Naučno izračunavanje — Belekške

Andrija Urošević

Rešavanje problema matematičkim metodama

Modelovanje

- Relevantne veličine, njihovo kvantitativno izražavanje i odnos između njih: matematički model M.
- Pitanje na koje želimo dobiti odgovor: matematički problem P.

Rešavanje

- Primena metode koja može rešiti problem P.
- Dobijamo rešenje S.

• Interpretacija

— Rešenje S u modelu M, interpretirano u terminima polaznog problema

Modelovanje problema

- Poteškoće pri modelovanju
 - Potrebno je procizno uočiti relevantne vrednosti i odnose između njih, treba opisati odgovarajućim formalnim matematičkim jezikom.
 - Kako modelujemo problem direktno utiče na to koji metod rešavanja možemo da primenimo.
- Matematički model
 - Apstrakcija polaznog problema, kako se fokusiramo samo na relevantna svojstva problema.
 - Skup promenljivih predstavlja relevantne vrednosti.
 - Skup formula predstavlja relevantne odnose između tih vrednosti.

• Formulacija

- Matematička teorija koja ima pogodna svojstva (diferencijabilnost, konveksnost,...) se preporučuje pri formulisanju modela. Razlog tome je šira primena metoda za rešavanje tog problema.
- Pojednostavljenje modela
 - Model uprostimo sve dok je greška rešenja prihvatljiva.
 - Neke tehnike:
 - * Zamena beskonačkih procesa konačnim
 - * Zamena opštih matrica specifičnim matricama: blok dijagonalne, dijagonalne, trougaone,...

- * Zamena proizvoljnih funkcija jednostavnijim funkcijama: polinimima, konveksnim funkcijama....
- * Zamena nelinearnih problema linearnim problemima.
- * Zamena diferencijalnih jednačina algebarskim jednačinam.
- * Zamena beskonačno dimenzionih prostora konačno dimenzionim prostorima.
- Da bi tehnike pojednostavljenja bile relevantne potrebno je da:
 - * alternativni problem možemo lakše rešiti, a čije rešenje nije drastično drugačije od polaznog;
 - * transformacija tekućeg problema u lakši probl
me dozvoljava izračunavanje rešenja tekućeg problema pomoću rešenja lakšeg problema.
- Upozorenja:
 - Model ne oslikava precizno stvarnost
 - Model može biti dobar u nekim aspektima, a loš u drugim.
 - Podešavanje podataka dovodi do prilagođavanju modelu, u praksi ne daje dobre rezultate.
 - Ne treba se držati modela koji ne rade.

Rešavanje problema

- Obično sam metod rešavanja dolazi na osnovu dobro izabranog modela problema.
- U nekim slučajevima sam model nema metodu koja može da se primeni.

Interpretacija rešenja

- Kada dobijemo rešenje modela, primenjujemo inverzne transofrmacije pojednostavljivanja nad tim rešenjem.
- Transformisano rešenje razmatramo u terminima veza stvarnih fenomena i promenljivih u modelu.
 - Treba voditi računa o jedinicama.

Aproksimacija i greške u izračunavanju

- Greške pre samog naučnog izračunavanja:
 - Modelovanje: Apstrakcija i pojednostavljenje dovode do greške
 - Empirijska merenja: Uključuju dozu neprekidnosti zbog nesavršenosti mernih instrumenata
 - Prethodna izračunavanja: Ulazni podaci mogu biti rezultat nekog prethodnog izračunavanja, pa se greška tako akumulira.
- Prethodni problemi nisu otkljivi, sledeća dva jesu:
 - Diskretizacija i odsecanje: Povećanjem granularnosti smanjujemo grešku. Beskonačne procese koje zamenjujemo konačnim možemo kontrolisati njihov broj koraka.
 - Zaokruživanje: Broj decimala koje se koriste za zapis realnih brojeva.

- Dve grupe grešaka: (1) Greške podataka; (2) Greške izračunavanja.
- Procena greške. Za pravu i približnu vrednost x i x' definišemo greške:
 - Apsolutna greška: E(x, x') = |x x'|.
 - Relativna greška: $R(x, x') = \frac{|x-x'|}{|x|}$

Stabilnost, uslovljenost i regularizacija

- Algoritam je *nestabilan* ukoliko se njegova greška akumilira tokom njegovog izvršavanja, u suprotom algoritam je *stabilan*.
- *Poništavanje* je slučaj kada je relativna greška mala usled oduzimanja realnih vrednosti koje nose grešku.
- Problem je *loše uslovljen* ako za malo različite podatke na ulozu daje drastično različita rešenja.
- Neka su α ulazi podaci, i $x(\alpha)$ rešenja problema P. Tada uslovljenost problem P definišemo kao

$$Cond(P) = \frac{R(x(\alpha), x(\alpha'))}{R(\alpha, \alpha')} = \frac{|x(\alpha) - x(\alpha')|/|x(\alpha)|}{|\alpha - \alpha'|/|\alpha|}.$$

- Uslovljenost funkcije f:

$$Cond(f) = \frac{|f(x) - f(x + \Delta x)|/|f(x)|}{|\Delta x|/|x|} \approx |xf'(x)/f(x)|$$

- Uslovljenost matrice A:

$$Cond(A) = |A^{-1}||A|$$

- Uslovljenost sistema Ax = b:

$$\begin{split} Cond(P) &= \frac{|A^{-1}b - A^{-1}(b + \Delta b)|/|A^{-1}b|}{|\Delta b|/|b|} \\ &= \frac{|A^{-1}\Delta b|/|A^{-1}b|}{|\Delta b|/|b|} \\ &= \frac{|A^{-1}\Delta b|}{|\Delta b|} \frac{|Ax|}{|x|} \end{split}$$

- Lošu uslovljenost rešavamo regularizacijom.
 - Zamenjujemo problem koji je loše uslovljen bliskim problemom koji je dobro uslovljen.
 - Razlika između ta dva problema treba da bude podesiva nekim parametrom, tj. kada parametar teži nuli problemi su jednaki.

Aproksimacija funkcija

- Aproksimacija funkcije f je funkcija g koja je funkciji f bliska u nekom unapred definisanom smislu.

- Aproksimacija funkcija se vrši iz različitih razloga:
 - pojednostavljanje evaluacije funkcije;
 - zamenom funkcije nekom funkcijom sa boljim matematičkim osobi-
 - ne znamo simboličku reprezentaciju funkcije već samo njene vrednosti u nekim tačkama.
- Postoje razni kriterijumi za aproksimaciju:
 - $-\|f-g\|_2^2 = \int_a^b (f(x)-g(x))^2 dx$; (kriterijum je površina izmedju dve
 - $-\|f-g\|_2^2 = \sum_{i=1}^n (f(x_i) g(x_i))^2$; (ukupno odstupanje u svim tačkama u kojima je vrednost funkcije poznata)
 - $-\|f-g\|_{\infty} = \sup_{x \in [a,b]} |f(x)-g(x)|$. (samo najveće odstupanje je

Primeri problema aproksimacije funkcija

- Problem linearne aproksimacije:
- Aproksimacija: $g(x,\alpha) = \alpha_0 + \sum_{i=1}^n \alpha_i x_i$. Kriterijum: $\min_{\alpha} \sum_{i=1}^N (g(x_i,\alpha) f(x_i))^2$. Problem rekonstrukcije zamućene slike operatorom A:
 - $-x = A^{-1}y$ ne daje dobro rešenje, kako je A loše uslovljena matrica.
 - Regularizacija obezbeđuje da se susedni pokseli ne razlikuju mnogo:

$$\min_{x} ||Ax - y||^2 + \lambda \left(\sum_{i=1}^{M} \sum_{j=1}^{N-1} (x_{i,j} - x_{i,j+1})^2 + \sum_{i=1}^{M-1} \sum_{j=1}^{N} (x_{i,j} - x_{i+1,j})^2\right)$$

- \bullet Problem konstrukcije slike od N slika različitih delova iste scene.
 - Moramo uračunati razlike među delovima slika: To su rotacija kamere za ugao θ , translacija kamere za vektor (u, v) i skaliranje za vrednost s. Jedna takva veza može biti data matricom transformacije (a = $s\cos\theta, b = s\sin\theta \text{ i } s = \sqrt{a^2 + b^2}$):

$$G = \begin{pmatrix} a & -b & u \\ b & a & v \\ 0 & 0 & 1 \end{pmatrix},$$

- Potrebno je još odrediti i upariti detalje na slikama (postoji algoritam). Neka je skup lokacija detalja $\{x_{ij}|j=1,\ldots,M\}$, i za svake dve slike i i j dat F(i,j) skup indeksa detalja koji su uspešno upareni.
- Konačan optimizacioni problem postaje (G_i matrica transformacije sa parametrima (a_i, b_i, u_i, v_i) :

$$\min_{\mathbf{a}, \mathbf{b}, \mathbf{u}, \mathbf{v}} \sum_{i=1}^{N} \sum_{j=i+1}^{N} \sum_{k \in F(i, j)} \|G_i x_{ik} - G_j x_{jk}\|^2$$

- Određivanje koordinata GPS uređaja:
 - -(u, v, w) koordinate GPS uređaja koje treba izračunati;
 - $-(p_i,q_i,r_i)$ koordinate i-tog satelita;

 - ρ_i udaljenost *i*-tog satelita od GPS uređaja. Za svaki satelit treba da važi: $\sqrt{(u-p_i)^2+(v-q_i)^2+(w-r_i)^2}=$
 - Problem se svodi na:

$$\min_{u,v,w} \sum_{i=1}^{n} (\sqrt{(u-p_i)^2 + (v-q_i)^2 + (w-r_i)^2} - \rho_i)^2.$$

Aproksimacija u Hilbertovim prostorima

- Vektorski prstor koji je kompletan u odnosu na metriku indukovanu skalarnim proizvodom $d(x,y) = ||x-y|| = \sqrt{(x-y)\cdot(x-y)}$ se naziva Hilbertovim prostorom.
 - $-\mathbb{R}^n$ je Hilbertov prostor
 - $\mathcal{L}_{2}[a,b]$ prostor funkcija koje su integrabile sa kvadratom na intervalu [a,b] je Hilbertov prostor.
- Sistem vektor $\{e_i|i\in\mathbb{N}\}$ je ortonormiran ako

$$e_i \cdot e_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \quad i, j \in \mathbb{N}.$$

• Neka je $\{e_i|i\in\mathbb{N}\}$ ortonormiran sistem vektora Hilbertovog prostora \mathcal{H} . Koeficijenti $x \cdot e_i$ nazivaju se Furijeovi koeficijenti vektora $x \in \mathcal{H}$, a red $\sum_{i=1}^{\infty} (x \cdot e_i)e_i$ se naziva Furijevo red vektora $x \in \mathcal{H}$.

