

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO Centro Tecnológico Departamento de Engenharia Elétrica

Princípios de Comunicações I

Capítulo 6 – Modulação Digital

Prof.: Dr. Jair A. Lima Silva

UFES

Motivação

DVB-S

Radiodifusão Digital de Sinal de Vídeo via Satélite

 $R_b \approx 38 \text{Mbps}$

 $M = 4 \Rightarrow QPSK$

 $B \approx 2GHz$

Motivação

ADSL (Asymmetric Digital Subscriber Line)

Tecnologia de última milha que utiliza o par trançado da linha telefônica como canal de comunicação para transmissão de dados (Internet) e voz.

- Classes Full Rate e ADSL Lite
 - 8 Mbps e 800 kbps
 - 1.5 Mbps e 500 kbps
 - Downlink e Uplink rescpec.
- Espaçamento de Subportadoras:
 - 4312.5 Hz (ambos)
- *IFFT/FFT* = 512
- *IG* = 32 amostras
- *Max freq.* = 1.095 *MHz*

Conversão A/D – Ponto de Partida

A transformação de um sinal analógico em um sinal digital passa pelos seguintes processos:

- a) Amostragem
- b) Quantização
- c) Codificação

Conversão A/D – Amostragem

5

O processo de amostragem mais utilizado e recomendado em conversores A/D é o **PAM** (*Pulse Amplitude Modulation*). Neste processo o sinal analógico é **discretizado** tomando amostras de sua amplitude em intervalos de tempo definidos.

Conversão A/D – Amostragem

Todo sinal antes de ser amostrado passa por um **filtro passa-faixa**. Este procedimento é necessário para se evitar que <u>frequências indesejáveis</u> sejam inseridas no processo de digitalização do sinal.

Conversão A/D – Amostragem Teorema de Nyquist

Também chamado de <u>Teorema da Amostragem</u> resumidamente determina que um sinal amostrado no tempo pode ser recuperado sem distorções desde que a **Taxa de amostragem** (f_a) seja no mínimo **duas vezes maior** do que a maior frequência (f_m) do sinal.

$$f_a \ge 2 \times f_m$$

$$t_a = \frac{1}{f_a}$$

$$t_a \le \frac{1}{2 \times f_m}$$

A mínima Taxa de amostragem $f_a = 2f_M$ é denominada de **Taxa de Nyquist**, em homenagem ao autor da formulação, o Harry Nyquist.

Conversão A/D – Amostragem Teorema de Nyquist

Conversão A/D – Amostragem Teorema de Nyquist

Exemplo

1) Qual é a taxa de amostragem de um sinal cuja largura de banda vale 10kHz (1kHz a 11kHz)?

A taxa de amostragem deve ser, no mínimo, duas vezes a mais alta freqüência no sinal. Logo,

$$fa = 2 \times (11.000) = 22.000$$
 amostras/segundo

Conversão A/D – Quantização

Depois, o sinal PAM passa pelo processo de quantização em que suas amostras receberão valores dentro de *N* níveis fixados. Nesta etapa é inserido um erro chamado de **erro de quantização**.

$$N=2^n$$

n - qtd de bits de cada amostra

Conversão A/D – Quantização

$$N=2^n$$

n - qtd de bits de cada amostra

O ITU é quem define quantos **níveis de quantização** devem ser usados para cada aplicação. Se o sinal a ser digitalizado é um sinal de voz, por exemplo, ele deve ser quantizado utilizando **256 níveis** (-127 a 127 + 0).

Conversão A/D - Codificação

Depois de quantizado, o sinal é codificado. Cada nível de tensão será representado por uma sequência de bits, sendo o primeiro bit representante do bit de sinal.

+024	00011000	-015	10001111	+125	01 1111101
+038	0 0100110	-080	11010000	+110	0 1101110
+048	00110000	-050	10110010	+090	01 011010
+039	0 0100111	+052	00110110	+088	01 011000
+026	0 0011010	+127	9 1111111	+077	01 001101
			1		

Sinal do bit + é 0 - é 1

Conversão A/D – A Codificação PCM

O resultado disso é a codificação **PCM** do termo inglês *Pulse Code Modulation*.

