

Fig. 1

Fig. 2

(us) Vieneini lengie

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

<u>Fig. 8a</u>

Fig. 8b

Fig. 8c

Fig. 8d

Modification	Monoisotopic Mass	Average Mass
4-Phosphopantatheine	339.0780	839,8294
5-Adenosylation	829.0525	319.2021
Acetyletion	42.0106	42.0878
ADP-ribosylation (from NAD)	541.0611	541.3052
Biotinyistion (smíde bond to þýine)	126.0776	226.1994
Carboxylation of Asp and Clu	43.9898	44.0098
C terminal amide formed from Cly	-0.9840	0.9847
Cysteinylation	119.0041	119.1442
Deamidation of Asn and Cln	0.9840	0.9847
Deckyhexoses (Fug Rha)	146.0579	146.1430
Disulphide bond formation	-2.0157	2.0159
Farnesylation	204.1878	204.8556
Formylation	27.9949	28.0104
Ceranylation .	272.2504	272.4741
Clutathionylation .	805.0682	3CS.3117
Hexosamines (Cally, Cich)	161.068 8	161.1577
Hexcess (Fru, Gal, Clq, Man)	162.0528	162.1424
Homovarine formed from Met by CNBr treatment	-29.9928	30.0835
Hydrocylation	15.9949	15.9994
Lipoic acid (amide band to lysine)	188.0330	168.8147
Methylation	14.0157	140269 .
Myristoylation	210.1984	210.8598
N energihexosamines (CaiNAq CidVAd)	208.0794	205.1950
N scetylneursminic sold (Sislic add, NeuAc, NANA, SA)	291.0954	291.2579
IA- Specyluerusumic sold (MenCq:	307.0903	307,2573
Ckideion of Met	15,9949	15.9994
Psi mitoyi stion	238.2297	288.4186
Pentosas Ara, Rib, Xyō	132.0428	132.1161
Ph osphorylation .	79.9663	79.9799
Protecty sis of a single peptide bond	18.0106	18.0158
Pyrid coxal phosphate (Schilf Base formed to lysine)	281.0297	281.1449
Pyroglutamic acid formed from Cln	-17.0265	-17.0306
Stearcylation	266.2610	266.4674
Sulphation	79.9568	80.0642

Fig. 9

Motif	Enzyme/Reaction	Mass difference(average mass)	
w	photochemical	+16	
w	photochemical	+32	
w	photochemical	+4	
[ST]-X-[RK]	Protein kinase C	+79.9799	

Fig. 10

Symbo	ols	Monoisotopic Mass	Average Mass
Gly	G	57.02146	57.05
Ala	A	71.03711	71.08
Ser	S	87.03202	87.08
Pro	P	97.05276	97.12
Val	¥	99.06841	99.07
Thr	T	101.0476	101.1
Сув	C	103.0091	103.1
Leu	L	113.0840	113.2
Пе	Ī	113.0840	113.2
Asn	N	114.0429	114.1
Asp	Þ	115.0269	115.1
Gln	Q	128.0585	128.1
Lys	ĸ	128.0949	128.2
Glu	E	129.0425	129.1
Met	M	131.0404	131.2
His	H	137.0589	137.1
Phe	F	147.0684	147.2
Arg	R	156.1011	156.2
Tyr	Y	163.0633	163.2
Trp	W	186.0793	186.2

Fig. 11

9	Composition	Monoisotopic Mass	Average Mass
N-Terminal Groups			
Hydrogen	H	1.00782	1.0079
N-Formyl	HCO	29.00274	29.0183
N-Acetyl	CH₃CO	43.01839	43.0452
C-Terminal Groups			
Free acid	OH	17.00274	17.0073

Fig. 12

Additional Amino acid	+/- Fraction numbers
E, Glutamic acid	+ 0.47
F, Phenylalanine	+ 5.54
H, Histidine	-3.82
I, Isoleucine	+ 2.86
K, Lysine	- 1.72
L, Leudne	+ 5.15
Q, Glutamine	- 0.85
S, Serine	- 0.45
V, Valine	+ 2.2
W, Tryptophane	+ 5.35
Y, Tyrosine	+ 2.92

