Introduction of Reinforcement Learning

Deep Reinforcement Learning

Deep Reinforcement Learning: AI = RL + DL

Reference

- Textbook: Reinforcement Learning: An Introduction
 - http://incompleteideas.net/sutton/book/the-book.html
- Lectures of David Silver
 - http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.ht ml (10 lectures, around 1:30 each)
 - http://videolectures.net/rldm2015_silver_reinforcement_learning/ (Deep Reinforcement Learning)
- Lectures of John Schulman
 - https://youtu.be/aUrX-rP_ss4

Scenario of Reinforcement Learning

Machine會調整它採取的行為使得它得到的reward可以最大化

Scenario of Reinforcement Learning Agent learns to ta

https://yoast.com/how-to-clean-site-structure/

Machine Learning ≈ Looking for a Function

machine找出的function是根據得到的reward訓練出來

Learning to play Go

Learning to play Go

Agent learns to take actions maximizing expected reward.

不好train,因為只有在最後一步下完(整盤棋結束得到輸贏結果)才能得到reward

Learning to play Go

照著棋譜學

Supervised:

Learning from teacher

Next move: "5-5"

Next move: "3-3"

Reinforcement Learning

Learning from experience

讓machine直接跟人pk,根據輸贏結果決定如何學習

First move

..... many moves

Win!

(Two agents play with each other.)

先學到一個程度在開始learn出兩個machine自己互相下

Alpha Go is supervised learning + reinforcement learning.

https://image.freepik.com/free-vector/variety-of-human-avatars_23-2147506285.jpg

http://www.freepik.com/free-vector/variety-of-human-avatars 766615.htm

Machine obtains feedback from user

Chat-bot learns to maximize the expected reward

機器會想辦法maximize得到的reward

然而跟人對話到結束是很花時間的,因此可以learn兩個machine護療

• Let two agents talk to each other (sometimes generate good dialogue, sometimes bad)

How old are you?

HOW

How old are you?

See you.

I though you were 12.

- By this approach, we can generate a lot of dialogues.
- Use some pre-defined rules to evaluate the goodness of a dialogue 互聊完後再根據定義好的function去label這些對話內容

Machine learns from the evaluation

Deep Reinforcement Learning for Dialogue Generation https://arxiv.org/pdf/1606.01541v3.pdf

• Supervised

"Hello"

Say "Hi"

"Bye bye"

Say "Good bye"

Reinforcement

More applications

- Flying Helicopter
 - https://www.youtube.com/watch?v=0JL04JJjocc
- Driving
 - https://www.youtube.com/watch?v=0xo1Ldx3L5Q
- Robot
 - https://www.youtube.com/watch?v=370cT-OAzzM
- Google Cuts Its Giant Electricity Bill With DeepMind-Powered Al 利用RL使他們的server省下大量的電
 - http://www.bloomberg.com/news/articles/2016-07-19/google-cuts-its-giant-electricity-bill-with-deepmind-powered-ai
- Text generation
 - https://www.youtube.com/watch?v=pbQ4qe8EwLo

雖然遊戲中也是有遊戲的AI,但是他們都是已經寫好的定義

Widely studies: 而我們這邊是讓machine以人的觀點來玩遊戲

Gym: https://gym.openai.com/

Universe: https://openai.com/blog/universe/

Machine learns to play video games as human players

- What machine observes is pixels
- Machine learns to take proper action itself

Space invader

Termination: all the aliens are killed, or your spaceship is destroyed.

- Space invader
 - Play yourself: http://www.2600online.com/spaceinvaders.htm
 - How about machine: https://gym.openai.com/evaluations/eval_Eduo zx4HRyqgTCVk9ltw

為了讓machine看到現在的 observation時也能記得之前發生的過程,我們可以將input改成輸入前一段 時間所看到的畫面

Usually there is some randomness in the environment

Start with observation s_1

Observation s_2

Observation s_3

After many turns

Game Over (spaceship destroyed)

Obtain reward r_T

一場遊戲 This is an *episode*.

