ĐỀ ÔN TẬP THI KẾT THÚC MÔN HỌC

MÔN ĐSTT

Câu 1. Trong không gian \mathbb{R}^4 , Cho các vécto $e_1 = (1, 1, 1, 1), e_2 = (2, 3, -1, 0)$ và $e_3 = (-1, -1, 1, 1)$. Điều kiện để vécto $x = (a, b, c, d) \in \langle e_1, e_2, e_3 \rangle$ là

A.
$$a - b - c + d = 0$$
.

B.
$$a + b - c + d = 0$$
.

A.
$$a - b - c + d = 0$$
. **B.** $a + b - c + d = 0$. **C.** $a - b - c - d = 0$.

D.
$$a - b + c + d = 0$$
.

Câu 2. Axtt $f: \mathbb{R}^3 \to \mathbb{R}^3$, Tập $E = \{e_1, e_2, e_3\}$ là một cơ sở của \mathbb{R}^3 . Cho $f(e_1) = (1, 2, 1), f(e_2) = (1, 2, 1)$ $(1,0,1), f(e_3) = (1,1,0) \text{ và } [(x,y,z)]_E = (z y-z x+y)^T.$ Ma trận biểu diễn của f trong cơ sở E là,

$$\mathbf{A.} \begin{pmatrix} 1 & 1 & 0 \\ 3 & 1 & 2 \\ 1 & -1 & 1 \end{pmatrix}.$$

$$\mathbf{B.} \begin{pmatrix} 3 & 1 & 2 \\ 1 & -1 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

$$\mathbf{C.} \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 3 & 1 & 2 \end{pmatrix}.$$

$$\mathbf{A.} \begin{pmatrix} 1 & 1 & 0 \\ 3 & 1 & 2 \\ 1 & -1 & 1 \end{pmatrix}. \qquad \mathbf{B.} \begin{pmatrix} 3 & 1 & 2 \\ 1 & -1 & 1 \\ 1 & 1 & 0 \end{pmatrix}. \qquad \mathbf{C.} \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 3 & 1 & 2 \end{pmatrix}. \qquad \mathbf{D.} \begin{pmatrix} 3 & 1 & 2 \\ -1 & 1 & -2 \\ 1 & 1 & 0 \end{pmatrix}.$$

Câu 3. Trong không gian \mathbb{R}^3 , Cho các vécto $e_1 = (1, 2, -3), e_2 = (2, 5, -1), e_3 = (-1, -3, -2)$. Chọn phát biểu SAI.

$$\mathbf{A} \cdot e_3$$
 là thtt của e_1, e_2 .

B. Tập
$$\{e_1, e_2, e_3\}$$
 đltt.

C. Hạng của
$$\{e_1, e_2, e_3\} \ge 2$$
.

D.
$$e_1$$
 và e_2 đltt.

Câu 4. Với giá trị nào của m thì hai ma trận $A = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ và $B = \begin{pmatrix} -2 & -2 & -2 \\ 2 & 3 & m \\ 4 & 2 & 4 \end{pmatrix}$ đồng dạng với cùng

môt ma trân chéo.

$$\mathbf{A.} \ m \neq 2$$
.

B.
$$m = 2$$
.

C.
$$m \neq -2$$
. **D.** $m = -2$.

D.
$$m = -2$$

Câu 5. Cho ma trận $A = \begin{pmatrix} -2 & -2 \\ -2 & 1 \end{pmatrix}$, nếu $S^T A S$ là ma trận chéo thì S là

A.
$$S = \begin{pmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{pmatrix}$$
. **B.** $S = \begin{pmatrix} -\frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$. **C.** $S = \begin{pmatrix} -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$. **D.** $S = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$, .

B.
$$S = \begin{pmatrix} -\frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$$

$$\mathbf{C.} \ S = \begin{pmatrix} -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}.$$

D.
$$S = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$$

Câu 6. Cho dạng toàn phương $f(x_1, x_2, x_3) = 5x_1^2 + x_2^2 + 5x_3^2 + 4x_1x_2 - 8x_1x_3 - 4x_2x_3$. Dạng toàn phương $f(x_1, x_2, x_3) = 5x_1^2 + x_2^2 + 5x_3^2 + 4x_1x_2 - 8x_1x_3 - 4x_2x_3$.

A. không các định dấu . **B.** xác định âm.

Câu 7. Cho axtt $f: \mathbb{R}^3 \to \mathbb{R}^3$ được xác định bởi f(x, y, z) = (x + y + z, x + y + z, x + y + z). Tìm f^{2021} ,

A. Các câu kia sai . **B.** $3^{2022} f$.

B.
$$3^{2022} f$$

$$\mathbf{C.} \ 3^{2021} f.$$

C.
$$3^{2021}f$$
. **D.** $3^{2020}f$.

Câu 8. Trong không gian \mathbb{R}^3 , Cho các vécto $e_1 = (1, 0, -3), e_2 = (n, 1, -1), e_3 = (-1, -3, m)$. Tìm tất cả các giá trị m, n để hạng của tập $\{e_1, e_2, e_3\} > 2$

A.
$$m - 9n \neq 0$$
.

B.
$$m + 9n \ge 0$$
.

C.
$$m - 9n \le 0$$

C.
$$m - 9n \le 0$$
. **D.** $m + 9n \ne 0$.

Câu 9. Trong $P_2[x]$, với tích vô hướng $\langle p, q \rangle = \int_{-1}^{1} p(x)q(x)dx$. Chọn Khẳng định SAI **A.** $\forall m, n \in \mathbb{N}, x^{2m}$ và x^{2n+1} trực giao, . **B.** $2x^2 + 3$ và x trực giao, . **C.** $\forall m \in \mathbb{N}, x^{2m}$ và x^{2m+1} trực giao, . **D.** $\forall m \in \mathbb{N}, x^{2m}$ và $-x^{2m+1}$ trực giao

B.
$$2x^2 + 3$$
 và x trực giao,

C.
$$\forall m \in \mathbb{N}, x^{2m} \text{ và } x^{2m+1} \text{ trực giao,}$$

D.
$$\forall m \in \mathbb{N}, x^{2m} \text{ và } -x^{2m+1} \text{ trực giao,.}$$

Câu 10. Trong không gian \mathbb{R}^4 , Cho các vécto $e_1 = (1, 1, 1, 1), e_2 = (2, 3, -1, 0), e_3 = (-1, -1, 1, 1)$ và $e_4 = (1, -2, 1, 1)$. Điều kiện để vécto x = (a, b, c, d) là thtt của các e_1, e_2, e_3, e_4 là

A.
$$\forall x = (a, b, c, d)$$
.

B
$$a - b - c - d = 0$$

B.
$$a - b - c - d = 0$$
. **C.** $a - b - c + d = 0$. **D.** $a - b + c + d = 0$.

$$\mathbf{D} \ a - b + c + d = 0$$

TƯ LUÂN

Câu 11. Tìm ràng buộc của $m, n \in \mathbf{R}$ để ma trận $A = \begin{pmatrix} m^2 - n^2 + 2mn + m & m+n \\ m-n & n^2 + m^2 - 2mn + n \end{pmatrix}$ đồng dạng với ma trận chéo có hai phần tử trên đường chéo chính khác nhau.

Câu 12. Cho ma trận $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ và axtt $f : \mathbf{R}^2 \to \mathbf{R}^2$ thoả f(x) = A.x. Tìm ma trận của axtt ftrong cơ sở $E = \{e_1 = (1 \ 3)^T, e_2 = (2 \ 5)^T\}.$

ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 0001

1. A 2. C 3. B 4. B 5. D 6. C 7. D 8. D 9. D 10. A