CLAIMS

1. A process for preparing silicon-bridged metallocene compounds of formula (I):

$$(Cp)(SiR^{1}_{2})(Cp)ML_{q}$$
 (I

wherein (SiR¹₂) is a divalent group bridging the two Cp rings, the R¹ groups, equal to or different from each other, are hydrogen atoms, or linear or branched, saturated or unsaturated C₁-C₂₀ alkyl, C₃-C₂₀ cycloalkyl, C₆-C₂₀ aryl, C₇-C₂₀ alkylaryl or C₇-C₂₀ arylalkyl groups, two R¹ can optionally join to form a 3-7 membered ring;

Cp, equal to or different from each other, is a substituted or unsubstituted cyclopentadienyl group, optionally condensed to one or more substituted or unsubstituted, saturated, unsaturated or aromatic rings, containing from 4 to 6 carbon atoms, optionally containing one or more heteroatoms;

M is a transition metal belonging to group 3, 4, 5, 6 or to the lanthanide or actinide groups of the Periodic Table of the Elements (IUPAC version);

the substituents L, equal to or different from each other, are monoanionic sigma ligands selected from the group consisting of linear or branched, saturated or unsaturated C_1 - C_{20} alkyl, C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_7 - C_{20} alkylaryl and C_7 - C_{20} arylalkyl groups, optionally containing one or more Si or Ge atoms;

q is an integer ranging from 0 to 2, being equal to the oxidation state of the metal M minus 2;

said process comprises the following steps:

- a) reacting, at a temperature of between -10°C and 70°C, a ligand of formula (Y-Cp)(SiR¹2)(Cp-Y) with about 2 molar equivalents of an alkylating agent of formula TH_w, L_jB or LMgL', wherein Cp, R¹, and L have the meaning reported above; T is lithium, sodium or potassium, H is an hydrogen atom, w is 0 or 1, when w is 0 the compound TH_w is metallic lithium, sodium or potassium, when w is 1 the compound of formula TH_w is an hydride of lithium, sodium or potassium; L' is an halogen atom selected from chlorine, bromine and iodine; B is an alkali or alkali-earth metal; and j is 1 or 2, j being equal to 1 when B is an alkali metal, and j being equal to 2 when B is an alkali-earth metal; the groups Y, the same or different from each other, are suitable leaving groups;
- b) after the reaction has been completed, adding at least q molar equivalents of an alkylating agent of formula LiB or LMgL'; and

c) reacting, at a temperature of between -10°C and 70°C, the product obtained from step b) with at least 1 molar equivalent of a compound of formula ML's, wherein M have the meaning reported above; s is an integer corresponding to the oxidation state of the metal and ranges from 3 to 6; and L' is an halogen atom selected from chlorine, bromine and iodine.

2. The process according to claim 1, for preparing a silicon-bridged metallocene compound of formula (II):

$$R^{5}$$
 R^{6}
 R^{7}
 R^{7}
 R^{6}
 R^{7}
 R^{7}
 R^{6}
 R^{7}
 R^{6}
 R^{7}
 R^{6}
 R^{7}
 R^{7}
 R^{7}
 R^{6}
 R^{7}
 R^{7

wherein:

M, L, q and R¹ have the meaning reported in claim 1;

 R^2 , equal to or different from each other, are hydrogen atoms or linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

R³, R⁴, R⁵, R⁶ and R⁷, equal to or different from each other, are hydrogen atoms or linear or branched, saturated or unsaturated C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; two vicinal R³, R⁴, R⁵, R⁶ and R⁷ can also form one or more condensed 5 or 6 membered saturated or unsaturated rings optionally containing heteroatoms belonging to groups 13-16 of the Periodic Table of the Elements, said rings can bear alkyl substituents; said process comprises the following steps:

a) reacting, at a temperature of between -10°C and 70°C, a ligand of formula (III)

or one of its double bond isomers;

