FCC ID: 2ADHKA092528 FCC Part 15 Subpart C Section 15.247 and RSS 247 Test Report

Report Number: D50901R2

FCC PART 15 SUBPART C & RSS 247 TEST REPORT

for

BTLC1000-XPRO

Model: A09-2528

Prepared for

ATMEL CORPORATION 1 SPECTRUM POINTE DR., SUITE 225 LAKE FOREST, CA 92630

Prepared by:	
	TOREY OLIVER
Approved by:	

MATT HARRISON

COMPATIBLE ELECTRONICS INC. 20621 PASCAL WAY LAKE FOREST, CALIFORNIA 92630 (949) 587-0400

DATE: SEPTEMBER 1, 2015

	REPORT		APPENDICES			TOTAL	
	BODY	\boldsymbol{A}	В	C	D	E	
PAGES	19	2	2	2	15	37	77

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

TABLE OF CONTENTS

Section / Title	PAGE
GENERAL REPORT SUMMARY	4
SUMMARY OF TEST RESULTS	5
. PURPOSE	6
2. ADMINISTRATIVE DATA	7
2.1 Location of Testing	7
2.2 Traceability Statement	7
2.3 Cognizant Personnel	7
2.4 Date Test Sample was Received2.5 Disposition of the Test Sample	7 7
2.6 Abbreviations and Acronyms	7
3. APPLICABLE DOCUMENTS	8
4. DESCRIPTION OF TEST CONFIGURATION	9
4.1 Description of Test Configuration	9
4.1.1 Photograph Test Configuration	9
4.1.2 Cable Construction and Termination	10
5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT	11
5.1 EUT and Accessory List	11
5.2 EMI Test Equipment	12
6. TEST SITE DESCRIPTION	13
6.1 Test Facility Description	13
6.2 EUT Mounting, Bonding and Grounding6.3 Facility Environmental Characteristics	13 13
· ·	
7. CHARACTERISTICS OF THE TRANSMITTER7.1 Channel Number and Frequencies	14 14
7.1 Chainer Number and Prequencies 7.2 Antenna	14
8. TEST PROCEDURES	15
8.1 RF Emissions	15
8.1.1 Conducted Emissions Test	15
8.1.2 Radiated Emissions (Spurious and Harmonics) Test	16
8.1.3 DTS Bandwidth	17
8.1.4 Maximum Peak Conducted Output Power	17
8.1.5 Maximum Peak Power Spectral Density Level In The Fundamental Emission	17
8.1.6 Emissions in Non-Restricted Frequency Bands (in 100kHz Bandwidth)8.1.7 Emissions in the Restricted Bands (Radiated)	18 18
8.1.8 Emissions Radiated Outside of the Fundamental Frequency Band	18
9. TEST PROCEDURE DEVIATIONS	19
10. CONCLUSIONS	19

FCC ID: 2ADHKA092528

LIST OF APPENDICES

APPENDIX	TITLE			
A	Laboratory Accreditations and Recognitions			
В	Modifications to the EUT			
С	Additional Models Covered Under This Report			
D	Diagrams, Factors, Charts, and Photos			
	• Test Setup Diagrams			
	Antenna and Amplifier Factors			
	Radiated and Conducted Emissions Photos			
Е	Radiated and Conducted Emissions Data Sheets			

LIST OF FIGURES

FIGURE	TITLE
1	Plot Map And Layout of Test Site Below 1GHz
2	Plot Map And Layout of Test Site Above 1GHz
3	Conducted Emissions Test Setup

Report Number: D50901R2

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced in any form unless done so in full with the written permission of Compatible Electronics.

This report must not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Device Tested: BTLC1000-XPRO

Model: A09-2528

S/N: N/A

Product Description: The EUT is a BLE Shielded Module.

Modifications: The EUT was modified in order to comply with specifications. Please see the list of

modifications in Appendix B.

Manufacturer: Atmel Corporation

1 Spectrum Pointe Dr., Suite 225

Lake Forest, CA 92630

Test Dates: August 28 & 31, 2015

September 1, 2015

Test Specifications: EMI requirements

CFR Title 47, Part 15 Subpart C Sections 15.205, 15.207, 15.209, & 15.247.

RSS 247 & RSS GEN

Test Procedure: ANSI C63.4 & C63.10, and KDB 558074 D01 v03r02.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS	
1	Conducted RF Emissions, 150 kHz - 30 MHz	Complies with the limits of CFR Title 47 Part 15 Subpart C Section 15.207 and RSS GEN	
2	Radiated RF Emissions & Harmonics, 9 kHz – 25,000 MHz	Complies with the limits of CFR Title 47 Part 15 Subpart C Sections 15.205, 15.209, and RSS GEN	
3	DTS Bandwidth	Complies with CFR Title 47 Part 15 Subpart C Section 15.247 and RSS 247	
4	Maximum Peak Conducted Output Power	Complies with CFR Title 47 Part 15 Subpart C Section 15.247 and RSS 247	
5	Maximum Peak Power Spectral Density Level In The Fundamental Emission	Complies with CFR Title 47 Part 15 Subpart C Section 15.247 and RSS 247	
6	Emissions in Non-Restricted Frequency Bands (in 100kHz Bandwidth)	Complies with CFR Title 47 Part 15 Subpart C Section 15.247 and RSS 247	
7	Emissions in the Restricted Bands	Complies with CFR Title 47 Part 15 Subpart C Section 15.247 and RSS 247	

FCC ID: 2ADHKA092528

1. PURPOSE

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the BTLC1000-XPRO Model: A09-2528. The EMI measurements were performed according to the measurement procedure described in ANSI C63.10 & C63.4. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT (equipment under test) hereafter, are within the specification limits defined by the Code of Federal Regulations Title 47, Part 15 Subpart C sections 15.207, 15.205, 15.209, 15.247, RSS GEN, and RSS 247.

FCC ID: 2ADHKA092528

ADMINISTRATIVE DATA

2.1 Location of Testing

2.

