

RETRIEVAL OF BALLISTIC DENSITIES AND LAYER
THICKNESSES FROM SATELLITE RADIANCE OBSERVATIONS

Final Technical Report

by

George Ohring, Principal Investigator Eliram Broida Dina Goldberg

June 1977

EUROPEAN RESEARCH OFFICE United States Army London, England

GRANT NUMBER DA-ERO-124-74-G0057

Department of Geophysics & Planetary Sciences Tel-Aviv University, Ramat Aviv, Israel

Approved for Public Release; distribution unlimited

RETRIEVAL OF BALLISTIC DENSITIES AND LAYER THICKNESSES FROM SATELLITE RADIANCE OBSERVATIONS

Final Technical Report

by

George Ohring,
Principal Investigator
Eliram Broida
Dina Goldberg

June 1977

EUROPEAN RESEARCH OFFICE United States Army London, England

GRANT NUMBER DA-ERO-124-74-G0057

Department of Geophysics & Planetary Sciences Tel-Aviv University, Ramat Aviv, Israel

Approved for Public Release; distribution unlimited

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION I	NO. 3. AECIP ENT'S CATALOG NUMBER
(6)	9
DENSITIES AND LAYER THICKNESSES FROM SATELLITE	FINAL TECHNICAL REPORT
RADIANCE OBSERVATIONS.	6. PERFORMING ORG. REPORT NUMBER
7. AUTHORES	ER(e)
GEORGE OHRING, ELIRAM/BROIDA DINA GOLDBERG	DAERO-124-74-G0057
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
DEPT. OF GEOPHYSICS & PLANETARY SCIENCES TEL AVIV UNIVERSITY, RAMAT AVIV, ISRAEL	6.11.02A 2MØ611Ø3B53B 40 352
	1700
USA R&S GP (EUR)	JUNE 277
BOX 65 FPO NEW YORK 09510	13. NUMBER OF PAGE
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office	1 0/p1)
A company of the seasons of the seas	UNCLASSIFIED
	154. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)	
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different	from Report)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identity by block numbers	ber)
ATMOSPHERIC DENSITY; WIND PROFILE; INFRARED EMIS	SIONS; SATELLITE
The general objective of the work reported on is techniques for determining atmospheric parameter areas from satellite radiance observations.	to develop and evaluate
A non-statistical method for obtaining ballistic satellite radiance observations is derived. The of the fact that both the ballistic density and	method takes advantage

DD 1 JAN 73 1473 EDITION OF HOVES IS OBSOLETE

UNCLASSIFIED

THE PAGE (Phon Date En

upon weighted vertical integrals of the atmospheric temperature. Tests of this method on realistically simulated radiances indicate root-meansquare retrieval errors of 1/4 to 1/3 of the standard deviation of ballistic density for individual months. The method thus appears to be suitable for application to areas of the globe with a paucity of conventional radiosonde observations.

The direct inversion method suggested by Fleming for retrieving layer thicknesses is evaluated on a set of realistically simulated satellite radiances. The results indicate that there is no significant advantage to be gained by using the previous day's temperature profile rather than a monthly mean temperature profile for the geographical area as the standard profile that is required by the method. This result together with the relatively low retrieval errors obtained with the method suggest that it would be quite appropriate for use in meteorologically "silent" areas. The results also indicate that the thickness retrieval error for a deep atmospheric layer appears to be independent of whether the thickness of the deep layer is obtained directly from the satellite radiances or whether the thickness of the deep layer is obtained from the sum of the thicknesses of the sub-layers comprising the deep layer, the thicknesses of the sublayers being obtained directly from the satellite radiances.

though and thought the granding but hat one a new de-

A car to commence and commence of the commence

will bank asked both of and indipolar adds to the collection

t' mis in the first of the firs

RETRIEVAL OF BALLISTIC DENSITIES AND LAYER THICKNESSES FROM SATELLITE RADIANCE OBSERVATIONS

ABSTRACT

The general objective of the work reported on here is to develop and evaluate techniques for determining atmospheric parameters in meteorologically 'silent' areas from satellite radiance observations.

A non-statistical method for obtaining ballistic densities directly from satellite radiance observations is derived. The method takes advantage of the fact that both the ballistic density and the satellite radiances depend upon weighted vertical integrals of the atmospheric temperature. Tests of this method on realistically simulated radiances indicate root-mean-square retrieval errors of 1/4 to 1/3 of the standard deviation of ballistic density for individual months. The method thus appears to be suitable for application to areas of the globe with a paucity of conventional radiosonde observations.

The direct inversion method suggested by Fleming for retrieving layer thicknesses is evaluated on a set of realistically simulated satellite radiances. The results indicate that there is no significant advantage to be gained by using the previous day's temperature profile rather than a monthly mean temperature profile for the geographical area as the standard profile that is required by the method. This result, together with the relatively low retrieval errors obtained with the method, suggest that it would be quite appropriate for use in meteorologically silent areas. The results also indicate that the thickness retrieval error for a deep atmospheric layer appears to be independent of whether the thickness of the deep layer is obtained directly from the satellite radiances or whether the thickness of the deep layer is obtained from the sum of the thicknesses of the sub-layers comprising the deep layer, the thicknesses of the sub-layers being obtained directly from the satellite radiances.

REFREIVAD OF BALLISTIC DENSITIES AND LAYER, THICKNESSES FROM SATELLITE RADIANCE OBSERVATIONS.

TE TEMPORERA 721 LT L 47

'The general objective of the work reported on here is to develop and evaluate techniques for determining atmospheric parameters in meteorologically 'silent' areas from satellite radiance observations.

