DS311 - R Lab Assignment

Jeffrey Danford II

8/22/2022

R Assignment 1

- In this assignment, we are going to apply some of the build in data set in R for descriptive statistics analysis.
- To earn full grade in this assignment, students need to complete the coding tasks for each question to get the result.
- After finished all the questions, knit the document into HTML format for submission.

Question 1

Using the **mtcars** data set in R, please answer the following questions.

```
# Loading the data
data(mtcars)

# Head of the data set
head(mtcars)
```

```
##
                     mpg cyl disp hp drat
                                              wt qsec vs am gear carb
## Mazda RX4
                     21.0
                              160 110 3.90 2.620 16.46
                                                                     4
## Mazda RX4 Wag
                     21.0
                           6 160 110 3.90 2.875 17.02
                                                        1 1
## Datsun 710
                     22.8
                           4 108 93 3.85 2.320 18.61
                                                                     1
## Hornet 4 Drive
                     21.4
                           6 258 110 3.08 3.215 19.44
                                                                     1
## Hornet Sportabout 18.7
                           8
                              360 175 3.15 3.440 17.02
                                                           0
                                                                3
                                                                     2
                              225 105 2.76 3.460 20.22
## Valiant
                     18.1
```

library(base)

a. Report the number of variables and observations in the data set.

```
# Enter your code here!
dim(mtcars)
```

[1] 32 11

```
# Answer:
print("There are total of 11 variables and 32 observations in this data set.")
```

[1] "There are total of 11 variables and 32 observations in this data set."

b. Print the summary statistics of the data set and report how many discrete and continuous variables are in the data set.

```
# Enter your code here!
summary(mtcars)
```

```
##
                           cyl
                                            disp
                                                              hp
         mpg
                                                               : 52.0
##
           :10.40
                             :4.000
                                              : 71.1
    Min.
                     Min.
                                      Min.
                                                       Min.
                                      1st Qu.:120.8
##
    1st Qu.:15.43
                     1st Qu.:4.000
                                                       1st Qu.: 96.5
##
    Median :19.20
                     Median :6.000
                                      Median :196.3
                                                       Median :123.0
##
    Mean
           :20.09
                     Mean
                             :6.188
                                      Mean
                                              :230.7
                                                       Mean
                                                               :146.7
##
    3rd Qu.:22.80
                     3rd Qu.:8.000
                                      3rd Qu.:326.0
                                                       3rd Qu.:180.0
##
    Max.
            :33.90
                     Max.
                             :8.000
                                      Max.
                                              :472.0
                                                       Max.
                                                               :335.0
##
         drat
                           wt
                                            qsec
                                                              ٧s
##
    Min.
            :2.760
                     Min.
                             :1.513
                                      Min.
                                              :14.50
                                                       Min.
                                                               :0.0000
##
    1st Qu.:3.080
                     1st Qu.:2.581
                                      1st Qu.:16.89
                                                       1st Qu.:0.0000
##
    Median :3.695
                     Median :3.325
                                      Median :17.71
                                                       Median :0.0000
##
   Mean
           :3.597
                     Mean
                             :3.217
                                      Mean
                                              :17.85
                                                       Mean
                                                               :0.4375
##
    3rd Qu.:3.920
                     3rd Qu.:3.610
                                      3rd Qu.:18.90
                                                       3rd Qu.:1.0000
##
    Max.
            :4.930
                     Max.
                             :5.424
                                      Max.
                                              :22.90
                                                       Max.
                                                               :1.0000
##
                                             carb
          am
                            gear
##
   Min.
            :0.0000
                      Min.
                              :3.000
                                       Min.
                                               :1.000
##
    1st Qu.:0.0000
                      1st Qu.:3.000
                                       1st Qu.:2.000
   Median :0.0000
                      Median :4.000
                                       Median :2.000
##
##
  Mean
            :0.4062
                              :3.688
                                       Mean
                                               :2.812
                      Mean
    3rd Qu.:1.0000
                      3rd Qu.:4.000
                                       3rd Qu.:4.000
##
    Max.
            :1.0000
                      Max.
                              :5.000
                                       Max.
                                               :8.000
```

```
# Answer:
```

print("There are 7 discrete variables and 4 continuous variables in this data set.")

