Criptografia e Curvas Elípticas

Thiago Holleben

Universidade Federal do Rio de Janeiro hollebenthiago@gmail.com

9 de junho de 2022

Overview

- História
- Criptografia
- ECC
- Exemplos
- Parâmetros
- Contando pontos
- Primalidade

História (Neal Koblitz e Victor Miller - ECC, 1985)

História (Hendrik Lenstra - Primalidade, 1984)

História (René Schoof - Contagem de pontos, 1985)

Criptografia simétrica

Criptografia simétrica - Alguns problemas

 As duas entidades precisam ter acesso à uma mesma chave que não pode ser pública

Criptografia simétrica - Alguns problemas

- As duas entidades precisam ter acesso à uma mesma chave que não pode ser pública
- Para situações reais como por exemplo comunicação entre um banco e seus clientes, se torna inviável devido a quantidade de troca de chaves necessárias

Uma alternativa (criptografia assimétrica)

Se cada pessoa possui um par de chaves: uma pública e uma privada, os dois problemas são resolvidos:

Uma alternativa (criptografia assimétrica)

Se cada pessoa possui um par de chaves: uma pública e uma privada, os dois problemas são resolvidos:

Vamos tentar entender melhor alguns exemplos de funções que representam as setas azuis na imagem acima. Normalmente elas são chamadas de *one way functions* ou então *trapdoor functions*

Dizemos que uma função $f: A \rightarrow B$ é uma one way function se:

• É "fácil" calcular f(a)

Dizemos que uma função $f: A \rightarrow B$ é uma one way function se:

- É "fácil"calcular f(a)
- Dado f(x) é "difícil" calcular x, mas existe uma informação t tal que, sabendo t e f(x) é "fácil" calcular x

Dizemos que uma função $f: A \rightarrow B$ é uma one way function se:

- É "fácil"calcular f(a)
- Dado f(x) é "difícil"calcular x, mas existe uma informação t tal que, sabendo t e f(x) é "fácil"calcular x

Para definir formalmente o que significa "fácil"e "difícil"precisaríamos de noções da teoria de complexidade computacional da ciência da computação

Dizemos que uma função $f: A \rightarrow B$ é uma *one way function* se:

- É "fácil"calcular f(a)
- Dado f(x) é "difícil"calcular x, mas existe uma informação t tal que, sabendo t e f(x) é "fácil"calcular x

Para definir formalmente o que significa "fácil"e "difícil"precisaríamos de noções da teoria de complexidade computacional da ciência da computação

Mesmo essas funções sendo a base de grande parte da criptografia que utilizamos hoje em dia, não sabemos se alguma função satisfazendo as duas condições acima de fato existe

Não tem problema!

Mesmo não sendo provada a existência de *one way functions*, temos boas candidatas. Além disso, uma prova não construtiva de que alguma das funções que são utilizadas hoje em dia não é uma *one way function* não é suficiente

Não tem problema!

Mesmo não sendo provada a existência de *one way functions*, temos boas candidatas. Além disso, uma prova não construtiva de que alguma das funções que são utilizadas hoje em dia não é uma *one way function* não é suficiente

One way functions são baseadas em problemas matemáticos, alguns exemplos:

- Fatoração de números inteiros (RSA)
- Logaritmo discreto

Não tem problema!

Mesmo não sendo provada a existência de *one way functions*, temos boas candidatas. Além disso, uma prova não construtiva de que alguma das funções que são utilizadas hoje em dia não é uma *one way function* não é suficiente

One way functions são baseadas em problemas matemáticos, alguns exemplos:

- Fatoração de números inteiros (RSA)
- Logaritmo discreto

ECC é baseada no problema do logaritmo discreto como veremos mais para frente

Logaritmo discreto

Definição

Dados $g, h \in \mathbb{N}$ não nulos e um número n, queremos encontrar o menor valor $a \in \mathbb{N}$ tal que $g^a = h \pmod{n}$

Logaritmo discreto

Definição

Dados $g, h \in \mathbb{N}$ não nulos e um número n, queremos encontrar o menor valor $a \in \mathbb{N}$ tal que $g^a = h \pmod{n}$

A dificuldade de encontrar o logaritmo discreto depende bastante dos parâmetros g,h,n.

