6-ON THE MANAGEMENT OF VIRTUAL MACHINES FOR CLOUD INFRASTRUCTURES

Cloud Computing
Principles and Paradigms

Presented by Majid Hajibaba

laaS Anatomy

- laaS provider characteristic
 - 1. on-demand provisioning of computational resources
 - 2. Virtualization technologies to lease resources
 - 3. Provide public and simple remote interfaces to manage resources
 - 4. use a pay-as-you-go cost model
 - 5. "infinite capacity" or "unlimited elasticity"
- Private and Public difference
- Role of Virtualization
 - Key of these characteristic
 - Allocating resources efficiently
 - Taking into account an organization's goals
 - Reacting to changes in the physical infrastructure

laaS Anatomy

- Problems In VM Solutions
 - Distributed management of virtual machines
 - Reservation-based provisioning of virtualized resource
 - Provisioning to meet SLA commitments
- RESERVOIR project
 - Resources and Services Virtualization without Barriers
 - Addressed above problems

November

DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURE

Distributed Management

- Manage the virtual infrastructures themselves
- Efficiently selecting or scheduling computational resources
- VM-based resource scheduling
 - Static approach
 - Efficiency approach
- Solution
 - Virtual Infrastructure Manager
 - Managing VMs in a pool of distributed physical resources
- Case Study
 - OpenNebula

VM Model and Life Cycle (OpenNebula)

- VM model attributes
 - A capacity in terms of memory and CPU
 - A set of NICs attached to one or more virtual networks
 - A set of disk images
 - A state file (optional) or recovery file

Life Cycle

- Resource Selection
- Resource Preparation
 - Contextualization
- VM Creation
- VM Migration
- VM Termination

VM Management

(OpenNebula)

- Management Areas
 - Virtualization
 - physical resource
 - Image management
 - Networking

Virtualization

- How?
 - Interfacing with the physical resource virtualization technology (hypervisors like Xen, KVM)
- More detail
 - Pluggable drivers
 - Decouple the managing process from the underlying technology
 - High-level command
 - start VM, stop VM
 - Driver-based architecture
 - Adding support VIMs by writing drivers

Image Management

- How?
 - Transferring the VM images from an image repository to the selected resource and by creating on-the-fly temporary images
- More detail
 - What is image?
 - Virtual disk contains the OS and other additional software
 - Image management model

Image Management Model

Presented by Majid Hajibaba

Networking

- How?
 - creating local area networks (LAN) to interconnect the VMs and tracking the MAC addresses leased in each network.
- More detail
 - virtual application network (VAN)
 - the primary link between VMs
 - OpenNebula dynamically creates VANs
 - physical cluster
 - set of hosts with one or more network interfaces
 - each of them connected to a different physical network
 - Networking Model

Networking Model (OpenNebula)

SCHEDULING TECHNIQUES FOR ADVANCE RESERVATION OF CAPACITY

Advance Reservation

- Demand for resources is known beforehand
- Example
 - an experiment depending on some complex piece of equipment is going to run from 2 pm to 4 pm
- Commercial Providers
 - Infinite capacity
- Private clouds
 - Finite capacity
 - Reservation lead resource to be underutilized
- Haizea
 - Lease manager
 - Scheduling backend by openNebula to support provisioning models

Existing Approach

- Preemption
 - Checkpointing
 - Checkpointable applications
 - OS-level checkpointing
- VARQ
 - Virtual advance reservation for queues
 - Queuing based approach
 - Wait time prediction
- Planning based approach
 - Immediately planned by making a reservation

Presented by Majid Hajibaba

Reservation with VMs

- Challenges
 - Preparation overhead
 - Runtime overhead
- Haizea
 - Leases
 - Advance reservation
 - Best-effort
 - Immediate

Haizea Lease Scheduling

- Backfilling
- How to address preparation and runtime Overhead?
 - Disk image transfer before start
 - Caching
- How does best-effort lease?
 - Scheduling using queue
 - Backfilling algorithm
 - Depend on required disk image
- VM suspension/resumption
- How does advance reservation lease?
 - EDF algorithm for preparation overhead
 - Without preemption for Runtime overhead
- Pluggable policy
- Combine best-effort and advance reservation
 - Overcome utilization problems

CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS

SLA Commitment

- Cloud consumer vs. End users
- SLA between Service owner and end user
 - High-Level SLA
- SLA between Cloud provider and Service owner
- Cloud provider task
 - Elasticity on demand
- Problem
 - Application specific metric for resource allocation
- Solution
 - Elasticity of the application should be contracted and formalized as part of capacity availability SLA between the cloud provider and service owner (RESERVOIR)
- Research issues

Infrastructure SLAs

- Main approaches:
 - No SLAs
 - Premises
 - Spare capacity
 - QoS-insensitive
 - Suitable for best-effort workloads
 - Probabilistic SLAs
 - Availability percentile
 - Less stringent commitment
 - Lower availability = cheaper cost
 - Suitable Small and medium business
 - Deterministic SLAs
 - 100% availability percentile
 - Most stringent guarantee
 - Suitable for Critical services

Elasticity rules

- Definition
 - Scaling and de-scaling policies
- Motivation
 - Pay-as-you-go billing
- Types
 - Time driven
 - Timer event
 - Predictable workload
 - OS Level Metric driven
 - OS parameter, auto scaling
 - Not precise
 - Application Metric driven
 - Application specific policies