- ## [1] "There are 7 discrete variables and 4 continuous variables in this data set."
 - c. Calculate the mean, variance, and standard deviation for the variable **mpg** and assign them into variable names m, v, and s. Report the results in the print statement.

```
# Enter your code here!
m = mean(mtcars$mpg)
v = var(mtcars$mpg)
s = sd(mtcars$mpg)
print(paste("The average of Mile Per Gallon from this data set is 20.091 with variance 36.324 and stand
```

[1] "The average of Mile Per Gallon from this data set is 20.091 with variance 36.324 and standard d

d. Create two tables to summarize 1) average mpg for each cylinder class and 2) the standard deviation of mpg for each gear class.

```
# Enter your code here!
aggregate(mpg ~ cyl, data=mtcars, mean)
```

```
##
     cyl
              mpg
## 1
       4 26.66364
       6 19.74286
## 3
       8 15.10000
aggregate(mpg ~ gear, data=mtcars, sd)
     gear
               mpg
## 1
        3 3.371618
## 2
        4 5.276764
## 3
        5 6.658979
```

e. Create a crosstab that shows the number of observations belong to each cylinder and gear class combinations. The table should show how many observations given the car has 4 cylinders with 3 gears, 4 cylinders with 4 gears, etc. Report which combination is recorded in this data set and how many observations for this type of car.

```
# Enter your code here!
xtabs(~cyl+gear, data=mtcars)
##
      gear
##
   cyl
        3
            4
               5
##
        1
            8
               2
##
        2
            4
               1
     8 12
            0
##
```

print("The most common car type in this data set is car with 8 cylinders and 3 gears. There are total or

[1] "The most common car type in this data set is car with 8 cylinders and 3 gears. There are total

Question 2

Use different visualization tools to summarize the data sets in this question.

a. Using the **PlantGrowth** data set, visualize and compare the weight of the plant in the three separated group. Give labels to the title, x-axis, and y-axis on the graph. Write a paragraph to summarize your findings.

```
# Load the data set
data("PlantGrowth")

# Head of the data set
head(PlantGrowth)

## weight group
## 1 4.17 ctrl
```

2 5.58 ctrl ## 3 5.18 ctrl ## 4 6.11 ctrl ## 5 4.50 ctrl ## 6 4.61 ctrl

Plant Weight by Group

Result:

=> Report a paragraph to summarize your findings from the plot!

The control group is the middle ground between group 2 and 3. Group 3 is the heaveist while also having the least variation, while group 2 is the lightest only has slightly less variation than the control. Finally the control has the widest arrray of plant weights and takes up part of the space in both test groups.

b. Using the **mtcars** data set, plot the histogram for the column **mpg** with 10 breaks. Give labels to the title, x-axis, and y-axis on the graph. Report the most observed mpg class from the data set.

```
hist(mtcars$mpg, breaks=10,
    main="Histogram of MPG",
    xlab="MPG",
    ylab="Frequency")
```

Histogram of MPG

print("Most of the cars in this data set are in the class of 20 mile per gallon.")

[1] "Most of the cars in this data set are in the class of 20 mile per gallon."

c. Using the **USArrests** data set, create a pairs plot to display the correlations between the variables in the data set. Plot the scatter plot with **Murder** and **Assault**. Give labels to the title, x-axis, and y-axis on the graph. Write a paragraph to summarize your results from both plots.

```
# Load the data set
data("USArrests")

# Head of the data set
head(USArrests)
```

##		Murder	Assault	UrbanPop	Rape
##	Alabama	13.2	236	58	21.2
##	Alaska	10.0	263	48	44.5
##	Arizona	8.1	294	80	31.0
##	Arkansas	8.8	190	50	19.5
##	California	9.0	276	91	40.6
##	Colorado	7.9	204	78	38.7

Murder vs. Assault

Result:

=> Report a paragraph to summarize your findings from the plot!

The number of assaults has a direct correlation to the amount of murders. While murders are far outnumbered by assults it is a noticbly small trend that as the assults rise, so do the number of murders based solely on the plot data generated.

Question 3

Download the housing data set from www.jaredlander.com and find out what explains the housing prices in New York City.

Note: Check your working directory to make sure that you can download the data into the data folder.

a. Create your own descriptive statistics and aggregation tables to summarize the data set and find any meaningful results between different variables in the data set.