Teorema 1 Za ortonormirani sistem $\{e_i|i\in\mathbb{N}\}$ u Hilbertovom prostoru \mathcal{H} , sledeća tvrđenja su ekvivalentna:

- Za svako $x \in \mathcal{H}$ i svako $\varepsilon > 0$, postoje skalari $\lambda_1, \lambda_2, \dots, \lambda_n$, takvi da važi $||x - \sum_{i=1}^{n} \lambda_i e_i|| < \varepsilon.$
- Za svako $x \in \mathcal{H}$ važi $\sum_{i=1}^{\infty} (x \cdot e_i) e_i = x$ (pri čemu se podrazumeva konvergencija u smislu metrike prostora \mathcal{H})
 • Za svako $x \in \mathcal{H}$ važi $\sum_{i=1}^{\infty} (x \cdot e_i)^2 = \|x\|^2$ (Parselova jednakost)
- Ako je vektor $x \in \mathcal{H}$ takav da je $x \cdot e_i = 0$ za svako $i \in \mathbb{N}$, onda važi x = 0.

Teorema 2 Neka je f element Hilbertovog postora \mathcal{H} i neka je \mathcal{H}' njegov potprostor čiju bazu čine elementi $\{g_1, g_2, \dots, g_n\}$. Postoji element najbolje aproksimacije $g^* = \sum_{i=1}^n c_i^* g_i \in \mathcal{H}'$, takav da važi

$$\left\| f - \sum_{i=1}^{n} c_i^* g_i \right\| = \inf_{c_1, \dots, c_n} \left\| f - \sum_{i=1}^{n} c_i g_i \right\|.$$

Dodatno, važi da je $(f-g^*)\cdot x=0$ za sve $x\in \mathcal{H}'$ akko je g^* element najbolje aproksimacije za f iz \mathcal{H}' .

- Element najbolje aproksimacije za f je njegova ortogonalna projekcija na prostor $\mathcal{H}'!!!$
- Keoficijenti najblje aproskimacije se mogu odrediti iz sistema:

$$\sum_{i=1}^{n} c_i(g_i \cdot g_j) = f \cdot g_j, \quad j = 1, \dots, n$$

• Ako je baza $\{g1, \ldots, g_n\}$ ortogonalna, svi skalarni proizvodi $g_i \cdot g_j$ su jednaki nuli ako $i \neq j$, tako da u tom slučaju nije potrebno rešavati sistem jednačina već je dovoljno izračunati skalarne proizvode i izraziti koeficijente c_i iz dobijenih jednakosti u kojima učestvoje po jedan keoficijent c_i .

Srednjekvadratna aproksimacija

- Neka je $\mathcal{L}_2[a,b]$ Hilbertov prostor funkcija integrabilnih sa kvaratom na intervalu [a,b], u kome je norma definisana integralom $||f||^2 = \int_a^b f^2(x)dx$ onda se element najbolje aproksimacije naziva elementom najbolje srednjekvadratne aproksimacije.
- Ako je funkcija f definisana na konačnom skupu tačaka $\{x_0, \ldots, x_m\}$ integral zamenjujemo sumom, tj. $||f||^2 = \sum_{i=1}^m f^2(x_i)$.
- Metoda koja rešava srednjekvadratnu aproksimaciju na konačnom skupu tačaka naziva se metoda najmanjih kvadrata (engl. least squares method).
- Sistem koji se rešava uzima sledeći oblik:

$$\sum_{i=1}^{n} c_i \sum_{k=1}^{m} g_i(x_k) g_j(x_k) = \sum_{k=1}^{m} f(x_k) g_j(x_k) \quad j = 1, \dots, n.$$

$$\sum_{k=1}^{m} g_j(x_k) \left(\sum_{i=1}^{n} c_i g_i(x_k) \right) = \sum_{k=1}^{m} f(x_k) g_j(x_k) \quad j = 1, \dots, n.$$

$$A^T A x = A^T b$$

$$x = (A^T A)^{-1} A^T b$$

• Prethodna jednačina predstavlja rešenje problema

$$\min_{x} ||Ax - b||^2.$$

• Drugi način izvođenja rešenja:

$$||Ax - b||^2 = (Ax - b)^T (Ax - b)$$

$$= ((Ax)^T - b^T)(Ax - b)$$

$$= (x^T A^T - b^T)(Ax - b)$$

$$= b^T b - x^T A^T b - (b^T Ax)^{T^T} + x^T A^T Ax$$

$$= b^T b - x^T A^T b - (x^T A^T b)^T + x^T A^T Ax$$

$$= b^T b - 2x^T A^T b + x^T A^T Ax$$

• Izjednačavanjem gradijenta po x sa nulom dobijamo:

$$2A^T A x - 2A^T b = 0.$$

- Matrica $(A^TA)^{-1}A^T$ je Mur-Penrouzov pseudoinverz matrice A.
- Metod srednjekvadratne aproksimacije se često koristi za rešavanje problema linearne regresije.

Teorema 3 (Gaus-Markov) Ukoliko važi $E(\varepsilon) = 0$ i $cov(\varepsilon) = \sigma^2$, za konstantno $\sigma^2 > 0$, onda za ocenu $\hat{w} = (X^T X)^{-1} X^T y$ važi

$$E(\hat{w}) = w, cov(\hat{w}) = \sigma^2 (X^T X)^{-1}.$$

Takođe, za svaku nepristrasnu linearnu ocenu \tilde{w} parametra w važi

$$\sum_{i=1}^{n} (w_i - \hat{w}_i)^2 \le \sum_{i=1}^{n} (w_i - \tilde{w}_i)$$

 Ukoliko je matrica A^T A loše uslovljena (kolone ili vrste matrice A su visoko korelisane), tada se koristi regularizacija i rešava se problem (*Tihonovljeva* regularizacija ili grebena regularizacija):

$$\min_{x} \|Ax - b\|^2 + \lambda \|x\|^2$$

• Slično kao u prethodnom slučaju:

$$\|Ax - b\|^2 + \lambda \|x\|^2 = (Ax - b)^T (Ax - b) + \lambda x^T x = b^T b - 2x^T A^T b + x^T A^T A x + \lambda x^T x.$$

- Računanjem gradijenta po x i izjednačavanjem sa nulom dobijamo:

$$A^{T}Ax - A^{T}b + \lambda x = 0$$
$$x = (A^{T}A + \lambda I)^{-1}A^{T}b$$

• Uklanjanje šuma iz signala:

$$\min_{x} ||x - y||^2 + \lambda \sum_{i=1}^{n-1} (x_i - x_{i+1})^2$$

- Uvodimo matricu *D*:

$$\begin{pmatrix} 1 & -1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & -1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & -1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 & -1 \end{pmatrix}$$

- Dati problem postaje:

$$\min_{x} ||Ix - y||^2 + ||\sqrt{\lambda}Dx - 0||^2$$

$$\min_{x} \left\| \begin{pmatrix} I \\ \sqrt{\lambda}D \end{pmatrix} x - \begin{pmatrix} y \\ 0 \end{pmatrix} \right\|^{2}$$

- Odgovarajuce rešenje:

$$x = (I + \lambda D^T D)^{-1} y$$

• Rekonstrukcija zamućene slike:

$$\min_{x} ||Ax - y||^2 + \lambda \left(\sum_{i=1}^{M} \sum_{j=1}^{N-1} (x_{i,j} - x_{i,j+1})^2 + \sum_{i=1}^{M-1} \sum_{j=1}^{N} (x_{i,j} - x_{i+1,j})^2\right)$$

– Uvodimo matricu D_h i D_v :

$$\begin{pmatrix} I & -I & 0 & \dots & 0 & 0 & 0 \\ 0 & I & -I & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & I & -I & 0 \\ 0 & 0 & 0 & \dots & 0 & I & -I \end{pmatrix} \quad \begin{pmatrix} D & 0 & \dots & 0 \\ 0 & D & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & D \end{pmatrix}$$

- Problem možemo zapisati kao:

$$\min_{x} ||Ax - y||^2 + ||\sqrt{\lambda}D_v x - 0||^2 + ||\sqrt{\lambda}D_h x - 0||^2$$

$$\min_{x} \left\| \begin{pmatrix} A \\ \sqrt{\lambda} D_{v} \\ \sqrt{\lambda} D_{h} \end{pmatrix} x - \begin{pmatrix} y \\ 0 \\ 0 \end{pmatrix} \right\|^{2}$$

Odgovarajuće rešenje:

$$x = (A^T A + \lambda D_v^T D_v + \lambda D_h^T D_h)^{-1} A^T y$$

Furijeova transformacija

- Trigonometrijski Furijeov red se zasniva na sistemu različitih frekvencija $\cos(kx)$ i $\sin(kx)$ za $k=0,1,\ldots$
- Furijeovi koeficijenti omogućavaju analizu signala u odnosu na frekvencije koje su u njemu zastupljene, odnosno *spektar signala*. ???
- Furijeova transformacije prevodi reprezentaciju funkcije iz vremenskog domena u frekvencijski domen.
 - Inverzna Furijeova transformacija radi obrnuto.
 - Neke vrste Furijeovih transformacija: razvoj u Furijeov red, neprekidna Furijeova transformacija i diskretna Furijeova transformacija.
- Neka je funkcija f periodnična i integrabilna na intervalu [a,b]. Tada se može razviti u Furijeov red:

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos\left(\frac{2\pi kt}{b-a}\right) + b_k \sin\left(\frac{2\pi kt}{b-a}\right) \right),$$

$$a_k = \frac{2}{b-a} \int_a^b f(t) \cos\left(\frac{2\pi kt}{b-a}\right) dt, \quad k = 0, 1, 2, \dots$$
$$b_k = \frac{2}{b-a} \int_a^b f(t) \sin\left(\frac{2\pi kt}{b-a}\right) dt, \quad k = 1, 2, 3, \dots$$

- Primer: $f(t) = 5\cos(2t) + 3\sin(8t)$ je periodična na intervalu $[0, \pi]$. Odatle svi Furijeovim koeficijenti su 0 sem $a_1 = 5$ i $b_4 = 3$.
- Komleksna reprezentacije Furijeovog reda:

$$f(t) = \sum_{k=-\infty}^{\infty} \hat{f}_k e^{\frac{-2\pi i kt}{b-a}}$$

$$\hat{f}_k = \frac{1}{b-a} \int_a^b f(t)e^{\frac{2\pi ikt}{b-a}} dt$$

• Odnos između realne i kompleksne reprezentacije su u tesnoj vezi:

$$a_0 = 2\hat{f}_0$$

$$a_k = \hat{f}_k + \hat{f}_{-k}$$

$$b_k = i\hat{f}_{-k} - \hat{f}_k$$

• Za koeficijente važi $\overline{\hat{f}_k} = \hat{f}_{-k}$:

$$\overline{\hat{f}_k} = \overline{\frac{1}{b-a} \int_a^b f(t) e^{\frac{2\pi i k t}{b-a}} dt}$$

$$= \frac{1}{b-a} \int_a^b \overline{f(t)} e^{\frac{2\pi i k t}{b-a}} dt$$

$$= \frac{1}{b-a} \int_a^b f(t) e^{\frac{-2\pi i k t}{b-a}} dt$$

$$= \hat{f}_k$$

- Promenljiva t predstavlja vreme, dok Furijeovi koeficijenti \hat{f}_k predstavljaju intenzitet odgovarajućih frekvencija u signalu.
 - U razvoju u Furijeov red vremenski domen je neprekidno, ali je frekvencijski domen diskretan, tj. periodična funkcija se može predstaviti preko beskonačno mnogo broja sinusa i kosinusa, ali sa diskretnim frekvencijama.
 - Ovaj problem se prevazilazi prelaskom sa reda na intergral (Furijeova transformacija i inverzna Furijeova transformacija):

$$\hat{f}(u) = \int_{-\infty}^{+\infty} f(t)e^{2\pi i ut} dt$$

$$f(t) = \int_{-\infty}^{+\infty} \hat{f}(u)e^{-2\pi i u t} du$$

- Mana ovih metoda je što je funkcija f obično poznata samo na konačnom skupu tačaka.
- Neka su vrednosti funkcije $f_j=f(t_j)$, gde je $t_j=t_0+jh$, za $j=0,1,\ldots,n-1$ i h>0. Tada:

$$\hat{f}_k = \frac{1}{n} \sum_{j=0}^{n-1} f_j e^{\frac{k2\pi i j}{n}}$$
 $k = 0, 1, \dots, n-1$

$$f_k = \frac{1}{n} \sum_{k=0}^{n-1} \hat{f}_k e^{-\frac{2\pi i k j}{n}}$$
 $j = 0, 1, \dots, n-1$

