

Comparando médias de 2 grupos Intervalos de Confiança da diferença entre as médias

Felipe Figueiredo

Comparando médias de 2 grupos

> Felipe Figueiredo

t de Student

IC diferença 2

Sumário

- A distribuição t de Student
 - A distribuição t de Student
- 2 Intervalo de Confiança da diferença entre duas médias
 - Interpretação
 - Participantes: pareados ou não pareados?
- 3 Aprofundamento
 - Aprofundamento

Comparando médias de 2 grupos

Felipe Figueiredo

t de Student

IC diferença 2 médias

Discussão da aula passada

Comparando médias de 2 grupos

> Felipe Figueiredo

t de Studen

IC diferença 2 médias

Aprofundamento

Discussão da leitura obrigatória da aula passada

Sumário

- A distribuição t de Student
 - A distribuição t de Student
- Intervalo de Confiança da diferença entre duas médias
 - Interpretação
 - Participantes: pareados ou não pareados?
- 3 Aprofundamento
 - Aprofundamento

Comparando médias de 2 grupos

> Felipe Figueiredo

A distribuição t de Student

IC diferença 2

Recapitulando

Não vá se perder por aí...

- A distribuição Normal tem dois parâmetros
- Seu formato é absolutamente definido por
 - \(\bar{x}\) = Média (tendência central)
 - $s^2/s = Variância/DP$ (tendência de dispersão)

 \Rightarrow Forma independe do n

Comparando médias de 2 grupos

> Felipe Figueiredo

t de Student A distribuição t de

Student

IC diference 3

médias

Não vá se perder por aí...

- A distribuição Normal tem dois parâmetros
- Seu formato é absolutamente definido por
 - $\bar{x} = M\acute{e}dia$ (tendência central)
 - $s^2/s = Variância/DP$ (tendência de dispersão)

 \Rightarrow Forma independe do n

médias de 2 grupos Felipe

Comparando

Felipe Figueiredo

A distribuição t de Student

IC diferença 2 médias

Aprofundamento

Nomenclatura

A distribuição *Normal Padrão* também é chamada de **distribuição Z**.

Recapitulando

Comparando médias de 2 grupos

> Felipe Figueiredo

t de Student

A distribuição t de Student

IC diferença 2

Aprofundamen

• Vimos que o IC (da média) é composto por 3 componentes

- a média x̄ (centro)
 - o erro padrão da média SEM (incerteza)
 - um tal de t*, que depende de n
- Quando *n* era grande, utilizamos $t^* \approx 2$
- Mas de onde vem esse t*? Qual seria o valor correto?

A distribuição t de Student

Comparando médias de 2 grupos

Felipe Figueiredo

t de Student A distribuição t de Student

IC diferença 2 médias

A distribuição t de Student

Comparando médias de 2 grupos

> Felipe Figueiredo

t de Student A distribuição t de Student

IC diferença 2 médias

A distribuição t de Student

• Student (pseudônimo de W. S. Gossett [1876-1937]¹)

Distribuição t (baseada na distribuição Normal)

• Melhor se aproxima dos dados de amostras pequenas

• 3º parâmetro graus de liberdade² vinculado ao tamanho da amostra n.

Felipe Figueiredo

t de Student

A distribuição t de
Student

IC diferença 2

Comparando médias de 2 grupos

¹trabalhando para a cervejaria Guiness

²df em inglês

Propriedades da distribuição t

A distribuição tem forma de sino (simétrica, como a Normal)

Reflete a maior variabilidade inerente às amostras pequenas³

• Formato *depende* do tamanho da amostra (n)

Isto é

Quanto mais graus de liberdade, mais a distribuição t se parece com a distribuição Normal padrão (Z)

Comparando médias de 2 grupos

> Felipe Figueiredo

A distribuição t de Student

IC diferença 2 médias

 $^{^{3}}$ graus de liberdade (df) $\approx n$

Propriedades da distribuição t

A distribuição tem forma de sino (simétrica, como a Normal)

Reflete a maior variabilidade inerente às amostras pequenas³

• Formato depende do tamanho da amostra (n)

Isto é

Quanto mais graus de liberdade, mais a distribuição t se parece com a distribuição Normal padrão (Z)

Pense...

