

Introduction to Data Management

Lecture #10

(Relational Languages II)

Instructor: Mike Carey mjcarey@ics.uci.edu

- * SWOOSH HW series status
 - HW1 is almost graded (watch Gradescope)
 - HW2 now over, and HW3 is open for business!
- * Midterm 1 info:
 - Relational algebra (etc.) out of scope (Midterm 2)
 - Old exam + solution will be available on the wiki
 - Make yourself a "cheat sheet" to use while taking it!
 - You must be physically present (w/laptops + masks)!
 - Different 50-minute exams for the two lectures
 - DSC at DSC, remotes only w/explicit (<u>current</u>) permission!
 - No before-exam permission (via e-mail w/me) = 0 (!)

Pre-Midterm Time Check!

llabus	
Topic	Reading (Required!)
Databases and DB Systems	Ch. 1
Entity-Relationship (E-R) Data Model	Ch. 6.1-6.5, 6.8-6.9
Relational Data Model	Ch. 2.1-2.4, 3.1-3.2
E-R to Relational Translation	Ch. 6.6-6.7
Relational Design Theory	Ch. 7.1-7.4.2
Midterm Exam 1	Fri, Oct 22 (during lecture time)
Relational Algebra	Ch. 2.5-2.7
Relational Calculus	→ Wikipedia: Tuple relational calculus
SQL Basics (SPJ and Nested Queries)	Ch. 3.3-3.5
SQL Analytics: Aggregation, Nulls, and Outer Joins	Ch. 3.6-3.9, 4.1
Advanced SQL: Constraints, Triggers, Views, and Security	Ch. 4.2, 4.4-4.5, 4.7
Midterm Exam 2	Mon, Nov 15 (during lecture time)
Storage	Ch. 12.1-12.4, 12.6-12.7
Indexing	Ch. 14.1-14.4, 14.5
Physical DB Design	Ch. 14.6-14.7, 15.1-15.3, 15.5.3
Semistructured Data Management (a.k.a. NoSQL)	Ch. 8.1, → AsterixDB SQL++ Primer, → Couchbase SQL++ Boo
Data Science 1: Advanced SQL Analytics	Ch. 5.5, 11.3
Data Science 2: Notebooks, Dataframes, and Python/Pandas	Lecture notes and Jupyter notebook
Basics of Transactions	Ch. 4.3, Ch. 17
Endterm Exam	Fri, Dec 3 (during lecture time)

Midterm Exam 1

Time: Fri, Oct 22, Lecture Time

Place: SSLH 100

A Few Notes On Honesty...

- Dishonest engineers can severely injure their employers, e.g.,
 - Volkswagen's "benchmark special" (\$14.7B!)
 - Uber's self-driving car case (\$245M)
- Stanford exams given under an Honor Code
 - Faculty can't even be in the room!
- * Be guided by the UCI CS122a Honor Code!
 - I am going to trust that you are all mature, grown-up students who want to learn the material
 - What goes around comes around (and pretty quickly...!)
 - I am not the police... (Not this quarter for sure!)

Ex: Wisconsin Sailing Club Database

Sailors

sid	sname	me rating	
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	4	25.5
95	Bob	3	63.5

Reserves

sid	bid	date
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/93

Boats

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Find names of sailors who've reserved boat #103

Sailors(sid, sname, rating, age) Reserves(sid, bid, date)

* Solution 1: $\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie Sailors)$

* Solution 2: ρ (Temp1, σ bid=103 Reserves) ρ (Temp2, Temp1 \bowtie Sailors) π (Temp2)

* Solution 3: $\pi_{sname}(\sigma_{bid=103}(Reserves \bowtie Sailors))$

Boats(bid, bname, color)

Find names of sailors who've reserved boat #103

Sailors(sid, sname, rating, age) Boats(bid, bname, color)

Reserves(sid, bid, date)

* Solution 1: $\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie Sailors)$

* Solution 2: $Temp1 = \sigma_{bid=103}$ Reserves $Temp2 = Temp1 \bowtie Sailors$

 π_{sname} (Temp2)

* Solution 3: $\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$

Ex: Wisconsin Sailing Club Database

sid	bid	date
22	103	10/8/98
31	103	11/6/98
74	103	9/8/93

 $\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie Sailors)$

sname

Dustin

Lubber

Horatio

$(\sigma$	$bid=103$ Reserves) \bowtie	Sailors
-----------	-------------------------------	---------

sid	bid	date	sname	rating	age
22	103	10/8/98	Dustin	7	45.0
31	103	11/6/98	Lubber	8	55.5
74	103	9/8/93	Horatio	9	35.0

