CM1103 PROBLEM SOLVING WITH PYTHON

COUNTING

Dr Jing Wu School of Computer Science & Informatics Cardiff University

How many ways are there that two prize winners can be chosen from the set { Andrew, Bob, Clare, Deb}?

How many outcomes are possible from rolling two dice? Does it matter what colour they are?

Overview

- Rules for counting
 - The product rule
 - The sum rule
- What are we counting
 - Permutations
 - Combinations

Suppose that a printer can print in four typefaces: Pica, Elite, Courier, and Times Roman. Suppose also that each typeface can appear in one of three styles: normal, bold, and italic. A font is a combination of a particular typeface with a particular style, such as Courier Italic. How many fonts are there?

Imagine the pairing of the typeface and style as a two-step operation:

The product rule

If an operation consists of *k* steps, where:

- 1st step can be performed in n₁ ways;
- 2^{nd} step can be performed in n_2 ways regardless of how 1^{st} step was performed;
- • •
- k^{th} step can be performed in n_k ways regardless of how preceding steps were performed;

Then the entire operation can be performed in $n_1 \times n_2 \times \cdots \times n_k$ ways.

Example: the number of elements in a Cartesian product

Suppose A_1, A_2, A_3 are sets with n_1, n_2, n_3 elements, respectively. How many elements are there in the set $A_1 \times A_2 \times A_3$?

$$A_1 \times A_2 \times A_3 = \{(a_1, a_2, a_3): a_1 \in A_1, a_2 \in A_2, and a_3 \in A_3\}$$

Imaging the construction of the tuple (a_1, a_2, a_3) as a three step operation:

Step 1: choose a_1 from A_1 ; There are n_1 ways.

Step 2: choose a_2 from A_2 ; There are n_2 ways.

Step 3: choose a_3 from A_3 . There are n_3 ways.

By the product rule, there are $n_1 \times n_2 \times n_3$ ways to construct the tuple.

Therefore, there are $n_1 \times n_2 \times n_3$ elements in $A_1 \times A_2 \times A_3$.

Extension to $A_1, A_2, ..., A_n$:

$$|A_1 \times A_2 \times \cdots \times A_n| = |A_1| \times |A_2| \times \cdots \times |A_n|$$

Example: two digit numbers

How many integer numbers (in decimal) can be represented using two digits? a_1a_2

Apply product rule:

Step 1: choose a digit from $\{0, \dots, 9\}$ for a_1 , there are 10 choices;

Step 2: choose a digit from $\{0, \dots, 9\}$ for a_2 , there are 10 choices, regardless of the choice for a_1 ;

In total, there are $10 \times 10 = 100$ ways to choose the two digits. So, the two digits can represent 100 numbers, from 00 to 99.

For the same problem, if a_1 , a_2 subject to a constraint: $a_1 + a_2 \le 15$, can we still apply product rule?

No, because the number of choices for a_2 will depend on the choice for a_1 .

Example: bank pins

If a bank pin consists of 4 digits (a digit is a number from 0 to 9), how many possible pins are there?

Example: bank pins

If a bank pin consists of 4 different digits, how many possible pins are there?

Example: nested loops

for i in range(0,4):

for j in range(0,3):

Do some work

How many times will some work be executed?

range(0,4): [0, 1, 2, 3]

The total number of some work

range(0,3): [0, 1, 2]

being executed: $4 \times 3 = 12$.

The sum rule

If $\{S_1, S_2, \dots, S_k\}$ is a *partition* (see Sets handout) of a finite set S, then:

$$|S| = |S_1| + |S_2| + \dots + |S_k|$$

Example: password

Suppose we insist users choose a password of exactly 4 characters with a pattern: numbers followed by letters. There should be at least one number and at least one letter (only numbers & letters allowed). How many possible passwords are there?

Let *S* be the set of allowed passwords,

then the following three sets form a partition of *S*:

 $S_1 = \{\text{passwords with 1 number followed by 3 letters}\}$

 $S_2 = \{\text{passwords with 2 numbers followed by 2 letters}\}$

 $S_3 = \{\text{passwords with 3 numbers followed by 1 letter}\}$

By rule of sums:

$$|S| = |S_1| + |S_2| + |S_3|$$

= $10 \times 26 \times 26 \times 26 + 10 \times 10 \times 26 \times 26 + 10 \times 10 \times 26$

What if there's no restriction on order?

Example: two digit numbers

How many integer numbers (in decimal) can be represented using two digits? a_1a_2 , if a_1, a_2 subject to a constraint: $a_1 + a_2 \le 15$.