Fig. 13

AminoAcid Before First Cleavage					
		% Cleavage	% Present	Δ	
A	24	15.5%	8.4%	184%	
R	32	20.6%	6.3%	329%	
M	4	2.6%	1.5%	171%	
₩	3	1.9%	1.2%	168%	
P	14	9.0%	6,2%	145%	
N	7	4.5%	3.3%	135%	
F	6	3.9%	3.2%	122%	
K	10	6.5%	6.0%	107%	
G	11	7.1%	6.6%	107%	
L	12	7.7%	8.5%	91%	
H	3	1.9%	2.7%	71%	
٧	5	3.2%	5.3%	61%	
D	5	3.2%	5.5%	58%	
Q	3	1.9%	4.6%	42%	
С	1	0.6%	1.8%	36%	
·	1	0.6%	2.1%	31%	
Τ'	2	1.3%	4.7%	27%	
S	3	1.9%	7.8%	25%	
E	4	2.6%	11.5%	22%	
Υ	0	0.0%	2.6%	0%	
PrecursorStart	. 5	3.2%			

<u>Fig. 14a</u>

		% Cleavage	% Present	Δ
S D	26	16.8%	7.8%	214%
D	18	11.6%	5.5%	210%
٧	13	8.4%	5.3%	158%
Н	6	. 3.9%	2.7%	143%
G M	14	9.0%	6.8%	136%
M	3	1.9%	1.5%	128%
	4	2.6%	2.1%	124%
A	16	10.3%	8.4%	122%
K P	9	5.8%	· 6.0%	97%
	9	5.8%	6.2%	93%
Q	6	3.9%	4.6%	84%
L	11	7.1%	8.5%	83%
Ţ	6	3.9%	4.7%	82%
N	3	1.9%	3.3%	58%
Y	2	1.3%	2.6%	50%
С	1	0.6%	1.8%	36%
C E R	5	3.2%	11.5%	28%
R	2	1.3%	6.3%	21%
	1	0.6%	3.2%	20%
W	0	0.0%	1.2%	0%

Fig. 14b

AminoAcid Before Last Cleavage						
		% Cleavage	% Present	Δ		
R	26	16.8%	6.3%	267%		
E	29	18.7%	11.5%	162%		
N	7	4.5%	3.3%	135%		
D	11	7.1%	5.5%	128%		
Α	16	10.3%	8.4%	122%		
Q	8	5.2%	4.6%	111%		
R	10	6.5%	8.3%	103%		
F	5	3.2%	3.2%	102%		
L	13	8.4%	8.5%	98%		
G	10	6.5%	6.8%	97%		
K	9	5.8%	6.0%	97%		
M	2	1.3%	1.5%	85%		
Τ	6	3,9%	4.7%	82%		
8 C	9	5.8%	. 7.8%	74%		
С	2	1.3%	1.8%	72%		
V	5	3.2%	5.3%	61%		
Υ	2	1.3%	2.6%	50%		
Н	2	1.3%	2.7%	48%		
P	2	1.3%	6.2%	21%		
!	0	0.0%	2.1%	0%		

Fig. 14c

AminoAcid				
		% Cleavage	% Present	Δ
Precursor end	30	19.4%		
R	26	16.8%	6.3%	267%
K	19	12.3%	6.0%	204%
W F	3		1.2%	168%
F	8	5.2%	3.2%	162%
G	12	7.7%	6.6%	117%
٧	9	5.8%	5.3%	110%
T	. 7	4.5%	4.7%	96%
1	2	1.3%	2.1%	62%
A P	7	4.5%	8.4%	54%
Р	5	3.2%	6.2%	52%
Υ	2	1.3%	2.6%	50%
М	1	0.6%	1.5%	43%
Q	3	1.9%	4.6%	42%
S	5	3.2%	7.8%	41%
N	2	1.3%	3.3%	39%
L	5	3.2%	8.5%	. 38%
D	3	1.9%	5.5%	35%
D E C	6	3.9%	11.5%	34%
	0	0.0%	1.8%	0%
Н	0	0.0%	2.7%	0%

