#### **STAT 50 HW #8**

Section 4.2 #'s 1, 3, 7, 9, 12, 13, 16, 21

1.

Let  $X \sim Bin(7, 0.3)$ . Find a. P(X = 1)

$$P(X=1) = {7 \choose 1} (0.3)^{1} (1 - 0.3)^{6}$$

$$\binom{7}{1}$$
 or  ${}_{7}C_{1} = \frac{7!}{(7-1)!1!} = 7$ 

$$7(0.3)((0.7)^6) = 0.247$$

$$P(X = 1) = 0.247$$

**b.** 
$$P(X = 2)$$

$$P(X=2) = {7 \choose 2} (0.3)^{2} (1 - 0.3)^{5}$$

$${7 \choose 2} \text{ or } {7 \choose 2} = \frac{7!}{(7-2)!2!} = \frac{7!}{5!2!} = \frac{7*6}{2!} = 21$$

$$21((0.3)^{2})((0.7)^{5}) = 0.318$$

## P(X = 2) = 0.318

c. 
$$P(X \le 1)$$

$$P(X < 1) = P(X = 0) = {7 \choose 0} (0.3)^{0} (1 - 0.3)^{7}$$

$${7 \choose 0} \text{ or } {7 \choose 0} = \frac{7!}{(7-0)!0!} = 1$$

$$1((0.3)^{0})((0.7)^{7}) = 0.0824$$

$$P(X < 1) = 0.0824$$

d. 
$$P(X > 4)$$

$$P(X > 4) = 1 - P(X \le 4) = 1 - P(X = 0) - P(X = 1) - P(X = 2) - P(X = 3) - P(X = 4)$$

$$1 - \frac{7!}{(7-0)!0!} (0.3)^{0} (1 - 0.3)^{7} + \frac{7!}{(7-1)!1!} (0.3)^{1} (1 - 0.3)^{6} + \frac{7!}{(7-1)!1!} (0.3)^{1} (1 - 0.3)^{6} + \frac{7!}{(7-1)!1!} (0.3)^{1} (1 - 0.3)^{6} + \frac{7!}{(7-1)!1!} (0.3)^{1} (1 - 0.3)^{1} (1 - 0.3)^{1} + \frac{7!}{(7-1)!1!} (0.3)^{1} + \frac{7!}{(7-1)!1!} (0.3)^{$$

$$\frac{\frac{7!}{(7-2)!2!}(0.3)^{2}(1-0.3)^{5} + \frac{7!}{(7-3)!3!}(0.3)^{3}(1-0.3)^{4} + \frac{7!}{(7-4)!4!}(0.3)^{4}(1-0.3)^{3}}{\frac{7!}{(7-4)!4!}(0.3)^{4}(1-0.3)^{3}}$$

$$1 - (0.082 + 0.247 + 0.317 + 0.227 + 0.097) = 0.0288$$

# P(X > 4) = 0.0288

e. 
$$\mu_{x}$$

$$\mu_x = n(p) = 7*0.3 = 2.1$$
 $\mu_x = 2.1$ 

f. 
$$\sigma_x^2$$

$$\sigma_x^2 = \text{np}(1-\text{p}) = 7*0.3(0.7) = 1.47$$
  
 $\sigma_x^2 = 1.47$ 

3.

Find the following probabilities:

a. 
$$P(X = 2)$$
 when  $X \sim Bin(4, 0.6)$ 

$$P(X=2) = {4 \choose 2} (0.6)^{2} (1 - 0.6)^{2}$$

$${4 \choose 2} \text{ or } {4 \choose 2} = \frac{4!}{(4-2)!2!} = \frac{4!}{2!2!} = \frac{12}{2} = 6$$

$$6((0.6)^{2})((0.4)^{2}) = 0.3456$$

## P(X = 2) = 0.3456

b. P(X > 2) when  $X \sim Bin(8, 0.2)$ 

$$P(X > 2) = 1 - P(X \le 2) = 1 - P(X = 0) - P(X = 1) - P(X = 2)$$

$$1 - \frac{8!}{(8-0)!0!} (0.2)^{0} (1 - 0.2)^{8} + \frac{8!}{(8-1)!1!} (0.2)^{1} (1 - 0.2)^{7} + \frac{8!}{(8-2)!2!} (0.2)^{2} (1 - 0.2)^{6}$$

