Система хранения конфигураций нейронных сетей

Студент: Миронов Григорий, ИУ7-63Б Научный руководитель: Тассов Кирилл Леонидович

Москва, 2022 г.

Цель и задачи

Цель — спроектировать и разработать базу данных, содержащую информацию о конфигурациях нейронных сетей. Для достижения поставленной цели потребовалось:

- проанализировать варианты представления данных и выбрать подходящий вариант для решения задачи;
- проанализировать СУБД и выбрать подходящую;
- спроектировать базу данных, описать ее сущности и связи;
- реализовать ПО, позволяющее получить доступ к данным.

Структура конфигурации нейронной сети

Основные элементы:

- нейроны;
- связи между нейронами;
- слои.

Классификация СУБД по способу обработки

Класс СУБД	Достоинства	Недостатки
Реляционные	Строгая структура и типи-	Сложно вносить изменения
(SQL)	зация данных	в структуру
	Целостность данных (ACID)	
	Универсальный язык (SQL)	
Графовые	Гибкая модель	Ограниченность встроенно-
(NoSQL)	Скорость обработки	го языка
	Простота изменения струк-	Отсутствие универсального
	туры	языка для NoSQL решений
		Надежность в угоду произ-
		водительности

ER-модель разработанной базы данных

Диаграмма вариантов использования

Роли пользователей:

- обычный пользователь;
- аналитик;
- администратор.

Кэширование данных

Проблемы:

- синхронизация данных;
- холодный старт.

Схема работы приложения и стек технологий

Исследование

Технические характеристики:

- процессор:
 Intel Core™ i7-1068NG7 CPU @ 2.30ΓΓц;
- память: 16 Гб;
- операционная система: macOS Big Sur 11.6.

Кэширование данных показало снижение времени отклика системы вплоть до 39 раз, при условии нахождения запрашиваемых данных в кэше

- 23.6 c получение информации из базы данных;
- 0.6 с получение информации из кэша.

Количество слоев в нейронной сети (по 16 нейронов)

Количество слоев в нейронной сети (по 128 нейронов)

Заключение

- были спроектированы базы данных, необходимые для хранения и кэширования информации;
- было реализовано ПО для взаимодействия с базой;
- было проведено экспериментальное сравнение времени отклика системы с использованием кэширования и без него.