본 강의에서 수업자료로 이용되는 저작물은

저작권법 제25조 수업목적 저작물 이용 보상금제도에 의거,

한국복제전송저작권협회와 약정을 체결하고 적법하게 이용하고 있습니다.

약정범위를 초과하는 사용은 저작권법에 저촉될 수 있으므로

수업자료의 재 복제, 대중 공개·공유 및 수업 목적 외의 사용을 금지합니다.

2023. 3. 02.

부천대학교·한국복제전송저작권협회

운 영 체 제

학습 내용

- * 1 과목 소개
 - * 수업 목차
 - * 강의계획서
- * 2 컴퓨터 개요 및 구조
 - * 컴퓨터 구성 요소
 - * 프로그램 개발 과정
 - * 컴퓨터 동작 과정
- * 3 운영체제 개요(1장)
 - * 운영체제 역할
 - * 운영체제 목적
 - * 운영체제 기능

컴퓨터를 보다 효율적으로 사용하기 위해 운영체제의 역할과 원리 및 자원관리 방법을 이해하고 운영체제, 운영체제가 관리하는 모든 자원 및 사용자 간의 역할에 대한 사항을 학습하여 시스템 프로그램의 이해도를 높인다.

- ❖ 운영체제의 기본 개념과 역할
- ❖ 운영체제의 자원 관리 종류
- ❖ 프로세스,메모리와 파일 관리를 효율적으로 관리하는 기법

수업 목차

0장 컴퓨터 시스템 개요 1장 운영체제 개요 2장 프로세스 관리 3장 메모리 관리(기억장치 관리) 4장 가상 메모리 관리 5장 디스크관리(장치 관리)와 파일 관리

6장 프로세스 간 동기화 및 통신 7장 교착 상태

8장 정보 보호 및 보안 9장 다중 처리 시스템 10장 분산 처리 시스템

학습 로드맵

컴퓨터의 개요 및 구조

- 1. 컴퓨터란
- 2. 컴퓨터 구성
- 3. 주기억장치
- 4. 보조기억장치
- 5. 소프트웨어
- 6. 프로그래밍 언어
- 7. 프로그램 개발 과정
- 8. 중앙처리장치
- 9. 컴퓨터 동작 과정

1. 컴퓨터(Computer)란

컴퓨터(Computer): 명칭의 유래는 먼저 계산한다는 뜻의 라틴어

Compute = Com(함께)+Putus(생각하다)의 합성어

Data -> Processing -> Information

자료를 처리하여 정보를 생성하는 처리 시스템

2. 컴퓨터 구성

3. 주기억장치

- ROM(Read Only Memory)
 - 저장된 명령이나 데이터를 단지 읽기만 할 수 있는 기억장치
 - 쓰기는 불가능
 - 전원이 꺼져도 기억된 내용이 지워지지 않음 => 비휘발성 메모리
 - Mask ROM, PROM, EPROM
 - EEPROM(Electrically Erasable Programmable ROM))
- RAM(Random Access Memory)
 - 컴퓨터 시스템에서 수행되고 있는 프로그램과 수행에 필요한데이터를 기억하고 있는 장치
 - 읽기/쓰기가 가능한 기억장치
 - 전원이 꺼지면 기억된 내용이 모두 사라짐 => 휘발성 메모리
 - SRAM(Static RAM), DRAM(Dynamic RAM)

4. 보조기억장치

5. 소프트웨어

소프트웨어

명령들이 모여서 하나의 프로그램을 형성하며, 프로그램들이 모여서 집합을 형성한 것이 소프트웨어

시스템 소프트웨어

- 컴퓨터 시스템을 제어하고 운영하는 프로그램
- 운영체제(DOS, UNIX, Window 7, Window10)
- 컴파일러(C, java 컴파일러 등)
- ∘ 어셈블러
- ∘ 링커
- ∘ 로더
- 입출력 제어 프로그램 등

▶ 응용 소프트웨어

- 시스템 소프트웨어를 기반으로 특정한 응용 분야에서 특수 목적을 위해 사용할 수 있는 프로그램
- OA관련 소프트웨어(엑셀, 파워포인트 등)
- 그래픽 관련 소프트웨어

