CS1231: Discrete Structures

Tutorial 1

Li Wei

Department of Mathematics National University of Singapore

29 January, 2019

Quick Review

- Proposition V.S. Non-propositions.
- ▶ Translation of \neg , \land , \lor , \rightarrow , \leftrightarrow . Their order precedence.
- Only if. Sufficient. Necessary.
- ▶ Truth Table. $(p \rightarrow q)$.
- Tautology and Contradiction.
- Logically Equivalent.
- Logical Equivalence Laws.

Menu

Question 1	Question 4	Question 7
·	Question 5(a)	O
Question 2	Question 5(b)	Question 8
Question 3	Question 6	Question 9

- 1. Which of these are propositions?
- (a) Do not go.
- (b) Can you answer the question?
- (c) There are no black flies in Maine.
- (d) 4 + x = 5.
- (e) $2^n \ge 100$.
- (f) The moon is made of green cheese.

- A **proposition** is a sentence that declares a fact, that is true or false.
- Non-propositions include questions, commands, sentences with undefined words, etc.

- 1. Which of these are propositions?
- (a) Do not go.
- (b) Can you answer the question?
- (c) There are no black flies in Maine.
- (d) 4 + x = 5.
- (e) $2^n \ge 100$.
- (f) The moon is made of green cheese.

- A **proposition** is a sentence that declares a fact, that is true or false.
- Non-propositions include questions, commands, sentences with undefined words, etc.

- 1. Which of these are propositions?
- (a) Do not go.
- (b) Can you answer the question?
- (c) There are no black flies in Maine.
- (d) 4 + x = 5.
- (e) $2^n \ge 100$.
- (f) The moon is made of green cheese.

- A **proposition** is a sentence that declares a fact, that is true or false.
- Non-propositions include questions, commands, sentences with undefined words, etc.

Answer. (c) and (f).

(a)
$$\neg p \land q$$
. (b) $q \rightarrow p$. (c) $p \leftrightarrow q$. (d) $\neg q \lor (\neg p \land q)$.

Recall

The order of precedence, listed in decreasing order:

$$\neg; \ \land, \ \lor; \ \rightarrow, \ \hookleftarrow.$$

(a)
$$\neg p \land q$$
. (b) $q \rightarrow p$. (c) $p \leftrightarrow q$. (d) $\neg q \lor (\neg p \land q)$.

Recall

The order of precedence, listed in decreasing order:

$$\neg; \ \land, \ \lor; \ \rightarrow, \ \leftrightarrow.$$

(a)
$$\neg p \land q$$
. (b) $q \rightarrow p$. (c) $p \leftrightarrow q$. (d) $\neg q \lor (\neg p \land q)$.

Recall

The order of precedence, listed in decreasing order:

$$\neg$$
; \wedge , \vee ; \rightarrow , \leftrightarrow .

Answer.

(a) The election is not decided and the votes have been counted.

(a)
$$\neg p \land q$$
. (b) $q \rightarrow p$. (c) $p \leftrightarrow q$. (d) $\neg q \lor (\neg p \land q)$.

Recall

The order of precedence, listed in decreasing order:

$$\neg$$
; \wedge , \vee ; \rightarrow , \leftrightarrow .

- (a) The election is not decided and the votes have been counted.
- (b) If the votes have been counted, then the election is decided.

(a)
$$\neg p \land q$$
. (b) $q \rightarrow p$. (c) $p \leftrightarrow q$. (d) $\neg q \lor (\neg p \land q)$.

Recall

The order of precedence, listed in decreasing order:

$$\neg$$
; \wedge , \vee ; \rightarrow , \leftrightarrow .

- (a) The election is not decided and the votes have been counted.
- (b) If the votes have been counted, then the election is decided.
- (c) The election is decided iff the votes have been counted.

(a)
$$\neg p \land q$$
. (b) $q \rightarrow p$. (c) $p \leftrightarrow q$. (d) $\neg q \lor (\neg p \land q)$.

Recall

The order of precedence, listed in decreasing order:

$$\neg;\ \land,\ \lor;\ \rightarrow,\ \leftrightarrow.$$

- (a) The election is not decided and the votes have been counted.
- (b) If the votes have been counted, then the election is decided.
- (c) The election is decided iff the votes have been counted.
- (d) Either the votes have not been counted, or else the election is not decided and the votes have been counted.

3. Determine whether these conditional propositions are true or false.

 $q \parallel p \rightarrow q$

- (a) If 1 + 1 = 3, then unicorns exist.
- (b) If 1+1=3, then dogs can fly.
- (c) If 1+1=2, then dogs can fly.
- (d) If 2+2=4, then 1+2=3.

Recall

	\overline{T}	T	T
The truth table for $p \rightarrow q$ is	T	F	F
	F	T	T
	F	F	T

3. Determine whether these conditional propositions are true or false.

 $p \rightarrow q$

(a) If 1 + 1 = 3, then unicorns exist.

(b) If 1+1=3, then dogs can fly.

(c) If 1+1=2, then dogs can fly.

(d) If 2+2=4, then 1+2=3.

