GSERM - St. Gallen 2025 Analyzing Panel Data

June 20, 2025

Logit/Probit Redux

Start with:

$$Y_i^* = \mathbf{X}_i \boldsymbol{\beta} + u_i$$

$$Y_i = 0 \text{ if } Y_i^* < 0$$

 $Y_i = 1 \text{ if } Y_i^* \ge 0$

So:

$$Pr(Y_i = 1) = Pr(Y_i^* \ge 0)$$

$$= Pr(\mathbf{X}_i \beta + u_i \ge 0)$$

$$= Pr(u_i \ge -\mathbf{X}_i \beta)$$

$$= Pr(u_i \le \mathbf{X}_i \beta)$$

$$= \int_{-\infty}^{\mathbf{X}_i \beta} f(u) du$$

"Standard logistic" PDF:

$$Pr(u) \equiv \lambda(u) = \frac{\exp(u)}{[1 + \exp(u)]^2}$$

CDF:

$$\Lambda(u) = \int \lambda(u) du$$

$$= \frac{\exp(u)}{1 + \exp(u)}$$

$$= \frac{1}{1 + \exp(-u)}$$

Logistic → "Logit"

$$Pr(Y_i = 1) = Pr(Y_i^* > 0)$$

$$= Pr(u_i \le \mathbf{X}_i \beta)$$

$$= \Lambda(\mathbf{X}_i \beta)$$

$$= \frac{\exp(\mathbf{X}_i \beta)}{1 + \exp(\mathbf{X}_i \beta)}$$

(equivalently) = $\frac{1}{1 + \exp(-\mathbf{X}_i \beta)}$

Likelihoods

$$L_i = \left(\frac{\exp(\mathbf{X}_i \boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i \boldsymbol{\beta})}\right)^{Y_i} \left[1 - \left(\frac{\exp(\mathbf{X}_i \boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i \boldsymbol{\beta})}\right)\right]^{1 - Y_i}$$

$$L = \prod_{i=1}^{N} \left(\frac{\exp(\mathbf{X}_{i}\beta)}{1 + \exp(\mathbf{X}_{i}\beta)} \right)^{Y_{i}} \left[1 - \left(\frac{\exp(\mathbf{X}_{i}\beta)}{1 + \exp(\mathbf{X}_{i}\beta)} \right) \right]^{1 - Y_{i}}$$

$$\ln L = \sum_{i=1}^{N} Y_i \ln \left(\frac{\exp(\mathbf{X}_i \boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i \boldsymbol{\beta})} \right) + \\
(1 - Y_i) \ln \left[1 - \left(\frac{\exp(\mathbf{X}_i \boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i \boldsymbol{\beta})} \right) \right]$$

Probit...

$$\Pr(u) \equiv \phi(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right)$$

$$\Phi(u) = \int_{-\infty}^{u} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) du$$

Standard Normal and Logistic PDFs

Standard Normal and Logistic CDFs

Probit (continued...)

$$\begin{array}{lcl} \Pr(Y_i = 1) & = & \Phi(\mathbf{X}_i \boldsymbol{\beta}) \\ & = & \int_{-\infty}^{\mathbf{X}_i \boldsymbol{\beta}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(\mathbf{X}_i \boldsymbol{\beta})^2}{2}\right) d\mathbf{X}_i \boldsymbol{\beta} \end{array}$$

$$L = \prod_{i=1}^{N} \left[\Phi(\mathbf{X}_i \boldsymbol{\beta}) \right]^{Y_i} \left[1 - \Phi(\mathbf{X}_i \boldsymbol{\beta}) \right]^{(1-Y_i)}$$

$$\ln L = \sum_{i=1}^{N} Y_i \ln \Phi(\mathbf{X}_i \boldsymbol{\beta}) + (1 - Y_i) \ln [1 - \Phi(\mathbf{X}_i \boldsymbol{\beta})]$$

One-way unit effects:

$$Y_{it} = f(\mathbf{X}_{it}\beta + \alpha_i + u_{it})$$

So, think about logit first:

$$\Pr(Y_{it} = 1) = \frac{\exp(\mathbf{X}_{it}\beta + \alpha_i)}{1 + \exp(\mathbf{X}_{it}\beta + \alpha_i)} \equiv \Lambda(\mathbf{X}_{it}\beta + \alpha_i)$$

Incidental Parameters:

- Nonlinearity \rightarrow inconsistency in both $\hat{\alpha}$ s and $\hat{\beta}$.
- Anderson's unconditional estimator:

$$L^{U} = \prod_{i=1}^{N} \prod_{t=1}^{T} \Lambda(\mathbf{X}_{it} + \alpha_i)^{\mathbf{Y}_{it}} [1 - \Lambda(\mathbf{X}_{it} + \alpha_i)]^{1 - \mathbf{Y}_{it}}$$

Chamberlain's conditional estimator:

$$L^{C} = \prod_{i=1}^{N} \Pr\left(Y_{i1} = y_{i1}, Y_{i2} = y_{i2}, ... Y_{iT} = y_{iT} \mid \sum_{t=1}^{T} Y_{it}\right)$$

Fixed-Effects (continued)

Intuition: Suppose we have T=2. That means that:

•
$$Pr(Y_{i1} = 0 \text{ and } Y_{i2} = 0 \mid \sum_{T} Y_{it} = 0) = 1.0$$

•
$$Pr(Y_{i1} = 1 \text{ and } Y_{i2} = 1 \mid \sum_{T} Y_{it} = 2) = 1.0$$

and:

$$\Pr\left(Y_{i1} = 0 \text{ and } Y_{i2} = 1 \mid \sum_{\mathcal{T}} Y_{it} = 1\right) = \frac{\Pr(0,1)}{\Pr(0,1) + \Pr(1,0)}$$

with a similar statement for $Pr(Y_{i1} = 1 \text{ and } Y_{i2} = 0 \mid \sum_{T} Y_{it} = 1)$.

The Point:

 $\sum_{t=1}^{T} Y_{it}$ is a sufficient statistic for α_i , so conditioning on it \equiv "fixed effects."

Notes On Fixed-Effects

Things to bear in mind:

- Fixed effects = no estimates for β_b
- Interpretation: per logit, but $|\hat{\alpha}_i|$.
- Everything above is for **logit**...
 - · For FE probit, there is no conditional model
 - · Unconditional / "brute force" FE probit is biased (see here and here)
- BTSCS in international relations: Green et al. (2001) vs. Beck & Katz (2001) ("Dirty Pool" debate)

Model is:

$$Y_{it}^* = \mathbf{X}_{it}\beta + u_{it}$$

 $Y_{it} = 0 \text{ if } Y_{it}^* \le 0 ;$
 $= 1 \text{ if } Y_{it}^* > 0$

with:

$$u_{it} = \alpha_i + \eta_{it}$$

with $\eta_{it} \sim \text{i.i.d. N(0,1)}$, and $\alpha_i \sim N(0, \sigma_{\alpha}^2)$. This implies:

$$Var(u_{it}) = 1 + \sigma_{\alpha}^2$$

and so:

$$\mathsf{Corr}(u_{it}, u_{is}, \ t \neq s) \equiv
ho = rac{\sigma_{lpha}^2}{1 + \sigma_{lpha}^2}$$

which means that we can write $\sigma_{\alpha}^2 = \left(\frac{\rho}{1-\rho}\right)$.