The tests described herein were performed at the test facility of Compatible Electronics, 20621 Pascal Way Lake Forest, California 92630.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Atmel Corporation

Trang Trinh Sr. Engineering

Compatible Electronics Inc.

Torey Oliver Test Technician Matt Harrison Lab Manager

2.4 Date Test Sample was Received

The test sample was received on September 1, 2015.

2.5 Disposition of the Test Sample

The test sample remains at Compatible Electronics as of the date of this test report.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF Radio Frequency

EMI Electromagnetic Interference EUT Equipment Under Test

P/N Part Number S/N Serial Number HP Hewlett Packard

ITE Information Technology Equipment

CML Corrected Meter Limit

LISN Line Impedance Stabilization Network

NVLAP National Voluntary Laboratory Accreditation Program

CFR Code of Federal Regulations

PCB Printed Circuit Board

TX Transmit RX Receive

FCC ID: 2ADHKA092528

APPLICABLE DOCUMENTS **3.**

The following documents are referenced or used in the preparation of this Test Report.

SPEC	TITLE
CFR Title 47, Part 15	FCC Rules – Radio frequency devices (including digital devices)
ANSI C63.4 2014	Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz.
RSS 247	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
RSS GEN	General Requirements for Compliance of Radio Apparatus
ANSI C63.10: 2013	American National Standard for Testing Unlicensed Wireless Devices
KDB 558074 D01 v03r03	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

FCC ID: 2ADHKA092528

4.

DESCRIPTION OF TEST CONFIGURATION

4.1 **Description of Test Configuration**

The BTLC1000-XPRO Model: A09-2528 (EUT) was setup in a tabletop configuration. The EUT was powered by a DC Supply (For Conducted Emissions the EUT was connected to a USB Adapter.). The EUT was continuously transmitting a data stream during transmitter tests. The EUT was checked in all axis and the Z-Axis was found to be the worst case. The voltage was varied ± 15% and there was no fluctuation in the fundamental signal.

It was determined that the emissions were at their highest level when the EUT was transmitting in the configuration described above for Radiated Emissions. The final radiated data was taken in the above configuration. Please see Appendix E for the test data.

4.1.1 **Photograph Test Configuration**

4.1.2 **Cable Construction and Termination**

Cable 1-2

These are 6 meter, braid and foil shielded, round cables that connect the EUT to the remotely located laptop. The cable connected to the EUT via USB type A connector and is connected to the laptop via USB type B. The cable was not bundled.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

#	EQUIPMENT TYPE	MANU- FACTURER	MODEL	SERIAL NUMBER
1	BTLC1000-XPRO (EUT)	ATMEL CORPORATION	A09-2528	NONE
2	LAPTOP	DELL	VOSTRO 1000	NONE
3	LAPTOP PSU	BUFFALO	SAN0902N01	NONE

5.2 EMI Test Equipment

EQUIPMENT TYPE	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. DATE	CAL. DUE DATE
Computer	Compatible Electronics	NONE	NONE	N/A	N/A
EMI Receiver	Rohde & Schwarz	ESIB40	100172	9/15/2014	9/15/2015
Antenna, Loop	Com Power	AL-130	121049	12/06/2013	12/06/2015
Antenna, CombiLog	Com Power	AC-220	25857	5/21/2014	5/21/2016
Antenna, Horn 1- 18GHz	Com Power	AH-118	071250	7/1/2014	7/1/2016
Antenna, Horn 18- 26 GHz	Com Power	AH-826	081033	NCR	NCR
Pre-Amp, 1-18GHz	Com Power	PAM-118	551034	2/6/2015	2/6/2016
Pre-Amp, 18- 40GHz	Com Power	PA-840	181289	6/16/2015	6/16/2016
LISN	Com Power	LI-215	191937	4/3/2015	4/3/2016
RF Peak Power Meter/Analyzer	Boonton	4500A	1282	12/2/2015	12/2/2016
Peak Power Sensor	Boonton	57318	3723	12/2/2015	12/2/2016
High Pass Filter	AMTI Microwave Circuits	H3G020G4	481230	6/4/2015	6/4/2016
Mast, Antenna Positioner	Sunol Science Corporation	TWR 95-4	020808-3	N/A	N/A
Antenna Mast	Sunol Science Corporation	TWR 95-4	020808-3	N/A	N/A
Turntable	Sunol Science Corporation	FM 2001	N/A	N/A	N/A
Mast and Turntable Controller	Sunol Science Corporation	SC104V	020808-1	N/A	N/A

6. TEST SITE DESCRIPTION

6.1 **Test Facility Description**

Please refer to section 2.1 and the figures in Appendix D of this report for test location.

6.2 **EUT Mounting, Bonding and Grounding**

The EUT was mounted on a 1.0 by 1.5 by 0.8 meter high non-conductive table, which was placed on the ground plane.

For testing above 1 GHz the EUT was mounted 1.5 meter above the ground plane.

The EUT was grounded through the USB Cable.

6.3 **Facility Environmental Characteristics**

When applicable refer to the data sheets in Appendix E for the relative humidity, air temperature, and barometric pressure.

CHARACTERISTICS OF THE TRANSMITTER 7.

7.1 **Channel Number and Frequencies**

The low channel is at 2402.0 MHz and the high channel is at 2480.0 MHz. There are a total of 40 channels and there is approximately 2 MHz separation between channels. The channels listed below were tested.

2402 MHz Low Channel 2442 MHz Middle Channel 2480 MHz High Channel

7.2 **Antenna**

The antenna is made up of a chip antenna located on the PCB.

TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

8.1 **RF** Emissions

8.1.1 **Conducted Emissions Test**

The EMI receiver was used as a measuring meter. A quasi-peak and/or average reading was taken only where indicated in the data sheets. The LISN output was measured using the EMI receiver. The output of the second LISN was terminated by a 50-ohm termination. The effective measurement bandwidth used for this test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding, and grounding of the EUT. The EUT received its power through the LISN, which was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI 63.4. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The conducted emissions from the EUT were maximized for operating mode as well as cable placement. The final data was collected under program control by the computer software. The final qualification data is located in Appendix E.

