Reto modelacion estadisitica

October 7, 2023

1 Reto entregable 1

- Guillermo Villegas Morales A01637169
- Adara Luisa Pulido Sánchez A01642450
- Jorge Eduardo Guijarro Márquez A01563113
- Alan Rojas López A01706146
- Gabriel Eduardo Meléndez Zavala A01638293

Hay que dar en poco más del contexto del problen à en la introducción

2 Introducción

En este entregable realizamos una fase exploratoria de una base de datos de canciones donde cada entrada es una canción y sus atributos constan del nombre del artista/s, nombre de la canción, tonalidad, popularidad, duración entre otros. La base de datos tiene problemas como datos basura o datos faltantes, limpiearemos la base de datos para obtener un análisis propio, además de que realizamos diferentes estadísticas descriptivas.

3 Objetivos

Nuestro objetivo principal es tener una base de datos limpia y completa. Adicional a esto empezamos con el análisis exploratorio. Realizamos un heatmap para detectar covarianzas dentro los atributos, un boxplot por columna para tener una mejor idea de la distribución de los datos de cada columna y un wordcloud para encontrar las palabras más frecuentes en los nombres de artistas y de canciones

4 Métodos 7 Descripción de la que hicieran no 4.0.1 Import Libraries el código. Ese preden poner la en un mexo

[189]: import numpy as np # lots of math operations and matrices import pandas as pd # data structures import matplotlib.pyplot as plt # plot charts. More on this later from scipy import stats as st import seaborn as sns from wordcloud import WordCloud

```
df=pd.read_csv("music.csv")
```

4.0.2 Información básica de la base de datos

```
[190]: df.head()
```

[100].	<u> </u>	d1 · Hodd ()								
[190]:		Art	ist Name				Track	Name Popular:	ity \	
	0	Br	uno Mars	That	t's What I	Like (f	feat. Gucci M	ane) 60	0.0	
	1 Boston					Hitch a	Ride 54	1.0		
	2	2 The Raincoats				No	Side to Fal	1 In 39	5.0	
	3		Deno		Lin	ngo (fea	at. J.I & Chu	nkz) 66	3.0	
	4	Red Hot Chili	Peppers		Nobody We:	ird Like	e Me - Remast	ered 53	3.0	
		danceability	energy	key	loudness	mode	speechiness	acousticness	\	
	0	0.854	0.564	1.0	-4.964	1	0.0485	0.017100		
	1	0.382	0.814	3.0	-7.230	1	0.0406	0.001100		
	2	0.434	0.614	6.0	-8.334	1	0.0525	0.486000		
	3	0.853	0.597	10.0	-6.528		0.0555	0.021200		
	4	0.167	0.975	2.0	-4.279	1	0.2160	0.000169		
		instrumentaln	ess liv	eness	valence	tempo	duration_i	n min/ms \		
	0]	NaN O	.0849	0.8990	134.071	L	234596.0		
	1	0.004	010 0	.1010	0.5690	116.454	l .	251733.0		
	2	0.000	196 0	.3940	0.7870	147.681	L	109667.0		
	3			.1220	0.5690	107.033	3	173968.0		
	4	0.016	100 0	.1720	0.0918	199.060)	229960.0		
	time_signature Class									
	0	•	4 5							
	1	•	4 10							
	2	•	4 6							
	3	4	4 5							
	4	•	4 10							

Buscamos los datos nulos dentro de la base de datos

[191]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 17996 entries, 0 to 17995
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	Artist Name	17996 non-null	object
1	Track Name	17996 non-null	object
2	Popularity	17568 non-null	float64
3	danceability	17996 non-null	float64
4	energy	17996 non-null	float64

```
5
   key
                       15982 non-null float64
6
   loudness
                        17996 non-null float64
7
   mode
                        17996 non-null
                                       int64
8
   speechiness
                        17996 non-null float64
    acousticness
                        17996 non-null float64
   instrumentalness
                        13619 non-null float64
   liveness
                        17996 non-null float64
12
   valence
                        17996 non-null float64
13
   tempo
                        17996 non-null float64
   duration_in min/ms
                       17996 non-null float64
   time_signature
15
                        17996 non-null
                                       int64
16 Class
                        17996 non-null
                                       int64
```

No nos sirve de nada el código si no hayva narrativa que describa lo que estánhaciendo

dtypes: float64(12), int64(3), object(2)

memory usage: 2.3+ MB

Análisis rápido de cada columna

[192]: df.describe()

