```
!pip install -U transformers datasets accelerate -q
!pip install -U tensorboard -q
from google.colab import drive
drive.mount('/content/drive')
import pandas as pd
import torch
from sklearn.preprocessing import LabelEncoder
from transformers import DistilBertTokenizer, BertTokenizer, BertForSequenceClas
from sklearn.metrics import classification_report
import numpy as np
# 1. Load and Preprocess Data
# Paths to your dataset files
train_path = "/content/drive/MyDrive/SentimentAnalysisData/SentimentAnalysisTrai
test_path = "/content/drive/MyDrive/SentimentAnalysisData/SentimentAnalysisTest.
# Load CSVs (note: test file has no header)
# Load the dataset
train_df = pd.read_csv(train_path, encoding='latin-1')
test_df = pd.read_csv(test_path, encoding='latin-1', header=None)
# Define column names based on the dataset description
columns = ['polarity', 'id', 'date', 'query', 'user', 'text']
train df.columns = columns
test_df.columns = columns
# Keep only the polarity and text columns
train df = train df[['text', 'polarity']]
test_df = test_df[['text', 'polarity']]
# Filter valid polarity values (0, 2, 4)
train_df = train_df[train_df['polarity'].isin([0, 2, 4])]
test_df = test_df[test_df['polarity'].isin([0, 2, 4])]
# Map polarity to sentiment labels
sentiment_map = {0: 'Negative', 2: 'Neutral', 4: 'Positive'}
train_df['sentiment'] = train_df['polarity'].map(sentiment_map)
test_df['sentiment'] = test_df['polarity'].map(sentiment_map)
# Encode sentiment labels using LabelEncoder
label encoder = LabelEncoder()
```

```
label_encoder.fit(['Negative', 'Neutral', 'Positive'])
train_df['label'] = label_encoder.transform(train_df['sentiment'])
test df['label'] = label encoder.transform(test df['sentiment'])
# Prepare lists of texts and labels
train texts = train df['text'].tolist()
train_labels = train_df['label'].tolist()
test texts = test df['text'].tolist()
test_labels = test_df['label'].tolist()
from concurrent.futures import ThreadPoolExecutor
from tqdm import tqdm
# 2. Tokenize the Data (Optimized with Parallel Processing)
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
def tokenize_batch(texts):
    return tokenizer.batch_encode_plus(
        texts,
        truncation=True,
        padding='max_length', # Pad to max length
        max_length=128,
        return tensors="pt"
    )
# Using ThreadPoolExecutor to process tokenization in parallel
def parallel_tokenize(texts, batch_size=64, num_workers=16):
    with ThreadPoolExecutor(max_workers=num_workers) as executor:
        batches = [texts[i:i + batch_size] for i in range(0, len(texts), batch_s
        results = list(tgdm(executor.map(tokenize batch, batches), total=len(bat
    # Combine the results from all batches
    input ids = torch.cat([result['input ids'] for result in results], dim=0)
    attention_mask = torch.cat([result['attention_mask'] for result in results],
    return {'input_ids': input_ids, 'attention_mask': attention_mask}
# Tokenize train and test datasets in parallel
train_encodings = parallel_tokenize(train_texts, batch_size=128, num_workers=64)
test_encodings = parallel_tokenize(test_texts, batch_size=128, num_workers=64)
# 3. Create a Custom Dataset
```

```
class SentimentDataset(torch.utils.data.Dataset):
    def __init__(self, encodings, labels):
        self.encodings = encodings
        self.labels = labels
    def __getitem__(self, idx):
       # Return a dictionary with input_ids, attention_mask, and labels
        item = {key: val[idx].clone().detach() for key, val in self.encodings.it
        item["labels"] = torch.tensor(self.labels[idx])
        return item
    def len (self):
        return len(self.labels)
train_dataset = SentimentDataset(train_encodings, train_labels)
test_dataset = SentimentDataset(test_encodings, test_labels)
# 4. Load the Pretrained Model
from transformers import DistilBertForSequenceClassification
model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-unc
# Move model to GPU if available
if torch.cuda.is available():
   model.to('cuda')
# 5. Set Up Training Arguments with GPU Support
# -----
from datasets import Dataset
from transformers import Trainer, TrainingArguments
import torch
from torch.utils.data import DataLoader, Subset
import numpy as np
# Reduce batch size and number of workers (adjust based on GPU memory)
train_loader = DataLoader(train_dataset, batch_size=32, num_workers=16, pin_memo
test_loader = DataLoader(test_dataset, batch_size=32, num_workers=16, pin_memory
# Training arguments for GPU
training_args = TrainingArguments(
    output_dir='./results',
    num_train_epochs=3,
    per_device_train_batch_size=32,
    per_device_eval_batch_size=16,
```

```
eval_strategy="epocn",
    logging_strategy="epoch",
    save_strategy="epoch",
    gradient_accumulation_steps=4,
    report to="none",
    disable_tqdm=False,
    dataloader_num_workers=8,
    logging_dir='./logs',
    fp16=torch.cuda.is_available(),
)
# Define the Trainer and Train the Model with 10% data
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    eval_dataset=test_dataset,
)
# Start training
trainer.train()
# 7. Evaluate the Model and Output a Classification Report
predictions = trainer.predict(test_dataset)
y_pred = np.argmax(predictions.predictions, axis=1)
print(classification_report(test_labels, y_pred, target_names=label_encoder.clas
```


→ Drive already mounted at /content/drive; to attempt to forcibly remount, ca /usr/local/lib/python3.11/dist-packages/huggingface hub/utils/ auth.py:94: The secret `HF TOKEN` does not exist in your Colab secrets.

To authenticate with the Hugging Face Hub, create a token in your settings You will be able to reuse this secret in all of your notebooks.

Please note that authentication is recommended but still optional to access warnings.warn(

100% 8192/8192 [07:04<00:00, 19.29it/s] 100% | 5/5 [00:00<00:00, 17.67it/s]

Xet Storage is enabled for this repo, but the 'hf xet' package is not insta WARNING: huggingface hub.file download: Xet Storage is enabled for this repo,

model.safetensors: 100%

268M/268M [00:00<00:00, 328MB/s]

Some weights of DistilBertForSequenceClassification were not initialized fr You should probably TRAIN this model on a down-stream task to be able to us /usr/local/lib/python3.11/dist-packages/torch/utils/data/dataloader.py:624:

/usr/local/lib/python3.11/dist-packages/torch/utils/data/dataloader.py:624: warnings.warn(

[24576/24576 2:18:07, Epoch 3/3]

Epoch Training Loss Validation Loss 0.280500 3.790577 2 0.216700 5.249511 3 0.162800 6.652027

/usr/local/lib/python3.11/dist-packages/torch/utils/data/dataloader.py:624: warnings.warn(

/usr/local/lib/python3.11/dist-packages/torch/utils/data/dataloader.py:624: warnings.warn(

/usr/local/lib/python3.11/dist-packages/torch/utils/data/dataloader.py:624: warnings.warn(

	precision	recall	fl-score	support
Negative	0.63	0.87	0.73	178
Neutral	0.00	0.00	0.00	140
Positive	0.59	0.81	0.69	198
accuracy			0.61	516
macro avg	0.41	0.56	0.47	516
weighted avg	0.45	0.61	0.52	516

/usr/local/lib/python3.11/dist-packages/sklearn/metrics/ classification.py: warn prf(average, modifier, f"{metric.capitalize()} is", len(result)) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/ classification.py: warn prf(average, modifier, f"{metric.capitalize()} is", len(result)) /usr/local/lib/python3.11/dist-packages/sklearn/metrics/ classification.py: warn prf(average, modifier, f"{metric.capitalize()} is", len(result))