ASIMPTOTE FUNKCIJA

Naš savet je da najpre dobro proučite granične vrednosti funkcija.

Neki profesori vole da asimptote funkcija ispituju kao "ponašanje funkcije na krajevima oblasti definisanosti", pa kako oni rade tako i vi...

Još jedna stvar, neki profesori ne ispituju horizontalnu asimptotu kao posebnu, već to odrade u sklopu kose asimptote. Mi ćemo pokušati da vam objasnimo svaku asimptotu posebno.

Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

- vertikalna
- horizontalna
- kosa

- vertikalna

Potencijalna vertikalna asimptota se nalazi u prekidima iz oblasti definisanosti. Ako je recimo tačka $x = \Theta$ prekid, moramo ispitati kako se funkcija "ponaša" u nekoj okolini te tačke, pa tražimo dva limesa:

 $\lim_{x\to\Theta+\varepsilon,kad\varepsilon\to0} f(x) \qquad \lim_{x\to\Theta-\varepsilon,kad\varepsilon\to0} f(x) \qquad \text{Ako su rešenja ova dva limesa} + \infty \text{ ili } -\infty \text{ onda je prava } x = \Theta$

vertikalna asimptota, a ako dobijemo neki broj za rešenje, onda funkcija teži tom broju (po ipsilonu)

Pazite: Za svaki prekid mora da se traže oba limesa, osim možda ako funkcija nije negde definisana.

- horizontalna

Ovde tražimo dva limesa: $\lim_{x \to +\infty} f(x)$ i $\lim_{x \to -\infty} f(x)$.

Ako kao rešenje dobijemo neki broj , recimo #, onda je y = # horizontalna asimptota, a ako dobijemo $+\infty$ ili $-\infty$ onda kažemo da nema horizontalna asimptota.

- kosa

Kosa asimptota je prava y = kx + n

$$k = \lim_{x \to \infty} \frac{f(x)}{x}$$
 i $n = \lim_{x \to \infty} [f(x) - kx]$

Naravno, potrebno je raditi ove limese i za $+\infty$ i za $-\infty$, naročito kod složenijih funkcija, jer se može desiti da nema ove asimptote sa obe strane...

AKO IMA HORIZONTALNA ASIMPTOTA, KOSA NEMA!

Pre nego krenemo sa izradom zadataka, podsetimo se kako se traži oblast definisanosti :

1. OBLAST DEFINISANOSTI FUNKCIJE:

Ako je data racionalna funkcija $\frac{P(x)}{Q(x)}$ onda je $Q(x) \neq 0$

Ako je data $\ln \otimes$, onda je $\otimes > 0$

Ako je data $\sqrt{\Theta}$, onda je $\Theta \ge 0$

Ako je data $\sqrt[3]{@}$, onda je svuda definisana

Funkcija e^x je svuda definisana.

Ako je data arcsin @ onda je $-1 \le @ \le 1$

Ako je data arctg % onda je svuda definisana

ZADACI

1. Nadji asimptote sledećih funkcija:

$$a) \quad y = \frac{x+1}{x-1}$$

b)
$$y = \frac{x^2 - 4}{x - 1}$$

v)
$$y = \frac{x^2 - 4}{1 - x^2}$$

Rešenja:

$$a) \quad y = \frac{x+1}{x-1}$$

vertikalna

Funkcija je definisana za $x-1 \neq 0$ to jest $x \neq 1$. To nam govori da je x = 1 **vertikalna asimptota**. Tražimo sada 2 limesa:

$$\lim_{\substack{x \to 1 \\ x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x+1}{1+\varepsilon-1} = \text{pazi: samo dole menjamo } 1+\varepsilon \text{, jer nam gore to nista ne znači} = \frac{2}{+\varepsilon} = \frac{2}{+0} = +\infty$$

$$\lim_{\substack{x \to 1 \\ x \to 1 - \varepsilon, kads \to 0}} \frac{x+1}{1-\varepsilon-1} = \frac{2}{-\varepsilon} = -\infty \quad \text{ŠTA OVO ZNAČI KONKRETNO NA GRAFIKU? POGLEDAJMO:}$$

 $\lim_{\substack{x-1\\x\to 1+\varepsilon, kad\varepsilon\to 0}} \frac{x+1}{x-1} = +\infty \quad \text{Ovo je žuta crta na grafiku, a znači da kada se x približava 1 sa pozitivne strane}(+\varepsilon) da$

funkcija y teži +∞.

 $\lim_{\substack{x \to 1-\varepsilon \text{ kad}\varepsilon \to 0}} \frac{x+1}{x-1} = -\infty$ Ovo je crvena crta na grafiku, a znači da kada se x približava 1 sa negativne strane $(-\varepsilon)$ da

funkcija y teži - ∞ .

Horizontalna:

 $\lim_{x\to\pm\infty}\frac{x+1}{x-1}=1, \text{ što znači da je } y=1 \text{ horizontalna asimptota i da kose nema! Na grafiku:}$

b)
$$y = \frac{x^2 - 4}{x - 1}$$

Funkcija je definisana za $x-1 \neq 0$ to jest $x \neq 1$. Onda je x = 1 vertikalna asimptota. Tražimo sada 2 limesa:

$$\lim_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{1 + \varepsilon - 1} = \frac{1^2 - 4}{1 + \varepsilon} = \frac{-3}{+\varepsilon} = \frac{-3}{+0} = -\infty \quad (\text{ žuta crta na grafiku})$$

$$\lim_{\substack{x \to 1-\varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{1 - \varepsilon - 1} = \frac{1^2 - 4}{1 - \varepsilon} = \frac{-3}{-\varepsilon} = \frac{-3}{-0} = +\infty \text{ (crvena crta na grafiku)}$$

horizontalna asimptota:

 $\lim_{x \to \pm \infty} \frac{x^2 - 4}{x - 1} = \pm \infty$ Ovo nam govori da nema horizontalne asimptote pa moramo tražiti kosu!

kosa asimptota:

Kosa asimptota je prava y = kx + n

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x}$$
 i $n = \lim_{x \to \pm \infty} [f(x) - kx]$

$$k = \lim_{x \to \pm \infty} \frac{\frac{x^2 - 4}{x - 1}}{x} = \lim_{x \to \pm \infty} \frac{x^2 - 4}{x^2 - x} = 1$$
 (pogledaj fajl granične vrednosti funkcija, zadaci (i deo))

$$n = \lim_{x \to \pm \infty} [f(x) - kx] = \lim_{x \to \pm \infty} \left[\frac{x^2 - 4}{x - 1} - 1x \right] = \lim_{x \to \pm \infty} \left[\frac{x^2 - 4 - x(x - 1)}{x - 1} \right] = \lim_{x \to \pm \infty} \left[\frac{x^2 - 4 - x^2 + x}{x - 1} \right] = \lim_{x \to \pm \infty} \left[\frac{x - 4}{x - 1} \right] = \lim_$$

Sada k i n zamenimo u formulu: y = kx + n i dobijamo da je y = x + 1 kosa asimptota

v)
$$y = \frac{x^2 - 4}{1 - x^2}$$

Funkcija je definisana za $1-x^2 \neq 0$ to jest $(1-x)(1+x) \neq 0$ to jest $x \neq 1$ i $x \neq -1$

Ovo znači da moramo tražiti četiri limesa, za +1 i za -1 sa "obe" strane.

 $\lim_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \text{Pazi}, \text{ pametno je dole izraz napisati kao razliku kvadrata, pa tek onda menjati...} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \text{Pazi}, \text{ pametno je dole izraz napisati kao razliku kvadrata, pa tek onda menjati...} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \text{Pazi}, \text{ pametno je dole izraz napisati kao razliku kvadrata, pa tek onda menjati...} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \sum_{\substack{x \to 1 + \varepsilon, kad\varepsilon \to 0}} \frac{x^2 -$

$$\frac{1^2 - 4}{(1 - (1 + \varepsilon))(1 + 1 + \varepsilon)} = \frac{-3}{(1 - 1 - \varepsilon)2} = \frac{-3}{(-\varepsilon)2} = +\infty \quad \text{(plava crta)}$$

$$\lim_{\substack{1-x^2\\x\to 1-\varepsilon, kad\varepsilon\to 0}} \frac{x^2-4}{(1-x)(1+x)} = \frac{1^2-4}{(1-(1-\varepsilon))(1+1-\varepsilon)} = \frac{-3}{(1-1+\varepsilon)2} = \frac{-3}{\varepsilon 2} = -\infty \quad \text{(crvena crta)}$$

$$\lim_{x \to -1+\varepsilon, kad\varepsilon \to 0} \frac{x^2 - 4}{(1 - x)(1 + x)} = \lim_{x \to -1+\varepsilon, kad\varepsilon \to 0} \frac{(-1)^2 - 4}{(1 - (-1 + \varepsilon))(1 + (-1 + \varepsilon))} = \frac{-3}{(2 - \varepsilon)\varepsilon} = \frac{-3}{2\varepsilon} = -\infty \quad (\text{ žuta crta})$$

