D. 44

历届考研真题

班级	姓名	学号

1. (1997 数一)设两个相互独立的随机变量 X 和 Y 的方差分别为 4 和 2,则随

C. 28

一、单项选择题

A. 8

机变量 3X - 2Y 的方差是().

B. 16

			存在且不	等于 0 ,则 $D(X+Y)=D($	X) +
D(Y)是 X 和	Y的()		V .		
A. 不相关的3	充分条件,但	不是必要条件	牛		
B. 独立的充分	分条件,但不	是必要条件			
C. 不相关的3	充分必要条件	ţ.			
D. 独立的充分	分必要条件				
3. (2001 数三)	将一枚硬币	重复	以X和Y	分别表示正面朝上和反	面朝
上的次数,则	X和Y的相	关系数等于	().		
A1	B. 0		C. $\frac{1}{2}$	D. 1	
4. (2003 数三)	设随机变量	X和Y都服	从正态分布	5,且它们不相关,则().
A. X 与 Y 一分	定独立		B. (X,Y))服从二维正态分布	
C. X 与 Y 未归	必独立		D. $X + Y$	服从一维正态分布	
5. (2004 数三) i	及随机变量 <i>X</i>	X_1, X_2, \cdots, X_n	(n>1)独立	可同分布,且其方差为 σ^2	> 0.
令随机变量!	$Y = \frac{1}{n} \sum_{i=1}^{n} X_i$,则().			
A. $D(X_1 + Y)$	$=\frac{n+2}{n}\sigma^2$		B. $D(X_1)$	$-Y) = \frac{n+1}{n}\sigma^2$	
C. $Cov(X_1, Y)$	$=\frac{1}{n}\sigma^2$		D. Cov(2	$(X_1, Y) = \sigma^2$	

6.(2007 数 -) 设随机变量(X,Y) 服从二维正态分布,且 X 与 Y 不相关, $f_{Y}(x)$, $f_{Y}(y)$ 分别表示 X,Y 的概率密度,则在 Y=y 的条件下, X 的条件概率密度 $f_{X|Y}(x|y)$ 为().

$$A. f_X(x)$$

$$B. f_{Y}(y)$$

A.
$$f_X(x)$$
 B. $f_Y(y)$ C. $f_X(x)f_Y(y)$ D. $\frac{f_X(x)}{f_Y(y)}$

$$D.\frac{f_X(x)}{f_Y(y)}$$

7. (2008 数三) 随机变量 $X \sim N(0,1), Y \sim N(1,4)$, 且相关系数 $\rho_{vv} = 1$, 则().

A.
$$P\{Y = -2X - 1\} = 1$$

B.
$$P | Y = 2X - 1 | = 1$$

C.
$$P \{ Y = -2X + 1 \} = 1$$

D.
$$P \{ Y = 2X + 1 \} = 1$$

8. (2012 数一) 将长度为1 m 的木棒随机地截成两段,则两段长度的相关系数

B.
$$\frac{1}{2}$$

C.
$$-\frac{1}{2}$$

Y与 $\eta = X - Y$ 不相关的充分必要条件为().

A.
$$E(X) = E(Y)$$

B.
$$E(X^2) - [E(X)]^2 = E(Y^2) - [E(Y)]^2$$

C.
$$E(X^2) = E(Y^2)$$

D.
$$E(X^2) + \lceil E(X) \rceil^2 = E(Y^2) + \lceil E(Y) \rceil^2$$

二、埴空题

1.(2002 数三)设随机变量 X 和 Y 的联合概率分布为:

Y	-1	0	1
0	0.07	0. 18	0. 15
1	0. 08	0. 32	0. 2

则 X 和 Y 的相关系数 $\rho = _____, X^2$ 和 Y^2 的协方差 $Cov(X^2, Y^2) =$

- 2. (2003 数三)设随机变量 X 和 Y 的相关系数为 0.5, E(X) = E(Y) = 0, $E(X^2) = 0$ $E(Y^2) = 0$, $\mathbb{M} E[(X+Y)^2] =$
- 3. (2003 数三) 设随机变量 X 和 Y 的相关系数为 0.9 若 Z = X 0.4 则 Y 与 Z

的相关系数为 .

