ACTIVIDADES DE REFUERZO

- 1. ¿Qué nombre recibe el modelo cosmológico propuesto por Ptolomeo? ¿En qué consiste?
- 2. Señala, de entre las opciones siguientes, quién fue el científico que propuso la ley que aparece a continuación: «Los planetas se mueven describiendo órbitas elípticas con el Sol situado en uno de los focos».
 - a) Newton.
- c) Einstein.
- **b)** Kepler.
- d) Galileo.
- **3.** La teoría de gravitación universal fue desarrollada por Newton en el siglo:
 - a) XVII.
- **b)** XVI.
- c) xx.
- **d)** XIX.
- 4. Contesta a las siguientes cuestiones:
 - a) ¿Por qué se dice que la atracción gravitatoria es una fuerza de acción a distancia?
 - **b)** Explica cómo varía la atracción gravitatoria entre dos cuerpos de la misma masa si se duplica la distancia a la que se encuentran.
- **5.** La fuerza de atracción gravitatoria entre dos planetas es:
 - **a)** Directamente proporcional a la distancia que hay entre ellos.
 - b) Directamente proporcional a sus masas.
 - **c)** Inversamente proporcional a la distancia que hay entre ellos.
 - d) Inversamente proporcional a sus masas.
- **6.** Escribe el enunciado de la ley de la gravitación universal y su ecuación matemática, indicando el significado de cada uno de sus términos.
- **7.** Explica la razón por la cual cuando soltamos un cuerpo, este cae al suelo. ¿Qué clase de movimiento adquiere?
- **8.** Calcula la fuerza con que se atraen dos cuerpos de 20 y 50 kg, respectivamente, si están separados una distancia de 200 cm ($G = 6,67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$).
- **9.** La fuerza de atracción entre dos masas de 3 kg cada una que están separadas 3 m de distancia es:
 - **a)** $6,67 \cdot 10^{-11} \text{ N}.$
- **c)** $2,22 \cdot 10^{-11} \text{ N}.$
- **b)** 20,01 · 10⁻¹¹ N.
- **d)** $4.44 \cdot 10^{-11} \text{ N}.$

10. Calcula la aceleración de la gravedad en la superficie de la Tierra (a nivel del mar) y en la cima del monte Kilimanjaro (5830 m de altura).

(Datos:
$$R_T = 6.37 \cdot 10^6 \text{ m}$$
; $M_T = 5.98 \cdot 10^{24} \text{ kg}$; $G = 6.67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$.)

- **11.** Un cuerpo de 450 g de masa pesa en la Luna 0,72 N. Calcula:
 - a) ¿Cuánto vale la aceleración de la gravedad en la Luna?
 - **b)** ¿Con qué velocidad llega al suelo un cuerpo que cae libremente desde una altura de 20 m en la superficie de la Luna?
- 12. Elige la respuesta correcta:
 - a) Dos cuerpos con la misma masa caen con la misma aceleración en cualquier punto.
 - **b)** La aceleración de la gravedad depende de la altura y de la latitud del punto donde se mida.
 - **c)** La aceleración de la gravedad depende de la masa del cuerpo que cae.
 - d) La aceleración de la gravedad es una magnitud escalar.
- **13.** Un cuerpo tiene una masa de 60 kg en la superficie de la Tierra. Calcula:
 - a) El peso del cuerpo en la superficie de la Tierra $(g = 9.8 \text{ m/s}^2)$.
 - **b)** La masa y el peso del cuerpo en la superficie de un planeta donde la gravedad sea la cuarta parte que en la Tierra.
- **14.** Completa la siguiente tabla, expresando las diferencias entre la masa y el peso:

	Masa	Peso
Definición		
Unidad (SI)		
¿Es una propiedad característica de un cuerpo?		
¿Con qué aparato se mide?		
¿Es una magnitud escalar o vectorial?		

- **15.** En la superficie de la Tierra, donde $g = 9.8 \text{ m/s}^2$, el peso de un cuerpo de 200 g es:
 - **a)** 196 kg. **b)** 1,96 N. **c)** 1960 N. **d)** 19,6 kg.

3

FUERZAS GRAVITATORIAS

ACTIVIDADES DE REFUERZO (soluciones)

- 1. Modelo geocéntrico. Supone que la Tierra está en el centro del universo, y que el Sol y el resto de los planetas describen órbitas circulares en torno a ella.
- 2. La respuesta verdadera es la b).
- 3. La respuesta verdadera es la a).
- **4. a)** Es una fuerza de acción a distancia porque se manifiesta sin que exista contacto físico entre los cuerpos que interaccionan.
 - **b)** La fuerza se reduce a la cuarta parte.
- **5.** La respuesta verdadera es la b).
- **6.** «La fuerza de atracción entre dos cuerpos es directamente proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia que los separa».

La ecuación matemática de esta Ley es:

$$F = G \cdot \frac{m_1 \cdot m_2}{r^2}$$

Donde:

- F: fuerza de atracción.
- G: constante de gravitación universal.
- m_1 y m_2 : masa de los cuerpos.
- r: distancia que los separa.
- **7.** Cuando soltamos un cuerpo actúa la fuerza peso que ejerce la Tierra sobre dicho cuerpo. Esta fuerza le comunica una aceleración ($F = m \cdot a$), por lo que el movimiento será uniformemente acelerado.
- **8.** $F = 1.67 \cdot 10^{-8} \text{ N}.$
- 9. La respuesta verdadera es la a).
- **10.** $g_0 = 9.83 \text{ m/s}^2$; $g = 9.81 \text{ m/s}^2$.
- **11. a)** $g = 1.6 \text{ m/s}^2$.
 - **b)** v = 8 m/s.
- 12. La respuesta verdadera es la b).
- **13.** a) P = 588 N.
 - **b)** m = 60 kg; P = 147 N.

14.		Masa	Peso
	Definición	Cantidad de materia	Fuerza de atracción de la Tierra
	Unidad (SI)	Kilogramo	Newton
	¿Es una propiedad característica de un cuerpo?	Sí	No
	¿Con qué aparato se mide?	Balanza	Dinamómetro
	¿Es una magnitud escalar o vectorial?	Escalar	Vectorial

15. La respuesta verdadera es la b).