Learn to maximize the expected cumulative reward per episode

Action a_T

Properties of Reinforcement Learning

- Reward delay 在這個遊戲中,只有開火才能得到reward
 - In space invader, only "fire" obtains reward
 - Although the moving before "fire" is important
- In Go playing, it may be better to sacrifice immediate reward to gain more long-term reward **犧牲短期利益換取最後最大的reward(策略)**• Agent's actions **affect the subsequent data it receives**
- - E.g. Exploration

不同action會影醒不同的結果,因此在學習的時 候要考量到不同可能的action initial讓他去學習

Outline

Alpha Go: policy-based + value-based + model-based

RL: model-based, Model-free

Model-based Approach

已經知道環境的狀況,並且訓練一個model,可以對未來狀況直接做預測

Policy-based Approach Learning an Actor

Three Steps for Deep Learning

define function set

Deep Learning is so simple

Neural network as Actor

RL之所以厲害是將所要找的function用DNN取代之

 Input of neural network: the observation of machine represented as a vector or a matrix

• Output neural network : each action corresponds to a

What is the benefit of using network instead of lookup table?

把本來要找的function(可能是table), 用NN取代,好處是generalization(一般

generalization

Three Steps for Deep Learning

Deep Learning is so simple

Goodness of Actor

一模一樣的action可能會產生不一樣的reward,因為環境有 隨機性的,舉例敵人不一定每次移動方向都一樣

Goodness of Actor

所以要計算的不是一個actor玩一次遊戲的結果,而是玩很多次後得到的reward之期望值

- Given an actor $\pi_{\theta}(s)$ with network parameter θ
- Use the actor $\pi_{\theta}(s)$ to play the video game
 - Start with observation s₁
 - Machine decides to take a_1
 - Machine obtains reward r_1
 - Machine sees observation s₂
 - Machine decides to take a_2
 - Machine obtains reward r_2
 - Machine sees observation s_3
 -
 - Machine decides to take a_T
 - Machine obtains reward r_T

END

Total reward: $R_{\theta} = \sum_{t=1}^{T} r_t$

Even with the same actor, R_{θ} is different each time

Randomness in the actor and the game

We define \overline{R}_{θ} as the expected value of R_{θ}

算玩很多次game的total reward之期望值

 \bar{R}_{θ} evaluates the goodness of an actor $\pi_{\theta}(s)$

Goodness of Actor

We define R_{θ} as the expected value of R_{θ}

trajectory,s1,s2..是環境的變動機率(遊戲決定),a1,a2

是機器決定之actor,而r1r2為reward,由遊戲決定

•
$$\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_T, a_T, r_T\}$$

$$P(\tau|\theta) =$$
 機器決定 遊戲決定 機器決定 遊戲決定 $p(s_1)p(a_1|s_1,\theta)p(r_1,s_2|s_1,a_1)p(a_2|s_2,\theta)p(r_2,s_3|s_2,a_2) \cdots$

not related to your actor

Control by your actor π_{θ}

Goodness of Actor

theta: 某一個actor

- An episode is considered as a trajectory au
 - $\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_T, a_T, r_T\}$
 - $R(\tau) = \sum_{t=1}^{T} r_t$
 - If you use an actor to play the game, each τ has a probability to be sampled
 - The probability depends on actor parameter θ :

$$\bar{R}_{\theta} = \sum_{\tau}^{P(\tau|\theta)} R(\tau) \frac{\text{每} \text{@}_{\tau} \text{之機率}}{P(\tau|\theta)} \approx \frac{1}{N} \sum_{n=1}^{N} \frac{\text{無法窮舉,因此改用sample逼近}}{R(\tau^n)} \text{ game N times,} \\ \text{obtain } \{\tau^1, \tau^2, \cdots, \tau^N\}$$

