coursera

Q

您可以从您离开的地方开始继续学习。加入一个新的班次,我们将重置您的截止日期。

加入班次

Fast Closest Pair Theorem

One of the keys to the described method for computing fast closest pairs is that fact that only the three points following a given point (sorted vertically) needs to be test for being the closest pair. The proof of this fact is very subtle so we won't give a full proof. However, here is a sketch of the reasoning behind this claim if you are interested.

Consider a sequence of points $p_k = (x_k, y_k)$ that satisfy the following three properties:

- The points are vertically ordered, that is $y_{k-1} \geq y_k$,
- The points lie within distance δ of the line x=0, that is $|x_k| \leq \delta$,
- For all pairs p_i and p_i that lie on the same side of the line $x=0, |p_i-p_i| \geq \delta$.

Theorem: Let (p_i,p_j) be the closest pair of points that lie on opposite sides of x=0. If $|p_i-p_j|<\delta$, then |i-j|<4.

To prove this theorem, we will first prove the following lemma.

Lemma: Let p_0 , p_1 , p_2 , p_3 be four consecutive points with $x_0 \ge 0$ and $x_1, x_2, x_3 \le 0$. If $|p_3 - p_0| \le \delta$, then $|p_1 - p_0| \le |p_3 - p_0|$.

Proof: Consider the extremal case when $p_3=(0,0)$ and $p_2=(-\delta,0)$. The yellow circles in the diagram below cover all points within distance δ of p_2 and p_3 . In this configuration, p_1 must lie somewhere in the green region on the left of x=0 in the diagram since $y_1-y_3\leq y_0-y_3\leq \delta$. Given the position of p_1 in this region, p_0 must lie in the corresponding blue region on the right of x=0 since $|p_3-p_0|\leq \delta$ and $y_0\geq y_1$.

Now, consider the perpendicular bisector of p_1 and p_3 . We claim that the blue region on the right must lie entirely on the same side of this bisector as p_1 and, therefore, $|p_1-p_0|\leq |p_3-p_0|$. To confirm this observation, we note that the extremal case for this argument occurs exactly when $|p_2-p_1|=\delta$ and $p_0=(\delta+x_1,y_1)$ as shown. In this case, the p_i form a parallelogram and the perpendicular bisector between p_1 and p_3 passes through p_0 . In any other configuration, the perpendicular bisector passes below p_0 . **QED**

With this lemma in hand, we can now prove the main theorem. Assume that the closest pair of points (p_i,p_j) spanning x=0 have $|p_i-p_j|\leq \delta$ and $|i-j|\geq 4$. Then, there must exist two points between p_i and p_j which lie on the same side as one of p_i and p_j . However, by the lemma, one of these points must also form a second closest pair that spans x=0 with either p_i or p_j . This argument can repeated until we reach the situation where |i-j|<4.

