ПЛАН-КОНСПЕКТ ЛАБОРАТОРНОГО ЗАНЯТТЯ з дисципліни «Математичні основи ІТ»

Викладач: студент групи 641м Бужак Андрій

Дата проведення: 16.09.2021

Група: 143(1)

Вид заняття: лабораторна робота Тривалість пари: 80 хвилин

Тема: Визначники. Матриці та дії над ними

Мета: ознайомлення студентів з основними поняттями та алгоритмами обчислення визначників і виконання дій з алгебри матриць; набуття практичних навичок розв'язування вищевказаних задач із використанням прикладних пакетів MathCad ma/aбo SMath Studio.

ХІД ЗАНЯТТЯ

1. Актуалізація опорних знань, повідомлення теоретичного матеріалу (до 20 хв.).

Ч Теоретичні відомості

Головне меню робочого вікна листа MathCad 15 має наступний вигляд (див.

Mathcad - [Untitled:1] File Edit View Insert Format Tools Symbolics Window Help ∨ 10 ∨ B I U | ■ ■ ■ | ∷ ⅓ | x² ×₂ ∨ (r) GC Programming x マペーショ間 Add Line ← Evalua... x otherwise Modifier - = = for while real RealRange break continue → •→ fx complex xf xfy xfy × Greek × αβγδεζ ηθικλμ rectangular solve simplify substitute factor coeffs expand ωΑΒΓΔΕ $Z H \Theta I K \Lambda$ fourier laplace ztrans MNFOTP invfourier invlaplace invztrans ΣΤΥΦΧΨ explicit combine confrac sin cos tan In log Boolean x ≠ ¬ ∧ ∨ ⊕ 1+ 4 5 6 ×

Пункти головного меню листа мають таке ж призначення, як і в інших програмних продуктах сімейства Windows. Зупинимось детальніше на пункті головного меню $View \rightarrow Toolbars \rightarrow Math$, який містить операції символьної

вище).

математики. Для введення знаків математичних або логічних операцій, символів грецького алфавіту та ін. необхідно користуватись кнопками панелі математичних інструментів

Математична панель складається з наступних кнопок: Арифметична панель (Калькулятор), Панель відношень та булевих функцій, Панель графіків, Панель векторів та матриць, Панель математичного аналізу, Панель обчислень, Панель програмування, Панель грецьких літер, Панель символьних операцій.

Значок	Панель	Назва панелі
	Calculator sin cos tan In log n! i × Γ ¬ Γ e ^x ½ () ײ × Υ π 7 8 9 / □ 4 5 6 × ∴ 1 2 3 + □ . 0 − =	Арифметична панель (Калькулятор)
4	Graph △ A ② □ → □ □ → □	Панель графіків
[:::]	Matrix [:::] × _n × ⁻¹ × f(m) M ^{<>} M ^T mn x̄ · v̄ x̄ × v̄ Συ ∰	Панель векторів та матриць
x=	Evalua $=$ $=$ $=$ \rightarrow \longrightarrow fx xf xfy x^fy	Панель обчислень

∫ &	Calculus $\frac{d}{dx} \frac{d^{n}}{dx^{n}} \infty \int_{a}^{b}$ $\sum_{n=1}^{m} \prod_{n=1}^{m} \int_{n} \sum_{n} \prod_{n=1}^{m} \lim_{n \to a} \lim_{n \to a^{+}} \lim_{n \to a^{-}} \nabla_{x} f$	Панель математичного аналізу
N M	Boolean	Панель відношень та булевих функцій
₩	Programming ∠ Add Line ← if otherwise for while break continue return on error	Панель програмування
αβ	Greek Σ α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ τ υ φ φ χ ψ ω Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ	Панель грецьких літер
•	Symbolic →	Панель символьних операцій

При натисканні вказаних кнопок відбувається доступ до палітри для швидкого вибору конкретних операторів. При виборі курсором символу

відповідного значка він переноситься у робочий лист.