Sum over all possible trajectory

Sampling τ from $P(\tau|\theta)$ N times

Three Steps for Deep Learning

Deep Learning is so simple

Gradient Ascent

Problem statement

過去都用gradient ascent

$$\theta^* = \arg\max_{\theta} \bar{R}_{\theta}$$

- Gradient ascent
 - Start with θ^0

$$\bullet \ \theta^1 \leftarrow \theta^0 + \eta \nabla \bar{R}_{\theta^0}$$

•
$$\theta^2 \leftarrow \theta^1 + \eta \nabla \bar{R}_{\theta^1}$$

•

$$\theta = \{w_1, w_2, \cdots, b_1, \cdots\}$$

$$ablaar{R}_{ heta} = egin{bmatrix} \partial ar{R}_{ heta}/\partial w_1 \ \partial ar{R}_{ heta}/\partial w_2 \ dots \ \partial ar{R}_{ heta}/\partial b_1 \ dots \ \end{pmatrix}$$

只要 $P(\tau|\theta)$ 可微分即可,但是微分後無法用sample取代summation

Policy Gradient
$$\bar{R}_{\theta} = \sum_{\tau} R(\tau)P(\tau|\theta) \quad \nabla \bar{R}_{\theta} = ?$$

summation碰到 $P(\tau|\theta)$ 才能取sample,為此這邊做了一個trick

$$\nabla \bar{R}_{\theta} = \sum_{\tau} R(\tau) \nabla P(\tau | \theta) = \sum_{\tau} R(\tau) P(\tau | \theta) \frac{\nabla P(\tau | \theta)}{P(\tau | \theta)}$$

R(au) do not have to be differentiable 因為heta與他無關,不需微分 It can even be a black box.

$$= \sum_{\tau} R(\tau) P(\tau|\theta) \nabla log P(\tau|\theta) \qquad \frac{dlog(f(x))}{dx} = \frac{1}{f(x)} \frac{df(x)}{dx}$$

$$\approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \nabla log P(\tau^n|\theta) \qquad \text{Use } \pi_\theta \text{ to play the game N times,} \\ \text{Obtain } \{\tau^1, \tau^2, \cdots, \tau^N\}$$
換成sample

Policy Gradient

$$\nabla log P(\tau|\theta) = ?$$

•
$$\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_T, a_T, r_T\}$$

$$P(\tau|\theta) = p(s_1) \prod_{t=1}^{l} p(a_t|s_t, \theta) p(r_t, s_{t+1}|s_t, a_t)$$

 $logP(\tau|\theta)$

所有與θ無關的項可以刪去

$$= \frac{logp(s_1)}{logp(s_t)} + \sum_{t=1}^{r} logp(a_t|s_t, \theta) + \frac{logp(r_t, s_{t+1}|s_t, a_t)}{logp(s_t)}$$

$$\nabla log P(\tau|\theta) = \sum_{t=1}^{r} \nabla log p(a_t|s_t,\theta)$$

Ignore the terms not related to heta

Policy Gradient

$$\theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}}$$

$$\nabla log P(\tau|\theta)$$

$$= \sum_{t=1}^{T} \nabla log p(a_t|s_t,\theta)$$

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \nabla log P(\tau^{n} | \theta) = \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \sum_{t=1}^{T_{n}} \nabla log p(a_{t}^{n} | s_{t}^{n}, \theta)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla log p(a_t^n | s_t^n, \theta)$$

What if we replace $R(\tau^n)$ with r_t^n

If in τ^n machine takes a_t^n when seeing s_t^n in

 $R(\tau^n)$ is positive Tuning θ to increase $p(a_t^n|s_t^n)$

 $R(\tau^n)$ is negative Tuning θ to decrease $p(a_t^n|s_t^n)$

定要看完全程的reward在學習,不然以遊戲為例子,只有在開火的時候才有機會得到reward It is very important to consider the cumulative reward $R(\tau^n)$ of the whole trajectory τ^n instead of immediate reward r_t^n 這樣機器只會學到瘋狂開火

