पूरक पाठ्य सामग्री

अध्याय 7

7.6.3. $\int (px+q)\sqrt{ax^2+bx+c} \ dx$.

हम अचर A और B इस प्रकार चुनते हैं कि

$$px + q = A \frac{d}{dx}(ax^2 + bx + c) + B$$
$$= A(2ax + b) + B$$

दोनों पक्षों में x के गुणांकों और अचर पदों की तुलना करने पर, हमें प्राप्त होता है—

$$2aA = p$$
 और $Ab + B = q$

इन समीकरणों को हल करने पर, A और B के मान प्राप्त हो जाते हैं। इस प्रकार, समाकल निम्न में परिवर्तित हो जाता है—

A
$$(2ax+b)\sqrt{ax^2+bx+c}\,dx+B$$
 $\sqrt{ax^2+bx+c}\,dx$
$$= \text{AI}_1+\text{BI}_2 \ , \ \vec{\text{जहा}}$$

$$I_1 = (2ax+b)\sqrt{ax^2+bx+c}\,\,dx \ \vec{\text{ह}} \ |$$

$$ax^2+bx+c=t \ , \ \vec{\text{रखए}} \ | \ \vec{\text{तब}} \ , \ (2ax+b)dx=dt \ \vec{\text{ह}} \ |$$
 अतः,
$$I_1 = \frac{2}{3}(ax^2+bx+c)^{\frac{3}{2}}+C_1$$
 इसी प्रकार,
$$I_2 = \sqrt{ax^2+bx+c}\,dx$$

पाठ्य पुस्तक के पृष्ठ 328 पर 7.6.2 में चर्चा किए गए समाकल सूत्र का प्रयोग करके ज्ञात किया जाता है। इस प्रकार, $(px+q)\sqrt{ax^2+bx+c}\,dx$ का मान अंतत: ज्ञात कर लिया जाता है।

उदाहरण 25 $x\sqrt{1+x-x^2} dx$ ज्ञात कीजिए।

हल उपर दर्शाए गई विधि अपनाते हुए, हम लिखते हैं-

$$x = A \frac{d}{dx} (1 + x - x^2) + B$$
$$= A (1 - 2x) + B$$

दोनों पक्षों में, x के गुणांकों और अचर पदों को बराबर करने पर, हमें -2A=1 और A+B=0 प्राप्त होता है।

इन समीकरणों को हल करने पर, हम $A=-\frac{1}{2}$ और $B=\frac{1}{2}$ प्राप्त करते हैं। इस प्रकार, समाकल निम्न में परावर्तित हो जाता है—

$$x\sqrt{1+x-x^2}dx = -\frac{1}{2}(1-2x)\sqrt{1+x-x^2}dx + \frac{1}{2}\sqrt{1+x-x^2}dx$$
$$= -\frac{1}{2}I_1 + \frac{1}{2}I_2$$
(1)

$$I_1 = (1-2x)\sqrt{1+x-x^2}dx$$
 पर विचार कीजिए।

 $1 + x - x^2 = t$ रखिए। तब, (1 - 2x)dx = dt है।

इस प्रकार,
$$I_1 = (1-2x)\sqrt{1+x-x^2}dx = t^{\frac{1}{2}}dt = \frac{2}{3}t^{\frac{3}{2}} + C_1$$

$$=\frac{2}{3}(1+x-x^2)^{\frac{3}{2}}+C_1$$
, जहाँ C_1 कोई अचर है।

आगे, $I_2 = \sqrt{1+x-x^2} dx$ पर विचार कीजिए।

यह समाकल =
$$\sqrt{\frac{5}{4} - \left(x - \frac{1}{2}\right)^2 dx}$$

$$x - \frac{1}{2} = t$$
 रखिए। तब, $dx = dt$ है।

अत:,
$$I_2 = \sqrt{\left(\frac{\sqrt{5}}{2}\right)^2 - t^2} dt$$

$$= \frac{1}{2}t\sqrt{\frac{5}{4}-t^2} + \frac{1}{2}\cdot\frac{5}{4}\sin^{-1}\frac{2t}{\sqrt{5}} + C_2$$

