

<u>Home</u>

<u>Gameboard</u>

Chemistry

Physical

Kinetics

Essential Pre-Uni Chemistry M3.1

Essential Pre-Uni Chemistry M3.1

$$k=Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in \mathbf{K}^{-1} .

Part A y-intercept

On a plot of $\ln(k)$ against $\frac{1}{T}$, what is the y-intercept?

The following symbols may be useful: A, E_A, R, T, k

Part B Units of gradient

Give the units of the gradient of an Arrhenius plot.

- \bigcirc K
- $m N\,dm^{-3}$
- 0 00
- $m K\,m^{-2}$

Part C Gradient

On a plot of $\ln(k)$ against $\frac{1}{T}$, what is the gradient?

The following symbols may be useful: A, E_A , R, T, k

Essential Pre-Uni Chemistry M3.2

$$k=A\mathrm{e}^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in K^{-1} .

Part A Activation energy

If the gradient of an Arrhenius plot is $-1203\,\mathrm{K}$, find the activation energy. Use $R=8.3145\,\mathrm{J\,mol^{-1}\,K^{-1}}$.

Part B Activation energy II

If the gradient of an Arrhenius plot is $-4250\,\mathrm{K}$, find the activation energy. Give your answer to 3 significant figures.

Part C Gradient of Arrhenius plot

If a reaction has activation energy of $16.5 \, \mathrm{kJ} \, \mathrm{mol}^{-1}$, find the expected gradient of an Arrhenius plot.

The pre-exponential factor, A, is found to have a value of $0.6\,\mathrm{s}^{-1}$ for a first-order reaction. Calculate the expected y-intercept of an Arrhenius plot.

Gameboard:

STEM SMART Chemistry Week 34

Essential Pre-Uni Chemistry M3.3

$$k=Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in K^{-1} .

Part A A for a first-order reaction

The y-intercept of an Arrhenius plot for a first-order reaction is at -2.30. Find the pre-exponential factor, A, according to the Arrhenius model.

Part B A for a second-order reaction

The y-intercept of an Arrhenius plot for a second-order reaction is at 3.20. Find the pre-exponential factor, A, according to the Arrhenius model.

Gameboard:

STEM SMART Chemistry Week 34

Essential Pre-Uni Chemistry M3.4

$$k=Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in \mathbf{K}^{-1} .

Part A Activation energy

The rate constant, k, for a first-order reaction is found to be $0.0250\,\mathrm{s^{-1}}$ at $290\,\mathrm{K}$. If the pre-exponential factor is $26.0\,\mathrm{s^{-1}}$, find the activation energy.

Part B Pre-exponential factor A

The rate constant, k, for a second-order reaction is found to be $0.050\,\mathrm{dm^3\,mol^{-1}\,s^{-1}}$ at $300\,\mathrm{K}$. If the activation energy is $2.50\,\mathrm{kJ\,mol^{-1}}$, find the value of the pre-exponential factor, A.

Gameboard:

STEM SMART Chemistry Week 34

Essential Pre-Uni Chemistry M3.6

$$k=Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in K^{-1} .

If a reaction has activation energy $14.0\,\mathrm{kJ\,mol^{-1}}$, and a pre-exponential factor of $120\,\mathrm{s^{-1}}$, find the temperature at which the rate constant is equal to $2.00\,\mathrm{s^{-1}}$.

Gameboard:

STEM SMART Chemistry Week 34

<u>Home</u>

<u>Gameboard</u>

Chemistry

Physical

Kinetics Essential Pre-Uni Chemistry M3.7

Essential Pre-Uni Chemistry M3.7

$$k=Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in K^{-1} .

A reaction is found to have a rate constant of $1.25 \times 10^{-3} \ dm^6 \ mol^{-2} \ s^{-1}$ at $400 \ K$ and $1.60 imes 10^{-3} \, dm^6 \, mol^{-2} \, s^{-1}$ at $500 \, K.$

E_A Part A

Find the activation energy.

Part B

Find the pre-exponential factor, \boldsymbol{A} .

Part C Order of the reaction

Give the overall order of reaction.

Essential Pre-Uni Chemistry M3.8

$$k=Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in \mathbf{K}^{-1} .

Figure 1: M3.8 Arrhenius Plot

Part A E _A
Using the graph above, find the activation energy. Give your answer to 2 significant figures
Part B $\hspace{1em}A$
Using the graph above, find the pre-exponential factor. Give your answer to 1 significant figure
Gameboard: STEM SMART Chemistry Week 34

Essential Pre-Uni Chemistry M4.1

The iodination of propanone, $C_3H_6O+I_2\longrightarrow C_3H_5OI+HI$, when catalysed in aqueous conditions, obeys the rate law:

$$\mathrm{rate} = k[\mathrm{C_3H_6O}][\mathrm{HCl}]$$

Part A Catalyst
Identify the catalyst in this reaction.
Part B Type of catalyst
Is the catalyst homogeneous or heterogeneous?
heterogeneous
homogeneous

Part C Concentration of catalyst

If the catalyst has an initial concentration of $0.020\,\mathrm{mol\,dm^{-3}}$, give the concentration of the catalyst when the concentration of propanone has decreased to one quarter of its original value.

Essential Pre-Uni Chemistry M4.6

Complete the following description of heterogeneous catalysis.			
A heterogeneous catalyst works best when it has a large so that many of its are exposed			
to the reactants. In the first stage, reactants are onto the catalytic surface, weakening internal bonds			
in the reactant particles. In the second stage, the particles react to form products. The of the slowest			
step in this reaction is lower than that of the slowest step in the uncatalysed reaction. The third stage is the			
, or release, of product particles from the surface. This the surface ready for further			
reactions. If the products are not released, or if some contaminant binds to the surface, further catalytic activity is			
impeded and the catalyst has been			
Items:			
mass desorption enthalpy change rate density destruction poisoned absorbed regenerates			
surface area active sites volume adsorbed activation energy corroded			
Gameboard:			

STEM SMART Chemistry Week 34

<u>Home</u> <u>Gameboard</u> Chemistry Physical Kinetics Arrhenius Equation

Arrhenius Equation

The temperature of a sample of hydrogen iodide is raised from $300\,^{\circ}\mathrm{C}$ to $500\,^{\circ}\mathrm{C}$. The activation energy for the dissociation of hydrogen iodide ($2\,\mathrm{HI} \longrightarrow \mathrm{H_2} + \mathrm{I_2}$) is $190\,\mathrm{kJ}\,\mathrm{mol^{-1}}$.

Part A Rate constants

Calculate the ratio of the rate constants at the two temperatures (as a number greater than 1, to 2 significant figures).

Part B Average velocity

Calculate the ratio of the average velocities of the molecules at the two temperatures (to 2 significant figures).

Part C Activation energy

The enzyme glucose-6-phosphate dehydrogenase catalyses the reaction:

Given the data below and the Arrhenius equation $k=Ae^{-\frac{E_{\rm a}}{RT}}$, use a graphical method to calculate the activation energy of the reaction, $E_{\rm a}$.

$TI^{\circ}\mathrm{C}$	$kI\mathrm{M}^{-1}\mathrm{s}^{-1}$
30	1.95
35	2.40
40	2.82
45	3.31
50	3.89

Adapted with permission from UCLES, A Level Chemistry, November 1968, Paper 2, Question 2. Last part used with permission from the Cambridge Chemistry Challenge: C3L6