Test Results:

The EUT complies with the limits of CFR Title 47 Part 15 Subpart C section 15.207 & RSS GEN.

Radiated Emissions (Spurious and Harmonics) Test 8.1.2

The R&S receiver was used as a measuring meter. The receiver was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the receiver records the highest measured reading over all the sweeps. Amplifiers were used to increase the sensitivity of the instrument. There were two Microwave Preamplifiers used for frequencies above 1 GHz.

For spurious emissions the quasi-peak detector was used for frequencies below 1GHz and the average detector was used for frequencies above 1 GHz.

For the radiated Harmonic emissions and Band Edges a linear average detector was used.

The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE (MHz)	TRANSDUCER	EFFECTIVE MEASUREMENT BANDWIDTH
.009 to .150	Active Loop Antenna	200 Hz
.150 to 30	Active Loop Antenna	9 kHz
30 to 1000	Combilog Antenna	100 kHz
1000 to 25000	Horn Antenna	1 MHz

The TDK FAC-3 shielded test chamber of Compatible Electronics, Inc. was used for radiated emissions testing. This test site is in full compliance with ANSI C63.4, EN 50147-2, and CISPR 22. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters in both vertical and horizontal polarizations (for E field radiated field strength).

Test Results:

The EUT complies with the limits of CFR Title 47 Part 15 Subpart C sections 15.205, 15.209, 15.247, and RSS GEN.

8.1.3 DTS Bandwidth

The DTS Bandwidth was measured directly connected to the EMI Receiver using a RBW of 100 kHz and a VBW of 300 kHz. A peak detector and a max hold trace were used with auto sweep time. The trace was allowed to fully maximize. We measured the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. The automatic bandwidth measurement capability of the EMI Receiver was employed using the n dB bandwidth mode with n set to 6 dB. The final qualification data sheets are located in Appendix E.

Test Results:

The EUT complies with Part 15, Subpart C, Section 15.247 and RSS 247.

8.1.4 Maximum Peak Conducted Output Power

The maximum peak conducted output power was measured using a Peak Power Meter. The Peak Power Meter used a video bandwidth that is greater than the DTS bandwidth. The final qualification data sheets are located in Appendix E.

Test Results:

The EUT complies with Part 15, Subpart C, Section 15.247 and RSS 247.

8.1.5 Maximum Peak Power Spectral Density Level In The Fundamental Emission

The Maximum Peak Power Spectral Density Level in the Fundamental Emission was measured directly connected to the EMI Receiver. Tuned to the center frequency of the DTS channel and set the span to 1.5 times the DTS bandwidth. RBW was set to 3 kHz > 100 kHz and $VBW \geq 3*RBW$. A peak detector was used with the sweep time set to auto. A max hold trace was used and allowed to fully stabilize. The peak marker function was used to determine the maximum amplitude level within the RBW. The final qualification data sheets are located in Appendix E.

Test Results:

The EUT complies with Part 15, Subpart C, Section 15.247 and RSS 247.

8.1.6 **Emissions in Non-Restricted Frequency Bands (in 100kHz Bandwidth)**

The Emissions in Non-Restricted Frequency Bands (in 100kHz Bandwidth) measurements were performed using the EMI Receiver directly connected to the EUT. A reference level was established by setting the instrument center frequency to DTS channel center frequency. The span was set to \geq 1.5 times the DTS bandwidth. The RBW was 100 kHz and VBW 300 kHz. A peak detector was used with a sweep time set to auto. A max hold trace was used and allowed to fully stabilize. The peak marker function was used to determine the level and 20dB below that was the reference level. For Emission Level Measurement the center frequency and span were set to encompass the frequency range to be measured. RBW was set to 100 kHz and VBW to 300 kHz. A peak detector was used with a sweep time set to auto. The number of measurement points were greater than span/RBW. A max hold trace was used and allowed to fully stabilize. The peak marker function was used to determine the maximum amplitude level. The final qualification data sheets are located in Appendix

Test Results:

The EUT complies with Part 15, Subpart C, Section 15.247 and RSS 247.

8.1.7 **Emissions in the Restricted Bands (Radiated)**

The Emissions in the Restricted Bands measurement was performed using the EMI Receiver at a 3meter test distance to obtain the final test data. The final qualification data sheets are located in Appendix E.

Test Results:

The EUT complies with Part 15 Subpart C, Section 15.205 and RSS GEN.

8.1.8 **Emissions Radiated Outside of the Fundamental Frequency Band**

The Band Edge measurement was performed using the EMI Receiver at a 3-meter test distance to obtain the final test data. The low and high channels were tuned to during the low and high band edge tests. The final qualification data sheets are located in Appendix E.

Test Results:

The EUT complies with Part 15, Subpart C, Section 15.247 and RSS 247.

9. TEST PROCEDURE DEVIATIONS

The test procedures were not deviated from throughout all tests.

10. CONCLUSIONS

The BTLC1000-XPRO Model: A09-2528 meets all of the relevant specification requirements defined in the Code of Federal Regulations Title 47, Part 15 Subpart C sections 15.205, 15.207, 15.209, 15.247, RSS GEN & RSS 247.

APPENDIX A

LABORATORY ACCREDITATIONS AND RECOGNITIONS

LABORATORY ACCREDITATIONS AND RECOGNITIONS

For US, Canada, Australia/New Zealand, Taiwan and the European Union, Compatible Electronics is currently accredited by NVLAP to ISO/IEC 17025 an ISO 9002 equivalent. Please follow the link to the NIST site for each of our facilities NVLAP certificate and scope of accreditation.

NVLAP listing links

Agoura Division - http://ts.nist.gov/Standards/scopes/200630.htm
Brea Division - http://ts.nist.gov/Standards/scopes/2005280.htm
Silverado/Lake Forest Division - http://ts.nist.gov/Standards/scopes/2005270.htm

ANSI listing

https://www.ansica.org/wwwversion2/outside/ALLdirectoryDetails.asp?menuID=1&prqID=3&orqID=123&status=4

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for EMC under the US/EU Mutual Recognition Agreement (MRA).

