Concavidad y Optimización

Abelardo Jordán Liza

Maestría en Matemáticas Aplicadas PUCP

Lima Agosto, 2022

Hiperplanos

Definición

Dados $p \in \mathbb{R}^n \setminus \{0\}$, $\alpha \in \mathbb{R}$, el hiperplano $H(p,\alpha)$ se define como el conjunto

$$H(p,\alpha) := \{ x \in \mathbb{R}^n : \langle p, x \rangle = \alpha \}$$
 (1)

Note que cuando $\alpha=0$, H(p,0) es un subespacio vectorial de \mathbb{R}^n de dimensión n-1 y $x\in H(p,0)$ si y solo si, $x\perp p$. En tal caso, se dice que el p es un vector ortogonal al subespacio vectorial H(0,p) (comúnmente se dice que p es normal a H(p,0).) En general, se dice que el hiperplano $H(p,\alpha)$ es paralelo al subespacio vectorial H(p,0) y que tiene vector normal p.

Semiespacios

Definición

Dado el hiperplano $H(p,\alpha)$, se generan los siguientes subconjuntos:

- (a) $H(p,\alpha)^{\leq}:=\{x\in\mathbb{R}^n:\langle p,x\rangle\leq\alpha\}$ y $H(p,\alpha)^{\geq}:=\{x\in\mathbb{R}^n:\langle p,x\rangle\geq\alpha\}$ que se denominan semiespacios cerrados.
- (b) $H(p,\alpha)^{<} := \{x \in \mathbb{R}^n : \langle p,x \rangle < \alpha \}$ y $H(p,\alpha)^{>} := \{x \in \mathbb{R}^n : \langle p,x \rangle > \alpha \}$ que se denominan semiespacios abiertos.

Las denominaciones cerrado y abierto, a la vez concuerdan con la naturaleza topológica de estos conjuntos.

Nota

Dado el hiperplano $H(p,\alpha)$, éste coincide con $H(tp,t\alpha)$ para cualquier $t\in\mathbb{R}$ no nulo. Particularmente, podemos exigir una representación del hiperplano con un vector normal de norma uno o también si $\alpha\neq 0$ podemos imponer que $\alpha=1$.

Sean C_1, C_2 subconjuntos convexos de los espacios vectoriales E_1 y E_2 respectivamente, entonces $C_1 \times \underline{C_2}$ es un subconjunto convexo de $E_1 \times E_2$. Generalmente, si para cada $i=\overline{1,p},\ C_i$ es un subconjunto convexo del espacio vectorial E_i , entonces $C_1 \times \cdots \times C_p$ es un subconjunto convexo de $E_1 \times \cdots \times E_p$.

Sean C_1, C_2 subconjuntos convexos de los espacios vectoriales E_1 y E_2 respectivamente, entonces $C_1 \times \underline{C_2}$ es un subconjunto convexo de $E_1 \times E_2$. Generalmente, si para cada $i=\overline{1,p},\ C_i$ es un subconjunto convexo del espacio vectorial E_i , entonces $C_1 \times \cdots \times C_p$ es un subconjunto convexo de $E_1 \times \cdots \times E_p$.

Las aplicaciones lineales afines tienen la propiedad de preservar la convexidad de subconjuntos. Formalmente, esto significa lo siguiente:

Proposición

Sean E y F e.v. , $T:E \to F$ una aplicación lineal afín , $C \subset E$ convexo. La imagen T(C) de C respecto a T , es convexo en F .

 $\label{eq:demass} \textit{Además, si } D \textit{ es convexo en } F, \textit{ entonces su imagen inversa respecto a } T,$

 $T^{-1}(D) = \{x \in E : T(x) \in D\}$, es convexo en E.

Sean C_1, C_2 subconjuntos convexos de los espacios vectoriales E_1 y E_2 respectivamente, entonces $C_1 \times \underline{C_2}$ es un subconjunto convexo de $E_1 \times E_2$. Generalmente, si para cada $i = \overline{1,p}, C_i$ es un subconjunto convexo del espacio vectorial E_i , entonces $C_1 \times \cdots \times C_p$ es un subconjunto convexo de $E_1 \times \cdots \times E_p$.

Las aplicaciones lineales afines tienen la propiedad de preservar la convexidad de subconjuntos. Formalmente, esto significa lo siguiente:

Proposición

Sean E y F e.v. , $T:E \to F$ una aplicación lineal afín , $C \subset E$ convexo. La imagen T(C) de C respecto a T, es convexo en F.

Además, si D es convexo en F, entonces su imagen inversa respecto a T, $T^{-1}(D) = \{x \in E : T(x) \in D\}$, es convexo en E.

Ejemplos

- (i) Si C es un conjunto convexo de \mathbb{R}^n y b es un elemento de \mathbb{R}^n , entonces A+b es un conjunto convexo de \mathbb{R}^n .
- (ii) Si $A \subset \mathbb{R}^n$ y $B \subset \mathbb{R}^n$ son convexos, entonces el conjunto $A + B = \{a + b : a \in A, b \in B\}$ es también convexo.
- (iii) Si $C \subset \mathbb{R}^n$ es convexo, entonces los conjuntos $\Pi_i(C)$ (i-ésima proyección) son intervalos en \mathbb{R} .

Conjuntos convexos y relaciones topológicas

En esta parte, centramos nuestro estudio en \mathbb{R}^n no solamente como espacio vectorial, sino también como espacio topológico con la topología inducida por su norma.

Como es usual, denotamos por int(C) y \overline{C} al interior y a la clausura de C, respectivamente.

Proposición

Sean $C\subset \mathbf{R}^n$ convexo, $x\in int(C), y\in C$; entonces $[x,y[\subset int(C).$ Más aun, si $x\in int(C), y\in \overline{C}$ entonces $[x,y[\subset int(C).$

Proposición

Si C es convexo, entonces int(C) y \overline{C} también son conjuntos convexos.

Interior relativo

Note que dado un conjunto convexo C con $int(C) \neq \emptyset$ entonces $aff(C) = \mathbb{R}^n$, no obstante existen conjuntos convexos no vacíos con interior vacío, en tal caso su cápsula afín no es \mathbb{R}^n .

En general dado un conjunto convexo C, implementaremos una topología relativa tomando como referencia el conjunto aff(C).

