IN THE CLAIMS

CLAIMS

1.(original): Derivatives of 1,3-diones having general formula (I):

wherein: - A represents: an aryl group optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, OH, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ cyanoalkyl, C₂-C₆ alkoxyalkyl, C₂-C₆ alkylthioalkyl, C₂-C₆ alkylsulfinylalkyl, C₂-C₆ alkylsulfinylalkyl, C₂-C₆ haloalkylsulfinylalkyl, C₂-C₆ haloalkylsulfonylalkyl, C₂-C₆ haloalkylsulfonylalkyl, C₂-C₆ alkoxyalkoxyl or C₂-C₆ haloalkoxyalkoxyl optionally substituted with a group selected from C₁-C₄ alkoxyl or C₁-C₄ haloalkoxyl, C₂-C₆ alkylthioalkoxyl, C₂-C₆ haloalkylthioalkoxyl, C₃-C₁₂ dialkoxyalkyl, C₃-C₁₂ dialkylthioalkoxyl, C₃-C₁₂ dialkoxyalkoxyl, C₂-C₆ haloalkoxyhaloalkoxyl, C₃-C₁₆ alkoxyalkoxyl, C₂-C₆ haloalkenyloxy, C₂-C₆ haloalkenyloxy, C₂-C₆ haloalkenyloxy, C₂-C₆ alkynyl, C₂-C₆ haloalkynyl, C₂-C₆ alkynyloxyalkoxyl, C₃-C₈ haloalkynyloxyalkoxyl, C₂-C₆ alkynyloxyalkoxyl, C₃-C₈ haloalkynyloxyalkoxyl, C₃-C₈ alkoxyiminoalkyl, C₂-C₈ haloalkoxyiminoalkyl, C₃-C₈ alkoxyiminoalkyl, C₂-C₈ haloalkoxyiminoalkyl, C₃-C₈ haloalkoxyiminoalkyl, C₃-C₈ alkenyloxyiminoalkyl, C₃-C₈ haloalkenyloxyiminoalkyl, C₃-C₈ haloalkenyloxyi

C₃-C₈ alkynyloxyiminoalkyl, C₃-C₈ haloalkynyloxyiminoalkyl, C₅-C₁₀ alkoxyalkynyloxyl, C₆-C₁₂ cycloalkylideneiminooxyalkyl, C₆-C₁₂ dialkylideneiminooxyalkyl,-S (O) "R₁,-OS (0) ₁R₁, -SO₂NR₂R₃,-CO₂R₄,-COR₅,- $CONR_6R_{7,1}-CSNR_8R_{9}$, - $NR_{10}R_{11}$ - $NR_{12}COR_{13}$, - $NR_{14}CO_2R_{15}$, - $NR_{16}CONR_{17}R_{18}$, - $PO(R_{19})_{2s}$ -Q, -ZQ₁, -(CR₂₀R₂₁)_pQ₂, -Z(CR₂₂R₂₃)_pQ₃, - (CR₂₄R₂₅)_pZQ₄, - $(CR_{26}R_{27})_0Z(CR_{28}R_{29})_0Q_5$, - $(CR_{30}R_{31})_0Z(CR_{32}R_{33})_0Z_1Q_6$, - $Z_2(CR_{34}R_{35})_0(C=Y)$ T, -Z₃(CR₃₆R₃₇)_v(CR₃₈R₃₉=CR₄₀R₄₁) (C=Y)T; or it represents a heterocyclic group selected from pyridyl, pyrimidyl, quinolinyl, pyrazolyl, thiazolyl, oxazolyl, thienyl, furyl, benzothienyl, dihydrobenzothienyl, benzofuranyl, dihydrobenzofuranyl, benzoxazolyl, benzoxazolonyl, benzothiazolyl, benzothiazolonyl, benzoimidazolyl, benzoimidazolonyl, benzotriazolyl, chromanonyl, chromanyl, thiochromanonyl, thiochromanyl, 3a, 4dihydro-3H-indeno [1, 2-c] isoxazolyl, 3a, 4-dihydro-3H-chromeno [4, 3-c]isoxazolyl, 5,5-dioxide-3a, 4-dihydro- 3H-thiochromeno [4, 3-c] isoxazolyl, 2,3, 3a, 4tetrahydrochromeno [4, 3-e] pyrazolyl, 6, 6-dioxide-2, 3- dihydro-5H- [1, 4] dithiino [2, 3-c] thiochromenyl, 5,5- dioxide-2, 3, 3a, 4-tetrahydrothiochromeno [4,3-c]pyrazolyl, 1'.1'-dioxide-2',3'-dihydrospiro[1, 3- dioxolano-2, 4'-thiochromen]-yl, 1,1, 4,4-tetraoxide-2, 3-dihydro-1, 4-benzodithiin-6-yl, 4,4-dioxide-2, 3-dihydro-1, 4-benzoxathiin-7-yl, 1, 1-dioxide-3-oxo-2, 3-dihydro-1, 2-benzoisothiazol-5-yl, 4- (alkoxyimino)- 1, 1-dioxide-3, 4-dihydro-2H-thiochromen-6-yl, 1, 1- dioxide-4-oxo-3, 4-dihydro-2H-thiochromen-6vl. 2.3- dihydro-1, 4-benzoxathiin-7-yl, with said groups optionally substituted by one or more substituents selected from halogen, NO2, CN, CHO, OH, linear or branched C1-C6 alkyl, linear or branched C1-C6 haloalkyl, linear or branched C1-C6 alkoxyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ cyanoalkyl, C₂-C₆ alkoxyalkyl, C₂-C₆ alkylthioalkyl, C2-C6 alkylsulfinylalkyl, C2-C6 alkylsulfonylalkyl, C2-C6 haloalkoxyalkyl, C2-C6 haloalkylthioalkyl, C2-C6 haloalkylsulfinylalkyl, C2-C6 haloalkylsulfonylalkyl, C2-C6 alkoxyalkoxyl or C2-C6 haloalkoxyalkoxyl optionally substituted with a group selected from C₁- C₄ alkoxyl or C₁-C₄ haloalkoxyl, C₂-C₆ alkylthioalkoxyl, C₂-C₆ haloalkylthioalkoxyl, C3-C12 dialkoxyalkyl, C3-C12 dialkylthioalkyl, C3-C12 dialkylthioalkoxyl, C3-C12 dialkoxyalkoxyl, C2-C6 haloalkoxyhaloalkoxyl, C3-C10 alkoxyalkoxyalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkenyloxy, C2-C6 haloalkenyloxy, C3-C8 alkenyloxyalkoxyl, C3-C8 haloalkenyloxyalkoxyl, C2-C6 alkynyl,

