HONEYWELL INC ST PETERSBURG FL AVIONICS DIV F/6 17/2
ATEC DIGITAL ADAPTATION STUDY, DEVELOPMENT AND FIELD EVALUATION—ETC(U) AD-A051 927 JAN 78 T J CAMPBELL, W F ACKER, C L CHRISTNER F30602-75-C-0282 1077-14813-VOL-3 RADC-TR-77-431-VOL-3 NL UNCLASSIFIED 1 OF 2 AD A051927 [ .....] [:: ] 1.50 1....1 . 

RADC-TR-77-431, Volume III (of three) Final Technical Report January 1978



ATEC DIGITAL ADAPTATION STUDY, Development and Field Evaluation - Digital Automated Technical Control

Mr. T.J. Campbell

Dr. W.F. Acker Mr. C.L. Christner Mr. D.T. Doyle Mr. W.M. Goldstein

Mr. R.L. Tufaner

Honeywell Inc.

AD NO.

SEVEL OPMENT AND



Approved for public release; distribution unlimited.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

Because of the size of this report, it has been divided into three volumes. Volume I contains Sections 1 through 5. Volume II contains Section 6. Volume III contains Section 7 and Appendices A and B.

The quality of copy of test data and/or results is the best available. The reproduction was the original copy which cannot be duplicated or better copy produced. The test data is not of the highest printing quality but because of economical consideration, it was determined in the best interest of the government that it be used in the publication.

This report has been reviewed by the RADC Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-77-431, Volume III (of three) has been reviewed and is approved for publication.

APPROVED:

anold & angenzia

Project Engineer

APPROVED:

FRED I. DIAMOND
Technical Director

Communications and Control Division

FOR THE COMMANDER:

JOHN P. HUSS

Acting Chief, Plans Office

John P Huss

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization, please notify RADC (DCLD) Griffiss AFB NY 13441. This will assist us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER RADCATR-77-431 Vol-11 of three) TYPE OF REPORT & PERIOD COVERED . TITLE (and Subtitle) Final Mechnical Mepert. ATEC DIGITAL ADAPTATION STUDY, Development and Marchand - August 1977. Field Evaluation - Digital Automated Technical 6. PERFORMING ONG. REPORT NUMBER Control 1077-14813-VOT-3 AUTHOR(a) T.J. Campbells D.T. Doyle W.F. Ackers W.M. Goldstein F30602-75-C-0282 C.L. Christner. PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Honeywell Inc./Avionics Division 33126F 13350 U.S. Highway 19 21550101 St. Petersburg FL 33733
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DAT January 78 Rome Air Development Center (DCLD) 13. NUMBER OF PAGES Griffiss AFB NY 13441 15. SECURITY CLASS. (of this report) MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) UNCLASSIFIED 167p.1 Same 15. DECLASSIFICATION DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) Same 18. SUPPLEMENTARY NOTES RADC Project Engineer: Arnold E. Argenzia (DCLD) (See reverse) 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Performance Assessment, Fault Isolation, and Trend Analysis (PA/FI/TA) in Digital Transmission Systems ATEC (Automatic Technical Control) Applicability for PA/FI/TA in the FKV Digital Transmission System Sudden Service Failure Sensing System (SSFSS) 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Subsequent to the completion of the feasibility phase of the ATEC Digital Adaptation Study, existing ATEC hardware and software was adapted or developed to provide Performance Assessment (PA), Fault Isolation (FI) and Trend Analysis for the FKV type digital transmission systems. The resulting DATEC system was then field tested using the facilities of the digital transmission test bed located at Ft. Huachuca, Arizona. The purpose of the field evaluation was to confirm the basic concepts, exercise and test the developed hardware

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

393 21

#### SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

and software, and verify DATEC's capabilities to accomplish PA/FI/TA in the operational environment of an operating digital transmission system. These DATEC capabilities are directed towards the centralized nodal monitoring of numerous digital transmissions links.

The DATEC field evaluation confirmed both the practicality and advantages inherent in automated digital system monitoring, insofar as enabling the centrally located controller to performance assess, trend analyze and fault isolate the digital transmission system for numerous failure occurrences and patterns and system parameter degradation. DATEC enables technicians to monitor in-service system parameters thereby enhancing system performance and allowing more efficient utilization of maintenance resources.

Block 18. (Continued)

Because of the size of this report, it has been divided into 3 volumes:

Volume I contains Sections 1 through 5.

Volume II contains Section 6.

Volume III contains Sections 7 and Appendices A and B.

| NTIS<br>DDC<br>UNANNOUNCED<br>JUSTIFICATION | Buff S   | Section<br>Section | 000      |
|---------------------------------------------|----------|--------------------|----------|
| DISTRIBUTION/                               | AVAI' AB | יון יפר            | £9<br>51 |
| A                                           |          |                    |          |

#### Section 7

## CONCLUSIONS AND RECOMMENDATIONS

# 7.1 GENERAL

This section presents the conclusions and recommendations that result following the satisfactory completion of the final phase of the ATEC Digital Adaptation Study, the Field Test and Evaluation of the Digital Automated Technical Control (DATEC) equipment, performed in conjunction with the digital transmission communications test bed located at Fort Huachuca, Arizona.

### 7.2 CONCLUSIONS

The overall conclusion of this report is that the DATEC system successfully completed all requirements of the Statement of Work (S.O.W.). This conclusion is based on the satisfactory adaptation of ATEC hardware and software for digital application as evidenced by test data resulting from execution of the In-Plant Test Plan and Procedures and by the data evaluations presented in Section 2, Field Test Results (Individual Summaries of Tests and Scenarios), and Section 3, Field Test Results Relative to Statement Work Requirements in the Field Test and Evaluation Report. Section 3 of that test report was included in this report (see Section 6), because it addresses S.O.W. compliance directly, and because it provides a complete resume of the field test phase.

The specific objective of the field test was the collection of data to demonstrate confirmation of the tasks that are specified in Paragraph 4.1.12.7 of the Statement of Work. Summarizing those requirements, the field objectives were: (1) gather test data to demonstrate whether the DATEC system satisfied the S.O.W. and system design objectives for PA/FI/TA; (2) perform system level testing to collect data which can be used to evaluate the accuracy, usefulness, and effectiveness of the DATEC system in monitoring a digital transmission link; and (3) make recommendations which will enhance the usefulness and effectiveness of the DATEC system based on field test results. Contract amendment number 5 added as an additional test objective, the demonstration that the DATEC system could be used to monitor non FKV communications equipment by performing add-on field tests using the AVANTEK DR8A radio (DEB prototype) in place of the AN/FRC-162(V) radio.

The field test program successfully satisfied all the S.O.W. requirements and system performance objectives.

Test data recorded during the validation and system scenario evaluation test periods illustrate the adequacy of the monitor points selected by DATEC for monitoring the digital transmission system. Furthermore, the test data demonstrates the usefulness and effectiveness of the DATEC system in accomplishing performance assessment, fault isolation, and trend analysis of the digital transmission system.

The DATEC system ability to accomplish performance assessment and trend analysis was satisfactorily demonstrated and documented without compromise or qualification. The DATEC fault isolation capability was also successfully demonstrated but its success was somewhat diminished by technical controller comments that the system scan rate was not fast enough to satisfy their need for near real time fault isolation unless DATEC is used in the monitor immediate mode. The use of the monitor immediate mode was demonstrated effective during fault isolation but it requires that the normal system scanning be interrupted during its use. The comments relative to scanning rate did not apply to the SSFSS which was shown effective in detecting a loss of service condition and reporting it to the technical controller within 4 seconds regardless of the number of sites under nodal control jurisdiction.

The nodal control concept which would enable a single nodal controller to accomplish PA/FI/TA on a multiple site configuration was confirmed by the system scenario test results. The test results demonstrated the adequacy of the software in accomplishing all system objectives. Also demonstrated was the ease of software maintainability and field modifications afforded by the DATEC software program modularity and top-down structured programming design.

Equipment logs attest to the overall DATEC system reliability and performance. Hardware down time remained less than one day, cumulative, throughout the three month test period ending 30 June. Additional down time was experienced during the add-on testing due to a Caelus Disk problem.

The usefulness of the BEM and EPUT at providing a measure of the system bit error rate was demonstrated during the system scenario testing and the add-on testing. The BEM ability to provide a measure of the system BER to  $10^{-15}$  was shown to be an effective performance assessment measurement which permits a direct indication of system performance in a region previously unmeasurable by any other measuring instrument.

DATEC adaptability to other communications equipment types was successfully demonstrated by the test results from the validation and system scenario evaluation tests performed on the digital transmission system configured with the AVANTEK DR8A Microwave Radio in place of the AN/FRC-162(V) Microwave Radio.

#### 7.3 RECOMMENDATIONS

The field test recommendations address those areas of system operation where the modification or addition of system operating features could add to the overall usefulness and effectiveness of the DATEC system. Additional testing is also recommended which would help answer remaining questions.

Table 7-1 contains the recommended system operating features and their usefulness in enhancing the DATEC system operation.

All of the recommendations listed in Table 7-1 can be accomplished. Many of them require only minor changes to the software. The most difficult is that of increasing the DATEC system scan rate, for this involves both hardware and software changes. Yet, even this is possible.

# 7.3.1 User Desired Features Not Currently Part of DATEC

The DATEC system S.O.W. and operating objectives addressed those areas judged necessary in performing PA/FI/TA on a digital transmission system. The technical controllers expressed an interest in other system features which were not a part of the DATEC system objectives; however, they represent user preferences and are therefore listed below. These features can be provided by software program additions and are not considered difficult although items 1, 2 and 3 would be somewhat complicated. The features not currently part of DATEC are:

- 1. Generation of DCA reports.
- Circuit, digroup, link and trunk identification numbers with priorities.
- 3. Circuit altroute information.
- 4. Multiple CRTs for technical control and maintenance use.
- 5. Individual VF channel monitoring.
- Long term (90 day) storage of hourly averages of key parameters.
- 7. Remote switching of standby radios and multiplexers.
  (Recommended in the ATEC Digital Adaptation Study Report.)

# TABLE 7-1. RECOMMENDED SYSTEM OPERATING FEATURES VERSUS USEFULNESS

| Recommended System Features                         | Usefulness                                                                                                                                                                              |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Immediate scan interrupt capability              | Allows the nodal controller to gain immediate DATEC system control. Currently, the in-process measurement is completed before the operator gets control.                                |
| 2. Colocate SSFSS and CRT                           | System testing confirmed the need to colocate the SSFSS and CRT in order to provide timely, effective system monitoring.                                                                |
| 3. Increase system scan rate                        | Provides more effective usage of system during fault isolation by allowing the system to remain in normal scan instead of going to Monitor Immediate for parameter updates.             |
| 4. Update CRT display with a single computer output | Speeds up CRT output display time to an average of 10 seconds per display type, a factor of two improvement over the current method which outputs display formats and data separately.  |
| 5. CRT Paging within a single site                  | Allows the nodal controller<br>to access various site dis-<br>plays using only a single<br>page number.                                                                                 |
| 6. Provide automatic DATEC self-test                | Incorporation of a system self-test routine at the end of a scan could minimize DATEC system down time due to faulty DATEC equipment. Current system has self-test by operator command. |
| 7. Telemetry reroute capability                     | The capability to reroute the telemetry through a 3 kHz channel could help eliminate telemetry down time during an emergency situation.                                                 |

# TABLE 7-1. RECOMMENDED SYSTEM OPERATING FEATURES VERSUS USEFULNESS (Continued)

| 1   | Recommended System Features                                                                         | Usefulness                                                                                                                                               |
|-----|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8.  | Provide fast EPUT and BEM<br>Hits counter time bases                                                | Provides rapid update of FER and Hits during fault isolation testing using Monitor Immediate function.                                                   |
| 9.  | Constructable Monitor Im-<br>mediate scan sequence                                                  | Allows nodal controller to construct his own scan sequence.                                                                                              |
| 10. | Add display type argument to Monitor Immediate command                                              | Allows nodal controller to select display type as part of Monitor Immediate command instead of current method which requires a separate display command. |
| 11. | Provide CRT indication of:                                                                          | Alerts nodal controller that:                                                                                                                            |
|     | <ul><li>(1) Monitor Immediate usage,</li><li>(2) Baseband (A or B) being monitored by BEM</li></ul> | <ul><li>(1) The system is out of normal scan mode,</li><li>(2) BEM is connected to A or B Radio Baseband.</li></ul>                                      |
| 12. | Show highest level system alarm as part of major alarm warning indicator                            | Notifies nodal controller of highest level fault in the system.                                                                                          |
| 13. | Add alarm scanner and TlWB1<br>FER commands to Monitor<br>Immediate                                 | Provides additional fault isolation capability to the nodal controller when using Monitor Immediate.                                                     |
| 14. | Add alarm thresholds to the key trend analysis parameters                                           | Provides additional fault isolation information for system degradation analysis.                                                                         |

# 7.3.2 Recommendations For Future Consideration

Although the field test was successful in all areas explored, it left unanswered, several questions which only an extended operational field test could answer. Included among these are:

- 1. Long term trend analysis evaluation and usefulness
- Technical controller/DATEC interface in an operational multilink environment
- 3. DATEC use and effectiveness in scheduling maintenance
- 4. Usefulness of correlatable parameters
- 5. Usefulness of existing fault isolation capability in an operational multilink environment.

The answers to these questions would provide valuable information for future system specifications and design.

Appendix A EQUIPMENT DESCRIPTION

# Appendix A

## EQUIPMENT DESCRIPTION

#### A.1 GENERAL

DATEC consists of selected ATEC equipments adapted to monitor, measure, and analyze the quality of hybrid analog and PCM/TDM data signals. Basic functions are to convert the values of slowly varying dc signals to digital form, sense the status of two-state alarms in the monitored equipment, measure and analyze the signal/noise ratio, and amplitude levels. The DATEC equipment consists of a Test Set, Electronic Systems, AN/GYM-13(V)1, commonly referred to as a Programmable ATEC Element (PATE), configured for inservice voice frequency (ISVF) measurements; a Test Set Group, Communications Circuit, OQ-224(V), commonly referred to as a Measurement Acquisition Unit (MAU) with an adapted analog scanner and adapted baseband monitor option which is referred to as the Baseband Eye Monitor (BEM), and an Alarm-Monitor Group, OD-123(V)/G, commonly referred to as an Alarm Reporting Set (ARS). Input/output terminals supplement these configurations of the DATEC equipment.

#### A.2 PATE HARDWARE DESCRIPTION

The PATE, Figure A-1, used in conjunction with DATEC, is a computer controlled test set capable of providing continuous automatic performance monitoring and assessment of selected communication circuits. The PATE provides noninterfering, in-service monitoring and assessment of voice frequency (VF) circuits and inputs from digital data monitors. A functional block diagram of PATE is shown in Figure A-2. The PATE is operated in a stand-alone mode. The PATE consists of a standard 19-inch electronic equipment rack which contains a Rack Primary Power Panel, Scanner Power Supply, Scanner, Jack Panel, Signal Parameter Converter, an H-316R Computer, and a Disk Memory Unit. These units are described in the following paragraphs; also reference Figure A-2, PATE Functional Block Diagram.

## A.2.1 Rack Primary Power Panel

The Primary Power Panel (Figure A-3) contains a circuit breaker which functions as the rack ON-OFF switch, a pilot lamp, and a set of ac line filters. The panel provides ac power distribution to PATE components by means of a terminal strip to which all other rack units are connected.

# A.2.2 Scanner Power Supply

The Scanner Power Supply (Figure A-4) contains a regulated ±5 vdc power supply which provides operating power for the Scanner



FIGURE A-1. PATE RACK ASSEMBLY, FORT HUACHUCA, ARIZONA

1077-207



FIGURE A-2. PATE FUNCTIONAL BLOCK DIAGRAM



FIGURE A-3. RACK PRIMARY POWER PANEL



FIGURE A-4. SCANNER POWER SUPPLY PANEL

drawer. A POWER ON switch, 1-ampere fuse, and pilot light are mounted on the front panel. The pilot light indicates both the power ON condition and that the +5 vdc output is available.

## A.2.3 Scanner

The Form A Scanner shown in Figure A-5 provides the interface between the communications circuits and the Signal Parameter Converter (SPC). At Fort Huachuca, the scanner is the Form A type.

The Scanner drawer contains one circuit control card, one address decode card, and 10 relay cards. A slot is provided for a scanner test card, one of which is provided with each PATE.

The Form A Scanner relay card has 11 relays. Tenerelays are used to selectively switch data circuits to the SPC. The remaining relay functions as a fail-safe electronic switch to protect the data bus in the event of a relay failure. Collectively, the 10 circuit select relays provide the capability of scanning 100 two-wire Communication Circuit lines (half duplex) which are connected to the two scanner terminal blocks. Monitoring is performed in a noninterfering manner, using a high impedance bridge-on connection. Monitored points of the digital transmission system are automatically selected through these digitally controlled scanners by the PATE program software.

# A.2.4 Jack Panel

The Jack Panel shown in Figure A-6 contains two rows of jacks (26 in each row), horizontally oriented, with the transmit functions on the top row and the receive functions on the bottom row. It is used to perform PATE maintenance functions and to manually access and monitor internal data signals and control lines, external data signals and PATE-generated test tones without disturbing circuit configuration or interrupting service.

# A.2.5 Signal Parameter Converter (SPC)

The Signal Parameter Converter (Figure A-7) converts monitored channel information to a 16-bit digital word to be transferred to the H-316R computer via an input/output bus. The SPC contains control, measurement, and conversion logic to interface the computer with the MAC, MAD or other selected communication circuits under test. A regulated ±15 vdc power supply furnishes voltage for lamp drivers, relay driver, operational amplifiers, and other control functions. A regulated +5 vdc power supply furnishes logic level voltages. The power supplies are protected against overload and short circuits by current limiting circuits in the output stages and against internal component failure by an internal fuse.



FIGURE A-5. ANALOG SCANNER, FORM A



FIGURE A-6. JACK PANEL



FIGURE A-7. SIGNAL PARAMETER CONVERTER

The SPC drawer also contains input protection circuits to prevent damage from lightning surges, hits on the data lines or from incorrect signals applied through the Jack Panel. The input protection circuits consist of a fused line plus a lightning arrestor.

# A.2.6 H-316R Computer

The PATE operating program including the measurement parameters and operating thresholds, etc., are called up from the disk by the H-316R Computer as required to satisfy the functions commanded. Operating switches and displays are located on the computer front panel (Figure A-8). A key lock switch prevents unauthorized operation or manipulation of the logic functions. The computer comes equipped with a 16K core memory stack, high speed arithmetic package, real time clock, auto restart, and base sector relocation capability. The computer input/output (I/O) serial port operates at 1200 Baud. The I/O buffers are compatible with RS-232-C code. The PATE program can be operated either automatically or as an interrupt program through use of a local input/output (I/O) terminal.

# A.2.7 Disk Memory Unit

The Disk Memory Unit (DMU) shown in Figure A-9 is a dual, disk cartridge, servo controlled, drive unit and head positioner with one fixed and one removable cartridge. Each cartridge records at 2200 bits per inch (BPI), and has a 48-megabit storage capacity. Each cartridge has two surfaces, providing a total of four surfaces for each disk unit. However, the cartridges are redundant. The DMU provides a total storage capacity of approximately 2.5 megawords of 16 bits each. The DMU is contained in its own enclosure and is suitable for installation in a standard 19-inch electronics equipment rack. A self-contained regulated power supply furnishes all required power supply voltages.

## A.3 MEASUREMENT ACQUISITION UNIT (MAU) HARDWARE DESCRIPTION

The Measurement Acquisition Unit consists of power supplies, a Form A Scanner modified to include an events per unit time (EPUT) function, Jack Panel, and the Measurement Acquisition Control (MAC). A functional diagram of the MAU is shown in Figure A-10.

# A.3.1 Power Supplies

The Scanner power supplies (2) and the MAC power supplies (2) used in the MAU operate as constant voltage sources and are modular portions of the MAU. Short circuiting of any of the power supply output circuits will not cause failure or permanent damage in the power supply or associated circuitry.



FIGURE A-8. H-316R COMPUTER



FIGURE A-9. DISK MEMORY UNIT



FIGURE A-10. MEASUREMENT ACQUISITION UNIT FUNCTIONAL DIAGRAM

## A.3.2 Scanner

The Scanner is equipped with Form A plug-in relay cards and is similar to the Scanner used in the PATE, but with the addition of an events per unit time measurement capability (see Figure A-11).

# A.3.3 Jack Panel

The Jack Panel contains sufficient circuits to provide adequate reconfiguration and monitor capability of scanner inputs for maintenance and other uses unique to the DATEC.

# A.3.4 Measurement Acquisition Control (MAC)

The MAC provides the circuitry necessary to measure dc voltages and VF signals, transmit test signals, perform loopback functions, control connection of a local TTY, control and interface with options, and control and interface with the Form A Scanner. The MAC provides front panel controls capable of implementing the basic measurement and self-test functions (see Figure A-12).

# A.3.5 Baseband Eye Monitor

A Baseband Monitor (Figure A-13), adapted for this installation as a Baseband Eye Monitor (BEM), is the measurement interface between the analog communications equipment and the MAU. The BEM monitors and measures the baseband three-level partial response signal at a radio receiver. Also, EPUT circuitry measures events per unit time and large amplitude hits (within strap selectable time intervals) to indicate signal quality. The BEM measures eye dispersion, eye amplitude, and hits count. A functional diagram of the BEM is shown in Figure A-14.

## A.4 ALARM REPORTING SET (ARS) HARDWARE DESCRIPTION

The Alarm Reporting Set consists of the Alarm Scanner, Alarm Display, and the Master Alarm Display (MAD) used in various quantities depending on the individual installation. The Alarm Scanner can stand alone and be used as a local alarm sensor and display. If a remote display is desired, an Alarm Display can be used, driven by the Alarm Scanner. An Alarm Display can also be used with a MAD to select and display alarms from as many as 10 remote Alarm Scanners. A functional diagram of the ARS is shown in Figure A-15.

### A.4.1 Alarm Scanner

The Alarm Scanner (Figure A-16) provides the circuitry necessary to scan, detect, and display two-state alarm information; the capability for alarm acknowledgement; and the capability for selftest. The Alarm Scanner provides for connection to an Alarm Display and/or a MAD.



FIGURE A-11. BLOCK DIAGRAM OF SCANNER WITH EPUT FUNCTION



FIGURE A-12. MEASUREMENT ACQUISITION CONTROL



FIGURE A-13. BASEBAND EYE MONITOR



FIGURE A-14. BASEBAND EYE MONITOR FUNCTIONAL DIAGRAM



FIGURE A-15. ALARM REPORTING SET FUNCTIONAL DIAGRAM



FIGURE A-16. ALARM SCANNER

# A.4.2 Alarm Display

The Alarm Display (Figure A-17) provides the circuitry necessary to display alarm states detected by the Alarm Scanner, the capability for alarm acknowledgement, and the capability of self-test. The Alarm Display can be connected to either an Alarm Scanner or a MAD.

# A.4.3 Master Alarm Display (MAD)

The MAD (Figure A-18) provides the circuitry necessary to interface with up to 10 Alarm Scanners and display major alarm, any alarm, and alarm nonacknowledged status. The MAD, in conjunction with an Alarm Display, is also capable of displaying the alarm states of a selected Alarm Scanner. The MAD provides the 150 Baud ASCII interface to the modem.

### A.5 MODEM

The Modem (Figure A-19) serves as a variable data rate multiplex interface between DATEC and AN/FRC-162 Transceiver. In the transmit direction, the 75 and 150 Bps DATA outputs are summed, frequency-shift key modulated, and translated to 7140 Hz for input to the supervisory orderwire channel of the AN/FRC-162. In receive direction, the orderwire channel output is translated to data rates and selectively filtered for DATEC input.

#### A.6 PATE SOFTWARE DESCRIPTION

The software package controlling the PATE is divided into system operating and application sets. The system operating set contains the program executive which schedules which and when each application task is to be performed. The application set contains the IQCS modules. The modules perform the appropriate calculations and analyses required for each function.

#### A.7 OTHER EQUIPMENT

The I/O devices used with DATEC are an ADDS Model 980 CRT Display and Keyboard. It provides 24 lines at 80 characters per line. It provides editing, tab, erase, and insert controls for both individual characters or entire lines. In addition, a General Electric TermiNet 1200B ASR consisting of a printer, keyboard, and paper tape reader/punch as shown in Figure A-20 is utilized to provide hard copy prints of the CRT display and to punch paper tape(s) as needed for inputting data into the DATEC.



FIGURE A-17. ALARM DISPLAY



FIGURE A-18. MASTER ALARM DISPLAY



FIGURE A-19. DATA MODEM



FIGURE A-20. TERMINET 1200 ASR

## A.7.1 Printer

The Keyboard Send Receive (KSR) Printer has a keyboard similar to a standard office typewriter. The printer can print and transmit information generated locally by the keyboard or paper tape reader. It can receive information from a remote device (e.g., computer or other communication device) utilizing ASCII. All of the 94 printable ASCII characters can be printed.

The Printer is equipped with the following features:

- a. Rate switch selectable at 15 (LOW), 30 (MED), and 120 (HI) characters per second. For DATEC, the rate is set at HI (i.e., 1200 Baud).
- b. Horizontal Tabulation
- c. Vertical Format Unit (VFU)

## A.7.2 Pedestal

The pedestal provides a stable, compact support structure for the TermiNet 1200B Printer and accessories. The paper tape reader and punch are mounted on the left side of the pedestal. The reader and punch power supply and control assembly are mounted within the pedestal and the Reader and Punch Control (R&PC) card is installed in the Printer. The photoelectric tape reader can read and send characters at any rate selected by the Printer "RATE" select switch. The solenoid driver, paper tape punch is capable of operating at a maximum of 30 characters per second with the rate determined by the Printer "RATE" select switch.

# A.8 BASEBAND EYE MONITOR (BEM) SCHEMATICS

The 14 figures following present the detailed schematics of the BEM.



FIGURE A-21. LOGIC DIAGRAM EPUT TIME BASE (A1)

I - UNLESS OTHERWISE SPECIFIED:
PIN IS SPARE LAN HO IS SAD ON 1D, 1F, 15, 1H, 1J, 1K
PIN IS PWER & PIN & IS SAD ON 1B,
PIN IN SPINE & PIN T IS SAD ON 11, ZA, 2B, 2C, 2E, 2F, 2G, ZH, ZK, 2D
RESISTOR VALUES ARE IN ONMS
CAPACITOR VALUES ARE IN WICHOFARDS



FIGURE A-22. LOGIC DIAGRAM EPUT COUNTER (A2)

I - UNLESS OTHERWISE SPECIFED :
PIN & 15 PARE, IN N & 15 GAD ON 18, IC, IC, IE, IF, 2E, 2E, 2B, PN & 418 SPARE & PIN 1 S GAD ON 14, 28, 2B, 2C, 2D
CAPACITOR WALUES - ARE IN MICHORARADS
PRESISTOR WALUES ARE IN MICHORARADS



FIGURE A-23. LOGIC DIAGRAM INTERFACE NO. 1 (A3)



FIGURE A-24. LOGIC DIAGRAM INTERFACE NO. 2 (A4) REPRESENCE ATTEGRATE UNIVERSITATION OF SHE SINGLAND SECURE.



I - UMLESS OTHERWISE SPECIFIED: RESISTOR VALUES ARE IN OHMS CAPACITOR VALUES ARE IN INICROFARADS

FIGURE A-25. SCHEMATIC DIAGRAM SAMPLE AND HOLD (A5)



FIGURE A-26. SCHEMATIC DIAGRAM - COMPARATOR (A6)

1- UNLESS OTHERWISE SPECIPIED:
RESISTOR VALUES ARE IN OMMS
CAPACITOR VALUES ARE IN MICROFARADS



FIGURE A-27. SCHEMATIC DIAGRAM + COMPARATOR (A7)



FIGURE A-28. LOGIC DIAGRAM a CONTROL (A8)



FIGURE A-29. LOGIC DIAGRAM AGC AND OFFSET CONTROL (A9)



FIGURE A-29. LOGIC DIAGRAM AGC AND OFFSET CONTROL (A9) (Continued)



FIGURE A-30. LOGIC DIAGRAM PHASE LOCKED LOOP CONTROL (A10)



SCHEMATIC DIAGRAM INPUT BOARD (All) FIGURE A-31.



2 - PIN 7 15 - ROUND ON K1 & PIN 13 15 GUD ON K2 1 - PARTIAL REF DESIGNATIONS SHOWN - FREFIX WITH ASSY NO. OR UNIT NO OR BOTH

FIGURE A-32. SCHEMATIC DIAGRAM INPUT RELAY (A12/A13)



FIGURE A-33. MULTIPLEX SCHEMATIC DIAGRAM RECEIVE INPUT (A14)



FIGURE A-34. MULTIPLEX SCHEMATIC DIAGRAM INTERFACE UNIT (A15)

#### A 9 EVENTS PER UNIT TIME (EPUT) SCHEMATICS

The three figures following present the detailed schematics of the EPUT.



FIGURE A-35. LOGIC DIAGRAM EPUT COMMAND BOARD

4 - ON IE, 28, 2C, 20, 2 E, 26 & 2 H PIN 5 IS +5 V, PIN 10 IS 6ND
3 - ON IA, 18, 1C, 10, II, 1E, 16, 14, 2A, 2F & 21 PIN TIS 6ND, PIN 14 IS +5 V
2 - PARTIAL REFEE FILE OES 16 MATON RES SHOWN PRESIX THE
DESIGNATION WITH WHITH TO OR ASSY OES 16 MATON OR BOTH
I\* UNLESS OTHERWISE SPECIFIED, RESISTANCE VALUES ARE IN OHMS
CAPACITANCE VALUES ARE IN MERSPEARADS



FIGURE A-35. LOGIC MAGRAM EPUT COMMAND BOARD (Continued)



FIGURE A-36. LOGIC DIAGRAM EPUT COUNTER BOARD



FIGURE A-37. LOGIC DIAGRAM EPUT LATCH BOARD

Appendix B

COMPUTER PROGRAM TO PRODUCE PERFORMANCE PREDICTION TABLES

TRUNK PROGRAM FOR ATEC BASEBAND EYE PATTERN MONITOR

WRITTEN RY DR. W F ACKER. 16 WARCH 1977 REVISION
COMPUTES TABLES FOR DETERMINING THE SIGNAL TO VOISE RATIO AND
PREDICTING THE BIT ERROR RATE OF THE VICOM 4000 FROM THE CUITDUTS
OF THE ATEC ADAPTIVE—THPESHOLD BASEBAND EYE PATTERN MONITOR.

NEFDS SUBROUTINES DNLOLE, ADROLE, AND TABLE NEFDS FUNCTIONS DFYORM, QNORM, AND ZNORMO STORED IN AG3000/NORMAL

ASSUMES A PARTIAL RESPONSE EYE PATTERN WHICH WOULD NOMINALLY HAVE 3 LEVELS BUT BECAUSE OF IMPROPER INTERSYMBOL INTERFERENCE BETWEEN ADJACENT BAUDS EACH NOMINAL LEVEL HAS AN EXTRA LEVEL A DISTANCE EPSILON BROVE NOMINAL AND ANDTHER OFFST BY EPSILON BELOM NOWINAL MAKING 9 TOTAL LEVELS.

DEFINE "HOLAL" TO BE HALF THE NOMINAL DISTANCE BETWEEN LEVELS DEFINE "HOLSE" TO BE THE RWS AMPLITUDE OF THE GAUSIAN NOISE DEFINE "ADAPT" TO BE AN ADAPTIVELY CONTROLLED AMPLITUDE THE NINE DATA LEVELS ARE THEN ( +2\*DHALF + EPSLN ) ( +2\*DHALF - FPSLN ) ( 2ERO + EPSLN ) ( 2ERO + EPSLN ) ( 2ERO + EPSLN )

THE ABOVE NINE\_LEVEL SIGNAL IS FURTHER DEGRADED BY THE ADDITION OF GAUSSIAN NOISE. TO MEASURE THE RHS AMPLITUDE OF THIS NOISE (SO AS TO PROVICE DATA FOR COMPUTING BAUD ERROR PROBABILITIES).
VOLTAGE COMPARIORS. LOGIC, AND COUNTERS ARE USED TO MEASURE THE RELATIVE NUMBER OF BAUDS EXAMINED.
FOR THIS SUBROUTINE IT IS ASSUMED THAT BAUDS WITH AMPLITUDES IN EITHER OF THE FOLLOWING RANGES MILL BE COUNTED AS PSEUDO ERRORS.
FOR THIS SUBROUTINE IT IS ASSUMED THAT BAUDS WITH AMPLITUDES IN EITHER OF THE FOLLOWING RANGES MILL BE COUNTED AS PSEUDO ERRORS.
THE OFFSET THRESHOLD AMPLITUDE "ADAPT" IS CONTINUALLY ADJUSTED BY A CLOSED LOOP CONTROL SYSTEM SO AS TO KEEP THE PSEUDO ERROR RATE EQUAL TO THE PRESET RATIO "PER" (A SUBROUTINE INPUT VALUE).
THE AMPLITUDE OF THE PSEUDO FRROR THRESHOLD. "ADAPT", IS THEN USED (WITH THE AID OF TOOLS SOUTH AS THIS PROGRAM') FOR SIGNAL TO NOISE RATIO TREND ANALYSIS AND PREDICTION OF RIT ERROR RATE.

( NAMES ENDING IN "M" DESIGNATE ARRAYS ) FXTERNAL VARIABLES

|             | BITS TRANSM            | SEUDO ERROR           | JOO ERRORS A                       | FING ADAPT.                                | RANSMITTED            | S . NBR ROW             | OL INTERFERE                       | HALF                           | JES & NUMBER                       | STANT FOR AN          | SISE RATIOS             | VOLTAGE RAT            | MS SIGNAL R           | IO IN DECIBE                       | TO D RATIO            | TH RESPECT                        | JASTLINEAR T            |
|-------------|------------------------|-----------------------|------------------------------------|--------------------------------------------|-----------------------|-------------------------|------------------------------------|--------------------------------|------------------------------------|-----------------------|-------------------------|------------------------|-----------------------|------------------------------------|-----------------------|-----------------------------------|-------------------------|
| 4. BIT RATE | 1* PSEUDO BIT ERRORS / | SA BITS TRANSMITTED / | 1* NUMBER THAT NET PSEUDO ERRORS A | BY BEFORE THE A/D CONVERTER SETTING ADAPT, | 1. BIT ERRORS PER BIT | 14 NUMBER OF BERM VALUE | 14 AMPLITUDE INTERSYMBOL INTERFERE | DECISION LEVEL RATIO . EPSLN / | 1* NUMBER OF ATORY VALUES = NUMBER | IN . AIDRMINTABLE CON | 1+ DECISION LEVEL TO NO | IN RMS SIGNAL TO DHALF | 1. RMS NOISE TO TOTAL | IN SIGNAL TO NOISE RATIO IN DECIRE | 14 ADAPTIVE THRESHOLD | IN DERIVATIVE OF PER WITH RESPECT | IS ADAPTIVE THRESHLD OF |
| BITRATE     | PER                    | PERINVRS              | RDIVEAD                            |                                            | BERM(72)              | NBER                    | AIDRM(25)                          |                                | MAIDR                              | AIDR                  | DNR                     | SDHR                   | NSRM(72)              | SNRM(72)                           | ADRM(72)              | DPERDADM(72)                      | TMCNSTM(72)             |
| REAL        | REAL                   | REAL                  | PEAL                               |                                            | REAL                  | 35                      | REAL                               |                                | INTEGER                            |                       |                         |                        | PEAL                  | PEAL                               |                       | PEAL                              |                         |

SCRATCH PADS FOR TEMPORARY STOR

INTERNAL VARIABLES SCOATCH.T

: 000

B-1

```
INTEGER NOON

RED. STATCH

COMMAILE INTEGER NOON

RED. STATCH

COMMULE INTEGER NOON

RED. STORE

COMMULE INTEGER NOON

RED. STORE

CALL TABLE SEED NOON

RED. STORE

INTEGER INTEGER NOON

INTEGER INTEGER NOON

INTEGER INTEGER NOON

CALL LARGE INTEGER NOON

INTEGER INTEGER NOON

CALL LARGE INTEGER NOON

CALL TABLE INTEGER NOON

INTEGER INTEGER NOON

CALL LARGE INTEGER NOON

THOUSEN NOON

THE THOUSEN NOON

THOUSEN NOON

THE THOUSEN NOON

THE THOUSEN NOON

THOUSEN NOON

THE THOUSEN NOO
```

|     | _         |
|-----|-----------|
|     | 2         |
|     | ā         |
|     | DPERDADA  |
|     | ⋖         |
|     | ۵         |
|     | œ         |
|     | T         |
| н   | ភ         |
| Ŧ,  | *         |
|     | _         |
|     | •         |
|     | DER . ADR |
| 17  | ۵         |
|     | -         |
|     | -         |
|     | ~         |
|     | œ         |
|     | w         |
| - 6 | Ω         |
|     | •         |
|     | œ         |
|     | 7         |
|     | ར         |
|     | DAR       |
|     | -         |
| -   | AIDR      |
| -   | 0         |
| 3   | -         |
|     | -         |
|     | _         |
|     |           |
|     |           |
|     | w         |
|     | _         |
|     | 0         |
|     | ADROLE    |
|     | ᄌ         |
| 1   | =         |
|     | •         |
|     | 200       |
|     | *         |
|     | z         |
|     | -         |
|     | -         |
|     | -         |
|     | ズ         |
| ı   | =         |
| ı   | Ľ.        |
| - 1 | ₫.        |
| -   | UPROL     |
|     |           |

THE ABOVE WINE-LEVEL SIGNAL IS FURTHER DEGRADED BY THE ADDITION OF GAUSSIAN NOISE. TO MEASURE THE RMS AMPLITUDE OF THIS NOISE (SD AS TO PROVIDE DETA FOR COMPUTING BAUD ERROR PROBABILITIES). VOLTAGE COMPARITORS, LOGIC, AND COUNTERS ARE USED TO MEASURE THE RELATIVE NUMBER OF BAUDS DETECTED WITHIN "PSEUDO ERROR" DEFECTION AMPLITUDE RANGES PER TOTAL NUMBER OF BAUDS EXAMINED.

FOR THIS SUBGROUTINE IT IS ASSUMED THAT BAUDS WITH AMPLITUDES IN EITHER OF THE FOLLOWING RANGES WILL BE COUNTED AS PSEUDO ERRORS.

FROM ("DHALF") TO ("2\*OHALF" ADAPT")

THE OFFSET THRESHOLD AMPLITUDE "ADAPT" IS CONTINUALLY ADJUSTED BY A CLOSED LOOP CONTROL SYSTEM SO AS TO KEEP THE PSEUDO ERROR RATE FOULD. TO THE PRESET RATIO" PERROR" IS ADDROVING INDUIT VALUE.

THE AMPLITUDE OF THE PSEUDO ERROR THRESHOLD. "ADAPT". IS THEN USED WITH THE AID OF TOOLS SUCH AS THIS PROGRAW! FOR TREND ANALYSIS AND PREDICTION OF BAUD ERROR RATE ("BER" IN SUBROUTINE DNROVE")

## INPUT VARIABLES

1\* FOR DIAGNOSTIC PRINTOUT SET DEB
1\* COUNTS NEWTON-RAPHSON ITERATION
1\* NEWEST GUESS FOR VALUE OF ("ADA
TO ATTAIN THE SPECIFIED ERROR RATE
1\* INTEGER MULTIPLES OF "ONR"
1\* INTEGER MULTIPLES OF "ONR"
1\* INTEGER MULTIPLES OF "ONR"
1\* DESIGNATIVE OF "OR" WITH REPFE
1\* NATURAL LOG OF "PER" (THE TARGE
1\* NATURAL LOG OF "PER" (COMPUT
1\* ALNPERNEW LOG OF "PERNEW" (COMPUT
1\* ALNPERNEW STORAGE FOR SCRATCH P
1\* DEPIVATIVE OF "LNDERNEW" WITH R 1\* AMPLITUDE INTERSYMBOL INTERFERE 1\* DATA TO MOISE RATIO = (DHALF) / RATIO. EPSLN / DHALF 1\* VALUE OF PRESET PSEUDO ERROR RA ADAPTIVE THRESHOLD TO "D" RATIO DERIVATIVE OF "PER" WITH RESPEC .. INTERNAL VARIABLES ADR DERNEW DDERDANR LNTARGET LNTARGET ERRINDER ERROLEW THING DINDERDA DEBUG/F/ NRAPHSON REAL DI.DZ.D3.D4 OUTPUT VARIABLES AIDR PER LOGICAL DINTEGER REAL REAL REAL :: U

```
THING =

DENORM( +A.E) + 2.*DENDRM( +A) + DENORM( D2.A.E)
+ 2.*DENORW(D2.A.E) + 4.*DENORM(D2.A.) + 2.*DENORW(D2.A.E)
TERNS OF THING RELOW THIS COMMENT CARD ARE NEGLECTED
+ DENORM(D4.A.E) + 2.*DENORM(D4.A.E) + DENORW( .A.E)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ADJUST THE ANR VALUE BY NEWTOW-RAPHSON
ITERATION USING ALGORERNEW-PER, RATHER THAN
ICERNEW-PER, FOR THE FRROW TERM TO REDUCE
SCALING PROBLEMS AND IMPROVE CONVERGENCE.
Correspondences to the contract of the contrac
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            NEWTON RAPHSON CORRECTION. IF ANY, COMPLETED NOW EVALUATE THE RESIDUAL FPROR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  14 SKIPS THIS NEWTON RAPHSON CORRECTION ONLY THE FIRST PASS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              NOTICE (-0.5*LNTARGET) 15 POSITIVE.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   USE FULL-SIZED CORRECTION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              USE LIMITED CORRECTION TO REDUCE OVERHOOT TENDENCY A = A - LNPERVEW / DLNPERDA ENDIF NRAPHSON = NRAPHSON + 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            A . A - ERRLYPER / DLNPERDA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       DPERDANR = -THING / 8.
DLNPERDA = DPERDANR / PERNEW
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                NRAPHSON = 0
ERROLD = 1200.
ERRNEW = 1100.
DOWHILE ( ERRNEW -LT. ERROLD )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       IF ( ERRNEW .LT. 1000. )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ADR = ANROLD / DNR
DOFRDADR = DPERDANR * DNR
RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        THING =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ENDO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            -2
```

```
TRUE GIVES DIAGNOSTIC PRINTOUT
COUNTS NEWTON_RAPHSON ITERATIO
NEWEST APPROX TO DNR VALUE FOR
PREVIOUS VALUE OF DNRNEW
(BIT ERROR RATE COMPUTED FOR D
IBERNEW - BERN * 1.8-10 TO AV)
ABSOLUTE VALUE OF ERRBER USING
PREVIOUS VALUE OF ERRBER
DERIVATIVE OF BERNEW
                                                                                                                                                                                                                                                                                                                                                                                       1* (BAUDS IN ERROR) / (BAUDS TRANSM
1* (AMPLITUDE OF INTERSYMBOL INTE
WHFRE 2D & NOMINAL DISTANCF BETWEEN LEVELS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      IMPROVE FIRST APPROXIMATION OF DNR BY NEWTOW-RAPHSON ITERATION OF ERROLD = 10.E+10 ERROLD = 2.E+10 ARAPHSON = 0.E+10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             D / RMS NOISE AMPLITUDE. D DEF
SUBROUTINE DNR9LE(BER, AIDR, DNR)

( DATA-NOISE RATIO FOR NINE-LEVEL EYE )

DETERMINES DATA-NOISE RATIO (DNR) REQUIED TO PRODUCE SPECIFIED

BIT FROM RATE (DNG THREE LEVEL PARTIAL RESONNSE EYE PATTERN
WITH INTERSYMBOL INTERFERENCE (OF AMPLITUDE AIDR) DISTORTING THE
THREE-LEVEL EYE INTO A NINE-LEVEL EYE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 + 6. * GNORM( DNRNEW * (1.-AIDR) )
+12. * GNORM( DNRNEW * (1.-AIDR) ) / 16.

+ 6. * DORDM( DNRNEW * (1.-AIDR) ) / 16.

FRRBER * BERNEW * 1.F.10 - 8FR * 1.F.10 OLY THE FIRST PASS FROLD * ERROLD * ERREW * ABS(ERREP)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         IN SKIPS THIS ONLY THE FIRST PASS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                IFIDEBUGIPRINT,"NRAPHSON """NRAPHSON,"ERR RER #1.E+10 =".ERRBER
Nraphson = nraphson + 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        DOWHILE ( ERRNEW "LT. ERROLD ) :* SKIPS THIS ONLY THE FIR DANASHSON. GT.O ) :* SKIPS THIS ONLY THE FIR DANASHS = 6. * DFNORM! DNRNEW * (1.-AIDR) ) * (1.-AIDR) * (1..-AIDR) ) * (1.-AIDR) ) * (1.-AIDR) ) / ONGOLD * DNRNEW * (1.-AIDR) ) * (1.-AIDR) ) / DNROLD * DNRNEW * (1.-AIDR) ) / FNDIF FNDIF * (1.0AIDR) * (1.0AIDR) ) / FNDIF FNDIF * (1.0AIDR) * (1.0AIDR) ) / FNDIF FNDIF * (1.0AIDR) * (1.0AIDR) ) / FNDIF * (1.0AIDR) * (1.0AIDR) * (1.0AIDR) ) / FNDIF * (1.0AIDR) * (1.0AI
                                                                                                                                                                                                                                                    NEFDS DFNORM. GNORM. AND ZNORMO (IN "NORMAL" FILE)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 :
                                                                                                                                                                                                                                                                                                                       INPUT VARIABLES --
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             INTERNAL VARIABLES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         DEBUG/F/
NRAPHSON
DNRNEW
BERNEW
ERRNEW
ERROLD
DRVBER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          DNR - DNROLD
RETURN
FHD
                                                                                                                                                                                                                                                                                                                                                                                          BER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          OUTPUT --
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         LOGICAL
INTEGER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             REAL
                                                                                                                                                                                                                                                                                                                                                                                          PEAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    :
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           :
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               -20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     - 20
                                                                                                                                                                                                                                                                                                                                                                                                                                                          000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             000
                                                 0000000000
```

| EXTERNAL REAL REAL REAL REAL REAL REAL REAL RE            | SNAL  |                                         | HTI N. A. MENEDITH                                                                                              | OCT 1976                                |
|-----------------------------------------------------------|-------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| REAL REAL REAL REAL REAL REAL REAL REAL                   |       | VARTABLES                               | I NAMES ENDING IN "M"                                                                                           | DESIGNATE ARRAYS )                      |
| REAL<br>REAL<br>REAL<br>REAL<br>REAL<br>RAE<br>INTEC      |       | ADRM (72)                               | 14 AMPLITUDE                                                                                                    | THRESHOLD TO D RATIO=                   |
| PEAL<br>PEAL<br>PEAL<br>PATE<br>INTER<br>PORM             |       | BERM (72)                               | IN BIT ERROR                                                                                                    | 14 BIT FROMS DER BIT TRANSMITTED        |
| REAL<br>REAL<br>INTER<br>INTER<br>INTER<br>INTER<br>INTER |       | NSR4(72)                                | IN RMS NOISE                                                                                                    | TO TOTAL RMS SIGNAL                     |
| REAL<br>NATE<br>INTER<br>INTER                            | •     | PERINVPS<br>SNRM (72)                   | IN SIGNAL TO                                                                                                    | ISMITTED / PSEUDO ERR                   |
| INTER INTER INTER INTER                                   |       | THCNSTH(72)                             | IN ADAPTIVE                                                                                                     | THRESHLD QUASILINEAR                    |
| INTER<br>INTER<br>INTER                                   | *     | RDIVBAD                                 | S* NUMBER                                                                                                       | THAT NET PSEUDO ERRORS A                |
| INTE<br>INTE<br>INTE                                      | MAL   | NTERNAL VARIABLES                       | BY BEFORE THE A/D CO                                                                                            | IVERTER SETTING ADAPI                   |
| INTE                                                      |       | 2000                                    | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                         | 3                                       |
| FORM                                                      |       | NROW                                    | TANDER DE                                                                                                       | STEP FOR NIMBER OF                      |
| FORM                                                      |       | ILINE<br>N: INF                         | IN LINE COUNTER                                                                                                 | INF SPACE                               |
| FORM                                                      |       |                                         |                                                                                                                 |                                         |
|                                                           |       | STATEMENTS                              |                                                                                                                 |                                         |
| FORMAT                                                    |       | (141)                                   |                                                                                                                 |                                         |
| FORMAT                                                    |       |                                         |                                                                                                                 |                                         |
| FORMAT                                                    | 25    | (24X."BASEBAND                          | FYE PATTERN MONITOR TO                                                                                          | TABLES")                                |
| FORMAT                                                    | =     | H .23X. *PSEUD                          | O ERROR RATE EQUALS                                                                                             | 1.0 /*. 69.0)                           |
| Ĕ                                                         | 1     | HO.8X. BIT ER                           | ROR 6x N / S" . 7x . " S!                                                                                       | R".7X."A / D".6X.                       |
| FORMAT                                                    | ATIC  | H .11X. RATE                            | DERIV PER . IN. TATE 8X. "RATIO" . 6X. "IN DB" . 6X. "RATIO" . 6X                                               | .6X."RATIO".6X.                         |
| EDOMAT                                                    | 4 T   | A / D".5X."(CONSTANT")                  | TANT")                                                                                                          |                                         |
| FOOMA                                                     |       | (1H )                                   | . 19.61.3613.61                                                                                                 |                                         |
| FORMAT                                                    |       | (8X."NOMENCLATURES"                     |                                                                                                                 |                                         |
| 9                                                         | 17 (8 | RMAT (8X."D                             | THE TALE OF THE NO                                                                                              | THREE LEVEL EVE ".                      |
| 2 .1.                                                     |       | "1.E. DECISION LEVEL."                  |                                                                                                                 |                                         |
| 2                                                         | 47 (8 | 18X."N / 5 9ATI                         | . RMS NOISE TO                                                                                                  | AMS SIGNAL RATIO.")                     |
| FORMAT                                                    | 1 6   | PART (BX."SAR                           | STONAL POWER TO                                                                                                 | NOTSE POWER IN ".                       |
| FOPH                                                      | AT (8 | FORMAT (8X."A / D RATIO                 | •                                                                                                               | ADAPTIVE THRESHOLD AMPLITUDE TO ".      |
| FORMAT                                                    | KAT   | RATIO. ")                               | * DERIVATIVE OF                                                                                                 | DAE IND ERROR BATE ".                   |
| 3                                                         | H     | WITH RESPECT TO A / D                   | / 5 RATIO.")                                                                                                    |                                         |
| FOR                                                       | 1404  | VE THRESHOLD                            | ANT = DUASILINEAR TI                                                                                            | OLANGES ABOUND                          |
|                                                           | AND   | FREDR SIGNAL"                           | "STEADY STATE VALUES", 1.25% "WHEN BITE RATE = "FI4.0" AND FRROR SIGNAL", 1.25% "DIVIDER RATIO INTO DIA CONVERT | E E "FI4.0"                             |
|                                                           | F     | = ".F14.0 )                             |                                                                                                                 |                                         |
| FORMAT                                                    | AT IB | E 70 0                                  | * AMPLITUDE OF IT                                                                                               | INTERSYMBOL".                           |
|                                                           | ****  | *************************************** |                                                                                                                 | *************************************** |

R-6

WRITE (6.1)
WRITE (6.2)
WRITE (6.2)
WRITE (6.3)
WRITE (6.4)
WRITE (6.5)
WRITE (6.5)
WRITE (6.8)
WRITE (6.8)
WRITE (6.8)
WRITE (6.8)
WRITE (6.10)
WRITE (6.10)
WRITE (6.10)
WRITE (6.11)

ILINE # 0

LASTROM # MIN( NROW+36, NBFR )

DOUBLE SPACE IF NUMBER OF DATA ROW OF DATA ROWS LE.IS

WRITE (6.11)

IL NE # ILINE \* 1

FLAST CONDOLE SPACE IF NUMBER OF DATA ROWS LE.IS

WRITE (6.11)

IL NE # ILINE \* 1

FLOOR # ILINE \* 1

FLOOR # ILINE \* 1

FNDO

NINE # NINE \* 1

FNDO

WRITE (6.12)
WRITE (6.13)
WRITE (6.13)
WRITE (6.14)
WRITE (6.15)

U

THERE WERE NO ERRORS IN THE ABOVE ROUTIN DETECTED BY THE SP PRECOMPILER

AND THE SAME OF A THIS AROU IN EAST-

PREFORTY NOW PROCESSES THE "INCLUDE" TATEMENT, SO THAT
COMMON STATEMENTS CAN BE WRITTEN ONCE PUT AT THE BEGINNING
OF THE SOURCE INPUT, AND THEN INCLUDED IN SPECIFIC ROUTINES.
ALSO, COMMENTS PRECEDED BY IN ARE MOVED OUT TO COLUMN 40.
TWO ADDITIONAL SP STATEMENTS HAVE BEEN MECHANIZED. THEY ARE

U

B-8

| :                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LABEL                                               |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TRUNK PROGRAM FOR ATEC BASEBAND EYE PATTERN MONITOR | TRUNK PROGRAM FOR ATEC BASEBAND EYE PATTERN MONITOR WRITTEN BY DR. W F ACKER. 16 MARCH 1977 REVISION COMPUTES TABLES FOR DETERMINING THE SIGNAL TO NOISE RATIO AND PREDICTING THE BIT ERROR RATE OF THE VICOM 4000 FROM THE OUTPUTS OF THE ATEC ADAPTIVE-THRESHOLD BASEBAND EYE PATTERN MONITOR. NFFDS SUBROUTINES DNL9LE, ADR9LE, AND TABLE NEEDS FUNCTIONS DFNORM, ONORM, AND ZNORMO STORED IN A03000/NORMAL | ASSUMES A PARTIAL RESPONSE EYE PATTERN WHICH WOULD NOMINALLY HAVE  3 LEVELS BUT BECAUSE OF IMPROPER INTERSYMBOL INTERFERENCE BETWEEN  ADJACFYT BAUDS EACH NOWINAL LEVEL HAS AN EXTRA LEVEL A DISTANCE  EPSILON ABOVE NOMINAL AND ANOTHER OFFSET BY EPSILON BELOW NOMINAL  MAKING 9 TOTAL LEVELS.  DEFINE "DHALF" TO BE HALF THE NOMINAL DISTANCE BETWEEN LEVELS  DEFINE "EPSLN" TO BE FPSILON DEFINED ABOVE  DEFINE "ADAPT" TO BE AN ADAPTIVELY CONTROLLED AMPLITUDE  ( +2*DHALF + EPSLN ) | THE ABOVE NINE—LEVEL SIGNAL IS FURTHER DEGRADED BY THE ADDITION OF GAUSSIAN NOISE. TO MEASURE THE RMS AMPLITUDE OF THIS NOISE (50 AS TO PROVIDE DATA FOR COMPUTING BAUD ERROR PROBABILITIES). VOLTAGE COMPARITORS. LOGIC. AND COUNTERS ARE USED TO MEASURE THE RELATIVE NUMBER OF BAUDS. EXAMINED. FOR TOTAL NUMBER OF BAUDS EXAMINED. FOR THIS SUBROUTINE IT IS ASSUMED THAT BAUDS WITH AMPLITUDES IN EITHER OF THE FOLLOWING RANGES WILL BE COUNTED AS PSEUDO ERRORS. FROM ( +DHALF) TO ( +2*DHALF + ADAPT )  AND FROM ( +DHALF) TO ( +2*DHALF + ADAPT )  THE OFFSET THRESHOLD AMPLITUDE "ADAPT )  A CLOSED LOOP CONTROL SYSTEM SO AS TO KEEP THE PSEUDO ERROR RATE EQUAL TO THE PRESET RATIO "PER" ( A SUBROUTINE INPUT VALUE ).  THE AMPLITUDE OF THE PSEUDO ERROR THRESHOLD."ADAPT", IS THEN USED (WITH THE AID OF TOOLS SUCH AS THIS PROGRAW) FOR SIGNAL TO NOISE RATIO TREND ANALYSIS AND PREDICTION OF BIT ERROR RATE. | REAL BITRATE :* BIT RATE :* BIT RATE :* BIT RANSMITTED : PSEUDO BIT ERRORS / BITS TRANSMITTED REAL PERINVRS :* BITS TRANSMITTED / PSEUDO ERRORS RE DIVIDED :* NUMBER THAT NET PSEUDO ERRORS ARE DIVIDED BY BEFORE THE A/D CONVERTER SETTING ADAPT. BY BEFORE PHE A/D CONVERTER SETTING ADAPT. BY BEFORE PHE A/D CONVERTER SETTING ADAPT. BY BEFORE PHE A/D CONVERTER SETTING ADAPT. INTEGER NBER :* NUMBER OF BERM VALUES = NBR ROWS PER TABLE REAL AIDRM(25) :* AMPLITUDE INTERSYMBOL INTERFERENCE TO DECISION LEVEL RATIO = EPSLN / DHALF INTEGER NAIDR :* NUMBER OF AIDRM VALUES = NUMBER OF TABLES |
| 061-10                                              | 00000000                                                                                                                                                                                                                                                                                                                                                                                                       | 0000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 01                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 08-10-77                                            |                                                                                                                                                                                                                                                                                                                                                                                                                | 22222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , v v v v v v v v v v v v v v v v v v v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44444444NNN<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 20                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SP052 02                                            |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

... PAGE 1

```
LABEL .... PAGE
                                                                                                                                                                                                                                        / (BITRATE * T )
5 BITS INTO A/D ACCUMULATOR
OUTPUT FROM ZERO TO DHALF.
MSRM(NROW), SNRW(NROW).
5TM(NROW)
                                                                                                                                                                                                                                                                                                                                   FINISHED STORING A TABLE
CALL TABLE (BERM,NBER,AIDR,NSRM,SNRM,ADRM,DPERDADM,TMCNSTM,
PERINVAS,BITRATE,RDIVARD)
IF (DEBUG) WRITE (6.2)
                                                                                                                                           BEGIN A NEW R (
CALL DNROLE (BERNINROW).

CALL DNROLE (BERNINROW).

NSH (NROW) = 1, (IDNR * SDHR)

SNRW (NROW) = -20.*ALOGIO (NSRM(N)))

CALL ADROLE (AIDR.DNR.PER.ADRM(NR.)),

TMCNSTW (NROW) = - RDIVBAD * 4095 / (BITRATE * T)

TMCNSTW (NROW) = - RDIVBAD * 4095 / (BITRATE * T)

TMCNSTW (NROW) = - RDIVBAD * 4095 / (BITRATE * T)

TMCNSTW (NROW) = - RDIVBAD * 4095 / (BITRATE * T)

TMCNSTW (NROW) = - RDIVBAD * 4095 / (BITRATE * T)

TMCNSTW (NROW) = - RDIVBAD * 4095 / (BITRATE * T)

TMCNSTW (NROW) = - RDIVBAD * AND SNRW (NROW),

ADRM (NROW), SNRW (NROW),

ADRM (NROW), SNRW (NROW),

FINISHED A RO

FINISHED A RO
TRUM PROGRAM FOR ATEC BASEBAND EYE PATTERN MONITOR
                                      AIDR = AIDRM(NYABLF)
SDHR = SORT(2.* (1.* AIDR*AIDR/4.)
                                                                                                                                                                                                                                                                                                                                                                                                                          NTABLE = NTABLE + 1
IF ( NTABLE .LE. NAIDR ) GO TO 9006
                                                                                                                                                                                                                                                                                                                 NROW E NROW + 1
IF ( NROW -LE. NBER ) GO TO 9008
ENDO
                                                                                                       DOWHILE ( NROW .LE. NBER ;
GO TO 9007
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                     ENDO
PRINT."NORMAL END"
                                                                                 NROW = 1
                           CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           STOP
                                                                                                                                                                                                                                                                                                                                   4004
                                                                                                                                                                                                                                                                                                                                                                                                                                            5006
                           9006
                                                                                                                                   9006
  01-10
                          08-10-77
 SP052 02
```

| LINES/                |          | 84283   |         | 113343  | 47666   | 19281 |  |
|-----------------------|----------|---------|---------|---------|---------|-------|--|
| ELAPSED<br>114E (SEC) | 90.      | •10     | 000     | .00     | .17     | .43   |  |
|                       | OVERHEAD | PHASE 1 | PHASE 2 | PHASE 4 | PHASE 5 | TOTAL |  |

THERE WERE NO DIAGNOSTICS IN ABOVE COMPILATION 26K WORDS WERE USED FOR THIS COMPILATION

# SUBROUTINE ADROLE (AIDR.DNR.PER.ADR.DPERDADR)

ASSUMES ADR FOR NINE-LEVEL EYE ) MOD 20/SEPT/76 W F ACKER
ASSUMES A PARTIAL RESPONSE EYE PATTERN WHICH WOULD NOMINALLY HAVE
3 LEVELS BUT BECAUSE OF IMPROPER INTERSYMBOL, INTERFERENCE BETWEEN
ADJACENT BAUDS EACH NOWINAL LEVEL HAS AN EXTRA LEVEL A DISTANCE
EPSILON ABOVE NOMINAL AND ANOTHER OFFSET BY EPSILON BELOM NOMINAL
MAKING 9 TOTAL LEVELS.
DEFINE "NOMINAL TO BE HALF THE NOMINAL DISTANCE BETWEEN LEVELS
DEFINE "NOTSE" TO BE THE RMS AMPLITUDE OF THE GAUSIAN NOTSE
DEFINE "ADAPT" TO BE AN ADAPTIVELY CONTROLLED AMPLITUDE
THE NINE DATA LEVELS ARE THEN

( \*ZEMD \* EPSILN ), ( \*ZEMD \* EPSILN )

( \*ZEMD \* EPSILN ), ( \*ZEMD \* EPSILN )

( \*ZEMD \* EPSILN ), ( \*ZEMD \* EPSILN )

THE ABOVE NINE—LEVEL SIGNAL IS FURTHER DEGRADED BY THE ADDITION OF GAUSSIAN NOISE.

