Linear Algebra Standards

How can	we solve systems of linear equations?
□ □ E.1	Systems as matrices. I can translate back and forth between a system of linear equations and the corresponding augmented matrix.
□ □ E.2	Row reduction. I can put a matrix in reduced row echelon form.
□ □ E.3	Systems of linear equations. I can solve a system of linear equations.
□ □ E.4	${f Homogeneous\ systems}.\ {f I}$ can find a basis for the solution set of a homogeneous system of equations.
What is	a vector space?
□ □ V.1	Vector space . I can determine if a set with given operations forms a vector space.
□ □ V.2	Linear combinations . I can determine if a vector can be written as a linear combination of a given set of vectors.
\square \square $\mathbf{V.3}$	Spanning sets. I can determine if a set of vectors spans a vector space.
$\square \square \mathbf{V.4}$	Subspaces. I can determine if a subset of a vector space is a subspace or not.
What sti	ructure do vector spaces have?
□ □ S.1	Linear independence. I can determine if a set of vectors is linearly dependent or independent.
□ □ S.2	Basis I. I can determine if a set of vectors is a basis of a vector space.
□ □ S.3	Basis II. I can compute a basis for the subspace spanned by a given set of vectors.
□ □ S.4	Dimension . I can compute the dimension of a vector space.
How can	we understand linear maps algebraically?
□ □ A.1	Linear maps I . I can write the matrix (with respect to the standard bases) corresponding to a linear transformation between Euclidean spaces.
$\square \square \mathbf{A.2}$	Linear maps II. I can determine if a map between vector spaces is linear or not.
□ □ A.3	$\textbf{Injectivity and surjectivity}. \ I \ can \ determine \ if a \ given \ linear \ map \ is \ injective \ and/or \ surjective.$
□ □ A.4	$\textbf{Kernel and Image}. \ I \ can \ compute \ the \ kernel \ and \ image \ of \ a \ linear \ map, \ including \ finding \ bases.$
What alg	gebraic structure do matrices have?
□ □ M.1	Matrix Multiplication. I can multiply matrices.
\square \square M.2	Invertible Matrices. I can determine if a square matrix is invertible or not.
□ □ M.3	Matrix inverses. I can compute the inverse matrix of an invertible matrix.
How can	we understand linear maps geometrically?
□ □ G.1	Determinants . I can compute the determinant of a square matrix.
□ □ G.2	${f Eigenvalues}.$ I can find the eigenvalues of a square matrix, along with their algebraic multiplicities.
□ □ G.3	Eigenvectors. I can find the eigenspace of a square matrix associated to a given eigenvalue.
□ □ G.4	Geometric multiplicity . I can compute the geometric multiplicity of an eigenvalue of a square matrix.