

SECURITY ASSESSMENT

Mercury Protocol TOKEN

February 5, 2024

Audit Status: Pass

RISK ANALYSIS Mercury Protocol.

■ Classifications of Manual Risk Results

Classification	Description
Critical	Danger or Potential Problems.
High	Be Careful or Fail test.
Medium	Improve is needed.
Low	Pass, Not-Detected or Safe Item.
1 Informational	Function Detected

■ Manual Code Review Risk Results

Manual Code Review Risk Results		
Contract Security	Description	
Buy Tax	0%	
Sale Tax	0%	
Cannot Buy	Pass	
Cannot Sale	Pass	
Max Tax	0%	
Modify Tax	No	
Fee Check	Pass	
Is Honeypot?	Not Detected	
Trading Cooldown	Not Detected	
Enable Trade?	True	
Pause Transfer?	Not Detected	

CFG.NINJA Page 1 of 18

Contract Security	Description	
Max Tx?	Pass	
Is Anti Whale?	Not Detected	
Is Anti Bot?	Not Detected	
Is Blacklist?	Not Detected	
Blacklist Check	Pass	
is Whitelist?	Pass	
Can Mint?	Pass	
Is Proxy?	Not Detected	
Can Take Ownership?	Not Detected	
Hidden Owner?	Not Detected	
1 Owner	TokenkegQfeZyiNwAJbNbGKPFXCWuBvf9Ss623VQ5DA	
Self Destruct?	Not Detected	
External Call?	Not Detected	
Other?	Not Detected	
Holders	1	
Audit Confidence	Low	
Authority Check	Pass	
Freeze Check	Pass	

The summary section reveals the strengths and weaknesses identified during the assessment, including any vulnerabilities or potential risks that may exist. It serves as a valuable snapshot of the overall security status of the audited project. However, it is highly recommended to read the entire security assessment report for a comprehensive understanding of the findings. The full report provides detailed insights into the assessment process, methodology, and specific recommendations for addressing the identified issues.

CFG.NINJA Page 2 of 18

CFG Ninja Verified on February 5, 2024

Mercury Protocol

Executive Summary

TYPES ECOSYSTEM LANGUAGE

DeFi SOLANA RUST

Timeline

Vulnerability Summary

CFG.NINJA Page 3 of 18

Token Distribution

Total Unlock Progress

CFG.NINJA Page 4 of 18

I Token Summary

Parameter	Result
Address	9QKbwukdkTw66zTTLbthKLq4GtpvHxKCszmHvzdZmrEU
Name	Mercury Protocol
Token Tracker	Mercury Protocol (Mercury)
Decimals	8
Supply	1,000,000
Platform	SOLANA
Compiler	
Contract Name	Mercury
Optimization	Yes with 200 runs
LicenseType	Unlicensed
Language	RUST
Codebase	https://solscan.io/ token/9QKbwukdkTw66zTTLbthKLq4GtpvHxKCszmHvzdZmrEU#metadata

CFG.NINJA Page 5 of 18

Token Summary - Solana

Parameter	Result	
Address	9QKbwukdkTw66zTTLbthKLq4GtpvHxKCszmHvzdZmrEU	
Name	Mercury Protocol	
Token Tracker	Mercury Protocol (Mercury)	
Decimals	8	
Supply	1,000,000	
Platform	SOLANA	
Program	TokenkegQfeZyiNwAJbNbGKPFXCWuBvf9Ss623VQ5DA	
Creator Name	Bladepool	
Creation Site	https://cfg.ninja	
Language	RUST	
Image	https://arweave.net/KyPHuqBPQJB701Y97onRfalwyRXL53KlAvOcB-a6V2l	
Metadata File Type	JSON	
Solana Source	https://solscan.io/ token/9QKbwukdkTw66zTTLbthKLq4GtpvHxKCszmHvzdZmrEU#metadata	

CFG.NINJA Page 6 of 18

Metaplex Metadata (on-chain data)

Solana metadata refers to the additional information associated with a digital asset or NFT (Non-Fungible Token) on the Solana blockchain. It includes details such as the name, description, image, attributes, and other relevant data about the asset.

