User's guideline

Table of Contents

Chapter 1. Evaluation of citrullinated PSMs

Chapter 2. Prediction of false negative citrullinated PSMs

Chapter 1. Evaluation of citrullinated PSMs

Download

To download Citrullination analysis.ipynb:

- Go to https://github.com/SHH-Cit/Citrullination-Diagnostic-Ion-Analysis.
- Click on 'Citrullination analysis.ipynb' among the listed files.
- Click 'Raw' on the top right panel.
- Press ctrl+s and type 'Citrullination analysis.ipynb' to keep the ipynb extension.

Requirements

Python requirements

- Python version 3.6 or greater
- Libraries needed: pandas, numpy, pyteomics, itertools, collections, statistics, re, os, glob

Necessary Files

• Input search result file: The input file must be a CSV file(s) containing the following three columns (see **Step 1** for the details):

'Title' MS2 spectrum title as written in MGF file

'Peptide' Peptide sequence with modification delta mass rounded up to third decimal places

'Charge' Charge state of the peptide

• Spectrum file: The spectrum file must be a Mascot Generic Format (MGF) file(s) containing MS2 spectra corresponding to those matched to the PSMs in the input search result file. If MS2 spectra in the input search file and spectrum file are not equivalent, only the common MS2 spectra will be retained and subsequently processed.

Overview flowchart

A. Setting initial parameters

The initial parameter settings:

0. Initial parameters

```
# Ion types for theoretical spectrum generation
ion_type = ['Precur', 'y', 'b', 'a', 'INT', 'IN']
# Generate each ion type
annot_yb = True # y-, b-, a-ion
annot_precur = True # precursor ion
annot_IT = True # internal ion
annot_IM = True # immonium ion
annot_IM = True # immonium ion
annot_IM = internal ion
annot_yb,
    'a' = annot_yb,
    'a' = annot_yb,
    'a' = annot_yb,
    'INT' = annot_INT,
    'IN' = annot_INT,
    'IN' = annot_INT
}

# MS2 mass tolerance (ppm)

# MS2 mass tolerance (ppm)

# Signal-to-noise (SNR) filter for MS2 spectrum
apply_SNR = True # Apply SNR filter
SNR = 2 # SNR threshold
low = 0.05 # Define low xX intensity as baseline noise level
# Maximum charge state of sequence ions
max_charge = 2 # 2, 2, ... 'max'
# Neutral loss from precursor & sequence ion
NL seq = {
    'NH3' : { 'mass' : mass.calculate_mass(formula = 'NH3'), 'AA' : {'R', 'K', 'Q', 'N', 'r'} },
    'A3' : { 'mass' : mass.calculate_mass(formula = 'HNO'), 'AA' : {'S', 'T', 'E', 'D'} },
    'A3' : { 'mass' : mass.calculate_mass(formula = 'CN3H5'), 'AA' : {'R'} } # Arg specific NL
    '2' ' 'mass' : mass.calculate_mass(formula = 'CN3H5'), 'AA' : {'R'} } # Arg specific NL
    'MI = {
        "NHI = {
        "NHL = {
        "NH_ seq.
        "* ('O' : { 'mass' : mass.calculate_mass(formula = 'CN3H5'), 'AA' : {'R'} } # Arg specific NL
        "NL INT = {
        "NH_ seq.
        "* ('O' : { 'mass' : mass.calculate_mass(formula = 'CO'), 'AA' : {'R'} } # Arg specific NL
        "NL INT = {
        "NH_ seq.
        "* ('O' : { 'mass' : mass.calculate_mass(formula = 'CO'), 'AA' : {'R'} } # CO loss from C-terminus of internal ion
    }

# Maximum number of neutral loss from a single ion
max_NL = 2 # 1, 2, 3...
```

ms2_ppm	MS2 level mass tolerance in ppm (default = 15 ppm).
apply_SNR	Determine whether to apply signal-to-noise filter to remove noise peaks (value = True or
	False; default = True).
SNR	Signal threshold level. The average intensity of noise peaks (as defined in 'low')
	multiplied by this signal threshold level will be the final signal-to-noise filter. If
	'apply_SNR' = True, all peaks below the signal-to-noise filter will be removed (default
_	= 2).
low	Proportion of MS2 peaks regarded as noise. If 'apply_SNR' = True, all peaks below this
	noise level will be treated as noise (default $= 0.05$).
max_charge	Maximum charge state of fragment ions (default $= 2$).
max_NL	Maximum number of neutral losses from a single ion (default $= 2$).

B. Loading input data

Example input search result file:

Format for peptide sequences should follow that of MS-GF+ search result. Specifically, modification delta masses should be rounded up to third decimal places. Currently allowed modifications are as follows:

Modification	Mod on peptide
Carbamidomethyl Cys	C+57.021
Oxidation Met	M+15.995
Deamidated Asn	N+0.984
Deamidated Gln	Q+0.984
Citrullinated Arg	R+0.984
Pyro-Glu from Glu	E-17.027
Pyro-Glu from Gln	Q-18.011
iTRAQ 4plex Lys	K+144.102
iTRAQ 8plex Lys	K+304.205
TMT Lys	K+229.163
iTRAQ 4plex N-term	+144.102
iTRAQ 8plex N-term	+304.205
TMT N-term	+229.163
Acetyl N-term	+42.011

B. Loading input data

A snapshot of codes for loading input files:

1. Input files

```
# Set current working directory
PATH = "F:/Project/"
os.chdir(PATH)

# Input files
spec_files = glob.glob('spectrum_file.mgf') # MGF file(s)
search_files = glob.glob('search_result_file.csv') # Search result file(s)
```

Users can upload local input files via the following steps:

- Set the directory in which the input files are located.
- Type the input filenames. In case of multiple MGF or search result files in the same directory, type in '*.mgf' or '*.csv'.

A snapshot of loaded MGF file:

	Title	m/z array	intensity array
0	20160312_02_A1.93.93.2 File:"20160312_02_A1.ra	[113.0715067, 113.6931047, 114.1196269, 115.08	[215.7922515869, 159.3930053711, 169.514968872
1	20160312_02_A1.206.206.2 File:"20160312_02_A1	[110.0715323,113.0712549,114.0551851,115.08	[171.9085998535,2270.2216796875,213.05671691
2	20160312_02_A1.323.323.2 File:"20160312_02_A1	[112.3516646,113.0712827,114.0551846,115.08	[162.815612793, 3220.46875, 206.597442627, 867
3	20160312_02_A1.441.441.2 File:"20160312_02_A1	[113.0715639,114.0551846,114.1746251,115.05	[3046.6838378906, 329.9189758301, 160.89303588
4	20160312_02_A1.559.559.2 File:"20160312_02_A1	[113.0714846,114.0555112,114.3805672,114.46	[3265.0134277344,383.2307434082,174.38641357
390	20160312_04_A3.27367.27367.4 File:"20160312_04	[110.071535,111.0363426,112.087122,120.0813	[2331.1821289063,355.9834289551,505.66485595
391	20160312_04_A3.28271.28271.4 File:"20160312_04	[110.0715594,110.5183569,111.074985,114.091	[4666.2412109375,348.894744873,435.891632080
392	20160312_04_A3.29399.29399.3 File:"20160312_04	[110.0716261,111.0749855,114.0918189,116.04	[9665.826171875,666.3602294922,485.172882080
393	20160312_04_A3.29644.29644.3 File:"20160312_04	[110.071646,111.0375996,112.2654049,112.639	[1841.1348876953,159.2207641602,165.47415161
394	20160312_04_A3.30248.30248.2 File:"20160312_04	[110.0715359, 115.0868826, 115.2165788, 116.03	[2713.2185058594, 989.6865844727, 373.98999023

A snapshot of loaded search result file:

df			
	Title	Peptide	Charge
0	20160312_02_A1.10012.10012.2 File:"20160312_02	YETSGIGEAR+0.984VK	2
1	20160312_02_A1.10045.10045.2 File:"20160312_02	NIVTPR+0.984TPPPSQGK	2
2	20160312_02_A1.10116.10116.3 File:"20160312_02	NIVTPR+0.984TPPPSQGK	3
3	20160312_02_A1.10222.10222.2 File:"20160312_02	NIVTPR+0.984TPPPSQGK	2
4	20160312_02_A1.10334.10334.3 File:"20160312_02	NIVTPR+0.984TPPPSQGK	3
94	20160312_02_A1.323.323.2 File:"20160312_02_A1	DSR+0.984SGSPM+15.995AR	2
95	20160312_02_A1.32378.32378.4 File:"20160312_02	GHIEWPDFLSHESLLLLQ+0.984Q+0.984LR+0.984PQNSLLR	4
96	20160312_02_A1.3280.3280.2 File:"20160312_02_A	VSR+0.984VASPK	2
97	20160312_02_A1.33227.33227.2 File:"20160312_02	AR+0.984HRKTGQ+0.984KVALK	2
98	20160312_02_A1.33883.33883.2 File:"20160312_02	RERVR+0.984QLR	2
aa r	ows x 3 columns		

99 rows × 3 columns

Step 2: Theoretical spectrum generation

Theoretical spectrum is generated for each Cit PSM in the following order:

- Singly charged sequence and internal ions (e.g., y- and b-ions for sequence or internal ions).
- Neutral loss variants of precursor, sequence, and internal ions.
- Multiply charged sequence ions.
- Immonium ions.

