11/21/24, 10:52 AM Homework 7

Homework 7

Question 1

minimum: 2^h

 $\mathsf{maximum:}\ 2^{h+1}-1$

Question 2

parent node is always \geq number of children for any subtree the max element must be root of that subtree

Question 3

minimum value of max heap must be in leaf nodes. For heap of size n, leaf nodes are located from index $\left|\frac{n}{2}\right|$ to n-1

Question 4

- **Purpose:** maintain max heap property by ensuring that a node is \geq its children
- **Function:** compares node with children and swaps with largest child if necessary, then recursively ensures max heap property for affected subtree
- **Correctness:** only swapping root with largest child ensures largest element is at root of subtree and leaves do not need heapifying

Question 5>

works by calling max_heapify on each non-leaf node starting at bottom of tree; ensures all subtrees are max heaps

Question 6

- 1. builds max heap from unsorted array
- 2. repeatedly swaps root of heap with last element and reduces heap size by one
- 3. calls max_heapify on root to restore max heap property
- 4. continues until heap size = 1

Question 7

11/21/24, 10:52 AM Homework 7

• if binary seach tree node has two children, successor is leftmost node in right subtree, which has no left child

• predecessor is rightmost node on left subtree, which has no right child

Question 8

in-order walk visists each node once, and each call to TreeSuccessor takes constant time, therefore time complexity is $\Theta(n)$

Question 9

- **Binary Search Tree Property:** for any node, all keys in left subtree are smaller, and all keys in right subtree are larger
- Max Heap Property: for any node, node's key is \geq key of its children
 - \circ max heap property cannot be used to print keys in sorted order in linear time because extracting max element and maintaining heap property takes logarithmic time for each element; sorting time complexity $= O(n \log n)$