Separation of Variables – Oscillating Strings

Bernd Schröder

1. Solution technique for partial differential equations.

- 1. Solution technique for partial differential equations.
- 2. If the unknown function u depends on variables x, t, we assume there is a solution of the form u = X(x)T(t).

- 1. Solution technique for partial differential equations.
- 2. If the unknown function u depends on variables x, t, we assume there is a solution of the form u = X(x)T(t).
- 3. The special form of this solution function allows us to replace the original partial differential equation with several ordinary differential equations.

- 1. Solution technique for partial differential equations.
- 2. If the unknown function u depends on variables x, t, we assume there is a solution of the form u = X(x)T(t).
- 3. The special form of this solution function allows us to replace the original partial differential equation with several ordinary differential equations.
- 4. Key step: If f(x) = g(t), then f and g must be constant.

- 1. Solution technique for partial differential equations.
- 2. If the unknown function u depends on variables x, t, we assume there is a solution of the form u = X(x)T(t).
- 3. The special form of this solution function allows us to replace the original partial differential equation with several ordinary differential equations.
- 4. Key step: If f(x) = g(t), then f and g must be constant.
- 5. Solutions of the ordinary differential equations we obtain must typically be processed some more to give useful results for the partial differential equations.

- 1. Solution technique for partial differential equations.
- 2. If the unknown function u depends on variables x, t, we assume there is a solution of the form u = X(x)T(t).

Solving the Equation

- 3. The special form of this solution function allows us to replace the original partial differential equation with several ordinary differential equations.
- 4. Key step: If f(x) = g(t), then f and g must be constant.
- 5. Solutions of the ordinary differential equations we obtain must typically be processed some more to give useful results for the partial differential equations.
- 6. For the equation in this presentation, Fourier series will allow us to get the actual solution of the problem.

Introduction

The Equation and the Initial and Boundary Conditions

The Equation and the Initial and Boundary Conditions

1. u(x,t) is the vertical displacement of the particle at position x on the string,

The Equation and the Initial and Boundary Conditions

1. u(x,t) is the vertical displacement of the particle at position x on the string, at time t.

1. u(x,t) is the vertical displacement of the particle at position x on the string, at time t.

 χ

- 1. u(x,t) is the vertical displacement of the particle at position x on the string, at time t.
- 2. Partial differential equation: $\frac{\partial^2}{\partial t^2}u(x,t) = \frac{\partial^2}{\partial x^2}u(x,t)$.

- 1. u(x,t) is the vertical displacement of the particle at position x on the string, at time t.
- 2. Partial differential equation: $\frac{\partial^2}{\partial t^2}u(x,t) = \frac{\partial^2}{\partial x^2}u(x,t)$. (We're assuming k = 1.)

1. u(x,t) is the vertical displacement of the particle at position x on the string, at time t.

Solving the Equation

- 2. Partial differential equation: $\frac{\partial^2}{\partial t^2}u(x,t) = \frac{\partial^2}{\partial x^2}u(x,t)$. (We're assuming k = 1.)
- 3. Initial condition. For $0 \le x \le \pi$: u(x,0) = f(x) (see next slide), $\frac{\partial}{\partial t}u(x,0) = 0$ (string is not moving as it is released).

- 1. u(x,t) is the vertical displacement of the particle at position x on the string, at time t.
- 2. Partial differential equation: $\frac{\partial^2}{\partial t^2}u(x,t) = \frac{\partial^2}{\partial x^2}u(x,t)$. (We're assuming k = 1.)
- 3. Initial condition. For $0 \le x \le \pi$: u(x,0) = f(x) (see next slide), $\frac{\partial}{\partial t}u(x,0) = 0$ (string is not moving as it is released).
- 4. $u(0,t) = u(\pi,t) = 0$ for t > 0 (endpoints of the string are fixed).

The Initial Shape

The Initial Shape

Introduction

(We'll need to think about how to encode it.)

Separating the Equation

Introduction

$$\frac{\partial^2}{\partial t^2}u(x,t) = \frac{\partial^2}{\partial x^2}u(x,t)$$

Introduction

$$\frac{\partial^2}{\partial t^2}u(x,t) = \frac{\partial^2}{\partial x^2}u(x,t) \qquad u(x,t) := X(x)T(t)$$

$$\frac{\partial^2}{\partial t^2} u(x,t) = \frac{\partial^2}{\partial x^2} u(x,t) \qquad u(x,t) := X(x)T(t)$$

$$X(x)T''(t) = X''(x)T(t)$$

Introduction

$$\frac{\partial^2}{\partial t^2} u(x,t) = \frac{\partial^2}{\partial x^2} u(x,t) \qquad u(x,t) := X(x)T(t)
X(x)T''(t) = X''(x)T(t)
\frac{T''(t)}{T(t)} = \frac{X''(x)}{X(x)}$$

Separating the Equation

$$\frac{\partial^2}{\partial t^2} u(x,t) = \frac{\partial^2}{\partial x^2} u(x,t) \qquad u(x,t) := X(x)T(t)$$

$$X(x)T''(t) = X''(x)T(t)$$

$$\frac{T''(t)}{T(t)} = \frac{X''(x)}{X(x)} = \lambda$$

Introduction

$$\frac{\partial^2}{\partial t^2} u(x,t) = \frac{\partial^2}{\partial x^2} u(x,t) \qquad u(x,t) := X(x)T(t)
X(x)T''(t) = X''(x)T(t)
\frac{T''(t)}{T(t)} = \frac{X''(x)}{X(x)} = \lambda$$

$$\frac{(t)}{\partial t} = \lambda$$

$$\frac{\partial^2}{\partial t^2} u(x,t) = \frac{\partial^2}{\partial x^2} u(x,t) \qquad u(x,t) := X(x)T(t)$$

$$X(x)T''(t) = X''(x)T(t)$$

$$\frac{T''(t)}{T(t)} = \frac{X''(x)}{X(x)} = \lambda$$

$$\frac{T''(t)}{T(t)} = \lambda \qquad \text{and} \qquad \frac{X''(x)}{X(x)} = \lambda$$

$$\frac{\partial^2}{\partial t^2}u(x,t) = \frac{\partial^2}{\partial x^2}u(x,t) \qquad u(x,t) := X(x)T(t)$$

$$X(x)T''(t) = X''(x)T(t)$$

$$\frac{T''(t)}{T(t)} = \frac{X''(x)}{X(x)} = \lambda$$

$$\frac{T''(t)}{T(t)} = \lambda \qquad \text{and} \qquad \frac{X''(x)}{X(x)} = \lambda$$

$$T''(t) - \lambda T(t) = 0$$

$$\frac{\partial^2}{\partial t^2} u(x,t) = \frac{\partial^2}{\partial x^2} u(x,t) \qquad u(x,t) := X(x)T(t)$$

$$X(x)T''(t) = X''(x)T(t)$$

$$\frac{T''(t)}{T(t)} = \frac{X''(x)}{X(x)} = \lambda$$

$$\frac{T''(t)}{T(t)} = \lambda \qquad \text{and} \qquad \frac{X''(x)}{X(x)} = \lambda$$

$$T''(t) - \lambda T(t) = 0 \qquad \text{and} \qquad X''(x) - \lambda X(x) = 0$$

$$X''(x) - \lambda X(x) = 0, X(0) = X(\pi) = 0$$

$$X''(x) - \lambda X(x) = 0, X(0) = X(\pi) = 0$$

The solution is either $X(x) = k_1 e^{\mu x} + k_2 e^{-\mu x}$

$$X''(x) - \lambda X(x) = 0, X(0) = X(\pi) = 0$$

The solution is either $X(x) = k_1 e^{\mu x} + k_2 e^{-\mu x}$ or it is $X(x) = k_1 \cos(\mu x) + k_2 \sin(\mu x)$.

$$X''(x) - \lambda X(x) = 0, X(0) = X(\pi) = 0$$

The solution is either $X(x) = k_1 e^{\mu x} + k_2 e^{-\mu x}$ or it is $X(x) = k_1 \cos(\mu x) + k_2 \sin(\mu x)$.

