Deep Generative Models

Lecture 4

Roman Isachenko

Moscow Institute of Physics and Technology Yandex School of Data Analysis

2025, Autumn

Latent Variable Models (LVM)

$$p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}, \mathbf{z}) d\mathbf{z} = \int p_{\theta}(\mathbf{x}|\mathbf{z}) p(\mathbf{z}) d\mathbf{z}.$$

MLE Problem for LVM

$$\begin{split} \boldsymbol{\theta}^* &= \arg\max_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\mathbf{X}) = \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^n \log p_{\boldsymbol{\theta}}(\mathbf{x}_i) = \\ &= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^n \log \int p_{\boldsymbol{\theta}}(\mathbf{x}_i | \mathbf{z}_i) p(\mathbf{z}_i) d\mathbf{z}_i. \end{split}$$

Naive Monte Carlo Estimation

$$p_{m{ heta}}(\mathbf{x}) = \int p_{m{ heta}}(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z} = \mathbb{E}_{p(\mathbf{z})}p_{m{ heta}}(\mathbf{x}|\mathbf{z}) pprox rac{1}{K}\sum_{k=1}^K p_{m{ heta}}(\mathbf{x}|\mathbf{z}_k),$$
 where $\mathbf{z}_k \sim p(\mathbf{z})$.

ELBO Derivation 1 (Inequality)

$$\log p_{\boldsymbol{\theta}}(\mathbf{x}) = \log \int p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{z}) d\mathbf{z} \geq \mathbb{E}_q \log \frac{p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})} = \mathcal{L}_{q, \boldsymbol{\theta}}(\mathbf{x})$$

ELBO Derivation 2 (Equality)

$$\mathcal{L}_{q, heta}(\mathbf{x}) = \int q(\mathbf{z}) \log rac{p_{ heta}(\mathbf{x},\mathbf{z})}{q(\mathbf{z})} d\mathbf{z} = \int q(\mathbf{z}) \log rac{p_{ heta}(\mathbf{z}|\mathbf{x})p_{ heta}(\mathbf{x})}{q(\mathbf{z})} d\mathbf{z} = \\ = \log p_{ heta}(\mathbf{x}) - \mathrm{KL}(q(\mathbf{z})||p_{ heta}(\mathbf{z}|\mathbf{x}))$$

Variational Decomposition

$$\log p_{\boldsymbol{\theta}}(\mathbf{x}) = \mathcal{L}_{q,\boldsymbol{\theta}}(\mathbf{x}) + \mathrm{KL}(q(\mathbf{z}) \| p_{\boldsymbol{\theta}}(\mathbf{z} | \mathbf{x})) \geq \mathcal{L}_{q,\boldsymbol{\theta}}(\mathbf{x}).$$

Variational Evidence Lower Bound (ELBO)

$$\log p_{\theta}(\mathbf{x}) = \mathcal{L}_{q,\theta}(\mathbf{x}) + \mathrm{KL}(q(\mathbf{z}) \| p_{\theta}(\mathbf{z} | \mathbf{x})) \geq \mathcal{L}_{q,\theta}(\mathbf{x}).$$

$$\mathcal{L}_{q,\theta}(\mathbf{x}) = \int q(\mathbf{z}) \log \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})} d\mathbf{z} = \mathbb{E}_q \log p_{\theta}(\mathbf{x}|\mathbf{z}) - \mathrm{KL}(q(\mathbf{z})||p(\mathbf{z}))$$

Log-likelihood Decomposition

$$\log p_{\theta}(\mathbf{x}) = \mathbb{E}_q \log p_{\theta}(\mathbf{x}|\mathbf{z}) - \mathrm{KL}(q(\mathbf{z})||p(\mathbf{z})) + \mathrm{KL}(q(\mathbf{z})||p_{\theta}(\mathbf{z}|\mathbf{x})).$$

Rather than maximizing likelihood, maximize the ELBO:

$$\max_{\boldsymbol{\theta}} p_{\boldsymbol{\theta}}(\mathbf{x}) \quad \rightarrow \quad \max_{\boldsymbol{a}.\boldsymbol{\theta}} \mathcal{L}_{q,\boldsymbol{\theta}}(\mathbf{x})$$

Maximizing the ELBO with respect to the variational distribution q is equivalent to minimizing the KL divergence:

$$rg \max_{q} \mathcal{L}_{q, heta}(\mathbf{x}) \equiv rg \min_{q} \mathrm{KL}(q(\mathbf{z}) \| p_{ heta}(\mathbf{z} | \mathbf{x})).$$

$$\begin{split} \mathcal{L}_{q,\theta}(\mathbf{x}) &= \mathbb{E}_q \log p_{\theta}(\mathbf{x}|\mathbf{z}) - \mathrm{KL}(q(\mathbf{z})\|p(\mathbf{z})) = \\ &= \mathbb{E}_q \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) - \log \frac{q(\mathbf{z})}{p(\mathbf{z})} \right] d\mathbf{z} \to \max_{q,\theta}. \end{split}$$

EM Algorithm (Block-Coordinate Optimization)

