

# Two-View Geometry: Computation of the Fundamental Matrix F

簡韶逸 Shao-Yi Chien

Department of Electrical Engineering

National Taiwan University

## Outline

Computation of the fundamental matrix F





[Slides credit: Marc Pollefeys]

## **Epipolar Geometry: Basic Equation**

$$x'^T Fx = 0$$

$$x'xf_{11} + x'yf_{12} + x'f_{13} + y'xf_{21} + y'yf_{22} + y'f_{23} + xf_{31} + yf_{32} + f_{33} = 0$$

separate known from unknown

$$\begin{bmatrix} x'_1 x_1 & x'_1 y_1 & x'_1 & y'_1 x_1 & y'_1 y_1 & y'_1 & x_1 & y_1 & 1 \\ \vdots & \vdots \\ x'_n x_n & x'_n y_n & x'_n & y'_n x_n & y'_n y_n & y'_n & x_n & y_n & 1 \end{bmatrix} \mathbf{f} = 0$$

$$Af = 0$$

# The Singularity Constraint

$$e^{T} F = 0$$
  $Fe = 0$   $det F = 0$   $rank F = 2$ 

SVD from linearly computed F matrix (rank 3)

$$F = U \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{bmatrix} V^T = U_1 \sigma_1 V_1^T + U_2 \sigma_2 V_2^T + U_3 \sigma_3 V_3^T$$

Compute closest rank-2 approximation

$$\min \|\mathbf{F} - \mathbf{F}\|_{F}$$

$$F' = U \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ 0 \end{bmatrix} V^T = U_1 \sigma_1 V_1^T + U_2 \sigma_2 V_2^T$$
 Enforcing singularity!





Effect of enforcing singularity

## The Minimum Case

# - 7 Point Correspondences

$$\begin{bmatrix} x'_1 x_1 & x'_1 y_1 & x'_1 & y'_1 x_1 & y'_1 y_1 & y'_1 & x_1 & y_1 & 1 \\ \vdots & \vdots \\ x'_7 x_7 & x'_7 y_7 & x'_7 & y'_7 x_7 & y'_7 y_7 & y'_7 & x_7 & y_7 & 1 \end{bmatrix} f = 0$$

$$A = U_{7x7} diag(\sigma_1,...,\sigma_7,0,0)V_{9x9}^T$$

$$\Rightarrow A[V_8V_9] = 0_{7\times 2}$$

$$(e.g.V^{T}V_{8} = [000000010]^{T})$$

$$\mathbf{x}_{i}^{\mathrm{T}}(\mathbf{F}_{1} + \lambda \mathbf{F}_{2})\mathbf{x}_{i} = 0, \forall i = 1...7$$

one parameter family of solutions

but  $F_1+\lambda F_2$  not automatically rank 2

# The Minimum Case - Impose Rank 2



$$\det(\mathbf{F}_1 + \lambda \mathbf{F}_2) = a_3 \lambda^3 + a_2 \lambda^2 + a_1 \lambda + a_0 = 0 \quad \text{(cubic equation)}$$

## **NOT Normalized 8-point Algorithm**

$$\begin{bmatrix} x_{1}x_{1} & y_{1}x_{1} & x_{1} & x_{1}y_{1} & y_{1}y_{1} & y_{1} & x_{1} & y_{1} & 1 \\ x_{2}x_{2} & y_{2}x_{2} & x_{2} & x_{2}y_{2} & y_{2}y_{2} & y_{2} & x_{2} & y_{2} & 1 \\ \vdots & \vdots \\ x_{n}x_{n} & y_{n}x_{n} & x_{n} & x_{n}y_{n} & y_{n}y_{n} & y_{n} & x_{n} & y_{n} & 1 \end{bmatrix} \begin{bmatrix} f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \\ f_{33} \end{bmatrix} = 0$$

$$\begin{array}{c} \text{10000} & \sim 10000 & \sim 10000 & \sim 1000 & \sim 100 & \sim 100 & \sim 100 \\ \text{Orders of magnitude difference} \\ \text{Between column of data matrix} \\ & \rightarrow \text{least-squares yields poor results} \end{bmatrix} = 0$$