A largura de banda de um sinal PCM (B_{PCM}) é igual a taxa de transmissão R_b e está relacionada à banda do sinal PAM (B_{PAM}) conforme:

$$B_{PCM} = n \times B_{PAM}$$

A Codificação PCM de um Sinal de Voz

A recomendação G.711 do ITU-T - "Pulse Code Modulation (PCM) of Voice Frequencies"— estabelece que o sinal de voz para telefonia, limitado em um filtro passa-baixa, deve ser amostrado à taxa nominal de 8000 amostras por segundo e codificado com 8 bits por amostra. Cada sinal de voz codificado em PCM resulta, portanto, num sinal digital com taxa de bit

$$R_b = 64 \text{kbits/s.}$$

A Codificação PCM de um Sinal de Voz

Digitalização do Sinal de Voz – Sistema PCM - ITU

Taxa de Amostragem: 8 KSps

Quantização: 256 níveis

Codificação: 8 bits/amostra

Taxa de Transmissão: 8.000 x 8 = 64 Kbps

Na Codificação PCM de um Sinal de Áudio Digital

Para uma boa representação, é preciso colher amostras de amplitude em uma velocidade de pelo menos o dobro da frequência máxima do sinal analógico $f_a > 2f_m$

Qualidade de áudio de CD: 44.000 Sps, com cada amostra usando 16 bits. Assim,

$$R_b = n \times f_a \times 2 = 16 \times 44000 \times 2 = 1.41 \, \mathrm{Mbps}$$
 2 - gravação estéreo

Conversão A/D - Erro de Quantização

Conversão D/A – Processo Inverso

A recuperação do sinal digital deve trazer de volta os sinais da informação na forma analógica com a menor distorção possível. A conversão D/A consiste em três etapas:

Regeneração: Esta etapa recupera os bits eliminando ruído e refazendo o formato original.

Decodificação: Cada sequência de *n* bits reproduz o valor de tensão que recebeu no estágio de quantização dando origem a uma sinal analógico

Filtragem: o sinal decodificado passa por um filtro passabaixas. A partir da filtragem o sinal analógico está recuperado.

Conversão D/A – Outras Codificações

Tarefa Extra Classe

PWM

PPM:

<u>DM</u>:

1. O canal de Transmissão

a) Capacidade de Canal

- Índice

b) Distorções

2. Transmissão Digital em Banda Base

- a) Codificação de Linha
- b) Ruído

3. Avaliação de Desempenho

- a) Diagrama de Olho
- b) BER

4. Transmissão em Banda Passante

- a) Modulação PSK
- b) Modulação QAM
- c) Avaliação de Desempenho

5. Multiplexação TDM

6.1 - O canal de transmissão

Canal de transmissão

Parâmetros que caracterizam o canal de transmissão do Nível físico

- Largura de banda B, em [Hz];
- Capacidade máxima teórica do canal C, em [bit/s]
- Taxa de dados na interface digital R, em [bit/s];
- Taxa de símbolos nas interfaces analógicas, Rs [baud];
- Taxa de erro [Numero de erros de bit /Número total de bits enviados].

6.2 Capacidade máxima de um Canal

Exemplo de influência da largura de banda em relação à distorção do sinal

Teorema de Shannon

$$C = B \log_2 \left(1 + \frac{S}{N} \right)$$

6.3 Distorções em um canal de transmissão

Ruí	do	Imperfeições do Sistema de Transmissão		
Tipos	Proteção	Tipos	Proteção	
Ruído térmico ou branco	Filtros de ruído	Saltos de ganho do sinal (Gain Hits)	nv	
Ruído impulsivo	nv	Saltos de freqüência da portadora (jitter de freqüência da portadora)	nv	
Ruído eletromagnético externo	blindagem	Saltos de fase do sinal (jitter de fase)	nv	
Aterramento defeituoso ou insuficiente	Correção do sistema de aterramento	Interrupções de portadora	nv	
Descargas atmosféricas (raios)	Blindagens e melhorias de aterramentos	Intermodulação (interferência entre canais multiplexados num meio)	Precisão e tolerância do relógio do sistema	
		Cross-talk (Acoplamento capacitivo entre fios adjacentes)	Melhoria de isolamento ou afastamento dos fios	

nv: não viável

6.4 - Transmissão Digital em Banda Base

Definição: Um sinal é chamado de banda base quando o seu espectro complexo possui um <u>eixo de simetria em f=o</u>

- (a) Espectro banda Base real de um sinal
- (b) Espectro complexo do mesmo sinal

Transmissão <u>banda-base</u> também pode ser considerada como o oposto de transmissão em <u>banda-passante</u>, na qual se utiliza um processo de modulação de uma portadora para transmitir os dados.