O que deve acontecer com menos graus de liberdade?

 3 graus de liberdade (df) $\approx n$

4 D > 4 D > 4 E > 4 E > E 990

Comparando médias de 2 grupos

> Felipe Figueiredo

de Student
A distribuição t de

IC diferença 2 médias

Figura: Duas distribuições t de Student, e a Normal padrão

Comparando médias de 2 grupos

> Felipe Figueiredo

A distribuição t de Student

IC diferença 2 médias

ICs dos exemplos

- IC do ex. 5.1 (PS de 100 alunos): [120.6, 126.2] mmHg
- IC do ex. 5.2 (PS de 5 alunos): [79.2, 118.8] mmHg

Pense...

Observe os tamanhos dos ICs.

Comparando médias de 2 grupos

Felipe Figueiredo

t de Student

A distribuição t de
Student

IC diferença 2 médias

ICs dos exemplos

- IC do ex. 5.1 (PS de 100 alunos): [120.6, 126.2] mmHg
- IC do ex. 5.2 (PS de 5 alunos): [79.2, 118.8] mmHg

Pense...

Observe os tamanhos dos ICs.

Lembrete

Para o 5.1, usamos $t^* \approx 2$.

Vimos que esta aproximação não era apropriada no 5.2

Comparando médias de 2 grupos

> Felipe Figueiredo

t de Student

A distribuição t de Student

IC diferença 2 médias

• $n = 5 (df = 4) \Rightarrow t^* = 2.776$

•
$$n = 10 (df = 9) \Rightarrow t^* = 2.262$$

•
$$n = 15 (df = 14) \Rightarrow t^* = 2.145$$

•
$$n = 20 (df = 19) \Rightarrow t^* = 2.093$$

•
$$n = 30 (df = 29) \Rightarrow t^* = 2.045$$

Pense...

Qual é a relação entre n e o tamanho do IC?

$$IC = [\bar{x} - t^*SEM, \ \bar{x} + t^*SEM]$$

Comparando médias de 2 grupos

Felipe Figueiredo

t de Student

A distribuição t de Student

IC diferença

•
$$n = 5 (df = 4) \Rightarrow t^* = 2.776$$

•
$$n = 10 (df = 9) \Rightarrow t^* = 2.262$$

•
$$n = 15 (df = 14) \Rightarrow t^* = 2.145$$

•
$$n = 20 (df = 19) \Rightarrow t^* = 2.093$$

•
$$n = 30 (df = 29) \Rightarrow t^* = 2.045$$

Observe que...

- df = n 1
- Para *n* grande, $t^* \rightarrow 1.960$

Por isso usamos o valor aproximado 2 no primeiro exemplo.

Comparando médias de 2 grupos

Felipe Figueiredo

A distribuição t de Student

IC diferença 2 médias

Na prática...

Distribuição Normal - Z

Gostaríamos de poder usar sempre Z como modelo para o formato dos nossos dados experimentais.

Distribuição t de Student

- t é uma aproximação da Normal (Z)
- idealizada para n pequeno
- Com *n* grande (df \geq 30) ela se confunde com Z.

Comparando médias de 2 grupos

> Felipe Figueiredo

t de Student
A distribuição t de
Student

IC diferença 2

Exercício 4 do cap 5

Os níveis séricos de um hormônio (fator Y) foram medidos em 100 mulheres não grávidas, e em 100 mulheres com até 3 meses de gravidez. Os ICs dos valores dos soros em ambos os grupos são:

Grávidas: [105.4, 114.6]

Não grávidas: [90.0, 96.0]

O fator Y médio é diferente em mulheres grávidas e não grávidas?