У програмі MathCad є два види об'єктів: формули і текстові блоки, які називаються математичними і текстовими областями відповідно. Введені в документ формули автоматично приводяться до стандартної форми запису. Результати обчислень автоматично змінюються, як тільки змінюються значення величин. У текстових блоках розміщується коментарі, пояснення, які не обчислюються. Для того щоб фрагмент сприймався як текстовий блок, потрібно виконати $Insert \rightarrow Text\ Region$, потім у виділеній області набрати потрібний текст або коментар. Так само можна вставляти математичні області. Математичні області інтерпретуються в MathCad як послідовні вказівки для виконання обчислень, які записані в цих областях. MathCad додержується такої послідовності при виконанні обчислень: зліва направо та зверху вниз. Якщо у виразі допущено помилку, то MathCad, якщо може, то виправить її, а якщо не може - виділить червоним кольором і припинить обчислення.

Для створення векторів та матриць в *MathCad* потрібно виконати наступні дії:

- 1. Введення імені вектора чи матриці та знака присвоєння.
- 2. Встановити розмір вектора чи матриці (вказати кількість рядків та стовпців).

Панель математичних інструментів ightarrow Панель матриця $\stackrel{[]]}{=}$ ightarrow Матриця

У полі *Rows* потрібно вказати необхідну кількість рядків матриці, а у полі *Columns* - необхідну кількість стовпців матриці. Після заповнення полів необхідно натиснути **ОК.**

3. У порожні маркери записати елементи вектора чи матриці.

Зауважимо, що у *MathCad* **нумерація рядків/стовпців матриці починається з нуля, а не з одиниці**. Для того, щоб нумерація була звичною (рядки та стовпці нумеруються з одиниці), слід на початку файла записати команду **ORIGIN:=1**.

При роботі з матрицями у *MathCad* можна скористатись **Функціями повернення** характеристик матриці:

1. Повернення числа стовпців матриці - функція cols(M):

$$M := \begin{pmatrix} -1 & 0 & 2 \\ 2 & 0 & -1 \\ 0 & 1 & -2 \end{pmatrix} \qquad cols(M) = 3$$

2. Повернення числа рядків матриці - *rows(M)*:

$$M := \begin{pmatrix} -1 & 0 & 2 \\ 2 & 0 & -1 \\ 0 & 1 & -2 \end{pmatrix} \quad \text{rows}(M) = 3$$

3. Повернення рангу матриці - *rank(M)*:

$$M := \begin{pmatrix} -1 & 0 & 2 \\ 2 & 0 & -1 \\ 0 & 1 & -2 \end{pmatrix} \qquad rank(M) = 3$$

4. Повернення суми елементів головної діагоналі квадратної матриці - *tr(M)*:

$$M := \begin{pmatrix} -1 & 0 & 2 \\ 2 & 0 & -1 \\ 0 & 1 & -2 \end{pmatrix} \qquad tr(M) = -3 \\ -1 + 0 + (-2) = -3$$

5. Повернення середнього значення масиву елементів - *mean(M)*:

$$M := \begin{pmatrix} -1 & 0 & 2 \\ 2 & 0 & -1 \\ 0 & 1 & -2 \end{pmatrix} \qquad \begin{array}{l} \text{mean}(M) = 0.111 \\ \\ \underline{[-1 + 0 + 2 + 2 + 0 + (-1) + 0 + 1 + (-2)]} \\ 9 \end{array} = 0.111$$

6. Повернення медіани масиву елементів - *median(M)*:

$$M := \begin{pmatrix} -1 & 0 & 2 \\ 2 & 0 & -1 \\ 0 & 1 & -2 \end{pmatrix}$$
 median(M) = 0
-2,-1,-1,0,0,0,1,2,2

7. Повернення максимального елемента - max(M):

$$M := \begin{pmatrix} -1 & 0 & 2 \\ 2 & 0 & -1 \\ 0 & 1 & -2 \end{pmatrix} \qquad \max(M) = 2$$

8. Повернення мінімального елемента - *min(M)*:

$$M := \begin{pmatrix} -1 & 0 & 2 \\ 2 & 0 & -1 \\ 0 & 1 & -2 \end{pmatrix} \quad min(M) = -2$$

Також при роботі з матрицями можна використати Матричні оператори:

1. Обернена матриця: м⁻¹.

$$\mathbf{M} := \begin{pmatrix} -1 & 0 & 2 \\ 2 & 0 & -1 \\ 0 & 1 & -2 \end{pmatrix} \qquad \mathbf{M}^{-1} = \begin{pmatrix} 0.333 & 0.667 & 0 \\ 1.333 & 0.667 & 1 \\ 0.667 & 0.333 & 0 \end{pmatrix}$$