(2) AS TO PROVIDED DATA FOR COMPUTING BAUD ERROR PROBBBLITIES).

VOLTAGE COMPARITORS, LOGIC, AND COUNTERS ARE USED TO MEASURE THE RELATIVE NUMBER OF BAUDS DETECTED WITHIN "PSEUDO ERROR" DETECTION AMPLITUDE RANGES PER TOTAL NUMBER OF BAUDS WITH AMPLITUDES IN EITHER OF THE FOLLOWING RANGES WILL BE COUNTED SAY PSEUDO ERRORS, FOR THIS SUBROUTINE IT IS ASSUMED THAT BAUDS WITH AMPLITUDES IN EITHER OF THE FOLLOWING RANGES WILL BE COUNTED AS PSEUDO ERRORS, FROM (\*DHALF) TO (\*2\*DHALF \* ADAPT)

THE OFFSET THRESHOLD AMPLITUDE "ADAPT" IS CONTINUALLY ADJUSTED BY A CLOSED LOOP CONTROL SYSTEM SO AS TO KEEP THE PSEUDO ERROR RATE COULL TO THE PRESET RATIO "PER" (A SUBROUTINE INDUT VALUE).

THE AMPLITUDE OF THE PSEUDO ERROR THRESHOLD" "ADAPT", IS THEN USED (WITH THE AID OF TOOLS SUCH AS THIS PROGRAM) FOR TREND ANALYSIS AND PREDICTION OF BAUD ERROR RATE ("BER" IN SUBROUTINE DNR9LE)

## INPUT VARIABLES

\*\* AMPLITUDE INTERSYMBOL INTERFERENCE TO DATA INDEA TO NOISE SALIO \*\* (DHALF) / NOISE RATIO. EPSLN / DHALF \*\* VALUE OF PRESET PSEUDO ERROR RATE AIDE REAL U

#### OUTPUT VARIABLES ! UUU

14 ADAPTIVE THRESHOLD TO "D" RATIO" ADAPT/DHALF 14 DERIVATIVE OF "PER" WITH RESPECT TO "ADR" DPERDADR

### INTERNAL VARIABLES : :

1\* FOR DIAGNOSTIC PRINTDUT SET DEBUG = TRUE 1\* COUNTS NEWTON-RAPHSON ITERATIONS 1\* NEWEST GUESS FOR VALUE OF ("ADAPT","NOISE) DEBUG/F/ NRAPHSON LOGICAL INTEGER

B-13

~

```
TO ATTAIN THE SPECIFIED ERROR RATE

1* PREVIOUS GUESS FOR "ANR", THAT IS OLD "A",

1* INFEGER MULTIPLES OF "ONR"

1* FEDLUM "MOISE RAID, THAT IS, (AIDR & DNR),

1* FEDLUM ERROR COMPUTED USING NEWEST GUESS "A",

1* NATURAL LOG OF "PER" WITH RESPECT TO "ANR",

1* NATURAL LOG OF "PER" (THE TARGET VALUE)

1* NATURAL LOG OF "PER" (COMPUTED USING "A")

1* ASSOLUTE VALUE OF FRRUMPER

1* ASSOLUTE VALUE ERRNEW

1* PREVIOUS VALUE ERRNEW

1* TEMPORARY STORAGE FOR SCRATCH PAD NUMBERS

1* TEMPORARY STORAGE FOR SCRATCH PAD NUMBERS

1* DERIVATIVE OF "LNPERNEW" WITH RSPT TO "ANR"
                                                                                                                                                                                                                                                                                                                                                                                         A = E + ZNORMO( 4, # PER) ;* A=INVERSE OF 2*FIRST TERM PERNEW D1 = 1, # DNR DNR )
D2 = 2, # DNR D3 = 3, # DNR D4 = 4, # DNR D5 = 4, # DNR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       DFNORM( +A=E) + 2**DFNORM( +A) + DFNORM( +A+E) + 2**DFNORM(C-A) + DFNORM(C-A) + C**DFNORM(D2-A) + DFNORM(D2-A) + DFNORM(D2-A) + DFNORM(D4-A) + DFNORM(D4-A) + DFNORM(C-A) 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ADJUST THE ANR VALUE BY NEWTON-RAPMSON
ITERATION USING ALGG(PERNEW-PER) RATHER THAN
IERNEW-PER) FOR THE ERROR TERM TO REDUCE
SCALING PROBLEMS AND IMPROVE CONVERGENCE.
                                                                                                                                                                                                                                                                                                                  IF (.NOT. ( ERRNEW .LT. 1000. )) GOTO 9003
CORRECTION ONLY THE FIRST PASS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       NOTICE (-0.5%LNTARGET) IS POSITIVE.
IF (.NOT. ( ERRLNPER .LE. .0.5%LNTARGET ))GOTO 9004
USE FULL.SIZED CORRECTION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              A = A - ERRLNPER / DLNPERDA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          NRAPHSON = 0
ERRUE = 1200.
ERRNEW = 1100.
DOWHILE! ERRNEW .LT. ERROLD )
GO TO 9001
CONTINUE
                                                                                              PERNEW
OPERDANR
LNTARGET
LNPERNEW
ERRNEW
THING
DLNPERDA
                               ANROLD
01.02.03.04
                               2006
    U
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            u
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     UU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         U
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        U
```

01.190

SP052 02 08-10-77

```
1 + ONORM( +A=E) + 2, # ONORM( A) + ONORM( D) + ONORM(D] -E) - 2, # ONORM(D] +E) - 2, # ONORM(D] -A + ONORM(D] -
                                                                                                                                                                                                                                                                                                                                                         NEWTON RAPHSON CORRECTION. IF ANY. COMPLETED NOW EVALUATE THE RESIDUAL ERROR
                                         USE LIMITED CORRECTION TO
REDUCE OVERHOOT TENDENCY
A = A - LNPERNEW / DLNPERDA
CONTINUE
ENDIF
NRAPHSON = NRAPHSON + 1
CONTINUE
ENDIF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ADR = ANROLD / DNR
DPERDADR = DPERDANR * DNR
RETURN
END
GD TO 9005
ELSE
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1006
C
                                                                                                                                                                                                              5006
                                                                                                                                                                                                                                                                                                    8006
                                   ,
```

| 2/H      |  |
|----------|--|
| *SR      |  |
| 02-19-75 |  |
| DATE     |  |
| EDIT     |  |

| LINES/  | MINUTE     |          | 83755   |         | 107992  | 45940   | 19188 |
|---------|------------|----------|---------|---------|---------|---------|-------|
| ELAPSED | TIME (SEC) | 10.      | 60.     | 00.     | .00     | .10     | 14.   |
|         |            | OVERHEAD | PHASE 1 | PHASE 2 | PHASE 4 | PHASE 5 | TOTAL |
|         |            |          |         |         |         |         |       |

THERE WERE NO DIAGNOSTICS IN AROVE COMPILATION 26K WORDS WERE USED FOR THIS COMPILATION

```
* TRUE GIVES DIAGNOSTIC PRINTOUT
COUNTS NEWTON-RAPHSON ITERATIONS
* NEWEST APPROX TO DNR VALUE FOR SPECIFIED BER
* PREVIOUS VALUE OF DNRNEW
* (BIT ERROR RATE COMPUTED FOR DNRNEW
* RERNEW - BER) * 1.E.10 TO AVOID UNDERFLOW
* ABSOLUTE VALUE OF ERRNEW
* DERIVOUS VALUE OF ERRNEW
* DERIVATIVE OF BERNEW WAT DNRNEW
                                                                                                                                                                                                                                                                                          IMPROVE FIRST APPROXIMATION OF DNR BY NEWTON-RADHSON TERATION = 10.E+10 to avoin underflow to 2.F+10
SUBROUTINE DNR9LE(BER.aIDR.DNR) ; # MOD-10/SEPT/76 W F ACKER (DATA-NOISE RATIO FOR MINE-LEVEL FYE )
DETERMINES DATA-NOISE RATIO (DNR) REQUIRED TO PRODUCE SPECIFIED BIT FRROR RATE (BER) FOR THREE LEVEL PARTIAL RESPONSE EYE PATTERN WITH INTERSYMBOL INTERFERENCE (OF AMPLITUDE AIDR) DISTORTING THE THREE-LEVEL EYE INTO A NINE-LEVEL EYE
                                                                                                                                                                                                                                                                    (BAUDS IN ERROR) / (BAUDS TRANSMITTED)
(AMPLITUDE OF INTERSYMBOL INTERFERENCE) / D
WHERE 2D = NOMINAL DISTANCE BETWEEN LEVELS
                                                                                                                                                 D / RMS NOTSE AMPLITUDE. D DEFINED ABOVE
                                                                                                                                                                                                                                                                                                                                                                                                         NEFDS D JORM, ONORM, AND ZNORMO (IN "NORMAL" FILE)
                                                                                                                                                                                                                                                                                                                                                                                           T. ( NRAPHSON .GT.0 11G0T0 9003
                                                                                                                                                                                                                                                                                              DNRNEW & ZNORMO(BER/1.5) / (1. - AIDR)
                                                                                                                                                                                                                                                                                                                                                                    DOWHILE ( EPRNEW .LT. FRROLD )
GO TO 9001
CONT: UE
IF(.) To( NRAPHSON .GT.0 );GI
                                                                                                                                                                                  DEBUG/F/:*
NRAPHSON:*
DNROLD :*
SERNEW :*
ERRBER :*
                                                                                                                                                  :
                                                                                                    ::
                                                                                                                                                                 INTERNA VARIABLES
                                                                                  INPUT V STABLES --
                                                                                                                                                                                                                                                  ERROLD
DRVBER
                                                                                                   BER
                                                                                                                                                                                                                                                                                                                                                    0
                                                                                                                                                 DNR
                                                                                                                                                                                 LOGICA
INTEGER
PEAL
REAL
REAL
REAL
REAL
REAL
REAL
                                                                                                                                                                                                                                                                                                                                                    MRAPHS
                                                                                                                                                                                                                                                                                                                                                                                                          á
                                                                                                                              DUTPUT
                                                                                                                                                                                                                                                                                                                                  ERROLD
                                                                                                                                                 REAL
                                                                                                             REAL
                                                                                                                                                                    :
                                                                                                                                :
                                                                                                                                                                                                                                                                                                                                                                                                                                                               6006
                                                                                                                                                                                                                                                                                                                                                                                        9002
                                                                                                                                                                                                                                                                                                      000
          00000000000
                                                                                                                     000
                                                                                                                                                        000
```

SP052 02 08-10-77 01-191

```
| PERNEW = (
| + 6. * ONORM( DNRNEW * (1.-AIDR) ) |
| - 6. * ONORM( DNRNEW * (1.-AIDR) ) | 16.
| - 12. * ONORM( DNRNEW * (1.-AIDR) ) | 16.
| - 12. * ONORM( DNRNEW * (1.-AIDR) ) | 16.
| - 12. * ONORM( DNRNEW * (1.-AIDR) ) | 16.
| FRRBER = BERNEW * (1.-AIDR) | 16.
| FRRBER = BERNEW * (1.-AIDR) | 16.
| FRRBER = BRRNEW * (1.-AIDR) | 16.
| FRRNEW = ABS(ERRER) | 16.
| CONTINUE | ENDIE | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERROLD | 60 TO 9002 | 16.
| FRRNEW * LT. ERR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0001
                      ************
```

SP052 02 08-10-77 01-191

EDIT DATE 02-19-75 #SR 2/H

ELAPSED LINES/ TIME (SEC) WINUTE

OVERHEAD .07 68749
DHASE 1 .06 68749
DHASE 2 .05 80193
DHASE 5 .08 47063
TOTAL .27 15075

THERE WERE NO DIAGNOSTICS IN ABOVE COMPILATION 26% WORDS WERE USED FOR THIS COMPILATION

```
( NAMES ENDING IN "H" DESIGNATE ARRAYS ;
                                                                                                                                                                                                                                                                                                                                                                                                             * ADAPTIVE THRESHOLD AMPLITUDE TO ".
                                                                                                                                                                                                                                                                                                                                                                                                                             - DERIVATIVE OF PSEUDO ERROR RATE ".
                                                                                                                                                                                                                                                                                                                                                       FORMAT (24%.BASEBAND EYE PATTERN MONITOR TABLES")
FORMAT (1140.28%.TABLE FOR AIDR EDUALS ".F9.4 )
FORMAT (1140.28%.TABLE FOR AIDR EDUALS 1.0 /".F9.0)
FORMAT (1140.88%.BIF EROOF.68%.N / S..TX."SNR".7%."A / D".6X%.
"DERIV PER.TX."TIME")
FORMAT (114.11%.RATE".8%."RATIO".6%%.
"WAT A / D".8%."CONSTANT")
FORMAT (5%.EIZ.3.FI3.6.F9.2.3FI3.6)
SUBROUTINE TABLE (BERM, NBER, AIDR, NSRM, SNRM, ADRM, DPERDADM, TMCNSTM, PERINVRS, BITRATE, RDIVBAD )
                                                                                                                                                                                                   NUMBER OF LAST ROW ON PAGE
19DEZ REGISTER FOR NUMBER OF ROWS
LINE COUNTER
LINE COUNTER FOR LINE SPACER
                                  MARCH 1977
0CT 1976
                                  ALTERED BY W. F. ACKER
WRITTEN AY: 9. A. MEREDITH
                                                                                                                                                                                                                                                                                                                                           FORMAT (1H )
FORMAT (8X."NOMENCLATURE:")
                                                                                                                                                                                                                                                                                                                                                                                                                            (8X."DERIV PER WRT
                                                                                                                                                                                                                                                                                                                                                                                                            FORMAT (8X."A / D RATIO
                                                                                                                                                                                                     ::::
                                                          EXTERNAL VARIABLES
                                                                                                                                                                                    INTERNAL VARIABLES
                                                                                                                                                                                                                                           FORMAT STATEMENTS
                                                                                                                                                                                                   LASTROW
                                                                                                                                                                                                                                                                                                                                                                                                     "DECIBLES.")
                                                                                                                                                                                                   INTEGER LASTROV
INTEGER NROW
INTEGER ILINE
INTEGER NLINE
                                                                                                                                                                                                                                                                                                                                                                                                                     FORMAT (8X."DE
                                                                                                                                                                                                                                                             CIHI
                                                                                                          REAL
REAL
REAL
REAL
REAL
INTEGER
REAL
                                                                                                                                                                                                                                                                   FORMAT
FORMAT
FORMAT
FORMAT
                                                                                                                                                                                                                                                             FORMAT
                                                                                                  REAL
                                                                                                                                                                                      :
                                                             :
                                                                                                                                                                                                                                              :
                                                                                                                                                                                                                                                                                                                                    2
                                                                                                                                                                                                                                                                                                                                             121
                                                                                                                                                                                                                                                                                                                                                                                     12
                                                                                                                                                                                                                                                                                                                                                                                                           16
                                                                                                                                                                                                                                                                                                                                                                                                                          17
```

~

8-21

04-10-77 Spues 05

01.191

161.10

SP052 02 08-10-77

```
105 9008 CONTINUE
106 WRITE (6.11)
107 OC ENDO
110 C ENDO
111 WRITE (6.12)
112 WRITE (6.13)
113 WRITE (6.14)
114 WRITE (6.14)
115 WRITE (6.14)
116 WRITE (6.14)
117 WRITE (6.14)
118 WRITE (6.15)
119 9001 IF(NROW LT. NBER) GO TO 9002
120 C ENDO
121 RETURN
```

| 5/H      |
|----------|
| ~        |
| *SR      |
| 02-19-75 |
| DATE     |
| EDIT     |

|           |   | ELAPSED<br>TIME (SEC) | LINES/<br>MINUTE |
|-----------|---|-----------------------|------------------|
| 00000     | 9 | 20.                   |                  |
| 0 9 5 5 8 | _ | .10                   | 10564            |
| .15<br>39 | 2 | 00.                   |                  |
| .15       | 4 | 90.                   | 109637           |
| •30       | 5 | .15                   | 47985            |
|           | Y | •39                   | 18410            |

THEPE WERE NO DIAGNOSTICS IN ARDVE COMPILATION 26K WORDS WERE USED FOR THIS COMPILATION

TOTAL TIME

| SP052 03                                                                     | 74-01-80                                                                                                                 |                               | 1.192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                        |                                                                                        |                                                                 | PAGE                                                                                   |  |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| ORIGIN                                                                       | DATE                                                                                                                     | MODULE                        | ENTRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DATE MODULE ENTRY LOCATION                                                                                                                                    | ENTRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ENTRY LOCATION                                                                                                                                                                                       | FNTRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ENTRY LOCATION                                                     | ENTRY L                                | ENTRY LOCATION                                                                         | ENTRY L                                                         | ENTRY LOCATION                                                                         |  |
|                                                                              |                                                                                                                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SUBPROGRAI                                                                                                                                                    | MS INCLUD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SUBPROGRAMS INCLUDED IN DECK                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                        |                                                                                        |                                                                 |                                                                                        |  |
| 023434<br>022020<br>021510<br>021124<br>020536<br>020536<br>020332<br>020072 | 023434 08/10/77 022020 08/10/77 DR9L 021510 08/10/77 ABLE 020536 09/14/76 DFNO 020532 09/14/76 QNOR 020072 09/14/76 ZNOR |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 023434<br>023450<br>022450<br>022020<br>021744<br>021124<br>021124<br>0205050<br>020506<br>020506<br>020506<br>020506<br>020506<br>020506<br>020506<br>020506 | FORTRAN MS CBTAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0PTION FORTRAN<br>023434<br>027450<br>021744<br>021124<br>021124<br>020550<br>020578<br>020578<br>020578<br>020578<br>020578<br>020578<br>02010<br>020072<br>020110<br>020072<br>020117446<br>017324 | STEM LIB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | > \<br>\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \                       |                                        |                                                                                        |                                                                 |                                                                                        |  |
| 017236<br>017100<br>016770<br>016442                                         | 01/10/73<br>01/10/73<br>01/10/73                                                                                         | 73 FALG<br>73 FALG<br>73 FEXP |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               | SORT<br>ALOGT<br>EXP<br>FWRD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 017236<br>017102<br>016770<br>016613                                                                                                                                                                 | ALOGIO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    | ALOG .FENC.                            | 017106                                                                                 | .FDEC.                                                          | 016616                                                                                 |  |
|                                                                              |                                                                                                                          |                               | TERMENT OF STREET OF STREE | 016645<br>016645<br>016645<br>016664<br>016512<br>016512<br>016535<br>016564                                                                                  | TECONO TO THE TE | 001664<br>001664<br>001664<br>001664<br>001664<br>001664<br>001664<br>001664<br>001664<br>001664<br>001664<br>001664<br>001664<br>001664<br>001664<br>001664<br>001664<br>001664                     | POCON  | 016521<br>016504<br>016661<br>016560<br>016516<br>016560<br>016560 | FFIL<br>PICINT<br>FILL<br>A24<br>CA33  | 016622<br>016514<br>016512<br>016512<br>016456<br>016544<br>016442<br>016442           | 0.000000000000000000000000000000000000                          | 016623<br>016611<br>016507<br>016508<br>016508<br>016520<br>016663<br>016663<br>016563 |  |
| 012756                                                                       | 012756 75,02714 FDIO                                                                                                     | 9                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               | FERST PRETING  |                                                                                                                                                                                                      | TECHNOLING THE PROPERTY OF THE |                                                                    | 0.000000000000000000000000000000000000 | 015750<br>015712<br>013557<br>013751<br>013056<br>013074<br>013074<br>013074<br>013074 | PDC<br>101<br>101<br>FFRVR<br>FFFLG<br>FFFLG<br>CCMMAA<br>FCCCM | 016001<br>015365<br>013566<br>013011<br>016027<br>016027<br>013156<br>013157<br>013150 |  |

| SE 2     | ATION                      | 012510<br>012224<br>012254<br>012255                       | 011610<br>011514<br>011645<br>011504<br>010203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 007613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 005674                               | 4511                                           | 770600                                       | ۲013                     |
|----------|----------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------|----------------------------------------------|--------------------------|
| PAGE     | ENTRY LOCATION             | 7 4 6 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1                | ~ ~ m m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FMDB, 007613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . GPUT 00                            | .GR178 00451:                                  | .GR985 003                                   | , GUSWH 002103           |
|          |                            |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                |                                              |                          |
|          | ENTRY LOCATION             | 012360<br>R 012222<br>012270                               | 011550<br>011040<br>12 011502<br>010750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FPARAM 007576<br>FRENT 007371<br>GET 006440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R 006430<br>005671<br>IT 005674      | N 005065                                       | GR390 003507<br>GR984 003045<br>ORRPT 003362 | U 002197                 |
|          | ENTRY                      | - XXER<br>LAXERR<br>FRG<br>FX4                             | S. REG.<br>1585.<br>FYSWS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FRENT GET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GPUTR<br>PUTBK<br>GAPUT              | . GX186                                        | . GR390                                      | GRPRV                    |
|          | ENTRY LOCATION             | 012231<br>012333<br>012343<br>012466                       | 011666<br>011637<br>011674<br>011676<br>010750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 007612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0056430<br>005671<br>005671          | 005072<br>005064<br>004504                     | GR99X 003000<br>SCRPT 003102                 | 002105<br>002107<br>SIZE |
|          | ENTRY L                    | BUGG<br>FYIO                                               | ANYERR<br>FXCODE<br>FXSW1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PCOV<br>LINSZ<br>GFLG<br>WTREC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GGETR<br>GPTBK<br>GAPTB              | OPEN . GXLAB                                   |                                              | GRCVY                    |
|          | ENTRY LOCATION             | 013614<br>012220<br>012334<br>012254<br>012464             | 012350<br>011517<br>011625<br>012144<br>011137<br>011676<br>010202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 007623<br>007621<br>007574<br>007367<br>007336<br>007172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 006442<br>006430<br>005666<br>005666 | 005042<br>005064<br>004374<br>004374           | 003412<br>003370<br>003077<br>003075         | GLREA DO2200             |
|          | ENTRY L                    | FCNVC 013614<br>FXEM. 012220<br>KIND 012334<br>CLLR 012464 | FXALT<br>FXALT<br>FXALT<br>FXALT<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST<br>FREST | SETU.<br>ASCB.<br>NHANO<br>SETIN<br>SETUN<br>GETBK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 6CL SR<br>COPY<br>6ACOP            | GAOPE<br>GACLS<br>GACLS                        | GR375<br>GARTB<br>GR979<br>ASCII             | GLREA.                   |
|          | DATE MODULE ENTRY LOCATION |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 006440<br>006430<br>005666<br>005674 |                                                |                                              | . GOVRL 002107           |
| 1.192    | ENTRY                      | FCAVL<br>FEDF.<br>FXEM<br>LSTMS<br>FX2                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GOPNP<br>GCOPY<br>PUT                |                                                |                                              |                          |
|          | HODOLE                     | FEOF                                                       | FXER<br>FOPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FORT FARM SECTION OF S | GPTB                                 | 600E<br>600E<br>600E<br>600E                   |                                              | GINI                     |
| 77-01-80 | DATE                       | 74/01/11                                                   | 011030 75/02/14 FXER<br>010750 73/05/24 FXIT<br>010160 74/11/06 FOPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07/04/65<br>73/09/05<br>73/09/03<br>03/05/73<br>74/10/24<br>01/03/66<br>07/07/69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 07/07/69                             |                                                | 75/02/03<br>74/12/03<br>75/02/05<br>75/02/05 | 002100 03/07/66 GINI     |
| 50 250dS | 08161N                     | 012702<br>012536<br>012210                                 | 011030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 007722<br>007574<br>007374<br>007366<br>007336<br>007336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 006430                               | 005072<br>005064<br>004374<br>004210<br>004122 | 003574                                       | 002100                   |

SP052 03 08-10-77 1-192

ENTRY LOCATION DATE MODULE ENTRY LOCATION ENTRY LOCATION ENTRY LOCATION ENTRY LOCATION ORIGIN

PAGE

FCB AND BUFFER SPACE
AVAILABLE
000101 THRU 002077
FILF CTRL BLKS 001750 THRU 002100
MAXIMUM AUFFER SPACE RFOULRED

000131

740808 2/H

10K. IS THE WINIMUM MEMORY NEEDED TO LOAD THIS ACTIVITY WITH ALL FILES OPEN 001164 LOCATIONS REQUIRED FOR LOAD TABLE EXECUTION PROGRAM ENTERED AT 023434. THROUGH "FSETU

13-26

| No. 10 | N

RECORD COUNT = 001282

14

140.43×

| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

| AIDR | C.22000000E 00 BER | D.1000000E-14
| AIDR | D.22000000E 00 BER | D.1000000E-02
| AIDR | D.22000000E 0

| March | Marc





| The control of the

003765 • RECORD 90 . 0.966668
0.9750119
0.9750119
0.9750119
0.9770119
0.7791119
0.7791119
0.7791119
0.7791119
0.7791119
0.7791119
0.7791119
0.7791119
0.7791119
0.7791119
0.7791119
0.7791119
0.7791119
0.7791119
0.7791119
0.7791119
0.7791119
0.7791119
0.7791119
0.7791119
0.7791119
0.7791119
0.7791119
0.7791119
0.7791119
0.779119
0.779119
0.779119
0.779119
0.779119
0.779119
0.779119
0.779119
0.779119
0.779119
0.779119
0.779119
0.779119
0.779119
0.779119
0.779119
0.779119
0.779119
0.779119
0.779119
0.779119
0.779119
0.779119
0.779119
0.779119
0.779119
0.779119
0.779119
0.779119 CODE RFPORT . 03. . 0.220371 0.220371 0.220371 0.191972 0.191972 0.195972 0.195972 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 0.195973 ACTIVITY SP052. 0.100E.03 0.250E.03 0.150E.03 " SPUNE

| ES       |
|----------|
| TABLES   |
| 10P      |
| HON      |
| PATTERN  |
| PA       |
| FYE      |
| AND      |
| BASEBAND |
| 8        |

|           | PSEUDO E | TABLE FOR AIDR EQUALS PSEUDO ERROR RATE EQUALS | EQUALS 1.0 / | 2800.     |          |
|-----------|----------|------------------------------------------------|--------------|-----------|----------|
| AIT FRROR | S / Z    | SAR                                            | 0 / V        | DERIV PER | TIME     |
| RATE      | RATTO    | 1N 08                                          | RATTO        | WRT A / D | CONSTANT |
| 0 1008-02 | 7.04     | ~                                              | 0.94448      |           | 12474    |
| 0 430E-03 | 1        |                                                | 0.050513     | c         | 18142    |
| 0.400F-03 | 0.204164 | 13.80                                          | 0.928164     | -0.005345 | 0.244123 |
| 0.250E-03 | 108      |                                                | 0.899333     | 0         | 28916    |
| 0.1605-03 | 1600     | 4                                              | 0.870198     | 0         | 30026    |
| 0.100E-03 | 1509     | 4                                              | 0.841009     | 0         | 29293    |
| 0.630E-04 | 1980     | •                                              | 0.814950     | -0.004644 | 28096    |
| 0.400E-04 | 1500     | -                                              | 0.791819     | -0.004837 | 26976    |
| 0.250E-04 | 1041     | -                                              | 0.770109     | -0.005022 | 25985    |
| 0.160E-04 | 5636     | -                                              | 0.751241     | -0.005181 | 25187    |
| 0.100E.04 | 5238     | -                                              | 0.732912     | -0.005334 | 24464    |
| 0.630E-05 | 5873     | -                                              | 0.716209     | -0.005474 | ,23839   |
| 0-400E-05 | 5536     | •                                              | 0.700886     | -0.005603 | 23288    |
| 0.250E-05 | 5209     | •                                              | 0.686040     | -0.005731 | ,22768   |
| 0.160E.05 | 916      | •                                              | 0.677785     | -0.005848 | ,22313   |
| 0-100F-05 | .625     | •                                              | 0.659621     | -0.005968 | 21866    |
| 0.630E-06 | 1355     | •                                              | 0.647400     | -0.006082 | ,21454   |
| 90-3004-0 | 102      | ~                                              | 0.636014     | -0.006192 | 21073    |
| 0.250E-06 | 8855     | ~                                              | 0.624936     | *0°900°0* | 20701    |
| 0.160F-06 | 3631     | ~                                              | 0.614740     | 0.006408  | ,20365   |
| 0.100E.06 | 3406     | ~                                              | 0.604611     | -0.006515 | 20028    |
| 0.630E-07 | 3196     | ~                                              | 0.595118     | -0.006619 | 19713    |
| 0.400E-07 | 8662     | ~                                              | 0.586200     | -0.006720 | 19417    |
| 0.250F-07 | 2803     | ~                                              | 0.577375     | -0.006823 | 19125    |
| 0.160E.07 | 2625     | ~                                              | 0.569348     | -0.006919 | 18859    |
| 0.100F-07 | 2445     | 8                                              | 0.561240     | -0.007019 | 18590    |
| 0.630E-08 | 2275     | 8                                              | 0.553592     | -0.007116 | 18337    |
| 0-400E-08 | 2115     | 8                                              | 0.546365     | -0.007210 | 18097    |
| 0.250E-08 | 1955     | 8                                              | 0.539172     | -0.007307 | 17859    |
| 0.160E-08 | 1810     | 8                                              | 0.532595     | -0.007397 | 17641    |
| 0.100E.08 | 1662     |                                                | 0.525918     | 0         | 17420    |
| 0.630E-09 | 1521     | æ                                              | 0.519590     | -0.007582 | 17210    |
| 0-400E-09 | 1388     | 8                                              | 0.513582     |           | 17011    |
| 0.250F-09 | 0,112553 | 8                                              | 0.507577     | -0.007761 | 16813    |
| 0.160F-09 | 1133     | O                                              | 0.502063     |           | 16630    |
| 0-100E-09 | 1008     | 0                                              | 0.496443     | .0079     | 16444    |
|           |          |                                                |              |           |          |

| * HALF OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE | AMPLITUDE OF INTERSYMMENT OF THE STATE OF TH | * ADAPTIVE THFESHOLD AMPLITUDE TO D RATIO.  * DERIVATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A / D RATIO.  ** DUASILINEAR TIME CONSTANT OF THE ADAPTIVE THRESHOLD  ** CODE FOR SMALL CHANGES AROUND STEADY STATE VALUES | DIVIDER RATIO INTO D/A CONVERTER # 4. |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                          |                                       |
| NOMENCLATURE:                                             | A 1DR<br>N / S RATIO<br>SIIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A / D RATIO                                                                                                                                                                                                              |                                       |

| TABLES   |
|----------|
| MONITOR  |
| PATTERN  |
| FYE      |
| BASEBAND |

| RATE<br>RATE<br>0.640E-10<br>0.250E-10<br>0.150E-10<br>0.150E-10<br>0.100E-10<br>0.400E-11 |          |       |          |           |          |  |
|--------------------------------------------------------------------------------------------|----------|-------|----------|-----------|----------|--|
|                                                                                            | SIN      | SAR   | A / D    | DERIV PER | TIME     |  |
|                                                                                            | CILLAN   | 90 N  | KATIO    | WKT A / O | CONSTANT |  |
|                                                                                            | 108899   | 19.76 | 0.491096 | -0-008022 | 0,162670 |  |
|                                                                                            | 0.107769 | 19.35 | 0.486002 | -0.008106 | 0.160983 |  |
|                                                                                            | 106636   | 19.44 | 0.480892 | -0.008192 | 0.159290 |  |
|                                                                                            | 0.105592 | 19.53 | 0.476185 | -0.008273 | 0.157731 |  |
|                                                                                            | 104525   | 19.62 | 0.471371 | -0.008357 | 0.156137 |  |
|                                                                                            | 0,103506 | 19.70 | 0.466777 | -0.008440 | 0.154615 |  |
|                                                                                            | 102533   | 19.78 | 0.462388 | -0.008520 | 0,153161 |  |
|                                                                                            | 0,101553 | 19.87 | 0.457972 | -0.008602 | 0.151698 |  |
|                                                                                            | 100649   | 19.94 | 0.453893 | -0.008679 | 0.150347 |  |
|                                                                                            | 0.099722 | 20.02 | 0.449711 | -0.008760 | 0.148962 |  |
|                                                                                            | .098834  | 20.10 | 0.445710 | -0.008839 | 0.147637 |  |
|                                                                                            | .097984  | 20.18 | 0.441877 | -0.008915 | 0.146367 |  |
|                                                                                            | 121760.  | 20.25 | 0.438012 | *0.008994 | 0.145087 |  |
| 0.160E-12 0.                                                                               | .096334  | 20.32 | 0.434434 | 890600.0- | 0,143902 |  |
|                                                                                            | .095519  | 20.40 | 0.430757 | -0.009145 | 0.142684 |  |
|                                                                                            | .094737  | 20.47 | 0.427232 | -0.009221 | 0.141516 |  |
|                                                                                            | .093987  | 20.54 | 0.423848 | -0.009295 | 0.140395 |  |
|                                                                                            | .093228  | 20.61 | 0.420429 | -0.009370 | 0.139263 |  |
|                                                                                            | .092525  | 20.67 | 0.417257 | -0.009441 | 0.138212 |  |
|                                                                                            | .09160   | 20.74 | 0.413992 | -0.009516 | 0.137131 |  |
|                                                                                            | .091106  | 20.81 | 0.410856 | -0.009588 | 0.136092 |  |
| ,                                                                                          | .090437  | 20.87 | 0.407840 | -0.009659 | 0.135093 |  |
| .250E-14                                                                                   | 089760   | 20.94 | 0.404788 | -0.009732 | 0.134082 |  |
| •                                                                                          | 0,089131 | 21.00 | 0.401951 | -0.009801 | 0.133142 |  |
| .100E-14                                                                                   | .088483  | 21.06 | 0.399027 | -0.009873 | 0.132173 |  |

NOMENCLATURE:

\* HALF OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE THE THRE LEVEL EYE I.E., DECISION LEVEL.

\* AMPLITUDE OF INTERSYMBOL INTERFRENCE TO D RATIO.

\* AND ST ON RMS SIGNAL RATIO.

\* ADAPTIVE THRESHOLD AMPLITUDE TO D RATIO.

\* DERINATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A / D RATIO.

\* DOUSILINEAR THE CONSTANT OF THE ADAPTIVE THRESHOLD LOOP FOR SMALL CHANGES AROUND STEADY STATE VALUES WHEN BITE RATE.

\* 12552600. AND ERROR SIGNAL DIVIDER RATIO INTO D/A CONVERTER = AIDR N / S RATIO S N R A D RATIO DERIV PER WRT TIME CONSTANT

|              | .12474   | 16142    | 21992   | 616870 | 20000 | 28096   | 26976   | .25985  | .25187  | .24403  | .23839  | 90767   | 0.227683  | 21866   | 21454   | .21073  | .20700  | .20365  | \$2002  | 10417  | 10128 | 18859   | .18590  | .18337  | 18091   | .17859  | .17641  | 17420   | 117/11  | 14813  | 16630  | 16444   | .16267  | .16098  | .15929  | .15773  | .15614  | 16217                                  | 15170   | .15035  | .14897  | .14764  | 14638   | 14391  | 14269   | .14153  | 14041   | .13928  | .13823  | .13715  | 113611  | 13511   | 13410   | 13316   | .13219  |
|--------------|----------|----------|---------|--------|-------|---------|---------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|--------|-------|---------|---------|---------|---------|---------|---------|---------|---------|--------|--------|---------|---------|---------|---------|---------|---------|----------------------------------------|---------|---------|---------|---------|---------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 65           | -0.01046 | 0.00719  | \$60000 | 10000  | ***** | 0.00464 | 0.00483 | 0.00502 | 0.00518 | 0.00533 | 7450000 | 0.00000 | 0.005731  | 0.00596 | 0.00608 | 0.00619 | 0.00630 | 0.00640 | 0.00651 | 00061  | 00000 | 0.00691 | 0.00701 | 0.00711 | 0.00721 | 0.00730 | 0.00739 | 0.00749 | 8670000 | 101000 | 0.00.0 | 0.00793 | 0.00802 | 0.00810 | 0.00819 | 0.00827 | 0.00835 | 5 0 0 0 0                              | 0.00860 | 0.00867 | 0.00875 | 0.00883 | 1680000 | 00000  | 0.00914 | 0.00922 | 0.00929 | 0.00938 | 9460000 | 15600 0 | 0.00958 | 960000  | 0.00973 | 0.00979 | 0.00987 |
| LE MAS CA    | 97996"0  | .95051   | 92816   | 664489 | 10140 | 81495   | 79182   | . 77011 | .75124  | 73291   | 11621   | 46001   | 0.686046  | 65962   | 0,24,90 | .33602  | .62484  | .61475  | .60462  | 61666. | 87730 | 56936   | 56126   | .55361  | .54638  | .53519  | .53262  | .52594  | 70614   | 19203  | 50210  | 49648   | 49114   | .48604  | *6087   | .47623  | 741/4   | 77697                                  | 45803   | .45396  | 84649   | .44578  | C6144.  | 43451  | 43084   | .42732  | .42394  | .42053  | .41736  | .41410  | .41096  | .40795  | 165040  | 40207   | . 39915 |
| YOUE. TAB    | 13.15    | 4        |         |        | :     |         | 5.1     | 5.3     | 2.0     | 6       | •       |         | 16.38     | 1.9     | 6.9     | 1.0     | 7.      | 2.3     | *       | c.     | . "   | 8       | 8.1     | 8.2     | 8.3     | 4.4     | 9.5     | 6       | 0 0     | 00     |        | 2.6     | 6.3     | 6.9     | 4.6     | 6.5     | 10      |                                        | 0       | 6.6     | 0.0     | 1.0     | 7.0     |        | 4.0     | 0.5     | 0.5     | 9.0     | 1.0     | 1.0     | 8.0     | 6.0     | 6.0     | 0-      | :       |
| BUG PPTHTOUT | .22013   | .21150   | 20390   | 19961  | 18481 | 17951   | 1747:   | 11011.  | 14605   | 16206   | 15841   | 10001   | 0.151760  | 14590   | 14319   | .14067  | .13818  | .13594  | 13369   | 12040  | 12763 | 12585   | 12405   | .12234  | 12074   | 11011   | 11767   | 11619   | 9,411.  | 11211  | 11088  | 10963   | 10844   | 16731   | 10617   | 10512   | 00001   | 10205                                  | 10107   | 10016   | .09923  | .09834  | 00442   | .09583 | .09501  | .09422  | .09347  | .09271  | 00260   | .09127  | 85060   | 06680   | 22680   | 08859   | \$6180. |
| IN OF        | . 10rE-0 | . 430E-C | 0 30 30 | 0-3067 | 1005  | A 30F   | 400E-0  | -250E-0 | -160E-0 | .100E-0 | 630E-0  |         | 0-250E-05 | 100E-0  | .630E-0 | 0-3004. | .250E-0 | .160E-0 | .100E-0 | 400E   | 250F. | 1605.0  | 100E 0  | 630E-0  | 400E-0  | .250E-0 | 160E-0  | 1005-0  | .630E-0 | 2505-0 | IANE   | 100E-0  | .630E-1 | .400E-1 | .250E-1 | .160E-1 | 1.3001. | ************************************** | 250E-1  | .160E-1 | .100E-1 | .630E-1 | 250F-1  | 140E-1 | 100E-1  | .630E-1 | 1-3004. | .250E-1 | .160E-1 | .100E-1 | .630E-1 | .400E-1 | -250c-1 | 1006-1  | -100E-1 |

|            | PSEUDO E | PSEUDO ERROR RATE EQUALS | -        | 2800.                                  |          |
|------------|----------|--------------------------|----------|----------------------------------------|----------|
| AIT FRROR  | RATIO    | SAR<br>IN DB             | RATIO    | DERIV PER                              | TIME     |
| 3          |          | :                        |          | 3                                      |          |
| 70-100     | 0.220134 | 13.15                    | . 10000  | 2010                                   | 14/47100 |
| 630E-03    | 0,211509 | 13.49                    | .95051   | 0719                                   | 0.181423 |
| 400E-03    | 0.203909 | 13.81                    | .92816   | 30534                                  | 0.244122 |
| .250F-03   | 0.196817 | 14.12                    | . 8993   | -0.004513                              | 0.289159 |
| 60E-03     | 0-190701 | 14.39                    | 87019    | 10434                                  | 0.300258 |
| 00E-03     | 0.184817 | 14.67                    | 84101    | 30445                                  | 0.292937 |
| 30F-04     | 0-179514 | 14.92                    |          | -0-004644                              | 0.280960 |
| 00E-04     | 0.174710 | 15.15                    | 0.701821 | 0.004837                               | 0.249766 |
| 2505-04    | 0110110  | 16.30                    | 770111   | 0.004022                               | 0.250652 |
| 100        | 2000     |                          | 711111   |                                        | 36.00    |
| *0-200     | 200010   | 2000                     | 47161    | 000000                                 | 0.651875 |
| 00e=04     | 0.162068 | 15.81                    | 0.732916 | -0.005334                              | 0.244638 |
| 30E-05     | 0.158410 | 16.00                    | 0.716213 | -0.005474                              | 0.238392 |
| \$0-300+°C | 0.155038 | 16.19                    | 0.700892 | -0.005603                              | 0.232880 |
| 50E-05     | 0.151760 | 16.38                    | 0.686046 | -0.005731                              | 0.227683 |
| 160E-05    | 0.148827 | 16.55                    | 0.672792 | -0.005848                              | 0.223128 |
| 00E-05     | 0.145909 | 16.72                    | 0.659629 | -0.005968                              | 0.218661 |
| 630F-06    | 0.143198 | 16.88                    | 0.647408 | -0.006082                              | 0.214548 |
| 400E-06    | 0.140670 | 17.04                    | 0.636024 | -0.006192                              | 0.210737 |
| 50E-06     | 0.138187 | 17.19                    | 0.624847 | *0.006304                              | 0.207009 |
| 60E-06     | 0,135944 | 17,33                    | 0.614752 | -0.006408                              | 0.203650 |
| 100E-06    | 0.133693 | 17.48                    | 0.604625 | -0-006515                              | 0.200286 |
| 30E-07     | 0,131583 | 17.62                    | 0.595133 | -0.006619                              | 0.197136 |
| 00E-07     | 0.129600 | 17.75                    | 0.586216 | -0-006720                              | 0.194178 |
| 250E-07    | 0,127638 | 17.88                    | 0.577393 | -0.006823                              | 0.191253 |
| 160E-07    | 0.125853 | 18.00                    | 0.569367 | -0-006919                              | 0.188593 |
| 00E-07     | 0.124050 | 16.13                    | 0.561261 | 0.007019                               | 0.185907 |
| 630E-08    | 0.122349 | 18.25                    | 0.553415 | -0-007116                              | 0.18373  |
| 400E-08    | 0.120742 | 18.36                    | 0.546389 | -0.007210                              | 0.180979 |
| 250F-08    | 0.119142 | 18.48                    | 0.530100 | 10.007304                              | 0.178507 |
| 60F-08     | 0-117679 | 18.49                    | 0.532626 | -0.007397                              | 0-176418 |
| 00F-08     | 0-116194 | 18.70                    | 0.525040 | 10.00.0                                | 0.174207 |
| 10F-00     | 0.114786 |                          | 0.510422 | 0.007482                               | 1122111  |
| 400F-00    | 0-113440 | 00.4                     | 0.513417 | 0.007470                               | 0.170122 |
| 200        | 113113   |                          |          |                                        | 7710110  |
| 1405-00    | 0 110004 |                          | 20000    | 19100                                  | 661991   |
| 100        | 00001100 |                          | 1        | 90000                                  | 000000   |
| 000        | CE 400 0 | 10.20                    | 17700    | -U-UU-U-U-U-U-U-U-U-U-U-U-U-U-U-U-U-U- | 77777    |

| LF OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE<br>HF THREE I EVEL EYE I.E., DECISION I EVEL | * AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO.  * RMS NOISE TO RMS SIGNAL RATIO.  * SIGNAL POWER TO NOISE POWER TO NOISE POWER TO NOISE POWER TO STATIO.  * ADAPTIVE THRESHOLD AMPLITUDE TO D RATIO.  * DERIVATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A / D RATIO.  * DUASILINARA TIME CONSTANT OF THE ADAPTIVE THRESHOLD  **LOOP FOR SMALL CHANGES AROUND STRANG YEARE VALUES | HEN BITE RATE = 12552600, AND ERROR SIGNAL<br>SIVIDER RATIO INTO D/A CONVERTER = 4. |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| IA I                                                                                               | SHS                                                                                                                                                                                                                                                                                                                                               | DIA<br>V                                                                            |
|                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                     |
| NOMENCLATURE:<br>D                                                                                 | AIDR<br>N / S RATIO<br>SNR<br>A / V RATIO<br>DERIV DER WRT<br>TIME CONSTANT                                                                                                                                                                                                                                                                                                           |                                                                                     |

| TABLES   |
|----------|
| MONITOR  |
| PATTERN  |
| EYE      |
| BASEBAND |

TABLE FOR AIDR EQUALS

|           | S / Z    | SMR   | 0 / W    | CERIV PER | TIME     |
|-----------|----------|-------|----------|-----------|----------|
| 3 4 5     | PATTO    | 1N 08 | RATIO    | WRT A / D | CONSTANT |
| 0.630F-10 | 0.108445 | 19,30 | 0,491141 | -0.008022 | 0.162675 |
| 0.400E-10 | 0.107312 | 19.39 | 0.486049 | -0.008106 | 0.160989 |
| 0.250E-10 | 0.106174 | 19.48 | 0.480942 | -0.008192 | 0.159297 |
| 0.160E-10 | 0,105126 | 19.57 | 0.476237 | -0.008273 | 0.157738 |
| 0.100E-10 | 0.104055 | 19.65 | 0.471427 | -0.008357 | 0.156144 |
| 0.630E-11 | 0.103032 | 19.74 | 0.466836 | -0.008439 | 0.154623 |
| 0.400E-11 | 0,102055 | 19.82 | 0.462449 | -0.008519 | 0.153170 |
| 0.250E-11 | 0.101072 | 16.61 | 0.458037 | -0.008601 | 0.151708 |
| 0.160E-11 | 0.100164 | 19.99 | 0.453961 | -0.008679 | 0.150357 |
| 0.100E-11 | 0.099233 | 20.07 | 0.449782 | -0.008759 | 0.148973 |
| 0.630E-12 | 0.098342 | 20,15 | 0.445784 | -0.00883R | 0.147648 |
| 0.400E-12 | 0.097488 | 20.22 | 0.441955 | -0.008915 | 0.146380 |
| 0.250E-12 | 0.096628 | 20.30 | 0.438094 | -0.008993 | 0.145100 |
| 0.160E-12 | 0.095831 | 20.37 | 0.434519 | 190600-0- | 0.143916 |
| 0.100E-12 | 0.095012 | 20.44 | 0.430847 | -0.009144 | 0,142699 |
| 0.630E-13 | 0.094227 | 20.52 | 0.427325 | -0.009220 | 0,141532 |
| 0.400E-13 | 0.093474 | 20.59 | 0.423945 | -0.009293 | 0.140412 |
| 0.250E-13 | 0.092712 | 20.66 | 0.420530 | -0.009369 | 0,139281 |
| 0.160E-13 | 0.092006 | 20.72 | 0.417362 | 099600    | 0.138231 |
| 0.100E-13 | 0.091279 | 20.79 | 0.414102 | -0.009514 | 0,137151 |
| 0.630E-14 | 0,090580 | 20.86 | 0.410969 | -0.009587 | 0.136113 |
| 0.400E-14 | 0,089908 | 20.92 | 0.407958 | 959600-0- | 0,135115 |
| 0.250F-14 | 0,089228 | 50.99 | 0.404910 | -0.009731 | 0.134105 |
| 0.160E-14 | 0.088596 | 21.05 | 0.402078 | -0.009799 | 0,133166 |
| 0.100E-14 | 0,087945 | 21.12 | 0,399158 | -0.009871 | 0,132199 |

## HALF OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE
THE THREE LEVEL EYE I.E., DECISION LEVEL.

### AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO.

### ALS NOISE TO REAS SIGNAL RATIO.

### ALS NOISE TO REAS TO NOISE POWER IN DECIBLES.

### ADAPTIVE THRESHOLD AMPLITUDE TO N RATIO.

### DASTLINEAR THE CONSTANT OF THE ADAPTIVE THRESHOLD

LOOP FOR SMALL CHANGES AROUND STEADY STATE VALUES

### BITE MALL CHANGES AROUND STEADY STATE VALUES

### BITE RATIO INTO D/A CONVERTER ### 44. ATCR N / S RATIO SNR A / D RATIO DERIV PER WRT TIME CONSTANT NOMENCLATURE:

|          | 12473   | 18141   | 24410   | 20023   | 30063    | 28093 | 26974   | 25982   | 25185   | 24461   | 23836   | .23285  | .22765  | .22310  | .21863  | .21452  | .21071  | , 20699 | 20363   | 20021   | 21/610      | 10124  | 18859  | 18590   | .18337  | .18098  | 17860   | 17643   | 17213   | .17015  | .16816  | .16634  | 16272 | 16104   | .15936  | 0.157809  | 15470   | 15326   | .15180  | 15046   | 80641   | 14650   | .14523  | .14406  | .14285  | 1405   | 13945   | 13841   | .13734  | 13631   | .13532   |          |                                         | 0.134328  |           |          |           |
|----------|---------|---------|---------|---------|----------|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------------|--------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------|---------|----------|----------|-----------------------------------------|-----------|-----------|----------|-----------|
|          | 0.01046 | 0.00719 | 0.00534 | 0.00451 | 96 900 0 | 000   | 0.00483 | 0.00502 | 0.00518 | 0.00533 | 0.00547 | 0.00560 | 0.00573 | 0.00584 | 0.00596 | 9090000 | 0.00619 | 0.00630 | 0,900.0 | 0.00651 | 2990000     | 00000  | 00000  | 0.00701 | 0.00711 | 0.00721 | 0.00730 | 0,00739 | 0.00758 | 0.00766 | 0.00776 | 0.00784 | 00000 | 0.00610 | 0.00818 | -0.008269 | 66800.0 | 0.00651 | 0.00859 | 0.00867 | 6,000   | 0.00890 | 0.00898 | 060000  | 0.00913 |        | 0.003   | 0.00942 | 0.00950 | 0.00957 | 0.00964  |          |                                         | -0.009714 |           |          |           |
| WAS CALL | 67      | 95051   | 92817   | .89934  | 17078    | 81407 | 79185   | 77015   | 75129   | 73297   | 71627   | ₹2007.  | .68613  | .67289  | .65974  | .64753  | .63616  | • 62500 | .61492  | 60481   | * 5 6 6 C • | 57744  | 56963  | 56155   | .55392  | .54672  | 53955   | 53300   | 52005   | .51408  | .50810  | .50262  | 40172 | 48666   | .48158  | 0.476912  | 44787   | 46322   | .45884  | 45480   | 44470   | 44291   | .43909  | .43555  | 43192   | 42800  | 42172   | 41859   | .41537  | .41228  | 0.40931  | 204      | 20464                                   | 2         | 20464     | 150464   | 204       |
| 4        | -       |         |         | -       | ••       | . 0   | . ~     | 1       |         |         | ۰.      | ~       | 4.      | ٠.      | ۲.      | ٥.      | -:      |         | *       |         |             |        | 0      | 8.2     | 8.3     | 4.8     | 8.5     | 9 4     | 8.8     | 6.      | 3.      | 2.6     |       |         | 9.5     | 19.67     |         | 6       | 00      |         | •       |         |         | 4.0     |         |        |         |         | 6.0     | 6.0     | 21.05    | NOIL     | NOT | 21.12     | TION      | ATTON    | 1104      |
| PR. P.   | 75617   | 21077   | 20314   | 19603   | 18300    | 17866 | 17383   | 16921   | 16514   | 16113   | 15746   | 15407   | 15077   | .14782  | 14489   | 14216   | 13965   | 13712   | 13487   | 13260   | 12840       | 12451  | 12471  | 12290   | .12119  | 11957   | 11796   | 11649   | 11358   | 111223  | 11089   | 10965   | 10720 | 10606   | 10401   | 0.103865  | 10175   | 1001    | .09978  | .09887  |         | 09618   | .09532  | .09452  | 06370   | 00215  | 09139   | 99060   | \$6680  | .08925  | 0.088580 | 100      | A 1 100                                 | 0.087899  | LO AT LOC | AT LOC   | 10 AT 100 |
|          | 1001-0  | 630E-0  | 400E-0  | 0-30C2  |          | A 30F | 40      | 250     | 1160    | 100     | 630     | 000     | .250    | .160E-0 | .100E-0 | 630     | -400E-0 | -250E-0 | .160E-0 |         | 400E-0      | 250E-0 | 160E-0 | 100     | 0-30E9. | -400E-0 | .250E-0 | 1005-0  | .630    | -400E-0 | -250E-0 | •160E-0 | AAOF  | 400E-1  | .250E-1 | 0.160E-10 | AAOF    | 400E-1  | .250E-1 | .160E-1 | A 30F-1 | .400E-1 | .250E-1 | .160E-1 | .100E-1 | 400F-1 | .250E-1 | .160E-1 | -100E-1 | .630E-1 | .400E-14 | XP UNDER | XP CADER                                | 250E-14   | EXP UNDER | XP UNDER | NO (INDED |

28 UNSEPTE AT LUCATION 020464 04160E-14 0.087265 21.18 0403572 -0.009782 0.133398 04100E-14 0.086613 21.25 0400646 -0.009853 0.132440

B-54

|                                     | 6                    |
|-------------------------------------|----------------------|
| TABLES                              | 0,0400               |
| MONITOR                             | •                    |
| ATTER                               | AIDR                 |
| E VF D                              | F FOR                |
| BASEBAND FYF PATTERN MONITOR TABLES | TABLE FOR ATOR EQUAL |

|                                                   | TIME         | 0.124734  | 0.181411  | 0.244105  | 0.289138  | 0.300235  | 0.292913  | 0.280936  | 0.269741  | 0.259828  | 0.251850  | 0.244613  | 0.238367  | 0.232855  | 0.227659  | 0.223105  | 0.218639  | 0.214527  | 0.210718  | 0.206992  | 0.203635  | 0,200272  | 0,197125  | 0.194170  | 0.191248  | 0.188590  | 0.185908  | 0.183378  | 0.180987  | 0.178609  | 0.176435  | 0.174228  | 0,172137  | 0.170152  | 0.168169  | 0.166348  | 0.164493 |
|---------------------------------------------------|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|
| 0.0400                                            | DERTV PER    | -0.010461 |           |           |           | -0.004346 |           |           | -0.004838 |           | -0.005181 | -0.005335 | -0.005474 | *0*00*0*  | -0.005732 | -0.005849 | -0.005968 | -0.006083 | -0.006193 | -0.006304 | *0*900*0* | -0.006516 | ~0.006620 | -0.006720 | -0.006823 | -0.006919 | -0.007019 | -0.007116 | -0.007210 | -0.007306 | -0.007396 | -0.007490 | -0.007581 | -0.007669 | 97700     | -0.007844 | .00793   |
| FOUALS 1.0                                        | RATTO        | 0.966670  | 950       | 928       | .89       | 87021     |           | .81497    | 79185     | .77015    | .75129    |           |           | .70096    | .68613    | 61289     |           | 64753     | 63616     | .62500    | .61492    | .60481    | •         | .58644    | 0.577640  | 0.569634  | 0.561550  | 0.553926  | 0.546724  | 0.539558  | 0.533007  | 0.526358  | .5200     | .51408    | 0.508106  | .50262    | .49703   |
| TABLE FOR AIDR EQUALS<br>PSEUDO FRROR RATE FOUALS | SNR<br>IN DB | 13.17     | 13.52     | 13.84     | 14.15     | 14.43     | 14.70     | 14.96     | 15.20     | 15.43     | 15.64     | 15.86     | 16.06     | 16.25     | 16.43     | 16.60     | 16.78     | 16.94     | 17.10     | 17.26     | 17.40     | 17.55     | 17.69     | 17.82     | 17.96     | 18.08     | 18.21     | 18.33     | 18.45     | 18.56     | 18.67     | 18.79     | 18.89     | 19.00     | 19.10     | 19.20     | 19.30    |
| PSEUDO F                                          | RATIO        | 0.219422  |           |           |           |           | ٦.        | 7         | ٦.        | ٦.        | ٦.        | -         | ٦.        | -         | ٦.        | ٦.        | 0.144895  | 0.142168  | 0,139626  | 0,137129  | 0.134872  | 0,132608  | 0.130485  | 0.128490  | C.126516  | 0.124719  | 0.122905  | ٦.        | ٦.        | ٦.        | ٦.        | 7         | ٦.        | 7         | 0,110893  | ٦.        | -        |
|                                                   | RIT FRROR    | 0.100F-02 | 0-6306-03 | 0.400F-03 | 0.250F-03 | 0.160F-03 | 0.100E-03 | 0.630E-04 | 0.400E-04 | 0.250E-04 | 0.160E-04 | 0.100E-04 | 0.630F-05 | 0.400E.05 | 0.250E-05 | 0.160E.05 | 0.100F.05 | 0-630E-06 | 0.400F-06 | 0.250E.06 | 0.160E-06 | 0.100E-06 | 0.630E.07 | 0.400E-07 | 0.250E-07 | 0.160F-07 | 0.100E-07 | 0-430E-08 | 0.400E-08 | 0.250E-08 | 0-160E-08 | 0-100E-08 | 0.630E-09 | 0-400E-09 | 0.25CE-09 | 0-160E-09 | -        |

| - HALF OF THE NORMAL DISTANCE SETWEEN DATA LEVELS FOR THF | ### INTERSYMENT TO BE AMPLITUDE OF THE STATE OF THE STATE OF THE STAND INTERFERENCE TO DRATIO.  ### RMS NOISE TO RMS SIGNAL GATIO.  ### SIGNAL POWER TO NOISE DOWER IN DECIBLES.  ### ADAPTIVE THRESHOLD AMPLITUDE TO RATIO.  ### DERIVATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A / D RATIO. | * QUASILINFAR TIME CONSTANT OF THE ADAPTIVE THRESHOLD LOOP FOR SMALL CHANGES AROUND STEADY STATE VALUES WHEN BITE RATE * 12552600, AND ERROR SIGNAL DIVIDER RATIO INTO D/A CONVERTER * |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOMENCLATURE:                                             | ATDR<br>N / S RATIO<br>SNR<br>A / D RATIO<br>DERIV PER WRT                                                                                                                                                                                                                                     |                                                                                                                                                                                        |

| TABLES   |
|----------|
| MONITOR  |
| PATTERN  |
| FYF      |
| RASEBAND |

| 00       | 2800           |
|----------|----------------|
| 00000    | 1.0 /          |
| R EQUALS | FOUALS         |
| DA AID   | PATE           |
| BLE FC   | O ERBOR PATE E |
| 44       | PSEUDO         |
|          |                |

| CONSTANT  | 0.162728  | 0.157809<br>0.157809<br>0.156222<br>0.154708 | 0.151806<br>0.150463<br>0.149086    | 0.146508<br>0.145237<br>0.144060<br>0.142852 | 0.141693<br>0.140581<br>0.139459<br>0.138418<br>0.137346 | 0.136317<br>0.135328<br>0.134328<br>0.133398<br>0.132440 |
|-----------|-----------|----------------------------------------------|-------------------------------------|----------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| DERIV PER | -0.008019 | 10.008188<br>10.008188<br>10.008435          | -0.008596<br>-0.008673<br>-0.008753 | 0.008985<br>0.008985<br>0.009058             | 0.009209<br>0.009282<br>0.009357<br>0.009427             | .0.009573<br>.0.009643<br>.0.009714<br>.0.009782         |
| RATTO     | 0.491721  | 0.481585<br>0.476912<br>0.472135<br>0.467578 | 0.458849                            | 0.442913<br>0.439090<br>0.43553              | 0.428438<br>0.425097<br>0.421724<br>0.418595             | 0.412287<br>0.409317<br>0.403522<br>0.400646             |
| 1 28 NB   | 19.40     | 10.01<br>0.01<br>0.01<br>0.01                | 20.02                               | 20.34                                        | 20.64<br>20.71<br>20.78<br>20.85                         | 20.99<br>21.05<br>21.12<br>21.18                         |
| RATIO     | 0.107203  | 0.103865<br>0.102737<br>0.101759             | 0.099789                            | 0.095323<br>0.095323<br>0.094523<br>0.093701 | 0.092913<br>0.092157<br>0.091392<br>0.090684<br>0.089954 | 0.089254<br>0.088580<br>0.087265<br>0.087265             |
| ALT FRROP | 0.630E-10 | 0.160E-10<br>0.160E-10<br>0.630E-11          | 0.250E-11<br>0.160E-11<br>0.100E-11 | 0.400E-12<br>0.250E-12<br>0.160E-12          | 0,400E-13<br>0,400E-13<br>0,250E-13<br>0,160E-13         | 0,630F-14<br>0,400F-14<br>0,250F-14<br>0,160E-14         |

NOMENCLATURE:

HALF OF THE NORMAL DISTANCE RETWEEN DATA LEVELS FOR THE THE THREE LEVEL EYE I.E., DECISION LEVELS

A DECISION LEVEL OF RANS SIGNAL RATIO.

SAR HOISE TO RANS SIGNAL RATIO.

SAR A LOUSE TO RANS SIGNAL RATIO.

SAR A LOUSE TO RANS SIGNAL RATIO.

SAR A LOUSE TO RANS SIGNAL RATIO.

A D RATIO = ADAPTIVE THRESHOLD DEPONER IN THE RESPECT TO A / D WATIO.

DERIV DEP WAT = DERIVATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A / D WATIO.

CONSTANT = DUASILINEAR TIME CONSTANT OF THE MADATIVE THRESHOLD

LOOP FOR SARIL CHANGES ARQUID STEADY STATE VALUES

WHEN BITE RATE = 12552600. AND ERROR SIGNAL

DIVIDER RATIO INTO D/A CONVERTER = 4.

|          | 12470  | 24403  | 20004  | 30013   | 29281   | .28083  | .26963  | 25972     | 24450  | 23826   | 23274 | .22755  | 22300   | *5182*  | 21043 | 20400                                 | 20355  | 20020   | .19706  | 19411   | 19119   | 18587  | 18335   | .18097  | 17861   | 17644  | 17217  | 17020   | .16823  | 16642   | 16458   | 0-161164  | 15949   | 15795   | 15638   | 15245   | 15201   | .15068  | 14932   | 14801   | 14551   | .14435  | 14316   | 16092  | 13081   | 13878   |           |          |           |           | 2       | .13671   | 0.135743  | . 134.73 |
|----------|--------|--------|--------|---------|---------|---------|---------|-----------|--------|---------|-------|---------|---------|---------|-------|---------------------------------------|--------|---------|---------|---------|---------|--------|---------|---------|---------|--------|--------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------|---------|-----------|----------|-----------|-----------|---------|----------|-----------|----------|
| £0.      |        | 00524  | 1900   | 0.00434 | .00445  | 0.00464 | 0.00484 | -0.005024 | 000000 | 0.00547 | 00500 | 0.00573 | 0.00585 | 16500-0 | 809   | 4100                                  | 00041  | 0.00651 | .00662  | 0.00672 | 0.00682 | 0.0000 | 00711   | 0.00721 | 0.00730 | 739    | 0.00   | 0.00766 | .00775  | 0.00784 | 0.00792 | 0.00001   | 0.00618 | 0.00826 | .00834  | 0.00000 | 00858   | 0.00866 | 0.00873 | 1880    | 0.00896 | 0.0000  | .00911  | 140000 | 0.00033 | 00000   |           |          |           | 2         | ******  | 0.00954  | -0.009613 | 0.00468  |
| MAS CA   | .96667 | 00000  | 80038  | 87027   | 84110   | .81507  | .79198  | .77031    | 73310  | 71654   | 70127 | .68648  | .67328  | 91099   | 64803 | 1000                                  | 61559  | .60554  | .59613  | .58730  | 57857   | 54242  | 55507   | .54795  | .54086  | .53439 | 52161  | 51571   | . 50983 | .50443  | 49893   | 0.488741  | .48376  | .47917  | 4744    | 46577   | 46149   | .45754  | .45349  | 64963   | 44220   | .43876  | .43522  |        | 425     | 42228   | 10        | 200      | 200       | 1010      | 20464   | 0.41616  |           | 20.44.   |
| A        |        |        |        |         |         | 5.0     | 2.5     |           |        |         | 6.3   | 6.5     | 6.7     |         | •••   | ֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ |        |         |         |         | 9.0     |        | 4       | 6.5     | 9.0     |        |        |         | .2      | 6.3     | *       | 19.64     | 1.6     | 8.      | •       |         |         | 0.2     |         | •       |         | 9.0     | -       |        |         |         | ATTON     | ATION    | 201       | 31.00     | ATION O | 21.16    | 21.22     | •        |
| RINT     | 2006   | 20189  | 19473  | 18856   | .18262  | .17727  | .17241  | 16776     | 15063  | 15593   | 15252 | .14920  | .14624  | 976-11  | 13708 | 13647                                 | 13320  | 13092   | .12878  | .12678  | .12479  | 12117  | 11945   | .11782  | 11621   | 11973  | 111181 | 11046   | .10912  | 10788   | 10662   | :-        | .10314  | 10209   | 10101   | 00000   | .09802  | .09711  | .09618  | 82660   | .09357  | .09277  | .09196  | 00042  | 08066   | 0       | A7 L      | LO AT LO | FLO AT LO | 7.00      | ATL     | 0.087545 | 08687     | 47 1     |
| 15 11 51 | 1005-  | ANDE D | 250F-0 | 160E-0  | .100E-0 | .630E-0 | -400E-0 | 250E      | TOUE   | 630E-0  | -300F | .250E-0 | -160E-  | -100E-0 | 400E  | 2506                                  | 160E-0 | .100E-0 | .630E-0 | -400E-0 | -250E-0 | 100F-0 | .630E-0 | .400E-0 | .250E-0 | 1005-0 | A30F-0 | 400E-0  | -250E-0 | .160E-0 | -100E-0 | 0.400E-10 | .250E-1 | .160E-1 | .100E-1 | - 4006+ | .250E-1 | .160E-1 | -100E-1 | - 900 P | .250E-1 | -160E-1 | -100E-1 | 1-300F | 250F-1  | .160E-1 | EXP UNDER | KP UNDER | XP UNDER  | EXP UNDER | P UNDER | 630E-14  | -400E-1   | EXP (IN) |

```
## JOSEMEL AT LOCATION 020464

EXP LANGFELD AT LOCATION 020646

0.100E=14 0.084927 21.42 0.404900 -0.009819 0.132898
```

| TABLES  |
|---------|
| MONITOR |
| PATTERN |
| FYE     |
| ASFBAND |

| BIT FRROR | 8/1      | SNR   | 0 / V    | DERIV PER | TIME     |
|-----------|----------|-------|----------|-----------|----------|
| RATE      | RATIO    | 1N 08 | RATIO    | WRT A / O | CONSTANT |
| 1006      | 0,218245 | 13.22 | 96667    | -0-010464 | -        |
| .630F-03  | 0.209554 | 13.57 | 95053    | -0.007195 |          |
| 400E      | 0.201892 | 13.90 | 0.928195 | -0.005347 | 0.244031 |
| .255E-    | 0.194739 | 14.21 | 86668    | -0.004515 | "        |
| 160F      | 0.188567 | 14.49 | .87027   | -0.004348 |          |
| ٦.        | 0.182627 | 14.77 | 84110    | -0.004457 |          |
| •         | 0.177273 | 15.03 | .01507   | -0.004647 | "        |
|           | 0.172418 | 15.27 | .79198   | -0.004840 | "        |
|           | 0.167769 | 15.51 | .77031   | -0.005024 |          |
|           | 0,163666 | 15.72 | .75148   | -0.005186 |          |
|           | 0.159637 | 15.94 | 7331     | -0.005337 |          |
|           | 0.155937 | 16.14 |          | -0.005477 | "        |
|           | 0.152526 | 16.33 |          | -0.005607 | .,       |
|           | 0.149209 | 16.52 |          | -0.005734 |          |
|           | 0.146240 | 16.70 | 0.673287 | -0.005852 |          |
|           | 0.143288 | 16.88 |          | -0.005971 |          |
|           | 0.140543 | 17.04 |          | -0.006085 |          |
|           | 0.137985 | 17.20 |          | -0.006195 |          |
|           | 0.135472 | 17,36 |          | -0.006307 | ۳,       |
| 1.160F-06 | 0.133202 | 17.51 |          | -0.006411 |          |
|           | 0.130924 | 17.66 |          | -0.006518 |          |
|           | 0.128789 | 17.80 |          | -0.006622 | -        |
|           | 0,126783 | 17.94 |          | -0.006722 | ٦.       |
|           | 0.124799 | 18.08 |          | -0.006825 | -        |
|           | 0.122994 | 18.20 |          | -0.006921 | -        |
|           | 0,121171 | 18.33 |          | -0.007020 | ٦.       |
|           | 0,119452 | 18.46 |          | -0.007117 | -        |
|           | 0.117828 | 18.58 |          | -0.007210 | -        |
|           | 0,116212 | 18.69 |          | -0.007306 | ٦.       |
|           | 0.114735 | 18.81 |          | -0.007395 | -        |
| .100E-0   | 0,113236 | 18.92 |          | -0.007489 | -        |
| -630E-0   | 0,111815 | 19.03 |          | -0.007579 | ٠.       |
| -400+     | 0.110467 | 19.14 |          | -0.007667 | -        |
| 0.250E-09 | 0,109121 | 19.24 |          | -0.007757 | -        |
| .160F-0   | 0.107885 | 19.34 |          | -0.007841 | -        |
| 1005      | 104436   | 77 01 |          | 000000    |          |

| NOMFNCLATURE: |   |
|---------------|---|
| FNCLAT        |   |
| FNCLAT        | = |
| FNCLAT        |   |
| FNCLAT        |   |
| FNCLAT        |   |
| F             | - |
| F             |   |
| F             | - |
| F             | • |
| F             | - |
| F             | _ |
| Į.            |   |
| Į.            | • |
| Į.            | - |
| NON           | • |
| NON           |   |
| SCN           | - |
| S             | • |
| 5             | • |
| Z             |   |
| Z             | - |
| _             | - |
|               | - |
|               |   |
|               |   |
|               |   |

| . HALF OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE | * AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO. | # RMS NOISE TO RMS SIGNAL RATID. | - SIGNAL POWER TO NOISE DOWER IN DECIBLES. | - ADAPTIVE THRESHOLD AMPLITUDE TO D RATIO. | * DERIVATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A / D RATIO. | - DUASILINEAR TIME CONSTANT OF THE ADAPTIVE THRESHOLD | LOOP FOR SMALL CHANGES AROUND STEADY STATE VALUES | WHEN BITE RATE # 12552600. AND ERROR SIGNAL | DIVIDER RATIO INTO DIA CONVERTER . 4. |
|-----------------------------------------------------------|-----------------------------------------------------|----------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|---------------------------------------------|---------------------------------------|
| 0                                                         | ATDR                                                | N / S RATIO                      | SNR                                        |                                            | DERIV DER WRT                                                  | TIME CONSTANT                                         |                                                   |                                             |                                       |

| TABLES   |
|----------|
| MONITOR  |
| PATTERN  |
| FYF      |
| BASEBAND |

| 0       | 2800.               |
|---------|---------------------|
| 0090-0  | 1.00                |
| EDUALS  | O FRROR RATE FOUALS |
| A A TOP | SATE F              |
| BLE FO  | FRROR               |
| 4.      | PSEUDO              |
|         | ۵                   |

| BIT FRROR |          | 0110   |          |           |          |
|-----------|----------|--------|----------|-----------|----------|
|           | 84710    | 1 08 N | RATTO    | WAT A / D | CONSTANT |
| 0.6305-10 | 0.105428 | 19.54  | 0,493713 | -0.008014 | 0.162831 |
| 9         | 0.194287 | 19.64  | 0.488741 | -0.008097 | 0.161164 |
| 01        | 0.103144 | 19.73  | 0.483760 | -0.006182 | 0.159493 |
| 10        | 0,102091 | 19.82  | 0.479176 | -0.008261 | 0.157954 |
| 10        | 0.101015 | 19.91  | 0.474494 | -0.008344 | 0.156382 |
| 11        | 0.099988 | 20.00  | 0.470030 | -0.008425 | 0.154883 |
| 11        | 0.099008 | 20.09  | 0.465770 | -0.008504 | 0.153451 |
| 11        | 0.098022 | 20.17  | 0.461490 | -0.008584 | 0,152011 |
| 0.160F-11 | 0.097112 | 20.25  | 0.457540 | -0.008660 | 0.150683 |
| ==        | 0.096180 | 20.34  | 0.453496 | -0.008739 | 0,149321 |
| 12        | 0.095288 | 20.02  | 0.449630 | -0.008816 | 0.148019 |
| .400E-12  | 0.094435 | 20.50  | 0.445932 | -0.008891 | 0.146773 |
| 0.2506-12 | 0.093574 | 20.58  | 0.442207 | -0.008967 | 9,145517 |
| 12        | 0.092778 | 20.65  | 0.438762 | 0,00000   | 0.144355 |
| 12        | 0,091961 | 20.73  | 0.435227 | -0.009115 | 0.143162 |
| 13        | 0.091177 | 20.80  | 0.431841 | -0.009188 | 0.142019 |
| 9.400E-13 | 0.090426 | 20.87  | 0.428594 | -0.009260 | 0.140922 |
| 0.250E-13 | 0.089667 | 20.95  | 0.425318 | -0.009333 | 0,139815 |
| 0.160F-13 | 0.08963  | 21.02  | 0.422282 | -0.009402 | 0.138788 |
| 0.100E-13 | 0,088240 | 21.09  | 0.419161 | -0.009474 | 0.137732 |
| 14        | 0.087545 | 21,16  | 0.416165 | -0.009545 | 0.136718 |
| 14        | 0.086877 | 21.22  | 0.413288 | -0.009613 | 0,135743 |
| 0.250E-14 | 0.086201 | 21.29  | 0.410380 | -0.009683 | 0.134757 |
| 0.160F-14 | 0.085574 | 21,35  | 0.407680 | -0.00975C | 0.133842 |
| -14       | 0.084927 | 21.42  | 0.40400  | -0.009819 | 0.132896 |

NOMENCLATURE:

### HARFE LEVEL EYE I.E., DECISION LEVELS FOR THE THE THREE LEVEL EYE I.E., DECISION LEVEL.

### MAPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO.

### MAPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO.

### MAPLITUDE THRESHOLD AMPLITUDE TO D RATIO.

### DEPIVATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A / D RATIO.

### DASTLINEAR THE COMPARANT OF THE ADAPTIVE THRESHOLD

### MAPLE CHANGES AROUND STEADY STATE VALUES

### RATE RATE ### ISS22600. AND ERROR SIGNAL

### RATE RATE ### CONVERTER ### AND ERROR SIGNAL ATDR 11 / S PATIO SNR A / D RATIO DFRIV PER WRT TIME CONSTANT

|          | 10123 | 24.384 | 2000   | 10987   | .29988  | .29254  | .28055  | .26935  | .25943  | .25146   | 24422   | .23797  | .23246  | 22727  | 22273  | 21827   | 21417  | 21037  | 20666   | 20331   | .19997  | .19684  | .19390  | 19100   | 18837   | 18571  | 10084 | 17849  | 17634  | .17416 | 17209   | 17014 | 0.168187  | 16456  | 16283  | 16118  | .15952  | 15800 | 16405  | 15354   | 115211  | .15080  | .14945  | 14816   | 14568  | 14453   | 14335   | 14222   |           |           |           | 0 141134 |           |          |      |      |          | 14003     | 0.139022  |
|----------|-------|--------|--------|---------|---------|---------|---------|---------|---------|----------|---------|---------|---------|--------|--------|---------|--------|--------|---------|---------|---------|---------|---------|---------|---------|--------|-------|--------|--------|--------|---------|-------|-----------|--------|--------|--------|---------|-------|--------|---------|---------|---------|---------|---------|--------|---------|---------|---------|-----------|-----------|-----------|----------|-----------|----------|------|------|----------|-----------|-----------|
| ED.      |       | 0000   | 20000  | 16.00.0 | 0.00435 | 0.00446 | 0.00465 | 0.00484 | 0.00503 | .00518   | 0.00534 | 0.00548 | 0.00561 | .00574 | 00000  | 0.00507 | 0.0000 | 00620  | 0.00631 | 0.00641 | 0.00652 | 0.00662 | .00672  | 0.00683 | 0.00692 | 20100  | 00721 | 00731  | 00740  | .00749 | .00758  | 00767 | 7000      | 00,00  | 00001  | 00000  | .00818  | 858   | 000000 | 0.00849 | 0.00857 | 0.00865 | 0.00873 | 08800   |        | 0.0000  | 0.00010 | 0.00917 |           |           |           | •        |           |          |      |      | 1        |           | -0.0091AA |
| MAS CALL | 2000  | 2000   | . 7004 | 2460    | .87041  | .84131  | .81534  | .79231  | .77071  | .75196   | .73376  | .71719  | .70202  | .68733 | 47424  | 66178   | 44021  | 63801  | .62703  | .61714  | .60722  | .59795  | .58925  | .58066  | .57284  | .56439 | 65060 | .54367 | .53734 | .53092 | . 52486 | 11615 | 0.513378  | 50277  | 49770  | .49287 | .48804  | 48359 | 47474  | 47062   | .46649  | .46267  | .45677  | 45504   | 44780  | 44457   | 44117   | .43792  | 20464     | 204       | 204       | 5        | 20464     | 2046     | 200  | 200  | 10402    | SAGE WILL | 0.428742  |
|          |       |        |        |         | 4:5     |         | -       | 5.3     | 5.6     | 5.8      | 0       | ~       | *       |        |        | 1       |        |        | 7.5     | 2.0     | 1.0     | 7.9     | 0.0     | 8.2     |         |        |       | 9.8    | 6.0    | 0.6    | 9.2     | 6.9   | 19.01     | 9      | 7.6    | 9.6    | 6.6     | 0,0   |        | 2.0     |         | 4.0     | 0.5     | 9.0     | 0      |         | 6.0     | 6.0     | NOI       | NO.       | NOIL      | 21 04    | NCI       | NOI      | NOIL | 200  | ABOVE ME | 21.13     | .2        |
|          | 20784 | 2001   | 10201  | 17670   | .18674  | .18076  | 17537   | .17049  | 16581   | 0.161682 | .15762  | 15390   | 15041   | .14713 | 14415  | 14118   | 13843  | 1358   | 13334   | 13106   | .12878  | .12664  | .12463  | 12265   | 12085   | 11902  | 11560 | 11408  | 11260  |        | 10970   | 10836 | 10579     | 10454  | 10335  | 10222  | .10109  | 10005 | 00707  | 00460   | .0960   | .09512  | 08450   | 609332  | 09163  | 09085   | *0060   | .08927  | LO AT LOC | LO AT LOC |           | 0.088534 | D AT LOC  | O AT LOC | 0    | 100  | TIME THE | 0.087787  | 04100     |
|          | A 30F | 9      | 2505   | 0-3067  | .160E-0 | .100E-0 | .630E-0 | 3004.   | -250E-0 | -160E-   | -100E-  | -30E9   | 3004    | -250E- | -160F- | 100E-0  | -90E   | 400E-0 | .250E-0 | .160E-0 | .100E-0 | .630E-0 | -400E-0 | 250E-0  | -160E-  | 1000   | 400F  | 250E-0 | 160E-0 | -100E- | 630E-0  | -000  | 0.1605-09 | 100E-0 | 630E-1 | 400E-1 | -250E-1 | -160E | 4306   | 400E-1  | .250E-1 | .160E-1 | 1006-1  | .630E-1 | 250E-1 | -160E-1 | -100E-1 | .630E-1 | XP UNDERF | KP UNDERF | XP UNDERF | 106-13   | EXP UNDER | UNDER    | 0    | 2000 | TA THE   | 100       | . I Anf.  |

0.430E-14 0.08589 21.27 0.425747 0.00958 0.137976 0.425674 0.009987 0.135971 0.425747 0.009987 0.136971 0.425074 0.009987 0.136971 0.425074 0.009987 0.136008 0.135071 0.42508 0.009987 0.136008 0.13508-14 0.0084781 21.48 0.417329 0.009964 0.135028 0.136008 0.135128 0.1008-14 0.083761 21.54 0.412082 0.009798 0.133185

|              |          |              |          | .0 / 2800. |          |
|--------------|----------|--------------|----------|------------|----------|
| BIT FRROP    | RATIO    | SAR<br>1N 08 | RATIO    | DERIV PER  | CONSTANT |
| 100F-0       | 21661    | 3.2          |          | .01047     | 2463     |
| 0.630E-03    | 0.207868 | 13.64        | 0.950568 | -0.007200  | 0.181234 |
| 400F-0       | 20015    | 3.9          |          | .00535     | 0.243840 |
| 250F-0       | 19296    | 14.29        |          | .00451     | 0.288810 |
| 1605-0       | 0.186748 | 4.5          |          | 00435      | 0.299880 |
| .100F-3      |          | 14.86        |          | 00446      | 0.292542 |
| .630E-04     | 17537    | 5            |          | 0.00465    | 0.280556 |
| -300+        |          | 5            |          | *8700*     | 0.269356 |
| 250E-0       |          | 15.61        |          | 0.00503    | 0.259439 |
| .160E-04     |          | 15.83        |          | 0.00518    | 0.251460 |
| .100E-04     |          | 16.05        |          | 0.00534    | 0.244223 |
| .630E-05     |          | 16.25        |          | 0.00548    | 0.237978 |
| .400F-05     | 0.150474 | 16.45        |          | .00561     | 0.232469 |
| .250E-05     | 0.147139 | 16.65        |          | 0.00574    | 0.227278 |
| 0-160F-05    | 0.144155 | 16.82        |          | 0.00585    | 0.222730 |
| .100F-05     | 0,141189 | 17.00        |          | .00597     | 0.218272 |
| .630F-06     | 0,138433 | 17.18        |          | 60900      | 0.214171 |
| -400E-06     | 0,135865 | 17.34        |          | 00620      | 0.210374 |
| 1.250E-06    | 0.133344 | 17.50        |          | -0.006314  | 0.206661 |
| .160E-06     | 0,131068 | 17.65        |          | 00641      | 0,203319 |
| 0.100F-06    | 0,128785 | 17.80        |          | -0,006525  | 0.199974 |
| .630E-07     | 0,126647 | 17.95        |          | 00662      | 0.196844 |
| -400E-07     | 0.124639 | 18.09        |          | 00672      | 0.193909 |
| .250E-07     | 0.122654 | 18.23        |          | -0.006832  | 0.191008 |
| 1-160E-07    | 0-120850 | 18.36        |          | 00692      | 0.188372 |
| .100E-07     | 0.119029 | 18.49        |          | 00102      | 0.185713 |
| .630F-08     | 0,117313 | 8            |          | 00712      | 0.183207 |
| ************ | 0,115692 | 8            |          | 00721      | 0.180842 |
| .250F-0      | 0,114081 | ۵.           |          | -0.007311  | 0.178490 |
| .160F-0      | 0,112609 | 8.9          |          | 00140      | 0.176341 |
| ٦.           | 0,111117 | 19.08        |          | 9          | 0.174162 |
|              | 0,109703 | 2            |          | 00758      | 0.172098 |
| -400E        | 0,108363 | 19.30        | r,       | .00767     | 0.170141 |
| .250E-0      | 0,107024 | 19.41        | .513     | .00775     | 0.168187 |
| .160F-0      |          |              |          | -          |          |
|              | 04/00100 | 19.51        | 21806.   | -0.007842  | 0.166394 |

| ATOR TANDER AND ATOR SAND SAND SAND SAND SAND SAND SAND SAND | * HALF OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE | THREE LFVEL EYE I.E. DECISION LEVEL. | LITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO. | NOISE TO RMS SIGNAL RATIO. | INAL POWER TO NOISE POWER IN DECIBLES. | IPTIVE THRESHOLD AMPLITUDE TO D RATIO. | STATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A / D RATIO | ISTLINEAR TIME CONSTANT OF THE ADAPTIVE THRESHOLD | LOOP FOR SMALL CHANGES AROUND STEADY STATE VALUES | N BITE RATE = 12552600. AND ERROR SIGNAL | AND ONT OF THE OWNER O |
|--------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------|------------------------------------------------|----------------------------|----------------------------------------|----------------------------------------|----------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                              | # HA                                                      | =                                    | E AM                                           | # W.                       | . SI                                   | * AD                                   | a DE                                                     | 8                                                 | Š                                                 | Ī                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| TABLES   |
|----------|
| MONITOR  |
| PATTERN  |
| EYE      |
| BASEBAND |
| 8        |

| RIT FRROR | N / S<br>PATIO | SAR<br>TA DB | RATTO    | DERIV PER | TIME     |
|-----------|----------------|--------------|----------|-----------|----------|
|           |                |              |          |           |          |
| 0.630E-10 | 0,103358       | 19.71        | 0.497701 | -0.000014 | 0.162833 |
| 0.400E-10 | 0.102227       | 19.81        | 0.492874 | -0.008096 | 0.161181 |
| 0.250E-10 | 0.101094       | 19.91        | 0.488043 | -0.008180 | 0.159525 |
| 0.160F-10 | 0.100051       | 20.00        | 0.483599 | -0.008259 | 0.158001 |
| 0.100F-10 | 0.098986       | 50.09        | 0.479065 | -0.008341 | 0.156444 |
| 0.630F-11 | 0.097971       | 20.18        | 0.474746 | -0.008421 | 0.154959 |
| 0.400E-11 | 0.097001       | 20.26        | 0.470626 | -0.008499 | 0.153541 |
| 0.250E-11 | 0.096027       | 20.35        | 0.466490 | -0.008578 | 0.152116 |
| 0.160E-11 | 0.095128       | 20.43        | 0.462676 | -0.008653 | 0.150800 |
| 0.100E-11 | 0.094207       | 20.52        | 0.458774 | -0.008731 | 0.149452 |
| 0.630E-12 | 0.093327       | 20.60        | 0.455046 | -0.008807 | 0.148163 |
| 0.400F-12 | 0.092485       | 20.68        | 0.451482 | -0.008881 | 0.146930 |
| 0.250E-12 | 0.091636       | 20.76        | 0.447895 | -0.008957 | 0.145686 |
| 0.160E-12 | 0.090852       | 20.83        | 0.444579 | -0.009028 | 0.144536 |
| 0.100F-12 | 9,006000       | 20.91        | 0.441178 | -0.009103 | 0.143355 |
| 0.630E-13 | 0.089274       | 20.99        | 0.437923 | -0.009175 | 0.142222 |
| 0.400E-13 | 0.088534       | 21.06        | 0.434803 | -0.009246 | 0.141136 |
| 0.250E-13 | 0.087787       | 21,13        | 0.431656 | -0.009318 | 0.140039 |
| 0.160E-13 | 0,087095       | 21.20        | 0.428742 | -0.009386 | 0.139022 |
| 0.100E-13 | 0.086382       | 21.27        | 0.425747 | -0.009458 | 0.137976 |
| 0.630E-14 | 0.085699       | 21,34        | 0.422874 | -0.009527 | 0.136971 |
| 0.400E-14 | 0.085042       | 21,41        | 0.420116 | -0.009595 | 0.136005 |
| 0.250E-14 | 0.084378       | 21.48        | 0.417329 | *0°009664 | 0.135028 |
| 0.160E-14 | 0,083761       | 21.54        | 0.414744 | -0.009729 | 0.134120 |
| 0.100E-14 | 0.083126       | 21.61        | 0.412082 | -0.009798 | 13318    |
|           |                |              |          |           | -        |

| * HALF OF THE NORMAL DISTANCE RETWEEN DATA LEVELS FOR THE THE THREE LEVEL SYET LEVELS | * AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO.  * RMS NOISE TO RMS SIGNAL RATIO.  * SIGNAL POWER TO NOISE POWER IN DECIBLES. | * ADATTIVE THRESHOLD AMPLITUDE TO D RATIO.  * DERIVATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A / D RATIO.  * DUASILINFAR TIME CONSTANT OF THE ADAPTIVE THRESHOLD  LOOP FOR SMALL CHANGES AROUND STEADY STATE VALUES  **HFN BITF RATE = 12562500, AND FRRDR STGNAL | DIVIDER PATIO INTO DIA CONVERTER = 4. |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| NOMENCLATURE:                                                                         |                                                                                                                                   | A / D RATIO<br>DERIV DER WRT<br>TIME CONSTANT                                                                                                                                                                                                                      |                                       |

|                                     |                                                   | R TIME            | 0.124481  | 0.18097 | 0.24345 | 0.28833 | 0.299360  | 2000  | 0.26879  | 0.25887   | 0.250     | 0.243     | 0.237     | 0.231     | 0.226     | 0.222     | 0.217     | 0.213     | 0.209     | 0.206     | 0.202     | 0.199     | 0.196332  | 661.0  |           | 0.185     | 0.182     | 0.180     | 0.178     | 0.175     | 0.173     | 0.171     | 0.16975 | 0.1678   | 0.16602   | 0.16420   |
|-------------------------------------|---------------------------------------------------|-------------------|-----------|---------|---------|---------|-----------|-------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|----------|-----------|-----------|
| TABLES                              | 0.1000                                            | DERIV PE          | -0.010483 |         |         |         | 0.004359  |       | 0.004855 | -0.005041 | -0.005201 | -0.005356 | -0.005497 | -0.005627 | -0.005754 | -0.005874 | *66500*0* | -0.006109 | -0.0062.  | -0.006331 | -0.006435 | -0.006542 | -0.006646 | 240000 | 20000     | 0.001044  | -0.007140 | -0.007234 | -0.007329 |           | -0.007510 |           |         |          | -0.007860 | -0.007947 |
| BASEBAND EYE PATTERN MONITOR TABLES | DR EQUALS<br>EQUALS 1.0                           | A / D<br>RATIO    | 0         | .92064  |         | 89668   | 0.870709  | •     |          |           | •         | •         | •         | •         | •         |           |           |           | •         | •         | •         | •         | 0.601067  | •      | •         |           |           |           |           | •         | •         | •         | •       | •        | .513      | .50864    |
| D EYE PATT                          | TABLE FOR AIDR EQUALS<br>PSEUDO ERROR RATE EQUALS | SNR<br>IN DB      | 13.37     | 13.73   | 14.07   | 14.39   | 14.68     | 18.34 | 15.49    | 15.73     | 15.96     | 16.18     | 16.39     | 16.59     | 16.79     | 16.97     | 17.16     | 17.33     | 17.50     | 17.66     | 17.81     | 17.97     | 18.12     | 18.70  | 10.4      | 18.66     | 18.79     | 18.91     | 19.04     | 19.15     | 19.27     | 19.38     | 19.49   | 19.60    | 19.70     | 19.80     |
| BASEBAN                             | PSEUDO                                            | RATIO             | 0.214535  | 20      | -       | -       | 0.184471  |       | -        | .16340    |           | 0,155187  | •         | •         | 0.144667  | ٦.        | 7         | ٦.        | 7         | -         | 7         | 7         | 0.124202  | •      | •         |           |           | ٦.        | ٦.        | ٦.        | 7         | ٦.        | 7       | 0.104761 | ٦.        | ٦.        |
|                                     |                                                   | RIT ERROR<br>PATE | 0.100F-02 | .630E-0 | -400E-0 | -250E-0 | 0.160E-03 | 4305  | 400E-0   | 0.250E-04 | 0.160E-04 | 0-100E-04 | 0.630F-05 | 0.400E-05 | 0.250E-05 | 0.160F-05 | 0-100E-05 | 0.630E-06 | 0.400F-06 | 0.250E-06 | 0.160E-06 | 0-100E-06 | 0.630F-07 | 0.4001 | 0 1505-07 | 0.100E-07 | 0.630F-08 | 0.400E-08 | 0.250E-08 | 0.160F-08 | 0.100F-08 | 0.630E-09 | -400E-0 | .250E-0  | .16       | -100E-0   |

| = HALF OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE | THE THREE LEVEL EYE I.E., DECISION LEVEL.  # AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO.  # RMS NOISE TO RMS SIGNAL RATIO. | AAL POWER TO NOISE POWER IN DECIBLES. | VATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A / D RATIO. | LOOP FOR SMALL CHANGES AROUND STEADY STATE VALUES WHEN BITE RATE = 12552600. AND ERROR SIGNAL DIVIDER RATIO INTO D/A CONVERTER = |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| HALF                                                      | AMPLIT                                                                                                                           | SIGNAL                                | DERIVA                                                   | WHEN B                                                                                                                           |
| NOMFNCLATURE:                                             | AIDR AIDR                                                                                                                        |                                       |                                                          |                                                                                                                                  |

| ABLES    |
|----------|
| TAB      |
| MONITOR  |
| NON      |
| PATTERN  |
| EYE P    |
|          |
| BASEBAND |
| _        |

|           | PSEUDO E | LE FOR AID   | TABLE FOR AIDR EQUALS 0.1000<br>PSEUDO ERROR RATE EQUALS 1.0 / | 0.1000    |          |
|-----------|----------|--------------|----------------------------------------------------------------|-----------|----------|
| RIT FRROR | RATIO    | SNR<br>IN DB | A / D<br>RATIO                                                 | DERIV PER | TIME     |
| 0.630E-10 | 0,101148 | 19.90        |                                                                | -0.000031 | 0.162480 |
| 0.400E-10 | 0.100034 | 20.00        | 9606650                                                        | -0.008113 | 0.160836 |
| 0.250F-10 | 0.098919 | 50.05        |                                                                | -0.008197 | 0.159188 |
| 0.160F-10 | 0.097893 | 20.18        | 0.490165                                                       | -0.008276 | 0.157670 |
| 0.100E-10 | 0.096846 | 20.28        | 0.485802                                                       | -0.008358 | 0.156119 |
| 0.630E-11 | 0.095847 | 20.37        | 0.481649                                                       | -0.008438 | 0.154640 |
| 0.400E-11 | 0.094895 | 20.46        | 0.477690                                                       | -0.008516 | 0.153228 |
| 0.250E-11 | 0.093938 | 20.54        | 0.473716                                                       | -0.008596 | 0.151807 |
| 0.160F-11 | 0.093055 | 20.63        | 0.470054                                                       | -0.008671 | 0.150496 |
| 0.100E-11 | 0.092151 | 20.71        | 0.466308                                                       | .0.008749 | 0.149152 |
| 0.630E-12 | 0.091287 | 20.79        | 0.462731                                                       | -0.008825 | 0.147866 |
| 0.400E-12 | 0.090461 | 20.87        | 0.459312                                                       | -0.008899 | 0.146635 |
| 0.250E-12 | 0.089629 | 20.95        | 0.455872                                                       | -0.008975 | 0.145394 |
| 0.160E-12 | 0.088859 | 21.03        | 0.452694                                                       | 9,0600.0- | 0.144245 |
| 0.100E-12 | 0.088069 | 21.10        | 0.449435                                                       | -0.009121 | 0.143065 |
| 0.630E-13 | 0.087313 | 21.18        | 0.446316                                                       | *0.009194 | 0.141934 |
| 0.400E-13 | 0.086587 | 21.25        | 0.443327                                                       | -0.009265 | 0.140848 |
| 0.250E-13 | 0.085855 | 21.32        | 0.440314                                                       | -0.009337 | 0.139751 |
| 0.160E-13 | 0.085177 | 21.39        | 0.437524                                                       | 909600-0- | 0.138733 |
| 0.1005-13 | 0.084479 | 21.47        | 0.434657                                                       | -0.009477 | 0.137686 |
| 0.630E-14 | 0.083809 | 21.53        | 431907                                                         | -0.009547 | 0.136680 |
| 0.400E-14 | 0,083166 | 21.60        | .429268                                                        | -0.009615 | 0.135712 |
| 0.250E-14 | 0,082516 | 21.67        |                                                                | -0.009685 | 0.134733 |
| 0.160E-14 | 0,081912 | 21.73        | .424127                                                        | -0.009751 | 0.133823 |
| 0.100E-14 | 0.081290 | 21.80        |                                                                | -0.009820 | 0.132885 |
|           |          |              |                                                                |           |          |

| 13431         | 18052  | 24278    | 28750  | 29846  | 29106   | .27905     | 26783      | 25790    | 16652  | 99247  | 11007  | 22571  | 22117  | 21672  | 21262      | .20883   | 20513    | 20181    | 1984    | 19256  | 18956  | 18694  | ,18429     | 18180   | 17945   | 11//11   | 172817    | 17076      | .16881   | 16687    | 16327  | 16154  | .15989   | .15824   | 15517  | 15368  | .15227     | 15084   | 14952   | 14688  | 14565  | .14440     | .14324    | .14205  | 14092    | 13982  | 23861    | 13464  | 13562  | .13465     | .13366  | .13274  | .13179  |
|---------------|--------|----------|--------|--------|---------|------------|------------|----------|--------|--------|--------|--------|--------|--------|------------|----------|----------|----------|---------|--------|--------|--------|------------|---------|---------|----------|-----------|------------|----------|----------|--------|--------|----------|----------|--------|--------|------------|---------|---------|--------|--------|------------|-----------|---------|----------|--------|----------|--------|--------|------------|---------|---------|---------|
| 303010        | 007228 | .005375  | 004539 | 004372 | 004483  | .004676    | .004872    | .005060  | 122500 | 12600  | 616200 | 005781 | 00500  | 006021 | .000137    | .00624€  | .006361  | 999900   | 515900  | 00000  | 006884 | 006980 | 080700     | .007177 | .007271 | 100.367  | 007551 0  | .007642    | .007730  | .007820  | 00100  | 000018 | .008161  | .008246  | 008400 | 008491 | .008570    | .008651 | .008727 | 200000 | 008959 | .00000     | .009110   | .009186 | .009260  | 266600 | 105600   | 044000 | 00000  | 169600     | 697600  | 068600  | 106600  |
| PAS CALLED    | 950771 | . 928603 | 900006 | 871202 | .842376 | . 816709 - | . 193998 . | . 772754 | 734336 | 730369 | 20000  | 691359 | 678685 | 666148 | . 654558 - | - 908649 | . 633292 | . 663837 | 406410  | 597322 | 589190 | 581823 | . 574410 - | 567445  | 560887  | . 254365 | 54246     | . 536804 - | . 531448 | . 526111 | 516262 | 511554 | . 507081 | - 502607 | 494305 | 490315 | . 486513 . | .482697 | . 19180 | 472150 | 468868 | - 465566 - | .462515 - | .459387 | . 456393 | 453525 | - 250054 | 445202 | 442562 | - 440028 - | .437468 | *435093 | .43264  |
| C.L. TABLI    | 9.84   | . 18     | 15.    | 18.    | 5.10    | 5,38       | 2.63       | 88.      |        | 200    | 200    | 96.5   | 7.15   | 1.33   | 7.51       | 89.      | *8*      | 00.5     | 30      | 4.     | 3.59   | 3.72   | 8.85       | 8.98    | 11.     | 24.0     | 9.46      | 75.6       | 89.6     | 62.6     | 00.00  | 0.10   | 0.19     | 67.0     | 4.0    | 0.57   | 59.0       | 7.0     | 285     | 00.0   | 1.07   | 1,15       | 1.23      | 1.30    | 1.38     | 5.2    | 200      | 1.66   | 1.73   | 1.80       | 1.87    | 1.93    | 2.00    |
| OG PRINTOUT P | 20317  | 19536    | 18807  | 18178  | 17573   | 17028      | 16534      | 16063    | 15647  | 15239  | 14600  | 14189  | 13891  | 13595  | 13321      | 13067    | 12817    | 12592    | 12154   | 11050  | 11764  | 11587  | .11409     | 11241   | 11083   | 10720    | 0638      | 10501      | 10371    | 10241    | 10002  | 09887  | .09778   | 69960    | 09465  | 09368  | .09274     | .09181  | *6060*  | 08921  | .08841 | .08759     | .08684    | .08607  | .08533   | 79480. | 46600    | 08255  | 08190  | .08127     | .08064  | .0800   | .07944  |
| IN DEC        | 630E   | 4.006-0  | 250E-0 | 160E-0 | 100E-0  | .630E-0    | 400E-0     | 250E-0   | 160E-0 | 100E-0 | 0-3000 | 250E   | 160F-0 | 100E-0 | .630E-0    | .400E-0  | 250E-0   | 1605-0   | A 30E - | 4006-0 | 250E-0 | 160E-0 | .100E-0    | 630E-0  | 400E-0  | 0-2067   | 0.100E-08 | 630E-0     | 400E-0   | .250E-0  | 100F   | 630E-1 | *400E-1  | .250E-1  | 100F-1 | 630E-1 | .400E-1    | .250E-1 | .160E-1 | 630E-1 | 400E-1 | .250E-1    | .160E-1   | .100E-1 | -630E-1  | 2505   | 1406     | 1006   | 630E-1 | .400E-1    | .250E-1 | .160E-1 | .100E-1 |

|           | BASFBAND FYF        | FYF PATTERN | MONITOR      | TABLES    |          |
|-----------|---------------------|-------------|--------------|-----------|----------|
|           | TABLE<br>PSEUDO FRR | FOR A       | E EQUALS 1.0 | 0.1200    |          |
| ALT FRODA | 8 / 8               | SVR         | 0 / 4        | DERIV PER | TIME     |
| KATE      | 0114                | 80 N        | KATTS        | -         | CONSTANT |
| 100F-0    | 21203               | -           | 96681        | 01050     | 421      |
| - 40E 9   | 20317               | 13.84       | .95077       | 722       | 052      |
| 0-3005°   | ٤.                  |             | .92860       | 00537     | 278      |
| 250E-0    | 19807               | 4.5         | .90003       | 00453     | 120      |
| .160F-G   | 18178               | 4.8         | .87120       | 0.00437   | 948      |
| .100F-    | 175                 | 1.5         | .84237       | 0.00448   | 106      |
| .630F-0   | 17028               | 5.3         | .81670       | 19700     | 306      |
|           | 15534               | 5.5         | .79399       | 00487     | 783      |
| .250F-0   | 0.160630            | 5.8         | .77275       | 0.00506   | 140      |
|           | 0.156473            | 1.9         | .75435       | 0.00522   | 166      |
| .100F-0   | 0,152397            | 6.3         | .73654       | 00537     | 266      |
| .630F-0   | 0.148662            | •           | .72038       | 0.00551   | 1991     |
| 400F-0    | 0.145225            | 6.7         | .70561       | 59500     | 060      |
| .250F-0   | 0.141890            | 6.9         | 69135        | 0.00578   | 571      |
| 0-160F-05 | 0.138913            | 1.          | .67868       | 0.00590   | 1117     |
| .100F-0   | 0.135958            | 7.3         | .66614       | 0.00602   | 672      |
| .630F-0   | 0,133219            | 7.5         | .65455       | 0.00613   | 262      |
| 400F-0    | 0.130671            | 7.6         | .64380       | 00624     | 883      |
|           | 0.128174            |             | .63329       | -0.006361 | 513      |
| 1605-0    | 0.125925            | 8.0         | .62383       | -0.006466 | 181      |
| .100F-0   | 0.123673            | 8.1         | .61438       | 21        | 1847     |
| .630F-0   | 0,121567            | 8.3         | .60557       | -0.006679 | 1536     |
| 400E-0    | 0,119593            | 8.4         | .59732       | -0.006781 | 1544     |
| 250E-0    | 0.117645            | 8.5         | .58919       | -0.006884 | 1956     |
| .160F-0   | 0,115877            | 4.1         | 58185        | 086900-0- | 1694     |
| -100E-0   | 0.114096            | 8 . 8       | .57441       | -0.001080 | 459      |
| .630E-0   | 0.112419            | 8.9         | .56744       | .00717    | 1180     |
| 400F-0    | 0,110839            | 6           | .56088       | .00727    | 1945     |
| .250E-0   | 0,109269            | 8.5         | .55438       | .00736    | 111      |
| -160F-    | 0,107837            | 6.3         | .54846       | .00745    | 498      |
| 100F-0    | 0.106387            | 4.6         | .54246       | .00755    | 188      |
| -90E9.    | 0,105015            | 9.5         | .53680       | 0.00764   | 1076     |
| -400E-0   | 0,103715            | 9.6         | .53144       | 0.00773   | 881      |
| 250F-0    | 0.102419            | 19.79       | 0.526111     | 0         | 0.156875 |
| -160F-    | 0,101231            | 8.6         | .52122       | .00790    | 209      |
| .100F-0   | 0.100022            | c.c         | .51626       | 6640      | 327      |
|           |                     |             |              |           |          |

|                |                                                           |                                          |                                                     |                                  |                                            |                                            | .10.                                                |                                                      |                                                   |                                             |                                    |
|----------------|-----------------------------------------------------------|------------------------------------------|-----------------------------------------------------|----------------------------------|--------------------------------------------|--------------------------------------------|-----------------------------------------------------|------------------------------------------------------|---------------------------------------------------|---------------------------------------------|------------------------------------|
|                | 4                                                         |                                          |                                                     |                                  |                                            |                                            | AA                                                  |                                                      |                                                   |                                             |                                    |
|                | -                                                         |                                          |                                                     |                                  |                                            |                                            | c.                                                  |                                                      |                                                   |                                             |                                    |
|                | * HALF OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE | THE THREE LEVEL EYE I.E. DECISION LEVEL. | * AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO. | = RMS NOISE TO RMS SIGNAL RATIO. | = SIGNAL POWFR TO NOISE POWER IN DECIBLES. | = ADAPTIVE THRESHOLD AMPLITUDE TO D RATIO. | = DERIVATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A | E DUASILINFAR TIME CONSTANT OF THE ADAPTIVE THRESHOL | LOOP FOR SMALL CHANGES AROUND STEADY STATE VALUES | WHEN BITE PATE . 12552600. AND ERROR SIGNAL | DIVIDER RATTO INTO DIA CONVERTER . |
| NOW PACKATORE. |                                                           |                                          |                                                     | RATIO                            |                                            | RATIO                                      | DERIV PER WAT                                       | TIME CONSTANT                                        |                                                   |                                             |                                    |
| NALCE          | 0                                                         |                                          | ATOR                                                | N / S RATIO                      | SNR                                        | 0 / W                                      | DERIV                                               | TIME CI                                              |                                                   |                                             |                                    |

| TABLES  |  |
|---------|--|
| MONITOR |  |
| PATTERN |  |
| FYE     |  |
| ASFBAND |  |

|                   | PSEUDO F | LE FOR ATO   | TARLE FOR AIDR EQUALS 0.1200<br>PSEUDN FRROR RATE EQUALS 1.0 / 2800. | 0.1200    |          |
|-------------------|----------|--------------|----------------------------------------------------------------------|-----------|----------|
| BIT FRROP<br>PATE | RATTO    | SNR<br>TN DB | RATIO                                                                | DERIV PER | TIME     |
| 0.630E-10         | 0.098875 | 20.10        | 0.511554                                                             | -0.008078 | 0.161544 |
| 0.400E-10         | 0.097783 | 20.19        | 0.507081                                                             | -0.008161 | 0.159898 |
| 0.250E-10         | 0.096690 | 20.29        | 0.504607                                                             | -0.008246 | 0.158247 |
| 0.160F-10         | 0.095685 | 20.38        | 0.498497                                                             | -0.008326 | 0.156726 |
| 0.100E-10         | 0.094659 | 20.48        | 0.494305                                                             | -0.008409 | 0.155172 |
| 0.630E-11         | 0.093682 | 20.57        | 0.490315                                                             | -0.008491 | 0.153689 |
| 0.400E-11         | 0.092749 | 20.65        | 0.486513                                                             | -0.008570 | 0.152271 |
| 0.250E-11         | 0,091812 | 20.74        | 0.482697                                                             | -0.008651 | 0.150846 |
| 0.160E-11         | 0.090948 | 20.82        | 0.479180                                                             | -0.008727 | 0.149529 |
| 0.100E-11         | 990060   | 20.91        | 0.475584                                                             | -0.008806 | 0.148179 |
| 0.630E-12         | 0,089218 | 20.99        | 0.472150                                                             | -0.008884 | 0.146887 |
| 0.400F-12         | 0.088410 | 21.07        | 0.468869                                                             | -0.008959 | 0.145650 |
| 0.250E-12         | 0.087596 | 21.15        | 0.465566                                                             | -0.009037 | 0.14402  |
| 0.160E-12         | 0,086843 | 21.23        | 0.462515                                                             | -0.009110 | 0.143246 |
| 0.100E-12         | 0.086070 | 21.30        | 0.459387                                                             | -0.009186 | 0.142059 |
| 0.630E-13         | 0,085330 | 21,38        | 0.456393                                                             | -0.009260 | 0.140920 |
| 0.400E-13         | 0,084621 | 21.45        | 0.453525                                                             | -0.009332 | 0.139827 |
| 0.250E-13         | 0.083905 | 21.52        | 0.450632                                                             | 10,000.0- | 0.138722 |
| 0,160E-13         | 0.083241 | 21.59        | 0.447954                                                             | -0.009477 | 0.137697 |
| 0.100E-13         | 0.082559 | 21.66        | 0.445202                                                             | -0.009550 | 0.136641 |
| 0.630E-14         | 0.081904 | 21.73        | 0.442562                                                             | -0.009621 | 0.135626 |
| 0.400E-14         | 0.081275 | 21.80        | 0.440028                                                             | -0.009691 | 0.134651 |
|                   | 0,08060  | 21.87        | 0.437468                                                             | -0.009763 | 0.133663 |
| 0.160E-14         | 0,080049 | 21,93        | 0.435093                                                             | -0.009830 | 0.132744 |
| 0.100F-14         | 0.079441 | 22,00        | 0.432648                                                             | -0.009901 | 0.131797 |

| * MALF OF THE MORMAL DISTANCE BETWEEN DATA LEVELS FOR THE | = AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO.  # RMS NOTSE TO RMS SIGNAL RATIO.  # SIGNAL NOTSE TON NOTSE DOMER IN DECIBLES.  # ADADTIVE THRESHOLD AMPLITUDE TO D RATIO.  # DERIVATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A / D RATIO.  # DUASILINEAR TIME CONSTANT OF THE ADAPTIVE THRESHOLD  LODP FOR SMALL CHANGES AROUND STEADY STATE VALUES  WHEN BITE RATE = 12552600. AND ERROR SIGNAL  DIVIDER RATIO INTO D/A CONVERTER = |  |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| NOMENCLATURE:                                             | AIDR<br>N / S RATIO<br>SAID A RATIO<br>DERIV PER WRT<br>TIME CONSTANT                                                                                                                                                                                                                                                                                                                                                                     |  |

| 12380    | 17982   | 24176   | .28623  | .29707  | 28962  | 27759   | 256635  | 3,041  | 24116  | 23490   | 22938   | .22419  | .21964  | .21518  | .21108  | 20729   | 2002    | 970079  | 19381   | 19088   | .18800  | 18537   | 18672   | 17787   | .17553  | .17339  | 271710  | 16721   | .16526  | .16346  | 16164    | 15825    | 15659   | 15506   | 15350   | 0.150583  | .14914  | .14782  | 14516   | 14391   | .14266  | 14149   | 14030   | 13805   | 13694   | 13590    | 13484   | 13382    | 13184   | 13001 | 2      |
|----------|---------|---------|---------|---------|--------|---------|---------|--------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|---------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------|----------|---------|-------|--------|
| 0.01054  | 0.00725 | 0.00539 | 0.00455 | 0.00439 | 050000 | 0.00410 | 0.00489 | 20000  | 00000  | 0.00555 | 0.00568 | 0.00582 | 0.00594 | 9090000 | 0.00618 | 0.00629 | 0,00640 | 16900-0 | 0.00673 | 0.00683 | 0.00694 | 0.00703 | 0.00714 | 0.00733 | 0.00743 | 0.00752 | 0.00762 | 0.00780 | 0.00789 | 0.00798 | 0.00807  | 0.00816  | 0,00833 | 0.00841 | 0.00850 | -0.008666 | 0.00874 | 0.00882 | 0.00808 | 90600-0 | 0.00914 | 0.00922 | 0.00930 | 59600-0 | 0.00952 | 09600 0  | 0.00967 | 0.00975  | 0.00989 | 0000  | 001000 |
| 921      | .95097  | .92893  | .90056  | .87194  | .84337 | .81797  | 77480   | *****  | 73000  | 72314   | -7086R  | .69475  | .68238  | .67017  | .65889  | .64843  | .63823  | 00679   | 41137   | .60339  | .59553  | .58841  | 58125   | 56821   | .56194  | .55623  | 64066   | 53984   | .53470  | .52999  | .52521   | 51637    | .51207  | .50811  | .50407  | 0.496576  | .49290  | .48951  | 48274   | .47958  | 049240  | .47346  | 47044   | . 46479 | .46200  | 2+664.   | .45677  | 229699   | 44931   | 44701 | ****   |
| 13.59    | 3.9     |         | 4.6     | 4.9     | 2.5    |         | 200     |        | 9      | 6.7     | 6.9     | -       | 7.3     | 7.5     | 1.1     | 8.6     |         |         | 8       |         | 8.7     | 6.0     |         | 3.      | 4.6     | 9.5     | 0.0     | . 6     | 000     | -       | 200      |          |         | 5.0     | 0 0     |           |         | •       | ::      | 1.2     |         | 7.      |         | 1.6     | 1.7     |          |         | 2.0      | 2.0     | 2.1   | 2.2    |
| 0.209139 | 22002   | 19236   | .18503  | .17872  | 17265  | 16719   | 15756   | 16330  | 14933  | 14562   | 14220   | 13889   | 13594   | 13301   | 13031   | 12779   | 12333   | 120001  | 11882   | 11688   | 11496   | 11323   | 1000    | 10828   | 10674   | 10534   | 10392   | 10131   | .10004  | 18860   | 9460     | 09550    | 09443   | 09345   | 64760   | 09058     | .08967  | .08882  | 08713   | .08634  | .08555  | .08481  | 08406   | .08264  | .08194  | .08129   | 69080   | 07037    | 07875   | 07818 | 07758  |
| 15 17 E  | 0-30E9. | 0-3005. | .250E-0 | .160E-0 | 100E-0 | 0-30E9  | 2506    | 0 3077 | 1006-0 | 630E-0  | 400E-0  | .25nE-  | .160E-0 | -100E-0 | .630E-0 | 0-3004. | 250E-0  | 1005    | 630E-0  | 400E-0  | .250E-0 | .160E-0 | 1005-0  | 4006-0  | -250E-0 | .160E   | 1001-0  | 400E-0  | -250E-0 | .160E-0 | . 100E-0 | . 400E-1 | .250E-1 | .160E-1 | 1001-   | 0.4006-11 | -250E-1 | -160E-1 | 630E-1  | .400E-1 | .250E-1 | .160E-1 | AAOF    | -400E-1 | .250E-1 | . 160E-1 | -100E-1 | 6 30E -1 | 2505-   | LANE  | 100    |

1-71

|           | BASFBAND       | EVE PATTE    | BASEBAND EYE PATTERN MONITOR TABLES                         | ABLES     |          |  |
|-----------|----------------|--------------|-------------------------------------------------------------|-----------|----------|--|
|           | PSEUDO F       | LE FOR ATE   | TABLE FOR AIDR EQUALS 0.1400 PSEUDO FRROR RATE EQUALS 1.0 / | 0.1400    |          |  |
| RIT FRROR | N / S<br>RATIO | SAR<br>18 DB | RATTO                                                       | DERIV PER | CONSTANT |  |
| 0.100F-02 | 0,209139       | 13.59        | 0.966921                                                    | -0.010540 | 0.123806 |  |
| 0.630F-03 | 0,200222       | 13.97        | 0.950970                                                    | -0.007257 | 0.179823 |  |
| 0.400F-03 | 0.192365       | 14.32        | 0.928938                                                    | -0.005398 | 0.241760 |  |
| 0.250F.03 | 0.185036       | 14.65        | 0.900561                                                    | -0.004559 | 0.286231 |  |
| 0.160E-03 | 0.178721       | 14.96        | 0.871946                                                    | -0.004393 | 0.297074 |  |
| 0.100F-03 | 0.172654       | 15.26        | 0.843375                                                    | -0.004505 | 0.289628 |  |
| 0-630E-04 | 0.167197       | 15.54        | 0.817978                                                    | -0.004701 | 0.277590 |  |
| 0.400E-04 | 0.162260       | 15.80        | 0.795545                                                    | -0.004899 | 0.266357 |  |
| 0.250F-04 | 0.157546       | 16.05        | 0.774599                                                    | -0.005089 | 0.256416 |  |
| 0 1405-04 | 0.153307       | 14.28        | 0.756403                                                    | -0.005253 | 0.248418 |  |

| 0.100F-02  | 0.209139 | 13.59 | 0.966921 | -0.010540 | 12380    |
|------------|----------|-------|----------|-----------|----------|
| .630F-03   | 0,200222 | 13.97 | 5097     | -0.007257 | 0.179823 |
| \$ 400F-03 | 0.192365 | 14.32 | 0.928938 | -0.005398 | 0.241760 |
| 250F-03    | 0.185036 | 14.65 | 0.900561 | -0.004559 | 0.28623  |
| 1.160E-03  | ٦.       | 14.96 | 0.871946 | -0.004393 |          |
| 100F-03    | 0.172654 | 15.26 | 0.843375 | -0.004505 | ~        |
| 0-630E-04  | -        | 15.54 | 0.817978 | -0.004701 |          |
| \$0-300+°C | -        | 15.80 | 0.795545 | -0.004899 | ~        |
| 3.250F-04  | ٦.       | 16.05 | 0.774599 | -0.005089 | ~        |
| 0.160E-04  | -        | 16.28 | 0.756493 | -0.005253 | ~        |
| 0.100F-04  | -        | 16.52 | 0.739001 | -0.005411 | ~        |
| 0.630E-05  | 7        | 16.74 | 0.723149 | -0.005555 |          |
| \$0-300+°  | 0.142204 | 16.94 | 8980     | -0.005689 |          |
| 0.250E-05  | 0.138895 | 17.15 | 0.694756 | -0.005821 |          |
| 0.160E-05  | 0,135944 | -     | 0.682387 | -0.005941 |          |
| 0.100F-05  | 0.133019 | -     | 0.670170 | -0.006064 |          |
| 0.630F.06  | 0,130310 |       | 0.658890 | -0.006182 |          |
| 90-300+°C  | 0.127793 | -     | 0.648439 | -0.006295 | 0.207297 |
| 1.250E-06  | 0.125330 |       | 0.638232 |           |          |
| 0.160E-06  | 0,123112 | Œ     | 0.629061 |           | 0.200262 |
| 0-100E-06  | 0.120894 | œ     | 0.619907 | -0.006626 | 0.196928 |
| 0.630F-07  | 0,118822 | 18.50 | 0.611371 |           |          |
| 10-30U+0   | 0,116881 | 8     | 0.603391 | 00683     | ٦.       |
| 0.250E-07  | 0.114967 | 8     | 0.595531 | -0.006941 | ٦.       |
| 7.160E-07  | 0,113230 | 8     | 0.588414 | -0.007039 | 0.185377 |
| 1.100F-07  | 0,111482 | 19.06 | 0.581257 | 00714     | ٦.       |
| 0.630E-08  | 0.109837 | 19.19 | 0.574536 | -0.007240 |          |
| -400F-     | 0,108287 | 19,31 | 0.568211 | 30733     | 17787    |
| 0.250F-08  | 0,106749 | 19.43 | 0.561941 | -0.007434 | 17553    |
| 0.160F-08  | 0.105346 | 19.55 | 0.556231 | 30752     | 17339    |
| .100F-0    | 0,103925 | 19.67 | 0.550455 | -0.007621 | .17122   |
| 0.630E-09  | 0.102582 | 19.78 | 0.545001 | -0.007714 | 16916    |
| -400E-0    | 0.101310 | 19.89 | 0.539841 | 0         | 7        |
| 0.250F-09  | 0.100042 | 20.00 | 0.534702 | -0.007896 | 16526    |
| .160E-0    | 0.098879 | 20.10 | 0.529998 | 8         |          |
| 0.100F_00  | 0.007697 | 20.20 | 0.525218 | FL0800-01 | 0 14444  |

|               | = MALF OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THF | EYE I.E. OFCISION LEVEL. | # AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO. | SIGNAL RATIO.      | OISE POWER IN DECIBLES. | D AMPLITUDE TO D RATIO. | UDO ERROR RATE WITH RESPECT TO A / D RATIO. | - DUASILINEAR TIME CONSTANT OF THE ADAPTIVE THRESHOLD | ANGES AROUND STEADY STATE VALUES | 12552600. AND EPROR SIGNAL | DIVIDER PATIO INTO DIA CONVERTER # |  |
|---------------|-----------------------------------------------------------|--------------------------|-----------------------------------------------------|--------------------|-------------------------|-------------------------|---------------------------------------------|-------------------------------------------------------|----------------------------------|----------------------------|------------------------------------|--|
|               | E HALF OF THE NORM                                        | THE THREE LEVEL          | E AMPLITUDE OF INT                                  | E RMS HOISE TO RMS | SIGNAL POWER TO         | ADAPTIVE THRESHO        | DERIVATIVE OF PS                            | . DUASILINEAR TIME                                    | LOOP FOR SMALL C                 | WHEN BITE RATE =           | DIVIDER PATIO IN                   |  |
| NOMENCLATURE: |                                                           |                          | ATDR                                                | N / S RATIO        | SNR                     | A / D RATIO             | DERIV PER WRT                               | TIME CONSTANT                                         |                                  |                            |                                    |  |
|               |                                                           |                          |                                                     |                    |                         |                         |                                             |                                                       |                                  |                            |                                    |  |

| S        |  |
|----------|--|
| ES       |  |
| <b>6</b> |  |
| LABLE    |  |
|          |  |
| 108      |  |
|          |  |
| MONI     |  |
| Ô        |  |
| _        |  |
| ž        |  |
| W        |  |
| PATTER   |  |
| ĕ        |  |
|          |  |
| 4        |  |
| 4        |  |
| 9        |  |
| A        |  |
| BASEBAND |  |
| S        |  |
| 8        |  |
| _        |  |

|                   | PSEUDO E | TAMLE FOR AIDP EQUALS<br>PSEUDN ERROP RATE EQUALS |                | 1.0 / 2800. |          |
|-------------------|----------|---------------------------------------------------|----------------|-------------|----------|
| RIT FRROP<br>RATE | RATTO    | SNR<br>1 08                                       | A / D<br>RATIO | DERIV PER   | TIME     |
| 0.6306-10         | 0.096575 | 20.30                                             | 0.529685       | -0-008160   | 0.159907 |
| 0.400E-10         | 0.095507 | 20.40                                             | 0.516379       | -0.008246   | 0.158252 |
| 0.250E-10         | 0.094439 | 20.50                                             | 0,512072       | -0.00R333   | 0.156593 |
| 0.1605-10         | 0.093456 | 20.59                                             | 0.508115       | -0.008415   | 0.155064 |
| 0.100F-10         | 0.092453 | 20.48                                             | 0.504079       | -0.008501   | 0,153501 |
| 0.630F-11         | 0.091498 | 20.17                                             | 0.500238       | -0.008584   | 0.152009 |
| 0.4006-11         | 0.090586 | 20.86                                             | 0.496576       | -0.008666   | 0,150583 |
| 0.2506-11         | 0,089671 | 20.95                                             |                | -0.008749   | 0.149149 |
| 0.160F-11         | 0.088826 | 21.03                                             | 0.489515       | -0.008827   | 0.147824 |
| 0.100F-11         | 0.087962 | 21.11                                             | 0.486051       | -0°008000   | 0.146465 |
| 0.630E-12         | 0,087136 | 21.20                                             | 0.482744       | -0°008989   | 0.145164 |
| 0.400E-12         | 0.086346 | 21.28                                             | 0.479582       | -0.00000    | 0,143918 |
| 0.250E-12         | 0,085551 | 21.36                                             | 0.476401       | -0.009147   | 0.142662 |
| 0.160F-12         | 0.084815 | 21.43                                             | 0.473461       | -0.009222   | 0.141498 |
| 0.1006-12         | 0.084061 | 21.51                                             | 0.470446       | -0.009301   | 0.140302 |
| 0.6306-13         | 0.083338 | 21.58                                             | 0.467561       | -0.009377   | 0.139155 |
| 0.400E-13         | 0.082645 | 21.66                                             | 0.464796       | -0.009452   | 0.138053 |
| 0.250F-13         | 0.081945 | 21.73                                             | 0.462007       | -0.009529   | 0.136940 |
| 0.1605-13         | 0.081297 | 21.80                                             | 0.459424       | -0.009601   | 0.135907 |
| 0.100E-13         | 0.080631 | 21.87                                             | 0.456770       | -0.009677   | 0.134844 |
| 0.630E-14         | 0.079992 | 21.94                                             | 0.454224       | -0.009751   | 0.133822 |
| 0.400E-14         | 0.079377 | 22.01                                             | 0.451780       | -0.009823   | 0.132839 |
| 0.250E-14         | 0.078756 | 22.07                                             | 0.449310       | -0.009897   | 0.131844 |
| 0.160E-14         | 0.078180 | 22.14                                             | •              | -0.009967   | 13091    |
| 0.100E-14         | 0.077586 | 22.20                                             | 0.444658       | -0.010040   | 0.129965 |

|                                                        |                                                                                                                                 | * ADAPTIVE THRESHOLD AMPLITUDE TO D RATIO.  * DERIVATIVE OF PSEUDO ERROR RATE WITH PESPECT TO A / D RATIO.  * DUASILINEAR TIME CONSTANT OF THE ADAPTIVE THRESHOLD  **LOOP FOR SMALL CHANGES AROUND STEADY STATE VALUES  **HEN RITE PATE **  **LOOP FOR SMALL |                                    |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| w                                                      |                                                                                                                                 | A A                                                                                                                                                                                                                                                          |                                    |
| Ŧ                                                      |                                                                                                                                 | ٥                                                                                                                                                                                                                                                            |                                    |
| 8                                                      |                                                                                                                                 | 200                                                                                                                                                                                                                                                          |                                    |
| S.                                                     | 01                                                                                                                              | SHOW                                                                                                                                                                                                                                                         | *                                  |
| VEL                                                    | A A                                                                                                                             | - F X                                                                                                                                                                                                                                                        | ;                                  |
|                                                        | 0                                                                                                                               | A 1 1 6                                                                                                                                                                                                                                                      | ,                                  |
| ATA                                                    | ES.                                                                                                                             | PES<br>TIV                                                                                                                                                                                                                                                   |                                    |
| 2 2                                                    | IBL IBL                                                                                                                         | ATA                                                                                                                                                                                                                                                          | 2                                  |
| MEE                                                    | FRE                                                                                                                             | O T T T                                                                                                                                                                                                                                                      | ~                                  |
| BET                                                    | IN SE                                                                                                                           | DATE OF                                                                                                                                                                                                                                                      | RTE                                |
| w.                                                     | N T W                                                                                                                           | PO PO                                                                                                                                                                                                                                                        | VE.                                |
| Ž                                                      | 2 2                                                                                                                             | T N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                      | S                                  |
| 15                                                     | MAN                                                                                                                             | STATE STATE                                                                                                                                                                                                                                                  | *                                  |
| ١٠                                                     | STO                                                                                                                             | 2008                                                                                                                                                                                                                                                         | 0                                  |
| 2 .                                                    | IN S                                                                                                                            | BANA, "                                                                                                                                                                                                                                                      | Z                                  |
| THE OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE | # AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO. # RMS NOISE TO RMS SIGNAL RATIO. # SIGNAL POWER TO NOISE POWER IN DECIBLES. | ALL ALL                                                                                                                                                                                                                                                      | DIVIDER RATIO INTO DIA CONVERTER = |
| H H                                                    | E T                                                                                                                             | # 38 % g                                                                                                                                                                                                                                                     | PAT                                |
| P. DE                                                  | 550                                                                                                                             | FOR                                                                                                                                                                                                                                                          | 2                                  |
| 4 4                                                    | SAN                                                                                                                             | T N S C N                                                                                                                                                                                                                                                    | 110                                |
| ¥ F                                                    | SIN                                                                                                                             | 1229                                                                                                                                                                                                                                                         | 10                                 |
| "                                                      |                                                                                                                                 |                                                                                                                                                                                                                                                              |                                    |
| E:                                                     |                                                                                                                                 | A / D RATIO<br>DERIV PER WRT<br>TIME CONSTANT                                                                                                                                                                                                                |                                    |
| Į.                                                     | 11                                                                                                                              | 1 8 1                                                                                                                                                                                                                                                        |                                    |
| Ę                                                      | 8                                                                                                                               | 2 4 6                                                                                                                                                                                                                                                        |                                    |
| NOMENCLATURE:                                          | ATDR<br>N / S RATIO<br>SNR                                                                                                      | A / D RATIO<br>DERIV DER WRT<br>TIME CONSTANT                                                                                                                                                                                                                |                                    |
| Zo                                                     | A Z Z                                                                                                                           | 401                                                                                                                                                                                                                                                          |                                    |

| 13330 | 17081  | 24020   | 28440  | 29509   | .28758  | .27551  | .26427  | 26430   | 23004   | 23277   | .22725  | .22204  | .21748  | 10612.  | 20671   | 20140   | .19806  | .19472  | .19160  | 18577   | 18314   | .18049  | .17799  | .17562  | .17327  | 71111   | 16687   | 16491   | .16295  | .16116  | .15932  | .15758  | 76441.  | 15272   | 15115  | .14965  | 14822   | 14545   | 14409  | .14279  | .14154  | 87.71  | 0.137919 | 13677   | .13566  | 13455   | 13351   | .13245  | 1314   | 13044   | 12852  | : -:      |
|-------|--------|---------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------|--------|---------|---------|--------|----------|---------|---------|---------|---------|---------|--------|---------|--------|-----------|
| 9     | 466600 | 0 00643 | 00458  | 0.00442 | 0.00453 | 0.00473 | 0.00493 | 0.00529 | 0.00545 | 0.00560 | 0.00574 | 0.00587 | 0.00000 | 0.00612 | *2900 0 | 0.00647 | 0.00658 | 0.00670 | 0.00681 | 0.00702 | 0.00712 | 0.00723 | 0.00733 | 0.00743 | 0.00753 | 29/00 0 | 0.00782 | 0.00791 | 0.00000 | 0.00809 | 0,00819 | 0.00828 | 0.00836 | 0.00854 | 9.00 G | 0.00871 | 0.00880 | 0.00889 | 0.0000 | 0.00913 | 0.00921 | 06600  | 20       | 0.00954 | 1960000 | 6960000 | 77600°0 | \$8600  | 266000 | 0001000 | 01000  | 22        |
| MAS   | 96125  | 02041   | 90130  | 87298   | .84475  | .81971  | .79763  | 75037   | 74221   | 72673   | .71263  | 10669.  | .68705  | .67518  | 45411   | 64423   | .63536  | .62650  | 61825   | 60205   | 59608   | 58917   | .58268  | .57658  | 57053   | 55045   | 55418   | 54920   | .54424  | .53970  | . 53509 | 53071   | 52656   | 51857   | .51469 | .51096  | 50743   | 20000   | 49725  | 49405   | 66067   | 26184  | 48215    | 47936   | 4766R   | 47398   | 47148   | 16891   | ****   | 46407   | 45044  | 45717     |
|       |        |         |        | 5.1     | 3       | 5.      | 5.0     | 9.4     |         |         | 7.      | 7.3     | 2.5     |         |         | 8.2     | 4.8     | 8.5     |         |         | . 6     | 9.2     | 9.3     | 9.5     | 9.      |         | 0 0     |         | 0.2     |         | 4.      | 5.0     |         |         | 8.0    | 6.0     |         | ::      |        | 1.4     | 4.      |        |          | 1.7     | 1.8     | 1.9     | 2.0     | 5.0     | 2.1    | 7.5     | 200    | 22.42     |
| PRINT | 10400  | 10001   | 18166  | 17534   | .16927  | .16383  | 15891   | 15010   | 14407   | 14239   | 13901   | .13575  | .13284  | 12795   | 12481   | 12239   | 12021   | .11804  | 11601   | 11223   | 11054   | 10692   | 10722   | 10570   | 10420   | 10144   | 10012   | 09660   | .09764  | .09651  | .09535  | 09426   | 12660   | 09121   | 62050  | .08930  | 08841   | 26780   | 08585  | .08504  | .08427  | 64680  | 18204    | 08133   | 99080   | 86620   | .07934  | .07869  | 07807  | 07747   | 07430  | 0.075725  |
| 30    | 2064   | TOUE    | 250F-0 | 160E-0  | .100E-0 | -90E9.  | 4005-0  | 140F-0  | 100F    | 630E-0  | .400E-0 | .250E-0 | -160E-0 | 100E-0  | 400F    | 250E-0  | -160E-0 | .100E-0 | 630E-0  | 250E-0  | 160E-0  | 100E-0  | .630E-0 | 400E-0  | 250E-0  | 1006    | 6305-0  | 400E    | 250E-0  | .160E-0 | 100E-0  | .630E-1 | 1000    | 140F-1  | 1006-1 | .630E-1 | 1-3001  | 1406    | 1005-1 | 630E-1  | 400E-1  | 250E-1 | -        | 630E-1  | 400E-1  | .250E-1 | .160F-1 | .100E-1 | 630E-1 | 4005-1  | 140E-1 | 0.1005-14 |

|                                                | TIME         | .12320   | 17881    | .24028   | .28440    | .29509    | .28758    | .27551    | .26427    | .25432    | .24631    | .23904    | .23277    | .22725    | *5220*    | .21748   | 21301     | 16807     | 11607    | 504107-0  | 19472    | .19160    | .18866    | .18577   | .18314   | .18048   | .17798   | .17562   | .17327   | .17112   | .16894   | .16687   | 16491     | .16295   | .16116    |
|------------------------------------------------|--------------|----------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|-----------|----------|-----------|----------|-----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|-----------|
| 1.0 / 2800.                                    | DERIV PER    | .01059   | .0072    | 00543    | -0.004588 | -0.004422 | -0.004538 | -0.004736 | -0.004938 | -0.005131 | -0.005298 | -0.005459 | -0.005606 | -0.005742 | -0.005877 | 000900   | -0.006126 | -0.006246 | 2000000  | 0.00000   | 0.006701 | -0.006811 | -0.006916 |          |          |          |          |          |          |          |          |          | -0.007912 |          | -0.008097 |
|                                                | PATTO        | 0.967083 | 0.951256 | 0.929412 | 0.901300  | 0.872983  | 0.844754  | 0,819711  | 0.797637  | 0.777069  | 0.759325  | 0.742215  | 0.726736  | 0.712639  | 0.699076  | 0.687051 | 0.675188  | 0.664246  | 81146000 | 0.544234  | 0.626508 | 0.618257  | 0.6:0547  | 6.602956 | 0.596085 | 0.589176 | 0.582689 | 0.576584 | 0.570535 | 0.565024 | 0.559451 | 0.554188 | 0.549208  | 0.544248 | 0.539708  |
| TABLE FOR AIDR EQUALS PSEUDO FRROR RATE EQUALS | SNR<br>IN DB | 13.73    | 14.11    | 14.47    | 14.81     | 15,12     | 15.43     | 15.71     | 15.98     | 16.24     | 16.47     | 16.71     | 16.93     | 17.14     | 17.35     | 17.53    | 17.72     | 17.90     |          | 18.24     | 18.56    | 18.71     | 18.85     | 19.00    | 19.13    | 19.27    | 19.39    | 19.52    | 19.64    | 19.76    | 19.88    | 19.99    | 20.10     | 20.21    | 20.31     |
| TABI<br>PSEUDO FI                              | PATTO        | 0,205866 | 0.196905 | 0.189016 | 0.181668  | 0,175345  | 0.169279  | 0,163832  | 0,158913  | 0.154223  | 0,150103  | 0.146076  | 0.142395  | 0,139018  | 0,135750  | 0.132840 | 0.129959  | 0.127293  | 618471.0 | 0.120222  | 0.118047 | 0.116015  | 0.114114  | 0.112239 | 0,110540 | 0.108829 | 0.107220 | 0.105705 | 0.104201 | 0,102830 | 0.101441 | 0.100129 | 0.098886  | 0.097647 | 0.096512  |
|                                                | IT FRROP     | 00E-02   | 30E-03   | DOF-03   | 50F-03    | 50E-03    | 00E-03    | 30E-04    | 00E-04    | 50E-04    | \$0E-04   | 00E-04    | 30E-05    | 00E-05    | 50E-05    | 60E-05   | 50-300    | 305-06    | 000000   | 0 1406-06 | 00E-06   | 30E-07    | TO-300    | 50E-07   | 60E-07   | 00E-07   | 30F-08   | 90E-08   | 50E-08   | 60F-08   | 00E-08   | 30E-09   | 60-300    | 50F-09   | 60E-00    |

| - HALF OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE | # AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO. # RMS NOISE TO RMS SIGNAL RATIO. # SIGNAL POWER TO NOISE POWER IN DECIBLES. # ADAPTIVE THRESHOLD AMPLITUDE TO RATIO. # DERIVATIVE OF PSEUDO ERROR MATE WITH RESPECT TO A / D MATIO. # QUASILINEAR TIME CONSTANT OF THE MADAPTIVE THRESHOLD LOOP FOR SMALL CHANGES AROUND STEADY STATE VALUES # NAMEN BITE RATE # 1 2592460. # NAMEN BITE # 1 2592460. # NAMEN BITE RATE # 1 2592460. # NAMEN BITE # 1 2592460. | DIVIDER ACTIO INTO DAY CONVENIER A |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| NOMENCLATURE:                                             | AIDR<br>N / S RATIO<br>SHR<br>A / D RATIO<br>DERIV DER WRT<br>TIME CONSTANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |

| BASEBAND FYF PATTERN MONITOR TABLES TABLE FOR AIDR EQUALS 0.1600 PSEUDO ERROR RATE EQUALS 1.0 / 2800. |        |        |
|-------------------------------------------------------------------------------------------------------|--------|--------|
| FYF PATTERN MONITOR T<br>LE FOR AIDR EQUALS<br>RROR RATE EQUALS 1.0                                   |        |        |
| LE POR ATOR                                                                                           | TABLES | 0.100  |
| LE POR ATOR                                                                                           | 80     |        |
| LE POR ATOR                                                                                           | I ON   | EDUAL  |
| BASEBAND PYF PATT<br>TABLE FOR AT<br>PSEUDO ERROR RATE                                                |        | 80     |
| BASEBAND FYF<br>TABLE PO<br>PSEUDO ERROR                                                              | PATT   | RATE   |
| BASEBAND<br>TARL<br>PSEUDO ER                                                                         | -      | 000    |
| PSEUDO                                                                                                | 9      | A E    |
|                                                                                                       | BASEBA | PSEUDO |

| TIME           | 0.157585  | 0.154250  | 0.152724  | 0.151155  | 0.149658  | 0.148228  | 0.146789  | 0.145459  | 0.144096  | 0.142792  | 0.141543  | 0.140283  | 0.139117  | 0.137919  | 0.136770  | 0.135666  | 0.134552  | 0.133518  | 0,132454  | 0.131431  | 0.130448  | 0.129453  | 0.128529  | 0.127575  |
|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| DERIV PER      | -0.008281 | 0.008369  | -0.008544 | -0.008633 | -0.008719 | -0.008803 | 068800-0- | -0.008971 | 950600*0- | -0.009139 | -0.009219 | -0.009302 | -0.009380 | -0.009461 | -0.009541 | -0.009619 | -0.009698 | -0.009773 | -0.009852 | -0.009928 | -0.010003 | 00010.0   | -0.010153 | -0.010229 |
| A / D<br>RAT10 | 0.530718  | 0.522400  | 0.518578  | 0.514680  | 0.510968  | 0.507430  | 0.503878  | 0.500604  | 0.497255  | 0.494056  | 8660650   | 0.487920  | 0.485076  | 0.482158  | 0.479365  | 0.476688  | 0.473987  | 0.471486  | 0.468915  | 0.466448  | 0.464079  | 0.461685  | 0.459463  | 0.457175  |
| SNR<br>IN DB   | 20.51     | 20.71     | 20.80     | 20.89     | 20.98     | 21.07     | 21,16     | 21.24     | 21.32     | 21.41     | 21.49     | 21.57     | 21.64     | 21.72     | 21.79     | 21.87     | 21.94     | 22.01     | 22.08     | 22,15     | 22,22     | 22.29     | 22.35     | 25.42     |
| RATIO          | 0.094261  | 0.092176  | 0.091216  | 0.090237  | 0.089304  | 0,088415  | 0.087521  | 0.086697  | 0.085853  | 0.085047  | 0.084276  | 0,083499  | 0,062781  | 0.082045  | 0.081339  | 0,080663  | 0.079980  | 0.079348  | 0.078697  | 0.078073  | 0.077474  | 0.076867  | 0.076305  | 0,075725  |
| BIT FRADE      | 0.6306-10 | 0.2506-10 | 0.160E-10 | 0.100E-10 | 0.630E-11 | 0.400E-11 | 0.250E-11 | 0.1606-11 | 0.100E-11 | 0.630E-12 | 0.400E-12 | 0.250E-12 | 0.160E-12 | 0.100E-12 | 0.630E-13 | 0.400E-13 | 0.250E-13 | 0.160E-13 | 0.100E-13 | 0.630E-14 | 0.400E-14 | 0.250E-14 | 0.160E-14 | 0.100E-14 |

NOMENCLATURE:

HALF OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE THE THREE LEVEL EYE I.E., DECISION LEVEL.

AIDR = AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO.

N / S RATIO = RAS NOISE TO RAS SIGNAL RATIO.

S.R = SIGNAL POWER TO NOISE POWER IN DECIBLES.

A / D RATIO = ADAPTIVE THRESHOLD AMPLITUDE TO D RATIO.

DERIVATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A / D RATIO.

TIME CONSTANT = DUASILINEAR THE CONSTANT OF THE ADAPTIVE THRESHOLD

LOOP FOR SMALL CHANGES AROUND STADE VALUES

WHEN BITE RATE = 12592600. AND ERROR SIGNAL

DIVIDER RATIO INTO D/A CONVERTER = 4.

|            | .12239   | .17745  | .23830  | .28195  | .29243  | .28484  | 27276   | 16107  | 26354   | 23626   | .22999  | .22445  | .21923  | 9917    | 61012   | 80902   | 122020 | 19521   | 19186   | .18873  | .18580  | .18289  | 97081   |       | 17273   | 17038   | .16823  | 16605   | 16398   | 16202  | 15827  | 15644   | 15469   | .15304  | .15137  | 14984   | 14678  | 14536   | .14392  | .14260  | 47141   | 13870   | 13745   | .13629  | .13510  | 13396   | 13286   | 61317 | 12967  | .12866  | .12768 | .12670  | 0.125784  | 12484  |
|------------|----------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------|---------|---------|---------|-------|---------|---------|---------|---------|---------|--------|--------|---------|---------|---------|---------|---------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------|--------|---------|--------|---------|-----------|--------|
| ED.        | -0.01066 | .00735  | 0.00547 | 0.00462 | 9990000 | 0.00458 | 0.00478 | 440000 | 0.00535 | 0.00552 | 0.00567 | 0.00581 | 0.00595 | 0.00607 | 0.00620 | 0.00633 | 240000 | 0.00668 | 0.00680 | 0.00691 | 0.00702 | 0.00713 | 0.00723 |       | 0.00755 | 0.00765 | 0.00775 | 0.00785 | 0.00795 | 508000 | 42900  | 0.00834 | 0.00643 | 0.00852 | 0.00862 | 0.00670 | 00000  | 0.00697 | 9060000 | 0.00915 | 6260000 | 0.00000 | 0.00949 | 0.00957 | 59600.0 | 44600.0 | 2860000 | 06600 | 001000 | 0.01014 | .01022 | 0.01029 | -0.010374 | .01045 |
| E WAS CALL | .967304  | .951    | .93004  | .90227  | .87433  | .84653  | .82193  | 2000   | 76283   | .74615  | .73109  | .71739  | .70422  | . 69255 | .68106  | 94049   | 00000  | 64251   | .63395  | .62597  | .61852  | .61118  | *6000   | 00160 | 58560   | .57984  | .57451  | .56911  | .56402  | .55920 | 55001  | 56556   | 54130   | .53728  | .53325  | .52954  | 52217  | 51874   | .51529  | .51212  | 190887  | 50270   | 18664   | .49704  | .49421  | .49150  | 06884   | 97994 | 48135  | .47895  | .47665 | .47432  | 0.472163  |        |
| -          | 3.8      | 4.2     | •       | 6.      | 5.3     | 2.6     | 5.0     |        | 9       | 6.9     | :       | 7.3     | 7.5     |         |         |         |        | 9       | 1.0     | 6.0     | 0.6     | 2.6     |         |       | 10      | 8.6     | 6.0     | 0.0     | 2.0     |        |        |         | 7       | 8.0     | 6.0     | •       |        | 1.2     | 1.3     | *       | •       | 1       |         | :       |         | 2.0     | 0.7     | ,,,   | 2.5    | 2.3     | 2.4    | 2.5     | 22.97     | •      |
| RINT       | .20224   | 19325   | .18535  | 17801   | 17170   | 16566   | .16024  | 16072  | 14664   | 14267   | 13904   | .13572  | 13251   | 12965   | 12682   | 17971   | 11043  | 11729   | 11516   | 11317   | 111131  | 10948   | 10782   | 1001  | 10310   | 10163   | 10030   | 76860   | .09766  | 96645  | 00413  | 00160   | 09194   | 26060   | 06680   | 6080    | 08710  | 08623   | .08936  | .08456  | 606973  | 08220   | .08144  | .08074  | 20080   | .07933  | 9810    | 01110 | .07675 | .07615  | .07556 | -07497  | 0.074429  | .07386 |
| IN DE      | .100E-0  | .630E-0 | -400E-0 | .250E-0 | .160E-0 | .100E-0 | .630E-0 | 2505   | 160E-0  | 100E-0  | 0-30E9. | 0-30GT  | -250E-  | .160E-0 | 100E-0  | 0.306.0 | 36.06  | 1605-0  | -100E-0 | .630E-0 | 0-300+* | 250E-0  | 1906-0  | 73001 | 400E-0  | 250E-0  | .160E-0 | .100E-0 | 6 30E-0 | 0-3004 | 1406-0 | 1005-0  | 630E-1  | .400E-1 | .250E-1 | 1606-1  | 630E-1 | 400E-1  | .250E-1 | -160E-  | 1000    | 400E-1  | .250E-1 | .160E-1 | 1006-1  | .630E-1 |         | 1406  | 1006   | .630E-1 | .400E  | -290E-1 | 0.1605-14 | •100E- |

| 5                                   | 2800.                                                                | DED IV DED |
|-------------------------------------|----------------------------------------------------------------------|------------|
| TABLE                               | 91.00.                                                               |            |
| MONITOR                             | SDUALS 1                                                             |            |
| BASEBAND FYE PATTERN MONITOR TABLES | TABLE FOR AIDR EQUALS 0.1800<br>PSEUDO FRROR RATE EQUALS 1.0 / 2800. | 979        |
| NO EYE                              | ABLE FO                                                              |            |
| BASEBA                              | PSEUDO                                                               |            |
|                                     |                                                                      |            |

| B14 F0000 | S / Z    | NNS   | 0 / 4    | 4         | TIME     |
|-----------|----------|-------|----------|-----------|----------|
| RATE      | RATIO    | 1N 08 | RATIO    | WRT A / D | CONSTANT |
| 0.1008-02 |          | 3.8   | 96730    |           |          |
| 0.630E-03 |          | 14.28 | ٠.       |           |          |
| 0.400E-03 | 0.185358 | 14.64 | 93004    | -0.005476 | 0.238309 |
| 0.250E-03 | •        | 14.99 | ٠.       |           |          |
| 0.160E-03 |          | 15.30 | .87433   |           |          |
| 0.100E-03 |          | 15.62 | .84653   |           |          |
| 0.630E-04 |          | 15.90 | .82193   |           |          |
| 0.400E-04 |          | 16.17 | .80028   |           |          |
| 0.250E-04 |          | 16.44 | .78016   |           |          |
| 0.160E-04 |          | 16.67 | .76283   |           |          |
| 0.100E.04 |          | 16.91 | .74615   |           |          |
| 0.630E-05 |          | 17.14 | .73109   |           |          |
| 0.400E-05 | •        | 17.35 | .71739   |           |          |
| 0.250E-05 |          | 17.56 | 0.704222 |           |          |
| 0.160E-05 |          | 17.74 | .69255   |           |          |
| 0.100E-05 | •        | 17.94 | .68106   |           |          |
| 0.630E.06 | •        | 18.12 | .67046   |           |          |
| 0.400E-06 | •        | 18.29 | .66066   |           |          |
| 0.250E-06 |          | 18.46 |          |           |          |
| 0.160E-06 |          | 18.61 | 15249.   |           |          |
| 0.100E-06 | •        | 18.77 | 63395    |           |          |
| 0.630E-07 |          | 18.92 | .62597   |           |          |
| 0.400E-07 | •        | 19.07 | .61852   |           |          |
| 0.2506-07 |          | 19.21 | ٠.       |           |          |
| 0.160E-07 |          | 19,35 | .60454   |           |          |
| 0.100E.07 |          | 19.48 | . 59786  |           |          |
| 0.630E-08 | •        | 19.61 | r.       |           |          |
| 0.400E-08 |          | 19.73 | .58569   |           |          |
| 0.250E-08 |          | 19.86 | .57984   |           |          |
| 0.160F-08 |          |       | .57      |           |          |
| 0.100E-08 | •        | 0.0   | .56911   |           |          |
| 0.630F-09 |          | 0.2   | .56402   |           |          |
| 0.400F-09 | •        | 0.3   | .55920   |           |          |
| 0.250F-09 |          | 4.0   | .55440   |           |          |
| 0.160F-09 |          | 20.52 | .55001   |           |          |
| 00 0000   |          | ,     |          |           |          |

| •         |  |
|-----------|--|
| URE       |  |
| $\supset$ |  |
| -         |  |
| -         |  |
| -         |  |
| _         |  |
| U         |  |
| 7         |  |
| K         |  |
| _         |  |
| -         |  |
| TOME      |  |
| Z         |  |
| -         |  |

|                                        | - MALF OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THF | THE THREE LEVEL EYE I.E., OFCISION LEVEL. | * AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO. | # RMS NOISE TO RMS SIGNAL RATID. | * SIGNAL POWER TO NOISE POWER IN DECIBLES. | * ADAPTIVE THRESHOLD AMPLITUDE TO D RATIO. | * DERIVATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A / D RATIO. | # DUASILINEAR TIME CONSTANT OF THE ADAPTIVE THRESHOLD | LOOP FOR SMALL CHANGES AROUND STEADY STATE VALUES | WHEN BITE RATE = 12552600. AND ERROR SIGNAL | DIVIDER RATIO INTO DIA CONVERTER # |  |
|----------------------------------------|-----------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|----------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|---------------------------------------------|------------------------------------|--|
| יווייייייייייייייייייייייייייייייייייי | 0                                                         |                                           | ATDR                                                | N / S RATIO                      | SHR                                        | A / D RATIO                                | -                                                              | TIME CONSTANT                                         |                                                   |                                             |                                    |  |

| TABLES   |
|----------|
| TOP      |
| NOM      |
| PATTERN  |
| EYF      |
| BASFBAND |
| <b>T</b> |

|           | PSEUDO P | MANON MATE | PSEUDE FRAUE FAUNTE FOUNTS 1.0 / 2800. | 7 2800.   |          |
|-----------|----------|------------|----------------------------------------|-----------|----------|
| RIT FRROR | S / N    | SNR        | 0 / V                                  | DERIV PER | TIME     |
| RATE      | RATTO    | 1 0B       | RATIO                                  | WRT & / D | CONSTANT |
| 0.630F-10 | ٠,       | 20.73      | 0.541308                               | -0.008435 | 0.154698 |
| 0.400E-10 | 0.090923 | 20.83      | 0.537280                               | -0.008527 | 0,153040 |
| 0.250F-10 | •        | 20.02      | 0.533251                               | .0.008620 | 0.151377 |
| 0.1606-10 | 0.088970 | 21.02      | 0.529547                               | -0.008708 | 0.149846 |
| 0.100E-10 | •        | 21.11      | 0.525769                               | -0.008800 | 0.148281 |
| 0.630F-11 | 0.087105 | 21.20      | 0.522171                               | -0.008890 | 0.146788 |
| 0.400E-11 | 0.086237 | 21.29      | 0.518740                               | -0.008977 | 0.145362 |
| 0.250E-11 | 0,085365 | 21.37      | 0.515296                               | 990600*0* | 0.143928 |
| 0.160F-11 | 0.084561 | 21.46      | 0.512120                               | -0.009151 | 0.142603 |
| 0.:00E-11 | 0.083738 | 21.54      | 0.508870                               | -0.009239 | 0.141246 |
| 0.630F-12 | 0.082952 | 21.62      | 0.505767                               | -0.009324 | 0.139948 |
| 0.400F-12 | 0.082200 | 21.70      | 0.502799                               | *0°000°0* | 0.138705 |
| 0.250E-12 | 0.081443 | 21.78      | 0.499811                               | *6*600*0* | 0.137452 |
| 0.160E-12 |          | 21.86      | 0.497049                               | *0.009574 | 0.136292 |
| 0.100F-12 | 0.080024 | 21.94      | 0.494216                               | *0.009659 | 0,135101 |
| 0.630F-13 |          | 22.01      | 0.491503                               | -0.009741 | 0,133960 |
| 0.400F-13 |          | 22.08      | 0.488903                               | -0.009821 | 0.132864 |
| 0.2506-13 |          | 22.16      | 0.486280                               | *06600*0* | 0.131758 |
| 0.160E-13 | •        | 22.23      | 0.483849                               | -0.009982 | 0.130731 |
| 0.100F-13 | 0.076759 | 22.30      | 0.481351                               | -0.010063 | 0.129675 |
| 0.630E-14 | •        | 22.37      | 0.478953                               | -0.010142 | 0.128661 |
| 0.400E-14 | •        | 22.43      | 0.476651                               | -0.010220 | 0.127687 |
| 0.250E-14 | •        | 22.50      | 0.474323                               | -0.010299 | 0.126700 |
| 0.160E-14 | 0.074425 | 22.57      | 0.472163                               | -0.010374 | 0.125784 |
| 0.100E-14 | •        | 22.63      | 0.469938                               | .0.010453 | 0.124840 |
|           |          |            |                                        |           |          |

NOMENCLATURE:

HALF OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE THE THREE LEVEL EYE I.E., DECISION LEVEL.

A DRAID

SIGNAL POWER TO NOISE FOWER TO BETRIES.

A DRAID

A DRAID

A DRAID

A DRAID

A DRAID

DERIVET HE SHOUND SERVING THE MADITUDE

DERIVET HE SHOUND THE BOWER TO BE ADAPTIVE THRESHOLD

LOOP FOR SMALL CHANGES AROWN STREAM STATE VALUES

WHEN BITE RATE

DIVIDER RATIO INTO D/A C.WVERTER

4.

| ### ### ### ### ### ### ### ### ### ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 74 6 7 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 848729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 884627 = 0.005846 0.259 803474 = 0.005847 0.259 803474 = 0.005867 0.259 726671 = 0.005867 0.229 72681 = 0.005867 0.229 804781 = 0.005867 0.229 804781 = 0.005868 0.229 804782 = 0.005812 0.202 804783 = 0.00688 0.202 804784 = 0.00688 0.198 804785 = 0.00688 0.198 804785 = 0.00688 0.198 804785 = 0.00688 0.198 804785 = 0.00688 0.198 804786 = 0.007379 0.174 804786 = 0.006879 0.198 804787 = 0.006879 0.168 804787 = 0.00688 0.198 80478 = 0.00688 0.198 80478 = 0.006879 0.168 80478 = 0.006879 0.168 80478 = 0.00688 0.198 80478 = 0.00688 0.198 80478 = 0.00688 0.198 80478 = 0.00688 0.198 80478 = 0.00688 0.198 80478 = 0.00688 0.198 80478 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.00688 0.198 80488 = 0.0068                                                                                                       |
| 789847<br>786971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 766971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7326158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 722821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6476178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6506669 0.006669 0.198 650602 0.006669 0.198 650602 0.006608 0.198 650705 0.006608 0.198 650705 0.0070715 0.189 650705 0.0070715 0.187 650705 0.0070715 0.187 650705 0.0070715 0.187 650705 0.0070715 0.187 650705 0.0070715 0.187 650705 0.0070715 0.187 650705 0.0070715 0.187 650705 0.0070715 0.187 650705 0.0070715 0.187 650705 0.0070715 0.187 650705 0.0070715 0.187 650705 0.0070715 0.187 650705 0.0070715 0.187 650705 0.0070715 0.187 650705 0.0070715 0.187 650705 0.0070715 0.187 650705 0.0070715 0.187 650705 0.0070715 0.187 650705 0.0070715 0.187 650705 0.0070715 0.187 650705 0.0070715 0.187 65070715 0.0070715 0.187 65070715 0.0070715 0.187 65070715 0.0070715 0.187 65070715 0.0070715 0.187 65070715 0.0070715 0.187 65070715 0.0070715 0.187 65070715 0.0070715 0.187 65070715 0.0070715 0.187 65070715 0.0070715 0.187 65070715 0.0070715 0.187 65070715 0.0070715 0.187 65070715 0.0070715 0.187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 642859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 650602 = 0.006688 0.193 650293 = 0.006606 0.193 6537088 = 0.007374 0.176 613952 = 0.007374 0.176 613952 = 0.007379 0.176 650966 = 0.007379 0.176 650966 = 0.007379 0.176 650966 = 0.007371 0.176 650968 = 0.007371 0.176 650968 = 0.007371 0.176 650968 = 0.007371 0.176 650968 = 0.007371 0.176 650968 = 0.007371 0.176 650968 = 0.008623 0.156 650968 = 0.008623 0.156 650968 = 0.008623 0.166 650968 = 0.008623 0.166 650968 = 0.008623 0.166 650968 = 0.008623 0.166 650968 = 0.008623 0.166 650968 = 0.008623 0.166 650968 = 0.008624 0.166 650968 = 0.00968 0.167 650968 = 0.00968 0.167 650968 = 0.00968 0.167 650968 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 650977 = 0.00968 0.136 65097 = 0.00968 0.136 65097 = 0.00968 0.136 6                                                                                                       |
| 24/204 = 0.0006803 0.1991 24/204 = 0.0007042 0.1891 24/204 = 0.007042 0.1891 24/204 = 0.007042 0.1891 24/204 = 0.0070779 0.179 25/204 = 0.007779 0.179 25/204 = 0.007779 0.179 25/204 = 0.007779 0.1991 25/204 = 0.007706 0.1691 25/204 = 0.007706 0.1691 25/204 = 0.007706 0.1691 25/204 = 0.007706 0.1691 25/204 = 0.007706 0.1691 25/204 = 0.007706 0.1691 25/204 = 0.007706 0.1691 25/204 = 0.007706 0.1691 25/204 = 0.007706 0.1691 25/204 = 0.007706 0.1691 25/204 = 0.007706 0.1691 25/204 = 0.007706 0.1691 25/204 = 0.007706 0.1691 25/204 = 0.007707 0.1691 25/204 = 0.007707 0.1291 25/204 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1291 25/207 = 0.007707 0.1                                                                                                       |
| 6.64962 0.188 6.67962 0.188 6.67962 0.0007271 6.07068 0.0007271 6.07068 0.0007379 6.07066 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.07067 0.0007379 6.                                                                                                       |
| 6.9962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| \$6952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 19929 -0.007379 0.176 295264 -0.007379 0.176 295264 -0.007814 0.166 296462 -0.007815 0.167 296462 -0.007812 0.167 296462 -0.007812 0.167 296968 -0.007812 0.167 296968 -0.00821 0.158 296968 -0.00821 0.158 296968 -0.00821 0.159 296969 -0.00821 0.159 296969 -0.00821 0.169 297121 -0.008810 0.145 297121 -0.008996 0.145 297121 -0.008996 0.145 297121 -0.008996 0.145 297121 -0.008996 0.145 297121 -0.008996 0.145 297121 -0.008996 0.145 297121 -0.008996 0.145 297121 -0.008996 0.145 297121 -0.008996 0.189 297121 -0.009989 0.139 297121 -0.009989 0.139 297121 -0.009989 0.139 297121 -0.009989 0.139 297121 -0.009989 0.139 297121 -0.009989 0.139 297121 -0.009989 0.139 297121 -0.009989 0.139 297121 -0.009989 0.139 297121 -0.009989 0.139 297121 -0.009989 0.139 297121 -0.009989 0.139 297121 -0.009899 0.139 297121 -0.009899 0.139 297121 -0.009899 0.139 297121 -0.009899 0.139 297121 -0.009899 0.139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| \$69594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| \$99546 =0.0074600 0.191 \$995264 =0.007716 0.164 \$184427 =0.007716 0.164 \$174262 =0.008021 0.165 \$174262 =0.008021 0.165 \$174262 =0.008021 0.165 \$174262 =0.008021 0.165 \$174262 =0.008021 0.165 \$174262 =0.008021 0.165 \$174262 =0.008010 0.165 \$174262 =0.008010 0.165 \$174490 =0.008010 0.165 \$174491 =0.009090 0.165 \$17467 =0.009090 0.165 \$17467 =0.009090 0.165 \$17467 =0.009090 0.165 \$17467 =0.009090 0.165 \$17467 =0.009090 0.165 \$17467 =0.009090 0.165 \$17467 =0.009090 0.165 \$17467 =0.009090 0.165 \$17467 =0.009090 0.165 \$17467 =0.009090 0.165 \$17467 =0.009090 0.165 \$17467 =0.009090 0.165 \$17467 =0.009090 0.165 \$17467 =0.009090 0.165 \$17467 =0.009090 0.165 \$17467 =0.009090 0.165 \$17467 =0.009090 0.166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| \$56427 = 0.007814 0.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 256427 -0.007015 0.164   256928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| \$54262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 254958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 264930 -0.00822 0.156 2564930 -0.00821 0.156 256430 -0.00821 0.159 256430 -0.00813 0.169 256430 -0.00813 0.169 254390 -0.00813 0.169 254390 -0.00813 0.169 253656 -0.008990 0.165 253855 -0.009399 0.189 253855 -0.009399 0.189 253855 -0.009399 0.189 253855 -0.009399 0.189 253855 -0.009399 0.189 253855 -0.009399 0.189 253855 -0.009399 0.189 253855 -0.009399 0.189 253855 -0.009399 0.189 253855 -0.009399 0.189 254791 -0.009399 0.189 2546946 -0.000391 0.189 2649352 -0.009391 0.182 2649352 -0.009391 0.182 2649352 -0.009391 0.182 264936 -0.009391 0.182 264936 -0.009391 0.182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| \$560665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 556329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 544390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 544390008810 0.146<br>5316792008891 0.146<br>533625008989 0.143<br>5232850089179 0.143<br>523855008279 0.140<br>523855008279 0.138<br>52669600824 0.138<br>514791009249 0.138<br>514791009698 0.136<br>51485009698 0.136<br>5188500969 0.136<br>501271009699 0.137<br>503802009699 0.137<br>503802009699 0.127<br>503802009699 0.127<br>503802009699 0.127<br>503802009699 0.127<br>503802009699 0.127<br>503802009699 0.127<br>503802009699 0.127<br>503802009699 0.127<br>503802009699 0.127<br>503802009699 0.127<br>503802000969 0.127<br>503802 .                                                                                                                                                                                                                                                                                 |
| 5.40792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 53625 = 0.000999 0.143<br>530290 = 0.00972 0.142<br>526842 = 0.009772 0.140<br>52685 = 0.009372 0.130<br>52685 = 0.009389 0.136<br>517677 = 0.00959 0.136<br>517677 = 0.00950 0.136<br>51865 = 0.00977 0.135<br>50861 = 0.00977 0.137<br>50886 = 0.00979 0.136<br>5088718 = 0.00969 0.136<br>5088718 = 0.00969 0.126<br>5088718 = 0.00969 0.126<br>5088718 = 0.00979 0.127<br>508871 = 0.00979 0.127<br>508971 = 0.00979 0.127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| \$30290 = 0.009179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 226942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| \$50.000 = 0.0009599 0.159  \$17677 = 0.000959 0.136  \$11687 = 0.000958 0.136  \$51888 = 0.000979 0.139  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.0000969  \$50.000 = 0.000969  \$50.000 = 0.000969  \$50.000 = 0.0000969  \$5 |
| \$17677 = 0.009538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| .5147910.009624 0.135<br>.5091880.007973 0.134<br>.509480.007973 0.132<br>.5064410.007984 0.132<br>.5038020.00969 0.130<br>.503810.00969 0.129<br>.598780.010137 0.129<br>.5983520.010137 0.126<br>.598360.010381 0.126<br>.598440.010483 0.127<br>.6870780.010483 0.127<br>.6870780.010483 0.127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 501885 -0.009713 0.134 509198 -0.009797 0.133 506441 -0.009884 0.139 501271 -0.01095 0.129 496352 -0.01037 0.126 496354 -0.01037 0.126 496354 -0.010391 0.126 496354 -0.010391 0.127 466377 -0.010463 0.127 466774 -0.010763 0.127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2004948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .503645 = 0.000984 0.13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .501202<br>.501202<br>.498718 .0.010032 0.128<br>.49872 .0.01031 0.128<br>.49384 .0.010383 0.128<br>.48934 .0.010463 0.124<br>.484974 .0.010452 0.123<br>.484977 .0.010763 0.122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 496352 = 0.010217 0.127<br>493920 = 0.010301 0.126<br>49394 = 0.010303 0.125<br>483074 = 0.010663 0.125<br>484974 = 0.010663 0.123<br>482877 = 0.010703 0.127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 493920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| .491586 .0.010383 0.125<br>.489344 .0.0110463 0.124<br>.484778 .0.010545 0.123<br>.484974 .0.010703 0.121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 489344 -0.010463 0.124<br>487078 -0.010545 0.123<br>484974 -0.010625 0.122<br>482807 -0.010703 0.121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 484974 =0.010545 0.123<br>484974 =0.010622 0.122<br>482807 =0.010703 0.121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 484974 _0.010622 0.122<br>482807 _0.010703 0.121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| .482807 _0.010703 0.121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| TABLES   |
|----------|
| MONI TOR |
| PATTERN  |
| FYE      |
| BASFBAND |

TABLE FOR AIDR EQUALS 0.2000 PSEUDO ERROR RATE EQUALS 1.0 / 2800.

| PATE      | 2 / 5    | SAR<br>SAR | 0 / 4    | DERIV PER | TIME     |
|-----------|----------|------------|----------|-----------|----------|
| A .       | 01144    | 90 2       | CILLY    | -         | CONSTAN  |
| 0-3001    | 0,198317 | 14.05      | ٥.       | 01075     |          |
| 530E-0    | 0.189321 | 14.46      |          | .00742    |          |
| 0.400E-03 | 0.181432 | 14.83      | 0.930844 | -0.005535 | 0.235775 |
| 250F-0    | 0,174113 | 15.18      | ٠.       | 99700     | 0.278827 |
| 160E-0    | 0.167841 | 15.50      | •        | .00451    |          |
| 100F-0    | 0.161850 | 15.82      | •        | .00463    |          |
| 630E-0    | 0.156492 | 16.11      |          | .00484    |          |
| 400E-0    | 0.151671 | 16.38      | •        | .00500    |          |
| 0.250E-04 | 0.147093 | 16.65      | ٦.       | .00526    |          |
| 0.160F-04 | 0.143084 | 16.89      | ٦.       | .00543    |          |
| 0.100F-04 | 0.139177 | 17.13      | ٦.       | .00500    |          |
| 0.630F-05 | 0,135617 | 17.35      | ٦.       | .00576    |          |
| 0.400E-05 | 0.132358 | 17.57      | ٦.       | 00500     |          |
| 0.250F-05 | 0,129211 | 17.77      | ٦.       | *0900     |          |
| 0.160F-05 | 0.126414 | 17.96      | ٠.       | .00617    |          |
| 0.100E.05 | 0,123649 | 18.16      |          | .00631    |          |
| 0.630E-06 | 0.121094 | 18.34      | •        | **900     |          |
| 0.400E-06 | 0.118727 | 18.51      | ٠.       | 95900     |          |
| 0.250E-06 | 0,116413 | 18.68      | ٠,       | 89900     |          |
| 0.160F-06 | 0.114334 | 18.84      | ٠.       | 08900     |          |
| 0.100E-06 | 0.112257 | 19.00      | ٠.       | ,00692    |          |
| 0.630E-07 | 0.110320 | 19.15      | ٠.       | ,00704    |          |
| 0.400E-07 | 0.108507 | 19.29      | ٠.       | .00715    |          |
| 0.250E-07 | 0.106720 | 19.44      | ٠.       | .00727    |          |
| 0.160F-07 | 0,105102 | 19.57      | ٠,       | 16700     |          |
| 0.100E-07 | 0,103472 | 19.70      | ٠.       | 00749     |          |
| 0.630E-08 | 0.101941 | 19.83      | 86009    | 09200     |          |
| 0.400E-08 | 0,100498 | 19.96      | .595264  | -0.00770  |          |
| 0.250E-08 | 19066000 | 20.08      | .58959   | -0.00781  |          |
| 0.160E-08 | 0.097763 | 20.20      | .58442   | 16400     |          |
| 0.100F.08 | 0.096442 | 20.31      | .57920   | 20800     |          |
| 630F-0    | 0.095194 | 20.43      | .57426   | 00812     |          |
| 400E-0    | 0.094012 | 20.54      | .5695    | -0.008223 |          |
| 250F-0    | .09283   | 50.65      | .56493   | 00832     |          |
| 160E-0    | .09175   | 20.75      | .56066   | .00842    |          |
| 0         |          | -          |          |           |          |

\*\* HALF OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE THEE LEVEL EYE I.E., DECISION LEVEL.

\*\* AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO.

\*\* SIGNAL POWER TO NOISE POWER IN DECIBLES.

\*\* ADAPTIVE THRESHOLD AMPLITUDE TO D RATIO.

\*\* DERIVATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A / D RATIO.

\*\* DOUSTINEAR TIME CONSTANT OF THE ADAPTIVE THRESHOLD LOOP FOR SMALL CHANGES AROUND STEADY STATE VALUES WHEN BITE RATE INTO D/A CONVERTER = 12552600. N / S RATIO 5:18 A / D RATIO DERIV PER WRT NOMENCLATURE: ATOR

| TABLES   |
|----------|
| MONITOR  |
| PATTERN  |
| FYE      |
| SASEBAND |
|          |

|           | PSEUDO   | BLE FOR AID<br>ERROR RATE | TABLE FOR AIDM EQUALS 0.2000<br>PSEUDO ERPOR PATE EQUALS 1.0 / 2800. | 0.2000    |          |
|-----------|----------|---------------------------|----------------------------------------------------------------------|-----------|----------|
| RIT FRROR | S / N    | SNR                       | 0 / 4                                                                | DERIV PER | TIME     |
| RATE      | PATIO    | 1x 08                     | RATIO                                                                | WAT A / D | CONSTANT |
| 0.630E-10 | 0,089613 | 20.95                     | 0.552214                                                             | -0.008618 | 0.151410 |

NOMENCLATURE:

# HALF OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE THE THREE LEVEL EYE I.E., DECISION LEVEL.

# AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO.

# RMS NOISE TO RMS SIGNAL RATIO.

# ADAPTIVE THRESHOLD AMPLITUDE TO D RATIO.

# DEPIVATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A / D RATIO.

# DUASILIANAL THE CONSTANT OF THE ADAPTIVE THRESHOLD

LOOP FOR SMALL CHANGES AROUND STEADY STATE VALUES

# HEN BITE RATE = 12552600. AND ERROR SIGNAL

DIVIDER RATIO INTO D/A CONVERTER \* 4. ATDR N / S RATIO SNR A / D RATIO DERIV PER WRT TIME CONSTANT

|            | 11999  | 33344 | 27400 | 28491  | 27714 | 26509 | 25388   | 24397   | 23598   | .22873  | 15227   | 21694   | 20710   | 20272 | 19862   | 19484   | 19114   | 18782   | 18449   | 17848    | 17561   | 17300   | 17038   | 16790   | 16325  | 16114   | .15899  | 15696   | 15312   | 15136   | 14957   | 14787   | 14462  | 14313   | .14160  | 14015   | 0.138768  | 13608   | .13477  | 13351   | 14100   | 12997  | 12881   | 17721        | 1255   | 12459   | 12357   | .12260  | 12021   | 11083 | 11892 |
|------------|--------|-------|-------|--------|-------|-------|---------|---------|---------|---------|---------|---------|---------|-------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------|--------|---------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------|-----------|---------|---------|---------|---------|--------|---------|--------------|--------|---------|---------|---------|---------|-------|-------|
|            | 201087 | 20000 | 00000 |        | 00440 | 00000 | 0.00514 | 0.00534 | 0.00553 | 0.00570 | 0.00586 | 0.00601 | 0.00616 | 67900 | 0.00657 | 0.00669 | 0.00682 | 9690000 | 0.00707 | 00.00.19 | 0.00743 | 0.00754 | 0.00765 | 7770000 | 00,00  | 0.00809 | 0.00820 | 0.00831 | 0.00852 | 0.00862 | 0.00872 | 0.00882 | 0.0000 | 0.00911 | 0.00921 | 0.00931 | 0.009404  | 0.00958 | 0.00968 | 0.00977 | 0000000 | 0.0100 | 0.01013 | 12010-0      |        | 0.01047 | 0.01055 | 0.01064 | 2010-   |       | 01007 |
| LE MAS CA  | 90 795 | 93181 | 90400 | 700    | 06130 | 82776 | 80714   | 78803   | .77163  | 15588   | .74168  | 72878   | 71640   | 49464 | 68471   | 67551   | .66654  | .65849  | 65046   | 43507    | 62908   | .62284  | 61656   | 61066   | 59960  | 59459   | .58951  | 58471   | 99525   | 57150   | .56728  | 56328   | 55567  | 55217   | .54860  | .54520  | 0.538698  | 53569   | .53261  | 52767   | 52404   | 52142  | .51873  | 51616        | 61121  | 50891   | .50654  | .50427  | 50208   |       | 1007  |
| YOUT . TAG | *      |       |       | ::     |       | 3     | 5.6     | 5.8     | :       | 2.3     |         | -       |         |       | 5.0     | 4.1     | 6.0     | 0       | 2.6     |          | 9.6     | 8.6     | 6.6     | •       |        | *       | 0.5     | 9.0     |         |         | 0:      | ::      |        |         | 1.5     | 9.1     | 21.83     | . 6:    | 1.9     | 20      | ,,      | 2.3    | 2.3     | ***          |        | 2.6     | 2.7     | 2.8     | 2.8     |       | 30    |
| F.R.J.     | 01861  | 17730 | 17001 |        | 15700 | 15261 | 14787   | 14337   | 13944   | 13562   | 13213   | 12895   | 12214   | 12044 | 11795   | 11564   | 11339   | 11136   | 10934   | 1056     | 10394   | 10236   | 10078   | 62660   | 09460  | 09522   | 09393   | 09271   | 0000    | 08936   | .08829  | 08728   | 08535  | 08446   | .08355  | 08269   | 0.081868  | 08027   | .07949  | 47870   | 07731   | .07665 | 16570   | 16670        | 0740   | 07347   | .07287  | .07229  | 07179   | 1000  | 07011 |
| 12 12      | 100E-0 | 4006  | 250F  | 1406-0 | LOOF  | 630E  | 400E-0  | 250E-0  | .160E-0 | .100E-0 | 630E-0  | 400E-0  | 1405    | 100E  | 630E-0  | -400E-0 | -250E-0 | 160E-0  | 1005-0  | 400F-0   | 250E-0  | .160E-0 | 100E-0  | 630E-0  | 250F-0 | 160E-0  | .100E-0 | 630E-0  | 250E-0  | 160E-0  | -100E-0 | 630E-1  | 250E-1 | 160E-1  | .100E-1 | .630E-1 | 0.250E-11 | .160E-1 | -100E-1 | .630E-1 | 250F-1  | 160E-1 | .100E-1 | . 6 30 E - I | 250F-1 | 160E-1  | -100E-1 | .630E   | 2400F-1 | ,     |       |

| ES      |
|---------|
| w       |
| æ       |
| TABL    |
| -       |
| œ       |
| 5       |
| -       |
| Š       |
| ¥       |
| -       |
| â       |
| W       |
| PATTERN |
| <       |
| •       |
| -       |
| FYE     |
| _       |
| ₽       |
| 4       |
| ASFBAND |
| 5       |
| 4       |

|           | PSEUDO   | BLE FOR AID | TABLE FOR AIDR EQUALS 0.2200<br>PSEUDO ERROR RATE EQUALS 1.0 / | 0,2200    |          |
|-----------|----------|-------------|----------------------------------------------------------------|-----------|----------|
| PIT FRROR | SIN      | SNR         | 0/4                                                            | DERIV PER | TIME     |
| RATE      | PATTO    | 1N 08       | RATIO                                                          | -         | CONSTANT |
| 1006-0    |          | 14.24       | 0.967952                                                       | -0-010875 | 11999    |
| 630F-0    |          | 14.65       | 0.952743                                                       | 0.007520  | 17353    |
| 0.400E-03 | 0.177282 | 15.03       | 0.931818                                                       | -0.005609 | .23266   |
| 250F-0    |          | 15.39       | 0.904962                                                       | -0.004745 | .27499   |
| 0.160F-03 |          | 15.71       | 0.878017                                                       | -0.004580 | .28491   |
| 100F-0    |          | 16.03       | 0.851306                                                       | -0.004708 | .27716   |
| 630F-0    |          | 16.33       | 0.827763                                                       | -0.004923 | .26509   |
| 400E-0    |          | 16.60       | 0.807141                                                       | -0.005140 | .25388   |
| .250E-0   | 0.143377 | 16.87       | 0.788035                                                       | -0.005349 | .24397   |
| 0.160F-04 | 0.139446 | 17.11       | 0.771632                                                       | -0.005530 | .23598   |
| 0.100F-04 | 0.135620 | 17,35       | 0.755880                                                       | -0.005705 | .22873   |
| 0.630F-05 | 0,132137 | 17.58       | 0.741682                                                       | -0.005866 | .22247   |
| 0.400Fu05 | 0,128951 | 17.79       | 0.728786                                                       | -0.006015 | .21694   |
| 0.250E.05 | 0.125877 | 18.00       | 0.716408                                                       | -0.006163 | .21174   |
| 0,160E-05 | 0.123146 | 18.19       | 0.705453                                                       | -0.006298 | .20718   |
| 0.100F-05 | 0.120448 | 18.38       | 0.694661                                                       | -0.006437 | 20272    |
| 0.630F-06 | 0,117956 | 18.57       | 0.684717                                                       | .0.006570 | .19862   |
| 400F.0    | 0,115647 | 18.74       | 0.675519                                                       | -0.006697 | .19484   |
| 0-250F-06 | 0.113392 | 18.91       | 0.556547                                                       | -0.006827 | .19114   |
| 0.160F-06 | 0,111365 | 19.07       | 0.658494                                                       | -0.006948 | .18782   |
| 0.100E-06 | 0,109341 | 19.92       | 0.650461                                                       | -0.007073 | .18449   |
| 0.630F-07 | 0,107453 | 19.38       | 0.642974                                                       | -0.007194 | .18139   |
| 0.400E-07 | 0,105687 | 19.52       | 0.635975                                                       | -0.007311 | .17848   |
| 0.250E-07 | 0,103946 | 19.66       | 0.629083                                                       | -0.007431 | 17561    |
| 0.160E.07 | 0.102369 | 19.80       | 0.622842                                                       | -0.007542 | .17300   |
| 0.100E-07 | 0,100782 | 19.93       | 0.616564                                                       | -0.007659 | .17038   |
| 0.630F-08 | 0.099290 | 20.06       | 0.610666                                                       | -0.007772 | .16790   |
| 0.400F-08 | 0.097885 | 20.19       | 0.605114                                                       | -0.007881 | .16557   |
| 0.250F-08 | 0.096491 | 0           | 0.599609                                                       | -0.007993 | .16325   |
| 0.160E-08 | 0.095220 | 20.43       | 0.594591                                                       | 860800-0- | .16114   |
| 0.100E-08 | 0.093934 |             | 0.589513                                                       | -0.008207 | .15899   |
| -630E-0   | .09271   | 0           | 0.584715                                                       | .0.008313 | .15696   |
| -400F-    | •09156   |             | 0.580173                                                       | -0.008416 | .15504   |
| 0E-0      | 1906     | 20.87       | 0.575646                                                       | -0.008522 | 0.153125 |
| .160F     | .08936   | 0.0         | 0.571500                                                       | -0.008621 | .15136   |
| 0.100F-09 | 0        | C.          | 0.567285                                                       | -0.008724 | .14957   |
|           |          |             |                                                                |           |          |

| EVELS FOR THE                                    | RATIO.  TTO A / D RATIO. HRESHOLD VALUES SIGNAL 4.                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| THE THORMAL DISTANCE BETWEEN DATA LEVELS FOR THE | * AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO.  * RMS NISE TO RMS SIGNAL RATIO.  * SIGNAL POWER TO NOISE POWER IN DECIBLES.  * ADAPTIVE THEFSHOLD AMPLITUDE TO D RATIO.  * DERIVATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A / D RATIO.  * DUASILINEAR TIME CONSTANT OF THE ADAPTIVE THRESHOLD  **LOOP FOR SMALL CHANGES AROUND STEADY STATE VALUES  **WHEN BITE RATE **  * 12552600.  **AND ERROR SIGNAL |
| # HALF OF THE NORMA                              | ### AMPLITUDE OF INTE<br>### NOTSE TO RMS<br>### SIGNAL POTESHOLE<br>### ADAPTIVE THRESHOLE<br>### DUASILINEAR TIME<br>### NOTS FOR SMALL CA<br>### NOTS FOR SMALL CA<br>### NOTS FOR SMALL CA                                                                                                                                                                                                                 |
| NOMENCLATURE:                                    | AIDR<br>N / S RATIO<br>S / D RATIO<br>DERIV PER WRT<br>TIME CONSTANT                                                                                                                                                                                                                                                                                                                                           |

| 5        |
|----------|
| ABLES    |
| ī        |
| 9        |
| 2        |
|          |
| a        |
| ě        |
| -        |
| Ş        |
| ō        |
| 2        |
| -        |
| á        |
| 4        |
| -        |
| PATTERN  |
| 7        |
| -        |
| -        |
| FYF      |
| •        |
| 0        |
| Z        |
| BASEBAND |
| -        |
| S        |
| 4        |
| 00       |

| ### PATE RATIO IN DB RATIO  0.630F=10 0.086317 21.38 0.552284  0.250F=10 0.086317 21.38 0.552284  0.250F=10 0.086317 21.38 0.55574  0.100F=10 0.081864 21.47 0.55574  0.250F=11 0.081864 21.47 0.55574  0.250F=11 0.081864 21.47 0.55574  0.100F=11 0.081864 21.47 0.55574  0.100F=11 0.081864 21.47 0.55574  0.100F=12 0.077496 21.49 0.535693  0.400F=12 0.077496 22.09 0.532618  0.400F=12 0.078035 22.15 0.556869  0.400F=12 0.078035 22.15 0.556869  0.400F=12 0.078036 22.45 0.51619  0.400F=13 0.075970 22.45 0.51619  0.400F=13 0.075970 22.45 0.51619  0.400F=14 0.0727292 22.45 0.506913  0.400F=14 0.0727292 22.45 0.502086  0.250F=14 0.071737 22.49 0.502086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |          |           |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|-----------|----------|
| 0.087282<br>0.08676317<br>0.08676317<br>0.08676317<br>0.08676317<br>0.081868<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818687<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.081887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.0818887<br>0.081887<br>0.081887<br>0.081887<br>0.081887<br>0.081887<br>0.081887<br>0.081887<br>0.081887<br>0.081887<br>0.081887<br>0.081887<br>0.081887<br>0.081887<br>0.081887<br>0.081887<br>0.081887<br>0.081887<br>0.081887<br>0.0818 | 1N 08 | RATIO    | WRT A / D | CONSTANT |
| 0.084582 21.18<br>0.08464317 21.38<br>0.084663 21.47<br>0.082697 21.65<br>0.081060 21.65<br>0.081060 21.65<br>0.081060 21.65<br>0.081060 21.65<br>0.07917 21.69<br>0.07917 21.69<br>0.07917 22.99<br>0.07917 22.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |          |           |          |
| 0.08555 21.28<br>0.08555 21.48<br>0.081556 21.45<br>0.081669 21.45<br>0.081040 21.45<br>0.081040 21.45<br>0.078749 21.49<br>0.078749 22.89<br>0.078749 22.89<br>0.078749 22.99<br>0.078749 22.99<br>0.078740 22.99<br>0.078740 22.99<br>0.078740 22.89<br>0.078740 22.89<br>0.078740 22.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.18 | 0.563284 | -0.008825 | 0.147870 |
| 0.085351 21.38<br>0.082693 21.47<br>0.082693 21.65<br>0.081040 21.34<br>0.081040 21.34<br>0.078749 21.33<br>0.078749 22.08<br>0.077817 22.33<br>0.075816 22.33<br>0.075816 22.45<br>0.075816 22.45<br>0.075816 22.45<br>0.075816 22.45<br>0.075816 22.45<br>0.075816 22.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.28 | 0.559480 | -0.008922 | 0.146250 |
| 0.083556 21.55<br>0.081856 21.55<br>0.081060 21.55<br>0.081070 21.83<br>0.07874 21.83<br>0.07874 21.83<br>0.07817 22.15<br>0.07817 22.15<br>0.07817 22.15<br>0.07817 22.15<br>0.07817 22.15<br>0.07817 22.83<br>0.07817 22.83<br>0.07817 22.83<br>0.07817 22.83<br>0.07817 22.83<br>0.07817 22.83<br>0.07817 22.83<br>0.07817 22.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.38 | 0.555474 | -0.009023 | 0.144627 |
| 0.083556 21.55 0.082697 21.55 0.081040 21.55 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.081040 21.83 0.0810                                                                                                                                                                                                                                                                                                                                                                                       | 21.47 | 0.552174 | -0.009117 | 0.143134 |
| 0.082697 21.65<br>0.081868 21.74<br>0.080277 21.91<br>0.078749 27.08<br>0.078749 27.08<br>0.077817 27.08<br>0.075316 27.08<br>0.075316 27.08<br>0.075316 27.08<br>0.075316 27.08<br>0.075316 27.08<br>0.075316 27.09<br>0.075316 27.08<br>0.075316 27.08<br>0.075316 27.08<br>0.075316 27.09<br>0.075316 27.09<br>0.075316 27.09<br>0.075316 27.09<br>0.075316 27.09<br>0.075317 27.09<br>0.075317 27.09<br>0.075317 27.09<br>0.075317 27.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.56 | 0.548403 | -0.009215 | 0.141609 |
| 0.081868 21.74<br>0.081040 21.83<br>0.079496 21.89<br>0.079496 21.99<br>0.07817 22.39<br>0.077817 22.39<br>0.075816 22.89<br>0.075816 22.89<br>0.075816 22.89<br>0.075816 22.89<br>0.075816 22.89<br>0.075816 22.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.65 | 0.545201 | -0.009310 | 0.140156 |
| 0.081040 21.83<br>0.080277 21.91<br>0.078749 27.08<br>0.07817 27.15<br>0.077817 27.15<br>0.077817 27.33<br>0.075970 22.33<br>0.075970 22.34<br>0.075970 22.46<br>0.075970 22.46<br>0.075970 22.46<br>0.075970 22.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.74 | 0.541956 | *0*600*0* | 0.138768 |
| 0.090277 21.91<br>0.079496 21.99<br>0.078035 22.08<br>0.077317 27.23<br>0.077317 27.23<br>0.077316 22.45<br>0.075316 22.45<br>0.075316 22.45<br>0.075316 22.45<br>0.075317 22.43<br>0.075317 22.43<br>0.075317 22.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21.83 | 0.538698 | -0.009499 | 0.137374 |
| 0.079496 21.99<br>0.078749 22.08<br>0.077817 22.25<br>0.075816 22.45<br>0.075816 22.45<br>0.075816 22.45<br>0.075816 22.45<br>0.075816 22.45<br>0.075816 22.45<br>0.078816 22.45<br>0.078817 22.45<br>0.078817 22.45<br>0.078817 22.45<br>0.078817 22.45<br>0.078817 22.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.91 | 0.535693 | -0.009589 | 0.136088 |
| 0.078749 27.08<br>0.077317 27.08<br>0.077317 27.37<br>0.075970 22.33<br>0.075970 22.39<br>0.075970 22.39<br>0.075970 22.54<br>0.077877 22.54<br>0.077877 22.54<br>0.077737 22.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.99 | 0.532618 | -0.009682 | 0.134771 |
| 0.074035 22.15<br>0.074317 22.33<br>0.075970 22.31<br>0.075916 22.46<br>0.074658 22.61<br>0.072872 22.68<br>0.072872 22.68<br>0.072872 22.68<br>0.072872 22.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22.08 | 0.529679 | -0.009774 | 0.133512 |
| 0.077317 27.23<br>0.075652 22.31<br>0.075316 22.45<br>0.075316 22.45<br>0.075317 22.61<br>0.072472 22.61<br>0.072877 22.48<br>0.07287 22.48<br>0.071737 22.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22.15 | 0.526869 | -0.009863 | 0.132307 |
| 0.075652 22.31<br>0.075316 22.46<br>0.074690 22.53<br>0.074058 22.51<br>0.073472 22.58<br>0.073472 22.58<br>0.07292 22.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.73 | 0.524040 | -0.009954 | 0,131093 |
| 0.075970 22.39 0<br>0.074690 22.46 0<br>0.074696 22.63 0<br>0.073472 22.68 0<br>0.072870 22.75 0<br>0.072870 22.45 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22,31 | 0.521424 | -0.010040 | 0.129971 |
| 0.075316 22.65<br>0.074690 22.63<br>0.073472 22.68<br>0.072870 22.78<br>0.07287 22.88<br>0.071737 22.89<br>0.071737 22.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.39 | 0.518739 | -0.010130 | 0.128819 |
| 0.074690 22.53 0<br>0.074058 22.61 0<br>0.072472 22.68 0<br>0.072870 22.75 0<br>0.071737 22.89 0<br>0.071737 22.89 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22.46 | 0.516169 | -0.010217 | 0.127715 |
| 0.074058 22.61 0<br>0.073472 22.68 0<br>0.073472 22.68 0<br>0.072292 22.82 0<br>0.071737 22.89 0<br>0.071737 22.89 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22.53 | 0.513704 | •0.010303 | 0.126656 |
| 0.073472 22.68 0<br>0.072870 22.75 0<br>0.072892 22.82 0<br>0.071737 22.89 0<br>0.071176 22.95 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22.61 | 0.511217 | -0.010390 | 0.125588 |
| 0.072870 22.75 0<br>0.072292 22.82 0<br>0.071137 22.89 0<br>0.071176 22.95 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.48 | 0.508913 | -0.010473 | 0.124598 |
| 0.072292 22.82 0<br>0.071737 22.89 0<br>0.071176 22.95 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.75 | 0.506544 | -0.010559 | 0.123579 |
| 0.071737 22.89 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22.82 | 0.504270 | -0.010643 | 0.122602 |
| 0.071176 22.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22.89 | 0.502086 | -0.010726 | 0.121662 |
| 0.070655 23.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22.95 | 0.499878 | -0.010810 | 0.120713 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23.02 | 0.497829 | -0.010890 | 0,119831 |
| 0.070118 23.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23.08 | 0.495718 | -0.010973 | 0.118922 |

| # MALF OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE | THE THREE LEVEL EYE I.E., DECISION LEVEL.  # AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO.  # RMS. NOISE TO RMS. SIGNAL DATIO. | NOISE POWER IN DECIBLES. | CONSTANT OF THE ADADTIVE THRESHID. | LOOP FOR SMALL CHANGES AROUND STEADY STATE VALUES WHEN BITE RATE = 12552600, AND ERROR SIGNAL DIVIDER PATIO INTO D/A CONVERTER # |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| - HALF OF THE NORMA                                       | # AMPLITUDE OF INTE                                                                                                                | SIGNAL POWER TO          | * DERIVATIVE OF PSE                | LOOP FOR SMALL CHAMEN BITE RATE #                                                                                                |
| NOMENCLATURE:                                             | ATDR ATTO                                                                                                                          | SAR SATTO                | DERIV PER WRT                      |                                                                                                                                  |

| Colored Colo   | -300  | . 18964 | 4.  | .96838  | 0.01102 | .11837    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|-----|---------|---------|-----------|
| 15.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00     | 30E-0 | 17264   |     | 95346   | 0.00763 | 11094     |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0     | 16577   |     | 99966   | 0.00482 | 27046     |
| Coloniary   Colo   | 0-30  | 15965   | .0  | 88030   | 0.00466 | 28004     |
| Colored   Colo   | 0E-0  | .15383  | 5.2 | .85422  | 0.00479 | .27225    |
| Colored   Colo   | 0E-0  | .14864  | 5.5 | .83128  | 0.00501 | 25092     |
| Colored   Colo   | 000   | 14400   | 8.  | 81121   | 0.00523 | 24908     |
| Colored   Colo   | 00    | 13676   |     | 774.91  | 0000    | 23130     |
| 126626   17.881   0.747649   0.005989   0.227787   0.125529   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.225219   0.   | OE-O  | 13202   | 2   | 76142   | 0.00582 | 22409     |
| 10   125519   18,03   0,735142   0,006144   0,20723   0,112523   18,24   0,725138   0,106144   0,20723   0,112524   0,117233   18,42   0,72547   0,006581   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621   0,10621    | 0E-0  | .12862  | 8.  | 74764   | 0.00598 | 21787     |
| Colone   C   | 0-30  | 12551   | 0.6 | .73514  | 0.00614 | .21238    |
| 18,43   0.712514   9,0006438   0.202707   0.006510   0.102671   0.106500   0.112557   0.006500   0.002647   0.006510   0.102670   0.102557   0.006500   0.002647   0.006510   0.102557   0.006500   0.002641   0.106500   0.102557   0.006500   0.002641   0.002641   0.106500   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510   0.106510      | 0-3U  | .12252  | 3.2 | .72313  | 0.00629 | .20722    |
| Colone   C   | 0E-0  | .11986  | 4.  | .71251  | 0.00643 | .20270    |
| Colored   Colo   | 0E-0  | .11723  | 9.6 | .70204  | 0.00658 | .19827    |
| Colone   C   | 0-30  | .11480  | 8.8 | .69240  | 0.00671 | 12761     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0E-0  | .11255  | 6.0 | .68347  | 0.00685 | .19046    |
| Colorador   Colo   | 0E-0  | 11036   | -   | .67477  | 86900   | .18680    |
| New York    | 000   | 10838   | .3  | 96999   | 0.00711 | .18352    |
| Colon   Colo   | 0E-0  | 19901   | 4.  | .65916  | 0.00724 | .18023    |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0E-0  | 10458   | 9.6 | .65189  | 0.00736 | 117717    |
| Colon   Colo   | 0E-0  | 10286   | 1.6 | 60549   | 0.00748 | .17429    |
| Colorador   Colo   | 0-30  | 10116   | 6   | .63840  | 0.00761 | 17146     |
| Control   Cont   | DE 0  | 69660   | 0   | 63234   | 2440000 | 16889     |
| Colored   Colo   | 0000  | 80860   |     | 47074   | *8100°0 | 16630     |
| Colon   Colo   | 000   | 09663   |     | 66051   | 96400   | 16387     |
| Colon   Colo   | 200   | 97660   |     | 11219   | 10800   | 16157     |
| Color   Colo   | 0     | 16660   |     | 91609   | 0.00819 | 67661.    |
| Control   Cont   | 100   | 00160   | 0.0 | 50005   | 05800   | 12761     |
| Color   Colo   | 0 6 9 | 0903    | 8   | 59528   | 0.00852 | 18311     |
| Colone   C   | DE-0  | 08911   | 1.0 | 59086   | 0.00862 | 15122     |
| 06.09 0.086977 21.21 0.584425 0.0003840 0.14761 0.086978 21.32 0.57431 0.0008978 0.14586 0.086978 21.32 0.57431 0.0008978 0.14586 0.086978 21.32 0.577431 0.0008978 0.14586 0.086978 21.51 0.057730 0.0009151 0.14586 0.086210 0.084008 21.51 0.577730 0.0009151 0.14586 0.084008 21.51 0.577730 0.0009151 0.14560 0.081321 21.80 0.560143 0.0009351 0.13955 0.13955 0.0008132 1.2787 0.078813 22.89 0.558813 0.0009744 0.13351 0.0778130 22.34 0.558813 0.0009744 0.13351 0.0778130 22.34 0.558813 0.0009744 0.13351 0.0778130 22.34 0.558813 0.0009744 0.13351 0.0778130 22.34 0.558813 0.0009744 0.13351 0.0778130 22.34 0.558813 0.0009744 0.13351 0.0778130 22.34 0.558813 0.0009744 0.13351 0.0778130 22.34 0.558818 0.0010813 0.13135 0.0778130 22.34 0.558828 0.0010813 0.125843 0.0778378 22.87 0.558628 0.0010819 0.125843 0.0778378 22.84 0.528762 0.0010819 0.125843 0.0778378 22.84 0.528762 0.0010819 0.125843 0.0778378 22.84 0.528762 0.0010819 0.125843 0.0778378 22.84 0.528764 0.0010819 0.125843 0.0778378 22.84 0.528762 0.0010819 0.125843 0.0778378 22.84 0.528762 0.0010819 0.125843 0.0778378 22.84 0.528762 0.0010819 0.127843 0.0778378 22.84 0.528762 0.0010819 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0.11778 0. | 0-30  | .08800  | -   | . 58645 | 0.00873 | .14934    |
| Colon   Colo   | 0E-0  | .08697  | 1.2 | .58242  | 0.00384 | .14761    |
| 06-10 0.084948 21-42 0.574431 =0.009090 0.14419 06-10 0.083068 21-51 0.570730 =0.009151 0.144260 0 0.083068 21-51 0.570730 =0.009151 0.144260 0 0.083203 21-70 0.56019 =0.009452 0.13955 0 0.081321 21-80 0.56019 =0.009452 0.13955 0 0.079678 21-97 0.556873 =0.009466 0.13557 0 0.079678 22-86 0.556870 =0.00946 0.13557 0 0.0778130 22-87 0.556870 =0.009933 0.13136 0 0.0778130 22-87 0.556870 =0.009933 0.13136 0 0.0778130 22-87 0.586870 =0.010027 0.13139 0 0.075948 22-87 0.586870 =0.010027 0.13139 0 0.075948 22-87 0.586870 =0.010021 0.12557 0 0.075938 22-87 0.586870 =0.010311 0.12557 0 0.075938 22-87 0.52656 =0.01031 0.125747 0 0.075977 22-87 0.52656 =0.01031 0.125747 0 0.075977 22-87 0.52656 =0.010930 0.125757 0 0.073938 22-87 0.52656 =0.010930 0.125757 0 0.073978 22-87 0.52656 =0.010930 0.121747 0 0.076978 23-87 0.551888 =0.010930 0.121747 0 0.079578 23-87 0.551888 =0.010930 0.115757 0 0.079978 23-87 0.551888 0.0010930 0.11677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OE 30 | .08593  | 1.3 | .57832  | ,6800.0 | .14586    |
| 0.083068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0E-1  | .08494  | 4   | .57443  | 5060000 | .14419    |
| Control   Cont   | 0.5.  | 08400   |     | 57073   | 0.00915 | 14260     |
| Colored   Color   Co   | 1     | 90680   |     | 20105   | 0.00925 | 14101     |
| Control   Cont   | 1     | 02280   |     | .56361  | 0.00935 | 13955     |
| Continue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 04040   |     | *1000   | 6660000 | 53861     |
| Continue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1     | 07047   |     | 56367   | 440000  | 12527     |
| NE-11         0.078130         22.14         0.547575         0.009837         0.13265           NE-12         0.077370         22.23         0.54580         0.009833         0.131136           NE-12         0.07544         22.34         0.541719         0.131136           NE-12         0.07549         22.47         0.53628         0.0100213         0.12777           NE-12         0.07549         22.47         0.53628         0.010213         0.12754           NE-12         0.073938         22.47         0.53628         0.010314         0.12559           NE-13         0.073938         22.70         0.528562         0.010344         0.12559           NE-13         0.072697         22.37         0.528562         0.010534         0.125547           NE-13         0.072697         22.84         0.528562         0.010571         0.125547           NE-13         0.07081         22.84         0.521496         0.010571         0.12239           NE-14         0.07081         22.98         0.519188         0.010935         0.112539           NE-14         0.07081         23.15         0.51649         0.010935         0.112549           NE-14         0.06918                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OF    | 07887   | 2.0 | 55050   | 4400000 | 13391     |
| 0.077370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OF.   | .07813  | 2.1 | .54757  | 0.00983 | 13265     |
| Control   Cont   | 0E-1  | .07737  | 2.2 | .54458  | 0.00993 | .13136    |
| Control   Cont   | 1-30  | .07664  | 2.3 | .54171  | 0.01002 | .13013    |
| Control   Cont   | 3     | .07594  | 2.3 | .53898  | 0.01011 | . 12895   |
| Colon   Colo   | 05-1  | 2610    | *   | 53622   | 0.01021 | 1277      |
| DE-12 0.073938 2.2.70 0.531066 0.010396 0.1255556 0.073302 2.2.77 0.528562 0.010364 0.12525556 0.073269 0.072595 0.125259 0.072692 2.2.77 0.528562 0.010651 0.12349 0.072507 2.2.84 0.521340 0.0010651 0.122349 0.071507 2.2.98 0.521496 0.0100746 0.121422349 0.071507 2.2.98 0.519488 0.0100735 0.121427 0.519488 0.010972 0.1121427 0.070358 2.3.05 0.516493 0.011075 0.11575 0.11575 0.11675 0.011075 0.11775 0.11675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1     | 099/0   |     | .53368  | 0.01030 | 12667     |
| NE_13 0.072692 22.77 0.526162 0.010571 0.123430<br>NE_13 0.072692 22.84 0.523440 0.010661 0.123430<br>NE_13 0.070921 22.98 0.519188 0.010835 0.12142<br>NE_14 0.070358 23.05 0.516973 0.01093 0.1119470<br>NE_14 0.069818 23.12 0.516846 0.011093 0.111630<br>NE_14 0.069765 23.25 0.510699 0.011075 0.11677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     | 07330   | 10  | 53106   | 0.01039 | 12255     |
| NE_13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1     | 017760  |     | K2414   |         | 1 2 3 4 3 |
| NE-13 0.071507 22.91 0.521496 -0.010746 0.12142<br>NE-13 0.070921 22.98 0.519188 -0.010835 0.12142<br>NE-14 0.070358 23.05 0.516473 -0.010835 0.11047<br>NE-14 0.06918 23.15 0.516496 -0.011076 0.11163<br>NE-14 0.068765 23.25 0.510699 -0.011775 0.11673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DE.   | 07207   |     | 57374   | 4010    | 12230     |
| NE-13 0.070921 22.98 0.519188 0.010835 0.12043.  NE-14 0.070358 23.05 0.516873 0.010922 0.11947.  NE-14 0.06918 23.19 0.512695 0.011093 0.11753.  NE-14 0.068765 23.25 0.510699 0.011175 0.11677.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DE-1  | 07150   | 5   | 52149   | 0.01074 | 12142     |
| CE-14 0.070358 23.05 0.516973 .0.010922 0.11947<br>CE-14 0.069818 23.12 0.514846 .0.011006 0.11856<br>CE-14 0.06972 23.19 0.512695 .0.011093 0.11753<br>CE-14 0.068765 23.25 0.510699 .0.01175 0.11677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OE-1  | .07092  | 5.9 | 51918   | 0.01083 | 12043     |
| 0E-14 0.069818 23.12 0.514846 0.011006 0.11856.<br>0E-14 0.069272 23.19 0.512695 0.011093 0.11763.<br>0E-14 0.068765 23.25 0.510699 0.011175 0.11677.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1-30  | .07035  | 3.0 | .51697  | 0.01092 | .11947    |
| 0.069272 23.19 0.512695 .0.011093 0.11763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-30  | .06981  | 3.1 | .51484  | 0.01100 | .11856    |
| 0E-14 0.068765 23.25 0.510699 .0.011175 0.11677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S.    | .06927  | 3.1 | .51269  | 0.01109 | .11763    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9     | .06876  | 3.5 | .51069  | 0.01117 | .11677    |

| TABLES   |
|----------|
| MONITOR  |
| PATTERN  |
| FYF      |
| BASFBAND |
| 8        |

TABLE FOR AIDR EQUALS 0.2400 PSEUDO ERROR RATE EQUALS 1.0 / 2800.

NOMENCLATURE:

THE THEFELINGE E., DECISION LEVEL.

AIDR

A MADITUDE OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE AIDR

A / S RATIO = AMPLITUDE OF INTREVIBLE ATTO.

S NR = SIGNAL RATIO.

S IGNAL POWER TO NOISE POWER IN DECIBLES.

A / D RATIO. = ADAPTIVE THRESHOLD AMPLITUDE TO NATIO.

DERIV PER WRT = DERIVATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A / D RATIO.

TIME CONSTANT = QUASILINEAR TIME COMSTANT OF THE ADAPTIVE THRESHOLD LOND FOR SHALL CHAMGES AROUND STEADY STATE VALUES WHEN BITE RATE = 12552600. AND ERROR SIGNAL DIVIDER RATIO INTO D/A CONVERTER =

## BASEBAND FYE PATTERN MONITOR TABLES

TABLE FOR AIDE EDUALS 0.2400 PSEUDN ERROR RATE EQUALS 1.0 / 2800.

| CONSTANT     | 11122 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                | 0.113888   |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| DERIV PER    | 0009050<br>0009051<br>00009051<br>00009051<br>00009051<br>00009051<br>00009051<br>00009051<br>00009051<br>00009051<br>00009051<br>00009051<br>00009051<br>00009051<br>00009051<br>00009051<br>00009051<br>00009051<br>00009051<br>00009051<br>00009051<br>00009051<br>00009051<br>00009051<br>00009051 | 0071100/1- |
| RATIO        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                  | 3+00nc*n   |
| SAR<br>IN DB | 20000000000000000000000000000000000000                                                                                                                                                                                                                                                                 |            |
| RATTO        | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                 | 3-3666     |
| RIT ERROR    | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                 |            |

NOMENCLATURE:

HALF OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE THE THREE LEVEL EYE I.E., DECISION LEVEL.

THE THREE LEVEL EYE I.E., DECISION LEVEL.

A MAN SIGNAL PATIO.

SANS SIGNAL POWER IN DECIBLES.

SANS SIGNAL POWER TO NOISE DOWER IN DECIBLES.

A MAN DEATIO.

SAND RATIO.

A A DEATIO.

