Databases

L2 sciences et technologies, mention informatique

conjunctive queries

how to query this database (with a logic-based language)?

movies	title	director	year	directors	name	nationality
	starwars	lucas	1977		lucas	american
	nikita	besson	1990		lynch	american
	locataires	ki-duk	2005		besson	french
	dune	lynch	1984		ki-duk	korean

patrick.marcel@univ-tours.fr http://celene.univ-tours.fr/course/view.php?id=3131

queries

examples of queries:

- 1. who directed "dune" ?
- 2. what is the release year of "nikita" ?
- 3. what is the nationality of the director of "locataires"?
- 4. list movies directed by americans

query #4

"list movies directed by americans"

with variables ranging over tuples:

if there are tuples t_1 , t_2 in movies and directors such that nationality of t_2 is "american" and director of $t_1 = name$ of t_2 then answer contains the title of t_1

query #4

"list movies directed by americans"

with variables ranging over the constants of **Dom**:

if there are tuples (r,"american"),(t,r,a) in *directors* and *movies* then tuple (t) is included in the answer

query #4

with a rule-based formulation:

```
american\_movies(t) \leftarrow directors(r,"american"),movies(t,r,a).
```

if

- there exists a value for r associated with "american" in the instance of directors, and
- this value is also in the instance of movies associated with some values for title and year,

then the value of t associated with the value of r in the instance of movies is included in the answer

rule-based conjunctive queries

rule-based language

a *conjunctive query* over a database schema D is an expression of the form:

$$ans(u) \leftarrow R_1(u_1), \dots, R_n(u_n)$$

rule-based language

a *conjunctive query* over a database schema D is an expression of the form:

$$ans(u) \leftarrow R_1(u_1), \ldots, R_n(u_n)$$

- ▶ ans(u) is called the head of the rule
- $ightharpoonup R_1(u_1), \ldots, R_n(u_n)$ is called the **body** of the rule
- ▶ the $R(u_i)$'s are called atoms

in this rule

 R_i is a relation name in D

ans $\notin D$ is a relation name

 u_i is an expression of the form e_1, \ldots, e_{m_i}

the e_j 's are variables of **var** or constants of **dom**

the variables of this rule

they are range restricted:

each variable appearing in u must appear at least once in u_1, \ldots, u_n the set of variables of query q is noted var(q)

"who is the director of dune?"

$$ans(r) \leftarrow movies("dune", r, a).$$

"who is the director of dune?"

$$ans(r) \leftarrow movies("dune", r, a).$$

"what is the release year of nikita?"

$$ans(a) \leftarrow movies("nikita", r, a).$$

valuation

let $V \subset \mathbf{var}$

a valuation v over V is a function from V to **dom**

valuation

let $V \subset \mathbf{var}$

a valuation v over V is a function from V to **dom**

a valuation v associates a value with each variable

free tuple

let U be a set of attributes in the named approach

a *free tuple* over U is a function form U to $\mathbf{var} \cup \mathbf{dom}$

free tuple

let U be a set of attributes in the named approach

a *free tuple* over U is a function form U to $\mathbf{var} \cup \mathbf{dom}$

let t be a free tuple and v be a valuation

v(t) is the tuple t where variables are replaced by their valuation

let
$$V = \{t, r, a\} \subset \mathbf{var}$$

 v_1, v_2, v_3 are three valuations :

$$v_1(t) = \text{starwars}, \ v_1(r) = \text{lucas}, \ v_1(a) = 1977$$

let
$$V = \{t, r, a\} \subset \mathbf{var}$$

 v_1, v_2, v_3 are three valuations :

- $v_1(t) = \text{starwars}, \ v_1(r) = \text{lucas}, \ v_1(a) = 1977$
- $v_2(t) = \text{dune}, \ v_2(r) = \text{lynch}, \ v_2(a) = 1984$

let
$$V = \{t, r, a\} \subset \mathbf{var}$$

 v_1, v_2, v_3 are three valuations :

