Задача 12

Предсказать сорт винограда, из которого сделано вино, используя результаты химических анализов , с помощью KNN — метода k ближайших соседей с тремя различными метриками. Построить график зависимости величины ошибки от числа соседей k.

Загрузим датасет с информацией о винах:

Out[2]:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735

Загруженные данные не содержат пропусков, признакии являются действительными числами, поэтому их можно использовать для обучения модели без предварительной обработки.

Реализуем KNN. Из опсания данных видно, что классы достаточно сбалансированы, поэтому в качестве метрики качества будем использовать ассигасу. В качестве метрик для классификатора будем использовать евклидову, манхэттенскую и чебышевсткую метрики, предварительно зафиксировав random state для воспроизводимости результатов:

Из графика видно, что евклидова и чебышевская метрика в зависимости от числа соседей ведут себя

схожим образом, в то время как манхэттенская метрика почти при всех значениях k показывает несколько лучший результат. Другое наблюдение, касающееся манхэттенской метрики, заключается в том, что значение ассигасу при ее использовании слабо зависит от k, в отличие от евклидовой и чебышевской метрик, имеющих явный спад на графике при k примерно равном 10.

Таким образом, из графика можно сделать вывод, что хотя все три метрики показывают в целом схожие значения точности, наилучший результат accuracy = 0.82 можно получить, используя манхэттенскую метрику при k=1 (т. е. метод ближайшего соседа).