Definición

Dado un conjunto convexo C , se dice que $x\in aff(C)$ es un punto interior relativo de C , si existe $\delta>0$ tal que

$$(aff(C)) \cap \mathcal{B}_{\delta}(x) \subset C$$

Interior relativo

Note que dado un conjunto convexo C con $int(C) \neq \emptyset$ entonces $aff(C) = \mathbb{R}^n$, no obstante existen conjuntos convexos no vacíos con interior vacío, en tal caso su cápsula afín no es \mathbb{R}^n .

En general dado un conjunto convexo C, implementaremos una topología relativa tomando como referencia el conjunto aff(C).

Definición

Dado un conjunto convexo C , se dice que $x\in aff(C)$ es un punto interior relativo de C , si existe $\delta>0$ tal que

$$(aff(C)) \cap \mathcal{B}_{\delta}(x) \subset C$$

El conjunto de estos puntos se denomina el interior relativo de C, usualmente denotado por ri(C). Note que si C es convexo y no vacío, entonces $ri(C) \neq \emptyset$. La frontera relativa de C, es $\overline{C} \setminus ri(C)$.

Definición

Un subconjunto K de \mathbb{R}^n es un cono, si $\forall \alpha > 0, x \in K$ se cumple $\alpha x \in K$.

Son ejemplos de conos: $\{0\}$ y \mathbb{R}^n son conos triviales no vacíos de \mathbb{R}^n . Los conjuntos $\{(x_1,x_2)\in\mathbb{R}^2:x_1x_2=0\}$ y $\{(x_1,x_2)\in\mathbb{R}^2:x_1x_2\geq0\}$ son conos en \mathbb{R}^2 . Todo subespacio vectorial de \mathbb{R}^n también es un cono.

Definición

Un subconjunto K de \mathbb{R}^n es un cono, si $\forall \alpha > 0, x \in K$ se cumple $\alpha x \in K$.

Son ejemplos de conos: $\{0\}$ y \mathbb{R}^n son conos triviales no vacíos de \mathbb{R}^n . Los conjuntos $\{(x_1,x_2)\in\mathbb{R}^2:x_1x_2=0\}$ y $\{(x_1,x_2)\in\mathbb{R}^2:x_1x_2\geq0\}$ son conos en \mathbb{R}^2 . Todo subespacio vectorial de \mathbb{R}^n también es un cono.

Proposición

- (a) Si C es un cono, entonces \overline{C} e int(C) son también conos.
- (b) Si $\{C_i\}_{i\in\mathcal{I}}$ es una familia de conos en \mathbb{R}^n , entonces $\bigcap_{i\in\mathcal{I}}C_i$ también es un cono.

Definición

Un subconjunto K de \mathbb{R}^n es un cono, si $\forall \alpha > 0, x \in K$ se cumple $\alpha x \in K$.

Son ejemplos de conos: $\{0\}$ y \mathbb{R}^n son conos triviales no vacíos de \mathbb{R}^n . Los conjuntos $\{(x_1,x_2)\in\mathbb{R}^2:x_1x_2=0\}$ y $\{(x_1,x_2)\in\mathbb{R}^2:x_1x_2\geq0\}$ son conos en \mathbb{R}^2 . Todo subespacio vectorial de \mathbb{R}^n también es un cono.

Proposición

- (a) Si C es un cono, entonces \overline{C} e int(C) son también conos.
- (b) Si $\{C_i\}_{i\in\mathcal{I}}$ es una familia de conos en \mathbb{R}^n , entonces $\bigcap_{i\in\mathcal{I}}C_i$ también es un cono.

Cuando se haga referencia a un cono convexo, naturalmente se trata de un cono que es un conjunto convexo.

Definición

Un subconjunto K de \mathbb{R}^n es un cono, si $\forall \alpha > 0, x \in K$ se cumple $\alpha x \in K$.

Son ejemplos de conos: $\{0\}$ y \mathbb{R}^n son conos triviales no vacíos de \mathbb{R}^n . Los conjuntos $\{(x_1,x_2)\in\mathbb{R}^2:x_1x_2=0\}$ y $\{(x_1,x_2)\in\mathbb{R}^2:x_1x_2\geq0\}$ son conos en \mathbb{R}^2 . Todo subespacio vectorial de \mathbb{R}^n también es un cono.

Proposición

- (a) Si C es un cono, entonces \overline{C} e int(C) son también conos.
- (b) Si $\{C_i\}_{i\in\mathcal{I}}$ es una familia de conos en \mathbb{R}^n , entonces $\bigcap_{i\in\mathcal{I}}C_i$ también es un cono.

Cuando se haga referencia a un cono convexo, naturalmente se trata de un cono que es un conjunto convexo.

Son conos convexos:

- $\text{(i)} \ \ \{x\in\mathbb{R}^n: \langle p,x\rangle=0\}, \ \{x\in\mathbb{R}^n: \langle p,x\rangle\geq 0\} \ \text{y} \ \{x\in\mathbb{R}^n: \langle p,x\rangle\leq 0\}.$
- (ii) Para p_1,\cdots,p_k vectores de \mathbb{R}^n , el conjunto $\{x\in\mathbb{R}^n:\langle p_i,x\rangle\leq 0, i=1,\cdots,k\}.$ (Este conjunto también puede expresarse en un formato matricial).
- (iii) Para $q_1, \dots, q_m, p_1, \dots, p_k$ vectores de \mathbb{R}^n , el conjunto $\{x \in \mathbb{R}^n : \langle q_j, x \rangle = 0, \langle p_i, x \rangle \leq 0, j = 1, \dots, m; i = 1, \dots, k\}.$

Son de interés los conos K que son convexos y cerrados, en tal caso $0 \in K$. Cuando $K \cap (-K) = \{0\}$ se dice que K es un cono con punta.

