

Ministério da Educação Universidade Tecnológica Federal do Paraná Câmpus Medianeira Ciência da Computação

Biblioteca Scikit-learn

Emanuel Mello Nogueira de Oliveira

01 de novembro de 2022

1 DATASET

Dataset utilizado foi o brain_stroke.csv, um dataset utilizado para comparar dados relacionados a AVC, contendo os seguintes atributos: gender, age, hypertension, heart disease, ever married, work type, avg glucose level, bmi, smoking status, stroke. Cada um desses atributos contendo diferentes tipos de dados que foram formatados em dois datasets.

Brain_stroke_formated.csv que altera os dados para dados numericos, como gender: 1 macho, 0 femea, ever married: 1 sim, 0 não, work type: 1 child, 2 govt, 3 private, 4 self-employed, residence type: urban 1, rural 0, smoking status: formerly 1, never 2, smoke 3, unknow 4.

0	dataSet.head()											
D		gende	r ag	e hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
	0		1 67.	0 0	1	1	3	1	228.69	36.6	1	1
	1		1 80.	0 0	1	1	3	0	105.92	32.5	2	1
	2		49.	0 0	0	1	3	1	171.23	34.4	3	1
	3		79.	0 1	0	1	4	0	174.12	24.0	2	1
	4		1 81.	0 0	0	1	3	1	186.21	29.0	1	1

Representação do dataset Brain_stroke_formated.csv.

Brain_stroke_formated_separated.csv que separa algumas colunas em mais de uma atribuindo 1 caso possua esse atributo e 0 caso não possua, como work type em work_private, work_self-employed, work_govt, work_children, e smoking_satus em smoking_formerly, smoking_never, smoking_smoke, smoking_unknown.

D	dat	lataSet.head()													
		gender	age	hypertension	heart_disease	ever_married	work_private	work_self- emplyed	work_govt	work_children					
	0	1	67.0	0	1	1	1	0	0	0					
	1	1	80.0	0	1	1	1	0	0	0					
	2	0	49.0	0	0	1	1	0	0	0					
	3	0	79.0	1	0	1	0	1	0	0					
	4	1	81.0	0	0	1	1	0	0	0					

						V E	• •
Residence_type	avg_glucose_level	bmi	smoking_formerly	smoking_never	smoking_smoke	smoking_unknown	stroke
1	228.69	36.6	1	0	0	0	1
0	105.92	32.5	0	1	0	0	1
1	171.23	34.4	0	0	1	0	1
0	174.12	24.0	0	1	0	0	1
1	186.21	29.0	1	0	0	0	1

Representação do dataset Brain_stroke_formated_separated.csv.

2 SCIKIT-LEARN

Fora utilizado o Scikit-learn que é uma biblioteca Python construída especificamente para aplicação prática de aprendizado de máquina. Essa biblioteca possui uma série de ferramentas que são de fácil uso e muito eficientes para realizar a análise preditiva dos dados.

3 CLASSIFICADORES

3.1 Arvore de Decisão

Arvores de decisão são métodos supervisionados não paramétricos usados para classificação e regressão, o objetivo e criar um modelo que prediz o valor da variável alvo ao aprender decisões simples através de dados.

Fora utilizado o dataset "Brain_stroke_formated.csv" para o treinamento, os dados do dataset foram divididos entre 20% para teste e 80% para o treinamento, mais precisamente entre variáveis como X_train, X_test, y_train, y_test, as variáveis de X_train, e Y_train foram utilizadas na função de fitting "clf.fit(X_train, y_train)".

Utilizando a função de accuracy_score foi possível observar a precisao do algoritmo utilizado.

```
[] #acuracia
    from sklearn.metrics import accuracy_score
    y_previsto = clf.predict(X_test)
    y_desejado = y_test
    accuracy_score(y_previsto, y_desejado)

0.9197592778335005
```

Representação do calculo de acurácia.

3.2 Support Vector Machine - kernel linear

SVMs são um set de treinamento supervisionado usado para classificação, regressão e detecção de outliers, algumas vantagens de utilizar maquinas de vetor suporte são, efetividade em altas dimensoes, efetivo em casos que o numero de dimensões e maior que o numero de samples, além de ser bem versátil pois e possível utilizar outras funções de kernel.

Fora utilizado o dataset "Brain_stroke_formated .csv" para o treinamento, foi utilizado o kernel linear, os dados do dataset foram divididos entre 20% para teste e 80% para o treinamento, mais precisamente entre variáveis como X_train, X_test, y_train, y_test, as variáveis de X_train, e Y_train foram utilizadas na função de fitting "clf.fit(X_train, y_train)".

Utilizando a função de accuracy_score foi possível observar a precisao do algoritmo utilizado.

```
[ ] #acuracia
    from sklearn.metrics import accuracy_score
    y_previsto = clf.predict(X_test)
    y_desejado = y_test
    accuracy_score(y_previsto, y_desejado)

0.9578736208625878
```

Representação do calculo de acurácia.

