八十八學年度高級中學資訊學科能力競賽決賽試題

程式設計題(每題20分,共100分)

A.寫一個程式,讀入一個文字檔,將檔案中所出現的數字相加,將答案輸出。

Example:

Input(in_a.txt):

Asdf j213k as kfjas 932kk s8aklsd Asd klfj 823kjds 23ksad f9ksdaf asdfj89as df8kasdf

Output: 213+932+8+823+23+9+89+8=2105

本題測試輸入資料檔案名稱為 in_a.txt 答案輸出資料檔案名稱為 考生編號 out_a.txt

B.設有兩間倉庫 \mathbf{W}_1 及 \mathbf{W}_2 ,其存放的貨品可送至各目的地 \mathbf{D}_i ,其中 $1 \le i \le n$. 設 \mathbf{d}_i 是 \mathbf{D}_i 的需求量,而 \mathbf{r}_i 是 \mathbf{W}_i 倉庫的存貨量。假設 $\mathbf{r}_1 + \mathbf{r}_2 = \sum \mathbf{d}_i$,且 $\mathbf{c}_{ij}(\mathbf{x}_{ij})$ 表示由 \mathbf{W}_i 倉庫運送 \mathbf{x}_{ij} 數量貨物至 \mathbf{D}_j 的成本 試找出非負數的整數 \mathbf{x}_{ij} ($1 \le i \le 2$, $1 \le j \le n$), $\mathbf{x}_{1i} + \mathbf{x}_{2i} = \mathbf{d}_i$ ($1 \le j \le n$),使得 $\sum_i \mathbf{c}_{ij}(\mathbf{x}_{ij})$ 為最小.

- a) 變數順序
 - (1) 輸入變數: n, r₁, r₂, d₁, d₂, d_{3,.....}, d_{n, 1}, c₁₁, c₂₁, c₁₂, c₂₂, c₁₃, c_{23,....}, c_{1n}, c_{2n}
 - (2) 輸出變數: $\sum_{ij} C_{ij}(x_{ij})$, x_{11} , x_{21} , x_{12} , x_{22} , x_{13} , $x_{23,...}$, x_{1n} , x_{2n} ,
- b) 測試資料
 - (1) 輸入(in_b.txt): 3,12,15,8,9,10, 15,21,12,23,18,25
 - (2) 輸出:505,0,8,9,0,3,7

本題測試輸入資料檔案名稱為 in_b.txt 答案輸出資料檔案名稱為 考生編號 out_b.txt

C. 捷運票價計算系統

首都捷運公司打算設計一套系統用於依搭乘捷運的距離來計算票價,捷運各路線依英文字母 A、B、..依序命名,每一路線各站則以流水號命名從 1 號依序下去,如 A1 代表 A 捷運路線的第一站。各捷運路線間可能有交錯點(表示方式為 A4=B5,代表 A 路線的第 4 站與 B 路線第 5 站位置一樣;而 A2 = B3 = C4 則表示三路線的交錯,以此類推),該交錯點允許乘客不必出站直接可轉乘另一路線的捷運,所乘坐的里程則累加兩條或以上捷運路線之乘坐距離以計算票價。票價計算基準為前 5 公里一律 20 元,以後每 3 公里加 5 元,如下表。

乘坐里程 (Km)	0~5.0	5.1~8.0	8.1~11.0	11.1~14.0	14.1~17.0	以下類推
票價	20	25	30	35	40	以下類推

已知各捷運站與鄰站間的距離、各捷運路線轉乘站、乘客搭乘起站,試 求從該起站至所有其他捷運站所需的最少票價。

輸入:

第一行整數,捷運路線數 N

第二行至 N+1 行為捷運 A、B、..路線從第一站至最末站各站之間 距

的浮點數值列,中間以逗號區隔,單位是公里。

第 N+2 行為各交錯點字串列,中間以逗號區隔。

第 N+3 行為乘客搭乘起站的站名。

輸出:

每一行輸出站名與從起站到此站之最短距離與票價,中間以逗號區隔。

範例檔:

輸入檔內容(in_c.txt):

2

1.2,1.9,2.4,2.1,1.1,1.3,0.9

0.8,1.1,1.7,1.0,1.9,1.9,1.5,2.0

A4=B5

B2

輸出檔內容:

A1,9.3,30

A2,8.1,30

A3,6.2,25

A4,3.8,20

A5,5.9,25

A6,7.0,25

A7,8.3,30

A8,9.2,30

B1,0.8,20

B2,0.0,20

B3,1.1,20

B4,2.8,20

B5,3.8,20

B6,5.7,25

B7,7.6,25

B8,9.1,30

B9,11.1,35

本題測試輸入資料檔案名稱為 in_c.txt 答案輸出資料檔案名稱為 考生編號 out_c.txt

- **D.**參加國際資訊奧林匹亞(IOI)競賽者大約有一半的選手可以獲得獎牌。in_d.txt 即為被評為可以獲獎的名單(第 1 欄為國家代碼,第 2 欄為選手姓名,第 3 欄為 其成績),在此名單中,金、銀、銅牌的分配約為 1:2:3。試寫一程式依得分高低分配獎牌。輸出包括四部分:
- (1) 由高至低排序,並將得獎類別寫在分數旁[G(金)、S(銀)、B(銅)] (如輸出 範例 1)。
- (2) 獎牌分配,即獲得金、銀、銅牌的個數(如輸出範例2)。
- (3) 得獎牌最多的國家,寫出國家代碼及獎牌(不分類別)數(如輸出範例3)。
- (3) 所有得獎者分數之平均數、最高分、最低分及全距(即最高分與最低分的差距)(如輸出範例 4)。

