Obliczanie całek $\iint_D f(x,y)\,dx\,dy$, gdzie D=[a,b]x[c,d] złożonymi 2-punktowymi kwadraturami Gaussa-Legendre'a ze względu na każdą zmienną

Dla jednej zmiennej kwadratura Gaussa-Legendre'a przybliża całkę na przedziale [a,b]:

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} w_{i} \cdot f(x_{i}), \text{ gdzie:}$$

- w_i wagi kwadratury (stałe zależne od metody),
- x_i węzły kwadratury (miejsca całkowania wyznaczone jako miejsca zerowe wielomianów Legendre'a),
- n liczba punktów kwadratury.

W przypadku 2-punktowej kwadratury na dowolnym przedziale [a,b] stosuje się transformację liniową w celu przeskalowania funkcji z przedziału [-1,1] na [a,b].

2-punktowa kwadratura Gaussa-Legendre'a przybliża całkę na przedziale [a, b]:

$$\int_a^b f(x) dx \approx \frac{b-a}{2} \cdot (f(x_1) + f(x_2)), \text{ gdzie:}$$

•
$$x_1 = \frac{b+a}{2} - \frac{b-a}{2} \cdot \sqrt{\frac{1}{3}}$$

•
$$x_2 = \frac{b+a}{2} + \frac{b-a}{2} \cdot \sqrt{\frac{1}{3}}$$

• Dla 2-punktowej kwadratury wagi to: $w_1 = w_2 = 1$

Całkę na *D* przybliżamy, jako:

$$\iint\limits_D f(x,y) \, dx \, dy = \int_a^b \left(\int_c^d f(x,y) \, dy \right) dx$$

Stosując 2-punktową kwadraturę Gaussa-Legendre'a najpierw względem y, a potem względem x, otrzymujemy:

$$\iint\limits_{D} f(x,y) \, dx \, dy = \sum_{k=1}^{2} \cdot \frac{b-a}{2} \cdot \sum_{l=1}^{2} \cdot \frac{d-c}{2} \cdot f(x_{1}, x_{2})$$

Podzielmy D = [a, b]x[c, d]

- [a,b] na n_1 podprzedziałów: $[x_i, x_{i+1}]$
- [c,d] na n_2 podprzedziałów: $[yi,yi_{+}]_1$

$$[a,b]x[c,d] = \bigcup_{i,j=1}^{n_1,n_2} [x_i, x_{i+1}]x[yi, y_{i+1}]$$

$$\iint_D f(x,y) \, dx \, dy \approx \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \cdot \frac{x_{i+1} x_i}{2} \cdot \frac{y_{i+1} y_i}{2} \cdot \sum_{k=1}^{2} \sum_{l=1}^{2} f(x_{i,k}, y_{j,l}) \text{,gdzie:}$$

 $x_{i,k},y_{j,l}$ – przeskalowane węzły dla każdego podobszaru

Dla równych
$$\frac{x_{i+1}}{2}$$
, $\frac{y_{i+1}}{2}$, $\frac{y_{i}}{2}$

$$\iint\limits_{D} f(x,y) \, dx \, dy \approx \frac{b-a}{n_1} \cdot \frac{d-c}{n_2} \cdot \frac{1}{4} \cdot \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \sum_{k=1}^{2} \sum_{l=1}^{2} f(x_{i,k}, y_{j,l})$$

Własności Kwadratury Gaussa-Legendre'a:

· Dokładność:

2-punktowa kwadratura Gaussa-Legendre'a jest w pełni dokładna dla wielomianów stopnia co najwyżej 3

Szybka zbieżność:

przy podziale obszaru na wiele podprzedziałów kwadratura szybko przybliża wartość całki nawet dla funkcji innych niż wielomiany stopnia <3

• Efektywność:

Zastosowanie 2-punktowej kwadratury obniża liczbę węzłów, co pozwala obniżyć koszt obliczeń

• Liczenie całek wielowymiarowych:

Metodę łatwo rozszerzyć na inne wymiary, poprzez iteracyjne stosowanie kwadratury dla każdej zmiennej.

Testy poprawności

Testy nazwane są: test1, test2, ..., test8, są one bezargumentowymi funkcjami, które nie zwracają żadnej wartości.

Uruchomienie testu powoduje wyświetlenie opisu testu na ekranie, przeprowadzenie obliczeń oraz porównanie ich z wynikami analitycznymi.

W celu dbania o czytelność ekranu wprowadzony został system, który dba o to, aby nowa treść nie przekraczała 21 linii i 75 kolumn. Po zapełnieniu ekranu program poprosi o naciśnięcie dowolnego klawisza, po czym zacznie działać dalej.

Testy 1-6 sprawdzają działanie programu dla wielomianów kolejnych stopnii.

Test ma na celu sprawdzenie poprawności funkcji podczas obliczania całki podwójnej z funkcji stałej, test losuje wartość funkcji p0, oraz obszar [a,b]x[c,d], liczy na nim całkę w sposób analityczny i porównuje wyniki z wynikami funkcji.

Przykładowe wywołanie testu:

```
Wylosowano: p0 = -3.979798, [a, b] = [-4.453952, 1.291988], [c, d] = [-4.756391, -2.376855] 
->liczenie całki z: f(x, y) = -3.979798 na obszarze [-4.453952, 1.291988] x [-4.756391, -2.376855]
```

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
1	1	-54.4144	-54.4144	0	0.002116s
2	2	-54.4144	-54.4144	0	0.001298s
4	4	-54.4144	-54.4144	0	0.000019s
8	8	-54.4144	-54.4144	0	0.000027s
16	16	-54.4144	-54.4144	0	0.000211s
32	32	-54.4144	-54.4144	0	0.000429s
64	64	-54.4144	-54.4144	0	0.001674s
128	128	-54.4144	-54.4144	0	0.006869s
256	256	-54.4144	-54.4144	0	0.016349s
512	512	-54.4144	-54.4144	0	0.060956s
157	50	-54.4144	-54.4144	0	0.001927s
58	13	-54.4144	-54.4144	0	0.000183s
120	178	-54.4144	-54.4144	0	0.004901s

Test ma na celu sprawdzenie poprawności funkcji podczas obliczania całki podwójnej z wielomianu 1 stopnia, test losuje współczynniki wielomianu p, oraz obszar [a,b]x[c,d], liczy na nim całkę w sposób analityczny i porównuje wyniki z wynikami funkcji.

Przykładowe wywołanie testu:

```
Wylosowano: p = [0.18172, -2.3272, -3.9746]

[a, b] = [-2.449893, -1.392670], [c, d] = [-3.785347, 1.033405]

-> liczenie całki z f(x, y) = -3.974630x + -2.327185y + 0.181718

na obszarze [-2.449893, -1.392670] x [-3.785347, 1.033405]
```

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
1	1	56.14258	56.14258	0	0.001330s
2	2	56.14258	56.14258	0	0.000358s
4	4	56.14258	56.14258	0	0.000016s
8	8	56.14258	56.14258	0	0.000045s
16	16	56.14258	56.14258	0	0.000149s
32	32	56.14258	56.14258	0	0.000385s
64	64	56.14258	56.14258	0	0.001559s
128	128	56.14258	56.14258	0	0.006045s
256	256	56.14258	56.14258	0	0.020191s
512	512	56.14258	56.14258	0	0.075521s
120	187	56.14258	56.14258	0	0.006635s
91	74	56.14258	56.14258	0	0.001991s
153	152	56.14258	56.14258	0	0.006959s

Test ma na celu sprawdzenie poprawności funkcji podczas obliczania całki podwójnej z wielomianu 2 stopnia, test losuje współczynniki wielomianu p, oraz obszar [a,b]x[c,d], liczy na nim całkę w sposób analityczny i porównuje wyniki z wynikami funkcji.

Przykładowe wywołanie testu:

```
Wylosowano: p = [-3.6764, -2.5587, 2.6683, 2.7705, -0.27351, 1.8017] 
[a, b] = [0.852829, 3.678927], [c, d] = [-2.265619, -0.165237] 
-> liczenie całki z f(x, y) = 1.801676x^2 + -0.273514xy + 2.770481y^2 + 2.668321x + -2.558686y + -3.676371 
na obszarze [0.852829, 3.678927] x [-2.265619, -0.165237]
```

