

Why Optimize Efficiency?

Company

- Largest producer of Methanol in the world
- Uses 45% of New
 Zealand's natural gas
 output
- Contributes \$84
 million annually to
 The New Zealand
 economy

Context

- Constrained Natural Gas
- Global competitors producing Methanol more efficiently
- Sub-Optimal Current Production

Solution

- A reliable model to predict efficiency
- Find optimal values for pv to maximize Efficiency
- Provide insights on the impact of process variables

Challenges deep-dive

Challenge 1

Multicollinearity Reli

The process variables are not independent from each other

Challenge 2

Reliability

A model which is reliable on all datasets across the plant

Challenge 3

Understanding the impact

Insights between the process variables and efficiency

Methanol Distillation process, picture courtesy of Methanex Corporation

Distillation Control

- Process variables like temperature, pressure, flow rate and level within a distillation column affect one another
- The sensor measures the process variable from the plant and the transmitter sends the information to the DCS
- Historian records the real time data from DCS

Preliminary Analysis

Data collection

Obtained in Excel format from the PI
 DataLink

Cleaning

- Data set comprises of plant running in normal operating conditions
- Partial Deletion: Abnormal ranges of process variables are removed manually

Data Distribution

• No non-linear relationship detected. Plenty of no relationships are seen.

Correlation Matrix

Why?

Summarize data with an aim of revealing patterns

- A correlation coefficient shows how much one variable change in function of the other
- Correlation does not mean causation
- Pearson correlation: comparing process
 variables to find a linear relationship
- Data multicollinearity: Independent process variables in data are correlated

