Theory Assignment 1 Answer

1.

a)

Integer part	Quotient	Remainder	Coefficient	Fraction part	Integer	Fraction	Coefficient
234/3 =	78	0	$a_0 = 0$	$0.5 \times 3 =$	1	0.5	$a_{-1} = 1$
78/3 =	26	0	$a_1 = 0$	$0.5 \times 3 =$	1	0.5	$a_{-2} = 1$
26/3 =	8	2	$a_2 = 2$	$0.5 \times 3 =$	1	0.5	$a_{-3} = 1$
8/3 =	2	2	$a_3 = 2$				
2/3 =	0	2	$a_4 = 2$:	:	:	:

Therefore, $(234.5)_{10} \approx (22200.11)_3$.

b)

Integer part	Quotient	Remainder	Coefficient	
234/12 =	19	6	$a_0 = 6$	
19/12 =	1	7	$a_1 = 7$	
1/12 =	0	1	$a_2 = 1$	•

Fraction part	Integer	Fraction	Coefficient
$0.5 \times 12 =$	6	0.0	$a_{-1} = 6$

Therefore, $(234.5)_{10} = (176.6)_{12}$.

c)

$$D = 4 \times 6^{2} + 3 \times 6^{1} + 5 \times 6^{0}$$
$$= 144 + 18 + 5$$
$$= 167$$

Therefore, $(435)_6 = (167)_{10}$.

d)

Radix r	Integer			Fra	ction
2	0 1 0	1_1_	0 .	0 1 0	1 0 0
8	$\widetilde{2}$	6		$\widetilde{2}$	$\overset{\bullet}{4}$

Therefore, $(10110.0101)_2 = (26.24)_8$.

2.

a)

Since all numbers are smaller than 7 and no carry is needed, the operation is correct in any number system that radix $r \ge 7$.

b)

Assuming the operation is in base r, we first convert the operation into base 10:

$$LHS = (302)_r/(20)_r$$

$$= (3r^2 + 0r^1 + 2r^0)_{10}/(2r^1 + 0r^0)_{10}$$

$$= (\frac{3r^2 + 2}{2r})_{10}$$

$$RHS = (12.1)_r$$

$$= (1r^1 + 2r^0 + 1r^{-1})_{10}$$

$$= (\frac{r^2 + 2r + 1}{r})_{10}$$

Since LHS = RHS, we have:

$$\frac{3r^2 + 2}{2r} = \frac{r^2 + 2r + 1}{r}$$
$$3r^2 + 2 = 2r^2 + 4r + 2$$
$$r^2 - 4r = 0$$

Therefore, r = 0 or r = 4. Since $r \neq 0$, we have r = 4.

3.

a)

$$(a' + c)(a' + c')(a + b + c'd) = (a' + cc')(a + b + c'd)$$

$$= a'(a + b + c'd)$$

$$= a'a + a'b + a'c'd$$

$$= a'b + a'c'd$$

$$= a'(b + c'd)$$

b)

$$abc'd + a'bd + abcd = (abc' + a'b + abc)d$$

$$= (a'b + ab(c + c'))d$$

$$= (a'b + ab)d$$

$$= (a' + a)bd$$

$$= \boxed{bd}$$

4.

a)

$$(a+c)(a'+b+c)(a'+b'+c) = (a+c)(a'+c+bb')$$

$$= (a+c)(a'+c)$$

$$= c + aa'$$

$$= c$$

b)

$$F(a,b,c) = \sum (0,1,2,3,5)$$

$$= a'b'c' + a'b'c + a'bc' + a'bc + ab'c$$

$$= a'b'(c+c') + a'b(c+c') + ab'c$$

$$= a'b' + a'b + ab'c$$

$$= a'(b+b') + ab'c$$

$$= a' + ab'c$$

$$= a'(1+b'c) + ab'c$$

$$= a' + a'b'c + ab'c$$

$$= a' + a'b'c + ab'c$$

$$= a' + (a+a')b'c$$

$$= a' + b'c$$

5.

