering College and Management Sciences, Medchal, Hyderabad, hereby declare that the work presented in this Project Work entitled "ADVANCED NEURAL NETWORK ARCHITECTURE FOR DETECTING FRAUD IN INTERNET LOAN APPLICATIONS" is the outcome of my bonafide work and is correct to the best of my knowledge and this work has been undertaken taking care of Engineering Ethics. It contains no material previously published or written by another person nor material that has been accepted for the award of any other degree or diploma of the university or other institute of higher learning, except where due acknowledgment has been made in the text.

**DATE:** 

GADDAM SHRIYA REDDY (20UJ1A0514)

## **ABSTRACT**

The rise of digital technology and online transactions has led to an increase in various types of fraud, especially in the financial sector. Internet loans, being a convenient way for people to access quick financial assistance, have also become a target for fraudulent activities. Traditional fraud detection systems typically rely on rule-based methods and statistical models. Rule-based systems use predefined rules to flag transactions that match specific patterns associated with fraud. Statistical models, such as logistic regression, analyze historical transaction data to identify anomalies. While these methods have been useful, they often struggle with detecting complex, non-linear patterns that are characteristic of fraud in internet loan applications. Therefore, it is necessary to combat fraudulent activities effectively and efficiently. Detecting fraud in internet loan applications is crucial for financial institutions to maintain trust, reduce financial losses, and comply with regulatory requirements. Deep learning, a subset of artificial intelligence (AI), has shown great promise in enhancing fraud detection capabilities due to its ability to analyze large volumes of data and identify complex patterns. These models offer advanced techniques to process vast amounts of data, enabling the identification of subtle and sophisticated fraud patterns that might be undetectable by traditional methods. Thus, this research develops a deep learning anti-fraud model for Internet loan applications, which includes improving model accuracy through advanced neural network architectures, enhancing real-time processing capabilities, integrating explainable AI techniques for better transparency, and leveraging unsupervised learning methods for detecting previously unknown fraud patterns. Additionally, the future lies in collaborative efforts between data scientists, cybersecurity experts, and financial institutions to stay ahead of fraudsters and create a secure digital lending environment.

# LIST OF FIGURES

| FIG NO      | DISCRIPTION                                               | PG. NO |
|-------------|-----------------------------------------------------------|--------|
| Figure 3.1  | Random Forest algorithm                                   | 12     |
| Figure 4.1  | Block diagram of proposed system                          | 17     |
| Figure 4.2  | Perceptron neuron model(left) and                         | 19     |
| Figure4.3   | threshold logic (right) Perceptron neuron model(left) and | 20     |
|             | activation function (right)                               |        |
| Figure 4.4  | Architecture of ANN                                       | 22     |
| Figure 4.5  | ANN, highlighting the feedforward and                     | 23     |
|             | backpropagation steps                                     |        |
| Figure 5.1  | UML Diagram                                               | 25     |
| Figure 5.2  | Sequence Diagram                                          | 26     |
| Figure 5.3  | Data flow Diagram                                         | 27     |
| Figure 5.4  | Class Diagram                                             | 28     |
| Figure 5.5  | Deployment Diagram                                        | 30     |
| Figure 5.6  | Activity Diagram                                          | 31     |
| Figure 10.1 | GUI of Fraud detection in internet loan                   | 71     |
|             | applications                                              | 72     |
| Figure 10.2 | Upload dataset in the GUI                                 | 12     |
| Figure 10.3 | Count plot of categories count in                         | 73     |
| Figure 10.4 | dataset Applying SMOTE for categories Label               | 73     |

| Figure 10.5 | Data preprocessing and splitting        | 74 |
|-------------|-----------------------------------------|----|
| Figure 10.6 | Confusion Matrix of random forest model | 75 |
| Figure 10.7 | Confusion Matrix of ANN Model           | 76 |
| Figure 10.8 | Performance comparison of ANN and RFC   | 77 |
|             | models                                  | 78 |
| Figure 10.9 | ANN Model prediction on test data       | 70 |