$$X''(x) - \lambda X(x) = 0, X(0) = X(\pi) = 0$$

The solution is either $X(x) = k_1 e^{\mu x} + k_2 e^{-\mu x}$ or it is

 $X(x) = k_1 \cos(\mu x) + k_2 \sin(\mu x).$

$$0 = X(0)$$

$$X''(x) - \lambda X(x) = 0, X(0) = X(\pi) = 0$$

The solution is either $X(x) = k_1 e^{\mu x} + k_2 e^{-\mu x}$ or it is

 $X(x) = k_1 \cos(\mu x) + k_2 \sin(\mu x).$

$$0 = X(0) = k_1 + k_2$$

$$X''(x) - \lambda X(x) = 0, X(0) = X(\pi) = 0$$

The solution is either $X(x) = k_1 e^{\mu x} + k_2 e^{-\mu x}$ or it is

$$X(x) = k_1 \cos(\mu x) + k_2 \sin(\mu x).$$

$$0 = X(0) = k_1 + k_2$$

$$0 = X(\pi)$$

The solution is either $X(x) = k_1 e^{\mu x} + k_2 e^{-\mu x}$ or it is

$$X(x) = k_1 \cos(\mu x) + k_2 \sin(\mu x).$$

$$0 = X(0) = k_1 + k_2$$

$$0 = X(\pi) = k_1 e^{\mu \pi} + k_2 e^{-\mu \pi}$$

The solution is either $X(x) = k_1 e^{\mu x} + k_2 e^{-\mu x}$ or it is $X(x) = k_1 \cos(\mu x) + k_2 \sin(\mu x)$.

 $X(x) = k_1 e^{\mu x} + k_2 e^{-\mu x}$ is not possible because of the boundary conditions:

$$0 = X(0) = k_1 + k_2$$

$$0 = X(\pi) = k_1 e^{\mu \pi} + k_2 e^{-\mu \pi}$$

$$0 = k_1 \left(e^{\mu \pi} - e^{-\mu \pi} \right),$$

$$X''(x) - \lambda X(x) = 0, X(0) = X(\pi) = 0$$

The solution is either $X(x) = k_1 e^{\mu x} + k_2 e^{-\mu x}$ or it is

$$X(x) = k_1 \cos(\mu x) + k_2 \sin(\mu x).$$

 $X(x) = k_1 e^{\mu x} + k_2 e^{-\mu x}$ is not possible because of the boundary conditions:

$$0 = X(0) = k_1 + k_2$$

$$0 = X(\pi) = k_1 e^{\mu \pi} + k_2 e^{-\mu \pi}$$

$$0 = k_1 \left(e^{\mu \pi} - e^{-\mu \pi} \right),$$

which forces $k_1 = k_2 = 0$ and then X(x) = 0, which cannot be.

$$X''(x) - \lambda X(x) = 0, X(0) = X(\pi) = 0$$

The solution is either $X(x) = k_1 e^{\mu x} + k_2 e^{-\mu x}$ or it is

 $X(x) = k_1 \cos(\mu x) + k_2 \sin(\mu x).$

 $X(x) = k_1 e^{\mu x} + k_2 e^{-\mu x}$ is not possible because of the boundary conditions:

$$0 = X(0) = k_1 + k_2$$

$$0 = X(\pi) = k_1 e^{\mu \pi} + k_2 e^{-\mu \pi}$$

$$0 = k_1 \left(e^{\mu \pi} - e^{-\mu \pi} \right),$$

which forces $k_1 = k_2 = 0$ and then X(x) = 0, which cannot be.

So
$$X(x) = k_1 \cos(\mu x) + k_2 \sin(\mu x)$$
 with $\mu = \sqrt{|\lambda|}$.

The solution is either $X(x) = k_1 e^{\mu x} + k_2 e^{-\mu x}$ or it is $X(x) = k_1 \cos(\mu x) + k_2 \sin(\mu x)$.

 $X(x) = k_1 e^{\mu x} + k_2 e^{-\mu x}$ is not possible because of the boundary conditions:

$$0 = X(0) = k_1 + k_2$$

$$0 = X(\pi) = k_1 e^{\mu \pi} + k_2 e^{-\mu \pi}$$

$$0 = k_1 \left(e^{\mu \pi} - e^{-\mu \pi} \right),$$

which forces $k_1 = k_2 = 0$ and then X(x) = 0, which cannot be. So $X(x) = k_1 \cos(\mu x) + k_2 \sin(\mu x)$ with $\mu = \sqrt{|\lambda|}$. In some presentations, $-\lambda$ is used instead of λ , because the outcome of this computation is anticipated.

$$0 = X(0)$$

$$X(x) = k_1 \cos(\mu x) + k_2 \sin(\mu x), X(0) = X(\pi) = 0$$

$$0 = X(0) = k_1 \cdot 1 + k_2 \cdot 0$$

$$0 = X(0) = k_1 \cdot 1 + k_2 \cdot 0 = k_1$$

$$X(x) = k_1 \cos(\mu x) + k_2 \sin(\mu x), X(0) = X(\pi) = 0$$

$$0 = X(0) = k_1 \cdot 1 + k_2 \cdot 0 = k_1$$

$$X(x) = k_2 \sin(\mu x)$$

$$0 = X(0) = k_1 \cdot 1 + k_2 \cdot 0 = k_1$$

$$X(x) = k_2 \sin(\mu x)$$

$$0 = X(\pi)$$

$$0 = X(0) = k_1 \cdot 1 + k_2 \cdot 0 = k_1$$

$$X(x) = k_2 \sin(\mu x)$$

$$0 = X(\pi) = k_2 \sin(\mu \pi)$$

$$0 = X(0) = k_1 \cdot 1 + k_2 \cdot 0 = k_1$$

$$X(x) = k_2 \sin(\mu x)$$

$$0 = X(\pi) = k_2 \sin(\mu \pi)$$

Requires μ to be a nonnegative integer n. (Animation.)

$$0 = X(0) = k_1 \cdot 1 + k_2 \cdot 0 = k_1$$

$$X(x) = k_2 \sin(\mu x)$$

$$0 = X(\pi) = k_2 \sin(\mu \pi)$$

Requires μ to be a nonnegative integer n. (Animation.) So $X(x) = k_1 \sin(nx)$ and $\lambda = -\mu^2 = -n^2$.

$$\frac{T''}{T} = Z$$

Solving the Equation

$$\frac{T''}{T} = \lambda = -n^2$$

$$\frac{T''}{T} = \lambda = -n^2$$

$$T'' + n^2 T = 0$$

$$\frac{T''}{T} = \lambda = -n^2$$

$$T'' + n^2 T = 0$$

$$T(t) = c_1 \cos(nt) + c_2 \sin(nt)$$

$$\frac{T''}{T} = \lambda = -n^2$$

$$T'' + n^2 T = 0$$

$$T(t) = c_1 \cos(nt) + c_2 \sin(nt)$$

$$T'(t) = -c_1 n \sin(nt) + c_2 n \cos(nt)$$

$$\frac{T''}{T} = \lambda = -n^2$$

$$T'' + n^2 T = 0$$

$$T(t) = c_1 \cos(nt) + c_2 \sin(nt)$$

$$T'(t) = -c_1 n \sin(nt) + c_2 n \cos(nt)$$

$$0 = T'(0) \quad \text{initial condition}$$

$$\frac{T''}{T} = \lambda = -n^2$$

$$T'' + n^2 T = 0$$

$$T(t) = c_1 \cos(nt) + c_2 \sin(nt)$$

$$T'(t) = -c_1 n \sin(nt) + c_2 n \cos(nt)$$

$$0 = T'(0) \quad \text{initial condition}$$

$$0 = -c_1 n \cdot 0 + c_2 n \cdot 1$$

$$\frac{T''}{T} = \lambda = -n^2$$

$$T'' + n^2 T = 0$$

$$T(t) = c_1 \cos(nt) + c_2 \sin(nt)$$

$$T'(t) = -c_1 n \sin(nt) + c_2 n \cos(nt)$$

$$0 = T'(0) \quad \text{initial condition}$$

$$0 = -c_1 n \cdot 0 + c_2 n \cdot 1$$

$$0 = c_2$$

$$\frac{T''}{T} = \lambda = -n^2$$

$$T'' + n^2 T = 0$$

$$T(t) = c_1 \cos(nt) + c_2 \sin(nt)$$

$$T'(t) = -c_1 n \sin(nt) + c_2 n \cos(nt)$$

$$0 = T'(0) \quad \text{initial condition}$$

$$0 = -c_1 n \cdot 0 + c_2 n \cdot 1$$

$$0 = c_2$$
So $T(t) = c_1 \cos(nt)$.

Solving the Equation

$$u(x,t) = X(x)T(t)$$

Solving the Equation

$$u(x,t) = X(x)T(t)$$
$$= k_1 \sin(nx)$$

Introduction

$$u(x,t) = X(x)T(t)$$

= $k_1 \sin(nx)c_1 \cos(nt)$

Solving the Equation

Back to u

$$u(x,t) = X(x)T(t)$$

$$= k_1 \sin(nx)c_1 \cos(nt)$$

$$u_n(x,t) = b_n \sin(nx)\cos(nt)$$

Back to u

$$u(x,t) = X(x)T(t)$$

$$= k_1 \sin(nx)c_1 \cos(nt)$$

$$u_n(x,t) = b_n \sin(nx) \cos(nt)$$

None of these solutions fit our initial condition.

Back to u

$$u(x,t) = X(x)T(t)$$

$$= k_1 \sin(nx)c_1 \cos(nt)$$

$$u_n(x,t) = b_n \sin(nx) \cos(nt)$$

None of these solutions fit our initial condition. But because all u_n solve the equation,

Introduction

$$u(x,t) = X(x)T(t)$$

= $k_1 \sin(nx)c_1 \cos(nt)$

$$u_n(x,t) = b_n \sin(nx) \cos(nt)$$

None of these solutions fit our initial condition. But because all u_n solve the equation, the boundary condition

Back to u

$$u(x,t) = X(x)T(t)$$

$$= k_1 \sin(nx)c_1 \cos(nt)$$

$$u_n(x,t) = b_n \sin(nx)\cos(nt)$$

None of these solutions fit our initial condition. But because all u_n solve the equation, the boundary condition and the initial condition on the time derivative,

Back to u

$$u(x,t) = X(x)T(t)$$

$$= k_1 \sin(nx)c_1 \cos(nt)$$

$$u_n(x,t) = b_n \sin(nx)\cos(nt)$$

None of these solutions fit our initial condition. But because all u_n solve the equation, the boundary condition and the initial condition on the time derivative, so should

$$u(x,t) = \sum_{n=1}^{\infty} b_n u_n(x,t) = \sum_{n=1}^{\infty} b_n \sin(nx) \cos(nt).$$

$$u(x,t) = X(x)T(t)$$

$$= k_1 \sin(nx)c_1 \cos(nt)$$

$$u_n(x,t) = b_n \sin(nx)\cos(nt)$$

None of these solutions fit our initial condition. But because all u_n solve the equation, the boundary condition and the initial condition on the time derivative, so should

$$u(x,t) = \sum_{n=1}^{\infty} b_n u_n(x,t) = \sum_{n=1}^{\infty} b_n \sin(nx) \cos(nt).$$

(Significant theory required to assure the infinite summation does not destroy anything.)

Solving the Equation

Solving the Equation

$$f(x) = \begin{cases} \frac{\pi}{2} - |x - \frac{\pi}{2}|; & \text{for } 0 \le x \le \pi, \\ |x + \frac{\pi}{2}| - \frac{\pi}{2}; & \text{for } -\pi \le x \le 0, \end{cases}$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$
$$= \frac{2}{\pi} \int_{0}^{\pi} \left(\frac{\pi}{2} - \left|x - \frac{\pi}{2}\right|\right) \sin(nx) dx$$

Solving the Equation

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$
$$= \frac{2}{\pi} \int_{0}^{\pi} \left(\frac{\pi}{2} - \left|x - \frac{\pi}{2}\right|\right) \sin(nx) dx$$
$$b_{2k} = 0,$$

because for even n, the integrand is odd with respect to the center $\frac{\pi}{2}$.

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$
$$= \frac{2}{\pi} \int_{0}^{\pi} \left(\frac{\pi}{2} - \left|x - \frac{\pi}{2}\right|\right) \sin(nx) dx$$
$$b_{2k} = 0,$$

Solving the Equation

because for even n, the integrand is odd with respect to the center $\frac{\pi}{2}$. For odd n, the integrand is even with respect to the center $\frac{\pi}{2}$ and we continue as follows.

Even/Odd With Respect to

(Doubles)

(and so on)

$$b_{2k+1} = \frac{4}{\pi} \int_0^{\frac{\pi}{2}} \left(\frac{\pi}{2} - \left| x - \frac{\pi}{2} \right| \right) \sin \left((2k+1)x \right) dx$$

$$b_{2k+1} = \frac{4}{\pi} \int_0^{\frac{\pi}{2}} \left(\frac{\pi}{2} - \left| x - \frac{\pi}{2} \right| \right) \sin\left((2k+1)x \right) dx$$
$$= \frac{4}{\pi} \int_0^{\frac{\pi}{2}} \left[\frac{\pi}{2} - \left(\frac{\pi}{2} - x \right) \right] \sin\left((2k+1)x \right) dx$$

$$b_{2k+1} = \frac{4}{\pi} \int_0^{\frac{\pi}{2}} \left(\frac{\pi}{2} - \left| x - \frac{\pi}{2} \right| \right) \sin\left((2k+1)x \right) dx$$

$$= \frac{4}{\pi} \int_0^{\frac{\pi}{2}} \left[\frac{\pi}{2} - \left(\frac{\pi}{2} - x \right) \right] \sin\left((2k+1)x \right) dx$$

