Chapter 4

模 I: 基本性质

定义 4.1 模: R 为有单位元交换环, (M,+) 为交换群, 数乘: $R \times M \to M$, $(r,m) \mapsto m$ 满足

- (1) (r+t)m = rm + tm
- (2) (rt)m = r(tm)
- (3) $r(m_1 + m_2) = rm_1 + rm_2$
- (4) 1m = m

则称 M 为 R 上的**模**, 记作 $R - \text{mod} \equiv \{R \text{ 上的模}\}.$

:: 域是一种特殊的环,:: 向量空间是一种特殊的模. 0m=0.

i.E:
$$0m + 0m = (0 + 0)m = 0m \Longrightarrow 0m = 0$$
.

r0 = 0.

$$\mathbf{ii}: r0 + r0 = r(0+0) = r0 \Longrightarrow r0 = 0.$$

$$(-r)m = r(-m) = -(rm).$$

i.e.
$$(-r)m + rm = (-r + r)m = 0m = 0 \Longrightarrow (-r)m = -rm.$$

$$r(-m) + rm = r(m + (-m)) = r0 = 0 \Longrightarrow r(-m) = -rm.$$

 $\forall r \in R$, 可构造映射 $\bar{r}: M \to M$, $m \mapsto rm$. \bar{r} 是 M 上的群同态, 又称**自同态**, 记作 $\bar{r} \in \operatorname{End}(M) \equiv \{M \text{ 上的自同态}\}$, $\operatorname{End}(M)$ 关于同态的加法、复合成环, 其单位元为 M 上的恒等映射, 1_M , 故还可构造映射 $\phi: R \to \operatorname{End}(M), r \mapsto \bar{r}$.

证:
$$\bar{r}(m+n) = r(m+n) = rm + rn = \bar{r}(m) + \bar{r}(n)$$
, 即映射 \bar{r} 下保持运算结构, 故得证.

例 4.1: 在交换群
$$(G,+)$$
 上定义 $1a=a,\ 2a=a+a,\ \cdots,\ na=\overbrace{a+\cdots+a}^{n\ \uparrow\ a\ \text{HJm}},\ -a=-1a,\ -2a=(-a)+(-a),$ $-na=\overbrace{(-a)+\cdots+(-a)}^{n\ \uparrow\ (-a)\ \text{HJm}}$ 数乘 $\alpha:\mathbb{Z}\times G\to G,\ (n,a)\mapsto na,\$ 满足

(1) α 是映射

4. 模 I: 基本性质

- (2) (n+m)a = na + ma
- (3) (nm)a = n(ma)
- $(4) \ n(a+b) = na + nb$

 \overline{u} : (1) na 的定义依赖于 G 中的运算, 而运算的本质是卡氏积至原集合的映射, 有唯一的结果, 故得证.

(2)
$$(n+m)a = \underbrace{a+\cdots+a}^{(n+m) \ \uparrow \ a \ \text{dlm}} = \underbrace{a+\cdots+a}^{n \ \uparrow \ a \ \text{dlm}} + \underbrace{a+\cdots+a}^{m \ \uparrow \ a \ \text{dlm}} = na + ma.$$

