Binomial Heaps

Last Week...

Priority Queue Abstract Data Type

Last Week...

Priority Queue Abstract Data Type

Object: Set S of elements with "keys" ("priority") that can be compared

Last Week...

Priority Queue Abstract Data Type

Object: Set S of elements with "keys" ("priority") that can be compared

Operations: Insert(S,x), Max(S), Extract_Max(S)

Application: Job Scheduling by OS

Goal: Implement Union(Q1, Q2)

Abstract Data Types

Abstract Data Types	Insert	Min	Extract_Min	Union
Priority Queues				X

Abstract Data Types

Abstract Data Types	Insert	Min	Extract_Min	Union
Priority Queues				X
Mergeable Priority Queues				

Abstract Data Types

Abstract Data Types	Insert	Min	Extract_Min	Union
Priority Queues				X
Mergeable Priority Queues				

Abstract Data Types	Data Structures	Insert	Min	Extract_Min	Union
Priority Queues	Min-Heap				X
Mergeable Priority Queues					

Abstract Data Types	Data Structures	Insert	Min	Extract_Min	Union
Priority Queues	Min-Heap	Θ(log n)			X
Mergeable Priority Queues					

Abstract Data Types	Data Structures	Insert	Min	Extract_Min	Union
Priority Queues	Min-Heap	Θ(log n)	Θ(1)		X
Mergeable Priority Queues					

Abstract Data Types	Data Structures	Insert	Min	Extract_Min	Union
Priority Queues	Min-Heap	Θ(log n)	Θ(1)	Θ(log n)	X
Mergeable Priority Queues					

Abstract Data Types	Data Structures	Insert	Min	Extract_Min	Union
Priority Queues	Min-Heap	Θ(log n)	Θ(1)	Θ(log n)	X
Mergeable Priority Queues	Min Binomial Heap				

Abstract Data Types	Data Structures	Insert	Min	Extract_Min	Union
Priority Queues	Min-Heap	Θ(log n)	Θ(1)	Θ(log n)	X
Mergeable Priority Queues	Min Binomial Heap	Θ(log n)	Θ(log n)	Θ(log n)	Θ(log n)

Min Binomial Heaps

Visualizing Binomial Heaps

Elements are stored in a sequence of Binomial Trees.

$$k = 0$$

$$k = 0 \qquad B_0: \qquad ()$$

$$k = 0 \qquad B_0: \qquad ($$

$$k > = 1$$

$$k = 0$$
 B_0 :

$$k > = 1$$

$$k = 0$$
 B_0 :

$$k > = 1$$
 B_k :
$$B_{k-1}$$

Binomial Tree B_k

$$\binom{4}{0} = 2$$

$$\binom{4}{1} = 4$$

$$\binom{4}{2} = 6$$

$$3 \qquad \binom{4}{3} = 4$$

$$4 \qquad \binom{4}{4} = 1$$

• B_k tree has:

- B_k tree has:
 - Height k

Height = 4

- B_k tree has:
 - Height k
 - 2^k nodes

Height = 4 $2^4 = 16$ nodes

- B_k tree has:
 - Height k
 - 2^k nodes
 - $\binom{k}{d}$ nodes at depth d

Height = 4
$$2^4 = 16 \text{ nodes}$$

$$\binom{4}{2} = 6 \text{ nodes at level 2}$$

Binomial Forest of size n (denoted F_n)

A sequence of B_k trees with *strictly decreasing* k's and a total of n nodes.

Example: Binomial Forest F_7 of n = 7 nodes $n = 7 = < 1 \ 1 \ 1 >_2 = 2^2 + 2^1 + 2^0$

$$n = 7 = \langle 1 \ 1 \ 1 \rangle_2 = 2^2 + 2^1 + 2^0$$
 $F_7 = \langle B_2 \ B_1 \ B_0 \rangle$

$$n = 7 = < 1 \ 1 \ 1>_2 = 2^2 + 2^1 + 2^0$$
 $F_7 = < B_2 \ B_1 \ B_0 >$

Example: Binomial Forest F_9 of n = 9 nodes $n = 9 = < 1001 >_2 = 2^3 + 2^0$

$$n = 9 = < 1 \ 0 \ 0 \ 1 >_2 = 2^3 + 2^0$$
 $F_9 = < B_3 B_0 >$

• F_n has n nodes.

