Jan 21
Def (aperiodicity). We say that a state i is a periodic if its period is 1.
. A M-C is aperiodic if all its States are aperiodic
3) Recurrence and transience
Def: (Recurrence and transience) Let $f_i = P(X_n = i \text{ for some } n \mid X_o = i)$ We say that i is $f_i = 1$ Let $f_i = 1$ Let $f_i = P(X_n = i \text{ for some } n \mid X_o = i)$ Let $f_i = 1$
recurrent of fi = 1
Interpretation: This defines the ability to re-visit a state.
Ruk: A state is either recurrent or travalent, so we can split the state into recurrent or
we can split the state Ento recurrent or transient states
· If Pii = 1, i is recurrent and more specifically i is called our absorbing state
Before studying in more details these proporties,
let us first see how all the coucepts in this
section apply in the context of classical problems.

Ex: the Gambler rain's problem Problem: Smith has \$ n, and plays a game with probability p of minning \$ 1 at each round, and 1-p of looing \$ 1 (0< p<1). Smith plays until he gets broke, or rach a goal of \$N (N>n). Question: What is the probability that Suith
gets broke? (or equivalently that Suith
reaches the goal?) · let's denote X; Smiths wealth in the ith round (Xî)izo Pollows a Markov Chain.

$$\frac{A}{A}: \text{ Let } p(n) = P(R \mid X_0 = n)$$

$$p(0) = 1 \qquad p(N) = 0 \qquad \text{(boundary)}$$

$$\sum_{i=1}^{n} p(i) = 1 \qquad \text{(boundary)}$$

Key idea: To find ou eq. satisfied by p(n), we condition on the level

P(n) = P(R | 1st round is a min). P(1st round)

is a min

+ P(R | 1st round is also). P(1st round is a loso)

$$P(u) = P(R \mid X_1 = n+1) \cdot P$$

$$+ P(R \mid X_1 = n+1) \cdot (1-p)$$

$$+ P(n) \cdot P(n+1) \cdot P(n+1)$$

$$+ P(n) \cdot P(n+1) \cdot P(n+1) \cdot P(n+1)$$

$$+ P(n) \cdot P(n+1) \cdot P(n+1) \cdot P(n+1) \cdot P(n+1)$$

$$+ P(n) \cdot P(n+1) \cdot$$

So
$$p(n) = \frac{\alpha^{N} - \alpha^{n}}{\alpha^{N} - 1} = \begin{bmatrix} -\alpha^{n} - 1 \\ -\alpha^{N} - 1 \end{bmatrix}$$

$$(exercise)$$