MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE

REPUBLIQUE TOGOLAISE

Travail-Liberté-Patrie

UNIVERSITE DE LOME

CONCOURS D'ENTREE A L'ECOLE NATIONALE SUPERIEURE D'INGENIEURS (ENSI)

Année 2017 - 2018

Epreuve de Mathématiques (Durée : 2 heures ; Série : D)

Exercice 1 (06 pts)

Soit f la fonction numérique de la variable réelle x définie par $f(x) = e^x + e^{-x}$.

1- Calculer f'(x) et f''(x).

2- On définit, pour tout n entier naturel non nul, les réels I_n et J_n par :

 $I_n = \int_0^1 x^n f(x) dx$ et $J_n = \int_0^1 x^n f'(x) dx$.

a/ Calculer I1 à l'aide d'une intégration par parties.

b/ Démontrer que $(n+1)I_n = (e + \frac{1}{e}) - J_{n+1}$.

c/ Démontrer que $(n+2) J_{n+1} = (e - \frac{1}{e}) - I_{n+2}$.

d/Donner la valeur exacte de I5.

Problème (14 pts)

A/ Soit f la fonction de la variable réelle x définie sur IR par : $f(x) = (2-x)e^x - k$

Où k est un réel fixé qui vérifie : 0 < k < e.

1. Déterminer les limites de f en $-\infty$ et en $+\infty$.

2. Calculer f(x). En déduire le tableau de variation de f. Calculer f(1).

3. a/ Etablir que l'équation f(x) = 0 admet deux solutions, une notée $\alpha_k \in]-\infty;1[$ et l'autre notée $\beta_k \in]1;+\infty[$

b/Montrer que $e^{\alpha_k} - k \alpha_k = (e^{\alpha_k} - k)(\alpha_k - 1)$.

On admettra que β_k vérifie la même relation c'est-à-dire : $e^{\beta_k} - k \beta_k = (e^{\beta_k} - k) (\beta_k - 1)$.

4. Préciser le signe de f(x) suivant les valeurs de x.

B/1. Soit u la fonction de la variable réelle x définie sur IR par : $u(x) = e^x - kx$.

a/ Etudier le sens de variation de u.

b/ On rappelle que 0 < k < e. Justifier la propriété suivante :

Pour tout $x \in \mathbb{R}$, $e^x - kx > 0$.

- 2. Soit g_k la fonction définie sur IR par : $g_k(x) = \frac{e^x k}{e^x kx}$
- (C_k) sa courbe représentative dans le plan rapporté à un repère orthogonal.
- a/ Déterminer la limite de g_k en $-\infty$ et en $+\infty$.
- b/ Prouver que $g'_k(x) = \frac{k.f(x)}{(e^x kx)^2}$
- c/En déduire le tableau de variation de g_k . Calculer de $g_k(1)$.
- 3. On nomme M_k et N_k les points de la courbe (C_k) d'abscisses respectives α_k et β_k
- a/En utilisant la question 3.b/ de A, montrer que $g_k(\alpha_k) = \frac{1}{\alpha_k 1}$
- b/Trouver une expression analogue pour $g(\beta_k)$
- c/Déduire de la question précédente que, lorsque k varie , les points M_k et N_k sont sur une courbe fixe (H) dont on donnera une équation .
- 4.a/ Déterminer la position relative des courbes (C_1) et (C_2) .
- b/ Prouver que $\alpha_2 = 0$.
- c/ En prenant comme unités 2 cm sur l'axe des abscisses et 4 cm sur l'axe des ordonnées, construire les courbes (C_1) , (C_2) et (H) sur le même graphique. (On prendra $\alpha_1 = -1,1$ et $\alpha_2 = 1,6$).
- 5. Calculer l'aire délimitée par la courbe C_1 et les droites d'équation x = -3; x = 0 et y = 0.