

GMP102 数字气压传感器

概述

GMP102 为一款高精度数字气压传感器芯片,可满足精确压力测量应用的严苛要求,如四联直升机高度控制和便携式导航设备。芯片将压力和温度传感器内嵌於仅有 $2.0\times2.5\times1.05~\text{mm}^3$ 封装内,其中压力芯片采用行业标准的压阻技术,具有世界公认的长期稳定和抗 EMC 的优良特性。内嵌有高性能的 24 位元模数转换模块,提供高达 0.18 Pa 的压力分辨率,以及最高可达 0.004 C 的温度分辨率。芯片具有 300 至 1100 hPa 的宽广工作范围,完整涵盖了地球表面上的所有高度。

GMP102 可以精确地量测绝对大气压力,换算成高度最大分辨率可達 10 厘米。多个操作选项可提供用户对功耗,分辨率和滤波器性能优化的灵活度。

主要特点

O 工作范围:

■ 压力:300~1100hPa(绝压)

■ 温度:-40~+85℃

O 内嵌 24 位元 ADC:

■ 压力分辨率:高达 0.18Pa

■ 温度分辨率:最高可达 0.004℃

O 数字接口:

■ I2C 支持标准和快速模式

■ SPI 三/四线模式,最高时钟频率 10MHz

O 电源电压:

■ VDD: $+1.7V\sim+5.5V$

■ VID: $+1.2V \sim +5.5V$

O 功耗:

■ 待机~1uA

O RoHS 合规包装:

■ 附金属盖的 8 管脚 LGA

■ 覆盖区: 2.0×2.5 mm²

■ 高度: 1.05 mm

应用

上升/下降速度估计,高度和气压测量,室内导航运用时的楼层/电梯侦测,GPS 应用,医疗保健的活动追踪应用。

Top View

Bottom View

工程规格

表 1:管脚描述

管脚编号	符号	描述
1	GND	0V 供电
2	CSB	I2C/SPI 模式选择,高电平 I2C 模式,低电平 SPI 模式
		I2C 模式下作 SDA,串行数据线
3	SDI/SDA	SPI 四线模式下作 SDI,串行数据输入
		SPI 三线模式下作 SDA,串行数据线
4	SCK/SCL	I2C 模式下串行时钟 SCL
4	SCN/SCL	SPI 模式下串行时钟 SCK
5	SDO	I2C 模式下从设备地址选择线
3	SDO	SPI 模式下串行数据输出
6	VID	I/O 口电源电压
7	GND	0V 供电
8	VDD	电源供电

表 2: 电气和机械参数

参数	符号	测试条件	最小值	典型值	最大值	单位
供电电压	VDD		1.7	_	5.5	V
IO 供电电压	VID		1.2	_	VDD	V
温度范围	Ta		-40	25	+85	°C
压力范围	Р		300	_	1100	hPa
操作电流 OSR=256 OSR=1024 OSR=4096 OSR=16384 <u>OSR=32768 (default)</u>	IDD	VDD = 3.3V 20Hz 压力和温度转换	_	97 120 190 420 800	_	uA
付 待机电流	IDDSD	在上电复位和软复位后	_	1		uA
压力相对精度	PREL	在 25°C to 40°C 的恒 定温度下 压力范围 从 700 to 950 hPa。	_	±0.12	_	hPa
压力温漂系数	TCO		_	±1.5	_	Pa/K
压力绝对精度	PABS		_	1	_	hPa
压力噪声			_	1.9		Pa RMS

》。 《日 · · · · · · · · · · · · · · · · · · ·	TADO	@25°C	_	0.5	_	°C
温度绝对精度	TABS	-40 to 85°C	_	1	_	°C
压力长期稳定度			_	±1	_	hPa

表 3:极限参数

参数	符号	最小值	最大值	单位
电源电压	VDD, VID	-0.3	6.5	V
任一控制管脚电压	VIS	-0.3	VDD/VID + 0.3	V
压力	PMAX	0	20000	hPa
贮存温度	TST	-40	+125	°C
ESD	HBM	_	±2	kV

框图和应用电路

图 1:GMP102 框图

图 2:GMP102 I2C 典型应用电路

图 3:GMP102 SPI 四线典型应用电路

图 4:GMP102 SPI 三线典型应用电路

功能描述

电源管理

GMP102 有两个独立的电源管脚: VDD 和 VID。 VDD 是所有内部模拟和数字功能模块的主要电源管脚。 VID 为数字接口提供参考电压位准。

当电源上电后,上电复位(POR)电路将被激活,内部电路和寄存器会被复位。在POR程序后,所有寄存器将被复位为默认值,而GMP102则切换成待机模式。

复位功能

GMP102 有如下的两种类型的复位:

- 上电复位 (POR): 如前段电源管理部分所述。
- 软复位:将 0x24 写到 RESET 寄存器(00h)会触发器件软复位,在软复位后所有寄存器会被复位为默认值。

初始化步骤

在 POR 上复位电后,GMP102 将自动复位为待机模式。建议执行以下初始化步骤:

- 1. 将 0x24 写到 RESET 寄存器 (00h) 进行软复位。
- 2. 从寄存器 AAh 到 BBh 读取 18 个字节的校准参数。保留这些参数用于压力传感器校准。
- 3. 将四个寄存器 AAh~ADh 设置为 0x00。

电源模式

GMP102 提供三种电源模式,即待机,P强制和T强制模式,可以通过设置 30h [3:0] (Measure_CTRL [3:0]) 位来设定。详细信息,请参阅 30h 寄存器的描述。

不同模式之间的转换如图 5 所示。

图 5:电源模式转移图

● 待机模式 (Standby mode)

完成 POR 程序后,GMP102 将进入待机模式。在此模式下,数据测量停止,功耗最小。此时仍可以访问所有寄存器,包括 PID 和校准参数寄存器。

● P强制模式 (P-Forced mode)

在 P 强制模式下,GMP102 将进行一次的压力测量,并自动返回待机模式,此时可从压力数据寄存器读取测量结果。用户需要再次设置为 P 强制模式以进行另一个压力测量。 P 强制模式的时序图如下图 6 所示。

为使模数转换的输出为原始压力以供后续校准使用,在设置为 P 强制模式之前,需确保寄存器 A5h [1] (Raw)位值为 1'b1。以下总结单次压力量测步骤:

- 1. 确认 A5h [1] (Raw) 位已设置。如果没有,请设置 A5h = 0x02。
- 2. 通过设置 30h = 0x09 设置为 P 强制模式。

- 3. 检查 02h [0](DRDY)位,并等待其值设置。当 DRDY = 1'b1 时模数转换已完成,可从压力数据 寄存器中读取数据。
- 4. 读取压力数据寄存器(06h~08h)的原始压力模数转换输出。

图 6:P 强制模式时序图

● T强制模式 (T-Forced Mode)

在 T 强制模式下,GMP102 将进行一次温度测量,并自动返回待机模式,此时可从温度数据寄存器读取测量结果。 用户需要再次设置为 T 强制模式进行另一个温度测量。 T 强制模式的时序图如下图 7 所示。为使模数转换的输出为校准温度,在设置为 T 强制模式之前,需确保 A5h [1] (Raw) 位值为 1'b0。 以下总结单次温度量测步骤:

- 1. 确保 A5h [1] (Raw) 位未设置。 如果不是这样,请设置 A5h = 0x00。
- 2. 通过设置 30h = 0x08 设置为 T 强制模式。
- 3. 检查 02h [0](DRDY)位,并等待其值为设置。当 DRDY = 1'b1 时模数转换已完成,可从温度数据寄存器中读取数据。
- 4. 读取温度数据寄存器(09h~0Ah)的校准温度模数转换输出。

图 7:T 强制模式时序图

使用者寄存器

表 4:寄存器列表

Addr.	Name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Access	Default
00h	RESET	SPI4W	R'ved	RST	0	0	RST	R'ved	SPI4W	RW	0x00
01h	PID				PID	[7:0]				R	0x02
02h	STATUS		Rese	rved		0	0	0	DRDY	R	NA
06h	PRESSH				Pressure	[23:16]				R	NA
07h	PRESSM				Pressur	e [15:8]				R	NA
08h	PRESSL			R	NA						
09h	TEMPH				Temperat	ture[15:8]				R	NA
0Ah	TEMPL				Tempera	ture[7:0]				R	NA
30h	CMD		Rese	rved		N	/leasure_0	CTRL[3:0)]	RW	0x00
A5h	CONFIG1			Rese	erved			Raw	Reserved	RW	0x00
A6h	CONFIG2		Reserved OSR[2:0]								0x1F
AAh	Calib00										
~	~		Calibration data								NA
BBh	Calib17										

寄存器描述

寄存器 00h: RESET 寄存器

Addr.	Name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Access	Default
00h	RESET	SPI4W	R'ved	RST	0	0	RST	R'ved	SPI4W	RW	0x00