wherein R¹, R², R³, R⁴, R⁵, R⁶ and R⁷ have the meaning described above; with about 2 molar equivalents of an alkylating agent of formula TH_w, L_jB or LMgL', wherein L has the meaning reported above; T is lithium, sodium or potassium, H is an hydrogen atom, w is 0 or 1, when w is 0 the compound TH_w is metallic lithium, sodium or potassium, when w is 1 the compound of formula TH_w is an hydride of lithium, sodium or potassium, L' is an halogen atom selected from chlorine, bromine and iodine; B is an alkali or alkali-earth metal; and j is 1 or 2, j being equal to 1 when B is an alkali metal, and j being equal to 2 when B is an alkali-earth metal; the groups Y, the same or different are suitable leaving groups;

- b) after the reaction has been completed, adding at least q molar equivalents, of a compound of formula L_iB or LMgL'; and
- c) reacting, at a temperature of between -10°C and 70°C, the product obtained from step b) with at least 1 molar equivalent of a compound of formula ML's, wherein M have the meaning reported above; s is an integer corresponding to the oxidation state of the metal and ranges from 3 to 6; and L' is an halogen atom selected from chlorine, bromine and iodine.
- 3. The process according to claims 1 or 2, for preparing a silicon-bridged metallocene compound of formula (IV):

$$R^8$$
 R^8
 R^8

wherein:

M, L, q, R^1 , R^2 , R^3 , R^5 , R^6 and R^7 have the meaning described in claims 1 or 2; and R^8 is a hydrogen atom, or a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl radical, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

said process comprises the following steps;

a) reacting, at a temperature of between -10°C and 70°C, a ligand of formula (V)

or one of its double bond isomers;

wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ have the meaning described above; with about 2 molar equivalents of an alkylating agent of formula TH_w, L_jB or LMgL', wherein L has the meaning reported above; T is lithium, sodium or potassium, H is an hydrogen atom, w is 0 or 1, when w is 0 the compound TH_w is metallic lithium, sodium or potassium, when w is 1 the compound of formula TH_w is an hydride of lithium, sodium or potassium, L' is an halogen atom selected from chlorine, bromine and iodine; B is an alkali or alkali-earth metal; and j is 1 or 2, j being equal to 1 when B is an alkali metal, and j being equal to 2 when B is an alkali-earth metal; the groups Y, the same or different from each other, are suitable leaving groups;

- b) after the reaction has been completed, adding at least q molar equivalents of a compound of formula L_iB or LMgL'; and
- c) reacting, at a temperature of between -10°C and 70°C, the product obtained from step b) with at least 1 molar equivalent of a compound of formula ML's, wherein M have the meaning reported above; s is an integer corresponding to the

oxidation state of the metal and ranges from 3 to 6; and L' is an halogen atom selected from chlorine, bromine and iodine.

- 4. The process according to anyone of claims 1 to 3 wherein step b) is carried out in a time ranging from 1 minute to 6 hours after step a).
- 5. The process according to anyone of claims 1 to 4 wherein Y is a hydrogen atom or a -SiR₃ or -SnR₃ group, wherein the groups R are linear or branched saturated or unsaturated C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl radicals.
- 6. The process according to anyone of claims 1 to 5 wherein the metal M is Ti, Zr or Hf.
- 7. The process according to anyone of claims 1 to 6 wherein the compounds ML_s are ZrCl₄, ZrBr₄, ZrF₄, HfCl₄, HfBr₄, HfF₄, TiCl₄, TiBr₄ and TiF₄;
- 8. The process according to anyone of claims 1 to 7 wherein in step b) 1+q molar equivalents of a compound of formula L_jB or LMgL' wherein L, L' and B have the meaning as described in claim 1 is added.
- 9. The process according to anyone of claims 1 to 8 wherein step a) and b) are carried out at a temperature ranging from -5°C and +55°C.
- 10. The process according to anyone of claims 1 to 9 wherein step c) is carried out at a temperature ranging from 0°C and 60°C.