Hidden Markov Model (II)

©Dr. Min Chi mchi@ncsu.edu

The materials on this course website are only for use of students enrolled AIA and must not be retained or disseminated to others or Internet.

Puzzles Regarding the Dishonest Casino

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

• Question 1: State Estimation What is $P(q_T=S_i \mid O_1O_2...O_T)$

It will turn out that a new cute D.P. trick will get this for us.

Question 2: Most Probable Path

Given $O_1O_2...O_T$, what is the most probable path that I took? And what is that probability?

Yet another famous D.P. trick, the VITERBI algorithm, gets this.

• Question 3: Learning HMMs:

Given $O_1O_2...O_T$, what is the maximum likelihood HMM that **Al Academy** are produced this string of observations?

Very very useful. Uses the E.M. Algorithm

Most probable path given observations

What's most probable path given $O_1O_2...O_T$, i.e.

What is
$$\underset{O}{\operatorname{argmax}} P(Q|O_1O_2...O_T)$$
?

Slow, stupid answer:

$$\underset{Q}{\operatorname{argmax}} \ P(Q|O_1O_2...O_T)$$

= argmax
$$\frac{P(O_1O_2...O_T|Q)P(Q)}{P(O_1O_2...O_T)}$$

$$= \underset{O}{\operatorname{argmax}} P(O_1 O_2 ... O_T | Q) P(Q)$$

Efficient Solution

We're going to compute the following variables:

$$\delta_t(i) = \max_{\substack{q_1 q_2 ... q_{t-1}}} P(q_1 q_2 ... q_{t-1} \wedge q_t = S_i \wedge O_1 ... O_t)$$

= The Probability of the path of Length t with the maximum chance of doing all these things:

...OCCURING

and

...ENDING UP IN STATE Si

and

...PRODUCING OUTPUT O₁...O_t

DEFINE: $mpp_t(i) = that path$

So: $\delta_t(i) = \text{Prob}(\text{mpp}_t(i))$

$$\delta_{t}(i) = \max_{q_{1}q_{2}...q_{t-1}} P(q_{1}q_{2}...q_{t-1} \wedge q_{t} = S_{i} \wedge O_{1}O_{2}..O_{t})$$

$$mpp_{t}(i) = \underset{q_{1}q_{2}...q_{t-1}}{arg \max} P(q_{1}q_{2}...q_{t-1} \wedge q_{t} = S_{i} \wedge O_{1}O_{2}..O_{t})$$

$$\delta_{1}(i) = \underset{q_{1}q_{2}...q_{t-1}}{arg \max} P(q_{1} = S_{i} \wedge O_{1})$$

$$= P(q_{1} = S_{i}) P(O_{1}|q_{1} = S_{i})$$

$$= \pi_{i}b_{i}(O_{1})$$

Now, suppose we have all the $\delta_t(i)$'s and mpp $_t(i)$'s for all i.

time t+1

The most prob path with last two states S_i S_i

is

the most prob path to S_i , followed by transition $S_i \rightarrow S_i$

time t+1

The most prob path with last two states S_i S_j

is

the most prob path to S_i ,

followed by transition $S_i \rightarrow S_i$

What is the prob of that path?

$$\delta_t(i) \times P(S_i \rightarrow S_j \wedge O_{t+1} \mid \lambda)$$

$$= \delta_t(i) a_{ij} b_j (O_{t+1})$$

SO The most probable path to S_j has S_{i*} as its penultimate state

where i*=argmax $\delta_t(i)$ a_{ij} b_j (O_{t+1})

Summary:

time t+1

The most prob path with last two states S_i S_i

is

the most prob path to S_i, followed by transition $S_i \rightarrow S_i$

with i* defined

to the left

What is the prob of that path?

$$\delta_t(i) \times P(S_i \rightarrow S_j \land \delta_t(i) a_{ij} b_i (O_{t+1})$$

SO The most probable

 $\begin{cases} \delta_{t+1}(j) = \delta_t(i^*) a_{ij} b_j (O_{t+1}) \\ mpp_{t+1}(j) = mpp_{t+1}(i^*)S_{i^*} \end{cases}$

S_{i*} as its penultimate state

where i*=argmax
$$\delta_t(i)$$
 a_{ij} b_j (O_{t+1})

What's Viterbi used for?

