PROJECT -- Self-driving Car System -- High-level Design

❖ SYSTEM DESCRIPTION

➤ CORE

- Design a system that moves a self-driving car from a starting location to a destination.
 - The system will devise a route for the car to drive.
 - You will accept user inputted destination
 - The current location is known.
- NOTE:
 - Some roads may be one-way.
 - Assume constant speed.
- Your code will command the car to go forward, stop, right and left.
- You will be given a file with the street information to be used to make a route and travel to the inputted destination.

META

- Requirements always have the word "shall" in the sentence.
- Each requirement must have a unique identifier.
- Each requirement is testable.
 - That is if you wrote a test procedure to test a function described in the requirements, your code will either pass or fail the requirement.
 - You shouldn't write a requirement that contains two things to test.
 - ♦ In other words, do not use the word "and" to test two things.
 - ♦ Instead, break it into two requirements.
 - That way you can pass one requirement and fail the other but with the word and, you fail the whole requirement.

■ EXAMPLES:

- Some ways to begin writing a requirement:
 - ♦ The system shall provide the capability to ...
 - ♦ The system shall allow the operator to ...
 - ♦ The system shall limit the number of ...

➤ HIGH-LEVEL DESIGN

- Identify classes with methods
- design a high-level activity diagram for the self-driving car
- design a high-level sequence diagram for the self-driving car

HIGH-LEVEL DESIGN

- ➤ CLASSES
 - Control
 - Interior
 - ♦ Climate Control
 - getCabinTemp()
 - setCabinTemp()
 - Body
 - ♦ Illumination

- getOutsideBrightness()
- setBodyLighting()
- Engine
 - **♦** Emissions
 - selfTest()
 - logResults()
 - warnUser()
- Safety
 - ♦ Active Systems
 - Airbags
 - selfTest()
 - activate()
 - deactivate()
 - deploy()
 - Automatic Emergency Braking
 - selfTest()
 - activate()
 - deactivate()
 - modulate()
 - ➤ Hill-start Assist
 - selfTest()
 - activate()
 - deactivate()
 - modulate()
 - ➤ Lane-change Assist
 - selfTest()
 - activate()
 - deactivate()
 - deploy()
 - ➤ Lane-keep Assist
 - selfTest()
 - activate()
 - deactivate()
 - deploy()
 - ➤ High-speed Steering Assist
 - selfTest()
 - activate()
 - deactivate()
 - deploy()
 - ♦ Sensors
 - Sonar
 - startDataStream()
 - stopDataStream()
 - reset()
 - calibrate()

- Radar
 - startDataStream()
 - stopDataStream()
 - reset()
 - calibrate()
- ➤ LiDar
 - startDataStream()
 - stopDataStream()
 - reset()
 - calibrate()
- Optical
 - startDataStream()
 - stopDataStream()
 - reset()
 - calibrate()
- Wireless
 - Communications
 - ♦ Cellular
 - activate()
 - deactivate()
 - connect()
 - disconnect()
 - reset()
 - ♦ WiFi
 - activate()
 - deactivate()
 - connect()
 - disconnect()
 - reset()
 - ♦ Bluetooth
 - activate()
 - deactivate()
 - connect()
 - disconnect()
 - reset()
 - ♦ Proprietary
 - activate()
 - deactivate()
 - connect()
 - disconnect()
 - reset()
 - Navigation
 - ♦ GPS
 - activate()
 - deactivate()

- connect()
- disconnect()
- reset()
- Sales
 - On-board Entertainment
 - authorizePurchase()
 - Luxury Amenities
 - ♦ selectOptions()
 - ◆ authorizePurchase()
 - Point of Sale
 - ♦ Card Processor
 - authorizePurchase()
 - ♦ NFC
 - authorizePurchase()