## The Normalized 8-point Algorithm

Transform image to  $\sim$ [-1,1]x[-1,1]



Least squares yields good results (Hartley, PAMI 97)

## The Normalized 8-point Algorithm

Or nomalization with the previous method:



# The Normalized 8-point Algorithm

#### Objective

Given  $n \geq 8$  image point correspondences  $\{\mathbf{x}_i \leftrightarrow \mathbf{x}_i'\}$ , determine the fundamental matrix F such that  $\mathbf{x}_i'^\mathsf{T} \mathbf{F} \mathbf{x}_i = 0$ .

#### Algorithm

- (i) **Normalization:** Transform the image coordinates according to  $\hat{\mathbf{x}}_i = T\mathbf{x}_i$  and  $\hat{\mathbf{x}}_i' = T'\mathbf{x}_i'$ , where T and T' are normalizing transformations consisting of a translation and scaling.
- (ii) Find the fundamental matrix  $\hat{\mathbf{F}}'$  corresponding to the matches  $\hat{\mathbf{x}}_i \leftrightarrow \hat{\mathbf{x}}_i'$  by
  - (a) **Linear solution:** Determine  $\hat{F}$  from the singular vector corresponding to the smallest singular value of  $\hat{A}$ , where  $\hat{A}$  is composed from the matches  $\hat{\mathbf{x}}_i \leftrightarrow \hat{\mathbf{x}}_i'$  as defined in (11.3).
  - (b) Constraint enforcement: Replace  $\hat{F}$  by  $\hat{F}'$  such that  $\det \hat{F}' = 0$  using the SVD (see section 11.1.1).
- (iii) **Denormalization:** Set  $F = T'^T \hat{F}' T$ . Matrix F is the fundamental matrix corresponding to the original data  $\mathbf{x}_i \leftrightarrow \mathbf{x}_i'$ .

### **Geometric Distance**

- Gold standard
- Sampson error
- Symmetric epipolar distance

## **Gold Standard**

Maximum Likelihood Estimation (= least-squares for Gaussian noise)

$$\sum_{i} d(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i})^{2} + d(\mathbf{x}'_{i}, \hat{\mathbf{x}}'_{i})^{2} \text{ subject to } \hat{\mathbf{x}}^{\mathsf{T}} \mathbf{F} \hat{\mathbf{x}} = 0$$

Initialize: normalized 8-point, (P,P') from F, reconstruct  $X_i$ 

Parameterize:

$$\begin{split} \mathbf{P} = & [\mathbf{I} \,|\, \mathbf{0}], \mathbf{P'} = [\mathbf{M} \,|\, \mathbf{t}], \mathbf{X}_i \\ \hat{\mathbf{x}}_i = & \mathbf{P}\mathbf{X}_i, \hat{\mathbf{x}}_i' = \mathbf{P'}\mathbf{X}_i \end{split} \tag{overparametrized}$$

Minimize cost using Levenberg-Marquardt (preferably sparse LM, see book)

#### Objective

Given  $n \ge 8$  image point correspondences  $\{\mathbf{x}_i \leftrightarrow \mathbf{x}_i'\}$ , determine the Maximum Likelihood estimate  $\hat{\mathbf{F}}$  of the fundamental matrix.

The MLE involves also solving for a set of subsidiary point correspondences  $\{\hat{\mathbf{x}}_i \leftrightarrow \hat{\mathbf{x}}_i'\}$ , such that  $\hat{\mathbf{x}}_i'^{\mathsf{T}}\hat{\mathbf{F}}\hat{\mathbf{x}}_i = 0$ , and which minimizes

$$\sum_{i} d(\mathbf{x}_i, \hat{\mathbf{x}}_i)^2 + d(\mathbf{x}_i', \hat{\mathbf{x}}_i')^2.$$

