Package 'GBClust'

November 27, 2020

Type Package
Title Clustering with Gibbs posteriors
Version 0.0.1
Date 2020-11-25
Author Tommaso Rigon
Maintainer Tommaso Rigon <tommaso.rigon@unimib.it></tommaso.rigon@unimib.it>
Description Clustering with Gibbs posteriors and related functions
Encoding UTF-8
License GPL-3
LazyData TRUE
Imports Rcpp (>= 1.0.2), ggplot2, cluster
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.1.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
R topics documented:
comp_medoids
kbinary
kbinary_gibbs
kbinary_select
kdiss
kdiss_select
kmeans2
kmeans2_select
kmeans_gibbs
Minkowski_gibbs
Index

2 kbinary

comp	medoids

Computation of the medoids

Description

Compute the medoids of a given clustering solution.

Usage

```
comp_medoids(D, cluster)
```

Arguments

D A n x n numeric matrix with the dissimilarities, typically the output of dist or

daisy.

cluster A clustering solution, typically the output of kdiss.

Value

medoids Labels of the medoids

kbinary

K-binary clustering

Description

Perform k-binary clustering

Usage

```
kbinary(x, k, nstart = 1, trace = FALSE)
```

Arguments

X	numeric matrix of data, or an object that can be coerced to such a matrix (such
	as a numeric vector or a data frame with all numeric columns).

k The number of clusters to be considered. A random set of (distinct) rows in x is

chosen as the initial centres.

nstart Number of random sets that has been chosen

trace logical: if true, tracing information on the progress of the algorithm is produced.

Value

- A The letters of the alphabet.
- B A vector of numbers.

kbinary_gibbs 3

kbinary_gibbs	K-dissimilarities algorithm with uncertainty quantification
---------------	---

Description

Perform the Gibbs-sampling for the k-dissimilarities algorithm using the Minkowski distance; see dist.

Usage

```
kbinary_gibbs(
    x,
    k,
    lambda = 1,
    R = 1000,
    burn_in = 1000,
    nstart = 10,
    trace = FALSE
)
```

Arguments

X	numeric matrix of of the data
k	The number of clusters to be considered.
R	Number of MCMC samples after burn-in
burn_in	Number of MCMC samples to be discarded as burn-in period
nstart	Number of random initializations for the k-means algorithm
trace	logical: if true, tracing information on the progress of the algorithm is produced.

Value

G The letters of the alphabet lambda A vector of numbers loss A vector of numbers G_map A vector of numbers loss_map A vector of numbers

kbinary_select

Selection of the number of cluster for the k-binary algorithm

Description

It displays the value of the loss function for various choices of k

Usage

```
kbinary_select(x, k_max, nstart = 1)
```

4 kdiss

Arguments

X	numeric matrix of data, or an object that can be coerced to such a matrix (such as a numeric vector or a data frame with all numeric columns).
k_max	The maximum number of clusters to be considered. A random set of (distinct) rows in x is chosen as the initial centres.
nstart	Number of random sets that has been chosen

Value

It plots the loss function for different clustering solutions

kdiss	K-dissimilarities algorithm	

Description

Perform the k-dissimilarities algorithm described in Rigon, Herring and Dunson (2020).

Usage

```
kdiss(D, k, nstart = 1, trace = FALSE)
```

Arguments

D		A n x n numeric matrix with the dissimilarities, typically the output of dist or daisy.
k		The number of clusters to be considered. See kdiss_select for selection criteria.
ns	tart	Number of random initializations.
tr	ace	logical: if true, tracing information on the progress of the algorithm is produced

Value

cluster Labels of the clusters at convergence

loss Numeric value of the loss function at convergence

kdiss_select 5

kdiss_select	Selection of the number of cluster for the k-dissimilarities algorithm

Description

It displays the value of the loss function / average silhouette width, for different values of k

Usage

```
kdiss_select(D, k_max, nstart = 1, method = "elbow")
```

Arguments

D	A $n \times n$ numeric matrix with the dissimilarities, typically the output of dist or daisy.
k_max	Maximum number of clusters to be considered.
nstart	Number of random initializations.
method	The graph that will be displayed. Supported options are method="elbow", which displays the loss function, or method="silhouette". See silhouette

for details about the latter.

Value

It return a ggplot2 graph of the loss function / average silhouette width, for $k=1, \ldots, k_max$.

