Deep Neural Networks with Trainable Activations and Controlled Lipschitz Constant

EE5180 Project Midterm Presentation

Group 21

EE21D002, EE21D005, EE21M010, EE21S056
Department of Electrical Engineering
IIT Madras

Overview

- 1. Introduction
- 2. Mathematical Background
- 3. Second Order Bounded Variation Activations
- 4. Learning Activations
- 5. Experimental Setup

- A variational framework to learn the activation functions of deep neural networks is introduced.
- The aim of the paper is to increase the **capacity** of network while controlling the **Lipschitz bound** of the network.
- The **capacity** of neural networks is given by $\log_2(|A|)$ where $A(n_1, n_2, ..., n_l)$ is a feedforward, layered, fully connected network.
- The goal of supervised learning is to approximate an unknown mapping from a set of noisy samples.

- In supervised learning, we find the function $f: \mathbb{R}^n \to \mathbb{R}^d$ which gives $y_m \approx f(x_m)$ where (x_m, y_m) are training samples for m = 1, 2, ..., M.
- In the scalar case where d=1 a classical formulation of the problem

$$\min_{f \in \mathcal{H}(\mathbb{R}^d)} \left(\sum_{m=1}^M \mathbf{E}(y_m, f(x_m)) + \lambda \|f\|_{\mathcal{H}}^2 \right)$$
 (1)

• Although the problem (1) is **infinite dimensional**, the kernel representer theorem states that the solution is unique and has the form

$$f(\mathbf{x}) = \sum_{m=1}^{M} a_m k(\mathbf{x}, \mathbf{x}_m)$$
 (2)

where $k(\cdot, \cdot)$ is the unique reproducing kernel.

- Recently **Deep Learning** has been outperforming the kernel methods with applications such as image classification, inverse problems and segmentation.
- A deep neural network is a repeated composition of affine mappings and pointwise **non-linearities** (Activation functions).
- The classical choice to an activation function is sigmoid but it suffers from vanishing gradients.
- The currently preferred activation functions are $\mathbf{ReLU} = max(x, 0)$ and its variants such as $\mathbf{Leaky}\ \mathbf{ReLU} = max(x, ax)$ where $a \in (0, 1)$ and \mathbf{PReLU} .

- A ReLU can be interpreted as **Linear spline** with one knot. It has been shown that Linear spline are *maximally regularized*.
- Although ReLU networks are favourable, one may want to learn the activation functions.
- The closest attempt to that is the PReLU where we learn 'a', a parameter in this particular activation function.
- The Lipschitz regularity is of great importance for the stability of deep neural networks.

Notion of TV norm and $BV^2(\mathbb{R})$

• The space of functions with **second-order bounded variations** is $\mathsf{BV}^{(2)}(\mathbb{R})$ and is defined as

$$BV^{(2)}(\mathbb{R}) = \{ f \in \mathcal{S}'(\mathbb{R}) : \|D^2 f\|_{\mathcal{M}} < \infty \}$$
(3)

where

 $\mathcal{S}'(\mathbb{R})$ is the space of tempered distributions,

 $D: \mathcal{S}'(\mathbb{R}) \to \mathcal{S}'(\mathbb{R})$ is the generalized derivative operator and,

 $\mathrm{TV}^{(2)}(f) \triangleq \|\mathrm{D}^2 f\|_{\mathcal{M}}$ is the second-order total variation norm.

• However, $\mathrm{TV}^{(2)}(f)$ is a semi-norm which makes $\mathrm{BV}^{(2)}(\mathbb{R})$ ineligible to be a *Banach space*.

Lipschitz Continuity

• To define **Lipschitz continuity**, the space defined in equation (3) has to be a normed space. To that end, define the $BV^{(2)}$ norm

$$||f||_{\mathrm{BV}^{(2)}} \triangleq \mathrm{TV}^{(2)}(f) + |f(0)| + |f(1)|$$
 (4)

Lipschitz Continuity (for generic Banach spaces)

Given generic Banach spaces $(\mathcal{X}, \|\cdot\|_{\mathcal{X}})$ and $(\mathcal{Y}, \|\cdot\|_{\mathcal{Y}})$, a function $f: \mathcal{X} \to \mathcal{Y}$ is said to be *Lipschitz-continuous* if there exists a finite constant C > 0 such that

$$||f(x_1) - f(x_2)||_{\mathcal{Y}} \le C||x_1 - x_2||_{\mathcal{X}}, \forall x_1, x_2 \in \mathcal{X}$$
 (5)

The minimal value of C is called the **Lipschitz constant** of f.

