Introduction to Cryptography - Exercise session 3

Prof. Sebastian Faust

November 7, 2018

The purpose of this exercise session is to recall the concept of: a One-Way Function (OWF), a Pseudorandom Function (PRF) and a symmetric encryption scheme secure under the Chosen Plaintext Attack (CPA). For each of these primitives you can find the recap of the definition in a gray box.

ONE WAY FUNCTION

For a function $f: \{0,1\}^* \to \{0,1\}^*$ and for a ppt algorithm \mathcal{A} , define the inversion exepriment $\mathbf{Invert}_{\mathcal{A},f}(n)$ as follows:

 $\mathbf{Invert}_{\mathcal{A},f}(n)$:

- 1. Choose $x \leftarrow \{0,1\}^n$ uniformly at random and compute y := f(x).
- 2. $x' \leftarrow \mathcal{A}(1^n, y)$
- 3. If f(x') = y output 1, else output 0.

Definition 1 (One Way Function) A function $f: \{0,1\}^* \to \{0,1\}^*$ is one-way if the following holds

- 1. Easy to Compute: \exists ppt algorithm \mathcal{M}_f , s.t. $\forall x \in \{0,1\}^* : \mathcal{M}_f(x) = f(x)$ and
- 2. Hard to Invert: \forall ppt algorithms \mathcal{A} , \exists negl s.t.

$$\Pr[\mathbf{Invert}_{A,f} = 1] \leq \mathsf{negl}(n).$$

Solution:

Notation to be explained during the exercise session:

- Invert_{A,f}(n) this is a probabilistic algorithm that is parametrized by a ppt algorithm A and a function f which on input n outputs a bit.
- $\Pr[\mathbf{Invert}_{\mathcal{A},f} = 1]$ this denotes the probability that the experiment $\mathbf{Invert}_{\mathcal{A},f}(n)$ outputs 1. The probability is taken over the randomness of the algorithm $\mathbf{Invert}_{\mathcal{A},f}(n)$; more precisely, over the random choice of x (step 1) and the randomness of the ppt algorithm \mathcal{A} (step 2).

Exercise 1 (One-Way Functions)

Let f, g be arbitrary length-preserving one-way functions (i.e. |f(x)| = |x|). For each of the following functions f' decide, whether it is a OWF or not. If yes, give a proof else give a counter-example (assuming one-way functions exist, show that there are one-way function f, g such that f' is not a one-way function).

(a)
$$f'(x) = f(x) \oplus g(x)$$
.

Solution:

f' is not a OWF.

We design a counter-example as follows. Fix f(x) = g(x). This implies that $f'(x) = f(x) \oplus g(x) = 0$ for all x. Since f' is a constant function, is not a one-way function. (An adversary that outputs an arbitrary preimage x' always successfully wins the invert experiment.)

(b)
$$f'(x_1 \parallel x_2) = f(x_2) \parallel 0^n$$
.

Solution:

f' is a OWF. Proof by contradiction:

For the sake of contradiction, let us assume that f' is not OWF. This implies that \exists algorithm \mathcal{A}' and a positive polynomial p(n), s.t.

$$\Pr[\mathbf{Invert}_{\mathcal{A}',f'}(n)=1] > \frac{1}{p(n)}$$

Now define an algorithm \mathcal{A} as follows.

$$\begin{array}{c|c}
 & A \\
 \hline
 y = f(x) \\
 \hline
 x'_2 \\
 \hline
 & x'_1 || x'_2 \\
 \hline
\end{array}$$

This implies that A is such that s.t.

$$\Pr[\mathbf{Invert}_{\mathcal{A},f}(n)=1] \ge \Pr[\mathbf{Invert}_{\mathcal{A}',f'}(n)=1] > \frac{1}{p(n)}$$

This is a contradiction with the assumption that f is a OWF.

(c)
$$f'(x) = f(f(x))$$
.

