INSTALLATION RESTORATION PROGRAM PHASE I: RECORDS SEARCH WRIGHT-PATTERSON AFB, OHIO

Prepared for
United States Air Force
AFESC/DEV
Tyndall AFB, Florida

February, 1982

BY
ENGINEERING-SCIENCE
57 Executive Park South, NE
Suite 590
Atlanta, Georgia 30329

SECURITY CLASSIFICATION OF THIS PAGE (When Data)	Entered)	
REPORT DOCUMENTATION I		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. PECIPIENT'S CATALOG NUMBER
	AD-A 123316	
TITLE (and Subtitle) Installation Restoration Program		5. TYPE OF REPORT & PERIOD COVERED
Phase I: Records Search		Final
Wright-Patterson AFB, Ohio		6. PERFORMING ORG. REPORT NUMBER
. AUTHOR(s) C.M. Mangan, PE		8. CONTRACT OR GRANT NUMBER(#)
J.R. Absalon	F08637-80-G0009	
M.I. Speigel	Call No. 0010	
M.A. Guthrie		
. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Engineering - Science 57 Executive Park South, NE, Suit Atlanta, Georgia 30329	DEQPPM 81-5	
1. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Air Force Logistics Command (AFLC/	February 1982	
WPAFB, Ohio 45433	13. NUMBER OF PAGES 280	
14. MONITORING AGENCY NAME & ADDRESS(If different	from Controlling Office)	15. SECURITY CLASS. (of this report)
United States Air Force AFESC/DEV		Unclassified
Tyndall AFB, Florida 32403		15a. DECLASSIFICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release, Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Repor

18. SUPPLEMENTARY NOTES

Appendix K and L supersede Appendix G and H. Include Appendix G and H with release.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Landfills

Resource Conservation and Recovery Act (RCRA)

Installation Restoration Program (IRP)

Groundwater Contamination

Mazardous Waste Disposal

O. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The Resource Conservation and Recovery Act of 1976 was promulgated to regulate the generation, transportation, storage, treatment, and disposal of hazardous wastes. Simultaneous to the passage of RCRA, the Department of Defense devised a Comprehensive Installation Restoration Program to identify, report, and correct potential environmental deficiencies that could (Cont'd on Page 2)

DD 1 JAN 73 1473

EDITION OF 1 NOV 63 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

BLOCK 20 (Cont'd)

result in groundwater contamination and probable migration of contaminants beyond DOD installation boundaries. Engineering - Science was retained by the Air Force Engineering and Services Center on 15 July 1981 to conduct a records search for Wright-Patterson AFB, the first phase of the Installation Restoration Program. The on-site portion of the records search was performed at Wright-Patterson AFB on 29 and 30 September and 19 through 23 October 1981. During this period, formal interviews were conducted with base personnel familiar with past waste disposal practices and file searches were performed for identified facilities which have generated, handled, transported, or disposed of waste materials. This study contains a summary of Engineering - Science's findings and a rating of potential contamination for each suspected contaminated site.

This report has been prepared for the U.S. Air Force by Engineering-Science for the purpose of aiding in the implementation of the Air Force Installation Restoration Program. It is not an endorsement of any product. The views expressed herein are those of the contractor and do not necessarily reflect the official views of the publishing agency, the United States Air Force or the Department of Defense.

TABLE OF CONTENTS

		Page
EXECUTIVE SU	JMMARY	
CHAPTER 1	INTRODUCTION	1-1
CHAPTER 2	INSTALLATION DESCRIPTION	2-1
CHAPTER 3	ENVIRONMENTAL SETTING	3-1
CHAPTER 4	FINDINGS	4-1
CHAPTER 5	CONCLUSIONS	5-1
CHAPTER 6	RECOMMENDATIONS	6-1
APPENDIX A	PROJECT TEAM QUALIFICATIONS	A-1
APPENDIX B	INSTALLATION HISTORY	B-1
APPENDIX C	MISCELLANEOUS PROJECT DATA	C-1
APPENDIX D	LIST OF INDUSTRIAL SHOPS	D-1
APPENDIX E	LIST OF RESEARCH LABS	E-1
APPENDIX F	PHOTOGRAPHS	F-1
APPENDIX G	HAZARDOUS EVALUATION METHODOLOGY	G-1
APPENDIX H	SITE RATING FORMS	H-1
APPENDIX I	CLOSSARY	I-1
APPENDIX J	REFERENCES	J -1

EXECUTIVE SUMMARY
.

TO SECURE AND DESCRIPTION OF THE PROPERTY OF T

EXECUTIVE SUMMARY

The Resource Conservation and Recovery Act of 1976 (RCRA) was promulgated to regulate the generation, transportation, storage, treatment and disposal of hazardous wastes. Simultaneous to the passage of RCRA, the Department of Defense (DOD) devised a Comprehensive Installation Restoration Program (IRP) to identify, report and correct potential environmental deficiencies that could result in groundwater contamination and probable migration of contaminants beyond DOD installation boundaries. The IRP has been developed as a three phase program:

Phase I - Problem Identification/Records Search

Phase II - Problem Confirmation and Quantification

Phase III - Corrective Action

Engineering-Science (ES) was retained by the Air Force Engineering and Services Center on 15 July 1981, to conduct the Wright-Patterson AFB Records Search under Contract No. F08637-80-G0009, Call No. 0010, using funding provided by the Air Force Logistics Command.

The on-site portion of Phase I was performed at Wright-Patterson AFB on September 29 and 30, and October 19 through October 23, 1981. During this period formal interviews were conducted with base personnel familiar with past waste disposal practices, and file searches were performed for identified facilities which have generated, handled, transported, and disposed of waste materials.

INSTALLATION DESCRIPTION

Wright-Patterson AFB is located in southern Ohio approximately 60 miles northeast of Cincinnati and 50 miles southwest of Columbus. The base covers 8,511 acres and is situated in the floodplain of the Mad River. The base is bordered on the west by the Mad River, the north by

State Route 235, the east by State Route 444 and the south by Col. Glenn Highway.

ENVIRONMENTAL SETTING

As a result of our on-site visit, the following observations have been made with regard to the environmental sensitivity of Wright-Patterson AFB:

- o The Wright-Patterson area experiences moderate amounts of precipitation and snowfall annually.
- Base soils are typically permeable sands and gravels of glacial origin.
- o The primary regional aquifer, outwash (valley train) sediments underlies the base at shallow depth (25 to 50 feet).
- o Wright-Patterson Air Force Base and the City of Dayton obtain potable water supplies from the outwash (valley train) aquifer.
- o Other unconsolidated water-bearing units are present on base or exist in close proximity to the base.
- o Ground water system recharge depends in part upon or has been induced from the flow of base streams (Mud Run and Hebble Creek).

The above points indicate that the potential for migration of contamination to area aquifers is high due to their characteristic high permeabilities and transmissivities. The primary receptors of migrating waste contamination would be local surface waters and local aquifers.

PROCEDURES

A review of all waste generation sources at the base was conducted to determine past disposal methods for hazardous wastes. This review included industrial shops areas, laboratories, pesticide and herbicide utilization, radioactive waste sources, fire control training area, hazardous waste storage areas and POL (Fuels Management) areas. Past and present waste materials were identified and the disposal methods used for each source were determined according to base records or interviews. The waste management facilities included on-site landfills (twelve sites), storm sewers, burial areas, petroleum burn tanks, septic tanks and off-site hazardous waste contract disposal.

Twenty four sites located on Wright-Patterson AFB property were identified as containing hazardous material resulting from past handling or disposal activities. These sites have been assessed using a rating system which takes into account factors such as site characteristics, waste characteristics, potential for contamination and waste management practices. The details of the rating procedure are presented in Appendix G and the results of the assessment are given in Table 1. Rating scores were developed for the individual sites and the sites are listed in order of ranking. The rating system is designed to indicate the relative need for more detailed site assessment and/or remedial action.

FINDINGS AND CONCLUSIONS

Based on the results of the project team's field inspection, review of records and files, and interviews with base personnel, the following conclusions have been developed. The conclusions are listed by category.

Landfills

- a. Landfill No. 10 (Woodland Hills) has the greatest potential for off-site migration of contaminants.
- b. Landfill No. 8 which is adjacent to Building 821 has a high potential for contaminant migration.
- c. Landfill No. 12 also poses a high potential for contaminant migration.
 - d. Landfill No. 11 poses a moderate contamination potential.
- e. Landfills No. 2 and 3, 4, 6 and 7 and No. 9 pose a moderate contamination potential.

Fire Training Areas

- a. Fire Training Areas 3 and 4 pose a high contamination potential.
- b. Fire Training Area No. 1 and No. 2 both pose a moderate potential for contaminant migration.

Spills

Spills No. 2 and No. 3 both have a moderate potential for contaminant migration.

TABLE 1
SUMMARY RANKING OF FOTENTIAL
CONTAMINATION SOURCES

Rank	Site Name	Period of Operation	Overall Score
1	Landfill No. 10 (Woodland Hills)	1965-1968	82
2	Landfill No. 8	1955-1962	79
3	Fire Training Areas 3 & 4/ Spills No. 1	1960-1980	77
4	Spill No. 2	Apr. 1976	74
5	Landfill No. 12	1968-1973	73
6	Spill No. 3	Mar. 1981	72
7	Landfill No. 11	1968-1977	71
8	Landfill No. 5 (Twin Lakes)	1945-Present	63
9	Fire Training Area No. 1	1950-1955	63
10	Landfill No. 2 (Tillman Pit)	1941-1955	62
11	Landfills No. 3,4,6 & 7	1945-1962	61
12	Fire Training Area No. 2	Late 1950's	61
13	Landfill No. 9 (Sandhill)	1962-1964	60
14	Coal Storage Pile	Long Term	60
15	Central Heating Plant No. 2 (Bldg. 271)	1940's-1980	59
16	Burial Site No. 1	1966-1971	58
17	Burial Site No. 2	1971-1975	56
18	Landfill No. 1	1920's-1940	56
19	Central Heating Plant No. 1 (Bldg. 66)	1930-1980	55
20	Central Heating Plant No. 3 (Bldg. 170)	1939-1980	50
21	Radioactive Waste Burial Site	Before 1951	47
22	Deactivated Nuclear Reactor	1965-1970	47
23	Central Heating Plant No. 4 (Bldg. 1240)	1957-Present	46
24	Central Heating Plant No. 5 (Bldg. 770)	1956-Present	44

Central Heating Plants

- a. The long term coal storage pile located east of the POL Area in Area C has a moderate potential for contaminant migration.
- b. Central Heating Plant No. 1, 2, 3, 4 and 5 all pose a low potential for contaminant migration.

Burial Sites

Burial Site No. 1 and No. 2 were utilized for the disposal of tetraethyl lead gasoline bottoms. These sites pose a low potential for contaminant migration.

Radioactivity

- a. The deactivated nuclear reactor poses a low pote- al for contaminant migration.
- b. The radioactive waste burial whose contents are nown poses a low potential for contaminant.

RECOMMENDATIONS

E

The following recommendations are made to further assess potential for contaminant migration from waste disposal areas at Wright-Patterson Air Force Base. The recommended monitoring program for Phase II is summarized as follows:

<u>Site</u>	Monitoring Technique
	•
Landfills No. 10 (Woodland Hills)	Ground Water Monitoring
	Leachate Grab Sampling
Landfill No. 8	Ground Water Monitoring
	Leachate Grab Sampling
Fire Training Areas 3 & 4/ Spill No. 1	Ground Water Monitoring
Spill No. 2	Ground Water Monitoring
Landfill No. 12	Ground Water Monitoring
Spill No. 3	Ground Water Monitoring
Landfill No. 11	Ground Water Monitoring
Landfill No. 5 (Twin Lakes)	Ground Water Monitoring

Site

Fire Training Area No. 1 Landfill No. 2 (Tillman Pit) Landfill Nos. 3, 4, 6 & 7 Fire Training Area No. 2 Landfills No. 9 (Sandhill) Coal Storage Pile

Monitoring Technique

Ground Water Monitoring Ground Water Monitoring

Soil Sampling

Other recommendations address analyzing water samples from Well No. 10, B and D for all parameters from EPA's priority pollutant list. In addition recommendations address the compatibility of the Air Force Petroleum Handling Regulations regarding tetraethyl lead sludge from the storage of leaded gasoline and the current RCRA regulations.

CHAPTER 1

INTRODUCTION

CHAPTER 1

INTRODUCTION

BACKGROUND

The discharge, disposal and storage of solid wastes into or on the land surface is regulated by both state and federal laws. The key legislation governing the management and disposal of solid waste is the Resource Conservation and Recovery Act of 1976 (RCRA). The Act was promulgated to regulate the generation, transportation, treatment, storage and disposal of hazardous wastes; to phase out the use of open dumps for disposal of solid wastes; and to promote the conservation of natural resources through the management, reuse or recovery of solid and hazardous waste. Regulations and implementation instructions of RCRA are continuing to be developed by the U.S. Environmental Protection Agency (EPA).

Under RCRA Section 3012 (PL-96-482, October 21, 1980), each state is required to inventory all past and present hazardous waste disposal sites. Section 6003 of RCRA requires federal agencies to assist EPA and make available all requested information on past disposal practices. It is the intent of the Department of Defense (DOD) to comply fully with these as well as other requirements of RCRA.

AUTHORITY

Simultaneous with the passage of RCRA, the DOD devised a comprehensive Installation Restoration Program (IRP). The purpose of the IRP is to assess and control migration of environmental contamination which may have resulted from the DOD operations and probable migration of contaminants beyond the DOD installation boundaries. In response to RCRA and in anticipation of the Comprehensive Environmental Response Compensation and Liability Act of 1980 (Superfund), the DOD issued directive DEQPPM 80-6 (Defense Environmental Quality Program Policy Manual, June 1980) requiring identification and evaluation of past

hazardous waste disposal sites on DOD agency reservations. The U.S. Air Force implemented DEQPPM 80-6 by message in December 1980. The program was revised by DEQPPM 81-5 issued in January 1982.

PURPOSE AND SCOPE OF THE ASSESSMENT

The Installation Restoration Program has been developed as a fourphased program as follows:

Phase I - Problem Identification/Records Search

Phase II - Problem Confirmation and Quantification

Phase III - Technology Base Development

Phase IV - Corrective Action

Engineering-Science (ES) was retained by the Air Force Engineering and Services Center to conduct the Phase I Records Search at Wright-Patterson AF Base under Contract No. F08637-80-G0009, Call No. 0010, using funding provided by the Air Force Logistics Command. This report contains a summary and an evaluation of the information collected during Phase I of the IRP.

Phase I Project Description

The goal of the first phase of the program was to identify the potential for environmental contamination from past waste disposal practices at Wright-Patterson AFB, and to assess the probability of contaminant migration beyond the installation boundary. The activities undertaken in Phase I included the following:

- Review site records
- Interview key personnel familiar with past generation and disposal
- Inventory wastes
- Determine quantities and locations of current and past hazardous waste storage, treatment and disposal
- Define environmentally sensitive conditions at the base
- Evaluate past disposal practices and methods
- Conduct field inspection
- Gather pertinent information from federal, state and local agencies
- Assess potential for contamination
- Determine potential for materials to migrate off site

In order to perform the on-site portion of the records search phase, ES assembled the following core team of professionals:

- C. M. Mangan, Environmental Engineer and Project Manager, MSCE, 14 years of professional experience
- J. R. Absalon, Hydrogeologist, BS Geology, 9 years of professional experience
- M I. Spiegel, Environmental Scientist, BS Environmental Health Science, 5 years of professional experience
- M. A. Guthrie, Environmental Engineer, MSCE, 1 year of professional experience

More detailed information on these individuals is presented in Appendix A.

METHODOLOGY

The methodology utilized in the Wright-Patterson AFB Records Search began with a review of past and present industrial operations conducted at the base. Information was obtained from available records such as shop files and real property files, as well as interviews with past and present base employees from the various operating areas of the base. The interviewees included current and past environmental personnel associated with the Civil Engineering Squadron, Bioenvironmental Engineer's office, and the Directorate of Maintenance. Several current or past personnel associated with the fire protection, wastewater treatment plant, pesticide program, fuels management and solid waste collection and disposal were interviewed extensively. Finally, experienced personnel from the tenant organizations were interviewed. Seventy-five interviews were conducted to obtain the needed past activity information.

Concurrent with the base interviews the applicable federal, state and local agencies were contacted for pertinent base related environmental data. The agencies contacted are listed as follows:

- o U.S. Soil Conservation Service, Dayton, Ohio
- o U.S. Geological Survey, Columbus, Ohio
- o Fairborn Water Department, Fairborn, Ohio
- o Dayton Water Department, Dayton, Ohio
- o Ohio Division of Water, Columbus, Ohio
- o Ohio Division of Geological Survey, Columbus, Ohio

- o Miami Conservancy District, Dayton, Ohio
- o Miami Valley Regional Planning Commission, Dayton, Ohio

The next step in the activity review was to determine the past management practices regarding the use, storage, treatment, and disposal of hazardous materials from the various operations on the base. Included in this part of the activities review was the identification of all known past landfill sites and burial sites; as well as any other possible sources of contamination such as fuel-saturated areas resulting from spills.

An aerial overflight and a general ground tour of identified sites were then made by the ES Project Team to gather site specific information including (1) evidence of environmental stress, (2) the presence of nearby drainage ditches or surface-water bodies, and (3) visual inspection of these water bodies for any obvious signs of contamination or leachate migration.

A decision was then made, based on all of the above information, whether a potential exists for hazardous material contamination at any of the identified sites using the decision tree shown later in Figure 4.1. If not, the site was deleted from further consideration. For those sites where a potential for contamination was identified, a determination of the potential for migration of the contamination off the installation boundaries was made by considering site-specific conditions. If the potential for contaminant migration was considered significant, then the site was evaluated and prioritized using the site rating methodology.

The site rating indicates the relative potential for contaminant migration at each site. For those sites showing a higher potential, recommendations are made to quantify the potential contaminant migration problem under Phase II of the Installation Restoration Program. For those sites showing a medium potential, a limited Phase II program may be recommended to confirm that a contaminant migration problem does or does not exist. For those sites showing a low potential, no further follow-up Phase II work would be recommended.

CHAPTER 2

INSTALLATION DESCRIPTION

CHAPTER 2 INSTALLATION DESCRIPTION

LOCATION, SIZE AND BOUNDARIES

Wright-Patterson AFB is located in southwestern Ohio east of the city of Dayton as shown in Figure 2.1. It is approximately 60 miles northeast of Cincinnati and approximately 50 miles southwest of Columbus.

The installation is composed of two air fields (Wright and Patterson) separated by State Route 444 and the Consolidated Rail Corporation tracks (See Figures 2.2 and 2.3). Wright Field, designated Area B is situated in both Montgomery and Green Counties. Patterson Field, composed of Areas A and C, is located within Green County except for about 15 acres lying along the Mad River that are in Montgomery County. Clark County, abuts the base at the northeast property line.

Area B encompasses approximately 2800 acres and is bordered on the north by State Route 444 and on the east by Wright State University and on the south by Airway Road and on the west by Springfield Pike. Area B is made up of a complex of over 200 buildings (not including family housing) with a gross floor area of over 6,000,000 square feet. The western half of Area B was once solely occupied by the runway system. Today, the runways are no longer utilized for flying. Several new facilities have recently been constructed in this area with the largest being the Air Force Museum.

Areas A and C encompass 5711 acres and are physically separated from Area B by State Route 444 on the south and east. It is bordered to the north by State Route 235 and to the west by the Mad River. Area A has a mixture of land uses ranging from storage and warehousing to offices and classrooms. Area C is largely utilized by the flying field. The built-up area adjacent to the city of Fairborn is comprised of

offices, storage, industrial and flight line facilities. Dormitories for enlisted personnel and support facilities are located in Kitty Hawk Center. A brief installation history is presented in Appendix B.

CURRENT ORGANIZATION AND MISSION

Primary Mission

The host for Wright-Patterson AFB is the 2750th Air Base Wing which employs 16 percent of the approximately 24,000 persons assigned to the base. In its responsibility for this installation, 2750th is charged with the operation and maintenance of real property at Wright-Patterson AFB. This amounts to 18,683,454 square feet of floor space. Through host-tenant support agreements, the wing provides utilities, communications, supplies, transportation, staff assistance and other services necessary for the tenants to accomplish their individual missions. Tenant Mission

Air Force Logistics Command

Wright-Patterson AFB is the resident location for the command headquarters of the Air Force Logistics Command. This major air command provides world-wide technical logistics support to the Air Force's aerospace weapons systems. Its customers include all the United States Air Force, the Air Force Reserve, the Air National Guard and the Air Forces of 60 foreign counties. From its headquarters buildings in Area A, the most modern management techniques and sophisticated computer systems are used to keep the Air Force's equipment and supplies flowing smoothly through the logistics pipelines.

The Command has five major field organizations, known as Air Logistic Centers (ALC's) which are responsible for specific weapon systems throughout the world. These ALCs are located at Robins AFB, Georgia; Kelly AFB, Texas; Hill AFB, Utah; McClellan AFB, California; and Tinker AFB, Oklahoma. AFLC also has two specialized organizations: the Military Aircraft Storage and Disposition Center at Tucson, Arizona, which stores, reclaims or disposes of excess aircraft for all services and the Aerospace Guidance and Meterology Center at Newark AFS, Ohio, the Air Force's center for maintaining and calibrating precision instruments.

Air Force Acquisition Logistics Division (AFALD)

AFALD was established to provide a greater degree of logistics unity to achieve the maximum reduction of weapon systems life cycle costs. The division improves the interchange of information between AFLC and Air Force Systems Command (AFSC), particularly the flow of feedback data from Air Force combat commands using the systems.

Air Force Systems Command

Nine major organizations of Air Force Systems Command are located at Wright-Patterson AFB. AFSC Headquarters, itself, is located at Andrews AFB, Maryland. The major organizations located at Wright-Patterson AFB are:

- 1. Aeronautical Systems Division. Aeronautical Systems Division (ASD) is the Command's focal point for planning engineering, and managing the development, testing and acquisition of all aeronautical weapon systems and related equipment for the U.S. Air Force. Major programs include a manned strategic bomber, the B-1; an air superiority fighter, the F-15, the strategic Short Range Attack Missile (SRAM); and the electro-optical Maverick tactical missile. Within ASD is the 4950th Test Wing which conducts extensive flight tests in support of ASD and the laboratories at Wright-Patterson.
- 2. Foreign Technology Division. The Foreign Technology Division (FTD) acquires, evaluates, analyzes and reports on foreign scientific and technological equipment in order to reduce the possibility of technological surprise. FTD acquires, analyzes and evaluates scientific and technical information from many sources. Personnel using specialized equipment, including computers and a modern language translator capable of translating Russian to English at a rate of 300,000 words per day, produce finished intelligence studies on foreign aerospace technologies and electronic, aerodynamic, ballistic and space studies.
- 3. AFSC Laboratories. Six laboratories of AFSC are also located at Wright-Patterson AFB. Four of the laboratories are included in the newly activated Air Force Wright Aeronautical Laboratory. They are the Air Force Materials Laboratory, the Air Force Aero Propulsion Laboratory, the Air Force Flight Dynamics

Laboratory and the Air Force Avionics Laboratory. The remaining two laboratories are the Aerospace Medical Research Laboratory and the Air Force Human Resources Laboratory. These laboratories do research and are the focal point for the full exploratory and advanced development programs in their assigned areas of expertise.

The Materials Laboratory assures that the materials used by the Air Force, whether in-flight clothing or on the wing of the aircraft are the best available.

The Aero Propulsion Laboratory develops air breathing engines, engine components and new power generating devices for all types of aircraft, from helicopters, and vertical take-offs and landing aircraft through MACH 3 intercepters and missiles.

The Flight Dynamics Laboratory is concerned with an aircraft configuration, structural integrity, flight control instruments, escape devices, landing gear and environmental control.

The Avionics Laboratory represents the merging of aviation and electronics and embraces communications, navigation and guidance, weapon delivery, electronic warfare, reconnaissance and surveillance, and the advancement of technology in these areas.

The Aerospace Medical Research Laboratory sees to the most important component in any system, the man. They determine how much heat, cold, vibration, shock, noise, toxicity, acceleration, decompression, tumbling, and confusion man can take and still do his job as part of the man-machine system.

The Human Resources Laboratory also concentrates on the human side of the weapon system development. They make certain that a weapon system can be properly operated, maintained and supported assuring that the man and the machine are matched.

Air Force Institute of Technology (AFIT)

The Air Force Institute of Technology, a component of Air University, is responsible for the scientific, engineering, managerial, medical, and related professional education of Air Force officers. The Institute offers both resident and non-resident undergraduate and graduate education as well as comprehensive continuing education research programs. The student body numbers approximately 17,000 officers,

enlisted personnel, and civilians who attend one of the AFIT programs each year.

2046th Communications Group

The 2046th Communications Group provides communications support to USAF, Major Command Headquarters, WPAFB Command, host and tenant organizations, and civil agencies. The group operates and maintains a 10,000-line switching system which services 25,000 telephones on Base. It operates three communication centers giving customers access to the worldwide AUTOVON system; the control tower and RAPCON facilities, 24-hours per day, for safe and efficient flow of air traffic; and maintains navigational aids for the Base. Other services include vehicle radio, point-to-point teletype, point-to-point data links, and emergency communications via the Military Affiliate Radio Systems (MARS).

USAF Medical Center

This Medical Center, located at Wright-Patterson AFB, is the second largest medical center in the Air Force. Its modern well-equipped facilities provide efficient in-patient and out-patient services for local military personnel and their families. This 330-bed center also provides speciality care for the greater portion of the northeastern and northcentral sections of the United States. The Medical Center is a receiving point for patients air evacuated from Air Force hospitals throughout the world and specifically from Ohio, Indiana, Illinois, Kentucky, Tennessee, West Virginia, Michigan, Wisconsin, Maine, New Hampshire, Massachusetts, New York, Canada and Greenland.

Air Force Museum

The Museum displays items of historical and current significance in the field of military aviation relating to the United States Air Force. It tells an authoritative and illustrated story of flight from mythological times to the present, featuring over 100 military aircraft and missiles. The Air Force Museum is recognized as the largest and most complete military aviation museum in the World.

Military Airlift Command

Several Military Airlift Command (MAC) organizations operate on the Wright-Patterson AFB.

MAC Detachment 15, 15th Weather Squadron. This detachment provides weather services to all Base units. The detachment furnishes a staff

weather officer to the Air Force Logistics Command.

Detachment 5, 6th Weather Squadron. This detachment provides field-level maintenance of weather detachments from upper Michigan to the lower border of Tennessee, and from the Mississippi River to the Appalachian Mountains.

Headquarters MAC, Detachment 4. This detachment acts as a MAC liaison to the Aeronautical Systems Division in all matters relating to the development of aircraft, avionics, material handling and related support systems for MAC.

Detachment 2, 136st Photographic Squadron. This detachment produces in-service motion pictures as directed by Headquarters Aerospace Audio-Visual Service and MAC, and operates a motion picture processing laboratory.

Detachment 2, 1401st Military Airlift Squadron. This detachment acts as the single manager for T-39 airlift on Wright-Patterson.

CHAPTER 3

ENVIRONMENTAL SETTING

CHAPTER 3 ENVIRONMENTAL SETTING

The environmental setting of Wright-Patterson Air Force Base is described in this chapter with the primary emphasis directed toward identifying features that may facilitate the movement of hazardous waste contaminants off base. Environmentally sensitive conditions pertinent to this study are highlighted at the end of this section.

METEOROLOGY

Temperature, precipitation, snowfall and other relevant climatic data furnished by Detachment 15, 15th Weather Squadron, Wright-Patterson Air Force Base are presented as Appendix C, Table C.1. The indicated period of record is 36 years. The summarized data indicate that the mean annual precipitation is 36.4 inches, part of which is and the mean annual snowfall of 25 inches. Bloyd (1974) reports that estimated annual lake evaporation for the Dayton area is approximately 33 inches.

GEOGRAPHY

The Dayton area lies within the Till Plains section of the Central Lowlands Physiographic Province (Fenneman, 1938). The regional land surface typically appears flat to gently rolling. Area streams and rivers have developed generally level floodplains such as the Mad River floodplain on which most of Wright-Patterson Air Force Base is situated. Topography

Regional elevations of the Till Plains vary from 900 feet to 1,100 feet MSL. Area relief is generally the result of glacial activity during the last (Wisconsin) period of major glaciation which has covered area bedrock with a relatively thin veneer of glacial drift. Locally, relief may be very distinct due to the presence of deposits of unconsolidated materials in the form of such glacial landforms as kames

(irregular, rounded, sometimes dome-like hillocks of stratified drift) and terminal moraines (accumulations of glacial till pushed up by the glacier).

Surface elevations at Wright-Patterson Air Force Base vary from 800 feet MSL in Areas A and C, located within the Mad River Floodplain to 975 feet MSL at a point adjacent to Area B Building 620, which is located along the crest of the Mad River Valley.

Drainage

The study area is drained principally by the Mad River and its tributaries which encompass a total drainage area of some 635 square miles (Plummer, 1973). Drainage of base areas is accomplished by overland flow to small installation streams such as Mud Run, Hebble Creek and the small unnamed stream flowing along the southwest border of Area B. Installation streams conduct flow in a generally westward direction, terminating at the Mad River. Figure 3.1 depicts installation drainage features.

Surface Soils

Surface soils of Wright-Patterson Air Force Base have been mapped by the USDA, Soil Conservation Service (1976 and 1978). Most of the installation land area lying within the Mad River floodplain is mapped as "Modified or Urban Land". Soils of this unit have been altered, completely removed locally or have been buried as a result of base construction or individual site use modification projects. This unit overlies permeable coarse-grained alluvium and/or glacial deposits, and therefore, probably exerts severe constraints on the development of waste disposal facilities. Of the remaining nineteen soil units identified on base, nine exert severe constraints on waste disposal practices due to the permeability of materials comprising the unit, normally high water tables or flooding potential. Base soils data are summarized in Table 3.1 and soil units are presented in Figure 3.2 and 3.3.

GEOLOGY

The geology of the Dayton area has been reported by several investigators, including Stout et al, (1943), Norris and Spieker (1966) and has been mapped by Bownocker et al, (1920, reprinted 1981). A brief review of their work is provided to support this investigation. A

TABLE 3.1

WRIGHT-PATTERSON AIR FORCE BASE SOILS

Map Symbol	Series	Slope	USDA Texture (major fraction)	Total Thickness (inches)	Unified Class. (major fraction)	Permeability (inches/hour)	Disposal Site Utilization (constraints)
CcD2	Casco-Eldean	12-18	Loam; clay loam Sandy clay loam Sand and gravel	09	ML CL GM, SM, GP, SP	0.6 to > 6.0	Severe-perm.
EnA	Eldean	0-2	Silt loam; silt clay loam	9	ML,CL	0.6 to > 6.0	Severe-perm.
EMB EMB 2	Eldean Eldean, mod. eroded	2-6 2-6	Gravelly clay; sandy Gravelly loam; sand £ gravel		SM, GP, SP GM, SM, GP, SP		
ŗ	Linwood	none	Muck Silt loam, loam	09	Pt ML,CL	0.6 to 2.0	Severe-floods
MhB MhC2	Miamian Miamian, mod. eroded	2-6 6-12	Loam; silt loam Clay loam	9	CL, NL CL-NL	0.2 to 2.0	Slight Moderate-slope
MIB MIB2	Miamian Miamian, mod. eroded	2-6 2-6					Slightly Slightly
MoC2	Miamian-Eldean, moderately eroded	6-12					Moderate-slope
OCA	Ockley	0-2	Silt loam; silty clay	09	ML, CL, SC	0.6 to >6.0	Severe-perm.
8 :00	Ockley	2-6	Clay loam; gravity clay loam Sand and gravel	X.	GN, SM, CP, SP		
Ka	Ragsdale	none	Silty clay loam; milt loam	96	CL, ML	.06 to 2.0	Severe-floods
RdB	Raub	3-6	Silty clay loam; silt loam loam Clay loam;	9	CL,ML	.06 to 2.0	Moderate-high water table

TABLE 3.1 (CONTINUED)

7

Disposal Site Utilization (constraints)	Sever e-shallow	bedrock	Severe-floods	Severe-perm.	Severe-high Water table	Probably severe**
Permeability (inches/bour)	0.6 to 2.0		0.6 to 2.	0.6 to >6.0	0.6 to 12.0 +	not estimated
Unified Class. (major fraction)	ML, CL, CH,	CL-ML	CL, ML, SM	ML, CL GM, SM, GP, SP	ML-CL, CH, ML	var í es
Total Thickness (inches)	18		09	09	09	unknown
USDA Texture (major fraction)	Silt loam; silty clay	loam, clay, limestone bedrock	Silt loam; clay loam Silty clay loam; sandy loam	Loam; clay loam; clay Gravelly loam sand	Silty clay loam; sandy loam Sand and grants	varies
Slope	12-18	18-25	none	0-2	none	varies
Series	Ritchey	Ritchey, mod. eroded	Sloan	War saw	West.land	Modified or urban land
Map Symbol	G.	PhE2	S ₃	WaA	81	*Muí.

This unit, which encompasses most of the installation, incorporates several soil series which have been altered, removed, or buried by construction activities and related site use modifications. * Note:

^{**}Probably severe due to location, local flooding potential or estimated permeability of underlying geologic unit.

Source: USDA Soil Conservation Service Reports, Montgomery County (1976) and Greene County 1978).

study area geologic map is presented as Figure 3.4 and depicts the distribution of significant geologic units relevant to this study. Geologic units ranging in age from Silurian to Ordovician have been described in the Dayton area and are presented in Table 3.2. A generalized geologic cross section extending down the Mad River Valley from Huffman Dam is included as Figure 3.5. The variability of the area precluded the preparation of a geologic cross section upstream from Huffman Dam for this study.

Consolidated Units

The consolidated rocks underlying Dayton area valleys and lowlands are represented by the Ordovician Age Richmond Group. The Richmond consists of some 265 feet of interbedded shales and limestones that crop out in portions of eastern Montgomery and western Greene Counties (Stout, et al. 1943).

Overlying the Richmond is the Silurian age Brassfield Limestone, which forms the walls of the Mad River valley. The Brassfield is identified as a relatively pure limestone, approximately thirty feet thick in the general study area (Norris and Spieker, 1966).

Study area hilltops and uplands are formed by a 230-foot thick sequence of silurian age Niagara Group shales, limestones and dolomites. Glacial Deposits

Pleistocene age unconsolidated materials are represented in the study area by till and outwash deposits. These materials were deposited during the last (Wisconsin) period of major glaciation and are present throughout the study area overlying bedrock units. Glacial deposits are particularly significant as they form the major regional aquifers.

Glacial Till

Glacial till (moraines), consisting of a heterogeneous mixture of cobbles, gravel, sand, silt and clay, was deposited directly by the glacier as it moved over the region. The till is generally interbedded with water-bearing sand and gravel zones and locally may form aquitards, confining aquifers or limiting recharge to underlying unconsolidated aquifers. In many areas, the till or moraines were buried by outwash sand and gravel and remain in their original form (Norris and Spieker, 1966).

TABLE 3.2

GENERALIZED BEDROCK STRATIGRAPHY

System	Group	Formation	Character of Material	Water-Bearing Properties	Average Thickness (feet)
		Cedarville dolomite	Massive, porous	Generally good water supplies	÷05
		Springfield dolmoite	Well-bedded, dense	regardence for take and toleration requirements, except from the contract of t	4
		Euphemia dolomite of Foerste	Massive, porous	vield from 6 to 15 gpm. A few wells yield from 100 to 200 gpm.	80
Silurian	Niagara	Laurel dolomite	Well-bedded, dense	Water very hard. Important spring horizon at base of system.	ın
		Osgood formation	Shale, calcareous, with limestone beds		15
		Dayton limestone	Limestone or dolomite well-bedded, dense		60
	Clinton	Brassfield limestone	Fossiliferous, massive to irregularly bedded		30
Ordovician	Richmond Maysville Eden Group, Undifferentiated		Shale, soft, calcareous interbedded with thin hard limestone layers; called Cincinnati shale in old reports.	Wells generally yield no water, or seldom more than 1 gpm. Water is sometimes highly charged with iron or salt compounds. Where water is present it generally occurs in top few feet of strata.	086
	Pre-Eden	Trenton limestone	Limestone or dolomite with some shale.	Generally yields salt water at base	200

Source: Modified from Plummer (1973).

Outwash

As the glacier retreated, melt streams flowing through the valleys and lowlands deposited large accumulations of sand and gravel identified commonly as outwash or valley train deposits. Outwash deposits attain a maximum thickness of 250 feet at Dayton and usually over lie till deposits (Norris and Spieker, 1966). Outwash deposits form the most prolific aquifer of the Ohio region (Bloyd, 1974).

Recent Alluvium

Recent age alluvium, deposited in relatively thin sequences by modern streams, typically overlies the outwash deposits. The alluvium is present at ground surface adjacent to all major streams and consists of both sorted and unsorted accumulations of sand, silt, gravel and clay.

HYDROLOGY

Introduction

Ground water hydrology of the Wright-Patterson Air Force Base area has been reported by Norris (1959), Spieker (1968), Norris and Spieker (1966) and Bloyd (1974). Additional information has been obtained from Eagon (1979) and The Miami Valley Regional Planning Commission (1981).

Wright-Patterson AFB lies within the Ohio ground water resource region (Bloyd, 1974). Ground water resources of the region are typically derived from unconsolidated sediments of glacial origin which function as an integral member of the area's hydrologic cycle, depicted on Figure 3.6. The major sources of recharge to local aquifers consist of precipitation, stream flow infiltration and artificial methods. Precipitation, falling directly on the unsaturated portion of an aquifer, or a communicating unit in contact with the aquifer, provides an important source of ground water recharge. Infiltration of stream waters through stream beds to aquifers below may provide an important source of recharge, especially in areas where pumping has altered ground water conditions locally.

In reviewing other reports, Norris and Spieker (1966) note that pumping from installation wells has induced infiltration through the bed of Hebble Creek at rates ranging from 0.17 to 0.33 million gallons per day per acre and through the bed of Mud Run at 0.34 million gallons per

OHIO'S HYDROLOGIC BUDGET EVAPO-**TRANSPIRATION PRECIPITATION** 26 **EVAPORATION** IN. FROM SURFACE (1.24)2 INCHES MGD 39 INCHES PER (1.86 MGD SURFACE SQ. PER SQ. MI.) RETENTION MI.) 2 INCHES ENTERING UNSATURATED LAND ZONE, 26 INCHES STATE GROUND-WATER PUMPAGE 0.3 INCHES ATER O (850 MGD) UNSATURATED ZONE 13 Inches GROUND Streams and Lakes WATER TABLE GROUND GROUND-WATER RUN-O FLOW EQUALLED INCHES OR EXCEEDED 90 PERCENT OF TIME, 0.85 INCHES WATER SOURCE: MIAM! VALLEY REGIONAL PLANNING COMMISSION (1981)

day per acre. Because these rates were derived from low flow data, it is assumed that induced recharge values will increase during high flow periods.

Artificial recharge, such as that practiced at the Dayton Municipal Wellfield (Rohrers Island) adjacent to Wright-Patterson Air Force Base provides significant supplies of surface water via infiltration ponds to producing aquifers. In this case, an engineered recharge facility is utilized to supplement ground water recharge and stabilize water levels. Figure 3.7 depicts the Rohrers island facility. Due to the environmental setting of the base and the diversity of ground water recharge types prevalent in the study area, most of the Wright-Patterson Air Force Base land area is a recharge zone.

Hydrologic Units

Several distinct hydrologic units are present in the general study area and are mapped as Figure 3.8. The units are typically of glacial origin with the exception of recent alluvium. A brief description of each unit is presented below:

- 1. Alluvium. Recent alluvial sediments, deposited as a result of modern stream development are presented in stream channels and along floodplains. The sediments consist of poorly sorted to well sorted sand, gravel, silt and clay-sized particles. The unit may vary in thickness from a few feet at small streams to tens of feet in stream channels such as that of the Mad River. Because of its relative youth, recent alluvium locally overlies the outwash (valley train) deposits, glacial till and moraine sediments. Ground waters occur in this unit under water table (unconfined) conditions. Although moderate supplies of ground water may be derived from this unit (100-500 gallons per minute), normal practice for the Ohio area dictates that this unit be penetrated and that water supplies be obtained from the more productive underlying outwash units. At Wright-Patterson Air Force Base, this unit is typically forty to sixty feet thick, where present. The alluvial aquifer is significant to this study as it may provide base flow to streams locally during low flow periods.
- 2. Outwash (Valley Train). Outwash materials, deposited by the retreating glaciers have partially or completely filled the valleys carved by the glacier's advance. At Wright-Patterson AFB, outwash is

ES ENGINEERING-SCIENCE

locally separated from overlying alluvial materials by a two foot (Well 4) to seventeen foot (Well 8) thickness of dense, unsorted till composed of clay, silt, gravel and sand. In many areas, the isolating till layer is thin or absent. Leakage of the till has been quantified by Norris (1959). At Rohrers Island, the outwash deposits average fifty feet in thickness and form the region's most productive aquifer, with yields on the order of 1000+ gallons per minute. At the base, the transmissivity of this unit ranges from 275,000 to 400,000 gpd/ft, indicative of a very productive aquifer (Eagon, 1979). This unit is tapped by Wright-Patterson Air Force Base, and is the primary unit from which municipal supplies are drawn at the nearby Dayton wellfield on Rohrers Island. Ground water occurs in this unit under both water table (unconfined) and artesian (confined) conditions. This unit may provide base flow to streams locally during lowflow conditions in areas where it exists at or near the ground surface.

- 3. Moraine. Moraine deposits, somewhat variable accumulations of glacial sediments, may contain moderate supplies of water under typically water table conditions in coarse sand and gravel zones. This unit varies in thickness from five to seventy feet. Low yields on the order of 25 gallons per minute have been reported, although normally, only domestic quantities are obtained and in some cases, supply may be unreliable. Where this unit overlies more permeable zones, the lower unit is normally tapped for water supplies.
- 4. Glacial drift thick phase. Ground water contained under water table conditions in the scattered sand and gravel sequences of this unit may provide domestic supplies on the order of ten gallons per minute. The unit is generally greater than twenty feet thick and may overlie units of greater productivity.
- 5. Glacial drift thin phase. Small ground-water supplies existing under water table conditions may be derived from buried sand and gravel layers or from underlying bedrock. This unit is generally twenty feet thick or less and is absent where bedrock crops out. Typically, only small supplies of ground water on the order of five gallons per minute may be obtained from this unit.

The outwash (valley train) aquifer is the most extensively exploited regional aquifer, and for this reason, a substantial amount of

information has been developed relative to the unit. A piezometric surface map depicting ground water flow directions in the outwash aquifer is presented as Figure 3.9. It is presumed that the piezometric surfaces of other aquifers in the study area roughly mirror ground surface and that topography exhibits local control over ground water system movement. In general, it may be stated that ground water flow in upland unconsolidated hydrogeologic units is downslope; in lowland or stream-valley hydrogeologic units, ground-water flow is presumed to be down-valley. A large drawdown feature has developed in the vicinity of the Dayton Municipal Wellfield (Rohrers Island) which reflects continuous heavy pumpage. Ground water flows north of Wright Field may have been altered by this activity as flow directions and velocities have probably been changed locally.

Base Water Supplies

Wright-Patterson Air Force Base currently obtains its water resources from installation operated wells. All installation water wells are finished in the outwash (valley train) aquifer. Base well locations are depicted on Figure 3.10. Base wells now in service average 55 feet in depth. Figure 3.11 depicts the construction of a typical base well. Base well construction information is summarized in Appendix C, Table C.2. Static water levels range from 5 feet at Well No. 6 to 22 feet at Well No. 3 and No. 7 (below ground surface). The relatively high yields and low drawdowns observed in base wells indicate a very productive and permeable aquifer.

Several studies have been performed in recent years by Plummer (1973), Evans (1977) and the Miami Valley Regional Planning Commission (1981) that focus upon the impact of waste disposal on ground-water quality. All appear to have concluded that regional water quality may be degraded by waste disposal. Evans (1977) has mapped ground-water quality within the outwash (valley train) aquifer of the Mad River Valley. This work indicates that high (300-1000 ug/l) iron concentrations, high dissolved manganese levels (>200 ug/l) and moderate total organic carbon levels (3.0-9.9 mg/l) were observed in water derived from the outwash aquifer adjacent to Wright-Patterson AFB. The area of water quality degradation has been mapped into installation outwash aquifer zones also.

WRIGHT-PATTERSON AFB REBUILT WELL NO. 7

Surface Water

The Ohio Environmental Protection Agency has regulatory authority for the maintenance of water quality which includes surface waters on and adjacent to Wright-Patterson AFB. The State's Water Quality Standards set forth the authority for the assignment of stream classifications for all state waters. The standards are summarized as follows:

<u>Mad River</u> - Adjacent to WPAFB is designated for Warmwater Habitat, Agricultural Water Supply, Industrial Water Supply and Primary Contact Recreation.

Mad River Above Huffman Dam - Governed by the Antidegradation Policy to assure preserving the water quality for the Huffman Recreation Area.

Wright-Patterson AFB has an NPDES permit which expires June 30, 1983 which regulates the discharge of surface runoff to the Mad River directly through five outfalls and through one outfall to Hebble Creek and then to the Mad River. Sampling of the outfalls is conducted by the Base Bioenvironmental Engineer with the results forwarded to the Ohio EPA in Columbus.

Summary of Environmental Setting

Geographical, geologic and hydrologic data evaluated for this study indicate the following:

- o The Wright-Patterson area experiences moderate amounts of precipitation and snowfall annually.
- o Base soils are typically permeable sands and gravels of glacial origin.
- o The primary regional aquifer, outwash (valley train) sediments underlies the base at shallow depth (25 to 50 feet).
- o Wright-Patterson Air Force Base and the City of Dayton obtain potable water supplies from the outwash (valley train) aquifer.
- o Other unconsolidated water-bearing units are present on base or exist in proximity to the base.
- o Ground water system recharge depends in part upon or has been induced from the flow of base streams (Mud Run and Hebble Creek).

The above points indicate that the potential for migration of contamination to area aquifers is high due to their characteristic high permeabilities and transmissivities. The primary receptors of migrating waste contamination would be local surface waters and local aquifers.

There are no known threatened or endangered plant or animal species residing on Wright-Patterson AFB. Some transient species may pass through the base on occasion.

Storm water runoff from the base drains to perennial and intermittent streams which discharge to the Mad River.

CHAPTER 4

FINDINGS

CHAPTER 4

FINDINGS

To assess hazardous waste management at Wright-Patterson Air Force Base, past activities of waste generation and disposal methods were reviewed. This section summarizes the hazardous waste generated by activity, describes waste disposal methods, and identifies and evaluates the disposal sites located on the base. Figure 4.1 presents the decision-tree methodology used in the review of waste practices. This methodology provides a logical algorithm for the consistent evaluation of all base practices.

PAST SHOP, LABORATORY AND BASE ACTIVITY REVIEW

To determine past base activities that resulted in generation and disposal of hazardous waste, a review was conducted of current and past waste generation and disposal methods. This review consisted of interviews with base employees, a search of files and records, and site inspections.

All hazardous waste that is generated on Wright-Patterson AFB can be associated with one of the following activities:

- Industrial shops
- Research and development laboratories
- Pesticide and herbicide utilization
- Radioactive wastes
- Fuel management
- Fire control training
- Hazardous waste storage
- Central heating plants

The following discussion addresses only those wastes generated on base which are either hazardous or potentially hazardous. In this discussion, a hazardous waste is defined as hazardous by either the Resource Conservation and Recovery Act (RCRA), or the Wright-Patterson

documents which have been reviewed. A potentially hazardous waste is one which is suspected of being RCRA hazardous although insufficient data are available to fully characterize the waste material.

Industrial Shops

Major mission support activities are conducted at Wright-Patterson AFB by various groups, squadrons and recently contract organizations, who operate the industrial shops. These shops fabricate, maintain and repair components for aircraft and ground equipment. A list of industrial shops was obtained from the Environmental Planning Section and served as a starting point for the review of past waste generation and disposal practices. This list was derived from the base Spill Prevention Control and Countermeasures Plan (SPCC) and contained those shops where toxic/hazardous materials are used, stored, treated or disposed on-base. Additional shops, which presently exist or existed in the past, were added to the list as a result of interviews with base personnel. A list of shops is presented in Appendix D, which handled hazardous materials or generated hazardous wastes.

Shops which may pose a potential for ground or surface water contamination were selected for further review and investigation. Eleven shops were visited and an additional 20 shops were selected for telephone interviews. Information obtained from these interviews included hazardous waste compounds handled, waste quantities and disposal methods for each shop. Summarized results of the detailed shop reviews are listed in Table 4.1. The table indicates the shop, building location, hazardous waste generated, waste quantities and the disposal methods indexed to a timeline. The industrial shops presented in Table 4.1 are those which are significant either because of the quantity or type of hazardous waste generated or unique disposal method utilized.

Base personnel reported that since approximately 1973 all hazardous wastes were containerized for contractor pick-up arranged by the Civil Engineering Squadron (CE). Waste oils and fuels were collected from storage tanks by a truck dispatched by CE. These waste oils and fuels were temporarily stored in underground tanks until sufficient quantities were accumulated to warrant contract removal coordinated by DPDO. Prior to 1973, CE was directly responsible for the collection and disposal of hazardous wastes. Large quantities of waste oil, fuels and solvents

WASTE GENERATIONS

1 of 6

SHOP NAME LOCATION (BLDG. NO.) 4950th TEST WING FABRICATION & MODIFICATION DIVISION METAL CLEANING AND PLATING SHOP	WASTE MATERIAL	WASTE QUANTITY*	METHOD(8) OF	
				OSAL
				
	B NITRIC AND SULFURIC ACID SOLUTION	200 GALS. /5 YRS.	NEUTRALIZED TO SURFACE WATERS DISPOSAL N	NEUTRALIZED TO SANITARY
	CAUSTIC SODA AND TRISODIUM PHOSPHATE	1,000 GALS./4 MOS.	NEUTRALIZED TO SANITARY SEWER	13 E
	NITRIC ACID	340 GALS. /6 MOS.		MEUTRALIZED TO SANITARY SFWFR
	SULFURIC ACID	60 GALS./6 MOS.	~ ¥.	NEUTRALIZED SANITARY
	NICKEL ACETATE	400 GALS. /2 YRS.	BASE LANDFILL CONTRACTOR	SEVER
	CADMIUM OXIDE POWDER, SODIUM CYANIDE, AND CAUSTIC SODA	480 GALS. /YR.	BASE LANDFILL DISPOSAL	
	TRICHLOROETHYLENE (TCE)	110 GALS./YR.	BURNED ON-BASE LANDFILL DISPOSAL	
	TCE DEGREASER SLUDGE	1/4 DRUM/YR.	BASE LANDFILL CONTRACTOR DISPOSAL	
ELECTRONICS SHOP	FERRIC CHLORIDE	50 GALS. /3 MOS.	CONTRACTOR SANITARY SEWER DISPOSAL	
	ACET	100 GALS./YB.	CONTRACTOR BURNED ON-BASE DISPOSAL	~
PAINT SHOP S-AREA B		55 GALS. /YR.	CONTRACTOR BASE LANDFILL DISPOSAL	æ
MODIFICATION RRANCH		510-75 CA1 S /MO	BURNED ON-BASE DPDO	
·				

KEY

---- CONFIRMED TIME-FRAME DATA BY SHOP PERSONNEL

*BASED ON CURRENT RATES AND BEST ESTIMATES OF PAST RATES

r!

The same of the sa

And the state of t

---- ESTIMATED TIME-FRAME DATA BY SHOP PERSONNEL

4-4

WASTE GENERATIONS

2 of 6

				4 JO 7
SHOP NAME	LOCATION (BLDG. NO.)	WASTE MATERIAL	WASTE QUANTITY*	METHOD(S) OF TREATMENT, STORAGE & DISPOSAL 1950 1960 1970 1980
4950th TW FIELD MAINT. SQ METAL PROCESSING SHOP (PLATING AND WELDING)	13-AREA C	TRICHLOROETHYLENE	10 GALS. /6 MOS.	BURNED ON-BASE LABORAL CONTRACTOR
		SODIUM HYDROXIDE CADMIUM OXIDE POWDER, SODIUM	350 GALS. /3 MOS.	BASE LANDFILL
		NITRIC ACID HYDROCHLORIC ACID	20 GALS./YR. 20 GALS./YR. 20 GALS./YR.	NEUTRALIZED TO SURFACE WATERS CONTRACTOR NEUTRALIZED TO SURFACE WATERS CONTRACTOR
AIRCRAFT WHEEL AND RELATED COMPONENTS CLEANING ROOM AND PAINT SHOP	13-AREA C	PAINT REMOVER CARBON REMOVER, PD-680, HY- DRAULIC FLUID, PAINT THINNER	1,400 GALS./YR.	BASE LANDFILL DPDO
NON-DESTRUCTIVE INSPECTION (NDI) LAB	13-AREA C (256-AREA C PRIOR TO 1971)	PENETRANT EMULSIFIER PHOTOGRAPIIIC FIXER	400 GALS./YR. 400 GALS./YR. 60 GALS./YR.	BURNED ON-BASE DPDO BURNED ON-BASE DPDO \$11.VER RECOVERY
JET ENGINE SHOP	13-AREA C	WASTE OIL, IIYDRAULIC FLUID	100 CALS. /MO.	BURNED ON-BASE DPDO
PNEUDRAULIC SHOP	13-AREA C	HYDRAULIC FLUIDS	15-20 GALS./MO.	BURNED ON-BASE DPDO

KEY

CONFIRMED TIME-FRAME DATA BY SHOP PERSONNEL

*BASED ON CURRENT RATES AND BEST ESTIMATES OF PAST RATES

----ESTIMATED TIME-FRAME DATA BY SHOP PERSONNEL

U

WASTE GENERATIONS

SHOP NAME

4950th TW FIELD MAINT. SQ (CONT.)

TEST CELL

3 of 6

CONTRACTOR DISPOSAL DPDO METHOD(S) OF F, STORAGE & DISPOSAL 1960 1970 1980 CONTRACTOR DISPOSAL 000 DPDO DPDO BASE LANDFILL BURNED ON-BASE **BURNED ON-BASE** BURNED ON-BASE **BURNED ON-BASE** TREATMENT 1950 WASTE QUANTITY* 275 GALS. /YR. 500 CALS. /MO. 140 GALS. /MO. 25 GALS. /MO. 10 GALS. /MO. WASTE OILS, HYDRAULIC FLUID, SOLVENTS (PD-680), WASTE FUEL **WASTE MATERIAL** PAINT STRIPPERS
PAINT THINNERS
LAQUER THINNERS
SPOILED OR WASTE PAINT
TOLUGHE
NAPTHALENE
METHYL ETHYL KETONE
ACETONE PAINT STRIPPINGS WASTE OIL SOLVENT LOCATION (BLDG. NO.) 256-AREA C 109-AREA C 105-AREA C CORROSION CONTROL (PAINT SHOP)

KΕΥ

CONFIRMED TIME-FRAME DATA BY SHOP PERSONNEL ----ESTIMATED TIME-FRAME DATA BY SHOP PERSONNEL

BASED ON CURRENT RATES AND BEST ESTIMATES OF PAST RATES

CONTRACTOR

BURNED ON-BASE

100 GALS. /WK.

STRIPPERS (ORGANIC), SOLVENTS PAINT THINNERS, SPOIL OR WASTE PAINT

SANITARY SEWER

BURNED ON-BASE

DPDO 0040 DPDO

BURNED ON-BASE BURNED ON-BASE

10,000 CALS. /YR.

WASTE OIL SOLVENTS WASTE OIL

4044-AREA C

4046-AREA C

UNKNOWN

10,000 CALS. /YR.

UNKNOWN

SOAP AND DETERGENT

4024-AREA C

4950th ORG MAINT. SQ

WASH RACK

4024-AREA C

CORROSION CONTROL (PAINT SHOP)

SUPPORT EQUIPMENT BRANCH

TABLE 4.1 (cont'd)

INDUSTRIAL OPERATIONS (Shops)

WASTE GENERATIONS

CONTRACTOR CONTRACTOR DISPOSAL CONTRACTOR METHOD(S) OF TREATMENT, STORAGE & DISPOSAL CONTRACTOR CONTRACTOR SILVER RECOVERY TO SANITARY SEWER SILVER RECOVERY TO SANITARY SEWER DPDO CONTRACTOR DISPOSAL DPDO DPDO DPDO 4 of 6 1970 BURNED ON-BASE NEUTRALIZED TO SANITARY SEWER SANITARY SEWER TO SALVAGE SANITARY SEWER BURNED ON-BASE BURNED ON-BASE BURNED ON-BASE BURNED ON-BASE 1960 1950 WASTE QUANTITY* (TOTAL QUANTITY UNKNOWN, 90 CPM WHEN IN USE) 2,000 CALS./YR. 75-100 GALS. /MO. 50 GALS. /6 MOS. 2 CALS. /6 MOS. 200 GALS. /MO. 150 GALS./MO. 1 GAL. /YR. UNKNOWN UNKNOWN WASTE OILS, CLEANING SOLVENTS STODDARD SOLVENT, WASTE OIL STODDARD SOLVENT, WASTE OIL WASTE MATERIAL STODDARD SOLVENT MERCURY WASTES FIXER SOLUTION FIXER SOLUTION VACUUM TUBES BATTERY ACID WASTE OIL LOCATION 30-AREA B (600-AREA B PRIOR TO 1965) 884-AREA C (168-AREA C PRIOR TO 1968) (BLDG. NO.) SB AREA C 60-AREA C 30-AREA B 38-AREA B PRECISION MEASUREMENT EQUIP-MENT LAB (PMEL) TECHNICAL PHOTOGRAPHIC DIV. 4950th AVIONICS MAINT. SQ GENERAL PURPOSE UNIT AND SPECIAL PURPOSE UNIT WRIGHT MAINTENANCE UNIT 2750th AIR BASE WING MAINTENANCE SHOP UNIT SHOP NAME PRODUCTION BRANCH DIRECTOR SUPPORT AUDIOVISUAL SQ

KEY

CONFIRMED TIME-FRAME DATA BY SHOP PERSONNEL

BASED ON CURRENT RATES AND BEST ESTIMATES OF PAST RATES

۲

. ۲

r:

---- ESTIMATED TIME-FRAME DATA BY SHOP PERSONNEL

WASTE GENERATIONS

5 of 6

(

SHOP NAME	LOCATION (BLDG. NO.)	WASTE MATERIAL	WASTE QUANTITY*	METHOD(S) OF TREATMENT, STORAGE & DISPOSAL
2750th AIR BASE WING (CONT.)				
АИТО НОВВҮ SHOP	1244-AREA C	STODDARD SOLVENT, WASTE OIL, TRANSMISSION FLUID, BRAKE FLUID	200 GALS./MO.	BURNED ON-BASE DPDO
ENTOMOLOGY UNIT	272-AREA A	EMPTY PESTICIDE CONTAINERS	4 DRUMS/MO./SUMMER	COUNTY LANDFILL DISPOSAL
MILITARY GOLF COURSE	878-AREA A	EMPTY HERBICIDE AND PESTICIDE CONTAINERS	2 DRUMS/MO./SUMMER	COUNTY LANDFILL
FIJEL MAINTENANCE	POL TANK FARM	STORAGE TANK BOTTOMS FUEL FILTER ELEMENTS	700 GALS./YR. 600 ELEMENTS/3 YRS.	BASE LANDFILL/ COUNTY BASE LANDFILL CANDFILL CAN
EXTERIOR ELECTRICS	AREA'S A, B,C	OILS CONTAINING PCB'S	700 GALS./5 YRS.	DPDO STORED ON-SITE
ORIENTATION GROUP (AFOG)				
PAINT SHOP	6-AREA B (MOVED TO DESC, 1981)	SINTARI (ENAMEL) PAINTS, THINNERS	25 DRUMS/18 MOS.	BASE LANDFILL DIFFSAL
MACHINE SHOP	4-AREA B	CLEANING SOLVENTS	3 DRUMS/YR.	BURNED ON-BASE DPDO
AIRCRAFT SECTION		CLEANING SOLVENTS, PAINT STRIPPERS	3 DRUMS/YR.	BURNED ON-BASE DPDO
GENERATOR MAINTENANCE SHOP	4-AREA B (MOVED TO DESC, 1981)	WASTE OIL	1 DRUM/YR.	BURNED ON-BASE DPDO

ΚĒΥ

-CONFIRMED TIME-FRAME DATA BY SHOP PERSONNEL

*BASED ON CURRENT RATES AND BEST ESTIMATES OF PAST RATES

---- ESTIMATED TIME-FRAME DATA BY SHOP PERSONNEL

WASTE GENERATIONS

6 of 6

T

	SHOP NAME	LOCATION (BLDG. NO.)	WASTE MATERIAL	WASTE QUANTITY*	METHODIS) OF TREATMENT, STORAGE & DISPOSAL	DISPOSAL
₹	AIR FORCE MUSEUM AIRCRAFT RESTORATION AND PRESERVATION AND EXHIBITS DIV.	4C-AREA B	SOLVENT WASTES PAINTS WASTES THINNERS	2 DRUMS/YR.	BASE LANDFILL	DISTORAL
-			•			

KEY

-CONFIRMED TIME FRAME DATA BY SHOP PERSONNEL

*BASED ON CURRENT RATES AND BEST ESTIMATES OF PAST RATES

----ESTIMATED TIME FRAME DATA BY SHOP PERSONNEL

were burned on-site. Acids from battery shops and plating facilities were neutralized in batch tanks at the landfills and discharged to the ground. Other miscellaneous hazardous chemicals were either stored at specific sites or placed in chemical trenches at several landfills throughout the base. The most common materials disposed of from the base shops included waste oils, cleaning solvents, waste fuels, and acids.

Research and Development Laboratories

Wright-Patterson AFB has been the site of extensive aeronautical research since the first World War. Laboratory missions and organizations have changed often through the years, but since 1951, have come under the supervision of the Air Research and Development Command (ARDC), which later became the Air Force Systems Command (AFSC).

The hazardous waste generated by the laboratories in Area B contain an extremely diversified mixture of chemicals, solvents and petroleum products; however, the individual quantities of any one particular substance may be quite small and are highly variable from year to year. A list of research laboratories which handled hazardous materials or generated hazardous wastes is presented in Appendix E. Table 4.2 lists the principal wastes generated in each of the laboratories and reflects the nature of their individual research efforts. In general, the quantities listed in this table are representative of the 1970's, although in most cases, the activities generating these wastes have been going on for 40 or more years.

The largest laboratory activity currently at Wright-Patterson AFB is that of the Air Force Wright Aeronautical Laboratories (AFWAL), which is an umbrella organization encompassing flight dynamics, aero propulsion, avionics and materials labs. These laboratories are involved in both basic and applied research, and interface with university, industrial and government research efforts to develop and evaluate new technologies for the Air Force.

Prior to 1975, the Aerospace Research Laboratory (ARL) was located at Wright-Patterson AFB. It had as its function the performance of basic scientific research in all fields related to Air Force operations. This basic research function was split between AFWAL and outside university research labs when the ARL was dissolved in 1975.

TABLE 4.2

T

•

RESEARCH & DEVELOPMENT LABORATORIES

TREATMENT, STORAGE & DISPOSAL 1980 CONTRACTOR DISPOSAL CONTRACTOR DISPOSAL CONTRACTOR CONTRACTOR DISPOSAL CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR DISPOSAL l of 4 1970 METHOD(S) OF BURNED ON-BASE BURNED ON-BASE **BURNED ON-BASE** BURNED ON-BASE **BURNED ON-BASE** BURNED ON-BASE BASE LANDFILL DESTROYED BY BASE ORDNANCE 1960 BURNED ON-BASE BASE LANDFILL 1950 **WASTE QUANTITY** 5,000 GALS. /MO. 100 TOTAL/MO. 30 GALS. /MO. 100 LBS. /MO. 40 CALS. /MO. 50 GALS. /MO. 25 LBS. /MO. UNKNOWN UNKNOWN UNKNOWN SOLVENTS: BENZENE, METHYL-ENE CHLORIDE, ACETONE, FREON ALCOHOLS, KETONES, TETRAHY-DROFURAN PETROLEUM PRODUCTS: OILS, FUELS, LUBRICANTS, SOLVENTS PETROLEUM PRODUCTS: FUELS, LUBRICANTS, HYDRAULIC FLUIDS, OILS CARBON REMOVAL COMPOUNDS **WASTE MATERIAL** MISCELLANEOUS CHEMICALS & REACENTS (SEE APPENDIX) BATTERIES & CELLS: NI-Cd, Hg O-Zn, Ag O-Zn, ORGANIC (Li-S, Li-CF, Li-V) GUN CLEANING: OILS, TCE, SOLVENTS, GREASES, RAGS, PAPER, ETC. ORGANIC SOLVENTS, OILS, CREASES FREON T-WD602 (6 OTHER COOLANTS) CUNPOWDER & MUNITIONS OCATION (DLDG. NO.) 626, 23, 622, 621, 635, 22, 22B (AREA B) 450, 651, 652, 653, 32, 56, 51-(AREA B) 92, 42D, 352, 18, 18A, B, C, D, E, 70, 71A, 71B, 21, 20 22, 22B (AREA B) (AREA B) 77' 77B AERUPROPULSION LAB (AFWAL/PO) MATERIALS LAB (AFWAL/ML) AVIONICS LAB (AFWALICA) SHOP NAME

KEY

----- CONFIRMED TIME-FRAME DATA BY SHOP PERSONNEL

----ESTIMATED TIME FRAME DATA BY SHOP PERSONNEL

Annual Contract

TABLE 4.2 (cont'd)

U

RESEARCH & DEVELOPMENT LABORATORIES

TREATMENT, STORAGE & DISPOSAL EVAPORATION, CONTRACTOR DISPOSAL CONTRACTOR DISPOSAL CONTRACTOR DISPOSAL CONTRACTOR DISPOSAL DISPOSAL
CONTRACTOR
DISPOSAL
CONTRACTOR
DISPOSAL
CONTRACTOR
DISPOSAL
CONTRACTOR CONTRACTOR NEUTRALIZED TO SURFACE WATERS METHOD(S) OF RUNOFF TO STORM SEWER,
PERCOLATION NEUTRALIZED TO ON-BASE LANDFILL **BURNED ON-BASE** BURNED ON-BASE MEUTRALIZED TO SANITARY SEWER BURNED ON-BASE BURNED ON-BASE **BURNED ON-BASE** BASE LANDFILL WASTE QUANTITY 50 GALS./DUMP (ONCE OR TWICE/YR.) 4,000 GALS. /MO. 15 GALS. /MO. 300 GALS. /MO. 65 CALS. /MO. 15 CALS. /MO. 35 CALS. /MO. 40 CALS. /MO. CALS. /MO. UNKNOWN UNKNOWN PLATING SOLUTIONS (CN, Zn, Cr. Ni, Cd, Sn, Cn) MISCELLANEOUS ACIDS, MINERAL FUEL/WATER MIXTURE FROM SURVIVABILITY TESTING (JP-4, 5, 8, OTHERS) PLATING RINSES (CONTINUOUS) SYNTHETIC & EXPERIMENTAL LUBES: SILICATE ESTERS, DIESTERS, POLYPHENOL ETHERS CARBON REMOVAL COMPOUNDS CARBON REMOVAL COMPOUNDS PETROLEUM PRODUCTS: OILS, FUELS, HYDRAULIC FLUIDS, LUBRICANTS, SOLVENTS WASTE MATERIAL MISCELLANEOUS CHEMICALS & REAGENTS SYNTHETIC LUBRICANTS **TETRACHLOROETHYLENE** OCATION 45, 65, 31, 93, 13, 27, 145, 24C, 26, 461, 50A, 450, (BLDG. NO.) 450, 651, 652, 653, 32, 56, 51-(AREA B) SI-(AREA B) **GUN RANGE** MATERIALS LAB (AFWAL/ML) (CONT.) FLIGHT DYNAMICS LAB (AFWAL/FI) SHOP NAME

KEY

-----ESTIMATED TIME-FRAME DATA BY SHOP PERSONNEL

TABLE 4.2 (cont'd)

T

L

RESEARCH & DEVELOPMENT LABORATORIES

TREATMENT, STORAGE & DISPOSAL NEUTRALIZED TO SANITARY SEWER OR DESTROYED BY BASE ORDNANCE NEUTRALIZED TO SANITARY SEWEI INCINERATED IN BLDG. 838 CONTRACTOR INCINERATED IN BLDC. 838 CONTRACTOR CONTRACTOR 3 of 4 CONTRACTOR CONTRACTOR DISPOSAL CONTRACTOR DISPOSAL CONTRACTOR DISPOSAL INCINERATED IN BLDC. 838 DESTROYED BY BASE ORDNANCE METHOD(S) OF BURNED ON-BASE 1960 BURNED ON-BASE **BURNED ON-BASE** BURNED ON-BASE BURNED ON-BASE BASE LANDFILL 1950 İ WASTE QUANTITY 100 JUCRAMS/WK. 150 CALS. /YR. 500 GALS. /MO. 100 CALS. /MO. 50 GALS. /YR. S LBS./YR. 20 CALS. /MO. UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN VARIOUS HYDRAZINE COMPOUNDS ETHYLENE GLYCOL/WATER SOLN. CONTAMINATED DIOXIN, ANIMAL FLESH & LAB SUPPLIES PETROLEUM PRODUCTS: OILS, FUELS, SOLVENTS, HYDRAULIC FLUIDS PETROLEUM PRODUCTS: OILS, LUBRICANTS, HYDRAULIC FLUIDS, FUELS IMPACT SENSITIVE MATERIALS: PICRIC ACID CONTAMINATED LAB SUPPLIES, FECES, BEDDING **WASTE MATERIAL** CARBON REMOVAL COMPOUNDS ANIMAL CARCASSES FROM VETERINARY LAB & TOXIC TESTING HYDROCARBON SOLVENTS HALOGENATED SOLVENTS BERYLLIUM COMPOUNDS CHEMICAL OXIDIZERS LOCATION (BLDG. NO.) 79, 79A, 433, 429 450 AEROSPACE MEDICAL RESEARCH LAB (AFAMRL) AEROSPACE RESEARCH LAB (ARL) (DISBANDED IN 1975) SHOP NAME

KEY

CONFIRMED TIME-FRAME DATA BY SHOP PERSONNEL

-----ESTIMATED TIME FRAME DATA BY SHOP PERSONNEL

,

RESEARCH & DEVELOPMENT I ABORATORIES

4 00 4	METHOD(S) OF TREATMENT, STORAGE & DISPOSAL 1950 1950 1970 1950	BASE LANDFILL. CONTRACTOR DISPOSAL CONTRACTOR DISPOSAL	BURNED ON-BASE CONTRACTOR	
ORIES	WASTE QUANTITY	20 LBS./MO. UNKNOWN	200 GALS. /MO.	
LABORATORIES	WASTE MATERIAL	MISCELLANEOUS CHEMICALS & REAGENTS HERBICIDE ORANGE CONTAMI- NATED MATERIALS	PETROLEUM PRODUCTS: OILS, FUELS, GREASES, HYDRAULIC FLUIDS, LUBRICANTS	•
	LOCATION (BLDG. NO.)	054	70-(AREA B)	
	SHOP NAME	AEROSPACE RESEARCH LAB (ARL) (DISBANDED IN 1975) (CONT.)	AERUSPACE FUELS LABORATORY (AFLC/SFQLA)	,

KEY

-CONFIRMED TIME-FRAME DATA BY SHOP PERSONNEL

---- ESTIMATED TIME-FRAME DATA BY SHOP PERSONNEL

The Aerospace Medical Research Laboratory (AMRL) has been located at Wright-Patterson AFB since the 1930's and has been under the supervision of the Aerospace Medical Division of AFSC, headquartered at Brooks AFB since 1961. The three principal areas of the AMRL research are Health Effects and Toxicology, Human Engineering, and Biodynamics and Bioengineering. The aim of the AMRL research is to ensure the safety and efficient operation of new Air Force technology.

U

The Aerospace Field Laboratory (SFQLA) is a quality control lab which tests various petroleum products including oil, hydraulic fluids, lubricants, greases, and fuels for the Logistics Command. At least two other major laboratory functions were at one time located at Wright-Patterson AFB. A research group investigating rocket propulsion systems was moved to Edwards AFB in 1963, when the rocket Propulsion Laboratory was formed. This group made use of a storage area (Bldg 92) in Area B for rocket propellants, primarily chemical oxidants. This site was later utilized by the Fuels and Lubes Division of the Propulsion Lab. It is currently used as an oil storage area, along with Building 352. The ultimate disposition of these oxidants is unknown.

Wright-Patterson AFB was also the site of an armaments laboratory prior to 1957, when this function was moved to the Air Proving Ground Center at Eglin AFB. The armaments lab used the gun range in Area B for testing aircraft weapons systems. Associated with this was an extensive gun cleaning operation in Buildings 22 and 22B, as well as munitions storage in the Woodland Hills area and near Building 22A. The gun range has since been taken over by the Flight Dynamics Lab and is used for survivability tests.

Aircraft parts such as fuel tanks, flight control equipment and engines, are tested at the gun range under simulated battle conditions to study aircraft survivability. This testing often resulted in large quantities of fuel, mostly JP-4, being spilled from ruptured tanks and lines. Until about 1979 this fuel was blown onto the hillside behind the test facility where it burned, evaporated, percolated into the ground, or ran off to the storm water collection system. At that time, a concrete pad and run-off system was installed to catch the fuel, and about 1980 an oil-water separator was added to the system to remove the fuel from the wash water. The fuel which remained within the test

facility was collected in a slop tank along with wash water and was later piped into the oil-water separator system. This fuel was then collected with other waste petroleum products on base for recovery or reuse.

The greatest use of petroleum products in Area B is the Fuels and Lubes Division of the Aero Propulsion Laboratory. In addition to storage areas at Building 92 and 352, the Aero Propulsion Lab had a storage facility at Building 90 until several years ago. There were also several underground tanks used for fuel storage, as well as storage of waste petroleum products. Most waste petroleum products in Area B have been collected in cans, drums or scrap tanks, and pumped at intervals to tank trucks for disposal or recovery.

Laboratories which make extensive use of petroleum products have oil/water separators on the drains from the laboratory. Most of these separators are designed or have been converted to discharge into the sanitary sewer system, although some separators still discharge to the storm sewer as identified in Appendix C, Table C.6. Disposal of waste petroleum products has been through base Civil Engineering and prior to 1973, the materials were burned at Twin Lakes. After that time, independent contractors were invited on base to reclaim or recover these materials.

A wide variety of laboratory chemicals and reagents have been used in Area B. One of the largest generators of waste chemicals has been the Materials Laboratory. Although an extremely diverse mixture of chemicals is included in the hazardous waste generated in Area B, the total amount of any single compound has generally been rather small. Prior to 1973, the various labs disposed of these chemicals in a number of ways. Some were collected for disposal by the base. Some were given or sold to area universities and some were flushed to the sanitary sewer or placed in dumpsters.

After 1973, chemical disposal was generally managed by the base, and these materials were segregated for pickup and disposal by off-base contractors. Some materials which were of an obvious hazardous nature, such as mercury, cyanide and toxic materials tested by AMRL, were handled by special procedures that included recovery, redistillation, or chemical neutralization prior to disposal. Some of the laboratories, in

particular Buildings 51, 56 and 450, have lime neutralization pits through which liquid wastes pass before being discharged to the sanitary sewer. Gas cylinders or bottles are generally returned to the suppliers for disposal, although interviews have determined that a number of these cylinders, including some containing pyrophoric gases, were disposed of in base landfills prior to 1973.

Waste materials from the AMRL Toxic Hazardous Facility in Building 79 are of particular concern since some of these materials are extremely toxic. Toxicology research began in 1956, although toxic substances per se were not handled until the mid-1960's, when rocket propellants and Titan Missile propellant testing began. These substances include small quantities of hydrazine, which were chemically neutralized before disposal. Oxidizers such as oxofluorene, chlorofluorene, oxygen difluoride and pentachlorofluorene were chemically neutralized to nontoxic calcium salts and other products. These materials were then flushed into the sanitary sewer system.

Some fuels, rocket propellants and explosives, such as picric acid, were destroyed by base ordnance personnel. Beryllium oxides, also tested at AMRL, were held until recently, in 1980, when they were disposed of through an off-base contractor. Most excess chemicals had been retained in Building 79 until the last few years, when off-base contractors have been used extensively to dispose of them.

Gases from the Thomas Dome Environmental Chambers pass through scrubbing neutralization systems prior to discharge and the wash water from these systems goes to the sanitary sewer. Incinerators in Building 838 have been used since 1965 for burning animal carcasses and contaminated laboratory supplies. Prior to 1965, when Building 838 was built, animal carcasses were known to have been disposed of in base landfills with no precautions or special handling. Radioactive tracers and chemicals used in AMRL testing have been disposed of through the Radiation Protection Officer in accordance with governing regulations and techical orders.

Pesticide and Herbicide Utilization

The WPAFB pesticide/herbicide program was combined under the Sanitation Section's Entomology Shop in approximately 1970-1971. Prior to that time, pest control was administered by the Entomology Shop and weed control was administered by the Pavement and Grounds Section. The present shop is located in Building 272, Area A. The shop's function is to control vegetation, rodents and insects on the base, treating some areas routinely while others are sprayed as needed. Both truck mounted and hand held sprayers are utilized. A variety of pest and herbicide control chemicals are used throughout the year.

Unused chemicals are typically drained from spray equipment into labeled drums for reuse. Wash and rinse water are also retained for future use as make-up water.

In accordance with EPA guidelines, pesticide containers are triple rinsed and punched with holes to prevent reuse. These containers have been removed by waste contractors since 1975. Prior to 1975, the containers were disposed in the county landfills.

On occasion small quantities of off-spec or unused chemicals were disposed by a contractor. Before 1974, if a particular pesticide waste required disposal; the shop would notify the refuse bulldozer operator to dig a special hole in the landfill area. The chemical container was placed in the hole and covered immediately. This procedure was known to have occurred at Landfill No. 5 near Twin Lakes when chlordane was placed there.

The two golf courses on base maintain their own pest control programs. All diluted chemicals on-hand are utilized daily. Chemical containers are triple rinsed prior to disposal at the county landfill.

Radioactive Wastes

Wright-Patterson has been the site of research to evaluate the effects of ionizing radiation on the function of aircraft systems. In addition, radioactive materials have been used as tracers in medical and toxicological research, as calibration sources for various instruments, in the evaluation and development of new materials, and for educational purposes in the physics department of AFIT. There are a number of sources of ionizing radiation on base which are sealed and do not generate waste materials. These include flight instruments, calibration devices, and a cobalt-60 radiation therapy source in the base hospital. All sources of ionizing radiation are managed in accordance with Air Force and NRC regulations.

The major sources of radioactive waste materials generated on base include:

- nuclear reactor (now decommissioned), Bldg. 470
- * AFIT Physics Department, Bldg 470 and 640
- * AFWAL Materials Lab, Bldg 433
- AFAMRL Health Effects Laboratory, Bldgs 79, 838, 29
- * AF Medical Center, Nuclear Medicine Dept. Bldg 830

The management of these materials is through the Radiation Protection Officer of the SGPB. The Radiation Protection Officer is responsible for the proper handling and disposal of all radioactive materials. These are handled in accordance with 10 CFR, and in Air Force regulations. The wastes generated are generally low-level with short half lives. These are temporarily stored in a secure area near Bass Lake (Bldg 4054) in Area C. The materials are periodically tested, and if sufficient decay has occurred, they are disposed of in the sanitary sewer system in accordance with 10 CFR Part 20. Otherwise, they are disposed of by an off-base contractor. Another radioactive waste holding area exists behind Bldg 470. There are several 5000 gallon underground tanks which have received small quantities (1 gal/mo) of liquid wastes from the AFIT nuclear chemistry lab. These materials are disposed of in the same manner. A third radioactive waste holding area, now no longer in use, was located south of Loop Road near Gate 22B. Low-level wastes are also thought to have been disposed of in base landfills in the past, although the total amounts are probably in the millicurie range.

A large cobalt 60 source, originally in Bldg 433 (Materials Lab), was disposed of off base in the late 1960's. Part of this source was transferred to the Florida State Health Department, while the remainder was accepted by the Nuclear Engineering Corporation of Morehead, Kentucky.

The nuclear reactor (Bldg 470) on base was operated from early 1965 until its decommissioning in 1970. The decommissioning was supervised by the NRC. The source material was removed and the reactor core was filled with sand and sealed with concrete. During its operation, low level liquid wastes, principally cooling water, were disposed of in the sanitary sewer in accordance with 10 CFR Part 20. Occasional sampling

of the Dayton wastewater and treatment plant sludges indicated no problems with this disposal technique.

A radioactive waste disposal site exists in Area B near Bldg 657. The site consists of a pit of unknown construction covered by a concrete slab. The pit is enclosed by a cyclone fence and occupies an area of about eight feet square. The site was closed prior to 1951, and its contents are unknown; however, monitoring by the EPA indicated no apparent leakage or increase in background radiation.

Fuel Management

The WPAFB fuels management storage system consists of a number of underground and above ground storage tanks in various locations throughout the base. The fuels handled are JP-4, JP-5, diesel, leaded MOGAS, unleaded MOGAS, AVGAS, kerosene and fuel oil. Additional storage tanks are utilized for solvent and deicing fluid. The largest POL storage area on base is located in Area C adjacent to Building 154. This area is used for storing, issuing and receiving fuels. Dikes within the POL storage area are covered with asphalt. Runoff from the dikes drain into a small holding tank for containment of oil spills.

A hydrant system is utilized on base in an area known as the West Ramp. The system was originally established to provide fuel for SAC operations and is presently supporting the 4950th Test Wing. A fuel distribution subunit located in Area B was discontinued in 1972. Another hydrant system located in Zone 7, north of Hanger 152, was shut down in 1970-71. The underground tankage, still in place, was treated with caustic. Table C.3 summarizes the fuel tankage in use at the base.

Waste and Recoverable Petroleum Products

Used or contaminated petroleum products are stored in tanks and periodically picked up by Civil Engineering and placed in an underground tank behind Building 13, Area C. This tank is pumped periodically by a waste oil reclaimer. The following is a breakdown of the number of intermediate tanks used for waste petroleum storage:

	Above	Below
Item	Ground	Ground
Waste Oil	-	22
Waste JP-4	1	4
Waste JP-5	-	1
Waste Fuel	-	2

Underground tanks are leak tested every six months.

Petroleum and Chemical Spills

A number of fuel spills occur annually on the flightline or in maintenance areas. For the most part these are relatively small spills; for instance, during the period of January through October 1981, approximately 97 fuel spills occurred. Most of these spills were less than 20 gallons. Fuel records are maintained for a two year period.

A number of Wright-Patterson AFB personnel were questioned concerning larger spills. In addition, written reports existing on some of the significant spill incidents were reviewed. Information on three significant spill incidents identified are summarized in Table 4.3 and shown in Figures 4.2 and 4.3.

Fire Training

The Fire Department has operated five fire training areas since 1957. These areas have continued to serve as a practice/learning/extinguishing area, where petroleum based fires are set and extinguished. The following are specific designations for the individual training areas as well as their approximate period of operation. (See Figure 4.3 and Figure 4.4) (See Appendix F Photographs pg. F-5):

Fire Training Area	Period of Operation
No. 1	1950-1955
No. 2	1955-1960
No. 3	1960-1980
No. 4	1960-1980
No. 5	1981

In the past, the common mode of operation was for the Fire Department to burn contaminated fuels. This practice was followed in training areas No. 1, 2 and 3. As air pollution control regulations became more stringent in the mid 60's, the fire training exercises were curtailed until at the present time there are two fire training exercises per quarter and the fuel utilized is uncontaminated JP-4 fuel. Fire Training Areas No. 1, 2, 3 and 4 are all dirt pits with a surrounding earthen dike to contain the liquid. The ground was initially saturated with water and then the fuel was poured inside the dike from barrels.

TABLE 4.3

T

SPILL INCIDENTS Wright Patterson Air Force Base

Comments	Fuel was intercepted before reaching the Mad River. Amount recovered not documented.	Approximately 4,000 gal were recovered using ground water wells.	Recovery trench dug - no oil recovered.
Quantity Spilled (gallons)	1,000 - 2,000	8,319*	1,200 - 2,500
Spill	Contaminated Fuel	JP-4	No. 2 Fuel Oil
Location	Fire Training Area No. 3 and 4	POL Tank Farm - Tank 256	POL Tank Farm - between Tank 252 and Fill stand
Date	1972	April, 1976	March, 1981
Spill	-	8	m

*SOURCE: Quantity reported in Pollution Incident Report

T

ES ENGINEERING-SCIENCE

This procedure was modified slightly during the operation of Fire Training Areas No. 3 and No. 4 when a contaminated fuel storage tank was constructed immediately north of the fire training areas. The fuel was then applied to the training areas directly from this tank. In addition to the storage tank, trucks containing JP-4 were brought to the site and fuel was sprayed onto the training area directly from the trucks.

The current Fire Training Area, No. 5, was placed into service in 1981. The area has a concrete lining which contains all of the petro-leum products utilized for the fire training exercise. The concrete pit is filled with water, and fuel is added to the water surface and ignited. A fire retardant is then applied to extinguish the fire. The use of AFFF was initiated within the Air Force in 1972; prior to that time protein foam was utilized as an extinguishing agent.

Based on the past operation of the fire training areas, it is judged that Fire Training Areas No. 3 and No. 4 would have the greatest potential for contamination of either ground or surface water based primarily on its long period of use.

Hazardous Waste Storage

The Defense Property Disposal Office (DPDO) is located in building 744 in Area B at Wright-Patterson AFB and furnishes disposal for excess surplus property generated by the Department of Defense (DOD activities within the base). One responsibility for DPDO is to provide interim storage for hazardous waste before shipment off base. At the present time, because the existing DPDO facility does not meet RCRA standards, Civil Engineering has accumulated drums of hazardous wastes at Bldg. 478 in Area B awaiting disposal by DPDO.

Central Heating Plants

Wright-patterson AFB had five coal fired central heating plants which supplied steam to all of the base. In 1980, the base expanded two plants and closed the three remaining plants. All of the heating plants had outside active coal piles. The runoff from coal piles may be characterized by low pH, high concentrations of chromium, copper, iron, magnesium, nickel or zinc (See Table C.4 for typical coal pile runoff).

The base also maintains a long term coal storage pile in the vicinity of the POL storage area (See Figure 4.2). Runoff from this pile

also poses a potential for contamination of both surface and ground water.

DESCRIPTION OF DISPOSAL METHODS

Waste Management Facilities

The on-site facilities which have been used for management of wastes can be categorized as follows:

- landfills
- storm sewer system
- burial sites
- waste petroleum burn tanks
- septic tanks

The types of waste management facilities are discussed individually in the following subsections. Figures 4.5 and 4.6 show the hazardous waste disposal locations at Areas A, B and C.

Landfills

On-site landfills have been used for disposal of solid and liquid hazardous and nonhazardous wastes at Wright-Patterson AFB. Landfilling has been done at a total of twelve separate locations on base (See Figures 4.5 and 4.6). Table 4.4 contains a summary of pertinent information concerning each landfill. Since 1973, all municipal solid waste generated on-base has been hauled off-base by a private contractor to the county landfill.

Landfill No. 1 operated from the 1920's through 1940 and is situated in the northern portion of Area B just northwest of the Air Force Museum. The site has been estimated to encompass approximately 6.5 acres and is shown in Figure 4.7.

Landfill No. 2 (Tillman Pit) was operated from 1941 to 1955 as a general refuse disposal area for Area B. From 1955 to 1975, the area was utilized as a hardfill disposal area. Tillman Pit was initially a gravel pit encompassing an area of approximately 9 acres. The boundary of the site is shown in Figure 4.6 (See Appendix F - Photographs, pg. F-1).

Landfill No. 3 is located in the northern portion of Area A and served areas A and B from 1940 to 1944. The area encompasses

T

TABLE 4.4

LANDFILL INFORMATION SUMMARY

Landfill	Operation Period	Approximate Size (Acres)		Types of Wastes	Method of Operation	Closure Status	Bur face Drainage		Comments
	1920's-1940	6.5	General	General Refuse	Surface Dump	Inactive - Local soil cover, grass vegetation	Mad River	••	Permeable soils Constructed in gravel pit
No. 2 (Tillman Pit)	1941-1955 1955-1975	9.6	General Hardfill	General Refuse Hardfill	Surface Dump	Inactive-Local soil cover, partial vegetation	Unnamed Ditch	•	Constructed in gravel pit
No. 3	1940-1944	3.0	General	General Refuse	Surface Dump	Inactive-Local soil cover, golf course	Hebble Creek	•	Constructed in gravel pit
No. ♣	1945-1949	5.5	General	General Refuse	Surface Dump	Inactive-Local soil cover, gravel parking lot	Hebble Creek	•	Constructed in gravel pit
No. 5 (Twin Lakes)	1945-present	23.0	General Hardfill	General Refuse Hardfill	Surface Gump	Active	Hebble Creek	•	Tree cuttings and hardfill being placed in landfill
No. 6	1949-1952	æ.	General Refuse	Refuse	Surface Dump	Inactive-Local soil cover, pasture land	Hebble Creek	• •	Intermittent atream cross- ing landfill Banitary sewer adjacent to landfill
No. 7	1952~1962	18.0	General Refuse	Refuse	Surface Dump	<pre>Inactive-Local soil cover, pasture land</pre>	liebble Creek	•	Differential settlement
No. 8	1955-1962	13.0	General Refuse	Refuse	Trench & Cover	Inactive-Local soil cover, native grasses	Hebble Creek	• •	leachate observed Excessive differential settlement
No. 9	1962-1964	0.6	General Refuse	Refuse	Trench & Cover	Inactive-Local soil cover,	Mud Run	•	Constructed in sand pit
No. 10 (Woodland Hills)	1965~1968 18)	10.0	General Refuse	Refuse	Trench & Cover	Inactive-Local soil cover, partial grass cover	Hebble Creek	• • •	Leachate observed Sanitary sewer adjacent to landfill Excessive differential
No. 11	1968-1977	91	General Refuse	Refuse	Trench & Cover, and Ramp Dump and Compaction	Inactive-Local soil cover, partial vegetation	Mad River	• •	Differential sottlement Constructed in flood plain
No. 12	1968~1973	-	llazardou	Hazardous Wastes	Trench & Cover	Inactive-Local soil cover, partial native vegetation	Mad River	• •	Constructed in flood plain Deep rooted vegetation growing inside fence

ES ENGINEERING - SCIENCE

approximately 3 acres and is shown in Figure 4.8. Landfill No. 3 was operated as a surface dump and burn operation.

Landfill No. 4 which was operated between 1944 and 1949 is located within Area A and shown on Figure 4.8. The area encompasses approximately 5.5 acres and was an abandoned gravel pit. During its initial operation, the gravel pit extended approximately 20 to 30 feet below the water surface within the pit. Large objects such as automobile car bodies were placed in the pit in order to fill in the volume beneath the water surface. Once above the water surface, the area was then operated as a trench cover operation with the trench orientation in a northwest to southeast direction. (See Appendix F - Photographs, pg. F-1).

Landfill No. 5 which encompasses 23 acres is shown on Figure 4.2. This area was operated initially during the 40's as a lumber reclamation area where scrap lumber was accumulated and sold to the public. As time progressed, the area was operated as a landfill until the present time. It is the only landfill currently in operation and is accepting fly ash from the base's heating plants.

Landfills No. 6 and 7 were operated from 1949 to 1952. The areas encompassed a total of 26.5 acres and are shown in Figure 4.8. Both landfills served Areas A and B and were operated as trench and cover operations. (See Appendix F - Photographs, pg. F-1).

Landfill No. 8 which was operated from 1955 to 1962 received wastes from Area B. The landfill site itself encompasses 13 acres and is shown in Figure 4.9. The depth of the landfill is approximately 50 to 60 feet. Based on interview information, there were three distinct operations which were located at this site and many of the subsequent sites at Wright-Patterson AFB. They were:

- general refuse disposal
- toxic and hazardous chemical disposal
- acid neutralization

General refuse was disposed of in a trench and cover operation with trench orientation north to south. The toxic and hazardous chemical disposal was done in trenches which were segregated from the general refuse disposal area. These trenches are shown in Figure 4.9 and were adjacent to Building 821. All non-acid chemical wastes generated within Area B were disposed of within these trenches. The typical operating

procedure was to throw the individual glass bottles containing chemicals into the trenches to try to break them.

In addition to the toxic and hazardous chemical disposal area, there was an acid neutralization area which was operated on the southern portion of the site. This area included a number of small tanks in which acid was poured from small containers and bottles, and lime was added in order to neutralize the liquid. pH was checked using litmus paper and when neutralized, the liquid would be discharged to the ground and allowed to runoff to the nearest stream.

Landfill No. 9 (Sandhill) was operated for a two year period in the early 60's. This was the first site to receive wastes from Areas A, B and C combined. It represented the consolidation of the Sanitation Section of the Civil Engineering Squadrons from both fields. Sandhill was operated as a trench and cover operation with trenches running in a north-south orientation. The depth of the trenches was approximately 20 feet. The landfill operation was abandoned because of the following reasons: proximity to the glide path of the major runway at Area C, concerns about bird hazards and complaints of neighbors about blowing debris and its remote location from the centroids of generation within the base complex. Landfill No. 9 encompassed an area of 9 acres and is shown on Figure 4.2. (See Appendix F, pg. F-4).

Landfill No. 10 (Woodland Hills) was operated from 1965 to 1968 and received waste from all areas within the base. This landfill like Landfill No. 8 had three distinct waste disposal operations located there. The general refuse disposal was done utilizing a trench and cover operation with the trenches in the northern portion of the site running north to south and the trenches on the southern portion of the site running in an east to west orientation. The landfill itself encompassed 10 acres and is shown on Figure 4.9.

The toxic and hazardous chemical disposal area was in a single trench which is shown in Figure 4.9. (See Appendix F, pg. F-3). Because of the short operating period of this landfill, there was only one chemical disposal trench utilized. During the subsequent construction of the residential homes in the Woodland Hills area, this trench was uncovered by the contractor and personnel from Civil Engineering removed

the chemicals, which were unearthed. These chemicals were then transported to Landfill No. 12 in the early 70's for ultimate burial. The location of the chemical trench is in the vicinity of three residential units (Buildings No. 7011, 7012 and 7018).

In addition to the general refuse and chemical disposal areas, an acid neutralization facility was also located at Landfill No. 10. Its location is shown in Figure 4.9. Small quantities of acid in 5 gallon containers were dumped into a vat and neutralized with lime and then subsequently discharged to the ground surface to run in a westerly direction to follow natural drainage off-base.

Complaints have been received in the past from a number of military housing units which have been built on the eastern and western borders of the landfill. Initial complaints received from the occupants on the eastern portion were corrected in the late 70's by extensive regrading of the landfill. On the western portion of the landfill site, leachate had been observed coming from the hillside behind the homes (See Photo page F-4 in Appendix F). This situation was addressed by installing perforated plastic drainage pipes into the hill immediately behind these residential units thereby directing the leachate into existing catch basins which are sited on a storm sewer which runs behind the homes. This sewer ultimately discharges to Hebble Creek.

In addition to the above, one of the residential units on Weitzel Way has had to be demolished because of extensive differential settlement. A tennis court, which was constructed just west of this residential unit, has also experienced excessive differential settlement. While walking around Landfill No. 10, it was noted that a portion of the site itself is experiencing differential settlement and that ponding of storm water is occurring which will increase the likelihood of leachate generation.

Landfill No. 11 is located on the northern portion of the base within Area C. The site was utilized for general refuse disposal from 1968 to 1977. The landfill location coincides with the previous channel of the Mad River. Over time, the river has moved in a northwesterly direction from this channel. There are sections within the landfill which are as much as fifty feet deep. The landfill has been built up approximately 40 feet into the air (See Photo page F-5 in Appendix F).

The site was initially operated as a trench and cover operation and then was later operated as a ramp dump and compaction procedure with daily cover. During this operation, the landfill was operated two shifts per day from 6 am to 12 midnight. Base personnel remember on occasion observing various chemical wastes being disposed of in the landfill and during the compaction procedure starting fires which had to be put out by the bulldozer operator.

Concurrent with the general refuse disposal in Landfill No. 11 was the operation of the hazardous chemical and acid disposal area at Landfill No. 12 (See Figure 4.3). Landfill No. 12 (acid storage area) encompasses approximately 3000 square feet and is completely enclosed with a cyclone fence. (See Appendix F - page F-5). Initially, this area was utilized to dispose of chemicals which were placed in trenches which were approximately 24 inches wide and three feet deep. In addition to chemical disposal, acids were neutralized in this area utilizing the same procedures as described for Landfills No. 8 and No. 10. Neutralized wastes were allowed to percolate into the soil.

During the latter phases of its operation in the late 70's, the area was utilized to store waste chemicals. In 1973, a contract was let to remove all of the waste chemicals which were stored in this area. During its latter operating period, Landfill No. 12 was utilized to store materials which had been contaminated with herbicide orange. These materials were stored in packages on pallets and were not opened within the storage area. They were later removed by laboratory personnel and disposed of off-site.

Storm Sewer Systems

All surface waters from Wright-Patterson AFB drain in a north-westerly direction to the Mad River. Surface drainage patterns have been presented earlier in Figure 3.1. Storm sewers are utilized at Wright-Patterson AFB only in heavily developed areas, residential areas and areas adjacent to the flightline where the use of drainage ditches is not practical. It is estimated that over 80 percent of the base area is drained by surface ditches.

Over the years, there has been a concerted effort on the part of base personnel to eliminate the discharge of contaminated waste waters to the existing drainage system. As discharges were located, specific construction projects were completed to remove these discharges from the drainage ditches. From a historical viewpoint, these ditches have received various quantities of fuel oil and other miscellaneous chemical spills and discharges. However, under the current surface water sampling program, analytical data is collected on a monthly basis. The data indicate that residual chemicals in the ditches are not a problem.

Burial Sites

As bulk fuel storage tanks are used for a period of time, a residue of settled material builds up in the bottom. Systematic cleaning of the storage tanks generates approximately 700 gallons per year of sludge. In the past, the sludge was buried in existing landfills as well as burial sites established strictly for disposal. Since 1975, the sludge has been placed in a covered, concrete lined pit for drying. The residue is later disposed with base refuse via dumpsters.

The sludge from leaded gasoline storage tanks contain tetraethyl lead and as such is a hazardous waste under RCRA's definition. Burial sites receiving sludge in the vicinity of the salt storage shed are shown on Figure 4.2 and another site is located adjacent to Mustang Drive (See Figure 4.6).

Waste Petroleum Burn Tanks

In the past, flammable petroleum waste products were collected by Civil Engineering and dumped into two burn tanks which were located near Twin Lakes at Landfill No. 5 (See Figure 4.4) the tanks were two halves of a 10,000 gallon tank, which was cut in half along its horizontal axis. The burning was conducted at night as late as the early 1970's. These tanks no longer remain at the site and should not have contributed to surface or ground water contamination.

In addition to these tanks, there was a 15,000 gallon below-ground tank at Twin Lakes which was used to collect waste oil for a 15 to 20 year period. This tank was serviced by an off-base waste oil reclaimer. In 1978 the tank was sold for salvage and the waste oil reclaim operation moved. (See Figure 4.4).

Today at Landfill No. 5, there is a 10,000 gallon horizontal steel tank which was modified to act as an oil-water separator. This tank was used in the early 1970's. The oil would be drawn off to the underground storage tank and the water would be drained to the ground. Periodically

quantities of oil would be discharged along with the water. However the amounts were small and should not have created a contamination problem.

Septic Tanks

There are over 20 septic tanks on the Wright-Patterson AFB serving facilities which are located too far from existing sanitary lines which would economically justify a sewer service connection. Based on the on-site survey; however, these units have been used primarily for the disposal of sanitary sewage and should not pose a hazard from the standpoint of possible groundwater contamination.

Off-Site Disposal Facilities

The methods used for disposal of Wright-Patterson AFB hazardous and non-hazardous wastes include:

- off-site wastes oil contract disposal
- off-site refuse contract disposal
- off-site waste chemical contract disposal

Waste Oil Disposal

Waste oil, waste fuels and hydraulic fluids which are resalable are marketed through DPDO on a competitive bid basis. Each year a contractor is selected. The previous two firms which have been utilized by the base are Clark Oil of Dayton and Ohio Waste Oil of Columbus.

Refuse Disposal

Residential solid waste was placed in landfills on base from 1955 to 1977. Since 1977, all refuse has been hauled off base by a contractor and the existing landfills were closed with the exception of Landfill No. 5 which currently handles fly ash and hardfill.

Waste Chemical Disposal

A list of waste management firms which have been utilized by the base is shown in Table C.5.

EVALUATION OF POTENTIAL CONTAMINATION SOURCES

Twenty four sites associated with Wright-Patterson AFB were identified as containing hazardous material resulting from past activities.

These sites have been assessed using a rating system which takes into

account factors such as site characteristics, waste characteristics, potential for contamination and waste management practices. The details of the rating procedure are presented in Appendix G and the results of the assessment are summarized in Table 4.5. Rating scores were developed for the individual sites and the sites are listed in order of ranking. The rating system is designed to indicate the relative need for more detailed site assessment and/or remedial action. The information presented in Table 4.5 should be used as a guide for assigning priorities for dealing with the Wright-Patterson AFB disposal sites. The rating forms for the individual waste disposal sites are presented in Appendix H for review.

In addition to the rating information in Table 4.5, the period of operation is also presented. It should be pointed out that the rating system does not take into consideration a "time factor." This is especially pertinent when considering spills, chemical disposal trenches and the fire training areas.

Landfill No. 10 (Woodland Hills), identified in Table 4.5, utilized from 1965 to 1968, is currently exhibiting a leachate problem and received the highest score of 82. Landfill No. 8, which is adjacent to Building No. 821, received a score of 79 because of the large quantities of hazardous materials which were disposed there and because it currently exhibits a leachate problem. Fire Training Areas No. 3 and 4/Spill No. 1 which were in use from 1960 to 1980 received a score of 77. This is because the area was the site of a fuel spill and was used as a fire training area for 21 years.

Spill No. 2 obtained a ranking of number 4 with a rating of 74. Although recovery procedures were initiated for the spill, only 4000 gallons of fuel were recovered from the initial 8319 gallons which were lost. Landfill No. 12 and No. 11 received scores of 73 and 71, respectively. Both landfills received hazardous wastes and are within the floodplain of the Mad River. Fire Training Areas No. 1 and No. 2, which were operated in the 1950's, received scores of 63 and 61 respectively. Both sites received contaminated fuels during fire training exercises.

Landfills No. 2, 5 and 9 (Sandhill) received scores of 62, 63 and 60. All the landfills have received quantities of hazardous wastes, which resulted in these ratings. Landfills No. 3, 4, 6 and 7 received a

TABLE 4.5

(

PRIORITY RANKING OF POTENTIAL CONTAMINATION SOURCES

WRIGHT-PATTERSON AFB

Refer To Appendix H Page No.	H-13	H-9		H-23	н-25	H-17	н-27	H-15	H-7	H-19	н-3	H-5	н-21	H-11	н-33	н-37	H-29	H-31	B-1	н-35	н-39	H-47	H-45	H-41	H-43
Overall Score	82	79		7.7	74	7.3	11	ır	63	63	. 62	19	19	09	09	59	58	99	99	55	20	47	47	9 7	;
Waste Management Subscore	89	78		83	9+	79	50	18	29	99	69	75	99	72	Ŧ	54	51	51	69	(3	22	19	•	v	ĸ
Waste Characteristics Subscore	100	100		80	80	100	90	90	09	09	20	20	09	70	09	09	09	09	20	09	09	06	100	09	09
Pathways	98	19		7.4	*	52	69	59	52	64	56	48	49	33	57	47	42	9	39	51	47	22	27	47	9
Receptor Subscore	90	08		02	98	89	98	89	78	78	75	75	20	70	98	78	84	89	70	29	74	63	63	75	19
Period of Operation	1965-1968	1955-1962		1960-1980	Apr. 1976	1968-1973	Mar. 1981	1968-1977	1945-Present	1950-1955	1941-1955	1945-1962	Late 1950's	1962-1964	Long Term	1940's-1980	1966-1971	1971-1975	1920's-1940	1930-1980	1939-1980	Before 1951	1965-1970	1957-Present	1956-Present
•	d Hills)		-						akes)	-	n Pit)	£ 7	. 2	m)		No. 2 (271)				No. 1 (66)	No. 3 (170)	ial Site	Reactor	: No. 4 (1240)	t No. 5 (770)
Site Name	Landfill No. 10 (Woodland Hil	Landfill No. 8	Fire Training Areas 3 &	/Spill No. 1	Spill No. 2	Landfill No. 12	Spill No. 3	Landfill No. 11	Landfill No. 5 (Twin Lakes)	Fire Training Area No. 1	Landfill No. 2 (Tillman Pit)	Landfills No. 3, 4, 6 & 7	Fire Training Area No. 2	Landfill No. 9 (Sandhill)	Coal Storage Pile	Central Heating Plant No. 2	Burial Site No. 1	Burial Site No. 2	Landfill No. 1	Central Heating Plant No. 1	Central Heating Plant No. 3	Radioactive Waste Burial Site	Deactivated Nuclear Reactor	Central Heating Plant No. 4	Central Heating Plant No. 5

Numbers in parenthesis indicate building numbers

score of 61. This is because a number of these sites were abandoned gravel pits and their use as landfills minimizes any attenuation capacity of the surrounding soils in that the landfill is in direct contact with the groundwater table.

The coal storage pile received a score of 60. This is because the surrounding soils in the area have a low adsorptive capacity for heavy metals and a high permeability which could contribute to groundwater contamination.

All of the existing and recently abandoned central heating plants were rated because of their associated outside coal piles. The ratings varied from 44 to a high of 59 depending upon the particular location of the central plant the design of the actual coal pile itself as to whether it was lined and whether the runoff is collected and treated. Two burial sites received bottoms from tetraethyl lead gasoline storage tanks. These materials are classified as being hazardous under RCRA. These sites received ratings of 58 and 56, respectively.

The radioactive waste burial site which was utilized before 1951 received a rating of 47. This site received this rating since above ground surveys by base personnel in the past indicated no radioactive problems.

CHAPTER 5

CONCLUSIONS

CHAPTER 5 CONCLUSIONS

The goal of Phase 1 of the IRP was to identify the potential for environmental contamination from past waste disposal practices and spill incidents at Wright-Patterson AFB and to assess the probability of contamination migrating beyond the base boundaries. Based on the results of the project team's one week field inspection, review of records and files, and interviews with base personnel, past employees and state and local government employees, the following rankings have been developed. Table 5.1 contains the priority rankings of potential contamination sources at Wright-Patterson AFB. The following conclusions are listed by category.

Landfills

- a. Landfill No. 10 (Woodland Hills) has the greatest potential for off-site migration of contaminants and has received a score of 82. The dumping of hazardous chemicals and the existing leachate contamination problem has resulted in this ranking. This situation is further compounded by the site's topographic location and proximity to the base boundary and nearby surface waters.
- b. Landfill No. 8 which is adjacent to Building 821 has received an overall score of 79. The site was operated between 1955 to 1962 and contained segregated areas in which chemicals from the research laboratories were deposited. The site is also characterized by an existing leachate problem which has appeared on DuPont Way in the Woodland Hills residential subdivision.
- c. Landfill No. 12 which is the fenced in area adjacent to the Markiver had been in operation from 1968 to 1973 and has received to of 73. The area was utilized for the burial of chemical section of the research laboratories in Area B and chemicals.

 Areas A and C.

TABLE 5.1

SUMMARY RANKING OF POTENTIAL CONTAMINATION SOURCES

Rank	Site Name	Period of Operation	Overall Score
1	Landfill No. 10 (Woodland Hills)	1965-1968	82
2	Landfill No. 8	1955-1962	79
3	Fire Training Areas 3 & 4/ Spills No. 1	1960-1980	77
4	Spill No. 2	Apr. 1976	74
5	Landfill No. 12	1968-1973	73
6	Spill No. 3	Mar. 1981	72
7	Landfill No. 11	1968-1977	71
8	Landfill No. 5 (Twin Lakes)	1945-Present	63
9	Fire Training Area No. 1	1950-1955	63
10	Landfill No. 2 (Tillman Pit)	1941-1955	62
11	Landfills No. 3,4,6 & 7	1945-1962	61
12	Fire Training Area No. 2	Late 1950's	61
13	Landfill No. 9 (Sandhill)	1962-1964	60
14	Coal Storage Pile	Long Term	60
15	Central Heating Plant No. 2 (Bldg. 271)	1940's-1980	59
16	Burial Site No. 1	1966-1971	58
17	Burial Site No. 2	1971-1975	56
18	Landfill No. 1	1920's-1940	56
19	Central Heating Plant No. 1 (Bldg. 66)	1930-1980	55
20	Central Heating Plant No. 3 (Bldg. 170)	1939-1980	50
21	Radioactive Waste Burial Site	Before 1951	47
22	Deactivated Nuclear Reactor	1965-1970	47
23	Central Heating Plant No. 4 (Bldg. 1240)	1957-Present	46
24	Central Heating Plant No. 5 (Bldg. 770)	1956-Present	44

- d. Landfill No. 11 which is adjacent to the Mad River received a score of 71. It was operated from 1968 to 1977. Its location in an abandoned channel once followed by the Mad River and in the floodplain of the river gave it a very high potential for future contamination of adjacent surface waters. Landfill No. 5 located at Twin Lakes and utilized from the mid 40's to the present time received a score of 63. This landfill has received quantities of hazardous material in the past and represents a potential hazard.
- e. Landfills No. 2 (scored 62) and 3, 4, 6 and 7 (Scored 61) all have been located in abandoned gravel pits. In all cases, solid wastes were placed in the gravel pits in direct contact with the groundwater. Therefore, there is no attenuation of any leachate originating from the landfill. These sites represent a high contamination potential for surrounding groundwaters. Landfill No. 9 located at Sandhill received a score of 60. Although this site operated for only two years from 1962 to 1964, it received hazardous chemicals from Areas A, B and C. Fire Training Areas
- a. Fire Training Areas 3 and 4 received a score of 77. These areas were also the site of a major petroleum spill (Spill No. 1) which occurred in 1972. The Fire Training Areas were utilized for a 21-year period from 1960 to 1980 and received large quantities of contaminated fuel. Although the areas were flooded with water first to minimize percolation into the soil, it is felt that the prolonged usage of the site combined with a major petroleum spill increased the likelihood of contamination to surface and groundwaters.
- b. Fire Training Area No. 1 which was utilized from 1950 to 1955 received a rating of 63. This area because of its remote location was not flooded before the fire training exercises and received large quantities of contaminated fuel. Its relative location to surface waters also increases the likelihood that ground or surface waters were contaminated in the vicinity.
- c. Fire Training Area No. 2 which was utilized in the late 1950's received a score of 61. This area was utilized for approximately a 5 year period for fire training exercises which utilized contaminated fuels.

Spills

- a. Spill No. 2 (scored 74) occurred in 1976 and according to the Pollution Incident Report resulted in 8,319 gallons of JP-4 being spilled in the POL area. Wells which were placed adjacent to the spill recovered 4,000 gallons of JP-4 which leaves approximately 4,319 gallons unrecovered.
- b. Spill No. 3 (scored 72) which occurred in March 1981 resulted in the loss of approximately 2,000 gallons of No. 2 fuel oil. Recovery trenches which were dug adjacent to the spill area did not recovery any of the No. 2 fuel oil.

Central Heating Plants

- a. The long term coal storage pile located east of the POL Area in Area C received a rating of 60. The soils in this vicinity have a very low adsorptive ability for heavy metals which could be in the coal pile runoff. The shallow ground water table in this vicinity also increases the likelihood of contamination.
- b. Central Heating Plant No. 2 (Bldg. 271) operated from 1940 to 1980 and was recently deactivated. The plant received a rating of 59 because of possible heavy metals, low pH and suspended solids which could originate from the coal pile (Bldg. 66) which was maintained adjacent to the plant.
- c. Central Heating Plant No. 1 (Bldg. 66) which was operated from 1930 to 1980 received a rating of 55. Central Heating Plants No. 3 (Bldg. 170), No. 4 (Bldg. 1240) and No. 5 (Bldg. 770) received ratings of 50, 46 and 44, respectively. Heating Plant No. 4 and No. 5 both have existing clarifiers which were utilized to settle out suspended solids in the storm water runoff. No treatment is provided for possible low pH or heavy metals.

Burial Sites

- a. Burial Site No. 1 utilized from 1966 to 1971 received quantities of tetraethyl lead gasoline bottoms which were removed from storage tanks during maintenance activities. The site received a score of 58.
- b. Burial Site No. 2 operated in the early 70's received a rating of 56. This site like the previous one received tetraethyl lead gasoline tank bottoms.

Radioactivity

- a. The deactivated nuclear reactor, which was operated from 1965 to 1970, received a rating of 47. Portions of the reactor are radioactive and have been permanently sealed. Surveys done by base personnel indicate no radioactive problems.
- b. The radioactive waste burial site received a score of 47. This site was sealed before 1951 and the contents are unknown. Above ground surveys have indicated no radioactive leakage.

CHAPTER 6

RECOMMENDATIONS

CHAPTER 6

1

3

RECOMMENDATIONS

To aid in the comparison of these 24 sites with those sites identified in the IRP of other Air Force bases, a priority ranking scale has been developed. Sites with overall scores of 60 to 100 are of primary concern, based on their potential for contaminant migration offsite. They require further investigation in Phase II. Sites of a secondary concern are those with scores of 55 to 59. All of the remaining sites below a rating of 55 are considered sites having a low potential for contamination and no further monitoring is recommended unless data collected from other higher priority sites indicate a problem. The following recommendations are made to further assess or prevent potential contaminant migration from waste disposal areas at Wright-Patterson AFB. The recommended monitoring program for Phase II is summarized in Table 6.1. Contaminant parameters in this table for landfills are those recommended in the EPA proposed RCRA regulations. Other contaminant parameters in Table 6.1 were selected based on the specific materials handled or disposed at a specific site.

1. Landfill No. 10 (Woodland Hills) and Landfill No. 8 are considered to have a high potential for migration of contaminants. A ground water monitoring program should be established at each site to determine whether there is any contamination. Such a program should consist of at least one monitoring well located hydraulically up-gradient of the site, and three monitoring wells located hydraulically down-gradient of the site. At this time, it is believed that wells comprising such a system will have a total depth on the order of thirty (30) feet. The actual design of a ground water quality monitoring system must be predicted upon site-specific hydrogeologic data. Water samples obtained from the wells should be evaluated using the contaminant parameters presented in Table 6.1.

TABLE 6.1

RECOMMENDED MONITORING PROGRAM FOR PHASE II WRIGHT-PATTERSON AIR FORCE BASE

Landfill No. 10 (Woodland Hills) Landfill No. 8 Fire Training Areas 3 6 4/ Spill No. 2 Landfill No. 12 Landfill No. 11 Landfill No. 11 Landfill No. 11 Landfill No. 11

TABLE 6.1 (CONTINUED)

Contaminant Parameters	• TOC, COD, OLG	• NO, Cl, Fe, Mn, Na, 803, pH, TCC, COD, specific conductance, phenol, total organic halogen.	• NO, Cl, Fe, Mn, Na, 803, pH, TCC, COD, specific conductance, phenol, total organic halogen.	• TOC, COD, OAG	• NO, Cl, Fe, Mn, Na, 80, pH, TCC, COD, specific conductance, phenol, total organic halogen.	• pH, Zn, Fe, Mn, Cr	• Ph, Zn, Fe, Mn, Cr
Monitoring Technique	Four ground water monitoring wells - three downgradient- one upgradient,	Four ground water monitoring wells – three downgradientone upgradient.	Pour ground water monitoring wells – three downgradientone upgradient.	Four ground water monitoring wells - three downgradient- one upgradient.	Four ground water monitoring wells - three downgradient- one upgradient.	Four ground water monitoring wells - three downgradient- one upgradient.	Three soil samples collected at 100, 500, and 1500 feet intervals topographically downgradient from the coal pile. A background soil sample should also be collected.
5	•	•	•	•	•	•	•
Rating Score	63	.)	2	5	9	09	•
Site	Pice Training Area No. 1	Landfill No. 2 (Tillman Pit)	Landfillm No. 3, 4, 6 & 7	Fire Training Area No. 2	Landfill No. 9 (Sandhill)	Coal Storage Pile	

- 2. Fire Training Areas 3 & 4/Spill No. 1 is also considered to have a high potential for migration of contaminants because of its proximity to the base boundry. A ground water sampling program encompassing four ground water monitoring wells is recommended as shown in Table 6.1.
- 3. Spills No. 2 and No. 3 both have a high potential for migration. A ground water monitoring program should be established at each site.

L

- 4. Landfills No. 12, No. 11, No. 5 (Twin Lakes), No. 2 (Tillman Pit), No. 9 (Sandhill) and No. 3 4, 6 & 7 have a moderate to high potential for migration. An individual ground water monitoring program is recommended for each site to identity specific contaminant parameters and individual concentrations.
- 5. Fire Training Areas No. 1 and No. 2 have a moderate potential for migration of contaminants. A ground water monitoring program should be initiated at each site.
- 6. The coal storage pile is considered to have a moderate potential for contaminant migration due to coal pile runoff. To address this site a combined ground water monitoring and soil sampling program is recommended. Four ground water monitoring wells should be installed to determine the level of contamination. Soil sampling should be undertaken at 100, 500 and 1,000 foot intervals topographically down gradient from the coal pile. The soil sampling is necessary since the soil permeability may have minimized downward infiltration into the groundwater and maximized surface runoff.
- 7. A water sample should be obtained from Well No. 10 (located in the vicinity of Landfill No. 9 Sandhill), and Wells B and D from the Area "B" well field (located in the vicinity of Landfill No. 5 Twin Lakes). An organic pollutant scan on the GC/MS using all the organic parameters from EPA's priority pollutant list should be run on the water samples.
- 8. Landfills No. 8 and 10 (Woodland Hills) should be regraded and revegetated to minimize the potential for leachate generation.
- 9. Air Force Petroleum Handling Regulations addressing the ultimate disposal of tetraethyl lead sludge from the storage of leaded gasoline should be compared to current RCRA regulations which list tetraethyl lead (Federal Register May 19, 1980; pg. 33125) and leaded tank bottoms from the petroleum industry (F.R.; pg. 33123) as hazardous. AF practice judges the sludge to be nonhazardous after one month of weathering.

APPENDIX A

PROJECT TEAM QUALIFICATIONS

- C. M. Mangan, P.E.
- J. R. Absalon
- M. I. Speigel
- M. A. Guthrie

Biographical Data

Charles M. Mangan

Senior Environmental Engineer

[PII Redacted]

I

B.S. in Civil Engineering, 1966, Newark Coll of Engineering M.S. in Civil Engineering, 1967, New York Ur arsity

Professional Affiliations

Registered Professional Engineer (Tennessee . 1607, Georgia Pending, New Jersey No. 18366, New York No .280)

Diplomate - American Academy of Environmental Engineers

Water Pollution Control Federation

American Society of Civil Engineers

American Water Works Association

Honorary Affiliations

Chi Epsilon

Experience Record

1967-1970 Quirk Lawler and Matusky Engineers, New York, New York

Project Engineer. Responsible for a \$400,000 water system renovation in Walton, New York. This included water main cleaning, a test well program and water main installation. In addition, supervised a surveying team and boring crew used for a stand pipe site evaluation.

As a staff engineer in the design department, participated in the design of an industrial wastewater treatment plant for Carleton Woolen Mills in Maine. Participated in various equipment evaluations prior to the writing of the required specifications.

Evaluated the installation of a centrifuge to increase the sludge dewatering capability of the municipal Bernardsville, New Jersey treatment plant which necessitated renovation of an existing building.

Charles M. Mangan (Continued)

Organized and prepared a hydrology study of the Indian Point area of West Chester County, New York for Consolidated Edison. This study was required by the Atomic Energy Commission as part of their licensing requirements for proposed nuclear reactors.

Prepared a Comprehensive Water Supply Study for Rockland County, New York. The study entailed population and water usage projections and evaluation of existing County water supplies. Various water supply projects, including a pump storage scheme were proposed and corresponding cost estimates were prepared.

Prepared computerized design of various sized domestic wastewater treatment plants for the Federal Water Quality Administration. Work consisted of the detailed sizing of various units (grit chambers, primary and secondary clarifiers, and sludge thickeners) and the preparation of detailed construction drawings.

1970-1980

Roy F. Weston Inc. West Chester, PA and Atlanta, GA

Assistant Project Engineer. Supervised current and diffusion studies off the coast of Aquadilla, Puerto Rico, and subsequently prepared a conceptual design report for a primary wastewater treatment plant and ocean outfall design.

Prepared a reference manual on various wastewater treatment processes which are applicable to the upgrading of existing treatment plants. The manual was used by EPA in their Technology Transfer program at Seminars being held for consulting engineers throughout the United States.

While working in conjunction with the Luzerne County Planning Board, prepared a solid waste regional plan to be implemented under the requirements of Pennsylvania Act 241.

Prepared an operations manual for Washington Suburban Sanitary Commission's (WSSC) 5 MGD advanced wastewater treatment plant at Piscataway, Maryland. Unit operations include 2 stage line precipitation of phosphorus, recarbonation for pH adjustment, dual media filtration and carbon adsorption for suspended and dissolved organics removal.

Charles M. Mangan (Continued)

Prepared a comprehensive water supply for WILMAPCO, a regional planning agency encompassing counties in Maryland, Delaware and New Jersey. This study was required by WILMAPCO in order to obtain certification from H.U.D. for water supply funding.

Supervised the process design for the 30 MGD advanced wastewater treatment plant to be constructed for WSSC at Piscataway, Maryland. Unit operations included two stage suspended biological growth for nitrification and denitrification, alum addition for phosphorus removal, dual media filtration and post aeration. In addition, computer facilities provide the ultimate in automation of an advanced wastewater treatment facility.

Participated in biological treatability studies and the conceptual design of two industrial wastewater treatment plants providing secondary treatment for citric acid and rayon wastewaters, respectively.

Participated on an EPA project which developed supporting information for pretreatment regulations.

Project Manager on biological treatability studies and the conceptual designs of wastewater treatment plants involving cellulose acetate, wire mill, secondary metals refining, and peanut blanching and candy manufacture.

Managed a hazardous sludge disposal study for an industry in Rome, Georgia, which included a preliminary siting study for a hazardous waste landfill.

Prepared over 5 SPCC plans for various industries throughout the Southeast for the containment of oil and hazardous wastes.

Technical consultant on a project which developed a portable treatment process capable of treating 2 million gallons of hazardous wastes from the Anniston Army Depot containing chrome, metals, phenol and large amounts of organics. Associated sludge disposal techniques included dewatering, and chemical fixation with disposal in a sanitary or secure landfill.

Conducted a program to assess phenol contamination of the groundwater table emanating from a lagoon containing wastewater.

Managed a sanitary landfill permitting project for Ft. Benning, Georgia which included multiple site evaluations, waste characterization and quantification.

Charles M. Mangan (Continued)

Project Manager on various phases of three 201 Facilities Plans for Dekalb County, GA., Valparaiso, FL. and Alapaha, GA.

Managed sewer system evaluation surveys for Knoxville, Charlotte and five other smaller communities.

1980-Date

L

Engineering-Science, Inc. Atlanta, Georgia. Manager of Environmental Studies. Recent experience included the water permitting for a petroleum refinery expansion for Hess Oil Co. in southern Mississippi, and developmental permits including Corps Section 404 and 10, and coastal zone permits for 20,000 acres of coastal property in eastern North Carolina. Other pertinent experience includes a site assessment for a pulp and paper mill in southern Alabama and an environmental assessment for a major wastewater treatment plant expansion.

Performed a solid waste management evaluation for New Hanover County, North Carolina. Conducted hazardous waste audits on three U.S. Air Force bases to identify past chemical handling practices and the possibility of contaminant migraton off the base property.

Publications

"Aquadilla, P.R. Current and Diffusion Studies" presented at the Pollution Control Federation - Reconvened Session 1972.

"EPA Effluent Guideline Studies" presented to the Gum and Wood Chemicals Association, Atlanta, GA 1974.

"Hazardous Spill Regulations" presented to the Gum and Wood Chemicals Association. Charleston, SC 1976.

Biographical Data

JOHN R. ABSALON
Hydrogeologist

[PII Redacted]

Education

B.S. in Geology, 1973, Upsala College, East Orange, New Jersey

Professional Affiliations

Certified Professional Geologist (Indiana No. 46)
Association of Engineering Geologists
Geological Society of America
National Water Well Association

Experience Record

1973-1974

Soil Testing Incorporated-Drilling Contractors, Seymour, Connecticut. Geologist. Responsible for the planning and supervision of subsurface investigations supporting geotechnical, ground-water contamination, and mineral exploitation studies in the New England area. Also managed the office staff, drillers, and the maintenance shop.

1974-1975

William F. Loftus and Associates, Englewood Cliffs, New Jersey. Engineering Geologist. Responsible for planning and management of geotechnical investigations in the northeastern U.S. and Illinois. Other duties included formal report preparation.

1975-1978

U.S. Army Environmental Hygiene Agency, Fort Mc-Pherson, Georgia. Geologist. Responsible for performance of solid waste disposal facility siting studies, non-complying waste disposal site assessments, and ground-water monitoring programs at military installations in the southeastern U.S., Texas, and Oklahoma. Also responsible for operation and management of the soil mechanics laboratory.

1978-1980

Law Engineering Testing Company, Atlanta, Georgia. Engineering Geologist/Hydrogeologist. Responsible for the project supervision of waste management, water quality assessment, geotechnical, and hydrogeologic studies at commercial, industrial, and government

John R. Absalon (Continued)

facilities. General experience included planning and management of several ground-water monitoring programs, development of remedial action programs, and formulation of waste disposal facility liner system design recommendations. Performed detailed ground-water quality investigations at Robins Air Force Base in Georgia, a paper mill in southwestern Georgia, and industrial facilities in Tennessee.

1980-Date

Engineering-Science. Hydrogeologist. Responsible for supervising efforts in waste management, solid waste disposal, ground-water contamination assessment, leachate generation, and geotechnical and hydrogeologic investigations for clients in the industrial and governmental sectors. Performed geologic investigations at eight Air Force bases and other industrial sites to evaluate the potential for migration of hazardous materials from past waste disposal practices. Conducted RCRA ground-water monitoring studies for industrial clients and evaluated remedial action alternatives for a county landfill in Florida.

Publications

"An Investigation of the Brunswick Formation at Roseland, NJ," 1973, with others, The Bulletin, Vol 18, No. 1, NJ Academy of Science, Trenton, NJ.

"Engineering Geology of Fort Bliss, Texas," 1978, with R. Barksdale, in Terrain Analysis of Fort Bliss, Texas, US Army Topographic Laboratory, Fort Belvoir, VA.

"Geologic Aspects of Waste Disposal Site Evaluations," 1980, with others, Program and Abstracts AEG-ASCE Symposium on Hazardous Waste Disposal, April 26, Raleigh, NC.

"Practical Aspects of Ground-Water Monitoring at Existing Disposal Sites," 1980, with R.C. Starr, Proceedings of the EPA National Conference on Management of Uncontrolled Hazardous Sites, HMCRI, Silver Spring, MD.

"Improving the Reliability of Ground-Water Monitoring Systems," 1981, Proceedings of the Madison Conference of Applied Research and Practice on Municipal and Industrial Waste, University of Wisconsin-Extension, Madison, WI.

Biographical Data

MARK I. SPIEGEL

[PII Redacted]

Environmental Scientist

Education

B.S. in Environmental Health Science (Magna cum laude), 1976, University of Georgia, Athens, Georgia
Limnology and Environmental Biology, University of Florida, Gainesville, Florida
Business Administration, Georgia State University

Professional Affiliations

American Water Resources Association
Technical Association of the Pulp and Paper Industry

Experience Record

1974-1976

U.S. Environmental Protection Agency, Surveillance and Analysis Division. Cooperative Student. On assignment to Air Surveillance Branch, participated in ambient air study in Natchez, Mississippi, and operated unleaded fuel sampling program for Southeast National Air Surveillance Network. For Engineering Branch, participated in NPDES compliance monitoring of industrial facilties throughout the southeast; operation and maintenance studies of municipal waste treatment facilities; and post-impoundment study of West Point Reservoir, West Point, Georgia. Participated in industrial bioassay studies for the Ecological Branch.

1977-Date

Engineering-Science. Environmental Scientist.
Responsible for the conduct of water and wastewater sampling programs and analyses, quality control, laboratory process evaluations, and evaluation of other environmental assessment data. Conducted leachate extraction studies of sludges produced at a large organic chemicals plant to define nature of sludges according to the Resource Recovery and Conservation Act guidelines. Involved in laboratory quality assurance program for the analysis of water samples used in a stream modeling project. Conducted water quality modeling study for Amerada Hess Corporation to determine the assimilative capacity of a stream receiving effluent from a southern Mississippi refinery.

Mark I. Spiegel (Continued)

Participated in bench-scale industrial treatability studies conducted for the American Textile Manufacturers Institute and Eli Lilly Pharmaceuticals in Mayaguez, Puerto Rico, and in carbon adsorption studies for an American Cyanamid chemical plant and Union Carbide Agricultural Products Division.

Involved in various aspects of several industrial environmental impact assessments including preliminary planning for a comprehensive study for St. Regis Paper Company on a major pulp and paper mill expansion project. Assisted in preparation of thirdparty EIS for EPA and Mobil Chemical Company concerning a proposed 16,000-acre phosphate mining and beneficiation facility. Developed an EIA prior to construction of a pulp and paper complex by the Weyerhaeuser Company in Columbus, Mississippi, which included preparation of a separate document for the Interstate Commerce Commission concerning the construction of a railroad spur to serve the complex. Also involved in formulating the water quality, water resource and socio-economic aspects of an environmental impact assessment for International Paper Company. Participated in large scale site evaluation to determine the suitability and environmental permitting requirements of a site for an east coast brewery for the Adolph Coors Company. Assisted in development of a peat mining and restoration plan for a private concern in coastal North Carolina.

Project Manager. Conducted comprehensive process evaluation of an 80 mgd wastewater treatment system for Weyerhaeuser Company. Responsible for a study to determine the leaching characteristics of sludges for a paint manufacturing facility for RCRA compliance. Also managed study for development of a solid waste management plan for a ceramic pottery manufacturer in northern Alabama which included evaluating surface and groundwater contamination potential from the existing disposal site and assisting manufacturer in developing a disposal program acceptable to state agencies.

Participated as project team member for Phase I Installation Restoration Program projects for the Department of Defense. Studies were conducted at five Air Force bases to identify past hazardous waste disposal practices that could result in migration of contaminants off base property and recommend priority sites requiring further investigation.

Biographical Data

MARK A. GUTHRIE

Civil and Environmental Engineer

[PII Redacted]

Education

B.S.E. in Civil Engineering, 1978, Duke University
M.S.C.E. in Environmental Engineering, 1981, Purdue University

Professional Affiliations

Engineer in Training, 1978, North Carolina Georgia Water & Pollution Control Association Water Pollution Control Federation American Society for Microbiology Society of Industrial Microbiology American Chemical Society International Association for Water Pollution Research

Experience Record

1978 - 1981

Purdue University, West Lafayette, Indiana — Graduate Research Assistant. Designed and evaluated an experimental protocol for determining the biodegradability and toxicity of specific priority pollutants during the anaerobic digestion of wastewater sludges. Operated and performed routine analyses on bench-scale anaerobic digestion bioreactors, including gas-liquid chromatographic analyses for pentachlorophenol and dimethylphthalate.

1981 - Date

Engineering-Science, Inc., Atlanta, Georgia - Project Engineer. Involved in preliminary engineering activities and operations assistance for industrial waste treatment. Responsibilities include in-plant waste characterization surveys, laboratory and pilot scale treatability studies for physical, chemical, and biological treatment processes, alternative process evaluations and process design development, performance and capacity evaluations of industrial waste treatment facilities, and development of operational strategies for wastewater treatment.

Biological Data - Mark A. Guthrie, Continued

Recent project experience includes wastewater characterization, on-site biological wastewater treatability studies, and operational assistance for a plastics and chemical manufacturing facility with a pure oxygen activated sludge system. The project involved sample collection and analysis, operation of bench-scale Unox bioreactors, and evaluation of the full scale system including solids removal, oxygen transfer capacity, nutrient addition, and secondary clarification.

Previous project experience involved physical and chemical wastewater treatability studies and development of final process design criteria for an upgraded wastewater treatment system at a textile dye and chemical manufacturing facility. The scope of the investigation included collection and treatment of stormwater runoff, neutralization and equalization requirements, primary suspended solids removal, determination of aeration coefficients, and evaluation of biological treatability data.

Other experience includes preliminary design work for a physical-chemical treatment system to remove oil and grease, cyanide, heavy metals, and suspended solids from the process wastewater of a munitions manufacturing facility. Operations experience includes development of key operating strategies and procedures for specific industrial waste treatment facilities, as well as on-site evaluations, operator training, and preparation of operating manuals.

APPENDIX B

INSTALLATION HISTORY

APPENDIX B INSTALLATION HISTORY

The following information was obtained from the TAB A-1 Report. In May 1917, the Army Signal Corps established a flying school and aviation depot near Fairborn. During that same year, an aviation engineering laboratory was created at McCook Field, north of Dayton. Siting these early military activities at Dayton followed the path initiated by the aviation pioneers, Orville and Wilbur Wright. The brothers, following their successful flight at Kitty Hawk, NC, in December 1903, the next year built a hangar and began a long series of tests and experiments on a prairie which is now part of the Patterson runway.

After World War I, the aviation supply depot and the engineering laboratory continued operations, thus establishing the routes for the major products of Wright-Patterson AFB today; world wide logistics, and research development.

In 1927, the experimental facilities at McCook Field moved to an area renamed Wright Field in honor of the aviation pioneers. Today, that area is known as Area B. Meanwhile the aviation supply depot became the Fairfield Air Depot Reservation. This large military installation encompassed what today is divided into Areas A and C. In July 1931, Fairfield Air Depot Reservation was renamed Patterson Field in honor of Lt. Frank S. Patterson, who died at Wright Field in 1917 in an aerial accident.

During the decades between World Wars, Wright and Patterson Fields paced the development and support of nearly all major facets of the Army Air Corps' expansion, particularly in aircraft design, research and support. In February 1948, the respective Wright and Patterson Fields were merged into Wright-Patterson Air Force Base.

The Air Force Systems Command in 1979 published a detailed engineering history, 1917 to 1978, McCook Field to the Aeronautical Systems Division. This publication is a detailed presentation of a number of organizational realignments which have taken place at Area B during this period in history.

APPENDIX C

MISCELLANEOUS PROJECT DATA

TABLE C.1

WRIGHT-PATTERSON AFB CLIMATIC DATA Period of Record May 1936 - December 1972

	e	MAX	(KT)	63	92	9/	58	89	99	26	62	57	99	29	26	85
MINDS	SPEED	MEAN	(KT)	6	6	ø	6	7	ø	2	s	v	و	50	co	7
SURFACE WINDS	PVLG		(16 PT)	3	3	3	3	MS	MS	MS	Ø	vs.	တ	œ	3	3
RELATIVÉ	HUMIDITY (A)	- f+	13	0,	29	9	55	22	54	53	53	52	5.	63	69	59
RELA	HUMID	LST	5	08	80	78	78	82	89 52	85	87	98	83	08	00	82
	(8)	MAX	24 HRS	8.2	80	ø	6	•	•	0	•	•	-	69	=	=
	SNOWPALL (IN)		¥	3	91	91		-	•	•	•	•	-	11	5	2
	SNOWPALL		MEAN	7.6	9	Ŋ	-	•	•	0	•	•	-	m	'n	25
	.	HAX	24 IIRS	3.6	5.6	3.4	2.0	3.9	3.5	2.6	5.3	2.1	2.2	3.3	1.7	5.3
	(NI)		MIN	•	9	9.	s:	.,	•	s.	7.	~	-	•	•	9
	PRECIPITATION (IN)		MAX	6.9	5.2	10.0	7.5	12.4	8.01	7.1	8.5	5.5	6.1	0.9	5.5	12.4
	PRECI		MEAN	2.9	2.5	3.4	3.6	3.7	4.3	3.1	2.8	2.5	2.0	3.0	2.7	36.4
	PMR		NIM	-16	==	7	18	36	9 .	45	Q	28	25	-	-10	-16
	RX (*F)		¥	22	23	83	68	2	102	102	102	102	2	80	92	102
	TEMPERATURE (*F)	-NOM	THEY	62	32	\$	52	62	22	75	73	67	\$5	45	33	53
	THEN	DAILY	1	2	23	31	-	5	5	29	62	22	=	3	52	\$
		M	MAX MIN	37	2	4 9	62	73	82	88	9	78	99	5	9	62
	ENCH			JAN	PEB	MAR	APR	MAX	NUC	JUL	AUG	SEP	oc.	AON	DEC	ANN

NUTE: The symbol # indicates a trace of snow recorded. SOUNCE: Detachment 15, 15th Weather Squadron, WPAFB

TABLE C.2

WRIGHT-PATTERSON AIR FORCE BASE

SUMMARY OF INSTALLATION WELL DATA

3	Location (Area Building)	Finished Depth	Well Head Casing Diameter	Static water Level (Feet below	Yield (ann)	Drawdown (feet below static	Apparent Till Thickness at Well Location
	(Survivos april)	(1221)		(Surana to do)	(male)	1111	(1994)
-	C 160	58	20	21.5(1)	625 (11)	4.4	22
7	C 171	09	12	19 (2)	300 (2)	æ	1
E	C 203	64.5	82	22 ⁽²⁾	1000 (2)	8	Not evident on well log
•	C 273	52	20	9 (2)	500 (2)	4	22
9	A 182	1	1	₅ (2)	960 (2)	7	1
7	C 181	58	20	22 (2)	700 (2)	8	24
∞	C 851	8#	20	18 (2)	1100 (2)	•	17
6	C 852	46	20	10 (2)	1200 (2)	01	22

SOURCES: INSTALLATION DOCUMENTS AND EACON (1979)

(1) PROM EAGON (1979)

(2) October, 1981, Installation Data

TABLE C.3

PETROLEUM PRODUCT TANKAGE Wright-Patterson Air Force Base

Fue l	No. of Tanks	Max. Tank Volume (gallons)	Min. Tank Volume (gallons)	Total Storage Volume (gallons)
JP-4	26	840,000	3,000	5,838,000
Diesel	13	12,000	2,000	78,000
Leaded MOGAS	13	20,000	2,000	122,000
Unleaded MOGAS	4	12,000	5,000	37,000
AVGAS	ъ	420,000	2,000	432,000
Kerosene	7	12,000	12,000	24,000
Solvent	-	12,000	12,000	12,000
Deicing Fluid	7	25,000	25,000	20,000
JP-5 (Purging Fluid)	9 (25,000	5,000	000'06
Fuel Oil	6	212,000	3,000	328,000
Scrap Fuel	19	25,000	2,000	159,000
Scrap Purging	-	25,000	25,000	25,000
Special Fuel	9	25,000	4,000	94,000
Alcohol	е	12,000	10,000	34,000
JP-8	æ	25,000	10,000	000'09
White Gas	-	10,000	10,000	10,000

February, 1979. Table does not account for tankage added or deleted since the preparation of the SPCC. Note: Information obtained from 2750th ABW Spill Prevention Control and Countermeasures Plan (SPCC) revised

TABLE C.4 CONSTITUENTS OF TYPICAL COAL PILE RUNOFF

Conventional Measures of Pollution		Range	(mg/1)
рн	2.100	_	6.600
Total Suspended Solids	22.000	-	610.000
Total Dissolved Solids	720.000	_	28,970.000
Turbidity	2.770	_	505.000
Total Hardness	130.000	-	1,851.000
Major Chemical Constituents			
Ammonia	0.000	-	1.770
Nitrate	0.300	-	1.900
Phosphorus	0.200	-	1.200
Sulfate	130.000	-	20,000.000
Chloride	3.600	-	481.000
Aluminum	66.000	-	1,200.000
Iron	0.060	-	4,700.000
Manganese	90.000	-	180.000
Sodium	160.000	-	1,260.000
Trace Element Constituents			
Arsenic	0.005	-	0.600
Beryllium	<0.010	-	0.070
Cadmium	<0.001	-	0.003
Chromium	0.000	-	16.000
Cobalt	0.025	-	
Copper	0.010	-	3.900
Magnesium	0.000	-	174.000
Mercury	<0.0002	-	0.007
Nickel	0.240	-	0.750
Selenium	<0.001	-	0.030
Zinc	0.006	-	12.500

Source: Impact of RCRA on Utility Solid Wastes. Electric Power Research Institute, August, 1978, pg. 54.

TABLE C.5

CONTRACT WASTE CHEMICAL DISPOSAL FIRMS 1973 - CURRENT

Company Name	Location
Exciton Chemical Co.	Dayton, Ohio
Erieway Pollution Control	Bedford, Ohio
Systech	Dayton, Ohio
University of Dayton	Dayton, Ohio
Chem-Trol	Dayton, Ohio
Pristine	Cincinnati, Ohio
CECOS	Cincinnati, Ohio
Environmental Enterprises	Cincinnati, Ohio

TABLE C.6
WRIGHT-PATTERSON AIR FORCE BASE
OIL-WATER SEPARATORS

No.	Location	Size (gallons)	Connection	Remarks
1	POL Tank Farm, Area C	1600	Storm	
2	POL Tank Farm, Area C	1300	Storm	
3	Taxiway, West Ramp, Area C	6 ea-2400 = 14400	Storm	Continuously Running
4	Bldg 4044, Area C	1200	Sanitary	
5	Bldg 4024, Area C	2700	Sanitary	
6	Bldg 4022, Area C	2700	Sanitary	
7	Bldg 4030, Area C	1500	Sanitary	
8 A	Bldg 4020, Area C	150		
8B	Bldg 4020, Area C	150		
9	Bldg 106, Area C	1600	Sanitary	
10A	Bldg 71, Area B	180	Sanitary	
10B	Bldg 71, Area B	1100	Sanitary	
11	Bldg 71A, Area B	1100	Sanitary	
12	Bldg 13, Area C	1100	Sanitary	
13	Bldg 18, Area B	Unknown		Cover Bolts Inaccessible
14	Bldg 18C, Area B	250	Sanitary	
15	Bldg 877, Area A	1200	Sanitary	
16	Bldg 109, Area C	900	Sanitary	
17	Taxiway, Area C	6400	Storm	
18	Bldg 60, Area C	800	Sanitary	
19	Bldg 38, Area B	1200	Sanitary	
20	Bldg 448, Area B	900	Sanitary	
21	Bldg 464, Area B	500	Sanitary	
22	Bldg 21, Area B	100	Sanitary	
23	Bldg 142, Area C	1600	Sanitary	

TABLE C.6 (Continued)

WRIGHT-PATTERSON AIR FORCE BASE OIL-WATER SEPARATORS

No.	Location	Size (Gallons)	Connection	Remarks
24	Bldg 119, Area C	700	Sanitary	
25	Bldg 4024, Area C	6500	Sanitary	
26	Bldg 70, Area B	40	Sanitary	
27A	Bldg 1244, Area C	50	Sanitary	
27B	Bldg 1244, Area C	50	Sanitary	
28	Bldg 169, Area C	Unknown	Abandoned	
29	Bldg 1244, Area C	1500	Sanitary	
30	Bldg 94, Area B	1000 (Est.)	Sanitary	
31	Gun Range, Area B	1500	Sanitary	
32	Gun Range, Area B	1500	Sanitary	
37	Bldg 901, Area C	600	Sanitary	
38	Bldg 55, Area C	4700	Sanitary	
39	Bldg 92, Area B	200	Storm	
40	Bldg 59, Area B	250	Sanitary	
41	Bldg 71, Area B	250	Sanitary	
42	Bldg 48, Area B	200	Storm	
43	Bldg 42, Area B	200	Storm	
44	Bldg 18, Area B	1700	Storm	Continuously Running

DATES OF INSTALLATION NOT AVAILABLE

APPENDIX D

LIST OF INDUSTRIAL SHOPS

APPENDIX D

LIST OF INDUSTRIAL SHOPS

	Present Location	Past Location	Handles	Generates	Present
N See	and Dates	and Dates	Hazardous	Hazardous	On-Site
Neine	(Area and bidy No.)	(Area and Bldg No.)	Materials	Wastes	T.S.D.
4950th Test Wing					
AME/Pabrication and Modification Div.					
AMFS/Metal Cleaning and Plating Shop	8-5	•	×	×	Drummed to contractor or neutralized to sewer
AMES/Paint Shop	B-5	•	×	×	Drummed to contractor
AMFDD/Electronic Printed Wiring Pabri- cation Pacility	រភ ! 	•	×	×	To sanitary sever
AMFT/Sheet Metal, Wodel Branch	ي 1 1	•	×	×	Drummed to contractor
AMPD/Modification Branch	C-206 (1975 to Present)	B-9 (1940's to 1975)	·	×	Drummed for DPDO
AMFEC/Machine Shop	8-18	•			
AMPED/Machine Shop	B-32	•			
AMPEF/Machine Shop	C-24	•			
AMFEG/Machine Shop	B-145	*			
4950TW Avionics Maint. SQ.					
MADE/Precision Measure- ment Equip. Lab (PMEL)	C-884 (1968 to present)	C-168 (pre 1963 to 1968)	×	×	Drummed to contractor
MADMA/Antenna Shop	C-4042				
MADMH/High Prequency Radio Shop	C-4042	*		ا	

^{*} Treatment, storage, and/or disposal activities

^{**} Documentation indicated no past building locations existed

APPENDIX D CONT.

	Present Location	Past Location	Handles	Generates	Present
	and Dutes	and Dates	Razardous	Hazardous	On-Site
Name	(Area and Bldg No.)	(Area and Bldg No.)	Materials	Wastes	T.8.D.
MADMI/Airborn Instrumen- tation Shop	C-4042	•			
MADMI/Radio Frequency Shop	C-4042	•			
MADMT/Recorder Timer Shop	C-4042	•			
MADNF/Flight Simulator Shop	C-4042	•			
4950'W Field Maint. SQ. WAFER/Supp. Equip. Inspec- tion and Repair	C-109, C-4044 C-4046	•		ж	Stored for DPDO
MAFFC/Corrosion Control Shop	C-105	•	×	×	Drummed to contractor
MAFFE/Survival Equip. Shop	PS-0	•			
MAFFI/Non-Destructive Insp. Shop	c-13	•	×	×	Drummed to DPDO
MAFFM/Wachine Shop	C-13	•			
MAFFP/Metal Processing Shop	C-13 (1940's to 1975)	•	×	×	Drummed to contractor
MAFFS/Structural Repair Shop	c-13	•			
MAPFS/Structural Repair Zone Shop	C-4026	•			
MAPPD/Flightline Dispatch Shop	р С-4026	•			
MAFPC/Jet Engine Shop	C-13	•	×	×	Stored for DPDO
MAFFJ/Test Cell	C-256	•	×	×	Stored for DPDO
MAPSE/Egress Shop	C-145	•			
MARSF/Fuel Systems Shop	C-4020	•	×		Stored for reuse by POL
MAYSL/Rlectrical Systems Shop	C-13	•			<u> </u>
MAFSP/Pneudraulic Shop	C-13	•			
MMOI/Repair and Reclamation Shop	C-4026	•		×	Drummed to contractor

freatment, storage, and/or disposal activities

^{**} Documentation indicated no past building locations existed

APPENDIX D CONT.

	Present Location	Past Location	Handles	Generates	Present On-Site
Naste	(Area and Bldg No.)	(Area and Bldg No.)	Materials	Wastes	1.8.D.
MADIR/Wheel and Tire Section	C-13	•		×	Stored for DPD0
MAFSS/Environmental/Systems Shop	C-4012	•			
4950th Org. Maint. SQ. MAOI/Corrosion Control	C-4024	*	×	×	Drummed to
MAOS/Support Equipment C- Branch C-4	C-106, C-4044 C-4024, C-4028	•		×	Drumed for DPDO
DIR OF SUPPORT					
SUT/Technical Photographic Division	B-20 (1965 to Present)	B-600,601 (1940's to 1965)	×		Silver recovered to sanitary sewer
AIR FORCE MUSEUM					
Mi/ Restoration Div.	4	:	×	×	Drummed to contractor
MJ/Exhibits Div.	4	:	×	×	Drummed to contractor
AF ORIENTATION GROUP (APOG)			·		•
PDUP/Production Division Print Shop	DESC (1981)	B-6 (1958–1981)	×	×	Drummed to contractor
LGT/Transportation Branch	DESC (1981)	B-4 (1958-1981)	×	*	prumed for pPDO
XIDA/Art Section	DESC (1981)	B-6 (1958-1981)		×	Drummed to contractor
XIXP/Photo Section	DESC (1981)	B-6 (1958–1981)		×	Silver recovered to sever

^{*} Treatment, storage, and/or disposal activities

^{**} Documentation indicated no past building locations existed

APPENDIX D CONT.

Present On-Site 7.8.D.	Þŧ	Drummed for DPDO	Drumed for DPDO Drumed for PDC Drumed for PDC Drumed for PDC DDC DDC DDC DDC DDC DDC DDC DDC DDC	Drummed for DPDO		Triple rinsed to refuse contractor	Triple rinsed to landfill
Generates Nazardous Waates		×	ж ж	×		×	×
Handles Hazardous Materials	×			×	×	×	×
Past Location and Dates (Area and Bldg No.)	•	•	• •	•	•	*	•
Present Location and Dates (Area and Bldg No.)	. B-30	o-60	C-58 B-38	C-1244 Kittyhawk Center	C-2 and 2a	A-272	A-87&
Na <u>B</u> c	DRT 2, 1361 AUDIOVISUAL SQ PD/Production Branch 2750th AIR BASB WING	Logistics Squadron DMTSS/General Purpose Unit and Special Purpose Unit	DWTSG/Maint. Shop Unit DWTSW/Wright Maint. Unit	SSRU/Auto Hobby Shop Kit	DMSD/Base Supply Warehouse	DEMSP/Entomology Unit	DEMG/Golf Course Maint.

^{*} Treatment, storage, and/or disposal activities

^{**} Documentation indicated no past building locations existed

APPENDIX E

LIST OF RESEARCH LABS

APPENDIX E

LIST OF RESEARCH LABORATORIES

Nose	Present Location and Dates (Area and Bldg. No.)	Past Location and Dates (Area and Bldg No.)	Handles Hazardous Materials	Generates Harardous Wastes	Present On-Site T.S.D.*
AFWAL/AAD Avionics Electronic Tech. Div.	B-620, B-22B, B-450		×	×	
AFWAL/AAR Avionics Reconnaissance/Weapon Delivery Division	B-620,B-22, B-23		×	Ħ	
AFWAL/AAW Avionics Electronic Warfare Div.	v. B-620				
AFWAL/FIB Flight Dynamics Structure/ Dynamics Division	B-45, B-24C, B-65		×	×	
AFWAL/FIE Flight Dynamics Vehicle Equip. Division	B-45, B-31 B-255, Gun Range		×	×	
AFWAL,/FIG Flight Dynamics Flight Control Division	B-45, B-145, 194, 450 254, 24C, 93		×	×	
AFWAL/MLB Materials Lab Nonmetallic Materials Division	Area B, 32, 51		¥	×	
AFWAL/MIL Materials Lab Metals Keramics Div.	B-32 450	Plating shop 1950's S1	×	×	

^{*} Treatment, storage, and/or disposal activities

T.

APPENDIX E (Continued)

LIST OF RESEARCH LABORATORIES

Name	Present Location and Dates (Area and Bldg. No.)	Past Location and Dates (Area and Bldg No.)	Handles Hazardous Materials	Generates Hazardous Wastes	Present On-Site T.S.D.*
AFWAL/MLP Materials Lab Electromagnetic Materials Division	B-651		×	×	
AFWAL/MIS Materials Lab Systems Support Div.	B-652		×	×	
AFWAL/MLT Materials Lab Manufacturing Tech. Div.	B-653, 651		×	×	
AFWAL/MIJ Materials Lab Technical Services Div.	653		×	×	
AFWAL/POF Aero Propulsion Lab Tech Facilities Division	18B, 18G 18, 435		×	×	
AFWAL/POO Aerospace Power Division	18A		×	×	
AFWAL/POR Nonjet Engine Division	180		×	×	
AFWAL,/POS Fuels/Lubrication Div.	92, 352 18D, 70	til 1963 90	×	×	
AFWAL/POF Turbine Engine Div.	, 18A, 18D		×	×	

^{*} Treatment, storage, and/or disposal activities ** Documentation indicated no past building locations existed.

APPENDIX E (Continued)

LIST OF RESEARCH LABORATORIES

Neme	Present Location and Dates (Area and Bldg. No.)	Past Location and Dates (Area and Bidg No.)	Handles Hazardous Materials	Generates Hazardous Wastes	Present On-Site T.S.D.
AFLC/SPQLA Aerospace Fuels Lab	70		×c	×	
AFAMRI,/BB Blodynamics/Bloengineering Division	33, 441, 824		×	×	
AFAMRI,/IIE Human Engineering Division	248				
AFAMRL/TH Toxic Hazard ision	79		×	×	
AFAMRL/TS Technical Services Div.			×	×	
AFAMRL/VS Veterinary Services Div.	838		×		
AFAMRL/SE Safety Office	29		×		
AFIT/EN Air Fac. Inst. Tech. School of Engineering	640		×	×	
ARL Aerospace Research Lab		till 1975 450	×	×	

^{*} Treatment, storage, and/or disposal activities ** Documentation indicated no past building locations existed.

APPENDIX F

PHOTOGRAPHS

LANDFILLS

(continued)

BLDG. REMOVED

HIELDS AVE.

Landfill No. 10

SHIELDS AVE:

Landfill No. 10

APPENDIX G

HAZARDOUS EVALUATION METHODOLOGY

APPENDIX G

HAZARD EVALUATION METHDOLOGY

PRELIMINARY POTENTIAL CONTAMINATION ASSESSMENT

Various numerical methods for preliminary assessment of sites to determine the need of follow-up action have been developed. Under the auspices of EPA's Office of Enforcement, JRB Associates have devised a methodology for selcting sites for further investigation based on their potential for adverse environmental impact. A modified JRB technique has been developed by Engineering-Science and CH₂M Hill for analysis of the Phase I TRP studies (see memorandum dated July 8, 1981 at end of this Appendix). The methodology relies primarily on available information, but does provide some mechanisms for handling missing data so that sites can be preliminarily rated in most cases. A brief discussion of the rating factor system of analysis follows.

Site Rating Factor System

The following four basic assessment criteria categories are used in the evaluation:

- Receptors
- Pathways
- Waste Characteristics, and
- Waste Management Practices

These categories have been further broken down into 31 generally applicable rating factors as presented in Table G-1. For each of the factors, a four-level rating scale has been developed ranging form "0" (indicating no potential hazard) to "3" (indicating a high potential hazard). These rating scales are also presented in Table G-1. It should be pointed out that these scales have been devised so that rating factors can typically be evaluated on the basis of readily available information from published materials, public and private records, interviews with knowledgeable parties and site visits.

RATING FACTOR SYSTEM (cont'd)

	c	RATING SCALE LEVELS		
KATING FACTORS	0	-	7	
		PATHWAYS		
Evidence of Water Contamination	No contamination	Indirect evidence	Positive proof from direct observation	Positive proof from laboratory analyses
Level of Water Contamination	No contamination	Low levels, trace levels, or levels less than maxi- mum contaminant level (MCL) or EPA drinking water standards	Moderate levels or levels near MCL or EPA drinking water standards	High levels greater than MCL or EPA drink- ing water standards
Type of Contami- nation - Soil/ Biota	No contamination	Suspected con- tamination	Moderate contami- nation	Severe contamination
Distance to Nearest Surface Water	Greater than 1 mile	2,001 ft to 1 mile	501 ft. to 2,000 ft. 0 to 500 ft.	0 to 500 ft.
Depth to Groundwater	Greater than 500 ft.	than 500 ft. 51 to 500 ft.	11 to 50 ft.	0 to 10 ft.
Net Precipitation	Less than -10 in.	-10 to +5 in.	+5 to +20 in.	Greater than +20 in.
Soil Permeability	Greater than 50% clay (<10 ⁻⁶ cm/s)	30% to 50% clay (10-4 to 10-6 cm/s)	15% to 30% clay (10 ⁻² to 10 ⁻⁴ cm/s)	0 to 15% clay (>10-2 cm/s)
Bedrock Permeability	Impermeable (<10 ⁻⁶ cm/s)	Relatively impermeable (10 ⁻⁴ to 10 ⁻⁶ cm/s)	Relatively permeable Very permeable $(10^{-2} \text{ to } 10^{-4} \text{ cm/s})$ (> $10^{-2} \text{ cm/s})$	Very permeable (>10 ⁻² cm/s)
Depth to Bedrock	Greater than 60 ft.	31 to 60 ft.	11 to 30 ft.	0 to 10 ft.
Surface Erosion	None	Slight	Moderate	Severe

TABLE G.1

RATING FACTOR SYSTEM (cont'd)

WASTE CHARACTERISTICS

Judyemental hazardous rating from 30 to 100 points based on the following guidelines:

Condition	Closed domestic-type landfill, old site, no known hazardous wastes	Closed domestic-type landfill, recent site, no known hazardous wastes	Suspected small quantities of hazardous wastes	Known small quantities of hazardous wastes	Suspected moderate quantities of hazardous wastes	Known moderate quantities of hazardous wastes	Suspected large quantities of hazardous wastes	Known large quantities of hazardous wastes
Points	30	40	50	09	70	80	06	100

RATING FACTOR SYSTEM (con'd)

		RATING SCALE LEVELS	1	
RATING FACTORS	0	1	2	3
	WASTE MAN	WASTE MANAGEMENT PRACTICES		
Record Accuracy and Ease of Access to Site	Accurate records, no unauthorized dumping	Accurate records, no barriers	Incomplete records, no barriers	No records, no barriers
Hazardous Waste Quantity	<1 ton	1 to 5 tons	5 to 20 tons	>20 tons
Total Waste Quantity	0 to 10 acre ft.	11 to 100 acre ft.	101 to 250 acre ft.	Greater than 250 acre ft.
Waste Incompatibility	No incompatible wastes are present	Present, but does not pose a hazard	Present and may pose a future hazard	Present and posing an immediate hazard
Absence of Liners or Confining Strata	Liner and confining strata	Liner or confining strata	Low quality liner or low permeability strata	No liner, no con- ifining strata
Use of Leachate Col- lection Systems	Adequate collection and treatment	Inadequate collection or treatment	Inadequate collection and treatment	No collection or treatment
Use of Gas Collection Systems	Adequate collection and treatment	Collection and controlled flaring	Venting or inadequate treatment	No collection or treatment
Site Closure	Impermeable cover	Low permeability cover	Permeable cover	Abandoned site, no cover
Subsurface Flows	Bottom of landfill greater than 5 ft. above high groundwater level	Bottom of landfill occasionally sub- merged	Bottom of fill fre- quently submerged	Bottom of fill located below mean groundwater level

Since the rating factors do not all assess the same magnitude of potential environmental impact, a numerical multiplier has been assigned to each factor. These multipliers were developed to indicate the relative magnitude of impact of that factor. In addition, weighting factors have been assigned to the Factor Subscores to arrive at a properly balanced Overall Score.

The following five hazard potential scores are the result of a site rating:

- Overall Score
- Receptors Subscore
- Pathways Subscore
- Waste Characteristics Subscore, and
- Waste Management Subscore

MEMORANDUM

TO: Mr. Bernard Lindenberg, AFESC, Tyndall AFB, FL

Major Gary Fishburn, USAF OEHL, Brooks AFB, TX

FROM: Norman N. Hatch, Jr., ChaM HILL, Gainesville, FL, NNH by E/S

Ernest J. Schroeder, Engineering-Science, Atlanta, GA, E/S

DATE: July 8, 1981

SUBJECT: Joint Meeting between CH_M HILL and Engineering-Science to

develop a uniform site rating system for use in all Air Force

Installation Restoration Program Records Search Projects.

MEETING

LOCATION: CHoM HILL, Gainesville, Florida office

MEETING

DATE: Monday, June 29, 1981

A. Introduction and Purpose

A joint meeting was held at the CH₂M HILL Gainesville, Florida office on Monday, June 29, 1981. The purpose of the meeting was to develop a uniform site rating system for use in all upcoming Air Force Installation Restoration Program Records Search projects. Attendees at the meeting included:

- o Norman N. Hatch, Jr., CH₂M HILL Representative
- o Ernest J. Schroeder, Engineering-Science Representative
- o Major Gary Fishburn, Air Force Observer

The basis for the rating system is the document developed by JRB Associates, Inc., Mclean, Virginia, for the EPA Hazardous Waste Enforcement Office, Washington, D.C. The above document presents a methodology for selecting sites for investigation based on their potential for adverse environmental impact. Careful scrutiny of this document by CH₂M HILL and Engineering-Science indicated that the rating system could readily be used, with some modifications, for evaluating Air Force Installation sites.

These modifications would be necessary for the following reasons:

 The methodology presented in the JRB document was developed primarily for large landfill operations throughout the nation. Modifications are necessary to accurately address specific Air Force installation conditions. Memorandum July 8, 1981 Page Two

2. The rating system must include an equivalent comparison of landfill sites and suspected contaminated sites other than landfills, e.g., PCB spills.

B. Modifications to the JRB Rating System

The specific modifications jointly developed by CH₂M HILL and Engineering-Science, based on experience in performing Record Searches at several Air Force installations, are presented in the revised JRB rating form and rating factor system (attached). The modifications, in general, are summarized below:

- Changes in multipliers for several of the rating factors in the receptors, pathways, and waste management practices categories.
- Deletion of several existing rating factors and addition of new rating factors in the receptors, pathways, and waste management practices categories.
- 3. Revision of the waste characteristics category.
- 4. Special considerations in the use of the waste management practices category to provide meaningful comparison of landfills and contaminated areas other than landfills. These special considerations include:
 - a. Use of all nine rating factors for the evaluation of
 - b. Deletion of non-applicable rating factors when evaluating other contaminated areas. The category score is then normalized to provide an equivalent comparison with landfills.

CONCLUSION

All parties present at the meeting agreed that the above modifications would provide a meaningful rating system for Air Force installation sites. The system would be used in the next several Record Searches and then re-evaluated to determine if further modifications are necessary.

NNH/EJS/lmr

APPENDIX H

SITE RATING FORMS

APPENDIX H

SITE RATING FORMS

Table of Contents

Site	Page
Landfill No. 1	H-1
Landfill No. 2 (Tillman Pit)	H-3
Landfills No. 3, 4, 6 and 7	H-5
Landfill No. 5 (Twin Lakes)	H-7
Landfill No. 8	H-9
Landfill No. 9 (Sandhill)	H-11
Landfill No. 10 (Woodland Hills)	H-13
Landfill No. 11	표-15
Landfill No. 12	H-17
Fire Training Area No. 1	H-19
Fire Training Area No. 2	H-21
Fire Training Areas No. 3 & 4/Spill No. 1	H-23
Spill No. 2	H-25
Spill No. 3	H-27
Burial Site No. 1	H-29
Burial Site No. 2	H-31
Coal Storage pile	H-33
Central Heating Plant No. 1	. н-35
Central Heating Plant No. 2	H-37
Central Heating Plant No. 3	H-39
Central Heating Plant No. 4	H-41
Central Heating Plant No. 5	H-43
Deactivated Nuclear Reactor	H-45
Radioactive Waste Burial Site	H-47

Name of Site Landfill No. 1				
ocation Area 3 - Approximately 700 fee	t west of Ai	r Force Museum		
Owner/OperatorOperating from the 20's to 194	O. Site was	an old gravel	quarry.	· · · · · · · · · · · · · · · · · · ·
RATING PACTOR	FACTOR RATING (0-3)	MULTIPLIER	FACTOR SCORE	MAXIMUM POSSIBLI SCORE
RECEPTORS				
opulation Within ,000 Feet	1_	4	. 4	
Distance to Nearest Prinking Water Well	2	15	30	45
Distance to Reservation Soundary	3	6	18	18
and Use/Zoning	1	3	1	18
Critical Environments	3	12	36	36
Mater Quality of Nearby				
	1	6	6	18
Surface Water Body	1	6 SUBTOTALS		18
Surface Water Body Number of Assumed Values = 0 Out of 6	1	6 SUBTOTALS SUBSCORE	97	
Surface Water Body	1	SUBTOTALS SUBSCORE		138 70
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 %	1	SUBTOTALS SUBSCORE (Factor Sc	97	138 70 by Maximu
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 & Number of Missing Values = 0 Out of 6	1	SUBTOTALS SUBSCORE (Factor Sc	97	138 70 by Maximu
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 Out of 6 Number of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 %	1	SUBTOTALS SUBSCORE (Factor Sc	97	138 70 by Maximu
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 2 % Number of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 % Percentage of Missing Values = 0 %		SUBSCORE (Factor Sc Score and	97 Fore Divided Multiplied	138 70 by Maximu by 100)
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 0 Out of 6 Percentage of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 0 TATHWAYS Evidence of Water Contamination		SUBSCORE (Factor Sc Score and	97 Fore Divided Multiplied	138 70 1 by Maximu by 100)
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 Out of 6 Pumber of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 A PATHWAYS Evidence of Water Contamination Level of Water Contamination	2	SUBTOTALS SUBSCORE (Factor Sc Score and	97 Fore Divided Multiplied	138 70 1 by Maximu by 100)
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 0ut of 6 Percentage of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 0 TATHWAYS Evidence of Water Contamination Evidence of Water Contamination Evidence of Contamination	<u></u>	SUBTOTALS SUBSCORE (Factor Sc Score and	97 Fore Divided Multiplied	138 70 1 by Maximu by 100) 30 -
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 Out of 6 Percentage of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 PATHWAYS Evidence of Water Contamination Every of Contamination Cype of Contamination Soil/Biota Distance to Nearest Surface Water	? - ?	SUBSCORE (Factor Sc Score and	97 Pore Divided Multiplied	138 70 1 by Maximu by 100) 30
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 Out of 6 Percentage of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 PATHWAYS Evidence of Water Contamination Evel of Water Contamination Evel of Contamination Evel o	2 - 9 1 3	SUBTOTALS SUBSCORE (Factor Sc Score and 10 15 5 4 7	97 Fore Divided Multiplied	138 70 1 by Maximu by 100) 30 - 15 12 21
Rumber of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 Out of 6 Percentage of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 PATHWAYS Evidence of Water Contamination Every of Contamination Eyes of Contamination, Soil/Biota Distance to Nearest Surface Water Depth to Groundwater Net Precipitation	2 2 1 3	SUBSCORE (Factor Sc Score and	97 Fore Divided Multiplied	138 70 1 by Maximu by 100) 30
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 Out of 6 Percentage of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 PATHWAYS Evidence of Water Contamination Evel of Water Contamination Evel of Water Contamination Evel of Contamination Soil/Biota Distance to Nearest Surface Water Depth to Groundwater Net Precipitation Soil Permeability	2 2 1 3	SUBTOTALS SUBSCORE (Factor So Score and 10 15 5 4 7 6	97 Fore Divided Multiplied	138 70 1 by Maximu by 100) 30
Rumber of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 Out of 6 Percentage of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 PATHWAYS Evidence of Water Contamination Evel of Water Contamination Evel of Water Contamination Obstance to Nearest Surface Water Obstance to Groundwater Net Precipitation Soil Permeability Bedrock Permeability	2 2 1 3	SUBSCORE (Factor Sc Score and 10 15 5 4 7 6 6	97 Fore Divided Multiplied	138 70 1 by Maximu by 100) 30
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 Out of 6 Percentage of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 PATHWAYS Evidence of Water Contamination Evel of Water Contamination Evel of Water Contamination Evel of Water Contamination Evel of Water Surface Water Depth to Groundwater Net Precipitation Soil Permeability Depth to Bedrock	9 1 3 1	SUBTOTALS SUBSCORE (Factor So Score and 10 15 5 4 7 6 6 4 4 4	97 Pore Divided Multiplied 10	138 70 1 by Maximu by 100)

Hazardous Rating:	Judgemental rating from 30 to 100 points based on the following guidelines:
Points	
30	Closed domestic-type landfill, old site, no known hazardous wastes
40	Closed domestic-type landfill, recent site, no known hazardous wastes
50	Suspected small quantities of hazardous wastes
60	Known small quantities of hazardous wastes
70	Suspected moderate quantities of hazardous wastes
80	Known moderate quantities of hazardous wastes
90	Suspected large quantities of hazardous wastes
100	Known large quantities of hazardous wastes

SUBSCORE 50

Reason for Assigned Hazardous Rating:

Operation involved surface disposal and burning, garbage was segregated from the solid waste and fed to hogs off base. Served only Area B. Small quantities of chemicals from research facilities disposed in landfill.

RATING FACTOR	FACTOR RATING (0-3)	MULTIPLIER	FACTOR SCORE	Maximum Possibli Score
WASTE MA	nagement pract:	ICES		
Record Accuracy and Ease of Access to Site	3	7	21	21
Hazardous Waste Quantity	0	7	0	21
Total Waste Quantity	1	4	4	12
Waste Incompatibility		3		-
Absence of Liners or Confining Beds	3	6	18	18
Use of Leachate Collection System	3	6	18	18
Use of Gas Collection System	3	2	6	6
Site Closure	2	8	16	24
Subsurface flows	2	7	14	21
Number of Assumed Values = Out of 9		SUBTOTALS	97	141
Percentage of Assumed Values = 0		SUBSCORE		69
Number of Missing and Non-Applicable Values = Percentage of Missing and Non-Applicable Valu			ore Divided Multiplied	

Overall Number of Assumed Values = _0 Out of 25

Overall Percentage of Assumed Values = 0

CVERALL SCORE 56

Name of Site Landfill No. 2 (Tillman Pit)				-
Location Area 3 - West side of Harshmany Owner/Operator	ille Road			
Comments Operated as a dump from 1941 to and 1975. Abandoned gravel pit		as a landfill	disposal si	te herween 19
. RATING FACTOR	FACTOR RATING (0-3)	HULTIPLIER	FACTOR SCORE	MAXIMUM POSSIBLE SCORE
RECEPTORS	-	-		
Population Within	2	4	8	12
Distance to Nearest Drinking Water Well	2	15	30	45
Distance to Reservation Boundary	3	6	18	18
Land Use/Zoning	2	3	6	9
Critical Environments	3	12	36	36
Water Quality of Nearby Surface Water Body	1	6	6	18
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 % Number of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 %			104 Fore Divided	138 75 by Maximum
PATHWAYS Evidence of Water Contamination	0	10	0	36
Level of Water Contamination		15		
Type of Contamination, Soil/Biota		5	5	15
Distance to Nearest Surface Water	3	4	12	12
Depth to Groundwater	3	7	21	21
Net Precipitation	1	6	6	18
	3	6	18	18
Soil Permeability				
Bedrock Permeability				
Depth to Bedrock	2	4	8	12
Surface Erosion		4		
Number of Assumed Values = 0 Out of 10 Percentage of Assumed Values = 0 %		SUBTOTALS SUBSCORE	70	126 56
Number of Missing Values = 0 Out of 10			ore Divided	by Maximum
Percentage of Missing Values = 0			Multiplied	-

Closed domestic-type landfill, old site, no known hazardous wastes Closed domestic-type landfill, recent site, no known hazardous wastes Suspected small quantities of hazardous wastes
Closed domestic-type landfill, recent site, no known hazardous wastes
Supported small quantities of bazardous wastes
ambanan amer formation or impartable arrange
Known small quantities of hazardous wastes
Suspected moderate quantities of hazardous wastes
Known moderate quantities of hazardous wastes
Suspected large quantities of hazardous wastes
Known large quantities of hazardous wastes

RATING FACTOR	FACTOR RATING (0-3)	MULTIPLIER	FACTOR SCORE	Maximum Possible Score
STEAM	MANAGEMENT PRACT	ICES		
Record Accuracy and Case of Access to Site	3	7	21	21
Mazardous Waste Quantity	0	. 7	0	21
Fotal Waste Quantity	1	4	4	12
Waste Incompatibility	-	3		-
bsence of Liners or Confining Beds	3	6	18	18
ise of Leachate Collection System	3	6	18	18
ise of Gas Collection System	3	22	- 6	6
Site Closure	2		16	24
Subsurface Plows	2	7	14	21
Number of Assumed Values = 0 Out of 9 Percentage of Assumed Values = 0 %		SUBTOTALS SUBSCORE	97	141
Number of Missing and Non-Applicable Values Percentage of Missing and Non-Applicable Va				by Maximum

Overall Number of Assumed Values = $\frac{0}{0}$ Out of 25 Overall Percentage of Assumed Values = $\frac{0}{0}$

OVERALL SCORE 62

Name of Site Landfills No. 3,4,6 & 7				
Location Area A - Adjacent to disposal roa	d. maintenar	ce area and ho	rse barn are	 ≥a
Owner/Operator				
Comments Landfill 3 operated prior to 194	4; Landfill	4 operated bet	ween 1945 ar	nd 1949. Land-
fill 6 operated between 1949 and 1952; La	ndfill 7 ope	rated between	1952 and 196	52. All landf
received base refuse from Areas A and C.				
RATING FACTOR	FACTOR RATING (0-3)	MULTIPLIER	FACTOR SCORE	Haxihum Possible Score
RECEPTORS				
Population Within	2	4	8	12
1,000 Feet			. •	12
Distance to Nearest Drinking Water Well	2	15	30	45
Distance to Reservation				
Boundary	3	6	18	18
Land Use/Zoning	2	3	6	9
Critical Environments	3	12	36	36
Water Quality of Nearby Surface Water Body	1	6	6	18
Number of Assumed Values = Out of 6		SUBTOTALS	104	138
Percentage of Assumed Values = 0		SUBSCORE		75
Number of Missing Values = 0 Out of 6		(Factor Sc	ore Divided	by Maximum
Percentage of Missing Values = 0 %		Score and	Multiplied	
PATHWAYS				_
Evidence of Water Contamination	0	10	· o	30
Level of Water Contamination	<u> </u>	15	-	
Type of Contamination, Soil/Biota	0	5	0	15
Distance to Nearest Surface Water	3	4	12	12
Depth to Groundwater	3	7	21	21
Net Precipitation	1	6	6	18
Soil Permeability	3	6	18	18
Bedrock Permeability	-	4		-
Depth to Bedrock		4		-
Surface Erosion	1	4	4	12
Number of Assumed Values = 0 Out of 10		SUBTOTALS	61	126
Percentage of Assumed Values = 0 %		SUBSCORE		48
Number of Missing Values = 3 Out of 10 Percentage of Missing Values = 30 %			ore Divided Multiplied	by Maximum by 100)

Hazardous Rating:	Judgemental rating from 30 to 100 points based on the following guidelines:
Points	
30	Closed domestic-type landfill, old site, no known hazardous wastes
40	Closed domestic-type landfill, recent site, no known hazardous wastes
50	Suspected small quantities of hazardous wastes
60	Known small quantities of hazardous wastes
70	Suspected moderate quantities of hazardous wastes
80	Known moderate quantities of hazardous wastes
90	Suspected large quantities of hazardous wastes
100	Known large quantities of hazardous wastes

Reason for Ass	igned Hazardous Rating:	SUBSCORE	50
	Landfills served Areas A and C only.	Received no chemical	waste from
	Area B.		

RATING FACTOR	FACTOR RATING (0-3)	MULTIPLIER	FACTOR	Maximum Possibli Score
WASTE M	ANAGEMENT PRACT	ICES		
ecord Accuracy and ase of Access to Site	3	7	21	. 21
azardous Waste Quantity	0	7	0	21
otal Waste Quantity	3	4	12	12
aste Incompatibility	0	3	0	9
bsence of Liners or confining Beds	3	6	18	18
se of Leachate Collection System	3	6	18	18
se of Gas collection System	3	2	6	6
ite Closure	2	8	16	24
ubsurface flows	3	7	21	21
Number of Assumed Values = Out of 9		SUBTOTALS	112	150
		SUBSCORE		75

Overall Number of Assumed Values = 0 Out of 25

Overall Percentage of Assumed Values = 0

OVERALL SCORE 5

Name of Site Landfill 5				
Location Area B - Twin Lakes area				
Owner/Operator				
Comments Operated intermittently from t		to the present	time Previ	ously used
as a lumber reclamation area.	Presently us	sed for disposi	ng of flyas	h
				· · · · · · · · · · · · · · · · · · ·
				4,0000074poc400
	Factor Rating		FACTOR	Maximum Possible
RATING FACTOR	(0-3)	MULTIPLIER	SCORE	SCORE
RECEPTORS				
Population Within				
1,000 Feet	<u> </u>	4	<u> </u>	12
Distance to Nearest Drinking Water Well	3	15	45	45
				•
Distance to Reservation Boundary	4	6	18	18
Land Use/Zoning	1	3	3	9
Critical Environments	3	12	36	36
Water Quality of Nearby		6	6	18
Surface Water Body				138
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 %		Subscore	138	-9
Number of Missing Values = 0 Out of 6			ore Divided	by Maximum
Percentage of Missing Values = 0	•	Score and Multiplied by 10		b ₇ , 100)
				
Pathways	<u> </u>			- · · · · · · · · · · · · · · · · · · ·
Evidence of Water Contamination	• 9	10		30
Level of Water Contamination		15	<u> </u>	
Type of Contamination, Soil/Biota		5		15
Distance to Nearest Surface Water	3	4	12	12
Depth to Groundwater	3	7	21	21
Net Precipitation	1	6	6	18
	3	6	18	:9
Soil Permeability		4		
Bedrock Permeability			<u>-</u>	<u> </u>
Depth to Bedrock			.	
Surface Erosion	2	4		
Number of Assumed Values =OOut of 10		SUBTOTALS		126
Percentage of Assumed Values = 0		SUBSCORE	nes francis	52 by Maximum
Number of Missing Values =			Multiplied	-
				_,

Mazardous Rating:	Judgemental rating from 30 to 100 points based on the following guidelines:
Points	
30	Closed domestic-type landfill, old site, no known hazardous wastes
40	Closed domestic-type landfill, recent site, no known hazardous wastes
50	Suspected small quantities of hazardous wastes
60	Known small quantities of hazardous wastes
70	Suspected moderate quantities of hazardous wastes
80	Known moderate quantities of hazardous wastes
90	Suspected large quantities of hazardous wastes
100	Known large quantities of hazardous wastes

SUBSCORE 60

Reason for Assigned Hazardous Rating: .

Landfill is currently used for disposing flyash. Known small quantities of hazardous waste placed in landfill.

RATING FACTOR	FACTOR RATING (0-3)	MULTIPLIER	FACTOR	Maximum Possible Score
WASTE MANA	Gement Pract	ICES		
Record Accuracy and	3	7	21	21
Rase of Access to Site	0	7	0	21
Total Waste Quantity	2	4	8	12
Maste Incompatibility	0	3	0	9
Absence of Liners or Confining Beds	3	6	18	18
Jse of Leachate Collection System	3	6	18	18
Jse of Gas Collection System	3	2	6	6
Site Closure	2	e	16	24
Subsurface Flows	2	7	14	21
Number of Assumed Values =O Out of 9		SUBTOTALS	101	150
Percentage of Assumed Values = %		SUBSCORE		67
Number of Missing and Non-Applicable Values =	2Out of	9 (Factor Sc	ore Divided	by Maximus
Percentage of Missing and Non-Applicable Values		Score and	Multiplied	by 100)
Overall Number of Assumed Values = 0 Out of	25			
Overall Percentage of Assumed Values =4		OVERALL SCOR	E .	53

Period of operation was from 1955 to Leachate observed near residential ar RATING FACTOR RECEPTORS		ted as a trench	and cover	operation.
RATING FACTOR	FACTOR RATING			
	RATING			
	RATING			
RECEPTORS		MULTIPLIER	PACTOR SCORE	MAXIMUM POSSIBL SCORE
opulation Within .000 Feet	3	4	12	12
istance to Nearest rinking Water Well	2	15	30	45
stance to Reservation bundary	3	6	18	18
and Use/Zoning	3	3	9	9
ritical Environments	3	12	36	36
ater Quality of Nearby arface Water Body	1	6	6	18
umber of Assumed Values = 0 Out of 6		SUBTOTALS	111	138
ercentage of Assumed Values =		SUBSCORE		80
umber of Missing Values = _0 Out of 6		(Factor Sc	ore Divided	by Maximu
ercentage of Missing Values = %		Score and Multiplied by 100)		
PATHWAYS				
vidence of Water Contamination	2	10	20	30
evel of Water Contamination	2	15	30	45
ype of Contamination, Soil/Biota	11	5	55	15
istance to Nearest Surface Water	3	4	12	12
epth to Groundwater	2	77	14	21
et Precipitation	1	6	6	18
oil Permeability	1	6	6	18
edrock Permeability	-	4	-	
epth to Bedrock	-	44		
urface Erosion	3	4	12	12
umber of Assumed Values =O Out of 10		SUBTOTALS	105	171
ercentage of Assumed Values = _0 %		SUBSCORE		ől

	_			
to 100 points	based on the f	ollowing gu	idelines:	
andfill, old s	ite, no known	hazardous w	astes	
andfill, recen	t site, no kno	wn hazardou	s wastes	
ties of hazard	ous wastes			
of hazardous	wastes			
ntitles of hez	ardous wastes			
ies of hazardo	us wastes			
90 Suspected large quantities of hazardous wastes				
of hazardous	Vastes			
	SUBSCORE	100	_	
nimal carcasse	s from labs, o	ontaminated		
 				
FACTOR RATING (0-3)	MULTIPLIER	PACTOR SCORE	MAXIMUM POSSIBLE SCORE	
AGEMENT PRACTI	CES			
	 _			
3	7	21	21	
3		21	21	
3	4	1.3	12	
2	3	. 6	9	
3	. 6	18	18	
3	6	18	:9	
3	22	6		
1	8	3	24	
1		-	21	
	7			
	SUBTOTALS	117	150	
	SUBSCORE		-8	
Out of 9		ore Divided	by Maximum	
<u> </u>		Multiplied	by 100)	
		Multiplied	by 100)	
	PACTOR RATING (0-3) LAGEMENT PRACTI 3 3 1 1	PACTOR RATING (0-3) MULTIPLIER AGENENT PRACTICES A G G G G G G G G G G G G G G G G G G	## Continue	

Name of Site Landfill No. 9 (Sandhill)				
Location Area C - East end of runway, W	est of Sand	Hill Road		
Owner/Operator				
Comments Period of operation was from 1			to receive	wastes from
Areas A,B and C. Operated as	trench and co	over operation.		
RATING FACTOR	PACTOR RATING (0-3)	MULTIPLIER	FACTOR SCORE	MAXIMUM POSSIBLE SCORE
RECEPTORS				
Population Within 1,000 Feet	1	4	4	12
Distance to Nearest Drinking Water Well	2	15	30	45
Distance to Reservation	3	6	18	18
Boundary	1	3	3	9
Land Use/Zoning	3		36	36
Critical Environments		12	- 30	
Water Quality of Nearby Surface Water Body	1	6	6	18
Number of Assumed Values = 0 Out of 6		SUBTOTALS	97	138
Percentage of Assumed Values = 0 %		SUBSCORE		70
Number of Missing Values = 0 Out of 6		(Factor So	ore Divided	by Maximum
Domontous of Missins Nation - 0 4		Score and Multiplied by 100)		
Percentage or Missing Values = 4		5051 4 and	Marcapared	БУ 100)
vercentage or missing values =		3034 410		
PATHWAYS		3000 410		
PATHWAYS	9	10	. 2	
PATHWAYS Evidence of Water Contamination	0		2	
PATHWAYS Evidence of Water Contamination Level of Water Contamination	? - -	10	. 2	
PATHWAYS Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Blota	2	10	· 2	30
PATHWAYS Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water	-	10 15 5	· 2	30 - 15
PATHWAYS Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water Depth to Groundwater	2	10 15 5	, , , , , , , ,	30 - 15
PATHWAYS Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Bigta Distance to Nearest Surface Water Depth to Groundwater Net Precipitation	2 2	10 15 5 4	, , , , , , , , , , , , , , , , , , ,	30 - 15 12 21
PATHWAYS Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water Depth to Groundwater Net Precipitation Soil Permeability	2 2	10 15 5 4 7 6	, , , , , , , , , , , , , , , , , , ,	30 - 15 12 - 21 18
PATHWAYS Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water Depth to Groundwater Net Precipitation Soil Permeability Bedrock Permeability	2 2	10 15 5 4 7 6	, , , , , , , , , , , , , , , , , , ,	30 - 15 12 - 21 18
PATHWAYS Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water Depth to Groundwater Net Precipitation Soil Permeability Bedrock Permeability Depth to Bedrock	2 2	10 15 5 4 7 6 6	, , , , , , , , , , , , , , , , , , ,	30 - 15 12 - 21 18
PATHWAYS Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water Depth to Groundwater Net Precipitation Soil Permeability Bedrock Permeability Depth to Bedrock Surface Erosion	2 2 2 1	10 15 5 4 7 6 6 6	3 	30
PATHWAYS Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water Depth to Groundwater Net Precipitation Soil Permeability Bedrock Permeability Depth to Bedrock Surface Erosion Number of Assumed Values =Out of 10 Percentage of Assumed Values =Out of 20	2 2 2 1	10 15 5 4 7 6 6 4 4	3 - - - - - - - - 3	30 - - 15 12 21 18 - - - 12
Percentage of Missing Values =0 PATHWAYS Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water Depth to Groundwater Net Precipitation Soil Permeability Bedrock Permeability Depth to Bedrock Surface Erosion Number of Assumed Values =0 Number of Missing Values =0 Percentage of Missing Values =3 Out of 10 Percentage of Missing Values =3 Out of 10	2 2 2 1	10 15 5 4 7 6 6 4 4 4 SUBTOTALS SUBSCORE (Factor Sc	3 14 6 6 - 3	15 12 21 18 18 18

Closed domestic-type landfill, old site, no known hazardous wastes Closed domestic-type landfill, recent site, no known hazardous wastes Suspected small quantities of hazardous wastes Known small quantities of hazardous wastes Known moderate quantities of hazardous wastes Known moderate quantities of hazardous wastes Suspected large quantities of hazardous wastes Known large quantities of hazardous wastes SUBSCORE 70 Reason for Assigned Hazardous Rating: The landfill was the receptor of Area B wastes; miscellaneous laboratory	Hazardous Rating:	Judgemental rating from 30 to 100 points based on the following guidelines:
Closed domestic-type landfill, recent site, no known hazardous wastes Suspected small quantities of hazardous wastes Known small quantities of hazardous wastes Suspected moderate quantities of hazardous wastes Known moderate quantities of hazardous wastes Suspected large quantities of hazardous wastes Known large quantities of hazardous wastes SUBSCORE 70 Reason for Assigned Hazardous Rating: The landfill was the receptor of Area B wastes; miscellaneous laboratory	Points	
Suspected small quantities of hazardous wastes Known small quantities of hazardous wastes Suspected moderate quantities of hazardous wastes Known moderate quantities of hazardous wastes Suspected large quantities of hazardous wastes Known large quantities of hazardous wastes SUBSCORE 70 Reason for Assigned Hazardous Rating: The landfill was the receptor of Area B wastes; miscellaneous laboratory	30	Closed domestic-type landfill, old sits, no known hazardous wastes
60 Known small quantities of hazardous wastes 70 Suspected moderate quantities of hazardous wastes 80 Known moderate quantities of hazardous wastes 90 Suspected large quantities of hazardous wastes 100 Known large quantities of hazardous wastes SUBSCORE 70 Reason for Assigned Hazardous Rating: The landfill was the receptor of Area B wastes; miscellaneous laboratory	40	Closed domestic-type landfill, recent site, no known hazardous wastes
70 Suspected moderate quantities of hazardous wastes 80 . Known moderate quantities of hazardous wastes 90 Suspected large quantities of hazardous wastes 100 Known large quantities of hazardous wastes SUBSCORE 70 Reason for Assigned Hazardous Rating: The landfill was the receptor of Area B wastes; miscellaneous laboratory	50	Suspected small quantities of hazardous wastes
80 . Known moderate quantities of hazardous wastes 90 Suspected large quantities of hazardous wastes 100 Known large quantities of hazardous wastes SUBSCORE 70 Reason for Assigned Hazardous Rating: The landfill was the receptor of Area B wastes; miscellaneous laboratory	60	Known small quantities of hazardous wastes
90 Suspected large quantities of hezardous wastes 100 Known large quantities of hazardous wastes SUBSCORE 70 Reason for Assigned Hazardous Rating: The landfill was the receptor of Area B wastes; miscellaneous laboratory	70	Suspected moderate quantities of hazardous wastes
100 Known large quantities of hazardous wastes SUBSCORE 70 Reason for Assigned Hazardous Rating: The landfill was the receptor of Area B wastes; miscellaneous laboratory	80 .	Known moderate quantities of hazardous wastes
SUBSCORE 70 Reason for Assigned Hazardous Rating: The landfill was the receptor of Area B wastes; miscellaneous laboratory	90	Suspected large quantities of hazardous wastes
Reason for Assigned Hazardous Rating: The landfill was the receptor of Area B wastes; miscellaneous laboratory	100	Known large quantities of hazardous wastes
Reason for Assigned Hazardous Rating: The landfill was the receptor of Area B wastes; miscellaneous laboratory		·
The landfill was the receptor of Area B wastes; miscellaneous laboratory		SUBSCORE 70
	Reason for Assigne	d Hazardous Rating:
chemicals were disposed within the landfill.	The	e landfill was the receptor of Area B wastes; miscellaneous laboratory
	che	emicals were disposed within the landfill.

RATING FACTOR	FACTOR RATING (0-3)	MULTIPLIER	FACTOR SCORE	Maximum Possible Score
Waste M	ANAGEMENT PRACTI	CES		
Record Accuracy and Ease of Access to Site	3	7	21	21
Hazardous Waste Quantity	11	7		21
Total Waste Quantity	2	4	8	12
Waste Incompatibility		3		<u> </u>
Absence of Liners or Confining Beds	3	6	18	18
Use of Leachate Collection System	3	6	18	18
Use of Gas Collection System	3	2	6	6
Site Closure	2	8	16	24
Subsurface Flows	1	7	7	21
Number of Assumed Values = 1 Out of 9		SUBTOTALS	101	141
Percentage of Assumed Values = 11 %		SUBSCORE		72
Number of Missing and Non-Applicable Values Percentage of Missing and Non-Applicable Values			ore Divided	-
Overall Number of Assumed Values =Out Overall Percentage of Assumed Values =4		OVERALL SCOR	E 50	

(Receptors Subscore X 0.22 plus Pathways Subscore X 0.30 plus Waste Characteristics Subscore X 0.24 plus Waste Management Subscore X 0.24)

Name of Site Landfill No. 10 (Woodland Hill	ls)			
Location Area B - Off Kaufman Ave.				
Owner/Operator				
Comments Period of operation was from 1	965 to 1968; th	ne landfill ser	ved Areas A	B, and C.
A residential development bord	ers the fringer	of the landfi	ll. Leachar	te problems
reported.		·		
	FACTOR RATING		PACTOR	MAXIMUM POSSIBLE
RATING FACTOR	(0-3)	MULTIPLIER	SCORE	SCORE
RECEPTOR	s			
Population Within	2	,	12	12
1,000 Feet	3	4	12	12
Distance to Nearest Drinking Water Well	2	15	30	45
Distance to Reservation			• •	
Boundary	3	6	18	18
Land Use/Zoning	3	3	99	9
Critical Environments		12	36	36
Water Quality of Nearby Surface Water Body	ı	6	6	18
Number of Assumed Values = 0 Out of 6		SUBTOTALS	111	138
Percentage of Assumed Values = 0 %		SUBSCORE		30
Number of Missing Values = 0 Out of 6		(Factor So	ore Divided	by Maximum
Percentage of Missing Values = 0		Score and Multiplied by 100)		
PATHWAYS	· · · · · · · · · · · · · · · · · · ·			
Evidence of Water Contamination	3	10	30	30
Level of Water Contamination	3	î 5	45	45
Type of Contamination, Soil/Biota	3	5	15	15
Distance to Nearest Surface Water	2	4	٩	12
Depth to Groundwater	2	7	14	21
Net Precipitation	1	6	6	18
Soil Permeability	1	6	6	18
Bedrock Permeability		44		<u> </u>
Depth to Bedrock		44		
Surface Prosion	3	4	12	12
Number of Assumed Values = 1 Out of 10		SUBTOTALS	136	171
Percentage of Assumed Values = 10 %		SUBSCORE		30
Number of Missing Values = 7 Out of 10			ore Divided	-
Percentage of Missing Values = 20		score and	Multiplied	1001 γα

WASTE (CHARA	CTERI	STICS
---------	-------	-------	-------

azardous Rating	Judgemental rating from 30 to 100 points based on the following guidelines:
oints	
30	Closed domestic-type landfill, old site, no known hazardous wastes
40	Closed domestic-type landfill, recent site, no known hazardous wastes
50	Suspected small quantities of hazardous wastes
60	Known small quantities of hazardous wastes
70	Suspected moderate quantities of hazardous wastes
80	Known moderate quantities of hazardous wastes
90	Suspected large quantities of hazardous wastes
100	Known large quantities of hazardous wastes

SUBSCORE 100

Reason for Assigned Hazardous Rating:

Overall Percentage of Assumed Values = 4

A chemical disposal trench was known to exist within this landfill. This trench received miscellaneous chemical wastes generated from the laboratory and shop facilities.

Wastes were removed from chemical trench during construction of residential housing in early 70's.

RATING FACTOR	PACTOR RATING (0-3)	MULTIPLIER	FACTOR SCORE	Maximum Possible Score
WASTE M	ANAGEMENT PRACT	ICES		
Record Accuracy and				
Ease of Access to Site	3	7	21	21
Hazardous Waste Quantity	1	7	7	21
Total Waste Quantity	2	4	8	12
Waste Incompatibility	3	3	9	9
Absence of Liners or Confining Beds	3	6	18	18
Use of Leachate Collection System	3	6	18	18
Use of Gas Collection System	3	2	6	6
Site Closure	1	8	8	24
Subsurface Flows	1	7	7	21
Number of Assumed Values = O Out of 9		SUBTOTALS	102	150
Percentage of Assumed Values = 0 1		SUBSCORE		68
Number of Missing and Non-Applicable Values	= n _ Out of	9 (Factor So	ore Divided	by Maximum
Percentage of Missing and Non-Applicable Val			Multiplied	by 100)

OVERALL SCORE 92

Location Area C - West end of runway, adjaces		ver between the	fire training	ng area
Owner/Operator and ordinance dispos	gal area.			
Comments Period of operation was from 1968	to 1977. The	site of the l	andfill coir	cides with th
previous channel of the Mad River	and hence is	within the exi	sting flood	plain.
				
			~~~~~~	
	Factor Rating	•	FACTOR	Maximum Possible
RATING FACTOR	(0-3)	MULTIPLIER	SCORE	SCORE
<del></del>				
RECEPTORS				
Population Within				
,000 Feet	11	44	4	12
Distance to Nearest	2	·	30	45
Prinking Water Well		15		
Distance to Reservation	3	6	18	18
and Use/Zoning	0	3	0	9
	3		36	36
ritical Environments		12		
Water Quality of Nearby Surface Water Body	1	6	6	18
Number of Assumed Values = 9 Out of 6		SUBTOTALS	94	138
Percentage of Assumed Values = 0 %		SUBSCORE		68
Number of Missing Values = 0 Out of 6		(Factor So	ore Divided	by Maximum
Percentage of Missing Values = 0		Score and	Multiplied	by 100)
<u> </u>				
PATHWAYS			•	
	2	10	2	30
Evidence of Water Contamination	0	10		30
Evidence of Water Contamination	-	15	2	
Evidence of Water Contamination Level of Water Contamination	1		2 - 5	15
Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota	1 3	15	2	
Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water	1	15	2 - 5	15
Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water Depth to Groundwater	1 3	15 5 4	9 - 5	15
Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water Depth to Groundwater Net Precipitation	3	15 5 4 7 6	2 - 5 12 21	15 12 21
Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water Depth to Groundwater Net Precipitation Soil Permeability	1 3 3	15 5 4 7 6	2 - 5 12 21 6	- 15 12 21
Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water  Depth to Groundwater  Net Precipitation  Soil Permeability  Bedrock Permeability	3 3 1	15 5 4 7 6 6	2 - 5 12 21 6	21 18 18
Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water  Depth to Groundwater  Net Precipitation  Soil Permeability  Bedrock Permeability	1 3 3 1 3	15 5 4 7 6 6 4 4	2 - 5 12 21 6 19	- 15 12 21 18 18
Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water  Depth to Groundwater  Net Precipitation  Soil Permeability  Bedrock Permeability  Depth to Bedrock  Surface Erosion	3 3 1	15 5 4 7 6 6	2 - 5 12 21 6 19 - -	- 15 12 21 18 18 - -
Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water  Depth to Groundwater  Net Precipitation  Soil Permeability  Bedrock Permeability  Depth to Bedrock  Surface Erosion  Number of Assumed Values =Out of 10	1 3 3 1 3	15 5 4 7 6 6 4 4 4 SUBTOTALS	2 - 5 12 21 6 19	15 12 21 18 18 - - 12
Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water Depth to Groundwater Net Precipitation Soil Permeability Bedrock Permeability Depth to Bedrock Surface Erosion	1 3 3 1 3	15 5 4 7 6 6 4 4 4 SUBTOTALS SUBSCORE	2 - 5 12 21 6 19 - - 12 74	21 18 18 -

azardous Rating	Judgemental rating from 30 to 100 points based on the following guidelines:
oints	
30	Closed domestic-type landfill, old site, no known hazardous wastes
40	Closed domestic-type landfill, recent site, no known hazardous wastes
50	Suspected small quantities of hazardous wastes
60	Known small quantities of hazardous wastes
70	Suspected moderate quantities of hazardous wastes
80	Known moderate quantities of hazardous wastes
90	Suspected large quantities of hazardous wastes
100	Known large quantities of hazardous wastes

SUBSCORE 80

### Reason for Assigned Hazardous Rating:

The landfill received wastes from Areas A, B and C; known moderate Trantities of hazardous waste placed in landfill, fuel tank bottom sludges were known to have been disposed of in this landfill.

RATING FACTOR	FACTOR RATING (0-3)	MULTIPLIER	FACTOR SCORE	Maximum Possible Score
Waste Mana	GEMENT PRACTI	ICES		
Record Accuracy and Ease of Access to Site	3	7	21	21
Mazardous Waste Quantity	1	7	7	21
Potal Waste Quantity	2	4	8	12
Waste Incompatibility	2	3	6	э
Absence of Liners or Confining Beds	3	6	18	19
Jse of Leachate Collection System	3	6	13	18
Use of Gas Collection System	3	2	6	<u>.</u> 6
Site Closure	2	8	16	24
Subsurface Flows	3	77	21	21
Number of Assumed Values = _ 0 Out of 9		SUBTOTALS	121	150
Percentage of Assumed Values = 0		SUBSCORE		31
Number of Missing and Non-Applicable Values =	Out of	9 (Factor So	ore Divided	l by Maximum
Percentage of Missing and Non-Applicable Value	• _ •	Score and	Multiplied	by 100)

Overall Number of Assumed Values = 0 Out of 25
Overall Percentage of Assumed Values = 0

OVERALL SCORE 1

Name of Site Landfill No. 12				
Location Area C - Approximately 400 feet	south of Lar	ndf <u>ill N</u> o. 11.	West end of	runway.
Owner/Operator				
Comments Cyclone fenced area approximately				ion was from
1968 to 1973. Waste drums stor	ed on site we	re removed in	1974.	
	<del></del>			<del></del>
	Factor Rating		FACTOR	Maximum Possible
RATING FACTOR	(0-3)	MULTIPLIER	SCORE	SCORE
RECEPTORS		- N		
Population Within	ī	<u> </u>	4	12
1,000 Feet	<del></del>	44		
Distance to Nearest Drinking Water Well	2	15	30	45
Distance to Reservation				
Boundary	3	6	18	
Land Use/Zoning	0	3	0	9
Critical Environments	3	12	36	36
Water Quality of Nearby Surface Water Body	1	6	6	18
Number of Assumed Values = 0 Out of 6	<u></u>	SUBTOTALS	94	138
Percentage of Assumed Values = 0 %		SUBSCORE		68
Number of Missing Values = 0 Out of 6		(Factor So	core Divided	by Maximum
Percentage of Missing Values =0 % .		Score and	Multiplied	by 100)
PATHWAYS	-			
Evidence of Water Contamination	0	10	0	30
Level of Water Contamination	-	15		-
Type of Contamination, Soil/Biota	1	5	5	15
Distance to Nearest Surface Water	3	4	12	12
Depth to Groundwater	2	7	21	21
Net Precipitation	1	6	6	18
Soil Permeability	3	6	18	18
Bedrock Permeability	-	4	-	-
Depth to Bedrock	-	4	_	-
<del></del>	1	4	4	12
Surface Erosion				124
Number of Assumed Values = 0 Out of 10		SUBTOTALS SUBSCORE	66	<u>126</u> 52
Percentage of Assumed Values = 0 % Number of Missing Values = 3 Out of 10			ore Divided	
Percentage of Missing Values = 30 %			Multiplied	
				•

Hazardous Rating	Judgemental rating from 30 to 100 points based on the following guidelines:
Points	
30	Closed domestic-type landfill, old site, no known hazardous wastes
40	Closed domestic-type landfill, recent site, no known hazardous wastes
50	Suspected small quantities of hazardous wastes
60	Known small quantities of hazardous wastes
70	Suspected moderate quantities of hazardous wastes
80	Known moderate quantities of hazardous wastes
90	Suspected large quantities of hazardous wastes
100	Known large quantities of hazardous wastes

SUBSCORE 100

Reason for Assigned Mazardous Rating:

Received large quantities of highly toxic wastes from the lab area, site of acid neutralization, received chemicals which were dug up from the Landfill No. 10 chemical trench.

RATING FACTOR	FACTOR RATING (0-3)	MULTIPLIER	FACTOR SCORE	MAXIMUM POSSIBLE SCORE
WASTE MAN	agenent pract:	CES		
Mecord Accuracy and Mase of Access to Site	3	7	21	21
Hazardous Waste Quantity	2	7	14	21
Fotal Waste Quantity	-	. 4	-	-
Waste Incompetibility	3	3	9	9
Absence of Liners or Confining Beds	3	6	18	18
Use of Leachate Collection System	3	6	18	18
Use of Gas Collection System	3	2	6	6
Site Closure	2	8	16	24
Subsurface Flows	I	7	7	21
Number of Assumed Values = 0 Out of 9		SUBTOTALS	109	138
Percentage of Assumed Values = 0 t		SUBSCORE		79
Number of Missing and Non-Applicable Values = Percentage of Missing and Non-Applicable Value			ore Divided Multiplied	•

Overall Number of Assumed Values =  $\frac{0}{2}$  Out of 25

Overall Percentage of Assumed Values = 0

OVERALL SCORE 73

Location Area C - Twin Lakes area south of F	amily campine			
Comments Fire Training area utilized f.	nom 1050 - 1			
comments rire training area utilized f	1950 - I	933.		
				*********
	PACTOR	•		MAXIMUM
RATING FACTOR	RATING (0-3)	MULTIPLIER	Factor Score	Possibli Score
RECEPTORS				
opulation Within				
,000 Feet	0	4		12
Distance to Nearest	3	15	45	45
Drinking Water Well		13		43
Distance to Reservation  Boundary	3	6	18	18
Land Use/Zoning	1_	_3	3	9
Critical Environments	3	12	36	36
Water Quality of Nearby				
Surface Water Body	1	6	6	18
ASTROG METEL DOGY				
	<del></del>	SUBTOTALS	108	138
Number of Assumed Values = 0 Out of 6			108	138 78
Number of Assumed Values =0_ Out of 6	<u> </u>	SUBTOTALS SUBSCORE	108	78
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0		SUBTOTALS SUBSCORE (Factor So		78 by Maximus
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 % Number of Missing Values = 0 Out of 6		SUBTOTALS SUBSCORE (Factor So	core Divided	78 by Maximus
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 % Number of Missing Values = 0 Out of 6		SUBTOTALS SUBSCORE (Factor So	core Divided	78 by Maximus
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 % Number of Missing Values = 0 Out of 6		SUBTOTALS SUBSCORE (Factor So	core Divided	78 by Maximus
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 % Number of Missing Values = 0 Out of 6		SUBTOTALS SUBSCORE (Factor So	core Divided	78 by Maximus
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0		SUBTOTALS SUBSCORE (Factor So	core Divided	78 by Maximus
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 Out of 6 Percentage of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 PATHWAYS		SUBTOTALS SUBSCORE (Factor So	core Divided	78 by Maximum by 100)
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 Out of 6 Percentage of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 PATHWAYS  Evidence of Water Contamination		SUBSCORE (Factor Sc Score and	core Divided	78 by Maximum by 100)
Parthays  Evidence of Water Contamination  Every of Contamination, Soil/Biota		SUBSCORE (Factor Sc Score and	eore Divided Multiplied	78 by Maximum by 100)
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 & Number of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 PATHWAYS  Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water	01	SUBSTOTALS SUBSCORE (Factor Sc Score and	ore Divided Multiplied	78 h by Maximus by 100)  30 - 15
Number of Assumed Values = 0 Out of 6  Percentage of Assumed Values = 0 Out of 6  Percentage of Missing Values = 0 Out of 6  Percentage of Missing Values = 0 PATHWAYS  Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water	0 - 1 3	SUBSTOTALS SUBSCORE (Pactor Sc Score and  10 15 5 4 7	ore Divided Multiplied	78 by Maximum by 100)  30
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 & Number of Missing Values = 0 Out of 6 Percentage of Missing Values = 0	0 - 1 3 3	SUBSTOTALS SUBSCORE (Factor So Score and	ore Divided Multiplied	78 by Maximum by 100)  30 15 12 21
Percentage of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 Out of 6 Percentage of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 PATHWAYS  Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water  Depth to Groundwater  Net Precipitation  Soil Permeability	0 - 1 3 3 1	SUBTOTALS SUBSCORE (Pactor So Score and  10 15 5 4 7 6	9 5 12 21 6 18	78 by Maximum by 100)  30
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 & Number of Missing Values = 0 Out of 6 Percentage of Missing Values = 0	3 3 1 3	SUBSTOTALS SUBSCORE (Factor So Score and  10 15 5 4 7 6 6 4	0 5 _ 12 _ 21 _ 6 _ 18	78 by Maximum by 100)  30 15 12 21 18 19
Percentage of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 Out of 6 Percentage of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 PATHWAYS  Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water  Depth to Groundwater  Net Precipitation  Soil Permeability	0 - 1 3 3 1	SUBTOTALS SUBSCORE (Pactor So Score and  10 15 5 4 7 6	0 - 5 12 21 6 18	78 by Maximum by 100)  30
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 & Number of Missing Values = 0 Out of 6 Percentage of Missing Values = 0	3 3 1 3	SUBSTOTALS SUBSCORE (Factor So Score and  10 15 5 4 7 6 6 4	0 5 _ 12 _ 21 _ 6 _ 18	78 by Maximum by 100)  30 15 12 21 18 19
Percentage of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 Out of 6 Percentage of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 PATHWAYS  Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water  Depth to Groundwater  Net Precipitation  Soil Permeability  Bedrock Permeability  Depth to Bedrock	0 - 1 3 3 1	SUBTOTALS SUBSCORE (Pactor So Score and  10 15 5 4 7 6 6 4 4	0 - 5 12 21 6 18	78 i by Maximus by 100)  30 - 15 12 21 18 19 - 12 126
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 0 Out of 6 Percentage of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 PATHWAYS  Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water  Depth to Groundwater  Net Precipitation  Soil Permeability  Bedrock Permeability  Depth to Bedrock  Surface Erosion	0 - 1 3 3 1	SUBSTOTALS SUBSCORE (Factor So Score and  10 15 5 4 7 6 6 4 4 4 SUBSTOTALS SUBSCORE	0	78 i by Maximus by 100)  30

Hazardous Rati	ng: Judgemental rating from 30 to 100 points based on the following guidelines:
Points	
30	Closed domestic-type landfill, old site, no known hazardous wastes
47	Closed domestic-type landfill, recent site, no known hazardous wastes
50	Suspected small quantities of hazardous wastes
60	Known small quantities of hazardous wastes
70	Suspected moderate quantities of hazardous wastes
80	Known moderate quantities of hazardous wastes
90	Suspected large quantities of hazardous wastes
100	Known large quantities of hazardous wastes
	SUBSCORE60
Reason for Ass	igned Hazardous Rating:
The fire tra	ming area was saturated with water prior to fuel application. It is likely some

RATING FACTOR	FACTOR RATING (0-3)	MULTIPLIER	FACTOR SCORE	Maximum Possible Score
WASTE MAN	AGEMENT PRACT	CES		
ecord Accuracy and ase of Access to Site	3	7	21	21
azardous Waste Quantity	0	7	0	21
Cotal Waste Quantity	-	4	-	-
Maste Incompatibility		_3	-	
obsence of Liners or Confining Beds	3	6	18	18
se of Leachate collection System	3	. 6	18	13
se of Gas collection System	-	2	•	
ita Closure	3	8	24	24
ubsurface flows	0	7	0	21
Number of Assumed Values = 0 Out of 9		SUBTOTALS	91	123
Percentage of Assumed Values = 0 %		SUBSCORE		96
Number of Missing and Non-Applicable Values = Percentage of Missing and Non-Applicable Value		(Factor S	core Divided	=

Overall Number of Assumed Values = 0 Out of 25
Overall Percentage of Assumed Values = 0 4

OVERALL SCORE 53

Location Area C - North side of Riverview R	d. approximately	1400 feet NE o	f Landfill	ll, directl
Owner/Operator the new tite training Comments Fire training area utilized		· · · · · · · · · · · · · · · · · · ·		
Tire training area bullined	in the late 30 s			
		<del> </del>		
	Pactor Rating		PACTOR	Maximum Possibli
RATING FACTOR	(0-3)	MULTIPLIER	SCORE	SCORE
RECEPT	rors		-	
Population Within	1		4	12
1,000 Feet	<del></del>	4		12
Distance to Nearest Drinking Water Well	2	15	30	45
Distance to Reservation	3			
Goundary	<del></del>	66	18	18
Land Use/Zoning	1	3		9
Critical Environments	3	12	36	36
Water Quality of Nearby Surface Water Body	1	6	6	18
Number of Assumed Values = 0 Out of 6		SUBTOTALS	97	138
<del></del>				
ercentage of Assumed Values = 0 %		SUBSCORE		70
			core Divided	70 l by Maximum
Number of Missing Values = 0 Out of 6		(Factor So	core Divided	by Maximum
Number of Missing Values = 0 Out of 6		(Factor So		by Maximum
Number of Missing Values = 0 Out of 6		(Factor So		by Maximum
Number of Missing Values = 0 Out of 6	· YS	(Factor So		by Maximum
Number of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 %	<b>NYS</b>	(Factor So		by Maximum
Aumber of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 €  PATHWA  Evidence of Water Contamination		(Factor Sc Score and	Multiplied	l by Maximum
Number of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 •  PATHWA  Evidence of Water Contamination  Level of Water Contamination	0	(Factor Sc Score and	Multiplied	l by Maximum
Percentage of Missing Values = 0 Out of 6  Percentage of Missing Values = 0  PATHWA  Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota	0 -	(Factor Sc Score and	Multiplied	by Maximum by 100)
Number of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 •  PATHWA  Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water	0 - 1	(Factor Sc Score and	Multiplied  ,  ,  ,  5	30 -
Parthwa  Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water  Depth to Groundwater	1 3	10 15 5	Multiplied  O  T  S  12	30 - 15
Number of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 •  PATHWA  Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water  Depth to Groundwater  Net Precipitation	0 - 1 3	10 15 5	*	30 - 15
Parthwa  Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water  Depth to Groundwater  Net Precipitation  Soil Permeability	0 - 1 3 - 1	10 15 5 4 7	7 - 5 12 21	30 - 15 12 21
Parthwa  Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water  Depth to Groundwater  Net Precipitation  Soil Permeability  Bedrock Permeability	0 - 1 3 3	10 15 5 4 7 6	% ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	30
Parthwa  Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water  Depth to Groundwater  Net Precipitation  Soil Permeability  Bedrock Permeability  Depth to Bedrock	0 - 1 3 - 1	10 15 5 4 7 6		30 - 15 12 21 18 13 -
Number of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 %	0 - 1 3 3 1 3	10 15 5 4 7 6 4 4	7 - 5 12 21 .6 18	30

Hazardous Rating:	Judgemental rating from 30 to 100 points based on the following guidelines:
Points	
30	Closed domestic-type landfill, old site, no known hazardous wastes
40	Closed domestic-type landfill, recent site, no known hazardous wastes
50	Suspected small quantities of hazardous wastes
60	Known small quantities of hazardous wastes
70	Suspected moderate quantities of hazardous wastes
80	Known moderate quantities of hazardous wastes
90	Suspected large quantities of hazardous wastes
100	Known large quantities of hazardous wastes

60 SUBSCORE

Reason for Assigned Hazardous Rating:

The fire training area was saturated with water prior to fuel application. It is likely some fuel percolated into the soil during training operations.

RATING FACTOR	FACTOR RATING (0-3)	MULTIPLIER	FACTOR SCORE	MAXIMUM POSSIBLI SCORE
Waste Mari	AGEMENT PRACT	ICES		
decord Accuracy and	3	7	21	21
Mase of Access to Site	0	7	0	21
otal Waste Quantity	•	4	•	•
aste Incompatibility	•	3	-	-
Absence of Liners or Confining Beds	3	6	18	18
Use of Leachate Collection System	3	6	18	18
Use of Gas Collection System	-	2	-	•
Site Closure	3	8	24	24
Subsurface flows	3	. 7	0	21
Number of Assumed Values = 0 Out of 9		SUBTOTALS	81	123
Percentage of Assumed Values = 0		SUBSCORE	<del>-</del>	56
Number of Missing and Non-Applicable Values = Percentage of Missing and Non-Applicable Value			ore Divided	
Overall Number of Assumed Values = 0 Out of	£ 25	OVERALL SCOR	e 61	

Name of Site Fire Training Area No's 3 and 4/	Spill No. 1			
Location Area C - West end of runway, north s	ide of Riverv	iew Rd., direct	ly south of	Landfill No.
Owner/Operator		<del></del>		
Comments Fire Training Areas 3 and 4 were adj				
has an airplane body in it. The training observed in drainage ditch near area. Si			60 to 1980.	Oil sheen
Observed in Granuste Circle near Gree. 31	CE 01 31-4 3p	111 111 1371.		<del></del>
	PACTOR RATING	•	PACTOR	Maximum Possible
RATING FACTOR	(0-3)	MULTIPLIER	SCORE	SCORE
RECEPTORS				
Population Within				
1,000 Feet	11	4	4	12
Distance to Nearest				
Drinking Water Well	2	15	30	45
Distance to Reservation	3	6	18	18
Boundary			10	<del></del>
Land Use/Zoning	1	3	3	9
Critical Environments	3	12	36	36
Water Qualicy of Nearby Surface Water Body	1	6	6	18
			0.7	138
Number of Assumed Values = 0 Out of 6  Percentage of Assumed Values = 0 %		SUBTOTALS SUBSCORE	97	70
Number of Missing Values = 0 Out of 6			ore Divided	by Maximum
Percentage of Missing Values = 0			Multiplied	-
PATHWAYS				
Evidence of Water Contamination	2	10	20	30
Level of Water Contamination	3	15	45	45
Type of Contamination, Soil/Biota	ı	5		15
Distance to Nearest Surface Water	3	4	12	12
Depth to Groundwater	3	7	21	21
	1			18
Net Precipitation	3	· .	18	18
Soil Permeability		6		
Bedrock Permeability		- 4		
Depth to Bedrock		4		<del></del>
Surface Erosion	0	4	0	12
Number of Assumed Values = 0 Out of 10		SUBTOTALS	127	171
Percentage of Assumed Values = 0 %		SUBSCORE		74
Number of Missing Values = 2 Out of 10		(Factor Sc	ore Divided	by Maximum
Percentage of Missing Values = %		Score and	Multiplied	by 100)

Mazardous Rating:	Judgemental rating from 30 to 100 points based on the following guidelines
Points	
30	Closed domestic-type landfill, old site, no known hazardous wastes
40	Closed domestic-type landfill, recent site, no known hazardous wastes
50	Suspected small quantities of hazardous wastes
60	Known small quantities of hazardous wastes
70	Suspected moderate quantities of hazardous wastes
80	Known moderate quantities of hazardous wastes
90	Suspected large quantities of hazardous wastes
100	Known large quantities of hazardous wastes

SUBSCORE 80

Reason for Assigned Hazardous Rating:

Fire Training Area 3 was the site of a contaminated fuel storage tank where a 2,000 gallon spill occurred in 1971. The training areas were saturated with water prior to fuel application. It is likely some fuel percolated into the soil during training operations.

RATING FACTOR	FACTOR RATING (0-3)	MULTIPLIER	FACTOR SCORE	Maximum Possibli Score
WASTE ?	ANAGEMENT PRACT	ICES		
secord Accuracy and Lase of Access to Site	3	7	21	21
Mazardous Wasta Quantity	3	7	21	21
Potal Waste Quantity	-	4		-
Naste Incompatibility	-	3		-
Absence of Liners or Confining Beds	3	6	18	18
Jse of Leachate Collection System	3	6	18	18
Use of Gas Collection System	-	2	•	•
Site Closure	3	8	24	24
Subsurface Flows	າ	7	0	21
Number of Assumed Values = 0 Out of 9	<del></del>	SUBTOTALS	102	123
		SUBSCORE		83

Overall Number of Assumed Values = 0 Out of 25

Overall Percentage of Assumed Values = 0 =

OVERALL SCORE 7

Name of Site Spill No. 2  Location Area C - POL Tank Firm, Loop Road	near Gare 20	С.		
Wner/Operator				
Comments Spill of 8319 gallons of JP-4 in A	pril 1976 ad	iacent to Tank	256.	
	FACTOR			HAXIHUM
RATING FACTOR	RATING (0-3)	MULTIPLIER	FACTOR SCORE	POSSIBL SCORE
RECEPTORS				
Population Within	2	4	8	12
Distance to Nearest		···-		
Drinking Water Well	3	15	45	45
Distance to Reservation	3	-	10	
Soundary	<del></del>	6	18	18
Land Use/Zoning	2	3	6	9
Critical Environments	3	12	36	36
Water Quality of Nearby Surface Water Body	1	6	6	18
Number of Assumed Values =0 Out of 6		SUBTOTALS	119	138
Percentage of Assumed Values = 0 %		SUBSCORE		96
Number of Missing Values = 0 Out of 6		(Factor So	ore Divided	by Maximu
Percentage of Missing Values = 0 %		Score and	Multiplied	by 100)
PATHWAYS				
Evidence of Water Contamination	3	10	30	30
Level of Water Contamination	3	15	45	- 45
Type of Contamination, Soil/Biota	3	5	13	1.5
Distance to Nearest Surface Water	1	4	4	12
Depth to Groundwater	3	7	21	21
Net Precipitation	1	6	6	19
	3	6	18	18
Soil Permeability			-	
Sedrock Permeability		<del>-</del>		<u>-</u>
Depth to Bedrock	1	4		
		44		12
Surface Erosion				
Surface Erosion  Number of Assumed Values = 0 Out of 10		SUBTOTALS	143	171
		SUBSCORE	tore Divided	84

dazardous Rating:	Judgemental rating from 30 to 100 points based on the following guidelines:
Points	
30	Closed domestic-type landfill, old site, no known hazardous wastes
40	Closed domestic-type landfill, recent site, no known hazardous wastes
50	Suspected small quantities of hazardous wastes
60	Known small quantities of hazardous wastes
70	Suspected moderate quantities of hazardous wastes
80	Known moderate quantities of hazardous wastes
90	Suspected large quantities of hazardous wastes
100	Known large quantities of hazardous wastes

Reason for Assigned Hazardous Rating:

Approximately 5,000 of the 8,000 gallons of JP-4 spilled in 1976 were recovered using ground water wells.

RATING PACTOR	FACTOR RATING (0-3)	MULTIPLIER	PACTOR SCORE	Maximum Possible Score
WASTE MAI	NAGEMENT PRACT	CES		
Record Accuracy and Case of Access to Site	0	7	0	21
lazardous Waste Quantity	2	7	14	21
Cotal Waste Quantity	-	4	-	-
Waste Incompatibility	-	3		-
Absence of Liners or Confining Beds	3	6_	13	18
Use of Leachate Collection System	0	6	ĵ	:3
Use of Gas Collection System		2	-	-
Site Closure	3	8	24	24
Subsurface Flows	0	1	0	21
Number of Assumed Values =OOut of 9		SUBTOTALS	56	123
Percentage of Assumed Values = 0 %		SUBSCORE		40
Number of Missing and Non-Applicable Values = Percentage of Missing and Non-Applicable Value			ore Divided	

Overall Number of Assumed Values = ____ Out of 25

OVERALL SCORE

Name of Site Spill Mo. 3				
ocation Area C - POL Tank Farm, Loop Roa	d			
wner/Operator				
omments Spill of 2,000 gallons of No. 2 fuel	oil, in Marc	h 1981 - adjace	nt to Tank	272.
*************************				
	FACTOR			445 974/74
	RATING		FACTOR	Maximum Possible
RATING FACTOR	(0-3)	MULTIPLIER	SCORE	SCORE
RECEPTORS				
opulation Within				
,000 Feet	2	4	8	12
Distance to Nearest Drinking Water Well	3	15	45	45
······································	<del></del>			43
Distance to Reservation Soundary	3	6	18	18
and Use/Zoning	2	3	6	9
Critical Environments	3	12	36	. 36
Vater Quality of Nearby				
	1	6	6	18
Surface Water Body	1	6	6	18
Surface Water Body  Number of Assumed Values = 0 Out of 6	1	SUBTOTALS	6	18 
Surface Water Body  Number of Assumed Values = 0 Out of 6  Percentage of Assumed Values = 0 %	1	SUBTOTALS SUBSCORE		<u>i38</u>
Surface Water Body  Number of Assumed Values = 0 Out of 6	1	SUBTOTALS SUBSCORE (Factor Sc		138 36 by Maximum
Number of Assumed Values = 0 Out of e Percentage of Assumed Values = 0 %	1	SUBTOTALS SUBSCORE (Factor Sc		138 36 by Maximum
Number of Assumed Values = 0 Out of e Percentage of Assumed Values = 0 %	1	SUBTOTALS SUBSCORE (Factor Sc		138 36 by Maximum
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 % Number of Missing Values = 0 Out of 6	1	SUBTOTALS SUBSCORE (Factor Sc		138 36 by Maximum
urface Water Body  Number of Assumed Values = 0 Out of o  Percentage of Assumed Values = 0 out of 6	1	SUBTOTALS SUBSCORE (Factor Sc		138 36 by Maximum
Surface Water Body  Sumber of Assumed Values = 0 Out of o  Percentage of Assumed Values = 0 out of 6  Sumber of Missing Values = 0 out of 6  Percentage of Missing Values = 0 out of 6  Percentage of Missing Values = 0 out of 6	1	SUBTOTALS SUBSCORE (Factor Sc	119 ore Divided Multiplied	138 36 by Maximum
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 Out of 6 Percentage of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 & PATHWAYS		SUBTOTALS SUBSCORE (Factor So	il9 ore Divided Multiplied	138 36 by Maximum by 100)
PATHWAYS  Evidence of Water Contamination	1	SUBTOTALS SUBSCORE (Factor So		138 36 by Maximum by 100)
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 0 to 6 Percentage of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 to 6 Percentage of Missing Values = 0 to 7 PATHWAYS  Evidence of Water Contamination  Every of Contamination, Soil/Biota	1 3	SUBTOTALS SUBSCORE (Factor Sc Score and	ore Divided Multiplied	138 36 by Maximum by 100)
Surface Water Body  Sumber of Assumed Values = 0 Out of o  Percentage of Assumed Values = 0 out of 6  Sumber of Missing Values = 0 out of 6  Percentage of Missing Values = 0 out of 6  Percentage of Missing Values = 0 out of 6  Pathways  Evidence of Water Contamination  Evel of Water Contamination  Cype of Contamination, Soil/Biota  Distance to Nearest Surface Water	1 3 2	SUBTOTALS SUBSCORE (Factor Sc Score and		138 36 by Maximum by 100)
Surface Water Body  Sumber of Assumed Values = 0 Out of 6  Percentage of Assumed Values = 0 out of 6  Sumber of Missing Values = 0 out of 6  Percentage of Missing Values = 0 &  PATHWAYS  Evidence of Water Contamination  Evel of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water  Depth to Groundwater	1 3 2	SUBTOTALS SUBSCORE (Factor Sc Score and		138 36 by Maximum by 100) 30 45 15
PATHWAYS  Evidence of Water Contamination  Every of Co	1 3 2 1 3	SUBTOTALS SUBSCORE (Factor Sc Score and  10 15 5 4 7	119 ore Divided Multiplied  10 45 10 4 21	36 by Maximum by 100)  30 45 15 12 21
Aumber of Assumed Values = 0 Out of elementage of Assumed Values = 0 %  Number of Missing Values = 0 Out of 6  Percentage of Missing Values = 0 %  PATHWAYS  Evidence of Water Contamination  Evel of Water Contamination  Evel of Water Contamination  Evel of Contamination Soil/Biota  Distance to Nearest Surface Water  Depth to Groundwater  Net Precipi-stion  Soil Permeability	1 3 2 1 3	SUBTOTALS SUBSCORE (Factor Sc Score and  10 15 5 4 7 6		138 36 by Maximum by 100) 37 45 15 12 21
PATHWAYS  Evidence of Water Contamination  Every of Co	1 3 2 1 3 1	SUBTOTALS SUBSCORE (Factor So Score and  10 15 5 4 7 6 5 4	119 ore Divided Multiplied  10 45 10 4 21 6	36 by Maximum by 100)  30 45 12 21 13 18
PATHWAYS  Evidence of Water Contamination  Every of Co	1 3 2 1 3 1	SUBTOTALS SUBSCORE (Factor Sc Score and  10 15 5 4 7 6 5 4 4 4	119 ore Divided Multiplied  10 45 10 4 21 6 19	30 30 45 15 12 21 18 18 -
Aumber of Assumed Values = 0 Out of e Percentage of Assumed Values = 0 & Number of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 & Number of Missing Values = 0 & Number of Missing Values = 0 & New Year Out of 6 Percentage of Missing Values = 0 & New Year Out of 6 Percentage of Missing Values = 0 & New Year Out of Missing Values = 0 & New Year Out of Water Contamination Property of Contamination Soul/Blota Outstance to Nearest Surface Water Out of Percentage of Missing Values = 0 & Nearest Surface Water Out of Percentage of Missing Values = 0 & Nearest Surface Water Out of Ne	1 3 2 1 3 1	SUBTOTALS SUBSCORE (Factor So Score and  10 15 5 4 7 6 6 4 4 4	119 ore Divided Multiplied  10 45 10 4 21 6 19 -	138 36 by Maximum by 100) 30 45 15 12 21 13 18 -
Surface Water Body  Number of Assumed Values = 0 Out of o Percentage of Assumed Values = 0 out of 6  Percentage of Missing Values = 0 out of 6  Percentage of Missing Values = 0 out of 6  Pathways  Evidence of Water Contamination  Level of Water Contamination  Pype of Contamination, Soil/Biota  Distance to Nearest Surface Water  Depth to Groundwater  Net Precipi stion  Soil Permeability  Depth to Bedrock  Surface Erosion  Number of Assumed Values = 0 Out of 10	1 3 2 1 3 1	SUBTOTALS SUBSCORE (Factor Sc Score and  10 15 5 4 7 6 4 4 4 SUBTOTALS	119 ore Divided Multiplied  10 45 10 4 21 6 19	138 36 by Maximum by 100) 37 45 15 12 21 13 18 -
Aumber of Assumed Values = 0 Out of e Percentage of Assumed Values = 0 & Number of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 & Number of Missing Values = 0 & Number of Missing Values = 0 & New Year Out of 6 Percentage of Missing Values = 0 & New Year Out of 6 Percentage of Missing Values = 0 & New Year Out of Missing Values = 0 & New Year Out of Water Contamination Property of Contamination Soul/Blota Outstance to Nearest Surface Water Out of Percentage of Missing Values = 0 & Nearest Surface Water Out of Percentage of Missing Values = 0 & Nearest Surface Water Out of Ne	1 3 2 1 3 1	SUBTOTALS SUBSCORE (Factor Sc Score and  10 15 5 4 7 6 4 4 SUBTOTALS SUBSCORE	119 ore Divided Multiplied  10 45 10 4 21 6 19 -	138 36 by Maximum by 100)  37 45 15 12 21 13 18 - 12 171 69

WASTE CHARACTERISTICS					
Hazardous Rati	ng: Judgemental rating from 30 to 100 points based on the following guidelines:				
Points					
30	Closed domestic-type landfill, old site, no known hazardous wastes				
40	Closed domestic-type landfill, recent site, no known hazardous wastes				
50	Suspected small quantities of hazardous wastes				
60	Known small quantities of hazardous wastes				
70	Suspected moderate quantities of hazardous wastes				
80	Known moderate quantities of hazardous wastes				
90	Suspected large quantities of hazardous wastes				
100	Known large quantities of hazardous wastes				
Danger for Age	SUBSCORE 80				
	O gallons of No. 2 fuel oil - Recovery Well placed 3 feet into ground warer - lirrlad - well abandoned.				

RATING FACTOR	FACTOR RATING (0-3)	MULTIPLIER	FACTOR SCORE	Maximum Possible Score
WASTE MA	NAGEMENT PRACT	ICES		
Record Accuracy and Ease of Access to Site	0	7	0	21
Hazardous Waste Quantity	2	7	14	21
Total Waste Quantity	-	4		<u> </u>
Waste Incompatibility	<del> </del>	3		_
Absence of Liners or Confining Beds	3	_ 6	18	18
Use of Leachate Collection System	1	6	6	13
Use of Gas Collection System	<u>-</u>	2		
Site Closure	3	8	24	24
Subsurface Flows	0	7	0	21
Number of Assumed Values = 0 Out of 9		SUBTOTALS	62	123
Percentage of Assumed Values = 0		SUBSCORE		50
Number of Missing and Non-Applicable Values = Percentage of Missing and Non-Applicable Value	• • •		ore Divided	by Maximum

Overall Number of Assumed Values =  $\frac{0}{2}$  Out of 25 Overall Percentage of Assumed Values =  $\frac{0}{2}$ 

OVERALL SCORE 71

Area C - Approximately 1200 feet east of coal storage pile, so Owner/Operator  Comments Area used as disposal site for leaded fuel storage tank bottom so Technology and the for leaded fuel storage tank bottom so Technology and the foreign		
PACTOR RATING FACTOR  RATING FACTOR  RECEPTORS  Opulation Within  1000 Feet 2 4  instance to Nearest rinking Water Well 3 15  istance to Reservation coundary 3 6  and Use/Zoning 1 3  istance to Reservation coundary 1 6  istance to Reservation coundary 1 6  istance to Reservation coundary 1 6  istance to Reservation 1 6  istance of Assumed Values = 0 0  istance of Assumed Values = 0 0  istance of Assumed Values = 0 0  istance of Missing Values = 0 10  istance of Missing Values = 0 10  istance to Reservation 10  istance to Reservation 10  istance to Reservation 10  istance to Reservation 10  istance of Assumed Values = 0 0  istance of Assumed Values = 0 0  istance of Missing Values = 0 0  istance of Missing Values = 0 10  istance to Nearest Surface Water 1 4  istance to Nearest Surface Water 1 4  istance to Nearest Surface Water 1 6  istance to Nearest Surface Water 1 7  istance to Reservation 1 6  istance to Reservation 1 7  istance to Reservation 1 6  istance to Reservation 1 6  istance to Reservation 1 6  istance to Reservation 1 7  istance to Reservation 1 8  istance to Reservation	outh of Loo	p Road - Adj
PACTOR   RATING   RATING   (0-3)   MULTIPLIER	aludaa bama	1066 and
RATING PACTOR  RECEPTORS  1	arnake beca	een 1900 and
RATING PACTOR (0-3) MULTIPLIER  RECEPTORS  1		
RATING FACTOR  RECEPTORS  RECEPTO		
RATING FACTOR		MUMIKAH
RECEPTORS  Population Within ,000 Feet 2 4  Distance to Nearest prinking Water Well 3 15  Distance to Reservation	FACTOR	POSSIBLE SCORE
Open		
1   1   1   1   1   1   1   1   1   1	-	
Sistance to Nearest		
State   Stat	<u> </u>	12
Sundary   3   6	45	45
Sundary   3   6		
	18	18
	?	9
Substance to Nearest Surface Water   1   6	36	36
PATHWAYS  Pathways  Evidence of Water Contamination 0 10  Every of Contamination 0 15  Expect of Contamination 0 16  Expect of		
SUBSCORE	6	18
PATHWAYS  PATHWAYS  Evidence of Water Contamination 0 10  Evel of Water Contamination - 15  Evidence to Nearest Surface Water 1 4  Depth to Groundwater 3 7  Net Precipitation 1 6  Soil Permeability 3 6  Bedrock Permeability 3 6  Surface Erosion 1 4  Surface Erosion 1 4  Substored Assumed Values = 0 Out of 10 SUBSTOTALS  Percentage of Assumed Values = 0 SUBSCORE	116	138
PATHWAYS  Sevidence of Water Contamination 0 10  Level of Water Contamination - 15  Type of Contamination - 15  Distance to Nearest Surface Water 1 4  Depth to Groundwater 3 7  Net Precipitation 1 6  Soil Permeability 3 6  Sedrock Permeability - 4  Depth to Bedrock - 4  Surface Erosion 1 4  Substotals  Substotals  Substotals  Substotals  Substotals  Substotals  Substotals  Substotals  Substotals		34
### PATHWAYS  Evidence of Water Contamination		=
Systematic   Sys		27 .00,
Systematic   Sys		
Substance of Water Contamination		
Avel of Water Contamination		
Supplementation   Soil/Biota   Supplementation   Soil/Biota   Supplementation   Soil/Biota   Supplementation   Supplem	0	30
1   4     2   2   2   2   2   2   2   2		
		15
3   7     6   7     6   7     7     6   7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7       7     7       7       7         7	4	12
1 6   6   6   6   6   6   6   6   6	21	21
Solid Permeability	5	18
Sedrock Permeability	18	13
Depth to Bedrock - 4  Surface Erosion 1 4  Sumber of Assumed Values = 0 Out of 10 SUBTOTALS Percentage of Assumed Values = 0 SUBSCORE	-	
Surface Erosion 1 4  Sumber of Assumed Values = 0 Out of 10 SUBTOTALS Percentage of Assumed Values = 0 \$ SUBSCORE		
Number of Assumed Values = 0 Out of 10 SUBSCORE	<del>-</del>	
Percentage of Assumed Values = 0 \$ SUBSCORE	4	12
ercentage or Assumed Values # v	53	126
		42
James of Market	core Divide Multiplied	d by Maximum

WASTE	CHARACTERISTICS
-------	-----------------

MALAL GOOD RACIN	g: Judgemental rating from 30 to 100 points based on the following guidelines:
Points	
30	Closed domestic-type landfill, old site, no known hazardous wastes
40	Closed domestic-type landfill, recent site, no known hazardous wastes
50	Suspected small quantities of hazardous wastes
60	Known small quantities of hazardous wastes
70	Suspected moderate quantities of hazardous wastes
80	Known moderate quantities of hexardous wastes
90	Suspected large quantities of hazardous wastes
100	Known large quantities of hazardous wastes
· <del>·········</del> ·····	SUBSCORE 60
	med Warstdone Dating.
Reason for Assid	hier meerane vertid.

RATING FACTOR	PACTOR RATING (0-3)	MULTIPLIER	FACTOR SCORE	MAXIMUM POSSIBLI SCORE
WASTE MA	MAGEMENT PRACT	CES		
Record Accuracy and Ease of Access to Site	0	7	0	21
Hazardous Waste Quantity	1	7	7	21
Fotal Waste Quantity		44		-
Waste Incompatibility	0	3	. 0	9
Absence of Liners or Confining Beds	3	6	18	18
Use of Leachate Collection System	3	6	18	18
Use of Gas Collection System		2	-	<u> </u>
Site Closure	3	8	24	24
Subsurface Flows	ŋ	7	0	21
Number of Assumed Values =0 Out of 9		SUBTOTALS	67	132
Percentage of Assumed Values = 0		SUBSCORE		51
Number of Missing and Non-Applicable Values = Percentage of Missing and Non-Applicable Values			ore Divided Multiplied	-

Overall Number of Assumed Values = 0 Out of 25

Overall Percentage of Assumed Values = 0

OVERALL SCORE 58

(Receptors Subscore X 0.22 plus Pathways Subscore X 0.30 plus Waste Characteristics Subscore X 0.24 plus Waste Management Subscore X 0.24)

Location Area C - Adjacent to Mad River Leve	along Mus	tang Road.		
Owner/Operator				
comments Area used as disposal site for lead	ed fuel stor	age tank bottom	sludge bet	ween
1971 and 1975.	<del> </del>			
	<del></del>	·	<del></del>	
	Factor Rating		FACTOR	MAXIMUM POSSIBL
RATING PACTOR	(0-3)	MULTIPLIER	SCORE	SCORE
RECEPTORS				
Population Within	ı	4	4	12
Distance to Nearest		<u></u>		
Prinking Water Well	2	15	30	45
Distance to Reservation	3	_	18	18
Soundary	<del></del>	- 6	-	9
Land Use/Zoning	3	3	36	36
ritical Environments		12		
Mater Quality of Nearby Surface Water Body	1	6	6	18
Number of Assumed Values = 2 Out of 6		SUBTOTALS	34	138
<del></del>		SUBSCORE	34	138 6a
Percentage of Assumed Values = 33 %		SUBSCORE	34 ore Divided	6a
Percentage of Assumed Values = 33 %  Number of Missing Values = 0 Out of 6		SUBSCORE (Factor So		6a by Maximum
Percentage of Assumed Values = 33 %  Number of Missing Values = 0 Out of 6		SUBSCORE (Factor So	ore Divided	6a by Maximum
Vercentage of Assumed Values = 33 %  Number of Missing Values = 0 Out of 6		SUBSCORE (Factor So	ore Divided	6a by Maximu
Percentage of Assumed Values = 33 %  Number of Missing Values = 0 Out of 6  Percentage of Missing Values = 0 %  PATHWAYS	. 0	SUBSCORE (Factor So	ore Divided	6a by Maximu
Percentage of Assumed Values = 33 %  Number of Missing Values = 0 Out of 6  Percentage of Missing Values = 0 %  PATHWAYS	. 0	SUBSCORE (Factor So Score and	Ore Divided	63 by Maximu by 100)
Partimars  Partimars  Partimars  Partimars  Partimars  Partimars  Partimars		SUBSCORE (Factor Sc Score and	Fore Divided Multiplied	6a by Maximus by 100)
Percentage of Assumed Values = 33	<u> </u>	SUBSCORE (Factor Sc Score and	Ore Divided Multiplied	63 by Maximum by 100)
PATHWAYS  Evidence of Water Contamination  Every of Contamination, Soil/Biota  Distance to Nearest Surface Water	- 0	SUBSCORE (Factor Sc Score and	Ore Divided Multiplied	63 by Maximum by 100)
Percentage of Assumed Values = 33	0 3	SUBSCORE (Factor Sc Score and  10 15 5 4	ore Divided Multiplied  0 - 0 12	68 by Maximum by 100)  30
PATHWAYS  Evidence of Water Contamination  Every of Co	- 0 3	SUBSCORE (Factor Sc Score and  10 15 5 4 7 6	Ore Divided Multiplied	68 by Maximum by 100)  30 - 15 12
PATHWAYS  Evidence of Water Contamination  Evel of Water Contamination  Evel of Water Contamination  Evel of Water Contamination  Evel of Water Surface Water  Distance to Nearest Surface Water  Soil Permeability	- 0 3 3	SUBSCORE (Factor Sc Score and  10 15 5 4 7 6	O O O Divided	30 
PATHWAYS  Evidence of Water Contamination  Evel of Water Contamination  Evel of Water Contamination  Evel of Water Contamination  Evel of Water Surface Water  Distance to Nearest Surface Water  Soil Permeability	- 0 3 3 1 3	SUBSCORE (Factor Sc Score and  10 15 5 4 7 6	Ore Divided Multiplied	30 - 15 12 21 18 18
PATHWAYS  Evidence of Water Contamination  Every of Co	- 0 3 3 1	SUBSCORE (Factor Sc Score and  10 15 5 4 7 6	0 - 0 12 21 6 18	30
Parthways  Evidence of Water Contamination  Every of C	- 0 3 3 1 3	10 15 5 4 7 6	0 - 0 12 21 6 18 4	30 - 15 12 21 18 18
Percentage of Assumed Values = 33	- 0 3 3 1	SUBSCORE (Factor Sc Score and  10 15 5 4 7 6 6 4 4 4 SUBTOTALS	0 - 0 12 21 6 18	68 by Maximus by 100)  30 15 12 21 18 18 12 126
Number of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 %	- 0 3 3 1	SUBSCORE (Factor Sc Score and  10 15 5 4 7 6 6 4 4 4 SUBTOTALS SUBSCORE	0 - 0 12 21 6 18 4	6a by Maxim by 100)  30

	WHO I'M					
Hazardous Rating: Jud	gemental rating from 30 t	to 100 points	based on the f	ollowing gu	ildelines:	
Points						
30	Closed domestic-type la	ndfill, old s	ite, no known	hazardous w	astes	
40	40 Closed domestic-type landfill, recent site, no known hazardous wastes					
50	Suspected small quantit	ies of hazard	lous wastes			
60	Known small quantities	of hazardous	Vastes			
70	Suspected moderate quan	tities of has	ardous wastes			
80	80 Known moderate quantities of hazardous wastes					
90	Suspected large quantit	ies of hazard	lous wastes			
100	Known large quantities	of hazardous	<b>Vastes</b>			
Paragraph for Agreemed Management	andone Paring.		SUBSCORE	60		
Reason for Assigned Ha						
	bottom sludges contain le	ad additives.	Rase garden	plore are 1	ocared	
with 100 feet of bu	ALDE SILE.	<del></del>				
RATING FACTOR		FACTOR RATING (0-3)	MULTIPLIER	PACTOR SCORE	MAXIMUM POSSIBLE SCORE	
	WASTE MANA	GEMENT PRACTI	CES			
Record Accuracy and Ease of Access to Site		0	7	0	21	
Hazardous Waste Quanti		1	7	7	21	
Total Waste Quantity	<u> </u>	_	4	<del></del>	•	
TOTAL WASTE QUARTERLY	·,····					
Waste Incompatibility	<del></del>	0	3	• 0	3	
Absence of Liners or		3	_	10		
Confining Beds	<del></del>		6	18	13	
Use of Leachate		3	4	18	18	
Collection System		<u> </u>	6		.5	
Use of Gas		•	2	_	_	
Collection System			<del></del>	<u> </u>		
Site Closure		3	8	24	24	
Subsurface Plows		0	7	0	21	
Number of Beauty 11-1-			SUBTOTALS	67	132	
Number of Assumed Value Percentage of Assumed			SUBSCORE			
·	Non-Applicable Values =	n Out of 5		ore Divided	51 by Maximum	
	and Non-Applicable Values			Multiplied		
			<u> </u>			
Overall Number of Assu	med Values = 0 Out or	25				
Overall Percentage of	Assumed Values = 0%		OVERALL SCOR	RE 56		

(Receptors Subscore X 0.22 plus Pathways Subscore X 0.30 plus Waste Characteristics Subscore X 0.24 plus Waste Management Subscore X 0.24)

Name of Site Coal Storage Pile		<u> </u>		
4	eet NE of POL	Tank Farm		
Location Area C - Approximately 1100 re Owner/Operator				
Comments Area serves as long term coal st	orage for bas	e.		
			<del></del>	
		********	*******	
RATING PACTOR	FACTOR RATING (0-3)	MULTIPLIER	PACTOR SCORE	Haximum Possible Score
RECEPTORS		•	<u>-</u> -	
Population Within				
1,000 Feet	2	4	8	12
Distance to Nearest Drinking Water Well	3	. 15	45	45
Distance to Reservation Boundary	3	6	18	18
Land Use/Zoning	2	3 .	6	9
Critical Environments	3	12	36	36
Water Quality of Nearby Surface Water Body	. 1	- 6	6	18
Number of Assumed Values = 0 Out of 6		SUBTOTALS	119	138
Percentage of Assumed Values = 0		SUBSCORE		86
Number of Missing Values = 0 Out of 6		(Factor Sc	ore Divided	by Maximum
Percentage of Missing Values = 0 %		Score and	Multiplied	by 100)
PATHWAYS	<del></del>		· · · · · · · · · · · · · · · · · · ·	
		· 	•	
Evidence of Water Contamination		10	10	30
Level of Water Contamination	-	15	-	
Type of Contamination, Soil/Biota	-	5	-	-
Distance to Nearest Surface Water	1	4	4	12
Depth to Groundwater	3	7	21	21
Net Precipitation	1	6	6	18
Soil Permeability	3	6	18	18
Bedrock Permeability	<u> </u>	4	<u> </u>	
Depth to Bedrock	_	4	-	-
Surface Erosion	1	4	4	12
Number of Assumed Values = 0 Out of 10		SUBTOTALS	53	111
Percentage of Assumed Values = 0		SUBSCORE		57
Number of Missing Values = Out of 10		(Factor Sc	ore Divided	

	WASTE CHARACTERISTICS
Hazardous	Rating: Judgemental rating from 30 to 100 points based on the following guidelines:
Points	
30	Closed domestic-type landfill, old site, no known hazardous wastes
40	Closed domestic-type landfill, recent site, no known hazardous wastes
50	Suspected small quantities of hazardous wastes
60	Known small quantities of hazardous wastes
70	Suspected moderate quantities of hazardous wastes
80	Known moderate quantities of hazardous wastes
90	Suspected large quantities of hazardous wastes
100	Known large quantities of hazardous wastes
	SUBSCORE 60
Reason for	: Assigned Hazardous Rating:
Coa	l pile runoff typically is characterized by high suspended solids and
hea	y metals.

RATING FACTOR	FACTOR RATING (0-3)	MULTIPLIER	factor score	Maximum Possible Score
Wastz Manu	GEMENT PRACTI	CES		-
Record Accuracy and Ease of Access to Site		7		-
Mazardous Waste Quantity	0	7	0	21
otal Waste Quantity		4		
Waste Incompatibility	0	3	. 0	9
Obsence of Liners or Confining Beds	3	6	18	18
se of Leachate Collection System	3	- 6	18	18
Use of Gas Collection System		2	-	-
ite Closure	-	8	-	-
Subsurface Flows	0	7	0	21
Number of Assumed Values = 0 Out of 9		SUBTOTALS	36	87
Percentage of Assumed Values = _0_ %		SUBSCORE		41
Number of Missing and Non-Applicable Values = 1	Out of 9	(Factor Sc	ore Divided	by Maximum
Percentage of Missing and Non-Applicable Values	44	Score and	Multiplied	by 100)

(Receptors Subscore X 0.22 plus Pathways Subscore X 0.30 plus Waste Characteristics Subscore X 0.24 plus Waste Management Subscore X 0.24)

OVERALL SCORE

Overall Percentage of Assumed Values = 0 *

Name of Site Central Heating Plant No. 1, 81	dg. 56 - Area	ı B		
Location				
Owner/Operator				
Comments Seven cosl fired boilers - started in	1930, shut d	lown in 1980 - c	coal pile in	the
process of being removed.	<del></del>	<del></del>		
RATING FACTOR	FACTOR RATING (0-3)	NULTIPLIER	FACTOR SCORE	Maximum Possible Score
RECEPTORS				
Population Within 1,000 Feet	3	4	12	12
Distance to Nearest Drinking Water Well	t	15	15	45
Distance to Reservation Boundary	3	6	18	18
Land Use/Zoning	2	3	6	9
Critical Environments	3	12	36	36
Water Quality of Nearby				
Surface Water Body	1	6	6	18
Number of Assumed Values = 0 Out of 6		SUSTOTALS	93	138
Percentage of Assumed Values = 0 %		SUBSCORE		
Number of Missing Values = 0 Out of 6 Percentage of Missing Values = 0			ore Divided Multiplied	_
PATHWAYS				
PATHWAYS  Evidence of Water Contamination	9	10	·	20.
	0	10	, 0	
Evidence of Water Contamination Level of Water Contamination	0 -		0	
Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota	-	15	, 0	
Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water	1	15	0 5	15
Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water  Depth to Groundwater	1 2	15 5 4	5 8	15
Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water  Depth to Groundwater  Net Precipitation	2 3	15 5 4	5 8	15 12 21
Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water  Depth to Groundwater  Net Precipitation  Soil Permeability	1 2 3	15 5 4 7 6	5 8 21	15 12 21 18
Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water  Depth to Groundwater  Net Precipitation  Soil Permeability  Bedrock Permeability	1 2 3 1	15 5 4 7 6	5 8 21	15 12 21 18
Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water  Depth to Groundwater	1 2 3 1 3	15 5 4 7 6 6	5 8 21	15 12 21 18 19
Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water  Depth to Groundwater  Net Precipitation  Soil Permeability  Bedrock Permeability  Depth to Bedrock  Surface Erosion	1 2 3 1	15 5 4 7 6 6 4 4	0 - 5 8 21 6 18 -	15 12 21 18 18
Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water  Depth to Groundwater  Net Precipitation  Soil Permeability  Bedrock Permeability  Depth to Bedrock	1 2 3 1	15 5 4 7 6 6 4	0 - 5 8 21 6 18 - -	15 12 21 18 19
Evidence of Water Contamination  Level of Water Contamination  Type of Contamination, Soil/Biota  Distance to Nearest Surface Water  Depth to Groundwater  Net Precipitation  Soil Permeability  Bedrock Permeability  Depth to Bedrock  Surface Erosion  Number of Assumed Values = 0 Out of 10	1 2 3 1	15 5 4 7 6 6 4 4 4 SUBTOTALS SUBSCORE	0 - 5 8 21 6 18 - -	15 12 21 18 19 - - - - 114 51

Hazardous Rating:	Judgemental rating from 30 to 100 points based on the following guidelines:
Points	
30	Closed domestic-type landfill, old site, no known hazardous wastes
40	Closed domestic-type landfill, recent site, no known hazardous wastes
50	Suspected small quantities of hazardous wastes
60	Known small quantities of hazardous wastes
70	Suspected moderate quantities of hazardous wastes
80	Known moderate quantities of hazardous wastes
90	Suspected large quantities of hazardous wastes
100	Known large quantities of hazardous wastes

SUBSCORE 50

Reason for Assigned Hazardous Rating:

Coal pile runoff typically is characterized by high suspended solids and heavy metals.

Runoff drained to storm sewer. The coal pile is in the process of being removed, thus

reducing any future contamination generated from the area.

RATING FACTOR	FACTOR RATING (0-3)	MULTIPLIER	FACTOR SCORE	Maximum Possible Score
WASTE MA	AGEMENT PRACT	ICES		
Record Accuracy and Ease of Access to Site	<u>-</u>	7		=
Hazardous Waste Quantity	0	7	ე	21
Total Waste Quantity		4	-	
Waste Incompatibility	0	3	0	9
Absence of Liners or Confining Beds	<u> </u>	6		18
Use of Leachate Collection System	3	6	18	<u>i</u> 8
Use of Gas Collection System		. 2		
Site Closure	3	8	24	24
Subsurface flows	0	7	0	21
Number of Assumed Values = 0 Out of 9		SUBTOTALS	48	111
Percentage of Assumed Values = $\frac{0}{100}$		Subscore		+3
Number of Missing and Non-Applicable Values = Percentage of Missing and Non-Applicable Value			ore Divided Multiplied	

Overall Number of Assumed Values = 0 Out of 25

Overall Percentage of Assumed Values = 0

OVERALL SCORE 5

(Receptors Subscore X 0.22 plus Pathways Subscore X 0.30 plus Waste Characteristics Subscore X 0.24 plus Waste Management Subscore X 0.24)

Name of Site Central Heating Plant No. 2 - 3				
wner/Operator				
Three coal fired boilers - start	ed between 1940	and 1945, si	hut down 1980.	
	<del></del>			
	~~~~			
	FACTOR			MAXIMUM
RATING FACTOR	RATING (0-3)	MULTIPLIER	FACTOR SCORE	POSSIBL
NATURAL PRODUCTION OF THE PROD	(0-3)	MOLITICA	SCORE	SCORE
RECEPTORS	.			
opulation Within	,			
	3	4	12	12
Distance to Nearest Drinking Water Well	2	15	30	45
Distance to Reservation				
Soundary	<u> </u>	66	18	18
and Use/Zoning	2	3	6	9
Critical Environments	3	12	36	36
Mater Quality of Nearby	ı	_	6	18
		6		
number of Assumed Values = 0 Out of 6		SUBTOTALS	108	138
Number of Assumed Values = 0 Out of 6 Vercentage of Assumed Values = 0 %		SUBTOTALS SUBSCORE	108	138 78
Number of Assumed Values = 0 Out of 6 Vercentage of Assumed Values = 0 % Number of Missing Values = 0 Out of 6		SUBTOTALS SUBSCORE (Factor S		138 78 by Maximu
Number of Assumed Values = 0 Out of 6 Vercentage of Assumed Values = 0 % Number of Missing Values = 0 Out of 6		SUBTOTALS SUBSCORE (Factor S	108	138 78 by Maximu
Number of Assumed Values = 0 Out of 6 Vercentage of Assumed Values = 0 % Vumber of Missing Values = 0 Out of 6 Vercentage of Missing Values = 0 % PATHWAYS	0	SUBTOTALS SUBSCORE (Factor S Score and	108	138 78 by Maximu
Number of Assumed Values = 0 Out of 6 Vercentage of Assumed Values = 0 % Number of Missing Values = 0 Out of 6 Vercentage of Missing Values = 0 Out of 6 PATHWAYS Ovidence of Water Contamination		SUBTOTALS SUBSCORE (Factor S	108 Score Divided i Multiplied b	138 78 by Maximu y 100)
Evidence of Water Contamination		SUBTOTALS SUBSCORE (Factor S Score and	108 Score Divided i Multiplied b	138 78 by Maximu y 100)
Number of Assumed Values = 0 Out of 6 Vercentage of Assumed Values = 0 % Number of Missing Values = 0 Out of 6 Vercentage of Missing Values = 0 Out of 6 PATHWAYS Vidence of Water Contamination Evel of Water Contamination	0 -	SUBTOTALS SUBSCORE (Factor S Score and	108 Score Divided in Multiplied in Multiplie	138 78 by Maximu y 100)
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 % Number of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 % PATHWAYS Evidence of Water Contamination Evel of Water Contamination Eyes of Contamination, Soil/Biota	0 - 1	SUBTOTALS SUBSCORE (Factor S Score and	2 - 5	138 78 by Maximu y 100) 30 -
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 % Number of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 % PATHWAYS Evidence of Water Contamination Evel of Water Contamination Cype of Contamination, Soil/Biota Distance to Nearest Surface Water Depth to Groundwater	0	SUBTOTALS SUBSCORE (Factor S Score and	208	138 78 by Maximu y 100) 30
PATHWAYS Evidence of Water Contamination Every of Water Contamination Every of Water Surface Water Every of Contamination Even of Water Surface Water Every of Contamination Even of Water Surface Water Even of Groundwater Every of Contamination	0 - 1 1 3	SUBTOTALS SUBSCORE (Factor S Score and	208 Score Divided in Multiplied in Multiplie	138 78 by Maximu y 100) 30 - 15
PATHWAYS Evidence of Water Contamination Every of Water Contamination Every of Water Surface Water State to Nearest Surface Water Septh to Groundwater Soil Permeability	0 - 1 1 3	SUBTOTALS SUBSCORE (Factor S Score and	208 Score Divided in Multiplied in Multiplie	138 78 by Maximu y 100) 30 - 15 12 21 18
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 % Number of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 % PATHWAYS Evidence of Water Contamination Evel of Water Contamination Pype of Contamination, Soil/Biota Distance to Nearest Surface Water Septh to Groundwater Septh to Groundwater Septh Termeability Sedrock Permeability	0 - 1 1 3 1 3	SUBTOTALS SUBSCORE (Factor S Score and 10 '5 5 4 7 6 6	21 6 18	138 78 by Maximu y 100) 30 - 15 12 21 18
PATHWAYS Evidence of Water Contamination Every of Water Contamination Every of Water Contamination Every of Water Surface Water Every of Contamination Every of Contamin	0 - 1 1 3 1 3	SUBTOTALS SUBSCORE (Factor S Score and 10 15 4 7 6 6 4	108 Score Divided in Multiplied in Multiplie	138 78 by Maximu y 100) 30
PATHWAYS Evidence of Water Contamination Every of Water Contamination Every of Water Contamination Every of Water Surface Water Every of Contamination Every of Contamin	0 - 1 1 3 1 3	SUBTOTALS SUBSCORE (Factor S Score and 10 '5 5 4 7 6 6	108 Score Divided in Multiplied in Multiplie	138 78 by Maximu y 100) 30 - 15 12 21 18 19
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0 % Number of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 % PATHWAYS Evidence of Water Contamination Evel of Water Contamination Eyes of Contamination, Soil/Biota	0 - 1 1 3 1 3	SUBTOTALS SUBSCORE (Factor S Score and 10 15 4 7 6 6 4	108 Score Divided in Multiplied in Multiplie	138 78 by Maximu y 100) 30

lazardous Rating	Judgemental rating from 30 to 100 points based on the following guidelines:
Oints	
30	Closed domestic-type landfill, old site, no known hazardous wastes
40	Closed domestic-type landfill, recent site, no known hazardous wastes
50	Suspected small quantities of hazardous wastes
60	Known small quantities of hazardous wastes
70	Suspected moderate quantities of hazardous wastes
80	Known moderate quantities of hazardous wastes
90	Suspected large quantities of hazardous wastes
100	Known large quantities of hazardous wastes
	60
	SUBSCORE
Reason for Assig	ned Hazardous Rating:
Coal bile runo	ff typically is characterized by high suspended solids and heavy metals.

FACTOR RATING (0-3)	MULTIPLIER	FACTOR SCORE	Maximum Possible Score
EMENT PRACTI	CES		
<u> </u>	7		
. 0	7	0	21_
	44		
0	3	. 0	9_
3	6	18	13
3	6	18	18
-	2		-
3	8	24	24
0	7	0	21
	SUBTOTALS	60	111
	SUBSCORE		54
			=
	RATING (0-3) EMENT PRACT: 0 - 0 3 3 3 -	### RATING (0-3) MULTIPLIER ###################################	### RATING (0-3) MULTIPLIER SCORE ###################################

OVERALL SCORE

(Receptors Subscore X 0.22 plus Pathways Subscore X 0.30 plus Waste Characteristics Subscore X 0.24 plus Waste Management Subscore X 0.24)

Overall Percentage of Assumed Values = 0 - 5

Location				
Owner/Operator				
Comments Two coal fired hoilers - grarred Shut down 1980. Coal pile remove	herween 1939 a	nd_1940	-	
RATING FACTOR	FACTOR RATING (0-3)	MULTIPLIER	FACTOR SCORE	MAXIMUM POSSIBL SCORE
RECEPTOR	ıs.	•		_
Population Within 1,000 Feet	3	4	12	12
Distance to Nearest Drinking Water Well	2	15	30	45
Distance to Reservation Boundary	2	6	12	18
Land Use/Zoning	2	3	6	9
Critical Environments	3	12	36	36
Hater Quality of Nearby Surface Water Body	1	6	6	18
Out of 6	•	SUBTOTALS	102	138
Percentage Sesumed Values = 0		SUBSCORE		74
Northern of 1991 1991 1991 1991 1991 1991 1991		/ P C-		
Number of Sissing Values = 0 Out of 6 Percentage of Missing Values = 0 %			ore Divided	=
				=
Percentage of Missing Values = 0 Pathways	0			=
Percentage of Missing Values = 0 PATHWAYS PATHWAYS Evidence of Water Contamination		Score and	Multiplied	by 100)
PATHWAYS Evidence of Water Contamination Level of Water Contamination	n	Score and	Multiplied	by 100)
PATHWAYS Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota	n 	Score and	Multiplied .	30 -
PATHWAYS Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water	n - 1	10 15 5	Multiplied 	30 -
PATHWAYS Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water Depth to Groundwater	1	10 15 5	0 - 5 4	30 - 15
PATHWAYS Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water Depth to Groundwater Net Precipitation	1 1 3	10 15 5 4		30 - 15 12 21
PATHWAYS Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water Depth to Groundwater Net Precipitation Soil Permeability	1 1 3 1	10 15 5 4 7	0 - 5 4 21	30 - !5 :2 21
PATHWAYS Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water Depth to Groundwater Net Precipitation Soil Permeability Bedrock Permeability	1 1 3 1 3	10 15 5 4 .7 .6	0 - 5 4 21 6	30 - 15 :2 21 :8
PATHWAYS Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water Depth to Groundwater Net Precipitation Soil Permeability Bedrock Permeability Depth to Bedrock	1 1 1 3 1 3	10 15 5 4 7 6	, , , , , , , , , , , , , , , , , , ,	30 - !5 :2 21 :8
Percentage of Missing Values = 0	1 1 1 3 1 3	10 15 5 4 7 6 6	0 - 5 4 21 6 18 -	30 - !5 :2 21 !8

Hazardous Rating:	Judgemental rating from 30 to 100 points based on the following guidelines:
Points	
30	Closed domestic-type landfill, old site, no known hazardous wastes
40	Closed domestic-type landfill, recent site, no known hazardous wastes
50	Suspected small quantities of hazardous wastes
60	Known small quantities of hazardous wastes
70	Suspected moderate quantities of hazardous wastes
80	Known moderate quantities of hazardous wastes
90	Suspected large quantities of hazardous wastes
100	Known large quantities of hazardous wastes

SUBSCORE 60

Reason for Assigned Hazardous Rating:

Coal pile runoff typically is characterized by high suspended solids and heavy metals. Coal pile was contained in an area having a concrete pad and walk. Runoff drained to the storm sewer.

The coal pile has been eliminated due to the inactivation of the plant.

FACTOR RATING (0-3)	MULTIPLIER	FACTOR SCORE	MAXIMUM POSSIBLE SCORE
EMENT PRACT	(CES		
	7		
0	7	0	21
	4		
6	3	0	
ı	6	6	18
3	6	19	18
-	2	-	
0	8		24
າ	7	2	21
	SUBTOTALS	24	111
	SUBSCORE		22
	(G-3) CEMENT PRACT: - 0 - 0 i 3 - 0	(d-3) MULTIPLIER FEMENT PRACTICES - 7 0 7 - 4 - 3 1 6 3 5 - 2 0 8 0 7 SUBTOTALS	(G-3) MULTIPLIER SCORE - 7 - 0 7 0 - 4 - 0 3 0 1 6 6 3 6 19 - 2 - 0 8 0 0 7 0 SUBTOTALS 24

Overall Number of Assumed Values = $\frac{0}{2}$ Out of 25 Overall Percentage of Assumed Values = $\frac{0}{2}$

OVERALL SCORE 50

(Receptors Subscore X 3.22 plus
Pathways Subscore X 3.30 plus
Waste Characteristics Subscore X 3.4 3.8
Waste Management Subscore X 3.44

Comments Five.coal	fired generators -	started 19	57, expanded an	d still ope	rative.
RATING FACTOR		FACTOR RATING (0-3)	HULTIPLIER	FACTOR SCORE	Maximum Possibli Score
	RECEPTORS				
opulation Within ,000 Feet		22	4	8	12
istance to Nearest rinking Water Well		2	15	30	45
distance to Reservation loundary		3	6	18	18
and Use/Zoning		2	3	6	9
ritical Environments		3	12	36	36
Mater Quality of Nearby Surface Water Body	. <u></u>	1	6	6	18
Number of Assumed Values = 0 Percentage of Assumed Values =	_		SUBTOTALS SUBSCORE	104	138 75
umber of Missing Values $= \frac{0}{1}$ ercentage of Missing Values $=$	Λ			ore Divided	=
	PATHWAYS			•	
vidence of Water Contamination		0	10	. 0	30
		0 -	10	0	30
evel of Water Contamination	n	1		0 5	
evel of Water Contamination	n Ota	1	15	-	- 15 12
evel of Water Contamination Type of Contamination, Soil/Bio Distance to Nearest Surface Wa	n Ota	1 1 3	15	5	15
Level of Water Contamination Type of Contamination, Soil/Bi- Distance to Nearest Surface Water Depth to Groundwater	n Ota	1 1 3	15 5 4	5	- 15 12
Level of Water Contamination Type of Contamination, Soil/Bio Distance to Nearest Surface Water Depth to Groundwater Net Precipitation	n Ota	1 1 3	15 5 4 7	5 4 21	15 12 21
evel of Water Contamination Type of Contamination, Soil/Bic Distance to Nearest Surface Water Depth to Groundwater Het Precipitation Soil Permeability	n Ota	1 1 3	15 5 4 7 6	5 4 21 6	15 12 21
evel of Water Contamination Type of Contamination, Soil/Bio Distance to Nearest Surface Water Depth to Groundwater Met Precipitation Soil Permeability Dedrock Permeability	n Ota	- 1 1 3 1	15 5 4 7 6	5 4 21 6	15 12 21 18
Level of Water Contamination Type of Contamination, Soil/Bic Distance to Nearest Surface Water Depth to Groundwater Net Precipitation Soil Permeability Depth to Bedrock	n Ota	1 1 3 1 3	15 5 4 7 6 6	5 4 21 6 18	15 12 21 18 18
Level of Water Contamination Type of Contamination, Soil/Bic Distance to Nearest Surface Wa Depth to Groundwater Net Precipitation Soil Permeability Bedrock Permeability Depth to Bedrock Surface Erosion	ota ter	1 1 3 1 3	15 5 4 7 6 6 4 4 4 SUBTOTALS	- 5 4 21 6 18 -	15 12 21 18 18
Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Bic Distance to Nearest Surface Wa Depth to Groundwater Net Precipitation Soil Permeability Bedrock Permeability Depth to Bedrock Surface Erosion Number of Assumed Values = 0 Percentage of Assumed Values = 4	Out of 10	1 1 3 1 3	15 5 4 7 6 6 4 4 4 SUBTOTALS SUBSCORE	5 4 21 6 18	15 12 21 18 18

Mazardous Rating:	Judgemental rating from 30 to 100 points based on the following guidelines:
Points	
30	Closed domestic-type landfill, old site, no known hazardous wastes
40	Closed domestic-type landfill, recent site, no known hazardous wastes
50	Suspected small quantities of hazardous wastes
60	Known small quantities of hazaidous wastes
70	Suspected moderate quantities of hazardous wastes
80	Known moderate quantities of hazardous wastes
90	Suspected large quantities of hazardous wastes
100	Known large quantities of hazardous wastes

Reason for Assigned Hazardous Rating:

Coal pile runoff typically is characterized by high suspended solids and heavy metals. Coal pile is contained in an area having a concrete pad and walls. A clarifier was installed 2 to 3 years ago discharging to storm sewer. Clarifier sludge has never been removed.

RATING FACTOR	FACTOR RATING (0-3)	MULTIPLIER	FACTOR	Maximum Possibli Score
Waste Mark	GEMENT PRACT	ICES		
Record Accuracy and		_		_
Ease of Access to Site				<u>-</u>
Hazardous Waste Quantity	0	7	0	21
Total Waste Quantity	-	4		
Waste Incompatibility	0	3	0	9
Absence of Liners or	_			
Confining Beds	1	6	6	18
Use of Leachate Collection System	0	6	0	18
Use of Gas				
Collection System	-	2		
Site Closure	0	8	0	24
Subsurface Flows	0	7	0	21
Number of Assumed Values = 0 Out of 9		SUBTOTALS	6	111
Percentage of Assumed Values = 0 %		SUBSCORE		5
Number of Missing and Mon-Applicable Values = _	3 Out of		ore Divided	by Maximus
Percentage of 'issing and Non-Applicable Values			Multiplied	=
Overall Number of Assumed Values = 0 Out of	25			
Overall Percentage of Assumed Values = 0 %		OVERALL SCOR	E 46	
			 v 0:33	

(Receptors Subscore X 0.22 plus Pathways Subscore X 0.30 plus Waste Characteristics Subscore X 0.24 plus Waste Management Subscore X 0.24)

ocation				
Wner/Operator				
Comments Five coal fired boilers - started 19	56, expanded	and still ope	rative.	
				
	Pactor Rating		PACTOR	MAXIMUM POSSIBLI
RATING FACTOR	(0-3)	MULTIPLIER	SCORE	SCORE
RECEPTORS		·		
Population Within	3	4	12	12
Distance to Nearest				
Drinking Water Well	1	15	15	45
Distance to Reservation				
Soundary	3	6	18	18_
and Use/Zoning	2	3	6	9
Critical Environments	3	12	36	36
Nater Quality of Nearby Surface Water Body	1	6	6	18
Number of Assumed Values = 0 Out of 6		SUBTOTALS	93	138
Percentage of Assumed Values = 0 t		SUBSCORE		67
Number of Missing Values = 0 Out of 6			ore Divided	•
Percentage of Missing Values = %		Score and	Multiplied	by 100)
Pathways				
Evidence of Water Contamination	0	10	0	30_
Level of Water Contamination		15	-	
Type of Contamination, Soil/Biota	0	5	0	15
Distance to Nearest Surface Water	2	4	9	12_
Depth to Groundwater	3	7	21	21
Net Precipitation	1	6	6	18
Soil Permeability	3	6	18	18
Sedrock Permeability		4		
AAAAAA (ATEABRYTYA)			-	-
Samely on Sudannels		4	-	
Depth to Bedrock	-			
Surface Erosion	 	4	53	114
		SUBTOTALS SUBSCORE	53	114

lazardous Rating:	Judgemental rating from 30 to 100 points based on the following guidelines:
oints	
30	Closed domestic-type landfill, old site, no known hazardous wastes
40	Closed domestic-type landfill, recent site, no known hazardous wastes
50	Suspected small quantities of hazardous wastes
60	Known small quantities of hazardous wastes
70	Suspected moderate quantities of hazardous wastes
80	Known moderate quantities of hazardous wastes
90	Suspected large quantities of hazardous wastes
100	Known large quantities of hazardous wastes

SUBSCORE 60

Reason for Assigned Hazardous Rating:

Coal pile runoff typically is characterized by high suspended solids and heavy metals. Coal pile is contained in an area having a concrete pad and wells. A clarifier was installed 2 to 3 years ago discharging to the storm sewer. Clarifier sludge has never been removed.

RATING FACTOR	PACTOR RATING (0-3)	MULTIPLIER	PACTOR SCORE	Maxikum Poesible Score
WASTE I	AMAGEMENT PRACT	ICES	_	
Record Accuracy and Ease of Access to Site	<u>-</u>	7	•	
Hazardous Waste Quantity	0	7	0	21
Total Waste Quantity		4	-	
Waste Incompatibility	0	3	. 0	9
Absence of Liners or Confining Beds	1	6	6	18
Use of Leachate Collection System	0	6	0	18
Use of Gaz Collection System		2	-	•
Site Closure	0	8	0	24
Subsurface Flows	0	. 7	0	21
Number of Assumed Values = 0 Out of 9		SUBTOTALS	6	111
Percentage of Assumed Values = 0		SUBSCORE		5
Number of Missing and Mon-Applicable Values Percentage of Missing and Mon-Applicable Va			ore Divided Multiplied	by Maximum

Overall Number of Assumed Values = __O Out of 25

Overall Percentage of Assumed Values = 0 +

OVERALL SCORE

(Receptors Subscore X 0.22 plus Pathways Subscore X 0.30 plus Waste Characteristics Subscore X 0.24 plus Waste Management Subscore X 0.24)

Name of Site Deactivated Nuclear Reactor					
Location Area B - Facility No. 470, sout	h side of 13	th Street			
Owner/Operator					
Comments Reactor was in operation from	/65 to 6/70.				

RATING FACTOR	FACTOR RATING (0-3)	MULTIPLIER	FACTOR SCORE	HAXIMUM POSSIBLE SCORE	
RECEPTORS					
Population Within 1,000 Feet	3	4	12	12	
Distance to Mearest Drinking Water Well	1	15	15	45	
Distance to Reservation Soundary	2	6	. 12	18	
Land Use/Zoning	2	3	6	9	
Critical Environments	3	12	36	36	
Water Quality of Nearby Surface Water Body		6	6	18	
	<u> </u>	·			
Number of Assumed Values = 0 Out of 6 Percentage of Assumed Values = 0		Subscore Subscore	87	<u>138</u> 63	
Number of Missing Values = 0 Out of 6			core Divided		
Percentage of Missing Values = 0		(factor Score Divided by Maxim Score and Multiplied by 100)			
			-		
PATHWAYS		- <u></u>			
Evidence of Water Contamination	0	10	Ô	30	
Level of Water Contamination	-	15	-	<u> </u>	
Type of Contamination, Soil/Biota	0	5	0	15	
Distance to Nearest Surface Water	2	4	8	12	
Depth to Groundwater	2	7	14	21	
Net Precipitation	1	6	6	18	
Soil Permeability	1	6	6	18	
Bedrock Permeability	-	4	-	-	
Depth to Bedrock	-	4	-	•	
Surface Erosion	0	4	0	12	
Number of Assumed Values =O Out of 10		SUBTOTALS	34	126	
Percentage of Assumed Values = 0		SUBSCORE		27	
Number of Missing Values = 3 Out of 10		(Factor Sc	ore Divided	by Maximum	
Percentage of Missing Values = 30 %		Score and	Multiplied	ъу 100}	

	WASTE CHARACTERISTICS
Hazardous Rating	Judgemental rating from 30 to 100 points based on the following guidelines:
Points	
30	Closed domestic-type landfill, old site, no known hazardous wastes
40	Closed domestic-type landfill, recent site, no known hazardous wastes
50	Suspected small quantities of hazardous wastes
60	Known small quantities of hasardous wastes
70	Suspected moderate quantities of hemandous wastes
80	Known moderate quantities of hazardous wastes
90	Suspected large quantities of hazardous wastes
100	Known large quantities of hasardous wastes
	SUBSCORE 100
Resear for Assis	med Hasardous Rating:
	Containment building houses radioactive material

RATING FACTOR	FACTOR RATING (0-3)	MULTIPLIER	FACTOR SCORE	Maximum Possibli Score
. Waste	HAMAGEMENT PRACT	ICES		
ecord Accuracy and lase of Access to Site	0	7	0	21
lazardous Waste Quantity	0	7	0	21
otal Waste Quantity	•	4	-	-
Vaste Incompatibility	1	3	3	9
Obsence of Liners or Confining Beds	0	6	0	18
se of Leachate Collection System	•	6	-	-
se of Gam Collection System		2	-	
Site Closure		8		
ubsurface Flows	<u> </u>	7	· <u>-</u> -	
Number of Assumed Values =Out of 9		SUBTOTALS	_3	69
Percentage of Assumed Values = 0		SUBSCORE		4
Number of Missing and Non-Applicable Values Percentage of Missing and Non-Applicable Va			ore Divided Multiplied	-

Overall Number of Assumed Values = 0 Out of 25

Overall Percentage of Assumed Values = 0 %

OVERALL SCORE 47

(Receptors Subscore X 0.22 plus Pathways Subscore X 0.30 plus Waste Characteristics Subscore X 0.24 plus Waste Management Subscore X 0.24)

Transport (Consentant		Street		
Owner/Operator				
Comments In place before 1951, contents	or container	unknown.		
	FACTOR	•		MAXIMUM
RATING FACTOR	RATING (0-3)	MULTIPLIER	FACTOR SCORE	POSSIBLI SCORE
RECEPTORS				
Population Within	•		10	
1,000 Feet	3	4	12	12
Distance to Nearest Drinking Water Well	1	· 15	15	45
Distance to Reservation				
Boundary	2	6	12	18
Land Use/Zoning	2	3	6	9
Critical Environments	3	12	36	36
Mater Quality of Nearby Surface Water Body	1	6	6	18
Number of Assumed Values - 0_Out of 6		SUBTOTALS	87	138
Percentage of Assumed Values =0_ %		SUBSCORE		63
				
Number of Missing Values =0_ Out of 6		(Factor Sc	ore Divided	by Maximus
			ore Divided Multiplied	·
Number of Missing Values = 0 Out of 6 Percentage of Missing Values = 0 %				·
				·
				· ·
Percentage of Missing Values = 0				· ·
Percentage of Missing Values = 0 • PATHWAYS Evidence of Water Contamination	0	Score and	Multiplied	by 100)
PATHWAYS Evidence of Water Contamination Level of Water Contamination	0 -	Score and	Multiplied	by 100)
PATHWAYS Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota	-	Score and	Multiplied 0	30 -
PATHWAYS Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water	0	10 15 5	O - O	30 -
Pathways Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water Depth to Groundwater	0 2	10 15 5 4	O - O 8	30 - 15
PATHWAYS Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water Depth to Groundwater Net Precipitation	0 2 2	10 15 5 4 7	0 - 0 8 14	30 - 15 12 21
PATHWAYS Evidence of Water Contamination Level of Water Contamination Fype of Contamination, Soil/Biota Distance to Nearest Surface Water Depth to Groundwater Net Precipitation Soil Permeability	0 2 2	10 15 5 4 7 6	0 - 0 8 14 6	30 - 15 12 21
PATHWAYS Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water Depth to Groundwater Net Precipitation Soil Permeability Bedrock Permeability	0 2 2 1	10 15 5 4 7 6	0 - 0 8 14 6	30 - 15 12 21 18
PATHMAYS Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water Depth to Groundwater Net Precipitation Soil Permeability Bedrock Permeability Depth to Bedrock	0 2 2 1 0	10 15 5 4 7 6 6	0 0 8 14 6 0	30 - 15 12 21 18
PATHWAYS Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water Depth to Groundwater Net Precipitation Soil Permeability Bedrock Permeability Depth to Bedrock	0 2 2 1 0	10 15 5 4 7 6	0 - 0 8 14 6 0	30 - 15 12 21 18 18 -
PATHMAYS Evidence of Water Contamination Level of Water Contamination Type of Contamination, Soil/Biota Distance to Nearest Surface Water Depth to Groundwater Net Precipitation Soil Permeability Bedrock Permeability Depth to Bedrock	0 2 2 1 0	10 15 5 4 7 6 6	0 0 8 14 6 0	30 15 12 21 18 18

Hazardous Rating: Judgemental	rating from 30 to 100 points	based on the i	following gu	ıdelines:							
Points	·										
30 Closed	domestic-type landfill, old s	ite, no known	hazardous w	as tes							
40 Closed domestic-type landfill, recent site, no known hazardous wastes 50 Suspected small quantities of hazardous wastes											
-	•										
60 Known small quantities of hazardous wastes 70 Suspected moderate quantities of hazardous wastes 80 Known moderate quantities of hazardous wastes 90 Suspected large quantities of hazardous wastes 100 Known large quantities of hazardous wastes											
							100 Known	large quantities of hazardous	vastas		
									SUBSCORE	90	
							Reason for Assigned Hazardous 1	Ratings			
Designated as old radioac	tive disposal area.										
				<u> </u>							
		·	·								
	PACTOR			MAXIMUM							
N. 6746 - 11 6461	RATING	W/2 GTD1 TD0	FACTOR	POSSIBLE							
RATING FACTOR	(0-3)	MULTIPLIER	SCORE	SCORE							
	WASTE MANAGEMENT PRACTI	CES	_								
Record Accuracy and											
Ease of Access to Site	2	7	14	21							
Mazardous Waste Quantity	<u>0</u>		0	21							
Total Waste Quantity	0	4	00	12							
Waste Incompatibility	<u>l</u>	3	3	9							
Absence of Liners or											
Confining Beds	0	6	0	18							
Use of Leachate											
Collection System	-	6		•							
Use of Gas		_									
Collection System	<u> </u>	2									
Site Closure	0	8	0	24							
Subsurface Flows	1	7	7	21							
Number of Assumed Values = 2	Our of 9	SUBTOTALS	24	126							
Percentage of Assumed Values =	-	SUBSCORE		19							
•			ore Divided	by Maximum							
	maker of Missing and Mon-Applicable Values = 2 Out of 9 orcentage of Missing and Mon-Applicable Values = 22 9		Score and Multiplied by 100)								
Overall Number of Assumed Value	es = 2 Out of 25										
Overall Percentage of Assumed	Values = <u>3</u> •	OVERALL SCOR	RE 47								
	Pa Wa	eceptors Subsc thways Subscoi ste Character: ste Management	re X 0.30 pl stics Subsc	us ore X 0.24 pl							

APPENDIX I

GLOSSARY

APPENDIX I

GLOSSARY

AF: Air Force

AFALD: Air Force Logistics Division

AFB: Air Force Base

AFFF: Aircraft Firefighting Foam

AFIT: Air Force Institute of Technology

AFLC: Air Force Logistics Command

AFOG: Air Force Orientation Group

AFR: Air Force Regulation

AFSC: Air Force Systems Command

AFWAL: Air Force Wright Aeronautical Laboratories

AG: Adjutant General

AGE: Aircraft Ground Equipment

ALC: Air Logistics Center

AMRL: Aerospace Medical Research Laboratory

AQUICLUDE: Impermeable formation that impeeds ground-water movement and does

not yield water to a well or spring

AQUIFER: A geologic formation, group of formations, or part of a formation

that is capable of yeilding water to a well or spring

ARDC: Air Research and Development Command

ARL: Aerospace Research Laboratory

ARTESIAN: Ground water contained under hydrostatic pressure

ASD: Aeronautical Systems Division

AVGAS: Aviation Gasoline

BIOACCUMULATE: Tendency of elements or compounds to accumulate or build up in the tissues of living organisms when they are exposed to these elements in their environments, e.g., heavy metals

CERL: Construction Engineering Research Laboratory

CLOSURE: The completion of a set of rigidly defined functions for a hazardous waste facility no longer in operation

COD: Chemical Oxygen Demand, a measure of the amount of oxygen required to oxidize organic and oxidizable inorganic compounds in water

CONFINED AQUIFER: An aquifer bounded above and below by important meable beds or by beds of distinctly lower permeability than that of the approximation for itself

CONTAMINATION: The degradation of natural water quality to extent that its usefulness is impaired; there is no implication of any initial inits since the degree of permissible contamination depends upon tended end use or uses of the water

DESC: Defense Electronic Supply Center

Det: Detachment

DISPOSAL FACILITY: A facility or part of a facility at which hazardous waste is intentionally placed into or on land or water, and at which waste will remain after closure

DISPOSAL OF HAZARDOUS WASTE: The discharge, deposit, injection, dumping, spilling, or placing of any hazardous waste into or on land or water so that such waste or any constituent thereof may enter the environment or be emitted into the air or discharged into any waters, including ground water

DOD: Department of Defense

DOWNGRADIENT: In the direction of lower hydraulic head; the direction in which ground water flows

DPDO: Defense Property Disposal Office

DSA: Defense Supply Agency

DUMP: An uncovered land disposal site where solid and/or liquid wastes are deposited with little or no regard for pollution control or aesthetics; dumps are susceptible to open burning and are exposed to the elements, disease vectors and scavengers

EFFLUENT: A liquid waste discharge from a manufacturing or treatment process, in its natural state, or partially or completely treated, that discharges into the environment

EPA: Environmental Protection Agency

ES: Engineering-Science, Inc.

EROSION: The wearing away of land surface by wind or water

FACILITY: Any land and appurtenances thereon and thereto used for the treatment, storage and/or disposal of hazardous wastes

FCT: Fire Control Training

FLOOD PLAIN: The lowland and relatively flat areas adjoining inland and coastal areas of the mainland and off-shore islands, including, at a minimum, areas subject to a one percent or greater chance of flooding in any given year

FLOW PATH: The direction or movement of ground water and any contaminants that may be contained therein, as governed principally by the hydraulic gradient

GROUND WATER: Water beneath the land surface in the saturated zone that is under atmospheric or artesian pressure

GROUND WATER RESERVOIR: The earth materials and the intervening open spaces that contain ground water

HARDFILL: Disposal sites receiving construction debris, wood, miscellaneous spoil material

HAZARDOUS WASTE: A solid waste, or combination of solid wastes, which because of its quantity, concentration, or physical, chemical or infectious characteristics may cause or significantly contribute to an increase in mortality or an increase in serious, irreversible, or incapacitating reversible illness; or pose a substantial present or potential hazard to human health or the environment when improperly treated, stored, transported, or disposed of, or otherwise managed

HAZARDOUS WASTE GENERATION: The act or process of producing a hazardous waste

HEAVY METALS: Metallic elements, including the transition series, which include many elements required for plant and animal nutrition in trace concentrations but which become toxic at higher concentrations

HQ: Headquarters

HWMF: Hazardous Waste Management Facility

INCOMPATIBLE WASTE: A waste unsuitable for commingling with another waste or material because the commingling might result in generation of extreme heat or pressure, explosion or violent reaction, fire, formation of substances which are shock sensitive, friction sensitive, or otherwise have the potential for reacting violently, formation of toxic dusts, mists, fumes, and gases, volatilization of ignitable or toxic chemicals due to heat generation in such a manner that the likelihood of contamination of ground water or escape of the substance into the environment is increased, any other reaction which might result in not meeting the Air, Human Health, and Environmental Standard

INFILTRATION: The flow of liquid through pores or small openings

IRP: Installation Restoration Program

LEACHATE: A solution resulting from the separation or dissolving of soluble or particulate constituents from solid waste or other man-placed medium by percolation of water

LEACHING: The process by which soluble materials in the soil, such as nutrients, pesticide chemicals or contaminants, are washed into a lower layer of soil or are dissolved and carried away by water

LINER: A continous layer of natural or man-made materials beneath or on the sides of a surface impoundment, landfill, or landfill cell which restricts the downward or lateral escape of hazardous waste, hazardous waste constituents or leachate

LSD: Land Surface Datum

LWDS: Liquid Waste Disposal System

mq/l: Milligrams (10⁻³) per liter

ug/1: Micrograms (10⁻⁶) per liter

MOGAS: Gasoline for trucks and automobiles

MONITORING WELL: A well used to measure ground-water levels and to obtain samples

MSL: Mean Sea Level

NRC: Nuclear Regulatory Commission

NPDES: National Pollutant Discharge Elimination System

ORGANIC: Being, containing or relating to carbon compounds, especially in which hydrogen is attached to carbon

PCB: Polychlorinated Biphenyls are highly toxic to aquatic life; they persist in the environment for long periods and are biologically accumulative

PERCOLOATION: Movement of moisture by gravity or hydrostatic pressure through interstices of unsaturated rock or soil

PD-680: Cleaning solvent

pH: Negative Logarithm of hydrogen ion concentration

PL: Public Law

POL: Petroleum, Oils and Lubricants

POLLUTANT: Any introduced gas, liquid or solid that makes a resource unfit for a specific purpose

PS-661: Cleaning Solvent

PYROPHORIC: Capable of igniting spontaneously when exposed to air

RCRA: Resource Conservation od Recovery Act

RECHARGE AREA: An area in which water is absorbed that eventually reaches the zone of saturation in one or more aquifers

RECHARGE: The addition of water to the ground-water system by natural or artificial processes

SANITARY LANDFILL: A land disposal site using an engineered method of disposing solid wastes on land in a way that minimizes environmental hazards

SATURATED ZONE: That part of the earth's crust in which all voids are filled with water

SFQLA: Aerospace Field Laboratory

SLUDGE: The solid residue resulting from a manufacturing or wastewater treatment process which also produces a liquid stream

SOLID WASTE: Any garbage, refuse, or sludge from a waste treatment plant, water suply treatment, or air pollution control facility and other discarded material, including solid, liquid, semi-solid, or contained gaseous material resulting from industrial, commercial, mining, or agricultural operations and from community activities, but does not include solid or dissolved materials in domestic sewage; solid or dissolved materials in irrigation return flows; industrial discharges which are point source subject to permits under Section 402 of the Federal Water Pollution Control Act, as amended (86 USC 880); or source, special nuclear, or by-product material as defined by the Atomic Energy Act of 1954 (68 USC 923)

SPILL: Any unplanned release or discharge of a hazardous waste onto or into the air, land, or water

STORAGE OF HAZARDOUS WASTE: Containment, either on a temporary basis or for a period of years, in such a manner as not to constitute disposal of such hazardous waste

TAC: Tactical Air Command

TCE: Trichloroethylene - a toxic organic solvent

TOXICITY: The ability of a material to produce injury or disease upon exposure, ingestion, inhalation, or assimilation by a living organism

TRANSMISSIVITY: The rate at which water is transmitted through a unit width under a unit hydraulic gradient

TREATMENT OF HAZARDOUS WASTE: Any method, technique, or process including neutralization designed to change the physical, chemical, or biological character or composition of any hazardous waste so as to neutralize the waste or so as to render the waste nonhazardous

USAF: United States Air Force

USDA: United States Department of Agriculture

WATER TABLE: Surface of a body of unconfined ground water at which the pressure is equal to that of the atmosphere

WPAFB: Wright-Patterson Air Force Base

APPENDIX J

REFERENCES

APPENDIX J

REFERENCES

- Aeronautical Systems Division, Engineering History, 1917-1978, McCook Field to the Aeronautical Systems Division; April 1979.
- Bier, James A., 1967, Map of Landforms of Ohio, Ohio Division of Geological Survey, Columbus.
- Bloyd, Richard M., Jr., 1974, Summary Appraisals of the Nation's Ground-Water Resources Ohio Region, U.S. Geological Survey Professional Paper 813-A.
- Bownocker, J.A., 1920 reprinted 1981, Geologic Map of Ohio, Ohio Division of Geologic Survey, Columbus.
- Eagon, H.B.Jr., 1979, Well and Aquifier Evaluation, Areas A & C, Wright-Patterson Air Force Base, prepared for Reynolds Supply, Inc., and Wright-Patterson Air Force Base.
- Evans, Kenneth F., 1977, Water Quality of the Glacial-Outwash Aquifer in the Great Miami River Basin, Ohio, U.S. Geological Survey Water Resources Investigation 77-76.
- Fenneman, N.M., 1938, Physiography of the Eastern United States, McGraw-Hill Book Co., New York, pp. 419-518.
- Flint Richard Foster, 1957, Glacial and Pleistocene Geology, John Wiley and Sons, New York, pp. 108-135, 170-171, 188, 322 and 338.
- Huntsman, Brent Elliott, 1975, A Geologic Survey of Possible Sanitary Landfill Sites in Greene County, Ohio, Department of Geology, Wright State University (M.S. Thesis).
- Legacy. Published by Marcoa Publishing, Inc.
- Miami Valley Regional Planning Commission, 1981, Existing and Potential Ground Water Problems in the Miami Valley Region, Dayton, September.
- Norris, Stanley E. and Spicker, Andrew M., 1966, Ground-Water Resources of the Dayton Area, Ohio, U.S. Geological Survey Water-Supply Paper 1808.
- Norris, Stanley E., 1959, Vertical Leakage Through Till as a Source of Recharge to a Buried Valley Aquifer at Dayton, Ohio, Ohio Department of Natural Resources, Division of Water Technical Report No. 2.
- Plummer, Paul M., 1973, An Investigation of the Effects of Waste Disposal Practices on Ground-Water Quality of Montgomery County, Ohio, the Miami Conservancy District, Report 73-16, Dayton.

- Quinn, P.F. and J.W. Wimberley, 1979, Analysis of Potential Flood Damage at Wright-Patterson Air Force Base. LSSR 24-79A.
- Spieker, Andrew M., 1968, Future Development of the Ground-Water Resource in the Lower Great Miami River Valley, Ohio Problems and Alternative Solutions, U.S. Geological Survey Professional Paper 605-D.
- Stout, Wilber, Ver Steeg, Karl and Lamb, G.F., 1943, Geology of water in Ohio, Oho Division of Geologic Survey, Bulletin 44, Columbus.
- U.S. Air Force Weapon Laboratory, Air Force Systems Command. "Treat-ability of Aqueous Film Forming Foams Used for Fire Training: Lt. R. K. Kroop, Sgt. J. E. Martin. AFWL-TR 73-279; February 1974.
- Walton, W.C.; and Scudder, G.D., 1960, Ground-Water Resources of the Valley Train Deposits of the Fairborn Area, Ohio, Ohio Department of Natural Resources, Division of Water Technical Report No. 3.
- , 1978 Revised, Tab A-1 Environmental Narrative Phase II, Wright-Patterson Air Force Base, Dayton, Ohio, RCS:HAF-PRE(AR)7801.

APPENDIX K

HAZARD ASSESSMENT RATING METHODOLOGY
WRIGHT PATTERSON AIR FORCE BASE

HAZARD ASSESSMENT PERFORMED AFTER FEBRUARY 1982 RECORD SEARCH. THIS ASSESSMENT REPLACES APPENDIX G AND H OF ORIGINAL

USAF INSTALLATION RESTORATION PROGRAM HAZARD ASSESSMENT RATING METHODOLOGY

BACKGROUND

The Department of Defense (DOD) has established a comprehensive program to identify, evaluate, and control problems associated with past disposal practices at DOD facilities. One of the actions required under this program is to:

"develop and maintain a priority listing of contaminated installations and facilities for remedial action based on potential hazard to public health, welfare, and environmental impacts." (Reference: DEQPPM 81-5, 11 December 1981).

Accordingly, the United States Air Force (USAF) has sought to establish a system to set priorities for taking further actions at sites based upon information gathered during the Records Search phase of its Installation Restoration Program (IRP).

The first site rating model was developed in June 1981 at a meeting with representatives from USAF Occupational Environmental Health Laboratory (OEHL), Air Force Engineering Services Center (AFESC), Engineering-Science (ES) and CH₂M Hill. The basis for this model was a system developed for EPA by JRB Associates of McLean, Virginia. The JRB model was modified to meet Air Force needs.

After using this model for 6 months at over 20 Air Force installations, certain inadequacies became apparent. Therefore, on January 26 and 27, 1982, representatives of USAF OEHL, AFESC, various major commands, Engineering Science, and CH₂M Hill met to address the inadequacies. The result of the meeting was a new site rating model designed to present a better picture of the hazards posed by sites at Air Force installations. The new rating model described in this presentation is referred to as the Hazard Assessment Rating Methodology.

PURPOSE

The purpose of the site rating model is to provide a relative ranking of sites of suspected contamination from hazardous substances. This model will assist the Air Force in setting priorities for follow-on site investigations and confirmation work under Phase II of IRP.

This rating system is used only after it has been determined that (1) potential for contamination exists (hazardous wastes present in sufficient quantity), and (2) potential for migration exists. A site can be deleted from consideration for rating on either basis.

DESCRIPTION OF MODEL

Like the other hazardous waste site ranking models, the U.S. Air Force's site rating model uses a scoring system to rank sites for priority attention. However, in developing this model, the designers incorporated some special features to meet specific DOD program needs.

The model uses data readily obtained during the Record Search portion (Phase I) of the IRP. Scoring judgments and computations are easily made. In assessing the hazards at a given site, the model develops a score based on the most likely routes of contamination and the worst hazards at the site. Sites are given low scores only if there are clearly no hazards at the site. This approach meshes well with the policy for evaluating and setting restrictions on excess DOD properties.

As with the previous model, this model considers four aspects of the hazard posed by a specific site: the possible receptors of the contamination, the waste and its characteristics, potential pathways for waste contaminant migration, and any efforts to contain the contaminants. Each of these categories contains a number of rating factors that are used in the overall hazard rating.

The receptors category rating is calculated by scoring each factor, multiplying by a factor weighting constant and adding the weighted scores to obtain a total category score.

The pathways category rating is based on evidence of contaminant migration or an evaluation of the highest potential (worst case) for contaminant migration along one of three pathways. If evidence of contaminant migration exists, the category is given a subscore of 80 to 100 points. For indirect evidence, 80 points are assigned and for direct evidence 100 points are assigned. If no evidence is found, the highest score among three possible routes is used. These routes are surface water migration, flooding, and ground-water migration. Evaluation of each route involves factors associated with the particular migration route. The three pathways are evaluated and the highest score among all four of the potential scores is used.

The waste characteristics category is scored in three steps.

First, a point rating is assigned based on an assessment of the waste quantity and the hazard (worst case) associated with the site. The level of confidence in the information is also factored into the assessment. Next, the score is multiplied by a waste persistence factor, which acts to reduce the score if the waste is not very persistent. Finally, the score is further modified by the physical state of the waste. Liquid wastes receive the maximum score, while scores for sludges and solids are reduced.

The scores for each of the three categories are then added together and normalized to a maximum possible score of 100. Then the waste management practice category is scored. Sites at which there is no containment are not reduced in score. Scores for sites with limited containment can be reduced by 5 percent. If a site is contained and well managed, its score can be reduced by 90 percent. The final site score is calculated by applying the waste management practices category factor to the sum of the scores for the other three categories.

FIGURE 2

HAZARD ASSESSMENT RATING METHODOLOGY FORM

Page 1 of 2

NAME OF SITE					
NAME OF SITE					
DATS OF OPERATION OR OCCURRENCE					
OWNER/OPERATOR					
COMMENTS/DESCRIPTION_					
SITE RATED BY		 	·		
L RECEPTORS Rating Factor	Factor Rating (0-3)	Multiplier_	Pactor Score	Maximum Possible Score	
A. Population within 1,000 feet of site		4			
B. Distance to nearest well		10			
C. Land use/zoning within 1 mile radius		3			
D. Distance to reservation boundary		6			
E. Critical environments within 1 mile radius of site		10		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
7. Water quality of nearest surface water body		6	-		
G. Ground water use of uppermost aquifer	ļ	9			
H. Population served by surface water supply within 3 miles downstream of site		6			
I. Population served by ground-water supply within 3 miles of site		6			
		Subtotals			
Receptors subscore (100 % factor sco	re subtotal	/maximum score	subtotal)		
IL WASTE CHARACTERISTICS		•	,		
A. Select the factor score based on the estimated quantity the information.	, the degre	e of hazard, a	nd the confi	dence level o	
1. Waste quantity (S = small, M = medium, L = large)					
2. Confidence level (C = confirmed, S = suspected)					
3. Hazard rating (H = high, M = medium, L = low)					
Factor Subscore A (from 20 to 100 based	on factor s	score matrix)			
3. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B				•	
C. Apply physical state multiplier	•				
Subscore B X Physical State Multiplier = Waste Characte	ristics Sub	oscore			
x	•				

IIL PATHWAYS

	Rati	ng Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
A.	dir	there is evidence of migration of hazardous ect evidence or 80 points for indirect evidence or indirect evidence exists, proceed of	ence. If direct ev	gn maximum fact idence exists t	or subscore then proceed	of 100 points fo
в.		e the migration potential for 3 potential Γ ration. Select the highest rating, and pro-		ater migration,		nd ground-water
	1.	Surface water migration				
		Distance to nearest surface water		8		
		Net precipitation		6		
		Surface erosion		8		
		Surface permeability		6		
		Rainfall intensity		8		
				Subtotals	3	
		Subscore (100 X fa	actor score subtota	l/maximum score	subtotal)	
	2.	Flooding		1		-
			Subscore (100 x	factor score/3))	
	3.	Ground-water migration				
		Depth to ground water		8		
		Net precipitation		6		
		Soil permeability		8		
		Subsurface flows		8		
		Direct access to ground water		8		
				Subtotals	s	-
		Subscore (100 x fa	actor score subtota	l/maximum score	subtotal)	
c.	Hig	hest pathway subscore.				
	Ent	er the highest subscore value from A, B-1, !	B-2 or B-3 above.			
				Pathway	ys Subscore	
_	•		 			
IV.	. W.	ASTE MANAGEMENT PRACTICES				
λ.	Aye	rage the three subscores for receptors, was	te characteristics,	and pathways.		
			Receptors Waste Characterist Pathways	ics		
			Total	divided by 3		ss Total Score
в.	λρφ	oly factor for waste containment from waste (management practice	5		
	Gro	es Total Score X Waste Management Practices	Factor = Final Sco	re		
		-		X		

TABLE 1
HAZARD ASSESSMENT RATING METHODOLOGY GUIDELINES

I. RECEPTORS CATEGORY

		Rating Scale Levels	<u> </u>		
Rating Factors	0	l l	2	3	Multiplier
A. Population within 1,000 feet (includes on-base facilities)	o	1 - 25	26 - 100	Greater than 100	•
B. Distance to nearest water well	Greater than 3 miles	1 to 3 miles	3,001 feet to 1 mile	0 to 3,000 feet	01
C. Land Use/Zoning (within i mile radius)	Completely remote ? (zoning not applicable)	Agricultural e}	Commercial or industrial	Residential	9
D. Distance to installation boundary	Greater than 2 miles	1 to 2 miles	1,001 feet to 1 mile	0 to 1,000 feet	m
E. Critical environments (within 1 mile radius)	Not a critical environment	Natural areas	Pristine natural areas; minor wet-lands; preserved areas; presence of economically important natural resources susceptible to contamination.	Major habitat of an endangered or threatened species; presence of recharge area; major wetlands.	9
P. Water quality/use designation of nearest surface water body	Agricultural or industrial use.	Recreation, propagation and management of fish and wildlife.	Shellfish propaga- tion and harvesting.	Potable water supplies	v
G. Ground-Water use of uppermost aquifer	Not used, other sources readily available.	Commercial, industrial, or irrigation, very limited other water sources.	Drinking water, municipal water available.	Drinking water, no municipal water available; commercial, industrial, or irrigation, no other water source available.	o
H. Population served by surface water supplies within 3 miles down- stream of site	0	1 - 50	51 - 1,000	Greater than 1,000	ø
 Population served by aquifer supplies within 3 miles of site 	0	1 - 50	51 - 1,000	Greater than 1, 000	ဖ

TABLE 1 (Continued)

HAZARD ASSESSMENT RATING METHODOLOGY GUIDELINES

WASTE CHARACTERISTICS i

Hazardous Waste Quantity A-1

S = Small quantity (<5 tons or 20 drums of liquid) M = Moderate quantity (5 to 20 tons or 21 to 85 drums of liquid) L = Large quantity (>20 tons or 85 drums of liquid)

Confidence Level of Information A-2

C = Confirmed confidence level (minimum criteria below)

o Verbal reports from interviewer (at least 2) or written information from the records.

reports and no written information from the records. No verbal reports or conflicting verbal

S = Suspected confidence level

o Knowledge of types and quantities of wastes generated by shops and other areas on base.

o Based on the above, a determination of the types and quantities of waste disposed of at the site.

o Logic based on a knowledge of the types and quantities of hazardous wastes generated at the base, and a history of past waste disposal practices indicate that these wastes were disposed of at a site.

A-3 Hazard Rating

-		Rating Scale Levels	els	
Hazard Category	0	-	2	3
Toxicity	Sax's Level 0	Sax's Level 1	Sax's Level 2	Sax's Level 3
Ignitability	Flash point greater than 200°F	Flash point at 140°F to 200°F	Flash point at 80°F to 140°F	Flash point at 80°F Flash point less than to 140°F
Radioactivity	At or below ckground levels	1 to 3 times back- ground levels	3 to 5 times back- ground levels	Over 5 times back- ground levels

Use the highest individual rating based on toxicity, ignitability and radioactivity and determine the hazard rating.

Ling Forms	2 3
dzalu katim	igh (H) ledium (M) ow (L)

. . .

Truesday 1....

TABLE 1 (Continued)

HAZARD ASSESSMENT RATING METHODOLOGY GUIDELINES

II. WASTE CHARACTERISTICS (Continued)

Waste Characteristics Matrix

Hazard Rating	æ	E =	H	ΞΣ	EJEE	# X 4 4
Confidence Level of Information	ပ	ပပ	S	ပ	တ ပ တ ပ	w w U w
Hazardous Waste Quantity	ם	L E	Ţ	o X	TJEW	W E E J
Point Rating	100	80	70	09	20	40

For a site with more than one hazardous waste, the waste quantities may be added using the following rules: Confidence Level o Confirmed confidence levels (C) can be added o Suspected confidence levels (S) can be added

o Confirmed confidence levels cannot be added with suspected confidence levels Waste Hazard Rating

o Wastes with the same hazard rating can be added o Wastes with different hazard ratings can only be added in a downgrade mode, e.g., MCM + SCH = LCM if the total quantity is greater than 20 tons.

Example: Several wastes may be present at a site, each having an MCM designation (60 points). By adding the quantities of each waste, the designation may change to LCM (80 points). In this case, the correct point rating for the waste is 80.

B. Persistence Multiplier for Point Rating

2

3 C C

ပေသတ

SES

S

	Multiply Point Rating
Persistence Criteria	From Part A by the Following
abuncano offerolog a fetam	G. F.
and halogenated hydrocarbons	•
Substituted and other ring	6.0
compounds	
Straight chain hydrocarbons	9.0
Easily biodegradable compounds	₽.0

C. Physical State Multiplier

Physical State	Multiply Point Total From Parts A and B by the Following
iquid	1.0
ludge	0.75
Solid	0.50

TABLE 1 (Continued)

T

HAZARD ASSESSMENT RATING METHODOLOGY CUIDELINES

III. PATHWAYS CATEGORY

A. Evidence of Contamination

Direct evidence is obtained from laboratory analyses of hazardous contaminants present above natural background levels in surface water, ground water, or air. Evidence should confirm that the source of contamination is the site being evaluated. Indirect evidence might be from visual observation (i.e., leachate), vegetation stress, sludge deposits, presence of taste and odors in drinking water, or reported discharges that cannot be directly confirmed as resulting from the site, but the site is greatly suspected of being a source of contamination.

B-1 POTENTIAL POR SURFACE WATER CONTAMINATION

		Rating Scale Levels	els		
Rating Factor	0	-	2	3	Multiplier
Distance to mearest surface Greater than 1 mile water (includes drainage ditches and storm severs)	Greater than 1 mile	2,001 feet to 1 mile	501 feet to 2,000 feet	0 to 500 feet	3 3
Net precipitation	Less than -10 in.	-10 to + 5 in.	+5 to +20 in.	Greater than +20 in.	9
Surface erosion	None	Slight	Moderate	Severe	80
Surface permeability	0% to_15% clay (>10 cm/sec)	15% to 30% clay 30% to 50% clay (10 to 10 cm/sec)	30% to 50% clay (10 to 10 cm/sec)	Greater than 50% clay (<10 cm/sec)	o
Kainfall intensity based on 1 year 24-hr rainfall	<1.0 inch	1.0-2.0 inches	2.1-3.0 inches	>3.0 inches	æ
B-2 POTENTIAL FOR FLOODING					
Floodplain	Beyond 100-year floodplain	In 25-year flood- plain	In 10-year flood- plain	Floods annually	-
B-3 POTENTIAL FOR GROUND-WATER CONTAMINATION	R CONTAMINATION				
Depth to ground water	Greater than 500 ft	50 to 500 feet	11 to 50 feet	0 to 10 feet	5
Net precipitation	Less than -10 in.	-10 to +5 in.	+5 to +20 in.	Greater than +20 in.	9
Soil permeability	Greater than 50% clay (>10 cm/sec)	30% to 50% clay (10 to 10 cm/sec)	15% to 30% clay (10 to 10 cm/sec)	0% to 15% clay (<10 cm/sec)	80
Subsurface flows	Bottom of site great- er than 5 feet above high ground-water level	Bottom of site occasionally submerged	Bottom of site frequently sub- merged	Bottom of site lo- cated below mean ground-water level	∞
Direct access to ground Nater (through faults, fractures, faulty well casings, subsidence fissures, etc.)	No evidence of risk 18,	Low risk	Moderate risk	High risk	œ

TABLE 1 (Continued)

NAZARD ASSESSMENT RATING METHODOLOGY GUIDELINES

WASTE MANAGEMENT PRACTICES CATEGORY . ≥

- This category adjusts the total risk as determined from the receptors, pathways, and waste characteristics categories for waste management practices and engineering controls designed to reduce this risk. The total risk is determined by first averaging the receptors, pathways, and waste characteristics subscores. ď.
 - WASTE MANACEMENT PRACTICES FACTOR ä

The following multipliers are then applied to the total risk points (from A):

Multiplier	1.0 0.95 0.10		Surface Impoundments:	o Liners in good condition	o Sound dikes and adequate freeboard	o Adequate monitoring wells		Fire Proection Training Areas:	o Concrete surface and berms	o Oil/water separator for pretreatment of runoff	o Effluent from oil/water separator to treatment
Waste Management Practice	No containment Limited containment Fully contained and in full compliance	Guidelines for fully contained:	Landfills:	o Clay cap or other impermeable cover	o Leachate collection system	o Liners in good condition	o Adequate monitoring wells	Spills:	o Quick spill cleanup action taken	o Contaminated soil removed	o Soil and/or water samples confirm total cleanup of the spill

General Note: If data are not available or known to be complete the factor ratings under items I-A through I, III-B-! or III-B-3, then leave blank for calculation of factor score and maximum possible score.

