Poglavje 9 - Merjenje temperature

V procesni in energetski tehniki ima poznavanje temperature posameznega procesnega koraka ključen pomen za njihovo učinkovito vodenje. Vrh tega nastopa temperatura v mnogih primerih kot motilna veličina. Temperaturne senzorje uporabljamo torej tako za neposredno merjenje kot tudi za zmanjšanje temperaturnega vpliva pri ostalih senzorjih neelektričnih veličin.

Za merjenje temperature, ki je pravzaprav merilo notranje energije merjenega telesa, izkoriščamo spreminjanje temperaturno pogojenih snovnih lastnosti trdnin, tekočin in plinov (sprememba fizikalnih ali kemičnih stanj, sprememba geometrije, električnih lastnosti, sprememba hitrosti zvoka). Primernost posamezne rešitve kaže slika 1, pri čemer pa se moramo zavedati, da je izkoriščanje zgoraj opisanih sprememb v senzorjih zaradi večjih ali manjših stroškov in ostalih robnih pogojev, smiselno le v ozkem temperaturnem področju.

Slika 1: Pregled termometrov in njihovih principov

Izhodišči vrednosti na kateri podajamo absolutno vrednost temperature merjenega telesa sta odvisni od izbrane termodinamične skale. Poznamo Kelvin-ovo skalo, ki ima izhodišče pri absolutni ničli. Stopinja Kelvin-a je definirana kot 273,16-ti del temperature trojne točke vode

$$1K = \frac{T_{\text{trojne točoč vode}} - T_{\text{absolutne ničič}}}{273,16} \qquad T_{\text{trojne točoč vode}} \neq f(p)$$

Če se izhodišče termodinamične skale začne pri temperaturi ledišča vode, govorimo o Celzijevi (Celsiuss) skali. Njeno izhodišče leži 273,15 K nad temperaturo absolutne ničle in 0,01 K pod temperaturo trojne točke vode

$$1^{\circ}C = \frac{T_{\text{vrelišče vode}} - T_{\text{ledišče}}}{100} \bigg|_{p_0 = 1,103 \, bar}.$$

Relacija med eno in drugo termodinamično skalo je

$$T_{[^{\circ}C]} = T_{[K]} - 273,15$$
.

V anglosaških deželah je v uporabi tudi Fahrenheit-ova skala, katere vrednosti so v naslednji korelaciji s Celzijevo skalo

$$T_{[^{\circ}C]} = \frac{5}{9} (T_{[^{\circ}F]} - 32) ; \quad T_{[^{\circ}F]} = \frac{9}{5} (T_{[^{\circ}C]} + 32).$$

Definiciji obeh termodinamičnih skal razkrivata poglavitno pomanjkljivost, t.j. ponovljivost določanja ničelnih točk, ki je pomembna za mednarodno primerljivost merilnih rezultatov. Iz praktičnih razlogov je bila zato leta 1968 in 1975 sestavljena empirična mednarodna temperaturna skala IPTS68/75, ki temelji na osmih primarnih in večjem številu sekundarnih normal (Tabela 1). Izhodiščne točke, ki slonijo na temperaturi vrelišča in strdišča, so ponovljive z relativno veliko točnostjo. Temperature med izbranimi fiksnimi točkami so določene z interpolacijo, ki jo izvedemo npr. z uporovnim Pt senzorjem ali z Pt/Rh-Pt termočlenom.

Tabela 1: Primarne in sekundarne normale

material	lastnost	temperatura	primarna normala?
vodik	Тр	-259,34°C= 13,81 K	da
kisik	Sp	-182,962°C	da
ogljikov dioksid	Sub	-78,479°C	-
živo srebro	Ep	-38,836°C	-
voda	Ep	$0^{\circ}\text{C} = 273,15 \text{ K}$	-
voda	Тр	0,01°C	da
voda	Sp	100°C	da
kositer	Ep	231,968°C	da
cink	Ep	419,58°C	da
antimon	Ep	630,755°C	-
srebro	Ep	961,93°C	da
zlato	Ep	1064,43°C	da
baker	Ep	1084,87°C	-
nikelj	Ep	1455°C	-
platina	Ep	1769°C	-
rodij	Ep	1963°C	-
iridij	Ep	2447°C	-
volfram	Ep	3420°C	-

Ep = strdišče

Sub = sublimacijska točka

Sp = vrelišče

Tp = trojna točka

9.1. VRSTE TERMOMETROV

Z izjemo fotoelektričnega termometra sloni delovanje termometrov na prenosu toplotne energije z merjenca na senzorski element preko prevajanja toplote in konvekcije (kontaktni termometri) ter preko sevanja (brezkontaktni termometri).

Glede na izhodno veličino ločimo med mehanskimi in električnimi termometri. Takšna ločitev je včasih vprašljiva, saj je možno posamezne termometre prištevati k obema skupinama.

9.1 Mehanski kontaktni termometri

Delovanje mehanskih kontaktnih termometrov temelji na raztezanju materiala vsled temperaturne spremembe ali še pogosteje na različnem raztezku dveh med seboj spojenih teles. Pri tem se lahko material nahaja v trdnem, tekočinskem ali plinskem stanju.

Takšni termometri so v splošnem zelo robustni, so nazahtevni s stališča vzdrževanja, imajo zadovoljivo točnost in majhno ceno zaradi česar so primerni predvsem v nezahtevnih, a izpostavljenih aplikacijah. Med pomanjkljivosti lahko štejemo zgolj krajevno omejen prikaz izmerjene temperature, čeprav je možno tudi to slabost z nekaj dodatnimi stroški zaobiti (prenos merilne informacije preko pnevmatskega, hidravličnega ali elektrčnega prenosa). Najpogostje srečamo termometre te skupine v obliki termostikal, temperaturnih dajalnikov (preko vmesne prenosne poti oziroma medija) ali celo kot mehanske temperaturne regulatorje brez pomožnega izvora energije.

Termometer z raztezno palico

Najenostavnejši princip termometra kaže slika 2.