Let *S* be the set of possible integers. A partition of *S*:

$$S_1 = \{a_1a_2 \colon a_1 = 0, 0 \le a_2 \le 9\}$$

$$S_2 = \{a_1a_2 \colon a_1 = 1, 0 \le a_2 \le 9\}$$

$$S_3 = \{a_1a_2 \colon a_1 = 2, 0 \le a_2 \le 9\}$$

$$S_4 = \{a_1a_2 \colon a_1 = 3, 0 \le a_2 \le 9\}$$

$$S_5 = \{a_1a_2 \colon a_1 = 4, 0 \le a_2 \le 9\}$$

$$S_6 = \{a_1a_2 \colon a_1 = 5, 0 \le a_2 \le 9\}$$

$$S_7 = \{a_1a_2 \colon a_1 = 6, 0 \le a_2 \le 9\}$$

$$S_8 = \{a_1a_2 \colon a_1 = 7, 0 \le a_2 \le 9\}$$

$$S_8 = \{a_1a_2 \colon a_1 = 7, 0 \le a_2 \le 8\}$$

$$S_9 = \{a_1a_2 \colon a_1 = 8, 0 \le a_2 \le 7\}$$

$$S_{10} = \{a_1a_2 \colon a_1 = 9, 0 \le a_2 \le 6\}$$
So, $|S| = |S_1| + |S_2| + |S_3| + |S_4| + |S_5| + |S_6| + |S_7| + |S_8| + |S_9| + |S_{10}|$

$$= 10 + 10 + 10 + 10 + 10 + 10 + 9 + 8 + 7 = 94$$

Permutations

Definition (permutation)

A permutation of a set of objects is an order of the objects in sequence.

Example:

$$S = \{a, b, c\}$$

Permutations of S:

abc acb bac bca cab cba

Counting permutations

A set *A* of *n* objects has $n! = n \times (n-1) \times (n-2) \times \cdots \times 1$ permutations.

Why?

We have:

n choices from A for the 1st element p_1 of the permutation

n-1 choices from $A-\{p_1\}$ for the 2nd element p_2 of the permutation

n-2 choices from $A-\{p_1,p_2\}$ for the 3rd element p_3 of the permutation

• • • • • •

1 choice for the last

so follows by product rule

Example: permutations of the letters in a word

How many ways can the letters in the word COMPUTER be arranged in a row?

The number of permutations of the set $S = \{'C', 'O', 'M', 'P', 'U', 'T', 'E', 'R'\}$ 8! = 40320

Example: permutations of the letters in a word

How many ways can the letters in the word *COMPUTER* be arranged if the letters *CO* must remain next to each other (in order) as a unit?

The number of permutations of the set $S = \{'CO', 'M', 'P', 'U', 'T', 'E', 'R'\}$ 7! = 5040

r-permutations

Definition (r-permutation)

An r-permutation of a set of n elements is an ordered selection of r elements taken from the set without repetition.

Definition (P(n,r))

The number of r-permutations of a set of n elements is given by:

$$P(n,r) = \frac{n!}{(n-r)!}$$

Example

Suppose we have a squad of 14 cricketeers. How many batting line-ups of 11 players are there?

$$P(14,11) = \frac{14!}{(14-11)!} = \frac{14!}{3!}$$

r-permutations

Why
$$P(n,r) = \frac{n!}{(n-r)!}$$
?

To calculate P(n,r) for a set A we have:

n choices from A for the 1st element p_1 of the r-permutation

n-1 choices from $A-\{p_1\}$ for the 2nd element p_2 of the r-permutation

n-2 choices from $A-\{p_1,p_2\}$ for the 3rd element p_3 of the r-permutation

• • • • • •

n-(r-1) choices for the r^{th} element of the r-permutation

So, follows by product rule:

$$P(n,r) = n \times (n-1) \times (n-2) \times \dots \times (n-(r-1))$$

$$= \frac{n \times (n-1) \times (n-2) \times \dots \times (n-(r-1)) \times (n-r) \times \dots \times 1}{(n-r) \times \dots \times 1}$$

$$= \frac{n!}{(n-r)!}$$

Permutations in Python

```
>>> import itertools
>>> for perm in itertools.permutations("abcd"):
          print(perm)
>>> len(list(itertools.permutations("123")))
6
>>> list(itertools.permutations("123"))
[('1', '2', '3'), ('1', '3', '2'), ('2', '1', '3'), ('2', '3', '1'), ('3', '1', '2'), ('3', '2', '1')]
>>> for perm in itertools.permutations("abcd", 2):
          print(perm)
```

r-combinations

Definition (*r*-combination)

An *r*-combination of a set of size *n* is a subset of size *r*

Definition (C(n,r))

Let C(n,r) denote the number of r-combinations of a set of size n. Then:

$$C(n,r) = \frac{n!}{r!(n-r)!}$$

Why?

An r-permutation consists of two steps:

selection of r elements to form a subset of size r

C(n,r)

order the r elements into a sequence

P(r,r)

Apply product rule: $C(n,r) \times P(r,r) = P(n,r)$

So
$$C(n,r) = \frac{P(n,r)}{P(r,r)} = \frac{n!}{r!(n-r)!}$$

How many different ways are there of choosing a team of 11 football players from a squad of 23?

