Revisiting Spacetrack Report #3

David A. Vallado*

Center for Space Standards and Innovation, Colorado Springs, Colorado, 80920

Paul Crawford[†] Crawford Communications Ltd., Dundee, DD2 1EW, UK

Richard Hujsak[‡] *Analytical Graphics, Inc., Exton, PA, 19341*

and

T. S. Kelso[§]
Center for Space Standards and Innovation, Colorado Springs, Colorado, 80920

Over a quarter century ago, the United States Department of Defense (DoD) released the equations and source code used to predict satellite positions through *SpaceTrack Report Number 3* (STR#3). Because the DoD's two-line element sets (TLEs) were the only source of orbital data, widely available through NASA, this code became commonplace among users needing accurate results. However, end users made code changes to correct the implementation of the equations and to handle rare cases encountered in operations. These changes migrated into numerous new versions and compiled programs outside the DoD. Changes made to the original STR#3 code have not been released in a comprehensive form to the public, so the code available to the public no longer matches the code used by DoD to produce the TLEs. Fortunately, independent efforts, technical papers, and source code enabled us to synthesize a non-proprietary version which we believe is up-to-date and accurate. This paper provides source code, test cases, results, and analysis of a version of SGP4 theory designed to be highly compatible with recent DoD versions.

I. INTRODUCTION AND HISTORY

The Simplified General Perturbations (SGP) model series began development in the 1960s (Lane 1965), and became operational in the early 1970s (Lane and Cranford, 1969). The original release of the refined Simplified General Perturbations-4 (SGP4) propagator source code was *Spacetrack Report Number 3* (Hoots and Roehrich, 1980). That release resulted from a user compatibility survey of space surveillance operational sites and official users. The magnitude of the resulting variations spurred an effort to promote better compatibility for users. The intent was to get the operational community, as well as ordinary users, synchronized with respect to the implementation. The best vehicle for this was a technical report, including the computer source code. It was designed for the widest possible dissemination. Although most of the equations were given, the use of the source code became common practice for using Two-line Element (TLE) sets.**

^{*} Technical Program Manager, Center for Space Standards and Innovation, 7150 Campus Dr, Suite 260, dvallado@centerforspace.com, AIAA Associate Fellow.

[†] Principal Engineer, 25 Blackness Avenue, <u>pcrawford@dundee0.demon.co.uk.</u>

^{*} Orbit Determination Lead Engineer, 220 Valley Creek Blvd, rhujsak@agi.com.

[§] Technical Program Manager, Center for Space Standards and Innovation, 7150 Campus Dr, Suite 260, tskelso@centerforspace.com, AIAA Associate Fellow.

^{**} Note that the code is not vetted as a consensus standard. The well-confirmed and long-established industry consensus standards process requires consensus on all elements of a technique and its implementation throughout a wide community of experts. There is no formal consensus standard for orbit determination or propagation.

Spacetrack Report Number 3 officially introduced five orbital propagation models to the user community—SGP, SGP4, SDP4, SGP8 and SDP8—all "generally" compatible with the TLE data. At the time, SGP had just been replaced by SGP4/SDP4 (the latter having included deep-space perturbations). The SGP8/SDP8 model was developed to alleviate deficiencies of SGP4/SDP4 for the special cases of orbital decay and reentry. The approach provided a closed-form solution based on the general trends of orbital elements as they neared reentry, and was quite successful. However, there is no evidence to suggest that SGP8/SDP8 was implemented for operational TLE formation.

After STR#3, Spacetrack Report Number 6 (Hoots, 1986) was publicly released by North American Aerospace Defense Command (NORAD). Some researchers initially assumed this release was intended to update portions of the SDP4 deep-space routines, but the actual intention was to document HANDE* and had little to do with SGP4/SDP4. Nevertheless, it provided amateur satellite trackers and researchers with a confirmation of identified deficiencies in the original validation and verification efforts. This report has not been as widely circulated as STR#3, which benefited from its early electronic availability (Kelso, 1988).

In the early 1990s, the NASA Goddard Space Flight Center (GSFC) obtained a copy of the 1990 standalone SGP4 code[†] from project SpaceTrack as part of a study on orbit propagation models for the SeaWiFS Mission (Patt et al., 1993). In 1996–7 they released the unrestricted code on the Internet and to numerous organizations around the world involved in the SeaWiFS Mission. It confirmed changes already discovered by many independent researchers, and we refer to it simply as the "GSFC version."

In 1998, Hoots published a history of the equations, background, and technical information on SGP4. In 2004, Hoots et al. published a complete documentation of all the equations (including the deep-space portion). These publications cover the incorporation of resonances, third-body forces, atmospheric drag, and other perturbations into the mathematical technique. We note that all published reports on SGP4 have suggested only improvements in the code used to implement it, and not any changes to the underlying theory. Thus, the equations in Hoots (2004) should be representative of the current mathematical theory. This is a fundamental and essential assumption we use in this paper.

Outside the DoD, perhaps the most comprehensive external version of the software resided with Paul Crawford. His "Dundee code" kept track of the many changes inferred by real-world observations by independent researchers, and those confirmed by DoD releases. Many of the results contained in the code pre-date matters that were later confirmed in the DoD standalone releases. We use the change history from the Dundee in this analysis.

A. Motivation

Spacetrack Report Number 3 noted the importance of using the specific equations and data input to ensure proper operation and we repeat it here. "The most important point to be noted is that not just any prediction model will suffice... The NORAD element sets must be used with one of the models described in this report in order to retain maximum prediction accuracy." The numerous releases and modifications to the original SGP4 standalone code have made it virtually impossible to satisfy that direction today. For instance, using element sets generated with the operational SGP4 code will not reproduce the same ephemeris as the original STR#3 code (without modifications) would. Similarly, using this TLE data in another general perturbations propagator will result in completely erroneous results. Simply converting the orbital elements to an osculating state vector and propagating with a numerical propagator is equally invalid. These are consequences of the model-based parameter estimation technique of orbit determination, and are most noticeable when using general perturbation techniques.

In fact, one may infer that none of the public releases meet this criterion because Kaya, et al. (2004) says "Air Force Space Command (AFSPC) developed Astrodynamic Standard Software to emulate the operational astrodynamic algorithms used by the Space Control Center (SCC) in the Cheyenne Mountain Operations Center (CMOC)" by "extracting desired algorithms from the larger programs in the Space Defense Operations Center (SPADOC) within the SCC." Thus, there are multiple versions of the SGP4 code even within the DoD. We must recognize that the true official code is inextricably linked and embedded within the operational computer system at CMOC (we designate it as the "operational" version). CMOC uses this operational version to produce all the TLE data that are distributed daily to worldwide users. A similar "standalone" version of the official code is maintained

^{*} The HANDE model was intended to replace the analytical SGP4/SDP4 model. It incorporated the effects of the Jacchia dynamic atmosphere models for the average solar flux during the propagation interval, while retaining the speed and character of an analytic general perturbations model. It also included the full Brouwer gravity solution, much of which had been dropped for the SGP4 simplification. The code was implemented in the operational system, but its use is unknown.

[†] It appears that the merged SGP4/SDP4 models were now referred to simply as 'SGP4' from this 1990 code onwards.

by technical offices within AFSPC, which, under various organizational names,* published the Spacetrack series of reports. The mention of emulating the operational codes leads us to think that AFSPC routinely tests and aligns these two versions for compatibility. *Spacetrack Report Number 3* report contained a snapshot of this standalone code in 1980 and is the basis for our discussion.

Kaya et al. (2001) note the lack of enforcement for early AFSPC instructions (publicly available administrative documents) concerning the use of their standalone code, and discusses changes in AFSPC policy about releasing code. We see this in the evolution of Air Force Space Command Instructions. These documents imply that models and computer codes have been extracted from larger programs, modified frequently, and that those modifications are not promulgated or available to the broader user community.[†]

Perhaps the best motivation for the paper came from a 1998 version of AFSPCI 33-105, which stated,

The need for this instruction was identified by the lack of any HQ AFSPC procedures for releasing a certain set of software, commonly called the "astrodynamics algorithms," used in the Space Defense Operations Center system (SPADOC 4C) for the space control mission. With no configuration control in place, various versions of executable and source code of the "astrodynamics algorithms" have been used for certain contracts and research projects.

- 1.1. Over the past 15 years or so, various commercial companies have produced and marketed products that these companies claim contain some of AFSPC's astrodynamics algorithms. Not only are these claims very difficult to confirm, very few of these claims, if any, have ever been confirmed. Also, in many cases, AFSPC has no documentation that states why, when, and from whom the contractor obtained the command's code. Consequently, AFSPC and other DoD units may have purchased their own software, often unknowingly.
- 1.2. Frequently, the algorithms and code contained in these products were outdated versions or had even been modified without consultation and certification from AFSPC. Additionally, the contractor rarely provides source code of their proprietary system to AFSPC so AFSPC cannot confirm whether the system's software actually contains the AFSPC "astrodynamics algorithms." Consequently, AFSPC cannot perform verification and validation that the astrodynamics algorithms have been utilized correctly in decision support systems, potentially critical to the space support provided to other combat units. Because of the severity of the problem with AFSPC's astrodynamics algorithms, an overall instruction for all of the command's software is required.

Thus today, there are perhaps more versions in use than at the time of original publication and compatibility and interoperability for users has been impacted. Many organizations routinely use a "version" of SGP4 that they received from "someone" at "sometime". Precise documentation is often scarce. Thus, a primary motivation for this paper is to bring the community up to speed with respect to the current implementation of SGP4 and the TLE data released by NORAD.

B. Purpose

that time were not "legacy ... software."

The technical community has increasingly sought more information about SGP4 because its TLE data set continues to be widely disseminated even today and represents the only 'public' source of data covering the majority of orbiting objects. Although many of today's most important operations have switched to numerical processing methods, the analytical approach still has value, especially when dealing with large numbers of satellites. Examples of these include:

- Rapid searches for satellite visibility for ground stations, and generation of communication schedules.
- Programmed tracking of medium beamwidth antennas (or initial acquisition for narrow beamwidth auto-track systems) using limited CPU power embedded devices.
- Investigations into initial orbit design based on low-precision requirements, such as general sensor and/or ground station visibility statistics.

* We provide background information on some of the organizational acronyms used within this paper in the Appendix as they may be confusing.

[†] In the late 1990's AFSPC formalized the STR#3 advice and implemented regulations mandating procedures pertaining to the use and distribution of the standalone code stating in a 1998 version of AFSPCI 33-105 that, "AFSPCI 60-102, Space Surveillance Astrodynamics Standards, requires that legacy government astrodynamics software be used in new systems to ensure interoperability with Space Defense Operations Center system (SPADOC 4C) orbital data and to reduce acquisition costs by using verified and validated standard astrodynamics algorithms that are Government Off-The Shelf (GOTS) software". The 2004 version of AFSPCI 33-105, says, "AFSPCI 60-102, Space Surveillance Astrodynamic Standards, mandates that only standard constants, physical models and astrodynamic algorithms will be used in all AFSPC systems requiring space vehicle trajectory data from or providing space vehicle trajectory data to the Space Control Center (SCC)," implying that standards at

• Rapid assessment of close conjunctions (http://CelesTrak.com/SOCRATES) (Kelso and Alfano, 2005) can be made computationally efficient by pre-processing with analytical techniques, and then applying numerical techniques only to those cases that appear to warrant additional consideration.

This paper provides source code, test cases, results, and analysis of a version of SGP4 designed to be similar to the standalone code. Because the complete equations for SGP4/SDP4 are given in Hoots et al. (2004), they are not repeated here. Instead, the focus is more on the actual code development, testing methodology, and results. The references at the end of the paper attempt to list the various papers that document the SGP4 theory and practice. This will establish a consistent new baseline and permit improved accuracy of operations for worldwide users that routinely process TLE data. The TLE are routinely available from CelesTrak (http://CelesTrak.com) and AFSPC (www.space-track.org). The basic format for the data has not changed much over the years and is described in many places and we have included a discussion in the Appendix.

II. PROGRAM INTERFACE ISSUES

A few technical questions and comments are necessary to effectively integrate these analytical solutions into today's environment.

A. Theoretical Issues

TLE data support a mix of coordinate systems and analytical theories. The SGP theory was largely based on Kozai (1959), while the SGP4 theory was primarily based on Brouwer (1959). The two theories are rather different, but both are still in use today. Neither the Kozai nor Brouwer theory originally included drag effects, so different treatments of atmospheric drag are in use. SGP approximates drag via rate changes of mean motion (Hilton and Kuhlman, 1966), while SGP4 uses power density functions (Lane and Cranford, 1969; Lane and Hoots, 1979) that require a term that encapsulates the ballistic coefficient, Bstar (see Vallado, 2004: 113–116). Simplified force modeling and the batch-least-squares processing of observational data often yield a Bstar that has "soaked up" force model errors. Occasionally, one finds negative Bstar values, indicating erroneously that energy is being added to the system, but this is simply a consequence of the limited SGP4 force modeling with respect to the actual dynamical environment.

B. Configuration Control

TLE data do not reveal which version of SGP4 was employed to estimate the orbital parameters. Different definitions of the so-called True Equator Mean Equinox (TEME) coordinate system and time systems may also have been used at different times. Without a list of dates to synchronize these changes with historical TLE data, the user must decide which version of the SGP4 propagator might be consistent. Because the accuracy of the propagator is generally in the kilometer-level range (Hartman, 1993), this may not be a problem for most cases, but as we'll see shortly, some of the technical modifications can cause results to differ by hundreds of kilometers. This topic is perhaps the least likely to have a simple solution, but could potentially account for significant differences in ephemeris generation.

C. Data Formats

The TLE format appears to have changed slightly over the years, and numerous TLE data were disseminated with missing or erroneous values. Some of these cases simply test the error handling of the code and its ability to handle premature ending of the propagation.

The TLE Element Type is always set to zero for distributed data, although STR#3 suggests the following assignments: 1 = SGP, 2 = SGP4, 3 = SDP4, 4 = SGP8, 5 = SDP8. The TLE sets also use differing formats (e.g., use of leading zeros, or not). Sometimes, parameters are omitted within the TLE data (e.g., a second time derivative of mean motion or Bstar drag term equal to zero). These variations can confound fixed-read implementations in a computer program. The parsing of the TLE files is a bigger problem in languages such as C where the fixed-position approach (common in FORTRAN) is unusual, and where the 'NUL' (zeroth in the ASCII collating sequence) has a special end-of-string significance. Additionally, there are possible differences between DOS-formatted text files (CR/LF for end of line) and UNIX format (LF only). Attention is paid in the conversion utility to account for these discrepancies and the parsing routine is kept separate from the SGP4 routines to permit users the option of tailoring their parsing needs for a particular operation.

The TLE format has a simplistic form of error checking by having a checksum character for each line; however, it is prudent to check for other 'fixed' aspects (such as the "1" and "2" for each line, matching satellite numbers on the two lines, variable ranges, etc.) since the modulo-10 checksum only provides a 90% detection rate for uniformly

random errors. Even with the checksum, there has been some ambiguity over the value assigned to the characters (the + sign in particular, which we believe should be zero), some additional explanation can be found on the web.*

D. Coordinate System

The actual SGP4 model has little need for any specific coordinate or time system (e.g., the near-Earth part is rotationally symmetric about the pole), but when used for propagating TLE generated by DoD it becomes important to use the same coordinate system as the DoD orbit determination routines use. The commonly accepted output coordinate system is that of the "true equator, mean equinox" (TEME) (Herrick, 1971:325, 338, 341). An exact operational definition of TEME is very difficult to find in the literature, but conceptually its primary direction is related to the "uniform equinox" (Seidelmann, 1992:116, and Atkinson and Sadler, 1951). The intent was to provide an efficient, if approximate, coordinate system for use with the AFSPC analytical theories. Technically, the direction of the uniform equinox resides along the true equator "between" the origin of the intermediate Pseudo Earth Fixed (PEF) and True of Date (TOD) frames (Vallado, 2004:211, 221). It is found by observing that θ_{GAST82} may be separated into its components. Thus,

$$\vec{r}_{TOD} = ROT3(-\theta_{GAST82})\vec{r}_{PEF} \quad and \quad \theta_{GAST82} = \theta_{GMST82} + Eqe_{82}$$

$$\vec{r}_{TEME} = ROT3(-\theta_{GMST82})\vec{r}_{PEF}$$

$$\vec{r}_{PEF} = ROT3(\theta_{GMST82})\vec{r}_{TEME}$$
(1)

We recommend converting TEME to a truly standard coordinate frame before interfacing with other external programs. The preferred approach is to rotate to PEF using Greenwich Mean Sidereal Time (GMST), and then rotate to other standard coordinate frames. Conversions are well documented from this point. To implement, you simply apply a sidereal rotation about the Z-axis by GMST (using UT1 as we discuss later). Because polar motion has been historically neglected for General Perturbation (GP) applications, we assume that the pseudo Earth-fixed frame is the closest conventional frame.

If a rotation is made to TOD using the equation of the equinoxes, several approximations are introduced with the calculation of the nutation of the longitude ($\Delta\Psi$) and the obliquity of the ecliptic (ϵ). There are at least three possible sources of uncertainty with this method: the number of terms to include in the nutation series, the inclusion of the post-1996 "kinematic correction" terms to the equation of the equinoxes, and small angle approximations. After choosing the length of the IAU 1980 nutation series (4, 10, and 106 terms are popular choices with 4 being most common), the transformation is sometimes further reduced by assuming that $\Delta\Psi\approx0$, $\epsilon\approx\bar{\epsilon}$, and $\Delta\epsilon\approx0$. This results in a nutation matrix that is significantly simpler than the complete nutation matrix, although the complete form is more common today. The equation of the equinox may be approximated by ignoring the "kinematic correction" terms starting in 1997 [such that $EQ_{eqe1980}\approx\Delta\Psi COS(\epsilon)$]. Finally, because some of the multiplicative quantities are small, second-order terms may be neglected.

However, you should be aware of an additional nuance, specifically the 'of date' and 'of epoch' formulations.

- TEME of Date—With this option, the epoch of the TEME frame is always the same as the epoch of the associated ephemeris generation time. The transformation to ECEF is done by first finding the conversion from TEME to TOD (third equation in Eq. (1)). Next the standard transformation from TOD to ECF is computed. We could have gone directly to PEF without the TOD frame (second equation in Eq. (1)), but this implementation enables comparison with the TEME of Epoch approach. All transformations are found using the complete IAU-76/FK5 formulae, including nutation.
- TEME of Epoch—In this approach, the epoch of the TEME frame is held constant. Subsequent rotation matrices must therefore account for the change in precession and nutation from the epoch of the TEME frame to the epoch of the transformation. This is accomplished by finding a static transformation from TEME to J2000—this includes the equation of the equinoxes, the nutation, and the precession which are all calculated at the epoch of the TLE. This static transformation is applied at each time requested in an

5

^{*} The data available on CelesTrak undergoes extensive testing prior to publication. This includes checksum, individual column checking (e.g., a number field can only have 0-9, a decimal field only a period), and range checking, where appropriate (e.g., inclination between 0 and 180). Not all archive sources of TLE have had such checks performed, and end users are advised to consider this aspect before using those TLE. Additional information can be found at the CelesTrak website. http://celestrak.com/NORAD/documentation/checksum.asp

We assume that CMOC orbit determination approximates the reference frames of radar and optical differently, and that numerical and analytical orbit determination methods use different techniques due to the differences in TEME, ECI, and the uncertain use of polar motion in coordinate systems.

ephemeris generation. Once the J2000 vector is found, standard techniques can convert this to other coordinate systems, at the appropriate time. This is computationally intensive, and introduces error into the subsequent solutions. All transformations, after the initial static calculations, are computed using the complete IAU-76/FK5 formulae, including all terms of the nutation theory.

Researchers generally believe the 'of date' option is correct, but confirmation from official sources is uncertain, and others infer that the 'of epoch' is correct. To be complete, we provide the equations and an example problem of both in the Appendix.

E. Time System Issues

Time accounting within SGP4 is referenced to the epoch of the TLE data. This practice makes individual satellite ephemeris generation and use relatively easy, although it can complicate multiple satellite analyses. The time system is assumed here to be UTC, but no formal documentation exists and UTC, as currently defined, was only introduced in 1972. UT1 is needed to calculate GMST for the coordinate transformations discussed in the appendix, but it is unknown whether UT1 or UTC is what is required by the software, although we assume UT1 for this paper. The error associated with approximating UT1 with UTC is within the theoretical uncertainty of the SGP4 theory itself. Except for the GMST calculation, this paper and code assumes time to be realized as UTC.

Time accounting also affects how the year of epoch values are handled within a system. This feature is only peripherally related to SGP4, and not part of the mathematical definition. It appears in the epoch calculations and affects how the two-digit year of the TLE is treated. Several possibilities exist. If the year is less than 50, 57, or some other value, one can add 2000, otherwise, 1900 is added. Of course, these are only temporary fixes with the correct option to be the use of a 4-digit year, Julian Date, Modified Julian Date, etc. During the so-called "Y2K" millennial rollover, some attention was focused here although nothing apparently changed.

It is doubtful that a leap-second capability was implemented into the peripheral software for SGP4 since the historical source code uses relative "time since epoch". Any such addition is clearly outside the mathematical formulation of SGP4, but necessary for programs to interface with other agencies. As some software libraries have no support for the '61 second' minute that is needed to properly represent or convert UTC time at the point of leap-second insertion, we suspect this is simply ignored for the majority of non-critical users, and a 1-second timing difference will occur sometime during the period between TLE updates where the leap second is added or subtracted. Although this is outside the direct scope of SGP4, it is part of many System Acceptance Tests for large programs, and is included here as a reminder of those operations.

F. GHA Calculation

The Greenwich Hour Angle is usually calculated using the Julian Date. However, you can also find expressions using the elapsed time from some epoch. Among the versions of SGP4 that are available today, several epochs arise: 1950 Jan 1 0^h, 1970 Jan 0 0^h, and 1970 Jan 1 12^h, UT1. The various combined constants illustrate the potential for error when using this approach. As new timing systems are developed, the associated timing parameters change slightly. The precision of these parameters also change slightly. Consider the following examples from various versions:

```
Jan 1, 1950 0 hr (original STR#3)
   THETA = 1.72944494D0 + 6.3003880987D0*DS50
Jan 0, 1970 0 hr
   C1 = 1.72027916940703639D-2
   THGR70 = 1.7321343856509374D0
   FK5R = 5.07551419432269442D-15
   C1P2P = C1+TWOPI
   THGR = DMOD(THGR70+C1*DS70+C1P2P*TFRAC+TS70*TS70*FK5R, twopi)
```

These approaches yield "essentially" the same values. A series of calculations were constructed to test these against the IAU convention (Vallado, 2004:191) using the Julian centuries of UT1 (T_{UT1}).

$$\theta_{GMST1982} = 67,310.54841^{s} + (876,600^{h} + 8,640,184.812866^{s})T_{UT1} + 0.093104T_{UT1}^{2} - 6.2x10^{-6}T_{UT1}^{3}$$
 (2)

The results showed comparisons of about 10^{-9} degrees difference. This is well below the level that the answers would be affected. We have chosen to implement the conventional approach of Eq (2).

III. COMPUTER CODE DEVELOPMENT

The revised computer code developed in this paper is provided in C++, FORTRAN, MATLAB, and Pascal to permit reasonable flexibility for applications (C++ is given in the appendix as this language is becoming

commonplace). Conversion to other languages should be aided by the re-structuring effort that has been performed on the code.

There can be large variations between the numerous implementations of SGP4—hence the need to establish a newer baseline that is compatible with CMOC as closely as possible to provide enhanced compatibility. Where obvious updates and corrections have been made and verified, we account for each in our revised code. For other improvements that appeared "obvious" to us, we tried to determine if these changes might be present in today's standalone version.

Our starting point was the 1980 version from STR#3. From this point, STR#6, the Dundee modifications, and the GSFC code release verified several suspected code changes. There were too many changes in this update to describe them all—we list a few of the major ones below. Note that all satellite numbers refer to examples in the test case file (sgp4-all.tle). Also, all element plots are osculating values.

- A primary change from STR#3 was the merging of SGP4 and SDP4 code. A large number of
 researchers had noticed the commonality of the two models and simplified the code in this manner,
 however, not all had recognized and simplified the initialization code. Due to this simplification, most
 now refer to the merged SGP4/SDP4 models simply as 'SGP4'.
- Although ultimately STR#6 has little relevance for TLE use, one notable change was the move to double-precision code throughout (rather than the mix of single and double in the original) and corresponding increase in accuracy for certain astrodynamic constants, all made practical by the improvement in computing power since STR#3. Such changes do not improve the "accuracy" of the model as such, but they lead to "smoother" behavior which helps with some tasks (such as differential correction), and to greater consistency of results on differing computer systems and/or compilers.
- Solving Kepler's equation was updated, but not completely fixed. The solution of Kepler's equation continues to present challenges in astrodynamics hundreds of years after its introduction. The original 1980 version of SGP4 had a fixed limit of 10 iterations and a tolerance of 10⁻⁶, but contained no code to prevent certain high-eccentricity orbits from failing to converge. *Spacetrack Report Number 6* changed the tolerance to the tolerance to 10⁻¹² (commensurate with double-precision work) and the GSFC version tried to solve the convergence problem by removing the iteration limit. However, these are incomplete approaches and can still result in infinite loops. The revised version code includes an updated SGP4 routine following the Dundee version that allows realistic controls on the iterations. Figure 1 shows the impact of this practice.
- The practice of only computing the lunar-solar terms if propagation time changes by more than 30 minutes to save CPU effort was dropped, thus resulting in smoother behavior for deep-space orbits with small time steps. This was the only function of the SAVTSN variable in the original DPPER subroutine. This resulted in 'choppy' behavior in some ephemerides from the STR#3 version.
- The application of periodic lunar-solar perturbations was updated. There are actually three problems relating to the application of the periodic lunar-solar perturbations. The first of these, sometimes known as the "Lyddane bug" (because it was first noted in independent investigations of the Lyddane modifications in DPPER), is due to the jump in the actan/atan2 output where the perturbed value due to the discontinuity of this function at either 90°/270° or ±180° (respectively). In the STR#3 code, the actan discontinuity occurred at 270°. Spacetrack Report Number 6 tried using the atan2 function, but that simply moved the discontinuity to 180°. The GSFC code (the IF statements at the end of the 'apply periodics' section in DPPER) confirmed the suspicions of several researchers about the need to evaluate the relative quadrant of the resulting angle and to correct accordingly. A similar problem exists with the modulo 2π reduction of the XNODE variable. The effect of not correcting the quadrant is illustrated in Fig. 2. This problem also occurs when intrinsic functions (mod, atan, etc.) are used instead of the STR#3 versions. We feel intrinsic functions are better suited for the program, but that full envelope testing of the Lyddane implementation is probably in order.
- The second difficulty with the lunar-solar perturbations was the initialization of deep-space terms based on perturbed values. This was corrected in the DPPER and SGP4 routines of the Dundee and GSFC versions. In STR#3, the terms computed during initialization assumed fixed epoch values for inclination, etc., but of course they are perturbed by the deep-space terms. The approach used by the Dundee and GSFC versions includes any terms based on the Keplerian orbit being re-computed based on the new perturbed values.

Figure 1. Solving Kepler's Equation for Satellite 23333. The mean anomaly (bottom) illustrates the severe discrepancy in incorrectly solving Kepler's equation after about 200 minutes. The effect also shows up in the inclination (top). The problem existed in the STR#3 version, shown here, but corrections were attempted in STR#6 and the GSFC version, with a better approach in the Dundee version. The inclination plot also shows the choppy (but smaller) behavior of the 30 minute updating of the lunar-solar terms in the STR#3 version before about 200 minutes. Notice that the effect goes away after about 1400 minutes.

Figure 2. Lunar-solar modifications for Satellite 23599. The argument of perigee and positional components illustrate the discrepancy in incorrectly updating the lunar-solar perturbations, and not accounting for the proper quadrant in the periodic calculations. The problem existed in the STR#3 version, shown here, and an attempted correction was made in STR#6, but it was mostly corrected in the GSFC version.

• The third area of confusion with the lunar-solar perturbations is the decision for when to use the Lyddane modification, and we refer to it as the "Lyddane choice" (Satellites 14128, 20413). Lyddane (1963) reformulated the Brouwer expansions (done in Delaunay variables) in Poincare variables. Both are canonical, and the Poincare variables were intended to be non-singular for small eccentricity and inclination values. Because this was a reformulation, its use was intended for all computations, and

Min from Epoch

remains that way today in the Navy Position Partials and Time (PPT3) (Hoots et al., 2004). During the development of SDP4 equations, some SIN(inclination) divisor problems were noted and the Lyddane formulation was examined. Because it also exhibited singularities, an alternate formulation was sought, ultimately resulting in new parameter choices. The decision was made to use these variables when the inclination was less than 11.4592° (0.2 rad).

Thus, the code implementation introduced two methods of applying the lunar-solar perturbations in the deep-space code, with the Lyddane modification used with smaller inclinations to avoid a divide-by-zero type of computation problem. In the STR#3 version, the choice was based on the unperturbed epoch inclination proximity to 11.4592°. In STR#6 (and the GSFC code subroutine DPPER), the test used the perturbed inclination (XIP, with the secular term applied, unlike the XQNCL common term used in STR#3). This approach leads to a potential for the model switching lunar-solar methods as a function of propagation time, which is clearly undesirable. Note that the difference is usually small and relies on positional differences rather than the actual positional values. However, the results can be greatly magnified in some orbits (satellite 20413 which is a multi-day orbit). The basic effect can be demonstrated by satellite 14128 after about 2000 minutes from epoch when the perturbed inclination emerges above 11.4592° as shown in Fig. 3.

Figure 3. Lyddane Choice Modification for Satellite 14128. The difference in positional components illustrates the discrepancy in applying the Lyddane modification using the perturbed inclination rather than the original inclination. The effect exists when comparing the GSFC and STR#3 versions. Note the differences diminish once the inclination crosses the 11.4592° threshold (after 2000 min).

A few comments are necessary on the Lyddane choice. This case occurs exceedingly infrequently as the satellite inclination must be very close to the 11.4592° limit, and it must be a deep-space satellite. Without carefully crafted test cases, this (like several of the problems we discuss) is not easy to detect in normal operation. At the time of coding the STR#3 version, this form of software testing was not a commonly taught practice.* We can consider several methods of resolving the situation, such as (a) going back to the STR#3 practice of testing the unperturbed epoch inclination at t = 0 and using that as a fixed decision for the TLE, (b) testing the perturbed inclination at each propagation time (as in the GSFC version), or (c) making more significant code changes to find a smoother way of

^{*} In 1980, the limitations of computer memory and storage space often dictated stringent code length requirements. Code that would only be exercised once or twice, if a small effect, could be safely omitted in deference to more critical techniques, applicable to numerous satellites. The testing philosophy of the time also influenced the outcome. Using a single set of test cases for all analyses was quite common. The notion of targeted test cases for individual loops and constructs in the code itself didn't arise until many years later. Thus, this small nuance could easily have been missed by the testing of the time, or by code limitations themselves.

blending the two lunar-solar perturbation methods. Although a rare case, we think some fix should be included and hope that AFSPC will confirm the current state of the code so users can be compatible in all cases. For the present paper, we have included Option (b) in the code with qualifiers to assist in location and potential future resolution. However, we note that there is probably a better "crossover" point to apply the Lyddane modification (Option c) that will not result in such large discrepancies in the two ephemerides, but time did not permit a thorough investigation and recommendation for such a change.

Next, the following changes were made to comply with modern programming standards, and to facilitate any changes in the future. With the exception of the variable precision and the integrator issues (discussed later), none of these changes affected the technical performance of the program and could be considered "cosmetic".

- Implicit typing in FORTRAN was replaced by comprehensive variable declarations. This was a critical step before conversion to C++ and others. Modern compilers can generally sort out the variable names, but the possibility of mistaken variables, variables being set to zero and used in calculations, etc., was too great. In addition, knowing which variables were calculated and set assisted the process of forming structures. Finally, this also eliminated much of the need for the FORTRAN SAVE command to hold values between function calls with certain compilers.
- Structures were created to pass the large amounts of data between functions. Numerous variables were passed between functions in the original code. With no typing in the original code, this approach proved relatively easy, but it was difficult to gain an understanding of the underlying structure. The structures were set up to support integrated near-earth and deep-space functionality provided in the code. This change also supported processing multiple satellites at one time. While processing a single satellite is illustrative for simple scenarios, it is unrealistic for many modern applications. For instance, the SOCRATES effort uses TLE data to generate potential conjunction information. During these runs, one must have two or more satellites in memory at one time.
- GOTO statements in FORTRAN were eliminated, using more modern constructs. This old programming construct is often seen in legacy programs, but completely unnecessary with modern programming techniques and tools. Looping and decision constructs were inserted, as appropriate.
- Intrinsic functions replace user-written routines. Trigonometric and exponential routines should use intrinsic calls within the programming language. The only exception should be in cases where a specific quadrant, ordering, etc. is required. None of these were deemed necessary within the SGP4 routines.
- Initialization functions were separated for better organization. The code was modularized, keeping initialization functions separate from routine function use. Although modern compilers can generally sort these differences out, the code is easier to maintain if the functions are isolated for a particular operation. The reorganization of the computer code simplified the processing flow. In addition, simple timing studies performed during the original development demonstrated increased processing speed of about 10%. The basic program structure is illustrated in Fig. 4.
- Variable names were changed to better conform to the variables they represent. Many variable names were limited to conform to the former FORTRAN limitation of six (6) characters. This is no longer necessary and has been dropped. Variable names were changed to match "standard" nomenclature, such as that used throughout Vallado (2004). Constants were kept as constants in the code, and not assigned as variables with limited precision.

Figure 4. SGP4 Structural Organization. The computer program structure is shown for the original and derivative programs (top) and the revised version for this paper (bottom). Note that the initialization was interspersed throughout the original program, while it is better isolated in the revised code.

IV. SAMPLE TEST CASES

The original STR#3 included several test cases and sample outputs, but only for two sample satellites. Given the number of branches possible in the deep-space case, many more tests are needed to fully test the code. The original cases have been extended over the years as users have encountered real-world situations. The only other official test cases are referenced in AFSPCI 60-102. No publishing information is given in the AFSPCI.

Because the theory is based on analytical expressions, comparisons are relatively simple because the output should be the same from each program. Different programming languages (C++, FORTRAN, MATLAB, or Pascal) and compilers produced very small differences, but these were well below the accuracy of two-line element sets that are commonly used, and below the comparison between differing implementations.

For analysis, the computer code was set up with three primary execution paths. First, there is a "verification" path in which the program accepts an input TLE file that includes start and stop dates and time steps. Mechanizing this step was important to quickly review any changes against "known" test results. The second mode processed the entire space object catalog from one day before to one day after the epoch time. The negative time propagation was chosen to highlight any difficulties in the secular integrator part of the deep-space code—a most convoluted example of programming in the official versions. Several space object catalogs (having about 9000 satellites in them) were tested from the historical database. This provided a quick-look at performance for each of the programs against a wide range of satellite orbits. The third mode of operation is the standard mode whereby input element sets are read, and some operation takes place with the data. We separated the driver and TLE-conversion function from the SGP4 code, to permit a user to modify the driver as needed, without having to change the underlying SGP4 code.

The test cases were divided into two categories. First, there were verification runs that tested the basic algorithm implementation. The second set of tests demonstrates cases that we believe indicate additional technical considerations that AFSPC may have incorporated in their models, or should consider in the future.

V. VERIFICATION TEST CASES

Essentially, these cases allowed several features of SGP4 to be tested, but the answers were generally agreed upon during the testing phase of research for this paper. Cases for which there were technical questions about how the code was implemented are discussed in a subsequent section. The element sets were sorted numerically in the computer file to aid location of specific test cases, but are grouped here by effect. Comments were added to indicate what each test was accomplishing. The original SGP4 model had two types defined in the code, normal (near Earth) and 'simplified drag', while the original SDP4 had three types, normal (deep space), resonant (12^h Molniya style) and synchronous (24^h GEO). Table 1 shows a sample. The file (sgp4-ver.tle) is on the Internet at the web site listed at the end of the paper, and in the Appendix.

Table 1. SGP4 Verification Test Cases. These satellites highlight the primary test cases used for analysis and verification of the SGP4 code. A few other satellites are included in the full test set. The satellites used for the figures are also included, but at a reduced ephemeris density. The file gives the applicable time range in minutes from epoch (MFE). The original STR#3 tests are kept for continuity.*

Satellite	Category	Comments
00005	Near Earth	TEME example satellite.
28129	Deep Space	A GPS navigation satellite in a near circular 12 ^h orbit.
26975	Resonant	Molniya style debris launch. Exercises the 0.5 to 0.65 eccentricity branches in deep space.
08195	Resonant	Molniya launch. Exercises the 0.65 to 0.7 eccentricity branches of the deep-space code.
09880	Resonant	Molniya launch. Exercises the 0.7 to 0.715 eccentricity branches of the deep-space code.
21897	Resonant	Molniya launch. Exercises the eccentricity branches above 0.715, with a negative Bstar value.
22674	Resonant	Rocket body, similar to 21897 (e > 0.715) but positive Bstar
28626	Synchronous	Low-inclination (< 3 deg) geostationary orbit that shows the problems in premature correction of negative inclination at around 1130 minutes from epoch.
25954	Synchronous	Low-inclination GEO case like 28626, shows negative inclination problem at around 274

^{*} All TLE data given in this paper is representative of actual satellites and can be obtained from www.CelesTrak.com except for the original Report #3 test cases which do not appear in the archives.

Satellite	Category	Comments
		minutes from epoch.
24208	Synchronous	Geostationary orbit above 3 deg.
09998	Synchronous	Relatively high eccentricity for GEO ($e = 0.027$) shows secular integrator problem clearly.
14128, 04632	Synchronous	Geostationary orbit close to 0.2 radian inclination. Shows Lyddane choice problem at about 2080 minutes and about –5000 minutes from epoch.
20413	Deep Space	Long period orbit (~4 days) shows Lyddane choice at 1860 minutes from epoch.
23333	Deep Space	Very high eccentricity, shows Kepler solution problems in Report #3 code.
28623	Deep Space	Deep-space object with low perigee (135.75 km) that uses the branch (perigee < 156 km) for modifying the 's4' drag coefficient.
16925	Deep Space	Deep-space object with very low perigee (82.48 km) that uses the second branch (perigee < 98 km) for limiting the 's4' drag coefficient to 20
06251	Near Earth	Near Earth normal drag case. The perigee of 377.26 km is low, but above the threshold of 220 km for simplified equations, so moderate drag case.
28057	Near Earth	Near Earth normal drag case but with low eccentricity (0.000 088 4) so certain drag terms are set to zero to avoid math errors / loss of precision.
29238	NE/S	Near Earth with perigee 212.24 km, thus uses simplified drag branch (perigee < 220 km) test.
28350	NE/S	Near Earth low perigee (127.20 km) that uses the branch (perigee < 156 km) for modifying the 's4' drag coefficient. Propagation beyond approximately 1460 minutes should result in error trap (modified eccentricity too low).
22312	NE/S	Near Earth with very low perigee (86.98 km) that uses the second branch (perigee < 98 km) for limiting the 's4' drag coefficient to 20. Propagation beyond approximately 2840 min should result in error trap (modified eccentricity too low).
28872	NE/S	Sub-orbital case (perigee -51 km, lost about 50 minutes from epoch) used to test error handling.
23177, 23599	Deep Space	Lyddane bug at less than 70 min and 380 min respectively, with atan2(), but no quadrant fix
26900	Deep Space	Lyddane bug at 37,606 min, negative inclination at 9313 min
29141	Near Earth	Last stages of decay. Crashes before 440 min
11801/ 88888	Deep Space, Near Earth	Original STR#3 report test cases

VI. EXPECTED CODE UPDATES

Although we searched many locations to obtain the latest openly available documentation on official AFSPC practice, a few topics remain unknown. The primary areas of discussion are those giving the largest differences in results—specifically negative inclinations, integrator problems, and solution of Kepler's equation. If the reader is aware of other corrections, we would appreciate learning about them. The intention is to produce a new baseline that is as close as possible to the current operational version to enhance compatibility for the external user. While we could not verify these, we felt the changes were so obvious that AFSPC has already made them, thus we have included the options in the code. We used a comment (keyword "sgp4fix" in the codes) by each change to make any future retraction or addition easier. For official users who are constrained by the AFSPCI 33-105 restrictions and have only an executable version of the current code, it should be a simple matter to confirm these fixes.*

^{*} The AFSPC instructions have applied to different entities over time. By August 2004, AFSPCI 33-105 states the instruction "applies to Headquarters Air Force Space Command (HQ AFSPC), subordinate units, supporting activities and contractors who develop, acquire, maintain or deliver computer software, including all systems that require astrodynamic algorithms. It also applies to Air Force Reserve Command (AFRC) and Air National Guard (ANG) units gained by HQ AFSPC." Previous versions incrementally added each of these groups, so it would appear that the scope of the intended audience is increasing with time.

A. Error Checking

We increased the amount of error checking in our code to handle cases such as decayed satellites, or satellites having inconsistent values. CelesTrak employs a significant amount of error checking on the TLE data, but programs allowing the user to enter data could result in values that would cause errors. Inclination values near 180.0 degrees can cause divide-by-zero problems in the initialization and the routine operation. This is fixed by setting a tolerance in both routines. The decay condition simply checks the position magnitude on each step.

B. Constants

Kaya et al. (2001, 2004) focuses on the difficulties encountered when mixing WGS-72 and WGS-84 constants. Because the SGP4 codes contain references to WGS-72, AFSPC may have updated the constants to WGS-84, but there is no other documentation supporting this so we present the development in case new official documentation is released. However, because many operational sites may still have embedded software containing a version of SGP4 using WGS-72, and the fact that the accuracy of the theory would not really be impacted, AFSPC may well have chosen to retain the older set of constants to better maintain interoperability with its internal resources. We use WGS-72 as the default value. As with other changes we discuss, this is only necessary to interface with external programs, but it will cause a difference in ephemeris results. The proper sequence to form the constants for WGS-72 is shown below. Note that we determined μ from the SGP4 code value of XKE because it is not specified directly in the code, and this makes future revisions easier. We also provide TUMin because XKE is simply the reciprocal of this quantity. TUMin is possibly more familiar as it is the number of minutes in one time unit—a necessary conversion when using canonical constants.

Table 2. WGS-72 Constants. The fundamental and derived constants are shown below. Notice that XKE and TUMin are reciprocal values. The original STR#3 listed XKE as 0.074 366 916.

Symbol	Calculation	Value
μ		$398,600.8 \text{ km}^3/\text{s}^2$
R_{\oplus}		6378.135 km
J_2		0.001 082 616
J_3		-0.000 002 538 81
J_4		-0.000 001 655 97
XKE	$60/\operatorname{sqrt}(R_{\oplus}^{3}/\mu)$	0.074 366 916 133 17 /min
TUMin	$\operatorname{sqrt}(R_{\oplus}^{3}/\mu)/60$	13.446 839 696 959 31 min

If we use WGS-84 values, we find the following values.

Table 3. WGS-84 Constants. The fundamental and derived constants are shown below. The zonal harmonic values are converted from the normalized values.

Symbol	Calculation	Value
μ		$398,600.5 \text{ km}^3/\text{s}^2$
R_{\oplus}		6378.137 km
J_2	$C_{2,0} = -0.00048416685000$	0.001 082 629 989 05
J_3	$C_{3,0} = 0.000\ 000\ 957\ 063\ 90$	-0.000 002 532 153 06
J_4	$C_{4,0} = 0.000\ 000\ 536\ 995\ 87$	-0.000 001 610 987 61
XKE	$60/\operatorname{sqrt}(R_{\oplus}^{3}/\mu)$	0.074 366 853 168 71 /min
TUMin	$\operatorname{sqrt}(R_{\scriptscriptstyle\oplus}^{}/\mu)/60$	13.446 851 082 044 98 min

Other constants may not be familiar at first. For example, XPDOTP is a conversion from rev/day to rad/min.

$$XPDOTP = 1440.0/2\pi = 229.183 \ 118 \ 052 \ 329 \ 3.$$

RPTIM is simply the rotational velocity of the earth in rad/min. Note this does not use the GRS-80 defining parameter for the rotation of the Earth, $2*\pi$ / (86,400/1.002 737 909 350 795) * 60.0 = 7.292 115 855 $3x10^{-5}$, but rather the GRS-67 value that Aoki et al. (1982) used in the definition of time.

RPTIM =
$$7.292\ 115\ 146\ 7x10^{-5} * 60.0 = 0.004\ 375\ 269\ 088\ 02\ rad/min.$$

Other constants are combined with other values, or use the values mentioned previously in their formulation. We do not believe any update has occurred to any of the embedded constants in the deep-space portions as no documentation has ever suggested this.

C. Negative Inclination Orbits (Satellite 25954, 28626)

Deep-space orbits with low-inclination values (typically geosynchronous orbits) can, due to the effects of lunar and solar gravity, result in a negative inclination with time. This can create a step-function discontinuity in the positional components. Normally this is resolved by shifting the ascending node longitude by 180°. In the computer code, we corrected this by removing the quadrant check from DSINIT before the 'initialize resonance terms' section, but kept the check in SGP4 before the 'long period periodics' section.

Satellites 25954 (at times beyond 274 minutes) and 28626 (at times beyond 1130 minutes) illustrate the effect of correcting negative inclination prematurely. The bottom graph in Fig. 5 of *z*-position reveals a discontinuity around this time in incorrect implementations of the code.

Figure 5. Negative Inclination Performance for Satellite 25954. The inclination and *z*-component of the position vector show the step function discontinuity of the previous SGP4 versions. The STR#3 and GSFC versions exhibits the problem while the Dundee version does not.

D. Integrator Problems (Satellite 09880)

The original FORTRAN codes contained a generous mix of GOTOs and other structures that made accurate debugging nearly impossible. One area that appears to have suffered from this practice was the secular integrator used for 12^h and 24^h resonant cases. In particular, several satellites show difficulties when propagated 'backwards,' that is going to some time away from epoch (either positive or negative time) and then taking time steps towards the epoch again. The problem seems to be with the setup of the positive and negative steps (stepp and stepn) with values of 720 minutes in the DSPACE routine (SREZ in the older programs). It appears that 'cleaning up' the code has fixed the problem. The original STR#3 style of logic would integrate from epoch to the required time using a Taylor series approximation:

$$F(x+h) = F(x) + \frac{h}{1!}F'(x) + \frac{h^2}{2!}F''(x) + \cdots$$
(3)

where the integral at epoch F(0) is defined as zero. If the time (h) from epoch was greater than 720 minutes, it would step in 720 minute intervals (x = 720, 1440, ...), recalculating the 1st and 2nd derivatives each time and saving the current (multiple of 720 minute) values for future use. Integrator resets occurred only when crossing the epoch. This was correct and efficient provided the model was only called with increasing time steps (either positive or negative), but it gives inconsistent results if you go to a time far from the epoch and return 'backwards' towards the epoch. The code from this paper always integrates from the epoch to the required time, and restarts each time the model is called with a 'backwards' step. This is slightly less CPU efficient but leads to repeatable results.* Satellite 09998 demonstrates this symptom quite clearly as it is propagated from one day before the epoch until one day after the epoch, though all of the resonant and synchronous cases show it to some extent. Consider Fig. 6.

E. Solving Kepler's Equation (Satellite 23333)

The partial fix discussed earlier handles a majority of the problem cases one would encounter in operations. However, additional robustness could be handled via several alternative methods. A simple but very effective fix for this is covered in Crawford (1995) where it is noted that the difference between mean and eccentric anomaly is never more than $\pm e$ radians, so if you limit the first Newton-Raphson correction to somewhere around this, it converges reliably for all cases. As this problem only applies to very high eccentricity orbits, an even simpler option fixes a limit of 0.9 - 1.0 for the maximum correction. Another option is that of Nijenhuis (1991), who examines the problem for eccentricities of 0.999 and 0.9999 and also examines the overall CPU load as well as the iteration count. Note that this iteration is not the 'traditional' iteration to find eccentric anomaly discussed in the literature (e.g., Vallado, 2004: 72–85). Results for this change were shown in Fig. 2.

A series of tests were run to determine the number of iterations for a complete satellite catalog, and the satellite tests we have included with this paper. For an example case of e = 0.9 the STR#3 version took an average of 5.685 iterations with a maximum of 8. The corrected Dundee version had an average of 3.984 iterations, with a maximum of 5. As with the Lyddane choice mentioned earlier, this change affects only a very small number of satellites.

^{*} The ProjectPluto code had a variation on this method. It always integrates in the "shortest path" (improving CPU use slightly over both the STR#3 logic and our 'repeatable' logic) but did not keep to the 720 minute step size for re-computing terms, leading to discrepancies.

Figure 6. Propagation Problems for Satellite 09998. The integrator problem is shown by looking at the semimajor axis (top) and the positional component differences (bottom). The scale is small, but the semimajor axis clearly shows the jump caused by incorrect integrator performance near 720 minutes prior to the epoch. The problem appears in all older versions.

VII. COMPARISON ANALYSES

Many versions of SGP4 are available in code today, although most are initially from STR#3. Virtually none have been re-worked to restructure the code or to provide multiple computer programming languages and test results. Our aim is to correct that situation. Note that the basic structure of the computer code given in this paper has been available for several years in FORTRAN, Pascal, Ada, and C++ on the following web site (http://CelesTrak.com/software/vallado-sw.asp), although there has been extensive analysis to update the code for this paper. There are only three known "official" versions with which we could make comparisons. These include:

STR#3 (FORTRAN)

Both the original single/double mix, and a double-precision version (just by adding the IMPLICIT DOUBLE statement) of STR#3 code were used. The electronic code was released to all users who asked for it. T. S. Kelso released an electronic package of the 1980 report in December 1988.

GSFC (FORTRAN)

http://seawifs.gsfc.nasa.gov/SEAWIFS/SOFTWARE/src/bobdays/sgp4sub.f (original)

Note this version is no longer available at this website although numerous downloads are known by organizations and countries. In addition, the code is still easily found on archive pages throughout the internet. A current site is similar, but potentially confusing as the subroutine name is the same, but the module is clearly labeled as a Brouwer–Lyddane model.

http://www.icess.ucsb.edu/seawifs/seadas/src/utils/bobdays/sgp4sub.f (new, but different file)

JPL (FORTRAN)

ftp://naif.jpl.nasa.gov/pub/naif/toolkit/FORTRAN/PC_Linux/packages/toolkit.tar.Z

An additional source of SGP4 implementations is the JPL NAIF 'spicelib' toolkit, with source files ev2lin.f (basically SGP4.FOR equivalent), dpspce.f (basically SDP4.FOR) and zznrddp.f (basically the DEEP.FOR).

A few other codes were examined to determine what other researchers had done with the code. Examples that were tested but not included in the results presented here were:

ProjectPluto (C++)

http://www.projectpluto.com/sat code.htm

Not an official version, but it is one of the more interesting and intelligent conversions to C++ available.

TrakStar (Pascal)

 $\underline{http:/\!/CelesTrak.com/software/tskelso-sw.asp}$

This is a very well known example, but is essentially a direct conversion of STR#3 and so it can be expected to behave in a manner similar to the STR#3 double-precision case.

Dundee (C)

http://www.sat.dundee.ac.uk/~psc/sgp4.html

The original translation into C by Paul Crawford and Andrew Brooks was virtually identical in behavior to STR#3, but with much better code structuring. Then many of the other fixes included such as the Kepler's equation solution and secular integrator were added. The update over the last year for this paper had all of the corrections discussed and agreed with the authors, resulting in virtually identical results to the paper's versions.

Because our version of SGP4 does not claim to be the official version, it was important to compare the results over a wide range of test conditions, and to compare with the released official versions. Specifically, the verification and stressing test cases provided a technical look at the performance, but these comparison tests were intended to show the robustness of the calculations under full-catalog simulations. Tests were run on several complete catalogs for varying dates. Each satellite was propagated from –1440 minutes to 1440 minutes at 20-minute time steps. The results were then compared between programs. The C++, FORTRAN, MATLAB, and Pascal versions gave virtually the same results, as shown in Fig. 7.

Figure 7. SGP4 Full-Catalog Comparisons. Maximum differences between ephemerides generated for two days are shown. Note the small scale for the C++ and FORTRAN comparison (top). The Pascal comparison (bottom) shows very small additional variations and these are from the 8-byte versus 10-byte precision in the language.

Comparisons were then run between the versions. Each figure shows the largest difference between the simulations, and each satellite is plotted against the orbital period. The scales are kept constant within each figure to permit rapid assessment of the differences. Figure 8 shows the results compared to the GSFC version. This was important to illustrate the similarity with the last known release.

Figure 8. SGP4 Full-Catalog Comparisons. Maximum differences between ephemerides generated for 2 days are shown. The top plot shows the paper C++ version against the GSFC code, while the bottom plot shows the comparison to the GSFC code, but only for propagations positive from the epoch. The differences are all related to the integrator problems before 720 minutes prior to epoch with geosynchronous and semi-synchronous orbits.

As Fig. 8 shows, the GSFC version is very close to our revised version, and nearly identical to the performance between languages for the revised versions. The minor differences (usually a few meters) in the resonant cases (718-minute Molnyia and 1436-minute geostationary orbits) only show up with time steps that 'go backwards' in time (a problem in the secular integrator). In these tests, we begin at –1440 minutes and then step towards zero, before going 'forwards' towards +1440 minutes. In our revised version, the direction of propagation is not important. The

GSFC version also has larger errors with the direct/Lyddane choice, and the inclination going negative during propagation, but these are not shown in Fig. 8 (it requires rare or 'difficult' TLEs to show up). Those differences were discussed earlier.

The comparisons with results from STR#3 show significantly larger differences for almost all satellites. Note that both (mixed) single and double-precision results are given in Fig. 9.

Figure 9. SGP4 Full-Catalog Comparisons. Maximum differences between ephemerides generated for 2 days are shown. The top plot shows the single-precision STR#3 version against the paper C++ version, while the bottom plot shows the STR#3 double-precision version comparison.

Both versions of STR#3 (single/double and double only) show similar results, with agreement to reasonable accuracy (sub-km) for near-Earth orbits (limited by the precision of specifying the astrodynamic constants). This is less in deep space, where some of the limited precision (e.g., Kepler's equation tolerance), the re-computing of perturbed terms, and the possibly the 'Lyddane bug' behavior show up more strongly. The differences between the GSFC version and the STR#3 versions are nearly identical to those in Fig. 9 for this catalog snapshot. This is important because many "correct" implementations of SGP4 in use are based on the STR#3 version (e.g., TrakStar), but this comparison shows the typical additional errors that users can expect as compared to the standalone AFSPC code.

Despite a rigorous attempt to review the fundamental constructs of the code, the JPL case is not particularly good in its original form. For near-Earth satellites, there is clearly some problem with the implementation (drag equations perhaps?) as it is much worse than STR#3 code in mixed precision. The deep-space cases have other problems, one of which is the choice to zero the LS offsets at epoch* (which does not appear to be correctly implemented in any case). It also shares the negative inclination problem. These are unfortunate, as it is an interesting attempt to order and modernize the FORTRAN code, showing some insight into improving things, but missing others (such as the commonality of the SGP4/SDP4 codes) completely. The Project Pluto code (not shown) compared favorably to the revised code version but its lack of 'official heritage' made it difficult to accept changes based solely on its presence in this version. Results for the JPL code are shown in Fig. 10.

.

^{*} It appears that JPL made the same change as several other authors who assumed that the zeroing of the Lunar-Solar perturbations at epoch mentioned in STR#6 and the GSFC code also applied to the code when used in the deep space part of the merged SGP4 model. This is not the case, and the reader is reminded that what matters most for accuracy, if the theory is not completely documented, is to use the same code for propagating the elements as was used in generating them.

Figure 10. SGP4 Full-Catalog Comparisons. Maximum differences between ephemerides generated for 2 days are shown. The plot shows the paper C++ version against the original JPL code (plot on the top). Note that by changing the DOPERT variable in the JPL code, the results can be improved by about two orders of magnitude (plot on the bottom).

VIII. AVAILABILITY

The primary computer source code discussed in this paper has been available on the Internet for nearly six years, but was re-worked for this paper with inputs from many people and organizations. The current code is available in C++, FORTRAN, MATLAB, and Pascal as these appear to be the most common languages for operations today.

The appendices contain definitions and examples of TLE data and TEME conversions, the C++ code, along with the input TLE data, and results. The code for debugging the software is not included as it was not pertinent to the discussion. The files have 'include' statements which are commented out where these lines of code would be inserted. All the necessary files are located on the Internet for convenience. They are available from the Center for Space website:*

http://www.centerforspace.com/downloads/

IX. CONCLUSIONS

This paper has re-examined the *Spacetrack Report Number 3* formulation of analytical propagation. By incorporating changes posted over the last quarter century, a unified and improved version is presented for general use. Structural changes to the code have been completed permitting the ability to process multiple satellites at one time. We chose to omit the Lyddane choice change for certain inclinations to maintain as close a performance to what we believe AFSPC is doing today. However, we also included comments in the source code to facilitate location of any updates now, or at a future time. Test cases are included to demonstrate verification of operation with the branches in the code, for difficult orbits, as well as cases encountered throughout the years. The results show that continued use of the STR#3 version, and to a lesser extent some of the more recent versions, can result in potentially large errors when producing ephemerides. We also noted the difficulty with aligning a particular version of SGP4 with a particular TLE as the data formats and processing have changed throughout the years. Finally, we hope this form of documentation will motivate similar efforts for additional analytical theories in a similar fashion, along with satellite data to use with each theory. Any questions, comments, additions, etc. may be addressed to David Vallado at dvallado@centerforspace.com.

Acknowledgements

Many people were involved with this project in addition to the co-authors listed. I am very grateful for all the help, and support I received during this long project. Felix Hoots provided significant insight and details of the original development and John Seago provided suggestions for a more concise description of the time and coordinate systems. A special thank you is due to Jeff Beck who provided the MATLAB version based on the C++ code.

References

Note that some of these references may be difficult to find. AFSPC should be able to provide all the necessary information

Air Force Space Command Instruction (AFSPCI) 33-105. 2004. "Distribution of AFSPC Software to Outside Organizations." Colorado Springs, CO. (See http://www.e-publishing.af.mil/pubs/majcom.asp?org=AFSPC)

Air Force Space Command Instruction (AFSPCI) 60-102. 1996. "Space Astrodynamic Standards Software." Colorado Springs, CO.

Aoki, S. et al. 1982. The New Definition of Universal Time. Astronomy and Astrophysics. Vol. 105: 359-361.

Arsenault, J. L., L. Chaffee, and J. R. Kuhlman. 1964. "General Ephemeris Routine Formulation Document." Report ESD-TDR-64-522, Aeronutronic Publ. U-2731.

Atkinson R d'E, and D. H. Sadler. 1951. On the use of Mean Sidereal Time. *Monthly Newsletters of the Royal Astronomical Society*. 111:619–623.

Brouwer, D. 1959. Solution of the Problem of Artificial Satellite Theory without Drag. *Astronomical Journal*, Vol. 64, No. 1274, pp. 378–397.

Brouwer, D., and G. Hori. 1961a. Theoretical Evaluation of Atmospheric Drag Effects in the Motion of an Artificial Satellite. *Astronomical Journal*, Vol. 66, No. 5, pp. 193–225.

_____1961b. Appendix to Theoretical Evaluation of Atmospheric Drag Effects in the Motion of an Artificial Satellite. Astronomical Journal. Vol. 66, No. 6, pp. 264–265.

David A. Cappellucci. 2005. "Special Perturbations to General Perturbations Extrapolation Differential Correction in Satellite Catalog Maintenance." Paper AAS 05-402 presented at the AIAA/AAS Astrodynamics Specialist Conference. Lake Tahoe, California.

Cefola, Paul J., and Wayne McClain. 1987. Accuracy of the NORAD DP4 Satellite Theory for Synchronous Equatorial Orbits. Interoffice Memorandum NOR/PL-002-15Z-PJC. Draper Laboratory, MA.

^{*} Users of Analytical Graphics Inc. Satellite Toolkit (STK) will find the source code integrated within the latest release of the program.

- Cefola, Paul J., and D. J. Fonte. 1996. Extension of the Naval Space Command Satellite Theory to include a General Tesseral m-daily Model. Paper AIAA-96-3606 presented at the AIAA/ AAS Astrodynamics Conference. San Diego, CA.
- Coffey, S. L., and H. L. Neal. 1998. "An Operational Special-Perturbations-Based Catalog." Paper AAS 98-113 presented at the AAS/AIAA Space Flight Mechanics Conference. Monterey, CA.
 - Crawford P. S. 1995. Kepler's Equations in C. International Journal of Remote Sensing. Vol. 16, No. 3 pp 549–557.
- Glover, R. A. 1996. "The Naval Space Command (NAVSPACECOM) PPT3 Orbit Model." NAVSPACECOM Technical Report.
- Hartman, Paul G. 1993. "Long-term SGP4 Performance." Space Control Operations Technical Note J3SOM-TN-93-01. US Space Command, USSPACECOM/J3SO. Colorado Springs, CO.
 - Hilton, C. G. 1963. "The SPADATS Mathematical Model." Report ESD-TDR- 63-427, Aeronutronic Publ. U-2202.
- Hilton, C. G., and J. R. Kuhlman. 1966. "Mathematical Models for the Space Defense Center." Philoo-Ford Publication No. U-3871, 17–28.
 - Hoots, Felix R. 1980. "A Short, Efficient Analytical Satellite Theory." AIAA Paper No. 80-1659.
 - . 1981. Theory of the Motion of an Artificial Earth Satellite. Celestial Mechanics. Vol. 23, pp. 307–363.
- . 1986. "Spacetrack Report #6: Models for Propagation of Space Command Element Sets." Space Command, United States Air Force, CO.
- _____. 1998. "A History of Analytical Orbit Modeling in the United States Space Surveillance System." Third US-Russian Space Surveillance Workshop. Washington, D.C.
- Hoots, Felix R. et al. 1986. "Improved General Perturbations Prediction Capability." Air Force Space Command, Astrodynamics Analysis Memorandum 86-3.
- Hoots, Felix R., and R. G. France. 1983. "Performance of an Analytic Satellite Theory in a Real World Environment." AAS/AIAA Paper No. 83-395.
- . 1987. An Analytical Satellite Theory using Gravity and a Dynamic Atmosphere. *Celestial Mechanics*. Vol. 40, pp. 1–18.
- Hoots, Felix R., and R. L. Roehrich. 1980. "Spacetrack Report #3: Models for Propagation of the NORAD Element Sets." U.S. Air Force Aerospace Defense Command, Colorado Springs, CO.
- Hoots, Felix R., P. W. Schumacher, and R. A. Glover. 2004. History of Analytical Orbit Modeling in the U. S. Space Surveillance System. *Journal of Guidance, Control, and Dynamics*. 27(2):174–185.
- Hujsak, R. S. 1979. "Spacetrack Report #1: A Restricted Four Body Solution for Resonating Satellites Without Drag." U.S. Air Force Aerospace Defense Command, Colorado Springs, CO.
- . 1979. "A Restricted Four Body Solution for Resonating Satellites with an Oblate Earth." AIAA Paper No. 79-136. Hujsak, R. S., and F. R. Hoots. 1977. "Deep Space Perturbations Ephemeris Generation. Aerospace Defense Command
- Space Computational Center Program Documentation, DCD 8, Section 3, 82:104."

 ______. 1982. "Deep Space Perturbations Ephemeris Generation." NORAD Technical Publication TP-SCC 008. 129–145.
- Jacchia, L. G. 1970. "New Static Models of the Thermosphere and Exosphere with Empirical Temperature Profiles." SAO Report 313. Cambridge, MA: Smithsonian Institution Astrophysical Observatory.
- Kaya, Denise, et al. 2004. "AFSPC Astrodynamic Standard Software." Paper AAS 04-124 presented at the AAS/AIAA Space Flight Mechanics Conference. Maui, HI.
- Kaya, Denise, et al. 2001. "AFSPC Astrodynamic Standards The Way of The Future." Paper presented at the MIT/LL Conference. Lexington, MA.
- Kelso, T.S. 2004. "Frequently Asked Questions: Two-Line Element Set Format." (See http://celesTrak.com/columns/v04n03/)
- Kelso, T. S., and S. Alfano. 2005. "Satellite Orbital Conjunction Reports Assessing Threatening Encounters in Space (SOCRATES)." Paper AAS 05-124 presented at the AAS/AIAA Space Flight Mechanics Conference. Copper Mountain, CO.
 - Kozai, Y. 1959. The Motion of a Close Earth Satellite. Astronomical Journal. Vol. 64, No. 1274, pp. 367–377.
- Lane, M. H. 1965. "The Development of an Artificial Satellite Theory Using Power-Law Atmospheric Density Representation." AIAA Paper 65-35.
- Lane, M. H., and K. H. Cranford. 1969. "An Improved Analytical Drag Theory for the Artificial Satellite Problem." AIAA Paper No. 69-925.
- Lane, M. H., P. M. Fitzpatrick, and J. J. Murphy. 1962. "Spacetrack Report #APGC-TDR-62-15: On the Representation of Air Density in Satellite Deceleration Equations by Power Functions with Integral Exponents." Air Force Systems Command, Eglin AFB, FL.
- Lane, M. H., and F. R. Hoots. 1979. "Spacetrack Report #2: General Perturbations Theories Derived from the 1965 Lane Drag Theory." Aerospace Defense Command, Peterson AFB, CO.
- Lyddane, R. H. 1963. Small Eccentricities or Inclinations in the Brouwer Theory of the Artificial Satellite. *Astronomical Journal*. Vol. 68, No. 8, 1963, pp. 555–558.
- Morris, Robert F., and Timothy P. Payne. 1993. "SGP4 Version 3.01 Validation Test Cases." Publishing data unknown. Referenced in AFSPC I 60-102.
- Nijenhuis, Albert. 1991. Solving Kepler's equation with high efficiency and accuracy. *Celestial Mechanics and Dynamical Astronomy*. Vol. 51, No. 4, pp 319–330.

Patt, Frederick S., Hoisington, Charles M., Gregg, Watson W., and Coronado, Patrick L. 1993. NASA Technical Memorandum 104566, Vol. 11 "Volume 11, Analysis of Selected Orbit Propagation Models for the SeaWiFS Mission" available at http://library.gsfc.nasa.gov/Databases/Gtrs/Data/TM-1993-104566v11.pdf.

Schumacher, P. W., and R. A. Glover. 1995. "Analytical Orbit Model for U.S. Naval Space Surveillance: An Overview." Paper AAS 95-427 presented at the AIAA/AAS Astrodynamics Specialist Conference. Halifax, Canada.

Seago, John, and David Vallado. 2000. "Coordinate Frames of the U.S. Space Object Catalogs." Paper AIAA 2000-4025 presented at the AIAA/AAS Astrodynamics Specialist Conference. Denver, CO.

Tanygin, Sergei, and James R. Wright. 2004. "Removal of Arbitrary Discontinuities in Atmospheric Density Modeling." Paper AAS 04-176 presented at the AAS/AIAA Space Flight Mechanics Conference. Maui, HI.

Vallado, David A. 1999. "Joint Astrodynamic Working Group Meeting Minutes." September 20, 1999. USSPACECOM/AN. Colorado Springs, CO.

- _____. 2001. "A Summary of the AIAA Astrodynamic Standards Effort." Paper AAS 01-429 presented at the AIAA/AAS Astrodynamics Specialist Conference. Quebec City, Canada.
- ______. 2004. Fundamentals of Astrodynamics and Applications. Second Edition, second printing. Microcosm, El Segundo, CA.
- ______. 2005. "An Analysis of State Vector Propagation using Differing Flight Dynamics Programs." Paper AAS 05-199 presented at the AAS/AIAA Space Flight Mechanics Conference. Copper Mountain, CO.

Vallado, David, and Salvatore Alfano. 1999. "A Future Look at Space Surveillance and Operations." Paper AAS 99-113 presented at the AAS/AIAA Space Flight Mechanics Conference. Breckenridge, CO.

Appendices

A. Organizational Nomenclature	29
B. Two-Line Element Set Format	30
C. TEME Coordinate System	32
D. Computer Code Listing	35
E. Test Case Listing	37
F. Test Case Results Listing	47

Appendix A – Organizational Nomenclature

Tracing the reports, documents, and files back to the original release may present some confusion to users that are not familiar with the various organizational structures that have been in place over time. We have tried to use the appropriate organizational names when referencing information, but the following information may help associating those references. We use DoD, AFSPC, NORAD, CMOC, etc. The following quotes were assembled from the Cheyenne Mountain website: https://www.cheyennemountain.af.mil.

"The original North American Air Defense Command (NORAD) Combat Operations Center ... has evolved into the Cheyenne Mountain Operations Center (CMOC). The original requirement for an operations center in Cheyenne Mountain was to provide command and control in support of the air defense mission against the Soviet manned bomber threat ... In the early 1960s, the advent of an Intercontinental Ballistic Missile (ICBM) attack against North America became a top priority. Missile warning and air sovereignty were the primary missions in the Mountain throughout the 1960s and 70s. During a brief period in the mid 1970s, the Ballistic Missile Defense Center was installed within the Mountain. ... In 1979, the Air Force established a Space Defense Operations Center [SPADOC] to counter the emerging Soviet's anti-satellite threat ... The evolution continued into the 1980s when Air Force Space Command [AFSPC] was created and tasked with the Air Force Space mission ... In April 1981, Space Defense Operations Center crews and their worldwide sensors, under the direction of Air Defense Command [ADC], supported the first flight of the space shuttle ... Oct. 1, 2002 marked the welcoming of two new commands, U.S. Northern Command and U.S. Strategic Command, to Cheyenne Mountain. CMOC is responsible for providing support to USNORTHCOM's mission of homeland defense and USSTRATCOM's mission of space and missile warning, formerly associated with U.S. Space Command.

Today, the Cheyenne Mountain Complex is known as Cheyenne Mountain Air Force Station (CMAFS). CMAFS is host to four commands: North American Aerospace Defense Command (NORAD), United States Northern Command (USNORTHCOM), United States Strategic Command (USSTRATCOM), and Air Force Space Command (AFSPC). CMOC serves as the command center for both NORAD and USNORTHCOM. It is the central collection and coordination center for a worldwide system of satellites, radars, and sensors that provide early warning of any missile, air, or space threat to North America. Supporting the NORAD mission, CMOC provides warning of ballistic missile or air attacks against North America, assists the air sovereignty mission for the U.S. and Canada, and if necessary, serves as the focal point for air defense operations to counter enemy bombers or cruise missiles. In addition, CMOC also provides theater ballistic missile warning for U.S. and allied forces. In support of USSTRATCOM, CMOC provides a day-to-day picture of precisely what is in space and where it is located. Space control operations include protection, prevention, and negation functions supported by the surveillance of space. ... Operations are conducted in seven centers manned 24 hours a day, 365 days a year. The centers are the Air Warning Center, Missile Correlation Center, Space Control Center [JSPOC], Operational Intelligence Watch, Systems Center, Weather Center, and the Command Center ... The Joint Space Operations Center (JSPOC) supports United States Strategic Command (USSTRATCOM) missions of surveillance and protection of U.S. assets in space. The JSPOC's primary objective in performing the surveillance mission is to detect, track, identify, and catalog all man-made objects orbiting earth. ... The JSPOC maintains a current computerized catalog of all orbiting man-made objects, charts preset positions, plots future orbital paths, and forecasts times and general location for significant man-made objects reentering the Earth's atmosphere."

The organizational names identify whether they are joint (international), or not. For generic applications, we use DoD because this is the broadest identification for all the organizations. We generally use NORAD when referring to the TLE data because their formation was begun under NORAD. Today, the JPSOC [a.k.a. Space Control Center] within the CMOC produces the TLE data, but we retain the historical name due to its familiarity in the community. Regulations and documentation have generally come from AFSPC and are identified as such.

Appendix B – Two Line Element Set Format

The format for the TLE is shown in Fig. 11 with sample data.

Card #		ate			5	Class					ati gn					,	Yr]	Day	ус	of Y			000 (p		s f	rac	eti	on)		М	ea			otic v/d				ati	ive		s	sec	on	d o	dei	oti iva 2 /	ativ				I	Bst	tar	(/.	ER	₹)				Eph			len um	- 1.	Chk Sum	
							Y	eai	I	Lcl	h#	1	Pie	ece																		\mathbf{S}											S		Γ							S.				Γ		7.	S	E				Ι	П	П		ı
					T																																																											Ι	П	П		ı
1	1	6 (6	0 9)	U	8	6	0	1	7	ľ	١			9	3	3	5	2		5	3	3 5	5	0	2	9	3	4				0	0	0	0	7	8	8	9	•		0	0	0	0	0	-	0			1	0	5	2	9) .		3		0		l	3	4	2	
							In	cli	nai	tio	n (de	g)		R	ig th	ht .						f			Eco	cei	ntr	ici	ity	Arg of Perigee (deg)										M	[ea		An leg		nal	y			Me	ear	ı N	10	tio	n ((re	ev/	'da	ıy)			Epo Re	och ev	1	Chk			
					I							Γ												Ţ			1																		Γ			Γ																Τ	П	П		
2	1	5 6	6	0 9)	Ī	5	1		6	1	ç) (0		1	3		3	3	4	0		(0	0	0	5	7	7	0		1	0	2		5	6	8	0		2	5	7	١.	. 5	9	5	0		1	5		5	9	1	1		1 (0	7	0	4	47	8	6	9	ı

Figure 11. Two-line Element Set Format. An example TLE is shown, with descriptions and units of each field. Note that the eccentricity, mean motion second derivative, and Bstar have implied decimal points before the first numerical value. The mean motion derivative is already divided by 2, and the second derivative is already divided by 6. Shaded cells do not contain data. The signs may be blank, "+" or "-". A classification field is sometimes included after the satellite number.

There are several notes.

1. The maximum accuracy for a TLE is limited by the number of decimal places in each field (Vallado, 2004:116). In general, TLE data is accurate to about a kilometer or so at epoch and it quickly degrades (Hartman, 1993). We note that the SGP4 theory is capable of much better accuracy through additional modeling and sufficient observational data. Cefola and McClain (1987) noted that certain low-inclination geosynchronous orbits exhibited large discrepancies from numerical simulations due to oversimplifications in the node rate calculations. Cefola and Fonte (1996) showed that the addition of additional terms to the theory could improve the overall accuracy by almost an order of magnitude. Cappellucci (2005) showed that using numerically generated state vectors and performing an SGP4 orbit determination on the resulting ephemerides produced errors representative of a numerical technique. This is not unexpected as additional (continuous) observations provide the needed observability over a simple "3-obs per pass" approach (Vallado and Alfano, 1999). However, the results diverge very rapidly once outside the fit span of the orbit determination. We do not address orbit determination here.

It is also worth noting that there are numerous other analytical orbital theories that have been developed for a wide range of applications, but unfortunately, no comprehensive source of data for those theories exists. SGP4 is interesting because it tries to satisfy many orbital regimes. The Russians developed a series of analytical propagators, each tuned for a specific satellite regime. The narrower focus permits additional attention to detail, and higher resulting accuracy. It is hoped that some of these analytical routines can eventually be documented for general use in the same manner as this paper.

- 2. The satellite number consists of any numeric value 0 99999. Discussions have hinted at a lengthening of the field size to 7 or 9 characters to accommodate future satellites.
 - 3. Sometimes additional assignments are made signs = 0; minus signs = 1.
- 4. The International designator is broken up into the last two digits of the lunch year, the launch number for that year (3 digits), and the piece of the launch (3 digits). Kelso (2004) also indicates:

[The] International Designator of the object [] is an additional unique designation assigned by the World Data Center-A for Rockets and Satellites (WDC-A-R&S) in accordance with international treaty (1975 Convention on Registration of Objects Launched into Outer Space). The WDC-A-R&S works together with NORAD and NASA's National Space Science Data Center (NSSDC) in maintaining this registry. Although there have been some changes in format since it was first used back in the late 1950s (see "Space Surveillance" in Satellite Times Volume 4 Number 1), the International Designator indicates the year of the launch (field 1.4 only gives the last two digits), the launch of that year (field 1.5), and the piece of that launch (field 1.6) for each object. These three fields can be left blank, but all must be present if any is. Finally, field 1.6 can be either right or left justified—the latter is preferred.

As an aside, there are some significant differences between NORAD's Catalog Number and the International Designator. For example, NORAD assigns a catalog number based upon when the object was first observed, whereas the

International Designator is always tied to the original launch. For example, the 81st launch of 1968 carried four payloads into orbit: OV2-5, ERS 21 and 28, and LES 6. Together with the Titan 3C transtage rocket body, these objects were assigned International Designators 1968-081A through E and Catalog Numbers 03428 through 03431. Just this past October, however, NORAD cataloged two additional pieces associated with this launch as Catalog Numbers 25000 and 25001—they have the International Designators 1968-081F and G.

- 5. The mean motion rates are not used by SGP4 and are only valid for the older SGP model.
- 6. Bstar is an SGP4 drag-like coefficient. Usually, ballistic coefficients (*BC*) are used in aerodynamic theory. The *BC* is m/c_DA , or the reciprocal (*A* is cross-sectional area, c_D is the coefficient of drag, and *m* is mass). Bstar is an adjusted value of *BC* using the reference value of atmospheric density, $\rho_o = 2.461 \times 10^{-5} \text{ kg/m}^2$, at one Earth radius.

$$BC = R_e \, \rho_o \, / \, (2Bstar) \tag{B-1}$$

- 7. The Ephemeris type is not used external to CMOC. All TLE data is generated by SGP4.
- 8. From Kelso (2004):

The element set number. Normally, this number is incremented each time a new element set is generated. In practice, however, this doesn't always happen. When operations switch between the primary and backup Space Control Centers, sometimes the element set numbers get out of sync, with some numbers being reused and others skipped. Unfortunately, this makes it difficult to tell if you have all the element sets for a particular object."

The last column on each line represents a modulo-10 checksum of the data on that line. To calculate the checksum, simply add the values of all the numbers on each line—ignoring all letters, spaces, periods, and plus signs—and assigning a value of 1 to all minus signs. The checksum is the last digit of that sum. Although this is a very simple error-checking procedure, it should catch 90 percent of all errors. However, many errors can still sneak through. To eliminate these, all data posted on the CelesTrak WWW site not only pass the checksum test, but must also pass both format and range-checking tests (as described in this article).

The final field on line 2, prior to the checksum, is the rev number. Since there are several conventions for determining rev numbers, this field also bears some clarification. In NORAD's convention, a revolution begins when the satellite is at the ascending node of its orbit and a revolution is the period between successive ascending nodes. The period from launch to the first ascending node is considered to be Rev 0 and Rev 1 begins when the first ascending node is reached. Since many element sets are generated with epochs that place the satellite near its ascending node, it is important to note whether the satellite has reached the ascending node when calculating subsequent rev numbers.

Appendix C - TEME Coordinate System

This section describes the equations necessary to implement the nutation equations for the TEME approach. There are two approaches – using the GMST, and using the equation of the equinoxes.

For sidereal time, GMST is needed. GMST is found using UT1. From McCarthy (1992:30)

$$\theta_{GMST1982} = 67,310.548 \ 41^{s} + (876,600^{h} + 8,640,184.812 \ 866^{s})T_{UT1} + 0.093 \ 104T_{UT1}^{2} - 6.2x10^{-6}T_{UT1}^{3}$$
 (C-1)

The transformation to ITRF is found using the polar motion (x_p, y_p) values and the GMST. Note that "PEF" implies the *pseudo-Earth-fixed* frame, where polar motion has not yet been applied (Vallado, 2004: 217).

$$[\mathbf{W}]_{ITRF-PEF} = ROT1(y_p)ROT2(x_p)$$

$$\vec{r}_{ITRF} = [\mathbf{W}]^T [ROT3(\theta_{GMST1982})]^T \vec{r}_{TEME}$$

$$\vec{v}_{ITRF} = [\mathbf{W}]^T \left\{ ROT3(\theta_{GMST1982})]^T \vec{v}_{TEME} + \vec{\omega}_{\oplus} \times \vec{r}_{PEF} \right\}$$
(C-2)

If the equation of the equinox approach is taken, you must find the nutation parameters. The IAU-80 nutation uses so-called Delaunay variables and coefficients to calculate nutation in longitude ($\Delta \psi_{1980}$) and nutation in the obliquity of the ecliptic ($\Delta \varepsilon_{1980}$). (McCarthy, 1992:32)

$$\begin{split} M_{C} &= 134.962\ 981\ 39^{\circ} + 1,717,915,922.6330" T_{TT} + 31.31 T_{TT}^{2} + 0.064 T_{TT}^{3} \\ M_{O} &= 357.527\ 723\ 33^{\circ} + 129,596,581.2240" T_{TT} - 0.577 T_{TT}^{2} + 0.012 T_{TT}^{3} \\ \mu_{C} &= 93.271\ 910\ 28^{\circ} + 1,739,527,263.1370" T_{TT} - 13.257 T_{TT}^{2} - 0.011 T_{TT}^{3} \\ D_{O} &= 297.850\ 363\ 06^{\circ} + 1,602,961,601.3280" T_{TT} - 6.891 T_{TT}^{2} + 0.019 T_{TT}^{3} \\ \Omega_{C} &= 125.044\ 522\ 22^{\circ} - 6,962,890.5390" T_{TT} + 7.455 T_{TT}^{2} + 0.008 T_{TT}^{3} \end{split}$$
 (C-3)

The nutation parameters are then found using (McCarthy, 1992:33)

$$a_{p_i} = a_{nl_i} M_{(} + a_{n2_i} M_{O} + a_{n3_i} \mu_{(} + a_{n4_i} D_{O} + a_{n5_i} \Omega_{(}$$

$$\Delta \psi = \sum_{i=1}^{106} (A_{p_i} + A_{pl_i} T_{TDB}) \sin(a_{p_i}) \quad \Delta \varepsilon = \sum_{i=1}^{106} (A_{e_i} + A_{el_i} T_{TDB}) \cos(a_{p_i})$$
(C-4)

Corrections to the nutation parameters ($\delta\Delta\psi_{1980}$ and $\delta\Delta\varepsilon_{1980}$) supplied as Earth Orientation Parameters (EOP) from the IERS are simply added to the resulting values in Eq. 4 to provide compatibility with the newer IAU 2000 Resolutions (Kaplan, 2005). These corrections also include effects from Free Core Nutation (FCN) that correct errors in the IAU-76 precession and IAU-80 nutation. However for TEME, these corrections do not appear to be used. The nutation parameters let us find the true obliquity of the ecliptic, ε . (McCarthy, 1992:29–31)

$$\begin{split} \Delta \psi_{1980} &= \Delta \psi + \delta \Delta \psi_{1980} & \Delta \varepsilon_{1980} = \Delta \varepsilon + \delta \Delta \varepsilon_{1980} \\ \overline{\varepsilon} &= 84,381.448" - 46.8150 T_{TT} - 0.000 \ 59 T_{TT}^2 + 0.001 \ 813 T_{TT}^3 \\ \varepsilon &= \overline{\varepsilon} + \Delta \varepsilon_{1980} \end{split} \tag{C-5}$$

The equation of the equinoxes ($EQ_{eqe1980}$) can then be found. The last two terms in the $EQ_{eqe1980}$ are probably not included in AFSPC formulations. From McCarthy (1992:30)

$$\begin{split} EQ_{eqe1980} &= \Delta \psi_{1980} \cos(\bar{\varepsilon}) + 0.002 \ 64'' \sin(\Omega_{()}) + 0.000 \ 063 \sin(2\Omega_{()}) \\ \theta_{GMST1982} &= 67,310.54841^s + (876,600^h + 8,640,184.812 \ 866^s) T_{UT1} + 0.093 \ 104 T_{UT1}^2 - 6.2x 10^{-6} T_{UT1}^3 \\ \theta_{GAST1982} &= \theta_{GMST1982} + EQ_{eqe1980} \end{split}$$
 (C-6)

These relations let us form the transformation equations.

$$\begin{split} [\mathbf{P}]_{MOD-J2000} &= ROT3(\zeta)ROT2(-\Theta)ROT3(z) \\ [\mathbf{N}]_{TOD-MOD} &= ROT1(-\overline{\varepsilon})ROT3(\Delta\Psi)ROT1(\varepsilon) \\ \bar{r}_{J2000} &= [\mathbf{P}] [\mathbf{N}] [ROT3(-EQ_{eqe1980})] \bar{r}_{TEME} \\ \bar{v}_{J2000} &= [\mathbf{P}] [\mathbf{N}] [ROT3(-EQ_{eqe1980})] \ \bar{v}_{TEME} \end{split} \tag{C-7}$$

An example is useful to show the various options and their effect on the resulting vectors. Consider an initial ECI (J2000.0, IAU76/FK5) state vector.

```
June 28, 2000, 15: 8:51.655 000 UTC \Delta UT1 = 0.162\ 360^{\text{s}}, \Delta AT\ 21^{\text{s}}, x_p = 0.098\ 700^{\text{m}}, y_p = 0.286\ 000^{\text{m}} r_{J2000} = 3961.744\ 260\ 3\ 6010.215\ 610\ 9\ 4619.362\ 575\ 8\ \text{km} v_{J2000} = -5.314\ 643\ 386\ 3.964\ 357\ 585\ 1.752\ 939\ 153\ \text{km/s}
```

Converting to standard TOD, PEF via IAU 76/FK5, without the nutation corrections ($\delta\Delta\psi_{1980}$) and $\delta\Delta\varepsilon_{1980}$), but using the two additional terms with $EQ_{eae1980}$,

```
JD_{UT1} = 2,451,724.131 \ 155 \ 293 \ 40, T_{TT} = 0.004 \ 904 \ 360 \ 547

r_{TOD} = 3961.421 \ 498 \ 5 \ 6010.475 \ 268 \ 8 \ 4619.301 \ 531 \ 0 \ km

v_{TOD} = -5.314 \ 833 \ 569 \ 3.964 \ 181 \ 915 \ 1.752 \ 759 \ 802 \ km/s

r_{PEF} = 298.803 \ 632 \ 8 - 7192.314 \ 622 \ 9 \ 4619.301 \ 531 \ 0 \ km

v_{PEF} = 6.105 \ 014 \ 271 \ -0.131 \ 824 \ 177 \ 1.752 \ 759 \ 802 \ km/s
```

For the TEME transformation, use equations (3) to (6) to find the approximate parameters (with 4 nutation terms in Eq (4), no additional two terms in Eq (6), and no small angle approximations). Then, transform TOD or PEF to TEME using Eq (7) or Eq (2) respectively.

```
r_{TEME} = 3961.003 549 8 6010.751 174 0 4619.300 930 1 km

v_{TEME} = -5.315 109 069 3.963 813 071 1.752 758 562 km/s
```

Notice this vector is "in between TOD and PEF, but much closer to the TOD value – a reason it is sometimes [imprecisely] considered "inertial". We consider these numbers are within a few mm of CMOC results.

The related issue for TEME 'of date' and TEME 'of epoch' can also be demonstrated with the following TLE data at epoch and at 3 days into the future.

```
1 00005U 58002B 00179.78495062 .00000023 00000-0 28098-4 0 4753
2 00005 34.2682 348.7242 1859667 331.7664 19.3264 10.82419157413667
```

Some users have assumed comments in CMOC-produced computer outputs suggested TEME of epoch (precession is used), but most users appear to assume "of date." These headers often state: "Ephemeris generated by SGP4 using the WGS-72 earth model. Coordinate frame = true equator and mean equinox of epoch using the FK5 mean of J2000 time and reference frame." We believe this statement still exists today. There is no mention of TEME in the FK5 theory and applicable documents. Analytical Graphic Inc.'s STK provides options for each with the 'of date' option as the default, and we concur with the 'of date' position. Although the change between the two over a week or so is small, it is something measurable if agreement to a centimeter or less is desired. Note that this ignores the general accuracy of the TLE data being no better than a few kilometers. Using the TLE example data, we find the TEME vector at a time 3 days in the future (day = 182.784 950 62) from the TLE epoch.

```
\mathbf{r}_{TEME} = -9060.473735694658.70952502813.68673153 \text{ km}

\mathbf{v}_{TEME} = -2.232832783-4.110453490-3.157345433 \text{ km/s}
```

Next, find the nutation transformation matrix at this time.

$$[\mathbf{R}]_{TEME} = \begin{bmatrix} 0.999 & 999 & 966 & 0.000 & 000 & 000 & 000 & 029 & 505 & 95 \\ -0.000 & 000 & 065 & 0.999 & 999 & 96 & 0.000 & 022 & 007 & 05 \\ -0.000 & 029 & 505 & 95 & 0.000 & 022 & 007 & 05 & 0.999 & 999 & 32 \end{bmatrix}$$
 (C-8)

Using Eq (7), we find the inertial ("J2000") vector at the future time.

$$r_{J2000} = -9059.941\ 378\ 6\ 4659.697\ 200\ 0\ 813.958\ 887\ 5\ km$$

 $v_{J2000} = -2.233\ 348\ 094\ -4.110\ 136\ 162\ -3.157\ 394\ 074\ km/s$

For the future time using the 'of epoch' option, the nutation matrix is found at the epoch time as

$$[\mathbf{R}]_{TEME} = \begin{bmatrix} 0.999 & 999 & 999 & 55 & 0.000 & 000 & 000 & 030 & 111 & 90 \\ -0.000 & 000 & 000 & 66 & 0.999 & 999 & 976 & 0.000 & 021 & 766 & 37 \\ -0.000 & 030 & 111 & 90 & 0.000 & 021 & 766 & 37 & 0.999 & 999 & 91 \end{bmatrix}$$
 (C-9)

and the resulting vector is

 $r_{J2000} = -9059.951\ 079\ 9\ 4659.680\ 755\ 6\ 813.945\ 045\ 1\ km$ $v_{J2000} = -2.233\ 336\ 111\ -4.110\ 141\ 024\ -3.157\ 396\ 220\ km/s$ This is a difference of 23.6 m in just 3 days.

Appendix D – Test Case Listing

SGP4-VER.TLE -

Test cases include those used for the figures in the paper (with a keyword "## fig"), and those used for verification to exercise various aspects of the code. The additional values on the second line were added to simplify automatic processing of each test – the ephemeris starting minutes from epoch (MFE) to the ending MFE, and the delta time step in minutes.

#	Verification test cases			
#	<u>-</u>			
2	00005U 58002B 00179.78495062 .00000023 00000-0 28098-4 0 4753 00005 34.2682 348.7242 1859667 331.7664 19.3264 10.82419157413667	0.00	4320.0	360.00
	04632U 70093B 04031.9107095900000084 00000-0 10000-3 0 9955 04632 11.4628 273.1101 1450506 207.6000 143.9350 1.20231981 44145	-5184.0	-4896.0	120.00
	06251U 62025E 06176.82412014 .00008885 00000-0 12808-3 0 3985 06251 58.0579 54.0425 0030035 139.1568 221.1854 15.56387291 6774	0.0	2880.0	120.00
	08195U 75081A 06176.33215444 .00000099 00000-0 11873-3 0 813 08195 64.1586 279.0717 6877146 264.7651 20.2257 2.00491383225656 MOLNIYA 1-36 ## fig 12h resonant ecc in 0.7 to 0.715 range	0.0	2880.0	120.00
1 2	09880U 77021A 06176.56157475 .00000421 00000-0 10000-3 0 9814 09880 64.5968 349.3786 7069051 270.0229 16.3320 2.00813614112380	0.0	2880.0	120.00
	09998U 74033F 05148.7941792800000112 00000-0 00000+0 0 4480 09998 9.4958 313.1750 0270971 327.5225 30.8097 1.16186785 45878	-1440.0	-720.00	60.0
	11801U 80230.29629788 .01431103 00000-0 14311-1 13 11801 46.7916 230.4354 7318036 47.4722 10.4117 2.28537848 13 EUTELSAT 1-F1 (ECS1)## fig lyddane choice in GSFC at 2080 min	0.0	1440.0	360.00
1 2 #	14128U 83058A 06176.0284489300000158 00000-0 10000-3 0 9627 14128 11.4384 35.2134 0011562 26.4582 333.5652 0.98870114 46093 SL-6 R/B(2) # Deep space, perigee = 82.48 (<98) for	0.0	2880.0	120.00
2	16925U 86065D 06151.67415771 .02550794 -30915-6 18784-3 0 4486 16925 62.0906 295.0239 5596327 245.1593 47.9690 4.88511875148616 SL-12 R/B # Shows Lyddane choice at 1860 and 4700 min	0.0	1440.0	120.00
	20413U 83020D 05363.79166667 .00000000 00000-0 00000+0 0 7041 20413 12.3514 187.4253 7864447 196.3027 356.5478 0.24690082 7978 MOLNIYA 1-83 # 12h resonant, ecc > 0.715 (negative BSTAR)	1440.0	4320.0	120.00
1 2 #	21897U 92011A 06176.0234124400001273 00000-0 -13525-3 0 3044 21897 62.1749 198.0096 7421690 253.0462 20.1561 2.01269994104880 SL-6 R/B(2) # last tle given, decayed 2006-04-04, day 94	0.0	2880.0	120.00
	22312U 93002D 06094.46235912 .99999999 81888-5 49949-3 0 3953 22312 62.1486 77.4698 0308723 267.9229 88.7392 15.95744531 98783 SL-6 R/B(2) # 12h resonant ecc in the > 0.715 range	54.2028672	1440.0	20.00
	22674U 93035D 06176.55909107 .00002121 00000-0 29868-3 0 6569 22674 63.5035 354.4452 7541712 253.3264 18.7754 1.96679808 93877 ARIANE 44L+ R/B # Lyddane bug at <= 70 min for atan2(),	0.0	2880.0	120.00
#	<u>-</u>			
	23177U 94040C 06175.45752052 .00000386 00000-0 76590-3 0 95 23177 7.0496 179.8238 7258491 296.0482 8.3061 2.25906668 97438 WIND # STR#3 Kepler failes past about 200 min	0.0	1440.0	120.00
	23333U 94071A 94305.4999999900172956 26967-3 10000-3 0 15 23333 28.7490 2.3720 9728298 30.4360 1.3500 0.07309491 70 ARIANE 42P+3 R/B ## fig Lyddane bug at > 280.5 min for AcTan()	0.0	1600.0	120.00
1 2	23599U 95029B 06171.76535463 .00085586 12891-6 12956-2 0 2905 23599 6.9327 0.2849 5782022 274.4436 25.2425 4.47796565123555	0.0	720.0	20.00
2	TTALSAT 2 # 24h resonant GEO, inclination > 3 deg 24208U 96044A 06177.0406174000000094 00000-0 10000-3 0 1600 24208 3.8536 80.0121 0026640 311.0977 48.3000 1.00778054 36119 AMC-4 ## fig low incl, show incl shift with	0.0	1440.0	120.00
# 1	## gsfc version from 240 to 1440 min 25954U 99060A 04039.6805728500000108 00000-0 00000-0 0 6847 25954 0.0004 243.8136 0001765 15.5294 22.7134 1.00271289 15615 INTELSAT 902 # negative incl at 9313 min then		1440.0	120.00
2	26900U 01039A 06106.74503247 .00000045 00000-0 10000-3 0 8290 26900 0.0164 266.5378 0003319 86.1794 182.2590 1.00273847 16981 COSMOS 1024 DEB # 12h resonant ecc in 0.5 to 0.65 range	9300.00	9400.00	60.00
1 2 #	26975U 78066F 06174.85818871 .00000620 00000-0 10000-3 0 6809 26975 68.4714 236.1303 5602877 123.7484 302.5767 2.05657553 67521 CBERS 2 # Near Earth, ecc = 8.84E-5 (< 1.0e-4)		2880.0	120.00
# 1	# drop certain normal drag terms 28057U 03049A 06177.78615833 .00000060 00000-0 35940-4 0 1836			

2	28057 98.4283	247.6961 0000884 88.1964 271.9322 14.35478080140550	0.0	2880.0	120.00
#	NAVSTAR 53 (U	JSA 175) # 12h non-resonant GPS (ecc < 0.5 ecc)			
_		06175.5707113600000104 00000-0 10000-3 0 459			
2	28129 54.7298	324.8098 0048506 266.2640 93.1663 2.00562768 18443	0.0	1440.0	120.00
#	COSMOS 2405	# Near Earth, perigee = 127.20 (< 156) s4 mod			
_		06167.21788666 .16154492 76267-5 18678-3 0 8894			
2		345.6130 0024870 260.7578 99.9590 16.47856722116490	0.0	2880.0	120.00
		# Deep space, perigee = 135.75 (<156) s4 mod			
		06177.81079184 .00637644 69054-6 96390-3 0 6000			
		114.9834 6249053 170.2550 212.8965 3.79477162 12753	0.0	1440.0	120.00
#	XM-3	" g, g			
#		<pre># negative around 1130 min</pre>			
		06176.4668339700000205 00000-0 10000-3 0 2190			
		286.9433 0000335 13.7918 55.6504 1.00270176 4891	0.0	1440.0	120.00
#	MINOTAUR R/B				
#		#(perigee = -51km), lost in 50 minutes			
		05333.02012661 .25992681 00000-0 24476-3 0 1534			
_		157.9986 0303955 244.0492 110.6523 16.46015938 10708	0.0	50.0	5.00
#		# Last stage of decay - lost in under 420 min			
_		06170.26783845 .99999999 00000-0 13519-0 0 718			
		273.4882 0015848 277.2124 83.9133 15.93343074 6828	0.0	440.0	20.00
	SL-12 DEB	# Near Earth, perigee = 212.24 < 220			
#		# simplified drag eq			
		06177.28732010 .00766286 10823-4 13334-2 0 101			
	29238 51.5595	213.7903 0202579 95.2503 267.9010 15.73823839 1061	0.0	1440.0	120.00
#		# Original STR#3 SGP4 test			
		80275.98708465 .00073094 13844-3 66816-4 0 87			
		115.9689 0086731 52.6988 110.5714 16.05824518 1058	0.0	1440.0	120.00
#					

Appendix E – Test Case Results Listing

TCPPVER.OUT -

The results are given below for the verification TLE data in Appendix D. Note that this version includes the results of the Lyddane choice using the perturbed inclination as indicated in the GSFC code, and also uses the WGS-72 constants. There is also a "true" time reference at the end of each line to facilitate the conversion with minutes from epoch and UTC.

