Introduction to the exploration of epidemiological models using EMULSION

EGAAL doctoral training 2021 / BIOEPAR / Sébastien Picault

About us

DYNAMO team, BIOEPAR

- methods in epidemiological modelling stochastic + mechanistic, parameter inference
- **applications**: endemic diseases of livestock (mainly)
- understand, predict and control pathogen spread at multiple scales
- assess the impact of diseases and control measures

Doctoral training, 2021/BIOEPAR/S. Picault

Trainers & contributors

- Sébastien Picault researcher. Al, simulation, modelling
- Sandie Arnoux engineer software engineering, modelling
- ► Vianney Sicard engineer/Ph.D. software engineering \rightarrow modelling
- Pauline Franno senior scientist epidemiological modelling
- Gaël Beaunée researcher inference methods, modelling

> Outline of the training

- Mechanistic epidemiological models with EMULSION
 - reminders on epidemiological modelling
 - classical issues in model development
 - ► EMULSION: why and how
- From compartments to individual-based models exercises of progressive complexity, to learn designing a model with EMULSION
- Scale change: from within-population to between-population models
- Connection between a mechanistic model and data
- Case study: reimplementing a complex model from literature
- ► Integration within a workflow: scenario comparison

Epidemiological modelling with EMULSION

> Key concepts: model

Experimental sciences aim at studying observable natural phenomena

→ build a **deliberately simplified representation** of reality = **a model** = consistent set of **assumptions**

A model is not "true" or "false" but:

- more or less compatible with a theory (larger set of assumptions)
- ightharpoonup more or less **fecund** (lever \rightarrow new insights)

... and can have several goals:

- describe and classify existing knowledge
- predict the consequences of given conditions
- help understand the underlying mechanisms

> Key concepts: experiment

experiments = reproducing phenomena within controlled conditions to **corroborate** or **refute** a model/assumption

but experiments are not always possible:

- rarity of the target phenomenon few observations, sparse data
- impossibility to control parameters
 - potential system destruction ecosystems, global trade...
 - ethical reasons human/animal welfare/privacy

\rightarrow requires **simulation**

> Key concepts: simulation

Simulation of a phenomenon:

- test on a **substitute** of real system
- assuming that the substitute reproduces accurately the essential relevant features of the real system

Examples:

- analogical mock-up
- numerical methods (equation-like)
- agent-based simulation (rule-based)

INRAe

> Analogical simulation

- convenient materials adapted to scale change
- high cost!
- scenario comparison?

INRAe

Numerical simulation

- huge amout of methods: equation solvers, Monte-Carlo methods, production systems, neural networks, agent-based simulation...
- "Black boxes" vs. explicit knowledge/processes

Criteria for choosing a method:

- mathematical vs. rule-based model (e.g. physics vs. ethology)
- average behaviour vs. individual variability
- goal: predict vs. understand
- data availability vs. domain-specific knowledge (data-based vs. mechanistic)
- spatial or temporal specificities
- capability to support assumption revision easily
- interaction with non-modellers scientists

> Epidemiological mechanistic models: foundations

- impact of smallpox inoculation (D. Bernoulli, 1760): mathematical study
- compartmental models (A. G. McKendrick & W. O. Kermack, 1927)
 - \rightarrow a mechanistic description of the infectious process
 - **states:** Susceptible, Infectious, Resistant...
 - → underly the visible part of a disease (clinical signs...)
 - ► rates: indirect observations! e.g. transmission rate = probability of contact × probability of transmission per contact (depends on excretion by infectious, susceptibility...)
 - ► indicators: R₀ (basic reproduction number): expected total number of direct cases caused by 1 infectious individual in a fully susceptible population
 NRAW

> Epidemiological mechanistic models: compartments

based on differential equations (chemical-like), e.g. for SIR with demography:

$$\begin{cases} \frac{\mathrm{d}S}{\mathrm{d}t} &= & -\beta \frac{1}{N}S + bN - \mu S \\ \frac{\mathrm{d}I}{\mathrm{d}t} &= & \beta \frac{1}{N}S - \gamma I & -\mu I \\ \frac{\mathrm{d}R}{\mathrm{d}t} &= & \gamma I & -\mu R \end{cases}$$

• enables analytical study (equilibria, R_0 , chaotic behaviour...) + easy to compute (solvers) e.g. here: $R_0 = \frac{\beta}{\gamma + \mu}$

> Epidemiological mechanistic models: compartments

based on differential equations (chemical-like), e.g. for SIR with demography:

enables analytical study (equilibria, R_0 , chaotic behaviour...) + easy to compute (solvers) e.g. here: $R_0 = \frac{\beta}{\gamma + \mu}$

INR AP

> Limitations of equation-based approaches

Strong underlying assumptions

- **continuous populations** \rightarrow large populations, no dramatic event "artificial" persistence of infection (l > 0)
- **▶** average behaviour → homogeneous individuals, homogeneous mixing
- determinism ← large populations + average behaviour smaller and more diversified populations are rather stochastic

Requires mathematical skills!

→ hinders interaction with non-modellers scientists esp. for assumption validation/revision

▶ An alternative representation: flow diagrams

- visual representation instead of mathematical formalism
- formally equivalent to an ODE system...
- ... assuming strict conventional denotations (e.g. arrow semantics)
- ... and many implicit assumptions
- may become hard to read in complex pathosystems

INR AP

> From deterministic to stochastic models

- inherent stochasticity of biological systems
- manipulation of discrete, potentially small, populations
- better account of rate events (e.g. extinction)

Converting rates to probabilities?

- **assuming Markovian process** system state at t + 1 only depends on state at t
- \rightarrow then: duration of states \sim exponential distribution

Key modelling choice: **time model** (continuous vs. discrete)

Counterpart: repeat experiments!

> Continuous time: the Gillespie algorithm (1976)

- (r_i) : rates of all transitions occurring in the system
 - **1.** at time t, compute τ , **time to wait** before next event:

$$au \sim \mathsf{Exponential}(\frac{1}{\sum_i r_i})$$

2. determine **which event** will occur: $x \sim \text{Uniform}(0, \sum_i r_i)$

3. jump to time $t + \tau$, perform 1 transition and iterate

Accurate calculation \rightarrow complex when many interactions

Discrete time stochastic models

Approximation: aggregation of events occurring during time step δt

 \rightarrow easier integration of rule-based processes

Births: \sim Poisson($b N \delta t$)

Transitions: Probability calculated from rates + multinomial sampling, e.g.:

- ightharpoonup total exit rate from I: $r_I = \gamma + \mu$
- robability to leave state I: $1 e^{-r_l \delta t}$

 $oldsymbol{\Lambda}$ KEEP δ t SMALL ENOUGH!

• probability $I \to R$: $\frac{\gamma}{r_l} (1 - e^{-r_l \delta t})$

> From compartmental to individual-based models (IBM)

Individuals are required to model finer-grained features

- idiosyncratic differences
- history of individuals
- explicit interactions

... when such features are **necessary** in the model

Flow diagrams can be translated into IBM \rightarrow high computational cost

- probabilities: same calculation
- ▶ Bernouilli trial (instead of multinomial sampling) × number of individuals

Diversity of scales

Pathogen spread and control must be considered at several scales:

- intra-host (→ immunology)
- within-population
 - interactions between individuals
 - population structure, explicit/aggregated individuals
 - control: vaccination, quarantine, selective removal...
- between-population (metapopulations)
 - mobility patterns, contact network
 - environmental/meteorological drivers
 - control: movement restrictions, public policies...

INRAe

> To go further...

M. J. Keeling and P. Rohani

Modeling Infectious Diseases in Humans and Animals, Princeton University Press, 2008

O. Diekmann, H. Heesterbeek, T. Britton

Mathematical Tools for Understanding Infectious Disease Dynamics
Princeton University Press, 2013

> Challenges in complex epidemiological models

From model to code: three major issues

Transparency

Readability

Revisability

Impact

⚠ assumptions validation

♠ predictions reliability

 ⚠ modellers' reactivity

Software engineering helps!

- structured programming
- version control (e.g. git)
- thorough documentation
- intensive testing

... but is not enough

> Classical model development process

> Classical model development process

- time-consuming
- lack of reliability
- no co-construction

INRAe

> Artificial Intelligence methods: EMULSION framework

Generic frame for epidemiological modelling

- Transparency model assumptions/structure explicit
- ► Readability structured text → diagrams
- Revisability little (no) code to write
- → faster and more reliable development

[Picault & al. 2017, 2019]

EMULSION: rationale & principles

0000000

Open source diffusion: https://sourcesup.renater.fr/www/emulsion-public

> Processes: from flow diagrams to state machines

Transformation in knowledge representation

Flow diagrams

- generic representation
- paradigm-independent (compartments / IBM...)
- implicit knowledge
- domain mixing
- additions when coding

State machines

- \odot one machine \leftrightarrow one process
- explicit **individual** durations, conditions, actions

Multiple paradigms and scales

Flexible multi-level agent-based simulation architecture

From individuals to groups

From single population to metapopulation

Doctoral training, 2021/BIOEPAR/S, Picault

▶ A modular architecture for multiple processes

QfeverHerd (MultiProcessManager) QfeverCow (AtomAgent)

DSL – basic syntactic rules: YAML (1)

EMULSION models are structured text files based on YAML syntax

- delimitation of blocks: 2-space indentation
- comments: # this is a comment
- values: 3.14, 'some text', yes
- ▶ lists: [value1, value2, value3]
 - value1
 - value2
 - value3
- key-value mappings: {key1: value1, key2: value2, key3: value3}

key1: value1 kev2: value2 key3: value3

> DSL - basic syntactic rules: YAML (2)

All base elements can be combined and nested to form complex structures:

```
# Here a (first-level) key mapped to a list
kev1: [v1, v2, v3]
# Here a key mapped to another mapping
key2:
  subkey1:
    # the value associated with subkey1 is a list
    - item1
    - item2
  subkey2: 'an important message'
  subkev3:
    # and each item of the list below is a mapping
    - another: value1
      withother: value2
    - another: value3
      withother: value4
      INR AP
```


EMULSION recipes

> EMULSION model structure

EMULSION models are composed of several "sections" (first-level keys)

IBM and hybrid models

- let's dive into step1.yaml!
 - launch Binder configuration
 - exercises folder \rightarrow double-click step1.yaml
 - read the sections

► check EMULSION documentation → Modelling Language (basics)

Model info Time

Levels

Processes

State machines **Parameters**

Initial cond.

Outputs

> EMULSION: built-in functions, variables...

Functions

- logical: AND(x, y, ...), OR(x, y, ...),
 NOT(x)
- conditional: IfThenElse(cond, valThen, valElse)
- math: MIN(x, y, ...), MAX(x, y, ...),
 DIV(a, b))
- wrappers for numpy.random: random_bool, random_poisson...
- classical math functions: sqrt, exp, sin... and constants: pi

Variables

- for each level e.g. herd: total_herd
- for each state machine e.g. health_state: vars of same name containing the current state (e.g. S, I...)
- for each state e.g. S, I...
 - total_S, total_I...
 - boolean vars is_S, is_I...
- - → variables of the form total_S_J (combinations of states, in order)

> Exercise 1: EMULSION's "hello world"

- overview on model structure and syntax
- explore command-line commands and options
- modify parameters

INRAQ,

First contact

000000

> Exercise 2: adding a process

Demography is independent from infection \rightarrow represented as a distinct process

- new state machine (age_group)
- new process (= when to execute the state machine)

