3.46 PHOTONIC MATERIALS AND DEVICES

Lecture 2: Optical Materials Designs Part 2

Lecture

Notes

Materials Property Design

"Property Maps"

Meoser-Pearson, *Acta Chrystallographica*, **12**, 1015 (1959).

2-dimensional: \overline{n} vs. $\Delta \chi$

Average principal quantum number (\bar{n}) vs. electronegativity difference $(\Delta \chi)$

Villaro, J., "Less Common Metals," **92**, 215 (1983).

3-dimensional: r_{AB} vs. N_{be} vs. $\Delta \chi$

Orbital radii vs. number of valence electrons vs. electronegativity difference

CN: Coordination Number

ZB: Zincblende W: Wurtzite

Structures of Simple Ionic Crystals					
Minimum	Coordination	Coordination			
Radius	Number	Symmetry			
Ratio					
0	2	linear			
0.155	3	Planar			
0.225	4	Tetrahedral			
0.414	6	Octahedral			
0.732	8	cubic			
1.000	12				

Materials (semiconductors)

Elemental: Si, Ge

Binary compound: GaAs, InP Ternary alloy: Al_xGa_{1-x}As

Quarternary alloy: In_{1-x}Ga_xAs_{1-y}P_y

Silicon (indirect)

Notes

Notes

Energy band: a set of closely spaced energy levels of atoms in solid that represent the <u>entire system</u>.

Valence band: highest filled band.

Conduction band: lowest empty band.

Absorption can create e⁻h⁺

e⁻h⁺ Recombination can create a photon

Notes

"Bandgap Wavelength"

Free space wavelength of photon energy E_g

$$\lambda_g = \frac{hc_0}{E_g}$$

$$\vec{p} = \hbar \vec{k}$$

Effective mass

@ band extrema (conduction, valence)

$$\mathsf{E} = \mathsf{E}_{\mathsf{c}} + \frac{\hbar^2 k^2}{2m_c^*}$$

$$\mathsf{E} = \mathsf{E}_{\mathsf{v}} - \frac{\hbar^2 k^2}{2m_c^*}$$

$$m_0$$
 = rest mass of e⁻¹ = 9.1 x 10⁻³¹ kg

Average value m* for Si, GaAs

	$\underline{m_c^*}$	$\underline{m_{v}^{*}}$
	m_0	m_0
Si	0.33	0.5
GaAs	0.07	0.5

Notes

Direct gap (Si)

No change in momentum for CB ≒ VB electronic transition.

Indirect gap (Si)

Band extrema at different \vec{k} Change in \vec{k} , \vec{P} required

Compound semiconductors

III-V compounds

f_i = fractional ionic character

CE = cohesive energy = $\Delta G_{\text{sublimation}}$ (neutral atom, STP)

 $\frac{\mathbf{f_i}}{CE}$ CE (kcal/mole)

£		N	Р	As	Sb
f _i	В	.256			
ı		-293			
	Al		.307	.274	
			-170	-157	
	Ga		.327	.310	.261
			-152	-135	-118
	In		.421	.357	.321
\downarrow			-133	-126	-108
					†

- CE

Compound	Lattice Constant (Å)	Density (gm cm ⁻⁸)	Melting Point (K)	Dobye Temperature ^(A) (K)	10 ⁴ /℃	Thermal ^(a,b) Conductivity (Wenr ¹ K ¹)
AIP	5.467	2.40	2823	588	4.5	0.9
AIAs	5.660	3.70	2013	417	4.9	0.8
AISb	6.136	4.26	1338	292	4.0	0.57
GaP	5.4512	4.138	1740	456	4.5	0.77
GaAs	5.6532	5.3161	1513	344	6.86	0.46
GaSb	6.0959	5.6137	985	266	7.75	0.39
InP	5.8687	4.81	1335	321	4.75	0.68
InAs	6.0583	5.667	1215	249	4.52	0.273
InSb	6.4794	5.7747	800	203	5.37	0.166

Elastic Compliances in Units of 10⁻¹²cm² dyne¹

Compound	S ₁₁	S ₁₂	S ₄₄
AIP	1.090	-0.350	1.630
AIAs	1.070	-0.320	1.840
AISb	1.696	-0.562	2.453
G _a P	0.973	-0.298	1.419
G _a A _s	1.176	-0.365	1.684
GaSb	1.582	-0.495	2.314
InP	1.650	-0.594	2.170
InAs	1.945	-0.685	2.525
InSb	2.443	-0.863	3.311

Deformation Potential Constants

	a(0	b./->0	-1/->0	
Compound	Direct gap	Indirect gap	b(eV)	d(eV)
AIP AIAs				
AISb	-5.9	2.2	-1.35	-4.3
GaP GaAs	-9.6 -9.77		-1.65 -1.70	-4.5 -4.55
GaSb	-8.28		-2.0	4.7
InP	-6.35		-2.0	-5.0
InAs InSb	-6.0 -7.7		-1.8 -2.0	-3.6 -4.9

Lecture Notes

 $\underline{\text{SiO}_2}$ $E_g = 10.2\text{eV}$

Main contribution to n for silicates is the polarizability of the oxygen.

 $\chi \uparrow$ as \overline{n} (cation) \uparrow e.g., PbO

(flint glass) is yellow (absorbs in violet)

anions are more polarizable than cations

F < OH < Cl < O < S < Se < Te

BeF₂ for UV transmission

Fluorozirconates for long λ

ZrF₄, BaF₂, LaF₂

Long λ loss < SiO₂