- ▶ Initialize θ^* ;
- ▶ E-step: $(\mathcal{L}_{q,\theta}(\mathbf{x}) \to \mathsf{max}_q)$

$$egin{aligned} q^*(\mathbf{z}) &= rg \max_q \mathcal{L}_{q, heta^*}(\mathbf{x}) = \ &= rg \min_q \mathrm{KL}(q(\mathbf{z}) \| p_{ heta^*}(\mathbf{z} | \mathbf{x})) = p_{ heta^*}(\mathbf{z} | \mathbf{x}); \end{aligned}$$

▶ M-step: $(\mathcal{L}_{q,\theta}(\mathbf{x}) \to \mathsf{max}_{\theta})$

$$\theta^* = \arg\max_{\boldsymbol{\theta}} \mathcal{L}_{q^*,\boldsymbol{\theta}}(\mathbf{x});$$

Repeat E-step and M-step until convergence.

EM-Algorithm

► E-Step:

$$q^*(\mathbf{z}) = \argmax_{q} \mathcal{L}_{q,\theta^*}(\mathbf{x}) = \arg\min_{q} \mathrm{KL}(q(\mathbf{z}) \| p_{\theta^*}(\mathbf{z} | \mathbf{x}));$$

► M-Step:

$$\theta^* = \arg\max_{\boldsymbol{\theta}} \mathcal{L}_{q^*,\boldsymbol{\theta}}(\mathbf{x});$$

Amortized Variational Inference

Restrict the family of possible distributions $q(\mathbf{z})$ to a parameterized class $q_{\phi}(\mathbf{z}|\mathbf{x})$, conditioned on samples \mathbf{x} and defined by ϕ .

Variational Bayes

► E-Step:

$$\phi_k = \phi_{k-1} + \eta \cdot
abla_{\phi} \mathcal{L}_{\phi, heta_{k-1}}(\mathbf{x}) ig|_{\phi = \phi_{k-1}}$$

► M-Step:

$$oldsymbol{ heta}_k = oldsymbol{ heta}_{k-1} + \eta \cdot
abla_{oldsymbol{ heta}} \mathcal{L}_{oldsymbol{\phi}_k,oldsymbol{ heta}}(\mathbf{x})ig|_{oldsymbol{ heta} = oldsymbol{ heta}_{k-1}}$$

Outline

1. ELBO Gradients, Reparametrization Trick

2. Variational Autoencoder (VAE)

3. Discrete VAE Latent Representations

Outline

1. ELBO Gradients, Reparametrization Trick

2. Variational Autoencoder (VAE)

3. Discrete VAE Latent Representations

$$\mathcal{L}_{q,\theta}(\mathbf{x}) = \mathbb{E}_q \log p_{\theta}(\mathbf{x}|\mathbf{z}) - \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))$$

$$\mathcal{L}_{q, heta}(\mathbf{x}) = \mathbb{E}_q \log p_{ heta}(\mathbf{x}|\mathbf{z}) - \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))$$

M-step:
$$\nabla_{\theta} \mathcal{L}_{\phi,\theta}(\mathbf{x})$$

$$abla_{m{ heta}} \mathcal{L}_{m{\phi},m{ heta}}(\mathbf{x}) = \mathbf{\nabla}_{m{ heta}} \int q_{m{\phi}}(\mathbf{z}|\mathbf{x}) \log p_{m{ heta}}(\mathbf{x}|\mathbf{z}) d\mathbf{z}$$

$$\mathcal{L}_{q, heta}(\mathbf{x}) = \mathbb{E}_q \log p_{ heta}(\mathbf{x}|\mathbf{z}) - \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))$$

M-step:
$$\nabla_{\theta} \mathcal{L}_{\phi,\theta}(\mathbf{x})$$

$$egin{aligned}
abla_{m{ heta}} \mathcal{L}_{m{\phi},m{ heta}}(\mathbf{x}) &= ar{f V}_{m{ heta}} \int q_{m{\phi}}(\mathbf{z}|\mathbf{x}) \log p_{m{ heta}}(\mathbf{x}|\mathbf{z}) d\mathbf{z} \ &= \int q_{m{\phi}}(\mathbf{z}|\mathbf{x}) ar{f V}_{m{ heta}} \log p_{m{ heta}}(\mathbf{x}|\mathbf{z}) d\mathbf{z} \end{aligned}$$

$$\mathcal{L}_{q, heta}(\mathbf{x}) = \mathbb{E}_q \log p_{ heta}(\mathbf{x}|\mathbf{z}) - \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))$$

M-step: $\nabla_{\theta} \mathcal{L}_{\phi,\theta}(\mathbf{x})$

$$egin{aligned}
abla_{m{ heta}} \mathcal{L}_{m{\phi},m{ heta}}(\mathbf{x}) &= ar{f V}_{m{ heta}} \int q_{m{\phi}}(\mathbf{z}|\mathbf{x}) \log p_{m{ heta}}(\mathbf{x}|\mathbf{z}) d\mathbf{z} \ &= \int q_{m{\phi}}(\mathbf{z}|\mathbf{x}) ar{f V}_{m{ heta}} \log p_{m{ heta}}(\mathbf{x}|\mathbf{z}) d\mathbf{z} \ &pprox
abla_{m{ heta}} \log p_{m{ heta}}(\mathbf{x}|\mathbf{z}^*), \quad \mathbf{z}^* \sim q_{m{\phi}}(\mathbf{z}|\mathbf{x}). \end{aligned}$$

$$\mathcal{L}_{q, heta}(\mathbf{x}) = \mathbb{E}_q \log p_{ heta}(\mathbf{x}|\mathbf{z}) - \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))$$

M-step: $\nabla_{\theta} \mathcal{L}_{\phi,\theta}(\mathbf{x})$

$$egin{aligned}
abla_{m{ heta}} \mathcal{L}_{m{\phi},m{ heta}}(\mathbf{x}) &=
abla_{m{ heta}} \int q_{m{\phi}}(\mathbf{z}|\mathbf{x}) \log p_{m{ heta}}(\mathbf{x}|\mathbf{z}) d\mathbf{z} \ &= \int q_{m{\phi}}(\mathbf{z}|\mathbf{x})
abla_{m{ heta}} \log p_{m{ heta}}(\mathbf{x}|\mathbf{z}) d\mathbf{z} \ &pprox
abla_{m{ heta}} \log p_{m{ heta}}(\mathbf{x}|\mathbf{z}^*), \quad \mathbf{z}^* \sim q_{m{\phi}}(\mathbf{z}|\mathbf{x}). \end{aligned}$$

Naive Monte Carlo Estimation

$$p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z} \approx \frac{1}{K} \sum_{k=1}^{K} p_{\theta}(\mathbf{x}|\mathbf{z}_k), \quad \mathbf{z}_k \sim p(\mathbf{z}).$$

$$\mathcal{L}_{q, heta}(\mathbf{x}) = \mathbb{E}_q \log p_{ heta}(\mathbf{x}|\mathbf{z}) - \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))$$

M-step: $\nabla_{\theta} \mathcal{L}_{\phi,\theta}(\mathbf{x})$

$$egin{aligned}
abla_{m{ heta}} \mathcal{L}_{m{\phi},m{ heta}}(\mathbf{x}) &=
abla_{m{ heta}} \int q_{m{\phi}}(\mathbf{z}|\mathbf{x}) \log p_{m{ heta}}(\mathbf{x}|\mathbf{z}) d\mathbf{z} \ &= \int q_{m{\phi}}(\mathbf{z}|\mathbf{x})
abla_{m{ heta}} \log p_{m{ heta}}(\mathbf{x}|\mathbf{z}) d\mathbf{z} \ &pprox
abla_{m{ heta}} \log p_{m{ heta}}(\mathbf{x}|\mathbf{z}^*), \quad \mathbf{z}^* \sim q_{m{\phi}}(\mathbf{z}|\mathbf{x}). \end{aligned}$$

Naive Monte Carlo Estimation

$$p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z} \approx \frac{1}{K} \sum_{k=1}^{K} p_{\theta}(\mathbf{x}|\mathbf{z}_k), \quad \mathbf{z}_k \sim p(\mathbf{z}).$$

The variational posterior $q_{\phi}(\mathbf{z}|\mathbf{x})$ typically concentrates more probability mass in a much smaller region than the prior $p(\mathbf{z})$.

E-step:
$$\nabla_{\phi} \mathcal{L}_{\phi,\theta}(\mathbf{x})$$

Unlike the M-step, the density $q_{\phi}(\mathbf{z}|\mathbf{x})$ now depends on ϕ , so standard Monte Carlo estimation can't be applied:

$$abla_{\phi} \mathcal{L}_{\phi, heta}(\mathbf{x}) =
abla_{\phi} \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log p_{ heta}(\mathbf{x}|\mathbf{z}) d\mathbf{z} -
abla_{\phi} \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))$$

E-step:
$$\nabla_{\phi} \mathcal{L}_{\phi,\theta}(\mathbf{x})$$

Unlike the M-step, the density $q_{\phi}(\mathbf{z}|\mathbf{x})$ now depends on ϕ , so standard Monte Carlo estimation can't be applied:

$$\nabla_{\phi} \mathcal{L}_{\phi,\theta}(\mathbf{x}) = \nabla_{\phi} \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log p_{\theta}(\mathbf{x}|\mathbf{z}) d\mathbf{z} - \nabla_{\phi} \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))$$

$$\neq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \nabla_{\phi} \log p_{\theta}(\mathbf{x}|\mathbf{z}) d\mathbf{z} - \nabla_{\phi} \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))$$

E-step:
$$\nabla_{\phi} \mathcal{L}_{\phi,\theta}(\mathbf{x})$$

Unlike the M-step, the density $q_{\phi}(\mathbf{z}|\mathbf{x})$ now depends on ϕ , so standard Monte Carlo estimation can't be applied:

$$\nabla_{\phi} \mathcal{L}_{\phi,\theta}(\mathbf{x}) = \nabla_{\phi} \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log p_{\theta}(\mathbf{x}|\mathbf{z}) d\mathbf{z} - \nabla_{\phi} \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))$$

$$\neq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \nabla_{\phi} \log p_{\theta}(\mathbf{x}|\mathbf{z}) d\mathbf{z} - \nabla_{\phi} \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))$$

Reparametrization Trick (LOTUS Trick)

Assume $\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})$ is generated by a random variable $\epsilon \sim p(\epsilon)$ via a deterministic mapping $\mathbf{z} = \mathbf{g}_{\phi}(\mathbf{x}, \epsilon)$. Then,

$$\mathbb{E}_{\mathsf{z} \sim q_{\phi}(\mathsf{z}|\mathsf{x})} \mathsf{f}(\mathsf{z}) = \mathbb{E}_{\epsilon \sim p(\epsilon)} \mathsf{f}(\mathsf{g}_{\phi}(\mathsf{x},\epsilon))$$

E-step:
$$\nabla_{\phi} \mathcal{L}_{\phi,\theta}(\mathbf{x})$$

Unlike the M-step, the density $q_{\phi}(\mathbf{z}|\mathbf{x})$ now depends on ϕ , so standard Monte Carlo estimation can't be applied:

$$\nabla_{\phi} \mathcal{L}_{\phi,\theta}(\mathbf{x}) = \nabla_{\phi} \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log p_{\theta}(\mathbf{x}|\mathbf{z}) d\mathbf{z} - \nabla_{\phi} \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))$$

$$\neq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \nabla_{\phi} \log p_{\theta}(\mathbf{x}|\mathbf{z}) d\mathbf{z} - \nabla_{\phi} \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))$$

Reparametrization Trick (LOTUS Trick)

Assume $\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})$ is generated by a random variable $\epsilon \sim p(\epsilon)$ via a deterministic mapping $\mathbf{z} = \mathbf{g}_{\phi}(\mathbf{x}, \epsilon)$. Then,

$$\mathbb{E}_{\mathsf{z} \sim q_{\phi}(\mathsf{z}|\mathsf{x})} \mathsf{f}(\mathsf{z}) = \mathbb{E}_{\epsilon \sim p(\epsilon)} \mathsf{f}(\mathsf{g}_{\phi}(\mathsf{x},\epsilon))$$

Note: The LHS expectation is with respect to the parametric distribution $q_{\phi}(\mathbf{z}|\mathbf{x})$, while the RHS is for the non-parametric $p(\epsilon)$.

Reparametrization Trick (LOTUS Trick)

$$\nabla_{\phi} \int q_{\phi}(\mathbf{z}|\mathbf{x}) \mathbf{f}(\mathbf{z}) d\mathbf{z} = \nabla_{\phi} \int p(\epsilon) \mathbf{f}(\mathbf{g}_{\phi}(\mathbf{x}, \epsilon)) d\epsilon$$

,

Reparametrization Trick (LOTUS Trick)

$$\nabla_{\phi} \int q_{\phi}(\mathbf{z}|\mathbf{x}) \mathbf{f}(\mathbf{z}) d\mathbf{z} = \nabla_{\phi} \int p(\epsilon) \mathbf{f}(\mathbf{g}_{\phi}(\mathbf{x}, \epsilon)) d\epsilon =$$

$$= \int p(\epsilon) \nabla_{\phi} \mathbf{f}(\mathbf{g}_{\phi}(\mathbf{x}, \epsilon)) d\epsilon \approx \nabla_{\phi} \mathbf{f}(\mathbf{g}_{\phi}(\mathbf{x}, \epsilon^{*})),$$

where $\epsilon^* \sim p(\epsilon)$.

Reparametrization Trick (LOTUS Trick)

$$egin{aligned}
abla_{\phi} \int q_{\phi}(\mathbf{z}|\mathbf{x})\mathbf{f}(\mathbf{z})d\mathbf{z} &=
abla_{\phi} \int p(\epsilon)\mathbf{f}(\mathbf{g}_{\phi}(\mathbf{x},\epsilon))d\epsilon = \\ &= \int p(\epsilon)
abla_{\phi}\mathbf{f}(\mathbf{g}_{\phi}(\mathbf{x},\epsilon))d\epsilon pprox
abla_{\phi}\mathbf{f}(\mathbf{g}_{\phi}(\mathbf{x},\epsilon)), \end{aligned}$$

where $\epsilon^* \sim p(\epsilon)$.

Variational Assumption

$$p(\epsilon) = \mathcal{N}(0, \mathbf{I}); \quad \mathbf{z} = \mathbf{g}_{\phi}(\mathbf{x}, \epsilon) = \boldsymbol{\sigma}_{\phi}(\mathbf{x}) \odot \epsilon + \mu_{\phi}(\mathbf{x});$$

$$q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mu_{\phi}(\mathbf{x}), \boldsymbol{\sigma}_{\phi}^{2}(\mathbf{x})).$$

Here, $\mu_{\phi}(\cdot)$ and $\sigma_{\phi}(\cdot)$ are parameterized functions (outputs of a neural network).

