Linear inequalities and polytopes Computational Intelligence, Lecture 5

by Sergei Savin

Spring 2024

CONTENT

- Convex polytopes
- Half-spaces
- H-representation
- V-representation
- G-representation (Zonotopes)
- Linear approximation of convex regions

CONVEX POLYTOPES

Before defining what a convex polytope is, let us look at examples:

CONVEX POLYTOPES

You can think of polytopes as geometric figures (or continuous sets of points) with linear edges, faces and higher-dimensional analogues.

Definition

Convex polytopes are polytopes whose every two points can be connected with a line that would lie in the polytope. They can be bounded or unbounded.

HALF-SPACES Definition

We can define half-space as a set of all points \mathbf{x} , such that $\mathbf{a}^{\top}\mathbf{x} \leq b$. It has a very clear geometric interpretation. In the following image, the filled space is **not** in the half space.

HALF-SPACES

Construction. Simple case

Consider half-space that passes through the origin, and defined by its normal vector \mathbf{n} :

It is easy to see that this half-space can be defined as "all vectors \mathbf{x} , such that $\mathbf{n} \cdot \mathbf{x} \leq 0$ ", which is the same as using \mathbf{n} instead of \mathbf{a} in our original definition, setting b = 0.

HALF-SPACES

Construction. General case

In the general case there is some distance between the boundary of the half-space and the origin, let's say d.

Here the half space can be defined as "all vectors \mathbf{x} , such that $\mathbf{x}^{\top} \frac{\mathbf{n}}{||\mathbf{n}||} \leq d$ ". This is the same as making $\mathbf{a} = \mathbf{n}$ and $b = d||\mathbf{a}||$.

HALF-SPACES

Combination

We can define a region of space as an *intersection* of half-spaces $\mathbf{a}_i^{\top} \mathbf{x} \leq b_i$:

Resulting region will be easily described as $\begin{vmatrix} \mathbf{a}_1^{\mathsf{T}} \\ \dots \\ \top \end{vmatrix} \mathbf{x} \leq \begin{vmatrix} b_1 \\ \dots \\ \vdots \end{vmatrix}$

$$egin{bmatrix} \mathbf{a}_1^{ op} \ ... \ \mathbf{a}_k^{ op} \end{bmatrix} \mathbf{x} \leq egin{bmatrix} b_1 \ ... \ b_k \end{bmatrix}$$

H-REPRESENTATION OF A POLYTOPE

The last result allows us to write any convex polytope as a matrix inequality:

$$\mathbf{A}\mathbf{x} \le \mathbf{b} \tag{1}$$

And conversely, any matrix inequality (1) represents either an empty set or a convex polytope.

Definition

 $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ is called *H-representation* (half-space representation) of a polytope.

H-REPRESENTATION IN COP

We can use containment in an H-polytope as a part of convex optimation problem. For example, the following QP includes such constraint:

minimize
$$\mathbf{x}^{\top} \mathbf{H} \mathbf{x} + \mathbf{f}^{\top} \mathbf{x}$$
, subject to $\mathbf{A} \mathbf{x} \leq \mathbf{b}$. (2)

V-REPRESENTATION

Convex polytopes have alternative representations, such as V-representation. It amounts to representing polytope as a set of its vertices.

Example

$$V = \begin{bmatrix} -1 & -1 & 1 & 1 \\ -1 & 1 & 1 & -1 \end{bmatrix}$$
 is a V-representation of a square.

Example

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
 is an H-representation of the same square.

CONVEX HULL

Given points $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N$ their convex hull is represented as:

$$\mathcal{P} = \left\{ \mathbf{x} = \sum_{i=1}^{N} \alpha_i \mathbf{x}_i : \sum_{i=1}^{N} \alpha_i = 1, \ \alpha_i \in [0 \ 1] \right\}$$
(3)

See Appendix for an illustration of this formula.

V-REPRESENTATION IN COP

We can use containment in an V-polytope as a part of convex optimation problem. For example, the following QP includes such constraint:

minimize
$$\mathbf{x}^{\top} \mathbf{H} \mathbf{x} + \mathbf{f}^{\top} \mathbf{x}$$
,

subject to
$$\begin{cases} \mathbf{x} = \sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i}, \\ \sum_{i=1}^{n} \alpha_{i} = 1, \\ \alpha_{i} \geq 0. \end{cases}$$
(4)

Notice that the constraint amounts to equating \mathbf{x} to a convex combination of the vertices of the V-polytope.

