Gráficas O Grafos

Verónica E. Arriola-Rios

Facultad de Ciencias, UNAM

5 de agosto de 2021

- Definición
- 2 Representación en la computadora
- 3 Recorridos
- Caminos de peso mínimo
- 5 Árbol generador de peso mínimo

Definición

Una *gráfica* es una tupla G = (V, E) con:

V un conjunto de vértices.

E un conjunto de aristas que conectan pares de vértices en V.

Recorridos

Definición

Definición

0000

Definición

Una gráfica *pesada* también tiene:

• Una función $\omega : E \to \Re$

Referencias

Definición

Definición

0000

Definición

- En una gráfica dirigida $e = v_i \rightarrow v_j$, v_i es vecino de v_j .
- En una gráfica no dirigida $e = v_i v_j$, v_i es vecino de v_j y v_j es vecino de v_i .

Figura: Izquierda: Gráfica no dirigida. Derecha: Gráfica dirigida.

Verónica E. Arriola-Rios Facultad de Ciencias, UNAM

Recorridos

Representación en la computadora

- Representación en la computadora

Representaciones

Definición

- Hay varias formas de implementar gráficas en la computadora:
 - Matriz de adyacencia.
 - Listas de adyacencia.
- Se pueden utilizar estructuras auxiliares como ArrayList o HashMap para almacenar a todos los nodos de una gráfica con listas de adyacencia y accederlos más rápido cuando sea necesario.
- Si los vértices tienen identificadores únicos, las listas de adyacencia se pueden suplir por diccionarios.

	Α	В	С	D	Е	F
Α	0	3	5	9	∞	8
В	∞	0	3	4	7	∞
С	3	∞	0	1	6	8
D	∞	∞	∞	0	∞	2
Ε	∞	∞	∞	2	0	5
F	∞	∞	∞	4	∞	0

Recorridos

- Recorridos
- Arbol generador de peso mínimo

Referencias

- Recorridos
 - Primero en profundidad
 - Primero en amplitud

Primero en profundidad

Definición

DFS: Primero en profundidad.

- Utiliza una pila o se programa recursivamente.
- Usa un arreglo de boolean por vértice para indicar si ya fue visitado.

Referencias

Verónica E. Arriola-Rios Primero en profundidad Facultad de Ciencias, UNAM

Temas

- Recorridos
 - Primero en profundidad
 - Primero en amplitud

Primero en amplitud

Definición

BFS: Primero en amplitud.

- Utiliza una cola.
- Un arreglo de boolean por vértice para indicar si ya está formado.

Verónica E. Arriola-Rios Primero en amplitud Facultad de Ciencias, UNAM

Caminos de peso mínimo

- Caminos de peso mínimo

Recorridos

Caminos de peso mínimo

00000000

Definición

- Caminos de peso mínimo
 - Dijkstra
 - Floyd-Warshall

• Objetivo: Encontrar el camino de peso mínimo entre un nodo y sus vecinos.

Referencias

- Para cada nodo mantener:
 - k(v) Terminado, va se conoce la distancia mínima.

000000000

- d(v) Distancia.
- P(v) Predecesor.
- O cola de prioridades **mínima** según d(v), con k(v) = False

Algoritmo 1 Dijkstra

- 1: $k(v) \leftarrow False, d(v) \leftarrow \infty, P(v) \leftarrow \emptyset$
- 2: **O** ← **V**

Definición

- 3: for |V| veces do
- Elegir de O al vértice ν con menor $d(\nu)$. 4:
- $k(v) \leftarrow True$
- **for all** vecino μ de ν con $k(\mu) = False$ **do** 6.
- if $d(\mu) > d(\nu) + \omega(\nu, \mu)$ then
- $d(\mu) \leftarrow d(\nu) + \omega(\nu, \mu)$
- $P(\mu) \leftarrow \nu$ 9:

Verónica E. Arriola-Rios Dijkstra Facultad de Ciencias, UNAM

• Objetivo: Encontrar el camino de peso mínimo entre un nodo y sus vecinos.

	$k(\nu)$	$d(\nu)$	$P(\boldsymbol{\nu})$	Prioridades
Α				
В				
С				
D				
Ε				
F				

Verónica E. Arriola-Rios Dijkstra Facultad de Ciencias, UNAM

Temas

- Caminos de peso mínimo
 - Dijkstra
 - Floyd-Warshall

Floyd-Warshall

Definición

• **Objetivo:** Dada G = (V, E), para cada par de vértices en V encontrar el camino pesado más corto entre ellos.

Principio:

- **1** Encontrar los caminos más cortos entre vértices del subgrafo $V_k = \{v_1, v_2, ..., v_k\}$ para $0 \le k \le |V|$.
- 2 Agregar v_{k+1} y verificar si cada ruta se puede acortar pasando por v_{k+1} .
- Complejidad: $\mathfrak{O}(\mathfrak{n}^3)$ con $\mathfrak{n} = |V|$
- **Utiliza:** para subgrafos de tamaño k:
 - Matrices D^k para almacenar el peso de la mejor ruta del nodo v_i al nodo v_k conocida.
 - Matrices Π^k para almacenar los predecesores de cada nodo.