Slika 2: Termometer z raztezno palico

Pri termometru izkoriščamo raztezanje ravne palice (mesing), ki ima pri temperaturi 0°C dolžino l_0 , medtem ko se njena dolžina pri temperaturi T_1 poveča na l_1 . Povečanje dolžine je premosorazmerno linearnemu razteznemu faktorju α , ki je bolj ali manj temperaturno odvisen ($\alpha = f(T)$).

$$\Delta l = \alpha \cdot l \cdot \Delta T$$
 oziroma $l_1 = l_0 (1 + \alpha \cdot \Delta T)$.

Enak rezultat dobimo tudi, če se vlogi ravne palice in nosilne cevi zamenjata. Tedaj želimo, da ima kovinska cev (mesing) čim večji razteznostni koeficient, v cev potopljena palica (invar, porcelan) pa čim manjšega. Ker so raztezki zaradi omejene dolžine kovinske cevi ali palice zelo majhni, lahko ločljivost prikaza (prekim/zasuk kazalca) povečamo z mehanskim vzvodom ali z reduktorskim mehanizmom. Pri tem moramo v obzir vzeti motilne vplive kot sta trenje in pogrešek prestavnega razmerja.

Merilno območje sega od 0°C do 1000°C. Takšni termometri tudi niso primerni za točkasto merjenje temperature, saj je temperaturni raztezek pri daljši dolžini senzorja odvisen od krajevne porazdelitve temperature vzdolž palice ter ne od temperature na mestu dotika. Pri skrbno načrtovanem merilniku znaša njegov pogrešek med ±1% ter ±3%.

Bimetalni termometri

Pogosteje kot palične termometre uporabljamo bimetalne, ki za merjenje temperature izkoriščajo različen raztezek dveh med seboj spojenih (zavarjeni, zalepljeni ali zakovani.) kovin. V primerjavi s nepraktičnimi paličastimi termometri lahko bimetalni termometer izdelamo z manjšimi zunanjimi gabariti. Imajo tudi manjše število gibljivih delov ter so podobno kot paličastni zelo robustni in cenovno ugodni.

Najpogostejše izvedbe bimetalnih termometrov kaže slika 3.

Slika 3: Izvedbe bimetalnih termometrov

Izvedbi a in b srečamo pri temperaturnih stikalih (termična nadtokovna zaščita) ter za temperaturno komenzacijo v mehanskih instrumentih. Rešitvi c in d sta vsled njunega velika odklona primerni za direkten pogon merilnega kazalca (slika 4).

Slika 4: Bimetalni trak z Bourdon-ovo cevjo

Ne glede na izvedbo je en konec bimetalnega traku vedno fiksno pritrjen, medtem ko je drugi prosto gibljiv. Nanj je direktno ali preko reduktorja pritrjen kazalec instrumenta. Prav zaradi takšne zasnove so bimetalni termometri uporabni predvsem za lokalno merjenje in prikaz, saj bi prenos merilne informacije (kot zasuka) zahteval prevelike konstrukcijske posege in z njim povezane stroške.

Merilno območje sega od -50 do 600°C. Pri zadostnem staranju bimetalnega traku je slednji termično stabilen do 500°C. Temperaturna prekoračitev (do 600) je posledično dopustna zgolj kratkotrajno. Relativni pogrešek termometra znaša med $\pm 1\%$ in $\pm 3\%$, medtem ko moramo pri širšem temperaturnem razponu računati na dodatne pogreške vsled nelinearne odvisnosti razteznostnega koeficienta. Zaradi velike površine (zlasti pri spiralni izvedbi) bimetalnega traku je odziv takšnega termometra relativno hiter, zato ga pogosto srečamo v klimatski tehniki v obliki bimetalnega termostata (slika 5).

Bimetalni termostat je vezan zaporedno z grelom, katerega toplotnemu toku je izpostavljen.

Slika 5: Bimetalni termostat

Bimetalni trak X je izpostavljen toplotnemu toku. V poziciji, ki jo kaže slika 5, so kontakti sklenjeni, zato je grelo vklopljeno. Ko temperatura naraste nad nastavljeno (nastavljeno z vijakom Y), se bimetalni trak ukrivi. Ker se kontakta razkleneta, se gretje izključi, ko pa temperatura pade pod nastavljeno, se kontakta znova skleneta in gretje se znova vključi. Z vrtenjem vijaka, na katerem je označena temperaturna skala, lahko določimo, pri kateri vrednosti naj se kontakta razkleneta. Ta kontakt se dotika izoliranega valja na kovinski ploščici Y. Če hočemo imeti v prostoru višjo temperaturo, moramo kovinsko ploščico Y premakniti z vijakom bolj v levo. Zaradi tega premika se bo morala potem bimetalna ploščica X bolj upogniti, da se bosta kontakta razklenila, to pa se bo zgodilo pri višji temperaturi.

9.1.1. Termometri na osnovi raztezanja tekočin

<u>Termometri s tekočino v steklu</u> (liguid in glass thermometer)

Pri tem termometru izkoriščamo temperaturno pogojeno raztezanje tekočinskega stolpca. Osnovo termometra tvori zbirna posoda ali cilinder, kjer se najaha tekočina (slika 6). Posoda se nadaljuje v cilindrično oblikovano kapilaro, vzdolž katere je pritrjeno temperaturno merilo. Vrh kapilare je razširjen in služi kot ekspanzijska posoda v primeru, da prekoračimo temperaturno merilno območje. Ko termometer segrejemo, se tekočina razteza in dviga po cevki navzgor. Nad gladino tekočine je vakuum ali pa je prostor zapolnjen s plinom, ki se stisne, ko se tekočina dviga po cevki navzgor. Kot polnilo kapilare uporabljamo različne tekočine, ki jih v grobem razdelimo, glede na to ali omočijo steno kapilare (organske) ali pač ne (živo srebro).

Tabela 2:

polnilo	temper. območje	robni pogoji
izopentan	-195 do +35°C	
normalpentan	-130 do +35°C	
alkohol	-110 do +210°C	
toluen	-90 do +110°C	
živo srebro-talij	-60 do +30°C	
živo srebro	-30 do +150°C	vakuum
živo srebro	-30 do +630°C	pod tlakom
živo srebro	-30 do +1000°C	pod tlakom, v kremenovem steklu

Tekočine, ki omočijo steno kapilare, povzročijo pri zmanjšanju temperature dodatni pogrešek. Organske tekočine moramo obarvati, s čimer olajšamo odčitavanje višine tekočinskega stolpca.

Slika 6: Termometer s tekočinskim stolpcem

Raztezek tekočinskega stolpca je premosorazmeren spremembi temperature in volumskemu razteznostnemu koeficientu β

$$\Delta V = \beta \cdot V \cdot \Delta T$$
 oziroma $V_T = V_0 (1 + \beta \cdot T)$.

Volumna V_T in V_0 sta volumna pri pripadajoči temperaturi, t.j. pri temperaturi T [°C] in 0°C. Koeficint β je približno trikrat večji od razteznostnega koeficienata α ter je tudi temperaturno odvisen $\beta = f(T)$.

Čeprav stekleni termometri razen specialnih izvedb niso prav točni, jih uporabljamo takorekoč povsod. Še najpogosteje jih srečamo v laboratorijih, medtem ko so jih v industriji izrinili ostali termometri. Vzrok temu je želja po daljinskem odčitavanju oziroma prenosu merilne informacije.

Iz tabela 2 je razvidno, da so za merjenje nizkih temperatur (pod -60°C) primerne zgolj sintetične tekočine, ki pa v splošnem vodijo k večjemu pogrešku meritve. Pravtako je pri nizkih temperaturah opazen vpliv zmanjšane viskoznosti tekočine. Pri visokih temperaturah moramo nasprotno preprečiti izparevanje tekočine. Pri živem srebru (nad 150°C) slednje preprečimo s tem, da prostor nad gladino zapolnemo z inertnim plinom pod visokim tlakom (100 bar).

Navkljub enostavni sestavi in enostavnemu delovanju steklenih termometrov moramo pri rokovanju in merjenju vseeno biti pazljivi na:

homogenost tekočinskega stolpca (preprečiti zračne mehurčke, ali tvorjenje kapljic vzdolž kapilare),

skrbno vgradnjo s čim manjšim odvodom toplote,

pogrešek odčitavanja zaradi paralakse,

steklo termometra mora biti skrbno starano, da ostane kasneje stabilno. Torej, da je raztezek steklene kapilare zanemarljiv,

vpliv zunanjega tlaka na raztezek steklene kapilare (pod 0,2 K/bar).

Termometri s tekočino v kovinski vzmeti (*liguid in metal thermometer*)

Ti termometri delujejo na istem principu kot prejšnja vrsta termometrov. Sestavljeni so iz kovinskega rezervoarja tekočine (živo srebro, alkohol), ki se nadaljuje v prenosno kapilaro ter v upogljivo kapilarno cevko (slika 7).

Slika 7: Dve izvedbi termometra s tekočino v upogljivi kapilarni cevki (Bourdonovi cevi)

Za razliko od <u>termometrov s tekočino v steklu</u> tu temperatura ni merjena z odčitavanjem tekočine v kapilarni cevki, ampak je ta cevka povezana z Bourdon-ovim merilnim inštrumentom. Ko pride do raztezanja tekočine zaradi povišanja temperature, se Bourdon-ova cevka rahlo poravna. Preko mehanskega mehanizma se raztezek prenese in ojači, ki zasuka kazalec merilnega instrumenta (slika 8).

Slika 8: Izled termometra z Bourdonovo cevjo

Termometri so robustni in takorekoč ne zahtevajo nikakršnega vzdrževanja. Prenos merilne informacije omogočajo zgolj na krajše razdalje (do 60 m), pri čemer pa velja omeniti, da moč vzmetnega mehanizma zadošča za direktno krmiljenje raznih mehanskih izvršilnih členov (klimatske in ogrevalne naprave).

Kovinski rezervoar, ki je najpogosteje napolnjen z živim srebrom ali z organsko snovjo toluol, je relativno velik, zato je časovni odziv takšnega termometra počasen. Merilno območje znaša med -30°C in 600°C (živo srebro, pod tlakom do 150 bar) oziroma med -90°C in 260°C (toluol, pod tlakom do 50 bar). Pogrešek je relativno velik in znaša tudi do 2% na merilno območje.

9.1.2. Termometri na osnovi raztezanja plinov

Ti termometri so po izgledu in delovanju podobni tekočinskim termometrom, s to razliko, da se v kapilari nahaja inertni plin (helij, dušik) pod visokim tlakom. Primerni so za merjenje temperature v širokem območju, praktično od absolutne ničle naprej (dušik: -147°C, helij: -268°C), zgornja temperatura znaša približno 500°C. Zaradi kompleksnejše izvedbe (trdnost, tesnost) in dražjih materialov pa jih pogosteje srečujemo le v specializiranih raziskovalnih laboratorijih.

9.2. Električni kontaktni termometri

Glavna pomanjkljivost mehanskih termometrov je omejena sposobnost prenosa merilne informacije preko večjih razdalj. S slednjim nimamo nikakršnih težav, ob nekoliko večjih stroških, pri električnih kontaktnih termometrih, kjer se temperatura meri posredno preko spremembe električne upornosti senzorja. Razlikujemo med uporovnimi termometri na osnovi kovin, na osnovi polprevodnikov ter termočleni.

9.2.1 Uporovni termometri na osnovi kovin

Upornost kovin se spreminja v odvisnosti od temperature, kar v večini primerov prištevamo med slabosti (govorimo o motilnem vplivu), medtem ko pri uporovnem temperaturnem senzorju slednjo lastnost uporabimo za posredno merjenje temperature. Vzrok tej temperaturni odvisnosti je koncentracija prostih elektronov, ki narašča z naraščajočo temperaturo

$$R_{\mathcal{G}} = R_0 (1 + \alpha (\mathcal{G} - \mathcal{G}_0) + \beta (\mathcal{G} - \mathcal{G}_0)^2).$$

Za manjše spremembe temperature uporabljamo zgolj linearno odvisnost

$$R_{\mathcal{G}} = R_0 (1 + \alpha (\mathcal{G} - \mathcal{G}_0)),$$

kjer je:

 R_0upornost prevodnika v ohmih pri temperaturi \mathcal{G}_0 ,

 R_9 upornost prevodnika v ohmih pri temperaturi \mathcal{G} ,

α.....temperaturni koeficient upornosti materiala.

α in β... kalibracijska koeficienta.

Kalibracijska koeficienta α in β sta odvisna od dotične kovine in njene čistosti. Prednost kovinskih uporovnih termometrov RTD (*resistance temperature device*) je v njihovi linearni spremembi upornosti v odvisnosti od temperature. Najpogosteje uporabljamo:

- platina-Pt (visoka cena, velika linearnost, v praksi je najbolj zastopan),
- tangsten (highly linear),

baker (majhno temperaturno območje),

nikelj-Ni (nizke temperature, nizka cena, nelinearnost),

zlitine niklja (nizke temperature, nizka cena).

Od naštetih materialov se najpogosteje uporablja platina, saj jo lahko relativno enostavno oblikujemo, poleg tega pa je mehansko in elekrično stabilna. Merilni element izdelan iz platine označujemo kot npr. Pt100 senzor, ki ima pri referenčni temperaturi 0° C nazivno upornost 100Ω . Njeno karakteristiko kaže slika 9.

Slika 9: Upornost senzorja Pt100 in Ni100 v odvisnosti od temperature

Baker se v temperaturnih tipalih ne uporablja. Kljub temu ima v elektrotehniki posebno mesto, saj je možno posredno meriti temperaturo raznih električnih strojev, v katerih so nameščena navitja iz bakrene žice. V tem primeru leži uporabno temperaturno območje med -50°C in 150°C. V primerjavi s platino ima temperaturno tipalo iz niklja ožje temperaturno območje in sicer med -60°C in180°C (platina: med -200°C in 500°C), zaradi česar ima v industrijskem okolju platina večji pomen.

Slika 10: Tipične izvedbe Pt100 senzorja ter pripadajoče prednosti in slabosti a) platinasta žica navita na stekleno telo ter obdan v staljeno steklo b) platinasta žica umeščena v keramično telo c) tankoslojni senzor (0,5 do 2µm debel sloj platine naparjen v meandrasti obliki)

Tipične izvedbe Pt100 senzorja kaže slika 10. Nazivne upornosti Pt senzorjev so kot smo že omenili definirane pri 0°C, vendar nazivne vrednosti za razliko od nazivnih vrednosti termočlenov niso mednarodno usklajene. Najpogostejši pogreški teh senzorjev so povezani z neusklajenima mehanskima raztezkoma osnovnega uporovnega materiala in nosilnega telesa,

kar vodi k plastični ali merjenja in čim manjši drugemu.	elastični deform pogrešek vsled l	aciji senzorja. D nistereze, morata	Da dosežemo čim a biti oba materia	večjo ponovljivost ala prilagojena drug

9.2.2 Uporovni termometri na osnovi Si

Polprevodniški uporovni senzorji temperature izkoriščajo enak fizikalni efekt kot je to slučaj pri Pt senzorju. Bistvena razlika je le v tem, da je temperaturni koeficient upornosti polprevodniškega silicija izrazito nelinearen in odvisen od temperaturnega območja. Vzrok temu leži v specifični upornosti oziroma volumski koncentraciji nosilcev električnega polja, ki je odvisna od temperature kot tudi od stopnje dopiranosti (vsebnost atomov primesi). Večina polprevodniških senzorjev dela zato v temperaturnem področju od -50°C do 150°C, v katerem prevladujejo nosilci električnega naboja, ki so posledica dodanih primesi (področje nasičenja).

Slika 11: Koncentracija prostih nosilcev elektrine v odvisnosti od temperature

Le-ti neposredno vplivajo na specifično upornost materiala ter na temperaturni koeficient, ki je bistveno manjši kot izven področja nasičenja. Kljub temu pa je možno z današnjimi tehnikami izdelati polprevodniški material z želenim temperaturnim koeficientom upornosti, ki je kolikor toliko konstanten v podanem temperaturnem področju.

Za izvedbo najenostavnejšega polprevodniškega senzorja temperature rabimo homogen kos polprevodniškega materiala, ki mu dodamo dve priključni ploskvi z vezicami (slika 12).

Slika 12: a) homogeno Si telo; b) spreading resistance senzor

Ker je ponovljivost izdelave takšnega homogenega telesa nezadostna (odstopanja namreč vplivajo na prevodnost uporovnega senzorja), so ti senzorji pogosteje izdelani s standardnimi polprevodniškimi tehnologijami kot je litografija. Z njo je namreč možno mnogo precizneje

izdelati kontaktne površine s premerom *d*. V angleški literaturi so ti senzorji poimenovani kot *spreading resistance sensors* (slika 12-b), katerih upornost sledi ob predpostavki d<<D

$$R \approx \frac{\rho}{2d}$$
.

Njihova bistvena prednost je hitra in cenovno ugodna izdelava, ki je v mnogočem podobna izdelavi ostalih polprevodniških struktur. Med slabostmi lahko omenilo le njihovo občutljivost na strižne sile, ki zaradi piezouporovnega efekta vplivajo na specifično upornost. Z zalitjem v ustrezno ohišje je možno slednji efekt zmanjšati, a le ob predpostavki, da linearni razteznosti koeficienti uporabljenih materialov čim manj odstopajo.

V primerjavi s Pt senzorji imajo polprevodniški večji temperaturni koeficient upornosti, ki pa ni konstanten v delovnem temperaturnem področju. Zato se moramo pogosto zateči k linearizaciji upornosti senzorja, ki jo izvedemo tako, da k senzorju vežemo vzporedno ali zaporedno linearen (temperaturno neodvisen) upor.

Slika 13: Linearizacija Si senzorja

9.2.3 Uporovni termometri na osnovi polprevodniške keramike (termistorji)

NTK upori so temperaturno odvisni upori z visokim negativnim temperaturnim koeficientom upornosti, tipično od -1 do -7 %/K. Izdelani so iz kovinskih oksidov, kot so magnezij, nikelj, krom in pa kobalt.

Slika 14: Simbol in statična *u-i* karakteristika (linearno merilo)

Stacionarno karakteristiko, ki podaja zvezo med tokom in napetostjo na NTK uporu, dobimo tako, da nastavljamo tok in nato počakamo z meritvijo napetosti zadosti dolgo, da se

temperatura in napetost na elementu ne spreminjata več. V bližini izhodišča, kjer so izgubne moči še relativno majhne, se NTK obnaša kot linearen upor. Pri večjem toku in napetosti začne temperatura naraščati, upornost NTK naglo upada in zato navkljub naraščajočemu toku upada tudi napetost na elementu, dobimo področje negativne diferencialne upornosti. Pogosto podajo proizvajalci vzdolž statične krivulje pripadajoče povišanje temperature elementa nad sobno temperaturo. Pri zelo visokih temperaturah začne upornost ponovno naraščati zaradi upadanja gibljivosti nosilcev.

Materiali, ki se uporabljajo za izdelavo NTK uporov, so po svoji sestavi zmesi kovinskih oksidov, torej dobri izolatorji, ki jih z dodatkom ustreznih atomov primesi lahko pretvorimo v polprevodniške keramike. Proizvajalci temperaturno odvisnost upornosti podajajo z dvema konstantama A in B v obliki

$$R(T) = Ae^{\frac{B}{T}}.$$

Konstanta A je določena predvsem z geometrijo in koncentracijo dodanih primesi. Konstanta B je določena z osnovnim materialom in ji zato pravijo snovna konstanta, ki se giblje v razponu od 2000K do 5000K.

Slika 15: Upornost v odvisnosti od temperature (parameter snovna konstanta B)

<u>Temperaturni koeficient upornosti</u> NTK upora najenostavneje izračunamo z logaritmiranjem gornje enačbe.

$$TK_R = \frac{1}{R} \frac{dR}{dT} = \frac{d \ln R}{dT} = -\frac{B}{T^2}$$

Podobno kot Si uporovne senzorje moramo tudi karakteristiko termistorjev linearizirati. Če NTK termistorju vzporedno vežemo linearen upor z upornostjo R_P , bo temperaturni koeficient vzporedno vezanih uporov enak

$$\frac{dR}{dT} = -\frac{R_T}{\left(1 + \frac{R_T}{R_P}\right)^2} \cdot \frac{B}{T^2} \ .$$

Iz izraza je razvidno, da z linearizacijo zmanjšujemo temperaturni koeficient senzorja.

Slika 16: Linearizacija NTK upora (R_T) in elektronsko vezje za posredno merjenje temperature s pripadajočo karakteristiko $U_L = f(T)$

Zaradi morebitne mehanske poškodbe in večje kemične obstojnosti, so uporovni senzorji temperature pogosto zaščiteni z raznimi prevlekami (slika 17), ki pa imajo to slabost, da občutno povečajo toplotno maso in povečajo odzivni čas senzorja.

Slika 17: Zaščita uporovne plasti senzorja zaradi večje mehanske robustnosti

Ker izmerimo temperaturo pri opisananih uporovnih senzorjih posredno prek izmerjene upornosti, lahko merjeni tok povzroči pogrešek zaradi padca napetosti na priključnih vezeh (slika 18) kot tudi zaradi samoogrevanja senzorja.

Slika 18: Dvožilni priklop merilnega upora (pogrešek nastopi zaradi padca napetosti na priključnih vezeh in zaradi njihovega temperaturnega koeficienta)

Zato raje uporabimo eno izmed rešitev, ki jih kaže slika 19.

Slika 19: a) 4-žilni priklop senzorja z vsiljenim tokom; b) 4-žilni priklop senzorja v Wheatstonov merilni mostič (slabost: temperaturni koeficient upornosti preostalih treh uporov mora biti izbran skladno z R_T); c) 3-žilni priklop senzorja (slabost: enako kot pri rešitvi b, prednost: manjše število merilnih vezi)

9.2.4 Termoelement

Pojav termonapetosti in zasnovo termometra s termoelementom je prvič opisal Thomas Johann SEEBECK (1770 ... 1831) leta 1821, kar nam pove, da je termoelement veliko starejši od dinamo-stroja (1861), telefona (1876) in žarnice (1879). Termoelement je bil že zgodaj vpeljan v merilno prakso. Tako je leta 1885 H. L. Chatelier vpeljal uporabo termoelementa platina/rodij - platina. Ta termoelement uporabljamo že več kot celo stoletje z nespremenjeno sestavo (pozitivni pol je sestavljen iz 90% platine in 10% rodija, negativni pa iz čiste platine).

In kaj je Seebeck ugotovil? Opazoval je dve žici iz različnih kovin, na primer iz železa in bakra (slika 20), ki ju je povezal na prostih koncih. Pri tem imata stični mesti temperaturo T_1 in T_2 .

Slika 20: Termospoj železa in bakra

Seebeck je segreval eno stično mesto (na primer T_1), drugo pa je imelo temperaturo okolja (T_2). Ugotovil je, da v tako sklenjenem tokokrogu steče tok, in sicer od bakra proti železu. Njegove raziskave termoelektričnega toka so pokazale, da dobimo pri različnih materialih različne termoelektrične toke oziroma napetosti. Upoštevajoč smer toka je sestavil termopotencialno tabela 3.

Tabela 3: Termopotencialna tabela materialov

Bi - Ni - Co - Pd - Pt - U - Cu - Mn - Ti - Hg - Pb - Sn - Cr - Mo - Rh - Ir - Au - Ag - Zn - W - Cd - Fe - As - Sb - Te.

Če stični mesti s slika 20 sestavimo iz dveh poljubnih materialov termopotencialne tabele in eno stično mesto segrevamo, steče tok v tokokrogu v smeri od kovine, ki ima višje mesto v tabeli, proti kovini, ki ima nižje mesto v tabeli. Ponavadi podajamo termonapetosti tako, da en material, ki ga pogosto uporabljamo za izvedbo termoelementa, uporabimo kot primerjalni material (baker, platina), kot primerjalno temperaturo pa $T_1 = 0$ °C. Za temperaturo drugega merilnega stika izberemo $T_2 = 100$ °C, torej podajamo vrednosti za $\Delta T = 100$ K.

Električni tokokrog s slika 20 poznamo kot termostik, električna napetost, ki se pri tem ustvari, pa kot termoelektrično napetost ali krajše termonapetost. Poznejše raziskave pojava termoelektrične napetosti so pokazale, da ima ta dejansko dva vzroka: **Peltierov efekt in Thomsonov efekt**. Delne termoelektrične napetosti, pridobljene po teh efektih, so dobile ime Peltierova in Thomsonova termonapetost. Peltierova termonapetost nastane zaradi potencialne razlike na stičnem mestu dveh kovin, ki sta na različnih temperaturah, Thomsonova termonapetost pa zaradi potencialne razlike v delu vodnika, vzdolž katerega obstaja gradient temperature. (Potencialna razlika je torej tudi na homogenem vodniku, vzdolž katerega je prisotna temperaturna razlika).

Iz dosedanjih pojasnil lahko ugotovimo zelo pomembno lastnost termočlena: **Termoelement** meri razliko temperatur med merilnim in primerjalnim stičnim mestom $\Delta T = T_2 - T_1$. Za detajlno analizo glej pripadajočo priloga na koncu tega poglavja.

To pomeni, da moramo za merjenje poznati temperaturo hladnega spoja T_2 ! Če želimo pomeriti omenjeno temperaturno razliko oziroma razliko napetosti, moramo tokokrog s slika 20 prekiniti in nanj priključiti voltmeter. Tako pridemo do naprave, prikazane na slika 21, ki jo imenujemo termoelement.

Slika 21: Osnovna zgradba termočlena

Termoelement je sestavljen iz dveh žic, znanih kot "termožici" (iz različnih materialov), ki sta na enem koncu zavarjeni. To mesto poznamo kot "vroči" konec, torej tisto stično mesto, ki ima merilno temperaturo (T_1). Zaradi tega zanj bolj upravičeno uporabljamo oznako "merilni konec" ali "merilno stično mesto". Drugi odprti konec termoelementa je namenjen priključitvi merilnika napetosti. Ta del termoelementa imenujemo "hladni konec" ali boljše "primerjalno merilno mesto", ki ima neko primerjalno temperaturo (T_2).

Voltmeter s priključnimi žicami ustvari dva dodatna termična člena kot to kaže slika 22.

Termočlena, ki nastaneta na obeh priključnih sponkah, sta v strokovni literaturi označena kot parazitna. Za splošno obravnavo razmer v merilnem tokokrogu uporabimo za izhodišče vezje treh različnih materialov A, B in C kot je to pokazano na sliki 6. Vsota napetosti tokokroga je:

$$U_2 + U_1 + U_3 - U = 0$$

pri čemer lahko ob upoštevanju priloge, če kot primerjalni potencial izberemo potencial bakra (Cu), zapišemo posamezne napetosti:

$$U_2 = k_{CA} * T_2 = (k_{CCu} - k_{ACu}) * T_2$$

 $U_1 = k_{AB} * T_1 = (k_{ACu} - k_{BCu}) * T_1$
 $U_3 = k_{BC} * T_3 = (k_{BCu} - k_{CCu}) * T_3$

ter po uvrstitvi zadnjih vrednosti in ureditvi:

$$U = U_2 + U_1 + U_3 = k_{CCu}(T_2 - T_3) + k_{ACu}(T_1 - T_2) + k_{BCu}(T_3 - T_1)$$

V primeru, ko sta temperaturi stičnih točk II in III enaki, ko je torej $T_2 = T_3 = T_0$.

postane vrednost $(T_2 - T_3) = 0$ in dobi zgornja enačba obliko:

$$U = k_{ACu} * (T_1 - T_0) + k_{BCu} * (T_0 - T_1) = k_{ACu} * T_1 - k_{BCu} * T_1 - k_{ACu} * T_0 + k_{BCu} * T_0 = (k_{ACu} - k_{BCu}) * T_1 - (k_{ACu} - k_{BCu}) * T_0 = k_{AB} * (T_1 - T_0)$$

V primeru, če želimo pomeriti absolutno temperaturo, moramo poznati temperaturo referenčnega spoja. Najenostavneje je to realizirati tako, da spojno mesto, kjer so priključne sponke potopimo v ledeno kopel. Ugodnejšo rešitev, kjer spojke niso izpostavljene vlagi, kaže spodnja slika.

Slika 23: Merilni sestav za merjenje absolutne temperature toplega spoja

V ta namen prvemu termočlenu dodamo še enega, katega spojno mesto potopimo v ledeno kopel, ki tvori referenčni spoj s temperaturo 0°C. Prikazani način je v praksi zelo dobrodošel, saj so vse tabele (izdaja jih NIST- National Institute of Standards and Technology) termičnih napetosti izražene glede na referenčno temperaturo 0°C. Priključni spojki ne tvorita termočlena, saj sta oba spoja sestavljena iz enakih kovih, pri čemer se spoja nahajata tudi na isti temperaturi.

V praksi je takšna rešitev neekonomična in nerodna za vzdrževanje, zato pogosteje uporabljamo vezavo s slika 24. Odčitek merilnega instrumenta je tedaj premosorazmeren temperaturni razliki, zato moramo, če želimo pomeriti absolutno vrednost temperature na vroči spojki, izmerjenemu odčitku prišteti še vrednost, ki je premosorazmerna referenčni temperaturi na kateri se nahajata priključni spojki. Omenjeni postopek imenujemo kalibracija ničelne točke (Cold Junction Compensation).

Primerjalno mesto z uporabo integriranih vezij

Pri posebnih integriranih vezjih lahko spremembo primerjalne temperature T_0 kompenziramo na nivoju osnovne termoelektrične napetosti termoelementa ali na nivoju ojačene termoelektrične napetosti, saj s takimi vezji ponavadi hkrati kompenziramo, ojačimo, zaščitimo, itd. Z ojačanjem pripeljemo termonapetost na vrednosti, ki so dobro merljive in niso več tako občutljive na motnje (na primer 10 mV/K).

Kot primer za obe rešitvi si oglejmo vezja za termoelement Fe-CuNi, ki ima srednjo vrednost temperaturnega količnika $51.7 \mu \text{ V} / \text{K}$ (Tabela 2).

V drugem primeru, torej pri kompenzaciji po ojačenju, moramo termoelektrično napetost ojačati na 10 m V / K, kar pomeni, da je potrebno uporabiti ojačevalnik s faktorjem ojačenja:

$$k = \frac{10 \ m \ V \ / \ K}{51,7 \cdot 10^{-3} \ m \ V \ / \ K} = 193$$

Primerjalna temperatura mora biti prišteta z enako občutljivostjo $10\ m\ V\ /\ K$. Na sliki 13 je predstavljen primer take rešitve.

Slika 13: Primer kompenzacije spremembe primerjalne temperature T₀ po ojačenju termoelektrične napetosti (termoelement Fe - CuNi)

Kot ojačevalnik je uporabljen operacijski ojačevalnik OP 77, ki ima majhen drift. Za izvedbo opisane rešitve so na tržišču serijsko izdelani temperaturni senzorji s Celsiusovo ničelno točko (primer LM 35 proizvajalca "National" ali LT 1025 proizvajalca "Linear Technology").

Prvi način s kompenzacijo vpliva spremembe T₀ pred ojačenjem najpogosteje realiziramo z uporabo posebnih integriranih vezij za merjenja s termoelementi.

Kot primer lahko navedemo temu namenjena znana vezja proizvajalca "Analog Devices" serije AD 594 ... AD 597. Pri tem so vezja AD 594 in AD 596 umerjena za termoelemente tipa J (Fe-CuNi) in vezja AD 595 in AD 597 za termoelemente tipa K (NiCr-Ni). Pri takih vezjih priključimo žice termoelementa neposredno na vezje. Princip vezja kaže slika 14 za termoelement Fe-CuNi in vezje AD 594.

Slika 14. Primer kompenzacije spremembe primerjalne temperature T₀ pred ojačenjem (termoelement Fe-CuNi)

Pri tem izhajamo iz domneve, da je temperatura silicijevih kristalov enaka temperaturi priključnih sponk. Izhodna napetost je sedaj:

$$U = 51,7 (\mu V/K) * T_2 * 193 = 10 (\mu V/K) * T_2.$$

Vezje deluje kot tranzistorski temperaturni senzor s Celsiusovo ničelno (primerjalno) točko (temperaturo).

	NIST Polynomial Coefficients						
	Type E	Type J	Туре К	Type R	Type S	Type T	
	Nickel-10% Chromium(+) vs. Constantan(-)	Iron(+) vs. Constantan(-)	Nickel-10% Chromium(+) vs. Nickel-5%(-) (Aluminum Silicon)	Platinum-13% Rhodium(+) vs. Platinum(-)	Platinum-10% Rhodium(+) vs. Platinum(-)	Copper(+) vs. Constantan(-)	
	-100°C to 1000°C ±0.5°C 9th order	0°C to 760°C ±1°C 5th order	0°C to 1370°C ±0.7°C 8th order	0°C to 1000°C ±0.5°C 8th order	0°C to 1750°C ±1°C 9th order	-160°C to 400°C ±0.5°C 7th order	
a ₀	0.104967248	-0.048868252	0.226584602	0.263632917	0.927763167	0.100860910	
a ₁	17189.45282	19873.14503	24152.10900	179075.491	169526.5150	25727.94369	
a ₂	-282639.0850	-218614.5353	67233.4248	-48840341.37	-31568363.94	-767345.8295	
a_3	12695339.5	11569199.78	2210340.682	1.90002E + 10	8990730663	78025595.81	
a_4	-448703084.6	-264917531.4	-860963914.9	-4.82704E + 12	-1.63565E + 12	-9247486589	
a_5	1.10866E + 10	2018441314	4.83506E + 10	7.62091E + 14	1.88027E + 14	6.97688E + 11	
a ₆	-1.76807E + 11		-1.18452E + 12	-7.20026E + 16	-1.37241E + 16	-2.66192E + 13	
a ₇	1.71842E + 12		1.38690E + 13	3.71496E + 18	6.17501E + 17	3.94078E + 14	
a ₈	-9.19278E + 12		-6.33708E + 13	-8.03104E + 19	-1.56105E + 19		
a ₉	2.06132E + 13				1.69535E + 20		

Temperature conversion equation: $T = a_0 + a_1x + a_2x^2 + ... + a_nx^2$ Nested polynomial form: $T = a_0 + x(a_1 + x(a_2 + x(a_3 + x(a_4 + a_5x))))$ (5th order)