#### Algorithm (Expensive Method)

- (i) Compute an initial rank 2 estimate of  $\hat{F}$  using a linear algorithm such as algorithm 11.1.
- (ii) Compute an initial estimate of the subsidiary variables  $\{\hat{\mathbf{x}}_i, \hat{\mathbf{x}}_i'\}$  as follows:
  - (a) Choose camera matrices  $P = [I \mid \mathbf{0}]$  and  $P' = [[\mathbf{e}']_{\times} \hat{F} \mid \mathbf{e}']$ , where  $\mathbf{e}'$  is obtained from  $\hat{F}$ .
  - (b) From the correspondence  $\mathbf{x}_i \leftrightarrow \mathbf{x}_i'$  and  $\hat{\mathbf{F}}$  determine an estimate of  $\widehat{\mathbf{X}}_i$  using the triangulation method of chapter 12.
  - (c) The correspondence consistent with  $\hat{F}$  is obtained as  $\hat{\mathbf{x}}_i = P\hat{\mathbf{X}}_i$ ,  $\hat{\mathbf{x}}_i' = P'\hat{\mathbf{X}}_i$ .

#### (iii) Minimize the cost

$$\sum_{i} d(\mathbf{x}_i, \hat{\mathbf{x}}_i)^2 + d(\mathbf{x}_i', \hat{\mathbf{x}}_i')^2$$

over  $\hat{\mathbf{F}}$  and  $\widehat{\mathbf{X}}_i$ ,  $i=1,\ldots,n$ . The cost is minimized using the Levenberg-Marquardt algorithm over 3n+12 variables: 3n for the n 3D points  $\widehat{\mathbf{X}}_i$ , and 12 for the camera matrix  $P'=[\mathtt{M}\mid\mathbf{t}]$ , with  $\hat{\mathbf{F}}=[\mathbf{t}]_{\times}\mathtt{M}$ , and  $\hat{\mathbf{x}}_i=P\widehat{\mathbf{X}}_i$ ,  $\hat{\mathbf{x}}_i'=P'\widehat{\mathbf{X}}_i$ .

### First-order Geometric Error (Sampson Error)

$$\sum e^{\mathrm{T}} \left( \mathrm{J} \mathrm{J}^{\mathrm{T}} \right)^{-1} e \qquad \sum \frac{e^{\mathrm{T}} e}{\mathrm{I} \mathrm{J}^{\mathrm{T}}} \qquad \text{(one eq./point } \Rightarrow \mathrm{J} \mathrm{J}^{\mathrm{T}} \text{ scalar)}$$

$$e = \sum \mathbf{x'}^{\mathsf{T}} \mathbf{F} \mathbf{x} = 0$$

$$JJ^{T} = (x'^{T} F)_{1}^{2} + (x'^{T} F)_{2}^{2} + (Fx)_{1}^{2} + (Fx)_{2}^{2}$$

where  $(Fx_i)_i^2$  represents the square of the j-th entry of the vector  $Fx_i$ 

$$\sum \frac{e^{\mathrm{T}} e}{\mathbf{J} \mathbf{J}^{\mathrm{T}}} \qquad \sum \frac{\mathbf{x'}^{\mathrm{T}} \mathbf{F} \mathbf{x}}{(\mathbf{x'}^{\mathrm{T}} \mathbf{F})_{1}^{2} + (\mathbf{x'}^{\mathrm{T}} \mathbf{F})_{2}^{2} + (\mathbf{F} \mathbf{x})_{1}^{2} + (\mathbf{F} \mathbf{x})_{2}^{2}}$$

(problem if some x is located at epipole)

advantage: no subsidiary variables required

# Symmetric Epipolar Error

$$\sum_{i} d(\mathbf{x'}_{i}, F\mathbf{x}_{i})^{2} + d(\mathbf{x}_{i}, F^{T}\mathbf{x'}_{i})^{2}$$

$$= \sum_{i} \mathbf{x'}^{T} F\mathbf{x} \left( \frac{1}{(\mathbf{x'}^{T} F)_{1}^{2} + (\mathbf{x'}^{T} F)_{2}^{2}} + \frac{1}{(F\mathbf{x})_{1}^{2} + (F\mathbf{x})_{2}^{2}} \right)$$