C2-C6 haloalkynyl, C2-C6 alkynyloxy, C2-C6 haloalkynyloxy, C3-C8 alkynyloxyalkoxyl, C3-C8 haloalkynyloxyalkoxyl, C3-C12 acylaminoalkoxy, C2-C8 alkoxyiminoalkyl, C2-C8 haloalkoxyiminoalkyl, C3-C8 alkenyloxyiminoalkyl, C3-C8 haloalkenyloxyiminoalkyl, C₃-C₈ alkynyloxyiminoalkyl, C₃-C₈ haloalkynyloxyiminoalkyl, C₅-C₁₀ alkoxyalkynyloxyl, C₆-C₁₂ cycloalkylideneiminooxyalkyl, C₆-C₁₂ dialkylideneiminooxyalkyl,-S (0)mR1,-OS (0) tR1,-SO2NR2R3,-CO2R4,-COR5,-CONR₆R₇, -CSNR₈R₉, - NR₁₀R₁₁, -NR₁₂COR₁₃, -NR₁₄CO₂R₁₅, -NR₁₆CONR₁₇R₁₈, - $PO(R_{19})_2$, -Q, $-ZQ_1$, $-(CR_{20}R_{21})_pQ_2$, $-Z(CR_{22}R_{23})_pQ_3$, $-(CR_{24}R_{25})_pZQ_4$, - $(CR_{26}R_{27})_pZ(CR_{28}R_{29})_qQ_5$, - $(CR_{30}R_{31})_pZ(CR_{32}R_{33})_qZ_1Q_6$, - $Z_2(CR_{34}R_{35})_p(C=Y)_T$, - $Z_3(CR_{36}R_{37})_{\nu}(CR_{38}R_{39}=CR_{40}R_{41})$ (C=Y) T; - B represents a D-(R₄) n group; - R represents a hydrogen atom, a linear or branched C1-C6 alkyl group, a linear or branched C1-C6 haloalkyl group, a C3-C6 cycloalkyl or C4-C12 cycloalkylalkyl group optionally substituted with halogen atoms or C₁-C₆ alkyl or C₁-C₆ thioalkyl or C₁-C₆ alkoxyl or C₂-C₆ alkoxycarbonyl groups, C₂-C₆ alkenyl groups, C₂-C₆ alkynyl groups, the latter two groups, in turn, optionally substituted with halogen atoms, a C5-C6 cycloalkenyl group optionally substituted with halogen atoms or C1-C6 alkyl groups, an aryl or arylalkyl group optionally substituted; - R₁ and R₁₉ represent a C₁-C₆ alkyl group or a C₁-C₆ haloalkyl group, a C3-C6 cycloalkyl group, an aryl group optionally substituted by one or more substituents selected from halogen, NO2, CN, CHO, linear or branched C1-C6 alkyl. linear or branched C1- C6 haloalkyl, linear or branched C1-C6 alkoxyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxycarbonyl; - m is equal to 0,1 or 2; - t is equal to 1 or 2; - R2, R3, R6, R7, R8, R9, R10, R11, R17 and R18, the same or different, represent a hydrogen atom, a linear or branched C1-C6 alkyl group in turn optionally substituted with halogen atoms, a C1-C6 alkoxyl group, a C3-C6 cycloalkyl group, an arylalkyl group or an aryl group, said arylalkyl and aryl groups also optionally substituted by one or more substituents selected from halogen, No2, CN, CHO, linear or branched C1-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxyl, linear or branched C1-C6 haloalkoxyl, C1-C6 alkylsulfonyl, C2-C6 alkoxycarbonyl, or they jointly represent a C2- C5 alkylene group; - R4, R5 and R42 represent a hydrogen atom, a linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms, a C₂-C₆ alkenyl group in turn optionally substituted with halogen atoms, a Q7 group, an arylalkyl

group optionally substituted by one or more substituents selected from halogen, NO2, CN, CHO, linear or branched C1-C6 alkyl, linear or branched C1-C6 haloalkyl, linear or branched C1-C6 alkoxyl, linear or branched C1-C8 haloalkoxyl, C1-C6 alkylsulfonyl, C2-C6 alkoxycarbonyl; - R₁₂, R₁₄ and R₁₆ represent a hydrogen atom, a linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms, a C3-C6 cycloalkyl group, a C₁-C₆ alkoxyl group, a C₁-C₆ haloalkoxyl group; - R₁₃ and R₁₅ represent a hydrogen atom, a linear or branched C1-C6 alkyl group in turn optionally substituted with halogen atoms, a C3-C6 alkenyl group in turn optionally substituted with halogen atoms, a Q7, NH2, NHCN, NHNH2, NHOH group, an arylalkyl group optionally substituted by one or more substituents selected from halogen, NO2, CN, CHO, linear or branched C1-C6 alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxycarbonyl; - R₂₀, R₂₁, R₂₂, R₂₃, R₂₄, R₂₅, R₂₆, R_{27} , R_{28} , R_{29} , R_{30} , R_{31} , R_{32} , R_{33} , R_{34} , R_{35} , R_{36} , R_{37} , R_{38} , R_{39} , R_{40} and R_{41} , the same or different, represent a hydrogen atom, a linear or branched C1-C6 alkyl group in turn optionally substituted with halogen atoms, a C₁-C₆ alkoxyl group, or the two groups attached to the same carbon atom can be joined to each other by C2-C5 alkylene groups, the alkylene groups can in turn be substituted with C1-C3 alkyl groups; - Q, Q1, Q2, Q3, Q4, Q5, Q6 and Q7 represent an aryl group, a C3-C6 cycloalkyl group, a C5-C6 cycloalkenyl group, a heterocyclic group selected from triazolyl, triazolonyl, pyrazolyl, imidazolyl, imidazolidinonyl, tetrazolyl, tetrazolonyl, isoxazolyl, furyl, thienyl, pyrrolyl, pyrrolidinyl, pyrrolidinonyl, pyridyl, pyrimidinyl, pyrimidinonyl, pyrazinyl, pyridazinyl, oxazolyl, thiazolyl, oxadiazolyl, thiadiazolyl, isothiazolyl, benzoxazolyl, benzothiazolyl, isoxazolinyl, 1,3-dioxanyl, 1,4-dioxanyl, 1, 3- dioxolanyl, tetrahydropyranyl, oxethanyl, oxyranyl, thiazolidinyl, oxazolidinyl, piperidinyl, piperidinonyl, piperazinyl, morpholinyl, thiazinyl, tetrahydrofuranyl, dioxazolyl, tetrahydrofuroisoxazolyl, 2-oxa-3azabicyclo [3, 1, 0] hex-3-enyl, said groups optionally substituted by one or more substituents selected from halogen, NO2, OH, CN, CHO, linear or branched C1-C6 alkyl. linear or branched C1- C6 haloalkyl, linear or branched C1-C6 alkoxyl, linear or branched C_1 - C_6 haloalkoxyl, C_1 - C_6 cyanoalkyl, C_2 - C_6 alkoxyalkyl, C_2 - C_6 alkylthioalkyl, C_2 - C_6 alkylsulfinylaikyl, C2-C6 alkylsulfonylaikyl, C2-C6 haloalkoxyalkyl, C2-C6 haloalkylthioalkyl, C2-C6 haloalkylsulfinylalkyl, C2-C6 haloalkylsulfonylalkyl, C2-C6

١

alkoxyalkoxyl or C2-C6 haloalkoxyalkoxyl optionally substituted with a group selected from C1- C4 alkoxyl or C1-C4 haloalkoxyl, C2-C6 alkylthioalkoxyl, C2-C6 haloalkylthioalkoxyl, C3-C12 dialkoxyalkyl, C3-C12 dialkylthioalkyl, C3-C12 dialkylthioalkoxyl, C3-C12 dialkoxyalkoxyl, C2-C6 haloalkoxyhaloalkoxyl, C3-C10 alkoxyalkoxyalkyl, C2-C6 alkenyl, C2-C6 baloalkenyl, C2-C6 alkenyloxy, C2-C6 haloalkenyloxy, C3-C8 alkenyloxyalkoxyl, C3-C8 haloalkenyloxyalkoxyl, C2-C6 alkynyl, C2-C6 haloalkynyl, C2-C6 alkynyloxy, C2-C6 haloalkynyloxy, C3-C8 alkynyloxyalkoxyl, C₃-C₈ haloalkynyloxyalkoxyl, C₃-C₁₂ acylaminoalkoxy, C₃-C₈ alkoxyiminoalkyl, C₂-C₈ haloalkoxyiminoalkyl, C3-C8 alkenyloxyiminoalkyl, C3-C8 haloalkenyloxyiminoalkyl, C3-C8 alkynyloxyiminoalkyl, C3-C8 haloalkynyloxyiminoalkyl, C5-C10 alkoxyalkynyloxyl, C6-C12 cycloalkylideneiminooxyalkyl, C6-C12 dialkylideneiminooxyalkyl, aryl optionally substituted, -S(O)mR1, -OS(O)tR1, -SO₂NR₂R₃, - CO₂R₄, -COR₅, -CONR₆R₇, -CSNR₈R₉, -NR₁₀R₁₁, -NR₁₂COR₁₃, - $NR_{14}CO_2R_{15}$, $-NR_{16}CONR_{17}R_{18}$, $-PO(R_{19})_2$, $-Z_2(CR_{24}R_{35})_p(C=Y)T$, - $Z_3(CR_{36}R_{37})_{\nu}(CR_{38}R_{39}=CR_{40}R_{41})$ (C=Y)T; -Z, Z₁, Z₂ = O, S(O)_r; -Y = O, S - r is equal to 0,1 or 2; -p, q are equal to 1, 2,3 or 4; -v is equal to 0 or 1; - $Z_3 = 0$, S or a direct bond; - T represents a hydrogen atom, a Z4R42 group, a- NR43R44 group, an aryl group or a heterocyclic group selected from triazolyl, triazolonyl, pyrazolyl, imidazolyl, imidazolidinonyl, tetrazolyl, tetrazolonyl, pyrrolyl, pyrrolidinyl, pyrrolidinonyl, pyridyl, pyrimidinyl, piperidinyl, piperidinonyl, piperazinyl, morpholinyl, said groups optionally substituted by one or more substituents selected from halogen, NO2, OH, CN, CHO, linear or branched C1-C6 alkyl, linear or branched C1-C6 haloalkyl, C3-C6 cycloalkyl, C5-C₆ cycloalkenyl, linear or branched C₁- C₆ alkoxyl, linear or branched C₁-C₆ haloalkoxyl, C₁- C₆ cyanoalkyl, C₂-C₆ alkoxyalkyl, C₂-C₆ alkylthioalkyl, C₂-C₆ alkylsulfinylalkyl, C₂-C6 alkylsulfonylalkyl, C2-C6 haloalkoxyalkyl, C2-C6 haloalkylthioalkyl, C2-C6 haloalkylsulfinylalkyl, C_2 - C_6 haloalkylsulfonylalkyl,-S $(O)_mR_1$; - Z_4 = 0, S or a direct bond; - R43 and R44, the same or different, represent a hydrogen atom, a linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms, a C₃-C₆ alkenyl group in turn optionally substituted with halogen atoms, a Q7 group, an arylalkyl group optionally substituted by one or more substituents selected from halogen, NO2, CN, CHO, linear or branched C1-C6 alkyl, linear or branched C1-C6 haloalkyl, linear or

