

Visualisierung von Fusionsmodellen

Bachelor Thesis von Stephan Tzschoppe 1006374

UniBwM - IB 16/2009

Aufgabenstellung: Prof. Dr. Stefan Pickl

Betreuung: Dipl.-Inf. Marco Schuler

Institut für Theoretische Informatik, Mathematik und Operations Research Fakultät für Informatik Universität der Bundeswehr München

> Neubiberg 18.12.2009

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig angefertigt habe. Die
aus fremden Quellen direkt oder indirekt übernommenen Gedanken und Zitate sind als
solche kenntlich gemacht.
Es wurden keine anderen, als die in der Arbeit angegebenen Quellen und Hilfsmittel be-
nutzt. Die Arbeit wurde weder einer anderen Prüfungsbehörde vorgelegt, noch veröffent-
licht.
Neubiberg, 18. Dezember 2009

Unterschrift

Zusamme	enfassung
Zusammenfassung der Bachelorarbeit	

Inhaltsverzeichnis

Ei	desst	attliche	e Erklärung	3
Zι	ısamı	menfas	sung	4
1	Einl	eitung		9
	1.1	Motiva	ation	9
	1.2	Ziel de	er Arbeit	10
	1.3	Aufba	u der Arbeit	10
2	The	oretisc	he Grundlagen	11
	2.1	Multis	sensorische Daten	11
	2.2	Fusion		11
	2.3	Aggre	gation	11
	2.4	Visual	isierungsmöglichkeiten	11
3	Des	ign und	I Implementierung eines Visualisierungsprototypen	13
	3.1	Design	n eines Visualisierungsframeworks	13
		3.1.1	Eingabedaten und Datenmodell	14
		3.1.2	Übersicht des Frameworks	15
		3.1.3	Beschreibung der Komponenten	15
		3.1.4	Zusammenspiel der Komponenten	17
	3.2	Vorste	ellung der prototypischen Implementierung (Visualisierung einer mi-	
		litärise	chen Lage)	17
	3.3	Erweit	terbarkeit und Individualisierbarkeit	17
	3.4	Fallstr	ricke und interessante Aspekte der Implementierung	17
		3.4.1	Mapper	17
		3.4.2	Viewer	17

In halts verzeichn is

4	Ver	wendete Technologien	19
	4.1	Java	19
	4.2	XML	19
	4.3	jMonkeyEngine	19
	4.4	Google Code	19
5	Fazi	t und Ausblick	21
	5.1	Bewertung	21
	5.2	Weiterführende Arbeit	21
	5.3	Fazit	21
Lit	terat	urverzeichnis	22
Αŀ	bildı	ungsverzeichnis	24
Lis	sting	verzeichnis	26

1 Einleitung

1.1 Motivation

Wir leben in einer Zeit stetig voranschreitender Technologisierung. Dies äußert sich für jeden sichtbar auf vielerlei Art und Weise. Massenspeicher mit vor Jahren noch unvorstellbaren Kapazitäten, stetig wachsende Prozessorleistung und massiver Fortschritt in der Datenübertragung sind hier nur als Beispiele zu nennen. Solche Entwicklungen sind es, die das Sammeln, Verarbeiten und Speichern von riesigen Datenmengen erst ermöglichen. Diesen Fortschritt gilt es zu nutzen und auf mögliche Anwendungsfelder auszuweiten.

Betrachtet man ein Schlachtfeld, sei es im Rahmen einer Übung, einer kriegerischen Auseinandersetzung oder eines Konflikts, so werden auch hier Informationen gesammelt und ausgewertet. Man stelle sich folgende Situation vor: Drei eigene Panzer bewegen sich durch das Gelände. Plötzlich klären sie zwei feindliche Fahrzeuge auf. Jeder einzelne eigene Panzer setzt eine Meldung ab und beschreibt, was er sieht. Dies führt zu sechs Meldungen. Der S2¹-Offizier muss nun aus diesen Meldungen ein Lagebild erstellen. Dabei gilt es aus der vorhandenen (teilweise redundanten) Information die zwei statt sechs feindliche Fahrzeuge zu erkennen.