Transmissão banda-base pode ser considerada como sinônimo de transmissão sem modulação, ou seja, utiliza somente um processo de codificação banda-base, também chamado de codificação de linha.

Codificador banda base genérico

6.5 Códigos de Linha (ou código banda base)

Podemos caracterizar um código a partir de:

- 1. Sua distribuição espectral, ou seja, quanto de sua energia total está concentrado na largura de banda do meio.
- 2. O código não deve possuir componentes espectrais próximos à frequência zero (DC) tendo em vista a exigência de acoplamento indutivo entre linha e ECD.
- 3. Simplicidade de implementação, tanto do codificador como do decodificador (custo).
- 4. Simplicidade de recuperação da cadência no receptor a partir do sinal codificado.
- 5. Robustez em relação ao ruído e à interferência entre símbolos.

6.5.1 Códigos banda base para interfaces locais

Códigos banda base podem ser classificados em 3 grandes Classes:

- 1ª. Códigos binários sensíveis ao nível do sinal
- 2ª. Códigos binários sensíveis à fase do sinal
- 3ª. Códigos em blocos

Características dos códigos banda base sensíveis ao nível do sinal

Código	Lei de formação	Sincronismo	Componente de DC	Aplicação
NRZ Polar	Dígitos binários <i>um</i> , +V, dígitos binários <i>zero</i> , – V.	Longas cadeias de zeros ou uns, linha fica sem transições	DC aumenta com longas cadeias de zeros ou uns	Interface RS232 e ITU-T, Rec. V.24/V.28
NRZ-M ou NRZI	Inverte a polaridade se próximo bit é <i>Marca</i> (1), caso contrário mantém.	Longas cadeias de <i>zeros</i> linha fica sem transições	DC aumenta com longas cadeias de zeros.	Uso geral
NRZ-S ou NRZI	Inverte a polaridade se próximo bit é <i>Space</i> (0), caso contrário mantém	Longas cadeias de uns, linha fica sem transições	DC aumenta com longas cadeias de uns.	Uso geral
RZ Bipolar	Digito binário <i>um</i> , pulso positivo, digito binário <i>zero</i> , pulso negativo	Facilidade na recuperação do sincronismo	DC aumenta com longas cadeias de zeros ou uns	Uso geral
AMI, Bipolar ou Pseudo ternário	Digitos binários <i>um</i> codificados como pulsos positivos e negativos alternados. Digito zero sem atividade	Longas cadeias de zeros, linha fica sem transições	DC bem controlado. Somente em intervalo de bit	Entroncamento de Centrais telefônicas

Códigos banda base sensíveis à fase do sinal

A lei de formação dos códigos sensíveis à fase do sinal é baseada em quatro tipos de eventos:

- a) Transição positiva (↑) no início do tempo de bit (Tb)
- b) Transição positiva (↑) no meio do tempo de bit (Tb)
- c) Transição negativa (↓) no início do tempo de bit (Tb)
- d) Transição negativa (↓) no meio do tempo de bit (Tb)

Comparativo espectral de alguns códigos banda base

- Neste tipo de códigos um conjunto de N bits é substituído por um conjunto de símbolos ternários que podem ser + (pulso positivo), -(pulso negativo) ou 0 (tensão nula).
- A combinação é heurística e visa especificamente o controle do nível de DC no sinal e/o conteúdo de sincronismo.
- São códigos que devido à sua complexidade são utilizados em médias a longas distâncias (abrangência metropolitana) em que, devido ao custo desses meios, a eficiência espectral é o parâmetro mais importante nesses sistemas de transmissão.

Exemplos destes códigos:

- Pair Selected Ternary (PST)
- 4 Binary 3 Ternary (4B3T)
- High Density Bipolar N (HDBN)
- Binary N Zero Sustitution (BNZS)

Power Spectrum Density (PSD) de alguns códigos utilizados em telecomunicações

Observações:

- Potência concentrada no primeiro lóbulo do espectro, B=R (R em bit/s)
- Os três códigos tem DC aproximadamente nulo.
- O código B6ZS tem menor espalhamento de espectro

6.6 O Ruído – distorção não linear do canal

Detalhe ampliado de um sinal de ruído n(t), do tipo branco ou gaussiano, também chamado de AWGN (Additive White Gaussian Noise).

