Optymalizacja systemu sygnalizacji świetlnej w oparciu o przepływowy model ruchu pojazdów.

Michał Lis

4 lipca 2019

Spis treści

1	$\mathbf{W}\mathbf{p}$	rowadzenie	5								
2	2 Cel i zakres pracy										
3	Siatka czasowa i przestrzenna										
4	Mal	kroskopowy model ruchu	11								
	4.1	Klasyfikacja modeli ruchu drogowego	11								
	4.2	Wstęp	11								
	4.3	Rozwój gęstości ruchu na drodze	12								
	4.4	Dyskretyzacja makroskopowego modelu ruchu	12								
5	Mo	del sieci dróg	15								
	5.1	Wstęp	15								
	5.2	Wektor stanu drogi	15								
		5.2.1 Przykład	15								
	5.3	Rozwój wektora stanu jednej drogi	16								
		5.3.1 Przykład	16								
	5.4	Wektor stanu sieci dróg	17								
		5.4.1 Przykład	17								
	5.5	Rozwój wektora stanu sieci dróg	18								
		5.5.1 Przykład	18								
	5.6	Wprowadzenie sygnalizacji świetlnej	21								
		5.6.1 Przykład	21								
	5.7	Wprowadzenie źródeł ruchu	24								
		5.7.1 Przykład dla pojedynczej drogi	25								
		5.7.2 Przykład dla złożonej sieci dróg	26								
	5.8	Wprowadzenie gęstości ruchu	26								
6	śroc	łowiska symulacyjne qwe	27								
		Srodowisko 4	27								

4 SPIS TREŚCI

Wprowadzenie

Problem zatłoczonych ulic staje się coraz bardziej powszechny na całym świecie. W ogromnym tempie wzrasta ilość pojazdów na drogach. Według danych firmy gromadzącej dane statystyczne *Statista* liczba zarejestrowanych pojazdów na świecie w roku 2006 wynosiła 947 tysięcy [?]. W 2015 roku na świecie jeździło już 1282 tysięcy pojazdów. Wzrost przez te 9 lat był niemalże liniowy. Co roku rejestrowano około 39,4 tysięcy nowych samochodów rocznie, co wyznacza stopę wzrostu liczby pojazdów na poziomie 3,7%.

Rysunek 1.1: Liczba pojazdów na świecie

W Polsce wzrost ilości pojazdów w latach 2006 - 2015 był jeszcze większy [?]. W 2006 roku według GUS w Polsce było zarejestrowanych 13,4 miliona samochodów osobowych. W 2015 roku ich liczba wynosiła już 20,7 miliona, co oznacza 5 procentowy roczny wzrost. Najbardziej zatłoczonym polskim miastem jest Łódź. Według rankingu firmy TomTom Łódź zajmuje bardzo wysokie 5 miejsce na świecie i 1 w Europie pod względem zatłoczenia dróg [?]. Oprócz Łodzi w pierwszej setce najbardziej zatłoczonych miast świata są inne polskie miasta:

Lublin(34), Kraków(48), Warszawa(50), Wrocław(63), Poznań(69), Bydgoszcz(83). Problem całej Europy. Spośród 100 najbardziej zatłoczonych miast świata aż 45 znajduje się w Europie. W 2008 roku Unia Europejska oszacowała, iż koszty zatłoczenia dróg kształtują się na poziomie 0,9% – 1,5% PKB unijnego [?]. Następny raport z 2017 roku może napawać optymizmem, gdyż przedstawione w nim wyliczenia określiły jedynie 0,77% straty całkowitego PKB wspólnoty [?]. Ten sam raport ocenia koszty zatorów komunikacyjnych w Polsce na poziomie 1,2% polskiego PKB. Problemy zatorów komunikacyjnych w miastach są o tyle trudniejsze do rozwiązania niż poza miastem, ponieważ na terenach zurbanizowanych brakuje często miejsca na wybudowanie dróg o większej przepustowości. Rozwiązaniem może być wprowadzenie większej ilości sygnalizacji świetlnych. Istotną kwestią jest optymalizacja ustawień sygnalizacji świetlnej. Praca moja jest poświęcona temu problemowi.

