Human Activity Classification from Accelerometer Data

Sai Surya Nattuva

Advisor: Prof. Gokhan Kul

Abstract

- Human activity can be observed and measured by employing different sensors on different parts of the body.
- Monitoring and analysis of Human Activity help develop many technologies like fall detection, irregular heart rhythms, walking steadiness, posture, etc.
- This project focuses on classifying the activity performed by a human from time-series data generated from the user's phone's accelerometer.
- By leveraging the learning capability of CNNs on time-series data with a small number of training samples and input channels.

Phone Accelerometer Data

- Time series data is generated from the accelerometer in a smartphone.
- Measures the X, Y, and Z axes with a defined polling rate (100 Hertz) for the desired recording period.
- The user practiced boxing while holding the phone in his dominant arm.
- The time-series data is labeled in sections in which a move is performed.

Model Pipeline

Training and testing data

 A total of 330 2-D windows were generated from the time-series of size – with window size 4x64

• Training: 55%

Validation: 15%

• Testing: 30%

Training data class distribution

Testing data class distribution

Hyperparameter Tuning

Tuned with RandomizedSearchCV with 3 cross-fold validation

Tuned Parameter	Range	Optimized Value
Number of filters	[16, 32, 64]	64
Activation function	[ReLU, Tanh]	ReLU
Epochs	[50, 100, 150, 200]	150
Batch size	[16, 32, 64, 128]	32
Loss function	["CategoricalCrossEntropy", "SparseCategoricalCrossEntropy"]	"SparseCategoricalCrossEntropy"
Optimizer	["Adam", "RMSProp", "SGD"]	"Adam"
Learning Rate	[0.1, 0.01, 0.001, 0.0001]	0.001

Model Performance

	f1-score	support
Idle Cross Hook Jab Uppercut	0.88 0.33 0.87 0.56 0.89	51 4 17 10 17
accuracy macro avg weighted avg	0.84 0.71 0.83	99 99 99

References

- A. Jafari, A. Ganesan, C. S. K. Thalisetty, V. Sivasubramanian, T. Oates and T. Mohsenin, "<u>SensorNet: A Scalable and Low-Power Deep Convolutional Neural Network for Multimodal Data Classification</u>," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 1, pp. 274-287, Jan. 2019, doi: 10.1109/TCSI.2018.2848647.
- <u>Physics Toolbox Sensor Suite Pro</u> Vieyra Software
- Pedregosa et al. Scikit-learn: Machine Learning in Python, JMLR 12, pp. 2825-2830, 2011.

Thank you!

Happy to answer your questions, if any!