SOLID STATE PHYSICS

Crystal structure, direct lattice & (un) holy grail

(i) Amorphous solid: no order in arrangement of unit of matter (atoms, molecules etc). XRD show "liquid like proporty.

what's "solid"? -> elasticity stress $\sigma = K \frac{\pi}{2}$

$$f = -l^2 K \frac{\alpha}{L}$$
 $\alpha = \frac{l}{l} =$

$$\therefore \vec{\chi} = \frac{k_B T}{R} = \frac{k_B T}{R l}$$

$$\text{if } K \to 0, \ \vec{\chi} \to \infty \longrightarrow \text{rigidity}$$

So if K o 0, $\overline{\chi} \to \infty$ \longrightarrow rigidity
amorphous solids \longleftrightarrow highly viscous, supercooled liquids.

Example pitch, plastie, (i

(i) molecular motion is irregular but distance is more or less same with clastic solid.

SALIENT

ii) no regular stope > conductivity, elasticity. tensile strength is isotropic

(in) no long range order. short range/ medium range order possible.

(w) no starp melting point.

There are polycrystalline substances which are composed of many small domains/regions of single crystals. Crystalline substances are distinguished from amorphous solids by their anisotropic behaviour (direction dependent).

Ideal crystal : infinite repetition of identical structure in space.

Periodic arrangement of unit (atoms, molecules, ions) in a

orystal is alled the lattice, defined by three fundamental translation vectors \vec{a} , \vec{b} , \vec{c} / basis vectors

Atomie position vector
$$\vec{r} = \vec{r} + \vec{r}$$

$$= \vec{r} + n_1 \vec{a} + n_2 \vec{b} + n_3 \vec{c}$$

where u_1, u_2, u_3 are integers.

primitive lattice & Unit cell

Unit cell is volume from which entire crystal can be constructed by translational repitition. (OABC parallelogram)

primitive cell is a type of unit cell that contain 1 lettice point at corners & minimum in volume = $|(\vec{a} \times \vec{b}) \cdot \vec{c}|$

Scanned by CamScanner

Basis in crystal stoucture, every lattice point is associated with an unit assembly of atoms/molecules/ions. This unit is called basis.

Basis can contain even hundreds I thousands of melecules.

A translation operation leaves the crystal invariant. $f(\vec{r}) = f(\vec{r} + \vec{T})$

physical: number density
$$n(\vec{r}) = \int_{\vec{r}} \delta(\vec{r} - \vec{T})$$

significance (point mass atom)
$$density p(\vec{r}) = \int_{\vec{r}} m_{\alpha} \delta(\vec{r} - \vec{T} - \vec{c}_{\alpha})$$

where my is man of atom at lattice sile &.

$$p(\vec{r}) = p(\vec{r} + \vec{T})$$

For cubie structure
$$|\vec{\alpha}| = |\vec{b}| = |\vec{c}|$$

 $\alpha = \beta = \delta = \frac{\pi}{2}$

Wigner_Sielz primitive cell

- 1. Draw lines connecting nearby lattice points.
- 2. Draw planes/lines at midpoint of line I perpendicular to it.
 This is WS primitive cell.

Elements of symmetry

A symmetry operation transforms the crystal to itself.

in Rotation nø = 27

N= multiplicity of rotation axis. $\sqrt{60}$ $\phi = 60$

= 1,2,3,4, x, 6. A 2D square lattice has 4-fold rotational

(iii) Reflection mirror image

(in) Inversion

(only for 3D lattice)

Symmetry operation performed about a point/line are called point group symmetry. 3 type of point group (i) plane of symmetry (reflection), (ii) axis of symmetry (rotation), (iii) centre of symmetry (inversion)

5-fold rotational symmetry: quasicrystals. But why 5-fold rotational symmetry is not permissible in ogstal structure?