- Primer uklanjanje šuma: Signal $-(FFT) \rightarrow Frekvencije -(clamp) \rightarrow Frekvencije (bez viskokih) -(IFFT) \rightarrow Signal (bez šuma).$
- Furijeova transformacija u dve dimenzije:
 - Nekprekidna:

$$\hat{f}(u,v) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y)e^{2\pi i(xu+yv)}dxdy$$

$$f(x,y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \hat{f}(u,v)e^{-2\pi i(xu+yv)}dudv$$

- Diskretna:

$$\hat{f}_{lm} = \frac{1}{PQ} \sum_{j=0}^{P-1} \sum_{k=0}^{Q-1} f_{jk} e^{2\pi i \left(\frac{jl}{P} + \frac{km}{Q}\right)}$$

$$f_{jk} = \sum_{l=0}^{P-1} \sum_{m=0}^{Q-1} \hat{f}_{lm} e^{-2\pi i \left(\frac{jl}{P} + \frac{km}{Q}\right)}$$

- Koeficijenti Furijeove transformacije su, kao kompleksni brojevi, određeni modulom ili *amplitudom* i argumentom ili *fazom*.
 - Amplituda predstavlja jačinu nekog signala.
 - Faza predstavlja pomeraj frekvencije duž vremenske ose.
- Dirakova delta funkcija i $f(x,y) = \delta(x,y) = \delta(x)\delta(y)$
- Odsecanje dela spektra:
 - Odsecanje viših frekvencija omogućava grub prikaz slike (uklanja ivice)
 - Odsecanje nižih frekvencija omogućava prepoznavanje ivica (istače ivice)
 - Uklanjanjem prepoznatljivih maksimuma uklanjaju se poreiodične strukture na slici.

Brza Furijeova transformacija

- DFT (Diskretna Furijeova transformacija) ima složenost $\Theta(n^2)$.
- FFT (Brza Furijeova transformacija) ima složenost $\Theta(n \log n)$.
- Uvodimo n-ti koren jedinice $w = e^{\frac{2\pi i}{n}}$,

– Važi
$$w^n = 1$$
:

$$w^n = e^{\frac{2\pi i}{n}n} = e^{2\pi i} = 1$$

 $- \text{ Važi } w^{k+\frac{n}{2}} = -w^k$:

$$w^{k+\frac{n}{2}} = e^{\frac{2\pi i}{n}(k+\frac{n}{2})} = e^{\frac{2\pi i k}{n}+\pi i} = e^{\pi i}e^{\frac{2\pi i k}{n}} = -w^k$$

• Diskretna Furijeovra transformacija postaje:

$$\hat{f}_k = \frac{1}{n} \sum_{j=0}^{n-1} f_j w^{kj}$$
 $k = 0, 1, 2, \dots, n-1$

– Važi $\hat{f}_{k+n} = \hat{f}_k$:

$$\hat{f}_{k+n} = \frac{1}{n} \sum_{j=0}^{n-1} f_j w^{(k+n)j} = \frac{1}{n} \sum_{j=0}^{n-1} f_j w^{kj} = \hat{f}_k$$

- Keoficijenti se mogu izračunati preko parnih i neparnih elementa:

$$\hat{f}_k = \frac{1}{n} \sum_{j=0}^{n-1} f_j w^{kj} = \frac{1}{n} \sum_{j=0}^{n/2-1} f_{2j} w^{2jk} + \frac{1}{n} \sum_{j=0}^{n/2-1} f_{2j+1} w^{(2j+1)k} =$$

$$= \frac{1}{2} \frac{1}{n/2} \sum_{j=0}^{n/2-1} f_{2j} w^{2jk} + \frac{1}{2} w^k \frac{1}{n/2} \sum_{j=0}^{n/2-1} f_{2j+1} w^{(2j+1)k} = \frac{1}{2} (E_k + w^k O_k)$$

Takođe, važi:

$$E_{k+n/2} = E_k$$

$$O_{k+n/2} = O_k$$

- Dobijamo:

$$\hat{f}_k = \begin{cases} \frac{1}{2} (E_k + w^k O_k) & 0 \le k < \frac{n}{2} \\ \frac{1}{2} (E_{k-\frac{n}{2}} + w^k O_{k-\frac{n}{2}}) & \frac{n}{2} \le k < n \end{cases}$$

Konačno:

$$\hat{f}_k = \frac{1}{2}(E_k + w^k O_k)$$

$$\hat{f}_{k+\frac{n}{2}} = \frac{1}{2}(E_k - w^k O_k)$$

 Algoritam FFT se može koristiti i kao algoritam za inverzni FFT, tako što se pre primene algoritma FFT, ulaz konjuguje, a nakon primene algoritma FFT, izlaz konjuguje.

Konvolucija

• Da li postoji neka aritmetička veza između operacija nad signalima i nekih operacija nad njihovim Furijeovim transformacijama?

Važi:

$$\widehat{f+g}(u) = \int_{-\infty}^{+\infty} (f+g)(t)e^{2\pi i u t} dt$$

$$= \int_{-\infty}^{+\infty} (f(t)+g(t))e^{2\pi i u t} dt$$

$$= \int_{-\infty}^{+\infty} f(t)e^{2\pi i u t} dt + \int_{-\infty}^{+\infty} f(t)e^{2\pi i u t} dt$$

$$= \widehat{f}(u) + \widehat{g}(u)$$

- Takođe,

$$\hat{f}(u)\hat{g}(u) = \int_{-\infty}^{+\infty} f(x)e^{2\pi i u x} dx \int_{-\infty}^{+\infty} g(y)e^{2\pi i u y} dy$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x)g(y)e^{2\pi i (x+y)u} dx dy$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x)g(v-x)e^{2\pi i v u} dx dv$$

$$= \int_{-\infty}^{+\infty} (\int_{-\infty}^{+\infty} f(x)g(v-x) dx)e^{2\pi i v u} dv$$

$$= \int_{-\infty}^{+\infty} (f * g)(v)e^{2\pi i v u} dv$$

$$(f * g)(v) = \int_{-\infty}^{+\infty} f(x)g(v-x) dx$$

- Operacija * se naziva operacijom konvolucije.

Teorema 5 (o konvoluciji):

$$\widehat{f*g} = \widehat{f}\widehat{g}$$

$$\widehat{fg} = \widehat{f}*\widehat{g}$$

$$f*g = g*f$$

$$(f*g)*h = f*(g*h)$$

$$f*(g+h) = f*g+f*h$$

$$f*\delta = f$$

• Konvolucija u diskretnom smislu:

$$(f * g)_i = \sum_{j=0}^{n-1} f_j g_{i-j}$$
 $i = 0, 1, \dots, n-1$

• Konvolucija u dve dimenzije:

$$(f * g)(u, v) = \int_{-\infty}^{+\infty} f(x, y)g(u - x, v - y)dxdy$$

$$(f * g)_{i,j} = \sum_{k=0}^{m-1} \sum_{l=0}^{n-1} f_{k,l} g_{i-k,j-l}$$

- Po definiciji konvolucija dva signala ima vremensku složenost $\Theta(n^2)$. Ali primenom FFT algoritma, konvoluciju možemo izračunati u $\Theta(n \log n)$ (zbog teoreme o konvoluciji $(\widehat{f} * \widehat{g}) = \widehat{f}\widehat{g}$).
 - -f i g $-(FFT) \rightarrow \hat{f}$ i \hat{g} $-(množenje) \rightarrow \hat{f}\hat{g}$ $-(teorema o konvoluciji) \rightarrow$ $\widehat{f * g}$ -(IFFT) $\rightarrow f * g$
- Primer: Množenje polinoma je konvolucija

$$f(x) = \sum_{i=1}^{m} f_i x^i$$
 $g(x) = \sum_{i=1}^{n} g_i x^i$

- Proizvod je veličine m + n + 1, te ulazne podatke proširujemo $(f_1, f_2, \ldots, f_m, 0, \ldots, 0)$ i $(g_1, g_2, \ldots, g_n, 0, \ldots, 0)$.
- Množenje polinoma ima složenost $\Theta((n+m)\log(n+m))$.
- Konvolucija se koristi tako što je jedna funkcija signal, a druga funkcija predstavlja neku jednostavnu funkciju kojom transformišemo signal. Tu funkciju zovemo filter.
- Filter Gausovog zamućivanja.

 Gausovo zvono: $\frac{1}{2\pi\sigma^2}e^{-\frac{x^2+y^2}{2\sigma^2}}$
 - Uprošćeni filter zamućivanja:

$$\frac{1}{9} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

- Filteri za otkrivanje ivica:
 - Sobel-Feildmonove vertikalne i horizontalne ivice:

$$G_x = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{pmatrix} * A \quad G_y = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{pmatrix} * A$$

- Aproksimacija intenziteta gradijenta je onda $G=\sqrt{G_x^2+G_y^2}$
- Brzo pronalaženje uzorka slike g u drugoj slici f.

Osnovni koncept obrade signala

Uzorkovanje

- Zbog prirode operisanja računara signal se opisuje diskretnim reprezentacijama.
 - Procedura uzorkovanja signala se radi tako što se odaberu vremenski trenuci u kojima će se meriti jačina zvuka, a kvantizaija odabir numeričke skale za predstavljanje izmerenih vrednosti.
 - Ako se na svakih T sekundi vrši uzorkovanje signala, govori se o uzorkovanju signala sa frekvencijama uzorkovanja f_s .
 - Veza između učestalosti uzorkovanja i frekvencije uzorkovanja:

$$f_s = \frac{1}{T};$$

$$w_s = \frac{2\pi}{T} = 2\pi f_s.$$

- Ukoliko postoji neka frekvencija f_b za koju važi $f_b > f$ onda je frekvencija f ograničena frekvencijom f_b koju još i nazivamo granična frekvenija.
- Najkvistov teorema: Signal se može verodostojno reprodukovati samo ako je frekvencija uzorkovanja više od dva puta veća od graničke frekvencije.
 - Kako ljutsko uvo čuje do oko 22KHz, najčešće se vrši uzorkovanje od 44.1KHz.
 - Kod video zapisa uzorkovanje se mora vršiti i više od dva puta učestalije, jer može pokazivati statična kretanja, pa čak i kretanja unazad.

