11. モデル推定

- 本章の説明手順
- 1.教師なし、モデル推定の問題設定
- 2.ボトムアップにデータをまとめてゆく階層的クラスタ リング手法の説明
- 3.トップダウンにデータの分割を行い、最適化してゆく 分割最適化クラスタリング手法の説明
- 4.分割最適化手法の一般化としての確率密度推定手法の 説明

11.1 数値特徴に対する「教師なし・モデル推定」問題の定義

- 問題設定
 - 教師なし学習
 - (密な)数値ベクトル → クラスモデル
 - クラスモデルの例

11.1 数値特徴に対する「教師なし・モデル推定」問題の定義

- ・データセット $\{\boldsymbol{x}_i\} \quad i=1,\ldots,N$
- モデル推定とは
 - 個々のデータを生じさせた 共通の性質をもつクラスを 見つける
 - そのクラスの統計的性質を 推定する

11.2 クラスタリング

- クラスタリングとは
 - 「共通の性質をもつクラス」 = 「特徴空間上で近い値をもつデータの集まり」と考え、データのまとまりを見つける
 - 「まとまり」とは
 - 内的結合(同じ集合内のデータ間の距離は小さく) と

外的分離(異なる集合間の距離は大きく) が達成されるような部分集合

11.2 クラスタリング

- クラスタリング手法の分類
 - 階層的手法
 - ボトムアップ的にデータをまとめてゆく
 - 分割最適化手法
 - トップダウン的にデータ集合を分割してゆく

11.2.1 階層的クラスタリング

- 階層的クラスタリングとは
 - 1.1 データ 1 クラスタからスタート
 - 2.最も近接するクラスタをまとめる

11.2.1 階層的クラスタリング

Algorithm 11.1 階層的クラスタリング

```
入力: 正解なしデータ D
出力: クラスタリング結果の木構造
/* 学習データそれぞれをクラスタの要素としたクラスタ集合 C を作成 */
C \leftarrow \{c_1, c_2, \dots, c_N\}
while |C| > 1 do
/* もっとも似ているクラスタ対 \{c_m, c_n\} を見つける */
(c_m, c_n) \leftarrow \operatorname*{argmax\,sim}(c_i, c_j)
c_i, c_j \in C
\{c_m, c_n\} を融合
```

end while

11.2.1 階層的クラスタリング

- 類似度 sim の定義(正確にはこれらの反数)
 - 単連結法 (single)
 - 類似度:最も近いデータ対の距離
 - 傾向:クラスタが一方向に伸びやすくなる
 - 完全連結法 (complete)
 - 類似度:最も遠いデータ対の距離
 - 傾向:クラスタが一方向に伸びるのを避ける
 - 重心法 (average)
 - 類似度:クラスタの平均ベクトル間の距離
 - 傾向:単連結と完全連結の中間的な形
 - Ward 法 (ward)
 - 類似度:融合前後の「平均ベクトルとデータの距離の二乗和」の差
 - 傾向:極端な形になりにくく、よく用いられる基準

- 分割最適化クラスタリングとは
 - データ分割の良さを評価する関数を定め、その評価関数の値を最適化することを目的とする
 - ただし、すべての可能な分割に対して評価値を求めることは、データ数 N が大きくなると不可能
 例: 2 分割で 2^N通り
 - 探索によって、<u>準最適解</u>を求める

- k-means アルゴリズム
- 評価関数:データとクラスタ中心との
- 1.分割数 *k* を予め与える
- 2.乱数でk個のクラスタ中心を設定し、逐次更新
- ① 初期値として乱数で クラスタ中心を配置
- ② 各データを、もっとも近い クラスタ中心に配属
- ③ 所属しているデータからクラスタ中心を再計算
- ④②,③の処理をクラスタ中心が動かなくなるまで繰り返す

Algorithm 11.2 k-means アルゴリズム

入力: 正解なしデータ D

出力: クラスタ中心 μ_j $(j=1,\ldots,k)$

入力空間上にk個の点をランダムに設定し、それらをクラスタ中心 μ_j とする repeat

for all $x_i \in D$ do

各クラスタ中心 μ_j との距離を計算し、もっとも近いクラスタに割り当てる end for

/* 各クラスタについて,以下の式で中心の位置を更新 $(N_j$ はクラスタ j のデータ数) */

$$\mu_j \leftarrow \frac{1}{N_j} \sum_{\boldsymbol{x}_i \in \mathcal{I} \ni \lambda \not\ni_j} x_i \qquad (j = 1, \dots, k)$$

until クラスタ中心 μ_j が変化しない return μ_j (j = 1, ..., k)

- k-means 法の問題点
 - 分割数 *k* を予め決めなければならない
- 解決法 ⇒ X-means アルゴリズム
 - 2 分割から始めて、分割数を適応的に決定する
 - 分割の妥当性の判断: BIC (Bayesian Information Criterion) が小さくなれば、分割を継続

$$BIC = -2\log L + q\log N$$

- L: モデルの尤度
- q: モデルのパラメータ数
- N: データ数

パラメータで表される 統計モデルの選択基準 (小さいほどよいモデル)

- Affinity Propagation とは
 - クラスタ数を自動的に決定するアルゴリズム
- 基本的な考え方
 - クラスタ中心らしさ (responsibility)

とクラスタへの属しやすさ (availability)をデータ間で 伝達して収束させる

- 教師なし学習で識別器を作る問題
 - クラスタリング結果からは、1クラス1プロトタイプの単純な識別器しかできない
 - 各クラスの事前確率や確率密度関数も推定したい
 - EM アルゴリズム

- k-means 法の一般化
 - k個の平均ベクトルを乱数で決める
 - ⇒ k 個の正規分布を乱数で決める
 - 平均ベクトルとの距離を基準に、各データをいずれ かのクラスタに所属させる
 - ⇒各分布が各データを生成する確率を計算し、 各クラスタにゆるやかに帰属させる
 - 所属させたデータをもとに平均ベクトルを再計算
 ⇒各データのクラスタへの帰属度に基づき各分布
 のパラメータ(平均値、共分散行列)を再計算

Algorithm 11.3 EM アルゴリズム

入力: 正解なしデータ *D*

出力: 各クラスを表す確率密度関数のパラメータ

入力空間上にk個のクラスタ c_i の分布 ϕ_i をランダムに設定

repeat

/* E ステップ */

for all $x_i \in D$ do

 ϕ_i を用いて確率 $p(c_i \mid \boldsymbol{x}_i)$ (j = 1, ..., k) を計算

end for

/* M ステップ*/

 \mathbf{E} ステップで求めた $p(c_j \mid \boldsymbol{x}_i)$ を使って分布 ϕ_j のパラメータを再計算 until 分布のパラメータの変化量が閾値以下

return ϕ_j $(j=1,\ldots,k)$

• Eステップの確率計算

$$p(c_m \mid \boldsymbol{x}_i) = \frac{p(c_m)p(\boldsymbol{x}_i \mid c_m)}{p(\boldsymbol{x}_i)}$$

$$= \frac{p(c_m)p(\boldsymbol{x}_i \mid c_m)}{\sum_{j=1}^k p(c_j)p(\boldsymbol{x}_i \mid c_j)}$$

$$= \frac{p(c_m)\phi(\boldsymbol{x}_i; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m)}{\sum_{j=1}^k p(c_j)\phi(\boldsymbol{x}_i; \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

ベイズの定理

分母を周辺化

尤度を分布の式に置き換え

Mステップの分布の最尤推定

$$\boldsymbol{\mu}_m = \frac{1}{|D|} \sum_{\boldsymbol{x}_i \in D} p(c_m \mid \boldsymbol{x}_i) \ \boldsymbol{x}_i$$

$$\mathbf{\Sigma}_m = \frac{1}{|D|} \sum_{\mathbf{x}_i \in D} p(c_m \mid \mathbf{x}_i) (\mathbf{x}_i - \boldsymbol{\mu}_m) (\mathbf{x}_i - \boldsymbol{\mu}_m)^T$$

補足

Affinity Propagation

- データ i とデータ k の間に定義される 3 つの関数
 - s(i,k): データ i とデータ k の類似度。負の距離がよく用いられる
 - r(i,k): 代表点 k からデータ i に送られるクラスタの代表点らしさ
 - a(i,k): データ i から代表点 k に送られるクラスタ への所属度

r と a が更新対象

Affinity Propagation のアルゴリズム

- 1.a の値を 0 で初期化
- 2.r を以下の式で更新 (k'は競合している代表点候補)

$$r(i,k) \leftarrow s(i,k) - \max_{k's.t.k' \neq k} \{a(i,k') + s(i,k')\}$$

3.a を以下の式で更新 (i'は代表点候補 k を最も高く評価している点)

$$a(i,k) \leftarrow \min\{0, r(k,k) + \sum_{i's.t.i' \notin \{i,k\}} r(i',k)\}$$

 $4.r_{t}$ と a_{t} を用いて r_{t+1} と a_{t+1} を以下の式で更新

$$r_{t+1}(i,k) = \lambda r_t(i,k) + (1-\lambda)r_{t+1}(i,k)$$
$$a_{t+1}(i,k) = \lambda a_t(i,k) + (1-\lambda)a_{t+1}(i,k)$$

更新量があまり大きく ならないように

5.更新量が一定値以下になれば終了。各データ i を argmax $_k r(i,k) + a(i,k)$ となるデータ k を代表とするクラス 夕に割り当てる

11.3 異常検出

- 異常検出とは
 - 正常クラスのデータと、それ以外のデータとのクラ スタリング
 - 外れ値検知:学習データ中の異常値を検出
 - 新規検知:新しく入力されるデータの異常性を発見
- 外れ値検知(静的異常検出)
 - データの分布から大きく離れている値を見つける
 - 手法
 - 近くにデータがないか、あるいは極端に少ないものを外れ値とみなす
 - 「近く」の閾値を、予め決めておくことは難しい

11.3 異常検出

- 局所異常因子による外れ値検知
 - 周辺密度
 - あるデータの周辺の他のデータの集まり具合
 - 局所異常因子 (LOF: local outlier factor)
 - 近くの k 個のデータの周辺密度の平均と、あるデータの 周辺密度との比

11.3 異常検出

- 局所異常因子の計算
 - 到達可能距離

$$RD_k(oldsymbol{x},oldsymbol{x}') = \max(||oldsymbol{x}-oldsymbol{x}^{(k)}||,||oldsymbol{x}-oldsymbol{x}'||)$$
 は、 $oldsymbol{x}$ に k 番目に近いデータ 近すぎる距離は、 k 番目 との距離に補正される

• 局所到達可能密度

$$LRD_k(oldsymbol{x})=(rac{1}{k}\sum_{i=1}^k RD_k(oldsymbol{x}^{(i)},oldsymbol{x}))^{-1}$$
 $egin{array}{c} oldsymbol{x}$ の周りの密度が高い場合、大きな値になる

• 局所異常因子

$$LOF_k(\boldsymbol{x}) = \frac{\frac{1}{k} \sum_{i=1}^k LRD_k(\boldsymbol{x}^{(i)})}{LRD_k(\boldsymbol{x})}$$

One-class SVM

- One-class SVM による新規検知
 - RBF カーネルによる写像後の空間における学習データを正例、原点を負例とみなして境界を得る
 - 新規データに対して、境界の外の場合は異常とみなす

