Maths Expertes - DM 3

Scott Hamilton

1

89p134

1.1

y est le reste de la division euclidienne de 4x+3 par 27. Donc on peut poser $(q,r) \in \mathbb{N}^2$ tels que 4x+3=27q+r avec $0 \le r < 27$.

$$4x + 3 = 27q + r$$
$$r = 4x + 3 - 27q$$
$$y = 4x + 3 - 27q$$

Si y = x:

$$y = x$$

$$4x + 3 - 27q = x$$

$$3x = 27q - 3$$

$$x = 9q - 1$$

$$x = 9(q - 1) + 8$$

$$x \equiv 8[9]$$

On peut poser $q' \in \mathbb{N}$ tel que x = 9q' + 8. D'après l'énoncé :

$$0 \le x \le 26$$

$$0 \le 9q' + 8 \le 26$$

$$-8 \le 9q' \le 18$$

$$0 \le q' \le 2$$

On distingue 3 cas: q' = 0, q' = 1 et q' = 2.

Si q'=0, alors x=9q'+8=8, $4x+3=4\cdot 8+3=35=27\cdot 1+8\Leftrightarrow y=8$ (car $0\leq 8<27$). donc x=y=8. Si q'=1, alors x=9q'+8=17, $4x+3=4\cdot 17+3=71=27\cdot 2+17\Leftrightarrow y=17$ (car $0\leq 17<27$). donc x=y=17. Si q'=2, alors x=9q'+8=26, $4x+3=4\cdot 26+3=107=27\cdot 3+26\Leftrightarrow y=26$ (car $0\leq 26<27$). donc x=y=26.

Conclusion, x=y admet trois solutions: x=8, ce qui correspond au I, x=17, ce qui correspond au R et x=26, ce qui correspond au \star . Les caractères invariants de ce codage sont le I, le R et le \star .

1.2

$$y \equiv 4x + 3[27]$$

$$7y \equiv 28x + 21[27]$$

$$7y + 6 \equiv 28x + 27[27]$$

$$0 \equiv -27[27]$$

$$28x + 27 + 0 \equiv 28x + 27 - 27[27]$$

$$28x + 27 \equiv 28x[27]$$

$$7y + 6 \equiv 28x + 27 \equiv 28x[27]$$

$$7y + 6 \equiv 27x + x[27]$$

$$7y + 6 \equiv x[27] \text{ (car } 27|27 \Leftrightarrow 27|27x - 0 \Leftrightarrow 27x \equiv 0[27])$$

$$x \equiv 7y + 6[27]$$

Soient $(y; y') \in \mathbb{N}^2$ tels que $0 \le y < y' \le 26$.

On suppose qu'il existe $(x; x') \in \mathbb{N}^2$ tels que $0 \le x \le 26$, $0 \le x' \le 26$, $y \equiv 4x + 3[27]$ et $y' \equiv 4x' + 3[27]$. D'après la preuve précédante,

$$y \equiv 4x + 3[27]$$
 $y' \equiv 4x' + 3[27]$
 $x \equiv 7y + 6[27]$ $x' \equiv 7y' + 6[27]$

On raisonne par l'absurde.

$$x = x'$$

$$7y + 6 \equiv 7y' + 6[27]$$

$$-6 \equiv -6[27]$$

$$7y + 6 - 6 \equiv 7y' + 6 - 6[27]$$

$$7y \equiv 7y'[27]$$

$$27|7y - 7y' \Leftrightarrow 27|7(y - y')$$

$$27|y - y'| (car 27 et 7 sont premiers entre eux)$$

$$|y - y'| \ge 27$$

Or $0 \le y \le 26$ et $0 \le y' \le 26$ donc

$$-26 \le -y' \le 0$$

$$-26 + 0 \le y - y' \le 26$$

$$-26 \le y - y' \le 26$$

Il y a une contradiction car $|y-y'| \le 26$. Donc $x \ne x'$, deux caractères distincts sont codés par deux caractères distincts.

1.3

La méthode la plus facile pour décoder rapidement un message est selon moi de lister les 27 caractères dans un tableau. Puis d'ajouter à chaque case le caractère codé correspondant. Puis de trier les cases par ordre croissant lexicographique du caractère codé, avec le \star ordonné après le \mathbf{Z} . Le tableau final permettra de rapidement trouvé quel caractère est codé par quel caractère. On peut facilement lire ce tableau pour décoder n'importe quel message.

1.4

Le message est $\mathbf{OU} \star \mathbf{EST} \star \mathbf{LA} \star \mathbf{CLE}$.

