CALDERÓN'S COMPLEX INTERPOLATION METHOD

EMPTY

Contents

- 1. Calderón's complex interpolation method (Due to Alberto Calderón)
 - 1. CALDERÓN'S COMPLEX INTERPOLATION METHOD (DUE TO ALBERTO CALDERÓN)

In this section, we will try to show that

$$\mathcal{F}(L^p(\Omega)) \subseteq L^q(\Omega) \quad \text{for } 1 \le p \le 2, \ \frac{1}{p} + \frac{1}{q} = 1$$
 (1.1)

1

under the help of complex interpolation method. Surprisingly, this method stems from a theorem in complex analysis, call the three-lines theorem.

Theorem 1.1 (Three lines theorem, due to Hadamard). Let

$$\Omega := \{ z \in \mathbb{C} : 0 < \text{Re} < 1 \}$$

 $E:Banach\ space$

 $f:\overline{\Omega}\longrightarrow E$ is bounded, continuous, and $f|_{\Omega}$ is holomorphic.

For $0 < \theta < 1$, define

$$M_{\theta}(f) := \sup_{t \in \mathbb{R}} \|f(r+it)\| < +\infty,$$

then

$$M_{\theta}(f) \leq \left(M_0(f)\right)^{\theta} \left(M_1(f)\right)^{1-\theta}.$$

This is equivalent to say, the function

$$[0,1] \longrightarrow \mathbb{R} \qquad \theta \longmapsto \log M_{\theta}(f)$$

is convex.

Remark 1.2. We say $f: \Omega \longrightarrow E$ is **holomorphic** if f satisfies Riemann-Cauchy equation. Equivalently, $f: \Omega \longrightarrow E$ is holomorphic if for any $\phi \in E'$, the composition

$$\Omega \stackrel{f}{\longrightarrow} E \stackrel{\phi}{\longrightarrow} \mathbb{C}$$

is holomorphic.

The proof use the Phragmén–Lindelöf method. Before the proof, let me recall the maximum principle.

Theorem 1.3 (Maximum principle for holomorphic functions). Let Ω be a bounded open subset of \mathbb{C} , $f:\overline{\Omega} \longrightarrow \mathbb{C}$ be continuous and holomorphic (in Ω). Then for any $z \in \overline{\Omega}$,

$$||f(z)||_E \le \sup_{w \in \partial\Omega} |f(w)|.$$

Proof of Theorem 1.1, by Phragmén-Lindelöf method.

Date: May 21, 2023.

2 EMPTY

<u>Step 1</u>. Prove the theorem for $E = \mathbb{C}$, $M_0(f) = M_1(f) = 1$ case. In this case, we need to show $|f(z)| \le 1$ for any $z \in \Omega$.

<u>Idea</u>: introduce a multiplicative factor $e^{\frac{z^2-1}{n}}$ to "subdue" the growth of f, so that we can use maximal principle to get the bound.

Let $f_n(z) := e^{\frac{z^2-1}{n}} f(z)$, then there exists R > 0 (depend on n), such that

$$|f_n(z)| \le 1$$
 for $z \in \overline{\Omega}$, $|\operatorname{Im} z| \ge R$.

By the maximal principle for $\{z \in \overline{\Omega} : |\operatorname{Im} z| \leq R\},\$

$$|f_n(z)| \le 1$$
 for $z \in \overline{\Omega}$, $|\operatorname{Im} z| \le R$.

Therefore, $||f_n|| \le 1$. As a result,

$$|f(z)| = \lim_{n \to \infty} |f_n(z)| \le 1.$$

Step 2. Prove the theorem for $E = \mathbb{C}$ case.

Define

$$g: \overline{\Omega} \longrightarrow \mathbb{C}$$
 $g(z) := M_0(f)^{z-1} M_1(f)^{-z} f(z),$

and apply g to Step 1.

Step 3. General case.

For $\phi \in E'$, $\|\phi\|_{E'} \leq 1$, define $h_{\phi} := \phi \circ f$:

$$h_{\phi}: \overline{\Omega} \xrightarrow{f} E \xrightarrow{\phi} \mathbb{C},$$

then

$$|h_{\phi}(z)| = |\phi(f(z))| \le ||\phi||_{E'} ||f(z)||_E \le ||f(z)||_E.$$

Apply h_{ϕ} to Step 2, we get

$$|h_{\phi}(z)| \le M_0(h_{\phi})^{\theta} M_1(h_{\phi})^{1-\theta} \le M_0(f)^{\theta} M_1(f)^{1-\theta}$$
 for any $z \in \overline{\Omega}$, Re $z = \theta$,

so

$$||f(z)||_E = \sup_{\substack{\phi \in E' \\ ||\phi|| \le 1}} |\langle \phi, f(z) \rangle| = \sup_{\substack{\phi \in E' \\ ||\phi|| \le 1}} |h_{\phi}(z)| \le M_0(f)^{\theta} M_1(f)^{1-\theta}.$$

Somewhat surprising, Theorem 1.1 offers us a way to construct "a continuous deformation between two Banach spaces". Intuitively, these intermediate spaces must lie in the sum of these two Banach spaces. First, we try to give a norm to this ambiance space.

