Méthodes mathématiques de la théorie quantique - 2022 Bases de l'Information quantique - Day 4

Nana Engo

Department of Physics Faculty of Science University of Yaounde I

https://github.com/NanaEngo/Memaquan2022

Porto-Novo - 11-15 Juillet 2022

Sommaire - Day 4 - 14 Juillet 2022

Outils de l'information quantique

2 Fax quantique ou téléportation quantique

Non-clonage quantique I

 L'idée directrice de l'information quantique est que l'on peut, en utilisant les spécificités du formalisme quantique, et particulièrement l'intrication quantique, concevoir de nouvelles façons de traiter et transmettre l'information

Theorem (Non-clonage quantique)

Il n'est pas possible de construire une machine (Quantum Cloning Machine, QCM) qui opère des transformations unitaires et capable de dupliquer (cloner) **parfaitemen**t un qubit arbitraire

Comme le principe d'indétermination d'Heisenberg, le Théorème de non-clonage définit une impossibilité intrinsèque, pas seulement une limitation de laboratoire

Non-clonage quantique II

- Soit $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, $|\alpha|^2 + |\beta|^2 = 1$ le qubit à dupliquer, $|R\rangle$ le support vierge et $|M\rangle$ la machine à dupliquer ou cloner (photocopieuse)
- Est-ce qu'il existe une transformation unitaire U telle que

$$\begin{aligned}
\mathbf{U}|\psi\rangle|R\rangle|M\rangle &= |\psi\rangle|\psi\rangle|M(\psi)\rangle \\
&= (\alpha|0\rangle + \beta|1\rangle)(\alpha|0\rangle + \beta|1\rangle)|M(\psi)\rangle \\
&= (\alpha^2|00\rangle + \alpha\beta(|01\rangle + |10\rangle) + \beta^2|11\rangle)|M(0+1)\rangle
\end{aligned} \tag{1}$$

où $|M(\psi)\rangle$ est l'état final de la machine

Montrons que U ne peut exister

$$\mathtt{U}|0\rangle|R\rangle|M\rangle = |0\rangle|0\rangle|M(0)\rangle \qquad \qquad \mathtt{U}|1\rangle|R\rangle|M\rangle = |1\rangle|1\rangle|M(1)\rangle$$

En vertu de la linéarité de l'addition dans l'espace de Hilbert,

$$U|\psi\rangle|R\rangle|M\rangle = \alpha|0\rangle|0\rangle|M(0)\rangle + \beta|1\rangle|1\rangle|M(1)\rangle$$

qui est clairement différent de (1) que l'on souhaite obtenir

Distance de trace et fidélité l

- On dispose de deux instruments pour mesurer la similarité ou la distinguabilité entre deux états (copie approximative).
 - On considère dans la base $\{|u_i\rangle\}$ $\rho = \sum_i r_i |u_i\rangle\langle u_i|$ et $\sigma = \sum_i s_i |u_i\rangle\langle u_i|$
- La distance de trace (ou trace distance en anglais) entre ρ et σ est définie par

$$\delta(\rho, \sigma) = \frac{1}{2} \operatorname{Tr} |\rho - \sigma| \qquad |\rho| = \sqrt{\rho^{\dagger} \rho}$$

• Exemple : Si Alice prépare un système dans l'état ρ ou σ , chacun avec une probabilité $\frac{1}{2}$ et l'envoie à Bob qui doit faire la distinction entre les deux états. Avec une mesure optimale, Bob a la probabilité

$$\mathcal{P}_{ extit{max}} = rac{1}{2}(1 + \delta(
ho, \sigma))$$

d'identifier correctement dans quel état Alice a préparé le système

Distance de trace et fidélité II

$\delta(ho,\sigma)\geq 0$	Non négative		
$\delta(ho,\sigma)=\delta(\sigma, ho)$	Symétrique		
$\delta(\mathtt{U} ho\mathtt{U}^\dagger,\mathtt{U}\sigma\mathtt{U}^\dagger)=\delta(ho,\sigma)$	Invariante sous les transfo unitaires		
$\delta(\rho,\sigma) \le \delta(\rho,\mu) + \delta(\mu,\sigma)$	Vérifie l'inégalité triangulaire		
$\delta(ho,\sigma) = \sqrt{1-\langle\psi \sigma \psi angle}$	Si $ ho = \psi angle \langle \psi $ est un état pur		
$\delta(\rho,\sigma) = \frac{1}{2} \operatorname{Tr} \left \sum_{i} (r_i - s_i) u_i\rangle \langle u_i \right $	Si $[ho, \sigma] = 0$		
$\delta(\rho,\sigma) = \frac{1}{2} r - s $	r et s vecteurs de Bloch de $ ho$ et σ		

Distance de trace et fidélité III

• La fidélité mesure le recouvrement entre l'état d'entrée ρ et l'état de sortie σ et est définie par

$$F(
ho,\sigma)=\mathrm{Tr}\left(\sqrt{\sqrt{
ho}\sigma\sqrt{
ho}}
ight)$$

• Si $\rho=|\psi\rangle\langle\psi|$ et $\sigma=|\phi\rangle\langle\phi|$ sont des états purs, alors $\rho^2=\rho$ et $\sigma^2=\sigma$, i.e., $\rho=\sqrt{\rho}$ et $\sigma=\sqrt{\sigma}$. Par conséquent,

$$F(\rho, \sigma) = \operatorname{Tr}\left(\sqrt{\sqrt{\rho}\sigma\sqrt{\rho}}\right) = \operatorname{Tr}\sqrt{(|\psi\rangle\langle\psi|)(|\phi\rangle\langle\phi|)(|\psi\rangle\langle\psi|)}$$
$$= \operatorname{Tr}\sqrt{(|\langle\phi|\psi\rangle|^2)(|\psi\rangle\langle\psi|)} = |\langle\phi|\psi\rangle|\sqrt{(\langle\psi|\psi\rangle)} = |\langle\phi|\psi\rangle|$$

ullet $F(
ho,\sigma)$ est une pseudo-métrique dans l'espace de Hilbert si :

Distance de trace et fidélité IV

$0 \le F(ho, \sigma) \le 1$	$F(ho, ho)=1$ et $F(ho,\sigma)=0$ s'il n'y a aucun recouvrement entre les deux états
$F(ho,\sigma)=F(\sigma, ho)$	Symétrique
$F(\mathtt{U} ho\mathtt{U}^\dagger,\mathtt{U}\sigma\mathtt{U}^\dagger)=F(ho,\sigma)$	Invariante sous les transformations unitaires
$F(\rho,\sigma)=\sum_{i}\sqrt{r_{i}s_{i}}$	Si $[ho,\sigma]=0$
$\mathcal{P}(\sigma \leftarrow \rho) = (F(\rho, \sigma))^2$	Probabilité de transition de $ ho$ vers σ

Concurrence et intrication de formation I

• La concurrence mesure le recouvrement entre les états $|\psi\rangle$ et $|\bar{\psi}\rangle$ et est définie par

$$C(\psi) = |\langle \psi | \tilde{\psi} \rangle|, \qquad |\tilde{\psi}\rangle = Y \otimes Y |\psi^*\rangle$$

• En fonction de l'opérateur statistique,

$$C(\rho) = \max\{0, \lambda_1 - \lambda_2 - \lambda_3 - \lambda_4\}$$

 $\lambda_i \equiv$ valeurs propres dans l'ordre décroissant de la matrice Hermitienne

$$\mathtt{R} = \sqrt{\sqrt{
ho} ilde{
ho}\sqrt{
ho}} \qquad \qquad ilde{
ho} = \mathtt{Y} \otimes \mathtt{Y}
ho^* \mathtt{Y} \otimes \mathtt{Y}$$

Concurrence et intrication de formation II

 L'intrication de formation est la caractérisation mathématique des ressources nécessaires pour créer l'intrication

$$E(\rho) = H\left(\frac{1+\sqrt{1-C^2}}{2}\right) \qquad \underbrace{H(x) = -x\log_2(x) - (1-x)\log_2(1-x)}_{\text{entropie de Shannon}}$$

• On note que $0 \le E(\rho) \le 1$ avec $E(\rho) = 1$ dans le cas d'un état maximalement intriqué et $E(\rho) = 0$ dans le cas d'un état séparable

Fax quantique ou téléportation quantique I

Definition (Téléportation quantique)

La téléportation quantique est un protocole de communications quantiques consistant à transférer l'état quantique d'un système vers un autre système similaire et séparé spatialement du premier en mettant à profit l'intrication quantique

- Alice et Bob utilisent un canal EPR composé de $|B_{00}\rangle_{23}=\frac{1}{\sqrt{2}}(|00\rangle_{23}+|11\rangle_{23})$, le qubit 2 est pris par Alice et le qubit 3 est pris par Bob
- Alice souhaite transmettre à Bob l'**information** sur l'état du qubit $|\varphi\rangle_1 = \alpha|0\rangle_1 + \beta|1\rangle_1$ qui lui est à priori inconnu, sans lui transmettre directement ce qubit

Fax quantique ou téléportation quantique II

 Alice mesure l'état quantique de la nouvelle paire de qubits 1 et 2 (non intriqués) en utilisant la base de Bell constituée des états intriquées

$$|B_{00}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$
 $|B_{10}\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$ (3)

$$|B_{01}\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$$
 $|B_{11}\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle))$ (4)

Dans la base de Bell, l'état des trois qubits est

$$|\psi\rangle_{123} = |\varphi\rangle_{1} \otimes |B_{00}\rangle_{23} = (\alpha|0\rangle + \beta|1\rangle)_{1} \otimes |B_{00}\rangle_{23}$$

$$= \frac{1}{2} [|B_{00}\rangle_{12} (\alpha|0\rangle + \beta|1\rangle)_{3} + |B_{10}\rangle_{12} (\alpha|0\rangle - \beta|1\rangle)_{3}$$

$$+ |B_{01}\rangle_{12} (\alpha|1\rangle + \beta|0\rangle)_{3} + |B_{11}\rangle_{12} (\alpha|1\rangle - \beta|0\rangle)_{3}]$$
(5)

$$|\psi\rangle_{123} = \frac{1}{2} \sum_{xy} |B_{xy}\rangle_{12} |\varphi_{xy}\rangle_{3} \qquad |\varphi_{xy}\rangle_{3} = \alpha |y\rangle_{3} + \beta (-1)^{x} |1-y\rangle_{3} \qquad (6)$$

La mesure par Alice de l'état intriqués $|B_{xy}\rangle_{12}$ projette $|\psi\rangle_{123}$ sur l'un des quatre états de Bell avec le $|\varphi_{xy}\rangle_{3}$ correspondant dans (5)

Fax quantique ou téléportation quantique III

Résultat de la mesure de 12	État préparé en 3	probabilité	$U_{xy}=Z^xX^y$
$ B_{00} angle$	$\alpha 0\rangle + \beta 1\rangle$	$\frac{1}{4}$	$\mathtt{Z}^{0}\mathtt{X}^{0}=\mathbb{I}$
$ B_{10} angle$	$\alpha 0\rangle - \beta 1\rangle$	$\frac{1}{4}$	$Z^1X^0=Z$
$ B_{01} angle$	$\alpha 1\rangle + \beta 0\rangle$	$\frac{1}{4}$	$Z^0X^1=X$
$ B_{11} angle$	$\alpha 1\rangle - \beta 0\rangle$	<u>1</u>	$Z^1X^1 = ZX$

L'état du qubit d'Alice $|\varphi\rangle_1$ est téléporté sur le qubit de Bob $|\varphi\rangle_3$ avec une probabilité de 25%

- Alice transmet à Bob par un canal classique le résultat de sa mesure (mesure de Bell), et Bob sait que le qubit 3 lui arrive dans l'état inconnu de départ $|\varphi\rangle_1$, mais qui reste tout aussi inconnu ! L'état du qubit 1 a été téléporté, mais il n'y a jamais eu une mesure de cet état
- Si le résultat de la mesure d'Alice n'est pas $|B_{00}\rangle_{12}$, Bob en sait assez pour faire la correction en appliquant la transformation unitaire U convenable qui permet de ramener le qubit 3 dans l'état $|\varphi\rangle_1$.

Fax quantique ou téléportation quantique IV

- $\textbf{ A} \text{ aucun moment, les coefficients } \alpha \text{ et } \beta \text{ ne sont mesurés, et l'état } |\varphi\rangle_1 \text{ est détruit au cours de la mesure effectuée par Alice. Il n'y a pas contradiction avec le Théorème de non-clonage }$
- 3 Bob ne connaît l'état $|\varphi\rangle_3$ que lorsqu'il a reçu le résultat de la mesure d'Alice. La transmission de cette information doit se faire par un canal classique, à une vitesse au plus égale à la vitesse de la lumière. Il n'a donc pas transfère instantanée de l'information à distance
- Il y a jamais transport de la matière dans la téléportation

