

NATURAL INDUCTION

Why

We want to show something holds for every natural number.¹

Definition

The most important property of the set of natural numbers is that it is the unique smallest successor set. In other words, if S is a successor set contained in ω (see Natural Numbers), then $S = \omega$. This is useful for proving that a particular property holds for the set of natural numbers. We define the set S to be the set of natural numbers for which the property holds. We then proceed in two parts. We show that $0 \in S$ and then we show that $n \in S \longrightarrow n^+ \in S$. These two together mean that S is a successor set, and since $S \subset \omega$ by definition, then $S = \omega$. In other words, the set of natural numbers for which the property holds is the entire set. We call this the **principle** of mathematical induction.

¹Future editions will modify this superficial why.