Recall

The truth table for $p \to q$ is $\left. \begin{array}{c|c} T & T & T \\ T & F & F \end{array} \right| \left. \begin{array}{c|c} T & T & T \\ T & T & T \\ T & T & T \end{array} \right|$

3. Determine whether these conditional propositions are true or false.

 $p \rightarrow q$

- (a) If 1 + 1 = 3, then unicorns exist.
- (b) If 1+1=3, then dogs can fly.
- (c) If 1+1=2, then dogs can fly.
- (d) If 2 + 2 = 4, then 1 + 2 = 3.

Recall

The truth table for $p \to q$ is $\begin{array}{c|cccc} \hline T & T & T \\ \hline T & F & F \\ \hline F & T & T \\ \hline F & F & T \\ \hline \end{array}$

Answer. T, T, F, T.

- 4. Consider the proposition "You will get an A in this module only if either you do every exercise in the text book or you score at least 80 marks in the final."
- (a) Determine all the situations in which the proposition is true.
- (b) Given that the proposition is true, would you get an A if you did not do exercise 5 and scored 79 marks for the final?

p only if q means: $p \rightarrow q$.

- 4. Consider the proposition "You will get an A in this module only if either you do every exercise in the text book or you score at least 80 marks in the final."
- (a) Determine all the situations in which the proposition is true.
- (b) Given that the proposition is true, would you get an A if you did not do exercise 5 and scored 79 marks for the final?

p only if q means: $p \rightarrow q$.

- 4. Consider the proposition "You will get an A in this module only if either you do every exercise in the text book or you score at least 80 marks in the final."
- (a) Determine all the situations in which the proposition is true.
- (b) Given that the proposition is true, would you get an A if you did not do exercise 5 and scored 79 marks for the final?

p only if q means: $p \rightarrow q$.

- (a) The proposition is true when you
 - (i) do not get A or
 - (ii) get A and either do every exercise in the text book or you score at least 80 marks in the final.

- 4. Consider the proposition "You will get an A in this module only if either you do every exercise in the text book or you score at least 80 marks in the final."
- (a) Determine all the situations in which the proposition is true.
- (b) Given that the proposition is true, would you get an A if you did not do exercise 5 and scored 79 marks for the final?

p only if q means: $p \rightarrow q$.

- (a) The proposition is true when you
 - (i) do not get A or
 - (ii) get A and either do every exercise in the text book or you score at least 80 marks in the final.
- (b) No.

- 5. Are the following pairs logically equivalent?
- (a) $(p \lor q) \lor (p \land r)$ and $(p \lor q) \land r$

5. Are the following pairs logically equivalent?

(a)	$(n \vee a)$) v ($n \wedge$	r)	and	$(n \vee$	a	\wedge	r

p	q	r	$p \lor q$	$p \wedge r$	$(p \lor q) \lor (p \land r)$	$(p \lor q) \land r$
\overline{T}	T	T	T	T	T	T
T	T	F	T	F	T	F
T	F	T	T	T	T	T
T	F	F	T	F	T	F
F	T	T	T	F	T	T
F	T	F	T	F	T	F
F	F	T	F	F	F	F
F	F	F	F	F	F	F

5. Are the following pairs logically equivalent?

(a)
$$(p \lor q) \lor (p \land r)$$
 and $(p \lor q) \land r$

p	q	r	$p \lor q$	$p \wedge r$	$(p \lor q) \lor (p \land r)$	$(p \lor q) \land r$
T	T	T	T	T	T	T
T	T	F	T	F	T	F
T	F	T	T	T	T	T
T	F	F	T	F	T	F
F	T	T	$\mid T \mid$	F	T	T
F	T	F	T	F	T	F
F	F	T	F	F	F	F
F	F	F	$\mid F \mid$	F	F	F

$$(p \lor q) \lor (p \land r) \equiv ((p \lor q) \lor p) \land ((p \lor q) \lor r) \text{ (Distributive Law)}$$

$$\equiv (p \lor q) \land ((p \lor q) \lor r) \text{ (Idempotent Law)}$$

$$\equiv p \lor q \text{ (Absorption Law)}$$

$$\not\equiv (p \lor q) \land r$$

- 5. Are the following pairs logically equivalent?
- (b) $(r \lor p) \land (\neg r \lor (p \land q)) \land (r \lor q)$ and $(p \land q)$

5. Are the following pairs logically equivalent? (b) $(r \lor n) \land (\neg r \lor (n \land a)) \land (r \lor a)$ and $(n \land a)$

(b) $(r \lor p) \land (\neg r \lor (p \land q)) \land (r \lor q)$ and $(p \land q)$									
p	q	r	$ \neg r $	$r \lor p$	$p \wedge q$	$r \vee q$	$\neg r \lor (p \land q)$		
					RHS			LHS	
\overline{T}	T	T	F	T	T	T	T	T	
T	T	F	$\mid T \mid$	T	T	T	T	T	
T	F	T	$\mid F \mid$	T	F	T	F	F	
T	F	F	$\mid T \mid$	T	F	F	T	F	
F	T	T	$\mid F \mid$	T	F	T	F	F	
F	T	F	T	F	F	T	T	F	
F	F	T	F	T	F	T	F	F	
F	F	F	T	F	F	F	T	F	
		,							

