Conceito

A noção de continuidade em Matemática é a que utilizamos no dia a dia, isto é, onde não há interrupção ou, então, onde não existem partes separadas umas das outras.

Nos parágrafos anteriores, estudamos o comportamento de uma função y=f(x) para valores de x próximos de um ponto a.

Pode acontecer que o limite de f(x) quando x tende a a exista, mas que f não seja definida em a; ou ainda, pode acontecer que o limite seja diferente de f(a).

Estudaremos, agora, uma classe especial de funções, onde se verifica que:

$$\lim_{x \to a} f(x) = f(a).$$

Definição

Seja f uma função e $a \in Dom(f)$, onde Dom(f) é um intervalo aberto ou uma reunião de intervalos abertos. f é dita **contínua em** a, se:

- 1. $\lim_{x \to a} f(x)$ existe.
- $2. \lim_{x \to a} f(x) = f(a).$

Se f não verifica qualquer das condições da definição, f é dita ${\bf descontínua}$ em a.

Em outras palavras, uma função f é contínua em um número a se

$$\lim_{x\to a} f(x) = f(a).$$

Uma função f é contínua em um número a se

$$\lim_{x\to a} f(x) = f(a).$$

Veja graficamente exemplos de funções que não são contínuas em $\it c$

Intuitivamente, a continuidade de uma função em um ponto indica que o gráfico da função não apresenta saltos neste ponto.

Uma função f é contínua em um número a se

$$\lim_{x\to a} f(x) = f(a).$$

Para verificar se uma função é contínua, seguimos três passos:

- 1 Verificar se f(a) está definida (isto é, a está no domínio de f).
- 2 Calcular $\lim_{x\to a} f(x)$.
- 3 Verificar se $\lim_{x \to a} f(x) = f(a)$.

Continuidade à Direita e à Esquerda

Definição

Uma função f é contínua à direita em um número a se

$$\lim_{x \to a^+} f(x) = f(a)$$

e f écontínua à esquerda em a se

$$\lim_{x \to a^{-}} f(x) = f(a).$$

Definição - Continuidade em um intervalo

Uma função f é **contínua em um intervalo** se for contínua em todos os números do intervalo.

Definicão

Uma função f é contínua em $A \subset \mathbb{R}$ se f é contínua em cada ponto de A. Se f é contínua em A e $B \subset A$, então f é contínua em B.

Teorema

Se f e g são continuas em a e se c for uma constante, então as seguintes funções também são contínuas em a

- ▶ f + g
- f − g
- ▶ cf
- $\qquad \qquad \bullet \quad \frac{\widetilde{f}}{g} \quad \text{se} \quad g(a) \neq 0$

Teorema

Os seguintes tipos de funções são contínuas para todo o número de seus domínios

- polinômios
- funções racionais
- funções raízes
- funções trigonométricas
- funções trigonométricas inversas
- funções exponenciais
- funções logarítmicas

Teoremas

▶ Seja f contínua em b e $\lim_{x \to a} g(x) = b$, então

$$\lim_{x\to a} f(g(x)) = f\left(\lim_{x\to a} g(x)\right).$$

Se g for contínua em a e f em g(a), então a função composta $f \circ g$ dada por $(f \circ g)(x) = f(g(x))$ é contínua em a.

Exemplo Considere:
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{se } x \neq 1\\ 1 & \text{se } x = 1. \end{cases}$$

Note que $Dom(f) = \mathbb{R}$, mas f não é contínua em 1.

De fato,
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} (x+1) = 2 \neq f(1)$$
.

Observe que se redefinirmos a função, fazendo f(1)=2, a função será contínua em todos os pontos de \mathbb{R} .

Exemplo $f(x) = \frac{x^2 - 1}{x - 1}$ é uma função contínua em todo ponto de seu domínio.

De fato
$$f(x) = x + 1$$
 se $x \neq 1$ e $\lim_{x \to x_0} f(x) = x_0 + 1 = f(x_0)$.

Exemplo Seja:
$$u_c(x) = \begin{cases} 1 & \text{se } x \ge c \\ 0 & \text{se } x < c. \end{cases}$$

A função degrau unitário $y=u_c(x)$ não é contínua em c, pois não existe $\lim_{x\to c}u_c(x)$

Função degrau unitário.