Probit:

$$L_{i} = \text{Prob}(Y_{i1} = y_{i1}, Y_{i2} = y_{i2}, ... Y_{iT} = y_{iT})$$

$$= \int_{-\infty}^{X_{i1}\beta} \int_{-\infty}^{X_{i2}\beta} ... \int_{-\infty}^{X_{iT}\beta} \phi(u_{i1}, u_{i2}...u_{iT}) du_{iT}... du_{i2} du_{i1}$$

Logit:

$$L_{i} = \text{Prob}(Y_{i1} = y_{i1}, Y_{i2} = y_{i2}, ...Y_{iT} = y_{iT})$$

$$= \int_{-\infty}^{X_{i1}\beta} \int_{-\infty}^{X_{i2}\beta} ... \int_{-\infty}^{X_{iT}\beta} \lambda(u_{i1}, u_{i2}...u_{iT}) du_{iT}...du_{i2} du_{i1}$$

Solution?

$$\phi(u_{i1}, u_{i2}, ... u_{iT}) = \int_{-\infty}^{\infty} \phi(u_{i1}, u_{i2}, ... u_{iT} \mid \alpha_i) \phi(\alpha_i) d\alpha_i$$

Practical Things

Points:

- $\hat{\rho} = \text{proportion of the variance due to the } \alpha_i s.$
- Implementation: Gauss-Hermite quadrature or MCMC.
- Best with *N* large and *T* small.
- Critically requires $Cov(\mathbf{X}, \alpha) = 0$ (see notes re: Chamberlain's CRE Estimator).

Software

R

- pglm (panel GLMs) (maximum likelihood + quadrature)
- bife (fixed-effects logit / probit only)
- glmer (general mixed-effects models, including RE)
- glmmML (via Gauss-Hermite quadrature)
- MCMCpack (MCMChlogit)
- Various user-generated functions (e.g., here).
- Interpretation via modelsummary and marginaleffects

Stata

- xtprobit, xtlogit, xtcloglog
- Plus xttrans (transition probabilities), quadchk (quadrature checking), xtrho / xtrhoi (estimation of within-unit covariances)

Example: WDI "Plus"

Data from the WDI, plus POLITY and the UCDP:

- ISO3 The country's International Standards Organization (ISO) three-letter identification code.
- Year The year that row of data applies to (1960=1).
- CivilWar Civil conflict indicator: 1 if there was a civil conflict in that country in that year;
 0 otherwise. From the UCDP.
- OnsetCount The sum of new conflict episodes in that country / year. From UCDP.
- LandArea Land area (sq. km).
- PopMillions Popluation (in millions).
- PopGrowth Population Growth (percent).
- UrbanPopulation Urban Population (percent of total).
- GDPPerCapita GDP per capita (constant 2010 \$US).
- GDPPerCapGrowth GDP Per Capita Growth (percent annual).
- PostColdWar 1 if Year > 1989, 0 otherwise.
- POLITY The POLITY score of democracy/autocracy. Scaled so that 0 = most autocratic, 10 = most democratic.

 $N=215, \ \bar{T}=64, \ NT$ varies (due to missingness).

Model and Data

Model:

$$\begin{aligned} \text{Civil War}_{it} &=& f[\beta_0 + \beta_1 In(\text{Land Area}_{it}) + \beta_2 In(\text{Population}_{it}) + \\ &+ \beta_3 \text{Urban Population}_{it} + \beta_4 In(\text{GDP}_{it}) + \beta_5 \text{GDP Growth}_{it} + \\ &+ \beta_6 \text{Post-Cold War}_{it} + \beta_7 \text{POLITY}_{it} + \beta_5 \text{POLITY}_{it}^2 + u_{it}] \end{aligned}$$

> describe(DF,ske	escribe(DF,skew=FALSE)								
v	ars	n	mean	sd	median	min	max	range	se
IS03*	1	14037	108.48	62.35	108.00	1.00	216.0	215.00	0.53
Year*	2	14037	32.99	18.76	33.00	1.00	65.0	64.00	0.16
YearNumeric	3	13975	1992.00	18.76	1992.00	1960.00	2024.0	64.00	0.16
country*	4	13975	108.00	62.07	108.00	1.00	215.0	214.00	0.53
CivilWar	5	9052	0.13	0.34	0.00	0.00	1.0	1.00	0.00
OnsetCount	6	9394	0.05	0.24	0.00	0.00	4.0	4.00	0.00
LandArea	7	12068	596744.44	1643440.14	100915.00	2.03	16389950.0	16389947.97	14960.16
PopMillions	8	13730	25.35	105.43	4.31	0.00	1438.1	1438.07	0.90
UrbanPopulation	9	13696	51.89	25.74	51.17	2.08	100.0	97.92	0.22
GDPPerCapita	10	11040	12313.79	19265.74	3933.86	122.68	224582.5	224459.77	183.36
GDPPerCapGrowth	11	10970	1.89	6.49	2.09	-64.42	140.5	204.91	0.06
PostColdWar	12	13975	0.54	0.50	1.00	0.00	1.0	1.00	0.00
POLITY	13	8279	5.55	3.71	6.50	0.00	10.0	10.00	0.04
POLITYSquared	14	8279	44.57	40.24	42.25	0.00	100.0	100.00	0.44

Variation

Variable	Dim	Mean	SD	Min	Max	Observations
Year	overall	1992	18.762	1960	2024	NT = 13975
	between		0	1992	1992	N = 215
	within		18.762	1960	2024	T = 65
Civil War	overall	0.134	0.341	0	1	NT = 9052
	between		0.221	0	1	N = 172
	within		0.255	-0.783	1.117	T = 52.628
Onset Count	overall	0.049	0.242	0	4	NT = 9394
Oliser count	hetween	0.045	0.083	0	0.597	N = 172
	within		0.227	-0.548	3.92	T = 54.616
	within		0.221	-0.546	3.92	7 = 54.010
Land Area	overall	596744.441	1643440.135	2.027	16389950	NT = 12068
	between		1754374.985	2.029	16379261.613	N = 215
	within		5283.701	425560.57	652779.912	T = 56.13
Pop. Millions	overall	25.346	105.43	0.003	1438.07	NT = 13730
	between		101.488	0.008	1109.125	N = 215
	within		29.008	-450.719	551.361	T = 63.86
Urban Population	overall	51.885	25 742	2.077	100	NT = 13696
	hetween		24 124	7.035	100	N = 214
	within		9.13	5.686	86.947	T = 64
GDP Per Capita	overall	12313.794	19265.735	122.679	224582.45	NT = 11040
obi i ci capita	hetween	12313.134	20931 599	302.32	167187 157	N = 210
	within		7321.503	-38411.723	113333.003	T = 52.571
GDP Per Cap. Growth	overall	1 892	6 495	-64 424	140 491	NT = 10970
GDP Per Cap. Growth	between	1.092	1.689	-7.984	7.91	N = 10970 N = 212
	within		6.317	-7.984 -66.348	134 472	T = 51.745
	within		0.317	-00.348	134.472	1 = 51.745
Post Cold War	overall	0.538	0.499	0	1	NT = 13975
	between		0	0.538	0.538	N = 215
	within		0.499	0	1	T = 65
POLITY	overall	5.551	3.708	0	10	NT = 8279
	between		2.985	0	10	N = 165
	within		2.229	-1.431	12.319	T = 50.176
POLITY Squared	overall	44.569	40.241	0	100	NT = 8279
rount squared	hetween	509	33.233	0	100	N = 165