5. Are the following pairs logically equivalent?

$$\equiv (r \lor p) \land (\neg r \lor p) \land (\neg r \lor q) \land (r \lor q) \text{ (Distributive Law)}$$

$$\equiv [(r \lor p) \land (\neg r \lor p)] \land [(\neg r \lor q) \land (r \lor q)] \text{ (Associative Law)}$$

$$\equiv [(r \land \neg r) \lor p] \land [(r \land \neg r) \lor q] \text{ (Distributive Law)}$$

$$\equiv [\mathbf{C} \lor p] \land [\mathbf{C} \lor q] \text{ (Negation Law)}$$

 $\equiv p \land q$ (Identity Law)

6. Complete the following truth table. $p \quad q \quad r \parallel p \to q \quad \neg p \to r \parallel t = (p \to q) \land (\neg p \to r)$

-	-				
T	T	T	T	T	T
T	T	F	T	T	T
T	F	T	F	T	F
F	T	T	T	T	T
T	F	F	F	T	F
F	T	F	T	F	F
F	F	T	T	T	T
F	F	F	T	F	F
		,			'

p	q	r	$p \rightarrow q$	$\neg p \to r$	$t = (p \to q) \land (\neg p \to r)$
\overline{T}	T	T	T	T	T
T	T	F	T	T	T
T	F	T	F	T	F
F	T	T	T	T	T
T	F	F	F	T	F
F	T	F	T	F	F
F	F	T	T	T	T
F	F	F	T	F	F
	. /	,	' \ /	` • '	'

Let $t = (p \to q) \land (\neg p \to r)$. Are the following true or false?

- (a) t is false if p and q are both true.
- (b) If t is false then $p \wedge q$ is false.
- (c) A sufficient condition for t

to be true is that p is true and r is false.

(d) t is true only if $p \vee r$ is true.

(e) $(p \land q) \rightarrow t$ is a tautology.

p	q	r	$p \rightarrow q$	$\neg p \to r$	$t = (p \to q) \land (\neg p \to r)$
\overline{T}	T	T	T	T	T
T	T	F	T	T	T
T	F	T	F	T	F
F	T	T	T	T	T
T	F	F	F	T	F
F	T	F	T	F	F
F	F	T	T	T	T
F	F	F	T	F	F
	. /	,	'\ (\ A '	' cu ·

Let $t = (p \rightarrow q) \land (\neg p \rightarrow r)$. Are the following true or false?

- (a) t is false if p and q are both true.
- (b) If t is false then $p \wedge q$ is false.
- (c) A sufficient condition for t (e) $(p \wedge q) \rightarrow t$ is a tautology.

to be true is that p is true

(d) t is true only if $p \vee r$ is true.

and r is false.

Answers. F,

p	q	r	$p \rightarrow q$	$\neg p \to r$	$t = (p \to q) \land (\neg p \to r)$
\overline{T}	T	T	T	T	T
T	T	F	T	T	T
T	F	T	F	T	F
F	T	T	T	T	T
T	F	F	F	T	F
F	T	F	T	F	F
F	F	T	T	T	T
F	F	F	T	F	F
	. /	,	1	\ A '	' c

Let $t = (p \to q) \land (\neg p \to r)$. Are the following true or false?

- (a) t is false if p and q are both true.
- (b) If t is false then $p \wedge q$ is false.
- (c) A sufficient condition for t (e) $(p \land q) \rightarrow t$ is a tautology.

to be true is that p is true

(d) t is true only if $p \vee r$ is true.

and r is false.

Answers. F,T,

	-	1	1	- 1	The state of the s			
p	q	r	$p \rightarrow q$	$\neg p \rightarrow r$	$t = (p \to q) \land (\neg p \to r)$			
\overline{T}	T	T	T	T	T			
T	T	F	T	T	T			
T	F	T	F	T	F			
F	T	T	T	T	T			
T	F	F	F	T	F			
F	T	F	T	F	F			
F	F	T	T	T	T			
F	F	F	T	F	F			
Let t	Let $t = (p \rightarrow q) \land (\neg p \rightarrow r)$. Are the following true or false?							

(1 1) (1)

- (a) t is false if p and q are both true.
- (b) If t is false then $p \wedge q$ is false.
- (c) A sufficient condition for t (e) $(p \land q) \rightarrow t$ is a tautology.

to be true is that p is true

(d) t is true only if $p \vee r$ is true.

and r is false.

Answers. F,T,F,

p	q	r	$p \rightarrow q$	$\neg p \to r$	$t = (p \to q) \land (\neg p \to r)$			
\overline{T}	T	T	T	T	T			
T	T	F	T	T	T			
T	F	T	F	T	F			
F	T	T	T	T	T			
T	F	F	F	T	F			
F	T	F	T	F	F			
F	F	T	T	T	T			
F	F	F	T	F	F			
Let t	Let $t = (p \rightarrow q) \land (\neg p \rightarrow r)$. Are the following true or false?							