EMULSION features

default states

First contact

000000

- autoremove states
- productions links
- prototypes and where to use them

INRAe

> Exercise 3: play with durations

EMULSION features

- non-exponentially distributed durations in states constant / sampled in any distribution
- escape condition: leaving state while duration not over

Scale change

> Exercise 4: contact structure

EMULSION features

INRAQ,

First contact

00000

- using implicit groupings based on state machines
- automatically defined variables

> Exercise 5: from compartments to IBM

•0000

- syntactic transformations
- explicit groupings
- performance loss

Exercise 6: from compartments to hybrid models

IBM and hybrid models

00000

EMULSION features

INR AP

- a combination between compartments and IBM
- performance improvement

> Exercise 7: more individual differences

- individual variables
- actions when entering, staying, or leaving states
- variable aggregation at upper level

00000 > Exercise 8: detection and control

IBM and hybrid models

- explicit model for detection (more state machines!)
- actions when entering, staying, or leaving states
- variable aggregation at upper level

> Exercise 9: isolation

EMULSION features

explicit model for the modification of the contact structure (more state machines!)

IBM and hybrid models

0000

- more complex groupings
- variable aggregation at upper level

• 0 0

> Exercise 10: one level up!

- new aggregation type (metapopulation)
- recursive initialization
- state machines working at population scale
- aggregate variables at metapopulation scale
- conditional interruption

> Exercise 11: connecting to data

- data-driven movements
- requires features not yet provided as generic components in EMULSION
- necessity to write a code add-on

EMULSION features

INR AP

- data-based initial conditions
- data-based time-dependent population parameters
- ▶ link between model file and Python code add-on
- preprocessing and processes defined in the add-on
- retrieve model components (parameters, prototypes) in Python code

Exercise 12: late revisions of initial assumptions

Scale change

00

- **modularity** of model file → limited revision impact
- examples of built-in actions e.g.
 - **become** which helps coupling state machines
 - set upper var which modifies variables at upper level

(NO! It's not again about COVID!!!)

Re-implementation with EMULSION of: Massad et al. 2001

EMULSION features

- multiple species
- vector-borne disease
- non-trivial population dynamics
- several control methods
- connection with shell/R scripts to explore the efficacy of control methods

Guess what are the vectors?

> First step: identify processes

To figure out how the model works:

- read the flow diagram
- read the equations
- read the text

Hard to reproduce?

Model decomposition

Two state machines: species (population dynamics) + health states (infection)

> Control methods

Vaccination

Bat mortality

INRAe

rst contact IBM and hybrid models Scale change A case study Conclusion

○○○○ ○○○● ○○○

> Model exploration

- ightharpoonup EMULSION is run in command-line ightharpoonup easy to automatize experiment plans
- ► EMULSION outputs are in CSV format
 - ightarrow easy to handle with classical stat tools (R...) or inject into databases

A workflow with EMULSION

- 1. Design and test your model
- 2. Define relevant outputs for strategy assessment
- 3. Identify control parameters and build experiment plan
- 4. Run the scenarios (pref. with computing cluster!)
- 5. Assemble outputs and analyse
- → scenario exploration, sensitivity analysis, parameter inference...

INR AP

> Added-value of EMULSION

- make models readable, explicit, revisable
- foster modular models based on separate processes
- facilitate changes in paradigms (between compartments and IBM)

IBM and hybrid models

facilitate scale changes (back and forth)

- models automatically handled by simulation engine
- yet extensible (code add-ons)
- command-line: easy deployment on calculation servers

INRAe

irst contact IBM and hybrid models Scale change A case study Conclusion

> What's next?

- extend language and simulation engine to cover a broad range of modelling needs
- diversified diseases: ASF, BRD, Q fever, BVD, RVF, campylobacteriosis, brucellosis, PRRS...
- open-source: contributions welcome!

https://sourcesup.renater.fr/www/emulsion-public

Coming soon...!

Automatized production of **decision-support tools** from EMULSION models!

> That's all folks!

Thank you for participating!

Follow us: bioepar_dynamo

INRAe