實際實作

Policy Gradient

Given actor parameter θ

$$\tau^{1} \colon (s_{1}^{1}, a_{1}^{1}) \quad R(\tau^{1})$$

$$(s_{2}^{1}, a_{2}^{1}) \quad R(\tau^{1})$$

$$\vdots \quad \vdots \quad \vdots$$

$$\tau^{2} \colon (s_{1}^{2}, a_{1}^{2}) \quad R(\tau^{2})$$

$$(s_{2}^{2}, a_{2}^{2}) \quad R(\tau^{2})$$

$$\vdots \quad \vdots$$

Update Model

$$\theta \leftarrow \theta + \eta \nabla \bar{R}_{\theta}$$

$$\nabla \bar{R}_{\theta} = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla logp(a_t^n | s_t^n, \theta)$$

Data Collection

Policy Gradient

把它當成分類問題

Considered as Classification Problem

minimize cross entropy

Minimize: $-\sum_{i=1}^{3} \hat{y}_i log y_i$

Maximize: $log y_i =$

logP("left"|s)

$$\theta \leftarrow \theta + \eta \nabla log P("left"|s)$$

解一個分類的問題,希望network的output越接近我們定義好的output越好

Policy Gradient

Given actor parameter heta

$$\tau^{1} \colon (s_{1}^{1}, a_{1}^{1}) \quad R(\tau^{1})$$

$$(s_{2}^{1}, a_{2}^{1}) \quad R(\tau^{1})$$

$$\vdots$$

$$\tau^{2} \colon (s_{1}^{2}, a_{1}^{2}) \quad R(\tau^{2})$$

$$(s_{2}^{2}, a_{2}^{2}) \quad R(\tau^{2})$$

$$\vdots$$

$$\vdots$$

$$\theta \leftarrow \theta + \eta \nabla \bar{R}_{\theta}$$
 $\nabla \bar{R}_{\theta} =$

先拿掉reward來看

的話就是一個很基

 $\frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n}$

本的分類問題

 $\nabla \log p(a_t^n | s_t^n, \theta)$

Policy Gradient

Given actor parameter θ

$$\theta \leftarrow \theta + \eta \nabla \bar{R}_{\theta}$$

$$\nabla \bar{R}_{\theta} =$$

$$\frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla log p(a_t^n | s_t^n, \theta)$$

Each training data is weighted by $R(\tau^n)$

因為reward是2因此複製兩次

$$s_1^1 \longrightarrow NN \longrightarrow a_1^1 = left$$

$$s_1^1 \longrightarrow NN \longrightarrow a_1^1 = left$$

$$\vdots$$

NN $\longrightarrow a_1^2 = fire$

因為reward是1因此複製1次

Add a Baseline

It is possible that $R(\tau^n)$ is always positive.

如果全部都有sample的話 It is probability ... 每項會根據reward上升 Ideal case b

如果只有一部份有 sample到,對於沒 sample到的項目相對 於下降 Sampling

The probability of the actions not sampled will decrease.

a

b

上述問題容易在reward都是正的或是負的情況都有可能會發

Value-based Approach Learning a Critic

Critic

他並不是輸出一個actor,critic只是評估一個actor好或是不好

A critic does not determine the action.

• Given an actor π , it evaluates the how good the actor is

但是actor可以從critic中推出 An actor can be found from a critic.

e.g. Q-learning

Critic

s:state

output:今天agent看到這個state後output的cumulative reward有多大

- State value function $V^{\pi}(s)$
 - When using actor π, the cumulated reward expects to be obtained after seeing observation (state) s 不同的actor即使在同一個state,接下來得到的 reward有可能不一樣 (depends on π...actor)

 $V^{\pi}(s)$ is large

 $V^{\pi}(s)$ is smaller

假設actor pi很會玩遊戲則Vpi在這情形會很大,因為有很多外星人殺

Critic

V以前的阿光(大馬步飛) = badV變強的阿光(大馬步飛) = goodactor

value function

How to estimate $V^{\pi}(s)$

- Monte-Carlo based approach (MC)
 - The critic watches π playing the game

After seeing s_a ,

Until the end of the episode, the cumulated reward is G_a

After seeing s_b ,

Until the end of the episode, the cumulated reward is G_h

$$S_b \longrightarrow V^{\pi} \longrightarrow V^{\pi}(s_b) \longrightarrow G_b$$

How to estimate $V^{\pi}(s)$

 Temporal-difference approach (TD)

假設只觀察到狺些

Some applications have very long episodes, so that delaying all learning until an episode's end is too slow.