3.3 Support Vector Machine - kernel rbf

SVMs são um set de treinamento supervisionado usado para classificaca, regressao e deteccao de outliers, algumas vantagens de utilizar maquinas de vetor suporte são, efetividade em altas dimensoes, efetivo em casos que o numero de dimensoes e maior que o numero de samples, alem de ser bem versatil pois e possível utilizar outras funcoes de kernel.

Fora utilizado o dataset "Brain_stroke_formated .csv" para o treinamento, foi utilizado o kernel rbf, os dados do dataset foram divididos entre 20% para teste e 80% para o treinamento, mais precisamente entre variáveis como X_train, X_test, y_train, y_test, as variáveis de X_train, e Y_train foram utilizadas na função de fitting "clf.fit(X_train, y_train)".

Utilizando a função de accuracy_score foi possível observar a precisao do algoritmo utilizado.

```
[ ] #acuracia
    from sklearn.metrics import accuracy_score
    y_previsto = clf.predict(X_test)
    y_desejado = y_test
    accuracy_score(y_previsto, y_desejado)
```

0.9578736208625878

Representação do calculo de acurácia.

3.4 K Nearest Neighbors - k=3

O principio por tras de nearest neighbors e encontrar um numero predefinido de amostras a uma distancia próximas do novo ponto, e predizer o label atraves deste ponto, o numero de amostras pode ser uma uma constante pre definida, ou variavel baseado na densidade local dos pontos. A distancia pode em geral, ser qualquer medida metrica como distancia euclidiana.

Fora utilizado o dataset "Brain_stroke_formated .csv" para o treinamento, foi utilizado o raio de 3 pontos, os dados do dataset foram divididos entre 20% para teste e 80% para o treinamento, mais precisamente entre variáveis como X_train, X_test, y_train, y_test, as variáveis de X_train, e Y_train foram utilizadas na função de fitting "clf.fit(X_train, y_train)".

Utilizando a função de accuracy_score foi possível observar a precisao do algoritmo utilizado.

```
#acuracia
from sklearn.metrics import accuracy_score
y_previsto = clf.predict(X_test)
y_desejado = y_test
accuracy_score(y_previsto, y_desejado)

0.9438314944834504
```

Representação do calculo de acurácia.

3.5 K Nearest Neighbors - k = 6

O principio por tras de nearest neighbors e encontrar um numero predefinido de amostras a uma distancia próximas do novo ponto, e predizer o label atraves deste ponto, o numero de amostras pode ser uma uma constante pre definida, ou variavel baseado na densidade local dos pontos. A distancia pode em geral, ser qualquer medida metrica como distancia euclidiana.

Fora utilizado o dataset "Brain_stroke_formated .csv" para o treinamento, foi utilizado o raio de 6 pontos, os dados do dataset foram divididos entre 20% para teste e 80% para o treinamento, mais precisamente entre variáveis como X_train, X_test, y_train, y_test, as variáveis de X_train, e Y_train foram utilizadas na função de fitting "clf.fit(X_train, y_train)".

Utilizando a função de accuracy_score foi possível observar a precisao do algoritmo utilizado.

```
[ ] #acuracia
    from sklearn.metrics import accuracy_score
    y_previsto = clf.predict(X_test)
    y_desejado = y_test
    accuracy_score(y_previsto, y_desejado)

0.9568706118355065
```

Representação do calculo de acurácia.

3.6 K Nearest Neighbors - p = 1

O principio por tras de nearest neighbors e encontrar um numero predefinido de amostras a uma distancia próximas do novo ponto, e predizer o label atraves deste ponto, o numero de amostras pode ser uma uma constante pre definida, ou variavel baseado na densidade local dos pontos. A distancia pode em geral, ser qualquer medida metrica como distancia euclidiana.

Fora utilizado o dataset "Brain_stroke_formated .csv" para o treinamento, foi utilizado o raio de 6 pontos, e utilizando distancia manhattan com p=1, os dados do dataset foram divididos entre 20% para teste e 80% para o treinamento, mais precisamente entre variáveis como X_train, X_test, y_train, y_test, as variáveis de X_train, e Y_train foram utilizadas na função de fitting "clf.fit(X_train, y_train)".

Utilizando a função de accuracy_score foi possível observar a precisao do algoritmo utilizado.

```
[ ] #acuracia
    from sklearn.metrics import accuracy_score
    y_previsto = clf.predict(X_test)
    y_desejado = y_test
    accuracy_score(y_previsto, y_desejado)
```

Representação do calculo de acurácia.

3.7 Gaussian Naive Bayes

Naive bayes gaussiano e um modelo generativo, ele assume que cada classe segue uma distribuição gaussiana, a diferença entre um QDA e um Naive Bayes Gaussiano e que o naive bayes pressupõe a independencia de features, significando que as matrizes de covariância são matrizes diagonais, alem de possuir matrizes de variâncias que são especificas por classe.

