Nozzle Flow Analyzer Project Agile Tracking Sheet

Logan White

4/7/2023

CS 225, Spring 2023

Embry-Riddle Aeronautical University

Daytona Beach campus

1 Aerospace Boulevard

Daytona Beach, FL 32114

Table 1: User Story Summary

User Story ID	User Story	Completeness Criteria	Effort Estimate (hours)	Priority	Worked in Sprint (Estimated)
1	As a developer I want to be able to test my software.	All classes exist with all. attributes. All methods exist. but are not yet functional.	8	1	1
2	As a developer I want the software to properly use the proper isentropic equations based on the nozzle/tube type(nozzle/tube type referred to as node).	There are methods for determining pressure, area, Mach, temp, and their associated static, values, and they are iterative. Each nozzle type extends the flow node class	7	3	1
3	As a developer I want the software to use user input data on pressure, Velocity and temp to determine the relationships throughout each flow section	There is a get user input method to collect data, which can be stored as doubles.	1	2	1
4	As a developer I want the software to determine if the conditions are met for a shock to form.	Within the methods for isentropic flow relations there is an iterative check to see if the Mach and pressure relations reach the proper conditions	2	4	1
5	As a developer I want the software to use the proper normal shock relation equations if a shock is formed.	There is a method that is called if a shock is true that splits the node into two parts, isentropic before shock and isentropic after shock.	3	5	1
6	As a developer I wish to keep the user informed of inaccuracies, and as such if Mach is detected to be above 5 then to relay that information to the user.	The same iterative check in the isentropic flow for checking for shocks can also check to see if the Mach number exceeds the flow relations and becomes hypersonic.	1	8	2
7	As a developer I want each of the selected nodes to be modular, so the ending flow properties of one node can become the initial flow properties of another.	There is a method that is called upon that if there is two nodes connected it just sets all the exit values equal to inlet values like: EX: Pe=Pi	1	7	2

8	As a developer I want the final node to	The program has a method that	6	6	2
	simulate the exiting flow properties, one	iteratively goes through the 3 of the 7			
	of seven options ranging from perfectly	exit conditions, and if it matches the 3 set			
	expanded flow to choked flow, etc.	exit conditions it displays one of those,			
		and if is in between/outside, it displayed			
		one of the exit conditions that can occur			
		at a data range.			
9	As a developer I want the nodes and any	A GUI exits that displays the flow nodes,	6	12	3
	present shocks to be displayed	shocks and exit shocks/conditions.			
	graphically				
10	As a developer I want the flow data to be	An export data option is available for the	2	9	2
	exportable as a CSV, or xls	user to send their data to different file			
		types			
11	As a User I want the user's node	An option for the user to save their data,	2	13	2
	configuration to be savable, and	and setup is present.			
	reopenable.				
12	As a User I want the ability to input	Within a GUI the user can create places	5	15	4
	information about the flow, such as	for the input of what would be in a real-			
	pressure, area relations, etc. in a manner	life application "data collection points"			
	that may not align directly with just the	but here are just input location			
	entrance and exit conditions.				
13	As a User I want the ability to graphically	A GUI exits that the user can select flow	3	11	3
	choose the order of nodes.	nodes and snap them together in.			
14	As a User I want to see what	The Program lists in the GUI where	1	10	2
	mathematical and thermodynamic	Isentropic relations where used, and			
	assumptions were made through each	where normal shock relation assumptions			
	portion of the flow.	where used			

Table 2: Sprint Work Summary

Sprint	Backlog	In Work This Sprint	Completed This Sprint
1	1-14	1-5	1-3,5
2	4,6-14	4,6-8,10,11,14	4,8
3	4,6-7,9-14	6-13	7,9,13
4	6,10,11,14		

Table 3: Weekly Remaining Effort Estimate (Burn Down Chart)

	Start*	Mar 20	Mar 27	Apr 3	Apr 10	Apr 17	Apr 24	End
Planned	49	39	35	30	26	18	8	0
Actual		32	16	20				
* Start date of Mar 13 is optional, as it is the beginning of Spring Break. You may treat Mar 20 as the start date.								