# Análisis del Dataset Iris: Comparativa Multilenguaje

Big Data e Inteligencia Artificial

Yeray Hurtado Dragón

Octubre 2025

## Índice

| 1. | Introduccion                                                                                                                               | 2        |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 2. | Algoritmo K-Nearest Neighbors (KNN)  2.1. Distancia Euclidiana                                                                             |          |
| 3. | Descripción del dataset y metodología                                                                                                      | 4        |
| 4. | Implementación en Python (Google Colab) 4.1. Matriz de correlación                                                                         | <b>5</b> |
|    | 4.2. Gráfico de dispersión                                                                                                                 | 6<br>7   |
| 5. | Implementación en R (Posit Cloud)5.1. Matriz de correlación5.2. Gráfico de dispersión5.3. KNN con librerías5.4. KNN sin librerías (manual) | 9<br>10  |
| 6. | Implementación en Java (Weka)6.1. Matriz de correlación6.2. Gráfico de dispersión6.3. KNN con librerías6.4. KNN implementado manualmente   | 12<br>12 |
| 7. | Comparativa multilenguaje                                                                                                                  | 15       |
| 8. | Conclusiones                                                                                                                               | 16       |

### 1. Introducción

El presente documento analiza el **dataset Iris** utilizando el algoritmo **K-Nearest Neighbors** (KNN) en tres lenguajes de programación: Python, R y Java (Weka). Cada lenguaje ejecuta el mismo flujo de trabajo:

- Matriz de correlación.
- Gráfico de dispersión.
- Modelo KNN con librerías.
- Implementación manual del KNN.
- Matriz de confusión y precisión final.

El objetivo es comparar el rendimiento, facilidad de implementación y resultados obtenidos en cada entorno.

### 2. Algoritmo K-Nearest Neighbors (KNN)

El algoritmo **K-Nearest Neighbors (KNN)** es un método de clasificación supervisada basado en la idea de que los objetos similares tienden a estar cerca en el espacio de características. Para clasificar una nueva instancia, el algoritmo:

- 1. Calcula la distancia entre la nueva instancia y todas las observaciones del conjunto de entrenamiento.
- 2. Selecciona los k vecinos más cercanos según la métrica de distancia.
- 3. Asigna la clase más frecuente entre estos vecinos.

#### 2.1. Distancia Euclidiana

La métrica más común es la **distancia euclidiana**, que mide la separación geométrica entre dos puntos p y q en un espacio de n dimensiones:

$$d(p,q) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$$

donde:

- $p_i$  y  $q_i$  son los valores de la *i*-ésima característica de los puntos p y q.
- $\blacksquare$  n es el número de características.

Esta distancia determina qué vecinos son los más cercanos y, por tanto, cuáles influyen en la clasificación de la nueva instancia.

### 2.2. Ventajas y limitaciones

#### Ventajas:

- Simple de entender e implementar.
- Funciona bien con problemas de clasificación multi-clase.

#### Limitaciones:

- Sensible a la escala de las características (recomendable normalizar datos).
- Puede ser lento en conjuntos de datos grandes.
- La elección de k influye directamente en la precisión.

### 3. Descripción del dataset y metodología

El dataset **Iris** contiene 150 observaciones de flores pertenecientes a tres especies: *Iris-setosa, Iris-versicolor* y *Iris-virginica*. Cada registro posee cuatro características numéricas:

- Largo y ancho del sépalo (SepalLengthCm, SepalWidthCm)
- Largo y ancho del pétalo (PetalLengthCm, PetalWidthCm)

### Metodología general:

- 1. Carga y limpieza de datos.
- 2. Exploración (correlaciones y gráficos).
- 3. Preparación de datos (eliminación de columnas irrelevantes, codificación).
- 4. Entrenamiento con KNN (con librerías).
- 5. Implementación manual del KNN.
- 6. Evaluación con matriz de confusión y precisión.

### 4. Implementación en Python (Google Colab)

### 4.1. Matriz de correlación



Figura 1: Matriz de correlación del dataset Iris en Python

Interpretación: Alta correlación entre PetalLengthCm y PetalWidthCm, indicando su relevancia en la clasificación.

### 4.2. Gráfico de dispersión



Figura 2: Gráfico de dispersión de las características del Iris (Python)

Interpretación: Setosa se separa claramente, mientras que Versicolor y Virginica presentan solapamiento.

