

第7章 半导体存储器和可编程逻辑器件

- ▶ 小规模集成电路 (SSI—Small Scale Integration), 10~100 个晶体管/片。
- 中规模集成电路(MSI—Medium Scale Integration), 100~1,000个晶体管/片。
- 大规模集成电路 (LSI—Large Scale Integration) 1,000~10,000晶体管/片。
- ▶ 超大规模集成电路 (VLSI—Very Large Scale Integration) 10,000~100,000晶体管/片。
- ULSI—Ultra Large Scale Integration 10万~1000万晶体管/片。
- ► GLSI—Giga Large Scale Integration 1000万~晶体管/片。

7.1 概述

- 1. 大规模集成电路分类
 - (1) 半导体存储器

用于存放二进制信息,每一个存储单元由唯一的地址代码加以区分,并能存储一位或多位二进制信息。

(2) 可编程逻辑器件 (Programmable Logic Device, PLD)

是一种可以由用户定义和设置逻辑功能的器件。特点:结构灵活、集成度高、处理速度快、可靠性高

(3) 微处理器

通用的微处理机芯片,用做CPU,多用于实时处理系统。

2. 可编程逻辑器件的表示方法

(1) PLD 器件的连接表示法

(2) PLD器件中门电路表示法

输入缓冲器

或门

缓冲器

7.2 半导体存储器

7.2.1 半导体存储器概述

是用半导体器件来存储二值信息的大规模集成电路。

优点:集成度高、功耗小、可靠性高、价格低、体积小、外围电路简单、便于自动化批量生产等。

1. 半导体存储器的分类

(1) 按存取方式分类

只读存储器(Read Only Memory, ROM) 存放固定信息,只能读出信息,不能写入信息. 当电源切断时,信息依然保留.

随机存取存储器(Random Access Memory, RAM)

可以随时从任一指定地址读出数据,也可以随时把数据写入任何指定的存储单元; 断电后数据消失。

(2) 按制造工艺分类

双极型半导体 速度快、功耗大、价格高(高速缓冲存储器) MOS型半导体 集成度高、功耗小、价格低(大容量存储器)

2. 半导体存储器的主要技术指标

(1) 存储容量

指存储器所能存放的二进制信息的总量

(2) 存取时间

一般用读(或写)周期来描述,连续两次读(或写)操作的最短时间间隔称为读(或写)周期。

7.2.2 只读存储器(ROM)

按数据的写入方式分类

固定 ROM

可编程 ROM

1. 固定 ROM

1) 地址译码器为二进制译码器,即全译码结构.(地址线为n根,译码器输出为2n根字线,说明存储阵列中有2n个存储单元)

2) 存储阵列输出有m根位线,说明每个存储单元有m位,即一个字有m位二进制信息组成;每一位称为一个基本存储单元.

3) 存储器的容量定义为: 字数×位数(2n×m).

(2) 一个二极管ROM的例子

A_1	A_0	F_0	F_1	F_2	F_3
0	0	0	1	0	0
0	1	1	0	0	1
1	0	0	1	1	0
1	1	0	0	1	0

$$A_1A_0=00$$
 时, $W_0=1$ $F_0F_1F_2F_3=0100$;

$$A_1A_0=01$$
时, $W_1=1, F_0F_1F_2F_3=1001;$

$$A_1A_0=10$$
时, $W_2=1, F_0F_1F_2F_3=0110;$

$$A_1A_0=11$$
时, $W_3=1, F_0F_1F_2F_3=0010$ 。

③ 将地址输入和F;之间的关系填入真值表得:

地址	数据	
$A_1 A_0$	$\mathbf{F_0} \; \mathbf{F_1} \; \mathbf{F_2} \; \mathbf{F_3}$	$\mathbf{F_0} = \overline{\mathbf{A}_1} \mathbf{A_0}$
_	0 1 0 0	$\mathbf{F_1} = \overline{\mathbf{A}_1} \overline{\mathbf{A}_0} + \mathbf{A_1} \overline{\mathbf{A}_0}$
	1 0 0 1	$\mathbf{F}_2 = \mathbf{A}_1 \overline{\mathbf{A}}_0 + \mathbf{A}_1 \mathbf{A}_0$
1 0	0 1 1 0	
1 1	0 0 1 0	$\mathbf{F_3} = \overline{\mathbf{A}}_1 \mathbf{A}_0$

* ROM实际是一种组合电路结构。

④ 阵列图

地址	数据
$A_1 A_0$	$F_0 F_1 F_2 F_3$
0 0	0 1 0 0
0 1	1 0 0 1
1 0	0 1 1 0
1 1	0 0 1 0

存储容量为: 4×4

2.可编程ROM

用户可根据需要自行进行编程的存储器.