Min from epoch	position x km	position y km	position z km	vel km/s	vel km/s	vel km/s	year	mon day hr min sec
5 жж								
0.0000000	7022.46529266	-1400.08296755	0.03995155	1.893841015	6.405893759	4.534807250		
360.00000000	-7154.03120202	-3783.17682504	-3536.19412294				2000	6 28 0:50:19.733571
720.00000000	-7134.59340119	6531.68641334	3260.27186483 -				2000	6 28 6:50:19.733571
1080.00000000	5568.53901181	4492.06992591	3863.87641983 -				2000	6 28 12:50:19.733571
1440.00000000	-938.55923943	-6268.18748831	-4294.02924751				2000	6 28 18:50:19.733571
1800.00000000	-9680.56121728	2802.47771354	124.10688038 -				2000	6 29 0:50:19.733571
2160.00000000	190.19796988	7746.96653614	5110.00675412 -	-6.112325142	1.527008184	-0.139152358	2000	6 29 6:50:19.733571
2520.00000000	5579.55640116	-3995.61396789	-1518.82108966				2000	6 29 12:50:19.733571
2880.00000000	-8650.73082219	-1914.93811525	-3007.03603443				2000	6 29 18:50:19.733571
3240.00000000	-5429.79204164	7574.36493792	3747.39305236 -				2000	6 30 0:50:19.733571
3600.00000000	6759.04583722	2001.58198220	2783.55192533 -				2000	6 30 6:50:19.733571
3960.00000000	-3791.44531559	-5712.95617894	-4533.48630714				2000	6 30 12:50:19.733571
4320.00000000	-9060.47373569	4658.70952502	813.68673153 -				2000	6 30 18:50:19.733571
4632 xx								
0.0000000	2334.11450085	-41920.44035349	-0.03867437	2.826321032	-0.065091664	0.570936053		
-5184.00000000	-29020.02587128	13819.84419063	-5713.33679183 -	-1.768068390	-3.235371192	-0.395206135	2004	1 28 7:27:25.308584
-5064.00000000	-32982.56870101	-11125.54996609	-6803.28472771	0.617446996	-3.379240041	0.085954707	2004	1 28 9:27:25.308597
-4944.0000000	-22097.68730513	-31583.13829284	-4836.34329328	2.230597499	-2.166594667	0.426443070	2004	1 28 11:27:25.308611
-4896.00000000	-15129.94694545	-36907.74526221	-3487.56256701			0.504805763	2004	1 28 12:15:25.308600
6251 xx								
0.0000000	3988.31022699	5498.96657235	0.90055879 -	-3.290032738	2.357652820	6.496623475		
120.00000000	-3935.69800083	409.10980837	5471.33577327 -	-3.374784183	-6.635211043	-1.942056221	2006	6 25 21:46:43.980124
240.0000000	-1675.12766915	-5683.30432352	-3286.21510937	5.282496925	1.508674259	-5.354872978	2006	6 25 23:46:43.980097
360.0000000	4993.62642836	2890.54969900	-3600.40145627	0.347333429	5.707031557	5.070699638	2006	6 26 1:46:43.980111
480.0000000	-1115.07959514	4015.11691491	5326.99727718 -	-5.524279443	-4.765738774	2.402255961	2006	6 26 3:46:43.980124
600.0000000	-4329.10008198	-5176.70287935	409.65313857	2.858408303	-2.933091792	-6.509690397	2006	6 26 5:46:43.980097
720.00000000	3692.60030028	-976.24265255	-5623.36447493	3.897257243	6.415554948	1.429112190	2006	6 26 7:46:43.980111
840.0000000	2301.83510037	5723.92394553	2814.61514580 -	-5.110924966	-0.764510559	5.662120145	2006	6 26 9:46:43.980124
960.0000000	-4990.91637950	-2303.42547880	3920.86335598 -	-0.993439372	-5.967458360	-4.759110856	2006	6 26 11:46:43.980097
1080.00000000	642.27769977	-4332.89821901	-5183.31523910	5.720542579	4.216573838	-2.846576139	2006	6 26 13:46:43.980111
1200.00000000	4719.78335752	4798.06938996	-943.58851062 -	-2.294860662	3.492499389	6.408334723	2006	6 26 15:46:43.980124
1320.00000000	-3299.16993602	1576.83168320	5678.67840638 -	-4.460347074	-6.202025196	-0.885874586	2006	6 26 17:46:43.980097
1440.00000000	-2777.14682335	-5663.16031708	-2462.54889123	4.915493146	0.123328992	-5.896495091	2006	6 26 19:46:43.980111
1560.00000000	4992.31573893	1716.62356770	-4287.86065581	1.640717189	6.071570434	4.338797931	2006	6 26 21:46:43.980124
1680.0000000	-8.22384755	4662.21521668	4905.66411857 -	-5.891011274	-3.593173872	3.365100460	2006	6 26 23:46:43.980097
1800.0000000	-4966.20137963	-4379.59155037	1349.33347502	1.763172581	-3.981456387	-6.343279443	2006	6 27 1:46:43.980111
1920.00000000	2954.49390331	-2080.65984650	-5754.75038057	4.895893306	5.858184322	0.375474825	2006	6 27 3:46:43.980124
2040.00000000	3363.28794321	5559.55841180	1956.05542266 -	-4.587378863	0.591943403	6.107838605	2006	6 27 5:46:43.980097
2160.00000000	-4856.66780070	-1107.03450192	4557.21258241 -	-2.304158557	-6.186437070	-3.956549542	2006	6 27 7:46:43.980111
2280.00000000	-497.84480071	-4863.46005312	-4700.81211217	5.960065407	2.996683369	-3.767123329	2006	6 27 9:46:43.980124
2400.00000000	5241.61936096	3910.75960683	-1857.93473952 -	-1.124834806	4.406213160	6.148161299	2006	6 27 11:46:43.980097
2520.00000000	-2451.38045953	2610.60463261	5729.79022069 -			0.187958716		6 27 13:46:43.980111
2640.00000000	-3791.87520638	-5378.82851382	-1575.82737930	4.266273592	-1.199162551		2006	6 27 15:46:43.980124
2760.0000000	4730.53958356	524.05006433	-4857.29369725		6.135412849	3.495115636	2006	6 27 17:46:43.980097
2880.00000000	1159.27802897	5056.60175495	4353.49418579 -	-5.968060341	-2.314790406	4.230722669	2006	6 27 19:46:43.980111

```
8195 xx
      0.00000000
                    2349.89483350 -14785.93811562
                                                        0.02119378 2.721488096 -3.256811655 4.498416672
    120.00000000
                   15223.91713658
                                  -17852.95881713
                                                    25280.39558224 1.079041732 0.875187372 2.485682813
                                                                                                            2006 6 25 9:58:18.143649
    240.00000000
                   19752.78050009
                                   -8600.07130962
                                                    37522.72921090 0.238105279 1.546110924 0.986410447
                                                                                                            2006 6 25 11:58:18.143622
    360.00000000
                   19089.29762968
                                    3107.89495018
                                                    39958.14661370 -0.410308034 1.640332277 -0.306873818
                                                                                                            2006 6 25 13:58:18.143636
    480.00000000
                   13829.66070574
                                   13977.39999817
                                                    32736.32082508 -1.065096849 1.279983299 -1.760166075
                                                                                                            2006 6 25 15:58:18.143649
    600.00000000
                    3333.05838525
                                   18395.31728674
                                                    12738.25031238 -1.882432221 -0.611623333 -4.039586549
                                                                                                            2006 6 25 17:58:18.143622
    720.00000000
                    2622.13222207
                                  -15125.15464924
                                                      474.51048398 2.688287199 -3.078426664 4.494979530
                                                                                                            2006 6 25 19:58:18.143636
    840.00000000
                   15320.56770017
                                   -17777.32564586
                                                    25539.53198382 1.064346229 0.892184771 2.459822414
                                                                                                            2006
                                                                                                                 6 25 21:58:18.143649
    960.00000000
                   19769.70267785
                                                    37624.20130236 0.229304396 1.550363884 0.966993056
                                   -8458.65104454
                                                                                                            2006 6 25 23:58:18.143622
    1080.00000000
                   19048.56201523
                                    3260.43223119
                                                    39923.39143967 -0.418015536 1.639346953 -0.326094840
                                                                                                            2006 6 26 1:58:18.143636
    1200.00000000
                   13729.19205837
                                   14097.70014810
                                                    32547.52799890 -1.074511043 1.270505211 -1.785099927
                                                                                                            2006 6 26 3:58:18.143649
   1320.00000000
                    3148.86165643
                                   18323.19841703
                                                    12305.75195578 -1.895271701 -0.678343847 -4.086577951
                                                                                                            2006 6 26 5:58:18.143622
   1440.00000000
                    2890.80638268
                                  -15446.43952300
                                                      948.77010176 2.654407490 -2.909344895 4.486437362
                                                                                                            2006 6 26 7:58:18.143636
                   15415.98410712
                                  -17699.90714437
                                                    25796.19644689 1.049818334 0.908822332 2.434107329
   1560.00000000
                                                                                                            2006 6 26 9:58:18.143649
                                                    37723.74539119 0.220539813 1.554518900 0.947601047
   1680.00000000
                   19786.00618538
                                   -8316.74570581
                                                                                                            2006 6 26 11:58:18.143622
   1800.00000000
                   19007.28688729
                                    3412.85948715
                                                    39886.66579255 -0.425733568 1.638276809 -0.345353807
                                                                                                            2006 6 26 13:58:18.143636
   1920.00000000
                   13627.93015254
                                   14216.95401307
                                                    32356.13706868 -1.083991976 1.260802347 -1.810193903
                                                                                                            2006 6 26 15:58:18.143649
   2040.00000000
                    2963.26486560
                                   18243.85063641
                                                    11868.25797486 -1.908015447 -0.747870342 -4.134004492
                                                                                                            2006 6 26 17:58:18.143622
   2160.00000000
                    3155.85126036
                                   -15750.70393364
                                                     1422.32496953 2.620085624 -2.748990396 4.473527039
                                                                                                            2006 6 26 19:58:18.143636
   2280.00000000
                   15510.15191770
                                  -17620.71002219
                                                    26050.43525345 1.035454678 0.925111006 2.408534465
                                                                                                            2006 6 26 21:58:18.143649
   2400.00000000
                   19801.67198812
                                   -8174.33337167
                                                    37821.38577439 0.211812700 1.558576937 0.928231880
                                                                                                            2006 6 26 23:58:18.143622
   2520.00000000
                   18965.46529379
                                    3565.19666242
                                                    39847.97510998 -0.433459945 1.637120585 -0.364653213
                                                                                                            2006 6 27 1:58:18.143636
   2640.00000000
                   13525.88227400
                                   14335.15978787
                                                    32162.13236536 -1.093537945 1.250868256 -1.835451681
                                                                                                            2006 6 27 3:58:18.143649
    2760.00000000
                    2776.30574260
                                   18156.98538451
                                                    11425.73046481 -1.920632199 -0.820370733 -4.181839232
                                                                                                            2006 6 27 5:58:18.143622
    2880.00000000
                    3417.20931586
                                  -16038.79510665
                                                     1894.74934058 2.585515864 -2.596818146 4.456882556
                                                                                                            2006 6 27 7:58:18.143636
9880 xx
      0.00000000
                   13020.06750784
                                    -2449.07193500
                                                        1.15896030 4.247363935 1.597178501 4.956708611
     120.00000000
                   19190.32482476
                                     9249.01266902
                                                    26596.71345328 -0.624960193 1.324550562 2.495697637
                                                                                                            2006 6 25 15:28:40.058423
    240.00000000
                   11332.67806218
                                    16517.99124008
                                                    38569.78482991 -1.400974747 0.710947006 0.923935636
                                                                                                            2006 6 25 17:28:40.058396
    360.00000000
                     328.74217398
                                   19554.92047380
                                                    40558.26246145 -1.593281066 0.126772913 -0.359627307
                                                                                                            2006 6 25 19:28:40.058410
                                                    33158.75253886 -1.383205997 -0.582328999 -1.744412556
    480.0000000
                  -10684.90590680
                                   18057.15728839
                                                                                                            2006 6 25 21:28:40.058423
                                                    13885.91649059 0.044133354 -1.853448464 -3.815303117
    600.00000000
                  -17069.78000550
                                    9944.86797897
                                                                                                            2006 6 25 23:28:40.058396
    720,00000000
                   13725.09398980
                                    -2180.70877090
                                                      863.29684523 3.878478111 1.656846496 4.944867241
                                                                                                            2006 6 26 1:28:40.058410
    840.00000000
                   19089.63879226
                                    9456.29670247
                                                    27026.79562883 -0.656614299 1.309112636 2.449371941
                                                                                                            2006 6 26 3:28:40.058423
    960.00000000
                   11106.41248373
                                   16627.60874079
                                                    38727.35140296 -1.409722680 0.698582526 0.891383535
                                                                                                            2006 6 26 5:28:40.058396
    1080.00000000
                      72.40958621
                                   19575.08054144
                                                    40492.12544001 -1.593394604 0.113655142 -0.390556063
                                                                                                            2006 6 26 7:28:40.058410
    1200.00000000
                 -10905.89252576
                                   17965.41205111
                                                    32850.07298244 -1.371396120 -0.601706604 -1.782817058
                                                                                                            2006 6 26 9:28:40.058423
   1320.00000000 -17044.61207568
                                    9635.48491849
                                                    13212.59462953 0.129244030 -1.903551430 -3.884569098
                                                                                                            2006 6 26 11:28:40.058396
   1440.00000000
                   14369.90303735
                                   -1903.85601062
                                                     1722.15319852 3.543393116 1.701687176 4.913881358
                                                                                                            2006 6 26 13:28:40.058410
   1560.00000000
                   18983.96210441
                                    9661.12233804
                                                    27448.99557732 -0.687189304 1.293808870 2.403630759
                                                                                                            2006 6 26 15:28:40.058423
   1680.00000000
                   10878.79336704
                                   16735.31433954
                                                    38879.23434264 -1.418239666 0.686235750 0.858951848
                                                                                                            2006 6 26 17:28:40.058396
   1800.00000000
                    -184.03743100
                                   19593.09371709
                                                    40420.40606889 -1.593348925 0.100448697 -0.421571993
                                                                                                            2006 6 26 19:28:40.058410
   1920.00000000
                  -11125.12138631
                                   17870.19488928
                                                    32534.21521208 -1.359116236 -0.621413776 -1.821629856
                                                                                                            2006 6 26 21:28:40.058423
    2040.00000000
                                                    -17004.43272827
                                    9316.53926351
                                                                                                            2006 6 26 23:28:40.058396
   2160.00000000
                   14960.06492693
                                    -1620.68430805
                                                     2574.96359381 3.238634028 1.734723385 4.868880331
                                                                                                            2006 6 27 1:28:40.058410
   2280.00000000
                   18873.46347257
                                    9863.57004586
                                                    27863.46574735 -0.716736981 1.278632817 2.358448535
                                                                                                            2006 6 27 3:28:40.058423
   2400.00000000
                   10649.86857581
                                   16841.14172669
                                                    39025.48035006 -1.426527152 0.673901057 0.826632332
                                                                                                            2006 6 27 5:28:40.058396
   2520.00000000
                    -440.53459323
                                    19608.95524423
                                                    40343.10675451 -1.593138597 0.087147884 -0.452680559
                                                                                                            2006 6 27 7:28:40.058410
   2640.00000000
                  -11342.45028909
                                   17771.44223942
                                                    32211.12535721 -1.346344015 -0.641464291 -1.860864234
                                                                                                            2006 6 27 9:28:40.058423
   2760.00000000
                  -16948.06005711
                                                    8987.64254880
                                                                                                            2006 6 27 11:28:40.058396
   2880.00000000
                   15500.53445068
                                    -1332.90981042
                                                     3419.72315308 2.960917974 1.758331634 4.813698638
                                                                                                            2006 6 27 13:28:40.058410
9998 xx
      0.00000000
                   25532.98947267
                                  -27244.26327953
                                                       -1.11572421 2.410283885 2.194175683 0.545888526
  -1440.00000000
                  -11362.18265118
                                  -35117.55867813
                                                    -5413.62537994 3.137861261 -1.011678260 0.267510059
                                                                                                            2005 5 27 19: 3:37.089777
  -1380.00000000
                     309.25349929
                                   -36960.43090143
                                                    -4198.48007670 3.292429375 -0.002166046 0.402111628
                                                                                                            2005 5 27 20: 3:37.089763
  -1320.00000000
                   11949.04009077
                                  -35127.37816804
                                                    -2565.89806468 3.119942784 1.012096444 0.497284100
                                                                                                            2005 5 27 21: 3:37.089790
  -1260.00000000
                   22400.45329336
                                  -29798.63236321
                                                     -677.91515122 2.638533344 1.922477736 0.542792913
                                                                                                            2005 5 27 22: 3:37.089777
  -1200.00000000
                   30640.84752458
                                                     1277.34808722 1.903464941 2.634294312 0.534540934
                                  -21525.02340201
                                                                                                            2005 5 27 23: 3:37.089763
```

```
3108.72535238 0.997393045 3.079858548 0.474873291
   -1140.00000000
                   35899.56788035 -11152.71158138
                                                                                                             2005 5 28 0: 3:37.089790
   -1080.00000000
                   37732.45438600
                                      288,18821054
                                                      4643.87587495 0.016652226 3.225184410 0.371669746
                                                                                                             2005 5 28 1: 3:37.089777
   -1020.00000000
                   36045.92961699
                                    11706.61816230
                                                      5746.32646574 -0.942409065 3.069888941 0.236662980
                                                                                                             2005 5 28 2: 3:37.089763
   -960.00000000
                   31076.77273609
                                    22063.44379776
                                                      6325.93403705 -1.794027976 2.642072476 0.083556127
                                                                                                             2005 5 28 3: 3:37.089790
    -900.00000000
                   23341.26015320
                                    30460.88002531
                                                      6342.91707895 -2.469409743 1.990861658 -0.073612096
                                                                                                             2005 5 28 4: 3:37.089777
    -840.00000000
                   13568.39733054
                                    36204.45930900
                                                      5806.79548733 -2.919354203 1.178920217 -0.221646814
                                                                                                             2005 5 28 5: 3:37.089763
    -780.00000000
                    2628.58762420
                                    38840.10855897
                                                      4771.91979854 -3.114400514 0.276239109 -0.348926401
                                                                                                             2005 5 28 6: 3:37.089790
    -720.00000000
                   -8535.81598158
                                    38171.79073851
                                                      3331.00311285 -3.043839958 -0.644462527 -0.445808894
                                                                                                             2005 5 28 7: 3:37.089777
11801 xx
      0.00000000
                                                      5828.74846783 5.107155391 6.444680305 -0.186133297
                    7473.37102491
                                      428.94748312
     360.00000000
                   -3305.22148694
                                    32410.84323331
                                                    -24697.16974954 -1.301137319 -1.151315600 -0.283335823
                                                                                                             1980 8 17 13: 6:40.136822
    720.00000000
                   14271.29083858
                                    24110.44309009
                                                     -4725.76320143 -0.320504528 2.679841539 -2.084054355
                                                                                                             1980 8 17 19: 6:40.136822
    1080.00000000
                   -9990.05800009
                                    22717.34212448
                                                    -23616.88515553 -1.016674392 -2.290267981 0.728923337
                                                                                                             1980 8 18 1: 6:40.136822
   1440.00000000
                    9787.87836256
                                    33753.32249667
                                                    -15030.79874625 -1.094251553 0.923589906 -1.522311008
                                                                                                             1980 8 18 7: 6:40.136822
14128 xx
      0.00000000
                   34747.57932696
                                    24502.37114079
                                                        -1.32832986 -1.731642662 2.452772615 0.608510081
    120.00000000
                   18263.33439094
                                    38159.96004751
                                                      4186.18304085 -2.744396611 1.255583260 0.528558932
                                                                                                             2006 6 25 2:40:57.987566
    240.00000000
                   -3023.38840703
                                    41783.13186459
                                                      7273.03412906 -3.035574793 -0.271656544 0.309645251
                                                                                                             2006 6 25 4:40:57.987539
    360.00000000
                  -23516.34391907
                                    34424.42065671
                                                      8448.49867693 -2.529120477 -1.726186020 0.009582303
                                                                                                             2006 6 25 6:40:57.987553
    480.00000000
                 -37837.46699511
                                    18028.39727170
                                                      7406.25540271 -1.360069525 -2.725794686 -0.292555349
                                                                                                             2006 6 25 8:40:57.987566
    600.0000000 -42243.58460661
                                    -3093.72887774
                                                      4422.91711801 0.163110919 -3.009980598 -0.517584362
                                                                                                             2006 6 25 10:40:57.987539
    720.0000000 -35597.57919549
                                   -23407.91145393
                                                       282.09554383 1.641405246 -2.506773678 -0.606963478
                                                                                                             2006 6 25 12:40:57.987553
    840.00000000
                  -19649.19834455
                                   -37606.11623860
                                                     -3932.71525948 2.689647056 -1.349150016 -0.537710698
                                                                                                             2006 6 25 14:40:57.987566
                    1431.30912160
                                                     -7120.45467057 3.035263353 0.160882945 -0.327993994
                                                                                                             2006 6 25 16:40:57.987539
    960.00000000
                                   -41982.04949668
    1080.00000000
                   22136.97605384
                                   -35388.19823762
                                                     -8447.62393401 2.587624889 1.630097136 -0.032349004
                                                                                                             2006 6 25 18:40:57.987553
    1200.00000000
                   37050.15790219
                                   -19537.23321425
                                                     -7564.83463543 1.461844494 2.674654256 0.272202191
                                                                                                             2006 6 25 20:40:57.987566
   1320.00000000
                   42253.81760945
                                     1431.81867593
                                                     -4699.87621174 -0.049247334 3.019518960 0.505890058
                                                                                                             2006 6 25 22:40:57.987539
   1440.00000000
                   36366.59147396
                                    22023.54245720
                                                      -601.47121821 -1.549681546 2.571788981 0.607057418
                                                                                                             2006 6 26 0:40:57.987553
   1560.00000000
                   20922.12287985
                                    36826.33975981
                                                      3654.91125886 -2.644070068 1.447521216 0.548722983
                                                                                                             2006 6 26 2:40:57.987566
   1680.00000000
                     -23.77224182
                                    41945.51688402
                                                      6950.29891751 -3.043358385 -0.057417440 0.346112094
                                                                                                             2006 6 26 4:40:57.987539
   1800.0000000 -20964.17821076
                                    36039.06206172
                                                      8418.91984963 -2.642795221 -1.546099886 0.052725852
                                                                                                             2006 6 26 6:40:57.987553
                                                      7677.19769359 -1.549488154 -2.627052310 -0.254079652
                                                                                                             2006 6 26 8:40:57.987566
   1920.00000000
                 -36401.63863057
                                    20669.75286162
                                                      4922.96388841 -0.052232768 -3.018152669 -0.493827331
   2040.00000000 -42298.30327543
                                     -119.03351118
                                                                                                             2006 6 26 10:40:57.987539
   2160.00000000 -37125.62383511
                                   -20879.63058368
                                                       879.86971348 1.456499841 -2.619358421 -0.604081694
                                                                                                             2006 6 26 12:40:57.987553
                                                     -3393.15365183 2.583161226 -1.536647628 -0.556404555
   2280.00000000
                  -22250.12320553
                                   -36182.74736487
                                                                                                             2006 6 26 14:40:57.987566
   2400.00000000
                   -1563.06258654
                                   -42035.43179159
                                                     -6780.02161760 3.034917506 -0.052702046 -0.363395654
                                                                                                             2006 6 26 16:40:57.987539
   2520.00000000
                                                     -8395.46892032 2.693682199 1.446079999 -0.075256054
                   19531.64069587
                                   -36905.65470956
                                                                                                             2006 6 26 18:40:57.987553
   2640.00000000
                   35516.53506142
                                  -22123.71916638
                                                     -7815.04516935 1.646882125 2.568416058 0.232985912
                                                                                                             2006 6 26 20:40:57.987566
   2760.00000000
                   42196.03535976
                                    -1547.32646751
                                                     -5187.39401981 0.166491841 3.019211549 0.480665780
                                                                                                             2006 6 26 22:40:57.987539
   2880.00000000
                   37802.25393045
                                   19433.57330019
                                                     -1198.66634226 -1.359930580 2.677830903 0.602507466
                                                                                                             2006 6 27 0:40:57.987553
16925 xx
      0.00000000
                    5559.11686836 -11941.04090781
                                                       -19.41235206 3.392116762 -1.946985124 4.250755852
    120.00000000
                   12339.83273749
                                    -2771.14447871
                                                     18904.57603433 -0.871247614 2.600917693 0.581560002
                                                                                                             2006 5 31 18:10:47.226141
    240,00000000
                   -3385.00215658
                                     7538.13955729
                                                       200.59008616 -2.023512865 -4.261808344 -6.856385787
                                                                                                             2006 5 31 20:10:47.226115
    360.00000000
                                                     13780.16486738 0.619279224 1.821510542 2.507365975
                   12805.22442200
                                   -10258.94667177
                                                                                                             2006 5 31 22:10:47.226128
    480.00000000
                    5682.46556318
                                     7199.30270473
                                                     15437.67134070 -2.474365406 2.087897336 -2.583767460
                                                                                                             2006 6 1 0:10:47.226141
    600.00000000
                    7628.94243982
                                   -12852.72097492
                                                      2902.87208981 2.748131081 -0.740084579 4.125307943
                                                                                                             2006 6 1 2:10:47.226115
    720.00000000
                   11531.64866625
                                     -858.27542736
                                                     19086.85993771 -1.170071901 2.660311986 0.096005705
                                                                                                             2006 6 1 4:10:47.226128
                   -3866.98069515
                                                     -4577.36484577 1.157257298 -8.453281164 -4.683959407
    840.00000000
                                     2603.73442786
                                                                                                             2006 6 1 6:10:47.226141
                   13054.77732721
                                                     15537.63259903 0.229846748 2.119467054 2.063396852
    960.00000000
                                    -8707.92757730
                                                                                                             2006 6 1 8:10:47.226115
                    3496.91064652
                                                     12845.81838327 -2.782184997 1.552950644 -3.554436131
                                                                                                             2006 6 1 10:10:47.226128
   1080,00000000
                                     8712.83919778
   1200.00000000
                    9593.07424729
                                   -13023.75963608
                                                      6250.46484931 2.072666376 0.278735334 3.778111073
                                                                                                             2006 6 1 12:10:47.226141
   1320.00000000
                   10284.79205084
                                     1487.89914169
                                                     18824.37381327 -1.530335053 2.663107730 -0.542205966
                                                                                                             2006 6 1 14:10:47.226115
    1440.00000000
                    -984.62035146
                                    -5187.03480813
                                                     -5745.59594144 4.340271916 -7.266811354 1.777668888
                                                                                                             2006 6 1 16:10:47.226128
20413 xx
      0.00000000
                   25123.29290741
                                   -13225.49966286
                                                      3249.40351869 0.488683419 4.797897593 -0.961119693
   1440.00000000 -151669.05280515
                                    -5645.20454550
                                                     -2198.51592118 -0.869182889 -0.870759872 0.156508219
                                                                                                             2005 12 30 19: 0: 0.000268
   1560.00000000 -157497.71657495 -11884.99595074
                                                     -1061.44439402 -0.749657961 -0.864016715 0.157766101
                                                                                                             2005 12 30 21: 0: 0.000282
   1680.00000000 -162498.32255577 -18062.99733167
                                                        81.00915253 -0.638980378 -0.853687105 0.158098992
                                                                                                             2005 12 30 23: 0: 0.000255
```

```
1800.00000000 -166728.76010920 -24155.99648299
                                                     1222.84128677 -0.535600687 -0.840455444 0.157680857
                                                                                                           2005 12 31 1: 0: 0.000268
   1920.00000000 -169935.81924592 -31767.29787964
                                                     2749.01540345 -0.430050431 -0.828904183 0.157812340
                                                                                                           2005 12 31 3: 0: 0.000282
   2040.00000000 -172703.07831815 -37662.95639336
                                                     3883.60052579 -0.338004891 -0.810277487 0.156020035
                                                                                                           2005 12 31 5: 0: 0.000255
   2160.00000000 -174823.19337404 -43417.55605219
                                                     5003.26312809 -0.250258622 -0.789828672 0.153764903
                                                                                                           2005 12 31 7: 0: 0.000268
   2280.00000000 -176324.63925775 -49018.51958648
                                                     6104.85025002 -0.166136613 -0.767706262 0.151092242
                                                                                                           2005 12 31 9: 0: 0.000282
   2400.0000000 -177231.42142458 -54454.12699497
                                                     7185.48661607 -0.085067854 -0.744001567 0.148033403
                                                                                                           2005 12 31 11: 0: 0.000255
   2520.00000000 -177563.73583232 -59713.14859144
                                                     8242.48472591 -0.006561730 -0.718760309 0.144608676
                                                                                                           2005 12 31 13: 0: 0.000267
   2640.00000000 -177338.48026483 -64784.54644698
                                                     9273.27220003 0.069809946 -0.691990238 0.140829236
                                                                                                           2005 12 31 15: 0: 0.000281
                                                    10275.33063459 0.144426878 -0.663665876 0.136698419
   2760.00000000 -176569.65151461
                                  -69657.21976255
                                                                                                           2005 12 31 17: 0: 0.000254
   2880.00000000 -175268.65299073
                                                    11246.14177160 0.217631370 -0.633731091 0.132212491
                                                                                                           2005 12 31 19: 0: 0.000267
                                  -74319.77625463
   3000.00000000 -173444.53039609
                                  -78760.31560396
                                                    12183.13775212  0.289737325  -0.602099929  0.127361017
                                                                                                           2005 12 31 21: 0: 0.000281
   3120.00000000 -171104.14813653
                                  -82966.21323591
                                                    13083.65278381 0.361037779 -0.568655903 0.122126889
                                                                                                           2005 12 31 23: 0: 0.000254
   3240.00000000 -168252.31543803
                                  -86923.89363433
                                                    13944.87382716  0.431811396  -0.533249797  0.116486022
                                                                                                           2006 1 1 1: 0: 0.000268
   3360.00000000 -164891.86832887
                                  -90618.58225954
                                                    14763.78794247 0.502328269 -0.495695896 0.110406725
                                                                                                           2006 1 1 3: 0: 0.000282
   3480.00000000 -161023.71139825 -94034.02398835
                                                    15537.12375729 0.572855321 -0.455766412 0.103848688
                                                                                                           2006 1 1 5: 0: 0.000255
   3600.0000000 -156646.82136726 -97152.15370791
                                                    16261.28409305 0.643661538 -0.413183688 0.096761524
                                                                                                           2006 1 1 7:0:0.000268
   3720.0000000 -151758.21285737 -99952.70098346
                                                    16932.26607548 0.715023254 -0.367609561 0.089082727
                                                                                                           2006 1 1 9: 0: 0.000282
   3840.00000000 -146352.86521283 -102412.70506284
                                                    17545.56394158 0.787229695 -0.318630913 0.080734873
                                                                                                           2006 1 1 11: 0: 0.000255
   3960.00000000 -140423.60777444 -104505.90799734
                                                    2006 1 1 13: 0: 0.000268
   4080.00000000 -133960.95961851 -106201.98091318
                                                    18577.81121953 0.935434758 -0.208307307 0.061623110
                                                                                                           2006 1 1 15: 0: 0.000282
   4200.0000000 -126952.91860010 -107465.51906186
                                                    18983.96903112 1.012133628 -0.145543878 0.050587007
                                                                                                           2006 1 1 17: 0: 0.000255
   4320.00000000 -119384.69396454 -108254.71115372
                                                    19306.39581892 1.091093313 -0.076447479 0.038319282
                                                                                                           2006 1 1 19: 0: 0.000268
21897 **
      0.00000000 -14464.72135182
                                                        0.06681686 -3.249312013 -3.281032707 4.007046940
                                  -4699.19517587
    120.00000000 -19410.46286123
                                  -19143.03318969
                                                    23114.05522619 0.508602237 -1.156882269 2.379923455
                                                                                                           2006 6 25 2:33:42.834827
    240.00000000 -12686.06129708
                                  -23853.75335645
                                                    35529.81733588 1.231633829 -0.221718202 1.118440291
                                                                                                           2006 6 25 4:33:42.834800
    360.00000000
                   -2775.46649359
                                  -22839.64574119
                                                    39494.64689967 1.468963405 0.489481769 -0.023972788
                                                                                                           2006 6 25 6:33:42.834814
    480.00000000
                   7679.87883570
                                  -16780.50760106
                                                    34686.21815555 1.364171080 1.211183897 -1.385151371
                                                                                                           2006 6 25 8:33:42.834827
    600.00000000
                   14552.40023028
                                   -4819.50121461
                                                    17154.70672449 0.109201591 2.176124494 -3.854856805
                                                                                                           2006 6 25 10:33:42.834800
    720.00000000
                 -15302.38845375
                                   -5556.43440300
                                                     1095.95088753 -2.838224312 -3.134231137 3.992596326
                                                                                                           2006 6 25 12:33:42.834814
    840.00000000 -19289.20066748
                                  -19427.04851118
                                                    2006 6 25 14:33:42.834827
                 -12376.21976437
                                  -23893.38020018
                                                    35831.33691892 1.246701529 -0.194294048 1.074867282
                                                                                                           2006 6 25 16:33:42.834800
    960.00000000
                                                    39482.75964390 1.472582922 0.513555654 -0.069306561
   1080.00000000
                   -2400.55677665
                                  -22698.62264640
                                                                                                           2006 6 25 18:33:42.834814
   1200.00000000
                    8031.66819252
                                  -16455.77592085
                                                    34298.94391742 1.351357426 1.239633234 -1.448195324
                                                                                                           2006 6 25 20:33:42.834827
   1320.00000000
                   14559.48780372
                                   -4238.43773813
                                                    16079.23154704 -0.026409655 2.218938770 -4.012628896
                                                                                                           2006 6 25 22:33:42.834800
                                                     2183.44834232 -2.485113443 -2.994994355 3.955891272
   1440.00000000 -16036.04980660
                                   -6372.51406468
                                                                                                           2006 6 26 0:33:42.834814
   1560.00000000 -19156.71583814 -19698.89059957
                                                    24389.29473934 0.594278133 -1.069418599 2.271152044
                                                                                                           2006 6 26 2:33:42.834827
   1680.0000000 -12062.72925552 -23925.82362911
                                                    36120.66680667 1.261238798 -0.167201856 1.031478939
                                                                                                           2006 6 26 4:33:42.834800
   1800.00000000
                   -2024.96136966
                                  -22551.56626703
                                                    39458.50085787 1.475816889 0.537615764 -0.114887472
                                                                                                           2006 6 26 6:33:42.834814
   1920.00000000
                   8379.80916204 -16123.95878459
                                                    33894.75123231 1.337468254 1.268432783 -1.512473301
                                                                                                           2006 6 26 8:33:42.834827
   2040.00000000 14527.86748873
                                   -3646.33817120
                                                    14960.74306518 -0.180035839 2.261273515 -4.179355590
                                                                                                           2006 6 26 10:33:42.834800
                                                     3257.64227208 -2.178897351 -2.863927095 3.904876943
   2160.0000000 -16680.12147335
                                   -7149.80800425
                                                                                                           2006 6 26 12:33:42.834814
   2280.00000000 -19013.58793448 -19958.93766022
                                                    25003.81778666 0.634100431 -1.027559823 2.218002685
                                                                                                           2006 6 26 14:33:42.834827
   2400.00000000 -11745.76155818
                                  -23951,19438627
                                                    36397.87676581 1.275261813 -0.140425132 0.988259441
                                                                                                           2006 6 26 16:33:42.834800
   2520.00000000
                                                    39421.83273890 1.478660174 0.561671519 -0.160733093
                   -1648.81945070
                                  -22398.50594576
                                                                                                           2006 6 26 18:33:42.834814
   2640.00000000
                    8723.97652795
                                  -15784.99406275
                                                    33473.35215527 1.322433593 1.297602497 -1.578055493
                                                                                                           2006 6 26 20:33:42.834827
   2760.00000000
                   14452.25571587
                                   -3043.42332645
                                                    13796.84870805 -0.355190169 2.302485443 -4.355767077
                                                                                                           2006 6 26 22:33:42.834800
   2880.00000000
                 -17246.31075678
                                   -7890.72601508
                                                     4315.39410307 -1.910968458 -2.740945672 3.844722726
                                                                                                           2006 6 27 0:33:42.834814
22312 xx
                                    6510.23625449
                                                        8.83145885 -3.475714837 0.997262768 6.835860345
      0.00000000
                    1442.10132912
                    306.10478453
                                   -5816.45655525
                                                    -2979.55846068 3.950663855 3.415332543 -5.879974329
     54.20286720
                                                                                                           2006 4 4 12: 0: 0.000000
     74.20286720
                    3282.82085464
                                    2077.46972905
                                                    -5189.17988770 0.097342701 7.375135692 2.900196702
                                                                                                           2006 4 4 12:20: 0.000009
     94.20286720
                    530.82729176
                                    6426.20790003
                                                     1712.37076793 -3.837120395 -1.252430637 6.561602577
                                                                                                           2006 4 4 12:40: 0.000018
    114.20286720
                   -3191.69170212
                                     170.27219912
                                                     5956.29807775 -1.394956872 -7.438073471 -0.557553115
                                                                                                           2006 4 4 13: 0: 0.000027
    134.20286720
                   -1818.99222465
                                   -6322.45146616
                                                      681.95247154 3.349795173 -1.530140265 -6.831522765
                                                                                                           2006 4 4 13:19:59.999996
    154.20286720
                    2515.66448634
                                   -2158.83091224
                                                    -5552.13320544 2.571979660 7.311930509 -1.639865620
                                                                                                           2006 4 4 13:40: 0.000004
    174.20286720
                    2414.52833210
                                    5749.10150922
                                                    -1998.59693165 -2.681032960 3.527589301 6.452951429
                                                                                                           2006 4 4 14: 0: 0.000013
    194.20286720
                   -1877.98944331
                                    3862.27848302
                                                     5112.48435863 -3.261489804 -6.026859137 3.433254768
                                                                                                           2006 4 4 14:20: 0.000022
    214.20286720
                   -3117.36584395
                                   -4419.74773864
                                                     3840.85960912 1.545479182 -5.475416581 -5.207913748
                                                                                                           2006 4 4 14:40: 0.000031
```

```
234.20286720
                      815.32034678
                                    -5231.67692249
                                                     -3760.04690354 3.870864200 4.455588552 -5.211082191
                                                                                                              2006 4 4 15: 0: 0.000000
     254.20286720
                    3269.54341810
                                     3029.00081083
                                                     -4704.67969713 -0.526711345 6.812157950 3.929825087
                                                                                                              2006 4 4 15:20: 0.000009
     274.20286720
                      -10.18099756
                                     6026.23341453
                                                      2643.50518407 -3.953623254 -2.616070012 6.145637500
                                                                                                              2006 4 4 15:40: 0.000018
     294.20286720
                    -3320.58819584
                                    -1248.42679945
                                                       5563.06017927 -0.637046974 -7.417786044 -2.076120187
                                                                                                              2006 4 4 16: 0: 0.000027
     314.20286720
                    -1025.48974616
                                    -6366.98945782
                                                       -911.23559153 3.811771909 0.438071490 -6.829260617
                                                                                                              2006 4 4 16:19:59.999996
     334.20286720
                    3003.75996128
                                     -413.85708003
                                                     -5706.15591435 1.674350083 7.694169068 0.316915204
                                                                                                              2006 4 4 16:40: 0.000004
     354.20286720
                    1731.42816980
                                     6258.27676925
                                                       -409.32527982 -3.400497806 1.447945424 6.904010052
                                                                                                              2006 4 4 17: 0: 0.000013
     374.20286720
                    -2582.52111460
                                     2024.19020680
                                                       5647.55650268 -2.530348121 -7.221719393 1.438141553
                                                                                                              2006 4 4 17:20: 0.000022
     394.20286720
                    -2440.56848578
                                    -5702.77311877
                                                      1934.81094689 2.731792947 -3.350576075 -6.527773339
                                                                                                              2006 4 4 17:40: 0.000031
                                                     -5121.67808201 3.249039133 6.465974362 -3.069806659
     414.20286720
                    1951.22934391
                                    -3423.59443045
                                                                                                              2006 4 4 18: 0: 0.000000
     434.20286720
                    2886.50939356
                                     4888.68626216
                                                     -3096.29885989 -1.973162139 4.877039020 5.832414910
                                                                                                              2006 4 4 18:20: 0.000009
     454.20286720
                    -1276.55532182
                                     4553.26898463
                                                      4406.19787375 -3.715146421 -5.320176914 4.418210777
                                                                                                              2006 4 4 18:40: 0.000018
     474.20286720
                    -3181.54698042
                                    -3831.29976506
                                                      4096.80242787 1.114159970 -6.104773578 -4.829967400
                                                                                                              2006 4 4 19: 0: 0.000027
22674 xx
      0.00000000
                   14712.22023280
                                                         0.83497888 4.418965470 1.629592098 4.115531802
                                    -1443.81061850
     120.00000000
                   25418.88807860
                                     9342.60307989
                                                     23611.46690798 0.051284086 1.213127306 2.429004159
                                                                                                              2006 6 25 15:25: 5.468479
     240.00000000
                   21619.59550749
                                    16125.24978864
                                                     36396.79365831 -0.963604380 0.685454965 1.177181937
                                                                                                              2006 6 25 17:25: 5.468452
     360.00000000
                   12721.50543331
                                    19258.96193362
                                                     40898.47648359 -1.457448565 0.179955469 0.071502601
                                                                                                              2006 6 25 19:25: 5.468465
     480.00000000
                    1272.80760054
                                    18458.41971897
                                                     37044.74742696 -1.674863386 -0.436454983 -1.201040990
                                                                                                              2006 6 25 21:25: 5.468479
     600.00000000
                  -10058.43188619
                                    11906.60764454
                                                     21739.62097733 -1.245829683 -1.543789125 -3.324449221
                                                                                                              2006 6 25 23:25: 5.468452
     720.00000000
                   10924.40116466
                                    -2571.92414170
                                                     -2956.34856294 6.071727751 1.349579102 3.898430260
                                                                                                              2006 6 26 1:25: 5.468465
     840.00000000
                   25332.14851525
                                     8398.91099924
                                                     21783.90654357 0.222320754 1.272214306 2.580527192
                                                                                                              2006 6 26 3:25: 5.468479
     960.00000000
                   22317.71926039
                                    15574.82086129
                                                     35495.77144092 -0.892750056 0.737383381 1.291738834
                                                                                                              2006 6 26 5:25: 5.468452
                                    19088.83051008
    1080.00000000
                   13795.68675885
                                                     40803.69584385 -1.420277669 0.235599456 0.185517056
                                                                                                              2006 6 26 7:25: 5.468465
                                                     37864.58088636 -1.668016053 -0.360431458 -1.052854596
    1200.00000000
                    2515.17145049
                                    18746.63776282
                                                                                                              2006 6 26 9:25: 5.468479
    1320.00000000
                    -9084.48602106
                                    12982.62608646
                                                     24045.63900249 -1.378032363 -1.373184736 -3.013963835
                                                                                                              2006 6 26 11:25: 5.468452
    1440.00000000
                    5647.00909495
                                    -3293.90518693
                                                     -5425.85235063 8.507977176 0.414560797 2.543322806
                                                                                                              2006 6 26 13:25: 5.468465
    1560.00000000
                   25111.63372210
                                     7412.55109488
                                                     19844.25781729 0.416496290 1.332106006 2.739301737
                                                                                                              2006 6 26 15:25: 5.468479
    1680.00000000
                   22961.47461641
                                    14985.74459578
                                                     34511.09257381 -0.816711048 0.789391108 1.407901804
                                                                                                              2006 6 26 17:25: 5.468452
    1800.00000000
                    14841.15301459
                                    18876.91439870
                                                     40626.25901619 -1.380403341 0.290228810 0.298258120
                                                                                                              2006 6 26 19:25: 5.468465
    1920.00000000
                    3750.70174081
                                    18978.57939698
                                                     38578.11783220 -1.656939412 -0.287930881 -0.910825599
                                                                                                              2006 6 26 21:25: 5.468479
    2040.00000000
                                                     26136.49045637 -1.474476061 -1.222693624 -2.737178731
                    -8027.30219489
                                    13939.54436955
                                                                                                              2006 6 26 23:25: 5.468452
                                                     -5871.09587258 9.881929371 -1.978467207 -1.922261005
    2160.00000000
                    -1296.95657092
                                    -2813.69369768
                                                                                                              2006 6 27 1:25: 5.468465
    2280.00000000
                   24738.60364819
                                     6383.41644019
                                                     17787.27631900 0.639556952 1.392554379 2.906206324
                                                                                                              2006 6 27 3:25: 5.468479
    2400.00000000
                   23546.85388669
                                    14358.15602832
                                                     33441.67679479 -0.734895006 0.841564851 1.526009909
                                                                                                              2006 6 27 5:25: 5.468452
    2520.00000000
                   15855.87696303
                                    18624.05633582
                                                     40367.13420574 -1.337753546 0.343969522 0.410018472
                                                                                                              2006 6 27 7:25: 5.468465
    2640.00000000
                                                     39189.68603184 -1.642084365 -0.218525096 -0.774148204
                    4976.44933591
                                    19156.75504042
                                                                                                              2006 6 27 9:25: 5.468479
    2760.00000000
                    -6909.20746210
                                    14790.44707042
                                                     28034.46732222 -1.545152610 -1.088119523 -2.487447214
                                                                                                              2006 6 27 11:25: 5.468452
    2880.00000000
                    -7331.65006707
                                     -604.17323419
                                                     -2723.51014575 6.168997265 -3.634011554 -5.963531682
                                                                                                              2006 6 27 13:25: 5.468465
23177 xx
      0.00000000
                                                        -0.44522743 -3.835279101 -7.662552175 0.944561323
                    -8801.60046706
                                       -0.03357557
     120.00000000
                    -1684.34352858
                                   -31555.95196340
                                                      3888.99944319 2.023055719 -2.151306405 0.265065778
                                                                                                              2006 6 24 12:58:49.772928
     240.00000000
                   12325.51410155
                                   -38982.15046244
                                                       4802.88832275 1.763224157 -0.102514446 0.012397139
                                                                                                              2006 6 24 14:58:49.772902
     360.00000000
                   22773.66831936
                                   -34348.02176606
                                                       4228.77407391 1.067616787 1.352427865 -0.166956367
                                                                                                              2006 6 24 16:58:49.772915
     480.00000000
                   26194.40441089
                                   -19482.94203672
                                                       2393.84774063 -0.313732186 2.808771328 -0.346204118
                                                                                                              2006 6 24 18:58:49.772928
     600.00000000
                    8893.50573448
                                     5763.38890561
                                                       -713.69884164 -7.037399220 3.022613131 -0.370272416
                                                                                                              2006 6 24 20:58:49.772902
     720.00000000
                    -6028.75686537
                                   -25648.99913786
                                                      3164.37107274 1.883159288 -3.177051976 0.390793162
                                                                                                              2006 6 24 22:58:49.772915
     840.00000000
                    8313.57299056
                                   -38146.45710922
                                                      4697.80777535 1.905002133 -0.625883074 0.076098187
                                                                                                              2006 6 25 0:58:49.772928
                                                       4529.12568218 1.326244476 0.921916487 -0.114527455
     960.00000000
                   20181.29108622
                                   -36842.60674073
                                                                                                              2006 6 25 2:58:49.772902
                   26302.61794569
                                                      3084.65309986 0.245398835 2.329974347 -0.287495880
    1080.00000000
                                   -25173.39539436
                                                                                                              2006 6 25 4:58:49.772915
                                    -2700.00490122
                                                       317.42727417 -3.009733018 3.902496058 -0.478928582
    1200.00000000
                   19365.07045602
                                                                                                              2006 6 25 6:58:49.772928
    1320.00000000
                    -9667.81878780
                                                       2095.87469034 1.279288285 -4.736005905 0.582878255
                                   -16930.19112642
                                                                                                              2006 6 25 8:58:49.772902
    1440.00000000
                    4021.31438583
                                   -36066.09209609
                                                      4442.91587411 2.007322354 -1.227461376 0.149383897
                                                                                                              2006 6 25 10:58:49.772915
23333 жж
      0.00000000
                    -9301.24542292
                                     3326.10200382
                                                       2318.36441127 -8.729303005 -0.828225037 -0.122314827
     120.00000000
                  -44672.91239680
                                    -6213.11996581
                                                     -1738.80131727 -3.719475070 -1.336673022 -0.621888261
                                                                                                              1994 11 1 13:59:59.999169
     240.0000000 -67053.08885388
                                   -14994.69685946
                                                     -5897.99072793 -2.860576613 -1.183771565 -0.568473909
                                                                                                              1994 11 1 15:59:59.999142
     360.00000000 -85227.84253168
                                   -22897.08484471
                                                     -9722.59184564 -2.426469823 -1.078592475 -0.525341431
                                                                                                              1994 11 1 17:59:59.999155
     480.00000000 -100986.00419136 -30171.19698695 -13283.77044765 -2.147108978 -1.000530827 -0.491587582
                                                                                                              1994 11 1 19:59:59.999169
```

```
600.00000000 - 115093.00686387 - 36962.56316477 - 16634.15682929 - 1.945446188 - 0.938947736 - 0.464199202
                                                                                                             1994 11 1 21:59:59.999142
    720.00000000 -127965.80064891 -43363.32967165 -19809.90480432 -1.789652016 -0.888278463 -0.441254468
                                                                                                             1994 11 1 23:59:59.999155
    840.00000000 -139863.28332207
                                  -49436.45704153 -22836.80438139 -1.663762568 -0.845315913 -0.421548627
                                                                                                             1994 11 2 1:59:59.999169
    960.00000000 -150960.22978259
                                  -55227.45413896 -25734.01408879 -1.558730986 -0.808061065 -0.404293846
                                                                                                             1994 11 2 3:59:59.999142
    1080.00000000 -161381.71414630 -60770.64040903 -28516.26290017 -1.468977174 -0.775190459 -0.388951810
                                                                                                             1994 11 2 5:59:59.999155
    1200.00000000 -171221.18736947
                                   -66092.76474442 -31195.19847387 -1.390837596 -0.745785633 -0.375140398
                                                                                                             1994 11 2 7:59:59.999169
   1320.00000000 -180550.82888746 -71215.23290630 -33780.24938270 -1.321788672 -0.719184752 -0.362579495
                                                                                                             1994 11 2 9:59:59.999142
   1440.00000000 -189427.87533074 -76155.54943344 -36279.19882816 -1.260024473 -0.694896053 -0.351058133
                                                                                                             1994 11 2 11:59:59.999155
    1560.00000000 -197898.69401409
                                   -80928.29015181 -38698.57972447 -1.204211888 -0.672544709 -0.340413731
                                                                                                             1994 11 2 13:59:59.999169
   1600.00000000 -200638.82986236
                                  -82484.14969882 -39488.34331447 -1.186748462 -0.665472422 -0.337037582
                                                                                                             1994 11 2 14:39:59.999146
23599 жж
      0.00000000
                    9892.63794341
                                       35.76144969
                                                        -1.08228838 3.556643237 6.456009375 0.783610890
     20.00000000
                   11931.95642997
                                     7340.74973750
                                                       886.46365987 0.308329116 5.532328972 0.672887281
                                                                                                             2006 6 20 18:42: 6.640047
     40.0000000
                   11321.71039205
                                    13222.84749156
                                                      1602.40119049 -1.151973982 4.285810871 0.521919425
                                                                                                             2006 6 20 19: 2: 6.640056
                    9438.29395675
                                    17688.05450261
                                                      2146.59293402 -1.907904054 3.179955046 0.387692479
     60.00000000
                                                                                                             2006 6 20 19:22: 6.640025
     80.00000000
                    6872.08634639
                                    20910.11016811
                                                      2539.79945034 -2.323995367 2.207398462 0.269506121
                                                                                                             2006 6 20 19:42: 6.640034
    100.00000000
                    3933.37509798
                                    23024.07662542
                                                      2798.25966746 -2.542860616 1.327134966 0.162450076
                                                                                                             2006 6 20 20: 2: 6.640043
    120.00000000
                     816.64091546
                                    24118.98675475
                                                      2932.69459428 -2.626838010 0.504502763 0.062344306
                                                                                                             2006 6 20 20:22: 6.640052
    140.00000000
                   -2334.41705804
                                    24246.86096326
                                                      2949.36448841 -2.602259646 -0.288058266 -0.034145135
                                                                                                             2006 6 20 20:42: 6.640020
    160.00000000
                   -5394.31798039
                                    23429.42716149
                                                      2850.86832586 -2.474434068 -1.074055982 -0.129868366
                                                                                                             2006 6 20 21: 2: 6.640029
    180.00000000
                   -8233.35130237
                                    21661.24480883
                                                      2636.51456118 -2.230845533 -1.875742344 -0.227528603
                                                                                                             2006 6 20 21:22: 6.640038
    200.0000000 -10693.96497348
                                    18909.88168891
                                                      2302.33707548 -1.835912433 -2.716169865 -0.329931880
                                                                                                             2006 6 20 21:42: 6.640047
    220.00000000 -12553.89669904
                                    15114.63990716
                                                      1840.93573231 -1.212478879 -3.619036996 -0.439970633
                                                                                                             2006 6 20 22: 2: 6.640056
    240.0000000 -13450.20591864
                                    10190.57904289
                                                      1241.95958736 -0.189082511 -4.596701971 -0.559173899
                                                                                                             2006 6 20 22:22: 6.640025
    260.00000000
                  -12686.60437121
                                     4079.31106161
                                                       498.27078614 1.664498211 -5.559889865 -0.676747779
                                                                                                             2006 6 20 22:42: 6.640034
    280.00000000
                   -8672.55867753
                                    -2827.56823315
                                                      -342.59644716 5.515079852 -5.551222962 -0.676360044
                                                                                                             2006 6 20 23: 2: 6.640043
    300.00000000
                    1153.31498060
                                    -6411.98692060
                                                      -779.87288941 9.689818102 1.388598425 0.167868798
                                                                                                             2006 6 20 23:22: 6.640052
    320.00000000
                    9542.79201056
                                     -533.71253081
                                                       -65.73165428 3.926947087 6.459583539 0.785686755
                                                                                                             2006 6 20 23:42: 6.640020
    340.00000000
                   11868.80960100
                                     6861.59590848
                                                       833.72780602 0.452957852 5.632811328 0.685262323
                                                                                                             2006 6 21 0: 2: 6.640029
    360.00000000
                   11376.23941678
                                    12858.97121366
                                                      1563.40660172 -1.087665695 4.374693347 0.532207051
                                                                                                             2006 6 21 0:22: 6.640038
    380.00000000
                    9547.70300782
                                    17421.48570758
                                                      2118.56907515 -1.876540262 3.253891728 0.395810243
                                                                                                             2006 6 21 0:42: 6.640047
                    7008.51470263
                                                      2520.56064289 -2.308703599 2.270724438 0.276138613
    400.00000000
                                    20725.47471227
                                                                                                             2006 6 21 1: 2: 6.640056
                                                      2786.37568309 -2.536665546 1.383670232 0.168153407
    420.00000000
                    4082.28135104
                                    22911.04184601
                                                                                                             2006 6 21 1:22: 6.640025
    440,00000000
                     969.17978149
                                    24071.23673676
                                                      2927.31326579 -2.626695115 0.557172428 0.067536854
                                                                                                             2006 6 21 1:42: 6.640034
    460.00000000
                   -2184.71515444
                                    24261.21671601
                                                      2950.08142825 -2.607072866 -0.236887607 -0.029125215
                                                                                                             2006 6 21 2: 2: 6.640043
    480.00000000
                   -5253.42223370
                                    23505.37595671
                                                      2857.66120738 -2.484424544 -1.022255436 -0.124714444
                                                                                                             2006 6 21 2:22: 6.640052
    500.00000000
                   -8108.27961017
                                    21800.81688388
                                                      2649.72981961 -2.247597251 -1.821159176 -0.221925624
                                                                                                             2006 6 21 2:42: 6.640020
    520.0000000 -10594.77795556
                                    19117.80779221
                                                      2322.72136979 -1.863118484 -2.656426668 -0.323521502
                                                                                                             2006 6 21 3: 2: 6.640029
    540.0000000 -12497.32045995
                                    15398.64085906
                                                      1869.69983897 -1.258130763 -3.551583368 -0.432338888
                                                                                                             2006 6 21 3:22: 6.640038
    560.0000000 -13467.92475245
                                    10560.90147785
                                                      1280.78399181 -0.271870523 -4.520514224 -0.550016092
                                                                                                             2006 6 21 3:42: 6.640047
    580.00000000 -12848.18843590
                                     4541.21901842
                                                       548.53826427 1.494157156 -5.489585384 -0.667472039
                                                                                                             2006 6 21 4: 2: 6.640056
    600.00000000
                   -9152.70552728
                                    -2344.24950144
                                                      -287.98121970 5.127921095 -5.650383025 -0.685989008
                                                                                                             2006 6 21 4:22: 6.640025
    620.00000000
                     280.38490909
                                    -6500.10264018
                                                      -790.36092984 9.779619614 0.581815811 0.074171345
                                                                                                             2006 6 21 4:42: 6.640034
    640.00000000
                    9166.25784315
                                    -1093.12552651
                                                      -129.49428887 4.316668714 6.438636494 0.785116609
                                                                                                             2006 6 21 5: 2: 6.640043
     660.00000000
                                     6382.21138354
                                                       780.88439015 0.604412453 5.731729369 0.697574333
                   11794.48942915
                                                                                                             2006 6 21 5:22: 6.640052
    680.00000000
                   11424.30138324
                                    12494.26088864
                                                      1524.33165488 -1.021328075 4.463448968 0.542532698
                                                                                                             2006 6 21 5:42: 6.640020
    700.00000000
                    9652.09867350
                                    17153.84762075
                                                      2090.48038336 -1.844516637 3.327522235 0.403915232
                                                                                                             2006 6 21 6: 2: 6.640029
    720.00000000
                    7140.41945884
                                    20539.25485336
                                                      2501.21469368 -2.293173684 2.333507912 0.282716311
                                                                                                             2006 6 21 6:22: 6.640038
24208 xx
                                                        -0.10801028 -3.027168008 0.558848996 0.207982755
      0.00000000
                    7534.10987189
                                    41266.39266843
    120.00000000 -14289.19940414
                                                      1428.62838591 -2.893205245 -1.045447840 0.179634249
                                    39469.05530051
                                                                                                             2006 6 26 2:58:29.343360
    240.0000000 -32222.92014955
                                    26916.25425799
                                                      2468.59996594 -1.973007929 -2.359335071 0.102539376
                                                                                                             2006 6 26 4:58:29.343334
    360.0000000 -41413.95109398
                                    7055.51656639
                                                      2838.90906671 -0.521665080 -3.029172207 -0.002066843
                                                                                                             2006 6 26 6:58:29.343347
                 -39402.72251896
                                   -14716.42475223
                                                      2441.32678358 1.066928187 -2.878714619 -0.105865729
    480.00000000
                                                                                                             2006 6 26 8:58:29.343360
    600.00000000
                  -26751.08889828
                                   -32515.13982431
                                                      1384.38865570 2.366228869 -1.951032799 -0.181018498
                                                                                                             2006 6 26 10:58:29.343334
    720.00000000
                   -6874.77975542
                                   -41530.38329422
                                                       -46.60245459 3.027415087 -0.494671177 -0.207337260
                                                                                                             2006 6 26 12:58:29.343347
    840.00000000
                   14859.52039042
                                   -39302.58907247
                                                     -1465.02482524 2.869609883 1.100123969 -0.177514425
                                                                                                             2006 6 26 14:58:29.343360
    960.00000000
                   32553.14863770
                                   -26398.88401807
                                                     -2485.45866002 1.930064459 2.401574539 -0.099250520
                                                                                                             2006 6 26 16:58:29.343334
   1080.00000000
                   41365.67576837
                                    -6298.09965811
                                                     -2828.05254033 0.459741276 3.051680214 0.006431872
                                                                                                             2006 6 26 18:58:29.343347
```