Curenje spektra

- Razvoj u Furijeov red i diskretna Furijeova transformacija pretpostavljaju periodičnost signala i diskretan frekvencijski domen, što u realnosti obično nije slučaj.
 - Čak iako je signal periodičan to nam ne garantuje da će njegovo uzorkovanje biti periodično.
 - * To stvara skokove u vremenskom domenu i odgovarajuće visoke frekvencije u frekvencijskom domenu.
 - Ako kalibrišemo softver za analizu sprektra tako da izražava frekvencije u celobrojnim Herima, onda:
 - * Signal frekvencije 3Hz prilikom Furijeove transformacije daje vrlo jasan pik na frekvencije 3Hz;
 - * Signal frekvencije 2.8Hz prilikom Furijeove transformacije će se predstaviti u celom frekvencijskom spektru. Ovaj fenomen se naziva *curenje spektra*.
- Problem se ublažuje pomoću przorskih funkcije, tako što se signal u vremenskom domenu množi nekom prozorskom funkcijom.
 - Osobine prozorskih funkcija:
 - * svuda izvan intervala su nula:
 - * na krajevima intervala teže nuli;

- * maksimum dostižu na sredini intervala.
- Neke prozorske fnkcije:
 - Blekmenova
 - Hanova
 - Hamingova funkcija
 - Kasijerova funkcija

Filtriranje signala

- Filtriranje signala obično se koristi kao prvi korak u selekciji informacija koje signal nosi.
 - Prvi način: FFT \rightarrow modifikacija signala \rightarrow IFFT
 - Drugi način: Konvolucija gde je jedan signal polazni signal, a drugi je filter.
 - Zašto je drugi pristup brži? Jer filteri obično vrlo malo ne nula vrednosti.
- Linearni vremenski invarijantni sistemi koji za linearne kombinaije ulaznih signala generišu linearne kombinacije izlaznih signala i čije ponašanje se ne menja u zavisnosti od vremena.
 - Linearno invarijentni sistem H koji preslikava signal x(t) u y(t) opisuje se kao:
 - * H(ax(t)) = aH(x(t))
 - * $H((x_1 + x_2)(t)) = H(x_1(t)) + H(x_2(t))$
 - -y(t) = tx(t) nije vremenski invarijantan
 - -y(t) = 2x(t) jesete vremenski invarijantan
- Impulsni odgovor sistema predstavlja kratkotrajni signal u vremenskom domenu, koji je najčešće diskretna Dirakova δ funkcija.
 - Formalno, ako je ulaz sistema signal $x[n] = \delta[n]$, impulsni odgovor sistema je signal $h[n] = H(\delta[n])$.
- Diskretni signali zajedno sa odgovarajućim izlazima se mogu zapisati

$$x[n] = \sum_{k} x[k]\delta[n-k]$$

$$y[n] = H(x[n]) = \sum_k x[k]h[n-k]$$

- Podela filtera:
 - Po prirodi signala: analogni ili digitalni
 - Po dužini impulsnog odgovora: filteri sa konačnim trajanjem impulsnog odgovora (FIR filteri) i filteri sa beskonačnom dužinom impulsnog odgovora (IIR filteri)
- FIR filteri se mogu predstaviti kao konačne težinske sume prethodnih, trenutnih, ili budućih ulaza:

$$y[n] = \sum_{i=-M_1}^{M_2} b_i x[n-i]$$

- Primer: $y[n] = \frac{1}{3}(x[n] + x[n-1] + x[n-2])$
- Frekvencijski odgovor sistema oslikava kako sistem reaguje na ulaze (harmonike)

$$x[n] = e^{i\omega n}$$

$$y[n] = \sum_{k=0}^{M} b_k x[n-k] = \sum_{k=0}^{M} b_k e^{i\omega(n-k)} = e^{i\omega n} \sum_{k=0}^{M} b_k e^{-i\omega k}.$$

• Frekvencijski odgovor filtera, podrazumeva:

$$H(\omega) = \sum_{k=0}^{M} b_k e^{-i\omega k}$$

- Kako se signali mogu razložiti na harmonike, dovoljno je poznavati frekvencijski odgovor filtera da bi filter bio definisan.
 - Ukoliko je amplituda frekvencijskog odgovora filtera za harmonik neke frekvencije jednaka nuli, to znači da taj filter eliminiše tu frekvenciju iz signala.
- Zamućenje prostim uprosečavanjem, Gausovo zamućenje i Sobel-Feldmanovi filteri predstavljaju FIR filtere.
- IIR filteri zavse od tekućih ulaza, prethodnih ulaza, i prethodnih izlaza:

$$y[n] = \sum_{l=1}^{N} a_l y[n-l] + \sum_{k=0}^{M} b_k x[n-k]$$

- Primer: $y[n] = a_1y[n-1] + b_0x[n]$
 - * Impulsni odgovor određujemo zamenom $x[n] = \delta[n]$.
 - * Pretpostavljamo da važi x[0] = 0 i y[0] = 0.
 - * Rekurentno stižemo do rešenja:

$$y[n] = a_1^n b_0 x[0]$$

- Impulni odgovor jednog IIR filtera može biti:
 - Low-pass, Hight-pass, Band-pass, Band-stop

Talasići

- Sistem trigonometrijskih funkcije nije uvek najbolji izbor.
 - Nije pogodan za funkcije koje nisu periodične.
 - Ne dozvoljava lokalizaciju: Ako je u nekom frekvencija prisutna u signalu, biće prisutra takom celog trajanja signala (u intervalima u kojima nije izražena biće poništena drugim frekvencijama).
 - Nije pogodan za funkcije koje nisu glatke.
- Definiše se funkcija koja ne mora biti glatka, pa čak ni neprekidna koju nazivamo talasićem. Ona generiše sistem talasića translacijama i skaliranjem.

• Primer osnovnog talasića je Harova funkcija:

$$\phi(x) = \begin{cases} 1 & x \in [0, \frac{1}{2}) \\ -1 & x \in [\frac{1}{2}, 1) \\ 0 & x \notin [0, 1) \end{cases}$$

• Ortonormirani sistem kojim se mogu proizvoljno dobo aproksimirati funkcije prostora $L^2(\mathbb{R})$ su definisani kao:

$$\phi_{ij} = 2^{i/2}\phi(2^i x - j) \quad i, j \in \mathbb{Z}$$

 Mogu se koristiti i drugi osnovni talasići, ali je bitno od njih konstruisati ortonormirani sistem.

Numerička linearna algebra

 Problemi rešavanja sistema jednačina, inverzija matrica, dokompozicija matrica, izračunavanje sopstevnih vektora i sopstvenih vrednosti matrica.

Primeri problema numeričke linearne algebre

- Problem rangiranja stranica na internetu (PaqeRank algoritam).
- Internet se modeluje usmerenim grafom.
- Skup čvorova S je skup strana, |S|=N. Neka je K skup strana bez veza ka drugim stranama.
- Verovatnoća pristupa nekoj stranici $s \in S$:

$$P(s) = \sum_{r \in N(s)} \frac{P(r)}{n_r} + \sum_{r \in K} v_s P(r)$$

- N(s) je skup strana koje pokazuju na stranu s.
- n_r broj strana na koje se pokazuje sa strane r.
- $v = (v_1, \dots, v_s, \dots, v_N)$ vektor preference korisnika u posećivanju određene stranice.
- $p = (p_1, \dots, p_s, \dots, p_N)$ vektor verovatnoće posete svih stranica.
- A matrica takva da $A_{ij} = \frac{1}{n_j}$ ukoliko postoji veza sa strane j ka strani i, a 0 u suprotnom.
- $k = (k_1, \dots, k_s, \dots, k_N)$ vektor indikator da li čvor i nema naslednika.

$$p = (A + vk^T)p$$

- p je sopstveni vektor matrice $A+vk^T,$ pa se problem svodi na pronalaženje sostvenog vrektora matrice.
 - Matrica $A+vk^T$ je stohastička, pa je njena najveća sopstvena vrednost jednaka 1, što znači da će sopstveni vektor imati odgovarajuću supstvenu vrednost 1.

- * Ovo ne znači da postoji samo jedan sostveni vektor koji ima sopstvenu vrednost 1.
- Korisnik ne bira uvek samo stranice dostupne sa tekuće strane već nekada bira narednu stranu nezavisno od tekuće:

$$p = \alpha(A + vk^T)p + (1 - \alpha)v = (\alpha(A + vk^T) + (1 - \alpha)ve^T)p$$

- e vektor čiji su svi elementi jednaki 1, pri čemu poslednja jednakost važi zahvaljujući tome što važi $e^Tp=\sum_{i=1}^n p_i=1$.
 p je sopstveni vrednost google matrice:

$$G = \alpha(A + vk^T) + (1 - \alpha)ve^T$$

- p je sopstveni vektor koji odgovara najvećoj sopstvenoj vrednost matrice G, ona koja je jednaka 1.
- Norma je funkcija $\|\cdot\|:X\mapsto\mathbb{R}$ takva da za svako $\alpha\in\mathbb{R}$ i $x,y\in X$ važi:
 - $\|\alpha x\| = |\alpha| \|x\|$
 - $\|x + y\| = \|x\| + \|y\|$
 - Ako važi ||x|| = 0, onda važi x = 0.
- p-norme nad vektorima iz \mathbb{R}^n :

$$||x||_p = \sqrt[p]{\sum_{i=1}^n x_i^p}$$

• Ekvivalentnost p-normi: Za svake dve p-norme $\|\cdot\|_a$ i $\|\cdot\|_b$ postoje konstane $0 < c_1 \le c_2$, takve da za svako $x \in X$ važi:

$$c_1 ||x||_b \le ||x||_a \le c_2 ||x||_b$$

- Konvergencija u jednoj p-normi povlači konvergenciju u drugoj pnormi.
- p-norma nad matricama:

$$||A||_p = \max_{x \neq 0} \frac{||Ax||_p}{||x||_p}$$

• Frobenijusova norma:

$$||A||_F^2 = \sum_{i=1}^m \sum_{j=1}^n a_{ij}^2$$

Dekompozicija matrica

• LU, Čoleski, QR i SVD dekompozicije

LU dekompozicija

• LU dekompozicija podrazumeva predstavljanje matrice u vidu poizvoda L donjetrougaone ja jedinicama na dijagonali, i U gornjetrougaone.

$$A = LU$$

• Koristimo za rešavanje sistema: Ax = b

$$Ax = (LU)x = L(Ux) = b$$

- Prvo rešimo: Ly = b
- Drugo rešimo: Ux = y
- LU dekompozicija zahteva $\frac{1}{3}n^3$ množenja, dok Gaus-Žordanova metoda zahteva n^3 množenja.
- Rešavanje sistema: $Ax = b_1, \dots, Ax = b_n$ je značajno ubrzano.
- Inverzna matrica A^{-1} :
 - Prvo rešimo: $Ly = I_i$
 - Drugo rešimo: Ux = y
- Pod čvrstim uslovima moguće je dobiti LU dokompiziciju matrice
 - Ako to nije moguće uvek je moguće razmeniti njene redove i dobiti odgovarajuću dekompoziciju.
- Ako je poznata LU dekompozicija, lako je izračunati determinantu matrice (proizvod dijagonalnih elemenata matrice U).
 - Treba voditi rečuna o broju permutacija, i tako odrediti znak determinante.