蒙地卡羅

MC v.s. TD

 $S_a \rightarrow V^{\pi} \rightarrow V^{\pi}(S_a) \leftrightarrow G_a$

Larger variance

unbiased

走很多次Sa每次output都不一樣,最後取平均

unbias但是variance很大(因為每次走都不一樣,累積起來有很大的隨機性)

MC v.s. TD

[Sutton, v2, Example 6.4]

The critic has the following 8 episodes

•
$$s_a, r = 0, s_b, r = 0$$
, END

•
$$s_b, r = 1$$
, END

•
$$s_h, r = 1$$
, END

•
$$s_b, r = 1$$
, END

•
$$s_h, r = 1$$
, END

•
$$s_h, r = 1$$
, END

•
$$s_b, r = 1$$
, END

•
$$s_b, r = 0$$
, END

$$V^{\pi}(s_b) = 3/4$$

$$V^{\pi}(s_{\alpha}) = ? 0? 3/4?$$

Monte-Carlo:
$$V^{\pi}(s_a) = 0$$

踩過Sa,得到的reward=0

Temporal-difference:

$$V^{\pi}$$
 (St) $-V_{\pi}$ (St+1) <=> r
 $V^{\pi}(S_b) + r = V^{\pi}(S_a)$
 $3/4$ 0 $3/4$

TD: 有可能是sample次數不夠因此才會是0,當sample比較多次後會得到0.75(假設Sb不會因為Sa而改變)

Another Critic

Q-function

- State-action value function $Q^{\pi}(s, a)$
 - When using actor π , the *cumulated* reward expects to be obtained after seeing observation s and taking a

根據現在的state以及採取的action接下來的 得到的cumulative reward是多少

Q-Learning

 π interacts with the environment

 $\pi = \pi'$ 新的actor

TD or MC 估測Q function

Find a new actor π' "better" than π

Learning $Q^{\pi}(s, a)$

如何定義better

?

Q-Learning

假設action可能很少則可以窮舉找出最的直的action,然而當action為continuous則要用gradient descent去找是不實在的,因此Q function只適用於discrete函式

- Given $Q^{\pi}(s, a)$, find a new actor π' "better" than π
 - "Better": $V^{\pi'}(s) \ge V^{\pi}(s)$, for all state s

對所有可能的state而言, pi'總是優於pi

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

找出可以讓Q function最大值的action後即為pi' (depends on Q function)

- $\succ \pi'$ does not have extra parameters. It depends on Q
- > Not suitable for continuous action a

Deep Reinforcement Learning

Actor-Critic

A3C即為其中一種方法

Actor-Critic

Q function中實際上不存在 π ',導致我們無法使用在 continuous的action上。但actor-critic真的有一個function 叫做 π ,希望 π 的輸出可以maximize Q function,因此可以 解continuous的action

 π interacts with the environment

$$\pi = \pi'$$

TD or MC

Update actor from $\pi \to \pi'$ based on $Q^{\pi}(s,a), V^{\pi}(s)$

Learning $Q^{\pi}(s,a), V^{\pi}(s)$

Actor-Critic

- Tips
 - The parameters of actor $\pi(s)$ and critic $V^{\pi}(s)$ can be shared

Asynchronous

Source of image:

https://medium.com/emergentfuture/simple-reinforcement-learning-withtensorflow-part-8-asynchronous-actor-criticagents-a3c-c88f72a5e9f2#.68x6na7o9

 $\Delta \theta$

Worker 1

Environment 1

 $\Delta heta$

 θ^1

1. Copy global parameters

2. Sampling some data

3. Compute gradients

4. Update global models

Racing Car (DeepMind)

Demo of A3C

- Visual Doom Al Competition @ CIG 2016
- https://www.youtube.com/watch?v=94EPSjQH38Y

Concluding Remarks

Model-based Approach