1.4 Coercive Functions and Global Min

Theorem 1.11 (Theorem 1.4.1) A continuous function f on a closed bounded domain D has a global min and max.

Definition 1.4 (Def 1.4.2) f is coercive if $\lim_{\|x\|\to\infty} f(x) = \infty$.

Example 1.8 (Eg 1.4.3)

1.

$$f(x,y) = x^2 + y^2$$

coercive

2.

$$f(x,y) = x^4 + y^4 - 3xy = (x^4 + y^4)(1 - \frac{3xy}{x^4 + y^4})$$

 $x^4 + y^4$: dominant. Hence coercive.

3.

$$f(x, y, z) = e^{x^2} + e^{y^2} + e^{z^2} - x^{100} - y^{100} - z^{100}$$

coercive since e^x grows faster than x^n .

4. $f(x,y) = ax + by + c(ab \neq 0)$ not coercive.

Proof: Let (x, y) satisfy ax + by = 0. Then

$$\lim_{\|(x,y)\| \to \infty} f(x,y) = c\Box$$

- 5. $f(x,y,z) = x^4 + y^4 + z^4 3xyz x^2 y^2 z^2$. $x^4 + y^4 + z^4$: dominant. Hence coercive.
- 6. $f(x,y) = x^2 2xy + y^2$ not coercive.

Proof: Let x = y as $\|(x,y)\| \to \infty$. Then $f(x,y) = 0\Box$.

Note in this case,

$$\lim_{|x|\to\infty} f(x,y_0) = \infty, \lim_{|y|\to\infty} f(x_0,y) = \infty$$

Conclusion: $f(x) \to \infty$ as each coordinate tends to ∞ does not imply coercive.

Theorem 1.12 (Them 1.4.4) Suppose f is continuous over \mathbb{R}^n and coercive. f must has a global min.

Proof: Since f is coercive, there exist r > 0 s.t.

$$f(x) > f(0), \forall || x || > r.$$

By Them (1.11), there is a global min x^* on $B(\bar{0},r)$ (closure of B(0,r)).

$$\implies f(x) \ge f(x^*), \forall \parallel x \parallel \le r$$

In particular,

$$f(0) \ge f(x^*)$$

$$\Longrightarrow f(x) > f(0) \ge f(x^*), \forall \parallel x \parallel > r$$

Hence x^* is a global min on \mathbb{R}^n . \square

Example 1.9 (Eg 1.4.5)

$$F(x,y) = x^4 - 4xy + y^4$$

coercive.

$$\nabla f(x,y) = (4x^3 - 4y, -4x + 4y^3) = 0$$

$$\implies y = x^3 \implies -x + x^9 = 0 \implies x = 0, \pm 1$$

f has a global min. Which critical point?

$$f(0,0) = 0, f(-1,-1) = -2, f(1,1) = -2$$

Global min: (-1,-1) and (1,1).

Note

$$Hf = \begin{bmatrix} 12x^2 & -4 \\ -4 & 12y^2 \end{bmatrix}$$

$$Hf(0,0) = \left[\begin{array}{cc} 0 & -4 \\ -4 & 0 \end{array} \right]$$

indefinite. Hence (0,0) is a saddle point.

$$Hf(1,1) = \left[\begin{array}{cc} 12 & -4 \\ -4 & 12 \end{array} \right]$$

positive definite. Hence (1,1) local min.

$$Hf(-1,-1) = \left[\begin{array}{cc} 12 & -4 \\ -4 & 12 \end{array} \right]$$

positive definite. Hence (-1,-1) local min.