Docket No. 240031US0/hyc

IN THE UNITED STATES PAS TRADEMARK OFFICE

IN RE APPLICATION OF: Mikio KONDOH, et al.

GAU:

1742

OCT IS MED

SERIAL NO: 10/615,939

EXAMINER:

FILED:

July 10, 2003

FOR:

GREEN COMPACT AND PROCESS FOR COMPACTING THE SAME, METALLIC SINTERED BODY AND PROCESS FOR PRODUCING THE SAME, WORKED COMPONENT PART AND

METHOD OF WORKING

REQUEST FOR PRIORITY

COMMISSIONER FOR PATENTS ALEXANDRIA, VIRGINIA 22313

in the state of th	22313			
SIR:				
☐ Full benefit of the filir provisions of 35 U.S.C	ng date of U.S. Application Serial Number C. §120.	, filed	, is claimed pursuant to the	
☐ Full benefit of the filin §119(e):	ng date(s) of U.S. Provisional Application(s) is <u>Application No.</u>	claimed pur Date Fil	_	.C
	right to priority from any earlier filed applicati .S.C. §119, as noted below.	ons to which	they may be entitled pursuant to	ı
In the matter of the above-	identified application for patent, notice is here	by given tha	t the applicants claim as priority:	
<u>COUNTRY</u> JAPAN JAPAN	<u>APPLICATION NUMBER</u> 2002-208092 2003-166642	July	NTH/DAY/YEAR v 17, 2002 e 11, 2003	
are submitted here	• •			
	rior to payment of the Final Fee			
were submitted to to Receipt of the certi	application Serial No. filed the International Bureau in PCT Application Napplication in a tire to be the International Bureau in a tire to be the attached PCT/IB/304.		under PCT Rule 17.1(a) has bee	n
☐ (A) Application Se	rial No.(s) were filed in prior application Seria	ıl No.	filed; and	
☐ (B) Application Se	rial No.(s)			
are submitted	d herewith			
☐ will be subm	itted prior to payment of the Final Fee			
	R	espectfully S	Submitted,	
			VAK, McCLELLAND, EUSTADT, AC.	_

Customer Number

Tel. (703) 413-3000 Fax. (703) 413-2220 (OSMMN 05/03)

Norman F. Oblop

Registration No.

Rohitha Jayasuriya Registration No. 50,385

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 6月11日

出 願 番 号 Application Number:

特願2003-166642

[ST. 10/C]:

[JP2003-166642]

出 願 人
Applicant(s):

株式会社豊田中央研究所

2003年 7月 8日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

P000014149

【提出日】

平成15年 6月11日

【あて先】

特許庁長官 太田 信一郎 殿

【国際特許分類】

B22F 3/035

【発明の名称】

粉末成形体と粉末成形方法、金属焼結体とその製造方法

および成形加工部材と成形加工方法

【請求項の数】

35

【発明者】

【住所又は居所】

愛知県愛知郡長久手町大字長湫字横道41番地の1株式

会社豊田中央研究所内

【氏名】

近藤 幹夫

【発明者】

【住所又は居所】

愛知県愛知郡長久手町大字長湫字横道41番地の1株式

会社豊田中央研究所内

【氏名】

斎藤 卓

【発明者】

【住所又は居所】

愛知県愛知郡長久手町大字長湫字横道41番地の1株式

会社豊田中央研究所内

【氏名】

高宮 博之

【特許出願人】

【識別番号】

000003609

【氏名又は名称】

株式会社豊田中央研究所

【代表者】

高橋 理一

【代理人】

【識別番号】

100081776

【弁理士】

【氏名又は名称】

大川 宏

【電話番号】

(052) 583-9720

【先の出願に基づく優先権主張】

【出願番号】

特願2002-208092

【出願日】

平成14年 7月17日

【手数料の表示】

【予納台帳番号】

009438

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

9102997

【プルーフの要否】

要

【書類名】明細書

【発明の名称】粉末成形体と粉末成形方法、金属焼結体とその製造方法および成 形加工部材と成形加工方法

【特許請求の範囲】

【請求項1】 金型の内面に高級脂肪酸系潤滑剤を塗布する塗布工程と、

該塗布工程後の金型内へ活性金属元素を主成分とする原料粉末を充填する充填 工程と、

該充填工程後の原料粉末を温間状態で加圧して粉末成形体とする成形工程と、 該成形工程後の粉末成形体を該金型内から抜き出す抜出工程とからなり、 得られた該粉末成形体が高密度であることを特徴とする粉末成形方法。

【請求項2】前記活性金属元素はチタン(Ti)である請求項1に記載の粉末 成形方法。

【請求項3】前記原料粉末には、さらに、アルミニウム(A 1)、ジルコニウム((Zr)、ハフニウム((Hf)、バナジウム((V))、ニオブ((Nb))、タンタル((Ta))、スカンジウム((Sc))、クロム((Cr))、鉄((Fe))、モリブデン((Mo))、錫((Sn))、タングステン((W))、マンガン((Mn))、ニッケル((Na)1)、銅((Cu))、ケイ素((Sa)1)、炭素((Ca)2)、ホウ素((Ca)3)、窒素((Ca)3)が含まれる請求項2に記載の粉末成形方法。

【請求項4】前記原料粉末は、純チタン粉末、チタン合金粉末またはチタン化合物粉末からなる請求項2に記載の粉末成形方法。

【請求項5】前記活性金属元素はA1である請求項1に記載の粉末成形方法。

【請求項6】前記原料粉末には、さらに、Cu、マグネシウム(Mg)、Mn、Zr、ストロンチウム(Sr)、Ni、Cr、Fe、Mo、Sn、Si、C、B、NまたはOが含まれる請求項5に記載の粉末成形方法。

【請求項7】前記原料粉末は、純アルミニウム粉末、アルミニウム合金粉末またはアルミニウム化合物粉末からなる請求項5に記載の粉末成形方法。

【請求項8】前記原料粉末は、炭化物、ホウ化物、窒化物または酸化物からなる硬質粒子粉末が混合された混合粉末である請求項1に記載の粉末成形方法。

【請求項9】前記活性金属元素はTiであり、

前記粉末成形体の見掛け上の密度である成形体密度は、前記原料粉末の組成から定る真密度の85%以上である請求項1に記載の粉末成形方法。

【請求項10】前記活性金属元素はA1であり、

前記粉末成形体の見掛け上の密度である成形体密度は、前記原料粉末の組成か ら定る真密度の90%以上である請求項1に記載の粉末成形方法。

【請求項11】前記成形工程は、少なくとも前記金型の内面と前記原料粉末とが接触する部分の温度である接触部分温度を100~225℃の温間状態としつつ、成形圧力を392MPa以上として温間加圧成形する工程である請求項1に記載の粉末成形方法。

【請求項12】前記活性金属元素はTiであり、

前記接触部分温度は100~225℃で、前記成形圧力は500~2500M Paとする請求項11に記載の粉末成形方法。

【請求項13】前記活性金属元素はAlであり、

前記接触部分温度は100~225℃で、前記成形圧力は392~2500M Paとする請求項11に記載の粉末成形方法。

【請求項14】前記成形工程の成形圧力が784MPa以上のときに、前記抜出工程の抜出力が10MPa以下である請求項1に記載の粉末成形方法。

【請求項15】前記活性金属元素はTiであり、

前記成形圧力は784MPa以上で、前記抜出力は10MPa以下である請求項14に記載の粉末成形方法。

【請求項16】前記活性金属元素はA1であり、

前記成形圧力は392MPa以上で、前記抜出力は5MPa以下である請求項 14に記載の粉末成形方法。

【請求項17】前記成形圧力に対する前記抜出力の圧力比が、該成形圧力の増加に対して減少傾向にある請求項14に記載の粉末成形方法。

【請求項18】前記塗布工程は、界面活性剤を含む分散液に分散させた粉末状の高級脂肪酸系潤滑剤を、加熱された前記金型の内面に噴霧する工程である請求項1に記載の粉末成形方法。

【請求項19】前記分散液は、水またはアルコール系溶媒からなる請求項18

に記載の粉末成形方法。

【請求項20】前記分散液は、水と1~50体積%のアルコール系溶媒とを混合した混合液からなる請求項18に記載の粉末成形方法。

【請求項21】前記加熱された金型の金型温度は、前記分散液の沸点以上で前 記高級脂肪酸系潤滑剤の融点未満である請求項18に記載の粉末成形方法。

【請求項22】前記高級脂肪酸系潤滑剤は、高級脂肪酸のリチウム塩、カルシウム塩または亜鉛塩を主成分とする金属塩からなる請求項1または18に記載の粉末成形方法。

【請求項23】前記高級脂肪酸系潤滑剤は、最大粒径が30μm以下である請求項18に記載の粉末成形方法。

【請求項24】前記成形工程は、前記高級脂肪酸系潤滑剤とは別の前記活性金属元素を含む新たな金属石鹸の被膜が前記粉末成形体の表面に形成される工程である請求項1に記載の粉末成形方法。