Suponha que Alice e Bob querem se comunicar porém o único meio de comunicação entre eles é um canal público não confiável. Alice e Bob, usando o canal público concordam em usar um certo n, um elemento $g \neq 0, 1$.

Suponha que Alice e Bob querem se comunicar porém o único meio de comunicação entre eles é um canal público não confiável. Alice e Bob, usando o canal público concordam em usar um certo n, um elemento $g \neq 0, 1$.

Alice e Bob "escolhem" números naturais a, b tais que $a, b < |\{g^0, g^1, \dots\}|$.

Após a escolha ser feita, Alice e Bob calculam respectivamente $P_a = g^a$ e $P_b = g^b$ e divulgam no canal público apenas P_a e P_b

Suponha que Alice e Bob querem se comunicar porém o único meio de comunicação entre eles é um canal público não confiável. Alice e Bob, usando o canal público concordam em usar um certo n, um elemento $g \neq 0, 1$.

Alice e Bob "escolhem"números naturais a, b tais que $a,b<|\{g^0,g^1,\dots\}|$.

Após a escolha ser feita, Alice e Bob calculam respectivamente $P_a=g^a$ e $P_b=g^b$ e divulgam no canal público apenas P_a e P_b

Chamamos os números naturais a e b de chaves privadas e os elementos do grupo P_a e P_b de chaves públicas

Suponha que Alice e Bob querem se comunicar porém o único meio de comunicação entre eles é um canal público não confiável. Alice e Bob, usando o canal público concordam em usar um certo n, um elemento $g \neq 0, 1$.

Alice e Bob "escolhem"números naturais a, b tais que $a, b < |\{g^0, g^1, \dots\}|.$

Após a escolha ser feita, Alice e Bob calculam respectivamente $P_a=g^a$ e $P_b=g^b$ e divulgam no canal público apenas P_a e P_b

Chamamos os números naturais a e b de chaves privadas e os elementos do grupo P_a e P_b de chaves públicas

Note que $P_a^b=g^{ab}=g^{ba}=P_b^a$, e como é "difícil" descobrir a ou b dado P_a ou P_b , o elemento do grupo P_a^b é um segredo entre Alice e Bob

	CANAL PÚBLICO	
G	G	G
g	g	8
а		
P_a	P_a	P_a
		ь
P_b	P_b	P_b
P_a^b		P_b^a

Curvas elípticas sobre ${\mathbb R}$

Considere o polinômio em 2 variáveis x, y:

$$E: \quad y^2 = x^3 + ax + b, \qquad a, b \in \mathbb{R}$$

Denotamos o conjunto de pontos $\{(x,y)\in\mathbb{R}^2\mid y^2=x^3+ax+b\}$ os pontos (fora do infinito) da curva elíptica E. Abusando (bastante!) da notação, vamos assumir que o "ponto" (∞,∞) também é um ponto da curva.

Somando pontos e curvas módulo p

Podemos considerar as mesmas hipóteses do slide anterior mas considerando as equações mod p (primo):

$$E: y^2 = x^3 + ax + b \mod p, \quad a, b < p$$

Novamente, o importante é o conjunto de pontos:

$$\{(\infty,\infty)\}\bigcup\{(x,y)\in[0,\ldots,p-1]\times[0,\ldots,p-1]\mid y^2=x^3+ax+b\ \text{mod}\ p\}$$

Elliptic Curve Diffie-Hellman (ECDH)

Sabemos que a equação de uma curva elíptica E módulo p com $p \neq 2,3$ é:

$$y^2 = x^3 + ax + b \mod p$$

Com a, b < p.

Elliptic Curve Diffie-Hellman (ECDH)

Sabemos que a equação de uma curva elíptica E módulo p com $p \neq 2,3$ é:

$$y^2 = x^3 + ax + b \mod p$$

Com a, b < p.