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
1	1	129.3634	129.3634	0	0.000366s
2	2	129.3634	129.3634	0	0.000475s
4	4	129.3634	129.3634	0	0.000039s
8	8	129.3634	129.3634	0	0.000033s
16	16	129.3634	129.3634	0	0.000128s
32	32	129.3634	129.3634	0	0.000406s
64	64	129.3634	129.3634	0	0.001632s
128	128	129.3634	129.3634	0	0.006476s
256	256	129.3634	129.3634	0	0.022186s
512	512	129.3634	129.3634	0	0.076156s
92	74	129.3634	129.3634	0	0.002198s
144	43	129.3634	129.3634	0	0.001827s
21	155	129.3634	129.3634	0	0.000958s

Test ma na celu sprawdzenie poprawności funkcji podczas obliczania całki podwójnej z wielomianu 3 stopnia, test losuje współczynniki wielomianu p, oraz obszar [a,b]x[c,d], liczy na nim całkę w sposób analityczny i porównuje wyniki z wynikami funkcji.

Przykładowe wywołanie testu:

na obszarze [-1.842642, 2.434718] x [1.405029, 4.545519]

```
Wylosowano: p = [-0.52968, -3.788, -4.5073, -2.9957, -3.5151, 4.2153, -1.2919, -0.15692, 2.1482, 4.3353] 
[a, b] = [-1.842642, 2.434718], [c, d] = [1.405029, 4.545519] 
-> liczenie całki z f(x, y) = 4.335272x^3 + 2.148202x^2y + -0.156925xy2 + -1.291859y^3 + 4.215350x^2 + -3.515074xy + -2.995654y^2 + -4.507281x + -3.787980y + -0.529679
```

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
1	1	-887.627	-887.627	0	0.000187s
2	2	-887.627	-887.627	0	0.000093s
4	4	-887.627	-887.627	0	0.000033s
8	8	-887.627	-887.627	0	0.000075s
16	16	-887.627	-887.627	0	0.000266s
32	32	-887.627	-887.627	0	0.001096s
64	64	-887.627	-887.627	0	0.004018s
128	128	-887.627	-887.627	0	0.016126s
256	256	-887.627	-887.627	0	0.064612s
512	512	-887.627	-887.627	0	0.255909s
143	162	-887.627	-887.627	0	0.022814s
81	161	-887.627	-887.627	0	0.012774s
106	33	-887.627	-887.627	0	0.003501s

Test ma na celu sprawdzenie poprawności funkcji podczas obliczania całki podwójnej z wielomianu 4 stopnia, test losuje współczynniki wielomianu p, oraz obszar [a,b]x[c,d], liczy na nim całkę w sposób analityczny i porównuje wyniki z wynikami funkcji.

Przykładowe wywołanie testu:

```
Wylosowano: p = [-2.8065, -1.6747, -2.2996, 0.37319, 2.7836, -2.5492, 0.070522, 2.3785, -1.0399, 4.8522, 4.2946, -2.7425, -1.0774, -4.8044, -2.3301, -2.0434, -3.9567, -4.6714, -3.8494, 1.541, -3.7179] [a, b] = [-4.497943, -2.884252], [c, d] = [2.589469, 3.697038] -> liczenie całki z f(x, y) = -3.717938x^5 + 1.541033x^4y + -3.849382x^3y^2 + -4.671406x^2y^3 + -3.956678xy^4 + -2.043420y^5 + -2.330050x^4 + -4.804421x^3y + -1.077421x^2y^2 + -2.742532xy^3 + 4.294644y^4 + 4.852218x^3 + -1.039903x^2y + 2.378489xy^2 + 0.070522y^3 + -2.549211x^2 + 2.783636xy + 0.373186y^2 + -2.299596x + -1.674697y + -2.806504 na obszarze [-4.497943, -2.884252] x [2.589469, 3.697038]
```

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
1	1	9312.744	9317.336	4.59163	0.000861s
2	2	9317.049	9317.336	0.286977	0.001139s
4	4	9317.318	9317.336	0.017936	0.000077s
8	8	9317.334	9317.336	0.001121	0.000296s
16	16	9317.335	9317.336	0.00007	0.001079s
32	32	9317.336	9317.336	0.000004	0.004315s
64	64	9317.336	9317.336	0	0.017245s
128	128	9317.336	9317.336	0	0.046993s
256	256	9317.336	9317.336	0	0.147895s
512	512	9317.336	9317.336	0	0.576651s
112	116	9317.336	9317.336	0	0.029903s
113	94	9317.336	9317.336	0	0.024951s
191	77	9317.336	9317.336	0	0.032096s

Test ma na celu sprawdzenie poprawności funkcji podczas obliczania całki podwójnej z wielomianu 5 stopnia, test losuje współczynniki wielomianu p, oraz obszar [a,b]x[c,d], liczy na nim całkę w sposób analityczny i porównuje wyniki z wynikami funkcji.

