

Data Analysis Using Statistics

Learning Objectives

By the end of this lesson, you will be able to:

- Create a moving average chart
- Perform ANOVA to compare means of different groups
- O Identify relationships between variables using covariance and correlation
- O Calculate regression for the given data
- Create normal distribution for the given data

A Day in the Life of Business Analyst

As a business analyst of an organization:

You are required to do forecasting and planning for sales data

Along with the prediction models, you need to co-relate existing data and test any hypothesis.

This lesson will help you understand the usage of statistics for data analytics and predictions.

Introduction to Statistical Analysis

Statistical Analysis

It involves the collection, examination, summarization, manipulation, and interpretation of quantitative data to discover underlying causes, patterns, relationships, and trends.

Need for Statistical Analysis

It reveals the overall pattern and behaviour of the data.

Statistical Analysis: Example

ABC LLC is a financial analytics and research organization that needs to determine how stock prices are fluctuating in various emerging economies.

Statistical Analysis: Example

The firm can use the moving average tool based on the historical records and stock market data.

This tool forecasts the price trends for any number of days.

It predicts the trends for the upcoming month by creating a moving average chart.

Statistical Analysis: Tools

Statistical Analysis in Excel

Excel is widely used to understand statistical concepts and perform calculations.

Data Analysis on Command

Data analysis tools are available under the Data Analysis command under Data tab.

Analysis ToolPak add-in needs to be loaded if the Data Analysis command is not available.

Moving Average: Introduction

Moving Average

It evaluates data points by creating a series of averages of different subsets of the complete dataset.

A moving average is used to smooth out irregularities and easily recognize trends.

Moving Average

It is mainly used to forecast long-term trends in the data.

Assisted Practice: Create Moving Average Chart

Problem statement:

Demonstrate how to create a Moving Average chart in Excel.

simpl_ilearn

Assisted Practice Guidelines

Steps to follow:

Step 1: Open the Excel file

Step 2: Moving average

Hypothesis Testing: Introduction

It is used to determine whether there is enough evidence in a data sample to infer that a certain condition is true for the entire population.

To understand the characteristics of general population:

Take a random sample.

Analyze the properties of the sample.

Test whether the identified conclusions represent the population correctly or not.

A hypothesis about a population parameter is generated.

Sample statistics are used to assess the likelihood that the hypothesis is true.

It is formulated in terms of two hypotheses:

Null Hypothesis, which is referred to as H₀, is assumed to be true unless there is strong evidence to the contrary.

Alternate Hypothesis,

which is referred to as H_1 , is assumed to be true when the null hypothesis is false.

The **Hypothesis Test (t-test)** is used to test the null hypothesis (H₀), which assumes that the mean or average of two populations is equal.

Assisted Practice: How to use Hypothesis Testing

Problem statement:

Demonstrate how to use Hypothesis Testing to determine Null Hypothesis for two variables.

Assisted Practice Guidelines

Steps to follow:

Step 1: Open the Excel file

Step 2: Hypothesis testing

ANOVA

ANOVA

It is a statistical method that stands for analysis of variance.

The logic behind this analysis is to identify variance in the population.

ANOVA is a collection of statistical methods used to compare the means of different groups.

T-Test

Assisted Practice: How to use ANOVA

Problem statement:

Demonstrate how to ANOVA to determine Null Hypothesis for two or more variables.

Assisted Practice Guidelines

Steps to follow:

Step 1: Open the Excel file

Step 2: ANOVA testing

Covariance

Covariance: Introduction

Covariance determines the relationship between two random variables and how they change together.

Covariance: Types

Let us suppose that X and Y are two random variables.

If variable X increases as Y increases or X decreases as Y decreases, then covariance is **positive**.

Covariance: Types

If variable X decreases as Y increases or X increases as Y decreases, then covariance is **negative**.

Assisted Practice: How to use Covariance

Problem statement:

Demonstrate how to use Covariance in Excel.

