

Segmentação da Articulação Sacroilíaca em Imagens de Ressonância Magnética Utilizando a Rede Neural Convolucional U-Net no Framework nnU-Net

Trabalho de Conclusão de Curso - Informática Biomédica

Lucas de Almeida Louzada

Orientador: Prof. Dr Paulo Mazzoncini de Azevedo Marques

- <u>Introdução</u>
- Objetivos
- <u>Materiais e Métodos</u>
- Resultados
- Conclusão

Introdução

CONTEXTUALIZAÇÃO

- Espondiloartropatias Soronegativas (EAS): Grupo de doenças inflamatórias sistêmicas crônicas que, característicamente, apresentam manifestações clínicas precoces nas articulações sacroilíacas (AS).
- Podem causar um grande impacto na qualidade de vida dos portadores.
- Em casos mais graves pode acometer a coluna vertebral, podendo evoluir com rigidez e limitação funcional progressiva, como no caso da **espondilite anquilosante.**

- Englobam condições como: espondilite anquilosante, artrite psoriásica, artrite reativa, entre outras.
- Compartilham aspectos clínicos, radiológicos e laboratoriais comuns, tais como:
 - Dor axial inflamatória associada à artrite;
 - Sacroiliíte;
 - Ausência de anticorpos reumatóides no sangue, caracterizando-as como "soronegativas".
- As manifestações clínicas precoces nas AS são de lenta evolução e sem marcadores laboratoriais específicos que demonstrem sua atividade, sendo caracterizadas pelo processo inflamatório não-infeccioso das mesmas, nomeado Sacroiliíte.
- Sacroiliíte é critério diagnóstica das EAS.

- Diagnóstico e a avaliação de sacroiliíte baseados principalmente em exames de imagem, como a ressonância magnética (RM).
- Devido à complexidade da região, processo diagnóstico não é uma tarefa trivial.

Imagens de RM da AS - à esquerda: negativo para sacroiliíte; à direita: positivo para sacroiliíte.

U-Net

 Arquitetura especialmente projetada para segmentação de imagens biomédicas

Arquitetura da U-Net

RONNEBERGER et al. MICCAI 2015.

nnU-Net

- "no-new-U-Net".
- Framework que trás ferramentas para implementação de fluxo completo e automatizado de segmentação de imagens biomédicas.
- A partir da entrada, gera uma arquitetura baseada na U-Net original.
- Expõe principais configurações em forma de variáveis, permitindo um ajuste fino dos parâmetros.

Coenficientes Dice e IoU

- Métricas para avaliar a similaridade da predição em relação ao conjunto original.
- Valores mais próximos de 1 indicam uma maior precisão na segmentação, enquanto valores mais baixos indicam uma precisão menor.

$$DICE(A,B) = \frac{2 \times |A \cap B|}{|A| + |B|}.$$

$$IoU(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Objetivos

Objetivos

Implementar, treinar e analisar os resultados da aplicação da rede **U-Net**, utilizando o framework **nnU-Net**, para a identificação e segmentação automática das AS em imagens de RM.

Objetivos

ETAPAS:

- Pré-processamento do conjunto de imagens;
- Data Augmentation;
- Organização do conjunto de imagens;
- Implementação do framework e treinamento;
- Testes e ajustes dos modelos;
- Pós-processamento;
- Análise dos resultados;

Materiais e Métodos

- Principal Material: Conjunto de imagens de RM.
- De 51 pacientes obtidas com sequência Spectral Attenuated Inversion Recovery (SPAIR) e de 46 pacientes obtidas com sequência Short Tau Inversion Recovery (STIR).
- Anteriormente estruturado e anonimizado para uso público, com aprovação do Comitê de Ética em Pesquisa do Hospital das Clínicas de Ribeirão Preto (CEP-HCRP), sob parecer número 1.951.052.

pré-processamento

- Verificação da presença de atributos essenciais para pré-processamento.
- Conversão de DICOM para PNG.
- Técnica de windowing: realce de faixas de intensidades de pixel.
- Verificação de paridade das imagens e máscaras de segmentação e recorte para padronização de tamanhos.
- Pré-processamento das máscaras: binarização dos pixels e remoção de ruídos.
- Conjunto de treino (80%) e conjunto de testes (20%).

Exemplo das imagens após o préprocessamento

GONZALEZ, Digital image processing, 2009.

Data Augmentation

- Conceito fundamental para atingir melhores resultados no treinamento de modelos U-Net.
- Biblioteca Python Albumentations, aumento de 2x do conjunto de treino, resultando em 910 imagens para treinamento.
- Transformações aplicadas: HorizontalFlip, VerticalFlip, Rotate, RandomSizedCrop, GridDistortion.

Exemplo das imagens após processo de data augmentation

Implementação da Arquitetura

CONFIGURAÇÃO E TESTES

- Google Colab.
- Organização das imagens seguindo estrutura específica do nnU-Net.
- Maioria das configurações foi mantida no valor padrão.
- Alterados iterações por *epoch* e total de *epochs* (250 e 80, respectivamente)

Estrutura de diretórios para uso do nnU-Net

TREINAMENTO

- Técnica de validação cruzada 5-Fold.
- Conjunto de treino, com 910 imagens, foi divido em 5 subconjuntos, e em cada modelo, um desses subconjuntos foi utilizado para validar o treinamento e os outros quatro subconjuntos foram utilizados para treino.
- Tempo médio dos epochs: 5min.
- Aproximadamente 35 horas de treinamento.

MÉTRICAS TREINAMENTO

Métricas de cada modelo

Modelo	Coeficiente Dice		
Fold_0	0.9177		
Fold_1	0.9144		
Fold_2	0.9126		
Fold_3	0.9078		
Fold_4	0.9136		

Após 5-Fold Cross Validation

Coeficiente Dice	IoU	
0.9132	0.8417	

PÓS-PROCESSAMENTO

- Após a realização das inferências utilizando o nnU-Net, foi aplicado o pósprocessamento.
- nnU-Net remove todos os componentes menores, deixando apenas o maior.
 Esse passo é feito na suposição de que os componentes menores são provavelmente erros de segmentação (ruídos), e que a estrutura real que está sendo segmentada é o componente maior.

Resultados

	Min.	1° Quadrante	Mediana	Média	3º Quadrante	Max.
Dice	0.3996	0.8348	0.8992	0.8542	0.9147	0.9528

	Min.	1º Quadrante	Mediana	Média	3º Quadrante	Max.
IoU	0.2497	0.7164	0.8168	0.7576	0.8429	0.9099

PREDIÇÕES

PREDIÇÕES

PREDIÇÕES

Resultados Aplicação prática

Conclusão

Conclusão

Apresenta grande potencial para a aplicabilidade no contexto clínico

Há muito espaço para melhora, incluindo:

- Explorar parametros e configurações;
- Trabalhar com maior variedade de tranformações nas imagens;
- Utilizar segmentações mais específicas;

Continuidade do projeto:

 Pipeline completo para segmentação e classificação da sacroiliíte ativa.

Obrigado!