Definición

- (a) Una combinación cónica de los vectores x_1, \cdots, x_k es un vector de la forma $\sum_{i=1}^k \alpha_i x_i \text{ donde los coeficientes } \alpha_1, \cdots, \alpha_k \text{ son reales no negativos.}$
- (b) Para un conjunto no vacío S, por cone(S) denotamos al conjunto de las combinaciones cónicas de elementos de S. Es decir

$$cone(S) = \mathbb{R}^+(co(S)) = co(\mathbb{R}^+(S))$$

Definición

La cápsula cónica convexa cerrada de un conjunto no vacío S se define por

$$\overline{cone}(S) := \overline{cone(S)} = cl\{\sum_{i=1}^m \alpha_i x_i : \alpha_i \geq 0, x_i \in S \text{ para } i = 1, \cdots, m; m \in \mathbb{N} \}$$

(Ejercicio: Sea S un conjunto compacto no vacío tal que $0\not\in S$, pruebe que $\overline{cone}(S)=cone(S).)$

El polar de un conjunto y el cono polar

Definición

Sea C un subconjunto no vacío de \mathbb{R}^n , entonces el conjunto polar de C, denotado por C° se define por

$$C^{\circ} := \{ z \in \mathbb{R}^n : \langle z, x \rangle \le 1, \ \forall x \in C \}$$

Este conjunto resulta ser un conjunto convexo y cerrado.

El polar de un conjunto y el cono polar

Definición

Sea C un subconjunto no vacío de \mathbb{R}^n , entonces el conjunto polar de C, denotado por C° se define por

$$C^{\circ} := \{ z \in \mathbb{R}^n : \langle z, x \rangle \le 1, \ \forall x \in C \}$$

Este conjunto resulta ser un conjunto convexo y cerrado.

Ejemplos:

- (i) Si $C=[0,1]\subset\mathbb{R}^n$ entonces $C^\circ=(-\infty,1]$
- (ii) Si $C=(-\infty\,,\,1]\subset\mathbb{R}$ entonces $C^\circ=[0,1].$
- (iii) Si $C = \{(1,0); (0,1); (-1,0); (0,-1)\} \subset \mathbb{R}^2$ entonces $C^{\circ} = [-1,1] \times [-1 \times 1].$

El polar de un conjunto y el cono polar

Definición

Sea C un subconjunto no vacío de \mathbb{R}^n , entonces el conjunto polar de C, denotado por C° se define por

$$C^{\circ} := \{ z \in \mathbb{R}^n : \langle z, x \rangle \le 1, \ \forall x \in C \}$$

Este conjunto resulta ser un conjunto convexo y cerrado.

Ejemplos:

- (i) Si $C = [0,1] \subset \mathbb{R}^n$ entonces $C^{\circ} = (-\infty,1]$
- (ii) Si $C=(-\infty\,,\,1]\subset\mathbb{R}$ entonces $C^\circ=[0,1].$
- (iii) Si $C = \{(1,0); (0,1); (-1,0); (0,-1)\} \subset \mathbb{R}^2$ entonces $C^{\circ} = [-1,1] \times [-1 \times 1].$

En general, se cumple: Para cualquier subconjunto no vacío $C \subset \mathbb{R}^n$:

$$C^{\circ} = (\overline{C})^{\circ} = (co(C))^{\circ}$$

Cono polar

Particularmente si C es un cono de \mathbb{R}^n , entonces resulta $C^\circ=\{z\in\mathbb{R}^n:\,z.x\leq 0,\;\forall x\in C\}.$

En este caso, C° resulta ser un cono convexo cerrado.

Cono polar

Particularmente si C es un cono de \mathbb{R}^n , entonces resulta $C^{\circ} = \{z \in \mathbb{R}^n : z.x \leq 0, \ \forall x \in C\}.$

En este caso, C° resulta ser un cono convexo cerrado. Ejemplos:

- (i) Para $C = \mathbb{R}^n_+$, $C^{\circ} = \mathbb{R}^n_-$.
- (ii) Si $C = \{0\}$ entonces $C^{\circ} = \mathbb{R}^n$.
- (iii) Si H es un hiperplano de normal p de modo que $0 \in H$, entonces $H^{\circ} = \{tp: t \in \mathbb{R}\}.$
- (iv) Si $C=\{(x_1,x_2)\in\mathbb{R}^2_+:x_1-x_2<0\}$ entonces $C^\circ=\{\cdots\}$

- (i) Si A y B son conos tales que $A \subset B$ entonces $B^{\circ} \subset A^{\circ}$.
- (ii) Si C es un cono convexo cerrado, entonces $C = C^{\circ \circ}$.
- (iii) Si C es un subespacio vectorial de \mathbb{R}^n , entonces $C^{\circ} = C^{\perp}$.

- (i) Si A y B son conos tales que $A \subset B$ entonces $B^{\circ} \subset A^{\circ}$.
- (ii) Si C es un cono convexo cerrado, entonces $C = C^{\circ \circ}$.
- (iii) Si C es un subespacio vectorial de \mathbb{R}^n , entonces $C^{\circ} = C^{\perp}$.

Considere el conjunto
$$S=\{z_1,\cdots,z_m\}$$
 y
$$K=cone(S)=\{\sum_{j=1}^m\alpha_jz_j\,:\alpha_j\geq 0, j=1,\cdots,m\} \text{ entonces } K^\circ=\{y\in\mathbb{R}^n:\, \langle y,z_j\rangle\leq 0\,, j=1,\cdots,m\}.$$

El teorema de Caratheodory

Antes, requerimos del siguiente lema:

Lema

Sea $D=\{x_0,x_1,\cdots,x_k\}$ una colección de k+1 elementos de \mathbb{R}^n con k>n, entonces existen $\beta_0,\beta_1,\cdots,\beta_k$ números reales tales que

$$\sum_{i=0}^{k} \beta_i = 0, \quad y \quad \sum_{i=0}^{k} \beta_i x_i = 0$$

con algún $\beta_i > 0$.

Prueba:

El conjunto $D:=\{x_1-x_0,\cdots,x_k-x_0\}$ tiene más de n elementos, por tanto es linealmente dependiente. En consecuencia, existen números reales α_1,\cdots,α_k no todos nulos tales que

$$\alpha_1(x_1-x_0))+\cdots+\alpha_k(x_k-x_0)=0$$
 es decir $(-\alpha_1-\cdots-\alpha_k)x_0+\alpha_1x_1+\cdots+\alpha_kx_k=0$. Basta tomar $\beta_0=-\sum_{i=1}^k \alpha_j\;y\;\beta_i=\alpha_i$ para $i=1,\cdots,k$.

Sea C un conjunto no vacío de \mathbb{R}^n , entonces todo elemento de co(C) es una combinación convexa de n+1 elementos de C.

Note que el enunciado también puede presentarse en la última parte con "a lo más n+1 elementos", pues si hay menos de n+1 elementos, se completan con otros con coeficientes cero.

