Higher Homotopy Groups

Swayam Chube

Last Updated: June 16, 2025

§1 Function Spaces

We begin with some preliminaries about function spaces.

DEFINITION 1. Let X and Y be topological spaces. We use the shorthand X^Y to denote the set of continuous functions from Y to X. Endow this set with the *compact open topology*, that is, the topology generated by the subbasis elements

$$(K;U)\coloneqq\left\{f\in X^Y:f(K)\subseteq U\right\},$$

for all compact sets $K \subseteq Y$ and open sets $U \subseteq X$.

For each continuous function $F: Z \times Y \to X$, there is the associate $F^{\sharp}: Z \to X^{Y}$ defined by

$$F^{\sharp}(z) = (y \longmapsto F(z, y)).$$

Further, there is the *evaluation map* ev: $X^Y \times Y \to X$ given by ev(f, y) = f(y).

THEOREM 2. Let X and Z be topological spaces, Y a locally compact Hausdorff space, and equip X^Y with the compact-open topology.

- (1) The evaluation map ev: $X^Y \times Y \to X$ is continuous.
- (2) A function $F: Z \times Y \to X$ is continuous if and only if its associate $F^{\sharp}: Z \to X^{Y}$ is continuous.

§2 Group and Cogroup Objects

In a category \mathscr{C} , if the product $X \times Y$ exists, then given any object Z and morphisms $f: Z \to X$ and $g: Z \to Y$, there is a unique map $(f,g): Z \to X \times Y$ making the diagram

$$X \times Y \xrightarrow{\operatorname{pr}_1} X$$

$$\operatorname{pr}_2 \downarrow \qquad (f,g) \qquad \uparrow f$$

$$Y \leftarrow g \qquad Z$$

commute.

Similarly, if the coproduct $X \coprod Y$ exists, then given any object Z and morphisms $f: X \to Z$ and $g: Y \to Z$, there is a unique map $(f,g): X \coprod Y \to Z$ making

$$Z \stackrel{f}{\longleftarrow} X$$
 $g \uparrow \qquad (f,g) \qquad \downarrow_{l_1}$
 $Y_{l_2} \longrightarrow X \coprod Y$

DEFINITION 3. Let $\mathscr C$ be a category admitting finite products and a terminal object Z. A *group object* in $\mathscr C$ is an object G together with morphisms

$$\mu: G \times G \to G$$
, $\eta: G \to G$, and $\varepsilon: Z \to G$

such that the following diagrams commute:

Associativity

$$G \times G \times G \xrightarrow{\mathbb{1} \times \mu} G \times G$$
 $\downarrow \mu$
 $G \times G \xrightarrow{\mu} G$

Identity

$$G \times Z \xrightarrow{\mathbb{1} \times \varepsilon} G \times G \xleftarrow{\varepsilon \times \mathbb{1}} Z \times G$$

$$\downarrow pr_1 \qquad \downarrow pr_2$$

Note that the projections pr_1 and pr_2 are isomorphisms in the category.

Inverse

$$G \xrightarrow{(\mathbb{1},\eta)} G \times G \xleftarrow{(\eta,\mathbb{1})} G \ \downarrow \qquad \qquad \downarrow \ Z \xrightarrow{\varepsilon} G \leftarrow Z$$

The maps μ , η , and μ are called *multiplication*, *inversion*, and *unit* respectively.

DEFINITION 4. Let \mathscr{C} be a category admitting finite coproducts and an initial object A. A *cogroup object* in \mathscr{C} is an object C together with morphisms

$$m: C \to C \coprod C$$
, $h: C \to C$, and $e: C \to A$

such that the following diagrams commute

Co-associativity

$$C \xrightarrow{m} C \coprod C$$

$$\downarrow 1 \coprod m$$

$$C \coprod C \xrightarrow{m \coprod 1} C \coprod C \coprod C$$

Co-identity

$$C \coprod A \stackrel{\parallel \coprod e}{\longleftarrow} C \coprod C \stackrel{e \coprod \coprod}{\longrightarrow} A \coprod C$$

Co-inverse

$$C \xleftarrow{(1,h)} C \coprod C \xrightarrow{(h,1)} C$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$A \xleftarrow{a} C \xrightarrow{a} A$$

THEOREM 5. Let \mathscr{C} be a category admitting finite coproducts and a terminal object. An object G in \mathscr{C} is a group object if and only if $\operatorname{Hom}_{\mathscr{C}}(X,G)$ has the structure of a group for every object X of G.

Proof. Omitted.

COROLLARY 6. Every abelian group is a group object in **Grp** and every topological group (with identity as basepoint) is a group object in **Top**_{*}.

PROPOSITION 7. A group object in **Grp** is an abelian group.

Proof. Suppose $(G, \mu, \eta, \varepsilon)$ is a group object in **Grp**. Clearly, this gives an alternate group structure on G, which we denote by $(G, \otimes, a \mapsto \eta(a))$. Since $\mu \colon G \times G \to G$ is a group homomorphism with respect to the original group structure of G, we have

$$(ac) \otimes (bd) = (a \otimes b)(c \otimes d).$$

Due to Eckmann-Hilton, both group structures on G must agree and must be commutative, as desired.

COROLLARY 8. The fundamental group of a topological group (with identity as basepoint) is abelian.

Proof. π_1 : **Top**_{*} \rightarrow **Grp** is a functor preserving finite products, and sending terminal objects to terminal objects, therefore, π_1 sends group objects to group objects. Since a topological group with identity as its basepoint is a group object in **Top**_{*}, it follows that π_1 sends it to an abelian group due to Proposition 7.