branched C₁-C₆ alkoxyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxycarbonyl, or they jointly represent a C2- C5 alkylene chain; - D represents: a heterocyclic group of the heteroaryl or heterocyclic type, in all the above cases the heterocycle can be mono or polycyclic and can be connected to the rest of the structure either through one of its carbon atoms or, when possible, through one of its nitrogen atoms; or it represents a mono or polycyclic aryl group, in this latter case, the group can also be partially saturated; - Rx represents a substituent selected from hydrogen, halogen, NO2, CN, CHO, OH, linear or branched C1-C6 alkyl, linear or branched C1-C6 baloalkyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ cyanoalkyl, C2-C6 alkoxyalkyl, C2-C6 alkylthioalkyl, C2-C6 alkylsulfinylalkyl, C2-C6 alkylsulfonylalkyl, C2-C6 haloalkoxyalkyl, C2-C6 haloalkylthioalkyl, C2-C6 haloalkylsulfinylalkyl, C2- C6 haloalkylsulfonylalkyl, C2-C6 alkoxyalkoxyl or C2- C6 haloalkoxyalkoxyl optionally substituted with a group selected from C1-C4 alkoxyl or C1-C₄ haloalkoxyl, C₂-C₆ haloalkylthioalkoxyl, C₃-C₁₂ dialkoxyalkyl, C₃-C₁₂ dialkylthioalkyl, C3-C12 dialkylthioalkoxyl, C3-C12 dialkoxyalkoxyl, C2-C6 haloalkoxyhaloalkoxyl, C₃-C₁₀ alkoxyalkoxyalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₂-C₆ alkenyloxy, C₂-C₆ haloalkenyloxy, C₃-C₈ alkenyloxyalkoxyl, C₃-Ce haloalkenyloxyalkoxyl, C2-C6 alkynyl, C2-C6 haloalkynyl, C2-C6 alkynyloxy, C2-C6 haloalkynyloxy, C₁-C₈ alkynyloxyalkoxyl, C₃-C₈ haloalkynyloxyalkoxyl, C₃-C₁₂ acylaminoalkoxy, C2-C8 alkoxyiminoalkyl, C2-C8 haloalkoxyiminoalkyl, C3-C8 alkenyloxyiminoalkyl, C3-C8 haloalkenyloxyiminoalkyl, C3-C8 alkynyloxyiminoalkyl, C₃-C₆ haloalkynyloxyiminoalkyl, C₅-C₁₀ alkoxyalkynyloxyl, C₆-C₁₂ cycloalkylideneiminooxyalkyl, C₆-C₁₂ dialkylideneiminooxyalkyl, -S(O)_mR1, -OS(O)_tR₁, $-SO_2NR_2R_3$, $-CO_2R_4$, $-COR_5$, $-CONR_5R_7$, $-CSNR_8R_9$, $-NR_{10}R_{11}$, $-NR_{12}COR_{13}$, $-R_{10}R_{11}$, $-R_{12}R_{12}R_{13}$, $-R_{12}R_{13}$, $-R_{12}R_{13}$, $-R_{13}R_{13}$, $-R_{13}R_{13}$, $-R_{14}R_{13}$, $-R_{15}R_{15}$ $NR_{14}CO_2R_{15}$, $-NR_{16}CONR_{17}R_{18}$, $-PO(R_{19})_2$, -Q, $-ZQ_1$, $-(CR_{20}R_{21})_pQ_2$, $-Z(CR_{22}R_{23})_pQ_3$, $-R_{10}R_{1$ $(CR_{24}R_{25})_{p}ZQ_{4}$, $-(CR_{26}R_{27})_{p}Z(CR_{28}R_{29})_{q}Q_{5}$, $-(CR_{30}R_{31})_{p}Z(CR_{32}R_{33})_{q}Z_{1}Q_{6}$, $-Z_{2}(CR_{34}R_{35})$ $_{p}$ (C=Y)T, $-Z_{3}$ (CR₃₆R₃₇) $_{v}$ (CR₃₈R₃₉=CR₄₀R₄₁) (C=Y) T; if several R_x groups are present, these can be the same or different; - n = 1-9; excluding the following compounds having general formula (I) wherein A, B and R have the following meanings: A=4-chlorophenyl, B=1-methylimidazol-2-yl, R=H; A=4-nitrophenyl, B=1- (2-hydroxyethyl)-5nitroimidazol-2-yl, R=H; A=phenyl, B=lH-beuzimidazol-2-yl, R=C₂H₅; A=phenyl,

