

Universidade Federal do Ceará Centro de Ciências Departamento de Computação Avaliação Parcial 3 de Métodos Numéricos Prof. Dr. João Paulo do Vale Madeiro

1) (TEÓRICA) A distância percorrida em metros para que um carro pare foi obtida através de experimentos e está apresentada na tabela abaixo:

Vel (Km/h)	15	20	25	30	40	50
Distância (m)	16	20	34	40	60	90

Ou seja, se o carro está correndo a 25 Km/h e o freio for acionado, ele parará após percorrer 34 m. Qual a distância percorrida até parar se o carro estiver a 45 Km/h? Estime, utilizando um polinômio interpolador de Newton de 4º grau! Qual o erro estimado? (2,0 pontos)

- 2) (TEÓRICA) Sendo $f(x,y) = \frac{1}{(x+y)^2}$, estime $I = \int_3^4 \int_1^2 f(x,y) dy dx$ com aplicações únicas da regra 1/3 de Simpson (2,0 pontos).
- 3) (PRÁTICA) A viscosidade dinâmica da água μ (10^{-3} $N.\frac{s}{m^2}$) está relacionada com a temperatura T (°C) da seguinte maneira:

T	0	5	10	20	30	40
μ	1,787	1,519	1,307	1,002	0,7975	0,6529

- (a) Interpole todos os pontos utilizando a técnica de Lagrange para prever μ em T = 7,5° (2,0 pontos)
- (b) Trace o gráfico do polinômio interpolador juntamente com os pontos dados (1,0 ponto)
- 4) Um carro de corrida demora 79 segundos a percorrer uma pista. A velocidade do carro (em m/s) é determinada através de um radar e é apresentada desde o início da volta na seguinte tabela:

Tempo	0	0,5	1	1,5	48	48,5	49	59	69	79
Velocidade	62	74	73,5	60,5	49,5	42,5	39	44,5	58	61,5

Estime o comprimento da pista utilizando integração numérica com combinações das regras 1/3 de simpson, 3/8 de Simpson e trapézio (3,0 pontos).