Pooled Logit

```
> Logit<-glm(CivilWar~log(LandArea)+log(PopMillions)+UrbanPopulation+log(GDPPerCapita)+
             GDPPerCapGrowth+PostColdWar+POLITY+POLITYSquared, data=DF, family="binomial")
> summarv(Logit)
Call:
glm(formula = CivilWar ~ log(LandArea) + log(PopMillions) + UrbanPopulation +
   log(GDPPerCapita) + GDPPerCapGrowth + PostColdWar + POLITY +
   POLITYSquared, family = "binomial", data = DF)
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
(Intercept)
                         0.51162 1.11 0.26809
               0.56660
log(LandArea)
               log(PopMillions) 0.69431 0.03612 19.22 < 2e-16 ***
UrbanPopulation
               0.02205 0.00320 6.89 5.6e-12 ***
GDPPerCapGrowth -0.03470 0.00604 -5.74 9.5e-09 ***
            -0.47957 0.08377 -5.73 1.0e-08 ***
PostColdWar
              0.71744 0.06087 11.79 < 2e-16 ***
PULTLY
POLITYSquared -0.06747 0.00569 -11.86 < 2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 6019.6 on 7366 degrees of freedom
Residual deviance: 4852.8 on 7358 degrees of freedom
 (6670 observations deleted due to missingness)
ATC: 4871
Number of Fisher Scoring iterations: 6
```

Fixed Effects

```
> FELogit<-bife(CivilWar~log(LandArea)+log(PopMillions)+UrbanPopulation+log(GDPPerCapita)+
              GDPPerCapGrowth+PostColdWar+POLITY+POLITYSquared | ISO3.data=DF.model="logit")
> summary(FELogit)
binomial - logit link
CivilWar ~ log(LandArea) + log(PopMillions) + UrbanPopulation +
   log(GDPPerCapita) + GDPPerCapGrowth + PostColdWar + POLITY +
   POLITYSquared | ISO3
Estimates:
                 Estimate Std. error z value Pr(> |z|)
log(LandArea)
                 -12.00531
                            7.65864 -1.57 0.117
log(PopMillions) 0.58488 0.27919 2.09 0.036 *
                 0.01672 0.01191 1.40 0.160
UrbanPopulation
log(GDPPerCapita) -0.37336  0.16192 -2.31  0.021 *
GDPPerCapGrowth
                 -0.05083 0.00792 -6.42 1.4e-10 ***
PostColdWar
                 -0.17934 0.17435 -1.03 0.304
POI.TTY
                 0.69481 0.09203 7.55 4.4e-14 ***
POLITYSquared
                -0.07283
                            0.00872 -8.35
                                             < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
residual deviance= 2929.
null deviance= 4551,
n= 4164, N= 86
( 6670 observation(s) deleted due to missingness )
( 3203 observation(s) deleted due to perfect classification )
Number of Fisher Scoring Iterations: 6
Average individual fixed effect= 149.2
```

Alternative Fixed Effects (using feglm)

```
> FELogit2<-feglm(CivilWar~log(LandArea)+log(PopMillions)+UrbanPopulation+log(GDPPerCapita)+
            GDPPerCapGrowth+PostColdWar+POLITY+POLITYSquared | ISO3, data=DF, family="binomial")
NOTES: 6,670 observations removed because of NA values (LHS: 4,985, RHS: 6,670).
      75 fixed-effects (3,203 observations) removed because of only 0 (or only 1) outcomes.
> summary(FELogit2)
GLM estimation, family = binomial, Dep. Var.: CivilWar
Observations: 4.164
Fixed-effects: ISO3: 86
Standard-errors: Clustered (ISO3)
                 Estimate Std. Error z value Pr(>|z|)
log(LandArea)
              -12.00530
                           8.63479 -1.3903 0.164425407
log(PopMillions) 0.58488 0.74592 0.7841 0.432978449
UrbanPopulation 0.01672 0.03484 0.4799 0.631318817
GDPPerCapGrowth -0.05083
                           0.01193 -4.2588 0.000020557 ***
PostColdWar
            -0.17934
                           0.46497 -0.3857 0.699717705
POLITY
                0.69481 0.23866 2.9112 0.003599910 **
POLITYSquared -0.07283
                           0.02361 -3.0852 0.002033893 **
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

BIC: 3,712.1 Squared Cor.: 0.397371

Log-Likelihood: -1,464.3 Adj. Pseudo R2: 0.315653

Random Effects

```
> RELogit <-pglm(CivilWar~log(LandArea)+log(PopMillions)+UrbanPopulation+log(GDPPerCapita)+
                GDPPerCapGrowth+PostColdWar+POLITY+POLITYSquared | ISO3.data=DF.
                family=binomial,effect="individual",model="random",method="bfgs")
> summary(RELogit)
Maximum Likelihood estimation
BFGS maximization, 86 iterations
Return code 0: successful convergence
Log-Likelihood: -1677
10 free parameters
Estimates:
               Estimate Std. error t value Pr(> t)
(Intercept)
              -0.98257
                          0.91423 -1.07 0.2825
log(LandArea)
              -0.00817 0.05876 -0.14 0.8895
log(PopMillions) 0.74765 0.05995 12.47 < 2e-16 ***
UrbanPopulation 0.01570 0.00519 3.03 0.0025 **
GDPPerCapGrowth -0.04889 0.00761 -6.42 1.3e-10 ***
PostColdWar
              -0.10801 0.11708 -0.92 0.3562
               0.67445
POT.TTY
                          0.07998 8.43 < 2e-16 ***
POLITYSquared -0.07389 0.00771 -9.58 < 2e-16 ***
sigma
                2.10909
                          0.09994 21.10 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Nice Table...

Models of Civil War

	Logit	FE Logit	FEs+Robust	RE Logit
Intercept	0.57			-0.98
	(0.51)			(0.91)
In(Land Area)	-0.10*	-12.01	-12.01	-0.01
	(0.03)	(7.66)	(8.63)	(0.06)
In(Population)	0.69*	0.58*	0.58	0.75*
	(0.04)	(0.28)	(0.75)	(0.06)
Urban Population	0.02*	0.02	0.02	0.02*
	(0.00)	(0.01)	(0.03)	(0.01)
In(GDP Per Capita)	-0.61*	-0.37*	-0.37	-0.65*
	(0.06)	(0.16)	(0.38)	(0.10)
GDP Growth	-0.03*	-0.05*	-0.05*	-0.05*
	(0.01)	(0.01)	(0.01)	(0.01)
Post-Cold War	-0.48*	-0.18	-0.18	-0.11
	(80.0)	(0.17)	(0.46)	(0.12)
POLITY	0.72*	0.69*	0.69*	0.67*
	(0.06)	(0.09)	(0.24)	(0.08)
POLITY Squared	-0.07*	-0.07*	-0.07*	-0.07*
	(0.01)	(0.01)	(0.02)	(0.01)
Estimated Sigma	` '	, ,	` ,	2.11*
•				(0.10)
AIC	4870.76			3374.17
BIC	4932.90			
Log Likelihood	-2426.38	-1464.34	-1464.34	-1677.09
Deviance	4852.76	2928.68	2928.68	
Num. obs.	7367	4164	4164	
Num. groups: ISO3			86	
Pseudo R ²			0.32	
*p < 0.05				

p < 0.05

Models For Event Counts

Event Counts

Properties:

- Discrete / integer-values
- Non-negative
- "Cumulative"

Motivation:

Arrival Rate =
$$\lambda$$

$$Pr(Event)_{t,t+h} = \lambda h$$

$$Pr(No Event)_{t,t+h} = 1 - \lambda h$$

$$Pr(Y_t = y) = \frac{\exp(-\lambda h)\lambda h^y}{y!}$$
$$= \frac{\exp(-\lambda)\lambda^y}{y!}$$

Poisson: Assumptions and Motivations

Three key assumptions:

- No Simultaneous Events
- Constant Arrival Rate
- Independent Event Arrivals

Another motivation: For M independent Bernoulli trials with (sufficiently small) probability of success π and where $M\pi \equiv \lambda > 0$,

$$Pr(Y_i = y) = \lim_{M \to \infty} \left[\binom{M}{y} \left(\frac{\lambda}{M} \right)^y \left(1 - \frac{\lambda}{M} \right)^{M-y} \right]$$
$$= \frac{\lambda^y \exp(-\lambda)}{y!}$$

Poisson: Characteristics

Characteristics:

- Discrete
- $E(Y) = Var(Y) = \lambda$
- Is not preserved under affine transformations...
- For $X \sim \mathsf{Poisson}(\lambda_X)$ and $Y \sim \mathsf{Poisson}(\lambda_Y)$, $Z = X + Y \sim \mathsf{Poisson}(\lambda_{X+Y})$ iff X and Y are independent but
- ...same is not true for differences.
- $\lambda \to \infty \iff Y \sim N$

Poisson Regression

Suppose

$$\mathsf{E}(Y_i) \equiv \lambda_i = \exp(\mathbf{X}_i \boldsymbol{\beta})$$

then

$$\Pr(Y_i = y | \mathbf{X}_i, \boldsymbol{\beta}) = \frac{\exp[-\exp(\mathbf{X}_i \boldsymbol{\beta})][\exp(\mathbf{X}_i \boldsymbol{\beta})]^y}{y!}$$

with likelihood:

$$L = \prod_{i=1}^{N} \frac{\exp[-\exp(\mathbf{X}_{i}\beta)][\exp(\mathbf{X}_{i}\beta)]^{Y_{i}}}{Y_{i}!}$$

and log-likelihood:

$$\ln L = \sum_{i=1}^{N} \left[-\exp(\mathbf{X}_{i}\boldsymbol{\beta}) + Y_{i}\mathbf{X}_{i}\boldsymbol{\beta} - \ln(Y_{i}!) \right]$$

Event Counts: Unit Effects

The Poisson model:

$$Y_{it} \sim \mathsf{Poisson}(\mu_{it} = \alpha_i \lambda_{it})$$

with $\lambda_{it} = \exp(\mathbf{X}_{it}\boldsymbol{\beta})$ implies:

$$E(Y_{it} \mid \mathbf{X}_{it}, \alpha_i) = \mu_{it}$$

$$= \alpha_i \exp(\mathbf{X}_{it}\beta)$$

$$= \exp(\delta_i + \mathbf{X}_{it}\beta)$$

where $\delta_i = \ln(\alpha_i)$.

Fixed-Effects Poisson:

- ...has no "incidental parameters" problem (see e.g. Cameron and Trivedi, pp. 281-2)
- This means "brute force" approach works
- Fitted via glmmML in R, xtpoisson (and xtnbreg) in Stata

Random-Effects Models

The Poisson with random effects is:

$$Pr(Y_{i1} = y_{i1}, ... Y_{iT} = y_{iT}) = \int_0^\infty Pr(Y_{i1} = y_{i1}, ... Y_{iT} = y_{iT}) f(\alpha_i) d\alpha_i$$
$$= \int_0^\infty \left[\prod_{t=1}^T Pr(Y_{it} \mid \alpha_i) \right] f(\alpha_i) d\alpha_i$$

- Simplest to assume $\alpha_i \sim \Gamma(\theta)$
- Yields a model with $\mathsf{E}(Y_{it}) = \lambda_{it}$ and $\mathsf{Var}(Y_{it}) = \lambda_{it} + \frac{\lambda_{it}^2}{\theta}$
- Via glmmML or glmer in R, or xtpois, re in Stata
- ∃ random effects negative binomial too...

Panel Models: Software

R:

- Tobi T = censReg (in censReg)
- Poisson (random effects) = glmmML in glmmML or glmer in Ime4
- Poisson (fixed effects) = glmmML or "brute force"
- Poisson + negative binomial (FE, RE) = pglm

Stata:

- Tobi T = xttobit (re only)
- Poisson / negative binomial = xtpoisson, xtnbreg (both with fe, re options)

Conflict Onsets: Pooled Poisson

```
> xtabs(~DF$OnsetCount)
DF$OnsetCount
  0 1
           30
8981 375
                 7
> Poisson<-glm(OnsetCount~log(LandArea)+log(PopMillions)+UrbanPopulation+log(GDPPerCapita)+
              GDPPerCapGrowth+PostColdWar+POLITY+POLITYSquared,data=DF,family="poisson")
> summary(Poisson)
Call.
glm(formula = OnsetCount ~ log(LandArea) + log(PopMillions) +
   UrbanPopulation + log(GDPPerCapita) + GDPPerCapGrowth + PostColdWar +
   POLITY + POLITYSquared, family = "poisson", data = DF)
Coefficients:
                 Estimate Std Error z value
                                                Pr(>|z|)
(Intercept)
                 -1.61539
                            0.71010 -2.27
                                               0.02291 *
log(LandArea)
                0.02638
                            0.04571
                                       0.58
                                               0.56389
log(PopMillions) 0.43990
                            0.04481 9.82
                                               < 2e-16 ***
UrbanPopulation
                  0.00954
                            0.00453
                                       2 10
                                                 0.03536 *
log(GDPPerCapita) -0.47822
                            0.07684 -6.22 0.000000000049 ***
GDPPerCapGrowth -0.03443
                            0.00632 -5.45.0.00000005006 ***
PostColdWar
                  0.23592
                            0.11884 1.99
                                                 0.04711 *
POLITY
                 0.31549
                            0.08256
                                       3.82
                                                 0.00013 ***
POLITYSquared -0.03473
                            0.00787 -4.41 0.00001016679 ***
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 2469.6 on 7366 degrees of freedom
Residual deviance: 2026.7 on 7358 degrees of freedom
  (6670 observations deleted due to missingness)
ATC: 2801
Number of Fisher Scoring iterations: 6
```

Fixed Effects Poisson

```
> FEPoisson<-pglm(OnsetCount~log(LandArea)+log(PopMillions)+UrbanPopulation+
             log(GDPPerCapita)+GDPPerCapGrowth+PostColdWar+POLITY+
             POLITYSquared, data=DF, family="poisson",
             effect="individual", model="within")
> summary(FEPoisson)
Maximum Likelihood estimation
Newton-Raphson maximisation, 4 iterations
Return code 8: successive function values within relative tolerance limit (reltol)
Log-Likelihood: -1051
8 free parameters
Estimates:
               Estimate Std. error t value Pr(> t)
log(LandArea)
              -13.53205 6.31007 -2.14 0.0320 *
log(PopMillions) 0.68787 0.30652 2.24 0.0248 *
UrbanPopulation
              GDPPerCapGrowth
              PostColdWar
              0.40306 0.18992 2.12
                                        0.0338 *
               0.49060 0.10757 4.56 0.0000051 ***
POLITY
POLITYSquared -0.05092 0.01048 -4.86 0.0000012 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

Equivalent Fixed Effects Poisson (using feglm)