### 4.3. KNN con librerías



Figura 3: Matriz de confusión del modelo KNN (Python)

Precisión: 91.11%

### 4.4. KNN implementado manualmente

```
import numpy as np
  from collections import Counter
  # Distancia euclidiana
  def euclidean_distance(a, b):
      return np.sqrt(np.sum((a - b) ** 2))
6
7
  # Predicci n para una instancia
  def predict_one(x, X_train, y_train, k):
      distances = [euclidean_distance(x, xi) for xi in X_train]
10
      k_indices = np.argsort(distances)[:k]
11
      k_labels = [y_train[i] for i in k_indices]
^{12}
      return Counter(k_labels).most_common(1)[0][0]
13
14
 # Predicci n para el conjunto de prueba
15
 y_pred = [predict_one(x, X_train, y_train, k=27) for x in X_test]
16
17
 # Precisi n
18
19 accuracy = np.mean(y_pred == y_test) * 100
 print(f"Precisi n KNN manual: {accuracy:.2f}%")
```



Figura 4: Matriz de confusión del modelo KNN sin librerias (Python)

Precisión: 91.11%

### 5. Implementación en R (Posit Cloud)

### 5.1. Matriz de correlación



Figura 5: Matriz de correlación en R

### 5.2. Gráfico de dispersión



Figura 6: Distribución de características por especie (R)

#### 5.3. KNN con librerías

```
if(!require(class)) install.packages("class")
 library(class)
  # Variables predictoras y variable objetivo
5 X <- dataset[, 1:4]
 y <- dataset $ Species
 # Divisi n en entrenamiento y prueba
  set . seed (123)
g train_index <- sample(1:nrow(dataset), 0.7 * nrow(dataset))
10 X_train <- dataset[train_index, 1:4]</pre>
11 X_test <- dataset[-train_index, 1:4]</pre>
12 y_train <- dataset$Species[train_index]</pre>
13 y_test <- dataset$Species[-train_index]</pre>
14
 # Entrenamiento y predicci n con KNN
15
16 library(class)
17 y_pred <- knn(X_train, X_test, y_train, k = 27)</pre>
18
19 # Precisi n
20 accuracy <- mean(y_pred == y_test)</pre>
21 cat("Precisi n del modelo KNN:", round(accuracy * 100, 2), "%\n")
```

Precisión: 97.78%



Figura 7: Matriz de confusión del modelo KNN (R)

### 5.4. KNN sin librerías (manual)

```
euclid <- function(a, b){</pre>
       sqrt(sum((a - b)^2))
2
3
    k <- 27
    y_pred_manual <- vector()</pre>
6
    for(i in 1:nrow(X_test)){
      distances <- apply(X_train, 1, function(row) euclid(row, X_test</pre>
      nearest <- order(distances)[1:k]</pre>
9
      labels <- y_train[nearest]</pre>
10
      y_pred_manual[i] <- names(sort(table(labels), decreasing = TRUE</pre>
^{11}
          ))[1]
    }
12
13
    y_pred_manual <- factor(y_pred_manual, levels = levels(y_test))</pre>
14
    accuracy_manual <- mean(y_pred_manual == y_test)</pre>
    cat("Precisi n del KNN manual:", round(accuracy_manual * 100, 2)
16
        , "%\n")
```

Precisión: 97.78%



Figura 8: Matriz de confusión del modelo KNN (R)

### 6. Implementación en Java (Weka)

#### 6.1. Matriz de correlación

Cuadro 1: Matriz de correlación en Weka

|             | SepalLength | SepalWidth | PetalLength | PetalWidth |
|-------------|-------------|------------|-------------|------------|
| SepalLength | 1,00        | 0,72       | -0,40       | 0,88       |
| SepalWidth  | 0,72        | 1,00       | -0,11       | 0,87       |
| PetalLength | -0,40       | -0,11      | 1,00        | -0,42      |
| PetalWidth  | 0,88        | 0,87       | -0,42       | 1,00       |

Interpretación: Se observan correlaciones altas entre PetalLength y PetalWidth, similares a Python y R, lo que indica que estas características son relevantes para la clasificación.

#### 6.2. Gráfico de dispersión

**Nota:** Weka no genera gráficos de dispersión automáticamente. Para análisis visual se recomienda exportar los datos a Python o R. Aquí se omite el gráfico y se presentan los resultados directamente.

#### 6.3. KNN con librerías

```
// Entrenamiento KNN con librer a IBk (Weka)
int k = 5;
IBk knn = new IBk(k);
knn.buildClassifier(train);

// Evaluaci n del modelo
Evaluation eval = new Evaluation(train);
eval.evaluateModel(knn, test);

System.out.println("Precisi n: " + String.format("%.2f", eval. pctCorrect()) + "%");
System.out.println(eval.toMatrixString());
```

Precisión: 97,78%

Cuadro 2: Matriz de confusión del modelo KNN (Weka)

| Predicted \ Actual | Setosa | Versicolor | Virginica |
|--------------------|--------|------------|-----------|
| Setosa             | 14     | 0          | 0         |
| Versicolor         | 0      | 19         | 0         |
| Virginica          | 0      | 0          | 12        |

