$12n_{0615} (K12n_{0615})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle b-u, \ 9.22136 \times 10^{39}u^{35} + 9.61638 \times 10^{39}u^{34} + \dots + 3.09061 \times 10^{39}a + 1.18258 \times 10^{40}, \ u^{36} + u^{35} + \dots + 4.09886 \times 10^{40}, \ u^{36} + u^{36} + u^{36} + \dots + 4.09386 \times 10^{19}a - 6.68150 \times 10^{19}, \\ u^{27} &= \langle b + u, \ -1.38841 \times 10^{20}u^{26} + 1.60384 \times 10^{20}u^{25} + \dots + 4.99386 \times 10^{19}a - 6.68150 \times 10^{19}, \\ u^{27} &= u^{26} + \dots - 10u^2 - 1 \rangle \\ I_3^u &= \langle 3.16250 \times 10^{115}u^{39} + 8.23787 \times 10^{115}u^{38} + \dots + 1.00780 \times 10^{119}b + 9.36325 \times 10^{117}, \\ &- 3.47990 \times 10^{101}u^{39} - 7.64552 \times 10^{101}u^{38} + \dots + 4.09554 \times 10^{104}a + 7.59932 \times 10^{103}, \\ u^{40} &+ 3u^{39} + \dots + 2382u + 643 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 103 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle b-u, \ 9.22 \times 10^{39} u^{35} + 9.62 \times 10^{39} u^{34} + \cdots + 3.09 \times 10^{39} a + 1.18 \times 10^{40}, \ u^{36} + u^{35} + \cdots + u + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -2.98367u^{35} - 3.11149u^{34} + \dots - 115.302u - 3.82636 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -6.16242u^{35} - 6.04552u^{34} + \dots - 243.525u - 13.8436 \\ 0.211237u^{35} + 0.365136u^{34} + \dots + 4.11149u + 0.127813 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -2.38369u^{35} - 0.856037u^{34} + \dots - 126.270u + 47.5732 \\ 0.148878u^{35} + 0.123183u^{34} + \dots - 0.00667650u - 0.728008 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -2.98367u^{35} - 3.11149u^{34} + \dots - 114.302u - 3.82636 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.582610u^{35} + 0.220715u^{34} + \dots + 37.1948u - 18.3213 \\ -0.0943851u^{35} - 0.0352064u^{34} + \dots + 0.227391u + 0.366113 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.433732u^{35} + 0.0975317u^{34} + \dots + 37.2014u - 17.5933 \\ -0.254215u^{35} - 0.141930u^{34} + \dots + 0.104208u + 0.391808 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1.66616u^{35} + 1.85078u^{34} + \dots + 46.2547u + 8.96445 \\ 0.0535815u^{35} + 0.110395u^{34} + \dots - 2.21514u + 0.107894 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.209879u^{35} + 0.404528u^{34} + \dots - 9.69810u + 12.3718 \\ 0.254215u^{35} + 0.141930u^{34} + \dots - 0.104208u - 0.391808 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -6.31730u^{35} - 6.14088u^{34} + \dots - 253.682u - 13.8545 \\ 0.228158u^{35} + 0.419587u^{34} + \dots + 4.01612u + 0.187326 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-2.18996u^{35} 0.638271u^{34} + \cdots 106.713u + 50.2757$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{36} + 17u^{35} + \dots + 896u + 256$
c_2, c_8	$u^{36} + 9u^{35} + \dots + 128u + 16$
c_3	$u^{36} - 19u^{35} + \dots - 6400u + 1024$
c_4	$u^{36} - 16u^{34} + \dots + 115u + 42$
c_5, c_{12}	$u^{36} - u^{35} + \dots - u + 1$
c_6, c_{10}, c_{11}	$u^{36} + u^{35} + \dots + 2u + 1$
<i>C</i> ₇	$u^{36} - 9u^{35} + \dots - 273856u + 43216$