або

$$\begin{pmatrix} -1 & 0 & 2 \\ 2 & 0 & -1 \\ 0 & 1 & -2 \end{pmatrix}^{-1} = \begin{pmatrix} 0.333 & 0.667 & 0 \\ 1.333 & 0.667 & 1 \\ 0.667 & 0.333 & 0 \end{pmatrix}$$

2. Обчислення визначника: |М|.

$$M := \begin{pmatrix} -1 & 0 & 2 \\ 2 & 0 & -1 \\ 0 & 1 & -2 \end{pmatrix} \qquad |M| = 3 \quad \text{a6o} \qquad \begin{vmatrix} -1 & 0 & 2 \\ 2 & 0 & -1 \\ 0 & 1 & -2 \end{vmatrix} = 3$$

3. Транспонування матриці: M^{T} .

$$\mathbf{M} := \begin{pmatrix} -1 & 0 & 2 \\ 2 & 0 & -1 \\ 0 & 1 & -2 \end{pmatrix} \qquad \mathbf{M}^T = \begin{pmatrix} -1 & 2 & 0 \\ 0 & 0 & 1 \\ 2 & -1 & -2 \end{pmatrix}$$
 abo

$$\begin{pmatrix} -1 & 0 & 2 \\ 2 & 0 & -1 \\ 0 & 1 & -2 \end{pmatrix}^{T} = \begin{pmatrix} -1 & 2 & 0 \\ 0 & 0 & 1 \\ 2 & -1 & -2 \end{pmatrix}$$

4. Вивід n-го стовпця матриці: м (n)

$$\mathbf{M} := \begin{pmatrix} -1 & 0 & 2 \\ 2 & 0 & -1 \\ 0 & 1 & -2 \end{pmatrix} \qquad \qquad \mathbf{M}^{\langle 1 \rangle} = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}$$

вивід 1-го стовпця матриці

5. Вивід п-го рядка матриці:

$$M := \begin{pmatrix} -1 & 0 & 2 \\ 2 & 0 & -1 \\ 0 & 1 & -2 \end{pmatrix} \qquad (M^{T})^{\langle 2 \rangle^{T}} = (2 \ 0 \ -1)$$

вивід 2-го рядка матриці

6. Обчислення суми елементів вектора :

$$\sum \begin{pmatrix} a \\ 2a \\ -b \end{pmatrix} \rightarrow 3 \cdot a - b$$

Зокрема, з допомогою цієї функції можна обчисляти суму елеметів певного рядка чи стовпця матриці:

$$\mathbf{M} := \begin{pmatrix} 1 & -6 & 0 & 0 \\ -1 & -2 & 0 & 1 \\ 0 & 1 & -2 & 3 \\ -9 & 6 & 4 & 0 \end{pmatrix}$$

$$\mathbf{M}^{\langle 1 \rangle} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ -9 \end{pmatrix}$$

$$\sum \mathbf{M}^{\langle 1 \rangle} = -9$$

$$\left(\mathbf{M}^{\langle 2 \rangle} \right)^{\mathrm{T}} = (-6 \ -2 \ 1 \ 6)$$

$$\sum \left(\mathbf{M}^{\langle 2 \rangle} \right)^{\mathrm{T}} = -1$$

7. Вивід елемента матриці: ${}^{M}_{i,j}$:

$$M := \begin{pmatrix} -1 & 0 & 2 \\ 2 & 0 & -1 \\ 0 & 1 & -2 \end{pmatrix} \qquad M_{1,3} = 2$$

вивід елемента, який знаходиться у матриці *М* на перетині 1-го рядка та 3-го стовпця

8. Векторизація матриці: м - процедура, що є прикладом виходу за лаштунки загальноприйнятих математичних правил. З допомогою використання векторизації дії з матрицями виконуються поелементно, тобто, використовуючи цю процедуру, матриці можна поелементно перемножити, поелементно поділити, додати чи відняти від усіх елементів матриці певне число. Приклади використання векторизації:

$$\begin{bmatrix}
\begin{pmatrix} a & b \\ -1 & a \end{pmatrix} \cdot \begin{pmatrix} a & -2 \\ b & 1 \end{pmatrix}
\end{bmatrix} \rightarrow \begin{pmatrix} a^2 & -2 \cdot b \\ -b & a \end{pmatrix}$$