【請求項25】前記活性金属元素はTiであり、

前記金属石鹸は高級脂肪酸のTi塩である請求項24に記載の粉末成形方法。

【請求項26】前記活性金属元素はAlであり、

前記金属石鹸は高級脂肪酸のAl塩である請求項24に記載の粉末成形方法。

【請求項27】金型の内面に高級脂肪酸系潤滑剤を塗布する塗布工程と、

該塗布工程後の金型内へ活性金属元素を主成分とする原料粉末を充填する充填 工程と、

該充填工程後の原料粉末を温間状態で加圧して粉末成形体とする成形工程と、 該成形工程後の粉末成形体を該金型内から抜き出す抜出工程とを経て得られ、 前記活性金属元素はTiであり、

前記粉末成形体の見掛け上の密度である成形体密度は、前記原料粉末の組成から定る真密度の85%以上の高密度であることを特徴とする粉末成形体。

【請求項28】金型の内面に高級脂肪酸系潤滑剤を塗布する塗布工程と、

該塗布工程後の金型内に活性金属元素を主成分とする原料粉末を充填する充填 工程と、

該充填工程後の原料粉末を温間状態で加圧して粉末成形体とする成形工程と、

該成形工程後の粉末成形体を該金型内から抜き出す抜出工程とを経て得られ、 前記活性金属元素はAlであり、

前記粉末成形体の見掛け上の密度である成形体密度は、前記原料粉末の組成か ら定る真密度の90%以上の高密度であることを特徴とする粉末成形体。

【請求項29】金型の内面に高級脂肪酸系潤滑剤を塗布する塗布工程と、 該塗布工程後の金型内へ活性金属元素を主成分とする原料粉末を充填する充填 工程と、

該充填工程後の原料粉末を温間状態で加圧して粉末成形体とする成形工程と、 該成形工程後の粉末成形体を該金型内から抜き出す抜出工程と、

該抜出工程後の粉末成形体を加熱して金属焼結体とする焼結工程とからなり、 得られた該金属焼結体が高密度であることを特徴とする金属焼結体の製造方法

【請求項30】金型の内面に高級脂肪酸系潤滑剤を塗布する塗布工程と、 該塗布工程後の金型内へ活性金属元素を主成分とする原料粉末を充填する充填 工程と、

該充填工程後の原料粉末を温間状態で加圧して粉末成形体とする成形工程と、 該成形工程後の粉末成形体を該金型内から抜き出す抜出工程と、

該抜出工程後の粉末成形体を加熱して金属焼結体とする焼結工程とを経て得られ、

前記活性金属元素はTiであり、

前記金属焼結体の見掛け上の密度である焼結体密度は、前記原料粉末の組成か ら定る真密度の85%以上の高密度であることを特徴とする金属焼結体。

【請求項31】金型の内面に高級脂肪酸系潤滑剤を塗布する塗布工程と、 該塗布工程後の金型内へ活性金属元素を主成分とする原料粉末を充填する充填 工程と、

該充填工程後の原料粉末を温間状態で加圧して粉末成形体とする成形工程と、 該成形工程後の粉末成形体を該金型内から抜き出す抜出工程と、

該抜出工程後の粉末成形体を加熱して金属焼結体とする焼結工程とを経て得られ、

前記活性金属元素はAlであり、

前記金属焼結体の見掛け上の密度である焼結体密度は、前記原料粉末の組成から定る真密度の90%以上の高密度であることを特徴とする金属焼結体。

【請求項32】活性金属元素を主成分とした金属素材の表面および/または成 形加工金型の加工面に高級脂肪酸系潤滑剤を塗布する塗布工程と、

該成形加工金型により該金属素材を温間状態で成形加工する成形加工工程と、からなることを特徴とする成形加工方法。

【請求項33】前記塗布工程は、加熱した前記金属素材を前記高級脂肪酸系潤滑剤を分散させた分散液中に浸漬するディップ法、または、加熱した該金属素材若しくは前記成形加工金型へ該高級脂肪酸系潤滑剤を分散させた分散液を吹付けるスプレー法により行われる工程である請求項32に記載の成形加工方法。

【請求項34】前記成形加工工程は、鍛造、圧延、押出し、引抜き、転造、コイニング、サイジングまたは再圧縮のいずれかの加工を行う工程である請求項32に記載の成形加工方法。

【請求項35】活性金属元素を主成分とした金属素材の表面および/または成 形加工金型の加工面に高級脂肪酸系潤滑剤を塗布する塗布工程と、

該成形加工金型により該金属素材を温間状態で成形加工する成形加工工程とを 経て得られることを特徴とする成形加工部材。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、Ti、Al等の活性金属元素を主成分とする原料粉末(以下、適宜、「活性金属粉末」と略称する。)からなる高密度の粉末成形体とその粉末成形方法、およびその粉末成形体を燒結させた高密度な金属焼結体とその製造方法に関するものである。

また、活性金属元素を主成分とする金属素材を成形加工した成形加工部材とその成形加工方法に関するものである。

[0002]

【従来の技術】

高価な加工費を削減して部材の生産コストの低減を図ったり、バルク状の溶製材等では得られない特性を得るために、原料粉末を加圧成形した粉末成形体が従来から用いられている。この粉末成形体は、その後に焼結体とされることも多いが、圧粉磁心のように粉末成形体のままで使用される場合もある。

ところで、粉末成形体の特長を生かすには、多くの場合、粉末成形体が高密度であることが要求される。高密度な粉末成形体を得るには、原料粉末を高圧で加圧成形することが不可避である。しかし、通常、その成形圧力を高める程、原料粉末と金型との間の摩擦力が大きくなる。その結果、大きな圧力で加圧成形すると、得られた粉末成形体の金型からの抜出が困難となったり、その抜出しの際にかじり等を生じて金型を損傷したり、粉末成形体の表面が荒れたりする。

勿論、潤滑剤を多量に使用してそれらを改善することも考えられるが、それでは結局、粉末成形体の密度が低下したり、加圧成形後に別途、脱脂(脱ろう)工程等が必要となってコスト高となったりする。

[0003]

このような事情の下、潤滑剤の種類、潤滑方法、金型温度等を種々工夫して、高密度の粉末成形体を効率的に製造する方法が多数提案されている。例えば、特開昭62-109902号公報、特開昭62-294102号公報、特開平5-271709号公報、特開平8-100203号公報、特開平9-104902号公報、特開平11-193404号公報、特開平11-100602号公報、特開平11-140505号公報、特開2000-273502号公報、特開2000-290703号公報、特開平2001-294902号公報、国際公開WO98/41347号公報、米国特許4955798号公報、研究論文("INF LUENCE OF TEMPERATURE ON PROPERTIES OF LITHIUM STEARATE LUBRICANT"、Powder Metallurgy & Particulate Materials、voll、1997) に関連事項が開示されている。もっとも、このような提案のいずれも、高密度の粉末成形体を低コストで生産するには不十分であった。

そこで、本発明者は、金型寿命等を確保しつつ、従来になく著しく高い成形圧力で加圧成形し、真密度に非常に近い高密度の粉末成形体が得られる成形方法を世界に先駆けて開発した。この内容は、国際公開WO01/43900号公報に

開示されている。

[0004]

【特許文献1】

特開昭62-109902号公報

【特許文献2】

特開昭62-294102号公報

【特許文献3】

特開平5-271709号公報

【特許文献4】

特開平8-100203号公報

【特許文献5】

特開平9-104902号公報

【特許文献6】

特開平11-193404号公報

【特許文献7】

特開平11-100602号公報

【特許文献8】

特開平11-140505号公報

【特許文献9】

特開2000-273502号公報

【特許文献10】

特開2000-290703号公報

【特許文献11】

特開平2001-294902号公報

【特許文献12】

国際公開WO98/41347号公報

【特許文献13】

米国特許4955798号公報

【非特許文献1】

研究論文 ("INFLUENCE OF TEMPERATURE ON PROPERTIES OF LITHIUM STEARATE LUBRICANT"、Powder Metallurgy & Particulate Materials、voll、1997)

[0005]

【発明が解決しようとする課題】

ところが、上記国際公開WO01/43900号公報の内容を含めて考えても、これまで提案されてきた粉末成形方法は、原料粉末が鉄粉末または鉄合金粉末からなるものがほとんどである。つまり、Ti、Al等の活性金属元素を主成分とする原料粉末の粉末成形方法について、現実的な提案がなされているものはほとんどない。

少なくとも、内部潤滑法(混入潤滑法)ではなく、金型潤滑法によって、そのような原料粉末を工業レベル(量産レベル)で高圧成形したものは、現状知る限りにおいて見当らない。

[0006]

