On solutions of a Riemann problem for chemical flooding model

Yulia Petrova^{1,2}

IMPA. Instituto de Matematica Pura e Aplicada, Rio de Janeiro, Brasil ² St Petersburg State University, Chebyshev Lab, Russia

https://yulia-petrova.github.io/

18 April 2022 São Carlos, USP

Joint work with Fedor Bakharey, Aleksandr Enin and Nikita Rastegaey: arXiv:2111.15001

Motivation

Introduction •000

We are interested in the mathematical model of oil recovery. Some features:

- Porous media (averaged models of flow)
- Relatively small speeds (≈ 1 meter per day): Navier-Stokes \rightarrow Darcy's law
- Multiphase flow: oil, water, gas.
- Unknown variables: s(t,x) the averaged water saturation in small volume
- Applications to EOR (enhanced oil recovery) methods: chemical, thermal, gas etc

Collaboration with Russian petroleum company GazpromNeft (2018–2021)

Introduction

Problems: macroscopic and microscopic sweep efficiency

 happens due to very viscous oil or inhomogeneous media

 local entrapment of oil in pores due to high capillary pressure

Possible solution

- Inject gas (CO₂, natural) to decrease the oil viscosity
- Add chemicals (polymer) to increase the water viscosity
- Add chemicals (surfactant) that reduce the surface tension etc

Fundamental research: two main directions

1-dim in spatial variable

Introduction 0000

Stable displacement

- main question: find an exact solution to a Riemann problem
- hyperbolic conservation laws

$$s_t + f(s, c)_x = 0,$$

 $(cs + a(c))_t + (cf(s, c))_x = 0.$

Example: chemical flooding model

2-dim (or 3-dim) in spatial variable

Unstable displacement

- source of instability: water and oil/polymer have different viscosities
- viscous fingering phenomenon

$$c_t + u \cdot \nabla c = \varepsilon \Delta c,$$

 $\operatorname{div}(u) = 0,$
 $u = -\nabla p/\mu(c).$

Example: Peaceman model

Problem statement

Introduction

000

Chemical flooding can be described as the system of conservation laws ($x \in \mathbb{R}, t > 0$):

$$s_t + f(s,c)_x = 0,$$
 (conservation of water)
 $(cs + a(c))_t + (cf(s,c))_x = 0.$ (conservation of chemical)

- s = s(x, t) water phase saturation;
- c = c(x, t) concentration of a chemical agent in water:
- f(s,c) fractional flow function (usually S-shaped);
- a(c) adsorption of a chemical agent on a rock (usually increasing, concave).

$$(s,c)\big|_{t=0} = \begin{cases} (1,1), & \text{if } x \le 0, \\ (0,0), & \text{if } x > 0, \end{cases}$$

(2)

Aim:

Find a solution to initial-value problem (1)–(2) when f depends non-monotonically on c.

Hyperbolic systems of conservation laws

$$G(u)_t + F(u)_x = 0 (3)$$

Here

- G(u) accumulation function (conserved quantities)
- F(u) flux function (flux of conserved quantities)

Simplest example: wave equation

$$y_{tt} - c^2 y_{xx} = 0$$
 (J. d'Alambert, 1750)

can be rewritten as a system of two first-order equations on the state-vector $u = \begin{pmatrix} y_x \\ y_t \end{pmatrix}$

$$u_t + Du_x = 0$$
, with $D = \begin{pmatrix} 0 & -1 \\ -c^2 & 0 \end{pmatrix}$

• eigenvalues $\lambda_1 = c$ and $\lambda_2 = -c$ are real, the system is hyperbolic. Solutions are two waves propagating at velocities λ_1 and λ_2 .