1200.00000000	38858.83295070	15523.39314924	-2396.86850752 -1.140211488	2.867567143 0.110637217	2006 6 26 20:58:29.343360
1320.00000000	25701.46068162	33089.42617648	-1308.68556638 -2.428713821	1.897381431 0.184605907	2006 6 26 22:58:29.343334
1440.00000000	5501.08137100	41590.27784405	138.32522930 -3.050691874	0.409203052 0.207958133	2006 6 27 0:58:29.343347
25954 жж					
0.0000000	8827.15660472	-41223.00971237	3.63482963 3.007087319	0.643701323 0.000941663	
-1440.00000000	8118.18519221	-41368.40537378	4.11046687 3.017696741	0.591994297 0.000933016	2004 2 7 16:20: 1.494254
-1320.00000000	27766.34015328	-31724.97000557	9.93297846 2.314236153	2.024903193 0.000660861	2004 2 7 18:20: 1.494268
-1200.00000000	39932.57237973	-13532.60040454	13.12958252 0.987382819	2.911942843 0.000213298	2004 2 7 20:20: 1.494241
-1080.00000000	41341.01365441	8305.71681955	12.84988501 -0.605098224	3.014378268 -0.000291034	2004 2 7 22:20: 1.494254
-960.00000000	31614.99210558	27907.29155353	9.16618797 -2.034243523	2.305014102 -0.000718418	2004 2 8 0:20: 1.494268
-840.00000000	13375.75227587	39994.27017651	3.05416854 -2.915424366	0.975119874 -0.000955576	2004 2 8 2:20: 1.494241
				-0.617275050 -0.000939664	
-720.00000000	-8464.89963309	41312.93549892			
-600.00000000	-28026.23406158	31507.89995661		-2.043607595 -0.000674889	2004 2 8 6:20: 1.494268
-480.0000000	-40040.01314363	13218.00579413	-13.06594832 -0.963328772		2004 2 8 8:20: 1.494241
-360.00000000	-41268.43291976	-8632.06859693		-3.009677376 0.000273163	2004 2 8 10:20: 1.494254
-240.00000000	-31377.85317015	-28156.13970334		-2.288554158 0.000704959	2004 2 8 12:20: 1.494268
-120.0000000	-13031.41552688	-40092.33381029	-3.27636660 2.924657466	-0.950541167 0.000949381	2004 2 8 14:20: 1.494241
0.0000000	8827.15660472	-41223.00971237	3.63482963 3.007087319	0.643701323 0.000941663	2004 2 8 16:20: 1.494254
120.00000000	28306.85426674	-31243.80147394	9.57216891 2.279137743	2.064316875 0.000684127	2004 2 8 18:20: 1.494268
240.00000000	40159.05128805	-12845.39151157	12.96086316 0.937265422	2.928448287 0.000245505	2004 2 8 20:20: 1.494241
360.00000000	41192.55903455	9013.79606759	12.90495666 -0.656727442	3.003543458 -0.000257479	2004 2 8 22:20: 1.494254
480.00000000	31131.69755798	28445.55681731	9.42419238 -2.073484842	2.269770851 -0.000691233	2004 2 9 0:20: 1.494268
600.00000000	12687.81846530	40217.83324639	3.44726249 -2.931721827	0.924962230 -0.000940766	2004 2 9 2:20: 1.494241
720.00000000				-0.668847508 -0.000940700	
	-9172.23500245	41161.63475527			
840.00000000	-28562.51093192	31022.45987587		-2.082713897 -0.000689669	2004 2 9 6:20: 1.494268
960.0000000	-40260.77504549	12529.11484344	-12.84915105 -0.913097031		2004 2 9 8:20: 1.494241
1080.00000000	-41114.14376538	-9338.87194483		-2.998432565 0.000245006	2004 2 9 10:20: 1.494254
1200.00000000	-30890.01512240	-28690.40750792	-9.48037212 2.092989805	-2.252978152 0.000680459	2004 2 9 12:20: 1.494268
1320.0000000	-12341.46194020	-40310.06316386	-3.55833201 2.940537098	-0.900219523 0.000934170	2004 2 9 14:20: 1.494241
1440.00000000	9533.27750818	-41065.52390214	3.30756482 2.995596171	0.695200236 0.000938525	2004 2 9 16:20: 1.494254
26900 xx					
0.0000000	-42014.83795787	3702.34357772	-26.67500257 -0.269775247	-3.061854393 0.000336726	
9300.00000000	40968.68133298	-9905.99156086	11.84946837 0.722756848	2.989645389 -0.000161261	2006 4 23 4:52:50.805439
9360.00000000	42135.66858481	1072.99195618	10.83481752 -0.078150602	3.074772455 -0.000380063	2006 4 23 5:52:50.805426
9400.00000000	41304.75156132	8398.27742944		3.014117469 -0.000511575	2006 4 23 6:32:50.805444
26975 жж		0000127712011	3171000111 01011010101	31021227105 01000322075	
0.00000000	-14506.92313768	-21613.56043281	10 05010004 2 212042200	1.159970892 3.020600202	
120.00000000			6800.08705263 1.300543383		2006 6 23 22:35:47.504573
	7309.62197950	6076.00713664			
240.00000000	-3882.62933791	11960.00543452	-25088.14383845 -2.146773699		2006 6 24 0:35:47.504546
360.00000000	-16785.45507465	-734.79159704	-34300.57085853 -1.386528125		2006 6 24 2:35:47.504559
480.0000000	-23524.16689356	-13629.45124622	-30246.27899200 -0.462846784		2006 6 24 4:35:47.504573
600.00000000	-22890.23597092	-22209.35900155	-16769.91946116 0.704351342		2006 6 24 6:35:47.504546
720.0000000	-11646.39698980	-19855.44222106	3574.00109607 2.626712727	1.815887329 2.960883901	2006 6 24 8:35:47.504559
840.0000000	7665.76124241	11159.78946577	345.93813117 -0.584818007	3.193514161 -5.750338922	2006 6 24 10:35:47.504573
960.0000000	-6369.35388112	10204.80073022	-27844.52150384 -2.050573276	-1.582940542 -2.076075232	2006 6 24 12:35:47.504546
1080.00000000	-18345.64763145	-2977.76684430	-34394.90760612 -1.243589864	-1.892050757 0.060372061	2006 6 24 14:35:47.504559
1200.00000000	-23979.74839255	-15436.44139571	-28616.50540218 -0.294973425	-1.482987916 1.478255628	2006 6 24 16:35:47.504573
1320.00000000	-21921.97167880	-22852.45147658	-13784.85308485 0.945455629	-0.428940995 2.596964378	2006 6 24 18:35:47.504546
1440.00000000	-8266.43821031	-17210.74590112		2.665881872 2.712555075	2006 6 24 20:35:47.504559
1560.00000000	6286.85464535	13809.56328971		1.383135377 -5.358719132	2006 6 24 22:35:47.504573
1680.00000000	-8730.87526788	8244.63344365	-30039.92372791 -1.935622871		2006 6 25 0:35:47.504575
1800.00000000	-19735.81883249	-5191.76593007	-34166.14974143 -1.097835530		2006 6 25 0:35:47.504546
			-26742.88893252 -0.119786184		
1920.00000000	-24232.73847703	-17112.08243255			
2040.00000000	-20654.45640708	-23184.54386047	-10611.55144716 1.209238113		2006 6 25 6:35:47.504546
2160.00000000	-4337.15988957	-13410.46817244	9870.45949215 3.532753095		2006 6 25 8:35:47.504559
2280.00000000	4074.62263523	14698.07548285	-12248.65327973 -2.053824693	0.203325817 -4.607867718	2006 6 25 10:35:47.504573
2400.00000000	-10950.23438984	6148.66879447	-31736.65532865 -1.809875605		2006 6 25 12:35:47.504546
2520.00000000	-20952.40702045	-7358.71507895	-33633.06643074 -0.948973031	-1.813594137 0.573893078	2006 6 25 14:35:47.504559
2640.00000000	-24273.48944134	-18637.15546906	-24633.27702390 0.064161440	-1.228537560 1.875728935	2006 6 25 16:35:47.504573