Čoleski dekompozicija

- Matrica je pozitivno definitna ukoliko za sve vektore x odgovarajuće dimenzije, različite od nule, važi $x^TAx > 0$.
- Čoleski dekompoziciju kvadratne matrice A je moguće izvršiti pod uslovima da je ona simetrična i pozitivno definitna (L je donje trougaona matrica sa strogo pozitivnim dijagonalnim elementima):

$$A = LL^T$$

- Matricu L računamo narednim formulama:

$$l_{ii} = \left(a_{ii} - \sum_{k=1}^{i-1} l_{ik}\right) \quad i = 1, \dots, n$$

$$l_{ji} = \frac{1}{l_{ii}} \left(a_{ij} - \sum_{k=1}^{i-1} l_{ik} l_{jk} \right)$$
 $i = 1, \dots, n-1, j = i+1, \dots, n$

• Izračunavanje Čoleski dekompozicije zahteva $\frac{1}{6}n^3$ množenja, što je duplo bolje od LU dekompozicije.

- Pozitivna definitnost implicira ivertabilnost, pa je stabilost izračunavanja veća.
- Ako je poznata Čoleski dekompozicija matrice A rešavanje sistema Ax=b se vrši tako što se redom reše sistemi:

$$Ly = b$$

$$L^T x = u$$

• Determinantu je moguće izračunati na sledeći način:

$$\det(A) = \det(L) \cdot \det(L^T) = (\det(L))^2$$

- $-\det(L)$ je proizvod njenih dijagonalnih elemenata.
- Postojanje Čoleski dekompozicije matrice implicira da je ta matrica simetrična i pozitivno definitna.
 - Simetrija je očigledna
 - Pozitivno semidefinitna: $x^TAx = x^TLL^Tx = (L^Tx)^T(L^Tx) = \|L^Tx\|^2 > 0$
 - Pozitivno definitna: $x^T A x = 0$ akko x = 0.
- Sprovođenjem Čoleski dekompozicije možemo utvrditi da li je matrica pozitivno definitna.

QR dekompozicija

- Za kvadratnu matricu Qse kaže da je ortogonalna, ukoliko za nju važi $Q^TQ=QQ^T=I$
 - Nije potrebno nalaziti inverz ovakvih matrica.
 - Cuvaju euklidsku normu vektora pri množenju:

$$||Qx||_2^2 = (Qx)^T Qx = x^T Q^T Qx = x^T x = ||x||_2^2$$

• Uslovljenost matrice se definiše kao maksimum uslovljenosti sistema jednačin Ax=b:

$$\max_{x,\Delta b} \frac{\|Q^{-1}\Delta b\|}{\|\Delta b\|} \cdot \frac{\|Qx\|}{\|x\|} = \max_{x,\Delta b} \frac{\|Q^T\Delta b\|}{\|\Delta b\|} \cdot \frac{\|Qx\|}{\|x\|} = 1$$

- Ortogonalne matrije imaju minimalnu moguću uslovljenost Cond(Q)=1
- Proizvoljna matrica A, dimenzije $m \times n$ se može predstaviti pomoću ortogonalne matrice Q dimenzije $m \times m$ i matrice R dimenzije $m \times n$ u obliku

$$A = QR$$

• Matrice R je oblika $R = \begin{pmatrix} R' \\ 0 \end{pmatrix}$, gde je R' gornjetrouga
ona matrica dimen

zija $n \times n$. Matrica R ima formu

$$R = \begin{pmatrix} r_{11} & r_{12} & \dots & r_{1n} \\ 0 & r_{22} & \dots & r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & r_{nn} \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$$

- Zbog nula u matrici R moguće je čuvati samo njenu redukovanu formu R' i odgovarajuću redukovanu formu Q'.
- Ako je matrica A kvadratna, sistem jednačina Ax=b se može rešiti kao $(Q^{-1}=Q^T)$:

$$Rx = Q^T b$$

- QR dekompozicija zahteva više operacija nego izračunavanje LU dekompozicije.
- Matrica R je gornjetrouga
ona, a matrica Q ortogonalna, pa QR dekompozicija može voditi boljoj numeričkoj stabilnost
- Posebno je intersesantno koristi QR dekompoziciji kada matrica A nije kvadtana, što prethodne dve dekompozicije zahtevaju da je matrica A kvadratna.
- Neka je A=QR, prostor kolona matrica A je prostor kolona matrice Q, tj.

$$u\in C(A)\iff u=Ax$$
za neko
 x
$$\iff u=QRx$$

$$\iff u=Qy \text{ za } y=Rx \text{ (matrica Q je ortogonalna pa je A invertabilna)}$$

$$\iff u\in C(Q)$$

- Algoritam koji se koristi za računanje QR dekompozicije je Haushelderov algoritam, koji je numerički stabilan, zahvaljujući tome što počina na upotrebi ortogonalnih matrica, a zahteva oko $2mn^2 \frac{2}{3}n^3$ operacija.
 - Koristi niz matrica: $Q_1, \ldots, Q_n \in \mathbb{R}^{m \times m}$ da bi dobio gornjetrouga
onu matricu, tj.

$$Q_n \cdots Q_2 Q_1 A = R$$

- Množenje i-tom matricom anuliraju svi elementi i-te kolone ispod glavne dijagonale.
- Ovim postupkom QR dekompozicija matrice A jednaka je:

$$A = Q_1^T Q_2^T \cdot Q_n^T R$$

- Svaka od matrica Q_i ima formu:

$$Q_i = \begin{pmatrix} I & 0 \\ 0 & F \end{pmatrix}$$

- -I kvadtana jedinična matrica dimenzije i-1.
- $-\ F$ ortogonalna kvadratna Haushelderova metrica refleksije dimenzije m-i+1.
- Ideja konstrukcije matrice F je da treba da realizuje refleksiju vektora tako da mu svi elementi osim prvog budu 0.

$$Fx = \begin{pmatrix} \|x\|_2 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

- Projekcija na podprostor H:

$$P_H = I - \frac{vv^T}{v^T v}$$

- Kako transformacija F treba da pomeri x dvaput dalje nego projekcija, željena matrica je (za koju se lako pokazuje da je ortogonalna):

$$F = I - 2\frac{vv^T}{v^Tv}$$

- Za vektor v uzimamo:

$$v = sgn(x_1) ||x||_2 e_1 + x$$

Haushelderov algoritam

• for i = 1 to n do $-x = a_{i:m,i}$ $-v_i = sng(x_1)||x||_2 e_1 + x$ $-v_i = v_i/||v_i||_2$ $-a_{i:m,i:n} = a_{i:m,i:n} - 2v_k(v^T a_{i:m,i:n})$

Algoritam za množenje vektor x matricom Q kada je poznat niz vektora v_1, \ldots, v_n .

Singularna dekompozicija

- Matrice blizu singularnim su loše uslovljene, pa SVD pruža smisleno baratanje ovakvim matricama.
- Neka je A matrica dimenzije $m \times n$, pri čemu je $m \ge n$.
- Postoji ortogonalna matrica U dimenzije $m\times m$, dijagonalna matrica Σ dimenzije $m\times n$ i ortogonalna matrica V dimenzije $n\times n$, takva da važi:

$$A = U\Sigma V^T$$

• Matrica Σ ima m-n vrsta koje se sastoje isključivo od nula pa se mogu zanemariti, uz to uklanjamo i m-n poslednjih kolona matrice U, pa dobijamo:

$$A = U'\Sigma'V^T$$

- Dijagonalni elementi matrice Σ , $sigma_i$ za $i=1,2,\ldots,n$, nazivaju se singularnim vrednostima matrice A.
- Važe sledeća svojstva singularne dekompozicije:
 - Singularne vrednosti matrice A su sve nenegativne i predstavljaju kvadratne korene sopstvenih vrednosti matrice AA^T i A^TA .
 - Rang matrice A jednak je broju singularnih vrednosti koje nisu jednake nuli.
 - Kolone matrice U su sopstveni vektori matrice AA^T i nazivaju se levim singularnim vektorima matrice A.
 - Kolone matrice V predstavljaju sopstvene vektore matrice A^TA i nazivaju se desnim singularnim vektorima matrice A.
 - Kolone matrice V koje odgovaraju nultim singularnim vrednostima predstavljaju ortonormiranu bazu jezgra matrice A, odnosno prostora svih vektora x, takvih da važi Ax = 0.
 - Kolone matrice V koje odgovaraju nenultim singularnim vrednostima predstavljaju ortonormiranu bazu prostora vrsta matrice A.
 - Kolone matrice U koje odgovaraju nenultim singularnim vrednostima predstavljaju ortonormiranu bazu prostora kolona matrice A.
 - Kolone matrice U koje odgovaraju nenultim singularnim vrednostima predstavljaju ortonormiranu bazu levog jezgra matrice A, odnosno prostora svih vektora x, takvih da važi $x^T A = 0$.
 - $||A||_2 = \sigma_1$ $||A||_F = \sqrt{\sum_{i=1}^n sigma_i^2}$ $Cond(A) = \frac{\sigma_1}{sigma_n}$
- Za računanje singularne dekompozicije potrebno je $\Theta(mn^2)$ operacija, sa nepovoljnim konstantnim faktorom. Izračunavanje singularne dekompozicije je numerički vrlo stabilno.
- Pomoću singularne dekompozicije može se izvesti ortogonalizacija skupa vektora: Odradimo singularnu dekompoziciju nad matricom čije kolone čine dati vektori, dobijamo ortonormiranu bazu koju čine kolone matrice U
- Ako su U_i kolone matrice U, a V_i kolone matrice V, onda:

$$A = \sum_{i=1}^{n} \sigma_i U_i V_i^T$$

• Inverz kvadratne matrice pomoću singularne dekompozicije (svaka od singularnih vrednosti σ_i , zamenjena vrednošću $\frac{1}{\sigma_i}$):

$$A^{-1} = V \Sigma^{-1} U^T$$

— U slučaju da Σ^{-1} nije inverz
 matrice $\Sigma,$ to znači da je sama matrica
 Aloše uslovljena.

• Rešavanje sistema Ax = b (neka je $x' = V\Sigma^{-1}U^Tb$):

$$Ax' = AV\Sigma^{-1}U^Tb = U\Sigma V^T V\Sigma^{-1}U^Tb = U\Sigma \Sigma^{-1}U^Tb$$

- Proizvod $\Sigma\Sigma^{-1}$ ima nule van dijagonale, jedinice na dijagonali na pozicijama singularnih vrednosti koje nisu nula i nule na ostalim pozicijama.
- -Ax' će biti jednak vektoru b na pozicijama nultih singularnih vrednosti.

