Assignment-3 Q1

```
clear
% Disclaimer - I have changed the order of the elements and renamed them in
% anti-clockwise order in order to use the regular convention.
E = 110e + 9;
nu = 0.3;
points = [0 3 3 0;-1 -1 1 1];
x = points(1,:);
y_e = points(2,:);
% Plane Stress Conditions
D = (E/(1-nu^2))*[1 nu 0;nu 1 0;0 0 (1-nu)/2];
Ae = (points(1,2) - points(1,1))*(points(2,3) - points(2,2));
zeta = [-1/sqrt(3) 1/sqrt(3)];
eta = [-1/sqrt(3) 1/sqrt(3)];
w = [1 1];
x_val = 3*[0.2113 \ 0.7887];
y_val = 2*[0.2113 \ 0.7887]-1;
J_det = 1.5;
K = zeros(8);
for p = 1:2
    for q = 1:2
        x = x_val(p);
        y = y_val(q);
        H = (1/Ae)*[(y - y_e(4)), 0, -(y - y_e(4)), 0 (y - y_e(1)), 0 , -(y - y_e(1))]
 y_e(1), 0;
                     0, (x - x_e(2)), 0, -(x - x_e(1)), 0, (x - x_e(1)), 0, -(x - x_e(1))
 - x_e(2);
                     (x - x_e(2)) (y - y_e(4)) - (x - x_e(1)) - (y - y_e(4)) (x - y_e(4))
 x_e(1) (y - y_e(1)) -(x - x_e(2)) -(y - y_e(1));
        K_{temp} = w(p)*w(q)*J_{det}*transpose(H)*D*H;
        K = K + K_temp;
    end
end
% Value of Element Stiffness Matrix
```

```
K
```

```
K =
```

1.0e+10 *

Columns 1 through 7

4.8018	1.9643	-1.6287	-0.1511	-2.4006	-1.9643	-0.7725
1.9643	6.9844	0.1511	2.0815	-1.9643	-3.4918	-0.1511
-1.6287	0.1511	4.8018	-1.9643	-0.7725	-0.1511	-2.4006
-0.1511	2.0815	-1.9643	6.9844	0.1511	-5.5742	1.9643
-2.4006	-1.9643	-0.7725	0.1511	4.8018	1.9643	-1.6287
-1.9643	-3.4918	-0.1511	-5.5742	1.9643	6.9844	0.1511
-0.7725	-0.1511	-2.4006	1.9643	-1.6287	0.1511	4.8018
0.1511	-5.5742	1.9643	-3.4918	-0.1511	2.0815	-1.9643

Column 8

- 0.1511
- -5.5742
- 1.9643
- -3.4918
- -0.1511
- 2.0815
- -1.9643
- 6.9844

Published with MATLAB® R2021b