Soluzioni degli esercizi

Esercizi capitolo 13 - Logica

1.

Scrivi la tavola di verità di $A \vee \neg B$

A	B	$\neg B$	$A \lor \neg B$
0	0	1	1
0	1	0	0
1	0	1	1
1	1	0	1

2.

Crea le tavole di verità e dimostra la proprietà associativa degli operatori \wedge e \vee

A	B	C	$A \wedge B$	$\mathbf{B}\wedge C$	$(A \wedge B) \wedge C$	$A \wedge (B \wedge C)$
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	1	0	0	0
1	1	1	1	1	1	1

A	B	C	$A \lor B$	$\mathbf{B}\vee C$	$(A \lor B) \lor C$	$A \lor (B \lor C)$
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	1	0	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

3.

Qual è il valore di $\neg A \land B \implies B$ se A è Vero?

A	B	$\neg A$	$\neg A \wedge B$	$\neg A \land B \implies B$
1	0	0	0	1
1	1	0	0	1

4.

Se A, B, C sono falsi qual è il valore di $A \land B \lor \neg C \iff \neg B$

5.

Una tautologia è vera per qualsiasi valore di verità degli elementi che la compongono; verifica che la seguente funzione booleana è un tautologia logica: $\neg(A \land \neg A)$

6.

Rappresenta *F* come espressione booleana mediante *somma di prodotti* e come *prodotto di somme*, data la seguente tabella di verità:

A	B	C	F	
0	0	0	0	
0	0	1	1	$\rightarrow SP$
0	1	0	0	
0	1	1	0	
1	0	0	1	$\rightarrow SP$
1	0	1	1	$\rightarrow SP$
1	1	0	1	$\rightarrow SP$
1	1	1	1	$\rightarrow SP$

Somma di prodotti

La forma canonica **Somma di Prodotti** (SP) si ottiene considerando le righe con uscita a 1. Ciascuna riga corrisponde a un prodotto di tutte le variabili, che vanno prese in forma affermata o negata, a seconda che nella riga siano a 1 o 0, rispettivamente. Se il valore dell'input A vale 1 in una certa riga, allora nella forma SP prendiamo A, altrimenti prendiamo A.

La domanda di *principio* che ci poniamo è la seguente: "Quali input rendono F vera"?

$$F(A,B,C) := (\neg A \cdot \neg B \cdot C) + (A \cdot \neg B \cdot \neg C) + (A \cdot \neg B \cdot C) + (A \cdot B \cdot \neg C) + (A \cdot B \cdot C)$$

Prodotto di somme

La forma canonica **Prodotto di Somme** (PS) si ottiene invece considerando le righe con uscita a 0. Ciascuna riga corrisponde a una somma di tutte le variabili, che vanno prese in forma affermata o negata, a seconda che nella riga siano a 0 o 1, rispettivamente. Se il valore dell'input A vale 0 in una certa riga, allora nella forma PS prendiamo $\neg A$.

La domanda di principio è questa: "Quali input rendono F falsa"? Questi input vanno negati.

A	B	C	F	$\neg F$	
0	0	0	0	1	$\rightarrow PS$
0	0	1	1	0	
0	1	0	0	1	$\rightarrow PS$
0	1	1	0	1	$\rightarrow PS$
1	0	0	1	0	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	0	

$$F(A, B, C) := (A + B + C) \cdot (A + \neg B + C) \cdot (A + \neg B + \neg C)$$

L'espressione ottenuta dalla somma di prodotti:

$$F(A,B,C) := (\neg A \cdot \neg B \cdot C) + (A \cdot \neg B \cdot \neg C) + (A \cdot \neg B \cdot C) + (A \cdot B \cdot \neg C) + (A \cdot B \cdot C)$$

Può essere semplificata in

$$F(A,B,C) := (\neg A \cdot \neg B \cdot C) + A$$

che però non risulta più in forma normale

7.

Formalizza come logica delle proposizioni la seguente affermazione: «*L'esame è superato* se la prova ha dato risultato positivo e non è stata copiata»

Definiamo le proposizioni:

S: "L'esame è superato"

P: "La prova ha dato esito positivo"

C: "La prova è stata copiata"

$$S \implies P \land \neg C$$

8.

Rappresenta come logica dei predicati la seguente affermazione: «Nessuno studente supera l'esame di programmazione se non conosce il linguaggio Python»

x è uno studente

S(x): "x supera l'esame di programmazione"

C(x): "x conosce il linguaggio Python"

$$\forall x (\neg C(x) \implies \neg S(x))$$

9.

Rappresenta come logica dei predicati la seguente affermazione: «*Tutti gli studenti che si esercitano ottengono migliori risultati*»; in ogni caso suggeriamo agli studenti di esercitarsi, ma cosa possiamo dire di uno studente che non si esercita?

x è uno studente

E(x): "x si esercita"

R(x): "x ottiene migliori risultati"

$$\forall x (E(x) \implies R(x))$$

E(x) è condizione sufficiente ma non necessaria per R(x) quindi uno studente x potrebbe ottenere migliori risultati anche non esercitandosi.

10.

Applicando il principio di induzione, dimostra che $2^{(n-1)} \le n!$ per $n \ge 1$

Dimostriamo che l'espressione è vera per n = 1:

$$2^{(1-1)} \le 1!$$

 $\rightarrow 2^0 \le 1!$
 $\rightarrow 1 \le 1$

Supponiamo sia vera per *n*:

$$2^{(n-1)} \le n!$$

Dimostriamo che è vera per n + 1:

$$2^{(n+1-1)} \le (n+1)!$$

che possiamo scrivere come:

$$2 \cdot 2^{(n-1)} \le (n+1) \cdot n!$$

dove

$$2^{(n-1)} \le n!$$
 per ipotesi

e

$$2 \le n + 1 \text{ per } n \ge 1$$