Atten-Scope:

A Tool for Interpreting Large Language Model

Dongjae Lee

Code quality has been declining since the language model came out*.

Refactoring poorly

- Refactoring poorly
- Not writing the correct code the first time

• But.. LLMs are black box

Large Language Model

• But.. LLMs are black box

Large Language Model

x Impossible to fix

• But.. LLMs are black box

Large Language Model

- x Impossible to fix
- x Impossible to verify

• But.. LLMs are black box

- x Impossible to fix
- x Impossible to verify

Binary code

- Binary code
 - Utilizing instruction patterns

- Binary code
 - Utilizing instruction patterns
 - Static / Dynamic Analyzer, Decompiler, ...

- Binary code
 - Utilizing instruction patterns
 - Static / Dynamic Analyzer, Decompiler, ...
 - IDA Pro, Ghidra, GDB, ...

- Binary code
 - Utilizing instruction patterns
 - Static / Dynamic Analyzer, Decompiler, ...
 - IDA Pro, Ghidra, GDB, ...
- Language model's prediction

- Binary code
 - Utilizing instruction patterns
 - Static / Dynamic Analyzer, Decompiler, ...
 - IDA Pro, Ghidra, GDB, ...
- Language model's prediction
 - Utilizing calculation patterns (Attention)

- Binary code
 - Utilizing instruction patterns
 - Static / Dynamic Analyzer, Decompiler, ...
 - IDA Pro, Ghidra, GDB, ...
- Language model's prediction
 - Utilizing calculation patterns (Attention)
 - Code input (Structured)

- Binary code
 - Utilizing instruction patterns
 - Static / Dynamic Analyzer, Decompiler, ...
 - IDA Pro, Ghidra, GDB, ...
- Language model's prediction
 - Utilizing calculation patterns (Attention)
 - Code input (Structured)
 - Atten-Scope

Demo

There are lots of tools for visualizing attention

- There are lots of tools for visualizing attention
 - Naïve heatmap using Python

- There are lots of tools for visualizing attention
 - Naïve heatmap using Python
 - BertViz*

- There are lots of tools for visualizing attention
 - Naïve heatmap using Python
 - BertViz*
 - CircuitsViz**

- There are lots of tools for visualizing attention
 - Naïve heatmap using Python
 - BertViz*
 - CircuitsViz**
 - AttentionViz***

Not insightful

- Not insightful
 - Serve noisy information

- Not insightful
 - Serve noisy information
- Too slow

- Not insightful
 - Serve noisy information
- Too slow
 - We cannot analyze large-scale input

- Not insightful
 - Serve noisy information
- Too slow
 - We cannot analyze large-scale input
 - Bad user experience

- Not insightful
 - Serve noisy information
- Too slow
 - We cannot analyze large-scale input
 - Bad user experience
- Not compatible with code data

- Not insightful
 - Serve noisy information
- Too slow
 - We cannot analyze large-scale input
 - Bad user experience
- Not compatible with code data
 - Specialized in vision models

- Not insightful
 - Serve noisy information
- Too slow
 - We cannot analyze large-scale input
 - Bad user experience
- Not compatible with code data
 - Specialized in vision models

- Not insightful
 - Serve noisy information
- Too slow
 - We cannot analyze large-scale input
 - Bad user experience
- Not compatible with code data
 - Specialized in vision models

Insightful

• Attention weight is an intermediate value for the attention algorithm!

- Attention weight is an intermediate value for the attention algorithm!
- Most of the LLMs use attention algorithm!

- Attention weight is an intermediate value for the attention algorithm!
- Most of the LLMs use attention algorithm!

Transformer block

- Attention weight is an intermediate value for the attention algorithm!
- Most of the LLMs use attention algorithm!

Transformer block

def
main
():
\n

To predict the next token of (n):, we need to see fibo as much as 0.5

To predict the next token of (n):, we need to see fibo as much as 0.5

To predict the next token of (n):, we need to see fibo as much as 0.5

Raw attention is noisy

- Raw attention is noisy
- Posting processing removes noise

- Raw attention is noisy
- Posting processing removes noise

- Raw attention is noisy
- Posting processing removes noise

How

- Raw attention is noisy
- Posting processing removes noise

- How
 - 1. Remove null-space component*

- Raw attention is noisy
- Posting processing removes noise

- How
 - 1. Remove null-space component*
 - 2. Consider size of value vector**

- Raw attention is noisy
- Posting processing removes noise

- How
 - 1. Remove null-space component*
 - 2. Consider size of value vector**

What is null space?