Input-output relation for a DNN

An L-layer neural network can be characterized by the function

$$f_{deep}: \mathbb{R}^{N_0} \to \mathbb{R}^{N_L}: \mathbf{x} \mapsto f_L \circ \cdots f_1(\mathbf{x})$$
 (6)

$$\mathbf{f}_{\text{deep}} = \mathbf{f}_4 \circ \mathbf{f}_3 \circ \mathbf{f}_2 \circ \mathbf{f}_1 : \mathbb{R}^2 \to \mathbb{R}$$

Figure: Schematic view of an example neural network with layer descriptor (2,4,6,3,1)

Formulating f_{deep} and (BV⁽²⁾, p)-norm

• f_l represents the l^{th} layer of the neural network f_{deep} and can be formulated as

$$f_l(\mathbf{x}) = \left(\sigma_{1,l}(\mathbf{w}_{1,l}^T\mathbf{x}), \sigma_{2,l}(\mathbf{w}_{2,l}^T\mathbf{x}), \dots, \sigma_{N_l,l}(\mathbf{w}_{N_l,l}^T\mathbf{x})\right)$$
(7)

where $\mathbf{w}_{n,l} \in \mathbb{R}^{N_{l-1}}$ are the **weight** vectors and $\sigma_{n,l} : \mathbb{R} \to \mathbb{R}$ are **activation** functions for $n = 1, 2,, N_l$.

- Alternatively, we can have matrix $\mathbf{W}_I = \begin{bmatrix} \mathbf{w}_{1,I} & \mathbf{w}_{2,I} & ... & \mathbf{w}_{N_I,I} \end{bmatrix}$ and vector $\boldsymbol{\sigma}_I : \mathbb{R}^{N_I} \to \mathbb{R}^{N_I}$ such that $f_I = \boldsymbol{\sigma}_I \circ \mathbf{W}_I$.
- We can finally define (BV⁽²⁾, p)-norm $\forall p \in [1, +\infty)$ of the nonlinear layer σ_I as

$$\|\boldsymbol{\sigma}_{l}\|_{(\mathrm{BV}^{(2)},p)} = \left(\sum_{n=1}^{N_{l}} \|\sigma_{n,l}\|_{\mathrm{BV}^{(2)}}^{p}\right)^{\frac{1}{p}}$$
 (8)

Second Order Bounded Variation Activations

- Activation functions are selected from $\mathrm{BV}^{(2)}(\mathbb{R})$
- Key feature Lipschitz continuity

Proposition 1

Any function with second order bounded variations is Lipschitz - continuous. For any function $\sigma \in \mathrm{BV}^{(2)}(\mathbb{R})$ and $x_1, x_2 \in \mathbb{R}$

$$|\sigma(x_1) - \sigma(x_2)| \le ||\sigma||_{\mathrm{BV}^{(2)}} |x_1 - x_2|$$
 (9)

Proposition 2

For any function $\sigma \in \mathrm{BV}^{(2)}(\mathbb{R})$ and $x_0 \in \mathbb{R}$, the left and right derivatives of σ at the point $x = x_0$ exist and are finite.

Second Order Bounded Variation Activations

Theorem (1)

Any feedforward fully connected deep neural network $f_{deep}: \mathbb{R}^{N_0} \longrightarrow \mathbb{R}^{N_L}$ with second order bounded variation activations $\sigma_{n,l} \in BV^{(2)}(\mathbb{R})$ is Lipschitz continuous. If we consider ℓ_p for $p \in [1,\infty]$ topology in the input and output spaces, the neural network satisfies the global Lipschitz bound,

$$\| f_{deep}(x_1) - f_{deep}(x_2) \|_{p} \le C \| x_1 - x_2 \|_{p}, \forall x_1, x_2 \in \mathbb{R}^{N_0}$$
 (10)

where,

$$C = \left(\prod_{l=1}^{L} \parallel W_l \parallel_{q,\infty}\right) \left(\prod_{l=1}^{L} \parallel \sigma_l \parallel_{BV^{(2)},p}\right) \tag{11}$$

$$q \in [1, \infty]; 1/p + 1/q = 1, ||W_I||_{q,\infty} = \max_n ||W_{n,I}||_q$$
 (12)

is the mixed norm $\ell_a - \ell_{\infty}$ of the Ith linear layer

Second Order Bounded Variation Activations

• An alternative bound for the Lipschitz constant of the neural network is obtained when the *standard Euclidean topology* is assumed for the input and output spaces.

