

Showcase Back Buddy

SUPPORT THAT HAS YOUR BACK

BACK BUDDY

Problem Statement

Over 619 million people worldwide suffer from low back pain, the leading cause of disability globally (WHO). In the U.S., 80% of adults experience back pain, often linked to poor posture from long hours of sitting. Those who sit over 8 hours a day are twice as likely to develop chronic pain (ACA). Despite this, posture awareness tools remain limited and underused.

Our Vision

To create a world where good posture is effortless, accessible, and integrated into everyday life. Back Buddy empowers people to take control of their spinal health through smart, intuitive support

Product Pitch

- Portable posture pad that provides instant, adaptable support for maintaining proper posture while seated.
 - Lightweight, easy to carry, and rechargeable!
 - Features air cells that inflate in response to pressure sensors, gently pushing the user to adjust their posture and maintain proper spinal alignment.
 - App that provides progress, control, and allows for setting goals!

Mechanical Overview - System

Air Cells

Tubing System

Fabric - Nylon Water Repellent

Mechanical Overview - CAD

Electronics Box

Tubes' Connectors

Pump Housing

Valves Housing

Branded Buckles

Air Flow System

- Power to the valves changes direction of airflow
- Allows for air cells to be individually inflated/deflated
- Extra valve for extra air flow when exhausting air

Electrical Components Used

Electrical Overview

- Arduino controls pump and valves to adjust air cells.
- Relay module manages individual valve activation.
- Pressure sensor provides real-time feedback.
- Powered by 12V battery with buck converter.

Software/App Overview

- Developed using React Native, which is a cross platform compatible app development library.
- BLE integration with react-native-ble-plx and react-native-ble-manager libraries.
- Demo on the next slide!

Design Hi, Name! Today's Goal Drive 30 Minutes Start → Power On

Figma

Implementation

Welcome Back!

Sign in to continue

Email Address

Password

Sign In

Don't have an account? Sign Up

App Key Features

- User account creation through Firebase
- Log and track posture goals
- Remotely power the device on/off
- Email reminders and stats about user posture settings
- Monitor exact pressure values from the hardware, monitor pressure

Next Steps

- Mechanical
 - Redesign the back of the fabric to allow for better wire management to make the product as seamless as possible
 - Using thinner tubes for easier tube management inside the fabric
 - Creating different sizes of Back Buddy to accommodate more people and different types of chairs
- Electrical/Software
 - Clean up wiring
 - Utilize bluetooth module to communicate between the product and the app
 - Incorporate additional sensors to enhance the data from Back Buddy
 - Add more air pumps for more precise control

Lessons Learned

- Increasing the scope of testing to different scenarios
- Assemble the product as soon as each of the individual components are tested
- Achieve the attainable goals first before trying to get to the reach goals to ensure functionality first
- Cross-disciplinary collaboration is powerful:)