(Solution 1)

Find names of sailors who've reserved a red boat

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)

Reserves(sid, bid, date)

Information about boat color only available in Boats; so need to do another join:

$$\pi_{sname}((\sigma_{color='red'}, Boats) \bowtie Reserves \bowtie Sailors)$$

* A more "efficient" solution:

$$\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'},Boats)\bowtie Res)\bowtie Sailors)$$

A query optimizer will find the latter, given the 1st query!

Find sailors who've reserved a red or a green boat

Sailors(sid, sname, rating, age) Reserves(sid, bid, date) Boats(bid, bname, color)

Can identify all red or green boats, then find sailors who've reserved one of these boats:

$$\rho \; (\textit{Tempboats}, (\sigma_{color = 'red' \vee color = 'green'}, \textit{Boats}))$$

 $\pi_{sname}(Tempboats \bowtie Reserves \bowtie Sailors)$

- * Could also define Tempboats using union! (Q: How?)
- * What happens if \vee is replaced by \wedge in this query?

Find sailors who've reserved a red and a green boat

Sailors(sid, sname, rating, age) Reserves(sid, bid, date) Boats(bid, bname, color)

Previous form won't work! Must identify sailors who've reserved red boats and sailors who've reserved green boats, then find their intersection (notice that sid is a key for Sailors!):

$$\rho$$
 (Tempred, $\pi_{sid}((\sigma_{color=red}, Boats)) \bowtie Reserves))$

$$\rho \; (\textit{Tempgreen}, \; \pi_{\textit{sid}}((\sigma_{\textit{color} = \textit{green'}} \; \textit{Boats}) \bowtie \; \text{Reserves}))$$

$$\pi_{sname}((Tempred \cap Tempgreen) \bowtie Sailors)$$

The RelaX "Calculator"

https://dbis-uibk.github.io/relax/calc/local/uibk/local/0

The RelaX "Calculator" (cont.)

Find sailors who've reserved a red and a green boat

```
1 TempRed = \pi sid (\sigma color = 'red' (Boats) \bowtie Reserves)
          2 TempGrn = \pi sid (\sigma color = 'green' (Boats) \bowtie Reserves)
          3 \pi \text{ sname ((TempRed } \cap \text{TempGrn)} \bowtie \text{Sailors)}
                                                             π sname
         Sa
         M
                                                                                                     Sailors
                               TempRed = \Pi_{sid}
                                                                      TempGrn = \Pi sid
                                          Reserves
                                                                                  Reserves
                         \sigma_{color = 'red'}
                                                              σ color = 'green'
                           Boats
                                                                  Boats
                \pi_{\text{sname}} ((( \pi_{\text{sid}} ( \sigma_{\text{color} = '\text{red'}} (Boats) \bowtie Reserves))) \cap ( \pi_{\text{sid}} ( \sigma_{\text{color} = '\text{green'}} (Boats) \bowtie Reserves))) \bowtie Sailors)
                Sailors.sname
                 Dustin
Database
                                                                                                                                                         14
                 Lubber
```

Find the names of sailors who've reserved all boats

Sailors(sid, sname, rating, age) Reserves(sid, bid, date) Boats(bid, bname, color)

Uses division; schemas of the input relations feeding the / operator must be carefully chosen:

$$\rho$$
 (Tempsids, (π sid,bid Reserves) / (π bid Boats))
 π sname (Tempsids \bowtie Sailors)

* To find sailors who've reserved all 'Interlake' boats:

....
$$/\pi_{bid}(\sigma_{bname=Interlake}Boats)$$

Find the names of sailors who've reserved all boats

bid` bname= Interlake

Find the names of sailors who've reserved all boats

PS: RelaX Renaming Example...

Database Management Sy

Relational Algebra Summary

- * The relational model has (several) rigorously defined query languages that are both simple and powerful in nature.
- * Relational algebra is more operational; very useful as an internal representation for *query evaluation plans*.
- ❖ Several ways of expressing a given query; a query optimizer should choose the most efficient version. (Take CS122C...! ☺)
- We'll add a few more operators later on...
- * Next up for us: Relational Calculus