Sayısal Sistemler-H11CD2

Ardışık Lojik Devre Tasarım Örnekleri

Dr. Meriç Çetin

versiyon031220

Ardışık Lojik Devre Tasarım Prosedürü

- Ardışık lojik devre tasarımı için şu yol takip edilmelidir:
- Devre davranışı tanımlanır. Bu, durum diyagramlarıyla belirlenir.
- Elde edilen değerler durum tablosuna taşınır.
- Gerekli flip-flop sayısı ve flip-flop türü belirlenir.
- Karnaugh veya diğer indirgeme metotları kullanılarak kombinasyonel devre çıkış ve flip-flop giriş denklemleri elde edilir.
- Elde edilen bu sonuçlara göre lojik devre tasarımı yapılır.

 Aşağıda durum diyagramı verilen lojik devreyi R-S flip-floplarını kullanarak gerçekleştiriniz.

 Tüm durumları düşünürsek aşağıdaki tablo üzerinden çözüme gidilir.

Kom	binasyone	l Devre Gir	rişleri	S.	onraki Duru	ım			Kombinas	yonel Dev	re Çıkışları		
Ö	nceki Duru	ım	Giriş	30	maki Duri	A111			Flip-Flop	Girişleri			Çıkış
А	В	С	Х	А	В	С	SA	RA	SB	RB	SC	RC	у
0	0	0	0	0	0	1							
0	0	0	1	0	1	0							
0	0	1	0	0	0	1							
0	0	1	1	0	1	0							
0	1	0	0	0	1	1							
0	1	0	1	1	0	0							
0	1	1	0	0	0	1							
0	1	1	1	1	0	0							
1	0	0	0	1	0	1							
1	0	0	1	1	0	0							
1	0	1	0	0	0	1							
1	0	1	1	1	0	0							
1	1	0	0	1	1	1							
1	1	0	1	1	0	0							
1	1	1	0	0	0	1							
1	1	1	1	1	0	0							

State diagram for the circuit

• Bu soruda bazı durumların kullanılmadığını/önemsiz olduğunu varsayalım. Bu soru için 000, 110 ve 111 koşulları kullanılmasın. Durum tablosu şöyle olur.

Kom	Kombinasyonel Devre Girişleri			Ç.	onraki Duru			1	Kombinas	yonel Dev	re Çıkışları		
Ö	nceki Duru	ım	Giriş	30	mraki Duru	1111			Flip-Flop	Girişleri			Çıkış
А	В	С	х	А	В	С	SA	RA	SB	RB	SC	RC	у
0	0	0	0	0	0	1							
0	0	0	1	0	1	0							
0	0	1	0	0	0	1							
0	0	1	1	0	1	0							
0	1	0	0	0	1	1							
0	1	0	1	1	0	0							
0	1	1	0	0	0	1							
0	1	1	1	1	0	0							
1	0	0	0	1	0	1							
1	0	0	1	1	0	0							
1	0	1	0	0	0	1							
1	0	1	1	1	0	0							
1	1	0	0	1	1	1							
1	1	0	1	1	0	0							
1	1	1	0	0	0	1							
1	1	1	1	1	0	0							

State diagram for the circuit

• Bu soru için 000, 110 ve 111 koşulları kullanılmasın.

State diagram for the circuit

Kombin	asyone	Devre	Girişleri		l.: D				Kombinas	yonel Dev	re Çıkışları		
Ön	ceki Dur	um	Giriş	Sor	ıraki Du	rum	Flip-Flop Girişleri					Çıkış	
Α	В	С	х	А	В	С	SA	RA	SB	RB	SC	RC	у
0	0	1	0	0	0	1							
0	0	1	1	0	1	0							
0	1	0	0	0	1	1							
0	1	0	1	1	0	0							
0	1	1	0	0	0	1							
0	1	1	1	1	0	0							
1	0	0	0	1	0	1							
1	0	0	1	1	0	0							
1	0	1	0	0	0	1							
1	0	1	1	1	0	0							

Flip-flop durum geçiş tabloları

(c) D

Flip-flop excitation tables

Q(t)	Q(t + 1)	S	R	Q(t)	Q(t + 1)	J	K
0	0	0	X	0	0	0	X
0	1	1	0	0	1	1	X
1	0	0	1	1	0	X	1
1	1	X	0	1	1	X	0

(a) RS (b) JK

Q(t)	Q(t+1)	D	Q(t)	Q(t+1)	T
0	0	0	0	0	0
0	1	1	0	1	1
1	0	0	1	0	1
1	1	1	1	1	0

(d

• Bu soru için 000, 110 ve 111 koşulları kullanılmasın.

