1^a Lista de Exercícios de Programação Linear

Prof. Luiz Leduino de Salles Neto DCT-UNIFESP luiz.leduino@unifesp.br

29 de agosto de 2008

- 1) Minimize o custo de uma ração composta por milho (M) e farelo de soja (FS), que custam respectivamente R\$0.26 e R\$0.32 o quilo. A ração deve ter no mínimo 0.34 kg de proteína e 2.64 kg de carboidratos. Cada quilo de milho contêm 0.07 kg de proteína e 0.82 kg de carboidratos, cada quilo de farelo de soja contêm 0,21 kg de proteína e 0,79 kg de carboidratos. Resolva o problema utilizando o método gráfico.
- 2) Um investidor tem R\$22000,00 para investir nos próximos 5 anos. No início de cada ano ele pode investir em depósitos de um ou dois anos. O banco paga 8% para o depósito de um ano e 17%(total) para depósito de dois anos. Além disso, há a possibilidade de investir em títulos a partir do segundo ano e que rendem após 3 anos 27% (total). Se o investidor reinveste seu dinheiro todo ano, formule o problema de modo a maximizar seu lucro total ao final de 5 anos. É possível resolvê-lo pelo método gráfico?
- 3) A indústria SiderVR produz aço com a seguinte composição: 3.2-3.5% de carbono; 1.8-2.5% de silicon; 0.9-1.2% de níquel. A SiderVR fabrica aço através da combinação de duas ligas. O custo e a propriedade de cada uma estão na tabela 1. Determine como deve ser a produção de forma que a SiderVR tenha o menor custo possível.
- 4) A Quitutaço produz dois tipos de tortas: de chocolate e morango. Cada torta de chocolate pode ser vendida por R\$4,00 e cada torta de morango por R\$2,00. Cada torta de chocolate requer 4 ovos e 20 minutos de forno. Cada torta de morango requer 1 ovo e 40 minutos de forno. Sabendo que a Quitutaço dispõe, em função do horário de trabalho, de 8 horas de forno e 30 ovos, como deve ser a produção para que seja maximizada a receita total?

	Liga 1 190	Liga 2 200
Custo por ton. (R\$)	190	200
Percentual de Silicon	2	2.5
Percentual de Níquel	1	1.5
Percentual de Carbono	3	4

Tabela 1: Composição das Ligas da SiderVR

5) [Baseado em problema apresentado em "Investigação Operacional e Optimização" de Gladys Castillo Jordán]

A SiderVR envia para a atmosfera três tipos de contaminantes: A. partículas; B. óxido sulfúrico; C. hidrocarbonetos. A produção de aço inclui duas fontes principais de contaminação: os altos-fornos para produzir o ferro-gusa (ferro de primeira fundição ainda não purificado) e os fornos abertos para converter o ferro em aço. De acordo com decisões governamentais a fábrica tem de reduzir anualmente a emissão dos contaminantes de acordo com a tabela 2:

Contaminante	Redução Requerida (em milhões de toneladas)
A: Partículas	60
B: Óxido Sulfúrico	150
C: Hidrocarbonetos	125

Tabela 2: Redução Anual Requerida

Para reduzir a emissão os engenheiros propõem as seguintes medidas:

- 1. Aumentar a altura das chaminés.
- 2. A utilização de filtros nas chaminés.
- 3. Incluir certos aditivos nos combustíveis.

Com estas medidas, aplicadas a cada um dos fornos, conseguem-se eliminar as quantidades anuais dos contaminantes A,B e C nas quantidades indicadas na tabelas [3,4,5]:

Contaminante	Altos Fornos	Fornos Abertos
Partículas	12	9
Óxido Sulfúrico	35	42
Hidrocarbonetos	37	53

Tabela 3: Redução da Emissão a partir da Medida 1

Contaminante	Altos Fornos	Fornos Abertos
Partículas	25	20
Óxido Sulfúrico	18	31
Hidrocarbonetos	28	34

Tabela 4: Redução da Emissão a partir da Medida 2

Contaminante	Altos Fornos	Fornos Abertos
Partículas	17	13
Óxido Sulfúrico	56	49
Hidrocarbonetos	29	20

Tabela 5: Redução da Emissão a partir da Medida 3

Cada medida tem associado os custos anuais conforme a tabela 5.

Além disso, estas medidas podem ser implementadas parcialmente. Por exemplo, se implementar na sua totalidade, isto é 100%, a medida 1 conseguir-se-á reduzir a emissão dos contaminantes A, B e

Método de Redução	Altos Fornos	Forno Aberto
Chaminés mais Altas	8	10
Filtros	7	6
Melhores Combustíveis	11	9

Tabela 6: Custo Anual em milhões de dólares

C em 12, 35 e 37 milhares de toneladas, respectivamente. Caso contrário, se implementar esta medida parcialmente (por exemplo, só em 50% do previsto), apenas se reduzirá a emissão em 6, 17.5 e 18.5 milhares de toneladas, respectivamente.

Determinar um plano ótimo que, aplicando as medidas expostas (total ou parcialmente) nos fornos emissores, consiga o índice de maior redução da contaminação, com o menor custo.

6) Resolva graficamente os PPLs abaixo:

a)

Max $(z = x_1 + x_2)$ sujeito a: $x_1 + x_2 \le 4$ $x_1 - x_2 \ge 5$ $x_1, x_2 \ge 0$

b)

Max $(z = 4x_1 + x_2)$ sujeito a: $8x_1 + 2x_2 \le 16$ $5x_1 + 2x_2 \le 12$ $x_1, x_2 \ge 0$

c)

Max $(z = -x_1 + 3x_2)$ sujeito a: $x_1 - x_2 \le 4$ $x_1 + 2x_2 \ge 4$ $x_1, x_2 \ge 0$

d)

Max $(z = 3x_1 + x_2)$ sujeito a: $2x_1 + x_2 \le 6$ $x_1 + 3x_2 \le 9$ $x_1, x_2 \ge 0$