$$1 - (0.1677 + 0.3355 + 0.2936) = 0.2031$$

## P(X > 4) = 0.2031

c.  $P(X \le 2)$  when  $X \sim Bin(5, 0.4)$ 

$$P(X \le 2) = 1 - P(X > 2) = 1 - P(X = 3) - P(X = 4) - P(X = 5)$$

$$1 - \frac{5!}{(5-3)!3!} (0.4)^3 (1 - 0.4)^2 + \frac{5!}{(5-4)!4!} (0.4)^4 (1 - 0.4)^1 + \frac{5!}{(5-5)!5!} (0.4)^5 (1 - 0.4)^0$$

$$1 - (0.2304 + 0.0768 + 0.0102) = 0.6826$$

## $P(X \le 2) = 0.6826$

d.  $P(3 \le X \le 5)$  when  $X \sim Bin(6, 0.7)$ 

$$\begin{split} &P(3 \le X \le 5) = 1 - P(X > 5) - P(X < 3) = 1 - P(X = 6) - P(X = 0) - P(X = 1) - P(X = 2) \\ &1 - \frac{6!}{(6-6)!6!} (0.7)^6 (1 - 0.7)^0 + \frac{6!}{(6-0)!0!} (0.7)^0 (1 - 0.7)^6 + \frac{6!}{(6-1)!1!} (0.7)^1 (1 - 0.7)^5 + \frac{6!}{(6-2)!2!} (0.7)^2 (1 - 0.7)^4 \\ &1 - (0.1176 + 0.0007 + 0.0102 + 0.0595) = 0.8119 \end{split}$$

$$P(3 \le X \le 5) = 0.8119$$

7.

Of all the weld failures in a certain assembly, 85% of them occur in the weld metal itself, and the remaining 15% occur in the base metal. A sample of 20 weld failures is examined.

a. What is the probability that exactly five of them are base metal failures?

$$P(X = 5)$$
 when  $X \sim Bin(20, 0.15)$ 

$$P(X=5) = {20 \choose 5} (0.15)^{5} (1 - 0.15)^{15}$$

$${20 \choose 5} \text{ or } {20 \choose 5} = \frac{20!}{(20-5)!5!} = \frac{20!}{15!5!} = \frac{19*18*17*16}{6} = 15504$$

$$15504((0.15)^5)((0.85)^15) = 0.1028$$

$$P(X = 5) = 0.1028$$

b. What is the probability that fewer than four of them are base metal failures?

P(X < 4) when  $X \sim Bin(20, 0.15)$ 

$$\frac{20!}{(20-0)!0!} (0.15)^{0} (1 - 0.15)^{20} + \frac{20!}{(20-1)!1!} (0.15)^{1} (1 - 0.15)^{19} + \frac{20!}{(20-2)!2!} (0.15)^{2} (1 - 0.15)^{18} + \frac{20!}{(20-3)!3!} (0.15)^{3} (1 - 0.15)^{17}$$

$$(0.0387 + 0.1367 + 0.2293 + 0.2428) = 0.6477$$

## P(X < 4) = 0.6477

c. What is the probability that none of them are base metal failures?

$$P(X = 0)$$
 when  $X \sim Bin(20, 0.15)$ 

$$P(X=0) = {20 \choose 0} (0.15)^{0} (1 - 0.15)^{20}$$

$${20 \choose 0} \text{ or } {20 \choose 0} = \frac{20!}{(20-0)!0!} = \frac{20!}{20!0!} = 1$$

$$1((0.15)^{0})((0.85)^{20}) = 0.0388$$

$$P(X = 0) = 0.0388$$

d. Find the mean number of base metal failures.

$$\mu_x = n(p) = 20*0.15 = 3$$
 $\mu_x = 3$ 

e. Find the standard deviation of the number of base metal failures.

$$\sigma_x^2 = \text{np}(1-\text{p}) = 20*0.15(0.85) = 2.55$$

$$\sigma_x^2 = 2.55$$

$$\sigma_x = \sqrt{\sigma_x^2} = 1.597$$

9.

