Exercises for the lecture course Algebraic Topology II — Sheet 12

University of Bonn, summer term 2025

Exercise 45. Let X be a connected finite CW-complex with finite fundamental group. Prove or disprove that $\pi_n(X)$ is finitely generated for all $n \geq 1$.

Exercise 46. Let A be a finitely generated abelian group and $n \in \mathbb{Z}^{\geq 1}$. Prove or disprove:

- (a) Suppose that A has an element of infinite order. Then there exists $d \in \mathbb{Z}^{\geq 2}$ such that $H_i(K(A, n); \mathbb{Q}) = \{0\}$ holds for every for i > d if and only if n is odd;
- (b) $H_*(K(\mathbb{Z}/2, n); \mathbb{Z})$ is nontrivial in infinitely many degrees;
- (c) We have $H_i(K(A, n); \mathbb{Q}) = \{0\}$ for every $i \geq 1$ if and only if A is finite;
- (d) We have $H_i(K(A, n); \mathbb{Z}) = \{0\}$ for every $i \geq 1$ if and only if A is trivial;
- (e) $H_i(K(A, n))$ is finitely generated for all $i \in \mathbb{Z}^{\geq 0}$.

Exercise 47. Decide which of the following Serre classes in \mathbb{Z} -Mod are Serre ideals: \mathbb{Z} -Tors, \mathbb{Z} -Mod_{fg}, R-Mod_{fin}.

Exercise 48. State all the results which are presented in the script about $\pi_n(S^k)$ and the stable stems π_n^s for $n \in \mathbb{Z}^{\geq 0}$ and $k \in \mathbb{Z}^{\geq 1}$.

⁰Hand-in Monday 07.07.