EXPLOITING UNTAPPED INFORMATION RESOURCES IN **EARTH SCIENCE**

Rahul Ramachandran NASA/MSFC, Peter Fox RPI, Steve Kempler NASA/GSFC and Manil Maskey UAH

MSFC/UAH: Patrick Gatlin, Xiang Li, Amanda Weigel, JJ Miller, Kaylin Bugbee, Ajinkya Kulkarni

GSFC: Chris Lynnes, Suhung Shen, Chung-Lin Shie, Maksym Petrenko

RPI: Stefan Zednik, Anirudh Prabhu

Outline

- 1. Project Overview
- 2. Data Curation Service
- 3. Rules Engine
- 4. Image Retrieval Service
- 5. Summary

Part 1: Project Overview

Motivation

- Data preparation steps are cumbersome and time consuming
 - Covers discovery, access and preprocessing
- Limitations of current Data/Information Systems
 - Boolean search on data based on instrument or geophysical or other keywords
 - Underlying assumption that users have sufficient knowledge of the domain vocabulary
 - Lack support for those unfamiliar with the domain vocabulary or the breadth of relevant data available

Earth Science Metadata: Dark Resources

- Dark resources information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for **other** purposes
 - Challenge is to recognize, identify and effectively utilize these dark data stores
- Metadata catalogs contain dark resources consisting of structured information, free form descriptions of data and browse images.
 - EOS Clearing House (ECHO) holds >6000data collections, 127 million records for individual files and 67 million browse images.

Premise: Metadata catalogs can be utilized beyond their original design intent to provide new data discovery and exploration pathways to support science and education communities.

Goals

- Design a Semantic Middleware Layer (SML) to exploit these metadata resources
 - provide novel data discovery and exploration capabilities that significantly reduce data preparation time.
 - utilize a varied set of semantic web, information retrieval and image mining technologies.
- Design SML as a Service Oriented Architecture (SOA) to allow individual components to be used by existing systems

Science Use Cases

- Dust storms, Volcanic Eruptions, Tropical Storms/ Hurricanes
- Volcanic Eruptions:
 - Emit a variety of gases as well as volcanic ash, which are in turn affected by atmospheric conditions such as winds.
 - Role of Components
 - Image Retrieval Service is used to find volcanic ash events in browse imagery
 - Data Curation Service suggests the relevant datasets to support event analysis
 - Rules Engine invokes a Giovanni processing workflow to assemble and compare the wind, aerosol and SO2 data for the event

Find Events: Browse Images

Band 1-4-3 (true color)

Band 7-2-1

LST

Example: MODIS-Aqua 2008-05-03 18:45 UTC

Chaitén Volcano Eruption Eruption Time period: May 2 – Nov 2008 Location: Andes region, Chile (-42.832778,

-72.645833)

Suggest Relevant Data

Total SO₂ mass:

e.g. **Chaitén** is 10 (kt) = (kilotons), (1kt=1000 metric tons) ftp://measures.gsfc.nasa.gov/data/s4pa/SO2/MSVOLSO2L4.1/ MSVOLSO2L4 v01-00-2014m1002.txt

Daily SO2:

OMI/Aura Sulphur Dioxide (SO2) Total Column Daily L2 Global 0.125 deg http://disc.sci.gsfc.nasa.gov/datacollection/OMSO2G_V003.html

Calibrated Radiances:

MODIS/Aqua Calibrated Radiances 5-Min L1B Swath 1km http://dx.doi.org/10.5067/modis/myd021km.006

Aerosol Optical Thickness:

MODIS/Aqua Aerosol 5-Min L2 Swath 10km

http://modis-atmos.gsfc.nasa.gov/MOD04 L2/

SeaWiFS Deep Blue Aerosol Optical Depth and Angstrom Exponent Level 2 Data 13.5km

http://disc.gsfc.nasa.gov/datacollection/SWDB L2 V004.shtml

IR Brightness Temperature:

NCEP/CPC 4-km Global (60 deg N - 60 deg S) Merged IR Brightness Temperature Dataset

Generate Giovanni SO2 Plots

MODIS-Aqua 2008-05-03 18:45 UTC

MODIS-Aqua 2008-05-05 18:30 UTC

http://gdata2.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=omil2g

Generate Giovanni Infrared Data Plot

MODIS-Aqua 2008-05-03 18:45 UTC

MODIS-Aqua 2008-05-05 18:30 UTC

Global Merged IR (00min18Z03MAY2008) Created by NASA Goddard GES DISC

http://disc.sci.gsfc.nasa.gov/daac-bin/hurricane_data_analysis_tool.pl

Conceptual Model

- Phenomena
 - Event type
- Physical Feature
 - Manifestation / Driver of phenomena
 - Has space/time extent
 - Can precede or linger after what is generally thought of as the phenomena event
- Observable Property
 - Characteristic/property of physical feature
- Data Variable
 - Measurement/estimation of observable feature

