Supervised Learning K Nearest Neighbors Validation

Yevgeny Seldin

Supervised Learning

Protocol

Supervised Learning

More examples

- (age, gender, weight) → height
- (age, weight, height) → gender
- (height(1), height(2), height(3)) → height(4)

Notations

- \mathcal{X} sample space (e.g., $\mathcal{X} = \mathbb{R}^d$)
- \mathcal{Y} label space (e.g., Classification: $\mathcal{Y}=\{\pm 1\}$; Regression: $\mathcal{Y}=\mathbb{R}$)
- $S = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ training sample (where $X_i \in \mathcal{X}, Y_i \in \mathcal{Y}$)
- $h: \mathcal{X} \to \mathcal{Y}$ a prediction rule / hypothesis
- \mathcal{H} a set of prediction rules / a hypothesis set

K-Nearest Neighbors (K-NN)

- Algorithm: Predict X based on K nearest neighbors in S.
- Input: distance measure d(x, x')
- Examples:
 - Euclidian distance
 - Manhattan distance
 - Travel distance
 - Edit distance

The choice of d determines the success or failure of K-NN!

Evaluation

- $\ell(y', y)$ loss/error function Loss for predicting y' when the reality is y
- Examples:
 - Zero-one loss

$$\ell(y', y) = \mathbb{I}(y' \neq y)$$

$$= \begin{cases} 0, & \text{if } y' = y \\ 1, & \text{if } y' \neq y \end{cases}$$

Squared loss

$$\ell(y',y) = (y'-y)^2$$

Absolute loss

$$\ell(y', y) = |y' - y|$$

 The loss function determines the cost of different mistakes!!!

Example: Fire alarm

Depends on the house

1

y' y	no fire	fire
no fire	0	5.000.000
fire	2.000	0

"constant"

So far

KNN – predict based on K nearest neighbors

Input:

• Distance measure d(x, x') – domain knowledge

Evaluation:

• Loss function $\ell(y', y)$ – domain knowledge

How to pick K?

- What is good/bad about small K?
 - Say, *K*=1?

- What is good/bad about large K?
 - Say, K=n?

How to pick K?

- Target: minimize the expected loss
 - $L(h_{KNN}) = \mathbb{E}[\ell(h_{KNN}(X), Y)]$
- Assumption
 - (X,Y) are sampled from a fixed (unknown) distribution p(X,Y)
 - The expectation is with respect to p(X,Y)
- Challenge: p(X,Y) is unknown, and so is $L(h_{KNN})$
- How to estimate $L(h_{KNN})$?
 - Use the empirical loss $\widehat{L}(h_{KNN},S) = \frac{1}{n} \sum_{i=1}^{n} \ell(h_{KNN}(X_i),Y_i)$
 - What is $\hat{L}(h_{1NN}, S)$?
 - In general, $\widehat{L}(h_{KNN},S)$ is an underestimate of $L(h_{KNN})$.

Validation

- Assumptions
 - $\{(X_1, Y_1), ..., (X_m, Y_m)\}$ are independent identically distributed (i.i.d.)
 - And come from the same distribution as new samples (X, Y)
- $\hat{L}(h_{KNNS_t}, S_{val})$ is an **unbiased** estimate of $L(h_{KNNS_t})$
 - $\mathbb{E}\left[\hat{L}\left(h_{KNNS_t}, S_{val}\right)\right] = \mathbb{E}\left[\frac{1}{m}\sum_{i=1}^{m}\ell\left(h_{KNNS_t}(X_i), Y_i\right)\right] = \frac{1}{m}\sum_{i=1}^{m}\mathbb{E}\left[\ell\left(h_{KNNS_t}(X_i), Y_i\right)\right] = L\left(h_{KNNS_t}\right)$
 - From the perspective of h_{KNNS_t} the samples in S_{val} are indistinguishable from new samples (X,Y)

Selection of *K*

Selection introduces bias!

- Each $\widehat{L}(h_{KNN}, S_{val})$ is an unbiased estimate of $L(h_{KNN})$
- But $\widehat{L}(h_{K^*NN}, S_{val})$ is a **biased** estimate of $L(h_{K^*NN})!!!$
 - From the perspective of h_{K^*NN} the samples in S_{val} are distinguishable from new samples (X,Y)
 - $\mathbb{E}[\ell(h_{K^*NN}(X_i), Y_i)] \neq \mathbb{E}[\ell(h_{K^*NN}(X), Y)]$ dependent! in S_{val}

Illustration of Selection Bias

A bag of coins with bias p

- $i^* = \arg\min_i \hat{p}_i$
- While each \hat{p}_i is an unbiased estimate of p: $\mathbb{E}[\hat{p}_i] = p$
- \hat{p}_{i^*} is a **biased** estimate of p: $\mathbb{E}[\hat{p}_{i^*}] \neq p$
- Outcome-based selection introduces bias!

So how can we estimate $L(h_{K^*NN})$?

(X,Y)

Testing

- It's not about how you call it; it's about how you use it!!!
- $\widehat{L}(h^*, S_{test})$ is a **biased** estimate of $L(h^*)!$

Respectable ML Competitions

Division of Responsibilities

- Evaluation/error measure $\ell(y', y)$ domain knowledge
- Distance measure d(x, x') domain knowledge
 - But validation can be used to select a distance measure out of a set of candidates
- Selection of K and d validation
- How to split the data (select m) coming next

How to split the data into train/test/...?

Consider the following extremes:

- m = 1
 - $\hat{L}(h, S_{test}) \in \{0,1\}$, never approaches L(h)
- m = n 1
 - The training procedure only observes one label

- Do we need to reshuffle the data before splitting?
 - Theory: the data are assumed to be i.i.d., so it does not matter
 - Practice:
 - Yes, if the data are sorted by irrelevant parameter
 - No, if data order carries information relevant for testing, e.g., ordering by time

What can be said about L(h) based on $\hat{L}(h, S_{val})$?

- $\widehat{L}(h, S_{val})$ is an unbiased estimate of L(h)
- But consider the case m=1:
 - $\widehat{L}(h, S_{val}) \in \{0,1\}$ never close to L(h)!
- Being unbiased is neither sufficient, nor necessary

We need concentration!

Relation to "coin flips"

- $Z_i = \ell(h(X_i), Y_i) \in \{0,1\}$
 - Bernoulli random variable, "a coin flip"
- $\mathbb{E}[Z_i] = \mathbb{E}[\ell(h(X_i), Y_i)] = L(h) = p$
 - The bias of the coin
- $\hat{L}(h, S_{val}) = \frac{1}{m} \sum_{i}^{m} Z_i = \hat{p}_m$
 - An average of m "coin flips"
- How far can \hat{p}_m be from p?