ST2334 Probability and Statistics

AY 25/26 Sem 1 — github/omgeta

1. Counting

Counting Formula:
$$\binom{n}{r} = \frac{n!}{r!(n-r)!}, P(n,r) = \frac{n!}{(n-r)!}$$

DeMorgan's Laws:

i.
$$(A \cup B)^c = A^c \cap B^c$$

ii.
$$(A \cap B)^c = A^c \cup B^c$$

Inclusion/Exclusion Principle for finite sets A, B, C:

i.
$$|A \cup B| = |A| + |B| - |A \cap B|$$

ii.
$$|A \cup B \cup C| = |A| + |B| + |C| + |A \cap B \cap C|$$

$$-|A \cap B| - |A \cap C| - |B \cap C|$$

Number of ways to:

- i. Permute n distinct = n!
- ii. Permute n with n_1, n_2 identical $= \frac{n!}{n_1!n_2!}$
- iii. Choose r of n distinct = $\binom{n}{r}$
- iv. Choose r groups of n identical = $\binom{n+r-1}{n}$ $(x_1 + \cdots + x_r = n)$
- v. Permute r of n distinct = P(n,r)
- vi. Permute r of n distinct (repeat) = n^r

Useful results:

- i. Choose 2 groups of r, m from n distinct $= \binom{n}{r} \binom{n-r}{m}$
- ii. Choose k groups of r from n distinct $=\frac{\binom{n}{r}\binom{n-r}{r}\cdots\binom{r}{r}}{k!}$
- iii. Permute n distinct with r together = (n r + 1)!r!
- iv. Permute n, m distinct but separated = $m! \binom{m+1}{n} n!$
- v. Permute n distinct in a circle = (n-1)!
- vi. Permute n distinct with r together in a circle = (n-r)!r!
- vii. Permute n, m distinct but separated in a circle $= m! \binom{m}{n} n!$
- viii. Permute n distinct in a circle with 2 opposite = (n-2)!
- ix. Permute *n* distinct in a circle with *r* identical $=\frac{(n-1)!}{r!}$

2. Probability

Probability of event E in sample space S, P(E), is:

i.
$$P(E) = \frac{|E|}{|S|}$$
, where $0 \le P(E) \le 1$

ii.
$$P(E^c) = 1 - P(E)$$
 (Complement)

iii.
$$A \cap B = \phi \rightarrow P(A \cup B) = P(A) + P(B)$$
 (Disjoint)

iv.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
 (Union

Conditional probability of B given A, $P(B \mid A)$, is:

i.
$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A \mid B) \cdot P(B)}{P(A)}$$

Total Probability for partition $B_1, \dots B_n$ of S:

i.
$$P(A) = \sum_{i=1}^{n} P(A \mid B_i) \cdot P(B_i)$$
$$= \sum_{i=1}^{n} P(A \cap B_i)$$

ii.
$$P(A \mid C) = \sum_{i=1}^{n} P(A \mid B_i \cap C) \cdot P(B_i \mid C)$$
$$= \sum_{i=1}^{n} P(A \cap B_i \mid C)$$

Baye's Theorem for partition B_1, \dots, B_n of S:

i.
$$P(B_i \mid A) = \frac{P(A \mid B_i) \cdot P(B_i)}{P(A)}$$

ii.
$$P(B_i \mid A \cap C) = \frac{P(A \mid B_i \cap C) \cdot P(B_i \cap C)}{P(A \cap C)}$$

iii.
$$\frac{P(B \mid A)}{P(B^c \mid A)} = \frac{P(A \mid B)}{P(A \mid B^c)} \cdot \frac{P(B)}{P(B^c)}$$
(Odds)

Mutually exclusive events A, B have special results:

i.
$$P(A \cap B) = 0$$
 (Intersection)

ii.
$$P(A \cup B) = P(A) + P(B)$$
 (Union)

Independent events A, B have special results:

i.
$$P(A \cap B) = P(A) \cdot P(B)$$
 (Intersection)

ii.
$$P(A \mid B) = P(A)$$
 (Conditional)

