Homework D: Solutions

I.
$$A = U \leq V^*$$
 $A \in C^{m \times n}$
Let $u_1, u_2, \dots u_m \in C^m$
 $v_1, v_2, \dots, v_m \in C^m$ be columns of V . let $\sigma_1, \sigma_2, \dots, \sigma_m$
be diagonal elements of E . Then, $Av_1 = \sigma_1 u_1$
 $C:U, V$ are $u_1; tay$. Also, $A^* = V \leq *U^* = 0$

(: U, V are unitary) Also, A= V = V = VEU" and smilarly, A'u = 5 vi

Thus,
$$B \left[\begin{array}{c} v_i \\ u_i \end{array} \right] = \left[\begin{array}{c} A^* u_i \\ A v_i \end{array} \right] = \sigma_i \left[\begin{array}{c} v_i \\ u_i \end{array} \right]$$
Hence, each σ_i is an eigenvalue with eigenvector

Hence, each σ_i is an eigenvolve with eigenecter $[v_i, u_i]^T$. Singular values are positive, and clearly $-\sigma_i$ is also an eigenvalue with eigenvector $-[v_i, u_i]^T$.

2. Let X be a random vanishe representing the total score.
$$f(X) = \sum_{i=1}^{n} p_i = \frac{1}{2} + \frac{1}{n} + \frac{2}{n} + \dots + \frac{n-1}{n} = \frac{1}{2}$$

Var(X) = & P: (1-Pi), assuming each Bernoulli RV denoting score to questions is independent of another.

Notice that Var(X) = s. Hence, applying Chebysher in equality, ne obtain

 $E \stackrel{1}{\cancel{2}} |X-2| > 2\sqrt{5} \stackrel{1}{\cancel{2}} = 4$