

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2019-2

[Cod: CM-334]

[Curso: Análisis Numérico I]

Solucionario del Examen Final

1. a) [1 pto.] Sean a, b y c los coeficientes de la ecuación cuadrática general, dado por:

$$f(t) = at^2 + bt + c.$$

Luego

$$t = 0 : f(0) = a(0)^2 + b(0) + c = 0$$

$$t = 8 : f(8) = a(8)^2 + b(8) + c = 320$$

$$t = 16 : f(16) = a(16)^2 + b(16) + c = 0$$

El sistema es:

$$\left[\begin{array}{ccc} 0 & 0 & 1 \\ 64 & 8 & 1 \\ 256 & 16 & 1 \end{array}\right] \left[\begin{array}{c} a \\ b \\ c \end{array}\right] = \left[\begin{array}{c} 0 \\ 320 \\ 0 \end{array}\right]$$

b) [1 pto.] La tabla es:

k	a_k	b_k	$c_{m{k}}$	t_{k}	vx_k	vy_k	vz_k	Error
0	-5.05	80.05	0	0.0000143	0.0531866	-0.7961693	-0.1499104	
1	-5.0035134	80.053066	0.0002116	0.0642703	0.9075006	0.0581312	0.013233	0.0464866
2	-5.0000951	80.001895	-0.0094232	0.0000143	-0.000008	-0.0019375	0.0090598	0.0511709
:								
9	-5.0000558	80.001294	-0.0064863					

Donde la ecuación cuadrática es $f(t) = -5.0000558t^2 + 80.001294t - 0.0064863$.

c) [1 pto.] La tabla es:

\boldsymbol{k}	a_k	$b_{m{k}}$	$c_{m{k}}$	d_{k}	rx_k	ry_k	rz_k	Error
0	-5.05	80.05	0	0.6592089	3251.2	214.4	14.8	0.0464866
1	-5.0035134	80.053066	0.0002116	0.0000858	0.0531866	-0.7961826	-0.1499114	0.0511844
2	-5.0000812	80.001881	-0.0094259	1.037491	0.0000713	-0.0017096	0.0091048	0.0094259
3	-5	80	0	0	-0.0000493	-0.0000033	-0.0000002	0
4	-5	80	0					

Donde la ecuación cudrática es $f(t) = -5t^2 + 80t$.

d) $[1\ pto.]$ Hay que garantizar que la matriz debe ser simétrica, el cual es:

Si
$$A == A'$$
 entonces $B \leftarrow A;$ $c \leftarrow b;$ sino $B \leftarrow A' \cdot A;$ $c \leftarrow A' \cdot b;$ fin si.

- e) [1 pto.] Se recomienda para este problema el método del Gradiente Conjugado, porque se logra obtener la solución en 4 iteraciones.
- 2. a) [1 pto.] Sean:

 $oldsymbol{x}$: Cantidad de videojuegos. $oldsymbol{y}$: El precio por videojuegos.

Las funciones generadas son:

$$f_1(x, y) = x \cdot y - 72 = 0$$

 $f_2(x, y) = (x + 2) \cdot (y - 3) - 72 = 0$

b) [1 pto.] La matiz Jacobiana y su inversa son

$$JF(x,y) = \begin{bmatrix} y & x \\ y-3 & x+2 \end{bmatrix} \land JF(x,y)^{-1} = \frac{1}{3x+2y} \begin{bmatrix} x+2 & -x \\ 3-y & y \end{bmatrix}$$

La tabla de método de Newton es:

k	x_k	y_k	Error
0	3	6	
1	7.7142857	14.571429	8.5714286
2	6.1686183	12.252927	2.3185012
3	6.0019831	12.002975	0.2499528
4	6.0000003	12	0.0029742
5	6	12	0.0000004

c) [1 pto.] Se requiere N=16 en el método de Homotopía y Continuación, para lograr que la solución se aproxime con un error del 10^{-5} , la tabla es:

k	x_k	y_k	$K1x_k$	$K1y_k$	$K2x_k$	$K2y_k$	$K3x_k$	$K3y_k$	$K4x_k$	$K4y_k$
0	3	6	0.2946429	0.5357143	0.2802788	0.5141682	0.2808908	0.5150862	0.2682147	0.496072
1	3.2808661	6.5150492	0.2682166	0.4960749	0.2570219	0.4792828	0.2574297	0.4798946	0.2473735	0.4648103
2	3.5382817	6.9949225	0.2473745	0.4648117	0.2383352	0.4512527	0.2386228	0.4516842	0.2303938	0.4393407
:										
16	6.0000005	12.000001	0.1378252	0.3004878	0.1358295	0.2974943	0.1358536	0.2975304	0.1339286	0.2946428

d) [1 pto.] El algoritmo para el gráfico es:

$$\begin{array}{l} er \leftarrow 1; \\ k \leftarrow 0; \\ x \leftarrow x0; \\ \text{mientras} & e1 > tol \ o \ k < maxit \ \text{ hacer} \\ k \leftarrow k + 1; \\ x1 \leftarrow x - \frac{1}{3x_1 + 2x_2} \left[\begin{array}{c} x(1) + 2 & -x(1) \\ 3 - x(2) & x(2) \end{array} \right] \left[\begin{array}{c} x(1) \cdot x(2) - 72 \\ (x(1) + 2) \cdot (x(2) - 3) - 72 \end{array} \right]; \\ k1 \leftarrow [k1 \ k]; \\ e1 \leftarrow \|x - x1\|_{\infty}; \\ xr \leftarrow [xr \ x1]; \\ x \leftarrow x1; \\ \text{fin mientras} \\ grafico(k1, xr); \end{array}$$

- e) [1 pto.] Se recomienda para el problema el método de Newton, porque se logra la solución en la 5 iteraciones.
- 3. a) [1 pto.] Sean

x : Número de familias de renta baja.
 y : Número de familias de renta media.
 z : Número de familias de renta alta.

Donde, tenemos:

$$\begin{bmatrix} x^{(k+1)} \\ y^{(k+1)} \\ z^{(k+1)} \end{bmatrix} = \begin{bmatrix} 0.70 & 0.30 & 0.10 \\ 0.20 & 0.60 & 0.30 \\ 0.10 & 0.10 & 0.60 \end{bmatrix} \begin{bmatrix} x^{(k)} \\ y^{(k)} \\ z^{(k)} \end{bmatrix} k = 0, 1, \dots$$

con

$$\begin{bmatrix} x^{(0)} \\ y^{(0)} \\ z^{(0)} \end{bmatrix} = \begin{bmatrix} 42158 \\ 147553 \\ 21079 \end{bmatrix}$$

 $b) \quad \textbf{[1 pto.]} \ \, \textbf{Sea el polinomio característico general:} \\$

$$p(\lambda) = \lambda^3 + b_1 \lambda^2 + b_2 \lambda + b_3.$$

Aplicando el método de Krylov, se requiere resolver el sistema siguiente:

87267.06	75884.4	42158	[b ₁]	-90766.174	1
86634.69	103287.1	147553	b ₂	=	-80500.701	l
36888.25	31618.5	21079	b2		-39523.125	l

Resolviendo por el método LU, el polinomio característico es:

$$p(\lambda) = \lambda^3 - 1.9\lambda^2 + 1.1\lambda - 0.2.$$

c) $\ [2\ ptos.]$ La primera tabla con tol=0.00001 y error absoluto es:

k	$y1_k$	y_{k}	$y3_k$	λ_k	$x1_k$	$x2_k$	$x3_k$	Error
0					42158	147553	21079	
1	75884.4	103287.1	31618.5	103287.1	0.7346939	1	0.3061224	147551
2	0.844898	0.8387755	0.3571429	0.844898	1	0.886902	0.4227053	0.2653061
:								
10	0.999936	0.8461397	0.4615289	0.9999936	1	0.8461452	0.4615319	0.0000083

