1 Feature spaces

1. In the 2 dimensional space, an error-free non-linear classifier is displayed as the black circle below:

Figure 1: Ring dataset in 2D space with a non-linear classifier

In order to get a linear classifier, we need to add a dimension, which is the distance between the origin and the data points, expressed as $x_1^2 + x_2^2$.

Thus
$$\phi(x) = [x_1 \quad x_2 \quad x_1^2 + x_2^2]^{\top}$$
.

2. By eigendecomposition, $K = PDP^{-1} = PDP^{\top}$ since K is symmetric, where $P = [\mathbf{v}_1, \dots, \mathbf{v}_m]$ is the eigenvector matrix and D is the diagonal matrix containing eigenvalues λ_i of K with $i \in \{1, \dots, m\}$. Since K is positive semidefinite, $D_{ii} = \lambda_i \geq 0$. Thus we can take square root to D:

$$K = PDP^{\top} = P\sqrt{D}\sqrt{D}^{\top}P^{\top} = P\sqrt{D}(P\sqrt{D})^{\top} = QQ^{\top},$$
 where $Q = P\sqrt{D} = [\sqrt{\lambda_1}\mathbf{v}_1, \cdots, \sqrt{\lambda_m}\mathbf{v}_m].$ (1)

By definition:

$$K(x_{i}, x_{j}) = \langle \phi(x_{i}), \phi(x_{j}) \rangle_{\mathcal{H}}$$

$$= (QQ^{\top})_{ij}$$

$$= [\sqrt{\lambda_{1}} \mathbf{v}_{1}^{(i)}, \cdots, \sqrt{\lambda_{m}} \mathbf{v}_{m}^{(i)}] [\sqrt{\lambda_{1}} \mathbf{v}_{1}^{(j)}, \cdots, \sqrt{\lambda_{m}} \mathbf{v}_{m}^{(j)}]^{\top}.$$

$$(2)$$

Thus, we find the feature space representation of x_i : $\phi(x_i) = [\sqrt{\lambda_1} \mathbf{v}_1^{(i)}, \cdots, \sqrt{\lambda_m} \mathbf{v}_m^{(i)}]$

2 Kernel dependence detection

1. Incomplete Cholesky for efficient COCO

Define:

$$A = \begin{bmatrix} 0 & \frac{1}{n} \widetilde{K} \widetilde{L} \\ \frac{1}{n} \widetilde{K} \widetilde{L} & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} \widetilde{K} & 0 \\ 0 & \widetilde{L} \end{bmatrix}.$$

The computational cost of COCO mainly comes from matrices A and B.

The computational cost for calculating COCO exactly:

As we know, $\widetilde{K} = HKH$, $\widetilde{L} = HLH$, where all the matrices $(K, L, H, \widetilde{K}, \widetilde{L})$ are $n \times n$ matrices. The naive matrix multiplication of two $n \times n$ matrices involves n^3 times multiplications $(n \text{ rows } \times n \text{ columns } \times n \text{ terms})$ and $n^2 \times (n-1)$ times addition $(n \text{ rows } \times n \text{ columns } \times n-1 \text{ addition operations})$, thus it has complexity $O(n^3 + n^2(n-1)) = O(2n^3 - n^2)$.

For both \widetilde{K} and \widetilde{L} , the complexity is $O(2(2n^3-n^2))=O(4n^3-2n^2)$, thus for the matrix B, the complexity is $O(2(4n^3-2n^2))=O(8n^3-4n^2)$.

For both $\frac{1}{n}\widetilde{K}\widetilde{L}$ and $\frac{1}{n}\widetilde{L}\widetilde{K}$, there are n^3+n^2 multiplications and $n^2(n-1)$ additions, thus the complexity is $O((n^3+n^2)+n^2(n-1))=O(2n^3)$. Thus for matrix A, the complexity is $O(2(2n^3))=O(4n^3)$.

In total, the complexity of calculating both A and B is $O(12n^3 - 4n^2)$.

The computational cost for approximated COCO via incomplete Cholesky:

By incomplete Cholesky decomposition, $\widetilde{K} = HKH = H(RR^{\top})H = H^{\top}R^{\top}RH = (RH)^{\top}RH$, where R is $t \times n$, H is $n \times n$. The complexity of RH is $O(tn^2 + tn(n-1)) = O(2tn^2 - tn)$. RH is a $t \times n$ matrix, thus the complexity computing \widetilde{K} is $O(tn^2 + n^2(t-1) + 2tn^2 - tn) = O(4tn^2 - n^2 - tn)$. The complexity of computing \widetilde{L} is the same as that of \widetilde{K} . Hence the complexity of matrix B is $O(2(4tn^2 - n^2 - tn)) = O(8tn^2 - 2n^2 - 2tn)$.

