§ 4 具有某些特性的函数

本节将着重讨论函数的有界性、单调性、奇偶性与周期性.

- 一、有界函数
- 二、单调函数
- 三、奇函数与偶函数
- 四、周期函数

一、有界函数

定义1 设f定义在D上.

若∃ $M \in \mathbb{R}$, $\forall x \in D$, $f(x) \leq M$,则称f在D上有上界; 若∃ $L \in \mathbb{R}$, $\forall x \in D$, $f(x) \ge L$, 则称 f 在D上有下界; 若∃ $M \in \mathbb{R}$, $\forall x \in D$, $|f(x)| \leq M$, 则称f 在D上有界. 易证 f 在D上有界 $\Leftrightarrow f$ 在D上既有上界又有下界. 若 $\forall M \in \mathbb{R}, \exists x_0 \in D, f(x_0) > M, 则称f在D上无上$ 界:

若∀ $L \in \mathbb{R}$,∃ $x_0 \in D$, $f(x_0) < L$, 则称f 在D上无下界; 若∀ $M \in \mathbb{R}$,∃ $x_0 \in D$, $|f(x_0)| > M$, 则称f 在D上无界.

例1求证: $f(x) = \tan x$ 在 $[0, \frac{\pi}{2}]$ 上无上界,有下界. 证 L=0, 则 $\forall x \in [0,\frac{\pi}{2})$, $f(x) \ge L$, 因此 f 在 $[0,\frac{\pi}{2})$ 上有下界. $\forall M \in \mathbb{R}, \ \ \diamondsuit x_0 = \arctan(M+1),$ 则 $x_0 \in [0, \frac{\pi}{2})$, 且 $\tan x_0 = M + 1 > M$, 因此 f 在 $[0,\frac{\pi}{2})$ 上无上界.

前页 后页 返回

例2设函数 f(x),g(x) 是D上的正值有界函数.

求证: $\sup_{x \in D} \{f(x)g(x)\} \le \sup_{x \in D} \{f(x)\} \sup_{x \in D} \{g(x)\}.$

 $\text{if } \forall x \in D, \quad f(x) \leq \sup\{f(x)\}, \\
g(x) \leq \sup\{g(x)\},$

因此 $f(x)g(x) \le \sup\{f(x)\}\sup\{g(x)\},$

由x的任意性,可知 $\sup\{f(x)\}\sup\{g(x)\}$

是 $\{f(x)g(x)\}$ 的一个上界,

因此 $\sup_{x\in D} \{f(x)g(x)\} \le \sup_{x\in D} \{f(x)\}\sup_{x\in D} \{g(x)\}.$

前页 后页

例3 设 f(x), g(x) 在 D 上有界, 证明:

$$\inf_{x \in D} \{ f(x) + g(x) \} \le \inf_{x \in D} \{ f(x) \} + \sup_{x \in D} \{ g(x) \}.$$

$$\exists \varepsilon > 0, \exists x_0 \in D, f(x_0) < \inf_{x \in D} \{f(x)\} + \varepsilon.$$

又
$$g(x_0) \le \sup_{x \in D} \{g(x)\}$$
, 故

$$f(x_0) + g(x_0) < \inf_{x \in D} \{f(x)\} + \sup_{x \in D} \{g(x)\} + \varepsilon.$$

因此

$$\inf_{x \in D} \{ f(x) + g(x) \} \le f(x_0) + g(x_0)$$

$$\leq \inf_{x\in D}\{f(x)\} + \sup_{x\in D}\{g(x)\}.$$

注:看课本第15页例2。

二、单调函数

定义2 设 f 是定义在 D上的函数.

若 $\forall x_1, x_2 \in D$, 当 $x_1 < x_2$ 时,

(i) 有 $f(x_1) \leq f(x_2)$, 则称 f 为D上的增函数;

特别有 $f(x_1) < f(x_2)$ 时, 称 f 为严格增函数.

(ii) 有 $f(x_1)$ ≥ $f(x_2)$, 则称 f 为D 上的减函数;

特别有 $f(x_1) > f(x_2)$ 时, 称 f 为严格减函数.

不难知道, 若 f(x) 和 g(x) 是正值严格增的,则 f(x)g(x) 也是正值严格增的.

例4 易证函数 y = [x]在 R 上是增函数, 但非严格增.

定理1.2 设 $y = f(x), x \in D$ 为严格增函数,则 f 必有反函数 f^{-1} ,且 f^{-1} 在其定义域 f(D)上也是严格增函数.

