Project Goal:

The goal of this project is to design and implement a program that generates all permutations of a set of n positive integers, where the user provides a number, n, within the range of 1 to 25. The program will use the Johnson-Trotter algorithm to generate permutations and display them to the user.

Struct Name: Data - Creates objects to indicate value and direction

- Private members: int data, bool direction
 - \circ By default, direction is true. true = \leftarrow , false = \rightarrow

Functions:

- Data(int) Constructor
 - Using the int value passed in, creates an object that contains that value.

Functions:

- float Total(float size) Takes in float size, which is the # of objects to create from 1

 → n, where n is the size. Using that, the function calculates n!, which is the total # of permutations.
- void get_Set(ostream&, vector<Data>) Prints the passed permutation (all the values that the objects in vector<Data> contains).
- int FindLargestMobile(vector<Data>&) Parses through the vector<Data> to find the index of the largest mobile element and then returns it. Returns -1 if no largest mobile element is found.
- void Johnson_Trotter(vector<Data>&, vector<vector<Data>>&) Using the index of the largest mobile element from FindLargestMobile, swaps it to where it is pointing to. Reverses the direction (make false) of all other **Data** objects of vector<Data> that contain a value larger than which the largest mobile element contained. Stores the permutation into vector<vector<Data>>.

Main File:

Creates objects of type **Data** containing numbers from $1 \rightarrow n$. These objects are then stored into a vector that holds objects of type **Data**. Then all permutations of these objects containing these numbers are found using Johnson-Trotter. Each permutation is outputted to the console.

Test Driver:

Takes a text file with various integers, finds every permutation and stores them into a vector list. Outputs the expected amount of permutations and the total number of permutations stored in the vector list

Test Cases:

- Test if get correct output when $n = 25 \rightarrow \text{Should get } 1.55112\text{e}+25 \text{ Permutations}$
- Test if get correct output when $n = 1 \rightarrow \text{Should get 1 Permutation}$
- Test if get correct output when $n = 5 \rightarrow$ Should get 120 Permutations
- Test if get correct output when $n = 3 \rightarrow \text{Should get 6 Permutations}$
- Test if get correct output when $n = 10 \rightarrow$ Should get 3628800 Permutations
- Test if get correct output when $n = -1 \rightarrow \text{Should}$ be invalid as n < 0
- Test if get correct output when $n = 30 \rightarrow \text{Should be invalid as } n > 25$
- Test if get correct output when $n = T \rightarrow Should$ be invalid a T is not an integer