Cel i zakres pracy

Celem pracy jest stworzenie programu, który zoptymalizuje fazy sygnalizacji świetlnej, co przyczyni się do zwiększenia przepustowości sieci dróg.

Jako środowisko zostanie stworzony symulator ruchu drogowego. Symulacje ruchu będą w pełni zgodne z makroskopowym modelem ruchu. Sam makroskopowy model ruchu zostanie przedstawiony w rozdziale X. Jest to model ciągły. Pożądanym jest dyskretny model ruchu drogowego ze względu na łatwość implementacji komputerowej. Zostanie zatem przedstawiona w sekcji X.Y dyskretyzacja makroskopowego modelu ruchu. W rozdziale X zostanie zdefiniowany model sieci dróg. Początkowy model zaplanowano jako podstawowy z pominięciem większości aspektów. W każdej kolejnej sekcji model będzie stopniowo rozwijany. Sieci dróg zdefiniowane według końcowego modelu będą środowiskiem treningowym dla algorytmów uczenia maszynowego. Rozdział X opisuje uczenie ze wzmocnieniem - algorytm treningowy procesu optymalizacji sygnalizacji świetlnej. Rozdział X przedstawia cztery modele sieci dróg, dla których został stworzony program symulacyjny. Rozdział X opisuje optymalizację sygnalizacji świetlnej dla wspomnianych sieci dróg.

Siatka czasowa i przestrzenna

Dyskretny charakter modelu przedstawianego w pracy obliguje do określenia siatki czasowej i przestrzennej. Dla par czasu i miejsc należących do tych dwóch siatek będą określane zmienne stanu.

Siatka czasowa jest zdefiniowana jako skończony ciąg liczb naturalnych:

$$(0,1,...,K). (3.1)$$

Niech będzie ustalona droga e, która jest odcinkiem $[0, L_e]$. Droga zostaje podzielona na L+1 odcinków o równej długości $\Delta x = \frac{L_e}{L+1}$. Siatka przestrzenna drogi to ciąg odcinków:

$$(b_l)_{l=0}^L = [l\Delta x, (l+1)\Delta x]$$

Rysunek 3.1: Siatka przestrzenna

Makroskopowy model ruchu

4.1 Klasyfikacja modeli ruchu drogowego

Modele ruchu drogowego mają na celu ukazanie rzeczywistego przepływu pojazdów w sposób czysto matematyczny. Ważnym kryterium doboru modelu jest przystępność jego implementacji informatycznej. Powszechnie klasyfikuje się 3 podejścia modelowe dla omawianego problemu [?] - makroskopowy, mezoskopowy oraz mikroskopowy. Czasem [?] wyróżnia się także czwarte podejście - submikroskopowe. Jest to podział ze względu na poziom modelu. Najniższy poziom i najbardziej dokładny model gwarantuje podejście mikroskopowe. Rozważa ono pojazdy indywidualnie w czasoprzestrzeni. Przyspieszenie pojazdu jest wyliczane na podstawie dynamiki (prędkości, przyspieszenia) i pozycji pojazdu bezpośrednio przed nim. Model mezoskopowy zapewnia indywidualne rozróżnienie pojazdów, jednak ich zachowanie jest wyliczane na danych zagregowanych [?]. Przykładowo pojazdy sa zgrupowane w grupę podróżującą z pewnego punktu startowego do celu. Inne modele [?] mezoskopowe wyliczają dynamike ruchu na podstawie aktualnego zatłoczenia drogi. Poziom mezoskopowy jest obliczeniowo bardziej opłacalny od mikroskopowego. Wiele symulatorów stosujących model mezoskopowy oferuje symulację w czasie rzeczywistym dla sieci dróg całego miasta [?]. Idea modelu makroskopowego jest traktowanie ruchu ulicznego identycznie jak ruchu cieczy lub gazów. Po raz pierwszy w roku 1956 M. J. Lighthill i G. B. Whitham [?] przedstawili pomysł przyrównania ruchu ulicznego na zatłoczonych drogach do przepływu wody w rzekach. Z tego powodu nie rozróżniamy w nim indywidualnie pojazdów, ani też nawet grupowo. Rozważamy natomiast gestość ruchu w danym punkcie na drodze i czasie - czyli ilość pojazdów na danym odcinku drogi. Sposób w jaki poruszają się pojazdy jest wyliczany jedynie na podstawie gestości ruchu. Jest to najmniej kosztowny obliczeniowo model. Właśnie w modelu makroskopowym zostało stworzone środowisko symulacyjne. Szczegóły modelu są przedstawione w następnym podrozdziale.

