

Hands-on: K-means Algorithm

AntelliPaat AntelliPaa

Demo-K-means Algorithm

- We will be using the famous Iris Dataset, collected in the 1930's by Edgar Anderson.
- In this example, we are going to train a random forest classification algorithm to predict the class in the test data

4	Α	В	C	D	E	F	
1	class	petal_len	petal_wid	sepal_len	sepal_wid	th	
2	Iris-virgini	5.5	1.8	6.4	3.1		
3	Iris-virgini	5.9	2.3	6.8	3.2		
4	Iris-virgini	5.4	2.3	6.2	nte iP. 3.4		
5	Iris-virgini	4.8	1.8	6	3		
6	Iris-virgini	5.1	2.3	6.9	3.1		
7	Iris-virgini	5.6	2.4	6.3	3.4		
8	Iris-virgini	5.2	2.3	6.7	3		
9	Iris-virgini	6.7	າລາ ^ນ 2	7.7	2.8	i intelliba	
10	Iris-virgini	5.8	2.2	6.5	3		
11	Iris-virgini	5.3	1.9	6.4	2.7		
12	Iris-virgini	5	2	5.7	2.5		
13	Iris-virgini	5.1	1.9	5.8	2.7		

www.intellipaat.c

Fit the features into the model:

```
In [26]: kmodel = kmeans.fit(iris_data.data)
```

Predict and label the data:

```
In [32]: kmodel1 = kmeans.predict(iris_data.data) kmodel1
```

Having a look at the cluster centers:

```
3 In [20]: kmodel.cluster_centers_
```

```
array([[5.006 , 3.428 , 1.462 , 0.246 ], [5.9016129 , 2.7483871 , 4.39354839, 1.43387097], [6.85 , 3.07368421, 5.74210526, 2.07105263]])
```


- 0's -> All 50 of them labeled as 0,
- 1's -> 48 of them labeled correctly, 2 of them labeled incorrectly
- 2's -> 36 of them labeled correctly, 14 of them labeled incorrectly