Indução Magnética criada por diferentes distribuições de corrente.

Indução magnética na presença de matéria. Relação B(H) em materiais ferromagnéticos.

IST 2020

Indução Magnetica criada for diferentes distribuições de corrente indução magnética

lei de Biot-Savait:

$$d\overline{B}_{p} = \frac{Mo}{4\pi} \frac{i d\overline{n} \times \overline{\lambda}}{\lambda^{2}}$$

$$d\overline{B}_{p} = \frac{Mo}{4\pi} \frac{i d\overline{n} \times \overline$$

$$\overrightarrow{\nabla}.\overrightarrow{b}=0, \ \overrightarrow{\nabla}\times\overrightarrow{B}=\text{MoJ} \Rightarrow \cancel{\beta}.\overrightarrow{d}=\text{Mo}\xi^{i}$$
Teorema de Amfére

Exemplos: Indução magnética gerado for condutor rectilimo: $\vec{B}_{p} = \frac{M_{2}}{4\pi} \int_{L} c \frac{d\vec{n} \times \vec{n}}{\lambda^{3}} \qquad |d\vec{n} \times \vec{\lambda}| = dn n n m \vec{x} = ds c$ $P \oplus B$ $P = \frac{M0}{477} \left(i \frac{\rho ds}{\sqrt{3}} \right)$ $P = \frac{1}{\sqrt{3}} \quad P = \frac{1}$ $B = \frac{M_0 i}{4 \pi} \int_{-\pi_0}^{\pi_2} \frac{\cos^3 \theta}{\ell^3} \frac{\rho^2}{\cos^3 \theta} d\theta = \frac{M_0 i}{4 \pi \ell} \int_{-\pi/2}^{\pi_2} \cos d\theta = \frac{M_0 i}{2 \pi \ell}$ Indução magnetica gerada for ofira circular no lixo da ofira: $\vec{B} = \frac{40}{417} \int i \frac{d\vec{N} \times \vec{N}}{N^3} = \frac{100}{417} \int d\vec{N} \frac{\vec{N} \cdot (070)}{N^3} \hat{L}_{z} = \frac{100}{417} \frac{\vec{C} \cdot 070}{N^2} 2770 \hat{L}_{z} = \frac{100}{2} \frac{\vec{C}^2}{N^3} \hat{C}_{z}$ $\vec{\beta} = \frac{\mu_0 i}{2} \frac{\rho^2}{(\rho^2 + Z^2)^{3/2}} \ell_z^2$

Indução magnética gerada for pohinas de Helmholtz no eixo das bobinas. $\beta_{z} = \frac{10 \text{ Mi}}{2} \frac{\rho^{2}}{(\rho^{2} + (z + \frac{1}{2})^{2})^{3}/2} + \frac{10 \text{ Mi}}{2} \frac{\rho^{2}}{(\rho^{2} + (z + \frac{1}{2})^{2})^{3}/2}$ $\beta_{z} = \frac{10 \text{ Mi}}{2} \frac{\rho^{2}}{(\rho^{2} + \frac{1}{2})^{3}/2} + \frac{1}{2} \frac{10 \text{ Mi}}{2} \frac{\rho^{2}}{2!} + \frac{1}{2} \frac{1}{2} \frac{10 \text{ Mi}}{2!} + \frac{1}{2} \frac{10 \text{ Mi}}{2!} + \frac{10 \text{ Mi}}{2!} \frac{10 \text{ Mi}}{2!} \frac{10 \text{ Mi}}{2!} + \frac{10 \text{ Mi}}{2!} \frac{10 \text{ Mi}}{2!} \frac{10 \text{ Mi}}{2!} + \frac{10 \text{ Mi}}{2!} \frac{10 \text{ Mi}}{2!} \frac{10 \text{ Mi}}{2!} + \frac{10 \text{ Mi}}{2!} \frac{10 \text{ Mi}}{2!} \frac{10 \text{ Mi}}{2!} + \frac{10 \text{ Mi}}{2!} \frac{10 \text{ Mi}$

$$B_{z} = \frac{10 \text{ Mi}}{2} \left[\frac{\rho^{2}}{(\ell^{2} + (z + \frac{\rho}{2})^{2})^{3}/2} + \frac{\rho^{2}}{(\ell^{2} + (z - \frac{\rho}{2})^{2})^{3}/2} \right]$$