<u>Fig. 14d</u>

Fig. 15

Fig. 16

Fig. 17

Com Vo	Fraction 54 m/z	Frection 54	Faction 56		
Cese No.	2743.0	m/z 1371.5	m/x 2927.2	11143	
	k=20	k=19	k=16	k=19	
1	21648	712	2620	1452	
2	1830	1320	1199	2554	
3	21353	2022	31.59	2139	
4	24223	2454	2431	2169	
5	3725	2719	982	1038	
6	13548	2956	1689	1300	
7	16606	3260	1402	2213	
8	20902	3435	624	887	
9	10321	3444	427	2145	
10	31047	3498	2238	1516	
11	31142	3592	4405	1255	
12	37241	3745	2785	1739	
13	22656	3822	2264	2576	
14	24366	3852	1752	1139 .	
15	16638	3935	1147	2182	
16	37171	4092	2393	1069	
17	33188	4115	1.578	1681	
18	27596	4127	3228	1463	
19	39668	4348	3604	318	
20	12983	4362	1048	3039	
21	14420	4488	899	2676	
22	23261	4634	1965	3071	
23	30.507	4710	2715	1247	
24	41494	4928	5343	1238	
25	36664	5107	3914	3156	
26	42465	5135	2729	1768	
27	42551	5135	3010	2500	
28	35473	5201	2242	1978	
29	48611	5906	2381	1075	
30	28413	5914	1855	3189	1
31	35258	5954	3368	2140	
32	44774	6056	4167	670	
33	46137	6465	7640	1719	
34	40892	6531	1630	1241	
35	48202	7076	11222	3826	
36	43760	7183	4771	1565	
37	50211	7316	5443	2060	

Fig. 18a

	Fraction 54 m/z	Fraction 54			Fraction 20	· · · · · · · · · · · · · · · · · · ·
Case No.	2743.0	m/z 1371.5	m/z 2927.2	114	m/z 1114.3	
38	49824	7410	3084		1113	
39	50785	7752	6412		1616	
4D	46200	7821	3689		3725	
41	52471	7949	5395		1837	
42	49299	B280	4623		1207	
43	45032	8483	4881	-	1566	
44	51224	8562	6481		2194	
45	51901	863B	10081		2047	
46	51084	8776	14193		1478	
47	50928	8852	6635		287	
48	50707	10097	8877		1458	
49	52304	10259	6244		1860	
50	48355	10661	5195		3695	
51	51363	10685	11403		1261	
52	54423	10846	11299		2067	
53	55167	11041	12868		1545	
54	55091	11539	5597		2381	
55	56825	11912	7718	÷	2409	
56	53173	12022	8865		1969	
57	51649	12057	7855		1295	
58	5 1328	12095	9035		2043	
59	53464	12641	6408		856	
60	54542	12891	10363		1858	
61	56950	13172	7586		1802	
62	43273	14559	20080		596	
63	57335	14922	12288		2916	
64	551 18	14997	10078		1761	
65	57147	16164	7726		2626	
66	55584	16216	17106		2623	
67	59414	16550	15122		539	
68	57093	16689	19689		2078	
69	57841	18254	16079		1659	
70	54084	18734	19524		395	
71	56325	22730	10828		2326	
72	58386	24159	16681		1631	
73	54843	26671	44356		3183	
74	53935	27937	30189		1403	

Fig. 18b

	Fraction 54 m/z 2743.0 and				
Measure of	Fraction 54 m/z	Fraction 56 m/	Fraction 20 m/z		
Association	1371.5	2927.2	1114.3		
Spearman's rank order correlation	0.9298	0.8761	-0.0044		
Pearson's product moment correlation	0.7318	0.5855	-0.0781		
Kendali's rank correlation tau	0.7704	0.6919	0.0107		
MST diameter	50	40	29		

Fig. 19

Fig. 20

Hub	Corre-	Related peptide	Relative	Amino Acid Sequence
-	lation		Mono-	
Pept			isotopic	
ide			mass [Da]	
Chro	mograni	n A 97 - 131	3905.764	HSGF EDELSEVLEN
				QSSQAELKEA VEEPSSKDVM
				E
	r=0.67	Secretogranin I 88-132	4605.025	DPADASEAHESSSRGEAGAP
				GEEDIQGPTKADTEKWAEGG
		·		GHSRE
	r=0.71	Secretogranin II 529-566	4152.921	G QGSSEDDLQEE
				EQIEQAIKEH LNQGSSQETD
				KLAPVS
	r=0.72	Secretogranin V 181-202	2448.334	SVNPYLQGQRLDNVVAKKSV
	•			PH .

