ECE 595: Introduction to Quantum Computing Final Project: Review of Quantum Phase Estimation

Warren D. (Hoss) Craft

Tues 5/12/2020

Note: References throughout the homework to "Mermin" refer to Mermin's (2007) Quantum Computer Science: An Introduction [1], and references to "Nielsen & Chuang" or just "N&C" refer to Nielsen & Chuang's (2010) Quantum Computation and Quantum Information (10th Anniversary Edition) [2], and further bracketed citations are omitted.

(1) Nielsen & Chuang's Exercise 5.7 (pg 222):

Exercise 5.7: Additional insight into the circuit in Figure 5.2 may be obtained by showing, as you should now do, that the effect of the sequence of controlled-U operations like that in Figure 5.2 is to take the state $|j\rangle |u\rangle$ to $|j\rangle U^j |u\rangle$. (Note that this does not depend on $|u\rangle$ being an eigenstate of U.)

Solution. We take $|j\rangle = |j\rangle_t - i.e.$, j is an integer value expressible in t bits, so that

$$j = \sum_{i=0}^{t-1} \alpha_i 2^i, \text{ for } \alpha_i \in \{0, 1\}$$
 (1)

and thus

$$|j\rangle = |\alpha_{t-1}\rangle |\alpha_{t-1}\rangle \dots |\alpha_1\rangle |\alpha_0\rangle \tag{2}$$

Then the effect of the sequence of controlled-U operations like that in Figure 5.2 is to effect the transformation:

$$|j\rangle |u\rangle \mapsto |j\rangle \prod_{i=0}^{t-1} e^{2\pi i (\alpha_i 2^i \varphi)} |u\rangle$$
 (3)

because for each non-zero α_i in the expansion of j, we will obtain a (non-unitary) factor of $e^{2\pi i(2^i\varphi)}$. The product of the exponential functions can be re-expressed as sum in the exponent, where the sum is exactly our formula for j:

$$|j\rangle \prod_{i=0}^{t-1} e^{2\pi i (\alpha_i 2^i \varphi)} |u\rangle = |j\rangle e^{2\pi i (\sum_{i=0}^{t-1} (\alpha_i 2^i) \varphi)} |u\rangle$$

$$\tag{4}$$

$$= |j\rangle e^{2\pi i(j\varphi)} |u\rangle \tag{5}$$

$$=|j\rangle \left(e^{2\pi i\varphi}\right)^{j}|u\rangle \tag{6}$$

$$=|j\rangle U^{j}|u\rangle \tag{7}$$

(8)

where in the end we used the fact that $U|u\rangle = e^{2\pi i\varphi}|u\rangle$ and thus $U^{j}|u\rangle = (e^{2\pi i\varphi})^{j}|u\rangle$.

Some simple concrete examples of this result are shown worked out from scratch in Table 1 for j defined on t = 3 Qbits.

$ j\rangle u\rangle$ input	output	simplified output
$ 001\rangle u\rangle$	$ 001\rangle U^{2^0} u\rangle$	$\left 001 \right\rangle U^1 \left u \right\rangle = \left 1 \right\rangle_3 U^1 \left u \right\rangle$
$ 010\rangle u\rangle$	$ 010\rangle U^{2^1} u\rangle$	$ 010\rangle U^2 u\rangle = 2\rangle_3 U^2 u\rangle$
$ 011\rangle u\rangle$	$ 011\rangle U^{2^1}U^{2^0} u\rangle$	$ 011\rangle U^2 U^1 u\rangle = 3\rangle_3 U^3 u\rangle$
$ 100\rangle u\rangle$	$ 100\rangle U^{2^2} u\rangle$	$ 100\rangle U^4 u\rangle = 4\rangle_3 U^4 u\rangle$
$ 101\rangle u\rangle$	$ 101\rangle U^{2^2}U^{2^0} u\rangle$	$ 101\rangle U^4U^1 u\rangle = 5\rangle_3 U^5 u\rangle$
$ 110\rangle u\rangle$	$ 110\rangle U^{2^2}U^{2^1} u\rangle$	$ 110\rangle U^4 U^2 u\rangle = 6\rangle_3 U^6 u\rangle$

Table 1: Examples of results for Exercise 5.7, with j defined on 3 Qbits.

References

- [1] N. David Mermin. Quantum Computer Science: An Introduction. New York, NY: Cambridge University Press, 2007.
- [2] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information (10th Anniversary Edition). New York, NY: Cambridge University Press, 2010.