

HCC/HCF40182B

LOOK-AHEAD CARRY GENERATOR

- GENERATES HIGH-SPEED CARRY ACROSS FOUR ADDERS OF ADDER GROUPS
- HIGH-SPEED OPERATIONAL : t_{PHL} = t_{PLH} = 100ns (typ.) @ V_{DD} = 10V
- CASCADABLE FOR FAST CARRIES OVER N BITS
- DESIGNED FOR USE WITH HCC/HCF40181B ALU
- STANDARDIZED, SYMMETRICAL OUTPUT CHARACTERISTICS
- QUIESCENT CURRENT SPECIFIED AT 20V FOR HCC DEVICE
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDECTEN-TATIVE STANDARD N° 13A, "STANDARD SPE-CIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The **HCC40182B** (extended temperature range) and HCF40182B (intermediate temperature range) are monolithic integrated circuits, available in 16lead dual in-line plastic or ceramic package and plastic micro package. The HCC/HCF40182B is a high-speed look-ahead carry generator capable of anticipating a carry across four binary adders or groups of adders. The HCC/HCF40182B is cascadable to perform full look-ahead across n-bit adders. Carry, propagate-carry, and generate-carry functions are provided as enumerated in the terminal designation below. The HCC/HCF40182B, when used in conjunction with the HCC/HCF40181B arithmetic logic unit (ALU), provides full high-speed look-ahead carry capability for up to n-bit words. Each HCC/HCF40182B generates the look-ahead (anticipated carry) across a group of four ALU's. In addition, other HCC/HCF40182B's may be emplayed to anticipate the carry across sections of four look-ahead blocks up to n-bits. Carry inputs and outputs of the HCC/HCF40181B are active-high logic. and carry-generate (G) and carry-propagate (P) outputs are active low. Therefore the inputs and outputs of the HCC/HCF40182B are compatible. The HCC/HCF40182B is similar to industry type MC14582.

June 1989 1/12

FUNCTIONAL DIAGRAM

TERMINAL DESIGNATIONS TABLE

Pin Name	Pin	Function
$\overline{G0}, \overline{G1}, \overline{G2}, \overline{G3}$	3, 1, 14, 5	Active-low Carry-generate Inputs
P0, P1, P2, P3	4, 2, 15, 6	Active-low Carry-propagate Inputs
C _n	13	Active-high Carry Input
$C_{n+X}, C_{n+Y},$	12, 11, 9	Active-high Carry Outputs
C_{n+Z}		
G	10	Active-low Group Carry-generate Output
P	7	Active-low Group Carry-propagate Output

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage : HCC Types HCF Types	- 0.5 to + 20 - 0.5 to + 18	V
Vi	Input Voltage	- 0.5 to V _{DD} + 0.5	V
II	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor for Top = Full Package-temperature Range	200	mW mW
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C
T _{stg}	Storage Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability. * All voltages are with respect to Vss (GND).

RECOMMENDED OPERATING CONDITIONS

Parameter	Value	Unit
Supply Voltage: HCC Types	3 to 18	V
HCF Types	3 to 15	V
Input Voltage	0 to V _{DD}	V
Operating Temperature : HCC Types	- 55 to + 125	°C
	Supply Voltage : HCC Types HCF Types Input Voltage	Supply Voltage : HCC Types 3 to 18 HCF Types 3 to 15 Input Voltage 0 to V _{DD} Operating Temperature : HCC Types - 55 to + 125