6. 프로그래밍 언어

- > 프로그래밍 언어
 - 컴퓨터가 읽고 사용하는 명령이나 코드의 집합으로, 프로그래머가 의도한 대로 동작하는 프로그램을 개발하는데 사용
- ▶ 고급(High-level) 언어
 - 명령어가 인간이 사용하는 일상적인 문장에 가까운 언어다 컴퓨터 시스템을 제어하고 운영하는 프로그램
- 저수준(Low-level) 언어
 - 컴퓨터가 사용하는 언어로 데이터를 표현에 있어 기본 단위인 비트의 값 0과 1로 그대로 표기하는 언어를 기계어(Machine Language) 라고 함
- ▶ 어셈블리 언어(Assembly Language) 컴퓨터 고유의 기계어 명령을 사람이 어느 정도 해독할 수 있도록 문자화하거나 기호화한 형태의 중간수준의 언어

7. 프로그램 개발 과정(1/2)

▶ 고급(High-level) 언어를 이용한 프로그램 개발 과정

7. 프로그램 개발 과정(2/2)

▶ 어셈블리 언어를 이용한 프로그램 개발 과정

8. 중앙처리장치

CPU(Central Processing Unit)

9. 컴퓨터 동작 과정

- 컴퓨터 동작 (예: 명령어 실행 과정)
 - 1. 명령어 인출(메모리로부터 명령어 가져오기)
 - 2. 명령어 해독
 - 3. 데이터 인출
 - 4. 실행

1장 운영체제 개요

- 소프트웨어
- 시스템 소프트웨어의 계층 구조
- ▶ 운영체제의 개요
- > 운영체제의 역할
- > 운영체제의 목적
- > 운영체제의 기능

소프트웨어

- 소프트웨어

 명령들이 모여서 하나의 프로그램을 형성하며, 프로그램들이 모여서 집합을 형성한 것이 소프 트웨어

- 시스템 소프트웨어

- 컴퓨터 시스템을 제어하고 운영하는 프로그램
- 운영체제(DOS, UNIX, Window 7, Window10)
- 컴파일러(C, java 컴파일러 등)
- 어셈블러
- 링커
- 로더
- 입출력 제어 프로그램 등

- 응용 소프트웨어

- 시스템 소프트웨어를 기반으로 특정한 응용 분야에서 특수 목적을 위해 사용할 수 있는 프로그램
- OA관련 소프트웨어(엑셀, 파워포인트 등)
- 그래픽 관련 소프트웨어

시스템 소프트웨어의 계층구조(1/2)

시스템 소프트웨어의 계층구조(2/2)

컴퓨터 시스템의 자원들을 효율적으로 관리하며, 사용자가 컴퓨터를 편리하고 효과적으로 사용할 수 있도록 환경을 제공하는 여러 프로그램의 모임으로, 제어 프로그램과 처리 프로그램으로 구분

- 제어 프로그램 : 시스템 전체의 작동 상태 감시, 작업의 순서 지정, 작업에 사용되는 데이터 관리 등의 역할수행
- 감시 프로그램(Supervisor Program)
- 작업 제어 프로그램(Job Control Program)
- 자료 관리 프로그램(Data Management Program)
- 처리 프로그램 : 제어 프로그램의 지시를 받아 사용자가 요구한 문제를 처리하기 위한 프로그램
- 언어 번역 프로그램(Language Translator Program)
- 서비스 프로그램(Service Program)
- 문제 프로그램(Problem Program)
- 운영체제의 종류 : Windows, UNIX, LINUX, MS-DOS 등

운영체제의 개요

- 컴퓨터 하드웨어와 컴퓨터 사용자 간의 매개체 역할을 하는 시스템 소프트웨어
- 프로그램의 실행을 제어하는 소프트웨어
 - 자원의 할당, 스케쥴링, 입출력 제어, 데이터관리 등의 서비스를 제공
- 주요 기능(처리 내용 기준)
 - File Management 입출력 및 데이터 관리
 - Job Management 자원할당(memory,CPU,..), Job 스케쥴링
 - => Job(작업): job이란 사용자가 컴퓨터에 요청한(부여한) 일의 단위
 - Task Management -TASK의 처리 상태를 감시하고 효율적으로 처리
 - =>Task(업무): 컴퓨터의 처리 단위인 TASK로 분할하여 Job을 실행
- 작업 수행하는 기준
 - => 일괄,다중 프로그래밍,시분할 처리, 다중 처리, 병행 처리, 분산 처리로 발전