3. Random Variables

Probability mass function (PMF) of a discrete random variable X is:

i.
$$f(x) = P(X = x)$$

ii.
$$f(x) \ge 0, \forall x \in R_x \text{ and } f(x) = 0, \quad \forall x \notin R_x$$

iii.
$$\sum_{R_x} f(x) = 1$$

Probability density function (PDF) of a continuous random variable X is:

i.
$$P(a \le X \le b) = \int_a^b f(x)dx$$

ii.
$$f(x) \ge 0, \forall x \in R_x \text{ and } f(x) = 0, \quad \forall x \notin R_x$$

iii.
$$\int_{x} f(x)dx \ge 0$$
 but not necessarily ≤ 1

iv.
$$\int_{B_{-}} f(x)dx = 1$$

Cumulative density function (CDF) of any random variable X is:

i.
$$F(x) = P(X \ge x)$$

ii.
$$F(x) = \int_{-\infty}^{x} f(t)dt$$
 and $f(x) = F'(x)$

iii. Increasing and right continuous such that $F_x(x) \to 0$ as $x \to -\infty$ and $F_x(x) \to 1$ as $x \to \infty$

Expectation and Variance

Expectation of random variable X, E(X) or μ_X , is:

i.
$$E(X) = \sum_{R_x} x \cdot f(x)$$
 or $\int_{-\infty}^{\infty} x \cdot f(x) dx$

ii.
$$E[g(X)] = \sum_{R} g(x) \cdot f(x)$$
 or $\int_{-\infty}^{\infty} g(x) \cdot f(x) dx$

iii.
$$E(aX + b) = aE(X) + b$$

iv.
$$E(X + Y) = E(X) + E(Y)$$

Variance of random variable X, V(X) or σ_X^2 , is:

i.
$$V(X) = \sum_{R_x} (x - \mu_X)^2 f(x)$$

or $\int_{-\infty}^{\infty} (x - \mu_X)^2 f(x) dx$
 $= E(X^2) - [E(X)]^2$

ii.
$$\forall X, V(X) \geq 0$$

iii.
$$V(aX + b) = a^2V(X)$$

iv. Standard deviation,
$$SD(X) = \sqrt{V(X)}$$

v.
$$V(aX + bY) = a^2V(X) + b^2V(Y) + 2ab \cdot Cov(X, Y)$$

vi.
$$V(X+Y)=V(X)+V(Y)+2Cov(X,Y)$$
 and $V(\sum_{i=1}^n X_i)=\sum_{i=1}^n V(X_i)+2\sum_{i< j} Cov(X_i,X_j)$

4. Joint Distributions

Joint PMF of discrete random variable X is:

i.
$$f(x,y) = P(X = x, Y = y)$$

ii.
$$f(x,y) \ge 0$$
, $\forall (x,y) \in R_{X,Y}$ and $f(x,y) = 0$, $\forall (x,y) \notin R_{X,Y}$

iii.
$$\sum_{R_X} \sum_{R_Y} f(x, y) = 1$$

Joint PDF of continuous random variable X is:

i.
$$P((X,Y) \in D) = \iint_D f(x,y) dx dy$$

ii.
$$f(x,y) \ge 0$$
, $\forall (x,y) \in R_{X,Y}$ and $f(x,y) = 0$, $\forall (x,y) \notin R_{X,Y}$

iii.
$$\iint_{R_{X,Y}} f(x,y) = 1$$

Marginal distribution is:

i.
$$f_X(x) = \sum_y f_{X,Y}(x,y)$$
 or $\int_{-\infty}^{\infty} f_{X,Y}(x,y)$

Conditional probability function of Y given X is:

i.
$$f_{Y|X}(y \mid x) = P(Y = y, X = x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

Independent random variables X, Y have special results:

i.
$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y), \quad \forall (x,y) \in R_{X,Y}$$

 $\iff f_{X,Y}(x,y) = C \times g_1(x) \cdot g_2(y)$

ii. $R_{X,Y}$ is a product space, $R_{X,Y} = R_X \times R_Y$

Expectation and Variance

Expectation of random variables X, Y, E(X, Y), is:

i.
$$E[g(X,Y)] = \sum_{R_X} \sum_{R_Y} g(x,y) \cdot f_{X,Y}(x,y) \text{ or } \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) \cdot f_{X,Y}(x,y) dx dy$$

