Language Transpose	MATLAB/Octave a'	Python a.conj().transpose()	R t(a)	
Non-conjugate transpose Determinant Inverse Pseudo-inverse Norms	<pre>a.' or transpose(a) det(a) inv(a) pinv(a) norm(a)</pre>	<pre>a.transpose() linalg.det(a) or linalg.inv(a) or linalg.pinv(a) norm(a)</pre>	<pre>det(a) solve(a) ginv(a)</pre>	
Eigenvalues	eig(a)	<pre>linalg.eig(a)[0]</pre>	eigen(a)\$values	
Singular values	svd(a)	linalg.svd(a)	svd(a)\$d	
Cholesky factorization Eigenvectors	chol(a) [v,1] = eig(a)	<pre>linalg.cholesky(a) linalg.eig(a)[1]</pre>	eigen(a)\$vectors	
Rank	rank(a)	rank(a)	rank(a)	