APPENDIX L

HAZARD ASSESSMENT RATING METHODOLOGY FORMS

WRIGHT PATTERSON AIR FORCE BASE

HAZARD ASSESSMENT PERFORMED AFTER FEBRUARY 1982 RECORD SEARCH. THIS ASSESSMENT REPLACES APPENDIX G AND H OF ORIGINAL

WRIGHT PATTERSON AIR FORCE BASE

	Site	HARM Score	Page No.
1.	Landfill No. 8	85	L-1
2.	Spill No. 2	83	L-3
3.	Landfill No. 12	81	L-5
4.	Spill No. 3	78	L-7
5.	Landfill No. 10 (Woodland Hills)	75	L-9
6.	Fire Training Areas No.'s 3 & 4, Spill No.	1 75	L-11
7.	Fire Training Area No. 1	74	L-13
8.	Fire Training Area No. 2	73	L-15
9.	Landfill No. 11	73	L-17
10.	Landfill No. 5	69	L-19
11.	Landfills No.'s 3, 4, 6 & 7	66	L-21
12.	Landfill No. 9 (Sand Hill)	66	L-23
13.	Burial Site No. 1	64	L-25
14.	Landfill No. 1	64	L-27
15.	Landfill No. 2 (Tillman Pit)	61	L-29
16.	Burial Site No. 2	61	L-31
17.	Coal Storage Pile	59	L-33
18.	Radioactive Waste Burial Site	55	L-35
19.	Central Heating Plant No. 2	51	L-37
20.	Central Heating Plant No. 4	51	L-39
21.	Central Heating Plant No. 1	50	L-41
22.	Central Heating Plant No. 3	50	L-43
23.	Central Heating Plant No. 5	50	L-45
24.	Deactivated Nuclear Reactor	6	L-47

T

SUMMARY OF REVISED PHASE II RECOMMENDATIONS WRIGHT PATTERSON AIR FORCE BASE

9115	Initial Score (1) Recommendation	Revised Score/(2) Recommendation	Comments
Landfill No. 8	79/Ground-Water Monitoring Sample Adjacent Drainage Ditches	85/Ground-Water Monitoring Sample Adjacent Drainage Ditches	No Change in Recommendation
Spill No. 2	74/Ground-Water Monitoring	83/Ground-Water Munitoring	No Change in Recommendation
Landfill No. 12	73/Ground-Water Monitoring	81/Ground-Water Munitoring	No Change in Recommendation
Spill No. 3	72/Ground-Water Monitoring	78/Ground-Water Monitoring	No Change in Recommendation
faudfill No. 10 (Waxiland Hills)	82/Ground-Water Monitoring Sample Adjacent Drainage Ditches	75/Ground-Water Monitoring Sample Adjacent Drainage Ditches	No Change in Recommendation
Fire Training Areas Nos. 3 & 4/Spill No. 1	77/Ground-Water Monitoring	75/Ground-Water Monituring	No Change in Recommendation
Fire Training Area No. 1	63/Ground-Water Monitoring	74/Ground-Water Monitoring	No Change in Recommendation
Fire Training Area No. 2	61/Ground-Water Monitoring	73/Ground-Water Monitoring	No Change in Recommendation
Landfill No. 11	71/Ground-Water Monitoring	73/Ground-Water Monitoring	No Change in Recommendation
Landfill No. 5 (Tvin Lakes)	63/Ground-Water Monitoring	69/Ground-Water Monitoring	No Change in Recommendation
Landfills Nus. 3, 4, 6,	61/Ground-Water Monitoring	66/Ground-Water Monitoring	No Change in Recommendation
Landfill No. 9 (Sand Hill)	60/Ground-Water Monitoring	66/Ground-Water Monitoring	No Change in Recommendation
Burial Site No. 1	58/None	64/None	No Change in Recommendation
Landfill No. 1	96/None	64/None	No Change in Recommendation
Landfill No. 2 (Tillman Pit)	62/Ground-Water Monitoring	61/None	Drop Site From Phase II Study
Burial Site No. 2	56/None	61/None	No Change in Recommendation
Coal Storage Pile	60/Ground-Water Monitoring Soil Sampling	59/None	Drop Site From Phase II Study
All Other Sites	-/None	-/None	No Change in Recommendation

⁽¹⁾ Hazard Evaluation Methodology, June 1981 (2) Hazard Assessment Kuting Methodology, January 1982

DATE OF OPERATION OR OCCURRENCE 1955 to 1962 OWNER/OPERATOR Wright-Patterson AFB COMMENTS/DESCRIPTION Leachate observed in new SITE RATED BY	resident	ial area		
I. RECEPTORS Rating Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
A. Population within 1,000 feet of site	3	4	12	12
B. Distance to nearest well	2	10	20	30
C. Land use/zoning within 1 mile radius	3	3	9	9
D. Distance to reservation boundary	3	6	18	18
E. Critical environments within 1 mile radius of site	3	10	30	30
F. Water quality of nearest surface water body	1	6	6	18
G. Ground water use of uppermost aquifer	3	9	27	27
A. Population served by surface water supply within 3 miles downstream of site	3	6	18	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotals	158	180
Receptors subscore (100 X factor so	ore subtotal	./maximum score	subtotal)	88
II. WASTE CHARACTERISTICS		•		
 Select the factor score based on the estimated quantity the information. 	y, the degre	e of hazard, a	nd the confi	dence level
 Waste quantity (S = small, M = medium, L = large) 				L
2. Confidence level (C = confirmed, S = suspected)				C
				Н
 Hazard rating (H = high, M = medium, L = low) 		score matrix)		100
3. Hazard rating (H = nigh, M = medium, L = 10W) Factor Subscore A (from 20 to 100 based	on factor s			
Factor Subscore A (from 20 to 100 based 3. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B		00		
Factor Subscore A (from 20 to 100 based) 3. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B 100 x 1.0		00		
Factor Subscore A (from 20 to 100 based 3. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B	=1			

111	P	Δ	T	Н١	N	A	Y	

	Pactor			* :
Rating Factor	Rating (0-3)	Multiplier	Factor Score	Possible Score
If there is evidence of migration of hazardous or direct evidence or 80 points for indirect evidence evidence or indirect evidence exists, proceed to	ce. If direct ev	gn maximum fact idence exists t	or subscore hen proceed	of 100 points to C. If no
			Subscore	80
Rate the migration potential for 3 potential patimigration. Select the highest rating, and proce		ater migration,	flooding, a	and ground-water
1. Surface water migration			2.4	1 24
Distance to nearest surface water	. 3	8	24	24
Net precipitation	2	6	12	18
Surface erosion	3	8	24	24
Surface permeability	2	6	12	18
Rainfall intensity	2	8	16	24
		Subtotals	88	108
Subscore (100 % fac	tor score subtota	l/maximum score	subtotal)	81
2. Flooding	0	1 1	0	3
	Subscore (100 x	factor score/3)		0
3. Ground-water migration	,,,,,	,		
·	2	8	16	24
Depth to ground water	2		12	18
Net precipitation	1	6	8	24
Soil permeability	1	8	8	24
Subsurface flows		8		
Direct access to ground water	3	8 !	24	24
		Subtotals	68	114
Subscore (100 x fac	tor score subtota	l/maximum score	subtotal)	60
. Highest pathway subscore.				
Enter the highest subscore value from A, B-1, B-	2 or B-3 above.			
		Pathway	s Subscore	80
V. WASTE MANAGEMENT PRACTICES				
. Average the three subscores for receptors, waste	characteristics,	, and pathways.		
·	eceptors			88
W	laste Characterist Pathways	ics		100
	-	divided by 3	•	90
ĭ	otal	diatom of 1	- Gr	oss Total Score
. Apply factor for waste containment from waste ma	nagement practice	rs		
Gross Total Score X Waste Management Practices F	actor = Final Sco	ore		
-	90	x 0.25		85

NAME OF SITE Spill No. 2	C-1	200		
LOCATION Area C - POL Tank Farm, Loop Roa	d near Gate	29C		
DATE OF OPERATION OR OCCURRENCE April 1976 OWNER/OPERATOR Wright-Patterson AFB			· 	
COMMENTS/DESCRIPTION Approximately 8300 gallon	s JP-4 spil	led, 5,000	gallons	recovered
SITE RATED BY C MINICANO				
	7			
I. RECEPTORS				
i. RECEPTORS	Factor			Maximum
Rating Factor	Rating (0-3)	Multiplier	Factor Score	Possible Score
A. Population within 1,000 feet of site	2	4	8	12
B. Distance to nearest well	3	10	30	30
C. Land use/zoning within 1 mile radius	2	3	6	9
	3	6	18	18
D. Distance to reservation boundary	3		30	30
E. Critical environments within 1 mile radius of site	1	10	6	18
F. Water quality of nearest surface water body	3	6		
G. Ground water use of uppermost aquifer		9	27	27
Population served by surface water supply within 3 miles downstream of site	3	6	18	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotals	161	180
Receptors subscore (100 X factor	score subtotal	./maximum score	subtotal)	89
II. WASTE CHARACTERISTICS				
A. Select the factor score based on the estimated quant the information.	tity, the degre	ee of hazard, a	nd the conf:	idence level
1. Waste quantity (S = small, M = medium, L = large	e)			
 Confidence level (C = confirmed, S = suspected) 				С
3. Hazard rating (H = high, M = medium, L = low)				Н
Factor Subscore A (from 20 to 100 ba	sed on factor s	score matrix)		100
3. Apply persistence factor				
Factor Subscore A X Persistence Factor = Subscore B				
x8		80		
C. Apply physical state multiplier				
Subscore 3 X Physical State Multiplier = Waste Char	acteristics Sub	score		
80 _x 1.0		80		
				

IIL.	P	A	Т	н	۷	٧	A	Y	S
------	---	---	---	---	---	---	---	---	---

	Rati	ng Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
λ.	dir	there is evidence of migration of hazardous ect evidence or 80 points for indirect evidence or indirect evidence exists, proceed	dence. If direct evid	n maximum factor dence exists the	subscore on proceed t	to C. If no
					Subscore	80
в.		e the migration potential for 3 potential pration. Select the highest rating, and pro-		er migration, f	looding, ar	nd ground-water
	1.	Surface water migration				
		Distance to nearest surface water	1	8	8	24
		Net precipitation	2	6	12	18
		Surface erosion	1	8	. 8	24
		Surface permeability	0	6	. 0	18
		Rainfall intensity	2	8	16	24
				Subtotals	44	108
		Subscore (100 X	factor score subtotal/	maximum score s	ubtotal)	41
	2.	Flooding		1	0	3
			Subscore (100 x fa	ector score/3)		0_
	3.	Ground-water migration				
		Depth to ground water	3	3	24	24
		Net precipitation	2	6	12	18
		Soil permeability	3	8	24	24
		Subsurface flows	0	a	0	24
		Direct access to ground water	3	8	24	24
				Subtotals	84	114
		Subscore (100 x :	factor score subtotal/	maximum score s	ubtotal)	74
c.	Hig	hest pathway subscore.				
	Ent	er the highest subscore value from A, B-1,	B-2 or B-3 above.			
				Pathways	Subscore	74
				·····		
IV.	W	ASTE MANAGEMENT PRACTICES				
A.	Ave	rage the three subscores for receptors, was	ste characteristics, a	and pathways.		
			Receptors Waste Characteristic Pathways	:s		89 30 80
			Total 249 d	livided by 3 =	Gros	s Total Score
3.	λợξ	oly factor for waste containment from waste	management practices			
	Gro	ss Total Score X Waste Management Practices	s Factor = Final 3core	•		
			83	x 1.0	•	83

DATE OF OPERATION OR OCCURRENCE Wright-Patterson A		andfill No.	ll, west	of runway
OWNER/OPERATOR Waste drums stored at site wer	e dispose	ed off-base	in 1974	
COMMENTS/DESCRIPTION Wright-Patterson AFB		<u> </u>		
SITE RATED BY CMIMana	jan			
•	1			
I. RECEPTORS	Factor			Maximum
	Rating		Pactor	Possible
Rating Factor	(0-3)	Multiplier	Score	Score
A. Population within 1,000 feet of site	1	4	4	12
B. Distance to nearest well	2	10	20	30
C. Land use/zoning within 1 mile radius	0	3	0	9
D. Distance to reservation boundary	3	6	18	18
E. Critical environments within 1 mile radius of site	3	10	30	30
P. Water quality of nearest surface water body	3	6	18	18
G. Ground water use of uppermost aquifer	3	9	27	27
H. Population served by surface water supply	-			
within 3 miles downstream of site	3	6	18	18
I. Population served by ground-water supply	3	6	18	18
within 3 miles of site		<u></u>	153	100
	_	Subtotals		<u>180</u> 85
Receptors subscore (100 X factor so	ore subtotal	./maximum score	subtotal)	===
II. WASTE CHARACTERISTICS				
A. Select the factor score based on the estimated quantity the information.	y, the degre	e of hazard, an	d the confi	dence level
 Waste quantity (S = small, M = medium, L = large) 				М
it waste demicited to a successful and successful a				C
2 Candidana lauri 15 - candidani C - cuanacadi				
2. Confidence level (C = confirmed, S = suspected)				7.7
 Confidence level (C = confirmed, S = suspected) Hazard rating (H = high, M = medium, L = low) 				<u>H</u>
•	on factor s	score matrix)		<u>H</u>
3. Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based	on factor s	score matrix)		
3. Hazard rating (H = high, M = medium, L = low)	on factor s	score matrix)		
 Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based Apply persistence factor 	on factor :			
 Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B 				
3. Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based 3. Apply persistence factor Factor Subscore A x Persistence Factor = Subscore B 30 x 0.9	<u>72</u>	<u></u>		

III.	P	Δ	T	Н١	N	A	Y	3

	Rati	ng Factor	Pactor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
A.	dir	there is evidence of migration of hazardous ect evidence or 80 points for indirect evide dence or indirect evidence exists, proceed t	nce. If direct evi			
					Subscore	N/A
в.		e the migration potential for 3 potential paration. Select the highest rating, and proc		ter migration,	flooding, and	d ground-water
	1.	Surface water migration				
		Distance to nearest surface water	3	8	24	24
		Net precipitation	2	6	12	18
		Surface erosion	1	8	8	24
		Surface permeability	0	6	0	18
		Rainfall intensity	2	8	16	24
				Subtotals	60_	108
		Subscore (100 X fa	ctor score subtotal	./maximum score	subtotal)	56
	2.	Flooding	3	1	3	3
			Subscore (100 x f	actor score/3)		100
	3.	Ground-water migration				
		Depth to ground water	2	8	16	24
		Net precipitation	2	6	12	18
		Soil permeability	3	8	24	24
		Subsurface flows	1	8	8	24
		Direct access to ground water	3	8	24	24
		offect access to growing water		Subtotals	94	
		Qubanana (100 m 5a				
_			ctor score subtotal	./maximum score	Subtotal)	
c.		hest pathway subscore.				
	Ent	er the highest subscore value from A, B-1, B	-2 or B-3 above.			100
				Pathway	s Subscore	
		ASTE MANAGEMENT PRACTICES				
IV	. ٧	ASTE MANAGEMENT PRACTICES				
A.	λve	rade the three subscores for receptors, wast	e character;	and pathways.		
			Receptors Waste Characterist_ Pathways	cs		100
		•	Total 257	divided by 3	= Gross	36 Total Score
э.	App	ly factor for waste containment from waste m	anagement practices	•		
	Gro	ss Total Score X Waste Management Practices	Factor = Final Scor			
			36	x x	<u> </u>	31

NAME OF SITE Spill No. 3				
LOCATION Area C - POL Tank Farm, Loop	Road			
DATE OF OPERATION OR OCCURRENCE March 1981				
OWNER/OPERATOR Wright-Patterson AFB				
COMMENTS/DESCRIPTION Spill of 2000 gallons of No		oil		
SITE RATED BY Cm ~~ unque	<u>~</u>			
l. RECEPTORS Rating Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
A. Population within 1,000 feet of site	2	4	8	12
	3	10	30	30
B. Distance to nearest well				
C. Land use/zoning within 1 mile radius	2	3	6	9
D. Distance to reservation boundary	3	6	18	18
E. Critical environments within 1 mile radius of site	3	10	30	30
F. Water quality of nearest surface water body	1	66	66	18
G. Ground water use of uppermost aquifer	3	9	27	27
H. Population served by surface water supply within 3 miles downstream of site	3	6	18	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotals	161	180
Receptors subscore (100 % factor so	core subtotal	./maximum score	subtotal)	_89
II. WASTE CHARACTERISTICS				
A. Select the factor score based on the estimated quantit the information.	cy, the degre	e of hazard, a	nd the confi	dence level
1. Waste quantity (S = small, M = medium, L = large)				М
2. Confidence level (C = confirmed, S = suspected)				<u> </u>
 Hazard rating (H = high, M = medium, L = low) 				Н
Factor Subscore A (from 20 to 100 based	on factor s	score matrix)		80
Factor Subscore A (from 20 to 100 based	i on factor :	score matrix)		80
•	i on factor s	score matrix)	·	80
Factor Subscore A (from 20 to 100 based 3. Apply persistence factor		score matrix)	·	80
Factor Subscore A (from 20 to 100 based 3. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B				80
Factor Subscore A (from 20 to 100 based 3. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B 80 x	.3 •	64	·	80

HL.	P	A'	T١	4١	N	Α	Y	S

	Rati	ng Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
۸.	dir	there is evidence of migration of hazardous ect evidence or 80 points for indirect evide dence or indirect evidence exists, proceed t	ence. If direct evi			to C. If no
					Subscore	80
3.		e the migration potential for 3 potential paration. Select the highest rating, and produced the select the highest rating, and produced the select the highest rating.		ter migration,	flooding, a	nd ground-water
	1.	Surface water migration		Ī		
		Distance to nearest surface water	1	8	8	24
		Net precipitation	2	6	12	18
		Surface erosion	1	8	8	24
		Surface permeability	0	6	0	18
		Rainfall intensity	2	8	16	24
				Subtotals	44	108
		Subscore (100 X fa	actor score subtotal	/maximum score	subtotal)	41
	2.	Flooding	0	1	0	3
			Subscore (100 x f	actor score/3)		0_
	3.	Ground-water migration				
		Depth to ground water	3	8	24	24
		Net precipitation	2	6	12	18
		Soil permeability	3	8	24	24
		Subsurface flows	0	8	0	24
			3	8	24	24
		Direct access to ground water	· · · · · · · · · · · · · · · · · · ·	Subtotals	84	114
		·	actor score subtotal	/maximum score	SUDTOTAL)	<u>74</u>
c.		hest pathway subscore.				
	Ent	er the highest subscore value from A, B-1, E	3-2 or B-3 above.			
				Pathway	s Subscore	80
IV.	W	ASTE MANAGEMENT PRACTICES				
Α.	Ave	rage the three subscores for receptors, wast	e characteristics,	and pathways.		-
			Receptors Waste Characteristi			39 54
			Pathways Total 233			<u>50</u> 78
			Total 233	divided by 3	Gro	ss Total Score
в.	УĎБ	ly factor for waste containment from waste π	nanagement practices			
	Gro	ss Total Score X Waste Management Practices	Factor = Final Scor	e		
			78	x1.0		78

LOCATION Area B - off Kaufman Avenue		<u> </u>		
Was able Date and All				
War i long in a down language to	orders lar	dfill to	ahaha fu	
				om site na reported.
SITE RATED BY				eported.
I. RECEPTORS	Factor Rating		Factor	Maximum Possible
Rating Factor	(0-3)	Multiplier	Score	Score
A. Population within 1,000 feet of site	3	4	12	12
B. Distance to nearest well	2	10	20	30
C. Land use/zoning within 1 mile radius	3	3	9	9
D. Distance to reservation boundary	3	6	18	18
E. Critical environments within 1 mile radius of site	3	10	30	30
F. Water quality of nearest surface water body	1	6	6	18
G. Ground water use of uppermost aquifer	3	9	27	27
H. Population served by surface water supply within 3 miles downstream of site	3	6	18	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotals	158	180
Receptors subscore (100 % factor s	core subtotal	L/maximum score	subtotal)	_88
II. WASTE CHARACTERISTICS				
A. Select the factor score based on the estimated quantithe information.	ty, the degre	ee of hazard, a	nd the confi	dence level
1. Waste quantity (S = small, M = medium, L = large)				<u></u>
 Confidence level (C = confirmed, S = suspected) 				С
3. Hazard rating (H = high, M = medium, L = low)				Н
Factor Subscore A (from 20 to 100 base	d on factor (mana matriul		100
	d on lactor :	score macrix,		100
B. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B				
	- 9	0		
Factor Subscore A X Persistence Factor = Subscore B		0		
Factor Subscore A X Persistence Factor = Subscore B 100 x 0.9				

111.	P	Δ	TI	4١	N	A	Y	S

			Factor		_	Maximum
	Rati	ng Factor	Rating (0-3)	Multiplier	Factor Score	Possible Score
Α.	dir	there is evidence of migration of hazardous ect evidence or 80 points for indirect evidence or indirect evidence exists, proceed	ence. If direct ev			
					Subscore	80_
в.		e the migration potential for 3 potential paration. Select the highest rating, and pro-		ater migration,	, flooding, a	ind ground-water
	1.	Surface water migration				
		Distance to nearest surface water	2	8	16	24
		Net precipitation	2	6	12	18
		Surface erosion	3	8	24	24
		Surface permeability	2	6	12	18
		Rainfall intensity	2	8	16	24
				Subtotals	80	108
		Subscore (100 X f	actor score subtotal	l/maximum score	subtotal)	74
	2.	Flooding	0	,	0] 3
			Subscore (100 x	factor score/3)		0
	3.	Ground-water migration	,,,,,,			
	٠.	Depth to ground water	2	a	16	24
			2	6	12	18
		Net precipitation	1			
		Soil permeability		8	8	24
		Subsurface flows	1	8	8	24
		Direct access to ground water	3	8 !	24	24
				Subtotals	68	114
		Subscore (100 x f	actor score subtotal	l/maximum score	subtotal)	<u>60</u>
c.	Hig	hest pathway subscore.				
	Ent	er the highest subscore value from A, B-1, $\frac{1}{2}$	B-2 or B-3 above.			
				Pathway	s Subscore	80
				7		
۱۷.	W	ASTE MANAGEMENT PRACTICES				
Α.	Ave	rage the three subscores for receptors, was	te characteristics,	and pathways.		
			Receptors Waste Characterist Pathways	· •••;		88 .6 <u>3</u> .80
			Total 236	divided by 3	■ Gro	70 Total Score
в.	УÞÞ	ly factor for waste containment from waste :	management practices	s		
	Gro	ss Total Score X Waste Management Practices	Factor = Final Scot	re		
			79	x 0.95		75

Fire Training Areas No.'s 3 and Location Area C, directly south of Landfil DATE OF OPERATOR Wright-Patterson AFB	1 No. 11			
OWNER/OPERATOR WIIGHT-FACTORSON AFB COMMENTS/DESCRIPTION 2000 gallon spill				
SITE RATED BY C TYN TYNN	an			
	/			
I. RECEPTORS				
Rating Factor	Factor Rating	Multiplica	Factor	Maximum Possible Score
A. Population within 1,000 feet of site	1	Multiplier 4	Score 4	12
	2		20	30
3. Distance to nearest well	1	10	3	9
C. Land use/zoning within 1 mile radius	3	3		
D. Distance to reservation boundary		6	18	18
E. Critical environments within 1 mile radius of site	3	10	30	30
F. Water quality of nearest surface water body	1	6	6	18
G. Ground water use of uppermost aquifer	3	9	27	27
H. Population served by surface water supply within 3 miles downstream of site	3	6	18	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotals	144	180
Receptors subscore (100 % factor so	ore subtotal	./maximum score	subtotal)	80
II. WASTE CHARACTERISTICS		•		
A. Select the factor score based on the estimated quantity the information.	y, the degre	e of hazard, an	d the confi	dence level
1. Waste quantity (S = small, M = medium, L = large)				М
 Confidence level (C = confirmed, S = suspected) 				С
•				Н
 Hazard rating (H = high, M = medium, L = low) 				
3. Hazard rating (H = high, M = medium, L = low)				0.0
3. Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based	on factor s	score matrix)		80
	on factor s	score matrix)		80
Factor Subscore A (from 20 to 100 based 3. Apply persistence factor	on factor s	core matrix)	·	80
Factor Subscore A (from 20 to 100 based 3. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B 80 x 0.9	on factor s		·	80
Factor Subscore A (from 20 to 100 based 3. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B		72		80

IIL PATHWAYS	111.	P	ATI	H٧	IA	YS
--------------	------	---	-----	----	----	----

Rating Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
A. If there is evidence of migration of hazardo direct evidence or 80 points for indirect ev evidence or indirect evidence exists, process	vidence. If direct evidence	n maximum facto dence exists th	r subscore o	of 100 points to C. If no
			Subscore	N/A
 Rate the migration potential for 3 potential migration. Select the highest rating, and p 	L pathways: surface war proceed to C.	ter migration,	flooding, ar	nd ground-water
1. Surface water migration		,	1	
Distance to mearest surface water	3	8	24	24
Net precipitation	2	6	12	24
Surface erosion		8	0	24
Surface permeability	0	6	0	18
Rainfall intensity	2	8	16	24
		Subtotals	52	108
Subscore (100)	K factor score subtotal,	maximum score	subtotal)	48
2. Flooding	2	1	2	3
	Subscore (100 x fa	actor acore/3)		67
3. Ground-water migration				
Depth to ground water	3	8	24	24
Net precipitation	2	6	12	18
Soil permeability	3	8	24	24
Subsurface flows	0	В	0	24
	3	8	24	
Direct access to ground water	<u> </u>			24
		Subtotals	84	114
	: factor score subtotal/	maximum score :	subtotal)	74
. Highest pathway subscore.				
Enter the highest subscore value from A, B-1	, B-2 or B-3 above.			74
		Pathways	Subscore	
V. WASTE MANAGEMENT PRACTICES				
. Average the three subscores for receptors, w	chasastasistics :	and makhirana		
. Average the three subscores for receptors, w	·	ino pacitways.		00
	Receptors Waste Characteristic Pathways	: s		80 72 74
	Total 226 d	livided by 3	• Gros	75 Fotal Score
. Apply factor for waste containment from wast	e management practices			
Gross Total Score X Waste Management Practic	es factor = Final Score	1		
	75	x1.	0 -	75

NAME OF SITE Fire Training Area No. 1				
LOCATION Area C - Twin Lakes area south	of family	camping ar	ea	
DATE OF OPERATION OR OCCURRENCE 1950 to 1955				
OWNER/OPERATOR Wright-Patterson AFB				
COMMENTS/DESCRIPTION Waste fuel burned			······	
SITE RATED BY CM mangan	~			
I. RECEPTORS Rating Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
A. Population within 1,000 feet of site	0	4	00	12.
B. Distance to nearest well	3	10	30	30
C. Land use/zoning within 1 mile radius	1	3	3	9
D. Distance to reservation boundary	3	6	18	18
E. Critical environments within 1 mile radius of site	3	10	30	30
F. Water quality of nearest surface water body	1	6	6	18
G. Ground water use of uppermost aquifer	3	9	27	27
H. Population served by surface water supply within 3 miles downstream of site	3	6	18	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	_18
		Subtotals	150	180
Receptors subscore (100 % factor so	core subtotal	./maximum score	subtotal)	_83
II. WASTE CHARACTERISTICS				
A. Select the factor score based on the estimated quanti- the information.	ty, the degre	e of hazard, ar	d the confi	idence level
!. Waste quantity (S = small, M = medium, L = large)				_ M
2. Confidence level (C = confirmed, S = suspected)				<u> </u>
3. Hazard rating (H = high, M = medium, L = low)				Н
Factor Subscore A (from 20 to 100 base	i on factor s	core matrix)		80
3. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B 80 0.8		64		
C. Apply physical state multiplier				
Subscore 3 X Physical State Multiplier = Waste Charac	teristics Sub	score		
64 _x 1.0		64		
^^				

111.	PA	١TI	٠W	IΑ	YS
------	----	-----	----	----	----

	Rati	ng Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
۹.	dire	there is evidence of migration of hazardous ect evidence or 80 points for indirect evid- dence or indirect evidence exists, proceed	ence. If direct evi	n maximum fact dence exists	tor subscore then proceed	of 100 points for to C. If no
					Subscore	N/A
в.		a the migration potential for 3 potential praction. Select the highest rating, and pro-		ter migration	, flooding, a	nd ground-water
	1.	Surface water migration		ı		t
		Distance to nearest surface water	3	8	24	24
		Net precipitation	2	6	12	18
		Surface erosion	0	8	0	24
		Surface permeability	0	6	0	18
		Rainfall intensity	2	8	_16	24
				Subtotal	52	108
		Subscore (100 X f.	actor score subtotal	/maximum score	subtotal)	48_
	2.	Flooding	1	1	1	3
			Subscore (100 x f	actor score/3)	33
	3.	Ground-water migration				
		Depth to ground water	3	8	24	24
		Net precipitation	2	6	12	18
		Soil permeability	3	8	24	24
		Subsurface flows	0	8	0	24
			3	8	24	24_
		Direct access to ground water		Subtotal		1:4
			actor score subtotal	/maximum score	e subtotal)	74_
c.	-	hest pathway subscore.				
	Ent	er the highest subscore value from A, B-1,	B-2 or B-3 above.			74
				Pathway	ys Subscore	
IV.	_ ·_ . w	ASTE MANAGEMENT PRACTICES				
A.	Ave	rage the three subscores for receptors, was	te characteristics,	and pathways.		
			Receptors			23
			Waste Characteristi Pathways	cs		74
			Total 221	divided by 3	■ Gro	ss Total Score
в.	УĎЬ	ly factor for waste containment from waste	management practices	;		
	Gro	ss Total Score X Waste Management Practices	Factor = Final Scor	e		
			74	x1.	0 .	7.4
			L-14			

NAME OF SITE Fire Training Area No. 2				
LOCATION Area C - north side of Riverview Rd.	approx	imately 140	0 feet N	E of Landfill
DATE OF OPERATION OR OCCURRENCE 1955 to 1960				
OWNER/OPERATOR Wright-Patterson AFB				
COMMENTS/DESCRIPTION Waste fuel burned				
SITE RATED BY C ? \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	gar-			
·	}			
I. RECEPTORS			•	
	Factor Rating		Factor	Maximum Possible
Rating Factor	(0-3)	Multiplier	Score	Score
A. Population within 1,000 feet of site	1	4	4	12
B. Distance to nearest well	2	10	20	30
C. Land use/zoning within 1 mile radius	1	3	3	9
D. Distance to reservation boundary	3	6	18	18
E. Critical environments within ! mile radius of site	3	10	30	30
F. Water quality of nearest surface water body	1	6	6	18
G. Ground water use of uppermost aquifer	3	9	27	27
H. Population served by surface water supply within 3 miles downstream of site	3	6	18	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotals	144	180
Receptors subscore (100 X factor score	e subtotal	L/maximum score	subtotal)	80
II. WASTE CHARACTERISTICS				
 Select the factor score based on the estimated quantity, the information. 	the degre	ee of hazard, an	d the confi	dence level of
 Waste quantity (S = small, M = medium, L = large) 				М
 Confidence level (C = confirmed, S = suspected) 				C
 Hazard rating (H = high, M = medium, L = low) 				Н
				80
Factor Subscore A (from 20 to 100 based or	n factor s	score matrix)		
3. Apply persistence factor Factor Subscore A X Persistence Factor * Subscore B			•	
80 x 3		64		
C. Apply physical state multiplier				
Subscore B X Physical State Multiplier = Waste Character	istics Sub	oscore		
64x 1.0	_	64		
^	_ =			

			Pactor			Maximum
	Rating	Factor	Rating (0-3)	Multiplier	Factor Score	Possible Score
Α.	direct	ere is evidence of migration of hazardous t evidence or 80 points for indirect evid nce or indirect evidence exists, proceed	ence. If direct evi			
					Subscore	N/A
в.		the migration potential for 3 potential p tion. Select the highest rating, and pro		ater migration,	flooding, a	ind ground-water
	1. S	urface water migration			2.4	
	<u>D:</u>	istance to nearest surface water	3	8	24	24
	<u>N</u>	et precipitation	2	6	12	18
	St	urface erosion	0	8	0	24
	<u>s</u>	urface permeability	0	6	0	18
	R	ainfall intensity	2	8	16	24
				Subtotals	52_	108
		Subscore (100 % f	actor score subtotal	L/maximum score	subtotal)	48
	2. <u>F</u>	looding	2	1	2	3
			Subscore (100 x 1	factor score/3)		67
	3. G	round-water migration				
	D	epth to ground water	3	8	24	24
	N	et precipitation	2	6	12	18
	s	oil permeability	3	8	24	24
	Si	ubsurface flows	0	8	0	24
	۵	irect access to ground water	3	9	24	24
				Subtotals	84	114
		Subscore (100 x f	actor score subtotal	L/maximum score	subtotal)	74
c.	Highe:	st pathway subscore.				
	Enter	the highest subscore value from A, B-1,	B-2 or B-3 above.			
		•		Pathway	s Subscore	74
IV	WAS	STE MANAGEMENT PRACTICES				
A.	Avera	ge the three subscores for receptors, was	te characteristics.	and pathways.		
		7- 4.6 4.	Receptors	• -		80
			Waste Characterist: Pathways	ics		64 74
			Total 218	divided by 3	Gro	73 Total Score
з.	yöblà	factor for waste containment from waste	management practices	8		
	Gross	Total Score X Waste Management Practices	Factor = Final Scor		_	
			73	_ x1.0		73
			L-16			

OWNER/OPERATOR Wright-Patterson AFB				-
COMMENTS/DESCRIPTION 16 acre site, local soil co		ial vegetat	ion	
SITE RATED BY CTYLINIANA	an			
1. RECEPTORS Rating Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
A. Population within 1,000 feet of site	1	4	4	12
B. Distance to nearest well	2	10	20	30
C. Land use/zoning within 1 mile radius	0	3	0	9
D. Distance to reservation boundary	3	6	18	18
E. Critical environments within 1 mile radius of site	3	10	30	30
F. Water quality of nearest surface water body	3	6	18	18
G. Ground water use of uppermost aquifer	3	9	27	27
H. Population served by surface water supply within 3 miles downstream of site	3	6	18	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotals	153	180
Receptors subscore (100 X factor so	core subtotal	./maximum score	subtotal)	35_
II. WASTE CHARACTERISTICS				
		e of hazard. a	nd the confi	
	ty, the degre			dence level
A. Select the factor score based on the estimated quantit	ty, the degre			dence level
A. Select the factor score based on the estimated quantity the information.	ty, the degre			
A. Select the factor score based on the estimated quantity the information. 1. Waste quantity (S = small, M = medium, L = large)	ty, the degre			<u>M</u>
A. Select the factor score based on the estimated quantity the information. 1. Waste quantity (S = small, M = medium, L = large) 2. Confidence level (C = confirmed, S = suspected) 3. Hazard rating (H = high, M = medium, L = low)				M C
A. Select the factor score based on the estimated quantity the information. 1. Waste quantity (S = small, M = medium, L = large) 2. Confidence level (C = confirmed, S = suspected) 3. Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based)				М С М
A. Select the factor score based on the estimated quantity the information. 1. Waste quantity (S = small, M = medium, L = large) 2. Confidence level (C = confirmed, S = suspected) 3. Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based)				
A. Select the factor score based on the estimated quantity the information. 1. Waste quantity (S = small, M = medium, L = large) 2. Confidence level (C = confirmed, S = suspected) 3. Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based) 3. Apply persistence factor	on factor s	core matrix)		М М
A. Select the factor score based on the estimated quantity the information. 1. Waste quantity (S = small, M = medium, L = large) 2. Confidence level (C = confirmed, S = suspected) 3. Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based) 3. Apply persistence factor Factor Subscore A x Persistence Factor = Subscore B 60 x 1.0	on factor s	core matrix)	·	М С М
A. Select the factor score based on the estimated quantity the information. 1. Waste quantity (S = small, M = medium, L = large) 2. Confidence level (C = confirmed, S = suspected) 3. Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based) 3. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B	on factor s	core matrix)	·	М С М

111	P	ΔTI	٦W	Α	YS
488					

	Rati	ng Factor	Rating (0-3)	Multiplier	Factor Score	Possible Score	
Α.	dir	there is evidence of migration of hazardous ect evidence or 80 points for indirect evid dence or indirect evidence exists, proceed	ence. If direct ev				Эľ
					Subscore	80	
В.		e the migration potential for 3 potential praction. Select the highest rating, and produced the highest rating and highest		ater migration,	flooding, ar	nd ground-water	
•	1.	Surface water migration		1	ı	ı	
		Distance to nearest surface water	3	8	24	24	
		Net precipitation	2	6	12	18	
		Surface erosion	3	8	24	24	
		Surface permeability	0	6		18	
		Rainfall intensity	2	8	16	24	
				Subtotals	76	108	
		Subscore (100 % f.	actor score subtota	l/maximum score	subtotal)	70	
	2.	Flooding	3	1	3	3	
			Subscore (100 x	factor score/3)		100	
	3.	Ground-water migration					
		Depth to ground water	3	8	24	24	
		Net precipitation	2	6	12	18	
		Soil permeability	3	8	24	24	
		Subsurface flows	3	8	24	24	
		Direct access to ground water	3	8	24	24	
				Subtotals	108	114_	
		Subscore (100 x f	actor score subtota	l/maximum score	subtotal)	95	
c.	Hig.	hest pathway subscore.					
	Ent	er the highest subscore value from A, B-1,	B-2 or B-3 above.				
				Pathway	s Subscore	_100_	
IV.	W	ASTE MANAGEMENT PRACTICES					
Α.	λve	rage the three subscores for receptors, was	te characteristics,	and pathways.			
			Receptors			85	
			Waste Characterist Pathways	ics		$\frac{45}{100}$	
			Total 230	divided by 3	•	77	
9	١	ly factor for users containment from	management practice		Gros	ss Total Score	
3.		ly factor for waste containment from waste	•				
	Gro	ss Total Score X Waste Management Practices	Factor * Final Sco		3.5		
				_ × <u></u> .	<u> </u>	73	

RECEPTORS Factor Rating Factor Possibl Rating Factor (0-3) Multiplier Score Score	OWNER/OPERATOR Wright-Patterson AFB				
RECEPTORS Rating					
Rating Factor Rating Pactor Rating Pactor Rating Pactor A. Population within 1,000 feet of site O	SITE RATED BY CMMingan				
B. Distance to nearest well C. Land use/zoning within 1 mile radius D. Distance to reservation boundary D. Distance use of uppermost action to the radius of site D. Distance use of uppermost action to the supply D. Distance use of uppermost action to the supply D. Distance use of uppermost action to the supply D. Distance use of uppermost action to the supply D. Distance use of uppermost action to the supply D. Distance use of uppermost action to the supply D. Distance use of uppermost action to the supply D. Distance use of uppermost action to the supply D. Distance to reservation to the uppermost action uppermost action to the uppermost	I. RECEPTORS Rating Factor	Rating	Multiplier		Maximum Possible Score
C. Land use/soning within 1 mile radius D. Distance to reservation boundary 3 6 18 18 E. Critical environments within 1 mile radius of site 3 10 30 30 F. Mater quality of nearest surface water body 3 6 18 13 G. Ground water use of uppermost aquifer 3 9 27 27 H. Population served by surface water supply 3 18 18 II. Population served by ground-water supply 3 6 18 18 II. Population served by ground-water supply 3 6 18 18 Receptors subscore (100 X factor score subtotal/maximum score subtotal) 90 III. WASTE CHARACTERISTICS A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence leve the information. 1. Waste quantity (S = small, M = medium, L = large) 2. Confidence level (C = confirmed, S = suspected) 3. Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based on factor score matrix) 60 X 0.7 = 54	A. Population within 1,000 feet of site	0	4	o	12
D. Distance to reservation boundary 3 6 18 18 2. Critical environments within 1 mile radius of site 3 10 30 30 3. F. Water quality of nearest surface water body 3 6 18 13 3. Ground water use of uppermost aquifer 4. Population served by surface water supply within 3 miles downstream of site 5. Population served by ground-water supply within 3 miles of site 6. Population served by ground-water supply within 3 miles of site 7. Population served by ground-water supply within 3 miles of site 8. Subtotals 162 180 Receptors subscore (100 X factor score subtotal/maximum score subtotal) 90 11. WASTE CHARACTERISTICS 12. Asset and the confidence level the information. 13. Waste quantity (S = small, M = medium, L = large) 24. Confidence level (C = confirmed, S = suspected) 25. Confidence level (C = confirmed, S = suspected) 26. Apply persistence factor Factor Subscore A (from 20 to 100 based on factor score matrix) 60 X 0. 3 54	3. Distance to nearest well	3	10	30	30
E. Critical environments within 1 mile radius of site 3 10 30 30 F. Water quality of nearest surface water body 3 6 18 13 G. Ground water use of uppermost aquifer 3 9 27 27 H. Population served by surface water supply within 3 miles downstream of site 5 18 18 18 T. Population served by ground-water supply within 3 miles of site 6 18 18 18 Subtotals 162 180 Receptors subscore (100 X factor score subtotal/maximum score subtotal) 90 Receptors subscore (100 X factor score subtotal/maximum score subtotal) 1. WASTE CHARACTERISTICS A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level the information. 1. Waste quantity (S = small, M = medium, L = large) 2. Confidence level (C = confirmed, S = suspected) 3. Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based on factor score matrix) 60 Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B 60	C. Land use/zoning within 1 mile radius	1	3	3	9
F. Water quality of nearest surface water body G. Ground water use of uppermost aquifer H. Population served by surface water supply within 3 miles downstream of site G. Population served by ground-water supply within 3 miles of site G. Population served by ground-water supply within 3 miles of site G. Population served by ground-water supply within 3 miles of site G. Subtotals 162 180 Receptors subscore (100 X factor score subtotal/maximum score subtotal) G. Subtotals 162 180 Receptors subscore (100 X factor score subtotal/maximum score subtotal) G. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence leve the information. G. Waste quantity (S = small, M = medium, L = large) G. Confidence level (C = confirmed, S = suspected) G. C. Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based on factor score matrix) G. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B G. O. J. 54	D. Distance to reservation boundary	3	6	18	18
G. Ground water use of uppermost aquifer 3 9 27 27 H. Population served by surface water supply within 3 miles downstream of site 5 18 18 18 T. Population served by ground-water supply within 3 miles of site 6 18 18 18 T. Population served by ground-water supply within 3 miles of site Subtotals 162 180 Receptors subscore (100 X factor score subtotal/maximum score subtotal) 90 II. WASTE CHARACTERISTICS A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence leve the information. 1. Waste quantity (S = small, M = medium, L = large) 2. Confidence level (C = confirmed, S = suspected) Factor Subscore A (from 20 to 100 based on factor score matrix) Factor Subscore A X Persistence Factor = Subscore B 60	E. Critical environments within 1 mile radius of site	3	10	30	30
R. Population served by surface water supply within 3 miles downstream of site 6. Population served by ground-water supply within 3 miles of site 7. Population served by ground-water supply within 3 miles of site 8. Subtotals 162 180 Receptors subscore (100 X factor score subtotal/maximum score subtotal) 90 Receptors subscore (100 X factor score subtotal/maximum score subtotal) 1. WASTE CHARACTERISTICS 1. Waste factor score based on the estimated quantity, the degree of hazard, and the confidence leve the information. 1. Waste quantity (S = small, M = medium, L = large) 2. Confidence level (C = confirmed, S = suspected) 3. Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based on factor score matrix) 60 8. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B 60 X 0.2 3 54	F. Water quality of nearest surface water body	3	6	18	13
### Actor Subscore A (from 20 to 100 based on factor score matrix) #### Apply persistence factor factor = Subscore B ###################################	G. Ground water use of uppermost aquifer	3	9	27	27
Receptors subscore (100 X factor score subtotal/maximum score subtotal) Receptors subscore (100 X factor score subtotal/maximum score subtotal) Receptors subscore (100 X factor score subtotal/maximum score subtotal) 90 Receptors subscore (100 X factor score subtotal/maximum score subtotal) 90 Receptors subscore based on the estimated quantity, the degree of hazard, and the confidence level information. 1. Waste quantity (S = small, M = medium, L = large) 2. Confidence level (C = confirmed, S = suspected) 3. Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based on factor score matrix) 60 8. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B 60 X 0.2 54		3	. 6	18	18
Receptors subscore (100 X factor score subtotal/maximum score subtotal) 90 II. WASTE CHARACTERISTICS A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level the information. 1. Waste quantity (S = small, M = medium, L = large) 2. Confidence level (C = confirmed, S = suspected) 3. Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based on factor score matrix) 60 Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B 60 X 0.2 3 54		3	6	18	18
MASTE CHARACTERISTICS A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level the information. 1. Waste quantity (S = small, M = medium, L = large) 2. Confidence level (C = confirmed, S = suspected) 3. Hazard rating (H = high, M = medium, L = low) Pactor Subscore A (from 20 to 100 based on factor score matrix) 60 X 0.2 = 54			Subtotals	162	180
A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence leve the information. 1. Waste quantity (S = small, M = medium, L = large) 2. Confidence level (C = confirmed, S = suspected) 3. Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based on factor score matrix) 60 Apply persistence factor Factor Subscore A x Persistence Factor = Subscore B 60 x 0.2 = 54			/maximum score	subtotal)	90
the information. 1. Waste quantity (S = small, M = medium, L = large) 2. Confidence level (C = confirmed, S = suspected) 3. Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based on factor score matrix) 60 Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B 60 X 0.0 3 54	Receptors subscore (100 % factor so	core subtotal	,		
2. Confidence level (C = confirmed, S = suspected) 3. Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based on factor score matrix) 60 Apply persistence factor Factor Subscore A x Persistence Factor = Subscore B 60 x 0.2 = 54	•	core subtotal	,		
3. Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based on factor score matrix) 60 Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B 60 X 0.0 3 54	II. WASTE CHARACTERISTICS A. Select the factor score based on the estimated quantity			d the confi	
Factor Subscore A (from 20 to 100 based on factor score matrix) 3. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B 60 x 0.2 = 54	 WASTE CHARACTERISTICS Select the factor score based on the estimated quantity the information. 			d the confi	dence leve
3. Apply persistence factor Factor = Subscore B 60 x 0.2 = 54	 WASTE CHARACTERISTICS Select the factor score based on the estimated quantity the information. Waste quantity (S = small, M = medium, L = large) 			d the confi	dence leve
Factor Subscore A X Persistence Factor = Subscore B 60 x 0.0 = 54	 WASTE CHARACTERISTICS Select the factor score based on the estimated quantity the information. Waste quantity (S = small, M = medium, L = large) Confidence level (C = confirmed, S = suspected) 			d the confi	dence leve
	 WASTE CHARACTERISTICS Select the factor score based on the estimated quantity the information. Waste quantity (S = small, M = medium, L = large) Confidence level (C = confirmed, S = suspected) Hazard rating (H = high, M = medium, L = low) 	ry, the degre	e of hazard, an	d the confi	dence leve:
C. Apply physical state multiplier	 WASTE CHARACTERISTICS Select the factor score based on the estimated quantity the information. Waste quantity (S = small, M = medium, L = large) Confidence level (C = confirmed, S = suspected) Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based) Apply persistence factor 	ry, the degre	e of hazard, an	d the confi	dence leve:
	 WASTE CHARACTERISTICS Select the factor score based on the estimated quantity the information. Waste quantity (S = small, M = medium, L = large) Confidence level (C = confirmed, S = suspected) Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based) Apply persistence factor factor Subscore A X Persistence Factor = Subscore B 	ey, the degre	e of hazard, an	d the confi	dence leve

III. PATHWAYS

	Rati	ng Factor	Rating (0-3)	Multiplier	Factor Score	Possible Score
Α.	dir	there is evidence of migration of hazardous ect evidence or 80 points for indirect evide dence or indirect evidence exists, proceed t	nce. If direct evid	n maximum factor dence exists the	subscore n proceed	of 100 points for to C. If no
					Subscore	N/A
в.	mig	e the migration potential for 3 potential paration. Select the highest rating, and proc		ter migration, f	looding, a	ınd ground-water
	1.	Surface water migration	1 2	. 1		
		Distance to nearest surface water	2	8	<u>24</u> 	18
		Net precipitation	2	6	16	24
		Surface erosion	0	8	0	18
		Surface permeability	2	6	16	24
		Rainfall intensity	2	8	68	<u> </u>
				Subtotals		108 63
		Subscore (100 X fa	ctor score subtotal,	/maximum score s		1
	2.	Flooding	0	1	0	3
			Subscore (100 x fa	actor score/3)		0
	3.	Ground-water migration		,		
		Depth to ground water	3	3	24	24
		Net precipitation	2	6	12	18
		Soil permeability	3	8	24	24
		Subsurface flows	2	9	16	24
		Direct access to ground water	3	8	24	24
				Subtotals	100	<u> 114</u>
		Subscore (100 x fa	ctor score subtotal,	/maximum score s	ubtotal)	38
: .	Hig	hest pathway subscore.				
	Ent	er the highest subscore value from A, B-1, 9	-2 or B-3 above.			
				Pathways	Subscore	88
IV.	w	ASTE MANAGEMENT PRACTICES				
Α.	Ave	rage the three subscores for receptors, wast	e characteristics.	and pathways.		
			Receptors			90
			Waste Characteristic Pathways	:s		<u>- 41</u> 33
			Total 219 (divided by 3 =	Gro	oss Total Score
з.	App.	ly factor for waste containment from waste m	anagement practices			
	Gro	ss Total Score X Waste Management Practices	Factor = Final Score	•		
			73	x 0.93		ag .

