

Name: Practical Group: (1) (2) (3) (4) Neptun Code:

**Ex 1:** You are given the following categorical dataset with features  $f_0$ ,  $f_1$ , and  $f_2$ 

| $f_0$ | $f_1$ | $f_2$ |
|-------|-------|-------|
| С     | b     | X     |
| a     | a     | Z     |
| c     | c     | У     |
| a     | a     | У     |

- 1. Provide the formal definition of Jaccard similarity.
- 2. What dataset do you obtain by applying 1-hot encoding to all of its features? Specify the column names in the form "attribute\_value".
- 3. Compute  $J(x_1, x_2)$  and  $J(x_3, x_4)$  after one-hot encoding.
- 4. Define the Jaccard distance and prove that it can be used as a metric.

## $\mathbf{Ex} \ \mathbf{2}$ :

- 1. What are the initialization methods commonly used in K-means? Discuss their pros and cons.
- 2. Explain how K-means determines convergence and identifies when the algorithm has finished.

**Ex 3:** You are provided with a dataset containing information about the number of hours spent studying (X) and the corresponding scores achieved (Y) by a group of students in a particular exam. Your task is to perform a simple linear regression analysis on this dataset.

| Hours Studied $(X)$ | Exam Score $(Y)$ |
|---------------------|------------------|
| 2.5                 | 85               |
| 3.0                 | 88               |
| 3.5                 | 90               |
| 4.0                 | 92               |
| 4.5                 | 94               |

- 1. Calculate the mean, variance, and standard deviation of both X and Y. Reflect on the significance of these statistical measures in understanding the distribution of the data.
- 2. Plot a scatter plot of the data to visualize the relationship between hours studied and exam scores.
- 3. Fit a simple linear regression model to the dataset to predict exam scores based on the number of hours studied. Use the least squares method to estimate the regression coefficients  $\beta_0$  and  $\beta_1$ .
- 4. Reflect on the interpretation of the regression coefficients  $\beta_0$  and  $\beta_1$ . What do they represent in the context of this problem?
- 5. Use the fitted regression model to predict the exam score for a student who studies for 5 hours.

## Good Luck!