Ответы на вопросы с лекций

Евгений Букреев

02-simple

1. Что будет, если в нашу систему ввести тип Bool?

Перепишем правила (те, которые не выписаны, оставлены без изменений):

$$\begin{split} E_1 > E_2 : [\![E_1]\!] = [\![E_2]\!] &= \operatorname{int} \wedge [\![E_1 > E_2]\!] = \operatorname{bool} \\ E_1 == E_2 : [\![E_1]\!] = [\![E_2]\!] \wedge [\![E_1 == E_2]\!] &= \operatorname{bool} \\ E_1 \text{ op } E_2 : [\![E_1]\!] = [\![E_2]\!] = [\![E_1 \text{ op } E_2]\!] &= \operatorname{int} \\ \text{ output } E : [\![E]\!] = \alpha \\ & \text{ if } (E)S : [\![E]\!] = \operatorname{bool} \\ & \text{ if } (E)S_1 \text{ else } S_2 : [\![E]\!] = \operatorname{bool} \\ & \text{ while } (E)S : [\![E]\!] = \operatorname{bool} \end{split}$$

Полученный анализ не изменит точность, потому что он был и есть soundness. Но снизится полнота, потому что станут отвергаться некоторые выражения, которые имеют корректную семантику. Например, (x == y) + 1.

2. Что будет, если в нашу систему ввести тип Array?

Дополним правила типизации новыми конструкциями. Старые остались без изменений.

$$\begin{split} \{\}: [\![\{\}]\!] &= \alpha[] \\ \{E_1,...,E_n\}: [\![E_1]\!] &= ... = [\![E_n]\!] \wedge [\![\{E_1,...,E_n\}]\!] = [\![E_1]\!][] \\ E[E_1]: [\![E]\!] &= \alpha[] \wedge [\![E_1]\!] = \operatorname{int} \wedge [\![E[E_1]]\!] = \alpha \\ E[E_1] &= E_2: [\![E]\!] = \alpha[] \wedge [\![E_1]\!] = \operatorname{int} \wedge [\![E_2]\!] = \alpha \end{split}$$

Протипизируем программу со слайда:

```
main() {
  var x,y,z,t;
  x = {2,4,8,16,32,64}; // [|x|] = [|{2,4,8,16,32,64}|]
  y = x[x[3]]; // [|y|] = [|x[x[3]]|]
  z = {{},x}; // [|z|] = [|{{},x}|]
  t = z[1]; // [|t|] = [|z[1]|]
  t[2] = y; // [|t|] = alpha[] and [|y|] = alpha
}
```

Решим уравнения:

3. Подумайте, что происходит в получившейся реализации, если в программе есть рекурсивный тип?

Тогда программа все равно типизируется, т.к. используется регулярная унификация на основе Union-Find и регулярные рекурсивные термы разрешены.

03-lattices

- 1. Как выглядит $\sqcup L_1 \times L_2 \times ... \times L_n$? $(\top L_1, \top L_2, ... \top L_n)$. Нижняя аналогично: $(\bot L_1, \bot L_2, ... \bot L_n)$
- 2. Какая высота произведения решеток? Она равна сумме высот производящих решеток. Так как самый длинный путь от \top до \bot будет проходить через самые длинные пути исходных решеток.
- 3. Для решетки отображений $A \to L$ точная верхняя грань это отображение $\forall a: A.a \to \top$, а точная нижняя $\forall a: A.a \to \bot$.
- 4. Решетку отображений $A \to L$ можно выразить как L^n , где n = sizeof(A), поэтому height($A \to L$) = height(L) * sizeof(A)
- 5. Можно ли выразить анализ типов с предыдущей лекции как анализ над решетками? Да, если взять решетку flat от множества возможных типов, где \bot представляет полиморфную типовую переменнную, а \top ошибку типизации.
- 6. Можно ли выразить анализ над решетками как анализ типов? Да, если мы сами выбираем систему типов. Тогда необходимо явно ввести \top (в разных языках это Any, Object...) и \bot (Nothing). Отношение выражается через subtyping.

04-flow

- 1. Какова сложность структурного алгоритма для live variables analysis? Сложность структурного алгоритма в общем случае это $O(n \cdot h \cdot k)$, где n количество узлов CFG, h высота решетки, а k время вычисления constraint функции. Тогда для live variables analysis c n узлами и b переменными k = O(b), а ответом будет $O(n \cdot b \cdot b)$. Наличие циклов не меняет оценку.
- 2. Сложность по памяти O(b) т.к. храним состояние для текущего узла CFG и следующих const узлов.