Homework 3

CMPSC 360

Kinner Parikh January 29, 2022

Question 1:

 $\exists x \in \mathbb{Z}(x^2 = 5)$ is false because $x = \pm \sqrt{5}$ which is not an integer

Question 2:

- 1. The sum of two negative integers is always negative $\equiv \forall x \forall y ((x < 0) \land (y > 0) \rightarrow (x + y < 0))$ is false
- 2. Which of the two statements are equal? (C and D)
 - a) $\neg \exists x (A(x)) \equiv \forall x (\neg A(x))$
 - b) $\neg \forall x (\neg A(x)) \equiv \exists x (A(x))$
 - c) $\neg \forall x (A(x)) \equiv \exists x (\neg A(x))$
 - d) $\exists x(\neg A(x))$
- 3. $\neg (P(x) \lor Q(x)) \equiv \neg P(x) \lor \neg Q(x)$ is false $\neg P(x) \land \neg Q(x)$
- 4. $\neg(P \rightarrow Q) \equiv P \land \neg Q$ is true $\neg(\neg P \lor Q)$ $P \land \neg Q$

Question 3:

Let $P(x, y, z) = x^2 + y^2 \ge z^2$

- A) $\forall x \in (-3,3)P(x,4,5) \Rightarrow \text{True because } 3^2 + 4^2 = 5^2$
- B) $\forall w \neg P(w, w, w) \Rightarrow$ False because $1^2 + 1^2 \ge 1^2$
- C) $\exists s(P(6, s, 10) \land P(s, 15, 17)) \Rightarrow$ True because $s = 100, 6^2 + 100^2 \ge 10^2$ and $100^2 + 15^2 \ge 17^2$
- D) $\forall t(P(6, t, 10) \lor P(t, 15, 17)) \Rightarrow \text{False because } s = 1, 6^2 + 1^2 \ngeq 10^2 \text{ and } 1^2 + 15^2 \ngeq 17^2$
- E) $\forall \alpha (\neg P(\alpha, 1 \alpha, 2\alpha) \lor P(\alpha, 1 \alpha, 2\alpha)) \Rightarrow$ True because tautology identity

Question 4: