LATEX Morkshop

QUT Maths Society

April 18, 2022

Contents

1	Intro	oduction	1
	1.1	Pronunciation and Spelling	1
	1.2	Language Structures	1
		1.2.1 Macros	1
		1.2.2 Environments	2
2	Basi	ic Structure	3
	2.1	Sections	3
	2.2	Subsections	3
		2.2.1 Subsubsections	3
	Unu	mbered sections	3
	2.3	Lists	3
3	Mat	hematics	5
	3.1	Paired Delimiters	5
	3.2	Arithmetic Operators	6
	3.3	Common Large Operators	6
	3.4	Common Mathematical Functions	7
	3.5	Multi-line Equations	7
		3.5.1 Gather	7
		3.5.2 Align	8
	3.6	Additional Environments & Symbols	9
4	Figu	ires, Tables, and Code	10
	4.1	Figures and Tables	10
	4.2	List of figures and tables	11
	4.3	<u>e</u>	11
	4.4	References & Labels	11
5	Diag	grams	13
6	Cita	tions	14
7	Miso	cellaneous	15
-	7.1		15
	7.2		15
	7.3	Extra Section	15
8	Oth	er Resources	16

List of Figures

1	This is a caption for the figure. The figure numbering is automatic	10
2	Providing a second dimension may skew the image	10
3	A caption for both subfigures	10
4	An example listing	11
5	Band pass filter	13
6	Graph of three functions	13
7	RL circuit	
List o	of Tables	
List o	of Tables Paired Delimiters in LATEX	5
List o 1 2		
1	Paired Delimiters in LATEX	6
1 2	Paired Delimiters in LaTeX	6

1 Introduction

"IATEX is a high-quality typesetting system; it includes features designed for the production of technical and scientific documentation. IATEX is the de facto standard for the communication and publication of scientific documents. IATEX is available as free software". [1]

One of the key differences between LATEX and more common word processors such as MS Word, LibreOffice etc., is the separation of content and presentation. In LATEX, the author describes the general structure of the document (i.e., section headings, paragraphs, equations, and figures), and the layout and typesetting is handled by LATEX (or rather the underlying TEX backend).

There are several advantages to this:

- The author can focus on the actual content without worrying about layout and presentation
- The presentation can be modified without introducing major changes to the document
- LATEX's standard format allows authors to easily conform to styles provided by external publishers

LATEX is written in plaintext and processed by an external program to generate output files (usually PDFs).

1.1 Pronunciation and Spelling

LATEX is pronounced *lah-tech* or *lay-tech*, but TEX is never pronounced *tecks*. It is typeset using the \LaTeX{} macro or with the capitalisation "LaTeX".

1.2 Language Structures

There are two major language structures that we encounter when using LATEX; *macros* and *environments*.

1.2.1 Macros

Macros (or commands) tell LATEX how to do things. They use the following syntax

- 1 \commandname
- 2 % or
- commandname[optional args]{required args}

Macros provide functionality for layouts, symbols, styles, etc. As shown below, common font styles can be invoked using macros.

```
Bold face \textbf{Text} — Text
```

Italics \textit{Text} — Text

Emphasis \emph{Text} — *Text* (either upright or italics depending on surrounding text)

Underline \underline{Text} — Text

We can also define custom macros that combine other macros or simplify repetitive instructions.

```
\newcommand{\commandname}[number_of_arguments]{command_body}
```

Arguments can be referenced inside the command body with the #argument_number syntax. For example

```
1 \newcommand{\boldanditalics}[1]{\textbf{\textit{#1}}}
```

Bold and italics text

1.2.2 Environments

Environments are used to format large blocks of text which often contain many lines or multiple macros. Environments use opening \begin and closing \end tags so that everything inside those tags will be formatted in a special manner depending on the type of the environment.

Common environments include figure, equation, itemize (these will be discussed later), etc.

^{2 \}boldanditalics{Bold and italics text}

2 Basic Structure

2.1 Sections

Sections are used to divide the document into parts. A new section is started with the \section {section_name} macro. Section titles are formatted to be bold and larger than regular text. The number preceding the titles are automatically determined.

The table of contents (\tableofcontents) is also generated from these section macros, so that page numbers and section numbers are set automatically.

2.2 Subsections

We can split sections into smaller subsections \subsections\Subsections},

2.2.1 Subsubsections

and also subsubsections \subsubsection{Subsubsections}.

Unnumbered sections

We can remove section numbering by using the starred version of the section macro e.g. \subsection*{Unnumbered sections}.

As this also removes the section from the table of contents, we can manually add it using

```
\addcontentsline{toc}{subsection}{Unumbered sections}
```

remembering to place this immediately after the section macro so that the reference is set to the correct location.

2.3 Lists

Unordered (bullet) lists are produced by the itemize environment, where each list entry starts by using the \item macro, which also generates the bullet symbol.

```
\begin{itemize}
       \item List entries ...
2
       \item We can ...
3
             \begin{itemize}
                  \item We can ...
                        \begin{itemize}
                             \item The marker ...
                                   \begin{itemize}
8
                                        \item List markers, ...
                                   \end{itemize}
10
                        \end{itemize}
11
             \end{itemize}
12
  \end{itemize}
```

- List entries start with the \item macro and are indicated by the black dot
- We can create multiple entries
 - We can nest lists by creating another itemize environment
 - * The marker changes in each nested list to reflect the depth

· List markers, spacing, and other behaviour can be customised with the enumitem package

Numbered (ordered) lists use the same syntax as unordered lists but use the enumerate environment.

```
begin{enumerate}

item List entries ...

item Nested lists ...

begin{enumerate}

item But use ...

begin{enumerate}

item Such as ...

end{enumerate}

end{enumerate}

lend{enumerate}
```

- 1. List entries are numbered automatically
- 2. Nested lists are also numbered
 - (a) But use a different number format
 - i. Such as lowercase letters and roman numerals

We can change the top-level number format by specifying a value to the label parameter.

```
1 \begin{enumerate}[label=label_specifier]
2    \item ...
3 \end{enumerate}
```

The following label specifiers can be used to override the default numbering format:

```
1. — [label=\arabic*.] (Default)

<I> — [label=<\Roman*>]

i — [label=\roman*]

(a) — [label=(\alph*)]

Part A: — [label=Part \Alph*:]
```

3 Mathematics

One of LATeX's strengths is how it formats mathematical expressions. There are two ways to format mathematical expressions; inline using $\ (\ \)$ and display style using $\ [\ \]$.

Mathematical expressions can be contained "inline" (within) text and require less space:

```
Let \( \mathbb{N} \) denote the set of all natural numbers.
```

Let \mathbb{N} denote the set of all natural numbers.

Mathematical expressions typeset outside paragraph text appear as standalone, display style math:

```
1 \[
2  \lim_{\Delta{t} \to \infty} \frac{f\left( t + \Delta{t} \right) -
    f\left( t \right)}{\Delta{t}}
3 \]
```

$$\lim_{\Delta t \to \infty} \frac{f(t + \Delta t) - f(t)}{\Delta t}$$

Note that we commonly use \equation environments for automatic vertical spacing and equation numbering (as with section headings).

```
\lambda begin{equation}
\[ a^2 + b^2 = c^2 \]
\[ \end{equation} \]
\[ a^2 + b^2 = c^2 \]
\[ (1) \]
```

$$u + v = c$$

We can use the starred version of this environment to remove the equation label.

```
begin{equation*}
a^2 + b^2 = c^2
| \end{equation*}
```

$$a^2 + b^2 = c^2$$

3.1 Paired Delimiters

Name	₽TEX Command	Inline	Display Style
Parentheses	<pre>\left(a \right)</pre>	(a)	(a)
Brackets	<pre>\left[a \right]</pre>	[<i>a</i>]	[<i>a</i>]
Braces	$\left(a \right) $	<i>{a}</i>	<i>{a}</i>
Angle brackets	\left\langle a \right\rangle	$\langle a \rangle$	$\langle a \rangle$
Pipes	\left \lvert a \right\lvert	a	a
Double Pipes	\left \lVert a \right\lVert	a	a
Ceiling	<pre>\left\lceil a \right\rceil</pre>	$\lceil a \rceil$	$\lceil a \rceil$
Floor	\left\lfloor a \right\rfloor	$\lfloor a \rfloor$	$\lfloor a \rfloor$

Table 1: Paired Delimiters in LATEX.

