Nom:	
Prénom :	
Classe :	

Examen intermédiaire | InfraDon1

		Durée	de	l'examen	:	1h30
--	--	-------	----	----------	---	------

Matériel autorisé : une feuille A4 recto-verso manuscrite uniquement.

Aucun matériel numérique autorisé.

L'examen se déroule **sur papier** : aucune exécution de requête SQL ne sera possible. Il s'agit d'évaluer votre **compréhension théorique**, votre capacité à **analyser des situations**, et à **produire des requêtes SQL correctes** dans un contexte donné.

Prenez le temps de lire chaque question attentivement. Répondez de manière claire, concise, et structurée.

Exercice 1 - UML (15 points)	2
Exercice 2 – Requêtes SQL (16 points)	3
Exercice 3 - Normalisation (10 points)	6
Exercice 4 – Jointures & Agrégations (24 points)	7
Exercice 5 – QCM Vrai / Faux (20 points)	9
Exercice 6 - Questions ouvertes (15 points)	14

Nom :	
Prénom :	
Classe:	

Exercice 1 - UML (15 points)

Dessine un diagramme UML, avec **cardinalités**, types **PostgreSQL**, ainsi que les **contraintes** pour représenter une université où :

- Un étudiant peut suivre plusieurs cours.
- Un professeur peut enseigner plusieurs cours.
- Chaque cours est rattaché à un seul professeur.
- Chaque inscription contient une date.

Exercice 2 - Requêtes SQL (16 points)

À partir des tables :

- etudiants(id, nom, prenom, email)
- profs(id, nom, specialite)
- cours(id, nom, id_prof)
- inscriptions(id_etudiant, id_cours, date)

Écris les requêtes SQL correspondantes :

1. Sélectionner tous les étudiants inscrits à un cours.

2. Afficher la liste des cours avec le nom du professeur.

	Nom : Prénom :	
	Classe :	
3. Afficher le nombre d'étudiants inscrits par cours.		

4. Lister les étudiants non inscrits à un cours.

5. Supprimer les inscriptions datant d'avant 2022.

	Nom :
	Prénom :
	Classe :
6. Mettre à jour le nom du cours "Maths" en "Mathématiqu	es" dans la table cours
7. Triar las agurs par pambro d'ingerite dégraignent	
7. Trier les cours par nombre d'inscrits décroissant.	
9. Cráor un indoveur la colonno data do la table incertir	ations
8. Créer un index sur la colonne date de la table inscrip	JULIOIIS.

Nom:	
Prénom :	

Exercice 3 - Normalisation (10 points)

Table de départ : nom_etudiant | email | nom_cours | nom_prof | date

1. Quelles anomalies peuvent apparaître dans ce modèle ? (insertion, mise à jour, suppression)

2. Propose une décomposition en 3NF avec les clés.

Nom:	
Prénom :	

Exercice 4 – Jointures & Agrégations (24 points)

Tables:

- etudiants(id, nom)
- cours(id, nom, id_prof)
- inscriptions(id_etudiant, id_cours, date)
- 1. Lister les cours avec le nombre d'étudiants inscrits.

2. Afficher le nom des professeurs avec le total d'inscriptions dans leurs cours.

Nom :	
Prénom :	
Classe :	

3. Lister les étudiants n'ayant pas de cours.

4. Trouver les cours les plus populaires (par nombre d'inscriptions).

	Nom : Prénom : Classe :
Exer	cice 5 – QCM Vrai / Faux (20 points)
Pour ch	naque affirmation ci-dessous, cochez Vrai ou Faux .
•	Si l'affirmation est vraie , il n'est pas nécessaire de justifier .
•	Si elle est fausse, vous devez justifier brièvement pourquoi.
	Une base OLTP est principalement optimisée pour les requêtes SELECT longues et complexes sur de grands volumes de données.
	Vrai Faux
	Une base OLAP est principalement optimisée pour les requêtes SELECT longues et complexes sur de grands volumes de données.
	Vrai

☐ Faux

Nom : Prénom :	
Classe :	
3. Un index peut améliorer les performances d'une requête INSERT.	
☐ Vrai	
☐ Faux	
4. L'ordre des colonnes est sans importance dans un index composé.	
☐ Vrai ☐ Faux	

	Nom : Prénom : Classe :	
5. Une base normalisée réduit la redondance des donne	ées	
☐ Vrai ☐ Faux		
6. Le langage SQL permet de manipuler à la fois les do Vrai Faux	onnées et la structure des tab	les.

	m :
	m :
Class	se :
7. Le DML (Data Manipulation Language) inclut les commandes 3	INSERT, SELECT, UPDATE
et DELETE.	
☐ Vrai	
☐ Faux	
8. La normalisation 1NF impose qu'une cellule ne contient qu'une s	eule valeur.
☐ Vrai	
☐ Faux	

			Oldooc	
9. Plusieurs utilisateu cohérence.	rs peuvent lire les	mêmes données e	en parallèle s	ans problème de
☐ Vrai				
☐ Faux				
10. Les procédures sto	ockées permettent d'	automatiser des su	iites de requê	tes SQL.
☐ Vrai				
☐ Faux				

Nom:	
Prénom :	
Classe :	

Exercice 6 - Questions ouvertes (15 points)

1. Explique le principe de normalisation

2. Dans quel cas serait-il pertinent d'utiliser une base OLAP ? (Donne un exemple d'usage concret)

Nom:	
Classe:	

3. Quelles sont les contraintes d'intégrité qu'on peut définir dans une base relationnelle ? (Donne au moins deux exemples concrets)