Für das geschilderte Beispiel scheint es nicht notwendig, diese Informationsauswertung zu automatisieren. In der Realität hingegen ² erfordert es viel Zeit, diese Arbeit zu erledigen. Und genau dies ist ein großes Problem, denn je älter die Lageinformation ist, umso weniger aussagekräftig ist sie. Entscheidungen, die darauf basierend getroffen werden, können daraufhin falsch oder unverhältnismäßig sein. Um diesen Missstand zu

¹Der S2-Offizier ist verantwortlich für die Militärische Sicherheit, Militärisches Nachrichtenwesen mit Aufklärung und Zielfindung, elektronisch Kampfführung und eben die Wehrlage

²Ein Panzerbataillon der Bundeswehr umfasst zum Beispiel ungefähr 40 Kampfpanzer

beseitigen, gilt es, den S2-Offizier bei seiner Arbeit technisch zu unterstützen.

1.2 Ziel der Arbeit

Eine technische Unterstützung kann in unterschiedlichen Abstufungen geschehen. So können die separaten Meldungen zu einer großen Meldung zusammengefasst werden. Dies ist aber nicht sonderlich hilfreich, wenn zum Beispiel aus vielen einzelnen Datensätzen einfach eine zusammenhängende Datensammlung erstellt wird. Denn wenn diese in einem textuellen Format vorliegt, ist sie von einem Menschen nur schwer zu verstehen. Weiterhin können die auftretenden Redundanzen nicht einfach erfasst, geschweige denn überhaupt genutzt werden.

Aus diesem Grund möchte ich mich in dieser Arbeit mit Möglichkeiten auseinandersetzen, eine menschenlesbare Sicht auf multisensorische Daten zu erstellen. Zum Einen sollen Visualisierungsmöglichkeiten aufgezeigt werden. Weiterhin soll bei unterschiedlichen Ansätzen, eine Bewertung dieser vorgenommen werden.

Ergebnis dieser Betrachtungen wird ein Framework zur Darstellung multisensorischer Daten. Dieses verwende ich dann prototypisch dazu, die eingangs erwähnte Problemstellung des S2-Offiziers zu bearbeiten und ihm eine, für seine Lageerstellung hilfreiche, Sicht auf die eingehenden Meldungen zu geben.

Die Erweiterbarkeit des Frameworks soll durch dessen Verwendung zur Darstellung von NDP [ABK] Daten gezeigt werden.

1.3 Aufbau der Arbeit

2 Theoretische Grundlagen

- 2.1 Multisensorische Daten
- 2.2 Fusion
- 2.3 Aggregation
- 2.4 Visualisierungsmöglichkeiten

3 Design und Implementierung eines Visualisierungsprototypen

In diesem Kapitel werden der Entwurf und die Implementierung eines Visualisierungsframeworks beschrieben. Dazu werden die einzelnen Komponenten des Frameworks beschrieben und ihr Zusammenspiel erläutert. Basierend auf dem Wissen über die Bestandteile können die Möglichkeiten der Erweiterbarkeit und der Individualisierbarkeit skizziert werde. Die Grundlage hierfür stellt zum einen eine prototypische Implementierung einer Visualisierung einer militärischen Lage und des weiteren der Versuch, Daten des NDP [ABK] dreidimensional darzustellen.

Abschließend werden interessante Aspekte der Implementierung aufgezeigt, die neben den umgesetzten Implementierungsentscheidungen auch andere Wege aufzeigen sollen.

Dem Leser, der sich vorrangig für den entstandenen Prototyp interessiert, dem sei der Abschnitt [Verweis] empfohlen. Die Details des Frameworks sollten für das Verständnis des Funktionsumfangs und die Bedienung keine Rolle spielen, können aber bei Bedarf nachgeschlagen werden.

3.1 Design eines Visualisierungsframeworks

Das Ergebnis dieser Arbeit soll nicht nur eine potentielle Visualisierungs-Umgebung sein, sonder ein Framework, das zum einen die Möglichkeit bietet, mit geringem Aufwand Daten anzeigen zu können und auf der anderen Seite aber umfangreiche Erweiterungsmöglichkeiten zulässt. Wie das Framework konkret entworfen und umgesetzt wurde, soll im Folgenden dargestellt werden.