Fig. 21

Signal intensity [au] of peptide coordinate Chromogranin A 97-131

Fig. 22

	Fraction 54 m/z 2743.8	Fraction 54 m/z 1371 5	Fraction 56 m/z 2927.2	Fraction 20 m/z	
	k -0	k=1	k=2	k=19	
ese 1	21648	3747	7051	1452	
case 2	1830	4355	5630	2554	
case 3	21:353	5057	7590	2139	
cese 4	24223	5489	6862	2169	
casa 5	3725	5754	5413	1038	
සෙප ර	13548	5991	6120	1300	
cese 7	16606	6295	5833	2213	
case 8	28982	6470	5055	887	
case 9	10321	6479	4858	2145	<u> </u>
case 10	31047	6533	6669	1516	
case 11	31142	6627	8836	1255	
case 12	37241·	6780	7216	1739	<u> </u>
case 13	22656	6857	6695	2576	
case 14	24366	6887	6183	1139	<u> </u>
case 15	16638	6970	5578	2182	
case 16	37171	7127	6824	1069	
case 17	33188	7150	6009	1681	<u> </u>
case 18	27596	7162	7659	1463	<u> </u>
case 19	39668	7383	8035	318	
case 20	12983	7397	5479	3039	
case 21	14420	7523	5330	2676	
case 22	23261	7669	6396	3071	
case 23	30507	7745	7146	1247	
case 24	41-49-4	7963	9774	1238	
case 25	36664	8142	8345	3156	
case 26	42465	8170	7160	1768	
case 27	12551	8170	7441	2500	
case 28	35473	8236	6673	1978	<u> </u>
cese 29	48611	8941	6812	1075	
case 30	28413	8949	6286	3189	
case 31	35258	8989	7799	2140	
case 32	44774	9091	8.598	670	
case 33	46137	9500	12071	1719	
cese 34	40892	9566	6061	1241	
cese 35	48202	10111	15653	3826	
case 36	43768	10218	9202	1565	

Fig. 23a

h	Fraction 54 m/z	Finction 54 m/z	Faction 56 m/z	Fraction 20 m/z
	2743.0	1371.5	2927.2	11143
casa 37	50211	10351	9874	1113
casa 38	49924	10445	7435	เคเด
case 39	58785	10787	10843	3725
case 40	46208	10856	8120	1837
case 41	52471	1098/	9826	1207
case 42	49299	11315	9054	1566
case 43	45032	11518	9312	2194
case 44	51224	11597	10912	2047 -
case 45	51901	11673	14512	1478
c ase 46	51084	11811	18624	
case 47	50928	11887	11066	
case 48	59707	1313	13308	1860
casa 49	52304	13294	10675	3695
case 50	48355	13696	9626	1261
case 51	51363	13720	15834	2067
case 52	5442		15730	1545
case 53	55167	14076	17299	2381
c ase 54	55091	1457-	10028	
cese 55	-5682	1494	12149	1969
case 56	5317	1505	7 1329 <i>6</i>	1295
casa 57	5164 5	15092	2 1228€	2043
case 58	51328	1513	13460	856
c ese 59	5346 4	1567	10839	1858
case 60	5454 5	1592	6 14794	
case 61	5695(1620	7 12013	
case 62	4327	1759	4 24511	2916
case 63	5733.	1795	7 16719	
case 64	55111	1803	2 14509	
case 65	5714	7 1919	9 12157	
case 66	5558	4 1925		
case 67	5941	4 1958		
case 68	5700 :			
case 69	5784	1 2128	9 2051	
case 70	5408	4 2176	9 2395	
case 71	5632		5 1525	
case 72	5838		4 2111:	
casa 73	5484	3 2970	6 4878	
case 74	5393	3097	2 3462	1113

Fig. 23b

Fig. 24a

Fig. 24b

Fig. 24c

Fig. 25a

Fig. 25b

Fig. 25c

		n		
m/z	1	. 2	3	4
1371.5	-1371.5	0.0	1371.5	2743.0
2927.3	183.3	3109.6	6035.9	8962.2