$$(3) (nm)a = \overbrace{a + \cdots + a}^{nm \ \uparrow \ a \ \text{dlm}} \underbrace{a + \cdots + a}_{n \ \uparrow \ a \ \text{dlm}} \underbrace{a + \cdots + a}_{n \ \uparrow \ a \ \text{dlm}} \underbrace{a + \cdots + a}_{n \ \uparrow \ a \ \text{dlm}} \underbrace{a + \cdots + a}_{n \ \uparrow \ a \ \text{dlm}} = \underbrace{a + \cdots + a}_{n \ \uparrow \ a \ \text{dlm}} = \underbrace{a + \cdots + a}_{n \ \uparrow \ a \ \text{dlm}} = \underbrace{a + \cdots + a}_{n \ \uparrow \ a \ \text{dlm}} = \underbrace{a + \cdots + a}_{n \ \downarrow \ a \ \text{dlm}} = \underbrace{a + \cdots + a}_{n \ \downarrow \ a \ \downarrow \ a \ \text{dlm}} = \underbrace{a + \cdots + a}_{n \ \downarrow \ a \ \downarrow \ a \ \text{dlm}} = \underbrace{a + \cdots + a}_{n \ \downarrow \ a \ \downarrow \ a \ \text{dlm}} = \underbrace{a + \cdots + a}_{n \ \downarrow \ a \ \downarrow \ a \ \text{dlm}} = \underbrace{a + \cdots + a}_{n \ \downarrow \ a \ \downarrow \ a \ \text{dlm}} = \underbrace{a + \cdots + a}_{n \ \downarrow \ a \ \downarrow \ a \ \text{dlm}} = \underbrace{a + \cdots + a}_{n \ \downarrow \ a \ \downarrow \ a \ \text{dlm}} = \underbrace{a + \cdots + a}_{n \ \downarrow \ a \ \downarrow \ a \ \text{dlm}} = \underbrace{a + \cdots + a}_{n \ \downarrow \ a \ \downarrow \ a \ \text{dlm}} = \underbrace{a + \cdots + a}_{n \ \downarrow \ a \ \downarrow \ a \ \text{dlm}} = \underbrace{a + \cdots + a}_{n \ \downarrow \ a \ \downarrow \ a \ \text{dlm}} = \underbrace{a + \cdots + a}_{n \ \downarrow \ a \ \downarrow \ a \ \text{dlm}} = \underbrace{a + \cdots + a}_{n \ \downarrow \ a \ \downarrow \ a \ \downarrow \ a \ \text{dlm}} = \underbrace{a + \cdots + a}_{n \ \downarrow \ a \ \text{dlm}} = \underbrace{a + \cdots + a}_{n \ \downarrow \ a \ \downarrow$$

$$(4) \ \ n(a+b) = \overbrace{(a+b) + \cdots + (a+b)}^{n \ \uparrow \ (a+b) \ \text{dlm}} = \underbrace{a + \cdots + a}_{n \ \uparrow \ a} + \underbrace{b + \cdots + b}_{n \ h} = na + nb.$$

(5) 由定义显然.

故
$$M \in \mathbb{Z}-\mod$$
.

例 4.2:
$$\forall$$
 交换群 $(G,+), G \in \mathbb{Z}-\mod$.

例 4.3:
$$R \in R - \mod$$
 , 其中的数乘即 R 中的乘法.

例 4.4:
$$\mathbb{Z}_p = \frac{\mathbb{Z}}{p} = \{[0], \cdots, [p-1]\}, (\mathbb{Z}_p, +)$$
 是交换群, 故 $\mathbb{Z}_p \in \mathbb{Z} - \mod$.

$$\mathbb{Z}_6 = \{[0], [1], [2], [3], [4], [5]\}, n[k] = \overbrace{[k] + \cdots + [k]} = [nk],$$

注意到 $[2] \neq [0]$, $3 \neq 0$, 但 3[2] = [6] = [0], 即非零元素的卡氏积在数乘映射下得到零元素, 这意味着非零的单个元素不再线性无关.

实际上,
$$\mathbb{Z}_n$$
 中无线性无关元素.

例 4.5:
$$R^n = \{(r_1, \dots, r_n) \mid r_i \in R\} \in R - \mod,$$
其中 $(r_1, \dots, r_n) + (l_1, \dots, l_n) = (r_1 + l_1, \dots, r_n + l_n),$ $r(r_1, \dots, r_n) = (rr_1, \dots, rr_n).$

定义 4.2 子模: $\emptyset \neq S \subseteq M$, 若在 M 的运算下, $S \in R$ 上的模, 则称 $S \to M$ 的子模.

定理 **4.1** <u>判定子模的方法(课本定理**4.1**)</u>: $\emptyset \neq S \subseteq M$ 是 M 的子模 $\iff \forall u, v \in S, \forall r, t \in R, ru + tv \in S$ (即 线性运算封闭).

