Homework 7, 2.2: 1(b,d,f), 3(a,f), 4(a), 7(b,c,d), 8, 12, 15, 21(extra credit)

Alex Gordon

September 16, 2013

Homework

1. B)

$$187 = 17 \times 11 + 0$$

1. D)

$$-24 = -6 \times 4 + 0$$

1. F)

$$(9k^2 + 5) = (3k^2 + 5)3 + 1$$

3. A)

$$55 = 9 \times 6 + 1$$

3. F)

$$(3k^4 - k^2 - 10k + 3)3 + 2$$

4. A)

If a is 12, b is 6 and c is 3, then $a \mod b$ and $b \mod c$ but $b \neq a$

7. B)

If b/a and c/a then $\frac{a^2}{b \times c}$. First, if a divides b and a divides c, then by the closure properties b and c must be multiples of a. Again, by the closure properties, since $a(a) = a^2$ then that result is a multiple of a. If b and c are multiples of a, then by the closure properties, b × c is a multiple of a. If b(c) is a multiple of a, then it naturally follows that a divides b(c).

7. C)

If a divides b and c divides d then ac divides bd. If a divides b then b must be a multiple of a. If c divides d then d must be a multiple of c. It then naturally follows that $a \times c$ is a multiple of c and and it also naturally follows that btimesd is a multiple of d. Because of that, in the equation $\frac{ac}{bd}$ a/b leaves a remainder of 0 and c/d leaves a remainder of 0 and by the closure properties that means that there is a remainder of 0 meaning bd divides ac.

7. D)

If c divides a then a is a multiple of c. Therefore, for any integer x, and the problem $\frac{ax}{cx}$ the x's simply cancel out to $\frac{a(1)}{c}$

8.

1) a is rational 2) b is rational 3) xw + yz = 4xw + yz = 5 $w \neq 0 = 6$ $y \neq 0$

12.

If x is any integer, then x = x(1), and so $x = \frac{x}{1}$. If $x = \frac{x}{1}$, then x and 1 are both integers and $1 \neq 0$. Thus, x can be written as a quotient of integers with a nonzero denominator, meaning x is rational.

15.

x is divisible by 3, thus x=3a for some integer a. Similarly, x=4b for some integer b. It then follows that if you multiply x=3a by 4 and get 4x=12a and you multiply x=4b by 3 and get 3x=12b then

$$x = 4x = 3x = 12a - 12b = 12(a - b)$$

 $c = (a - b)$
 $x = 12c$

Therefore, x is divisible by 12.

21.

Prove that no perfect square ends in the digit 2. Let x be equal to any integer. Let a "perfect square" = x^2 . Since x^2 equals x(x) then if x(x) = y then the \sqrt{y} must equal an integer. Therefore because the $\sqrt{2}$ is not an integer, and $x(\sqrt{y})$ is not an integer, then no perfect square root can ever end in 2.