物理杂记

李佳 xmujiali@163.com

2020年3月12日

目录

第-	→章	量子力	学基础	2
	1.1	微观粒	子的运动特征	2
		1.1.1	黑体辐射和能量量子化	2
		1.1.2	光电效应和光子学说	3
		1.1.3	* 氢原子光谱和 Bohr 理论	5
		1.1.4	实物粒子的波粒二象性	6
		1.1.5	不确定度关系	6
	1.2	量子力	学基本假设	9
		1.2.1	波函数和微观粒子的状态	9
		1.2.2	物理量和算符	9
		1.2.3	本征态、本征值和	9
		1.2.4	态叠加原理	9
		1.2.5	Pauli 原理	10
		1.2.6	关于含时 Schrödinger 方程的讨论	10
	1.3	箱中粒	子的 Schrödinger 方程及其解	11
		1.3.1	箱中粒子	11
		1.3.2	应用	11
第二	二章		~	11 12
	二章 2.1	原子的		12
	•	原子的	结构和性质	12 13
	•	原子的 单电子	结构和性质 原子的 Schrödinger 方程及其求解	12 13 13
	•	原子的 单电子 2.1.1	结构和性质 原子的 Schrödinger 方程及其求解	12 13 13 13
	•	原子的 单电子 2.1.1 2.1.2	结构和性质 原子的 Schrödinger 方程及其求解	12 13 13 13 13
	•	原子的 单电子 2.1.1 2.1.2 2.1.3 2.1.4	结构和性质 原子的 Schrödinger 方程及其求解	12 13 13 13 13
	2.1	原子的 单电子 2.1.1 2.1.2 2.1.3 2.1.4	结构和性质 原子的 Schrödinger 方程及其求解	12 13 13 13 13
	2.1	原子的 单电子 2.1.1 2.1.2 2.1.3 2.1.4 量子数	结构和性质 原子的 Schrödinger 方程及其求解	12 13 13 13 13 13 13
	2.1	原子的 单电子 2.1.1 2.1.2 2.1.3 2.1.4 量子数 2.2.1	结构和性质 原子的 Schrödinger 方程及其求解 ・ 単电子原子的 Schrödinger 方程 ・ 変数分离法 ・ 季 方程的求解 ・ 単电子原子的波函数 ・ 的物理意义 ・ 主量子数 n ・	12 13 13 13 13 13 13 13 13
	2.1	原子的 单电子 2.1.1 2.1.2 2.1.3 2.1.4 量子数 2.2.1 2.2.2	结构和性质 原子的 Schrödinger 方程及其求解 ・ 単电子原子的 Schrödinger 方程 ・ 変数分离法 ・ Φ 方程的求解 ・ 単电子原子的波函数 ・ 的物理意义 ・ 主量子数 n ・ 角量子数 1 ・	12 13 13 13 13 13 13 13 13
	2.1	原子的 单电子 2.1.1 2.1.2 2.1.3 2.1.4 量子数 2.2.1 2.2.2 2.2.3	结构和性质 原子的 Schrödinger 方程及其求解 単电子原子的 Schrödinger 方程 变数分离法 少方程的求解 単电子原子的波函数 的物理意义 主量子数 n 角量子数 1 磁量子数 m	12 13 13 13 13 13 13 13 13 13 13
	2.1	原子的 单电子 2.1.1 2.1.2 2.1.3 2.1.4 量子数 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	结构和性质 原子的 Schrödinger 方程及其求解 単电子原子的 Schrödinger 方程 变数分离法 少方程的求解 単电子原子的波函数 的物理意义 主量子数 n 角量子数 1 磁量子数 m 自旋量子数 s 和自旋磁量子数 ms	12 13 13 13 13 13 13 13 13 13
	2.1	原子的 单电子 2.1.1 2.1.2 2.1.3 2.1.4 量子数 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	结构和性质 原子的 Schrödinger 方程及其求解	12 13 13 13 13 13 13 13 13 13 13 13

目录			2
	2.3.2	径向分布图	13
	2.3.3	原子轨道等值图	13
2.4	多电子	·原子的结构	13
	2.4.1	多电子原子的 Schrödinger 方程及其近似解	13
	2.4.2	单电子原子轨道能和电子结合能	13
	2.4.3	基态原子的电子排布	13
2.5	原子光	谱	13
	2.5.1	原子光谱和光谱项	13
	2.5.2	电子的状态和原子的能态	13
	2.5.3	单电子原子的光谱项和原子光谱	13
	2.5.4	多电子原子的光谱项	13
	2.5.5	原子光谱的应用	13
还	没开始写	₹	

