$$B = \{ [a, b) : a < b \}$$

sa zbiorami otwartymi (otwarto-domknietymi, tak jak $\mathbb R$ czy \emptyset w $\mathbb R$).

BAZA dla topologii to taka *rodzina zbiorow otwartych*, ze kazdy niepusty i otwarty podzbior tej przestrzeni mozna wysumowac przy pomocy pewnych elementow bazy.

Topologia strzalki jest bogatsza (silniejsza, wieksza) niz topologia euklidesowa - kazdy otwarty zbior w sensie euklidesowym jest tez otwarty w sensie strzalki

Strzalka jest przestrzenia Handsdorffa

Jak wygladaja ciagi zbiezne w strzalce?

$$\left(\frac{1}{n}\right)_{n\in\mathbb{N}}\to 0$$

 $\left(rac{a}{n}
ight)$ nie jest zbiezny, bo wszystkiw wyrazy sa poza przedzialem

nie jest to przestrzen metryzowalna

.....

UZWARCENIE ALEKSANDROWA (aka przestrzen z gruszka) na $\mathbb R$, ale moze byc to dowolna przestrzen

uzwarcenie - rozszerzenie
danej przestrzeni topologicznej tak,
by byla ona przestrzenia zwarta
otoczenie - dowolny zbior,
ktory zawiera zbior otwarty
zawierajacy dany punkt

Mamy $\mathbb R$ i mamy jakiegos $\stackrel{\P}{ ext{to}}$. Otoczenia wszystkich liczb $\mathbb R$ to

$$r: \{r\},\$$

czyli signletony liczb rzeczywitych sa otwarte. Otoczeniem 这 sa

takie, ze $A\subseteq\mathbb{R}$ i $\mathbb{R}\setminus A$ jest skonczony.

Topologie mozemy w uzwarceniu Aleeksandrowa zdefiniowac w dowolny sposob, musi tylko jasno wynikac, co jest zbiorem otwartym, a co zamknietym.

Uzwarcenie Aleksandrowa jest przestrzenia Hansdorffa

Jak wygladaja ciagi zbiezne?

$$\left(\frac{1}{n}\right) \to \mathfrak{S},$$

bo tylko skonczenie wiele punktow moze byc zignorowanych przez otoczenie \bigcirc . W takim razie mozemy powiedziec, ze jesli mamy dowolny (x_n) roznowartosciowy, to

$$\lim x_n =$$

bo $\bigcirc \in U$ i istnieje skonczenie wiele n takich, ze $x_n \notin U$.

.....

PRZESTRZEN OSRODKOWA

Ciag zbiezny - byl definiowany jako ciag, ktorego wszystkie elementy leza w kuli o coraz to mniejszym promieniu

$$\mathtt{Int}A = \{x \in A \ : \ \exists \ x \in U \quad U \subseteq A\}$$

natomiast zbiorem domknietym byly dopelnienia otwartych:

$$\overline{A} = \{ x \in X : \forall x \in U \quad U \cap A \neq \emptyset \}.$$

.....

X - przestrzen topologiczna

Zbior $A\subseteq X$ jest GESTY (dense), jezeli $\forall\;U\neq\emptyset\quad U\cap A\neq\emptyset\iff\overline{A}=X$

jest to zbior otwarty, ktory kroi sie niepusto z kazdym zbiorem otwartym (lub dopelnia sie do calej przestrzeni)

Przestrzen X jest OSRODKOWA, jesli istnieje w niej przeliczalny zbior gesty

.....

PRZYKLADY - OSRODKOWA

 $\mathbb R$ z metryka euklidesowa - osrodkowy (separable) bo $\mathbb Q\subseteq\mathbb R$

 \mathbb{R}^2 z metryka euklidesowa: $\mathbb{Q} imes \mathbb{Q}$ jest gesty

 \mathbb{R}^2 z metryka miasto: \mathbb{Q}^2 bo zbiory otwarte w miescie sa takie same jak w euklidesie

kostka Cantora ($\{0,1\}^{\mathbb{N}}$) - bierzemy wszystkie skonczone ciagi stale od pewnego miesjca (czyli skonczone, ale sztucznie przedluzone do nieskonczonosci) - jest ich przeliczalnie wiele, a ich zbior jest gesty. Wezmy kule $B_r(x)$ o promieniu $r>\frac{1}{2n}$

$$y(i) = x(i) \quad i \le n+1$$

$$y(i) = 0 \quad i > n+1$$

ANTYPRZYKLADY:

 $(\mathbb{R}, d_{dyskretna})$. Zbior gesty $A \subseteq \mathbb{R}$ musi kroic sie niepusto z kazdym singletonem, wiec

$$\forall x \quad A \cap \{x\} \neq \emptyset \iff A = \mathbb{R}$$

czyli zbior gesty nie jest przeliczalny.