$$a := \begin{pmatrix} 2 \\ 4 \end{pmatrix} \qquad b := \begin{pmatrix} 1 \\ 4 \end{pmatrix} \qquad \overrightarrow{e^{a-b}} \rightarrow \begin{pmatrix} e \\ 1 \end{pmatrix} \qquad \overrightarrow{(a+b)} \rightarrow \begin{pmatrix} 3 \\ 8 \end{pmatrix} \qquad \overrightarrow{\frac{a}{b}} \rightarrow \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$A := \begin{pmatrix} \frac{\pi}{6} & \frac{\pi}{3} & 0 \\ \pi & -\pi & 0 \\ 0 & \frac{\pi}{2} & \pi \end{pmatrix} \qquad B := \begin{pmatrix} 4 & 9 & 3 \\ 5 & 9 & 4 \\ -4 & 0 & 1 \end{pmatrix} \qquad \overrightarrow{\sin(A)} \rightarrow \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad \overrightarrow{\sqrt{B}} \rightarrow \begin{pmatrix} 2 & 3 & \sqrt{3} \\ \sqrt{5} & 3 & 2 \\ 2i & 0 & 1 \end{pmatrix}$$

Для знаходження суми всіх елементів матриці, треба використати подвійну суму (двічі поспіль натиснути значок суми з верхньою та нижньою межею з панелі *Математичний аналіз*)

$$M := \begin{pmatrix} 1 & -6 & 0 & 0 \\ -1 & -2 & 0 & 1 \\ 0 & 1 & -2 & 3 \\ -9 & 6 & 4 & 0 \end{pmatrix} \qquad \sum_{i=1}^{4} \sum_{j=1}^{4} M_{i,j} = -4$$

Суму елементів деякого рядка чи стовпця матриці можна шукати аналогічно:

$$ORIGIN := 1$$

$$M:=\begin{pmatrix}1&-6&0&0\\-1&-2&0&1\\0&1&-2&3\\-9&6&4&0\end{pmatrix} \qquad \sum_{i\,=\,1}^{rows(M)}M_{i,\,1}=-9 \qquad \text{сума елементів 1-го стовпця} \\ \sum_{j\,=\,1}^{cols(M)}M_{2,\,j}=-2 \qquad \text{сума елементів 2-го рядка}$$

Матриці можна об'єднувати:

- 1. Об'єднання двох матриць (з однаковою кількістю рядків) в одну: augment(A, B) функція повертає матрицю, утворену дописуванням матриці B справа до матриці A.
- 2. Об'єднання двох матриць (з однаковою кількістю стовпців) в одну: stack(A, B) функція повертає матрицю, утворену дописуванням матриці B нижче матриці A.

$$A := \begin{pmatrix} \frac{\pi}{6} & \frac{\pi}{3} & 0 \\ \pi & -\pi & 0 \end{pmatrix} \qquad B := \begin{pmatrix} 4 & 9 \\ 5 & 9 \end{pmatrix} \qquad \text{augment}(A,B) \rightarrow \begin{pmatrix} \frac{\pi}{6} & \frac{\pi}{3} & 0 & 4 & 9 \\ \pi & -\pi & 0 & 5 & 9 \end{pmatrix} \qquad \text{stack}(A^T,B) \rightarrow \begin{pmatrix} \frac{\pi}{6} & \pi \\ \frac{\pi}{3} & -\pi \\ 0 & 0 \\ 4 & 9 \\ 5 & 9 \end{pmatrix}$$

Також можна виділяти з матриці підматрицю:

Функція **submatrix**(A, **beg_r**, **end_r**, **beg_c**, **end_c**) повертає матрицю, яка є частиною матриці A, що знаходиться між рядками beg_r, end_r та стовпцями beg_c, end_c включно:

$$\begin{aligned} & \underbrace{ORIGIN} := 1 \\ & B := \begin{pmatrix} 0 & \sqrt{3} & e \\ \sin\left(\frac{\pi}{3}\right) & a & \sqrt{5} \\ 1 & 2 & 9 \end{pmatrix} & submatrix(B,2,3,1,2) \rightarrow \begin{pmatrix} \frac{\sqrt{3}}{2} & a \\ 1 & 2 \end{pmatrix} & submatrix(B,1,1,1,3) \rightarrow \begin{pmatrix} 0 & \sqrt{3} & e \end{pmatrix}$$

$$submatrix(B,1,2,1,1) \rightarrow \begin{pmatrix} 0 \\ \frac{\sqrt{3}}{2} \end{pmatrix} submatrix(B,2,2,3,3) \rightarrow (\sqrt{5})$$

