## Report

## Created with SpatialEpiApp

• Date range: 1985 to 1988

• Type of analysis: Spatio-Temporal

• Temporal unit: Year

```
datosP<-params$datosP
fechasformatocorrecto<-params$fechasformatocorrecto</pre>
vecTimes<-unique(datosP$time)</pre>
n<-length(vecTimes)</pre>
#vecVbles<-c("Population", "Observed", "Expected", "SIR")</pre>
#vecVbles<-c("Population", "Observed", "Expected", "SIR", "Risk", "LowerLimitCI", "UpperLimitCI")</pre>
vecVblesPintar<-params$vecVblesPintar</pre>
vecVblesTabla<-params$vecVblesTabla</pre>
tablaClusters<-params$tablaClusters
vecVblesPintarprimeralinea<-params$vecVblesPintar</pre>
vecVblesTablaprimeralinea<-params$vecVblesTabla</pre>
indl<-which(vecVblesPintarprimeralinea=="LowerLimitCI")</pre>
if(length(indl)>0){vecVblesPintarprimeralinea[indl]<-"2.5 percentile"}</pre>
indl<-which(vecVblesPintarprimeralinea=="UpperLimitCI")</pre>
if(length(indl)>0){vecVblesPintarprimeralinea[indl]<-"97.5 percentile"}</pre>
indl<-which(vecVblesTablaprimeralinea=="LowerLimitCI")</pre>
if(length(indl)>0){vecVblesTablaprimeralinea[indl]<-"2.5 percentile"}</pre>
indl<-which(vecVblesTablaprimeralinea=="UpperLimitCI")</pre>
if(length(indl)>0){vecVblesTablaprimeralinea[indl]<-"97.5 percentile"}</pre>
plPintar<-paste("c",paste(rep("c",length(vecVblesPintar)),collapse=""))</pre>
plTabla<-paste("1",paste(rep("r",length(vecVblesTabla)),collapse=""))</pre>
primeralineaPintar<-paste("&",paste(vecVblesPintarprimeralinea,collapse="&"),"\\\")
primeralineaTabla<-paste("&",paste(vecVblesTablaprimeralinea,collapse="&"),"\\\")</pre>
fnPaste<-function(s){</pre>
p<-paste(paste(s , collapse="&"),"\\\")
```

```
return(p)
sizemaps<-52
if(length(vecVblesPintar)==5){
 sizemaps<-40
}
if(length(vecVblesPintar)==6){
 sizemaps<-31
if(length(vecVblesPintar)==7){
 sizemaps<-26
if(length(vecVblesPintar)==8){
 sizemaps<-22
#sizemaps<-60-7*length(vecVblesPintar)</pre>
# Maps
if(length(vecVblesPintar)>0){
cat(
  sprintf("\\begin{longtable}{%s}",plPintar),
  sprintf(primeralineaPintar),
  sprintf("\\hline"),
  sprintf("&\\\\"),
  sprintf("\\endhead"))
for(i in 1:n){
f<-paste(vecTimes[i])</pre>
fcorrecto<-fechasformatocorrecto[i]</pre>
vecf<-paste(getwd(), "/plots/Map",vecTimes[i],vecVblesPintar,".png",sep="")</pre>
#cat(sprintf("\\raisebox{2cm}{%s}", paste(fcorrecto,f)))
cat(sprintf("\\raisebox{1.5cm}{%s}", paste(fcorrecto)))
for(j in 1:length(vecVblesPintar)){
```

```
cat(sprintf("&\\includegraphics[width=%dmm]{%s}", sizemaps, vecf[j]))
}
cat(sprintf("\\\[.5cm]"))
}
veclastf<-paste(getwd(), "/plots/TemporalTrend",vecVblesPintar,".png",sep="")
for(j in 1:length(vecVblesPintar)){
    cat(sprintf("&\\includegraphics[width=%dmm]{%s}", sizemaps, veclastf[j]))
}
cat(sprintf("\\\"))
cat(sprintf("\\\"))
cat(sprintf("\\end{longtable}"))</pre>
```



|      | Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Observed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Expected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SIR           | Risk             | 2.5 percentile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 97.5 percentile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1988 | Processes of the state of the s | Orașel de la companya | Crossed of the control of the contro |               |                  | Company of the state of the sta | STANDON STANDO | STATE OF THE STATE |
|      | 10000 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 75 pormand 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100 mm m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13<br>5<br>34 | 10<br>12<br>2 10 | To a constant of the constant  | Control of the Contro | # d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