$$= \frac{1}{2}\frac{(2x-1)}{2}\sqrt{\frac{5}{4}-(x-\frac{1}{2})^2} + \frac{5}{8}\sin^{-1}\frac{2x-1}{\sqrt{5}} + C_2$$

$$= \frac{1}{4}(2x-1)\sqrt{1+x-x^2} + \frac{5}{8}\sin^{-1}\frac{2x-1}{\sqrt{5}} + C_2,$$
जहाँ C_2 कोई अचर है।

(1) में $I_{_1}$ और $I_{_2}$ के मान रखने पर, हमें प्राप्त होता है–

$$x\sqrt{1+x-x^2}dx = -\frac{1}{3}(1+x-x^2)^{\frac{3}{2}} + \frac{1}{8}(2x-1)\sqrt{1+x-x^2}$$
$$+\frac{5}{16}\sin^{-1}\frac{2x-1}{\sqrt{5}} + C, \text{ जहाँ}$$
$$C = -\frac{C_1 + C_2}{2} \text{ एक अन्य अचर है।}$$

प्रश्नावली 7.7 के अंत में, निम्नलिखित प्रश्न सम्मिलित कीजिए

12.
$$x\sqrt{x+x^2}$$
 13. $(x+1)\sqrt{2x^2+3}$ **14.** $(x+3)\sqrt{3-4x-x^2}$

उत्तर

12.
$$\frac{1}{3}(x^2+x)^{\frac{3}{2}} - \frac{(2x+1)\sqrt{x^2+x}}{8} + \frac{1}{16}\log|x+\frac{1}{2}+\sqrt{x^2+x}| + C$$

13.
$$\frac{1}{6}(2x^2+3)^{\frac{3}{2}} + \frac{x}{2}\sqrt{2x^2+3} + \frac{3\sqrt{2}}{4}\log\left|x + \sqrt{x^2+\frac{3}{2}}\right| + C$$

14.
$$-\frac{1}{3}(3-4x-x^2)^{\frac{3}{2}} + \frac{7}{2}\sin^{-1}\frac{x+2}{\sqrt{7}} + \frac{(x+2)\sqrt{3-4x-x^2}}{2} + C$$

अध्याय 10

10.7 अदिश त्रिक गुणनफल

मान लीजिए कि \vec{a} , \vec{b} और \vec{c} कोई तीन सदिश हैं। \vec{a} और $(\vec{b} \times \vec{c})$ के अदिश गुणनफल, अर्थात् $\vec{a} \cdot (\vec{b} \times \vec{c})$ को \vec{a} , \vec{b} और \vec{c} का इसी क्रम में **अदिश त्रिक गुणनफल** कहते हैं। इसे $[\vec{a}, \vec{b}, \vec{c}]$ (या $[\vec{a}\vec{b}\vec{c}]$) द्वारा व्यक्त किया जाता है। इस प्रकार, हमें प्राप्त है—

$$[\vec{a}, \vec{b}, \vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c})$$

प्रेक्षण

1. क्यों कि $(\vec{b} \times \vec{c})$ एक सदिश है, इसलिए $\vec{a} \cdot (\vec{b} \times \vec{c})$ एक अदिश राशि है, अर्थात् $[\vec{a}, \vec{b}, \vec{c}]$ एक अदिश राशि है।

निसंदेह, समांतर षट्फलक के आधार को बनाने $|\vec{b} \times \vec{c}|$ है।

 \vec{b} और \vec{c} को अंतर्विष्ट करने वाले तल पर अभिलंब के अनुदिश \vec{a} प्रेक्षेप ही इसकी उँचाई है,