```
> FEPoisson2<-feglm(OnsetCount~log(LandArea)+log(PopMillions)+UrbanPopulation+
                 log(GDPPerCapita)+GDPPerCapGrowth+PostColdWar+POLITY+
                   POLITYSquared | ISO3, data=DF, family="poisson")
NOTES: 6.670 observations removed because of NA values (LHS: 4.643, RHS: 6.670).
      63 fixed-effects (2,596 observations) removed because of only 0 outcomes.
> summary(FEPoisson2,cluster="IS03")
GLM estimation, family = poisson, Dep. Var.: OnsetCount
Observations: 4.771
Fixed-effects: ISO3: 98
Standard-errors: Clustered (ISO3)
                 Estimate Std. Error z value
                                              Pr(>|z|)
log(LandArea)
               -13.53207 4.140778 -3.2680 0.00108309724 **
log(PopMillions)
                 UrbanPopulation
                -0.03984 0.017334 -2.2981 0.02155734309 *
log(GDPPerCapita) -0.12016
                         0.157138 -0.7647 0.44447644897
GDPPerCapGrowth
                PostColdWar
             0.40306
                         0.291516 1.3826 0.16677886838
POT.TTY
                0.49060
                         0.111584 4.3967 0.00001098924 ***
POLITYSquared
                -0.05092
                         0.011461 -4.4432 0.00000886244 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Log-Likelihood: -1,194.2 Adj. Pseudo R2: 0.095584
         BIC: 3,286.3
                         Squared Cor.: 0.165799
```

Random Effects Poisson

```
> REPoisson<-pglm(OnsetCount~log(LandArea)+log(PopMillions)+UrbanPopulation+
                log(GDPPerCapita)+GDPPerCapGrowth+PostColdWar+POLITY+
                POLITYSquared.data=DF.family="poisson".effect="individual".
                model="random")
> summary(REPoisson)
Maximum Likelihood estimation
Newton-Raphson maximisation, 4 iterations
Return code 8: successive function values within relative tolerance limit (reltol)
Log-Likelihood: -1339
10 free parameters
Estimates:
                 Estimate Std. error t value Pr(> t)
(Intercept)
                -2.744822
                           1.028803 -2.67 0.0076 **
log(LandArea)
               -0.000294 0.071785 0.00
                                                0.9967
log(PopMillions) 0.450122 0.078710 5.72 0.000000011 ***
UrbanPopulation
                -0.003426 0.006232 -0.55
                                                0.5825
log(GDPPerCapita) -0.236302 0.099028 -2.39
                                                0.0170 *
GDPPerCapGrowth
                -0.032882
                          0.006448 -5.10 0.000000341 ***
PostColdWar
                 0.263971
                          0.126335 2.09
                                                0.0367 *
POT.TTY
                 0.478502
                          0.095197 5.03 0.000000500 ***
POLITYSquared -0.052547
                          0.009191 -5.72 0.000000011 ***
                 1.658763
                           0.391527 4.24 0.000022688 ***
sigma
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
```

Negative Binomial: Fixed Effects