$$= \frac{4}{\pi} \int_0^{\frac{\pi}{2}} x \sin\left((2k+1)x \right) dx$$

$$b_{2k+1} = \frac{4}{\pi} \int_0^{\frac{\pi}{2}} x \sin((2k+1)x) dx$$

Fourier Coefficients

$$b_{2k+1} = \frac{4}{\pi} \int_0^{\frac{\pi}{2}} x \sin((2k+1)x) dx$$
$$= \frac{4}{\pi} \left[-x \frac{1}{2k+1} \cos((2k+1)x) \right]_0^{\frac{\pi}{2}}$$

$$b_{2k+1} = \frac{4}{\pi} \int_0^{\frac{\pi}{2}} x \sin((2k+1)x) dx$$

$$= \frac{4}{\pi} \left[-x \frac{1}{2k+1} \cos((2k+1)x) \Big|_0^{\frac{\pi}{2}} + \frac{1}{2k+1} \int_0^{\frac{\pi}{2}} \cos((2k+1)x) dx \right]$$

$$b_{2k+1} = \frac{4}{\pi} \int_0^{\frac{\pi}{2}} x \sin\left((2k+1)x\right) dx$$

$$= \frac{4}{\pi} \left[-x \frac{1}{2k+1} \cos\left((2k+1)x\right) \Big|_0^{\frac{\pi}{2}} + \frac{1}{2k+1} \int_0^{\frac{\pi}{2}} \cos\left((2k+1)x\right) dx \right]$$

$$= \frac{4}{\pi} \left[-x \frac{1}{2k+1} \cos\left((2k+1)x\right) + \frac{1}{(2k+1)^2} \sin\left((2k+1)x\right) \Big|_0^{\frac{\pi}{2}}$$

Solving the Equation

$$b_{2k+1} = \frac{4}{\pi} \int_0^{\frac{\pi}{2}} x \sin\left((2k+1)x\right) dx$$

$$= \frac{4}{\pi} \left[-x \frac{1}{2k+1} \cos\left((2k+1)x\right) \Big|_0^{\frac{\pi}{2}} + \frac{1}{2k+1} \int_0^{\frac{\pi}{2}} \cos\left((2k+1)x\right) dx \right]$$

$$= \frac{4}{\pi} \left[-x \frac{1}{2k+1} \cos\left((2k+1)x\right) + \frac{1}{(2k+1)^2} \sin\left((2k+1)x\right) \Big|_0^{\frac{\pi}{2}}$$

$$= -\frac{2}{2k+1} \cos\left((2k+1)\frac{\pi}{2}\right) + \frac{4}{\pi} \frac{1}{(2k+1)^2} \sin\left((2k+1)\frac{\pi}{2}\right)$$

Solving the Equation

$$b_{2k+1} = \frac{4}{\pi} \int_0^{\frac{\pi}{2}} x \sin\left((2k+1)x\right) dx$$

$$= \frac{4}{\pi} \left[-x \frac{1}{2k+1} \cos\left((2k+1)x\right) \Big|_0^{\frac{\pi}{2}} + \frac{1}{2k+1} \int_0^{\frac{\pi}{2}} \cos\left((2k+1)x\right) dx \right]$$

$$= \frac{4}{\pi} \left[-x \frac{1}{2k+1} \cos\left((2k+1)x\right) + \frac{1}{(2k+1)^2} \sin\left((2k+1)x\right) \Big|_0^{\frac{\pi}{2}}$$

$$= -\frac{2}{2k+1} \cos\left((2k+1)\frac{\pi}{2}\right) + \frac{4}{\pi} \frac{1}{(2k+1)^2} \sin\left((2k+1)\frac{\pi}{2}\right)$$

$$= \frac{4}{\pi} \frac{(-1)^k}{(2k+1)^2}$$

Using Fourier Series

The Solution

$$u(x,t) := \sum_{k=0}^{\infty} \frac{4}{\pi} \frac{(-1)^k}{(2k+1)^2} \sin((2k+1)x) \cos((2k+1)t)$$

Solving the Equation

$$u(x,t) := \sum_{k=0}^{\infty} \frac{4}{\pi} \frac{(-1)^k}{(2k+1)^2} \sin((2k+1)x) \cos((2k+1)t)$$

Solving the Equation

But what does that look like?

The Analytical Solution (also animated)

The Analytical Solution (also animated)

Solving the Equation

The Real Experiment

Describing an Oscillating String

Image courtesy of Loren M. Winters, used with permission.

The Real Experiment

Image courtesy of Loren M. Winters, used with permission.