4.2 Wstęp

Istotą makroskopowego modelu ruchu jest pojęcie gęstości ruchu. Jest to zmienna stanowa określona dla każdego punktu drogi w czasie. Formalnie gęstość można rozumieć jako czynnik definiujący dynamikę ruchu. Im większa gęstość tym mniejsza prędkość ruchu. W niektórych

artykułach gęstość ruchu [?] jest przedstawiona jako iloraz ilości pojazdów znajdujących się na pewnym odcinku i długości tego odcinka drogi. Nie są to jednak czysto matematyczne formalne definicje. W makroskopowym modelu nie rozróżniamy pojedynczych pojazdów, ani nawet grup, wiec taka definicja gestości ruchu może być odebrana jako nieścisła z idea modelu.

4.3 Rozwój gęstości ruchu na drodze

Makroskopowy model ruchu jest oparty o równanie różniczkowe (4.2) wraz z warunkiem poczatkowym (4.1). Model makroskopowy traktuje ruch uliczny na drogach podobnie do przepływu wody w rzece[ref]. Gęstość ruchu można utożsamiać z polem powierzchni przekroju poprzecznego rzeki, co dla ustalonej szerokości rzeki - upraszcza się do wysokości wody w rzece. Istotną uwagą w tym miejscu jest zaznaczenie, iż rzeka zazwyczaj posiada pewien spadek, który zapewnia ruch cieczy ze źródła do ujścia. Ruch makroskopowy zdefiniowany przez równanie (4.2) z kolei odnosi się do rzeki która jest na całym swoim odcinku pozioma. W takim przypadku de facto nie ma zdefiniowanego zwrotu ruchu.

Dla ustalonej drogi e zmiane gestości ruchu definiuje następujący układ równań:

$$\int p(x,0) = p_0(x) \tag{4.1}$$

$$\begin{cases} p(x,0) = p_0(x) \\ \frac{\partial p(x,t)}{\partial t} + \frac{\partial f(p(x,t))}{\partial x} = 0 \end{cases}$$
(4.1)

Gdzie p(x,t) to gestość ruchu w punkcie x i czasie t. Wartość funkcji gestości należy do przedziału $[0, p^{max}].$

Równanie (4.1) zakłada istnienie pewnej z góry nałożonej początkowej gestości drogi $p_0(x)$. Równianie (4.2) określa wedle założeń modelu makroskopowego [?] rozwój gęstości ruchu na drodze. Funkcja płynności ruchu f powinna być wklesła [ref]. W przedstawionym w tej pracy modelu funkcja ma następująca definicję:

$$f(p) = \begin{cases} \lambda p & \text{dla } p \in [0, p^*] \\ \lambda \cdot (2p^* - p) & \text{dla } p \in (p^*, p^{max}] \end{cases}$$
(4.3)

Gdzie λ jest stałym parametrem funkcji trójkątnej oraz $p^* = \frac{1}{2}p^{max}$.

