

Einführung in die Algebra

Tobias Wedemeier

22. Oktober 2014 gelesen von Prof. Dr. Kramer

Inhaltsverzeichnis

1	Elementare Gruppentheorie						
	1.1	Def. Gruppe					
	1.2	Beispiel 1					
	1.3	Beobachtungen					
	1.4	Lemma 1 (Sparsame Definition von Gruppen)					
	1.5	Beispiel 2					
	1.6	Def. zentralisieren					
	1.7	Beispiel 3					
	1.8	Def. Untergruppe					
	1.9	Lemma 2					
	1.10	Def. $\langle X \rangle$					
		Def. zyklische Gruppe					
	1.12	Zyklische Gruppen					
		Nebenklassen					
	1.14	Satz von Lagrange					
	1.15	Homomorphismen					
		Satz 1					
Index							
Abbildungsverzeichnis							

1 Elementare Gruppentheorie

Erinnerung: eine **Verknüpfung** auf einer nicht leeren Menge X ist eine Abbildung

$$X \times X \to X, (x, y) \mapsto m(x, y).$$

Häufig schreibt man m(x,y)=xy oder m(x,y)=x+y, je nach Kontext. Die Schreibweise m(x,y)=x+y wird eigentlich nur für kommutative Verknüpfungen benutzt, d.h. wenn $\forall x,y\in X$ gilt m(x,y)=m(y,x).

1.1 Def. Gruppe

Eine **Gruppe** (G,\cdot) besteht aus einer Verknüpfung \cdot auf einer nicht leeren Menge G, mit folgenden Eigenschaften:

- (G1) Die Verknüpfung ist <u>assoziativ</u>, d.h. $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ gilt $\forall x, y, z \in G$. (Folglich darf man Klammern weglassen.)
- (G2) Es gibt ein neutrales Element $e \in G$, d.h. es gilt $e \cdot x = x \cdot e = x \forall x \in G$
- (G3) Zu jedem $x \in G$ gibt es ein <u>Inverses</u> $y \in G$, d.h. xy = e = yx. man schreibt dann auch $y = x^{-1}$ für das Inverse zu x.

Fordert man von der Verknüpfung nur (G1) und (G2), so spricht man von einer Halbgruppe mit Eins oder einem **Monoid**. Fordert man nur (G1), so spricht man von einer Halbgruppe.

1.2 Beispiel 1

- $(\mathbb{Z},+), (\mathbb{Q},+)$ sind kommutative Gruppen.
- $(\mathbb{Z}, \cdot), (\mathbb{N}, \cdot), (\mathbb{N}, +)$ sind Monoide.

1.3 Beobachtungen

- a) Das Neutraleelement (einer Verknüpfung) ist eindeutig bestimmt: sind e,e' beides Neutralelemente, so folgt: e=ee'=e'
- b) Das Inverse zu x ist eindeutig bestimmt: $xy=e=xy'=y'x \Rightarrow y'=y'e=y'xy=ey=y$

1.4 Lemma 1 (Sparsame Definition von Gruppen)

Sei $G \times G \to G$ eine assoziative Verknüpfung. Dann ist G schon eine Gruppe, wenn gilt:

- (i) es gibt $e \in G$ so, dass $ex = x \ \forall x \in G$ gilt.
- (ii) zu jedem $x \in G$ gibt es ein $y \in G$ mit yx = e

<u>Beweis</u>

$$\overline{\text{Sei }yx}=e, \text{ es folgt } yxy=y. \text{ W\"ahle } z \text{ mit } zy=e, \text{ es folgt } \underbrace{zy}_{=e} xy=zy=e \Rightarrow xy=e$$

Weiter gilt xe = xyx = ex = x.

1.5 Beispiel 2

Sei X eine nicht leere Menge, sei $X^X=\{f:X\to X\}$ die Menge aller Abbildungen von X nach X. Als Verknüpfung auf X nehmen wir die Komposition von Abbildungen. Dann gilt wegen $f=id_X\circ f=f\circ id_X$, dass id_X ein Neutralelement ist.

Damit haben wir ein Monoid (X_X, \circ) .

