

Winning Space Race with Data Science

Sierra K 06-23-2025

Outline

- Executive Summary
- Introduction
- Methodology
- Insights Drawn from EDA
- Launch Site Proximities Analysis
- Build Dashboard with Plotly Dash
- Predictive Analysis
- Conclusion

Executive Summary

- Summary of methodologies
 - Data Collection
 - Data Wrangling
 - Exploratory Data Analysis
 - Interactive Visual Analytics
 - Predictive Analysis
- Summary of all results
 - Exploratory Data Analysis Results
 - Geospatial Analytics
 - Interactive Dashboard
 - Predictive Analysis of Classification Models

Introduction

- In this capstone, we will predict if the Falcon 9 first stage will land successfully. SpaceX advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage.
- If we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against SpaceX for a rocket launch.

Methodology

Executive Summary

- Data collection methodology:
 - Making GET requests to the SpaceX REST API
 - Web Scrapping
- Perform data wrangling
 - Removed NAN values
- Determined the following:
 - Number of launches on each site
 - Number of occurrence of each orbit.
 - Number and occurrence of mission outcome per orbit type

- Exploratory Data Analysis
 - Used SQL to manipulate and evaluate SpaceX dataset
 - Used Pandas and Matplotlib to visualize relationships between variables, and determine patterns
- Interactive Visual Analysis
 - Geospatial analytics using Folium
 - Creating an interactive dashboard using Plotly Dash
- Data Modeling and Evaluation
 - Used Scikit-Learn to:
 - Pre-processed (standardize) the data
 - Split the data into training and testing data
 - Train different classification models
 - Found hyperparameters
 - Plotted confusion matrices for each classification model
 - Assessed the accuracy of each classification model

Data Collection

- Used the SpaceX API to retrieve data about launches, including information about the rocket used, payload delivered, launch specifications, landing specifications, and landing outcome.
- Data Sets were collected from SpaceX API
 - https://api.spacexdata.com/v4/rockets/
 - https://api.spacexdata.com/v4/payloads/
 - https://api.spacexdata.com/v4/cores/
 - https://api.spacexdata.com/v4/launches/past

Data Collection – SpaceX API

- SpaceX offers a public API where data can be obtained and used
- This API was used according to the flowchart
- Source:
 - SpaceX Applied Data Science Capstone/SpaceX
 Falcon 9 first stage Landing Prediction Collecting
 the data.ipynb at main ·
 snkty8/SpaceX Applied Data Science Capstone

Request API and parse the SpaceX launch data

Filter data to only include Falcon 9 launches

Handle missing values

Data Collection - Scraping

- Data from SpaceX launches can also be obtained from Wikipedia
- Flow chart shows how data was obtained and used.
- Source:
 - SpaceX Applied Data Science Capstone/ SpaceX Falcon 9 first stage Landing Prediction Web scraping.ipynb at main · snkty8/SpaceX Applied Data Science Ca pstone

Request the Falcon 9
Lauch Wiki Page

Extract all column names from the HTML table header

Create a data frame by parsing the launch
HTML tables

Data Wrangling

- Initial Exploratory Data
 Analysis was performed on the dataset
- Then the launch summaries per site, occurrences of each orbit, and mission outcome per orbit were calculated
- Source:
 - SpaceX Applied Data Science Capstone
 /SpaceX Falcon 9 first stage Landing
 Prediction Data wrangling.ipynb at main
 :
 snkty8/SpaceX Applied Data Science C
 apstone

EDA with Data Visualization

- To explore the data, scatterplots, and bar plots were used to visualize the relationship between features:
 - Payload Mass X Flight Number, Lauch Site X Flight Number, Lauch Site X Payload Mass, Orbit and Flight Number, Payload and Orbit

Source:

<u>SpaceX_Applied_Data_Science_Capstone/SpaceX Falcon 9 first stage Landing Prediction_Visualizations.ipynb at main-snkty8/SpaceX_Applied_Data_Science_Capstone</u>

EDA with SQL

SQL Queries were used to:

- Display the names of the unique launch sites in the space mission
- Display 5 records where launch sites begin with the string 'CCA'
- Display the total payload mass carried by boosters launched by NASA (CRS)
- Display average payload mass carried by booster version F9 v1.1
- · List the date when the first successful landing outcome in ground pad was achieved.
- List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- List the total number of successful and failure mission outcomes
- List all the booster_versions that have carried the maximum payload mass, using a subquery with a suitable aggregate function.
- List the records which will display the month names, failure landing outcomes in drone ship ,booster versions, launch site for the months in year 2015.
- Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order.
- Source:
 - SpaceX_Applied_Data_Science_Capstone/SpaceX_Falcon 9 first stage Landing Prediction_EDA With SQL.ipynb at main · snkty8/SpaceX_Applied_Data_Science_Capstone

Build an Interactive Map with Folium

- Markers, circles, lines, and marker clusters were used with Folium Maps
 - Markers indicate launch sites
 - Circles indicate highlighted areas around specific coordinates, such as NASA Johnson Space Center
 - Marker clusters indicates groups of events in each coordinate, such as launches in a launch site
 - Lines are used to indicate distances between two coordinates

Source:

SpaceX Applied Data Science Capstone/Interactive Visual Analytics with Folium.ipynb at main · snkty8/SpaceX Applied Data Science Capstone

Build a Dashboard with Plotly Dash

- The following graphs and plots were to visualize data:
 - Percentage of launch site
 - Payload range
- This combination allowed quick analysis of the relation between payloads and launch sites, helping to identify where the best place was according to payloads

Predictive Analysis (Classification)

- Four classification models where compared:
 - Logistic Regression
 - Support Vector Machine
 - Decision Tree
 - K Nearest Neighbor

Source: SpaceX_Applied_Data_Science_Capstone/Machine Learning Prediction.ipynb at main · snkty8/SpaceX_Applied_Data_Science_Capstone Data preparation and standardization

Test each model with combinations of hyperparameters

Compare Results

Results

• Logistic regression, Support vector machine and K-nearest neighbors, all these three methods give the best performance, with accuracy of 0.8333333333333333.

Source: SpaceX Applied Data Science Capstone/Machine Learning Prediction.ipynb at main · snkty8/SpaceX Applied Data Science Capstone

Flight Number vs. Launch Site

- According to the plot above, it is possible to verify that the best launch site is CCAF5 SLC 40, where most of the recent launches were successful
- In second place VAFB SLC 4E and third KSC LC 39A
- It is also possible to see that the general success rate improved over time

Payload vs. Launch Site

- Payloads over 9,000 kg have great a success rate
- Payloads over 12,000 kg only seems possible for CCAFS SLC 40 and KSC LC 39A launch sites

Success Rate vs. Orbit Type

- Orbits larges success rates:
 - ES-L 1
 - GEO
 - HEO
 - SSO

Flight Number vs. Orbit Type

- Success looks to improve over time in all orbits
- VLEO orbit seems to be a new business opportunity, due to an increase of its frequency

Payload vs. Orbit Type

- Does not look to be a relation between payload and success rate in GTO
- ISS orbit has the widest range of payload and a good rate of success
- There are a few launches to the orbits SO and GEO

Launch Success Yearly Trend

- Success rate starts to increase in 2013, slightly down in 2018, but rises again in 2019
- The first few year seems to be a period of adjustments and improvements

All Launch Site Names

- Selected the names of the unique launch sites in the space mission
- Query Used:
 - %sql SELECT DISTINCT LAUNCH_SITE FROM SPACEXTBL;

Launch_Site

CCAFS LC-40

VAFB SLC-4E

KSC LC-39A

CCAFS SLC-40

Launch Site Names Begin with 'CCA'

- 5 records where launch sites begin with the string 'CCA'
- Using query:
 - %sql SELECT * FROM SPACEXTBL WHERE LAUNCH_SITE LIKE 'CCA%' LIMIT 5;

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012- 10-08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

- Total Payload obtained by summing all payload whose code contained 'CRS'
- Query Used:
 - sql SELECT
 SUM(PAYLOAD_MASS__KG_) AS
 TOTAL_PAYLOAD FROM SPACEXTBL
 WHERE PAYLOAD LIKE '%CRS%';

TOTAL_PAYLOAD

111268

Average Payload Mass by F9 v1.1

- Filtered data by booster version and calculating the average payload by mass
- Query Used:
 - %sql SELECT
 AVG(PAYLOAD_MASS__KG_) FROM
 SPACEXTBL WHERE BOOSTER_VERSION
 = 'F9 v1.1'

AVG(PAYLOAD_MASS__KG_)