A non-statistical method for obtaining bellistic densities directly from satellite radiance ostnerno to slow satellite radiance ostnerno to slow slow states	
pqdvantage of the fact that both the smillatic lengthy and the satellite	g
temperature. Tests of this method on realistically simulated radiances indicate receives of the property of the continuous of the continuous co	1
deviation of balliette density for individual months. The method thus appears to be unitable for application of Radiances. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	2
3. Ballistic Density Retrievals	4
The direct inversion method suggested by Enciroborini et 118 ving layer thicknesses is evaluated on a set of realistically simulated	
3.2 Development of method	
advantage to be called by using the previous day's tallusary to telle rather than a monthly mean temperature profile for the geographical area as the standard profile that is readled cyclically and the conclusions.	
fith bentate arous lavelines well viewisser and fith redused tiliser 4. Layer Thickness Retrievals	2
referently affect or a deep atmospheric layer appears to be the second of the second o	
Independ on a weeper the testing and the companies of the deep layer states as the surrement of the deep layer is obtained from the Guar of the thicknesses of the sub-layers	-
21. aprilate directly from the satellite radiances.	1
References	2
Annandin	

RETRIEVAL OF BALLISTIC DENSITIES AND LAYER THICKNESSES FROM SATELLITE RADIANCE OBSERVATIONS

2. Simulation of Radiances

1. Introduction

The radiance observed by a satellite radiometer pointing in the oadir The general objective of the Research Grant was to develop and evaluate techniques for determining atmospheric parameters in meteorologically "silent" areas from satellite based infrared radiance observations. In this Final Report, we review our work on techniques for retrieving from satellite observations two quantities of interest: 1) ballistic densities, and 2) thicknesses of pressure layers.

Both of these quantities are essentially integrated meteorological quantities, that is, it can be shown that they depend upon weighted vertical integrals of the atmospheric temperature. We have chosen such quantities for retrieval from satellite observations because the satellite observations are basically sensitive to the temperatures of broad atmospheric layers rather than to temperatures at individual levels. The deterioration in the accuracy of temperature retrievals as the vertical resolution is improved has been evaluated by Conrath (1972), using the theory developed by Backus and Gilbert for inverse problems related to the solid earth (see, for example, Backus and Gilbert, 1970). In view of these basic theoretical limitations on vertical resolution, we have looked for atmospheric parameters of interest that depend upon vertically integrated temperatures. For such quantities, satellite radiance observations represent an ideal measurement technique. As indicated above, two such quantities are the ballistic density and the thickness of pressure layers.

In order to evaluate the retrieval techniques, we have simulated satellite radiances from sets of observed radiosonde profiles. The simulation procedure is discussed in Section 2. Our method for retrieving ballistic density and the evaluation of the method are discussed in Section 3. In Section 4 we discuss the retrieval method for thickness and the results obtained using this method. to this level from the highest level for which a sadiosonde temperature was

radiances was performed for the mean temperature profile for each of the four mouths, based upon the preceding 5 year record of rediosunds observations for Bet Dagan. These sets of tadiances represented the standard of climato-To simulate the effect of errors due to instrumental effects, clear

available. The extrapolation was based upon the 30°N standard etmosphere temperature model for the particular mouth (U.S. Standard Atmosphere

Supplements, 1975), the April and October standard comperatures being obtained light the average of the winter and summer values. 'A' similar computation of

radiance entraction from cloud contaminated radiances, and other sources, random noise, distributed normally with standard deviations shown in Table 1 (after Floming, 1972), were added to the computed radiances. THICKNESSES FROM SATELLITE RADIANCE OBSERVATIONS

2. Simulation of Radiances

The radiance observed by a satellite radiometer pointing in the nadir direction can be computed from

but the computed from
$$\mathbf{x}_0$$
 and \mathbf{x}_0 but the property of \mathbf{x}_0 but the property of \mathbf{x}_0 by the prop

where B is the Planck function, T is temperature, τ is the transmittance from the level x to the top of the radiating atmosphere, the index i represents observing wavenumber, the subscript g refers to the surface of the earth, x_0 represents the top of the radiating atmosphere, and x, the vertical coordinate is defined by

The radiances can be simulated with the use of equation (2.1), using numerical integration for evaluating the integral, if the vertical temperature profile and the transmittances are available. We have simulated radiances that would be observed by the six CO2 band wavenumbers of the NOAA-2 VTPR radiometer (see Table 2.1), using transmittances that have been given by McMillin et al (1973). Radiances were simulated daily for the 12Z temperature profile obtained from the Bet Dagan radiosonde station (latitude 32.0°N, longitude 34.5°E, elevation 30 m) of the Israel Meteorological Service for the months of January, April, July, and October of 1973. These temperature profiles included data from both standard and significant levels. To take advantage of these complete temperature profiles in the numerical integration of equation (2.1), they were combined with the transmittance profiles in the following way. Temperatures were interpolated linearly in ln p to the 50 levels at which transmittances were available. The transmittances were then interpolated linearly in &n p to all levels at which temperature observations were available. The combined levels were used in the numerical integration. The level x was taken at 0.02 mb pressure and temperatures were extrapolated to this level from the highest level for which a radiosonde temperature was available. The extrapolation was based upon the 30°N standard atmosphere temperature model for the particular month (U.S. Standard Atmosphere Supplements, 1966), the April and October standard temperatures being obtained from the average of the winter and summer values. A similar computation of radiances was performed for the mean temperature profile for each of the four months, based upon the preceding 5 year record of radiosonde observations for Bet Dagan. These sets of radiances represented the standard or climatological radiances.

To simulate the effect of errors due to instrumental effects, clear radiance extraction from cloud contaminated radiances, and other sources, random noise, distributed normally with standard deviations shown in Table 1 (after Fleming, 1972), were added to the computed radiances.

An additional source of error is the uncertainty in the surface temperature Tg, that is used in evaluating the boundary term in equation (2.1) in the inversion procedure. To simulate this error, random noise, normally distributed, with a standard deviation of 1°C was added to the surface temperatures when computing the boundary term in the inversion procedure. The correct surface temperature is used in simulating the bod radiances using (2.1). Jiev a vilstavaa

density of the atmosphere and is a Budd'tity that is used, for example, is computing trajectories of vehicles re-entering the atmosphere. Elsberry and Martin (1971) and Elsberry et 31 (1972) have already shown that this quantity can be retrieved from satellite radiance observations with the use of regression rechniques techniques require simultaneous sets of satellike radiance, observations and conventional radio bacrystions and conventional radiosonde

simulated satellite tadiances

of Wavenumbers of NOAA 2 VTPR radiometer and assumed the standard deviation of noise (o) at each wavenumber while the density of the standard deviation of noise (o) at each wavenumber from satellite radiance observations and test it on a set of realistically