Sei $Sym(X)=\{f:X\to X|f \text{ bijektiv}\}$. Zu jedem $f\in Sym(X)$ gibt es also eine Umkehrabbildung $g:X\to X$ mit $f\circ g=g\circ f=id_X$. Folglich ist $(Sym(X),\circ)$ eine Gruppe, die <u>Symmetrische Gruppe</u>. Wenn X endlich ist mit n Elementen, so gibt es genau $n!=n(n-1)(n-2)\cdots 2\cdot 1$ Permutationen, also hat Sym(X) dann genau n! Elemente.

Für
$$X=\{1,2,3,\ldots,n\}$$
 schreibt man auch $Sym(X)=Sym(n)\Big(=S_n\Big).$

1.6 Def. zentralisieren

Sei $G \times G \to G$ eine Verknüpfung. Wir sagen, $x,y \in G$ vertauschen oder kommutieren oder x zentralisiert y, wenn gilt xy = yx.

Eine Gruppe, in der alle Elemente vertauschen heißt kommutativ oder abelsch.

1.7 Beispiel 3

- (a) $(\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{Q}^*,\cdots)$ sind abelsche Gruppen.
- (b) K Körper, $G = Gl_2(K) = \{X \in K^{2 \times 2} \mid det(X) \neq 0\}$ Gruppe der invertierbaren 2×2 Matrizen.

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

 \Rightarrow nicht abelsch, genauso $Gl_n(K)$ für $n \ge 2$.

(c) Sym(2) ist abelsch, aber Sym(3) nicht. Allgemein ist Sym(X) nicht abelsch, falls $\#X \geq 3$ gilt.

1.8 Def. Untergruppe

Sei G eine Gruppe, sei $H \subseteq G$. Wir nennen H **Untergruppe** von G, wenn gilt:

- (UG1) $e \in H$
- (UG2) $x, y \in H \Rightarrow xy \in H$
- (UG3) $x \in H \Rightarrow x^{-1} \in H$

Offensichtlich ist eine Untergruppe dann wieder eine Gruppe, mit der von G vererbten Verknüpfung.

Bsp

- (a) $(\mathbb{Q},+)$. \mathbb{Z} ist Untergruppe, denn $0 \in \mathbb{Z}, m, n \in \mathbb{Z} \Rightarrow m+n \in \mathbb{Z}$ und $n \in \mathbb{Z} \Rightarrow -n \in \mathbb{Z}$
- (b) (\mathbb{Q}^*, \cdot) . \mathbb{Z}^* ist keine Untergruppe, kein Inverses.

1.9 Lemma 2

Sei G eine Gruppe und sei U eine nicht leere Menge von Untergruppen von G. Dann ist auch $\bigcap U = \{g \in G | \forall H \in U \text{ gilt } g \in H\}$ eine Untergruppe von G.

Beweis

Für alle $H \in U$ gilt $e \in H$, also $e \in \bigcap U$. Angenommen $x, y \in \bigcap U$. Dann gilt für alle $H \in U$, dass $xy \in H$ sowie $x^{-1} \in H$. Es folgt $xy \in \bigcap U$ sowie $x^{-1} \in \bigcap U$.

1.10 Def. $\langle X \rangle$

Sei G eine Gruppe und $X \subseteq G$ eine Teilmenge. Wir setzen:

$$\langle X \rangle = \bigcap \{ H \subseteq G | H \text{ Untergruppe und } X \subseteq H \}$$

Ist nicht leer, da mindestens G enthalten ist.

- Es gilt z.B. $\langle \emptyset \rangle = \{e\}$, denn $\{e\}$ ist Untergruppe.
- Ist $H \subseteq G$ Untergruppe mit $X \subseteq H$, so folgt $X \subseteq \langle X \rangle \subseteq H$, insb. also $\langle H \rangle = H$.

Satz

Sei $X\subseteq G$ und sei $W=\{x_1\cdot x_2, \cdots x_s|s\geq 1, x_i\in X \text{ oder } x_i^{-1}\in X \ \forall i=1,\ldots,s\}.$ Dann gilt: $\langle X\rangle=\{e\}\cup W.$

Beweis

Wegen $X \subseteq \langle X \rangle$ und $e \in \langle X \rangle$ folgt $\{e\} \cup W \subseteq \langle X \rangle$. Ist $f,g \in W$, so folgt $fg \in W$ sowie $f^{-1} \in W$, also ist $H = \{e\} \cup W$ eine Untergruppe von G, mit $X \subseteq H$. Es folgt $\langle X \rangle \subseteq H = \{e\} \cup W$.