Applying ML Models

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                               7.311e-01 1.108e+00
Top.Reb.Stm.prod
                               3.598e+00
                                         1.202e-01
Top, reboiler, level
                               2.657e-03 5.990e-05
D.406.temperaure
                              -1.979e-03 6.219e-04
Crude, prod
                                         3.140e-02
                              -1.226e-01
                                                    -3.903 9.61e-05
Ref. column, inlet, temp
                              -8.445e-04
                                        4.090e-04
                                                     -2.065 0.038982
Ref. column, reflux, ratio
                               4.427e-02 5.835e-03
Ref.Reb.A.Stm.prod
                                         2.084e-01
                                                    10.750 < 2e-16
Ref.reboiler.A.reboiler.level -4.279e-02
                                         2.704e-02
                                                    -1.583 0.113541
Ref.Reb.B.Stm.prod
                                         2.099e-01 13.516 < 2e-16 ***
                               2.837e+00
Ref.reboiler.B.reboiler.level 7.079e-04 1.945e-02
                                                     0.036 0.970973
Steam.temp
                               7.964e-04 8.579e-04
                                                      0.928 0.353307
Steam.pressure
                               2,955e-01 2,811e-02 10,513 < 2e-16 ***
CW. Temp
                              7.092e-03 9.722e-04
Ref. Bottoms, flow
                              1,605e-03 4,691e-04
Fusel, Prod
                              -5.727e-01 2.660e-01
Reflux.liquid.temperature
                             -9.717e-04 6.324e-04 -1.536 0.124484
Top. Overhead, temperature
                              1.163e-03 5.272e-04
Top. Overhead, pressure
                             -1.075e+00 6.637e-01
                                                    -1.620 0.105240
Top. Bottom, temperature
                                                     5.761 8.80e-09
                              1.346e-02 2.337e-03
Top. dp. prod
                              -6.060e+01 4.151e+00 -14.600 < 2e-16
Product, Ethanol
                                         2.862e-04 11.970 < 2e-16
Ref.Reflux.temp
                                         8.962e-04
                              -8.393e-03
                                                    -9.365 < 2e-16 ***
Ref.Overhead.temp
                              -5.918e-04 2.298e-03
                                                     -0.258 0.796788
Ref.Overhead.pres
                              1.768e-01 4.263e-02
Bottom.temperature
                              -4.328e-03 1.228e-03
Ref.dp.prod
                               2.874e+00 1.797e+00
                                                     1.599 0.109860
Ambient. T
                              -2.897e-03 1.833e-04 -15.807 < 2e-16 ***
```

LINEAR REGRESSION
Summary

- A linear regression is amongst the simplest possible model. It tries to approximate a variable as a sum of the other variables multiplied by a coefficient, added to a constant
- OLS regression :
 May yield unstable results in presence of important correlations between explanatory variables

Do not scale well over a wide range of operating conditions and large disturbances

Possible to fit data in higher dimension but resulting model poor in new dataset

Why?
 Interpret the model output and not for fitting the model

Residual standard error: 0.03274 on 5940 degrees of freedom Multiple R-squared: 0.9582, Adjusted R-squared: 0.9581 F-statistic: 5048 on 27 and 5940 DF, p-value: < 2.2e-16

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual Plots

Residuals vs Fitted

The spread of residuals around the horizontal line without any distinct patterns is a good indication that it is linear

Scale-Location

This reveals if the residuals are spread equally along the range of predictors thus checking the assumption of equal variance. A horizontal line with equally spread points is a good indicator.

Normal QQ

This plot is used to show if the residuals are normally distributed. Here, most of the residuals follow the straight line

Residuals vs Leverage

Not all outliers tend to be influential. Here, there are no cases lying outside the Cook's distance

Data: X dimension: 2746 27

method: kernelnis

Number of components considered: 27

VALIDATION: RMSEP

Cross-validated using 10 random segments

(Interce	pt) 1 comp	s 2 comps	3 comps	4 comps	5 comps	6 comps 7	comps 8	comps
0.1	594 0.0497	5 0.03794	0.03508	0.03288	0.03018	0.02860 0	.02752 0.6	02684
0.1	594 0.0497	4 0.03791	0.03510	0.03287	0.03016	0.02858 0	.02750 0.4	02682
9 comps	10 comps	11 comps	12 comps	13 comps	14 comps	15 comps	16 comps	
0.02660	0.02653	0.02649	0.02644	0.02641	0.02639	0.02638	0.02635	
0.02659	0.02651	0.02647	0.02643	0.02639	0.02637	0.02637	0.02633	
17 comps	18 comps	19 comps	20 comps	21 comps	22 comps	23 comps	24 comps	
0.02634	0.02631	0.02631	0.02631	0.02631	0.02630	0.02631	0.02631	