第一章 量子力学基础

1.1 微观粒子的运动特征

经典物理学的三大支柱

- Newton 经典力学
- Maxwell 电磁理论
- Boltzman 和 Gibbs 统计力学 经典物理学的困难
- 黑体辐射(经典物理的天空的两朵乌云之一)
- 光电效应
- 原子的稳定性和原子的光谱线
- 低温下,固体的比热问题
-

1.1.1 黑体辐射和能量量子化

1 定义 (黑体) 黑体是一种能全部吸收照射到它上面的各种波长辐射的物体。

黑体是理想的吸收体,也是理想的发射体。

2 例 带有一微孔的空心金属球,从小孔进入金属球内部的辐射,经过多次吸收、反射、使射入的辐射实际上全部被吸收。当空腔受热时,空腔壁会发出辐射,极小部分通过小孔逸出。这样的空心金属球非常接近干黑体。

初步尝试:

- Wien: 热力学 → Wien 公式 → 长波区不符, 失败!
- Rayleigh: 电动力学 → Rayleigh-Jeans 公式 → 短波区不符,导致所谓"紫外灾变",失败!

为了解决黑体辐射的问题,Planck 被迫假设黑体吸收或发射辐射的**能量必须是不连续的,即量子化的**。辐射能量的最小单元为 $h\nu,\nu$ 是振子的频率,h 就是著名的 Planck 常数: $6.626 \times 10^{-34} J \cdot s$ 。

$$\rho = \frac{8\pi hc}{\lambda^5} \left(\frac{1}{exp(hc/\lambda kT) - 1} \right)$$

图 1.1: Wien 公式、Rayleigh-Jeans 公式、Planck 公式、及黑体辐射的实验曲线

图 1.2: Kelvine 爵士, 原名 William Thomson

图 1.3: Rayleigh 爵士, 原名 John William Strutt, 1904 年诺贝尔物理奖

1.1.2 光电效应和光子学说

大家在中学物理课程中都接触过光电效应,这里回顾光电效应的一些重要事实:

• 只有当照射光的频率超过某个最小频率 (即临阈频率) 时,金属才能发射光电子,不同金属的临阈频率不同。

图 1.4: Wein, 1911 年诺贝尔物理奖

图 1.5: Planck, 1918 年诺贝尔物理奖

- 随着光强的增加,发射的电子数也增加,但不影响光电子的动能。
- 增加光的频率, 光电子的动能也随之增加。

经典物理的困难:光电子的动能显然来自光能。按照经典波动理论,光能取决于光强度即振幅平方而与频率无关。显然,经典波动理论完全不能解释光电效应的实验事实!

1905 年, Einstein 提出光量子 (光子) 概念, 将光解释为光子的集合, 成功地解释了光电效应。给出了光电效应方程

$$\frac{1}{2}mv^2 = h\nu - \phi$$

其中 ν 为光子的频率, ϕ 为金属的功函数 (脱出功)。显然,将动能 $\frac{1}{2}mv^2$ 对 ν 作图将得到一条截距为 $-\phi$ 的直线。当光的频率小于阈值 $\nu_0 = \phi/h$ 时,动能为负,此时无光电子产生。

Einstein 光子学说要点:

• 光是一束光子流,每一种频率的光的能量都有一个最小单位,称为光的量子或光子。光子的能量与光子的频率成正比,即 $\epsilon=h\nu$ 。

图 1.6: 光电效应示意图

- 光子不但有能量 (ϵ) , 还有质量 (m), 但光子的静止质量为零。按相对论的质能方程 $\epsilon = mc^2$, 光子的质量 $m = \epsilon/c^2 = h\nu/c^2$, 所以不同频率的光子有不同的质量。
- 光子具有一定的动量, $p = mc = h\nu/c = h/\lambda$ 。
- 光子的强度取决于单位体积内光子的数目,即光子的密度。

光子学说表明了光不仅有波动性,且有微粒性,这就是光的波粒二象性思想。

1.1.3 * 氢原子光谱和 Bohr 理论

Bohr 之前人们对氢原子光谱的认识:

- 1885 年 Balmer 线系: $\nu_n=R(\frac{1}{2^2}-\frac{1}{n^2})$, R 为 Rydberg 常数
- 1889 \(\pi \) Rydberg \(\hat{7}\) $\tau_{n1,n2} = R(\frac{1}{n_*^2} \frac{1}{n_*^2}) \)$
- 1908 年在近红外区发现了 Paschen 线系 $(n_1 = 3)$
- 1914 年在紫外区发现了 Lyman 线系 $(n_1 = 1)$
- 1922 年在红外区发现 Brackett 线系 $(n_1 = 4)$
- 1924 年在远红外区发现 Pfund 线系 $(n_1 = 5)$
- **3** (Bohr 理论要点) Bohr 于 1913 年基于 Rutherford 提出的原子模型,综合 Planck 和 Einstein 的量子论,提出了关于原子结构的模型。其要点如下:
 - 经典轨道加定态条件 氢原子中的电子绕原子核作圆周轨道运动,在一定轨道运动的电子具有一定的能量,电子若不发生跃迁,总是处于定态,处于定态时的原子不产生辐射,根据核对电子的静电引力与电子在轨道上运动的离心效应的平衡,可以求出允许的定态。
 - 频率条件 原子从一个定态跃迁到另一个定态要吸收或发射频率为 ν 的辐射, 其频率条件由 $h\nu=E_2-E_1$ 决定。