これは、Ti、Al等を主成分とした原料粉末の粉末成形体に対する需要が少ないからではない。むしろ、各種部材の軽量化等が求められる昨今、そのような粉末成形体の需要は大きい。特に、加工困難な純チタンやチタン合金からなる部材の場合、粉末成形法を利用することで、(ニア)ネットシェイプ化による低コスト化を図れるといった大きなメリットがある。

[0007]

しかし、Ti、Al等の活性金属元素からなる原料粉末を工業レベルで高圧成形することはできない、というのがこれまでの技術常識であった。そのような高圧成形を行った場合、即座に、金型内面にかじりを生じたり、金型内面を荒したり、さらには、金型からその粉末成形体を抜出すことができなくなったりするからである。しかも、非常に高価な金型が一回限りの成形で使用できなくなり、大きな損失を生じ得る。

このような事情により、活性金属元素からなる原料粉末を加圧成形する場合、 その成形圧力を高くすることはできず、得られた粉末成形体の到達密度は当然に 低いものであった。例えば、Ti粉末からなる粉末成形体の場合なら、その成形 体密度は、真密度の80%以下に過ぎないものであった。

[0008]

また、従来のように内部潤滑法でTi粉末を加圧成形した場合、得られた粉末 成形体を真空中で焼結させる際に、脱ろう工程が別途必要となる。しかもそのと き使用される潤滑剤の主成分である水素、窒素、炭素等はTi内部に固溶され易 いため、内部潤滑法は好ましくない。

このような潤滑剤の使用を避けるためにゴム型を用いたCIP成形やRIP成形等もある。しかし、その場合でも十分な高圧成形をすることはできず、その装置も非常に大型で高価である。また、得られた粉末成形体の寸法精度も低く、粉末成形体の最大の特長であるネットシェイプな部材が得られないのが現実である

このような事情は、A 1 粉末等を使用した場合でも同様である。さらに、A 1 粉末に潤滑剤を混入させて粉末成形した場合、その潤滑剤の脱ろう温度が、粉末成形体の焼結温度(5 0 0 ℃程度)と近いため、十分な脱ろうができないといった問題も生じる。

[0009]

本発明はこのような事情に鑑みて為されたものである。すなわち、Ti、Al等の活性金属元素を主成分とする原料粉末を用いて、現実的なレベルで高圧成形を可能とした粉末成形方法およびそれより得られる高密度な粉末成形体を提供することを目的とする。

また、その粉末成形体を焼結させた金属焼結体およびその製造方法を提供することを目的とする。

さらには、粉末成形方法等に限らず、活性金属元素を主成分とした金属素材を成形加工する成形加工方法およびそれにより得られる成形加工部材をも提供することを目的とする。

[0010]

【課題を解決するための手段および発明の効果】

そこで、本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果 、活性金属元素を主成分とする原料粉末(以下、適宜、「活性金属粉末」と略称 する。)に、金型潤滑による温間加圧成形法を適用することを思いつき、その効 果を実際に確認して本発明を完成させるに至ったものである。

(粉末成形方法)

すなわち、本発明の粉末成形方法は、金型の内面に高級脂肪酸系潤滑剤を塗布する塗布工程と、該塗布工程後の金型内へ活性金属元素を主成分とする原料粉末を充填する充填工程と、該充填工程後の原料粉末を温間状態で加圧して粉末成形体とする成形工程と、該成形工程後の粉末成形体を該金型内から抜き出す抜出工程とからなり、得られた該粉末成形体が高密度であることを特徴とする。

[0011]

本発明によると、活性金属粉末を用いた場合でも、高圧成形により、高密度の 粉末成形体が得られる。このとき、実質的に、金型内面にかじり等を生じること もなく、寸法精度や表面粗さの良好な粉末成形体が得られる。従って、金型の高 寿命化、歩留りの向上、(ニア)ネットシェイプによる加工コスト削減等により 、粉末成形体やその焼結体等のコストを大きく低減できる。

しかも、本発明の場合、内部潤滑しなくても金型潤滑で十分な効果が得られる ため、潤滑剤の使用量も少なく、粉末成形体の高密度化が図れると共に粉末成形 体を焼結する際の脱ろう工程も省略できる。また、潤滑剤の粉末成形体への悪影 響も回避できる。

さらに、本発明の粉末成形方法によれば、成形圧力を著しく大きくしたにも拘らず、抜出力が従来に比較して格段に小さくなる。このため、粉末成形体を金型から容易に抜出すことができ、粉末成形体の生産効率を非常に高めることもできる。

[0012]

ところで、本発明の場合、当業者にとりこれまで不可能と考えられていた活性 金属粉末の高圧成形が何故可能になったのか、現在、本発明者はその理由を鋭意 究明中である。この理由については、粉末成形体と金型内面との間に、金型潤滑 に使用した高級脂肪酸系潤滑剤とは異なる別の新たな金属石鹸被膜が形成されて 摩擦係数が著しく低減したとも考えらる。また、高級脂肪酸系潤滑剤が粉末成形 体表面に吸着してレビンダ(Rebinder)効果が生じているとも考えられ る。さらには、これまでの認識を超えた超潤滑作用によるものであるとも考えら れる。もっとも、本発明者の最近の調査研究から、前記成形工程中に、前記金属石鹸の被膜が粉末成形体の表面に新たなに形成されたためとするのが妥当と思われる。すなわち、前記成形工程は、前記高級脂肪酸系潤滑剤とは別の前記活性金属元素を含む新たな金属石鹸の被膜が前記粉末成形体の表面に形成される工程と考えられる。例えば、前記活性金属元素がTiなら、その金属石鹸は高級脂肪酸のTi塩であり、活性金属元素がAlなら、その金属石鹸は高級脂肪酸のAl塩になっていると考えられる。

[0013]

いずれにしても、抜出力が非常に低いことから、原料粉末または粉末成形体と 金型との間の摩擦力が著しく低減していることは明らかだといえる。もっともこのことが、摩擦係数が極端に低いということには必ずしも直結しない。原料粉末 の種類によっては、金型から取出した後の膨張量(スプリングバック量)が小さいものもある。その場合には、摩擦係数が極端に小さくなくても、抜出時の摩擦力が小さくなるからである。

[0014]

本明細書でいう活性金属元素とは、Ti、Al、Mg、Zr、Na、希土類元素(La、Ce等)等である。実用金属材料としてTi、AlおよびMgが重要である。つまり、原料粉末がTi、Al、Mgを主成分とする場合が特に工業的に重要である。この詳細は後述する。なお、本発明でいう「活性金属元素を主成分とする原料粉末」とは、原料粉末全体を100at%としたときに、対象としている特定の活性金属元素が50at%以上である場合をいう。この原料粉末は、金属粉末のみならず、セラミックス粉末であっても良い。従って、得られた粉末成形体は、金属成形体のみならずセラミックス成形体であっても良い。

$[0\ 0\ 1\ 5]$

(粉末成形体)

本発明は、上記粉末成形方法に限らず、その結果得られた粉末成形体としても把握できる。

例えば、上記粉末成形方法により得られることを前提に、本発明は、前記活性 金属元素はTiであり、前記粉末成形体の見掛け上の密度である成形体密度が、 前記原料粉末の組成から定る真密度の85%以上の高密度であることを特徴とする粉末成形体としても良い。

[0016]

この場合の成形体密度は、成形圧力を調整することで、さらに、真密度の88%以上、90%以上、95%以上、98%以上ともなり、上限の100%に限りなく近づけることができる。

同様に、上記粉末成形方法により得られることを前提に、本発明は、前記活性 金属元素はAlであり、前記粉末成形体の見掛け上の密度である成形体密度は、 前記原料粉末の組成から定る真密度の90%以上の高密度であることを特徴とす る粉末成形体としても良い。

$[0\ 0\ 1\ 7]$

この場合も、成形体密度は、成形圧力を調整することで、さらに、真密度の93%以上、95%以上、98%以上とすることができ、上限の100%に限りなく近づけることもできる。

従来のTi粉末等からなる粉末成形体の場合、その成形体密度が高々真密度の80%程度であり、従来のAl粉末等からなる粉末成形体の場合、その成形体密度が高々真密度の85%程度であった。これらのことを踏まえると、本発明の粉末成形体の高密度は正に驚異的でさえある。勿論、このような高密度成形を行った場合でさえ、本発明によると、金型にかじり等を生じることはなく、低い抜出力で、寸法精度や表面粗さの良好な粉末成形体が得られることは前述した通りである。

[0018]

(金属焼結体の製造方法)

本発明は、上記粉末成形方法に限らず、その方法を経て得られた粉末成形体を 焼結させた金属焼結体の製造方法としても把握できる。

すなわち、本発明は、金型の内面に高級脂肪酸系潤滑剤を塗布する塗布工程と、該塗布工程後の金型内へ活性金属元素を主成分とする原料粉末を充填する充填工程と、該充填工程後の原料粉末を温間状態で加圧して粉末成形体とする成形工程と、該成形工程後の粉末成形体を該金型内から抜き出す抜出工程と、該抜出工

