Семинар 9. Работа с текстами. Наивный байесовский классификатор.

Даулбаев Талгат 5 апреля 2017 г.

Слайд про то, что тексты надо превращать в вектора

Пусть есть множество D, состоящее из документов d_1,\ldots,d_N .

Каждый текст будем считать объектом. А глобальная цель — решить задачу машинного обучения. Например, классифицировать спам.

Что можно считать признаками текста?

Term Frequency

Признак — «частота» встречаемости каждого слова t в тексте d.

Называется «term frequency» и обозначается $\mathsf{tf}_{t,d}$.

Разные способы вычисления $\mathsf{tf}_{t,d}$:

- ullet 1, если слово t входит в документ d, иначе 0;
- $u_{t,d}$ количество вхождений слова t в документ d;
- ullet $u_{t,d}$, делённое на количество слов в d;
- $1 + \log(\nu_{t,d})$;
- и так далее...

В чём проблемы такого представления?

Document Frequency

Если слово t часто встречается в d, но редко — в других документах, то это слово важное. Но $\mathsf{tf}_{t,d}$ не учитывает этого.

Введём характеристику «document frequency» $\mathrm{df}_{t,D}$ — количество документов, в которых есть слово t.

A с помощью неё — «inverted document frequency» $\mathrm{idf}_{t,D}$, которая тем больше, чем меньше $\mathrm{df}_{t,D}$.

Inverse Document Frequency

Пусть N — общее количество документов (объектов).

Самые распространённые варианты вычисления $\mathsf{idf}_{t,D}$:

- ullet log $rac{N}{\mathsf{df}_{t,D}}$ (формула из учебников)
- ullet log $rac{N}{{
 m df}_{t,D}}+1$ (формула из scikit-learn)
- $\bullet \ \max \left\{ 0, \log \frac{N \mathsf{df}_{t,D}}{\mathsf{df}_{t,D}} \right\}$

TF-IDF

Произведение tf и idf так и называется «term frequency — inverse document frequency»:

$$\mathsf{tf}\text{-}\mathsf{idf}_{t,d,D} = \mathsf{tf}_{t,d} \times \mathsf{idf}_{t,D}$$

Значение $\mathsf{tf}\text{-}\mathsf{idf}_{t,d,D}$

- ullet высокое, когда t встречается в малом числе документов;
- низкое, когда:
 - \bullet слово t встречается в большом числе документов;
 - ullet слово t нечасто встречается в документе d;

TF-IDF: пример

- ullet $d_1=$ «Не выходи из комнаты»
- ullet $d_2=$ «Не жалею, не зову»
- ullet $d_3=$ «Ходор Ходор Ходор»

Пусть $\mathrm{idf}_{t,D} = \log \frac{N}{\mathrm{df}_{t,D}}$, а $\mathrm{tf}_{t,d}$ — доля t в d.

Для слова $t_1 = «не»$ в d_1 :

$$\mathsf{tf ext{-}idf}_{t_1,d_1,D} = rac{1}{4} imes \log rac{3}{2} pprox 0.10$$

Для слова $t_2=$ «выходи» в d_1 :

$$\mathsf{tf} ext{-}\mathsf{idf}_{t_2,d_1,D} = rac{1}{4} imes \lograc{3}{1}pprox 0.27$$

TF-IDF в scikit-learn

Два варианта:

- sklearn.feature_extraction.text.TfidfVectorizer преобразует набор «сырых» текстов в матрицу с tf-idf признаками.
- sklearn.feature_extraction.text.TfidfTransformer преобразует матрицу со счётчиками вхождений слов в tf-idf матрицу.

TF-IDF в scikit-learn

Два варианта:

- 1. sklearn.feature_extraction.text.TfidfVectorizer преобразует набор «сырых» текстов в матрицу с tf-idf признаками.
- 2. sklearn.feature_extraction.text.TfidfTransformer преобразует матрицу со счётчиками вхождений слов в tf-idf матрицу.

