INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO TRIÂNGULO MINEIRO **CAMPUS ITUIUTABA**

DIRETORIA DE ENSINO COORDENAÇÃO DE ENSINO

PLANO DE ENSINO

1. Identificação

CIÊNCIA DA COMPUTAÇÃO 2023/01 Curso:

1º SEM/2025 1º **DIURNO** Período letivo: Turno:

Unidade Curricular: SISTEMAS OPERACIONAIS

Unidade: **CAMPUS ITUIUTABA**

TEÓRICA/PRÁTIC Tipo:

Professor(es) **GETÚLIO DE MORAIS PEREIRA** (PRINCIPAL)

Carga horária: 66.67

Duração aula: 50 minutos

2. Ementa

Conceitos de Processos.

Comunicação e Sincronização de Processos.

Conceitos de Threads.

Comunicação e Sincronização de Threads.

Gerenciamento de Memória.

Memória Virtual.

Escalonamento de Processos.

Alocação de Recursos e Deadlocks.

Gerenciamento de Arquivos.

Gerenciamento de Dispositivos de Entrada/Saída.

3. Objetivos

Conhecer as técnicas empregadas na construção de sistemas operacionais;

Capacitar-se para utilizar os recursos oferecidos pelos sistemas operacionais no desenvolvimento de aplicativos;

Conhecer os recursos dos principais sistemas operacionais existentes e como eles podem ser aplicados ao projeto de sistemas computacionais:

Adquirir sólida formação em Ciência da Computação, capacitando-se a construir aplicativos de propósito geral, ferramentas e infraestrutura de software de sistemas de computação e de sistemas embarcados, utilizando técnicas empregadas na implementação de sistemas operacionais;

Gerar conhecimento científico e inovação tecnológica por meio de desenvolvimento de sistemas computacionais; e Conhecer a estrutura dos sistemas de computação e os processos envolvidos na sua construção e análise.

4. Conteúdo Programático

Unidade I - Introdução ao estudo de Sistemas Operacionais

Unidade II - Estruturas dos Sistemas Operacionais (Serviços)

Unidade III - Estudo dos Processos

Unidade IV - Processos Concorrentes

Unidade V- Scheduling da CPU

Unidade VI - Deadlock

PLANO DE ENSINO

Unidade VII - Gerência de memória

Unidade VIII - Sistema de Arquivos

Unidade IX - Gerenciamento de Entrada e Saída

5. Metodologia

Para facilitar o processo de ensino-aprendizagem será utilizado o modelo aula expositiva dialogada como técnica de ensino, conduzida de forma dinâmica e presencial em sala de aula.

A aplicabilidade do conteúdo ministrado será via listas de exercícios, com resolução em sala de aula. Adicionalmente, serão adotados recursos como figuras e esquemas, valorizando o conhecimento prévio e a participação dos estudantes, dando-lhes oportunidades para o desenvolvimento da reflexão crítica, da criatividade e da curiosidade científica, atributos essenciais para o sucesso da aprendizagem.

Todas as avaliações serão realizadas presencialmente no laboratório de informática, mas com a oferta e envio realizadas pela plataforma Moodle (que pode ser acessada através do endereço: https://ava.iftm.edu.br/course/view.php?id=431), contribuindo com a política "papel zero" adotada pela instituição IFTM.

O controle de frequências será feito por meio de chamadas durante as aulas, e o registro lançado diretamente no módulo Diário Eletrônico da plataforma VirtualIF.

Listas de exercícios, estudos dirigidos em sala de aula, trabalhos individuais e/ou em grupo, leitura e interpretação de textos e pesquisas também poderão ser utilizados para estimular o aprendizado e mediar a comunicação entre professor e aluno.

Para a realização de atendimento ao aluno, poderá ser utilizado presencialmente no Campus, ou via canais de comunicação Google Meet / Microsoft Teams, com data e horário previamente agendado.

Um grupo de Whatsapp, previamente criado e mantido pelo professor/coordenador(a), será utilizado como canal de comunicação direta com a turma. Os alunos serão adicionados nesse grupo nos primeiros dias de aula e serão dele removidos após o encerramento do semestre.

6. Recursos Didáticos

As aulas expositivo-dialogadas serão conduzidas presencialmente no laboratório de informática, com auxílio de projetor multimídia, computadores, quadro e pincel.

Eventualmente, as atividades à distância serão conduzidas pela plataforma Moodle e/ou VirtualIF/Disco Virtual.

7. Avaliação (critérios, valores, procedimentos, recuperação)

O processo avaliativo será composto por:

- prova 1: 15 pontos
- prova 2: 15 pontos
- prova 3: 15 pontos
- prova 4: 15 pontos
- trabalhos e listas de exercícios: 40 pontos

As atividades avaliativas poderão ser aplicadas em forma impressa e/ou eletrônica via Moodle.

