Testing Report Grupal C1.019

Grupo	C1.019
Repositorio	https://github.com/adolfoborrego/Acme-ANS
Student #1	ID: 29584665H UVUS: XXB5458 Nombre: Borrego González, Adolfo Agustín Roles: Project Manager
Student #2	ID: 77873179D UVUS: SSK0456 Nombre: Martínez Díaz, Ignacio Roles: Analyst
Student #3	ID: 12830191D UVUS: PVL1690 Nombre: Mir Ceballos, Miguel Roles: Operator
Student #4	ID: 52077055H UVUS: TCP2748 Nombre: Sánchez Carmona, Germán Roles: Developer
Student #5	ID: 54794337B UVUS: CFV7375 Nombre: Regidor García, Miguel Roles: Tester

Índice

1. Introducción	2
1.1. Propósito del documento	2
2. Functional Testing	2
2.1. Introducción	2
2.2. Cobertura de las pruebas	3
2.4. Conclusiones	6
2.4.1 Booking	6
2.4.2 Passenger	6
2.4.3 PassengerBooking	6
3. Performance Testing	7
3.1. Introducción	7
3.2. Gráficos de eficiencia medios	7
3.3. Estadísticas descriptivas	9
3.4. Hipótesis y conclusiones	9
4. Historial de versiones	10
5. Bibliografía	10

1. Introducción

1.1. Propósito del documento

El propósito de este documento es presentar de forma estructurada y rigurosa los resultados obtenidos durante el proceso de pruebas del sistema desarrollado por el equipo. El informe tiene como objetivo principal verificar que las funcionalidades implementadas cumplen correctamente con los requisitos definidos y que el sistema ofrece un comportamiento estable, seguro y eficiente tanto a nivel funcional como de rendimiento.

A través de este documento se detalla la ejecución de pruebas funcionales, diferenciando entre versiones inseguras (.hack) y versiones protegidas (.safe), así como el análisis del rendimiento del sistema en diferentes condiciones, incluyendo comparativas estadísticas e intervalos de confianza. Este análisis permite no solo identificar errores o vulnerabilidades, sino también justificar decisiones técnicas tomadas durante el desarrollo para mejorar la calidad final del producto.

2. Functional Testing

2.1. Introducción

En este apartado se documenta la metodología seguida para realizar las pruebas funcionales (functional testing) de las distintas características implementadas. El objetivo principal de este tipo de pruebas es comprobar que las funcionalidades del sistema devuelven los resultados esperados, tanto en condiciones normales como anómalas, garantizando así la calidad del software desde el punto de vista del usuario final.

Siguiendo la metodología formal estudiada, se han diseñado y ejecutado casos de prueba positivos, negativos (.safe) y de hacking (.hack). Cada uno de estos tipos de pruebas ha sido elaborado respetando los principios de repetibilidad, control de datos y cobertura. Se ha prestado especial atención a la verificación de formularios de edición, la visualización de datos en listados y formularios, la gestión de entradas inválidas y la resistencia del sistema ante intentos de uso indebido.

2.2. Cobertura de las pruebas

A continuación, se presenta una tabla detallada con el nivel de cobertura de pruebas alcanzado, para el paquete Airport.

Paquete	Cobertura
administrator.airport	92,2%

Más detalle sobre Airport:

Servicio	Cobertura
AdministratorAirportListService	94,6%
AdministratorAirportShowService	96,8%
AdministratorAirportCreateService	90,3%
AdministratorAirportUpdateService	91,0%

2.3. Casos de prueba

Para Airport:

Caso de prueba	Descripción	Eficacia
list.safe	Comprueba que el listado funciona correctamente.	No se detectó ningún fallo.
list.hack	Comprueba que no se puedan hacer GET hacking en el listado.	No se detectó ningún fallo
show.safe	Comprueba que se muestran las propiedades de airport correctamente.	No se detectó ningún fallo
show.hack	Comprueba que el airport no sea nulo.	No se detectó ningún fallo
create.safe	Comprueba que se pueda crear correctamente un airport, contemplando así las validaciones de cada propiedad.	No se detectó ningún fallo
create.hack	Comprueba que el que esté creando el airport sea un administrator.	No se detectó ningún fallo
update.safe	Comprueba que se puedan actualizar los datos de un airport, teniendo en cuenta las validaciones de dichos	No se detectó ningún fallo

Testing Report Grupal - C1.019

	datos.	
update.hack	Comprueba que el que esté actualizando el airport sea un administrator.	No se detectó ningún fallo

2.4. Conclusiones

La cobertura de pruebas para el paquete **Airport** ha sido satisfactoria, alcanzando un **92,2%** global, con cada uno de los servicios probados superando el 90% de cobertura. Los casos de prueba ejecutados, tanto seguros como de tipo hack, no detectaron fallos, lo que indica un comportamiento robusto del sistema frente a operaciones válidas y accesos no autorizados. Esto demuestra que las funcionalidades implementadas para la gestión de aeropuertos son estables y seguras bajo los escenarios evaluados.