Можна створювати матриці спеціального вигляду:

- 1. Створення *одиничної* квадратної матриці розміром (n× n) *identity(n)*:
- 2. Створення *діагональної* матриці, на головній діагоналі якої знаходяться елементи вектора V *diag(V)*:

$$identity(3) \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \qquad diag \begin{pmatrix} a \\ \sqrt{3} \\ sin \left(\frac{\pi}{6}\right) \end{pmatrix} \rightarrow \begin{pmatrix} a & 0 & 0 \\ 0 & \sqrt{3} & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix}$$

- 3. Створення матриць з відомим законом задання загального елемента:
 - **a)** з допомогою функції *matrix(m,n,f)*, де m кількість рядків матриці, n кількість стовпців матриці, f(i,j) закон утворення елемента, який знаходиться на перетині i-го рядка та j-го стовпця:

$$a(i,j) := i^2 + j^3 - 5$$

$$M := matrix(2,3,a) = \begin{pmatrix} -5 & -4 & 3 \\ -4 & -3 & 4 \end{pmatrix}$$

Відносним недоліком цього способу ϵ те, що значення параметрам i, j надаються, починаючи з нуля (функція ORIGIN у даному випадку не ді ϵ).

б) з допомогою вказання діапазону зміни індексів числа рядків та стовпців і задання формули загального члена:

$$k := 1..3$$
 $\frac{1}{1..2} := 1..2$

$$B_{k,1} := k \cdot 1 + 1$$

$$B = \begin{pmatrix} 2 & 3 \\ 3 & 5 \\ 4 & 7 \end{pmatrix}$$

2. Повідомлення завдань для самостійного розв'язування, виконання студентами цих завдань із консультацією викладача (55 хв.)

Завдання для самостійного виконання:

- 1. Обчислити визначник:
 - 1) безпосередньо;
 - **2)** розкладом за елементами i-го рядка або j-го стовпця

$$\Delta_4 = \begin{vmatrix} 1 & n-7 & 1-n & 0 \\ -1 & -2 & 0 & n \\ 0 & 1 & -2 & 3 \\ n-10 & n+5 & 4 & 0 \end{vmatrix},$$

9

n - порядковий номер студента у списку групи, i, j див у табл. 1.

$\mathcal{N}\!$	вхідні дані	$\mathcal{N}\!$	вхідні дані
n		n	
1	i = 1	11	i = 2
2	j=1	12	j = 2
3	i = 2	13	i=3
4	j=2	14	j=3
5	i = 3	15	i = 4
6	j=3	16	j = 4
7	i = 4	17	i = 1
8	j = 4	18	j=1
9	i = 1	19	i = 2
10	<i>j</i> = 1	20	j=2

☑ Завдання 1 оцінюється в 0,4 бала.

- **2.** Для матриць $A_{4\times 3}=(a_{ij})_{i\in\overline{1,4};\ j\in\overline{1,3}}$ та $B_{3\times 4}=(b_{kl})_{k\in\overline{1,3};l\in\overline{1,4}}$ знайти:
 - **1)** $\alpha A + \beta B^{T} (B^{T} = B^{*} \text{матриця, транспонована до матриці } B);$
 - **2)** добутки AB та BA і пересвідчитись, що $AB \neq BA$;

2) добутки
$$AB$$
 та BA г пересвідчитись, що $AB \neq BA$,

3) матрицю C^{-1} , де $C = \begin{pmatrix} 2 & 0 & n-25 \\ n+1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$; виконати перевірку: $C^{-1}C = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$

 $=CC^{-1}=E$, де E - одинична матриця відповідного порядку;

4) перевірити рівність $(AB)^T = B^T A^T$.

