Assignment 6

Topology (KSM1C03)

Submission Deadline: 20th October, 2025

- 1) A family of subsets $A \subset \mathcal{P}(X)$ of X is called *inadequate* if A does not cover X, and is called *finitely inadequate* if any finite sub-collection of A is inadequate (i.e, does not cover X).
 - a) Given a space X, show that the following are equivalent.
 - i) X is compact.
 - ii) Every finitely inadequate family of open sets of X is inadequate.
 - b) Given a space (X, \mathcal{T}) , let \mathcal{S} be a finitely inadequate collection of open sets. Consider the collection

$$\mathfrak{B} \coloneqq \{ \mathcal{B} \subset \mathcal{T} \mid \mathcal{B} \text{ is finitely inadequate, and } \mathcal{S} \subset \mathcal{B} \}$$
,

and equip it with the partial order $\mathcal{B}_1 \leq \mathcal{B}_2$ if and only if $\mathcal{B}_1 \subset \mathcal{B}_2$.

- i) Show that there exists a maximal element in the poset (\mathfrak{B}, \leq) .
- ii) Suppose \mathcal{B}_0 is a maximal finitely inadequate collection of open sets. If for any collection $U_1, \ldots, U_n \subset X$ of open sets we have $\bigcap_{i=1}^n U_i \subset U \in \mathcal{B}_0$, then show that $U_{i_0} \in \mathcal{B}_0$ for some $1 \leq i_0 \leq n$.
- c) (Alexander's sub-base lemma) Given a space X, show that the following are equivalent.
 - i) X is compact.
 - ii) There exists a sub-basis S of X, such that each cover of X by elements of S has a finite sub-cover.

Hint: For i) \Rightarrow ii), just take $\mathcal S$ to be the whole topology. For ii) \Rightarrow i), if possible, let $\mathcal U$ be an open cover of X, such that there is no finite sub-cover. Using part b), get a maximal finitely inadequate collection $\mathcal B_0 \supset \mathcal U$. Consider the collection $\mathcal D \coloneqq \mathcal B_0 \cap \mathcal S$. Note that $\mathcal D$ is still finitely deficient, and hence, does not cover X. Let $x_0 \in X \setminus \bigcup_{U \in \mathcal D} U$. Get $V \in \mathcal B_0$ such that $x_0 \in V$. As $\mathcal S$ is a sub-basis, get $B_1, \ldots, B_k \in \mathcal S$ such that $x_0 \in \bigcap_{i=1}^k B_i \subset V \in \mathcal B_0$. Using part b), we have $B_{i_0} \in \mathcal B_0 \Rightarrow B_{i_0} \in \mathcal D$. This is a contradiction.

d) (Tychonoff's theorem) Suppose $\{X_{\alpha}\}$ is a family of compact spaces, and $X=\Pi_{\alpha}X_{\alpha}$ is the product space. Using Alexander's sub-base lemma, show that X is compact.

Hint: Consider the sub-basis

$$\mathcal{S} \coloneqq \left\{ \pi_{\alpha}^{-1}(U) \mid U \underset{\text{open}}{\subset} X_{\alpha}. \right\}.$$

Say, $\mathcal{U} \subset \mathcal{S}$ is a cover of X. For each α , consider the collection

$$\mathcal{U}_{lpha} \coloneqq \left\{ U \underset{\mathsf{open}}{\subset} X_{lpha} \;\middle|\; \pi_{lpha}^{-1}(U) \in \mathcal{U}
ight\}.$$

Show that \mathcal{U}_{α_0} is a cover of X_{α_0} for some α_0 . If not, using axiom of choice, there is an $x \in X$ such that

$$x_{\alpha} = \pi_{\alpha}(x_{\alpha}) \in X_{\alpha} \setminus \bigcup_{U \in U_{\alpha}} U,$$
 for all α .

But then x is not covered by \mathcal{U} , a contradiction. As X_{α_0} is compact, we then have a finite sub-cover $U_1,\ldots,U_n\subset X_{\alpha_0}$, and then, $X=\bigcup_{i=1}^n\pi_{\alpha_0}^{-1}(U_i)$ follows. Thus, \mathcal{U} has a finite sub-cover. Conclude the proof by Alexander's sub-base lemma.

$$5 + (4+6) + (2+8) + 10 = 35$$

2) Suppose X,Y are compact, Y is T_1 , and $f:X\to Y$ is a surjective continuous map. Prove that there exists a compact set $X_0\subset X$ such that $f:X_0\to Y$ is surjective, but for any proper closed set $C\subsetneq X_0$ we have $f(C)\neq Y$.

Hint: Consider the collection

$$\mathcal{U} \coloneqq \left\{ U \underset{\mathsf{open}}{\subset} X \;\middle|\; f(X \setminus U) = Y \right\},$$

and apply Zorn's lemma.

10

- 3) Show that any totally ordered set (X, \leq) with the least upper bound property is locally compact.
- 4) Suppose X is a locally compact, T_2 space.
 - a) If $U \subset X$ is open, and $C \subset X$ is closed, show that $U \cap C$ is a locally compact set.
 - b) Suppose $Y \subset X$ is a locally compact set. Then, Y is the intersection of an open set and a closed set of X.

Hint: Show that Y is open in \overline{Y} in the subspace topology.

$$4 + 6 = 10$$
.

5) Suppose X is a locally compact space, and $f: X \to Y$ is a continuous surjective map. If f is an open map, then show that Y is locally compact. Give an example of a continuous image of a locally compact space, which fails to be locally compact.

Hint: Consider \mathbb{Q} with discrete topology and the usual topology.

$$8 + 2 = 10$$

- 6) Given a collection of (nonempty) spaces $\{X_{\alpha}\}$, consider the product $X = \Pi_{\alpha}X_{\alpha}$. Show that the following are equivalent.
 - a) X is locally compact.
 - b) Each X_{α} is locally compact, and moreover X_{α} is compact for all but finitely many α .

$$5 + 5 = 10$$

- 7) Suppose X is a noncompact space, and $\iota: X \hookrightarrow \hat{X}$ is a compactification with $\left| \hat{X} \setminus \iota(X) \right| = 1$. If \hat{X} is T_2 , then show that \hat{X} is homeomorphic to the Alexandroff compactification X^\star of X.
 - 10
- 8) Let X,Y,Z be noncompact spaces, with their Alexandroff compactifications \hat{X},\hat{Y},\hat{Z} .
 - a) Given a set map $f: X \to Y$, one can define the set map

$$\hat{f}: \hat{X} \longrightarrow \hat{Y}
 x \longmapsto f(x)
 \infty_X \longmapsto \infty_Y$$

Check that $\widehat{g\circ f}=\widehat{g}\circ\widehat{f}$ for set maps $f:X\to Y, g:Y\to Z$, and also $\widehat{\mathrm{Id}_X}=\mathrm{Id}_{\widehat{X}}.$

- b) Prove that \hat{f} is continuous if and only if $f: X \to Y$ is continuous and proper (i.e, for any compact set $K \subset Y$, the pre-image $f^{-1}(K)$ is compact).
- c) Show that a set map $f:X\to Y$ is a homeomorphism, if and only if $\hat f:\hat X\to \hat Y$ is a homeomorphism.

$$3 + 3 + 4 = 10$$