Comparando médias de 2 grupos

Felipe Figueiredo

A distribuição t de Student

IC diferença 2 médias

Exercício 4 do cap 5

Os níveis séricos de um hormônio (fator Y) foram medidos em 100 mulheres não grávidas, e em 100 mulheres com até 3 meses de gravidez. Os ICs dos valores dos soros em ambos os grupos são:

Grávidas: [105.4, 114.6]

Não grávidas: [90.0, 96.0]

O fator Y médio é diferente em mulheres grávidas e não grávidas?

Requisito

Pelas premissas do IC da média, você tem informações suficientes para calcular/interpretar cada um destes ICs?

Comparando médias de 2 grupos

> Felipe Figueiredo

A distribuição t de Student

IC diferença 2 médias

Pense

Exercício 5.4

Não grávidas: [90.0, 96.0]

Grávidas: [105.4, 114.6]

Observações:

- O SEM informa quão bem você estimou a média de cada grupo
- Os ICs n\u00e3o tem sobreposi\u00e7\u00e3o ⇒ 2 popula\u00e7\u00f3es diferentes

Pense...

Como comparar estes dois grupos?

Comparando médias de 2 grupos

> Felipe Figueiredo

A distribuição t de Student

IC diferença 2 médias

Sumário

- A distribuição t de Student
 - A distribuição t de Student
- 2 Intervalo de Confiança da diferença entre duas médias
 - Interpretação
 - Participantes: pareados ou não pareados?
- 3 Aprofundamento
 - Aprofundamento

Comparando médias de 2 grupos

> Felipe Figueiredo

t de Studen

IC diferença 2 médias

Interpretação

Participantes: pareados ou não pareados?

Comparações entre 2 médias

 Frequentemente precisamos dividir os dados em dois grupos e comparar as médias.

 Isto pode ser usado para se estudar o efeito de um tratamento em relação a um grupo controle

ou mesmo para se comparar dois tratamentos diferentes.

Comparando médias de 2 grupos

> Felipe Figueiredo

de Student

IC diferença 2 médias

Interpretação

Participantes: pareados ou não pareados?

Exercício 4 do cap 5

Os níveis séricos de um hormônio (fator Y) foram medidos em 100 mulheres não grávidas, e em 100 mulheres com até 3 meses de gravidez. Os ICs dos valores dos soros em ambos os grupos são:

Grávidas: [105.4, 114.6]

Não grávidas: [90.0, 96.0]

O fator Y médio é diferente em mulheres grávidas e não grávidas?

Comparando médias de 2 grupos

> Felipe Figueiredo

t de Student

médias Interpretação

Particinantes:

Participantes: pareados ou não pareados?

Exercício 4 do cap 5

Os níveis séricos de um hormônio (fator Y) foram medidos em 100 mulheres não grávidas, e em 100 mulheres com até 3 meses de gravidez. Os ICs dos valores dos soros em ambos os grupos são:

Grávidas: [105.4, 114.6]

Não grávidas: [90.0, 96.0]

O fator Y médio é diferente em mulheres grávidas e não grávidas?

Requisito

Pelas premissas do IC da média, você tem informações suficientes para calcular/interpretar cada um destes ICs?

Comparando médias de 2 grupos

> Felipe Figueiredo

de Student

IC diferença 2 médias

Interpretação Participantes:

Participantes: pareados ou não pareados?

Quais são as variáveis?

- x_C Hormônio não grávidas
- x_T Hormônio grávidas (até 3 meses)
- Duas variáveis explícitas

Primeira alternativa

- \bigcirc "Explicar" a "relação" entre o hormônio x_T e o hormônio x_C
- 2 Comparar x_T (grupo de teste) com x_C (referência)

Esta relação pode ser expressa como

 $x_T \sim x_C$

Comparando médias de 2 grupos

> Felipe Figueiredo

t de Student

C diferença

Interpretação

Participantes: pareados ou não pareados?

Uma breve interrupção para mini-pânico

Comparando médias de 2 grupos

> Felipe Figueiredo

t de Studen

medias Interpretação

Participantes: pareados ou não pareados?