Solution:

f'(x) is not a OWF.

We design a counter-example as follows: Given a length preserving OWF g, by part (b) of this exercise, $f(x_1||x_2) := g(x_2)||0^n|$ is a OWF. If f' is constructed using this function f, then we have

$$f'(x_1||x_2) = f(f(x_1||x_2)) = f(g(x_2)||0^n) = g(0^n)||0^n,$$

i.e. f' is a constant function and hence it is not a one-way function. (An adversary that outputs an arbitrary preimage $x_1'||x_2'|$ always successfully wins the invert experiment.)

(d) $f'(x_1, x_2) = f(x_1) \parallel f(x_2)$.

Solution:

f' is a OWF. Direct proof:

For the function f', fix an algorithm \mathcal{A}' . Let us denote $\epsilon(n)$ as follows

$$\epsilon(n) := \Pr[\mathbf{Invert}_{\mathcal{A}',f'}(n) = 1]$$

Now construct an algorithm A in the following way

$$x_{1} \leftarrow_{\$} \{0,1\}^{n}$$

$$y_{1} = f(x_{1})$$

$$x_{2} \leftarrow_{\$} \{0,1\}^{n}$$

$$y_{2} = f(x_{2})$$

$$x'_{1}$$

$$y_{2} = f(x_{2})$$

$$y_{1} \parallel y_{2}$$

$$y_{1} \parallel y_{2}$$

$$x'_{1} \parallel x'_{2}$$

$$y_{2} \parallel y_{2} \parallel y_{2}$$

$$x'_{1} \parallel x'_{2}$$

$$y_{2} \parallel y_{2} \parallel y_{2}$$

We can conclude from here that

$$\Pr[\mathbf{Invert}_{A,f} = 1] \ge \Pr[\mathbf{Invert}_{A',f'} = 1] = \epsilon(n) \tag{1}$$

By definition f is OWF. It follows from equation (1) that f' is OWF.

PSEUDORANDOM FUNCTION

Let $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ be an efficient, length-preserving, keyed function. F is a pseudorandom function if for all probabilistic polynomial-time distinguishers D, there exists a negligible function negl such that:

$$|\Pr[\mathsf{D}^{F_k(\cdot)}(1^n) = 1] - \Pr[\mathsf{D}^{f(\cdot)}(1^n) = 1]| \le \mathsf{negl}(n)$$

where the first probability is taken over uniform choice of $k \in \{0,1\}^n$ and the randomness of D, and the second probability is taken over uniform choice of $f \in \mathsf{Func}_n$ and the randomness of D.

Solution:

Concepts to be explained during the exercise session:

• $\mathsf{D}^{\mathcal{O}(\cdot)}(1^n)$ The distinguisher $\mathsf{D}^{\mathcal{O}(\cdot)}(1^n)$ is a ppt algorithm that gets as input the security parameter n. D has *oracle access* to a function \mathcal{O} . In other words, D can send a query

 $x \in \{0,1\}^n$ to the oracle and receive $\mathcal{O}(x) \in \{0,1\}^n$ as an answer. The algorithm D can make polynomially many such queries. The output of the distinguisher is a bit.

- $\Pr[\mathsf{D}^{F_k(\cdot)}(1^n) = 1]$ This denotes the probability that a distinguisher having an oracle access to the keyed function F_k outputs 1. The probability is taken over the random choice of the key k and the randomness of the distinguisher D .
- $\Pr[\mathsf{D}^{f(\cdot)}(1^n) = 1]$ This denotes the probability that a distinguisher having an oracle access to a radnom function $f \in \mathsf{Func}_n$ outputs 1. The probability is taken over the random choice of the function f and the randomness of the distinguisher D .
- Func_n = $\{f|f: \{0,1\}^n \to \{0,1\}^n\}$, i.e. Func_n is a set of all functions that take as input a bitstring of length n and output a bitstring of length n.