2760.00000000	-19057.55468077	-23148.29322082	-7269.38614178 1.500802809	0.195383037 2.879031237	2006 6 25 18:35:47.504546
2880.00000000	43.69305308	-8145.90299207		5.105315423 0.714401345	2006 6 25 20:35:47.504559
28057 жж					
0.0000000	-2715.28237486	-6619.26436889	-0.01341443 -1.008587273	0.422782003 7.385272942	
120.00000000	-1816.87920942	-1835.78762132		6.655669329 2.463394512	2006 6 26 20:52: 4.079709
240.00000000	1483.17364291	5395.21248786		4.039025766 -5.736648561	2006 6 26 22:52: 4.079682
360.00000000	2801.25607157	5455.03931333	-3692.12865695 -0.595095864		2006 6 27 0:52: 4.079695
480.00000000	411.09332812	-1728.99769152	-6935.45548810 -2.935970964		2006 6 27 2:52: 4.079709
600.00000000	-2506.52558454	-6628.98655094	-988.07784497 -1.390577189		2006 6 27 4:52: 4.079682
720.00000000	-2090.79884266	-2723.22832193		6.337529519 3.411803080	2006 6 27 6:52: 4.079695
840.0000000	1091.80560222	4809.88229503	5172.42897894 2.717483546		2006 6 27 8:52: 4.079709
960.0000000	2811.14062300	5950.65707171	-2813.23705389 -0.159662742		2006 6 27 10:52: 4.079682
1080.00000000	805.72698304	-812.16627907	-7067.58483968 -2.798936020		2006 6 27 12:52: 4.079695
1200.00000000	-2249.59837532	-6505.84890714	-1956.72365062 -1.731234729		2006 6 27 14:52: 4.079709
1320.00000000	-2311.57375797	-3560.99112891	5748.16749600 1.626569751	5.890482233 4.293545048	2006 6 27 16:52: 4.079682
1440.00000000	688.16056594	4124.87618964	5794.55994449 2.810973665	5.479585563 -4.224866316	2006 6 27 18:52: 4.079695
1560.00000000	2759.94088230	6329.87271798	-1879.19518331 0.266930672	-2.222670878 -7.119390567	2006 6 27 20:52: 4.079709
1680.00000000	1171.50677137	125.82053748	-7061.96626202 -2.605687852	-6.958489749 -0.556333225	2006 6 27 22:52: 4.079682
1800.00000000	-1951.43708472	-6251.71945820	-2886.95472355 -2.024131483	-2.475214272 6.741537478	2006 6 28 0:52: 4.079695
1920.00000000	-2475.70722288	-4331.90569958	5117.31234924 1.235823539	5.322743371 5.091281211	2006 6 28 2:52: 4.079709
2040.00000000	281.46097847	3353.51057102	6302.87900650 2.840647273	6.047222485 -3.337085992	2006 6 28 4:52: 4.079682
2160.00000000	2650.33118860	6584.33434851	-908.29027134 0.675457235		2006 6 28 6:52: 4.079695
2280.00000000	1501.17226597	1066.31132756	-6918.71472952 -2.361891904		2006 6 28 8:52: 4.079709
2400.00000000	-1619.73468334	-5871.14051991	-3760.56587071 -2.264093975		2006 6 28 10:52: 4.079682
2520.00000000	-2581.04202505	-5020.05572531		4.645048038 5.789262667	2006 6 28 12:52: 4.079695
2640.00000000	-119.22080628	2510.90620488	6687.45615459 2.807575712		2006 6 28 14:52: 4.079709
2760.00000000	2486.23806726	6708.18210028	80.43349581 1.057274905		2006 6 28 14:52: 4.079709
2880.00000000	1788.42334580	1990.50530957	-6640.59337725 -2.074169091		2006 6 28 16:52: 4.079682
	1788.42334580	1990.50530957	-6640.5933//25 -2.0/4169091	-6.683381288 -2.562////6	2006 6 28 18:52: 4.0/9695
28129 жж		4-040 64000			
0.00000000		-15318.61752390		1.816904974 3.161919976	
120.00000000	18616.75971861	3166.15177043	18833.41523210 -2.076122016		2006 6 24 15:41:49.461504
240.00000000	-3006.50596328	18522.20742011	18941.84078154 -3.375452789		2006 6 24 17:41:49.461477
360.0000000	-21607.02086957	15432.59962630	206.62470309 -1.306049851		2006 6 24 19:41:49.461491
480.00000000	-18453.06134549	-3150.83256134	-18685.83030936 2.106017925		2006 6 24 21:41:49.461504
600.0000000	3425.11742384	-18514.73232706	-18588.67200557 3.394666340		2006 6 24 23:41:49.461477
720.00000000	21858.23838148	-15101.51661554	387.34517048 1.247973967	1.856017403 3.161439948	2006 6 25 1:41:49.461491
840.0000000	18360.69935796	3506.55256762	19024.81678979 -2.122684184	2.830618605 1.537510677	2006 6 25 3:41:49.461504
960.0000000	-3412.84765409	18646.85269710	18748.00359987 -3.366815728	0.986039922 -1.607874972	2006 6 25 5:41:49.461477
1080.00000000	-21758.08331586	15215.44829478	-180.82181406 -1.250144680	-1.856490448 -3.163774870	2006 6 25 7:41:49.461491
1200.00000000	-18193.41290284	-3493.85876912	-18877.14757717 2.153326942	-2.852221264 -1.536617760	2006 6 25 9:41:49.461504
1320.00000000	3833.57386848	-18635.77026711	-18388.68722885 3.384748179		2006 6 25 11:41:49.461477
1440.00000000	22002.20074562	-14879.72595593	774.32827099 1.191573619		2006 6 25 13:41:49.461491
28350 жж					
0.0000000	6333.08123128	-1580.82852326	90.69355720 0.714634423	3.224246550 7.083128132	
120.00000000	-3990.93845855	3052.98341907	4155.32700629 -5.909006188		2006 6 16 7:13:45.407419
240.00000000	-603.55232010	-2685.13474569	-5891.70274282 7.572519907		2006 6 16 9:13:45.407392
360.00000000	4788.22345627	782.56169214	4335.14284621 -4.954509026		2006 6 16 11:13:45.407405
480.00000000	-6291.84601644	1547.82790772	-453.67116498 -0.308625588		2006 6 16 13:13:45.407419
600.00000000			-3586.94343641 5.320920857		
	4480.74573428	-3028.55200374			2006 6 16 15:13:45.407392
720.00000000	-446.42460916	2932.28872588	5759.19389757 -7.561000245		2006 6 16 17:13:45.407405
840.00000000	-3713.79581831	-1382.66125130	-5122.45131136 6.090931626		2006 6 16 19:13:45.407419
960.00000000	6058.32017522	-827.47406722	2104.04678651 -1.798403024		2006 6 16 21:13:45.407392
1080.00000000	-5631.73659006	2623.70953644	1766.49125084 -3.216401578		2006 6 16 23:13:45.407405
1200.00000000	2776.84991560	-3255.36941953	-4837.19667790 6.748135564		2006 6 17 1:13:45.407419
1320.00000000	1148.04430837	2486.07343386	5826.34075913 -7.420162295		2006 6 17 3:13:45.407392
1440.00000000	-4527.90871828	-723.29199041	-4527.44608319 5.121674217	-3.909895427 -4.500218556	2006 6 17 5:13:45.407405
28623 жж					
0.00000000	-11665.70902324	24943.61433357	25.80543633 -1.596228621	-1.476127961 1.126059754	
120.00000000	-11645.35454950	979.37668356	5517.89500058 3.407743502	-5.183094988 -0.492983277	2006 6 26 21:27:32.414976

```
-7261.38496765 -2.013634213 3.106842861 0.284235517
    240.00000000
                    5619.19252274
                                    19651.44862280
                                                                                                              2006 6 26 23:27:32.414949
    360,00000000
                   -9708.68629714
                                    26306.14553149
                                                     -1204.29478856 -1.824164290 -0.931909596 1.113419052
                                                                                                              2006 6 27 1:27:32.414963
    480.00000000
                  -14394.03162892
                                     6659.30765074
                                                       5593.38345858 1.556522911 -4.681657614 0.296912248
                                                                                                              2006 6 27 3:27:32.414976
    600.00000000
                    7712.09476270
                                    15565.72627434
                                                      -7342.40465571 -1.646800364 4.070313571 -0.109483081
                                                                                                              2006 6 27 5:27:32.414949
    720.00000000
                   -7558.36739603
                                    27035.11367962
                                                     -2385.12054184 -1.999583791 -0.393409283 1.078093515
                                                                                                              2006 6 27 7:27:32.414963
    840.00000000
                  -15495.61862220
                                    11550.15897828
                                                       5053.83178121 0.469277336 -4.029761073 0.679054742
                                                                                                              2006 6 27 9:27:32.414976
    960.00000000
                    9167.02568222
                                    10363.65204210
                                                      -6871.52576042 -0.881621027 5.223361510 -0.740696297
                                                                                                              2006 6 27 11:27:32.414949
    1080.00000000
                   -5275.80272094
                                    27151.78486008
                                                      -3494.50687216 -2.129609388 0.150196480 1.021038089
                                                                                                              2006 6 27 13:27:32.414963
    1200.00000000
                  -15601.37656145
                                    15641.29379850
                                                       4217.03266850 -0.249183123 -3.405238557 0.888214503
                                                                                                              2006 6 27 15:27:32.414976
    1320.00000000
                                                      -5477.86477017 0.871447821 6.493677331 -1.885545282
                    9301.05872300
                                     3883.15265574
                                                                                                              2006 6 27 17:27:32.414949
   1440.00000000
                   -2914.31065828
                                    26665.20392758
                                                     -4511.09814335 -2.216261909 0.710067769 0.940691824
                                                                                                              2006 6 27 19:27:32.414963
28626 xx
      0.00000000
                   42080.71852213
                                    -2646.86387436
                                                         0.81851294 0.193105177 3.068688251 0.000438449
    120.00000000
                   37740.00085593
                                    18802.76872802
                                                         3.45512584 -1.371035206 2.752105932 0.000336883
                                                                                                              2006 6 25 13:12:14.455025
    240.00000000
                   23232.82515008
                                    35187.33981802
                                                         4.98927428 -2.565776620 1.694193132 0.000163365
                                                                                                              2006 6 25 15:12:14.454998
                                                         5.15062987 -3.069341800 0.179976276 -0.000031739
    360.00000000
                    2467.44290178
                                    42093.60909959
                                                                                                              2006 6 25 17:12:14.455012
    480.00000000
                  -18962.59052991
                                    37661.66243819
                                                         4.04433258 -2.746151982 -1.382675777 -0.000197633
                                                                                                              2006 6 25 19:12:14.455025
    600.00000000
                  -35285.00095313
                                    23085.44402778
                                                         2.08711880 -1.683277908 -2.572893625 -0.000296282
                                                                                                              2006 6 25 21:12:14.454998
    720.00000000
                  -42103.20138132
                                     2291.06228893
                                                         -0.13274964 -0.166974816 -3.070104560 -0.000311007
                                                                                                               2006 6 25 23:12:14.455012
    840.00000000
                  -37580.31858370
                                   -19120.40485693
                                                         -2.02755702 1.394367848 -2.740341612 -0.000248591
                                                                                                              2006 6 26 1:12:14.455025
    960.00000000
                  -22934.20761876
                                   -35381.23870806
                                                        -3.16495932 2.580167539 -1.672360951 -0.000134907
                                                                                                              2006 6 26 3:12:14.454998
    1080.00000000
                   -2109.90332389
                                   -42110.71508198
                                                        -3.36507889 3.070935369 -0.153808390 -0.000005855
                                                                                                              2006 6 26 5:12:14.455012
    1200.00000000
                   19282.77774728
                                   -37495.59250598
                                                        -2.71861462 2.734400524 1.406220933 0.000103486
                                                                                                              2006 6 26 7:12:14.455025
   1320.00000000
                   35480.60990600
                                   -22779.03375285
                                                         -1.52841859 1.661210676 2.587414593 0.000168300
                                                                                                              2006 6 26 9:12:14.454998
   1440.00000000
                   42119.96263499
                                    -1925.77567263
                                                         -0.19827433 0.140521206 3.071541613 0.000179561
                                                                                                              2006 6 26 11:12:14.455012
28872 xx
      0.00000000
                   -6131.82730456
                                      2446.52815528
                                                       -253.64211033 -0.144920228 0.995100963 7.658645067
      5.00000000
                   -5799.24256134
                                     2589.14811119
                                                       2011.54515100 2.325207364 -0.047125672 7.296234071
                                                                                                              2005 11 29 0:33:58.939092
     10.00000000
                   -4769.05061967
                                      2420.46580562
                                                       4035.30855837 4.464585796 -1.060923209 6.070907874
                                                                                                              2005 11 29 0:38:58.939114
     15.00000000
                   -3175.45157340
                                      1965.98738086
                                                       5582.12569607 6.049639376 -1.935777558 4.148607019
                                                                                                              2005 11 29 0:43:58.939096
     20.00000000
                   -1210.19024802
                                     1281.54541294
                                                       6474.68172772 6.920746273 -2.580517337 1.748783868
                                                                                                              2005 11 29 0:48:58.939118
                                                                                                              2005 11 29 0:53:58.939101
     25.00000000
                     896.73799533
                                      447.12357305
                                                       6607.22400507 6.983396282 -2.925846168 -0.872655207
                                                       5954.92675486 6.211488246 -2.926949815 -3.433959806
     30.00000000
                    2896.99663534
                                      -440.04738594
                                                                                                              2005 11 29 0:58:58.939123
                    4545.78970167
                                    -1273.55952872
                                                       4580.16512984 4.656984233 -2.568711513 -5.638510954
     35.00000000
                                                                                                              2005 11 29 1: 3:58.939105
     40.00000000
                     5627.43299371
                                    -1947.94282469
                                                       2634.16714930 2.464141047 -1.873985161 -7.195743032
                                                                                                              2005 11 29 1: 8:58.939127
      45.00000000
                     5984.72318534
                                    -2371.37691609
                                                       349.87996209 -0.121276950 -0.911981546 -7.859613894
                                                                                                              2005 11 29 1:13:58.939109
                                                     -1979.24314527 -2.763269534 0.199691915 -7.482796996
      50.0000000
                    5548.43325922
                                    -2480.16469245
                                                                                                              2005 11 29 1:18:58.939092
29141 xx
      0.00000000
                     423.99295524
                                    -6658.12256149
                                                       136.13040356 1.006373613 0.217309983 7.662587892
     20.00000000
                     931.80883587
                                    -1017.17852239
                                                       6529.19244527 -0.298847918 7.613891977 1.226399480
                                                                                                              2006 6 19 6:45:41.242102
     40.00000000
                     -83.44906141
                                     6286.20208453
                                                       2223.49837161 -1.113515974 2.530970283 -7.219445568
                                                                                                              2006 6 19 7: 5:41.242111
                     -958.57681221
     60.00000000
                                     3259.26005348
                                                     -5722.63732467 -0.101225813 -6.735338321 -3.804851872
                                                                                                              2006 6 19 7:25:41.242079
     80.00000000
                     -255.25619985
                                    -5132.59762974
                                                      -4221.27233118 1.077709303 -4.905938824 5.892521264
                                                                                                              2006 6 19 7:45:41.242088
    100,00000000
                     867.44295097
                                    -5038.40402933
                                                      4256.73810533 0.479447535 5.032326446 5.857126248
                                                                                                              2006 6 19 8: 5:41.242097
    120.00000000
                                                       5699.22017391 -0.906749328 6.646149867 -3.852331832
                     559.16882013
                                     3376.30587937
                                                                                                              2006
                                                                                                                    6 19 8:25:41.242106
    140.00000000
                     -669.85184205
                                     6196.00229484
                                                      -2281.95741770 -0.795804092 -2.752114827 -7.202478520
                                                                                                                    6 19 8:45:41.242075
                                                                                                              2006
    160.00000000
                    -784.20708019
                                    -1278.53125553
                                                     -6449.19892596 0.636702380 -7.595425203 1.431090802
                                                                                                              2006 6 19 9: 5:41.242084
    180.00000000
                     406.15811659
                                    -6607.03115799
                                                       148.33021477 1.009818575 0.231843765 7.692047844
                                                                                                              2006 6 19 9:25:41.242093
                                                       6491.09810362 -0.302163049 7.669887109 1.084336909
    200.00000000
                     916.34911813
                                     -884.08649248
                                                                                                              2006 6 19 9:45:41.242102
                                      6304.31821405
                                                      1960.08739882 -1.108873823 2.259522809 -7.351147710
    220.00000000
                    -104.02490970
                                                                                                              2006 6 19 10: 5:41.242111
                                                     -5846.94103362 -0.051117686 -6.989747076 -3.413102600
    240.00000000
                    -944.61642849
                                     2872.17248379
                                                                                                              2006 6 19 10:25:41.242079
    260.00000000
                     -187.16569888
                                    -5404.86163467
                                                     -3731.97057618 1.094696706 -4.412110995 6.326060952
                                                                                                              2006 6 19 10:45:41.242088
    280.00000000
                     884.59720467
                                    -4465.74516163
                                                      4725.83632696 0.380656028 5.691554046 5.303910983
                                                                                                              2006 6 19 11: 5:41.242097
                     446.40767236
                                     4086.66839620
                                                       5093.05596650 -0.982424447 6.072965199 -4.791630682
    300.00000000
                                                                                                               2006 6 19 11:25:41.242106
    320.00000000
                     -752.24467495
                                     5588.35473301
                                                      -3275.04092573 -0.661161370 -4.016290740 -6.676898026
                                                                                                              2006 6 19 11:45:41.242075
    340.00000000
                     -643.72872525
                                    -2585.02528560
                                                      -5923.01306608 0.807922142 -7.171597814 3.041115058
                                                                                                              2006 6 19 12: 5:41.242084
    360.00000000
                     584.40295819
                                    -6202.35605817
                                                      1781.00536019 0.869250450 2.226927514 7.471676765
                                                                                                              2006 6 19 12:25:41.242093
    380.00000000
                     779.59211765
                                     1100.73728301
                                                       6311.59529480 -0.599552305 7.721032522 -1.275153027
                                                                                                              2006 6 19 12:45:41.242102
    400.00000000
                     -403.03155588
                                                       -364.12735875 -1.008861924 -0.516636615 -7.799812287
                                                                                                              2006 6 19 13: 5:41.242111
                                      6399.18000837
```

420.0000000	-852.93910071	192.65232023	-6322.47054784	0.396006194	-7.882964919	-0.289331517	2006 6 19 13:25:41.242079
29238 xx							
0.0000000	-5566.59512819	-3789.75991159	67.60382245	2.873759367	-3.825340523	6.023253926	
120.00000000	4474.27915495	-1447.72286142	4619.83927235	4.712595822	5.668306153	-2.701606741	2006 6 26 8:53:44.456634
240.00000000	1922.17712474	5113.01138342	-4087.08470203	-6.490769651	-0.522350158	-3.896001154	2006 6 26 10:53:44.456607
360.00000000	-6157.93546882	-2094.70798790	-1941.63730960	0.149900661	-5.175192523	5.604262034	2006 6 26 12:53:44.456620
480.0000000	2482.64052411	-3268.45944555	5146.38006190	6.501814698	4.402848754	-0.350943511	2006 6 26 14:53:44.456634
600.0000000	4036.26455287	4827.43347201	-2507.99063955	-5.184409515	1.772280695	-5.331390168	2006 6 26 16:53:44.456607
720.00000000	-5776.81371622	-118.64155319	-3641.22052418	-2.539917207	-5.622701582	4.403125405	2006 6 26 18:53:44.456620
840.0000000	67.98699487	-4456.49213473	4863.71794283	7.183809420	2.418917791	2.015642495	2006 6 26 20:53:44.456634
960.0000000	5520.62207038	3782.38203554	-596.73193161	-3.027966069	3.754152525	-6.013506363	2006 6 26 22:53:44.456607
1080.00000000	-4528.05104455	1808.46273329	-4816.99727762	-4.808419763	-5.185789345	2.642104494	2006 6 27 0:53:44.456620
1200.00000000	-2356.61468078	-4852.51202272	3856.53816184	6.688446735	0.118520958	4.021854210	2006 6 27 2:53:44.456634
1320.00000000	6149.65800134	2173.59423261	1369.29488732	-0.345832777	5.109857861	-5.842951828	2006 6 27 4:53:44.456607
1440.00000000	-2629.55011449	3400.98040158	-5344.38217129	-6.368548448	-3.998963509	0.577253064	2006 6 27 6:53:44.456620
88888 xx							
0.0000000	2328.96975262	-5995.22051338	1719.97297192	2.912073281	-0.983417956	-7.090816210	
120.00000000	1020.69234558	2286.56260634	-6191.55565927	-3.746543902	6.467532721	1.827985678	1980 10 2 1:41:24.113771
240.00000000	-3226.54349155	3503.70977525	4532.80979343	1.000992116	-5.788042888	5.162585826	1980 10 2 3:41:24.113744
360.00000000	2456.10706533	-6071.93855503	1222.89768554	2.679390040	-0.448290811	-7.228792155	1980 10 2 5:41:24.113757
480.0000000	787.16457349	2719.91800946	-6043.86662024	-3.759883839	6.277439314	2.397897864	1980 10 2 7:41:24.113771
600.0000000	-3110.97648029	3121.73026235	4878.15217035	1.244916056	-6.124880425	4.700576353	1980 10 2 9:41:24.113744
720.00000000	2567.56229695	-6112.50383922	713.96374435	2.440245751	0.098109002	-7.319959258	1980 10 2 11:41:24.113757
840.0000000	556.05661780	3144.52288201	-5855.34636178	-3.754660143	6.044752775	2.957941672	1980 10 2 13:41:24.113771
960.0000000	-2982.47940539	2712.61663711	5192.32330472	1.475566773	-6.427737014	4.202420227	1980 10 2 15:41:24.113744
1080.00000000	2663.08964352	-6115.48290885	196.40072866	2.196121564	0.652415093	-7.362824152	1980 10 2 17:41:24.113757
1200.00000000	328.54999674	3557.09490552	-5626.21427211	-3.731193288	5.769341172	3.504058731	1980 10 2 19:41:24.113771
1320.00000000	-2842.06876757	2278.42343492	5472.33437150	1.691852635	-6.693216335	3.671022712	1980 10 2 21:41:24.11374
1440.00000000	2742.55398832	-6079.67009123	-326.39012649	1.948497651	1.211072678	-7.356193131	1980 10 2 23:41:24.113757

Appendix F – Computer Code Listing

Producing computer code in multiple languages is advantageous for testing as many smaller issues were corrected in this process. Although some features do not exist in each language, an attempt was made to separate the mathematical theory, the Input/Output, the debugging, and the extra routines for the main program. The debugging portion is not listed here to reduce the size of the paper, but the full files are available on the website. In addition, the extra routines (sgp4ext) are not included in this listing as they are primarily intended for use with a main program, and they vary widely by language. At a future time, it may be advisable to standardize debugging and warning output routines to handle these cases for integrated programs.

