T319 - Introdução ao Aprendizado de Máquina: *Regressão Linear (Parte III)*

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

Recapitulando

- Discutimos sobre o vetor gradiente.
- Aprendemos dois algoritmos que usam o vetor gradiente para a resolução de problemas de otimização.
 - Gradiente Ascendente para problemas de maximização.
 - Gradiente Descendente para problemas de minimização.
- Vimos as três versões do gradiente descendente e as comparamos.
- Nesta parte, discutiremos o quão importante é o ajuste do passo de aprendizagem, α .

Escolha do Passo de Aprendizagem

 Conforme nós já aprendemos, enquanto a direção para o ponto de mínimo é determinada pelo vetor gradiente da função de erro, o passo de aprendizagem determina o quão grande esse passo é dado naquela direção.

$$a \leftarrow a - \alpha \frac{\partial J_e(a)}{\partial a}$$

- Portanto, a escolha do passo de aprendizagem (hiperparâmetro) é muito importante:
 - Caso ele seja muito pequeno, a convergência do algoritmo levará muito tempo.
 - \circ **Exemplo**: com $\alpha=0.01$, o algoritmo atinge o valor ótimo após mais de 250 épocas.
 - Passos muito curtos, fazem com que o algoritmo caminhe vagarosamente em direção ao mínimo global da função de erro.

Iteration

Escolha do Passo de Aprendizagem

Exemplo: linear regression selecting the learning rate.ipynb

- Caso o passo de aprendizagem seja muito grande, o algoritmo pode nunca convergir.
- Se α for grande, mas não tão grande assim, o algoritmo fica "pulando" ou "oscilando" de um lado para o outro da superfície até que converge, por sorte (veja exemplo #1).
- Em outros casos, quado α é muito grande, a cada iteração o algoritmo "pula" para um valor mais alto que antes, e assim, divergindo (veja exemplo #2).

Escolha do Passo de Aprendizagem

- Portanto, o valor passo de aprendizagem deve ser explorado para se encontrar um valor ideal que acelere a descida do gradiente de forma estável (ou seja, acelere a convergência).
 - O exemplo ao lado, converge para o mínimo global em apenas 2 iterações.
- Portanto, a escolha do *passo de aprendizagem* pode ser bastante demorada.
- Uma regra empírica para exploração do passo de aprendizagem é usar a seguinte sequência (ajuste manual):

..., 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, ...

Como depurar o algoritmo do GD?

- Uma maneira de se *depurar* o algoritmo do *gradiente descendente,* principalmente quando não é possível se plotar o gráfico da superfície de contorno, é plotar o gráfico do erro (EQM) em função do número de iterações.
 - Figura A ⇒ Passo ideal: convegência rápida
 - Erro diminui rapidamente nas primeiras épocas e depois diminui quase que a uma taxa constante.
 - Convergência pode ser declarada, por exemplo, quando o erro entre duas iterações subsequentes for menor do que um limiar pré-definido (e.g., 1e-3).
 - Figura B ⇒ Passo pequeno demais: convergência lenta.
 - Figuras C e D ⇒ Passo grande demais: divergência e oscilação.

Como depurar o algoritmo do GD?

Como configurar o passo de aprendizagem?

Além do *ajuste manual* (escolha de α por tentativa e erro), podemos também usar as seguintes abordagens para configurar α :

- Redução programada: redução do passo de aprendizagem ao longo do processo de treinamento, ou seja, ao longo das iterações.
 - A forma mais simples é diminuir o passo de aprendizagem linearmente de um valor inicial grande até um valor pequeno.
 - Abordagem muito usada com GD estocástico e mini-batch para garantir a convergência para o ponto de mínimo.
- Variação adaptativa: α é adaptativamente ajustado de acordo com a performance do modelo, além disso, pode-se ter passos diferentes para cada peso do modelo e atualizá-los de forma independente.
 - Vantagem: na maioria dos casos, não é necessário se ajustar manualmente nenhum *hiperparâmetro* como no caso dos esquemas de redução programada.

Redução Programada do Passo de Aprendizagem

- Os três tipos mais comuns de implementação da redução programada do passo de aprendizagem são:
 - **Decaimento gradual**: também conhecido como *decaimento por etapas* ou *por degraus*. Ele reduz a taxa de aprendizagem de um fator, τ_0 , a cada número pré-definido de iterações ou épocas, β . Um valor típico para reduzir a taxa de aprendizado é de $\tau_0 = 0.5$ a cada número pré-definido de épocas.
 - **Decaimento exponencial**: é expresso pela equação $\alpha = \alpha_0 e^{-kt}$, onde α_0 e k são hiperparâmetros e t é o número da iteração ou época corrente.
 - **Decaimento temporal**: é expresso pela equação $\alpha = {\alpha_0 \choose (1+kt)}$ onde α_0 e k são hiperparâmetros e t é o número da iteração ou época corrente.
- Na prática, o *decaimento gradual* é o mais utilizado entre os 3, pois seus *hiperparâmetros* (a taxa de decaimento, τ_0 , e o intervalo para redução, β) são mais interpretáveis do que o hiperparâmetro k, que dita a taxa de decaimento do passo de aprendizagem.
- Mas percebam que ainda temos que encontrar os hiperparâmetros.

Exemplo: GDE com Redução Programada de lpha

- Exemplo usando GDE com *decaimento gradual*.
- O caminho com decaimento gradudal também não é regular para o ponto de mínimo.
- Apresenta algumas mudanças de direção ao longo do caminho.
- Porém, a oscilação em torno do mínimo é bastante minimizada devido à diminuição gradual de α .
- O passo inicial com valor grande e que diminui ao longo das iterações, permitindo que o algoritmo se estabilize próximo ao ponto de mínimo global.
- Conseguimos visualizar melhor o efeito da redução de α nas figuras que mostram o gradiente.

Exemplo: stocastic gradient descent with learning schedule and with figures.ipynb

Tarefas

- Quiz: "T319 Quiz Regressão: Parte III" que se encontra no MS Teams.
- Exercício Prático: Laboratório #4.
 - Pode ser baixado do MS Teams ou do GitHub.
 - Pode ser respondido através do link acima (na nuvem) ou localmente.
 - Instruções para resolução e entrega dos laboratórios.
 - Laboratórios podem ser feitos em grupo, mas as entregas devem ser individuais.

Obrigado!

When someone asks why you never stops talking about machine learning

IF IF IF IF IF IF IF WE!

Albert Einstein: Insanity Is Doing the Same Thing Over and Over Again and Expecting Different Results

Machine learning:

FIGURAS

gradiente negativo: $a_1=a_1^{
m inicial}+\alpha \nabla J_e(a_1)$ a_1 aumenta e se aproxima do mínimo

gradiente positivo: $a_1=a_1^{
m inicial}-\alpha \nabla J_e(a_1)$ a_1 diminiu e se aproxima do mínimo

 $J_e(a)$

 $J_e(\boldsymbol{a})$

Gradiente Descendente a₂ Estocástico a₁