- 4. (2011 数三)设二维随机变量(X,Y) 服从 $N(\mu,\mu;\sigma^2,\sigma^2;0)$,则 $E(XY^2)=$
- 5. (2010 数一) 设随机变量 X 的概率分布为 $P\{X=k\} = \frac{C}{k!}(k=0,1,2,\cdots)$,则 $E(X^2) = \frac{C}{k!}(k=0,1,2,\cdots)$,则
- 6. (2008 数一)设随机变量 X 服从参数为 1 的泊松分布,则 $P\{X=E(X^2)\}=$
- 7. (2004 数一)设随机变量 X 服从参数为 λ 的指数分布,则 $P\{X>\sqrt{D(X)}\}=$
- 8. (1995 数一)设 X 表示 10 次独立重复射击命中目标的次数,每次射中目标的概率为 0.4,则 X^2 的数学期望 $E(X^2) = _____$.
- 9. (2014 数三)设随机变量 X 服从标准正态分布 N(0,1),则 $E(Xe^{2X})=$
- 10. (2015 数三)设二维随机变量(X,Y)服从正态分布 N(1,0;1,1;0),则 $P\{XY-Y<0\}=$ _____.

三、解答题

- - ①Y的概率分布.
 - ②数学期望 EY.

2. (2014 数三) 设随机变量 X 的概率分布为 $P\{X=1\}=P\{X=2\}=\frac{1}{2}$,在给定 X=i 的条件下,随机变量 Y 服从均匀分布 U(0,i) (i=1,2),求: ①Y 的分布函数 $F_Y(y)$.

- 3. (2014 数三)设随机变量 X,Y 的概率分布相同 X 的概率分布为 $P\{X=0\}=\frac{1}{3}$, $P\{X=1\}=\frac{2}{3}$, 且 X 与 Y 的相关系数 $\rho_{XY}=\frac{1}{2}$, 求 :
 - ①(X,Y)的概率分布.
 - $(2)P\{X+Y \leq 1\}.$

- 4. (2012 数三)设随机变量 X 和 Y 相互独立,且均服从参数为 1 的指数分布, $U = \max\{X,Y\}, V = \min\{X,Y\}, \Re$:
 - ①随机变量 V 的概率密度.
 - 2E(U+V).

5. (2012 数三)已知随机变量 X,Y 以及 XY 的分布律如下表所示:

X	0	1	2
P	1/2	1/3	1/6

Y	0	1	2
P	1/3	1/3	1/3

XY	0	1	2	4
P	7/12	1/3	0	1/12

- ①求 $P\{X = 2Y\}$.
- ②求 Cov(X-Y,Y)与 ρ_{xy} .

- 6. (2011 数三) (X,Y) 在 G 上服从均匀分布,G 由 x-y=0,x+y=2 与 y=0 围成,求:
 - ①边缘密度 $f_{x}(x)$.
 - $2f_{X\mid Y}(x\mid y).$

7. (2011 数三)设:

. X	0	1
P	1/3	2/3

Y	-1	0	1.
P	1/3	1/3	1/3

 $P\{X^2 = Y^2\} = 1, \vec{x}$:

- ①(X,Y)的分布.
- ②Z = XY的分布.
- $\Im \rho_{xy}$.

8. (2010数三)箱内有 6 个球,其中红、白、黑球的个数分别为 1,2,3,现从箱中随机地取出 2 个球,记 X 为取出的红球个数,Y 为取出的白球个数,求随机变量(X,Y)的概率分布.

9. (2008 数三)设某企业生产线上产品合格率为 0. 96,不合格产品中只有 3/4 的产品可进行再加工且再加工的合格率为 0. 8,其余均为废品,每件合格品获 利 80 元,每件废品亏损 20 元,为保证该企业每天平均利润不低于 2 万元,问企业每天至少应生产多少产品?

10. (1997 数三)两台同样的自动记录仪,每台无故障工作的时间服从参数为 5 的指数分布. 首先开动其中一台,当其发生故障时停用而另一台自行开动. 试求两台记录仪无故障工作的总时间 *T* 的概率密度 *f*(*t*)、数学期望和方差.

11. (1999 数三)已知随机变量 X_1 和 X_2 的概率分布为:

X_1	-1	0	1
p_i	1/4	. 1/2	1/4

X_2	0	1
p_i	1/2	1/2

而且 $P\{X_1X_2=0\}=1$,①求 X_1 和 X_2 的联合分布. ② X_1 和 X_2 是否独立? 为什么?