3. Performance Testing

3.1. Introducción

El propósito de este apartado es analizar el rendimiento del sistema mediante pruebas de tipo performance testing. A diferencia de las pruebas funcionales, cuyo objetivo principal es verificar el comportamiento correcto del sistema, las pruebas de rendimiento se centran en medir el tiempo de respuesta de las distintas funcionalidades bajo condiciones controladas.

Para llevar a cabo este análisis, se han reutilizado los casos de prueba funcionales ya existentes, reproduciéndolos (replay) en dos equipos portátiles diferentes. De este modo, se ha obtenido un conjunto de datos reales de ejecución a partir de los cuales se ha podido evaluar la eficiencia del sistema y comparar el rendimiento relativo de ambos entornos.

El análisis se ha realizado siguiendo la metodología propuesta, que incluye el cálculo de intervalos de confianza para el tiempo medio de respuesta y la aplicación de una prueba Z para dos muestras independientes, con el objetivo de determinar si las diferencias observadas entre ambos portátiles son estadísticamente significativas.

En las siguientes secciones se presentan los resultados obtenidos, tanto en forma de gráficos de eficiencia media como de análisis estadísticos que permiten extraer conclusiones fundamentadas sobre el rendimiento de la aplicación.

3.2. Gráficos de eficiencia medios

Los gráficos muestran los tiempos medios de respuesta (en milisegundos) al ejecutar las pruebas funcionales del sistema en dos equipos distintos: un ordenador de casa y mi ordenador personal. Se observa que, en general, el ordenador propio ofrece un rendimiento ligeramente superior, con menores tiempos de respuesta en la mayoría de las operaciones.

3.3. Estadísticas descriptivas

Como paso previo al contraste de hipótesis, se ha realizado un análisis estadístico descriptivo de los tiempos de respuesta registrados al ejecutar los casos de prueba en ambos portátiles. Este análisis permite obtener una visión general del comportamiento del sistema en cada equipo y calcular el intervalo de confianza para el tiempo medio de respuesta.

Computer 1		
Media	11,910269	
Error típico	0,76975575	
Mediana	10,52995	
Moda	#N/D	
Desviación estándar	9,36448285	
Varianza de la muestra	87,6935391	
Curtosis	3,78016426	
Coeficiente de asimetría	1,4972176	
Rango	56,7777	
Mínimo	1,2166	
Máximo	57,9943	
Suma	1762,71981	
Cuenta	148	
Nivel de confianza (95,0%)	1,52121695	
Interval (ms)	10,389052	13,4314859
Interval (s)	0,01038905	0,01343149

Computer 2		
Media	12,0808772	
Error típico	0,77481967	
Mediana	11,2642	
Moda	#N/D	
Desviación estándar	9,42608816	
Varianza de la muestra	88,851138	
Curtosis	3,83827679	
Coeficiente de asimetría	1,51800837	
Rango	56,9266	
Mínimo	1,2326	
Máximo	58,1592	
Suma	1787,96983	
Cuenta	148	
Nivel de confianza(95,0%)	1,53122445	
Interval (ms)	10,5496528	13,6121017
Interval (s)	0,01054965	0,0136121

Ambos portátiles cumplen con el supuesto de que la media de respuesta se mantiene muy por debajo del segundo (1 s), cumpliendo así el requisito de rendimiento utilizado como referencia.

3.4. Hipótesis y conclusiones

Tras obtener los intervalos de confianza y las estadísticas descriptivas de ambos portátiles, se ha realizado un contraste de hipótesis mediante una prueba Z para dos muestras independientes, con el objetivo de determinar si la diferencia entre los tiempos medios de respuesta es estadísticamente significativa. La prueba Z se ha aplicado sobre los conjuntos de datos recogidos en Ordenador 1 y Ordenador 2, considerando un nivel de significación del 5 % (α = 0.05).

Before	After
11,4496204	10,3304719
87,6935391	88,851138
157	32
0	
0,6128154	
0,26999921	
1,64485363	
0,53999841	
1,95996398	
	Before 11,4496204 87,6935391 157 0 0,6128154 0,26999921 1,64485363 0,53999841

Dado que el valor de $P(Z\leq z)$ dos colas se encuentra en el intervalo (α ,1], podemos afirmar que no existen grandes diferencias en el rendimiento entre ambos portátiles.

4. Historial de versiones

Versión	Fecha	Descripción
0.0	25/05/2025	Versión inicial.
1.0	26/05/2025	Versión final.

5. Bibliografía

Intentionally Blank