Jméno a příjmení:

Podpis:

1. Množina všech řešení rovnice $x+1=\sqrt{x+3}$ v oboru reálných čísel je

a) $\{-1\}$

b) {1}

(30)

- 6

c) {2}

d) $\{-1,2\}$

- e) $\{-2, 1\}$
- 2. Rovnice kružnice se středem S = [2, -1] a poloměrem r = 3 je
 - a) $x^2 4x + y^2 + 2y + 2 = 0$
- b) $x^2 + 4x + y^2 2y + 2 = 0$

- c) $x^2 4x + y^2 + 2y 3 = 0$
- d) $x^2 4x + y^2 + 2y 4 = 0$

- e) $x^2 + 4x + y^2 2y 4 = 0$
- 3. Pro $x > 0, x \neq 1$ platí $\frac{\sqrt{x}}{1 + \sqrt{x}} \frac{1}{1 \sqrt{x}} =$
 - a) (x+1)/(x-1)

b) (1+x)/(1-x)

- e) $\sqrt{x} 1/\sqrt{x}$

d) $\sqrt{x} + 1/\sqrt{x}$

- 4. Máme 60 lahví vína o objemu 0,7 litru. Kdyby víno bylo v lahvích o objemu 0,75 litru, kolik lahví by bylo naplněno?
 - a) 54

b) 55

c) 56

d) 57

- 6

- e) 58
- 5. Množina všech řešení nerovnice $\left|\frac{x}{2}-3\right| \leq 1$ je
 - a) $\langle 4, 8 \rangle$

b) $\langle -4, 8 \rangle$

(30)

c) $\langle 2, 4 \rangle$

d) $(-\infty, 8)$

e) $(-\infty, 4)$

- 6
- 6. Mezi čísly a, b, c, d, e platí nerovnosti: a < d, c > d, d > e, d < b. Který z následujících vztahů nemůže platit?
 - a) a < c

b) a > c

(40)

c) b < c

d) b > c

- 8

- e) Může platit kterýkoli z předchozích vztahů.
- 7. Jestliže $y = \log_2 x$, pak $y \in \langle -1, 3 \rangle$ právě pro
 - a) $x \in \langle -2, 8 \rangle$

b) $x \in (1/2, 8)$

c) $x \in \langle 1/2, 9 \rangle$

d) $x \in \langle 1, 9 \rangle$

- 8

- e) žádná z předchozích možností není správná
- 8. Pro libovolná dvě čísla x, y splňující podmínku $y = x + \pi/2$ platí
 - a) $\sin x = \cos y$

b) $\sin y = \cos x$

(40)- 8

c) $\sin y = -\cos x$ e) $\cos x = \cos y$

d) $\sin x = \sin y$

- 9. Určete všechny hodnoty parametru p, pro které rovnice $x^2 2px + 2p = 0$ nemá reálné kořeny.
 - a) $p \in (0, \infty)$

b) $p \in (-2, 0)$

c) $p \in (0,2)$

d) $p \in (-\infty, 0) \cup (2, \infty)$

- e) $p \in (-\infty, -2) \cup (0, \infty)$
- 10. Jestliže čtvrtý člen geometrické posloupnosti je $a_4 = 1/3$ a sedmý je $a_7 = 1/81$, pak součet prvních tří členů této posloupnosti je

