EE210: Microelectronics-I

Lecture-9: Bipolar Junction Transistor-2

Instructor: Y. S. Chauhan

Slides from: B. Mazhari

Dept. of EE, IIT Kanpur

BJT: equivalent circuit

$$\beta = \frac{I_C}{I_B}$$

$$I_{C} = I_{S} \left(e \times p \left(\frac{V_{BE}}{V_{T}} \right) - 1 \right)$$

$$I_{B} = \frac{I_{C}}{\beta}$$

$$I_C = I_S \left(exp\left(\frac{V_{BE}}{V_T}\right) - 1 \right) ; I_B = \frac{I_C}{\beta}$$

Modes of operation

Saturation

$I_C = 1mA$; $I_B = 0.01mA$ Why does I_C drop in saturation? $\frac{I_C}{I_B} = 100 = \beta$ N N >1mA CB Jn. zero biased 0.01mA CB Jn. forward biased 1mA 0.01mA-0.75mA 0.05mA $I_C = 0.75mA$; $I_B = 0.06mA$; $\frac{I_C}{I_B} = 12.5 < \beta$

$$\frac{I_C}{\beta \times I_B} < 1$$

$$\frac{I_C}{\beta \times I_B} = 1$$

Common-Base

$$I_C = I_S \left(e \times p \left(\frac{V_{BE}}{V_T} \right) - 1 \right) ; I_B = \frac{I_C}{\beta_F}$$

Common-Emitter

$$V_{CE} = V_{CB} + V_{BE}$$

= $V_{BE} - V_{BC}$

$$V_{BC} = 0.7 - V_{CE}$$

 $V_{BC} = 0.7 - V_{CE}$ CbB jn. Starts to get forward biased

Note that in saturation:
$$\frac{I_C}{\beta I_B} < 1$$

CE

Model of a BJT in Saturation mode

Simplified Model

Generalized Transistor Model

$$I_{C} = \beta_{F} \times I_{B}$$

$$I_{E} = I_{C} + I_{B}$$

$$I_{C} = \alpha_{F} \times I_{E}$$

$$\alpha_{F} = \frac{\beta_{F}}{1 + \beta_{F}}$$

 β_F : Common Emitter Current Gain

 α_F : Common Base Current Gain

Forward Active Mode

$$\beta_F = \frac{\alpha_F}{1 - \alpha_E}$$

Reverse Active Mode

$$\beta_R = \frac{\alpha_R}{1 - \alpha_R}$$

Ebers Moll Model

