

Bounds on Lorentz Invariance Violation

by Tahir Kamcili **23.07.2021**

Short topic overview

- Quantum theory and gravity merge at E_{pl} ($\approx 1.22 * 10^2 = 40$)
 - Lorentz invariance violation
 - Modification of vacuo dispersions relation

- Prediction of effects on much lower scale
 - > Effects on:
 - γ-γ pair-production
 - absorption of γ rays
 - time of flight of γ rays (paper)

$$\Delta t = s \frac{n+1}{2} D_n(z) \left(\frac{\Delta E}{E_{\rm QG,n}} \right)^n$$

Linear and quadratic modification possible

$$\eta_1 = s E_{\rm Pl} / E_{\rm QG,1}$$

$$\eta_2 = 10^{-16} \times s E_{\rm Pl}^2 / E_{\rm QG,2}^2$$

• No variation at $\eta = 0$ (null hypothesis)

- Observations on
 - Gamma ray bursts (GRB, paper)
 - active galactic nucleuses
 - Crab pulsar
- MAGIC (Cherenkov telescopes) detection of a GRB
 - > GRB 190114C: January 14, 2019 at 20:57:03 UTC
 - \triangleright E = 0.3 1 TeV

Problems

- Very high Energy γ rays get absorbed by the extragalactic background light
 - observed spectrum softer than intrinsic one
- Measurements are a smooth power law
 - > energy-dependent time delay can make problems
 - Model needed for maximum likehood
 - minimal approach
 - theoretical approach (based on multiwavelength observation)

Results

- Minimal Approach theoretical model doesn't suggest a time delay
 - Comparable to the null hyposis
- Linear modification of the photon dispersion relation factor 4 lower than most constraining lower limits from other TOF methods
- quadratic case more sensitive to the highest photon energies

forward looking

- Observed GRB was featureless.
 - Observations of feature-rich (VHE) GRB could be more promising
 - would enhance the analysis sensitivity to LIV effects

Observations of AGN's and Crab pulsars could also result in other results