Proposition 3

Let $f_{deep}: \mathbb{R}^{N_0} \longrightarrow \mathbb{R}^{N_L}$ be a fully connected feedforward neural network with activations selected from $\mathrm{BV}^{(2)}(\mathbb{R})$. For all $x_1, x_2 \in \mathbb{R}^{N_0}$ we have that

$$\| f_{deep}(x_1) - f_{deep}(x_2) \|_2 \le C_E \| x_1 - x_2 \|_2, \forall x_1, x_2 \in \mathbb{R}^{N_0}$$
 (13)

where,

$$C_{E} = \left(\prod_{l=1}^{L} \parallel W_{l} \parallel_{F}\right) \left(\prod_{l=1}^{L} \parallel \sigma_{l} \parallel_{\mathrm{BV}^{(2)}, 1}\right) \tag{14}$$

• The (weak*) continuity of the sampling functional is needed to guarantee the well-posedness of the learning problem.

Theorem (2)

For any $x_0 \in \mathbb{R}^{N_0}$, the sampling functional δ_{x_0} : $f_{deep} \mapsto f_{deep}(x_0)$ is weak*-continuous in the space of neural networks with second-order bounded-variation activations.

• For a dual pair $(\mathcal{X}, \mathcal{X}')$ of Banach spaces, the sequence $\{\omega_n\}_{n\in\mathbb{N}}\in\mathcal{X}'$ converges in the weak*-topology to $\omega_{lim}\in\mathcal{X}'$ if, for any element $\varphi\in\mathcal{X}$, we have that

$$\langle \omega_n, \varphi \rangle \to \langle \omega_{\lim}, \varphi \rangle, \ n \to +\infty$$
 (15)

• Consequently, a functional $\nu: \mathcal{X}' \to \mathbb{R}$ is weak*-continuous if $\nu(\omega_n) \to \nu(\omega_{lim})$ for any sequence $\{\omega_n\}_{n\in\mathbb{N}} \in \mathcal{X}'$ that converges in the weak*-topology to ω_{lim} .

• Given the data-set (X,Y) of size M that consists in the pairs $(x_m,y_m) \in \mathbb{R}^{N_0} \times \mathbb{R}^{N_L}$ for m = 1,2,...,M, we then consider the following **cost functional**

$$\mathcal{J}(f_{deep}; X, Y) = \sum_{m=1}^{M} E(y_m, f_{deep}(x_m)) + \sum_{l=1}^{L} \mu_l R_l(\mathbf{W}_l) + \sum_{l=1}^{L} \lambda_l ||\sigma_l||_{BV^{(2)}, 1}$$
 (16)

where f_{deep} , \mathbf{W}_I , $\sigma_I = (\sigma_{1,I}, \ldots, \sigma_{N_I,I})$, and $E(\cdot, \cdot)$ have their usual meanings, and $R_I : \mathbb{R}^{N_I} \times \mathbb{R}^{N_{I-1}} \to \mathbb{R}$ is a **regularization functional** for the linear weights of the *I*th layer. The positive constants μ_I , $\lambda_I > 0$ balance the regularization effect in the training step.

- Standard choice for weight regularization is the **Frobenius norm** $R(\mathbf{W}) = ||\mathbf{W}||_F^2$.
- Under some natural conditions, there always exists a solution of (16) with continuous piecewise-linear activation functions, which we refer to as a deep-spline neural network.

Theorem (3)

Consider the training of a deep neural network via the minimization

$$\min_{\substack{\mathbf{w}_{n,l} \in \mathbb{R}^{N_{l-1}}, \\ \sigma_{n,l} \in BV^{(2)}(\mathbb{R})}} \mathcal{J}(f_{deep}; X, Y) \tag{17}$$

If we assume our loss function $E(\cdot,\cdot)$ to be proper, lower semi-continuous, and coercive and the regularization functionals R_l to be continuous and coercive, then there always exists a solution f_{deep}^* of (16) with activations $\sigma_{n,l}$ of the form

$$\sigma_{n,l}(x) = \sum_{k=1}^{K_{n,l}} a_{n,l,k} ReLU(x - \tau_{n,l,k}) + b_{1,n,l}x + b_{2,n,l},$$
(18)

where $K_{n,l} \leq M$ and $a_{n,l,k}$, $\tau_{n,l,k}$, $b_{..n,l} \in \mathbb{R}$ are adaptive parameters.