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for Taiwan/BSMI under the US/APEC (Asia-Pacific Economic Cooperation) Mutual Recognition Agreement (MRA).

We are also certified/listed for IT products by the following country/agency:

VCCI Listing, from VCCI site

Enter "Compatible" in search form http://www.vcci.or.jp/vcci_e/activity/registration/setsubi.html

FCC Listing, from FCC OET site

FCC test lab search https://fjallfoss.fcc.gov/oetcf/eas/reports/TestFirmSearch.cfm

Compatible Electronics IC listing can be found at: http://www.ic.gc.ca/eic/site/ic1.nsf/eng/home

APPENDIX B

MODIFICATIONS TO THE EUT

MODIFICATIONS TO THE EUT

The following modifications were made to the EUT during the test in order to comply with FCC 15.205 & 15.209 limits for Harmonic Emissions and Band Edges in Restricted Bands. The modifications were made in such a way that they could be reproduced during manufacturing.

- 1. The following power levels were used to program the IC:
 - a. 2402 2438 MHz: Digital Gain set to 1F.
 - b. 2440 2478 MHz Digital Gain set to 30.
 - c. 2480 MHz: Digital Gain set to 3F.

APPENDIX C

ADDITIONAL MODELS COVERED UNDER THIS REPORT

ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

BTLC1000-XPRO Model: A09-2528

S/N: N/A

No additional models were tested.

APPENDIX D

DIAGRAMS, FACTORS, CHARTS, AND PHOTOS

FIGURE 1: PLOT MAP AND LAYOUT OF TEST SITE BELOW 1GHZ

FIGURE 2: PLOT MAP AND LAYOUT OF TEST SITE ABOVE 1GHZ

FCC Part 15 Subpart C Section 15.247 Test Report

FIGURE 3: CONDUCTED EMISSIONS TEST SETUP

COM-POWER AL-130

LOOP ANTENNA

S/N: 121049

CALIBRATION DUE: DECEMBER 6, 2015

FREQUENCY (MHz)	MAGNETIC (dB/m)	ELECTRIC (dB/m)	FREQUENCY (MHz)	MAGNETIC (dB/m)	ELECTRIC (dB/m)
0.009	-34.64	16.86	0.8	-36.32	15.18
0.01	-34.78	16.72	0.9	-36.22	15.28
0.02	-35.91	15.59	1.0	-36.22	15.28
0.03	-35.48	16.02	2.0	-35.91	15.59
0.04	-35.82	15.68	3.0	-35.91	15.59
0.05	-36.49	15.01	4.0	-36.01	15.49
0.06	-36.30	15.20	5.0	-35.80	15.70
0.07	-36.43	15.07	6.0	-36.00	15.50
0.08	-36.30	15.20	7.0	-35.90	15.60
0.09	-36.39	15.11	8.0	-35.70	15.80
0.1	-36.41	15.09	9.0	-35.70	15.80
0.2	-36.61	14.89	10.0	-35.60	15.90
0.3	-36.63	14.87	15.0	-36.52	14.98
0.4	-36.52	14.99	20.0	-35.75	15.75
0.5	-36.63	14.87	25.0	-37.78	13.72
0.6	-36.62	14.88	30.0	-38.62	12.88
0.7	-36.53	14.97			

COM-POWER AC-220

LAB R - COMBILOG ANTENNA

S/N: 25857

CALIBRATION DUE: MAY 21, 2016

FREQUENCY (MHz)	FACTOR	FREQUENCY (MHz)	FACTOR
	(dB)		(dB)
30	22.5	160	13.3
35	22.5	180	15.0
40	23.0	200	14.6
45	21.5	250	16.5
50	21.3	300	18.1
60	18.2	400	19.4
70	13.2	500	21.4
80	11.6	600	21.6
90	11.9	700	23.7
100	12.6	800	26.0
120	15.1	900	26.6
140	13.6	1000	28.5

COM-POWER AH-118

HORN ANTENNA

S/N: 071250

CALIBRATION DUE: JULY 1, 2016

FREQUENCY (MHz)	FACTOR	FREQUENCY (MHz)	FACTOR
	(dB)		(dB)
1000	30.1	9500	44.2
1500	29.2	10000	43.4
2000	31.6	10500	44.6
2500	35.5	11000	45.1
3000	33.7	11500	45.7
3500	36.0	12000	46.2
4000	35.4	12500	45.4
4500	35.5	13000	44.8
5000	40.1	13500	46.7
5500	37.8	14000	47.8
6000	39.0	14500	46.4
6500	39.9	15000	47.2
7000	40.4	15500	45.5
7500	44.4	16000	45.0
8000	44.1	16500	44.5
8500	43.1	17000	47.0
9000	43.0	17500	47.8
	·	18000	44.2

COM-POWER PAM-118A

1-18GHz - PREAMPLIFIER

S/N: 551034

CALIBRATION DUE: FEBRUARY 6, 2016

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
500	36.77	5500	39.82
1000	38.63	6000	38.74
1100	38.72	6500	39.60
1200	38.97	7000	35.52
1300	38.59	7500	36.61
1400	39.18	8000	36.92
1500	38.71	8500	37.13
1600	39.28	9000	36.50
1700	39.25	9500	38.92
1800	39.06	10000	38.74
1900	40.34	11000	35.23
2000	40.07	12000	35.64
2500	39.69	13000	36.73
3000	40.94	14000	36.48
3500	40.41	15000	37.57
4000	40.44	16000	38.10
4500	41.20	17000	37.34
5000	39.35	18000	36.80