3.1.1 Eingabedaten und Datenmodell

Grundlage für die weitere Arbeit sollen Eingabedaten sein, die bestimmte Voraussetzungen erfüllen. Diese gestellten Bedingungen werden im Folgenden kurz beschrieben. Darauf basierend wird das Datenmodell erläutert, in das die Quelldaten überführt werden sollen.

Eingabedaten

Um Daten dreidimensional visualisieren zu können, müssen diese bestimmte Voraussetzungen erfüllen. Diese sollen hier kurz aufgezeigt werden.

Identifizierbarkeit Unabhängig von der Art der Visualisierung ist es unabdingbar, dass jedes einzelne Datum identifizierbar ist. Aus diesem Grund sollte in den Quelldaten bereits eine eindeutige Benennung vorliegen. Sollte das nicht der Fall sein, muss dieser Misstand beim Importieren der Daten spätestens behoben werden. Probleme, die sich ergeben können, wenn diese Bedingung nicht beachtet wird, sind zum einen, dass keine aussagekräftigen Berechnungen auf den importierten Daten durchgeführt werden können. Auch ist eine Markierung eines gezielten Datensatzes unmöglich.

Lokalisierbarkeit Aus dem Ziel, die Eingabedaten im dreidimensionalen, kartesischen Raum darzustellen ergibt sich eine ganz logische Voraussetzung: Es sollte mindestens für jede der drei Dimensionen eine Eigenschaft der Daten existieren, die eine Positionierbarkeit möglich macht. Zwar ist es genauso möglich, die Daten auf einer Linie anzuordnen und somit nur eine Positionierungseigenschaft vorauszusetzen oder sich analog auf den zweidimensionalen Raum zu beschränken. Der daraus resultierende Informationsverlust muss aber in Kauf genommen werden. Die Voraussetzungen an den Typ der für die Lokalisierung herangezogenen Eigenschaften sind nicht sehr streng. Zwar ist es zielführend, wenn es sich hier um kontinuierliche oder zumindest diskret ganzzahlige Größen handelt. Ist dies nicht der Fall, so müssen diese lediglich zur Berechnung der Anzeigekoordinaten mit einer geeigneten Abbildungsvorschrift umgerechnet werden.

Beispiele für unmittelbar geeignete Größen:

• Entfernungsangaben
• Ortsangaben in Längen- und Breitengrad
• Zeitangaben
Beispiele für mittelbar geeignete Größen:
• IP [ABK] Adressen
• MAC [ABK] Adressen
• Zeichenketten allgemein
Weitere Eigenschaften
Datenmodell
3.1.2 Übersicht des Frameworks
3.1.3 Beschreibung der Komponenten
Importer
Anbindung an XML

Instanzieren des Datenmodells

3 Design und Implementierung eines Visualisierungsprototypen

3.2 Vorstellung der prototypischen Implementierung (Visualisierung einer militärisch	ien Lage)
Mapper	
Viewer	
3.1.4 Zusammenspiel der Komponenten	
Visualisierungsprozess	
Importer und Mapper	
Viewer und Importer	
Viewer und Mapper	
3.2 Vorstellung der prototypischen Implementierung (Visualisierung einer militärischen Lage)	
3.3 Erweiterbarkeit und Individualisierbarkeit	
3.4 Fallstricke und interessante Aspekte der Implementierung	
3.4.1 Mapper	
Streckung der Eingabedaten auf den Projektionsbereich	
Entfernungsberechnung mithilfe der Haversine Formel	
Informationsverlust durch Projektion eines Kugelabschnitts auf eine Ebene	
3.4.2 Viewer	
Mousepicking	17

Bewegungskegel

4 Verwendete Technologien

In diesem Kapitel werden die wichtigsten Technologien, die im Laufe der Arbeit verwendet werden, vorgestellt und erläutert.

- **4.1** Java
- 4.2 XML
- 4.3 jMonkeyEngine
- 4.4 Google Code

5 Fazit und Ausblick

- 5.1 Bewertung
- 5.2 Weiterführende Arbeit
- 5.3 Fazit

Literaturverzeichnis

Abbildungsverzeichnis

Listings