(2 2)

- (a) t is false if p and q are both true.
- (b) If t is false then $p \wedge q$ is false.
- (c) A sufficient condition for t (e) $(p \land q) \rightarrow t$ is a tautology.

to be true is that p is true

(d) t is true only if $p \vee r$ is true.

and r is false.

Answers. F,T,F,T,

p	q	r	$p \rightarrow q$	$\neg p \to r$	$t = (p \to q) \land (\neg p \to r)$
\overline{T}	T	T	T	T	T
T	T	F	T	T	T
T	F	T	F	T	F
F	T	T	T	T	T
T	F	F	F	T	F
F	T	F	T	F	F
F	F	T	T	T	T
F	F	F	T	F	F
Let $t = (p \rightarrow q) \land (\neg p \rightarrow r)$. Are the following true or false?					

1, (1

- (a) t is false if p and q are both true.
- (b) If t is false then $p \wedge q$ is false.
- (c) A sufficient condition for t (e) $(p \land q) \rightarrow t$ is a tautology.

to be true is that p is true

(d) t is true only if $p \vee r$ is true.

and r is false.

Answers. F,T,F,T,T

7. The $n^{\rm th}$ proposition in a list of 100 propositions is "Exactly n of the propositions in this list are false".

(a) What conclusion can you draw?

7. The n^{th} proposition in a list of 100 propositions is "Exactly n of the propositions in this list are false".

(a) What conclusion can you draw? Q(1). What are the propositions?

- 7. The $n^{\rm th}$ proposition in a list of 100 propositions is "Exactly n of the propositions in this list are false".
- (a) What conclusion can you draw? Q(1). What are the propositions?
 - ► The 1st proposition says: "Exactly 1 of the propositions in this list is false"

- 7. The $n^{\rm th}$ proposition in a list of 100 propositions is "Exactly n of the propositions in this list are false".
- (a) What conclusion can you draw? Q(1). What are the propositions?
 - ► The 1st proposition says: "Exactly 1 of the propositions in this list is false"
 - The 2nd proposition says: "Exactly 2 of the propositions in this list are false"

- 7. The n^{th} proposition in a list of 100 propositions is "Exactly n of the propositions in this list are false".

 (a) What conclusion can you draw?
- Q(1). What are the propositions?
 - ► The 1st proposition says: "Exactly 1 of the propositions in this list is false"
 - ► The 2nd proposition says: "Exactly 2 of the propositions in this list are false"
 - ► The 3rd proposition says: "Exactly 3 of the propositions in this list are false"

- 7. The $n^{\rm th}$ proposition in a list of 100 propositions is "Exactly n of the propositions in this list are false".
- (a) What conclusion can you draw? Q(1). What are the propositions?
 - ➤ The 1st proposition says: "Exactly 1 of the propositions in this list is false"
 - ► The 2nd proposition says: "Exactly 2 of the propositions in this list are false"
 - ► The 3rd proposition says: "Exactly 3 of the propositions in this list are false"
 - **.**
 - ► The 98th proposition says: "Exactly 98 of the propositions in this list are false"

- 7. The $n^{\rm th}$ proposition in a list of 100 propositions is "Exactly n of the propositions in this list are false".
- (a) What conclusion can you draw? Q(1). What are the propositions?
 - ► The 1st proposition says: "Exactly 1 of the propositions in this list is false"
 - ► The 2nd proposition says: "Exactly 2 of the propositions in this list are false"
 - ► The 3rd proposition says: "Exactly 3 of the propositions in this list are false"
 - **•**
 - ► The 98th proposition says: "Exactly 98 of the propositions in this list are false"
 - ► The 99th proposition says: "Exactly 99 of the propositions in this list are false"

- 7. The $n^{\rm th}$ proposition in a list of 100 propositions is "Exactly n of the propositions in this list are false".
- (a) What conclusion can you draw? Q(1). What are the propositions?
 - ► The 1st proposition says: "Exactly 1 of the propositions in this list is false"
 - ► The 2nd proposition says: "Exactly 2 of the propositions in this list are false"
 - ► The 3rd proposition says: "Exactly 3 of the propositions in this list are false"
 - **•**
 - ► The 98th proposition says: "Exactly 98 of the propositions in this list are false"
 - ► The 99th proposition says: "Exactly 99 of the propositions in this list are false"
 - ► The 100th proposition says: "Exactly 100 of the propositions in this list are false"

. .

What should we do?

- What should we do?
 - Check the meaning of each proposition

- What should we do?
- Check the meaning of each proposition
 See which ones are false and which ones are true

- What should we do?
- Check the meaning of each proposition
 See which ones are false and which ones are true
 Count how many are false.

- What should we do?
- Check the meaning of each proposition
 See which ones are false and which ones are true
 Count how many are false.
- But

- What should we do?
- Check the meaning of each proposition

See which ones are false and which ones are true Count how many are false.

▶ But the 1st proposition says: "Exactly 1 of the propositions in

this list is false"

- What should we do?
- ▶ Check the meaning of each proposition

See which ones are false and which ones are true

Count how many are false.