NAME OF SITELandfills No. 3, 4, 6 & 7				
LOCATION Area A - Adjacent to Disposal Road	d, mainte	nance area	and horse	harn
DATE OF OPERATION OR OCCURRENCE 1945-1962				
OWNER/OPERATOR Wright-Patterson AFB		2 2		
COMMENTS/DESCRIPTION 35 acre site, local soil o		ded		
SITE RATED BY CONTINUATION	<u> </u>			
I. RECEPTORS Rating Factor	Factor Rating (0-3)	Multiplier_	Factor Score	Maximum Possible Score
2. Population within 1,000 feet of site	2	4	3	12
			l	
B. Distance to nearest well	2	10	20 	30
C. Land use/zoning within ! mile radius		3	6	13
D. Distance to reservation boundary	3	6	18	13
E. Critical environments within 1 mile radius of site	3	10	30	30
F. Water quality of nearest surface water body	3	6	18	18
G. Ground water use of uppermost aquifer	3	9	27	27
H. Population served by surface water supply within 3 miles downstream of site	3	5	18	18
I. Population served by ground-water supply within 3 miles of site	3	6	13	18
		Subtotals	1.63	130
Receptors subscore (100 % factor so	ore subtotal	./maximum score	subtotal)	91
IL WASTE CHARACTERISTICS				
 Select the factor score based on the estimated quantity the information. 	ry, the degre	e of hazard, a	nd the confi	dence level
1. Waste quantity (3 = small, M = medium, L = large)				L
2. Confidence level /C = confirmed, S = suspected)				<u>_S</u>
 Hazard rating (H = high, M = medium, L = low) 				М
7 Cubassa 1 (5mm 20 to 100 bassa	l as fratar a	iv)		50
Factor Subscore A (from 20 to 100 bases	on factor s	score matrix;		
 Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B 				
50 _x 0.9	-	. 5		
C. Apply physical state multiplier				
Subscore 3 X Physical State Multiplier = Waste Charact	eristics Sub	oscore		
		ر ر		
45 x 0.5	=			

ш	PA	TH	W	A'	YS

	₹ <u>a</u> -i	ng Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
A.	dir	there is evidence of migration of hazardous ect evidence or 80 points for indirect evidence or indirect evidence exists, proceed	ence. If direct evi			
					Subscore	N/A
в.		e the migration potential for 3 potential procession. Select the highest rating, and proc		eter migration	, flooding, a	nd ground-water
	1.	Surface water migration				1
		Distance to nearest surface water	3	8	24	24
		Net precipitation	2	6	12	18
		Surface erosion	1	8	8	24
		Surface permeability	0	6	0	18
		Rainfall intensity	2	8	16	24
				Subtotals	60	108
		Subscore (100 X fa	actor score subtotal	/maximum score	subtotal)	56
	2.	Flooding	0	1	0	3
			Subscore (100 x f	actor score/3)		0
	3.	Ground-water migration				
		Depth to ground water	3	88	24	24
		Net precipitation	2	6	12	18
		Soil permeability	3	8	24	24
		Subsurface flows	3	8	24	24
		Direct access to ground water	3	8	24 .	24
				Subtotals	108	114
		Subscore (100 x f	actor score subtotal	/maximum score	subtotal)	95
c.	Hig	hest pathway subscore.				
	Ent	er the highest subscore value from A, B-1, 1	8-2 or B-3 above.			
		•		Pathway	s Subscore	95_
				•		
IV.	W	ASTE MANAGEMENT PRACTICES				
Α.	Ave	rage the three subscores for receptors, was	te characteristics.	and pathways.		
		•	Receptors Waste Characteristi Pathways			91
			200	divided by 3	■ Gro:	7C
3.	λpp	ly factor for waste containment from waste of	management practices	1		
	Gro	ss Total Score X Waste Management Practices	Factor = Final Scor	e		
			70	x x	25	<u>ဝိပ်</u>

NAME OF SITE LandIII No. 9 (Sand Hill)	··			
Area C - east end of runway, west	of Sand	Hill Road		
DATE OF OPERATION OR OCCURRENCES				
OWNER/OPERATOR Wright-Patterson AFB COMMENTS/DESCRIPTION 9 acre site, local soil cov	er veget	ation		
		acton		
SITE RATED BY CYN manga				
I. RECEPTORS Rating Factor	Factor Rating (0-3)	Multiplier	Pactor Score	Maximum Possible Score
A. Population within 1,000 feet of site	1	4	4	12
	2		20	
B. Distance to nearest well		10	- 	30
C. Land use/zoning within 1 mile radius	1	3	3	9
D. Distance to reservation boundary	3	6	18	18
E. Critical environments within ! mile radius of site	3	10	30	30
F. Water quality of nearest surface water body	3	6	18	18
G. Ground water use of uppermost aquifer	3	9	27	27
H. Population served by surface water supply within 3 miles downstream of site	3	6	18	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotals	156	180
Receptors subscore (100 % factor so	ore subtotal	./maximum score	subtotal)	_97
II. WASTE CHARACTERISTICS				
A. Select the factor score based on the estimated quantit the information.	y, the degre	e of hazard, an	d the confi	dence level
1. Waste quantity (S = small, M = medium, L = large)				М
 Confidence level (C = confirmed, S = suspected) 				С
 Hazard rating (H = high, M = medium, L = low) 				Н
Factor Subscore A (from 20 to 100 based	on factor s	core matrix)		80
B. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B				
80x0.9	=	2		
C. Apply physical state multiplier				
Subscore 3 X Physical State Multiplier = Waste Charact	eristics Sub	score		
72 • 0.75	" 5	1		

III.	P	A٦	ГΗ	W	Α	Y5
------	---	----	----	---	---	----

	Rati	ng Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
A.	dir	there is evidence of migration of hazardous ect evidence or 80 points for indirect evidence or indirect evidence exists, proceed to	ence. If direct ev			
					Subscore	N/A
в.		e the migration potential for 3 potential per ration. Select the highest rating, and prod		ater migration,	flooding, a	nd ground-water
	1.	Surface water migration			16	
		Distance to nearest surface water	2	8	16	24
		Net precipitation	2	6	12	18
		Surface erosion	2	8	16	24
		Surface permeability	2	6	12	18
		Rainfall intensity	2	8	16	24
				Subtotals	72	108
		Subscore (100 X fa	actor score subtotal	l/maximum score	subtotal)	67
	2.	Flooding		1	0	3
			Subscore (100 x	factor score/3)		0
	3.	Ground-water migration				
		Depth to ground water	2	8	16_	24
		Net precipitation	2	6	12	18
		Soil permeability	1	8	3	24
		Subsurface flows	1	8	8	24
			3	8	24	24
		Direct access to ground water	<u>h</u>			2 4 <u>114</u>
				Subtotals		
		·	actor score subtotal	T/waximum acore	subtotal)	60
c.	-	hest pathway subscore.				
	Ent	er the highest subscore value from A, B-1, !	9-2 or B-3 above.			67
				Pathway	s Subscore	
IV.	W	ASTE MANAGEMENT PRACTICES				
Α.	Ave	rage the three subscores for receptors, was	te characteristics,	and pathways.		
			Receptors Waste Characterist Pathways	ic s		97
			Total 208	divided by 3	# Gro	SS Total Score
в.	App	ly factor for waste containment from waste :	management practices	8		
	Gro	ss Total Score X Waste Management Practices	Factor = Final Sco			,
			69	x	*	66

NAME OF SITE Burial Site No. 1				
LOCATION Area C - Approximately 1200 feet	east of d	coal storage	pile	
DATE OF OPERATION OR OCCURRENCE 1966-1971				
OWNER/OPERATOR Wright Patterson AFB				
COMMENTS/DESCRIPTION Disposal site for leaded fue		ge tank bott	om sludg	<u>e</u>
SITE RATED BY Commingue				
.)				
I. RECEPTORS				
	Factor Rating		Factor	Maximum Possible
Rating Factor	(0-3)	Multiplier	Score	Score
A. Population within 1,000 feet of site	2	4	8	12
B. Distance to nearest well	3	10	30	30
C. Land use/zoning within 1 mile radius	1	3	3	9
D. Distance to reservation boundary	3	6	18	18
E. Critical environments within 1 mile radius of site	3	10	30	30
F. Water quality of nearest surface water body	1	6	6	18
G. Ground water use of uppermost aquifer	3	9	27	27
H. Population served by surface water supply within 3 miles downstream of site	3	6	18	18
I. Population served by ground-water supply				
within 3 miles of site	3	6	18	18
		Subtotals	158	180
Receptors subscore (100 % factor sco	re subtotal	L/maximum score	subtotal)	88
II. WASTE CHARACTERISTICS				
A. Select the factor score based on the estimated quantity the information.	, the degre	ee of hazard, ar	d the confi	dence level of
1. Waste quantity (S = small, M = medium, L = large)				S
 Confidence level (C = confirmed, S = suspected) 				<u> </u>
 Hazard rating (H = high, M = medium, L = low) 				<u> </u>
				50
Factor Subscore A (from 20 to 100 based	on ractor s	score matrix)	•	
3. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B				
50 x .∂	•	40		
C. Apply physical state multiplier				
Subscore B X Physical State Multiplier = Waste Characte	ristics Sub	oscore		
40 x75		30		

111	1	P	Δ7	n-	۱۷	N	A	Y	S

			Factor		Backer	Maximum	
	Rati	ng Factor	Rating (0-3)	Multiplier	Factor Score	Possible Score	
A.	dir	there is evidence of migration of hazardous ect evidence or 80 points for indirect evidence or indirect evidence exists, proceed	ence. If direct evi				or
					Subscore	N/A	
в.		e the migration potential for 3 potential per ration. Select the highest rating, and pro-		ter migration,	flooding, a	ind ground-water	
	1.	•		1	•	1	
		Distance to nearest surface water	1	8	8	24	
		Net precipitation	2	6	12	18	
		Surface erosion	1	8	8	24	
		Surface permeability	0	6	0	18	
		Rainfall intensity	2	8	16	1 24	
				Subtotals	44	108	
		Subscore (100 X f	actor score subtotal	/maximum score	subtotal)	<u>- 41</u>	
	2.	Flooding	0 1	1	0	3	
			Subscore (100 x f	actor score/3)		<u> </u>	
	3.	Ground-water migration	1	ı		1	
		Depth to ground water	3	8	24	24	
		Net precipitation	2	6	12	18	
		Soil permeability	3	8	24	24	
		Subsurface flows	0	8	0	2-1	
		Direct access to ground water	3	8	24	24	
				Subtotals	84_	114	
		Subscore (100 x fa	actor score subtotal	/maximum score	subtotal)	74	
c.	Hig	hest pathway subscore.					
	Ent	er the highest subscore value from λ , $B-1$,	8-2 or 3-3 above.				
				Pathways	Subscore	74	
							
IV.	W	ASTE MANAGEMENT PRACTICES					
λ.	Ave	rage the three subscores for receptors, was	te characteristics,	and pathways.			
			Receptors			38	
			Waste Characteristi Pathways	CS.		74	
			Total 192	divided by 3	•	64	
				-	Gro	ss Total Score	
в.	App	ly factor for waste containment from waste :	management practices				
	Gro	ss Total Score X Waste Management Practices	Factor = Final Scor	e			
				. ×	<u> </u>	64	
			L-26				

NAME OF SITE Landfill No. 1				
LOCATION Area B - Approximately 700 feet w	est of Ai	r Force Mus	eum	
DATE OF OPERATION OR OCCURRENCE 1920's to 1940				
OWNER/OPERATOR Wright-Patterson AFB			<u></u>	
COMMENTS/DESCRIPTION 6.5 acre site, local soil			ion	
SITE RATED BY CMMan	<u>gan</u>			
•	/			
I. RECEPTORS				
Rating Factor	Pactor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
A. Population within 1,000 feet of site	1	4	4	12
B. Discance to nearest well	2	10	20	30
C. Land use/zoning within 1 mile radius	1	3	3	9
D. Distance to reservation boundary	3	6	18	18
E. Critical environments within 1 mile radius of site	3	10	30	30
F. Water quality of nearest surface water body	3	6	18	18
G. Ground water use of uppermost aquifer	3	9	27	27
H. Population served by surface water supply within 3 miles downstream of site	3	6	18	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotals	156	180
Receptors subscore (100 X factor score subtotal/maximum score subtotal)				
II. WASTE CHARACTERISTICS				
A. Select the factor score based on the estimated quantit the information.	y, the degre	e of hazard, an	d the confi	dence level o
 Waste quantity (S = small, M = medium, L = large) 				S
 Confidence level (C = confirmed, S = suspected) 				_S
3. Hazard rating (H = high, M = medium, L = low)				<u>M</u>
Factor Subscore A (from 20 to 100 based	on factor s	core matrix)		30
	. J. Lactor s	COLE MELLIA!		
 Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B 				
x9		27		
C. Apply physical state multiplier				
Subscore B X Physical State Multiplier = Waste Charact	eristics Sub	score		
x1.)	27		

IIL.	P	A	TH	۱۷	۷	Ά	Y	S
------	---	---	----	----	---	---	---	---

	Rati	ng Factor	Rating (0-3)	Multiplier	Factor Score	Possible Score
Α.	dire	there is evidence of migration of hazardous ect evidence or 80 points for indirect evidence or indirect evidence exists, proceed to	ence. If direct e			
					Subscore	N/A
в.	mig	the migration potential for 3 potential paration. Select the highest rating, and production.		water migration	n, flooding, a	nd ground-water
	1.	Surface water migration	1 1	1	1 8	1 24
		Distance to nearest surface water	2	8	 	18
		Net precipitation		6	12	
		Surface erosion	0	9	0	24
		Surface permeability	<u> </u>	6	0	18
		Rainfall intensity	2	8	16	24
				Subtota	<u> 36</u>	108
		Subscore (100 X fa	ector score subtot	al/maximum sco	ore subtotal)	33
	2.	Flooding	0	11	0	33
			Subscore (100 x	factor score/	'3)	0
	3.	Ground-water migration				1
		Depth to ground water	3	3	24	24
		Net precipitation	2	6	12	13
		Soil permeability	3	3	24	24_
		Subsurface flows	2	8	16	24
		Direct access to ground water	33	8	24	<u>! 24 </u>
				Subtota	100	114
		Subscore (100 x fa	actor score subtot	:al/maximum sco	ore subtotal)	38
c.	Hig	hest pathway subscore.				
	Ent	er the highest subscore value from A, 3-1, 1	B-2 or B-3 above.			
			•	Path	ays Subscore	33
IV.	W	ASTE MANAGEMENT PRACTICES				
Α.	Ave	rage the three subscores for receptors, was	te characteristics	s, and pathways	1.	
			Receptors Waste Characteris Pathways	stics		67 - 37 - 38
			Total 202	divided by :	gro	ess Total Score
3.	γpp	ly factor for waste containment from waste:	management practic	:es		
		ss Total Score X Waste Management Practices				
		- -	57	x	<u> 95</u>	5.1
			L-25			<u> </u>

t)			
hmanville Road			
operated as dum	np; 1955-19	75 as lan	dfill disposa
		 	
	lal vegetat	ion	
			
Protes			Maximum
Rating		Factor	Possible
(0-3)	Multiplier	Score	Score
2	4	8	12
2	10	20	30
2	3	6	9
3	6	18	18
ite 3	10	30	30
3	6	18	18
3	9	27	27
			18
	6	10	
3	6	18	18
	Subtotals	<u> 163</u>	180
actor score subtotal	./maximum score	subtotal)	91
			
quantity, the degre	e of hazard, a	nd the confi	dence level of
large)			s
cted)			S
ow)			M
00 based on factor s	score matrix)		30
ore B			
0.9	27		
Characteristics Sub	score		
0.5	14		
	Factor Rating (0-3) 2 2 2 3 ite 3 3 3 actor score subtotal quantity, the degree large) cted) ow) Characteristics Subtotal score B O.9 Characteristics Subtotal score Subtotal s	Pactor Rating (0-3) Multiplier 2 4 2 10 2 3 3 6 3 6 3 9 3 6 3 9 3 6 3 9 3 6 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10	hmanville Road operated as dump; 1955-1975 as landoil cover, partial vegetation Factor Rating (0-3) Multiplier Score 2 4 8 2 10 20 2 3 6 3 6 18 3 10 30 3 6 18 3 9 27 3 6 18 3 9 27 3 16 3 18 3 9 27 3 16 3 18 4 18 4 18 4 18 5 18 5 18 5 18 5 18 5 18 5 18 5 18 5

111	P	۸,	ГН	٧	11	۱Y	S

			Factor Rating		Factor	Maximum Possible
		ng Factor	(0-3)	Multiplier	Score	Score
	dire	there is evidence of migration of hazardous ect evidence or 80 points for indirect evide lence or indirect evidence exists, proceed t	nce. If direct eva			
					Subscore	N/A
		e the migration potential for 3 potential paration. Select the highest rating, and proc		ater migration,	flooding, a	nd ground-water
	1.	Surface water migration	. 2 .		24	
		Distance to nearest surface water	3	8	24	24
		Net precipitation	2	6	12	18
		Surface erosion	2	8	16	24
		Surface permeability	0	6	0	18
		Rainfall intensity	2	8	16	24
				Subtotals	68	108
		Subscore (100 X fa	ctor score subtotal	l/maximum score	subtotal)	63
	2.	Flooding	0	1	0	3
			Subscore (100 x :	factor score/3)		0
	3.	Ground-water migration				
		Depth to ground water	3	8	24	24
		Net precipitation	2	6	12	18
			3	8	24	24
		Soil permeability	2	8	16	24
		Subsurface flows	3		24	24
		Direct access to ground water		8	100	
				Subtotals		114
		Subscore (100 x ffa	ctor score subtotal	l/maximum score	subtotal)	88
:.	Hig	nest pathway subscore.				
	Ent	er the highest subscore value from A, B-1, B	3-2 or B-3 above.			
				Pathway	s Subscore	<u>88</u>
IV.	W	ASTE MANAGEMENT PRACTICES				
Α.	Ave	rage the three subscores for receptors, wast	e characteristics,	and pathways.		
			Receptors Waste Characterist Pathways	ics		$\frac{91}{14}$
		•	Total 193	divided by 3	• Gro	54 Total Score
3.	App	ly factor for waste containment from waste m	management practice	•		
	Gro	ss Total Score X Waste Management Practices	Factor = Final Sco	re		
		- -	64	x .35		61

DATE OF OPERATION OR OCCURRENCE		Mustang Ro	Juu	
OWNER/OPERATOR Wright-Patterson AFB				
COMMENTS/DESCRIPTION Disposal site for leaded	fuel stora	ige tank bo	rtom slud	ge
SITE RATED BY CAN White	~			
I. RECEPTORS				
Rating Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
A. Population within 1,000 feet of site	1	4	4	12
B. Distance to nearest well	2	10	20	20
C. Land use/zoning within 1 mile radius]	3	σ,	9
D. Distance to reservation boundary	3	6	13	18
E. Critical environments within 1 mile radius of site	3	10	30	30
F. Water quality of nearest surface water body	1	6	6	18
G. Ground water use of uppermost aquifer	3	9	27	27_
H. Population served by surface water supply within 3 miles downstream of site	3	6	18	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotals	144	130
Becombana subseque /100 W #==++m -	core subtotal	./maximum score	subtotal)	80_
Receptors subscore (100 X factor s				
II. WASTE CHARACTERISTICS	ty, the degre	e of hazard, a	nd the confi	dence level
I. WASTE CHARACTERISTICS A. Select the factor score based on the estimated quanti	•	e of hazard, a	nd the confi	dence level
II. WASTE CHARACTERISTICS A. Select the factor score based on the estimated quantithe information.	•	e of hazard, a	nd the confi	dence level
 II. WASTE CHARACTERISTICS A. Select the factor score based on the estimated quantithe information. 1. Waste quantity (S = small, M = medium, L = large) 	•	e of hazard, a	nd the confi	5
 WASTE CHARACTERISTICS Select the factor score based on the estimated quantithe information. Waste quantity (S = small, M = medium, L = large) Confidence level (C = confirmed, S = suspected) Hazard rating (H = high, M = medium, L = low) 			nd the confi	S C M
 WASTE CHARACTERISTICS Select the factor score based on the estimated quantithe information. Waste quantity (S = small, M = medium, L = large) Confidence level (C = confirmed, S = suspected) Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 base)			nd the confi	
 WASTE CHARACTERISTICS Select the factor score based on the estimated quantithe information. Waste quantity (S = small, M = medium, L = large) Confidence level (C = confirmed, S = suspected) Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 base)			nd the confi	S C M
 WASTE CHARACTERISTICS Select the factor score based on the estimated quantithe information. Waste quantity (S = small, M = medium, L = large) Confidence level (C = confirmed, S = suspected) Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 base) Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B 	d on factor s	core matrix)	nd the confi	S C M
M. WASTE CHARACTERISTICS A. Select the factor score based on the estimated quantithe information. 1. Waste quantity (S = small, M = medium, L = large) 2. Confidence level (C = confirmed, S = suspected) 3. Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 base) 8. Apply persistence factor	d on factor s	core matrix)	nd the confi	

III.	P	۸.	ГН	W	IA	Y	S
------	---	----	----	---	----	---	---

1

	Rating Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
Α.	If there is evidence of migration of hazardou direct evidence or 80 points for indirect evi- evidence or indirect evidence exists, proceed	dence. If direct evi	n maximum facto idence exists th	or subscore on men proceed t	of 100 points fo to C. If no
	•			Subscore	N/A
в.	migration. Select the highest rating, and pr		mter migration,	flooding, an	nd ground-water
	1. Surface water migration	1 3 1	. 1	24	24
	Distance to nearest surface water	2	8		18
	Net precipitation	1	6	12	
	Surface erosion	0	8		24
	Surface permeability		6	0	18
	Rainfall intensity	2	8	16	24
			Subtotals	60	$\frac{108}{56}$
	Subscore (100 X	factor score subtotal	./maximum score		
	2. Flooding	2	1	2	3
		Subscore (100 x f	actor score/3)		67
	3. Ground-water migration				
	Depth to ground water	3	8	24	24
	Net precipitation	2	6	12	18
	Soil permeability	3	8	24	24
	Subsurface flows	0	8	0	24
	Direct access to ground water	3	8	24	24
			Subtotals	84	114
c.	$Subscore~(\mbox{100 x}$ Highest pathway subscore. Enter the highest subscore value from A, B-1,	factor score subtotal 8-2 or 8-3 above.	./maximum score	subtotal)	74
			Pathways	Subscore	74
۱۷.	WASTE MANAGEMENT PRACTICES		-		
λ.	Average the three subscores for receptors, wa	ste characteristics,	and pathways.		
		Receptors Waste Characteristi Pathways	.cs		30
		Total <u>184</u>	divided by 3	Gros	s Total Score
3.	Apply factor for waste containment from waste	management practices			
	Gross Total Score % Waste Management Practice				
		61	x <u>1.0</u>	•	51

NAME OF SITE Coal Storage Pile				
LOCATION Area C - Approximately 1100 feet	northeas	st of POL Ta	ank Farm	
DATE OF OPERATION OR OCCURRENCE				
OWNER/OPERATOR Wright-Patterson AFB				
COMMENTS/DESCRIPTION Area serves as long term	coal sto	rage for bas	se	
SITE RATED BY CYNMangan				
I. RECEPTORS Rating Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
A. Population within 1,000 feet of site	2	4	8	12
3. Distance to nearest well	3	10	30	30
C. Land use/zoning within 1 mile radius	2	3	6	18
D. Distance to reservation boundary	3	6	18	18
E. Critical environments within 1 mile radius of site	3	10	30	30
F. Water quality of nearest surface water body	1	6	6	18
G. Ground water use of uppermost aquifer	3	9	27	27
H. Population served by surface water supply within 3 miles downstream of site	3	6	18	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotals	161	180
Receptors subscore (100 % factor scr	ore subtotal	/maximum score	subtotal)	89
II. WASTE CHARACTERISTICS				
A. Select the factor score based on the estimated quantity the information.	, the degre	ee of hazard, ar	nd the confi	dence level
:. Waste quantity (S = small, M = medium, L = large)				s
2. Confidence level (C = confirmed, S = suspected)				_C
 Hazard rating (H = high, M = medium, L = low) 				L
Factor Subscore A (from 20 to 100 based	on factor s	score matrix)		_30_
3. Apply persistence factor				
Factor Subscore A X Persistence Factor * Subscore B				
30 x 1.0		30		
3. Apply physical state multiplier				
Supscore 3 X Physical State Multiplier = Waste Characte	eristics Sub	SCOTE		
30 x0.5	-	15		
	*			

111	l. 1	PΔ	Th	11	/A	YS

	Rati	ng Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
۸.	dir	there is evidence of migration of hazardous ect evidence or 80 points for indirect evide dence or indirect evidence exists, proceed t	ence. If direct evic			
					Subscore	N/A
3.		e the migration potential for 3 potential paration. Select the highest rating, and proc		er migration,	flooding, an	nd ground-water
	1.	Surface water migration			•	
		Distance to nearest surface water	1	8	8	24
		Net precipitation	2	6	12	18
		Surface erosion	1	8	8	24
		Surface permeability	0	6	0	18
		Rainfall intensity	2	8	16	24
				Subtotals	44	108
		Subscore (100 % fa	ctor score subtotal,	maximum score	subtotal)	41
	2.	Flooding	0	1	o !	3
			Subscore (100 x fa	actor score/3)		0
	3.	Ground-water migration				
		Depth to ground water	3	8	24	24
		Net precipitation	2	6	12	13
		Soil permeability	3	8	24	24
		Subsurface flows	0	8	0	24
		Direct access to ground water	3	8	24	24
				Subtotals	84	114
		Subscore (100 v fa	actor score subtotal,			74
-	Hia	hest pathway subscore.	,		,	
-•	_		2-2 or B-3 above			
	Sile	er the highest subscore value from A, B-1, E	s-z ot b-3 above.	Dachware	Subscore	7.1
				raciiways	Subscore	
IV.	W	ASTE MANAGEMENT PRACTICES				
Α.	Ave	rage the three subscores for receptors, wast	e characteristics,	and pathways.		
			Receptors Waste Characteristic Pathways	cs		- 3a - 23 - 31
			Total 178 a	livided by 3	⇒ Gros	50 Is Total Score
в.	App.	ly factor for waste containment from waste π	anagement practices			
	• • •	ss Total Score X Waste Management Practices		!		
		,	50	x1.	<u> </u>	59

NAME OF SITE Radioactive Waste Burial Site				
LOCATION Area B - Facility No. 477, west	side of	'P' Street		
DATE OF OPERATION OR OCCURRENCE Prior to 1951				
OWNER/OPERATOR Wright-Patterson AFB				
COMMENTS/DESCRIPTION Contents unknown, area post	ed as rad	lioactive wa	stes	
SITE RATED BY Chillangary			· · · · · · · · · · · · · · · · · · ·	
. ,				
I. RECEPTORS	Factor			Maximum
	Rating		Pactor	Possible
Rating Factor	(0-3)	Multiplier	Score	Score
A. Population within 1,000 feet of site	3	4	12	12
3. Distance to nearest well	1	10	10	30
C. Land use/zoning within 1 mile radius	2	3	6	18
D. Distance to reservation boundary	2	6	12	12
E. Critical environments within 1 mile radius of site	3	10	30	30
F. Water quality of nearest surface water body	1	6	6	6
G. Ground water use of uppermost aquifer	3	9	27	27
H. Population served by surface water supply within 3 miles downstream of site	3	6	18	18
I. Population served by ground-water supply within 3 miles of site	3	5	18	18
		Subtotals	139	180
Receptors subscore (100 X factor sc	ore subtotal	/maximum score	subtotal)	77
II. WASTE CHARACTERISTICS				
A. Select the factor score based on the estimated quantit the information.	y, the degre	ee of hazard, an	nd the confi	dence level
*. Waste quantity S = small, M = medium, L = large)				s
 Confidence level (C = confirmed, S = suspected) 				<u> </u>
 Hazard rating (H = high, M = medium, L = low) 				Н
Factor Subscore A (from 20 to 100 based	on factor s	score matrix)		40
3. Apply persistence factor				
Factor Subscore A X Persistence Factor = Subscore B				
X1.0	•	40		
C. Apply physical state multiplier				
Subscore B X Physical State Multiplier = Waste Charact	eristics Sub	oacor e		
40 x1.0	•	40		

M.	P	A	T	41	٧	Α	Y	S
----	---	---	---	----	---	---	---	---

	Rati	ng Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
A.	dir	there is evidence of migration of hazardou ect evidence or 80 points for indirect evi dence or indirect evidence exists, proceed	dence. If direct ev			
					Subscore	N/A
в.	mig	e the migration potential for 3 potential ration. Select the highest rating, and pr		water migration,	flooding, a	and ground-water
	1.	•	2	1 _ 1	16	. 24
		Distance to nearest surface water	2	8	12	18
		Net precipitation	0	6	0	24
		Surface erosion	3	8	18	18
		Surface permeability	2	6	16	24
		Rainfall intensity		8		108
				Subtotals		57
			factor score subtota	1 1	subtotal)	3
	2.	Flooding		1		<u> </u>
			Subscore (100 x	factor score/3)		0
	3.	Ground-water migration	2	i t	1.0	1 21
		Depth to ground water		3	16	24
		Net precipitation	2	6	12	18
		Soil permeability		8	0.	24
		Subsurface flows	1	8	8	24
		Direct access to ground water	3	8	24	24
				Subtotals	60	
		Subscore (100 x	factor score subtota	l/maximum score	subtotal)	53
c.	Hig	hest pathway subscore.				
	Ent	er the highest subscore value from A, $B-1$,	B-2 or B-3 above.			
				Pathway	s Subsco.	<u>57</u>
IV.	. w.	ASTE MANAGEMENT PRACTICES			<u>,</u>	
A.	Ave	rage the three subscores for receptors, wa	ste characteristics,	and pathways.		
			Receptors Waste Characterist Pathways	ics		
			Total 174	divided by 3	∓ Gro	58 Das Total Score
з.	Уbb	ly factor for waste containment from waste	management practice	! \$		
	Gro	ss Total Score X Waste Management Practice	s Factor = Final Sco	ore		
			58 	x <u>0.95</u>		55
			* = 36			·

NAME	OF SITE Centr	al Heating Pla	ant No. 2				
LOCA	rion Bldg.	271 - Area A					
DATE	OF OPERATION OR OCC		to 1980				
		right-Patters					-
	ENTS/DESCRIPTION CO			evegetated			
SITE	RATED BY	M Con Levige	~~				
))				
I. R	ECEPTORS						
				Factor Rating		factor	Maximum Possible
R	ating Factor			(0-3)	Multiplier	Score	Score
A. P	opulation within 1,0	00 feet of site	· · · · · · · · · · · · · · · · · · ·	3	4	12	12
3. D	istance to nearest w	e11		2	10	20	30
<u>c. :</u>	and use/zoning within	n 1 mile radius		2	3	6	9
D. D	istance to reservati	on boundary		3	6	18	18
E. C	ritical environments	within 1 mile radi	us of site	3	10	30	30
F. W	ater quality of near	est surface water b	oody	1	6	6	18
G. G	round water use of u	ppermost aquifer		3	9	27	27
	opulation served by ithin 3 miles downst	• •	У	3	6	18	18
	opulation served by a ithin 3 miles of site			3	5	18	18
					Subtotals	155	180
	R	eceptors subscore (100 X factor	score subtota	l/maximum score	subtotal)	86
II. V	VASTE CHARACTER	RISTICS					
	Select the factor scotthe information.	ore based on the es	timated quan	tity, the degr	ee of hazard, a	nd the confi	dence level o
	. Waste quantity (S = small, M = medi	.um, L = larg	e)			s
	2. Confidence level	(C = confirmed, S	= suspected)				C
	3. Hazard rating (H	= high, M = medium	, L = low)				L
	Facto	r Subscore A (from	20 to 100 ha	sed on factor	score matrix)		30
			20 (0 100 54	dea on ractor	score macrix,		
	Apply persistence fa Factor Subscore A X		= Subscore B	1			
		30	x 1.0) <u> </u>	30		
c.	Apply physical state	multiplier					
	Subscore 3 X Physica	l State Multiplier	= Waste Char	acteristics Su	bscore		
		30	x 0.5		15		
			. ——			•	

111	P	A'	Tŀ	IW	Ά	Y	S
-----	---	----	----	----	---	---	---

			Factor Rating		Factor	Maximum Possible
_	Rati	ng Factor	(0-3)	Multiplier	Score	Score
۱.	dir	there is evidence of migration of hazardou ect evidence or 80 points for indirect evi dence or indirect evidence exists, proceed	dence. If direct evi			
					Subscore	N/A
3.		e the migration potential for 3 potential ration. Select the highest rating, and pr		ater migration,	flooding, a	and ground-water
	1.	Surface water migration				
		Distance to nearest surface water	1	8	8	24
		Net precipitation	2	6	12	18
		Surface erosion	_	8	_	-
		Surface permeability	0	6	0	18
		Rainfall intensity	2	8	16	24
				Subtotals	36	84
		Subscore (100 X	factor score subtotal	./maximum score	subtotal)	43
	2.	Flooding	0	1	0	3
			Subscore (100 x f	actor score/3)		0
	3.	Ground-water migration				
	٠.	Depth to ground water	3	8	24	24
		Net precipitation	2	6	1.7	18
			3	8	24	1
		Soil permeability				24
		Subsurface flows	0	8	<u> </u>	24
		Direct access to ground water		8		24
				Subtotals	60_	
		Subscore (100 x	factor score subtotal	./maximum score	subtotal)	53.
Ξ.	Hig	hest pathway subscore.				
	Ent	er the highest subscore value from A, B-1,	B-2 or B-3 above.			
				Pathways	Subscore	<u> </u>
	•					
IV.	W	ASTE MANAGEMENT PRACTICES				
A.	Ave	rage the three subscores for receptors, wa	ste characteristics,	and pathways.		
			Receptors			86
			Waste Characteristi Pathways	cs		<u>15</u> 5 3
			Total154	divided by 3	•	51
					Gre	oss Total Score
в.	γöb	ly factor for waste containment from waste	management practices	1		
	Gro	ss Total Score X Waste Management Practice	s Factor = Final Scor	:e		
			51	x1.0		51

NAME OF SITE	Central He	ating Plan	t No. 4				
LOCATION	Bldg. 1240						
DATE OF OPERAT	ION OR OCCURRENC						
OWNER/OPERATOR		Patterson					
COMMENTS/DESCR		fier treats					
SITE RATED BY_	<u>C</u>	M.A.C.	crigas	<u>~</u>			
	•)				
I. RECEPTOR	s						
				Factor Rating		g	Maximum Possible
Rating Fact	or			(0-3)	Multiplier	Factor Score	Score
A. Population	within 1,000 fee	t of site		2	4	33	12
B. Distance to	nearest well			2	10	20	30
C. Land use/zo	ning within 1 mi	le radius		2	3	6	18
D. Distance to	reservation bou	ndary		3	6	18	18
E. Critical en	vironments withi	n 1 mile radio	s of site	3	10	30	30
F. Water quali	ty of nearest su	rface water bo	ody	1	6	6	18
G. Ground wate	r use of uppermo	st aquifer	· · · · · · · · · · · · · · · · · · ·	3	9	27	27
	served by surfactions downstream of		·	3	6	18	18
	served by ground les of site	-water supply		3	6	18	18
					Subtotals	151	130
	Recepto	rs subscore (00 X factor	score subtotal	./maximum score	subtotal)	34
II. WASTE CH	HARACTERISTIC	S					
A. Select the the inform	factor score ba	sed on the est	imated quan	itity, the degre	e of hazard, a	nd the confi	dence level o
1. Waste	quantity (S = sm	all, M = mediu	m, L = larg	(e)			
2. Confid	lence level (C =	confirmed, S	suspected)				
2. Hazard	rating (H = hig	h, M = medium,	L = low)				L
	Factor Subs	core & (from)	0 to 100 ba	sed on factor s	core matrix)		30
a irmiu mere	istence factor	. (220	,		,		
	score A X Persis	tence Factor 4	Subscore B	3			
		30	x1.0	<u> </u>	30		
C. Apply phys	ical state multi	plier					
Subscore B	X Physical Stat	e Multiplier	Waste Char	acteristics Sub	score		
	-	30	x 0.5		15		
			-				

HIL.	P	A	TI	11	N	A	.YS
------	---	---	----	----	---	---	-----

T.

			Factor			Maximum
1	Rati	ng Factor	Rating (0-3)	Multip'ier	Factor Score	Possible Score
Α.	dir	there is evidence of migration of hazardous ect evidence or 80 points for indirect evid dence or indirect evidence exists, proceed	contaminants, assignments. If direct evi	gn maximum fact		
					Subscore	N/A_
в.	mig	e the migration potential for 3 potential praction. Select the highest rating, and pro		mter migration,	flooding, a	nd ground-water
	1.	Surface water migration	1 1	1		1
		Distance to nearest surface water		8	8	24
		Net precipitation	2	6	12	18
		Surface erosion		8		
		Surface permeability		6	0	18
		Rainfall intensity	2	8	16	24
			•	Subtotals	36_	84
		Subscore (100 X f	actor score subtotal	l/maximum score	subtotal)	43
	2.	Plooding	0	1	0	3
			Subscore (100 x	factor score/3)		0
	3.	Ground-water migration				
		Depth to ground water	3	8	24	1 24
		Net precipitation	2	6	12	18
		Soil permeability	3	8	24	24
		Subsurface flows	0	8	0	24
		Direct access to ground water	9	8	0	24
		offect access to ground water		Subtotals		114
		2 .h	•			53
_			actor score subtotal	L/Makimum score	Subtotal	
c.	•	hest pathway subscore.				
	Ent	er the highest subscore value from A, B-1,	B-2 or B-3 above.			
				Pathway	s Subscore	<u>53</u>
IV.	·	ASTE MANAGEMENT PRACTICES				
A.	λve	rage the three subscores for receptors, was	ste characteristics,	and pathways.		
			Receptors Waste Characterist	ics		<u>84</u> <u>15</u>
			Pathways Total 152	divided by 3	■ Gra	51 Total Score
3.	App	ly factor for waste containment from waste	management practices		320	
		ss Total Score X Waste Management Practices				
	OFO	am total score y waste danagement tractices) -	51
			21	_ x1.0		21

NAME OF SITE Central Heating Plant No. 1				
LOCATION Bldq. 66 - Area B				
DATE OF OPERATION OR OCCURRENCE 1930 to 1980				
OWNER/OPERATOR Wright-Patterson AFB COMMENTS/DESCRIPTION Coal pile in the process of	f being re	emoved		
	Derng 1			
SITE RATED BY CANACLA				
,				
I. RECEPTORS	Factor			Maximum
Rating Factor	Rating	Multiplier	Factor	Possible
	(0-3)		Score	Score
A. Population within 1,000 feet of site	3	4	12	12
3. Distance to nearest well	1	10	10	30
C. Land use/zoning within 1 mile radius	2	3	6	18
D. Distance to reservation boundary	3	6	18	18
E. Critical environments within 1 mile radius of site	3	10	30	30
F. Water quality of nearest surface water body	1	6	6	18
G. Ground water use of uppermost aquifer	3	9	27	27
H. Population served by surface water supply within 3 miles downstream of site	3	6	18	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotals	145	180
Receptors subscore (100 % factor so	ore subtotal	L/maximum score	subtotal)	81
II. WASTE CHARACTERISTICS				
A. Select the factor score based on the estimated quantit the information.	ry, the degre	ee of hazard, a	nd the confi	dence level
!. Waste quantity (S = small, M = medium, L = large)				s
 Confidence level (C = confirmed, S = suspected) 				C
 Hazard rating (H = high, M = medium, L = low) 				L
				30
Factor Subscore A (from 20 to 100 based	on ractor s	score matrix)		
3. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B				
30 x 1.0		30		
C. Apply physical state multiplier				
Subscore 3 X ?hysical State Multiplier = Waste Charact	toristics Sub	oscore		
•		15		
x0.5				

181.	PA	١T١	Н٧	ΙA	YS
------	----	-----	----	----	----

			Factor		Factor	Maximum Possible
	Rati	ng Factor	Rating (0-3)	Multiplier	Score	Score
Α.	dir	there is evidence of migration of hazardous ect evidence or 80 points for indirect evidence or indirect evidence or indirect evidence exists, proceed	lence. If direct evi	n maximum fact dence exists t	or subscore o hen proceed t	of 100 points fo to C. If no
					Subscore	N/A
в.	mig	e the migration potential for 3 potential pration. Select the highest rating, and pro		ter migration,	flooding, ar	d ground-water
	1.	Surface water migration	1 . 1	8		
		Distance to nearest surface water	2		16	24
		Net precipitation	2	6	12	18
		Surface erosion		8		
		Surface permeability		6	0	18
		Rainfall intensity	2	8	16	24
				Subtotals	44	84
		Subscore (100 X	factor score subtotal	./maximum score	subtotal)	52
	2.	Flooding	0	1	0	3
			Subscore (100 x f	actor score/3)		0
	3.	Ground-water migration				
		Depth to ground water	3	8	24	24
		Net precipitation	2	6	12	18
		Soil permeability	3	8	24	24
			0	8	0	24
		Subsurface flows	0		0	24
		Direct access to ground water		8		
				Subtotals	60_	114
		Subscore (100 x :	factor score subtotal	/maximum score	subtotal)	53
c.	Hig	hest pathway subscore.				
	Ent	er the highest subscore value from A, B $+1$,	B-2 or B-3 above.			
				Pathway	s Subscore	53
١٧	. w	ASTE MANAGEMENT PRACTICES				
Α.	λve	rage the three subscores for receptors, was	ste characteristics.	and pathways.		
			Receptors	• •		วา
			Waste Characteristi Pathways	ics		15 53
			Total 149	divided by 3	Gros	50 Total Score
3.	Аpp	ly factor for waste containment from waste	management practices	1		
	Gro	ss Total Score X Waste Management Practice	s Factor = Final Scor	:e		
			50	x1.0		50

NAME OF SITE Central Heating Plant No. 3				
LOCATION Bldg. 170 - Area C				
DATE OF OPERATION OR OCCURRENCE 1939 to 1980				
OWNER/OPERATOR Wright-Patterson AFB				
COMMENTS/DESCRIPTION Coal pile removed			·.	
SITE RATED BY CANCELL				
)				
I. RECEPTORS	Factor Rating		Factor	Maximum Possible
Rating Factor	(0-3)	Multiplier	Score	Score
A. Population within 1,000 feet of site	3	4	12	12
B. Distance to nearest well	2	10	20	30
C. Land use/zoning within ! mile radius	2	3	6 _	18
D. Distance to reservation boundary	2	6	12	18
E. Critical environments within 1 mile radius of site	3	10	30	30
P. Water quality of nearest surface water body	1	6	6	18
G. Ground water use of uppermost aquifer	3	9	27	27
H. Population served by surface water supply within 3 miles downstream of site	3	6	18	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	_18
		Subtotals	149	180
Receptors subscore (100 % factor so	ore subtotal	./maximum score	subtotal)	_83
II. WASTE CHARACTERISTICS				
A. Select the factor score based on the estimated quantit the information.	y, the degre	e of hazard, an	d the confi	dence level
:. Waste quantity (S = small, M = medium, L = large)				<u>s</u>
2. Confidence level (C = confirmed, S = suspected)				C
3. Hazard rating (H = high, M = medium, L = low)				L
Factor Subscore A (from 20 to 100 based	on factor s	(COFE MATRIX)		30
				
 Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B 				
x1.	<u> </u>	30		
C. Apply physical state multiplier				
•				
Subscore B X Physical State Multiplier = Waste Charact	eristics Sub	score		

IIL PATHWAYS

Rating Factor	Rating (0-3)	Multiplier	Factor Score	Possible Score
A. If there is evidence of migration of direct evidence or 80 points for indi evidence or indirect evidence exists,	rect evidence. If direct ev	gn maximum fac idence exists	then proceed t	of 100 points for to C. If no
			Subscore	N/A
3. Rate the migration potential for 3 po migration. Select the highest rating	tential pathways: surface w , and proceed to C.	ater migration	n, flooding, ar	nd ground-water
1. Surface water migration	1 1	1		•
Distance to mearest surface water	2	88	8	24
Net precipitation		66	12	18
Surface erosion		8	-	
Surface permeability	0	6	0	18
Rainfall intensity	2	8	16	24
		Subtota	36	84
Subscore	(100 % factor score subtota	l/maximum scor	e subtotal)	43
2. Plooding	0	1	0	3
	Subscore (100 x	factor score/:	3)	0
Ground-water migration				
Depth to ground water	3	8	24	24
Net precipitation	2	6	12	18
Soil permeability	3	8	24	24
Subsurface flows	0	88	0	24
Direct access to ground water	0	8	0	24
		Subtotal	.s <u>60</u>	114
Subscore	(100 x factor score subtota	l/maximum scor	e subtotal)	53
C. Highest pathway subscore.				
Enter the highest subscore value from	A, B-1, B-2 or B-3 above.			
		Pathwa	ys Subscore	53
IV. WASTE MANAGEMENT PRACTICES				
 Average the three subscores for recept 		and pathways.		
	Receptors Waste Characterist Pathways	ics		83 15 53
	Total 151	divided by 3	s Gros	50 s Total Score
3. Apply factor for waste containment fro	om waste management practice			
Gross Total Score X Waste Management	Practices Factor = Final Sco	re		
	L-44	x	•	50

NAME OF SITE Central Heating Plant No. 5				
LOCATION Bldg. 770 - Area B				
DATE OF OPERATION OR OCCURRENCE 1956 to present				
OWNER/OPERATOR Wright-Patterson AFB				
COMMENTS/DESCRIPTION Clarifier treats coal pile		· · · · · · · · · · · · · · · · · · ·		
SITE RATED BY CAN CANADAM	<u>~</u>			
I. RECEPTORS	Factor			Maximum
Parking Parking	Rating		Factor	Possible
Rating Factor	(0-3)	Multiplier	Score	Score
A. Population within 1,000 feet of site	3	4	12	12
B. Distance to nearest well	1	10	10	30
C. Land use/zoning within 1 mile radius	2	3	6	9
D. Distance to reservation boundary	3	6	18	18
E. Critical environments within ! mile radius of site	3	10	30	30
F. Water quality of nearest surface water body	1	6	6	18
G. Ground water use of uppermost aquifer	3	9	27	27
H. Population served by surface water supply within 3 miles downstream of site	3	6	18	18
I. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotals	145	180
Receptors subscore (100 X factor sc	ore subtotal	./maximum score	subtotal)	81_
II. WASTE CHARACTERISTICS				
A. Select the factor score based on the estimated quantit the information.	y, the degre	ee of hazard, an	nd the confi	dence level
1. Waste quantity (S = small, M = medium, L = large)				S
2. Confidence level (C = confirmed, S = suspected)				
3. Hazard rating (H = high, M = medium, L = low)				L
Factor Subscore A (from 20 to 100 based	on factor s	score matrix)		30
3. Apply persistence factor				
Factor Subscore A X Persistence Factor * Subscore B				
x1.0		30		
C. Apply physical state multiplier				
Subscore B X Physical State Multiplier = Waste Charact	eristics Sub	score		
30x <u></u>	•_	15		

111.	P	ATI	н٧	IA	YS
------	---	-----	----	----	----

Rating Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
 If there is evidence of migration of haz direct evidence or 80 points for indirect evidence or indirect evidence exists, pr 	t evidence. If direct avi			
			Subscore	N/A
 Rate the migration potential for 3 poten migration. Select the highest rating, a 		iter migration	n, flooding, a	nd ground-water
1. Surface water migration	1 2 1		1	l <u>-</u> .
Distance to hearest surface water	2	8	16	24
Net precipitation	2	6	12	18
Surface erosion		88		
Surface permeability	0	6	00	18
Rainfall intensity	2	8	16_	24
		Subtotal	44	84
Subscore (1	00 X factor score subtotal	/maximum sco	re subtotal)	52
2. Flooding	0	1	0	3
	Subscore (100 x f	actor score/:	3)	0
3. Ground-water migration				
Depth to ground water	3	8	24	24
Net precipitation	_ 2	6	12	18
Soil permeability	3	3	24	24
Subsurface flows	0	9	0	24
Direct access to ground water	0	8	0_	24
		Suptotal	Ls 60	114
Subscore (1	00 x factor score subtotal	/maximum sco	re subtotal)	53
. Highest pathway subscore.	VV II 22000 0000 02000	,,		
	P-1 P-2 or P-2 shows			
Enter the highest subscore value from A,	5-1, B-2 of B-3 above.	Back	6	53_
		Patnwa	ays Subscore	
IV. WASTE MANAGEMENT PRACTICES				
A. Average the three subscores for receptor	s, waste characteristics,	and pathways	•	
	Receptors Waste Characteristi Pachways	.cs		-91 -15 -52
	Total 149	divided by 3	• Gro	ss Total Score
3. Apply factor for waste containment from	waste management practices	ì		
Gross Total Score X Waste Management Pra	ctice Factor = Final Scor	·e		
	50	٠	<u> </u>	50
	L-46			i

DATE OF OPERATION OR OCCURRENCE In operation 1965 to OWNER/OPERATOR Wright-Patterson AFB COMMENTS/DESCRIPTION Containment building con		active mate	rial	
SITE RATED BY CANANA				
L RECEPTORS Rating Factor	Factor Rating (0-3)	Multiplier	Factor Score	Maximum Possible Score
A. Population within 1,000 feet of site	3	4	12	12
. Distance to nearest well	1	10	10	30
. Land use/zoning within ! mile radius	2	3	6	18
. Distance to reservation boundary	2	6	12	18
. Critical environments within 1 mile radius of site	3	10	30	30
. Water quality of nearest surface water body	1	6	6	18
. Ground water use of uppermost aquifer	3	9	27	27
 Population served by surface water supply within 3 miles downstream of site 	3	6	18	18
7. Population served by ground-water supply within 3 miles of site	3	6	18	18
		Subtotals	139	180
Receptors subscore (100 X factor sc	ore subtotal	./maximum score	subtotal)	77
·	ore subtotal	/maximum score	subtotal)	
I. WASTE CHARACTERISTICS Select the factor score based on the estimated quantit				77
WASTE CHARACTERISTICS Select the factor score based on the estimated quantit the information.				77
WASTE CHARACTERISTICS Select the factor score based on the estimated quantit the information. !. Waste quantity (S = small, M = medium, L = large)				77
I. WASTE CHARACTERISTICS Select the factor score based on the estimated quantit the information.				77 dence level
 WASTE CHARACTERISTICS Select the factor score based on the estimated quantit the information. Waste quantity (S = small, M = medium, L = large) Confidence level (C = confirmed, S = suspected) 	y, the degre	e of hazard, an		dence level
 WASTE CHARACTERISTICS Select the factor score based on the estimated quantit the information. Waste quantity (S = small, M = medium, L = large) Confidence level (C = confirmed, S = suspected) Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based) Apply persistence factor 	y, the degre	e of hazard, an		dence level L C
WASTE CHARACTERISTICS Select the factor score based on the estimated quantit the information. Waste quantity (S = small, M = medium, L = large) Confidence level (C = confirmed, S = suspected) Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B	y, the degre	e of hazard, an		dence level
MASTE CHARACTERISTICS Select the factor score based on the estimated quantit the information. 1. Waste quantity (S = small, M = medium, L = large) 2. Confidence level (C = confirmed, S = suspected) 3. Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based) 3. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B	y, the degre	e of hazard, an		dence level L C
H. WASTE CHARACTERISTICS A. Select the factor score based on the estimated quantit the information. 1. Waste quantity (S = small, M = medium, L = large) 2. Confidence level (C = confirmed, S = suspected) 3. Hazard rating (H = high, M = medium, L = low) Factor Subscore A (from 20 to 100 based) 3. Apply persistence factor Factor Subscore A X Persistence Factor = Subscore B	y, the degree	score matrix)		dence level L C

m	TH	w	Δ١	/S

1	Ratio	ng Factor	Factor Rating (0-3)	Multiplier	Pactor Score	Maximum Possible Score
Α.	dire	there is evidence of migration of hazardous act evidence or 80 points for indirect evide dence or indirect evidence exists, proceed t	nce. If direct evi	n maximum facto dence exists t	or subscore hen proceed	of 100 points for to C. If no
					Subscore	N/A
в.		e the migration potential for 3 potential paration. Select the highest rating, and proc		eter migration,	flooding, a	ind ground-water
	1.	Surface water migration				
		Distance to nearest surface water	2	8	16	24
		Net precipitation	2	6	12	18
		Surface erosion	0	8	0	24
		Surface permeability	2	6	12	18
		Rainfall intensity	2	8	16	24
				Subtotals	56_	108
		Subscore (100 X fa	actor score subtotal	./maximum score	subtotal)	52
	2.	Flooding	0	1	0	3
			Subscore (100 x 1	factor score/3)		0
	3.	Ground-water migration				
		Depth to ground water	2	8	16	24
		Net precipitation	2	6	12	18
		Soil permeability	1	8	3	24
		Subsurface flows		8	<u>=</u> _	
		Direct access to ground water	0	8	. 0	! :24
				Subtotals	36_	90
		Subscore (100 x fa	actor score subtotal	L/maximum score	subtotal)	<u> </u>
c.	Hig	hest pathway subscore.				
	-	er the highest subscore value from A, B-1, E	3-2 or B-3 above.			
				Pathway	s Subscore	52
				•		
īV.	W	ASTE MANAGEMENT PRACTICES				
Α.	Ave	rage the three subscores for receptors, wast	te characteristics,	and pathways.		
			Receptors Waste Characterist:			
			rotal 179	divided by 3	•	60
_		1		_	Gro	oss Total Score
3.		ly factor for waste containment from waste m	•			
	Gro	ss Total Score X Waste Management Practices			2	
			60	_ x0.10	<u> </u>	5