Przykładowe wywołanie testu:

```
Wylosowano: p = [-2.4806, -4.2628, 1.1673, -4.7099, 2.6986, -1.7395, -3.3403, -3.6523, 1.471, 0.40135, 0.39871, 3.4754, -3.77, 3.6355, 1.8126, -4.0406, 4.543, 0.79455, -1.1769, -2.8637, -1.8151] 

[a, b] = [-1.580287, 3.840204], [c, d] = [0.530367, 4.743581] 

-> liczenie całki z f(x, y) = -1.815050x^5 + -2.863704x^4y + -1.176946x^3y^2 + 0.794553x^2y^3 + 4.543043xy^4 + -4.040565y^5 + 1.812599x^4 + 3.635539x^3y + -3.769990x^2y^2 + 3.475379xy^3 + 0.398714y^4 + 0.401354x^3 + 1.471037x^2y + -3.652313xy^2 + -3.340342y^3 + -1.739483x^2 + 2.698639xy + -4.709946y^2 + 1.167302x + -4.262767y + -2.480622 

na obszarze [-1.580287, 3.840204] x [0.530367, 4.743581]
```

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
1	1	-33554.6	-37215.1	3660.474	0.000118s
2	2	-36986.3	-37215.1	228.7796	0.00093s
4	4	-37200.8	-37215.1	14.29873	0.000046s
8	8	-37214.2	-37215.1	0.89367	0.000154s
16	16	-37215	-37215.1	0.055854	0.000551s
32	32	-37215.1	-37215.1	0.003491	0.002208s
64	64	-37215.1	-37215.1	0.000218	0.008706s
128	128	-37215.1	-37215.1	0.000014	0.034722s
256	256	-37215.1	-37215.1	0.000001	0.142410s
512	512	-37215.1	-37215.1	0	0.555985s
179	137	-37215.1	-37215.1	0.000007	0.052983s
195	121	-37215.1	-37215.1	0.00001	0.051436s
52	125	-37215.1	-37215.1	0.000247	0.013952s

Test ma na celu sprawdzenie jak funkcja zachowa się w przypadku, gdy jeden z przedziałów ma długość 0, funkcja losuje n1 i n2, a także obszar [a,b]x[c,d], tak, że przynajmniej 1 z przedziałów ma długość 0. W tym teście funkcja może być dowolna, zatem jest to po prostu rand. Funkcja liczy wynik programu i porównuje go z prawidłowym wynikiem, czyli 0.

Przykładowe wywołanie testu:

[a, b] = [3.443230, 3.443230], [c, d] = [-0.540930, 1.001615]

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
191	102	0	0	0	0.006316s

[a, b] = [-4.187217, -4.187217], [c, d] = [2.094974, 3.363836]

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
115	179	0	0	0	0.006587s

[a, b] = [-2.232206, -2.232206], [c, d] = [-4.308678, 2.025979]

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
112	173	0	0	0	0.005855s

[a, b] = [1.299964, 2.541503], [c, d] = [-4.557115, -4.557115]

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
165	38	0	0	0	0.001953s

[a, b] = [-2.328624, 4.903491], [c, d] = [0.759250, 0.759250]

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
22	14	0	0	0	0.000105s

[a, b] = [-0.710218, 1.998716], [c, d] = [2.620937, 2.620937]

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
117	70	0	0	0	0.002640s

[a, b] = [-0.357653, -0.357653], [c, d] = [1.482547, 1.482547]

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
138	75	0	0	0	0.003382s

[a, b] = [3.363777, 3.363777], [c, d] = [3.578772, 3.578772]

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
85	57	0	0	0	0.001521s

[a, b] = [-0.088943, -0.088943], [c, d] = [-2.786634, -2.786634]

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
185	13	0	0	0	0.000780s

Test ma na celu sprawdzenie poprawności funkcji podczas obliczania całki podwójnej z funkcji dobrze przybliżanej wielomianem, test bierze funkcje z listy, liczy jej wartości na obszarze [0,1]x[0,1], oraz porównuje z wartościami analitycznymi.