## Summary data

|              | Population       | Observed         | Expected         | SIR               | Risk              | 2.5 percentile    | 97.5 percentile   |
|--------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|-------------------|
| 1985 to 1988 |                  |                  |                  |                   |                   |                   |                   |
| Min.         | 11272            | 2                | 6.73322625405604 | 0.296140506227404 | 0.575155977537473 | 0.419774216693343 | 0.698253730537896 |
| 1st Qu.      | 33102            | 16               | 19.7318270737803 | 0.743258907225568 | 0.83302138153091  | 0.67278189251076  | 0.994116032520795 |
| Median       | 54348.5          | 28               | 32.1771818693045 | 0.930808786806923 | 0.946268179253783 | 0.797552007008453 | 1.10680855082763  |
| Mean         | 122287.443181818 | 72.1420454545455 | 72.1420454545455 | 0.931397948434054 | 0.935801606761005 | 0.787685659220597 | 1.1057108010498   |
| 3rd Qu.      | 107592.5         | 56.5             | 64.0760972850941 | 1.10300922812533  | 1.04604768077969  | 0.880063872120818 | 1.21911502078034  |
| Max.         | 1454155          | 993              | 846.199673679593 | 1.66862336986462  | 1.47132058564459  | 1.25966439165931  | 1.72366853495168  |

```
# Table summary data for each date
if(length(vecVblesTabla)>0){
cat(
  sprintf("\\begin{longtable}{%s}",plTabla),
  sprintf(primeralineaTabla),
  sprintf("\\hline"),
  sprintf("\\endhead"))
for(i in 1:n){
f<-paste(vecTimes[i])</pre>
fcorrecto<-fechasformatocorrecto[i]</pre>
datostime<-datosP[which(datosP$time==f),vecVblesTabla]</pre>
if(length(vecVblesTabla)>1){
s<-sapply(datostime, summary)</pre>
s<-cbind(rownames(s),matrix(s,nrow=nrow(s)))</pre>
}else{
s<-summary(datostime)</pre>
s<-cbind(names(s),s)</pre>
```

```
cat(
    sprintf(as.character(fcorrecto)),
    sprintf("\\\[.1cm]"),
    sprintf(a),
    sprintf("[.2cm]")
    )
}

cat(sprintf("\\end{longtable}"))
}
```

|         | Population       | Observed         | Expected         | SIR               | Risk              | 2.5 percentile    | 97.5 percentile   |
|---------|------------------|------------------|------------------|-------------------|-------------------|-------------------|-------------------|
| 1985    |                  |                  |                  |                   |                   |                   |                   |
| Min.    | 11435            | 6                | 6.83579649289265 | 0.334507914142587 | 0.621355588992226 | 0.479250996899003 | 0.736450101280046 |
| 1st Qu. | 32936.75         | 17               | 19.6745500016105 | 0.711975146332762 | 0.826866748847361 | 0.675723566143241 | 0.985346224822609 |
| Median  | 54348.5          | 26               | 32.1771818693045 | 0.919644088436455 | 0.917305450831221 | 0.776181634097437 | 1.06028038494496  |
| Mean    | 122061.136363636 | 70.9772727272727 | 71.995054095849  | 0.903324825337779 | 0.914481408456384 | 0.773170417177217 | 1.07472555454454  |
| 3rd Qu. | 104448.5         | 56               | 62.5137912969326 | 1.10351080626705  | 0.999843418443972 | 0.855281576964656 | 1.17843816518245  |
| Max.    | 1454155          | 937              | 846.199673679593 | 1.3825315165666   | 1.22887679500816  | 1.11803949254302  | 1.41191533337268  |
| 1986    |                  |                  |                  |                   |                   |                   |                   |
| Min.    | 11272            | 6                | 6.73322625405604 | 0.311830465236511 | 0.604773908625981 | 0.471355867021427 | 0.706357398803096 |
| 1st Qu. | 32891            | 15.75            | 19.6708904612285 | 0.768114669990689 | 0.831481585121348 | 0.681045926011725 | 0.978350844816441 |
| Median  | 54390.5          | 27               | 32.2206447174887 | 0.895464130428486 | 0.934727236106049 | 0.798364469294605 | 1.07251434085673  |
| Mean    | 122023.090909091 | 70.875           | 71.9806575783078 | 0.909933296439992 | 0.927723749345188 | 0.794096121023442 | 1.07911277872812  |
| 3rd Qu. | 105677.5         | 50               | 63.2128197924086 | 1.04251112785378  | 1.02971689364419  | 0.879909828420321 | 1.19914029129726  |
| Max.    | 1453242          | 953              | 845.761343007908 | 1.66862336986462  | 1.30347684019554  | 1.15883761962483  | 1.46237751264861  |
| 1987    |                  |                  |                  |                   |                   |                   |                   |
| Min.    | 11301            | 2                | 6.75355095957126 | 0.296140506227404 | 0.58933669190259  | 0.451013429261049 | 0.698253730537896 |
| 1st Qu. | 33152.75         | 17               | 19.8157149799075 | 0.759382049037192 | 0.839941378834507 | 0.670952351812088 | 0.993830566978551 |
| Median  | 54687            | 28               | 32.3996360942348 | 0.959373841876793 | 0.955655782941776 | 0.815142572995436 | 1.09928144204368  |
| Mean    | 122443.693181818 | 72.5568181818182 | 72.2415330879147 | 0.95489149632338  | 0.942407406505853 | 0.797569722035068 | 1.10828151679245  |