B=4H-1-benzopyran-4-yl, R=CH₃; A=4-nitrophenyl, B=3- (4-methylphenyl)-1, 2, 4oxadlazol-5-yl, R=CH3; A=phenyl, B=4-chloro-2, 5-dioxo-2, 5-dihydro-lH-pyrrol-3-yl, R=CH₃; A=phenyl, B=2-acetyl-1, 2,3, 4-tetrahydroisoquinolin-1-yl, R=C₂H₅; A=2hydroxy-4-methoxyphenyl, B=thiazol-4-yl, R=CH3; A=phenyl, B=2, 5-diphenyl-1, 3oxathiol-2-yl, R=CH₃; A=4-nitrophenyl, B=4, 6-bis (dimethylamino) -1, 3,5- triazin-2-yl, R=CH₃; A=phenyl, B=furan-2-yl, R=CH₃; A=phenyl, B=1, 3-dithian-2-yl, R=CH₃; A=phenyl, B=4-chlorothien-2-yl, R=H; A=phenyl, B=5-bromothien-2-yl, R=H; A=phenyl, B=5-methylthien-2-yl, R=H; A=phenyl, B=6-phenylpyrazin-2-yl, R=CH₃; Amphenyl, B=3, 4-dihydro-3-methyl-2-oxo-2H-1, 3-benzo- oxazin-4-yl, R=CH₃; A=phenyl, B=benzothiazol-2-yl, R=CH₃; A=2-hydroxy-4-methoxyphenyl, B=2phenylthiazol-4-yl, R=CH3; A=phenyl, B=5-methylfuran-2-yl, R=CH3; A=phenyl, B=3-(4-methylphenyl)-1, 2, 4-oxadiazol-5-yl, R=CH₃; A=phenyl, B=tetrahydrofuran-2-yl, R=CH₃: A=phenyl, B=2, 3-dihydro-3-hydroxy-2-oxo-lH-indol-3-yl, R=CH₃, A=phenyl, B=4-chloro-1-methyl-2, 5-dioxo-2, 5-dihydro-pyrrol-3-yl, R=CH₃; A=phenyl, B=2trifluoroacetyl-1, 2,3, 4-tetrahydroiso- quinolin-1-yl, R=C₂H₅; A=phenyl, B=2-acetyl-1, 2,3, 4-tetrahydroisoquinolin-1-yl, R=CH₃; A=4-nitrophenyl, B=2- (4-nitrophenyl)-3, 5.6-triphenyl- pyridin-4-yl, R=CH₃; A=phenyl, B=4, 6-bis (dimethylamino)-1, 3,5triazin-2- yl, R=CH3; A=phenyl, B=4-methyoxy-5-tert-butoxycarbonyl-1H-pyrro- 2-yl, R=CH₃; A=phenyl, B=1, 3-dihydro-3-oxo-isobenzofuran-1-yl, R=CH₃; A=phenyl, B= (5methoxycarbonylmethyl) thien-2-yl, R=H; A=phenyl, B=4-methylthien-2-yl, R=H; A=phenyl, B=1, 4-dhydro-l-methyl-3-nitroquinolin-4- yl, R=H; A=phenyl, B=thien-2-yl, R=H; A=phenyl, B=6-methylbenzothiazol-2-yl, R=CH₃; A=2-methoxycarbonylphenyl, B=phenyl, R=CH₃; A=2-benzyloxy-4-methoxyphenyl, B=2, 3, 4- trimethoxyphenyl, R=H ; A=4, 5-dimethoxy-2-nitrophenyl, B=3, 4-dimethoxyphenyl, R=H; A=2-nitrophenyl, B=phenyl, R=H; A=2,4, 5-trimethoxyphenyl, B=4-methoxyphenyl, R=H; A=4bromophenyl, B=phenyl, R=H; A=4-bromophenyl, B=2,4-dinitrophenyl, R=CH₃; A=4chlorophenyl, B=phenyl, R=H; A=2, 4-dibenzyloxy-5-methoxyphenyl, B=1, 3benzodioxol- 5-yl, R=H; A=2, 4-dibenzyloxyphenyl, B=1, 3-benzodioxol-5-yl, R=H; A=4-methoxyphenyl, B=2-carboxyphenyl, R=H; A=4-methylphenyl, B=2, 4dinitrophenyl, R=CH₃; A=4-hydroxy-3-methoxyphenyl, B=4-hydroxy-3- methoxyphenyl, R=H; A=2-nitrophenyl, B=4-methylphenyl, R=H; A=4-chlorophenyl, B=4-chlorophenyl,

R=H; A=2,4-diacetoxyphenyl, B=phenyl, R=CH3; A=3-methoxyphenyl, B=phenyl, R=C₂R₅. A=4-nitrophenyl, B=phenyl, R=H; A=2-nitrophenyl, B=4-n-butoxyphenyl, R=H; A=2-nitro-4-chlorophenyl, B=4-methylphenyl, R=H; A=phenyl, B=8carboxynaphthalenyl, R=CH₃; A=2, 5-dimethoxyphenyl, B=2-hydroxyphenyl, R=C₂R₅; A=4-fluorophenyl, B=2-nitro-4-trifluoromethylphenyl, R=CH3; A=3-chloro-4methylphenyl, B=2, 4-dinitrophenyl, R=CH₃; A=2-nitro-4-chlorophenyl, B=phenyl, R=H : A=4,5-dimethoxy-2-nitrophenyl, B=4-methylphenyl, R=H; A=2-carboxy-6-nitrophenyl, B=phenyl, R=CH₃; A=2,4, 5-trimethoxyphenyl, B=3-methoxyphenyl, R=H; A=phenyl, B=4-bromophenyl, R=H; A=6-benzyloxy-2,3, 4-trimethoxyphenyl, B=1, 3- benzodioxol-5-yl, R=H; A=4.5-dimethoxy-2-nitrophenyl, B=4-methoxyphenyl, R=H; A=4, 5dimethoxy-2-nitrophenyl, B=4-chlorophenyl, R=H; A=2,4-dibenzyloxyphenyl, B=4methoxyphenyl, R=H; A=4-methylphenyl, B=4-methylphenyl, R=H; A=4dimethylaminophenyl, B=phenyl, R=H; A=4-methoxyphenyl, B=phenyl, R=H; A=4, 5dichloro-2-nitrophenyl, B=4-chlorophenyl, R=H; A=2-nitrophenyl, B=4-methoxyphenyl, R=H; A=phenyl, B=2, 5-dimethoxycarbonylaminophenyl, R=CH₃; A=4-hydroxy-4methoxyphenyl, B=2-methoxyphenyl, R=H; A=phenyl, B=4-methylphenyl, R=H; A=2nitrophenyl, B=4-ethoxyphenyl, R=H; A=2-nitro-4-chlorophenyl, B=4-methoxyphenyl, R=H; A=4-chlorophenyl, B=phenyl, R=C2H5; A=2-t-butoxycarbonyl-5-ethyl-4methoxyphenyl, B=2.3- dibydro-7-methyl-1, 4-benzodioxin-6-yl, R=t-butyl; A=phenyl, B=2-nitro-4-trifluoromethylphenyl, R=CH3; A=3,4-dichlorophenyl, B=2,4dinitrophenyl, R=CH₃; A=4, 5-dichloro-2-nitrophenyl, B=4-methoxyphenyl, R=H; A=4methoxy-2-nitrophenyl, B=4-methylphenyl, R=H; A=phenyl, B=anthracene-9-yl, R=CH₃: A=phenyl, B=4-methoxyphenyl, R=H; A=2.4, 5-trimethoxyphenyl, B=phenyl, R=H: A=2, 4-diacetoxyphenyl, B=2, 4,5-trimethoxyphenyl, R=CH₃; A=2hydroxyphenyl, B=phenyl, R=H; A=4-methoxy-2-nitrophenyl, B=phenyl, R=H; A=4, 5dimethoxy-2-nitrophenyl, B=phenyl, R=H; A=2, 4-dinitrophenyl, B=phenyl, R=CH₃; A-phenyl, B-phenyl, R=CH₃; A-phenyl, B-4-dimethylaminophenyl, R-H; A-phenyl, B=2. 4-dinitrophenyl, R=CH₃; A=4, 5-dichloro-2-nitrophenyl, B=4-methylphenyl, R=H; A=4-bromophenyl, B=phenyl, R=CH3; A=2-(4-methylphenylsulfonyloxy)-6methoxyphenyl, B=phenyl, R=H; A=4-methylsulfonylphenyl, B=2-methoxyphenyl, R=CH₃; A=4-methoxyphenyl, B=4-methoxyphenyl, R=CH₃; A=phenyl, B=4-

chlorophenyl, R=H; A=2-nitrophenyl, B=4-nitrophenyl, R=H; A=phenyl, B=phenyl, R=H: A=2,4-dimethoxyphenyl, B=4-methoxyphenyl, R=H: A=2-nitrophenyl, B=4-nhexyloxyphenyl, R=H; A=4-methoxy-2-nitrophenyl, B=4-methoxyphenyl, R=H; A=phenyl, B=9-carboxyphenanthren-10-yl, R=CH₃; A=phenyl, B=phenyl, R=CH₃; A=3, 4-dimethoxyphenyl, B=3,4-dimethoxyphenyl, R=H; A=2,4-dimethoxyphenyl, B=phenyl, R=H: A=phenyl, B=2-hydroxy-3,4, 6-trimethyl-5- methoxyphenyl, R=CH₃; A=4-chloro-2-nitrophonyl, B=4-chlorophenyl, R=H; A=2-nitrophenyl, B=4-chlorophenyl, R=H; A=2,4, 5-trimethoxyphenyl, B=3, 4-dimethoxyphenyl, R=H; A=4-chlorophenyl, B=2,4dinitrophenyl, R=CH₃; A=4, 5-dichloro-2-nitrophenyl, B=phenyl, R=H; A=4methoxyphenyl, B=phenyl, R=CH₃; A=2, 4-dibenzyloxyphenyl, B=3,4dimethoxyphenyl, R=H; A=4-methylthiophenyl, B=4-methoxyphenyl, R=CH₃; A=phenyl, B=phenyl, R=C₂H₅; A=4-methoxyphenyl, B=2, 4-dinitrophenyl, R=CH₃; A=2-nitrophenyl, B=3-chlorophenyl, R=H; A=2-nitrophenyl, B=3,4-dimethoxyphenyl, R=H: A=4-methoxyphenyl, B=4-methoxyphenyl, R=H; A=2-hydroxyphenyl, B=4methoxyphenyl, R-H; A-phenyl, B=2, 5-bis (phenacylamino) phenyl, R-CH₃; A-4nitrophenyl, B=4-methylphenyl, R=H; A=2-nitrophenyl, B=4-n-pentyloxyphenyl, R=H; A=4-methoxy-2-nitrophenyl, B=4-chlorophenyl, R=H; A=phenyl, B=2carboxynaphthalen-1-yl, R=CH₃.