O correspond à x=14. $4x+3=4\cdot 14+3=59=27\cdot 2+5$ avec $0\leq 5<27$. Donc y=5, ce qui correspond au caractère **F**.

U correspond à x=20. $4x+3=4\cdot 20+3=83=27\cdot 3+2$ avec $0\leq 2<27$. Donc y=2, ce qui correspond au caractère **C**.

 \star correspond à x=26. $4x+3=4\cdot 26+3=107=27\cdot 3+26$ avec $0\leq 26<27$. Donc y=26, ce qui correspond au caractère \star .

E correspond à x=4. $4x+3=4\cdot 4+3=19=27\cdot 0+19$ avec $0\leq 19<27$. Donc y=19, ce qui correspond au caractère **T**.

S correspond à x=18. $4x+3=4\cdot 18+3=75=27\cdot 2+21$ avec $0\leq 21<27$. Donc y=21, ce qui correspond au caractère **V**.

T correspond à x=19. $4x+3=4\cdot 19+3=79=27\cdot 2+25$ avec $0\leq 25<27$. Donc y=25, ce qui correspond au caractère **Z**.

 \star correspond à x=26. $4x+3=4\cdot 26+3=107=27\cdot 3+26$ avec $0\leq 26<27$. Donc y=26, ce qui correspond au caractère \star .

L correspond à x=11. $4x+3=4\cdot 11+3=47=27\cdot 1+20$ avec $0\leq 20<27$. Donc y=20, ce qui correspond au caractère **U**.

A correspond à x=0. $4x+3=4\cdot 0+3=3=27\cdot 0+3$ avec $0\leq 3<27$. Donc y=3, ce qui correspond au caractère **D**.

 \star correspond à x=26. $4x+3=4\cdot 26+3=107=27\cdot 3+26$ avec $0\leq 26<27$. Donc y=26, ce qui correspond au caractère \star .

 ${f C}$ correspond à x=2. $4x+3=4\cdot 2+3=11=27\cdot 0+11$ avec $0\leq 11<27$. Donc y=11, ce qui correspond au caractère ${f L}$.

L correspond à x=11. $4x+3=4\cdot 11+3=47=27\cdot 1+20$ avec $0\leq 20<27$. Donc y=20, ce qui correspond au caractère **U**.

E correspond à x=4. $4x+3=4\cdot 4+3=19=27\cdot 0+19$ avec $0\leq 19<27$. Donc y=19, ce qui correspond au

Le message codé est $FC \star TVZ \star UD \star LUT$

1.5

On suit la méthode décrite précédemment en commençant par construire le tableau.

A correspond à x=0. $4x+3=4\cdot 0+3=3=27\cdot 0+3$ avec $0\leq 3<27$. Donc y=3, ce qui correspond au caractère **D**.

B correspond à x=1. $4x+3=4\cdot 1+3=7=27\cdot 0+7$ avec $0\leq 7<27$. Donc y=7, ce qui correspond au caractère **H**.

 ${f C}$ correspond à x=2. $4x+3=4\cdot 2+3=11=27\cdot 0+11$ avec $0\leq 11<27$. Donc y=11, ce qui correspond au caractère ${f L}$.

D correspond à x=3. $4x+3=4\cdot 3+3=15=27\cdot 0+15$ avec $0\leq 15<27$. Donc y=15, ce qui correspond au caractère **P**.

E correspond à x=4. $4x+3=4\cdot 4+3=19=27\cdot 0+19$ avec $0\leq 19<27$. Donc y=19, ce qui correspond au caractère **T**.

F correspond à x=5. $4x+3=4\cdot 5+3=23=27\cdot 0+23$ avec $0\leq 23<27$. Donc y=23, ce qui correspond au caractère **X**.

G correspond à x=6. $4x+3=4\cdot 6+3=27=27\cdot 1+0$ avec $0\leq 0<27$. Donc y=0, ce qui correspond au caractère **A**.

H correspond à x=7. $4x+3=4\cdot 7+3=31=27\cdot 1+4$ avec $0\leq 4<27$. Donc y=4, ce qui correspond au caractère **E**.

I correspond à x=8. $4x+3=4\cdot 8+3=35=27\cdot 1+8$ avec $0\leq 8<27$. Donc y=8, ce qui correspond au caractère I.

J correspond à x=9. $4x+3=4\cdot 9+3=39=27\cdot 1+12$ avec $0\leq 12<27$. Donc y=12, ce qui correspond au caractère **M**.