Proposition 1.4. Let E_0 , E_1 be two Banach spaces contained in some topological vector space V.??? Then $E_0 \oplus E_1$ is a Banach space with norm

$$||(x,y)|| = ||x||_{E_0} + ||y||_{E_1},$$

 $E_0 \oplus E_1$ is a Banach space with norm

$$||x+y|| = \inf_{\xi \in E_0 \cap E_1} \{ ||x+\xi||_{E_0} + ||y-\xi||_{E_1} \}.$$

Proof. Conditions on norm are relatively easy to check, but I don't know how to show completeness.

Lemma 1.5. The injection $j: E_0 \hookrightarrow E_0 + E_1$ is continuous of norm ≤ 1 .

Proof. We have the estimation

$$||x+0||_{E_0+E_1} = \inf_{\xi \in E_0 \cap E_1} \{||x+\xi||_{E_0} + ||-\xi||_{E_1}\} \le ||x||_{E_0}.$$

Warning 1.6. The injection j may be not topological embedding, i.e., $E_0 \hookrightarrow \operatorname{Im} j$ may be not homeomorphism.

Definition 1.7 (Interpolation spaces). For two Banach spaces E_0 , E_1 contained in some vector

$$\mathcal{H} := \mathcal{H}(E_0, E_1) := \left\{ f : \overline{\Omega} \longrightarrow E_0 + E_1 \middle| \begin{array}{l} f \ \textit{is continuous and bounded} \\ f|_{\Omega} \ \textit{is holomorphic} \\ f(\textit{it}) \in E_0, \ f(1+\textit{it}) \in E_1, \ \textit{for any } t \in \mathbb{R} \end{array} \right\}$$

to be the Banach space with norm

$$||f||_{\mathcal{H}} := \max(M_0(f), M_1(f)) = |||f|||_{\infty}.$$

For $0 < \theta < 1$, define the interpolation space

$$E_{\theta} := [E_0, E_1]_{\theta} := \mathcal{H}(E_0, E_1) / \{ f \in \mathcal{H} : f(\theta) = 0 \},$$

i.e., the image of the map

$$\operatorname{ev}_{\theta}: \mathcal{H}(E_0, E_1) \longrightarrow E_0 + E_1 \qquad f \longmapsto f(\theta).$$

Notice that we only take the norm of E_{θ} as the residue norm of \mathcal{H} , instead of the subspace norm of $E_0 + E_1$.

Question 1.8. Are these two norms the same norm?

Remark 1.9. It is natural to set $\theta = 0$, and guess $[E_0, E_1]_0 = E_0$, but this is false in general. Consider $E_0 = \mathbb{C}, E_1 = 0$, then

$$\mathcal{H}(E_0, E_1) = 0 \implies [E_0, E_1]_{\theta} = 0 \text{ for any } \theta.$$

Here we list some immediate properties of the interpolation spaces.

Lemma 1.10. $[E_0, E_1]_{\theta} = [E_1, E_0]_{1-\theta}$.

Lemma 1.11. For $\xi \in [E_0, E_1]_{\theta}$,

$$\|\xi\|_{\theta} = \inf_{\substack{f \in \mathcal{H} \\ \bar{f} = \varepsilon}} \left\{ M_0(f)^{1-\theta} M_1(f)^{\theta} \right\}.$$

Proof. For the easy direction,

LHS =
$$\inf_{\substack{f \in \mathcal{H} \\ \bar{f} = \xi}} ||f||_{\mathcal{H}} = \inf_{\substack{f \in \mathcal{H} \\ \bar{f} = \xi}} \left\{ \max \left(M_0(f), M_1(f) \right) \right\} \ge \text{RHS}.$$

To show RHS < LHS, one needs to show that

For $f \in \mathcal{H}$, there exists $g \in \mathcal{H}$, $g(\theta) = f(\theta)$, such that $||g||_{\mathcal{H}} \leq M_0(f)^{1-\theta} M_1(f)^{\theta}$.

Then
$$q(z) := M_0(f)^{z-1} M_1(f)^{-z} f(z)$$
 satisfy the condition. ???

The next theorem gives us a perfect example.

Theorem 1.12 (Riesz-Thorin interpolation theorem). Let (X, \mathcal{A}, μ) be a σ -finite space, $1 \leq p < 1$ $q \leq \infty, \ 0 \leq \theta \leq 1, \ p', \ q'$ be the conjugate indices of $p, \ q$. Let $r \in \mathbb{R}$ such that $\frac{1}{r} = \frac{1-\theta}{p} + \frac{\theta}{q}$, then

$$[L^p(X), L^q(X)]_{\theta} \cong L^r(X)$$

as Banach spaces.

Example 1.13.

When $q = \infty$, $r = \frac{1}{1-\theta} \cdot p$. When $\theta = \frac{1}{2}$, $\frac{2}{r} = \frac{1}{p} + \frac{1}{q}$, (0, p, r, q) is a harmonic range.

Proof. We do the case $q < +\infty$. Let

$$L^0(X) := \{ \text{ measurable functions } \} / \text{ null functions }$$

be an ambiance space, and $f \in L^r(X)$ be a representative (i.e., a function). We need three steps:

4 EMPTY

Step 1. Let $f \in L^r(X)$, construct $\phi \in \mathcal{H}(L^p(X), L^q(X))$ such that $\phi(\theta) = f$.

For this, define

$$\phi:\overline{\Omega}\longrightarrow L^p(X)+L^q(X) \qquad \phi(z)=\frac{f(-)}{|f(-)|}|f(-)|^{r\left(\frac{1-z}{p}+\frac{z}{q}\right)}\,\mathbb{1}_{\{|f|>0\}}\,.$$

We need to verify:

- For a fixed $z, \phi(z) \in L^p(X) + L^q(X)$;
- $\phi \in \mathcal{H}\left(L^p(X), L^q(X)\right)$;
- $\phi(\theta) = f$.

Step 2. For $\phi \in \mathcal{H}(L^p(X), L^q(X))$, show that $\phi(\theta) \in L^r(X)$.

For proving this, we need a fact from the duality theory:

Fact 1.14. Given $h \in L^0(X)$ and r, r' as conjugate indices. If for all simple functions g we have

$$h\cdot g\in L^1,\qquad \int |h\cdot g|d\mu\leq C\cdot \|g\|_{r'},$$

then $h \in L^r$ and $||h||_{L^r} \leq C$.

From this fact, one needs to estimate

$$\int |\phi(\theta) \cdot g| d\mu \le C \cdot ||g||_{r'}$$

for any simple function g. Now fix g, define

$$\begin{split} \psi: \overline{\Omega} &\longrightarrow L^{p'}(X) + L^{q'}(X) \qquad \psi(z) = \frac{g(-)}{|g(-)|} |g(-)|^{r'} \left(\frac{1-z}{p'} + \frac{z}{q'}\right) \mathbbm{1}_{\{|g| > 0\}} \\ H: \overline{\Omega} &\longrightarrow \mathbb{C} \qquad \qquad H(z) := \int_{L^1} \phi(z) \psi(z) d\mu. \end{split}$$

???

Step 3. For
$$\xi \in [L^p(X), L^q(X)]_{\theta}$$
, show that $\|\xi\|_{\theta} = \|\xi\|_{L^r}$.

Finally, we state the main theorem of this section. The inclusion 1.1 is a natural corollary of Theorem 1.15.

Theorem 1.15 (Abstract Riesz-Thorin). Given E_0 , E_1 ; F_0 , F_1 two pairs of Banach spaces as before????, $0 < \theta < 1$. Suppose $T : E_0 + E_1 \longrightarrow F_0 + F_1$ is linear with

$$T(E_0) \subseteq F_0, \quad T(E_1) \subseteq F_1,$$

then

$$T([E_0, E_1]_{\theta}) \subseteq [F_0, F_1]_{\theta}.$$

Moreover, if $T|_{E_0}$, $T|_{E_1}$ are bounded, then $T|_{E_{\theta}}$ is bounded, and

$$||T||_{\theta} \le ||T||_{0}^{1-\theta} ||T||_{1}^{\theta}.$$

Proof. Let $xi \in [E_0, E_1]_{\theta}$, we need to show $T(\xi) \in [F_0, F_1]_{\theta}$, and give an estimation of $T(\xi)$. For any $\varepsilon > 0$, we choose $f \in \mathcal{H}(E_0, E_1)$, $\bar{f} = \xi$ such that

$$\|\xi\|_{\theta} \le \|f\|_{\mathcal{H}} \le \|\xi\|_{\theta} + \varepsilon.$$

$$\sum_{C} a_i \, \mathbb{1}_{A_i}$$

where all A_i are measurable sets with finite measure.

 $^{^{1}\}mathrm{For}$ simple functions, we mean the function of form

Then
$$T(f) \in \mathcal{H}(F_0, F_1) \ (\Rightarrow T(\xi) \in [F_0, F_1]_{\theta})$$
, and
$$M_0(T(f)) \leq \|T\|_0 M_0(f) \qquad M_1(T(f)) \leq \|T\|_1 M_1(f)$$
$$\Longrightarrow M_{\theta}(T(f)) \leq \|T\|_0^{1-\theta} \|T\|_1^{\theta} M_0(f)^{1-\theta} M_1(f)^{\theta}$$
$$\leq \|T\|_0^{1-\theta} \|T\|_1^{\theta} (\|\xi\|_{\theta} + \varepsilon)$$

Let $\varepsilon \to 0$, we get the bound.

School of Mathematical Sciences, University of Bonn, Bonn, 53115, Germany, $Email\ address:$ email:xx352229@mail.ustc.edu.cn