类似地, 严格减函数f 必有反函数 f^{-1} , 且 f^{-1} 在其定义域上也是严格减函数.

证设f在D上严格增,则 $\forall y \in f(D)$ 只有一个 $x \in D$,使f(x) = y.

事实上, 若 $\exists x_1 < x_2$, 使 $f(x_1) = y = f(x_2)$, 则与f

的严格增性质相矛盾. 再证 f^{-1} 必是严格增的:

$$\forall y_1, y_2 \in f(D), y_1 < y_2,$$
 $x_1 = f^{-1}(y_1), x_2 = f^{-1}(y_2),$

由于 $y_1 < y_2$ 及 f 的严格增性,必有 $x_1 < x_2$,即 $f^{-1}(y_1) < f^{-1}(y_2)$,因此 f^{-1} 也是严格增函数.

例5 证明: $y = a^x \le a > 1$ 时, 在 R 上严格增; 当 0 < a < 1时, 在 R 上严格减.

证设a > 1. $\forall x_1, x_2, x_1 < x_2$. 由Q的稠密性,

$$\exists r_1, r_2 \in Q$$
, 使 $x_1 < r_1 < r_2 < x_2$, 因此

$$a^{x_1} = \sup\{a^r \mid r \in Q, r < x_1\} \le a^{r_1} < a^{r_2}$$

$$\leq \sup\{a^r \mid r \in Q, r < x_2\} = a^{x_2}.$$

类似可证 a^x 当 0 < a < 1 时,在 R 上严格减.

由于 $y = \log_a x$ 是 $y = a^x$ 的反函数,因此 $y = \log_a x$ 当 a > 1 时,在 R_+ 上严格增; $y = \log_a x$ 当 0 < a < 1 时,在 R_+ 上严格减.

三、奇函数和偶函数

定义3设D关于原点对称,即: $\forall x \in D$,必有 $-x \in D$.

若∀ $x \in D$, f(-x) = -f(x), 称f 为D上的奇函数.

若∀ $x \in D$, f(-x) = f(x), 称f 为D上的偶函数.

显然, 若记 G(f) 为 f 的图象, 则 f(x) 是奇函数或偶函数的充要条件是:

$$(x,y) \in G(f) \Leftrightarrow (-x,-y) \in G(f);$$

或
$$(x,y) \in G(f) \Leftrightarrow (-x,y) \in G(f)$$
.

例如, $y = \sin x$, $y = \tan x$, $y = x^{2n+1}$ 是奇函数, 而 $y = \cos x$, $y = x^{2n}$ 是偶函数.

$$y = \ln\left(x + \sqrt{x^2 + 1}\right)$$
是奇函数 $y_1 = \frac{1}{2}(e^x - e^{-x})$ 的反

函数,从而由奇函数的图象性质可知它也是奇函数.

四、周期函数

定义4设f为D上定义的函数. 若 $3\sigma > 0$, 使 $\forall x \in D$ 必有 $x \pm \sigma \in D$,且 $f(x \pm \sigma) = f(x)$, 则称 f 为周期函数, σ 为 f 的一个周期. 若周期函数 f 的所有正周期中有一个最小的周期, 则称此最小正周期为 f 的基本周期, 简称周期. 例如函数 f(x) = x - [x] 的周期为1. 见后图.

例6 $\sin x$ 的周期为 2π , $\tan x$ 的周期为 π ,

注1 周期函数的定义域不一定是R. 例如:

$$f(x) = \sqrt{\sin x}.$$

注2 周期函数不一定有最小周期. 例如狄利克雷函数以任意正有理数为周期, 但没有最小周期.

例7 任意正有理数是狄利克雷函数 D(x)的周期.

证 设 $r \in \mathbf{Q}_+, x \in \mathbf{R}$.

若
$$x \in \mathbb{Q}$$
,则 $x + r \in \mathbb{Q}$, $D(x + r) = 1 = D(x)$;

若
$$x \notin \mathbb{Q}$$
,则 $x + r \notin \mathbb{Q}$, $D(x + r) = 0 = D(x)$.

因此, r 是 D(x) 的一个周期.

复习思考题: 课本第18页: 2; 11

作业题: 课本第18-19页: 1; 3(2); 4(4); 5(3); 6; 8(1); 9(1).

练习题: 第一章总练习题: 1; 3; 4; 8; 12(1)

