PART I (40 marks)

Answer all questions.

\sim	4 •	4
	action	•
\ /!!	estion	

alterr	atives	llowing questions carefully. For each question there are four A, B, C and D. Choose the correct alternative and write it in covided.
(i)	Whi	ch of the following reactions proceed by an increase in entropy?
	A	$CaCO_{3(s)} \longrightarrow CaO_{(s)} + CO_{2(g)}$
	В	$NH_{3(g)} + HCl_{(g)} \longrightarrow NH_4Cl_{(s)}$
	C	$N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)}$
	D	$H_{2(g)} + Cl_{2(g)} \longrightarrow 2HCl_{(l)}$
Answ	er:	
(ii)	Whi	ch of the following pairs of solution is isotonic at the same temperature?
	A	0.1 M NaCl and 0.1 M Glucose
	В	0.1 M NaCl and 0.1 M Na ₂ SO ₄
	C	0.1 M NaCl and 0.1 M HCl
	D	0.1 M NaCl and 0.1 M CaCl ₂
Answ	er:	
(iii)	The	hybridization of SO_4^{-2} is
	A	$\mathrm{sp}^3\mathrm{d}$.
	В	sp^3 .
	C	sp^2 .
	D	sp.
Answ	er:	
(iv)	The	electric current produced when a crystal is subjected to heat is called
	A	antiferroelectricity.
	В	piezoelectricity.
	C	ferroelectricity.
	D	pyroelectricity.

(v)	The co	orrect order of the +I effect of the substituents is
	A	t-butyl > isopropyl > ethyl > methyl.
	В	t-butyl > isopropyl > methyl > ethyl.
	C	isopropyl > t-butyl > ethyl > methyl.
	D	t-butyl $>$ ethyl $>$ isopropyl $>$ methyl.
Answ	er:	
(vi)	The po	olymer which possesses the strongest intermolecular forces is
	A	thermosetting plastics.
	В	fibrous polymers.
	C	thermoplastics.
	D	elastomers.
Answ	er:	
(vii)	The de	enticity of ethylene diamine is
	A	ambidentate.
	В	unidentate.
	C	tridentate.
	D	bidentate.
Answe	er:	
(viii)		ding a base to a buffer solution of NH ₄ OH and NH ₄ Cl, the atration of
	A	OH ⁻ ions remain constant.
	В	OH ⁻ ions decrease.
	C	OH ⁻ ions increase.
	D	Cl ⁻ ions increase.
Answ	er:	
(ix)	Which	of the following compounds is achiral?
	A	2-butanol
	В	lactic acid
	C	propanoic acid
	D	2-chlorobutane
Answ	er:	

	(x)	When $_{86}Rn^{222}$ emits two α -particles followed by one β -particle the	
		product formed will have a mass number and an atomic number of A 214, 82.	
		B 214, 83.	
		C 218, 84.	
		D 218, 85.	
	Answ	er:	
(b)	Corre	ect the following statements by changing only the underlined words.	
	Rewr (i)	ite ONLY the correct answer. DO NOT copy the whole sentence. The movement of colloidal particles under an applied electric potential is	[5]
	、 /	called <u>electro-osmosis</u> .	
	(ii)	Both benzoic acid and benzaldehyde have <u>activating</u> substituents.	
	(iii)	The solvent-solute interactions are accompanied with release of energy	••••
		called <u>lattice energy</u> .	
	•••••		••••
	(iv)	The molecules or ions that can lose as well as accept protons are called	
		amphoteric substances.	
			••••
	(v)	Acetone is sold in bottles containing iron wire in order to prevent the	
		formation of peroxide.	
(c)		n the blanks choosing appropriate word/s given in the brackets. trochemical equivalent, threshold energy, sodium stearate, silver,	[5]
	gluco	nic acid, sodium lauryl sulphate, chemical equivalent, copper,	
	glyco	lic acid, activation energy]	
	(i)	The minimum amount of energy which reacting molecules must possess	
		to produce effective collision is	

