Семинар №1 по дисциплине «Электроника»

Тема: Схемотехническое моделирование диодной схемы (источника питания)

1.	Теоретическое введение
]	1.1. Статические уравнения диода/стабилитрона
]	1.2. Модель диода/стабилитрона для программы Spice 2
2.	Методика моделирования диода в программе SPICE-моделирования (на примере LTspice)
3.	Схема источника питания
]	1.3. Выпрямитель
]	1.4. Фильтр
	1.5. Стабилизатор 10
]	1.6. Итоговая электрическая схема источника вторичного электропитания 1
4.	Задание
5	Таблины вариантов

1. Теоретическое введение

1.1. Статические уравнения диода/стабилитрона

Общий вид вольт-амперной характеристики диода/стабилитрона (зависимости тока от приложенного напряжения) приведён на рис. 1. Пробойный участок (слева) относится только к характеристике стабилитрона, для которого именно этот участок является рабочим.

Рис. 1. Вольт-амперная характеристика диода

Прямая ветвь ВАХ диода/стабилитрона описывается выражением

$$I_{_{\mathcal{I}}} = I_{0} \cdot \left[\exp \left(\frac{U_{_{\mathcal{I}}}}{m \cdot \varphi_{_{T}}} \right) - 1 \right], \tag{1}$$

где I_0 – тепловой ток, или ток насыщения (параметр модели IS);

 $\phi_T = kT/q$ (=25 мВ при T = 25°C, =26 мВ при T = 27°C) – тепловой потенциал;

m – коэффициент неидеальности (napamemp modenu N).

Обратная ветвь ВАХ стабилитрона описывается выражением

$$I_{\text{проб}} = -I_0 \cdot \left[\exp \left(-\frac{BV + U_{\text{д}}}{m \cdot \varphi_T} \right) - 1 \right], \tag{2}$$

где BV – напряжение пробоя (параметр модели BV).

т имеет такой же смысл, что для прямой ветви (параметр модели NBV).

Таким образом, выражения (1) и (2) описывают идеализированный стабилитрон; параметры этих выражений: IS, N, BV, NBV – являются параметрами его модели.

Кроме того, в соответствии с эквивалентной схемой стабилитрона (см. рис.2), на его статические характеристики влияет последовательное сопротивление материала, из которого этот компонент изготовлен ($napamemp\ modenu\ RS$).

Рис. 2. Эквивалентная схема модели стабилитрона

1.2. Модель диода/стабилитрона для программы Spice

Для того, чтобы использовать диод/стабилитрон в программе схемотехнического моделирования, необходимо 1) задать модель диода, 2) объявить экземпляр диода.

Формат описания модели:

.model <model_name> D [<param>=<value>] ,..

Здесь model name – имя модели, param и value – имена и значения параметров.

В строке описания модели можно перечислить любой набор параметров диода (с их соответствующими значениями) из имеющегося списка допустимых параметров. В табл. 1 приведён сокращённый набор параметров — наиболее часто используемых; полный набор приведён в руководстве пользователя. Следует учитывать, что параметры, не указанные в директиве .model, не исчезают, а получают значения по умолчанию. В частности, модель, описанная предложением .model <model_name> D, задаёт статический источник тока вида (1).

Табл. 1. Сокращённый набор параметров модели диода в программе SPICE

Физ. обозн.	Название парам.	Описание параметра	ед. изм.	Значение по умолч.	Пример
I_S	IS	Saturation current / Ток насыщения	A/ AREA	1E-14	1E-16
R_S	RS	Parasitic resistance (series resistance) / Паразитное (последовательное) сопротивление	Ω/ AREA	0	0,01
п или т	N	Emission (nonideality) coefficient / Коэффициент неидеальности (или эмис- сии)	-	1	1,02
V_B	BV	Reverse breakdown voltage / Напряжение обратного пробоя	V	8	6
I_{BV}	IBV	Reverse breakdown current / Ток обратного пробоя	A/ AREA	1E-3	1e-6
n_{BV}	NBV	Reverse breakdown emission coefficient / Коэффициент эмиссии при обратном пробое	ı	ı	1,02
τ_D	TT	Transit time / Время пролёта	\mathbf{s}	0	1e-9
$C_D(0)$	CJO	Zero-bias junction capacitance / Ёмкость p-n-перехода при нулевом напряжении	F	0	2e-12

Пример описания модели диода (скобки не обязательны):

.model Da1N4004 D (IS=18.8n RS=0 BV=400 IBV=5.00u CJO=30 M=0.333 N=2)

2. Методика моделирования диода в программе SPICE-моделирования (на примере LTspice)

В этом разделе описан порядок выполнения основных операций в программе SPICE-моделирования:

- 1. установить компонент на рабочее поле;
- 2. задать модель диода;
- 3. прикрепить модель к экземпляру диода;
- 4. моделировать статическую характеристику (например, вольт-амперную или передаточную характеристику);
- 5. моделировать переходную характеристику;
- 6. задать изменение температуры;
- 7. произвести параметрический анализ.

Установить компонент на рабочее поле. Для того чтобы установить диод на рабочее поле, необходимо на панели инструментов нажать <Components>. В открывшемся

окне ввести <diode> и выбрать соответствующий компонент (см. рис. 3). Название компонента в схеме должно начинаться с буквы D (D1 на рис. 3), оно является уникальным идентификатором в пределах схемы.

Задать модель диода. Модель диода в программе схемотехнического моделирования, такой как LTSpice, представляет собой непростую систему уравнений, рассчитываемых по определённому алгоритму. Коэффициенты в этих уравнениях (соответствующие физическим, технологическим, геометрическим параметрам структуры компонента, см. пример в табл. Табл. 1), задаёт пользователь — именно они называются параметрами модели. Т. к. в модели много параметров, для их задания в программах типа LTSpice используется специальный механизм.

Рис. 3. Установка диода на рабочее поле программы

Набор параметров модели (на жаргоне пользователей LTSpice именно он часто называется моделью, или картой модели) задаётся в отдельной строке. Описание модели включает в себя *название* (произвольный идентификатор), *mun* модели ("D" для диода), перечисление параметров в виде value> через пробел.

Текстовое описание модели с перечисленными параметрами диода вводится в специальном окне <SPICE Directive>, которое открывается с панели инструментов (см. рис. 4). В окне нужно ввести описание модели, например, ".model ivanov D is=1e-15 n=1.01", нажать "ОК", и положить строку на любое свободное место рабочего поля.

Для того, чтобы отредактировать имеющуюся модель, нужно нажать на ней правой кнопкой мыши – снова откроется окно <SPICE Directive>.

Прикрепить модель к экземпляру диода. Для того, чтобы соотнести модель и конкретный экземпляр диода, расположенный на рабочем поле, нужно вписать название модели в свойство Value диода (см. рис. 5). Для редактирования свойства Value нужно нажать на нём правой кнопкой мыши, откроется простое окно для ввода.

Моделировать статическую характеристику (например, вольт-амперную или передаточную характеристику). Статическая характеристика — это зависимость

одной электрической величины (функции) от другой (аргумента) без учёта переходных процессов переключения, или, что то же самое, при медленном изменении. Значения аргумента при этом откладываются по горизонтальной оси в заданном диапазоне с заданным шагом (инкрементом) – как в описании цикла в программировании – а значения функции откладываются по вертикальной оси.

Рис. 4. Окно для ввода описания модели

Рис. 5. Расшифровка обозначений

Аргументом обычно является величина какого-либо источника напряжения/тока, но можно задать и любую другую (например, величину сопротивления резистора или значение какой-либо переменной).

Таким образом, в простейшем случае в этом режиме расчёта для аргумента нужно задать три параметра: начальное и конечное значение, шаг изменения.

Перед запуском расчёта схемы нужно указать команду на расчёт. Это делается в окне <Edit Simulation Command>, которое открывается из меню <Simulation>. Для статической характеристики нужна вкладка <DCsweep> (см. рис. 6).