Prueba del teorema:

Sea
$$x = \sum_{i=1}^{n} \alpha_i x_i \in co(C)$$
 con $k > n+1$, podemos asumir que todos los α_i son

positivos. Por el lema anterior, existen β_1, \dots, β_k con al menos uno de ellos positivo, tales que $\sum_{i=1}^k \beta_i x_i = 0$ y $\sum_{i=1}^k \beta_i = 0$.

Sea
$$t^*:=\max\{t\geq 0: \alpha_i-t\beta_i\geq 0, \text{ para } i=1,\cdots,k\}=\min_{\beta_j>0}\frac{\alpha_j}{\beta_i}$$
 y se definen

 $\gamma_i := lpha_i - t^*eta_i$ para $i=1,\cdots,k$, los cuales resultan no-negativos. Además,

$$\sum_{i=1}^k \gamma_i = \sum_{i=1}^k \alpha_i - t^* \sum_{i=1}^k \beta_i = 1 - t^*(0) = 1 \text{ y por definición de } t^* \text{ algún } \gamma_i \text{ resulta}$$

cero, y
$$\sum_{i=1}^n \gamma_i x_i = \sum_{i=1}^n \alpha_i x_i = x$$
. Si $k-1=n+1$ la prueba ha terminado, caso

contrario el proceso se repite.

Politopos

Un subconjunto S de \mathbb{R}^n es un politopo si es la cápsula convexa de un número finito de puntos de \mathbb{R}^n . Si dim(aff(S))=r entonces se dice que S es un r-politopo.

Proposición

Si A y B son politopos y $\alpha \in \mathbb{R}$, entonces A + B y αA son politopos.

Prueba de la primera parte:

Supongamos que $A=co\{a_1,\cdots,a_p\}$ y $B=co\{b_1,\cdots,b_q\}$. Si $C:=\{a_i+b_j:i=1,\cdots,p;j=1,\cdots,q\}$, se prueba que A+B=co(C), pues $C\subset A+B$ y $co(C)\subset A+B$; por otro lado para $x\in A+B$, existen escalares α_1,\cdots,α_p y β_1,\cdots,β_q no negativos tales que $\sum_{i=1}^p\alpha_i=1$ y $\sum_{j=1}^q\beta_j=1$, y

$$x = \alpha_1 a_1 + \dots + \alpha_p a_p + \beta_1 b_1 + \dots + \beta_q b_q = \sum_{i=1}^p \sum_{j=1}^q \alpha_i \beta_j (a_i + b_j)$$

Aproximación de un compacto convexo por un politopo

Dados un conjunto no vacío C de \mathbb{R}^n y un número no negativo r, se define el conjunto C_r por

$$(C)_r := \bigcup_{x \in C} \overline{\mathcal{B}}_r(x)$$

Definición

Sea $\mathcal C$ el conjunto de conjuntos compactos no vacíos de $\mathbb R^n$, en $\mathcal C$ se define una distancia por

$$h(A,B) := \inf\{\lambda > 0: A \subset (B)_{\lambda}, B \subset (A)_{\lambda}\}$$
 (2)

Ejemplo

Sean
$$A = \overline{\mathcal{B}}_r(a)$$
 y $B = \overline{\mathcal{B}}_s(b)$, entonces $h(A,B) = ||a-b|| + |r-s|$

Supongamos que $r \leq s$, entonces $B = A + (b-a) + (s-r)U \subset (A)_{\|a-b\|+s-r}$, por tanto $h(A,B) \leq \|a-b\| + s-r$.

Distancia de Hausdorff

La aplicación h define una métrica en $\mathcal{C}.$

Proposición

Para todo $A, B, C \in \mathcal{C}$, h satisface:

- (a) $h(A, B) = 0 \Leftrightarrow A = B$.
- (b) h(A, B) = h(B, A).
- (c) $h(A, C) \le h(A, B) + h(B, C)$.

Teorema

Sean A,B,C subconjuntos de \mathbb{R}^n tales que A es no vacío y acotado, C es no vacío, convexo y cerrado, y satisfacen $A+B\subset A+C$. Entonces $B\subset C$.

Prueba:

Si B es vacío, la conclusión es válida.

Supongamos $b\in B$, entonces existe $a_0\in A$ tal que $a_0+b\in A+B\subset A+C$, lo que implica que existen $a_1\in A, c_1\in C$ tales que

$$a_0 + b = a_1 + c_1$$

Teorema

Sean A,B,C subconjuntos de \mathbb{R}^n tales que A es no vacío y acotado, C es no vacío, convexo y cerrado, y satisfacen $A+B\subset A+C$. Entonces $B\subset C$.

Prueba:

Si B es vacío, la conclusión es válida.

Supongamos $b\in B$, entonces existe $a_0\in A$ tal que $a_0+b\in A+B\subset A+C$, lo que implica que existen $a_1\in A, c_1\in C$ tales que

$$a_0 + b = a_1 + c_1$$

Del mismo modo para a_1+b existen $a_2\in A, c_2\in C$ tales que $a_1+b=a_2+c_2$, continuando con este proceso, tenemos que existen $a_1,\cdots,a_k\in A$ y $c_1,\cdots,c_k\in C$ tales que

$$a_0 + b = a_1 + c_1; a_1 + b = a_2 + c_2, \dots, a_{k-1} + b = a_k + c_k$$

lo que genera:

$$a_0 + a_1 + \dots + a_{k-1} + kb = a_1 + \dots + a_k + c_1 + \dots + c_k$$

Teorema

Sean A,B,C subconjuntos de \mathbb{R}^n tales que A es no vacío y acotado, C es no vacío, convexo y cerrado, y satisfacen $A+B\subset A+C$. Entonces $B\subset C$.

Prueba:

Si B es vacío, la conclusión es válida.

Supongamos $b\in B$, entonces existe $a_0\in A$ tal que $a_0+b\in A+B\subset A+C$, lo que implica que existen $a_1\in A, c_1\in C$ tales que

$$a_0 + b = a_1 + c_1$$

Del mismo modo para a_1+b existen $a_2\in A, c_2\in C$ tales que $a_1+b=a_2+c_2$, continuando con este proceso, tenemos que existen $a_1,\cdots,a_k\in A$ y $c_1,\cdots,c_k\in C$ tales que

$$a_0 + b = a_1 + c_1; a_1 + b = a_2 + c_2, \dots, a_{k-1} + b = a_k + c_k$$

lo que genera:

$$a_0+a_1+\cdots+a_{k-1}+kb=a_1+\cdots+a_k+c_1+\cdots+c_k \text{y si } x_k:=\frac{1}{k}(c_1+\cdots+c_k)$$
 que resulta ser un elemento de C .