- F_n has n nodes.
- n = $\langle b_t, b_{t-1},, b_0 \rangle_2$.

- F_n has n nodes.
- $n = \langle b_t, b_{t-1},, b_0 \rangle_2$. Note that $t = \lfloor \log_2 n \rfloor$

- F_n has n nodes.
- $n = \langle b_t, b_{t-1},, b_0 \rangle_2$. Note that $t = \lfloor \log_2 n \rfloor$
- F_n: <all trees B_i such that bit b_i = 1>

- F_n has n nodes.
- $n = \langle b_t, b_{t-1},, b_0 \rangle_2$. Note that $t = \lfloor \log_2 n \rfloor$
- F_n: <all trees B_i such that bit b_i = 1>
- Let $\alpha(n) = \#$ of 1's in binary representation of n

- F_n has n nodes.
- $n = \langle b_t, b_{t-1},, b_0 \rangle_2$. Note that $t = \lfloor \log_2 n \rfloor$
- F_n: <all trees B_i such that bit b_i = 1>
- Let $\alpha(n) = \#$ of 1's in binary representation of n
 - F_n has $\alpha(n)$ trees

$$n = 7 = < 1 1 1 >_2$$

 F_7 has $\alpha(7) = 3$ trees

$$n = 9 = < 1001>_2$$

$$F_9$$
 has $\alpha(9) = 2$ trees

- F_n has n nodes.
- $n = \langle b_t, b_{t-1},, b_0 \rangle_2$. Note that $t = \lfloor \log_2 n \rfloor$
- F_n: <all trees B_i such that bit b_i = 1>
- Let $\alpha(n) = \#$ of 1's in binary representation of n
 - F_n has $\alpha(n)$ trees

- F_n has n nodes.
- $n = \langle b_t, b_{t-1},, b_0 \rangle_2$. Note that $t = \lfloor \log_2 n \rfloor$
- F_n: <all trees B_i such that bit b_i = 1>
- Let $\alpha(n) = \#$ of 1's in binary representation of n
 - F_n has $\alpha(n)$ trees
 - F_n has $n \alpha(n)$ edges

$$n = 7 = < 1 1 1 >_2$$

$$B_0$$

$$n = 7$$
, $\alpha(7) = 3$

$$n = 7 = < 1 1 1 >_2$$

$$B_0$$

$$n = 7, \alpha(7) = 3$$
 $F_7 \text{ has } 7-\alpha(7) = 4 \text{ edges}$

$$n = 9 = < 1001>_2$$

$$B_0$$

$$n = 9, \alpha(9) = 2$$

Example: Binomial Forest F_9 of n = 9 nodes

$$n = 9 = < 1001>_2$$

$$B_0$$

$$n = 9, \alpha(9) = 2$$

 $F_9 \text{ has } 9-\alpha(9) = 7 \text{ edges}$

Binomial Forest F_n

- F_n has n nodes.
- $n = \langle b_t, b_{t-1},, b_0 \rangle_2$. Note that $t = \lfloor \log_2 n \rfloor$
- F_n: <all trees B_i such that bit b_i = 1>
- Let $\alpha(n) = \#$ of 1's in binary representation of n
 - F_n has $\alpha(n)$ trees
 - F_n has $n \alpha(n)$ edges

