Performance enhancement of an accelerometer using intelligent technique

Rahul Aggarwal (477/IC/09) Ravinder Kr. Verma (480/IC/09) Sanjit Paliwal (492/IC/09)

Mentors :- Dr. K.P.S Rana Dr. Vineet Kumar

Contents

- Objectives of this project
- Accelerometer Introduction
- Capacitive Accelerometer Open Loop
- Capacitive Accelerometer Closed Loop
- Comparison between Open and Closed loop
- Future Work
- References

Objective of this project

Objective

 To improve the linear range and sensitivity of a capacitive accelerometer

Previous Work done

 Modelling and simulation of accelerometer in open loop and closed loop with PID tuned using Ziegler-Nichols

Work Done in this project

 Accelerometer in closed loop with PID tuned using GA and Fuzzy PI+PD tuned using GA

Improvement

 Improvement in linear range(from 20 g to 50 g) and ITAE value (by 10 times)

Accelerometer - INTRODUCTION

Accelerometer

- Accelerometer is a device used for measuring:
 - Static Acceleration
 - Dynamic Acceleration
 - Velocity and Position
- Types
 - Capacitive
 - Tunneling
 - Piezoresistive
 - Piezoelectric

Capacitive Accelerometer– Open Loop

Primary Transducer

- The primary transducer consists of a
- 1. proof mass which is suspended by a
- 2. spring
- The acceleration causes a force to act on the mass which is consequently deflected by a distance
- The motion equation of the proof mass is given by:

$$m\frac{d^2y}{dt^2} = m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx$$

where:

m: mass of the proof mass y: movement of the body of interest x: movement of the proof mas b:damping factor

k:spring constant.
Here b is the reason for non linearity given as

$$b(x) = \frac{1}{2}\mu A^2 \left[\frac{1}{(d_0 - x)^3} + \frac{1}{(d_0 + x)^3} \right]$$

Displacement of proof mass

$$g = 9.8 \, m/s^2$$

Displacement of proof mass for inputs of 1g,2g,3g and 4g.

0.020

0.030

0.040

0.050

Time (s)

0.060

0.070

0.080

0.090

0.010

Displacement of proof mass for step inputs

5E-6-

4.5E-6

4E-6

3.5E-6

3E-6-

2.5E-6

2E-6-

1.5E-6-

1E-6-

5E-7

Secondary Transducer- Principle

 C_1 is capacitance between fixed plate 1 and proof mass C_2 is capacitance between proof mass and fixed plate 2

Fixed Plate 1

Proof Mass

Fixed Plate 2

- Initially $C_1 = C_2$ when input acceleration is zero.
- When acceleration acts inertial force acts and proof mass moves thereby changing C₁ and C₂.
- Now this change in capacitance is measured as a voltage signal using half bridge circuit

Secondary Transducer- Circuit

Detection device with charge amplifier

- v₁ and v₂ are voltage applied on fixed plate 1 and fixed plate 2 respectively,
- v_o is voltage on proof mass and
- v_i output voltage of amplifier
- When $C_1 = C_2$ voltage output is zero
- ▶ When $C_1 \neq C_2$ output voltage is given as

$$v_i = \frac{2s^2 C_3 R_2 \Delta C v_1(s)}{(1 + sC_4 R_2)(s(2C_0 + C_3)1 + \frac{1}{R_1})}$$

Output Voltage

Input acceleration of 1g,2g,3g and 4g.

Output voltage for inputs of 1g,2g,3g and 4g.

Parameters value

Mass of proof mass(m)	8.2 mg
Distance between fixed plates (2d ₀)	20 um
Viscosity of air(u)	1.8E-5 Ns/m2
Amplitude of sinusoidal voltage applied to fixed $electrode(V_1)$	0.5 V
Area of plate(A)	12 mm2
Permittivity of air(E ₀)	8.854E-12
R1	250 ohm
C4	22pF
R2	820K ohm
C3	1nF
C0	10.6pF
ka	1.56
a2	72.9E-9
a1	0.3888E-3

Issues with open loop mode

- Nonlinearity is dependent on displacement of proof mass
- For open loop we have large proof mass displacement so linear range is 0 to 4g
- Sensitivity depends on the output for a given input
- For open loop the output voltage is low
- So we go for Closed loop to have better linear range and output voltage

Capacitive Accelerometer-Closed Loop

Displacement of proof mass for PID tuned using Ziegler-Nichols

Input acceleration of 1g,2g,3g and 4g.