Teorema

Sean A,B,C subconjuntos de \mathbb{R}^n tales que A es no vacío y acotado, C es no vacío, convexo y cerrado, y satisfacen $A+B\subset A+C$. Entonces $B\subset C$.

Prueba:

Si B es vacío, la conclusión es válida.

Supongamos $b\in B$, entonces existe $a_0\in A$ tal que $a_0+b\in A+B\subset A+C$, lo que implica que existen $a_1\in A, c_1\in C$ tales que

$$a_0 + b = a_1 + c_1$$

Del mismo modo para a_1+b existen $a_2\in A, c_2\in C$ tales que $a_1+b=a_2+c_2$, continuando con este proceso, tenemos que existen $a_1,\cdots,a_k\in A$ y $c_1,\cdots,c_k\in C$ tales que

$$a_0 + b = a_1 + c_1; a_1 + b = a_2 + c_2, \dots, a_{k-1} + b = a_k + c_k$$

lo que genera:

$$a_0+a_1+\cdots+a_{k-1}+kb=a_1+\cdots+a_k+c_1+\cdots+c_k$$
y si $x_k:=\frac{1}{k}(c_1+\cdots+c_k)$ que resulta ser un elemento de C , entonces

$$||x_k - b|| = \frac{1}{k} ||a_0 - a_k||$$

cuando $k \to +\infty$ se concluye que $x_k \to b$, por tanto $b \in C$.

Corolario

Sean A,B,C subconjuntos de \mathbb{R}^n tales que A es no vacío y acotado, B y C no vacíos, convexos y cerrados, y satisfacen A+B=A+C. Entonces B=C.

Sea A un subconjunto compacto y convexo de \mathbb{R}^n , y $\epsilon > 0$, entonces existen politopos P y Q en \mathbb{R}^n tales que $P \subset A \subset Q$ y $h(P,A) \le \epsilon$ y $h(A,Q) \le \epsilon$.

Prueba:

Fijamos $\epsilon>0$. Se garantiza que existe un subconjunto finito F de A tal que $F\subset A\subset (F)_{\epsilon}$. Sea el politopo P:=co(F), entonces $P\subset A\subset (P)_{\epsilon}$ y se verifica $h(A,P)\leq \epsilon$.

 $^{^{1}}U$ denota la bola unitaria cerrada

Sea A un subconjunto compacto y convexo de \mathbb{R}^n , y $\epsilon > 0$, entonces existen politopos P y Q en \mathbb{R}^n tales que $P \subset A \subset Q$ y $h(P,A) \le \epsilon$ y $h(A,Q) \le \epsilon$.

Prueba:

Fijamos $\epsilon>0$. Se garantiza que existe un subconjunto finito F de A tal que $F\subset A\subset (F)_\epsilon$. Sea el politopo P:=co(F), entonces $P\subset A\subset (P)_\epsilon$ y se verifica $h(A,P)\leq \epsilon$.

Como $(A)_\epsilon$ también es compacto, y convexo no vacío, aplicamos el razonamiento anterior para $(A)_\epsilon$ en lugar de A, lo que significa que existe un politopo Q tal que

$$Q \subset (A)_{\epsilon} \subset (Q)_{\epsilon} \tag{3}$$

 $^{^{1}}U$ denota la bola unitaria cerrada

Sea A un subconjunto compacto y convexo de \mathbb{R}^n , y $\epsilon > 0$, entonces existen politopos P y Q en \mathbb{R}^n tales que $P \subset A \subset Q$ y $h(P,A) \leq \epsilon$ y $h(A,Q) \leq \epsilon$.

Prueba:

Fijamos $\epsilon>0$. Se garantiza que existe un subconjunto finito F de A tal que $F\subset A\subset (F)_\epsilon$. Sea el politopo P:=co(F), entonces $P\subset A\subset (P)_\epsilon$ y se verifica $h(A,P)\leq \epsilon$.

Como $(A)_\epsilon$ también es compacto, y convexo no vacío, aplicamos el razonamiento anterior para $(A)_\epsilon$ en lugar de A, lo que significa que existe un politopo Q tal que

$$Q \subset (A)_{\epsilon} \subset (Q)_{\epsilon} \tag{3}$$

La última inclusión dice que¹

$$A+\epsilon U\subset Q+\epsilon U$$

 $^{^{1}}U$ denota la bola unitaria cerrada

Sea A un subconjunto compacto y convexo de \mathbb{R}^n , y $\epsilon > 0$, entonces existen politopos P y Q en \mathbb{R}^n tales que $P \subset A \subset Q$ y $h(P,A) \leq \epsilon$ y $h(A,Q) \leq \epsilon$.

Prueba:

Fijamos $\epsilon>0$. Se garantiza que existe un subconjunto finito F de A tal que $F\subset A\subset (F)_\epsilon$. Sea el politopo P:=co(F), entonces $P\subset A\subset (P)_\epsilon$ y se verifica $h(A,P)\leq \epsilon$.

Como $(A)_\epsilon$ también es compacto, y convexo no vacío, aplicamos el razonamiento anterior para $(A)_\epsilon$ en lugar de A, lo que significa que existe un politopo Q tal que

$$Q \subset (A)_{\epsilon} \subset (Q)_{\epsilon} \tag{3}$$

La última inclusión dice que¹

$$A + \epsilon U \subset Q + \epsilon U$$

Aplicando la cancelación del teorema previo, se concluye que $A\subset Q$ y por la primera inclusión de (3), se concluye $h(A,Q)\leq \epsilon.$

¹U denota la bola unitaria cerrada

Problema:

Sea A un subconjunto convexo y compacto no vacío, pruebe que existen sucesiones $\{P_k\}$ y $\{Q_k\}$ de politopos no vacíos tales que $P_k\subset A\subset Q_k$ para $k=1,2,\cdots$ y satisfacen $P_k\to A$ y $Q_k\to A$.

(La convergencia se establece en el espacio métrico (C, h)).

