Aim: To perform and analysis of Naive Bayes, Confusion matrix, K fold cross Validation

```
In [4]:
#Name : Taufig Rafik Nagori
#Roll no. : 77 (BDA-B77)
#Section : B
#Subject : PE-II
In [6]:
#Finding the parameters of confusion matrix
In [8]:
import os
import pandas as pd
import numpy as np
In [10]:
os.getcwd()
Out[10]:
'C:\\Users\\USER'
In [18]:
os.chdir("C:\\Users\\USER\\Desktop")
In [22]:
data = pd.read csv("heart.csv")
In [24]:
data.head()
Out[24]:
   age sex cp trestbps chol fbs
                                    restecg
                                            thalach exang
                                                            oldpeak slope
                                                                               thal target
                                                                           ca
0
    52
          1
              0
                      125
                           212
                                  0
                                          1
                                                168
                                                         0
                                                                 1.0
                                                                         2
                                                                             2
                                                                                  3
                                                                                         0
1
    53
          1
              0
                      140
                           203
                                          0
                                                155
                                                                 3.1
                                                                         0
                                                                             0
                                                                                  3
                                                                                         0
2
    70
          1
              0
                     145
                           174
                                 0
                                          1
                                                125
                                                                 2.6
                                                                         0
                                                                             0
                                                                                  3
                                                                                         0
                                                         1
3
                      148
                           203
                                          1
                                                161
                                                         0
                                                                 0.0
                                                                         2
                                                                                  3
    61
          1
              0
                                  0
                                                                                         0
                      138
                           294
                                          1
                                                106
                                                         0
                                                                                  2
                                                                                         0
4
    62
          0
              0
                                  1
                                                                 1.9
                                                                         1
                                                                             3
In [26]:
data.tail()
Out[26]:
          sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target
      age
1020
       59
                 1
                         140
                              221
                                     0
                                             1
                                                   164
                                                             1
                                                                    0.0
                                                                            2
                                                                                0
                                                                                     2
                                                                                            1
             1
```

2.8

1.0

0.0

Explore our developer-friendly HTML to PDF API	Explore our	developer-friendly HTML to PDF API
--	-------------	------------------------------------

2 0

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
1024	54	1	0	120	188	0	1	113	0	1.4	1	1	3	0

In [28]:

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1025 entries, 0 to 1024
Data columns (total 14 columns):

- 0 0.	(, -
#	Column	Non-Null Count	Dtype
0	age	1025 non-null	int64
1	sex	1025 non-null	int64
2	ср	1025 non-null	int64
3	trestbps	1025 non-null	int64
4	chol	1025 non-null	int64
5	fbs	1025 non-null	int64
6	restecg	1025 non-null	int64
7	thalach	1025 non-null	int64
8	exang	1025 non-null	int64
9	oldpeak	1025 non-null	float64
10	slope	1025 non-null	int64
11	ca	1025 non-null	int64
12	thal	1025 non-null	int64
13	target	1025 non-null	int64

dtypes: float64(1), int64(13)

memory usage: 112.2 KB

In [30]:

data.describe()

Out[30]:

	age	sex	ср	trestbps	chol	fbs	restecg					
count	1025.000000	1025.000000	1025.000000	1025.000000	1025.00000	1025.000000	1025.000000	102				
mean	54.434146	0.695610	0.942439	131.611707	246.00000	0.149268	0.529756	14				
std	9.072290	0.460373	1.029641	17.516718	51.59251	0.356527	0.527878	2				
min	29.000000	0.000000	0.000000	94.000000	126.00000	0.000000	0.000000	7				
25%	48.000000	0.000000	0.000000	120.000000	211.00000	0.000000	0.000000	13				
50%	56.000000	1.000000	1.000000	130.000000	240.00000	0.000000	1.000000	15				
75%	61.000000	1.000000	2.000000	140.000000	275.00000	0.000000	1.000000	16				
max	77.000000	1.000000	3.000000	200.000000	564.00000	1.000000	2.000000	20				

In [32]:

 ${\tt data.size}$

Out[32]:

14350

In [34]:

data.shape

```
Out[34]:
(1025, 14)
In [36]:
data.ndim
Out[36]:
2
Data pre-processing, data-cleaning, mising value treatment
In [39]:
data.isna()
Out[39]:
                                                                      exang oldpeak
                sex
                            trestbps
                                       chol
                                               fbs restecg
                                                             thalach
                                                                                        slope
                                                                                                  ca
                                                                                                        thal
         age
    0 False
              False
                     False
                               False
                                      False
                                             False
                                                      False
                                                                False
                                                                        False
                                                                                 False
                                                                                        False
                                                                                               False
                                                                                                      False
    1 False
              False
                     False
                               False
                                      False
                                             False
                                                       False
                                                                False
                                                                        False
                                                                                 False
                                                                                        False
                                                                                               False
                                                                                                      False
    2 False
              False
                     False
                               False
                                      False
                                             False
                                                      False
                                                                False
                                                                       False
                                                                                 False
                                                                                        False False False
       False
              False
                     False
                               False
                                      False
                                             False
                                                       False
                                                                False
                                                                        False
                                                                                 False
                                                                                        False
                                                                                               False
                                                                                                      False
       False False
                     False
                               False
                                      False
                                             False
                                                      False
                                                                False
                                                                       False
                                                                                 False
                                                                                        False
                                                                                               False
                                                                                                      False
          ...
                 ...
                                         ...
                                                                                            ...
 1020 False
              False
                               False
                                      False
                                             False
                                                      False
                                                                False
                                                                       False
                                                                                 False
                                                                                        False
                                                                                               False
                     False
                                                                                                      False
 1021 False
              False
                     False
                               False
                                      False
                                             False
                                                       False
                                                                False
                                                                        False
                                                                                 False
                                                                                        False
                                                                                               False False
 1022 False False
                     False
                               False
                                             False
                                                      False
                                                                False
                                                                        False
                                                                                 False
                                                                                        False
                                                                                               False False
                                      False
 1023 False
              False
                     False
                               False
                                      False
                                             False
                                                       False
                                                                False
                                                                        False
                                                                                 False
                                                                                        False
                                                                                               False
                                                                                                      False
 1024 False False
                     False
                               False False False
                                                      False
                                                                False
                                                                       False
                                                                                 False
                                                                                        False False False
1025 rows × 14 columns
In [41]:
data.isna().any()
Out[41]:
age
              False
              False
sex
              False
ср
trestbps
              False
chol
              False
              False
fbs
```

restecq False thalach False exang False oldpeak False slope False ca False thal False target False dtype: bool

data.isna().sum()

```
In [46]:
data dup =data.duplicated().any()
In [48]:
data dup
Out[48]:
True
In [50]:
data=data.drop duplicates()
In [52]:
data dup =data.duplicated().any()
In [54]:
data dup
Out[54]:
False
Splitting dataset into training and testing
In [57]:
x = data.drop('target', axis = 1)
y = data['target']
In [59]:
from sklearn.model selection import train test split, KFold, cross val score
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2 ,random_state=42)
In [61]:
x train
Out[61]:
          sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal
      age
 163
      48
                 0
                        124
                              274
                                     0
                                             0
                                                    166
                                                             0
                                                                     0.5
                                                                             1
                                                                                 0
                                                                                      3
             1
 291
                        128
                              259
                                             0
                                                    130
                                                             1
                                                                                 2
                                                                                      3
       58
             1
                 0
                                     0
                                                                     3.0
                                                                             1
                                                                                      2
 280
      45
             0
                 1
                        130
                              234
                                     0
                                             0
                                                    175
                                                             0
                                                                     0.6
                                                                             1
                                                                                 0
 85
                        120
                                             1
                                                             0
                                                                                      2
       44
             1
                 1
                              220
                                     0
                                                    170
                                                                     0.0
                                                                             2
                                                                                 0
 239
       62
             0
                 0
                        150
                              244
                                     0
                                             1
                                                    154
                                                             1
                                                                     1.4
                                                                             1
                                                                                 0
                                                                                      2
 267
       67
             1
                 0
                        120
                              237
                                     0
                                             1
                                                     71
                                                             0
                                                                     1.0
                                                                             1
                                                                                 0
                                                                                      2
 77
       63
                 0
                        140
                              187
                                     0
                                             0
                                                    144
                                                             1
                                                                     4.0
                                                                             2
                                                                                 2
                                                                                      3
                                                                             2
                                                                                      2
 125
       60
                 3
                        150
                              240
                                             1
                                                    171
                                                             0
                                                                     0.9
                                                                                 0
```

