Incorporating Uncertainty into Reinforcement Learning through Gaussian Processes

Master's Thesis

Markus Kaiser

4. July 2016

- 1 The Bicycle Benchmark
- 2 Gaussian Processes
- 3 Model-Uncertainties in Reinforcement Learning
- Results

Bicycle Benchmark – Driving

Bicycle Benchmark – Driving

x position [m]

position [m]

State Variables

Notation	Description
θ	Steering Angle
$\dot{ heta}$	
ω	Leaning Angle
ώ x	Front tyre position
y	Tronc tyre position
Ψ	Bicycle orientation

Actions

Notation	Description
d	Lean distance
Τ	Steering force

Data

- Observe a noisy data set $\{(x_i, y_i)\}$
- Assume that $y_i = f(x_i) + \epsilon$

Parametric Models

- Assume structure about f, such as f(x) = Wx
- Find a single **W** which is optimal w.r.t. some criterion

Parametric Models

- Assume structure about f, such as f(x) = Wx
- Find a single **W** which is optimal w.r.t. some criterion

Bayesian Parametric Models

- Assume structure about f, such as f(x) = Wx
- Find a distribution p(W | X, y) of plausible parameters

Bayesian Non-Parametric Models

- f can be an arbitrary function
- Find a distribution p(f | X, y) over functions

Bayesian Non-Parametric Models

- f can be an arbitrary function
- Find a distribution p(f | X, y) over functions

Bayesian Non-Parametric Models

- f can be an arbitrary function
- \blacksquare Find a distribution p($f \mid X, y$) over functions

Definition (Gaussian Process)

A Gaussian Process (GP) is a collection of random variables $\{F_x\}$, any finite subset of which has a joint Gaussian distribution.

- Extension of Gaussians to (infinite) function spaces
- **F**_x models the function value f(x)

Definition (Gaussian Process)

A Gaussian Process (GP) is a collection of random variables $\{F_x\}$, any finite subset of which has a joint Gaussian distribution.

- Extension of Gaussians to (infinite) function spaces
- **F**_x models the function value f(x)

Mean and Kernel Functions

A GP is completely determined by two functions.

Mean function
$$\mu_f(x) = \mathbb{E}[f(x)]$$

Kernel function $\mathcal{K}(x, x') = \text{cov}[f(x), f(x')]$

■ The kernel encodes the prior assumptions about the function

$$\mu_f(x) = 0$$

$$\mu_f(x) = 0$$

$$\mathcal{K}(x, x') = \sigma_f \cdot \exp\left(-\frac{(x - x')^2}{2 \cdot l^2}\right)$$

$$\mu_f(x) = 0$$

$$\mathcal{K}(x, x') = \sigma_f \cdot \exp\left(-\frac{(x - x')^2}{2 \cdot l^2}\right)$$

Full Gaussian Processes

- Calculation of the posterior in $\mathcal{O}(N^3)$
- Not feasible for large data sets

Full Gaussian Processes

- Calculation of the posterior in $\mathcal{O}(N^3)$
- Not feasible for large data sets

Sparse Gaussian Processes

- Find a set of *M* Pseudo Inputs
- Calculation of the posterior in $\mathcal{O}(NM^2)$

Sparse Gaussian Processes

- Find a set of *M* Pseudo Inputs
- Calculation of the posterior in $\mathcal{O}(NM^2)$

Sparse Gaussian Processes

- Find a set of *M* Pseudo Inputs
- Calculation of the posterior in $\mathcal{O}(NM^2)$

Definition (PSO-Policy)

The Particle Swarm Optimization-Policy (PSO-P) chooses actions via optimization of the expected accumulated reward.

$$\begin{aligned} \pi_{\text{PSO-P}}(\boldsymbol{s}) &:= \boldsymbol{\alpha}_0^* \text{, where} \\ \boldsymbol{\alpha}^* &\in \underset{\boldsymbol{\alpha} \in \mathcal{A}^T}{\operatorname{argmax}} \left\{ \mathbb{E} \left[\sum_{t=1}^T \gamma^t \, \mathbf{R}(\boldsymbol{s_t}) \, \middle| \, \mathcal{GP}, \boldsymbol{s_0} = \boldsymbol{s}, \boldsymbol{\alpha_0}, \dots, \boldsymbol{\alpha_{T-1}} \right] \right\} \end{aligned}$$

- PSO is a gradient-free heuristic
- Directly exploits the transition models

Quantitative Results

Metric	MAP	OS	MS
Trajectories	9660	9660	9660

MAP Deterministic predictions

OS One-Step Uncertainties

MS Multi-Step Uncertainties

Metric	MAP	os	MS
Trajectories	9660	9660	9660
Success Rate	53.4%	63.8%	75.8 %
Time to Goal Mean Median	59.9 60	62.0 60	66.5 63

- MAP Deterministic predictions
 - OS One-Step Uncertainties
 - MS Multi-Step Uncertainties

Metric	MAP	OS	MS
Trajectories	9660	9660	9660
Success Rate	53.4%	63.8%	75.8 %
Time to Goal Mean Median	59.9 60	62.0 60	66.5 63

MAP Deterministic predictions OS One-Step Uncertainties MS Multi-Step Uncertainties

Summary

- Sparse GPs
 - Scale to large data sets
 - First test at LSY

- Combination of GP and PSO
 - Directly exploit models
 - Fully non-parametric

- Bayesian Models in RL
 - Reduce model-bias
 - Improve performance

Metric	MAP	OS	MS
Success Rate	53.4%	63.8 %	75.8%

Additional Material

Definition (Bicycle Reward Function)

The bicycle reward function is defined as

$$\mathbf{R}_{\text{bicycle}}(\mathbf{s}) := \begin{cases} 2 & \text{if goal reached} \\ 0 & \text{if fallen down} \\ c \cdot \mathcal{N}(\Delta_{\mathbf{s}}^{\psi} \mid 0, \sigma_{\text{angle}}^{2}) & \text{otherwise} \end{cases}$$

where $\Delta_{\bf s}^{\psi}$ denotes the angle towards the goal.