Aprofundament

Suspense dramático...

Se você prestou atenção até aqui...

Temos duas variáveis.

Portanto temos duas médias (trivial).

Mas também temos dois SEM!

Esta relação pode ser expressa como

horm. grávidas \sim horm. não grávidas

Mais precisamente

horm. grávid. = horm. não grávid. + $Erro_C$ + $Erro_T$

Comparando médias de 2 grupos

> Felipe Figueiredo

de Student

nédias Interpretação

articipantes: areados ou não

Uma breve interrupção para mini-pânico

Duas médias, e dois erros?

Comparando médias de 2 grupos

> Felipe Figueiredo

de Student

médias
Interpretação

Participantes: pareados ou não pareados?

Duas opções

Exercício 5.4

• Não grávidas: [90.0, 96.0]

Grávidas: [105.4, 114.6]

Difícil

Calcular os dois ICs (x_C e x_T), e compará-los diretamente

Moleza

Calcular o IC da diferença (x_d) usando o método da aula passada

Comparando médias de 2 grupos

> Felipe Figueiredo

de Student

Interpretação

Participantos:

Participantes: pareados ou não pareados?

Duas opções

Exercício 5.4

Não grávidas: [90.0, 96.0]

Grávidas: [105.4, 114.6]

Difícil

Calcular os dois ICs (x_C e x_T), e compará-los diretamente

Moleza

Calcular o IC da diferença (x_d) usando o método da aula passada

Comparando médias de 2 arupos

> Felipe Figueiredo

Interpretação

Neste caso podemos usar um truque para trocar um problema de 2 variáveis por outro de 1 variável.

Comparando médias de 2 grupos

Felipe Figueiredo

de Student

IC diferença

Interpretação

Participantes: pareados ou não pareados?

Diferença entre 2 médias

• Comparar duas médias $\bar{x_C}$ e $\bar{x_T}$, consideramos a diferença média $\bar{x_d} = \bar{x_T} - \bar{x_C}$

Comparando médias de 2 grupos

Felipe Figueiredo

de Student

médias Interpretação

Participantes:

pareados ou não pareados?

Aprofundament

Pense em saldo

Diferença entre 2 médias

- Comparar duas médias $\bar{x_C}$ e $\bar{x_T}$, consideramos a diferença média $\bar{x_d} = \bar{x_T} \bar{x_C}$
- Se $\bar{x_T}$ for maior que $\bar{x_C} \Rightarrow$ diferença média é positiva
- Se $\bar{x_T}$ for menor que $\bar{x_C} \Rightarrow$ a diferença média é negativa

Comparando médias de 2 grupos

> Felipe Figueiredo

t de Student

IC diferença

Interpretação

Participantes: pareados ou não pareados?

Aprofundament

Pense em saldo

Diferença entre 2 médias

- Comparar duas médias $\vec{x_C}$ e $\vec{x_T}$, consideramos a diferença média $\vec{x_d} = \vec{x_T} \vec{x_C}$
- Se $\bar{x_T}$ for major que $\bar{x_C} \Rightarrow$ diferença média é positiva
- Se $\bar{x_T}$ for menor que $\bar{x_C} \Rightarrow$ a diferença média é negativa

Intuição

Raciocínio: se as médias forem aproximadamente iguais...

... a diferença média ($\bar{x_d}$) será próxima de zero

Comparando médias de 2 grupos

> Felipe Figueiredo

de Student

médias Interpretação

Participantes: pareados ou não pareados?

Aprofundamento

Pense em saldo

Tamanho do efeito

Nesse caso a diferença média $(\bar{x_d})$ é o efeito observado

Comparando médias de 2 grupos

Felipe Figueiredo

t de Studen

IC diferenca

Interpretação

Participantes: pareados ou não pareados?

Tamanho do efeito

Nesse caso a diferença média $(\bar{x_d})$ é o efeito observado

Efeitos grandes são mais fáceis de ser detectados

Comparando médias de 2 grupos

> Felipe Figueiredo

t de Studen

IC diferença

Interpretação

Participantes: pareados ou não pareados?

