Vending Machine Optimization Problem

Problem Description

The Vending machine optimisation is closely related to the assignment problem, which is concerned with the optimal placement of products (from a set of products) in a machine having a specific capacity to maximize the minimum days of supply (dos) for each machine.

About Vending machine [Input file - machines.csv]

There are a few(12) vending machines at different locations, each machine has a unique machine id, machine_type, list of the product types that the machine can occupy, and supply per day(spd) of each product associated with the machine id.

About Products[Input file - items.csv]

There is a total of 5 types of products with unique product ids eg. [1:soda,2:cola,3:tropics,4:cherry,5:cola can] and each product has a volume (pack) of container eg. 16.9oz bottle,12oz can.

Product Machine[Input file - capacity_matrix.csv]

The volume of the product container(pack) and machine_type decides how much space that product has in the vending machine.

Assumptions

- Each column can occupy only one type of product, a column can't be shared between two or more products
- Once a product is assigned to a column, it uses its total capacity.
- One product can be placed in multiple columns but one column can't occupy more than one products.

Solution Approach

A mathematical optimization model has five components, namely:

- Sets and indices.
- Parameters.
- Decision variables.
- Objective function(s).
- Constraints. We now present a BIP formulation for the Vending Mcachine optimisation problem.

Model Formulation

Sets

machine $m \in M$: Set of Machines.{1, 2, 3,.....12}

machines_types $i \in I$: Set Machine Types, {closed_front_1, closed_front_2, closed_front_3, closed_front_4, closed_front_5, closed_front_6}.

columns $c \in C$: Set of Columns in a machine.col1, col2, col3, col4, col5, col6, col6, col9, col9, col10, col11, col12

products $p \in P$: Set of products {111, 222, 333, 444, 555}

volumns $v \in V$: Set of volumns {12oz,16.9oz}

Parameters

 $cap_{i,v,c} \in \mathbb{R}^+$: Fixed capacity associated with machine type, volumn of product, and machine column for machine type $i \in I$ for volumn $v \in V$ for column $c \in C$.

 $spdm_{m,i,p} \in \mathbb{R}^+$: Supply per day for a machine $m \in M$ and type $i \in I$ of product $p \in P$.

 $vol_p \in \mathbb{R}^+$: Volume of product $p \in P$.

Decision Variables

 $selectsingle_{m,i,c,p} \in \{0,1\}$: 1 If product p is placed in column c of machine type i in machine m; 0 therwise that

Objective Function

 $\textbf{Minimum days of supply}: \ \, \text{Maximize(z) the minimum days(min y[p]) of supply for machine m:}$

$$y[p] = rac{\sum_{(m,i,c,p) \in ext{Pairings}} select single_{m,i,c,p} * cap_{i,v,c}}{spdm_{m,i,p}} \hspace{0.5cm} orall p \in ext{Products}$$

$ext{Maximize} \quad z = ext{Min}y[p] \qquad orall p \in ext{Products}$

Constraints

ullet One column one product constraint. For each column $c\in C$ ensure that it contains only one type of product.

$$\sum_{m \in M} \sum_{i \in I} \sum_{p \in P} selectsingle_{m,i,c,p} \leq 1 \hspace{0.5cm} orall c \in ext{Columns}$$

Output file format

• #### A solution file for each machine_id

Hivery_submission.xlsx - each sheet in the excel file is named by machine id,contains the solution file for each machine_id

• #### A results table that includes each machine_id

Model_performance.csv

• #### Brief writeup of any assumptions, things you would consider if you had more time, and any thoughts you would like to share

Readme.html

In [172.

Sample output

				Capacity	do
Machine_id	Machine_type	Product	spd		
9	closed_front_3	111	12.1	44.0	3.636364
		222	9.8	32.0	3.265306
		333	8.6	33.0	3.837209
		444	4.7	18.0	3.829787
		555	12.1	36.0	2.975207