Exercise 2 (PRF)

For security parameter n, consider the following keyed function $F: \{0,1\}^{2n} \times \{0,1\}^n \to \{0,1\}^n$. The key is a pair (k_1,k_2) , where $k_1,k_2 \in \{0,1\}^n$ and F is defined by

$$F_{(k_1,k_2)}(x) := k_1 \oplus x \oplus k_2.$$

Show that F is not a PRF.

Solution:

We construct a distinguisher D as follows: On input 1^n and having access to oracle \mathcal{O} , D queries the oracle on 0^n and gets $c_0 := \mathcal{O}(0^n)$ as an answer and on 1^n and gets the answer $c_1 := \mathcal{O}(1^n)$. After that, D checks whether $c_0 \oplus c_1 = 1^n$ and if yes, then he outputs 1. Otherwise he outputs 0.

We will now prove that the constructed distinguisher D can with non-negligible probability distinguish between \mathcal{O} being the keyed function F or a random function f.

If $\mathcal{O} = F_{(k_1,k_2)}$ for some (randomly chosen) k_1,k_2 , we have that

$$c_0 \oplus c_1 = \mathcal{O}(0^n) \oplus \mathcal{O}(1^n) = k_1 \oplus 0^n \oplus k_2 \oplus k_1 \oplus 1^n \oplus k_2 = 1^n$$

and therefore

$$\Pr_{(k_1,k_2)\leftarrow\{0,1\}^{2n}}[\mathsf{D}^{F_{(k_1,k_2)}(\cdot)}(1^n)=1]=1. \tag{2}$$

Now if \mathcal{O} is a truly random function f, we have that $f(0^n)$ and $f(1^n)$ are random strings and hence $f(0^n) \oplus f(1^n)$ is also a random string. This implies that

$$\Pr_{f \leftarrow \mathsf{Func}(n)}[\mathsf{D}^{f(\cdot)}(1^n) = 1] = 2^{-n}.$$

We conclude that

$$|\Pr_{(k_1,k_2) \leftarrow \{0,1\}^{2n}}[\mathsf{D}^{F_{(k_1,k_2)}(\cdot)}(1^n) = 1] \ - \ \Pr_{f \leftarrow \mathsf{Func}(n)}[\mathsf{D}^{f(\cdot)}(1^n) = 1]| = 1 - 2^{-n}$$

which is clearly not negligible. It follows that F is not a PRF.

CPA-security

Consider the following experiment defined for any encryption scheme $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$, adversary \mathcal{A} , and value n for the security parameter:

The CPA indistinguishability experiment $PrivK_{A\Pi}^{cpa}(n)$:

- 1. A key k is generated by running $Gen(1^n)$.
- 2. The adversary \mathcal{A} is given input 1^n and oracle access to $\mathsf{Enc}_k(\cdot)$, and outputs a pair of messages m_0 , m_1 of the same length.
- 3. A uniform bit $b \in \{0,1\}$ is chosen, and then a ciphertext $c \leftarrow \mathsf{Enc}_k(m_b)$ is computed and given to \mathcal{A} .
- 4. The adversary A continues to have oracle access to $Enc_k(\cdot)$, and outputs a bit b'.
- 5. The output of the experiment is defined to be 1 if $b_0 = b'$, and 0 otherwise. In the former case, we say that \mathcal{A} succeeds.

Definition 2 (CPA security) A private-key encryption scheme $\Pi = (\text{Gen, Enc, Dec})$ has indistinguishable encryptions under a chosen-plaintext attack, or is CPA-secure, if for all probabilistic polynomial-time adversaries \mathcal{A} there is a negligible function negl such that

$$\Pr[\mathbf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1] \leq \frac{1}{2} + \mathsf{negl}(n)$$

where the probability is taken over the randomness used by A, as well as the randomness used in the experiment.