जो $\vec{b} \times \vec{c}$ की दिशा में \vec{a} का घटक है। अर्थात् यह $\frac{\left| \vec{a}.(\vec{b} \times \vec{c}) \right|}{\left| (\vec{b} \times \vec{c}) \right|}$ है। अतः, समांतर षट्फलक का आयतन

$$\frac{\left|\vec{a}.(\vec{b}\times\vec{c})\right|}{\left|(\vec{b}\times\vec{c})\right|}|\vec{b}\times\vec{c}| = \left|\vec{a}.(\vec{b}\times\vec{c})\right|$$

3. यदि $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}, \ \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ और $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}, \$ है, तो

$$\vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$= (b_2c_3 - b_3c_2) \hat{i} + (b_3c_1 - b_1c_3) \hat{j} + (b_1c_2 - b_2c_1) \hat{k}$$

तथा इसीलिए

$$\vec{a}.(\vec{b} \times \vec{c}) = a_1(b_2c_3 - b_3c_2) + a_2(b_3c_1 - b_1c_3) + a_3(b_1c_2 - b_2c_1)$$

$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

4. यदि \vec{a}, \vec{b} और \vec{c} कोई तीन सदिश हैं, तो

$$[\vec{a}, \vec{b}, \vec{c}] = [\vec{b}, \vec{c}, \vec{a}] = [\vec{c}, \vec{a}, \vec{b}]$$

(तीनों सिंदशों के चक्रीय क्रमचय से अदिश त्रिक गुणनफल के मान में कोई परिवर्तन नहीं होता है।)

मान लीजिए कि $\vec{a}=a_1\hat{i}+a_2\hat{j}+a_3\hat{k},\; \vec{b}=b_1\hat{i}+b_2\hat{j}+b_3\hat{k}$ तथा $\vec{c}=c_1\hat{i}+c_2\hat{j}_3\hat{k}$ है। तब, केवल देखकर ही, हमें प्राप्त होता है—

$$[\vec{a}, \vec{b}, \vec{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$= a_1 (b_2 c_3 - b_3 c_2) + a_2 (b_3 c_1 - b_1 c_3) + a_3 (b_1 c_2 - b_2 c_1)$$

$$= b_1 (a_3 c_2 - a_2 c_3) + b_2 (a_1 c_3 - a_3 c_1) + b_3 (a_2 c_1 - a_1 c_2)$$

$$= \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \end{vmatrix}$$

$$= [\vec{b}, \vec{c}, \vec{a}]$$

इसी प्रकार, पाठक इसकी जाँच कर सकते हैं कि $[\vec{a}, \vec{b}\,,\,\vec{c}\,] = [\vec{c}, \vec{a}, \vec{b}\,]$ है।

अत:,
$$[\vec{a}, \vec{b}, \vec{c}] = [\vec{b}, \vec{c}, \vec{a}] = [\vec{c}, \vec{a}, \vec{b}]$$
 है।

5. अदिश त्रिक गुणनफल $\vec{a}.(\vec{b}\times\vec{c})$ में, डाट (dot) और क्रॉस (cross) को परस्पर बदला जा सकता है। निस्संदेह,

$$\vec{a}.(\vec{b}\times\vec{c}) = [\vec{a},\vec{b},\vec{c}] = [\vec{b},\vec{c},\vec{a}] = [\vec{c},\vec{a},\vec{b}] = \vec{c}.(\vec{a}\times\vec{b}) = (\vec{a}\times\vec{b}).\vec{c}$$