Description

Perform k-means and k-means^2 on a data matrix

Usage

```
kmeans2(x, k, nstart = 1, algorithm = "kmeans", trace = FALSE)
```

Arguments

X	numeric matrix of data, or an object that can be coerced to such a matrix (such as a numeric vector or a data frame with all numeric columns).
k	The number of clusters to be considered. A random set of (distinct) rows in x is chosen as the initial centres.
nstart	Number of random sets that has been chosen
algorithm	The algorithm to be used
trace	logical: if true, tracing information on the progress of the algorithm is produced.

Value

- A The letters of the alphabet.
- B A vector of numbers.

6 kmeans_gibbs

	_
kmeans2	select

Selection of the number of cluster for the k-dissimilarities algorithm

Description

It displays the value of the loss function for various choices of k

Usage

```
kmeans2_select(x, k_max, nstart = 1, algorithm = "kmeans")
```

Arguments

Х	numeric matrix of data, or an object that can be coerced to such a matrix (such as a numeric vector or a data frame with all numeric columns).
k_max	The maximum number of clusters to be considered. A random set of (distinct) rows in x is chosen as the initial centres.
nstart	Number of random sets that has been chosen
algorithm	The algorithm to be used, either kmeans or kmeans2

Value

It plots the loss function for different clustering solutions

kmeans_gibbs

K-means clustering with uncertainty quantification

Description

Perform the Gibbs-sampling for the k-means algorithm, as described in Rigon, Herring and Dunson (2020).

Usage

```
kmeans_gibbs(
    x,
    k,
    a_lambda,
    b_lambda,
    R = 1000,
    burn_in = 1000,
    nstart = 10,
    trace = FALSE
)
```

Minkowski_gibbs 7

Arguments

Х	A n x d numeric matrix of the data.
k	The number of clusters to be considered.
a_lambda	Hyperparameter of the Gamma prior on the scale parameter
b_lambda	Hyperparameter of the Gamma prior on on the scale parameter
R	Number of MCMC samples after burn-in
burn_in	Number of MCMC samples to be discarded as burn-in period
nstart	Number of random initializations for the k-means algorithm
trace	logical: if true, tracing information on the progress of the algorithm is produced.

Value

G ARxn matrix including the cluster labels for each MCMC iteration lambda ARvector of numbers loss Avector of numbers G_map Avector of numbers loss_map Avector of numbers

Minkowski_gibbs

K-dissimilarities algorithm with uncertainty quantification

Description

Perform the Gibbs-sampling for the k-dissimilarities algorithm using the Minkowski distance; see dist. This function is complementary to kdiss, which may be used to get a point estimate.

Usage

```
Minkowski_gibbs(
    x,
    k,
    p,
    a_lambda = 0,
    b_lambda = 0,
    R = 1000,
    burn_in = 1000,
    nstart = 10,
    trace = FALSE
)
```

Arguments

```
x numeric matrix of of the data
k The number of clusters to be considered.
p Power of the Minkowski distance
a_lambda Hyperparameter of the Gamma prior on the scale parameter. The default a_lambda = 0 leads to an improper prior.
```

8 Minkowski_gibbs

b_lambda Hyperparameter of the Gamma prior on on the scale parameter. The default

 a_1 ambda = 0 leads to an improper prior.

R Number of MCMC samples after burn-in.

burn_in Number of MCMC samples to be discarded as burn-in period.

nstart Number of random initializations for the kdiss algorithm, used to initialize the

MCMC chain.

trace logical: if true, tracing information on the progress of the algorithm is produced.

Value

G Labels of the clusters at each MCMC iteration.

lambda Numeric vector of the values of lambda at each MCMC iteration.

loss Numeric vector of the loss function at each MCMC iteration.

G_map Labels of the clusters obtained using kdiss, representing the maximum a posteriori.

loss_map Numeric value of the loss function obtained using kdiss, representing the maximized loss.

Index

```
comp_medoids, 2
daisy, 2, 4, 5
dist, 2-5, 7
ggplot2, 5
kbinary, 2
kbinary_gibbs, 3
kbinary_select, 3
kdiss, 2, 4, 7, 8
kdiss_select, 4, 5
kmeans2, 5
kmeans2_select, 6
kmeans_gibbs, 6
Minkowski_gibbs, 7
silhouette, 5
```