Indução magnética gerada for solomoide finito no ser eisco i na verticas for unidade de comprimento $dB_{z}=\frac{1}{2}\frac{l^{2}}{l^{3}}di=\frac{1}{2}\frac{l}{l^{3}}Nidz$, $N=\sqrt{l^{2}+z^{2}}$ $\frac{1}{|Q_{1}|} \frac{C}{\lambda} = \cos\theta, \frac{-z}{\lambda} = \sin\theta \qquad \frac{-z}{C} = \frac{t_{2}\theta}{c} dz = \frac{1}{c} d\theta$ $\frac{1}{2} \int_{\mathbb{R}^{2}} \frac{M \circ N i}{2} \int_{\mathbb{R}^{3}}^{\mathbb{R}^{2}} dz = \underbrace{M \circ N i}_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}}^{\mathbb{R}^{3}} \frac{C \circ i^{2} \Theta}{C \circ i^{2} \Theta} \int_{\mathbb{R}^{3}}^{\mathbb{R}^{3}} \frac{C \circ i^{2} \Theta}{C \circ i^{2} \Theta} d\theta$ $= \underbrace{M \circ N i}_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}}^{\mathbb{R}^{3}} \frac{1}{2} \int_{\mathbb{R}^{3}}^{\mathbb{R}^{3}} \frac{C \circ i^{2} \Theta}{C \circ i^{2} \Theta} \int_{\mathbb{R}^{3}}^{\mathbb{R}^{3}} \frac{C \circ i^{2} \Theta}{C \circ i^{2} \Theta} d\theta$ = MONI [rim Dn + rim Dz] Solemoide muito longo (L>>2°) ⇒ D,>7/2) D2>7/2 ⇒ B2=MONI

Indução magnetica gerada for esfira fora do eino:

$$\vec{z}_{\rho} = \frac{P(0, y_{\rho}, z_{\rho})}{B_{\rho}}$$

$$\vec{B}_{\rho} = \frac{Moi}{477} \left(\int_{0}^{277} \frac{277}{(c^{2} + y_{\rho}^{2} - 2cy_{\rho} nim\theta + z_{\rho}^{2})^{3/2}} d\theta$$

Forças sobre condutors fercorridos for corrente na fresença de B Forga de Lorentz: F= 9 TO XB dF= d9 JT XB = CD XB \overrightarrow{B} go \overrightarrow{N} force total $\overrightarrow{F} = (id\overrightarrow{D} \times \overrightarrow{B})$ Mo condute L $\overrightarrow{F} = (id\overrightarrow{D} \times \overrightarrow{B})$ $\overrightarrow{F} = (id\overrightarrow{D} \times \overrightarrow{B})$ $d\bar{N} = \bar{\Lambda} \times d\bar{F} = \bar{\Lambda} \times (d\bar{\Lambda} \times \bar{B})$ momento dos fores > N = \(\bar{\ta} \times \bar{\ta} \) (id\(\bar{\ta} \times \bar{\ta} \))
que atuam em \(\bar{\ta} \) = \(\bar{\ta} \times \bar{\ta} \) $N = \overline{m} \times \overline{B}$ num circuito flano: momento magnetico $\overline{m} = \frac{1}{2} \oint \overline{r} \times i d\overline{S}$ do circuito: Forças sobre uma osfera roctangulor:

Forges robre uma esfua rectangul

F= $ibBun\theta$ $F_{\pm}iaB$ $F_{\pm}iaB$ $F_{\pm}iaB$ $F_{\pm}iaB$ $F_{\pm}iaB$

