

VarPy: A python library for volcanic and rock physics data analysis

Rosa Filgueira Andrew Bell Malcolm Atkinson Ian Main

University of Edinburgh, School of Informatics University of Edinburgh, School of Geosciences

Python and Scientific Communities

- High-level programming language, interpreted with capabilities for object-oriented programming
- Very easy to learn for non-programmers
- Well structured: Easy to read and understand
- Well-known language with a big community
- Free and open source

Python and Scientific Communities

- Rich scientific computing libraries
 - Obspy: Simplifies the usage of Python programming for seismologists.
 - SymPy: Python library for symbolic mathematics
 - Geopy: Python Geocoding Toolbox
 - Numpy: Array processing for numbers, strings, records, and objects
 - Scipy: Scientific Library for Python
- Most Popular libraries: http://www.s-anand.net/ blog/the-most-popular-scientific-pythonmodules/

Overview of Obspy

- Open-source Python toolbox for seismological data processing → http://obspy.org/
- Parsers for common file formats and seismological signal processing routines:
 - seismological time series (waveform)
- Besides:
 - It has many users
 - Well documented
 - Provides user support
 - It grows progressively adding new features

Volcanology and Rock Physics Communities

- Increase of digital instrumentation in volcanology and rock physics
 - Huge amount of seismicity data that need for computational analyses and models.
- Not library designed specifically for volcanic earthquake and rock physics data.
- Each researcher develops each own codes

Proposal: VarPy

- New open-source python toolbox
- Aim: facilitate rapid application development for those communities
 - Focus in seismicity deformation data
 - Full repertoire of commonly required actions
 - Analysis and modeling in real time and retrospective
 - Capabilities for data exploration, data analysis, quality check
 - Users can define their own workflows to develop
 - models, analyses and visualizations

Expected Benefits

- Easy method to analyze seismicity data
- Standardize different tasks/procedures
- Using the same functions by different researches → easier to compare results and performance of models
- Cost of maintaining the library is shared among the community

VarPy design

- Library style from ObsPy
- VarPy does not attempt to replace the functions provided by other python libraries (NumPy, SciPy) → complementary of them
- VarPy & Ipython notebooks

VarPy datatypes

- Seismicity deformation: strain and stress data
- Time-series data of two classes
 - Event catalogue data (ECD)
 - Series of events (acoustic emissions, earthquakes, volcanic eruptions)
 - Occur at discrete times
 - Specific attributes (location, depth, magnitude, duration)
 - Sampled continuous data (SCD)
 - Series of times at which a continuous variable has been measured, and the value of that variable
 - Sample times are defined by the instruments' operator
 - May (or may not) be evenly spaced (daily, every second).
- Volcanic observatories and rock physics laboratories can produce data of both classes in a single experiment.

VarPy datatypes

- Representation by using 4 different datatypes
 - Event catalogue laboratory data (ECLD)
 - Event catalogue volcanic earthquake data (ECVD)
 - Sampled continuous laboratory data (SCLD)
 - Sampled continuous volcanic earthquake data (SCVD)
- Volcanic data also have:
 - Eruption volcanic data (EVD):
 - Time-series data of volcanic eruptions, intrusions, or other events
 - with descriptions (type, size, duration,)

VarPy Volcanic object Volcanic (obj) ecvd (obj) Models evd Mode name: (Dictionary) (obj) Model (obj) type scvd dataset Model name: (Dict of Model (obj) Output obj) metadata (List) Model header dataset Output type (obj) metadata Model Output (obj)

VarPy Laboratory object Laboratory (obj) ecld (obj) Models scld Mode name: (Dictionary) (obj) Model (obj) type type dataset Model name: Model (obj) Output metadata (List) Model header dataset Output (obj) metadata Model Output (obj)

Example of VarPy objects

Volcanic object with ecvd datatype:

```
from varpy.management import core
ID = 'Tjornes_ex1'
ecvd_data_file = 'Iceland_IMO_C1_95-onwards.txt'
ecvd_metadata_file = 'Iceland_IMO_C1_meta.txt'
d1 = core.Volcanic(ID)
d1.add_datatype('ecvd',ecvd_data_file,ecvd_metadata_file)
```

