Formulaire : Dérivées et primitives usuelles

Dans tout le formulaire, les quantitées situées au dénominateur sont supposées non nulles

Dérivées des fonctions usuelles

Dans chaque ligne, f' est la dérivée de la fonction f sur l'intervalle I.

f(x)	I	f'(x)
λ (constante)	\mathbb{R}	0
x	\mathbb{R}	1
$x^n \ (n \in \mathbb{N}^*)$	\mathbb{R}	nx^{n-1}
$\frac{1}{x}$	$]-\infty,0[$ ou $]0,+\infty[$	$-\frac{1}{x^2}$
$\frac{x}{\frac{1}{x^n}} \text{ où } n \in \mathbb{N}, n \geqslant 2$	$]-\infty,0[$ ou $]0,+\infty[$	$-\frac{n}{x^{n+1}}$
\sqrt{x}	$]0,+\infty[$	$\frac{1}{2\sqrt{x}}$
$\ln x$	$]0,+\infty[$	$\frac{1}{x}$
e^x	\mathbb{R}	e^x
$\sin x$	\mathbb{R}	$\cos x$
$\cos x$	\mathbb{R}	$-\sin x$
$\tan x$	$\left] -\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[, k \in \mathbb{Z}$	$1 + \tan^2 x = \frac{1}{\cos^2 x}$

Opérations et dérivées

 $(f \circ g)' = g' \times (f' \circ g)$

$$(f+g)' = f' + g'$$

$$(fg)' = f'g + fg'$$

$$(\lambda f)' = \lambda f' \quad , \lambda \text{ d\'esignant une constante}$$

$$(fg)' = f'g + fg'$$

$$\left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$$

$$\left(\frac{f}{g}\right) = \frac{f'g - fg'}{g^2}$$

$$(\ln |u|)' = \frac{u'}{u}$$

En particulier, si $u > 0 : \forall a \in \mathbb{R}$,

$$(u^a)' = \alpha u' u^{a-1}$$

Dans chaque ligne, F est une primitive de f sur l'intervalle I. Ces primitives sont

Primitives des fonctions usuelles

uniques à une constante près

I	$F\left(x\right)$
\mathbb{R}	$\lambda x + C$
\mathbb{R}	$\frac{x^2}{2} + C$ $x^{n+1} + C$
\mathbb{R}	$\frac{x^{n+1}}{n+1} + C$
$]-\infty,0[$ ou $]0,+\infty[$	$\ln x + C$
$]-\infty,0[$ ou $]0,+\infty[$	$-\frac{1}{(n-1)x^{n-1}} + C$
$]0,+\infty[$	$2\sqrt{x} + C$
\mathbb{R}_+^*	$x \ln x - x + C$
\mathbb{R}	$e^x + C$
\mathbb{R}	$-\cos x + C$
\mathbb{R}	$\sin x + C$
$\left] -\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[, k \in \mathbb{Z}$	$\tan x + C$
	\mathbb{R} \mathbb{R} \mathbb{R} $]-\infty,0[\text{ ou }]0,+\infty[$ $]-\infty,0[\text{ ou }]0,+\infty[$ $]0,+\infty[$ \mathbb{R}^*_+ \mathbb{R} \mathbb{R}

Opérations et primitives

On suppose que u est une fonction dérivable sur un intervalle I

- Une primitive de $u'u^n$ sur I est $\frac{u^{n+1}}{n+1}$ $(n \in \mathbb{N}^*)$
- Une primitive de $\frac{u'}{u^2}$ sur I est $-\frac{1}{u}$. Une primitive de $\frac{u'}{u^n}$ sur I est $-\frac{1}{(n-1)u^{n-1}}$. $(n \in \mathbb{N}, n \geqslant 2)$.
- Une primitive de $\frac{u'}{\sqrt{u}}$ sur I est $2\sqrt{u}$ (En supposant u > 0 sur I.)
- Une primitive de u'/u sur I est ln |u|.
 Une primitive de u'e^u sur I est e^u.

En particulier, si u > 0 sur I et si $a \in \mathbb{R} \setminus \{-1\}$, une primitive de $u'u^a$ sur I est :

$$\int u'u^a = \begin{cases} \frac{1}{a+1}u^{a+1} + C & \text{si } a \in \mathbb{R} \setminus \{-1\} \\ \ln u + C & \text{si } a = -1 \end{cases}$$