Covariance of random variables X, Y, Cov(X, Y), is:

$$\begin{split} \text{i.} \quad Cov(X,Y) &= \sum_{R_X} \sum_{R_Y} (x - \mu_X) (y - \mu_Y) f_{X,Y}(x,y) \\ \text{or } \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X) (y - \mu_Y) f_{X,Y}(x,y) dx dy \\ &= E[(X - \mu_X) (Y - \mu_Y)] \\ &= E(XY) - \mu_X \mu_Y \end{split}$$

ii.
$$Cov(X, Y) = Cov(Y, X)$$
 and $Cov(X, X) = V(X)$

iii.
$$X, Y$$
 are independent $\implies Cov(X, Y) = 0$

iv.
$$Cov(aX + b, cY + d) = ac \cdot Cov(X, Y)$$

v.
$$Cov(W+X,Y+Z) = Cov(W,Y) + Cov(W,Z) + Cov(X,Y) + Cov(X,Z)$$

5. Discrete Probability Distributions

Uniform Distribution: $X \sim \text{Unif}(x_1, \dots, x_k)$

i.
$$f_X(x) = \frac{1}{k}, \quad x \in x_1, \dots, x_k$$

ii.
$$\mu_X = \frac{x_1 + \dots + x_k}{k}$$
, $\sigma_X^2 = \frac{1}{k} \sum_{i=1}^k (x_i - \mu_X)^2$

Bernoulli Trial: $X \sim \text{Bern}(p)$ is the outcome of a single trial with success probability p

i.
$$f_X(x) = p^x (1-p)^{1-x}$$
, $x = 0$ (fail), 1 (success)

ii.
$$\mu_X = p$$
, $\sigma_X^2 = p(1-p)$

Binomial Distribution: $X \sim \text{Bin}(n, p) = \sum X_i$ is the successes in n independent Bernoulli trials $X_i \sim \text{Bern}(p)$

i.
$$f_X(x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0, 1, \dots n$$

ii.
$$\mu_X = np$$
, $\sigma_X^2 = np(1-p)$

Negative Binomial Distribution: $X \sim NB(k, p)$ is the number of independent Bernoulli trials until k^{th} success

i.
$$f_X(x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = k, k+1, \dots$$

ii.
$$\mu_X = np$$
, $\sigma_X^2 = np(1-p)$

Geometric Distribution: $X \sim \text{Geom}(p)$ is the number of independent Bernoulli trials until the first success

i.
$$f_X(x) = p(1-p)^{x-1}$$

ii.
$$\mu_X = \frac{1}{p}, \quad \sigma_X^2 = \frac{1-p}{p^2}$$

Poisson Distribution: $X \sim \text{Poisson}(\lambda)$ is the number of events occurring in a fixed interval or region where $\lambda > 0$ is expected number of occurences in the interval

i.
$$f_X(x) = \frac{e^{-\lambda} \lambda^x}{x!}, \quad x = 0, 1, ...$$

ii.
$$\mu_X = \sigma_X^2 = \lambda$$

iii. As $n \to \infty$ and $p \to 0$, $X \sim \text{Bin}(n, p)$ converges to $X \sim Poisson(\lambda = np)$. Good approximation if:

- $n \ge 20$ and $p \le 0.05$, or if
- $n \ge 100$ and $np \le 10$

iv. Poisson process counts the number of events within a scaled interval of time, such that:

- expected occurrences in interval T is αT
- no simultaneous occurences
- number of occurences in disjoint time intervals are independent

6. Continuous Probability Distributions

Uniform Distribution: $X \sim \text{Unif}(a, b)$

i.
$$f_X(x) = \frac{1}{b-a}$$
, $a \le x \le b$

ii.
$$\mu_X = \frac{a+b}{2}$$
, $\sigma_X^2 = \frac{(b-a)^2}{12}$

iii. CDF,
$$F_X(x) = \frac{x-a}{x-b}$$
, $a \le x \le b$

Exponential Distribution: $X \sim \text{Exp}(\lambda)$ is the waiting time for first success in continuous time

i.
$$f_X(x) = \lambda e^{-\lambda x}, \quad x \ge 0$$

ii.
$$\mu_X = \frac{1}{\lambda}, \quad \sigma_X^2 = \frac{1}{\lambda^2}$$

iii. CDF,
$$F_X(x) = 1 - e^{-\lambda x}, x > 0$$

iv.
$$P(X > s + t \mid X > s) = P(X > t)$$
 (Memoryless)

