	CSE Computer Vision Assignment 3 Name: Arka Sarkar Roll Number: 2018222 from google.colab import drive drive.mount('/gdrive') Mounted at /gdrive
In [3]:	<pre>%cd /gdrive/MyDrive/CV_Assignment3 /gdrive/MyDrive/CV_Assignment3 Checking for GPU device import tensorflow as tf device_name = tf.test.gpu_device_name() if device_name != '/device:GPU:0': raise SystemError('GPU device not found') print('Found GPU at: {}'.format(device_name))</pre>
In [439]:	<pre>SystemError</pre>
In [110]:	Importing Dependencies import numpy as np from IPython.display import Image import pandas as pd import matplotlib.pyplot as plt from tqdm import tqdm import copy import pickle
	<pre>import cv2 import csv from keras.preprocessing import image from keras.utils import layer_utils import numpy as np import os import skimage.io as io import skimage.transform as trans import numpy as np from keras.models import * from keras.layers import * from keras.optimizers import * from keras.callbacks import ModelCheckpoint, LearningRateScheduler</pre>
In [442]:	
In [443]: Out[443]:	label 1x1 1x2 1x3 1x4 1x5 1x6 1x7 1x8 1x9 28x19 28x20 28x21 28x22 28x23 28x24 28x25 28x26 28x27 28x28 28x26 28x26 28x27 28x26 28x26 28x26
	4 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
In [444]:	<pre>train = np.array(train_df) test = np.array(test_df) Y_train = np.zeros((train.shape[0], 10)) X_train = [] Y_test = np.zeros((test.shape[0], 10)) X_test = [] for i in range(train.shape[0]): X_train.append(train[i,1:]) Y_train[i,train[i,0]] = 1</pre>
	<pre>for i in range(test.shape[0]): X_test.append(test[i,1:]) Y_test[i,test[i,0]] = 1 X_train = np.array(X_train) X_test = np.array(X_test) print("Testing X Shape : ", X_test.shape) print("Training X Shape : ", X_train.shape) print("Testing Y Shape : ",Y_test.shape) print("Training Y Shape : ",Y_train.shape)</pre> Testing X Shape : (10000, 784) Training X Shape : (60000, 784)
In [445]:	Testing Y Shape: (10000, 10) Training Y Shape: (60000, 10) sample MNIST image idx = 10 sample = X_train[idx].reshape((28,28)) print(Y_train[idx]) plt.imshow(sample, cmap = "gray") [0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]
Out[445]:	<pre></pre>
In [446]:	<pre> OTSU TTS thresholding def otsu_tts(img): img = img.reshape((28,28)) min_cost = float('inf') threshold = 0 OTSU TTS thresholding def otsu_tts(img): img = img.reshape((28,28)) min_cost = float('inf') threshold = 0 OTSU TTS thresholding def otsu_tts(img): img = img.reshape((28,28)) img = img.reshape((28,28)) img_cost = float('inf') threshold = 0 OTSU TTS thresholding OTSU TTS thresholding def otsu_tts(img): img = img.reshape((28,28)) img_cost = float('inf') threshold = 0 OTSU TTS thresholding OTSU TTS th</pre>
	<pre>for i in range(1,256): v0 = img[img < i] s0 = np.sum((v0 - np.mean(v0))**2) w0 = len(img[img < i]) v1 = img[img >= i] s1 = np.sum((v1 - np.mean(v1))**2) w1 = len(img[img >= i]) cost = s0 + s1 if(cost < min_cost): min_cost = cost threshold = i</pre>
	<pre>return threshold def select_foreground(img, s = 0): if(s == 0): m,n = img.shape m0 = int(0.15*m) n0 = int(0.15*n) c0 = 0 c1 = 0 for i in range(m//2 - m0, m//2 + m0):</pre>
	<pre>if(img[i,j] == 0):</pre>
	<pre>n0 = 10 c0 = 0 c1 = 0 for i in range(m): for j in range(n): if (i < m0): c0 = c0 + 1 else: c1 = c1 + 1</pre>
	<pre>if(img[i,j] == 0):</pre>
	<pre>if(c0 > c1): return 0 else: return 1</pre> Question 1 Perform the following on MNIST dataset to build three new datasets: 1. Obtain foreground segmentation masks for images in MNIST dataset using TSS, based threshold [O1. Assignment 1]. In this way, your process of the content of the conte
	 Obtain foreground segmentation masks for images in MNIST dataset using TSS-based threshold [Q1, Assignment 1]. In this way, you have rough groundtruth masks required to build a new foreground segmentation dataset. [1 Mark] Note: The pre-existing labels are of no use here. The goal of the dataset is just to extract the foreground. Obtain tight groundtruth circles around the foreground segmentation masks obtained in (a). In this way, you can build a new dataset of 10 classes for performing classification with circlization (circular localization). You can use existing libraries for generating the tight circles. [1 Mark] Randomly concatenate 4 images and their corresponding groundtruths obtained in (a), along with the pre-existing labels, in a 2x2 manner to develop new images and semantic segmentation groundtruths, respectively. In this way, you have a new dataset of 10 classes for performing semantic segmentation. [2 Marks]
In []:	<pre>part (a) # run only once # making the training set fg_masks_train = [] for i in tqdm(range(len(X_train)), position = 0, desc = "Progress: "): thres = otsu_tts(X_train[i]) img = X_train[i].reshape((28,28)) mask = copy.deepcopy(img) mask[mask<thres] 0="" =="" mask[mask=""> thres] = 1 fg_masks_train.append(mask.flatten())</thres]></pre>
	<pre>Saving the dataset in a .csv file. with open('dataset/Q1fg_mask_train.csv', 'a+', newline ='') as f: write = csv.writer(f) write.writerows(fg_masks_train) # run only once # making the testing set fg masks test = []</pre>
Tn []•	<pre>for i in tqdm(range(len(X_test)), position = 0, desc = "Progress : "): thres = otsu_tts(X_test[i]) img = X_test[i].reshape((28,28)) mask = copy.deepcopy(img) mask[mask<thres] 0="" =="" mask[mask=""> thres] = 1 fg_masks_test.append(mask.flatten())</thres]></pre> Saving the dataset in a .csv file.