	can be used in acid	dic solutions as well as in	
hard water.			
When glycine reacts w	vith nitrous acid	is formed.	
	is the metal used a	s a non irreating distinct and	
•			
The amount of substar	ace deposited by one of	coulomb of electricity is	
		onriate item of	
· ·		-	
			[5]
-			
•			
Carbyrannine reaction			
, o ,		e water in a car radiator. Why?	[1]
in cold places emylend			
	hard water. When glycine reacts we for eye diseases. The amount of substantial and the each item of Column A sub	hard water. When glycine reacts with nitrous acid	hard water. When glycine reacts with nitrous acid

(ii) 	What do you understand by London forces?	[1]
(iii)	State Faraday's second law of electrolysis.	 [1]
(iv)	What does the term molar heat capacity at constant volume mean? Write the relation between Cv and internal energy change.	[2]
(v)	Name a non-metal which is used as a deoxidiser in the manufacture of steel and its compound which is used as an abrasive for cutting and grinding glasses.	[2]
(vi)	A system loses 10 J of heat to the surrounding. What will be the value of 'q' for the system and its surrounding?	 [1]
(vii)	Classify the following as elimination or addition reactions. A $C_2H_4 + Cl_2 \xrightarrow{hv \text{ or heat}} CH_2ClCH_2Cl$ B $(CH_3)_3CBr \xrightarrow{KOH_{(alc)}} (CH_3)_2C=CH_2+H_2O+KBr$	[1]

(viii)	Write	the balanced equations for	the following reactions:	[2]
	A	Oxidation of sucrose with	n conc. HNO ₃	
	В	Reduction of fructose wit	th sodium amalgam	
•••••	• • • • • • • •			• • • • • • •
•••••				
•••••				• • • • • • • •
(ix)	Identi	fy the kind of isomerism ex	khibited by the following pairs of compoun	ds: [1]
, ,	A	CH ₃ OCH ₂ CH ₂ CH ₃ and C		
	В	HONO and HNO ₂		
<i>(</i>)				
(x)			mer and co-polymer with examples.	[1]
Hom	opolyn	ner	Co-polymer	

	(xi)	Wha	at happens when,	[2]
		A	neutral ferric chloride is added to acetic acid?	
		В	acetaldehyde is warmed with iodine and caustic soda solution?	
		• • • • • • • •		
	• • • • • •	• • • • • • • •		
			PART II	
	Answ	er nin	e questions choosing four from Section A, three from Section B	
			and two from Section C	
			SECTION A (28 marks) Answer any four questions.	
			Answer any tout questions.	
Ques	stion 2.			
(a)	The e	elevatio	on of boiling point of water in 0.01 molal urea is 1.86 K.	
	What	would	be the elevation of boiling point of water in 0.01 molal solution of	
	potas	sium c	hloride?	[2]
	-			

	and non-stoichiometric defects
Stoichiometric defects	Non-stoichiometric defects
(i) Hydrogen bomb and ato	om bomb
Hydrogen bomb	Atom bomb
Trydrogen bolinb	Atom bomb
Trydrogen bolinb	Atom bomb
Trydrogen bolib	Atom bomb
Trydrogen bolinb	Atom bomb
Tryur ogen bonnb	Atom bomb
Trydrogen bonnb	Atom bomb
Tryur ogen bonnb	Atom bomb
	and heterogeneous catalysis
(ii) Homogeneous catalysis	and heterogeneous catalysis
(ii) Homogeneous catalysis	and heterogeneous catalysis

[3]

(c) Write the moleculer orbital configuration of N_2^{2-} . Calculate its bond order and predict its magnetic property. [2]

Question 3.

(a) A plot of log [A] against time for a reaction is shown below:

(i) What is the order of reaction? [1]

Find the activation energy of the reaction.

