

The Superior University Lahore

Task-11

Submitted to

Sir Rasikh Ali

Submitted by

Sadia Eman Abdul Ghafoor

Roll number

SU92-BSDSM-F23-019

Section

BSDS -4A

Program

BS-Data-Science

Lab 11

Topic: Differences between Key AI and ML Terms

1. LangChain

- **Type:** Framework
- **Purpose:** Helps in building applications using LLMs by connecting them with data sources, tools, and memory.
- Use Case: Creating chatbots that read and respond based on PDFs or databases.

2. RAG (Retrieval-Augmented Generation)

- Type: AI Technique
- **Purpose:** Combines document retrieval with LLMs to generate more accurate and up-to-date answers.
- Use Case: Answering user queries based on real-time company documents.

3. LLMs (Large Language Models)

- Type: AI Models
- **Purpose:** Understand and generate human-like text using deep learning.
- Examples: GPT-3, GPT-4, BERT
- Use Case: Writing, translating, summarizing, answering questions, etc.

4. FAISS (Facebook AI Similarity Search)

- **Type:** Open-source Library
- **Purpose:** Efficiently searches for similar vectors from a large collection.
- **Use Case:** Used in search engines and recommendation systems to find related documents.

5. Vector

- **Type:** Data Representation
- Purpose: Converts words or documents into numeric format that captures meaning.
- Use Case: Comparing meaning of texts like "cat" vs. "kitten".

6. VectorDB (Vector Database)

- **Type:** Database
- **Purpose:** Stores and searches vector embeddings (numerical representations).
- **Use Case:** Used in RAG systems to find relevant information based on vector similarity.

7. Generative AI

- **Type:** Artificial Intelligence
- **Purpose:** Creates new content such as text, images, audio, or code.
- Examples: ChatGPT, DALL·E, GitHub Copilot

• Use Case: Content creation, creative design, and software development.

8. GANs (Generative Adversarial Networks)

• **Type:** Generative Model

• **Purpose:** Uses two neural networks (Generator and Discriminator) to create realistic data.

• Use Case: Generating human faces, deepfake videos, or art.

No.	Term	Type	Description	Use Case /
				Example
1	LangChain	Framework	Helps build applications using LLMs by connecting them with tools and data.	Chatbot that answers based on PDF or web data.
2	RAG	AI Technique	Combines retrieval of documents with LLMs to improve response accuracy.	Answers based on real-time company or academic data.

3	LLMs	AI Models	Large models trained	ChatGPT, GPT-4,
			to understand and	summarizing or
			generate human-like	translating text.
			language.	
4	FAISS	Open-source	Fast search of similar	Finding similar
		Library	vectors in large	documents or
			datasets.	images quickly.
5	Vector	Data	A list of numbers	"Car" and
		Representation	representing meaning	"Automobile" have
			of text, images, etc.	similar vectors due
				to meaning.
6	VectorDB	Database	Stores and searches	Finds documents
			vector data using	with similar
			similarity measures.	meaning, not just
				keywords.
7	Generative	Artificial	AI that creates new	ChatGPT,
	AI	Intelligence	content (text, image,	DALL·E, creating
			music, etc.).	blog posts or digital
				art.
8	GANs	Generative	Uses Generator +	Generating realistic
		Model	Discriminator to	human faces or
			create realistic fake	deepfake videos.
			data.	

Programming For AI