All compact, complex, connected Lie groups are abelian.

Daniel Mckenzie

May 20, 2012

Abstract

We answer the last problem given in chapter 8 of [3]: 'Prove that all compact complex Lie groups are abelian'. The main focus in this short piece is on the proof that the adjoint map $Ad: G \to Aut(\mathfrak{g})$ is analytic, which is done by a more abstract, but ultimately cooler method than usual (i.e. as in [1] for example).

1 A commuting diagram lemma

We make heavy use of the following lemma (which can be found in [2])

Lemma 1.1. Suppose $\theta: G \times M \to M$ is a smooth group action of a Lie group G on a smooth manifold M. There is a natural way to define a map $\eta: T(G) \times T(M) \to T(M)$ such that the following diagram commutes:

$$T(G \times M) \xrightarrow{\pi_{1*} \times \pi_{2*}} T(G) \times T(M)$$

$$\uparrow^{\eta}$$

$$T(M)$$

$$(1.1)$$

Where $\pi_1: G \times M \to G$ and $\pi_2: G \times M \to M$ are the natural projections on to the first and second component of the product $G \times M$.

Proof. We define two smooth auxiliary maps θ^p and θ_g as follows:

$$\theta^p: G \to M \tag{1.2}$$

$$g \mapsto \theta(g, p)$$
 (1.3)

$$\theta_g: M \to M$$
 (1.4)

$$p \mapsto \theta(g, p) \tag{1.5}$$

We may define η as:

$$\eta: ((g,X), (p,Y)) \mapsto (\theta(g,p), \theta_{q*}Y + \theta_{*}^{p}X) \tag{1.6}$$

Observe that $\theta_*^p: T_g(G) \to T_{gp}(M)$ and $\theta_{g*}: T_p(M) \to T_{gp}(M)$ so this map is indeed well-defined. Smoothness should follow by observing that in the first component η is just the map $\theta: (g,p)$ mapsto $\theta(g,p)$, and by the smoothness of θ the maps $g \mapsto \theta_g$ and $p \mapsto \theta^p$ are smooth. (Not quite sure how to check that this diagram does indeed commute), but [2] does this.

We specialise this to the case of a Lie group acting on itself via left multiplication. We shall denote left multiplication by g as L_g and right multiplication by g as R_g . η now becomes:

$$\eta: T(G) \times T(G) \to T(G)$$
(1.7)

$$\eta: ((p, X), (q, Y)) \to (pq, R_{q*}X + L_{p*}Y)$$
(1.8)

(1.9)

which by lemma 1.1 is smooth. I claim that in the case where G is a complex manifold, and so the action of G on itself via left multiplication is an analytic action, η is in fact an analytic map. (I think this should follow by exactly the same reasoning that showed η was smooth, but I need to think about this a bit more). Let us now get to the point.

2 The adjoint map is analytic.

Consider the map:

$$Ad: G \to Aut(\mathfrak{g}) \tag{2.1}$$

$$g \mapsto \Phi_{g*}|_e \tag{2.2}$$

$$\Phi_g: h \mapsto g^{-1}hg \tag{2.3}$$

where Φ_g is analytic. Aut $(\mathfrak{g}) \subset \mathbb{GL}(\mathfrak{g})$ has the natural complex structure induced by \mathfrak{g} . That is, if $\{X_i\}$ is a basis for \mathfrak{g} , then $\{X_i \otimes X^j\}$ is a basis for $\mathbb{GL}(\mathfrak{g})$. A map $\tau: M \to \mathbb{GL}(\mathfrak{g})$ will be analytic if and only if it is analytic in all of its coordinates. We can check this by considering the maps

$$\bar{\tau_i}: M \to \mathfrak{g}$$
 (2.4)

$$m \mapsto \tau(m)X_i$$
 (2.5)

and showing that they are analytic. This is equivalent to checking that

$$\bar{\tau_X}: M \to \mathfrak{g}$$
 (2.6)