Dyskretyzacja makroskopowego modelu ruchu 4.4

Niech będzie ustalona droga e oraz jej siatka przestrzenna b_l . Celem jest przedstawienie wartości gestości dla odcinków siatki przestrzennej w chwilach k=0,1,...,K. Gestość w odcinku b_l i czasie k jest zdefiniowana jako:

$$p_l^k = \int_{b_l} \frac{p(x,k)}{\Delta x} dx. \tag{4.5}$$

Na podstawie (4.2) można wywnioskować, że:

$$\int_{b_{l}} p(x,k+1) - p(x,k)dx + \int_{k}^{k+1} f(b_{l+1},k) - f(b_{l},k)dk = 0$$
(4.6)

Upraszczając otrzymujemy:

$$\Delta x(p_l^{k+1} - p_l^k) + \int_k^{k+1} f(b_{l+1}, k) - f(b_l, k) dk = 0 = 0$$
(4.7)

Wartości gęstości zmieniają się w tylko w chwilach k. Wtedy wartości $f(b_{l+1}, k)$ i $f(b_l, k)$ są stałe na całym przedziale całkowania [k, k+1). Otrzymujemy równanie:

$$\Delta x(p_l^{k+1} - p_l^k) + (f(b_{l+1}, k) - f(b_l, k)) = 0$$
(4.8)

Rezultatem jest końcowy rekurencyjny wzór na gęstość ruchu:

$$p_l^{k+1} = p_l^k - \frac{1}{\Delta x} (f(b_{l+1}, k) - f(b_l, k))$$
(4.9)

Model sieci dróg

5.1 Wstęp

Ze względu na dużą złożoność końcowego modelu zostanie przedstawiony najpierw bardzo prosty, podstawowy model. W każdej kolejnej sekcji dodawane będą zmiany przybliżające do ostatecznej postaci. Jest to podejście pozwalające na proste przedstawienie modelu, który zawiera bardzo wiele aspektów m.in: ujęcie sygnalizacji świetlnej, brak kolizyjnych manewrów, makroskopowy przepływ ruchu, przepływ ruchu na skrzyżowaniu, struktura sieci dróg. Zestawienie w jednej sekcji wszystkich tych kwestii byłoby bardzo przytłaczające.

5.2 Wektor stanu drogi

Wektor stanu jest strukturą w pełni przedstawiającą aktualny stan drogi. Dla każdego odcinka drogi składuje on wartości zmiennych stanuch. Początkowo zmienna stanowa jest identyfikowana jako ilość pojazdów na danym odcinku drogi.

5.2.1 Przykład

Niech będzie dana droga e z wydzielonymi czterema odcinkami b_1, b_2, b_3, b_4 . Przykładowy wektor stanu to

$$\mathbf{x(t)} = \begin{bmatrix} 2\\4\\3\\0 \end{bmatrix} \tag{5.1}$$

Zawiera on w sobie następujące informacje dla chwili t:

- Są 2 pojazdy na odcinku b_1
- Sa 4 pojazdy na odcinku b_2
- Są 3 pojazdy na odcinku b_3
- Nie ma żadnego pojazdu na odcinku b_4

Rysunek 5.1: Droga z ilością pojazdów na poszczególnych odcinkach

5.3 Rozwój wektora stanu jednej drogi

Początkowy model przepływu pojazdów zakłada, iż wszystkie pojazdy w chwili t+1 są o jeden odcinek dalej w swojej podróży niż w momencie t. Założone jest, iż żadne nowe pojazdy nie pojawiają się w sieci dróg, a pojazdy będące w chwili t w ostatnim odcinku drogi układ. Formalnym wzorem definiującym rozwój wektora stanu jest:

$$\mathbf{x(t+1)} = \mathbf{A}\mathbf{x(t)} \tag{5.2}$$

Gdzie A jest macierzą systemu. Definiuje ona sposób przepływu pojazdów. A jest rzadką, kwadratową macierzą o wartościach równych 1 jedynie bezpośrednio 1 wiersz pod główną przekątną macierzy. Takie wartości gwarantują przepływ pojazdów o jeden odcinek w jednym interwale czasowym.