In [447]:	<pre>with open('dataset/Q1fg_mask_test.csv', 'a+', newline ='') as f: write = csv.writer(f) write.writerows(fg_masks_test) idx = 10 sample_x = np.array(pd.read_csv('dataset/mnist_train.csv'))[idx,1:].reshape((28,28)) sample_y = np.array(pd.read_csv('dataset/Q1fg_mask_train.csv', header = None))[idx].reshape((28,28)) fig=plt.figure(figsize=(8, 8)) columns = 2 rows = 1 fig.add_subplot(rows, columns, 1)</pre>
	<pre>plt.imshow(sample_x, cmap = 'gray') plt.title("Original Image") fig.add_subplot(rows, columns, 2) plt.imshow(sample_y, cmap = 'gray') plt.title("Foreground Mask") fig.tight_layout() plt.show()</pre> Original Image Foreground Mask 0 5- Foreground Mask
	10 - 10 - 15 - 15 - 20 - 25 - 0 5 10 15 20 25
In []:	<pre>part (b) X_train = pd.read_csv("dataset/Qlfg_mask_train.csv", header = None) X_test = pd.read_csv("dataset/Qlfg_mask_test.csv", header= None) y_label_train = np.array(pd.read_csv("dataset/mnist_train.csv"))[:,0] y_label_test = np.array(pd.read_csv("dataset/mnist_test.csv"))[:,0] X_train = np.array(X_train) X_test = np.array(X_test)</pre>
	<pre>#code for saving the original images #run once X_orig_train = np.array(pd.read_csv("dataset/mnist_train.csv"))[:,1:] for i in tqdm(range(len(X_orig_train)), position = 0, desc = "Progress : "): img = X_orig_train[i].reshape((28,28)) cv2.imwrite('dataset/mnist_images/train/' + str(i) + '.png', img) Progress : 100% 60000/60000 [08:52<00:00, 112.63it/s]</pre>
	<pre>#code for saving the original images #run once X_orig_test = np.array(pd.read_csv("dataset/mnist_test.csv"))[:,1:] for i in tqdm(range(len(X_orig_test)), position = 0, desc = "Progress : "): img = X_orig_test[i].reshape((28,28)) cv2.imwrite('dataset/mnist_images/test/' + str(i) + '.png', img) Progress : 100% </pre>
	<pre>#run once for i in tqdm(range(len(X_train)), position = 0, desc = "Progress : "): img = X_train[i].reshape((28,28))*255 cv2.imwrite('dataset/mnist_images_fg/train/' + str(i) + '.png', img) Progress : 100% 60000/60000 [09:06<00:00, 109.83it/s] #code for saving the fg images #run once for i in tqdm(range(len(X_test)), position = 0, desc = "Progress : "):</pre>
	<pre>img = X_test[i].reshape((28,28))*255 cv2.imwrite('dataset/mnist_images_fg/test/' + str(i) + '.png', img) Progress : 100% </pre>
In []:	<pre>'y': normalsed y coordinate for the bounding circle. 'radius': normalsed radius coordinate for the bounding circle. # making the center radius dataset center_radius_dataset_train = [] for i in tqdm(range(60000)): img = cv2.imread('dataset/mnist_images_fg/train/' + str(i) + '.png',cv2.IMREAD_GRAYSCALE) cnts = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2] (x,y), radius = cv2.minEnclosingCircle(cnts[0]) center_x = round(int(x)/28,2) center_y = round(int(y)/28,2) radius = round(int(radius)/(28/(2)**0.5),2)</pre>
In []:	<pre>center_radius_dataset_train.append([y_label_train[i],center_x, center_y, radius]) 100%[</pre>
In []:	<pre>center_radius_dataset_test = [] for i in tqdm(range(10000)): img = cv2.imread('dataset/mnist_images_fg/test/' + str(i) + '.png',cv2.IMREAD_GRAYSCALE) cnts = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2] (x,y), radius = cv2.minEnclosingCircle(cnts[0]) center_x = round(int(x)/28,2) center_y = round(int(y)/28,2) radius = round(int(radius)/(28/(2)**0.5),2) center_radius_dataset_test.append([y_label_test[i],center_x, center_y, radius]) 100% </pre>
In []:	<pre>0:00, 1594.78it/s] Saving the dataset in a .csv file. with open('dataset/Qlb_center_rad_test.csv', 'a+', newline ='') as f: write = csv.writer(f) write.writerow(['label','x','y', 'radius']) write.writerows(center_radius_dataset_test)</pre> Sample Visualization
	<pre>idx = 10 sample_x = np.array(pd.read_csv('dataset/mnist_train.csv'))[idx,1:].reshape((28,28)) sample_y = np.array(pd.read_csv('dataset/Qlb_center_rad_train.csv'))[idx] img = cv2.imread('dataset/mnist_images_fg/train/' + str(idx) + '.png') label = sample_y[0] x = int(round(sample_y[1]*28)) y = int(round(sample_y[2]*28)) center_coordinates = (x, y) color = (255, 0, 0) thickness = 1</pre>
	<pre>radius = int(round(sample_y[3]*28/(2)**0.5)) sample_y = cv2.circle(img, center_coordinates, radius, color, thickness) img = cv2.imread('dataset/mnist_images_fg/train/' + str(idx) + '.png') fig=plt.figure(figsize=(8, 8)) columns = 2 rows = 1 fig.add_subplot(rows, columns, 1) plt.imshow(img, cmap = 'gray') plt.title("Foreground Image from Q1(a)") fig.add_subplot(rows, columns, 2)</pre>
	plt.imshow(sample_y) plt.title("Fg Image with bounding circle") fig.tight_layout() plt.show() Foreground Image from Q1(a) 5- 10- 10- 10- 10- 10- 10- 10-
	15 - 20 - 25 - 25 - 25 - 25 - 25 - 25 - 2
In [459]:	<pre>X_train = np.array(pd.read_csv("dataset/mnist_train.csv"))[:,1:] X_test = np.array(pd.read_csv("dataset/mnist_test.csv"))[:,1:] y_label_train = np.array(pd.read_csv("dataset/mnist_train.csv"))[:,0] + 1 y_label_test = np.array(pd.read_csv("dataset/mnist_test.csv"))[:,0] + 1 y_train = np.array(pd.read_csv("dataset/Qlfg_mask_train.csv", header = None)) y_test = np.array(pd.read_csv("dataset/Qlfg_mask_test.csv", header = None)) y_train[y_train >= 1] = 1 y_test[y_test >= 1] = 1</pre> Segmentation Dataset
	In this datasset each pixel has an label associated with it, which is to predicted by the model in Q4. Dataset Size: (n_samples, 56,56,1) number of classes = 11 Classes: class 0: background class class 1: number 0 class 2: number 1 class 3: number 2 class 4: number 3
In [460]:	<pre>class 5 : number 4 class 6 : number 5 class 7 : number 6 class 8 : number 7 class 9 : number 8 class 10 : number 9</pre> # Creating the training Set q4_dataset_x_train = [] q4_dataset_y_train = []
	<pre>indexes = np.arange(60000) while(len(indexes) > 0): e1 = random.choice(indexes) indexes = np.delete(indexes, np.where(indexes == e1)[0][0]) e2 = random.choice(indexes) indexes = np.delete(indexes, np.where(indexes == e2)[0][0]) e3 = random.choice(indexes) indexes = np.delete(indexes, np.where(indexes == e3)[0][0]) e4 = random.choice(indexes) indexes = np.delete(indexes, np.where(indexes == e4)[0][0])</pre>
	<pre>img1, y1 = X_train[e1].reshape((28,28)), y_train[e1].reshape((28,28))*y_label_train[e1] img2, y2 = X_train[e2].reshape((28,28)), y_train[e2].reshape((28,28))*y_label_train[e2] img3, y3 = X_train[e3].reshape((28,28)), y_train[e3].reshape((28,28))*y_label_train[e3] img4, y4 = X_train[e4].reshape((28,28)), y_train[e4].reshape((28,28))*y_label_train[e4] final_img = np.zeros((56,56)) final_seg = np.zeros((56,56)) final_img[0:28,0:28] = img1 final_img[0:28,28:] = img2 final_img[28:,0:28] = img3 final_img[28:,28:] = img4 final_seg[0:28,0:28] = y1</pre>
	<pre>final_seg[0:28 ,28:] = y2 final_seg[28:,0:28] = y3 final_seg[28:,28:] = y4 q4_dataset_x_train.append(final_img.flatten()) q4_dataset_y_train.append(final_seg.flatten()) q4_dataset_x_train = np.array(q4_dataset_x_train) q4_dataset_y_train = np.array(q4_dataset_y_train)</pre> Saving the dataset in a .csv file.
