- 1. Find two orthogonal vectors that are both orthogonal $\mathbf{u} = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$
- A vector is orthogonal when the dot product is equal to zero. Thus, if $\mathbf{v} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$, then any vector that satisfies the following equation is valid:

$$-2a + b + c = 0$$

• For any vector \mathbf{v} that satisfies the above equation, then one can compute the cross product (\times) with the given vector \mathbf{u} and \mathbf{v} in order to find a new vector that is orthogonal to both \mathbf{u} and \mathbf{v} , i.e.,

$$\begin{bmatrix} -2\\1\\1 \end{bmatrix} \times \begin{bmatrix} a\\b\\c \end{bmatrix} = \begin{bmatrix} -b+c\\a+2c\\-a-2b \end{bmatrix}$$

• For example, a = 0, b = 1, c = -1 satisfies the original equation, therefor:

$$\mathbf{v} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$
, $\langle \mathbf{u}, \mathbf{v} \rangle = 0$, $\mathbf{u} \times \mathbf{v} = \begin{bmatrix} -2 \\ -2 \\ -2 \end{bmatrix}$, and $\langle \mathbf{v}, \mathbf{u} \times \mathbf{v} \rangle = 0$

2. Find a parametrization of the plane (write the solutions as linear combinations of vectors with some parameters) given by the scalar equation

$$x - 2y - 3z = 5$$

• A parametrization for a plane can be written as:

$$x = c + ra + sb$$

where $\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, \mathbf{a} and \mathbf{b} are parallel to the plane, and \mathbf{c} is a point on the plane.

- Letting y=0 and z=0 yields a point on the plane $\begin{bmatrix} 5\\0\\0\end{bmatrix}$
- Finding two vectors on the plane can be done by subtracting a point on the plane from another, which yields a new vector on the plane. Taking an approach to find a point

similar to the first yields:

$$\mathbf{a} = \begin{bmatrix} 0 \\ -5/2 \\ 0 \end{bmatrix} - \begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -5 \\ -5/2 \\ 0 \end{bmatrix}$$
$$\mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ -5/3 \end{bmatrix} - \begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -5 \\ 0 \\ -5/3 \end{bmatrix}$$

• Putting it all together yields:

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix} + r \begin{bmatrix} -5 \\ -5/2 \\ 0 \end{bmatrix} + s \begin{bmatrix} -5 \\ 0 \\ -3/2 \end{bmatrix}$$

3. Show that the following parametrization produces solutions to the scalar equation given in number 2.

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ -3 \\ 2 \end{bmatrix} + r \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} + s \begin{bmatrix} 7 \\ 2 \\ 1 \end{bmatrix}$$

$$x-2y-3z=5$$
 original equation $\begin{bmatrix} 1 & -2 & -3 \end{bmatrix} = \mathbf{n}$ vector orthogonal to plane $\begin{bmatrix} 5 & -3 & 2 \end{bmatrix} = \mathbf{c}$ given point on plane $\begin{bmatrix} 1 & 2 & -1 \end{bmatrix} = \mathbf{a}$ vector describing \mathbf{r} vector describing \mathbf{s} vector describing \mathbf{s} \downarrow vector \mathbf{s} \downarrow vector describing \mathbf{s} \downarrow

Additionally, one can show dot product of c - a and n yields solution to scalar equation:

$$\langle {m n}, {m c} - {m a} \rangle = 5$$
 yields solution to equation \checkmark $\langle {m n}, {m c} - {m b} \rangle = 5$ yields solution to equation \checkmark

Replacing a, b, and c with examples provided in question two yields the same results.