图 1.7: 氢光谱示意图

• 角动量量子化 对于原子各种可能存在的定态有一个限制,即电子轨道运动的角动量必须等于 $\hbar(=h/2\pi)$ 的整数倍。

根据以上假定,计算氢原子电子绕核运动的半径 $a_0 = 52.92pm$ (Bohr 半径),所计算出 Rydberg 常数与实验完全吻合。Bohr 于 1922 年获得 Nobel 物理奖。

1.1.4 实物粒子的波粒二象性

实物微粒的波粒二象性: 1924 年, de Broglie 认为辐射的波粒二象性同样适用于物质。波以某种方式伴随电子和其他粒子, 正如波伴随着光子一样。一度被视为波的光已被证明具有粒子性, 现在需要"反过来"把一直认为是实物粒子的电子等物质也看作是波。

4 (de Broglie 关系)

$$E = h\nu$$

$$p = h/\lambda$$

5 例 被电压为 U的电场加速的电子束, 若取 U的单位为 V, 可以算出 de Broglie 波长为:

$$\lambda = h/mv = h/\sqrt{2meV} = 1226/\sqrt{U}pm$$

取加速电压 1000V, 其 de Broglie 波长为 39 pm。

1927 年, Davison、Germer 用电子束单晶衍射法, G. P. Thomson 用薄膜透射法证实了物质波的存在, 用德布罗意关系式计算的波长与 Bragg 方程计算结果一致。1929 年, de Broglie 获诺贝尔物理学奖; Davison 和 G.P. Thomson 也分享了 1937 年的诺贝尔物理学奖.

1.1.5 不确定度关系

6 (不确定原理) 1927年, Heisenberg 提出了微观领域的不确定原理 (uncertainty principle): 有这样一些成对的可测量 (例如,坐标与相应的动量分量、方位角与角动量等),要同时测定它们的任意精确值是不可能的。其中一个量被测得越精确,其共轭量就变得越不确定。

不确定原理可以用不同的方式来阐述, 最容易理解也最常用的是电子的单缝衍射实验:

• 电子通过狭缝前, 动量的 x 分量 p_x 完全确定, 坐标 x 完全不确定。

图 1.8: de Broglie

图 1.9: Davisson

- 电子通过狭缝后, 坐标 x 的不确定度为 δx , 动量 p_x 的不确定度为 δp_x 。
- x 和 p_x 不可能同时精确测定, δx 与 δp_x 之积大于或等于某个阈值。考察第一极小就能估计该阈值的大小。

点 D 为第一极小,

$$\frac{\lambda}{2} = \overline{BD} - \overline{AD} \equiv \overline{BC} \approx \frac{\delta x}{2} \sin \alpha \\ \delta p_x/p = \sin \alpha \end{cases} \implies \delta x \cdot \delta p_x = p\lambda = p(h/p) = h$$

图 1.10: G. P. Thomson

图 1.11: Heisenberg, 1932 年诺贝尔物理奖

1.2 量子力学基本假设

1.2.1 波函数和微观粒子的状态

7 例 某电子的波函数为:

$$\phi(x) = \begin{cases} ax^2 + bx + c; & \text{if } 0 \le x \le 1\\ 0; & \text{otherwise} \end{cases}$$

请确定 a,b,c 的值:

解: 根据波函数在 x = 0,1 的连续性条件及波函数的归一化条件,得:

$$a = -6, b = 6, c = 0$$

- 1.2.2 物理量和算符
- 1.2.3 本征态、本征值和
- 1.2.4 态叠加原理

8 例 设 $0 \le x \le 1$ 。根据态叠加原理, 波函数 $\phi(x) = -6x(x-1)$ 可以用一组波函数 $\sqrt{2}\sin n\pi x$ 展开成

$$\phi(x) = \sum_{n=1}^{\infty} a_n \sqrt{2} \sin n\pi x$$

的形式。试推导出 a_n 的通式。

提示: 先证明公式 $\int_0^1 \left(\sqrt{2}\sin m\pi x\right) \left(\sqrt{2}\sin n\pi x\right) dx = \delta_{mn}$

