Al-Driven Vocal Tract Segmentation for Speech Disorders Analysis

Project Workshop 2 - Neuroengineering 2024/25

Professor: Cerveri Pietro
Tutor: Cavicchioli Matteo

Baggini Guia
Burinato Federica
De Carlo Federico
Martuscelli Sara
Missana Matteo

What happens in
the vocal tract of patients
with non-fluent variant
primary progressive
aphasia?

Two kinds of aphasia

Consistent speaking patterns

Apraxia of speech

Inconsistent speech patterns

How Doctors Diagnose Aphasia

ElectropalatographyX Low spatial coverage

Cine X-Ray

X Invasive

Electromagnetic Articulography

X Alter articulator cinematics

dsMRI

√ Better frame rate and temporal resolution

dsMRI

Vocal Tract Segmentation

Gold Standard:

Expert-driven segmentation

Extra tool:

Automatic segmentation with Al

Develop a NN for
Automatic
segmentation of
articulators from
dsMRI images of the
vocal tract

Head

Soft Palate

Hard Palate

Upper Lip

Soft Palate

Soft Palate

S1 MICROSCOPIC

S1_SEGREGATION

S1_TOPCOP

S2_MICROSCOPIC

S2_SEGREGATION

S2_TOPCOP

S4 MICROSCOPIC

S4_PATAKA

S4_WELCOME

Training Set

Data Augmentation

Horizontal flip Brightness Contrast

S5_COUNT

S5_KA

S5_PA

Validation & Test Set

Paper's Architecture

Our Architecture

Grid Search

Dropout Rate

Loss Function

Number of filters

Leave-one-patient-out Cross-Validation

Validation Training Set **Test Set**

Head

98,0

97,3

91,4

94,289,1

12,93

Test Set Results

Ground truth

Do you see any difference?

Predictions

ACCURACY [%]
PRECISION [%]
RECALL [%]
DICE [%]
IOU [%]
HAUSDORFF
[pixel]

Background
98,0
98,0
99,5
98,7
97,5
7,04

Upper Lip	Hard Palate	Soft Palate	Tongue	Lower Lip
99,9	99,9	99,9	99,8	99,8
71,7	73,7	82,9	97,5	90,7
94,2	79,1	82,9	88,4	86,6
81,2	76,2	82,6	92,7	88,5
68,4	62,6	70,6	86,4	79,5
7,33	2,94	2,39	4,87	5,84

Pathological Patient

Ground truth

Predictions

Userfriendly GUI

Limitations

Automatic segmentation cannot substitute human experts

Small dataset size

Overfitting on the Gaussian Noise

Future Steps

Automatic distinction between apraxia and dysarthria

Improvement of the assistive tool to help doctors in make the right diagnosis

Thank you for your kind attention!

Sara Martuscelli

Matteo Missana

Federica Burinato

Federico De Carlo

Guia Baggini