Algoritmi e Strutture Dati

a.a. 2017/18

Prima prova intermedia del 16/01/2018

Cogno	ome: Nome:
Matrio	cola: E-mail:
1.	Scrivere una funzione C efficiente , di nome simmetrico , che, dato un albero binario ritorna <i>1</i> se l'albero è speculare , sia dal punto di vista strutturale che nel contenuto dei nodi altrimenti ritorna <i>0</i> .
	Specificare la chiamata della funzione nel main. Analizzare la complessità della funzione.
2.	Sia BST ⁺ la struttura dati che si ottiene aggiungendo ad ogni nodo x di un albero binario d ricerca un nuovo attributo diff che contiene la differenza fra il numero di nodi ne sottoalbero sinistro e quelli nel sottoalbero destro di x .
	Modificando la procedura Tree-insert si definisca una procedura BST ⁺ -insert per l'inserimento di una nuova chiave in un BST ⁺ . Il prototipo della procedura è: BST ⁺ -insert(TreeConDiff t, NodeConDiff z)
	Si assuma che il nodo z sia così inizializzato: z.p = z.left = z.right = NULL z.key = k (nuova chiave) z.diff = 0

Analizzare la complessità della procedura.

- 3. Si stabilisca se le seguenti affermazioni sono vere o false:
 - $n \log n = \Theta(n^2)$
 - $\bullet \quad 4n \log n = O(4n + \log n^2)$
 - $2^n = O(n!)$
 - Se f(n) = O(g(n)) e g(n) = O(h(n)), allora f(n) = O(h(n))
 - Se f(n) = O(g(n)), allora $g(n) = \Omega(f(n))$

Si forniscano giustificazioni formali. In caso contrario l'esercizio non verrà valutato pienamente, anche in presenza di risposte corrette.