Thus, we can write $q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathsf{NN}_{e}(\mathbf{x}, \phi)$, the **encoder**.

$$\nabla_{\phi} \mathcal{L}_{\phi, \theta}(\mathbf{x}) = \nabla_{\phi} \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log p_{\theta}(\mathbf{x}|\mathbf{z}) d\mathbf{z} - \nabla_{\phi} \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))$$

$$\nabla_{\phi} \mathcal{L}_{\phi, \theta}(\mathbf{x}) = \nabla_{\phi} \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log p_{\theta}(\mathbf{x}|\mathbf{z}) d\mathbf{z} - \nabla_{\phi} \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))$$

Reconstruction Term

$$\begin{split} \nabla_{\phi} \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log p_{\theta}(\mathbf{x}|\mathbf{z}) d\mathbf{z} &= \int p(\epsilon) \nabla_{\phi} \log p_{\theta}(\mathbf{x}|\mathbf{g}_{\phi}(\mathbf{x},\epsilon)) d\epsilon \approx \\ &\approx \nabla_{\phi} \log p_{\theta} \left(\mathbf{x}|\boldsymbol{\sigma}_{\phi}(\mathbf{x}) \odot \epsilon^* + \boldsymbol{\mu}_{\phi}(\mathbf{x}) \right), \quad \text{where } \epsilon^* \sim \mathcal{N}(0,\mathbf{I}) \end{split}$$

$$\nabla_{\phi} \mathcal{L}_{\phi, \theta}(\mathbf{x}) = \nabla_{\phi} \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log p_{\theta}(\mathbf{x}|\mathbf{z}) d\mathbf{z} - \nabla_{\phi} \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))$$

Reconstruction Term

$$\begin{split} &\nabla_{\phi} \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log p_{\theta}(\mathbf{x}|\mathbf{z}) d\mathbf{z} = \int p(\epsilon) \nabla_{\phi} \log p_{\theta}(\mathbf{x}|\mathbf{g}_{\phi}(\mathbf{x},\epsilon)) d\epsilon \approx \\ &\approx \nabla_{\phi} \log p_{\theta} \left(\mathbf{x}|\sigma_{\phi}(\mathbf{x}) \odot \epsilon^* + \boldsymbol{\mu}_{\phi}(\mathbf{x})\right), \quad \text{where } \epsilon^* \sim \mathcal{N}(0,\mathbf{I}) \end{split}$$

The generative distribution $p_{\theta}(\mathbf{x}|\mathbf{z})$ can be implemented as a neural network.

We may write $p_{\theta}(\mathbf{x}|\mathbf{z}) = NN_d(\mathbf{z}, \theta)$, called the **decoder**.

KL Term

 $p(\mathbf{z})$ is the prior over latents \mathbf{z} , typically $p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I})$.

$$\nabla_{\phi} \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z})) = \nabla_{\phi} \mathrm{KL}\left(\mathcal{N}(\boldsymbol{\mu}_{\phi}(\mathbf{x}), \boldsymbol{\sigma}_{\phi}^{2}(\mathbf{x})) \| \mathcal{N}(0, \mathbf{I})\right)$$

$$\nabla_{\phi} \mathcal{L}_{\phi, \theta}(\mathbf{x}) = \nabla_{\phi} \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log p_{\theta}(\mathbf{x}|\mathbf{z}) d\mathbf{z} - \nabla_{\phi} \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))$$

Reconstruction Term

$$\begin{split} &\nabla_{\phi} \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log p_{\theta}(\mathbf{x}|\mathbf{z}) d\mathbf{z} = \int p(\epsilon) \nabla_{\phi} \log p_{\theta}(\mathbf{x}|\mathbf{g}_{\phi}(\mathbf{x},\epsilon)) d\epsilon \approx \\ &\approx \nabla_{\phi} \log p_{\theta} \left(\mathbf{x}|\boldsymbol{\sigma}_{\phi}(\mathbf{x}) \odot \epsilon^* + \boldsymbol{\mu}_{\phi}(\mathbf{x})\right), \quad \text{where } \epsilon^* \sim \mathcal{N}(0,\mathbf{I}) \end{split}$$

The generative distribution $p_{\theta}(\mathbf{x}|\mathbf{z})$ can be implemented as a neural network.

We may write $p_{\theta}(\mathbf{x}|\mathbf{z}) = NN_d(\mathbf{z}, \theta)$, called the **decoder**.

KL Term

 $p(\mathbf{z})$ is the prior over latents \mathbf{z} , typically $p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I})$.

$$\nabla_{\phi} \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z})) = \nabla_{\phi} \mathrm{KL}\left(\mathcal{N}(\boldsymbol{\mu}_{\phi}(\mathbf{x}), \boldsymbol{\sigma}_{\phi}^{2}(\mathbf{x})) \| \mathcal{N}(\mathbf{0}, \mathbf{I})\right)$$

This expression admits a closed-form analytic solution.

Outline

1. ELBO Gradients, Reparametrization Trick

2. Variational Autoencoder (VAE)

3. Discrete VAE Latent Representations

Generative Models Zoo

Training (EM Algorithm)

▶ Select a random sample \mathbf{x}_i , $i \sim \text{Uniform}\{1, n\}$ (or a batch).