 $Ax = 0 \implies x \text{ is null vector}$

• What is null space?

$$Ax = 0 \implies x \text{ is null vector}$$

Null vector: A solution of some linear equation

$$Ax = 0 \implies x \text{ is null vector}$$

- Null vector: A solution of some linear equation
- Null space: Linear combination of solutions

$$Ax = 0 \implies x \text{ is null vector}$$

- Null vector: A solution of some linear equation
- Null space: Linear combination of solutions

$$Ax = 0 \implies x \text{ is null vector}$$

- Null vector: A solution of some linear equation
- Null space: Linear combination of solutions

$$Ax = 0 \implies x \text{ is null vector}$$

- Null vector: A solution of some linear equation
- Null space: Linear combination of solutions

- Qualitative Evaluation
 - Easy to use?

- Qualitative Evaluation
 - Easy to use?
 - Interactive?

- Qualitative Evaluation
 - Easy to use?
 - Interactive?
 - Intuitive?

- Qualitative Evaluation
 - Easy to use?
 - Interactive?
 - Intuitive?
 - Suitable for code?

- Qualitative Evaluation
 - Easy to use?
 - Interactive?
 - Intuitive?
 - Suitable for code?
- Quantitative Evaluation

- Qualitative Evaluation
 - Easy to use?
 - Interactive?
 - Intuitive?
 - Suitable for code?
- Quantitative Evaluation
 - Rendering speed

Usability Interactive Intuitive Suitability

	Usability	Interactive	Intuitive	Suitability
Naive Heatmap	X			X

	Usability	Interactive	Intuitive	Suitability
Naive Heatmap	X	X	X	X
BertViz	0	0	X	X

	Usability	Interactive	Intuitive	Suitability
Naive Heatmap	X	X	X	X
BertViz	O	0	X	X
CircuitsViz	X	0	0	0

	Usability	Interactive	Intuitive	Suitability
Naive Heatmap	X	X	X	X
BertViz	O	O	X	X
CircuitsViz	X	O	0	0
AttentionViz	X	O	0	X

	Usability	Interactive	Intuitive	Suitability
Naive Heatmap	X	X	X	X
BertViz	0	0	X	X
CircuitsViz	X	0	0	0
AttentionViz	X	0	0	X
Atten-Scope	0	0	0	0

	Usability	Interactive	Intuitive	Suitability
Naive Heatmap	X	X	X	X
BertViz	0	0	X	X
CircuitsViz	X	0	O	0
AttentionViz	X	0	O	X
Atten-Scope	O	0	O	O

Average Rendering Speed

Atten-Scope	CircuitsViz
389.7ms	9,275ms

Average Rendering Speed

Atten-Scope	CircuitsViz
389.7ms	9,275ms

Accumulative Attention

- Accumulative Attention
 - Accumulative attention is a view that combines the attention of each layer

- Accumulative Attention
 - Accumulative attention is a view that combines the attention of each layer
 - I expect we can get more intuition from the more compressed info

- Accumulative Attention
 - Accumulative attention is a view that combines the attention of each layer
 - I expect we can get more intuition from the more compressed info
- Comparison View

- Accumulative Attention
 - Accumulative attention is a view that combines the attention of each layer
 - I expect we can get more intuition from the more compressed info
- Comparison View
 - A view that compares two types of attention

- Accumulative Attention
 - Accumulative attention is a view that combines the attention of each layer
 - I expect we can get more intuition from the more compressed info
- Comparison View
 - A view that compares two types of attention
- Information flow view

- Accumulative Attention
 - Accumulative attention is a view that combines the attention of each layer
 - I expect we can get more intuition from the more compressed info
- Comparison View
 - A view that compares two types of attention
- Information flow view
 - A view that shows information flow of each token

Summary

- Atten-Scope is a new tool for interpreting language model
- Atten-Scope visualize refined attention weight
- Refinement techniques
 - Remove null component
 - Consider value vector
- Atten-Scope outperforms compared with previous tools
- https://github.com/duncan020313/Atten-Scope.git
- https://github.com/duncan020313/Atten-Scope-Backend