Chapitre 7

Suites et séries de fonctions

1. Suites de fonctions

	\sim		1
1.1.	Convergence	sımr	ole

- a) Définition
- b) Exemples

1.2. Convergence uniforme

- a) Définition
- b) La convergence uniforme entraı̂ne convergence simple

 Démonstration
- c) Méthodes pratiques pour démontrer ou infirmer une convergence uniforme
- d) Exemples
- e) Interprétation structurelle
 - Conservation du caractère borné

Démonstration

- Conséquence : \mathcal{B} A, F, convergence unifome et convergence pour $\| \cdot \|_{\infty}$
- f) Interprétation géométrique pour les fonctions de I dans \mathbb{R}

1.3. Conservation de propriétés par passage à la limite

- a) Convergence uniforme et continuité
 - Théorème : conservation de la continuité

Démonstration

- Corollaire (convergence uniforme sur tout segment)
- b) Théorème de la double limite (démonstration admise)
 - Extension au cas où $A = I \subset \mathbb{R}$ et $a = \pm \infty$
 - Exemple
- c) Convergence uniforme et intégration
 - Théorème : limite d'une suite d'intégrales

Démonstration

- Interprétation : convergence au sens de la norme
- Exemples et contre-exemples
- d) Convergence uniforme et primitivation
 - Théorème : convergence et primitivation (démonstration admise)
- e) Convergence uniforme et dérivabilité
 - Théorème : conservation du caractère C^1 (démonstration admise)
 - Théorème : conservation du caractère \mathcal{C}^k (démonstration admise)
 - Contre-exemple

2. Séries de fonctions

2.1. Idée générale

On adapte dans le langage des séries tout ce qui concerne la suite de fonctions

 S_{n} qui se nomme aussi **série de fonctions** $\left|\sum f_{n}\right|$.

2.2. Convergence simple

• Définition, exemple

2.3. Convergence uniforme

- a) <u>Définition</u>
- b) Propriétés essentielles

Démonstrations

*
$$\left[\sum f_n \text{ converge uniformément}\right] \Rightarrow \left[f_n \xrightarrow{c.u.} 0\right]$$

* Si
$$\sum f_n$$
 converge simplement, en notant $R_n = S - S_n = \sum_{k=n+1}^{+\infty} f_k$: alors $\left[\sum f_n$ converge uniformément $\right] \Leftrightarrow \left[\begin{array}{cc} R_n & \xrightarrow{c.u.} & 0 \end{array}\right]$

alors
$$\left[\sum f_n \text{ converge uniformément}\right] \Leftrightarrow \left[\begin{array}{cc} R_n & \xrightarrow{c.u.} & 0 \end{array}\right]$$

c) Exemples

2.4. Convergence absolue

• Définition. Lien avec la convergence simple.

2.5.Convergence normale

• Définition, méthodes pratiques, exemples.

Liens entre les divers type de convergence et exemples 2.6.

2.7. « Multithéorème » : conservation de propriétés

• <u>Principe</u>: on applique les résultats des cinq théorèmes vus au § 1.3 aux sommes partielles S_n où $S_n = \sum_{i=0}^n f_i$ et sans aucune démonstration, on reformule dans le langage propre aux séries :

Multithéorème : convergence uniforme et passages à la limite

Soit f_{n} une suite de fonctions de I à valeurs dans \mathbb{K} .

On suppose que $\sum f_n$ converge uniformément sur I (ou même seulement sur tout segment inclus dans I). Sa somme est notée S (définie sur I).

- ① Conservation de la continuité
- ② Interversion des symboles $\lim_{x\to a}$ et $\sum_{n=0}^{+\infty}$.
- ③ Interversion des symboles \int_a^b et $\sum_{n=0}^{+\infty}$.
- 4 Série de fonctions et primitivation.
- © Série de fonctions et dérivation.

3. Approximations uniformes

3.1. d'une fonction continue par des fonctions en escalier

- Démonstration admise
- Interprétation : \mathcal{E} a,b, F est dense dans \mathcal{C} a,b, F muni de $\|\ \|_{\infty}$
- Application : méthode des rectangles

$$\left| \int_{a}^{b} f(t)dt \right| = \lim_{n \to +\infty} \left| \frac{b-a}{n} \sum_{i=0}^{n-1} f\left(a + i \frac{b-a}{n}\right) \right|$$

3.2. d'une fonction continue par des fonctions affines par morceaux

- Démonstration admise
- Application : méthode des trapèzes

$$\int_a^b f(t)dt = \lim_{n \to +\infty} \left[\frac{b-a}{n} \left[f(a) + f(b) + \sum_{i=1}^{n-1} f\left(a + i \frac{b-a}{n}\right) \right] \right]$$

3.3. <u>d'une fonction continue par des fonctions polynômes</u>

Théorème 3 de Weierstrass : Toute fonction $f \in \mathcal{C}$ a,b, F est la limite uniforme d'une suite de fonctions polynômes.

- Démonstration admise
- Interprétation : K x est dense dans \mathcal{C} a,b F muni de $\| \cdot \|_{\infty}$
- On a même : $\overline{K \ x} = \mathcal{C} \ a,b \ ,F$.