Head of the cleaned data set

head(housingData)

```
Neighborhood Market.Value.per.SqFt
                                         Boro Year.Built
## 1
       FINANCIAL
                              200.00 Manhattan
                                                   1920
## 2
       FINANCIAL
                              242.76 Manhattan
                                                   1985
## 4
     FINANCIAL
                              271.23 Manhattan
                                                  1930
## 5
         TRIBECA
                              247.48 Manhattan
                                                  1985
## 6
         TRIBECA
                             191.37 Manhattan
                                                  1986
## 7
         TRIBECA
                              211.53 Manhattan
                                                   1985
```

Enter your code here!

aggregate(Market.Value.per.SqFt ~ Neighborhood, data = housingData, mean)

##			Market.Value.per.SqFt
##	1	ALPHABET CITY	148.35500
##	2	ARROCHAR-SHORE ACRES	57.75000
##	3	ASTORIA	91.48167
##	-	BATH BEACH	70.34000
##	5	BAY RIDGE	68.03500
##	6	BAYSIDE	71.42111
##	7	BEDFORD PARK/NORWOOD	38.24500
##	8	BEDFORD STUYVESANT	83.24172
##	9	BELMONT	56.45000
##	10	BENSONHURST	71.70429
##	11	BERGEN BEACH	73.27000
##	12	BOERUM HILL	96.57600
##	13	BOROUGH PARK	64.10857
##	14	BRIARWOOD	75.36250
##	15	BRIGHTON BEACH	81.91429
##	16	BRONX-UNKNOWN	32.06500
##	17	BRONXDALE	28.94333
##	18	BROOKLYN HEIGHTS	114.11778
##	19	BUSH TERMINAL	60.95000
##	20	BUSHWICK	76.13500
##	21	CANARSIE	46.58000
##	22	CARROLL GARDENS	93.40556
##	23	CHELSEA	215.94932
##	24	CHINATOWN	154.17952
##	25	CITY ISLAND	40.83000
##	26	CIVIC CENTER	174.06696
##	27	CLINTON	176.70032
##	28	CLINTON HILL	88.97385
##	29	COBBLE HILL	120.69800
##	30	COBBLE HILL-WEST	85.71125
##	31	COLLEGE POINT	65.05000
##	32	CONEY ISLAND	55.05750
##	33	CORONA	94.20706
##	34	CROWN HEIGHTS	64.26286
##	35	DOWNTOWN-FULTON FERRY	103.26857
##	36	DOWNTOWN-FULTON MALL	132.42500
##	37	DOWNTOWN-METROTECH	122.48000
##	38	DYKER HEIGHTS	68.36000

##	39	EAST NEW YORK	36.99167
##	40	EAST TREMONT	72.33333
##	41	EAST VILLAGE	207.46115
##	42	ELMHURST	69.80564
##	43	FAR ROCKAWAY	74.88500
##	44	FASHION	194.81067
##	45	FINANCIAL	199.30917
##	46	FLATBUSH-CENTRAL	65.71167
##	47	FLATBUSH-LEFFERTS GARDEN	46.27000
##	48	FLATBUSH-NORTH	54.00000
##	49	FLATIRON	223.30311
	50	FLUSHING MEADOW PARK	58.59000
##		FLUSHING-NORTH	80.16992
##		FLUSHING-SOUTH	89.62750
	53	FOREST HILLS	70.20706
	54	FORT GREENE	81.76900
##		GLENDALE	57.39667
	56	GOWANUS	82.45333
	57	GRAMERCY	188.68471
	58	GRANT CITY	47.60000
	59	GRAVESEND	75.63526
	60	GREAT KILLS	33.74000
	61	GREENPOINT	86.18053
	62	GREENWICH VILLAGE-CENTRAL	142.57767
	63	GREENWICH VILLAGE-WEST	202.13667
	64	GRYMES HILL	50.09000
	65	HAMMELS	139.07200
	66	HARLEM-CENTRAL	102.79106
##		HARLEM-EAST	139.93972
	68	HARLEM-UPPER	79.25667
	69	HARLEM-WEST	95.20500
	70	HIGHBRIDGE/MORRIS HEIGHTS	61.82000
	71	HILLCREST	53.95000
	72	HOLLIS	109.56000 55.06000
	73 74	HOWARD BEACH INWOOD	62.05500
	75	JACKSON HEIGHTS	47.79238
##		JACASUN HEIGHIS JAMAICA	104.76600
##		JAMAICA ESTATES	79.69500
	78	JAVITS CENTER	125.09000
	79	KENSINGTON	56.87500
	80	KEW GARDENS	69.64300
	81	KINGSBRIDGE HTS/UNIV HTS	23.86000
	82	KINGSBRIDGE/JEROME PARK	58.37800
	83	KIPS BAY	191.31769
	84	LITTLE ITALY	142.52308
##		LITTLE NECK	65.85000
	86	LONG ISLAND CITY	108.16667
	87	LOWER EAST SIDE	173.56262
##		MADISON	71.26000
##		MANHATTAN VALLEY	111.30043
	90	MASPETH	53.32750
	91	MIDDLE VILLAGE	78.35857
	92	MIDTOWN CBD	234.36154