Conjunto poliedral

Definición

Sea la colección finita $(s_1, \alpha_1), \dots, (s_m, \alpha_m)$ de vectores de $\mathbb{R}^n \times \mathbb{R}$ con cada $s_i \neq 0$. El conjunto

$$P := \{x \in \mathbb{R}^n : \langle s_i, x \rangle \le \alpha_i, i = 1, \dots, m\}$$

se denomina un conjunto poliedral convexo y cerrado.

Conjunto poliedral

Definición

Sea la colección finita $(s_1, \alpha_1), \dots, (s_m, \alpha_m)$ de vectores de $\mathbb{R}^n \times \mathbb{R}$ con cada $s_i \neq 0$. El conjunto

$$P := \{x \in \mathbb{R}^n : \langle s_i, x \rangle \le \alpha_i, i = 1, \cdots, m\}$$

se denomina un conjunto poliedral convexo y cerrado.

(Considerando los vectores de \mathbb{R}^n , vectores columna)También podemos expresar $P = \{x \in \mathbb{R}^n : Ax < \alpha\}$,

donde A tiene por filas a los vectores s_1, \dots, s_m , mientras que α tiene componentes $\alpha_1, \dots, \gamma_m$

En el caso que $\alpha=0$, resulta que P es un cono poliedral.

Observación

En la definición previa, podemos incorporar relaciones del tipo " $\geq .\circ = .$

Puntos extremos

Definición

Sea C un conjunto convexo, se dice que $x \in C$ es un punto extremo de C si no existen dos puntos diferentes x_1 y x_2 de C tales que $x = \frac{1}{2}(x_1 + x_2)$.

Equivalentemente: x de C es punto extremo de C, si y solo si, cualquiera de las afirmaciones:

- (i) $(x = tx_1 + (1 t)x_2, x_1 \in C, x_2 \in C, 0 < t < 1) \Rightarrow x = x_1 = x_2.$
- (ii) $C \setminus \{x\}$ es convexo.

Denotamos por Ext(C) al conjunto de puntos extremos de C.

Puntos extremos

Definición

Sea C un conjunto convexo, se dice que $x \in C$ es un punto extremo de C si no existen dos puntos diferentes x_1 y x_2 de C tales que $x = \frac{1}{2}(x_1 + x_2)$.

Equivalentemente: x de C es punto extremo de C, si y solo si, cualquiera de las afirmaciones:

- (i) $(x = tx_1 + (1 t)x_2, x_1 \in C, x_2 \in C, 0 < t < 1) \Rightarrow x = x_1 = x_2.$
- (ii) $C \setminus \{x\}$ es convexo.

Denotamos por Ext(C) al conjunto de puntos extremos de C. Ejemplos:

- *) $C = \mathbb{R}^n$ no tiene puntos extremos.
- *) $C = \mathbb{R}^n_+$ tiene el único punto extremo cero.
- *) La bola unitaria cerrada $\overline{B}_1(0)$ es tal que $Ext(\overline{B}_1(0))$ depende de la métrica asignada a \mathbb{R}^n .

Ejercicio

Si $T: \mathbb{R}^n \to \mathbb{R}^m$ es una t.l. y $C \subset \mathbb{R}^n$ tal que Ext(C) es no vacío, ¿cuál es la relación entre T(Ext(C)) y Ext(T(C))? ¿Qué ocurre si T es biyectiva?

Teorema

Si $C \subset \mathbb{R}^n$ es convexo, compacto y no vacío, entonces $Ext(C) \neq \emptyset$

Prueba: Supongamos que \mathbb{R}^n está dotado de la norma euclidiana, la cual satisface la Ley del paralelogramo

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$
(4)

La función $f:\mathbb{R}^n \to \mathbb{R}$ definida por $f(x) = \|x\|^2$ es continua, y por tanto el problema $\max_{x \in C} f(x)$ tiene solución, es decir $\exists \, \overline{x} \in C$ tal que $\|x\|^2 \leq \|\overline{x}^2\|, \ \forall x \in C$. Afirmamos que \overline{x} es punto extremo de C, pues caso contrario, existen x_1 y x_2 elementos diferentes de C tales que $\overline{x} = \frac{1}{2}(x_1 + x_2)$. En consecuencia:

$$\|\overline{x}\|^{2} = \|\frac{1}{2}(x_{1} + x_{2})\|^{2} = \frac{1}{4}(2(\|x_{1}\|^{2} + \|x_{2}\|^{2}) - \|x_{1} - x_{2}\|^{2})$$

$$< \frac{1}{2}(\|x_{1}\|^{2} + \|x_{2}\|^{2})$$

$$\leq \frac{1}{2}(\|\overline{x}\|^{2} + \|\overline{x}\|^{2})$$

$$= \|\overline{x}\|^{2}$$

Teorema de Minkowski, Krein-Milman

El presente teorema fue probado para espacios finito dimensional por Minkowski(1911), mientras que para espacios vectoriales localmente convexos por Krein-Milman (1940).

Teorema

Si $\emptyset \neq C \subset \mathbb{R}^n$ es convexo y compacto, entonces $C = co(Ext(C)) \neq \emptyset$.

Prueba: Se procede por inducción matemática sobre la dimensión de \mathbb{R}^n . Para n=1, $C=[a,b]\subset\mathbb{R}$, todo elemento de C es combinación convexa de a y

 $b(Ext(C) = \{a, b\}).$

Supongamos que el teorema es válido para toda dimensión $\leq n$.

Se probará para n+1, si la dimensión de C es menor que n+1, podemos considerar a C como subconjunto de \mathbb{R}^n , por lo que podemos asumir que C tiene dimensión n+1 y esto implica que $int(C) \neq \emptyset$.

Sea $x \in C$ y $x_0 \in int(C)$ con $x_0 \neq x$, sea $d = x - x_0$ y la recta

 $\ell: y=x_0+td, \, t\in \mathbb{R}$, entonces se garantiza que existen $t_1>0$ y $t_2<0$ tales que $x_1=x_0+t_1d$ y $x_2=x_0+t_2d$ pertenecen a la Fr(C). Note que $x\in C\cap \ell$ y es combinación convexa de x_1 y x_2 . Bastará probar que x_1 y x_2 son combinaciones convexas de elementos de Ext(C).