Fig. 26

39/52

Fig. 27

Fig. 28

Fig. 29

QTPENGPEAS DPSEELEALA SLLQELRDFS PSSAKRQQET AAAETETRTH TLTRVNLESP GPERVWRASW GEFQARVPER APLPPPAPSQ FQARMPDSGP ALAAVILQAL DRPASPPAPS GSQQGPEEEA AEALLIETVR SQIHSLPAPE SPEPAAPPRP # 2 VGF 177-191, r=0.74 161

AEATROAAAQ BAEEAERARO ---#12 VGF 373-417, r=0.73----#13 VGF 373-417, r=0.68----#14 VGF 373-417, r=0.76-RPESALLGGS EAGERLLQQG LAQVEAGRRQ AREEEEARQE RRGGEERVGE EDEEAARAEA LPETHKRGEG VSSPKTHLGE ALAPLSKAYQ GVAAPFPKAR BERLADLASD LLLQYLLQGG ARQRGLGGRG LQEAAERRES # 3 VGF 350-370, r=0.76+ 241 321

TIDSLIELST KLHLPADDVV SIIEEVEEKR GRAGAEDKRS QEETPGHRK BARGTBEGGE BEDDEEMDPQ NALLEAEED 401

481 KRKKNAPPEP VPPPRAAPAP THVRSPOPPP PAPAPARDEL PDWNEVLPPW DREEDEVYPP GPYHPFPNYI RPRITQPPSA #12 VGF 485-522, r=0.81-

561 LRRRHYHHAL PPSRHYPGRE AQARRAQEEA EAEERRLQEQ EELENYIEHV LLRRP

Fig. 30

Fig. 31

1		Number of		D
[r] ≥	Correct Precursor Predictions	False Precursor Predictions	All Predictions	Percentage of Correct Predictions
0.95	18	0	18	100%
0.90	40	4	44	91%
0.85	58	10	68	85%
0.80	104	26	130	80%
0.75	· 178	76	256	70%
0.70	314	192	506	62%
0.65	512	456	968	53%
0.60	756	990	1746	43%
0.55	964	1872	2836	34%
0.50	1186	3086	4272	28%

Fig. 32

Fig. 33

	N			Percent at Positio				cid			of A	d Change mino Acie General C	d Compa	red to
Amino Acid	n(N-1)	n(N+1)	n(C-1)	n(C+1)	(4	n Any ition)	x(N-1)	x(N+1)	x(C-1)	x(C+1)
A	16	12%	18	13%	16	12%	5	5%	5612	8.2%	1.4	1.6	1.4	0.6
C	1	1%	1	1%	2	1%	0	0%	1109	1.6%	0.4	0.4	0.9	0.0
D .	5	4%	22	16%	8	6%	4	4%	3994	5.8%	0.6	2.8	1.0	0.6
${f E}$	4	3%	5	4%	30	22%	3	3%	8069	11.8%	0.2	0.3	1.8	0.2
k	5	4%	4	3%	3	2%	7	7%	2195	3.2%	1.1	0.9	0.7	2.0
G	6	4%	12	9%	7	5%	7	7%	4171	6.1%	0.7	1.4	0.8	1.1
\mathbf{H}	3	2%	4	3%.	2	1%	1	1%	1955	2.9%	0.8	1.0	0.5	0.3
r	0	0%	1	1%	3	2%	2	2%	1592	2.3%	0.0	0.3	0.9	0.8
K	7	5%	8	6%	12	9%	22	21%	4235	6.2%	0.8	0.9	1.4	3.4
L	9	7%	11	8%	10	7%	8	8%	5982	8.7%	0.7	0.9	0.8	0.9
M	5	4%	. 5	4%	0	0%	0	0%	1120	1.6%	2.2	2,2	0.0	0.0
N	4	3%	4	3%	8	6%	0	0%	2365	3.5%	0.8	0.8	1.7	0.0
P	15	11%	9	6%	1	1%	1	1%	4310	6.3%	1.7	1.0	0.1	0.1
Q	0	0%	7	5%	5	4%	3	3%	3334	4.9%	0.0	1.0	0.7	0.6
. R	42	31%	0	0%	9	6%	28	27%	4142	6.0%	5.1	0.0	1,1	4.4
S	4	3%	20	. 14%	10	7%	3	3%	5154	7.5%	0.4	1.9	1.0	0.4
T	4	3%	3	2%	4	3%	3	3%	3150	4.6%	0.6	0.5	0.6	0.6
\mathbf{v}	5	4%	3	2%	6	4%	5	5%	3581	5.2%	. 0.7	0.4	0.8	0.9
W	1	1%	2	1%	1	1%	3	3%	720	1.1%	0.7	1.4	0.7	2.7
Y	0	0%	0	.0%	2	1%	0	0%	1726	2.5%	0.0	0.0	0.6	0.0
Sum	136	100 %	139	100 %	139		105		68516	100%				<u> </u>

