Disciplina: Lógica Digital Profa: Sânya Caldeira

CÓDIGOS

Em digital, codificar é processo de estabelecer um grupo de bits (código binário) para representar uma determinada informação (números, letras e etc.). Já conhecemos a codificação em binário puro, que é a representação de um decimal através do seu binário equivalente (conversão de decimal para binário).

Códigos BCD (Binary Coded Decimal: decimal codificado em binário)

Estes tipos de código são dedicados à representação de cada um dos 10 algarismos do sistema decimal. Facilitam a representação binária de um decimal, já que há apenas 10 palavras de código válidas (uma para cada algarismo decimal). Nos códigos BCD mais populares, cada algarismo decimal é representado por 4 bits. Exemplos de códigos BCD de 4 bits:

• BCD 8421 ou BCD natural: pesos 8, 4, 2, 1

BCD 3 em excesso: é o BCD 8421 + 3

BCD 5421: pesos 5, 4, 2, 1

Decimal	В	CD	842	1	BCD 3 em excesso			BCD 5421				
pesos→	8	4	2	1					5	4	2	1
0	0	0	0	0	0	0	1	1	0	0	0	0
1	0	0	0	1	0	1	0	0	0	0	0	1
2	0	0	1	0	0	1	0	1	0	0	1	0
3	0	0	1	1	0	1	1	0	0	0	1	1
4	0	1	0	0	0	1	1	1	0	1	0	0
5	0	1	0	1	1	0	0	0	0	1	0	1
6	0	1	1	0	1	0	0	1	0	1	1	0
7	0	1	1	1	1	0	1	0	0	1	1	1
8	1	0	0	0	1	0	1	1	1	0	1	1
9	1	0	0	1	1	1	0	0	1	1	0	0

Exemplos:

1.	Codifique 129 em: a) Binário puro	b) BCD 8421	c) BCD 3 em excesso
	10000001	000100101001	010001011100

2. Codifique 43,75 em BCD 8421:

01000011,01110101

3. Decodifique 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1, sabendo que está codificado em BCD 8421:

4. Decodifique 0 1 1 0 1 0 0 1 1 0 1 1, sabendo que está codificado em BCD 3 em excesso:

Decodifique 0 1 1 0 1 0 0 1 1 0 1 1, sabendo que está codificado em BCD 8421:

69? Não é possível decodificar a última palavra pois não é um BCD 8421 válido. Disciplina: Lógica Digital Profª: Sânya Caldeira

❖ - Código Gray

É um tipo de código de distância unitária. Também é chamado de código refletido. Não possui pesos. Definição: A distância entre duas palavras binárias é o número de bits diferentes entre as duas, comparandose as mesmas posições.

No código Gray, a distância entre duas palavras adjacentes é sempre igual a 1 (daí o nome código de distância unitária).

Código Gray de 2 bits	Código Gray de 3 bits	Código Gray de 4 bits
(4 palavras de código)	(8 palavras de código)	(16 palavras de código)
0 0 0 <u>1</u> 1 1 1 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Exemplo:

6. Determinados dispositivos digitais comunicam-se em hexadecimal codificado em Gray.Responda:							
a) O código Gray utilizado por esses dispositivos é de quantos bits?	b) Qual é o código para o dado B28 ?	c) Decodifique a mensagem 1 0 1 0 0 0 0 0 1 0 1 1 1 0 0 1					
4 bits (2 ⁴ =16), para poder representar os 16 símbolos hexa.	111000111100	CODE					

Códigos alfanuméricos

Estes tipos de código são dedicados à representação de números, letras, comandos e outros caracteres. O código alfanumérico mais popular é o ASCII. O código Unicode mostra-se uma nova tendência.

Alguns códigos alfanuméricos obsoletos:

- EBCDIC: alguns computadores IBM (8 bits).
- SELECTRIC: máquinas de escrever IBM (7 bits).
- HOLLERITH: cartões perfurados (12 bits).

Código ASCII

O ASCII (American Standart Code for Information Interchange) é um dos códigos mais amplamente utilizados para representar informações textuais. Os caracteres do PC, e nos computadores mais modernos,

Disciplina: Lógica Digital Profa: Sânya Caldeira

ocupam um byte de 8 bits, de forma que pode haver 28, ou seja, 256 caracteres diferentes. A figura abaixo mostra cada um destes caracteres, e os seus códigos numéricos em decimal e respectivo valor em hexadecimal.

Se observarmos mais atentamente para a tabela ASCII, veremos que ela começa com um grupo de caracteres bem estranho (os primeiros 32 caracteres, cujos códigos decimais vão de 0 a 31), seguidos por três colunas bem conhecidas: os dígitos de 0 a 9, as letras maiúsculas e minúsculas do alfabeto, e diversos sinais de pontuação. Estas quatro colunas constituem a primeira metade do conjunto de caracteres do PC, os caracteres ASCII, pois seguem um padrão universal em computadores.