Hyperbolic systems of conservation laws

$$u_t + \left(\frac{u^2}{2}\right)_r = 0$$
 (Burger's equation, 1948)

- Due to non-linearity of the flux velocity of the wave $\lambda(u) = u$ depends on state u
- So the wave can spread (rarefaction wave) or concentrate (shock wave)

$$u_t + (f(u))_x = 0$$

(Buckley-Leverett equation)

- Typical f is an S-shaped function and solution is rarefaction wave + shock
- Gelfand, Oleinik

Riemann problem (1858)

Riemann solved the initial-value problem with data having a single jump

$$u\big|_{t=0} = \begin{cases} u^L, & x \leqslant 0; \\ u^R, & x > 0. \end{cases}$$

• took advantage of the scale invariance of the equations and the data:

$$u(\alpha x, \alpha t) = u(x, t)$$
 for all $\alpha > 0$

- solution to a Riemann problem is important because:
 - often it appears in a long-term behavior of Cauchy problem
 - helps to prove the existence of solutions to Cauchy problem (Glimm's method)
 - helps to construct numerical solution (Godunov method)

Any solution to a Riemann problem consists of a sequence of rarefaction or shock waves (and constant states) that are compatible by speeds

Shock waves: RH condition and admissibility criteria

- discontinuous solutions are defined in the sense of distributions (weak form)
- for a shock wave from u^- to u^+ moving with velocity v, the weak condition amounts to the following Rankine-Hugoniot condition (RH)

$$-v G(u^{-}) + F(u^{-}) = -v G(u^{+}) + F(u^{+})$$
(RH)

- RH means conservation: what flows into left side flows out of the right side
- Problems from the perspectives of both mathematics and physics:
 - if all RH solutions are allowed, a Riemann problem has multiple solutions
 - some RH solutions violate physical principles
- Vanishing viscosity criteria: consider a diffusive system of conservation laws

$$G(u)_t + F(u)_x = \varepsilon [B(u) u_x]_x, \qquad \varepsilon \to 0$$

- $u(x,t) = \hat{u}(\xi)$ with $\xi := x v t$ for a fixed shock velocity v
- reduction to first-order system of ordinary differential equations:

$$\varepsilon B(\hat{u}) \, \hat{u}_{\xi} = -v \left[G(\hat{u}) - G(u^{-}) \right] + F(\hat{u}) - F(u^{-})$$

ullet u^- and u^+ are fixed points and we look for an orbit connecting them

$$\hat{u}(-\infty) = u^-, \qquad \hat{u}(+\infty) = u^+$$

- diffusive terms cause a shock wave to have a thin, smooth internal structure as a result of balancing nonlinear focusing and diffusive spreading
- ullet traveling wave solution approaches the jump discontinuity in L^1 as $arepsilon o 0^+$

$$s_t + f(s, c)_x = \varepsilon_c (A(s, c)s_x)_x,$$
$$(cs + a(c))_t + (cf(s, c))_x = \varepsilon_c (cA(s, c)s_x)_x + \varepsilon_d c_{xx}.$$

- ε_c dimensionless capillary pressure
- ε_d dimensionless diffusion term

Polymer flooding [Johansen'88]

- \bullet monotone dependence of f(s,c) on c
- unique solution as $\varepsilon_c, \varepsilon_d \to 0$

Surfactant flooding [Bakharev, P. et al'21]

- \bullet non-monotone dependence of f(s,c) on c
- ullet the solution depends on the ratio of $arepsilon_d/arepsilon_c$

When f(s,c) is non-monotone in c, multiple vanishing viscosity solutions are possible. Examples can be found in Shen (2017). See also Entov-Kerimov (1986) on non-rigorous consideration of the model.

Restrictions on f and a

(F1)
$$f \in C^2([0,1]^2)$$
; $f(0,c) = 0$; $f(1,c) = 1$;

- (F2) $f_s(s,c) > 0$ for $s \in (0,1)$, $c \in [0,1]$; $f_s(0,c) = f_s(1,c) = 0$;
- (F3) f is S-shaped in s;
- (F4) f is non-monotone in c: $\forall s \in (0,1) \exists c^*(s) \in (0,1)$:
 - $f_c(s,c) < 0$ for 0 < s < 1, $0 < c < c^*(s)$;
 - $f_c(s,c) > 0$ for 0 < s < 1, $c^*(s) < c < 1$;

- (A) A is bounded from zero and infinity;
- (a) $a \in C^2$, a(0) = 0, a is strictly increasing and concave.

