Traitement d'images

Convolution spatiale Filtre spatial

NGUYĒN Thị Oanh — IPH oanhnt@soict.hust.edu.vn

Modification des valeurs d'une image

- Pour l'instant, nous avons vu surtout des transformations ponctuelles des pixels d'une image
 - Lire la valeur d'un pixel → la remplacer par une autre
- Il existe aussi des transformations locales
 - Lire la valeur de quelques pixels voisins → calculer une nouvelle valeur pour un pixel
- ...et des transformations globales
 - Lire la valeur de tous les pixels de l'image → calculer une nouvelle valeur pour un seul pixel

Transformations des pixels

Ponctuelle: $g(x_0,y_0)=T[f(x_0,y_0)]$

V: voisinage de (x_0, y_0)

Globale: $g(x_0,y_0)=T[f(x,y)]$

par ex: TF

Convolution numérique

- filtres linéaires

Convolution numérique

- La convolution discrète est un outil permettant l'utilisation de filtres linéaires ou de filtres de déplacements invariants
- L'équation générale de la convolution, notée g(x), de la fonction d'origine f(x) avec une fonction h(x) est :

$$g(x) = f(x) *h(x) = \sum_{\forall k} f(x-k)h(k)$$

- f(x) est la fonction d'origine et g(x) la fonction convoluée (résultat de la convolution)
 - Dans notre cas, une image est vue comme une fonction mathématique
- h(x) est appelé masque de convolution, noyau de convolution, filtre, fenêtre, kernel, ...

Exemple de convolution 2D

Image d'origine

Filtre de convolution (masque)

Image convoluée (résultat)

Note : par convention pratique, la taille de l'image résultat est la même que celle de l'image d'origine

Convolution numérique discrète

- En pratique, la convolution numérique d'une image se fera par une sommation de multiplications
- Un filtre de convolution est une matrice (image) généralement (mais pas toujours) de taille impaire et symétrique
 - 3x3, 5x5, 7x7, ...

Convolution d'une image par un filtre 2D :

$$I'(i,j)=I(i,j)*filtre(i,j)$$

$$I'(i,j)=\sum_{u}\sum_{v}I(i-u,j-v)\cdot filtre(u,v)$$

$$I'(i,j) = \sum_{u=-(L-1)/2}^{(L-1)/2} \sum_{v=-(L-1)/2}^{(L-1)/2} I(i-u,j-v) \cdot K(u,v)$$

Convolution numérique - Implémentation

$$I'(i,j) = \sum_{u=0}^{L-1} \sum_{v=0}^{L-1} I(i-u + \frac{L-1}{2}, j-v + \frac{L-1}{2}) \cdot K(u,v)$$

Convolution numérique - Implémentation

$$I'(i,j) = \sum_{u=0}^{L-1} \sum_{v=0}^{L-1} I(i+u-\frac{L-1}{2},j+v-\frac{L-1}{2}) \cdot K(u,v)$$

Convolution numérique

105	102	100	97	96	
103	99	103	101	102	P
101	98	104	102	100	
99	101	106	104	99	7
104	104	104	100	98	

Kernel Matrix

0	-1	0
-1	5	-1
0	-1	0

Image Matrix

$$105 * \frac{0}{0} + 102 * \frac{-1}{1} + 100 * \frac{0}{0}$$

$$+103 * \frac{-1}{1} + 99 * \frac{5}{1} + 103 * \frac{-1}{1}$$

$$+101 * \frac{0}{1} + 98 * \frac{-1}{1} + 104 * \frac{0}{1} = 89$$

Output Matrix

K

$$R(1,1) = I(0,0) K(0,0) + I(1,0) K(1,0) + I(2,0) K(2,0) + I(0,1) K(0,1) + I(1,1) K(1,1) + I(2,1) K(2,1) Si K est symétrique + I(0,2) K(0,2) + I(1,2) K(1,2) + I(2,2) K(2,2)$$

K

$$R(2,1) = I(1,0) K(0,0) + I(2,0) K(1,0) + I(3,0) K(2,0) + I(1,1) K(0,1) + I(2,1) K(1,1) + I(3,1) K(2,1) Si K est symétrique + I(1,2) K(0,2) + I(2,2) K(1,2) + I(3,2) K(2,2)$$

+ I(x-1,y) K(0,1) + I(x,y) K(1,1) + I(x+1,y) K(2,1)

+ I(N-3,M-1) K(2,0) + I(N-2,M-1) K(2,1) + I(N-1,M-1) K(2,2) **Si K est symétrique**

+ I(N-3,M-2) K(1,0) + I(N-2,M-2) K(1,1) + I(N-1,M-2) K(1,2)

Convolution numérique

- Problème : Que faire avec les bords de l'image ?
 - Mettre à zéro (0)
 - Convolution partielle
 - Sur une portion du noyau
 - Miroir de l'image
 - f(-x,y) = f(x,y)
 - ... (pas de solution miracle)

?	?	?	?	?	?	?	?	?	?
?									?
?									?
?									?
?									?:
?									?:
?									?:
?									?
?									?
?	?	?	?	?	?	?	?	?	?