O ASCII propriamente dito são 128 caracteres, com códigos decimais de 0-127. Nosso conjunto de caracteres do PC tem o dobro, incluindo os códigos de 128 até 256. Em geral estes códigos maiores, que compõem a outra metade, são chamados caracteres ASCII estendidos. Estritamente falando, somente na primeira metade, os códigos 0-127, há códigos ASCII, mas ouviremos frequentemente as pessoas usando o termo ASCII como conjunto estendido, ou forma padrão de bits que representa um caractere.

0	00		32	20		64	40	(a)	96	60		128	80	С	160 A	40 á	192 C	0 🗆	224 E0	
1	01		33	21		65	41	Ā	97	61	a	129		ü	161 A		193 C		225 E1	
2	02		34	22		66	42	В	98	62	ь	130		é	162 A		194 C		226 E2	
3	03		35	23		67	43	C	99	63	С	131		â	163 A		195 C		227 E3	
4	04		36		\$	68	44	D	100	64	d	132		ä	164 A		196 C	4 🗆	228 E4	
5	05		37	25		69	45	E	101	65	e	133	85	à	165 A	45 Ñ	197 C	5 🗆	229 E5	
6	06		38	26		70	46	F	102	66	f	134	86	å	166 A	46 ª	198 C	6 🗆	230 E6	
7	07		39	27	•	71	47	G	103	67	g	135	87	ç	167 A	47°	199 C	7 🗆	231 E7	
8	80		40	28		72	48	H	104	68	h	136	88	ê	168 A	3 8 <i>A</i>	200 C	8 🗆	232 E8	
9	09		41	29		73	49	Ι	105	69	i	137	89	ë	169 A	A 9	201 C	9 🗆	233 E9	
10	0A		42	2A		74	4A	J	106		•	138	8A	è	170 A	AA ¬	202 C	A 🗆	234 EA	
11	0B		43	2B		75	4B		107	6B	k	139	8B	ï	171 A	AB ½	203 C	В□	235 EB	
12	0C		44	2C		76	4C			6C		140				AC 1/4	204 C		236 EC	
13	0D	2	45	2D	-	77	4D	M	109	6D	m	141	8D	ì	173 A	AD i	205 C	D 🗆	237 ED	
14	0E	₿	46	2E		78	4E	N	110	6E	n	142	8E	Ä	174 A	AE «	206 C	E□	238 EE	
15	0F		47	2F	/	79	4F	O		6F		143	8F	Å	175 A	AF »	207 C	F□	239 EF	
16	10		48	30	0	80		P	112	70	p	144	90	É	176 E	30 □	208 D	0 🗆	240 F0	
17	11	\blacksquare	49	31	1	81	51	Q	113	71	q	145	91	æ	177 E	31 🗆	209 D	1 🗆	241 F1	
18	12		50	32	2	82	52	R	114	72	r	146	92	Æ	178 E		210 D	2 🗆	242 F2	
19	13		51	33	3	83	53	S		73		147		ô	179 E		211 D		243 F3	
20	14		52		4	84	54	T		74		148			180 E		212 D		244 F4	
21	15	§	53		5	85	55	U		75	u	149		ò	181 E		213 D		245 F5	
22	16		54	36	6	86		V	118		v	150			182 E		214 D		246 F6	
23	17		55	37	7	87		W		77		151			183 E		215 D		247 F7	
24	18		56	38	8	88		X		78		152		ÿ	184 E		216 D		248 F8	
25	19		57		9	89	59			79	-	153				39 □	217 D		249 F9	
26	1A		58	3A		90	5A			7A		154				BA □	218 D		250 FA	
27	1B		59		;	91	5B			7B	{	155		•		3B 🗆	219 D		251 FB	
28	1C		60	3C		92	5C		124		Ĺ	156				BC 🗆	220 D		252 FC	
29	1D		61	3D		93	5D	-		7D	•	157				BD 🗆	221 D		253 FD	
30	1E	▲	62		>	94	5E	^	126		~	158			190 E		222 D		254 FE	
31	1F	▼.	63	3F	?	95	5F	_	127	/F	\cap	159	9F	f	191 I	BF □	223 D	F 🗆	255 FF	

Um grupo de caracteres especiais

A metade ASCII de nosso conjunto de caracteres tem significado e definição que vão além da família PC - é um código universal usado por muitos computadores e outros equipamentos eletrônicos. Os caracteres ASCII estendidos, no entanto, constituem uma outra justificativa. Não há regras para esta metade de 128 a 255, e estes caracteres da figura foram especialmente criados para o PC. Por causa da importância e popularidade do PC.