σe 3.2 Developmen [mW/ (cm² sec sterdn cm⁻¹)] Wavenumber (cm^{-1}) The ballistic density may be written as F p dx 747.6 0.45 (3,-1) 725.9 where D is the wallistic dens 86.0 r is the balli usity weightine lactor, o is the density, and x, the vertical cdc 709.0 is given by (3:2) 695.2 0.28 where p is presente and p, is the surface pressure. x represents a pressure leval high to the armonders where F is c0.8878 lvely vero. The shape of the weighting function is such that it has a maximum in the middle of the simosphere and coses to very sms21866lnes it the surface and at high alt tudes. An example of a ballingic density we ghting function is shown in Tabl

Equation 3.1 shows that the ballistic density is a vertical integral of the weighted density through the depth of the atmosphere. The satellite radiance at each observing wavelength can be expressed as a vertical integral of the weighted temperature through the depth of the atmosphere. The weighting functions for the temperature are narrower than that for the density and are displaced in height depending on the observing waveleagth. Since atmospheric densities are related to temperature through the equation of state, it seems reasonable to attempt to obtain the ballistie denoity directly from radiance observations. Furthermore, mince

An additional source of error is the uncertainty in the surface temperature T_{ϱ} , that is used in evaluating the boundary term in equation (2,1) in the inversion protedure. To also its and its answers of 1°C variable of 1°C variable

The ballistic density is essentially a vertically integrated weighted density of the atmosphere and is a quantity that is used, for example, in computing trajectories of vehicles re-entering the atmosphere. Elsberry and Martin (1971) and Elsberry et al (1972) have already shown that this quantity can be retrieved from satellite radiance observations with the use of regression techniques. Such techniques require simultaneous sets of satellite radiance observations and conventional radiosonde observations for their development. For certain regions of the globe it may not be possible to obtain the required sets of data. In the present study, we derive a technique for direct retrieval of ballistic density from satellite radiance observations and test it on a set of realistically simulated satellite radiances.

3.2 Development of Method are as and Aum)

The ballistic density may be written as

$$D = \int_{0}^{x_0} F \rho dx \qquad (3.1)$$

where D is the ballistic density, F is the ballistic density weighting factor, ρ is the density, and x, the vertical coordinate, is given by

$$x = -\ln(p/p_g) \tag{3.2}$$

where p is pressure and p is the surface pressure. x represents a pressure level high in the atmosphere where F is effectively zero. The shape of the weighting function is such that it has a maximum in the middle of the atmosphere and decreases to very small values at the surface and at high altitudes. An example of a ballistic density weighting function is shown in Table 3.1 (after Elsberry and Martin, 1971).

Equation 3.1 shows that the ballistic density is a vertical integral of the weighted density through the depth of the atmosphere. The satellite radiance at each observing wavelength can be expressed as a vertical integral of the weighted temperature through the depth of the atmosphere. The weighting functions for the temperature are narrower than that for the density and are displaced in height depending on the observing wavelength. Since atmospheric densities are related to temperature through the equation of state, it seems reasonable to attempt to obtain the ballistic density directly from radiance observations. Furthermore, since

Table 3.1 Ballistic Density Weighting Function F

 $\label{eq:continuous} \begin{array}{rcl} U & = & Fg/RT_{R}^{0} \\ & & \\ & & \\ \end{array}$ we obtain $\qquad \qquad 0^{2} & = & \int_{-\infty}^{\infty} W(T_{R}-T) \, \mathrm{d}x .$

only the stor

ular time

Pressure (mb)	F Dentity, as t	Pressure (mb)	Y Le densicy
1000	al so missue	20 20100	loomeijs
	.1680		
850	.2421	nafrallindere an temperature an	.0252
700		7 02	.0232
500	.4066	26 5 0 S	.0193
300	.4853	En and	.0141
Lty pr 0041e.	.4637	andard 13 brabna	
300		defention 2 and lo	.0099
250	.4448	gical value can l	.0061
230	.3469	1	.0039
200	x6(q-q)	0.7	0 = 0
150	.2805	0.5	.0027
be written	.2114		.0018
100	.1553	0.3	.0010
70		0.2	
50	.1171	T bes 0.1 28 400	.0007
	.0836		.0003
30	.0673	0.07	er sapp and
20			
ballistic de			veb edi a

ballistic density is an integral quantity, as is radiance, errors in the determination of ballistic density should be less than the errors in the determination of point values.

Let us define a ballistic density for a standard atmosphere or climatological mean temperature as

$$D_{\mathbf{S}} = \int_{0}^{\mathbf{x}_{0}} \mathbf{F} \, \rho_{\mathbf{S}} \, d\mathbf{x} \tag{3.3}$$

where ρ_s is the standard or climatological density profile.

The deviation of the actual ballistic density at a particular time from the climatological value can be written as

$$D^{\dagger} = D - D_{s} = \int_{0}^{x_{0}} F(\rho - \rho_{s}) dx$$
 (3.4)

With the use of the equation of state $(\rho-\rho_s)$ may be written as

$$(\rho - \rho_s) = \frac{p}{R} \left(\frac{T_s - T}{TT_s} \right)$$
 (3.5)

where R is the gas constant and T is temperature.

We assume that T in the denominator is equal to T. Since the temperature does not vary by more than a few percent about the climatological mean, this assumption introduces, at most, an error of a few percent in the <u>deviation</u> $(\rho-\rho_s)$. And since the ballistic density deviation is a vertical integral of $(\rho-\rho_s)$, errors at one level might cancel errors at another level thus further reducing the final error introduced into the determination of the ballistic density deviation by this assumption.

With this assumption equation (3.4) becomes

$$D' = \int_{0}^{x_0} \frac{Fp}{RT_s^2} (T_s - T) dx \qquad (3.6)$$

Letting

$$W = Fp/RT_g^2$$
 (3.7)

we obtain
$$D' = \int_{0}^{x_{0}} W(T_{s}-T)dx \qquad (3.8)$$

We turn now to the satellite observed radiance, which may be written

where i is an index representing wavenumber, B is the Planck function, and T is the transmittance.