- ▶ But the 1st proposition says: "Exactly 1 of the propositions in this list is false"
- Is it true or false?

- What should we do?
- ▶ Check the meaning of each proposition

See which ones are false and which ones are true Count how many are false.

- ▶ But the 1st proposition says: "Exactly 1 of the propositions in this list is false"
- Is it true or false?
- We need to know the truth values of all propositions! It's a loop!

Q(3). How many propositions are true?

Q(3). How many propositions are true? Ans: 100 - x

Q(3). How many propositions are true? Ans: 100 - x Q(4). Which propositions are true and which are false?

Q(3). How many propositions are true? Ans: 100-x Q(4). Which propositions are true and which are false?

► The 1st proposition says: "Exactly 1 of the propositions in this list is false"

- Q(3). How many propositions are true? Ans: 100 x Q(4). Which propositions are true and which are false?
 - ► The 1st proposition says: "Exactly 1 of the propositions in this list is false"
 - **.**
 - ► The <u>xth proposition</u> says: "Exactly <u>x</u> of the propositions in this list are false"

- Q(3). How many propositions are true? Ans: 100 x Q(4). Which propositions are true and which are false?
 - ► The 1st proposition says: "Exactly 1 of the propositions in this list is false"
 - **.**
 - ► The <u>xth proposition</u> says: "Exactly <u>x</u> of the propositions in this list are false"
 - **.**
 - ► The 100th proposition says: "Exactly 100 of the propositions in this list are false"

- Q(3). How many propositions are true? Ans: 100 x Q(4). Which propositions are true and which are false?
 - ► The 1st proposition says: "Exactly 1 of the propositions in this list is false"
 - **.**
 - ► The <u>xth proposition</u> says: "Exactly x of the propositions in this list are false"
 - **.**
 - ► The 100th proposition says: "Exactly 100 of the propositions in this list are false"

The <u>xth proposition is true.</u> Other propositions are false, because they give a different number of false propositions.

- Q(3). How many propositions are true? Ans: 100 x Q(4). Which propositions are true and which are false?
 - ► The 1st proposition says: "Exactly 1 of the propositions in this list is false"
 - ·
 - ► The <u>xth proposition</u> says: "Exactly <u>x</u> of the propositions in this list are false"
 - **.**
 - ► The 100th proposition says: "Exactly 100 of the propositions in this list are false"

The \underline{xth} proposition is true. Other propositions are false, because they give a different number of false propositions.

Q(5). Count: How many are false?

- Q(3). How many propositions are true? Ans: 100 x
- Q(4). Which propositions are true and which are false?
 - The 1st proposition says: "Exactly 1 of the propositions in this list is false"
 - ·
 - ► The <u>xth proposition</u> says: "Exactly x of the propositions in this list are false"
 - **.**
 - ► The 100th proposition says: "Exactly 100 of the propositions in this list are false"

The <u>xth proposition is true.</u> Other propositions are false, because they give a different number of false propositions.

Q(5). Count: How many are false? Ans: 99.

- Q(3). How many propositions are true? Ans: 100 x
- Q(4). Which propositions are true and which are false?
 - The 1st proposition says: "Exactly 1 of the propositions in this list is false"
 - ·
 - ► The <u>xth proposition</u> says: "Exactly <u>x</u> of the propositions in this list are false"
 - **.....**
 - ► The 100th proposition says: "Exactly 100 of the propositions in this list are false"

The \underline{x} th proposition is true. Other propositions are false, because they give a different number of false propositions.

- Q(5). Count: How many are false? Ans: 99.
- Q(6). What is x?

Q(3). How many propositions are true? Ans: 100 - x Q(4). Which propositions are true and which are false?

- ► The 1st proposition says: "Exactly 1 of the propositions in this list is false"
- **.....**
- ► The <u>x</u>th proposition says: "Exactly x of the propositions in this list are false"
- **•**
- ► The 100th proposition says: "Exactly 100 of the propositions in this list are false"

The <u>xth</u> proposition is true. Other propositions are false, because they give a different number of false propositions.

- Q(5). Count: How many are false? Ans: 99.
- Q(6). What is x?Ans: x = 99. Only the 99th proposition is true, others all false.

Q(1). What are the propositions?

► The 1st proposition says: "At least 1 of the propositions in this list are false"

- ► The 1st proposition says: "At least 1 of the propositions in this list are false"
- ► The 2nd proposition says: "At least 2 of the propositions in this list are false"

- ► The 1st proposition says: "At least 1 of the propositions in this list are false"
- ► The 2nd proposition says: "At least 2 of the propositions in this list are false"
- ► The 3rd proposition says: "At least 3 of the propositions in this list are false"

- ► The 1st proposition says: "At least 1 of the propositions in this list are false"
- ► The 2nd proposition says: "At least 2 of the propositions in this list are false"
- ► The 3rd proposition says: "At least 3 of the propositions in this list are false"
- **.....**
- ► The 98th proposition says: "At least 98 of the propositions in this list are false"

- ► The 1st proposition says: "At least 1 of the propositions in this list are false"
- ► The 2nd proposition says: "At least 2 of the propositions in this list are false"
- ► The 3rd proposition says: "At least 3 of the propositions in this list are false"
- **.**
- ► The 98th proposition says: "At least 98 of the propositions in this list are false"
- ► The 99th proposition says: "At least 99 of the propositions in this list are false"

- ► The 1st proposition says: "At least 1 of the propositions in this list are false"
- ► The 2nd proposition says: "At least 2 of the propositions in this list are false"
- ► The 3rd proposition says: "At least 3 of the propositions in this list are false"
- **.**
- ► The 98th proposition says: "At least 98 of the propositions in this list are false"
- ► The 99th proposition says: "At least 99 of the propositions in this list are false"
- ► The 100th proposition says: "At least 100 of the propositions in this list are false"

Q(2). Which propositions are true and which are false?

Q(2). Which propositions are true and which are false?

► The 1st proposition says: "At least 1 of the propositions in this list is false"

Q(2). Which propositions are true and which are false?

- ► The 1st proposition says: "At least 1 of the propositions in this list is false"
- **•**
- ► The <u>xth proposition</u> says: "At least <u>x</u> of the propositions in this list are false"

Q(2). Which propositions are true and which are false?

- ► The 1st proposition says: "At least 1 of the propositions in this list is false"
- **.....**
- ► The <u>x</u>th proposition says: "At least x of the propositions in this list are false"
- **.**
- ► The 100th proposition says: "At least 100 of the propositions in this list are false"

Q(2). Which propositions are true and which are false?

- ► The 1st proposition says: "At least 1 of the propositions in this list is false"
- **.**
- ► The <u>xth proposition</u> says: "At least x of the propositions in this list are false"
- **.**
- ► The 100th proposition says: "At least 100 of the propositions in this list are false"

The 1st up to the xth propositions are true. Other propositions are false, because they give a bigger number of false propositions.

Imagine: We know the truth values of all propositions and exactly x propositions are false

Q(2). Which propositions are true and which are false?

- ► The 1st proposition says: "At least 1 of the propositions in this list is false"
- **•**
- The xth proposition says: "At least x of the propositions in this list are false"
- **•**
- ► The 100th proposition says: "At least 100 of the propositions in this list are false"

The 1st up to the xth propositions are true. Other propositions are false, because they give a bigger number of false propositions.

Q(3). Count: How many are false?

Imagine: We know the truth values of all propositions and exactly \boldsymbol{x} propositions are false

Q(2). Which propositions are true and which are false?

- ► The 1st proposition says: "At least 1 of the propositions in this list is false"
- **.....**
- ► The <u>xth proposition</u> says: "At least x of the propositions in this list are false"
- **.**
- ► The 100th proposition says: "At least 100 of the propositions in this list are false"

The 1st up to the xth propositions are true. Other propositions are false, because they give a bigger number of false propositions. Q(3). Count: How many are false? Ans: x proportions true and x false.

Imagine: We know the truth values of all propositions and exactly x propositions are false

Q(2). Which propositions are true and which are false?

- ► The 1st proposition says: "At least 1 of the propositions in this list is false"
- **.**
- ► The <u>xth proposition</u> says: "At least x of the propositions in this list are false"
- **.**
- ► The 100th proposition says: "At least 100 of the propositions in this list are false"

The 1st up to the xth propositions are true. Other propositions are false, because they give a bigger number of false propositions. Q(3). Count: How many are false? Ans: x proportions true and

100 - x false.

Q(4). What is x?

Imagine: We know the truth values of all propositions and exactly x propositions are false

Q(2). Which propositions are true and which are false?

- ► The 1st proposition says: "At least 1 of the propositions in this list is false"
- **•**
- ► The <u>xth proposition</u> says: "At least <u>x</u> of the propositions in this list are false"
- **.**

100-x false.

► The 100th proposition says: "At least 100 of the propositions in this list are false"

The 1st up to the xth propositions are true. Other propositions are false, because they give a bigger number of false propositions. Q(3). Count: How many are false? Ans: x proportions true and

Q(4). What is x?Ans: x = 100 - x, so x = 50. The 1st up to the 50th propositions are true. Other propositions are false.

We follow the same procedure as (b) and get

the list.

- (c) Answer part (b) assuming that there are 101 propositions in the list.
 - We follow the same procedure as (b) and get x=101-x. No integer solution.

- (c) Answer part (b) assuming that there are $101\ \rm propositions$ in the list.
 - We follow the same procedure as (b) and get x=101-x. No integer solution.

Answer.

- (a) The $99^{\rm th}$ is true and the rest are false.
- (b) 1-50 are true and 51-100 are false.
- (c) This is a paradox.