Assisted Practice Guidelines

Steps to follow:

Step 1: Open the Excel file

Step 2: Use Covariance

Correlation

Correlation: Introduction

Correlation is a statistical measure that indicates the extent to which two or more variables fluctuate together.

Correlation Coefficient

The correlation coefficient tells us how strongly two variables are related to each other and it has a value between -1 and +1.

Correlation Coefficient

In Excel, CORREL function is used to calculate correlation.

A correlation coefficient with value
-1 indicates a perfect negative
correlation.

A correlation coefficient with value 0 indicates no correlation.

Assisted Practice: How to use Correlation

Problem statement:

Demonstrate how to use Correlation in Excel.

Steps to follow:

Step 1: Open the Excel file

Step 2: Use Covariance

Regression

Regression: Introduction

Regression is a statistical method for determining the strength of a relationship between one dependent variable and a set of independent variables that change over time.

Assisted Practice: How to use Regression

Problem statement:

Demonstrate how to use Regression to determine relationships between variables.

Assisted Practice Guidelines

Steps to follow:

Step 1: Open the Excel file

Step 2: Use Regression

Simple Linear Regression

Simple Linear Regression (SLR) tries to find a linear representation between two variables x and y.

y = function(x)

n a + l-	Mean Temperature	Number of ice creams sold		
Month	(Celcius)			
Jan	27	5636		
Feb	29	5881		
Mar	30	6003		
Apr	33	6370		
May	35	6615		
Jun	29	5881		
Jul	28	5759		
Aug	29	5881		
Sep	27	5636		
Oct	24	5269		
Nov	23	5147		
Dec	22	5024		

Simple Linear Regression

A linear relation of the temperature and number of ice creams sold can be observed using a scatter plot.

Multiple Linear Regression (MLR) tries to find the relationship between multiple independent x's and a single independent y.

The approach is to build a fitting line in n-dimensional space to:

- Explain the effects of the independent variables on the y variable.
- Predict y value given in a new set of x variables.

The data is fit into the following equation:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_i x_i + e$$

Where:

- •Y: dependent or resultant variable
- •x₁,x₂,x₃,...,x_i: independent variables
- $\cdot \beta_0$: constant term in the equation
- β_i : slope coefficients to each independent variable

A multiple linear regression model can be built using Excel with at least 30 data points.

The mathematical equation with the coefficients is derived instantly and used to predict new values.

Consider the boston_housing.csv as the input data to build our model.

boston_housing.csv

The data set contains 13 independent variables which define the dependent variable MEDV.

MEDV is the median value of a house in Boston according to the data provided.

A model built using this data can be used to predict the median value of a new house with the attributes of the house.

The meaning of each attribute is given in the **Column description** tab.

Choose the complete data after checking for any junk data

Click on Data Analysis in Data Tab.

If this does not appear, click on File -> Options -> Excel Add-ins and Go

Click on Analysis ToolPak to enable Data Analysis within Data

Choose Regression from the Data Analysis dialog box

- Under Regression, choose rows and columns for the X range and column for the Y range
- Set Labels to present and the Confidence Level to 95%.

The results appear in a new worksheet, showing the regression data for the chosen data set.

