

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	21/01/2012	18:30

0750570021001012000000 75.570 21 01 12 EX

Espacio para la etiqueta identificativa con el código personal del **estudiante**.

Examen

Ficha técnica del examen

- Comprueba que el código y el nombre de la asignatura corresponden a la asignatura de la cual estás matriculado.
- Debes pegar una sola etiqueta de estudiante en el espacio de esta hoja destinado a ello.
- No se puede añadir hojas adicionales.
- No se puede realizar las pruebas a lápiz o rotulador.
- Tiempo total 2 horas
- En el caso de que los estudiantes puedan consultar algún material durante el examen, ¿cuál o cuáles pueden consultar?: No se puede consultar ningún material.
- Valor de cada pregunta: Problema 1: 30%; problema 2: 25%; problema 3: 25%; problema 4: 10%; problema 5: 10%
- En el caso de que haya preguntas tipo test: ¿descuentan las respuestas erróneas? NO ¿Cuánto?
- Indicaciones específicas para la realización de este examen

Enunciados

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	21/01/2012	18:30

Problema 1

a) Formalizad en el lenguaje de enunciados. Utilizad los átomos propuestos.

G: Los guepardos huyen

T: Los tigres se asustan (= los tigres son asustados)

R: Se ven rinocerontes

E: Los elefantes se acercan

1) Cuando los guepardos huyen es necesario no asustar a los tigres para poder ver rinocerontes $G \rightarrow (R \rightarrow \neg T)$

2) Si ni se ven rinocerontes ni los elefantes se acercan, los tigres se asustan o los guepardos huyen pero no ambas cosas simultáneamente.

$$\neg R^{\wedge} \neg E \rightarrow (T^{\vee}G)^{\wedge} \neg (T^{\wedge}G)$$

3) Si para ver rinocerontes se tiene que asustar a los tigres, los guepardos huyen cuando los elefantes se acercan.

$$(R{\rightarrow}T) \rightarrow (E{\rightarrow}G)$$

b) Formalizad en el lenguaje de la lógica de predicados. Utilizad predicados los indicados.

Dominio: un conjunto no vacío

L(x): x es un hombre lobo P(x): x es una persona

M(x): x se muere

B(x): x es una bala de plata D(x,y,z): x dispara y a z

I(x): x es inocente

S(x): x sale a la calle cuando hay luna llena

1) Los hombres lobo solo se mueren si alguna persona les dispara una bala de plata $\forall x \{L(x)^{\wedge}M(x) \rightarrow \exists y \exists z [P(y)^{\wedge}B(z)^{\wedge}D(y,z,x)]\}$

2) No todas las personas que salen a la calle cuando hay luna llena son hombres lobo, pero alguna sí. $\neg \forall x [P(x)^{\hat{}}S(x) \rightarrow L(x)] \land \exists x [P(x)^{\hat{}}S(x)^{\hat{}}L(x)]$

3) Algunos hombres lobo disparan balas de plata a personas inocentes.

 $\exists x \{L(x)^{\dagger} \exists y \exists z [P(y)^{\dagger} I(y)^{\dagger} B(z)^{\dagger} D(x,z,y)]\}$

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	21/01/2012	18:30

Problema 2

Demostrad, usando la deducción natural, que el siguiente razonamiento es correcto. Utilizad solo las 9 reglas básicas (es decir, no utilicéis ni reglas derivadas ni equivalentes deductivos)

$$Q \!\!\to R \ ^{\wedge} T, \quad S \to (\neg T \to \neg P), \quad P \ \therefore \ Q^{\vee} S \to T$$

Solución

(1)	$Q \rightarrow R \wedge T$				P
(2)	$Q \to R ^T$ $S \to (\neg T \to \neg P)$				P
(2)	P				P
(4)		Q ^v S			Н
(5)			Q		Н
(6)			R ^ T		E→ 1, 5
(7)			T		E ^ 6
(8)			S		H
(9)				$\neg T$	Н
(10)				$\neg T \to \neg P$	$E \rightarrow 2,8$ $E \rightarrow 9, 10$
(11)				¬P	$E \rightarrow 9, 10$
(12)				P	It 3
(13)			¬¬Т		I
					¬ 9, 11, 12
(14)			T		E¬ 13
(15)		T			E 4, 7, 14
(16)	$Q \circ S \to T$				I → 4, 15