Classic Example

Speech recognition:

Signal → words

HMM → observable is signal

→ Hidden state is part of word formation

What is the most probable word given this signal?

UTTERLY GROSS SIMPLIFICATION

In practice: many levels of inference; not one big jump.

Puzzles Regarding the Dishonest Casino

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115 146123562344

• Question 1: State Estimation What is $P(q_T=S_i \mid O_1O_2...O_T)$

It will turn out that a new cute D.P. trick will get this for us.

• Question 2: Most Probable Path Given $O_1O_2...O_T$, what is the most probable path that I took? And what is that probability?

Yet another famous D.P. trick, the VITERBI algorithm, gets this.

• Question 3: Learning HMMs:

Given $O_1O_2...O_T$, what is the maximum likelihood HMM that could have produced this string of observations?

Learning HMMs

- Until now we assumed that the emission and transition probabilities are known
- This is usually not the case

_

While we will discuss learning the transition and emission models, we will not discuss selecting the states.

This is usually a function of domain knowledge.

Example

- Assume the model below
- We also observe the following sequence:

• How can we determine the initial, transition and emission probabilities?

Initial probabilities

Q: assume we can observe the following sets of states:

AAABBAA

AABBBBB

BAABBAB

how can we learn the initial probabilities?

A: Maximum likelihood estimation

Find the initial probabilities π such that

$$\pi^* = \arg\max_{\pi} \prod_{k} \pi(q_1) \prod_{t=2}^{T} p(q_t \mid q_{t-1}) \Rightarrow$$

$$\pi^* = \operatorname{arg\,max}_{\pi} \prod_{k} \pi(q_1)$$

$$\pi_A = \#A/(\#A + \#B)$$

k is the number of sequences avialable for training

Transition probabilities

Q: assume we can observe the set of states:

AAABBAAAABBBBBAAAABBBB

how can we learn the transition probabilities? A:

Maximum likelihood estimation

Find a transition matrix a such that

remember that we defined $a_{i,j}=p(q_t=s_j|q_{t-1}=s_i)$

$$a^* = \underset{k}{\operatorname{argmax}} \prod_{a} \pi(q_1) \prod_{t=2}^{T} p(q_t \mid q_{t-1}) \Rightarrow$$

$$a^* = \operatorname{argmax}_a \prod_{t=2}^{T} p(q_t \mid q_{t-1})$$

$$a_{A,B} = \#AB / (\#AB + \#AA)$$

Emission probabilities

Q: assume we can observe the set of states:

AAABBAAAABBBBAA

and the set of dice values

123 5 6 321 1345 65 23

how can we learn the emission probabilities? A: 5

Maximum likelihood estimation

$$b_A(5) = \#A5 / (\#A1 + \#A2 + ... + \#A6)$$

Learning HMMs

- In most case we do not know what states generated each of the outputs (fully unsupervised)
- ... but had we known, it would be very easy to determine an emission and transition model!
- On the other hand, if we had such a model we could determine the set of states using the inference methods we discussed

Expectation Maximization (EM)

- Appropriate for problems with 'missing values' for the variables.
- For example, in HMMs we usually do not observe the states

Expectation Maximization (EM): Quick reminder

- Two steps
 - E step: Fill in the expected values for the missing variables
 - M step: Regular maximum likelihood estimation (MLE) using the values computed in the E step and the values of the other variables
- Guaranteed to converge (though only to a local minima).

EM for HMMs

If we knew λ we could estimate EXPECTATIONS of quantities such as

Expected number of times in state i

Expected number of transitions $i \rightarrow j$

If we knew the quantities such as

Expected number of times in state i

Expected number of transitions $i \rightarrow j$

We could compute the MAX LIKELIHOOD estimate of

$$\lambda = \langle \{a_{ij}\}, \{b_i(j)\}, \pi_i \rangle$$

Roll on the EM Algorithm...

Max Likelihood HMM Estimation

Define

$$\begin{split} S_t(i) &= P(q_t = S_i \mid O_1 O_2 ... O_T, \lambda) \\ S_t(i,j) &= P(q_t = S_i \land q_{t+1} = S_j \mid O_1 O_2 ... O_T, \lambda) \end{split}$$

 $S_t(i)$ and $S_t(i,j)$ can be computed efficiently $\forall i,j,t$

$$\sum_{t=1}^{T-1} S_t(i) = \begin{cases} \text{Expected number of} \\ \text{transitions out of state i} \\ \text{during the path} \end{cases}$$

$$\sum_{t=1}^{T-1} S(i, j) =$$
Expected number of transitions from state i to state j during the path

Forward-Backward

• We already defined a *forward* looking variable

$$\alpha_{t}(i) = P(O_{1} \dots O_{t} \land q_{t} = s_{i})$$

• We also need to define a backward looking variable

$$\beta_t(i) = P(O_{t+1}, \cdots O_T | q_t = s_i)$$

Forward-Backward

• We already defined a *forward* looking variable

$$\alpha_{t}(i) = P(O_{1} \dots O_{t} \land q_{t} = s_{i})$$

• We also need to define a backward looking variable

$$\beta_{t}(i) = P(O_{t+1}, \dots, O_{T} \mid q_{t} = s_{i}) = \sum_{j} a_{i,j} b_{j}(O_{t+1}) \beta_{t+1}(j)$$

Forward-Backward

• We already defined a *forward* looking variable

$$\alpha_{t}(i) = P(O_{1} \dots O_{t} \land q_{t} = s_{i})$$

• We also need to define a *backward* looking variable

$$\beta_t(i) = P(O_{t+1}, \dots, O_T \mid q_t = s_i)$$

• Using these two definitions we can show

$$P(q_t = s_i \mid O_1, \dots, O_T) = \frac{\alpha_t(i)\beta_t(i)}{\sum_j \alpha_t(j)\beta_t(j)} = S_t(i)$$

State and transition probabilities

• Probability of a state

$$P(q_t = s_i \mid O_1, \dots, O_T) = \frac{\alpha_t(i)\beta_t(i)}{\sum_i \alpha_t(j)\beta_t(j)} \stackrel{def}{=} S_t(i)$$

• We can also derive a transition probability

$$P(q_t = s_i, q_{t+1} = s_j | o_1, \dots, o_T) = S_t(i, j)$$

$$P(q_{t} = s_{i}, q_{t+1} = s_{j} | o_{1}, \dots, o_{T}) =$$

$$= \frac{\alpha_{t}(i)P(q_{t+1} = s_{j} | q_{t} = s_{i})P(o_{t+1} | q_{t+1} = s_{j})\beta_{t+1}(j)}{\sum_{i} \alpha_{t}(j)\beta_{t}(j)} = S_{t}(i, j)$$

E step

• Compute $S_t(i)$ and $S_t(i,j)$ for all t, i, and j ($1 \le t \le T$, $1 \le i \le N$, $1 \le j \le N$)

$$P(q_{t} = s_{i} | O_{1}, \dots, O_{T}) = S_{t}(i)$$

$$P(q_{t} = s_{i}, q_{t+1} = s_{i} | O_{1}, \dots, O_{T}) = S_{t}(i, j)$$

M step (1)

Compute transition probabilities:

$$a_{i,j} = \frac{\hat{n}(i,j)}{\sum_{k} \hat{n}(i,k)}$$

where

$$\hat{n}(i,j) = \sum_{t} S_{t}(i,j)$$

M step (2)

Compute emission probabilities (here we assume a multinomial distribution):

define:

$$B_k(j) = \sum_{t|o_t=j} S_t(k)$$

then

$$b_k(j) = \frac{B_k(j)}{\sum_i B_k(i)}$$

Complete EM algorithm for learning the parameters of HMMs (Baum-Welch)

- Inputs: 1 .Observations $O_1 \dots O_T$
 - 2. Number of states, model
- 1. Guess initial transition and emission parameters
- 2. Compute E step: $S_t(i)$ and $S_t(i,j)$
- 3. Compute M step
- 4. Convergence?
- 5. Output complete model

We did not discuss initial probability estimation. These can be deduced from multiple sets of observation (for example, several recorded customers for speech processing)

No

HMM

- EM does not estimate the number of states. That must be given.
- Often, HMMs are forced to have some links with zero probability. This is done by setting a_{ij} =0 in initial estimate $\lambda(0)$
- Easy extension of everything seen today: HMMs with real valued outputs

Stay Connected

Dr. Min Chi

Associate Professor mchi@ncsu.edu (919) 515-7825

go.ncsu.edu/aiacademy

NC STATE UNIVERSITY