8. Show that $[(p \to q) \land q] \to p$ is not a tautology.

П

Recall

A tautology is a compound proposition that is always true.

	p	q	$p \rightarrow q$	$(p \to q) \land q$	$\lfloor (p \to q) \land q \rfloor \to p$
	T	T	T	T	T
ldea.	T	F	F	F	T
	F	T	T	T	F
	F	$F \mid$	T	F	T

- 9. Five friends have access to a chat room. Is it possible to determine who is chatting if the following information is known?
 - (i) At least one of Kevin and Heather is chatting;
- (ii) Exactly one of Randy and Vijay is chatting;
- (iii) If Abby is chatting, then so it Randy;
- (iv) Vijay and Kevin are either both chatting or both not chatting;
- (v) If Heather is chatting, then so are Abby and Kevin.

- 9. Five friends have access to a chat room. Is it possible to determine who is chatting if the following information is known?
 - (i) At least one of Kevin and Heather is chatting;
 - (ii) Exactly one of Randy and Vijay is chatting;
- (iii) If Abby is chatting, then so it Randy;
- (iv) Vijay and Kevin are either both chatting or both not chatting;
- (v) If Heather is chatting, then so are Abby and Kevin.
- Idea. Let A: Abby is chatting; H: Heather is chatting; K: Kevin is chatting; R: Randy is chatting; V: Vijay is chatting. so the information is
 - (i) $K \vee H$;

- 9. Five friends have access to a chat room. Is it possible to determine who is chatting if the following information is known?
 - (i) At least one of Kevin and Heather is chatting;
 - (ii) Exactly one of Randy and Vijay is chatting;
- (iii) If Abby is chatting, then so it Randy;
- (iv) Vijay and Kevin are either both chatting or both not chatting;
 - (v) If Heather is chatting, then so are Abby and Kevin.

- (i) $K \vee H$;
- (ii) $R \vee V$, $\neg (R \wedge V)$;

- 9. Five friends have access to a chat room. Is it possible to determine who is chatting if the following information is known?
 - (i) At least one of Kevin and Heather is chatting;
 - (ii) Exactly one of Randy and Vijay is chatting;
- (iii) If Abby is chatting, then so it Randy;
- (iv) Vijay and Kevin are either both chatting or both not chatting;
- (v) If Heather is chatting, then so are Abby and Kevin.

- (i) $K \vee H$;
- (ii) $R \vee V$, $\neg (R \wedge V)$;
- (iii) $A \to R$;

- 9. Five friends have access to a chat room. Is it possible to determine who is chatting if the following information is known?
 - (i) At least one of Kevin and Heather is chatting;
 - (ii) Exactly one of Randy and Vijay is chatting;
- (iii) If Abby is chatting, then so it Randy;
- (iv) Vijay and Kevin are either both chatting or both not chatting;
- (v) If Heather is chatting, then so are Abby and Kevin.

- (i) $K \vee H$;
- (ii) $R \vee V$, $\neg (R \wedge V)$;
- (iii) $A \to R$;
- (iv) $V \leftrightarrow K$;

- 9. Five friends have access to a chat room. Is it possible to determine who is chatting if the following information is known?
 - (i) At least one of Kevin and Heather is chatting;
 - (ii) Exactly one of Randy and Vijay is chatting;
- (iii) If Abby is chatting, then so it Randy;
- (iv) Vijay and Kevin are either both chatting or both not chatting;
- (v) If Heather is chatting, then so are Abby and Kevin.

- (i) $K \vee H$;
- (ii) $R \vee V$, $\neg (R \wedge V)$;
- (iii) $A \to R$;
- (iv) $V \leftrightarrow K$;
- (v) $H \to A \wedge K$.

(i) $K \vee H$;	Then R is , by (iii
(ii) $R \vee V$, $\neg (R \wedge V)$;	So V is , by (ii).
(iii) $A \rightarrow R$;	Thus \underline{K} is, by (iv
(iv) $V \leftrightarrow K$;	So it is to
	be true.
$(v) \ H \to A \wedge K.$	Hence H is .
Now we make an assumption	So K is , by (i).
that H is true	So V is by (iv)
Then is true, by (v).	So R is , by (ii).
That is,are true.	So A is , by (iii).

en R is $\,\,\,\,\,$, by (iii). V is , by (ii). is K is ____, by (iv). t is \mathbf{to} to make H

rue. $\operatorname{ICE} H$ is K is , by (i).

(i)
$$K \vee H$$
; Then R
(ii) $R \vee V$, $\neg (R \wedge V)$; So V is Thus \underline{K}
(iii) $A \to R$; So it is be true. (v) $H \to A \wedge K$. Hence R
Now we make an assumption that R is true So R is So R is So R is So R is

That is, are true.

Then R is , by (iii). So V is , by (ii). Thus K is , by (iv).

to make H

Hence H is

So K is , by (i).

So V is by (iv)

So R is , by (ii). So A is , by (iii).

(i)
$$K \vee H$$
; Then R is , by (iii).

(ii) $R \vee V$, $\neg (R \wedge V)$; So V is , by (ii).

(iii) $A \to R$; So it is to m

(iv) $V \leftrightarrow K$; be true.

(v) $H \to A \wedge K$. Hence H is .

Now we make an assumption So K is , by (i).

that H is true

Then $A \wedge K$ is true, by (v). That is, A and K are true.

So V is , by (ii). Thus K is , by (iv). to make H

Hence H is

So K is , by (i). So V is by (iv)

So R is , by (ii). So A is , by (iii).