Fig. 34

Pair of Amino Acid	ls	# of Peptides	% of Peptides	# of Amino Acid pairs in all Precursors	% of Amino Acid pairs in all Precursors	x-fold Increase
Before Amino-	RR	18	12.9%	398	0.58%	22.2
Terminal Cleavage	KR	13	9.4%	351	0.51%	18.2
After Amino-	DA	15	10.8%	170	0.25%	43.4
Terminal Cleavage	GR	5	3.6%	215	0.31%	11.4
Before Carboxy-	QK	7	5.0%	169	0.25%	20.4
Terminal Cleavage	VN	6	4.3%	188	0.27%	15.7
1 ci minai Cicavage	GA	6	4.3%	293	0.43%	10.1
After Carboxy- Terminal Cleavage	KR	16	11.5%	351	0.51%	22,4

Fig. 35

Hub peptide VGF 26-58

- * predicts unknown peptide with m/z = 3688.03 as VGF 26-62
 - + calculated m/z matches found m/z (prerequisite condition)
 - + same start position as hub peptide (+ 69 bonus points)
 - + R as amino acid after end position (+ 4 bonus points)
- * predicts unknown peptide with m/z = 2419.41 as VGF 350-370
 - + calculated m/z matches found m/z (prerequisite condition)
 - + R as amino acid before start position (+ 5 bonus points)
 - + RR as amino acids before start position (+22 bonus points)

Fig. 36

Fig. 37

-			Any 1	proposa	d		Pre	posal V	With]	Most B	onus :	Points
[r] ≥ 0 .75	Con Star E Pos	cursor rrect rt- or ad ition rrect	Co Sta I Po	cursor orrect ort- or End sition	Sta Sta Pos	cursor alse rt- or and sition alse	Co Sta Fos	cursor rrect rt- or End sition rrect	Co Sta I Po	cursor orrect ort- or End sition	Str.	ecursor False art- or End sition
Model 1: No rules	5	6%	61	75%	15	19%	3	11%	19	70%	5	19%
Model 2: Only Rules Considering Single Amino Acids at Cleavage Sites	13	16%	58	72%	10	12%	10	37%	14	52%	3	11%
Model 3: Only Rules Considering Pairs of Amino Acid Pairs	18	22%	54	67%	11	14%	15	56%	9	33%	3	11%
Model 4: Only Rules Considering Common Start- or End Position	17	21%	51	63%	13	16%	13	48%	11	41%	3	11%
Model 5: Combination: Only Rules Considering Single Amino Acids & Pairs of Amino Acid	. 19	23%	54	67%	8	10%	18	67%	6	22%	3	11%
Model 6: Combination: all rules	28	35%	45	56%	8	10%	23	85%	1	4%	3	11%

Fig. 38

Correl	Correlation to:			
Albumin	Albumin Alb. 25-48	Hub:	Monoisotop. Mass	Sequence
r=0.73		Albumin 25-48 2752.4	2752.4	DAHKSEVAHRFKDLGEENFKALVL
		related Peptide to Alb. 25-48:		
r=0.80	r=0.77	Albumin 27-50	2750.5	HKSEVAHRFKDLGEENFKALVLIA
r=0.76	r=0.75	Albumin 25-50	2936.6	DAHKSEVAHRFKDLGEENFKALVLIA
1=0.76	r=0.75	Albumin 25-51	3085.5	DAHKSEVAHRFKDLGEENFKALVLIAF
r=0.83	r=0.75	alpha-1- Antitrypsin 397-418	2502.3	LMIEGNTKSPLFMGKVVNPTQK

Fig. 39

Fig. 40

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.