	<pre>with open('dataset/question4/Qlimage_segmentation_train_x.csv', 'a+', newline ='') as f: write = csv.writer(f) write.writerows(q4_dataset_x_train) with open('dataset/question4/Qlimage_segmentation_train_y.csv', 'a+', newline ='') as f: write = csv.writer(f) write.writerows(q4_dataset_y_train)</pre> # Creating the Test Set q4_dataset_x_test = [] q4_dataset_x_test = [] indexes = np.arange(10000)
	<pre>while(len(indexes) > 0): e1 = random.choice(indexes) indexes = np.delete(indexes, np.where(indexes == e1)[0][0]) e2 = random.choice(indexes) indexes = np.delete(indexes, np.where(indexes == e2)[0][0]) e3 = random.choice(indexes) indexes = np.delete(indexes, np.where(indexes == e3)[0][0]) e4 = random.choice(indexes) indexes = np.delete(indexes, np.where(indexes == e4)[0][0]) img1, y1 = X_test[e1].reshape((28,28)), y_test[e1].reshape((28,28))*y_label_test[e1] img2, y2 = X_test[e2].reshape((28,28)), y_test[e2].reshape((28,28))*y_label_test[e2]</pre>
	<pre>img3, y3 = X_test[e3].reshape((28,28)), y_test[e3].reshape((28,28))*y_label_test[e3] img4, y4 = X_test[e4].reshape((28,28)), y_test[e4].reshape((28,28))*y_label_test[e4] final_img = np.zeros((56,56)) final_seg = np.zeros((56,56)) final_img[0:28,0:28] = img1 final_img[0:28,28:] = img2 final_img[28:,0:28] = img3 final_img[28:,28:] = img4 final_seg[0:28,0:28] = y1 final_seg[0:28,0:28] = y2</pre>
In '	<pre>final_seg[28:,0:28] = y3 final_seg[28:,28:] = y4 q4_dataset_x_test.append(final_img.flatten()) q4_dataset_y_test.append(final_seg.flatten()) q4_dataset_x_test = np.array(q4_dataset_x_test) q4_dataset_y_test = np.array(q4_dataset_y_test) Saving the dataset in a .csv file. with open('dataset/question4/Qlimage_segmentation_test_x.csv', 'a+', newline =''') as f:</pre>
	<pre>with open('dataset/question4/Q1image_segmentation_test_x.csv', 'a+', newline ='') as f: write = csv.writer(f) write.writerows(q4_dataset_x_test) with open('dataset/question4/Q1image_segmentation_test_y.csv', 'a+', newline ='') as f: write = csv.writer(f) write.writerows(q4_dataset_y_test)</pre> Sample Visualization idx = 45 sample_x = q4_dataset_x_train[idx].reshape((56,56)) sample_y = q4_dataset_y_train[idx].reshape((56,56))
	_
	Question 2 Train a DL network from scratch for performing foreground extraction on the new dataset obtained in Q1 (a). Report your test performance
In [114]:	Train a DL network from scratch for performing foreground extraction on the new dataset obtained in Q1 (a). Report your test performance using Jaccard similarity. [3 Marks]
In [115]:	<pre>X_train_df = pd.read_csv("dataset/mnist_train.csv") X_test_df = pd.read_csv("dataset/mnist_test.csv") y_train_df = pd.read_csv("dataset/Q1fg_mask_train.csv", header = None) y_test_df = pd.read_csv("dataset/Q1fg_mask_test.csv", header= None) X_train = np.array(X_train_df)[:,1:] X_test = np.array(X_test_df)[:,1:] y_train = np.array(y_train_df)</pre>
In [115]:	<pre>X_test_df = pd.read_csv("dataset/mnist_test.csv") y_train_df = pd.read_csv("dataset/Qlfg_mask_train.csv", header = None) y_test_df = pd.read_csv("dataset/Qlfg_mask_test.csv", header= None) X_train = np.array(X_train_df)[:,1:]</pre>

max_pooling2d: Max	output: (None, 28, 28, 16)
conv2d_2: Con	input: (None, 14, 14, 16)
conv2d_3: Conv2d	(None, 14, 14, 32) output: (None, 14, 14, 32) (None, 14, 14, 32) (None, 7, 7, 32)
conv2d_4: Conv2D output: (Nor	ne, 7, 7, 32) ne, 7, 7, 64) ne, 7, 7, 64) ne, 7, 7, 64)
up_sampling2d: UpSampling2D input: output: (None output: (No	(None, 7, 7, 64) (None, 7, 7, 64) (None, 14, 14, 64)
conv2d_6: Conv2D output: (Non concatenate: Concatenate output:	[(None, 14, 14, 32)] [(None, 14, 14, 32), (None, 14, 14, 32)] [(None, 14, 14, 64)]
conv2d_7: Conv2D conv2d_8: Conv2 up_sampling2d_1: UpSa	output: (None, 14, 14, 32) D input: (None, 14, 14, 32) output: (None, 14, 14, 32) input: (None, 14, 14, 32)
conv2d_9: C	input: (None, 28, 28, 32)
	conv2d_10: Conv2D input: (None, 28, 28, 32) output: (None, 28, 28, 16) conv2d_11: Conv2D input: (None, 28, 28, 16) output: (None, 28, 28, 16) output: (None, 28, 28, 16)
	conv2d_12: Conv2D
<pre>ts) conv1 = Conv2D(16, 3, activation = 're 1) pool1 = MaxPooling2D(pool_size=(2, 2)</pre>	<pre>elu', padding = 'same', kernel_initializer = 'he_normal') (inpu elu', padding = 'same', kernel_initializer = 'he_normal') (conv) (conv1) elu', padding = 'same', kernel initializer = 'he_normal') (pool</pre>
<pre>1) conv2 = Conv2D(32, 3, activation = 're 2) pool2 = MaxPooling2D(pool_size=(2, 2) conv3 = Conv2D(64, 3, activation = 're 2) conv3 = Conv2D(64, 3, activation = 're 3) drop3 = Dropout(0.2)(conv3)</pre>	elu', padding = 'same', kernel_initializer = 'he_normal') (conv) (conv2) elu', padding = 'same', kernel_initializer = 'he_normal') (pool elu', padding = 'same', kernel_initializer = 'he_normal') (conv
<pre>ling2D(size = (2,2))(drop3)) merge4 = concatenate([conv2,up4], axi conv4 = Conv2D(32, 3, activation = 're e4) conv4 = Conv2D(32, 3, activation = 're 4) up5 = Conv2D(16, 2, activation = 'rel ling2D(size = (2,2))(conv4)) merge5 = concatenate([conv1,up5], axi conv5 = Conv2D(16, 3, activation = 're</pre>	elu', padding = 'same', kernel_initializer = 'he_normal') (merg elu', padding = 'same', kernel_initializer = 'he_normal') (convu', padding = 'same', kernel_initializer = 'he_normal') (UpSamp
<pre>conv5 = Conv2D(2, 3, activation = 'reconv6 = Conv2D(1, 1, activation = 'signature model = Model(inputs = inputs, output)</pre>	
Training from sratch Parameters: Optimizer: Adam optimization algorithm loss: Binary Crossentropy Learning Rate: 0.0001	
 epochs: 20 batch size: 256 metrics: accuracy model = SkipNet() model.fit(X_train, y_train, epochs = 20, 1) Model: "SkipNet" Layer (type) Output Share	ape Param # Connected to
	conv2d_28[0][0] 14, 16) 0 conv2d_29[0][0] 14, 32) 4640 max_pooling2d_4[0][0]
max_pooling2d_5 (MaxPooling2D) (None, 7, conv2d_32 (Conv2D) (None, 7, conv2d_33 (Conv2D) (None, 7, dropout_2 (Dropout) (None, 7, up_sampling2d_4 (UpSampling2D) (None, 14, conv2d_34 (Conv2D) (None, 14, conv2d_34 (Conv2D)	7, 64) 18496 max_pooling2d_5[0][0] 7, 64) 36928 conv2d_32[0][0] 7, 64) 0 conv2d_33[0][0] 7, 64) 0 dropout_2[0][0]
concatenate_4 (Concatenate) (None, 14, conv2d_35 (Conv2D) (None, 14, conv2d_36 (Conv2D) (None, 14, up_sampling2d_5 (UpSampling2D) (None, 28, conv2d_37 (Conv2D) (None, 28, conv2d_37 (Conv2D)	conv2d_31[0][0] conv2d_34[0][0] 14, 32) 18464 concatenate_4[0][0] 14, 32) 9248 conv2d_35[0][0] 28, 32) 0 conv2d_36[0][0]
concatenate_5 (Concatenate) (None, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28	conv2d_37[0][0] , 28, 16) 4624
Epoch 2/20 235/235 [=========] : Epoch 3/20 235/235 [==========] : Epoch 4/20 235/235 [==========] :	- 6s 19ms/step - loss: 3.5798 - accuracy: 0.7989 - 5s 19ms/step - loss: 0.1691 - accuracy: 0.8628 - 5s 19ms/step - loss: 0.1423 - accuracy: 0.9515 - 5s 19ms/step - loss: 0.1299 - accuracy: 0.9627
Epoch 6/20 235/235 [====================================	- 5s 19ms/step - loss: 0.1230 - accuracy: 0.9687 - 5s 19ms/step - loss: 0.1173 - accuracy: 0.9735 - 5s 19ms/step - loss: 0.1116 - accuracy: 0.9779 - 5s 19ms/step - loss: 0.1076 - accuracy: 0.9805 - 5s 19ms/step - loss: 0.1028 - accuracy: 0.9834 - 5s 19ms/step - loss: 0.0992 - accuracy: 0.9855
Epoch 12/20 235/235 [====================================	- 5s 19ms/step - loss: 0.0963 - accuracy: 0.9875 - 5s 19ms/step - loss: 0.0936 - accuracy: 0.9882 - 5s 19ms/step - loss: 0.0915 - accuracy: 0.9893 - 5s 19ms/step - loss: 0.0892 - accuracy: 0.9901 - 5s 19ms/step - loss: 0.0874 - accuracy: 0.9906 - 5s 19ms/step - loss: 0.0856 - accuracy: 0.9910
Epoch 17/20 235/235 [========] : Epoch 18/20 235/235 [========] : Epoch 19/20 235/235 [=========] : Epoch 20/20	- 5s 19ms/step - loss: 0.0839 - accuracy: 0.9917 - 5s 19ms/step - loss: 0.0821 - accuracy: 0.9921 - 5s 19ms/step - loss: 0.0805 - accuracy: 0.9922 - 5s 19ms/step - loss: 0.0790 - accuracy: 0.9924
<pre>Saving the weights model.save('ModelZoo/FgExtractor') INFO:tensorflow:Assets written to: ModelZoo Loading the weights from tensorflow import keras model = keras models load model('ModelZoo</pre>	
<pre>model = keras.models.load_model('ModelZoc Evaluating on the test set y_pred = model.predict(X_test) y_pred[y_pred < 0.5] = 0 y_pred[y_pred >= 0.5] = 1 idx = 15 img = np.squeeze(X_test[idx]) pred = np.squeeze(y_pred[idx])</pre>	/FgExtractor')
<pre>y = np.squeeze(y_test[idx]) fig=plt.figure(figsize=(10, 10)) columns = 3 rows = 1 fig.add_subplot(rows, columns, 1) plt.imshow(img, cmap = 'gray') plt.title("Original Image") fig.add_subplot(rows, columns, 2) plt.imshow(pred, cmap = "gray") plt.title("Predicted Foreground map") fig.add_subplot(rows, columns, 3) plt.imshow(y, cmap = "gray")</pre>	
plt.title("Ground truth Foreground map") fig.tight_layout() plt.show() Original Image O- 5- 10- 15- 15-	Ground truth Foreground map 5 - 10 - 15 -
20 - 25 -	20 - 25 - 25 - 25 0 5 10 15 20 25
Calculating the jaccard Similarity avg_jacc_score = 0 for i in range(len(y_pred)):	
Calculating the jaccard Similarity avg_jacc_score = 0 for i in range(len(y_pred)): jc = jaccard_score(y_test[i].flatten(avg_jacc_score+=jcavg_jacc_score/=len(y_pred)) print("Average \033[1m Jaccard Similarity Average Jaccard Similarity on the Test section 3 Train a DL network from scratch for performing classification in the section in the section is a section in the section in the section in the section in the section is a section in the section in the section in the section in the section is a section in the section is a section in the section is a section in the section in t), y_pred[i].flatten(), average = 'binary') (\033[0m on the Test set :", avg_jacc_score) set : 0.9517986598096035 ation with circlization on the new dataset obtained in Q1 (b). Report your test
Calculating the jaccard Similarity avg_jacc_score = 0 for i in range(len(y_pred)): jc = jaccard_score(y_test[i].flatten(avg_jacc_score+=jc) avg_jacc_score/=len(y_pred) print("Average \033[1m Jaccard Similarity Average Jaccard Similarity on the Test on the Test of the Classification is already wrong, the Jaccard Similarity. [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity of the Classification is already wrong, the Jaccard Similarity of the Classification is already wrong. The Jaccard Similarity of the Classification is already wrong, the Jaccard	v \033[0m on the Test set :", avg_jacc_score) set : 0.9517986598096035 ation with circlization on the new dataset obtained in Q1 (b). Report your test Similarity score will become zero. rain.csv") st.csv") nter_rad_train.csv")
Calculating the jaccard Similarity avg_jacc_score = 0 for i in range(len(y_pred)): jc = jaccard_score(y_test[i].flatten(avg_jacc_score+=jc) avg_jacc_score/=len(y_pred) print("Average \033[1m Jaccard Similarity Average Jaccard Similarity on the Test is Question 3 Train a DL network from scratch for performing classificate performance using Jaccard Similarity. [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity is already wrong is alr	v \033[0m on the Test set :", avg_jacc_score) set : 0.9517986598096035 ation with circlization on the new dataset obtained in Q1 (b). Report your test Similarity score will become zero. rain.csv") st.csv") nter_rad_train.csv")
Calculating the jaccard Similarity avg_jacc_score = 0 for i in range(len(y_pred)): jc = jaccard_score(y_test[i].flatten(avg_jacc_score+=jcavg_jacc_score/=len(y_pred)) print("Average \033[lm Jaccard Similarity] Average Jaccard Similarity on the Test state of the classification is already wrong, the Jaccard Similarity. If the classification is already wrong, the Jaccard Similarity is already wrong,	v \033[0m on the Test set :", avg_jacc_score) set : 0.9517986598096035 ation with circlization on the new dataset obtained in Q1 (b). Report your test Similarity score will become zero. rain.csv") st.csv") nter_rad_train.csv")
Calculating the jaccard Similarity avg_jacc_score = 0 for i in range(len(y_pred)): jc = jaccard_score(y_test[i].flatten(avg_jacc_score+=jc) avg_jacc_score+=jc avg_jacc_score/=len(y_pred)) print("Average \033[1m Jaccard Similarity) Average Jaccard Similarity on the Test is Question 3 Train a DL network from scratch for performing classificate performance using Jaccard Similarity. [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity is a large in the performance using Jaccard Similarity. [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity is a large in the performance using Jaccard Similarity. [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity is a large in the performance using Jaccard Similarity. [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity. [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity. [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity. [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity. [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity. [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity. [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity. [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity. [4 Marks] Note: If avg_jaccard Similarity. [4 Marks] Note:	control of the Test set :", avg_jacc_score) set : 0.9517986598096035 set : 0.9517986598096035 stion with circlization on the new dataset obtained in Q1 (b). Report your test Similarity score will become zero. stion.csv") st.csv") st.csv") st.csv") st.rad_test.csv") st.rad_test.csv") st.rad_test.csv")