Several million lottery tickets are sold, and 60% of the tickets are held by women. Five winning tickets will be drawn at random.

a. What is the probability that three or fewer of the winners will be women?

$$X \sim Bin(5, 0.6)$$

$$P(X \le 3) = 1 - P(X > 3) = 1 - P(X = 4) - P(X = 5)$$

$$1 - \frac{5!}{(5-4)!4!} (0.6)^4 (1 - 0.6)^1 + \frac{5!}{(5-5)!5!} (0.6)^5 (1 - 0.6)^0$$

$$1 - (0.2592 + 0.0777) = 0.6630$$

## $P(X \le 3) = 0.6630$

b. What is the probability that three of the winners will be of one gender and two of the winners will be of the other gender?

$$P(X=3) = {5 \choose 3} (0.6)^{3} (1 - 0.6)^{2}$$

$${5 \choose 3} \text{ or } {}_{5}C_{3} = \frac{5!}{(5-3)!3!} = \frac{5!}{2!3!} = \frac{5*4}{2} = 10$$

$$10((0.6)^{3})((0.4)^{2}) = 0.3456$$

$$P(X=2) = {5 \choose 2} (0.6)^{2} (1 - 0.6)^{3}$$

$${5 \choose 2} \text{ or } {}_{5}C_{2} = \frac{5!}{(5-2)!2!} = \frac{5!}{3!2!} = \frac{5*4}{2} = 10$$

$$10((0.6)^{2})((0.4)^{3}) = 0.2304$$

$$0.2304 + 0.3456 = 0.5760$$

12.

Of the items manufactured by a certain process, 20% are defective. Of the defective items, 60% can be repaired.

a. Find the probability that a randomly chosen item is defective and cannot be repaired.

b. Find the probability that exactly 2 of 20 randomly chosen items are defective and cannot be repaired.

$$X \sim Bin(20, 0.08)$$

$$P(X=2) = {20 \choose 2} (0.08)^2 (1 - 0.08)^{18}$$

$$\binom{20}{2}$$
 or  $\binom{2}{2} = \frac{20!}{(20-2)!2!} = \frac{20!}{18!2!} = 190$   
 $190((0.08)^2)((0.92)^18) = 0.2711$ 

$$P(X = 2) = 0.2711$$

13.

Of the bolts manufactured for a certain application, 90% meet the length specification and can be used immediately, 6% are too long and can be used after being cut, and 4% are too short and must be scrapped.

a. Find the probability that a randomly selected bolt can be used (either immediately or after being cut).

$$P(Imm) = 0.90$$
  
 $P(After Cut) = 0.06$   
 $P(Imm \cup After Cut) = 0.90 + 0.06 = 0.96$ 

b. Find the probability that fewer than 9 out of a sample of 10 bolts can be used (either immediately or after being cut).

$$X \sim Bin(10, 0.96)$$

$$P(X < 9) = 1 - P(X \ge 9) = 1 - P(X = 9) + P(X = 10)$$

$$\frac{10!}{(10-9)!9!} (0.96)^{9} (1 - 0.96)^{1} + \frac{10!}{(10-10)!10!} (0.96)^{10} (1 - 0.96)^{0}$$

$$1 - (0.2770 + 0.6648) = 0.0582$$

$$P(X < 9) = 0.0582$$

16.

A distributor receives a large shipment of components. The distributor would like to accept the shipment if 10% or fewer of the components are defective and to return it if more than 10% of the components are defective. She decides to sample 10 components, and to return the shipment if more than 1 of the 10 is defective.

a. If the proportion of defectives in the batch is in fact 10%, what is the probability that she will return the shipment?

$$X \sim Bin(10, 0.10)$$

$$P(X > 1) = 1 - P(X \le 1) = 1 - P(X = 0) - P(X = 1)$$

$$1 - \frac{10!}{(10-0)!0!} (0.10)^{0} (1 - 0.10)^{10} + \frac{10!}{(10-1)!1!} (0.10)^{1} (1 - 0.10)^{9}$$

$$1 - (0.3487 + 0.3874) = 0.2639$$

#### P(X > 1) = 0.2639

b. If the proportion of defectives in the batch is 20%, what is the probability that she will return the shipment?