# LIST OF TABLES

| TABLE.NO   | DISCRIPTION                         | PG.NO |
|------------|-------------------------------------|-------|
| Table 10.1 | Performance comparison of Random    | 78    |
|            | Forest Classifier and ANN Model for |       |
|            | Fraud Detection                     |       |

### **ABBREVIATIONS**

AI Artificial Intelligence

GTWE Gaussian Transform weighted Embedding

**AUC** Area Under the curve

PCA Principal Component Analysis

**RF** Random Forest

MLP Multi-Layer Perceptron

**CNN** Convolutional Neural Network

BILSTM Bidirectional Long Short-Term Memory

**GAN** Generative Adversarial Network

**CCFD** Cross-Channel Fraud Detection

RTAHC Reinforcement Training Adaptive Heterogeneous

**CCFD** 

**SDG** Stochastic Gradient Descent

**TFD** Transaction Fraud Detector

**SVM** Support Vector Machine

**KNN** K-Nearest Neighbors

**CPU** Central Processing Unit

GUI Graphical User Interface

**SMOTE** Synthetic Minority Oversampling Technique

**IOT** Internet of Things

JDBC Java Data Base Connectivity

**ODBC** Open Data Base Connectivity

**IDLE** Integrated Development and Learning Environment

## LIST OF CONTENTS

| ABSTRACT   |       |                                     | i      |
|------------|-------|-------------------------------------|--------|
| LIST OF FI | GURES |                                     | ii     |
| LIST OF TA | ABLES |                                     | iv     |
| ABBREVIA   | TIONS |                                     | v      |
| CH NO      |       | DESCRIPTION                         | PG. NO |
| CHAPTER    | 1     | INTRODUCTION                        | 2      |
|            | 1.1   | Overview                            | 2      |
|            | 1.2   | Problem statement                   | 2      |
|            | 1.3   | Research Motivation                 | 3      |
|            | 1.4   | Applications                        | 4      |
| CHAPTER 2  |       | LITERATURE SURVEY                   | 7      |
| CHAPTER 3  |       | EXISTING                            | 16     |
|            |       | METHODOLOGY                         |        |
|            | 3.1   | Random Forest Algorithm             | 16     |
|            | 3.2   | Random Forest Classifier            | 16     |
|            | 3.2.1 | Random Forest algorithm             | 17     |
|            | 3.2.2 | Important Features of Random Forest | 17     |
|            | 3.2.3 | Assumptions for Random Forest       | 18     |
|            | 3.2.4 | Types of Ensembles                  | 18     |
|            | 3.3   | Drawbacks                           | 19     |
| CHAPTER 4  |       | PROPOSED                            | 20     |
|            |       | METHODOLOGY                         |        |
|            | 4.1   | Overview                            | 20     |

|        | 4.2   | Data Preprocessing               | 22 |
|--------|-------|----------------------------------|----|
|        | 4.3   | Data Splitting                   | 23 |
|        | 4.4   | ANN Classifier                   | 24 |
|        | 4.5   | ANN                              | 25 |
|        | 4.4.1 | Advantages of Proposed<br>Method | 28 |
| СНАРТЕ | CR 5  | UML DIAGRAMS                     | 29 |
| СНАРТЕ | CR 6  | SOFTWARE                         | 36 |
|        |       | ENVIRONMENT                      |    |
| CHAPTE | CR 7  | SYSTEM                           | 52 |
|        |       | REQUIREMENTS                     |    |
| СНАРТЕ | R 8   | FUNCTIONAL                       | 53 |
|        |       | REQUIREMENTS                     |    |
| СНАРТЕ | CR 9  | SOURCE CODE                      | 54 |
| СНАРТЕ | CR 10 | RESULTS AND                      | 71 |
|        |       | DISCUSSION                       |    |
|        | 10.1  | Implementation                   | 71 |
|        |       | Description                      |    |
|        | 10.2  | Dataset Description              | 72 |
|        | 10.3  | Results and Description          | 73 |
| СНАРТЕ | CR 11 | CONCLUSION AND                   | 74 |
|        |       | FUTURE SCOPE                     |    |
|        |       | REFERENCES                       | 76 |