Direcciones de recesión

Fijados x_0 y d vectores de \mathbb{R}^n , el conjunto $\{x_0+td: t\geq 0\}$ se denomina una semi-recta (que se degenera cuando d=0). El vector d se denomina dirección de la semi-recta.

Proposición

Si C es un conjunto convexo cerrado no acotado, entonces C contiene una semi-recta. Además, si C contiene alguna semi-recta con dirección d, entonces contiene cada semi-recta con dirección d y punto inicial en C.

Prueba:

Como C no es acotado, existe una sucesión $\{a_k\}$ en C tal que $\|a_k\| \to +\infty$. Podemos asumir que $a_k \neq 0$ y de esta manera la sucesión $t_k := \frac{1}{\|a_k\|} \to 0$ y la sucesión $b_k := \frac{a_k}{\|a_k\|}$ tiene una subsucesión convergente, por decir converge a $d \in S^{n-1}$ (esta subsucesión la seguimos denotando por $\{b_k\}$). Fijamos t>0, entonces para k suficientemente grande $0 \leq tt_k \leq 1$ y fijado $a_0 \in C$ se cumple:

$$(1 - tt_k)a_0 + tb_k = (1 - tt_k)a_0 + tt_k a_k \in C$$

Haciendo $k \to +\infty$, se concluye que $a_0 + td \in C$ (por la cerradura de C).

Direcciones de recesión

Fijados x_0 y d vectores de \mathbb{R}^n , el conjunto $\{x_0+td: t\geq 0\}$ se denomina una semi-recta (que se degenera cuando d=0). El vector d se denomina dirección de la semi-recta.

Proposición

Si C es un conjunto convexo cerrado no acotado, entonces C contiene una semi-recta. Además, si C contiene alguna semi-recta con dirección d, entonces contiene cada semi-recta con dirección d y punto inicial en C.

Prueba:

Como C no es acotado, existe una sucesión $\{a_k\}$ en C tal que $\|a_k\| \to +\infty$. Podemos asumir que $a_k \neq 0$ y de esta manera la sucesión $t_k := \frac{1}{\|a_k\|} \to 0$ y la sucesión $b_k := \frac{a_k}{\|a_k\|}$ tiene una subsucesión convergente, por decir converge a $d \in S^{n-1}$ (esta subsucesión la seguimos denotando por $\{b_k\}$). Fijamos t>0, entonces para k suficientemente grande $0 \leq tt_k \leq 1$ y fijado $a_0 \in C$ se cumple:

$$(1 - tt_k)a_0 + tb_k = (1 - tt_k)a_0 + tt_k a_k \in C$$

Haciendo $k \to +\infty$, se concluye que $a_0 + td \in C$ (por la cerradura de C). Nota: Si C no es cerrado la última parte de la proposición no necesariamente es cierta, por ejemplo considere $C = \mathbb{R}^2_{++} \cup \{(0,0)\}$.

Definición

Sea C un conjunto convexo de \mathbb{R}^n y $x \in C$. El conjunto

$$C_{\infty}(x) := \{ d \in \mathbb{R}^n : x + td \in C, \forall t \ge 0 \}$$
 (5)

se denomina cono de recesión de C desde el punto x.

Propiedades:

- (a) $0 \in C_{\infty}(x)$ y $C_{\infty}(x)$ es un cono.
- (b) $C_{\infty}(x)$ es convexo.
- (c) $C_{\infty}(x)$ es cerrado.

De acuerdo a la proposición anterior, tenemos que si C es además cerrado, entonces $C_{\infty}(x)$ no depende de $x\in C$, lo que da lugar a la siguiente definición.

Definición

Sea ${\cal C}$ un conjunto convexo cerrado, el cono de recesión o cono asintótico de ${\cal C}$ está definido por

$$C_{\infty} = \{\, d \in \mathbb{R}^n: \; x+td \in C, \forall t \geq 0, \; \operatorname{alg\'un} \; x \in C \,\}$$

Los elementos de C_{∞} se denominan direcciones de recesión de C.

Corolario

Sea C un conjunto convexo no acotado de \mathbb{R}^n . Entonces ri(C) contiene al menos una semi-recta. Además, si cl(C) tiene la dirección de recesión d, entonces ri(C) contiene cualquier semi-recta con dirección d y punto inicial en ri(C).

Prueba(de la primera parte): cl(C) es un conjunto convexo no acotado, aplicamos la proposición anterior para garantizar que cl(C) contiene a una semirecta, es decir tiene una dirección de recesión d. Sea $b_0 \in ri(C) = ri(cl(C))$, entonces para todo t>0 se cumple $b_0 + 2td \in cl(C)$. Por un resultado de ri, se concluye que $b_0 + td \in ri(C)$.

Corolario

Sea C un conjunto convexo no acotado de \mathbb{R}^n . Entonces ri(C) contiene al menos una semi-recta. Además, si cl(C) tiene la dirección de recesión d, entonces ri(C) contiene cualquier semi-recta con dirección d y punto inicial en ri(C).

Prueba(de la primera parte): cl(C) es un conjunto convexo no acotado, aplicamos la proposición anterior para garantizar que cl(C) contiene a una semirecta, es decir tiene una dirección de recesión d. Sea $b_0 \in ri(C) = ri(cl(C))$, entonces para todo t>0 se cumple $b_0 + 2td \in cl(C)$. Por un resultado de ri, se concluye que $b_0 + td \in ri(C)$.

Ejercicios:

- (1) Probar que: Un conjunto C convexo cerrado y no vacío, es compacto $\Leftrightarrow C_{\infty} = \{0\}.$
- (ii) Si C es un conjunto convexo cerrado y $x \in C$, probar $C_{\infty} = \bigcap_{t \in C} \frac{C x}{t}$.

Subespacio de linealidad de un conjunto convexo

Definición

Dado un conjunto convexo no vacío C, el conjunto

$$lin(C) := \{ d \in \mathbb{R}^n : td + x \in C, \text{ para } x \in C, t \in \mathbb{R} \}$$

se denomina "subespacio de linealidad de C.. Este conjunto es realmente un subespacio vectorial de \mathbb{R}^n .

