x	$-\infty$	3		5	+∞
3x-9	_	0	+		+
5-x	+	+	+		_
$\frac{3x-9}{5-x}$	_	0	+		_

Crescente

Exercício 2

Determine, sob a forma de intervalo ou união de intervalos, o conjunto de números reais que verificam a condição: $\frac{x^2-49}{x^2+6x-7} \leq 0$.

$$x^{2} - 49 = 0$$

$$\Leftrightarrow x = -7 \lor x = 7$$

$$x^{2} + x - 7 = 0$$

$$\Leftrightarrow x = -7 \lor x = 1$$

$$C.S =]1, 7]$$

x	$-\infty$	-7		1		7	+∞
$x^2 - 49$	+	0	_	_	_	0	+
$x^2 + 6x - 7$	+	0	_	0	+	+	+
$\frac{x^2 - 49}{x^2 + 6x - 7}$	+	0	+	SS	_	0	+

Decrescente

Exercício 1

Resolva, em \mathbb{R} , cada uma das sequintes inequações:

a)

$$x^3 > x^2$$
 C.A.

$$x^{3} > x^{2}$$

$$\Leftrightarrow x^{3} - x^{2} > 0$$

$$\Leftrightarrow x^{2} (x - 1) > 0$$

$$\Leftrightarrow x > 0 \lor x > 1$$

$$C.S =]1, +\infty[$$

b)
$$x^{3} + x^{2} - 2x > 0$$
 C.A.
$$x^{3} + x^{2} - 2x = 0$$

$$\Leftrightarrow x (x^{2} + x - 2) = 0$$

$$\Leftrightarrow x = 0 \lor x = 1 \lor x = -2$$

$$C.S =]-2, 0[\ \cup \]1. + \infty[$$

\boldsymbol{x}	$-\infty$	-2		0		1	+∞
x	_	-	-	0	+	+	+
$x^2 + x - 2$	+	0	_	_	_	0	+
$(x)\left(x^2+x-2\right)$	_	0	+	0	_	0	+

Crescente Crescente

c)

$$(x-1)(4-x^2)(x^2-4x+6) \le 0$$

C.A.
 $(x-1)(4-x^2)(x^2-4x+6) = 0$
 $\Leftrightarrow x = 1 \lor x = 2 \lor x = -2 \lor x \in \emptyset$
 $C.S = [-2,1] \cup [2,+\infty[$

Exercício 2

Considere a função polinomial definida em \mathbb{R} por $f(x) = x^3 - x^2 - 4x + 4$.

a)

Usando a regra de Ruffini, mostre que $x^3-x^2-4x+4=(x-2)\left(x^2+x-2\right)$, para todo $x\in\mathbb{R}$.

b)

Determine os zeros de f.

$$(x-2)(x^2+x-2) = 0$$

$$\Leftrightarrow x = 2 \lor x = -2 \lor x = 1$$

b)

Determine o conjunto de números reais que verificam a condição f(x) < 0.

$$(x-2)(x^2+x-2) < 0$$

 $C.S =]-\infty, -2[\cup]1, 2[$

x	-∞	-2		1		2	+∞
x-2	_	_	-	_	_	0	+
$x^2 + x - 2$	+	0	_	0	+	+	+
$(x-2)\left(x^2+x-2\right)$	_	0	+	0	_	0	+

Decrescente

Decrescente

Exercício 3

Considere o polinómio $p(x) = x^4 - 2x^3 - 2x^2 - 2x - 3$.

a)

Mostre que p(x) é divisível por (x+1)(x-3).

$$(x+1)(x^3-3x^2+x-3)$$

$$(x+1)(x-3)(x^2+1)$$

b)

Resolva, em \mathbb{R} , a inequação p(x) > 0.

$$(x+1)(x-3)(x^2+1) > 0$$

C.A.

$$(x+1)(x-3)(x^2+1) = 0$$

$$\Leftrightarrow x = -1 \lor x = 3 \lor x \in \emptyset$$

$$C.S =]-\infty, -1[\cup]3, +\infty[$$

x	$-\infty$	-1		3	+∞
x+1	_	0	+	+	+
x-3	_	_	_	0	+
$x^2 + 1$	+	+	+	+	+
$(x+1)(x-3)(x^2+1)$	+	0	_	0	+

Decrescente

Decrescente