

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №1

По дисциплине: Моделирование

Тема: Решение дифференциальных уравнений

Студент	Наушев А.К
Группа <u>И</u>	У7-56Б
Оценка (б	баллы)
Преподав	атели Градов В. М.

Введение

Цель работы: Изучить методы решения задачи Коши для ОДУ, применив приближенный аналитический метод Пикара и численный метод Эйлера в явном и неявном вариантах.

Для достижения цели были поставлены следующие задачи:

- Вычислить 3 и 4 приближения по методу Пикара для решения заданного дифференциального уравнения
- Реализововать явный и неявный численные методы решения того же уравнения
- Реализововать программу, вычисляющую значение функции u(x), вычисленные предыдущими двумя методами, для всех значения аргумента из введенного интервала

1 Теоритическая часть

Существует уравнение не имеющее аналитического решения (формула 1).

$$\begin{cases} u'(x) = f(x, u) \\ u(\xi) = y \end{cases}$$
 (1)

Уравнение можно решить методом Пикара (формула 2)

$$y^{(s)}(x) = \eta + \int_0^x f(t, y^{(s-1)}(t)) dt$$

$$y^{(0)} = \eta$$
(2)

Для задачи получим 4 приближения (формулы 3, 4, 5, 6)

$$y^{(1)} = \frac{x^3}{3} \tag{3}$$

$$y^{(2)} = \frac{x^3}{3} + \frac{x^7}{21} \tag{4}$$

$$y^{(3)} = \frac{x^3}{3} + \frac{x^7}{21} + \frac{2 \cdot x^8}{2079} + \frac{x^{15}}{59535} \tag{5}$$

$$y^{(4)} = \frac{x^3}{3} + \frac{x^7}{21} + \frac{2 \cdot x^8}{2079} + \frac{x^{15}}{59535} + \frac{2 \cdot x^{15}}{93555} + \frac{2 \cdot x^{19}}{3393495} + \frac{2 \cdot x^{29}}{2488563} + \frac{2 \cdot x^{23}}{86266215} + \frac{x^{23}}{99411543} + \frac{2 \cdot x^{27}}{3341878155} + \frac{x^{31}}{109876902975}$$
 (6)

Также уравнение решается **численным методом Эйлера** Явная схема (формула 7)

$$y_{n+1} = y_n + h \cdot f(x_n, y_n) \tag{7}$$

Неявная схема (формула 8)

$$y_{n+1} = y_n + h \cdot (f(x_{n+1}, y_{n+1})) \tag{8}$$

На листинге 1 представлен код решения уравнения методом Пикара.

Листинг 1 – Метод Пикара

```
public static double pikarOne(double x) {
1
2
           return Math.pow(x, 3) / 3.0;
3
       }
4
5
       public static double pikarTwo(double x) {
6
           return Math.pow(x, 3) / 3.0 * (1 + Math.pow(x, 4) / 21.0);
7
8
9
       public static double pikarThree(double x) {
10
           return Math.pow(x, 3) / 3.0 * (1.0 +
                    1.0 / 21.0 * Math.pow(x, 4) +
11
12
                    2.0 / 693.0 * Math.pow(x, 8) +
                    1.0 / 19845.0 * Math.pow(x, 12));
13
14
       }
15
16
       public static double pikarFour(double x) {
           return (Math.pow(x, 3) / 3.0 + Math.pow(x, 7) / 63.0
17
           + Math.pow(x, 11) / 2079.0 * 2.0 +
18
19
                    Math.pow(x, 15) / 218295.0 * 13
20
                    + Math.pow(x, 19) / 441.0 / 84645.0 * 82.0 +
                    Math.pow(x, 23) / 68607.0 / 152145.0 * 662.0
21
22
                    + Math.pow(x, 27) / Math.pow(3, 11) / 18865.0 * 4.0 +
23
                    Math.pow(x, 31) / 194481.0 / 564975.0);
24
       }
```

На листинге 2 представлен код решения уравнения явной схемой метода Эйлера.

Листинг 2 – Явная схема метода Эйлера

```
public static double[] obvious(List<Double> x, double step) {
        double[] y = new double[x.size()];
        y[0] = 0;
        for (int i = 1; i < x.size(); i++) {
            y[i] = y[i - 1] + step * function(x.get(i - 1), y[i - 1]);
        }
        return y;
    }
}</pre>
```

На листинге 3 представлен код решения Рунге-Кутт 2-го порядка точности.

Листинг 3 – Рунге-Кутт 2-го порядка точности

```
public static double[] runge2(List<Double> x, double step) {
1
2
           double[] y = new double[x.size()];
3
           double yVar = 0;
           for (int i = 1; i < x.size(); i++) {
4
               yVar += step * function((x.get(i) + step / 2),
5
               yVar + step / 2 * function(x.get(i), yVar));
6
7
               y[i] = yVar;
8
9
           return y;
10
       }
```

2 Результат работы программы

X	Явный	Рунге	Пикар 1	Пикар 2	Пикар 3	Пикар 4
[0.000000]	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
[0.100000]	0.000333	0.000333	0.000333	0.000333	0.000333	0.000333
[0.200000]	0.002667	0.002667	0.002667	0.002667	0.002667	0.002667
[0.300000]	0.009003	0.009004	0.009000	0.009003	0.009003	0.009003
[0.400000]	0.021359	0.021361	0.021333	0.021359	0.021359	0.021359
[0.500000]	0.041790	0.041794	0.041667	0.041791	0.041791	0.041791
[0.600000]	0.072446	0.072452	0.072000	0.072444	0.072448	0.072448
[0.700000]	0.115657	0.115665	0.114333	0.115641	0.115660	0.115660
[0.800000]	0.174077	0.174087	0.170667	0.173995	0.174079	0.174080
[0.900000]	0.250902	0.250915	0.243000	0.250592	0.250897	0.250906
1.000000	0.350226	0.350243	0.333333	0.349206	0.350185	0.350230
1.100000	0.477609	0.477631	0.443667	0.474599	0.477414	0.477606
1.200000	0.641065	0.641095	0.576000	0.632876	0.640282	0.641016
1.300000	0.852863	0.852904	0.732333	0.831934	0.850035	0.852572
1.400000	1.133088	1.133145	0.914667	1.081990	1.123560	1.131680
1.500000	1.517408	1.517493	1.125000	1.396205	1.486771	1.511146
1.600000	2.076353	2.076492	1.365333	1.791421	1.980024	2.049464
1.700000	2.972651	2.972914	1.637667	2.288998	2.666774	2.856462
1.800000	4.687727	4.688383	1.944000	2.915778	3.647363	4.148638
1.900000	9.564856	9.567947	2.286333	3.705177	5.080810	6.372211
2.000000 3	11.093445	317.720078	2.666627	4.698302	7.218729	10.483362

Рис. 1 – Результат работы

3 Вопросы

- 1) Каково значение функции при x = 2, т.е. привести значение u(2)?
- приблизительно 311.09
- 2) Пояснить, каким образом можно доказать правильность полученного результата при фиксированном значении аргумента в численных методах?
- В этой задаче результат зависит от шаг который задаем. Мы можем протестировать на разных шагах и посмотреть ,сравнить результат. Сравниваем именно разницу. Насколько разница меньше друг от друга значит результат в этом диапазоне.