

D MAVT

Dr. Paolo Tiso

5.1 Rotation in 3D

Momentanachse durch O in Richtung w N

Nehmen wir nun an, dass ω eine beliebige Richtung hat

Momentane Rotation:

$$\mathbf{v}_P = \boldsymbol{\omega} \times \mathbf{r}_{O'P}$$

Alternativ dazu:

$$\mathbf{v}_P = \boldsymbol{\omega} \times (\mathbf{r}_{OP} - \mathbf{r}_{OO'}) = \boldsymbol{\omega} \times \mathbf{r}_{OP}$$

$$\mathbf{v}_P = \boldsymbol{\omega} \times \mathbf{r}_{OP}$$
 (*)

Alle Punkte auf dem Momentansachse haben Geschwindigkeit null.

$$\mathbf{v}_{O'} = \boldsymbol{\omega} \times \mathbf{r}_{OO'} = \mathbf{0}$$

5.2 Starrkörperformel

5.2 Velocity transfer formula

Nehmen wir jetzt zwei beliebige Punkte A und B auf dem Körper.

$$\mathbf{v}_A = \boldsymbol{\omega} \times \mathbf{r}_{OA} \qquad \mathbf{v}_B = \boldsymbol{\omega} \times \mathbf{r}_{OB}$$

sodass:

$$\mathbf{v}_B - \mathbf{v}_A = \boldsymbol{\omega} \times \mathbf{(r_{OB} - r_{OA})}$$

Wir bekommen die

Starrkörperformel:

$$\mathbf{v}_B = \mathbf{v}_A + \boldsymbol{\omega} \times \mathbf{r}_{AB} \quad \forall A, B \in \mathcal{K}$$

"Jeder Punkt des Körpers dreht sich um jeden anderen Punkt des Körpers mit demselben (momentanen) Winkelgeschwindigkeitsvektor ω ."

Wenn \mathbf{v}_A und $\boldsymbol{\omega}$ bekannt sind, kann die Geschwindigkeit eines beliebigen anderen Punktes des Körpers bestimmt werden.

Kinemate :
$$\{\mathbf{v}_A, oldsymbol{\omega}\}$$

Ist die Rotationsgeschwindigkeit eindeutig?

Nehmen wir an, es gibt zwei Rotationsgeschwindigkeiten

$$\{ \mathbf{v}_A, oldsymbol{\omega} \} \qquad \{ \mathbf{v}_B, oldsymbol{\omega}' \}$$

 \mathbf{v}_{P} kann dann bez. A und B ausgedrückt werden als

$$\mathbf{v}_P = \mathbf{v}_A + \boldsymbol{\omega} \times \mathbf{r}_{AP}$$
 (1) $\mathbf{v}_P = \mathbf{v}_B + \boldsymbol{\omega}' \times \mathbf{r}_{BP}$ (2)

v_B kann auch bez. A ausgedrückt werden als

$$\mathbf{v}_B = \mathbf{v}_A + \boldsymbol{\omega} \times \mathbf{r}_{AB}$$
 (3)

(3) in (2) einsetzen:

$$\mathbf{v}_P = \mathbf{v}_A + \boldsymbol{\omega} \times \mathbf{r}_{AB} + \boldsymbol{\omega}' \times \mathbf{r}_{BP} = \mathbf{v}_A + \boldsymbol{\omega} \times \mathbf{r}_{AP}$$

$$oldsymbol{\omega}' imes \mathbf{r}_{BP} + oldsymbol{\omega} imes (\mathbf{r}_{AB} - \mathbf{r}_{AP}) = \mathbf{0}$$

$$oldsymbol{\omega}' imes \mathbf{r}_{BP} - oldsymbol{\omega} imes \mathbf{r}_{BP} = \mathbf{0}
ightarrow (oldsymbol{\omega}' - oldsymbol{\omega}) imes \mathbf{r}_{BP} = \mathbf{0} \Rightarrow oldsymbol{\omega}' = oldsymbol{\omega}$$

Wir sagen, dass die Rotationsgeschwindigkeit eine Invariante der Kinemate ist.

5.3 Invariante der Kinemate

5.3 Invariants of the Kinemate

Gibt es weitere Invarianten?

Lassen uns jetzt die Starrkörperformel auf der Rotationsgeschwindigkeit projizieren:

$$\mathbf{\omega} \cdot \mathbf{v}_B = \mathbf{\omega} \cdot (\mathbf{v}_A + \mathbf{\omega} \times \mathbf{r}_{AB}) = \mathbf{\omega} \cdot \mathbf{v}_A$$

$$\mathbf{\omega} \cdot \mathbf{v}_B = \mathbf{\omega} \cdot \mathbf{v}_A$$

Alle Geschwindigkeiten haben die gleiche Komponente in Richtung von ω

Invariante der Kinemate:

$$I_1 = oldsymbol{\omega}$$
 Die Rotationsgeschw. ist eindeutig

$$I_2 = oldsymbol{\omega} \cdot \mathbf{v}_P \ orall P \in \mathcal{K}$$
 Die Geschwindikeitskomponent von allen Punkten in Richtung w ist gleich