- 2. (original): The derivatives according to claim 1, characterized in that the compound having formula (1) are present as tautomeric and/or isomeric forms, pure or as blends of tautomeric and/or isomeric forms, in any proportion whatsoever.
- 3. (original):Use of derivatives of 1,3-diones having general formula (I): wherein: A represents: an aryl group optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, OH, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ eyanoalkyl, C₂-C₆ alkoxyalkyl, C₂-C₆ alkylthioalkyl, C₂-C₆ alkylsulfinylalkyl, C₂-C₆ haloalkoxyalkyl, C₂-C₆ haloalkylsulfinylalkyl, C₂-C₆ haloalkylsulfinylalkyl, C₂-C₆ haloalkylsulfinylalkyl, C₂-C₆ haloalkylsulfinylalkyl, C₂-C₆ haloalkylsulfonylalkyl, C₂-C₆ alkoxyalkoxyl or C₂-C₆ haloalkoxyalkoxyl possibly substituted with a C₁-C₄ alkoxyl or C₁-C₄ haloalkoxyl group, C₂-C₆ alkylthioalkoxy, C₂-C₆ haloalkylthioalkoxyl, C₃-C₁₂ dialkoxyalkyl, C₃-C₁₂

dialkylthioakyl, C3-C12 dialkylthioalkoxyl, C3-C12 dialkoxyalkoxyl, C2-C6 haloalkoxyhaloalkoxyl, C3-C10 alkoxyalkoxyalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C₆ alkenyloxy, C₂-C₆ haloalkenyloxy, C₃-C₈ alkenyloxyalkoxyl, C₃-C₈ haloalkenyloxyalkoxyl, C2-C6 alkynyl, C2-C6 haloalkynyl, C2-C6 alkynyloxy, C2-C6 haloalkynyloxy, C3-C8 alkynyloxyalkoxyl, C3-C8 haloalkynyloxyalkoxyl, C3-C12 acylaminoalkoxy, C2-C8 alkoxyiminoalkyl, C2-C8 haloalkoxyiminoalkyl, C3-C8 alkenyloxyiminoalkyl, C3-C8 haloalkenyloxyiminoalkyl, C3-C8 alkynyloxyiminoalkyl, C₁-C₈ haloalkynyloxyiminoalkyl, C₆-C₁₂ alkoxyalkynyloxyl, C₆-C₁₂ cycloalkylideneiminooxyalkyl, C6-C12 dialkylideneiminooxyalkyl, -S(O)mR1, -OS(O)R1, $-SO_2NR_2R_3$, $-CO_2R_4$, $-COR_5$, $-CONR_6R_7$, $-CSNR_8R_9$, $-NR_{10}R_{11}$, $-NR_{12}COR_{13}$, - $NR_{14}CO2R_{15}$, $-NR_{16}CONR_{17}R_{18}$, $-PO(R_{19})_2$, -Q, $-ZQ_1$, $-(CR_{20}R_{21})_pQ_2$, $-Z(CR_{22}R_{23})_pQ_3$, $-R_{14}CO2R_{15}$, $-R_{16}CONR_{17}R_{18}$, $-PO(R_{19})_2$, -Q, $-ZQ_1$, $-(CR_{20}R_{21})_pQ_2$, $-Z(CR_{22}R_{23})_pQ_3$, $-R_{14}CO2R_{15}$, $-R_{15}CONR_{17}R_{18}$, $-PO(R_{19})_2$, -Q, $-ZQ_1$, $-(CR_{20}R_{21})_pQ_2$, $-Z(CR_{22}R_{23})_pQ_3$, $-R_{15}CONR_{17}R_{18}$, $-PO(R_{19})_2$, -Q, $-ZQ_1$, -Q, $-ZQ_1$, -Q, $(CR_{24}R_{25})_pZQ_4, -(CR_{26}R_{27})_pZ(CR_{28}R_{29})_qQ_5, -(CR_{30}R_{31})_pZ(CR_{32}R_{33})_qZ_lQ_6, -Z_2(CR_{34}R_{35})_qZ_lQ_6, -Z_2(CR_{34}R_{35})_qZ$ $_{0}$ (C=Y) T, $-Z_{3}$ (CR₃₆R₃₇) $_{v}$ (CR₃₈R₃₉=CR₄₀R₄₁) (C=Y)T; or represents a heterocyclic group selected from pyridyl, pyrimidyl, quinolinyl, pyrazolyl, thiazolyl, oxazolyl, thienyl, furyl, benzothienyl, dihydrobenzothienyl, benzofuranyl, dihydrobenzofuranyl, benzoxazolyl, benzoxazolonyl, benzothiazolyl, benzothiazolonyl, benzoimidazolyl, benzoimidazolonyl, benzotriazolyl, chromanonyl, chromanyl, thiochromanonyl, thiochromanyl, 3a, 4dihydro-3H-indeno [1, 2-c] isoxazolyl, 3a, 4-dihydro-3H- chromeno [4, 3-c] isoxazolyl, 5. 5-dioxide-3a, 4-dihydro-3H-thiochromeno [4,3-c] isoxazolyl, 2,3, 3a, 4tetrahydrochromeno [4,3-c] pyrazolyl, 6,6-dioxide-2, 3- dihydro-5H-[1, 4] dithiino [2,3c] thiochromenyl, 5,5- dioxide-2,3, 3a, 4-tetrahydrothiochromeno [4,3- c] pyrazolyl, 1', 1'-dioxide-2', 3'-dihydrospiro [1, 3- dioxolane-2, 4'-thiochromen]-yl, 1,1, 4,4-tetraoxide-2. 3-dihydro-1, 4-benzodithiin-6-yl 4, 4-dioxide-2, 3-dihydro-1, 4-benzoxathiin-7-yl, I. 1-dioxide-3-oxo-2, 3- dihydro-1, 2-benzoisothia zol-5-yl, 4- (alkoxyimino)- 1, 1-dioxide-3, 4-dihydro-2H-thiochromen-6-yl, 1, 1-dioxide-4-oxo-3, 4-dihydro-2H-thiochromen-6yl, 2,3- dihydro-1, 4-benzoxathiin-7-yl, with all these groups possibly substituted by one or more substituents selected from halogen, NO2, CN, CHO, OH, linear or branched C1-Cs alkyl, linear or branched C1-C6 haloalkyl, linear or branched C1-C6 alkoxyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ cyanoalkyl, C₂-C₆ alkoxyalkyl, C₂-C₆ alkylthioalkyl, C2-C6 alkylsulfinylalkyl, C2-C6 alkylsulfonylalkyl, C2-C6 haloalkoxyalkyl, C2-C6 haloalkylthioalkyl, C2-C6 haloalkylsulfinylalkyl, C2-C6 haloalkylsulfonylalkyl, C2-C6