6.6.1 Ruído e probabilidade de erro em um canal

Sinal Receptor = Sinal do transmissor + sinal de ruido

Mecanismo de surgimento de um erro de transmissão

6.6.2 - Curvas de desempenho de alguns códigos banda base populares

Note-se o bom desempenho do código Manchester utilizado em Redes Locais Ethernet

6.6.3 Avaliação de desempenho de canal Padrão de Olho

transmissão de

um bit

amostragem

do sinal na Recepção

Avaliação do padrão olho no receptor

Visualização de algumas situações de distorção típicas de um canal através do padrão olho gerado a partir do sinal de recepção.

- (a) Canal equalizado e com pouco ruído e jitter (olho bem aberto)
- (b) Canal equalizado e com muito ruído e jitter (olho com pouca abertura)
- (c) Canal com distorção de fase (olho assimétrico)

6.7 - Transmissão Digital em Banda Passante

Gráfico dos três tipos de modulação no domínio tempo

Resultado da Modulação Discreta é um sinal Analógico!!

Tipo de Modulação	Digitos binários NRZ	Associação a parâmetros binários da portadora		
ASK	0	A ₀ = 0 Amplitude zero		
(Amplitude Shift Keying)	1	A ₁ = A Amplitude igual a A		
FSK	0	f ₀ = f _c Freqüência da portadora		
(Frequency Shift Keying)	1	f ₁ = 2f _c Duas vezes Freqüência portadora		
PSK	0	$\theta_0 = 0^0$		
(Phase Shift Keying)	1	$\theta_1 = 180^0$		

Exercício:

Escreva as expressões dos sinais modulados em **ASK**, **FSK** e **PSK** para M=2 (n=1)

Modulação no domínio tempo e freqüência

Qual modulação?

A variação de fase manifesta-se no domínio da frequência?

6.7.1 Fundamentação teórica de modulação digital de uma portadora

Sistema vetorial com funções seno e coseno ortonormais

Ortogonalidade??

Coordenadas Retangulares ou Quadratura

> Coordenadas Polares

Eixo x – I (In-phase) Eixo y – Q (Quadrature)

- (a) Representação de um sinal por coordenadas em quadratura.
- (b) Representação de um sinal por coordenadas polares.

Amplitude:
$$A = \sqrt{I^2 + Q^2}$$
 e Fase: $\phi = tan^{-1} \frac{I}{Q}$

Representação em quadratura de uma portadora

$$s(t) = A.cos(\omega_c t + \theta)$$

$s(t) = A.\cos(\omega_c t + \theta)$ | Forma polar de uma portadora

Esta forma de representação é conhecida como a forma polar de uma portadora. Desenvolvendo-se a expressão do coseno da soma de dois ângulos¹ desta expressão, vamos obter que:

$$s(t) = A.(\cos\omega_c t.\cos\theta - \sin\omega_c t.\sin\theta) e$$

$$s(t) = A.\cos\theta.\cos\omega_c t - A.\sin\theta.\sin\omega_c t$$

Nesta ultima expressão reconhecemos que $A.cos\theta$ e $A.sen\theta$ são os coeficientes da projeção do nosso vetor de sinal sobre os eixos I e Q respectivamente e, portanto podemos fazer $x=A.cos\theta$ e *y=A.senθ* que substituídos na expressão anterior resulta que:

$$s(t) = \underbrace{x \cos \omega_c t}_{\mathsf{Q}} - \underbrace{y \operatorname{sen} \omega_c t}_{\mathsf{Q}}$$

Expressão em Quadratura de uma portadora

Portanto, um sinal de portadora ou sinal modulado (modulação discreta) pode ser representado no espaço de sinais senoidais como a soma de duas componentes ortogonais, a I e a Q!