Solution:

To explain:

• $\mathbf{PrivK}_{A,\Pi}^{\mathsf{cpa}}(n)$

this is a probabilistic algorithm that is parameterized by a ppt algorithm \mathcal{A} and an encryption scheme $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$. The algorithm PrivK is denoted by a superscript cpa which indicates the notion of security considered. In this case it is *Chosen Plain-text Attack*, abbreviated as cpa . PrivK takes as input n and outputs a bit.

• $\Pr[\mathbf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{cpa}}(n) = 1]$

this denotes the probability that the experiment $\mathbf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{cpa}}(n)$ outputs 1. The probability is taken over the randomness of the algorithm $\mathbf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{cpa}}(n)$; more precisely, over the randomness of Gen , randomness of $\mathsf{Enc}_k(\cdot)$, random choice of the bit b, randomness of the algorithm \mathcal{A} .

Exercise 3 (CPA security - Combiner)

Let $\Pi_1 = (\mathsf{Gen}_1, \mathsf{Enc}_1, \mathsf{Dec}_1)$ and $\Pi_2 = (\mathsf{Gen}_2, \mathsf{Enc}_2, \mathsf{Dec}_2)$ be two encryption schemes for which it is known that at least one of them is CPA-secure (but you do not know which

one). Show how to construct an encryption scheme Π that is guaranteed to be CPA-secure as long as at least one of Π_1 , Π_2 is CPA-secure. Provide a full proof of your solution.

Solution:

Let n be a security parameter and let m be a message of length l. Let us define an encryption scheme $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ such that

$$\begin{split} & \mathsf{Gen}(1^n) := (\mathsf{Gen}_1(1^n), \mathsf{Gen}_2(1^n)) =: (k_1, k_2) =: k \\ & \mathsf{Enc}(k; m) := (\mathsf{Enc}_1(k_1; s_1), \mathsf{Enc}_2(k_2; s_2)) =: (c_1, c_2) =: c \\ & \mathsf{Dec}(k; c) := \mathsf{Dec}_1(k_1; c_1) \oplus \mathsf{Dec}_2(k_2; c_2) \end{split}$$

where s_1 is a a random string of length l and $s_2 := s_1 \oplus m$ (note that $s_2 \oplus s_1 = m$). We prove in the following that Π is CPA-secure.

Let us suppose by contradiction that Π is not CPA-secure. Then this means that there exists a PPT adversary \mathcal{A} and a positive polynomial p such that

$$\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1] > \frac{1}{2} + 1/p(n) \tag{3}$$

where $\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n)$ is the CPA indistinguishability experiment, defined in class. Let us denote q(n) the number of encryption queries made by \mathcal{A} before the challenge phase. using adversary \mathcal{A} , we define a PPT adversary \mathcal{A}_1 for Π_1 as follows:

\mathcal{A}		\mathcal{A}_1		Challenger
For $i \in [q(n)]$:		$k_2 \leftarrow Gen_2(1^n)$		$k_1 \leftarrow Gen_1(1^n)$
$m^{(i)} \in \{0,1\}^n$	$\xrightarrow{m^{(i)}}$	$s^{(i)} \leftarrow_{\$} \{0,1\}^{n}$ $x^{(i)} := s^{(i)} \oplus m^{(i)}$	$\xrightarrow{x^{(i)}}$	
	$ \xi^{(i)} $	$c^{(i)} := \\ (y^{(i)}, \operatorname{Enc}_2(k_2; s^{(i)}))$	$\underbrace{y^{(i)}}_{}$	$y^{(i)} := Enc_1(k_1; x^{(i)})$
$m_0', m_1' \in \{0, 1\}^n$	$\xrightarrow{m_0',m_1'}$	$s_{2} \leftarrow_{\$} \{0,1\}^{n}$ $m_{0} := s_{2} \oplus m'_{0}$ $m_{1} := s_{2} \oplus m'_{1}$	m_0, m_{\clip}	
			$\xrightarrow{c_b}$	$b \leftarrow_{\$} \{0,1\}$ $c_b := Enc_1(k_1; m_b)$
output : b'	$\overset{c_b'}{\leftarrow}$	$c_b' := (c_b, Enc_2(k_2; s_2))$		
		output : b'		