 $\overline{N}=\sum_{i}\overline{n}_{i}\overline{x}_{i}^{2}$ \Rightarrow momento des forçes que atuam ma esfira $\overline{N}=2$ $\frac{b}{2}$ $(aB \times m\theta(-\hat{u}_{k})=-iab \otimes nim \theta(\hat{x})$ $\overline{N}=m\times \overline{B}$ \Rightarrow $\overline{m}=iab \otimes \hat{z}=iA \otimes (A=ab)$ Esting com á rea A=ab fercovoido for corrente i constitui um dijolo magnético de momento: m=cA

Compo de indução magnetiza ma presença de matéria:

N= \(\bar{N}: \languagneticas \) \text{ No magnetização, momento magnetico médio for unidade de volume

Diferentes \(\begin{array}{c} \text{ Piamagneticas } \begin{array}{c} \bar{M} \begin{array}{c} \bar{B} \\ \text{ xm} \rightarrow \text{ array} \\ \text{ piamagneticas } \begin{array}{c} \bar{M} \begin{array}{c} \begin{array}{c} \text{ xm} \rightarrow \text{ array} \\ \text{ xm} \rightarrow \text{ array} \\ \text{ piamagneticas } \begin{array}{c} \bar{M} \begin{array}{c} \begin{array}{c} \text{ xm} \rightarrow \text{ array} \\ (Ferromagnéticas † ₹ 1 B M → muito grande

Vetor Campo Magnetico:

$$\begin{array}{c}
M_{T} = MSl = MlS \\
= I_{t}S = I_{t} & lS \Rightarrow \\
\Rightarrow M = I_{t} = j \text{ may}
\end{array}$$

$$\begin{array}{c|c}
\hline
 & B = Mo(MI + fmy) \\
\hline
 & B = Mo(MI + M) \\
\hline
 & B = Mo(MI + M) \\
\hline
 & B = Mo(MI + M) \\
\hline
 & B = Mo(MI + M)
\end{array}$$

$$\begin{array}{c|c}
\hline
 & B = Mo(MI + M) \\
\hline
 & B = Mo(MI + M)
\end{array}$$

M=XmH → B=Mo(H+XmH)

B=MH com M=Mo(1+XM)

M> permeabilidade magnetica. Xm > Susceptibilidade magnetica

Kelação B(H) non materiais ferromagnetires. B-B(H) « Ciclo de histerere Bs - Imdução de naturação Br > Inducto remanerante the > Campo extlico Compo de indução às criado for um cilindro de material com magnetização uniforme M $|\vec{B}| = \frac{M_0 M}{2} \left(- N M \theta_2 + N M \theta_1 \right)$ materiais feur. magneticos Por compração com B dos solandide pireto

Déterminação experimental da característica B(H)
num material fenomagnético
Material fenomagnético

Teen.
$$\rightarrow GH.M = m_1 C_1 \rightarrow H = \frac{m_1 G}{l} = \frac{m_1 U_1}{l R_1}$$

$$U_2 = \frac{dP}{dt} = m_2 5 \frac{dB}{dt}$$

$$U_2 = R_2 L_2 + Ue = R_2 C \frac{dUe}{dt} + Ue$$

Se
$$Ue \ll R_2 C \frac{dUe}{dt} \Rightarrow Ue = \frac{1}{R_2 C} \int u_2 dt = \frac{1}{R_2 C} M_2 S B \Rightarrow$$

$$B = \frac{R_2C}{M_2S} Uc$$

Medição da indução magnetica por efecto de Hall

$$\bar{F}_{B} = 9\bar{E} + 9\bar{N} \times \bar{B}$$

$$\bar{F}_{B} = 0 \Rightarrow \bar{E} = -\bar{N} \times \bar{B}$$

$$\Delta U = E d = NBd = \frac{1}{MQ}Bd = \frac{C}{td}\frac{Bd}{MQ} = \frac{CB}{MQ}$$

$$\Delta U = R_{H} + \frac{CB}{t}$$

$$B = \frac{t}{CR_{H}} + \frac{1}{MQ}$$

$$R_{H} = \frac{1}{MQ}$$

FIM