#### Residual error:

$$\sum_{i} d(\mathbf{x'}_{i}, F\mathbf{x}_{i})^{2} + d(\mathbf{x}_{i}, F^{\mathsf{T}}\mathbf{x'}_{i})^{2}$$
(for all points)



#### Recommendations

- Do not use unnormalized algorithms
- Quick and easy to implement: 8-point normalized
- Better: enforce rank-2 constraint during minimization
- Best: Maximum Likelihood Estimation

## **Automatic Computation of F**

- 1. Interest points
- 2. Putative correspondences
- 3. RANSAC
- 4. Non-linear re-estimation of F
- 5. Guided matching

(repeat 4 and 5 until stable)

# **Automatic Computation of F**

Objective Compute the fundamental matrix between two images.

#### Algorithm

- (i) Interest points: Compute interest points in each image.
- (ii) **Putative correspondences:** Compute a set of interest point matches based on proximity and similarity of their intensity neighbourhood.
- (iii) **RANSAC robust estimation:** Repeat for N samples, where N is determined adaptively as in algorithm 4.5(p121):
  - (a) Select a random sample of 7 correspondences and compute the fundamental matrix F as described in section 11.1.2. There will be one or three real solutions.
  - (b) Calculate the distance  $d_{\perp}$  for each putative correspondence.
  - (c) Compute the number of inliers consistent with F by the number of correspondences for which  $d_{\perp} < t$  pixels.
  - (d) If there are three real solutions for F the number of inliers is computed for each solution, and the solution with most inliers retained.

Choose the F with the largest number of inliers. In the case of ties choose the solution that has the lowest standard deviation of inliers.

- (iv) **Non-linear estimation:** re-estimate F from all correspondences classified as inliers by minimizing a cost function, e.g. (11.6), using the Levenberg–Marquardt algorithm of section A6.2(p600).  $\sum d(\mathbf{x}_i, \hat{\mathbf{x}}_i)^2 + d(\mathbf{x}'_i, \hat{\mathbf{x}}'_i)^2$
- (v) **Guided matching:** Further interest point correspondences are now determined using the estimated F to define a search strip about the epipolar line.

The last two steps can be iterated until the number of correspondences is stable.

(e.g.Harris&Stephens 88; Shi&Tomasi 94)

Find points that differ as much as possible from all neighboring points







Select strongest features (e.g. 1000/image)

Evaluate NCC for all features with similar coordinates

e.g. 
$$(x? y') \in [x - \frac{w}{10}, x + \frac{w}{10}] \times [y - \frac{h}{10}, y + \frac{h}{10}]$$





Keep mutual best matches
Still many wrong matches!







Gives satisfying results for small image motions

#### **RANSAC**

```
Step 1. Extract features

Step 2. Compute a set of potential matches

Step 3. do

Step 3.1 select minimal sample (i.e. 7 matches)

Step 3.2 compute solution(s) for F

Step 3.3 determine inliers(verify hypothesis)

until \Gamma(\#inliers,\#samples)<95%
```

Step 4. Compute F based on all inliers

Step 5. Look for additional matches by guided matching

Step 6. Refine F based on all correct matches

### **RANSAC**

- Why choose 7-point algorithm instead of 8-point algorithm?
  - A rank 2 matrix is produced without enforcement
  - The number of samples that must be tried in order to ensure a high probability of the no outliers is exponential in the size of the sample set
- Distance measure
  - Reprojection error  $\sum_{i} d(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i})^{2} + d(\mathbf{x}'_{i}, \hat{\mathbf{x}}'_{i})^{2}$
  - Sampson approximation  $\sum \frac{x'^T Fx}{(x'^T F)_1^2 + (x'^T F)_2^2 + (Fx)_1^2 + (Fx)_2^2}$

## **Guided Matching**





restrict search range to neighborhood of epipolar line  $(\pm 1.5 \text{ pixels})$ 

relax disparity restriction (along epipolar line)





geometric relations between two views is fully described by recovered 3x3 matrix  $\boldsymbol{F}$ 

















