How Cryptography & Hashing keeps a blockchain secure

Group 1

Parikha Goyanka

Anushka Saxena

Aman Bahuguna

Summer Internship 2020, Internity Foundation

What is a blockchain?

- Blockchain is a **record of transactions** similar to a **traditional ledge**r.
- Blockchains aren't on display on public, anyone who wants to can store a copy of a blockchain on their computer.
- Blockchains use cryptography, computers and electricity to build the blocks.
- This technology has the potential to be used in vast range of applications.

The uses of blockchain

- Cryptocurrencies
- Decentralised apps & Smart Contracts
- Supply chain management
- Financial Transactions

Uses of blockchain contd.

- IBM Food Trust uses this technology to manage food supply logistics.
- Banks such as UBS are adapting blockchains for financial settlements.
- Australian Stock Exchange(ASX) aiming to adopt this technology.
- Blockchains are yet to be fruitful as many have hoped.

Bitcoin: Transaction in blockchain

 Bitcoin is cryptography based currency that could avoid the downsides of having a financial system controlled by central institutions.

 The basic intuition is transferring value through a chain of digital signatures

What is cryptography?

Types of Cryptography

Cryptography in Blockchain

Public- key Cryptography

Cryptographic Hashing

Merkle Tree

Cryptography in blockchain

Helps manage:

- Wallets
- Transactions
- Security

Why Cryptography in Blockchain?

- Confidentiality
- Authentication
- Integrity
- Non- Repudiation

Hashing

What is hashing?

- Hashing is the process of sending data through a hash function to produce a specific, essentially unique hash of a fixed length.
- The most used cryptographic hash functions is SHA-256.

WHY Cryptographic hash functions?

- They are deterministic.
- They are one way functions.
- Hashes can be computed quickly.
- A slight change in the input results in a significantly different output.

Where hashing is used?

Hashing is mainly used in digital signature.

- When a new transaction is made, the data is also hashed to form a transaction ID (txid), which is an identifier that can be used to locate the transaction details on the blockchain.
- When a transaction is being made, data from previous transactions is hashed and included in the present transaction.
- A hash of the public key is used as the address where users can send funds. This makes the addresses shorter and more convenient, as well as providing some security benefits.

Digital Signatures

What is a digital signature?

- A digital signature is a cryptographic means which allow an individual to prove their ownership (of private key without revealing it to other party).
- D.S. are used to validate the authenticity and integrity of data or message at the same time by assuring repudiability of it.
- It is based on Public Key Cryptography.
- In bitcoin and other blockchains, digital signatures are mainly used in the transaction process as a way for someone to prove their ownership, without having to reveal their private key.
- Some of the most common digital signature schemes include RSA, DSA, EcDSA and EdDSA.

How it works?

Proof of security

Digital Signature security unit

 Data signed with a private key is verified with the same individual's matching public key.

```
If (it matches)
then transaction will move forward
Else
it get terminated
```

• It should be essentially impossible (using current technology and techniques) to forge a valid signature without knowing the individual's private key.

To prevent double spending

- The bitcoin protocol uses a concept known as proof-of-work to validate its transactions. This proof-of-work system is based on the **SHA-256 algorithm**.
- Moreover it uses a peer to peer verification process(mining) using nodes and minors to prevent double spending, as it is considered that its relatively difficult to compute the solution, but easy to verify it.