- x_C Hormônio não grávidas
- x_T Hormônio grávidas (até 3 meses)
- $d = x_T x_C$ (uma variável)

Segunda alternativa (método da aula passada)

"Explicar" a "relação" entre a diferença d e a referência (zero)

Esta relação pode ser expressa como

 $d \sim 0$

Comparando médias de 2 grupos

> Felipe Figueiredo

t de Student

médias Interpretação

Participantes:

pareados ou não pareados?

Estratégia proposta

Temos duas variáveis.

Calculamos a diferença entre as médias e aplicamos o método da aula passada – IC de **uma** média.

moleza!

O que falta?

Comparando médias de 2 grupos

> Felipe Figueiredo

de Student

IC diferença 2

Interpretação

Participantes: pareados ou não pareados?

Estratégia proposta

Temos duas variáveis.

Calculamos a diferença entre as médias e aplicamos o método da aula passada – IC de **uma** média.

moleza!

O que falta?

O que falta?

... precisamos do SEM da diferença.

Comparando médias de 2 grupos

> Felipe Figueiredo

de Student

C diferença 2

Interpretação

Participantes: pareados ou não pareados?

Estratégia proposta

Temos duas variáveis.

Calculamos a diferença entre as médias e aplicamos o método da aula passada – IC de **uma** média.

moleza!

O que falta?

O que falta?

... precisamos do SEM da diferença.

Ou seja...

$$d = 0 + Errod$$

Comparando médias de 2 grupos

> Felipe Figueiredo

de Student

médias Interpretação

Participantes: pareados ou não pareados?

Uma breve interrupção para mini-pânico

Aprofundament

Comparando médias de 2 grupos

Felipe Figueiredo

t de Student

Interpretação
Participantes:
pareados ou não
pareados?

SEM da diferença?

Erro padrão da diferença

• Lembre-se que para cada grupo: $SEM = \frac{s}{\sqrt{n}}$

- Para a diferenca entre 2 grupos, "somamos" os SEM
- Mas esta "soma" não é direta!
- É preciso levar em conta o uso do quadrado/raiz quadrada do DP (aula de variabilidade⁴)

$$SEM_d = \sqrt{(SEM_C)^2 + (SEM_T)^2}$$

Felipe Figueiredo

Interpretação

Comparando médias de 2 arupos

⁴não podemos somar DPs, mas podemos somar variâncias

De volta à programação normal

Comparando médias de 2 grupos

> Felipe Figueiredo

t de Student

médias Interpretação

Participantes: pareados ou não pareados?

Aprotundamento

Estratégia proposta

SEM da diferença.

Premissas

Comparando médias de 2 grupos

> Felipe Figueiredo

de Student

médias Interpretação

Participantes:

Participantes: pareados ou não pareados?

- As amostras foram selecionadas aleatoriamente das respectivas populações
- As populações são Normais (Gaussianas)
- As duas populações possuem DP idênticos
- Todos os indivíduos de cada grupo vêm da mesma população
- Cada indivíduo é independente de todos os outros

Exercício 4 do cap 5

Os níveis séricos de um hormônio (fator Y) foram medidos em 100 mulheres não grávidas, e em 100 mulheres com até 3 meses de gravidez. Os ICs dos valores dos soros em ambos os grupos são:

Grávidas: [105.4, 114.6]

Não grávidas: [90.0, 96.0]

O fator Y médio é diferente em mulheres grávidas e não grávidas?

Comparando médias de 2 grupos

> Felipe Figueiredo

t de Student

médias Interpretação

Participantes: pareados ou não

Exercício 4 do cap 5

Os níveis séricos de um hormônio (fator Y) foram medidos em 100 mulheres não grávidas, e em 100 mulheres com até 3 meses de gravidez. Os ICs dos valores dos soros em ambos os grupos são:

Grávidas: [105.4, 114.6]

Não grávidas: [90.0, 96.0]

O fator Y médio é diferente em mulheres grávidas e não grávidas?