Przykładowe wywołanie testu:

```
f = sin(x+y)
[a, b] = [0, 1], [c, d] = [0, 1]
```

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
1	1	0.773275	0.773645	0.00037	0.001227s
2	2	0.773622	0.773645	0.000023	0.000284s
4	4	0.773643	0.773645	0.000001	0.000015s
8	8	0.773644	0.773645	0	0.000019s
8	10	0.773644	0.773645	0	0.000101s
6	5	0.773644	0.773645	0	0.000017s

```
f = sin(x)cos(y)
[a, b] = [0, 1], [c, d] = [0, 1]
```

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
1	1	0.386637	0.386822	0.000185	0.000109s
2	2	0.386811	0.386822	0.000011	0.000236s
4	4	0.386822	0.386822	0.000001	0.000038s
8	8	0.386822	0.386822	0	0.000023s
20	7	0.386822	0.386822	0	0.000039s
20	18	0.386822	0.386822	0	0.000117s

```
f = exp(x+y)
[a, b] = [0, 1], [c, d] = [0, 1]
```

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
1	1	2.951168	2.952492	0.001324	0.000119s
2	2	2.952408	2.952492	0.000085	0.000273s
4	4	2.952487	2.952492	0.000005	0.000012s
8	8	2.952492	2.952492	0	0.000021s
6	16	2.952492	2.952492	0.000001	0.000032s
14	13	2.952492	2.952492	0	0.000069s

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
1	1	0.626254	0.626364	0.00011	0.000141s
2	2	0.626358	0.626364	0.000007	0.000281s
4	4	0.626364	0.626364	0	0.000038s
8	8	0.626364	0.626364	0	0.000024s
19	5	0.626364	0.626364	0	0.000038s
14	8	0.626364	0.626364	0	0.000065s

Wnioski

Program realizuje zadaną metodę, w pełni poprawie liczy całki z wielomianów do 3 stopnia, a całki z funkcji dobrze przybliżanych wielomianami liczy z dużą dokładnością.

Program poprawnie liczy wartości, gdy jakiś przedział ma długość 0.

Testy numeryczne

Testy nazwane są: numtest1, numtest2, ..., numtest5, są one bezargumentowymi funkcjami, które nie zwracają żadnej wartości.

Uruchomienie testu powoduje wyświetlenie opisu testu na ekranie, przeprowadzenie obliczeń oraz porównanie ich z wynikami analitycznymi.

W celu dbania o czytelność ekranu wprowadzony został system, który dba o to, aby nowa treść nie przekraczała 21 linii i 75 kolumn. Po zapełnieniu ekranu program poprosi o naciśnięcie dowolnego klawisza, po czym zacznie działać dalej.

Testy badają ciekawe oraz nie oczywiste własności badanej metody.

Celem testu jest sprawdzenie działania złożonych 2-punktowych kwadratur Gaussa-Legendre'a przy obliczaniu funkcji szybko oscylujących na obszarze [0, 1] x [0, 1].

Test dla każdej z wybranych funkcji liczy wartości analityczne oraz wyniki kwadratury dla różnych n1 i n2 i je porównuje.

f = 1000sin(100x)cos(100y), [a, b] = [0, 1], [c, d] = [0, 1]

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
1	1	-174.068	-0.00697	174.061	0.000189s
2	2	-21.2471	-0.00697	21.24014	0.000086s
3	3	-2.77948	-0.00697	2.77251	0.000017s
5	5	-1.79488	-0.00697	1.787909	0.000013s
8	8	-197.27	-0.00697	197.2633	0.000020s
12	12	-0.09101	-0.00697	0.084038	0.000044s
18	18	-0.00046	-0.00697	0.00651	0.000118s
27	27	-0.00599	-0.00697	0.000983	0.000204s
41	41	-0.00683	-0.00697	0.000139	0.000432s
62	62	-0.00695	-0.00697	0.000024	0.000983s
93	93	-0.00697	-0.00697	0.000004	0.002170s
140	140	-0.00697	-0.00697	0.00001	0.004955s
210	210	-0.00697	-0.00697	0	0.010937s
315	315	-0.00697	-0.00697	0	0.024736s
473	473	-0.00697	-0.00697	0	0.055162s

f = 1000sin(100x)sin(100y), [a, b] = [0, 1], [c, d] = [0, 1]