1.11 Def. zyklische Gruppe

Sei G eine Gruppe und sei $g \in G$. Für $n \geq 1$ setze $g^n = \underbrace{g \cdot \dots \cdot g}_{n-mal}$ sowie $g^{-n} = \underbrace{g^{-1} \cdot \dots \cdot g^{-1}}_{n-mal}$ und

$$g^0 = e$$
.

Dann gilt $\forall k,l \in \mathbb{Z}$, dass $g^k \cdot g^l = g^{k+l}$.

Sei $\langle g \rangle = \langle \{g\} \rangle \stackrel{1.10}{=} \{g^n | n \in \mathbb{Z}\}$. Man nennt $\langle g \rangle$ die von g erzeugte **zyklische Gruppe**. Wenn für ein $n \geq 1$ gilt $g^n = e$, so heißt n ein **Eponent** von g. Dle **Ordnung** von g ist der kleinste Eponent von g,

$$o(g) = min(\{n \ge 1 | g^n = 1\} \cup \{\infty\})$$

 $o(g) = \infty$ bedeutet: $g^n \neq e \ \forall n \geq 1$

o(g) = 1 bedeutet: $g^n = g = e$

1.12 Zyklische Gruppen

Eine Gruppe G heißt **zyklisch**, wenn es ein $g \in G$ gibt mit $G = \langle g \rangle$. Wegen $g^k g^l = g^{k+l} = g^{l+k} = g^l g^k$ gilt: zyklische Gruppen sind abelsch.

Satz

Sei $G = \langle g \rangle$ zyklisch mit $o(g) = n < \infty$. Dann gilt #G = n und $G = \{g, g^1, g^2, g^3, \dots, g^n\}$. Beweis Jedes $m \in \mathbb{Z}$ lässt sich schreiben als m = kn + l mit $0 \le l < n$ (Teilen mit Rest), also $g^m = \underbrace{g^{kn}}_{} . g^l = g^l$.

Es folgt $G\subseteq\{g,g^2,\ldots,g^n\}, g^n=g^0$. Ist $g^k=g^l$ für $0\le k\le l< n$, so gilt $e=g^0=g^{l-k}$, also l-k=0 (wegenl< n), also $\#\{g,g^2,\ldots,g^n=g^0\}=n$.

Folgerung

Ist G endlich mit #G = n und ist $h \in G$ mit O(h) = n, so folgt $\langle h \rangle = G$. Insbesondere ist dann G eine zyklische Gruppe. \Box

1.13 Nebenklassen

Sei G eine Gruppe und sei H eine Untergruppe. Sei $a \in G$. Wir definieren:

$$aH=\{ah|h\in H\}\subseteq G$$

$$Ha = \{ha|h \in H\} \subseteq G$$

Man nennt aH die <u>Linksnebenklassen</u> von a bzgl. H (und Ha die <u>Rechtsnebenklassen</u>). In nicht abelschen Gruppen gilt im allgemeinen $aH \neq Ha$.

Lemma

Sei $H \subseteq G$ Untergruppe der Gruppe G und $a,b \in G$. Dann sind äquivalent:

- (i) $b \in aH$
- (ii) bH = aH
- (iii) $bH \cap aH \neq \emptyset$

Beweis

$$(i)\Rightarrow (ii):\ b\in aH\Rightarrow b=ah\ \text{für ein}\ h\in H\Rightarrow bH=\left\{ahh'|h'\in H\right\} \stackrel{H\ \text{Untergruppe}}{=}\left\{ah''|h''\in H\right\}=aH$$

$$(ii) \Rightarrow (iii) : klar$$

$$(iii) \Rightarrow (i)$$
: Sei $g \in bH \cap aH$, $g = bh = ah' \Rightarrow b = ah'h^{-1} \in aH$, da H Untergruppe

Folgerung

Jedes $g \in G$ liegt in genau einer Linksnebenklasse bzgl. H, nämlich $g \in gH$. Entsprechendes gilt natürlich für Rechtsnebenklassen. Man setzt:

 $G/H = \{gH \mid g \in G\}$ Menge der Linksnebenklasse, Rechtsnebenklassen analog.

Lomma

Sei $H \subseteq G$ Untergruppe der Gruppe G, sei $a \in G$.

Dann ist die Abbildung $H \to gH, h \mapsto gH$ bijektiv.