The radiance of a standard or climatological atmosphere is:

$$I_{is} = B_{i}(T_{gs})\tau_{ig} + \int_{0}^{X_{o}} B_{i}(T_{s})(d\tau_{i}/dx)dx$$
 (3.10)

Defining (see, for example, Fleming, 1972)

$$r_i = [I_i - B_i(T_g)\tau_{ig}] - [I_{is} - B_i(T_{gs})\tau_{ig}]$$
 (3.11)

we obtain

$$r_i = \int_0^{x_0} [B_i(T) - B_i(T_s)] (d\tau_i/dx) dx$$
 (3.12)

With

$$\Delta B_{i} = \frac{dB_{i}(T_{s})}{dT} \cdot \Delta T$$
(3.13)

we obtain notically be became and the company that the content of the content

ballistic density from the cimerological value can be
$$_{0}^{\mathbf{x}}$$
 brained deviation on the cimerological value can be $_{0}^{\mathbf{x}}$ brained directly from the satellite radiance observation $\mathbf{x}b(_{\mathbf{z}}^{\mathbf{T}-\mathbf{T}})(\mathbf{x})$ \mathbf{x} \mathbf{x}

where

$$K_{i}(x) = \frac{dB_{i}(T_{s})}{e^{i}dT} \cdot \frac{d\tau_{i}}{dx}$$

The radiances I_i are observed by the satellite. We assume that the surface temperature T_g , which is needed to evaluate the boundary term in (3.11), can be obtained from either satellite window or conventional observations. Then since the quantities in (3.11) depending on the standard or climatological atmosphere can be computed from (3.10), ri can be evaluated. Comparison of equations (3.8) and (3.4) shows that they both represent weighted vertical integrals of temperature deviation. Multiplication of equation (3.14) by a set of coefficients ci and summation over the N observing wavenumbers yields.

$$\sum_{i=1}^{N} c_{i} r_{i} = \int_{0}^{x_{0}} \left(\sum_{i=1}^{N} c_{i} K_{i}\right) (T-T_{s}) dx$$
 (3.15)

Comparison of the right hand sides of (3.8) and (3.15) indicates that if it were possible to find a set of coefficients c_i such that $\sum_{i=1}^{\infty} c_i K_i$ was exactly equal to W at all values of x then we could obtain (-D'), the negative of the ballistic density deviation, directly and exactly from the left hand side of equation (3.15). In practice such a set of coefficients can not be found but we can find the best approximation to such a set of coefficients by minimizing the form

$$J = \int_{0}^{x_0} \left[\sum_{i=1}^{K} c_i K_i - W \right]^2 dx$$
is are less than the problem of the boundary of the problem of the probl

The solution to this minimization problem is

$$\underline{\mathbf{c}} = \underline{\mathbf{s}}^{-1}\underline{\mathbf{u}}$$
 (See, for example, Flexing, 1972)

where

$$S_{ij} = \int_{0}^{x_{0}} K_{i}(x)K_{j}(x)dx$$

$$= \int_{0}^{x_{0}} K_{i}(x)K_{j}(x)dx$$

and

$$u_{\mathbf{i}} = \int_{0}^{\mathbf{x}_{0}} W(\mathbf{x}) K_{\mathbf{i}}(\mathbf{x}) d\mathbf{x} \qquad (3.18)$$

$$\mathbf{u}_{\mathbf{i}} = \int_{0}^{\mathbf{x}_{0}} W(\mathbf{x}) K_{\mathbf{i}}(\mathbf{x}) d\mathbf{x} \qquad (3.19)$$

Thus, once the ci are determined, the estimated deviation of the ballistic density from the climatological value can be obtained directly from the satellite radiance observations by means of the equation

$$\hat{\mathbf{D}}' = -\sum_{i=1}^{N} c_i \mathbf{r}_i$$
 (3.20)

The estimate of the actual ballistic density D is then

(3.21) The radiances
$$I_3$$
 are observed by the satellite. We assume that the surface temperature T , which is needed to evaluate the boundary last $S_3(3,11)$, can be obtained from either satellite window or conventional observations. Then since the quantities in $S_3(3,11)$.

Then store the quencities in (3.11) depending Tests of the technique were performed with the use of the simulated radiance observations. Radiances were computed daily for the months of January, April, July, and October 1973 from the radiosonde observations at Bet Dagan, Israel. To these radiances was added noise to simulate the effect of instrumental errors, errors due to cloud contaminated radiances, and errors due to the uncertainty in surface temperature, as described in Section 2. xb(T-T)(1 2 14)

Ballistic densities obtained directly from the simulated radiances with the use of (3.20) and (3.21) were compared to the actual ballistic densities computed from the observed temperature profile with the use of (3.1). Tables 3.2 and 3.3 summarize the results obtained. Table 3.2 refers to retrievals from error free radiances and Table 3.3 to retrievals from radiances with realistic simulation of errors. The standard values of ballistic density, D_S, are computed from the standard temperature profiles, which are based upon the average temperature profile for the month during the five year period 1968-1972.

The results for error free radiances indicate that the ballistic density can be retrieved with an RMS error between 2 and 6, while the standard deviation of ballistic density (σ_D) has values ranging from 14 to 39 (units: $10^{-7} \rm g/cm^3$).

When realistic errors are included in the simulations, the accuracy is degraded, but the results are still extremely encouraging. For example, for the month of January σ_D = 39 while the RMS error in retrieved ballistic density is only 11. The other months also show that the RMS error is only about 1/4 to 1/3 of the standard deviation of the ballistic density.

These results using a direct retrieval method may be compared to the results obtained by Elsberry et al (1972), who used a regression technique. They developed their regression relationships from sets of NIMBUS III SIRS-A clear column radiances and ballistic densities computed from radiosonde data over Eurasia. These regression relationships were then applied to an independent set of satellite observations over Eurasia. The ballistic densities retrieved from the satellite observations were then compared to those computed from radiosonde observations for the same area. In one set of 24 comparisons the RMS error in ballistic density was about 1/3 of the standard deviation of ballistic density for the set; in another set of 16 comparisons, the RMS error was about 1/4 of the standard deviation of ballistic density. These errors are very similar to those that we obtain using the direct method on realistically simulated radiances.