Здесь необходимо указать аргумент (например, имя источника питания), способ его изменения (здесь линейный), начальное значение, конечное значение и шаг изменения.

При вводе значений в поля этого окна в нижней строке формируется команда на моделирование, которая начинается на .DC. После ввода всех параметров нужно нажать "ОК" и положить строку на любое свободное место рабочего поля.

Для того, чтобы отредактировать имеющуюся команду DC, нужно нажать на ней правой кнопкой мыши – снова откроется окно < Edit Simulation Command >.

Рис. 6. Окно для ввода команды на моделирование

Моделировать переходную характеристику. Переходная характеристика — это зависимость электрической величины от времени. В этом режиме требуется задать какуюлибо причину переходного процесса: переменный источник напряжения/тока, замыкание/размыкание ключа и т. д.

Для объявления источника как переменного нужно щёлкнуть на нём правой кнопкой мыши, в появившемся окне нажать <Advanced> — откроется окно <Independent voltage/current source> (см. рис. 7).

Рис. 7. Изменение свойств источника питания

Здесь нужно выбрать тип зависимости от времени (синусоидальная SINE, импульсная PULSE и др.) и ввести в поля параметры функции. Например, для синусоидальной функции задаётся постоянное смещение <DC offset>, амплитуда <amplitude>, частота <frequency> – всё в единицах СИ. После ввода всех параметров нужно нажать "ОК", и соответствующая строка появится рядом с источником.

Перед запуском расчёта схемы нужно указать команду на расчёт. Это делается в окне <Edit Simulation Command>, которое открывается из меню <Simulation>. Для переходной характеристики нужна вкладка <Transient> (см. рис. 8). Здесь наиболее важными являются параметры:

Stop Time – время окончания анализа переходного процесса

Time to Start Saving Data — время начала записи результатов моделирования (это используется, например, чтобы пропустить начальный переходной процесс и отобразить уже установившееся значение или установившийся колебательный процесс);

Maximum Timestep — максимальный шаг расчёта по времени (это значение влияет на гладкость графика). Если это значение не указано, программа пытается подобрать его сама.

При вводе значений в поля этого окна в нижней строке формируется команда на моделирование, которая начинается на .TRAN. После ввода всех параметров нужно нажать "ОК" и положить строку на любое свободное место рабочего поля.

Для того, чтобы отредактировать имеющуюся команду .TRAN, нужно нажать на ней правой кнопкой мыши – снова откроется окно < Edit Simulation Command >.

Edit Simulation Command	×								
Transient AC Analysis DC sweep Noise DC Transfer	DC op pnt								
Perform a non-linear, time-domain simula	ation.								
Stop time:	60m								
Time to start saving data:									
Maximum Timestep:									
Start external DC supply voltages at 0V:									
Stop simulating if steady state is detected:									
Don't reset T=0 when steady state is detected:									
Step the load current source: I									
Skip initial operating point solution:									
Syntax: .tran <tstop> [<option> []</option></tstop>									
.tran 60m									
Cancel	OK.								

Рис. 8. Задание команды для переходных характеристик

3. Схема источника питания

<u>Вторичный источник электропитания</u> (или источник вторичного электропитаниря. ИВЭП) – устройство, которое преобразует параметры электроэнергии основного источника электроснабжения (например, промышленной сети) в электроэнергию с параметрами, необходимыми для функционирования вспомогательных устройств.

Простейший вариант линейного вторичного источника электропитания состоит из трёх каскадно подключённых блоков: выпрямителя, фильтра, стабилизатора, — перед которыми обычно располагается трансформатор.

Рис. 9. Общая блок-схема ИВЭП

<u>Принцип действия по структурной схеме.</u> При трансформаторном напряжение первичной сети трансформируется (обычно понижается с помощью трансформатора Tp в напряжения требуемых номиналов и затем выпрямляется выпрямителем B. Пульсации выпрямленного напряжения сглаживаются фильтром Φ , а его величина стабилизируется стабилизатором напряжения CH.