|         | Population       | Observed           | Expected         | SIR               | Risk              | 2.5 percentile    | 97.5 percentile   |
|---------|------------------|--------------------|------------------|-------------------|-------------------|-------------------|-------------------|
| 3rd Qu. | 107592.5         | 60.25              | 64.1733841375541 | 1.10774301060939  | 1.06164215029983  | 0.887114348436737 | 1.22974374998368  |
| Max.    | 1444257          | 952                | 840.575910342608 | 1.59891511152189  | 1.3840787290378   | 1.22304147294933  | 1.56146017047301  |
| 1988    |                  |                    |                  |                   |                   |                   |                   |
| Min.    | 11276            | 4                  | 6.73680339180383 | 0.316014381124612 | 0.575155977537473 | 0.419774216693343 | 0.704731535965003 |
| 1st Qu. | 33353.25         | 16.75              | 19.896366632091  | 0.740179828333259 | 0.848535511797738 | 0.655668208221573 | 1.01817670206625  |
| Median  | 54787            | 29.5               | 32.4633987616188 | 0.992667022866814 | 0.968292252910145 | 0.811464099084057 | 1.15056195404576  |
| Mean    | 122621.852272727 | 74.159090909090909 | 72.3509370561102 | 0.957442175635065 | 0.958593862736593 | 0.785906376646661 | 1.1607233541341   |
| 3rd Qu. | 107720.75        | 59.25              | 63.8998692449171 | 1.12693896875363  | 1.09013545300066  | 0.881209228607768 | 1.29427222286045  |
| Max.    | 1438103          | 993                | 836.898769794294 | 1.61785818629552  | 1.47132058564459  | 1.25966439165931  | 1.72366853495168  |

## Clusters

```
#Table clusters
if(!is.null(tablaClusters)){
#All years
s<-tablaClusters
a<-apply(s,1,fnPaste)</pre>
plTablaClusters<-paste(paste(rep("r",ncol(tablaClusters)),collapse=""))</pre>
plTablaClusters<-paste("p{1cm}",paste(rep("p{2cm}",ncol(tablaClusters)-2),collapse=""),"p{6cm}")
primeralineaTablaClusters<-paste(paste(names(tablaClusters),collapse="&"),"\\\")</pre>
cat(
 sprintf("\\begin{longtable}{\%s}",plTablaClusters),
 sprintf(primeralineaTablaClusters),
 sprintf("\\hline"),
 sprintf("\\endhead"))
cat(
  #sprintf("{%s}",fcorrecto),
  sprintf("\\\[.1cm]"),
  sprintf(a),
  sprintf("[.2cm]")
cat(sprintf("\\end{longtable}"))
```

Cluster Central area No. areas Start date End date Risk in / LLR p-value Areas Risk out

| Cluster | Central area | No. areas | Start date | End date | Risk in /<br>Risk out | LLR | p-value   | Areas                                                                                                                                                   |
|---------|--------------|-----------|------------|----------|-----------------------|-----|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | Mahoning     | 4         | 1987       | 1988     | 1.10                  | 15  | 25.101532 | Portage, Harrison, Lake, Cuyahoga,<br>Carroll, Ashtabula, Belmont, Mahon-<br>ing, Trumbull, Tuscarawas, Summit,<br>Columbiana, Geauga, Jefferson, Stark |
| 2       | Hamilton     | 2         | 1985       | 1986     | 1.19                  | 1   | 18.413505 | Hamilton                                                                                                                                                |
| 3       | Lawrence     | 4         | 1986       | 1988     | 1.26                  | 7   | 9.734536  | Gallia, Vinton, Jackson, Pike, Meigs,<br>Lawrence, Scioto                                                                                               |
| 4       | Muskingum    | 4         | 1985       | 1988     | 1.43                  | 1   | 8.178653  | Muskingum                                                                                                                                               |
| 5       | Clark        | 4         | 1985       | 1988     | 1.26                  | 1   | 5.413516  | Clark                                                                                                                                                   |
| 6       | Cuyahoga     | 1         | 1985       | 1986     | 1.11                  | 1   | 5.027418  | Cuyahoga                                                                                                                                                |
| 7       | Lucas        | 2         | 1985       | 1986     | 1.13                  | 1   | 4.401300  | Lucas                                                                                                                                                   |
| 8       | Wyandot      | 4         | 1985       | 1988     | 1.27                  | 2   | 3.568187  | Wyandot, Marion                                                                                                                                         |