CLAIMS

What is claimed is:

1	1. A method of fabricating a microelectronic package, comprising:
2	providing a substrate having a first surface, an opposing second surface, and a
3	plurality of lands disposed on said first surface;
4	forming a through-hole extending from said substrate first surface to said
5	substrate second surface;
6	providing a microelectronic die having an active surface, a back surface, and a
7	plurality of pads disposed on said active surface in a corresponding relationship to said
8	plurality of substrate lands;
9	electrically attaching said plurality of substrate lands to said plurality of
10	corresponding microelectronic die pads with a plurality of conductive bumps;
11	disposing an underfill material through said through-hole such that said underfill
12	material is dispersed between said microelectronic die active surface and said substrate
13	first surface.

- 1 2. The method of claim 1, wherein forming said through-hole comprises
- 2 forming said through-hole by at least one of the methods consisting of drilling, laser
- 3 ablation, and etching.

- 3. The method of claim 1, wherein disposing said underfill material
 comprises positioning an underfill material dispensing device proximate said through-hole and injecting said underfill material into said through-hole.
- 4. The method of claim 1, wherein positioning said underfill material
 dispensing device proximate said through-hole comprises positioning a dispensing needle
 proximate said through-hole.
- 5. The method of claim 1, wherein disposing said underfill material
 comprises disposing an epoxy material.
- 1 6. The method of claim 1, further including curing said underfill material.
- 7. A method of fabricating a microelectronic package, comprising:
 providing a substrate having a first surface, an opposing second surface, and a
 plurality of lands disposed on said first surface;
- forming a through-hole extending from said substrate first surface to said substrate second surface;
- providing a microelectronic die having an active surface, a back surface, and a
 plurality of pads disposed on said active surface in a corresponding relationship to said
 plurality of substrate lands;

- electrically attaching said plurality of substrate lands to said plurality of
 corresponding microelectronic die pads with a plurality of conductive bumps;

 positioning said microelectronic die and said substrate such that said
 microelectronic die is gravitationally below said substrate; and
 disposing an underfill material through said through-hole such that said underfill
 material is dispersed between said microelectronic die active surface and said substrate
 first surface.
- 1 8. The method of claim 7, wherein forming said through-hole comprises 2 forming said through-hole by at least one of the methods consisting of drilling, laser 3 ablation, and etching.
- 9. The method of claim 7, wherein disposing said underfill material comprises positioning an underfill material dispensing device proximate said throughhole and injecting said underfill material into said through-hole.
- 1 10. The method of claim 9, wherein positioning said underfill material
 2 dispensing device proximate said through-hole comprises positioning a dispensing needle
 3 proximate said through-hole.
- 1 11. The method of claim 7, wherein disposing said underfill material comprises disposing an epoxy material.

1

12.

1	13. A method of fabricating a microelectronic package, comprising:
2	providing a substrate having a first surface, an opposing second surface, a
3	plurality of lands disposed on said first surface, and at least one wirebond land on said
4	first surface;
5	forming a through-hole extending from said substrate first surface to said
6	substrate second surface;
7	providing a microelectronic die having an active surface, a back surface, and a
8	plurality of pads disposed on said active surface in a corresponding relationship to said
9	plurality of substrate lands;
10	electrically attaching said plurality of substrate lands to said plurality of
11	corresponding microelectronic die pads with a plurality of conductive bumps;
12	disposing an underfill material through said through-hole such that said underfill
13	material is dispersed between said microelectronic die active surface and said substrate
14	first surface;
15	providing a second microelectronic die having an active surface, a back surface,
16	and at least one wirebond pad disposed on said active surface;
17	attaching said second microelectronic die back surface to said microelectronic die
18	back surface; and

The method of claim 7, further including curing said underfill material.

- attaching at least one wirebond between said at least one substrate wirebond land and said second microelectronic die wirebond pad.
 - 1 14. The method of claim 13, wherein forming said through-hole comprises
 - 2 forming said through-hole by at least one of the methods consisting of drilling, laser
 - 3 ablation, and etching.
 - 1 15. The method of claim 13, wherein disposing said underfill material
 - 2 comprises positioning an underfill material dispensing device proximate said through-
 - 3 hole and injecting said underfill material into said through-hole.
 - 1 16. The method of claim 15, wherein positioning said underfill material
 - 2 dispensing device proximate said through-hole comprises positioning a dispensing needle
 - 3 proximate said through-hole.
 - 1 17. The method of claim 13, wherein disposing said underfill material
 - 2 comprises disposing an epoxy material.
 - 1 18. The method of claim 13, further including curing said underfill material.

- 1 19. The method of claim 13, wherein said attaching said second
- 2 microelectronic die back surface to said microelectronic die back surface comprises
- 3 disposing a layer of adhesive therebetween.
- 1 20. The method of claim 13, wherein further including positioning said
- 2 microelectronic die and said substrate such that said microelectronic die is gravitationally
- 3 below said substrate prior to disposing said underfill material.