Exemplo

A seguinte função é contínua em \mathbb{R} :

$$f(x) = \begin{cases} x \operatorname{sen}\left(\frac{1}{x}\right) & \text{se } x \neq 0\\ 0 & \text{se } x = 0. \end{cases}$$

Exemplo Seja
$$f(x) = \begin{cases} x-1, \text{ se } x \le 3\\ 4, \text{ se } x > 3 \end{cases}$$
.

A função f(x) é descontínua no ponto x=3, pois, $\lim_{x\to 3^-} f(x) = \lim_{x\to 3^-} (x-1) = 3-1 = 2 \text{ e} \lim_{x\to 3^+} f(x) = \lim_{x\to 3^+} 4 = 4 \text{ , logo}$ não existe $\lim_{x\to 3} f(x)$.

Observe que f(3) = 3 - 1 = 2, mas isto não é suficiente para a continuidade de f(x). Seria necessário

que se tivesse
$$\lim_{x \to 3} f(x) = f(3)$$

o que jamais poderia ocorrer,

visto que não existe $\lim_{x\to 3} f(x)$.

Exemplo Onde cada uma das seguintes funções é descontínua?

(a)
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$
 (b) $f(x) = \begin{cases} \frac{1}{x^2} & \text{se } x \neq 0 \\ 1 & \text{se } x = 0 \end{cases}$

SOLUÇÃO

(a) Observe que f(2) não está definida; logo, f é descontínua em 2. Mais à frente veremos por que f é contínua em todos os demais números.

(b) Aqui f(0) = 1 está definida, mas

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1}{x^2} = \infty.$$

Logo f é descontínua em 0.

(c)
$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{se } x \neq 2 \\ 1 & \text{se } x = 2 \end{cases}$$

SOLUÇÃO

Aqui f(2) = 1 está definida e

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^2 - x - 2}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 1)}{x - 2} = \lim_{x \to 2} (x + 1) = 3$$

existe. Porém

$$\lim_{x \to 2} (x) \neq f(2)$$

logo, f não é contínua em 2.

Exemplo

Calcule
$$\lim_{x \to \pi} \frac{\sin x}{2 + \cos x}$$
.

SOLUÇÃO

A função $y = \sec x$ é contínua. A função no denominador, $y = 2 + \cos x$, é a soma de duas funções contínuas e, portanto, é contínua. Observe que esta função nunca é 0, pois $\cos x \ge -1$ para todo x e assim $2 + \cos x > 0$ em toda parte. Logo, a razão

$$f(x) = \frac{\sin x}{2 + \cos x}$$

é sempre contínua. Portanto, pela definição de função contínua,

$$\lim_{x \to \pi} \frac{\sin x}{2 + \cos x} = \lim_{x \to \pi} f(x) = f(\pi) = \frac{\sin \pi}{2 + \cos \pi} = \frac{0}{2 - 1} = 0$$

П

Exemplo As funções $f(x) = x^2$ e g(x) = 3x são contínuas para todo número real x, logo, $(f + g)(x) = x^2 + 3x$ é contínua para todo número real x.

Exemplo As funções f(x) = x + 1 e $g(x) = \cos x$ são contínuas para todo número real x, logo, $(f \times g)(x) = (x + 1) \times \cos x$ é contínua para todo número real x.

Exemplo As funções $f(x) = x^3$ e $g(x) = x^2 + 1$ são contínuas para todo número real x, logo, $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{x^3}{x^2 + 1}$ é contínua para todo número real x.

Exemplo Afunção $f(x) = 2x^5 - x^3 + 3x^2 - 1$ é contínua para todo número real x.

Exemplo As funções f(x) = 2x + 1 e g(x) = 2x são contínuas para todo número real x, logo $(f \circ g)(x) = f(g(x)) = f(2 x) = 4x + 1$, isto é, $(f \circ g)(x) = 4x + 1$ é contínua para todo número real x.

(□▶ ◀♬▶ ◀불▶ ◀불▶ 를 ∽)٩(

Exemplos

[1] A função $g(x)=e^x$ é contínua em $\mathbb R$; logo, se existe $\lim_{x \to a} f(x)$, então:

$$\lim_{x \to a} e^{f(x)} = e^{\lim_{x \to a} f(x)}.$$

[2] As funções g(x) = sen(x) e h(x) = cos(x) são funções contínuas em \mathbb{R} ; logo, se existe $\lim_{x\to a} f(x)$, então:

$$\lim_{x\to a} sen\big(f(x)\big) = sen\big(\lim_{x\to a} f(x)\big); \quad \lim_{x\to a} cos\big(f(x)\big) = cos\big(\lim_{x\to a} f(x)\big).$$

[3] A função g(x)=ln(x) é contínua em $(0,+\infty)$; logo, se $\lim_{x\to a}f(x)\in (0,+\infty)$, então:

$$\lim_{x \to a} \ln(f(x)) = \ln(\lim_{x \to a} f(x)).$$

$$[4] \lim_{x \to 1} ln\left(\frac{x^5 + x^3 + 1}{x^2 + 1}\right) = ln\left(\lim_{x \to 1} \frac{x^5 + x^3 + 1}{x^2 + 1}\right) = ln\left(\frac{3}{2}\right).$$

$$[5] \lim_{x\to\frac{\pi}{2}} \ln\bigl(sen(x)\bigr) = \ln\bigl(\lim_{x\to\frac{\pi}{2}} sen(x)\bigr) = \ln\bigl(sen\bigl(\frac{\pi}{2}\bigr)\bigr) = \ln(1) = 0.$$

[6]
$$\lim_{x \to 1} e^{\frac{x^2 - 1}{x + 1}} = e^{\lim_{x \to 1} (x - 1)} = e^0 = 1.$$

[7]
$$\lim_{x\to 0} \cos(x^2 + \sin(x) + \pi) = \cos(\pi) = -1.$$

Teorema do Valor Intermediário

Se $f:[a,b] \longrightarrow \mathbb{R}$ é uma contínua em [a,b] e f(a) < d < f(b), então existe um número $c \in (a,b)$ tal que f(c) = d.

Exemplo

Seja $f: [-1,1] \to \mathbb{R}$ tal que $f(x) = x^3 - cos(\pi x) + 1$; então f assume o valor $\frac{3}{2}$. De fato f é contínua e $1 = f(-1) < \frac{3}{2} < f(1) = 3$; logo, do teorema, temos que

existe
$$c \in (-1,1)$$
 tal que $f(c) = \frac{3}{2}$.

Corolário

Seja $f:[a,b]\to\mathbb{R}$ uma função contínua em [a,b].

Se f(a) e f(b) tem sinais opostos, ou seja f(a) f(b) < 0, então existe $c \in (a,b)$ tal que f(c) = 0.

Exemplo A equação $x^3 - 4x + 2 = 0$ possui 3 raízes reais distintas.

De fato, a função $f(x)=x^3-4\,x+2$ é contínua em $\mathbb R$; logo, é contínua em qualquer intervalo fechado.

Considere:

x_1	x_2	$f(x_1) \cdot f(x_2)$	Conclusão
-3	-2	-26	Existe $c_1 \in (-3, -2)$ tal que $f(c_1) = 0$.
0	1	-2	Existe $c_1 \in (0, 1)$ tal que $f(c_2) = 0$.
1	2	-2	Existe $c_3 \in (1,2)$ tal que $f(c_3) = 0$.

Exercício

Mostre que existe uma raiz da equação

$$4x^3 - 6x^2 + 3x - 2 = 0$$

entre 1 e 2.

Solução:

Exercício

Mostre que existe uma raiz da equação

$$4x^3 - 6x^2 + 3x - 2 = 0$$

entre 1 e 2.

Solução:

Temos que f é contínua, pois é um polinômio. Temos ainda que:

$$f(1) = 4 - 6 + 3 - 2 = -1 < 0$$

e

$$f(2) = 32 - 24 + 6 - 2 = 12 > 0$$

Logo,

$$f(1) < 0 < f(2)$$
.

Portanto, existe $c \in (1,2)$, tal que f(c) = 0, ou seja, existe $c \in (1,2)$, que é raiz da equação acima.

O conteúdo da primeira prova

é até aqui!!!