Training (EM Algorithm)

- ▶ Select a random sample \mathbf{x}_i , $i \sim \text{Uniform}\{1, n\}$ (or a batch).
- Compute the objective (apply the reparametrization trick):

$$oldsymbol{\epsilon}^* \sim p(oldsymbol{\epsilon}); \quad \mathbf{z}^* = \mathbf{g}_{oldsymbol{\phi}}(\mathbf{x}, oldsymbol{\epsilon}^*);$$

$$\mathcal{L}_{\phi, heta}(\mathbf{x}) pprox \log p_{ heta}(\mathbf{x}|\mathbf{z}^*) - \mathrm{KL}(q_{\phi}(\mathbf{z}^*|\mathbf{x}) \| p(\mathbf{z}^*)).$$

Training (EM Algorithm)

- ▶ Select a random sample \mathbf{x}_i , $i \sim \text{Uniform}\{1, n\}$ (or a batch).
- Compute the objective (apply the reparametrization trick):

$$egin{aligned} oldsymbol{\epsilon}^* &\sim p(oldsymbol{\epsilon}); & \mathbf{z}^* = \mathbf{g}_{oldsymbol{\phi}}(\mathbf{x}, oldsymbol{\epsilon}^*); \ & \mathcal{L}_{oldsymbol{\phi}, oldsymbol{ heta}}(\mathbf{x}) pprox \log p_{oldsymbol{ heta}}(\mathbf{x}|\mathbf{z}^*) - \mathrm{KL}(q_{oldsymbol{\phi}}(\mathbf{z}^*|\mathbf{x}) \| p(\mathbf{z}^*)). \end{aligned}$$

▶ Update parameters via stochastic gradient steps with respect to ϕ and θ (as in autograd).

Training (EM Algorithm)

- ▶ Select a random sample \mathbf{x}_i , $i \sim \text{Uniform}\{1, n\}$ (or a batch).
- Compute the objective (apply the reparametrization trick):

$$egin{aligned} m{\epsilon}^* &\sim p(m{\epsilon}); \quad \mathbf{z}^* = \mathbf{g}_{m{\phi}}(\mathbf{x}, m{\epsilon}^*); \ & \mathcal{L}_{m{\phi}, m{ heta}}(\mathbf{x}) pprox \log p_{m{ heta}}(\mathbf{x}|\mathbf{z}^*) - \mathrm{KL}(q_{m{\phi}}(\mathbf{z}^*|\mathbf{x}) \| p(\mathbf{z}^*)). \end{aligned}$$

▶ Update parameters via stochastic gradient steps with respect to ϕ and θ (as in autograd).

Inference

▶ Sample \mathbf{z}^* from the prior $p(\mathbf{z})$ ($\mathcal{N}(0, \mathbf{I})$);

Training (EM Algorithm)

- ▶ Select a random sample \mathbf{x}_i , $i \sim \mathsf{Uniform}\{1, n\}$ (or a batch).
- Compute the objective (apply the reparametrization trick):

$$\epsilon^* \sim p(\epsilon); \quad \mathbf{z}^* = \mathbf{g}_{\phi}(\mathbf{x}, \epsilon^*);$$

$$\mathcal{L}_{\phi, oldsymbol{ heta}}(\mathbf{x}) pprox \log p_{oldsymbol{ heta}}(\mathbf{x}|\mathbf{z}^*) - \mathrm{KL}(q_{\phi}(\mathbf{z}^*|\mathbf{x}) \| p(\mathbf{z}^*)).$$

▶ Update parameters via stochastic gradient steps with respect to ϕ and θ (as in autograd).

Inference

- ► Sample \mathbf{z}^* from the prior $p(\mathbf{z})$ ($\mathcal{N}(0, \mathbf{I})$);
- ▶ Generate data from the decoder $p_{\theta}(\mathbf{x}|\mathbf{z}^*)$.

Training (EM Algorithm)

- ▶ Select a random sample \mathbf{x}_i , $i \sim \mathsf{Uniform}\{1, n\}$ (or a batch).
- Compute the objective (apply the reparametrization trick):

$$oldsymbol{\epsilon}^* \sim p(oldsymbol{\epsilon}); \quad \mathbf{z}^* = \mathbf{g}_{oldsymbol{\phi}}(\mathbf{x}, oldsymbol{\epsilon}^*);$$

$$\mathcal{L}_{\phi, heta}(\mathbf{x}) pprox \log p_{ heta}(\mathbf{x}|\mathbf{z}^*) - \mathrm{KL}(q_{\phi}(\mathbf{z}^*|\mathbf{x}) \| p(\mathbf{z}^*)).$$

▶ Update parameters via stochastic gradient steps with respect to ϕ and θ (as in autograd).

Inference

- ▶ Sample \mathbf{z}^* from the prior $p(\mathbf{z})$ ($\mathcal{N}(0, \mathbf{I})$);
- ▶ Generate data from the decoder $p_{\theta}(\mathbf{x}|\mathbf{z}^*)$.

Note: The encoder $q_{\phi}(\mathbf{z}|\mathbf{x})$ isn't needed during generation.

