

vv255_Assignment 7: Surface Integrals. Stoke's Theorem

Due to: 2019-07-31 16:30 (use the mailbox to submit this assignment)

Problem 1: Find an equation for the plane tangent to the given surface at the specified point:

1.
$$x = 2u$$
, $y = u^2 + v$, $z = v^2$, (0.1.1)

2.
$$x = u^2$$
, $y = u \sin e^v$, $z = \frac{1}{3}u \cos e^v$, (13, -2,1)

Problem 2

- 1. Find the area of the portion of the unit sphere that is cut out by the cone $z \ge \sqrt{x^2 + y^2}$.
- 2. Find the area of the helicoid with vector equation

$$r(u,v) = (u\cos v, u\sin v, v), \qquad 0 \le u \le 1, \qquad 0 \le v \le \pi$$

Problem 3: Express the surface area of the following graphs over the indicated region D as a double integral. Do not evaluate.

- 1. $xy^3e^{x^2y^2}$, D = a unit circle centered at the origin,
- 2. $y^3 \cos^2 x$, D = a triangle with vertices (-1,1), (0,2), and (1,1).

Problem 4: Evaluate the surface integrals:

1. $\iint_S (x^2 + y^2) dS$, S is the surface with vector equation

$$r(u, v) = (2uv, u^2 - v^2, u^2 + v^2), \qquad u^2 + v^2 \le 1$$

- 2. $\iint_S xz \, dS$, S is the part of the plane 2x + 2y + z = 4 that lies in the first octant.
- 3. $\iint_S xz \, dS$, *S* is the boundary of the region enclosed by $y^2 + z^2 = 9$, x = 0, x + y = 5

Problem 5

- 1. Let the temperature of a point in \mathbb{R}^3 be given by $u(x,y,z)=3x^2+3z^2$. Compute the heat flux across the surface $x^2+z^2=2$, $0 \le y \le 2$, if K=1.
- 2. Find the flux of F(x, y, z) = (yz, xz, xy) across $S: z = x \sin y$, $0 \le x \le 2$, $0 \le y \le \pi$ with upward orientation.
- 3. Find the flux of F(x, y, z) = (x, 2y, 3z) across the cube S with the vertices $(\pm 1, \pm 1, \pm 1)$ oriented outward.
- 4. Use the Divergence Theorem to calculate the surface integral to calculate the flux of F across S.

$$F(x,y,z) = (x^3 + y^3, y^3 + z^3, z^3 + x^3),$$
 $S: x^2 + y^2 + z^2 = 4$

5. Use the Divergence Theorem to calculate the surface integral to calculate the flux of F across S.

$$F(x, y, z) = (xy + 2xz, x^2 + y^2, xy - z^2),$$
 S: $x^2 + y^2 = 4,$ $z = y - 2,$ $z = 0$

Problem 6

- 1. Verify Stokes' theorem for the upper hemisphere $z=\sqrt{1-x^2-y^2},\ z>0$, and the radial vector field $F(x,y,z)=x\bar{\imath}+y\bar{\jmath}+z\bar{k}$.
- 2. Use Stokes' Theorem to evaluate $\iint_S F d\bar{S}$, $F = (xyz, xy, x^2yz)$, S consists of the top and the four sides (but not the bottom) of the cube with vertices $(\pm 1, \pm 1, \pm 1)$ oriented outward.

Dr. Olga Danilkina

中国 上海闵行区东川路 800 号

邮编 200240