程後の粉末成形体を加熱して金属焼結体とする焼結工程とからなり、得られた該金属焼結体が高密度であることを特徴とする金属焼結体の製造方法としても良い

[0019]

この金属焼結体の製造方法によると、高密度な金属焼結体が容易に得られる。 また、粉末成形体の成形時に使用する潤滑剤量が極めて微量であるため、焼結工程における脱ろう工程は不要となり、焼結工程が著しく短縮される。その分、生産コストも削減され、高密度な金属焼結体が一層低コストで得られる。

[0020]

(金属焼結体)

さらに、本発明は、その製造方法を経て得られた金属焼結体としても把握できる。

例えば、上記製造方法により得られることを前提に、本発明は、前記活性金属元素はTiであり、前記金属焼結体の見掛け上の密度である焼結体密度が前記原料粉末の組成から定る真密度の95%以上の高密度であることを特徴とする金属焼結体としても良い。

この場合の焼結体密度は、焼結前の成形体密度が大きい程大きくなり、真密度の97%以上、さらには99%以上ともなり、成形体密度以上に上限の100%に限りなく近づく。

[0021]

同様に、上記製造方法により得られることを前提に、本発明は、前記活性金属 元素はAlであり、前記金属焼結体の見掛け上の密度である焼結体密度は、前記 原料粉末の組成から定る真密度の95%以上の高密度であることを特徴とする金 属焼結体としても良い。

この場合も、焼結体密度は、焼結前の成形体密度が大きい程大きくなり、真密度の97%以上、さらには99%以上ともなり、成形体密度以上に上限の100%に限りなく近づく。

[0022]

本発明の金属焼結体は、いずれの場合でも、焼結前の成形体密度が大きいため

、焼結後に寸法収縮等の寸法変化が小さい。このため、活性金属元素からなる焼結品であるにも拘らず、ネットシェイプ化が可能となり、Ti製品等の低価格化の達成が容易となる。

[0023]

(成形加工方法および成形加工部材)

本発明によると、活性金属粉末の高圧成形が可能であり、これを前提に本発明の種々の形態についてこれまで説明してきた。しかし、本発明はそもそも、金型内面と、活性金属粉末またはその加圧後の粉末成形体との間に作用する摩擦力が著しく小さいことに大きな特徴をもつと考えられる。従って、本発明は、原料粉末を加圧成形する場合に限らず、有形の金属素材を所望の形状に成形加工する場合にも当然に適用できる。

すなわち、本発明は、活性金属元素を主成分とした金属素材の表面および/または成形加工金型の加工面に高級脂肪酸系潤滑剤を塗布する塗布工程と、該成形加工金型により該金属素材を温間状態で成形加工する成形加工工程とからなることを特徴とする成形加工方法としても把握できる。

本発明によると、前述した粉末成形方法の場合と同様に、活性金属粉末からなる金属素材であっても、成形加工金型との間にかじり等を生じることなく、効率的に、低コストで、所望の形状に成形加工できる。

[0024]

ここでいう「金属素材」は、溶製材でも焼結材でもよい。また、その形態は問わず、インゴットでも、板材でも、線材でも、管材でも良い。要するに、金属粉末等と異なり、マクロ的な外形を有するものであれば良い。「成形加工」とは、マクロ的な有形状の素材に対して、その外形状を所望の形状に整えること、つまりは、所望の形状に加工することを意味する。

[0025]

このような成形加工には、鍛造、圧延、押出し、引抜き、転造、コイニング、 サイジングまたは再圧縮等がある。加工の種類によって使用する成形加工金型は 異なるが、例えば、鍛造金型、ロール、ダイス等がある。

成形加工工程を温間状態で行うために、成形加工金型または金属素材の少なく

とも一方を、その工程前に加熱しておいても、その工程と同時に加熱しても良い 。

[0026]

金属素材は有形であるため、前述の塗布工程をその金属素材に対して行うこともできる。勿論、粉末成形の場合と同様に、成形加工金型に対して行っても良い。例えば、前記塗布工程は、加熱した前記金属素材を前記高級脂肪酸系潤滑剤を分散させた分散液中に浸漬するディップ法、または、加熱した該金属素材若しくは前記成形加工金型へ該高級脂肪酸系潤滑剤を分散させた分散液を吹付けるスプレー法等により行う工程とすることができる。なお、本発明は、その成形加工方法により得られる成形加工部材として把握できることは言うまでもない。

[0027]

【発明の実施の形態】

次に、実施形態を挙げ、本発明をより具体的に説明する。なお、以下に説明する内容は、本発明に係る粉末成形方法、粉末成形体、金属焼結体とその製造方法、成形加工方法および成形加工部材のいずれにも、適宜、該当し得る。

(1)原料粉末

原料粉末は、前述したように、活性金属元素を主成分とする粉末からなり、T i 系粉末やA l 系粉末が代表的である。

①活性金属元素をTiとする場合、原料粉末は、例えば、純Ti粉末、Ti合金粉末、Ti化合物粉末等からなる。1種の粉末単独でも、2種以上の粉末を混合したものでも良い。その原料粉末は、Ti以外に、Al、Zr、Hf、V、Nb、Ta、Sc、Cr、Fe、Mo、Sn、W、Mn、Ni、Cu、Si、C、B、N、O等の元素を含んでいても良い。

[0028]

Ti 化合物粉末は、例えば、Ti B_2 等からなるホウ化チタン粉末、Ti C等からなる炭化チタン粉末、Ti N等からなる窒化チタン粉末、Ti O_2 等からなる酸化チタン粉末などが代表的である。

各元素の含有形態は問わないが、例えば、純粉末、合金粉末、化合物粉末等と して原料粉末に含有していれば良い。いずれの元素を原料粉末に含有させるかは 、粉末成形体やその焼結体の用途、特性、粉末コスト等により決定される。

[0029]

②活性金属元素をAlとする場合、原料粉末は、例えば、純AL粉末、AL合金粉末またはAL化合物粉末等からなる。その原料粉末は、AL以外に、Cu、Mg、Mn、Zr、Sr、Ni、Cr、Fe、Mo、Sn、Si、C、B、NまたはO等の元素を含んでいても良い。なお、AL化合物粉末は、AL2〇3等からなる酸化アルミニウム粉末が代表的である。

この原料粉末の場合も、活性金属元素をTiとする場合と同様で、1種の粉末単独でも、2種以上の粉末を混合したものでも良く、各元素の含有形態を問わない。

[0030]

③原料粉末は、ホウ化物、窒化物、酸化物または炭化物からなる硬質粒子粉末が混合された混合粉末であっても良い。その混合粉末は、2種以上の硬質粒子粉末を混合したものでも良い。硬質粒子がTiやAlの化合物からなる場合、硬質粒子粉末は前述のTi化合物粉末やAl化合物粉末となる。

[0031]

硬質粒子粉末を含む原料粉末を粉末成形すると、Ti、Al等の活性金属やその合金等からなるマトリックス中に、硬質粒子が均一に分散した複合材料が容易に得られる。このような複合材料は、強度、剛性、耐熱性、耐摩耗性等の機械的特性などに優れたものとなる。特に、粉末成形体を焼結させた金属焼結体の場合に顕著である。

硬質粒子には、前述したTiB₂、TiB、TiC、TiN、TiO₂、Al₂O₃以外に、SiC、Si₂N₄、B₄C、CrN、Cr₂N、MoB、CrB、Y₂O₃、ThO₂等がある。

[0032]

従来、このような硬質粒子を原料粉末中に多量に分散させた場合、原料粉末を 微粉化したとしても、成形性、焼結性が著しく劣った。本発明の場合、硬質粒子 を原料粉末中へ多量に含有させたとしても、高密度な粉末成形体が得られる。ま たそれを焼結させたとき、短時間の加熱で高密度な焼結体が得られる。さらに、 添加元素を十分に拡散させるために焼結工程中の加熱時間を長くしたとしても、 得られた焼結体の寸法変化は小さく安定したものとなる。

[0033]

そこで、本発明を利用すれば、原料粉末中の硬質粒子粉末の割合の上限を、5質量%、10質量%、15質量%、20質量%と大きくしても、高密度な粉末成形体や焼結体が得られる。なお、この硬質粒子粉末の割合は、混合後の原料粉末全体を100質量%としたときの割合である。・

[0034]

④原料粉末中に含まれる合金、化合物、硬質粒子等は、粉末成形体またはその金属焼結体中で、必ずしも粉末時の状態を留めている必要はない。粉末成形中の加圧や焼結中の加熱によって、より安定な状態へ変化しても良い。例えば、チタン系焼結体中で、TiB2粒子がより安定で硬質なTiBに変化するような場合がある。