A A DE

|          |        | _       |        |         |         |       |        |        | _       | _       |         |         |         |         |        |         |       | . ~    |        |         | _       | _      | _       |        |       |         | _       |         |         | •        |         | 0 "       | _       |         | _       | _       |         |         | •      |         | •       | •       | _       |        |         |         | _       | •       | •       |         |         | ~.      |         |       |         |
|----------|--------|---------|--------|---------|---------|-------|--------|--------|---------|---------|---------|---------|---------|---------|--------|---------|-------|--------|--------|---------|---------|--------|---------|--------|-------|---------|---------|---------|---------|----------|---------|-----------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------|---------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------|---------|
|          | 11001  | 10 74   | 22413  | 87692   | 26417   | 01007 | 26341  | 23399  | 22614   | 21901   | .21286  | .20744  | 20233   | 19787   | 16861  | 00681   | 10201 | 17897  | 17574  | 17273   | 16691   | 16713  | 10401   | 15040  | 15764 | 15521   | 15317   | 15111   | 14916   | 14731    | 14641   | 0.143790  | 14044   | 13889   | .13734  | 13591   | 13445   | 13306   | 13041  | 12918   | .12792  | .12672  | 12558   | 74471  | 17225   | 12120   | 12019   | .1191A  | .11824  | 11727   | 11634   | 11544   | *****   | 11284 |         |
|          | 021120 | 0.00777 | 000000 | 1690000 | 0.00475 | 68400 | 00525  | 000557 | 5.00577 | 0.00595 | 0.00613 | 0.00629 | 7.00644 | 0.00659 | 200000 | 0.00000 | 20.00 | 00720  | 000742 | 0.00755 | 0.00768 | 09200  | 2620000 | 000000 | 00000 | 0.00840 | 0.00851 | 0,00863 | 0.00874 | 2690000  | 7680000 | 0.009075  | 0.00000 | 0.00939 | 05600 0 | 0960000 | 0.600.0 | 08600-0 | 01000  | 0.01010 | 0.01020 | 0.01029 | 0.01039 | 801000 | 0.01047 | 0.01076 | 0.01085 | 0.01094 | 0.01103 | 0.01112 | 0.01121 | 0.01130 | 0.01199 | 10.00 | 9611090 |
| LE WAS   | 06896  | 95430   | 93425  | 90826   | 68289   | 69743 | 91550  | 79756  | 78209   | .76726  | .75389  | .74176  | 73011   | 11980   | 70964  | 87001   | 20169 | 47557  | 66800  | \$6099  | .65433  | 64783  | 64193   | 00000  | 62518 | 61998   | 61523   | .61043  | 68509   | 60160    | 59731   | 0.593390  | 58561   | 58200   | .57840  | 57508   | 57170   | .56848  | 56232  | 55947   | .55655  | .55377  | 55110   | 74846  | 54340   | 54096   | 53862   | .53627  | .53408  | .53183  | .52968  | .52761  | 16676   | 62637 | 16136   |
| -        |        |         |        |         |         |       |        | 7.3    | 7.5     | 7.8     | 0.0     | 8.2     | 4.      | 9       |        | ,       | ,,    |        | . 6    | 8.      | 0.0     | -      | 7.0     |        |       | -       | 0.0     | 1.0     | =       | 7.5      | •       | 21.56     | 1.6     | 1.7     | 1.8     | 6.0     |         | 2.0     | 2.3    | 2.3     | 2.4     | 2.5     | 9,0     | ,,     | 2.8     | 2.9     | 3.0     | 3.0     | 3.1     | 3.2     |         | 6.4     |         |       | :       |
| PRINT    | 24.4   | 11,612  | 10841  | 04101   | 46661   | 60641 | 14008  | 13579  | 13205   | .12840  | 12509   | 12207   | 11915   | 11656   | 11401  | 1000    | 10732 | 10540  | 10349  | .10170  | .10003  | .09838 | 68960   | 70500  | 09264 | 09132   | .09012  | 06880   | .08775  | 08666    |         | 0.083571  | 08261   | .08169  | .08078  | .07994  | 80610   | 07870   | 07670  | .07598  | .07524  | .07453  | 01383   | 07254  | 07190   | .07128  | .07069  | 00000   | *06954  | .06897  | .06842  | 06789   | 06190   | 2000  |         |
| 15 14 DE | 2000   | 0-2060. | 2000   | 0-3057. | 0-3001  | 2001  | 4006-0 | -250E- | -160E-0 | .100E-0 | C-30E9. | -400E-0 | -250E-0 | 160E-0  | 1005-0 | 0 3000  | 250F  | 160E-0 | 100E-0 | 0-30E9. | 0-300+  | -2052  | 1000    | A 30E  | 400F  | 250E-0  | .160E-0 | .100E-0 | .630E-0 | 0-3004-0 | - 20C7  | 0-1005-09 | .630E-1 | .400E-1 | .250F-1 | .160E-1 | 1000    | 400F    | 250E-1 | .160E-1 | .100E-1 | .630E-1 | -400E-1 | 1.2002 | 1006    | 630E-1  | 1-3005  | .250E-1 | .160E-1 | -100E-1 | .630E   | 400E    | 20620   | 100   | • 100   |

| TABLES   |
|----------|
| 110R     |
| MON      |
| PATTERN  |
| FYE      |
| BASEBAND |
| 8        |

| RIT FRROR | S / N    | SNR   | 0 / V    | PE        | TIME     |
|-----------|----------|-------|----------|-----------|----------|
| RATE      | RATTO    | 1N 08 | RATTO    | WAT A / D | CONSTANT |
| 7         | 0.184986 | 14.66 | ٠,       | 01120     | -        |
| 0.630E-03 | 0.176151 | 15.08 |          | 0.007770  |          |
|           | 0.168473 | 15.47 | 5        | .00580    |          |
| .250F-03  | 0.161407 | 15.84 | ٠.       | 6400      |          |
|           | 0.155399 | 16.17 | 0.882851 | .0047     | 0.274522 |
| .100F.03  | 0.149697 | 16.50 | ۳.       | -0.004893 |          |
| 0.630F.04 | -        | 16.79 | ۳.       |           |          |
| *400F-04  |          | 17.07 | ٠.       | 36800     |          |
| .250E-04  | 7        | 17,34 | ٦.       | 00557     |          |
| .160F-04  | 0.132050 | 17.59 |          |           | 0.226148 |
| .100F-04  | 0,128409 | 17,83 | ۲.       | .00595    | 0.219019 |
| .630F-05  | 0.125099 | 18.05 | ٠.       | 0061      | 0.212866 |
| \$00F-05  | 0.122074 | 18.27 | ٠.       | .00629    | 0.207441 |
| .250E-05  | 0,119157 | 18.48 | -        | 99900     | 0.202337 |
| .160E-05  | 0,116567 | 18.67 |          | 65900     | 0.197875 |
| .100F-05  | 0.114010 | 18.86 | .709647  | -0.006743 | 0.193512 |
| .630E-06  | 0,111669 | 0.6   | .700284  | .00688    | 0.189509 |
| 0.400E-06 | 0,109462 | 19,21 | .691621  | -0.007023 | 0.185814 |
| .250F-06  | 0,107326 | 19,39 | .683168  | -0.007161 | 0,182212 |
| .160E-06  | 0.105407 | 19.54 | .675578  | -0.007291 | 0.178978 |
| 0.100E-06 | 0,103490 | 19.70 | *00899   | -0.007425 | 0.175749 |
| .630F-07  | 0.101703 | 19,85 | .660941  | -0.007554 | 0.172737 |
| 0.400E-07 | 0.100031 | 20.00 | •        | -0.007680 | 0.169918 |
| .250E-07  | 0.098383 | 20,14 |          | 00780     | 0,167138 |
| -160E-07  | 0.096890 | 20.27 | •        | .00792    | 0.164618 |
|           | 0.095388 | 20.41 |          | .00805    | 0.162081 |
|           | •        | 20.54 | •        | .00817    | 0.159694 |
|           | •        | 20,66 | •        | .00828    | 0.157446 |
| .250F-08  | . •      | 20.79 | •        | •         | 0.155214 |
| .160F-0   | 0        | 20.90 |          | 0.00851   | 0.153177 |
| .100F.0   | •        | 21,02 |          | 0.00863   | 0,151116 |
| 0.630E-09 | 0.087755 | 21,13 |          | -0.008748 | 0.149166 |
| -400F-09  | 0.086665 | 21.24 | •        | 00885     | 0.147319 |
| .250F-0   | ۰.       | 21,35 | 0.597315 | .00897    | 0.145477 |
| 0.160F-09 | C        | 21.45 | •        | -0.000015 | 0.143790 |
| .100F-0   | 0        | 21.56 |          | 0.00918   | 0.142073 |
|           |          |       |          | -         |          |

| * HALF OF THE NORMAL DISTANCE RETWEEN DATA LEVELS FOR THE THE THREE LEVEL EVE I.E., DECISION LEVEL.  * AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO.  * RAS NOISE TO RMS SIGNAL RATIO.  * SIGNAL DAWRE TO NOISE POWER IN DECIBLES.  * ADADTIVE THRESHOLD AMPLITUDE TO D RATIO.  * DERIVATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A / D PATIO.  * QUASILINEAR TIME CONSTANT OF THE ADAPTIVE THRESHOLD  LOOP FOR SMALL CHANGES AROUND STRADY STATE VALUES. |                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| THE THE LEVEL EYE I.E., DECISION LEVELS FOR THE THREE LEVEL EYE I.E., DECISION LEVEL.  AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO.  RMS NOISE TO RMS SIGMAL RATIO.  SIGMAL POWER TO NOISE POWER IN DECIBLES.  ADADTIVE THRESHOLD AMPLITUDE TO P RATIO.  DERIVATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A / GOUSTLINEAR TIME CONSTANT OF THE ADADTIVE THRESHOLD GUASILINEAR TIME CONSTANT OF THE ADADTIVE THRESHOLD                                     |                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WHEN RITE RATE = 12592600. AND ERROR SIGNAL DIVIDER RATIO INTO DIA CONVERTER = |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                |
| ATDR<br>ATDR<br>N S RATIO<br>SNR<br>A / D RATIO<br>DERIV PER WRT                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |

BASEBAND FYF PATTERN MONITOR TABLES

| 81T FROR<br>RATE<br>0.630F-10<br>0.400F-10 |          | any   |          |           |          |
|--------------------------------------------|----------|-------|----------|-----------|----------|
| 0.630F-10<br>0.400F-10                     | S / N    |       | 0 / 1    | DERTV PER | TIME     |
| 0.630F-10<br>0.400F-10                     | KATIO    | 80 N  | MATIO    |           | CONSTANT |
| 0.400F-10                                  | 0,082611 | 21.66 | 0.585611 | -0.009291 | 0.140443 |
| O 250E-10                                  | 0.081697 | 21.76 | 0.582009 | -0.009395 | 0.138892 |
| 200                                        | 0.080783 | 21.85 | 0.578404 | -0.009501 | 0.137340 |
| 0.160F-10                                  | 0.079942 | 21.94 | 0.575089 | -0.009601 | 0.135913 |
| 0.100F-10                                  | 0.079084 | 52.04 | 0.571706 | -0.009705 | 0.134456 |
| 0.630E-11                                  | 0.078266 | 22.13 | 0.568483 | -0.009606 | 0.133067 |
| 0.400E-11                                  | 0.077486 | 22.22 | 0.565408 | -0.009905 | 0.131743 |
| 0.2506-11                                  | 0.076703 | 22.30 | 0.562321 | -0.0:000  | 0.130412 |
| 0.160F-11                                  | 0.075980 | 22.39 | 0.559473 | -0.010101 | 0.129185 |
| 0.100E-11                                  | 0.075241 | 22.47 | 0.556558 | -0.010200 | 0.127929 |
| 0.630E-12                                  | 0.074534 | 22.55 | 0.553773 | -0.010297 | 0.126729 |
| 0.400F-12                                  | 0.073859 | 22.63 | 0.551109 | -0.010391 | 0.125580 |
| 0.250F-12                                  | 0.073178 | 22.71 | 0.548427 | -0.010488 | 0.124424 |
| 0,160F-12                                  | 0.072549 | 22.79 | 0.545947 | -0.010578 | 0,123355 |
| 0.100F-12                                  | 0.071903 | 22.87 | 0.543402 | -0.010673 | 0,122258 |
| 0.630F-13                                  | 0.071285 | 22.94 | 0.540965 | -0.010766 | 0.121207 |
| 0.400F-13                                  | 0.070692 | 23.01 | 0.538628 | -0.010856 | 0,120199 |
| 0.250F-13                                  | 0.070094 | 23.09 | 0.536270 | -0.010949 | 0.119182 |
| 0.160E-13                                  | 0,069540 | 23.16 | 0.534085 | -0.011036 | 0,118240 |
| 0.100E-13                                  | 0.068970 | 23.23 | 0.531838 | -0.011127 | 0.117271 |
| 0.630F-14                                  | 0.068423 | 23.30 | 0.529687 | -0.011216 | 0,116341 |
| 0.400E-14                                  | 0.067897 | 23,36 | 0.527611 | -0.011303 | 0.115448 |
| 0.250F-14                                  | 0.067364 | 23.43 | 0.525517 | -0.011392 | 0.114545 |
| 0-160F-14                                  | 0.066873 | 23.50 | 0.523574 | -0.011476 | 0.113707 |
| 0.100F-14                                  | 0.066365 | 23.56 | 0.521571 | -0.011564 | 0.112843 |

|               |                                                      |                                          |                                                     |                                  |                                            |                                           | T10.          |               |                                                   |                                             |                                       |
|---------------|------------------------------------------------------|------------------------------------------|-----------------------------------------------------|----------------------------------|--------------------------------------------|-------------------------------------------|---------------|---------------|---------------------------------------------------|---------------------------------------------|---------------------------------------|
|               | H                                                    |                                          |                                                     |                                  |                                            |                                           | A             |               |                                                   |                                             |                                       |
|               | -                                                    |                                          |                                                     |                                  |                                            |                                           | 0             | _             |                                                   |                                             |                                       |
|               | * HALF OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FC | THE THREE LEVEL EYE I.E. DECISION LEVEL. | - AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATTO. | . RMS NOISE TO RMS SIGNAL RATIO. | E SIGNAL POWER TO NOISE POWER IN DECIBLES. | - NAPTIVE THRESHOLD AMPLITUDE TO D RATIO. |               |               | LOOP FOR SMAIL CHANGES AROUND STEADY STATE VALUES | WHEN BITE RATE . 12552600. AND ERROR SIGNAL | DIVIDER RATIO INTO D/A CONVERTER . 4. |
| NIMENCLATURE. |                                                      |                                          |                                                     | RATTO                            |                                            | A / D RATIO                               | DERIV PER WRT | TIME CONSTANT |                                                   |                                             |                                       |
| MALIN         | 0                                                    |                                          | ATDR                                                | N / S RATTO                      | SMR                                        | AID                                       | DERIV         | TIME C        |                                                   |                                             |                                       |

| 0.100E-09 0.111499 15.77 0.095542 0.005931 0.164954 0.2050E-03 0.114499 15.77 0.0950E-03 0.114499 16.77 0.0950E-03 0.114499 16.77 0.0950E-03 0.114499 16.77 0.0950E-03 0.114499 16.77 0.0950E-03 0.114499 17.77 0.0950E-04 0.114499 17.77 0.0950E-04 0.0950E-04 0.114499 17.77 0.0950E-04 0.014499 17.77 0.0950E-04 0.014499 17.77 0.0950E-04 0.0050E-04 0.                                                                                                                             | A 20F-0  |        |     |         |         |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-----|---------|---------|--------|
| 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100                                                                                                                                |          |        | :   | 95524   | 0.00793 | 16455  |
| Colored   Colo                                                                                                                               | 2506     | 18404  |     | 1000    | 00000   | 28083  |
| 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100                                                                                                                                | 160E-0   | 15108  |     | 88560   | 0.00484 | 26842  |
| 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100                                                                                                                                | 100E-0   | 14551  | 1.9 | . 86087 | 0.00000 | 26062  |
| ### 17.37 0.882701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0-30E9.  | 14051  | 0.  | .63916  | 0.00524 | .24884 |
| The color   The                                                                                                                                | 4006-0   | 13614  |     | .82021  | 0.00548 | .23796 |
| Control   Cont                                                                                                                               | 2007     | 13196  |     | 01208.  | 0.0001  | 22043  |
| 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100                                                                                                                                | LONE     | 12478  | 0   | 77329   | 0.00610 | 21361  |
| ### 1985   18.72   0.74851   0.006617   0.1972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 630E-0   | 12156  | 6.3 | 76032   | 0.00628 | 20755  |
| 1976   1978   18.73   19.72   19.006619   0.1972   19.006606   0.1972   19.006606   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972   0.1972                                                                                                                                | 400E-0   | .11862 | 6.9 | 74855   | 0.00645 | .2021  |
| 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100                                                                                                                                | -250E-0  | 11578  | 1.  | .73724  | 0.00661 | .19720 |
| 100E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1505-0   | 11326  | 6.0 | 72723   | 0.00676 | 19281  |
| 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100                                                                                                                                | 4306     | 1001   |     | 7007    | 2690000 | 18453  |
| 250E_06 0.102427 19.44 0.691683 0.007487 0.174281 0.007687 0.174281 0.007789 0.007887 0.174281 0.007789 0.007887 0.174281 0.007789 0.007887 0.174281 0.007789 0.007887 0.174281 0.007789 0.007887 0.174281 0.007789 0.007887 0.174281 0.007887 0.174281 0.007887 0.007887 0.174281 0.007887 0.007887 0.007887 0.007887 0.007878 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.007887 0.00788                                                                                                                             | 4006     | 10636  |     | 98669   | 0.00721 | 18098  |
| 100E_06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 250E-0   | 10428  |     | 69169   | 0.00735 | 17745  |
| 0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00                                                                                                                                  | .160E-0  | 10242  | 4.1 | .68427  | 0.00748 | 17428  |
| 6490E_07 0.099823 20.10 0.645094 =0.000789 0.16818 6400E_07 0.095939 20.25 0.645836 =0.000883 0.168542 100E_07 0.095939 20.25 0.645818 =0.000813 0.168542 6400E_08 0.091315 20.91 0.63539 =0.0008271 0.16724 6400E_08 0.091315 20.91 0.635397 =0.008271 0.15748 6400E_08 0.091315 20.91 0.635397 =0.008315 0.15743 1000E_08 0.091315 20.91 0.625625 =0.008873 0.14704 1000E_08 0.091315 21.27 0.62991 =0.009319 0.145104 1000E_08 0.091311 21.27 0.62991 =0.009317 0.14704 1000E_09 0.091319 21.27 0.62991 =0.009317 0.14704 1000E_09 0.091319 21.27 0.62991 =0.009314 0.14704 1000E_09 0.091319 21.27 0.609311 =0.009314 0.145104 1000E_09 0.091319 21.27 0.609314 0.145104 1000T_09 0.091319 22.29 0.58378 =0.009314 0.13812 1000E_10 0.074531 22.29 0.58378 =0.009314 0.12819 1000E_11 0.077522 22.29 0.569314 =0.009314 0.12819 1000E_12 0.077522 22.29 0.569314 =0.009314 0.12819 1000E_12 0.077531 22.29 0.569314 =0.009314 0.12819 1000E_12 0.077523 22.29 0.569314 =0.009314 0.12819 1000E_13 0.077523 22.29 0.569314 =0.009314 0.12819 1000E_13 0.077523 22.29 0.569314 =0.009314 0.1189 1000E_13 0.069314 22.24 0.569314 =0.0010313 0.1189 1000E_13 0.069314 22.24 0.569314 =0.0010313 0.1189 1000E_13 0.066497 22.24 0.569314 =0.0010314 0.1189 1000E_13 0.066497 22.24 0.569314 =0.0011314 0.1189 1000E_14 0.066975 22.24 0.569314 =0.0011314 0.1189 1000E_14 0.066975 22.24 0.569314 =0.0011314 0.1189 1000E_14 0.066975 22.24 0.569314 =0.0011314 0.1189 1000E_14 0.066977 22.24 0.569314 =0.0011314 0.1189 1000E_14 0.066977 22.24 0.0011314 0.0011319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .100E-0  | .10056 | 6.6 | .67691  | 0.00762 | 17112  |
| ### ### ### ### ### ### ### ### ### ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0-30E9   | .09882 |     | .67005  | 0.00775 | .16818 |
| Continue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4005-0   | .09719 | 2.0 | .66363  | 0.00788 | 16542  |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1406     | 46660  |     | 167791  | 20800-0 | 14024  |
| \$306=08 0.091315 20.79 0.645640 0.008395 0.15543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1005-0   | 09268  |     | 64581   | 0.000   | 15776  |
| \$\text{600E}_{\text{00}}\$ 0.090022 \$\text{20}_{\text{00}}\$ 0.090022 \$\text{20}_{\text{00}}\$ 0.090022 \$\text{20}_{\text{00}}\$ 0.090022 \$\text{20}_{\text{00}}\$ 0.090022 \$\text{20}_{\text{00}}\$ 0.087292 \$\text{20}_{\text{00}}\$ 0.097292 \$\text{20}_{\text{00}}\$ 0.097294 \$\text{20}_{\text{00}}\$ 0.097292 \$\text{20}_{\text{00}}\$ 0.09729 | 630E-0   | 09131  | 1   | 04049   | 0.00830 | 15543  |
| 250E_08 0.088740 21.04 0.630236 0.008438 0.15106 630E_08 0.0887872 21.15 0.625622 0.008783 0.14507 630E_09 0.088210 21.38 0.616536 0.008989 0.14516 6400E_09 0.088211 22.49 0.612356 0.009217 0.14157 6400E_09 0.082186 22.40 0.605372 0.009217 0.14157 6400E_09 0.082186 22.40 0.605372 0.009249 0.14157 6400E_09 0.081203 22.40 0.605372 0.009249 0.13825 6400E_09 0.081203 22.40 0.693371 0.009489 0.13825 6400E_10 0.076495 22.10 0.589391 0.009548 0.13825 6400E_10 0.076495 22.10 0.589391 0.009548 0.13825 6400E_11 0.077698 22.10 0.589391 0.009548 0.13825 6400E_11 0.077698 22.10 0.589391 0.009548 0.13825 6400E_11 0.077698 22.10 0.589391 0.009548 0.13866 6400E_11 0.077698 22.10 0.589391 0.009397 6400E_11 0.077699 22.24 0.589391 0.009397 6400E_11 0.07799 0.12819 6400E_12 0.009867 22.10 0.566391 0.0010391 0.12819 6400E_12 0.009867 22.10 0.566391 0.0010391 0.12819 6400E_13 0.006987 22.10 0.566391 0.0010391 0.1189 6400E_13 0.006987 22.24 0.551097 0.011138 0.1189 6400E_13 0.066997 22.24 0.551097 0.011138 0.1189 6400E_13 0.066997 22.24 0.551097 0.011139 6500E_14 0.066997 22.24 0.551097 0.011139 6500E_14 0.066997 22.27 0.538341 0.001134 0.111063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 400E-0   | .09002 |     | 63529   | 0.00051 | 15324  |
| 100E_08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .250E-0  | .08874 | 0.1 | .63023  | 0.00863 | .15106 |
| 400E=09 0.084211 21.49 0.61536 0.008873 0.14516 400E=09 0.084211 21.49 0.615356 0.009873 0.14516 400E=09 0.084211 21.49 0.615356 0.009873 0.14516 400E=09 0.081208 21.81 0.606472 0.009320 0.18336 400E=09 0.081208 21.81 0.606492 0.009934 0.13852 4100E=09 0.081208 21.81 0.896805 0.009948 0.13852 4100E=10 0.078484 22.20 0.898784 0.009948 0.13858 4100E=10 0.078844 22.29 0.888778 0.009944 0.13828 4100E=11 0.077884 22.29 0.888778 0.009944 0.13828 4100E=11 0.077884 22.29 0.888778 0.009944 0.13828 4100E=11 0.0778292 22.47 0.898784 0.009944 0.13828 4100E=11 0.077887 22.29 0.888778 0.009974 0.13889 4100E=11 0.077887 22.80 0.888778 0.010283 0.12889 4100E=12 0.077824 22.80 0.868841 0.010381 0.12879 4100E=12 0.077847 22.80 0.858811 0.010381 0.12879 4100E=12 0.077895 22.80 0.858811 0.010381 0.12879 4100E=13 0.069867 22.80 0.85881 0.010381 0.12879 4100E=13 0.069867 22.80 0.85881 0.010383 0.11898 4100E=13 0.069877 22.80 0.85881 0.01188 0.11898 4100E=13 0.068891 22.86 0.85881 0.01188 0.11898 4100E=13 0.068977 22.80 0.898874 0.011898 0.11898 4100E=14 0.068977 22.80 0.898874 0.011898 0.11898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 160E-0   | .08757 | Ξ.  | .62562  | 0.00875 | 14907  |
| 250E_09 0.084211 2.49 0.605186 0.000310 0.44336 0.000E_09 0.008218 21.60 0.606497 0.0003217 0.141376 0.000E_09 0.000218 21.60 0.606497 0.000332 0.131823 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.000211 0.00011 0.000211 0.000211 0.00011 0.000211 0.000211 0.00011 0.00021 0.00021 0.00011 0.00021 0.00021 0.00011 0.00021 0.00011 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.00022 0.0002                                                                                                                             | 430F-0   | 08638  | 7.6 | 61463   | 0.00887 | 14506  |
| 250E_09 0.082188 21_60 0.606189 0.009217 0.14157<br>160E_09 0.082188 21_70 0.606497 0.009217 0.14157<br>530E_10 0.082218 21_91 0.596805 0.009548 0.13954<br>250E_10 0.076495 22_01 0.593301 0.009548 0.13954<br>250E_10 0.0778495 22_10 0.593301 0.009764 0.13954<br>250E_10 0.0778495 22_19 0.586794 0.009764 0.13264<br>250E_11 0.077829 22_29 0.586794 0.009764 0.13264<br>250E_11 0.077829 22_47 0.587781 0.009764 0.13289<br>250E_11 0.077829 22_47 0.597781 0.009764 0.12289<br>250E_11 0.077829 22_47 0.597781 0.00078<br>250E_11 0.077829 22_64 0.568378 0.00078<br>250E_12 0.077829 22_64 0.577181 0.2010283 0.12289<br>250E_12 0.077829 22_64 0.577181 0.2010283 0.12289<br>250E_12 0.077829 22_64 0.56832 0.010283 0.12289<br>250E_12 0.0771767 22_88 0.56832 0.010582 0.12289<br>250E_12 0.077190 22_88 0.56832 0.010582 0.11793<br>250E_13 0.06867 22_11 0.555782 0.010583 0.11793<br>250E_13 0.067971 22_48 0.556491 0.011283 0.118319<br>250E_14 0.065778 22_88 0.56293 0.011283 0.118319<br>250E_14 0.065778 22_88 0.56293 0.011283 0.111733<br>250E_14 0.065778 22_88 0.5838450 0.011283 0.111733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 400E-0   | 08421  |     | 61235   | 0.00000 | 14336  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .250E-0  | .08315 | 1.6 | .60818  | 0.00921 | 14157  |
| 100F=09 0.081205 21.81 0.600490 0.000948 0.13825 0.900F=00 0.000271 21.91 0.596805 0.000948 0.13865 0.13865 0.13865 0.13865 0.000948 0.13865 0.13865 0.000948 0.13865 0.13865 0.000948 0.13865 0.13865 0.000948 0.13865 0.13865 0.000948 0.13865 0.13865 0.000948 0.13865 0.13865 0.000948 0.13865 0.13865 0.000948 0.13865 0.13865 0.000948 0.13865 0.13865 0.000948 0.13865 0.13865 0.000948 0.13865 0.13865 0.000948 0.13865 0.13865 0.000948 0.13865 0.13865 0.000948 0.13865 0.13865 0.000948 0.13865 0.13865 0.000948 0.13865 0.13865 0.000948 0.13865 0.13865 0.13865 0.13865 0.13865 0.000948 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.0011795 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.13865 0.1386                                                                                                                             | .160E-0  | .08218 |     | .60437  | 0.00332 | .13992 |
| 5.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100E-0   | 08120  |     | 69009   | 0.00943 | 13825  |
| ### 100 0.07938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .630E-1  | .08027 | 6.1 | .59680  | 7560000 | .13666 |
| Control   Cont                                                                                                                               | -400E-1  | •07938 | 2.0 | . 59330 | 0.00965 | 13515  |
| ### 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 140E-1   | 07747  |     | 61686   | 9460000 | 13364  |
| ### ### ##############################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100E-1   | .07684 | 2.2 | 58327   | 0.00997 | 13083  |
| 4.00E_11 0.075292 22.47 0.577151 =0.010179 0.12819 2.556_11 0.0774531 22.55 0.574147 =0.010283 1.00E_11 0.0774531 22.55 0.574147 =0.010283 1.00E_11 0.077453 22.72 0.568541 =0.010583 0.12689 2.50E_12 0.077224 22.80 0.568541 =0.010583 0.12447 2.50E_12 0.077767 22.80 0.568532 =0.010583 0.12447 2.50E_12 0.077767 22.80 0.568532 =0.010583 0.12719 2.50E_12 0.070495 22.04 0.56817 =0.010672 0.12199 2.00E_13 0.069867 22.11 0.558742 =0.010673 0.11199 2.50E_13 0.069867 22.11 0.55817 =0.011158 0.11199 2.50E_13 0.067571 22.48 0.546491 =0.011153 0.111594 2.50E_14 0.065975 22.56 0.538341 =0.01153 0.111319 2.50E_14 0.065975 22.56 0.538341 =0.01152 0.111319 2.50E_14 0.065975 22.56 0.538341 =0.01159 0.11123 2.50E_14 0.065975 22.74 0.538341 =0.01159 0.11123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .630E-1  | .07605 | 2.3 | .58014  | 0.01007 | 12948  |
| 250E-11 0.074531 22.55 0.574147 -0.010283 0.12689 100E-11 0.073829 22.72 0.568541 0.010381 0.12649 100E-12 0.073829 22.72 0.56832 0.010381 0.126470 100E-12 0.077167 22.80 0.56832 0.010582 0.12530 150E-12 0.077167 22.86 0.56832 0.010572 0.120330 150E-12 0.070495 22.06 0.56832 0.010672 0.12092 150E-12 0.070495 22.06 0.59874 0.010672 0.12092 150E-13 0.069867 22.11 0.558742 0.010672 0.11093 150E-13 0.069867 22.11 0.553742 0.011048 0.11693 150E-13 0.0698109 22.34 0.551097 0.011048 0.11693 150E-13 0.067571 22.48 0.546491 0.01153 0.11594 150E-14 0.065975 22.56 0.538341 0.01153 0.111232 150E-14 0.065975 22.56 0.538341 0.011159 0.111232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 400E-1   | .07529 | 2.4 | .57715  | 0.01017 | .12819 |
| 1005-11 0.07310 22.80 0.56851 0.010331 0.12570 0.56851 0.07310 2.2570 0.56851 0.07310 0.07310 22.80 0.56832 0.010542 0.12330 0.12330 0.07310 2.2.80 0.56832 0.010542 0.12330 0.12330 0.071106 22.80 0.56032 0.010542 0.12330 0.071106 22.80 0.56032 0.010542 0.12330 0.056032 0.0010542 0.12106 0.056032 0.0010542 0.12106 0.12106 0.056032 0.0010542 0.12106 0.056032 0.0010542 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.11695 0.0011795 0.110693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .250E-1  | .07453 | 5.5 | 57414   | 0.01028 | .12689 |
| 630E-12 0.072424 22.80 0.565832 0.010592 0.12330<br>6.50E-12 0.071767 22.88 0.563240 0.010592 0.12330<br>6.50E-12 0.071106 22.96 0.56030 0.010579 0.12106<br>6.100E-12 0.069867 22.11 0.555742 0.010497 0.11205<br>6.30E-13 0.069267 22.11 0.555742 0.011048 0.11593<br>6.30E-13 0.069267 22.19 0.553742 0.011048 0.11593<br>6.50E-13 0.067571 22.40 0.56687 0.011343 0.11594<br>6.30E-13 0.067571 22.40 0.56687 0.011343 0.11594<br>6.30E-14 0.066485 22.55 0.54293 0.011343 0.113194<br>6.30E-14 0.065458 22.68 0.538341 0.011617 0.11232<br>6.30E-14 0.065458 22.68 0.538341 0.011795 0.110683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1006     | 07311  | 200 | 2686    | 86010   | 13447  |
| 400E=12 0.071767 22.88 0.563240 0.010679 0.2219  250E=12 0.071106 22.96 0.560530 0.010679 0.12106  100E=12 0.059867 22.11 0.555742 0.010670 0.11895  2630E=13 0.069267 22.19 0.555742 0.011068 0.11895  260E=13 0.069267 22.19 0.555742 0.011068 0.11895  260E=13 0.069751 22.26 0.551097 0.011068 0.11895  260E=13 0.067571 22.40 0.546677 0.011232 0.11896  260E=14 0.065458 22.55 0.54239 0.011628 0.11819  260E=14 0.065458 22.68 0.538341 0.011698 0.111232  260E=14 0.065459 22.74 0.538341 0.011709 0.111068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .630E-1  | .07242 | 2.8 | 56583   | 0.0105  | 12330  |
| 250E_12 0.071106 22.94 0.56030 0.010779 0.12106 .160E_12 0.0070495 23.04 0.558217 0.010872 0.12002 .630E_13 0.069967 23.19 0.55574 0.011068 0.11793 .630E_13 0.06917 23.19 0.55574 0.011068 0.11793 .160E_13 0.068109 23.24 0.556803 0.01128 0.11594 .160E_13 0.067571 23.48 0.54697 0.011283 0.11594 .160E_13 0.06577 23.48 0.54697 0.011436 0.115194 .160E_14 0.06577 23.48 0.54697 0.011436 0.113194 .250E_14 0.06577 23.48 0.54697 0.011137 0.11232 .250E_14 0.06577 23.48 0.54697 0.011437 0.11232 .250E_14 0.06577 23.55 0.5589 0.011137 0.11232 .250E_14 0.06577 23.74 0.598450 0.0111795 0.110683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .400E-1  | .07176 | 2.8 | .56324  | 0.01007 | 2219   |
| 100E-12 0.00967 22.04 0.558217 -0.010872 0.12002<br>100E-12 0.009867 23.19 0.553742 -0.010870 0.11895<br>400E-13 0.009867 23.19 0.553742 -0.011158 0.11793<br>400E-13 0.0088109 23.24 0.554873 -0.011158 0.11895<br>100E-13 0.005771 23.48 0.554877 -0.011353 0.11596<br>100E-14 0.005771 23.48 0.54491 -0.011342 0.11819<br>400E-14 0.005975 23.59 0.54293 -0.011528 0.11319<br>150E-14 0.005975 23.59 0.538341 -0.011617 0.11232<br>150E-14 0.005979 23.74 0.538341 -0.011617 0.11063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .250E-1  | 07110  | 5.0 | .56063  | 0.01077 | .12106 |
| 430E=12 0.099867 22-11 0.553742 0.010470 0.111895<br>400E=13 0.098691 23-26 0.551097 0.011048 0.111895<br>400E=13 0.068691 22-34 0.551097 0.011153 0.111596<br>250E=13 0.067571 22-34 0.544803 0.011253 0.111596<br>100E=13 0.067571 23-48 0.544491 0.011343 0.111596<br>400E=14 0.0665975 23-55 0.54293 0.011528 0.111319<br>400E=14 0.065975 22-56 0.538341 0.0111617 0.111232<br>160E=14 0.066979 22-74 0.538341 0.011795 0.111063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 160E-1 | .07049 | 9.0 | 55821   | 0.01087 | 12002  |
| 2005-13 0.099267 22.19 0.55337 0.0011165 0.11793 0.0055107 0.0068691 22.24 0.551097 0.011156 0.111695 0.11793 0.11793 0.11793 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.115605 0.1                                                                                                                             | 1000-1   | 98690  |     | 55574   | 0.01097 | 11895  |
| 250E-13 0.068109 22.34 0.54867 0.011353 0.115953 0.100E-13 0.067571 23.40 0.546677 0.011342 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0.115954 0                                                                                                                             | 400E     | 07600  |     | 16666   | 0011000 | 11179  |
| 1605-13 0.067571 22.40 0.546677 0.011322 0.11573<br>1005-13 0.067571 22.48 0.54491 0.011436 0.11510<br>1005-14 0.066485 22.55 0.54293 0.011528 0.11510<br>1005-14 0.065458 22.68 0.538341. 0.011617 0.11522<br>1605-14 0.065459 22.74 0.536450 0.011795 0.11063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250F     | 04810  |     | K4080   |         | 11697  |
| .100E-13 0.067017 23.48 0.54491 0.011436 0.11410<br>630E-14 0.066485 22.55 0.54293 0.011528 0.11319<br>630E-14 0.065975 22.68 0.538341 0.011617 0.11232<br>630E-14 0.065979 23.74 0.536450 0.011795 0.11063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 160E-1   | .06757 | 3.6 | 54667   | 0.01134 | 11904  |
| 530E_14 0.066485 23.55 0.542993 _0.011528 0.11319<br>400E_14 0.065975 23.61 0.540378 _0.011617 0.11232<br>250E_14 0.065458 23.68 0.538341 _0.011708 0.11145<br>60E_14 0.064979 23.74 0.536450 _0.011795 0.11063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100E-1   | 06701  | 3.4 | 54440   | 0.01143 | 11410  |
| .400E_14 0.065975 23.61 0.540378 0.011617 0.11232<br>.250E_14 0.065458 23.68 0.538341 0.011708 0.11145<br>.160E_14 0.064979 22.74 0.536450 0.011795 0.11063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .630E-1  | .06648 | 3.5 | 54239   | 0.01152 | 11319  |
| 250E-14 0.065458 23.68 0.5383410.011708 0.11145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-300t   | .06597 | 3.6 | .54037  | 0.01161 | 11232  |
| .160E-14 0.064979 23.74 0.536450 -0.011795 0.11063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .250E-1  | .06545 | 3.6 | .53834  | 0.01170 | .11145 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .160E-1  | .06497 | 7.  | 53645   | 0.01179 | .11063 |

| ABLES          | 0.2800                |
|----------------|-----------------------|
| MONITOR TABLES |                       |
| PATTERN        | A A I DR E            |
|                | F F0                  |
| BASEBAND FYF   | TABLE FOR ATOR EQUALS |

| AIT FRROR | RATIO    | SNR<br>IN DB | RATIO    | DERIV PER | CONSTANT |
|-----------|----------|--------------|----------|-----------|----------|
| 0-100E-02 | 18015    | 14.89        |          | -0-011417 |          |
| .630E-03  | 17143    | 15.12        |          |           |          |
| .400E-03  | 0.163889 | 15.71        |          |           |          |
| .250F-03  | 0.156962 | 16.08        |          |           |          |
| 1.160F-03 | 0.151083 | 16.42        |          |           |          |
| 1.100F-03 | 0.145515 | 16.74        |          | -0.005007 |          |
| .630E-04  | 0.140570 | 17.04        |          |           |          |
| *0-1005-0 | 0.136148 | 17.32        |          |           |          |
| 250F-04   | 0.131968 | 17.59        |          |           |          |
| 1.160F-04 | 0.128322 | 17.83        |          |           |          |
| 1.100F-04 | 0.124780 | 18.08        |          |           |          |
| 1.630F-05 | 0.121561 | 18.30        |          |           |          |
| \$0-300+° | 0.118620 | 18.52        |          |           |          |
| 2505-05   | 0,115785 | 18.73        |          |           |          |
| 0.160F-05 | 0.113268 | 18.92        | 0.727236 | -0.006768 | 0.192817 |
| 0-100F-05 | 0.110783 | 19.11        |          |           |          |
| 0.630E-06 | 0.108488 | 19.29        |          |           |          |
| -400F-06  | 10636    | 19.46        |          |           |          |
| 7.250F-06 | 10428    | 19.64        |          |           |          |
| 1.160F-06 | 0.102422 | 19.79        | 0.684278 |           |          |
| \$100E-06 | 10056    | 19.95        |          |           |          |
| 1.6306-07 | .09882   | 20.10        | 0.670054 |           |          |
| -400F-07  | .09719   | 20.25        | 0.663636 |           |          |
| 1.250F-07 | 0.095597 | 20,39        | 0.657312 |           |          |
| 1.160F-07 | .09414   | 20.52        |          |           |          |
| 0.100E-07 | .09268   | 20.66        |          |           |          |
| 0.630F-08 | 0.091315 | 20.79        |          |           |          |
| 80-100+-0 | 20060    | 20.91        |          |           |          |
| 1.250F-0A | .08874   | 21.04        |          |           |          |
| 0-160F-08 | 0        | 21.15        |          |           |          |
| 100E-08   | .08638   | 21.27        |          |           |          |
| 0-40E90   | .08527   | 21,38        |          |           |          |
| 60-30UT   |          | 21.49        |          | -0.009102 |          |
| 0.250F-09 | .08315   | 21.60        |          |           |          |
| -160F-0   | .08218   | 21.70        |          |           |          |
| 1 1 1 1   |          |              |          |           |          |

| THE DE THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE | AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO.  ** RMS NOISE TO RMS SIGNAL RATIO.  ** CIGNAL POWER TO MOTER BOWER IN DEFINES. | * ADAPTIVE THRESHOLD AMPLITUDE TO DESTITE.  * DERIVATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A / D RATIO.  * DUSTILINFAR TIME CONSTANT OF THE ADAPTIVE THRESHOLD  LOOP FOR SMAIL CHANGES AROUND STEADY STATE VALUES  WHEN BITE RATE .  DIVIDER RATIO INTO DA CONVERTER. |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                        |                                                                                                                                  |                                                                                                                                                                                                                                                                          |
| NOMFNCLATURE:                                          | A 1 S RATTO                                                                                                                      | A / D RATIO<br>DFRIV DER WRT<br>TIME CONSTANT                                                                                                                                                                                                                            |

| TABLES   |
|----------|
| MONITOR  |
| PATTERN  |
| FYE      |
| BASFBAND |

| ALT FAROR | S \ Z    | SNR   | 0 / W    |           | TIME     |
|-----------|----------|-------|----------|-----------|----------|
|           | RATIO    | 1N 08 | RATIO    | WRT A / D | CONSTANT |
| 0.6306-10 | 0,080271 | 21.91 | 0.596805 | -0-009548 | 0.136664 |
|           | 0.079384 | 22.01 | 0.593301 | -0.009655 | 0.135154 |
|           | 0.078495 | 22,10 | 0.589794 | -0.009764 | 0-133642 |
|           | 9.077678 | 22.19 | 0.586569 | -0.009867 | 0.132251 |
|           | 0.076844 | 22.29 | 0.583278 | -0.009974 | 0.130832 |
|           | 0.016050 | 22,38 | 0.580142 | -0.010078 | 0.129480 |
|           | 0.075292 | 22.47 | 0.577151 | -0.010179 | 0-128190 |
|           | 0.074531 | 22.55 | 0.574147 | -0.010283 | 0.126895 |
|           | 0.073829 | 22.64 | 0.571377 | -0.010381 | 0.125700 |
|           | 0.073110 | 22.72 | 0.568541 | -0.010483 | 0.124477 |
|           | 0.072424 | 22.80 | 0.565832 | -0.010582 | 0.123309 |
|           | 0.071767 | 22.88 | 0.563240 | -0.010679 | 0.122191 |
|           | 0.071106 | 22.96 | 0.560630 | -0.010779 | 0.121065 |
|           | 0.070495 | 23.04 | 0.558217 | .0.010872 | 0,120025 |
|           | 0.069867 | 23.11 | 0.555742 | -0.010970 | 0.118957 |
|           | 0.069267 | 23.19 | 0.553370 | -0.011065 | 0.117934 |
|           | 0.068691 | 23.26 | 0.551097 | -0.011158 | 0.116953 |
|           | 0.068109 | 23.34 | 0.548803 | 0.011253  | 0.115964 |
|           | 0.067571 | 23.40 | 0.546677 | -0.011342 | 0.115047 |
|           | 0.067017 | 23.48 | 0.544491 | -0.011436 | 0.114104 |
|           | 0.066485 | 23.55 | 0.542393 | -0.011528 | 0.113199 |
|           | 0.065975 | 23.61 | 0.540378 | -0-011617 | 0.112329 |
|           | 0.065458 | 23.68 | 0.538341 | -0.011708 | 0.111451 |
|           | 0.064979 | 23.74 | 0.536450 | -0.011795 | 0.110635 |
|           | 0.064486 | 23 61 | 634600   | 200110    |          |

NOMENCLATURE:

HALF OF THF NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE THE THRFE LEVEL EVE I.E., DECISION LEVEL.

A AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO.

N S RATIO = AMS SIGNAL RATIO.

S SAR = SIGNAL POMER TO NOISE POWER IN DECIBLES.

A A D RATIO = ADASTIVE THRESHOLD AMPLITUDE TO D RATIO.

DERIV PER WRT = DERIVATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A / D RATIO.

TIME CONSTANT = JUASILINFAR TIME CONSTANT OF THE ADADTIVE THRESHOLD

LOOP FOR SMALL CHANGES AROUND STEAD STATE VALUES

WHEN BITF RATE = 12552600. AND ERROR SIGNAL

OLVIDER RATIO INTO D/A CONVENTER =

|          | 14082 | 21484  | 25332  | 26186   | .25413  | .24254  | 23286   | 21485  | 20707 | 20204 | 19681   | 19190   | 18761   | .18342  | .17959  | 17605   | 17260  | 16951   | .16643  | 14087   | 15822  | 15582   | 15341   | .15114  | .14900  | .14688  | .14495  | 14114   | 13030  | 13764   | 13604   | 13441   | 13287   | 13140    | 0.129934 | 12720  | .12588  | .12463  | .12337  | 13771      | 11988  | .11879  | .11770  | .11669  | .11565   | 11409   | 1137  | 11186  | 11093   | 11005   | 10920   | .10835  | .10756  | .10674  |
|----------|-------|--------|--------|---------|---------|---------|---------|--------|-------|-------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------|--------|---------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------|---------|----------|----------|--------|---------|---------|---------|------------|--------|---------|---------|---------|----------|---------|-------|--------|---------|---------|---------|---------|---------|---------|
| ,,,,,    |       | 110000 | 00000  | 0.00498 | 0.00513 | 0.00538 | 2960000 | 000000 | 00000 | 0044  | 0.00663 | 0.00680 | 0.00695 | 0.00711 | 0.00726 | 0.00741 | 954000 | 0.00769 | 0.00784 | 16.00.0 | 110000 | 0.00837 | 0.00850 | 0.00863 | 0.00875 | 8880000 | 0060000 | 2160000 | 00000  | 0.00948 | 0.00959 | 0.00010 | 0.00982 | 2660000  | 0.010043 | 0.010  | 0.01036 | 0.01047 | 0.01057 |            | 0.010  | 0.01098 | 0.01108 | 0.01118 | 0.01128  | 0.01138 |       | 44110  | 0.01176 | 0.01185 | 0.01194 | 0.01204 | 0.01213 | 0.01222 |
| WAS CALL | 06424 | 03773  | 91286  | .88850  | .86447  | .84339  | 66488   | 70243  | 77044 | 76687 | 75543   | 74446   | .73474  | .72516  | .7.633  | .70816  | 1001   | .69302  | .68586  | 47204   | 46681  | 66124   | .65564  | .65038  | .64542  | 060099  | 63601   | 63147   | 42312  | 61907   | .61535  | .61158  | . 60800 | 60459    | 118      | 59485  | .59180  | .58889  | .58597  | 6 26 3 C 9 | 57789  | .57537  | .57283  | .57048  | .56808   | 11606.  | 66133 | 66100. | 55714   | 55510   | .55314  | .55116  | .54932  | .54743  |
| A        |       |        | 6.3    | 9.9     | 0.      | 6.      |         |        |       |       | 1       | 6.9     | 1.6     | 6.9     | .5      | 6.7     | 8.0    | 0.0     | 7.0     | 900     |        | 1       | 6.0     | 1.0     | 1:      | 1.2     | •       |         |        | 18      | 1.9     | 2.0     | 2.1     | 7.7      | 22.48    | 2.5    | 2.6     | 2.7     | 2.8     | 900        | 3.0    | 3.1     | 3.2     | 3.2     | 3.3      |         |       |        | 3.0     | 3.8     | 3.8     | 3.9     | 0       | 0.      |
| TATED    | 14447 | 15022  | 15246  | 14672   | 14130   | 13649   | 12619   | 12458  | 17114 | 11801 | 11516   | 11241   | 10996   | 10755   | 10532   | 10326   | 10124  | 69660   | 207.00  | 96400   | 00281  | 09140   | 96680   | .08865  | .08739  | .08615  | 10690   | 08387   | 08175  | 08073   | .07979  | .07883  | .07793  | 01706    | 36       | 07460  | .07383  | .07309  | .07235  | 70070      | 07031  | .06967  | .06903  | .06843  | .06783   | *7190   | 00000 | 04540  | 06506   | .06454  | 06405   | .06355  | .06308  | .06260  |
| 13 61    | A 30E | 4006   | 250E-0 | 160E-0  | .100E-0 | 0-30E9  | 3506.0  | 1405   | 1005  | A 30F | 400E-0  | 250E-0  | 160E-0  | .100E-0 | 0-30E9  | 400E-0  | 250E-0 | 160E-0  | 1000-0  | 0-30E-0 | 250E-0 | 150E-0  | 1.00E-0 | 630E-0  | -400E-0 | 250E-0  | 1605-0  | 1005-0  | ADDE-D | 250E-0  | .160E-0 | .100E-0 | .630E-1 | . 400E-1 | 77       | 100E-1 | .630E-1 | .400E-1 | .250E-1 | 1006       | 630E-1 | .400E-1 | .250E-1 | .160E-1 | . 100E-1 | 4006    | 3605  | 1406   | 1005-1  | 630E-1  | .400F-1 | .250E-1 | -160E-1 | 1006-1  |

| TABLES   |  |
|----------|--|
| MON! TOR |  |
| PATTERN  |  |
| EYE      |  |
| ASEBAND  |  |

|           | PSEUDO   | BLE FOR ATO | TABLE FOR AIDR EQUALS 0.3000<br>PSEUDO ERROR RATE EQUALS 1.0 / | 0.3000    |           |
|-----------|----------|-------------|----------------------------------------------------------------|-----------|-----------|
| RIT FRROP | S / Z    | SNR         | 0 / 4                                                          | DERIV PER | TIME      |
| PATE      | RATIO    | 1× 08       | PATIO                                                          | WRT A / D | CONSTAN   |
| 1005-0    | -        | -           | 970                                                            | -0-011664 | 0.111.670 |
| 630F-0    | =        | 5.5         | 956                                                            |           | 0.160834  |
| 0.400E-03 | -        |             | 937                                                            |           | 0.214845  |
| 250F-0    | 15       | 16.34       | 912                                                            | c         | 0.253320  |
| 160F-0    | 7.       | 16.67       | .888                                                           | -0.004983 | 0.261862  |
| .100F-0   | -        | 17.00       | .864                                                           | 0         | 0.254133  |
| 630E-0    | .13      | 17.30       | .843                                                           | ö         | 0.242544  |
| 0-400E-04 | •        | 17.58       | .824                                                           |           | 0.231866  |
| 0.250E-04 | •        | 17.85       | .807                                                           | -0.005866 | 0.222441  |
| 0.160F-04 | •        | 18.09       | 793                                                            |           | 0.214856  |
| 0.100F-04 |          | 18,33       |                                                                | 0         | 0.207975  |
| 0.630E-05 | •        | 18.56       | ۲.                                                             |           | 0.202040  |
| 0.400F-05 | •        | 18.77       | -                                                              | ċ         | 0.196814  |
| 0.250E-05 | •        | 18.98       | ۲.                                                             | ō         | 0.191902  |
| 0.160E-05 | •        | 19.17       | ٠.                                                             |           | 0.187615  |
| 0-100E-05 | •        | 19.37       |                                                                |           | 0.183428  |
| 0.630E-06 | •        | 19.55       | ۲.                                                             |           | 0.179591  |
| 0.400F-06 | •        | 19.72       | ۲.                                                             | ď.        | 0.176052  |
| 0.250F-06 | •        | 19.89       | ۲.                                                             |           | 0.172607  |
| 0.160E-06 |          | 20.05       | ٠.                                                             |           | 0,169516  |
| 0.100F-06 | •        | 20.21       | •                                                              | -0.007840 | 0.166434  |
| 0.630E-07 | •        | 20.36       | ۰.                                                             |           | 0.163560  |
| 0.400F-07 | •        | 20.50       | ٠.                                                             |           | 0.160873  |
| 0.250E-07 | •        | 20.65       | ٠.                                                             |           | 0.158226  |
| 0.160E-07 | •        | 20.78       |                                                                |           | 0.155827  |
| 0.100E-07 | •        | 20.02       | ٠.                                                             |           | 0,153413  |
| 0.630E-08 | •        | 21.05       | •                                                              |           | 0.151144  |
| 0.400F-08 | •        | 21.17       | •                                                              |           | 0.149006  |
| 0.250E-08 |          | 21,29       |                                                                | c         | 0.146886  |
| ٦.        | •        | 21.41       | ٠.                                                             | -0.009002 | 0.144952  |
| .100E-0   | •        | 21.53       | ٠.                                                             |           | 0.142995  |
| .630E-0   | •        | 51.64       | ۰.                                                             |           | 0.141145  |
| -400F-    | •        | 21.75       | •                                                              |           | 0.139393  |
| SOF       | 0,080731 | 21.86       | 0.619070                                                       | 084600-0- | 0.137646  |
| 0.160F-09 | •        | 21.96       | •                                                              | -0.009592 | 0.136046  |
| 1001      | •        | c           | •                                                              |           | 0.134418  |

|               | HALF OF THE NORMAL DISTANCE BE WEEN DATA LEVELS FOR THE | THE THREE LEVEL EYE I.E. DEC. STON LEVEL. | AMPLITUDE OF INTERSYMBOL INTER: FRENCE TO D RATIO. | RMS NOISE TO RMS SIGNAL RATIO. | SIGNAL POWER TO NOISE POWER IN DECIBLES. | ADAPTIVE THRESHOLD AMPLITUDE TO D RATIO. | = DERIVATIVE OF PSEUDO ERROR RATH WITH RESPECT TO A / D PATIO. | DUASILINEAR TIME CONSTANT OF THE ADAPTIVE THRESHOLD | LOOP FOR SMALL CHANGES AROUND STEADY STATE VALUES | WHEN BITE RATE . 12552500. AND ERROR SIGNAL | DIVIDER RATIO INTO DIA CONVERTER . 4. |
|---------------|---------------------------------------------------------|-------------------------------------------|----------------------------------------------------|--------------------------------|------------------------------------------|------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|---------------------------------------------|---------------------------------------|
| MOMENCLATURE: |                                                         |                                           | ATDR =                                             | N / S RATIO .                  | SNR                                      |                                          | DERIV DER WRT =                                                | TIME CONSTANT #                                     |                                                   |                                             |                                       |

## BASFBAND FYF PATTERN MONITOR TABLES

| RIT FRROR | SIZ      | SNR   | 0/4      | DERIV PER | TIME     |
|-----------|----------|-------|----------|-----------|----------|
| RATE      | RATIO    | 1N 08 | RATIO    | WRT A / D | CONSTANI |
| .630E-10  | 0,077931 | 22.17 | 0.608003 | -0.009821 | 0,132873 |
| -400F-10  | 0.077069 | 22.26 | 0.604597 | -0.009930 | 0.131404 |
| .250E-10  | 0.076204 | 22,36 | 0.601187 | .0.010043 | 0.129934 |
| 0-160F-10 | 0,075413 | 22.45 | 0.598052 | -0.010149 | 0,128581 |
| .100E-10  | 0.074604 | 22.54 | 0.594852 | -0.010259 | 0,127201 |
| .630E-11  | 0,073832 | 22.64 | 0.591804 | -0.010366 | 0,125886 |
| .400F-11  | 0.073097 | 22.72 | 0.588896 | -0.010470 | 0,124632 |
| .250E-11  | 0.072358 | 22.81 | 0.585976 | -0.010577 | 0.123372 |
| .160F-11  | 0.071676 | 22.89 | 0.583283 | -0.010678 | 0.122210 |
| .100E-11  | 0.070979 | 22.98 | 0.580526 | -0.010782 | 0.121021 |
| 0.630F-12 | 0,070312 | 23.06 | 0.577891 | -0.010885 | 0.119885 |
| .400E-12  | 0.069675 | 23.14 | 0.575372 | -0.010984 | 0.118798 |
| .250E-12  | 0.069033 | 23.72 | 0.572835 | -0.011086 | 0.117704 |
| .160E-12  | 0.068439 | 23.79 | 0.570489 | -0.011183 | 0,116692 |
| .100E-12  | 0.067830 | 23.37 | 0.568082 | -0.011283 | 0,115653 |
| .630F-13  | 0.067247 | 23.45 | 0.565776 | -0.011381 | 0.114659 |
| .400E-13  | 0.0666BR | 23.52 | 0.563566 | -0.011476 | 0,113705 |
| .250E-13  | 0.066123 | 23.59 | 0.561336 | -0.011574 | 0.112743 |
| 0.160E-13 | 0.065600 | 23.66 | 0.559269 | -0.011666 | 0,111851 |
| .100F-13  | 0.065063 | 23.73 | 0.557144 | -0.011763 | 0.110934 |
| .630E-14  | 0.064547 | 23.80 | 0.555104 | -0.011857 | 0.110055 |
| .400E-14  | 0.064051 | 23.87 | 0.553145 | -0.011949 | 0.109209 |
| 0.250E-14 | 0.063550 | 23.94 | 0.551165 | -0.012043 | 0.108355 |
| 0.160E-14 | 0.063085 | 24.00 | 0.549326 | -0.012132 | 0.107562 |
| 1000      |          |       |          |           |          |

NOMFNCLATURE:

\* MALF OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE THE THRFE LEVEL EYE I.E., DECISION LEVEL.

\* AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO.

\* SIGNAL POWER TO NOISE DOWER IN DECIBLES.

\* ADAPTIVE THRESHOLD AMPLITUNE TO D RATIO.

\* DERIVATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A / D PATIO.

\* DOUSILINEAR THE CONSTANT OF THE ADAPTIVE THRESHOLD LOOP FOR SMALL CHANGES ADOUND STEADY STATE VALUES WHEN BITF RATE \* 12552600. AND ERROR SIGNAL DIVIDER RATIO INTO D/A CONVERTER \* ATDR N / S RATIO S A D RATIO DFRIV PER WRT TIME CONSTANT

1: 97

| 0.170107  | 15.82 | 95736    | 0.00832   | 15683    |
|-----------|-------|----------|-----------|----------|
| 2         | 6.2   | 43687    | 0.00623   | 20935    |
| 192       | 9.9   | .91519   | 0.00928   | .24673   |
| 234       | 9.0   | .89152   | 0.00511   | .25495   |
| 5 9       | 1.5   | 91898    | 2000      | 23598    |
| 22        | 7.8   | .82987   | 0.00578   | .22554   |
| 28        | 8.1   | .81338   | 0.0000    | .21632   |
| 4 6       | 8.3   | . 79925  | 0.00624   | 20891    |
| 47        | 8     | 77347    | 0.00664   | 19640    |
| 5         | 0.6   | .76238   | 0.00692   | .19130   |
| 3         | 8.5   | .75172   | 6690000   | .18650   |
| 99        | 4.0   | 92771    | 0.00715   | .18232   |
| 16        |       | 72441    | 75/00 0   | 17671    |
| 9         | 6.6   | 71648    | 0.00762   | 17106    |
| 20        |       | .70873   | 0.00778   | .16771   |
| 4         | 0.3   | .70177   | 0.00792   | .16470   |
| 69        | 4.0   | .69483   | 1080000   | .16170   |
| 5         | 9.0   | .68835   | 0.00821   | .15890   |
|           | - (   | 68230    | 0.00834   | .15629   |
| VE        |       | 47003    | 9 00000   | 1501.    |
| 9         | •     | 26010    | 3600000   | 14004    |
| 0 00      |       | . A 6038 | 0.00888   | 14683    |
| -         | 7     | 6559A    | 10000     | 14475    |
| 0         | 1.5   | .6507    | 0.00914   | .14269   |
| 40        | 9.    | .64641   | 0.00926   | 14081    |
| 0         |       | 002490   | 6660000   | 13891    |
| <b>TC</b> |       | 69764    | 1660000   | 13561    |
| : 0       | 2.1   | 62995    | 0.00975   | 13371    |
| 9         | 2.2   | .62634   | 18600.0   | 13216    |
| 0         | 2.3   | . 62268  | 66600 0   | .13058   |
| 20        | 3.0   | .61920   | 0.01010   | 12907    |
| 0.5       |       | 41289    | 22010-0   | 126727   |
| . 2       | 2.7   | 60003    | 0.01044   | 12490    |
| 36        | 2.8   | 60642    | 0.01056   | 12356    |
| 19        | 5.9   | • 60346  | 0.01067   | .12229   |
| 8:        | 6.0   | . 50064  | 0.01077   | 12107    |
| 200       | -     | . KOK18  | 000000    | 11871    |
| 4         | 3.2   | 59251    | 0.01110   | 11756    |
| 20        | 3.3   | .58995   | 0.01129   | .11646   |
| 80        | 3.4   | .58750   | 0.01130   | .11540   |
| 5         | 3.4   | .58504   | 0.01141   | 11434    |
| 00 6      |       | .58276   | 0.01151   | .11335   |
| 20        | 300   | 47818    | 191100    | 11139    |
| . 00      | 3.7   | 57603    | 0.01181   | 11045    |
| 13        | 3.8   | .57386   | 0.01191   | 10952    |
| 63        | 3.9   | .57186   | 0.01201   | .10865   |
| 10        | 4.0   | .56979   | 0.01210   | .10776   |
| 09        | 0.4   | .56781   | 0.01220   | 16901.   |
| 12        | 4.1   | 0.565913 | -0.012300 | 0.106089 |
|           |       | 01000    | 6671000   |          |
| Z         | 4.2   | 56220    | 0.01248   | 10448    |

|                   | TABL     | TABLE FOR AIDR EQUALS<br>PSEUDD ERROR RATE EQUALS | S 1.0          | 0036      |          |
|-------------------|----------|---------------------------------------------------|----------------|-----------|----------|
|                   | בשבחתה ב |                                                   |                | •0007     |          |
| AIT FAROR<br>RATE | RATTO    | SAR<br>1N DB                                      | A / D<br>RATIO | DERIV PER | TIME     |
| ~                 | 0.170107 | 5.3                                               | 97084          | 6110      | 10922    |
| 30F-03            | 0.161733 |                                                   | 0.957368       | -0-008320 | 0.156836 |
| 0-400F-03         | 0.154517 | 6.9                                               | 93887          | 0062      | 0.209357 |
| 3                 | 0.147923 |                                                   | 91519          | -0.005289 | 0.246735 |
|                   | 0.142346 | ·c                                                | 89152          | -0.00511R | 0.254954 |
| 3                 | 0.137074 | 17.26                                             | 86818          | -0.005276 | 0.247336 |
| ,                 | 0.132400 | 17.56                                             | 84772          | -0.005530 | 0.235985 |
| ***********       | 0,128225 | 17.84                                             | .82987         | -0.005786 | 0.225541 |
| 4                 | 0.124282 | 18.11                                             | 81338          | -0.006032 | 0.216327 |
| 4                 | 0,120845 | 18,36                                             | 79925          | -0.006246 | 0.208915 |
| 4                 | 0.117507 | 18.60                                             | 78569          | -0.006454 | 0.202194 |
| 0.630E-05         | 0.114474 | 18.83                                             | 77347          | -0.006644 | 0.196400 |
| 8                 | 0.111704 | 19.04                                             | .76238         | -0.006821 | 0.191300 |
|                   | 0,109033 | 19.25                                             | .75172         | 966900-0- | 0.186509 |
| .160F-05          | 0,106663 | 19.66                                             | .74229         | -0.007157 | 0,182329 |
|                   | 0.104322 | 19.63                                             | .73299         | -0.007321 | 0.178249 |
| 0-40E90           | 0,102161 | 19.81                                             | .72441         | -0.007478 | 0.174511 |
| •                 | 0,100160 | 19.99                                             | .71648         | 0016      | 0.171065 |
| 0.250E-06         | 0.098205 | 20.16                                             | 0.708736       | -0.007781 | 0.167710 |
| •                 | 0,096440 | 16.02                                             | .70177         | 001       | 0.164703 |
| •                 | 0.094695 | 20.47                                             | ۹.             | 0000      | 0.161703 |
| -                 | 0.093059 | 20.62                                             | .68835         | ,0082     | 0.158908 |
| 1-400F-07         | 0.091530 | 20.77                                             | ٠.             | -0.008349 | 0.156294 |
| 1                 | 0.090022 | 20.91                                             | ۰              | 0084      | 0.153719 |
| 160F-07           | 0.088656 | 21.05                                             | ٠.             | 0086      | 0.151387 |
| .100E-07          | 0.087281 | 21.18                                             | •              | .0087     | 0.149040 |
| æ                 | 0.085989 | 21.31                                             | ٠.             | 0.0088    | 0.146834 |
| 400F-08           | 0.084777 | 21.43                                             | ٠.             | 0600      | 0.144756 |
| •                 | 0.083565 | 21.56                                             | ٠.             | 000       | 0.142695 |
| .160F-08          | C.082464 | 21.67                                             | •              | 0092      | 0.140816 |
|                   | 0.081350 | 21.79                                             | •              | 0.0093    | 0.138914 |
| 30E-09            | ٠.       | 21.91                                             | ٠.             | 0.0095    | 0.137116 |
| 60-               |          | 22.01                                             | •              | 0.0096    | 0.135413 |
| 60-               | 0        | 22,12                                             |                | 0.0097    | 0.133716 |
| 60F-09            | .077     | 22.73                                             | •              | 0.0098    | 0.132161 |
| 60-               | 07646    | 22 23                                             | •              | 0000      | 00000    |

|                    | THE |     |      | # RMS NOISE TO RMS SIGNAL RATIO. |     |             | D RATIO.      |               |          |     |                                    |  |
|--------------------|-----|-----|------|----------------------------------|-----|-------------|---------------|---------------|----------|-----|------------------------------------|--|
|                    | 8   |     |      |                                  |     |             | -             | 0             |          |     |                                    |  |
|                    |     |     | 0    |                                  |     |             | 4             | Ę             | ES       | ¥   | ;                                  |  |
|                    | ELS |     | ATI  |                                  |     |             | -             | RES           | AL       | 5   |                                    |  |
|                    | 5   |     | 8    |                                  |     |             | ECT           | F             | <b>V</b> | æ   |                                    |  |
|                    | 1   | VEL | 2    |                                  | s.  |             | ESP           | IVE           | TAT      | RRO |                                    |  |
|                    | ð   | 7   | U    |                                  | BLE | ATI         | ı             | APT           | > ×      | 9   |                                    |  |
|                    | EEN | 10  | REN  |                                  | ECI | 2           | 7             | 9             | FAD      | ~   |                                    |  |
|                    | ET  | 5   | RFE  |                                  | Z   | 2           | 1             | H             | S        |     | TER                                |  |
|                    |     | ă   | N    | 110                              | ~   | 30          | RA            | 40            | S        | 260 | VER                                |  |
|                    | AN  | E.  | 7    | å                                | OWE | 1           | ROA           | N             | ARC      | 255 | DIVIDER RATIO INTO DIA CONVERTER . |  |
|                    | 151 | -   | MBC  | NAL                              | 4   | AP.         | 2             | STA           | ES       | -   | *                                  |  |
|                    | ٦   | EYE | RSY  | 516                              | 015 | 0           | oon.          | 0             | ANG      |     | 0                                  |  |
|                    | RME | 13/ | N    | MS                               | 0   | P P         | PSF           | ¥             | ð        | •   | ž                                  |  |
|                    | ž   | 5   | 7    | 0                                | ~   | ARF         | 40            | =             | . Y      | 1   | 10                                 |  |
|                    | Ī   | EE  | 7    | 1                                | MC  | =           | 7             | FAF           | \$       |     | A                                  |  |
|                    | 9   | Ī   | 1    | 10                               | 7   | I VE        | AT            | 1             | 0        | -   | ER                                 |  |
|                    | 11  | ¥   | 5    | 15                               | ž   | AP          | 2             | JAS           | 00       | FN  | 5                                  |  |
|                    | Ì   |     | ٧.   | à.                               | 5   | A           | 6             | 6             | 2        | *   | ٥                                  |  |
|                    | -   |     | -    | -                                | _   | Ī           |               |               |          |     |                                    |  |
| 1                  |     |     |      | 0                                |     | 0           | 3             | TAN           |          |     |                                    |  |
| -                  |     |     |      | RAT                              |     | RAT         | DER           | SNO           |          |     |                                    |  |
| 1                  |     |     | ~    | S                                |     | ٥           | 2             | U             |          |     |                                    |  |
| יווייביירים וחיביי | 0   |     | ATDR | N / S RATIO                      | SNR | A / D RATIO | DFRIV PER WRT | TIME CONSTANT |          |     |                                    |  |
|                    |     |     |      |                                  |     |             |               |               |          |     |                                    |  |

| TABLES  |
|---------|
| MONITOR |
| PATTERN |
| FVF     |
| ASEBAND |

| 0           | 2800.       |
|-------------|-------------|
| 0.3200      | 1.001       |
| R EDUALS    | RATE EQUALS |
| FOR AID     | SR RATE     |
| TABLE FOR ! | SEUDO ERRO  |

| TIME         | 0.129078  | 0.127651  | 0.126222  | 0.124909  | 0.123568  | 0.122290  | 0.121072  | 0.119848  | 0.118719  | 0.117564  | 0.116460  | 0.115404  | 0,114341  | 0,113358  | 0,112349  | 0,111383  | 0.110456  | 0.109522  | 0.108656  | 0.107765  | 0,106910  | 0.106089  | 0,105259  | 0,104489  | 0.103695  |
|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| DERIV PER    | •0.010109 | -0.010222 | -0.010338 | -0.010447 | -0.010560 | -0.010671 | -0.010778 | -0.010888 | -0.010992 | -0.011100 | -0.011205 | -0.011307 | -0.011412 | -0.011511 | -0.011615 | -0.011716 | -0.011814 | -0.011915 | -0.012010 | -0.012109 | -0.012206 | -0.012300 | -0.012397 | -0.012489 | -0.012584 |
| RATTO        | 0.619202  | 0.615894  | 0,612581  | 0.609536  | 0.606428  | 0.603467  | 0.600642  | 0.597805  | 0.595189  | 0.592511  | 0.589952  | 0.587504  | 0.585040  | 0.582761  | 0.580422  | 0.578183  | 0.576036  | 0.573869  | 0.571861  | 0.569797  | 0.567816  | 0.565913  | 0.563989  | 0.562202  | 0.560362  |
| SAR<br>14 08 | 22.43     | 22.53     | 22.43     | 27.72     | 22.81     | 22.90     | 22.99     | 23.08     | 23.16     | 23.24     | 23.32     | 23.40     | 23.48     | 23.56     | 23.64     | 23.71     | 23.78     | 23.86     | 23.93     | 24.00     | 24.07     | 24.13     | 24.20     | 24.27     | 24,33     |
| RATIO        | 0.075590  | 0.074754  | 0.073917  | 0.073148  | 0,072363  | 0.071614  | 0.070901  | 0.070184  | 0.069523  | 0.068847  | 0.068200  | 0.067582  | 0.066959  | 0.066383  | 0.065793  | 0.065227  | 0.064684  | 0.064137  | 0.063630  | 0.063108  | 0.062608  | 0.062127  | 0.061641  | 0.061189  | 0.060725  |
| PIT FROR     | 0.630F-10 | 0.400F-10 | 0.250E-10 | 0.160F-10 | 0.100F-10 | 7.630E-11 | 0.400F-11 | 7.250E-11 | 0.160F-11 | 0.100E-11 | 0.630E-12 | 0.400E-12 | 0.250F-12 | 0.160F-12 | 0.100E-12 | 0.630E-13 | 0.400F-13 | 0.250E-13 | 0.160F-13 | 0.100F-13 | 0.630F-14 | 0.400E-14 | 0.250F-14 | 0.160F-14 | 0.100E-14 |

NOWFOCLATURE:

HALF OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE THE THREE LEVEL EVE I.E., DECISION LEVEL.

A 10 = AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO.

Y 5 RATIO = AMS NOTS F TO RESSIGNAL RATIO.

S SIGNAL POWER TO NOISE POWER IN DECIBLES.

A 7 D RATIO = ADAPTIVE THRESHOLD AMPLITUDE TO D RATIO.

DERIV PER WRT = DERIVATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A 7 D RATIO.

LOOP FOR SAMIL CHANGES AROUND STEADY STATE VALUES.

WHEN BITE RATE = 12552600. AND ERROR SIGNAL DIVIDER RATE INTO D/A CONVERTER =

| 69639    | 20361  | 23080 | 2070   | 24033 | 22925   | .21907  | .21009  | .20287  | 19632  | 19068  | 10101 | 17700   | 17303   | .16939  | 16270   | 15987   | .15695  | 15454   | 14920   | .14693  | .14466  | .14251  | 14850   | 13667   | .13482  | 19308   | 12978  | 12827   | .12674  | 12389   | 12251   | 1212     | 11869   | .11751  | 11632   | 11410   | .11303  | 11201    | 11002   | 10904   | .10810  | .10720  | 10630   | 10459   | .10376  | .10296  | .10216  |
|----------|--------|-------|--------|-------|---------|---------|---------|---------|--------|--------|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------|---------|----------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 00       | 668999 | 04900 | ****** | 00000 | 0.00569 | 0.00595 | 0.00621 | 0.00643 | 999000 | 900000 | 00100 | 0.00737 | 0.00754 | 0.00170 | 0.00785 | 0.00816 | 0.00831 | 9980000 | 0.00860 | 0.00888 | 0.00902 | 0.00915 | 0.00928 | 0.00954 | 0.00967 | 0960000 | 26600  | 0.01017 | 0.01029 | 0.01053 | 0.01065 | 01076    | 0.01099 | 0.01110 | 0.01121 | 0.01143 | 0.01154 | 0.01165  | 0.01184 | 0.01196 | 0.01207 | 0.01217 | 72210-0 | 0.01247 | 0.01257 | 0.01267 | 0.01277 |
| 0.971605 | 70004  | 94036 | 86116  | 1107  | 85213   | . 83481 | .81882  | . 80511 | 79196  | 78011  | 75003 | 76985   | 74083   | .73251  | 72481   | 71054   | .70380  | .69752  | 68584   | 68060   | .67531  | 67035   | 40104   | 65681   | .65253  | .64848  | 66083  | 63733   | .63378  | 62719   | .62397  | 102      | 61512   | .61238  | .60963  | 60440   | .60201  | .59963   | 50503   | 59276   | .59058  | .58850  | 09996   | 58245   | 58055   | .57868  | .57681  |
| 15.65    |        |       |        |       | 8       | 1.0     | 8.3     | 9.6     | 8.8    |        |       |         | 6       | 0.0     | ~ •     |         | 7.0     | 6.0     |         | 1.3     |         | 5.      |         | -       | 2.0     | 2.0     | 7.7    | 2.3     | 2.6     | 2.8     | 2.9     | 2.0      | 3.1     | 3.2     | 6.6     | 3.5     | 3.6     | 3.6      |         | 3.9     | 3.0     | 0.      | - (     | 2.7     | .3      | 4.4     | 4.      |
| 0.164961 | 14077  | 16336 | 13706  | 13283 | 12830   | .12425  | .12043  | 11710   | 11386  | 26011  | 10565 | 10336   | 10109   | 66860.  | 09516   | 09346   | .09176  | 1000    | 08723   | .08591  | .08457  | .08332  | 08087   | 16610   | .07883  | 19470   | 07588  | .07499  | 07410   | 07243   | .07162  | 07088    | 06939   | .06870  | .06801  | 06671   | .06603  | .06548   | 06432   | .06375  | .06320  | .06268  | 01290   | 06115   | .06066  | .06020  | .05973  |
| 100E-02  | 000    |       | 2      | O. P. | SOE     | 300     | SOE     | SOE     | 1000   | 1000   | 2505  | 160E-0  | 100E-0  | 0-30E9  | 250F-0  | 50E-0   | 0-30C   | 090E90  | 506-0   | .160E-0 | .100E-0 | 0-30E-0 | 250F-0  | 160E-0  | .100E-0 | 630E-0  | 2506-0 | .160E-0 | 100E-0  | 400E-1  | .250E-1 | .160E-10 | 630E-1  | .400E-1 | -250E-1 | 100E-1  | .630E-1 | . 400E-1 | I POE   | 1-30C   | 30E-1   | 00E-1   | 1-2067  | 1006-1  | .630E-1 | -400E-1 | .250E-1 |

| TABLES  |
|---------|
| MONITOR |
| PATTERN |
| FYF     |
| ASFBAND |

| ### FRRDR   N / S   SNR   A / D   DERIV PER   TIME   RATE   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | TAB<br>PSEUDO FI | TABLE FOR AIDR EQUALS PSEUDN FRROR RATE EQUALS | -              | 0.3400  |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|------------------------------------------------|----------------|---------|----------|
| 0.164961 15.65 0.971605 -0.012265 0.164961 15.65 0.164961 15.65 0.971605 -0.015265 0.164772 16.49 0.9495823 -0.006540 0.137951 16.87 0.917585 -0.005460 0.137951 17.21 0.917585 -0.005460 0.137951 17.21 0.874619 -0.005460 0.137951 17.21 0.874619 -0.0054610 0.128834 17.21 0.874619 -0.005461 0.128834 17.21 0.874619 -0.005461 0.128834 17.21 18.11 0.874619 -0.005461 0.128834 17.21 18.11 0.874619 -0.005461 0.13869 19.10 0.78916 -0.005421 0.13869 19.10 0.78916 -0.005421 0.105657 19.21 0.76948 -0.005421 0.105657 19.21 0.76948 -0.007703 0.105657 19.21 0.76948 -0.007703 0.105657 19.21 0.76948 -0.007703 0.105657 19.21 0.76948 -0.007703 0.105657 19.21 0.76948 -0.007703 0.006643 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.007703 0.00 | ALT FROB  | RATIO            | SNR<br>TN DB                                   | A / D<br>RATTO | PE -    | TIME     |
| 0.156795 16.09 0.95823 -0.008580 0.149372 16.09 0.95823 -0.008540 0.149372 16.09 0.95823 -0.008540 0.149385 17.21 17.21 0.871979 -0.008540 0.128304 17.21 0.871979 -0.008540 0.128304 17.21 0.871979 -0.008540 0.120435 17.21 0.871979 -0.008541 0.008541 0.120435 17.21 0.871979 -0.008541 0.008541 0.120435 18.38 0.838114 -0.008541 0.008541 0.112842 18.38 0.838114 -0.008541 0.008541 0.112842 18.38 0.008541 0.008541 0.112842 18.38 0.008541 0.008541 0.108557 19.31 0.789113 -0.008541 0.008541 0.108557 19.31 0.789113 -0.008541 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.0097124 0.00 |           | 16496            | 4                                              | 97140          | 01226   | 10439    |
| 0.149772 16.49 0.940949 0.0006409 0.132836 16.87 0.852133 0.005540 0.132836 17.53 0.871979 0.005540 0.128364 17.53 0.871979 0.005540 0.128364 17.53 0.871979 0.005540 0.128364 17.53 0.871979 0.005592 0.128364 18.83 0.87116 0.005957 0.108245 18.83 0.87116 0.005957 0.108245 19.31 0.780113 0.005647 0.108245 19.31 0.780113 0.005647 0.108245 19.31 0.780113 0.005647 0.108557 19.31 0.740939 0.007772 0.108462 20.43 0.740939 0.007772 0.0097163 20.75 0.740939 0.007772 0.0097163 20.75 0.740939 0.007772 0.0097163 20.75 0.009721 0.006602 0.009897 20.43 0.717998 0.007772 0.0097163 20.75 0.659640 0.006811 0.097163 21.00 0.655849 0.009789 0.0086578 21.00 0.655818 0.009728 0.0086578 21.00 0.655818 0.009728 0.0078831 22.75 0.65686 0.009928 0.076844 22.29 0.644656 0.009928 0.076841 22.29 0.644656 0.009928 0.076811 22.40 0.65938 0.001773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | 15679            | 0.9                                            | 95852          | 00855   | 0-152620 |
| 0.153365 16.87 0.917585 -0.005440 0.137951 17.21 0.894419 -0.005546 0.137951 17.21 0.894419 -0.005546 0.128344 17.21 0.871979 -0.005546 0.128344 17.21 0.871979 -0.005546 0.128344 17.21 0.871979 -0.005642 0.12842 18.11 0.87184 -0.005642 0.12842 18.11 0.87184 -0.005642 0.113869 18.87 0.895116 -0.006642 0.113869 18.87 0.895146 -0.006642 0.113869 18.87 0.895146 -0.006642 0.113869 18.87 0.895146 -0.006642 0.113869 18.87 0.895146 -0.006642 0.105657 19.87 0.895113 -0.006642 0.006642 0.105657 19.97 0.876912 -0.007772 0.105657 19.97 0.876912 -0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.007772 0.0 | 0.400E-03 | .14977           | 4.9                                            | .94056         | .00640  | 0.203616 |
| 0.137951 17.21 0.894619 -0.005266 0.132836 17.53 0.871979 -0.0055430 0.124257 18.11 0.894619 -0.0055430 0.124257 18.11 0.894619 -0.0056430 0.124257 18.11 0.894619 -0.0056431 0.124257 18.11 0.894619 -0.0056431 0.124257 18.11 0.894619 -0.0056431 0.10929 19.10 0.791064 -0.006432 0.110929 19.10 0.791064 -0.006432 0.110929 19.10 0.791064 -0.006432 0.110929 19.10 0.791064 -0.006432 0.1093657 19.75 0.759013 -0.006432 0.1093657 19.75 0.759013 -0.007028 0.0093657 0.0077377 0.003462 0.0077377 0.003462 0.0077377 0.003462 0.0077377 0.003462 0.0077377 0.003462 0.0077377 0.003462 0.0077377 0.003462 0.0077377 0.003462 0.0077377 0.003462 0.0077377 0.003462 0.0077377 0.003462 0.0077377 0.003462 0.0077377 0.003462 0.0077377 0.003462 0.0077377 0.003462 0.0077377 0.003462 0.0077377 0.003462 0.0077377 0.003462 0.0077377 0.003462 0.0077377 0.003462 0.0077377 0.003462 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.0077377 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.007777 0.0 | 0.250E-03 | .14336           | 8.9                                            | .91758         | .00544  | 0.239882 |
| 0.132836 17.53 0.871979 0.0056430 0.128304 17.53 0.871979 0.0056430 0.126435 18.84 0.852419 0.0056422 0.120435 18.84 0.8356119 0.0056427 0.120435 18.84 0.8356119 0.0056427 0.112862 19.10 0.815816 0.0066427 0.112862 19.10 0.780113 0.0066427 0.105829 19.10 0.780113 0.0066427 0.105829 19.10 0.780113 0.0066427 0.105829 19.10 0.780113 0.0066427 0.105657 19.45 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 0.0078219 | 0.160F-03 | 7                | 17.21                                          | .89461         | .00526  | 0.247800 |
| 0.128304 17.84 0.852133 0.005692 0.128324 18.11 0.834819 0.0058937 0.128255 18.11 0.814824 0.0056937 0.128255 18.11 0.814824 0.0066431 0.117103 18.43 0.805918 0.006647 0.110929 18.87 0.805918 0.006647 0.110929 18.87 0.805918 0.006647 0.110929 18.87 0.805918 0.007822 0.105657 19.87 0.85918 0.007822 0.007822 0.009782 0.007822 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009782 0.009781 0.009782 0.009741 0.009782 0.009741 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0.009781 0 | 0.100F-03 | 7                | 17.53                                          | .87197         | .00543  | 0.240332 |
| 0.124257 18.11 0.834619 0.0004511 0.120435 18.38 0.83516 0.0004211 0.113869 18.37 0.791964 0.000643 0.110929 19.10 0.791964 0.006447 0.110929 19.10 0.791964 0.0007372 0.105657 19.31 0.759318 0.0077207 0.105657 19.31 0.759318 0.0077207 0.105657 19.31 0.759318 0.0077207 0.003462 20.43 0.710746 0.007741 0.09360 10.91 10.91 0.740859 0.007772 0.001763 20.43 0.710746 0.007741 0.09365 20.43 0.710746 0.007741 0.09365 20.43 0.710746 0.008811 0.08578 20.43 0.710746 0.008881 0.08378 21.32 0.660600 0.0009288 0.08332 21.32 0.660600 0.0009288 0.075831 22.71 0.665679 0.009928 0.075844 22.29 0.64656 0.009928 0.075881 22.40 0.64656 0.009928 0.075881 22.40 0.64656 0.009928 0.075881 22.40 0.64656 0.009928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.630F-04 | ٦.               | 17.84                                          | .05213         | .00569  | 0.229254 |
| 0.120435 18.38 0.818824 0.006431<br>0.117103 18.43 0.818824 0.006432<br>0.110929 19.10 0.791964 0.006843<br>0.106845 19.31 0.769348 0.007207<br>0.106857 19.31 0.76939 0.007207<br>0.101091 19.91 0.76989 0.007207<br>0.098997 20.09 0.76989 0.007207<br>0.097164 20.43 0.77684 0.007341<br>0.097165 20.43 0.77648 0.007341<br>0.097165 20.43 0.77648 0.007341<br>0.097165 20.43 0.710546 0.007341<br>0.097167 20.40 0.726415 0.007341<br>0.097167 20.40 0.697841 0.007341<br>0.09895 21.04 0.697841 0.007841<br>0.08657 21.04 0.697841 0.007841<br>0.08657 21.04 0.697841 0.007841<br>0.08657 21.07 0.697841 0.007841<br>0.08657 21.07 0.697841 0.007841<br>0.08657 21.07 0.697841 0.007841<br>0.08657 21.07 0.697841 0.007841<br>0.087910 21.32 0.697834 0.007928<br>0.078831 22.07 0.657834 0.007928<br>0.07884 22.29 0.644656 0.007928<br>0.07684 22.29 0.644656 0.007928<br>0.07684 22.29 0.644656 0.007929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0-400E-04 | 0.124257         | 18.11                                          | .83481         | .00595  | 0.219071 |
| 0.117103 18.63 0.805116 0.006647 0.117103 18.63 0.805116 0.006647 0.1108245 19.11 0.780113 0.006647 0.1108245 19.11 0.780113 0.006647 0.1108245 19.11 0.780113 0.006647 0.106647 0.106645 19.11 0.780113 0.007024 0.007024 0.106657 19.11 0.780113 0.780112 0.007024 0.007024 0.007024 0.107034 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.007024 0.0 | 0.250F-04 | 0,120435         | 18.38                                          | .81882         | .00621  | 0.210093 |
| 0.113869 18.87 0.791964 .0.006647 0.110929 19.10 0.769348 .0.006643 0.105657 19.81 0.769348 .0.006643 0.105657 19.81 0.769348 .0.007207 0.105657 19.81 0.769348 .0.007372 0.105657 19.91 0.769348 .0.007372 0.1059360 19.91 0.769358 .0.007372 0.1059362 20.009362 0.769358 .0.007374 0.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 20.009362 | 0.160F-04 | 0,117103         | 18.63                                          | 11508.         | .00643  | 0.202873 |
| 0.110929 19.10 0.780113 0.008843 0.0008843 0.10826 0.10825 19.31 0.750912 0.0007022 0.10835 19.31 0.750912 0.0007022 0.10835 19.31 0.750912 0.0007022 0.0008943 0.0007877 19.32 10.32 19.32 19.32 10.007703 0.0098947 20.009 10.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 19.32 1 | 0.100F-04 | 0,113869         | 18.87                                          | .79196         | *9900   | 0.196328 |
| 0.108245 19.31 0.769348 0.0007207 0.105657 19.32 0.769348 0.0007207 0.105657 19.31 0.769348 0.0007207 0.105657 19.32 0.769348 0.0007207 0.105657 19.32 0.769395 0.0007207 0.0098997 20.25 0.000733 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.009703 0.007703 0.009703 0.009703 0.007703 0.009703 0.009703 0.009703 0.007703 0.009703 0.009703 0.007703 0.009703 0.007703 0.009703 0.009703 0.007703 0.009703 0.009703 0.007703 0.009703 0.009703 0.007710 0.009703 0.007710 0.009703 0.007710 0.009703 0.007710 0.009703 0.007710 0.009703 0.007710 0.009703 0.007710 0.009703 0.007710 0.009703 0.007710 0.009703 0.007710 0.009703 0.009703 0.009703 0.007710 0.009703 0.007710 0.009703 0.007710 0.009703 0.007710 0.009703 0.009703 0.009703 0.009701 0.009703 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.009701 0.0097 | 0.630E-05 | 0,110929         | 19.10                                          | .78011         | .00684  | 0.190688 |
| 0.105657 19.52 0.750117 0.007207 0.103360 19.71 0.740835 0.0007207 0.0103360 19.71 0.740835 0.0007372 0.009897 20.09 0.740835 0.0007703 0.098997 20.09 0.742815 0.0007703 0.097703 0.097703 0.097703 0.097703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.000770703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007703 0.0007707070707070707070707070707070707                                                                                                                                                                                                                                                                                                  | 0-400F-05 | 0,108245         | 19.31                                          | .76934         | .00702  | 0.185725 |
| 0.103360 19.71 0.749859 0.0.0073772 0.0.01091 19.91 0.746859 0.0.007341 0.0.097841 0.0.097088 0.0.007641 0.097088 0.0.097088 0.0.097088 0.0.097088 0.0.097088 0.0.09708 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.097108 0.0.0971108 0.0.0971108 0.0.0971108 0.0.0971108 0.0.0971108 0.0.0971108 0.0.0971108 0.0.0971108 0.0.0971108 0.0.0971108 0.0.0971108 0.0.0971108 0.0.0971108 0.0.0971108 0.0.0971108 0.0.0971108 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 0.0.0971109 | 0.250F.05 | 10565            | 19.52                                          | .75901         | .00720  | 0.181065 |
| 0.101091 19.91 0.7408350.007541 0.0098997 20.09 0.7248150.007703 0.098997 20.29 0.7248150.007703 0.098997 20.29 0.7248150.007703 0.095154 20.24 0.77248150.008016 0.093462 20.75 0.7724980.008142 0.09177 20.29 0.775460.008142 0.09177 20.29 0.6975210.008414 0.087734 21.39 0.6975210.008446 0.087734 21.39 0.6975490.008746 0.088746 0.088746 0.088746 0.088746 0.088746 0.088746 0.088746 0.088746 0.088747 21.37 0.656000.0095156 0.088374 21.45 0.6560190.0095156 0.0887318 21.45 0.6560190.0095156 0.088741 21.45 0.6560190.009547 0.088741 21.45 0.6560190.009547 0.088741 21.45 0.6560190.009547 0.088741 21.45 0.6560190.009547 0.087811 22.79 0.6560180.009547 0.087811 22.79 0.6560180.009547 0.077811 22.79 0.6560180.009547 0.077811 22.79 0.6560180.009547 0.077811 22.79 0.6560180.009547 0.077811 22.79 0.6560180.009547 0.077811 22.79 0.6560180.009547 0.0774101 22.70 0.65037800.010296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0-160F-05 | 0,103360         | 19.71                                          | .74985         | 12100   | 0.177000 |
| 0.098997 20.09 0.732516007703<br>0.097058 20.25 0.7179980.007858<br>0.093462 20.45 0.7179980.00816.<br>0.093462 20.45 0.71799800816.<br>0.091763 20.75 0.71799800816.<br>0.088695 21.00 0.697821006802<br>0.086578 21.32 0.697821008846<br>0.086578 21.32 0.697840098281<br>0.088578 21.32 0.668680094288<br>0.088578 21.45 0.658790094288<br>0.088578 21.45 0.65879009428<br>0.088578 21.45 0.65879009428<br>0.079310 22.47 0.658812009428<br>0.078831 22.77 0.658812009428<br>0.076844 22.29 0.644656009428<br>0.076844 22.29 0.644656009928<br>0.074910 22.40 0.646656009928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-100F-05 | 0,101091         | 19.91                                          | .74083         | 00754   | 0.173033 |
| 0.097058 20,26 0,724815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.630F-06 | 0.098997         | 50.09                                          | .73251         | 00110   | 0,169399 |
| 0.095154 20.43 0.7172980.008016<br>0.093462 20.459 0.7105980.008162<br>0.090177 20.40 0.6975210.008460<br>0.08695 21.04 0.6975210.008462<br>0.086973 21.04 0.6916420.008462<br>0.086973 21.45 0.6906000.008846<br>0.086578 21.45 0.6973180.009621<br>0.083326 21.45 0.6973180.009621<br>0.080977 21.43 0.6656790.009622<br>0.078810 22.18 0.6668660.009678<br>0.078841 22.18 0.6668660.009678<br>0.078841 22.29 0.6668660.009678<br>0.078881 22.29 0.6668660.009678<br>0.076842 22.29 0.6668660.009678<br>0.076842 22.29 0.6668660.009678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-400F-0  | 0.097058         | 20.76                                          | .72481         | .00785  | 0,166051 |
| 0.093462 20.59 0.710546 0.008862<br>0.091763 20.75 0.703807 0.008314<br>0.086695 21.04 0.691642 0.008602<br>0.086578 21.32 0.691642 0.008846<br>0.086578 21.32 0.691642 0.008846<br>0.086578 21.45 0.69168 0.009021<br>0.083326 21.45 0.65680 0.009021<br>0.082147 21.45 0.656818 0.009021<br>0.082147 21.45 0.656812 0.009021<br>0.082147 21.45 0.656812 0.009021<br>0.078831 22.79 0.65686 0.009678<br>0.076844 22.29 0.656466 0.009678<br>0.076840 22.29 0.654666 0.009678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.250F-06 |                  | 20.43                                          | .71729         | 00801   | 0.162792 |
| 0.091763 20.75 0.70807 0.008314<br>0.090177 20.90 0.69751 0.008660<br>0.086590 22.09 0.6975642 0.008660<br>0.085916 21.32 0.686600 0.0008811<br>0.083326 21.85 0.675318 0.009281<br>0.083326 21.85 0.675318 0.009281<br>0.083327 21.83 0.65679 0.009281<br>0.075831 22.07 0.656812 0.009547<br>0.075881 22.29 0.65688 0.009547<br>0.075881 22.29 0.64686 0.009928<br>0.075881 22.29 0.64686 0.009928<br>0.075881 22.29 0.64686 0.009928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0-160F-06 |                  | 50.59                                          | .710           | .00816  | 0.159870 |
| 0.090177 20.90 0.697521 -0.008640<br>0.088695 21.014 0.6916649 -0.008602<br>0.088578 21.32 0.688649 -0.008681<br>0.086578 21.45 0.6675318 -0.009021<br>0.083326 21.45 0.6575318 -0.009021<br>0.083327 21.45 0.657579 -0.009156<br>0.080977 21.43 0.655879 -0.009422<br>0.078810 22.45 0.656864 -0.009805<br>0.077810 22.18 0.656864 -0.009805<br>0.077811 22.29 0.656866 -0.009805<br>0.077811 22.20 0.656866 -0.009805<br>0.077811 22.20 0.656866 -0.009805<br>0.077811 22.20 0.656866 -0.009805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0-100E-06 |                  | 20.75                                          | . 703          | .00831  | 0.156957 |
| 0.088695 21.004 0.6916420.006602<br>0.084734 21.39 0.6856000.008746<br>0.086578 21.45 0.6853180.009021<br>0.083325 21.45 0.6753180.009156<br>0.083327 21.45 0.6563180.009156<br>0.080377 21.43 0.665040.009422<br>0.078831 22.79 0.6568120.009678<br>0.07884 22.29 0.656860.009678<br>0.07684 22.29 0.656860.009678<br>0.07684 22.29 0.656860.009678<br>0.07684 22.29 0.656860.009678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.630F-07 |                  | 20.90                                          | .697           | 99800   | 0.154241 |
| 0.087234 27.19 0.688849 .0.008846 0.085910 0.085910 0.085910 0.0088811 0.085918 0.00088811 0.085918 0.00088811 0.088318 0.00098811 0.088318 0.0009156 0.088318 0.0009156 0.089910 21.95 0.055812 0.0009547 0.0075810 22.18 0.056886 0.0009547 0.0075881 22.29 0.054686 0.0009581 0.075881 22.29 0.054686 0.0009581 0.075881 22.29 0.054686 0.0009581 0.075881 22.29 0.054686 0.0009581 0.075881 22.20 0.054686 0.0009581 0.075881 22.20 0.054686 0.0009581 0.075881 22.20 0.054686 0.0009581 0.075881 22.20 0.054388 0.0010054 0.000054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.400F-07 |                  | 21.04                                          | 169.           | 09800   | 0.151703 |
| 0.085910 21.32 0.680600 0.0008881 0.0008881 0.0064578 21.45 0.675318 0.0009021 0.084578 21.45 0.675318 0.0009021 0.0845147 21.71 0.665679 0.000956 0.000977 21.83 0.6661041 0.0009547 0.079910 22.07 0.656812 0.0009678 0.077810 22.07 0.64686 0.0009805 0.077810 22.20 0.64686 0.0009805 0.077884 22.29 0.64685 0.0009805 0.077884 22.29 0.64685 0.0009805 0.077881 22.40 0.640838 0.0010054 0.0778101 22.40 0.640838 0.0010054 0.0074101 22.40 0.633380 0.0010296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2505-07 |                  | 21.19                                          | .685           | 0.00874 | 0.149203 |
| 0.084578 21.45 0.675318 0.009021<br>0.083326 21.45 0.670354 0.0009156<br>0.080977 21.83 0.665679 0.009422<br>0.078910 21.85 0.656812 0.009422<br>0.078810 22.77 0.652532 0.0099678<br>0.077810 22.78 0.64686 0.0099678<br>0.07684 22.29 0.646656 0.0099678<br>0.075881 22.20 0.646656 0.0099678<br>0.074101 22.60 0.64384 0.010054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.160F-07 | .08591           | 21.32                                          | .680           | .00888  | 0.146938 |
| 0.083326 21.58 0.65059 0.000156 0.0082147 21.21 0.665659 0.0009288 0.009288 0.009288 0.0092817 21.83 0.665812 0.009288 0.00928 0.009288 0.009883 22.80 0.652832 0.009928 0.0076844 22.29 0.646466 0.009928 0.007684 22.29 0.646466 0.009928 0.007499 22.40 0.646466 0.009928 0.007499 22.40 0.64666 0.009928 0.007499 22.40 0.64666 0.009928 0.007499 22.40 0.64666 0.009928 0.007499 22.40 0.64666 0.009928 0.007499 22.40 0.64666 0.009928 0.007499 0.009929 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.009499 0.0094 | 0.100F-07 | .08457           | 21.45                                          | .675           | .00902  | 0.144660 |
| 0.082147 21.71 0.665679 .0.009288<br>0.080977 21.83 0.661041 .0.009422<br>0.078831 22.07 0.65232 .0.009678<br>0.077810 22.18 0.648486 .0.009805<br>0.07781 22.29 0.648486 .0.009805<br>0.07781 22.40 0.646856 .0.010928<br>0.074101 22.40 0.643338 .0.010103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0-50E90   | .08332           | 21.58                                          | .670           | .00915  | 0.142518 |
| 0.080977 21.83 0.6610410.009422<br>0.079910 21.95 0.6568120.009547<br>0.077810 22.18 0.6468660.009605<br>0.077811 22.18 0.6468660.009805<br>0.075881 22.40 0.6468560.00928<br>0.075881 22.40 0.6468560.010054<br>0.074101 22.60 0.633380 .0.0101296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0-400F-08 | č                | 21.71                                          | .66567         | .00928  | 0.140501 |
| 0.079910 21.95 0.6568120.009547<br>0.078831 22-07 0.65528220.009678<br>0.076844 22-18 0.6464860.009928<br>0.076848 22-29 0.6446560.009928<br>0.075881 22-40 0.6446560.010054<br>0.074101 22-40 0.6337800.010129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.250F-08 | 80.              | 21.83                                          | .66104         | .00942  | 0.138500 |
| 0.078831 22.07 0.6525320.009678<br>0.077810 22.18 0.646680.009805<br>0.076844 22.29 0.6446560.009928<br>0.077891 22.40 0.6408360.010079<br>0.074998 22.50 0.6408360.010173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.160F-0R | .07991           | 21.95                                          | .65681         | .00954  | 0.136676 |
| 0.077810 22.18 0.6484860.009805<br>0.076844 22.29 0.6446560.00928<br>0.075881 22.40 0.6440360.010054<br>0.074908 22.50 0.6337880.010173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.100F-08 | .07883           | 22.07                                          | .65253         | 19600   | 0.134829 |
| 0.076844 27.29 0.6446560.009928<br>0.075881 22.40 0.6460860.010054<br>0.07490 22.50 0.633380.010173<br>0.074101 22.60 0.633780 .0.010296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0-630F-09 | .07781           | 22.18                                          | .64848         | 00600   | 0.133084 |
| .250F.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0-400F-09 | .07684           | 52.29                                          | .64465         | 00992   | 0.131431 |
| .160F=09 0.074998 22.50 0.637338 -0.010173<br>.100F=09 0.074101 22.60 0.633780 -0.010296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -250F-0   | .075AB           | 22.40                                          | .64083         | 01005   | 0.129784 |
| .100F-09 0.074101 22.60 0.633780 -0.010296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -160F-0   | 6740             | 22.50                                          | .63733         | .01017  | 0.128274 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -100F     | .0741            | 22.60                                          | .63378         | .01029  | 0.126740 |

| = MALE OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE | THE THREE LEVEL EVE I.E., DECISION LEVEL.  = AMPLITUDE OF INTERFERENCE TO D RATIO.  = RMS NOISE TO RMS SIGNAL RATIO.  = SIGNAL, POWER TO NOISE ROWER IN DECIBLES. | * ADAPTIVE THRESHOLD AMPLITUDE TO D RATIO.  * DEPINATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A / D PATIO.  * OUSSILLINERR TIME CONSTANT OF THE ADAPTIVE THRESHOLD  ** OOD FOR SHALL CLANGER ADAINST STATE VALUE. | AHEN BITE RATE : 12592600. AND ERROR SIGNAL DIVIDER RATIO INTO D/A CONVERTER = 4. |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| MOMENCLATURE:                                             | AIDR<br>N / S RATIO                                                                                                                                               | A / D RATIO<br>DERIV PER WRT<br>TIME CONSTANT                                                                                                                                                                     |                                                                                   |

| TABLES   |
|----------|
| MONITOR  |
| PATTERN  |
| FYF      |
| BASFBAND |

|           | PSEUDO E | RROR RATE    | TABLE FOR ATOR EQUALS 0.3400 PSEUDO ERROR RATE EQUALS 1.0 / | 0.3400    |          |
|-----------|----------|--------------|-------------------------------------------------------------|-----------|----------|
| BIT FRROR | RATIO    | SNR<br>TN DB | RATTO                                                       | DERIV PER | CONSTANT |
| 0.630F-10 | 0,073249 | 22.70        | 0.630402                                                    | -0.010416 | 0,125282 |
| 0.400E-10 | 0.072439 | 22.80        | 0.627191                                                    | -0.010532 | 0.123897 |
| 0.250F-10 | 0.071628 | 22.90        | 0.623976                                                    | -0.010651 | 0,122510 |
| 0.160F-10 | 0.070882 | 22.99        | 0.621020                                                    | -0.010763 | 0,121235 |
| 0.100E-10 | 0.070121 | 23.08        | 0.618003                                                    | -0.010880 | 0.119934 |
| 0.630E-11 | 0.069397 | 23.17        | 0.615129                                                    | -0.010994 | 0,118694 |
| 0.400E-11 | 0.068705 | 23.26        | 0.61238R                                                    | -0.011105 | 0,117511 |
| 0.250E-11 | 0.068011 | 23.35        | 0.609634                                                    | -0.011218 | 0,116323 |
| 0.160F-11 | 0.067370 | 23.43        | 0.607095                                                    | *0.011325 | 0,115228 |
| 0.100E-11 | 0.066714 | 23.52        | 0.604495                                                    | -0.011436 | 0.114106 |
| 0.630F-12 | 0.066088 | 23.40        | 0.602012                                                    | -0.011544 | 0.113035 |
| 0.400E-12 | 0.065489 | 23.48        | 0.599636                                                    | -0.011650 | 0,112010 |
| 0.250F-12 | 0.064885 | 23.76        | 0.5                                                         | -0.011758 | 0,110978 |
| 0.160F-12 | 0.064327 | 23.83        | 0.59903\$                                                   | .0.011860 | 0.110024 |
| 0,100E-12 | 0.063755 | 23.91        | 0.592763                                                    | -0.011967 | 0,109045 |
| 0.630E-13 | 0.063207 | 23.98        | 0.590589                                                    | -0.012071 | 0.108107 |
| 0.400E-13 | 0.062681 | 54.06        | 0.588505                                                    | -0.012172 | 0.107208 |
| 0.250E-13 | 0.062151 | 24.13        | 0.586402                                                    | -0.012276 | 0,106301 |
| 0-160E-13 | 0.061659 | 24.20        | 0.584454                                                    | -0.012374 | 0.105460 |
| 0.100E-13 | 0.061154 | 24.77        | 0.582450                                                    | -0.012476 | 0.104595 |
| 0.630E-14 | 0,060669 | 24.34        | 0.580527                                                    | -0.012576 | 0.103766 |
| 0.400E-14 | 0.060203 | 24.41        | 0.578680                                                    | -0.012673 | 0.102969 |
| 0.250F-14 | 0.059732 | 24.48        | 0.576812                                                    | -0.012773 | 0.102163 |
| 0.160F-14 | 0.059294 | 24.54        | 0.575079                                                    | -0.012867 | 0.101415 |
| 0-100F-14 | 0.058844 | 24.61        | 0.573293                                                    | -0-012965 | 0.100645 |

| * HALF OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE THE THEFE I EVEL EVE I EVE I EVEL EVEL | * AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO. * PMS NOISE TO RMS SIGNAL RATIO. * SIGNAL POWER TO NOISE POWER IN DECIBLES. | * ADAPTIVE THRESHOLD AMPLITUDE TO D RATIO.  * DERIVATIVE DE PSEUDD ERROR RATE WITH RESPECT TO A / D PATIO.  * DUASILIUMEAR TIME CONSTANT OF THE ADAPTIVE THRESHOLD  LOOP FOR SHAIL CHANGES AROUND STEADY STATE VALUES  WHEN BITE GATE * 12552600. AND ERROR SIGNAL  DIVIDER RATIO INTO D/A CONVERTER *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| # HALF OF THF NORMAL DI                                                                          | # AMPLITUDE OF INTERSY<br># PMS NOISE TO RMS SIGN<br># SIGNAL POWER TO NOISE                                                    | * ADAPTIVE THRESHOLD AMPLITUDE TO D IN THE CONSTANT RATE WITH CONSTANT OF THE ACCUSTANT OF |
| NOMENCLATURE:                                                                                    | ATDR<br>N / S RATTO<br>SNR                                                                                                      | A / D RATIO DERIV DER WRT TIME CONSTANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| 10363    | 16824 | 10760  | 23284  | 24048 | 23319   | .22241  | .21251  | .20378  | .19677  | 19061   | .18493  | 18012   | 17559   | 17105   | 14427 | 16102  | 15786   | .15502  | .15220  | .14957  | .14710  | .14468  | 14248   | 12041   | 13620  | 13430   | 13253   | .13074  | .12905  | 12566   | 1 24 30 | 12289  | 12148   | .12014  | .11879  | 11756   | 11629   | 11305   | 11279   | .11173  | .11064  | 10960   | 10861   | 10460   | 10574   | 10483   | 10395   | 10307   | 10226   | .10142  | .10062  | *8660   | 90660   | 0.098342  | 40140   |
|----------|-------|--------|--------|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------|--------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|---------|
| 10.01    | 00000 |        | 0.00   | 000   | 0.00559 | 0.00586 | 0.00614 | 0.00640 | 0.00663 | 0.00685 | 0.00705 | 0.00724 | 0.00743 | 0.00700 | 10000 | 0.000  | 0.00826 | 0.00841 | 0.00857 | 0.00872 | 0.00887 | 0.00000 | 0.00915 | 0.00930 | 0.000  | 0.00971 | 0.00984 | 8660000 | 0.01011 | 6201050 |         |        | 0.01074 | 0.01086 | 0.01098 | 0.01110 | 2211000 | 0.01145 | 0.01156 | 0.01167 | 0.01179 | 0.01190 | 0.01201 | 2121000 | 0.01234 | 0.01244 | 0.01255 | 0.01265 | 0.01276 | 0.01286 | 0.01296 | 0.01306 | 0.01317 | -0.013269 | 16610.0 |
| WAS CALL | 05071 | 64.241 | 92002  | 90774 | 87581   | .85657  | .83979  | .82429  | .81100  | .79825  | .78676  | .77633  | 10030   | 75743   | 14041 | 73314  | 72586   | .71931  | .71278  | .70668  | .10098  | .69536  | 69027   | .66515  | 47681  | 67131   | 66721   | .66306  | .65913  | 59569   | 211000  | 64487  | 64160   | .63848  | .63537  | 63250   | 166299  | 62613   | 62146   | .61900  | .61648  | .61407  | •61176  |         | 40510   | 60200   | 60097   | .59893  | 59704   | .59510  | .59323  | .59144  | .58963  | 0.587955  | 77006.  |
| -0       |       |        |        |       |         | -       | 4.      | 9.0     |         |         | 6.3     | 5       |         | •       |       |        | 1       |         | 0.1     | -       | 1.3     | 4.      | • •     | -       |        | 2.1     | 2.2     | 2.3     | 2.4     | 2.0     | 000     | 2.8    | 2.9     | 3.0     | 3.1     | 3.2     | 5.0     |         | 3.6     | 3.7     | 3.8     | 3.8     | 9.0     | -       |         | 4.2     | 6.4     | *       | *       | 4.5     | 4.6     | 4.0     |         | 24.80     |         |
| PRINT    | 1919  | 14800  | 13070  | 13366 | 12859   | 12420   | .12028  | .11658  | .11336  | .11023  | 10738   | 10478   | 97701   | 10005   | 00400 | 0030   | 09212   | .09047  | .08883  | .08729  | .08586  | .08444  | 08316   | 19090   | 07050  | 07839   | 07735   | 16940   | .07532  | 07246   | 07270   | 07173  | 06040   | .07012  | *6690*  | .06861  | 88/90   | 06651   | .06583  | .06521  | .06458  | .06397  | 06539   | 10227   | 06171   | .06118  | .06067  | .06016  | .05968  | .05920  | .05873  | .05827  | .05782  | 0.057400  | 04000   |
| 15 24    | 4306  | 2004   | 2406-0 | 1406  | 100F-0  | 630E-0  | 400F-0  | -250E-0 | .160E-0 | .100E-0 | .630E-0 | 400E-0  | - 3067  | 1005-0  | 73067 | ADDE-D | 250E-   | -160E-0 | 100E-0  | .630E-0 | -400E-0 | -250E-0 | 160E-0  | 1005-0  | 600F-0 | 250E-0  | 160E-0  | .100E-0 | .630E-0 | 2505    | 1406.0  | 100E-0 | .630E-1 | .400E-1 | .250E-1 | .160E-1 | 1000    | 400E-1  | .250E-1 | .160E-1 | .100E-1 | .630E-1 | .400E-1 | 1406-1  | 100E-1  | .630E-1 | -400E-1 | .250E-1 | .160E-1 | .100E-1 | .630E-1 | -400E-1 | -250E-1 | 0.1605-14 | 1-2001  |

