Recap – AdaBoost

Rina BUOY

AMERICAN UNIVERSITY OF PHNOM PENH

STUDY LOCALLY. LIVE GLOBALLY.

Feature Importance

- A Partial Dependence Plot (PDP) is a graphical representation of the marginal effect of a feature on the predicted outcome of a machine learning model.
- It shows how the prediction changes as the value of a single feature varies while keeping other features constant.
- PDPs are commonly used to interpret the relationship between individual features and the target variable in black-box models such as ensemble methods and deep learning models.

Partial Dependencies Plot

Partial Dependencies Plot

Which one is more important? Instead of visualizing, can we do this algorithmically?

Permutation Feature Importance

• Permutation feature importance is a method used to measure the importance of each feature in a machine learning model.

 It evaluates the impact of shuffling (permuting) the values of each feature on the model's performance.

• The basic idea is to assess how much the model's performance decreases when the values of a particular feature are randomly shuffled, compared to the original feature values.

Permutation Feature Importance

Permutation Importances (training set)

Boosting

- Boosting refers to a family of machine learning meta-algorithms which combine the outputs of many "weak" classifiers into a powerful "committee".
- Each of the weak classifiers alone may have an error rate which is only slightly better than random guessing.

A deep decision tree

A decision stump (i.e., weak classifier)

Adaptive Boosting

 AdaBoost (Adaptive Boosting) is a particular boosting algorithm in which we fit a sequence of "stumps" (decision trees with a single node and two leaves) and weight their contribution to the final vote by how accurate their predictions are.

 After each iteration, we re-weight the dataset to assign greater importance to data points which were misclassified by the previous weak learner, so that those data points get "special attention" during iteration

Adaptive Boosting

Adaptive Boosting

- A) Initialize sample weights uniformly as $w_i^1 = \frac{1}{n}$.
- B) For each iteration t:
 - 1. Find weak learner $h_t(x)$ which minimizes $\epsilon_t = \sum_{i=1}^n \mathbf{1}[h_t(x_i) \neq y_i] \, w_i^{(t)}$.
 - 2. We set a weight for our weak learner based on its accuracy: $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
 - 3. Increase weights of misclassified observations: $w_i^{(t+1)} = w_i^{(t)} \cdot e^{-\alpha^t y_i h_t(x_i)}$.
 - 4. Renormalize weights, so that $\sum_{i=1}^n w_i^{(t+1)} = 1$.
- C) Make final prediction as weighted majority vote of weak learner predictions:

$$H(x) = \mathrm{sign}\Big(\sum_{t=1}^T lpha_t h_t(x)\Big)$$
.

How does it compare to Random Forest?

Property	Random Forest	AdaBoost
Depth	Unlimited (a full tree)	Stump (single node w/ 2 leaves)
Trees grown	Independently	Sequentially
Votes	Equal	Weighted