Discrete Mathematics

Tutorial sheet

Set Theory

Question 1.

Describe the following sets by the listing method:

- 1. $\{n : n \in \mathbb{Z} \text{ and } 5 \le n < 8\}$
- 2. $\{3n : n \in \mathbb{Z} \text{ and } 5 \le n < 8\}$
- 3. $\{2^n : n \in \mathbb{Z} \text{ and } 5 \le n < 8\}$

Solution:

- 1. $\{n : n \in \mathbb{Z} \text{ and } 5 \le n < 8\} = \{5, 6, 7\}$
- 2. $\{3n : n \in \mathbb{Z} \text{ and } 5 \le n < 8\} = \{15, 18, 21\}$
- 3. $\{2^n : n \in \mathbb{Z} \text{ and } 5 \le n < 8\} = \{2^5, 2^6, 2^7\} = \{32, 64, 128\}$

Question 2.

Let $\sum = \{x, y\}$ be an alphabet. List the element of the set L_1 and L_2

- 1. L_1 is the language consisting of all strings over \sum of length less or equal to 4 that are palindromes.
- 2. L_2 is the language consisting of all strings over \sum of length less or equal to 3 in which all the x's appear to the left of all the y's.

Solution:

 ε represents the empty string.

- 1. $L_1 = \{\varepsilon, x, y, xx, yy, xxx, yyy, xyx, yxy, xxxx, yyyy, xyyx, yxxy\}$
- 2. $L_2 = \{\varepsilon, x, y, xx, xy, yy, xxx, xxy, xyy, yyy\}$

Question 3.

Describe the following sets by giving a suitable universal set and rules of inclusion:

- 1. $\{4, 8, 12, 16, 20\}$
- 2. $\{0, 2, -2, 4, -4, \cdots\}$

- $3. \{2, 4, 8, 16, 32\}$
- 4. $\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}\}$

Solution:

- 1. $\{4, 8, 12, 16, 20\} = \{4n : n \in \mathbb{Z} \text{ and } 1 \le n < 6\}$
- 2. $\{0, 2, -2, 4, -4, \cdots\} = \{2n : n \in \mathbb{Z}\}\$
- 3. $\{2,4,8,16,32\} = \{2^n : n \in \mathbb{Z} \text{ and } 1 \le n < 6\}$
- 4. $\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}\} = \{2^{-n} : n \in \mathbb{Z} \text{ and } 0 \le n < 6\}$

Question 4.

Let $X = \{f, g, h, i, k\}$ and $Y = \{d, g, h, k\}$ be subsets of a universal set $U = \{d, e, f, g, h, i, j, k, l\}$. Find each of the following:

- 1. \overline{X}
- $2. X \cap Y$
- 3. $X \cup \overline{Y}$
- 4. X Y
- 5. $X \oplus Y$
- 6. $\overline{(X \cap Y)}$

Solution:

- 1. $\overline{X} = \{d, e, j, l\}$
- 2. $X \cap Y = \{g, h, k\}$
- 3. $X \cup \overline{Y} == \{f, g, h, i, j, k, e, l\}$
- 4. $X Y = \{f, i\}$
- 5. $X \oplus Y = \{d, f, i\}$
- 6. $\overline{(X \cap Y)} = \{d, e, f, i, j, l\}$

Question 5.

Let $A=\{2,\frac{1}{2},\sqrt{2}\}$ and $B=\{x\in\mathbb{Q}:x\not\in\mathbb{Z}\}$ be two sets. List the following sets:

$$A \cap B$$
, $A - B$, $A \cap \mathbb{R}$, $A \cap \mathbb{Z}$,

Solution:

$$A \cap B = \{\frac{1}{2}\}, A - B = \{2, \sqrt{2}\}, A \cap \mathbb{R} = \{2, \frac{1}{2}, \sqrt{2}\}, \text{ and } A \cap \mathbb{Z} = \{2\}$$

Question 6.

Let X and Y be two sets with $X = \{f, g, h, j, k\}$ and $Y = \{f, g\}$.

- 1. What is cardinality of X?
- 2. What is the total number of subsets of X?
- 3. Put the correct sign $\in \notin \subset \subseteq$ between the following pairs:

$$f X$$
, $Y X$, $X X$, $\emptyset X$, and $h Y$

Solution:

- 1. The cardinality of X = 5?
- 2. The total number of subsets of $X = 2^5 = 32$?