解:

$$\int_0^1 (\sqrt{2} \sin m\pi x) (\sqrt{2} \sin n\pi x) dx$$

$$= 2 \int_0^1 \sin m\pi x \sin n\pi x dx$$

$$= 2 \int_0^1 -\frac{1}{2} [\cos(m+n)\pi x - \cos(m-n)\pi x] dx$$

$$= \int_0^1 \cos(m-n)\pi x dx$$

$$= \begin{cases} 0, & \text{if } m \neq n \\ 1, & \text{if } m = n \end{cases}$$

然后来求 a_m 的通式,一方面

$$\int_0^1 \left(\sqrt{2}\sin m\pi x\right) \phi(x) dx$$

$$= -6\sqrt{2} \int_0^1 \left(\sin m\pi x\right) x(x-1) dx$$

$$= -6\sqrt{2} \int_0^1 x^2 \sin m\pi x dx + 6\sqrt{2} \int_0^1 x \sin m\pi x dx$$

$$= \cdots (分步积分)$$

另一方面,

$$\int_0^1 \left(\sqrt{2}\sin m\pi x\right) \phi(x) dx$$

$$\int_0^1 \left(\sqrt{2}\sin m\pi x\right) \left(\sum_{n=1}^\infty a_n \sqrt{2}\sin n\pi x\right) dx$$

$$= \sum_{n=1}^\infty a_n \int_0^1 \left(\sqrt{2}\sin m\pi x\right) \left(\sqrt{2}\sin n\pi x\right) dx$$

$$= \sum_{n=1}^\infty a_n \delta_{mn}$$

$$= a_m$$

1.2.5 Pauli 原理

1.2.6 关于含时 Schrödinger 方程的讨论

9 符号 为书写方便, 引入符号 $\hbar := \frac{h}{2\pi}$

10 公设 波函数随时间的演化遵循含时 Schrödinger 方程:

$$\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(x,y,z,t)=\hat{H}\Psi(x,y,z,t)$$

11 推论 考虑一种特殊形式的 $\Psi(x,y,z,t) = \psi(x,y,z)f(t)$, 带入含时 Schrödinger 方程, 得:

$$\hat{H}\psi(x,y,z) = E\psi(x,y,z)$$

且

$$f(t) = \exp\left(-\frac{iEt}{\hbar}\right)$$

12 注 这一推论说明这种特殊形式的解实际上是一种驻波,即各处以固定的 (不随时间变化的)振幅做振动。而定态的 (Schrödinger 方程实际描述的是这种驻波的振幅 (((x,y,z)<math>(

证明: 将 $\Psi(x,y,z,t) = \psi(x,y,z)f(t)$, 带入含时 Schrödinger 方程, 得:

$$\mathrm{i}\hbar\frac{\partial}{\partial t}\left(\psi(x,y,z)f(t)\right) = \hat{H}\psi(x,y,z)f(t)$$
$$\mathrm{i}\hbar\frac{1}{f(t)}\frac{\mathrm{d}f(t)}{\mathrm{d}t} = \frac{\hat{H}\psi(x,y,z)}{\psi(x,y,z)}$$

注意到左边只与时间变量 t 有关,而右边只与空间坐标 x,y,z 有关,唯一的可能性两者左右 两边都等于一个常数 E。于是右边给出

$$\hat{H}\psi(x,y,z) = E\psi(x,y,z)$$

正是定态的 Schrödinger 方程, 而左边给出

$$\mathrm{i}\hbar\frac{\mathrm{d}f(t)}{\mathrm{d}t} = Ef(t)$$

其解为:

$$f(t) = \exp\left(-\frac{iEt}{\hbar}\right)$$

1.3 箱中粒子的 Schrödinger 方程及其解

- 1.3.1 箱中粒子
- 1.3.2 应用

第二章 原子的结构和性质

2.1 单电子原子的 Schrödinger 方程及其求解

- 2.1.1 单电子原子的 Schrödinger 方程
- 2.1.2 变数分离法
- 2.1.3 Φ 方程的求解
- 2.1.4 单电子原子的波函数

2.2 量子数的物理意义

- 2.2.1 主量子数 n
- 2.2.2 角量子数 1
- 2.2.3 磁量子数 m
- 2.2.4 自旋量子数 s 和自旋磁量子数 m_s
- 2.2.5 总量子数 j 和总磁量子数 m_i

2.3 波函数和电子云的形状

- **2.3.1** ψr 图和 $\psi^2 r$ 图
- 2.3.2 径向分布图
- 2.3.3 原子轨道等值图

2.4 多电子原子的结构

- 2.4.1 多电子原子的 Schrödinger 方程及其近似解
- 2.4.2 单电子原子轨道能和电子结合能
- 2.4.3 基态原子的电子排布

2.5 原子光谱

- 2.5.1 原子光谱和光谱项
- 2.5.2 电子的状态和原子的能态
- 2.5.3 单电子原子的光谱项和原子光谱