3.4 Conclusions

Based upon simulated observations, it appears that the direct technique for ballistic density determination from satellite radiance observations that has been developed here is a viable alternative to the regression technique used by Elsberry et al (1972). The advantage of a direct method over a regression technique is that there is no requirement for large sets of simultaneous and colocated satellite radiance and conventional radiosonde observations in order to develop the specification equations. On the other hand, the direct technique requires a knowledge of the atmospheric transmittances; to the extent that the true values of the transmittances are uncertain, additional errors will be introduced into the direct technique. It would be of interest to compare both methods using a large set of simultaneous and colocated radiance and radiosonde observations.

mean absolute error of ballistic depaity retrieval

with the use of (3.20) and (3.28) AIRAT compared to the actual balllatic densities computed from the observed temperature profile with the use of

Results of tests of direct method for ballistic density determination from satellite observations.

garrab dimon add Error free radiances (Units: 10-7 g/cm3) mag may avit add

The results for error free rediances indicate that the bailistic density

istle only

out:

pallistic

Ballistic densities obtained directly from the simulated radiances

Month	D _s	σ _D	RMSE	g/cmg).	nedW
January	4436		results are established as \$5.90 years	ms 3.1 /1	
April to 2MH	4391	32.4	The other mube st0.0.0	102.5 ox	density is aboc: £1/4
July	4236	16.5	105 1.9 par	ou-s 1:3 sec	esd1.7
October	4357	28.9	leperry et al regre 1.1 0m re and balller	aboo.6	Leve 2.5 edT
Dellis ent st squad nelli	andard balli	stic densit	y for the mo	Eurasia. To set of servetrievedir retrievedirentry uted from r	lata over Luderender lensities chose comp
RMSE = ro	ot-mean-squa	re error of	ballistic d	ensity retri	h brebasia l eval ragao
Ella () sinde	an arithmeti	c error of	ballistic de	nsity retrie	lensity ilrect lave
E me	an absolute	error of ba	llistic dens	ity retrieva	

Based upon simulated observations, it appears that the direct technique for ballistic density determination from satellite radiance observations that has been developed here is a viable alternative to the regression technique used by Elsberry et al (1972). The advantage of a direct method over a regression technique is that there is no requirement for large sate of simultaneous and colocated satallite radiance and conventional radiosonde observations in order to develop the specification equations. On the other hand, the direct technique requires a knowledge of the simuspheric transmittances; to the extent that the true values of the transmittances are micertain, additional errors will be introduced into the direct rechnique. It would be of interest to compare both methods using a large set of simultaneous and colocated radience and radiosonde observations.

4. Layer Thickness Kerrievals

del latroduction

TABLE 3.3

Results of tests of direct method for ballistic density determination from satellite observations.

Radiances with errors (Units:10⁻⁷g/cm³)

There are several ways of obtaining layer indomnesses from satellitie radiance observations. The rhicknesses can be computed from a temperature

January	ad 4436 in	a power state of the same stat	10.8°1	gnimala) su ng nolelsyni	9.2
April	4391	32.4	10.8		
July	4236	14.5	4.6 mol	- 2.5	3.7
October	f the chicker	e in the thic since from 28.9 (ali	(dr. asonsibs)	I for the I	5.8

3) What wort of errors can one expect with the use of this direct nothed for serrieving layer chicknesses?

4.2 Methods

The method described here is based upon Fleming (1972) and further details may be found in his paper. The deviation of a satellire observed radiance from the radiance of a standard or olimatological stronghere, after subtraction of the boundary torms, can be written as (see section 3)

xi = K₁(x)Ax

(1.4)

· lao

4. Layer Thickness Retrievals

4.1 Introduction

The thickness of an atmospheric layer between two prescribed pressure surfaces is proportional to the mean atmospheric temperature of the layer, and, as such, is accessible from satellite radiance observations. Synoptic observations of layer thicknesses are important for operational meteorology since they serve as direct input to a number of numerical prediction models.

ith errors (Units:10

There are several ways of obtaining layer thicknesses from satellite radiance observations. The thicknesses can be computed from a temperature profile derived from satellite observations. This procedure has been used by Wilcox and Sanders (1976) in their comparison of thicknesses based upon satellite observations (Nimbus E microwave spectrometer) and those obtained from radiosonde observations. The thickness can also be retrieved directly using statistical techniques (e.g., Werbowetzki, 1975) or a direct inversion technique (Fleming, 1972) based upon a variant of the Backus and Gilbert (1970) inversion procedure.

In the present study we use the direct inversion technique to answer the following questions:

- 1) Is there any difference in the thickness retrieval error of a deep layer as derived from the following two methods: a) directly from the radiances, b) as the sum of the thickness of sub-layers that are retrieved directly from the radiances?
- 2) Is there a reduction in thickness retrieval error when we uses the previous day's temperature profile rather than a climatological mean temperature profile in the procedure that is used to modify the radiative transfer equation in the inversion procedure?
- 3) What sort of errors can one expect with the use of this direct method for retrieving layer thicknesses?

4.2 Methods

The method described here is based upon Fleming (1972) and further details may be found in his paper. The deviation of a satellite observed radiance from the radiance of a standard or climatological atmosphere, after subtraction of the boundary terms, can be written as (see section 3)

$$r_{i} = \int_{0}^{x_{0}} K_{i}(x) \Delta T(x) dx \qquad (4.1)$$

The deviation of the thickness of a pressure layer bounded by levels x_1 and x_2 from the climatological or standard value for that layer can be written as

 $\Delta H(x_1,x_2) = k \int_{x_1}^{x_2} R(x;x_1,x_2) \Delta T(x) dx \qquad (4.2)$

where k is the gas constant divided by gravity, and $R(x;x_1,x_2)$ is a rectangular function of unit height with cutoffs at x_1 and x_2 . If (4.1) is multiplied by k and a set of coefficients c_i , we obtain

$$k \sum_{i=1}^{N} c_i r_i = k \int_{0}^{\infty} \sum_{i=1}^{N} c_i K_i(\mathbf{x}) \Delta T(\mathbf{x}) d\mathbf{x}$$
 (4.3)

Comparison of (4.2) with (4.3) shows that if we can find a set of coefficients c_i such that R can be approximated by $\sum_{i=1}^{L} c_i K_i(x)$ we can obtain the thickness deviations directly from the satellite observations by means of

$$\Delta H(\mathbf{x}_1, \mathbf{x}_2) = k \sum_{i=1}^{N} c_i \mathbf{r}_i$$
 (4.4)

The appropriate set of coefficients can be found by minimizing the form of salt call blow and ratoria isoblatives of areas in

$$\int_{0}^{\infty} [1 - R(x; x_{1}, x_{2})]^{2} [\sum_{i=1}^{\infty} c_{i}K_{i}(x) - R(x; x_{1}, x_{2})]^{2} dx \qquad (4.5)$$

subject to the constraint

(01.4)

(6.15)

(4.16)

(TL. 4)

(4.4) can be written as the quadratic form of and satisfactor by winter the form of the fo

$$s = c^{T}Sc$$
 (4.7)

The value of s is a measure of the excess width of the approximate rectangular function.