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
1	1	47.32918	0.001896	47.32728	0.000021s
2	2	5.777102	0.001896	5.775206	0.000015s
3	3	0.755743	0.001896	0.753847	0.00007s
5	5	0.488029	0.001896	0.486133	0.000011s
8	8	53.6379	0.001896	53.636	0.000020s
12	12	0.024745	0.001896	0.02285	0.000044s
18	18	0.000125	0.001896	0.00177	0.000093s
27	27	0.001628	0.001896	0.000267	0.000212s
41	41	0.001858	0.001896	0.000038	0.000446s
62	62	0.001889	0.001896	0.000006	0.001002s
93	93	0.001894	0.001896	0.00001	0.002228s
140	140	0.001895	0.001896	0	0.004949s
210	210	0.001896	0.001896	0	0.010923s
315	315	0.001896	0.001896	0	0.024268s
473	473	0.001896	0.001896	0	0.054690s

Celem testu jest sprawdzenie działania złożonych 2-punktowych kwadratur Gaussa-Legendre'a przy obliczaniu funkcji ciężko przybliżalnych wielomianem niskiego stopnia na obszarze $[0, 1] \times [0, 1]$.

Test dla każdej z wybranych funkcji liczy wartości analityczne oraz wyniki kwadratury dla różnych n1 i n2 i je porównuje.

f = 100ln(x*y), [a, b] = [0.01, 1], [c, d] = [0.01, 1]

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
1	1	8.317742	21.20759	12.88985	0.000120s
4	4	15.56526	21.20759	5.642333	0.000261s
16	16	20.24216	21.20759	0.96543	0.000079s
64	64	21.17324	21.20759	0.034356	0.000769s
256	256	21.20733	21.20759	0.000263	0.010139s
1024	1024	21.20759	21.20759	0.00001	0.134177s
4096	4096	21.20759	21.20759	0	2.071434s
18	837	20.81471	21.20759	0.392884	0.001870s
63	257	21.18944	21.20759	0.018156	0.001993s
697	897	21.20759	21.20759	0.000004	0.081330s

f = 1/xy, [a, b] = [0.01, 1], [c, d] = [0.01, 1]

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
1	1	-171.757	-186.902	15.14486	0.000215s
4	4	-184.646	-186.902	2.255809	0.000291s
16	16	-186.742	-186.902	0.159303	0.000104s
64	64	-186.899	-186.902	0.003173	0.001110s
256	256	-186.902	-186.902	0.000019	0.015140s
1024	1024	-186.902	-186.902	0	0.211721s
4096	4096	-186.902	-186.902	0	3.361580s
780	232	-186.902	-186.902	0.000014	0.036064s
385	324	-186.902	-186.902	0.000006	0.025033s
34	601	-186.89	-186.902	0.011307	0.004252s

 $f = x^12y^13, [a, b] = [0.01, 1], [c, d] = [0.01, 1]$

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
1	1	0.000693	0.005495	0.004802	0.000147s
4	4	0.005328	0.005495	0.000166	0.000411s
16	16	0.005494	0.005495	0.000001	0.000244s
64	64	0.005495	0.005495	0	0.003309s
256	256	0.005495	0.005495	0	0.051460s
1024	1024	0.005495	0.005495	0	0.841519s
4096	4096	0.005495	0.005495	0	13.190603s
452	659	0.005495	0.005495	0	0.232957s
862	272	0.005495	0.005495	0	0.183542s
834	298	0.005495	0.005495	0	0.194223s

Celem testu jest sprawdzenie działania złożonych 2-punktowych kwadratur Gaussa-Legendre'a przy obliczaniu funkcji funkcji nieregulnej złożonej ze 100 losowych funkcji stałych na obszarze [0, 1] x [0, 1].

Test losuje funkcje, liczy wartości analityczne oraz wyniki kwadratury dla różnych n1 i n2 i je porównuje.

```
f = f1_matrix(ceil(x*10), ceil(y*10))
[a, b] = [0, 1], [c, d] = [0, 1]
```