Variational Autoencoder

$$\mathcal{L}_{q, \theta}(\mathsf{x}) = \mathbb{E}_q \log p_{\theta}(\mathsf{x}|\mathsf{z}) - \mathrm{KL}(q_{\phi}(\mathsf{z}|\mathsf{x}) \| p(\mathsf{z}))$$

Variational Autoencoder

- ▶ The encoder $q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathsf{NN}_{e}(\mathbf{x}, \phi)$ outputs $\mu_{\phi}(\mathbf{x})$ and $\sigma_{\phi}(\mathbf{x})$.
- ▶ The decoder $p_{\theta}(\mathbf{x}|\mathbf{z}) = \mathsf{NN}_d(\mathbf{z}, \theta)$ outputs parameters of the observed data distribution.

VAE vs Normalizing Flows

	VAE	NF
Objective	ELBO $\mathcal L$	Forward KL/MLE
Encoder	stochastic $\mathbf{z} \sim q_{oldsymbol{\phi}}(\mathbf{z} \mathbf{x})$	
Decoder	$\begin{aligned} &stochastic \\ &x \sim p_{\theta}(x z) \end{aligned}$	$\begin{aligned} deterministic \\ \mathbf{x} &= \mathbf{g}_{\boldsymbol{\theta}}(\mathbf{z}) \\ p_{\boldsymbol{\theta}}(\mathbf{x} \mathbf{z}) &= \delta(\mathbf{x} - \mathbf{g}_{\boldsymbol{\theta}}(\mathbf{z})) \end{aligned}$
Parameters	$\phi, oldsymbol{ heta}$	$ heta \equiv \phi$

VAE vs Normalizing Flows

	VAE	NF
Objective	ELBO $\mathcal L$	Forward KL/MLE
		deterministic
	stochastic	$z = f_{oldsymbol{ heta}}(x)$
Encoder	$ extsf{z} \sim q_{\phi}(extsf{z} extsf{x})$	$q_{\theta}(\mathbf{z} \mathbf{x}) = \delta(\mathbf{z} - \mathbf{f}_{\theta}(\mathbf{x}))$
		deterministic
	stochastic	$x = g_{m{ heta}}(z)$
Decoder	$\mathbf{x} \sim p_{m{ heta}}(\mathbf{x} \mathbf{z})$	$p_{m{ heta}}(\mathbf{x} \mathbf{z}) = \delta(\mathbf{x} - \mathbf{g}_{m{ heta}}(\mathbf{z}))$
Parameters	$oldsymbol{\phi},oldsymbol{ heta}$	$ heta \equiv \phi$

Theorem

MLE for a normalizing flow is equivalent to maximizing the ELBO for a VAE where:

$$p_{\theta}(\mathbf{x}|\mathbf{z}) = \delta(\mathbf{x} - \mathbf{f}_{\theta}^{-1}(\mathbf{z})) = \delta(\mathbf{x} - \mathbf{g}_{\theta}(\mathbf{z}));$$

$$q_{\theta}(\mathbf{z}|\mathbf{x}) = \delta(\mathbf{z} - \mathbf{f}_{\theta}(\mathbf{x})).$$

Nielsen D., et al., SurVAE Flows: Surjections to Bridge the Gap Between VAEs and Flows. 2020

Outline

1. ELBO Gradients, Reparametrization Trick

2. Variational Autoencoder (VAE)

3. Discrete VAE Latent Representations

Motivation

- Previous VAE models have used continuous latent variables z.
- ► For some modalities, **discrete** representations **z** may be a more natural choice.
- Advanced autoregressive models (e.g., PixelCNN) are highly effective for distributions over discrete variables.
- Current transformer-like models process discrete tokens.

Motivation

- Previous VAE models have used continuous latent variables z.
- For some modalities, discrete representations z may be a more natural choice.
- Advanced autoregressive models (e.g., PixelCNN) are highly effective for distributions over discrete variables.
- Current transformer-like models process discrete tokens.

$$\mathcal{L}_{\phi, heta}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \log p_{ heta}(\mathbf{x}|\mathbf{z}) - \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))
ightarrow \max_{\phi, heta}.$$

Motivation

- ▶ Previous VAE models have used **continuous** latent variables **z**.
- For some modalities, discrete representations z may be a more natural choice.
- Advanced autoregressive models (e.g., PixelCNN) are highly effective for distributions over discrete variables.
- Current transformer-like models process discrete tokens.

$$\mathcal{L}_{\phi, heta}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \log p_{ heta}(\mathbf{x}|\mathbf{z}) - \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))
ightarrow \max_{\phi, heta}.$$

- Apply the reparametrization trick to obtain unbiased gradients.
- Use Gaussian distributions for $q_{\phi}(\mathbf{z}|\mathbf{x})$ and $p(\mathbf{z})$ to compute the KL analytically.

Assumptions

▶ Let $c \sim \text{Categorical}(\pi)$, where

$$\pi = (\pi_1, \ldots, \pi_K), \quad \pi_k = P(c = k), \quad \sum_{k=1}^K \pi_k = 1.$$

Suppose the VAE adopts a discrete latent variable c with prior $p(c) = \text{Uniform}\{1, \dots, K\}$.