 $(\mathbb{R}^2, d_{centrum})$. Intuicja podpowiada, ze $\mathbb{Q} \times \mathbb{Q}$ byloby geste i wtedy to bylby przeliczalny. Jednak, jesli kula lezy na prostej o wyrazach niewymiernych, na przyklad

$$y = \pi x$$

to thie sie pusto ze zbiorem $\mathbb{Q} \times \mathbb{Q}$

.....

FAKT: W przestrzeni metrycznej $\langle X,d \rangle$ zbior $A\subseteq X$ jest gesty, wtedy i tylko wtedy, gdy dla kazdej kuli $B_r(x)$ istnieje $a\in A$ blizej x niz kula:

A zb. gesty
$$\iff \forall x \in X \ \forall \ \varepsilon > 0 \ \exists \ a \in A \quad d(x,a) < \varepsilon$$

DOWOD:

 \Longrightarrow

Zalozmy, ze twierdzenie jest nieprawdziwe, czyli dla zbioru gestego A i przestrzeni metrycznej $\langle X,d\rangle$ istnieje kula o promieniu ε i srodku $x\in X$ taka, ze nie zawiera elementow z A:

$$\exists x \quad B_{\varepsilon}(x) \cap A = \emptyset$$

W takim razie A thie sie pusto ze zbiorem otwartym $B_{arepsilon}(x)$, czyli nie jest zbiorem gestym.

 \leftarrow

Wezmy jakis zbior otwarty

$$U \subseteq X$$

czyli mozemy zalozyc, ze istnieje kula:

$$\exists B_r(x) \subseteq U.$$

Czyli kula $B_r(x)$ zawiera sie otwartym zbiorze U, wiec istnieje w U punkt ktory lezy w tej kuli:

$$\exists \ u \in U \quad d(x, u) < r,$$

a wiec kula tnie sie niepusto ze zbiorem U:

$$U \cap B_r(x) \neq \emptyset$$

NA CO TO BYL PRZYKLAD? POWROT DO METRYKI CENTRUM

Rozwazmy okrag i robimy kule promieniscie i jest ich $\mathfrak c$ wiele

$$S^1 = \{x : d(x, \langle 0, 0 \rangle = 1)\}$$

Przestrzen supremum jest osrodkowa, bo wielomiany tworza ciag gesty.

.....

Jesli istnieje $f:X\to Y$ ktora jest ciagla i na, to jezeli X jest przestrzenia osrodkowa, to Y tez jest przestrzenia osrodkowa

osrodkowoosc przenosi sie przez ciagle suriekcje

DOWOD:

Celem dowodu jest zdefiniowanie przeliczalnego zbioru gestego w ${\cal Y}.$

Niech $A\subseteq$ bedzie przeliczalnym zbiorem gestym w X. Wtedy zbiorem gestym w Y bedzie obraz A przez funkcje f

$$B = f[A].$$

Poniewaz B jest obrazem zbioru przeliczalnego przez ciagla suriekcje, to jest on zbiorem przeliczalnym. Pozostaje udowdnic, ze B jest zbiorem gestym.

Wezmy dowolny zbior otwarty w $Y\colon U \subseteq Y$. Wtedy $f^{-1}[U] \subseteq X$, poniewaz f jest funkcja "na".

No to w takim przypadku zbiorem gestym w Y bedzie f[A]. Jest to zbior przeliczalny, bo jest obrazem zbioru przeliczalnego, a czy jest gesty?

Bierzemy dowolny zbior otwarty w $U\subseteq Y$, to wtenczas $f^{-1}[U]\subseteq X$

$$\exists a \in A \quad a \in f^{-1}[U] \quad f(a) \in U \cap f[A] \neq \emptyset$$

ZBIOR CANTORA <3

$$C \subseteq [0,1]$$

C jest przekrojem zbiorow domknietych, wiec sam tez jest zbioreom dokmnietym.

ZBIOR CANTORA jest homeomorficzny z kostka Cantora

$$Cant \simeq_{home} 0, 1$$

DOWODZIK:

$$f: \{0,1\}^{\mathbb{N}} \to Cant$$

s - skonczony ciag 0,1. Wowczas C_s to jest ciag, ktory w zbiorze Cantora pokolei przyjmuje lewy lub prawy podbior poprzedniego zbioru (skaczemy lew-prawa)

$$f(x) = y$$

$$\bigcap_{s-odc\ pocz\ x} D_s = \{y\}$$

Co nas czeka:

zobaczenie ze to \mathcal{D}_s jest niepuste

ze to jest 1-1 i na

1-1 bo mamy dwa rozne ciagi, to one sie nam rozjeda i nie ma opcji zeby sie znowu pozniej spotkaly

bo zawsze dojdziemy d odowolnego \boldsymbol{x}

dowod ciaglosci i ciaglosci f^{-1}