K correspond à x=10. $4x+3=4\cdot 10+3=43=27\cdot 1+16$ avec $0\leq 16<27$. Donc y=16, ce qui correspond au caractère **Q**.

L correspond à x=11. $4x+3=4\cdot 11+3=47=27\cdot 1+20$ avec $0\leq 20<27$. Donc y=20, ce qui correspond au caractère **U**.

M correspond à x=12. $4x+3=4\cdot 12+3=51=27\cdot 1+24$ avec $0\leq 24<27$. Donc y=24, ce qui correspond au caractère **Y**.

N correspond à x=13. $4x+3=4\cdot 13+3=55=27\cdot 2+1$ avec $0\leq 1<27$. Donc y=1, ce qui correspond au caractère ${\bf B}$.

O correspond à x=14. $4x+3=4\cdot 14+3=59=27\cdot 2+5$ avec $0\leq 5<27$. Donc y=5, ce qui correspond au caractère **F**.

P correspond à x=15. $4x+3=4\cdot 15+3=63=27\cdot 2+9$ avec $0\leq 9<27$. Donc y=9, ce qui correspond au caractère **J**.

Q correspond à x=16. $4x+3=4\cdot 16+3=67=27\cdot 2+13$ avec $0\leq 13<27$. Donc y=13, ce qui correspond au caractère **N**.

 ${f R}$ correspond à x=17. $4x+3=4\cdot 17+3=71=27\cdot 2+17$ avec $0\leq 17<27$. Donc y=17, ce qui correspond au caractère ${f R}$.

S correspond à x=18. $4x+3=4\cdot 18+3=75=27\cdot 2+21$ avec $0\leq 21<27$. Donc y=21, ce qui correspond au caractère **V**.

T correspond à x=19. $4x+3=4\cdot 19+3=79=27\cdot 2+25$ avec $0\leq 25<27$. Donc y=25, ce qui correspond au caractère **Z**.

U correspond à x=20. $4x+3=4\cdot 20+3=83=27\cdot 3+2$ avec $0\leq 2<27$. Donc y=2, ce qui correspond au caractère **C**.

V correspond à x=21. $4x+3=4\cdot 21+3=87=27\cdot 3+6$ avec $0\leq 6<27$. Donc y=6, ce qui correspond au caractère **G**.

W correspond à x=22. $4x+3=4\cdot 22+3=91=27\cdot 3+10$ avec $0\leq 10<27$. Donc y=10, ce qui correspond au caractère **K**.

X correspond à x=23. $4x+3=4\cdot 23+3=95=27\cdot 3+14$ avec $0\leq 14<27$. Donc y=14, ce qui correspond au caractère **O**.

Y correspond à x=24. $4x+3=4\cdot 24+3=99=27\cdot 3+18$ avec $0\leq 18<27$. Donc y=18, ce qui correspond au caractère **S**.

Z correspond à x=25. $4x+3=4\cdot 25+3=103=27\cdot 3+22$ avec $0\leq 22<27$. Donc y=22, ce qui correspond au caractère **W**.

* correspond à x=26. $4x+3=4\cdot 26+3=107=27\cdot 3+26$ avec $0\leq 26<27$. Donc y=26, ce qui correspond au caractère *.

On peut construire le tableau en n'oubliant pas d'ordonner les cases.

caractère codé	caractère initial
A	G
В	N
С	U
D	A
Е	Н
F	0
G	V
Н	В
I	I
J	P
K	W
L	С
M	J
N	Q X
О	X
P	D
Q	K
R	R
S	Y
T	E
U V	L
	S
W	Z
X	F
Y	M
Z	Т
*	*

On peut ainsi utiliser ce tableau et retrouver le message en clair de Colin.

Message codé: PTRRITRT \star UT \star ZDHUTDC.

Message en clair: **DERRIERE** \star **LE** \star **TABLEAU**.

2

2.1

2.2

2n-11 est divisible par 5, 7, 9 et 11, qui sont tous premiers entre eux, donc 2n-11 est un multiple de $5 \cdot 7 \cdot 9 \cdot 11$. Donc on peut poser 2n-11=3465k avec $k \in \mathbb{N}$.

$$0 < n \le 2000$$

$$0 < 2n \le 4000$$

$$0 < 2n - 11 \le 3989$$

$$0 < 3465k \le 3989$$

$$0 < k \le 1$$

$$k = 1$$

$$2n - 11 = 3465$$

$$n = 1738$$

Il y a 1738 pièces dans ce puzzle.