定理 **4.2** (课本定理**4.2**): $S, T \subseteq M$ 是 M 的子模, 则 $S \cap T$ 为 M 的子模, $S + T \equiv \{u + v \mid u \in S, v \in T\}$ 为 M 的子模.

定理 4.3: $R \in R - \mod R$ 的子模即 R 上的理想.

证: 设S为R的子模,则

- (1) $\emptyset \neq S \subseteq R$
- (2) $\forall u, v \in S, \forall r, t \in R, ru + tv \in S$. 特别地, 令 t = 0, 则 $ru \in S$

故 S 为 R 的理想.

定义 4.3 <u>生成子模和生成集</u>: $\emptyset \neq S \subseteq M \in R - \mod, S$ 的生成子模为 $\langle \langle S \rangle \rangle \equiv$ 包含 S 的最小子模 \equiv 包含 S 的所有子模的交 $= \{\sum_{i=1}^n r_i u_i \mid r_i \in R, u_i \in S, n \in \mathbb{Z}^+\}$, 其中称 S 为生成集.

 $\forall M \in R - \mod$, 都有生成集, $\therefore M = \langle \langle M \rangle \rangle$.

定义 4.4 有限生成模: 生成集由有限个元素构成的生成模.

定义 4.5 循环模: 生成集由一个元素构成的生成模.

例 4.6: $R \in R - \mod \mathbb{R}$ 一个循环模, $R = \langle \langle 1 \rangle \rangle = \{r1 \mid r \in R\}$.

有限生成模的子模未必是有限生成的,即有限生成的性质未必会由模遗传至其子模,

例 4.7: 多项式环 $R = F[x_1, \cdots, x_n, \cdots] \equiv \left\{ \sum_{k_i=0}^{N} a_{i_1, \cdots, i_n} x_{i_1}^{k_1} \cdots x_{i_n}^{k_n} \mid a_{i_1 \cdots i_n} \in F, N_i \in \mathbb{Z}^+ \right\}, R \in R - \mod \mathbb{A}$.

假设 S 是有限生成的, $S = \langle \langle f_1, \cdots, f_m \rangle \rangle$, $f_i = \sum_{j_1, \cdots, j_m = 0}^{N_i} a_{i_1, \cdots, i_n}^{j_1, \cdots, j_n} x_{i_1}^{j_1} \cdots x_{i_n}^{j_n}$ 是有限个变元的有限次多项式, 故 S 无法生成无限个变元的无限次多项式, 即 S 并非是有限生成的.

定义 4.6 <u>线性无关</u>: $\emptyset \neq S \subseteq M$, 若 $\sum_{i=1}^{n} r_i u_i = 0$ 其中 $u_i \in S$, $r_i \in R \forall i \Longrightarrow r_1 = \cdots = r_n = 0$, 则称 S 线性 无关.

在模中, 线性无关元素未必存在, 如例 4.4 中 \mathbb{Z}_p 无线性无关元素.

在向量空间中, 我们有: u,v 线性相关 \iff \exists 不全为零的 $r,t\in R$, s.t. ru+tv=0, 无妨设 $r\neq 0$, 则 $ru=-tv\Longrightarrow u=-\frac{t}{r}v$.

在模中, 上述说法未必成立: u,v 线性相关 \iff \exists 不全为零的 r,t, s.t. ru+tv=0, (无妨设 $r\neq 0$,) 则 ru=-tv, 但由于未必能找到 r 的逆元, 所以未必有 $u=-\frac{t}{r}v$. 故在模中, 线性相关元素未必能相互表示, 即一个线性相关元素未必能由与其线性相关的元素线性表示.

定义 4.7 自由模: $M \in R - \mod M = \langle \langle \mathcal{B} \rangle \rangle$ 且 \mathcal{B} 线性无关, 则称 M 为自由模, \mathcal{B} 为 M 的基.