Displacement of proof mass for inputs of 1g,2g,3g and 4g.

Displacement of proof mass for PID tuned using GA

Input acceleration of 1g,2g,3g and 4g.

Displacement of proof mass for inputs of 1g,2g,3g and 4g.

<u>Displacement of proof mass for</u> Fuzzy PI + Fuzzy PD tuned using GA

Input acceleration of 1g,2g,3g and 4g.

Displacement of proof mass for inputs of 1g,2g,3g and 4g.

PID Tuning

Using Ziegler Nichols the PID parameters are $K_{P0} = 50$ and $T_0 = 2x10^{-3}s$ which gives $K_P = 22$, $K_I = 13200$ and $K_D = 5.28x10^{-3}$

GA Tuning

The objective of the GA was to minimize the ITAE (Integral of the Time weighted Absolute error) is given as:

$$ITAE = \int_0^\infty t|e(t)|\,dt$$

▶ But the GA finds the maximum value of a fitness function. So we used the following fitness function to minimise ITAE:

$$Fitness\ Function = \frac{1}{0.001 + ITAE} = \frac{1}{0.001 + \int_0^\infty t|e(t)|\ dt}$$

Fuzzy Logic Controller

Fuzzification

 For the experimentation, the inputs and outputs were quantized into 5 fuzzy sets, namely:

PL - Positive Large

PS - Positive Small

Z - Zero

NS - Negative Small

NL - Negative Large

Fuzzy Rule Base

	Change of error (de)					
		NL	NS	ZE	PS	PL
Error	NL	NL	NL	NL	NS	ZE
(e)	NS	NL	NL	NS	ZE	PS
	ZE	NL	NS	ZE	PS	PL
	PS	NS	ZE	PS	PL	PL
	PL	ZE	PS	PL	PL	PL

Inference Method

Mamdani's max min inference method was used for the Fuzzy Logic Controller Design.

Deffuzification

The center of gravity method was used for deffuzification.

Control Equation of Fuzzy PI + Fuzzy PD controller

$$u_{PID}(k) = u_{PI}(k) + u_{PD}(k)$$

Where $u_{PD}(k) = K_c e(k) + K_D \Delta e(k)$ and $u_{PI}(k) = \frac{K_{UPI}}{1-z^{-1}} \Delta u_{PI}(k)$ where $\Delta u_{PI}(k) = K_C \Delta e(k) + K_I e(k)$ $e(k)$ is change in error K_c , K_D , K_I and K_{UPI} are gains

Output Voltage for PID tuned using Ziegler-Nichols

Input acceleration of 1g,2g,3g and 4g.

Output voltage for inputs of 1g,2g,3g and 4g.

Output Voltage for PID tuned using GA

Input acceleration of 1g,2g,3g and 4g.

Output voltage for inputs of 1g,2g,3g and 4g.

Output Voltage for Fuzzy PI+ Fuzzy PD tuned using GA

Input acceleration of 1g,2g,3g and 4g.

Output voltage for inputs of 1g,2g,3g and 4g.

Electrostatic Actuator Force

- ▶ To generate an electrostatic force apply biasing voltage V_b and feedback voltage on the electrodes.
- Now resulting voltage on electrodes are

$$vs = v1 - Vb + vr$$

 $vi = v2 + Vb + vr$

Where vs and vi are voltages on upper and lower electrodes

▶ The electrostatic forces are given as

$$Fel1 = \frac{1}{2}e_o A \frac{vs^2}{(do - x)^2} = \frac{1}{2}e_o A \frac{(v1 - Vb + vr)^2}{(do - x)^2}$$

$$Fel2 = \frac{1}{2}e_o A \frac{vi^2}{(do + x)^2} = \frac{1}{2}e_o A \frac{(v2 + Vb + vr)^2}{(do + x)^2}$$