一次性可编程 ROM

(Programmable Read Only Memory, PROM)

光可擦除可编程ROM

(Erasable Programmable Read Only Memory, EPROM)

电可擦除可编程 ROM

(Electrical Erasable Programmable Read Only Memory, E²PROM)

快闪存储器(Flash Memory)

3.PROM的应用

1) 实现组合逻辑函数

利用PROM中的地址最小项,通过或阵列编程,达到设计目的.

例:用PROM实现逻辑函数:

$$F_1(A,B,C)=\Sigma m(1,5,6,7)$$

 $F_2(A,B,C)=\Sigma m(0,1,3,6,7)$

 $F_3(A,B,C)=\Sigma m(3,4,5,6,7)$

 $\mathbf{F_3}$

- 2) 存放数据表和函数表
- 3) 存放调试好的程序

7.2.3 随机存取存储器(RAM)

可以随时从任一指定地址读出数据,也可以随时把数据写入任何指定的存储单元.

在计算机中主要用来存放程序及程序执行过程中产生的中间 数据、运算结果等.

按制造工艺分类

双极型: 速度快、功耗大

MOS型:集成度高、功耗小

1. RAM的结构

3. RAM容量的扩展

将2114扩展为1K×8位 的RAM

(2) RAM的字扩展

将2114扩展为2K×4位的RAM

I/O₁ I/O₂ I/O₃ I/O₄

7.3 可编程逻辑器件(PLD)

7.3.1 PLD概述

数字逻辑器件分类(按照逻辑功能的特点分)

通用型

通用性强,但逻辑功能较简单、且固定不变; 构成的系统功耗体积大、可靠性差; 中、小规模数字集成电路都属于通用型。

专用型

为某种专门用途而设计的集成电路;成本较高、周期较长。

矛 盾 → PLD

PLD的特点

- 1)作为通用型器件生产的,具有批量大、成本低的特点;
- 2)逻辑功能可由用户通过对器件编程自行设定,且具有专用型器件构成数字系统体积小、可靠性高的优点;
- 3) 改变了传统数字系统采用通用型器件实现系统功能的设计方法;
- 4)增强了设计的灵活性,减轻了电路图和电路板设计的工作量和难度,提高了工作效率;
- 5) PLD已在计算机硬件、工业控制、现代通信、智能仪表和家用电器等领域得到愈来愈广泛的应用。

1. PLD的分类

(1) 低密度PLD (SPLD)

每个芯片集成的逻辑门数大约在1000门以下

可编程只读存储器 (PROM)

可编程逻辑阵列(Programmable Logic Array,简称PLA)

可编程阵列逻辑(Programmable Array Logic,简称PAL)

通用阵列逻辑 (Generic Array Logic,简称GAL)

(2) 高密度PLD

每个芯片集成的逻辑门数达数千门,甚至上万门,具有在系统可编程或现场可编程特性,可用于实现较大规模的逻辑电路。

可擦除的可编程逻辑器件

(Erasable Programmable Logic Array, 简称EPLD)

复杂的可编程逻辑器件

(Complex Programmable Logic Array, 简称CPLD)

现场可编程门阵列

(Field Programmable Gate Array, 简称FPGA)

2. PLD的基本结构

(1) "与一或"阵列结构(乘积项结构)

PLD与或阵列结构框图

(2) 查找表(Look-Up-Table,LUT)结构

用存储逻辑的存储单元来实现逻辑运算。

FPGA是属于此类器件。

根据与、或阵列的可编程性,PLD分为三种基本结构。

- 1) 与阵列固定,或阵列可编程型结构 PROM属于这种结构。 特点:与阵列规模大,速度较低。
- 2) 与、或阵列均可编程型结构

PLA(Programmable Logic Array)属于这种结构。

特点:速度快,设计逻辑函数可采用最简结构,芯片内部资源利用率高。但编程难度大,缺乏质高价廉的开发工具。

3) 或阵列固定,与阵列可编程型结构

PAL(Programmable Array Logic)属于这种结构。

特点: 速度快,费用低,易于编程。

7.3.4 复杂的可编程逻辑器件(CPLD)

1. CPLD的基本结构

可编程的逻辑模块; 输入/输出模块; 可编程的内部连线阵列;

以Lattice公司生产的ispLSI1032为例介绍CPLD具体结构

ispLSI1032器件结构

7.3.5 现场可编程门阵列(FPGA)

1. FPGA的基本结构

不同公司生产的FPGA结构和性能不尽相同,以Xilinx公司的XC4000系列为例介绍FPGA的基本结构和各模块功能。

XC4000系列FPGA基本结构

7.3.6 PLD的开发过程

使用VHDL 或Verilog HDL硬件描 述语言来开 发 PLD/FPGA

PLD的设计流程图