From Big Data to Smart Decisions: Using Connected Vehicle Data to Power Regional Transportation System

Yongzhao Peng, Rook Bowman, Wang Zhang, Edward Brown

Maricopa Association of Governments (MAG, Phoenix Region MPO) Sep 15, 2025

Background

- What is Connected Vehicle Data(CVD)
- CVD trajectory data in high frequency (every 3-second)
- Reports Timestamp, Latitude, Longitude, Speed, Heading

ARIZONA

- About 5% of traffic (passenger vehicle) in the MAG region
- Anonymous, privacy protected, consent obtained
- MAG experience of using CVD data
- Began to use CVD data since 2020
- Evaluated and worked with various CVD datasets and providers
- Developed many use cases in system measuring and planning
- Using several analytics/solutions developed from CVD data
- Massive value and benefit in regional transportation system measurement and planning
- High-resolution spatial-temporal measurement: queuing, harsh braking, control delay, speeding, O/D, etc.

Use Case 1: Virtual Detector: Measuring HOV Lane Speed Based on CVD

Data Missing

Due to Detector Malfunction/Construction

Virtual Detector Concept Demo

Speed Measurement Example

- 1. Remove outliers based on heading and speed
- 2. Calculate average speed using trajectory speed by time/ segment
- 3. Compare with ground truth speed
- 4. QC with sample size

Use Case 1: Virtual Detector: Measuring HOV Lane Speed Based On CVD

Remove Outliers(Z-score)

Det	Location	Route_Direction	date	time_bin	CV_speed	FMS_speed
2	I10 at 83rd Ave EB	I-10 EB	10/8/2024	00:00:00	80	80
2	I10 at 83rd Ave EB	I-10 EB	10/8/2024	00:15:00	79	78
2	I10 at 83rd Ave EB	I-10 EB	10/8/2024	00:30:00	73	79
2	I10 at 83rd Ave EB	I-10 EB	10/8/2024	00:45:00	79	80
2	I10 at 83rd Ave EB	I-10 EB	10/8/2024	01:00:00	80	80
2	I10 at 83rd Ave EB	I-10 EB	10/8/2024	01:15:00	78	80
2	I10 at 83rd Ave EB	I-10 EB	10/8/2024	01:30:00	77	83
2	I10 at 83rd Ave EB	I-10 EB	10/8/2024	01:45:00	78	80
2	I10 at 83rd Ave EB	I-10 EB	10/8/2024	02:00:00	76	81
2	I10 at 83rd Ave EB	I-10 EB	10/8/2024	02:15:00	76	82
2	I10 at 83rd Ave EB	I-10 EB	10/8/2024	02:30:00	78	82
2	I10 at 83rd Ave EB	I-10 EB	10/8/2024	02:45:00	80	81

Consistent result to the ground truth

Use Case 2: Freeway Bottleneck Analysis

High frequency, Speed Differential, Queue Jump based on CVD

Traditional

- Long segment
- Multiple lanes
- Aggregated speed

- Waypoint speed by every 3second
- Lane specific speed measurement
- Queue jump analysis

Use Case 2: Freeway Bottleneck Analysis

- Example #1 (left): Analyzing harsh braking patterns (extracted from CVD) to help pinpoint and identify congestion occurrence
- Example #2 (below): Scanning region-wide freeway network to detect dangerous driving zones by harsh braking measured events

Use Case 3: Arterial Analysis

New way to assess arterial operation/planning

Queue analysis: Speed <=5mph

MARICOPA

GOVERNMENTS

THANK YOU

Yongzhao Peng ypeng@azmag.gov