Portanto, para poder ocorrer a troca de chaves, Alice e Bob precisam concordar nos seguintes parâmetros:

- Um primo p
- Dois números menores que p: a e b
- Um ponto P (fora do infinito) de E

Note que ao concordarem em utilizar o ponto P, Alice e Bob também concordam na ordem n do ponto P, isto é, $n=|\langle P\rangle|$

$\mathsf{Texto} \to \mathsf{Ponto} \to \mathsf{Texto}$

Já sabemos como Alice e Bob podem ter um segredo em comum, vamos ver agora brevemente como podemos transformar uma mensagem (em texto) em um ponto de uma curva elíptica concordada entre Alice e Bob

Texto \rightarrow Ponto \rightarrow Texto

Já sabemos como Alice e Bob podem ter um segredo em comum, vamos ver agora brevemente como podemos transformar uma mensagem (em texto) em um ponto de uma curva elíptica concordada entre Alice e Bob

Suponha que Alice e Bob concordaram em um primo p, na curva $E: y^2 = x^3 + ax + b \mod p$ e em um ponto $P \in E$ fora do infinito

Tabela ASCII

Todo símbolo (caractere) que utilizamos ao digitar uma mensagem pode ser representado como um número natural entre 0 e 255, de forma que dada uma string $m_0 m_1 \dots m_k$, podemos representá-la como o número:

$$P_{m_x} = o(m_0)256^0 + \dots + o(m_k)256^k$$

Onde $o(m_i)$ é o número correspondente ao caractere m_i

Tabela ASCII

Todo símbolo (caractere) que utilizamos ao digitar uma mensagem pode ser representado como um número natural entre 0 e 255, de forma que dada uma string $m_0m_1\ldots m_k$, podemos representá-la como o número:

$$P_{m_x} = o(m_0)256^0 + \dots + o(m_k)256^k$$

Onde $o(m_i)$ é o número correspondente ao caractere m_i

• Nossa ideia vai ser considerar um ponto P_m com uma coordenada x próxima de P_{m_x} , de forma que podemos assumir que de fato existe um ponto em E cuja coordenada x é P_{m_x}

Tabela ASCII

Todo símbolo (caractere) que utilizamos ao digitar uma mensagem pode ser representado como um número natural entre 0 e 255, de forma que dada uma string $m_0m_1 \dots m_k$, podemos representá-la como o número:

$$P_{m_{\times}} = o(m_0)256^0 + \dots + o(m_k)256^k$$

Onde $o(m_i)$ é o número correspondente ao caractere m_i

- Nossa ideia vai ser considerar um ponto P_m com uma coordenada x próxima de P_{m_x} , de forma que podemos assumir que de fato existe um ponto em E cuja coordenada x é P_{m_x}
- Além disso, precisamos que $P_{m_x} < p$ e portanto o primo impõe uma restrição do tamanho da mensagem. Na prática, se a mensagem for grande demais, basta quebrar a mensagem em mensagens menores

Criptossistema El Gamal

Temos então um método de encriptar uma mensagem de texto qualquer em um ponto da curva elíptica *E* combinada entre Alice e Bob Podemos finalmente descrever como Alice pode mandar uma mensagem "segura" para Bob:

Criptossistema El Gamal

Temos então um método de encriptar uma mensagem de texto qualquer em um ponto da curva elíptica *E* combinada entre Alice e Bob Podemos finalmente descrever como Alice pode mandar uma mensagem "segura" para Bob:

• Alice e Bob "decidem" suas chaves privadas n_a e n_b respectivamente e com elas calculam suas chaves públicas n_aP e n_bP respectivamente

Criptossistema El Gamal

Temos então um método de encriptar uma mensagem de texto qualquer em um ponto da curva elíptica *E* combinada entre Alice e Bob Podemos finalmente descrever como Alice pode mandar uma mensagem "segura" para Bob:

- Alice e Bob "decidem" suas chaves privadas n_a e n_b respectivamente e com elas calculam suas chaves públicas n_aP e n_bP respectivamente
- Alice transforma sua mensagem m em um ponto P_m cuja coordenada $x \in P_{m_n}$

Temos então um método de encriptar uma mensagem de texto qualquer em um ponto da curva elíptica *E* combinada entre Alice e Bob Podemos finalmente descrever como Alice pode mandar uma mensagem "segura" para Bob:

- Alice e Bob "decidem" suas chaves privadas n_a e n_b respectivamente e com elas calculam suas chaves públicas n_aP e n_bP respectivamente
- Alice transforma sua mensagem m em um ponto P_m cuja coordenada $x \in P_{m_x}$
- Alice gera um número natural aleatório t, calcula os pontos $t(n_aP)$ e $P_m + tn_a(n_bP)$ e os envia para Bob

E por fim, Bob deve realizar os seguintes passos para recuperar a mensagem original

E por fim, Bob deve realizar os seguintes passos para recuperar a mensagem original

• Bob multiplica o primeiro ponto enviado por Alice por sua chave privada n_b . Bob agora possui os pontos tn_an_bP e $P_m + tn_an_bP$

E por fim, Bob deve realizar os seguintes passos para recuperar a mensagem original

- Bob multiplica o primeiro ponto enviado por Alice por sua chave privada n_b . Bob agora possui os pontos tn_an_bP e $P_m + tn_an_bP$
- Bob subtrai o segundo ponto pelo primeiro de forma que Bob agora conhece o ponto P_m

E por fim, Bob deve realizar os seguintes passos para recuperar a mensagem original

- Bob multiplica o primeiro ponto enviado por Alice por sua chave privada n_b . Bob agora possui os pontos tn_an_bP e $P_m + tn_an_bP$
- ullet Bob subtrai o segundo ponto pelo primeiro de forma que Bob agora conhece o ponto P_m
- Bob escreve a coordenada x de P_m na base 256 recuperando os números naturais $o(m_i)$, e portanto Bob finalmente descobre a mensagem de Alice

Parâmetros públicos:

Parâmetros públicos:

•
$$p = 2^{521} - 1$$

Parâmetros públicos:

- $p = 2^{521} 1$
- $E: y^2 = x^3 3x + 109384903807373427451111239076680556993620$ 7598951683748994586394495953116150735016013708737573759623 248592132296706313309438452531591012912142327488478985984
- $\begin{aligned} \bullet \ |E| &= 68647976601306097149819007990813932172694353001433054\\ 0939446345918554318339765539424505774633321719753296399637\\ 1363321113864768612440380340372808892707005449 \end{aligned}$
- $\begin{array}{l} \bullet \ P = (60216208497192666443134853976596411777431545594324870\\ 5194141347869285095544170239472996442525759471228748750015\\ 5649468348602990174318433816864442395311520445: 15849525429\\ 9323580444938206345767636109974841293730343639485118345925\\ 8487460698729485745314661375236972159812294476280869907176\\ 470135877187668739352726297379: 1) \end{array}$

Chaves públicas:

- Alice: (2780893096066981483154208252776343778391186433240228 7160922920798459841287799925305010421577183358779783833785 2299162804865596860676895387110362258197500824: 40297616342 6546535671829680158330136109921462332031935499476622745282 3584753975741510719205845830322937208067741113155363603504 724145465042871974645335394073: 1)
- Bob: (28985520683426074113540113834393965883151643963280668 9333206179308720356762068171210596147749450376886521348906 5657780698904016456065090178904479782913363501 : 27459067935 9100492770888330399198075040703773277893741364351196322270 1535921665393255729305100297915673624477872076548580005553 288121641439170339318033776132 : 1)

Chaves privadas:

- Alice: 39146454526826757462569054833624462481238657697730531 1543154112437898353989757891721105148729007966936811696973 1671738172987377321947918685990842151669803465
- Bob: 603274360521577465669348407027522186109954987031329578 0736453489626992849809832960755537613774984513220749525479 316193630261819474852778151057962194293268778

- Mensagem de Alice para Bob: "oi bob tudo bom?"
- Primeiro ponto da mensagem encriptada: (5355669953058388435693 3975304204568241971345312702059818119788663511554588395687 8333239266139529727602467565226759770888501010645838332801 545742306089388574: 126783242249868571106762472663933023357 1789233932419007426212512450782204817020095490256297322477 1069046295430901728487461156810928789172439418646264567144 82: 1)
- Segundo ponto da mensagem encriptada: (3329835210770684927405 5137450584683316316214807860965006979488724199904283195891 8255881738632229680701613257878915592269657237222061287529 146322692674324115: 443199001457605141321296115655120556939 1381549496899807905237462288784275322061290054583918113217 0304959758216011942228317625213565796593729951200643675264 58: 1)
- Mensagem que Bob vê após decriptar: "oi bob tudo bom?"