A snapshot of input data:

			pep_mz	df_p
seq_Pepti	mod_Peptide	Peptide	Title	
YETSGIGEArV	YETSGIGEArVK	YETSGIGEAR+0.984VK	20160312_02_A1.10012.10012.2 File:"20160312_02	0
NIVTPrTPPPSQC	NIVTPrTPPPSQGK	NIVTPR+0.984TPPPSQGK	20160312_02_A1.10045.10045.2 File:"20160312_02	1
NIVTPrTPPPSQC	NIVTPrTPPPSQGK	NIVTPR+0.984TPPPSQGK	20160312_02_A1.10116.10116.3 File:"20160312_02	2
NIVTPrTPPPSQG	NIVTPrTPPPSQGK	NIVTPR+0.984TPPPSQGK	20160312_02_A1.10222.10222.2 File:"20160312_02	3
NIVTPrTPPPSQG	NIVTPrTPPPSQGK	NIVTPR+0.984TPPPSQGK	20160312_02_A1.10334.10334.3 File:"20160312_02	4
DSrSGSPmA	DSrSGSPmAR	DSR+0.984SGSPM+15.995AR	20160312_02_A1.323.323.2 File:"20160312_02_A1	94
GHIEWPDFLSHESLLLLqqLrPQNSLL	GHIEWPDFLSHESLLLLqqLrPQNSLLR	GHIEWPDFLSHESLLLLQ+0.984Q+0.984LR+0.984PQNSLLR	20160312_02_A1.32378.32378.4 File:"20160312_02	95
VSrVASF	VSrVASPK	VSR+0.984VASPK	20160312_02_A1.3280.3280.2 File:"20160312_02_A	96
ArHRKTGqKVAL	ArHRKTGqKVALK	AR+0.984HRKTGQ+0.984KVALK	20160312_02_A1.33227.33227.2 File:"20160312_02	97
RERVrQL	RERVrQLR	RERVR+0.984QLR	20160312_02_A1.33883.33883.2 File:"20160312_02	98
			ows × 20650 columns	99 r
+				

	Title	Peptide	mod_Peptide	seq_Peptic
0	20160312_02_A1.10012.10012.2 File:"20160312_02	YETSGIGEAR+0.984VK	YETSGIGEArVK	YETSGIGEAN
1	20160312_02_A1.10045.10045.2 File:"20160312_02	NIVTPR+0.984TPPPSQGK	NIVTPrTPPPSQGK	NIVTPrTPPPSQC
2	20160312_02_A1.10116.10116.3 File:"20160312_02	NIVTPR+0.984TPPPSQGK	NIVTPrTPPPSQGK	NIVTPrTPPPSQC
3	20160312_02_A1.10222.10222.2 File:"20160312_02	NIVTPR+0.984TPPPSQGK	NIVTPrTPPPSQGK	NIVTPrTPPPSQC
4	20160312_02_A1.10334.10334.3 File:"20160312_02	NIVTPR+0.984TPPPSQGK	NIVTPrTPPPSQGK	NIVTPrTPPPSQC
94	20160312_02_A1.323.323.2 File:"20160312_02_A1	DSR+0.984SGSPM+15.995AR	DSrSGSPmAR	DSrSGSPmA
95	20160312_02_A1.32378.32378.4 File:"20160312_02	GHIEWPDFLSHESLLLLQ+0.984Q+0.984LR+0.984PQNSLLR	GHIEWPDFLSHESLLLLqqLrPQNSLLR	GHIEWPDFLSHESLLLLqqLrPQNSLL
96	20160312_02_A1.3280.3280.2 File:"20160312_02_A	VSR+0.984VASPK	VSrVASPK	VSrVASF
97	20160312_02_A1.33227.33227.2 File:"20160312_02	AR+0.984HRKTGQ+0.984KVALK	ArHRKTGqKVALK	ArHRKTGqKVAL
98	20160312_02_A1.33883.33883.2 File:"20160312_02	RERVR+0.984QLR	RERVrQLR	RERVrQL
99 r	ows × 20650 columns			

Step 3: Identification of matched peaks between the theoretical and experimental spectra

Theoretical and experimental spectra are compared, and only the matched ions with less than m/z difference of 15 ppm are retained.

A snapshot of input data:

A snapshot of output data (matched ions):

	Title	Peptide	mod_Peptide	Pep_length	Charge	mz_Precurs
0	20160312_02_A1.10012.10012.2 File:"20160312_02	YETSGIGEAR+0.984VK	YETSGIGEArVK	12	2	655.8335
1	20160312_02_A1.10045.10045.2 File:"20160312_02	NIVTPR+0.984TPPPSQGK	NIVTPrTPPPSQGK	14	2	746.9100
2	20160312_02_A1.10116.10116.3 File:"20160312_02	NIVTPR+0.984TPPPSQGK	NIVTPrTPPPSQGK	14	3	498.2760
3	20160312_02_A1.10222.10222.2 File:"20160312_02	NIVTPR+0.984TPPPSQGK	NIVTPrTPPPSQGK	14	2	746.9100
4	20160312_02_A1.10334.10334.3 File:"20160312_02	NIVTPR+0.984TPPPSQGK	NIVTPrTPPPSQGK	14	3	498.2760
94	20160312_02_A1.323.323.2 File:"20160312_02_A1	DSR+0.984SGSPM+15.995AR	DSrSGSPmAR	10	2	540.7411
95	20160312_02_A1.32378.32378.4 File:"20160312_02	GHIEWPDFLSHESLLLLQ+0.984Q+0.984LR+0.984PQNSLLR	GHIEWPDFLSHESLLLLqqLrPQNSLLR	28	4	836.4430
96	20160312_02_A1.3280.3280.2 File:"20160312_02_A	VSR+0.984VASPK	VSrVASPK	8	2	422.7485
97	20160312_02_A1.33227.33227.2 File:"20160312_02	AR+0.984HRKTGQ+0.984KVALK	ArHRKTGqKVALK	13	2	747.9473
98	20160312_02_A1.33883.33883.2 File:"20160312_02	RERVR+0.984QLR	RERVrQLR	8	2	557.3341
99 r	rows × 289 columns					
4 =						

Step 4: Cit diagnostic ion analysis

Annotations and occurrence numbers of citrullination diagnostic ions are reported for each Cit PSM.

A snapshot of input data:

df_r	mz_label_uniq					
	Title	Peptide	mod_Peptide	Pep_length	Charge	mz_Precurs
0	20160312_02_A1.10012.10012.2 File:"20160312_02	YETSGIGEAR+0.984VK	YETSGIGEArVK	12	2	655.8335
1	20160312_02_A1.10045.10045.2 File:"20160312_02	NIVTPR+0.984TPPPSQGK	NIVTPrTPPPSQGK	14	2	746.9100
2	20160312_02_A1.10116.10116.3 File:"20160312_02	NIVTPR+0.984TPPPSQGK	NIVTPrTPPPSQGK	14	3	498.2760
3	20160312_02_A1.10222.10222.2 File:"20160312_02	NIVTPR+0.984TPPPSQGK	NIVTPrTPPPSQGK	14	2	746.9100
4	20160312_02_A1.10334.10334.3 File:"20160312_02	NIVTPR+0.984TPPPSQGK	NIVTPrTPPPSQGK	14	3	498.2760
94	20160312_02_A1.323.323.2 File:"20160312_02_A1	DSR+0.984SGSPM+15.995AR	DSrSGSPmAR	10	2	540.7411
95	20160312_02_A1.32378.32378.4 File:"20160312_02	GHIEWPDFLSHESLLLLQ+0.984Q+0.984LR+0.984PQNSLLR	GHIEWPDFLSHESLLLLqqLrPQNSLLR	28	4	836.4430
96	20160312_02_A1.3280.3280.2 File:"20160312_02_A	VSR+0.984VASPK	VSrVASPK	8	2	422.7485
97	20160312_02_A1.33227.33227.2 File:"20160312_02	AR+0.984HRKTGQ+0.984KVALK	ArHRKTGqKVALK	13	2	747.9473
98	20160312_02_A1.33883.33883.2 File:"20160312_02	RERVR+0.984QLR	RERVrQLR	8	2	557.3341
99 r	ows × 289 columns					
4						+

A snapshot of output data (binary occurrence for the immonium ion and occurrence numbers for the other diagnostic ions):

F	inal_result									
el	precNL_label	seqNL_label	 Total_NL_count	precNL_count	seqNL_count	intNL_count	Total_INT_count	Dipeptide_count	Tripeptide_count	IM_NH3_count
3- ι- ι-		y5-43- NH3++,y3- 43,y4- 43,y10-43- H2O- H2O++,y10- 4	 48	0	23	25	10	4	6	0
T- 'r-		y10-43- H2O++,y10- 43++,y11-43- H2O++,y11- 43++,y1	 38	0	15	23	14	8	6	0
T- r-		b7-43-H2O	 20	0	1	19	15	9	6	0
T- 'r-		y9-43- H2O++,y9- 43++,y10- 43- H2O++,y10- 43++,y11	 56	0	23	33	17	11	6	0
T- 'r-		b7-43-H2O	 26	0	1	25	14	7	7	0

Step 5: Evaluation of Cit PSMs by EN model

The EN model developed in the study is applied to evaluate the validity of each Cit PSM. A snapshot of input data:

preci	NL_label	seqNL_label	 Total_NL_count	precNL_count	seqNL_count	intNL_count	Total_INT_count	Dipeptide_count	Tripeptide_count	IM_NH3_count
		y5-43- NH3++,y3- 43,y4- 43,y10-43- H2O- H2O++,y10- 4	 48	0	23	25	10	4	6	C
		y10-43- H2O++,y10- 43++,y11-43- H2O++,y11- 43++,y1	 38	0	15	23	14	8	6	O
		b7-43-H2O	 20	0	1	19	15	9	6	C
		y9-43- H2O++,y9- 43++,y10- 43- H2O++,y10- 43++,y11	 56	0	23	33	17	11	6	(
		b7-43-H2O	 26	0	1	25	14	7	7	

A snapshot of output data (Cit_probability, probability that a PSM contains Cit; and Cit_prediction = 1 when Cit_probability > 0.5):

Fi	nal_result									
	Total_NL_count	precNL_count	seqNL_count	intNL_count	Total_INT_count	Dipeptide_count	Tripeptide_count	IM_NH3_count	Cit_probability	Cit_prediction
	48	0	23	25	10	4	6	0	1.000000	1
	38	0	15	23	14	8	6	0	1.000000	1
	20	0	1	19	15	9	6	0	1.000000	1
	56	0	23	33	17	11	6	0	1.000000	1
	26	0	1	25	14	7	7	0	1.000000	1

Step 5: Evaluation of Cit PSMs by EN model

Example output CSV file including the prediction results (Cit_probabilty and Cit_prediction):

B C D		G										V		X	Y	Z
Title Peptide mod_Peptide P	p_length Char	ge mz_Precursor 0	Cit_Count Total_NL_label precNL_	ibel seqNL_label	intNL_label Total_INT_la	bel Dipeptide_lab	el Tripeptide_label IM_NH3_label	Total_NL_count prec	:NL_count seqNL	count intNL_co	ount Total_INT_c	ount Dipeptide_cour	rt Tripeptide_cou	nt IM_NH3_cou	nt Cit_probabilit	ty Cit_pred
0 20160312 YETSGIGE/YETSGIGEARV	12	2 655.8335189	1 Ar-43,y5-43-NH3++,EAr	43-Fy5-43-NH3+	Ar-43,EAr-4 Ar-43,Ar-NH	3,A Ar-43,Ar-NH3,	Ar, ArV-NH3,ArV,EAr-H2O,EAr-NH3	42	0	22	20	9	4	5	0	1
1 20160312 NIVTPR+0 NIVTPrTPPPSC	14	2 746.9100969	1 rT-43-H2O,Pr-43,rT-43,T	r-45y10-43-H2O	rT-43-H2O,(rT-43-H2O,F	r-4 rT-43-H2O,Pr-	43 TPr-43-H2O,PrT-43-H2O,rTP-43	31	0	14	17	14	8	6	0	1
2 20160312 NIVTPR+0 NIVTPrTPPPSC	14	3 498.2760063	1 rT-43-H2O,Pr-43,rT-43,T	r-43-H2O,PrT-43	rT-43-H2O,(rT-43-H2O,F	r-4 rT-43-H2O,Pr-	43 TPr-43-H2O,PrT-43-H2O,rTP-43	17	0	0	17	14	8	6	0	1
3 20160312 NIVTPR+0 NIVTPrTPPPSC	14	2 746.9100969	1 rT-43-H2O,Pr-43,rT-43,T	r-45y9-43-H2O+	rT-43-H2O,(rT-43-H2O,F	r-4 rT-43-H2O,Pr-	43 TPr-43-H2O,PrT-43-H2O,rTP-43	47	0	19	28	16 1	0	6	0	1
4 20160312 NIVTPR+0 NIVTP/TPPPSC	14	3 498.2760063	1 rT-43-H2O,Pr-43,rT-43,T	4-45 b7-43-H2O	rT-43-H2O,(rT-43-H2O,F	Y-4 rT-43-H2O,Pr-	43 TPr-43-H2O,PrT-43-H2O,rTP-43	21	0	1	20	13	7	6	0	1
5 20160312 TPSTAHLR TPSTAHL/VPK	11	3 403.2318493	1 TAHLr-43-H2O		TAHLr-43-HHLr-CO		HLr-CO	1	0	0	1	1	0	1	0 0.42575306	1
6 20160312 NIVTPR+0 NIVTP/TPPPSC	14	2 746.9100969	1 Pr-43,TPr-43-H2O,PrT-4	-H2(y10-43-H2O	Pr-43,TPr-45 Pr-43,Pr-NH	3,rT Pr-43,Pr-NH3,r	T- TPr-43-H2O,PrT-43-H2O,rTP-43	27	0	11	16	12	6	6	0	1
7 20160312 AQSR+0.9 AQSrEQLAALI	11	2 608.3387759	1 Sr-43-H2O,Sr-43,rE-43-I	20,(y8-43-NH3+	Sr-43-H2O,(Sr-43-H2O,S	ir-4 Sr-43-H2O,Sr-	43 QSr-43-NH3,SrE-43-H2O,SrE-41	23	0	7	16	12	6	6	0	1
8 20160312 DSR+0.98 DSrSGSPmAR	10	2 540.7411109	1 rS-43-H2O,Sr-43-H2O,r	-43,5 b3-43-H2O,I	rS-43-H2O, rS-43-H2O, S	r-4 rS-43-H2O,Sr-	43 rSG-H2O-NH3,r5 IM(r)-NH3	8	0	4	4	8	6	2	1 0.99999905	9
9 20160312 NIVTPR+0 NIVTPrTPPPS0	14	2 746.9100969	1 Pr-43.TPr-43-H2O.PrT-4	-H2(v10-43-H2O	Pr-43.TPr-45.Pr-43.Pr-NH	3.rT Pr-43.Pr-NH3.r	T- TPr-43-H2O,PrT-43-H2O,rTP-43	16	0	4	12	9	4	5	0 0.9999999	7
10 20160312 Q+0.984Kl aKrLaAmaK	9	2 575,7928139	1 rLa-43		rLa-43 Kr-H2O-NH			1	0	0	1	2	1	1	0 0.58727216	8
11 20160312 SGSEAGSF SGSEAGSPRIF	15	3 566 6354786	1 GSPRr-42-43 GSPRrP-43	o13-b13-43-59+	GSPRr-42-4 rPR-42-NH3	RrP-42-NH3 PRr-4	12- rPR-42-NH3.RrP-42-NH3.PRr-42	14	0	2	12	1	0	1	0 09999958	3
12 20160312 R+0.984GrrGGGGGRrSK	10	2 495.2659454	2					0	0	0	0	0	0	0	0 0.12708300	7
13 20160312 R+0.984RI rFinDMVK	8	2 512.7607839	1					0	0	0	0	0	0	0	0 0.12708300	7
14 20160312 NIVTPR+0 NIVTPrTPPPSc	14	2 747,4021049	1 Pr.43 rT.43 TPr.43.H2O	VT-4 V10-43-H2O	Pr.43 rT.43 Pr.43 rT.43 Pr.	Pr. N Pr. 43 rT. 43 Pr.	NI TPr-43-H2O,PrT-43-H2O,rTP-43	21	0	6	15	10	5	5	0	1
15 20160312 MAR+0.98 MArEAEFEAEC	13	2 798.8521184	1 rE-43-H2O		rE-43-H2O Ar-NH3:rE-4			- 1	0	0	1	2	2		0 0.58727216	8
16 20160312 RGR+0.98 RGrPPKDEK	9	3 361.8689106	1 rPP-43:rPPKD-43-H2O		rPP-43.rPPKJ rP.rPP-43		rPP-43		0	0	2	2	1		0 0.79060896	
17 20160312 N+0.984R nrqVlcVTLK	10	2 617 3295629	1 Precursor-43-N Precurso		rgVlcVT-43 rgV	IF.	raV	2	1	0	1	4	0		0 0.66300177	
18 20160312 GGTSR+0 GGTSrALAAAS	14	2 638.8469649				- 1 5- 12 1120 5-	H2TSr-43-H2O,SrA-IM(r)-NH3	21	0	10	11	14	3	11	4	-
19 20160312 EEFER+0.9 EEFErgnKQLR	11	3 493.9078709			EranKOL-43	r-n sr-45-n2O,sr-	Ha ISI-43-HZO,SIA-IIM(I)-INHS	- 61	0	0	1				0 0.27866365	-
20 20160312, EEFER + 0.9 EEFEI GINGER 20 20160312, TVFMR+0 TVFMrDGFVIII	- 11	2 6393244769	1 ErqnKQL-43				DUMBLASHED MIGNING MIC	52		16	24	17			0 0.27888383	
	12	2 744,3891944	1 ADLr-43-H2O.ADLr-43.A		ADLr-43-H2Lr-NH3.rE-N			3	0	0	3		2		0 0.97361704	9
21 20160312, Q+0.984Q qqIADLrEDLKI 22 20160312 DSR+0.98 DSrSGSPmAR	10	2 540.7411109					43 rSG-H2O-NH3,rS IM(r)-NH3	11	0		5		4		1 0.9999999	
										3	19	0	0			
23 20160312, MFGGPGT MFGGPGTASr	23	3 797.7173133					PSS-43-H2O,SrPSSSR-43,rPSSSRS-	22	0	3		0	0	•	0 0.9999999	
24 20160312 YLATASTM YLATASTMDH	18	4 516.005272	1 Ar-43,ArH-43,HAr-43,DH				ArH-43,HAr-43	18	0	5	13	2	1		0 0.9999999	
25 20160312, YLATASTM YLATASTmDH	18	3 687.6710876	1 Ar-43,ArH-43,HAr-43,DH				ArH-43,HAr-43	18	0	5	13	2	1		0 0.9999999	
26 20160312, EKEEKEEAI EKEEKEEArLrA	13	2 809.4263074	2 rA-43,Ar-43,EAr-43-H2C					11	0	0	11	4	2		0 0.99998897	
27 20160312_DSR+0.98 DSrSGSPmAR	10	2 540.7411109					43 rSG-H2O-NH3,r\$ IM(r)-NH3	6	0	2	4	8	6		1 0.99999337	1
28 20160312_ITPGAR+0 ITPGArGAFSEI	14	2 763.8784579					I-N GAr-43,ArG-43,rGA-43,ArG-NH3	42	1	16	25	8	5		0	1
29 20160312 LEMVVVN LEMVVVNGrG	14	3 500.5932293	1 rGD-43,VNGrGD-43-NH					5	0	1	4	3	1		0 0.99266837	9
30 20160312, STLAR+0.5 STLARVIVDK	10	2 551.8275124	1 Ar-43,ArV-43,L4 Precurso	-43-y6-43-NH3+	Ar-43,ArV-4 Ar-43,Ar-NH	3,A Ar-43,Ar-NH3,	Ar, ArV-43,LAr-43,ArV-NH3,LAr-NH	30	2	14	14	15	6	9	0	1
31 20160312_Q+0.984A qAPRAAPAAP	16	4 436.2305062	1					0	0	0	0	0	0	0	0 0.12708300	7
32 20160312_STLAR+0.9STLArVIVDK	10	2 551.8275124	1 Ar-43,rV-43,LAr Precurso	-43 y6-43++,y7-	Ar-43,rV-43, Ar-43,Ar-NH	13,r\ Ar-43,Ar-NH3,	rV-LAr-43,ArV-NH3,LAr-NH3,ArV,LA	18	1	7	10	13	6	7	0	1
33 20160312_DSR+0.98-DSrSGSPmAR	10	2 540.7411109	1 rS-43-H2O,Sr-43-H2O,r	-43,5 b3-43-H2O,I	rS-43-H2O, rS-43-H2O,	ir-4 rS-43-H2O,Sr-	43 rSG-H2O-NH3 IM(r)-NH3	8	0	4	4	7	6	1	1 0.99999819	3
34 20160312 GAAGR+0 GAAGrPLELSD	13	3 463.9094346	1 AGr-43,rPLE-43,GrPLELSI	-43	AGr-43,rPLE AGr-43,rP,A0	ar-CrP	AGr-43,AGr-CO,AGr	3	0	0	3	4	1	3	0 0.97361704	8
35 20160312, ILSDDVPIR ILSDDVPIrDYF	12	3 488.2566083	1 Pir-43,VPirDY-43-H2O		Pir-43,VPirD ir-NH3,rD-H	20, Ir-NH3,rD-H20	PIr-43,IrD-H2O-NH3,PIr-NH3,IrC	2	0	0	2	8	2	6	0 0.99472768	8
36 20160312 DSR+0.98 DSrSGSPmAR	10	2 540.7411109	1 rS-43-H2O,Sr-43-H2O,rt	-43,5 b3-43-H2O,I	rS-43-H2O,(rS-43-H2O,5	r-4 rS-43-H2O,Sr-	43 rSG-H2O-NH3 IM(r)-NH3	6	0	2	4	7	6	1	1 0.99998727	7
37 20160312 FADLSEAA FADLSEAANrN	16	2 889,4273694	1 rN-43-NH3.Nr-43-NH3.N	r-43 v10-43++.v1	rN-43-NH3, rN-43-NH3.0	Nr-4rN-43-NH3.Nr	-4 ANr-43-NH3,ANr-NH3-NH3,ANr	19	0	10	9	4	1	3	0 0.9999999	6
38 20160312 RPFKR+0.5 RPFK/mNYSDv	16	3 681.0283229	1 FKrmNY-43,FKrmNYS-43				FKr-NH3-NH3	7	0	- 1	6	1	0	1	0 0.99615143	9
39 20160312 SFLQ+0.9E SFLqSLEcLrR	11	3 470,9069253	1		Lr-NH3Lr	Lr-NH3.Lr		0	0	0	0	2	2	0	0 0.34905401	2
40 20160312 NLDIER+0 NLDIErPTYTNI	14	3 573.9607429	1 Er-43-H2O,Er-43,DIErP-4	3y10y10-43-H2O			NHEr-H2O	8	0	3	5	5	4		0 0.99989269	
41 20160312 YVETPR+0 YVETPrVHISSV	20	3 756,3858893					/r- PrV-43.TPr-43.TPr-NH3.PrV.TPr	29	0	14	15		4		0	1
AL PRIORISE LAFTAKAR LAFTERINGS	20	5 150,3030093	E 11-45,19443,1F1443,F191													

Descriptions of the columns in the output CSV file:

Column	Description								
Title	MS2 spectrum title								
Peptide	Original peptide sequence								
mod_peptide	Simplified peptide sequence with a predefined set of symbols for modifications								
Pep_length	Peptide length								
mz_Precursor	Theoretical precursor m/z								
Cit_Count	Number of citrullinated sites								
Total_NL_label	Annotations of all diagnostic neutral loss ions								
precNL_label	Annotations of precursor neutral losses								
seqNL_label	Annotations of sequence ion neutral losses								
intNL_label	Annotations of internal ion neutral losses								
Total_INT_label	Annotations of all diagnostic internal ions								
Dipeptide_label	Annotations of diagnostic dipeptides								
Tripeptide_label	Annotations of diagnostic tripeptides								
IM_NH3_label	Annotation of IM(Cit)-NH ₃								
Total_NL_count	Number of all diagnostic neutral loss ions								
precNL_count	Number of precursor neutral losses								
seqNL_count	Number of sequence ion neutral losses								
intNL_count	Number of internal ion neutral losses								
Total_INT_count	Number of all diagnostic internal ions								
Dipeptide_count	Number of diagnostic dipeptides								
Tripeptide_count	Number of diagnostic tripeptides								
IM_NH3_count	Number of IM(Cit)-NH ₃								
Cit_probability	Probability (P) of citrullination status calculated by the EN model								
Cit_prediction	Classification of citrullination status using a P cutoff >0.5								

Chapter 2. Prediction of false negative citrullinated PSMs

Download

To download Citrullination analysis.ipynb:

- Go to https://github.com/SHH-Cit/Citrullination-Diagnostic-Ion-Analysis.
- Click on 'False negative prediction.ipynb' among the listed files.
- Click 'Raw' on the top right panel.
- Press ctrl+s and type 'False negative prediction.ipynb' to keep the ipynb extension.