Kernel	Matrix
	1110101111

0	-1	0
-1	5	-1
0	-1	0

320				
210	89	111		
		(8	9	

Image Matrix

$$0*0+0*-1+0*0 +0*-1+105*5+102*-1 +0*0+103*-1+99*0 = 320$$

Output Matrix

105	105	102	100	97	96	
105	105	102	100	97	96	
103	103	99	103	101	102	
101	101	98	104	102	100	
99	99	101	106	104	99	7
104	104	104	104	100	98	
					_	

Kernel Matrix

0	-1	0
-1	5	-1
0	-1	0

110				
	89	111		
	l		İ	

Masque de convolution

- Le masque de convolution représente un filtre linéaire permettant de modifier l'image
- On divisera le résultat de la convolution par la somme des coefficients du masque
 - Pour éviter de modifier la luminance globale de l'image, la somme des coefficients doit être égale à 1

Examples

0	0	0	
0	1	0	\rightarrow
0	0	0	

(6)

Filtered image (no change)

Original image

	0	0	0
*	1	0	0
	0	0	0

Filtered image (shifted left by 1 pixel)

Source: David Lowe

Examples

Sobel

Vertical Edge (absolute value)

Deux types pour le filtrage spatial

- Filtres passe-bas
 - Atténue le bruit et les détails (basses fréquences)
 - → lissage

- Filtres passe-haut
 - Accentue les détails et les contours (hautes fréquences)
 - → accentuation

Le filtre moyenneur

- Le filtre moyenneur
 - Permet de lisser l'image (smoothing)
 - Remplace chaque pixel par la valeur moyenne de ses voisins
 - Réduit le bruit
 - Réduit les détails non-important
 - Brouille ou rend floue l'image (blur edges)
- Filtre dont tous les coefficients sont égaux
- Exemple de filtres moyenneurs :

1/9	1/9	1/9			1	1
1/9	1/9	1/9	ou	1/9	1	1
1/9	1/9	1/9			1	1

 1
 1
 1
 1

 1
 1
 1
 1
 1

 1
 1
 1
 1
 1

 1
 1
 1
 1
 1

 1
 1
 1
 1
 1

1/25

3**X**3

23

Le filtre moyenneur

Plus le filtre grossit , plus le lissage devient important et plus le flou s'accentue !

Exemples de filtres moyenneurs

Original

Moyenne 5x5

Moyenne 11x11

Filter moyenneurs

Le filtre Gaussien

Fonction gaussienne en 3D

Image d'une gaussienne

 $\exp\left(-\left(\frac{x^2+y^2}{2\sigma^2}\right)\right)$ Le filtre gaussien donnera un meilleur lissage et une meilleure réduction du bruit que le filtre moyenne

$$\frac{1}{98} \times \begin{bmatrix}
1 & 2 & 3 & 2 & 1 \\
2 & 6 & 8 & 6 & 2 \\
3 & 8 & 10 & 8 & 3 \\
2 & 6 & 8 & 6 & 2 \\
1 & 2 & 3 & 2 & 1
\end{bmatrix}$$

Rule for Gaussian filter: set filter half-width to about 3σ

Exemples de filtres gaussiens

Original

Gauss 5x5

Gauss 11x11

Filtres non-linéaires (autre que convolution)

Filtre médian (non-linéaire)

- Pour nettoyer le bruit dans une image, il existe mieux que le filtre moyenneur ou le filtre gaussien
- Il s'agit du filtre médian
- C'est un filtre non-linéaire, qui <u>ne peut pas</u>
 s'implémenter comme un produit de convolution
- On remplace la valeur d'un pixel par la valeur médiane dans son voisinage NxN

Exemple de filtre médian

Original

Moyenne 3x3

Médian 3x3

a b c

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3 × 3 averaging mask. (c) Noise reduction with a 3 × 3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

Nettoyage du bruit dans une image

3 X 3 Moyenne

Bruit "poivre et sel"

5 X 5 Moyenne

7 X 7 Moyenne

Filtre médian

Image initiale

Bruit Poivre & Sel

Moyenne V8

Min V8

Max V8

Médian V8

Filtre median: attention!

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	100	0	0	0	0	0	0
0	0	100	100	0	100	150	150	100	0	100	100	100	0	0
0	0	100	100	100	0	0	150			100	100	100	0	0
0	0	100	100	100	100	0	0	0	0	100	100	100	0	0
0	0	100	100	100	100	100	0	0	0	100	100	100	0	0
0	0	100	100	100	100	100	100	0	0	100	100	100	0	0
0	0	100	100	100	0	100	100	0	0	100	100	100	0	0
0	0	100	100	100	0	0	100	100	0	100	100	100	0	0
0	0	100	100	100	0	0	0	100	100	100	100	100	0	0
0	0	100	100	100	0	100	0	100	100	100	100	100	0	0
0	0	100	100	100	0	200	0	0	100	100	100	100	0	0
0	0	100	100	100	0	0	0	0	0	100	100	100	0	0
0	0	100	100	100	0	0	0	0	0	0	100	100	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Filtrez cette image avec le filtre median 3x3 et 5x5, 7x7! Resultats attendus?

Références

- Livres:
 - Introduction au Traitement d'Images (Lingrand), sections 4.3 et 4.4
 - Digital Image Processing 2ed (Gonzalez & Woods), chapitres 3 et 4
- Cours d'Antoine Mazanera sur le filtrage d'images (spatial et fréquentiel)
 http://www.ensta-paristech.fr/~manzaner/Cours/D9_2/d92_Intro.pdf
- Caroline Rougier. Cours de Traitement d'images (IFT2730). Université de Montréal (Canada) (liens ne plus disponibles)
 - http://www-etud.iro.umontreal.ca/~rougierc/ift2730/