

تمرین کامپیوتری شماره ۲ **معماری کامپیوتر** نیم سال اول ۱۴۰۱–۱۴۰۰

اعضای گروه:

سوگل گودرزی ۸۱۰۱۹۸۴۶۷ عرفان پناهی ۸۱۰۱۹۸۳۶۹

* مسير داده:

بخش اعظم مسیر داده ای که برای پردازنده مطلوب داریم مشابه مسیر داده پردازنده MIPS است با این تفاوت که برای چهار دستور جدیدی که اضافه شده است مسیر داده را به شکلی که در تصویر مشاهده می شود تغییر داده ایم. برای دستورات مذکور، مسیر داده به شکل زیر تغییر می کند:

* دستور های addi و slti:

برای این دو دستور هیچ عنصر جدیدی به مسیر داده اضافه نشده است و این دستورات با همان مسیر داده پردازنده MIPS قابل پیاده سازی هستند. تنها کافیست مقادیر سیگنال های کنترلی عناصر مسیر داده را به درستی مقداردهی کنیم که در بخش کنترلر، جدول سیگنال های کنترلی را برای این دستورات مشاهده می کنید.

* دستور jal:

برای این دستور دو مالتیپلکسر برای ورودی های WriteRegister و WriteRegister File اضافه کرده ایم. سیگنال های کنترلی این دو مالتیپلکسر یکسان هستند. در اینصورت وقتی jal مقدار یک داشته باشد این دستور انجام می شود و در غیر اینصورت بقیه دستورات بسته به حالت سیگنال های کنترلی دیگر انجام خواهند شد.

* دستور **jr**

برای این دستور یک مالتیپلکسر قرار داده ایم که خروجی آن به PC متصل شده است چون با انجام شدن این دستور قرار است PC به آدرسی که در رجیستر مدنظر قرار دارد، منتقل شود. سیگنال کنترلی این مالتیپلکسر jr است که در صورتی که مقدار یک داشته باشد، این دستور انجام می شود و در غیر اینصورت دستور انجام نمی شود. در صفحه بعد تغییرات اسجاد شده در مسیر داده با رنگ آبی مشخص شده است:

صفحهٔ 1

* كنترلر:

ابتدا ALUop را طوری تعیین می کنیم تا بتواند با استفاده از Func ، سلکتور های ALU (ALUctrl) را بسازد:

OPC	ALUop	Func	ALU Operation
000000	00	000001	Add \rightarrow 000
000000	00	000010	Sub → 001
000000	00	000100	And \rightarrow 010
000000	00	001000	Or → 011
000000	00	010000	Slt → 100
000001(addi)	01	-	Add \rightarrow 000
000010(slti)	10	1	Slt → 100
000011(lw)	01	-	Add \rightarrow 000
000100(sw)	01	-	Add \rightarrow 000
000101(beq)	11	-	Sub → 001

حال برای قسمت کنترلر ، سیگنال های کنترلی را طبق جدول زیر مقداردهی می کنیم:

	RegDs	jal	RegWrite	ALUSrc	ALUop	MemRead	MemWrite	MemtoReg	PCSr	jmp	jr
	t								С		
R-T	1	0	1	0	00	0	0	0	0	0	0
addi	0	0	1	1	01	0	0	0	0	0	0
slti	0	0	1	1	10	0	0	0	0	0	0
lw	0	0	1	1	01	1	0	1	0	0	0
SW	0	0	0	1	01	0	1	0	0	0	0
j	0	0	0	0	00	0	0	0	0	1	0
jal	0	1	1	0	00	0	0	0	0	1	0
jr	0	0	0	0	00	0	0	0	0	0	1
beq	0	0	0	0	11	0	0	0	zero	0	0

* الگوریتم پیدا کردن بزرگترین مقدار یک آرایه ۲۰ عنصری و اندیس آن:

```
array A[0:19];
Value = A[0];
Index =0;
for (int i=1;i<20;i++){
        if(Value < A[i]){
            Value = A[i];
            Index = i;
        }
}
//Value: Maximum value of A
//Index: Index of Maximum value of A</pre>
```

* برنامه با زبان اسمبلی و زبان ماشین:

برای انجام دستورات مناسب به منظور اینکه بزرگترین مقدار یک آرایه ۲۰ عنصری و همچنین اندیس آن را بیابیم و در آدرس های ۲۰۰۰ و ۲۰۰۴ حافظه بنویسیم، دستورات را ابتدا به زبان کد ماشین نوشته سپس معادل باینری آن ها را پیدا کرده ایم و در آخر نیز آن ها را به اعداد هگزادسیمال تبدیل کرده و در فایل Instructions.txt ذخیره سازی می کنیم:

* اسمبلی:

addi R30,R0,0 addi R20,R0,0 lw R1,R0(1000) addi R2,R0,0 jal Loop //101 sw R1,R0(2000) sw R2,R0(2004)

endL: jr R31

Loop: addi R20,R20,1

slti R10,R20,19

addi R11,R10,403

addi R30,R30,4

lw R3,R30(1000)

slt R4,R1,R3

beq R4,R0,L //2

add R1,R3,R0

add R2, R20, R0

G: jr R11

* ماشین باینری:

- 1. 0000-0100-0001-0100-0000-0000-0000
- 2. 0000-1100-0000-0001-0000-0011-1110-1000
- 3. 0000-0100-0000-0010-0000-0000-0000
- 4. 0010-0000-0000-0000-0000-0110-0101
- 5. 0001-0000-0000-0001-0000-0111-1101-0000
- 6. 0001-0000-0000-0010-0000-0111-1101-0100

•

•

- 102. 0000-1010-1000-1010-0000-0000-0001-0011
- 103. 0000-0101-0100-1011-0000-0001-1001-0011
- 104. 0000-0111-1101-1110-0000-0000-0000-0100
- 105. 0000-1111-1100-0011-0000-0011-1110-1000
- 106. 0000-0000-0010-0011-0010-0000-0001-0000
- 107. 0001-0100-0000-0100-0000-0000-00010

- 110. 0001-1101-0110-0000-0000-0000-0000

* ماشین هگزادسیمال:

- 0.041e0000
- 1.04140000
- 2. 0c0103e8
- 3.04020000
- 4. 20000065
- 5. 100107d0
- 6. 100207d4

.

- 100. 1fe00000
- 101.06940001
- 102. 0a8a0013
- 103. 054b0193
- 104. 07de0004
- 105.0fc303e8
- 106.00232010
- 107. 14040002
- 108.00600801
- 109. 02801001
- 110. 1d600000

* داده های تست:

درنهایت نیز داده هایی بعنوان مثال مانند تصویر زیر به برنامه میدهیم و خروجی را مشاهده میکنیم که نشان میدهد برنامه به درستی کار میکند:

0.40		500	
249	xxxxxxx	500	XXX
250	xxxxxxx	501	XXX
251	00000001	502	XXX
252	00000002	503	XXX
253	00000003	504	000
254	0000004	505	000
255	00000005	506	xxx
256	00000006	507	xxx
257	0000007	508	xxx
258	00000008	509	xxx
259	00000009	510	xxx
260	0000000a	511	xxx
261	0000000ь	512	XXX
262	0000000c	513	XXX
263	000000d	514	xxx
264	0000000e	515	xxx
265	0000000f	516	xxx
266	00000020	517	xxx
267	00000011	518	xxx
268	00000012	519	xxx
269	00000013	520	xxx
270	00000014	521	xxx

آدرس های ۱۰۰۰ تا ۱۰۷۶ (داده ها)

آدرس های ۲۰۰۰ و ۲۰۰۴ (نتیجه)