Esercizi di Dimostrazione, Scheda 1 3 novembre 2023

Sotto, trovate tre risultati con le relative dimostrazioni. Tali dimostrazioni sono *corrette*, ma non *complete*, perché sottintendono una gran quantità di passaggi. Riscrivete le dimostrazioni rendendole chiare e complete. [*Hint*: Se, rileggendo la vostra dimostrazione, alcune affermazioni che avete scritto vi fanno chiedere *perché?* e questa domanda non trova risposta in quanto avete scritto, probabilmente non avete finito.]

1. Sono equivalenti:

- i) il principio di induzione forte, cioè un sottoinsieme $S \subset \mathbb{N}$ che verifica
 - $0 \in S$,
 - per ogni $k \in \mathbb{N}$, se $\{0, ..., k\} \subset \mathbb{N}$ anche $k+1 \in S$,

è l'intero N;

ii) il principio del minimo, cioè ogni $S \subset \mathbb{N}$ non vuoto ammette un elemento minimo.

Sketch. Supponiamo che valga il principio del minimo e sia $S \subset \mathbb{N}$ come in (i): se per assurdo $T = \mathbb{N} \setminus S$ non è vuoto, sia m il minimo di T. Allora, $m \neq 0$ e $\{0, ..., m-1\} \in S$, e perciò anche $m \in S$, il che è assurdo.

Se invece vale il principio di induzione forte, sia $S \subset \mathbb{N}$ un sottoinsieme privo di minimo, e sia $T = \mathbb{N} \setminus S$. Allora, T è come in (i), per cui S è vuoto.

2. Sia A un gruppo abeliano. Mostrare che, se A ha elementi di ordine \mathfrak{m} e elementi di ordine \mathfrak{n} , ha anche elementi di ordine $\operatorname{lcm}(\mathfrak{m},\mathfrak{n})$.

Sketch. Supponiamo prima gcd(m,n)=1. In tal caso, se $x,y\in A$ hanno ordini m,n rispettivamente, il loro prodotto xy ha ordine mn: certamente l'ordine di xy divide mn; viceversa, da $\langle x\rangle\cap\langle y\rangle=1$ si deduce che l'ordine di xy divide entrambi m ed n, quindi anche mn.

In generale, se le fattorizzazioni di m ed n sono $\mathfrak{m}=\prod_{\mathfrak{i}}\mathfrak{p}_{\mathfrak{i}}^{e_{\mathfrak{i}}}, \mathfrak{n}=\prod_{\mathfrak{i}}\mathfrak{p}_{\mathfrak{i}}^{f_{\mathfrak{i}}}$ rispettivamente, vale $\operatorname{lcm}(\mathfrak{m},\mathfrak{n})=\prod_{\mathfrak{i}}\mathfrak{p}_{\mathfrak{i}}^{g_{\mathfrak{i}}}$, con $\mathfrak{g}_{\mathfrak{i}}$ il massimo tra $e_{\mathfrak{i}},f_{\mathfrak{i}}$. Allora, per ogni \mathfrak{i} , esiste un elemento $z_{\mathfrak{i}}$ di ordine $\mathfrak{p}_{\mathfrak{i}}^{g_{\mathfrak{i}}}$ in $\langle x \rangle$ oppure in $\langle y \rangle$, e $z=\prod_{\mathfrak{i}}z_{\mathfrak{i}}$ ha ordine $\operatorname{lcm}(\mathfrak{m},\mathfrak{n})$.

3. Sia k un numero naturale fissato. Esiste una funzione $f: \mathbb{N} \to \mathbb{N}$ tale che

$$f(f(n)) = n + k \tag{*}$$

per ogni $n \in \mathbb{N}$ se e solo se k è pari.

Sketch. Se k è pari, è facile costruire una tale funzione.

Supponiamo allora k dispari e sia f una tale funzione: da f(f(n)) = n + k si ottiene f(n+k) = f(n) + k, pertanto f è costante sulle classi di resto (mod k), e quindi induce una ben definita funzione $\bar{f}: \mathbb{Z}/k\mathbb{Z} \to \mathbb{Z}/k\mathbb{Z}$. Tale \bar{f} verifica:

- $\bar{f}([i]_k) \neq [i]_k$ per ogni $[i]_k \in \mathbb{Z}/k\mathbb{Z}$ perché f è iniettiva;
- $\bar{f}([i]_k) = [j]_k$ se e solo se $\bar{f}([j]_k) = [i]_k$ per ogni $[i]_k, [j]_k \in \mathbb{Z}/k\mathbb{Z}$, usando (\star) .

Poiché k è dispari, una tale \bar{f} non può esistere, e ciò contraddice l'esistenza di f.