- Copper-Constantan (T Curve). The Copper-Constantan thermocouple, with a positive copper wire and a negative Constantan wire is recommended for use in mildly oxidizing and reducing atmospheres up to 400°C. They are suitable for applications where moisture is present. This alloy is recommended for low temperature work since the homogeneity of the component wires can be maintained better than other base metal wires. Therefore, errors due to the non-homogeneity of wires in zones of temperature gradients is greatly reduced.
- Iron-Constantan (J Curve) The Iron-Constantan thermocouple with a positive iron wire and a negative Constantan wire is recommended for reducing atmospheres. The operating range for this alloy combination is 870°C for the largest wire sizes. Smaller wire sizes should operate in correspondingly lower temperatures.
- Chromel-Alumel (K Curve) The Chromel-Alumel thermocouple, with a positive Chromel wire and a negative Alumel wire, is recommended for use in clean oxidizing atmospheres. The operating range for this alloy is 1260°C for the largest wire sizes. Smaller wires should operate in correspondingly lower temperatures.
- Chromel-Constantan (E Curve) The Chromel-Constantan thermocouple may be used for temperatures up to 870°C in a vacuum or inert, mildly oxidizing or reducing atmosphere. At subzero temperatures, the thermocouple is not subject to corrosion. This thermocouple has the highest emf output of any standard metallic thermocouple.
- Platinum-Rhodium (S and R Curve) Three types of noble-metal thermocouples are in common use. They are:
 - The S curve shows a positive wire of 90% platinum and 10% rhodium used with a negative wire of pure platinum,
 - The R curve indicates a positive wire of 87% platinum and 13% rhodium used with a negative wire of pure platinum, and
 - o (not shown) a positive wire of 70% platinum and 30% rhodium used with a negative wire of 94% platinum and 6% rhodium.

- They have a high resistance to oxidation and corrosion. However, hydrogen, carbon and many metal vapors can contaminate a platinum-rhodium thermocouple.
- The recommended operating range for the platinum-rhodium alloys is 1540°C although temperatures as high as 1780°C can be measured with the Pt-30% Rh vs Pt-6% Rh alloy combination.

Tungsten-Rhenium (C Curve) Three types of tungsten-rhenium thermocouples are in common use for measuring temperatures up to 2760°C. These alloys have inherently poor oxidation resistance and should be used in vacuum, hydrogen or inert atmospheres.

Zgradba termočlena

Za termočlen je značilen spoj dveh kovin, ki je lahko realiziran na enega izmed načinov:

s prepletanjem. Najslabša možnost z nesigurnim spojem.

mehki lot. For low temperature work the thermocouple wires can be joined by soldering, however, soldered junctions limit the maximum temperature that can be measured (usually less than 200 degrees Celsius). Soldering thermocouple wires introduces a third metal. This should not introduce any appreciable error as long as both sides of the junction are the same temperature

varjeni spoj. Welding is the preferred method of connecting junctions. When welding thermocouple wires together, care must be taken to prevent any of

the characteristics of the wire from changing as a result of the welding process. These concerns are complicated by the different composition of the wires being joined. Commercially manufactured thermocouples are typically welded using a capacitance-discharge technique that ensures uniformity

Glede na način vgradnje v zaščitno ohišje delimo termočlene: neozemljene. Spoj se ne dotika ohišja. Na ta način je dosežena električna izolacija na račun večjega odzivnega časa termočlena.

Ozemljene. Termočlen je spojen z ohišjem.

Neizoliran. Boljši odzivni čas, večja izpostavljenost koroziji, mehanskim poškodbam.

UPORABA

Termočlen ima zelo širok spekter uporabe, saj se lahko uporabljajo za merjenje temperature kovin, tekočin in plinov. V industriji se predvsem uporabljajo za merjenje temperature tekočih kovin, za merjenje temperature v talilnih pečeh in celo za merjenje temperature v jedrskih reaktorjih. V medicini se uporabljajo pri operacijah za kontrolo telesne temperature operiranca.

PREDNOSTI IN POMANJKLJIVOSTI

So dokaj poceni in vsestransko uporabni. Lahko se uporabljajo v merilnem območju od 73 K (-200°C) pa vse do 2273 K (2000°C), kjer pa je natančnost pogojena z izbiro materialov.Imajo dokaj hiter odziv na spremembo temperature, a niso tako natančni kot so uporovni termometri. Ena izmed njihovih glavnih prednosti je ta , da se lahko uporabljajo za merjenje temperature zelo majhnih predmetov kot so naprimer polprevodniški elementi. Termočleni so pogosto uporabljeni v skupinah, s čimer povečamo njihovo občutljivost.

Priloga - Osnove termo napetosti¹

Na stičnem mestu I se izoblikuje stična napetost U_1 , ki je po Bolzmannovi porazdelitvi odvisna od vrednosti tam prisotne temperature T_1 in razmerja koncentracije elektronov n_A in n_B obeh kovin:

$$U_1 = \frac{k}{e_0} \quad T_1 \quad \ln \frac{n_A}{n_B} = \left(\frac{k}{e_0} \quad \ln \frac{n_A}{n_B}\right) \cdot T_1$$

Tukaj je: k - Bolzmannova konstanta,

e₀ - elementarni naboj.

Zgornji izraz je mogoče zapisati v obliki:

$$U_1 = k_{AB} * T_1$$

kjer je k AB - termoobčutljivost,

odvisna od uporabljenih materialov na stičnem mestu. Pri kovinskih termoparih ima termoobčutljivost približno vrednost:

$$k_{AB} = \frac{k}{e_0} \cdot \ln \frac{n_A}{n_B} = 86 \left(\frac{\mu V}{K} \right) \cdot \ln \frac{n_A}{n_B}$$

Ustrezno temu lahko zapišemo za stično mesto II na sliki 4:

$$U_2 = k_{BA} * T_2$$

Povzeto po Dali Đongolić, Denis Đongolić, Merjenja temperatur in tlakov

Izhodno napetost vezja s slike 4 dobimo iz: $U_1 + U_2 - U = 0$

Ker je T_1 = T_2 = T, je tudi napetost celotnega vezja U = 0, kar pomeni, da je za enakost temperatur U_1 = - U_2 :

$$k_{AB} * T = - k_{BA} * T$$

in od tod:

$$k_{AB} = -k_{BA}$$
.

Za različne temperature $T_1 \neq T_2$ pa sledi

$$U = U_1 + U_2,$$

kar daje vrednost termične napetosti vezja:

$$U = U_1 + U_2 = k_{AB} (T_1 - T_2)$$

Dobljena termoelektrična napetost je torej odvisna od uporabljenih materialov A in B ter od razlike temperatur $\Delta T = T_1$ - T_2 med stičnima mestoma I in II.