Exercise sheet 4

Chapter 2: Propositional logic

Exercise 1: Revisiting Resolution

Check if the given formula is satisfiable or not using resolution. The formula already is in CNF, so you can immediately apply resolution

$$F = (C \vee \neg A) \wedge D \wedge (D \vee A) \wedge (E \vee B) \wedge (\neg C \vee A \vee B) \wedge E \wedge (\neg D \vee \neg A) \wedge (C \vee \neg B) \wedge (\neg E \vee \neg B) \wedge C$$

4 points

Chapter 3: Computability

Exercise 2: Introduction to Computability

Establish an (informal) proof (by contradiction) to show that it is in general undecidable whether a given program run on a given input will always eventually halt. Your solution should include pseudo-code for all the tester functions and **detailed** step-by-step explanations.

Hint: 2 tester functions succeed to derive the desired contradiction

This will be similar to the proof for the 'Hello, World' program seen in course, take a look at that proof, similar arguments can be made for this proof.

 $6\ points$

Chapter 4: Computability and Complexity Exercise: Deterministic Turing Machines

Turing Machines can be represented in different ways. Below you see a TM M_1 described by a finite state diagram and a TM M_2 described by a formal description.

Give the formal description of M_1 as well as the finite state representation of M_2 , then, for both M_1 and M_2 , explain their behaviour in your own words and give a sample input and output (using the notation from the simulator seen in class). The working alphabet for both will be $\Gamma = \{0, 1, B\}$, where B is the "blank symbol".

 M_1 :

$$M_2: (\{q_0,q_1,q_2,q_3\},\{0,1\},\{0,1,B\},\delta,q_0,B,\{q_3\}) \text{ where:} \\ \delta(q_0,0) = (q_0,0,R) \\ \delta(q_0,1) = (q_0,1,R) \\ \delta(q_0,B) = (q_1,1,L) \\ \delta(q_1,0) = (q_2,0,R) \\ \delta(q_1,1) = (q_3,1,R) \\ \delta(q_2,1) = (q_3,0,R)$$

Optionally, you can implement the two Turing Machines M_1 and M_2 in the TM Simulator if you want to get familiar with its syntax or check the outputs on different inputs

10 points