$$X \sim Bin(10, 0.20)$$

$$P(X > 1) = 1 - P(X \le 1) = 1 - P(X = 0) - P(X = 1)$$

$$1 - \frac{10!}{(10-0)!0!} (0.20)^{0} (1 - 0.20)^{10} + \frac{10!}{(10-1)!1!} (0.20)^{1} (1 - 0.20)^{9}$$

$$1 - (0.1074 + 0.2684) = 0.6242$$

$$P(X > 1) = 0.6242$$

c. If the proportion of defectives in the batch is 2%, what is the probability that she will return the shipment?

$$X \sim Bin(10, 0.02)$$

$$P(X > 1) = 1 - P(X \le 1) = 1 - P(X = 0) - P(X = 1)$$

$$1 - \frac{10!}{(10-0)!0!} (0.02)^{0} (1 - 0.02)^{10} + \frac{10!}{(10-1)!1!} (0.02)^{1} (1 - 0.02)^{9}$$

$$1 - (0.8171 + 0.1667) = 0.0162$$

$$P(X > 1) = 0.0162$$

d. The distributor decides that she will accept the shipment only if none of the sampled items are defective. What is the minimum number of items she should sample if she wants to have a probability no greater than 0.01 of accepting the shipment if 20% of the components in the shipment are defective?



The answer is 6! I got some help from the Sac State Math Lab and it is sort of a trial and error type of problem.

A message consists of a string of bits (0s and 1s). Due to noise in the communications channel, each bit has probability 0.3 of being reversed (i.e., a 1 will be changed to a 0 or a 0 to a 1). To improve the accuracy of the communication, each bit is sent five times, so, for example, 0 is sent as 00000. The receiver assigns the value 0 if three or more of the bits are decoded as 0, and 1 if three or more of the bits are decoded as 1. Assume that errors occur independently.

a. A 0 is sent (as 00000). What is the probability that the receiver assigns the correct value of 0?

$$X \sim Bin(5, 0.7)$$

$$P(X \ge 3) = P(X = 3) + P(X = 4) + P(X = 5)$$

$$\frac{\frac{5!}{(5-3)!3!}(0.7)^{3}(1-0.7)^{2} + \frac{5!}{(5-4)!4!}(0.7)^{4}(1-0.7)^{1} + \frac{5!}{(5-5)!5!}(0.7)^{5}(1-0.7)^{0} + \frac{(0.3087 + 0.3602 + 0.1681) = 0.8369}$$

$$P(X \ge 3) = 0.8369$$

b. Assume that each bit is sent n times, where n is an odd number, and that the receiver assigns the value decoded in the majority of the bits. What is the minimum value of n necessary so that the probability that the correct value is assigned is at least 0.90?

| 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WEN (N, OT) n is old 7:01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11 / 2 29 / 2 215-n W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.65.01. 0.1 0.1 1.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.65.00 7.05.00 7.05.00 7.05. |
| 1 N / 27 18241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (1) (0.7) (0.3) 2 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7(7) (2.7) (0.3) 20,0035 2.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2 (7) (2.7) (2.3) 2 7.035 R. 6.7.  2 (7) (2.7) (2.3) 2 7.035 R. 6.7.  2 (7) (2.7) (2.3) 2 7.035 R. 1.  1 (2) (2.7) (2.3) 2 7.001  1 (2) (2.7) (2.3) 2 7.001  1 (2) (2.7) (2.3) 2 7.001  1 (2) (2.7) (2.3) 2 7.001  1 (2) (2.7) (2.7) (2.7) (2.7) (2.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 75 (7) (0.1) (0.3) = 0.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1-10,000 +0,000 FU,000 FU,FU,FU,FU,FU |
| 1(97/1271-6/200) 0.45:75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1(9)(0.7) 10,37 = 6,000 A 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 26 (3) (0.7) (0.3) = 6.004<br>36 (3) (0.7) (0.3) 7 = 0.0038<br>26 (3) (0.7) (0.3) 6 - 0.00 HAN Don all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 36(3)(0.7)(0.3) 20.00)8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 64(3)/9/0 (9/3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0,9929 1-0.005=017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

My thoughts may be hard to interpret, but the answer is 9! I was able to figure this out using a similar process to 16d.