alkoxyalkoxyl or C2-C6 haloalkoxyalkoxyl, possibly substituted with a C1-C4 alkoxyl or C₁-C₄ haloalkoxyl group, C₂-C₆ alkylthioalkoxyl, C₂-C₆ haloalkylthioalkoxyl, C₃-C₁₂ dialkoxyalkyl, C3-C12 dialkylthioalkyl, C3-C12 dialkylthioalkoxyl, C3-C12 dialkoxyalkoxyl, C2-C6 haloalkoxyhaloalkoxyl, C3-C10 alkoxyalkoxyalkyl, C2-C6 alkenyl, C2-C6 haloaikenyl, C2-C6 alkenyloxy, C2-C6 haloaikenyloxy, C3-C8 alkenyloxyalkoxyl, C3-C8 haloalkenyloxyalkoxyl, C2-C6 alkynyl, C2-C6 haloalkynyl, C2-C6 C6 alkynyloxy, C2-C6 haloalkynyloxy, C3-C8 alkynyloxyalkoxyl, C3-C8 haloalkynyloxyalkoxyl, C3-C12 acylaminoalkoxy, C2-C8 alkoxyiminoalkyl, C2-C8 haloalkoxyiminoalkyl, C3-C8 alkenyloxyiminoalkyl, C3-C8 haloalkenyloxyiminoalkyl, C3-C8 alkynyloxyiminoalkyl, C3-C8 haloalkynyloxyiminoalkyl, C5-C10 alkoxyalkynyloxyl, C₆-C₁₂ cycloalkylideneiminooxyalkyl, C₆-C₁₂ dialkylideneiminooxyalkyl, -S(O)mR1, -OS(O)tR1, -SO2NR2R3, -CO2R4, -COR5, - $CONR_6R_7$, $-CSNR_8R_9$, $-NR_{10}R_{11}$, $-NR_{12}COR_{13}$, $-NR_{14}CO_2R_{15}$, $-NR_{16}CONR_{17}R_{18}$, $-R_{16}CONR_{17}R_{18}$ $PO(R_{19})_2$, Q_{10} , $(CR_{28}R_{29})_{q}Q_{5}$, $-(CR_{30}R_{31})_{p}Z(CR_{32}R_{33})_{q}Z_{1}Q_{6}$, $-Z_{2}(CR_{34}R_{35})_{p}(C=Y)_{T}$, $-Z_{3}(CR_{36}R_{37})_{v}$ (CR38R39=CR40R41) (C=Y)T; - B represents a D- (Rx) n group; - R represents a hydrogen atom, a linear or branched C1-C6 alkyl group, a linear or branched C1-C6 haloalkyl group, a C3-C6 cycloalkyl group or a C4-C12 cycloalkylalkyl group possibly substituted with halogen atoms or C1-C6 alkyl or C1-C6 thioalkyl or C1-C6 alkoxyl or C2-C6 alkoxycarbonyl groups, alkenyl C2- C6 groups, alkynyl C2-C6 groups, the latter two groups, in turn, possibly substituted with halogen atoms, a C5-C6cycloalkenyl group possibly substituted with halogen atoms or C₁-C₆ alkyl groups, an aryl or arylalkyl group optionally substituted; R_1 and R_{19} , represent a C_1 - C_6 alkyl or C_1 - C_6 haloalkyl group, a C_3 -C₆ cycloalkyl group, an aryl group optionally substituted by one or more substituents selected from halogen, NO2, CN, CHO, linear or branched C1-C6 alkyl, linear or branched C₁- C₆ haloalkyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₁-C₆ haloalkoxyl, Cl-C₆ alkylsulfonyl, C₂-C₆ alkoxycarbonyl; - m is equal to 0,1 or 2; - t is equal to 1 or 2; - R_2 , R_3 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{17} and R_{18} the same or different, represent a hydrogen atom, a linear or branched Ci-C6 alkyl group in turn possibly substituted with halogen atoms, a C1- C6 alkoxyl group, a C3-C6 cycloalkyl group, an arylalkyl group or an aryl group, said arylalkyl or aryl groups also optionally substituted with one or more

substituents selected from halogen, NO2, CN, CHO, linear or branched C1-C6 alkyl, linear or branched C1-C6 haloalkyl, linear or branched C1-C6 alkoxyl, linear or branched C1-C6 haloalkoxyl, C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxycarbonyl or, together, represent a C₂-C₅ alkylenic chain: - R4, R5 and R42, represent a hydrogen atom, a linear or branched C1-C6 alkyl group in turn possibly substituted with halogen atoms, a C3-C6 alkenyl group in turn possibly substituted with halogen atoms, a Q₇ group, an arylalkyl group possibly substituted with one or more substituents selected from halogen, NO2, CN, CHO, linear or branched C1-C6 alkyl, linear or branched C1-C6 haloalkyl, linear or branched C1-C6 alkoxyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxycarbonyl; -R₁₂, R₁₄ and R₁₆, represent a hydrogen atom, a linear or branched C₁-C₆ alkyl group in turn possibly substituted with halogen atoms, a C3-C6 cycloalkyl group, a C_1 - C_6 alkoxyl group, a C_1 - C_6 haloalkoxyl group; - R_{13} and R_{15} , represent a hydrogen atom, a linear or branched C_1 - C_6 alkyl group in turn possibly substituted with halogen atoms, a C_3 - C_6 alkenyl group, in turn possibly substituted with halogen atoms, a Q_7 group, NH₂, NHCN, NHNH₂, NHOH, an arylalkyl group possibly substituted with one or more substituents selected from halogen, NO2, CN, CHO, linear or branched C1-C6 alkyl, linear or branched C1- C6 haloalkyl, linear or branched C1-C6 alkoxyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxycarbonyl -R₂₀, R₂₁, R₂₂, R₂₃, R₂₄, R_{25} , R_{26} , R_{27} , R_{28} , R_{29} , R_{30} , R_{31} , R_{32} , R_{33} , R_{34} , R_{35} , R_{36} , R_{37} , R_{38} , R_{39} , R_{40} and R_{41} , the same or different, represent a hydrogen atom, a linear or branched C1-C6 alkyl group in turn optionally substituted with halogen atoms, a C_1 - C_6 alkoxyl group, or the two groups attached to the same carbon atom can be joined to each other by C2-C5 alkylene groups. the alkylene groups can in turn be substituted with C₁-C₃ alkyl groups; - Q, Q₁, Q₂, Q₃, Q4, Q5, Q6, and Q7 represent an aryl group, a C3-C6 cycloalkyl group, C5-C6 cycloalkenyl, a heterocyclic group selected from triazolyl, triazolonyl, pyrazolyl, imidazolyl, imidazolydinonyl, tetrazolyl, tetrazolonyl, isoxazolyl, furyl, thienyl, pyrrolyl, pyrrolidinyl, pyrrolidinonyl, pyridyl, pyrimidinyl, pyrimidinonyl, pyrazinyl, pyridazinyl, oxazolyl, thiazolyl, oxadiazolyl, thiadiazolyl, isothiazolyl, benzoxazolyl, benzothiazolyl, isoxazolinyl, 1, 3-dioxanyl, 1,4-dioxanyl, 1,3-dioxolanyl, tetrahydropyranyl, oxethanyl, oxyranyl, thiazolidinyl, oxazolidinyl, piperidinyl, piperidinonyl, piperazinyl, morpholinyl, thiazinyl, tetrahydrofuranyl, dioxazolyl, tetrahydrofuroisoxazolyl, 2-oxa-3azabicyclo [3. 1. 0] hex-3-enyl, said groups optionally substituted by one or more substituents selected from halogen, NO2, CN, CHO, linear or branched C1-C6 alkyl, linear or branched C1- C6 haloalkyl, linear or branched C1-C6 alkoxyl, linear or branched C1-C6 haloalkoxyl, C1-C6 cyanoalkyl, C2-C6 alkoxyalkyl, C2-C6 alkylthioalkyl, C2-C6 alkylsulfinylalkyl, C2-C6 alkylsulfonylalkyl, C2-C6 haloalkoxyalkyl, C1-C6 haloalkylthioalkyl, C2-C6 haloalkylsulfinylalkyl, C2-C6 haloalkylsulfonylalkyl, C2-C6 alkoxyalkoxyl or C2-C6 haloalkoxyalkoxyl optionally substituted with a group selected from C₁- C₄ alkoxyl or C₁-C₄ haloalkoxyl, C₂-C₆ alkylthioalkoxyl, C₂-C₆ baloalkylthioalkoxyl, C3-C12 dialkoxyalkyl, C3-C12 dialkylthioalkyl, C3-C12 dialkylthioalkoxyl, C3-C12 dialkoxyalkoxyl, C2-C6 haloalkoxyhaloalkoxyl, C3-C10 alkoxyalkoxyalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkenyloxy, C2-C6 haloalkenyloxy, C₃-C₈ alkenyloxyalkoxyl, C₃-C₈ haloalkenyloxyalkoxyl, C₂-C₆ alkynyl, C2-C6 haloalkynyl, C2-C6 alkynyloxy, C2-C6 haloalkynyloxy, C3-C8 alkynyloxyalkoxyl, C₃-C₈ haloalkynyloxyalkoxyl, C₃-C₁₂ acylaminoalkoxy, C₂-C₈ alkoxyiminoalkyl, C₂-C₈ haloalkoxyiminoalkyl, C3-C8 alkenyloxyiminoalkyl, C3-C8 haloalkenyloxyiminoalkyl, C₃-C₈ alkynyloxyiminoalkyl, C₃-C₈ haloalkynyloxyiminoalkyl, C₅-C₁₀ alkoxyalkynyloxyl, C6-C12 cycloalkylideneiminooxyalkyl, C6-C12 dialkylideneiminooxyalkyl, aryl optionally substituted, -S (O) mR1,-OS (O) tR1, -SO2NR2R3, -CO2R4, -COR5, - $CONR_6R_7$, $-CSNR_8R_9$, $-NR_{10}R_{11}$, $-NR_{12}COR_{13}$, $-NR_{14}CO_2R_{15}$, $-NR_{16}CONR_{17}R_{18}$, $-NR_{16}CONR_$ $PO(R_{19})_2$, $-Z_2(CR_{34}R_{35})_p$ (C=Y) T,-Z₃ (CR₃₆R₃₇) $_v$ (CR₃₈R₃₉=CR₄₀R₄₁) (C=Y) T; - Z, Z₁, $Z_2 = O_2 S_1(O_1)$; - Y = 0, S; -r is equal to 0.1 or 2; -p, q are equal to 1, 2,3 or 4; -v is equal to 0 or 1; - $Z_3 = 0$, S or a direct bond; - T represents a hydrogen atom, a Z_4R_{42} group, a -NR43R44 group, an aryl group or a heterocyclic group selected from triazolyl, triazolonyl, pyrazolyl, imidazolyl, imidazolidinonyl, tetrazolyl, tetrazolonyl, pyrrolyl. pyrrolidinyl, pyrrolidinonyl, pyridyl, pyrimidinyl, piperidinyl, piperidinonyl, piperazinyl, morpholinyl, said groups optionally substituted by one or more substituents selected from halogen, NO2, OH, CN, CHO, linear or branched C1-C6 alkyl, linear or branched C1-C6 haloalkyl, C3-C6 cycloalkyl, C5-C6 cycloalkenyl, linear or branched C1- C6 alkoxyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ cyanoalkyl, C₂-C₆ alkoxyalkyl, C₂-C₆ alkylthioalkyl, C2-C6 alkylsulfinylalkyl, C2-C6 alkylsulfonylalkyl, C2-C6 haloalkoxyalkyl, C2-C6 haloalkylthioalkyl, C2-C6 haloalkylsulfinylalkyl, C2- C6 haloalkylsulfonylalkyl,-S