```
> FENegBin2<-fenegbin(OnsetCount~log(LandArea)+log(PopMillions)+
                  UrbanPopulation+log(GDPPerCapita)+
                  GDPPerCapGrowth+PostColdWar+POLITY+
                  POLITYSquared | ISO3.data=DF)
NOTES: 6.670 observations removed because of NA values (LHS: 4.643, RHS: 6.670).
      63 fixed-effects (2,596 observations) removed because of only 0 outcomes.
Very high value of theta (10000). There is no sign of overdispersion, you may
 consider a Poisson model.
Warning message:
[femlm]: The information matrix is singular: presence of collinearity.
> summary(FENegBin2)
ML estimation, family = Negative Binomial, Dep. Var.: OnsetCount
Observations: 4,771
Fixed-effects: ISO3: 98
Standard-errors: NA (not-available)
                 Estimate Std. Error z value Pr(>|z|)
log(LandArea)
                 -13.53208
                                  NA
                                          NΑ
                                                  NA
log(PopMillions) 0.68788
                                  NΑ
                                          NΑ
                                                  NΑ
UrbanPopulation -0.03984
                                  NA
                                          NΑ
                                                  NΑ
log(GDPPerCapita) -0.12016
                                  NA
                                          NΑ
                                                  NΑ
GDPPerCapGrowth -0.03133
                                  NA
                                          NΑ
                                                  NΑ
PostColdWar
              0.40304
                                  NΑ
                                          NΑ
                                                  NΑ
POT.TTY
                 0.49061
                                  NΑ
                                          NΑ
                                                  NΑ
POLITYSquared -0.05092
                                  NΑ
                                                  NΑ
                                          NΑ
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Over-dispersion parameter: theta = 10000 (theta >> 0, no sign of overdispersion, you
 may consider a Poisson model)
Log-Likelihood: -1.194.2 Adi. Pseudo R2: 0.086372
          BIC: 3,286.3 Squared Cor.: 0.165798
```

Table!

Models of Civil War Onset Counts

	Poisson	FE Poisson	RE Poisson
Intercept	-1.62*		-2.74*
	(0.71)		(1.03)
In(Land Area)	0.03	-13.53*	-0.00
	(0.05)	(6.31)	(0.07)
In(Population)	0.44*	0.69*	0.45*
	(0.04)	(0.31)	(80.0)
Urban Population	0.01*	-0.04*	-0.00
	(0.00)	(0.01)	(0.01)
In(GDP Per Capita)	-0.48*	-0.12	-0.24*
	(80.0)	(0.14)	(0.10)
GDP Growth	-0.03*	-0.03*	-0.03*
	(0.01)	(0.01)	(0.01)
Post-Cold War	0.24*	0.40*	0.26*
	(0.12)	(0.19)	(0.13)
POLITY	0.32*	0.49*	0.48*
	(80.0)	(0.11)	(0.10)
POLITY Squared	-0.03*	-0.05*	-0.05*
	(0.01)	(0.01)	(0.01)
Estimated Sigma			1.66*
			(0.39)
AIC	2800.92	2118.74	2697.27
BIC	2863.07		
Log Likelihood	-1391.46	-1051.37	-1338.63
Deviance	2026.74		
Num. obs.	7367		
p < 0.05			

Wrap-Up: Some Useful Packages

• pglm

- · Workhorse package for panel (FE, RE, BE) GLMs
- · Binary + ordered logit/probit, Poisson / negative binomial
- Discussed + used extensively in Croissant and Millo (2018) Panel Data Econometrics with R
- The one thing it won't (apparently) do is fixed-effects, binary-response models...

• fixest

- · Fast / efficient fitting of FE models
- · Fits linear models, logit, Poisson, and negative binomial
- Includes easy coefficient plots & tables; simple multi-threading; built-in "robust" S.E.s

alpaca

- · Fast / efficient fitting of GLMs with high-dimensional fixed effects
- Includes bias correction for incidental parameters after binary-response models
- Also includes useful panel data simulation routines + average partial effects

Generalized Estimating Equations

Quick GLM review

Linear-normal model is:

$$Y_i = \mu_i + u_i$$

with:

$$\mu_i = \mathbf{X}_i \boldsymbol{\beta}.$$

Generalize:

$$g(\mu_i) = \mathbf{X}_i \boldsymbol{\beta}$$

and:

$$Y_i \sim \text{i.i.d. } F[\mu_i, \mathbf{V}_i].$$

GLM Estimation

"Score" equations:

$$\mathbf{U}(\beta) = \sum_{i=1}^{N} \mathbf{D}'_{i} \mathbf{V}_{i}^{-1} [Y_{i} - \mu_{i}] = \mathbf{0}.$$

with:

- $\mathbf{D}_i = \frac{\partial \mu_i}{\partial \beta}$,
- $\mathbf{V}_i = rac{h(\mu_i)}{\phi}$, and
- $(Y_i \mu_i) \approx \text{a "residual."}$
- Known as "quasi-likelihood" (e.g. Wedderburn 1974 Biometrika).

Now suppose:

$$Y_{it} = \mu_{it} + u_{it}$$

where

- $i \in \{1, ...N\}$ are i.i.d. "units,"
- $t \in \{1, ... T\}$, T > 1 are "time points,"
- we want $g(\mu_{it}) = \mathbf{X}_{it}\boldsymbol{\beta}$.

Key issue: Accounting for (conditional) dependence in *Y* over time.

GEE Basics

Full joint distributions over T are hard. But...

Define:

$$\mathbf{R}_{i}(\boldsymbol{\alpha}) = \begin{pmatrix} 1.0 & \alpha_{12} & \cdots & \alpha_{1,T} \\ \alpha_{21} & 1.0 & \cdots & \alpha_{2,T} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{T,1} & \cdots & \alpha_{T,T-1} & 1.0 \end{pmatrix},$$

- \rightarrow "working correlation" matrix.
 - Completely defined by α ,
 - Structure specified by the analyst.

GEE Origins

Liang and Zeger (1986): We can decompose the variance of Y_{it} as:

$$\mathbf{V}_i = \mathsf{diag}(\mathbf{V}_i^{rac{1}{2}}) \, \mathbf{R}_i(lpha) \, \mathsf{diag}(\mathbf{V}_i^{rac{1}{2}})$$

With a standard GLM assumption about the mean and variance, this is:

$$\mathbf{V}_{i} = \frac{\left(\mathbf{A}_{i}^{\frac{1}{2}}\right) \mathbf{R}_{i}(\alpha) \left(\mathbf{A}_{i}^{\frac{1}{2}}\right)}{\phi}$$

where

$$\mathbf{A}_i = egin{pmatrix} h(\mu_{i1}) & 0 & \cdots & 0 \\ 0 & h(\mu_{i2}) & \cdots & 0 \\ dots & dots & \ddots & dots \\ 0 & \cdots & 0 & h(\mu_{iT}) \end{pmatrix}$$

What does that mean?

$$V_i = Var(Y_{it}|X_{it}, \beta)$$
 has two parts:

- \mathbf{A}_i = unit-level variation,
- $R_i(\alpha)$ = within-unit temporal variation.

Specifying $\mathbf{R}_i(\alpha)$

Independent:
$$\mathbf{R}_i(\alpha) = \begin{pmatrix} 1.0 & 0 & \cdots & 0 \\ 0 & 1.0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 1.0 \end{pmatrix}$$

- Assumes no within-unit temporal correlation.
- Equivalent to GLM on pooled data.

Exchangeable:
$$\mathbf{R}_{i}(\alpha) = \begin{pmatrix} 1.0 & \alpha & \cdots & \alpha \\ \alpha & 1.0 & \cdots & \alpha \\ \vdots & \vdots & \ddots & \vdots \\ \alpha & \cdots & \alpha & 1.0 \end{pmatrix}$$

- One free parameter in $\mathbf{R}_i(\alpha)$ ($\alpha_{ts} = \alpha \ \forall \ t \neq s$)
- Temporal correlation within units is constant across time points.
- Akin (in some respects) to a random-effects model...

Specifying $\mathbf{R}_i(\alpha)$

$$AR(p) \text{ (e.g., } AR(1)): \qquad \mathbf{R}_{i}(\alpha) = \begin{pmatrix} 1.0 & \alpha & \alpha^{2} & \cdots & \alpha^{T-1} \\ \alpha & 1.0 & \alpha & \cdots & \alpha^{T-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \alpha^{T-1} & \cdots & \alpha^{2} & \alpha & 1.0 \end{pmatrix}$$

- One free parameter in $\mathbf{R}_i(\alpha)$ ($\alpha_{ts} = \alpha^{|t-s|} \ \forall \ t \neq s$).
- Conditional within-unit correlation an exponential function of the lag.

$$Stationary(p): \qquad \mathbf{R}_i(\alpha) = \begin{pmatrix} 1.0 & \alpha_1 & \cdots & \alpha_p & 0 & \cdots & 0 \\ \alpha_1 & 1.0 & \alpha_1 & \cdots & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & \alpha_p & \cdots & \alpha_1 & 1.0 \end{pmatrix}$$

- AKA "banded," or "p-dependent."
- $p \leq T 1$ free parameters in $\mathbf{R}_i(\alpha)$.
- Conditional within-unit correlation an exponential function of the lag, up to lag p, and zero thereafter.

Specifying $\mathbf{R}_i(\alpha)$

Unstructured:
$$\mathbf{R}_{i}(\alpha) = \begin{pmatrix} 1.0 & \alpha_{12} & \alpha_{13} & \cdots & \alpha_{1,\tau-1} \\ \alpha_{12} & 1.0 & \alpha_{23} & \cdots & \alpha_{2,\tau-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \alpha_{1,\tau-1} & \alpha_{2,\tau-1} & \cdots & \alpha_{\tau-1,\tau-1} & 1.0 \end{pmatrix}$$

- $\frac{T(T-1)}{2}$ free parameters in $\mathbf{R}_i(\alpha)$.
- Conditional within-unit correlation is completely data-dependent.

Score equations:

$$\boldsymbol{U}_{GEE}(\beta_{GEE}) = \sum_{i=1}^{N} \mathbf{D}_{i}^{\prime} \left[\frac{(\mathbf{A}_{i}^{\frac{1}{2}}) \, \mathbf{R}_{i}(\boldsymbol{\alpha}) \, (\mathbf{A}_{i}^{\frac{1}{2}})}{\phi} \right]^{-1} \left[Y_{i} - \mu_{i} \right] = \mathbf{0}$$

Two-step estimation:

- For fixed values of α_s and ϕ_s at iteration s, use Newton scoring to estimate $\hat{\beta}_s$,
- Use $\hat{\beta}_s$ to calculate standardized residuals $(Y_i \hat{\mu}_i)_s$, from which consistent estimates of α_{s+1} and ϕ_{s+1} can be estimated.

Inference

Liang & Zeger (1986):

$$\hat{eta}_{ extit{GEE}} \mathop{\sim}\limits_{N o \infty} extbf{N}(eta, oldsymbol{\Sigma}).$$

For $\hat{\Sigma}$, two options:

$$\hat{\mathbf{\Sigma}}_{\mathsf{Model}} = N \left(\sum_{i=1}^{N} \hat{\mathbf{\mathcal{D}}}_{i}' \hat{\mathbf{\mathcal{V}}}_{i}^{-1} \hat{\mathbf{\mathcal{D}}}_{i} \right)$$

$$\hat{\boldsymbol{\Sigma}}_{\mathsf{Robust}} = N \left(\sum_{i=1}^{N} \hat{\boldsymbol{D}}_{i}^{\prime} \hat{\boldsymbol{V}}_{i}^{-1} \hat{\boldsymbol{D}}_{i} \right)^{-1} \left(\sum_{i=1}^{N} \hat{\boldsymbol{D}}_{i}^{\prime} \hat{\boldsymbol{V}}_{i}^{-1} \hat{\boldsymbol{S}}_{i} \hat{\boldsymbol{V}}_{i}^{-1} \hat{\boldsymbol{D}}_{i} \right) \left(\sum_{i=1}^{N} \hat{\boldsymbol{D}}_{i}^{\prime} \hat{\boldsymbol{V}}_{i}^{-1} \hat{\boldsymbol{D}}_{i} \right)^{-1}$$

where $\hat{\boldsymbol{S}}_i = (Y_i - \hat{\mu}_i)(Y_i - \hat{\mu}_i)'$.

Inference (aka, magic!)

- \bullet $\hat{\Sigma}_{\mathsf{Model}}$
 - Requires that $\mathbf{R}_i(\alpha)$ be "correct" for consistency.
 - Is slightly more efficient than $\hat{\Sigma}_{\mathsf{Robust}}$ if so.

- ullet $\hat{\Sigma}_{\mathsf{Robust}}$
 - Is consistent even if $R_i(\alpha)$ is misspecified.
 - ullet Is slightly less efficient than $\hat{\Sigma}_{\mathsf{Model}}$ if $\mathbf{R}_i(lpha)$ is correct.

Moral: Use $\hat{\Sigma}_{Robust}$

Summary

GEEs:

- Are a straightforward variation on GLMs, and so
- Can be applied to a range of data types (continuous, binary, count, proportions, etc.),
- Yield robustly consistent point estimates of β s,
- Account for within-unit correlation in an informed way, but also
- Yield consistent inferences even if the correlation is misspecified.

Practical Issues: Model Interpretation

- In general, GEEs = GLMs.
- GEEs are marginal models, so:
 - \cdot $\hat{\beta}$ s have an interpretation as average / total effects.
 - Estimates / effect sizes generally be smaller than conditional (e.g. fixed/random) effects models.
 - · E.g., for logit, $\hat{\beta}_M \approx \frac{\hat{\beta}_C}{\sqrt{1+0.35\sigma_\eta^2}}$, where $\sigma_\eta^2 > 0$ is the variance of the unit effects.
 - See (e.g.) Gardiner et al. (2009) or Koper and Manseau (2009) for expositions.

Practical Issues: Specifying $\mathbf{R}_i(\alpha)$

- Has been called "more art than science."
- Pointers:
 - · Choose based on substance of the problem.
 - · Remember that $\mathbf{R}_i(\alpha)$ is conditional on \mathbf{X} , $\hat{\boldsymbol{\beta}}$.
 - \cdot Consider unstructured when T is small and N large.
 - · Try different ones, and compare.
- In general, it shouldn't matter terribly much...

GEEs: Software

Software	Command(s)/Package(s)			
R	gee / geepack / geeM / multgeeB / orth / repolr			
Stata	<pre>xtgee / xtlogit / xtprobit / xtpois / etc.</pre>			
SAS	genmod (w/ repeated)			

GEEs: Software Tips

- Generally follow GLMs (specify "family" + "link")
- Certain combinations not possible/recommended
- Estimation: Fisher scoring, MLE, etc. (MCMC?)

From the geepack manual:

Warning

Use "unstructured" correlation structure only with great care. (It may cause R to crash).

Civil War Redux... GEE: Independence

