Internetworking

Circuit Switching

Packet Switching

Original phone system had a purely circuit switched foundation.

All information within a call takes exactly the same fixed path.

Routing only occurs before the call

The Internet protocol (IP) provides a decentralized packet-switched foundation.

Each packet is individually and continuously routed, based on its destination address

Circuit-Switching

Circuit-Switching

Packets may arrive out of order

A packet may be dropped (lost)

A packet may be duplicated

TCP (Transmission Control Protocol)

Connection-Oriented Protocol

Favors Reliability over Speed

UDP (Universal Datagram Protocol)

Connectionless Protocol

Favors Speed over Reliability

TCP		UDP
Connection	Connection Oriented Handshake before user data	Connectionless No handshake
Reliability	Data remains intact and arrives in same order it was sent	No guarantee that messages or packets sent will reach at all
Speed	Slower than UDP	Faster because no error checking
Weight	Heavyweight – more overhead	Lightweight – less overhead
Usage	Useful for documents and downloads	Useful for live media and small queries
Popularity	Most common internet protocol	Growing in popularity

Pause and Think

Which applications use TCP, and which use UDP?

TCP Amazon

TCP Dropbox

UDP DNS Lookup

TCP Facebook

TCP Gmail

UDP VOIP

UDP World of Warcraft

TCP? Netflix

OSI Reference Model

Protocol Reference Models

provide an abstract view of the network, and group functionality into layers

Provides services to the upper layers

Each layer:

Uses the services of the lower layers

Layers have one or more alternate protocols

Peer-to-Peer Communication

OSI Reference Model

7	Application Layer	Ensure communication between distributed software components
6	Presentation Layer	Convert operating system standards to or from network representations
5	Session Layer	Manages connections between local and remote application
4	Transport Layer	Deliver data from operating system to operating system
3	Network Layer	Deliver packets with routing services across multiple data links
2	Data Link Layer	Groups bits into addressed frames for transmission over physical links
I	Physical Layer	Deliver bits over physical link (or wireless)

OSI Reference Model

7	Application Layer	
6	Presentation Layer	
5	Session Layer	
4	Transport Layer	
3	Network Layer	
2	Data Link Layer	
I	Physical Layer	

OSI Reference Model (by example)

7	Application Layer	HTTP, FTP, SMTP, and a whole lot more
6	Presentation Layer	Secure Socket Layer (SSL) provides encryption
5	Session Layer	Various "Sockets" implementations
4	Transport Layer	TCP (connection-oriented), UDP (connectionless)
3	Network Layer	Internet Protocol (IP)
2	Data Link Layer	Ethernet, Token Ring, FDDI, ATM, and others
I	Physical Layer	IOBase-T, IOOBase-TX,V.90, IEEE 802. II, and many more

OSI Reference Model (by example)

7	Application Layer	HTTP, FTP, SMTP, and a whole lot more
6	Presentation Layer	Secure Socket Layer (SSL) provides encryption
5	Session Layer	Various "Sockets" implementations
4	Transport Layer	TCP (connection-oriented), UDP (connectionless)
3	Network Layer	Internet Protocol (IP)
2	Data Link Layer	Ethernet, Token Ring, FDDI, ATM, and others
I	Physical Layer	10Base-T, 100Base-TX,V.90, IEEE 802.11, and many more

Distributed Computing Models

HTTP (Web)
SMTP (Email)
FTP (download)

Client-Server Model

The logic tier can become complex and split into multiple tiers

When this occurs, it's called a multi-tier model

Three Tier Model

View

Controller

Model

Peer-to-Peer Model

Sockets and Ports

Sockets and Ports

A network socket is an endpoint of a connection across a computer network.


```
Socket socket = getSocket(type = "TCP")
connect(socket, address = "8.8.8.8", port = "80")
send(socket, "Hello, world!")
close(socket)
```

IPv4, IPv6, and DNS

Google Public DNS IP addresses

The Google Public DNS IP addresses (IPv4) are as follows:

8.8.8.8

8.8.4.4

The Google Public DNS IPv6 addresses are as follows:

2001:4860:4860::8888

2001:4860:4860::8844

You can use either address as your primary or secondary DNS server. You can specify both addresses, but do not specify one address as both primary and secondary.

You can configure Google Public DNS addresses for either IPv4 or IPv6 connections, or both.