SUMMARY OUTPUT								
Regression St	atistics							
Multiple R	0.862106106							
R Square	0.743226938							
Adjusted R Square	0.735570861							
Standard Error	4.52406873							
Observations	450							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	13	25829.55117	1986.888552	97.07672561	1.0335E-119			
Residual	436	8923.698272	20.46719787					
Total	449	34753.24944						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	20.65300087	5.442824267	3.794537516	0.000168826	9.955566008	31.35043574	9.955566008	31.35043574
CRIM	-0.18345407	0.224230466	-0.818149616	0.413718664	-0.62416108	0.25725294	-0.62416108	0.25725294
ZN	0.039241358	0.013293253	2.951975621	0.003327937	0.013114535	0.065368181	0.013114535	0.065368181
INDUS	0.051028645	0.059264167	0.861037075	0.389690882	-0.065450325	0.167507614	-0.065450325	0.167507614
CHAS	2.386228009	0.82473491	2.893327276	0.004002894	0.765277645	4.007178374	0.765277645	4.007178374
NOX	-11.40941916	3.905192367	-2.921602341	0.003663287	-19.08476177	-3.734076557	-19.08476177	-3.734076557
RM	5.061022753	0.452310979	11.1892547	1.01116E-25	4.172041775	5.950003732	4.172041775	5.950003732
AGE	-0.005227451	0.013021605	-0.401444406	0.688289647	-0.030820372	0.020365471	-0.030820372	0.020365471
DIS	-1.287171711	0.194610114	-6.614104899	1.09675E-10	-1.669662293	-0.904681128	-1.669662293	-0.904681128
RAD	0.279725145	0.085019715	3.290120952	0.001082725	0.11262571	0.44682458	0.11262571	0.44682458
TAX	-0.011536402	0.003590123	-3.213372434	0.001409203	-0.0185925	-0.004480303	-0.0185925	-0.004480303
PTRATIO	-0.801655134	0.126751622	-6.324614423	6.2965E-10	-1.050775288	-0.552534981	-1.050775288	-0.552534981
В	0.012714544	0.003501194	3.631488072	0.000315284	0.005833228	0.01959586	0.005833228	0.01959586
LSTAT	-0.5338538	0.057267921	-9.322039126	5.74807E-19	-0.646409309	-0.421298291	-0.646409309	-0.421298291

Linear Regression Model

Linear Regression Model

Linear Regression Model

From the results it is understood that:

- The most and least important features determine the median price of the house.
- The value of y can be determined by using the equation with a new set of x values.

It is an algorithm for classification problems.

We have seen the following equation in linear regression:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_i x_i + e$$

This equation cannot be used because:

- The value of y is not in **In odds** value
- The dependent variable y represents classes
- y is no more a continuous variable unlike regression
- log(ODDS) instead can help to arrive at a similar equation

Linear regression equation can be reused for logistic regression.

- By converting the y value in the classification problem to an 'In odds' value of the event
- $In(odds(E)) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_i x_i + e$

Odds of Event

Odds of event (E) is defined as the probability of E happening divided by the probability of E not happening.

$$odds(E) = P(E)/1-P(E)$$

- The result of odds(E) is then converted to categorical values.
- Example: If y<= 0.5, then it is negative, or else it is positive.

Sigmoid Equation

If we solve for P(E) using the two odds equations, we get:

- $P(E) = 1/1 + e^{-(\beta 0 + \beta 1x1 + \beta 2x2 + ... + \beta ixi + e)}$
- The equation in this form is called the sigmoid equation.
- Example: If you take a numeric value of Y, it converts it into a probability value between 0 and 1.

Logistic Regression in Excel

To perform logistic regression in Excel, multiple regression equation is used which is created by using Data Analysis add-ins.

- It forms the equation of P(E), and
- Segregates the target values based on P(E)

Logistic Regression in Excel

When a new data is given to the model, the P(E) is calculated, and the target value is derived.

These are the steps to derive target values.

Step 2: The target values are encoded to numeric values

Step 3: Use add-ins of Data Analysis, to calculate the intercept and coefficients

Step 4: The linear regression equation arrives for each data row. This equation can be called **y**.

Step 5: P(E) is calculated as 1/(1+e^{-y})

Step 6: A rule is applied on P(E) to get the target values

Normal Distribution

Normal Distribution: Introduction

All normal distributions are symmetric and have bell-shaped curves with a single peak.

Create Normal Distribution

Normal distribution helps find the probability distribution for various variables such as rainfall, height, weight, manufacturing error, weight error, and test scores.

Normal Distribution: Empirical Rule

All normal density curves satisfy the Empirical Rule or (68-95-99.7% Rule) in Statistics.

68% of the observations
fall within 1 standard
deviation of the mean, i.e.
between Mean – Standard
Deviation and Mean +
Standard Deviation.