¹ Lembrando que: cos(A+B)=cosAcosB-senAsenB

Diagrama de Constelação

Tipos de modulação PSK (Phase Shift Keying)

ou modulação por chaveamento da fase de uma portadora

Tipo de Modulação PSK	N Número de símbolos	m bits/símbolo	θ _i (i=1, 2,N) Ângulos de fase
BPSK Binary PSK	2	1	0°, 180°,
QPSK Quaternary PSK	4	2	45°, 135°, 225°, 315°, (ou 90°, 180°, 270°, 360°)
8PSK PSK de 8 fases	8	3	45°, 90°,135°, 180°, 225°, 270°, 315°, 360°

A fase da portadora pode variar entre 0 e 360 graus ou entre 0 e 2π

Supondo que cada símbolo associa m bits, o conjunto das M fases discretas (símbolos) é dado por:

$$M=2^m$$

Os possíveis ângulos de fase de modulação são dados por:

$$\theta_i = \frac{2\pi}{M} \cdot i$$

O modulador PSK

Tipos de modulação PSK

Modulador PSK genérico

6.8.1 Modulação BPSK

Aplicações Telefonia Móvel IS-95 824 – 894 MHZ (CDMA)

6.8.2 Modulação QPSK

Pode ser de dois tipos: QPSK(1): 45°, 135°, 225°, 315° e

QPSK(2): 90°, 180°, 270°, 360°

Dependendo do conjunto de ângulos de fase considerados, estamos diante de uma modulação QPSK(1) ou QPSK(2) respectivamente. Por conveniência de normalização do sinal NRZ do canal I e Q, adotamos como valor para a amplitude em QPSK(1):

$$A = \sqrt{\frac{2E_s}{T}} = \sqrt{2} = 1,414$$

$$S_{i}(t) = \sqrt{\frac{2E_{s}}{T}} \cos(\omega_{c}t + \theta_{i}) \quad com \quad i = 1, 2, 3, ..., N$$

$$\text{Parte Variável Variável fixa no com a tempo informação}$$

Desenvolvendo-se o coseno da soma de dois ângulos nesta expressão e baseados na expressão (6.11), podemos escrever a equação geral de uma portadora modulada em QPSK na sua forma em quadratura como:

$$s_{i}(t) = \sqrt{\frac{2E_{s}}{T}} \cos \theta_{i} \cos \omega_{c} t - \sqrt{\frac{2E_{s}}{T}} \operatorname{sen} \theta_{i} \operatorname{sen} \omega_{c} t \quad i = 1, 2, 3, ..., N$$

Modulação QPSK(1)

Símb	di- bits	Portadora na forma de quadratura $ \text{Amplitude fixada em } \sqrt{\frac{2E_s}{T}} = \sqrt{2} = \textit{I,414} $	Fase	Símbolo modulação	-	Q
S ₁	11	$s_{i}(t) = \sqrt{\frac{2E_{s}}{T}}\cos 45^{\circ}\cos \omega_{c}t - \sqrt{\frac{2E_{s}}{T}}\operatorname{sen}45^{\circ}\operatorname{sen}\omega_{c}t$	45°		1	1
S ₂	01	$s_{i}(t) = \sqrt{\frac{2E_{s}}{T}}\cos 315^{\circ}\cos \omega_{c}t - \sqrt{\frac{2E_{s}}{T}}\operatorname{sen}315^{\circ}\operatorname{sen}\omega_{c}t$	315°	\bigcirc	-1	1
S ₃	00	$s_{i}(t) = \sqrt{\frac{2E_{s}}{T}}\cos 225^{\circ}\cos \omega_{c}t - \sqrt{\frac{2E_{s}}{T}}\sin 225^{\circ}\sin \omega_{c}t$	225°		-1	-1
S ₄	10	$s_{i}(t) = \sqrt{\frac{2E_{s}}{T}}\cos 135^{\circ}\cos \omega_{c}t - \sqrt{\frac{2E_{s}}{T}}\operatorname{sen}135^{\circ}\operatorname{sen}\omega_{c}t$	135°	/////	1	-1