6. =
$$[\vec{a}, \vec{b}, \vec{c}] = -[\vec{a}, \vec{c}, \vec{b}]$$
. fixed fixed in the second s

$$= [\vec{a}, \vec{b}, \vec{c}] = \vec{a}.(\vec{b} \times \vec{c})$$

$$= \vec{a}.(-\vec{c} \times \vec{b})$$

$$= -(\vec{a}.(\vec{c} \times \vec{b}))$$

$$= -\vec{a}, \vec{c}, \vec{b}$$

7. $[\vec{a}, \vec{a}, \vec{b}] = 0$. fixetize,

$$[\vec{a}, \vec{a}, \vec{b}] = [\vec{a}, \vec{b}, \vec{a},]$$

$$= [\vec{b}, \vec{a}, \vec{a}]$$

$$= \vec{b} \cdot (\vec{a} \times \vec{a})$$

$$= \vec{b} \cdot \vec{0} = 0.$$

$$(avii a \vec{a} \times \vec{a} = \vec{0})$$

टिप्पणी उपर्युक्त 7 में, दिया परिणाम, दोनों बराबर सदिशों के स्थितियों के किसी भी क्रम में होने पर भी सत्य है।

10.7.1 तीन सदिशों की समतलीयता

प्रेमय 1 तीन सदिश \vec{a} , \vec{b} और \vec{c} समतलीय होते हैं, यदि और केवल यदि $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$ होता है। उपपत्ति सर्वप्रथम, मान लीजिए कि \vec{a} , \vec{b} और \vec{c} समतलीय हैं।

यदि \vec{b} और \vec{c} समांतर सदिश हैं, तो $\vec{b} \times \vec{c} = \vec{0}$ है और इसीलिए $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$ होगा।

यदि \vec{b} और \vec{c} समांतर नहीं है, तो $\vec{b} \times \vec{c}$ सदिश \vec{a} पर लंब होगा, क्योंकि \vec{a} , \vec{b} और \vec{c} समतलीय हैं। अतः, $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$ है।

विलोमत:, मान लीजिए कि $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$ है। यदि \vec{a} और $\vec{b} \times \vec{c}$ में से दोनों शून्येतर सदिश हैं, तो हम निष्कर्ष निकालते हैं कि \vec{a} और $\vec{b} \times \vec{c}$ दो लांबिक सदिश हैं। परंतु $\vec{b} \times \vec{c}$ दोनों सदिशों \vec{b} और \vec{c} पर लंब है। अत:, \vec{a} , \vec{b} और \vec{c} एक समतल में स्थित होने चाहिए, अर्थात् ये समतलीय हैं। यदि $\vec{a} = 0$ है, तो \vec{a} किन्हीं भी दो सदिशों, विशेष रूप से \vec{b} और \vec{c} , के समतलीय होगा। यदि $(\vec{b} \times \vec{c}) = 0$ है, तो \vec{b} और \vec{c} समांतर सदिश होंगे तथा इसीलिए \vec{a} , \vec{b} और \vec{c} समतलीय होंगे, क्योंकि कोई भी दो सदिश सदैव एक समतल में होते हैं, जो उनसे निर्धारित होता है, तथा कोई सदिश, जो इन दोनों सदिशों में से किसी एक समांतर होता है, भी इसी समतल में स्थित होता है। टिप्पणी चार बिंदुओं की समतलीयता की चर्चा, तीन सदिशों की समतलीयता का प्रयोग करते हुए, की जा सकती है। निस्संदेह, चार बिंदु A, B, C और D समतलीय होते हैं, यदि सदिश \overrightarrow{AB} , \overrightarrow{AC} और \overrightarrow{AD} समतलीय हों।

उदाहरण 26 $\vec{a} \cdot (\vec{b} \times \vec{c})$ ज्ञात कीजिए, यदि $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2j + k$ और $\vec{c} = 3\hat{i} + \hat{j} + 2\hat{k}$ है।

हल हमें प्राप्त है –
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} 2 & 1 & 3 \\ -1 & 2 & 1 \\ 3 & 1 & 2 \end{vmatrix} = -10.$$

उदाहरण 27 दर्शाइए कि सिदश $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}, \vec{b} = -2\hat{i} + 3j - 4\hat{k}$ और $\vec{c} = \hat{i} - 3\hat{j} + 5\hat{k}$ समतलीय हैं।