将 0x24 写到 RESET 寄存器(00h)会触发器件软复位,在软复位后所有寄存器会被复位为默认值,而 RST 位也会自动回到 1'b0。

SPI4W 位用以选择 SPI 三线或四线模式 默认值 0x00 为 SPI 三线模式 将 0x81 写到 RESET 寄存器(00h) 可选择 SPI 四线模式。

寄存器 01h: PID 寄存器

Addr.	Name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Access	Default
01h	PID		PID[7:0]							R	0x02

PID 寄存器存有产品识别字节,其值固定为 0x02。PID 寄存器在器件完成上电复位后即可读取。

寄存器 02h: STATUS 寄存器

Addr.	Name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Access	Default
02h	STATUS		Rese	rved		0	0	0	DRDY	R	NA

当数据模数转换完成后,STATUS 寄存器的 DRDY 位就会被设置为 1'b1,此时可从数据寄存器中读取压力或是温度的数据。

寄存器 06h~08h: 压力数据寄存器

Addr.	Name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Access	Default
06h	PRESSH			R	NA						
07h	PRESSM		Pressure [15:8]								NA
08h	PRESSL			R	NA						

模数转换后的压力数据为 24 位补码 (2' complement) 编码,储存在三个压力数据寄存器裡。也就是当最高有效位 (bit 23) 为 1'b1 时,代表压力数据为负值。

读取模数转换后的原始压力数据后,需搭配每颗独一的校准参数(从 AAh~BBh 寄存器读取),经由校准公式的计算后便可得到气压数据。相关校准公式参考代码可洽 GMEMS 提供。

寄存器 09h~0Ah: 温度数据寄存器

Addr.	Name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Access	Default
09h	TEMPH		Temperature[15:8]								NA

0Ah	TEMPL	Temperature[7:0]	R	NA	İ
-----	-------	------------------	---	----	---

模数转换后的温度数据为 16 位补码(2' complement)编码,储存在两个压力数据寄存器裡。也就是当最高有效位(bit 15)为 1'b1 时,代表压力数据为负值。

模数转换后的校准温度数据的灵敏度为 256 LSB/ $\mathbb C$,零值数据(0x00)为 0 $\mathbb C$ 。因此摄氏温度和温度数据可由下列的公式转换:

$$T (^{\circ}C) = \frac{Temperature[15:0]}{256}$$

寄存器 30h: CMD 寄存器

Addr.	Name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Access	Default
30h	CMD	Reserved				N	/leasure_0)]	RW	0x00	

Measure_CTRL[3:0]位控制模数转换模式,在每个单次转换后,GMP102 会自动回到待机模式。有效设定值如下表所示。

Measure_CTRL[3:0]	电源模式			
4" _b 1000	T强制模式			
4'b1000	进行单次温度模数转换			
4"h1001	P强制模式			
4'b1001	进行单次压力模数转换			
Others	保留			

寄存器 A5h: CONFIG1 寄存器

Addr.	Name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Access	Default
A5h	CONFIG1		Reserved				Raw	0	RW	0x00	

在设置 T 强制模式以进行单次温度测量前,需将 Raw 位设为 1'b0,以使模数转换的输出为校准温度。校准温度数据可由温度数据寄存器读取($09h\sim0Ah$)。

在设置 P 强制模式以进行单次压力测量前,需将 Raw 位设为 1'b1,以使模数转换的输出为原始压力。原始压力数据可由压力数据寄存器读取(06h~08h),需搭配每颗独一的校准参数(从 AAh~BBh 寄存器读取),经由校准公式的计算后便可得到气压数据。相关校准公式参考代码可治 GMEMS 提供。

寄存器 A6h: CONFIG2 寄存器

Addr.	Name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Access	Default
A6h	CONFIG2			Reserved			OSR[2:0]		RW	0x1F	

OSR[2:0]位决定压力模数转换的过采样率(oversampling ratio),其设定总结如下表。

OSR[2:0]	转换时间 (ms)	过采样率	典型分辨率 (ENOB)
3'b000	2.5	1024	17.8
3'b001	3.78	2048	18.2
3'b010	6.34	4096	18.7
3'b011	11.46	8192	19.1
3'b100	1.54	256	17
3'b101	1.86	512	17.3
3'b110	21.7	16384	19.4
3'b111	42.18	32768	19.7

数字接口: I2C 模式

I2C 总线概述

GMP102 的 I2C 总线接口是从设备,支持标准(100kHz)和快速(400kHz)模式,控制命令为 7 位。 主机可以通过串行数据线(SDA)和串行时钟线(SCL)两根信号线对芯片进行寄存器的存取和设置。. 芯片 I2C 的 7 位从设备地址可经由 SAO 管脚来设定,总结如下表所列。