Note that we can declare custom paired delimiters for the final five examples using the following syntax:

1 \DeclarePairedDelimiter{\paired_delimiter_name}{left_delimiter}{right
 _delimiter}

Here are a few suggestions

- 1 \DeclarePairedDelimiter{\ceil}{\lceil}{\rceil}
- 2 \DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor}
- 3 \DeclarePairedDelimiter{\abracket}{\langle}{\rangle}
- 4 \DeclarePairedDelimiter{\abs}{\lvert}{\rvert}
- 5 \DeclarePairedDelimiter{\norm}{\lVert}{\rVert}

3.2 Arithmetic Operators

Name	₽T _E X Command	Inline	Display Style
Addition	a + b	a + b	a + b
Subtraction	a - b	a - b	a - b
Multiplication	a \cdot \left(b \times c \right)	$a \cdot (b \times c)$	$a \cdot (b \times c)$
Inequalities	a $\l b < c \leq d$	$a \ll b < c \leq d$	$a \ll b < c \leq d$
Fractions	\frac{a}{b}	$\frac{a}{b}$	$\frac{a}{b}$
Superscripts	a^2	a^2	a^2
Subscripts	a_i	a_i	a_i
Square root	\sqrt{a}	\sqrt{a}	\sqrt{a}

Table 2: Arithmetic operators in LATEX.

3.3 Common Large Operators

Name	₽T _E X Command	Inline	Display Style
Summations	\sum_{i=1}^n i	$\sum_{i=1}^{n} i$	$\sum_{i=1}^{n} i$
Limits	$\label{lim_{x}} $$ \lim_{x \to 0} \frac{x}{x}}{x}$	$\lim_{x\to 0} \frac{\sin x}{x}$	$\lim_{x \to 0} \frac{\sin x}{x}$
Derivatives	$\label{lem:converge} $$ \operatorname{f}_{x} \det^{F}_{t} \cdot \operatorname{Omega} $$$	$\frac{\mathrm{d}f}{\mathrm{d}x}\frac{\partial}{\partial t}F\mathrm{d}\Omega$	$\frac{\mathrm{d}f}{\mathrm{d}x}\frac{\partial}{\partial t}F\mathrm{d}\Omega$
Integrals	$\int_0^{\infty} e^{-x^2} \left(x^2 \right)$	$\int_0^\infty e^{-x^2} \mathrm{d}x$	$\int_0^\infty e^{-x^2} \mathrm{d}x$
Union	\bigcup_{i=1}^n S_i	$\bigcup_{i=1}^{n} S_i$	$\bigcup_{i=1}^{n} S_i$

Table 3: Common large operators in LATEX.

3.4 Common Mathematical Functions

Name	₽T _E X Command	Inline	Display Style
Sine	\sin{\left(x \right)}	$\sin(x)$	$\sin(x)$
Inverse Sine	<pre>\arcsin{\left(x \right)}</pre>	$\arcsin(x)$	$\arcsin(x)$
Logarithm	<pre>\log{\left(x \right)}</pre>	$\log(x)$	$\log(x)$
Natural Logarithm	$\ln{\left(x \right)}$	ln(x)	ln(x)
Exponential	<pre>\exp{\left(x \right)}</pre>	$\exp(x)$	$\exp(x)$

Table 4: Common large operators in LATEX.

Multi-line Equations

As equation only allows single line equations, we can use other environments to group multiple equations into one environment.

3.5.1 Gather

The gather environment allows us to display a set of consecutive equations with multiple lines. New lines are separated using \\.

```
\begin{gather}
    \sum_{i = 0}^n f\left(i + right\right) =
         f\left( 0 \right) + f\left( 1 \right)
         + \cdots + f\left( n \right) \\
    \displaystyle \frac{i = 0}{n} f\left(i \setminus right\right) =
         f\left( 0 \right) \times f\left( 1 \right)
         \times \cdots \times f\left( n \right)
\end{gather}
```

$$\sum_{i=0}^{n} f(i) = f(0) + f(1) + \dots + f(n)$$
(2)

$$\sum_{i=0}^{n} f(i) = f(0) + f(1) + \dots + f(n)$$

$$\prod_{i=0}^{n} f(i) = f(0) \times f(1) \times \dots \times f(n)$$
(3)

3.5.2 Align

The align environment allows us to display consecutive equations that are also aligned. The alignment is determined by the placement of the & character. This alignment character breaks the equation into "columns" that are either right or left aligned, following the pattern: rlrlrl....

1 \begin{align}
2 % R & L & R & L & R & L & R & L
3 R & = L & R & = & = & L & R = & L
4 \end{align}

$$R = L$$
 $R = = L$ $R = L$ (4)

This can be illustrated using a table.