In the context of Solana, metadata is typically stored in a JSON format and is linked to the asset's unique identifier or token ID. This metadata provides important information about the asset, allowing users and applications to understand and interact with it.

Solana metadata can be used for various purposes, including displaying asset information in marketplaces, creating rich visual representations of NFTs, and enabling advanced functionalities like royalties, provenance tracking, and interoperability across different platforms.

It's worth noting that the specific structure and content of Solana metadata can vary depending on the project or application that utilizes the Solana blockchain.

```
Wetaplex Metadata (on-chain data)

Troot*: { 12 Items

"key": imt 4

"updateAuthority": string "EZSjvA5cy4ymQep8rMAKJXP3F6iqSmShbdL9w1NVHmLd"

"mint*: string "QQKbwukdkTw662TTLbthKLq4Gtpv+txKCszmHvzdZmrEU"

Todata*: { 4 Items

"name": string "Mercury Protocol"

"symbol": string "Mercury"

"url*: string "Mercury"

"url*: string "https://arweave.net/EaTNsrBKsmyx0NE3DfkRfCiZGGUCQtZ4xLnPcsZF_7I"

"sellerFeeBasisPoints*: imt 0

}

"primarySaleHappened*: imt 0

"IsMutable*: imt 1

"editionNonce*: imt 255

"tokenStandard*: imt 2

"name*: string "Mercury Protocol"

"symbol": string "Mercury Protocol"

"symbol": string "Mercury Protocol"
```

CFG.NINJA Page 7 of 18

| Mercury | Metadata Results.

Parameter	Value	Description	
key	4	This is an integer value (int4) that represents the key associated with the root object.	
updateAuthority	EZSjvA5cy4ymQep8rMAK This is a string value that represents the update JXP3F6iqSmShbdL9w1NV authority for the program. HmLd		
mint	9QKbwukdkTw66zTTLbth This is a string value that represents the mint address KLq4GtpvHxKCszmHvzdZ for the program. mrEU		
name	Mercury Protocol	This is a string value that represents the name of the token.	
symbol	Mercury	This is a string value that represents the symbol of the token.	
uri		ls This is a string value that represents the URI (Uniform Resource Identifier) of the token.	
sellerFeeBasisPoints	0	This is an integer value (int0) that represents the seller fee basis points for the token	
primarySaleHappened	0	This is an integer value (int0) that indicates whether the primary sale of the token has happened.	
isMutable	1	This is an integer value (int1) that indicates whether the token is mutable. The specific value is 1, which suggests that the token is mutable. and 0 suggest is not mutable.	
editionNonce	25	This is an integer value (int255) that represents the edition nonce for the token.	
tokenStandard	2	This is an integer value (int2) that represents the token standard for the program.	

CFG.NINJA Page 8 of 18

URI Metadata

URI metadata in Solana refers to the metadata associated with a token that is retrieved from its URI (Uniform Resource Identifier). In this case, the token's URI is https://arweave.net/EaTNsrBKsmyxONE3DfkRfCiZGGUCQtZ4xLnPcsZF_7I.

CFG.NINJA Page 9 of 18

TECHNICAL FINDINGS Mercury Protocol.

Smart contract security audits classify risks into several categories: Critical, High, Medium, Low, and Informational. These classifications help assess the severity and potential impact of vulnerabilities found in smart contracts.

I Classification of Risk

Severity	Description
Critical	Critical risks are the most severe and can have a significant impact on the smart contracts functionality, security, or the entire system. These vulnerabilities can lead to the loss of user funds, unauthorized access, or complete system compromise.
High	High-risk vulnerabilities have the potential to cause significant harm to the smart contract or the system. While not as severe as critical risks, they can still result in financial losses, data breaches, or denial of service attacks.
Medium	Medium-risk vulnerabilities pose a moderate level of risk to the smart contracts security and functionality. They may not have an immediate and severe impact but can still lead to potential issues if exploited. These risks should be addressed to ensure the contracts overall security.
Low	Low-risk vulnerabilities have a minimal impact on the smart contracts security and functionality. They may not pose a significant threat, but it is still advisable to address them to maintain a robust security posture.
1 Informational	Informational risks are not actual vulnerabilities but provide useful information about potential improvements or best practices. These findings may include suggestions for code optimizations, documentation enhancements, or other non-critical areas for improvement.

