Lecture 07.03.18

Today

- Database modeling
- E/R (entity/relationship) diagrams
- Modeling example
- Normalization

Covers chapter 7 and 8.

Purpose of database modeling

- Simpler representation of a database
- Makes planing and designing databases easier
- Makes explaining the database easier

 Entity/relationship (E/R) diagrams is a visual tool to design and explore databases with

E/R diagram example

From model to database

- Conceptual design
 - Technology independent (excel,database,python)
 - E/R (Entity/Relationship) is popular
- Logical design
 - DBMS independent
- Physical design
 - DBMS dependent
 - Contains all details about implementation (SQL code)

Table representation from before

Entities

One or more of these attributes can be a unique identifier for each entity (row)

Table representation

Persons

ID	Name	location*	Nation
1	Frank	Texas	USA
2	Ola	Oslo	Norway
3	Jens	Ås	Norway

Name
Location*
Nation

Persons

Each entity (row) of the table belongs to the Entity type

Entity type refers to the table as a whole

Relationship notation

A simple line symbolizes that there is a relationship

Foreign keys are the cause of the relationship

Relationship type (cardinality)

Solved by asking the question:

How many times can an entity exist in a table it is related to?

This example is called a one to many relationship

A location in the persons table can only exist **once** in the postal codes table

Relationship type (cardinality)

One to many (1:N)

Persons

ID

Name

Location*

Nation

There are 3 relationship types (Cardinalities)

One to one (1:1)

EmployeeDepartmentIDLeader*NameName

Many to many (M:N)

Minimum/maximum cardinality

Minimum/maximum cardinality

How to read the relationships with minimum/maximum cardinality

An employee can be a leader of minimum zero and maximum one department

A leader can be minimum one and maximum one employee

Minimum/maximum cardinality

If leader isn't primary key or unique and can be NULL

An employee can be the leader of zero, one or many departments

A department can have zero or one leader

Many to many

- When making the actual physical database, there is no such thing as a many to many relation.
- They are broken up into two or more one to many (1:N) relations

Identifying and non-identifying

- Identifying relations
 - Foreign key is part of the primary key
 - Table cannot exist without the relation
- Non-identifying
 - Foreign key is not part of the primary key
 - Table can exist without relation
- Weak entity
 - An entity dependent on a identifying relationship is called a weak entity

Solid line

Dotted line

Identifying

Sales cannot exist without either the product or the seller

Non-identifying

A person can exists without a postal code

This is only the case if the postal code can be NULL

Relations

- In general
 - Foreign keys decide if there is a relation
 - Primary key/Unique and NULLable decides which relationship (cardinality) there is
 - Read the relation both ways
 - Split many to many

Cardinality confusion

 Cardinality is a term also used for column "Uniqueness"

Person

ID

Name

gender

ID is completely unique – High cardinality

Name is somewhat unique – Medium cardinality

Gender is not very unique – Low cardinality

Entity or attribute?

Employee

ID

Name

Department

Some attributes can be stored as entities instead

Better if we want to store more information about the department

Extra clearity

Person has poscode

Can add descriptive text for the relations

Employee is leader of department

Common modelling problems

- Saving historical data
 - Leads to a many to many (M:N) relation

From model to database

- Modeling tools can generate physical design from logical/conceptual design
 - Identifiers become primary keys
 - Relationships become foreign keys
 - Many to many relationships are split

Modeling using Workbench

- Lets recreate the University database in workbench
 - Note that workbench is not a true E/R modeling tool as it jumps directly to the physical representation

University

- Base tables (entity types)
 - Student
 - Instructor
 - Department
 - Course
 - Location
 - section

- Derived tables (entity types)
 - qualified
 - enrollment
 - prerequisite

Workbench view

Try yourself

Normalization

- We want to avoid redundancy
 - Save space
 - Reduce inconsitency
- Normalization is a set of states and rules to achive those states

Normalization

- There are four normal forms
 - 0. normal form (kinda)
 - 1. normal form
 - 2. normal form
 - 3. normal form

The book mentions 2 more, but they are not necessary

- Contains non atomic values
 - Columns that contain more than one value or multiple columns that store the same type of values

ID	Name	Phone number
1	Frank	99299399;44033392
2	Ola	4432;991;1142
3	Jens	777;886

ID	Name	Phone number 1	Phone 2
1	Frank	99299399	4430202
2	Ola	4432	1131342
3	Jens	777	1102944

- Does not contain non atomic values
 - Achieved by decomposing the table

Peo	ple	Phone numbers		bers
ID	Name		ID*	Phone number
1	Frank		1	99299399
2	Ola		1	44033392
3	Jens		2	777

- On the 1. normal form
- Does not have partial dependencies

Partial	dependenc	y
	-	-

Ordernumber	Item Number	Date	Description
1	12	14.02	Hat
2	13	12.02	Cat
3	19	18.02	Fat

Partial dependency:
Part of the primary key
determines a column in the
table

Item number determines description

No transitive dependencies

ID	name	Zip code	Zip adress
1	Ola	1442	Oslo
2	Frank	1112	Ås
3	James	7764	Moss