

gaattcatctgtcgacttaccacggagttcccccggagaaggatcctgcaggccccgagt
 cccgaggataaaggcttgggttcatccctccctggatcactccacagtcctcaggct 60
 tcccccaatccaggggactcggccggacgctgtctATGGACGACATTCACTCAGTGC 120
 M D I F T Q C 8
 CGGGAGGGCAACGGCAGTCCCGGTTCGCCCTGGACAAACACGGAGAACGACCTCAAAC 180
 R E G N A V .A V R L W L D N T E N D L N 28
 CAGGGGGACGGATCATGGCTTCTCCCCCTTGCACTGGGGCTGGCCACTGGGGCTGCT 240
 Q G D D H G F S P L H W A C R E G R S A 48
 GTGGTTGAGATGTTGATCATGGGGGGCACGGATCAAATGTAATGAAACCCTGGGATGAC 300
 V V E M L I M R G A R I N V M N R G D D 68
 ACCCCCCTGCAATCTGGCAGGCCAGTCATGGACACCCGTGATAATTGTACAGAAGGCTATTGCAG 360
 T P L H L A A S H G H R D I V Q K L L Q 88
 TACAAGGGCAGACATCAATGCAGTGAATGAAACACGGGAATGTCGCACTATGCCCTGT 420
 Y K A D I N A V N E H G N V P L H Y A C 108
 TTTTGGGGCAAGATCAACTGGCAAGGGACCTGGCAGAGGAGCTGGCAAAATGGGGCCCTGT 480
 F W G Q D Q V A E D L V A N G A L V S I 128
 TGTAAACAAGTATGGAGAGATGCCTGTGGACAAAGCCAAGGCACCCCTGAGAGGCTTCTC 540
 600

C	N	K	Y	G	E	M	P	V	D	K	A	K	A	P	L	R	E	L	L	148
R	E	R	A	E	K	M	G	Q	N	L	N	R	I	P	Y	K	D	T	F	660
W	K	G	T	T	R	T	R	P	R	N	G	T	L	N	K	H	S	G	I	168
G	A	T	C	A	A	G	C	T	A	T	G	A	A	C	T	G	G	C	A	720
D	F	K	Q	L	N	F	L	T	K	L	N	E	N	H	S	G	E	L	W	188
K	G	R	W	Q	G	N	D	I	V	K	V	L	K	V	R	D	W	S	S	780
A	C	A	G	A	G	G	C	A	T	G	A	C	T	G	A	G	G	T	C	208
T	R	K	S	R	D	F	N	E	E	C	P	R	L	R	T	F	S	H	P	840
N	V	L	P	V	L	G	A	C	Q	S	P	P	A	P	H	P	T	L	I	228
A	C	A	C	A	C	Q	S	P	P	A	P	H	P	T	L	I	268		900	
T	H	W	M	P	Y	G	S	L	Y	N	V	L	H	E	G	T	N	F	V	248
V	D	Q	S	Q	A	V	K	F	A	L	D	M	A	R	G	M	A	F	L	1020
C	A	C	A	T	A	G	G	C	C	C	A	T	C	A	T	G	C	G	A	1080
H	T	L	E	P	L	I	P	R	H	A	L	N	S	R	S	V	M	I	D	308
																				1140
																				328

Fig. 1a (continued on page 3/23)