COM-POWER PA-840

18-40 GHz PREAMPLIFIER

S/N: 181289

CALIBRATION DUE: JUNE 16, 2016

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
18000	29.4	31500	28.2
19000	28.8	32000	28.6
20000	30.5	32500	28.8
21000	31.4	33000	28.2
22000	31.2	33500	27.7
23000	30.1	34000	27.2
24000	30.3	34500	28.2
25000	29.8	35000	27.3
26000	30.5	35500	27.2
26500	30.7	36000	27.2
27000	30.8	36500	27.5
27500	30.2	37000	27.0
28000	30.1	37500	26.7
28500	30.2	38000	26.2
29000	30.1	38500	26.5
29500	29.8	39000	26.3
30000	29.2	39500	26.9
30500	28.4	40000	27.6
31000	29.8		

FRONT VIEW

ATMEL CORPORATION
BTLC1000-XPRO
Model: A09-2528
FCC SUBPART C - RADIATED EMISSIONS < 1GHz

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

REAR VIEW

 $\begin{array}{c} ATMEL\ CORPORATION \\ BTLC1000\text{-}XPRO \\ Model:\ A09\text{-}2528 \\ FCC\ SUBPART\ C\ -\ RADIATED\ EMISSIONS < 1GHz \end{array}$

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

FRONT VIEW

ATMEL CORPORATION
BTLC1000-XPRO
Model: A09-2528
FCC SUBPART C - RADIATED EMISSIONS > 1GHz

REAR VIEW

ATMEL CORPORATION
BTLC1000-XPRO
Model: A09-2528
FCC SUBPART C - RADIATED EMISSIONS > 1GHz

FRONT VIEW

ATMEL CORPORATION
BTLC1000-XPRO
Model: A09-2528
FCC SUBPART C - CONDUCTED EMISSIONS

REAR VIEW

ATMEL CORPORATION
BTLC1000-XPRO
Model: A09-2528
FCC SUBPART C - CONDUCTED EMISSIONS

APPENDIX E

RADIATED EMISSIONS DATA SHEETS

FCC Part 15 Subpart C Section 15.247 Test Report

Title: FCC 15.209 8/31/2015 11:19:44 AM File: Radiated Pre-Scan 30-1000Mhz.set Sequence: Preliminary Scan

Operator: Torey Oliver

EUT Type: BLE Module / BTLC1000 X Pro

EUT Condition: The EUT is constantly transmitting in the ${\tt Z}$ Axis.

Comments: Low channel: 2402 MHz

Temp: 72f Hum: 42% 5VDC

Compatible Electronics, Inc. FAC-3 (Lab R)

There were no radiated emissions besides harmonics found between 9kHz-30 MHz or above 1GHz. This is the worst case channel.

Report Number: D50901R2 FCC ID: 2ADHKA092528 FCC Part 15 Subpart C Section 15.247 Test Report

8/31/2015 10:23:32 AM

Sequence: Final Measurements

File: Radiated Final 30-1000Mhz.set Operator: Torey Oliver

Title: FCC 15.209

EUT Type: BLE Module / BTLC1000 X Pro

 ${\tt EUT}$ Condition: The ${\tt EUT}$ is constantly transmitting in the ${\tt Z}$ ${\tt Axis}$.

Comments: Low channel: 2402 MHz

Temp: 72f Hum: 42% 5VDC

Compatible Electronics, Inc. FAC-3 (Lab R)

Freq (MHz)	(QP) Margin (dB)	(QP) EMI (dBµV/m)	(PEAK) EMI (dBµV/m)	Limit (dBµV/m)	Pol	Ttbl Agl (deg)	Twr Ht (cm)	Transducer(dB)	Cable(dB)
37.90	-8.83	31.17	35.06	40.00	V	24.75	101.89	22.80	1.19
38.80	-11.26	28.74	32.78	40.00	V	168.00	119.74	22.89	1.24
40.70	-9.56	30.44	33.88	40.00	V	74.00	114.01	22.80	1.21
53.00	-11.88	28.12	34.37	40.00	V	57.25	100.64	20.31	0.39
63.80	-19.73	20.27	25.77	40.00	V	250.50	126.85	16.23	0.88
74.80	-15.30	24.70	29.92	40.00	V	249.25	203.20	12.42	0.55

There were no radiated emissions besides harmonics found between 9kHz-30 MHz or above 1GHz. This is the worst case channel.

APPENDIX E

CONDUCTED EMISSIONS DATA SHEETS

9/1/2015 8:59:41 AM

Sequence: Preliminary Scan

FCC Part 15 Subpart C Section 15.247 Test Report

Title: FCC 15.207
File: Conducted Pre-Line.set

Operator: Torey Oliver

EUT Type: BTLC1000-XPR0 / A09-2528

EUT Condition: The EUT is constantly transmitting.

Comments: Worst case channel: 2402Mhz

Temp: 72f Hum: 42% 120V 60Hz

Report Number: D50901R2 FCC ID: 2ADHKA092528 FCC Part 15 Subpart C Section 15.247 Test Report

9/1/2015 9:02:10 AM

Sequence: Final Measurements

File: Conducted Final-Line.set

Operator: Torey Oliver

EUT Type: BTLC1000-XPRO / A09-2528 EUT Condition: The EUT is constantly transmitting.

Comments: Worst case channel: 2402Mhz

Temp: 72f Hum: 42% 120V 60Hz

Title: FCC 15.207

Freq (MHz)	(AVG) Margin AVL (dB)	(QP) Margin QPL (dB)	(AVG) EMI (dBµV)	(QP) EMI (dBµV)	(PEAK) EMI (dBµV)	(AVG) Limit (dBµV)	(QP) Limit (dBµV)	Transducer (dB)	Cable (dB)
0.15	-27.26	-7.33	28.52	58.45	66.10	55.78	65.78	0.44	0.19
0.17	-15.29	-8.59	39.67	56.37	65.43	54.96	64.96	0.39	0.23
0.18	-13.24	-8.86	41.15	55.54	64.58	54.39	64.39	0.36	0.26
0.20	-30.58	-10.96	23.11	52.73	60.93	53.69	63.69	0.32	0.30
0.21	-31.29	-11.82	21.76	51.23	59.33	53.05	63.05	0.28	0.28
0.23	-24.33	-12.68	28.26	49.92	58.38	52.60	62.60	0.25	0.26
0.24	-20.19	-13.68	31.84	48.35	56.79	52.03	62.03	0.22	0.24
0.25	-33.43	-14.58	18.19	47.05	54.68	51.63	61.63	0.20	0.22
0.27	-34.21	-15.13	16.91	45.99	53.07	51.12	61.12	0.17	0.20
0.29	-23.19	-16.07	27.45	44.57	53.08	50.64	60.64	0.14	0.18
0.30	-24.20	-16.52	25.99	43.67	51.49	50.19	60.19	0.11	0.17
0.32	-34.39	-17.46	15.37	42.30	49.82	49.76	59.76	0.09	0.15