Laboratory object with scld datatype:

```
from varpy.management import core
ID = 'UCL_Lab'
scld_data_file = 'UCL-exp1.txt'
scld_metadata_file = 'UCL-exp1-meta.txt'
d2 = core.Laboratory(ID)
d2.add_datatype('scld',scld_data_file,scld_metadata_file)
```

VarPy environment

- d1 = core.Volcanic(ID) or
- d1 = core.Laboratory(ID)
- Creates a tree-directory in the current directory

General Packages

Package	Functionality	
varpy.mangement	Core classes	
varpy.data_preparation	Filtering routines	
varpy.analysis	Analyzing filtered data routines	
varpy.modeling	Modeling routines	
varpy.simulation	Simulating routines of seismic data	
varpy.statistics	Statistical routines for assisting with other routines	
varpy.visualization	Plotting routines	
varpy.write	Writing results routines	

Module	Functionality: Module for
core	Handling varpy objects and methods.
conversion	Converting dates and time into different formats.
data deed & user_data_feed	Importing metadata and storing it into the varpy object
data_conversion	Converting values to another type of data (AE energy to magnitude)
window	Selecting a smaller sample based on a single (time window between two given dates) or on a combination of variables
magnitudes	Analyzing the filtered data (calculates completeness magnitude)

Volcanic seismic data simulators

Earthquake data data simulators

volcanic_data

earthquake

Package	Functionality: Contains modules for
statistics	Assisting with the generation of synthetic data, fitting models and comparing models
visualization	Plotting filtered data, the results of analyses, simulated data and model
write	Writing the results of analyses and experiments into text files

Varpy Experiments

- Experiments configuration: Model + Filtered data + Parameters
- Experiment types:
 - Single Analysis → Apply once a model
 - Retrospective Analysis:
 - Known failure/eruption time (ft)
 - Output: How well the model explains the data
 - Single Forecast
 - ft is not known
 - Output: Prediction of the failure/eruption.
 - Multiple Analysis → Apply several time a model
 - Prospective Forecast
 - ft not known
 - Output: Prediction in real time of the failure/eruption.
 - Retrospective Forecast:
 - Simulate ft not known
 - Output: Prediction of the failure/eruption

Type of methods

- M0 method
 - Aim: to create a volcanic or laboratory object
 - Input: ID
 - Output: new object with a tree-directory.
- M1 method:
 - Aim: to add an attribute to an object
 - Input: data and metadata files
 - Ouput: Add the attribute to the object, and copy the files into the tree-directory
- M2 method
 - Aim: to modify an attribute (or several attributes) of a object.
 - Input: object
 - Return: new object (copy of the input object) with the modifications. NO creates another tree-directory
- M3 method
 - Aim: to transform data.
 - Input: data
 - Output: data transformed
- M4 method
 - Aim: to write an attribute of an object to file.
 - Input: attribute of the object
 - Output: store a new file in the tree-directory
- M5 method
 - Aim: to plot into a figure an attribute of an object.
 - Input: attribute of the object
 - Output: store new figure the tree-directory

Algebra of operations

Allows us to keep the previous status of the object every time that we want to perform an update/modification of one or some attributes of the object.

VarPy Iptyhon Notebooks

- Notebook-1
 - Example of data exploration and visualization based on the Tjornes fracutre zone (Iceland)
- Notebook-2
 - Example of applying forecasting methods using volcanic data from Mt. Etna

VarPy contributions

- VarPy already allows:
 - Data exploration
 - Quality check
 - Data analysis
- Researchers could contribute:
 - Developing standards for:
 - Data format
 - Methodology for processing data
 - New models, simulators of seismic data, filters ...

EFFORT and VarPy

- Multi-disciplinary
- EFFORT aims:
 - Determine predictability of brittle failure of rock samples
 - Determine how predictability scales with geo-system complexity
 - Provide facility for developing and testing codes:
 - Encourage data and model sharing through EFFORT gateway
- EFFORT gateway: http://effort.is.ed.ac.uk
- VarPy will help run the user's models in the gateway automatically.
- Two variants of the VarPy with many of the functions identical: Gateway & Developers versions

Questions

- Contacts:
 - Rosa Filgueira: <u>rosa.filgueira@ed.ac.uk</u>
 - Andrew Bell: <u>a.bell@ed.ac.uk</u>