Calculating the jaccard Similarity avg_jacc_score = 0 for i in range(len(y_pred)): jc = jaccard_score(y_test[i].flatten(avg_jacc_score+=)c avg_jacc_score/=len(y_pred) print("Average \033[lm Jaccard Similarity] Average Jaccard Similarity on the Test and DL network from scratch for performing classification is already wrong, the Jaccard Similarity. [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity and DL network from scratch for performing classification is already wrong, the Jaccard Similarity. [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity and DL network from scratch for performing classification is already wrong, the Jaccard Similarity. [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity and DL network from scratch for performing classification is already wrong, the Jaccard Similarity. [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity and DL network from Similarity. [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity and Similarity. [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity. [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity. [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity. [4 Marks] Note: If the Classification is already wrong, the Jaccard Similarity. [4 Marks] Note: If all the Classification is already wrong, the Jaccard Similarity. [4 Marks] Note: If all the Classification is already wrong, the Jaccard Similarity. [4 Marks] Note: If all the Classification is already wrong, the Jaccard Similarity. [4 Marks] Note: If all the Classification is already wrong, the Jaccard Similarity. [4 Marks] Note: If all the Classification is already wrong, the Jaccard Similarity. [4 Marks] Note: If all the Classification is already wrong, the Jaccard Similarity. [4 Marks] Note: If all the Classification is already wrong, the Jaccard Similarity. [4 Marks] Note:	\033[0m on the Test set :", avg_jacc_score) set : 0,9517986598096035 Ition with circlization on the new dataset obtained in Q1 (b). Report your test Similarity score will become zero. tain.csv") st.csv") nter_rad_test.csv") s']].values 1].values 1].values cor): t_images/train/'+image_name + ".png")
Calculating the jaccard Similarity avg_jacc_score = 0 for i in range(len(y_pred)): jc = jaccard score(y_test[i].flatten(avg_jacc_score+=jc) avg_jacc_score+=jc avg_score+=jc avg_score+=jc avg_score+=jc avg_score+=jc avg_score+=jc avg_score+=jc avg_score+=jc avg_score+=jc avg_score+=jc avg_score+=co	<pre>values values v</pre>
Calculating the jaccard Similarity avg_jacc_score = 0 for i in range(len(y_pred)): jc = jaccard_score(y_test[i].flatten(avg_jacc_score)=icavg_jacc_score/=len(y_pred) print("Average \033[im Jaccard Similarity] average \03acard Similarity on the Test. Question 3 Train a DL network from scratch for performing classification is already wrong, the Jaccard Similarity is performance using Jaccard Similarity [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity is performance using Jaccard Similarity [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity [4 Marks] Note: If the classification is already wrong, the Jaccard Similarity [4 Marks] Note: If the Classification [4 Marks] Note: If the Clas	Nosign on the Test set :", avg_scc_score) set : 0.051788659603635 stion with circlization on the new dataset obtained in Q1(b). Report your test Similarity score will become zero. stincav") st.cov") s
Calculating the jaccard Similarity avg_jacc_score = 0 for i in range(len(y_pred)): jc = jaccard_score(y_test[i].flatten(avg_jacc_score)=len(y_pred)): jc = jaccard_score(y_test[i].flatten(avg_jacc_score)=len(y_pred)): jc = jaccard_similarity	tion with circlization on the new dataset obtained in Q1 (b). Report your test Similarity score will become zero. Pain.cav") St.cav") St.cav" St.cav St.cav" St.cav St.c
Calculating the Jaccard Similarity avg_jacd_score = 0 for i in range(len(y_pred)): jc = jaccard_score(y_testil.flatten(avg_jace_score=je) avg_jace_score=je) avg_jace_score=je) avg_jace_score=je avg_dace_score=je avg_d	No.
Calculating the jaccard Similarity avg_saccarce = 0 for i in range(len(y_pred));	10.033 (Sm on the Pear set if, own_lose_searc) 10.031 (Sm on the Pear set if, own_lose_searc) 11.031 (Sm on the Pear set if, own_lose_search) 11.031 (Sm on the Pear search) 11.031 (Sm on the Pear search) 11.032 (Sm on the Pear search) 11.032 (Sm on the Pear search) 11.033 (Sm on the Pear search) 11.034 (Sm on the Pear search) 11.035 (Sm on
Calculating the jaccard Similarity avg_jacc_score = 0 for i an range(lon(y_pred)): jc = jaccard_score(y_teat(z)_flatten(sy_gard_score(y_teat(z)_flatten(sy_gard_score(y_teat(z)_flatten(sy_gard_score(y_teat(z)_flatten(sy_gard_score(y_teat(z)_flatten(sy_gard_score(y_teat(z)_flatten(sy_gard_score(y_teat(z)_flatten(sy_gard_score(y_teat(z)_flatten(sy_gard_score(y_teat(z)_flatten(sy_gard_score(y_teat(z)_flatten(sy_gard_score(y_teat(z)_flatten(sy_gard_score(y_teat(z)_flatten(sy_gard_score(y_teat(z)_flatten(sy_gard_score(y_teat(z)_flatten(sy_gard_score(y_teat	Continue
Calculating the jaccard Similarity Avg_Jacc_score = 0 For it is tracq(len(v pred)):	volume to the rank sets of the register of the
Calculating the jaccard Similarity avg_soc_moure = 0 for i in range(len(y_pred)): je = jaccara_score(y_test_i).fiatten(avg_soul_moure+=0) je = jaccara_score(y_test_i).fiatten(avg_soul_moure+=0) print("Average \nosale_moure-good) print("Average \nosale_moure-good)	Nose 1
Calculating the jaccard Similarity avariance access = 0 Accessing the Dataset Ac	Security (Constitution of the new dataset obtained in Q1 (8). Report you test included some across of the constitution of the constitution of Q1 (8). Report you test included some across of the constitution of Q1 (8). Report you test included some across of the constitution of Q1 (8). Report you test included some across of Q1 (8). Report you test included some ac
Calculating the jaccard Similarity Programment of the Comment of	
Calculating the jaccard Similarity Tay fince norms = 0 for a manufellarity pleath):	
Calculating the jeccard Similarity Day good pools of the provided of the prov	Total Tota
Calculating the Jaccard Similarity For 1 in recognition (y preci); For 2 in recognition (y preci); For 3 in recognition (y preci); For 4 in recognition (y preci); For 5 in recognition (y preci); For 6 in recognition (y preci)	1.
