Math 181B: Homework 2

Merrick Qiu

Exercise 1

Histogram of F values


```
2. rejections = rep(0, 1000)
  for (i in 1:1000) {
           fvalue = getf()
           if (fvalue \leq qf(0.005,49,49) | fvalue \geq qf(0.995,49,49)) {
           rejections[i] = 1;
           }
  }
  sum(rejections)/1000
  \# > sum(rejections)/1000
  # [1] 0.008
  We can see that the proportion of rejections is 0.008, which is approxi-
  mately \alpha = 0.01.
3. getf = function() {
    sampleX = rexp(50, rate=10)
    sampleY = rexp(50, rate=10)
    varX = var(sampleX)
    varY = var(sampleY)
    f = varY/varX
    return(f)
  }
  \# > sum(rejections)/1000
  # [1] 0.175
         Histogram of F values
```


The histogram no longer fits the f-distribution and the rejection rate has increased to 0.175.

Exercise 2

1. We have the null hypothesis $H_0: \sigma_X = \sigma_Y$ and the alternative hypothesis $H_1: \sigma_X \neq \sigma_Y$. We assume independence and normality of both samples. # Import files setwd ("C:/Users/merri/Documents/MATH-31H/MATH 181B/Homework 2") regular = unlist(read.csv("regular.csv")) fast = unlist(read.csv("fast.csv")) # Calculate F value varX = var(regular)varY = var(fast)#HO assumes varX = varY, and so f is just varY/varX f = varY/varX # f = 0.18# Do rejection check by using quantiles for alpha=0.05 # Two sided since H1 says varX != varY if $(f \le qf(0.025, 9, 9) | f >= qf(0.975, 9, 9))$ { print ("Reject, variances are not equal") } else { print ("Fail to reject, variances can be assumed to be equal")

Therefore we reject the null hypothesis and cannot assume the variances ar

We ended up rejecting the null hypothesis since $f = 0.18 < 0.248 = f_{0.025,9.9}$, meaning that we cannot assume that the variances are equal.

2. Since we rejected the null hypothesis, we know that a ratio of 1, which is what is assumed by H0, should not be in the CI.

qf(0.025,9,9) = 0.248 and qf(0.975, 9, 9) = 4.03

Printed "Reject, variances are not equal"

3. We have that $\mu_X = \mu_Y$ and $H1: \mu_X > \mu_Y$. We assume normality from the law of large numbers and independence of the two samples.

```
# Do a HT on H0: mu_X = mu_Y and H1: mu_X > mu_Y.
# We cannot assume that sigma_x = sigma_y,
# so we use Welch's approximation for this calculation.
# Calculate mean and std
Xbar = mean(regular)
Ybar = mean(fast)
Sx = sd(regular)
Sy = sd(fast)
n = length(regular)
m = length(fast)
```

```
# The test statistic is
Tv = (Xbar - Ybar)/sqrt(Sx^2/n + Sy^2/m) # Tv= 0.0726

# v degrees of freedom
v = round((Sx^2/n + Sy^2/m)^2/(Sx^4/n^2/(n-1) + Sy^4/m^2/(m-1)))

# Find P(t_12 > 0.0726)
pt(Tv, v, lower=F)
# Yields value of 0.4716732

Since p = 0.4716732 > 0.03, we fail to reject the null hypothesis and we cannot say that the fast glue drys faster that the regular glue.

4. var.test(regular, fast)\$p.value
# 0.01754406 so reject null hypothesis

var.test(regular, fast)\$conf.int
# 1.381679 22.395125 so 1 is not in the interval

t.test(regular, fast, alternative = "greater")\$p.value
# p value of 0.4716667, so fail to reject
```

Exercise 3

The mean of the confidence interval is -0.08. We have that

$$\frac{23}{50} - \frac{y}{50} = -0.08$$

Therefore y=27, meaning Kate cleaned the stove right after cooking 27 times.