5.3.1 Przykład

Dla przykładu przedstawionego w (5.2.1)zostanie przedstawiony rozwój wektora stanu. Niech zatem

$$\mathbf{x(0)} = \begin{bmatrix} 2\\4\\3\\0 \end{bmatrix} \tag{5.3}$$

Macierzą systemu jest:

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \tag{5.4}$$

Wedle wzoru (5.2) wyliczone zostają kolejne wartości wektora stanu.

$$\mathbf{x}(1) = \mathbf{A}\mathbf{x}(0) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 4 \\ 3 \end{bmatrix}$$
(5.5)

$$\mathbf{x(2)} = \mathbf{A}\mathbf{x(1)} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 2 \\ 4 \end{bmatrix}$$
(5.6)

$$\mathbf{x(3)} = \mathbf{A}\mathbf{x(2)} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 2 \end{bmatrix}$$
(5.7)

$$\mathbf{x(4)} = \mathbf{A}\mathbf{x(3)} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
(5.8)

5.4 Wektor stanu sieci dróg

W rozdziale (5.2) przedstawiony został wektor stanu dla pojedynczej drogi. W tym rozdziale zostanie sformułowany wektor stanu dla bardziej ogólnego przypadku - sieci dróg. Sposób przedstawienia wartości stanuch jednak jest bardzo podobny. Każda z dróg $e_1, ..., e_n$ ma k wydzielonych odcinków oznaczanych jako $b_1, ..., b_{nk}$. Dla każdego z odcinków definiowana jest wartość stanowa.

5.4.1 Przykład

Niech będzie dana sieć składająca się z trzech dróg $E = \{e_1, e_2, e_3\}$. Dla każdej drogi zostaną wydzielone 2 odcinki. Przykładowy wektor stanu

$$\mathbf{x(t)} = \begin{bmatrix} 8\\4\\3\\0\\1\\5 \end{bmatrix} \tag{5.9}$$

Zawiera w sobie następujące informacje dotyczące ilości pojazdów na poszczególnych odcinkach w chwili t:

- \bullet $\boldsymbol{b_1}$ Na pierwszym odcinku drogi e_1 jest 8 pojazdów
- b_2 Na drugim odcinku drogi e_1 są 4 pojazdy
- ullet b₃ Na pierwszym odcinku drogi e_2 są 3 pojazdy
- b_4 Na drugim odcinku drogi e_2 nie ma żadnych pojazdów
- ullet b₅ Na pierwszym odcinku drogi e_3 jest 1 pojazd

 \bullet $\boldsymbol{b_6}$ -Na drugim odcinku drogi $\boldsymbol{e_3}$ jest 5 pojazdów

Rysunek 5.2: Sieć dróg z ilościami pojazdów na poszczególnych odcinkach

5.5 Rozwój wektora stanu sieci dróg

Przepływ pojazdów niezmiennie jest oparty o założenie, iż w trakcie trwania jednego interwału czasowego pojazdy pokonują 1 odcinek drogi. Równaniem systemu pozostaje $\mathbf{x(t+1)} = \mathbf{Ax(t)}$, gdyż do układu niezmiennie nie wpływają nowe pojazdy.

Macierz systemu $\bf A$ powinna uwzględnić przepływy pojazdów na skrzyżowaniach. W tym momencie należy przedstawić następującą definicję macierzy $\bf A$:

Wartości macierzy $\bf A$ określają jaka część pojazdów z odcinka zadanego przez indeks kolumny przejeżdża do odcinka zadanego przez indeks wiersza.

5.5.1 Przykład

Dla przykładu (5.4.1) przedstawiony zostanie rozwój wektora stanu. Założone zostaje, iż 75% pojazdów będących na odcinku b_2 opuszcza skrzyżowanie na odcinku b_3 a pozostałe 25% przejeżdża do b_5 .

Rysunek 5.3:

Wtedy:

$$\mathbf{A} = \begin{bmatrix} b_1 & b_2 & b_3 & b_4 & b_5 & b_6 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 75\% & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 25\% & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \end{bmatrix}$$

$$(5.10)$$

Niech zatem zgodnie z rysunkiem 5.3:

$$\mathbf{x}(\mathbf{0}) = \begin{bmatrix} 8 \\ 4 \\ 3 \\ 0 \\ 1 \\ 5 \end{bmatrix}$$