Os caracteres ASCII estendidos são usados não só pela família PC, mas também foram adotados no conjunto de caracteres de muitos computadores, parentes distantes do PC. Estes caracteres são

UENF

Disciplina: Lógica Digital Profª: Sânya Caldeira

organizados em três grupos principais: o grupo de caracteres estrangeiros, caracteres de desenho e os caracteres científicos.

Caracteres ASCII comuns

Os caracteres convencionais da escrita possuem códigos de 32 a 127. Embora pareça que não há muito a falar sobre estes caracteres há diversos detalhes que podem ser extraídos com o intuito do entendimento. A tabela deixa bem claro que há uma separação entre letras maiúsculas e minúsculas, que **A** não é a mesma coisa que **a**. Então, quando se usa um programa que ordene em ordem alfabética o **a** aparecerá depois que o **A** ou o **Z**, por exemplo.

Os primeiros 32 códigos no conjunto de caracteres ASCII, códigos de 0 a 31, têm um uso especial que não tem nada a ver com a aparência dos caracteres mostrados. Eles são utilizados para funções especiais de impressão e em protocolos de comunicação. Eles podem por exemplo ser utilizados para informar o final de uma linha ou final de uma página, etc. A tabela a seguir mostra estes caracteres de controle e seu significado.

Código	Código	Tecla de	Nome	Descrição	Significado
Decimal	Hexa	Controle			
0	00	^@	NUL	null character	caractere nulo
1	01	^A	SOH	start of header	início de cabeçalho
2	02	^B	STX	start of text	início de texto
3	03	^C	ETX	end of text	fim de texto
5	04	^D	EOT	end of transmission	fim de transmissão
	04	^E	ENQ	enquire	caractere de consulta
6	06	^F	ACK	acknowledge	confirmação
7	07	^G	BEL	bell	alarme ou chamada
8	08	^H	BS	backspace	retrocesso
9	09	^I	HT	horizontal tab	tabulação horizontal
10	0A	^J	LF	line feed	alimentação de linha
11	0B	^K	VT	vertical tab	tabulação vertical
12	0C	^L	FF	form feed (new page)	alimentação de formulário
13	0D	^M	CR	carriage return	retomo do carro
14	0E	^N	SO	shift out	mudança para números
15	0F	^O	SI	shift in	mudança para letras
16	10	^ P	DEL	delete	caractere de supressão
17	11	^Q	DC1	device control 1	controle de dispositivo 1
18	12	^R	DC2	device control 2	controle de dispositivo 2
19	13	^S	DC3	device control 3	controle de dispositivo 3
20	14	^T	DC4	device control 4	controle de dispositivo 4
21	15	^U	NAK	No acknowledge	confirmação negada
22	16	^V	SYN	syncronize	sincronismo
23	17	^W	ETB	end of text block	fim de bloco de texto
24 25	18	^X	CAN	cancel	cancelamento
25	19	^Y	EM	end of medium	fim de meio de dados
26	1A	^Z	SUB	subtstitute	substituição
27	1B	^[ESC	escape	escape, diferenciação
28	1C	^/	FS	file separator	separador de arquivo
29	1D	^]	GS	group separator	separador de grupo
30	1E	^^	RS	record separator	separador de registro
31	1F	^_	US	unit separator	separador de unidade

Disciplina: Lógica Digital Profª: Sânya Caldeira

Exemplo de alguns caracteres codificados em ASCII:

Caractere	ASCII								
Caractere	binário	hexa	decimal						
<enter></enter>	0001101	0D	13						
<esc></esc>	0011011	1B	27						
(0101000	28	40						
*	0101010	2A	42						
0	0110000	30	48						
1	0110001	31	49						
2	0110010	32	50						
Α	1000001	41	65						
В	1000010	42	66						
С	1000011	43	67						

Exemplo:

 Decodifique a mensagem binária a seguir, sebendo que está codificada em ASCII: 1000101 1110011 1110100 1110101 1100100 1100101 0100001

E s t u d e!

❖ - Detecção de erro por paridade

Pode-se anexar um bit de paridade a um código binário, com o objetivo de identificar o aparecimento de erros durante uma troca de dados. O bit de paridade pode ser anexado à esquerda (posição MSB) ou à direita (posição LSB) da palavra digital.

Paridade par: o bit de paridade é anexado à palavra, de modo que o número total de

bits "1" (incluindo o bit de paridade anexado) da palavra seja par.

Paridade ímpar: o bit de paridade é anexado à palavra, de modo que o número total de

bits "1" (incluindo o bit de paridade anexado) da palavra seja *ímpar*.

Exemplos:

8.	a) Caractere "A" em ASCII (em binário):	b) Caractere "A" em ASCII com bit de paridade ímpar na posição MSB:	c) Caractere "A" em ASCII com bit de paridade par na posição MSB:
	1000001	11000001	01000001