[0035]

各粉末は、機械粉砕粉、水素化脱水素粉、アトマイズ粉等、その製造方法は問題ではない。また、原料粉末は造粒粉でも良い。原料粉末の粒径は特に拘らないが、例えば、平均粒径が1~100μmであると良い。

本発明では、原料粉末への潤滑剤の混合を除くものではない。原料粉末に潤滑剤を少量混合することにより、粉末の流動性を向上させることができる。このとき、本発明でいう高級脂肪酸系潤滑剤(分散液に分散させたものを含む)を用いるとより好ましい。もっとも、潤滑剤を多量に混入させると、粉末成形体の到達密度が低下して好ましくないことは前述した通りである。

[0036]

(2)高級脂肪酸系潤滑剤

本発明でいう高級脂肪酸系潤滑剤は、高級脂肪酸からなる潤滑剤と高級脂肪酸の金属塩からなる潤滑剤の双方を意味する。高級脂肪酸には、ステアリン酸、パルミチン酸、オレイン酸等ある。高級脂肪酸の金属塩には、例えば、リチウム塩、カルシウム塩、亜鉛塩がある。具体的には、ステアリン酸リチウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸バリウム、パルミチン酸リチ

ウム、オレイン酸リチウム、パルミチン酸カルシウム、オレイン酸カルシウム等である。本発明でいう高級脂肪酸系潤滑剤は、それらの1種以上を主成分とするものであれば足る。

[0037]

高級脂肪酸系潤滑剤は、室温域~温間域で、固体であることが好ましい。液状であると潤滑剤が下方向に流れ落ち、金型内面に潤滑剤を均一に塗布することが難しくなるからである。

この高級脂肪酸系潤滑剤を金型内面に、効率よく均一に塗布するには、高級脂肪酸系潤滑剤を分散液に分散させると良い。この分散液は、水でも、アルコール系溶媒でも、水とアルコール系溶媒との混合液でも良い。このような分散液に分散させた高級脂肪酸系潤滑剤を、加熱した金型に噴霧等すると、分散液中の水やアルコール系溶媒が瞬時に蒸発して、均一な潤滑剤の被膜が容易に形成され得る。特に、アルコール系溶媒を混合することで、水分等の蒸発が速くなり、均一でむらのない潤滑剤被膜が一層形成され易い。

[0038]

本発明では、本来、金型と非常に焼付き易い活性金属粉末を使用するため、高級脂肪酸系潤滑剤による均一な潤滑剤被膜の形成が特に重要となる。これにより、金型寿命を延しつつ、高密度の良質な粉末成形体が安定して得ることができる

金型を加熱する場合、好適な金型温度は分散液によって異なる。例えば、分散液が水からなる場合、金型温度を10·0℃以上とするのが好ましい。アルコール系溶媒を混合した場合、その濃度に応じて、100℃よりも低い温度でも良い。もっとも、成形工程を温間状態で行える程度の金型温度であるとより好ましい。いずれにしても、金型温度は、分散液の沸点以上で高級脂肪酸系潤滑剤の融点未満とするのが良い。高級脂肪酸系潤滑剤の融点未満としたのは、高級脂肪酸系潤滑剤が垂れ落ちるのを防止するためである。

[0039]

水とアルコール系溶媒との混合液を分散液として使用する場合、アルコール系溶媒は1~50体積%、さらには5~25体積%であると好ましい。アルコール

系溶媒が1体積%未満では、アルコール系溶媒を混合する意味があまりなく、5 0体積%を超えると、アルコール系溶媒臭による作業環境の悪化およびコスト高 を招く。

[0040]

このようなアルコール系溶媒には、メチルアルコール、エチルアルコール、イソプロピルアルコール等を使用できる。もっとも、水よりも沸点が低く、揮発したときに有害でなければ、その種類は問わない。

分散液に分散させる高級脂肪酸系潤滑剤は、最大粒径が30μm以下の粒子からなる粉末状であることが好ましい。30μmを超える粒子があると、金型内面に形成される潤滑剤被膜が不均一になる。また、分散液中で高級脂肪酸系潤滑剤の粒子が容易に沈殿してしまい、金型内面への均一な塗布が困難になるからである。

[0041]

次に、高級脂肪酸系潤滑剤を水等の分散液に均一分散させるには、分散液に予め界面活性剤を添加しておくと良い。

この界面活性剤は、例えばアルキルフェノール系の界面活性剤、ポリオキシエチレンノニルフェニルエーテル(EO) 6、ポリオキシエチレンノニルフェニルエーテル(EO) 10、アニオン性非イオン型界面活性剤、ホウ酸エステル系エマルボンT-80等である。

[0042]

使用する高級脂肪酸系潤滑剤等に応じて、1種または2種以上の界面活性剤を適宜選択すれば良い。例えば、高級脂肪酸系潤滑剤としてステアリン酸リチウム (LiSt) を用いる場合、ポリオキシエチレンノニルフェニルエーテル (EO) 6、ポリオキシエチレンノニルフェニルエーテル (EO) 10及びホウ酸エステルエマルボンT-80の3種類の界面活性剤を同時に添加すると好ましい。

[0043]

ホウ酸エステルエマルボンT-80のみであると、LiSt は水等に分散し難いからである。これに対して、ポリオキシエチレンノニルフェニルエーテル(EO)10の場合、それらのみでも、LiSt は水等に分散する。し

かし、その分散液を希釈しようとした際に、高級脂肪酸系潤滑剤が均一に分散し難い。従って、高級脂肪酸系潤滑剤としてLiStを使用する場合、上記3種類の界面活性剤を適切に複合添加するのが好ましい。界面活性剤の添加量は、界面活性剤を含む分散液全体を100体積%としたときに、1.5~15体積%とするのが好ましい。なお、このとき、上記3種の界面活性剤をそれぞれ1:1:1の体積割合で混合すると良い。

[0044]

界面活性剤の添加量が多い程、LiSt等を多量に分散させることができる。 しかし、その界面活性剤の添加量が多くなると、分散液の粘度も高くなり、後述 の粉砕処理で、LiSt等の粒子を微細にすることが困難となる。

さらに、適宜、少量の消泡剤(シリコン系の消泡剤等)を添加すると、均一な 潤滑剤被膜を形成し易い。この消泡剤の添加量は、概ね分散液の体積を100体 積%としたときに、0.1~1体積%であれば良い。

ところで、界面活性剤を含む分散液に高級脂肪酸系潤滑剤の粉末を分散させる場合、例えば、分散液 100 cm^3 に対してLiSt = 10 - 30 g を添加して、テフロンコートした鋼球(直径:5 - 10 mm 程度)を用いたボールミル式粉砕処理を行うと良い。この処理を概ね 50 - 100 時間行うと、最大粒径が 30 m以下に粉砕された LiSt が、分散液中に浮遊分散した状態となる。

[0045]

(3) 塗布工程

高級脂肪酸系潤滑剤を金型内面に塗布する場合、高級脂肪酸系潤滑剤を分散させた分散液を、適当に希釈して用いると良い。具体的には、希釈された分散液全体を100質量%としたときに、高級脂肪酸系潤滑剤(例えば、LiSt)が0.1~5質量%、さらには、0.5~2質量%となる程度に希釈すると良い。このような稀釈により、薄くて均一な潤滑剤被膜の形成が可能となる。

この希釈された分散液を、例えば塗装用のスプレーガン等で吹き付けることにより、高級脂肪酸系潤滑剤の金型内面への均一な塗布を容易に行える。この塗布は、静電ガン等の静電塗布装置を用いて行うこともできる。その他、金型内面へ高級脂肪酸系潤滑剤を均一に塗布する具体的な方法については、前述した国際公

開公報WO01/43900の図1または図2に開示された方法等を適宜参考に すれば良い。

[0046]

(4) 成形工程

本発明の成形工程は、高級脂肪酸系潤滑剤が塗布された金型へ充填された活性 金属粉末を、温間状態で加圧する工程である。

①本発明でいう温間状態は、使用する原料粉末や高級脂肪酸系潤滑剤等によって異なり、特定の温度を一律には規定することは難しいと思われる。敢ていうなら、高圧成形した場合でも抜出力の低減効果が得られる温度範囲となる。もっとも、発明者の経験上、少なくとも前記金型内面と前記原料粉末とが接触する部分の温度(接触部分温度)が100~225℃、より望ましくは100~180℃の温間状態にあれば良い。活性金属粉末毎に最適化をするなら、例えば、活性金属元素がTiのとき、その接触部分温度を130~160℃とすればより良い。活性金属元素がAlの場合なら、その接触部分温度を100~160℃とすればより良い。

このような温間状態は、金型と原料粉末の少なくとも一方を加熱することにより達成できるが、その両者をほぼ同温度に加熱することで、より安定な温間状態が得られる。

[0047]

