I Questions de cours

- 1 Énoncer et démontrer le critère de convergence pour les séries de Riemann.
- 2 Énoncer et démontrer le lien entre isomorphismes et matrice inversibles ainsi qu'entre bases et matrices inversibles.

II Exercices sur les séries numériques

Exercice 1:

- 1 Justifier la convergence de la série $\sum_{k\geq 0} \frac{(-1)^k}{(2k+1)}$.
- 2 Soit $n \in \mathbb{N}$.

Calculer, pour $x \in [0; 1]$, la somme $\sum_{k=0}^{n} (-1)^k x^{2k}$.

3 - En intégrant l'égalité précédente entre 0 et 1, montrer que $\sum_{k=0}^{+\infty} \frac{(-1)^k}{2k+1} = \frac{\pi}{4}.$

Exercice 2:

Pour tout entier naturel $n \ge 2$, on pose $u_n = \frac{1}{\sqrt{n-1}} - \frac{2}{\sqrt{n}} + \frac{1}{\sqrt{n+1}}$.

- 1 Montrer que la série de terme général u_n converge
- 2 Calculer $\sum_{n=2}^{+\infty} u_n$.

Exercice 3:

Pour tout $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=1}^n \sqrt{k}$.

- 1 Préciser la limite de la suite $(S_n)_{n\in\mathbb{N}^*}$.
- 2 Pour $k \in \mathbb{N}^*$, comparer $\int_{k-1}^k \sqrt{t} dt$, \sqrt{k} et $\int_{k}^{k+1} \sqrt{t} dt$.
- 3 En déduire un équivalent de S_n quand n tend vers $+\infty$.

III Exercices sur la représentation matricielle des applications linéaires

Exercice 4:

On considère g l'endomorphisme de \mathbb{R}^3 canoniquement associé à $A = \begin{pmatrix} 1 & 4 & 4 \\ -1 & -3 & -3 \\ 0 & 2 & 3 \end{pmatrix}$, $\mathcal{C} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et on pose :

$$\begin{cases} u = e_1 - e_2 + e_3 \\ v = 2e_1 - e_2 + e_3 \\ w = 2e_1 - 2e_2 + e_3 \end{cases}$$

- 1 Montrer que $\mathcal{B} = (u, v, w)$ est une base de \mathbb{R}^3 .
- 2 Déterminer la matrice de passage P de C à \mathcal{B} et calculer P^{-1} .
- 3 Déterminer la matrice R de q dans la base \mathcal{B} .
- 4 Calculer R^4 et en déduire $A^{\bar{4}}$.

Exercice 5:

Soit f l'endomorphisme de \mathbb{R}^3 canoniquement associé à $M=\begin{pmatrix}0&0&1\\0&0&1\\1&1&0\end{pmatrix}$ et on pose :

$$u_1 = \begin{pmatrix} 1 & -1 & 0 \end{pmatrix}, \ u_2 = \begin{pmatrix} 1 & 1 & \sqrt{2} \end{pmatrix} \text{ et } u_3 = \begin{pmatrix} 1 & 1 & -\sqrt{2} \end{pmatrix}$$

- 1 Montrer que $\mathcal{B}' = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 .
- 2 Calculer $f(u_1)$, $f(u_2)$ et $f(u_3)$. Que remarque-t-on?
- 3 Préciser $M' = \operatorname{Mat}_{\mathcal{B}'}(f)$ puis rappeler quelle relation on a entre M et M'.
- 4 En déduire la matrice M^n pour tout $n \in \mathbb{N}$.

$\underline{Exercice\ 6}$:

On considère f l'endomorphisme de \mathbb{R}^4 canoniquement associé à $A = \begin{pmatrix} 1 & 2 & 4 & 3 \\ 1 & 0 & 0 & 3 \\ 1 & 0 & 0 & 3 \\ 1 & 2 & 4 & 3 \end{pmatrix}$,

 $\mathcal{B} = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 et on pose :

$$u_1 = e_1 + e_2 + e_3 + e_4$$
 et $u_2e_1 + e_4$

- 1 Expliquer pourquoi (u_1, u_2) est une base de l'image de f.
- 2 Déterminer une base (u_3, u_4) du noyau de f.
- 3 Démontrer que $\operatorname{Im}(f)$ et $\operatorname{Ker}(f)$ sont supplémentaires dans \mathbb{R}^4 .
- 4 On note \widetilde{f} l'endomorphisme de $\mathrm{Im}(f)$ défini par $\widetilde{f}(u)=f(u)$.

Déterminer la matrice de \widetilde{f} dans la base (u_1, u_2) .