The solution to this minimization problem is

 $u^{T_0} = 0^T v / u^T 0^{T_0}$

$$\mathbf{u}_{\mathbf{i}} = (\mathbf{x}_{1}^{\mathbf{x}_{1}})^{\mathbf{x}_{1}} \begin{pmatrix} \mathbf{x}_{2} \\ \mathbf{x}_{1}^{\mathbf{x}_{1}} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2}^{\mathbf{x}_{1}} \end{pmatrix} \wedge \mathbf{x}_{1}^{\mathbf{x}_{1}} \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2}^{\mathbf{x}_{1}} \end{pmatrix} \wedge \mathbf{x}_{1}^{\mathbf{x}_{1}} \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2}^{\mathbf{x}_{1}} \end{pmatrix} \wedge \mathbf{x}_{1}^{\mathbf{x}_{2}} \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2}^{\mathbf{x}_{1}} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2}^{\mathbf{x}_{1}} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2}^{\mathbf{x}_{2}} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf{x}_{2}} \end{pmatrix} \wedge \mathbf{x}_{2}^{\mathbf$$

The approximate rectangular function

$$\hat{R}(x;x_1,x_2) = \sum_{i=1}^{N} c_i K_i(x)$$
(4.11)

is generally wider than the exact R-function. Fleming (1972) shows that one can compensate for this inexactness by correcting the retrieved thickness deviations by multiplying them by the factor a. Thus,

another the thickness deviation
$$\mathbf{r}_{\mathbf{i}}^{\mathbf{r}_{\mathbf{i}}} = \mathbf{r}_{\mathbf{i}}^{\mathbf{r}_{\mathbf{i}}} \mathbf{r}_{\mathbf{i}}^{\mathbf{r}_{\mathbf{i}}}$$
 and $\mathbf{r}_{\mathbf{i}}^{\mathbf{r}_{\mathbf{i}}} = \mathbf{r}_{\mathbf{i}}^{\mathbf{r}_{\mathbf{i}}}$ deservations of

$$a = \int_{x_1}^{x_2} \hat{R}(x; x_1, x_2) dx / \int_{0}^{x_0} \hat{R}(x; x_1; x_2) dx$$
 (4.13)

If there are observational errors, one would also like to minimize their effects on the thickness errors. This can be done by minimizing the form

the form
$$\sigma^{2} = \underline{c}^{T}\underline{E}\underline{c}$$

$$\sigma^{2} = \underline{c}^{T}\underline{E}\underline{c}$$

$$(4.14)$$

subject to the constraint (4.6). E is a diagonal matrix with diagonal elements ε_1^2 , where ε_1 is the RMS error of observation at observing wavelength i.

Minimizing both the thickness error (4.14) and the excess width (4.7) cannot be done, but one can minimize a linear combination of the two by minimizing the form of the two by minimizing the two by minimizing the form of the two by minimizing the two by minimizing the form of the two by minimizing the two by minimizing the two by minimizing the

$$q = \underline{c}^{T}\underline{Q}\underline{c} \qquad \qquad 22 \underline{c} = 2 \qquad (4.15)$$

The value of s is a measure of the excess width of the approximaradw

(6.7)

(4,3)

Q =
$$(1-\alpha)\frac{S}{2} + \alpha dE$$
, $0 \le \alpha \le 1$ (4.16)

The solution to this minimization problem is

rectangular function.

where d is a coefficient for matching the physical dimensions of the two (8.4) terms in Q. The solution is

$$\underline{c}_{\sim} = Q^{-1}\underline{u}/\underline{u}^{\mathrm{T}}Q^{-1}\underline{u} \tag{4.17}$$

For different values of α one obtains a different solution \underline{c}_{α} , which produces different values of the excess width, s_{α} , and the thickness error, σ_{α}^{2} , according to

$$s_{\alpha} = \underline{c}_{\alpha}^{T} \underline{s} \underline{c}_{\alpha} \text{ and } \sigma_{\alpha}^{2} = \underline{c}_{\alpha}^{T} \underline{E} \underline{c}_{\alpha}$$
 (4.18)

If one plots s versus σ , an L-shaped tradeoff curve is obtained, large excess widths being associated with small thickness errors and viceversa. Theoretically, the optimum value of α would be at the corner of the L-shaped curve, where $d\sigma/ds = -1$, since at this point both the excess width and thickness error are small.

4.3 Results

Tests of the technique were performed with the use of the simulated radiance observations. Radiances were computed daily for the months of January, April, July, and October 1973 from the radiosonde observations at Bet Dagan, Israel. To these radiances was added noise to simulate the effect of instrumental errors, errors due to cloud contaminated radiances, and errors due to uncertainty in surface temperature, as described in Section 2.

Layer thicknesses retrieved directly from the simulated radiances with the use of the method described in the previous section were compared with those computed from the observed temperature soundings. Two sets of retrievals were made. In the first set, a monthly mean temperature profile based upon the preceding five year record at Bet Dagan was used as the standard or climatological profile in the inversion procedure; in the second set, the previous day's observed temperature profile was used as the standard profile. For each set, thicknesses were retrieved directly from the simulated radiances for four elementary layers, each 200 mb thick, extending from 1000 mb to 200 mb, and for three, deeper, compound layers - 200-600 mb, 600-1000 mb, and 200-1000 mb. Thicknesses for the three compound layers were also derived from summing the retrieved thicknesses of sublayers making up the compound layer. The root-mean-square (RMS) errors of the retrieved thicknesses are shown in Tables 4.1 to 4.4. Also shown in these Tables are values for the variability of the layer thickness with respect to the monthly mean and with respect to the previous day's value.