Requirements

Python requirements

- Python version 3.6 or greater
- Libraries needed: pandas, numpy, pyteomics, itertools, collections, statistics, re, os, glob, scipy.stats

Necessary Files

• Unmodified peptide file: The input file must be a CSV file containing the following column (see **Step 1** for the details):

'Peptide' Peptide sequence with modification delta mass rounded up to third decimal places

• Scan title file: The input file must be a CSV file containing the following column (see **Step 1** for the details):

'Title' MS2 spectrum scan title (scan number) as written in the MGF file

• Spectrum file: The spectrum file must be a Mascot Generic Format (MGF) file(s) containing either total MS2 spectra or MS2 spectra unassigned by database searching only. For the former case, the codes will automatically search for unassigned MS2 spectra.

Overview flowchart

A. Setting initial parameters

The initial parameter settings:

0. Initial parameters

```
# Ion types for theoretical spectrum generation
ion_type = ['Precur', 'y', 'b', 'a', 'INT', 'IM']
# Generate each ion type
annot_yb = True # y-, b-, a-ion
annot_precur = True # precursor ion
annot_INT = True # internal ion
annot_IM = True # immonium ion
annot_dict = {
    'Precur' : annot_precur,
               : annot_yb,
: annot_yb,
                : annot yb,
     'INT' : annot_INT,
'IM' : annot_IM
# Mass tolerance (ppm)
ms1_ppm = 10 # MS1 level
ms2_ppm = 15 # MS2 level
# Signal-to-noise (SNR) filter for MS2 spectrum
apply\_SNR = True \# Apply SNR filter
           = 2 # SNR threshold
            = 0.05 # Define low x% intensity as baseline noise level
# Maximum charge state of sequence ions
max_charge = 3 # 2, 3, ... 'max'
# Maximum number of neutral loss from a single ion
\max_{NL} = 2 # 1. 2. 3..
# Threshold for intensity coverage filter
intensity\_coverage = 0.2 \text{ \# Filter out spectra with sum of annotated intensities} < x\% \text{ of sum of total intensities}
```

MS1 level mass tolerance in ppm (default = 10 ppm). ms1_ppm ms2 ppm MS2 level mass tolerance in ppm (default = 15 ppm). apply_SNR Determine whether to apply signal-to-noise filter to remove noise peaks (value = True or False; default = True). **SNR** Signal threshold level. The average intensity of noise peaks (as defined in 'low') multiplied by this signal threshold level will be the final signal-to-noise filter. If 'apply_SNR' = True, all peaks below the signal-to-noise filter will be removed (default = 2).Proportion of MS2 peaks regarded as noise. If 'apply_SNR' = True, all peaks below low this noise level will be treated as noise (default = 0.05). max_charge Maximum charge state of fragment ions (default = 2). Maximum number of neutral losses from a single ion (default = 2). max NL Threshold for intensity coverage filter. Spectra with [sum of annotated intensities / intensity_coverage sum of total intensities] smaller than this threshold will be filtered out (default = 0.2).

B. Loading input data

Example unmodified peptide file:

A
Peptide
TQEEAIVK
TSFADGK
KYEGDIK
KYEGDIK
KYEGDIK
SKDQGATYQK
TQEEAIVK
TQEEAIVK
YTPVEEK
TSFADGK
SKDQGATYQK
NGAAQAVTAENK
LYENTQDYDK
ITTAQEM+15.995YDK

Format for peptide sequences should follow that of MS-GF+ search result. Specifically, modification delta masses should be rounded up to third decimal places. Currently allowed modifications are as follows:

Modification	Mod on peptide
Carbamidomethyl Cys	C+57.021
Oxidation Met	M+15.995
Deamidated Asn	N+0.984
Deamidated Gln	Q+0.984
Citrullinated Arg	R+0.984
Pyro-Glu from Glu	E-17.027
Pyro-Glu from Gln	Q-18.011
iTRAQ 4plex Lys	K+144.102
iTRAQ 8plex Lys	K+304.205
TMT Lys	K+229.163
iTRAQ 4plex N-term	+144.102
iTRAQ 8plex N-term	+304.205
TMT N-term	+229.163
Acetyl N-term	+42.011

B. Loading input data

Example scan title file:

A
Title
QEHF1_10122_DNL.4368.4368.6 File:"QEHF1_10122_DNL.raw", NativelD:"controllerType=0 controllerNumber=1 scan=4368"
QEHF1_10122_DNL.4396.4396.6 File:"QEHF1_10122_DNL.raw", NativelD:"controllerType=0 controllerNumber=1 scan=4396"
QEHF1_10123_DNL.4596.4596.6 File:"QEHF1_10123_DNL.raw", NativelD:"controllerType=0 controllerNumber=1 scan=4596"
QEHF1_10123_DNL.4434.4434.6 File:"QEHF1_10123_DNL.raw", NativelD:"controllerType=0 controllerNumber=1 scan=4434"
QEHF1_10124_DNL.4668.4668.6 File:"QEHF1_10124_DNL.raw", NativelD:"controllerType=0 controllerNumber=1 scan=4668"
QEHF1_10125_DNL:4356.4356.6 File:"QEHF1_10125_DNL:raw", NativeID:"controllerType=0 controllerNumber=1 scan=4356"
QEHF1_10125_DNL.4383.4383.6 File:"QEHF1_10125_DNL.raw", NativelD:"controllerType=0 controllerNumber=1 scan=4383"
QEHF1_10125_DNL.4601.4601.6 File:"QEHF1_10125_DNL.raw", NativelD:"controllerType=0 controllerNumber=1 scan=4601"
QEHF1_10247_DNL.4239.4239.6 File:"QEHF1_10247_DNL.raw", NativelD:"controllerType=0 controllerNumber=1 scan=4239"
QEHF1_10250_DNL.4480.4480.6 File:"QEHF1_10250_DNL.raw", NativeID:"controllerType=0 controllerNumber=1 scan=4480"
QEHF1_10250_DNL.4272.4272.6 File:"QEHF1_10250_DNL.raw", NativeID:"controllerType=0 controllerNumber=1 scan=4272"
QEHF1_10275_DNL.3539.3539.6 File:"QEHF1_10275_DNL.raw", NativeID:"controllerType=0 controllerNumber=1 scan=3539"
QEHF1_10280_DNL4501.4501.6 File:"QEHF1_10280_DNL.raw", NativelD:"controllerType=0 controllerNumber=1 scan=4501"
QEHF1_10280_DNL.4474.4474.6 File:"QEHF1_10280_DNL.raw", NativelD:"controllerType=0 controllerNumber=1 scan=4474"

B. Loading input data

A snapshot of codes for loading input files:

1. Input files

```
# Set current working directory
PATH = "F:/Project/"
os.chdir(PATH)

# Input files
spec_files = glob.glob('*.mgf') # MGF file(s)
df_UnmodR = pd.read_csv("UnmodR_peptide.csv") # UnmodR peptides w/o Cit counterpart peptides
df_total = pd.read_csv("Total_peptide.csv") # Total identified peptides
```

Users can upload local input files via the following steps:

- Set the directory in which the input files are located.
- Type the input filenames. In case of multiple MGF files in the same directory, type in '*.mgf'.

A snapshot of loaded MGF file:

df_exp					
	m/z array	intensity array	Title	exp_Precursor	Charge
0	[108.9069509, 108.9075611, 108.9081714, 111.03	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 18287.58203125,	QEHF1_10098_DNL.2.2.1 File:"QEHF1_10098_DNL.ra	371.101932	1
1	[108.9068349, 108.9074451, 108.9080554, 110.10	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1604.9095458984	QEHF1_10098_DNL.3.3.1 File:"QEHF1_10098_DNL.ra	445.121060	1
2	[108.9068088, 108.907419, 108.9080293, 121.956	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2023.1558837891	QEHF1_10098_DNL.4.4.1 File:"QEHF1_10098_DNL.ra	536.166752	1
3	[108.9067553, 108.9073656, 108.9079758, 149.03	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 61633.01953125,	QEHF1_10098_DNL.5.5.1 File:"QEHF1_10098_DNL.ra	462.147507	1
4	[108.9068558, 108.907466, 108.9080763, 116.332	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1553.5465087891	QEHF1_10098_DNL.6.6.1 File:"QEHF1_10098_DNL.ra	593.159294	1
34469	[108.9067848, 108.907395, 108.9080053, 110.335	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2188.8542480469	QEHF1_10102_DNL.8264.8264.1 File:"QEHF1_10102	751.511179	1
34470	[108.9067921, 108.9074023, 108.9080126, 112.55	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3034.580078125,	QEHF1_10102_DNL.8265.8265.1 File:"QEHF1_10102	1143.789214	1
34471	[108.9068589, 108.9074691, 108.9080794, 111.03	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2754.2233886719	QEHF1_10102_DNL.8266.8266.1 File:"QEHF1_10102	359.314999	1
34472	[108.9067433, 108.9073536, 108.9079638, 121.02	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1498.1771240234	QEHF1_10102_DNL.8267.8267.1 File:"QEHF1_10102	407.300978	1
34473	[108.9066313, 108.9072416, 108.9078518, 111.03	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2158.365234375,	QEHF1_10102_DNL.8268.8268.1 File:"QEHF1_10102	387.192683	1