Assumptions

▶ Let $c \sim \text{Categorical}(\pi)$, where

$$\pi = (\pi_1, \dots, \pi_K), \quad \pi_k = P(c = k), \quad \sum_{k=1}^K \pi_k = 1.$$

▶ Suppose the VAE adopts a discrete latent variable c with prior $p(c) = \text{Uniform}\{1, ..., K\}$.

$$\mathcal{L}_{\phi,\theta}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(c|\mathbf{x})} \log p_{\theta}(\mathbf{x}|c) - \underbrace{\mathrm{KL}(q_{\phi}(c|\mathbf{x})\|p(c))}_{\phi,\theta} \rightarrow \max_{\phi,\theta}.$$

$$\frac{\mathrm{KL}(q_{\phi}(c|\mathbf{x})\|p(c))}{\mathrm{p}(k)} = \sum_{k=1}^{K} q_{\phi}(k|\mathbf{x}) \log \frac{q_{\phi}(k|\mathbf{x})}{p(k)}$$

Assumptions

▶ Let $c \sim \text{Categorical}(\pi)$, where

$$\pi = (\pi_1, \dots, \pi_K), \quad \pi_k = P(c = k), \quad \sum_{k=1}^K \pi_k = 1.$$

▶ Suppose the VAE adopts a discrete latent variable c with prior $p(c) = \text{Uniform}\{1, ..., K\}$.

$$\mathcal{L}_{\phi,\theta}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(c|\mathbf{x})} \log p_{\theta}(\mathbf{x}|c) - \underbrace{\mathrm{KL}(q_{\phi}(c|\mathbf{x}) \| p(c))}_{\phi,\theta} \rightarrow \max_{\phi,\theta}.$$

$$\frac{\mathrm{KL}(q_{\phi}(c|\mathbf{x})||p(c))}{\mathrm{E}(c)} = \sum_{k=1}^{K} q_{\phi}(k|\mathbf{x}) \log \frac{q_{\phi}(k|\mathbf{x})}{p(k)} =$$
$$= \sum_{k=1}^{K} q_{\phi}(k|\mathbf{x}) \log q_{\phi}(k|\mathbf{x}) - \sum_{k=1}^{K} q_{\phi}(k|\mathbf{x}) \log p(k)$$

Assumptions

▶ Let $c \sim \text{Categorical}(\pi)$, where

$$\pi = (\pi_1, \ldots, \pi_K), \quad \pi_k = P(c = k), \quad \sum_{k=1}^K \pi_k = 1.$$

Suppose the VAE adopts a discrete latent variable c with prior $p(c) = \text{Uniform}\{1, \dots, K\}$.

$$\mathcal{L}_{\phi, \theta}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(c|\mathbf{x})} \log p_{\theta}(\mathbf{x}|c) - \underbrace{\mathrm{KL}(q_{\phi}(c|\mathbf{x}) \| p(c))}_{\phi, \theta} o \max_{\phi, \theta}.$$

$$\begin{split} \operatorname{KL}(q_{\phi}(c|\mathbf{x}) \| p(c)) &= \sum_{k=1}^{K} q_{\phi}(k|\mathbf{x}) \log \frac{q_{\phi}(k|\mathbf{x})}{p(k)} = \\ &= \sum_{k=1}^{K} q_{\phi}(k|\mathbf{x}) \log q_{\phi}(k|\mathbf{x}) - \sum_{k=1}^{K} q_{\phi}(k|\mathbf{x}) \log p(k) = \\ &= -\operatorname{H}(q_{\phi}(c|\mathbf{x})) + \log K. \end{split}$$

$$\mathcal{L}_{\phi, heta}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(c|\mathbf{x})} \log p_{ heta}(\mathbf{x}|c) + \mathrm{H}(q_{\phi}(c|\mathbf{x})) - \log K o \max_{\phi, heta}.$$

$$\mathcal{L}_{\phi, heta}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(c|\mathbf{x})} \log p_{ heta}(\mathbf{x}|c) + \mathrm{H}(q_{\phi}(c|\mathbf{x})) - \log K o \max_{\phi, heta}.$$

- ightharpoonup The encoder should output a discrete distribution $q_{\phi}(c|\mathbf{x})$.
- We need an analogue of the reparametrization trick for discrete $q_{\phi}(c|\mathbf{x})$.
- The decoder $p_{\theta}(\mathbf{x}|c)$ must take a discrete random variable c as input.

Chan S., Tutorial on Diffusion Models for Imaging and Vision, 2024

Summary

- ► The reparametrization trick provides unbiased gradients with respect to the variational posterior $q_{\phi}(\mathbf{z}|\mathbf{x})$.
- ► The VAE model is a latent variable model parameterized by two neural networks: a stochastic encoder $q_{\phi}(\mathbf{z}|\mathbf{x})$ and a stochastic decoder $p_{\theta}(\mathbf{x}|\mathbf{z})$.
- ▶ NF models can be interpreted as VAEs with deterministic encoder and decoder functions.
- Discrete VAE latents offer a natural class of latent variable models.