

Técnicas e Análise de Algoritmos Grafos - Parte 02

Professor: Jeremias Moreira Gomes

E-mail: jeremias.gomes@idp.edu.br

Introdução

Recapitulação

- Grafo
 - O que é
 - Representação
 - Travessias
 - Componentes Conectadas

Ciclos

 Seja G um grafo direcionado. Um ciclo é um caminho, com três ou mais arestas distintas, cujos pontos de partida e de chegada são iguais

Ciclos

 Seja G um grafo direcionado. Um ciclo é um caminho, com três ou mais arestas distintas, cujos pontos de partida e de chegada são iguais

Grafos Acíclicos

- Um grafo é dito acíclico se não possui ciclos
 - Árvores são grafos acíclicos

- Considere uma travessia por profundidade
 - Se, durante a travessia, um dos dos vizinhos v de u já foi visitado, e v não é o vértice p que descobriu u na travessia, então existe um ciclo que começa e termina em u e que passa por v

- Implementação:
 - Mantenha o estado de "em visitação" e "visitados"
 - A DFS deve retornar verdadeiro caso um ciclo seja detectado
 - No início da DFS, marque o nó como "em visitacao" e ao final desative essa opção
 - Se uma DFS inicia com um nó já em visitação, então um ciclo foi detectado


```
bool visitado[N + 1];
bool em_visitacao[N + 1];
bool detecta_ciclos()
   for (int u = 1; u \le N; u++) {
        if (dfs(u)) {
            return true;
    return false;
```

```
bool dfs(int u)
    if (em_visitacao[u]) return true;
    if (visitado[u]) return false;
    em_visitacao[u] = visitado[u] = true;
   for (auto v: G[u]) {
        if (dfs(v)) {
            return true;
    em_visitacao[u] = false;
    return false;
```


Caminhos Mínimos

Caminho Mínimo

 Seja p um caminho entre os vértices u e v do grafo G, dizemos que p é um caminho mínimo de u a v se, para qualquer caminho q de u a v, vale que

$$\sum_{e_i \in p} w(e_i) \leq \sum_{e_j \in q} w(e_j)$$

onde w(e) é o peso da aresta e.

$$\sum_{e \in p_1} w(e) = 9$$

$$\sum_{e \in p_1} w(e) = 9$$

$$\sum_{e \in p_1} w(e) = 9$$
 $\sum_{e \in p_2} w(e) = 8$

$$\sum_{e \in p_1} w(e) = 9 \qquad \sum_{e \in p_2} w(e) = 8$$

$$\sum_{e \in n_1} w(e) = 9$$

$$\sum_{e \in \mathcal{E}} w(e) = 8$$

$$\sum_{e \in p_1} w(e) = 9 \qquad \sum_{e \in p_2} w(e) = 8 \qquad \sum_{e \in p_3} w(e) = 7$$

$$\sum_{e \in p_1} w(e) = 9$$

$$\sum_{e \in E} w(e) = 8$$

$$\sum_{e \in p_1} w(e) = 9 \qquad \sum_{e \in p_2} w(e) = 8 \qquad \sum_{e \in p_3} w(e) = 7$$

$$\sum_{e \in p_1} w(e) = 9$$

$$\sum_{e \in p_0} w(e) = 8$$

$$\sum_{e \in \mathcal{E}} w(e) = 7$$

$$\sum_{e \in p_1} w(e) = 9 \qquad \sum_{e \in p_2} w(e) = 8 \qquad \sum_{e \in p_3} w(e) = 7 \qquad \sum_{e \in p_3} w(e) = 6$$

Caminhos Mínimos em Grafos não Ponderados

- Se G é não-ponderado, o custo de um caminho pode ser medido em arestas
- Isto equivale a considerar que todas as arestas de G tem peso 1
- Neste caso, uma BFS pode determinar a distância mínima entre o vértice de partida s e todos os vértices de G
- A BFS também poder ser usada em grafos cujas arestas tem o mesmo peso

Caminhos Mínimos em Grafos não

Caminhos Mínimos em Grafos não

```
Pondera const int oo = 0x3f3f3f3f3f;
                 vector<int>dist(N + 1, oo);
                  void bfs_dists(int u) {
                     queue<int> fila;
                     fila.push(u);
                     dist[u] = 0;
                     while (!fila.empty()) {
                         u = fila.front();
                         fila.pop();
                         for (auto v: G[u]) {
                             if (dist[v] == oo) {
                                 fila.push(v);
                                 dist[v] = dist[u] + 1;
```