<i>c</i> ₉	$u^{36} + 19u^{35} + \dots + 464u + 32$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{36} + 5y^{35} + \dots + 303104y + 65536$
c_2, c_8	$y^{36} + 17y^{35} + \dots + 896y + 256$
c_3	$y^{36} - 43y^{35} + \dots + 39911424y + 1048576$
c_4	$y^{36} - 32y^{35} + \dots - 6169y + 1764$
c_5,c_{12}	$y^{36} + 21y^{35} + \dots + 103y + 1$
c_6, c_{10}, c_{11}	$y^{36} - 59y^{35} + \dots - 18y + 1$
	$y^{36} - 7y^{35} + \dots + 320081792y + 1867622656$
<i>c</i> ₉	$y^{36} - 3y^{35} + \dots + 15616y + 1024$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.118220 + 0.978327I		
a = 0.739900 + 0.147699I	-4.88832 - 1.24309I	-8.27685 + 1.44633I
b = -0.118220 + 0.978327I		
u = -0.118220 - 0.978327I		
a = 0.739900 - 0.147699I	-4.88832 + 1.24309I	-8.27685 - 1.44633I
b = -0.118220 - 0.978327I		
u = 0.891670 + 0.405032I		
a = -0.663932 - 0.116326I	0.41304 - 2.17632I	-2.21227 + 4.08709I
b = 0.891670 + 0.405032I		
u = 0.891670 - 0.405032I		
a = -0.663932 + 0.116326I	0.41304 + 2.17632I	-2.21227 - 4.08709I
b = 0.891670 - 0.405032I		
u = -0.265738 + 0.876405I		
a = 1.84073 + 0.78645I	-4.60827 - 1.82178I	-6.48879 + 2.84582I
b = -0.265738 + 0.876405I		
u = -0.265738 - 0.876405I		
a = 1.84073 - 0.78645I	-4.60827 + 1.82178I	-6.48879 - 2.84582I
b = -0.265738 - 0.876405I		
u = 0.531923 + 0.956773I		
a = -1.54750 + 0.22966I	-5.00027 + 7.84421I	-4.73170 - 7.47375I
b = 0.531923 + 0.956773I		
u = 0.531923 - 0.956773I		
a = -1.54750 - 0.22966I	-5.00027 - 7.84421I	-4.73170 + 7.47375I
b = 0.531923 - 0.956773I		
u = 0.507758 + 0.970271I		
a = 0.25842 + 1.54816I	-8.28613 + 2.69300I	-5.21869 - 2.66219I
b = 0.507758 + 0.970271I		
u = 0.507758 - 0.970271I		
a = 0.25842 - 1.54816I	-8.28613 - 2.69300I	-5.21869 + 2.66219I
b = 0.507758 - 0.970271I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.862089 + 0.681772I		
a = 0.623323 - 0.090341I	1.34149 - 2.31581I	-1.56931 + 2.47888I
b = -0.862089 + 0.681772I		
u = -0.862089 - 0.681772I		
a = 0.623323 + 0.090341I	1.34149 + 2.31581I	-1.56931 - 2.47888I
b = -0.862089 - 0.681772I		
u = 0.149552 + 0.886635I		
a = 0.853564 + 0.323444I	-3.37517 + 6.25769I	-4.77547 - 7.56558I
b = 0.149552 + 0.886635I		
u = 0.149552 - 0.886635I		
a = 0.853564 - 0.323444I	-3.37517 - 6.25769I	-4.77547 + 7.56558I
b = 0.149552 - 0.886635I		
u = -0.037592 + 0.765146I		
a = -0.949161 + 0.180834I	-1.05608 - 1.63487I	-2.47499 + 3.77648I
b = -0.037592 + 0.765146I		
u = -0.037592 - 0.765146I		
a = -0.949161 - 0.180834I	-1.05608 + 1.63487I	-2.47499 - 3.77648I
b = -0.037592 - 0.765146I		
u = -0.714501 + 1.020090I		
a = -0.024002 + 1.309480I	-11.31080 - 8.41184I	-6.53000 + 5.72334I
b = -0.714501 + 1.020090I		
u = -0.714501 - 1.020090I		
a = -0.024002 - 1.309480I	-11.31080 + 8.41184I	-6.53000 - 5.72334I
b = -0.714501 - 1.020090I		
u = 0.642524 + 1.081940I		
a = -0.594301 + 0.008681I	-4.41629 + 1.23501I	-10.98929 - 1.86840I
b = 0.642524 + 1.081940I		
u = 0.642524 - 1.081940I		
a = -0.594301 - 0.008681I	-4.41629 - 1.23501I	-10.98929 + 1.86840I
b = 0.642524 - 1.081940I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.304510 + 1.244830I		