Пойдём по второму пути. Набор «сырых» текстов можно преобразовать в матрицу со счётчиками вхождений слов с помощью sklearn.feature_extraction.text.CountVectorizer.

CountVectorizer: пример

```
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
import pandas as pd
texts = ["I am a lumberjack",
         "And I am okay",
         "I sleep all night and I work all day"]
# token_pattern изменён, чтобы учитывать и однобуквенные слова
count = CountVectorizer(token_pattern=r"\b\w+\b")
# .toarray() для преобразования в плотный массив:
result = count.fit_transform(texts).toarray()
# .get_feature_names() - названия признаков
df = pd.DataFrame(data=result, columns=count.get_feature_names())
```

CountVectorizer: пример

	а	all	am	and	day	i	lumberjack	night	okay	sleep	work
0	1	0	1	0	0	1	1	0	0	0	0
1	0	0	1	1	0	1	0	0	1	0	0
2	0	2	0	1	1	2	0	1	0	1	1

TfidfTransformer: пример

 ${\tt from \ sklearn.feature_extraction.text \ import \ TfidfTransformer}$

	а	all	am	and	day	i	lumberjack	night	okay	sleep	work
0	0.69	0.0	0.23	0.00	0.00	0.08	0.69	0.00	0.0	0.00	0.00
1	0.00	0.0	0.30	0.30	0.00	0.11	0.00	0.00	0.9	0.00	0.00
2	0.00	0.7	0.00	0.12	0.35	0.09	0.00	0.35	0.0	0.35	0.35

Лемматизация

Проблема: «dog» и «dogs», «человек» и «человеку» считаются разными словами.

Лемматизация — приведение слова к его нормальной форме:

- для существительных именительный падеж, единственное число (кошками → кошка);
- для прилагательных именительный падеж, единственное число, мужской род (бежал \to бежать);
- для глаголов, причастий, деепричастий глагол в инфинитиве (боязненных \to боязненный).

Лемматизация на русском языке

```
import pymorphy2
morph = pymorphy2.MorphAnalyzer()
text = """Нам не нужно других миров. Нам нужно
зеркало... Мы бъёмся над контактом и никогда не найдём его. Мы в
глупом положении человека, рвущегося к цели, которой он боится,
которая ему не нужна. Человеку нужен человек!"""
normal_forms_list = []
for word in text.split():
    norm_form = morph.parse(word)[0].normal_form
    normal_forms_list.append(norm_form)
' '.join(normal_forms_list)
```

Результат:

мы не нужно другой миров. мы нужно зеркало... мы биться над контакт и никогда не найти его. мы в глупый положение человека, рваться к цели, который он боится, который он не нужна. человек нужный человек!

Стемминг

Лемматизация — сложная штука. Куда проще стемминг — выделение из слова «основы» по эвристическим правилам.

Примеры:

- \bullet «кошки» \rightarrow «кош»
- ullet «кошачий», «кошачее» ullet «кошач»

Стемминг в питоне

Есть много разных стеммеров.

```
from nltk.stem.snowball import SnowballStemmer
ss = SnowballStemmer('english')
ss.stem('dogs')
```

Нужна библиотека nltk (pip install nltk).

Придётся загрузить дополнительные пакеты. Для этого запустить nltk.download() и открыть всплывающее окно.

Стемминг текста тоже делается пословно.

Наивный байесовский классификатор

Объяснение — с маркером на доске.

В scikit-learn'e реализованы

- GaussianNB,
- MultinomialNB,
- BernoulliNB,

которые находятся в sklearn.naive_bayes.

The Beatles or Snoop Dogg?1

Обучите мультиномиальный наивный байесовский классификатор различать тексты Beatles и Snoop Doggʻa.

Архив с данными — на странице курса на гитхабе.

 $^{^{1}}$ спасибо за идею Максиму Новикову (ИАД-16, 2015/2016)