Devoir surveillé n°10 Version n°1

Durée : 4 heures, calculatrices et documents interdits

Adapté du concours commun 2010 des écoles de mines d'Albi, Alès, Douai et de Nantes.

Les candidats sont invités à porter une attention particulière à la rédaction : les copies illisibles ou mal présentées seront pénalisées.

Si au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

PREMIER PROBLEME:

PARTIE I:

On considère la fonction f définie par la relation $f(x) = \frac{\ln(1+x)}{x}$.

- 1) Déterminer l'ensemble de définition D de f.
- 2) Donner le développement limité de $\ln{(1+x)}$ au voisinage de 0 à l'ordre 2. Montrer que f admet en 0 un prolongement par continuité. On précisera par quelle valeur f est alors prolongée et on continuera à appeler f le prolongement ainsi obtenu. On appellera D' le nouvel ensemble de définition de f.
- 3) f est-elle dérivable en 0? Si oui, préciser f'(0). Calculer f'(x) sur D puis prouver que f est de classe C^1 sur D'.
- 4) Étudier les variations de f. On dressera son tableau de variations. On pourra utiliser la fonction auxiliaire k définie par : $k(x) = x - (1 + x) \ln (1 + x)$.

PARTIE II:

Dans la suite on s'intéressera à l'intégrale suivante $\int_{0}^{1} f(t) dt$.

On notera L la valeur de cette intégrale mais on ne cherchera pas à calculer cette valeur. Pour tout entier naturel n non nul on définit les polynômes

From tout entire nature
$$n$$
 non null on definit les polyno
$$P_n(X) = X - \frac{X^2}{2} + \frac{X^3}{3} - \frac{X^4}{4} + \dots + (-1)^{n-1} \frac{X^n}{n}$$
et $Q_n(X) = X - \frac{X^2}{2^2} + \frac{X^3}{3^2} - \frac{X^4}{4^2} + \dots + (-1)^{n-1} \frac{X^n}{n^2}$.

- 1) Préciser pourquoi l'intégrale précédente est bien définie.
- 2) Justifier: $\forall t \in [0,1], \quad 1-t+t^2-t^3+\cdots+(-1)^{n-1}t^{n-1}=\frac{1-(-1)^nt^n}{1+t}.$
- **3)** En déduire : $\forall x \in [0,1]$, $P_n(x) = \ln(1+x) \int_0^x \frac{(-t)^n}{1+t} dt$.

Dans toute la suite on notera : $\forall n \in \mathbb{N}, \ \forall x \in [0,1], \quad R_n(x) = \int_0^x \frac{(-t)^n}{1+t} dt.$

- **4)** Établir la majoration : $\forall n \in \mathbb{N}, \ \forall x \in [0,1], \quad |R_n(x)| \leq \frac{x^{n+1}}{n+1}.$
- 5) Comparer pour tout $x \in]0,1]: Q'_n(x)$ et $\frac{P_n(x)}{x}$.
- **6)** En notant g_n l'application définie pour tout $x \in [0,1]$ par $g(x) = \frac{P_n(x)}{x} \frac{\ln(1+x)}{x}$ et $g_n(0) = 0$, montrer :

$$|Q_n(1) - L| \le \int_0^1 |g_n(x)| dx \le \frac{1}{(n+1)^2}.$$

En déduire $\lim_{n\to+\infty} Q_n(1)$.

7) Déterminer un entier naturel N tel que $Q_N(1)$ donne une valeur approchée de L à 10^{-4} près.

PARTIE III:

On s'intéresse à présent aux dérivées successives de f que l'on note $f^{(n)}$, $n \in \mathbb{N}^*$.

- 1) Montrer que f est indéfiniment dérivable $]0, +\infty[$.
- 2) Calculer, f''(x) sur $]0, +\infty[$.
- 3) Montrer que pour tout entier naturel n non nul il existe un polynôme T_n à coefficients réels et un réel a_n tels que :

$$\forall x \in \mathbb{R}_{+}^{*}, \quad f^{(n)}(x) = \frac{T_n(x)}{(1+x)^n x^n} + a_n \frac{\ln(1+x)}{x^{n+1}}.$$

- 4) Montrer que tous les coefficients de T_n sont des entiers.
- 5) En utilisant la formule de Leibniz calculer $f^{(n)}(x)$ et en déduire la valeur de T_n . On ne cherchera pas à expliciter une expression de chacun des coefficients de x^k $(k \in \mathbb{N})$ de ce polynôme.

Vérifier cette expression pour n = 2.

SECOND PROBLEME:

Le but de ce problème est d'étudier différentes matrices qui commutent avec leur transposée, c'est-à-dire (qui vérifient 1a relation : $M \cdot {}^t M = {}^t M \cdot M$ (1).

Dans la suite de l'énoncé, on se contentera alors de dire dans ce $\,$ cas que la matrice M vérifie la relation (1).

PARTIE I:

Dans toute cette partie, toutes les matrices envisagées seront dans l'espace $\mathcal{M}_2(\mathbb{R})$ c'està-dire ayant 2 lignes et 2 colonnes et des coefficients réels. On notera en particulier :

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ et } C = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

- 1) Montrer que les matrices A et C vérifient la relation (1).
- 2) Calculer A^2 . En déduire que pour tout, entier naturel non nul n, A^n vérifie la relation (1).
- **3)** Montrer que A est inversible.

