

PKPD: Transmucosal and Gastrointestinal Absorption

17 March 2020

Outline

- Background and Motivation
- Oral Transmucosal Model
 - Overview
 - Physicochemical Inputs
 - Demo and Results
- Gastrointestinal Model
 - Overview
 - Model Equations
 - Physicochemical Inputs
 - Demo and Results
- Future Work

RA

Background

- Transmucosal Drug Administration
 - Transmucosal route offers advantages over GI absorption for some drugs
 - Mouth more favorable environment than GI
 - Less acidic than stomach^[1]
 - Lower chance of enzymatic degradation^[2]
 - More efficient entry to systemic circulation compared to GI
 - Avoid first-pass metabolism^[1]
 - Sub-lingual area is rich in capillaries, leading to rapid systemic uptake^[2]
 - Oral Transmucosal Fentanyl Citrate (OTFC) as model substance
 - Approved for treatment of break-through cancer pain for opioid-tolerant patients in 1998^[3]
 - Added as battlefield analgesia option to Tactical Combat Casualty Care (TCCC) guidelines in 2004^[4]
 - 2014 TCCC guidelines recommend OTFC as preferable to morphine in treating moderate to severe pain^[4]
 - OTFC has similar analgesic effect as morphine with shorter onset time to relief
 - Does not require IV access to patient
 - For these reasons, Prolonged Field Care project has great interest in an OTFC model
- Gastrointestinal Drug Administration
 - Required for OTFC: Swallowed fentanyl (about 75% of dose^[5]) is absorbed in GI^[3]
 - Prolonged Field Care Project: Support for orally administered antibiotics
 - Preferred route for many drugs
 - Fills a gap in BioGears PKPD model

OTFC: Model Overview

Saliva $V = 1.0 \, mL$ $Q_{swallow} = 0.5 \text{ mL/min}$ C_{s} C_{11} C_{B1} $C_{B1,u}$ Sublingual Buccal $SA = 25 \text{ cm}^2$ $SA = 60 \text{ cm}^2$ L = 110 µm h = 18.3 μm $L = 450 \mu m$ Lamina Propria $Q_R = 15 \text{ mL/min}$ $h = 75 \mu m$ $Q_{R} = 120 \text{ mL/min}$

- Model considers absorption through buccal and sublingual regions
 - Buccal (cheek), sublingual, and top of tongue comprise ~60% of oral mucosal surface area^[3]
 - Buccal and sublingual regions are most permeable areas (best target for drug delivery) $^{[3]}$
 - Two regions preferable because speed of absorption differs due to their disparate thicknesses
- Estimates for buccal and sublingual properties obtained from ranges reported in [2, 6-7]

- Calculate diffusion across layers using central finite difference approximations (six layers considered^[6])
- Assumptions
 - Solid drug dissolves according to Nernst-Brunner equation^[8-9]
 - Concentration in saliva and unbound concentrations in top layers are in instantaneous equilibrium^[6]
 - Partitioning between unbound drug and protein-bound drug occurs in each region^[6]
 - · Unbound drug is available for diffusion
 - Rate of swallowing is constant
 - Perfusion-limited diffusion between bottom sublingual/lamina and buccal/lamina interfaces

OTFC: Physicochemical Considerations

- Goal: Use physicochemical relationships so that model can be extended to numerous substances
- Reality: Tune parameters where necessary to achieve satisfactory fentanyl pharmacokinetics
- Drug dissolution in saliva
 - General Nernst-Brunner equation^[9,8]: $\frac{dm_{dis}}{dt} = \frac{SA(t) \cdot D_{sal}}{\delta} \cdot \left(Sol \frac{m_{dis}(t)}{V_{saliva}}\right)$
 - Simplification for spherical particles^[19,11,Parrot]: $\frac{dm_{dis}}{dt} = \frac{3 \cdot m_s(t) \cdot D_{sal}}{r \cdot \rho \cdot \delta} \cdot \left(Sol \frac{m_{dis}(t)}{V_{saliva}}\right)$
 - Assumes that particle radius is constant during dissolution process
 - Estimate for diffusion coefficient^[19]: $D_{sal} = (9.9 \cdot 10^{-5}) \cdot MW^{-0.453}$
- Drug diffusion through mucosa^[6]

•
$$D_{muc} = \begin{cases} 10^{-0.08023 \cdot (logD)^2 + 0.5006 \cdot logD - 6.7316} & logD \le 3 \\ 10^{-5.9514} & logD > 3 \end{cases}$$