[192]:	ar . des	scribe()					
[192]:		Popularity	danceability	energy	key	loudness	\
	count	17568.000000	17996.000000	17996.000000	15982.000000	17996.000000	
	mean	44.512124	0.543433	0.662777	5.952447	-7.910660	
	std	17.426928	0.166268	0.235373	3.196854	4.049151	
	min	1.000000	0.059600	0.000020	1.000000	-39.952000	
	25%	33.000000	0.432000	0.509000	3.000000	-9.538000	
	50%	44.000000	0.545000	0.700000	6.000000	-7.016000	
	75%	56.000000	0.659000	0.860000	9.000000	-5.189000	
	max	100.000000	0.989000	1.000000	11.000000	1.355000	
		mode	speechiness	acousticness	instrumentaln	ess \	
	count	17996.000000	17996.000000	17996.000000	13619.000		
	mean	0.636753	0.079707	0.247082	0.177		
	std	0.480949	0.083576	0.310632	0.304	048	
	min	0.000000	0.022500	0.000000	0.000	001	
	25%	0.000000	0.034800	0.004300	0.000	089	
	50%	1.000000	0.047400	0.081400	0.003	910	
	75%	1.000000	0.083000	0.434000	0.200	000	
	max	1.000000	0.955000	0.996000	0.996	000	
		liveness	valence	tempo	duration_in m	in/ms \	
	count	17996.000000	17996.000000	17996.000000	1.79960	0e+04	
	mean	0.196170	0.486208	122.623294	2.00744	5e+05	
	std	0.159212	0.240195	29.571527	1.11989	1e+05	
	min	0.011900	0.018300	30.557000	5.01650	0e-01	
	25%	0.097500	0.297000	99.620750	1.66337	0e+05	
	50%	0.129000	0.481000	120.065500	2.09160	0e+05	
	75%	0.258000	0.672000	141.969250	2.52490	0e+05	
	max	1.000000	0.986000	217.416000	1.47718	7e+06	

	time_signature	Class
count	17996.000000	17996.000000
mean	3.924039	6.695821
std	0.361618	3.206073
min	1.000000	0.000000
25%	4.000000	5.000000
50%	4.000000	8.000000
75%	4.000000	10.000000
max	5.000000	10.000000

Dimensión de la matríz

```
[193]: df.shape
```

```
[193]: (17996, 17)
```

4.0.3 Imputación Simple

Se detectaron valores faltantes en las columnas de "instrumentalness", "key" y "Popularity". Utilizando media y moda, ze realizó una amputación simple de valores. Para los datos faltantes de 'instrumentalness' y 'popularity' introducimos el promedio de la columna. Para la columna de valores discretos 'key' introducimos el 0 donde faltaran valores ya que las columnas sin estos valores estaban en la toanlidad de C.

```
[194]: df['instrumentalness'].fillna(np.mean(df.instrumentalness),inplace=True)
df['Popularity'].fillna(np.mean(df.Popularity),inplace=True)
df['key'].fillna(0, inplace = True)
```

4.0.4 Clasificación de variables

• Artist name: categórica

• Track name: categórica

• Popularity: numérica

• danceability: numérica

• energy: numérica

• key: numérica

• loudness: numérica

• mode: numérica

• speechiness: numérica

• acousticness: numérica

• instrumentalness: numérica

• liveness: numérica

- valence: numérica
- tempo: numérica
- duration_in min/ms: numérica
- time_signature:numérica
- Class: categórica

```
[195]: df.info() #Show the changes that were made
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 17996 entries, 0 to 17995
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	Artist Name	17996 non-null	object
1	Track Name	17996 non-null	object
2	Popularity	17996 non-null	float64
3	danceability	17996 non-null	float64
4	energy	17996 non-null	float64
5	key	17996 non-null	float64
6	loudness	17996 non-null	float64
7	mode	17996 non-null	int64
8	speechiness	17996 non-null	float64
9	acousticness	17996 non-null	float64
10	instrumentalness	17996 non-null	float64
11	liveness	17996 non-null	float64
12	valence	17996 non-null	float64
13	tempo	17996 non-null	float64
14	duration_in min/ms	17996 non-null	float64
15	time_signature	17996 non-null	int64
16	Class	17996 non-null	int64
dtyp	es: float64(12), int	64(3), object(2)	
	0.0.10		

memory usage: 2.3+ MB

Como podemos ver, todas las columnas tienen 17996 datos no nulos

4.0.5 Creando nueva clase de Género

Al estar codificada la variable "Class" en números del 1 al 10 es necesario interpretar los números con respecto a cada uno de los géneros musicales. En Base a la tabla proporcionada se crea una nueva variable llamada "Genre" que representa explicítamente el género al que pertenece cada canción.