5.4 Bewegungsarten $I_1 = \omega$

5.4 Act of motions

$$I_1 = \boldsymbol{\omega}$$

$$I_2 = \boldsymbol{\omega} \cdot \mathbf{v}_P \ \forall P \in \mathcal{K}$$

$$I_1 = \mathbf{0}$$
 $\mathbf{v}_B = \mathbf{v}_A + \boldsymbol{\omega} \times \mathbf{r}_{AB} \quad \mathbf{v}_A = \mathbf{v}_B \quad \forall A, B \in \mathcal{K}$

$$I_2 = 0$$
 Translation

$$I_1 \neq \mathbf{0} \quad \mathbf{v}_B = \mathbf{v}_A + \boldsymbol{\omega} \times \mathbf{r}_{AB}$$

$$I_2 = 0$$
 $\boldsymbol{\omega} \cdot \mathbf{v}_A = 0$ Rotation

$$I_2 \neq 0$$
 $\boldsymbol{\omega} \cdot \mathbf{v}_A \neq 0$ Schraubung

5.4 Bewegungsarten

Gegeben: **v**_A, **v**_B

Gefragt: Bewegungsart? (I_1 und I_2)

$$[\mathbf{v}_A] = \begin{bmatrix} -3\\0\\150 \end{bmatrix} \quad [\mathbf{m/s}] \quad [\mathbf{v}_B] = \begin{bmatrix} 3\\0\\150 \end{bmatrix} \quad [\mathbf{m/s}]$$

11 m

 \mathbf{e}_x Starrkörperformel zwischen A und B:

$$\mathbf{v}_B = \mathbf{v}_A + oldsymbol{\omega} imes \mathbf{r}_{AB}$$

$$\begin{bmatrix} 3 \\ 0 \\ 150 \end{bmatrix} = \begin{bmatrix} -3 \\ 0 \\ 150 \end{bmatrix} + \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix} \times \begin{bmatrix} 0 \\ -11 \\ 0 \end{bmatrix} = \begin{bmatrix} 11\omega_z - 3 \\ 0 \\ 150 - 11\omega_x \end{bmatrix}$$

Rotationsgeschwindigkeit:

$$150 - 11\omega_x = 150 \to \omega_x = 0$$
 $\omega_z = \frac{6}{11} = 0.545 \text{ [rad/s]}$

Invariante:

$$I_1 = \begin{bmatrix} 0 \\ 0 \\ 0.545 \end{bmatrix}$$
 [rad/s] $I_2 = \begin{bmatrix} 0 \\ 0 \\ 0.545 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 0 \\ 150 \end{bmatrix} = 81.8 \text{ m/s}^2$

5.5 Zentralachse

5.5 Axis of instantaneous rotation

Wir suchen A sodass

$$\mathbf{v}_A = \mathbf{0}$$
 oder $\boldsymbol{\omega} \parallel \mathbf{v}_A$

5.5 Zentralachse

5.5 Axis of instantaneous rotation

Starrkörperformel bez. B
$$\mathbf{0} = \boldsymbol{\omega} imes \mathbf{v}_A = \boldsymbol{\omega} imes (\mathbf{v}_B + \boldsymbol{\omega} imes \mathbf{r}_{BA}) = \omega imes \mathbf{v}_B + (\boldsymbol{\omega} \cdot \mathbf{r}_{BA}) \boldsymbol{\omega} - \omega^2 \mathbf{r}_{BA}$$

Vektorielle Identität
(Appendix A im Skript)

Wir bekommen eine Gleichung für A:

$$\boldsymbol{\omega} \times \mathbf{v}_B + (\boldsymbol{\omega} \cdot \mathbf{r}_{BA}) \boldsymbol{\omega} - \omega^2 \mathbf{r}_{BA} = \mathbf{0}$$

Aus allen Punkten, die die Gleichung erfüllen, wahlen wir A sodass:

5.5 Zentralachse

5.5 Axis of instantaneous rotation

Diese Vereinfachung erlaubt die Berechnung von A

$$\boldsymbol{\omega} \times \mathbf{v}_B - \omega^2 \mathbf{r}_{BA} = \mathbf{0} \to \mathbf{r}_{BA} = \frac{\boldsymbol{\omega} \times \mathbf{v}_B}{\omega^2}$$

Die **Zentralachse** wird dann so bestimmt:

$$\mu(p) = \mathbf{r}_B + \mathbf{r}_{BA} + p\mathbf{e}_{\omega}$$

Alle Punkte auf der Zentralachse haben diegleiche Geschw.

$$\mathbf{v}_{A'} = \mathbf{v}_A + \boldsymbol{\omega} \times \mathbf{r}_{AA'} = \mathbf{v}_A$$

Beispiel

3

 \mathbf{v}_B

$$[\mathbf{v}_A] = \begin{bmatrix} -3\\0\\150 \end{bmatrix} \quad [\mathbf{m/s}] \quad [\mathbf{v}_B] = \begin{bmatrix} 3\\0\\150 \end{bmatrix} \quad [\mathbf{m/s}]$$

Punkt P auf Zentralachse:

$$\mathbf{r}_{BP} = \frac{\boldsymbol{\omega} \times \mathbf{v}_B}{\omega^2}$$

11 m

$$150 - 11\omega_x = 150 \to \omega_x = 0$$

$$\omega_z = \frac{6}{11} = 0.545 \text{ [rad/s]}$$

$$[\mathbf{r}_{BP}] = rac{1}{0.545^2} \begin{bmatrix} 0\\0\\0.545 \end{bmatrix} imes \begin{bmatrix} 3\\0\\150 \end{bmatrix} = \begin{bmatrix} 0\\3/0.545\\0 \end{bmatrix}$$

$$\mu(p) = \mathbf{r}_{OB} + \mathbf{r}_{BP} + p\mathbf{e}_{\omega} = \mathbf{r}_{OP} + p\mathbf{e}_{\omega}$$