Chapter 1

Introduction

Max subarray sum problem

Given a list of n integers (positive, negative, zero). Find the subarray sum of values is maximum.

Example:

Input: vector of n real number.

Output: the maximum sum found in any contiguous subarray of the input.

```
max = -maxinteger;
                                                  Time
for (i = 1; i \le n; i++)
                                                    n
   for (j = i; j \le n; j++)
                                                    n
         Sum = 0;
         for (k = i; k \le j; k++)
                                                    n
               sum = sum + A[k];
         end for
         if ( max < sum )
               max = sum
         end if
   end for
                                              T(n) = O(n^3)
end for
```

Sum (A[i] to A[j+1]) = sum (A[i] to A[j]) + A[j+1]

```
 \begin{array}{lll} \text{max} = \text{-maxinteger}; & \underline{\text{Time}} \\ \text{for (i = 1 ; i <= n ; i++)} & \mathbf{n} \\ \text{sum} = 0; & \\ \text{for (j = i ; j <= n ; j++)} & \mathbf{n} \\ & \text{sum} = \text{sum} + A[j]; & \\ & \text{if (max < sum )} \\ & & \text{max} = \text{sum} \\ & & \text{end if} & \\ & & \text{end for} & \\ & & & & \\ \end{array}
```

```
Sum (A[i] to A[j+1]) = sum (A[i] to A[j]) + A[j+1]
       accumArray [0] = 0;
       for (i = 1; i \le n; i++)
           accumArray[i] = accumArray[i-1] + A[i];
       end for
       max = 0;
       for (i = 1; i \le n; i++)
           for (j = i; j \le n; j++)
                 sum = accumarray[j] - accumArrayA[i-1];
                 if ( max < sum )
                       max = sum
                 end if
           end for
       end for
T(n) = O(n) + O(n^2)
T(n) = O(n^2)
```

```
Recursive function maxSum (L, U)
maxSum (L, U)
       if (L > U)
           return 0:
       if (L == U)
           return max (0, A[L]);
       m = (L + U)/2;
       // find max crossing to left
       sum = 0:
       maxToLeft = 0;
       for (i = m; i >= L; i--)
           sum = sum + A[i];
           maxToLeft = max ( maxToLeft, sum );
       end for
       // find max crossing to right
       sum = 0;
       maxToRight = 0;
       for (i = m+1; i \le U; i++)
           sum = sum + A[i];
           maxToRight = max ( maxToRight, sum );
       end for
       maxCrossing = maxToLeft + maxToRight;
       maxInA = maxSum(L, m);
       maxInB = maxSum(m+1, U);
       return ( max ( maxCrossing, maxInA, maxInB);
```

Time

$$T(n) = \begin{cases} c & n = 1 \\ 2 T(n/2) + n & n > 1 \end{cases}$$

$$T(n) = 2 T(n/2) + n$$

 $T(n/2) = 2 T(n/4) + n/2$

$$T(n) = 2 [2 T(n/4) + n/2] + n$$

 $T(n) = 2^2 T(n/2^2) + 2n$

$$T(n/4) = 2 T(n/8) + n/4$$

$$T(n) = 2^2 [2 T(n/8) + n/4] + 2n$$

$$T(n) = 2^3 T(n/2^3) + 3n$$

. . .

$$T(n) = 2^k T(n/2^k) + k n$$

Let
$$2^k = n \rightarrow k = \log n$$

$$T(n) = n T(1) + n logn$$

$$T(n) = c n + n \log n$$

$$T(n) = O(nlogn)$$

	5	2	-1	-3	-5	6	4	-1	2	5	-3	1	-4	5
maxEndHer	5	7	6	3	0	6	10	9	11	16	13	14	10	15
maxSoFar	5	7	7	7	7	7	10	10	11	16	16	16	16	16

```
\begin{split} \text{maxEndHer} &= 0; \\ \text{maxSoFar} &= 0; \\ \text{for (i = 1; i <= n ; i++)} \\ \text{maxEndHer} &= \text{max (0, maxEndHer + A[i]);} \\ \text{maxSoFar} &= \text{max (maxSoFar, maxEndHer);} \\ \text{end for} \end{split}
```

$$T(n) = O(n)$$

Problem: Chose the smallest kth elements

Solution:

Sort and Scan

(Quick Sort)

Problem: Element uniqueness problem

Given a list of n numbers $a_1, a_2, a_3, \ldots, a_n$

Find if there is a pair i, j such that $a_i = a_j$

Solution:

Sort and Scan

T(n) = O(nlogn) + n = O(nlogn)

Problem: Element uniqueness problem

Given a list of n numbers $a_1, a_2, a_3, \ldots, a_n$

$$0 \le a_i \le 10^5$$

Find if there is a pair i, j such that $a_i = a_j$

Solution #1:

We reserve an array with 10⁵ integers

Input	5	7	6	3	0	6	5	9	11	16	3	5	10	•••
index	0	1	2	3	4	5	6	7	8	9	10	11	12	
Repeation	1	0	0	2	0	3	2	1	0	1	1	1	0	

$$T(n) = O(n)$$

Extra Space =
$$10^5$$
 unit of integer = $10^5 * 4$ bytes ≈ 400 Kbyte

Solution #2:

because we need just the number of elements, where $a_i = a_j \ , \, i \neq j$

We reserve an array with 10^5 **bytes** and then let every **byte** = 0, When we have element, we change the **byte** from zero to 1, and if we have 1 then $a_i = a_j$

T(n) = O(n)
Extra Space =
$$10^5$$
 unit of bytes = 10^5 bytes
 ≈ 100 Kbyte

Solution #3:

because we need just the number of elements, where $a_i = a_j$, $i \neq j$ We reserve an array with 10^5 bit and then let every bit = 0, When we have element, we change the bit from zero to 1, and if we have 1 then $a_i = a_i$

T(n) = O(n)

Extra Space =
$$10^5$$
 bits ≈ 12500 bytes

 ≈ 12.5 Kbyte

Details:

			-					1								2								3		
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
1	0	0	1	0	1	1	1	0	1	1	1	0	0	0	0	1	0									

Problem:

Given a list of numbers

$$a_1, a_2, a_3, \dots a_n$$
, a_i is between 1 and k

Output: array b where $b_1 \le b_2 \le b_3 \le ... \le b_n$

Solution:

for (
$$i = 1$$
; $i <= k$; $i++$)
$$c[I] = 0;$$
for ($i = 1$; $i <= n$; $i++$)
$$c[A[I]] ++;$$
count = 1;
for ($i = 1$; $i <= k$; $i++$)
$$for ($j = 1$; $j <= c[I]$; $j++$)
$$b[count++] = I;$$$$

$$T(n) = O(n)$$