Phenomena

- Tropical Storm
- Dust Storm
- Volcanic
 Eruption

Physical Feature

Observable Property

Data Variable

- Ash Plume
- Area of High Winds
- Area of Elevated Surface Temperature
- Area of High Particulate Emissions
- Temperature
- Radiance
- Wind Speed
- Rain Rate

- MOD04_L2:Optical_Depth_Land_and_Ocea n Mean
- MOD02HKM:bands 1, 3, and 4
- OMSO2e:ColumnAmountSO2 PBL

Part 2: Data Curation Algorithm for Phenomena

Initial Results

Objectives

- Design a data curation (relevancy ranking) algorithm for a set of phenomena
- Provide the data curation algorithm as a stand alone service
- Envisioned Use:
 - Given a phenomenon type (Ex: Hurricane), DCS returns a list of relevant data sets (variables)
 - <data of data sets> = DCS(Phenomenon Type)
 - For a specific phenomenon instance (event: Hurricane Katrina), these curated datasets can then be filtered based on space/time to get actual granules

Overview

Data Curation Algorithm Approaches

Text mining

- Pros: Don't need to explicitly define the phenomena
- Cons: Dependent of the truth set; Catalog is dynamic and new data may never get classified

Ontology Based

- Pros: Best precision and recall
- Cons: Labor intensive to build an explicit model and map to instances

Information Retrieval

- Boolean (Faceted) Search
 - Pros: Simple to implement
 - Cons: Phenomena can be complex; User may not know all the right keywords
- Relevancy Ranking Algorithm
 - Pros: List most relevant data first
 - Cons: Requires a custom algorithm

Data Search for Earth Science Phenomena

Relevancy Ranking

Search: Curation problem

 Data curation: Relevancy ranking service for a set of Earth science phenomena

Relevancy Ranking: Initial Exploratory Experiments

Approaches tested:

- O-Rank (Top down approach)
- Wikipedia Terms
- Manual Terms Experiment
- Latent Semantic Index Dual Set terms
- Metadata based Ranking

Key Takeaways:

- Best results: three approaches where terms describing the phenomenon manually constructed after exploring metadata records
- Both ontology and automated term construction (Wiki)
 approaches don't map well to metadata terms/descriptions

Follow-on Experiments: Approach Study "Hurricane" **USER TASK** How to define a phenomenon? All data sets us in studying "Hurricane" INFO NEED How to Expert select automatically "bag of words" to formulate quer define a **QUERY** phenomena REFINE Control vocabulary (GCMD) is used RESULTS. **SEARCH** for the "words" **ENGINE** Best relevancy ranking algorithm? Use well known alg: **DOCUMENT** Jaccard Coef, COLLECTION Cosine Similarity, Zone Ranking

Assumptions/Observations

- Metadata quality
 - Richness
 - Vocabulary
 - o Tags
- Earth Science Phenomena can be defined using a bag of keywords

Experiment Setup

Top 20 returns (Hurricane)

Next: Find relevant data fields

- Dataset is relevant
 - o now what?
 - o how do I use the granules for the dataset?
- Need actual data variable name
 - o for example: Giovanni uses these fields for visualization
- What we know
 - relevant science keywords (GCMD) Experts
 - granule data fields and metadata Auto extract*
- How do we map?
 - manually? May work for few datasets only
 - Hundreds of data variables per granule
 - start with GCMD to CF Standard name
 - most don't follow CF Standard names

Approach

Dataset Granules **Extract Science Extract Variables** OPeNDAP, netCDF Libs, ... Keywords and Descriptions Text processing Remove special characters, Tokenize, Text processing NI P Look up Table Learn Patterns Acronym/Abbreviation expansion, CF Remove stopwords/Stem/Lemmatize Normalization Normalization **Suggest Keywords Assess Metadata** Bag-of-words Bag-of-words Intersection

Example: GLAS/ICESat L2 Global Thin Cloud/Aerosol Optical Depths Data (HDF5) V033 – Dataset Metadata

Example: GLAS/ICESat L2 Global Thin Cloud/Aerosol Optical Depths Data (HDF5) V033

Example: GLASICESat L2 Global Thin Cloud Aerosol Optical Depths Data (HDF5) V033

Science keyword to variable mapping

- r_Surface_relh | Surface Relative Humidity
 - o No match
- r_Surface_temp | Surface Temperature
 - o No match
- r_Surface_wind | Surface Wind Speed
 - o No match
- r_cld1_od | Cloud Optical Depth at 532 nm
 - Score=3 keyword: ATMOSPHERE->CLOUDS->CLOUD OPTICAL DEPTH/THICKNESS
 - Score=2 keyword: ATMOSPHERE->AEROSOLS->AEROSOL OPTICAL DEPTH/THICKNESS

Variable to keyword mapping

- ATMOSPHERE->CLOUDS->CLOUD OPTICAL DEPTH/THICKNESS
 - o Score=3 name: r_cld_ir_OD | Cloud Optical Depth at 1064 nm
 - o score=3 name:i_cld1_qf | Cloud optical depth flag for 532 nm
 - Score=3 name:i_cld1_uf | Cloud optical depth flag for 532 nm
 - o Score=3 name:r_cld1_od | Cloud Optical Depth at 532 nm
 - o more with low scores

This approach can be used to assess metadata quality and also suggest keyword annotation!!

