Wydział	Dzien/godzina	Nr. zespołu	
EiTI	Wtorek 8.15-11.00	2	
	Data: 29.11.2011		
Nazwisko i Imię	Ocena z przygotowania	Ocena ze sprawozdania	Ocena
1. Król Jakub			
2. Obszański Grzegorz			
3. Zawiśla Mateusz			
Prowadzący:		Podpis prowadzącego	
Jarosław Suszek			

1 Wstęp teoretyczny

1.1 Polaryzacja i prawo Malusa

Jeśli kierunek drgań wektorów natężenia pola elektrycznego i magnetycznego zmienia jest w danym punkcie stały, lub zmienia się w sposób ściśle określony, mówimy, że fala elektromagnetyczna jest spolaryzowana. Występują różne rodzaje polaryzacji: liniowe, kołowa lub eliptyczna.

Światło może zostać spolaryzowane za pomocą elementów przepuszczających światło o określonym kierunku polaryzacji, nazywanych *polaryzatorami*. Według *Prawa Malusa* natężenie światła przechodzącego przez polaryzator wynosi

$$I = I_0 \cos^2 \theta \tag{1}$$

gdzie I_0 a θ jest kątem, który tworzy kierunek polaryzacji z osią polaryzatora.

1.2 Prawo Snelliusa

Światło przechodzące między dwoma ośrodkami ulega załamaniu i odbiciu. Kąty załamania i odbicia są ściśle określone. Kat odbicia jest równy katowi padania, a kat załamania opisuje praw Snelliusa:

$$n_1 \sin \alpha = n_2 \sin \beta \tag{2}$$

Gdzie α jest kątem pdania jednego ośrodka, a n_1 jego współczynnikiem załamania, a β i n_2 są odpowiednio kątem załamania i współczynnikiem załamania drugiego ośrodka.

1.3 Kat Brewstera

Kiedy kąt załamania β będzie pod kątem 90° do kąta odbicia α_B nie występuje fala odbita. Kąt ten nazywamy kątem Brewstera i wyznaczamy go z warunku

$$\beta = 90^{\circ} - \alpha_B \tag{3}$$

A więc

$$n_1 \sin \alpha_B = n_2 \cos \alpha_B \tag{4}$$

$$tg \,\alpha_B = \frac{n_2}{n_1} \tag{5}$$

1.4 Zjawisko całkowitego wewnętrznego odbicia

W momencie kiedy kąt fali po załamaniu (β) przekroczy 90° możemy zaobserwować zjawisko całkowitego odbicia. Zachodzi ono dla kątów padania większych od α_{GR} wyznaczanego za pomocą

$$\sin \alpha_{GR} = \frac{n_2}{n_1} \tag{6}$$

Kąt graniczny występuje więc, gdy $\frac{n_1}{n_2}>1$

2 Wykaz przyrządów i schemat pomiarowy

2.1 Wykaz przyrządów

- $\bullet\,$ amperomierz analogowy UM-110B
- \bullet dielektryk
- 2 polaryzatory
- \bullet laser
- goniometr

2.2 Schemat pomiarowy

3 Zadanie 1.

3.1 Wyniki pomiarów

$\alpha_w[^{\circ}]$	I	zakres	1 działka	wynik	u(I)	$u(\Theta)[^{\circ}]$
5	30	10mA	0,2mA	6	0,1702	4
10	32	10mA	$0.2 \mathrm{mA}$	6,4	0,1702	4
15	30	10mA	$0.2 \mathrm{mA}$	6	0,1702	4
20	30	10mA	$0.2 \mathrm{mA}$	6	0,1702	4
25	30	10mA	$0.2 \mathrm{mA}$	6	0,1702	4
30	28	10mA	$0.2 \mathrm{mA}$	5,6	0,1702	4
35	28	10mA	$0.2 \mathrm{mA}$	5,6	0,1702	4
40	26	10mA	$0.2 \mathrm{mA}$	5,2	0,1702	4
45	24	10mA	$0.2 \mathrm{mA}$	4,8	0,1702	4
50	22	10mA	$0.2 \mathrm{mA}$	4,4	0,1702	4
55	20	10mA	$0.2 \mathrm{mA}$	4,0	0,1702	4
60	18	10mA	$0.2 \mathrm{mA}$	3,6	0,1702	4
65	16	10mA	$0.2 \mathrm{mA}$	3,2	0,1702	4
70	10	10mA	$0.2 \mathrm{mA}$	2,0	0,1702	4
75	8	10mA	$0.2 \mathrm{mA}$	1,6	0,1702	4
80	6	10mA	$0.2 \mathrm{mA}$	1,2	0,1702	4
85	4	3mA	$0.05 \mathrm{mA}$	0,2	0,621	4
90	1,5	3mA	$0.05 \mathrm{mA}$	0,075	0,621	4
95	7	0,3mA	$0,005 \mathrm{mA}$	0,035	0,281	4
100	4	0,3mA	$0,005 \mathrm{mA}$	0,02	0,281	4
105	11,5	0,3mA	0,005mA	0,0575	0,281	4
110	3	3mA	$0.05 \mathrm{mA}$	0,15	0,621	4
115	5	3mA	$0.05 \mathrm{mA}$	0,25	0,621	4
120	8,5	$3 \mathrm{mA}$	$0.05 \mathrm{mA}$	0,42	0,621	4
125	11,5	3mA	0,05mA	0,575	0,621	4
130	15	3mA	0,05mA	0,75	0,621	4
135	18	3mA	0,05mA	0,9	0,621	4
140	21	3mA	0,05mA	1,05	0,621	4
145	23,5	3mA	0,05mA	1,175	0,621	4
150	25,5	3mA	0,05mA	1,275	0,621	4