```
elif row == 1:
               return 'Alternative'
           elif row == 2:
              return 'Blues'
           elif row == 3:
              return 'Bollywood'
           elif row == 4:
              return 'Country'
           elif row == 5:
               return 'Hip-Hop'
           elif row == 6:
             return 'Indie'
           elif row == 7:
               return 'Instrumental'
           elif row == 8:
               return 'Metal'
           elif row == 9:
               return 'Pop'
           elif row == 10:
               return 'Rock'
       df['Genre'] = df['Class'].apply(class_to_genre)
       df.head()
[196]:
                    Artist Name
                                                             Track Name Popularity \
       0
                     Bruno Mars That's What I Like (feat. Gucci Mane)
                                                                               60.0
                                                                               54.0
       1
                         Boston
                                                           Hitch a Ride
                                                     No Side to Fall In
       2
                  The Raincoats
                                                                               35.0
       3
                           Deno
                                            Lingo (feat. J.I & Chunkz)
                                                                               66.0
                                     Nobody Weird Like Me - Remastered
       4 Red Hot Chili Peppers
                                                                               53.0
                                 key loudness mode speechiness acousticness \setminus
          danceability energy
```

```
0
         0.854
                0.564
                        1.0
                              -4.964
                                         1
                                                0.0485
                                                            0.017100
                              -7.230
1
         0.382 0.814
                        3.0
                                         1
                                                0.0406
                                                            0.001100
2
         0.434 0.614
                      6.0
                            -8.334
                                         1
                                                0.0525
                                                            0.486000
         0.853 0.597 10.0
                            -6.528
3
                                         0
                                                0.0555
                                                            0.021200
         0.167
                0.975
                        2.0
                              -4.279
                                         1
                                                0.2160
                                                            0.000169
  instrumentalness liveness valence
                                     tempo duration_in min/ms
                   0.0849
0
                            0.8990 134.071
          0.177562
                                                       234596.0
1
          0.004010
                   0.1010
                             0.5690 116.454
                                                       251733.0
2
          0.000196
                   0.3940
                             0.7870 147.681
                                                       109667.0
3
          0.177562
                     0.1220
                              0.5690 107.033
                                                       173968.0
          0.016100
                   0.1720
                              0.0918 199.060
                                                       229960.0
  time_signature Class
                          Genre
0
               4
                     5 Hip-Hop
```

```
1 4 10 Rock
2 4 6 Indie
3 4 5 Hip-Hop
4 10 Rock
```

4.0.6 New class Key

Similar al proceso anterior, decodificamos el atributo 'key' de los registros donde el 0.0 recibe el la calsificación de C, 1.0 de C#, ... y 11.0 de B. dentro de una nueva variable categórica 'Key'.

```
[197]: def class_to_Key(row):
           if row == 0.0:
               return 'C'
           elif row == 1.0:
               return 'C#'
           elif row == 2.0:
              return 'D'
           elif row == 3.0:
              return 'D#'
           elif row == 4.0:
              return 'E'
           elif row == 5.0:
               return 'F'
           elif row == 6.0:
              return 'F#'
           elif row == 7.0:
               return 'G'
           elif row == 8.0:
               return 'G#'
           elif row == 9.0:
               return 'A'
           elif row == 10.0:
               return 'A#'
           elif row == 11.0:
               return 'B'
       df['Key'] = df['key'].apply(class_to_Key)
       df.head()
```

```
[197]:
                    Artist Name
                                                              Track Name Popularity \
                                                                                60.0
                     Bruno Mars
                                 That's What I Like (feat. Gucci Mane)
       0
                                                           Hitch a Ride
                                                                                54.0
       1
                         Boston
       2
                  The Raincoats
                                                     No Side to Fall In
                                                                                35.0
                                             Lingo (feat. J.I & Chunkz)
       3
                            Deno
                                                                                66.0
         Red Hot Chili Peppers
                                      Nobody Weird Like Me - Remastered
                                                                                53.0
```

danceability energy key loudness mode speechiness acousticness \