Sopstveni vektori matrica

- Kvadratna matrica Aima $sopstveni \ vektor$ i sopstvenu vrednost $\lambda,$ ukoliko važi:

$$Ax = \lambda x \quad x \neq 0$$

- Matrica A ne menja pravac sopstvenog vektora.
- Različitim sopstvenim vrednostima odgovaraju linearno nezavisni vektori.
- Sopstvene vrednosti jednake su nulama karakterističnog polinoma

$$\det(A - \lambda I)$$
.

- Svakoj sopstvenoj vrednosti λ_i odgovara sopstveni potprostor V_i .
 - * Neka je D dijagonalna matrica sopstvenih vrednosti u kojoj se svaka λ_i ponavlja $dim(V_i)$ puta, i X matrica čije su kolone odgovarajući sopstveni vektori, tada važi

$$AX = XD$$
 $A = XDX^{-1}$ $D = X^{-1}AX$

- * Ako je matrica V_i simetrična, uvek je moguće konstruisati dijagonalnu matricu D.
- Potpune metode pronalaze sve sopstvene vektore date matrice.
- Delimične metode pronalaze neke sopstvene vektore date matrice.

Potpune metode

- Pronalazimo nule karakterističnog polinoma $\det(A \lambda I)$ i potom rešavamo sistem jednačina $(A \lambda I)x = 0$.
- Jakobijeva metoda zasnovana na primeni matrica rotacije kako bi se anulirali vandijagonalni elementi.
- QR metoda se zasniva na opažanju da:

$$A_1 = A$$

$$A_{i+1} = R_i Q_i$$

Zbog ortogonalnosti matrica važi:

$$A_{i+1} = R_i Q_i = Q_i^T Q_i R_i Q_i = Q_i^T A_i Q_i$$

– Pod određenim uslovima niz matrica R_i konvergira matrici koja na dijagonali ima spostvene vrednosti, a matrica sopstvenih vektor X se dobija kao proizvod $Q_iQ_2\cdots$.

Delimične metode

- Delimične metode omogućavaju traženje samo nekih sopstvenih vektora, po pravili dominantnog sopstvenog vektora - onog koji odgovara po modulu najvećoj sopstvenoj vrednosti.
- Metoda stepenovanja (power method).
 - Neka su x_1, \ldots, x_n sopstveni vektori matrice $A \in \mathbb{R}^{n \times n}$. Neka je v_0 proizvoljan vektor. Sopstveni vektori čine bazu prostora pa važi

$$v_0 = \alpha_1 x_1 + \ldots + \alpha_n x_n$$

– Neka je $v_k = A^k v_0$, onda

$$v_k = \lambda_1^k \alpha_1 x_1 + \ldots + \lambda_n^k \alpha_n x_n$$

– Ako važi $|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \ldots \ge |\lambda_n|$ i $\alpha_1 \ne 0$, onda važi:

$$\lambda_2^k \alpha_2 x_2 + \ldots + \lambda_n^k \alpha_n x_n = o(\lambda_1^k \alpha_1 x_1)$$

- * Vektor v_k konvergira ka sopstvenom vektoru kolinearnom sa x_1 .
- Odgovarajuća sopstvena vrednost je aproksimirana izrazom

$$\frac{v_k^T A v_k}{v_k^T v_k}$$

- Algoritam PageRank se zasniva na metodi stepenovanja.
- Kako izračunati ostale sopstvene vektore?
 - Neka je $|\lambda_1|>|\lambda_2|>\ldots>|\lambda_n|$ i neka su y_1,\ldots,y_n sopstveni vektori matrice A^T , skalirani tako da važi $x_i\cdot y_j=\delta_{ij}$. Neka je

$$A_1 = A$$

$$A_{i+1} = A_i - \lambda_i x_i y_i^T \quad i = 2, \dots, n$$

- Sopstveni vektori i vrednosti se dobijaju primenom metoda stepenovanja na matrice A_i i A_i^T , za $i=1,\ldots,n$.
- Ova metoda se naziva metodom iscrpljivanja.

Analiza glavnih komponenti

- Podaci su predstavljeni u visokodimenzionom prostoru.
- Često glavne informacije leže u niskodimenzionim podprostorima.
- Redukcija dimenzionalnosti, radi skladištenja podataka i bržeg izračunavanja mašinskih algoritama.
- Često postoje korelacije i linearne zavisnosti među podacima, pa je eleminasanje redidandnosti jedan o bitnih, a i teških zadatak.
- Racionalan pristup je naći skup vektora duž kojih je varijacija podataka najmanja.
- Kako bi konstruisani vektori bili nekorelisani, oni moraju biti ortogonalni, oni se nazivaju glavne komponente.

- Konstruišemo glavne komponente redom, tako da prvi vektor opisuje najvišu varijansu u podacima.
- Prva glavna komponenta se dobija kao rešenje problema

$$\max_{\|v\|=1} \sum_{i=1}^{N} (x_i \cdot v)^2 = \max_{\|v\|=1} \|Xv\|_2^2 = \max_v \frac{\|Xv\|_2^2}{\|v\|_2^2} = \max_v \frac{\|Xv\|_2}{\|v\|_2}$$

• Prema definicija matričnih p normi, maksimalna vrednost veličine koja se maksimizuje je $\|X\|_2$, što je takođe najveća singularna vrednosti σ_1 matrice X, što je koren po modulu najveće sopstvene vrednosti λ_1 matrice X^TX .

$$\frac{\|Xv\|_2}{\|v\|_2} = (\frac{v^T X^T X v}{v^T v})^{1/2} = (\lambda_1 \frac{v^T v}{v^T v})^{1/2} = \sqrt{\lambda_1}$$

- Maksimalna vrednost se dostiže kada je v dominantan sopstveni vektor matrice X^TX .
- Sledeću glavnu komponentu dobijamo kada postupak primenimo na $X_1^T X$, itd...
- Neka su v_1, v_2, \ldots, v_n glavne komponente, svaki podatak x se može predstaviti pomoću koordinata $(x \cdot v_1, \ldots, x \cdot v_n)$, odnosno matrica X se može zameniti matricom XV.
- Svakoj komponenti se može pridružiti udeo varijanse koju opisuje:

$$\frac{\sigma_i^2}{\sum_{j=1}^n \sigma_j^2}$$

• Udeo varijanse dobijen pomoću prvih k komponenti je

$$\sum_{i=1}^{k} \frac{\sigma_i^2}{\sum_{j=1}^{n} \sigma_j^2}$$

- X^TX predstavlja matricu kovarijanse kolona polazne matrice podataka.
- Podatke možemo standardizovati, tada X^TX , predstavlja matricu korelacije kolona polazne matrice podataka.
- Da li izvršiti standardizaciju ili ne?
 - Ako su merene na istoj skali, i ne razlikuju se za red veličine standardizacijom gubimo informacije.
 - Inače, treba raditi standardizaciju.

Retki sistemi linearnih jednačina

- Retke matrice se karakterišu malim brojem nenula elemenata.
- Omogućava efikasno skladištenje matrice, kao i efikasno izračunavanje.
- Trivijalan primer rekte matrice je dijagonalna matrice.
 - Za njeno čuvanje je potrebno $\Theta(n)$, a rešavamnje sistema je $\Theta(n)$ operacija.

• Slično važi i za matrice oblika:

$$\begin{pmatrix} b_1 & c_1 & 0 & 0 & \dots & 0 & 0 & 0 \\ a_2 & b_2 & c_2 & 0 & \dots & 0 & 0 & 0 \\ 0 & a_3 & b_3 & c_3 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & b_{n-2} & c_{n-2} & 0 \\ 0 & 0 & 0 & 0 & \dots & a_{n-1} & b_{n-1} & c_{n-1} \\ 0 & 0 & 0 & 0 & \dots & 0 & a_n & b_n \end{pmatrix}$$

• Blok-dijagonalne matrice:

$$\begin{pmatrix} A_1 & 0 & \dots & 0 \\ 0 & A_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & A_m \end{pmatrix}$$

– Sistem Ax=b rešavamo tako što rešimo pojedinačne podsisteme poblokovima:

$$A_1x_1 = b_1$$

$$A_2x_2 = b_2$$

$$\vdots$$

$$A_mx_m = b_m$$

- Složenost rešavanja ovakvog sistema je: $m\Theta((n/m)^3) = \Theta(n^3)/m^2$.
- Ostale retke matrice:
 - Trakasta, blok-trougaona, blog-trodijagonalna, blok-dijagonalna sa ivicom, blok-dijagonalna sa dve ivice, blok trougaona sa ivicom, trakastotrougaona sa ivicom, trakasta sa ivicom, trakasta sa dve ivice...

Inkrementalni pristup rešavaju problema linearne algebre

- Da li je moguće, u slučaju malih promene u matrici, efikasno ažurirati dekompoziciju ili inverz?
- Šerman-Morison-Vudburijeva formula u slučaju medifikacija niskog ragna:

$$(A + UV^{T})^{-1} = A^{-1} - A^{-1}U(I + V^{T}A^{-1}U)^{-1}V^{T}A^{-1}$$

• Pri rešavanju sistema $(A+UV^T)x=b$ važi

$$\begin{split} x &= (A + UV^T)^{-1}b \\ &= (A^{-1} - A^{-1}U(I + V^TA^{-1}U)^{-1}V^TA^{-1})b \\ &= A^{-1}b - A^{-1}U(I + V^TA^{-1}U)^{-1}V^TA^{-1}b \\ &= y - ZH^{-1}V^Ty \end{split}$$

- Pri tome $y = A^{-1}b$, $Z = A^{-1}U$, $H = I + V^{T}A^{-1}U$, $y = A^{-1}b$
- y je rešenje sistema Ay = b, koje može da se izračuna metodom dekompozicije za retke matrice.
- \bullet Z može da se izračuna kao rešenje p retkih sistema

$$Az_1 = U_1$$

$$Az_2 = U_2$$

$$\vdots$$

$$Az_p = U_p$$

• Vektor $H^{-1}V^Ty$ može da se izračuna reštavanjem sistema:

$$Hw = V^T y$$

- Inkrementalno gradimo sistem dodavanjem podataka u primeni metode najmanjih kvadtana.
- Pored primene za lako ažuriranje inverza pomoću prethodnih formula moguće je izvesti i efikasno ažuriranje dekompozicija matrica.
 - Sistem za preporučivanje je jedan idealan primer.

Matematička optimizacija

Opšti problem optimizacije je oblika:

$$\min_{x \in \mathcal{D}} f(x)$$
 t.d. $g_i(x) \le 0$ $i = 1, ..., M$

gde je f funkcija cilja, skup \mathcal{D} domen, i M funkcija ograničenja g_i . Objekat iz domena $x \in \mathcal{D}$ se naziva dopustivo rešenje. Potrebno je među svim dopustivim rešenjima naći ono za koje je vrednost ciljne funkcije najmanja.