Donde $\lambda_1=0.9999936$ y $v_1=(1\ 0.8461452\ 0.4615319)^T.$ La segunda tabla con tol=0.00001 y error absoluto es:

k	$y1_k$	y_{k}	$y3_k$	$\lambda_{m{k}}$	$x1_k$	$x2_k$	$x3_k$	Error
0					42158	147553	21079	
1	-52697.5	263487.5	0	263487.5	-0.2	1	0	147552
2	-1.18	2.14	-0.16	2.14	-0.5514019	1	-0.0747664	0.3514019
:								
39	-2.4999281	2.500024	-0.0000959	2.500024	-0.9999617	1	-0.0000383	0.0000096

Donde $\lambda_2=0.3999962$ y $v_1=(-0.9999617\ 1\ -0.0000383)^T.$ La tercera tabla con $q=0.6,\ tol=0.00001$ y error absoluto es:

k	$y1_k$	$y2_k$	$y3_k$	λ_k	x_{k}	$x2_k$	$x3_k$	Error
0					42158	147553	21079	
1	263487.5	-52697.5	316185	316185	0.8333333	-0.1666667	1	147553.17
2	7.9166667	2.0833333	-5.8333333	7.9166667	1	0.2631579	-0.7368421	1.7368421
:								
17	-10.000165	5	5.0001653	-10.000165	1	-0.4999917	-0.5000083	0.0000083

Donde $\lambda_3 = 0.5000017 \text{ y } v_1 = (1 - 0.4999917 - 0.5000083)^T$.

d) [1 pto.] La distribución de renta es estable, debido a que $\lambda_1 = 1$, por consiguiente las autoridades deben estar tranquilos.

4.	a) [1 pto.]	La tabla de diferencia	dividida, donde D	$i = f[x_k, \cdots, x_k]$	$+i$], $i=1,\cdots,7$ es:

\boldsymbol{k}	x_k	$f[x_k]$	D_1	D_2	D_3	D_4	D_5	D_6	D_7
0	0	100	-116	60	-13.5	0.06	0.6090926	-0.1098769	0.0091199
1	0.5	42	-56	33	-13.32	3.1054630	-0.3797997	0.0269218	
2	1	14	-6.5	-0.3	0.6545833	-0.1228348	0.0105670		
3	2	7.5	-7.1	2.3183333	-0.3280952	0.0251037			
4	3	0.4	-0.145	0.0216667	-0.0017472				
5	5	0.11	-0.015	0.0007					
6	9	0.05	-0.008						
7	15	0.002							

El polinomio anidado de interpolación de Newton es:

$$\begin{array}{lll} P_6(x) & = & 100 + x\{-116 + (x-0.5)[60 + (x-1)\{-13.5 + (x-2)[0.06 + (x-3)\{0.6090926 + (x-5)[-0.1098769 + 0.0091199(x-9)]\}\}]\}\}. \end{array}$$

b) [1 pto.] Evaluando se tiene:

$$P_6(5.5) = 50.12598615.$$

c) [1 pto.] Sea el spline lineal de tipo:

$$\varphi(x) = a_1 + a_2 x + a_3 (x - 3)_+.$$

La matriz M es:

$$M = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0.5 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 3 & 0 \\ 1 & 5 & 2 \\ 1 & 9 & 6 \\ 1 & 15 & 12 \end{bmatrix}$$

Donde

$$M^{T}M\begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \end{bmatrix} = M^{T}\begin{bmatrix} 100 \\ 42 \\ 14 \\ 7.5 \\ 0.4 \\ 0.11 \\ 0.05 \\ 0.002 \end{bmatrix}$$

El sistema ha resolver es:

$$\begin{bmatrix} 8 & 35.5 & 20 \\ 35.5 & 345.25 & 244 \\ 20 & 244 & 184 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 164.062 \\ 51.230 \\ 0.544 \end{bmatrix}$$

El ajuste spline lineal resuelto por el método de Cholesky es:

$$\varphi(x) = 67.854912 - 25.765095x + 26.794179(x - 3) +$$

d) [1 pto.] Evaluando se tiene:

$$\varphi(5.5) = -6.867663.$$

e) $[1\ pto.]$ El gráfico de Newton es:

El gráfico de spline es:

UNI, 09 de Octubre del 2019^*

 $^{^*}$ Hecho en \LaTeX