With this in mind, we can create aligned equations as shown below.

$$ax^2 + bx + c = 0 ag{5}$$

$$a\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right) = 0\tag{6}$$

$$x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 + \frac{c}{a} = \left(\frac{b}{2a}\right)^2 \tag{7}$$

$$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a} \tag{8}$$

$$x + \frac{b}{2a} = \frac{\pm \sqrt{b^2 - 4ac}}{2a} \tag{9}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{10}$$

$$\mathbf{v}_{1} = \mathbf{w}_{1}$$

$$\mathbf{q}_{1} = \frac{\mathbf{v}_{1}}{\|\mathbf{v}_{1}\|}$$

$$\mathbf{v}_{2} = \mathbf{w}_{2} - \operatorname{proj}_{\mathbf{q}_{1}}(\mathbf{w}_{2})$$

$$\mathbf{q}_{2} = \frac{\mathbf{v}_{2}}{\|\mathbf{v}_{2}\|}$$

$$\mathbf{v}_{3} = \mathbf{w}_{3} - \operatorname{proj}_{\mathbf{q}_{1}}(\mathbf{w}_{3}) - \operatorname{proj}_{\mathbf{q}_{2}}(\mathbf{w}_{3})$$

$$\vdots$$

$$\mathbf{q}_{3} = \frac{\mathbf{v}_{3}}{\|\mathbf{v}_{3}\|}$$

$$\vdots$$

$$\mathbf{v}_{i} = \mathbf{w}_{i} - \sum_{i=1}^{i-1} \operatorname{proj}_{\mathbf{q}_{i}}(\mathbf{w}_{i})$$

$$\mathbf{q}_{i} = \frac{\mathbf{v}_{i}}{\|\mathbf{v}_{i}\|}$$

If we want to write normal text in math mode, we need to use the \text macro.

```
1 \begin{align*}
2     \text{Text in text mode} \\
3      Text in math mode
4 \end{align*}
```

Text in text mode

Textinmathmode

Notice that spaces are ignored in math mode.

3.6 Additional Environments & Symbols

The amsmath package also allows us to use many matrix environments using:

- matrix for a matrix without any enclosing symbols
- pmatrix for paretheses
- bmatrix for brackets
- Bmatrix for braces
- vmatrix for vertical bars
- Vmatrix for double vertical bars

LATEX provides lots of symbols that can be installed from the Comprehensive TeX Archive Network that are used in math mode, including the greek alphabet (shown below). A short (but extensive) list can be found at The Great, Big List of LATEX Symbols.

αβγδεεζηθθικλμνξπωροσςτυφφχψω

ΓΔΘΛΞΠΣΥΦΨΩ

Bringing all of these together can give pretty equations like:

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt = \frac{e^{-\gamma z}}{z} \prod_{k=1}^\infty \left(1 + \frac{z}{k} \right)^{-1} e^{\frac{z}{k}}$$

$$\mathbf{G}_{\mu\nu} + \mathbf{\Lambda} \mathbf{g}_{\mu\nu} = \kappa \mathbf{T}_{\mu\nu}$$

$$\mathrm{Hg}^{2+} \xrightarrow{\Gamma^-} \mathrm{HgI}_2 \xrightarrow{\Gamma^-} [\mathrm{Hg}^{\Pi} \mathbf{I}_4]^{2-}$$

$$i\hbar \frac{\partial}{\partial t} \Psi(x, t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \Psi(x, t) + V(x, t) \Psi(x, t)$$

4 Figures, Tables, and Code

4.1 Figures and Tables

LATEX allows us to use figures and tables which can be added raw or by using floats. We generally use floats to allow LATEX to algorithmically place figures on a page, and move to the next page if it encounters a vertical overflow.

The float environment for figures is figure and table for tables. Floats are containers for objects that cannot be displayed over multiple pages. They should always have a descriptive caption (\caption) so that the reader does not have to rely on the contents, and also so that we can reference them using hyperlinks.

Figure 1: This is a caption for the figure. The figure numbering is automatic.

Figure 2: Providing a second dimension may skew the image.

(a) The first subfigure.

(b) The second subfigure.

Figure 3: A caption for both subfigures.

Table 5: An example of a table. Captions are placed above tables.

	Column 1	Column 2
Row 1	7	2
Row 2	8	9
Row 3	2	0
Row 4	4	1

Note that we also use the \centering macro to horizontally center the figures and tables, and this macro can also be used in subfigures.

4.2 List of figures and tables

A list of figures and tables can be printed with \listoffigures and \listoftables. These are similar to the table of contents.

4.3 Code

Source code can be displayed using the \lstlisting environment and in addition to the environment, code can also be displayed inline with the \lstinline macro (this is how code has been formatted throughout this document).

Figure 4: An example listing.

```
#include <iostream>

int main() {
    std::cout << "Hello World!" << std::endl;
    return 0;
}</pre>
```

Example inline code:

```
Here is text formatted as code \label{eq:code} .
```

Here is text formatted as code System. Double.