- Pronalaženje maksimuma funkcije f se može svesti na pronalaženje minimuma funkcije -f.
- Ograničenje g(x)=0 se može predstaviti pomoću dva ograničenja: $g(x)\leq 0$ i $-g(x)\leq 0$.
- Problemi: raspoređivanje, transport, komunikacija, problemi mašinskog učenja, metode automatskog dizajna hardvera, računarske vizije, robotika, odlučivanja, ekonomije i finansije, biologije, građevine, goe nauka, arheologije,...
- Podela metoda za rešavanje problema optimizacije po osobinama problema:
 - Lokalnost
 - * Lokalni ili globalni minimumi?
 - * Lokalne optimizacije su obično egzaktne
 - * Globalne optimizacije nemaju egzaktne metode, već se rešavaju heuristikama

- Neprekidnost

- * U zavisnosti od toga da li je domen diskretan ili neprekidan skup?
- * Kod diskretnih optimizacija se javlja kombinatorna eksplozija pa se optimizacione metode zasnivaju često na heuristikama.
- * Neprekidne optimizacije je obično lako rešiti matematičkom analizom, i obično su te metode efikasne.

- Diferencijabilnost

- * Da li su funkcija cilja i ograničenja diferencijabilni?
- * Ako su neprekidne, koriste gradijent, a ako su još i glatke koriste hesijan kao dodatne informacije o pronalaženju minimuma.

- Konveksnost

- * Da li su funkcija cilja i graničenja konveksni?
- * Tada imamo jedinstveni optimum, pa se pronalaženje globalnog optimuma svodi na pronalaženje lokalnog optimuma.

- Prisustvo ograničenja

* Ako nemamo ograničenja, probleme je moguće rešiti dosta jednostavnijim metodama.

Primeri praktičnih problema neprekidne matematičke optimizacije

Neprekidna optimizacija

• U ovom delu se govori o neprekidnoj optimizaciji, tj. domen je neprekidan skup.

Uslovi optimalnosti

- Pretpostavimo da su funkcije cilja i ograničenja diferencijabilne.
- Gradijent funkcije f u tački x:

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

- Gradijent opisuje pravac u kojem funkcija najbrže raste u toj tački.
- U nekoj tački x* optimuma, gradijent je nula, tj.

$$\nabla f(x^*) = 0$$

- Tada je tangentna površ je horizontalna.
- Ako je za tačku x^* važi $\nabla f(x^*) = 0$, onda ona ne mora biti tačka optimuma, i takve tačke se nazivaju stacionarnim.
- Dva puta diferencijalne funkcije imaju svoj hesijan:

$$\nabla^2 f(x) = \left[\frac{\partial^2 f(x)}{\partial x_i \partial x_j} \right]$$

• Da bi stacionarna tačka zaista bila optimum, hesijan u datoj tački mora biti pozitivno ili negativno definitna matrica, tj. mora da važi:

$$h^T \nabla^2 f(x^*) h > 0$$
, gde $h \neq 0$

- U slučaju optimizacionih problema sa ograničenjma postoje uslovi optimalnosti KKT uslovi:
 - Neka je dat problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
t.d. $g_i(x) \le 0$ $i = 1, \dots, M$
 $h_j(x) = 0$ $j = 1, \dots, L$

• Neka je x^* optimalno rešenje i neka su sve funkcije diferencijabilne u x^* . Ako važe uslovi regularnosti, postoje konstante μ_i^* i λ_j^* takve da važi:

$$g_i(x^*) \le 0$$

$$h_j(x^*) = 0$$

$$-\nabla f(x^*) = \sum_{i=1}^M \mu_i^* \nabla g_i(x^*) + \sum_{j=1}^L \lambda_j^* \nabla h_j(x^*)$$

$$\mu_i^* \ge 0$$

$$\mu_i^* g_i(x^*) = 0$$

• Jedan od gornjih uslova možemo posmatrati kao da je (x^*, μ^*, λ^*) stacionarna tačka lagranžijana:

$$L(x, \mu, \lambda) = f(x^*) + \sum_{i=1}^{M} \mu_i g_i(x) + \sum_{j=1}^{L} \lambda_j h_j(x)$$

- Uslova regularnosti:
 - Sva ograničenja su afine funkcije
 - Gradijenti aktivnih ograničenja i jednakosnih ograničenja u tački x^* su linearno nezavisni
 - Sve funkcije u problemu su konveksne i postoji tačka x takva da je $h_j(x)=0$ za sve j i $g_i(x)<0$ za sve i.
- Dovoljan uslov optimalnosti se može sada definisati preko hesijana: Za svako h koje zadovoljava $h^T \nabla g_i(x) = 0$ za svako nejednakosno ograničenje g_i treba da važi:

$$h^T\nabla^2_{xx}L(x^*,\lambda^*,\mu^*)h>0$$

Metode lokalne optimizacije prvog reda bez ograničenja

- Metode optimizacije prvog reda pordrazumevaju sve metode koje kao jedine informacije o funkciji koriste njene vrednosit i vrednosti njenog gradijenta u proizvoljnim tačkama.
- Neka je $X \subset \mathbb{R}^n$. Funkcija $f: X \mapsto \mathbb{R}$ je *Lipšic neprekidna*, ukoliko postoji konstanta L, takvda da za sve $x, y \in X$ važi

$$|f(x) - f(y)| \le L||x - y||$$

• Difrencijabilna funkcija $f:X\mapsto \mathbb{R}$ je konveksna,ako za svako $x,y\in X$ važi:

$$f(x) \ge f(y) + \nabla f(y)^T (x - y)$$

- Funckija f je konkavna ukoliko je funkcija -f konveksna.
- Funkcija f je jako konveksna, ukoliko postoji m>0 i za svako $x,y\in X$ važi:

$$f(x) \ge f(y) + \nabla f(y)^T (x - y) + \frac{m}{2} ||x - y||^2$$

- Neformalno, jako konveksna funkcija je konvaksna bar koliko i kvadratna funkcija.
- Svojstva konveksnih funkcija:
 - Ako su f_1, \ldots, f_m konveksne funkcija i važi $w_1 \geq 0, \ldots, w_m \geq 0$, onda je i sledeća funkcija konveksna:

$$w_1 f_1(x) + \ldots + w_m f_m(x)$$

- Ako je f konveksna funkcija, A matrica i b vektori odgovarajućih dimenzija, onda je i f(Ax + b) konveksna funkcija.
- Ako su f_1, \ldots, f_m konveksne funkcije, onda je i sledeća funkcija konveksne:

$$\max\{f_1(x),\ldots,f_m(x)\}\$$

- * Isto važi i za supremum nad beskonačnim skupom konveksnih funkcija.
- Kompozicija $f \circ g$ je konveksna funkcija ako je funkcija f konveksna i neopadajuća po svim argumentima, a funkcija g konveksna ili ako je funkcija f konveksna i nerastuća po svim argumentima, a g konkavna.
- *Gradijentni spust* je metoda optimizacije prvog reda za difrencijabilna funkcije.
 - Počinjemo od nasumične tačke x_0
 - Svako sledeću tačku računamo na osnovu prethodne: $x_{k+1} = x_k \alpha_k \nabla f(x_k)$
 - Kako izabrati parametre α_k ?
 - * Konstantne vrednosti: $\alpha_k = \alpha$, za svako k.
 - * Izbor mora da zadovoljava Robins-Monroove uslove:

$$\sum_{k=0}^{\infty} \alpha_k = \infty \quad \sum_{k=1}^{\infty} \alpha_k^2 < \infty$$

- * Jedan izbor može biti $\alpha_k = \frac{1}{k}$.
- Kriterijum zaustavljanja:
 - * Određeni broj iteracija:

 - $* \|x_{k+1} x_k\| < \varepsilon;$ $* |f(x_{k+1}) f(x_k)| < \varepsilon;$ $* \frac{|f(x_{k+1}) f(x_k)|}{|f(x_0)|} < \varepsilon;$ $1 \dots$
- Za konveksne funkcije sa Lipšic neprekidnim gradijentom, pod Robins-Monroovim uslovima greška $||x_k - x^*||$, gde je x^* tačka minimuma, je reda $O(\frac{1}{k})$. Ovo implicira da metod konvergira.
- Za jako konveksne funkcije sa Lipšic neprekidnim gradijentom, greška je reda $O(c^k)$ za neko 0 < c < 1.
- Ostale neprekidne funkije koje nisu konveksne, gradijentni spust konvergira, ali navedene brzine konvergencija ne važe.
- Na izduženim konturama gradijentni spust pravi zig-zag putanju, kako gradijent ne mora biti pravac najbržeg kretanja ka minimumu.
- Prednost metode gradijentnog spusta su njena jednostavnost i široki uslovi promenjivosti.
- Mane su spora konvergencija, to što je izabran pravac samo lokalno optimalan.
- Stohastički gradijentni spust je modifikacija gradijentnog spusta tako što se umesto gradijenta koristi neki slučajni vektor čije je očekivanje kolinearno sa gradijentom i istog je smera.
 - Ima smisla koristiti je kada se funkcija koja se optimizuje može predstaviti kao presek drugih funkcije:

$$f(x) = \frac{1}{n} \sum_{i=1}^{N} f_i(x)$$

Korak se onda računa, za nasumično izaberano i, kao:

$$x_{k+1} = x_k - \alpha_k \nabla f_i(x_k)$$

- Novo i može da se bira: $i = (k \mod N) + 1$
- Još jedan pristup da se za novo rešenje x_{k+1} uključuje presek nekog podskupa funkcije f_i (minibatch).
- Za konveksne funkcije sa Lipšic neprekidnim gradijentom greška je $O(\frac{1}{\sqrt{k}})$
- Za jako konveksne funkcije sa Lipšic neprekidnim gradijentom greška je rede $O(\frac{1}{k})$.
- Nekada se gredijent skup za izračunavanje, pa se kod stohastičkog gradijentnog spusta on jeftino aproksimira.
- Metod inercije se zasniva na ideji akumuliranje prethodnog gradijenta, pri čemu je značaj starijih gradijenata manji, a novijih veći:

$$d_0 = 0$$

$$d_{k+1} = \beta_k d_k + \alpha_k \nabla f(x_k)$$

$$x_{k+1} = x_k - d_{k+1}$$

• Nestorovljev ubrzani gradijentni spust je modifikacija metoda inercije, koja predstavlja asimptotski optimalan algoritam prvog reda za konveksne funkcije:

$$d_0 = 0$$

$$d_{k+1} = \beta_k d_k + \alpha_k \nabla f(x_k - \beta_k d_k)$$

$$x_{k+1} = x_k - d_{k+1}$$

- Za konveksne funkcije sa Lipšic neprekidnim gradijentom, greška je reda $O(\frac{1}{k^2}).$

Metode lokalne optimizacije drugog reda bez ograničenja

- Metode optimizacije drugog reda pored vrednosti funkcija i gradijenta, koriste hesijan.
- Kako gradijent pruža informaciju o brzini promene funkcije duž različitih koordinatnih pravaca, tako hesijan pruža informaciju o brzini promene gradijenta duž različitih koordinatnih pravaca.
- Njutnov metod:

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$
$$x_{k+1} = x_k - \nabla^2 f(x_k)^{-1} \nabla f(x_k)$$

- Za jako konveksne funkcije sa Lipšic neprekidnim hesijanom, greška je reda $O(c^{2^k})$, za neko 0 < c < 1, što je neuporedivo brže od metoda provog reda.
- Neka je funkcije koja se minimizuje kvadratna:

$$f(x) = \frac{1}{2}x^T A x + b^T x + c$$

- Odgovarajući gradijent: $\nabla f(x) = b + Ax$
- Odgovarajući hesijana: $\nabla^2 f(x) + A$
- Korak Njutnove metode:

$$x_1 = x_0 - A^{-1}(b + Ax) = -A^{-1}b$$

$$\nabla f(x_1) = \nabla f(-A^{-1}b) = b + A(-A^{-1}b) = 0$$

- Iz prethodnog razmatranja imamo da je gradijent nula, pa je smo dobili stacionarnu tačku.
- -Ako je fkonveksna funkcija, tj. matrica A je pozitivno semidefinitna, sigurno se radi o minimumu.
- -Ako je fkokkavna funkcija, tj. matrica A je negativno semidefinitna, sigurno se radi o maksimumu.
- U svim ostalim slučajevima radi se o sedlenim tačkama.
- Njutnova metoda traži nulu gradijenta, a ne minimum funkcije.
 - Kasnijim razmatranjem to će biti ili minimum ili maksimum ili sedlena tačka.