Normal Distribution: $X \sim N(\mu, \sigma^2)$ is symmetric about μ and flattens out as σ increases

i.
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R}$$

ii.
$$\mu_X = \mu$$
, $\sigma_X^2 = \sigma^2$

iii. Standard normal: $Z \sim N(0,1) = \frac{X-\mu}{\sigma}$

• Upper α quartile z_{α} is the value s.t. $P(Z > z_{\alpha}) = \alpha$

iv. As $n \to \infty$ and $p \to 0$, $X \sim \text{Bin}(n, p)$ converges to $X \sim \text{N}(np, np(1-p))$. Good approximation if:

•
$$np > 5$$
 and $n(1-p) > 5$

v. Apply the continuity corrections for approximating:

Discrete Probability	Normal Approx.
P(X=k)	$P\left(k - \frac{1}{2} < X < k + \frac{1}{2}\right)$
$P(a \le X \le b)$	$P\left(a - \frac{1}{2} < X < b + \frac{1}{2}\right)$
P(a < X < b)	$P\left(a + \frac{1}{2} < X < b - \frac{1}{2}\right)$
$P(X \le c)$	$P\left(0 \le X < c + \frac{1}{2}\right)$
P(X > c)	$P\left(c + \frac{1}{2} < X < n\right)$

7. Sampling

Population is the entire group of interest. Population parameter is a population's numerical fact. Sample of a population is used to make inferences.

Probability sampling:

i. Simple Random Sampling: sample is chosen s.t. every subset of n observations of the population has the same probability of being selected.

Statistic is a function of sample data:

- i. Sampling Mean, $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- ii. Sampling Variance, $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$

Standard Deviation, $\lambda_{\overline{X}}$ describes how much \overline{x} tends to vary from sample to sample of size n

Law of Large Numbers:

i. As sample size $n \to \infty$, $\frac{\sigma^2}{n} \to 0$ and $\overline{X} \to \mu_X$, $P(|\overline{X} - \mu_X| > \epsilon) \to 0$

Central Limit Theorem:

- i. Sampling distribution of sample mean \overline{X} is approximately normal if n is sufficiently large
- ii. $Z = \frac{\overline{X} \mu}{\sigma / \sqrt{n}}$ follows approximately N(0, 1)

8. Sampling Distribution

Diff. of Sample Means: $\overline{X_1} - \overline{X_2} = \frac{\overline{X_1} - \overline{X_2} - \mu_{\overline{X_1} - \overline{X_2}}}{\sigma_{\overline{X_1} - \overline{X_2}}}$ approx. N(0,1) for independent random variables $\overline{X_1} \sim N(\mu_1, \sigma_1^2/n_1), \overline{X_2} \sim N(\mu_2, \sigma_2^2/n_2)$

i.
$$\mu_{\overline{X_1} - \overline{X_2}} = \mu_1 - \mu_2$$
, $\sigma_{\overline{X_1} - \overline{X_2}}^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$

Chi-Squared Distribution: $Y \sim \chi^2(n) = \sum^n Z_i^2$ is the sum of n independent and identically distributed standard normal random variables, with long right tail and n degrees of freedom

- i. $\mu_Y = n$, $\sigma_Y^2 = 2n$
- ii. $\chi^2(n;\alpha) = k \implies P(Y > k) = \alpha$
- iii. $Y_1 \sim \chi^2(n_1), Y_2 \sim \chi^2(n_2) \implies Y_1 + Y_2 \sim \chi^2(n_1 + n_2)$
- iv. As n increases, $\chi^2(n)$ is approximately N(n,2n)
- v. If S^2 is sample variance of size n from normal population of variance σ^2 , $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$

t-Distribution: $T \sim t_n = \frac{Z}{\sqrt{U/n}}$ for independent random variables $Z \sim N(0,1)$ and $U \sim \chi^2(n)$ resembles standard normal with n degrees of freedom

- i. $\mu_T = 0$, $\sigma_T^2 = \frac{n}{n-2}$ for n > 2
- ii. $t(n; \alpha) = k \implies P(T > k) = \alpha$
- iii. When $n \geq 30$, can be replaced by N(0,1)
- iv. If random sample selected from normal population, $T = \frac{\overline{X} \mu}{S/\sqrt{n}} \sim t_{n-1}$