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
1	1	0.49759	-0.23114	0.728727	0.001653s
2	2	-0.00223	-0.23114	0.228906	0.001416s
3	3	-0.66263	-0.23114	0.431488	0.000016s
5	5	-0.23114	-0.23114	0	0.000015s
8	8	-0.3668	-0.23114	0.135663	0.000031s
12	12	-0.15813	-0.23114	0.073011	0.000062s
18	18	-0.28756	-0.23114	0.056421	0.000182s
27	27	-0.19697	-0.23114	0.034171	0.000292s
41	41	-0.22809	-0.23114	0.003048	0.000698s
62	62	-0.21592	-0.23114	0.01522	0.001538s
93	93	-0.24157	-0.23114	0.010437	0.002687s
140	140	-0.23114	-0.23114	0	0.006001s
210	210	-0.23114	-0.23114	0	0.013367s
315	315	-0.23114	-0.23114	0	0.031166s
473	473	-0.23317	-0.23114	0.002034	0.068915s
710	710	-0.23114	-0.23114	0	0.153873s
1065	1065	-0.23114	-0.23114	0	0.347554s
1598	1598	-0.23174	-0.23114	0.000601	0.780157s
9	9	-0.23571	-0.23114	0.00457	0.000161s
10	10	-0.23114	-0.23114	0	0.000103s
11	11	-0.21603	-0.23114	0.015104	0.000098s

Celem testu jest sprawdzenie działania złożonych 2-punktowych kwadratur Gaussa-Legendre'a przy obliczaniu funkcji z nieosobliwościami na obszarze [0, 1] x [0, 1].

Test dla każdej z wybranych funkcji liczy wartości analityczne oraz wyniki kwadratury dla różnych n1 i n2 i je porównuje.

f = 1/xy, [a, b] = [0, 1], [c, d] = [0, 1]

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
1	1	9	Inf	Inf	0.000321s
2	2	13.63314	Inf	Inf	0.000416s
4	4	19.2316	Inf	Inf	0.000026s
8	8	25.79143	Inf	Inf	0.000032s
16	16	33.31222	Inf	Inf	0.000130s
32	32	41.79391	Inf	Inf	0.000356s
64	64	51.2365	Inf	Inf	0.001461s
128	128	61.64001	Inf	Inf	0.005400s
256	256	73.00442	Inf	Inf	0.010974s
512	512	85.32973	Inf	Inf	0.032688s
1024	1024	98.61595	Inf	Inf	0.135820s
2048	2048	112.8631	Inf	Inf	0.529858s
435	814	88.03146	Inf	Inf	0.045430s
814	460	88.57356	Inf	Inf	0.049323s
750	145	76.72066	Inf	Inf	0.013622s

 $f = x+y<1 \rightarrow 1/xy; x+y>=1 \rightarrow 1/(1-x)(1-y), [a, b] = [0, 1], [c, d] = [0, 1]$

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
1	1	-3	0	3	0.001569s
2	2	-1.84615	0	1.846154	0.001327s
4	4	-1.09635	0	1.096346	0.000035s
8	8	-0.63482	0	0.634816	0.000123s
16	16	-0.36073	0	0.36073	0.000426s
32	32	-0.20203	0	0.202026	0.001369s
64	64	-0.11184	0	0.111843	0.005491s
128	128	-0.06134	0	0.061337	0.021222s
256	256	-0.03338	0	0.033376	0.082314s
512	512	-0.01804	0	0.018042	0.320227s
1024	1024	-0.0097	0	0.009698	1.270057s
2048	2048	-0.00519	0	0.005187	5.132256s
83	341	0	0	0	0.038292s
903	460	0	0	0	0.512497s
618	386	0	0	0	0.282990s

Celem testu jest sprawdzenie działania złożonych 2-punktowych kwadratur Gaussa-Legendre'a przy obliczaniu funkcji nieparzystej na obszarze [-1, 1] x [-1, 1].

Test liczy wartości analityczne oraz wyniki kwadratury dla różnych n1 i n2 i je porównuje.

f - losowa funkcja nieparzysta [a, b] = [-1, 1], [c, d] = [-1, 1]

n1	n2	Wynik Programu	Poprawny Wynik	Różnica	Czas
1	1	0	0	0	0.000742s
2	2	0	0	0	0.000108s
3	3	0	0	0	0.000024s
5	5	0	0	0	0.000053s
8	8	0	0	0	0.000093s
12	12	0	0	0	0.000201s
18	18	0	0	0	0.000487s
27	27	0	0	0	0.000993s
41	41	0	0	0	0.002335s
62	62	0	0	0	0.005206s
93	93	0	0	0	0.011680s
140	140	0	0	0	0.025299s
46	229	0	0	0	0.013652s
986	123	0	0	0	0.157759s
651	440	0	0	0	0.371186s