The complexity of $\frac{1}{n}\widetilde{K}\widetilde{L}$ is $O(n^3+n^2+n^2(n-1))=O(2n^3)$. The complexity of $\frac{1}{n}\widetilde{L}\widetilde{K}$ is exactly the same. Thus for matrix A, the complexity is $O(2(2n^3))=O(4n^3)$.

In total, the complexity of calculating both A and B is $O(8tn^2 - 2n^2 - 2tn + 4n^3)$.

We conclude that when t < n, the approximated COCO is more efficient than the exactly computed COCO with simpler complexity.

The plotted f and g are displayed below:

Figure 2: X vs f(x)

Figure 3: Y vs g(y)

The mapping of (x, y) pairs is displayed below, with correlation -0.87098:

Figure 4: f(x) vs g(y)

The maps make our data more dependent.

2. kernel CCA

kernelized solution to CCA problem:

To

$$\underset{f,g}{\operatorname{arg\,max}} \left\langle f, \hat{C}_{XY}g \right\rangle_{\mathcal{G}} , \tag{3}$$

Student number: 20083932

subject to

$$\left\langle f, \hat{C}_{XX} f \right\rangle_{\mathcal{F}} = 1 \text{ and } \left\langle g, \hat{C}_{YY} g \right\rangle_{\mathcal{G}} = 1,$$
 (4)

we build Lagrangian as follow:

$$\mathcal{L}(f,g,\lambda,\gamma) = \left\langle f, \hat{C}_{XY}g \right\rangle_{\mathcal{G}} - \frac{\lambda}{2} \left(\left\langle f, \hat{C}_{XX}f \right\rangle_{\mathcal{F}} - 1 \right) - \frac{\gamma}{2} \left(\left\langle g, \hat{C}_{YY}g \right\rangle_{\mathcal{G}} - 1 \right) \\
= \frac{1}{n} \left\langle XH\alpha, XHY^{\top}YH\beta \right\rangle_{\mathcal{G}} - \frac{\lambda}{2} \left(\frac{1}{n} \left\langle XH\alpha, XHX^{\top}XH\alpha \right\rangle_{\mathcal{F}} - 1 \right) \\
- \frac{\gamma}{2} \left(\frac{1}{n} \left\langle YH\beta, YHY^{\top}YH\beta \right\rangle_{\mathcal{G}} - 1 \right) \\
= \frac{1}{n} (XH\alpha)^{\top}XHY^{\top}YH\beta - \frac{\lambda}{2} \left(\frac{1}{n} (XH\alpha)^{\top}XHX^{\top}XH\alpha - 1 \right) \\
- \frac{\gamma}{2} \left(\frac{1}{n} (YH\beta)^{\top}YHY^{\top}YH\beta - 1 \right) \\
= \frac{1}{n} \alpha^{\top} \widetilde{K} \widetilde{L} \beta - \frac{\lambda}{2} \left(\frac{1}{n} \alpha^{\top} \widetilde{K}^{2} \alpha - 1 \right) - \frac{\gamma}{2} \left(\frac{1}{n} \beta^{\top} \widetilde{L}^{2} \beta - 1 \right)$$
(5)

since $\widetilde{K} = HKH = HX^{\top}XH$, $\widetilde{L} = HLH = HY^{\top}YH$, H = HH.

Differentiating wrt α and β and setting to 0, we get:

$$\frac{1}{n}\widetilde{K}\widetilde{L}\beta - \frac{1}{n}\frac{\lambda}{2}2\widetilde{K}^{2}\alpha = 0 \to \widetilde{K}\widetilde{L}\beta = \lambda\widetilde{K}^{2}\alpha
\frac{1}{n}\widetilde{L}\widetilde{K}\alpha - \frac{1}{n}\frac{\gamma}{2}2\widetilde{L}^{2}\beta = 0 \to \widetilde{L}\widetilde{K}\alpha = \gamma\widetilde{L}^{2}\beta$$
(6)

By solving the above 2 equations, we get: $\lambda = \gamma$. Thus our above 2 equations become:

$$\widetilde{K}\widetilde{L}\beta = \lambda \widetilde{K}^2 \alpha
\widetilde{L}\widetilde{K}\alpha = \lambda \widetilde{L}^2 \beta ,$$
(7)

The linear system above is equivalent to:

$$\begin{bmatrix} 0 & \widetilde{K}\widetilde{L} \\ \widetilde{L}\widetilde{K} & 0 \end{bmatrix} \begin{bmatrix} \alpha_i \\ \beta_i \end{bmatrix} = \lambda_i \begin{bmatrix} \widetilde{K}^2 & 0 \\ 0 & \widetilde{L}^2 \end{bmatrix} \begin{bmatrix} \alpha_i \\ \beta_i \end{bmatrix}$$

$$Ua_i = \lambda_i Va_i,$$
(8)

which is the generalised eigenvalue problem. The CCA solution is obtained at max λ_i .

