Basic definitions

What is the difference between *Image processing* and *Computer Vision?*

There are many views – answer depends on who you ask

- Ans 1: None
- Ans 2: IP deals with 2D and CV with 3D-2D relationship
- Ans 3: IP's focus is on <u>manipulating</u> an image while CV's focus is on <u>understanding</u> given images
 - interpret, recognise, decide etc
- Ans 4: CV = Artificial Intelligence married to IP!

Syllabus

- Spatial domain proc. Point and neighbourhood processing, histogram processing
- Image transforms Fourier, Wavelets
- Colour image processing
- Morphological processing
- Image representation Pyramids, Scale-space, Multi-resolution
- Image segmentation
- Feature detection and representation corners, edges, blobs, SIFT, SURF

Common types of images

• Binary

• Grey scale

• Colour

Digital Images – basic element

I[m,n] of size MxN has M rows and N columns and hence MN pixels

Image Acquisition

- a) Image properties depend on:
 - Camera distance, viewpoint, motion
 - Camera intrinsic parameters (e.g., lens aberration)
 - Number of cameras
 - Ambient illumination
- b) Visual properties of the 3D world captured

Working of a camera

Difficult to interpret the image when the film is <u>directly</u> in front of an object

- The barrier blocks off most of the rays
- This reduces blurring
- Aperture = Opening of the pinhole

pinhole too big: bright and blurred

pinhole right size: dark and crisp

pinhole too small: dark and diffraction blur

Adding lens ..

The lens focuses light onto the film

$$f(x, y) = i(x, y)r(x, y)$$

 $0 < i(x, y) < \infty; 0 < r(x, y) < 1$

i: incident illumination

r: illumination reflected by the objects

Sampling and Quantization

- f(x,y) is a continuous image w.r.to
 - the spatial variables x, y
 - amplitude f
- Digital conversion needs
 - Sampling: discretising the spatial variables
 - Quantisation: discretising the (intensity) amplitude

Continuous image projected on image grid

Result of sampling and quantization

The quality of a digital image primarily depends on

- 1. The <u>number of samples</u> used for the spatial variables
- 2. The <u>number of discrete gray levels</u> used in quantization
- 3. Image content

What does HD format focus on? 1, 2 or both?

Digital Image Repn. - alternatives

- As a vector I(x)
 - Using row or column ordering of a matrix
 - Used for computational efficiency
- Positional indexing
 - Each pixel has a single index address

Image resolution

- Spatial resoultion: $(x,y) \rightarrow [m,n]$
 - Discretising the (spatial) domain of the function by choosing a sampling rate
 - Size of the image MxN = mega/giga pixels
- Pixel or radiometric: f → I
 - Discretising the range of the function by selecting the quantisation levels
 - Bit-depth of the image b bits/pixel

Insufficient image resolution -effects

$$f(x,y) \rightarrow I[m,n]$$

- Too few quantisation levels for *I* (bits)
 - > False contouring
- Undersampling the space (x,y)
 - > Ringing around edges due to aliasing
 - ➤ Blockiness/checkerboard effect with physical size of the pixel becoming larger

What is the ideal resolution?

- Depends on scene being imaged

In general:

Globally, slow variations are visually important Locally, fast variations are visually important

128 X 128 64 X 64 32 X 32

Spatial and Gray-level resolution

Resolution

- Spatial: the smallest discernible detail in an image (sampling)
- Gray-level: the smallest discernible change in gray

1024

Bit/radiometric resolution – effect of pixel depth

8 bits (a) 6 bits

3 bits

1 bit

Effect of varying the number of gray

Digital Image Storage

- Image: M x N x bits/pixel
 - Ex. For grey scale, medium resolution images
 M = 256 = N and 8 bits /pixel = 1 byte
 Storage requirement (raw image) ~ 65 Kbytes
 - Ex. For color images = MN x 3 colour planes
 M = N = 256 and bits /pixel = 3 bytes
 (1 byte each for R,G and B)
 Storage requirement ~ 196 Kbytes
- Video: MN bytes/frame x frame rate x time
 - Ex. For a 10 minute video 65Kb/frame x 20 frames/sec x 10 x 60 sec = 780 Mb

