Text Classification and Clustering with WEKA

A guided example by Sergio Jiménez

The Task

Building a model for movies revisions in English for classifying it into positive or negative.

Sentiment Polarity Dataset Version 2.0

1000 positive movie review and 1000 negative review texts from:

Thumbs up? Sentiment Classification using Machine Learning Techniques. Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Proceedings of EMNLP, pp. 79--86, 2002.

"Our data source was the Internet Movie Database (IMDb) archive of the rec.arts.movies.reviews newsgroup.3 We selected only reviews where the author rating was expressed either with stars or some numerical value (other conventions varied too widely to allow for automatic processing). Ratings were automatically extracted and converted into one of three categories: positive, negative, or neutral. For the work described in this paper, we concentrated only on discriminating between positive and negative sentiment."

http://www.cs.cornell.edu/people/pabo/movie-review-data/

The Data (1/2)

The Data (2/2)

What WEKA is?

- "Weka is a collection of machine learning algorithms for data mining tasks".
- "Weka contains tools for:
 - data pre-processing,
 - classification,
 - regression,
 - clustering,
 - association rules,
 - and visualization"

Where to start?

WEKA

Rechercher

Environ 969 000 résultats (0,15 secondes)

Recherche avancée

Recherche sur le Web

Rechercher les pages en français

Date indifférente

2 derniers jours

▼ Plus d'outils

► Weka 3 - Data Mining with Open Source Machine Learning Software in ... 😭 - 4

visites - 15:23 - [Traduire cette page]

Collection of machine learning algorithms for solving data mining problems implemented in Java and open sourced under the GPL.

www.cs.waikato.ac.nz/.../weka/ - En cache - Pages similaires

Éditions Weka 😭

Protection sociale des personnels médicaux et hospitaliers www.weka.fr. Maîtrisez les subtilités de chaque situation :... Rémunération et paie des personnels ...

Marchés Publics - RH Publiques - Action sociale www.weka.fr/ - En cache - Pages similaires

Weka---Machine Learning Software in Java | Download Weka---Machine ... :

- [Traduire cette page]

Get **Weka**---Machine Learning Software in Java at SourceForge.net. Fast, secure and free downloads from the largest Open Source applications and software ...

sourceforge.net > Projects - En cache - Pages similaires

Getting WEKA

Before Running WEKA

Increasing available memory for Java in RunWeka.ini

Creating a .arff dataset

Saving the .arff dataset

From text to vectors

$$V = [v_1, v_2, v_3, \cdots, v_n, class]$$
 review_1="great movie" review_3="worst film ever" review_2="excellent film" review_4="sucks"
$$V_1 = [0,0,0,1,1,0,0,+]$$

$$V_2 = [0,1,1,0,0,0,0,+]$$

$$V_3 = [1,0,1,0,0,0,1,-]$$

$$V_4 = [0,0,0,0,0,1,0,-]$$

Generating datasets for experiments

dataset file name	Stopwords	Stemming	Presence or freq.
movie_reviews_1.arff		no	presence
movie_reviews_2.arff		no	frequency
movie_reviews_3.arff		yes	presence
movie_reviews_4.arff		yes	frequency
movie_reviews_5.arff	removed	no	presence
movie_reviews_6.arff	removed	no	frequency
movie_reviews_7.arff	removed	yes	presence
movie_reviews_8.arff	removed	yes	frequency

Results

Correctly Classified Instances	1616		80.8	용
Incorrectly Classified Instances	384		19.2	옿
Kappa statistic	0.616			
Mean absolute error	0.1918			
Root mean squared error	0.4111			
Relative absolute error	38.3507 %	1		
Root relative squared error	82.2217 %	1		
Total Number of Instances	2000			

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area
	0.832	0.216	0.794	0.832	0.813	0.897
	0.784	0.168	0.824	0.784	0.803	0.897
Weighted Avg.	0.808	0.192	0.809	0.808	0.808	0.897

=== Confusion Matrix ===

```
a b <-- classified as
832 168 | a = neg
216 784 | b = pos
```

Results Correctly Classified Reviews

dataset name	Stopwords	Stemming	Presence or freq.	Naive Bayes 3- fold	NaiveBayes Multinomial 3-fold
movie_reviews_1.arff		no	presence(80.65%	83.80%
movie_reviews_2.arff		no	frequency	69.30%	78.65%
movie_reviews_3.arff		yes	presence	79.40%	82.15%
movie_reviews_4.arff		yes	frequency	68.10%	79.70%
movie_reviews_5.arff	removed	no	presence	81.80%	84.35%
movie_reviews_6.arff	removed	no	frequency	69.40%	81.75%
movie_reviews_7.arff	removed	yes	presence	78.90%	82.40%
movie_reviews_8.arff	removed	yes	frequency	68.30%	80.50%

Attribute (word) Selecction

Selected Attributes (words)

also

awful

bad

boring

both

dull

fails

great

joke

lame

life

many

maybe

mess

nothing

others

perfect

performances

pointless

poor

ridiculous

script

seagal

sometimes

stupid

tale

terrible

true

visual

waste

wasted

world

worst

animation

definitely

deserves

wonderfully

Pruned movie_reviews_1.arff dataset

Naïve Bayes with the pruned dataset

Clustering

Incorrectly clustered instances: 695.0 34.75

Other results

Results of Pang et al. (2002) with version 1.0 of the dataset with 700+ and 700-

	Features	# of	frequency or	NB	ME	SVM
		features	presence?		,	
(1)	unigrams	16165	freq.	78.7	N/A	72.8
(2)	unigrams	***	pres.	81.0	80.4	82.9
(3)	unigrams+bigrams	32330	pres.	80.6	80.8	82.7
(4)	bigrams	16165	pres.	77.3	77.4	77.1
(5)	unigrams+POS	16695	pres.	81.5	80.4	81.9
(6)	adjectives	2633	pres.	77.0	77.7	75.1
(7)	top 2633 unigrams	2633	pres.	80.3	81.0	81.4
(8)	unigrams+position	22430	pres.	81.0	80.1	81.6

No stemming or stoplists were used.

are the average three-fold cross-validation results

Thanks