Since A_1 perfectly simulates the environment of a CPA-game for A, we have that

$$\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A}_1,\Pi_1}(n) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1] \overset{Eq.~(3)}{>} \frac{1}{2} + 1/p(n). \tag{4}$$

Similarly, let us now define A_2 a ppt adversary for Π_2 as in the following:

\mathcal{A}		\mathcal{A}_2		Challenger
For $i \in [q(n)]$: $m^{(i)} \in \{0,1\}^n$	$\stackrel{m^{(i)}}{\longrightarrow}$	$k_1 \leftarrow Gen_1(1^n)$		$k_2 \leftarrow Gen_2(1^n)$
- () ,	<u>→</u>	$s^{(i)} \leftarrow_{\$} \{0,1\}^n x^{(i)} := s^{(i)} \oplus m^{(i)}$	$\xrightarrow{x^{(i)}}$	
	$ \underbrace{c^{(i)}}_{} $	$c^{(i)} := \ (Enc_1(k_1; s^{(i)}), y^{(i)})$	$y^{(i)}$	$y^{(i)} := Enc_2(k_2; x^{(i)})$
m_0', m_1'	$\xrightarrow{m_0',m_1'}$	$s_1 \leftarrow_{\$} \{0,1\}^n$ $m_0 := s_1 \oplus m'_0$ $m_1 := s_1 \oplus m'_1$	$\xrightarrow{m_0,m_1}$	
output : N	$\overset{C_b'}{\leftarrow}$	$c_b':=(Enc_1(k_1;s_1),c_b)$	<u>C</u> b	$b \leftarrow_{\$} \{0,1\}$ $c_b := Enc_2(k_2; m_b)$
output: b'		output: b'		

Since A_2 perfectly simulates the environment of a CPA-game for A, we have that

$$\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A}_2,\Pi_2}(n) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1] \overset{Eq.~(3)}{>} \frac{1}{2} + 1/p(n). \tag{5}$$

We proved that if an adversary \mathcal{A} exists, then neither of the schemes Π_1 and Π_2 is CPA-secure, which contradicts our the hypothesis.

Exercise 4 (CPA-security - Voluntary homework exercise)

Let $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ be a deterministic, stateless symmetric encryption scheme. Then the scheme Π is not CPA-secure.

Solution:

Let us construct an adversary \mathcal{A} , such that $\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1] > \frac{1}{2} + \mathsf{negl}(n)$.

\mathcal{A}		Oracle
$m \in \{0,1\}^n$		$k \leftarrow Gen(1^n)$
$m \in \{0,1\}$	$\stackrel{m}{ ightarrow}$	$c \leftarrow Enc(k;m)$
$m_1 := m$	$\stackrel{c}{\leftarrow}$	
$m_0 \in \{0,1\}^n \text{ s.t. } m_0 \neq m$	m_0, m_1	
		$b \leftarrow_{\$} \{0, 1\}$ $c_b \leftarrow Enc(k; m_b)$
If $c_b = c$, output : 1	$\leftarrow c_b$	
Else output : 0		

If $c_b = \mathsf{Enc}(k, m_1)$, then, since the encryption function is deterministic and stateless, $c = c_b'$. Therefore \mathcal{A} always correctly outputs 1 in this case. If $c_b = \mathsf{Enc}(k, m_0)$, then \mathcal{A} always correctly outputs 0. This is because $m_1 \neq m_0$ which implies $c_b \neq c$ (correctness implies that encryption of two different messages must result in two different ciphertexts)

Overall we get

$$\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1] = 1 - 0 = 1 > \frac{1}{2} + \mathsf{negl}(n)$$

completing the proof.