Calculating the Jaccard Similarity and the capacity Similarity Capacity Similarity Capacity Similarity and the capacity Similarity below a produce of the capacity similarity and the capacity Similarity below a produce of the capacity similarity and the capacity Similarity below a produce of the capacity similarity and the capacity Similarity below a produce of the capacity similarity and the capacity Similarity below a produce of the capacity similarity and the capacity Similarity similarity and the capacity Similarity similarity and the capacity Similarity similarity similarity similarity and the capacity similarity si	100 100
Calculating the jaccard Similarity soci_tacle_come = {	Control Cont
Calculating the jaccard Similarity Calculation 30 Calculation 40 Calcul	(1) (None, 28, 28, 31) (None, 28, 28, 32) (
Cask obtaing the precard Similarity control control	### 1 CHONG 23, 28, 11] ### 1 None, 28, 28, 21] ### 1 None, 28, 28, 28, 29 ### 1 None, 28, 28, 29 ### 2 None, 28,
Carcanting the Jack of the Jac	1
Convoiding the percent Similarity Variety Convoided to Convoid State St	Column 2
Calcolong to pace of simple to the part of the pace of	Control Cont
Calculating the Jacobia Studies of Studies o	
Coloniality the process of minerity Coloniality the process of minery Coloniality of the process of minery of the beautiful process of the	1
Section Sect	1 1 1 1 1 1 1 1 1 1
Coloration to the prevalent Similary Service Coloration of the prev	1 1 1 1 1 1 1 1 1 1

In [79]:	<pre>Loading the weights from tensorflow import keras model = keras.models.load_model('ModelZoo/</pre>	/ObjectLocalizer')
In [81]:	<pre>y_pred, y_coor = model.predict(testloader) y_pred[y_pred < 0.5] = 0 y_pred[y_pred >=0.5] = 1 y_pred = np.argmax(y_pred, axis = 1) y_pred array([7, 2, 1,, 4, 5, 6], dtype=int64</pre>	4)
	<pre>array([7, 2, 1,, 4, 5, 6], dtype=int64 print(y_coor) y_coor[:,0] = y_coor[:,0]*28 y_coor[:,1] = y_coor[:,1]*28 y_coor[:,2] = y_coor[:,2]*28/(2)**0.5 [[0.47272468 0.57472044 0.526576] [0.51313406 0.4295074 0.5609449] [0.49180645 0.44644102 0.46394607] [0.563763 0.5231803 0.49714106]</pre>	
	<pre>[0.563763 0.5231803 0.49714106] [0.55173963 0.52794296 0.54207116] [0.45740402 0.3839616 0.44101104]] idx = 56 img1 = X_test[idx].reshape(28,28) img = cv2.imread('dataset/mnist_images/testx = y_coor[idx,0]</pre>	st/' + str(idx) + '.png')
In [85]:	<pre>y = y_coor[idx,1] center_coordinates = (x, y) color = (255, 0, 0) thickness = 1 radius = int(round(y_coor[idx,2])) image = cv2.circle(img, center_coordinates) fig=plt.figure(figsize=(8, 8))</pre>	s, radius, color, thickness)
	<pre>columns = 2 rows = 1 fig.add_subplot(rows, columns, 1) plt.imshow(img1, cmap = 'gray') plt.title("Original Image") fig.add_subplot(rows, columns, 2) plt.imshow(image, cmap = "gray") plt.title("Predicted Bounding Circle") fig.tight_layout() plt.show()</pre>	
	Original Image 0	Predicted Bounding Circle
	15 - 15 - 20 - 20 - 25 - 0	5 10 15 20 25
	Jaccard Similarity Jaccard Similarity computes the intersection of two binary where A,B are the two binary masks.	ry marks BM1 and BM2 divided by the union of BW1 and BW2. $J(A,B) = rac{ A \cap B }{ A \cup B }$
In [103]:	def jaccard_similarity(binary_mask1, binary_mask1) Returns the jaccard similarity score Arguments binary_mask1: list of all the points binary_mask2: list of all the points Returns	for 2 binary masks. s in mask A.
	IOU: Jaccard Similarity of the two manners """ intersection = len(list(set(binary_masunion = len(set(binary_mask1).union(seturn float(intersection) / union	sk1).intersection(set(binary_mask2))))
In [107]:	<pre>calculating the average jaccard score j_score= 0 for i in tqdm(range(len(X_test)), position img = X_test[i].reshape(28,28) idxs = np.where(img > 0) x = idxs[0] y = idxs[1] pixels = [(i,j) for (i,j) in zip(x,y)]</pre>	
	<pre>c_x = int(round(y_coor[i,0])) c_y = int(round(y_coor[i,1])) rad = int(round(y_coor[i,2])) y_p = y_pred[i] y_t = test_labels[i] if(y_p == y_t): points_circle = points_in_circle_n score = jaccard_similarity(points_in_score+=score) else:</pre>	np(rad,c_x,c_y)
	<pre>j_score+=0 avg_jacc_score = j_score/(len(X_test)) print("The average jaccard score is : ", a Progress : 100% 00:00, 411.50it/s] The average jaccard score is : 0.39441413</pre>	10000/10000 [00:24<
In [135]:	<pre>using Jaccard Similarity. [4 Marks] : X_train_df = pd.read_csv("dataset/question y_train_df = pd.read_csv("dataset/question</pre>	e segmentation on the new dataset obtained in Q1 (c). Report your test performance on4/Q1image_segmentation_train_x.csv", header = None) on4/Q1image_segmentation_train_y.csv", header= None) on4/Q1image_segmentation_test_x.csv", header = None)
	<pre>: X_train = np.array(X_train_df).astype(int) y_train_orig = np.array(y_train_df).astype X_test = np.array(X_test_df).astype(int) y_test_orig = np.array(y_test_df).astype(: X_train = X_train.reshape((X_train.shape[: y_train_orig = y_train_orig.reshape((y_train.shape[: y_train_orig = y_train_orig.reshape((y_train.shape[: y_train_orig = y_train_orig.reshape((y_train.shape[: y_train_orig = y_train_orig.reshape()</pre>	e(int) int) 0], 56,56,1)) ain_orig.shape[0], 56,56,1))