GAGGACATGACTGCCCGAATTAGCATGGCTGATGTCAAGTTCTCTTCCAAATGTCCTGGT 1200
E D M T A R I S M A D V K F S F Q C P G 348
CGCATGACCTGCCTGGTAGCCCCGAAAGCTCTGCAGAAAGAACACACA 1260
R M Y A P A W V A P E A L Q K K P E D T 368
AACAGACCGCTCAGCAGACATGTGGAGTTTGCAAGTGGGAAC'TGGTGCACACGG 1320
N R R S A D M W S F A V L L W E L V T R 388
GAGGTACCCCTGTGCTGACCTCTCCAAATATGGAGATTGGAATGAAAGGTGGCATTGGAAGGC 1380
E V P F A D L S N M E I G M K V A L E G 408
CTCGGCCTACCATCCCCCACCAGGTATTCCCCTCATGTTGTAAGCTCATGAAGATCTGC 1440
L R P T I P P G I S P H V C K L M K I C 428
ATGAATGAAAGACCCCTGCAAAGCGACCCAATTGACATGATTGCTATCCTTGAGAAG 1500
M N E D P A K R P K F D M I V P I L E K 448
ATGGGACAAAGtaggactggaaagggtccctgcggacatgg 1560
M Q D K *
tggggaaatgcaccccaaaaggcaggcctctggttggcccccggcccatccctaccactgtgcgaagg 1620
ggtaactaccccaagcctgggtccatccccccatccctaccactgtgcgaagg 1680
ggggggctcaggacttgcacttggccacatgggtctcccaacatggggggatcagcc 1740
cgccctgtcaccaataaaatggaaaaaaaatggatggatggaaaaaaa 1789

Csk	DNVAKVSDFG	LTK.	EA	SSTQDTGKLP	VKWTAPEALR	... EKKFSTK
Yes	NLVCKIADFG	LARLIED.	NE	YTARQGAKFP	IKWTAPEAL	... YGRFTIK
Ctrl	KYTVKVCDFG	LSRLKAS	.TF	LSSKSAAGTP	EWMAPEVLR	... DEPSNEK
B-rat	DLTVKIGDFG	LATVKSRWSG		SHQFEQLSGS	ILWMAPEVIR	MQDKNPYSFQ
Tlk	DMTARIS...	MADVVKFSFQC	PGRM.YA..P	.AWVAPEALQ	KKPEDTNRSS	372
Csk	SDVWSFGILL	WEIYSFGRTV	YPRIPPLKD.V	VPRVEKGY	...	KMDAPDGCPP
Yes	SDVWSFGILL	TELVTKGRTV	YPGMVNRE.V	LEQVERGY	...	RMPCPQGCCPE
Ctrl	SDVYSFGVIL	WELAT.LQQP	WGNL.NPAQV	VAAVGFKCK.	...	RLETPRNLNTP
B-rat	SDVYAFGIVL	YELMT.GQLP	YSNIINNRDQI	IFMVGRGYLS	...	PDLSKVRNSNC
Tlk	ADMWSFAVLL	WELVTR.EVT	FADLSNMEIG	MK.VALEGL.	...	R.TIPPGISP
						418
Csk	AVYEVMKN	CWHLDAMRP	SFLQLREQLE	HIKTHEL	...	XI
Yes	SLHELMKL	CWKKDPDERP	TFEYIQSFILE	
Ctrl	QVAALIEG	CWTNEPWKRP	SFATIMDLLR	PL	...	
B-rat	PKAMKRLMAECLKKRDERP	LFPQILASIE	LLARSLLP			
Tlk	HVCKLMKI	CMNEDPAKRP	KFDMIVPILE	KMQDK.		

Fig. 1b

ANKYRIN
CONSENSUS

-G-TPLH-AA--GH---V--LL--GA--N-----
A D

33 HGFSPLHWACREGRSAVVEMIIMRGARINVNMNR
GDDTPLHLAAASHIGHRDIVQKLLQQYKADINAVNE
HGNVPLHYACFWGQDQVAEDLVALVSICNK
YGEMPVVDKAKAPLRELLRERAEMQNLNRIPY 164
ANK1
ANK2
ANK3
ANK4

Fig. 1c

Fig. 1d

Fig. 1e

Fig. 2a

Fig. 2b

© 1992 Blackwell Publishers Ltd. *Journal of Cell Biology*, 117, 103–112.

ILK

MBP

β_1 CYT

Fig. 2c

Fig. 3a

Fig. 3b

Fig. 3c

Immunoprecipitation: anti $\beta 1$ monoclonal antibodies

Immunoblot: anti-ILK adsorbed anti-ILK

Fig. 3d

Fig. 4a

Fig. 4b

Fig. 4c

Fig. 4d

Experiment 1

Fig. 4e (continued on page 21/23)

Experiment 2

Fig. 4e

Fig. 5a

Fig. 5b

Fig. 5c

Fig. 5d