```
> GEE.ind<-geeglm(CivilWar~log(LandArea)+log(PopMillions)+UrbanPopulation+
              log(GDPPerCapita)+GDPPerCapGrowth+PostColdWar+POLITY+
              POLITYSquared, data=DF, id=ISO3, family="binomial",
+
              corstr="independence")
> summary(GEE.ind)
Call:
geeglm(formula = CivilWar ~ log(LandArea) + log(PopMillions) +
   UrbanPopulation + log(GDPPerCapita) + GDPPerCapGrowth + PostColdWar +
   POLITY + POLITYSquared, family = "binomial", data = DF, id = ISO3,
   corstr = "independence")
 Coefficients:
                 Estimate Std.err Wald Pr(>|W|)
(Intercept)
                 0.5666 1.9536 0.08
                                         0.77179
log(LandArea) -0.1018 0.1215 0.70
                                         0.40195
log(PopMillions) 0.6943 0.1388 25.02 0.00000057 ***
UrbanPopulation 0.0220 0.0135 2.66 0.10308
log(GDPPerCapita) -0.6075 0.2274 7.14 0.00755 **
GDPPerCapGrowth
                 -0.0347 0.0120 8.42 0.00371 **
PostColdWar -0.4796 0.2584 3.45 0.06343 .
POT.TTY
                 0.7174 0.2131 11.33 0.00076 ***
POLITYSquared -0.0675 0.0193 12.19 0.00048 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation structure = independence
Estimated Scale Parameters:
           Estimate Std.err
(Intercept)
              0.845
                     0.433
Number of clusters:
                    161 Maximum cluster size: 57
```

GEE: Exchangeable

```
> GEE.exc<-geeglm(CivilWar~log(LandArea)+log(PopMillions)+UrbanPopulation+log(GDPPerCapita)+GDPPerCapGrowth+
                   PostColdWar+POLITY+POLITYSquared,data=DF,id=ISO3,family="binomial",corstr="exchangeable")
> summary(GEE.exc)
Call.
geeglm(formula = CivilWar ~ log(LandArea) + log(PopMillions) +
    UrbanPopulation + log(GDPPerCapita) + GDPPerCapGrowth + PostColdWar +
    POLITY + POLITYSquared, family = "binomial", data = DF, id = ISO3,
    corstr = "exchangeable")
 Coefficients:
                 Estimate Std.err Wald Pr(>|W|)
(Intercept)
                 -3.80033 2.71926 1.95 0.1622
log(LandArea)
                0.19709 0.23788 0.69 0.4074
log(PopMillions) 0.48603 0.19507 6.21 0.0127 *
UrbanPopulation 0.00166 0.01215 0.02 0.8913
log(GDPPerCapita) -0.28648 0.20287 1.99 0.1579
GDPPerCapGrowth -0.03519 0.00871 16.33 0.000053 ***
PostColdWar
               -0.06790 0.23875 0.08 0.7761
POT.TTY
                0.50948 0.16628 9.39 0.0022 **
POLITYSquared -0.05256 0.01650 10.15 0.0014 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Correlation structure = exchangeable
Estimated Scale Parameters:
           Estimate Std err
(Intercept)
              0.935
                       1.97
  Link = identity
Estimated Correlation Parameters:
     Estimate Std.err
alpha
        0.504 0.674
Number of clusters: 161 Maximum cluster size: 57
```

```
> GEE.ar1<-geeglm(CivilWar~log(LandArea)+log(PopMillions)+UrbanPopulation+log(GDPPerCapita)+GDPPerCapGrowth+
                   PostColdWar+POLITY+POLITYSquared,data=DF,id=ISO3,family="binomial",corstr="ar1")
> summary(GEE.ar1)
Call.
geeglm(formula = CivilWar ~ log(LandArea) + log(PopMillions) +
    UrbanPopulation + log(GDPPerCapita) + GDPPerCapGrowth + PostColdWar +
    POLITY + POLITYSquared, family = "binomial", data = DF, id = ISO3,
    corstr = "ar1")
 Coefficients:
                 Estimate Std.err Wald Pr(>|W|)
(Intercept)
                 -1.55942 9.52623 0.03 0.870
log(LandArea)
                0.08399 0.67323 0.02 0.901
log(PopMillions) -0.44625 0.79798 0.31 0.576
UrbanPopulation -0.04251 0.10101 0.18 0.674
log(GDPPerCapita) 0.01190 0.81715 0.00 0.988
GDPPerCapGrowth -0.01758 0.00835 4.44 0.035 *
PostColdWar
               0.30524 0.48295 0.40 0.527
POT.TTY
                0.21724 0.29136 0.56 0.456
POLITYSquared -0.02316 0.03006 0.59
                                       0.441
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Correlation structure = ar1
Estimated Scale Parameters:
           Estimate Std err
(Intercept)
               6.85
                        316
  Link = identity
Estimated Correlation Parameters:
     Estimate Std.err
alpha
        0.971
                 2.16
Number of clusters: 161 Maximum cluster size: 57
```

GEE: Unstructured (2013-2017)

```
> GEE.unstr<-geeglm(CivilWar~log(LandArea)+log(PopMillions)+UrbanPopulation+log(GDPPerCapita)+GDPPerCapGrowth+
                  POLITY+POLITYSquared,data=DF5,id=ISO3,family="binomial",corstr="unstructured")
> summary(GEE.unstr)
Call:
geeglm(formula = CivilWar ~ log(LandArea) + log(PopMillions) +
   UrbanPopulation + log(GDPPerCapita) + GDPPerCapGrowth + POLITY +
   POLITYSquared, family = "binomial", data = DF5, id = ISO3.
    corstr = "unstructured")
Coefficients:
                Estimate Std.err Wald Pr(>|W|)
(Intercept)
                -1.9652 3.1213 0.40 0.52896
log(LandArea)
                0.1374 0.1911 0.52 0.47201
log(PopMillions) 0.8891 0.2451 13.16 0.00029 ***
UrbanPopulation
                0.0347 0.0168 4.24 0.03940 *
log(GDPPerCapita) -0.8357 0.2994 7.79 0.00525 **
GDPPerCapGrowth -0.0160 0.0309 0.27 0.60496
POT TTY
                0.5023 0.4096 1.50 0.22005
POLITYSquared -0.0581 0.0360 2.61 0.10644
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Correlation structure = unstructured
Estimated Scale Parameters:
           Estimate Std.err
(Intercept)
              0.667 0.789
  Link = identity
Estimated Correlation Parameters:
         Fetimate Std err
alpha.1:2 0.384 0.477
alpha.1:3 0.405 0.502
alpha.1:4 0.345
                  0.431
alpha.1:5 0.334
                  0.415
alpha.2:3 0.714
                  0.822
alpha.2:4 0.279
                  0.352
alpha.2:5 0.496 0.573
alpha.3:4 0.397
                  0.501
alpha.3:5
           0.738 0.857
alpha.4:5
           0 435 0 542
```

Number of clusters: 159 Maximum cluster size: 5

GEE Model Comparison

Table 1: GEE Models of Civil War Onset

	Independence	Exchangeable	AR(1)	Unstructured (2013-17)
(Intercept)	0.567	-3.800	-1.559	-1.965
	(1.954)	(2.719)	(9.526)	(3.121)
In(Land Area)	-0.102	0.197	0.084	0.137
	(0.121)	(0.238)	(0.673)	(0.191)
In(Population)	0.694***	0.486*	-0.446	0.889***
	(0.139)	(0.195)	(0.798)	(0.245)
Urban Population	0.022	0.002	-0.043	0.035*
	(0.014)	(0.012)	(0.101)	(0.017)
In(GDP Per Capita)	-0.608**	-0.286	0.012	-0.836**
	(0.227)	(0.203)	(0.817)	(0.299)
GDP Growth	-0.035**	-0.035***	-0.018*	-0.016
	(0.012)	(0.009)	(0.008)	(0.031)
Post-Cold War	-0.480+	-0.068	0.305	
	(0.258)	(0.239)	(0.483)	
POLITY	0.717***	0.509**	0.217	0.502
	(0.213)	(0.166)	(0.291)	(0.410)
POLITY Squared	-0.067***	-0.053**	-0.023	-0.058
	(0.019)	(0.016)	(0.030)	(0.036)
Num.Obs.	7367	7367	7367	791

 $^{+\;}p\;{<}0.1,\;^*\;p\;{<}0.05,\;^{**}\;p\;{<}0.01,\;^{***}\;p\;{<}0.001$

GEEs: Wrap-Up

GEEs are:

- Robust
- Flexible
- Extensible beyond panel/TSCS context

Appendix: Discrete-Time Survival Models

Survival Analysis

Survival models:

- ...are models for time-to-event data.
- ...have their roots in biostats/epidemiology, plus engineering, sociology, economics.
- Examples...
 - Political careers, confirmation durations, position-taking, bill cosponsorship, campaign contributions, policy innovation/adoption, etc.
 - Cabinet/government durations, length of civil wars, coalition durability, etc.
 - War duration, peace duration, alliance longevity, length of trade agreements, etc.
 - · Strike durations, work careers (including promotions, firings, etc.), criminal careers, marriage and child-bearing behavior, etc.

Time-To-Event Data

Characteristics:

- *Discrete* events (i.e., not continuous),
- Take place over time,
- May not (or <u>never</u>) experience the event (i.e., possibility of censoring).

Terminology:

 Y_i = the duration until the event occurs,

 Z_i = the duration until the observation is "censored"

 $T_i = \min\{Y_i, Z_i\},$

 $C_i = 0$ if observation *i* is *censored*, 1 if it is not.

Density:

$$f(t) = Pr(T_i = t)$$

CDF:

$$Pr(T_i \le t) \equiv F(t) = \int_0^t f(t) dt$$

Survival function:

$$Pr(T_i \ge t) \equiv S(t) = 1 - F(t)$$

= $1 - \int_0^t f(t) dt$

Hazard:

$$Pr(T_i = t | T_i \ge t) \equiv h(t) = \frac{f(t)}{S(t)}$$
$$= \frac{f(t)}{1 - \int_0^t f(t) dt}$$

Grouped-Data Survival Approaches

Model:

$$\Pr(C_{it}=1)=f(\mathbf{X}_{it}\beta)$$

Advantages:

- Easily estimated, interpreted and understood
- Natural interpretations:
 - $\hat{\beta}_0 \approx$ "baseline hazard"
 - · Covariates shift this up or down.
- Can incorporate data on time-varying covariates
- Lots of software

Potential Disadvantages:

- Requires time-varying data
- Must deal with time dependence explicitly

Temporal Issues in Grouped-Data Models

(Implicit) "Baseline" hazard:

$$h_0(t) = \frac{\exp(\beta_0)}{1 + \exp(\beta_0)}$$

→ No temporal dependence / "flat" hazard

Time trend:

$$\Pr(Y_{it} = 1) = f(\mathbf{X}_{it}\beta + \gamma T_{it})$$

- ullet $\hat{\gamma} > 0 \,
 ightarrow {
 m rising\ hazard}$
- $\hat{\gamma} < 0 \rightarrow$ declining hazard
- ullet $\hat{\gamma}=0$ ightarrow "flat" (exponential) hazard

Variants/extensions: Polynomials...

$$Pr(Y_{it} = 1) = f(\mathbf{X}_{it}\beta + \gamma_1 T_{it} + \gamma_2 T_{it}^2 + \gamma_3 T_{it}^3 + ...)$$

Temporal Issues in Grouped-Data Models

"Time dummies":

$$Pr(Y_{it} = 1) = f[\mathbf{X}_{it}\beta + \alpha_1 I(T_{i1}) + \alpha_2 I(T_{i2}) + \dots + \alpha_{t_{max}} I(T_{it_{max}})]$$

- → Beck, Katz, and Tucker's (1998) cubic splines; might also use:
 - Fractional polynomials
 - Smoothed duration
 - Loess/lowess fits
 - Other splines (B-splines, P-splines, natural splines, etc.)