Compared to the *line-up* of cricket players problem, here we don't care about positions of the players.

$$C(23,11) = \frac{23!}{11! \times (23 - 11)!} = \frac{23!}{11! \times 12!}$$

What if we require a goalkeeper to be chosen, and there are 3 in the squad?

There are two step:

Choose the goal keeper C(3,1)

Choose the other players C(20,10)

Follow product rule:

$$C(3,1) \times C(20,10) = \frac{3!}{1! \times 2!} \times \frac{20!}{10! \times 10!} = \frac{3 \times 20!}{10! \times 10!}$$

Example: password

Suppose we insist users choose a password of exactly 4 characters. There should be at least one number and at least one letter (only numbers & letters allowed). How many possible passwords are there?

The password example, but with no restriction on order of numbers/letters.

Let *S* be the set of allowed passwords. A partition of *S*:

```
S_1 = {passwords with 1 number}

S_2 = {passwords with 2 numbers}

S_3 = {passwords with 3 numbers}
```

By rule of sums:

$$|S| = |S_1| + |S_2| + |S_3|$$

$$= C(4,1) \times 10 \times 26 \times 26 \times 26$$

$$+C(4,2) \times 10 \times 10 \times 26 \times 26$$

$$+C(4,3) \times 10 \times 10 \times 10 \times 26$$

Combinatorial equivalence

Some counting problems can be made easier by recognising when there is a one-to-one correspondence to another problem

Example	
How many ways are there of choosing 2 elements from the set $\{1, 2, \dots, 9\}$?	$C(9,2) = \frac{9!}{2!(9-2)!} = \frac{9!}{2!7!}$
How many ways are there of choosing 7 elements from the set $\{1, 2, \dots, 9\}$?	$C(9,7) = \frac{9!}{7!(9-7)!} = \frac{9!}{7!2!}$

$$C(n,r) = C(n,(n-r))$$

r-combinations in Python

>>> for comb in itertools.combinations(range(1,5),3):
... print(comb)

Repetition

Theorem (Permutations with repetition)

The number of r-permutations of a set of size n is n^r if repetition is allowed.

Apply product rule

Theorem (Combinations with repetition)

The number of r-combinations of a set of size n is C(n+r-1,r) if repetition is allowed.

Example:

$$S = \{a, b, c\}$$

2-combinations of *S* (repetition allowed):

The selection with repetition problem can be translated as: Among the n + r - 1 positions, choose r for crosses.

positions

$$C(n+r-1,r)$$

How many different strings of length 5 can be formed using only consonants?

A doughnut shop sells 4 different types of doughnut. How many different ways are there of choosing 6 doughnuts?

Indistinguishable objects

Theorem (Permutations with indistinguishable objects)

Suppose we have n_1 objects of *type* 1, n_2 of *type* 2, ..., n_k of type k with $n = n_1 + \cdots + n_k$. The number of permutations of these objects is:

$$\frac{n!}{n_1! \, n_2! \cdots n_k!}$$

Example

How many strings can be made by rearranging the letters of **scarceness**?

Why
$$\frac{n!}{n_1!n_2!\cdots n_k!}$$
?

 n_1 objects of type 1, n_2 objects of type 2, ..., n_k objects of type k $n = n_1 + n_2 + \cdots + n_k$

n positions

Step 1: from the n positions, select n_1 for type 1

 $C(n, n_1)$

Step 2: from the remaining $n - n_1$ positions, select n_2 for *type* 2

. . .

$$C(n-n_1,n_2)$$

Step k: from the remaining $n-n_1-\cdots-n_{k-1}=n_k$ positions, select n_k for type k $C(n-n_1-\cdots-n_{k-1},n_k)$

Follow product rule:

$$\begin{split} & \mathcal{C}(n,n_1) \times \mathcal{C}(n-n_1,n_2) \times \cdots \times \mathcal{C}(n-n_1-\cdots-n_{k-1},n_k) \\ = & \frac{n!}{n_1!(n-n_1)!} \times \frac{(n-n_1)!}{n_2!(n-n_1-n_2)!} \times \frac{(n-n_1-n_2)!}{n_3!(n-n_1-n_2-n_3)!} \times \cdots \times \frac{(n-n_1-n_{k-1})!}{n_k!0!} \\ = & \frac{n!}{n_1!n_2!\cdots n_k!} \end{split}$$

Summary

You should be able to:

- Count and list the permutations, r-permutations, and r-combinations of sets by hand, by formula and using Python
- Count permutations and combinations when repetition is allowed or there are indistinguishable objects in the set
- Be able to solve counting problem by using the product and sum rules to divide and combine answers

Definitions covered

- Permutation, r-permutation, r-combination
- P(n,r), C(n,r)