Part 3: Rules Engine

What Settings should I use to visualize this event?

Goal: Automate data preprocessing and exploratory analysis and visualization tasks

Strategy

- Service to generate and rank candidate workflow configurations
- Use rules to make assertions about compatibility based on multiple factors
 - o does this data variable make sense for this feature?
 - o does this visualization type make sense for this feature?
 - does the temporal / spatial resolution of this dataset make sense for this feature?
- Each compatibility assertion type is assigned weights.
 - ex: Strong = 5, Some = 3, Slight = 1, Indifferent = 0, Negative = -1.
- Based on the aggregated compatibility assertions, we calculate the score for each visualization candidate.

Phenomena Feature Characteristic Mappings

Phenomena	East- West Movem ent	North- South Movement	Temporal Evolution	Spatial Extent of Event	Year-to- Year Variability	May Impact Seasonal Variation	Variation with Atmospher ic Height	Global Phenomen a	Detection of Events
Volcano - Ash Plume	Indiffere nt	Indifferent	Strong	Slight	Strong	Strong	Strong	Strong	Strong
Flood	Some	Some	Strong	Some	Some	Strong	Some	Slight	Some
Dust Storm	Strong	Strong	Strong	Strong	Indifferent	Indifferent	Strong	Indifferent	Some

Service to Characteristic Mappings

Service	Visualizatio n	East-West Movement	North-South Movement	Temporal Evolution	Spatial Extent of Event	Year-to- Year Variability	Seasonal Variation	Variation with Atmospheri c Height	Global Phenomena	Detection of Events
Time- averaged Map	Color-Slice Map				1					
Area- averaged Time Series	Time Series			√						✓
User- defined Climatology	Color-Slice Map						1			
Vertical Profile	Line Plot							1		
Seasonal Time Series	Time Series					1				
Zonal Means	Line Plot								1	
Hovmoller (Longitude)	Color-Slice Grid	1								
Hovmoller (Latitude)	Color-Slice Grid		1							

Compute Compatibility

Phenomena: Volcano - Ash Plume Service - Area Averaged Time Series

Strong	Strong
Temporal Evolution	Detectio n of Events

Area
Averaged
Time Series:
bestFor →
Temporal
evolution;
Detection
of events

Next Steps

- Generate rules for compatibility assertions based on
 - data variables
 - o temporal / spatial resolution
 - dataset processing
- Explore additional strategies for making compatibility assertions

Part 4: Image Retrieval

Initial Results

Image Retrieval

 Goal: given an image of Earth science phenomenon retrieve similar images

- Challenge: "semantic gap"
 - low-level image pixels and high-level semantic concepts perceived by human

Image retrieval approaches

- Tradition approaches
 - Image features: Color, Texture, Edge histogram...
 - "Shallow" architecture
 - User defines the feature
 - Preliminary experiments
- State of the Art approach
 - o Generic
 - No need for domain expert

Deep Learning

- Mimics the human brain that is organized in a deep architecture
- Processes information through multiple stages of transformation and representation
- Learns complex functions that directly map pixels to the output, without relying on human-crafted features

Experiment Setup

- NASA rapid response MODIS imageries
- 600 imageries
- 3 phenomena Hurricane, Dust, Smoke/ Haze
- Train half images with Convolutional Neural Network
- Test

Sample rapid response images

Hurricane Smoke Dust

4 layers

- Used number of filters in each layer = 100, 200, 400, 800
- Convolved and Pooled on every layer
- Overall accuracy ~ = as that of 5 layers (slightly better than 6 layers)

Error Matrix

4 layers, learning rate = 0.003

True\Pred	Others	dust	Haze/smoke	Hurricane
Others	173	20	76	7
dust	29	128	23	0
Haze/Smoke	79	3	207	7
Hurricane	30	2	3	163

Accuracy Numbers

Producers Accuracy

• Other: 173/311 = 55.6%

• Dust: 128/153 = 83.7%

• Smoke: 207/309 = 67%

• Hurricane: 163/177 = 92.1%

Users Accuracy

• Other: 173/276 = 62.7%

• Dust: 128/180 = 71.1%

• Smoke: 207/296 = 69.9%

• Hurricane: 163/198 = 82.3%

Summary

- Build three specific semantic middleware core components
 - Image retrieval service uses browse imagery to enable discovery of possible new case studies and also presents exploratory analytics.
 - Data curation service uses metadata and textual descriptions to find relevant data sets and granules needed to support the analysis of a phenomena or a topic.
 - Semantic rules engine automates data preprocessing and exploratory analysis and visualization tasks.

Explore pathways to infuse these components into existing NASA information and data system