- Theorem 3 suggests an optimal **ReLU-based parametric** to learn activations.
- This property translates the original **infinite-dimensional** problem (17) into a **finite-dimensional** parametric optimization, where one only needs to determine the ReLU weights $a_{n,l,k}$, the positions $\tau_{n,l,k}$, and the affine terms $b_{1,n,l}$, $b_{2,n,l}$.
- One of the key differences between this work and "A representer theorem for deep neural networks" of M.Unser lies in the choice of **Regularization**.
- It is the BV⁽²⁾-regularization that allows us to obtain the global bound for the Lipschitz constant of the network, unlike the framework of the other work, which relies on the TV⁽²⁾-regularization (semi-norm).
- But the catch here is that, in Unser's work, the activations have at most (M-2) **knots**, as opposed to our case where $K_{n,l} \leq M$.

 Another interesting property governs the energy relationship between the consecutive linear and nonlinear layers.

Theorem (4)

For any local minima of the minimization problem (17) with linear weights \mathbf{W}_l and nonlinear layers σ_l , we have that

$$\lambda_I \| \boldsymbol{\sigma}_I \|_{BV^{(2)},1} = 2\mu_{I+1} \| \mathbf{W}_{I+1} \|_F^2, \quad I = 1, 2, \dots, L-1$$
 (19)

- This clearly shows that the regularization constants μ_I and λ_I provide a **balance** between the linear and nonlinear layers.
- The authors have used the above relation to determine the value of λ_I , thereby reducing the number of hyper-parameters to be tuned and resulting in a faster training scheme.

Final Optimization Problem

• Optimization problem (17) can now be expanded using equations (4), (16) and definition of **Frobenius norm** as follows

$$\min_{\substack{\mathbf{w}_{n,l} \in \mathbb{R}^{N_{l-1}}, \\ \mathbf{a}_{n,l} \in \mathbb{R}^{K_{n,l}}, \\ b_{l,n,l} \in \mathbb{R}}} \sum_{m=1}^{M} \mathbf{E}(\mathbf{y}_{m}, f_{deep}(\mathbf{x}_{m})) + \sum_{l=1}^{L} \mu_{l} \sum_{n=1}^{N_{l}} \|\mathbf{w}_{n,l}\|_{2}^{2} + \sum_{l=1}^{L} \lambda_{l} \sum_{n=1}^{N_{l}} (\|\mathbf{a}_{n,l}\|_{1} + |\sigma_{n,l}(1)| + |\sigma_{n,l}(0)|) \quad (20)$$

• (20) is the final optimization problem that is to be solved, however the parameter $K_{n,l}$ still needs to be fixed before initialization. The authors of this paper have set it to K=21 for the experimental setup that is explained shortly after.

Experimental Setup

- To verify the validity of the framework described precedingly, an experiment is setup
 as follows —classify points inside a circle with area 2 centered at the origin in a two
 dimensional space.
- Thus, the target function is

$$\mathbb{1}_{\text{Circle}}(x_1, x_2) = \begin{cases} 1, & x_1^2 + x_2^2 \le \frac{2}{\pi} \\ 0, & \text{otherwise.} \end{cases}$$
 (21)

- The training dataset is generated with M=1000 random points with uniform distribution in $[-1,1]^2$.
- Neural networks of the form (2, 2W, 1), where W is the width parameter of the hidden layer are used. Specifically, for the last layer **sigmoid** activation is used with **binary cross-entropy loss**.

Results

Subsequently after the experimental setup, number of experiments are performed to test the claims described in the paper and are verified quantifiably. These experiments are listed below —

- 1. Comparison with ReLU-based Activations
- 2. Sparsity-Promoting Effect of $\mathrm{BV}^{(2)}$ -Regularization
- 3. Effect of the Parameter λ
- 4. ℓ_1 versus ℓ_2 Outer-Norms
- 5. Effect of the Parameter K

	Architecture	N_{param}	Performance
ReLU	(2,10,1)	41	98.15
LeakyReLU	(2,10,1)	41	98.12
PReLU	(2,10,1)	51	98.19
Deep Lipschitz	(2,2,1)	23	98.54

Table: Number of parameters and Performance in the Area Classification Experiment

Plans for the final presentation

Figure: Visual Comparison of performance of different activation functions

For the final presentation, we plan to simulate all of the above experiments using **Python** and validate the results shown in the paper.

The End