(i)
$$K \vee H$$
; Then R is true, by (iii).
(ii) $R \vee V$, $\neg (R \wedge V)$; So V is , by (ii).
(iii) $A \to R$; Thus \underline{K} is , by (ii).
Thus \underline{K} is , by (iv).
So it is to make the true.
(v) $H \to A \wedge K$.

Now we make an assumption

Then $A \wedge K$ is true, by (v). That is, A and K are true.

that H is true

to make H

So K is , by (i).

So V is by (iv)

So R is , by (ii).

, by (iii).

So A is

(i)
$$K \vee H$$
; Then R is true, by (iii).
(ii) $R \vee V$, $\neg (R \wedge V)$; So V is false, by (ii).
(iii) $A \to R$; Thus \underline{K} is \underline{K} , by (iv).
(iv) $V \leftrightarrow K$; So it is to make the true.
(v) $H \to A \wedge K$. Hence H is

Now we make an assumption

Then $A \wedge K$ is true, by (v). That is, A and K are true.

that H is true

to make H

So K is , by (i).

So V is by (iv)

So R is , by (ii).

, by (iii).

So A is

(i)
$$K \vee H$$
; Then R is true, by (iii).
(ii) $R \vee V$, $\neg (R \wedge V)$; So V is false, by (ii).
(iii) $A \rightarrow R$; Thus K is false, by (iv).
(iv) $V \leftrightarrow K$; So it is to make H

be true. (v) $H \to A \wedge K$. Hence H is

Now we make an assumption

that H is true

Then $A \wedge K$ is true, by (v).

That is, A and K are true.

So K is , by (i). So V is by (iv)

So A is

So R is , by (ii).

(i)
$$K \vee H$$
; Then R is true, by (iii).
(ii) $R \vee V$, $\neg (R \wedge V)$; So V is false, by (ii).
(iii) $A \to R$; So it is impossible to make H be true.

(v) $H \to A \wedge K$. Hence H is So K is , by (i).

Now we make an assumption

that H is true

Then $A \wedge K$ is true, by (v).

That is, A and K are true.

So V is by (iv)

So A is

So R is , by (ii).

(i)
$$K \vee H$$
; Then R is true, by (iii).
(ii) $R \vee V$, $\neg (R \wedge V)$; So V is false, by (ii).
(iii) $A \to R$; Thus \underline{K} is false, by (iv).
So it is impossible to make H

(iv) $V \leftrightarrow K$; (v) $H \to A \wedge K$.

Now we make an assumption

that H is true

Then $A \wedge K$ is true, by (v).

That is, A and K are true.

be true.

Hence H is false.

So K is , by (i). So V is by (iv)

So R is , by (ii). So A is

(i)
$$K \vee H$$
;
(ii) $R \vee V$, $\neg (R \wedge V)$;
(iii) $A \rightarrow R$;

So V is false, by (ii).

(iv) $V \leftrightarrow K$;

(v) $H \to A \wedge K$.

Now we make an assumption

that H is true

Then $A \wedge K$ is true, by (v).

That is, A and K are true.

Thus K is false, by (iv).

So it is impossible to make H

Then R is true, by (iii).

be true. Hence H is false.

So K is true, by (i).

So V is by (iv)

So A is

So R is , by (ii).

$$\begin{array}{ll} \hbox{(i)} \;\; K \vee H; \\ \hbox{(ii)} \;\; R \vee V, \; \neg (R \wedge V); \end{array}$$

(iii) $A \to R$;

(iv) $V \leftrightarrow K$;

(v) $H \to A \wedge K$.

Now we make an assumption

that H is true

Then $A \wedge K$ is true, by (v). That is, A and K are true.

Thus K is false, by (iv).

So it is impossible to make Hbe true.

Then R is true, by (iii). So V is false, by (ii).

Hence H is false.

So K is true, by (i).

So A is

So V is true by (iv) So R is , by (ii).

(i)
$$K \vee H$$
;

(ii) $R \vee V$, $\neg (R \wedge V)$;

(iii) $A \to R$; (iv) $V \leftrightarrow K$;

(v) $H \to A \wedge K$.

Now we make an assumption

that H is true

Then $A \wedge K$ is true, by (v).

That is, A and K are true.

Thus K is false, by (iv).

So it is impossible to make H

Then R is true, by (iii). So V is false, by (ii).

be true.

Hence H is false.

So K is true, by (i). So V is true by (iv)

So R is false, by (ii). So A is , by (iii).

(i)
$$K \vee H$$
;

(ii) $R \vee V$, $\neg (R \wedge V)$;

(iii) $A \to R$;

(iv) $V \leftrightarrow K$;

(v) $H \to A \wedge K$.

Now we make an assumption that H is true

Then $A \wedge K$ is true, by (v).

That is, A and K are true.

Then R is true, by (iii).

So V is false, by (ii). Thus K is false, by (iv).

So it is impossible to make Hbe true.

Hence H is false.

So K is true, by (i). So V is true by (iv)

So R is false, by (ii). So A is false, by (iii).