- Njutnovom metodom se vrši niz uzastopnih minimizacija lokalnih kvadratnih aproksimacija funkcije.
- Prednost Njutnove metode je brza konvergencija
- Mana je memorijski zahtevno skladištenje hesijana, i zahtev za strogu konveksnost funkcije.
- Kvazi-Njutnove metode se zasnivaju na aproksimaciju inverza hesijana na osnovu gradijenata.
- BFGS (Brojden-Flečer-Goldfarb-Šano):

$$x_{k+1} = x_k - H_k^{-1} \nabla f(x_k)$$

- H_k^{-1} aproksimirana simetrična matrica. BFGS pretpostavlja i slaganje gradijenata funkcije f i njene kvadratne aproksimacije \bar{f}_k :

$$\overline{f}_k(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T H_k(x - x_k)$$
$$\nabla \overline{f}_k(x) = \nabla f(x_k) + H_k(x - x_k)$$

• Gradijenti se slažu u tački x_k .

$$\nabla f(x_k) + H_k(x_{k-1} - x_k) = \nabla f(x_{k-1})$$

 - Ovaj uslov se oslanja na matricu H_k , što je nepoželjno, pošto je aproksimirana H_k^{-1} , pa se uslov transformiše u ekvivalentan:

$$H_k^{-1}(\nabla f(x_k) - \nabla f(x_{k-1})) = x_k - x_{k-1}$$

 - Dodatno se zahteva da ${\cal H}_k^{-1}$ predstavlja rešenje narednog optimizacionog problema:

$$\min_{H^{-1}} \|H^{-1} - H_{k-1}^{-1}\|_{2}^{2}$$
t.d.
$$H^{-1}(\nabla f(x_{k}) - \nabla f(x_{k-1})) = x_{k} - x_{k-1}$$
$$H^{-1} = H^{-1}$$

- Ispostavlja se da ovaj problem ima rešenje u zatorenoj formi, koje se brzo izračunava.
- BFGS ima red greške između $O(c^k)$ i $O(c^{2^k})$. Može se očekivati da ova metoda bude sportija od Njutnove, ali brža od metoda prvog reda.
- Ne rešava problem memorije, to radi LBFGS (low memory BFGS).

Linijska pretraga

- Linijska pretraga se zasniva na izboru dužine koraka. Pretražuje odabranu duž pravca za najboljom ili maka povoljnom dužinom koraka.
- Pretpostavimo da je izbor pravca spusta, tj. da važi $\nabla f(x)^T d < 0$, gde je d pravac.

• Egzaktna linijska pretraga u tački x_k :

$$\min_{\alpha > 0} f(x_k + \alpha d)$$

- Da li se ovaj problem može rešiti analitički ili ne?
- U praksi se retko koristi.
- Kako izabrati odgovarajuću vrednosti $\alpha?$
 - Neka je $\alpha_k = \alpha_0 \beta^k$ za k > 0, $\alpha_0 > 0$ i $\beta \in (0,1)$. Linijska pretraga se bira najmanje k, odnosno najveće α_k za koje važe Armihov uslov:

$$f(x + \alpha_k d) \le f(x) + \alpha_k \nabla f(x)^T d.$$

- Da je ovaj postupak izbora vrednosti α završava u konačnom vremenu?
 - Za dovoljno malo α važi:

$$f(x + \alpha d) \approx f(x) + \alpha \nabla f(x)^T d$$

- Kako α_k eksponencijalno opada, za dovoljno veliko k važi $\alpha_k < \alpha$.
- Kako je d pravac spusta, važi:

$$f(x) + \alpha \nabla f(x)^T d < f(x) + \alpha^* \nabla f(x)^T d$$

- Za dovoljno malo α važi:

$$f(x + \alpha f) < f(x) + \alpha^* \nabla f(x)^T d$$

Metode lokalne optimizacije sa ograničenjima

- Uz prisustvo ograničenja minimum funkcije ne mora biti jednak pravom minimumu funkcije.
- Takođe, ukoliko ne postoji minimum funkcije bez ograničenja, on može postojata ukoliko su ograničenja pristna.
- Najjednostavnije klasa problema sa ograničenjima su linearni problemi, odnosno problemi linearnog programiranja.
- Najpoznatiji metod rešavanja problema linearnog programiranja je simpleks algoritam.
 - Ima eksponencijalnu složenost, ali u praksi je često efikasan.
 - Postoji i algoritmi sa polinomijalnom složenošću.
- U slučaju konveksnog skupa dopustivih rešenja, moguće je primeniti mehanizam projektovanog gradijenta.

$$\min_{u \in U} ||x - u||_2 = P_U(x)$$

$$x_{k+1} = P_U(x_k - \alpha_k \nabla f(x_k))$$

- Kako rešiti problem projektovanja?
 - Optimizacijom? Ne pokazuje se toliko efikasno
 - Metodi zasnova na kaznenim funkcijama (alogitam logaritamska barijera)

• Opšti problem minimizacije rešavamo iterativno tako što se u k-toj iteraciji rešava problem (za početnu tačku uzima se rešenje prethodne iteracije):

$$\min_{x} f(x) + \frac{1}{\mu_k} \sum_{i=1}^{L} -\log(-g_i(x))$$

- Kada je $g_i(x)$ blisko nuli, vrednost kaznene funkcije $-\log(-g_i(x))$ je veliki pozitivan broj.
- Povećavanjem parametra μ se omogućava smanjenje uticaja kaznene funkcije.

Diskretna optimizacija

- Diskretna optimizacija podrzumeva diskretnost nekog od elemenata optimizacionog problema (domena, funkcije cilja).
- Metode se posmatraju kao algoritmi pretrage na prostoru potencijalnih rešenja.
- Egzaktna pretraga garantuje pronalaženje optimuma.
- Heuristička pretraga ne pruža nikakvu garanciju.

Egzaktne metode

- Problemi koje rešavaju egzaktne metode su vrlo često NP-teški.
- Zbog toga ove metode imaju eksponencijalne ili veće vremenske složenosti.
- Grananje i ograničavanje (Branch and bound)
 - Prostor rešenja se može deliti na dva ili više delova koji u uniji čine ceo prostor.
 - Iscrpna pretraga, ali ako je moguće uštedu u vremenu treba izvršiti odsecanjem podstabla pretrage.
 - Zasniva se na brzom određivanju donjih granica vrednosti funkcije cilja: kada je donja granica nekof od potprostora veća od najniže vrednosti pronađene u toko pretrage, celo podstablo koje odgovara tom potprostoru se može zanemariti.

Algoritam:

- Nekom heuristikom odrediti početno dopustivo rešenje x,
- Neka je B = f(x), s = x i Q = [P].
- Ponavljati dok $Q \neq \emptyset$
 - Uzeti instancu I iz reda Q
 - Ukoliko važi signle(I) i ako je x jedino rešenje instance I i važi f(x) < B, onda dodeliti B = f(x) i s = x i preskočiti ostatak iteracije.
 - Neka je $[I_1, \ldots, I_n] = branch(I)$
 - Svaku instancu I_i za koju važi $bound(I_i) < B$ staviti u red
- Vratiti (s, B)

Heurističke metode

- Heurističke metode ne garantuju optimalnost.
- Metaheuristike su šabloni po kojima se kreiraju heuristike za konkretan problem.
- Populacione metaheuristike se zasnivaju na održavanju populacije dopustivih rešenja koja se paralelno menjaju, popravljaju, kobinuju, interaguju i slično. (genetski algoritmi, kolonija mrava, roj čestica,...)
- Druge predstavljaju održanje jednog dopusivog rešenja. (simulirano kaljenje, tabu pretraga, metod promenljivih okolina).
- Mehanizam intenzifikacije popravlja tekuće rešenje ili tekuća rešenje.
- Mehanizam diverzifikacije pokušava da se izvuče iz lokalno minimuma.
- Metod promenljivih okolina (VNS variable neighbourhood search)
 - Održava jedno rešenje
 - Koristi metod pronalaženja lokalnog optimuma (metod intenzifikacije)
 - Koristi razmrdavanje (shaking) (metod diverzifikacije)
- $(N)_i(x)$, za $i=1,\ldots,K$ za svako dopustivo rešenje $x\in D$.

Redukovana metoda promenljivih okolina:

- Inicijalizovati dopustivo rešenje x
- Ponavljati naredne korake sve dok nije ispunjen kriterijum zaustavljanja:
 - Neka je k=1.
 - Ponavljati dok važi k < K
 - * Razmrdavanje: nasumice generisati tačku $x' \in \mathcal{N}_k(x)$
 - * Kretanje: ukoliko je f(x') < f(x), neka je x = x' i k = 1, a u suprotnom, neka je k = k + 1

Metoda promenljivih okolina:

- Inicijalizovati dopustivo rešenje x
- Ponavljati naredne korake sve dok nije ispunjen kriterijum zaustavljanja:
 - Neka je k = 1.
 - Ponavljati dok važi k < K
 - * Razmrdavanje: nasumice generisati tačku $x' \in \mathcal{N}_k(x)$
 - \ast Lokalna pretraga: primeniti neki metod lokalne optimizacije počevši od x'i označiti rezultat sax''
 - * Kretanje: ukoliko je f(x'') < f(x), neka je x = x'' i k = 1, a u suprotnom, neka je k = k + 1

Opšta metoda promenljivih okolina se dobija kada se za mehanizam lokalne pretrage uzme spust sa promenljivih okolinama (variable neighbourhood descent):

- Neka je l=1
- Ponavljati dok važi l < L
 - Pretraga: naći najbolje $x' \in N_l(x)$
 - Kretanje: ukoliko je f(x') < f(x), neka je x = x' i l = 1, a u suprotnom, neka je l = l + 1
- Okoline \mathcal{N} i N se ne moraju podudarati.