FCC Part 15 Subpart C Section 15.247 Test Report

9/1/2015 9:06:04 AM Sequence: Preliminary Scan

Title: FCC 15.207

File: Conducted Pre-Neutral.set Operator: Torey Oliver

EUT Type: BTLC1000-XPR0 / A09-2528

EUT Condition: The EUT is constantly transmitting.

Comments: Worst case channel: 2402Mhz

Temp: 72f Hum: 42% 120V 60Hz

Title: FCC 15.207

 $\label{eq:condition} 9/1/2015 \ 9:08:51 \ \mbox{AM}$ Sequence: Final Measurements

File: Conducted Final-Neutral.set

Operator: Torey Oliver

EUT Type: BTLC1000-XPR0 / A09-2528

EUT Condition: The EUT is constantly transmitting.

Comments: Worst Case Channel: 2402Mhz

Temp: 72f Hum: 42% 120V 60Hz

Freq (MHz)	(AVG) Margin AVL (dB)	(QP) Margin QPL (dB)	(AVG) EMI (dBµV)	(QP) EMI (dBµV)	(PEAK) EMI (dBµV)	(AVG) Limit (dBµV)	(QP) Limit (dBµV)	Transducer (dB)	Cable (dB)
0.15	-27.88	-7.57	28.12	58.43	66.40	56.00	66.00	0.45	0.18
0.18	-7.70	-4.58	46.88	60.00	66.62	54.58	64.58	0.37	0.25
0.19	-29.71	-10.90	24.15	52.96	61.36	53.86	63.86	0.33	0.29
0.21	-31.10	-11.90	22.27	51.47	59.22	53.37	63.37	0.30	0.29
0.23	-24.18	-12.97	28.42	49.62	57.47	52.60	62.60	0.25	0.26
0.24	-11.19	-11.95	40.98	50.22	58.79	52.17	62.17	0.23	0.24
0.25	-32.30	-14.21	19.32	47.42	54.56	51.63	61.63	0.20	0.22
0.27	-32.63	-15.02	18.61	46.22	53.67	51.24	61.24	0.17	0.21
0.29	-11.64	-13.12	38.77	47.29	54.09	50.41	60.41	0.12	0.17
0.31	-33.85	-17.38	16.01	42.49	50.24	49.86	59.86	0.09	0.15
0.34	-33.11	-18.31	16.14	40.94	48.61	49.25	59.25	0.06	0.13

DTS BANDWIDTH

DATA SHEETS

FCC ID: 2ADHRA092526 FCC Part 15 Subpart C Section 15.247 Test Report

FCC 15.247

Company: Atmel Corporation Date: 8/31/2015

EUT: Modular Transmitter Lab: R

Model: A09-2528 Test ENG: Torey Oliver

Compatible Electronics, Inc. FAC-3 (Lab R)

DTS Bandwidth

Freq. (MHz)	Measured BW (kHz)	Limit (Min) (kHz)	Margin (kHz)	Peak / QP / Avg	Comments
2402	721.44	500.00	221.44	Peak	
2440	721.44	500.00	221.44	Peak	
2480	721.44	500.00	221.44	Peak	

Title: BTLC1000 X PRO

Comment A: DTS Bandwidth Low channel 2402 Mhz

Date: 31.AUG.2015 23:55:24

Report Number: D50901R2 FCC ID: 2ADHKA092528 FCC Part 15 Subpart C Section 15.247 Test Report

Title: BTLC1000 X PRO

Comment A: DTS Bandwidth Mid channel 2440 Mhz

Date: 1.SEP.2015 00:04:36

Report Number: D50901R2 **FCC ID: 2ADHKA092528** FCC Part 15 Subpart C Section 15.247 Test Report

BTLC1000 X PRO

Comment A: DTS Bandwidth High channel 2480 Mhz

1.SEP.2015 00:02:55 Date:

MAXIMUM PEAK CONDUCTED OUTPUT POWER

DATA SHEETS

Report Number: D50901R2

MAXIMUM PEAK CONDUCTED OUTPUT POWER

FCC 15.247

Atmel Corporation Date: 8/31/2015 Company:

EUT: Modular Transmitter Lab: R

A09-2528 Test ENG: Torey Oliver Model:

Mode: BLE

Freq. (MHz)	Level (dBm)	Limit (dBm)	Margin (dB)	Peak / QP / Avg	Comments
2402	2.13	30.00	-27.87	Peak	DigGain = 1F
2440	2.61	30.00	-27.39	Peak	DigGain = 30
2480	2.82	30.00	-27.18	Peak	DigGain = 3F

MAXIMUM PEAK POWER SPECTRAL DENSITY LEVEL IN THE FUNDAMENTAL EMISSION

DATA SHEETS

PEAK POWER SPECTRAL DENSITY

FCC 15.247

Company: Atmel Corporation Date: 8/31/2015

EUT: Modular Transmitter Lab: R

Model: A09-2528 Test ENG: Torey Oliver

Freq. (MHz)	Peak (dBuV)	Limit (dBuV)	Margin (dB)	Peak / QP / Avg	Comments
2402	109.09	115.00	-5.91	Peak	
2440	109.58	115.00	-5.42	Peak	
2480	109.71	115.00	-5.29	Peak	