3.

$$f \in X$$
, $Y \subset X$, $X \subseteq X$, $\emptyset \subset X$, and $h \notin Y$

Question 7.

Let X and Y be two sets of the universal set U.

- 1. Use Venn diagram to show to show that $\overline{X \cap Y} = \overline{X} \cup \overline{Y}$.
- 2. Use membership tables to prove that $\overline{X \cap Y} = \overline{X} \cup \overline{Y}$.

Solution:

1. Venn diagram for $\overline{X \cap Y}$. the red area represents $X \cap Y$ where as the white area represents $\overline{X \cap Y}$.

The white area on the Venn diagram below represents $\overline{X} \cup \overline{Y}$.

Both areas representing $\overline{X\cap Y}$ and that representing $\overline{X}\cup\overline{Y}$ are the same, hence, $\overline{X\cap Y}=\overline{X}\cup\overline{Y}$

	X	Y	\overline{X}	\overline{Y}	$X \cap Y$	$\overline{X \cap Y}$	$\overline{X} \cup \overline{Y}$
	0	0	1	1	0	1	1
2.	0	1	1	0	0	1	1
	1	0	0	1	0	1	1
	1	1	0	0	1	0	0

The last two columns representing $\overline{X\cap Y}$ and $\overline{X}\cup\overline{Y}$ are the same, hence, $\overline{X\cap Y}=\overline{X}\cup\overline{Y}$

Question 8.

Let A and B and C be subsets of a universal set \mathcal{U} .

- 1. Draw a three binary digit labelled Venn diagram depicting A, B, C in such a way that they divide \mathcal{U} into 8 disjoint regions.
- 2. The subset $X \subseteq \mathcal{U}$ is defined by the following membership table:

A	B	C	X
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Identify the region X on your diagram. Describe the region you have identified in set notation as simply as you can.

3. let Y be the set represented by the region 000, 011, 101, 110, and 111. Describe the set Y using the set notation,

Solution:

1. Venn diagram: the digit represents the set A, the second represents B and the third digit represent C. for example the region (101) contains elements that are in $A(1^{st} \text{ digit}=1)$, not in $B(2^{nd} \text{ digit}=0)$ and in $C(3^{rd} \text{ digit}=1)$.

- 2. X is represented the region 001, 100, 101 and 110. $X=(A\cup C)-(B\cap C)$
- 3. $Y = \overline{A \oplus B \oplus C}$

Question 9.

Given three sets A, B and C, subsets of the universal set U. For each of each of the following Venn diagram write, in terms of A, B and C, the set representing the area coloured in yellow:

1.

2.

Solution:

1. $\overline{(}A) \cap \overline{B} \cap \overline{C}$

$(A \oplus B) \cup C$

Question 10.

Let $A = \{t, u, v, w\}$ and let S_1 be the set of all subsets of A that do not contain w and S_2 be the set of all subsets of A that contain w.

- 1. Find S_1 and S_2 .
- 2. Are S_1 and S_2 disjoint?
- 3. Find $S_1 \cup S_2$.
- 4. What is the relation between $S_1 \cup S_2$ and $\mathcal{P}(A)$?

Solution:

```
1. S_1 = \{\emptyset, \{t\}, \{u\}, \{v\}, \{t, u\}, \{t, v\}, \{u, v\}, \{t, u, v\}\}\

S_2 = \{\{w\}, \{t, w\}, \{u, w\}, \{v, w\}, \{t, u, w\}, \{t, v, w\}, \{u, v, w\}, \{t, u, v, w\}\}.
```

- 2. $S_1 \cap S_2 = \emptyset$ hence, S_1 and S_2 are disjoint.
- 3. $S_1 \cup S_2 = \{\emptyset, \{t\}, \{u\}, \{v\}, \{t,u\}, \{t,v\}, \{u,v\}, \{t,u,v\}, \{w\}, \{t,w\}, \{u,w\}, \{v,w\}, \{t,u,w\}, \{t,v,w\}, \{u,v,w\}, \{t,u,v,w\}\}.$
- 4. $S_1 \cup S_2 = \mathcal{P}(A)$.

Question 11.

