Numerical Analysis MATH50003 (2023–24) Problem Sheet 6

Problem 1 By computing the Cholesky factorisation, determine which of the following matrices are symmetric positive definite:

$$\begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 5 \end{bmatrix}, \begin{bmatrix} 4 & 2 & 2 & 1 \\ 2 & 4 & 2 & 2 \\ 2 & 2 & 4 & 2 \\ 1 & 2 & 2 & 4 \end{bmatrix}$$

Problem 2 Show that a matrix $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite if and only if it has a reverse Cholesky factorisation of the form

$$A = UU^{\top}$$

where U is upper triangular with positive entries on the diagonal.

Problem 3(a) Use the Cholesky factorisation to prove that the following $n \times n$ matrix is symmetric positive definite for any n:

$$\Delta_n := \begin{bmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & & \\ & -1 & 2 & \ddots & & \\ & & \ddots & \ddots & -1 \\ & & & -1 & 2 \end{bmatrix}$$

Hint: consider a matrix K_n^{α} that equals Δ_n apart from the top left entry which is $\alpha > 1$ and use a proof by induction.

Problem 3(b) Deduce its Cholesky factorisations: $\Delta_n = L_n L_n^{\top}$ where L_n is lower triangular.

Problem 4 Use Lagrange interpolation to interpolate the function $\cos x$ by a polynomial at the points [0, 2, 3, 4] and evaluate at x = 1.

Problem 5 Compute the LU factorisation of the following transposed Vandermonde matrices:

$$\begin{bmatrix} 1 & 1 \\ x & y \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 & 1 \\ x & y & z & t \\ x^2 & y^2 & z^2 & t^2 \\ x^3 & y^3 & z^3 & t^3 \end{bmatrix}$$

Can you spot a pattern? Test your conjecture with a 5×5 Vandermonde matrix.