UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Licenciatura en Ciencia de Datos

Introducción al Aprendizaje Profundo

Contexto

Profesores:

Berenice & Ricardo Montalvo Lezama

Febrero 2021

Contenido basado en el curso de AP del Dr. Gibran Fuentes Pineda del PCIC

Hipótesis del algoritmo único (Edelman y Mountcastle, 1978)

- Hipótesis de la mente modular
- Hipótesis del algoritmo único
 - La corteza cerebral parece homogénea
 - Mismo algoritmo de aprendizaje en muchas partes
- Pruebas de re-cableado neuronal
 - Corteza auditiva aprende a ver (Roe et al. 1992)
 - Corteza somatosensorial aprende (Metin & Frost 1989)

Aprendizaje de características

• Extracción de características: ingeniería de características, algoritmos de características locales.

• Aprendizaje de características: entrenamiento punto a punto.

3

Jerarquía de representaciones

• Representaciones de creciente jerarquía conforme se avanza en las capas.

Imagen adaptada de Deep Learning, Goodfellow et al, MTT Press 2016.

Motivantes del aprendizaje profundo

infraestructura

datos masivos

etiquetados

arquitecturas

sofisticadas

5

estado

del arte

Impacto del aprendizaje profundo

Imagen tomada de https://www.nervanasys.com/deep-learning-and-the-need-for-unified-tools/16

Retos: generalización

Imagen tomada de Chollet, 2017

abstraction and reasoning

Retos: sesgo e interpretabilidad

Imagen tomada de Molnar, 2020

Retos: formalización

- ¿Qué complejidad necesito para realizar una tarea dada?
- ¿Por qué una arquitectura profunda puede ser más efectiva que una superficial?
- Aprendizaje requiere minimización de función altemente no convexa, ¿por qué mínimos locales funcionan?

Retos: ejemplos antagónicos

| Imagen de https://blog.openai.com/adversarial-example-research/