②本発明の場合、成形圧力に上限はない。敢ていうなら、金型や成形装置が損傷または破損しない範囲となる。従って、通常の粉末成形、特に活性金属粉末の成形では考えられないような高い成形圧力(2500MPa程度)であっても、何ら問題なく粉末成形が可能である。もっとも、十分な高密度が得られ、生産性の向上も図れる範囲として、成形圧力が392~2000MPa、さらには588~1568MPaであると好ましい。成形圧力がその下限(392MPa)未満なら、高密度の粉末成形体は得られず、そもそも本発明の粉末成形方法を利用するまでもなく、従来の粉末成形方法でも到達できるレベルである。本発明の場合、成形圧力の下限は686MPa以上、さらには784MPa以上ともできる。

[0048]

活性金属粉末毎に成形圧力の最適化を図るなら、例えば、活性金属元素がTiのとき、その成形圧力を $500\sim2500$ MPa、さらには $784\sim1568$ MPaとすれば良い。活性金属元素がA1の場合なら、その成形圧力を $392\sim2500$ MPa、さらには $588\sim1568$ MPaとすればより良い。

[0049]

③次に、成形圧力と抜出力との関係について説明する。

通常の粉末成形なら、成形圧力が高くなる程、粉末成形体を金型から抜き出すときの抜出力も大きくなる。しかし、本発明の場合、成形圧力を大きくすることで粉末成形体の高密度化が達成されるにも拘らず、抜出力はほとんど変化しないか、僅かに大きくなる程度である。しかも、本発明の場合の抜出力は、従来の粉末成形方法を用いた場合に比べて、約1/10程度にまで低減する。

例えば、成形工程の成形圧力が784MPa以上のとき、抜出工程の抜出力は1 0MPa以下となる。これは、成形圧力が、980MPa以上、1176MPa 以上、さらには1372MPa以上となっても変らない。さらに言うなら、抜出 力は5MPa以下、さらには3MPa以下ともなる。

[0050]

活性金属粉末毎に観ると、活性金属元素がTiのとき、成形圧力は784MPa以上で、抜出力は10MPa以下、さらには3MPa以下ともなる。活性金属元素がAlのとき、成形圧力は392MPa以上で、抜出力は5MPa以下、さらには、成形圧力は588MPa以上で、抜出力は1MPa以下ともなる。

本発明の場合、成形圧力に対する抜出力の圧力比を観ると、抜出力の変化が小さいことから、その圧力比が成形圧力の増加に対して減少傾向を示すこととなる

[0051]

(5) その他

①本発明でいう金型は、ハイス鋼(高速度工具鋼)製であっても、超硬合金製であっても良い。金型内面には、TiNコート処理等を施しておいても良い。なお、金型内面の表面粗さは小さい程、金型および粉末成形体間の摩擦力低減に有効であり、得られた粉末成形体の表面粗さや寸法精度も良い。

[0052]

②本発明の粉末成形体やそれを焼結させた金属焼結体は、真密度に非常に近い高密度であるため、強度等の機械的特性にも優れたものとなる。従って、各種部材は勿論、構造部材としても利用できる。

[0053]

特に、活性金属元素をTiとして、本発明により得られた粉末成形体やその金属焼結体の有効性は非常に大きい。従来、航空、宇宙、軍事等の各分野では、軽量で高強度である(つまり比強度等に優れる)チタン合金が多用されてきた。しかし、一般的に大量生産させる民生品に、チタン合金が適用されることは殆ど無い。特に、鉄鋼材料を多用している量産専用部品に、その代替としてチタン合金を適用した例はこれまでにない。チタン合金を使用すると、その製造コストが著しく高価となり、低コスト化が要求される量産部品に不向きだからである。その製造コストを高めている最大の要因は、原料コストのみならず、チタン合金の素材形状が限定されるが故に、その素材から各部材へ加工する際の二次加工コストが非常に高いからである。

[0054]

これに対し、本発明の粉末成形方法等を用いれば、高い二次加工コストを実質的に発生させることなく、軽量で強度等に優れたチタン合金からなる部材が得られるので、種々の量産部品等を従来の鉄鋼製からチタン合金製に代替可能となる

このようなものとして、例えば、あらゆる強度が要求される自動車用部品、各種スポーツ用品、工具類等がある。より具体的にいえば、自動車部品の場合、エンジンバルブ、バルブリテーナ、バルブリフタ、ピストンピン、バルブガイド、コネクティングロッド、ロッカーアーム等の自動車エンジン部品が挙げられる。また、歯車、ドライブシャフト、 CVT用ブロック等の動力伝達系部品が挙げられる。スポーツ用品の場合、ドライバ、アイアン、パターなどのゴルフクラブが代表的である。

[0055]

ところで、円柱形状部材(押出し用ビレット等)、ピストンピン、バルブガイ

ド、バルブリテーナ、コネクティングロッド、 CVT用ブロック、アイアン、パターなどの成形は、従来の金型成形方案に本発明の粉末成形方法や成形加工方法等を応用することで可能となる。

また、エンジンバルブ、バルブリフタ、ロッカーアーム、歯車、ドライブシャフト、ゴルフーツドなどの成形は、 CNCプレスなどの高度な成形方法に本発明の粉末成形方法や成形加工方法等を応用することで可能となる。

[0056]

【実施例】

実施例を挙げて、本発明をより具体的に説明する。

(1) 実施例

①原料粉末

原料粉末の配合に際して、先ず、5種類の粉末を用意した。すなわち、純チタン粉末(WUYI社製:平均粒径42 μ m)、純アルミニウム粉末(福田金属箔粉社製:平均粒径30 μ m)、A1-6%Zn-2%Mg-1.5%Cu合金粉末(住友軽金属社製:平均粒径35 μ m)、A13V粉末(日本電工社製:平均粒径20 μ m)、TiB2粉末(日本新金属社製:平均粒径3.5 μ m)である。なお、合金組成の単位は質量%である(以下、同様)。TiB2粉末は、本発明でいう硬質粒子粉末に相当する。

次に、これらの粉末を単体で用いたり、適当に混合することにより、表1に示す5種類の組成からなる活性金属粉末を用意した。

[0057]

②金型潤滑剤の調製

界面活性剤として、ポリオキシエチレンノニルフェニルエーテル(EO) 6、 (EO) 10 及びホウ酸エステルエマルボンT-80 を用意した。これら 3 種の界面活性剤を1:1:1 で混合して、水(分散液) 100 体積%に界面活性剤 1.5 体積%の割合で含有させた。さらにここへ、消泡剤アンチフォームを0.1 体積%の割合で添加した。この界面活性剤を含んだ水 100 c c に対して、ステアリン酸リチウム(LiSt)粉末を25g分散させた。このLiSt は、融点が約 225 ℃で、平均粒径が 20μ mのものである。

[0058]

次に、この分散液をボールミル式粉砕装置(テフロンコート鋼球)で、100時間、微細化粉砕処理した。この粉砕処理後の原液を水およびエチルアルコール系溶媒で希釈した。このときの割合は、原液1体積部に対して、水14体積部およびエチルアルコール系溶媒5体積部の割合とした。これは、水に対してアルコール系溶媒を25体積%加えたことになる。こうして、金型内面に塗布する金型潤滑剤を得た。

[0059]

(3) 金型

円筒状キャビティ(φ23.000±0.005×50mm)を有する超硬合金製金型と、ハイス鋼製の上下パンチとを用意した。この金型内面には、予めTiNコート処理を施し、その表面粗さを0.4 Zとしておいた。また、この金型の周囲にはバンドヒータを巻き、適宜、加熱できるようにした。

[0060]

4)成形

上記金型および各原料粉末を150℃に加熱した。原料粉末の加熱はオーブン (電気炉) により、大気雰囲気中でおこなった。

金型温度150℃の金型内面に、上記金型潤滑剤をスプレーガンで、1 c m³ /秒程度の割合で均一に塗布した。これにより、膜厚約1.5 μ mの潤滑剤皮膜 を金型内面に形成した(塗布工程)。

[0061]

この金型内へ、加熱した上記各種原料粉末を充填した(充填工程)。そして、392~1568MPaの範囲で、成形圧力を適宜変更して、温間加圧成形を行った(成形工程)。そのときの成形圧力を表1に併せて示した。

前記パンチを駆動して、成形後の各粉末成形体を金型から抜出した(抜出工程)。このときの抜出力も併せて測定した。

[0062]

⑤焼結

チタン系粉末からなる粉末成形体に関しては、真空中で、1300℃x4hr

の焼結も行った(焼結工程)。

[0063]

(2) 比較例

比較例として、上記純チタン粉末と純アルミニウム粉末とを用いて、室温成形した粉末成形体を用意した。このとき、市販の乾性フッ素潤滑剤ユノンSを金型潤滑剤として、実施例と同様に金型内面にスプレー塗布した。成形圧力は、基本的にかじり等による金型の損傷が発生じない範囲内とした。そのときの成形圧力も表1に併せて示した。