2928.4

First Successful Ground Landing Date

- Filtered data by successful landing outcome on ground pad and getting the minimum date
- Query Used:
 - %sql select min(DATE) from SPACEXTBL where Landing_Outcome = 'Success (ground pad)';

min(DATE)

2015-12-22

Successful Drone Ship Landing with Payload between 4000 and 6000

- Selected booster version according to values between 4000 and 6000, and successful landing drop ship
- Query Used:
 - %sql SELECT BOOSTER_VERSION from SPACEXTBL WHERE LANDING_OUTCOME = 'Success (drone ship)' and PAYLOAD_MASS__KG_ >4000 and PAYLOAD_MASS__KG_ <6000;

F9 FT B1022 F9 FT B1026 F9 FT B1021.2 F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

- Selected the count of successful and failed mission outcomes
- Query Used:
 - %sql select count(MISSION_OUTCOME) from SPACEXTBL where MISSION_OUTCOME = 'Success' or MISSION_OUTCOME = 'Failure (in flight)'

count(MISSION_OUTCOME)

99

Boosters Carried Maximum Payload

- Selected each booster version with maximum payload mass
- Query Used:
 - %sql SELECT BOOSTER_VERSION FROM SPACEXTBL WHERE PAYLOAD_MASS__KG__ = (SELECT max(PAYLOAD_MASS__KG__) FROM SPACEXTBL);

2015 Launch Records

2015- 01-10 9:47:00 F9 v1.1 B1012 CCAFS LC- 40 CRS-5 2395 LEO NASA (CRS) Success Failure (drone ship) 2015- 04-14 20:10:00 F9 v1.1 B1015 CCAFS LC- 40 CRS-6 1898 LEO NASA (CRS) Success Failure (drone ship)	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
2015- 04-14 20:10:00 F9 v1.1 B1015 CCAFS LC- SpaceX 40 CRS-6 1898 LEO NASA (ISS) (CRS) Success Failure (drone ship)	2015- 01-10	9:47:00	F9 v1.1 B1012	CCAFS LC- 40	SpaceX CRS-5	2395	LEO (ISS)	NASA (CRS)	Success	Failure (drone ship)
	2015- 04-14	20:10:00	F9 v1.1 B1015	CCAFS LC- 40	SpaceX CRS-6	1898	LEO (ISS)	NASA (CRS)	Success	Failure (drone ship)

- Selected the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015.
- Query Used: %sql SELECT * FROM SPACEXTBL where Landing_Outcome = 'Failure (drone ship)' and substr(Date,0,5)='2015';

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
2017- 02-19	14:39:00	F9 FT B1031.1	KSC LC-39A	SpaceX CRS-10	2490	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)
2016- 07-18	4:45:00	F9 FT B1025.1	CCAFS LC- 40	SpaceX CRS-9	2257	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)
2015- 12-22	1:29:00	F9 FT B1019	CCAFS LC- 40	OG2 Mission 2 11 Orbcomm- OG2 satellites	2034	LEO	Orbcomm	Success	Success (ground pad)

- Ranked the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order.
- Query Used:
 - %sql select * from SPACEXTBL where Landing_Outcome =
 'Success (ground pad)' and (DATE between '2010-06-04'
 and '2017-03-20') order by date desc;

Lauch Sites

 Launch sites are near the sea, but not too far from roads and railroads

Lauch OutComes

- KSC LC-39A launch site outcomes
- Green markers show successful and red show failures

Distance from Railway, Highway, Coastline

 KSC LC-39A is near railroad and road, relatively far from inhabited areas for safety

Successful Launches

• Pie charts shows the percentage a successful launches per site

Launches for KSC LC-39A

KSC LC-39A has 76.9% successful launches

Payload vs. Launch Outcome

Payloads under 6000 kg and FT boosters are the most successful combination

Classification Accuracy

 Logistic regression, Support vector machine and K-nearest neighbors, all of these three methods give the best performance, with accuracy of 0.8333333333333333.

Confusion Matrix

- K Nearest Neighbors
- Has a high numbers for true positives and true negatives.
 Does has an issue with false positives

Conclusions

- Different data sources were analyzed
- Best launch is KSC LC-39A
- Launches above 7000 kg are less risky
- Most of the mission outcomes are successful, landing outcomes seem to improve over time according to the evolution processes and rocket development