A snapshot of loaded unmodified peptide file:

df_U	nmodR
	Peptide
0	TQEEAIVK
1	TSFADGK
2	KYEGDIK
3	KYEGDIK
4	KYEGDIK
994	THNISEGM+15.995MGYDTYPK
995	THNISEGMMGYDTYPK
996	GAEVSVVNMEALQAER
997	EADGSVTHTFVIK
998	THNISEGMM+15.995GYDTYPK

999 rows × 1 columns

A snapshot of loaded scan title file:

df_total

	Title
0	QEHF1_10122_DNL.4368.4368.6 File:"QEHF1_10122
1	QEHF1_10122_DNL.4396.4396.6 File:"QEHF1_10122
2	QEHF1_10123_DNL.4596.4596.6 File:"QEHF1_10123
3	QEHF1_10123_DNL.4434.4434.6 File:"QEHF1_10123
4	QEHF1_10124_DNL.4668.4668.6 File:"QEHF1_10124
31391	QEHF3_06513_DNL.9237.9237.1 File:"QEHF3_06513
31392	QEHF3_06513_DNL.6988.6988.1 File:"QEHF3_06513
31393	QEHF3_06513_DNL.9195.9195.1 File:"QEHF3_06513
31394	QEHF3_06513_DNL.3945.3945.1 File:"QEHF3_06513
31395	QEHF3_06513_DNL.6917.6917.1 File:"QEHF3_06513

31396 rows x 1 columns

Step 2: Theoretical spectrum generation

Theoretical spectrum is generated for each Cit peptide as described in **Chapter 1**:

A snapshot of input data:

f_p	ep						
	Peptide	mod_Peptide	seq_Peptide	Charge	Pep_length	mz_Precursor	Cit_Coun
0	VPAPVDGER+0.984	VPAPVDGEr	VPAPVDGEr	1	9	940.474	1
1	NHNLYIAR+0.984	NHNLYIAr	NHNLYIAr	1	8	1001.52	1
2	NHNLYIAR+0.984	NHNLYIAr	NHNLYIAr	2	8	501.262	1
3	TAIIR+0.984YNYASGK	TAIIrYNYASGK	TAIIrYNYASGK	1	12	1357.71	1
4	TAIIR+0.984YNYASGK	TAIIrYNYASGK	TAIIrYNYASGK	2	12	679.36	1
204	YTFTMRR+0.984	YTFTMRr	YTFTMRr	2	7	488.24	1
205	TLEDNVALR+0.984ER	TLEDNVALrER	TLEDNVALrER	1	11	1316.68	1
206	TLEDNVALR+0.984ER	TLEDNVALrER	TLEDNVALrER	2	11	658.844	1
207	TLEDNVALRER+0.984	TLEDNVALREr	TLEDNVALREr	1	11	1316.68	1
208	TLEDNVALRER+0.984	TLEDNVALREr	TLEDNVALREr	2	11	658.844	1

209 rows × 7 columns

	Peptide	mod_Peptide	seq_Peptide	Charge	Pep_length	mz_Precursor	Cit_Count	seq_y_1	seq_y_2	seq_y_3	 mz_IM- NH3_14	mz_IM- NH3_15	m Ni
0	VPAPVDGER+0.984	VPAPVDGEr	VPAPVDGEr	1	9	940.473987	1	r	rE	rEG	 NaN	NaN	
1	NHNLYIAR+0.984	NHNLYIAr	NHNLYIAr	1	8	1001.516845	1	r	rA	rAl	 NaN	NaN	
2	NHNLYIAR+0.984	NHNLYIAr	NHNLYIAr	2	8	501.262335	1	r	rA	rAl	 NaN	NaN	
3	TAIIR+0.984YNYASGK	TAIIrYNYASGK	TAIIrYNYASGK	1	12	1357.711574	1	K	KG	KGS	 NaN	NaN	
4	TAIIR+0.984YNYASGK	TAIIrYNYASGK	TAIIrYNYASGK	2	12	679.359699	1	K	KG	KGS	 NaN	NaN	
204	YTFTMRR+0.984	YTFTMRr	YTFTMRr	2	7	488.240015	1	r	rR	rRM	 NaN	NaN	
205	TLEDNVALR+0.984ER	TLEDNVALrER	TLEDNVALrER	1	11	1316.681019	1	R	RE	REr	 NaN	NaN	
206	TLEDNVALR+0.984ER	TLEDNVALrER	TLEDNVALrER	2	11	658.844422	1	R	RE	REr	 NaN	NaN	
207	TLEDNVALRER+0.984	TLEDNVALRE	TLEDNVALREr	1	11	1316.681019	1	r	rE	rER	 NaN	NaN	
208	TLEDNVALRER+0.984	TLEDNVALREr	TLEDNVALREr	2	11	658.844422	1	r	rE	rER	 NaN	NaN	
9 r	rows × 6560 columns ep_label												•
09 r		mod_Peptide	seq_Peptide	Charge	Pep_length	mz_Precursor	Cit_Count	seq_y_1	seq_y_2	seq_y_3	 mz_IM- NH3 14	mz_IM- NH3 15	
09 r	ep_label	mod_Peptide VPAPVDGEr	seq_Peptide VPAPVDGEr	Charge 1	Pep_length	mz_Precursor	Cit_Count	seq_ y_1 y1	seq_y_2 y2	seq_y_3	mz_IM- NH3_14 NaN	mz_IM- NH3_15	
09 r	ep_label Peptide										 NH3_14	NH3_15	
09 r	ep_label Peptide VPAPVDGER+0.984	VPAPVDGEr	VPAPVDGEr	1	9	Precursor	1	y1	y2	уЗ	 NH3_14 NaN	NH3_15 NaN	
09 r	ep_label Peptide VPAPVDGER+0.984 NHNLYIAR+0.984 NHNLYIAR+0.984	VPAPVDGEr NHNLYIAr	VPAPVDGEr NHNLYIAr	1	9	Precursor Precursor	1	y1 y1	y2 y2	y3 y3	 NH3_14 NaN NaN	NH3_15 NaN NaN	
09 r	ep_label Peptide VPAPVDGER+0.984 NHNLYIAR+0.984 NHNLYIAR+0.984	VPAPVDGER NHNLYIAR NHNLYIAR TAIIrYNYASGK	VPAPVDGEr NHNLYIAr NHNLYIAr TAIIrYNYASGK	1 1 2	9 8 8	Precursor Precursor Precursor	1 1 1	y1 y1 y1	y2 y2 y2	y3 y3 y3	 NH3_14 NaN NaN NaN	NH3_15 NaN NaN NaN	
0 1 2 3	ep_label Peptide VPAPVDGER+0.984 NHNLYIAR+0.984 NHNLYIAR+0.984 TAIIR+0.984YNYASGK	VPAPVDGER NHNLYIAR NHNLYIAR TAIIrYNYASGK	VPAPVDGEr NHNLYIAr NHNLYIAr TAIIrYNYASGK	1 1 2 1	9 8 8 12	Precursor Precursor Precursor Precursor	1 1 1	y1 y1 y1 y1	y2 y2 y2 y2	y3 y3 y3	 NH3_14 NaN NaN NaN NaN	NH3_15 NaN NaN NaN NaN	m
09 r	Peptide VPAPVDGER+0.984 NHNLYIAR+0.984 NHNLYIAR+0.984 TAIIR+0.984YNYASGK TAIIR+0.984YNYASGK	VPAPVDGER NHNLYIAR NHNLYIAR TAIIRYNYASGK TAIIRYNYASGK	VPAPVDGER NHNLYIAR NHNLYIAR TAIIRYNYASGK TAIIRYNYASGK	1 1 2 1 2	9 8 8 12 12	Precursor Precursor Precursor Precursor	1 1 1 1	y1 y1 y1 y1 y1	y2 y2 y2 y2 y2	y3 y3 y3 y3 y3	 NH3_14 NaN NaN NaN NaN NaN	NH3_15 NaN NaN NaN NaN NaN	
0 1 2 3 4 	ep_label Peptide VPAPVDGER+0.984 NHNLYIAR+0.984 NHNLYIAR+0.984 TAIIR+0.984YNYASGK TAIIR+0.984YNYASGK	VPAPVDGER NHNLYIAR NHNLYIAR TAIIRYNYASGK TAIIRYNYASGK	VPAPVDGER NHNLYIAR NHNLYIAR TAIIRYNYASGK TAIIRYNYASGK	1 1 2 1 2	9 8 8 12 12	Precursor Precursor Precursor Precursor Precursor	1 1 1 1 1	y1 y1 y1 y1 y1	y2 y2 y2 y2 y2 y2	y3 y3 y3 y3 y3	 NH3_14 NaN NaN NaN NaN NaN NaN NaN N	NH3_15 NaN NaN NaN NaN NaN	
09 r F_p 0 1 2 3 4	Peptide VPAPVDGER+0.984 NHNLYIAR+0.984 TAIIR+0.984YNYASGK TAIIR+0.984YNYASGK TYFTMRR+0.984 TLEDNVALR+0.984ER	VPAPVDGET NHNLYIAF NHNLYIAF TAIIFYNYASGK TAIIFYNYASGK YTFTMRF	VPAPVDGER NHNLYIAR NHNLYIAR TAIIYYNYASGK TAIIYYNYASGK YTFTMRI TLEDNVALFER	1 1 2 1 2 	9 8 8 12 12 	Precursor Precursor Precursor Precursor Precursor Precursor	1 1 1 1 1 	y1 y1 y1 y1 y1 y1 	y2 y2 y2 y2 y2 y2	y3 y3 y3 y3 y3 	 NH3_14 NaN NaN NaN NaN NaN NaN NaN N	NH3_15 NaN NaN NaN NaN NaN NaN NaN NaN	
09 r	Peptide VPAPVDGER+0.984 NHNLYIAR+0.984 TAIIR+0.984YNYASGK TAIIR+0.984YNYASGK TYFTMRR+0.984 TLEDNVALR+0.984ER	VPAPVDGER NHNLYIAR NHNLYIAR TAIIRYNYASGK TAIIRYNYASGK YTFTMRI TLEDNVALFER	VPAPVDGER NHNLYIAF NHNLYIAF TAIIYYNYASGK TAIIYYNYASGK YTFTMRF TLEDNVALFER TLEDNVALFER	1 1 2 1 2 2	9 8 8 12 12 7	Precursor Precursor Precursor Precursor Precursor Precursor Precursor	1 1 1 1 1 1 1	y1 y1 y1 y1 y1 y1 y1	y2 y2 y2 y2 y2 y2 y2	y3 y3 y3 y3 y3 y3	 NH3_14 NaN NaN NaN NaN NaN NaN NaN N	NH3_15 NaN NaN NaN NaN NaN NaN NaN N	

Step 3: Matching theoretical spectra to experimental spectrum

Precursor m/z and charge state of theoretical and experimental spectra are compared, and only the matched theoretical spectra with less than precursor m/z difference of 10 ppm and identical charge state are retained.

A snapshot of input data:

df_	f_unID_scan_filter_mz													
	m/z array	intensity array	unID_Title	exp_Precursor	Charge	mz_Check	matched_theo_spectrum	Charge_theo	Charge_Check					
0	[110.071535, 120.0813037, 121.0843465, 129.102	[2331.1821289063, 103014.1953125, 8634.4462890	20160312_04_A3.27367.27367.4 File:"20160312_04	551.284058	4	1	45	2	0					
1	[110.0718334, 113.0714976, 129.0663138, 129.10	[891.006652832, 1214.484375, 2043.2409667969, 	20160312_02_A1.6431.6431.2 File:"20160312_02_A	614.800598	2	1	60	2	1					
2	[110.0718334, 113.0714976, 129.0663138, 129.10	[891.006652832, 1214.484375, 2043.2409667969, 	20160312_02_A1.6431.6431.2 File:"20160312_02_A	614.800598	2	1	61	2	1					

Step 4: XCorr score calculation

For an experimental spectrum and its matched theoretical spectrum (or spectra), XCorr score is calculated and only the theoretical spectrum with the greatest XCorr score is retained.

A snapshot of input data:

Step 5: Identification of matched peaks between the theoretical and experimental spectra

Theoretical and experimental spectra are compared, and only the matched ions with less than m/z difference of 15 ppm are retained.

A snapshot of input data:

```
In [125]: df_exp_mz
Out[125]: 0
                   [110.0720135, 116.0712452, 128.0707251, 130.05...
                   [110.0718416, 113.0715189, 114.0552962, 115.02...
[110.071755, 113.0714059, 114.0552635, 115.087...
                   [126.0549671, 167.0820595, 167.1178537, 181.06...
[126.0550001, 167.0809289, 167.1177837, 169.13...
                   [123.9887742, 129.1026059, 137.0712778, 178.05...
[110.0719872, 129.1024763, 130.086277, 147.112...
                    [110.0607183, 110.0718668, 113.0715497, 114.05...
                   [110.0719087, 113.0716098, 115.0871659, 116.07...
                    [110.0601176, 110.0719138, 112.0220986, 115.02..
            10
                   [110.071834, 115.0214849, 115.0507414, 116.034...
                   [113.0713727, 114.0551653, 115.0869482, 116.07
                   [113.0714384, 114.0552416, 115.0870154, 116.07...
                   [110.0719918, 116.0705729, 127.0871257, 128.09...
                   [110.0718952, 127.0871186, 128.0897561, 129.10...
[110.0719309, 127.086452, 129.1025519, 130.086...
            16
                   [110.0719915, 116.071178, 127.087176, 129.1024...
[110.0720804, 112.0219593, 127.0872803, 128.05...
                   [110.0719435, 127.0871958, 128.0900352, 129.10...
[110.0716643, 111.0918748, 112.0759924, 113.07...
                   [110.0717597, 111.0920319, 113.0714655, 115.08...
[110.0719004, 116.0710182, 122.0719581, 123.98...
                   [110.071825, 115.0871277, 127.0871408, 130.050...

[110.0718381, 115.0870345, 116.071251, 127.086...

[110.0719391, 113.0715399, 114.0553174, 115.08...
            Name: m/z array, dtype: object
In [126]: df_theo_mz
Out[126]:
              0 1167.575827 176.103517 275.171931 362.203959 490.262537 603.346601 700.399365 815.426308 952.485220 1053.532899
              1 584.291826 176.103517 275.171931 362.203959 490.262537 603.346601 700.399365 815.426308 952.485220 1053.532899
             2 749.350600 176.103517 233.124981 304.162095 403.230509 504.278188 591.310216 705.353143 820.380086 891.417200 ... 55.054775 27.023475 71
              3 661.323318 176.103517 233.124981 347.167908 475.226486 603.321449 732.364042 861.406635 960.475049 1057.527813 ...
                                                                                                                                                      NaN
             4 661.323318 176.103517 233.124981 347.167908 475.226486 603.321449 732.364042 861.406635 960.475049 1057.527813 ...
                 372.521397 147.113353 244.166117 373.208711 530.293838 627.346602 790.409922 927.468834 1014.500862 102.055504 ...
                                                                                                                                                         NaN
             6 372.521397 147.113353 244.166117 373.208711 530.293838 627.346602 790.409922 927.468834 1014.500862 102.055504 ...
                                                                                                                                              NaN
                                                                                                                                                        NaN
                  556.776343 176.103517 277.151196 348.188310 405.209774 533.268352 632.336766 733.384445 870.443357
                  556.776343 176.103517 277.151196 348.188310 405.209774 533.268352 632.336766 733.384445 870.443357 984.486284 ...
                                                                                                                                                         NaN
                  861.431787 176.103517 263.135545 320.157009 449.199602 506.221066 619.305130 732.389194 130.050418 243.134482 ...
             10 861.431787 176.103517 263.135545 320.157009 449.199602 506.221066 619.305130 732.389194 130.050418 243.134482 ...
                                                                                                                                              NaN
                                                                                                                                                         NaN
             11 559.788584 176.103517 291.130460 404.214524 532.273102 633.320781 761.415744 874.499808 989.526751 130.050418 ....
             12 559.788584 176.103517 291.130460 404.214524 532.273102 633.320781 761.415744 874.499808 989.526751 130.050418 ...
                                                                                                                                                     NaN
             13 928.456229 176.103517 247.140631 378.181116 435.202580 506.239694 603.292458 716.376522 813.429286 116.034768 ...
             14 928.456229 176.103517 247.140631 378.181116 435.202580 506.239694 603.292458 716.376522 813.429286 116.034768 ...
             15 928.456229 176.103517 247.140631 378.181116 435.202580 506.239694 603.292458 716.376522 813.429286 116.034768 ...
             16 928.456229 176.103517 247.140631 378.181116 435.202580 506.239694 603.292458 716.376522 813.429286 116.034768 ...
             17 928.456229 176.103517 247.140631 378.181116 435.202580 506.239694 603.292458 716.376522 813.429286 116.034768 ...
             18 928.456229 176.103517 247.140631 378.181116 435.202580 506.239694 603.292458 716.376522 813.429286 116.034768 ...
                                                                                                                                                      NaN
                 835.434765 176.103517 307.144002 378.181116 479.228795 594.255738 722.350701 114.091889 242.186852 357.213795 ...
                                                                                                                                                         NaN
             20 835.434765 176.103517 307.144002 378.181116 479.228795 594.255738 722.350701 114.091889 242.186852 357.213795 ...
                                                                                                                                                         NaN
             21 1285.606441 176.103517 277.151196 348.188310 477.230903 574.283667 737.346987 794.368451 923.411044 994.448158 ...
             22 1325.627201 175.119501 290.146444 403.230508 502.298922 649.334322 777.392900 940.456220 1054.499147 1168.542074 ...
             24 655.32005 176.103517 291.130460 404.214524 503.282938 634.323423 762.382001 925.445321 1039.488248 1153.531175 ... NaN
                                                                                                                                                         NaN
```

25 rows × 1015 columns

]: df_	theo_labe	1																		
:	0	1	2	3	4	5	6	7	8	9	 1005	1006	1007	1008	1009	1010	1011	1012	1013	1014
0	Precursor	у1	y2	уЗ	y4	у5	у6	у7	y8	у9	 None	None								
1	Precursor	y1	y2	уЗ	y4	у5	у6	у7	y8	y9	 None	None								
2	Precursor	у1	y2	у3	y 4	у5	у6	у7	у8	у9	 IM(V)- NH3	IM(A)- NH3	IM(D)- NH3	IM(N)- NH3	IM(S)- NH3	IM(T)- NH3	IM(V)- NH3	IM(A)- NH3	IM(G)- NH3	IM(r)- NH3
3	Precursor	у1	y2	уЗ	y4	у5	у6	у7	y8	y9	 None	None								
4	Precursor	у1	y2	уЗ	y4	у5	у6	у7	y8	y9	 None	None								
5	Precursor	у1	y2	y3	y4	у5	у6	у7	y8	b1	 None	None								
6	Precursor	у1	y2	уЗ	y4	у5	у6	у7	y8	b1	 None	None								
7	Precursor	у1	y2	y3	y4	у5	у6	у7	y8	y9	 None	None								
8	Precursor	у1	y2	у3	y4	у5	у6	у7	y8	y9	 None	None								
9	Precursor	у1	y2	y3	y4	у5	у6	у7	b1	b2	 None	None								
10	Precursor	у1	y2	у3	y4	y5	y6	у7	b1	b2	 None	None								
11	Precursor	у1	y2	у3	y4	у5	у6	у7	y8	b1	 None	None								
12	Precursor	у1	y2	у3	y4	у5	y6	у7	y8	b1	 None	None								
13	Precursor	у1	y2	уЗ	y4	у5	у6	у7	y8	b1	 None	None								
14	Precursor	у1	y2	y3	y4	у5	у6	у7	y8	b1	 None	None								
15	Precursor	у1	y2	у3	y4	у5	у6	у7	y8	b1	 None	None								
16	Precursor	у1	y2	y3	y4	у5	y6	у7	y8	b1	 None	None								
17	Precursor	у1	y2	у3	y4	у5	у6	у7	y8	b1	 None	None								
18	Precursor	у1	y2	уЗ	y4	у5	y6	у7	y8	b1	 None	None								
19	Precursor	у1	y2	у3	y4	у5	у6	b1	b2	b3	 None	None								
20	Precursor	у1	y2	y3	y4	у5	y6	b1	b2	b3	 None	None								
21	Precursor	у1	y2	уЗ	y4	у5	у6	у7	y8	y9	 None	None								
22	Precursor	у1	y2	уЗ	y4	y5	y6	у7	y8	y9	 None	None								
23	Precursor	у1	y2	уЗ	y4	y5	у6	у7	y8	y9	 None	None								
24	Precursor	у1	y2	уЗ	y4	y5	у6	у7	y8	y9	 None	None								

A snapshot of output data (matched ions):

25 rows × 1015 columns

df	df_mz_label													
	unID_Title	exp_Precursor	Charge	Peptide	mod_Peptide	Pep_length	Cit_Count	peak_1	peak_2	р				
0	20160312_02_A1.6431.6431.2 File:"20160312_02_A	614.800598	2	AAVYDYDVR+0.984R	AAVYDYDVrR	10	1	[113.0714976, 1214.484375, IM(r)-NH3]	[158.0931317, 1236.8461914063, y1-NH3, y2- NH3++]	[175.119 5523.611816				

Step 6: Cit diagnostic ion analysis

Annotations and occurrence numbers of citrullination diagnostic ions are reported for each Cit PSM.

A snapshot of input data:

A snapshot of output data (binary occurrence for the immonium ion and occurrence numbers for the other diagnostic ions):

Step 7: Evaluation of Cit PSMs by EN model

The EN model developed in the study is applied to evaluate the validity of each Cit PSM.

A snapshot of input data:

A snapshot of output data (Cit_probability, probability that a PSM contains Cit; and Cit_prediction = 1 when Cit_probability > 0.5):

Fi	nal_result_fi	lter								
	Total_NL_count	precNL_count	seqNL_count	intNL_count	Total_INT_count	Dipeptide_count	Tripeptide_count	IM_NH3_count	Cit_probability	Cit_prediction
	5	0	5	0	0	0	0	1	0.996773	1

Step 7: Evaluation of Cit PSMs by EN model

Example output CSV file including the prediction results (Cit_probabilty and Cit_prediction):

4	Α	В	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	Т	U	V	W	X	Y	Z
		unID Title	Peotide	mod Peptide	Charge	Peo length	exp_Precursor	Cit_Count	Total_NL	. precNL	seqNL	intNL 1	otal_INT	Dipeptide	Tripeptide	IM_NH3	Total_NL	precNL	seqNL i	ntNL	Total_INT	Dipeptide	Tripeptide	IM_NH3	Cit probability	Cit_prediction
		-							_label	_iauei	lanei	_lauei	label	_lauei	_label	_label	Count	_count	_coun	coun	_count	_count	_count	_count		
2	0	QEHF1_10101_DNL3353.3353.2	GSHEPVADNSTVAGR+0.98	GSHEPVADNSTVAG	2	15	749.3505999	1	y1-43,y	2-43,y3	y1-43	,y2-43,	y3-43,y-	4-43,y10-	43-NH3	IM(r)-N	5	0	5	0	0	0	0	1	0.9967728	1
3	1	QEHF1_10100_DNL2771.2771.2	AGNHTVQGATR+0.984	AGNHTVQGATr	2	11	556.7763434	1	y1-43,y	2-43-H	y1-43	y2-43-	H2O,y2	2-43,y4-4	3-H2O,y4	IM(r)-N	5	0	5	0	0	0	0	1	0.9967728	1
4	2	QEHF1_10100_DNL2798.2798.2	AGNHTVQGATR+0.984	AGNHTVQGATr	2	11	556.7763434	1	y2-43-	H2O	y2-43	-H2O				IM(r)-N	1	0	- 1	0	0	0	0	1	0.8616783	1
5	3	QEHF1_10098_DNL.4685.4685.2	EDLKTQIDR+0.984	EDLKTQIDr	2	9	559.7885844	1	y1-43,y	2-43-H	y1-43	y2-43-	H2O,y2	2-43,y3-4	3-H2O,y3	IM(r)-N	13	0	13	0	0	0	0	1	0.9999987	1
6	4	QEHF1_10098_DNL.4719.4719.2	EDLKTQIDR+0.984	EDLKTQIDr	2	9	559.7885844	1	y1-43,y	2-43-H	y1-43	y2-43-	H2O,y2	2-43,y3-4	3-H2O,y3	IM(r)-N	9	0	9	0	0	0	0	1	0.9999347	1

Descriptions of the columns in the output CSV file:

Column	Description									
unID_Title	Unassigned MS2 spectrum title									
Peptide	Original peptide sequence									
mod_peptide	Simplified peptide with a predefined set of symbols for modifications									
Charge	Charge state of precursor ion									
Pep_length	Peptide length									
exp_Precursor	Experimental precursor m/z									
Cit_Count	Number of citrullinated sites									
Total_NL_label	Annotations of all diagnostic neutral loss ions									
precNL_label	Annotations of precursor neutral losses									
seqNL_label	Annotations of sequence ion neutral losses									
intNL_label	Annotations of internal ion neutral losses									
Total_INT_label	Annotations of all diagnostic internal ions									
Dipeptide_label	Annotations of diagnostic dipeptides									
Tripeptide_label	Annotations of diagnostic tripeptides									
IM_NH3_label	Annotation of IM(Cit)-NH ₃									
Total_NL_count	Number of all diagnostic neutral loss ions									
precNL_count	Number of precursor neutral losses									
seqNL_count	Number of sequence ion neutral losses									
intNL_count	Number of internal ion neutral losses									
Total_INT_count	Number of all diagnostic internal ions									
Dipeptide_count	Number of diagnostic dipeptides									
Tripeptide_count	Number of diagnostic tripeptides									
IM_NH3_count	Number of IM(Cit)-NH ₃									
Cit_probability	Probability (P) of citrullination status calculated by the EN model									
Cit_prediction	Classification of citrullination status using a P cutoff >0.5									