Deep Learning

Feed Forward Network

Gananath Bhuyan
Assistant Professor
School of Computer Engineering
KIIT DU, Bhubaneswar

Deep Feed Forward Network

- ☐ The goal of a feedforward network is to approximate some function f* without any looping back to the previous layer.
- ☐ Directed acyclic graph.
- \Box y = f *(x) \Rightarrow if y is an image then y is the class of it (dog/cat)
- \Box y = f(x; θ) \Rightarrow y = f(x;w,b) \Rightarrow y = wx + b
- \Box y = (fⁿ(f² (f¹ (x)))....)
- ☐ Write the equation for 3 layer FFN.

Single and Multi Layer Perceptrons

perceptron

$$y = \begin{cases} 0, & \text{if } w \cdot x + b \le 0 \\ 1, & \text{if } w \cdot x + b > 0 \end{cases}$$

AND and OR gate implementation

OR			
l ₁	l ₂	out	4.0
0	0	0	(1, 0) (1, 1)
0	1	1	
1	0	1	
1	1	1	

XOR gate implementation

- Why Single-Layer Perceptrons Fail?
- ☐ Single-layer perceptrons can model only linearly separable functions (like AND, OR).
- ☐ XOR's output requires a non-linear decision boundary.
- ☐ Solution: Add hidden layers with non-linear activations.
- ☐ Inputs: A and B as coordinates (0 or 1).
- ☐ XOR outputs 1 for (0,1) and (1,0) diagonally opposite points.
- ☐ No single straight line can separate outputs of 0 and 1.
- ☐ Implies need for transformation via hidden H₁ neurons.

Mathematical Flow of Computation

- Input: x=[A,B]
- Hidden layer:

$$z = \sigma(w_1 \cdot x + b_1)$$

$$z = \sigma(w_2 \cdot x + b_2)$$

Output layer:

$$y=\sigma(w_0\cdot[z_1,z_2]+b_0)$$

- Output
- y approximates A xor B