A Min Binomial Heap of n elements is a Binomial Forest F_n such that

1. Each node of F_n stores one element

A Min Binomial Heap of n elements is a Binomial Forest F_n such that

1. Each node of F_n stores one element

2. Each B_k tree of F_n is Min-Heap ordered

A Min Binomial Heap of n elements is a Binomial Forest F_n such that

- 1. Each node of F_n stores one element
- 2. Each B_k tree of F_n is Min-Heap ordered, i.e. each tree satisfies the Min-Heap property

 $S = \{10, 13, 1, 3, 8, 18, 7\}$ n = 7 elements

$$S = \{10, 13, 1, 3, 8, 18, 7\}$$
 $n = 7$ elements
Put S in $F_7 = \langle B_2 B_1 B_0 \rangle$

$$S = \{10, 13, 1, 3, 8, 18, 7\}$$
 $n = 7$ elements
Put S in $F_7 = \langle B_2 B_1 B_0 \rangle$

$$S = \{10, 13, 1, 3, 8, 18, 7\}$$
 $n = 7$ elements
Put S in $F_7 = \langle B_2 B_1 B_0 \rangle$

$$S = \{10, 13, 1, 3, 8, 18, 7\}$$
 $n = 7$ elements
Put S in $F_7 = \langle B_2 B_1 B_0 \rangle$

$$S = \{10, 13, 1, 3, 8, 18, 7\}$$
 $n = 7$ elements
Put S in $F_7 = \langle B_2 B_1 B_0 \rangle$

13

 $S = \{10, 13, 1, 3, 8, 18, 7\}$ n = 7 elements Put S in $F_7 = \langle B_2 B_1 B_0 \rangle$

 $S = \{10, 13, 1, 3, 8, 18, 7\}$ n = 7 elements Put S in $F_7 = \langle B_2 B_1 B_0 \rangle$

 $S = \{10, 13, 1, 3, 8, 18, 7\}$ n = 7 elements Put S in $F_7 = \langle B_2 B_1 B_0 \rangle$

 $S = \{10, 13, 1, 3, 8, 18, 7\}$ n = 7 elements Put S in $F_7 = \langle B_2 B_1 B_0 \rangle$

 $S = \{10, 13, 1, 3, 8, 18, 7\}$ n = 7 elements Put S in $F_7 = \langle B_2 B_1 B_0 \rangle$

 $S = \{10, 13, 1, 3, 8, 18, 7\}$ n = 7 elements Put S in $F_7 = \langle B_2 B_1 B_0 \rangle$

S = {10, 13, 1, 3, 8, 18, 7} n = 7 elements Put S in $F_7 = \langle B_2 B_1 B_0 \rangle$

 $S = \{10, 13, 1, 3, 8, 18, 7\}$ n = 7 elements Put S in $F_7 = \langle B_2 B_1 B_0 \rangle$

S = {10, 13, 1, 3, 8, 18, 7} n = 7 elements Put S in $F_7 = \langle B_2 B_1 B_0 \rangle$

FACTS:

• One key-comparison per Binomial Heap edge.

FACTS:

- One key-comparison per Binomial Heap edge.
- A Binomial Heap for n elements can be built in O(n) key-comparisons.

Storing Binomial Heaps in Memory

Binomial Heap (Visually)

key degree

Binomial Heap (Visually)

Binomial Heap (Visually)

Not a pointer, but an edge!

Binomial Heap Operations

Must implement the following operations:

- Union(T, Q)
- Insert(T, x)
- Min(T)
- Extract_Min(T)

Must implement the following operations:

- Union(T, Q)
- Insert(T, x)
- Min(T)
- Extract_Min(T)

Lemma 1: Can merge two min heap-ordered B_k trees into a single min heap-ordered B_{k+1} tree with just one key comparison.

Lemma 1: Can merge two min heap-ordered B_k trees into a single min heap-ordered B_{k+1} tree with just one key comparison.

Proof: To merge

Lemma 1: Can merge two min heap-ordered B_k trees into a single min heap-ordered B_{k+1} tree with just one key comparison.