Soit u l'unique endomorphisme de \mathbb{R}^2 dont la matrice relative à la base canonique $\mathscr{B} = (\overrightarrow{i}, \overrightarrow{j})$ est A.

4) Préciser les valeurs de $u\left(\overrightarrow{i}\right)$ et $u\left(\overrightarrow{j}\right)$ en fonction de \overrightarrow{i} et \overrightarrow{j} .

Montrer que u est une symétrie. Préciser l'ensemble des vecteurs invariants.

Dans toute la suite on notera U = A + I.

5) Montrer que la matrice U vérifie la relation (1). Montrer que, pour tout entier $n \in \mathbb{N}^*$, il existe un réel α_n tel que $U^n = \alpha_n U$. En déduire que toutes ses puissances U^n , $n \in \mathbb{N}^*$ vérifient (1).

On notera dans la suite E_2 l'ensemble des matrices de $\mathscr{M}_2(\mathbb{R})$ qui vérifient la relation (1).

- **6)** Calculer les produits de la matrice A + C et de sa transposée. En déduire que E_2 n'est pas un sous-espace vectoriel de $\mathscr{M}_2(\mathbb{R})$.
- 7) Étant donnée une matrice $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ quelconque de $\mathcal{M}_2(\mathbb{R})$ déterminer les conditions nécessaires et suffisantes sur a, b, c et d pour que M appartienne à E_2 . On donnera les deux formes possibles des matrices de E_2 .
- 8) En déduire que E_2 est la, réunion de deux sous-espaces vectoriels de $\mathcal{M}_2(\mathbb{R})$ dont on précisera pour chacun une base.
- 9) Étant données M et N deux matrices de E_2 a-t-on nécessairement $M \cdot N \in E_2$? On pourra utiliser certaines matrices introduites précédemment dans l'énoncé.

PARTIE II:

On se place ici dans l'espace $\mathcal{M}_3(\mathbb{R})$ et on considère la base canonique de \mathbb{R}^3 que l'on note $\mathscr{B}' = (\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.

On définit alors h comme l'unique endomorphisme de \mathbb{R}^3 vérifiant : $h(\overrightarrow{i}) = -\overrightarrow{k}$, $h(\overrightarrow{j}) = \overrightarrow{i}$, $h(\overrightarrow{k}) = \overrightarrow{j}$ ainsi que $S = \operatorname{mat}_{\mathscr{B}'}(h)$ sa matrice dans la base \mathscr{B}' .

L'ensemble des matrices de $\mathcal{M}_3(\mathbb{R})$ qui commutent avec leur transposée (donc qui vérifient la relation (1) est noté E_3 .

- 1) Représenter la matrice S.
- 2) Déterminer S^2 et montrer que S et S^2 sont dans E_3 .
- 3) Montrer que pour tous réels a, b et c la matrice $R = aI_3 + bS + cS^2$ appartient à E_3 .
- 4) En déduire que E_3 contient un espace vectoriel de dimension 3 que l'on notera F.
- 5) Montrer que F est stable par multiplication matricielle.

PARTIE III:

On se place à présent dans l'espace $\mathcal{M}_4(\mathbb{R})$ et on considère la base canonique de \mathbb{R}^4 que l'on note $\mathscr{B}'' = (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}, \overrightarrow{e_4})$.

On définit la matrice
$$B$$
 par : $B = \begin{pmatrix} 1 & a & 1 & 1 \\ -1 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ 1 & 1 & -1 & 1 \end{pmatrix}$

où a est un réel quelconque, et on appelle u l'unique endomorphisme de \mathbb{R}^4 tel que $\max_{\mathscr{B}''}(u)=B$.

L'ensemble des matrices de $\mathcal{M}_4(\mathbb{R})$ qui commutent avec leur transposée (donc qui vérifient la relation (1)) est noté E_4 .

1) Déterminer les réels a tels que $B \in E_4$.

Dans toute la suite on pose a = -1.

- 2) Déterminer une base de Ker(u) et de Im(u).
- 3) Calculer $u(\overrightarrow{e_1} + \overrightarrow{e_2} \overrightarrow{e_3} \overrightarrow{e_4})$. Que remarque-t-on?
- 4) Calculer $B\begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}$ et $B\begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix}$. Commenter le résultat obtenu.
- 5) On note $\mathscr{C} = (\overrightarrow{e_2} + \overrightarrow{e_3} , \overrightarrow{e_1} + \overrightarrow{e_2} \overrightarrow{e_3} \overrightarrow{e_4} , \overrightarrow{e_1} + \overrightarrow{e_4} , \overrightarrow{e_1} \overrightarrow{e_2} + \overrightarrow{e_3} \overrightarrow{e_4})$ et on admet sans démonstration que \mathscr{C} est une base de \mathbb{R}^4 .

Déduire de la question précédente $\operatorname{mat}_{\mathscr{C}}(u)$.

En déduire l'existence d'une matrice $P \in \mathcal{M}_4(\mathbb{R})$ que l'on précisera telle que $B = P\Delta P^{-1}$, où Δ est une matrice diagonale.

On ne demande pas d'expliciter la matrice P^{-1} .

6) Montrer : $\forall n \in \mathbb{N}^*$ $B^n = P\Delta^n P^{-1}$. En déduire une expression simple de B^{2p} et B^{2p+1} pour tout entier naturel p en fonction de B et de B^2 .

— FIN —