1.3. Выпрямитель

Выпрямителем электрического тока называется устройство, преобразующее ток переменного направления (двухполярного) в ток постоянного направления (т. е. однонаправленный, или однополярный). Большинство выпрямителей создаёт не постоянный, а пульсирующий ток, содержащий полезную составляющую (постоянное напряжение) и ряд гармоник частоты входного тока. Коэффициент пульсаций определяется в стабилизированном состоянии сигнала (т. е. после окончания переходного процесса установления) по выражению:

$$K_{\text{пульс}} = \frac{U_{\text{вых},pp}}{U_{\text{вых,cp}}}.,\tag{3}$$

где $U_{\text{вых},pp}$ — полный размах выходного напряжения, равный разности между наибольшим и наименьшим значениями пульсирующего напряжения;

 $U_{\text{вых,cp}}$ — среднее значение (постоянная составляющая) выходного напряжения, вычисленное на интервале времени, <u>кратном периоду сигнала</u>.

Простейший вариант построения выпрямителя – полуволновый выпрямитель – построен на одном диоде. Его схема и поясняющие диаграммы приведены на рис. 10.

Рис. 10. а) схема полуволнового выпрямителя, б) типовые диаграммы входного $V_{\rm вых}$ напряжения

1.4. Фильтр

<u>Фильтр</u> – устройство, предназначенное для уменьшения пульсаций выпрямленного напряжения (сглаживания), а также для защиты потребителя электроэнергии от помех, поступающих из первичной сети (помехоподавления).

Простейший вариант фильтра – RC-фильтр, где в качестве R выступает сопротивление нагрузки, а в качестве C добавляют отдельный конденсатор (см. рис. 11).

Рис. 11. а) Схема выпрямителя со сглаживающим фильтром, сформированным из отдельного конденсатора C_{Φ} и сопротивления нагрузки $R_{\rm H}$; б) временные диаграммы его работы: входное $V_{\rm BX}$ и сглаженное (пульсирующее) выходное $V_{\rm BX}$ напряжение ($V_{\rm пульс}$ — величина пульсаций)

1.5. Стабилизатор

<u>Стабилизатор напряжения</u> — устройство, поддерживающее неизменным напряжение постоянного или переменного тока при воздействии на ИВЭП различных возмущающих факторов.

Простейший вариант стабилизатора — параметрический стабилизатор — строится на основе стабилитрона (см. рис. 12); уровень напряжения, на котором осуществляется стабилизация, определяется напряжением пробоя стабилитрона.

Рис. 12. Схема стабилизатора, построенная на стабилитроне

1.6. Итоговая электрическая схема источника вторичного электропитания

Рис. 13. Итоговая электрическая схема источника вторичного электропитания

4. Задание

Задание 1 (1,5 балла). Сформируйте и проверьте модель диода:

- **а)** постройте модель <u>диода</u> с параметрами, указанными в таблице вариантов (без пробойных параметров; имя модели фамилия студента слева). Поместите диод на рабочее поле программы и подключите модель к диоду;
- **б)** с использованием модели из пункта *а)* промоделируйте ВАХ диода в диапазоне напряжения (0; 1) В;

Задание 2 (1,5 балла). Сформируйте и проверьте модель стабилитрона:

- **а)** постройте модель <u>стабилитрона</u> с параметрами, указанными в таблице вариантов (тот же набор + пробойные параметры; имя модели фамилия студента справа). Поместите стабилитрон на рабочее поле программы и подключите модель к стабилитрону;
- **б)** с использованием модели из пункта a) промоделируйте BAX стабилитрона в диапазоне напряжения ($-BV-U^*$; 1) В. Здесь BV- пробойное напряжение стабилитрона, U^* =0,7 В;

Задание 3 (7 баллов). Сформируйте схему источника питания и определите коэффициент пульсаций его выходного сигнала:

- а) (2 балла) постройте схему источника питания (см. рис. 13) <u>без</u> <u>трансформатора</u> с использованием диода и стабилитрона, полученных в заданиях 1 и 2, и дополнительных параметров по варианту; дайте названия входной и выходной точкам;
- **б)** (0,5 балла) подключите ко входу схемы источник синусоидального напряжения с амплитудой $U_{\text{вх},m}$ и частотой $f_{\text{вх}}$ по варианту;
- в) (2 балла) задайте и запустите команду на моделирование переходной характеристики с параметрами: time to start saving data = $10\ T$, stop time = $14\ T$, где T период сигнала ($\frac{umoбы\ на\ экране\ omoбражался\ duanasoh\ времени, точно кратный периоду и без процесса установления); постройте на отдельных полях графики входного и выходного напряжения;$
- г) (2,5 балла) определите среднее значение выходного напряжения $U_{\text{вых,ср}}$ (удерживая Ctrl, щёлкните по имени графика; из всплывшего окна спишите значение Average); с помощью двух курсоров определите полный размах выходного напряжения $U_{\text{вых,pp}}$; рассчитайте коэффициент пульсаций по выражению:

$$K_{\text{пульс}} = \frac{U_{\text{вых},pp}}{U_{\text{вых,cp}}} \cdot 100\%.$$

	для БИТ-203	параметры моделей диода/стабилитрона							вх. сигнал		фильтр	стабили- затор	нагрузка
No		Is, пА	N, ед.	BV, B	IBV, мкА	RS, MOM	ТТ, нс	СЈО, пФ	Ивх,т В	fвх, кГц	Сф, мкФ	Кстаб, кОм	Rн, кОм
1	Абзяппарова Лэйла	6	1.13	5	4	25	2	10	17	4	11	1	4
2	Баймухаметова Диля	2	1.07	6	3	45	25	16	19	4	7	1	8
3	Ботов Михаил	12	1	8	2.5	35	5	12	25	9	12	6	5
4	Ведерникова Анастасия	7	1.09	6	4	45	22	24	25	4	15	4	8
5	Волошин Андрей	11	1.2	12	3.5	55	23	18	16	2	11	3	1
6	Ефремов Виктор	7	1.03	7	4	15	12	14	30	5	12	3	6
7	Карапетян Андрей	10	1.03	5	4	20	13	11	15	3	5	3	5
8	Клюев Никита	6	1.1	6	2.5	15	25	23	12	8	11	1	1
9	Масляков Александр	11	1.13	7	3.5	45	10	7	25	6	10	1	4
10	Мушаилов Эрсель	2	1.03	11	3.5	35	21	10	23	1	9	8	2
11	Пискун Артём	5	1.13	5	3	10	24	24	15	7	15	8	2
12	Посмитный Семен	6	1.06	10	2.5	40	25	11	17	1	7	6	1
13	Руснак Владислава	8	1.04	10	3.5	55	25	12	26	3	10	4	5
14	Старилова Елизавета	12	1.12	10	2.5	40	11	23	18	7	14	5	6
15	Старкова Элина	1	1.14	10	3.5	60	7	3	20	10	5	7	1
16	Хобов Артем	4	1.17	5	3	55	7	13	19	8	7	2	6
17	Червякова Элина	2	1.12	5	2	10	20	25	27	6	8	2	3
18	Чураков Артём	9	1.19	12	2	35	9	21	30	5	8	1	4
19	Шин Владимир	7	1.06	8	3	25	3	23	29	8	12	5	6
20		6	1.09	11	2	20	25	18	16	7	11	6	1
21		1	1.06	10	4	55	5	5	16	2	15	3	1
22		10	1.13	10	2.5	55	10	20	22	1	6	1	7
23		1	1.1	6	3	15	19	22	13	7	9	1	3
24		5	1.05	6	2	10	9	11	18	8	10	4	7
25		4	1	8	2.5	15	14	10	11	9	8	8	6
26		8	1.18	12	4	40	20	14	12	10	14	5	1
27		12	1.16	6	3	20	19	19	25	1	14	6	5
28		9	1.16	12	4	25	8	2	23	3	10	4	6
29		6	1	10	4	55	5	15	28	3	10	1	8
30		3	1.09	7	4	35	24	7	18	3	6	7	6