0.0

0.0

2 0

In [63]:

x_test

Out[63]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal
245	44	1	1	130	219	0	0	188	0	0.0	2	0	2
349	62	0	2	130	263	0	1	97	0	1.2	1	1	3
135	58	0	0	170	225	1	0	146	1	2.8	1	2	1
389	63	1	3	145	233	1	0	150	0	2.3	0	0	1
66	53	1	2	130	197	1	0	152	0	1.2	0	0	2
402	70	1	1	156	245	0	0	143	0	0.0	2	0	2
123	65	0	2	140	417	1	0	157	0	0.8	2	1	2
739	52	1	0	128	255	0	1	161	1	0.0	2	1	3
274	66	1	0	160	228	0	0	138	0	2.3	2	0	1
256	35	0	0	138	183	0	1	182	0	1.4	2	0	2

61 rows × 13 columns

```
In [65]:
```

```
y_train
```

Out[65]: 163 0 291 0 280 1

85 1 239 0

.. 267 0

77 0

1255221

119 1

Name: target, Length: 241, dtype: int64

In [67]:

y_test

Out[67]:

245 1

349 0135 0

389 1

66 1

402 1

123 1

739 0

274 1 256

Name: target, Length: 61, dtype: int64

In [69]:

data.head()

Out[69]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	0
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	0
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	0
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	0
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	0

Naive Bayes

```
In [72]:
```

```
from sklearn.naive bayes import GaussianNB
from sklearn.metrics import accuracy score
```

```
In [74]:
```

```
nb classifier = GaussianNB()
nb classifier.fit(x train, y train)
```

Out[74]:

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [77]:
```

```
y_pred = nb_classifier.predict(x_test)
```

In [79]:

```
accuracy_score (y_test,y_pred)
```

Out[79]:

0.8524590163934426

Confusion Matrix

```
In [84]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import confusion matrix
cm = confusion_matrix(y_test, y_pred)
```

```
labels = np.unique(y_test) # Get unique class labels
cm_df = pd.DataFrame(cm, index=labels, columns=labels)

# Plot confusion matrix using seaborn
plt.figure(figsize=(6, 4))
sns.heatmap(cm_df, annot=True, fmt='d', cmap='Blues', linewidths=1, linecolor='black')

plt.xlabel("Predicted Label")
plt.ylabel("Actual Label")
plt.title("Confusion Matrix")
plt.show()
```


In [86]:

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, pre

```
In [88]:
```

```
conf_matrix = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
print(conf_matrix)

# Accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.4f}')

# Precision
precision = precision_score(y_test, y_pred, average='weighted')
print(f'Precision: {precision:.4f}')

# Recall
recall = recall_score(y_test, y_pred, average='weighted')
print(f'Recall: {recall:.4f}')

# Error Rate
error_rate = 1 - accuracy
print(f'Error Rate: {error_rate:.4f}')
```

```
# Classification report
print("Classification Report:")
print(classification report(y test,y pred))
Confusion Matrix:
[[27 5]
 [ 4 25]]
Accuracy: 0.8525
Precision: 0.8531
Recall: 0.8525
Error Rate: 0.1475
Classification Report:
              precision recall f1-score
                                              support
           0
                             0.84
                                       0.86
                   0.87
                                                    32
           1
                                                    29
                   0.83
                             0.86
                                       0.85
    accuracy
                                       0.85
                                                    61
   macro avq
                   0.85
                             0.85
                                       0.85
                                                    61
weighted avg
                   0.85
                             0.85
                                       0.85
                                                    61
K Fold Cross Validation
In [91]:
from sklearn.model selection import KFold, cross val score
In [93]:
k = 5
kf = KFold(n splits=k, shuffle=True, random state=42)
scores = cross val score(nb classifier, x, y, cv=kf, scoring='accuracy')
In [95]:
print(f'Cross-validation scores: {scores}')
print(f'Mean accuracy: {scores.mean():.4f}')
Cross-validation scores: [0.85245902 0.81967213 0.83333333 0.76666667 0.83333333]
Mean accuracy: 0.8211
```