Caminhos Mínimos em Grafos Ponderados

- Se G é ponderado, existem alguns algoritmos para determinar a distância mínima
 - Se G não tem arestas com pesos negativos, utiliza-se o algoritmo de Dijkstra (mais importante e mais utilizado)
 - Se G possui arestas negativas, é utilizado o algoritmo de Bellman-Ford (caso mais geral)
 - Para calcula as distâncias mínimas entre todos os pares de vértices de G, existe o algoritmo de Floyd-Warshall

- Desenvolvido por Edsger Wybe Dijkstra
- Computa o caminho mínimo de todos os vértices de G(V, E) a um dado nó s
- Processa apenas grafos com arestas não-negativas
- Eficiência: cada aresta é processada uma única vez
- Complexidade: O(E + V log V)

Algoritmo de Dijkstra - Pseudocódigo

- Entrada: um grafo ponderado G(V, E) e um vértice s ∈ V
- Saída: um vetor d tal que d[u] é a distância mínima entre s e u
 - 1. Faça d[s] = 0, d[u] = ∞ se u ≠ s e seja U = V
 - 2. Enquanto U ≠ Ø:
 - Seja u ∈ U o vértice mais próximo de s em U
 - Relaxe as distâncias usando as arestas que partem de u
 - Remova u de U
 - 3. Retorne d

 Esse algoritmo usa uma ideia chamada de relaxamento, onde as distâncias mínimas vão sendo atualizadas a medida em que o algoritmo verifica novos vértices, de acordo com a sua proximidade

Se dist(s, u) + w < dist(s, v), faça dist(s, v) = dist(s, u) + w

- Na implementação do algoritmo, é mantido um vetor de distâncias, e um conjunto de vértices
 - O vetor é inicializado com distâncias infinitas e vão reduzindo ao longo da execução
 - O conjunto de vértices tem seus elementos removidos à medida que estes vão sendo visitados

$$U=\{$$
 A, B, C, D, E, F $\}$

$$U = \{$$
 B, C, D, E, F $\}$

$$U = \{$$
 B, C, D, E, F $\}$

	Α	В	С	D	E	F	
$\operatorname{dist}(u, A)$	0	9	7	4	2	∞	

$$U=\{$$
 B, C, D, E, F $\}$

40

	Α	В	C	D	E	F
$\mathrm{dist}(u,A)$	0	9	7	4	2	∞

$$U=\{\ \mathsf{B,\ C,\ D,\ F}\ \}$$

	Α	В	С	D	E	F
$\operatorname{dist}(u, A)$	0	9	7	3	2	13

$$U=\{$$
 B, C, D, F $\}$

Algoritmo de Dijkstra - Identificação do Vértice Mais Próximo

- Uma informação que não foi explorada é, dado um vértice,
 encontrar qual é o vizinho mais próximo desse vértice
- Para resolver esse problema, pode-se utilizar uma min-heap, que irá manter na estrutura um conjunto de vizinhos dos vértices visitados, extraindo sempre aquele de menor distância no momento da descoberta

Algoritmo de Dijkstra - Identificação do Vértice Mais Próximo

- Também é possível utilizar uma árvore auto balanceada
 - Uma árvore red-black ou outra estrutura
 - Se utilizar um set, ter o cuidado de dar manutenção na inserção de um elemento que já se encontra na estrutura, atualizando, se necessário, a menor distância

Algoritmo de Dijkstra - Identificação do Vértice Mais Próximo

min heap
(priority_queue)

red-black tree (set)


```
void dijkstra(int origem)
   memset(dist, INF, sizeof(dist));
   dist[origem] = 0;
   priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;
   pq.push({0, origem});
   while (!pq.empty()) {
       auto [d, u] = pq.top(); pq.pop();
       if (d > dist[u]) {
           continue;
        }
       for (auto [v, w]: G[u]) {
           if (dist[v] > dist[u] + w) {
               dist[v] = dist[u] + w;
               pq.push({ dist[v], v });
```


