Succinct Representation of Running Times

- We often calculate the running time as some complex expression, like $4n^2 + 7n + 8$.
- in the long run, that is asymptotically, what matters is the quadratic factor.
- ▶ It shall suffice to write $O(n^2)$ or $\Theta(n^2)$.

But...

- don't constants matter: isn't $2n^2$ better than $4n^2$? yes, but
 - advantage could be erased by simple optimization
 - depends on processor speed
- ▶ isn't n^2 better than 1,000,000n?
 - only when $n \le 1,000,000$
- ightharpoonup isn't 2^n better than n^{10} ?
 - only for really small *n*
 - exponential growth is bad

Big-O notation

We say that f is dominated by g, written $f \in O(g)$

if
$$f(n) \leq g(n)$$
 for all $n \geq 0$

or even (constants don't matter)

if for some
$$c > 0$$
: $f(n) \le cg(n)$ for all $n \ge 0$

or even (we only care about the "long run")

if for some
$$c > 0$$
, $n_0 \ge 0$: $f(n) \le cg(n)$ for all $n \ge n_0$

Properties of the O-relation

- ▶ reflexive: $f \in O(f)$ for all functions f
- ▶ transitive: if $f \in O(g)$ and $g \in O(h)$ then $f \in O(h)$
- "degree-preserving": $n^p \in O(n^q)$ iff $p \le q$
- ▶ not total: we may have $f \notin O(g)$ and $g \notin O(f)$

Assume $f_1 \in O(g_1)$, $f_2 \in O(g_2)$. Then

- $f_1f_2 \in O(g_1g_2)$
- $f_1 + f_2 \in O(g)$ whenever $g_1 \leq g$, $g_2 \leq g$.

A sufficient condition for $f \in O(g)$:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c \text{ for some } c \text{ with } 0\leq c<\infty$$

but this is not a necessary condition

Big-Omega and Big-Theta Notation

Big-Omega is dual to Big-O:

$$f \in \Omega(g)$$
 iff $g \in O(f)$

In particular,

$$n^p \in \Omega(n^q)$$
 iff $p \geq q$.

Big-Theta is the intersection of Big-O and Big-Omega:

$$f \in \Theta(g)$$
 iff $f \in O(g)$ and $f \in \Omega(g)$.

That is, there exists c_1, c_2 such that (from a certain point) f(n) is "sandwiched" between $c_1g(n)$ and $c_2g(n)$. In particular $(a_p > 0)$,

$$a_p n^p + \ldots + a_1 n + a_0 \in \Theta(n^q)$$
 iff $p = q$

and also

$$\log_a(n) \in \Theta(\log_b(n))$$
 for $a, b > 1$

Worst/Best-Case Interpretation

Consider the running time of Insertion Sort:

- $ightharpoonup \in O(n^2)$? yes
 - ▶ there exists $f \in O(n^2)$ such that for all n, and all input of size n, the running time is at most f(n)
- $ightharpoonup \in O(n^3)$? yes (but potentially misleading)
- $ightharpoonup \in O(n)$? yes for the best-case interpretation:
 - ▶ there exists $f \in O(n)$ such that for all n there exists input of size n with running time is at most f(n)
- ▶ $\in \Omega(n)$? yes
 - ▶ there exists $f \in \Omega(n)$ such that for all n, and all input of size n, the running time is at least f(n)
- \triangleright $\in \Omega(n^2)$? yes for the worst-case interpretation:
 - there exists $f \in \Omega(n^2)$ such that for all n there exists input of size n with running time is at least f(n)
- $ightharpoonup \in \Theta(n)$? for the best-case interpretation
- $ightharpoonup \in \Theta(n^2)$? for the worst-case interpretation

Little-o, Little-omega

little-o means "grows much slower than":

$$f \in o(g)$$
 iff $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

little-omega is dual to little-o:

$$f \in \omega(g)$$
 iff $g \in o(f)$

Polynomials good, exponentials bad:

$$n^b \in o(a^n)$$
 for all $a > 1, b > 0$

and hence logarithms grow slower than roots:

$$\log_{\mathbf{b}}(\mathbf{n}) \in \mathbf{o}(\sqrt[a]{n})$$
 for all $a,b>1$

Overview

 $n^p \in X(n^q)$ is equivalent to p R q when

X	R
0	<
0	\leq
Θ	=
Ω	\geq
ω	>

If $f \in o(g)$ then

- ▶ $f \in O(g)$
- ▶ $f \notin \Theta(g)$

Does the converse relation hold?

- ► for "typical" functions, yes
- ▶ in general, no