Kolejne wartości wektora stanu to:

$$\mathbf{x(1)} = \mathbf{A}\mathbf{x(0)} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 75\% & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 25\% & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 8 \\ 4 \\ 3 \\ 0 \\ 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 0 \\ 8 \\ 3 \\ 1 \\ 1 \end{bmatrix}$$

$$\mathbf{x(2)} = \mathbf{A}\mathbf{x(1)} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 75\% & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 25\% & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 8 \\ 3 \\ 3 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 6 \\ 3 \\ 2 \\ 1 \end{bmatrix}$$

$$\mathbf{x(3)} = \mathbf{A}\mathbf{x(2)} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 75\% & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 25\% & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 6 \\ 3 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 6 \\ 0 \\ 2 \end{bmatrix}$$

5.6 Wprowadzenie sygnalizacji świetlnej

Kolejnym etapem rozwoju modelu jest wprowadzenie sygnalizacji świetlnej. Warto zauważyć, że do tej pory rozważane układy były pozbawione jakiegokolwiek sterowania, czego bezpośrednim skutkiem była niezmienność macierzy **A** w czasie. W chwili pojawienia się sygnalizacji świetlnej macierz systemu będzie oparta o aktualną fazę sygnalizacji świetlnej. Równanie systemu pozostaje takie samo jak w przypadku braku sygnalizacji świetlnej z jedną małą różnicą:

$$\mathbf{x(t+1)} = \mathbf{A(t)}\mathbf{x(t)} \tag{5.11}$$

Macierz systemu jest zmienna w czasie, zatem w miejse A pojawiło się A(t).

Dla rozważanej sieci dróg zostaje przedstawiona $\mathbf{macierz}$ $\mathbf{topologii}$ układu \mathbf{T} . Jej wartości podobnie jak macierzy \mathbf{A} odnoszą się do tego jaka część pojazdów z odcinka zadanego przez indeks kolumny przejeżdża do odcinka zadanego przez indeks wiersza. Macierz \mathbf{A} dotyczy jednak możliwych przejazdów w konkretnej fazie sygnalizacji świetlnej. Natomiast macierz topologii \mathbf{T} odnosi się do wszystkich możliwych przejazdów - uwzględniając wszystkie fazy sygnalizacji świetlnej i jest stała w czasie.

Macierz sterowania (sygnalizacją świetlną) oznaczana będzie jako S(t). Ustala ona macierz systemu na podstawie następującej równości:

$$\mathbf{A(t)} = \mathbf{S(t)T} \tag{5.12}$$

Jeśli S(t) określa przejazdy, które są rzeczywiście możliwe w układzie, to:

$$\mathbf{A(t)} = \mathbf{S(t)} \tag{5.13}$$

Zatem celem wprowadzenia macierzy topologii oprócz przedstawienia wszystkich możliwych przejazdów jest także walidacja przejazdów zadanych przez macierz sterowania $\mathbf{S}(\mathbf{t})$.

5.6.1 Przykład

Rozważony zostanie przykład sieci trzech dróg e_1, e_2, e_3 . Każda z nich jest podzielona na dwa odcinki. Drogi e_1 i e_2 zbiegają się na skrzyżowaniu z sygnalizacją świetlną. Założone jest, że sygnalizacja zmienia się w każdym kroku czasowym, jednak w międzyczasie przez jeden interwał czasowy jest żółte światło dla obydwu dróg. Matematycznie ujmując żółte światło jest równoważne czerwonemu - pojazdy czekają na skrzyżowaniu. Początkowy stan sieci przedstawia rysunek:

Rysunek 5.4: Sieć dróg z sygnalizacją świetlną w chwili t=0

Należy zastanowić się nad macierzą topologii układu T. Jest ona następująca:

- Wartości w kolumnach b_1, b_3, b_5 są równe 1 tylko w wierszach odpowiadającym odcinkom b_2, b_4, b_6 , co wynika z tego, że pojazdy będące na odcinkach b_1, b_3, b_5 mają tylko możliwość przejazdu do odpowiednio b_2, b_4, b_6 .
- \bullet Wartości w kolumnie b_6 są zerowe, gdyż pojazdy z odcinku b_6 opuszczają układ.
- Najbardziej interesujące są kolumny b_2 i b_4 . Odpowiadają one odcinkom leżącym bezpośrednio przed skrzyżowaniem. Obydwie kolumny posiadają dwie wartości 1, gdyż pojazdy będące na odcinkach b_2 , b_4 mają dwie możliwości przejazdu. Pojazdy będące na odcinku b_2 mogą przejechać przez skrzyżowanie i wjechać na b_5 , albo pozostać dalej na b_2 w przypadku czerwonego światła. Analogiczna sytuacja dotyczy pojazdów na odcinku b_4 . Zielone i czerwone tło określają przy jakiej sygnalizacji świetlnej opisany przejazd jest możliwy.

Początkowy wektor stanu (zgodny z rysunkiem 5.4) to:

$$\mathbf{x}(\mathbf{0}) = \begin{bmatrix} 4\\5\\4\\2\\7\\1 \end{bmatrix}$$

Macierz stanu w momentach t=0,4 uwzględnia zielone światło dla drogi e_1 oraz czerwone dla e_2 .

Macierz stanu w momentach t=1,3,5 uwzględnia żółte światło zarówno dla e_1 jak i e_2 . Jak zostało już wspomniane, jest ono równoważne czerwonemu światłu.

Macierz stanu w momencie t=2 uwzględnia zielone światło dla drogi e_2 oraz czerwone dla e_1 .

t	x(t)	A(t)							Rysunek stanu układu
	[3]	[0	0	0	0	0	0	7	_ 3
	5	1	0	0	0	0	0		_{b1} / 5 ■
0	4	0	0	0	0	0	0		7 1
0		0	0	1	1	0	0		2
	7	0	1	0	0	0	0		4
		[0	0	0	0	1	0		b_3
	[0]	[0	0	0	0	0	0	1	_ 0
	3	1	1	0	0	0	0		^{b₁} / 3 ■
1		0	0	0	0	0	0		5 7
1	6	0	0	1	1	0	0		6 b ₅ b ₆
	5	0	0	0	0	0	0		0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	[7]	[0	0	0	0	1	0]	b_3
	[0]	[0	0	0	0	0	0	1	_ 0
	3	1	1	0	0	0	0		_{b1} ∕ 3
2		0	0	0	0	0	0	İ	0 5
	6	0	0	1	0	0	0		6 b _e b _e
		0	0	0	1	0	0		0
	[5]	[0	0	0	0	1	0		b_3
	[0]	[0	0	0	0	0	0	7	_ 0
	3	1	1	0	0	0	0		b ₁ / 3
3		0	0	0	0	0	0		6 0
		0	0	1	1	0	0		b_{ε} b_{ϵ}
	6	0	0	0	0	0	0		0
	[0]	[0	0	0	0	1	0		<i>b</i> ₃
	[0]	[0	0	0	0	0	0	1	0
	3	1	0	0	0	0	0		_{b1} / 3 ⋒
4		0	0	0	0	0	0		
1		0	0	1	1	0	0		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{vmatrix} 0 \end{vmatrix}$	0	1	0	0	0	0		0
	[6]	[0	0	0	0	1	0		b_3
	[0]	[0	0	0	0	0	0]	0
		1	1	0	0	0	0		b ₁ / 0
5	$\begin{vmatrix} 0 \end{vmatrix}$	0	0	0	0	0	0		3 0
		0	0	1	1	0	0		b_{ϵ}
	3	0	0	0	0	0	0		0
	[0]	[0	0	0	0	1	0		b_3

5.7 Wprowadzenie źródeł ruchu

Wszystkie poprzednie przykłady układów ruchu drogowego szybko kończyły się stanem w którym nie było już żadnych pojazdów na drogach. W tym rozdziale zostanie przedstawiony sposób napływania nowych pojazdów do układu. Drogi układu, które nie rozpoczynają się na

skrzyżowaniu będą nazywane drogami zródłowymi. Niech zbiór wszystkich dróg zródłowych to $E_s = e_1, ..., e_k$. Wektorem zródła w chwili t nazywany bedzie wektor:

$$oldsymbol{u}(oldsymbol{t}) = egin{bmatrix} u_1 \ ... \ u_k \end{bmatrix}$$

Równanie systemu uwzględniające zródła ruchu to:

$$\mathbf{x(t+1)} = \mathbf{A(t)}\mathbf{x(t)} + \mathbf{Bu(t)} \tag{5.18}$$

Gdzie B jest macierzą odpowiedzialną za zrzutowanie pojazdów napływających do dróg zródłowych do odpowiednich odcinków.