컴퓨터 시스템 구성요소와 운영체제

운영체제의 역할

- 운영체제 역할
 - 운영체제는 컴퓨터 하드웨어와 응용 프로그램 간의 인터페이스 역할을 하며 CPU,
 메모리와 같은 컴퓨터 자원을 관리하고 사용자에게 편의를 제공

운영체제의 자원 관리 기능

운영체제의 목적

운영체제의 목적

- <mark>편리성</mark> : 사용자가 프로그램을 개발하고 사용하는 데 좀 더 편리한 환경 제공. ex: 개인용 컴퓨터(PC, Personal Computer)의 GUI 환경
- 효율성 : 자원을 효과적으로 사용하기 위해 각 프로그램을 유기적으로 결합하여 시스템 전체 성능 향상 =>성능을 향상시키는 방향으로 설계
 - * 시스템 성능 평가 기준
 - 처리 능력 (Throughput): 시스템의 생산성을 나타내는 대표 지표로 단위 시간당 처리하는 작업량.
 - 신뢰도 (Reliability): 하드웨어(펌웨어), 소프트웨어가 실패 없이 주어진 기능을 수행할 수 있는 능력.
 - 응답 시간Turn around time) : 사용자가 시스템에 작업을 의뢰한 후 반응을 얻을 때까지의 시간. (시분할 방식 시스템과 온라인 시스템에서 사용하는 용어, 일괄 처리 시스템에서는 Turn Around Time)
 - 사용가능도(가동률Availability) : 사용자가 일정 기간 동안 컴퓨터를 실제로 사용한 시간(비율)

운영체제의 기능

▪ 자원 관리 기능

- 프로세스 관리
 - 프로세스를 주제로 프로세스의 상태와 변환 관련 기술과 제어, 스레드, 병행 프로세스(상호배제 및 동기화), 교착 상태 , 프로세스 스케줄링의 기능
- 메모리 관리
 - 현재 메모리의 어느 부분이 사용되고, 누가 사용하는 지를 점검하는 기능
 - 기억 공간에 어떤 프로세스를 저장할 지를 결정하는 기능
 - 기억 공간을 할당하고 회수하는 방법 결정하는 기능
- 보조기억장치 관리
 - 메인 메모리의 공간이 제한적이므로 컴퓨터 시스템은 보조기억장치를 이용해 메인 메모리의 내용을 저장
 - 디스크 관리를 위해 비어 있는 공간 관리 , 저장 장소 할당. 디스크 스케줄링 기능
- 장치 관리
 - 입출력 시스템을 관리하기 위해 임시 저장(Buffer-aching) 시스템, 일반적인 장치 드라이버 인터페이스,특정 하드웨어 장치를 위한 드라이버 기능
- 파일 관리
 - 파일과 디렉터리의 생성과 제거, 보조기억장치에 있는 파일의 맵핑, 안전한(비휘발성) 저장 매체에 파일 저장하는 기능
- 기타 기능
 - 시스템 보호, 네트워킹, 명령어 해석기와 시스템 관리 기능

학습 내용 점검

- * 1 과목 소개
 - * 수업 목차
 - * 강의계획서

=> 운영체제 과목의 학습 목표를 설명 하시오.

- * 2 컴퓨터 개요 및 구조
 - * 컴퓨터 구성 요소
 - * 프로그램 개발 과정
 - * 컴퓨터 동작 과정

=> 프로그램 개발 과정과 컴퓨터 동작 과정을 연관시켜서 설명 하시오.

- * 3 운영체제 개요(1장)
 - * 운영체제 역할
 - * 운영체제 목적
 - * 운영체제 기능

- => 운영체제의 역할에 대하여 설명 하시오.
- => 운영체제의 주요한 목적 두 가지를 설명 하시오.
- => 운영체제의 자원 관리 기능에 대하여 설명 하시오.