a)

$$\begin{split} F(a,b,c,d) &= bd' + acd' + ab'c + a'c' \\ &= (a+a')b(c+c')d' + a(b+b')cd' + ab'c(d+d') + a'(b+b')c'(d+d') \\ &= abcd' + a'bcd' + abc'd' + a'bc'd' + ab'cd' + ab'cd + a'bc'd + a'b'c'd' \\ &= \boxed{\sum(0,1,4,5,6,10,11,12,14)} \\ &= \boxed{\prod(2,3,7,8,9,13,15)} \end{split}$$

b)

$$F(x, y, z) = (x' + z)(y + x')$$

$$= x' + yz$$

$$= x'(y + y')(z + z') + (x + x')yz$$

$$= x'yz + x'y'z + x'yz' + x'y'z' + xyz$$

$$= \sum_{x' \in \mathbb{Z}} (0, 1, 2, 3, 7)$$

$$= \prod_{x' \in \mathbb{Z}} (4, 5, 6)$$

6.

a)

$$F_1(A, B, C) = \sum (2, 3, 7)$$

$$= A'BC' + A'BC + ABC$$

$$= A'B(C + C') + ABC$$

$$= A'B + ABC$$

$$= A'B(1 + C) + ABC$$

$$= A'B + A'BC + ABC$$

$$= A'B + (A + A')BC$$

$$= A'B + BC$$

$$= A'B + BC$$

$$= B(A' + C)$$

$$F_2(A, B, C) = \sum (0, 2, 5, 7)$$

$$= A'B'C' + A'BC' + AB'C + ABC'$$

$$= A'(B + B')C' + A(B + B')C$$

$$= A'C' + AC$$

$$= \overline{(A \oplus C)'}$$

b)

Be	> 00	01	11	10
0	0	0	1	1
1	0	0	1	0

Hence, the sum of product terms for F_1 is:

$$F_1(A, B, C) = A'B + BC$$

Hence, the sum of product terms for F_2 is:

$$F_2(A, B, C) = AC + A'C'$$

7.

a)

4	<u> </u>	01	11	10
00	1	0	1	
01	0	0	1	1
11	1	1	1	0
10	0	0	1	1

Hence, the sum of product terms is:

$$F(W, X, Y, Z) = W'Y + WXY' + W'X'Z' + X'Y + YZ$$

b)

AS C	00	01	11	10
00	00	0	0	1
01	0	0	0	0
11	0	0	1	0
10	1	0	1	1

Hence, the sum of product terms is:

$$F(A, B, C, D) = ACD + B'D'$$

8.

We can use the following karnaugh map to find the truth table of both functions:

B	00	01	11	10
00	0	1	0	1
01	0	1	0	1
11	1)	1	0	1
10	0	1	0	1

Z)	00	01	11	10
00	1	0	0	1
01	1	1	1	0
11	1	0	1	0
10	1	0	1	1

$$f = abd' + c'd + a'cd' + b'cd'$$

$$g' = a'b'd + bcd' + ac'd$$

Since F = fg, we simply find the common minterms to be the minterms of F, and find the simplest sum of product terms using the following karnaugh map:

AS C	00	01	11	10
00	0	0	0	1
01	0	1	0	0
11	1	0	0	0
10	0	0	0	1

Therefore, the sum of product terms for F is:

$$F = abc'd' + a'bc'd + b'cd'$$

9.

a)

The simplest sum of product terms is:

$$F(A, B, C, D) = A'B' + A'C' + A'D + B'C' + B'D$$

To implement F using only NAND gates, we convert F into a NAND form:

$$F(A, B, C, D) = A'B' + A'C' + A'D + B'C' + B'D$$

$$= ((A'B' + A'C' + A'D + B'C' + B'D)')'$$

$$= \boxed{((A'B')'(A'C')'(A'D)'(B'C')'(B'D)')'}$$

b)

AS C	00	01	11	10
00	X	1	x	1
01	1	X	1	0
11	0	0	0	0
10	1	1	1	0

The simplest product of sum terms is:

$$F'(A, B, C, D) = AB + ACD' + BCD'$$

$$F(A, B, C, D) = (AB + ACD' + BCD')'$$

$$= (AB)'(ACD')'(BCD')'$$

$$= (A' + B')(A' + C' + D)(B' + C' + D)$$

To implement F using only NOR gates, we convert F into a NOR form:

$$F(A, B, C, D) = (A' + B')(A' + C' + D)(B' + C' + D)$$

$$= (((A' + B')(A' + C' + D)(B' + C' + D))')'$$

$$= ((A' + B')' + (A' + C' + D)' + (B' + C' + D)')'$$

 $\mathbf{c})$

NAND implementation

NOR implementation