```
0.0485
0
          0.854
                                   -4.964
                                                                    0.017100
                   0.564
                           1.0
                                               1
1
                                   -7.230
          0.382
                   0.814
                           3.0
                                               1
                                                       0.0406
                                                                    0.001100
2
          0.434
                   0.614
                           6.0
                                   -8.334
                                               1
                                                       0.0525
                                                                    0.486000
3
          0.853
                   0.597
                          10.0
                                   -6.528
                                               0
                                                       0.0555
                                                                    0.021200
4
          0.167
                   0.975
                                   -4.279
                                                       0.2160
                                                                    0.000169
                           2.0
                                               1
   instrumentalness
                                 valence
                                                    duration_in min/ms
                      liveness
                                             tempo
0
           0.177562
                        0.0849
                                  0.8990
                                          134.071
                                                               234596.0
1
           0.004010
                        0.1010
                                  0.5690
                                          116.454
                                                               251733.0
2
           0.000196
                        0.3940
                                  0.7870
                                          147.681
                                                               109667.0
3
           0.177562
                        0.1220
                                  0.5690
                                          107.033
                                                               173968.0
4
           0.016100
                        0.1720
                                  0.0918
                                          199.060
                                                               229960.0
   time_signature
                   Class
                              Genre Key
0
                        5
                           Hip-Hop C#
                 4
1
                 4
                              Rock D#
                       10
2
                 4
                        6
                              Indie F#
3
                 4
                        5
                           Hip-Hop
                                     A#
4
                 4
                       10
                               Rock
                                      D
```

4.0.7 Histogramas

```
[198]: sns.histplot(data=df,x="duration_in min/ms")
```

[198]: <Axes: xlabel='duration_in min/ms', ylabel='Count'>

Con el fin de observar la distribución de frecuencias del tiempo en cada una de las canciones se genera un histograma de la variable "duration in min/ms". Sin embargo, al revisar la gráfica se observa una gran cantidad de datos en la duración 0.0, al corroborar con la base de datos se encontró que algunas canciones estaban en minutos mientras que otras estaban escritas como milisegundos. Por lo tanto se comprueba la medida de la duración en cada una de las canciones, aquellas con valores menores a 100 se multiplican por 60000 para convertirlos a minutos. Una vez se tiene todos los datos de la duración en minutos se vuelve a generar un histograma de la misma variable con los datos correctamente medidos.

```
[199]: df.loc[df['duration_in min/ms']<100, 'duration_in min/ms']=df.

oloc[df['duration_in min/ms']<100, 'duration_in min/ms']*60000
df.head()
```

[199]:		Artist Name	Track Name	Popularity	\
	0	Bruno Mars	That's What I Like (feat. Gucci Mane)	60.0	
	1	Boston	Hitch a Ride	54.0	
	2	The Raincoats	No Side to Fall In	35.0	
	3	Deno	Lingo (feat. J.I & Chunkz)	66.0	
	4	Red Hot Chili Peppers	Nobody Weird Like Me - Remastered	53.0	
		danceahility energy	key loudness mode speechiness acou	sticness \	

```
0
           0.854
                   0.564
                            1.0
                                    -4.964
                                                        0.0485
                                                                      0.017100
                                    -7.230
1
           0.382
                   0.814
                            3.0
                                                        0.0406
                                                                      0.001100
2
           0.434
                   0.614
                            6.0
                                    -8.334
                                                1
                                                        0.0525
                                                                      0.486000
3
           0.853
                   0.597
                           10.0
                                    -6.528
                                                0
                                                        0.0555
                                                                      0.021200
4
           0.167
                   0.975
                            2.0
                                    -4.279
                                                1
                                                        0.2160
                                                                      0.000169
   instrumentalness
                      liveness
                                 valence
                                                     duration_in min/ms
                                             tempo
0
            0.177562
                         0.0849
                                   0.8990
                                           134.071
                                                                234596.0
            0.004010
                                                                251733.0
1
                         0.1010
                                   0.5690
                                           116.454
2
            0.000196
                         0.3940
                                   0.7870
                                           147.681
                                                                109667.0
3
            0.177562
                         0.1220
                                   0.5690
                                           107.033
                                                                173968.0
4
            0.016100
                         0.1720
                                   0.0918
                                           199.060
                                                                229960.0
   time_signature
                    Class
                              Genre Key
0
                         5
                            Hip-Hop C#
                 4
1
                        10
                               Rock
                                     D#
2
                 4
                         6
                              Indie
                                      F#
3
                         5
                            Hip-Hop
                                      A#
4
                        10
                               Rock
                                       D
```

[200]: sns.histplot(data=df,x="duration_in min/ms")

[200]: <Axes: xlabel='duration_in min/ms', ylabel='Count'>

i Interpretación, discusión?

4.0.8 Nueva variable "collab"

Aquí creamos una nueva variable booleana 'collab' donde 1 significa que la canción es una colaboración entre artistas y 0 es que no lo es. Para hacer esto definimos que hay dos posible casos que indiquen esto: cuando la canción tiene una ',' en el atributo 'Artist Name' o cuando contiene la palabra 'feat.' dentro de 'Track Name'. En total encontramos 1202 canciones con colaboración.