Símb	di- bits	Portadora na forma de quadratura $ \text{Amplitude fixada em } \sqrt{\frac{2E_s}{T}} = 1 $		Símbolo modulação	ı	Q
S ₁	11	$s_{i}(t) = \sqrt{\frac{2E_{s}}{T}}\cos\theta^{o}\cos\omega_{c}t - \sqrt{\frac{2E_{s}}{T}}\operatorname{sen0}^{o}\operatorname{sen}\omega_{c}t$	O°	\bigcirc	1	0
S ₂	01	$s_{i}(t) = \sqrt{\frac{2E_{s}}{T}}\cos 90^{\circ}\cos \omega_{c}t - \sqrt{\frac{2E_{s}}{T}}\sin 90^{\circ}\sin \omega_{c}t$	90°	$\bigvee\bigvee\bigvee$	0	1
S ₃	00	$s_{i}(t) = \sqrt{\frac{2E_{s}}{T}}\cos 180^{\circ}\cos \omega_{c}t - \sqrt{\frac{2E_{s}}{T}}\operatorname{sen}180^{\circ}\operatorname{sen}\omega_{c}t$	180°	\bigcirc	-1	0
S ₄	10	$s_{i}(t) = \sqrt{\frac{2E_{s}}{T}}\cos 270^{\circ}\cos \omega_{c}t - \sqrt{\frac{2E_{s}}{T}}\operatorname{sen}270^{\circ}\operatorname{sen}\omega_{c}t$	270°.	$\bigwedge \bigwedge \bigwedge \bigwedge$	0	-1

Aplicações

Telefonia Móvel IS-95 824 – 894 MHZ (CDMA)

Global Positioning
System - **GPS**(Constant Envelope)

Satélite - Intelsat

Associação dos ângulos aos dibits adotada na modulação QPSK(1) e os respectivos valores do canal I e Q na obtenção de cada símbolo de modulação

6.8.3 Modulação 8PSK e 16PSK

Constelações das modulações 8PSK (a) e 16PSK (b)

(a) Modulação 8PSK

(b) Modulação 16PSK

Ângulos de fase da modulação 8PSK: $\theta_i = \frac{\pi i}{4}$ com i=0, 1, 2, ..., 8 Ângulos de fase da modulação 16PSK: $\theta_i = \frac{\pi i}{8}$ com i=0, 1, 2, ..., 15 Equação da portadora modulada: $s_i(t) = \sqrt{\frac{2E_s}{T}} cos \theta_i .cos(2\pi f_c t - \sqrt{\frac{2E_s}{T}} sen \theta_i .sen(2\pi f_c t)$

6.9 Modulação QAM

Porque QAM?

Distância mínima entre dois pontos na modulação 16QAM

$$d_{min} = \frac{2}{3\sqrt{2}} \cong 0.47$$

Distância mínima entre dois pontos na modulação 16PSK

$$d_{min} \cong \frac{2\pi R}{16} \cong 0.39$$

6.9 Modulação QAM

Diagrama em blocos de um modulador QAM genérico

6.9.1 Modulação 16QAM

Mod	ulação	16	QAM
	3		

	1	ı	I	ı	1	
No.	Quadribit	QI		0	Amplitude	Fase
140.	Quadribit	3	•	(A _j)	$\theta_{\rm i}$	
S1	0000	$-1/3\sqrt{2}$	$-1/3\sqrt{2}$	0,33	225°	
S2	0001	$-1/\sqrt{2}$	$-1/3\sqrt{2}$	0,75	255°	
S3	0010	$-1/3\sqrt{2}$	$-1/\sqrt{2}$	0,75	195°	
S4	0011	$-1/\sqrt{2}$	$1/\sqrt{2}$	1,0	225°	
S5	0100	$1/3\sqrt{2}$	$-1/3\sqrt{2}$	0,33	135°	
S6	0101	$1/\sqrt{2}$	$-1/3\sqrt{2}$	0,75	105°	
S7	0110	$1/3\sqrt{2}$	$-1/\sqrt{2}$	0,75	165°	
S8	0111	$-1/\sqrt{2}$	$-1/\sqrt{2}$	1,0	135°	
S9	1000	$-1/3\sqrt{2}$	$1/3\sqrt{2}$	0,33	315°	
S10	1001	$-1/\sqrt{2}$	$1/3\sqrt{2}$	0,75	285°	
S11	1010	$-1/3\sqrt{2}$	$1/\sqrt{2}$	0,75	345°	
S12	1011	$-1/\sqrt{2}$	$1/\sqrt{2}$	1,0	315°	
S13	1100	$1/3\sqrt{2}$	$1/3\sqrt{2}$	0,33	45°	
S14	1101	$1/\sqrt{2}$	$1/3\sqrt{2}$	0,75	75°	
S15	1110	$1/3\sqrt{2}$	$1/\sqrt{2}$	0,75	15°	
S16	1111	$1/\sqrt{2}$	$1/\sqrt{2}$	1,0	45°	