(b) Benzene-ethanol, carbontetrachloride-cyclohexane, water-formic acid, acetone-chloroform, benzene-toluene, chloroform-ethanol are examples of solutions of two completely miscible liquids. Classify them into Type I, Type II and Type III solutions.

[3]

(c) Predict whether the following reaction will occur or not. $Zn + 2Ag^+ \longrightarrow Zn^{2+} + 2Ag$ [2] Given that: $E^0_{Zn^{+2}/Zn} = -0.76V$, $E^0_{Ag^+/Ag} = 0.80V$

[1]

A solution is prepared by dissolving 4 g of KOH in 500 ml of water. Calculate	
A solution is prepared by dissolving 4 g of KOH in 500 ml of water. Calculate the pH of the solution. (Atomic weights: K=39, O=16, H=1)	[3]
	-
	the pH of the solution. (Atomic weights: K=39, O=16, H=1) Explain how radiocarbon enters the food chain and write the principle of radiocarbon dating.

(c)	Wha	t do you understand by doping? Explain how germanium doped with	
	phos	phorus conducts electricity.	[2]
			• • • • • • • •
	•••••		
Ques	tion 5.		
(a)	(i)	What are the <i>two</i> main methods of preparing hydrophobic sols?	[1]
	(ii)	How is gold sol prepared? Explain	[1]
(b)	30 g	of urea is dissolved in 800 g of water and the vapour pressure of pure	
	wate	r is 23.8 mm Hg at 25°C. Calculate the vapour pressure of the solution.	[2]

-,	S, HF, PH ₃		
•••••	•••••		
(ii) Write tw	o differences between	ween sigma and pi bonds.	
Sigma bond		Pi bond	
(iii) Why is a	lum added to imp	oure water?	
•••••		•••••	• • • • • • • • • • • • • • • • • • • •

Question 6.

(a) A patient with thyroid disorder is injected with a radioisotope iodine having an activity of 10³ disintegrations per minute. What would be the activity after 5 hours? [Half life of radioisotope iodine is 25 minutes.]

- (b) The solubility of CaF_2 is 2.5×10^{-5} mol L^{-1} at 25°C.
 - (i) What is the solubility product? [1]

[2]

(ii)	What is	gold number?	[1]
(ii)		gold number?	[1]
(ii)		gold number?	[1]
(ii)		gold number?	[1]
(ii)	What is	gold number?	
(0)			
(c)	(i) I	How can you determine the standard electrode potential of Cu^{2+}/Cu ?	[2]

Find its solubility in 0.02 M solution of $CaCl_2$.

(ii)

[1]

Question 7.

a)	Defin	ne the following:	
	(i)	Abnormal molecular mass	[1]
	•••••		•••••
			•••••
			•••••
	(ii)	Specific conductivity	[1]
	Drow	an anargy diagram for uncetalyzed and actalyzed reactions	[2]
	Diaw	an energy diagram for uncatalysed and catalysed reactions.	[2]
	NaOl	H cannot be used in place of NH ₄ OH to precipitate cations of group III	
		alitative analysis. Explain.	[1]
			•••••

(d) Study the phase diagram given below and answer the questions that follow.

(i) What phases are at equilibrium at point O? [1]

(ii) Calculate the variance along the line QO. [1]

SECTION B (18 marks)

Answer any three questions.

	This wer any time questions.	
tion 8.		
(i)	Draw the structure of linkage isomers of $[\text{Co}(\text{NH}_3)_5(\text{NO}_2)]^{2+}$.	[1]
(ii)	Calculate the oxidation state of Co in $[\text{Co(NH}_3)_3 \ (\text{H}_2\text{O})_2\text{Cl}]^+.$	[1]
	(ii) Explai	tion 8. (i) Draw the structure of linkage isomers of [Co(NH ₃) ₅ (NO ₂)] ²⁺ .