हल हमें प्राप्त है –
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} 1 & -2 & 3 \\ -2 & 2 & -4 \\ 1 & -3 & 5 \end{vmatrix} = 0.$$

अतः, प्रमेय 1 के अनुसार \vec{a}, \vec{b} और \vec{c} समतलीय सदिश हैं।

उदाहरण 28 यदि सदिश $\vec{a} = \hat{i} + 3\hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} - \hat{j} - \hat{k}$ और $\vec{c} = \lambda \hat{i} + 7\hat{j} + 3\hat{k}$ समतलीय हैं, तो λ का मान ज्ञात कीजिए।

हल क्योंकि \vec{a} , \vec{b} और \vec{c} समतलीय हैं, इसलिए \vec{a} , \vec{b} , $\vec{c}=0$,

अर्थात्,
$$\begin{vmatrix} 1 & 3 & 1 \\ 2 & -1 & -1 \\ \lambda & 7 & 3 \end{vmatrix} = 0$$

$$\Rightarrow$$
 1 (-3+7)-3 (6+ λ) + 1 (14+ λ) = 0

$$\Rightarrow \lambda = 0$$

उदाहरण 29 दर्शाइए कि स्थिति सिदशों $4\hat{i} + 5\hat{j} + \hat{k}, -(\hat{j} + \hat{k}), 3\hat{i} + 9\hat{j} + 4\hat{k}$ और $4(-\hat{i} + \hat{j} + \hat{k})$ वाले क्रमश: चारो बिंदु A, B, C और D समतलीय हैं।

हल हम जानते हैं कि चार बिंदु A, B, C और D समतलीय होते हैं, यदि तीनों सदिश $\overrightarrow{AB}, \overrightarrow{AC}$ और \overrightarrow{AD} समतलीय होते हैं,

अर्थात्,
$$\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} = 0$$
 हो।
अब, $\overrightarrow{AB} = -(\hat{j} + \hat{k}) - (4\hat{i} + 5\hat{j} + \hat{k}) = -4\hat{i} - 6\hat{j} - 2\hat{k}$
 $\overrightarrow{AC} = (3\hat{i} + 9\hat{j} + 4\hat{k}) - (4\hat{i} + 5\hat{j} + \hat{k}) = -\hat{i} + 4\hat{j} + 3\hat{k}$
तथा $\overrightarrow{AD} = 4(-\hat{i} + \hat{j} + \hat{k}) - (4\hat{i} + 5\hat{j} + \hat{k}) = -8\hat{i} - \hat{j} + 3\hat{k}$

इस प्रकार,
$$\overrightarrow{AB}$$
, \overrightarrow{AC} , $\overrightarrow{AD} = \begin{vmatrix} -4 & -6 & -2 \\ -1 & 4 & 3 \\ -8 & -1 & 3 \end{vmatrix} = 0$.

अत:, A, B, C और D समतलीय हैं।

उदाहरण 30 सिद्ध कीजिए कि $\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a} = 2$ $\vec{a}, \vec{b}, \vec{c}$ हल हमें प्राप्त है—

$$\begin{split} \vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a} &= (\vec{a} + \vec{b}).((\vec{b} + \vec{c}) \times (\vec{c} + \vec{a})) \\ &= (\vec{a} + \vec{b}).(\vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{c} + \vec{c} \times \vec{a}) \end{split}$$

=
$$(\vec{a}+\vec{b}).(\vec{b}\times\vec{c}+\vec{b}\times\vec{a}+\vec{c}\times\vec{a})$$
 (क्योंकि $\vec{c}\times\vec{c}=\vec{0}$ है।)

$$= \vec{a}.(\vec{b} \times \vec{c}) + \vec{a}.(\vec{b} \times \vec{a}) + \vec{a}.(\vec{c} \times \vec{a}) + \vec{b}.(\vec{b} \times \vec{c}) + \vec{b}.(\vec{b} \times \vec{a}) + \vec{b}.(\vec{c} \times \vec{a})$$

$$= \vec{a}, \vec{b}, \vec{c} + \vec{a}, \vec{b}, \vec{a} + [\vec{a}, \vec{c}, \vec{a}] + \vec{b}, \vec{b}, \vec{c} + \vec{b}, \vec{b}, \vec{a} + \vec{b}, \vec{c}, \vec{a}$$
$$= 2[\vec{a}, \vec{b}, \vec{c}] \quad (\text{avi}?)$$