3.2 Wykres

3.3 Wnioski

Różnice pomiędzy wynikami pomiarów a przewidywaniami teoretycznymi mogą być spowodowane występowaniem w obwodzie włączonej lampki oświetlającej biurko. Jednakowoż wyniki są podobne do przewidywań, co potwierdza prawo Malusa.

4 Zadanie 2.

4.1 Wyniki pomiarów

$\alpha[\circ]$	β[°]	$u(\beta)[^{\circ}]$
10	6	1
15	9	1
20	13	1
25	16	1
30	19	1
35	22	1
40	25	1
45	28	1
50	30	1
55	32	1
60	34	2
65	36	2
70	37	3
75	38	3
80	37	4

4.2 Wykres

4.3 Obliczenia

$$n_2 = \frac{\sin \alpha}{\sin \beta} = \text{współczynnik kierunkowy prostej } + u(n_2) = 1,561 \pm 0,028$$
 (7)

Ostatecznie

$$n_2 = 1,561 \pm 0,028 \tag{8}$$

5 Zadanie 3. - badanie kąta Brewstera

5.1 Wyniki pomiarów

$$\alpha_{\beta} = 57^{\circ} \tag{9}$$

$$\beta = 33^{\circ} \tag{10}$$

$$\alpha_{\beta} + \beta = 90^{\circ} \tag{11}$$

5.2 Obliczenia

$$n_2 = \operatorname{tg} \alpha_{\beta} \tag{12}$$

$$n_2 = \lg 57^\circ = 1,5398 \tag{13}$$

$$u(n_2) = \left| \frac{u(\alpha_\beta)}{\cos^2 \alpha_\beta} \right| = 0,117 \tag{14}$$

Ostatecznie

$$n_2 = 1,54 \pm 0,12 \tag{15}$$

6 Zadanie 4.

6.1 Wyniki pomiarów

$$\alpha_{qr} = 43^{\circ} \pm 5^{\circ} \tag{16}$$

6.2 Obliczenia

$$n_2 = \frac{1}{\sin \alpha_{gr}} = 1,466279 \tag{17}$$

$$u(n_2) = \left| \frac{-\cos \alpha_{gr}}{\sin^2 \alpha_{gr}} \cdot u(\alpha_{gr}) \right| = 0, 14 \tag{18}$$

Ostatecznie

$$n_2 = 1.46 \pm 0,14 \tag{19}$$

7 Wnioski

Ćwiczenie laboratoryjne miało na celu badanie zjawisk optycznych. Tematem przewodnim wykonywanych zadań była obserwacja odbicia światła od powierzchni dielektryka. Przeprowadzone doświadczenia pozwoliły nam pogłębić swoją wiedzę i poszerzyć horyzonty, potwierdzając prawa Malusa i Snelliusa, które stały się dla nas jasne po wcześniejszym wstępie teoretycznym.

Pomiary dały nam satysfakcjonujące wyniki, zgodne z przewidywaniami postawionymi dzięki teoretycznym przesłankom. Niecałkowita zbieżność widoczna w zestawieniu powyższych danych może mieć podstawy w wielorakich czynnikach zewnętrznych, do których mogą należeć na przykład wpływ urządzeń laboratoryjnych niebędących częścią badanych układów (takich jak lampka oświetlająca stół), bądź niedokładnośc odczytu z urządzeń pomiarowych.

Doświadenia, które miały miejsce w Centralnym Laboratorium Fizycznym miały na celu także wyznaczenie *kąta Brewstera*, dla którego odbita wiązka światła zanika i ustępuje miejsca efektowi wewnętrznego odbicia.

Wszystkie powyższe działania prowadziły jednak do innego szerzej zdefiniowanego celu, który przyświecał nam przez cały czas pracy, a mianowicie znalezienia współczynnika załamania światła badanego dielektryka. Udało nam się wyznaczyć tę wartość na trzy sposoby, z których najdokładniejszy okazał się ten wykorzystujący metodę Snelliusa.