Equações da modulação 16QAM:

a) Amplitude da Portadora: $A_j = \sqrt{I^2 + Q^2}$

b) Fase: $\theta_i = tg^{-1} \frac{I}{Q}$

c) Portadora modulada: $s_n(t) = A_j \cos \theta_i . \cos \omega_c t - A_j \sin \theta_i \cos \omega_c t$

6.9.2 Sistemas de modulação N-QAM

Características técnicas de algumas modulações N-QAM

N-QAM	Bits/simbolo <i>m</i>	Amplitudes A _j [v]	Fases θ_i	Dist. mínima $d_{\min} [v]$	(Dist. mínima) ² $(d_{\min})^2 [j]$
2QAM /BPSK	1	1	2	2	4
4QAM /QPSK	2	1	4	1,414	2
8QAM/8PSK	3	1	8	0,586	0,343
16QAM	4	3	12	0,471	0,222
32QAM	5	5	28	0,337	0,113
64QAM	6	10	48	0,202	0,040
128QAM	7	15	54	0,148	0,022

Desempenho dos sistemas de modulação QAM

Fonte: All about Modulation - Charan Langdon 2002

Exemplo de Aplicação

Considerando-se as curvas de desempenho de sistemas de modulação QAM, vamos supor que se queira transmitir um sinal 8-PSK a um BER de 10⁻⁸, que corresponde a uma relação de potências de 15,3 dB. Supondo que esta potência não está disponível o que poderia ser feito para realizar esta transmissão sem que mude o BER?

6.10 – Multiplexação Digital TDM

Definição

- A multiplexação por divisão de tempo TDM (Time Division Multiplexing) é uma técnica de multiplexação digital combina dados compartilhando tempo.
- Assim, cada tributário (fonte) ocupa toda a banda de transmissão (banda larga) em uma porção do tempo do link.

6.10 – Multiplexação Digital TDM

- Portanto, combina diversos "canais" de mais baixa taxa em um único de taxa mais alta.
- •Todos as conexões compartilham a banda larga de transmissão do link através de slot's de tempo fixos préatribuidos a cada fonte.
- Estes slot's de tempo são atribuidos mesmo na existência de dados de informação.

6.10.1 – TDM Síncrono

 No TDM síncrono, considere-se que as fontes funcionam na mesma taxa de transferência;

• A taxa de transmissão do *link* é *n* vezes maior que a dos tributários e, consequentemente, a duração dos sinais *n* vezes menor.

- 1. A taxa de bits de cada uma das **3 fontes** (conexões de entrada) de um TDM síncrono é **1 kbps**. Se 1 bit é multiplexado a cada instante de multiplexagem, determine:
 - a) A duração de cada slot de entrada;
 - b) A duração de cada slot de saída;
 - c) A duração de cada frame.

Solução

- a) Como a taxa de cada fonte é 1 kbps, a duração de cada bit é 1/1000 s ou **1 ms**, a mesma duração do slot de entrada;
- b) A duração de cada slot de saída é um terço do slot de entrada. Ou seja, **1/3 ms**.
- c) Cada frame carrega três slot's de saída, portanto cada frame tem duração igual a 3 × 1/3 ms, ou **1 ms**.

Nota: A duração de um frame é a mesma duração das unidades de entrada.

Interleaving de bits

- O processo de multiplexação de grupos de bits de variadas fontes também é chamado de *Interleaving*;
- Bits (1-n) são entrelaçados em apenas uma única saída;
- O entrelaçamento pode ocorrer a nível de bytes ou palavras.

A Figura abaixo mostra um TDM síncrono com 4 entradas com streams de dados a 1Mbps. Para o bit como unidade de dado, encontre: (a) a duração do bit de entrada, (b) do bit de saída, (c) a taxa de transmissão do sinal multiplexado, e (d) a taxa de frame.