उदाहरण 31 सिद्ध किजिए कि $[\vec{a}, \vec{b}, \vec{c} + \vec{d}] = [\vec{a}, \vec{b}, \vec{c}] + [\vec{a}, \vec{b}, \vec{d}]$ होता है। हल हमें प्राप्त है—

$$\begin{aligned} [\vec{a}, \vec{b}, \vec{c} + \vec{d}] &= \vec{a} \cdot (\vec{b} \times (\vec{c} + \vec{d})) \\ &= \vec{a} \cdot (\vec{b} \times \vec{c} + \vec{b} \times \vec{d}) \\ &= \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{a} \cdot (\vec{b} \times \vec{d}) \\ &= \vec{a} \cdot \vec{b}, \vec{c} + \vec{a}, \vec{b}, \vec{d} \end{aligned}$$

प्रश्नावली 10.5

- 1. यदि $\vec{a} = \hat{i} 2\hat{j} + 3\hat{k}, \vec{b} = 2\hat{i} 3\hat{j} + \hat{k}$ और $c = 3\hat{i} + \hat{j} 2\hat{k}$ है, तो $[\vec{a}\ \vec{b}\ \vec{c}\]$ ज्ञात कीजिए। (उत्तर 24)
- **2.** दर्शाइए कि सिंदिश $\vec{a} = \hat{i} 2\hat{j} + 3\hat{k}, \vec{b} = -2\hat{i} + 3\hat{j} 4\hat{k}$ और $\vec{c} = \hat{i} 3\hat{j} + 5\hat{k}$ समतलीय हैं।
- 3. यदि सदिश $\hat{i} \hat{j} + \hat{k}, 3\hat{i} + \hat{j} + 2\hat{k}$ और $\hat{i} + \lambda \hat{j} 3\hat{k}$ समतलीय हैं, तो λ का मान ज्ञात कीजिए। (उत्तर $\lambda = 15$)
- 4. मान लीजिए कि $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}$ और $\vec{c}=c_1\hat{i}+c_2\hat{j}+c_3\hat{k}$ है। तब, (a) यदि $c_1=1$ और $c_2=2$ है, तो c_3 ज्ञात कीजिए, जिससे \vec{a}, \vec{b} और \vec{c} समतलीय हो जाएँ। (उत्तर $c_3=2$)

638 गणित

- (b) यदि $c_2=-1$ और $c_3=1$ है, तो दर्शाइए कि c_1 का कोई भी मान \vec{a},\vec{b} और \vec{c} को समतलीय नहीं बना सकता है।
- **5.** दर्शाइए कि स्थिति सिदशों $4\hat{i} + 8\hat{j} + 12\hat{k}, 2\hat{i} + 4\hat{j} + 6\hat{k}, 3\hat{i} + 5\hat{j} + 4\hat{k}$ और $5\hat{i} + 8\hat{j} + 5\hat{k}$ वाले चारों बिंदु समतलीय हैं।
- 6. यदि चार बिंदु A (3, 2, 1), B (4, x, 5), C (4, 2, -2) और D (6, 5, -1) समतलीय हैं, तो x का मान ज्ञात कीजिए। (उत्तर x = 5)
- 7. यदि $\vec{a}+\vec{b}$, $\vec{b}+\vec{c}$ और $\vec{c}+\vec{a}$ समतलीय हैं , तो दर्शाइए कि सदिश \vec{a} , \vec{b} और \vec{c} समतलीय होंगे।