0.02632	0.02629	0.02629	0.02629	0.02629	0.02628	0.02629	0.02629	
25 comps	26 comps	27 comps						
0.02630	0.02631	0.02631						
0.02628	0.02629	0.02629						
	0.1 9 comps 0.02660 0.02659 17 comps 0.02634 0.02632 25 comps 0.02630	0.1594 0.0497 0.1594 0.0497 9 comps 10 comps 0.02660 0.02653 0.02659 0.02651 17 comps 18 comps 0.02634 0.02631 0.02632 0.02639 25 comps 26 comps 0.02630 0.02631	0.1594 0.04975 0.03794 0.1594 0.04974 0.03791 9 comps 10 comps 11 comps 0.02660 0.02653 0.02649 0.02659 0.02651 0.02647 17 comps 18 comps 19 comps 0.02634 0.02631 0.02631 0.02632 0.02629 0.02629 25 comps 26 comps 27 comps 0.02630 0.02631 0.02631	0.1594 0.04975 0.03794 0.03508 0.1594 0.04974 0.03791 0.03510 9 comps 10 comps 11 comps 12 comps 0.02660 0.02653 0.02649 0.02644 0.02659 0.02651 0.02647 0.02643 17 comps 18 comps 19 comps 20 comps 0.02634 0.02631 0.02631 0.02631 0.02632 0.02629 0.02629 0.02629 25 comps 26 comps 27 comps 0.02630 0.02631 0.02631	0.1594 0.04975 0.03794 0.03508 0.03288 0.1594 0.04974 0.03791 0.03510 0.03287 9 comps 10 comps 11 comps 12 comps 13 comps 0.02660 0.02653 0.02649 0.02644 0.02641 0.02659 0.02651 0.02647 0.02643 0.02639 17 comps 18 comps 19 comps 20 comps 21 comps 0.02634 0.02631 0.02631 0.02631 0.02631 0.02632 0.02629 0.02629 0.02629 25 comps 26 comps 27 comps 0.02630 0.02631 0.02631	0.1594 0.04975 0.03794 0.03508 0.03288 0.03018 0.1594 0.04974 0.03791 0.03510 0.03287 0.03016 9 comps 10 comps 11 comps 12 comps 13 comps 14 comps 0.02660 0.02653 0.02649 0.02644 0.02641 0.02639 0.02659 0.02651 0.02647 0.02643 0.02639 0.02637 17 comps 18 comps 19 comps 20 comps 21 comps 22 comps 0.02634 0.02631 0.02631 0.02631 0.02631 0.02630 0.02632 0.02629 0.02629 0.02629 0.02629 0.02628 25 comps 26 comps 27 comps 0.02630 0.02631 0.02631	0.1594 0.04975 0.03794 0.03508 0.03288 0.03018 0.02860 0. 0.1594 0.04974 0.03791 0.03510 0.03287 0.03016 0.02858 0. 9 comps 10 comps 11 comps 12 comps 13 comps 14 comps 15 comps 0.02660 0.02653 0.02649 0.02644 0.02641 0.02639 0.02637 0.02659 0.02651 0.02647 0.02643 0.02639 0.02637 0.02637 17 comps 18 comps 19 comps 20 comps 21 comps 22 comps 23 comps 0.02634 0.02631 0.02631 0.02631 0.02631 0.02630 0.02631 0.02632 0.02629 0.02629 0.02629 0.02629 0.02628 0.02629 25 comps 26 comps 27 comps 0.02630 0.02631 0.02631	0.1594 0.04974 0.03791 0.03510 0.03287 0.03016 0.02858 0.02750 0.09 comps 10 comps 11 comps 12 comps 13 comps 14 comps 15 comps 16 comps 0.02660 0.02653 0.02649 0.02644 0.02641 0.02639 0.02637 0.02637 0.02631 0.02659 0.02651 0.02647 0.02643 0.02639 0.02637 0.02637 0.02633 17 comps 18 comps 19 comps 20 comps 21 comps 22 comps 23 comps 24 comps 0.02634 0.02631 0.02631 0.02631 0.02631 0.02631 0.02631 0.02631 0.02631 0.02632 0.02639 0.02639 0.02639 0.02639 0.02631

TRAINING: % variance explained

	1	comps	2	comps	3	CO	mps	4	com	ps	5	comp	05 6	comp	5 7	CO	mps	8	comps
X		20.75		31.15		52	.79		66.	52		70.0	00	72.9	2	75	. 05		77.03
Cont. Efficiency		90.30		94.40		95	. 22		95.	81		96.	19	96.8	5	97	.08		97.23
	9	comps	10	comps	-	11	comp:	5	12	comp)5	13	comps	5 14	con	105	15	CO	mps
X		79.25		81.48			83.9	3		85.5	2		86.85	5	89.	31		91	. 22
Cont. Efficiency		97.28		97.29			97.30	0		97.3	31		97.37	2	97.	33		97	. 33
	10	5 comps	1	L7 comps		18	comp	25	19	con	1ps	20	comp	05 2	L CC	mps	2	2 0	omps
X		92.38		95.30)		95.	78		97.	15	5	98.7	79	98	. 99		9	9.13
Cont. Efficiency		97.34		97.34			97.	34		97.	34	1	97.3	34	97	. 35		9	7.35
aranananan salah salah salah	2	comps	1	4 comps	,	25	comp	25	26	con	1ps	27	7 comp	25					
X		99.60		99.75			99.	31		99.	99	9	100.0	00					
Cont. Efficiency		97.35		97.35			97.	35		97.	35	5	97.3	35					

Dimension Reduction Partial Least Square Regression

- The approach involving reducing the number of random variables under consideration by obtaining a set of principal features
- Partial Least Squares (PLS) is useful for constructing models when there are many factors which are collinear
- Reduce overfitting, Solving Multicollinearity, Less Computational cost
- The number of predictors is chosen by looking at the component number which adequately explains both the predictor and response variances

PLSR Summary results

Data: X dimension: 2746 27 Y dimension: 2746 1

Fit method: kernelpls

Number of components considered: 5 TRAINING: % variance explained

1 comps 2 comps 3 comps 4 comps 5 comps X 20.75 31.15 52.79 66.52 70.00 Cont.Efficiency 90.30 94.40 95.22 95.81 96.49

PLSR Summary for 5 component

Latent variables

- Hidden variables that are not observed directly but inferred from models that are observed
- Unmeasured pure variables or true scores that are free from errors

Latent variable modelling

 Inferential sensors can be built using the latent variables obtained from PLS models

Potential Applications

- Improved process understanding and monitoring
- Troubleshooting Process problems
- Optimizing: new operating point
- Dealing with higher dimensional data

Summary - Modelling a soft sensor pathway

Moving Forward

Thank you!

Nick Ward, Lecturer Franco, Process Engineer Bronwyn, Energy Efficiency Engineer

> "Energy costs are getting higher and the cheapest energy is the energy you don't use"