

Conservadora de Temperatura

Alumno:

Santiago Ferrari

Docente:

Marcelo Castello (EET465)

${\rm \acute{I}ndice}$

Registros de cambios	3
Descripción técnica-conceptual del proyecto a realizar	4
Identificación y análisis de los interesados	4
1. Propósito del proyecto	4
2. Alcance del proyecto	4
3. Supuestos del proyecto	4
5. Entregables principales del proyecto	5
6. Desglose del trabajo en tareas	5
7. Matriz de uso de recursos de materiales	5
8. Presupuesto detallado del proyecto	6
10. Gestión de riesgos	6
11 Castión de la calidad	7

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
0.1	Creación del documento	29/05/2022
0.2	Definición inicial de: proposito, alcance, supuestos, entrega-	06/06/2022
	bles, desglose, recursos, presupuesto y riesgos	

Descripción técnica-conceptual del proyecto a realizar

Relleno

Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organización	Puesto

1. Propósito del proyecto

El proposito del proyecto es crear un recipiente que se capaz de mantener una temperatura previamente asignada por el usuario.

2. Alcance del proyecto

Este proyecto consiste un recipiente capaz de autoregular su temperatura interna a la definida por el usuario. El rango de temperatura es de -5C° a 15C°. Para ello se desarrollarán las siguientes actividades:

- Desarrollo del firmware
- Diseño del circuito y estructura

El presente proyecto no incluye:

• Un rango de temperatura fuera de lo estipulado

3. Supuestos del proyecto

Para el desarrollo del presente proyecto se supone que:

- Conexion a internet para el uso de la configuración remota del sistema.
- Conexión a la Red Eléctrica cada 48hs para la carga de la batería.

5. Entregables principales del proyecto

- Manual de uso
- Conservadora de Temperatura

6. Desglose del trabajo en tareas

- 1. Planificación general. (23hs)
 - 1.1. Definir alcance y presupuesto. (8hs)
 - 1.2. Escritura del proyecto final. (15hs)
- 2. Planificación y desarrollo del circuito electrónico. (32hs)
 - 2.1. Estudio y selección de sensores de temperatura. (2hs)
 - 2.2. Selección y estudio del funcionamiento de las Celdas Peltier. (4hs)
 - 2.3. Investigación de las biblotecas disponibles del microcontrolador seleccionado. (6hs)
 - 2.4. Selección de batería/UPS para la autonomía del circuito. (4hs)
 - 2.5. Desarrollo de la placa PCB del circuito. (20hs)
 - 2.6. Montaje de los componentes en la placa PCB. (2hs)
- 3. Planificación y desarrollo del firmware del circuito. (85hs)
 - 3.1. Estudio de las biblotecas para conectividad WiFi del microcontrolador. (20hs)
 - 3.2. Desarrollo de las funciones de procesamiento de las variables medidas. (5hs)
 - 3.3. Desarrollo de las funciones de configuración. (15hs)
 - 3.4. Desarrollo de las funciones de funcionamiento. (15hs)
 - 3.5. Desarrollo de la web de configuración. (30hs)

Cantidad total de horas: hs

7. Matriz de uso de recursos de materiales

Para el proyecto necesitaremos:

- 4 Netbooks con las utilidades necesarias (VSC, Git, Arduino)
- Red WiFi
- Módulos nodeMCU con microcontroladores ESP8266

8. Presupuesto detallado del proyecto

COSTOS DIRECTOS							
Descripción	Cantidad	Valor unitario	Valor total				
Componentes electrónicos	1	5000	5000				
Cables	1	3500	3500				
SUBTOTAL			8500				

10. Gestión de riesgos

Se describen los riesgos para el desarrollo del proyecto y su plan de mitigación.

a) Identificación de los riesgos y estimación de sus consecuencias:

Riesgo 1: El recipiente seleccionado para la conservadora no este suficientemente aislado, llevando esto a que las celdas peltier se recalienten y se rompan.

- Severidad (S): 10. El riesgo es máximo, puesto que detendría el funcionamiento del equipo.
- Ocurrencia (O): 3. Se asigna esta ocurrencia ya que se realizaran las pruebas necesarias para evitar este problema.

Riesgo 2: Falla del firmware.

- Severidad (S): 7. Este error provocaría un funcionamiento inestable.
- Ocurrencia (O): 8. Se asigna esta ocurrencia debido a la dificultad del desarrollo de firmware.

b) Tabla de gestión de riesgos:

Riesgo	S	О	RPN	S*	O*	RPN*
1. La aislación no es la adecuada	10	3	30	-	-	_
2. Falla de firmware	7	8	56	-	-	-

Criterio adoptado: Se trabajara para mitigar las medidas con un RPN mayor a 40.

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 2: Se trabajara meticulosamente durante el desarrollo de cada una de las funciones del firmware. Se pondra en prueba el sistema durante un período de prueba hasta lograr estabilidad.

- Severidad (S): 7. No se modifica.
- Probabilidad de ocurrencia (O): 3. Con el proceso de pruebas se espera una baja probabilidad de fallas.

11. Gestión de la calidad

Se presentan a continuación los requerimientos con sus verificaciones y validaciones: