Modelling Nonlinear optics with the Bloch-Messia

Oliver Thomas, Dara McCutcheon, Will McCutcheon

Reference

Modelling Nonlinear optics with the Bloch-Messiah reduction

Oliver Thomas, Dara McCutcheon, Will McCutcheon

Quantum Engineering CDT University of Bristol

August 24, 2018

Overview

Modelling Nonlinear optics with the Bloch-Messia

Oliver Thomas, Dar McCutcheon Will McCutcheor

- What is nonlinear optics?
- Why do we care about it?
- Gaussian optics
- What I have been doing
- Outlook

Motivation quantum nonlinear optics

Oliver Thomas, Dara McCutcheon, Will McCutcheon

References

The good

Spontaneous Parametric processes, SPDC, SFWM

- Heralded single photon sources
- Entangled photon pair generation (polarisation, spatial)

Kerr processes

- Self-Phase modulation (SPM), generating Bannana states (CV)
- Cross-Phase modulation (XPM) for sensing

The bad

Spontaneous parametric processes

- Generating more than two photons -> bad for quantum computing
- Understanding filtering
 All Kerr nonlinear processes
 - SPM -> Spectral broadening
 - XPM -> Unwanted phase shifts on single photons due to propagation of the pump

What do we mean by nonlinear optics?

Oliver Thomas, Dara McCutcheon, Will McCutcheon

References

 Roughly processes that conserve energy but do not conserve photon number.

$$\vec{P} = \chi^{(1)}\vec{E}_1 + \chi^{(2)}\vec{E}_1\vec{E}_2 + \chi^{(3)}\vec{E}_1\vec{E}_2\vec{E}_3 + \dots$$
 (1)

Here we are going to talk about squeezing, i.e SPDC or SFWM, Hamiltonians are then of the form,

$$\hat{H} = A\hat{a}_S^{\dagger}\hat{a}_I^{\dagger}\hat{a}_P + h.c. \tag{2}$$

$$\hat{H} = A\hat{a}_{S}^{\dagger}\hat{a}_{I}^{\dagger}\hat{a}_{P}\hat{a}_{P} + h.c. \tag{3}$$

Gaussian Optics

 Using the undepleted pump approximation we can write the Hamiltonians as terms which are at most quadratic in creation and annihilation operators.

$$\hat{U} = \exp\left[-\frac{i}{\hbar} \left(P \int d\omega_1 \int d\omega_2 \ f(\omega_1, \omega_2) \ \hat{a}_s^{\dagger}(\omega_1) \hat{a}_i^{\dagger}(\omega_2) + h.c. \right) \right]$$
Power (4)

JSA Signal & Idler
 Just like Beamsplitters can be written as unitary matrices,

$$\left[\vec{b}\right] = \mathbf{U}\left[\vec{a}\right] \tag{5}$$

• We want to extend the type of transforms to all Gaussian transforms $\begin{bmatrix} \vec{b} \end{bmatrix}$ $\begin{bmatrix} \vec{a} \end{bmatrix}$

¹These are linear symplectic transforms which conviently can be written as a matrix [1]

Types of Gaussian transformations

Oliver Thomas, Dara McCutcheon, Will McCutcheon

Figure: Two source HOM dip

Figure: Type-1 Fusion gate

¹These are two-mode squeezers

Schmidt decomposition

We can re-write the Hamiltonian using a Schmidt-decomposition [2]as,

$$P'F(\omega_1,\omega_2) = \sum_k r_k \psi_k(\omega_1) \phi_k(\omega_2)$$
 (7)

Where r_k is the Schmidt number, $\psi \& \phi$ are unitaries.

To solve this numerically we discretize the function and the Schmidt-decomposition is then the Singular value decomposition (SVD) of the JSA (F).

$$P'\mathbf{F}_{(\omega_1,\omega_2)} = \sum_{k} r_k \mathbf{U}_{(\omega_1,k)} \mathbf{V}_{(k,\omega_2)}^{\dagger}$$
(8)

- ullet with $\psi_k(\omega_1)$ is the k-th row and ω_1 -th column of $oldsymbol{\mathsf{U}}_{(\omega_1,k)}$,
- with $\phi_k(\omega_2)$ is the ω_2 -th row and k-th column of $\mathbf{V}^{\dagger}_{(k,\underline{\omega}_2)}$

Oliver Thomas, Dara McCutcheon, Will McCutcheon

Joint Spectral Amplitudes (JSAs)

Modelling
Nonlinear
optics with
the
Bloch-Messial

Oliver Thomas, Dara McCutcheon, Will McCutcheon

¹Moving to the rotating frame...

Seperable JSAs Schmidt modes

Oliver Thomas, Dara McCutcheon, Will McCutcheon

References

(a) Signal (red) and Idler (blue)

$$F(\omega_1, \omega_2) = \exp\left[-0.2\left(\left(\frac{\omega_1}{\sigma_1}\right)^2 + \left(\frac{\omega_2}{\sigma_2}\right)^2\right)\right] \tag{9}$$

normalised so that,

$$\int d\omega_1 \int d\omega_2 F(\omega_1, \omega_2) = 1 \tag{10}$$

Non-separable JSAs

Modelling
Nonlinear
optics with
the
Bloch-Messiah

Oliver Thomas, Dara McCutcheon, Will McCutcheon

Non-separable JSAs Schimdt modes

reduction
Oliver
Thomas, Dara
McCutcheon,
Will
McCutcheon

(a) Signal (red) and Idler (blue)

$$F(\omega_1, \omega_2) = sinc(2(\omega_1 - \omega_2))exp\left[-0.1\left(\left(\frac{\omega_1}{\sigma_1}\right)^2 + \left(\frac{\omega_2}{\sigma_2}\right)^2\right)\right]$$
(11)

normalised so that,
$$\int d\omega_1 \int d\omega_2 F(\omega_1, \omega_2) = 1 \tag{12}$$

Reducing the size of the state-space

Oliver Thomas, Dara McCutcheon, Will McCutcheon

- The Schmidt decomposition lets us represent the system in a finite number of broadband modes $(\psi_k(\omega_1), \phi_k(\omega_2))$ [3]
- Defining new mode operators for signals, \hat{A}_k and idlers, \hat{B}_k

$$\hat{A}_k = \int d\omega_s \psi_k(\omega_s) \hat{a}_s \tag{13}$$

$$\hat{B}_k = \int d\omega_i \phi_k(\omega_i) \hat{a}_i \tag{14}$$

Correlations in a HOM dip

Modelling Nonlinear optics with the Bloch-Messial

Oliver Thomas, Dara McCutcheon, Will McCutcheon

Figure: Two source HOM dip

Two squeezers JSA

Modelling Nonlinear optics with the Bloch-Messial

Oliver Thomas, Dara McCutcheon, Will McCutcheon

(a) The signals A_k (red) and idlers B_k (blue)

G(4) correlation function

Oliver Thomas, Dara McCutcheon, Will McCutcheon

References

$$G^{(4)} = \frac{\left\langle \hat{a}_{1}^{\dagger} \hat{a}_{2}^{\dagger} \hat{a}_{3}^{\dagger} \hat{a}_{4}^{\dagger} \hat{a}_{1} \hat{a}_{2} \hat{a}_{3} \hat{a}_{4} \right\rangle}{\left\langle \hat{a}_{1}^{\dagger} \hat{a}_{1} \right\rangle \left\langle \hat{a}_{2}^{\dagger} \hat{a}_{2} \right\rangle \left\langle \hat{a}_{3}^{\dagger} \hat{a}_{3} \right\rangle \left\langle \hat{a}_{4}^{\dagger} \hat{a}_{4} \right\rangle} \tag{15}$$

Where,

$$a_i = \sum_j a_i(\omega_j) \tag{16}$$

Meaning we sum over all of the spectral modes of the spatial modes (1,2,3,4) separately. We end up with,

$$G^{(4)} = 1 - \left(\frac{2 \mid cosh(r) \mid^2}{\mid cosh(r) \mid^2 + \mid sinh(r) \mid^2} sin(\theta) cos(\theta)\right)^2$$
 (17)

G(4) correlation function

Modelling Nonlinear optics with the Bloch-Messiah

Oliver Thomas, Dara McCutcheon, Will McCutcheon

G(4) correlation function

Modelling Nonlinear optics with the Bloch-Messia

Thomas, Dar McCutcheon Will McCutcheon

Summary

Oliver Thomas, Dara McCutcheon, Will McCutcheon

References

- The Schmidt decomposition is a useful technique to exactly reduce the continuum of spectral modes in a JSA to a discrete set of broadband modes.
- We have derived a closed form expression for the $G^{(4)}$ and it agrees with computational simulation for two identical, seperable squeezers.

Outlook,

- Currently, the method creating the sympectic matrix M
 involves using the Bloch-Messiah reduction which fully
 diagonalises it.
- This flattens all of the degrees of freedom and puts them on equal footing which is not the case experimentally!
- We want to generalise the method so that it respects spatial and spectral degrees of freedom separately.

References

Oliver Thomas, Dara McCutcheon, Will McCutcheon

- [1] Gerardo Adesso, Sammy Ragy, and Antony R Lee. Continuous variable quantum information: Gaussian states and beyond. *Open Systems & Information Dynamics*, 21(01n02):1440001, 2014.
- [2] Al Lvovsky, Wojciech Wasilewski, and Konrad Banaszek. Decomposing a pulsed optical parametric amplifier into independent squeezers. *Journal of Modern Optics*, 54(5):721–733, 2007.
- [3] Wojciech Wasilewski, Al Lvovsky, Konrad Banaszek, and Czesław Radzewicz. Pulsed squeezed light: Simultaneous squeezing of multiple modes. *Physical Review A*, 73(6):063819, 2006.