Inspection of these Tables reveals that there is no significant reduction in retrieval error when the previous day's temperature profile rather than the monthly mean temperature profile is used as the standard profile in the inversion procedure. In fact, there are many cases in which the retrieval errors are smaller when the monthly mean is used as the standard. These results indicate that a monthly mean profile for

- 8J -

Table 4.2 Layer Thickness Retrieval Errors and Layer
Thickness Variability in April (gpm)

Layertray SMI TO	Based on Monthly Mean					Based on Previous Day			
Boundaries (mb)	RMS Error		RMS Variability		RMS Error		RMS Variability		
Elementary Layers	17		26		15		1, 200-400		
1. 200-400	11	23	22	31	12	26	2.86400-600		
2. 400-600	6	14	13	33	10	13	008-00025		
3. 600-800	0.1	9	1.7	27	12	12	0001-00829.4		
4. 800-1000		14		30		17	35 Compound Layers		
Compound Layers	12		33.5		13		5. 200-600		
5. 200-600	1.5	24	28	56	61	27	0001-0051 .0		
6. 600-1000	3.6	19	35	54	1.7	23	0001-0060 -5		
7. 200–1000		28		90		25	00 Summed Layers		
Summed Layers	13		33		14		8. 200-600		
8. 200-600		24	28	56	1.9	28	0001-0031		
9. 600-800		19	35	54	16	23	10. 0800-1000		
10. 200-1000		25		90	15	23	11. 0000-100p		
11. 200-1000		27		90		26	90		

Thicknesses (H) in summed layers method are computed from thicknesses of sublayers as follows:

$$H_8 = H_1 + H_2$$
 $H_9 = H_3 + H_4$
 $H_{10} = H_5 + H_6$
 $H_{11} = H_1 + H_2 + H_3 + H_4$

Thickness Variability in April (gpm)

Table 4.3 Layer Thickness Retrieval Errors and Layer
Thickness Variability in July (gpm)

	Based on Monthly Mean						Based on Previous Day			
Layer Boundaries (mb)	RMS Error		RMS Variability			RMS Error		RMS Variability		
Elementary Layers	73 3	1866	dilbdsia	KMS Va	363	33.6	MAT A	(m) saitemen		
1. 200-460	1	15		26			17	Elementary Lay		
2. 400-600	26	12	31	22		23	11	1.51 ²⁰⁰⁻⁴⁰⁰		
3. 600-800	13	10	33	13		44	9	2-6 400-600		
4. 800-1000	12	12	27	17		6	10	008-00011-0		
35	1.7		30			AI		4. 800-1000		
Compound Layers										
5. 200-600		13		33			12	Compand Layers		
6. 600-1000	27	19	56.2	28		24	15	000=00515		
7. 200-1000	23	17	56	35		61	16	0001-00033		
00	25		0.0			80		7: 200-1000		
Summed Layers										
8. 200-600		14		33			13	aroval 27		
9. 600-1000	28	19	56	28		26	15	000-0015 .8		
10. 200-1000	23	16	54	35		1.9	14	008-0033 . 9		
11. 200-1000	23	15	06	35		25	14	0001-0003		
ne	26		00			27		11, 200-1000		

Thicknesses (H) in summed layers method are computed from thicknesses of sublayers as follows:

sublayers as follows:

$$H_8 = H_1 + H_2$$
 $H_9 = H_3 + H_4$
 $H_{10} = H_5 + H_6$
 $H_{11} = H_1 + H_2 + H_3 + H_4$

Table 4.4 Layer Thickness Retrieval Errors and Layer
Thickness Variability in October (gpm)

Layer the a no stand	Based	on Monthly Mean	Based on Previous Day			
Boundaries (mb)	RMS Error	RMS Variability	RMS Error	RMS Variability		
Elementary Layers	the climatel be obtained	ing intormation on a chat could perhap	erequisite be a, informatio			
1. 200-400	25	37	22	31		
2. 400-600	13 13 11 11 11 11 11 11 11 11 11 11 11 1	ificant 182 covement	anla lagrana	da silī 23		
3. 600-800	Teditar brai	profile as the stan	* dado 12	uses the pr		
4. 800-1000	om en14nedw	ickness 17 lability de to the previous de	is at asisoul	er faltmin		
s rather than with	200 variabil	ean thickness (see	m white morthly m	of Josephan		
Compound Layers	of thickness	noticular islinated	ne lack of su	T . (asidaT		
5. 200-600	24	remperature profile of its the a	23 970	a' vanos 463		
		in the ingresion set	burbuis odi	88 980 22		
7. 200-1000	25	68	24	ond inetia		
y difference in	there is an	question of whether	apect to the	r d11W		
Summed Layers	lummed layers	ect method and the ; of a deep, compour	ween the dir	accuracy bes		
8. 200-600	A 9 25 1995	all diffagores ber	# Y10 23 18 0	16/11		
9. 600-1000	19	me cases one method better, 16 nd in a r	18	22		
10. 200-1000	the colative	ults indesite that	1 9889 Tel	ars identical		
11. 200-1000	23	ntially rendom and	20	i liams for		
od to determine	lavets meth	one uses the summed	nadw amonte	and negative		

Thicknesses (H) in summed layers method are computed from thicknesses of sublayers as follows: $H_8 = H_1 + H_2$

results suggest that if one is interested only in the thickness of several

the 1080-500 mb layer (Wilcox and Sanders, 1976). Thus, the direct method for retrieving layer thicknesses from warellite radiance observations over effect acces appears to be outle viable.

Thickness Veriability in October (gpm)

a particular geographical area can be used to generate the coefficients required for implementation of the technique during a particular month. This obviates the necessity for recomputing the coefficients on a daily basis, a tremendous savings in computer time. In addition, these results suggest that the technique could work for meteorologically silent areas, the only prerequisite being information on the climatological mean profile for the area, information that could perhaps be obtained from neighboring areas.