Fora utilizado o dataset "Brain_stroke_formated .csv" para o treinamento, foi utilizado a "variavel random_state" com valor "0", os dados do dataset foram divididos entre 20% para teste e 80% para o treinamento, mais precisamente entre variáveis como X_train, X_test, y_train, y_test, as variáveis de X_train, e Y_train foram utilizadas na função de fitting "clf.fit(X_train, y_train)".

Utilizando a função de accuracy_score foi possível observar a precisao do algoritmo utilizado.

```
[ ] #acuracia
    from sklearn.metrics import accuracy_score
    y_previsto = clf.predict(X_test)
    y_desejado = y_test
    accuracy_score(y_previsto, y_desejado)
```

0.9227683049147443

0.954864593781344

Representação do calculo de acurácia.

3.8 Categorical Naive Bayes

Naive bayes categorico e utilizado para classificacao com features discretos/distintos que são categoricamente distribuidos, a categoria de cada feature e extraida atraves de uma distribuicao categorica.

Fora utilizado o dataset "Brain_stroke_formated .csv" para o treinamento, os dados do dataset foram divididos entre 20% para teste e 80% para o treinamento, mais precisamente entre variáveis como X_train, X_test, y_train, y_test, as variáveis de X_train, e Y_train foram utilizadas na função de fitting "clf.fit(X_train, y_train)".

Utilizando a função de accuracy_score foi possível observar a precisao do algoritmo utilizado.

```
[ ] #acuracia
  from sklearn.metrics import accuracy_score
  y_previsto = clf.predict(X_test)
  y_desejado = y_test
  accuracy_score(y_previsto, y_desejado)

0.9398194583751254
```

Representação do calculo de acurácia.

3.9 Linear Regression

Regressao Linear e um metodo para modelar a relacao entre medidas escalares de uma ou mais variaveis, as relacoes são modelas usando funcoes de predicao linear modelando parametros atravez de dados, assim como outras formas de regressao, a regressao linear foca na distribuicao de probabilidade condicional dado os valores das predicoes, ao inves de distribuicao de probabilidade conjunta dessas variaveis.

Fora utilizado o dataset "Brain_stroke_formated .csv" para o treinamento, os dados do dataset foram divididos entre 20% para teste e 80% para o treinamento, mais precisamente entre variáveis como X_train, X_test, y_train, y_test, as variáveis de X_train, e Y_train foram utilizadas na função de fitting "clf.fit(X_train, y_train)".

Dado que a função de acurácia e uma métrica de classificação, não e possível utilizá-la em regressões, então apenas foi analisado o score de cada X e y em relação as variáveis de treino e teste, e o calculo de uma loss usando numpy.

```
[9] #acuracia -> formated
    from sklearn.metrics import accuracy_score
    y_previsto = clf.predict(X_test)
    y_desejado = y_test
    #accuracy_score(y_previsto, y_desejado)
    dif = np.abs(y_desejado - y_previsto).max()
    np.log1p(dif)

    0.7001367778926282

[10] clf.score(X_train,y_train)
    0.0661538144525553

[12] clf.score(X_test,y_test)
    0.0813623614573501
```

Representação do calculo de loss, e score.

Posteriormente fora utilizado o dataset "Brain_stroke_formated_separated .csv" para o treinamento, os dados do dataset foram divididos entre 20% para teste e 80% para o treinamento, mais precisamente entre variáveis como X_train, X_test, y_train, y_test, as variáveis de X_train, e Y_train foram utilizadas na função de fitting "clf.fit(X_train, y_train)".

```
[19] #acuracia -> formated_separated
    from sklearn.metrics import accuracy_score
    y_previsto = clf.predict(X_test)
    y_desejado = y_test
    #accuracy_score(y_previsto, y_desejado)
    dif = np.abs(y_desejado - y_previsto).max()
    np.loglp(dif)

    0.6931199617588643

[20] clf.score(X_train,y_train)
    0.06784899340997208

[21] clf.score(X_test,y_test)
    0.08428761254677308
```

Representação do calculo de loss, e score.

3.10 Perceptron

O perceptron e um algoritmo de aprendizado supervisionado de classificadores binarios, um classificador binario seria uma funcao que decide se um input, representado por um vetor de numeros, pertence ou não a uma classe especifica, sendo este um tipo de classificador linear, realizando predicoes baseados em uma funcao de predicao linear, combinando pesos com features.

Fora utilizado o dataset "Brain_stroke_formated .csv" para o treinamento, os dados do dataset foram divididos entre 20% para teste e 80% para o treinamento, mais precisamente entre variáveis como X_train, X_test, y_train, y_test, as variáveis de X_train, e Y_train foram utilizadas na função de fitting "clf.fit(X_train, y_train)".

Utilizando a função de accuracy_score foi possível observar a precisao do algoritmo utilizado.

```
[ ] #acuracia
    from sklearn.metrics import accuracy_score
    y_previsto = clf.predict(X_test)
    y_desejado = y_test
    accuracy_score(y_previsto, y_desejado)

0.959866220735786
```

Representação do calculo de acurácia.