a = -0.611400 + 1.161230I	-13.70880 + 1.48629I	-9.47906 - 0.90947I
b = -0.304510 + 1.244830I		
u = -0.304510 - 1.244830I		
a = -0.611400 - 1.161230I	-13.70880 - 1.48629I	-9.47906 + 0.90947I
b = -0.304510 - 1.244830I		
u = -0.838328 + 1.021100I		
a = 0.574776 - 0.036631I	-0.10678 - 4.05131I	-5.35718 + 2.78187I
b = -0.838328 + 1.021100I		
u = -0.838328 - 1.021100I		
a = 0.574776 + 0.036631I	-0.10678 + 4.05131I	-5.35718 - 2.78187I
b = -0.838328 - 1.021100I		
u = 0.86929 + 1.12336I		
a = -0.552780 - 0.027142I	-2.47606 + 8.95314I	-9.63843 - 6.69810I
b = 0.86929 + 1.12336I		
u = 0.86929 - 1.12336I		
a = -0.552780 + 0.027142I	-2.47606 - 8.95314I	-9.63843 + 6.69810I
b = 0.86929 - 1.12336I		
u = 0.009985 + 0.390472I		
a = -1.158280 - 0.683611I	-0.143687 - 1.154050I	-1.70239 + 6.30124I
b = 0.009985 + 0.390472I		
u = 0.009985 - 0.390472I		
a = -1.158280 + 0.683611I	-0.143687 + 1.154050I	-1.70239 - 6.30124I
b = 0.009985 - 0.390472I		
u = 0.99600 + 1.37401I		
a = -0.905942 + 0.047100I	-9.4005 + 11.0269I	0
b = 0.99600 + 1.37401I		
u = 0.99600 - 1.37401I		
a = -0.905942 - 0.047100I	-9.4005 - 11.0269I	0
b = 0.99600 - 1.37401I		

Solutions to I_1^u	$\int \sqrt{-1}(\operatorname{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.81790 + 1.51742I		
a = 0.883941 + 0.187003I	-14.4218 - 6.9271I	0
b = -0.81790 + 1.51742I		
u = -0.81790 - 1.51742I		
a = 0.883941 - 0.187003I	-14.4218 + 6.9271I	0
b = -0.81790 - 1.51742I		
u = -1.12027 + 1.43623I		
a = 0.832072 + 0.016628I	-12.4101 - 16.4883I	0
b = -1.12027 + 1.43623I		
u = -1.12027 - 1.43623I		
a = 0.832072 - 0.016628I	-12.4101 + 16.4883I	0
b = -1.12027 - 1.43623I		
u = -0.019556 + 0.157716I		
a = -3.59942 - 13.15270I	5.85065 - 3.09111I	34.3315 - 14.8344I
b = -0.019556 + 0.157716I		
u = -0.019556 - 0.157716I		
a = -3.59942 + 13.15270I	5.85065 + 3.09111I	34.3315 + 14.8344I
b = -0.019556 - 0.157716I		

II.
$$I_2^u = \langle b+u, \; -1.39 \times 10^{20} u^{26} + 1.60 \times 10^{20} u^{25} + \cdots + 4.99 \times 10^{19} a - 6.68 \times 10^{19}, \; u^{27} - u^{26} + \cdots - 10 u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 2.78024u^{26} - 3.21163u^{25} + \dots - 21.1050u + 1.33794 \\ -u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 5.30922u^{26} - 6.52376u^{25} + \dots - 42.9670u + 0.261911 \\ 0.295368u^{26} - 0.301221u^{25} + \dots - 1.78024u + 0.431384 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1.33794u^{26} - 1.44230u^{25} + \dots - 15.2069u + 22.1050 \\ 0.341753u^{26} - 0.265611u^{25} + \dots - 0.783163u + 0.688731 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 2.78024u^{26} - 3.21163u^{25} + \dots - 22.1050u + 1.33794 \\ -u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.431384u^{26} - 1.13602u^{25} + \dots - 7.33794u + 8.21976 \\ -0.335900u^{26} + 0.248427u^{25} + \dots + 0.351779u + 0.0159013 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.0896309u^{26} - 0.870405u^{25} + \dots - 6.55478u + 7.53103 \\ -0.418450u^{26} + 0.307498u^{25} + \dots + 0.693532u + 0.0920432 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -1.05574u^{26} + 1.20442u^{25} + \dots + 7.08036u + 1.76225 \\ -0.0188017u^{26} - 0.271955u^{25} + \dots - 0.0680159u + 0.737192 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1.14370u^{26} + 0.583208u^{25} + \dots + 0.782926u + 4.82381 \\ 0.418450u^{26} - 0.307498u^{25} + \dots - 0.693532u - 0.0920432 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 5.62049u^{26} - 7.17679u^{25} + \dots - 46.4959u + 1.04507 \\ 0.371510u^{26} - 0.459914u^{25} + \dots - 2.09151u + 0.773138 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$\frac{62283098744443613578}{49938603651971298581}u^{26} + \frac{232496535338997910625}{49938603651971298581}u^{25} + \cdots + \frac{2030283186351200219352}{49938603651971298581}u^{26} - \frac{2398399780063016104203}{49938603651971298581}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{27} - 14u^{26} + \dots - 8u + 1$
c_2	$u^{27} + 7u^{25} + \dots + 4u^2 + 1$
c_3	$u^{27} - 20u^{26} + \dots + 413u - 181$
c_4	$u^{27} - 6u^{25} + \dots + 14u - 5$
c_5, c_{12}	$u^{27} - u^{26} + \dots - 10u^2 - 1$
c_6, c_{11}	$u^{27} + u^{26} + \dots - u - 1$
c_7	$u^{27} - u^{25} + \dots + 12u - 5$
c_8	$u^{27} + 7u^{25} + \dots - 4u^2 - 1$
<i>c</i> ₉	$u^{27} + 12u^{26} + \dots + 5u^2 - 1$
c_{10}	$u^{27} - u^{26} + \dots - u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{27} + 6y^{26} + \dots - 8y - 1$
c_2, c_8	$y^{27} + 14y^{26} + \dots - 8y - 1$
c_3	$y^{27} - 36y^{26} + \dots + 599539y - 32761$
c_4	$y^{27} - 12y^{26} + \dots - 34y - 25$
c_5,c_{12}	$y^{27} - 7y^{26} + \dots - 20y - 1$
c_6, c_{10}, c_{11}	$y^{27} - 15y^{26} + \dots - 19y - 1$
C ₇	$y^{27} - 2y^{26} + \dots - 236y - 25$
<i>c</i> ₉	$y^{27} - 4y^{26} + \dots + 10y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.336357 + 0.966243I		
a = -0.686667 + 0.398689I	-6.68205 - 0.58234I	-13.57427 + 1.26764I
b = 0.336357 - 0.966243I		
u = -0.336357 - 0.966243I		
a = -0.686667 - 0.398689I	-6.68205 + 0.58234I	-13.57427 - 1.26764I
b = 0.336357 + 0.966243I		
u = -1.005400 + 0.275951I		
a = -1.037330 + 0.705161I	1.83930 - 2.45917I	1.80526 + 7.62829I
b = 1.005400 - 0.275951I		
u = -1.005400 - 0.275951I		
a = -1.037330 - 0.705161I	1.83930 + 2.45917I	1.80526 - 7.62829I
b = 1.005400 + 0.275951I		
u = 0.606745 + 0.882798I		
a = 0.331286 + 0.517855I	-5.64281 - 2.15614I	-9.19261 - 1.44075I
b = -0.606745 - 0.882798I		
u = 0.606745 - 0.882798I		
a = 0.331286 - 0.517855I	-5.64281 + 2.15614I	-9.19261 + 1.44075I
b = -0.606745 + 0.882798I		
u = 1.07541		
a = -0.461440	-7.12921	-4.03220
b = -1.07541		
u = 0.537424 + 1.012470I		
a = 0.721465 - 0.486432I	-3.11876 + 0.97105I	-4.34103 - 1.79332I
b = -0.537424 - 1.012470I		
u = 0.537424 - 1.012470I		
a = 0.721465 + 0.486432I	-3.11876 - 0.97105I	-4.34103 + 1.79332I
b = -0.537424 + 1.012470I		
u = -0.816309 + 0.907921I		
a = -0.862083 - 0.153746I	1.00458 - 4.33611I	2.54294 + 5.25647I
b = 0.816309 - 0.907921I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.816309 - 0.907921I		
a = -0.862083 + 0.153746I	1.00458 + 4.33611I	2.54294 - 5.25647I
b = 0.816309 + 0.907921I		
u = 1.216070 + 0.287083I		
a = 0.772680 + 0.609470I	0.51517 + 5.99705I	-4.48976 - 8.64665I
b = -1.216070 - 0.287083I		
u = 1.216070 - 0.287083I		
a = 0.772680 - 0.609470I	0.51517 - 5.99705I	-4.48976 + 8.64665I
b = -1.216070 + 0.287083I		
u = -1.127710 + 0.614247I		
a = -0.861605 + 0.280734I	2.32898 - 3.69540I	1.96062 + 2.95334I
b = 1.127710 - 0.614247I		
u = -1.127710 - 0.614247I		
a = -0.861605 - 0.280734I	2.32898 + 3.69540I	1.96062 - 2.95334I
b = 1.127710 + 0.614247I		
u = -0.079298 + 0.699557I		
a = -1.57234 + 0.54120I	-5.11145 + 5.51494I	-8.41780 - 5.72397I
b = 0.079298 - 0.699557I		
u = -0.079298 - 0.699557I		
a = -1.57234 - 0.54120I	-5.11145 - 5.51494I	-8.41780 + 5.72397I
b = 0.079298 + 0.699557I		
u = -1.326360 + 0.260463I		
a = 0.244005 + 0.122908I	-10.69710 + 4.45935I	-7.92473 - 3.01900I
b = 1.326360 - 0.260463I		
u = -1.326360 - 0.260463I		
a = 0.244005 - 0.122908I	-10.69710 - 4.45935I	-7.92473 + 3.01900I
b = 1.326360 + 0.260463I		
u = 0.859553 + 1.069800I		
a = 0.705680 - 0.146031I	-1.59462 + 9.09497I	-0.27825 - 8.37177I
b = -0.859553 - 1.069800I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.859553 - 1.069800I		
a = 0.705680 + 0.146031I	-1.59462 - 9.09497I	-0.27825 + 8.37177I
b = -0.859553 + 1.069800I		
u = 1.286270 + 0.526184I		
a = 0.741479 + 0.383886I	0.771357 - 0.260360I	-4.29150 + 1.30501I
b = -1.286270 - 0.526184I		
u = 1.286270 - 0.526184I		
a = 0.741479 - 0.383886I	0.771357 + 0.260360I	-4.29150 - 1.30501I
b = -1.286270 + 0.526184I		
u = 0.221536 + 0.540952I		
a = 1.34818 + 1.58969I	-3.77045 - 0.62259I	-2.79230 - 0.12381I
b = -0.221536 - 0.540952I		
u = 0.221536 - 0.540952I		
a = 1.34818 - 1.58969I	-3.77045 + 0.62259I	-2.79230 + 0.12381I
b = -0.221536 + 0.540952I		
u = -0.073870 + 0.346449I		
a = -2.11404 - 5.83905I	5.75856 - 3.13863I	-34.4905 + 20.3622I
b = 0.073870 - 0.346449I		
u = -0.073870 - 0.346449I		
a = -2.11404 + 5.83905I	5.75856 + 3.13863I	-34.4905 - 20.3622I
b = 0.073870 + 0.346449I		

$$\begin{array}{l} \text{III. } I_3^u = \langle 3.16 \times 10^{115} u^{39} + 8.24 \times 10^{115} u^{38} + \cdots + 1.01 \times 10^{119} b + 9.36 \times \\ 10^{117}, \ -3.48 \times 10^{101} u^{39} - 7.65 \times 10^{101} u^{38} + \cdots + 4.10 \times 10^{104} a + 7.60 \times \\ 10^{103}, \ u^{40} + 3 u^{39} + \cdots + 2382 u + 643 \rangle \end{array}$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.000849679u^{39} + 0.00186679u^{38} + \dots + 6.51068u - 0.185551 \\ -0.000313802u^{39} - 0.000817408u^{38} + \dots - 4.43952u - 0.0929075 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.000285297u^{39} + 0.000692402u^{38} + \dots - 1.15794u + 2.02510 \\ -0.000188165u^{39} - 0.000867240u^{38} + \dots - 0.373964u - 1.49124 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.0000666790u^{39} + 0.000133987u^{38} + \dots + 1.52511u - 1.95131 \\ 0.000373461u^{39} + 0.00130423u^{38} + \dots - 0.762077u + 1.71070 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.000535877u^{39} + 0.00104938u^{38} + \dots + 2.07116u - 0.278459 \\ -0.000313802u^{39} - 0.000817408u^{38} + \dots + 4.43952u - 0.0929075 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.000306782u^{39} + 0.00117024u^{38} + \dots - 2.28718u + 3.66201 \\ -0.000336059u^{39} - 0.00126654u^{38} + \dots + 1.55459u - 1.55002 \end{pmatrix}$$

$$a_{21} = \begin{pmatrix} 0.0000666790u^{39} - 0.00133987u^{38} + \dots + 1.55459u - 1.55002 \end{pmatrix}$$

$$a_{32} = \begin{pmatrix} 0.000887834u^{39} + 0.00133987u^{38} + \dots + 0.876534u - 1.66823 \\ -0.000846462u^{39} - 0.00123316u^{38} + \dots + 0.876534u - 1.66823 \end{pmatrix}$$

$$a_{22} = \begin{pmatrix} 0.000887834u^{39} + 0.00224028u^{38} + \dots + 8.02399u - 0.145440 \\ -0.000846462u^{39} - 0.0022870u^{38} + \dots - 6.96651u + 0.487391 \end{pmatrix}$$

$$a_{33} = \begin{pmatrix} 0.000687324u^{39} + 0.00227174u^{38} + \dots - 0.869104u - 2.95403 \\ 0.000283061u^{39} + 0.00183202u^{38} + \dots + 1.04746u + 2.51922 \end{pmatrix}$$

$$a_{43} = \begin{pmatrix} 0.000643096u^{39} + 0.00183202u^{38} + \dots + 1.04746u + 2.51922 \\ 0.000643096u^{39} + 0.00183202u^{38} + \dots + 0.989966u + 3.41122 \\ -0.000105609u^{39} - 0.000634796u^{38} + \dots + 0.0138282u - 1.44866 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.00357512u^{39} 0.0100039u^{38} + \cdots 28.2430u 9.94034$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$ (u^5 + 3u^4 + 4u^3 + u^2 - u - 1)^8 $
c_2, c_8	$(u^5 - u^4 + 2u^3 - u^2 + u - 1)^8$
c_3	$(u^4 + 3u^3 + u^2 - 2u + 1)^{10}$
c_4	$u^{40} - u^{39} + \dots - 525220u + 436829$
c_5,c_{12}	$u^{40} - 3u^{39} + \dots - 2382u + 643$
c_6, c_{10}, c_{11}	$u^{40} - u^{39} + \dots + 60966u + 88157$
	$(u^5 + u^4 - 2u^3 - u^2 + u - 1)^8$
<i>c</i> ₉	$(u^4 - u^3 + u^2 + 1)^{10}$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$(y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)^8$
c_2, c_8	$(y^5 + 3y^4 + 4y^3 + y^2 - y - 1)^8$
c_3	$(y^4 - 7y^3 + 15y^2 - 2y + 1)^{10}$
c_4	$y^{40} - 25y^{39} + \dots - 458444454794y + 190819575241$
c_5,c_{12}	$y^{40} - 5y^{39} + \dots + 1465948y + 413449$
c_6, c_{10}, c_{11}	$y^{40} - 45y^{39} + \dots - 9888901040y + 7771656649$
<i>C</i> ₇	$(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)^8$
<i>c</i> ₉	$(y^4 + y^3 + 3y^2 + 2y + 1)^{10}$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.915348 + 0.214144I		
a = -0.189845 + 0.831374I	-5.47491 + 0.11547I	-6.34185 + 0.47809I
b = -0.106490 - 1.134420I		
u = 0.915348 - 0.214144I		
a = -0.189845 - 0.831374I	-5.47491 - 0.11547I	-6.34185 - 0.47809I
b = -0.106490 + 1.134420I		
u = -0.683982 + 0.623025I		
a = 0.805406 - 0.319531I	-11.01840 - 5.81594I	-10.57105 + 8.40733I
b = -1.92283 - 1.60754I		
u = -0.683982 - 0.623025I		
a = 0.805406 + 0.319531I	-11.01840 + 5.81594I	-10.57105 - 8.40733I
b = -1.92283 + 1.60754I		
u = 1.078690 + 0.106927I		
a = 0.864918 + 0.759081I	1.52684 + 1.63338I	-2.68838 + 1.86585I
b = -1.023340 - 0.427389I		
u = 1.078690 - 0.106927I		
a = 0.864918 - 0.759081I	1.52684 - 1.63338I	-2.68838 - 1.86585I
b = -1.023340 + 0.427389I		
u = -0.355495 + 1.038010I		
a = -1.037300 - 0.465364I	-4.01662 - 7.56480I	-6.91758 + 6.06338I
b = 0.99329 - 1.41252I		
u = -0.355495 - 1.038010I		
a = -1.037300 + 0.465364I	-4.01662 + 7.56480I	-6.91758 - 6.06338I
b = 0.99329 + 1.41252I		
u = 0.507163 + 0.745285I		
a = -0.880172 - 0.126908I	-7.54689 + 1.41510I	-7.30788 - 4.90874I
b = 1.80560 - 1.23303I		
u = 0.507163 - 0.745285I		
a = -0.880172 + 0.126908I	-7.54689 - 1.41510I	-7.30788 + 4.90874I
b = 1.80560 + 1.23303I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.612045 + 0.921062I		
a = 0.718589 - 0.095543I	-11.01840 + 2.98573I	-10.57105 + 1.41016I
b = -2.17034 - 1.07308I		
u = -0.612045 - 0.921062I		
a = 0.718589 + 0.095543I	-11.01840 - 2.98573I	-10.57105 - 1.41016I
b = -2.17034 + 1.07308I		
u = -1.023340 + 0.427389I		
a = -1.025430 + 0.462244I	1.52684 - 1.63338I	-2.68838 - 1.86585I
b = 1.078690 - 0.106927I		
u = -1.023340 - 0.427389I		
a = -1.025430 - 0.462244I	1.52684 + 1.63338I	-2.68838 + 1.86585I
b = 1.078690 + 0.106927I		
u = -0.106490 + 1.134420I		
a = -0.600583 + 0.366499I	-5.47491 - 0.11547I	-6.34185 - 0.47809I
b = 0.915348 - 0.214144I		
u = -0.106490 - 1.134420I		
a = -0.600583 - 0.366499I	-5.47491 + 0.11547I	-6.34185 + 0.47809I
b = 0.915348 + 0.214144I		
u = 1.013930 + 0.588855I		
a = 1.018540 + 0.307239I	1.52684 + 4.69454I	-2.68838 - 6.99545I
b = -1.316730 - 0.470234I		
u = 1.013930 - 0.588855I		
a = 1.018540 - 0.307239I	1.52684 - 4.69454I	-2.68838 + 6.99545I
b = -1.316730 + 0.470234I		
u = 0.050553 + 0.805117I		
a = -1.06126 - 1.12463I	-4.01662 + 1.23687I	-6.91758 - 0.93379I
b = 0.44450 - 1.35463I		
u = 0.050553 - 0.805117I		
a = -1.06126 + 1.12463I	-4.01662 - 1.23687I	-6.91758 + 0.93379I
b = 0.44450 + 1.35463I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.289512 + 0.747747I		
a = 1.44340 - 0.58031I	-0.54514 + 3.16396I	-3.65440 - 2.56480I
b = -0.775671 - 1.144290I		
u = 0.289512 - 0.747747I		
a = 1.44340 + 0.58031I	-0.54514 - 3.16396I	-3.65440 + 2.56480I
b = -0.775671 + 1.144290I		
u = -0.775671 + 1.144290I		
a = -0.891390 - 0.140159I	-0.54514 - 3.16396I	-3.65440 + 2.56480I
b = 0.289512 - 0.747747I		
u = -0.775671 - 1.144290I		
a = -0.891390 + 0.140159I	-0.54514 + 3.16396I	-3.65440 - 2.56480I
b = 0.289512 + 0.747747I		
u = -1.316730 + 0.470234I		
a = -0.792945 + 0.408910I	1.52684 - 4.69454I	-2.68838 + 6.99545I
b = 1.013930 - 0.588855I		
u = -1.316730 - 0.470234I		
a = -0.792945 - 0.408910I	1.52684 + 4.69454I	-2.68838 - 6.99545I
b = 1.013930 + 0.588855I		
u = 0.44450 + 1.35463I		
a = 0.793611 - 0.368401I	-4.01662 - 1.23687I	-6.91758 + 0.93379I
b = 0.050553 - 0.805117I		
u = 0.44450 - 1.35463I		
a = 0.793611 + 0.368401I	-4.01662 + 1.23687I	-6.91758 - 0.93379I
b = 0.050553 + 0.805117I		
u = 0.56798 + 1.35900I		
a = 0.359128 + 0.408966I	-5.47491 - 2.94568I	-6.34185 + 9.33939I
b = -0.199638 - 0.190466I		
u = 0.56798 - 1.35900I		
a = 0.359128 - 0.408966I	-5.47491 + 2.94568I	-6.34185 - 9.33939I
b = -0.199638 + 0.190466I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.199638 + 0.190466I		
a = -0.87961 + 2.76905I	-5.47491 + 2.94568I	-6.34185 - 9.33939I
b = 0.56798 - 1.35900I		
u = -0.199638 - 0.190466I		
a = -0.87961 - 2.76905I	-5.47491 - 2.94568I	-6.34185 + 9.33939I
b = 0.56798 + 1.35900I		
u = 0.99329 + 1.41252I		
a = 0.715433 - 0.099946I	-4.01662 + 7.56480I	0
b = -0.355495 - 1.038010I		
u = 0.99329 - 1.41252I		
a = 0.715433 + 0.099946I	-4.01662 - 7.56480I	0
b = -0.355495 + 1.038010I		
u = 1.80560 + 1.23303I		
a = 0.052918 + 0.362812I	-7.54689 - 1.41510I	0