The absence of significant improvement in the retrievals when one uses the previous day's profile as the standard rather than using the monthly mean is probably at least partially related to the lack of substantial reduction in thickness variability when one measures the variability with respect to the previous day's thickness rather than with respect to the monthly mean thickness (see RMS variability data in the Tables). The lack of substantial reduction of thickness variability implies that the previous day's temperature profile is not substantially closer to today's temperature profile than is the monthly mean profile. Thus, its use as the standard in the inversion scheme does not significantly affect the retrieval accuracy.

With respect to the question of whether there is any difference in accuracy between the direct method and the summed layers method for determining the thickness of a deep, compound layer - the answer appears to no. There are very small differences between the thickness errors of these two methods - in some cases one method is slightly better, in other cases the other method is better, and in a number of cases the results are identical. These results indicate that the relatively large errors for small layers are essentially random and uncorrelated from one layer to the next such that there is a tendency for cancellation of positive and negative errors when one uses the summed layers method to determine the thickness of a compound layer. For practical applications, these results suggest that if one is interested only in the thickness of several compound layers (e.g., for a two layer numerical forecast model), the thicknesses for the required layers can be obtain by the direct method. If one is interested in the thicknesses of elementary layers as well as compound layers, the thicknesses of the compound layers can be obtained from the summed layers method.

The general RMS error level of the retrieved thicknesses ranges roughly from 10 gpm to 35 gpm, the lower values being associated with the elementary layers and summer conditions (little variability) and the higher values with the compound layers and winter conditions (greater variability). These values may be compared to the accuracies obtainable from the conventional radiosonde observations: ~ 15 gpm RMS error for the 1000-500 mb layer (Wilcox and Sanders, 1976). Thus, the direct method for retrieving layer thicknesses from satellite radiance observations over silent areas appears to be quite viable.

4.4 Conclusions

There appears to be no significant advantage in using the previous day's temperature profile rather than a monthly mean as the standard temperature profile in Fleming's (1972) direct method for retrieving layer thicknesses from satellite radiances.

The thickness retrieval error of a deep atmospheric layer appears to be the same whether one obtains the thickness of the deep layer directly from the satellite radiances or whether one obtains the thickness as the sum of the thicknesses of the sublayers composing the deep layer, the thicknesses of the sublayers being obtained directly from the satellite radiances.

The implications of the above two findings for operational thickness retrievals are discussed in the previous section.

The results obtained in the present study, as well as those of Fleming (1972), suggest that the method should be tested with real satellite observations against other methods currently in use (regression, regression after categorization, from retrieved temperature profiles) to obtain layer thicknesses from satellite radiances.

M.F. Weinren, R.E. Floring, F.E. Birrner and C.M. Howsen, 1973:
Satellite intrace semitings from NOAA spacecraft, NOAA-Tech. Rep
National Oceanic and Annosphere: Administration, Washington, B.C.,
U.S. Standard Atmosphere Sepalements, 1966; U.S. Standard Atmosphere
Supplements, 1966; U.S. Colernson Frinting Office, 700gp
Werboweight, A., 1975; Indirect scrapting of the Armosphere from NOAA
spacecraft - regression after categorization method and results
Proprint Voices: Fourth Conference on Errhabitity and Statistics
in elmomoleric Sciences, Amer. Met. Soc., Scaton, 165-170;
Wilcox, K.W., and F. Sanders, 1976; Comparison of Layer Information
observed by Minbue U micromave superconster and by radiosymbe

4.4 Conclusions

There appears to be no significant advantage in using the previous day's temperature profile received. Monthly mean as the standard temperature profile in Flaming's (1972) direct method for retrieving

- Backus, G. and F. Gilbert, 1970: Uniqueness in the inversion of inaccurate gross Earth data. Phil. Trans. Roy. Soc. London, 266A, 123-192.
- Conrath, B.J., 1972: Vertical resolution of temperature profiles obtained from remote radiation measurements. <u>J. Atmos. Sci.</u>, 29, 1262-1271.
 - Elsberry, R.L. and F.L. Martin, 1971: An experimental method of determining ballistic densities making direct use of SIRS radiances. Report No. NPS-51ES MR711001A, Naval Postgraduate School, 18pp.
 - Elsberry, R.L., J.R. Wright, F.L. Martin, and K.W. Ruggles, 1972: Direct determination of ballistic density and winds from SIRS radiances. Preprint Volume of the International Conference on Aerospace and Aeronautical Meteorology, May 22-26, Washington, D.C., AMS, 121-128.
- Fleming, H.E., 1972: A method for calculating atmospheric thicknesses directly from satellite radiance observations. Preprint Volume of the Conference on Atmospheric Radiation, August 7-9, Fort Collins, Colorado, AMS, 134-137.
 - McMillin, L.M., D.Q. Wark, J.M. Siomkajio, P.G. Abel, A. Werbowetzki, L.A. Lauritson, J.A. Pritchard, D.S. Crosby, H.M. Woolf, R.C. Luebbe, M.P. Weinreb, H.E. Fleming, F.E. Bittner, and C.M. Hayden, 1973: Satellite infrared soundings from NOAA spacecraft. NOAA Tech. Rep. 65, National Oceanic and Atmospheric Administration, Washington, D.C., 112pp.
 - U.S. Standard Atmosphere Supplements, 1966: U.S. Standard Atmosphere Supplements, 1966. U.S. Government Printing Office, 289pp.
 - Werbowetzki, A., 1975: Indirect sounding of the atmosphere from NOAA spacecraft regression after categorization method and results.

 Preprint Volume, Fourth Conference on Probability and Statistics in Atmospheric Sciences. Amer. Met. Soc., Boston, 165-170.
 - Wilcox, R.W., and F. Sanders, 1976: Comparison of layer thickness as observed by Nimbus E microwave spectrometer and by radiosonde. J. Appl. Met., 15, 956-961.

1.5

Appendix

 List of publications resulting from research performed under the Grant.

A paper based upon the work on ballistic density has been submitted to the \underline{J} . of Appl. Met..

2. List of students who have received support from the Grant and are receiving degrees.

Student Degree
Eliram Broida M.Sc.
Dina Goldberg M.Sc.