Beweis

SSurjektivist klar nach Definition von gH. Angenommen, $gh = gh' \Rightarrow h = g^{-1}gh' = h'$

1.14 Satz von Lagrange

Sei G eine Gruppe und $H \subseteq G$ eine Untergruppe. Wenn zwei der drei Mengen G, H, G/H endlich sind, dann ist die dritte ebenfalls endlich und es gilt:

$$\#G = \#h \cdot \#G/H$$

Insbesondere ist dann #H eine <u>Teiler</u> von #G.

Beweis

Wenn G endlich ist, dann sind auch H und G/H endlich.

Angenommen, G/H und H sind endlich. Dann ist auch $G = \bigcup G/H = \bigcup \{gH \mid gH \in G/H\}$ endlich, da #gH = #H nach 1.13.

Jetzt zählen wir genauer: sei #G/H = m; #H = n etwa $G/H = \{g_1H, g_2H, \dots g_mH\}$.

$$g_iH \stackrel{1.13}{=} n$$
 $g_iH \cap g_jH = \emptyset$ für $i \neq j$ nach 1.13.
$$G = g_1 \cap \#g_2H \cap \dots \cap g_mH \Rightarrow \#G = m \cdot n$$

Bem

- (1) Eine entsprechende Aussage gilt für Rechtsnebenklassen.
- (2) Die Abbildung $G \to G$, $g \mapsto g^{-1}$ bildet die Linksnebenklassen bijektiv auf die Rechtsnebenklassen ab:

$$(gH)^{-1} = \{(gh)^{-1} \mid h \in H\} \stackrel{\mathsf{Achtung!}}{=} \{h^{-1}g^{-1} \mid h \in H\} = \{hg^{-1} \mid h \in H\} = Hg^{-1} \tag{ÜA}$$

Korollar A (Lagrange)

Sei G eine endliche Gruppe und sei $g \in G$. Dann teilt o(g) die Zahl #G.

Beweis

Da G endlich ist, folgt $o(g) < \infty$. Nach dem Satz von Lagrange ist $\#\langle g \rangle = o(g)$ ein Teiler von #G. \square

Korollar E

Sei G eine endliche Gruppe, sei p eine <u>Primzahl</u> (d.h. die einzigen Teiler von p sind 1 und p) und p > 1. Wenn gilt #G = p, dann ist G zyklisch. Für jedes $g \in G \setminus \{e\}$ gilt $\langle g \rangle = G$.

Beweis

Sei $g \in G \setminus \{e\}$. Dann ist o(g) > 1 und o(g) teilt p. Es folgt o(g) = p, also $G = \langle g \rangle$ vgl. 1.12. Für endliche Gruppen sind Teilbarkeitseigenschaften wichtig, wie wir sehen werden. Die Zahl $\#^G/H := [G:H]$ nennt man auch den **Index von H in G**.

Wichtige Rechenregeln in Gruppen

(a) Man darf kürzen

$$ax = ay \Rightarrow x = y$$

 $xa = ya \Rightarrow x = y$

(multipliziere beide Seiten von links/rechts mit a^{-1})

- (b) Es gilt $(x^{-1})^{-1} = x$ $(x^{-1}x = e = xx^{-1} \Rightarrow (x^{-1})^{-1} = x)$
- (c) Beim Invertieren darf die Reihenfolge umgedreht werden:

$$(ab)^{-1} = b^{-1}a^{-1} \left(ab(b^{-1}a^{-1}) = e = (b^{-1}a^{-1})ab \Rightarrow (ab)^{-1} = b^{-1}a^{-1} \right) \text{ (in abelschen Gruppen gilt natürlich damit} (ab)^{-1} = b^{-1}a^{-1} \left(ab(b^{-1}a^{-1}) = e = (b^{-1}a^{-1})ab \Rightarrow (ab)^{-1} = b^{-1}a^{-1} \right) \text{ (in abelschen Gruppen gilt natürlich damit} (ab)^{-1} = b^{-1}a^{-1} \left(ab(b^{-1}a^{-1}) = e = (b^{-1}a^{-1})ab \Rightarrow (ab)^{-1} = b^{-1}a^{-1} \right) \text{ (in abelschen Gruppen gilt natürlich damit} (ab)^{-1} = b^{-1}a^{-1} \right) \text{ (in abelschen Gruppen gilt natürlich damit} (ab)^{-1} = b^{-1}a^{-1} \left(ab(b^{-1}a^{-1}) = e = (b^{-1}a^{-1})ab \Rightarrow (ab)^{-1} = b^{-1}a^{-1} \right) \text{ (in abelschen Gruppen gilt natürlich damit} (ab)^{-1} = b^{-1}a^{-1} \left(ab(b^{-1}a^{-1}) = e = (b^{-1}a^{-1})ab \Rightarrow (ab)^{-1} = b^{-1}a^{-1} \right) \text{ (in abelschen Gruppen gilt natürlich damit} (ab)^{-1} = b^{-1}a^{-1} \left(ab(b^{-1}a^{-1}) = e = (b^{-1}a^{-1})ab \Rightarrow (ab)^{-1} = b^{-1}a^{-1} \right) \text{ (in abelschen Gruppen gilt natürlich damit} (ab)^{-1} = b^{-1}a^{-1} \right)$$