輸入範例(in_d.txt):

RSA	Bruce Merry	333
HUN	Balazs Racz	250
UKR	Oleksandr lotko	230
ROM	Bogdan Dumitru	360
VIE	Nguyen N. Huy	430
SUI	Peter Kaufmann	266
CRO	Frane Saric	268
ROM	Radu A. Stefan	150
BLR	Ivan Miatselski	226

AUS Peter Hawkins		225
SVK	Jan Senko	210
BUL	Svetlin Nakov	208

輸出範例:

輸出範例1

VIE	Nguyen N. Huy	430	G
ROM	Bogdan Dumitru	360	G
RSA	Bruce Merr	333	S
CRO	Frane Saric	268	S
SUI	Peter Kaufmann	266	S
HUN	Balazs Racz	250	S
UKR	Oleksandr lotko	230	В
BLR	Ivan Miatselski	226	В
AUS	Peter Hawkins	225	В
SVK	Jan Senko	210	В
BUL	Svetlin Nakov	208	В
ROM	Radu A. Stefan	150	В

輸出範例 2

G 2

S 4

B 6

輸出範例3

ROM 2

輸出範例 4

263.00 430.00 150.00 280.00

本題測試輸入資料檔案名稱為 in_d.txt 答案輸出資料檔案名稱為 考生編號 out_d.txt

E.

你想用一個最賞心悅目的方式來佈置教室的 F 面牆壁。這些牆壁以編號 1 到 F 依序地編號。你有 V 個不同種類的圖畫,而圖畫是以整數 1 到 V 做為它們的代號。這些代號代表著圖畫佈置在牆壁的順序,也就是說,若 i 值小於 j 值,則 i 圖畫一定佈置在 j 圖畫的前面。舉例來說,假設你有一個杜鵑花圖畫(代號 1)、一個秋海棠圖畫(代號 2)、及一個康乃馨圖畫(代號 3)。則杜鵑花圖畫的牆壁

一定是在秋海棠圖畫的牆壁的前面,而秋海棠圖畫一定是佈置康乃馨圖畫的前面。一個牆壁只能佈置一圖畫。如果圖畫的數量大於牆壁的數量,那麼,多的圖畫即可閒置不用佈置。

每一個牆壁也有其特性。把圖畫佈置在牆壁裡就會產生一個「賞心悅目數值」(the aesthetic value),而這個數值是一個整數。牆壁上沒有佈置圖畫,則其賞心悅目數值為 0。賞心悅目數值請參照以下的表格。

		牆壁			
		1	2	3	4
圖畫	1 杜鵑花	23	-5	-24	16
	2 秋海棠	21	-4	10	23
	3 康乃馨	5	-4	-20	20

根據這個表格,杜鵑花圖畫佈置在1號牆壁裡就會看起來效果最棒,而佈置在3號牆壁裡則效果最差。

為了達到最賞心悅目的效果,當你在注意圖畫的排列順序的同時,你也必須注意擺設產生的賞心悅目數值的加總數值是要最大的。你必須產生一個最棒的擺設結果。假如有超過一種擺設情況有相同的最大值,則任何一種擺設都可以接受。

假設條件

- F 值代表圖畫種類,由1到F,1<=F<=4。
- V 值代表牆壁數量 , F <= V <= 4。
- A_i代表 i 圖畫佈置在 j 牆壁擺設產生的賞心悅目數值 , -50 <= A_i <= 50。

程式輸入

將輸入檔檔名取為 in_e.txt

- 第一行有兩個數值:F,V。
- 在接下來的 F 行裡,每一行都有 V 個整數,而 A_{//}就是第(i+1)st行裡的第 j 個數值。

輸出結果

程式輸出結果的檔名必須為 考生編號 out e.txt 並包含以下二行結果:

■ 第一行出現的結果是擺設產生的賞心悅目數值的加總數值。

■ 第二行出現的結果是圖畫擺設的次序,也就是 F 個數值的次序;在這一行 裡第 K 個數值代表著第 K 個圖畫所佈置在牆壁的編號。

範例

輸入 (in_e.txt):

3 4

23 -5 -24 16

21 -4 10 23

5 -4 -20 20

輸出:

53

1 3 4

評分標準

你的程式只可以跑 5 秒鐘。 這個測驗成績只有滿分或者沒有得分。

本題測試輸入資料檔案名稱為 in_e.txt 答案輸出資料檔案名稱為 考生編號 out_e.txt