

Prerequisite: gradient

Let $f: \mathbb{R}^n \to \mathbb{R}$ a differentiable function. The gradient in $x^* = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$, denoted or $f_x(x^*)$ or grad $f(x^*)$ or $\Delta f(x^*)$, is the vector

$$f_{x}(x^{*}) = \begin{pmatrix} \frac{\partial f}{\partial x_{1}}(x^{*}) \\ \vdots \\ \frac{\partial f}{\partial x_{n}}(x^{*}) \end{pmatrix}$$

Application: $f(x_1, x_2) = (x_1 + 2)^2 - 1 + x_2$. Compute the gradient in $x^* = (2,5)$

At each point of the plane a gradient vector starts. This gradient vector is **orthogonal** to the level line passing through this point.

Prerequisite: Hessian

 F_{XX} the **Hessian matrix**, square, symmetric matrix, also denoted H_f is defined as:

$$F_{XX} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

https://www.youtube.com/watch?v=sDv4f4s2SB8

In French

https://www.youtube.com/watch?v=GE4UwT-JV4A

Gardient Descent

The goal of **Gradient Descent** is to **minimize an objective function** *f* **using iterations**

Goal: Find $\hat{x} \in \mathbb{R}^n$, the absolute or relative minimum of f(x) $\hat{x} = \min f(x)$

Mathematical conditions: 1st order condition

Assume that $f: \mathbb{R}^n \to \mathbb{R}$ is **continuous and continuously differentiable** to the 1st order 1st order Taylor approximation: for δx sufficiently small, we can develop f(x) in Taylor series to the 1st order: $f(x + \delta x) \approx f(x) + f_x^T \delta x + O(\|\delta x\|^2)$ (1)

If \hat{x} is a relative minimum of f, then it exists a neighborhood of \hat{x} where:

$$f(\hat{x} + \delta x) \ge f(\hat{x}) \quad \forall \delta x \text{ small, } \delta x \in \mathbb{R}^n \quad (2)$$

 $(1)+(2) \rightarrow f_x^T \delta x \ge 0 \ \forall \delta x \in \mathbb{R}^n \ (\text{the term } O(\|\delta x\|^2 \text{ is neglected})$

This relationship must hold for any small δx , and in particular when we change δx to $-\delta x$,

so
$$f_x(\hat{x}) = 0$$
 and $f(\hat{x} + \delta x) \approx f(\hat{x}) = \text{cst}$

Necessary condition of local extremum: Let f a function continuous and continuously differentiable to the 1st order, if \hat{x} is a relative minimum of f then

$$f_{x}(\hat{x}) = 0$$
 The gradient is zero

Mathematical conditions: 2nd order conditions

Assume that $f: \mathbb{R}^n \to \mathbb{R}$ is C^2 , then (2nd order development)

$$f(x + \delta x) = f(x) + f_x^T \delta x + \frac{1}{2} \delta x^T F_{XX} \delta x + (o(\|\delta x\|^3))$$

If \hat{x} is a relative minimum of f then $\mathbf{F}_{\mathbf{XX}}(\hat{x})$ is a positive definite matrix

proof:
$$f(\hat{x} + \delta x) \ge f(\hat{x}) \quad \forall \delta x \text{ small, } \delta x \in \mathbb{R}^n$$

If $f: \mathbb{R}^n \to \mathbb{R}$ is C^2 , if $f_x(x^*) = 0$ and $F_{XX}(x^*)$ is a positive definite matrix, then x^* is a relative minimum for f.

Descent methods

Basic idea: we do as on a topographic map, and use the level lines to go to the bottom of a valley

2 notions

 $\omega_k > 0$: the step at iteration k

 s_k : the descent direction

Descent methods

Descent direction. If $f: \mathbb{R}^n \to \mathbb{R}$, a **vector** $s \in \mathbb{R}^n$ is said to be a descent direction in x if it exists $\omega^* > 0$ s.t $f(x + \omega s) < f(x)$ $\omega \in [0, \omega^*]$

 \rightarrow The descent direction moves us closer towards a local minimum x^* of the objective function f

Descent algorithms: general algorithm

Start with an arbitrary initial point x_0 . At each step $k \ge 0$:

- Choose a **descent direction** s_k in x_k ,
- Choose a step $\omega_k > 0$ such that $x_k + \omega_k s_k \in \mathbb{R}^n$ and that $f(x_k + \omega_k s_k) < f(x_k)$
- → The different gradient methods correspond to different choices for descent directions and for steps

We know that $f(x_k + \omega_k s_k) < f(x_k)$

And as f is differentiable, we have:

$$\lim_{\omega \to 0} \frac{f(x_k + \omega s_k) - f(x_k)}{\omega} = \left. \frac{df(x_k + \omega s_k)}{d\omega} \right|_{\omega = 0} = s_k^T f_x(x_k)$$

So

 s_k is a descent direction in x_k if $s_k^T f_x(x_k) < 0$

Choosing a descent direction

Property - Let *M* be a positive definite matrix.

Any vector s_k defined as $s_k = -Mf_x(x_k)$ is a descent direction

Proof: s_k is a descent direction in x_k if $s_k^T f_x(x_k) < 0$

$$s_k^T f_{x(x_k)} = (-M f_x(x_k))^T \cdot f_{x(x_k)} = -f_x^T(x_k) M^T \cdot f_x(x_k) = -f_x^T(x_k) M f_x(x_k) < 0$$

→ Different methods depend on the choice of M

The simplest choice: the Gradient Method

- The simplest choice is for M = Id
- The descent direction is then $s_k = -f_x(x_k)$
- This direction is named the steepest descent. It corresponds to (-) the gradient of the
 f function → so-called gradient descent method
- The computation of the descent directions only needs 1st order partial derivative computation → this is a 1st order method

Choosing the step ω_k

Non optimal step

$$f(x_k + \omega_k s_k) < f(x_k)$$
, with $\omega_k > 0$

Optimal step

Given a point x_k and a descent direction s_k , a step ω_k is said to be optimal if it is solution of the problem:

$$f(x_k + \omega_k s_k) = \min_{\omega} f(x_k + \omega s_k)$$

→ Monovariable optimisation

Effects of the step

https://developers.google.com/machine-learning/crash-course/fitter/graph

$$f(x_1, x_2) = (x_1 - 2)^4 + (x_1 - 2x_2)^2$$

$$f_{x}(x) = \begin{pmatrix} 4(x_{1} - 2)^{3} + 2(x_{1} - 2x_{2}) \\ -4(x_{1} - 2x_{2}) \end{pmatrix}$$

- https://www.ceremade.dauphine.fr/~amic/enseignement/MNO2015/MNO2015.pdf
- https://mrmint.fr/gradient-descent-algorithm