- Um detalhe importante é que o algoritmo de dijkstra computa as distâncias mínimas, mas não quais são os caminhos mínimos
- É possível determinar um caminho mínimo, mantendo uma estrutura que contém a identificação de qual vértice levou a ter aquela distância (um vetor de predecessores ou o pai daquele vértice)


```
void djikstra(int origem)
   memset(dist, INF, sizeof(dist));
   dist[origem] = 0;
   predecessor[origem] = origem;
   priority queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;
   pq.push({0, origem});
   while (!pq.empty()) {
       auto [d, u] = pq.top(); pq.pop();
       if (d > dist[u]) {
           continue;
       for (auto [v, w]: G[u]) {
           if (dist[v] > dist[u] + w) {
               dist[v] = dist[u] + w;
               predecessor[v] = u;
               pq.push({ dist[v], v });
```



```
vector<pair<int, int>> caminho_minimo(int origem, int destino)
   vector<pair<int, int>> caminho;
   int v = destino;
   while (v != origem) {
       caminho.push_back({predecessor[v], v});
       v = predecessor[v];
   reverse(caminho.begin(), caminho.end());
   return caminho;
```


Árvore Geradora Mínima

Árvores Geradoras

- Seja G(V, E) um grafo
- Uma árvore geradora de G é um subgrafo T (V, E') de G tal que T é uma árvore que contém todos os vértices de G

Árvores Geradoras

Árvores Geradoras

- Seja G(V, E) um grafo ponderado (não direcionado)
- Uma árvore geradora T (V, E') de G é uma árvore geradora mínima
 (Minimum Spanning Tree) de G se a soma

$$c(T) = \sum_{e \in E'} w(e)$$

é mínima

- Propriedades:
 - A MST é única apenas se todos os pesos forem distintos
 - A árvore geradora máxima pode ser obtida invertendo os sinais dos pesos de todas das arestas

- MSTs são utilizadas em diversas áreas que envolvem, principalmente, tráfego:
 - Construção de redes (telefônicas ou de outros tipos) ou malhas elétricas
 - Segmentação de imagens
 - Sistemas de Informações Geográficos
 - o etc

- Existem dois algoritmos mais conhecidos para a MST:
 - 1. Algoritmo de Kruskal
 - Algoritmo guloso que une vértices enquanto florestas
 - Utiliza uma estrutura chamara Disjoint Set Union (DSU)
 - 2. Algoritmo de Prim (detalhado a seguir)
 - Algoritmo guloso que une vértices não visitados
 - Utiliza heaps para identificar vértices próximos

- Descoberto por diferentes pessoas em épocas próximas
 - Ficou mais famoso por Robert Clay Prim (1957)
- Encontra uma MST usando uma abordagem gulosa
- Um vértice u é escolhido para iniciar um componente conectado C
- Enquanto C ≠ V , é identificado o vértice u ≠ C mais proximo de C
- Então u é inserido em C e essa aresta faz parte de uma MST
- Complexidade: O(E log V)

Algoritmo de Prim - Pseudocódigo

- Entrada: um grafo ponderado G(V, E)
- Saída: uma MST de G
 - 1. Escolha um vértice u ∈ V e faça C = {u}, M = ∅
 - 2. Enquanto $C \neq V$:
 - Escolha o vértice v ≠ C mais próximo de C
 - Inclua v em C e a aresta que une v a C em M
 - 3. Retorne M

Algoritmo de Prim - Identificação do Vértice Mais Próximo

- De maneira análoga ao algoritmo de dijkstra, o algoritmo de prim utiliza uma fila de prioridades, para encontrar o vértice mais próximo
 - O primeiro elemento inserido na árvore é o vértice de início,
 apontando para ele próprio com peso zero


```
typedef tuple<int, int, int> tiii;
vector<pair<int, int>> prim(int origem) {
   priority_queue<tiii, vector<tiii>, greater<tiii>>> pq;
   vector<pair<int, int>> mst; // Receberá as arestas da MST
   vector<bool> visitado(N + 1, false);
   pq.push({0, origem, origem}); // {peso, origem, destino}
   while (!pq.empty()) {
        auto [p, u, v] = pq.top(); pq.pop();
        if (visitado[v]) {
            continue;
        visitado[v] = true;
        mst.push_back({u, v});
        for (auto [r, w]: G[v]) {
           if (!visitado[r]) {
                pq.push({w, v, r}); // Lembrar de inserir primeiro o peso
   return mst;
```


Conclusão