|           | N / S<br>RAT10 | SNR<br>1N DB | RATIO    | DERIV PER | CONSTANT |
|-----------|----------------|--------------|----------|-----------|----------|
|           |                |              |          |           |          |
| 0,100F-02 | 0,159765       |              | 97239    | -0.012617 | 10342    |
| .630F-03  | 0.151625       | •            | 956      | -0.008802 | 14824    |
| -400E-03  | 0.145009       | 16.77        | •        | -0.006601 | 19769    |
| .2506-03  | 0.138797       | •            | 6.       | -0.005604 | .23284   |
| .160E-03  | 0-133550       | 17.49        | •        | -0.005426 | 24048    |
| .100F-03  | 0.128596       | 17.82        |          | -0.005596 | 23319    |
| .630F-04  | 0.124207       | 18.12        | ٠,       | -0.005867 | 14222    |
| *400F-04  | 0.120288       | 18.40        | •        | -0.006140 | 21251    |
| .250E-04  | 0.116587       | 18.67        | ٠.       | -0.006403 | ,20378   |
| .160F-04  | 0.113362       | 18.91        | ٠.       | -0.006632 | 19611    |
| 1006-04   | 0,110231       | 19.15        | -        | -0.006853 | 19061    |
| .630F-05  | 0.107385       | 19.38        | ٦.       | -0.001056 | 18493    |
| -400F-05  | 0.104786       | 19.59        | ٦.       | -0.007245 | 16012    |
| -250F-05  | 0,102281       | 19.80        | ٦.       | -0.007431 | 17559    |
| .160F-05  | 0.100057       | 20.00        | ٦.       | -0.007602 | 17165    |
| .100F-05  | 0.097862       | 50.19        | -        | -0.007777 | 16780    |
| .630F-06  | 0.095835       | 20.37        | ٠.       | -0.007943 | .16427   |
| -400E-06  | 0.093957       | 20.54        |          | -0.008104 | 16102    |
| 00-10C7-  | 671760         | 11.00        | •        | -0.008266 | 15/80    |
| 1005-06   | 0.030476       | 20.87        | 0.719316 | -0.008417 | 0.155029 |
| 1306 07   | 0.00000        | 21.00        | •        | 6,60000   | 17550    |
| 400F-07   | 0.085861       | 21.32        |          | 0.0000    | 14710    |
| 250F_07   | 0.084447       | 21.47        |          | 0.0000    | 14668    |
| 1605-07   | 0.083166       | 21.60        |          | -0.000158 | 14248    |
| .100E-07  | 0.081876       | 21.74        |          | -0.009302 | 14027    |
| .630E-08  | 79908000       | 21.87        | ٠.       | -0.009442 | 13820    |
| ********* | 0.079522       | 21.99        | ٠.       | -0.009578 | 13624    |
| .250E-08  | 0.078390       | 22.11        | ٦.       | -0.009716 | 13430    |
| .160F-08  | 0.077357       | 22.73        | •        | 948600-0- | 13253    |
| . 100F-08 | 0.076312       | 22.35        | ٠.       | -0.009981 | 13074    |
| .630F-09  | 0.075324       | 55.46        | ٠.       | -0.010112 | 12905    |
| -400F-09  | 0.074389       | 22.57        | ٠.       | -0.010239 | .12744   |
| .250F-09  | 0.073456       | 22.68        | •        | -0.010369 | 12585    |
| -1606-    | 0.012602       | 22.78        | ٠.       | -0.010491 | 0.124387 |
| 00F-0     | 0.071733       | 22.89        | ٠.       | -0.010618 | .12289   |

| TABLES   |
|----------|
| MONITOR  |
| PATTERN  |
| EYF      |
| BASFBAND |

|           | PSEUDO E | TABLE FOR AIDR EQUALS<br>PSEUDO ERROR RATE EQUALS |                | 1.0 / 2800. |          |
|-----------|----------|---------------------------------------------------|----------------|-------------|----------|
| PATE      | RATTO    | SAR<br>TA DB                                      | A / D<br>8ATTO | DERIV PER   | CONSTANT |
| 2.630E-10 | 0.070909 | 22.99                                             | 0.641402       | -0-010741   | 0-121486 |
| 0.400E-10 | 0.070125 | 23.08                                             | 0.638488       | -0.010861   | 0.120143 |
| 7.250E-10 | 0.069340 | 23.18                                             | 0.635371       | -0.010984   | 0.118798 |
| 0.160F-10 | 0.068618 | 23.27                                             | 0.632504       | -0.011100   | 0.117561 |
| 9.100F.10 | 0.067881 | 23.37                                             | 0.629579       | -0.011220   | 0.116299 |
| .630F-11  | 0.067179 | 23.46                                             | 0.626792       | -0.011337   | 0.115097 |
| 0.400E-11 | 0.066510 | 23.54                                             | 0.624133       | -0.011452   | 0.113950 |
| 0.250E-11 | 0.065838 | 23.63                                             | 0.621464       | -0.011569   | 0.112798 |
| 7.160E-11 | 0,065218 | 23.71                                             | 0.619001       | -0.011679   | 0,111736 |
| 2,100F-11 | 0.064583 | 23.80                                             | 0.616480       | -0.011793   | 0.110648 |
| 9.630F-12 | 0.063977 | 23.88                                             | 0.614072       | -0.011905   | 0.109609 |
| 2.400E-12 | 0.063396 | 23.96                                             | 0.611768       | -0.012014   | 0.108616 |
| 0.250E-12 | 0,062812 | 24.04                                             | 0,609449       | -0.012126   | 0,107615 |
| 0.160E-12 | 0.062272 | 24.11                                             | 0.607304       | -0.012231   | 0.106690 |
| 0.100E-12 | 0.061718 | 24.19                                             | 0.609103       | -0.012341   | 0.105740 |
| 0.630F-13 | 0.061187 | 24.27                                             | 0.602996       | -0.012448   | 0.104831 |
| 0.400E-13 | 0.060679 | 24.34                                             | 0.600979       | -0.012552   | 0.103959 |
| 0.250E-13 | 0,060165 | 24.41                                             | 0.598936       | -0.012659   | 0.103079 |
| 0.160E-13 | 0.059689 | 24.48                                             | 0.597046       | -0.012760   | 0.102264 |
|           | 0.059200 | 24.55                                             | 0.595103       | -0.012866   | 0.101426 |
| 0.630E-14 | 0.058730 | 24.62                                             | 0.593238       | -0.012968   | 0,100621 |
|           | 0.058279 | 24.49                                             | 0.591447       | -0.013069   | 0.099849 |
| 7.250E-14 | 0.057823 | -                                                 | 0.589636       | -0.013172   | 0.099067 |
| 7,160F-14 | 0,057400 | 24.82                                             | 0.587955       | -0.013269   | 0.098342 |
| 7.100E-14 | 0.056964 |                                                   | 0.586224       | -0.013371   | 0.097595 |
|           |          |                                                   |                |             |          |

| * HALF OF THE MORMAL DISTANCE BETWEEN DATA LEVELS FOR THE | EYE I.E., DECISION LEVEL. RSYMBOL INTERFERENCE TO D RATIO. | SIGNAL RATIO.       | = ADAPTIVE THRESHOLD AMPLITUNE TO D RATIO.<br>= DERIVATIVE OF PSEUDO FRROM RATE WITH RESPECT TO A / D RATIO. | = OUASILINEAR TIME CONSTANT OF THE ADAPTIVE THRESHOLD LOOP FOR SMALL CHANGES AROUND STEADY STATE VALUES WHEN RITE RATE = 12552500, AND ERROR SIGNAL DIVIDER RATIO INTO DA CONVERTED |
|-----------------------------------------------------------|------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - HALF OF THE NORMA                                       | = AMPLITUDE OF INTE                                        | E SIGNAL POWER TO N |                                                                                                              |                                                                                                                                                                                     |
| SOMENCLATURE:                                             | 4139                                                       | S.P S PATTO         | SEST DER WRT                                                                                                 | TIME CONSTANT                                                                                                                                                                       |

| 10035          | 14374 | 2010 | 00161  | 01627   | 10667   | .22598  | .21552  | .20591  | 19744   | 19061   | 18448   | 17917   | 17449   | 17011   | 144.20 | <br>06701 | 1661.   | 15599   | 15243   | .15018  | .14744  | .14489  | .14251  | .14016  | .13803  | .13589  | .13388  | 13198   | .13010  | .12839  | .12665  | 10521.  | .12346  | .12191  | .12050  | .11905  | .11769  | .11638   | 11508   | .11388  | 11206 | 06111   | 0.110389  |       | 10710 | 1041  | 10422  | 10425   | 10335   | .10243  | .10155  | .10011  | .09985  | 90660   | .09825  | -09747  | .09672  | .09597  | .09526  | .09454  |
|----------------|-------|------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------|---------|-------|---------|-----------|-------|-------|-------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 01300          | 00000 |      | 000000 | 0.00578 | 0.00559 | 0.00577 | 0.00605 | 0.00633 | 0.00660 | 0.00684 | 0.00707 | 0.00728 | 0.00747 | 0.00747 | 100    | 2000000   | 0.00820 | 0.00836 | 0,00853 | 990000  | 0.00685 | 0.00000 | 0.00915 | 0.00931 | 6,000.0 | 0,000,0 | 0.00974 | 0.00988 | 0.01003 | 0.01016 | 0.01030 | 0.01043 | 0.01056 | 0.01070 | 0.01082 | 0.01096 | 0.01100 | 0.01121  | 0.01133 | 0.01145 | 01120 | 0.01170 | 128110-0- |       |       | 0122  | 01240  | 0.01251 | 0.01262 | 0.01273 | 0.01284 | 0.01295 | 0.01306 | 0.01317 | 0.01328 | 0.01338 | 0.01349 | 0.01359 | .01369  | 01380   |
| 973221         | 90040 |      | 00000  | 4776    | 26006   | 87967   | .86104  | 84478   | 82977   | . 81690 | 80455   | .79342  | 78331   | 77360   | 14601  | 17073     | 7/00/   | 74149   | 13442   | .72808  | .72175  | .71585  | .71032  | . 10488 | \$6669  | 66769   | 69033   | .68894  | 68188   | .67761  | .67359  | .66979  | .66619  | .66260  | 65931   | .65597  | .65280  | .64978   | .64676  | .64398  | 64115 | 63845   | 19364     | 40000 | 42864 | 42413 | 47300  | 42165   | 61997   | .61744  | 61540   | .61344  | .61146  | .60963  | .60775  | .60595  | .60421  | .60246  | . 60083 | . 59915 |
| 100F . TABI    | 3     |      |        |         | •       | -       | 4.      | 9.      | 3.9     | 2.      | 4.      | 9.6     | 8       | -       |        |           | •       |         | •       | :       |         | *       | ٠.      | ۲.      | 8.      | 2.0     | 2.      | 2.2     | 4.2     | 2.5     | 9.2     | 1.7     | 2.8     | 5.9     | 0.      | -       | 3.5     |          | 4.      | 5       | 9     |         | 9 6       |       |       |       |        |         |         | :       |         |         | :       |         |         |         | •       | 2.0     | -       | -       |
| 15453          | 14484 | 1007 |        | 7706    | 1671    | 12435   | 11021   | 11632   | 11274   | 10962   | 10659   | 10384   | 10133   | 09890   | 00478  | <br>2000  | 10760   | 09060   | 80680   | .08749  | .08290  | .08441  | ,08302  | .08166  | .08042  | .07917  | .07800  | 06920   | .07580  | .07480  | .07379  | .07284  | .07193  | .07103  | .07020  | .06936  | .06857  | .06781   | 06705   | .06635  | 00000 | 96490   | 2 :       | 10000 | 04248 | 96190 | 06130  | 06074   | 12090   | .05968  | .05916  | .05867  | .05618  | .05772  | .05724  | .05679  | .05635  | .05591  | .05550  | .0550   |
| JUNE 15 11 343 | A 30F | 2004 | 0      | 0-2067  | 1005-0  | 100E-0  | 630E-0  | -400E-0 | 250E-0  | .160E-0 | .100E-0 | 630E-0  | 400E-0  | 250F-0  | 140E   | 0-1001    | 0-2000  | 0-300   | -220E-  | .160E-0 | .100E-0 | .630E-0 | 0-3UU+  | .250E-0 | .180E-0 | .100E-0 | .630E-0 | 400E-0  | -250E-0 | .160E-0 | -100E-0 | -99E9.  | 0-300+* | .250E-0 | .160E-0 | .100E-0 | .630E-1 | - 400E-1 | -250E-1 | -160E-1 | 100-1 | .630E-1 | 2000      | 1000  | 1006  | A 30E | 400F-1 | 250E-1  | .160E-1 | -100E-1 | .630E-1 | -400E-1 | -250E-1 | -160E-1 | -1006-1 | .630E-1 | .400E-1 | .250E-1 | -160E-1 | 1006-1  |

| ### ### ##############################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 0.154538 16.22 0.973221 0.140238 17.64 0.960941 0.134225 17.64 0.960941 0.1249148 17.78 0.9609429 0.1249148 17.78 0.960929 0.1269148 17.78 0.960929 0.126924 18.41 0.87573 0.106524 19.45 0.816903 0.106595 19.45 0.816903 0.106595 19.45 0.741690 0.096808 20.10 0.741690 0.096808 21.10 0.741690 0.096808 21.10 0.741690 0.0981642 21.10 0.728187 0.081642 21.10 0.728187 0.081642 21.10 0.728187 0.081642 21.10 0.728187 0.081642 21.10 0.728187 0.081642 21.47 0.728187 0.081642 22.41 0.699818 0.075804 22.41 0.699818 0.075804 22.42 0.6691900 0.075804 22.42 0.669190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TIME     |
| 0.146840 16.46 0.960941 0.146840 0.146840 0.146238 17.44 0.924682 0.129148 17.44 0.900929 0.129148 17.44 0.900929 0.129148 17.44 0.900929 0.129148 17.44 0.900929 0.129148 17.44 0.900929 0.120111 18.41 0.87473 0.109624 19.45 0.87473 0.109624 19.45 0.87473 0.109624 19.45 0.748429 0.109634 19.45 0.748429 0.096434 2.146 0.748429 0.748429 0.096494 2.146 0.748429 0.74841 2.146 0.748429 0.096494 0.096494 2.146 0.74849 0.096494 0.096494 0.096494 0.096496 0.096496 0.096496 0.09696 0.076806 0.076806 0.069033 0.076806 0.069033 0.076806 0.069033 0.076806 0.069033 0.076806 0.069033 0.076806 0.069033 0.076806 0.069033 0.076806 0.069033 0.076806 0.069033 0.066192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.06192 0.061 | 35       |
| 0.140238 17.06 0.944082 0.1291425 17.06 0.9622695 0.129146 17.06 0.9022695 0.124356 18.11 0.879673 0.116321 18.41 0.861047 0.116322 18.40 0.864799 0.106595 19.45 0.816973 0.106596 19.45 0.793426 0.106596 19.45 0.793426 0.106596 19.45 0.765013 0.096774 20.46 0.756538 0.096717 27.00 0.096717 27.00 0.096901 27.00 0.096901 27.00 0.096901 27.00 0.096901 27.00 0.096901 27.00 0.096901 27.00 0.096901 27.00 0.096901 27.00 0.096901 27.00 0.096901 27.00 0.096901 27.00 0.096901 27.00 0.096901 27.00 0.096901 27.00 0.0976906 22.00 0.076906 22.00 0.0778906 22.00 0.0778906 22.00 0.0778906 22.00 0.0778906 22.00 0.0778906 22.00 0.0778906 22.00 0.0778906 22.00 0.0778906 22.00 0.0778906 22.00 0.0778906 22.00 0.0778906 22.00 0.0778906 22.00 0.0778906 22.00 0.0778906 22.00 0.0778906 22.00 0.0778906 22.00 0.0778906 22.00 0.0778906 22.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.143761 |
| 0.134225 17.64 0.922695 0.1269148 17.78 0.900929 0.1269148 1.9.11 0.861047 0.126918 0.900929 0.126918 1.9.11 0.861047 0.126918 1.9.41 0.861047 0.126918 1.9.42 0.864799 0.127919 0.90924 0.126919 0.129919 0.129919 0.129919 0.129919 0.129919 0.129919 0.129919 0.129919 0.129919 0.129919 0.129919 0.129919 0.129919 0.129919 0.129919 0.129919 0.129919 0.129919 0.129919 0.129919 0.129919 0.1299919 0.129919 0.1299919 0.12999999999999999999999999999999999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99       |
| 0.129148 17.78 0.900929<br>0.124356 18.11 0.861673<br>0.106321 18.41 0.864789<br>0.116321 18.45 0.864773<br>0.109624 18.46 0.864773<br>0.109624 19.47 0.778429<br>0.098675 10.48 0.778626<br>0.098675 20.29 0.778613<br>0.098675 20.48 0.778619<br>0.098678 20.89 0.778619<br>0.098678 20.89 0.778619<br>0.096780 20.89 0.778619<br>0.087662 21.60 0.778619<br>0.087662 21.60 0.728687<br>0.087662 21.62 0.728687<br>0.087662 21.62 0.728687<br>0.078603 22.63 0.696957<br>0.078604 22.75 0.696957<br>0.077690 22.26 0.677612<br>0.077696 22.27 0.666192<br>0.077896 22.27 0.666192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2570     |
| 0.124356 18.11 0.879473<br>0.1120111 18.41 0.8619473<br>0.112742 18.46 0.864773<br>0.1109624 19.45 0.816903<br>0.106594 19.45 0.804554<br>0.106594 19.45 0.804554<br>0.098908 20.10 0.773609<br>0.096784 20.48 0.756513<br>0.096784 20.48 0.756513<br>0.096784 20.48 0.756513<br>0.096890 20.48 0.756513<br>0.096890 20.48 0.756513<br>0.098690 21.00 0.724629<br>0.088691 21.00 0.724629<br>0.081662 21.00 0.728681<br>0.081662 21.62 0.71552<br>0.081662 21.62 0.71552<br>0.075804 22.41 0.6969961<br>0.075804 22.41 0.696951<br>0.075804 22.41 0.696951<br>0.075804 22.41 0.696951<br>0.075804 22.45 0.66692<br>0.071034 22.45 0.66692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.233072 |
| 0.120111 18.41 0.861047<br>0.116321 18.41 0.864749<br>0.110452 18.40 0.824773<br>0.10452 19.70 0.816903<br>0.10452 19.40 0.816903<br>0.104534 19.47 0.75503<br>0.09674 20.48 0.75503<br>0.09674 20.48 0.75503<br>0.09674 20.48 0.75503<br>0.09670 20.48 0.75503<br>0.08740 20.48 0.75603<br>0.08740 21.47 0.724087<br>0.08162 21.40 0.724087<br>0.08162 21.40 0.724087<br>0.08162 21.40 0.724087<br>0.08740 22.41 0.69997<br>0.075804 22.41 0.66192<br>0.075804 22.41 0.66192<br>0.077840 22.42 0.677612<br>0.077840 22.41 0.66192<br>0.077840 22.41 0.66192<br>0.077840 22.41 0.66192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.225983 |
| 0.116321 18.49 0.84.789 0.116321 18.49 0.84.789 0.112742 18.49 0.816478 0.106595 19.45 0.816478 0.106595 19.45 0.816478 0.106595 19.45 0.8164595 0.106595 19.45 0.8164595 0.106595 19.45 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.106595 0.10659 | 0.215520 |
| 0.112742 18.96 0.82973<br>0.109624 19.45 0.804554<br>0.109624 19.45 0.804554<br>0.101330 19.89 0.793426<br>0.096307 20.29 0.773609<br>0.096307 20.29 0.755013<br>0.09637 20.48 0.75538<br>0.092674 20.48 0.75538<br>0.092674 20.48 0.75538<br>0.09689 21.00 0.756013<br>0.089085 21.00 0.756013<br>0.089085 21.00 0.758087<br>0.089085 21.00 0.758087<br>0.089042 21.62 0.718652<br>0.081642 21.62 0.718652<br>0.081642 21.62 0.718652<br>0.081642 22.63 0.694996<br>0.078003 22.16 0.695933<br>0.076906 22.26 0.677612<br>0.0776906 22.27 0.675991<br>0.077936 22.28 0.665990<br>0.077936 22.28 0.665990<br>0.071034 22.41 0.665192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.205914 |
| 0.109624 19.70 0.819903<br>0.106595 19.45 0.793426<br>0.101330 19.89 0.793426<br>0.098908 20.29 0.765913<br>0.096774 20.29 0.765913<br>0.09674 20.46 0.765913<br>0.092674 20.46 0.765913<br>0.092674 20.46 0.765913<br>0.092674 20.46 0.765913<br>0.093085 21.00 0.724649<br>0.087492 21.16 0.724697<br>0.081662 21.45 0.715929<br>0.081662 21.45 0.715929<br>0.081662 21.45 0.715929<br>0.075904 22.16 0.699957<br>0.075904 22.16 0.699957<br>0.075904 22.16 0.699957<br>0.075904 22.16 0.699957<br>0.075904 22.16 0.699957<br>0.075904 22.16 0.699957<br>0.075904 22.16 0.699997<br>0.075904 22.20 0.67990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.197449 |
| 0.106595 19.45 0.804554 0.103844 19.67 0.793426 0.103844 20.10.67 0.778609 0.096908 20.10 0.778609 0.096757 20.29 0.778609 0.096757 20.48 0.756538 0.092674 20.48 0.756538 0.085901 21.32 0.728629 0.081662 21.62 0.728629 0.081662 21.62 0.728689 0.081662 21.62 0.71857 0.081662 21.62 0.71857 0.081662 21.62 0.728689 0.081662 22.63 0.699957 0.076900 22.16 0.699957 0.075804 22.16 0.699957 0.075804 22.16 0.699957 0.077806 22.26 0.699957 0.077806 22.27 0.66192 0.077806 22.26 0.667901 0.077806 22.26 0.667901 0.077806 22.26 0.667901 0.077806 22.26 0.667901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.190646 |
| 0.103844 19.47 0.794.26<br>0.101330 19.89 0.793.21<br>0.098.77 20.29 0.756.39<br>0.096.74 20.48 0.756.39<br>0.0926.74 20.48 0.756.39<br>0.0926.74 20.48 0.756.39<br>0.087.49 21.16 0.754.29<br>0.087.49 21.16 0.756.29<br>0.087.40 21.16 0.728.42<br>0.089.40 21.26 0.728.69<br>0.080.42 21.45 0.704.88<br>0.0710.07 22.78 0.699.97<br>0.075806 22.26<br>0.075806 22.21 0.681.58<br>0.075806 22.21 0.681.58<br>0.075806 22.21 0.681.58<br>0.075806 22.21 0.681.58<br>0.077806 22.25<br>0.077806 22.26<br>0.077806 22.27<br>0.077806 22.26<br>0.077806 22.26<br>0.077806 22.75<br>0.077807 22.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.184481 |
| 0.101330 19.89 0.783317<br>0.098908 20.29 0.755513<br>0.096874 20.48 0.755513<br>0.090856 20.83 0.746429<br>0.089085 21.80 0.744429<br>0.085901 21.16 0.721747<br>0.085901 21.16 0.721747<br>0.085901 21.16 0.721747<br>0.085901 21.16 0.721747<br>0.081642 21.62 0.715552<br>0.081642 21.62 0.715552<br>0.081642 21.62 0.715552<br>0.081642 21.62 0.715552<br>0.078106 22.62 0.690333<br>0.076906 22.28 0.6690333<br>0.076906 22.28 0.669790<br>0.071034 22.41 0.66192<br>0.071034 22.75 0.665192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.179170 |
| 0.098908 20.10 0.778609<br>0.096757 20.29 0.765013<br>0.096874 20.46 0.765013<br>0.090858 21.00 0.74126<br>0.089085 21.00 0.72429<br>0.089085 21.00 0.72429<br>0.087497 21.16 0.728087<br>0.08462 21.62 0.718529<br>0.081662 21.62 0.718529<br>0.081662 21.62 0.718529<br>0.081662 22.75 0.699897<br>0.079176 22.63 0.699997<br>0.075804 22.64 0.681984<br>0.075804 22.41 0.6819891<br>0.075804 22.42 0.677612<br>0.077996 22.45 0.66197<br>0.071034 22.45 0.66197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0-174499 |
| 0.096.757 20.29 0.765013<br>0.096434 20.48 0.765538<br>0.090856 20.48 0.748724<br>0.087492 20.483 0.748429<br>0.087492 21.16 0.728087<br>0.08501 21.47 0.718952<br>0.086417 21.47 0.718952<br>0.086423 21.49 0.699957<br>0.071004 22.78 0.687949<br>0.075804 22.41 0.681584<br>0.075804 22.41 0.681584<br>0.077937 22.41 0.681584<br>0.071034 22.75 0.665192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.170115 |
| 0.094634 20.48 0.75538<br>0.092674 20.85 0.748724<br>0.090885 20.83 0.741490<br>0.087492 21.00 0.734429<br>0.087417 21.85 0.728787<br>0.081642 21.82 0.728787<br>0.081642 21.82 0.715852<br>0.081642 21.85 0.715852<br>0.081642 21.85 0.715852<br>0.081642 21.85 0.699967<br>0.07800 22.89 0.699967<br>0.07690 22.28 0.690333<br>0.07690 22.28 0.68541<br>0.075840 22.28 0.677612<br>0.073795 22.41 0.681584<br>0.071934 22.75 0.66192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.166291 |
| 0.092674 20.46 0.748724 0.090856 2.0.83 0.741400 0.090858 21.00 0.734429 0.089085 21.00 0.734429 0.085901 21.16 0.721737 0.085901 21.24 0.715852 0.089029 21.24 0.089033 0.075804 22.16 0.681884 0.075804 22.16 0.681884 0.075804 22.25 0.677512 0.075804 22.25 0.657512 0.075804 22.25 0.657512 0.075804 22.25 0.657512 0.075804 22.25 0.6575012 0.075804 22.25 0.6575012 0.075804 22.25 0.6575012 0.075804 22.25 0.6575012 0.075804 22.25 0.6575012 0.075804 22.25 0.6575012 0.075804 22.25 0.6575012 0.075804 22.25 0.6575012 0.0770208 22.25 0.665192 0.0770208 22.26 0.665192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,162560 |
| 0.090858 20.83 0.74490<br>0.089085 21.00 0.734429<br>0.087497 21.16 0.728687<br>0.083029 21.47 0.710329<br>0.0813029 21.47 0.710329<br>0.0879176 22.75 0.699957<br>0.076907 22.16 0.699957<br>0.076907 22.16 0.685941<br>0.075804 22.21 0.685941<br>0.075804 22.21 0.685941<br>0.072840 22.22 0.669790<br>0.072840 22.28 0.669790<br>0.071034 22.86 0.665790<br>0.071034 22.86 0.665790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,159143 |
| 0.089085 21.00 0.734429<br>0.087492 21.16 0.728087<br>0.085401 21.32 0.721857<br>0.083029 21.67 0.715852<br>0.081662 21.76 0.715852<br>0.080423 21.89 0.694987<br>0.078003 22.16 0.699397<br>0.07600 22.26<br>0.075804 22.41 0.681584<br>0.075804 22.41 0.681584<br>0.0778940 22.41 0.681584<br>0.0779345 22.41 0.66192<br>0.071034 22.75 0.665192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.155995 |
| 0.085401 21.16 0.728087<br>0.085401 21.32 0.721737<br>0.081662 21.62 0.715929<br>0.081662 21.76 0.705888<br>0.079176 22.03 0.694996<br>0.078003 22.16 0.694996<br>0.075804 22.21 0.695933<br>0.075804 22.21 0.685910<br>0.075804 22.22 0.677612<br>0.077896 22.25 0.677612<br>0.077896 22.25 0.677612<br>0.077896 22.25 0.667990<br>0.071934 22.75 0.665192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.152932 |
| 0.085901 21.32 0.721757 0.086441 21.47 0.715829 0.088423 21.45 0.70888 0.080423 21.76 0.70888 0.080423 21.76 0.70888 0.080423 21.76 0.70888 0.080433 0.078003 22.41 0.685941 0.075804 22.41 0.681584 0.075804 22.42 0.687891 0.072840 22.75 0.665790 0.071034 22.75 0.665192 0.071034 22.84 0.665192 0.071034 22.87 0.665192 0.071034 22.87 0.665192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.150186 |
| 0,084417 21,47 0,71852<br>0,0813029 21,62 0,710329<br>0,081423 21,76 0,699957<br>0,071003 22,18 0,699957<br>0,071003 22,18 0,699957<br>0,071604 22,78 0,689954<br>0,071864 22,41 0,681584<br>0,072860 22,45 0,68790<br>0,071936 22,75 0,669790<br>0,071034 22,75 0,665192<br>0,071034 22,76 0,665192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.147448 |
| 0.083029 21.62 0.710329<br>0.081662 21.76 0.70488<br>0.080623 21.89 0.699957<br>0.078003 22.16 0.699957<br>0.076906 22.28 0.699333<br>0.076804 22.21 0.685941<br>0.073795 22.41 0.681584<br>0.073795 22.45 0.677612<br>0.073795 22.45 0.667900<br>0.071034 22.75 0.665192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.144896 |
| 0.081662 21.76 0.70688<br>0.080423 21.89 0.69997<br>0.079176 22.83 0.699987<br>0.076900 22.16 0.690333<br>0.076900 22.28 0.695911<br>0.073795 22.41 0.681584<br>0.073795 22.45 0.677612<br>0.072840 22.75 0.667900<br>0.072840 22.75 0.667900<br>0.071034 22.85 0.665192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.142512 |
| 0.080423 21.89 0.699957<br>0.079916 22.61 0.694996<br>0.078003 22.16 0.685941<br>0.076804 22.41 0.681584<br>0.077804 22.41 0.681584<br>0.077804 22.45 0.687612<br>0.072840 22.75 0.669790<br>0.071034 22.75 0.665192<br>0.071034 22.84 0.665192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.140162 |
| 0.079176 22.673 0.694996<br>0.078003 22.16 0.690333<br>0.076804 22.21 0.681584<br>0.076806 22.22 0.677612<br>0.073795 22.64 0.677819<br>0.072840 22.75 0.667391<br>0.071934 22.75 0.665192<br>0.071034 22.87 0.665192<br>0.071034 22.87 0.665192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.138034 |
| 0.078003 22.16 0.690333<br>0.078900 22.28 0.685941<br>0.075804 22.41 0.681584<br>0.073795 22.44 0.677612<br>0.073795 22.44 0.673991<br>0.071934 22.75 0.665192<br>0.071034 22.75 0.665192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,135893 |
| 0.076900 27.28 0.685941<br>0.075804 22.41 0.681584<br>0.074806 22.45 0.677612<br>0.073795 22.46 0.677612<br>0.072840 22.75 0.669790<br>0.071034 22.47 0.665192<br>0.071034 22.47 0.66504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.133681 |
| 0.075804 22.41 0.681584<br>0.074806 22.52 0.677612<br>0.073795 22.64 0.67591<br>0.072840 22.75 0.669790<br>0.071934 22.86 0.666192<br>0.071034 22.97 0.662604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.131936 |
| 0.074806 22.52 0.677612<br>0.073795 27.64 0.673991<br>0.072840 22.75 0.669790<br>0.071936 22.86 0.666192<br>0.070208 23.67 0.66504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.130107 |
| 0.073795 22.64 0.673591<br>0.072840 22.75 0.669790<br>0.071936 22.86 0.666192<br>0.071034 22.97 0.662604<br>0.070208 23.07 0.659317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2839     |
| 0.072840 22.75 0.669790 0.071936 22.86 0.666192 0.071034 22.97 0.662604 0.070208 23.67 0.659317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |
| 0,071936 22,86 0,666192<br>0,071034 22,97 0,662604<br>0,070208 23,07 0,659317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2501     |
| 0.071034 22.97 0.662604<br>0.070208 23.07 0.659317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 234      |
| 0.070208 23.07 0.659317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12191    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120      |
| 0.069368 23.18 0.655975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11005    |
| 0.655975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |

|                | EN DATA LEVELS FOR THE                                    | ON LEVEL.                                 | ENCE TO D RATIO.                  |                               | CIBLES.                          | RATIO                            | ITH RESPECT TO A / D RATIO.      | ADAPTIVE THRESHOLD              | ADY STATE VALUES                                  | AND ERROR SIGNAL          |                                    |
|----------------|-----------------------------------------------------------|-------------------------------------------|-----------------------------------|-------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------|---------------------------------------------------|---------------------------|------------------------------------|
|                | - HALF OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE | THE THREE LEVEL EYE I.E., DECISION LEVEL. | MPLITUDE OF INTERSYMBOL INTERFERI | MS NOISE TO RMS SIGNAL RATIO. | IGNAL POWER TO NOISE POWER IN DE | DAPTIVE THRESHOLD AMPLITUDE TO D | ERIVATIVE OF PSEUDO ERROR RATE W | UASTLINEAR TIME CONSTANT OF THE | LOOP FOR SMALL CHANGES AROUND STEADY STATE VALUES | HEN BITE RATE = 12552600. | DIVIDER RATIO INTO DIA CONVEDTED . |
|                | I "                                                       | 9                                         | 4                                 | œ<br>#                        | . 5                              | A                                | 0 =                              | 0 "                             | ت                                                 | 3                         | ٥                                  |
| "IOMENCLATURE: | 0                                                         |                                           | ATOR                              | N / S RATIO                   | SNR                              | A / D RATIO                      | JERIV PER WRT                    | TIME CONSTANT                   |                                                   |                           |                                    |

| TABLES   |
|----------|
| _        |
| TOR      |
| NO       |
| PATTERN  |
| PAT      |
| FYE      |
| DANE     |
| BASFBAND |
| 80       |

5

|           | PSEUDO E | REOR RATE    | TABLE FOR AIDR EGUALS 0.3800<br>PSEUDO ERPOR RATE EGUALS 1.0 / | 0.3800    |          |
|-----------|----------|--------------|----------------------------------------------------------------|-----------|----------|
| RIT FRROR | RATTO    | SAR<br>TA DB | A / D<br>RATIO                                                 | DERIV PER | TIME     |
|           |          |              |                                                                |           |          |
| 0.630E-10 | 0.068570 | 23,28        | 0.652802                                                       | -0.011088 | 0.117690 |
| 0.400E-10 | 0.067812 | 23.37        | 0.649785                                                       | -0.011212 | 0.116388 |
| 0.250F-10 | 0.067053 | 23.47        | 0.646765                                                       | -0.011339 | 0,115085 |
| 9.160E-10 | 0.066355 | 23.56        | 0.643989                                                       | -0.011458 | 0,113887 |
| 0.100F-10 | 0.065647 | 23.46        | 0.641155                                                       | -0.011582 | 0,112665 |
| 0.630F-11 | 79649000 | 23.75        | 0.638455                                                       | -0.011703 | 0.111500 |
| 0.400F-11 | 0.064316 | 23.83        | 0.635879                                                       | -0.011821 | 0,110369 |
| 0.250F-11 | 0,063666 | 23.92        | 0.633293                                                       | -0.011942 | 0,109273 |
| 0.160F-11 | 0.063067 | 24.00        | 0.630907                                                       | -0.012055 | 0.108244 |
| 0.100E-11 | 0.062453 | 54.09        | 0.628465                                                       | -0.012174 | 0.107191 |
| 0.630E-12 | 0.061867 | 24.17        | 0.626132                                                       | -0.012289 | 0.106184 |
| 0.400E-12 | 0.061304 | 24.25        | 0.623901                                                       | -0.012402 | 0,105221 |
| 0.250E-12 | 0.060741 | 24.33        | 0.621654                                                       | -0.012517 | 0.104252 |
| 0.160E-12 | 0,060218 | 24.41        | 0.619576                                                       | -0.012625 | 0.103356 |
| 0.100E-12 | 0.059683 | 24.48        | 0.617444                                                       | -0-012739 | 0.102436 |
| 0.630E-13 | 0.059169 | 24.56        | 0.615402                                                       | •0.012849 | 0.101555 |
| 0.400E-13 | 0.058677 | 24.63        | 0.613444                                                       | -0.012957 | 0.100710 |
| 0.250E-13 | 0.058181 | 24.70        | 0.611469                                                       | -0.013068 | 0.099858 |
| 0.160E-13 | 0.057721 | 24.77        | 0.609638                                                       | -0.013172 | 0.099068 |
| 0.100F-13 | 0.057248 | 24.84        | 0.607756                                                       | -0.013281 | 0.098256 |
| 0.630E-14 | 0.056793 | 24.91        | 0.605950                                                       | -0.013387 | 0.097477 |
| 0.400E-14 | 0.056357 | 24.98        | 0.604214                                                       | -0.013490 | 0.096728 |
| 0.250E-14 | 0.055916 | 25.05        | 0.602460                                                       | -0.013597 | 0.095972 |
| 0.160F-14 | 0.055507 | 25.11        | 0.600831                                                       | -0.013697 | 0.095269 |
| 0.100E-14 | 0.055085 | 25.18        | 0.599154                                                       | -0.013802 | 0.094545 |

| Ŧ                                                                                                                                                                       | * SIGNAL POWER TO NOISE POWER IN DECIBLES.  * ADAPTIVE THRESHOLD AMPLITUDE TO D RATIO.  * DERIVATIVE OF PSEUDO ERROR RATE MITH RESPECT TO A / D RATIO.  * QUASILINEAR TIME COMPAND OF THE ADAPTIVE THRESHOLD  LOOP FOR SMALL CHANGES AROUND STEADY STATE VALUES  WHEN BITE RATE * 12552600. AND ERROR SIGNAL  DIVIDER RATIO INTO D/A CONVERTER **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ×                                                                                                                                                                       | ١٩,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| S FC                                                                                                                                                                    | SHOW<br>NAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RAT                                                                                                                                                                     | YAL STOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A 40                                                                                                                                                                    | SA KE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| H LEV                                                                                                                                                                   | THE THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FER                                                                                                                                                                     | A POTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CIS .                                                                                                                                                                   | STATE OF THE STATE |
| NA TE                                                                                                                                                                   | # 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TAN O'C                                                                                                                                                                 | CAN TO THE COLUMN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| OIS<br>WWB                                                                                                                                                              | SE AMP<br>NST<br>BAST<br>D/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| HAL<br>TERS                                                                                                                                                             | T T T T T T T T T T T T T T T T T T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| * MALF OF THE MORMAL DISTANCE BETWEEN DATA LEVELS FOR THE THE THREE LEVEL & DECISION LEVEL. * AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO. ** PMS SIGNAL GATIO. ** | SIGNAL POWER TO NOISE POWER IN DECI<br>DAPTIVE THRESHOLD AMPLITUDE TO DI<br>PERIVATIVE DE PSEUDO ERROR RATE WIT<br>NUASILINEAR TIME CONSTANT OF THE AL<br>COOP FOR SMALL CHANGES AROUND THE AL<br>HEN BITE RATE # 12552600. AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| THE THE                                                                                                                                                                 | SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| THY<br>OUT                                                                                                                                                              | PER SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15 E                                                                                                                                                                    | LASI<br>VIDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1 44                                                                                                                                                                    | 04C05F0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 110                                                                                                                                                                     | ON TAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NOMENCLATURE:<br>D<br>ATDR<br>N / S RATIO                                                                                                                               | SNR<br>A / D RATIO<br>DERIV PER WRT<br>TIME CONSTANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NOMEN<br>D A T D R                                                                                                                                                      | SNR<br>DERIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ZO 4Z                                                                                                                                                                   | v <0+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| 00720      | 13020 |      | 21848  | 22860   | 91872 | 20859   | .19928  | .19109  | .18450  | .17853  | .17339  | .16887  | .16462  | .16092  | 15731   | 19401   | .15096  | .14799  | .14534  | .14269  | 14022   | 13791  | 13364   | 19161  | 12061   | 12772  | 12801  | 0.124251 | .12257  | .12098  | .11948  | .11798  | 11661   | 112611  | 11763   | 11137   | 11021   | .10903  | .10790  | .10682  | 10574   | 16372   | 10275   | .10182  | .10088  | 10005   | .09913  | 77860   | 64460   | 00697 | 00500   | 09433   | 09360   | .09287  | .09219  | .09140  |
|------------|-------|------|--------|---------|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------|--------|---------|--------|--------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------|---------|---------|---------|---------|---------|---------|
| 01342      | 0000  | 1000 |        | 6.00578 | 00000 | 0.00625 | 0.00654 | D.00682 | 0.00707 | 0.00730 | 0.00752 | 0.00772 | 0.00792 | 0.00610 | 0.00829 | 0.00847 | 0.00864 | 0.00681 | 0.00897 | 0.00914 | 0.00930 | 99600  | 29600 0 | 40000  | 24400-0 | 00100  | 2010   | 0.010502 | 0.01064 | 0.01078 | 0.01092 | 0.01106 | 0.01119 | 201132  | 0.01158 | 0.01171 | 0.01184 | 0.01196 | 0.01209 | 0.01221 | 0.01234 | 0.01249 | 0.01269 | 0.01281 | 0.01293 | 0.01304 | 0.01316 | 0.01327 | 9661090 | 14510 | 0.01301 | 0.01383 | 0.01394 | 0.01405 | 0.01415 | 0.01426 |
| MAS CALL   | 91640 | 200  | 0240   | 11400   | 48284 | 86551   | .84979  | .83526  | .82280  | .81085  | 80008   | .79030  | .78091  | .77259  | .76439  | .75682  | .74982  | .74299  | .73685  | .73073  | 72501   | 11967  | 0417    | 20407  |         | 40407  | 4018   | 68801    | .68412  | **089*  | .67696  | 67348   | 06/030  | 00499   | 66108   | .65816  | .65547  | .65273  | .65011  | .64762  | 516491  | 1076    | 63819   | .63603  | .63385  | .63184  | .62978  | 001700  | 16639   | 42223 | 62040   | 61866   | .61698  | .61528  | .61370  | .61208  |
| MODE. TANK |       |      |        |         | 1     | 8.7     | 6       | 9.2     | 9.5     | 1.6     | 6       |         | 4.0     | 0.5     | 1.0     | 6.0     | :       |         | 4.      | 9.      | 7.7     | 6.0    | 2.      |        | 2.4     |        | ,,     | 2.8      | 5.9     | 3.0     | 3.1     | 2.6     |         |         | 3.6     | 3.7     | 3.8     | 3.9     | 0.      |         | 7.      |         | 4       | 4.5     | 9.      | 1.1     |         | 0 0     |         |       |         | 5.2     | 5.2     | 5.3     | 3.4     | 5.4     |
| -          |       |      | 12046  | 12474   | 12011 | 11601   | 11235   | 10890   | .10588  | 10296   | 10030   | .09787  | .09553  | 97660   | .09140  | .08951  | .08776  | •0980   | .08451  | .08297  | .08154  | 02080  | 188/0   | 2447   | 07534   | 07427  | 07322  | 25       | .07128  | .07035  | 97690   | 10890   | 18290   | 06423   | 06550   | 06476   | .06409  | .06340  | .06275  | .06212  | 64190   | 26090   | .05975  | .05921  | .05867  | .05816  | 05764   | 27.70   | 05410   | 05575 | 05520   | 05485   | .05443  | .05401  | .05361  | .05320  |
| 15 IN DE   | A SOF | 2000 | 2606-0 | 140F    | 1006  | 630E-0  | 400E-0  | 250E-0  | 160E-0  | 100E-0  | 630E-0  | 400E-0  | .250E-0 | .160E-0 | .100E-0 | .630E-0 | ******  | .250E-0 | .160E-0 | 100E-0  | 630E-0  | 400E-0 | 20057   | 0-1001 | 1000    | ANDE-D | 250F-0 | 9        | .100E-0 | 0-30E9· | 400E-0  | .250E-0 | 1605-0  | -100E-0 | 400F-1  | 250E-1  | .160E-1 | .100E-1 | .630E-1 | -400E-1 | .250E-1 | TOOL    | 630E-1  | .400E-1 | .250E-1 | .160E-1 | .100E-1 | -2000   | 250F-1  | 1 ANF | 1006-1  | 630E-1  | 400E-1  | .250E-1 | .160E-1 | .100E-1 |

| TABLES   |
|----------|
| MONITOR  |
| PATTERN  |
| FYE      |
| BASFBAND |

4

| AIT FRRDA | SIN      | SNR   | 0 / V    | PE        | TIME     |
|-----------|----------|-------|----------|-----------|----------|
| RATE      | RATTO    | 1N 08 | RATIO    | WRT A / D | CONSTANT |
|           | 14929    | 14.67 | 0.974041 | 01342     | 00720    |
| 0-630F-03 | 0.141847 | 16.96 | 0.962181 | -0.009374 | 0-139206 |
| 0-400F-03 | 0,135465 | 17.36 | 0.945869 | 0.00703   | 18555    |
| 0.250F-03 | 0.129654 | 17.74 | 0.924981 | 0.00597   | 21848    |
| 160F-0    | 0,124749 | 18.08 | 0.904112 | 0.00578   | 22560    |
| 0.100F-03 | 0,120119 | 18.41 | 0.883545 | 0.00596   | 21872    |
| 0-630E-04 | 0.116019 | 18.71 | 0.865517 | -0.006256 | 20859    |
|           | 0,11235A | 18.99 | 0.849791 | -0.006548 | 19928    |
| 0.250F-04 | 0.108901 | 19.26 | 0.835261 | -0.006829 | 19109    |
| 0-160F-04 | 0.105A88 | 19.50 | 0.822807 | -0.007073 | 18450    |
| 0.100F-04 | 0,102963 | 19.75 | 0.810857 | -0.007309 | 17853    |
| 0.630F-05 | 0.100305 | 19.97 | 0.800088 | -0.007526 | 17339    |
| 0.400F-05 | 0.097879 | 20.19 | 0.790306 | -0.007727 | 16887    |
| 0.250F-05 | 0.095538 | 20.40 | 0.780911 | -0.007926 | 16462    |
| 0.160F-05 | 0.093461 | 20.59 | 0.772592 | -0.008109 | 16092    |
| 0.100F-05 | 0.091409 | 20.78 | 0.764391 | -0.008295 | 15731    |
| 0.630E-06 | 0.089516 | 20.06 | 0.756829 | -0.008473 | 15401    |
| 0-400F-0  | 0.087762 | 21.13 | 0.749829 | -0.008644 | .15096   |
| 0.250F-06 | 0.086049 | 21.31 | 0.742996 | -0.008817 | .14799   |
| 0.160F-06 | 0.084511 | 21.46 | 0.736859 | #16800°0- | .14534   |
| 0.100F-06 | 0.082974 | 21.62 | 0.730732 | -0.009145 | .14269   |
| 0.630F-07 | 0.081541 | 21.77 | 9.725018 | -0.009306 | .14022   |
| 0.400F-07 | 0.080200 | 21.92 | 0.719674 | -0.009462 | .13791   |
| 0.250F-07 | 0.078879 | 52.06 | 0.714407 | 30962     | .13564   |
| 0.160F-07 | 0.077682 | 61.55 | 0.709636 | 20076     | 13358    |
| 0-1001-01 | 0.07647R | 22,33 | 0.704835 | 20665     | 13151    |
| 0.630F-08 | 0.075346 | 52.46 | 0.700322 | 10010     | .12956   |
| 0-400F-08 | 0.074279 | 22.58 | 0.696072 | 1021      | .12772   |
| 0.250E-08 | 0,073221 | 22.71 | 0.691855 | 51036     | 12591    |
| 0-160F-08 | 0,072257 | 27.82 | 0.688011 | 01050     | .12425   |
| 0.100F-08 | 0,071281 | 22.94 | 0.684120 | 01064     | .12257   |
| 0.630F-09 | 0.070358 | 53.05 | 0.680442 | 0107      | .12098   |
| 0-400F-0  | 787690"0 | 23.16 | 0.676960 | 01092     | .11948   |
| 0.250F-09 | 0,058613 | 23.27 | 0.673488 | 0110      | .11798   |
| 0-160F-09 | 0.067815 | 23.37 | 0.670307 | 0.01119   | .11661   |
| 0010010   |          |       | -        |           |          |

| # MALF OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE | THE THRFE LEVEL EYE I.E., DECISION LEVEL. | IS NOTSE TO RMS SIGNAL RATTO. | GNAL POWER TO NOISE POWER IN DECIBLES. | SAPTIVE THRESHOLD AMPLITUDE TO D RATIO. | RIVATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A / D RATI | * DUASILINEAR TIME CONSTANT OF THE ADAPTIVE THRESHOLD | JOP FOR SMALL CHANGES AROUND STEADY STATE VALUES | FEN RITE RATE # 12592600. AND ERROR SIGNAL | DIVIDER RATIO INTO DIA CONVERTER . 4. |
|-----------------------------------------------------------|-------------------------------------------|-------------------------------|----------------------------------------|-----------------------------------------|----------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|--------------------------------------------|---------------------------------------|
| 1                                                         |                                           | 4                             |                                        | * AD                                    | # DE                                                     | 200                                                   | 2                                                | F                                          | 6                                     |
| NOMENCLATURE:                                             | ATDR                                      | N . RATTO                     |                                        |                                         | DERTV PER MAT                                            | TIME CONSTANT                                         |                                                  |                                            |                                       |

| PIT FRROR | S / Z    | SNR   | 0 / V    |           | TIME     |
|-----------|----------|-------|----------|-----------|----------|
| PATE      | RATIO    | 1N DB | RATIO    | WRT A / D | CONSTANT |
| 0.630F-10 | 0.066234 | 23.58 | 0.664002 | -0-011457 | 0.113893 |
| 0.400F-10 | 0.065501 | 23.48 | 0.661082 | -0.011585 | 0.112634 |
| 0.250F-10 | 0.064768 | 23.77 | 0.658160 | -0.011717 | 0.111373 |
| 0.160F-10 | 0.064094 | 23.86 | 0.655473 | -0.011840 | 0.110214 |
| 0.100F-10 | 0.063406 | 23.96 | 0.652730 | -0.011968 | 0.109031 |
| 0.630E-11 | 0.062750 | 24.05 | 0.650118 | -0.012093 | 0.107903 |
| 0.400E-11 | 0.062125 | 24.13 | 0.647625 | -0.012215 | 0.106828 |
| 0.250E-11 | 0.061497 | 24.22 | 0.645127 | -0.012340 | 0.105748 |
| 0.160E-11 | 0.060918 | 24.31 | 0.642813 | -0.012457 | 0.104752 |
| 0.100E-11 | 0.060325 | 24.39 | 0.640450 | -0.012580 | 0,103733 |
| 0.630E-12 | 0.059758 | 24.47 | 0,638193 | -0.012699 | 0,102759 |
| 0.400E-12 | 0.059217 | 24.55 | 0.636033 | -0.012815 | 0.101827 |
| 0.250E-12 | 0.058671 | 24.63 | 0.633858 | -0.012934 | 0.100889 |
| 0.160F-12 | 0.058167 | 24.71 | 0.631848 | -0.013046 | 0,100022 |
| 0.100E-12 | 0.057649 | 24.78 | 0.629784 | -0.013163 | 0.099131 |
| 0.630E-13 | 0.057153 | 24.86 | 0.627808 | -0.013278 | 0.098279 |
| 0.400E-13 | 0.056678 | 24.93 | 0.625914 | -0.013389 | 0.097462 |
| 0.250E-13 | 0.056198 | 25.01 | 0.624002 | .0.013503 | 0.096637 |
| 0.160F-13 | 0.055754 | 25.07 | 0.622230 | -0.013611 | 0.095873 |
| 0.100F-13 | 0.055297 | 25.15 | 0.620409 | -0.013723 | 0.095087 |
| 0.630E-14 | 0.054858 | 25.72 | 0.618661 | -0.013833 | 0.094333 |
| 0.400E-14 | 0.054437 | 25.28 | 0.616982 | -0.013940 | 0.093608 |
| 0.250E-14 | 0.054011 | 25.35 | 0.615284 | -0.014050 | 0.092876 |
| 0.160E-14 | 0.053616 | 25.41 | 0.613708 | -0.014154 | 0.092196 |
| 0.100F-14 | 0.053208 | 25.48 | 0.612085 | -0.014262 | 0.091496 |

NOMENCLATURE:

HALF OF THE NORMAL DISTANCE BETWEEN DATA LEVELS FOR THE THEFTELEVEL EYE I.E., DEFISION LEVEL.

AIDR = AMPLITUDE OF INTERSYMBOL INTERFERENCE TO D RATIO.

N / S RATIO = RAYS NOTSE TO RATIO.

S SIGNAL POWER TO NOTSE POWER IN DECIBLES.

A / D RATIO = ADADTIVE THRESHOLD AMPLITUDE TO D RATIO.

OFRIV PER WRT = DERIVATIVE OF PSEUDO ERROR RATE WITH RESPECT TO A / D RATIO.

TIME CONSTANT = QUASILITINER TIME CONSTANT OF THE ADADTIVE THRESHOLD

LOOP FOR SMALL CHANGES AROUND STEADY STATE VALUES

WHEN RITE RATE = 12552600. AND ERROR SIGNAL

OIVIDER PATIO INTO O/A CONVERTER =