Requisito

Pelas premissas do IC da média, você tem informações suficientes para calcular/interpretar cada um destes ICs?

Comparando médias de 2 grupos

> Felipe Figueiredo

de Student

Interpretação

Participantes: pareados ou não

Diferenças: Exercício 5.4 (e 7.1)

- Média grávidas: $\bar{x_C} = 110 \text{ unidades/ml}$
- Média não grávidas: $\bar{x_T} = 93$ unidades/ml
- Diferença entre as médias: $\bar{x_d} = 17$ unidades/ml
- SEM da diferença: 2.75 unidades/ml
- $n_C = 100, n_T = 100$
- \bullet df = (100 -1) + (100 1) = 198
- $t^* = 1.97$ (valor crítico tabelado)

Comparando médias de 2 grupos

Felipe Figueiredo

de Student

IC diferença :

Interpretação
Participantes:

Participantes: pareados ou não pareados?

Comparando médias de 2 grupos

Bastidores: Exercício 5.4 (e 7.1)

- Média grávidas: $\bar{x_C} = 110 \text{ unidades/ml}$
- Média não grávidas: $\bar{x_T} = 93$ unidades/ml
- Diferença entre as médias: $\bar{x_d} = 17$ unidades/ml
- SEM da diferença: 2.75 unidades/ml
- $n_C = 100, n_T = 100$
- \bullet df = (100 -1) + (100 1) = 198
- $t^* = 1.97$ (valor crítico tabelado)

Felipe Figueiredo

t de Student

IC diferença

Interpretação
Participantes:

Participantes: pareados ou não pareados?

Aprofundamen

Resultado: IC da diferença

[11.6, 22.4] unidades/ml

E o que isso significa?

Interpretação

Estamos 95% confiantes que a diferença real entre os grupos está entre 11.6 e 22.4.

Conclusão ("nossos dados indicam que...")

o (...) fator Y de uma (...) grávida é (...) 17 unidades/ml maior que uma (...) não grávida (variando entre 11,6 e 22,4 unidades/ml).

Comparando médias de 2 grupos Felipe

Figueiredo

de Student

Interpretação

Participantes: pareados ou não

Interpretação

Estamos 95% confiantes que a diferença real entre os grupos está entre 11.6 e 22.4.

Conclusão ("nossos dados indicam que...")

o (...) fator Y de uma (...) grávida é (...) 17 unidades/ml maior que uma (...) não grávida (variando entre 11,6 e 22,4 unidades/ml).

Pense...

Preencha as lacunas acima.

Comparando médias de 2 grupos Felipe

Figueiredo

do Otadoni

Interpretação

Participantes: pareados ou não

Sumário

- A distribuição t de Student
 - A distribuição t de Student
- 2 Intervalo de Confiança da diferença entre duas médias
 - Interpretação
 - Participantes: pareados ou não pareados?
- 3 Aprofundamento
 - Aprofundamento

Comparando médias de 2 grupos

> Felipe Figueiredo

t de Student

médias

nterpretação

Participantes: pareados ou não pareados?

Grupos não pareados

- Até agora assumimos que os grupos e participantes são independentes
- A única coisa que podemos fazer: comparação global
- ... a média do grupo A × a média do grupo B

Grupos pareados

- Existe um caso importante em que pode-se considerar que eles são dependentes: quando são pareados
- Isto é: cada participante de um grupo tem um correspondente no outro
- u. diferença entre cada par ⇒ média das diferenças

Comparando médias de 2 grupos

> Felipe Figueiredo

de Student

médias

Participantes: pareados ou não

Grupos pareados

Quando faz sentido parear indivíduos de dois grupos?