The resulting electrostatic force is

$$Fel = -\frac{2e_o AVb}{do^2} vr$$

Comparison between Open and Closed loop

Displacement of proof mass for open and closed loop

Displacement of proof mass for different configurations

Linear Range for open loop accelerometer

Linear Range for PID tuned using Ziegler-Nichols

Linear Range for PID tuned using GA

Linear Range for Fuzzy PI +Fuzzy PD tuned using GA

Linear Range

Range	Range	Range	Range
(Open Loop	(Closed loop	(Closed loop	(Closed loop
Accelerometer)	Accelerometer with	Accelerometer with	Accelerometer with
	PID controller	PID controller tuned	Fuzzy PI + Fuzzy PD
	tuned using Ziegler	using Genetic	controller tuned using
	Nichols)	Algorithms)	Genetic Algorithms)
0-4g	0-20g	0-30g	0-50g

Comparison of Maximum displacement of proof Mass

Input	Open Loop	Closed loop	Closed loop	Closed loop
acceleration	Accelerometer	Accelerometer	Acceleromet	Accelerometer
$g = 9.8 (m/s^2)$	(m)	with PID controller	er with PID	with Fuzzy PI +
		tuned using	controller	Fuzzy PD
		Ziegler Nichols	tuned using	controller tuned
		(m)	Genetic	using Genetic
			Algorithms	Algorithms
			Algorithms (m)	Algorithms (m)
1 g	9.65019E-7	1.33E-07		
1g 2g	9.65019E-7 1.93008E-6	1.33E-07 2.67E-07	(m)	(m)
X			(m) 1.67E-07	(m) 5.62E-08

Comparison of ITAE

Input	Open Loop	Closed loop	Closed loop	Closed loop
acceleration	Accelerometer	Accelerometer	Accelerometer	Accelerometer with
$g = 9.8(m/s^2)$		with PID	with PID	Fuzzy PI + Fuzzy PD
		controller tuned	controller tuned	controller tuned using
		using Ziegler	using Genetic	Genetic Algorithms
		Nichols	Algorithms	
1g	4.02947E-11	4.00249E-13	2.82255E-13	8.2868E-14
2g	7.92285E-11	8.00323E-13	5.6471E-13	1.52258E-13
3g	1.15564E-10	1.20005E-12	8.47588E-13	2.20598E-13
4 g	1.48391E-10	1.59925E-12	1.13115E-12	2.92764E-13

Comparison of Output Voltage

Input	Open Loop	Closed loop	Closed loop	Closed loop
acceleration	Accelerometer	Accelerometer	Accelerometer	Accelerometer with
Here	(V)	with PID	with PID controller	Fuzzy PI + Fuzzy
$g = 9.8(m/s^2)$		controller tuned	tuned using	PD controller tuned
		using Ziegler	Genetic	using Genetic
		Nichols	Algorithms	Algorithms
		(V)	(V)	(V)
1g	0.450	1.576	1.576	1.577
2g	0.926	3.151	3.151	3.153
3g	1.457	4.727	4.727	4.728
4 g	2.078	6.303	6.303	6.303

Future Work

 Modeling and simulation of tunneling accelerometer which has better sensitivity than capacitive accelerometer

References

- Stephen Beeby, Michael Kraft, Graham Ensell, Neil White, "MEMS Mechanical Sensors," Artech House Inc., London, 2004, Chapter 8.
- George Stephanopoulos, "Chemical process control: an introduction to theory and practice," PHI Learning Private Limited, New Delhi, 2012, Chapter 18.
- V. Kumar, K.P.S. Rana, Vandna Gupta, "Real-Time Performance Evaluation of a Fuzzy PI + Fuzzy PD Controller for Liquid-Level Process," International Journal on Intelligent Control and Systems, Vol. 13, No. 2, June 2008, pp. 89-96.
- T.L. Grigorie, "The Matlab/Simulink Modeling and Numerical Simulation of an Analogue Capacitive Micro- Accelerometer Part 1: Open Loop," Proceedings of the MEMSTECH, Ukraine: Polyana, pp. 105-114, 2008.
- T.L. Grigorie, "The Matlab/Simulink Modeling and Numerical Simulation of an Analogue Capacitive Micro- Accelerometer Part 2: Closed Loop," Proceedings of the MEMSTECH, Ukraine: Polyana, pp. 115-121, 2008.
- Mitsua Gen, Runewi Chang, "Genetic Algorithm and Engineering Optimization", John Wiley & Sons Inc., New York, 2000, Chapter 1.