

Library Indian Institute of Science Education and Research Mohali

DSpace@IISERMohali (/jspui/)

- / Publications of IISER Mohali (/jspui/handle/123456789/4)
- / Research Articles (/jspui/handle/123456789/9)

Please use	this identifier to cite or link to this item: http://hdl.handle.net/123456789/1773
Title:	Feynman's Ratchet and pawl with ecological criterion: Optimal performance versus estimation with Prior information
Authors:	Singh, Varinder (/jspui/browse?type=author&value=Singh%2C+Varinder) Johal, R.S. (/jspui/browse?type=author&value=Johal%2C+R.S.)
Keywords:	finite-time thermodynamics mesoscopic thermodynamics Feynman's ratchet nonequilibrium physics
Issue Date:	2017
Publisher:	MDPI
Citation:	Entropy, 19(11)
Abstract:	We study the optimal performance of Feynman's ratchet and pawl, a paradigmatic model in nonequilibrium physics, using ecological criterion as the objective function. The analysis is performed by two different methods: (i) a two-parameter optimization over internal energy scales; and (ii) a one-parameter optimization of the estimate for the objective function, after averaging over the prior probability distribution (Jeffreys' prior) for one of the uncertain internal energy scales We study the model for both engine and refrigerator modes. We derive expressions for the efficiency/coefficient of performance (COP) at maximum ecological function. These expressions from the two methods are found to agree closely with equilibrium situations. Furthermore, the expressions obtained by the second method (with estimation) agree with the expressions obtained in finite-time thermodynamic models
URI:	https://www.mdpi.com/1099-4300/19/11/576 (https://www.mdpi.com/1099-4300/19/11/576) http://hdl.handle.net/123456789/1773 (http://hdl.handle.net/123456789/1773)

Appears in

Collections:

File		Size	Format	
Need to add pdf.odt (/jspui/bitstream/123456789/1773/1/Need%20to%20add%20pdf.odt)		8.63 kB	OpenDocument Text	View/Open (/jspui/bitstream/12345

Show full item record (/jspui/handle/123456789/1773?mode=full)

Research Articles (/jspui/handle/123456789/9)

. II (/jspui/handle/123456789/1773/statistics)

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.