Theory of Computation: Lecture 1

Morgan McCarty

07 September 2023

1. Theory of Computation

- What is computation?
 - Math-checking if no. prime
 - Verifying logic
 - Navigational routing
 - Comparing strings \rightarrow looking up, sorting, etc.
- All computation relative to computer? Can we do the w/o the computer?
- What is a computer? Modeling a computer
 - Supported operations
 - Determinsitic (usually)
 - Output
 - Input
- Are there fundamental limits on what is computable?

Yes: Halting problem

- Does a program actually halt?
- Areas of the course: (in order of decreasing complexity)
 - (a) Computability: what can be computed given enough time and space
 - (b) Complexity: how fast/efficiently can we solve a problem
 - (c) Automata: what problems can we solve given very limited space (constant)
- Why does this matter?
 - Checking correctness of a program
 - Knowinig what functions can be computed quickly and which cannot (security)
- Goals of the course:
 - (a) Understand notions of computability
 - (b) Understand limitations of computability
 - (c) What can be doen with weaker forms of computability
 - (d) Computational relation to formal languages

2. Mathematical Review

- Sets:
 - Unordered group of elements (finite or infinite)
 - E.g.

- * $\mathbb{N} = \{1, 2, \ldots\}$
- $* \mathbb{N} \cup 0$
- * $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$
- $* \emptyset = \{\}$
- Set Operations:
 - $* X \cup Y = \{x \mid x \in X \lor x \in Y\}$
 - $* X \cap Y = \{x \mid x \in X \land x \in Y\}$
 - * \bar{X} : negator of set relative to universe
 - $*\ X \setminus Y = X Y = \{x \mid x \in X \land x \notin Y\} = X \cap \bar{Y}$

• Logic:

- \wedge : and
- \lor : or
- \implies : implication
- $-\alpha \implies \beta$
 - "if α is truse, then β is true"
 - "if Corina gets fed, then Ariel sleeps in"
- Negation of $\alpha \implies \beta$ is $\alpha \land \bar{\beta} \equiv \bar{\alpha} \lor \beta$
- Satisfiable: the formula has a set of boolean assignments so that the entire thing evaluates to true

• Proof Techniques:

- Proof by induction
 - * Induction Prove: $\forall n \in \mathbb{N}_0, P(n)$
 - * P(n): predicate (boolean statement about n)
 - * Base Case: P(0) (or P(1))
 - * Inductive Step: Assume P(n) is true, show P(n+1) is true
 - * E.g.
 - Show $5 + 10 + 15 + \dots + 5n = \frac{5n(n+1)}{2} \forall n \in \mathbb{N}$
 - · Base Case: n = 1 $5 = \frac{5(1)(2)}{2} = 5$
 - · Inductive Step: We know for n=k $5+10+15+\cdots+5k=\frac{5k(k+1)}{2}$
 - · Show for n = k + 1: $5 + 10 + 15 + \dots + 5k + 5(k + 1) = \frac{5k(k+1)}{2} + 5(k+1)$ $= \frac{5k(k+1) + 10(k+1)}{2} = \frac{5(k+1)(k+2)}{2}$
- Proof by contradiction
 - * Assume the opposite of proof statement and show that it leads to a contradiction of a known fact
 - * E.g.
 - · Show $\sqrt{2}$ is irrational (cannot be written as $\frac{p}{q}$ where $p, q \in \mathbb{Z}$ and $q \neq 0$)
 - · Assume $\sqrt{2}$ is rational
 - $\sqrt{2} = \frac{p}{q}$ where $p, q \in \mathbb{Z}$ and $q \neq 0$
 - · p and q are relatively prime (no common factors)
 - $\cdot q\sqrt{2} = p$

- $2q^2 = p^2$
- p^2 is even $\implies p$ is even
- · p = 2k for some $k \in \mathbb{Z}$
- $2q^2 = (2k)^2 = 4k^2$
- $\cdot \ q^2 = 2k^2$
- $\cdot q^2$ is even $\implies q$ is even
- \cdot p and q are both even, but this contradicts the fact that p and q are relatively prime
- $\cdot : \sqrt{2}$ is irrational
- Proof by construction
- Proof by contrapositive
- Proof by reduction

• Alphabet

- $-\Sigma$: finite set of symbols ("letters", "elements")
- E.g.
 - * $\Sigma = \{0, 1\}, \Sigma = \{a, b, c\}$
- A string over Σ ($w \in \Sigma$) is a finite sequence of symbols from Σ . Σ^* is the set of all strings over Σ .
- E.g.
 - * w = 010101, w = 101010, or w = 0000
 - * w = aabab, w = ababab, or w = aaa
 - * ϵ is the empty string

• Language

- A language over Σ is a set of strings over Σ
- E.g.
 - * $L = \{a, ab, aa, bb, \ldots\}$ is a language over $\Sigma = \{a, b\}$
- Language is a subset from Σ^*
- How to decide what's in a language?
 - * Total list
 - * Can we do better?
- Machine to decide the language
- $-x \in \Sigma^* \to M \to Y \text{ or } N$
- Often define an L by the describetion of the M M accepts some strings and rejects others M defines a language $L(M) = \{x | M \text{ accepts } x\}$

Strings

- Concatenation: $x \cdot y$ abc \cdot aab = abcaab
- Empty string: ϵ a $\cdot \epsilon = \epsilon \cdot a = a$
- Length: |a| is the number of elements in a String a |aab| = 3, $|\epsilon| = 0$
- Prefix: $x,y\in\Sigma^*$, x is a prefix of y if $\exists z\in\Sigma^*$ such that $x\cdot z=y$ If x=y, then $z=\epsilon\iff x$ is a prefix of y and y is a prefix of x Something is always a prefix of itself

- Suffix: x is a suffix of y if $\exists z \in \Sigma^*$ such that $z \cdot x = y$ If x = y, then $z = \epsilon \iff x$ is a suffix of y and y is a suffix of xSomething is always a suffix of itself
- Substring: x is a substring of y if $\exists z_1, z_2 \in \Sigma^*$ such that $z_1 \cdot x \cdot z_2 = y$ If x = y, then $z_1 = z_2 = \epsilon \iff x$ is a substring of y and y is a substring of x z_1 and z_2 can be ϵ
- Lexigraphical Ordering over String: Requires order on Σ can be used to order strings
- Countable and Uncountable Sets
 - $-A:\{1,2,3\}, B:x,y,z$
 - Function f that maps A to B (one-to-one)
 - -f(1) = x, f(2) = y, f(3) = z
 - -|A|=|B|=3 then $\exists f$ that is one-to-one correspondence
 - Works for finite sets and countably infinite sets
 - $-\mathbb{N}, 2\mathbb{N}, f: \mathbb{N} \to 2\mathbb{N}$
 - If infinite set can be mapped to \mathbb{N} , then it is countably infinite
 - If infinite set cannot be mapped to \mathbb{N} , then it is uncountably infinite