Proof: To merge, if x <= y

Lemma 1: Can merge two min heap-ordered B_k trees into a single min heap-ordered B_{k+1} tree with just one key comparison.

Proof: To merge, if x <= y

Lemma 1: Can merge two min heap-ordered B_k trees into a single min heap-ordered B_{k+1} tree with just one key comparison.

Proof: To merge, if y < x

Cannot merge two max-heaps So easily!

Lemma 1: Can merge two min heap-ordered B_k trees into a single min heap-ordered B_{k+1} tree with just one key comparison.

Proof: To merge, if y < x

Lemma 2: Deleting the root of a min heap-ordered B_k tree gives a min binomial heap.

Lemma 2: Deleting the root of a min heap-ordered B_k tree gives a min binomial heap.

Proof: Deleting the root of min heap-ordered B_k tree.

Lemma 2: Deleting the root of a min heap-ordered B_k tree gives a min binomial heap.

Proof: Deleting the root of min heap-ordered B_k tree.

T is a Binomial Heap of size $n = 3 = < 11>_2$

T is a Binomial Heap of size $n = 3 = < 11>_2$

Q is a Binomial Heap of size $n = 7 = < 1.1.1>_2$

1 1

1 1 *′*

 B_1

 B_0

T

 B_2

 B_1

 B_0

Q

T is a Binomial Heap of size $n = 3 = < 11>_2$

Q is a Binomial Heap of size $n = 7 = < 1.1.1>_2$

T is a Binomial Heap of size $n = 3 = < 11>_2$

Q is a Binomial Heap of size $n = 7 = < 1.1.1>_2$

Carry		B_1			1		
: T +	B _o	B_1		1 +	1		
: Q	B ₀	B ₁	B ₂	1	1	1	
Result	X			0			

T is a Binomial Heap of size $n = 3 = < 11>_2$

Q is a Binomial Heap of size $n = 7 = < 1.1.1>_2$

1	1		B ₂	B_1		Carry
	1	1		B ₁	B ₀	: T +
1	1	1	B ₂	B ₁	B _o	: Q
	1	0		B_1	X	Result

1 0 1 0 B_3

T is a Binomial Heap of size $n = 3 = < 11>_2$

Q is a Binomial Heap of size $n = 7 = < 1.1.1>_2$

-	
: T	F
: Q	
	: Q

X B₁ X Result

T is a Binomial Heap of size $n = 3 = < 11>_2$

Q is a Binomial Heap of size $n = 7 = < 1.1.1>_2$

1 1 1
$$B_3$$
 B_2 B_1 Carry

1 1 1 B_3 B_2 B_1 B_0 : T

1 1 1 B_2 B_1 B_0 : Q

1 0 1 0 B_3 X B_1 X Result

How many new edges were added?

T is a Binomial Heap of size $n = 3 = < 11>_2$

Q is a Binomial Heap of size $n = 7 = < 1.1.1>_2$

1 1 1
$$B_3$$
 B_2 B_1 Carry

1 1 1 B_3 B_2 B_1 B_0 : T

1 1 1 B_2 B_1 B_0 : Q

1 0 1 0 B_3 A_1 A_2 B_3 A_4 A_5 A_5

How many new edges were added?

MERGE

Carry

X Result

Carry

MERGE

- 3
 - -
 - 5) : C

X Result

Worst-Case Complexity of Union(T, Q)

Say |T| <= n and |Q| <= n (i.e. each contains at most n elements)

Worst-Case Complexity of Union(T, Q)

Say |T| <= n and |Q| <= n (i.e. each contains at most n elements)

 \Rightarrow Each of T, Q have O(log n) B_k trees.

Worst-Case Complexity of Union(T, Q)

Say $|T| \le n$ and $|Q| \le n$ (i.e. each contains at most n elements)

- \Rightarrow Each of T, Q have O(log n) B_k trees.
- \Rightarrow Union(T, Q) takes at most O(log n) key-comparisons