## **Degenerate Cases**

- Degenerate cases
  - Planar scene
  - Pure rotation
- No unique solution
  - Remaining DOF filled by noise
  - Use simpler model (e.g. homography)
- Model selection (Torr et al., ICCV 98, Kanatani, Akaike)
  - Compare H and F according to expected residual error (compensate for model complexity)

## Image Pair Rectification

simplify stereo matching by warping the images

Apply projective transformation so that epipolar lines correspond to horizontal scanlines



problem when epipole in (or close to) the image

## Planar Rectification

(standard approach)



## Rectification

- Two steps:
  - Mapping the epipolar to infinity
    - Finding a projective transformation H of an image that maps the epipole to a point at infinity
    - Avoid distortion: better to have rigid transformation, to first-order the neighborhood of  $\mathbf{x}_0$  may undergo rotation and translation only
  - Matching transformation
    - Match the epiplolar lines
    - Find a match pair that  $H^{-T}I=H'^{-T}I'$

# Mapping the Epipolar to Infinity

- For example, given epipole  $e=(f, 0, 1)^T$
- A good transform is

$$\mathbf{G} = \left[ \begin{array}{ccc|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1/f & 0 & 1 \end{array} \right]$$

$$(\hat{x}, \hat{y}, 1)^{\mathsf{T}} = (x, y, 1 - x/f)^{\mathsf{T}} = (x(1 + x/f + \dots), y(1 + x/f + \dots), 1)^{\mathsf{T}}$$
$$\frac{\partial(\hat{x}, \hat{y})}{\partial(x, y)} = \begin{bmatrix} 1 + 2x/f & 0\\ y/f & 1 + x/f \end{bmatrix} = \text{I if } \mathbf{x} = \mathbf{y} = \mathbf{0}$$

- For an arbitrary  $x_0$  and epipole **e** 
  - H=GRT: R: rotate to x-axis, T: translate to (f, 0, 1)<sup>T</sup>

## **Matching Transformation**

• Target: to minimize  $\sum_i d(\mathbf{H}\mathbf{x}_i,\mathbf{H}'\mathbf{x}_i')^2$ 

**Corollary 11.4.** Let J and J' be images with fundamental matrix  $F = [e']_{\times}M$ , and let H' be a projective transformation of J' mapping the epipole e' to the infinite point  $(1,0,0)^{\mathsf{T}}$ . A transformation H of J matches H' if and only if H is of the form  $H = H_A H_0$ , where  $H_0 = H'M$  and  $H_A$  is an affine transformation of the form (11.20).

$$\mathbf{H}_{\mathbf{A}} = \left[ \begin{array}{cccc} a & b & c \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

• To solve a, b, c, minimize

$$\sum_{i} (a\hat{x}_{i} + b\hat{y}_{i} + c - \hat{x}'_{i})^{2} + (\hat{y}_{i} - \hat{y}'_{i})^{2}$$

## Algorithm Outline

- (i) Identify a seed set of image-to-image matches  $\mathbf{x}_i \leftrightarrow \mathbf{x}_i'$  between the two images. Seven points at least are needed, though more are preferable. It is possible to find such matches by automatic means.
- (ii) Compute the fundamental matrix F and find the epipoles e and e' in the two images.
- (iii) Select a projective transformation H' that maps the epipole e' to the point at infinity,  $(1,0,0)^T$ . The method of section 11.12.1 gives good results.
- (iv) Find the matching projective transformation H that minimizes the least-squares distance

$$\sum_{i} d(\mathbf{H}\mathbf{x}_{i}, \mathbf{H}'\mathbf{x}_{i}'). \tag{11.22}$$

The method used is a linear method described in section 11.12.2.

(v) Resample the first image according to the projective transformation H and the second image according to the projective transformation H'.











## Polar Rectification

(Pollefeys et al. ICCV'99)

Polar re-parameterization around epipoles Requires only (oriented) epipolar geometry Preserve length of epipolar lines Choose  $\Delta\theta$  so that no pixels are compressed



Works for all relative motions Guarantees minimal image size

# Polar Rectification: Example





# Polar Rectification: Example