F-Distribution: $F \sim Fn, m = \frac{U}{n} / \frac{V}{m}$ for independent random variables $U \sim \chi^2(n), V \sim \chi^2(m)$

- i. $\mu_F = \frac{m}{m-2}$ for m > 2
- ii. $\sigma_T^2 = \frac{2m^2(n+m-2)}{n(m-2)^2(m-4)}$ for n > 4
- iii. $F(n, m; \alpha) = k \implies P(F > k) = \alpha$
- iv. $\frac{1}{F} \sim F(m, n)$
- v. $F(n, m; \alpha) = \frac{1}{F(m, n; 1 \alpha)}$

9. Estimation

Estimators are rules used to compute an estimate from the sample.

- i. Point Estimator: A single number is calculated
 - Unbiased Estimator: An estimator $\hat{\theta}$ of a parameter θ is unbiased if $E(\hat{\theta}) = \theta$.
- ii. Interval Estimation: An interval is calculated for some confidence level

Maximum error E for estimating μ using \bar{X} when σ is known for confidence level $(1 - \alpha)$ is: $E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$

Sample size to achieve maximum error E_0 with confidence level $(1 - \alpha)$ is: $n \ge \left(\frac{z_{\alpha/2} \cdot \sigma}{E_0}\right)^2$

10. Hypothesis Testing

Hypothesis test can be used given a null hypothesis H_0 , a alternative hypothesis H_1 , and a significance value α .

	Do not reject H_0	Reject H_0
H_0 true	Correct	Type I Error
H_0 false	Type II Error	Correct

Level of significance α is the probability of Type I error:

$$\alpha = P(\text{Type I Error}) = P(\text{Reject } H_0 \mid H_0 \text{ is true})$$

Power is the probability of correctly rejecting a false H_0 . Let β denote the probability of a Type II error:

$$\beta = P(\text{Type II Error}) = P(\text{Do not reject } H_0 \mid H_0 \text{ is false})$$

Power = 1 - \beta = P(\text{Reject } H_0 \mid H_0 \text{ is false})

p-value can be defined as:

- i. Probability of obtaining a sample statistic as extreme or more extreme than the observed statistic, assuming H_0 is true.
- ii. Smallest level of significance at which H_0 is rejected, assuming H_0 is true

where we reject H_0 in favour of H_1 when p-value $< \alpha$ or not reject H_0 (doesn't imply H_0 true) when p-value $\ge \alpha$

Test Statistics for Population Mean

Case	Population	σ	n	CI	Statistic
I	Normal	known	any	$\bar{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$	$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$
II	any	known	≥ 30	$\bar{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$	$Z = \frac{X - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$
III	Normal	unknown	< 30	$\bar{x} \pm t_{n-1;\alpha/2} \cdot \frac{s}{\sqrt{n}}$	$T = \frac{\overline{X} - \mu}{s / \sqrt{n}} \sim t_{n-1}$
IV	any	unknown	≥ 30	$\bar{x} \pm z_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$	$Z = \frac{X - \mu}{s/\sqrt{n}} \sim N(0, 1)$

Test Statistics for Independent Samples

Population	Variance	σ_1,σ_2	n	CI	Statistic
any	known	unequal	≥ 30	$(\bar{x} - \bar{y}) \pm z_{\alpha/2} \cdot \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	$Z = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$
Normal	known	unequal	any	$(\bar{x} - \bar{y}) \pm z_{\alpha/2} \cdot \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	$Z = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$
any	unknown	unequal	≥ 30	$(\bar{x} - \bar{y}) \pm z_{\alpha/2} \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	$Z = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \sim N(0, 1)$
Normal	unknown	equal	< 30	$(\bar{x} - \bar{y}) \pm t_{n_1 + n_2 - 2; \alpha/2} \cdot s_p \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	$T = \frac{\bar{X} - \bar{Y}}{s_p \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$
any	unknown	equal	≥ 30	$(\bar{x} - \bar{y}) \pm z_{\alpha/2} \cdot s_p \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	$Z = \frac{\bar{X} - \bar{Y}}{s_p \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim N(0, 1)$

^{*}Variance assumed equal if $\frac{1}{2} < \frac{s_1}{s_2} < 2$

Pooled Estimator

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$