```
[201]: df['collab'] = df['Artist Name'].str.contains(',') + df['Track Name'].str.
       ⇔contains('feat.')
       df['collab'].sum()
```

[201]: 1202

Falta mucho contexto.

Falta mucho contexto.

Describan lo que un a hacer g

los datos y Análisis descriptivo Por qué Fase 2

5.0.1 Exploración de los datos y Análisis descriptivo

```
[202]: sns.set_theme(style="darkgrid")
       g = sns.jointplot(x="Popularity", y="danceability", data=df,
                         kind="reg", truncate=False,
                         xlim=(0, 100), ylim=(0, 1),
                         color="m", height=7)
```


¿ Interpretación? ¿Que observan?

[203]: df2=df[['Popularity','danceability','energy','loudness','speechiness','acousticness','instrume ⇔min/ms']] df2.head()

[203]:	Popularity o	danceability	energy 1	Loudness	speechiness	acousticness	\
0	60.0	0.854	0.564	-4.964	0.0485	0.017100	
1	54.0	0.382	0.814	-7.230	0.0406	0.001100	
2	35.0	0.434	0.614	-8.334	0.0525	0.486000	
3	66.0	0.853	0.597	-6.528	0.0555	0.021200	
4	53.0	0.167	0.975	-4.279	0.2160	0.000169	
	instrumentalr	ness liveness	valence	e tempo	duration_i	n min/ms	
0	0.177	7562 0.0849	0.8990	134.071		234596.0	

1	0.004010	0.1010	0.5690	116.454	251733.0
2	0.000196	0.3940	0.7870	147.681	109667.0
3	0.177562	0.1220	0.5690	107.033	173968.0
4	0.016100	0.1720	0.0918	199.060	229960.0

5.0.2 Correlation Heatmap

En cuanto a la visualización de la correlación que tienen las variables de "Popularity", "danceability", "energy", "loudness", "speechiness", "acousticness", "instrumentalness", "liveness", "valence", "tempo" y "duration_in min/ms" se produce un mapa de calor de correlación. Se analizó que como resultado las variables que tienen mayor correlación con la variable "Popularity" son "danceability" y "loudness".

```
[204]: fig, ax = plt.subplots(figsize = (9, 6))
sns.heatmap(data = df2.corr(), cmap = Blues, linewidths = 0.30, annot

=True,fmt='.2f')
```

[204]: <Axes: >

5.0.3 Boxplot

Con el objetivo de ver la relación que tienen el género de las canciones con su popularidad se genera un boxplot. En el eje horizontal de la visualización se representa la popularidad de las canciones, mientras que en el eje vertical se observan cada una de las categorías de género. Esta gráfica presenta información acerca del rango intercuartil, la mediana, la cual indica la variabilidad en la popularidad dentro de cada género, así como los valores atípicos. Al examinar los datos proporcionados por el boxplot se resalta que el género "Country" tiende a ser más popular, pues presenta una mediana más alta que el resto, mientras que "Indie" y "Alternative" tienen canciones excepcionalmente populares. Por otro lado, el género con menor popularidad es el de "Bollywood" con una mediana menor.

5.0.4 Worldcloud de artistas

Palabras más comunes en los nombres de artistas, por alguna razón resalta "Ben".

```
[206]: # Create the wordcloud object
artist_array = ''.join(df['Artist Name'])
wordcloud = WordCloud(width=480, height=480, margin=0).generate(artist_array)
```

```
# Display the generated image:
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
plt.margins(x=0, y=0)
plt.show()
#sns.violinplot(x=df["species"], y=df["sepal_length"])
```


5.0.5 Worldcloud de nombres de canciones

Palabras más comunes en nombres de canciones, resaltan feat, Love ,remastered y live. A su vez, ecnontramos caracteres inusuales que corresponden en buena parte a los datos basura dentro de la columna

```
[207]: # Create the wordcloud object
    track_array = ''.join(df['Track Name'])
    wordcloud = WordCloud(width=480, height=480, margin=0).generate(track_array)

# Display the generated image:
    plt.imshow(wordcloud, interpolation='bilinear')
    plt.axis("off")
    plt.margins(x=0, y=0)
    plt.show()
```

