Localization

Chapter 9

Last Week

- Random variables
- Probability distributions
 - The Uniform distribution
 - The Gaussian distribution
- Summing two random variables: convolution
- Error propagation
- Example: odometry

$$\sigma_y^2 = \frac{\partial df}{\partial x}^2 \sigma_x^2$$

Odometry

How can we use this information?

Bayes' rule

A and B happen together

$$P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$$

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

Example: Localization

1.

$$P(loc|feat) = \frac{P(loc)P(feat|loc)}{P(feat)}$$

P(feat loc) a.k.a. "map"

Need:

- 1. P(loc): Probability to be at a location *loc*
- 2. P(feat|loc): Probability to see a feature at *loc*
- 3. P(feat): Normalization factor

Bayes' rule allows us to exploit perception events given a map of the environment.

Discrete Error Propagation

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

What is the probability that I drove 1m from *loc'* to *loc*, given that my odometer told me that I drove 1m?

$$P(loc' - > loc|odo) = P(loc' - > loc)P(odo|loc' - > loc)/P(odo)$$

Problem 1: I could end up anywhere, not only at loc.

Problem 2: I could have started out anywhere.

Solution

1. Calculate the probability to have arrived from anywhere

$$P(loc|odo) = \sum_{loc'} P(loc' - > loc) P(odo|loc' - > loc)$$

- 2. Calculate this probability for all locations *P(loc1|odo), P(loc2|odo),*
- => Sum of two probability distributions
 Robot location * Robot Motion Model

$$P(Z=z) = \sum_{k=-\infty}^{\infty} P(X=k)P(Y=z-k)$$

So far:

- 1. <u>Action update</u>: propagate the likelihood of the robot's location ("Error propagation")
- Perception update: use Bayes' rule to update posterior probability P(loc|feat) using knowledge about where features are

This is known as *Markov Localization*. Problem: How to deal with sensor uncertainty?

1D Example (Nourbaksh, 1994)

7 locations

Features and their likelihood P(feat | loc)

	Wall	Closed dr	Open dr	Open hwy	Foyer
Nothing detected	70%	40%	5%	0.1%	30%
Closed door detected	30%	60%	0%	0%	5%
Open door detected	0%	0%	90%	10%	15%
Open hallway detected	0%	0%	0.1%	90%	50%

Example

1.	Initialization	P(1-2))=0.8	and	P(2-3))=0.2
----	----------------	--------	-------	-----	--------	-------

Robot drives east until it reports "open hallway left and open door to its right"

	Wall	Closed dr	Open dr	Open hwy	Foyer
Nothing detected	70%	40%	5%	0.1%	30%
Closed door detected	30%	60%	0%	0%	5%
Open door detected	0%	0%	90%	10%	15%
Open hallway detected	0%	0%	0.1%	90%	50%

1. Perception update:

P(feat | 1) =0; P(feat | 1-2)=0; P(feat | 2)=0.9*0.9; P(feat | 2-3)=0; P(feat | 3)=0; P(feat | 3-4)=0; P(feat | 4)=0.9*0.1

2. Action update:

3. Normalize

$$P(2) = 99.95\%$$

$$P(4) = 0.005\%$$

2D Example

Problem: Need to update the probability for every cell on the map, which is very inefficient and does not scale.

Solution: Sampling-based approach (Particle Filter)

- 1. Sample random "particles" around possible belief candidates
- 2. Action update: move particles like the robot, add noise using its motion model
- Perception update: evaluate the likelihood of each particle to generate this perception event
- 4. Bookkeeping: remove unlikely particles and replicate likely ones

Demo

Summary

- Bayes' rule provides a formal framework to use information about known features in a map
- Together with "error propagation" this is known as "Markov Localization"
- The problem can be computationally simplified using a "Particle Filter"
- Both are very general methods for state estimation, not limited to localization
- Both approaches are able to solve the "dropped robot" problem