定理 4.4 (课本定理4.3): $\emptyset \neq \mathcal{B} \subseteq M$ 是 M 的基, 则 $\forall v \in M, v$ 可由 \mathcal{B} 中的元素唯一地线性表示.

定理 4.5 (课本定理4.4): $\mathcal{B} \in \mathcal{B} \to \mathcal{B} \to \mathcal{B} \to \mathcal{B}$ 的极小生成集且为 \mathcal{M} 的极大线性无关集.

例 4.8: $\mathbb{Z}_6 = \{[0], [1], [2], [3], [4], [5]\}$, $\mathbb{Z}_6 = \langle\langle[1]\rangle\rangle = \langle\langle[5]\rangle\rangle$, $\because 0[1] = [0], 1[1] = [1], 2[1] = [2], 3[1] = [3], 4[1] = [4], 5[1] = [5], 0[5] = [0], 1[5] = [5], 2[5] = [10] = [4], 3[5] = [15] = [3], 4[5] = [20] = [2], 5[5] = [25] = [1].$ 故 \mathbb{Z}_6 的表示不唯一.

 $M \in R - \mod$,但 M 的子模未必自由.

例 4.9: $R = \mathbb{Z} \times \mathbb{Z} = \{(n,m) \mid n,m \in \mathbb{Z}\},$ 其中 (n,m)(k,l) = (nk,ml), (n,m) + (k,l) = (n+k,m+l) 是仅为交换 环 (而非域), $R \in R - \mod R = \langle \langle (1,1) \rangle \rangle = \{ r(1,1) \mid r \in R = \mathbb{Z} \times \mathbb{Z} \}, \therefore R$ 自由.

但子模 $S = \mathbb{Z} \times \{0\} = \{(n,0) \mid n \in \mathbb{Z}\}, \because \forall n \neq 0, (n,0)(0,1) = (0,0), \therefore$ 无线性无关元, 从而非自由.

定义 4.8 模同态: $M, N \in R - \mod$, 映射 $\tau : M \to N$, 若 $\forall u, v \in M$, $r, t \in R$, $\tau(ru + tv) = r\tau(u) + t\tau(v)$, 则 τ 为 M 到 N 的模同态, 记作 $\tau \in \text{hom}(M, N) = \{M \text{ 到 } N \text{ 的模同态}\}.$

取 r = t = 1, 则 $\forall u, v \in M$, $\tau(u + v) = \tau(u) + \tau(v)$, 故 τ 为群同态.

定理 4.6 (课本定理4.6): (1) $\operatorname{Ker} \tau \equiv \{v \in M \mid \tau(v) = 0\}$ 是 M 的子模. τ 单射 \iff $\operatorname{Ker} \tau = \{0\}$.

(2) $\operatorname{Im} \tau \equiv \{\tau(v) \mid v \in M\}$ 是 N 的子模. τ 满射 \iff $\operatorname{Im} \tau = N$.

定义 **4.9** 商模: $S \in M$ 的子模, 商群 $= \{[v] \mid v \in M\}$.

[u] + [v] = [u + v], r[u] = [ru] 是合法运算, : 结果与代表元选取无关.

 $\Pi_S: M \to \frac{M}{S}, v \mapsto [v],$ 且满足

- (1) Π_S 满射.
- (2) Ker $\Pi_S = S$.

定理 4.7 同态第一基本定理: 若 $S \subseteq \operatorname{Ker} \tau$, 则 $\exists ! \tau'$, s.t. $\tau = \tau' \circ \Pi_S$.

 $\operatorname{Ker} \tau' = \frac{\operatorname{Ker} \tau}{S}$.

定理 4.8 同构第一基本定理: 若 $S = \operatorname{Ker} \tau$, 则 $\tau' = \frac{\operatorname{Ker} \tau}{S} = \{[0]\}$, 即 τ' 单射.

 $:: \operatorname{Im} \tau' = \operatorname{Im} \tau, :: 若进一步有 \tau, 则 \tau' 同构.$