- $v_1(t) = \text{starwars}, \ v_1(r) = \text{lucas}, \ v_1(a) = 1977$
- $v_2(t) = \text{dune}, \ v_2(r) = \text{lynch}, \ v_2(a) = 1984$
- $v_3(t) = 1977, v_3(r) = 1984, v_3(a) = 1977$

the image of a query q

let
$$q$$
 be a query $ans(u) \leftarrow R_1(u_1), \dots, R_n(u_n)$

let I be a database instance of schema D

the *image* of (the answer to) q over I is:

$$q(I) = \{v(u)|v \text{ is a valuation over } var(q) \text{ and } v(u_i) \in I(R_i) \text{ for all } i \in [1, n] \}$$

query #4: $american_movies(t) \leftarrow directors(r,"american"), movies(t,r,a)$.

```
query #4: american\_movies(t) \leftarrow directors(r,"american"),movies(t,r,a).

consider I the following database instance

I = \{movies(starwars,lucas,1977),movies(nikita,besson,1990), \\ movies(locataires,ki-duk,2005),movies(dune,lynch,1984) \\ directors(lucas,american),directors(lynch,american), \\ directors(ki-duk,korean),directors(besson,french)\}
```

valuations v_1 and v_2 such that:

- $v_1(t) = \text{starwars}, \ v_1(r) = \text{lucas}, \ v_1(a) = 1977$
- $v_2(t) = dune, v_2(r) = lynch, v_2(a) = 1984$

valuations v_1 and v_2 such that:

$$v_1(t) = \text{starwars}, \ v_1(r) = \text{lucas}, \ v_1(a) = 1977$$

$$v_2(t) = dune, v_2(r) = lynch, v_2(a) = 1984$$

$$q(I) = \{american_movies("starwars"), american_movies("dune")\}$$

is the answer to the query

$$ans(w) \leftarrow movies(x, y, z)$$

is not range restricted

logically, the answer to this query is infinite...

active domain

for a database instance I and a query q

we note:

- adom(I) the set of constants appearing in I the active domain of the instance
- adom(q) the set of constants appearing in q
 the active domain of the query

in the previous example:

$$adom(I) = \{starwars, lucas, american, 1984, dune, ...\}$$

$$adom(q) = \{american\}$$

what is q(I)?

```
we note adom(q, I) = adom(q) \cup adom(I)

q is a range restricted query over I

therfore adom(q(I)) \subseteq adom(q, I)

therefore q(I) is a finite set
```

extension and intention

$$ans(u) \leftarrow R_1(u_1), \ldots, R_n(u_n)$$

if relations R_i are stored

they are said to be defined in extension

extension and intention

$$ans(u) \leftarrow R_1(u_1), \ldots, R_n(u_n)$$

if relations R_i are stored

they are said to be defined in extension

if ans is not stored

it is said to be an intentional definition

boolean query

example: is there a movie whose release year is 1990?

boolean query

example: is there a movie whose release year is 1990?

$$ans() \leftarrow film(t, r, 1990)$$

answer

- $\{()\}$ then yes
- ∅ otherwise

conjunctive calculus

conjunctive calculus

$$ans(e_1,\ldots,e_m) \leftarrow R_1(u_1),\ldots,R_n(u_n)$$

syntactical variation:

$$\{e_1,\ldots,e_m|\exists x_1,\ldots,x_k(R_1(u_1)\wedge\ldots\wedge R_n(u_n))\}$$

conjunctive calculus

$$ans(e_1,\ldots,e_m) \leftarrow R_1(u_1),\ldots,R_n(u_n)$$

syntactical variation:

$$\{e_1,\ldots,e_m|\exists x_1,\ldots,x_k(R_1(u_1)\wedge\ldots\wedge R_n(u_n))\}$$

- $ightharpoonup x_1, \ldots, x_k$ are variables appearing in the body and not in the head
- ▶ ∧ is the logical conjunction ("and")
- ▶ ∃ is the existential quantification ("there exists")

query #4 expressed in the conjunctive calculus:

 $\{t|\exists r, a, \, \mathsf{directors}(r, "\mathsf{american"}) \, \land \, \mathsf{movies}(t, r, a)\}$

the syntax of the conjunctive calculus

let D be a database schema

- a formula over D is an expression of the form:
 - 1. an atom $R(e_1, \ldots, e_n)$ over D
 - 2. $(\varphi \wedge \psi)$ where φ and ψ are formulas over D, or
 - 3. $\exists x \varphi$ where x is a list of variables and φ is a formula over D

conjunctive calculus formulas:

movies("starwars", r," 1977")

```
conjunctive calculus formulas: \mathsf{movies}("\mathsf{starwars}", r, "\mathsf{1977}") \mathsf{directors}("\mathsf{lucas}", n) \land \mathsf{directors}("\mathsf{lynch}", n)
```

free/bound variable

an occurrence of a variable x in a formula φ is free if

- 1. φ is an atom, or
- 2. $\varphi = (\psi \land \xi)$ where x is free in ψ or ξ
- 3. $\varphi = \exists y \psi$ where y is distinct of x and x is free in ψ

free/bound variable

an occurrence of a variable x in a formula φ is *free* if

- 1. φ is an atom, or
- 2. $\varphi = (\psi \land \xi)$ where x is free in ψ or ξ
- 3. $\varphi = \exists y \psi$ where y is distinct of x and x is free in ψ

a variable that is not free is bound

 $free(\varphi)$: the set of free variables of φ

conjunctive calculus query

a query is an expression of the form

$$\{e_1,\ldots,e_n|\varphi\}$$

where φ is a formula, and variables in (e_1, \ldots, e_n) are exactly $free(\varphi)$

in

$$\{t|\exists r, a \; (\mathsf{directors}(r, "\mathsf{american"}) \land \; \mathsf{movies}(t, r, a))\}$$

t is free

r and a are bound

valuation

defined as previously, and written $\{x_1/a_1,\ldots,x_n/a_n\}$

we note $v|_V$ the restriction of v to the set V

valuation

defined as previously, and written $\{x_1/a_1, \ldots, x_n/a_n\}$

we note $v|_V$ the restriction of v to the set V

v is a valuation over V, $x \notin V$, $c \in \mathbf{dom}$, $v \cup \{x/c\}$ is a valuation over $V \cup \{x\}$

- identical to v over V
- associating x with c

satisfaction of a formula

I a database instance *satisfies* a formula φ under valuation v (noted $I \models \varphi[v]$) if

1. $\varphi = R(u)$ is an atom and $v(u) \in I(R)$, or

satisfaction of a formula

I a database instance *satisfies* a formula φ under valuation v (noted $I \models \varphi[v]$) if

- 1. $\varphi = R(u)$ is an atom and $v(u) \in I(R)$, or
- 2. $\varphi = (\psi \land \xi)$ and $I \models \psi[v|_{free(\psi)}]$ and $I \models \xi[v|_{free(\xi)}]$, or

satisfaction of a formula

I a database instance *satisfies* a formula φ under valuation v (noted $I \models \varphi[v]$) if

- 1. $\varphi = R(u)$ is an atom and $v(u) \in I(R)$, or
- 2. $\varphi = (\psi \land \xi)$ and $I \models \psi[v|_{free(\psi)}]$ and $I \models \xi[v|_{free(\xi)}]$, or
- 3. $\varphi = \exists x \psi$ and there exists $c \in dom$, $I \models \psi[v \cup \{x/c\}]$

let I be the database instance depicted on slide #1

consider the formula $\varphi = \exists r, a \text{ (directors}(r,"american") \land movies(t,r,a))}$

I satisfies φ under v if v is such that v(t) = starwars

let I be the database instance depicted on slide #1 consider the formula $\varphi=\exists r,a$ (directors $(r,"american")\land movies(t,r,a)$) I satisfies φ under v if v is such that v(t)= starwars I does not satisfy φ under v' such that v'(t)= nikita

image

let $q = \{e_1, \dots, e_m | \varphi\}$ be a conjunctive query over D and I an instance of D

the image of I by q, noted q(I), is:

$$q(I) = \{v((e_1, \dots, e_m)) | I \models \varphi[v] \text{ and } v \text{ is a valuation over } free(\varphi)\}$$

```
consider query q = \{t | \exists r, a \text{ (directors}(r, "american") \land movies}(t, r, a))\} and let I be the database instance depicted on slide \#1 q(I) = \{(\text{"starwars"}), (\text{"dune"})\}
```

why studying conjunctive queries?

- ▶ they are simple
- they represent an important part of usual queries
- they have interesting properties

monotony

a query q over D is *monotonous* if for any instance I, J of D:

$$I \subseteq J$$
 implies $q(I) \subseteq q(J)$

 $\mathsf{query}\ \mathit{q} = \mathsf{american_movies}(\mathit{t}) \leftarrow \mathsf{directors}(\mathit{r}, "\mathsf{american"}), \mathsf{movies}(\mathit{t}, \mathit{r}, \mathit{a}).$

```
query q=american\_movies(t) \leftarrow directors(r,"american"),movies(t,r,a).

I and J: databases instances with 
I=\{movies(starwars,lucas,1977),movies(nikita,besson,1990),\\ movies(locataires,ki-duk,2005),movies(dune,lynch,1984),\\ directors(lucas,american),directors(lynch,american),\\ directors(ki-duk,korean),directors(besson,french)\}
```

 $J \subset I$

```
q(I) = \{american\_movies("starwars"), american\_movies("dune")\} q(J) = \{american\_movies("dune")\}
```

```
q(I) = \{ american\_movies("starwars"), american\_movies("dune") \} q(J) = \{ american\_movies("dune") \} q(J) \subset q(I)
```

non monotonous queries

example of non monotonous queries:

consider relation actors of schema actors[name,directed_by]

who are the actors who were directed only by "lucas"?

non monotonous queries

example of non monotonous queries:

consider relation actors of schema actors[name,directed_by]

who are the actors who were directed only by "lucas"?

$$I(actors) = \{(ford, lucas), (ford, spielberg)\}, q(I) = \emptyset$$

$$J(actors) = \{(ford,lucas)\}, q(J) = \{ford\}$$

satisfiability

a query q is *satisfiable* if there exists an instance I such that q(I) is non empty

satisfiability

a query q is *satisfiable* if there exists an instance I such that q(I) is non empty

example of unsatisfiable query:

is there a movie called "starwars" and "dune"?

theorem:

conjunctive queries are monotonous and satisfiable

theorem:

conjunctive queries are monotonous and satisfiable

demonstration left as an exercise...

any conjunctive query q can be written under the form

$$\{e_1,\ldots,e_m|\exists x_1,\ldots,x_p(R_1(u_1)\wedge\ldots\wedge R_n(u_n))\}$$

evaluating q over an instance I just needs constants in adom(q, I)

let
$$q=\{u|\varphi\}$$
 and $q'=\{w|\psi\}$ be conjunctive queries with $free(q)=free(q')$ q and q' are equivalent $(q\equiv q')$ if for any I and v , $I\models\varphi[v]\iff I\models\psi[v]$

```
\{x|\exists y,z \; \mathsf{movies}(y,x,z) \; \land \; \mathsf{directors}(x,\mathsf{korean}) \; \} and \{a|\exists b,c \; \mathsf{directors}(a,\mathsf{korean}) \; \land \; \mathsf{movies}(b,a,c) \; \} are two equivalent queries
```

for conjunctive queries, the rule-based language \mathcal{Q}_1 and the conjunctive calculus \mathcal{Q}_2 are equivalent

they can express exactly the same queries

formally:

$$\forall q_1 \in Q_1, \exists q_2 \in Q_2, q_1 \equiv q_2$$

$$\forall q_1 \in Q_2, \exists q_2 \in Q_1, q_1 \equiv q_2$$

query composition

a conjunctive program P on a database D is a sequence of conjunctive queries

$$S_1(u_1) \leftarrow body_1$$

 $S_2(u_2) \leftarrow body_2$
...
 $S_n(u_n) \leftarrow body_n$

where the S_i 's are pairwise distinct, and are not in D

query composition

the relations that can appear in $body_i$ are

- relations of D and
- \triangleright S_1,\ldots,S_{i-1}

any conjunctive program can be written under the form of a single rule

the program

$$S(x,y) \leftarrow R(x,y), Q(y).$$

$$T(y) \leftarrow Q(x), S(x, y).$$

$$U(x,y) \leftarrow T(x), R(x,y).$$

can be written

$$U(x, y) \leftarrow R(x, y), Q(z), R(z, x), Q(x).$$

closure by composition

theorem:

the composition of conjunctive queries is a conjunctive query