 - a) $\frac{13}{27}$ c) $\frac{13}{3}$ e) 39

b) $\frac{13}{9}$

(40)- 8

d) 13

	FIT VUT v Brne	MATEMATIKA 2011 III B	
11.	Je dána funkce $f(x) = x^2 + x$. Pak $f(x + 1)$)+f(x-1)=	
	a) $x^2 + 2x$	b) $x^2 - 2x$	50
	c) $2x^2$	d) $2x^2 + 2x$	- 10
	e) $2x^2 + 2x + 2$,	
12.	Přímky $p: x = 1 + 2t; \ y = 3 - t; \ t \in R$ a $q:$	2x - y + 1 = 0 jsou	
	a) kolmé	b) různoběžné, ale nikoli kolmé	(50)
	c) rovnoběžné různé	d) totožné	- 10
	e) mimoběžné	d) (6002116	
13.	Máme kartičky, jejichž líc a rub je obarven některou ze čtyř barev, přičemž barva líce je vždy jiná než barva rubu. Na líci každé kartičky je jeden ze šesti různých obrázků. Všechny přípustné kombinace barev líce a rubu a obrázku jsou zastoupeny a žádné dvě karty nejsou stejné. Kolik je karet celkem?		
	a) 96	b) 72	(50)
	c) 48	d) 26	- 10
	e) 13		
14.	Řešení rovnice $5-3z=i(5+z)$ v komplexním oboru je		
	a) $-1 + 2i$	b) $1 + 2i$	(50)
	c) $1 - 2i$	d) 2 + i	- 10
	$\stackrel{\circ}{=}$ $2-i$,	
15.	Koule má poloměr $r=2$. Krychle o stejném povrchu jako tato koule má hranu		
	a) $4\sqrt{\pi}$	b) $\sqrt{8\pi/3}$	(50)
	c) $\sqrt{6/\pi}$	b) $\sqrt{8\pi/3}$ d) $\sqrt[3]{32\pi/3}$	- 10
	e) $\sqrt[3]{16\pi/3}$		
	Když bylo Anně, kolik je dnes Báře, byla Bára dvakrát mladší, než je Anna teď. Za 10 let bude Anna dvakrát starší, než je Bára teď. Kolik let je teď Anně a Báře dohromady?		
	a) 20	b) 24	80
	c) 28	d) 32	- 16
	e) 35	, -	
17.	Množina řešení rovnice $2\cos^2 x = 3\sin x$ na intervalu $\langle 0; 2\pi \rangle$ je právě		
	$a) \left\{ \frac{\pi}{4}, \frac{3\pi}{4} \right\}$	b) $\{\frac{\pi}{2}, \frac{2\pi}{2}\}$	80
	c) $\left\{\frac{\pi}{2}, \frac{5\pi}{2}\right\}$	b) $\left\{ \frac{\pi}{3}, \frac{2\pi}{3} \right\}$ d) $\left\{ \frac{7\pi}{6}, \frac{11\pi}{6} \right\}$	- 16
	c) $\left\{\frac{\pi}{6}, \frac{5\pi}{6}\right\}$ e) $\left\{\frac{\pi}{3}, \frac{5\pi}{3}\right\}$	"/ (6 / 6 J	
18.	V krabici jsou předměty různých vlastností. Všechny zelené předměty mají tvar koule a některé zelené předměty jsou ze dřeva. Jaký závěr ohledně předmětů v krabici z těchto informací můžeme vyvodit?		
	a) Žádná koule není dřevěná.	b) Všechny koule jsou dřevěné.	(80)
	c) Aspoň jedna koule je dřevěná.	d) Všechny dřevěné předměty mají tvar kou	le 16
	e) Žádné z předchozích tvrzení z uvedeny předpokladů neplyne.	ých	
19.	Operace \ominus je definována jako $a\ominus b=ab+2a$. Určete x , víme-li, že $(x\ominus 4)\ominus 1=-36$.		
	a) -12	b) -6	80
	c) -3	d) -2	- 16
	e) 0	/, -	

20. Dvě pumpy vyčerpají cisternu za 3,6 hodiny. První pumpou by se cisterna vyprázdnila o 3 hodiny dříve než druhou pumpou. Za kolik hodin by se cisterna vyprázdnila pouze první (výkonnější) pumpou? (Pomůcka: $4,2^2=17,64;7,8^2=60,84;10,2^2=104,04;21^2=441;39^2=1521;51^2=2601$)

a) 5,7

b) 6

80

c) 7,2 e) 9 d) 8,7

- 16