95% of the observations
fall within 2 standard
deviations of the mean, i.e.
between Mean –
2*Standard Deviation and
Mean + 2*Standard
Deviation.

99.7% of the observations fall within 3 standard deviations of the mean, i.e. between Mean – 3*Standard Deviation and Mean + 3*Standard Deviation.

Assisted Practice: Create Normal Distribution graph

Problem statement:

Demonstrate how to create a Normal Distribution graph in Excel.

Steps to follow:

Step 1: Open the Excel file

Step 2: Create Normal Distribution

Key Takeaways

A Moving Average evaluates data points by creating a series of averages of different subsets of the complete dataset.

The Hypothesis Testing is used to test the null hypothesis.

- ANOVA is a collection of statistical methods used to compare the means of different groups.
- Ovariance determines the relationship between two random variables— how they change together.

Key Takeaways

O Correlation is a statistical measure that indicates the extent to which two or more variables fluctuate together

Regression is a statistical measure that determines the strength of the relationship between one dependent variable and a series of other changing variables.

All Normal Distributions are symmetric and have bell-shaped curves with a single peak.

DATA AND ARTIFICIAL INTELLIGENCE

Knowledge Check

1

Which of the following statistical methods is used to analyze variance between more than two groups?

- A. Hypothesis Testing
- B. Histogram
- C. ANOVA
- D. Covariance

Which of the following statistical methods is used to analyze variance between more than two groups?

- Hypothesis Testing
- Histogram
- C. ANOVA
- D. Covariance

The correct answer is **C**

ANOVA is used to analyze variance between more than two groups.

2

What conclusion will you derive for the Null Hypothesis if "F > F crit" in ANOVA testing?

- A. The Null Hypothesis is not rejected
- B. The Null Hypothesis is rejected
- C. There is no relationship with Hypothesis Testing
- D. None of the above is correct

What conclusion will you derive for the Null Hypothesis if "F > F crit" in ANOVA testing?

- The Null Hypothesis is not rejected
- The Null Hypothesis is rejected
- There is no relationship with Hypothesis Testing
- D. None of the above is correct

The correct answer is

In ANOVA testing if "F > F crit," then the Null Hypothesis is rejected.

3

The Null Hypothesis means that the mean/average of two populations is equal.

- A. True
- B. False

3

The Null Hypothesis means that the mean/average of two populations is equal.

A. True

B. False

The correct answer is A

The Null Hypothesis(H0) means that the mean/average of two populations is equal.

4

Which of the following is indicated if the Correlation Coefficient value is +1?

- A. Perfect Positive Correlation
- B. Zero Correlation
- C. Perfect Negative Correlation
- D. No Correlation

Which of the following is indicated if the Correlation Coefficient value is +1?

- A. Perfect Positive Correlation
- B. Zero Correlation
- Perfect Negative Correlation
- D. No Correlation

The correct answer is A

The Correlation Coefficient value of +1 indicates Perfect Positive Correlation.

5

Which statistical measure determines the strength between a dependent variable and an independent variable?

- A. Histogram
- B. Hypothesis Testing
- C. Moving Average
- D. Regression

5

Which statistical measure determines the strength between a dependent variable and an independent variable?

- A. Histogram
- B. Hypothesis Testing
- C. Moving Average
- D. Regression

The correct answer is

Regression determines the strength between a dependent variable and an independent variable.

What are the mandatory fields required while creating a Normal Distribution curve?

- A. Mean and Standard Deviation
- B. Mean and Maximum value
- C. Maximum and Minimum value
- D. Standard Deviation and Minimum Value

What are the mandatory fields required while creating a Normal Distribution curve?

- A. Mean and Standard Deviation
- B. Mean and Maximum value
- C. Maximum and Minimum value
- D. Standard Deviation and Minimum Value

The correct answer is

To create Normal Distribution curve, we need to specify two quantities: the mean, where the peak of the density occurs, and the standard deviation, which indicates the spread of the bell curve.