##	93	MIDTOWN EAST	211.04750
##	94	MIDTOWN WEST	222.06489
##	95	MIDWOOD	79.50273
##	96	MORNINGSIDE HEIGHTS	74.63000
##	97	MORRIS PARK/VAN NEST	26.90000
##	98	MORRISANIA/LONGWOOD	44.21250
	99	MOTT HAVEN/PORT MORRIS	30.96000
	100	MURRAY HILL	206.26795
	101	NEW BRIGHTON	41.47667
	102	NEW BRIGHTON-ST. GEORGE	41.06000
	103	NEW SPRINGVILLE	40.47000
	104	OAKLAND GARDENS	66.94000
	105	OCEAN HILL	37.92900
	106	OCEAN PARKWAY-NORTH	76.51111
	107	OCEAN PARKWAY-SOUTH	75.08000
	108	OZONE PARK	54.10000
	109	PARK SLOPE	88.01774
	110	PARK SLOPE SOUTH	95.84200
	111	PARKCHESTER	32.67500
	112	PELHAM PARKWAY SOUTH	30.55000
	113	PROSPECT HEIGHTS	79.16200
	114	REGO PARK	62.13630
	115	RIDGEWOOD	64.28667
	116	RIVERDALE	57.10176
	117	ROCKAWAY PARK	88.13600
	118	SCHUYLERVILLE/PELHAM BAY	49.68000
	119	SHEEPSHEAD BAY	79.79704
	120	SILVER LAKE	35.80500
	121	SOHO	162.72473
	122 123	SOUNDVIEW	43.40333
	123	SOUTH OZONE PARK	40.78000 159.53333
	124	SOUTHBRIDGE	61.61818
		SUNNYSIDE SUNSET PARK	80.58348
	126 127		53.70667
	127	THROGS NECK TOMPKINSVILLE	35.81000
	129	TRIBECA	180.18473
	130	UPPER EAST SIDE (59-79)	216.83715
	131	UPPER EAST SIDE (79-96)	202.45179
	132	UPPER EAST SIDE (96-110)	167.41600
	133	UPPER WEST SIDE (59-79)	200.24391
	134	UPPER WEST SIDE (79-96)	171.84515
	135	UPPER WEST SIDE (96-116)	134.09353
##	136	WASHINGTON HEIGHTS LOWER	65.29600
##	137	WASHINGTON HEIGHTS LOWER WASHINGTON HEIGHTS UPPER	93.50833
##	138	WEST NEW BRIGHTON	39.69000
##	139	WEST NEW BRIGHTON WHITESTONE	72.90000
##	140	WILLIAMSBRIDGE	42.46000
##	140	WILLIAMSBURG-CENTRAL	79.97017
##	141	WILLIAMSBURG-EAST	84.32605
##	143	WILLIAMSBURG-NORTH	84.10577
	143	WILLIAMSBURG-SOUTH	82.27618
##	144	WILLIAMSBURG-SOUTH WINDSOR TERRACE	70.21200
##	146	WINDSOR TERRACE	38.61000
π#	140	WOODIIAVEN	30.01000

```
## 147 WOODSIDE 80.52625
## 148 WYCKOFF HEIGHTS 84.93000
```

aggregate(Market.Value.per.SqFt ~ Year.Built, data = housingData, mean)