$$\lim_{\substack{x \to -1-\varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{1 - x^2} = \lim_{\substack{x \to -1-\varepsilon, kad\varepsilon \to 0}} \frac{x^2 - 4}{(1 - x)(1 + x)} = \frac{(-1)^2 - 4}{(1 - (-1 - \varepsilon))(1 + (-1 - \varepsilon))} = \frac{-3}{(2 + \varepsilon)(-\varepsilon)} = \frac{-3}{2(-\varepsilon)} = + \infty \text{ (zelena crta)}$$

horizontalna asimptota:

 $\lim_{x \to \pm \infty} \frac{x^2 - 4}{1 - x^2} = -\frac{1}{1} = -1$ pa je <u>y = -1 horizontalna asimptota</u> pa kose asimptote nema.

2. Nadji asimptote sledećih funkcija:

a)
$$y = e^{\frac{1}{x}}$$

b)
$$y = xe^{\frac{1}{x}}$$

Rešenja:

a)
$$y = e^{\frac{1}{x}}$$

Funkcija je definisana za $x \neq 0$, pa je x = 0 potencijalna vertikalna asimptota.

$$\lim_{x\to 0+\varepsilon, kad\varepsilon\to 0}\frac{\frac{1}{x}}{1-\varepsilon}=e^{\frac{1}{1-\varepsilon}}=e^{+\infty}=\infty \qquad \text{(crvena crta na grafiku)}$$

$$\lim_{x\to 0-\varepsilon, kad\varepsilon\to 0} e^{\frac{1}{x}} = e^{\frac{1}{0-\varepsilon}} = e^{-\infty} = 0$$
 Šta sad ovo znači? Trebali smo da dobijemo + ili – beskonačno...

Ovo znači da kada x teži nuli sa leve, negativne strane, funkcija teži nuli, što na grafiku prikazujemo STRELICOM.

horizontalna asimptota:

$$\lim_{x\to+\infty}e^{\frac{1}{x}}=e^{\frac{1}{+\infty}}=e^0=1$$

$$\lim_{x \to -\infty} e^{\frac{1}{x}} = e^{\frac{1}{-\infty}} = e^{0} = 1$$
 Dakle y = 1 je horizontalna asimptota!

b)
$$y = xe^{\frac{1}{x}}$$

Funkcija je definisana za $x \neq 0$, pa je x = 0 potencijalna vertikalna asimptota.

 $\lim_{x \to 0+\varepsilon} x e^{\frac{1}{x}} = (0+\varepsilon)e^{\frac{1}{0}} = 0 \circ \infty \quad \text{a ovo je neodređen izraz! Ideja je da iskoristimo Lopitalovu teoremu, ali pre toga moramo 'prepraviti' funkciju da bude oblika <math>\frac{0}{0}$ ili $\frac{\infty}{\infty}$.

 $\lim_{x \to 0+\varepsilon} x e^{\frac{1}{x}} = \lim_{x \to 0+\varepsilon} \frac{e^{\frac{1}{x}}}{\frac{1}{x}}$ Ako ovde zamenimo da x teži nuli, dobijamo $\frac{\infty}{\infty}$, pa smemo da koristimo Lopitalovu teoremu

$$\lim_{x \to 0+\varepsilon} x e^{\frac{1}{x}} = \lim_{x \to 0+\varepsilon} \frac{e^{\frac{1}{x}}}{\frac{1}{x}} = \text{tražimo izvod gore, izvod dole, posebno} = \lim_{x \to 0+\varepsilon} \frac{e^{\frac{1}{x}}(-\frac{1}{x^2})}{-\frac{1}{x^2}} = \lim_{x \to 0+\varepsilon, kad\varepsilon \to 0} \frac{1}{x} = e^{\frac{1}{0+\varepsilon}} = e^{+\infty} = \infty \text{ (Žuta crta)}$$

$$\lim_{x \to 0 - \varepsilon} x e^{\frac{1}{x}} = (0 - \varepsilon)e^{\frac{1}{-\varepsilon}} = 0 \cdot 0 = 0 \text{ (strelica)}$$

horizontalna asimptota:

$$\lim_{x \to +\infty} x e^{\frac{1}{x}} = \infty \circ e^{\frac{1}{\infty}} = \infty \circ e^{0} = \infty \circ 1 = \infty$$

$$\lim_{x \to -\infty} x e^{\frac{1}{x}} = -\infty \circ e^{\frac{1}{\infty}} = -\infty \circ e^{0} = -\infty \circ 1 = -\infty$$

Dakle, nema horizontalne asimptote, pa moramo potražiti kosu:

Kosa asimptota je prava y = kx + n

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x}$$
 i $n = \lim_{x \to \pm \infty} [f(x) - kx]$

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{xe^{\frac{1}{x}}}{x} = \lim_{x \to \pm \infty} e^{\frac{1}{x}} = e^{\frac{1}{\infty}} = e^{0} = 1$$

 $n = \lim_{x \to \pm \infty} [f(x) - kx] = \lim_{x \to \pm \infty} [xe^{\frac{1}{x}} - 1x] = \lim_{x \to \pm \infty} x[e^{\frac{1}{x}} - 1] = \text{sličan trik kao malopre, da bi mogli da upotrebimo Lopitala...}$

$$= \lim_{x \to \pm \infty} \frac{e^{\frac{1}{x}} - 1}{\frac{1}{x}} = \text{sada je ovaj izraz oblika } \frac{0}{0}, \text{tražimo izvode} = \lim_{x \to \pm \infty} \frac{e^{\frac{1}{x}} (-\frac{1}{x^2})}{-\frac{1}{x^2}} = \lim_{x \to \pm \infty} e^{\frac{1}{x}} = e^{\frac{1}{\infty}} = e^{0} = 1$$

Dobili smo kosu asimptotu y = x + 1

$$y = \frac{x-2}{\sqrt{x^2+4}}$$

Rešenje:

Pošto je izraz $x^2 + 4 > 0$ za svako x, funkcija je svuda definisana, a to nam govori da ona nema vertikalnih asimptota!

horizontalna asimptota:

$$\lim_{x\to\pm\infty}\frac{x-2}{\sqrt{x^2+4}}=\lim_{x\to\pm\infty}\frac{x-2}{\sqrt{x^2(1+\frac{4}{x^2})}}=\lim_{x\to\pm\infty}\frac{x-2}{\left|x\right|\sqrt{(1+\frac{4}{x^2})}}$$
 PAZI ! Pošto smo dole dobili apsolutnu vrednost, moramo

odvojiti limese za + i za – beskonačno!

$$\lim_{x \to +\infty} \frac{x-2}{x\sqrt{(1+\frac{4}{x^2})}} = 1$$

$$\lim_{x \to -\infty} \frac{x - 2}{-x\sqrt{(1 + \frac{4}{x^2})}} = -1$$

Vrlo neobična situacija koja se ipak javlja kod korenih funkcija:

КАД X TEŽI + BESKONAČNO HORIZONTALNA ASIMPTOTA JE y=1

КАД X ТЕŽІ - BESKONAČNO HORIZONTALNA ASIMPTOTA JE у = -1

Na slici bi to izgledalo ovako:

4. Nadji asimptote funkcije:
$$y = \ln \frac{x-2}{x+1}$$

Najpre kao i uvek moramo ispitati oblast definisanosti:

$$\frac{x-2}{x+1} > 0$$
 Najbolje je da idemo preko tablice: (pogledaj fajl sa nejednačinama iz prve godine)

	- ∞	-1	-1	2	2	$+\infty$
x-2	-		-		+	
x+1	-		+		+	
x-2	+		-		+	
x+1						

Ovo nam dakle govori da je funkcija definisana $\forall x \in (-\infty, -1) \cup (2, \infty)$, to jest izmedju -1 i 2 je NEMA!

To znači da ćemo tražiti za x = 2 limes samo sa desne strane, a za x = -1 samo sa leve strane!

 $\lim_{x\to 2+\varepsilon} \ln\frac{x-2}{x+1} = [\text{Kako je ln neprekidna funkcija, ona može da zameni mesto sa lim }] = \ln\frac{2+\varepsilon-2}{2+1} = \ln 0 = -\infty \text{ (crvena crta)}$

$$\lim_{x \to -1 - \varepsilon} \ln \frac{x - 2}{x + 1} = \ln \frac{-1 - 2}{-1 - \varepsilon + 1} = \ln \frac{-3}{-\varepsilon} = \ln \infty = \infty \text{ (zelena crta)}$$

horizontalna asimptota:

 $\lim_{x \to \pm \infty} \ln \frac{x-2}{x+1} = \ln \lim_{x \to \pm \infty} \frac{x-2}{x+1} = \ln 1 = 0$ Dakle y = 0 (x-osa) je horizontalna asimptota.(plave crtke)