1.15 Homomorphismen

Seien G,K Gruppen. Eine Abbildung $\varphi:G\to K$ heißt (Gruppen-)Homomorphismus, wenn $\forall x,y\in G$ gilt

$$\varphi \underbrace{(x \cdot y)}_{\text{Verküpfung in G}} = \underbrace{\varphi(x)\varphi(y)}_{\text{Verknüpfung in K}}$$

Bsp

- (a) $id_G:G o G$ ist Homomorphismus
- (b) $H \subseteq G$ Untergruppe $i: H \hookrightarrow G$, $h \mapsto h$ Inklusion, ist Homomorphismus.

- (c) $(G,\cdot)=(\mathbb{Z},+)$ $m\in\mathbb{Z}$ $\varphi:\mathbb{Z}\to\mathbb{Z}, x\mapsto mx$ ist Homomorphismus, denn $\phi(x+y)=m(x+y)=mx+my=\varphi(x)+\varphi(y)$
- (d) G Gruppe, $a \in G, \ a \neq e, \ \lambda_a(x) = ax$. $\lambda: G \to G$ ist kein Homomorphismus, denn $\lambda_a(e) = a, \lambda(ee) = a$, aber $\lambda_a(e)\lambda_a(e) = aa \neq a$

Lemma

Sei $\varphi:G\to K$ ein Homomorphismus von Gruppen. Dann gilt $\varphi(e_G)=e_K$ und $\varphi(x^{-1})=\varphi(x)^{-1}\ \forall x\in G.$ (e_G Neutralelement in G und e_K Neutralelement in K) Beweis

$$\begin{split} \varphi(e_G) &= \varphi(e_G \cdot e_G) = \varphi(e_G) \cdot \varphi(e_G) \overset{\text{kürzen}}{\Rightarrow} e_K = \varphi(e_G) \\ e_K &= \varphi(e_G) = \varphi(x^{-1}x) = \varphi(x^{-1})\varphi(x) \Rightarrow \varphi(x)^{-1} = \varphi(x^{-1}) \end{split}$$

Achtung: $\varphi(x)^{-1}$ ist das Inverse in K von $\varphi(x)$ nicht die Umkehrabbildung!

Das <u>Bild</u> eines Homomorphismus $\varphi:G\to K$ ist $\varphi(G)\subseteq K$, der <u>Kern</u> ist $ker(\varphi)=\{x\in G\mid \varphi(x)=e_K\}\subseteq G$

1.16 Satz 1

Bild und Kern von Gruppenhomomorphismen sind Untergruppen.

Beweis

Setze $H=\varphi(G)\subseteq K$. Es folgt $e_K\in H$. Für $\varphi(x), \varphi(y)\in H$ gilt $\varphi(x)\varphi(y)=\varphi(xy)\in H$ sowie $\varphi(x)^{-1}=\varphi(x^{-1})\in H$, also ist H Untergruppe.

Index

Die Seitenzahlen sind mit Hyperlinks zu den entsprechenden Seiten versehen, also anklickbar!

```
abelsch, 2
Bild, 6
Eponent, 3
Gruppe, 1
    Unter-, 2
    symmetrische, 2
    zyklische, 3
Homomorphismus
    Gruppen-, 5
Index von H in G, 5
Kern, 6
Monoid, 1
Nebenklassen
    Links-, 4
    Rechts-, 4
Ordnung, 3
Primzahl, 5
Satz von Lagrange, 4
Teiler, 4
Verknüpfung, 1
zentralisiert, 2
zyklisch, 3
```

Index

Abbildungsverzeichnis

B Abbildungsverzeichnis