Travelling wave dynamical system

$$s_t + f(s,c)_x = \varepsilon_c (A(s,c)s_x)_x,$$
$$(cs + a(c))_t + (cf(s,c))_x = \varepsilon_c (cA(s,c)s_x)_x + \varepsilon_d c_{xx}.$$

Searching for travelling wave solutions $s = s(\xi)$, $c = c(\xi)$, $\xi := \varepsilon_c^{-1}(x - vt)$ with boundary conditions

$$s(\pm \infty) = s^{\pm}, \qquad c(-\infty) = 1, \qquad c(+\infty) = 0,$$

we arrive at

$$A(s,c)s_{\xi} = f(s,c) - v(s+d_1), \kappa c_{\xi} = v(d_1c - d_2 - a(c)).$$
(4)

Main result 000000

- Here $\kappa = \varepsilon_d/\varepsilon_c$;
- Note that u^{\pm} are fixed points of dynamical system (4). Here $u^+ = (s^+, 0)$ and $u^- = (s^-, 1)$:
- We are only interested in the trajectories connecting two saddle points (or saddle-nodes) due to compatibility of speeds condition

Main result

Consider a dynamical system under assumptions (F1)–(F4), (A), (a):

$$s_{\xi} = f(s, c) - v(s + d_1),$$

 $\kappa c_{\xi} = v(d_1c - d_2 - a(c)).$

Theorem (Bakharev, Enin, P.,Rastegaev, 2021)

There exist $0 < v_{\min} < v_{\max} < \infty$, such that for every $\kappa = \varepsilon_d/\varepsilon_c \in (0, +\infty)$, there exist unique

- points $s^{-}(\kappa) \in [0,1]$ and $s^{+}(\kappa) \in [0,1]$;
- velocity $v(\kappa) \in [v_{\min}, v_{\max}]$,

such that there exists a travelling wave, connecting two saddle points

$$u^-(\kappa) = (s^-(\kappa), 1)$$
 and $u^+(\kappa) = (s^+(\kappa), 0)$ with velocity $v(\kappa)$. Moreover, $v(\kappa)$ is monotone and continuous; $v(\kappa) \to v_{\min}$ as $\kappa \to \infty$; $v(\kappa) \to v_{\max}$ as $\kappa \to 0$.

Scheme of proof

The Theorem can be divided into simpler statements:

- $\forall v \in [v_{\min}, v_{\max}] \quad \exists ! \kappa(v)$: there is a saddle-to-saddle travelling wave with $\kappa(v)$.
- $\kappa(v)$ is continuous.
- $\nexists v_1 \neq v_2 : \kappa(v_1) = \kappa(v_2)$, thus $\kappa(v)$ is monotone.
- $\kappa(v) \to \infty$ as $v \to v_{\min}$.
- $\kappa(v) \to \kappa_{crit} \geqslant 0$ as $v \to v_{max}$.
- When $\kappa < \kappa_{crit}$ and $v = v_{max}$ there is a saddle to saddle-node travelling wave

 $\kappa(v)$ is monotone and continuous thus there exists an inverse function satisfying the Theorem.

Main ingredient of proof: phase portraits classification

Own works:

 F. Bakharev, A. Enin, Yu. Petrova, N. Rastegaev, Impact of dissipation ratio on vanishing viscosity solutions of the Riemann problem for chemical flooding model. arXiv:2111.15001.

Other works:

- 1 Johansen, T. and Winther, R., 1988. The solution of the Riemann problem for a hyperbolic system of conservation laws modeling polymer flooding. SIAM journal on mathematical analysis, 19(3), pp.541-566.
- 2 Shen, W., 2017. On the uniqueness of vanishing viscosity solutions for Riemann problems for polymer flooding. Nonlinear Differential Equations and Applications NoDEA, 24(4), pp.1-25.
- 3 Entov, V.M. and Kerimov, Z.A., 1986. Displacement of oil by an active solution with a nonmonotonic effect on the flow distribution function. Fluid Dynamics, 21(1), pp.64-70.

Thank you for your attention!

yulia.petrova@impa.br

https://yulia-petrova.github.io/

