Examenul de bacalaureat național 2020 Proba E. c) Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Test 8

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$1,75:0,25-2\left(\frac{17}{4}-2,25\right)=175:25-2\left(4,25-2,25\right)=$	3p
	$=7-2\cdot 2=3$	2p
2.	Pentru orice $x \in [1,5]$, $f(x) = y \Leftrightarrow 2x + 1 = y \Leftrightarrow x = \frac{y-1}{2}$	2 p
	$y \in \text{Im } f \Leftrightarrow \text{există } x \in [1,5] \text{ astfel încât } f(x) = y \Leftrightarrow 1 \le \frac{y-1}{2} \le 5 \Leftrightarrow 3 \le y \le 11, \text{ deci Im } f = [3,11]$	3p
3.	$2x + 4 = 2^4$	3p
	x = 6, care convine	2 p
4.	$x - \frac{20}{100} \cdot x = 144$, unde x este prețul produsului înainte de ieftinire	3 p
	x = 180 de lei	2 p
5.	$AB = \sqrt{(5-2)^2 + (0-a)^2}$, deci $\sqrt{a^2 + 9} = 5$	3 p
	a = -4 sau $a = 4$	2 p
6.	$\sin 130^{\circ} = \sin (180^{\circ} - 130^{\circ}) = \sin 50^{\circ}$	2 p
	$\sin^2 130^\circ + \cos^2 50^\circ = \sin^2 50^\circ + \cos^2 50^\circ = 1$	3 p

(30 de puncte) **SUBIECTUL al II-lea**

1.a)	$\det A = \begin{vmatrix} 3 & 6 \\ -2 & -4 \end{vmatrix} = 3 \cdot (-4) - 6 \cdot (-2) =$	3p
	=-12+12=0	2p
b)	$A \cdot A + A = \begin{pmatrix} -3 & -6 \\ 2 & 4 \end{pmatrix} + \begin{pmatrix} 3 & 6 \\ -2 & -4 \end{pmatrix} =$	3 p
	$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O_2$	2p
c)	$X \in \mathcal{M}_2(\mathbb{R}) \Rightarrow X = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$, unde x, y, z și t sunt numere reale și $X + I_2 = \begin{pmatrix} x+1 & y \\ z & t+1 \end{pmatrix}$	2 p
	$\begin{vmatrix} x & y \\ z & t \end{vmatrix} = \begin{vmatrix} x+1 & y \\ z & t+1 \end{vmatrix} \Leftrightarrow xt - yz = xt + x + t + 1 - yz \Leftrightarrow x + t = -1 \text{ si, cum există o infinitate de}$	2n
	numere reale x și t pentru care $x + t = -1$, există o infinitate de matrice $X \in \mathcal{M}_2(\mathbb{R})$ astfel	3р
	încât $\det X = \det \left(X + I_2 \right)$	
2.a)	$1 \circ \sqrt{2} = -1 \cdot \sqrt{2} + 1 + \sqrt{2} =$	3p
	$= -\sqrt{2} + 1 + \sqrt{2} = 1$	2 p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

b)	$x \circ y = -xy + x + y - 1 + 1 =$	2 p
	=-x(y-1)+(y-1)+1=-(x-1)(y-1)+1, pentru orice numere reale x şi y	3 p
c)	$-(3^x-1)(5^x-1)+1=1 \Leftrightarrow 3^x-1=0 \text{ sau } 5^x-1=0$	3 p
	x = 0	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 4x^3 - 4x =$	2p
	$=4x(x^2-1)=4x(x-1)(x+1), x \in \mathbb{R}$	3 p
b)	f(2) = -55, $f'(2) = 24$	2p
	Ecuația tangentei este $y - f(2) = f'(2)(x-2)$, deci $y = 24x - 103$	3 p
c)	$\lim_{x \to 3} \frac{f(x)}{x^2 - 9} = \lim_{x \to 3} \frac{f'(x)}{2x} =$	3p
	$= \lim_{x \to 3} \frac{4x(x-1)(x+1)}{2x} = \lim_{x \to 3} 2(x-1)(x+1) = 16$	2p
2.a)	$F'(x) = \frac{2x(x+1)-x^2}{(x+1)^2} =$	2p
	$= \frac{x^2 + 2x}{\left(x+1\right)^2} = \frac{x^2 + 2x + 1 - 1}{\left(x+1\right)^2} = 1 - \frac{1}{\left(x+1\right)^2} = f\left(x\right), \text{ pentru orice } x \in \left(-1, +\infty\right), \text{ deci funcția } F$	3 p
b)	este o primitivă a funcției f $\int_{0}^{1} f(x)dx = F(x) \Big _{0}^{1} = F(1) - F(0) =$	3p
	$=\frac{1}{2}-0=\frac{1}{2}$	2p
c)	$F(x) > 0$, pentru orice $x \in [1, a]$ și $\int_{1}^{a} \frac{f(x)}{F(x)} dx = \int_{1}^{a} \frac{F'(x)}{F(x)} dx = \ln(F(x)) \Big _{1}^{a} = \ln(F(a)) - \ln(F(1))$	3p
	$\ln(F(a)) - \ln\frac{1}{2} = \ln\frac{8}{3} \Leftrightarrow \ln(F(a)) = \ln\frac{8}{3} + \ln\frac{1}{2} \Leftrightarrow \ln(F(a)) = \ln\frac{4}{3}, \text{ deci } \frac{a^2}{a+1} = \frac{4}{3} \text{ si, cum}$ a > 1, obţinem $a = 2$	2p