In []:	<pre>X_test = X_test.reshape((X_test.shape[0], y_test_orig = y_test_orig.reshape((y_test) #To load the train set (takes a lot of RAM y_train = np.zeros((y_train_orig.shape[0]), for i in tqdm(range(y_train.shape[0]), pos for j in range(y_train.shape[1]): for k in range(y_train.shape[2]):</pre>	orig.shape[0], 56,56,1)) M) , 56,56,11), dtype = int) sition = 0, desc = "Progress :"):
In [138]:		[00:31<00:00, 476.48it/s] 0:05<00:00, 473.46it/s]
	<pre>y_test = np.zeros((y_test_orig.shape[0], state) for i in tqdm(range(y_test.shape[0]), post for j in range(y_test.shape[1]): for k in range(y_test.shape[2]): y_test[i,j,k,y_test_orig[i,j,t] print(X_test.shape) print(y_test.shape)</pre>	56,56,11), dtype = int) ition = 0, desc = "Progress :"): k,0]] = 1
	Progress :: 100%	2500/2500 [00:08<
<pre>In [124]: Out[124]:</pre>	: Image(filename='modelQ4.png')	input_2: InputLayer
		conv2d_14: Conv2D input: (None, 56, 56, 1) output: (None, 56, 56, 32) conv2d_15: Conv2D input: (None, 56, 56, 32) output: (None, 56, 56, 32)
		input: (None, 56, 56, 32) output: (None, 28, 28, 32)
	conv2d_ max_pooling2d_3: MaxI	
	conv2d_18: Conv2d_ conv2d_19: Conv2d_	input: (None, 14, 14, 128)
	max pooling2d 4: MaxPooling2D	input: (None, 14, 14, 128)
	conv2d_20: Conv2D input: (None, 7, 7) conv2d_21: Conv2D input: (None, 7, 7) input: (None, 7, 7)	7, 128) 7, 256)
	dropout_2: Dropout input: (None, 7, 7 output:	7, 256) 7, 256) 7, 256) one, 7, 7, 256)
	conv2d_22: Conv2D input: (None, 1 output: (None, 1 output	14, 14, 256) 14, 14, 128) [(None, 14, 14, 128), (None, 14, 14, 128)]
	concatenate_2: Concatenate output:	[(None, 14, 14, 128), (None, 14, 14, 128)] (None, 14, 14, 256) input: (None, 14, 14, 128) input: (None, 14, 14, 128)
	conv5: Conv2D	output: (None, 14, 14, 128) input: (None, 14, 14, 128) output: (None, 28, 28, 128)
	conv2d_24: Convacatenate_3: Concatenate	input: (None, 28, 28, 128) output: (None, 28, 28, 64) input: [(None, 28, 28, 64), (None, 28, 28, 64)] output: (None, 28, 28, 128)
	conv2d_25:	input: (None, 28, 28, 128) output: (None, 28, 28, 64) Conv2D input: (None, 28, 28, 64) output: (None, 28, 28, 64) output: (None, 28, 28, 64)
		4: UpSampling2D
	со	oncatenate_4: Concatenate input: [(None, 56, 56, 32), (None, 56, 56, 32)] output: (None, 56, 56, 64) conv2d_27: Conv2D input: (None, 56, 56, 64) output: (None, 56, 56, 32)
		conv2d_28: Conv2D input: (None, 56, 56, 32) output: (None, 56, 56, 32) conv7: Conv2D input: (None, 56, 56, 32)
In []:	<pre>def SkipNet3(input_shape = (56,56,1)):</pre>	output: (None, 56, 56, 32) conv2d_29: Conv2D
	<pre>ts) conv1 = Conv2D(32, 3, activation = 're 1) pool1 = MaxPooling2D(pool_size=(2, 2)) conv2 = Conv2D(64, 3, activation = 're 1)</pre>	elu', padding = 'same', kernel_initializer = 'he_normal') (inpu elu', padding = 'same', kernel_initializer = 'he_normal') (conv) (conv1) elu', padding = 'same', kernel_initializer = 'he_normal') (pool elu', padding = 'same', kernel_initializer = 'he_normal') (conv
	<pre>pool2 = MaxPooling2D(pool_size=(2, 2)) conv3 = Conv2D(128, 3, activation = 'r 12)</pre>	relu', padding = 'same', kernel_initializer = 'he_normal') (poorelu', padding = 'same', kernel_initializer = 'he_normal') (con
	conv4 = Conv2D(256, 3, activation = 'rv4) drop4 = Dropout(0.2)(conv4)	relu', padding = 'same', kernel_initializer = 'he_normal') (poo relu', padding = 'same', kernel_initializer = 'he_normal') (con lu', padding = 'same', kernel_initializer = 'he_normal') (UpSam
	<pre>merge5 = concatenate([drop3,up5], axis conv5 = Conv2D(128, 3, activation = 'r ge5) conv5 = Conv2D(128, 3, activation = 'r e = 'conv5')(conv5) up6 = Conv2D(64, 2, activation = 'relu ling2D(size = (2,2))(conv5)) merge6 = concatenate([conv2,up6], axis</pre>	relu', padding = 'same', kernel_initializer = 'he_normal') (mer relu', padding = 'same', kernel_initializer = 'he_normal', nam a', padding = 'same', kernel_initializer = 'he_normal') (UpSamp
	<pre>conv6 = Conv2D(64, 3, activation = 're' conv6')(conv6) up7 = Conv2D(32, 2, activation = 'reluting2D(size = (2,2))(conv6)) merge7 = concatenate([conv1,up7], axis conv7 = Conv2D(32, 3, activation = 're' e7)</pre>	elu', padding = 'same', kernel_initializer = 'he_normal', name u', padding = 'same', kernel_initializer = 'he_normal') (UpSamp
	<pre>7) conv7 = Conv2D(32, 3, activation = 're = 'conv7')(conv7) conv8 = Conv2D(11, 1, activation = 'so model = Model(inputs = inputs, outputs</pre>	elu', padding = 'same', kernel_initializer = 'he_normal', name oftmax')(conv7)
In []:	<pre>model.summary() return model model = SkipNet3() Model: "SkipNet3" Layer (type) Output Sha</pre>	ape Param # Connected to
	input_2 (InputLayer) [(None, 56 conv2d_16 (Conv2D) (None, 56, conv2d_17 (Conv2D) (None, 56, max_pooling2d_3 (MaxPooling2D) (None, 28, conv2d_18 (Conv2D) (None, 28,	7 56, 32) 9248 conv2d_16[0][0] 928, 32) 0 conv2d_17[0][0]
	conv2d_19 (Conv2D) (None, 28, max_pooling2d_4 (MaxPooling2D) (None, 14, conv2d_20 (Conv2D) (None, 14, conv2d_21 (Conv2D) (None, 14, dropout_2 (Dropout) (None, 14,	
	max_pooling2d_5 (MaxPooling2D) (None, 7, conv2d_22 (Conv2D) (None, 7, conv2d_23 (Conv2D) (None, 7, dropout_3 (Dropout) (None, 7, up_sampling2d_3 (UpSampling2D) (None, 14,	7, 256) 295168 max_pooling2d_5[0][0] 7, 256) 590080 conv2d_22[0][0] 7, 256) 0 conv2d_23[0][0]
	conv2d_24 (Conv2D) (None, 14, concatenate_3 (Concatenate) (None, 14, conv2d_25 (Conv2D) (None, 14, conv5 (Conv2D) (None, 14,	dropout_2[0][0] conv2d_24[0][0] . 14, 128) 295040 concatenate_3[0][0] . 14, 128) 147584 conv2d_25[0][0]
	up_sampling2d_4 (UpSampling2D) (None, 28, conv2d_26 (Conv2D) (None, 28, concatenate_4 (Concatenate) (None, 28, conv2d_27 (Conv2D) (None, 28, conv6 (Conv6 (Con	28, 64) 32832 up_sampling2d_4[0][0] 28, 128) 0 conv2d_19[0][0] conv2d_26[0][0] 28, 64) 73792 concatenate_4[0][0]
	up_sampling2d_5 (UpSampling2D) (None, 56, conv2d_28 (Conv2D) (None, 56, concatenate_5 (Concatenate) (None, 56, conv2d_29 (Conv2D) (None, 56,	conv6[0][0] 56, 64) 0 conv6[0][0] up_sampling2d_5[0][0] 56, 64) 0 conv2d_17[0][0] conv2d_28[0][0]
	conv2d_30 (Conv2D) (None, 56, conv7 (Conv2D) (None, 56, conv2d_31	- 56, 32) 9248 conv2d_30[0][0]
	Training from sratch Parameters: Optimizer: Adam optimization algorithm loss: Categorical Crossentropy Learning Rate: 0.001 epochs: 50	
In []:	 batch size: 512 metrics: accuracy model.fit(X_train, y_train, epochs = 50, b Epoch 1/50 30/30 [====================================	33s 1s/step - loss: 1.0161 - accuracy: 0.8415
	Epoch 3/50 30/30 [====================================	33s 1s/step - loss: 0.4271 - accuracy: 0.8591 33s 1s/step - loss: 0.4016 - accuracy: 0.8612 33s 1s/step - loss: 0.3919 - accuracy: 0.8619 33s 1s/step - loss: 0.3854 - accuracy: 0.8625 33s 1s/step - loss: 0.3797 - accuracy: 0.8639
	Epoch 8/50 30/30 [====================================	33s 1s/step - loss: 0.3745 - accuracy: 0.8696 33s 1s/step - loss: 0.3702 - accuracy: 0.8707 33s 1s/step - loss: 0.3666 - accuracy: 0.8713 33s 1s/step - loss: 0.3632 - accuracy: 0.8719 33s 1s/step - loss: 0.3600 - accuracy: 0.8723
	Epoch 13/50 30/30 [====================================	33s 1s/step - loss: 0.3570 - accuracy: 0.8729 33s 1s/step - loss: 0.3542 - accuracy: 0.8737 33s 1s/step - loss: 0.3515 - accuracy: 0.8746 33s 1s/step - loss: 0.3484 - accuracy: 0.8752 33s 1s/step - loss: 0.3448 - accuracy: 0.8761
	Epoch 18/50 30/30 [====================================	33s 1s/step - loss: 0.3401 - accuracy: 0.8777 33s 1s/step - loss: 0.3347 - accuracy: 0.8791 33s 1s/step - loss: 0.3303 - accuracy: 0.8805 33s 1s/step - loss: 0.3244 - accuracy: 0.8817 33s 1s/step - loss: 0.3171 - accuracy: 0.8836
	Epoch 23/50 30/30 [====================================	33s 1s/step - loss: 0.3171 - accuracy: 0.8864 33s 1s/step - loss: 0.3082 - accuracy: 0.8899 33s 1s/step - loss: 0.2983 - accuracy: 0.8925 33s 1s/step - loss: 0.2878 - accuracy: 0.8957 33s 1s/step - loss: 0.2796 - accuracy: 0.8976
	Epoch 28/50 30/30 [====================================	33s 1s/step - loss: 0.2583 - accuracy: 0.9039 33s 1s/step - loss: 0.2609 - accuracy: 0.9032 33s 1s/step - loss: 0.2361 - accuracy: 0.9108 33s 1s/step - loss: 0.2284 - accuracy: 0.9138 33s 1s/step - loss: 0.2170 - accuracy: 0.9186
	Epoch 33/50 30/30 [====================================	33s 1s/step - loss: 0.2279 - accuracy: 0.9154 33s 1s/step - loss: 0.1973 - accuracy: 0.9271 33s 1s/step - loss: 0.1830 - accuracy: 0.9331 33s 1s/step - loss: 0.1693 - accuracy: 0.9383 33s 1s/step - loss: 0.1705 - accuracy: 0.9378 33s 1s/step - loss: 0.1540 - accuracy: 0.9442
	Epoch 38/50 30/30 [====================================	33s 1s/step - loss: 0.1540 - accuracy: 0.9442 33s 1s/step - loss: 0.1503 - accuracy: 0.9455 33s 1s/step - loss: 0.1378 - accuracy: 0.9511 33s 1s/step - loss: 0.1577 - accuracy: 0.9438 33s 1s/step - loss: 0.1235 - accuracy: 0.9573 33s 1s/step - loss: 0.1343 - accuracy: 0.9551
	Epoch 43/50 30/30 [====================================	33s 1s/step - loss: 0.1709 - accuracy: 0.9366 33s 1s/step - loss: 0.1186 - accuracy: 0.9588 33s 1s/step - loss: 0.1108 - accuracy: 0.9628 33s 1s/step - loss: 0.0929 - accuracy: 0.9704
Out[]:	30/30 [========] - 3 Epoch 48/50 30/30 [=========] - 3 Epoch 49/50 30/30 [==========] - 3 Epoch 50/50 30/30 [==========] - 3 <tensorflow.python.keras.callbacks.history< th=""><th>33s 1s/step - loss: 0.1030 - accuracy: 0.9667 33s 1s/step - loss: 0.0806 - accuracy: 0.9753 33s 1s/step - loss: 0.0661 - accuracy: 0.9806 33s 1s/step - loss: 0.0594 - accuracy: 0.9828 y at 0x7fb0b2a0fcd0></th></tensorflow.python.keras.callbacks.history<>	33s 1s/step - loss: 0.1030 - accuracy: 0.9667 33s 1s/step - loss: 0.0806 - accuracy: 0.9753 33s 1s/step - loss: 0.0661 - accuracy: 0.9806 33s 1s/step - loss: 0.0594 - accuracy: 0.9828 y at 0x7fb0b2a0fcd0>
In []:	Saving the weights model.save('ModelZoo/semanticSegmentor') INFO:tensorflow:Assets written to: ModelZoo Loading the weights	po/semanticSegmentor/assets
	<pre>from tensorflow import keras model = keras.models.load_model('ModelZoo, Evaluating on the test set y_pred = model.predict(X_test) y_pred = np.argmax(y_pred, axis = 3) y_pred = y_pred.reshape((y_pred.shape[0],</pre>	
	<pre>idx = 98 img = np.squeeze(X_test[idx]) sample_y = np.squeeze(y_pred[idx]) fig=plt.figure(figsize=(8, 8)) columns = 2 rows = 1</pre>	
	<pre>fig.add_subplot(rows, columns, 1) plt.imshow(img, cmap = 'gray') plt.title("Input Image") fig.add_subplot(rows, columns, 2) plt.imshow(sample_y, cmap = "gray") plt.title("Predicted Segmentation") fig.tight_layout() plt.show()</pre> <pre>Input Image</pre>	Predicted Segmentation
	10 - 20 - 30 - 30 -	6 6
	Calcuating the Average Jaccard Similarity	10 20 30 40 50
In [159]:	<pre>for i in range(len(y_pred)): jc = jaccard_score(y_test_orig[i].flat avg_jacc_score+=jc avg_jacc_score/=len(y_pred)</pre>	<pre>tten(), y_pred[i].flatten(), average = 'micro') 033[0m on the Test set :", avg_jacc_score) 1 : 0.9685201373796278</pre>
		END