Let $A = \{1, 2\}$ and let $B = \{2, 3\}$. Find each of the following:

- 1. $\mathcal{P}(A \cap B)$
- 2. $\mathcal{P}(A \cup B)$
- 3. $\mathcal{P}(A \times B)$

Solution:

```
1. A \cap B = \{2\}, hence, \mathcal{P}(A \cap B) = \{\emptyset, \{2\}\}
```

```
2. A \cup B = \{1, 2, 3\}, \text{ hence}, \mathcal{P}(A \cup B) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}, \}
```

```
3. A \times B = \{(1,2), (1,3), (2,2), (2,3)\}\
\mathcal{P}(A \times B) = \{\emptyset, \{(1,2)\}, \{(1,3)\}, \{(2,2)\}, \{(2,3)\}, \{(1,2), (1,3)\}, \{(1,2), (2,2)\}, \{(1,2), (2,3)\}, \{(1,3), (2,2)\}, \{(1,3), (2,2)\}, \{(1,2), (1,3), (2,2)\}, \{(1,2), (1,3), (2,3)\}, \{(1,2), (1,3), (2,2), (2,3)\}\}\
```

Question 12.

Given three sets A, B and C. Prove that the expression $\overline{(A \cup B) \cap C} \cup \overline{B}$ is equivalent to $B \cap C$ by re-writing the expression using algebraic laws, state the name of each law used.

Solution:

```
\overline{(A \cup B) \cap C} \cup \overline{B} = \overline{(A \cup B) \cap C} \cap \overline{B} De Morgan's law = ((A \cup B) \cap C) \cap B double complement = (A \cup B) \cap (C \cap B) associativity of the intersection = (A \cup B) \cap (B \cap C) comutativity of the intersection = ((A \cup B) \cap B) \cap C Associativity of the intersection = B \cap C Absorption law
```

Question 13.

Given three sets A, B and C. Using set identities, prove that:

$$(A \cup B) - (C - A) = A \cup (B - C).$$

Solution:

$$(A \cup B) - (C - A) = (A \cup B) \cap \overline{(C - A)} \quad \text{set difference law}$$

$$= (A \cup B) \cap \overline{(C \cap \overline{A})} \quad \text{set difference law}$$

$$= (A \cup B) \cap \overline{(\overline{A} \cap C)} \quad \text{commutativity of the intersection}$$

$$= (A \cup B) \cap \overline{(\overline{A} \cup \overline{C})} \quad \text{De Morgan's law}$$

$$= (A \cup B) \cap (A \cup \overline{C}) \quad \text{double complement law}$$

$$= A \cup (B \cap \overline{C}) \quad \text{distributivity of union over intersection}$$

$$= A \cup (B - C) \quad \text{set difference law}$$

Question 14.

Given two sets A and B. Simplify $\overline{(\overline{A} \cup \overline{B}) - A}$.

Solution:

Question 15.

Show that for all sets A and B, $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.

Solution:

Suppose A and B are any two sets, and suppose $X \in \mathcal{P}(A) \cup \mathcal{P}(B)$. We need to show that X is also an element of $\mathcal{P}(A \cup B)$.

 $X \in \mathcal{P}(A) \cup \mathcal{P}(B)$ implies that $X'\mathcal{P}(A)$ or $X \in \mathcal{P}(B)$. Assume $X \in \mathcal{P}(A)$ then $X \subseteq A$, which implies that $X \subseteq (A \cup B)$ and thus $X \in \mathcal{P}(A \cup B)$. Similarly, if $X \in \mathcal{P}(B)$ then $X \subseteq B$, which implies that $X \subseteq (A \cup B)$ and thus $X \in \mathcal{P}(A \cup B)$. Therefore, $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$ for all sets A and B.

Question 16.

Let A, B and C be three sets. Prove that if $C \subseteq (B - A)$ then $A \cap C = \emptyset$

Solution:

Assume $C \subseteq (B-A)$ and let x be in C, hence x is also an element of B-A, hus x is an element of B but not an element of A. Therefore any element x of C is not an element of A. thus $A \cap C = \emptyset$.

This can be proved by contradiction (See later: topic 5) Let A,B and C be any three sets such that $C\subseteq (B-A)$ and suppose that $A\cap C\neq \emptyset$. Then, by definition of the intersection, there exists an element $x\in A$ and $x\in C$. Since, $x\in X$ and $C\subseteq (B-A)$ then $x\in B$ and $x\not\in A$. so $x\in A$ and $x\not\in A$ is a contradiction. Thus $A\cap C=\emptyset$

End of questions