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	21/01/2012	18:30

Problema 3

Utilizad el método de resolución con la estrategia del conjunto de soporte para descubrir si el siguiente razonamiento es válido o no. Descubrid también si las premisas son o no consistentes. Aplicad la regla de subsunción y la del literal puro siempre que ello sea posible

$$D \rightarrow R^{\wedge} \neg A, \qquad A \rightarrow S^{\wedge} F, \qquad F^{\vee} S \rightarrow G, \qquad G \rightarrow (\neg S \rightarrow F) \quad \therefore \quad \neg (G^{\vee} D)$$

Solución

$$S=\{\neg D^{\mathsf{Y}}R, \neg D^{\mathsf{Y}}\neg A, \neg A^{\mathsf{Y}}S, \neg A^{\mathsf{Y}}F, \neg F^{\mathsf{Y}}G, \neg S^{\mathsf{Y}}G, \neg G^{\mathsf{Y}}S^{\mathsf{Y}}F, \quad \mathbf{G}^{\mathsf{Y}}\mathbf{D}\}$$

Ninguna clausula subsume a ninguna otra.

La regla del literal puro permite eliminar $\neg D^YR$ por ausencia del literal $\neg R$ La ausencia del literal A permite eliminar todas las cláusulas que contienen el literal $\neg A$

$$S'=\{ \neg F'G, \neg S'G, \neg G'S'F, G'D \}$$

La ausencia del literal ¬D permite eliminar la cláusula G^YD. Con la desaparición de esta cláusula que era la única proveniente del soporte vemos que si el razonamiento es correcto seguro que lo es per inconsistencia de las premisas.

$$S''=\{ \neg F^{\vee}G, \neg S^{\vee}G, \neg G^{\vee}S^{\vee}F \}$$

Iniciando la resolución con ¬F'G

Cláusulas troncales	Cláusulas laterales
$\neg F^{\vee}G$	¬G ^v S ^v F
Teorema	

Iniciando la resolución con ¬S'G

Cláusulas troncales	Cláusulas laterales
¬S [∨] G	¬G ^v S ^v F
Teorema	

Iniciando la resolución con ¬G'S'F

Clausulas troncales	Cláusulas laterales
¬G ^v S ^v F	¬F [∨] G
Teorema	

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	21/01/2012	18:30

Puesto que ninguna de las posibilidades conduce a la cláusula vacía, podemos concluir que el razonamiento es incorrecto y que, por lo tanto, sus premisas eran consistentes

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	21/01/2012	18:30

Problema 4

Demostrad, utilizando la deducción natural, que el siguiente razonamiento es correcto. Podéis utilizar las reglas básicas, las reglas derivadas y los equivalentes deductivos vistos en la asignatura

$$\begin{array}{l} \forall y Q(y) \rightarrow \exists x (P(x) \ ^{\wedge} \neg R(x)) \\ \therefore \ \forall x (P(x) \rightarrow R(x)) \ \rightarrow \exists y \neg Q(y) \end{array}$$

Solución

1	$\forall y Q(y) \rightarrow \exists x (P(x) \land \neg R(x))$			Р
2		$\forall x(P(x)\rightarrow R(x))$		Н
3			$\neg \exists y \neg Q(y)$	Н
4			$\forall y \neg \neg Q(y)$	ED 3
5			∀yQ(y)	ED 4
6			$\exists x (P(x) \land \neg R(x))$	E→ 1,5
7			P(a) [^] ¬R(a)	E∃ 6
8			P(a)→R(a)	E∀2
9			P(a)	E^ 7
10			R(a)	E→ 8,9
11			¬R(a)	E^ 7
12		$\neg \neg \exists y \neg Q(y)$		I¬ 3, 10, 11
13		∃y¬Q(y)		E¬ 12
14	$\forall x (P(x) \rightarrow R(x)) \rightarrow \exists y \neg Q(y)$			I→ 2, 13

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	21/01/2012	18:30

Problema 5

Considerad como dominio U el conjunto de socios de un club y considerad en este dominio los conjuntos siguientes:

P: conjunto de los socios que son pintores

M: conjunto de los socios que les gusta el mar

E: conjunto de los socios que son escultores

Usando los conjuntos anteriores y mediante el lenguaje de los conjuntos (y sin cuantificadores) expresad los conjuntos y enunciados siguientes:

- 1) El conjunto de los socios escultores que no les gusta el mar o que no son pintores.
- 2) Hay socios pintores que no son escultores que les gusta el mar.

Solución

 $E \cap (\overline{M} \cup \overline{P})$ $P \cap \overline{E} \cap M \neq \emptyset$