Student number: 20083932

When the points are non-pathologically distributed so that K and L have full rank, without regularisation, the non-zero solutions to the generalised eigenvalue problem then becomes $\lambda_i = \pm 1$, regardless of a_i .

brief proof:

Our problem is equivalent to:

$$\underset{f,g}{\operatorname{arg\,max}} \frac{\operatorname{cov}([f(x),g(y)])}{\operatorname{var}(f(x))^{\frac{1}{2}}\operatorname{var}(g(y))^{\frac{1}{2}}} = \underset{\alpha,\beta}{\operatorname{arg\,max}} \frac{\alpha^{\top}\widetilde{K}\widetilde{L}\beta}{(\alpha^{\top}\widetilde{K}^{2}\alpha)^{\frac{1}{2}}(\beta^{\top}\widetilde{L}^{2}\beta)^{\frac{1}{2}}} = \underset{\alpha,\beta}{\operatorname{arg\,max}} \operatorname{cos}(\widetilde{K}\alpha,\widetilde{L}\beta)$$

$$(9)$$

When K and L have full rank, $\widetilde{K} = HKH$ and $\widetilde{L} = HLH$ are a both subspace orthogonal to the vector with all ones. Thus $\alpha^{\top}\widetilde{K}^{2}\alpha$ and $\beta^{\top}\widetilde{L}^{2}\beta$ in the denominator are the same, and thus cosine is either 1 or -1, regardless α , β . \square

By adding regularisation terms to var(f(x)) and var(g(y)), we have updated constraints as follow:

$$\left\langle f, \hat{C}_{XX} f \right\rangle_{\mathcal{F}} + \kappa \|f\|_{\mathcal{F}}^{2} = 1$$

$$\left\langle g, \hat{C}_{YY} g \right\rangle_{\mathcal{G}} + \kappa \|g\|_{\mathcal{G}}^{2} = 1.$$
(10)

We know that $||f||_{\mathcal{F}}^2 = \langle f, f \rangle_{\mathcal{F}} = \alpha^{\top} \widetilde{K} \alpha$ and $||g||_{\mathcal{G}}^2 = \langle g, g \rangle_{\mathcal{G}} = \beta^{\top} \widetilde{L} \beta$, thus our updated Lagrangian becomes:

$$\mathcal{L}(f, g, \lambda, \gamma, \kappa) = \frac{1}{n} \alpha^{\top} \widetilde{K} \widetilde{L} \beta - \frac{\lambda}{2} \left(\alpha^{\top} \widetilde{K}^{2} \alpha + \kappa \alpha^{\top} \widetilde{K} \alpha - 1 \right) - \frac{\gamma}{2} \left(\beta^{\top} \widetilde{L}^{2} \beta + \kappa \beta^{\top} \widetilde{L} \beta - 1 \right)$$
(11)

Differentiating wrt α , β and setting to 0, we get:

$$\frac{1}{n}\widetilde{K}\widetilde{L}\beta - \lambda\left(\widetilde{K}^{2}\alpha + \kappa\widetilde{K}\alpha\right) = 0$$

$$\frac{1}{n}\widetilde{L}\widetilde{K}\alpha - \gamma\left(\widetilde{L}^{2}\beta + \kappa\widetilde{L}\beta\right) = 0$$
(12)

By solving the above 2 equations, we get $\lambda = \gamma$, thus our linear system becomes:

$$\frac{1}{n}\widetilde{K}\widetilde{L}\beta = \lambda \left(\widetilde{K}^2\alpha + \kappa \widetilde{K}\alpha\right)
\frac{1}{n}\widetilde{L}\widetilde{K}\alpha = \lambda \left(\widetilde{L}^2\beta + \kappa \widetilde{L}\beta\right),$$
(13)

which is equivalent to:

$$\begin{bmatrix} 0 & \frac{1}{n}\widetilde{K}\widetilde{L} \\ \frac{1}{n}\widetilde{L}\widetilde{K} & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \lambda \begin{bmatrix} \widetilde{K}^2 + \kappa \widetilde{K} & 0 \\ 0 & \widetilde{L}^2 + \kappa \widetilde{L} \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$
(14)

The f and g functions calculated by CCA are displayed below:

The mapped data plot is shown below, with correlation -0.95211:

Figure 7: f(x) vs g(y)

The data also become more dependent after mapping, even more dependent than the ones obtained by COCO.

The functions obtained by CCA both have wider range (around 10^{-4}), while the functions computed by COCO have a much narrower range (around 10^{-7}). This difference is caused by different constraints in 2 cases. The computation of CCA is more accurate, however, it also has higher computational cost.