LOGIC DIAGRAM

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

			-	Test Con	ditions	6	Value							
Symbol	ol Parameter		٧ı	٧o	ΙΙοΙ	V_{DD}	T∟	ow*		25°C		T _{Hi}	gh*	Unit
			(V)	(V)	(μA)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
ΙL	Quiescent		0/ 5			5		5		0.04	5		150	
	Current	HCC	0/10			10		10		0.04	10		300	
		Types	0/15			15		20		0.04	20		600	
			0/20			20		100		0.08	100		3000	μΑ
			0/ 5			5		20		0.04	20		150	
		HCF Types	0/10			10		40		0.04	40		300	
		1) 00	0/15			15		80		0.04	80		600	
V _{OH}	Output High	1	0/ 5		< 1	5	4.95		4.95	5		4.95		
	Voltage		0/10		< 1	10	9.95		9.95	10		9.95		V
			0/15		< 1	15	14.95		14.95	15		14.95		
V_{OL}	Output Low		5/0		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05]
V_{IH}	Input High			0.5/4.5	< 1	5	3.5		3.5			3.5		
	Voltage			1/9	< 1	10	7		7			7		V
				1.5/13.5	< 1	15	11		11			11		
V_{IL}	Input Low			4.5/0.5	< 1	5		1.5			1.5		1.5	V
	Voltage			9/1	< 1	10		3			3		3	
				13.5/1.5	< 1	15		4			4		4	
I _{OH}	Output		0/ 5	2.5		5	- 2		- 1.6	- 3.2		- 1.15		
	Drive Current	HCC	0/ 5	4.6		5	- 0.64		- 0.51	– 1		- 0.36		
	Current	Types	0/10	9.5		10	- 1.6		- 1.3	- 2.6		- 0.9		
			0/15	13.5		15	- 4.2		- 3.4	- 6.8		- 2.4		mA
			0/ 5	2.5		5	- 1.53		- 1.36	- 3.2		- 1.1		
		HCF	0/ 5	4.6		5	- 0.52		- 0.44	– 1		- 0.36		
		Types	0/10	9.5		10	- 1.3		- 1.1	- 2.6		- 0.9		
			0/15	13.5		15	- 3.6		- 3.0	- 6.8		- 2.4		
I _{OL}	Output	HCC	0/ 5	0.4		5	0.64		0.51	1		0.36		
	Sink Current	Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
	Ourient	, i	0/15	1.5		15	4.2		3.4	6.8		2.4		mA
		ПОЕ	0/ 5	0.4		5	0.52		0.44	1		0.36		
		HCF Types	0/10	0.5		10	1.3		1.1	2.6		0.9		
			0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Input Leakage	HCC Types	0/18	Any In	put	18		± 0.1		±10 ⁻⁵	± 0.1		± 1	пΔ
	Current	HCF Types	0/15	,		15		± 0.3		±10 ⁻⁵	± 0.3		± 1	μΑ
Cı	Input Capad	citance		Any In	put					5	7.5			pF

^{*} $T_{Low} = -55^{\circ}\text{C}$ for HCC device : -40°C for HCF device. * $T_{High} = +125^{\circ}\text{C}$ for HCC device : $+85^{\circ}\text{C}$ for HCF device.

DYNAMIC ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C, C_L = 50pF, R_L = 200k Ω , typical temperature coefficient for all V_{DD} values is 0.3%/°C, all input rise and fall time = 20ns)

Symbol	Parameter	Test Condition	Value			Unit	
Cymbol	r drameter		V _{DD} (V)	Min.	Тур.	Max.	Ome
t _{PHL}	Propagation Delay Time		5		200	400	
t _{PLH} ,	P, G, in to P G Out and Carry Outs		10		100	200	ns
			15		75	150	
	C _n to Carry Outs		5		240	480	
			10		120	240	ns
			15		90	180	
t _{THL}	Transition Time		5		100	200	
t _{TLH} ,	t _{TLH} ,		10		50	100	ns
			15		40	80	

Output Low (sink) Current Characteristics.

Typical Propagation Delay Time (P, G In to P, G Out and Carry-outs) vs. Load Capacitance.

Output High (source) Current Characteristics.

Typical Transition Time vs. Load Capacitance.

Typical Dynamic Power Dissipation vs. Input Frequency.

TYPICAL APPLICATIONS

16-BIT TWO-LEVEL LOOK-AHEAD ALU

64-BIT FULL CARRY LOOK-AHEAD ALU IN 3 LEVELS

TYPICAL APPLICATIONS (continued)

COMBINED TWO-LEVEL LOOK-AHEAD AND RIPPLE-CARRY ALU

TEST CIRCUITS

Quiescent Device Current.

Input Voltage.

Input Leakage Current.

Dynamic Power Dissipation.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm				
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch				
2	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			20			0.787		
В			7			0.276		
D		3.3			0.130			
Е	0.38			0.015				
e3		17.78			0.700			
F	2.29		2.79	0.090		0.110		
G	0.4		0.55	0.016		0.022		
Н	1.17		1.52	0.046		0.060		
L	0.22		0.31	0.009		0.012		
М	0.51		1.27	0.020		0.050		
N			10.3			0.406		
Р	7.8		8.05	0.307		0.317		
Q			5.08			0.200		

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (r	nax.)		

PLCC20 MECHANICAL DATA

DIM.		mm				
Dilli.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
М		1.27			0.050	
M1		1.14			0.045	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

