CLAIMS:

1	1. A method for color-correcting multi-channel color image		
2	signals from a digital camera having multi-channel image sensors to account for		
3	variations in scene illuminant comprising the steps of:		
4	a) determining the scene illuminant; and		
5	b) determining an optimum color-correction transformation in		
6	response to the scene illuminant which transform minimizes color errors between		
7	an original scene and a reproduced image by adjusting three or more parameters.		
1	2. The method of claim 1 wherein the scene illuminant is		
2	determined using an optical color temperature detector on the digital camera.		
1	3. The method of claim 1 wherein the scene illuminant is		
2	determined from the relative color signals produced by photographing a neutral		
3	object in the scene.		
1	4. The method of claim 1 wherein the scene illuminant is		
2	determined by analyzing the color image data for the scene.		
1	5. The method of claim 1 wherein the scene illuminant is		
2	determined by having a user select the scene illuminant from a list of scene		
3	illuminants.		
1	6. The method of claim 1 wherein the digital camera is a digital		
2	still camera.		
1	7. The method of claim 1 wherein the digital camera is a digital		
2	video camera.		
1	8. The method of claim 1 wherein the optimum color-		
2	correction transformation determining step includes combining the color errors are		
3	minimized by combining the color errors for a set of typical scene colors and		
4	determining the optimum color-correction transformation that minimizes the		
5	combined error.		

- 1 9. The method of claim 8 wherein the combined color error is 2 the root mean square ΔE^* value for the set of typical scene colors, the root mean
- 3 square ΔE^* value being given by

$$\Delta E *_{RMS} = \sqrt{\sum_{i=0}^{N} \Delta E *_{i}^{2}}$$

6 where N is the number of typical scene colors, i is a particular typical scene color,

7 and

5

$$\Delta E^*_{i} = \sqrt{(L^*_{si} - L^*_{di})^2 + (a^*_{si} - a^*_{di})^2 + (b^*_{si} - b^*_{di})^2}$$

- 9 is the CIELAB color difference between the scene color values for the ith typical
- scene color specified by L*si, a*si, and b*si, and the corresponding color of the
- reproduced image specified by L*di, a*di, and b*di.
- 1 10. The method of claim 1 wherein the color-correction
- 2 transformation is a color-correction matrix having adjustable matrix coefficients.
- 1 The method of claim 10 wherein the optimum color-
- 2 correction transformation is determined by determining the adjustable matrix
- 3 coefficients that minimize the color errors between the original scene and the
- 4 reproduced image.
- 1 12. The method of claim 11 wherein the matrix coefficients that
- 2 minimize the color errors between the original scene and the reproduced image are
- determined by minimizing the color errors for a set of typical scene colors.
- 1 13. The method of claim 12 wherein the optimum color-
- 2 correction transformation determing step includes minimizing color errors by
- minimizing the root mean square ΔE^* value for the set of typical scene colors, the
- 4 root mean square ΔE^* value being given by

$$\Delta E *_{RMS} = \sqrt{\sum_{i=0}^{N} \Delta E *_{i}^{2}}$$

6

- where N is the number of typical scene colors, i is a particular typical scene color,
- 8 and

$$\Delta E_{i}^{*} = \sqrt{(L_{si}^{*} - L_{di}^{*})^{2} + (a_{si}^{*} - a_{di}^{*})^{2} + (b_{si}^{*} - b_{di}^{*})^{2}}$$

- is the CIELAB color difference between the scene color values for the ith typical
- scene color specified by L*si, a*si, and b*si, and the corresponding color of the
- reproduced image specified by L*di, a*di, and b*di.
- 1 14. The method of claim 1 wherein the color-correction
- 2 transformation is an adjustable three-dimensional look-up table that stores output
- 3 color values for a lattice of input color values.
- 1 15. The method of claim 1 wherein information describing the
- 2 determined scene illuminant is stored as part a data structure used to store the
- 3 color image signals.
- 1 16. The method of claim 15 wherein the information describing
- 2 the determined scene illuminant is an illuminant color temperature.
- 1 The method of claim 15 wherein the information describing
- 2 the determined scene illuminant is an illuminant spectrum.
- 1 18. The method of claim 15 wherein the information describing
- 2 the determined scene illuminant is an identifier for one of a set of possible scene
- 3 illuminants.
- 1 19. The method of claim 1 wherein information describing the
- 2 optimum color-correction transformation is stored as part a data structure used to
- 3 store the color image signals.
- 1 20. The method of claim 19 wherein the information describing
- 2 the optimum color-correction transformation includes matrix coefficient values for
- 3 a color-correction matrix.

1	21.	The method of claim 1 further including the step of applying	
2	the optimum color-correction transformation to the color image signals in the		
3	digital camera.		
1	22.	The method of claim 1 further including the step of applying	
2	the optimum color-c	orrection transformation to the color image signals in a digital	
3	image processor ada	pted to receive the color image signals from the digital	
4	camera.		
1	23.	The method of claim 1 wherein the color-correction	
2	transformation transforms the color image signals from the digital camera to color		
3	image signals adapte	d for display on a video display device.	
1	24.	The method of claim 1 wherein the color-correction	
2	transformation trans	forms the color image signals from the digital camera to	
3	device-independent color image signals.		
1	25.	The method of claim 1 wherein the multi-channel image	
2	sensors are red, green, and blue image sensors.		
1	26.	A method for color-correcting multi-channel color image	
2	signals from a digital camera having multi-channel image sensors to account for		
3	variations in scene illuminant comprising the steps of:		
4	a)	determining the scene illuminant;	
5	b)	classifying the scene illuminant into one of a set of possible	
6	scene illuminants; ar	nd .	
7	c)	selecting a color-correction transformation in response to	
8	the classified scene	illuminant from a set of color-correction transformations, each	
9	transformation having been predetermined to minimize color errors between an		
10	original scene and a	reproduced image for a particular classified scene illuminant.	
1	27.	A method for color-correcting multi-channel color image	
2	signals from a digital camera having multi-channel image sensors to account for		
3	variations in scene il	lluminant comprising the steps of:	
4	a)	determining the scene illuminant;	

5	b) determining channel-dependent neutral-balance		
6	transformations responsive to the scene illuminant to be applied to the multi-		
7	channel color image signals to form neutral-balanced color image signals, the		
8	neutral-balance transformations being adapted to produce equal signal levels for		
9	scene colors that are neutral; and		
10	c) determining an optimum color-correction transformation in		
11	response to the scene illuminant which transform minimizes color errors between		
12	an original scene and a reproduced image by adjusting three or more parameters.		
1	28. An apparatus for color-correcting multi-channel color image		
2	signals from a digital camera having multi-channel image sensors to account for		
3	variations in scene illuminant, comprising:		
4	a) means for determining the scene illuminant; and		
5	b) means for determining an optimum color-correction		
6	transformation in response to the scene illuminant which transform minimizes color		
7	errors between an original scene and a reproduced image by adjusting three or		
8	more parameters.		
1	29. The invention of claim 28 further including a digital camera		
2	for producing multi-channel color signals.		