- Saliva : Epithelium partition coefficient^[6]
 - $K = 2.12 \cdot e^{0.523 \cdot logD}$

Symbol	Unit	Value	Description		
State Variables					
m _{dis}	ug		Dissolved drug mass		
SA	cm ²		Surface area		
m_s	ug		Remaining solid drug mass		
Physicochemical Parameters (Fentanyl)					
Sol	ug/mL	200	Solubility coefficient ^[10]		
logD		4.05	Log of distribution coefficient at pH = 7.4 ^[12]		
MW	g/mol	336.5	Molecular weight		
ρ	ug/mL	1.1 x 10 ⁶	Drug density ^[10]		
Parameters Derived from Physicochemical Data					
D _{muc}	cm ² /s	1.1 x 10 ⁻⁶	Diffusion coefficient in mucosa		
K _P		19	Saliva : Epithelium Partition		
Tuned Parameters					
D _{sal}	cm²/s	8.0 x 10 ⁻⁶	Diffusion coefficient in saliva		
r	cm	5.0 x 10 ⁻⁴	Particle radius ^[11]		
δ	cm	3.0 x 10 ⁻³	Diffusion layer thickness ^[11]		
V_{sal}	mL	1.0	Volume of saliva ^[6]		

Demo: OTFC Action Initiation

- Transmucosal drug administration utilizes the BioGears SubstanceOralDose action
- Demonstration: 800 µg dose of OTFC
 - Recommended dose in TCCC guidelines^[4]

Demo: OTFC Results

- Literature data obtained from [20]
- Observations
 - Characterizes C_{max} and T_{max} well
 - Captures existence of a second local maximum stemming from gastrointestinal absorption of swallowed fentanyl
 - Timing of second peak is delayed—absorption of fentanyl in GI is slower than expected

. All rights reserved. Applied Research Associates, Inc

OTFC: Demo Results

- Solid fentanyl dissolves in about 30 min (about 2x that reported in some studies)^[21]
- Saliva concentration peaks in <10 min
- Diffusion wave through sublingual and buccal (next slide) mucosa clearly visible

OTFC: Demo Results

GI Absorption: Model Overview

- Advanced Compartment and Transit (ACAT) model based on [11,13-14]
- Assumptions
 - Solid formulations enter in solid portion of stomach compartment
 - Swallowed transmucosal drug enters in dissolved portion of stomach compartment
 - Transit constants (k_{TN}) are identical for solid and dissolved portions
 - Some drug is metabolized in the enterocyte layer of the intestines
 - Perfusion-limited diffusion between enterocyte layer and portal vein according to gut partition coefficient calculated by BioGears

the 2020 All rights received Annied Recearch Accordates Inc.

GI Absorption: Equations

• Mass balance for the nth compartment

Solid Drug				
Influx	$k_{T,n-1}m_{s,n-1}$	Note: Stomach has no influx term. Initial solid mass in stomach set to value of dose for oral drug admin		
Dissolution	$-rac{3 \cdot m_{n,s} \cdot D_{sal}}{r \cdot ho \cdot \delta} \cdot \left(Sol - rac{m_{d,n}}{V_n} ight)$	Note: m_s = solid drug mass, m_d = dissolved drug mass		
Efflux to next compartment	$-k_{T,n}m_{s,n}$			

Dissolved Drug				
Influx	$k_{T,n-1}m_{d,n-1}$	Note: Stomach influx term is $k_{swallow} m_{swallow}$ when transmucosal drug given, else 0		
Dissolution	$\frac{3 \cdot m_{n,s} \cdot D_{sal}}{r \cdot \rho \cdot \delta} \cdot \left(Sol - \frac{m_{d,n}}{V_n}\right)$			
Efflux to next compartment	$-k_{T,n}m_{d,n}$			
Efflux to enterocyte	$-P_n \cdot SA \cdot f_u \cdot \left(\frac{m_{d,n}}{V_n} - \frac{m_{e,n}}{V_{e,n}}\right)$	Note: f_u = fraction of drug that is un-ionized, $m_{e,n}$ = mass in enterocyte layer		