### 6.4. KNN implementado manualmente

Implementación propia de la distancia euclidiana:

```
int k = 27;
  int aciertos = 0;
  for (int i = 0; i < test.numInstances(); i++) {</pre>
      Instance actual = test.instance(i);
      // Calcular distancia a todos los ejemplos de entrenamiento
      double[] distancias = new double[train.numInstances()];
      String[] clases = new String[train.numInstances()];
      for (int j = 0; j < train.numInstances(); j++) {</pre>
10
           distancias[j] = euclideanDistance(actual, train.instance(j)
11
           clases[j] = train.instance(j).stringValue(train.classIndex
12
              ());
      }
13
14
      // Seleccionar los k vecinos m s cercanos
15
      int[] vecinos = new int[k];
      for (int v = 0; v < k; v++) {
17
           double minDist = Double.MAX_VALUE;
18
           int minIndex = -1;
19
           for (int j = 0; j < distancias.length; j++) {</pre>
20
               if (distancias[j] < minDist) {</pre>
21
                   minDist = distancias[j];
22
                   minIndex = j;
23
               }
24
           }
25
           vecinos[v] = minIndex;
26
           distancias[minIndex] = Double.MAX_VALUE; // evitar repetir
27
      }
28
29
      // Votaci n de las clases vecinas
30
      int votosSetosa = 0, votosVersicolor = 0, votosVirginica = 0;
31
      for (int v = 0; v < k; v++) {
32
           String clase = clases[vecinos[v]];
           if (clase.equals("Iris-setosa")) votosSetosa++;
34
           else if (clase.equals("Iris-versicolor")) votosVersicolor
35
           else votosVirginica++;
36
      }
37
      // Determinar clase m s votada
39
      String prediccion;
40
      if (votosSetosa > votosVersicolor && votosSetosa >
41
         votosVirginica)
           prediccion = "Iris-setosa";
42
      else if (votosVersicolor > votosVirginica)
           prediccion = "Iris-versicolor";
```

```
else
45
          prediccion = "Iris-virginica";
46
47
      // Comparar con clase real
48
      if (prediccion.equals(actual.stringValue(test.classIndex())))
49
          aciertos++;
 }
51
52
double precision = 100.0 * aciertos / test.numInstances();
54 System.out.println("Precisi n KNN manual: " + String.format("%.2f"
     , precision) + "%");
```

Precisión manual: 97,78%

Cuadro 3: Matriz de confusión del modelo KNN manual (Weka)

| Predicted \ Actual | Setosa | Versicolor | Virginica |
|--------------------|--------|------------|-----------|
| Setosa             | 14     | 0          | 0         |
| Versicolor         | 0      | 18         | 1         |
| Virginica          | 0      | 0          | 12        |

#### Limitaciones de Weka:

- No genera gráficos de dispersión ni visualizaciones avanzadas de forma nativa.
- La matriz de correlación se presenta como tabla, no como heatmap.
- Más adecuado para evaluación rápida de modelos y pruebas de clasificación que para análisis gráfico exhaustivo.

### 7. Comparativa multilenguaje

Cuadro 4: Resumen comparativo entre lenguajes

| Lenguaje    | Precisión (librería) | Precisión (manual) | Ventajas                                                      | Desventajas                                                     |
|-------------|----------------------|--------------------|---------------------------------------------------------------|-----------------------------------------------------------------|
| Python      | 91.11 %              | 91.11 %            | Fácil de implementar, ecosistema amplio                       | Requiere optimiza- ción en grandes volúmenes de datos           |
| R           | 97.78%               | 97.78%             | Potente<br>en análisis<br>estadístico<br>y visualiza-<br>ción | Sintaxis<br>menos in-<br>tuitiva para<br>principian-<br>tes     |
| Java (Weka) | 97.78 %              | 97.78 %            | Eficiente,<br>robusto y<br>con entorno<br>visual              | Limitado<br>en visua-<br>lización<br>avanzada y<br>flexibilidad |

**Análisis:** Los tres lenguajes presentan resultados consistentes, superando el 90 % de precisión. R y **Java (Weka)** alcanzan el mejor rendimiento (97.78 %), mientras que **Python** ofrece una implementación más sencilla y versátil. Las diferencias principales se deben a las bibliotecas disponibles y la facilidad para la visualización de resultados.

### 8. Conclusiones

El experimento demuestra que el dataset Iris puede analizarse eficazmente en múltiples lenguajes con resultados consistentes. Las diferencias radican principalmente en el entorno de desarrollo y la sintaxis:

- Python es ideal para aprendizaje automático y prototipado rápido.
- R sobresale en análisis estadístico y visualización de datos.
- Java (Weka) ofrece eficiencia y entorno gráfico accesible.

La implementación manual del algoritmo refuerza la comprensión teórica del KNN y su dependencia de la distancia euclidiana. En conjunto, los tres entornos confirman la capacidad del KNN para clasificar correctamente las especies del Iris con más del  $90\,\%$  de precisión.