By categorizing risks into these classifications, smart contract security audits can prioritize the resolution of critical and high-risk vulnerabilities to ensure the contract's overall security and protect user funds and data.

CFG.NINJA Page 10 of 18

Mercury-10 | Initial Token Distribution.

Category	Severity	Location	Status
Centralization / Privilege	High	MERCURY:	Detected

Description

All of the Mercury Protocol tokens are sent to the contract deployer when deploying the contract. This could be a centralization risk as the deployer can distribute tokens without obtaining the consensus of the community.

Recommendation

We recommend the team to be transparent regarding the initial token distribution process, and the team shall make enough efforts to restrict the access of the private key.

Mitigation

References:

Writing Clean Code for Solidity: Best Practices for Solidity Development

CFG.NINJA Page 11 of 18

Mercury-24 | Ability to update token metadata..

Category	Severity	Location	Status
Coding Style	i Informational	MERCURY:	Detected

Description

The mint authority is responsible for creating new tokens, but it does not affect the ability to update the token metadata. Token metadata includes information such as the token name, symbol, image, and other details. This metadata can be updated by the token contract owner or any other authorized entity, regardless of the mint authority status..

Recommendation

The updateAuthority can update the token metadata, this include name,symbol and logo. while this is highly unlikely we like to report it. .

Mitigation

References:

Writing Clean Code for Solidity: Best Practices for Solidity Development

CFG.NINJA Page 12 of 18

I FINDINGS

In this document, we present the findings and results of the smart contract security audit. The identified vulnerabilities, weaknesses, and potential risks are outlined, along with recommendations for mitigating these issues. It is crucial for the team to address these findings promptly to enhance the security and trustworthiness of the smart contract code.

Severity	Found	Pending	Resolved
Critical	0	0	0
High	1	1	0
Medium	0	0	0
Low	0	0	0
1 Informational	1	1	0
Total	2	2	0

In a smart contract, a technical finding summary refers to a compilation of identified issues or vulnerabilities discovered during a security audit. These findings can range from coding errors and logical flaws to potential security risks. It is crucial for the project owner to thoroughly review each identified item and take necessary actions to resolve them. By carefully examining the technical finding summary, the project owner can gain insights into the weaknesses or potential threats present in the smart contract. They should prioritize addressing these issues promptly to mitigate any risks associated with the contract's security. Neglecting to address any identified item in the security audit can expose the smart contract to significant risks. Unresolved vulnerabilities can be exploited by malicious actors, potentially leading to financial losses, data breaches, or other detrimental consequences. To ensure the integrity and security of the smart contract, the project owner should engage in a comprehensive review process. This involves understanding the nature and severity of each identified item, consulting with experts if needed, and implementing appropriate fixes or enhancements. Regularly updating and maintaining the smart contract's codebase is also essential to address any emerging security concerns. By diligently reviewing and resolving all identified items in the technical finding summary, the project owner can significantly reduce the risks associated with the smart contract and enhance its overall security posture.

CFG.NINJA Page 13 of 18

SOCIAL MEDIA CHECKS Mercury Protocol.

Social Media	URL	Result
Website	https://mercuryprotocol.org/	Pass
Telegram	https://t.me/bullMarketcrypton	Pass
Twitter	https://twitter.com/bullMarketcrypton	Pass
Facebook		N/A
Reddit	N/A	N/A
Instagram	N/A	N/A
CoinGecko	N/A	N/A
Github		N/A
CMC	N/A	N/A
Email	N/A	Contact
Other		Fail

From a security assessment standpoint, inspecting a project's social media presence is essential. It enables the evaluation of the project's reputation, credibility, and trustworthiness within the community. By analyzing the content shared, engagement levels, and the response to any security-related incidents, one can assess the project's commitment to security practices and its ability to handle potential threats.

Social Media Information Notes:

Auditor Notes: Website needs a bit of improvement.

Project Owner Notes:

CFG.NINJA Page 14 of 18

ASSESSMENT RESULTS Mercury Protocol.