Decrypted with right private key

Man in the middle attack (MITM Attack)

Suponha que Alice quer mandar uma mensagem para Bob, mas desta vez, vamos assumir também que existe uma outra entidade Eve que tem o poder de alterar mensagens que passam pelo canal público

Para ocorrer a troca de mensagens entre Alice e Bob, Alice precisa saber a chave pública de Bob. Se Eve quiser interferir na comunicação entre Alice e Bob, Eve pode guardar a chave pública de Bob e enviar a sua própria chave pública para Alice.

Desta forma, Eve consegue ler, encriptar e decriptar mensagens de Alice para Bob. Para evitar este ataque é preciso de uma *assinatura* nas mensagens que comprovam o remetente da mensagem.

ECC vs RSA

Para aumentar a segurança de uma mensagem encriptada com *RSA* ou *ECC*, aumenta-se o tamanho das chaves privadas, do primo, etc. Aumentando o tamanho das chaves, a fatoração de números inteiros e o logaritmo discreto ficam mais "difíceis"

ECC vs RSA

Para aumentar a segurança de uma mensagem encriptada com *RSA* ou *ECC*, aumenta-se o tamanho das chaves privadas, do primo, etc. Aumentando o tamanho das chaves, a fatoração de números inteiros e o logaritmo discreto ficam mais "difíceis"

Tamanho das chaves (em bits) ECC	Tamanho das chaves (em bits) RSA
163	1024
256	3072
384	7680
512	15360

ECC vs RSA

Isso ocorre pois existem ataques em tempo subexponencial bons contra fatoração de inteiros (*RSA*), mas não existem ataques em tempo subexponencial que funcionem para qualquer curva elíptica

De volta para curvas elípticas

Como foi mencionado anteriormente, para ocorrer a troca de mensagens entre Alice e Bob, é necessário saber a ordem de um ponto P na curva elíptica concordada E.

De volta para curvas elípticas

Como foi mencionado anteriormente, para ocorrer a troca de mensagens entre Alice e Bob, é necessário saber a ordem de um ponto P na curva elíptica concordada E.

Pelo problema do logaritmo discreto, vimos que é importante saber a estrutura dos pontos de E.

Distribuição - Exemplo 137

É possível provar que para qualquer curva elíptica E módulo p, N = |E| satisfaz:

$$|N-(p+1)|\leq 2\sqrt{p}$$

Distribuição - Exemplo 137

É possível provar que para qualquer curva elíptica E módulo p, N=|E| satisfaz:

$$|N-(p+1)| \leq 2\sqrt{p}$$

Outra aplicação - Teste de primalidade

Outra aplicação - Teste de primalidade

Inputs: Um inteiro N, um limite L e um número máximo de curvas n Output: Um fator primo de N

for
$$i = 0, 1, ... n$$
 do

Escolha um ponto aleatório P = (x, y) tal que $x, y \in \frac{\mathbb{Z}}{N\mathbb{Z}}$

Escolha um elemento aleatório A de $\frac{\mathbb{Z}}{N\mathbb{Z}}$

Defina
$$B = y^2 - x^3 - Ax$$

Multiplicação escalar será na curva $E: y^2 = x^3 + Ax + B$

for
$$j = 1, 2, \dots, L$$
 do $P = jP$

Caso não seja possível continuar a conta pois um elemento

 $t \in \frac{\mathbb{Z}}{N\mathbb{Z}}$ não tem inverso, gcd(t,N) > 1 provavelmente é um fator não trivial de N

rivial de /\

end for

end for

Referências

- SILVERMAN. The Arithmetic of Elliptic Curves 2. ed. Springer, 2009
- STICHTENOTH. Function fields and algebraic codes 1. ed. Springer, 1993
- WASHINGTON. Elliptic Curves Number Theory and Cryptography 2. ed. Taylor & Francis Group, 2008