$$m \mapsto \tau(m)X$$
 (2.7)

is analytic for arbitrary $X\in \mathfrak{g}.$ Observe that we may rewrite Φ_g as $\Phi_g=L_{q^{-1}}\circ R_g$ and so

$$Ad g = \Phi_{g*}|_e = L_{g^{-1}*}|_{R_g(e)} \circ R_{g*}|_e$$
 (2.8)

$$=L_{g^{-1}*}|_{g}\circ R_{g*}|_{e} \tag{2.9}$$

So we need to show that the map $\bar{\text{Ad}}: g \mapsto \Phi_{g*}|_{e}X$ is analytic for an arbitrary fixed X. We do this by introducing two auxiliary maps:

$$\gamma_R: G \to T(G) \times T(G)$$
 (2.10)

$$\gamma_R: g \mapsto ((e, X), (g, 0)) \tag{2.11}$$

$$\gamma_L: G \to T(G) \times T(G)$$
 (2.12)

$$\gamma_L : g \mapsto ((g^{-1}, 0), (g, R_{g*}X))$$
 (2.13)

Since γ_R is basically the identity map, it should be analytic. Now, observe that $\eta \circ \gamma_R : g \mapsto (g, R_{g*}X)$ is a composition of analytic maps and hence is analytic. We may rewrite γ_L as:

$$\gamma_L : g \mapsto \left((g^{-1}, 0), \eta \circ \gamma_R(g) \right) \tag{2.14}$$

Which is analytic since it is analytic in both components (remember the inversion map is analytic). Finally observe that:

$$\eta \circ \gamma_L : g \mapsto (g^{-1}g, L_{g^{-1}} R_{g*}X + R_{g*}0) = (e, L_{g^{-1}} R_{g*}X)$$
 (2.15)

is analytic since it is a composition of analytic maps, and is precisely the map we need: $\eta \circ \gamma_L := \Phi_{g*}|_e X$. Hence Ad is analytic.

3 All compact complex connected Lie groups are abelian

We now use the fact that Ad is analytic to prove the main result. First note that since Ad : $G \to \operatorname{Aut} \mathfrak{g}$ is a holomorphic map on a compact set it must be constant. In addition, since

$$\Phi_e: h \mapsto ehe = h \tag{3.1}$$

is just the identity map, $\operatorname{Ad} e = \Phi_{e*}$ is also the identity map. We thus deduce that $\operatorname{Ad}(g)$ is the identity map (which we shall denote as I) for all g. Now Φ_g is a map of Lie groups (it is a map from G into itself) so it must commute with the exponential, exp. Thus:

$$\Phi_q(\exp(X)) = \exp(\Phi_{q*}X) = \exp X \tag{3.2}$$

that is, $\exp(X)$ commutes with g, for all $g \in G$, and all $X \in \mathfrak{g}$. But we know that exp is a diffeomorphism from some suitably small neighbourhood of $0 \in \mathfrak{g}$ to some neighbourhood \mathcal{U} of $e \in G$. Hence for all $g, h \in \mathcal{U}$, gh = hg. We are almost done. Recall that if G is connected it is generated by any neighbourhood of e. So, if g and h are elements of G, we may write them as:

$$g = g^1 \dots g^n \tag{3.3}$$

$$h = h^1 \dots h^m \tag{3.4}$$

with all the g^i and h^j elements of \mathcal{U} , so $gh = g^1 \dots g^n h^1 \dots h^m$. We may now commute each of the g^i and h^j pairwise to obtain gh = hg as required.

References

- [1] J.M. Lee. Introduction to Smooth Manifolds. Springer-Verlag, New York, 2002.
- [2] R.W. Sharpe. Differential Geometry: Cartan's generalization of Klein's Erlangen Program. Springer-Verlag, New York, 1996.
- [3] Joe Harris William Fulton. Representation Theory. Springer-Verlag, New York, 1991.