Será considerado aprovado o estudante que obtiver 60 pontos ou mais ao final do processo avaliativo e frequência mínima de 75%.

PLANO DE ENSINO

Avaliação em relação a recuperação:

Os estudos de recuperação serão desenvolvidos de modo contínuo e paralelo ao longo do processo pedagógico, com a finalidade de oportunizar aos estudantes a superação de eventuais dificuldades.

Afim de atender à Resolução 354/2023, Art. 164 em que: "Ao término do período letivo, após a aplicação de estratégias de recuperação paralela, os docentes das unidades curriculares ofertarão ao menos uma forma de recuperação final para os estudantes que tiverem frequência mínima de 75% e um mínimo de 40% de aproveitamento na distribuição de notas."

tem-se:

- a) Recuperação paralela:
 - será desenvolvida no decurso do período letivo, sem prejuízo à carga horária mínima da unidade curricular.
- As atividades e avaliações de recuperação paralela serão planejadas conforme a especificidade apresentada pelo estudante, que será orientado quanto aos estudos de recuperação e avaliações da unidade curricular.
- será concedida em horário que privilegie o atendimento ao estudante e que não coincida com as aulas regulares do seu curso.
- Finalizados os estudos de recuperação paralela, prevalecerá a maior nota obtida pelo estudante ao longo do semestre letivo.
- b) Recuperação final:
 - será concedida ao estudante que tiver frequência/nota mínima, conforme Resolução 354/23 (ver acima).
 - a avaliação será por meio de prova(s) substitutiva(s), prevalecendo a maior nota obtida.
- o conteúdo a ser avaliado será definido pelo professor, envolvendo aquele que foi apresentado em sala, conforme este plano de ensino.

8. Referências

Básica:

DEITEL, H. M; DEITEL, P. J; CHOFFNES, D. R. Sistemas operacionais. 3. ed. São Paulo: Prentice-Hall, 2005.

MACHADO, F. B.; MAIA, L. P. Arquitetura de sistemas operacionais. Rio de Janeiro: LTC, 2007.

TANENBAUM, A. S. Sistemas operacionais modernos. 3. ed. São Paulo: Pearson, 2010

Complementar:

GAGNE, S. G. Sistemas operacionais: conceitos e aplicações. 3. ed. Rio de Janeiro: Campus, 2000.

LAUREANO, M. A. P. Sistemas operacionais. Rio de Janeiro: LTC, 2012.

SILBERSCHATZ; G. Operating system concepts. Addison-Wesley, 1998.

	Cronograma das aulas			
SEMANA	Nº AULAS PREVISTAS	DESCRIÇÃO	C. H. TEÓRICA	C.H. PRÁTICA

PLANO DE ENSINO

<u>I LANO DE LITORO</u>				
SEMANA	№ AULAS PREVISTAS	DESCRIÇÃO	C. H. TEÓRICA	C.H. PRÁTICA
1	4	Apresentação da disciplina; Cap 1 - Introdução ao estudo de Sistemas Operacionais	03:20	
2	4	Cap 2 - Estruturas dos Sistemas Operacionais (serviços)	03:20	
3	4	Cap 3 - Estudo dos Processos	03:20	
4	8	Cap 3 - Estudo dos Processos	05:00	01:40
		Estudo dirigido lista de exercícios		
5	4	Prova 1	01:40	01:40
6	4	Cap 4 - Threads	01:40	01:40
7	4	Cap 4 - Threads	01:40	01:40
8	4	Cap 4 - Threads	01:40	01:40
9	4	Prova 2	01:40	01:40
10	8	Cap 5 - Sincronização entre Processos/Threads Cap 6 - CPU Scheduling	03:20	03:20
		estudo dirigido lista de exercícios		
11	4	Cap 6 - CPU Scheduling	01:40	01:40
12	4	Prova 3	01:40	01:40
13	4	Cap 7 - Deadlocks	01:40	01:40
14	4	Cap 7 - Deadlocks	01:40	01:40
15	4	Cap 8 - Main Memory Cap 9 - Virtual Memory	01:40	01:40
16	4	Cap 10 - Mass Storage Systems Cap 11 - File System Interface	01:40	01:40

PLANO DE ENSINO

SEMANA	Nº AULAS PREVISTAS	DESCRIÇÃO	C. H. TEÓRICA	C.H. PRÁTICA
17	8	Prova 4 Trabalho final	03:20	03:40
17	80	Total	40h	27h

GETÚLIO DE MORAIS PEREIRA	
PRIVATE L	
PRINCIPAL	
MARCELO LOURES RIBEIRO	
WINTERES EGGNES RIBEIRG	

COORDENADOR(ES) DO CURSO