State diagram for the circuit

mbin	asyone	Devre	Girişleri	Son	raki Du	rum			Kombinas	yonel Dev	re Çıkışları		
Ön	ce <mark>ki D</mark> ur	um	Giriş	501	iraki Dui	rum			Flip-Flop	Girişleri			Çıkış
Α	В	С	х	А	В	С	SA	RA	SB	RB	SC	RC	у
0	0	1	0	0	0	1	0	Х	0	X	X	0	0
0	0	1	1	0	1	0	0	Х	1	0	0	1	0
0	1	0	0	0	1	1	0	Х	Х	0	1	0	0
0	1	0	1	1	0	0	1	0	0	1	0	X	0
0	1	1	0	0	0	1	0	X	0	1	X	0	0
0	1	1	1	1	0	0	1	0	0	1	0	1	0
1	0	0	0	1	0	1	X	0	0	Х	1	0	0
1	0	0	1	1	0	0	X	0	0	Х	0	Х	1
1	0	1	0	0	0	1	0	1	0	Х	Х	0	0
1	0	1	1	1	0	0	Х	0	0	Х	0	1	1

Kombin	asyone	Devre	Girişleri	Son	raki Du		Kombinasyonel Devre Çıkışları						
Ön	ce <mark>ki</mark> Dur	um	Giriş	301	Iraki Du	rum			Flip-Flop	Girişleri			Çıkış
А	В	С	х	Α	В	С	SA	RA	SB	RB	SC	RC	у
0	0	1	0	0	0	1	0	X	0	X	X	0	0
0	0	1	1	0	1	0	0	X	1	0	0	1	0
0	1	0	0	0	1	1	0	X	Х	0	1	0	0
0	1	0	1	1	0	0	1	0	0	1	0	X	0
0	1	1	0	0	0	1	0	X	0	1	X	0	0
0	1	1	1	1	0	0	1	0	0	1	0	1	0
1	0	0	0	1	0	1	X	0	0	X	1	0	0
1	0	0	1	1	0	0	X	0	0	X	0	X	1
1	0	1	0	0	0	1	0	1	0	X	Х	0	0
1	0	1	1	1	0	0	X	0	0	X	0	1	1

• D ve J-K Flip-Floplarını kullanarak ayrı ayrı tasarımlar yapınız.

FIGURE 5.27

State diagram for sequence detector

Table 5.11 *State Table for Sequence Detector*

	sent ate	Input	Ne Sta	xt ate	Output
Α	В	x	Α	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

FIGURE 5.28

K-Maps for sequence detector

Table 5.11 *State Table for Sequence Detector*

	sent ate	Input	Ne Sta	xt ate	Output
Α	В	X	A	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

Aynı soruyu J-K flip-flop'lar kullanarak çözelim

Table 5.13State Table and JK Flip-Flop Inputs

	sent ate	Input		ext ate	Fli	p-Flo _l	o Inp	uts
Α	В	x	A	В	JA	K_A	J _B	K _B
0	0	0	0	0				
0	0	1	0	1				
0	1	0	1	0				
0	1	1	0	1				
1	0	0	1	0				
1	0	1	1	1				
1	1	0	1	1				
1	1	1	0	0				

Table 5.13 *State Table and JK Flip-Flop Inputs*

	sent ate	Input		ext ate	Fli	p-Flo _l	o Inp	uts
A	В	x	A	В	JA	K _A	J _B	K _B
0	0	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	X	\mathbf{X}	1
0	1	1	0	1	0	X	\mathbf{X}	0
1	0	0	1	0	\mathbf{X}	0	0	X
1	0	1	1	1	\mathbf{X}	0	1	\mathbf{X}
1	1	0	1	1	X	0	\mathbf{X}	0
1	1	1	0	0	X	1	X	1

Table 5.13State Table and JK Flip-Flop Inputs

	sent ate	Input		ext	Fli	p-Flo _l	p Inp	uts
Α	В	x	A	В	JA	K _A	J _B	K _B
0	0	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	X	X	1
0	1	1	0	1	0	X	X	0
1	0	0	1	0	X	0	0	X
1	0	1	1	1	X	0	1	X
1	1	0	1	1	X	0	X	0
1	1	1	0	0	X	1	X	1

FIGURE 5.31
Logic diagram for sequential circuit with JK flip-flops