Таблиия 2

	Таолиця 2		
$\mathcal{N}\!$	вхідні дані	$N_{\!$	вхідні дані
1	$a_{i,j} = 2i - 3j + 5, b_{k,l} = k^2 - 3l + 1;$	11	$a_{i,j} = i^2 + j^3, b_{k,l} = k - 2l + 5;$
	$\alpha = 2$, $\beta = -3$		$\alpha = -5$, $\beta = -3$
2	$a_{i,j} = i - 4j + 6, b_{k,l} = 2k^3 + l - 2;$	12	$a_{i,j} = i^2 \cdot j - 20, \ b_{k,l} = 2k + 3l;$
	$\alpha = -1, \beta = 2$		$\alpha = 1, \beta = 7$
3	$a_{i,j} = i - 3j + 5, b_{k,l} = k^2 + l^2 - 4;$	13	$a_{i,j} = i + j^2 - 4$, $b_{k,l} = k^2 - 2l$;
	$\alpha = 3$, $\beta = -4$		$\alpha = -8$, $\beta = 3$
4	$a_{i,j} = 3i^2 - 4j + 7, b_{k,l} = k \cdot l - 1;$	14	$a_{i,j} = i^2 + 2j - 3$, $b_{k,l} = k \cdot l - 2k$;
'	$\alpha = -3$, $\beta = 5$		$\alpha = 4$, $\beta = -9$
5	$a_{i,j} = 3i - 4j + 2$, $b_{k,l} = k^2 + l$;	15	$a_{i,j} = 3i^2 - 4j$, $b_{k,l} = k + 5l - 2$;
	$\alpha = 4$, $\beta = -1$		$\alpha = -6$, $\beta = -5$
6	$a_{i,j} = i^2 - 5j + 9$, $b_{k,l} = k - 3l - 2$;	16	$a_{i,j} = 2i^2 + j^2 - 10, b_{k,l} = 5k + 2l;$
	$\alpha = -6$, $\beta = -2$		$\alpha = 7$, $\beta = 4$
7	$a_{i,j} = 2i^2 - 8j + 11, \ b_{k,l} = 2k \cdot l;$	17	$a_{i,j} = 2i^3 + j - 8, b_{k,l} = k \cdot l - 3;$
	$\alpha = -7$, $\beta = 3$		$\alpha = -7$, $\beta = 3$
8	$a_{i,j} = 3i^2 - 4j + 7, b_{k,l} = k \cdot (l-1);$	18	$a_{i,j} = 3i^2 - 4j + 7, b_{k,l} = k \cdot (l-1);$

	$\alpha = 10$, $\beta = -1$		$\alpha = 4$, $\beta = 5$
9	$a_{i,j} = 3i^2 - 8j + 7$, $b_{k,l} = 3k \cdot (l+1)$; $\alpha = -3$, $\beta = -4$	19	$a_{i,j} = 2i - 7j + 1, b_{k,l} = 3k^2 - 2l;$ $\alpha = -2, \beta = 4$
10	$a_{i,j} = 2i^2 - 9j + 12, b_{k,l} = 3k - 2l;$ $\alpha = 2, \beta = -3$	20	$a_{i,j} = i - 2j + 3$, $b_{k,l} = 3k^2 - 5l + 1$; $\alpha = 8$, $\beta = -5$

☑ Завдання 2 оцінюється в *1 бал*.

- **3.** Побудувати матрицю D, виконавши злиття матриць A та B^T із завдання 2 у наступний спосіб: дописати матрицю A справа до матриці B^T (з використанням функції *augment*). Для отриманої матриці D визначити з допомогою спецфункцій:
 - ☑ кількість рядків;
 - ☑ кількість стовпців;
 - ☑ найбільший та найменший елемент;
 - ☑ суму всіх елементів матриці;
 - \square вивести елементи *i*-го рядка (непарні варіанти) або *j*-го стовпця (парні варіанти) (*i*, *j* див. у табл. 3);
 - \square елемент d_{ij} (i,j див. у табл. 3).

Таблиця 3

No n	вхідні дані	No n	вхідні дані
1	i = 1, j = 6	11	i = 3, j = 2
2	i = 2, j = 5	12	i = 4, j = 1
3	i = 3, j = 4	13	i = 1, j = 3
4	i = 4, j = 3	14	i = 2, j = 4
5	i = 1, j = 2	15	i = 3, j = 5
6	i = 2, j = 1	16	i = 4, j = 6
7	i = 3, j = 6	17	i = 1, j = 1
8	i = 4, j = 5	18	i=2, j=2
9	i = 1, j = 4	19	i = 3, j = 3
10	i = 2, j = 3	20	i = 4, j = 4

☑ Завдання 3 оцінюється в 0,6 бала.

3. Підведення підсумків заняття, оголошення домашнього завдання (до 5 хв.)