Pixel Neighbourhoods

A *neighbourhood* is a region adjacent to a given pixel - set of pixels that share an edge or corner

- ➤ 4-neighbours (square)
 - 2 horiz. plus 2 vertical
- > 8-neighbours (square)
 - 4 diag. plus 4 neighbours
- ➤ 6-neighbours
 - Used in hexagonal tessellations

Neighbours

Given a pixel **p** at [m,n], its neighbours are:

- 4-Neighbours of **p**: $N_4(p) = \{2 \text{ vert. and } 2 \text{ horiz.}$ pixels)}
 - Pixels at [m-1,n], [m+1,n], [m,n-1], [m,n+1]
- D-Neighbours of **p**: $N_D(p) = \{4 \text{ diagonal pixels}\}$
 - Pixels at [m+1,n+1], [m+1,n-1], [m-1,n+1], [m-1,n-1]
- 8-Neighbours of \mathbf{p} : $N_8(\mathbf{p}) = N_D(\mathbf{p}) \cup N_4(\mathbf{p})$

Distance Measures

Given pixels p and q at (x_p,y_p) and (x_q,y_q)

• Euclidean distance L_2 norm ('as the crow flies') $[(x_p-x_q)^2+(y_p-y_q)^2]^{1/2}$

• City block distance L_1 norm $|(\mathbf{x}_p - \mathbf{x}_q)| + |(\mathbf{y}_p - \mathbf{y}_q)|$

• Chebychev or chessboard distance L_{∞} norm max {|(x_p - x_q)|, |(y_p - y_q)| }

Example

Euclidean distance:

City block distance:

Chess board distance:

What is the locus of equidistant points in each of these cases?

Connectivity

Connectivity is a measure of the **adjacency** between pixels of similar values

Pixels **p** is 4 or 8-connected to **q** if they have similar values AND $\mathbf{q} \in N_{4 \text{ or 8}}(\mathbf{p})$

Mixed connectivity

$$\begin{split} & \mathbf{q} \in N_4(\mathbf{p}) \, \underline{OR} \\ & \mathbf{q} \in N_D(\mathbf{p}) \, AND \ \, N_4(\mathbf{p}) \cap N_4(\mathbf{q}) = \Phi \\ & \text{no loops can be present as is possible with } N_8 \, . \end{split}$$

Regions

- A region is a contiguous set
 - neighbouring pixels should "touch" each other

 Square grid poses problems to defining regions

Hexagonal grid does not pose problems

Examples

Processing an Image

Spatial domain processing

Transform (frequency) domain processing

Spatial domain processing

a: input image

b: processed image

$$b[m_0,n_0] = f(a[m_0,n_0])$$

$$b[m_0,n_0] = f(a[N(m_0,n_0)])$$

$$b[m_0,n_0] = f(a[m,n])$$

Techniques for spatial domain processing

- Local or Point Operations
 - Each pixel's value is changed according to its original value
- Neighbourhood operations
 - Each pixel's value is changed according to the values of its neighbouring pixels
 - Linear or nonlinear
- Global operations
 - Each pixel's value is changed according to some global property of the entire input image
- Challenges: pixel addressing load, computational load, memory requirements

Type of manipulations on I[m,n]

On the **dependent variable** (*I*)

- Arithmetic (last class)
 - {+,-, *, / }
- Logical (binary IP)
 - {AND, OR, NOT}
- Set (binary morphological proc.)
- Statistical
 - {Mean, variance, median, mode etc}
- Convolution, correlation
 - linear vs circular convolution
 - Window/mask based computation

On the **independent variables** (m,n)

- Geometric
 - Affine transformation
- Up/down sampling
 - zoom, pan