Solução

- a. A duração do bit de entrada é igual ao inverso da taxa de bits: $1/1 \text{ Mbps} = 1 \mu \text{s}$.
- b. A duração do bit de saída é igual a um quarto da do bit de entrada, ou seja ¼ μs.
- c. A taxa de transmissão de saída é o inverso da duração do bit de saída, ou seja, 1/(4µs) ou 4 Mbps. Isso pode ser obtido sabendo-se do fato de que a taxa de saída é neste caso 4 vezes a taxa de entrada

Solução

d. A taxa de frame é sempre igual a qualquer taxa de entrada. Assim sendo, a taxa de frame é 1,000,000 frames por segundo.

Nota: Como estamos enviando 4 bits em cada frame, podemos verificar o resultado da questão anterior multiplicando a taxa de frame por 4.

Exercício

Four 1-kbps connections are multiplexed together. A unit is 1 bit. Find (a) the duration of 1 bit before multiplexing, (b) the transmission rate of the link, (c) the duration of a time slot, and (d) the duration of a frame.

Solution

We can answer the questions as follows:

- a. The duration of 1 bit before multiplexing is 1 / 1 kbps, or 0.001 s (1 ms).
- b. The rate of the link is 4 times the rate of a connection, or 4 kbps.

Exercício

- c. The duration of each time slot is one-fourth of the duration of each bit before multiplexing, or 1/4 ms or 250 µs. Note that we can also calculate this from the data rate of the link, 4 kbps. The bit duration is the inverse of the data rate, or 1/4 kbps or 250 µs.
- d. The duration of a frame is always the same as the duration of a unit before multiplexing, or 1 ms. We can also calculate this in another way. Each frame in this case has four time slots. So the duration of a frame is 4 times 250 µs, or 1 ms.

Exercício (TPC)

A multiplexer combines four 100-kbps channels using a time slot of 2 bits. Show the output with four arbitrary inputs. What is the frame rate? What is the frame duration? What is the bit rate? What is the bit duration?

Exercício (TPC)

A multiplexer combines four 100-kbps channels using a time slot of 2 bits. Show the output with four arbitrary inputs. What is the frame rate? What is the frame duration? What is the bit rate? What is the bit duration?

Solution

Figure 6.17 shows the output (4x100kbps) for four arbitrary inputs. The link carries 400K/(2x4)=50,000 2x4=8bit frames per second. The frame duration is therefore 1/50,000 s or $20 \mu s$. The bit duration on the output link is 1/400,000 s, or $2.5 \mu s$.

6.10.2 – E se a Sinalização das Fontes forem Diferentes?

- Normalmente as entradas funcionam a taxas de transferência diferentes;
- Três estratégias podem ser utilizadas para resolver este problemas de "Descasamento" de taxa, quais sejam:
 - Multinivelamento
 - Multiplexação Multislot
 - Pulse Stuffing

Transmissor TDM-PAM

Receptor TDM-PAM

Multilevel

Multiplexação Multi-slot

Pulse Stuffing

6.10.3 – Sincronismo

- Um padrão de bits sequência de bits é usado entre frames para garantir que o receptor detecte os bits corretamente.
- Sabendo-se do bit antecessor, o recetor inicia uma contagem de bits até o final do frame e assim sucessivamente até um bit conhecido.
- Estes bits de sincronia naturalmente introduzem overhead na transmissão.

Exemplo de Padrão de Sincronia

6.10.3 – Hierarquia TDM

6.10.3 – Hierarquia TDM Sistema Americano, ITU-T G.733

Service	Line	Rate (Mbps)	Voice Channels
DS-1	T-1	1.544	24
DS-2	T-2	6.312	96
DS-3	T-3	44.736	672
DS-4	T-4	274.176	4032

Linha T1 para Multiplexagem de linhas Telefônicas

Estrutura do Frame T1

T-1: $8000 \text{ frames/s} = 8000 \times 193 \text{ bps} = 1.544 \text{ Mbps}$

Line	Rate (Mbps)	Voice Channels
E-1	2.048	30
E-2	8.448	120
E-3	34.368	480
E-4	139.264	1920

 Muitas vezes, um link de entrada não contém dados para transmissão;

 Quando isso ocorre, um ou mais slots de tempo são de saída não são usados;

 Isto expressa um gasto de banda que condua ao uso ineficiente da mesma.

a. Synchronous TDM

b. Statistical TDM