H AND V-REPRESENTATIONS

To transfer from H-representation to V-representation, you need to solve *vertex enumeration* problem, which is computationally expensive.

It is also possible to construct H-representation out of V-representation. Both algorithms are not convex.

ZONOTOPES: G-REPRESENTATION

A zonotope \mathcal{Z} is a symmetric polytope defined by its *center* \mathbf{c} and *generator* \mathbf{G} :

$$\mathcal{Z} = \{ \mathbf{x} : \ \mathbf{x} = \mathbf{G}\beta + \mathbf{c}, \ ||\beta||_{\infty} \le 1 \}$$
 (5)

The set $\{\beta : ||\beta||_{\infty} \leq 1\}$ is a hypercube and zonotope \mathcal{Z} is a projection (shadow) of this hypercube onto a lower-dimensional space; the projection is defined by the matrix \mathbf{G} .

Figure 1: Zonotope (Source)

G-REPRESENTATION IN COP

We can use containment in an G-polytope as a part of convex optimation problem. For example, the following QP includes such constraint:

minimize
$$\mathbf{x}^{\top} \mathbf{H} \mathbf{x} + \mathbf{f}^{\top} \mathbf{x}$$
,
subject to
$$\begin{cases} \mathbf{x} = \mathbf{G} \beta + \mathbf{c}, \\ -1 \ge \beta_i \ge 1. \end{cases}$$
 (6)

LINEAR APPROXIMATION OF CONVEX REGIONS

Some convex regions can be easily approximated using polytopes.

Which allows to represent constraints on \mathbf{x} to belong in such a region as a matrix inequality

EXERCISE

Write H-representation of the following polytopes:

- Equilateral triangle
- Square
- Parallelepiped
- Trapezoid

Lecture slides are available via Github, links are on Moodle:

github.com/SergeiSa/Computational-Intelligence-2024

APPENDIX A - CONVEX HULL, 1

Let us illustrate the convex combination formula. Let \mathcal{P} be convex hull of points \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3 :

$$\mathcal{P} = \left\{ \mathbf{x} = \sum_{i=1}^{3} \alpha_i \mathbf{x}_i : \sum_{i=1}^{3} \alpha_i = 1, \ \alpha_i \in [0 \ 1] \right\}$$
 (7)

Let **z** be a convex combination of \mathbf{x}_1 and \mathbf{x}_3 : $\mathbf{z} = \beta_1 \mathbf{x}_1 + \beta_3 \mathbf{x}_3$. Then any $\mathbf{p} \in \mathcal{P}$ is expressed as a convex combination of **z** and \mathbf{x}_2 : $\mathbf{p} = \gamma_1 \mathbf{z} + \gamma_2 \mathbf{x}_2$.

APPENDIX A - CONVEX HULL, 2

We can express \mathbf{p} as:

$$\mathbf{p} = \gamma_1 \mathbf{z} + \gamma_2 \mathbf{x}_2 = \gamma_1 (\beta_1 \mathbf{x}_1 + \beta_3 \mathbf{x}_3) + \gamma_2 \mathbf{x}_2 \tag{8}$$

We can define $\alpha_1 = \gamma_1 \beta_1$, $\alpha_2 = \gamma_2 \mathbf{x}_2$ and $\alpha_3 = \gamma_1 \beta_3$. Since $\gamma_i \geq 0$ and $\beta_i \geq 0$, we conclude that $\alpha_i \geq 0$.

We can show that $e = \alpha_1 + \alpha_2 + \alpha_3 = 1$:

$$e = \gamma_1(\beta_1 + \beta_3) + \gamma_2 = \gamma_1 + \gamma_2 = 1$$
 (9)

APPENDIX A - CONVEX HULL, 3

Previously we illustrated sufficiency of the formula's constraints. Now let us illustrate their necessity.

Dropping requirement $\alpha_i \leq 1$, and/or $\alpha_i \geq 0$ and/or $\sum_{i=1}^{3} \alpha_i = 1$, leads to inclusion of points out the convex hull, as illustrated on the figures.