Enterocyte Layer				
Influx from compartment	$P_n \cdot SA \cdot f_u \cdot \left(\frac{m_{d,n}}{V_n} - \frac{m_{e,n}}{V_{e,n}}\right)$			
Metabolism	$-k_{met}m_{\mathrm{e},n}$			
Efflux to portal vein	$-f_B \cdot Q_B \cdot \left(\frac{1}{K_{gut}} \cdot \frac{m_{e,n}}{V_{e,n}} - C_{portal} \right)$	Note: f_B = fraction of total villous blood flow that goes to n^{th} compartment. Assumed to be 1/8 (that is, equally distributed flow to all 8 enterocyte compartments)		

Parameter Values: Transit constants (k_{T,n}), surface areas (SA), compartment volumes (V_n) and enterocyte volumes (V_e) as in [11]

•

GI Absorptions: Physicochemical Considerations

- Fraction Un-ionized^[15]
 - Base: $f_{u,base} = \frac{1}{1 + 10^{pKa pH}}$
 - Acid: $f_{u,acid} = \frac{1}{1+10^{pH-pKa}}$
 - Zwitterion: Requires information regarding substance microconstants (See [16-17] for procedure regarding Moxifloxacin)
 - pH estimate for each intestinal segment obtained from [11]
- Effective Permeability (P_n)^[15]

$$P_n = (3.67 \cdot 10^{-5}) log P + (3.45 \cdot 10^{-5}) f_u - (1.04 \cdot 10^{-7}) MW - (5.48 \cdot 10^{-6}) H - (3.67 \cdot 10^{-5}) PSA + 1.46 \cdot 10^{-4} + 1.4$$

- H = Hydrogen bond count
- PSA = Polar surface area
- Solubility
 - Set to substance value in water
 - Plan to incorporate pH and bile salt effects in future release (See [11,18-19])
- Metabolism
 - Tuned for fentanyl to improve plasma profile
 - Set to 0 for other substances until values can be determined (if necessary)

Demo: Action Initiation

- Like Transmucosal action, Gastrointestinal drug administration utilizes the BioGears SubstanceOralDose
- Demonstration: Moxifloxacin 400 mg
 - Chosen because MFX was a model substance during infection and antibiotic model development

Moxifloxacin: Demo Results

- Left: 12-hr plasma profile (Literature data obtained from [22])
- Center and Right: Dissolution in stomach over first 30 minutes
- Observations
 - Characterizes C_{max} well
 - T_{max} occurs early—though other studies have reported peak concentrations occuring between 1.5-1.75 hrs^[23-24]

Moxifloxacin: Demo Results

Dissolved mass in intestinal lumen compartments (all units = mg)

Future Work

- Expand library of validated oral substances
 - Technically, any BioGears substance can be administered orally
 - Only Moxifloxacin has had oral pharmacokinetics validated to this point
 - Investigate new substances that can feasibly be added to BioGears now that oral admin option exists
- Re-visit substance solubility in GI
 - Introduce pH effects
 - Introduce bile salt effects
- Generalize transmucosal model
 - Possible extension to other drugs administered via this route

Acknowledgments

- BioGears Team
 - Steven White
 - Austin Baird
 - Jenn Carter
 - Nathan Tatum
 - Lucas Marin