Floyd-Warshall Verónica E. Arriola-Rios Facultad de Ciencias, UNAM

Algoritmo 2 Floyd-Warshall

Representación en la computadora

```
1: D^k \leftarrow \text{matriz}(n \times n). \Pi^k \leftarrow \text{matriz}(n \times n)
                                                                                                                                                                    2. D^0 \leftarrow W
                                                                                                                                      3: for i \in [1, n] do
               for j \in [1, n] do
                     \Pi_{i,j}^{0} \begin{cases} \text{NIL} & \text{si } i = j \text{ ó } \omega(i,j) = \infty \\ i & \text{si } i \neq j \text{ y } \omega(i,j) < \infty \end{cases}
       for k \in [1, n] do
                                                                                                                                                                   Agrega vértices
               for i \in [1, n] do
                       for i \in [1, n] do
                              d_{ikj} \leftarrow d_{i,k}^{k-1} + d_{i,k}^{k-1}
                              D_i^k \leftarrow \min(d_{i,i}^{k-1}, d_{iki})
10:
                             \Pi_{i,j}^k \leftarrow \begin{cases} \pi_{ij}^{k-1} & \text{si } d_{ij}^{k-1} \leqslant d_{ikj} \ \triangleright \text{No pasa por } \nu_k \\ \pi_{\nu:}^{k-1} & \text{si } d_{i:}^{k-1} > d_{iki} \ \triangleright \text{Pasa por } \nu_k \end{cases}
11:
```

Floyd-Warshall (Ejercicio)

Árbol generador de peso mínimo

Definición

- 2 Representación en la computadora
- 3 Recorridos
- 4 Caminos de peso mínimo
- 5 Árbol generador de peso mínimo

Árbol de expansión mínima

Definición

Definición

Un árbol de expansión mínima es un grafo acíclico, cuyas aristas $T \subseteq E$ conectan a todos los vértices V y cuyo peso total

$$w(\mathsf{T}) = \sum_{(\mathsf{u}, \mathsf{v}) \in \mathsf{T}} w(\mathsf{u}, \mathsf{v}) \tag{1}$$

es mínimo.

- Objetivo: Encontrar un árbol de expansión mínima en el grafo conexo, no dirigido G = (V, E).
- **Ejemplo de aplicación:** Se desea diseñar una placa electrónica, con la menor cantidad de silicio, sin que haga corto circuito.

< ロ > ∢団 > ∢ 臣 > ∢ 臣 > 臣 夕 Q ⊙

- **5** Árbol generador de peso mínimo
 - Prim
 - Kruskal

Prim

Definición

- Sean:
- A el árbol de peso mínimo en construcción.
- Q los vértices que no están aún en el árbol.
- A y Q definen una partición de la gráfica.
- En cada paso se agrega una arista de la frontera.

Para cada nodo mantener:

- llave(v) Peso de la arista de menor peso que conecta a v con el árbol. $\pi(\nu)$ Padre en el árbol de peso mínimo.
 - O cola de prioridades **mínima** según llave(ν), con vértices.

Algoritmo 3 Prim

Definición

- 1: $llave(v) \leftarrow \infty$, $\pi(v) \leftarrow \emptyset$, $Q \leftarrow V$, $A \leftarrow \emptyset$
- 2: $llave(r) \leftarrow 0$
- 3: while $Q \neq \emptyset$ do
- Elegir de O al vértice ν con menor llave(ν). 4.
- agrega(A, v)
- 6. **for all** vecino μ de ν con $\mu \in O$ **do**
- if $\omega(\nu, \mu) < \text{llave}(\mu)$ then
- llave(μ) $\leftarrow \omega(\nu, \mu)$
- $\pi(\mathfrak{u}) \leftarrow \nu$ 9:

No forman ciclos

▶ Un nodo cualquiera r

Prim (Ejercicio)

	llave(v)	$\pi(\nu)$	Prioridades
Α			
В			
С			
D			
Ε			
D			

Temas

- 5 Árbol generador de peso mínimo
 - Prim
 - Kruskal

Referencias

Definición

- O cola de prioridades **mínima** según $\omega(e), e \in E$
- A bosque (conjunto de subárboles disjuntos).
 - Cada árbol tiene un vértice representativo.
 - Dado un vértice se encuentra el representante en O(1).

Algoritmo 4 Kruskal

- 1: A ← Ø
- 2. for all $y \in V$ do
- ConstruyeConjunto(ν)
- 4: O ← E
- 5: while $O \neq \emptyset$ do
- Elegir de O al arista $e(\mathfrak{u}, \mathfrak{v})$ con menor $\omega(e)$. 6:
- if $Conjunto(\mu) \neq Conjunto(\nu)$ then
- $A \leftarrow A \cup (\mathfrak{u}, \gamma)$
- Une(Conjunto(μ), Conjunto(ν))

Kruskal Verónica E. Arriola-Rios Facultad de Ciencias, UNAM

Kruskal (Ejercicio)

Definición

Peso	Arista

Verónica E. Arriola-Rios Kruskal Facultad de Ciencias, UNAM

Cormen, Thomas H. y col. (2009). Introduction to Algorithms. 3rd. The MIT Press.

Creative Commons Atribución-No Comercial-Compartir Igual