Proposición

Sea C convexo no vacío y cerrado. Entonces

- (a) $lin(C) = \{d \in \mathbb{R}^n : \pm d + C \subset C\} = \{d \in \mathbb{R}^n : d + C = C\}$
- (b) lin(C) es el más grande subespacio vectorial S tal que S+C=C.
- (c) $lin(C) = C_{\infty} \cap (-C_{\infty}).$

Descomposición de un conjunto convexo

Ejemplos

- (a) $C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1\}$ es tal que $lin(C) = \{(0, 0, z) : z \in \mathbb{R}\}.$
- (b) $C = \{(x,y) \in \mathbb{R}^2 : y \le 1\}$, entonces $lin(C) = \dots$

Teorema

Sea C un conjunto convexo cerrado no vacío y sea S=lin(C), entonces

$$C = S \oplus (C \cap S^{\perp})$$

y el conjunto convexo $C \cap S^{\perp}$ no contiene rectas.

Descomposición de un conjunto convexo

Ejemplos

- (a) $C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1\}$ es tal que $lin(C) = \{(0, 0, z) : z \in \mathbb{R}\}.$
- (b) $C = \{(x,y) \in \mathbb{R}^2 : y \leq 1\}$, entonces $lin(C) = \dots$

Teorema

Sea C un conjunto convexo cerrado no vacío y sea S=lin(C), entonces

$$C = S \oplus (C \cap S^{\perp})$$

y el conjunto convexo $C \cap S^{\perp}$ no contiene rectas.

Prueba:

Sea $a\in C$, entonces como $\mathbb{R}^n=S\oplus S^\perp$, se sigue que existen $b\in S$ y $c\in S^\perp$ tales que a=b+c (en forma única), de esto se sigue que $c=a-b=a+(-b)\in C+S=C$, por tanto $c\in C\cap S^\perp$ y en consecuencia $C\subset S\oplus (C\cap S^\perp)$.

Definición

Dado un conjunto finto de vectores $\{a^1, \cdots, a^m\}$, el cono

$$cone(\{a^1,\cdots,a^m\}):=\{\sum_{i=1}^m \lambda_i a^i: \lambda_1 \geq 0,\cdots,\lambda_m \geq 0\}$$

se denomina un cono finitamente generado por $\{a^1,\cdots,a^m\}$ (también denominado cono poliedral).

Proposición

Un cono convexo, es finitamente generado, si y solo si, es poliedral.

Dem: (\rightarrow) Suponga que C es un cono convexo finitamente generado, por decir $C=cone(\{a^1,\cdots,a^m\})$, entonces el politopo $co\{0,a^1,\cdots,a^m\}$ puede escribirse como intersección de una colección finita de semiespacios cerrados S_1,\cdots,S_k .

Sea
$$A := \bigcap_{i,0 \in Fr(S_i)} S_i$$
. Se prueba que $C = A$.

Teorema

Un conjunto de \mathbb{R}^n es poliedral si, y solo si, puede expresarse como una suma Minkowski de un politopo y un cono convexo finitamente generado.

Esto signfica que si P es un conjunto poliedral, entonces existen conjuntos finitos de vectores A y B tales que

$$P = co(A) + cone(B).$$

(A es el conjunto de puntos extremos de P y B es un subconjunto de P_{∞} .).

Teorema

Un conjunto de \mathbb{R}^n es poliedral si, y solo si, puede expresarse como una suma Minkowski de un politopo y un cono convexo finitamente generado.

Esto signfica que si P es un conjunto poliedral, entonces existen conjuntos finitos de vectores A y B tales que

$$P = co(A) + cone(B).$$

(A es el conjunto de puntos extremos de P y B es un subconjunto de P_{∞} .). Si $A=\{a^1,\cdots,a^m\}$ y $B=\{d^1,\cdots,d^k\}$, entonces

$$P = \{ \sum_{i=1}^{m} \lambda_i a^i + \sum_{j=1}^{k} \delta_j d^j : \lambda_i \ge 0, \delta_j \ge 0, \lambda_1 + \dots + \lambda_m = 1 \}$$

Proposición

Sea P un conjunto poliedral no vacío y sin rectas, y $f:P\to\mathbb{R}$ una función lineal que es acotada superiormente en P, entonces el problema

$$\begin{array}{ll}
\text{máx} & f(x) \\
x \in P
\end{array}$$

se resuelve en un punto extremo de P.

Proposición

Sea P un conjunto poliedral no vacío y sin rectas, y $f:P\to\mathbb{R}$ una función lineal que es acotada superiormente en P, entonces el problema

$$\begin{array}{ll}
\text{máx} & f(x) \\
x \in P
\end{array}$$

se resuelve en un punto extremo de P. Dem:

La función proyección

Dado un espacio métrico (X,d) y un subconjunto cerrado y no vacío C de X, se define la distancia de un punto $x\in X$ al conjunto C por

$$d(x,C) := \min\{d(x,y) : y \in C\}$$
 (6)

Esto genera una función $d_C: X \to [0, +\infty)$ mediante $d_C(x) := d(x, C)$. Esta función se denomina "función distancia al conjunto C"

La función proyección

Dado un espacio métrico (X,d) y un subconjunto cerrado y no vacío C de X, se define la distancia de un punto $x\in X$ al conjunto C por

$$d(x,C) := \min\{d(x,y) : y \in C\}$$
 (6)

Esto genera una función $d_C: X \to [0, +\infty)$ mediante $d_C(x) := d(x, C)$. Esta función se denomina "función distancia al conjunto C"

El conjunto de puntos de C donde se alcanza el mínimo de (6), se denomina "Proyección de x en C ".

La función proyección

Dado un espacio métrico (X,d) y un subconjunto cerrado y no vacío C de X, se define la distancia de un punto $x\in X$ al conjunto C por

$$d(x,C) := \min\{d(x,y) : y \in C\}$$
 (6)

Esto genera una función $d_C:X\to [0\ ,\ +\infty)$ mediante $d_C(x):=d(x,C).$ Esta función se denomina "función distancia al conjunto C"

El conjunto de puntos de C donde se alcanza el mínimo de (6), se denomina "Proyección de x en C " .

Se ha visto en el curso de Fundamentos de Análisis, que en un Espacio de Hilbert X (como es el caso de \mathbb{R}^n con la norma euclidiana), dado un conjunto convexo cerrado no vacío C, el conjunto $P_C(x)$ es unitario y esto da lugar a la función Proyección en C.

Recuerde que :

- (i) $d(x,C) = 0 \Leftrightarrow x \in \overline{C}$.
- (ii) Si C es cerrado no vacío y $x \notin C$ entonces d(x,C) > 0.