Score Rsesults

Review	Score
Overall Score	89/100
Auditor Score	85/100

Review by Section	Score
Manual Scan Score	22
SWC Scan Score	37
Advance Check Score	30

Our security assessment or audit score system for the smart contract and project follows a comprehensive evaluation process to ensure the highest level of security. The system assigns a score based on various security parameters and benchmarks, with a passing score set at 80 out of a total attainable score of 100. The assessment process includes a thorough review of the smart contracts codebase, architecture, and design principles. It examines potential vulnerabilities, such as code bugs, logical flaws, and potential attack vectors. The evaluation also considers the adherence to best practices and industry standards for secure coding. Additionally, the system assesses the projects overall security measures, including infrastructure security, data protection, and access controls. It evaluates the implementation of encryption, authentication mechanisms, and secure communication protocols. To achieve a passing score, the smart contract and project must attain a minimum of 80 points out of the total attainable score of 100. This ensures that the system has undergone a rigorous security assessment and meets the required standards for secure operation.

CFG.NINJA Page 15 of 18

Important Notes for Mercury

- Please DYOR on the project itself.
- Solana is based on Rust, but it also has limitations on the programs.

Auditor Score =85 Audit Passed

Page 16 of 18

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that actagainst the nature of decentralization, such as explicit ownership or specialized access roles incombination with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimalEVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on howblock.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owneronly functionsbeing invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that mayresult in a vulnerability.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to makethe codebase more legible and, as a result, easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different code, such as a constructor assignment imposing different require statements on the input variables than a setterfunction.

Coding Best Practices

ERC 20 Conding Standards are a set of rules that each developer should follow to ensure the code meet a set of creterias and is readable by all the developers.

CFG.NINJA Page 17 of 18

Disclaimer

The purpose of this disclaimer is to outline the responsibilities and limitations of the security assessment and smart contract audit conducted by Bladepool/CFG NINJA. By engaging our services, the project owner acknowledges and agrees to the following terms:

1. Limitation of Liability: Bladepool/CFG NINJA shall not be held liable for any damages, losses, or expenses incurred as a result of any contract malfunctions, vulnerabilities, or exploits discovered during the security assessment and smart contract audit. The project owner assumes full responsibility for any consequences arising from the use or implementation of the audited smart contract. 2. No Guarantee of Absolute Security: While Bladepool/CFG NINJA employs industry-standard practices and methodologies to identify potential security risks, it is important to note that no security assessment or smart contract audit can provide an absolute guarantee of security. The project owner acknowledges that there may still be unknown vulnerabilities or risks that are beyond the scope of our assessment. 3. Transfer of Responsibility: By engaging our services, the project owner agrees to assume full responsibility for addressing and mitigating any identified vulnerabilities or risks discovered during the security assessment and smart contract audit. It is the project owner's sole responsibility to ensure the proper implementation of necessary security measures and to address any identified issues promptly. 4. Compliance with Applicable Laws and Regulations: The project owner acknowledges and agrees to comply with all applicable laws, regulations, and industry standards related to the use and implementation of smart contracts. Bladepool/CFG NINJA shall not be held responsible for any non-compliance by the project owner. 5. Third-Party Services: The security assessment and smart contract audit conducted by Bladepool/CFG NINJA may involve the use of thirdparty tools, services, or technologies. While we exercise due diligence in selecting and utilizing these resources, we cannot be held liable for any issues or damages arising from the use of such third-party services. 6. Confidentiality: Bladepool/CFG NINJA maintains strict confidentiality regarding all information and data obtained during the security assessment and smart contract audit. However, we cannot guarantee the security of data transmitted over the internet or through any other means. 7. Not a Financial Advice: Bladepool/CFG NINJA please note that the information provided in the security assessment or audit should not be considered as financial advice. It is always recommended to consult with a financial professional or do thorough research before making any investment decisions.

By engaging our services, the project owner acknowledges and accepts these terms and releases Bladepool/CFG NINJA from any liability, claims, or damages arising from the security assessment and smart contract audit. It is recommended that the project owner consult legal counsel before entering into any agreement or contract.

