MIEInf 30 de outubro de 2017 [duração 2h]

Cálculo

Teste 1

Nome Completo	Número

JUSTIFIQUE CUIDADOSAMENTE TODAS AS SUAS RESPOSTAS

Grupo I

RESOLVER NO ENUNCIADO

1. (1.5 valores) Considere o conjunto $A = \{x \in \mathbb{R} : |2 - x^2| < 3\}$. Represente A na forma de um intervalo ou de uma união de intervalos reais.

- **2.** (6.5 valores) Considere a função $f:[-\frac{1}{2},0]\cup]1,3]\to \mathbb{R}$ cujo gráfico está representado na figura. No intervalo $[-\frac{1}{2},0],\ f$ é definida por $f(x)=(x+1)^2.$
 - (a) Indique o contradomínio da função f.
 - (b) A função f é injetiva?
 - (c) Classifique a função f quanto à derivabilidade.

- (d) Determine f'(0).
- (e) Defina, analiticamente, um prolongamento <u>contínuo</u> da função f ao intervalo $\left[-\frac{1}{2},3\right]$ e que seja derivável no ponto zero.

Grupo II

RESOLVER NA FOLHA DE TESTE

- **1.** (1.5 valores) Resolva, em \mathbb{R} , sen(arccos x) = $\frac{1}{3}$.
- 2. (2 valores) Mostre que

$$\operatorname{argcosech} x \ = \ \ln \left(\frac{1}{x} + \sqrt{\frac{1}{x^2} + 1} \ \right), \quad \forall x \in \mathbb{R} \setminus \{0\}.$$

3. (4.5 valores) Considere a função $g: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\longrightarrow \mathbb{R}$ definida por

$$g(x) = \begin{cases} \frac{2x^3 + x^2}{\operatorname{sen} x}, & \operatorname{se} \quad x \neq 0 \\ 0, & \operatorname{se} \quad x = 0 \end{cases}$$

- (a) Mostre que g é uma função contínua.
- (b) Calcule g'(0).
- (c) Defina a função g'.

Grupo III (4 valores)

RESOLVER NO ENUNCIADO

Indique, justificando, o valor lógico de cada uma das seguintes afirmações:

- **1.** Existe um conjunto A tal que $A' = [0,1] \cup \{3\}$.
- **2.** Se $\lim_{x \to 0} |f(x)| = |\ell|$, então $\lim_{x \to 0} f(x) = \ell$.
- 3. Existe uma função g, real de variável real, que é contínua em um único ponto.
- **4.** Existem duas funções f e g, reais de variável real, que não são a função identidade e tais que $(g \circ f)(x) = (x+1)^5$.