BHSEC/12A/2016 © Copyright Reserved

				••••
				••••
				••••
				••••
				••••
(c)	Class	sify the following compounds into r	nucleophiles and electrophiles.	[1]
	SO_3 ,	NH ₃ , FeCl ₃ , H ₂ O		
	Nuc	cleophiles	Electrophiles	
)ues	tion 9.			
a)		plete and balance the following equ	aations:	[2]
	(i)	$P_4 + NaOH + H_2O \xrightarrow{\Delta} \dots$	+	
	(ii)	$KClO_3 + F_2 + H_2O \longrightarrow \dots$	+	
b)	State	whether the following process are	spontaneous or non-spontaneous and explain.	[2]
	(i)	Dissolution of ammonium chlori	de in water.	
	(ii)	Formation of ice in the refrigerat	for.	
				••••
				••••
				••••
				••••

(c)	Explain briefly the laboratory preparation of H ₂ S gas by using Kipp's apparatus.	[2]
		•
		•
Questi	ion 10.	
(a)	0.125 moles of argon expands isothermally and reversibly at 27°C from 3 L to 6 L. Calculate w and q for the process in calories.	[2]

SN ¹ reaction	SN ² reaction	
Give two uses of each of the	o following:	
Give <i>two</i> uses of each of the	e following.	
i) Bromine		
ii) Silicone		
Bromine	Silicone	
	I	
n 11.		
Why was there a need for th	ne second law of thermodynamics? Support you	ır
answer with <i>two</i> reasons.		
		• • • • • • • • • • • • • • • • • • • •
•••••		
		• • • • • • • • • • • • • • • • • • • •

	•••••	
(b)	Expl	ain the mechanism for the bromination of methane in presence of UV light. [2]
	•••••	
	•••••	
	•••••	
(c)	Nam	e the following: [2
	(i)	Constituent of cable sheath.
	(ii)	A heterogeneous catalyst used for the polymerization of alkenes.
		SECTION C (14 marks)
		Answer any two questions.
Ques	tion 12	•
(a)	Defin	ne the following: [2
	(i)	Enantiomers
	(ii)	Zwitter ion

(b)	Identify A, B and C in the following reaction:	[3]
	$NH_2CONH_2 \xrightarrow{NaOH} A \xrightarrow{CH_3COCl} B \xrightarrow{P_2O_5} C$	
		j.
(c)	(i) Draw the structure of α -D-glucopyranose.	[1]

(ii) Give *one* test to differentiate between starch and cellulose.

Starch	Cellulose

[1]

Question 13.

(a)	How	would you convert methylamine to ethylamine?	[2]	
(b)	What	What happens when,		
	(i)	formic acid is treated with ethyl alcohol in presence of conc. H ₂ SO ₄ ?		
	(ii)	triolein is treated with caustic soda?		
	•••••		•	
	•••••		•	
	•••••		•	
	•••••		•	
(c)	(i)	What do you understand by directive influence of a group?	[1]	
	•••••		•	
			-	

	(ii) Explain the directive influence of $-NO_2$.	[2]
		•
		•
		•
		•
		•
		• •
		•
st	ion 14.	
	(i) What are plasticizers?	[1]

	(ii)	Draw the structure of the main product formed when aniline is treated			
		with aqueous bromine.	[1]		
(b)	Expla	in aldol condensation and support your answer with an example.	[2]		
	••••				
	•••••		••		
	•••••				
(c)	Give	reasons for the following:	[2]		
(-)	(i)	Benzaldehyde does not form red precipitate with Fehling's solution.	L-J		
	(1)	Benzaidenyde does not form fed precipitate with Feming's solution.			
	•••••		• •		
			••		
	•••••		. •		

	(ii) The net rotation of meso-tartaric acid is zero.	
		••
		••
		••
(d)	What are the conditions for a molecule to be optically active?	[1]
		••
		••

for ROUGH WORK

for ROUGH WORK

for ROUGH WORK