(O) $_{\rm m}R_1$ - Z_4 = Or S or a direct bond; - R_{43} and R_{44} , the same or different, represent a hydrogen atom, a linear or branched C1-C6 alkyl group in turn optionally substituted with halogen atoms, a C3-C6 alkenyl group in turn optionally substituted with halogen atoms, a Q₂ group, an arylalkyl group optionally substituted by one or more substituents selected from halogen, NO2. CN, CHO, linear or branched C1-C6 alkyl, linear or branched C1-C6 haloalkyl, linear or branched C1-C6 alkoxyl, linear or branched C1-C6 haloalkoxyl, C1-C6 alkylsulfonyl, C2-C6 alkoxycarbonyl, or they jointly represent a C2- C5 alkylene chain; -D represents: a heterocyclic group of the heteroaryl or heterocyclic type, in all the above cases the heterocycle can be mono or polycyclic and can be connected to the rest of the structure either through one of its carbon atoms or, when possible, through one of its nitrogen atoms; or it represents a mono or polycyclic aryl group, in this latter case, the group can also be partially saturated; - Rx represents a substituent selected from hydrogen, halogen, N02, CN, CHO, OH, linear or branched C1-C6 alkyl, linear or branched C1-C6 haloalkyl, linear or branched C1-C6 alkoxyl, linear or branched C1-C6 haloalkoxyl, C1-C6 cyanoalkyl, C2-C6 alkoxyalkyl, C2-C6 alkylthioalkyl, C2-C6 alkylsulfinylalkyl, C2-C6 alkylsulfonylalkyl, C2-C6 haloalkoxyalkyl, C2-C6 haloalkylthioalkyl, C2-C6 haloalkylsulfinylalkyl, C2-C6 haloalkylsulfonylalkyl, C2-C6 alkoxyalkoxyl or C2- C6 haloalkoxyalkoxyl optionally substituted with a group selected from C₁-C₄ alkoxyl or COCH haloalkoxyl, C₂-C₆ alkylthioalkoxyl, C₂-C₆ haloalkylthioalkoxyl, C3-C12 dialkoxyalkyl, C3-C12 dialkylthioalkyl, C3-C12 dialkylthioalkoxyl, C3-C12 dialkoxyalkoxyl, C2-C6 haloalkoxyhaloalkoxyl, C3-C10 alkoxyalkoxyalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkenyloxy, C2-C6 haloalkenyloxy, C3-C8 alkenyloxyalkoxyl, C3-C8 haloalkenyloxyalkoxyl, C2-C6 alkynyl, C_2 - C_6 haloalkynyl, C_2 - C_6 alkynyloxy, C_2 - C_6 haloalkynyloxy, C_3 - C_8 alkynyloxyalkoxyl, C₃-C₈ haloalkynyloxyalkoxyl, C₃-C₁₂ acylaminoalkoxy, C₂-C₈ alkoxyiminoaLkyl, C₂-C₈ haloalkoxyiminoalkyl, C3-C8 alkenyloxyiminoalkyl, C3-C8 haloalkenyloxyiminoalkyl, C3-C₈ alkynyloxyiminoalkyl, C₃-C₈ haloalkynyloxyiminoalkyl, C₅-C₁₀ alkoxyalkynyloxyl, C₆-C₁₂ cycloalkylideneiminooxyalkyl, C₆-C₁₂ dialkylideneiminooxyalkyl, -S (O) _mR₁, -OS (0) ${}_{1}R_{1}$, -SO₂NR₂R₃, -CO₂R₄, -COR₅, -CONR₆R₇, -CSNR₈R₉, - NR₁₀R₁₁, -NR₁₂COR₁₃, $-NR_{14}CO_2R_{15}$, $-NR_{16}CONR_{17}R_{18}$, $-PO(R_{19})_2$, -Q, $-ZQ_1$, $-(CR_{20}R_{21})_pQ_2$, $-Z(CR22R23)pQ_3$, $-\left(CR_{24}R_{25}\right)_{p}ZQ_{4},-\left(CR_{26}R_{27}\right)_{p}Z(CR_{28}R_{29})_{q}Q_{5},-\left(CR_{30}R_{31}\right)_{p}Z(CR_{32}R_{33})_{q}Z_{1}Q_{6},-\left(CR_{30}R_{31}R_{31}\right)_{p}Z(CR_{32}R_{33})_{q}Z_{1}Q_{6},-\left(CR_{30}R_{31}R_{$

 $Z_2(CR_{34}R_{35})_p(C=Y)T$, $-Z_3(CR_{36}R_{37})v(CR_{38}R_{39}=CR_{40}R_{41})$ (C=Y)T; if several R_x groups are present, these can be the same or different; - n = 1-9; and of the relevant salts which have agronomical compatibility, as herbicides.