FCC Part 15 Subpart C Section 15.247 Test Report

108.2164 kHz/

Center 2.402 GHz BTLC1000 X PRO

Comment A: PSD Low Channel 2402 Mhz 1.SEP.2015 00:14:01 Date:

Span 1.082164 MHz

Report Number: D50901R2 FCC ID: 2ADHKA092528 FCC Part 15 Subpart C Section 15.247 Test Report

Title: BTLC1000 X PRO

Comment A: PSD Mid Channel 2440 Mhz Date: 1.SEP.2015 00:12:00

Report Number: D50901R2 **FCC ID: 2ADHKA092528** FCC Part 15 Subpart C Section 15.247 Test Report

BTLC1000 X PRO

Comment A: PSD High Channel 2480 Mhz 1.SEP.2015 00:17:16 Date:

HARMONIC EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS (IN 100KHZ BANDWIDTH) / CONDUCTED

DATA SHEETS

HARMONIC EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS

FCC 15.247

Company: Atmel Corporation Date: 9/1/2015

EUT: Modular Transmitter Lab: R

Model: A09-2528 Test ENG: Torey Oliver

Freq. (MHz)	Level (dBuV)	Limit	Margin	Peak / QP / Avg	Comments
9920.00	61.12	89.61	-28.49	Peak	High Channel
21960.00	61.51	89.39	-27.88	Peak	Mid Channel
21618.00	60.11	89.01	-28.90	Peak	Low Channel

Reference Level Measurements

Comment A: Emissions in non restricted band mid channel
Date: 1.SEP.2015 01:37:09

EMISSIONS IN RESTRICTED FREQUENCY BANDS (RADIATED FIELD STRENGTH)

DATA SHEETS

Report Number: D50901R2

HARMONIC EMISSIONS IN RESTRICTED FREQUENCY BANDS Low Channel Horizontal

FCC 15.247

Company: Atmel Corporation Date: 8/28/2015

Modular Transmitter EUT: Lab: R

Model: A09-2528 Test ENG: T. Oliver

DigGain= 1F Mode:

Compatible Electronics, Inc. FAC-3 (Lab R)

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
4804.00	50.19	Н	74.93	-24.74	Peak	1.02	299	In Restricted Band
4804.00	40.48	Н	54.93	-14.45	Avg	1.02	299	
12010.00	61.44	Н	73.98	-12.54	Peak	1.12	141.00	In Restricted Band
12010.00	48.75	Н	53.98	-5.23	Avg	1.12	141.00	
19216.00		Н	74.93		Peak			In Restricted Band
19216.00		Н	54.93		Avg			No Emissions Found

Test distance

Report Number: D50901R2

HARMONIC EMISSIONS IN RESTRICTED FREQUENCY BANDS Low Channel Vertical

FCC 15.247

Company: Atmel Corporation Date: 8/28/2015

EUT: Modular Transmitter Lab: R

Model: A09-2528 Test ENG: T. Oliver

Mode: DigGain= 1F

Compatible Electronics, Inc. FAC-3 (Lab R)

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
4804.00	45.69	V	73.98	-28.29	Peak	1.31	169	In Restricted Band
4804.00	32.29	V	53.98	-21.69	Avg			
								No Emissions Found
12010.00	66.02	V	73.98	-7.96	Peak	1.07	46.00	In Restricted Band
12010.00	53.22	V	53.98	-0.76	Avg	1	-	No Emissions Found
19216.00		V	74.93	-	Peak	1		In Restricted Band
19216.00		V	54.93	-	Avg	1	-	No Emissions Found

Test distance

HARMONIC EMISSIONS IN RESTRICTED FREQUENCY BANDS Mid Channel Horizontal

FCC 15.247

Company: Atmel Corporation Date: 8/28/2015

EUT: Modular Transmitter Lab: R

Model: A09-2528 Test ENG: T. Oliver

Mode: DigGain= 30

Compatible Electronics, Inc. FAC-3 (Lab R)

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
4880.00	46.98	H	73.98	-27.00	Peak	1.00	300	In Restricted Band
4880.00	33.96	Н	53.98	-20.02	Avg	1.00	300	
7320.00	63.58	Н	73.98	-10.40	Peak	1.09	336	In Restricted Band
7320.00	50.83	Н	53.98	-3.15	Avg	1.09	336	
12200.00	61.14	Н	73.98	-12.84	Peak	1.04	138.00	In Restricted Band
12200.00	48.65	Н	53.98	-5.33	Avg	1.04	138.00	
19520.00		Н	73.98		Peak			In Restricted Band
19520.00		Н	53.98		Avg			No Emissions Found
					A 10 MARCH			

Test distance

Report Number: D50901R2

FCC Part 15 Subpart C Section 15.247 Test Report

HARMONIC EMISSIONS IN RESTRICTED FREQUENCY BANDS Mid Channel Vertical

FCC 15.247

Company: Atmel Corporation Date: 8/28/2015

EUT: Modular Transmitter Lab: R

Model: A09-2528 Test ENG: T. Oliver

Mode: DigGain= 30

Compatible Electronics, Inc. FAC-3 (Lab R)

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
4880.00	49.95	V	73.98	-24.03	Peak	1.12	267	In Restricted Band
4880.00	42.84	V	53.98	-11.14	Avg	1.12	267	
7320.00	62.60	V	73.98	-11.38	Peak	1.41	193	In Restricted Band
7320.00	49.85	V	53.98	-4.13	Avg	1.41	193	
12200.00	65.23	V	73.98	-8.75	Peak	2.19	360	In Restricted Band
12200.00	53.71	V	53.98	-0.27	Avg	2.19	360	
19520.00		V	73.98	-73.98	Peak			In Restricted Band
19520.00		V	53.98	-53.98	Avg			No emissions found

Test distance

HARMONIC EMISSIONS IN RESTRICTED FREQUENCY BANDS High Channel Horizontal

FCC 15.247

Company: Atmel Corporation Date: 8/28/2015

EUT: Modular Transmitter Lab: R

Model: A09-2528 Test ENG: T. Oliver

Mode: DigGain= 3F

Compatible Electronics, Inc. FAC-3 (Lab R)

				DIC LICOTI			····· /	
Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
4960.00	46.45	Н	73.98	-27.53	Peak	1.6	232	In Restricted Band
4960.00	33.53	Н	53.98	-20.45	Avg	1.6	232	
7440.00	62.94	Η	73.98	-11.04	Peak	1.42	18.5	In Restricted Band
7440.00	50.38	Н	53.98	-3.60	Avg	1.42	18.5	
12400.00	60.34	Н	73.98	-13.64	Peak	2.10	179.00	In Restricted Band
12400.00	47.89	Η	53.98	-6.09	Avg	2.10	179.00	
						2		
19840.00		Н	73.98		Peak			In Restricted Band
19840.00		Н	53.98		Avg			No Emissions Found
					149			
22320.00		Н	73.98		Peak	-		In Restricted Band
22320.00		Н	53.98		Avg			No Emissions Found

Test distance

Report Number: D50901R2

HARMONIC EMISSIONS IN RESTRICTED FREQUENCY BANDS High Channel Vertical

FCC 15.247

Company: Atmel Corporation Date: 8/28/2015

EUT: Modular Transmitter Lab: R

Model: A09-2528 Test ENG: T. Oliver

Mode: DigGain= 3F

Compatible Electronics, Inc. FAC-3 (Lab R)

Companio Licotromos, mo. 1 AC C (Lub II)								
Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
4960.00	50.82	V	73.98	-23.16	Peak	1.73	272	In Restricted Band
4960.00	40.62	V	53.98	-13.36	Avg	1.73	272	
7440.00	60.77	V	73.98	-13.21	Peak	2.44	14	In Restricted Band
7440.00	47.64	V	53.98	-6.34	Avg	2.44	14	
12400.00	61.76	V	73.98	-12.22	Peak	1.28	122.00	In Restricted Band
12400.00	48.18	V	53.98	-5.80	Avg	1.28	122.00	
19840.00	-	V	73.98		Peak	-		In Restricted Band
19840.00		V	53.98		Avg			No Emissions Found
					7.55			
22320.00	-	V	73.98		Peak			In Restricted Band
22320.00	-	V	53.98		Avg		1	No Emissions Found

Test distance

EMISSIONS RADIATED OUTSIDE OF THE FUNDAMENTAL FREQUENCY BAND AT BAND EDGES

DATA SHEETS

FCC Part 15 Subpart C Section 15.247 Test Report

BAND EDGES- VERTICAL

FCC 15.247

Company: Atmel Corporation Date: 8/28/2015

EUT: Modular Transmitter Lab: R

Model: A09-2528 Test ENG: Torey Oliver

Compatible Electronics, Inc. FAC-3 (Lab R)

Freq. (MHz)	Level (dBµV)	Pol	Limit (dBµV)	Margin (dB)	Peak / QP / Avg	Ant. Heigh t (m)	Table Angle (deg)	Comments
2402.00	92.08	V			Peak	1.3	287	Fundamental of Low Channel
								Tx Constant Mode, DG=1F
2400.00	68.60	V	72.08	-3.48	Delta	1.3	287	From Peak
2388.73	51.52	V	73.98	-22.46	Peak	1.3	287	No Marker Delta Method Used
2388.73	45.59	V	53.98	-8.39	Avg	1.3	287	Z Axis
2480.00	95.85	V	\		Peak	2.5	262	Fundamental of High Channel
								Tx Constant Mode, DG=3F
2483.50	54.54	V	73.98	-19.44	Peak	2.5	262	No Marker Delta Method Used
2483.50	37.79	V	53.98	-16.19	Avg	2.5	262	Z Axis
				7, 7000				

Test Distance

3 Meters

FCC Part 15 Subpart C Section 15.247 Test Report

BAND EDGES- HORIZONTAL

FCC 15.247

Company: Atmel Corporation Date: 8/28/2015

EUT: Modular Transmitter Lab: R

Model: A09-2528 Test ENG: Torey Oliver

Compatible Electronics, Inc. FAC-3 (Lab R)

Freq. (MHz)	Level (dBµV)	Pol	Limit (dBµV)	Margin (dB)	Peak / QP / Avg	Ant. Heigh t (m)	Table Angle (deg)	Comments
2402.00	98.97	Н	-		Peak	1.5	290	Fundamental of Low Channel
								DG=1F
2400.00	76.70	Н	78.97	-2.27	Delta	1.5	290	From Peak
2375.81	52.07	Н	73.98	-21.91	Peak	1.5	290	No Marker Delta Method Used
2375.81	45.73	Н	53.98	-8.25	Avg	1.5	290	Z Axis
2480.00	97.77	Н		/	Peak	2.2	325	Fundamental of High Channel
						//		DG=3F
2483.50	57.36	Н	73.98	-16.62	Peak	2.2	325	No Marker Delta Method Used
2483.50	38.66	Н	53.98	-15.32	Avg	2.2	325	Z Axis
						10 March 17 March 18		1

Test Distance

3 Meters

LOWER BAND EDGE (Horizontal)

Max/Ref Lvl Marker 1 [T2] RBW 1 MHz RF Att 0 dB 132 dB**y**V 98.97 dByv VBW 3 MHz 72 dB**y**V 2.40226453 GHz SWT 5 ms Unit dB**y**V

Title: BTLC1000 X PRO

Comment A: LBEH

Date: 29.AUG.2015 02:36:33

LOWER BAND EDGE (Vertical)

Title: BTLC1000 X PRO

Comment A: LBEV

Date: 29.AUG.2015 02:21:36

UPPER BAND EDGE (Horizontal)

Title: BTLC1000 X PRO

Comment A: UBEH

Date: 28.AUG.2015 21:11:33

UPPER BAND EDGE (Vertical)

Title: BTLC1000 X PRO

Comment A: UBEV

28.AUG.2015 21:14:55 Date:

