Machine learning Homework- Constrained Optimisation & SVM

Abinav Ravi Venkatakrishnan - 03694216 and Abhijeet Parida - 03679676 December 2, 2018

Problem 1:

We construct the Lagrangian function as $\mathcal{L}(\theta,\alpha)=f_0(\theta)+\alpha f_1(\theta)$ forcing $\nabla_{\theta}\mathcal{L}=0$. We get $\theta_1=-\frac{1}{2\alpha}$ and $\theta_2=\frac{\sqrt{3}}{2\alpha}$ substituting back the θ in the Lagrangian function and minimising with respect to α , we get $\alpha=\pm\frac{1}{2}$ we take only the positive values of $\alpha=1/2$. Therefore $\theta_1=-1$ $\theta_2=\sqrt{3}$

Problem 2:

Solved in a Jupyter Notebook attached at the end of problem of Problem 5.

Problem 3:

- Both use hyperplane for classification
- SVM have margins and perceptrons do not have them

Problem 4:

Problem 5:

- 1. from $g(\alpha)$ we know that $\alpha Q \alpha^T$ is equivalent to $-\sum_{i=1}^N \sum_{j=1}^N y_i y_j \alpha_i \alpha_j \mathbf{x}_i \mathbf{x}_j$. By rearranging the scalars we get, $-\sum_{i=1}^N \sum_{j=1}^N \alpha_i y_i y_j \mathbf{x}_i \mathbf{x}_j \alpha_j$. Therefore $Q = (-yy^T (hadamard) X X^T)$
- 2. We know that $Q = -p^T p$ and also we know that $p^T p$ is positive semi definite due to its symmetric nature. So $a^t(p^T p)a \ge 0$ but we negative sign also. Therefore, Q is negative semi definite.
- 3. The negative semi definiteness allows the concave optimisation to be a maximisation problem.