

Applied Machine Learning

Dr. Harikrishnan N B Computer Science and Information Systems

SE ZG568 / SS ZG568, Applied Machine Learning Lecture No. 16

Human Brain

Frontal Lobe

Frontal lobe Parietal lobe Temporal lobe Occipital lobe Olfactory -bulb

Frontal Lobe

Motor Functions
Planning, Emotions, Social Behaviour

Parietal Lobe

Parietal Lobe

Sensations, touch, pain

Temporal Lobe

Temporal Lobe

Hearing, Memory

Occipital Lobe

Occipital Lobe

Vision, optic nerve arising from retina goes to occipital lobe through other lobes.

Brain Stem

Brain Stem

Mid Brain - controls eye movement Pons - controls facial movement Medulla Oblongata - control of respiration

86 billion neurons

Patient HM and Memory

Patient HM (Henry Molaison)and Memory: https://www.youtube.com/watch?v=i488aUN5RXA

Lobes

Lobes

Neural Circuit

Brain: The Ultimate Machine

- High complexity (non-linear)
- Very high neural noise and interference
- Very low SNR: -29 dB to -20 dB*
- Neural signal multiplexing[¶]
- Low power "neural computation" (~12.6 Watts**)
- How does it work? No idea!

*Ref: G. Czanner et al., Measuring the signal-to-noise ratio of a neuron, PNAS 112 (23), 2015

¶Ref: M L R Meister et al., Signal multiplexing and single-neuron computations in Lateral Intraparietal

Area during decision-making, J. Neurosci. 33 (6), 2013

**Ref: Scientific American, 18 July 2012

Neuroscience Inspired Al

- Rich source of inspiration for new types of algorithms and architectures, independent and complementary to the mathematical and logic based methods.
- Neuroscience can provide a validation of Al techniques that already exists.

Reinvestigate the current learning algorithms

- Brain science is still in Faraday Stage [1]
- Brain has ~86 billion neurons [2]
- Complex network of neurons
- Neurons are inherently non-linear & found to exhibit Chaos
- Current AI only loosely inspired from the brain
- 1. Ramachandran, Vilayanur S., Sandra Blakeslee, and Neil Shah. *Phantoms in the brain: Probing the mysteries of the human mind.* 1998.
- 2. Azevedo, Frederico AC, et al. "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain."
 - Journal of Comparative Neurology 513.5 (2009): 532-541.

Artificial vs. Biological Neural Networks

Research and Development Gap

Artificial Neural Networks (ANN) ~	Biological Neural Networks
Linearity + Non-linear activation.	Non-linearity at the neuronal level. [3, 4]
Current deep learning architectures does not exhibit chaotic behaviour at the neuronal level for classification.	Exhibits different behaviours - from periodic to chaotic at different spatiotemporal scales.
Not robust to noise.	Robust to noise and interference.
Need huge amount of training data.	Learning from limited samples.

^{3.} Faure, Philippe, and Henri Korn. "Is there chaos in the brain? I. Concepts of nonlinear dynamics and methods of investigation." Comptes Rendus de l'Académie des Sciences-Series III-Sciences de la Vie 324.9 (2001): 773-793.

^{4.} Korn, Henri, and Philippe Faure. "Is there chaos in the brain? II. Experimental evidence and related models." Comptes rendus biologies 326.9 (2003): 787-

1 Kudde Cage A data instance Analysis of a Layer Neural Network Classification La Bring Hidden Layer Output Layer Input Layer h_4 y (i) = {0,1]

Example

0.2 Analysis of a 2-Layer Neural Network

Input Layer Hidden Layer Output Layer h_1 h_2 y h_3 h_3

Forward Propagation
Computation of Loss
Backward Propagation
Updatqation of Weights and Bias

lays

Oplays Softman

Oot > 1 custo

Oo2 O Sigmoid

O 01 O function

$$z^{(i)} = \begin{bmatrix} z_{i}^{(i)} \\ z_{i}^{(i)} \end{bmatrix} \qquad \text{Wiff} \quad (i)$$

For our example, m = 4, n = 3 and $n_h = 4$. We get the following matrices.

$$= \begin{pmatrix} w_{11}^{[1]} & w_{12}^{[1]} & w_{13}^{[1]} \\ w_{21}^{[1]} & w_{22}^{[1]} & w_{23}^{[1]} \\ w_{31}^{[1]} & w_{32}^{[1]} & w_{33}^{[1]} \\ w_{41}^{[1]} & w_{42}^{[1]} & w_{43}^{[1]} \end{pmatrix}$$

$$b^{[1]} = \begin{bmatrix} b_1^{[1]} \\ b_2^{[1]} \\ b_3^{[1]} \\ b_4^{[1]} \end{bmatrix}$$

$$W^{[2]} = \begin{bmatrix} w_{11}^{[2]} & w_{12}^{[2]} & w_{13}^{[2]} & w_{14}^{[2]} \end{bmatrix}$$

$$b^{[2]} = \left[b_1^{[2]}\right]$$

0.2 Analysis of a 2-Layer Neural Network

Input Layer Hidden Layer Output Layer

Backpropagation

Objective is to compute the following:

For the i^{th} training data, we can calculate the gradient for $w_{11}^{[2]}$ using chain rule as follows: Analysis of a 2-Layer Neural Network

and data, we can calculate the gradient for
$$w_{11}$$
 using chain for $\frac{\partial J^{(i)}}{\partial w_{11}^{[2]}} = \frac{\partial J^{(i)}}{\partial a^{[2](i)}} \times \frac{\partial a^{[2](i)}}{\partial z^{[2](i)}} \times \frac{\partial z^{[2](i)}}{\partial w_{11}^{[2]}}$
$$da^{[2](i)} = \frac{\partial J^{(i)}}{\partial a^{[2](i)}} = \frac{-y^{(i)}}{a^{[2](i)}} + \frac{1-y^{(i)}}{1-a^{[2](i)}}$$

$$\frac{\partial a^{[2](i)}}{\partial z^{[2](i)}} = a^{[2](i)}(1-a^{[2](i)})$$

$$\frac{\partial z^{[2](i)}}{\partial w_{11}^{[2]}} = a_1^{[1]}$$

$$dw_{11}^{[2]} = \frac{\partial J^{(i)}}{\partial w_{11}^{[2]}} = \frac{-y^{(i)}}{a^{[2](i)}} + \frac{1-y^{(i)}}{1-a^{(2](i)}} \times a^{[2](i)}(1-a^{[2](i)}) \times a_1^{[1]}$$
 be same for the other weights:

Now, extending the same for the other weights:

We can continue this gradient calculation to get the gradients corresponding to the weights and biases to the hidden layer:

to the hidden layer:
$$\frac{\partial J^{(i)}}{\partial w_{11}^{[1]}} = (a^{[2](i)} - y^{(i)})w_{11}^{[2]}a_1^{[1](i)}(1 - a_1^{[1](i)})x_1^{(i)}$$

 $= (a^{[2](i)} - y^{(i)})w_{11}^{[2]}a_1^{[1](i)}(1 - a_1^{[1](i)})x_2^{(i)}$

 $= (a^{[2](i)} - y^{(i)})w_{12}^{[2]}a_2^{[1](i)}(1 - a_2^{[1](i)})x_1^{(i)}$

 $\frac{\partial J^{(i)}}{\partial w_{22}^{[1]}} = (a^{[2](i)} - y^{(i)}) w_{12}^{[2]} a_2^{[1](i)} (1 - a_2^{[1](i)}) x_2^{(i)}$

We can continue this gradient calculation to get the gradients corresponding to the weights and biases to the hidden layer:

We can continue this gradient calculation to get the gradients corresponding to the weights and biases to the hidden layer:
$$\frac{\partial J^{(i)}}{\partial w_{11}^{[1]}} = (a^{[2](i)} - y^{(i)}) w_{11}^{[2]} a_1^{[1](i)} (1 - a_1^{[1](i)}) x_1^{(i)}$$

$$\frac{\partial J^{(i)}}{\partial w_{12}^{[1]}} = (a^{[2](i)} - y^{(i)}) w_{11}^{[2]} a_1^{[1](i)} (1 - a_1^{[1](i)}) x_2^{(i)}$$

 $\frac{\partial J^{(i)}}{\partial w_{21}^{[1]}} = (a^{[2](i)} - y^{(i)}) w_{12}^{[2]} a_2^{[1](i)} (1 - a_2^{[1](i)}) x_1^{(i)}$

 $\frac{\partial J^{(i)}}{\partial w_{22}^{[1]}} = (a^{[2](i)} - y^{(i)}) w_{12}^{[2]} a_2^{[1](i)} (1 - a_2^{[1](i)}) x_2^{(i)}$

Weight Updation

gadent descent

Namel N/23
Soward Boropageshes, Complethon- Coss
Backward", Weight updehin.