[0064]

(3) 測定

上記の実施例および比較例で得られた粉末成形体について、それぞれ、成形体 密度および抜出力を求めた。この結果を表1に併せて示す。また、真密度に対す る各成形体密度の比(相対密度比)も表1に併せて示した。なお、真密度は各原 料粉末の組成と同組成の溶製材について求めた密度である。成形体密度は、各粉 末成形体の重量および寸法を測定し、両測定値から算出したものである。

抜出力は、抜出荷重をロードセルにより測定し、その抜出荷重を粉末成形体の 側面積で除して求めた。

また、金属焼結体については、焼結工程前後で測定した寸法から、焼結工程による寸法変化も求めた。その焼結体密度については、アルキメデス法により測定した。

[0065]

(4)評価

A. チタン系原料粉末の粉末成形について

①純チタン粉末の場合

表 1 の試料 N o . 1-1-1-6 、試料 N o . C 1-1-C 1-3 および図 1-4 に、純チタン粉末を種々の成形圧力で成形した場合の各特性を示した。

これらから明らかなように、温間成形した本実施例では、活性金属粉末である 純チタン粉末に対して、1500MPaを超える高圧成形が実現した。そして、 非常に高密度な粉末成形方法が得られた。 具体的には、粉末成形体の相対密度比が従来の最高レベルである85%を優に超えて、98~99%にまで達し、正に真密度に近い粉末成形体が得られた。

[0066]

なお、表1および図1等で成形体密度の指標として相対密度比を採用しているのは、組成によって真密度が変化するところ、本発明の粉末成形方法による高密度化の程度を相対密度比によって客観的に評価するためである。焼結体密度についても同様である。

[0067]

図2を観ると明らかなように、本実施例の場合、成形圧力が著しく増加しているにも拘らず、抜出力はほとんど変化しなかった。しかも、その成形圧力は600MPaを超えるころから、抜出力が5MPa以下という、非常に低い値となった。また、784MPaを超えると抜出力は約2.5MPaという極めて低い値でほぼ一定となった。

一方、室温成形した比較例では、成形圧力が高々588MPaで金型にかじりを生じた。そして、得られた粉末成形体の相対密度比は、高々85%にすら到達しないものであった。しかも、室温成形した場合、成形圧力の増加にほぼ比例して抜出力が急激に増加した。

[0068]

図3を観ると明らかなように、成形圧力の増加と共に成形体密度が増加し、それに伴って焼結体密度も増加している。特に本実施例では、成形圧力を1176 MPa以上とした粉末成形体を焼結させた場合に、その焼結体密度がほぼ真密度まで上昇した。

しかも図4を観ると分るように、本実施例の場合、焼結前後の寸法変化率が約1~3%程度と、非常に小さなものであった。一方、室温成形した比較例の場合、元の成形体密度自体が低いため、焼結前後の寸法変化率は4~10%と、相当大きなものとなった。

[0069]

②チタン合金粉末の場合

純チタン粉末およびA 13V粉末を混合した合金混合粉末と、その合金混合粉

末にT i B_2 粉末を混合したT i B_2 合金混合粉末とを、種々の成形圧力で成形した場合の各特性を表 1 の試料N o . 2-1-2-3 、試料N o . 3-1-3-3 および図 5-7 に示した。

[0070]

先ず、合金組成がTi-6Al-4Vの混合粉末を温間成形した場合、純チタン粉末の場合と同様程度に、非常に高い成形体密度および焼結体密度が得られた。特に焼結体密度は、いずれも相対密度比が約99.5%という極めて高い値で安定した。また、そのときの抜出力は、いずれも、約1MPa以下という非常に低い値で安定した。

[0071]

次に、上記合金混合粉末に、硬質粒子粉末であるTiB2粉末を混合した粉末 を加圧成形した場合も、十分に大きな成形体密度および焼結体密度と、十分に低 い抜出力が得られた。例えば、成形圧力が1176MPaのとき粉末成形体の相 対密度比は94%、金属焼結体の相対密度比は99%にも達した。そのとき、粉 末成形体の抜出力はいずれも5MPa以下であった。

また、図6から解るように、Ti B_2 を6質量%とした場合、成形圧力の増加とともに抜出力が減少するという特異な現象が現れた。

[0072]

但し、 TiB_2 粉末の混合量にも依ると思うが、 TiB_2 粉末を混合した場合は、それを混合しない場合に比べて、同じ成形圧力で観ると、各密度が少し低く、抜出力も少し高めとなった。言うまでもないが、室温成形したような場合と比べれば、いずれも格段に優れた値である。

また図7から、本実施例の場合、いずれも、従来例の場合(CIP法により392MPaで成形した場合)に比べて高密度となっていることも解った。

[0073]

- B. アルミニウム系原料粉末の粉末成形について
- ①純アルミニウム粉末の場合

表1の試料No. 4-1~4-7、試料No. C2-1~C2-3および図8 、図9に、純アルミニウム粉末を種々の成形圧力で成形した場合の各特性を示し た。

全体的な傾向は、純チタン粉末の場合と同様であり、本実施例に係る粉末成形体は非常に高密度であった。

但し、本実施例の場合、成形圧力に拘らず抜出力が約1MPa以下という小さいものとなった。つまり、成形圧力が低いときにも(本実施例では392MPa) 抜出力が低くなった。これは表1の外径を観れば解るように、抜出後の粉末成形体の外径が金型内径と同程度かやや小さくなったためと思われる。もっとも、このような傾向は、表1や図9からも解るように、室温成形した比較例には観られないものである。

[0074]

②アルミニウム合金粉末の場合

合金組成がA 1 - 6 Z n - 2 M g - 1. 5 C u の合金粉末(1種のみ)を種々の成形圧力で成形した場合の各特性を表 1 の試料N o. $5 - 1 \sim 5 - 3$ 、図 1 O および図 1 1 に示した。全体的な傾向は、純アルミニウム粉末の場合と同様であった。

[0075]

但し、同じ成形圧力で観ると、この合金粉末の場合、純アルミニウム粉末の場合よりも成形体密度が少し低く、抜出力が僅かに高くなった。これは、その合金粉末が純アルミニウム粉末よりも高強度の粒子からなり、圧縮性が低下したためと思われる。それでも、粉末成形体の相対密度比は94%以上に到達しており、十分に高密度の粉末成形体が得られていることが解る。言うまでもないが、室温成形したような場合に比べれば、いずれも格段に優れた値である。

[0076]

C. 硬質粒子の含有量を増量した金属焼結体について

 TiB_2 の含有量が増える程、高剛性、高強度の金属焼結体が得られるが、その一方で、 TiB_2 の含有量が増える程、一般的に成形性および焼結性が低下する。そこで、 TiB_2 を12 質量%にまで増量した金属焼結体を新たに製作して、本発明による成形性および焼結性を評価した。

[0077]

本発明の実施例となる供試材は、 TiB_2 量を除き、試料No.3-3と同様の条件で製造した。つまり、金型温度150 $\mathbb C$ 、成形圧力1568 MP a で粉末成形した後、1300 $\mathbb C$ で焼結させたものである。比較例とした供試材は、同組成の原料粉末を前述の室温成形(成形圧力:588 MP a)により粉末成形して、1300 $\mathbb C$ で焼結させたものである。

ここで、その焼結時間を変化させたときに、供試材の相対密度比および寸法変化率がどのように変化するかを図12および図13にそれぞれ示した。ちなみに、各図中に20vol%TiBと表記してあるのは、12質量%のTiB2が焼結によって20体積%のTiBに変化するからである。

[0078]

先ず、図12から解るように、実施例の場合、極短時間の焼結で、相対密度比が100%に近い十分に高い焼結体が得られた。これに対して、比較例の場合、焼結体の相対密度比を高めるのに長い焼結時間を必要とした。なお、比較例のように従来の製法では、原料粉末を微粉化したとしても、硬質粒子を多量に原料粉末中に分散させると、粉末成形性、焼結性が著しく劣り、上記実施例のような高密度の焼結体は得られない。

[0079]

次に、図13から解るように、実施例の場合、焼結時間が長くなっても寸法変化率が2%程度と非常に小さく安定していた。これに対して、比較例の場合、寸法変化率が焼結時間と共に大きく減少し安定しなかった。

このように本発明の実施例では、従来になく、高密度で寸法安定性に優れる金属焼結体が得られることが明らかとなった。

[0080]

D. 硬質粒子を分散させた金属焼結体の機械的特性について

TiB₂を含む原料粉末を粉末成形および焼結させて得られた供試材について、引張強度、剛性、疲労強度等を評価した。

このとき使用した原料粉末の組成は、表1に示した試料N o. 3-3と同様である。実施例の供試材は、試料N o. 3-3と同様に製造した。但し、その形状は、 $10 \times 10 \times 55$ mmの抗折試験片形状とした。比較例の供試材は、392