SA0	7位从设备地址
低电平	0x6C
高电平	0x6D

芯片 I2C 总线由 SCL 从主机获得时钟,并经由 SDA 和主机作双向通信:主机可发送数据到从设备,而从设备也可发送资料到主机。 两根信号线都为漏极开路(open-drain)管脚,需通过上拉电阻连接到VID。芯片 I2C 接口支援批量读写模式,在批量读写模式时,内部的地址会自动增加以便下笔资料读写。

I2C 操作:标准和快速模式

代表是读,如为 1'b0(RW=1'b0)则代表是写。

每个 SCL 周期, SDA 传输一个位的数据。SCL 高期间的 SDA 电位转换为控制信号,所以在数据传输时,SDA 不可於 SCL 高期间转换电位。当总线空闲时,两根数据线都为高。

总线传输通过主机的一个 START 信号(ST)开始。ST 信号为在 SCL 高期间,SDA 有一个高到低的变化。当传输完成,主机可通过一个 STOP 信号(SP)来终止。SP 信号为在 SCL 高期,SDA 有一个从低到高的变化。总线如果收到重复 START 信号(SR)而非 SP,则可继续传输。START 和 STOP 信号的时序如图 8 所示。

图 8: I2C START 和 STOP 信号

SCL

SDA

Start
Condition

Stop
Condition

7位从地址加上一个读写控制位(RW)构成了完整的从设备地址。如果读写控制位为 1'b1(RW=1'b1),

在ST信号后,主机会传送一个7位的寻地址加上一个读写控制位(RW)共一个字节。如果这个7位寻地址和芯片从设备地址不同,芯片不会有任何回应,而接下来的数据传输也不会对芯片有任何作用。如果这个寻地址和芯片的从设备地址相同,芯片会返回ACK。ACK是在第九个CLK上芯片把SDA拉到低电平来完成,之后芯片会把SDA释放以进行后续的数据传输。ACK信号时序图如图9所示。

图 9:ACK 信号时序图

主机写入一或多个字节到芯片时,包括以下通讯:主机发送一个 START 信号,再发送一个 7 位的寻地址加上写控制位(RW=1'b0)共一个字节,芯片返回 ACK,再发送一个字节的寄存器地址,芯片返回 ACK,接下来就是要写的一或多个数据字节,和其间芯片返回的 ACK,最后主机发送 STOP 信号终止整个通信。 图 10 中的 "Single Write" 统整了写入单一字节时的通讯格式,而"Multiple Write"则统整了批量写入多个字节的通讯格式。

图 10: I2C 操作:标准和快速模式

主机从芯片读取一或多个字节时,包括以下通讯:主机发送一个 START 信号,再发送一个 7 位的寻地址加上写控制位(RW=1'b0)共一个字节,芯片返回 ACK,再发送一个字节的寄存器地址,芯片返回 ACK 接着主机发送重复 START 信号 和一个 7 位的寻地址加上读控制位(RW=1'b1)共一个字节 RW=1'b1 代表主机开始读取动作,芯片返回 ACK 后,开始将指定寄存器地址的数据传回,主机在正确收到每个字节后,需返回 ACK,而芯片会将寄存器地址自增,再将该地址数据传回,直到最后主机返回 NACK 才停止发送,最后主机发送 STOP 信号终止整个通信。图 10 中的"Single Read"统整了读取单一字节时的通讯格式,而"Multiple Read"则统整了批量读取多个字节的通讯格式。

I2C 工程规格

表 5: I2C 接口参数:标准模式

Parameter	Symbol	Minimum	Typical	Maximum	Unit
SCL clock frequency	fscl	_	_	100	kHz
Clock low period	t low	4.7		_	μs
Clock high period	t high	4	_	_	μs
Start hold time	thd.sta	4	—	_	μ s
Start setup time	t su.sta	4.7		_	μ s
Data-in hold time	thd.dat	0		_	μ s
Data-in setup time	t su.dat	250	_	_	ns
Stop setup time	t su.sto	4	—	_	μ s
Rise time	t r			1	μs
Fall time	t f	_	_	0.3	μ s