b = 0.507163 - 0.745285I		
u = 1.80560 - 1.23303I		
a = 0.052918 - 0.362812I	-7.54689 + 1.41510I	0
b = 0.507163 + 0.745285I		
u = -2.17034 + 1.07308I		
a = -0.001611 + 0.331107I	-11.01840 - 2.98573I	0
b = -0.612045 - 0.921062I		
u = -2.17034 - 1.07308I		
a = -0.001611 - 0.331107I	-11.01840 + 2.98573I	0
b = -0.612045 + 0.921062I		
u = -1.92283 + 1.60754I		
a = -0.076655 + 0.310539I	-11.01840 + 5.81594I	0
b = -0.683982 - 0.623025I		
u = -1.92283 - 1.60754I		
a = -0.076655 - 0.310539I	-11.01840 - 5.81594I	0
b = -0.683982 + 0.623025I		
·		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^5 + 3u^4 + 4u^3 + u^2 - u - 1)^8)(u^{27} - 14u^{26} + \dots - 8u + 1)$ $\cdot (u^{36} + 17u^{35} + \dots + 896u + 256)$
<i>c</i> ₂	$((u^5 - u^4 + 2u^3 - u^2 + u - 1)^8)(u^{27} + 7u^{25} + \dots + 4u^2 + 1)$ $\cdot (u^{36} + 9u^{35} + \dots + 128u + 16)$
<i>c</i> ₃	$((u^4 + 3u^3 + u^2 - 2u + 1)^{10})(u^{27} - 20u^{26} + \dots + 413u - 181)$ $\cdot (u^{36} - 19u^{35} + \dots - 6400u + 1024)$
<i>C</i> ₄	$(u^{27} - 6u^{25} + \dots + 14u - 5)(u^{36} - 16u^{34} + \dots + 115u + 42)$ $\cdot (u^{40} - u^{39} + \dots - 525220u + 436829)$
c_5, c_{12}	$(u^{27} - u^{26} + \dots - 10u^2 - 1)(u^{36} - u^{35} + \dots - u + 1)$ $\cdot (u^{40} - 3u^{39} + \dots - 2382u + 643)$
c_6,c_{11}	$(u^{27} + u^{26} + \dots - u - 1)(u^{36} + u^{35} + \dots + 2u + 1)$ $\cdot (u^{40} - u^{39} + \dots + 60966u + 88157)$
<i>C</i> ₇	$((u^5 + u^4 - 2u^3 - u^2 + u - 1)^8)(u^{27} - u^{25} + \dots + 12u - 5)$ $\cdot (u^{36} - 9u^{35} + \dots - 273856u + 43216)$
<i>c</i> ₈	$((u^5 - u^4 + 2u^3 - u^2 + u - 1)^8)(u^{27} + 7u^{25} + \dots - 4u^2 - 1)$ $\cdot (u^{36} + 9u^{35} + \dots + 128u + 16)$
<i>C</i> 9	$((u^4 - u^3 + u^2 + 1)^{10})(u^{27} + 12u^{26} + \dots + 5u^2 - 1)$ $\cdot (u^{36} + 19u^{35} + \dots + 464u + 32)$
c_{10}	$(u^{27} - u^{26} + \dots - u + 1)(u^{36} + u^{35} + \dots + 2u + 1)$ $\cdot (u^{40} - u^{39} + \dots + 60966u + 88157)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)^8)(y^{27} + 6y^{26} + \dots - 8y - 1)$ $\cdot (y^{36} + 5y^{35} + \dots + 303104y + 65536)$
c_2, c_8	$((y^5 + 3y^4 + 4y^3 + y^2 - y - 1)^8)(y^{27} + 14y^{26} + \dots - 8y - 1)$ $\cdot (y^{36} + 17y^{35} + \dots + 896y + 256)$
c_3	$((y^4 - 7y^3 + 15y^2 - 2y + 1)^{10})(y^{27} - 36y^{26} + \dots + 599539y - 32761)$ $\cdot (y^{36} - 43y^{35} + \dots + 39911424y + 1048576)$
c_4	$(y^{27} - 12y^{26} + \dots - 34y - 25)(y^{36} - 32y^{35} + \dots - 6169y + 1764)$ $\cdot (y^{40} - 25y^{39} + \dots - 458444454794y + 190819575241)$
c_5, c_{12}	$(y^{27} - 7y^{26} + \dots - 20y - 1)(y^{36} + 21y^{35} + \dots + 103y + 1)$ $\cdot (y^{40} - 5y^{39} + \dots + 1465948y + 413449)$
c_6, c_{10}, c_{11}	$(y^{27} - 15y^{26} + \dots - 19y - 1)(y^{36} - 59y^{35} + \dots - 18y + 1)$ $\cdot (y^{40} - 45y^{39} + \dots - 9888901040y + 7771656649)$
c_7	$((y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)^8)(y^{27} - 2y^{26} + \dots - 236y - 25)$ $\cdot (y^{36} - 7y^{35} + \dots + 320081792y + 1867622656)$
<i>c</i> 9	$((y^4 + y^3 + 3y^2 + 2y + 1)^{10})(y^{27} - 4y^{26} + \dots + 10y - 1)$ $\cdot (y^{36} - 3y^{35} + \dots + 15616y + 1024)$