1. Convertidor boost para lámpara LED de potencia

1.1. Efectos de temperatura en los LEDs

Figura 1: Efectos de la temperatura en los LEDs

Se utilizaron los LEDs OSRAM LUW-W5AP, los cuales a medida que aumenta su temperatura se producen variaciones de la tensión de forward (V_f) y la máxima corriente de forward soportada $(I_{f_{MAX}})$. Donde ante un aumento de la temperatura tenemos un aumento de V_f y una disminución de $I_{f_{MAX}}$.

Como puede observarse de los gráficos obtenidos del datasheet en la figura 1 se puede despreciar los cambios producidos en V_f debido a que los cambios de corriente son mucho más apreciables y los cambios en V_f no afectan tanto el comportamiento del circuito.

1.2. Cambio en el brillo

Dado que los leds son ideales y cada uno tiene la misma caída de tensión, tenemos que en cada diodo caen $V_f=3,4V$. Dado que se utiliza un convertidor BOOST, tenemos $V_o=V_g\cdot\frac{1}{1-D}$ donde se fija V_o y como la corriente de salida va a haberse dominada por la resistencia R_2 , por $I_o=\frac{V_{out}-4\cdot V_f}{R_2}$. Podemos observar que los cambios en I_o son inversamente proporcionales para R_2 . Para el caso del brillo al $100\,\%$ necesitamos $I_o=2A$ y para el $100\,\%$ necesitamos $I_o=0,76A$, por lo tanto $R_{2(50\,\%)}=\frac{2}{0,76}\cdot R_{2(100\,\%)}$.

1.3. Determinación de la frecuencia del circuito

La frecuencia a la cual el circuito puede operar se va a encontrar determinada por el oscilador del controlador **PWM L1241**, donde la frecuencia del oscilador va a ser igual al doble de la frecuencia de swiching. Entonces, dado que queremos que se trabaje a 75 kHz vamos a tener una frecuencia de oscilación de 150 kHz. A partir de la datasheet se obtiene que se necesita un $R_3 = 13k\Omega$ y un $C_2 = 1nF$.

1.4. Tiempo de establecimiento al 5% con variación de carga

1.5. Tiempo de establecimiento al 5% con variación de tensión