References

- 1. Begum, N., Hearnden, V., Okrinya, A., Reddyhoff, D., Richardson, G., Ward, J., and Whittaker, R. Mathematical Modeling of Transmucosal Drug Delivery. http://www.maths-in-medicine.org/uk/2012/transmucosal-drug-delivery/
- 2. Patel, V. F., Liu, F., and Brown, M. B. (2011). Advances in oral transmucosal drug delivery. Journal of controlled release, 153(2), 106-116.
- 3. Zhang, H., Zhang, J., and Streisand, J. B. (2002). Oral mucosal drug delivery. Clinical pharmacokinetics, 41(9), 661-680.
- 4. Butler, F. K., Kotwal, R. S., Buckenmaier 3rd, C. C., Edgar, E. P., O'Connor, K. C., Montgomery, H. R., ... and Gross, K. R. (2014). A triple-option analgesia plan for tactical combat casualty care: TCCC guidelines change 13-04. J Spec Oper Med, 14(1), 13-25
- 5. ACTIQ (oral transmucosal fentanyl citrate). Food and Drug Administration. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/020747s043s044lbl.pdf
- 6. Xia, B., Yang, Z., Zhou, H., Lukacova, V., Zhu, W., Milewski, M., and Kesisoglou, F. (2015). Development of a novel oral cavity compartmental absorption and transit model for sublingual administration: illustration with Zolpidem. The AAPS journal, 17(3), 631-642.
- 7. Sattar, M., Sayed, O. M., and Lane, M. E. (2014). Oral transmucosal drug delivery—current status and future prospects. International journal of pharmaceutics, 471(1-2), 498-506.
- 8. Siepmann, J. and Siepmann, F. (2013). Mathematical modeling of drug dissolution. International journal of pharmaceutics, 453(1), 12-24
- 9. Sugano, K., Okazaki, A., Sugimoto, S., Tavornvipas, S., Omura, A., and Mano, T. (2007). Solubility and dissolution profile assessment in drug discovery. Drug metabolism and pharmacokinetics, 22(4), 225-254.
- 10. Roy, S. D. and Flynn, G. L. (1988). Solubility and related physicochemical properties of narcotic analgesics. Pharmaceutical research, 5(9), 580-586.
- 11. Yang, X., Duan, J., and Fisher, J. (2016). Application of physiologically based absorption modeling to characterize the pharmacokinetic profiles of oral extended release methylphenidate products in adults. *PloS one*, 11(10), e0164641
- 12. Fentanyl. https://pubchem.ncbi.nlm.nih.gov/
- 13. Almukainzi, M., Lukacova, V., and Löbenberg, R. (2014). Modelling the absorption of metformin with patients post gastric bypass surgery. J Diabetes Metab, 5(353), 2.
- 14. Kimura, T. and Higaki, K. (2002). Gastrointestinal transit and drug absorption. Biological and Pharmaceutical Bulletin, 25(2), 149-164
- 15. Wolk, O., Markovic, M., Porat, D., Fine-Shamir, N., Zur, M., Beig, A., and Dahan, A. (2019). Segmental-Dependent Intestinal Drug Permeability: Development and Model Validation of In Silico Predictions Guided by In Vivo Permeability Values. *Journal of pharmaceutical sciences*, 108(1), 316-325.
- 16. Langlois, M. H., Montagut, M., Dubost, J. P., Grellet, J., and Saux, M. C. (2005). Protonation equilibrium and lipophilicity of moxifloxacin. Journal of pharmaceutical and biomedical analysis, 37(2), 389-393.
- 17. Kłosińska-Szmurło, E., Grudzień, M., Betlejewska-Kielak, K., Pluciński, F. A., Biernacka, J., and Mazurek, A. P. (2014). Physico-chemical properties of lomefloxacin, levofloxacin and moxifloxacin relevant to Biopharmaceutics Classification System. *Acta Chimica Slovenica*, 61(4), 827-834.
- 18. Avdeef, A., Fuguet, E., Llinàs, A., Ràfols, C., Bosch, E., Völgyi, G., ... and Takács-Novák, K. (2016). Equilibrium solubility measurement of ionizable drugs–consensus recommendations for improving data quality. ADMET and DMPK, 4(2), 117-178
- 19. Ando, H., Hisaka, A., and Suzuki, H. (2015). A new physiologically based pharmacokinetic model for the prediction of gastrointestinal drug absorption: translocation model. *Drug Metabolism and Disposition*, 43(4), 590-602.
- 20. Streisand, J. B., Busch, M. A., Egan, T. D., Smith, B. G., Gay, M., and Pace, N. L. (1998). Dose proportionality and pharmacokinetics of oral transmucosal fentanyl citrate. Anesthesiology: The Journal of the American Society of Anesthesiologists, 88(2), 305-309.
- 21. Kim, K. S., and Simon, L. (2011). Transport mechanisms in oral transmucosal drug delivery: Implications for pain management. Mathematical biosciences, 229(1), 93-100.
- 22. Stass, H., Dalhoff, A., Kubitza, D., and Schühly, U. (1998). Pharmacokinetics, safety, and tolerability of ascending single doses of moxifloxacin, a new 8-methoxy quinolone, administered to healthy subjects. *Antimicrobial agents and chemotherapy*, 42(8), 2060-2065.
- 23. Stass, H., Rink, A. D., Delesen, H., Kubitza, D., and Vestweber, K. H. (2006). Pharmacokinetics and peritoneal penetration of moxifloxacin in peritonitis. Journal of antimicrobial chemotherapy, 58(3), 693-696
- 24. Sullivan, J. T., Woodruff, M., Lettieri, J., Agarwal, V., Krol, G. J., Leese, P. T., ... and Heller, A. H. (1999). Pharmacokinetics of a once-daily oral dose of moxifloxacin (Bay 12-8039), a new enantiomerically pure 8-methoxy quinolone. *Antimicrobial agents and Chemotherapy*, 43(11), 2793-2797

