Computation Reuse in DNNs by Exploiting Input Similarity

Marc Riera, Jose Maria Arnau, Antonio González

Speech Recognition DNN executions to classify a sequence of audio frames in phonemes

Benchmarks

DNN Name	DNN Type	DNN Application	#Parameters	Accuracy
Kaldi	MLP	Acoustic Scoring	4,7M	89,04%
EESEN	RNN	Speech Recognition	11M	68,85%
C3D	CNN	Video Classification	78M	93,48%
AutoPilot	CNN	Self-Driving Cars	1,6M	99,63%

Input Similarity

Exploiting Temporal Similarity Example

Baseline

Exploiting Temporal Similarity Example

Proposal

Note: Substraction of the inputs is almost negligible since its performed once per input

Computation Reuse

DNN Processing Unit

Tile

FC Execution in the Reuse Accelerator (1)

FC Execution in the Reuse Accelerator (2)

14

FC Execution in the Reuse Accelerator (3)

Other Supported Layers

Evaluation Methodology

- Simulator to evaluate the performance and energy of the accelerator
- Design Compiler to obtain power and delay of logic modules
 - 28/32nm library from Synopsys and the DesignWare logic modules
- CACTI used for SRAM and eDRAM memories
- MICRON LPDDR4 for main Memory
- Accelerator Configuration:

Technology	32 nm	
Frequency	500 MHz	
# of Tiles	4	
# of 32-bit multipliers	128	
# of 32-bit adders	128	
Weights Buffer	36 MB	
I/O Buffer Size	1152KB (Baseline) / 1280KB (Reuse)	

Memory Footprint Overheads

Results: SpeedUp

Results: Energy Savings

Conclusions

- More than 60% of the inputs remain unmodified respect the previous execution
- Our proposed scheme checks which inputs have changed:
 - Unmodified inputs are ignored, avoiding computations and memory accesses
 - Modified inputs are used to correct the previous output of each neuron
- On average, 63% energy savings and 3.5x speedup
- Small area overhead of less than 1% mainly for additional storage

Computation Reuse in DNNs by Exploiting Input Similarity

Marc Riera, Jose Maria Arnau, Antonio González

