To 蓝老师:

鉴于这次获得的图片都是分辨率极低的,所以特别做了一次对比试验,提取了不少资料 仅供参考。

不过可惜的是,这次的对比并没有能够提取出比较好的算法。即便如此,我觉得最后几个算法很具有可行性,可在后期考虑使用。

在最后几页附上了现在这个系统的识别情况。

目录

第一章	低清晰度下的头像处理比较	2
第一节	边缘检测方法进行处理	2
第二节	基本图形学方法进行处理(非标准)	4
第三节	光线变化后的识别情况	5
第四节	基本图形学方法进行处理	6
第五节	- 去除亮度区域	8
第二章	现在的成果	10
第一节	· 改进了几个算法:	10
1、 <u></u>	头发、肤色、脸部黑色区域面积,空白行的控制	10
第二节	现在还有的问题: (注意: 这只是第一道的粗检)	12
1、 朋	却部误识严重	12
2 、É	自头发	13
第三章	进一步改进粗检	14
第一节	检测实验	14
第二节	超值法	16
第三节	简单差值极值法	18

第一章 低清晰度下的头像处理比较

第一节 边缘检测方法进行处理

以下是用四大算子进行边缘提取的对比情况,本来还应该有一个高斯算子的,但是由于时间紧迫,加之算法复杂,未能如期做出,尚不知其效果如何。

原图	光线增强	非绝对值双向梯 度扫描	绝对值双向梯度 扫描	纵向梯度平均点 的查找

由上图可看出,效果并不是很明显,耗费了大量的计算,但是效果也许还没有现在的好。

眉毛、眼睛、嘴唇均有明显的标志,即便因为墨镜使眉毛融入眼睛中,但丝毫没有影响 直方图的表示,感觉这在将来应该会是一个比较好的方法。但是提取两个凹点的算法,由于 学识能力有限,未能想出。

第二节 基本图形学方法进行处理(非标准)

原图	光线增强	横向亮度直方图 分析	非绝对值双向梯 度扫描	绝对值双向梯度 扫描	纵向梯度平均点 的查找
30X42) W	/支1月1曲	3-13H	的直找
28X32					
26X35					
28X35					
29X37	不过长业生和	去	三面方金数亚基内	4.样丰 。	
	,不过后来发现	有一些瑕疵,在加	后面有重新采集的	的样表,此表废弃	50

第三节 光线变化后的识别情况

	正常	略强光	强光	逆光	严重逆光
原图					
提取脸部	The state of the s				The same
灰度化	E ST	150	1000	200	
亮度增强	30				
备注	由于角度的 移,应引起重视	不一,导致的脸		息缺失	可导致的特征信 (4.)

PCA 算法虽好,但是为他做些预处理提高准确度是必不可少的一个部分。这个相信会有不少的参考价值。

亮度增强可以说是发挥了很好的作用,但是上面提到的两点,也是不可忽视的问题。

第四节 基本图形学方法进行处理

原图	光线增强	横向亮度直方图	非绝对值双向梯	绝对值双向梯度	纵向梯度平均点
		分析	度扫描	扫描	的查找
30X42					
26X33					
33X43					
52X67					
33X43	S. S.				

此对比图,感觉似乎并不能说明太多的问题,不过可以说明低分辨率的时候,找脸将会是件非常困难的事情。

第五节 去除亮度区域

原图 39X50	光线增强	横向亮度直方	非绝对值双向	绝对值双向梯	纵向梯度平均
		图分析	梯度扫描	度扫描	点的查找
1					

此方法似乎不胜有效,只好将其忽视了。

第二章 现在的成果

第一节 改进了几个算法:

1、头发、肤色、脸部黑色区域面积,空白行的控制

现在有四个控制参数:

参数	说明	预定值
头发面积百分比 (第一排)	已考虑额头问题,取的不止橘黄色区域的部分	60
脸部黑斑百分比 (第二排)	脸上只有眼睛鼻子嘴巴等部分为暗色,故不大	50
脸部肤色百分比 (第三排)	保证脸部的真实性	50
空白肤色行百分比(隐藏)	未成形的脸部区域,不要	30

上面梯度取的5,才能找出人脸来。

但是距离远了过后,看不清人脸的,故无法找出人脸来。情况如下:

距离远时 无法找到 略为靠近时 粗检通过

即将通过摄像头时通过粗检并找到脸

2、改进了肤色区域的查找

使用了局部腐蚀算法,使手臂等其他类似肤色区域的干扰不成为问题。

第二节 现在还有的问题: (注意: 这只是第一道的粗检)

1、脚部误识严重

毕竟是粗检,未进行细致形状的分析。

2、白头发

因为认为头发部分是黑色的,故白头人很难识别。 当然下面情况也有:

走近了过后, 出现在额头部分的阴影, 误认为是头发部分了。

第三章 进一步改进粗检

第一节 检测实验

非脸部直方图分析		脸部直方图分析
	左面这幅,其 实从某些方面 来说,还真的 有些像人脸。	

此方法主要考虑到误识别的主体是腿部,腿部的大部分情况应该都是几条平行线。故得出来的直方图应该是相对比较平滑的,基于此考虑,研究以下算法。

第二节 超值法

超值 数	非脸部直方图分析	超值 数 数	脸部直方图分析
4		38	
0		15	
41		10	
0		5	
4		27	
0		21	

阈值设为 15 的直方图超值分析。即超过平均值阈值大小的行数。 注: 这种方法并非最好的,但是时间有限,暂时使用此法。更好的解决的方法应该是求极值 点。

亮度直方图:将每行的亮度加起来总和,本程序使用了非线性运算,使亮度部分得到了更大的突出。

第三节 简单差值极值法

以上结果是阈值设为3的实验结果,从数据上可以很容易看出,效果显著,可以在完全不影响脸部检测率的前提下很好的去掉部分非脸部分。很好的利用了手臂及腿部的形状性质,值得推广使用。

第四节 问题的出现

以上图片都是进行了缩放操作的,但是实际使用中发现以比较现实的问题,使用.Net 中内置的图像类进行缩放操作会使速度变得异常的慢,由此想出来了两个策略:

- 1、使用插值算法,将图片用自己的算法进行扩大。
- 2、将就现有大小,进行算法上的优化。