表 6: I2C 接口参数: 快速模式

Parameter	Symbol	Minimum	Typical	Maximum	Unit
SCL clock frequency	fscl	_	_	400	kHz
Clock low period	tlow	1.3	_	_	μs
Clock high period	t high	0.6	_	_	μs
Bus free to new start	t buf	1.3	—	_	μs
Start hold time	t hd.sta	0.6	—	_	μs
Start setup time	tsu.sta	0.6			μs
Data-in hold time	t hd.dat	0			μ s
Data-in setup time	t su.dat	100	—	_	ns
Stop setup time	tsu.sto	0.6		_	μ s
Rise time	tr	_	—	0.3	μ s
Fall time	tf			0.3	μs
Spike width	tsp			50	μs

图 11: I2C 时序图: 标准和快速模式

数字接口: SPI 模式

SPI 总线概述

GMP102 的 SPI 总线接口是从设备,支持三线和四线模式,可由 RESET 寄存器(00h)选择,详细请见 00h 寄存器的描述。

CSB 是 SPI 使能信號,由 SPI 主机控制,在 SPI 传输前变低,在 SPI 传输后变高。SPI 传输起始於 CSB 的下降沿,第一阶段传输 16 个位的控制字组,接着传输多个资料字节,每个資料字节是 8 个位。

第一个阶段的16位控制字组如下图所示,可分成三个部分。

图 12: SPI 16 位控制字组

第一个部分 R/W 是读/写控制位,当读写控制位为 1'b1(R/W=1'b1),代表是读,如为 1'b0(RW=1'b0)则代表是写。

第二个部分有两个位,W1 和 W0,他们代表了要传输的字节数目。当传输字节数目不多於三个时(W1:W0=2'00, 2'b01 or 2'b10),CSB 在字节边界可上升为高电平而不会中断本次传输,如 CSB 在非字节边界上升为高电平则会中断本次传输。当 W1:W0=2'11 时,资料字节可持续传输到 CSB 上升到高电平为止,CSB 不可在整个传输过程中上升到高电平否则会中断本次传输。下表总结了 W1 和 W0 所有设定值的行为。

CSB 是否可在字节边 W1:W0 描述 界上升为高电平 2'b00 可传输一个字节的资料 可 2'b01 可传输两个字节的资料 可 可传输三个字节的资料 可 2'b10 可传输多个字节的资料直到 CSB 上升到 高电平为止。CSB 在整个传输过程必须维 2'b11 不可 持低电平。

表 7: W1/W0 设定值

第三个部分包含其它 13 个位,代表资料的寄存器起始地址,如果有多个字节要传输,则会由该起始地址自动增加。

资料字节在 16 位控制字组后发送,每个字节为 8 个位,可藉由 W1:W0 的设定实现多字节的传输。图 13 举例说明 SPI 传输 2 个字节的时序图。

图 13: SPI 访问时序图

表 8:SPI 接口参数

Parameter	Symbol	Minimum	Maximum	Unit
SCK clock frequency	$\mathbf{f}_{\mathrm{SCK}}$	_	10	MHz
SCK clock low pulse	tsckl	20	_	ns
SCK clock high pulse	tsckh	20	_	ns
SDI setup time	$t_{\mathrm{SDI_setup}}$	20	_	ns
SDI hold time	${ m tsDI_hold}$	20	_	ns
SDO/SDI output delay	tsdo_od	_	30 (25pF) 40 (250pF)	ns
CSB setup time	$t_{\mathrm{CSB_setup}}$	20	_	ns
CSB hold time	$t_{\mathrm{CSB_hold}}$	40	_	ns

图 14: SPI 时序图

封装

封装外形尺寸图

图 15: 封装外形尺寸图

PCB 贴片的布局建议

图 16: PCB 贴片的布局建议

RoHS 合规

LGA 附金属盖封装的 GMEMS 传感器,符合"关于限制在电子电器设备中使用某些有害成分的指令" (RoHS),具有无卤模塑料(绿色)和无铅端子。以适用于这些工艺的回流焊温度曲线可以成功地用于 焊接元件。

湿敏等级

GMP102 封装 MSL 等级是第 3 级。

包装捲带规格

图 17:包装捲带外观尺寸图

表 9: 包装捲带尺寸

符号	尺寸 (mm)		
\mathbf{A}_0	2.35 ± 0.1		
${f B}_0$	2.85 ± 0.1		
K ₀	1.25 ± 0.1		
P ₀	4.0 ± 0.1		
P ₁	8.0 ± 0.1		
P_2	2.0 ± 0.05		
Т	0.3 ± 0.05		
E	1.75 ± 0.1		
F	5.5 ± 0.05		
D_0	1.5+ 0.1/-0		
D_1	Min. 1.5		
W	12.0 ± 0.3		

版本	描述	日期
V1.0	正式版首次发行	2018/2/6