MPaでCIP成形した同形状の粉末成形体を1300℃で焼結したものである。この焼結時間が4時間の場合を比較例1、焼結時間が16時間の場合を比較例2とした。得られた各供試材を引張試験片および回転曲げ疲労試験片に加工して、それぞれの試験片について機械的特性を評価した。この結果を図14および図15に示した。ちなみに、各図中に10vol%TiBと表記してあるのは、6質量%のTiB2が焼結によって10体積%のTiBに変化したからである。

[0081]

図14および図15から明らかなように、実施例の焼結体は、比較例の焼結体に対して、焼結体の相対密度比が非常に高く、引張強度、伸びおよび疲労強度のいずれをとっても、格段に優れたものであることが確認された。

. [0082]

E. 本発明に係る粉末成形体の表面分析結果について

表1の試料No. 1-4 (原料粉末が純Tiの場合) および試料No. 4-5 (原料粉末が純Tiの場合) に示した粉末成形体の表面を、それぞれTOF-S IMS (Time of Flight Secondary Ion Mass Spectrometer) で表面分析した。この結果得られたそれぞれの二次イオン像を図16および図17に示した。

[0083]

これらから、ステアリン酸の分布が、Liの分布よりもTiあるいはAlの分布に近いことがそれぞれの場合について確認された。このことは、本実施例に係る成形工程の際に、メカノケミカル反応が生じてステアリン酸チタンやステアリン酸アルミと思われる新たな金属石鹸皮膜が、各粉末成形体表面に形成されたことを示唆していると思われる。

[0084]

【表1】

					粉末成形体			金属焼結体		
菜。 S	組成 (質量%)	成形圧力 (MPa)	抜出圧力 (MPa)	成形体密度 (g/cm³)	相対密極比 (%)	抜出後の 外径 (mm)	焼結体密度 (g/cm³)	相対密展比 (%)	焼結前後の 寸法変化 (%)	華
Ξ		588	3.5	4.025	89.2	23.059	4.325	95.9	-2.60	
1-2		784	1.9	4.193	93.0	23.061	4.384	97.2	-1.59	
1-3	£	086	2.4	4.292	95.2	23.065	4.451	98.7	1.37	
1-4	=	1176	2.5	4.364	8.96	23.070	4.496	99.7	-1.11	
1-5		1372	5.6	4.391	97.4	23.075	4.501	8.66	-0.87	
1-6		1568	2.2	4.422	98.0	23.079	4.505	99.9	-0.60	
2-1		784	0.9	3.991	91.1	23.065	4.403	99.3	-3.26	作に対サレタや哲士に
2-2	Ti-6AI-4V	1176	0.5	4.201	95.9	23.071	4.407	99.4	-1.61	第三分その目的がそのも前の第十
2-3		1568	0.5	4.285	97.8	23.081	4.412	99.2	96.0-	0.00 H 10.00
3-1	/\V-1\03-:T	784	5.1	3.956	90.2	23.072	4.332	97.4	-3.04	上記混合粉末と硬質粒
3-2	+ 6T:B.	1176	3.6	4.143	94.3	23.078	4.395	98.8	-2.06	子粉末との混合粉末
3-3	2	1568	2.7	4.234	96.5	23.083	4.412	99.2	-1.46	TiB ₂ :6質量%
4-1		392	0.3	2.613	96.8	22.997	_	1	1	
4-2		588	0.7	2.656	98.4	22.992	-	ı	1	
4-3		784	0.7	2.672	99.0	22.994	1	-	1	
4-4	類AI	086	0.7	2.682	99.4	22.994	1	-	l.	
4-5		1176	0.8	2.686	99.5	22.993	_	1	- "	
4-6		1372	0.8	2.667	8.66	22.994	ı	-	1	
4-7		1568	0.5	2.667	99.8	22.995	_		i	
5-1	-140 -23 14		1.3	2.616	93.4	23.014	_	-	_	
5-2	AI-02-N-21VIB		1.1	2.741	97.9	23.029	-	_	1	JIS A7475に相当
5-3	500	1568	1.4	2.794	8.66	23.038	l	1	1	
C1-1		294	8.0	3.209	71.2	23.068	4.235	93.9	-9.58	
C1-2	第二	441	16.3	3.521	78.1	23.075	4.290	95.1	-6.94	解追成形
C1-3		588	24.1	3.728	82.9	23.082	4.300	95.3	-4.95	
C2-1		392	4.1	2.583	95.7	23.056	1	•	ı	
C2-2	能Ai	588	5.7	2.615	6.96	23.057	_	1	1	知温成形
C2-3		784	6.5	2.640	8.76	23.059	_	-	1	

【図面の簡単な説明】

- 【図1】純チタン粉末を用いて室温成形および温間成形したときの、成形圧力 と成形体密度(相対密度比)との関係を示すグラフである。
 - 【図2】そのときの成形圧力と抜出力との関係を示すグラフである。
- 【図3】純チタン粉末の成形圧力と得られた粉末成形体を焼結させた金属焼結 体の相対密度比との関係を示すグラフである。
- 【図4】純チタン粉末の成形圧力と粉末成形体の焼結時の寸法変化率との関係 を示すグラフである。
- 【図5】チタン合金粉末を温間成形したときの成形圧力と成形体密度(相対密度比)との関係を示すグラフである。
 - 【図6】そのときの成形圧力と抜出力との関係を示すグラフである。
- 【図7】チタン合金粉末の成形圧力と得られた粉末成形体を焼結させた金属焼 結体の相対密度比との関係を示すグラフである。
- 【図8】純アルミニウム粉末を用いて室温成形および温間成形したときの、成 形圧力と成形体密度(相対密度比)との関係を示すグラフである。
 - 【図9】そのときの成形圧力と抜出力との関係を示すグラフである。
- 【図10】純アルミニウム粉末とアルミニウム合金粉末とを用いて室温成形および温間成形したときの、成形圧力と成形体密度(相対密度比)との関係を示すグラフである。
 - 【図11】そのときの成形圧力と抜出力との関係を示すグラフである。
 - 【図12】難焼結材の焼結時間と相対密度比との関係を示すグラフである。
 - 【図13】難焼結材の焼結時間と寸法変化率との関係を示すグラフである。
- 【図14】製造条件の相違による相対密度比、引張強度および伸びの相違を対比した棒グラフである。
 - 【図15】製造条件の相違による疲労強度の相違を対比したグラフである。
- 【図16】純Ti粉末からなる粉末成形体の表面をTOF-SIMSで観察した二次イオン像である。
- 【図17】純AI粉末からなる粉末成形体の表面をTOF-SIMSで観察した二次イオン像である。

【書類名】

図面

【図1】

純チタン粉末の成形圧力と成形体密度との関係

【図2】

純チタン粉末の成形圧力と抜出力との関係

【図3】

純チタン粉末の成形圧力と焼結体密度との関係

【図4】

純チタン粉末の成形圧力と焼結後の寸法変化の関係

【図5】

チタン合金粉末の成形圧力と成形体密度との関係

【図6】

チタン合金粉末の成形圧力と抜出力との関係

【図7】

チタン合金粉末の成形圧力と焼結体密度との関係

【図8】

純アルミニウム粉末の成形圧力と成形体密度との関係

【図9】

純アルミニウム粉末の成形圧力と抜出力との関係

【図10】

純アルミニウム粉末とアルミニウム合金粉末との 成形圧力と成形体密度との関係

【図11】

純アルミニウム粉末とアルミニウム合金粉末との 成形圧力と抜出力との関係

【図12】

難焼結材の焼結時間と寸法変化率との関係

【図14】

【図15】

【図16】

【図17】

【書類名】要約書

【要約】

【課題】活性金属粉末を高圧成形できる粉末成形方法を提供する。

【解決手段】本発明の粉末成形方法は、金型の内面に高級脂肪酸系潤滑剤を塗布する塗布工程と、この塗布工程後の金型内へ活性金属元素を主成分とする原料粉末を充填する充填工程と、この充填工程後の原料粉末を温間状態で加圧して粉末成形体とする成形工程と、この成形工程後の粉末成形体を金型内から抜き出す抜出工程とからなり、得られた該粉末成形体が高密度であることを特徴とする。

金型内面にかじり等を生じることなく、Ti、Al等の活性金属元素からなる活性金属粉末を高圧で加圧成形でき、従来になく高密度な粉末成形体が得られる

【選択図】図1

特願2003-166642

出願人履歴情報

識別番号

[000003609]

1. 変更年月日

1990年 9月 6日

[変更理由]

新規登録

住 所

愛知県愛知郡長久手町大字長湫字横道41番地の1

氏 名 株式会社豊田中央研究所