шш		V D: 1+	Marshat Wales was CaEt
##	1	1825	Market.Value.per.SqFt 76.36000
##	2	1836	273.77000
##	3	1853	152.79000
##	4	1860	159.64500
	_		
##	5	1874	111.17000
##	6 7	1875	166.05000
##		1879	194.52000
##	8	1881	109.70500
##	9	1883 1890	172.10000
##	10		113.28750
##	11	1891	72.83000
##	12	1892	95.21000
##	13	1893	168.85000
##	14	1894	110.62000
##	15	1895	151.77500
##	16	1896	117.26500
##	17	1897	40.83000
##	18	1898	83.25000
##	19	1899	108.16000
##	20	1900	137.55908
##	21	1901	172.36778
##	22	1902	167.62167
##	23	1903	147.97000
##	24	1904	123.09333
##	25	1905	187.76583
##	26	1906	169.03364
##	27	1907	173.80000
##	28	1908	150.35000
##	29	1909	135.23667
##	30	1910	147.36257
##	31	1911	179.76067 159.51636
##	32	1912	
##	33	1913	175.93500
##	34	1914	160.29286
##	35 36	1915 1916	147.08673
##			128.20714 73.87000
##		1917	181.84000
##	38	1918 1919	63.11000
## ##	39 40	1919	145.30862
##	41	1921	122.39125 118.33250
##	42 43	1922	
##		1923	115.47625
	44 45	1924	165.94091
##	45 46	1925	147.51316 148.36423
##	46	1926	
##	47	1927	131.63357
##	48	1928	153.68375

##	49	1929	106.32121
##	50	1930	142.28936
##	51	1931	129.51731
##	52	1932	91.74333
##	53	1933	40.97000
##	54	1934	203.80000
##	55	1935	176.23000
##	56	1936	46.04333
##	57	1937	51.77250
##	58	1938	99.23857
##	59	1939	93.65083
##	60	1940	154.89857
##	61	1941	111.83733
##	62	1942	128.38600
##	63	1947	113.13500
##	64	1948	186.25000
##	65	1949	44.98000
##	66	1950	141.96182
##	67	1951	132.98833
##	68	1952	97.95143
##	69	1954	81.56500
##	70	1955	130.17538
##	71	1956	178.42786
##	72	1957	127.24091
##	73	1958	159.77000
##	74	1959	108.62692
##	75	1960	104.91200
##	76	1961	106.63000
##	77	1962	129.26294
##	78	1963	152.82937
##	79	1964	103.15000
##	80	1965	121.01313
##	81	1966	79.94375
##	82	1967	91.94000
##	83	1968	126.76000
##	84	1969	157.28000
##	85	1970	214.59000
##	86	1971	57.60000
##	87	1972	185.72000
##	88	1973	196.75500
##	89	1974	124.42500
##	90	1975	201.26667
##	91	1977	161.32250
##	92	1978	254.69000
##	93	1979	155.71333
##	94	1980	161.74500
##	95	1981	175.96800
##	96	1982	151.30364
##	97	1983	114.79917
##	98	1984	179.48333
##	99	1985	182.66868
##	100	1986	157.62328
##	101	1987	142.14055
##	102	1988	126.43686

```
## 103
             1989
                               109.25390
## 104
             1990
                                 99.31500
## 105
             1991
                               145.76105
## 106
             1992
                                 83.92333
## 107
             1993
                                 55.45000
## 108
             1994
                                73.13500
## 109
             1995
                                75.77375
## 110
             1996
                               152.36750
## 111
             1997
                               137.41364
             1998
                               138.25125
## 112
## 113
             1999
                               145.93217
             2000
## 114
                               165.47296
             2001
                               124.74295
## 115
## 116
             2002
                               117.92442
## 117
             2003
                               121.56193
## 118
             2004
                               113.79702
## 119
             2005
                               122.70817
## 120
             2006
                               119.73598
## 121
             2007
                               134.12665
                               144.34935
## 122
             2008
## 123
             2009
                                 96.52619
## 124
             2010
                                 90.36667
```

aggregate(Market.Value.per.SqFt ~ Boro, data = housingData, mean)

```
##
              Boro Market.Value.per.SqFt
## 1
             Bronx
                                 47.93232
## 2
          Brooklyn
                                 80.13439
## 3
         Manhattan
                                180.59265
## 4
            Queens
                                 77.38137
## 5 Staten Island
                                 41.26958
```

b. Create multiple plots to demonstrates the correlations between different variables. Remember to label all axes and give title to each graph.

Market Value per Square Foot by Neighborhood

Market Value per Square Foot by Boro

Manhattan Manhattan Brooklyn Brooklyn Queens

Market Value per Square Foot by Year Built

c. Write a summary about your findings from this exercise.

=> Enter your answer here!

For the first graph is seems that the more established districts which means usually wealthier, the market value per square foot is higher than those in poorer areas. Also it appears that in general the prices are land per square feet are higher in Manhattan than anywhere else in New York. Finally There is a noticeable trend that the older the area and structures built, the higher the price per square foot is.