- 4. (original):Use according to claim 3, for the control under pre-emergence and post-emergence of monocotyledon and dicotyledon weeds.
- 5. (original):Use of derivatives of 1,3-diones having general formula (I): wherein: A, B and R have the meanings defined according to claim 3, and of the relevant salts pharmaceutically acceptable as medicaments.
- 6. (original) A process for the preparation of the compounds having general formula (I) according to any of the claims 1 to 3, characterized in that it includes a reaction of a carbonyl compound having general formula (II) with a compound having general formula (III), according to the reaction scheme 1 Scheme 1:

wherein - A, B and R have the meanings previously defined; -L₁ represents a suitable leaving group such as, for example, a halogen atom, a CN group, an imidazol- 1-yl group, an R_L O-group wherein R_L represents a C_1 - C_4 alkyl group or a phenyl group optionally substituted, or it represents an R_L 1COO-group wherein R_L 1 represents a hydrogen atom, a C_1 - C_4 alkyl or haloalkyl group, a phenyl group optionally substituted or an A group.

7. (original): The process for the preparation of the compounds having general formula (I) according to any of the claims 1 to 3, characterized in that it includes a reaction of a carbonyl compound having general formula (IV) with a compound having general formula (V), according to the reaction scheme 2 Scheme 2:

wherein - A, B and R have the meanings previously defined; L2 represents a suitable leaving group such as, for example, a halogen atom, a CN group, an imidazol- 1-yl group, an R₁O-group wherein R₁ represents a C₁- C₄ alkyl group or a phenyl group optionally substituted, or it represents an R_L1COO-group wherein R_L1 represents a hydrogen atom, a C₁-C₄ alkyl or haloalkyl group, a phenyl group optionally substituted or an R group.

8. (original): The process for the preparation of the compounds having general formula (1) according to any of the claims 1 to 3, characterized in that it includes a reaction of a 1,3-dicarbonyl compound having general formula (VI) with a compound having general formula (VII), according to the reaction scheme 3

Scheme 3:

2123028998

wherein A, B and R have the meanings previously defined; - X represents a halogen atom, an $R_{L2}SO_2O$ -group, wherein R_{L2} represents a C_1 - C_4 alkyl or haloalkyl group, a phenyl group optionally substituted by C_1 - C_4 alkyl groups, or it represents an $R_{L3}SO_2$ -group, wherein R_{L3} represents a C_1 - C_4 alkyl or haloalkyl group.

9. (original): The process according to any of the claims from 6 to 8, characterized in that the reaction is carried out in the presence of one or more inert organic solvents and in the presence of an organic or inorganic base, at a temperature ranging from-80°C to the boiling temperature of the reaction mix.

10.(original): The process according to claim 9, characterized in that the reaction is carried out in two separate phases.

11. (original): A method for the control of weeds in agricultural crops, by the application of compounds having general formula (I):

wherein: - A, B and R have the meanings according to claim 3.

(I)

12.(original): The method according to claim 11, characterized in that the quantity of compound having formula (I) to be applied ranges from 1 g to 4,000 g per hectare.

13. (original):Herbicidal compositions containing, as active principle, one or more compounds having general formula (I):

(x)

TIEDMENT & COSTIGNITY C

wherein: - A, B and R have the meanings according to claim 3, possibly also as a blend of tautomers and/or isomers.

14. .(original): The herbicidal compositions according to claim 13, including other active principles compatible with the compounds having general formula (I), such as other herbicides, fungicides, insecticides, acaricides, fertilizers, etc..

15. (origional): The herbicidal compositions according to claim 14, characterized in that the additional herbicides are selected from: acetochlor, acifluorfen, aclonifen, AKH-7088, alachlor, alloxydim, ametryn, amicarbazone, amidosulfuron, amitrole, anilofos, asulam, atrazine, azafenidin, azimsulfuron, aziprotryne, BAS 670 H, BAY MKH 6561. beflubutamid, benazolin, benfluralin, benfuresate, bensulfuron, bensulide, bentazone, benzfendizone, benzobicyclon, benzofenap, benzthiazuron, bifenox, bilanafos, bispyribac-sodium, bromacil, bromobutide, bromofenoxim, bromoxynil, butachlor, butafenacil, butantifos, butenachlor, butralin, butroxydim, butylate, cafenstrole, carbetamide, carfentrazone-ethyl, chlomethoxyfen, chloramben, chlorbromuron, chlorbufam, chlorflurenol, chloridazon, chlorimuron, chlornitrofen, chlorotoluron, chloroxuron, chlorpropham, chlorsulfuron, chlorthal, chlorthiamid, cinidon ethyl, cinmethylin, cinosulfuron, clethodim, clodinafop, clomazone, clomeprop, clopyralid, cloransulam-methyl, cumyluron (IC-940), cyanazine, cycloate, cyclosulfamuron, cycloxydim, cyhalofop- butyl, 2,4-D, 2,4-DB, daimuron, dalapon, desmedipham, desmetryn, dicamba, dichlobenil, dichlorprop, dichlorprop-P, diclofop, diclosulam, diethatyl, difenox pron, difenzoquat, diflufenican, diflufenzopyr, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dinitramine, dinosseb. dinoseb acetate, dinoterb, diphenamid, dipropetryn, diquat, dithiopyr, 1-diuron, eglinazine, endottal, EPTC, espropearb, ethalfluralin, ethametsulfuron- methyl, ethidimuron, ethidzin (SMY 1500), ethofumesate, ethoxyfen-ethyl (HC-252), ethoxysulfuron, etobenzanid (HW 52), fenoxaprop, fenoxaprop-P, fentrazamide, fenuron, flamprop, flamprop-M, flazasulfuron, florasulam, fluazifop, fluazifop-P, fluazolate (JV 485), flucarbazone- sodium, fluchloralin, flufenacet, flufenpyr ethyl, flumetsulam, flumiclorae-pentyl, flumioxazin, flumipropin, fluometuron, fluoroglycofen, fluoronitrofen, flupoxam, fluproanate, flupyrsulfuron, flurenol, fluridone,

flurochloridone, fluroxypyr, flurtamone, fluthiacet-methyl, fomesafen, foramsulfuron, fosamine, furyloxyfen, glufosinate, glyphosate, halosulfuron-methyl, haloxyfop, haloxyfop-P-methyl, hexazinone, imazamethabenz, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, indanofan, iodosulfuron, ioxynil, isopropalin, isoproturon, isourdn, isoxaben, isoxachlortole, isoxaflutole, isoxapyrifop, KPP-421, lactofen, lenacil, lihuron, LS830556, MCPA, MCPA- thioethyl, MCPB, mecoprop, mecoprop-P, mefehacet, mesosulfuron, mesotrione, metamitron, metazachlor, methabenzthiazurdn, methazole, methoprotryne, methyldymron, metobenzuron, metobromuron, inétolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, molinate, monalide, monolinuron, naproanilide, napropamide, naptalam, NC- 330, neburon, nicosulfuron, nipyraclofen, norflurazon, orbencarb, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefone, oxyfluorfen, paraquat, pebulate, pendimethalin, penoxsulam, pentanochlor, pentoxazone, pethoxamid,, phenmedipham, picloram, picolinalen, piperophos, pretilachlor, primisulfuron, prodiamine, profluazol. proglinazine, prometon, prometryne, propachlor, propanil, propaquizafop, propazine, propham, propisodhlor, propyzamide, prosulfocarb, prosulfuron, pyraclonil, pyraflufenethyl, pyrazogyl (HAS-961), pyrazolynate, pyrazosulfuron, pyrazoxyfen, pyribenzoxim, pyributicarb, pyridafol, pyridate, pyriftalid, pyriminobac-methyl, pyrithiobac-sodium, quinclorae, quiumerae, quizalofop, quizalofop-P, rimsulfuron, sethoxydim, siduron, simazine, simetryi, sulcotrione, sulfentrazone, sulfometuron-methyl, sulfosulfuron, 2,3, 6-TBA, TCA-sodilum, tebutam, tebuthiuron, tepraloxydim, terbacil, terbumeton, terbuthyl-azine, terbutryn, thenylchlor, thiazafluron, thiazopyr, thidiazimin, thifensulfuron-methyl, thiobencarb, tiocarbazil, tioclorim, tralkoxydim, tri-allate, triasulfuron, triaziflam, tribenuron, triclopyr, trietazine, trifloxysulfuron, trifluralin, triflusulfuron-methyl, tritosulfuron, UBI-C4874, vernolate.

16. .(original): The compositions according to any of the claims 13-15, characterized in that the concentration of active substance ranges from 1 to 90%.