5.7.1 Przykład dla pojedynczej drogi

Niech dana będzie droga e podzielona na 4 odcinki b_1, b_2, b_3, b_4 . Początkowo niech wektor stanu to

$$\mathbf{x}(\mathbf{0}) = \begin{bmatrix} 2\\4\\3\\0 \end{bmatrix}$$

Dane są następujące wektory zrodlowe:

$$\mathbf{u}(\mathbf{0}) = [7] \quad \mathbf{u}(\mathbf{1}) = [3] \quad \mathbf{u}(\mathbf{2}) = [5]$$

Są to wektory o wymiarze 1, gdyż w układzie jest tylko 1 droga. Spodziewany następny wektor stanu to:

$$\mathbf{x(1)} = \begin{bmatrix} 7\\2\\4\\3 \end{bmatrix} \tag{5.19}$$

gdyż na pierwszym odcinku pojawia się 7 pojazdów ze zródła $\mathbf{u}(\mathbf{0})$, a pozostałe pojazdy przejeżdżają jeden odcinek drogi. Oczywiście $\mathbf{A}\mathbf{x}(\mathbf{0}) = \begin{bmatrix} 0 & 2 & 4 & 3 \end{bmatrix}^T$, zatem koniecznie $\mathbf{B}\mathbf{u}(\mathbf{0}) = \begin{bmatrix} 7 & 0 & 0 & 0 \end{bmatrix}^T$ Macierz \boldsymbol{B} zatem musi być dla tego układu następująca:

$$\boldsymbol{B} = \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix} \tag{5.20}$$

Jest ona stała w czasie. Wartości kolejnych wektorów stanu wyznaczone ze wzoru (5.18) to:

$$\mathbf{x(2)} = \begin{bmatrix} 3 \\ 7 \\ 2 \\ 4 \end{bmatrix}$$

$$\mathbf{x(3)} = \begin{bmatrix} 5\\3\\7\\2 \end{bmatrix}$$

5.7.2 Przykład dla złożonej sieci dróg

Niech dany będzie układ składający się z 5 dróg, z czego każda jest podzielona na dwa odcinki. Strukturę sieci dróg przedstawia poniższy rysunek.

Rysunek 5.5: Złożona sieć dróg

Dalszy rozwój ruchu- Do zrobienia :)

5.8 Wprowadzenie gęstości ruchu

Do zrobienia:)

środowiska symulacyjne qwe

6.1 Srodowisko 4

Rysunek 6.1: środowisko 4

środowisko posiada 12 jednokierunkowych dróg. Każda droga ma 3 odcinki co daje w sumie 36 odcinków (są numerowane od 0 co widać na rysunku 6.1). W sieci dróg znajdują się 3 skrzyżowania. Do każdego z nich jest przypisany agent, który odpowiada za sterowanie sygnalizacją świetlną.

Model ruchu: Pojazdy w jednym interwale czasowym pokonują jeden odcinek. Na skrzyżowaniach w przypadku zielonego światła przejeżdża maksymalnie 10 pojazdów w jedną stronę. Fazy świetlne: Każde skrzyżowanie posiada 4 fazy świetlne przedstawione poniżej. Fazy 0,1 i 2 są fazami, które posiadają pewne zielone światła. Agent podejmuje decyzję o

zmianie tych faz. Zmiana ta nie jest natychmiastowa i następuje dopiero po 2 interwałach fazy żółtych świateł.

Rysunek 6.2: środowisko 4 - fazy świateł