If the inline code contains braces ({ }), we need to delineate the argument using another symbol.

```
Example containing braces \lstinline|set = { 1, 2, 3 }|.
```

Example containing braces set = { 1, 2, 3 }.

The example illustrates how we must delineate the arguments with the same symbol, in this case, pipes (|), but we cannot use comment delimiters (|%). For example, |1stinline%code% will not compile.

4.4 References & Labels

Throughout this document you may have noticed that everything is numbered (e.g. equations, sections, figures, tables, etc.).

It is incredibly easy to reference figures, equations, sections, or any element on a page with LATEX. Anything that is numbered (and some things that are not) can be marked using the \lambda label macro. This marker can then be referenced anywhere in the document (even before it is defined) with the \ref macro, and its page number can be obtained with the \pageref macro.

Below are some examples of references.

• Cat figure: Figure 1

• Turtle subfigure: Figure 3b

• Example table: Table 5

• Schrödinger's equation: Equation 3.6

• Figures & Tables subsection: Section 4.1 on Page 10

If we were to add an additional label, LATEX will automatically renumber all existing references the next time we compile the document. We can see this in action when we add a new numbered equation or section.

We recommend using the hyperref package to convert references into hyperlinks for easy navigation on a PDF viewer. This package also allows us to add custom text for references such as:

```
See the \LaTeX{} Project \href{https://www.latex-project.org/}{here}. View \hyperref[eq:schrodingers_equation]{Schrödinger's Equation}.
```

See the LATEX Project here. View Schrödinger's Equation.

5 Diagrams

If we wish to generate simple plots of functions, or complex diagrams, we can do so with LATEX itself. The tikz library provides a multitude of packages for various kinds of diagrams.

Figure 5: Band pass filter.

Figure 6: Graph of three functions.

Figure 7: RL circuit.

6 Citations

There are many ways to manage bibliographies, citations, and reference lists in LATEX, and many of them are outdated or have been superseded by newer alternatives. The method that I use is with a combination of BibLaTeX and Biber. BibLaTeX is the frontend in LATEX that handles citations and printing the bibliography. Biber is the backend which manages the database of all the references. The biblatex package needs to be included with \usepackage[style=ieee]{biblatex} in the preamble. The IEEE style can be replaced with others, such as APA. This changes both the citation and bibliography style.

References are stored in a database file with a .bib extension. An example database file for the sources used in this document is shown below. Each entry in the database file refers to an source, with the necessary fields filled. In the preamble, the database file needs to be added with \addbibresource{references.bibF}.

These sources can be cited with $\cite{referencename}$ (no parentheses) or $\parential{parenthese}$ referencename} (with parentheses). For example [2] [3]

At the end of the document, the bibliography can be printed with \printbibliography. It will only print sources that are actually cited in the document.

7 Miscellaneous

7.1 Horizontal Spacing

If we want to add horizontal space we can use the following macros:

```
\begin{align*}
    A & \!
                B \\
    A &
                B \\
    A & \,
                B \\
    A & \:
                B \\
                B \\
    A & \;
    A & \
                B \\
    A & \quad B \\
    A & \qquad B
\end{align*}
```

AB

7.2 Managing Large Documents

If we want to organise large LATEX project files, we can split our source code into the preamble, body and even sections, using the \input macro.

The following example requires the file: src • extras.tex. If we place the following code in the document (right after this text), then we should see an additional section appear.

```
\input{src/extras.tex}
```

7.3 Extra Section

Congrats you found the extra section! Here's a bonus equation:

$$\psi^{(m)}(z) = \frac{d^{m+1}}{dz^{m+1}} \ln (\Gamma(z)) = (-1)^{m+1} \int_0^\infty \frac{t^m e^{-zt}}{1 - e^{-t}} dt$$
 (11)

The red horizontal rules have been placed for clarity. The content inside those rules was taken from another file.

We can even reference the labels from an external file:

```
Reference to marker in another file: Equation~\ref{eq:bonus}.
```

Reference to marker in another file: Equation 11.

8 Other Resources

- Wikibooks Reference documentation and guides
- Overleaf Reference documentation and guides
- The T_EX Stack Exchange Q&A site for both LAT_EX and typesetting issues
- The Comprehensive T_EX Archive Network (CTAN) Package database

References

- [1] L. Project. "LaTeX a document preparation system." (2018), [Online]. Available: https://www.latex-project.org/ (visited on 03/19/2018).
- [2] C. Columbus, *How I Discovered America*. Barcelona: Hispanic Press, 1492.
- [3] T. P. Phillips, "Possible influence of the magnetosphere on American history," *J. Oddball Res.*, vol. 98, pp. 1000–1003, 1999.