- Mensurar o mesmo individuo antes e depois do procedimento (baseline x intervenção)
- Recrutamento aos pares, quando o par tem a(o) mesma(o)
 - idade/faixas etária
 - região demográfica
 - diagnóstico
- irmãos, pai/filho
- lateralidade (tratamento = lado E, controle = lado D)

Comparando médias de 2 grupos

> Felipe Figueiredo

de Student

nédias

Participantes: pareados ou não pareados?

Exemplo 7.2

Ye e Grantham (1993) estudaram o mecanismo de absorção de fluido em cistos renais removidos de pacientes com doença renal policística. Incubaram os cistos em meio de cultura celular e mediram a diferença de peso em cada cisto (antes e depois da incubação).

Não pareado

Pareado

Comparando médias de 2 grupos

> Felipe Figueiredo

de Student

médias

Participantes: pareados ou não pareados?

Exemplo 7.2

Ye e Grantham (1993) estudaram o mecanismo de absorção de fluido em cistos renais removidos de pacientes com doença renal policística. Incubaram os cistos em meio de cultura celular e mediram a diferença de peso em cada cisto (antes e depois da incubação).

Não pareado

- peso médio (todos, antes) = 6.51g (SEM 2.26g)
- 2 peso médio (todos, depois) = 7.02g (SEM 2.40g)
- 3 IC 95% da diferença [-6.48, 7.50]

Pareado

Comparando médias de 2 grupos

> Felipe Figueiredo

de Student

médias Interpretação

Participantes: pareados ou não pareados?

Exemplo 7.2

Ye e Grantham (1993) estudaram o mecanismo de absorção de fluido em cistos renais removidos de pacientes com doença renal policística. Incubaram os cistos em meio de cultura celular e mediram a diferença de peso em cada cisto (antes e depois da incubação).

Não pareado

Pareado

- ganho em cada cisto ⇒ depois antes
- 2 ganho médio dos cistos = 0.50g (SEM 0.23g).
- 3 IC 95% da diferença [-0.03, 1.04]

Comparando médias de 2 grupos

Felipe Figueiredo

de Student

C diferença nédias

Participantes:

pareados ou não pareados?

Aprolulidament

Exemplo 7.2

Ye e Grantham (1993) estudaram o mecanismo de absorção de fluido em cistos renais removidos de pacientes com doença renal policística. Incubaram os cistos em meio de cultura celular e mediram a diferença de peso em cada cisto (antes e depois da incubação).

Não pareado

- peso médio (todos, antes) = 6.51g (SEM 2.26g)
- 2 peso médio (todos, depois) = 7.02g (SEM 2.40g)
- 3 IC 95% da diferença [-6.48, 7.50]

Pareado

- ganho em cada cisto ⇒ depois antes
- 2 ganho médio dos cistos = 0.50g (SEM 0.23g).
- 3 IC 95% da diferença [-0.03, 1.04]

Comparando médias de 2 grupos

Felipe Figueiredo

de Student

médias

Participantes: pareados ou não pareados?

Comparando médias de 2 arupos

Felipe Figueiredo

Participantes: pareados ou não pareados?

A escolha entre grupos pareados e grupos não pareados é estratégica (planejamento do estudo), e não uma questão de "preferência".

Sumário

- A distribuição t de Student
 - A distribuição t de Student
- Intervalo de Confiança da diferença entre duas médias
 - Interpretação
 - Participantes: pareados ou não pareados?
- 3 Aprofundamento
 - Aprofundamento

Comparando médias de 2 grupos

> Felipe Figueiredo

t de Studen

nédias

Aprofundament Aprofundamento

Leitura obrigatória

Capítulo 5. Seção: A distribuição t

- Capítulo 7: Pular as seções
 - Cálculo do IC de grupos independentes
 - Cálculo do IC de grupos pareados

Comparando médias de 2 grupos

> Felipe Figueiredo

t de Student

IC diferença

Aprofundamento

Leitura recomendada

- ICH E10 Choice of Control Group in Clinical Trials
 - Seção 2.1 (Placebo Control)
 - Cap. 3 (CHOOSING THE CONCURRENT CONTROL GROUP)

http://www.ich.org (este link é clicável)