The dependence of each routine is shown below, with parentheses for the name of the file where the routine is found. This was discussed graphically with Fig. 4 in the paper, and is shown in Fig 12.

```
SGP4EXT-Misc routines for the main program, math, time, etc. (varies by language for intrinsic math routines)
  MAG
  CROSS
  DOT
  ANGLE
  NEWTONNU
  RV2COE
  JDAY
  DAYS2MDHMS
  INVJDAY
SGP4UNIT-SGP4 mathematical routines including GST and getting the constants.
  DPPER, DSCOM, DSPACE, GSTIME, and GETGRAVCONST have no coupling.
  DSINIT
     - GETGRAVCONST,
  INITL
     - GETGRAVCONST
     - GSTIME (sgp4ext)
  SGP4INIT
     - GETGRAVCONST
     - INITL
     - DSCOM
     - DPPER
     - DSINIT
     - SGP4
  SGP4
     - GETGRAVCONST
     - DSPACE
     - DPPER
SGP4IO- TLE data parser
   TWOLINE2RV
     - SGP4INIT (sgp4unit)
     - DAYS2MDHMS (sgp4ext)
     - JDAY (sgp4ext)
TESTCPP- Main driver for test program (last three letters indicate the language)
  MAIN
     - TWOLINE2RV (sgp4io)
     - SGP4 (sgp4unit)
     - INVJDAY (sgp4ext)
     - RV2COE (sgp4ext)
```


Figure 12. Program Code Structure. An example flowchart shows the relations between the various routines in the revised code. Note that the initialization is required a single time after each new TLE is processed.

```
testcpp.cpp
   this program tests the sgp4 propagator.
                           companion code for
              fundamentals of astrodynamics and applications
                                  2004
                             by david vallado
      (w) 719-573-2600, email dvallado@agi.com
             14 aug 06 david vallado
                         update mfe for verification time steps, constants
   changes :
             20 jul 05 david vallado
                         fixes for paper, corrections from paul crawford
              7 jul 04 david vallado
                          fix record file and get working
             14 may 01 david vallado
                         2nd edition baseline
                    97 nasa
                         internet version
                    80 norad
                        original baseline
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <io.h>
#include "sgp4ext.h"
#include "sgp4unit.h"
#include "sgp4io.h"
#define pi 3.14159265358979323846
int main()
   char str[1];
   char infilename[12];
   double ro[3];
   double vo[3];
       char typerun;
        gravconsttype whichconst;
        int whichcon;
   FILE *infile, *outfile, *outfilee;
// ----- locals -----
        double p, a, ecc, incl, node, argp, nu, m, arglat, truelon, lonper;
   double sec, jd, rad, tsince, startmfe, stopmfe, deltamin; int i; int year; int mon; int day; int hr; int min;
   char longstr1[130];
       typedef char str3[4];
        str3 monstr[13];
        char outname[64];
   char longstr2[130];
   elsetrec satrec;
       rad = 180.0 / pi;
                         -- implementation -----
strcpy(monstr[1], "Jan");
strcpy(monstr[2], "Feb");
strcpy(monstr[3], "Mar");
strcpy(monstr[4], "Apr");
strcpy(monstr[5], "May");
strcpy(monstr[6], "Jun");
strcpy(monstr[7], "Jul");
strcpy(monstr[8], "Aug");
strcpy(monstr[9], "Sep");
strcpy(monstr[10], "Oct");
strcpy(monstr[11], "Nov");
strcpy(monstr[12], "Dec");
        //typerun = 'c' compare 1 year of full satcat data
        //typerun = 'v' verification run, requires modified elm file with
                       start stop and delta times
```

```
printf("input type of run c, v \n");
        scanf( "%c", &typerun );
       printf("input which constants 72 84 \n");
       scanf( "%i", &whichcon );
       if (whichcon == 721) whichconst = wgs72old;
       if (whichcon == 72) whichconst = wgs72;
       if (whichcon == 84) whichconst = wgs84;
        // ----- setup files for operation -----
        // input 2-line element set file
       printf("input elset filename: \n");
        scanf( "%s",&infilename );
        infile = fopen(infilename, "r");
       if (infile == NULL)
       printf("Failed to open file: %s\n", infilename);
       return 1;
       if (typerun == 'c')
           outfile = fopen("tcppall.out", "w");
          else
           if (typerun == 'v')
               outfile = fopen("tcppver.out", "w");
               outfile = fopen("tcpp.out", "w");
           }
         dbgfile = fopen("sgp4test.dbg", "w");
          fprintf(dbgfile, "this is the debug output\n\n");
              ----- test simple propagation -----
       while (feof(infile) == 0)
         {
           do
               fgets(longstr1,130,infile);
               strncpy(str, &longstr1[0], 1);
               str[1] = ' \ 0';
             } while ((strcmp(str, "#") == 0) && (feof(infile) == 0));
            if (feof(infile) == 0)
               fgets( longstr2,130,infile);
               // convert the char string to sgp4 elements
                // includes initialization of sgp4
               fprintf(outfile, "%ld xx\n", satrec.satnum);
               printf(" %ld\n", satrec.satnum);
               // call the propagator to get the initial state vector value
               sgp4 (whichconst, satrec, 0.0, ro, vo);
// generate .e files
jd = satrec.jdsatepoch;
strncpy(outname,&longstr1[2],5);
outname[5] = '.';
outname[6]= 'e';
outname[7]= '\0';
invjday( jd, year, mon, day, hr, min, sec );
outfilee = fopen(outname, "w");
fprintf(outfilee, "stk.v.4.3 \n"); // must use 4.3...
fprintf(outfilee, "\n");
fprintf(outfilee, "BEGIN Ephemeris \n");
fprintf(outfilee, " \n");
fprintf(outfilee, "NumberOfEphemerisPoints 146 \n");
fprintf(outfilee, "ScenarioEpoch %3i %3s%5i%3i:%2i:%12.9f \n",day,monstr[mon],
                 year,hr,min,sec );
fprintf(outfilee, "InterpolationMethod
                                        Lagrange \n");
fprintf(outfilee, "InterpolationOrder
                                        5 \n");
fprintf(outfilee, "CentralBody
                                        Earth \n");
fprintf(outfilee, "CoordinateSystem
                                        J2000 \n");
fprintf(outfilee, "CoordinateSystemEpoch %3i %3s%5i%3i:%2i:%12.9f \n",day,
                 monstr[mon],year,hr,min,sec );
fprintf(outfilee, "DistanceUnit")
                                    Kilometers \n");
fprintf(outfilee, " \n");
fprintf(outfilee, "EphemerisTimePosVel \n");
fprintf(outfilee," \n");
fprintf(outfilee, " %16.8f %16.8f %16.8f %16.8f %12.9f %12.9f %12.9f\n",
```

```
satrec.t,ro[0],ro[1],ro[2],vo[0],vo[1],vo[2]);
                fprintf(outfile, " %16.8f %16.8f %16.8f %16.8f %12.9f %12.9f %12.9f\n",
                        satrec.t,ro[0],ro[1],ro[2],vo[0],vo[1],vo[2]);
                tsince = startmfe;
                // check so the first value isn't written twice
                if (fabs(tsince) > 1.0e-8)
                    tsince = tsince - deltamin;
                // loop to perform the propagation
                while ((tsince < stopmfe) && (satrec.error == 0))
                   tsince = tsince + deltamin;
                   if(tsince > stopmfe)
                       tsince = stopmfe;
                   sgp4 (whichconst, satrec, tsince, ro, vo);
                   if (satrec.error > 0)
                       printf("# *** error: t:= %f *** code = %3d\n",
                               satrec.t, satrec.error);
                   if (satrec.error == 0)
                       if ((typerun != 'v') && (typerun != 'c'))
                             jd = satrec.jdsatepoch + tsince/1440.0;
                             invjday( jd, year,mon,day,hr,min, sec );
                             fprintf(outfile,
                                     "%5i%3i%3i %2i:%2i:%9.6f %16.8f%16.8f%16.8%12.9f%12.9f%12.9f\n",
                               year,mon,day,hr,min,sec );
fprintf(outfile, " %16.8f %16.8f %16.8f %16.8f %12.9f %12.9f %12.9f\n",
                                              tsince, ro[0], ro[1], ro[2], vo[0], vo[1], vo[2]);
                       else
                             jd = satrec.jdsatepoch + tsince/1440.0;
                             invjday( jd, year, mon, day, hr, min, sec );
fprintf(outfilee, " \$16.6f \$16.8f \$16.8f \$16.8f \$12.9f \$12.9f \$12.9f \n",
                 tsince*60.0,ro[0],ro[1],ro[2],vo[0],vo[1],vo[2]);
                             fprintf(outfile, " %16.8f %16.8f %16.8f %16.8f %12.9f %12.9f %12.9f",
                                            tsince,ro[0],ro[1],ro[2],vo[0],vo[1],vo[2]);
                             rv2coe(ro, vo, p, a, ecc, incl, node, argp, nu, m, arglat, truelon, lonper);
                             fprintf(outfile, " %14.6f %8.6f %10.5f %10.5f %10.5f %10.5f %10.5f %5i%3i%3i
%2i:%2i:%9.6f\n",
                                      a, ecc, incl*rad, node*rad, argp*rad, nu*rad,
                                      m*rad,year,mon,day,hr,min,sec);
                     } // if satrec.error == 0
                  } // while propagating the orbit
              } // if not eof
fprintf(outfilee, " END Ephemeris \n");
fclose (outfilee);
          } // while through the input file
 return 0;
} // end testcpp
```

```
#ifndef _sgp4ext_
#define _sgp4ext_
    this file contains extra routines needed for the main test program for sgp4.
   q test these routines are derived from the astro libraries.
                          companion code for
              fundamentals of astrodynamics and applications
                                  2004
                            by david vallado
       (w) 719-573-2600, email dvallado@agi.com
    current :
             14 aug 06 david vallado
                        separate from ast libraries
    changes :
            14 aug 06 david vallado
                        original baseline
#include <string.h>
#include <math.h>
// ----- function decarations -----
double sgn
        double
double mag
        double[]
void
       cross
        double[], double[], double[]
double dot
        double[] , double[]
double angle
         double[],
        double[]
void
       newtonnu
         double ecc, double nu,
        double& e0, double& m
void
       rv2coe
         double[], double[],
         double&, double&, double&, double&, double&,
         double&, double&, double&, double&
void
       jday
        int, int, int, int, double, double&
void
       days2mdhms
        int, double, int&, int&, int&, double&
void
       invjday
        double, int&, int&, int&, int&, double&
       );
#endif
```

```
#ifndef _sgp4io_
#define _sgp4io_
                    sgp4io.h;
     this file contains miscallaneous functions to read two line element
     sets. while not formerly part of the \operatorname{sgp4} mathematical theory, they are
     required for practical implemenation.
              14 aug 06 david vallado
                          separate functions, misc doc
             15 dec 05 david vallado
                          original baseline
#include <math.h>
#include "sgp4ext.h" // for several misc routines
#include "sgp4unit.h" // for sgp4init and getgravconst
// ----- function decarations -----
void twoline2rv
      char[130], char[130],
      char,
      gravconsttype,
      double&,
      double&,
      double&,
      elsetrec&
#endif
```

```
sgp4io.cpp
     this file contains miscallaneous functions to read two line element
     sets. while not formerly part of the sgp4 mathematical theory, they are
     required for practical implemenation.
                              companion code for
                fundamentals of astrodynamics and applications
                                      2004
                                by david vallado
        (w) 719-573-2600, email dvallado@agi.com
               14 aug 06 david vallado
                            separate functions, misc doc
               15 dec 05 david vallado
                           original baseline
#include "sgp4ext.h" // for several misc routines
#include "sgp4unit.h" // for sgp4init and getgravconst
#include "sgp4io.h"
#define pi 3.14159265358979323846
               function twoline2rv
   this function converts the two line element set character string data to
     variables and initializes the sgp4 variables. several intermediate varaibles
     and quantities are determined. note that the result is a structure so multiple
     satellites can be processed simultaneously without having to reinitialize. The
     verification mode is an important option that permits quick checks of any
     changes to the underlying technical theory. this option works using a
     modified tle file in which the start, stop, and delta time values are
     included at the end of the second line of data. this only works with the
     verification mode. the catalog mode simply propagates from -1440 to 1440 min
     from epoch and is useful when performing entire catalog runs.
               : david vallado
                                                    719-573-2600 1 mar 2001
  author
   inputs
     longstr1
                 - first line of the tle
    longstr2 - second line of the tle
                 - type of run
                                                     verification 'v', catalog 'c', 'n'
     whichconst - which set of constants to use 72, 84
  outputs
                 - structure containing all the sgp4 satellite information
    satrec
  coupling
    getgravconst-
    days2mdhms - conversion of days to month, day, hour, minute, second jday - convert day month year hour minute second into julian date
                - initialize the sgp4 variables
    sgp4init
    norad spacetrack report #3
     vallado, crawford, hujsak, kelso 2006
                                                 */
void twoline2rv
      char
                longstr1[130], char longstr2[130],
      char
                typerun,
      gravconsttype
                           whichconst,
      double& startmfe, double& stopmfe, double& deltamin,
      elsetrec& satrec
      const double rad = 180.0 / pi; // 57.29577951308230
const double xpdotp = 1440.0 / (2.0 *pi); // 229.1831180523293
       double sec, radiusearthkm, tumin, xke, j2, j3, j4, j3oj2;
       int cardnumb, numb, j;
long revnum = 0, elnum = 0;
```

```
char classification, intldesg[11];
int year = 0;
int mon, day, hr, minute, nexp, ibexp;
getgravconst( whichconst, tumin, radiusearthkm, xke, j2, j3, j4, j3oj2 );
// set the implied decimal points since doing a formated read
// fixes for bad input data values (missing, ...)
for (j = 10; j <= 15; j++)
    if (longstr1[j] == ' ')
        longstr1[j] = '_';
if (longstr1[44] != ' ')
    longstr1[43] = longstr1[44];
longstr1[44] = '.';
if (longstr1[7] == '')
longstr1[7] = 'U';
if (longstr1[9] == ' ')
   longstr1[9] = '.';
for (j = 45; j \le 49; j++)
    if (longstr1[j] == ' ')
    longstr1[j] = '0';
if (longstr1[51] == ' ')
longstr1[51] = '0';
if (longstr1[53] != '')
    longstr1[52] = longstr1[53];
longstr1[53] = '.';
longstr2[25] = '.';
for (j = 26; j <= 32; j++)
    if (longstr2[j] == ' ')
      longstr2[j] = '0';
if (longstr1[62] == ' ')
    longstr1[62] = '0';
if (longstr1[68] == ' ')
    longstr1[68] = '0';
sscanf(longstr1, "%2d %51d %1c %10s %2d %12lf %11lf %7lf %2d %7lf %2d %2d %6ld ",
                  &cardnumb,&satrec.satnum,&classification, intldesg, &satrec.epochyr,
                  &satrec.epochdays,&satrec.ndot, &satrec.ndot, &nexp, &satrec.bstar,
                  &ibexp, &numb, &elnum );
if (typerun == 'v') // run for specified times from the file
    if (longstr2[52] == ' ')
         sscanf(longstr2,"\$2d \$5ld \$9lf \$9lf \$8lf \$9lf \$9lf \$10lf \$6ld \$lf \$lf \$lf \n",
                  &cardnumb, &satrec.satnum, &satrec.inclo,
                  &satrec.nodeo, &satrec.ecco, &satrec.argpo, &satrec.mo, &satrec.no,
                  &revnum, &startmfe, &stopmfe, &deltamin );
      else
         sscanf(longstr2,"\$2d \$5ld \$9lf \$9lf \$9lf \$9lf \$9lf \$1llf \$6ld \$lf \$lf \$lf \n",
                  &cardnumb, &satrec.satnum, &satrec.inclo,
                  &satrec.nodeo, &satrec.ecco, &satrec.argpo, &satrec.mo, &satrec.no,
                  & revnum, &startmfe, &stopmfe, &deltamin );
  else // simply run -1 day to +1 day or user input times
    if (longstr2[52] == ' ')
         sscanf(longstr2,"%2d %5ld %9lf %9lf %8lf %9lf %9lf %10lf %6ld \n",
                 &cardnumb, &satrec.satnum, &satrec.inclo,
                  &satrec.nodeo, &satrec.ecco, &satrec.argpo, &satrec.mo, &satrec.no,
                 &revnum );
      else
         sscanf(longstr2,"%2d %51d %91f %91f %81f %91f %91f %111f %61d \n",
                  &cardnumb, &satrec.satnum, &satrec.inclo,
                 &satrec.nodeo, &satrec.ecco, &satrec.argpo, &satrec.mo, &satrec.no,
                 &revnum );
// ---- find no, ndot, nddot ----
satrec.no = satrec.no / xpdotp; //* rad/min
satrec.nddot= satrec.nddot * pow(10.0, nexp);
satrec.bstar= satrec.bstar * pow(10.0, ibexp);
// ---- convert to sgp4 units ----
satrec.a = pow( satrec.no*tumin , (-2.0/3.0) );
satrec.ndot = satrec.ndot / (xpdotp*1440.0); //* ? * minperday
satrec.nddot= satrec.nddot / (xpdotp*1440.0*1440);
// ---- find standard orbital elements ----
```

```
satrec.inclo = satrec.inclo / rad;
  satrec.nodeo = satrec.nodeo / rad;
  satrec.argpo = satrec.argpo / rad;
  satrec.mo
             = satrec.mo
                           / rad;
  satrec.alta = satrec.a*(1.0 + satrec.ecco*satrec.ecco) - 1.0;
  satrec.altp = satrec.a*(1.0 - satrec.ecco*satrec.ecco) - 1.0;
   // find sgp4epoch time of element set
   // remember that sgp4 uses units of days from 0 jan 1950 (sgp4epoch)
   // and minutes from the epoch (time)
   // ---- input start stop times manually
  if ((typerun != 'v') && (typerun != 'c'))
      printf("input start min from epoch \n");
      scanf( "%lf",&startmfe );
      printf("input stop min from epoch \n");
      scanf( "%lf",&stopmfe );
      printf("input time step in minutes \n");
      scanf( "%lf",&deltamin );
   // ---- perform complete catalog evaluation
   if (typerun == 'c')
      startmfe = -1440.0;
      stopmfe = 1440.0;
      deltamin = 20.0;
  // ----- temp fix for years from 1950-2049 -----
   // ----- correct fix will occur when year is 4-digit in tle -----
   if (satrec.epochyr < 50)
      year= satrec.epochyr + 2000;
    else
      year= satrec.epochyr + 1900;
  days2mdhms ( year, satrec.epochdays, mon, day, hr, minute, sec );
  jday( year,mon,day,hr,minute,sec, satrec.jdsatepoch );
   // ----- initialize the orbit at sgp4epoch -----
  sgp4init( whichconst, satrec.satnum, satrec.jdsatepoch-2433281.5, satrec.bstar,
            satrec.ecco, satrec.argpo, satrec.inclo, satrec.mo, satrec.no,
            satrec.nodeo, satrec);
} // end twoline2rv
```

```
#ifndef _sgp4unit_
#define _sgp4unit_
                              sgp4unit.h
     this file contains the sgp4 procedures. the code was originally
     released in the 1980 and 1986 papers. in 1997 and 1998, the updated and
     copmbined code (sgp4 and sdp4) was released by nasa on the internet.
                  seawifs.gsfc.nasa.gov/~seawifsp/src/bobdays/
               14 aug 06 david vallado
                            chg lyddane choice back to strn3, constants, fmod,
                            separate debug and writes, misc doc
     changes :
               26 jul 05 david vallado
                             fixes for paper
                             note that each fix is preceded by a
                             comment with "\operatorname{sgp4fix}" and an explanation of
                            what was changed
               14 may 01 david vallado
                            2nd edition baseline
                      97 nasa
                            internet version
                      80 norad
                           original baseline
#include <math.h>
#include <stdio.h>
// ------
typedef enum
  wgs72old,
  wgs72,
  wgs84
} gravconsttype;
typedef struct elsetrec
  long int satnum;
  int
           epochyr, epochtynumrev;
            error;
  int
           init, method;
  char
  /* Near Earth */
  int isimp;
  double aycof , con41 , cc1 , cc4
                                              , cc5 , d2
         delmo , eta , argpdot, omgcof , sinmao , t , t2cof, t3cof , t4cof , t5cof , x1mth2 , x7thm1 , mdot , nodedot, x1cof , xmcof ,
                                                                 , t2cof, t3cof ,
         nodecf;
  /* Deep Space */
  int
        irez;
 double d2201 , d2211 , d3210 , d3222 , d4410 , d4422 , d5220 , d5232 , d5421 , d5433 , dedt , del1 , del2 , del3 , didt , dmdt , dnodt , domdt , e3 , ee2 , peo , pgho , pho , pinco ,
                                                       , pgho
                                                                 , pho , pinco ,
         plo , se2 , se3
                                  , sgh2
                                                       , sgh4
                                                                 , sh2
                                             , sgh3
                                                                          , sh3
               , si3
                         , sl2
                                  , sl3
                                             , sl4
                                                      , gsto
                                                                 , xfact , xgh2
              , xgh4 , xh2 , xh3
, xlamo , zmol , zmos
                                             , xi2 , xi3
, atime , xli
                                                                  , x12 , x13
         xgh3
                                                                  , xni;
        a , altp , alta , epochdays, jdsatepoch bstar , rcse , inclo , nodeo , ecco
                                                                 , nddot , ndot ,
                                                                  , argpo , mo
        no;
} elsetrec;
// ----- function decarations -----
int sgp4init
      (
         gravconsttype whichconst,
                                       const int satn,
                                                             const double epoch,
         const double xbstar, const double xecco, const double xargpo,
         const double xinclo, const double xmo, const double xno,
         const double xnodeo,
        elsetrec& satrec
int sgp4
```

```
gravconsttype whichconst,
    elsetrec& satrec, double tsince,
    double r[], double v[]
);

double gstime
    double
    );

void getgravconst
    (
    gravconsttype,
    double&,
    double&,
```

```
sgp4unit.cpp
     this file contains the sgp4 procedures. the code was originally
     released in the 1980 and 1986 papers. in 1997 and 1998, the updated and
     copmbined code (sgp4 and sdp4) was released by nasa on the internet.
                  seawifs.gsfc.nasa.gov/~seawifsp/src/bobdays/
                             companion code for
                fundamentals of astrodynamics and applications
                                     2004
                               by david vallado
        (w) 719-573-2600, email dvallado@agi.com
     current :
              14 aug 06 david vallado
                           chg lyddane choice back to strn3, constants, fmod,
                            separate debug and writes, misc doc
     changes :
              26 jul 05 david vallado
                           fixes for paper
                            note that each fix is preceded by a
                            comment with "sgp4fix" and an explanation of
                           what was changed
               14 may 01 david vallado
                           2nd edition baseline
                      97 nasa
                           internet version
                      80 norad
                          original baseline
#include "sgp4unit.h"
const char help = 'n';
FILE *dbgfile;
#define pi 3.14159265358979323846
/* ------ local functions - only ever used internally by sgp4 ----- */
static void dpper
    (
      double e3,
                      double ee2,
                                     double peo,
                                                     double pgho,
       double pinco,
                     double plo,
                                     double se2,
                                                     double se3,
                                                                    double sgh2,
                      double sgh4,
       double sah3.
                                     double sh2,
                                                     double sh3,
                                                                    double si2,
       double si3,
                      double sl2,
                                     double s13,
                                                     double s14,
                                                                    double t,
                      double xgh3,
                                     double xgh4,
                                                     double xh2,
       double xgh2,
                                                                    double xh3
                      double xi3,
                                     double x12,
                                                     double x13,
       double xi2,
                                                                    double x14,
       double zmol,
                      double zmos,
                                    double inclo,
       char init.
       double& ep,
                      double& inclp, double& nodep,
                                                    double& argpp, double& mp
static void dscom
      double epoch, double ep,
                                     double argpp,
                                                     double tc,
                                                                    double inclp,
       double nodep, double np,
       double& snodm, double& cnodm, double& sinim, double& cosim, double& sinomm,
       double& cosomm, double& day,
                                     double& e3,
                                                     double& ee2,
                                                                    double& em,
       double& emsq, double& gam,
                                     double& peo,
                                                     double& pgho,
                                                                    double& pho,
       double& pinco, double& plo,
                                     double& rtemsq, double& se2,
                                                                    double& se3,
                                     double& sgh4,
       double& sgh2, double& sgh3,
                                                     double& sh2,
                                                                    double& sh3,
       double& si2,
                      double& si3,
                                     double& s12,
                                                     double& s13,
                                                                    double& s14,
       double& s1,
                      double& s2,
                                     double& s3,
                                                     double& s4,
                                                                    double& s5,
       double& s6,
                      double& s7,
                                     double& ss1,
                                                     double& ss2,
                                                                    double& ss3,
       double& ss4,
                      double& ss5,
                                     double& ss6,
                                                     double& ss7,
                                                                    double& sz1.
       double& sz2,
                      double& sz3,
                                     double& sz11,
                                                     double& sz12,
                                                                    double& sz13,
       double& sz21,
                      double& sz22,
                                     double& sz23,
                                                     double& sz31,
                                                                    double& sz32.
       double& sz33,
                      double& xgh2,
                                     double& xgh3,
                                                     double& xgh4,
                                                                    double& xh2,
       double& xh3,
                      double& xi2,
                                     double& xi3,
                                                     double& x12,
                                                                    double& x13,
       double& x14,
                      double& nm,
                                     double& z1,
                                                     double& z2,
                                                                    double& z3,
       double& z11,
                      double& z12,
                                     double& z13,
                                                     double& z21,
                                                                    double& z22,
       double& z23,
                      double& z31,
                                    double& z32,
                                                     double& z33,
                                                                    double& zmol,
       double& zmos
static void dsinit
```

```
gravconsttype whichconst,
       double cosim, double emsq,
                                     double argpo,
                                                     double s1,
                                                                    double s2,
                                     double s5,
       double s3,
                      double s4,
                                                     double sinim,
                                                                    double ss1.
       double ss2,
                      double ss3,
                                     double ss4,
                                                     double ss5,
                                                                    double sz1,
       double sz3,
                      double sz11,
                                     double sz13,
                                                     double sz21,
                                                                    double sz23,
       double sz31,
                      double sz33,
                                     double t,
                                                     double tc,
                                                                     double gsto,
       double mo,
                      double mdot,
                                     double no,
                                                     double nodeo,
                                                                    double nodedot,
                                                     double z11,
       double xpidot, double z1,
                                     double z3,
                                                                    double z13,
       double z21,
                      double z23,
                                     double z31,
                                                     double z33,
                                                                    double ecco,
       double eccsq, double& em,
                                     double& argpm,
                                                     double& inclm, double& mm,
       double& nm,
                     double& nodem,
       int& irez,
       double& atime, double& d2201, double& d2211,
                                                     double& d3210, double& d3222,
       double& d4410, double& d4422, double& d5220,
                                                     double& d5232, double& d5421,
       double& d5433, double& dedt, double& didt,
                                                     double& dmdt, double& dndt,
       double& dnodt, double& domdt, double& del1,
                                                     double& del2, double& del3,
      double& xfact, double& xlamo, double& xli,
                                                     double& xni
static void dspace
      int irez,
                                                     double d3222, double d4410, double d5421, double d5433,
       double d2201,
                     double d2211, double d3210,
      double d4422,
                      double d5220, double d5232,
       double dedt,
                      double del1,
                                     double del2,
                                                     double del3,
                                                                    double didt,
       double dmdt,
                      double dnodt,
                                     double domdt,
                                                     double argpo, double argpdot,
       double t,
                      double tc,
                                     double gsto,
                                                     double xfact, double xlamo,
       double no,
                                     double& argpm,
       double& atime, double& em,
                                                     double& inclm, double& xli,
      double& mm,
                      double& xni,
                                     double& nodem,
                                                     double& dndt, double& nm
static void initl
      int satn,
                      gravconsttype whichconst,
      double ecco,
                      double epoch, double inclo,
                                                     double& no,
       char& method,
       double& ainv,
                     double& ao,
                                     double& con41, double& con42, double& cosio,
       double& cosio2, double& eccsq, double& omeosq, double& posq,
       double& rp,
                      double& rteosq, double& sinio , double& gsto
```

```
procedure dpper
  this procedure provides deep space long period periodic contributions
    to the mean elements. by design, these periodics are zero at epoch.
     this used to be dscom which included initialization, but it's really a
    recurring function.
                                               719-573-2600 28 jun 2005
  author
                : david vallado
  inputs
    ee2
    peo
    pgho
    pho
    pinco
    se2 , se3 , sgh2, sgh3, sgh4, sh2, sh3, si2, si3, sl2, sl3, sl4 -
    xh2, xh3, xi2, xi3, xl2, xl3, xl4 -
    zmol
    zmos
                - eccentricity
                                                       0.0 - 1.0
    ep
    inclo
                - inclination - needed for lyddane modification
    nodep
                - right ascension of ascending node
    argpp
                - argument of perigee
                - mean anomaly
    mp
  outputs
                - eccentricity
                                                       0.0 - 1.0
    ep
    inclp
               - inclination
    nodep
                - right ascension of ascending node
                - argument of perigee
    argpp
                - mean anomaly
    mp
  locals
    alfdp
    cosip , sinip , cosop , sinop ,
    dalf
    dbet
    dls
    f2, f3
    ре
    pgh
    pinc
    pl
                , sghl , sghs , shl , shs , sil , sinzf , sis ,
    sll
    xnoh
  coupling
  references
    hoots, roehrich, norad spacetrack report #3 1980
    hoots, norad spacetrack report #6 1986
    hoots, schumacher and glover 2004
    vallado, crawford, hujsak, kelso 2006
static void dpper
      double e3,
                     double ee2,
                                   double peo,
                                                   double pgho,
                                                                 double pho,
                                                                  double sgh2,
      double pinco,
                    double plo,
                                   double se2,
                                                   double se3,
                     double sgh4,
                                   double sh2,
                                                   double sh3,
                                                                  double si2,
      double sgh3,
      double si3,
                     double s12,
                                   double s13,
                                                   double s14,
                                                                 double t,
      double xgh2,
                     double xgh3,
                                   double xgh4,
                                                   double xh2,
                                                                 double xh3,
      double xi2,
                     double xi3,
                                   double x12,
                                                   double x13,
                                                                 double x14,
      double zmol,
                     double zmos,
                                   double inclo,
      char init,
                     double& inclp, double& nodep, double& argpp, double& mp
      double& ep,
{
     /* ------ local variables ----- */
```

```
const double twopi = 2.0 * pi;
char ildm;
double alfdp, betdp, cosip, cosop, dalf, dbet, dls,
           f3, pe, pgh, ph, pinc, pl, ses, sghl, sghs, shll, shs, sil,
     f2,
     sel,
     sinip, sinop, sinzf, sis,
                                   sll, sls, xls,
     xnoh, zf, zm, zel,
                                  zes, znl, zns;
/* ----- constants ----- */
zns = 1.19459e-5;
zes = 0.01675;
znl = 1.5835218e-4;
zel = 0.05490;
/* ----- calculate time varying periodics ----- */
zm = zmos + zns * t;
// be sure that the initial call has time set to zero
if (init == 'y')
   zm = zmos;
zf
    = zm + 2.0 * zes * sin(zm);
sinzf = sin(zf);
f2 = 0.5 * sinzf * sinzf - 0.25;
f3 = -0.5 * sinzf * cos(zf);
ses = se2* f2 + se3 * f3;
sis = si2 * f2 + si3 * f3;
sls = sl2 * f2 + sl3 * f3 + sl4 * sinzf;
sghs = sgh2 * f2 + sgh3 * f3 + sgh4 * sinzf;
shs = sh2 * f2 + sh3 * f3;
zm = zmol + znl * t;
if (init == 'y')
   zm = zmol;
zf
    = zm + 2.0 * zel * sin(zm);
sinzf = sin(zf);
f2 = 0.5 * sinzf * sinzf - 0.25;

f3 = -0.5 * sinzf * cos(zf);

sel = ee2 * f2 + e3 * f3;

sil = xi2 * f2 + xi3 * f3;

sll = xl2 * f2 + xl3 * f3 + xl4 * sinzf;
sghl = xgh2 * f2 + xgh3 * f3 + xgh4 * sinzf;
shll = xh2 * f2 + xh3 * f3;
     = ses + sel;
pinc = sis + sil;
pl = sls + sll;
pgh = sghs + sghl;
     = shs + shll;
if (init == 'n')
 {
// 0.2 rad = 11.45916 deg
  // sgp4fix for lyddane choice
  // add next three lines to set up use of original inclination per strn3 ver
  ildm = 'y';
  if (inclo >= 0.2)
      ildm = 'n';
  ре
        = pe - peo;
  pinc = pinc - pinco;
        = pl - plo;
      = pgh - pgho;
  pgh
        = ph - pho;
  inclp = inclp + pinc;
       = ep + pe;
  sinip = sin(inclp);
  cosip = cos(inclp);
  /* ----- apply periodics directly ----- */
  // sgp4fix for lyddane choice
  // strn3 used original inclination - this is technically feasible
  // gsfc used perturbed inclination - also technically feasible
  // probably best to readjust the 0.2 limit value and limit discontinuity
  // use next line for original strn3 approach and original inclination
  // if (inclo >= 0.2)
     use next line for gsfc version and perturbed inclination
  if (inclp >= 0.2)
             = ph / sinip;
            = pgh - cosip * ph;
      pgh
      argpp = argpp + pgh;
      nodep = nodep + ph;
      mp
             = mp + p1;
```

```
else
{
    /* ---- apply periodics with lyddane modification ---- */
    sinop = sin(nodep);
    cosop = cos(nodep);
    alfdp = sinip * sinop;
    betdp = sinip * cosop;
    dalf = ph * cosop + pinc * cosip * sinop;
    dbet = -ph * sinop + pinc * cosip * cosop;
    alfdp = alfdp + dalf;
    betdp = betdp + dbet;
    nodep = fmod(nodep, twopi);
    xls = mp + argpp + cosip * nodep;
    dls = pl + pgh - pinc * nodep * sinip;
    xls = xls + dls;
    xnoh = nodep;
    nodep = atan2(alfdp, betdp);
    if (fabs(xnoh - nodep) > pi)
        if (nodep < xnoh)
            nodep = nodep + twopi;
        else
            nodep = nodep - twopi;
        mp = mp + pl;
        argpp = xls - mp - cosip * nodep;
} // if init == 'n'
//#include "debug1.cpp"
} // end dpper</pre>
```

```
procedure dscom
  this procedure provides deep space common items used by both the secular
    and periodics subroutines. input is provided as shown. this routine
    used to be called dpper, but the functions inside weren't well organized.
  author
                : david vallado
                                                 719-573-2600 28 jun 2005
  inputs
    epoch
    ep
                - eccentricity
    argpp
                - argument of perigee
    inclp
                - inclination
    nodep
                - right ascension of ascending node
                - mean motion
    np
  outputs
    sinim , cosim , sinomm , cosomm , snodm , cnodm
    day
    е3
    ee2
                - eccentricity
                - eccentricity squared
    emsq
    peo
    pgho
    pho
    pinco
    plo
    rtemsq
    se2, se3
    sgh2, sgh3, sgh4
     sh2, sh3, si2, si3, sl2, sl3, sl4
    s1, s2, s3, s4, s5, s6, s7
    ss1, ss2, ss3, ss4, ss5, ss6, ss7, sz1, sz2, sz3
    sz11, sz12, sz13, sz21, sz22, sz23, sz31, sz32, sz33
    xgh2, xgh3, xgh4, xh2, xh3, xi2, xi3, xl2, xl3, xl4
               - mean motion
    z1, z2, z3, z11, z12, z13, z21, z22, z23, z31, z32, z33
    zmol
    zmos
    a1, a2, a3, a4, a5, a6, a7, a8, a9, a10
    betasq
    x1, x2, x3, x4, x5, x6, x7, x8
           , zsing , zcosgl , zsingl , zcosh , zsinh , zcoshl , zsinhl ,
    zcosg
    zcosi , zsini
                   , zcosil , zsinil ,
    zx
  coupling
    none.
    hoots, roehrich, norad spacetrack report #3 1980
    hoots, norad spacetrack report #6 1986
    hoots, schumacher and glover 2004
    vallado, crawford, hujsak, kelso 2006
static void dscom
      double epoch, double ep,
                                    double argpp,
                                                    double tc,
                                                                   double inclo.
      double nodep, double np,
      double& snodm, double& cnodm, double& sinim, double& cosim, double& sinomm,
      double& cosomm, double& day,
                                    double& e3,
                                                    double& ee2,
                                                                   double& em,
      double& emsq, double& gam,
                                    double& peo,
                                                    double& pgho,
                                                                   double& pho,
      double& pinco, double& plo,
                                    double& rtemsq, double& se2,
                                                                   double& se3,
                                    double& sgh4,
      double& sgh2, double& sgh3,
                                                    double& sh2,
                                                                   double& sh3,
      double& si2,
                     double& si3,
                                    double& sl2,
                                                    double& s13,
                                                                   double& s14,
                                                    double& s4,
      double& s1,
                     double& s2,
                                    double& s3,
                                                                   double& s5,
      double& s6,
                     double& s7,
                                    double& ss1,
                                                    double& ss2,
                                                                   double& ss3,
      double& ss4,
                     double& ss5,
                                    double& ss6,
                                                    double& ss7,
                                                                   double& sz1,
```

```
double& sz2, double& sz3, double& sz11, double& sz21, double& sz22, double& sz23,
                                                    double& sz12, double& sz13, double& sz31, double& sz32,
                                   double& sz11,
  double& sz33, double& xgh2, double& xgh3,
                                                    double& xgh4, double& xh2,
  double& xh3,
                  double& xi2,
                                   double& xi3,
                                                     double& x12,
                                                                     double& x13,
  double& x14,
                  double& nm,
                                   double& z1,
                                                     double& z2,
                                                                     double& z3,
  double& z11,
                  double& z12,
                                   double& z13,
                                                     double& z21,
                                                                     double& z22
  double& z23,
                  double& z31,
                                   double& z32,
                                                     double& z33,
                                                                     double& zmol,
 double& zmos
/* ------ constants ----- */
const double zes = 0.01675;

const double zel = 0.05490;

const double c1s = 2.9864797e-6;

const double c11 = 4.7968065e-7;
const double zsinis = 0.39785416;
const double zcosis = 0.91744867;
const double zcosgs = 0.1945905;
const double zsings = -0.98088458;
const double twopi = 2.0 * pi;
/* ----- local variables ----- */
int lsflg;
              , a2 , a3 , a4 , a5 , a6 , a7
double a1
  a8 , a9 , a10 , betasq, cc , ctem , stem , x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , xnodce, xnoi , zcosg , zcosgl, zcosh , zcoshl,
   zcosi , zcosil, zsing , zsingl, zsinh , zsinhl, zsini ,
   zsinil, zx , zy;
     = ep;
snodm = sin(nodep);
cnodm = cos(nodep);
sinomm = sin(argpp);
cosomm = cos(argpp);
sinim = sin(inclp);
cosim = cos(inclp);
emsq = em * em;
betasq = 1.0 - emsq;
rtemsq = sqrt(betasq);
/* ----- initialize lunar solar terms ----- */
peo = 0.0;
pinco = 0.0;
plo = 0.0;
pgho = 0.0;
pho = 0.0;
day = epoch + 18261.5 + tc / 1440.0;
xnodce = fmod(4.5236020 - 9.2422029e-4 * day, twopi);
stem = sin(xnodce);
ctem = cos(xnodce);
zcosil = 0.91375164 - 0.03568096 * ctem;
zsinil = sqrt(1.0 - zcosil * zcosil);
zsinhl = 0.089683511 * stem / zsinil;
zcoshl = sqrt(1.0 - zsinhl * zsinhl);
gam = 5.8351514 + 0.0019443680 * day;
zx = 0.39785416 * stem / zsinil;
     = 0.39785416 * stem / zsinil;

= zcoshl * ctem + 0.91744867 * zsinhl * stem;

= atan2(zx, zy);

= gam + zx - xnodce;
zy
zcosgl = cos(zx);
zsingl = sin(zx);
/* ----- do solar terms ----- */
zsing = zsings;
zcosi = zcosis;
zsini = zsinis;
zcosh = cnodm;
zsinh = snodm;
cc = c1ss;
xnoi = 1.0 / nm;
for (lsflg = 1; lsflg <= 2; lsflg++)
           zcosg * zcosh + zsing * zcosi * zsinh;
    a3 = -zsing * zcosh + zcosg * zcosi * zsinh;
    a7 = -zcosg * zsinh + zsing * zcosi * zcosh;
    a8 = zsing * zsini;
a9 = zsing * zsinh + zcosg * zcosi * zcosh;
```

```
a10 = zcosg * zsini;
     a2 = cosim * a7 + sinim * a8;
a4 = cosim * a9 + sinim * a10;
        = -sinim * a7 + cosim * a8;
     a5
     a6 = -sinim * a9 + cosim * a10;
     x1 = a1 * cosomm + a2 * sinomm;
     x2 = a3 * cosomm + a4 * sinomm;
     x3 = -a1 * sinomm + a2 * cosomm;
     x4 = -a3 * sinomm + a4 * cosomm;
     x5 = a5 * sinomm;
        = a6 * sinomm;
     хб
        = a5 * cosomm;
     x7
     x8
         = a6 * cosomm;
     z31 = 12.0 * x1 * x1 - 3.0 * x3 * x3;

z32 = 24.0 * x1 * x2 - 6.0 * x3 * x4;
     z33 = 12.0 * x2 * x2 - 3.0 * x4 * x4;
     z11 = -6.0 * a1 * a5 + emsq * (-24.0 * x1 * x7-6.0 * x3 * x5);

z12 = -6.0 * (a1 * a6 + a3 * a5) + emsq *
             (-24.0 * (x2 * x7 + x1 * x8) - 6.0 * (x3 * x6 + x4 * x5));
    z13 = -6.0 * a3 * a6 + emsq * (-24.0 * x2 * x8 - 6.0 * x4 * x6);

z11 = 6.0 * a2 * a5 + emsq * (24.0 * x1 * x5 - 6.0 * x3 * x7);

z22 = 6.0 * (a4 * a5 + a2 * a6) + emsq *

(24.0 * (x2 * x5 + x1 * x6) - 6.0 * (x4 * x7 + x3 * x8));

z23 = 6.0 * a4 * a6 + emsq * (24.0 * x2 * x6 - 6.0 * x4 * x8);
     z1 = z1 + z1 + betasq * z31;
z2 = z2 + z2 + betasq * z32;
     z3 = z3 + z3 + betasq * z33;
     s3 = cc * xnoi;
        = -0.5 * s3 / rtemsq;
        = s3 * rtemsq;
     s1 = -15.0 * em * s4;
     s5 = x1 * x3 + x2 * x4;
        = x2 * x3 + x1 * x4;
     s7 = x2 * x4 - x1 * x3;
     /* ----- do lunar terms ----- */
     if (lsflg == 1)
       {
         ss1
                = s1;
         ss2 = s2;
         ss3
         ss4 = s4;
          ss5
                = s6;
          ss7
                = z1;
         sz1
          sz2
         sz3
                = z3;
         sz11 = z11;
         sz12 = z12;
          sz13 = z13;
         sz21 = z21;
          sz22 = z22;
         sz23 = z23;
          sz31 = z31;
         sz32 = z32;
          sz33 = z33;
          zcosg = zcosgl;
          zsing = zsingl;
          zcosi = zcosil;
          zsini = zsinil;
          zcosh = zcoshl * cnodm + zsinhl * snodm;
          zsinh = snodm * zcoshl - cnodm * zsinhl;
         cc = c11;
zmol = fmod(4.7199672 + 0.22997150 * day - gam, twopi);
zmos = fmod(6.2565837 + 0.017201977 * day, twopi);
          ----- do solar terms ----- */
se2 = 2.0 * ss1 * ss6;

se3 = 2.0 * ss1 * ss7;

si2 = 2.0 * ss2 * sz12;

si3 = 2.0 * ss2 * (sz13 - sz11);

sl2 = -2.0 * ss3 * sz2;
```

```
procedure dsinit
this procedure provides deep space contributions to mean motion dot due
 to geopotential resonance with half day and one day orbits.
author
             : david vallado
                                               719-573-2600 28 jun 2005
inputs
 cosim, sinim-
        eccentricity squaredargument of perigee
  emsq
  argpo
  s1, s2, s3, s4, s5
  ss1, ss2, ss3, ss4, ss5 -
  sz1, sz3, sz11, sz13, sz21, sz23, sz31, sz33 -
             - time
             - greenwich sidereal time
 gsto
                                                          rad
             - mean anomaly
 mdot
             - mean anomaly dot (rate)
              - mean motion
 nodeo
              - right ascension of ascending node
 nodedot
             - right ascension of ascending node dot (rate)
 xpidot
 z1, z3, z11, z13, z21, z23, z31, z33 -
            eccentricityargument of perigee
 argpm
 inclm
             - inclination
 mm
             - mean anomaly
              - mean motion
 nodem
             - right ascension of ascending node
outputs
              - eccentricity
 em
              - argument of perigee
  argpm
              - inclination
 inclm
              - mean anomaly
              - mean motion
 nodem
              - right ascension of ascending node
              - flag for resonance
                                             0-none, 1-one day, 2-half day
 d2201, d2211, d3210, d3222, d4410, d4422, d5220, d5232, d5421, d5433
 dedt
 didt
 dmdt
 dndt
 dnodt
 domdt
 del1, del2, del3
 ses , sghl , sghs , sgs , shl , shs , sis , sls
 theta
 xfact
 {\tt xlamo}
 xli
 xni
locals
 aonv
 cosisq
 f220, f221, f311, f321, f322, f330, f441, f442, f522, f523, f542, f543 -
 g200, g201, g211, g300, g310, g322, g410, g422, g520, g521, g532, g533 -
 temp
 temp1
 theta
 xno2
coupling
 getgravconst
references
 hoots, roehrich, norad spacetrack report #3 1980
  hoots, norad spacetrack report #6 1986
 hoots, schumacher and glover 2004
 vallado, crawford, hujsak, kelso 2006
```

```
gravconsttype which const,
      double cosim, double emsq,
                                    double argpo,
                                                   double s1,
                                                                  double s2,
      double s3,
                     double s4,
                                    double s5,
                                                   double sinim, double ss1,
      double ss2,
                     double ss3,
                                    double ss4,
                                                   double ss5,
                                                                  double sz1,
      double sz3,
                     double sz11,
                                    double sz13,
                                                   double sz21,
                                                                  double sz23,
                                    double t,
      double sz31,
                     double sz33,
                                                   double tc,
                                                                  double gsto,
      double mo,
                     double mdot,
                                    double no,
                                                   double nodeo,
                                                                  double nodedot,
                                                   double z11,
      double xpidot, double z1,
                                    double z3,
                                                                  double z13,
      double z21,
                     double z23,
                                    double z31,
                                                   double z33,
                                                                  double ecco
      double eccsq,
                     double& em,
                                  double& argpm, double& inclm, double& mm,
      double& nm,
                     double& nodem,
      int& irez,
      double& atime, double& d2201, double& d2211, double& d3210, double& d3222,
      double& d4410, double& d4422, double& d5220, double& d5232, double& d5421,
      double& d5433, double& dedt, double& didt,
                                                   double& dmdt, double& dndt,
      double& dnodt, double& domdt, double& del1,
                                                   double& del2, double& del3,
      double& xfact, double& xlamo, double& xli,
                                                   double& xni
{
     /* ----- local variables ----- */
    const double twopi = 2.0 * pi;
    double ainv2 , aonv=0.0, cosisq, eoc, f220 , f221 , f311
         f321 , f322 , f330 , f441 , f442 , f522 , f523 f542 , f543 , g200 , g201 , g211 , g300 , g310
         g322 , g410 , g422 , g520 , g521 , g532 , g533
              , sgs , sghl , sghs , shs , sls , temp , temp1 , theta
                                              , shll , sis
         ses
         sini2 , sls
                               , temp1 , theta , xno2 , q22 \,
         g31
               , q33
                      , root22, root44, root54, rptim , root32,
         root52, x2o3 , xke , znl , emo , zns , emsqo,
         tumin, radiusearthkm, j2, j3, j4, j3oj2;
          = 1.7891679e-6;
         = 2.1460748e-6;
= 2.2123015e-7;
    g31
    q33
    root22 = 1.7891679e-6;
    root44 = 7.3636953e-9;
    root54 = 2.1765803e-9;
    rptim = 4.37526908801129966e-3; // this equates to 7.29211514668855e-5 rad/sec
    root32 = 3.7393792e-7;
    root52 = 1.1428639e-7;
    x203 = 2.0 / 3.0;
          = 1.5835218e-4;
    znl
          = 1.19459e-5;
    // sgp4fix identify constants and allow alternate values
    getgravconst( whichconst, tumin, radiusearthkm, xke, j2, j3, j4, j3oj2 );
     /* ----- deep space initialization ----- */
    if ((nm < 0.0052359877) \&\& (nm > 0.0034906585))
        irez = 1;
    if ((nm >= 8.26e-3) \&\& (nm <= 9.24e-3) \&\& (em >= 0.5))
        irez = 2;
     ses = ss1 * zns * ss5;
    sis = ss2 * zns * (sz11 + sz13);
    sls = -zns * ss3 * (sz1 + sz3 - 14.0 - 6.0 * emsq);
    sghs = ss4 * zns * (sz31 + sz33 - 6.0);
    shs = -zns * ss2 * (sz21 + sz23);
    // sgp4fix for 180 deg incl
    if ((inclm < 5.2359877e-2) || (inclm > pi - 5.2359877e-2))
      shs = 0.0;
    if (sinim != 0.0)
     shs = shs / sinim;
    sgs = sghs - cosim * shs;
     /* ------ do lunar terms ------ */
    dedt = ses + s1 * zn1 * s5;
    didt = sis + s2 * zn1 * (z11 + z13);
    dmdt = sls - znl * s3 * (z1 + z3 - 14.0 - 6.0 * emsq);
    sghl = s4 * znl * (z31 + z33 - 6.0);
shl1 = -znl * s2 * (z21 + z23);
     // sgp4fix for 180 deg incl
    if ((inclm < 5.2359877e-2) || (inclm > pi - 5.2359877e-2))
        shl1 = 0.0;
    domdt = sgs + sghl;
    dnodt = shs;
    if (sinim != 0.0)
```

```
domdt = domdt - cosim / sinim * shll;
    dnodt = dnodt + shll / sinim;
/* ----- calculate deep space resonance effects ----- */
dndt = 0.0;
theta = fmod(gsto + tc * rptim, twopi);
em = em + dedt * t;
inclm = inclm + didt * t;
argpm = argpm + domdt * t;
nodem = nodem + dnodt * t;
      = mm + dmdt * t;
    sgp4fix for negative inclinations
// the following if statement should be commented out
//if (inclm < 0.0)
// {
     inclm = -inclm;
     argpm = argpm - pi;
      nodem = nodem + pi;
/* ----- initialize the resonance terms ----- */
if (irez != 0)
 {
    aonv = pow(nm / xke, x2o3);
    /* ----- geopotential resonance for 12 hour orbits ----- */
    if (irez == 2)
      {
        cosisq = cosim * cosim;
        emo = em;
em = ecco;
        emsq = eccsq;
               = em * emsq;
        g201 = -0.306 - (em - 0.64) * 0.440;
        if (em <= 0.65)
          {
             g322 = -18.9068 + 109.7927 * em - 214.6334 * emsq + 146.5816 * eoc;
             g410 = -41.122 + 242.6940 * em - 471.0940 * emsq + 313.9530 * eoc;

g422 = -146.407 + 841.8800 * em - 1629.014 * emsq + 1083.4350 * eoc;
             g520 = -532.114 + 3017.977 * em - 5740.032 * emsq + 3708.2760 * eoc;
           else
             g211 =
                     -72.099 + 331.819 * em - 508.738 * emsq +
                                                                          266.724 * eoc;
             g310 = -346.844 + 1582.851 * em - 2415.925 * emsq + 1246.113 * eoc;
             g312 = -342.585 + 1554.908 * em - 2366.899 * emsq + 1215.972 * eoc;
g410 = -1052.797 + 4758.686 * em - 7193.992 * emsq + 3651.957 * eoc;
             g422 = -3581.690 + 16178.110 * em - 24462.770 * emsq + 12422.520 * eoc;
             if (em > 0.715)
                 g520 =-5149.66 + 29936.92 * em - 54087.36 * emsq + 31324.56 * eoc;
               else
                g520 = 1464.74 - 4664.75 * em + 3763.64 * emsq;
        if (em < 0.7)
            g532 = -853.66600 + 4690.2500 * em - 8624.7700 * emsq + 5341.4 * eoc;
           else
           {
             g533 =-37995.780 + 161616.52 * em - 229838.20 * emsq + 109377.94 * eoc; g521 =-51752.104 + 218913.95 * em - 309468.16 * emsq + 146349.42 * eoc;
             g532 =-40023.880 + 170470.89 * em - 242699.48 * emsq + 115605.82 * eoc;
        sini2= sinim * sinim;
        f220 = 0.75 * (1.0 + 2.0 * cosim+cosisq);
        f221 = 1.5 * sini2;
        f321 = 1.875 * sinim * (1.0 - 2.0 * cosim - 3.0 * cosisq);
f322 = -1.875 * sinim * (1.0 + 2.0 * cosim - 3.0 * cosisq);
        f441 = 35.0 * sini2 * f220;
        f442 = 39.3750 * sini2 * sini2;

f522 = 9.84375 * sinim * (sini2 * (1.0 - 2.0 * cosim- 5.0 * cosisq) +

0.333333333 * (-2.0 + 4.0 * cosim + 6.0 * cosisq) );
```

```
f523 = sinim * (4.92187512 * sini2 * (-2.0 - 4.0 * cosim + 10.0 * cosisq) + 6.56250012 * (1.0+2.0 * cosim - 3.0 * cosisq)); f542 = 29.53125 * sinim * (2.0 - 8.0 * cosim+cosisq *
                        (-12.0 + 8.0 * cosim + 10.0 * cosisq));
               f543 = 29.53125 * sinim * (-2.0 - 8.0 * cosim+cosisq *
                       (12.0 + 8.0 * cosim - 10.0 * cosisq));
               xno2 = nm * nm;
               ainv2 = aonv * aonv;
temp1 = 3.0 * xno2 * ainv2;
               temp = temp1 * root22;
               d2201 = temp * f220 * g201;
d2211 = temp * f221 * g211;
              d2211 = temp1 * 1221 * g211;

temp1 = temp1 * aonv;

temp = temp1 * root32;

d3210 = temp * f321 * g310;

d3222 = temp * f322 * g322;
               temp1 = temp1 * aonv;
               temp = 2.0 * temp1 * root44;
               d4410 = temp * f441 * g410;
               d4422 = temp * f442 * g422;
               temp1 = temp1 * aonv;
               temp =
                         temp1 * root52;
              d5220 = temp * f522 * g520;
d5232 = temp * f523 * g532;
               temp = 2.0 * temp1 * root54;
               d5421 = temp * f542 * g521;
d5433 = temp * f543 * g533;
               xlamo = fmod(mo + nodeo + nodeo-theta - theta, twopi);
              xfact = mdot + dmdt + 2.0 * (nodedot + dnodt - rptim) - no;
               em
                     = emo;
               emsq = emsqo;
          /* ----- synchronous resonance terms ----- */
          if (irez == 1)
              g300 = 1.0 + emsq * (-6.0 + 6.60937 * emsq);
               f220 = 0.75 * (1.0 + cosim) * (1.0 + cosim);
               f311 = 0.9375 * sinim * sinim * (1.0 + 3.0 * cosim) - 0.75 * (1.0 + cosim);
               f330 = 1.0 + cosim;
               f330 = 1.875 * f330 * f330 * f330;
               del1 = 3.0 * nm * nm * aonv * aonv;
               del2 = 2.0 * del1 * f220 * g200 * q22;
               del3 = 3.0 * del1 * f330 * g300 * g33 * aonv;
del1 = del1 * f311 * g310 * g31 * aonv;
               xlamo = fmod(mo + nodeo + argpo - theta, twopi);
              xfact = mdot + xpidot - rptim + dmdt + domdt + dnodt - no;
          /* ----- for sgp4, initialize the integrator ----- */
          xli = xlamo;
          xni
                = no;
          atime = 0.0;
          nm = no + dndt;
//#include "debug3.cpp"
} // end dsinit
```

```
procedure dspace
  this procedure provides deep space contributions to mean elements for
    perturbing third body. these effects have been averaged over one
     revolution of the sun and moon. for earth resonance effects, the
     effects have been averaged over no revolutions of the satellite.
     (mean motion)
  author
               : david vallado
                                                 719-573-2600 28 jun 2005
     d2201, d2211, d3210, d3222, d4410, d4422, d5220, d5232, d5421, d5433 -
     del1, del2, del3 -
    didt
    dmdt
    dnodt
    domdt
                                              0-none, 1-one day, 2-half day
    irez
                - flag for resonance
    argpo
                - argument of perigee
    argpdot
                - argument of perigee dot (rate)
                - time
    gsto
                 - gst
    xfact
    xlamo
                 - mean motion
    atime
                 - eccentricity
    ft
                - argument of perigee
    argpm
    inclm
                - inclination
    xli
                - mean anomaly
                - mean motion
    nodem
                 - right ascension of ascending node
  outputs
   atime
                - eccentricity
    em
                 - argument of perigee
    argpm
    inclm
                - inclination
    xli
                - mean anomaly
    mm
    nodem
                - right ascension of ascending node
    dndt
                 - mean motion
  locals
   delt
    x2li
    x2omi
    xl
    xldot
    xnddt
    xndt
    xomi
  coupling
    none
    hoots, roehrich, norad spacetrack report #3 1980
    hoots, norad spacetrack report #6 1986
    hoots, schumacher and glover 2004
    vallado, crawford, hujsak, kelso 2006
static void dspace
      int irez,
      double d2201, double d2211, double d3210,
                                                     double d3222, double d4410,
      double d4422,
                     double d5220, double d5232,
                                                     double d5421, double d5433,
                     double del1,
                                    double del2,
                                                     double del3,
      double dedt,
                                                                    double didt,
                                                    double argpo, double argpdot,
double xfact, double xlamo,
      double dmdt,
                     double dnodt,
                                    double domdt,
                     double tc,
      double t,
                                    double gsto,
```

```
double no,
  double& atime, double& em,
                                 double& argpm, double& inclm, double& xli,
  double& mm, double& xni, double& nodem, double& dndt, double& nm
const double twopi = 2.0 * pi;
int iretn , iret;
double delt, ft, theta, x2li, x2omi, x1, x1dot , xndt, xndt, xomi, g22, g32,
     g44, g52, g54, fasx2, fasx4, fasx6, rptim , step2, stepn , stepp;
ft = 0.0;
fasx2 = 0.13130908;
fasx4 = 2.8843198;
fasx6 = 0.37448087;
g22 = 5.7686396;
g32 = 0.95240898;
g44 = 1.8014998;
g52 = 1.0508330;
g54 = 4.4108898;
rptim = 4.37526908801129966e-3; // this equates to 7.29211514668855e-5 rad/sec
stepp = 720.0;
stepn = -720.0;
step2 = 259200.0;
/* ----- calculate deep space resonance effects ----- */
dndt = 0.0;
theta = fmod(gsto + tc * rptim, twopi);
em = em + dedt * t;
inclm = inclm + didt * t;
argpm = argpm + domdt * t;
nodem = nodem + dnodt * t;
    = mm + dmdt * t;
// $\rm sgp4fix for negative inclinations \rm // the following if statement should be commented out
// if (inclm < 0.0)
// {
//
     inclm = -inclm;
      argpm = argpm - pi;
//
     nodem = nodem + pi;
// }
/* - update resonances : numerical (euler-maclaurin) integration - */
/* ----- epoch restart ----- */
// sgp4fix for propagator problems
     the following integration works for negative time steps and periods
     the specific changes are unknown because the original code was so convoluted
ft
atime = 0.0;
if (irez != 0)
    if ((atime == 0.0) | | ((t >= 0.0) && (atime < 0.0)) | |
       ((t < 0.0) \&\& (atime >= 0.0)))
      {
        if (t >= 0.0)
            delt = stepp;
          else
           delt = stepn;
        atime = 0.0;
        xni = no;
xli = xlamo;
    iretn = 381; // added for do loop
    iret = 0; // added for loop
    while (iretn == 381)
        if ((fabs(t) < fabs(atime)) || (iret == 351))</pre>
          {
            if (t >= 0.0)
                delt = stepn;
              else
                delt = stepp;
            iret = 351;
            iretn = 381;
          else
            if (t > 0.0) // error if prev if has a time:=0.0 and t:=0.0 (ge)
                delt = stepp;
```

```
delt = stepn;
                     if (fabs(t - atime) >= stepp)
                         iret = 0;
                          iretn = 381;
                        else
                         ft
                               = t - atime;
                        iretn = 0;
                /* ----- dot terms calculated ----- */
                /* ----- near - synchronous resonance terms ----- */
                if (irez != 2)
                   {
                     xldot = xni + xfact;
xnddt = del1 * cos(xli - fasx2) +
                               2.0 * del2 * cos(2.0 * (xli - fasx4)) + 3.0 * del3 * cos(3.0 * (xli - fasx6));
                     xnddt = xnddt * xldot;
                   else
                     /* ----- near - half-day resonance terms ----- */
                     xomi = argpo + argpdot * atime;
                     x2omi = xomi + xomi;
                     x21i = x1i + x1i;
                     xndt = d2201 * sin(x2omi + x1i - g22) + d2211 * sin(x1i - g22) +
                            d3210 * sin(x2omi + x1i - g32) + d3221 * sin(-xomi + x1i - g32) + d4410 * sin(x2omi + x21i - g44) + d4422 * sin(x2omi + x2ii - g44) + d5220 * sin(x0mi + x1i - g52) + d5232 * sin(-x0mi + x1i - g52) + d5421 * sin(x0mi + x21i - g54) + d5433 * sin(-x0mi + x21i - g54);
                     xldot = xni + xfact;
                     xnddt = d2201 * cos(x2omi + xli - g22) + d2211 * cos(xli - g22) +
                             d3210 * cos(xomi + xli - g32) + d3222 * cos(-xomi + xli - g32) + d5220 * cos(xomi + xli - g52) + d5232 * cos(-xomi + xli - g52) +
                            2.0 * (d4410 * cos(x2omi + x2li - g44) + d4422 * cos(x2li - g44) + d5421 * cos(xomi + x2li - g54) + d5433 * cos(-xomi + x2li - g54));
                     xnddt = xnddt * xldot;
                /* ----- integrator ----- */
                if (iretn == 381)
                     xli = xli + xldot * delt + xndt * step2;
xni = xni + xndt * delt + xnddt * step2;
                    atime = atime + delt;
              } // while iretn = 381
           nm = xni + xndt * ft + xnddt * ft * ft * 0.5;
xl = xli + xldot * ft + xndt * ft * ft * 0.5;
           if (irez != 1)
               mm = x1 - 2.0 * nodem + 2.0 * theta;
                dndt = nm - no;
              {
                     = xl - nodem - argpm + theta;
               dndt = nm - no;
           nm = no + dndt;
//#include "debug4.cpp"
} // end dsspace
```

else

```
procedure initl
  this procedure initializes the spg4 propagator. all the initialization is
    consolidated here instead of having multiple loops inside other routines.
  author
               : david vallado
                                              719-573-2600 28 jun 2005
  inputs
               - eccentricity
                                                     0.0 - 1.0
    ecco
    epoch
               - epoch time in days from jan 0, 1950. 0 hr
    inclo
               - inclination of satellite
    no
               - mean motion of satellite
    satn
               - satellite number
  outputs
    ainv
               - 1.0 / a
               - semi major axis
    con41
    con42
               - 1.0 - 5.0 cos(i)
    cosio
               - cosine of inclination
    cosio2
               - cosio squared
    eccsq
               - eccentricity squared
   method
               - flag for deep space
                                                     'd', 'n'
               - 1.0 - ecco * ecco
    omeosq
               - semi-parameter squared
    posq
               - radius of perigee
    rteosq
               - square root of (1.0 - ecco*ecco)
    sinio
               - sine of inclination
    gsto
               - gst at time of observation
                                                      rad
               - mean motion of satellite
    no
  locals
    d1
    del
    adel
   po
  coupling
    getgravconst
               - find greenwich sidereal time from the julian date
    hoots, roehrich, norad spacetrack report #3 1980
    hoots, norad spacetrack report #6 1986
    hoots, schumacher and glover 2004
    vallado, crawford, hujsak, kelso 2006
static void initl
    (
      int satn,
                    gravconsttype whichconst,
      double ecco,
                   double epoch, double inclo,
                                                 double& no,
      char& method,
      double& ainv, double& ao,
                                double& con41, double& con42, double& cosio,
      double& cosio2, double& eccsq, double& omeosq, double& posq,
      double& rp, double& rteosq, double& sinio , double& gsto
{
     /* ------ local variables ----- */
    double ak, d1, del, adel, po, x2o3, j2, xke,
           tumin, radiusearthkm, j3, j4, j3oj2;
    /* ----- earth constants ----- */
    // sgp4fix identify constants and allow alternate values
    getgravconst( whichconst, tumin, radiusearthkm, xke, j2, j3, j4, j3oj2 );
    x203 = 2.0 / 3.0;
    /* ----- calculate auxillary epoch quantities ----- */
    eccsq = ecco * ecco;
    omeosq = 1.0 - eccsq;
    rteosq = sqrt(omeosq);
    cosio = cos(inclo);
    cosio2 = cosio * cosio;
        ----- un-kozai the mean motion ----- */
    ak = pow(xke / no, x2o3);
    d1
         = 0.75 * j2 * (3.0 * cosio2 - 1.0) / (rteosq * omeosq);
    del = d1 / (ak * ak);
```

```
/*_____
                       procedure sgp4init
  this procedure initializes variables for sgp4.
  author
               : david vallado
                                              719-573-2600 28 jun 2005
 inputs
   satn
               - satellite number
    bstar
               - sgp4 type drag coefficient
                                                      kg/m2er
    ecco
               - eccentricity
    epoch
               - epoch time in days from jan 0, 1950. 0 hr
    argpo
               - argument of perigee (output if ds)
    inclo
               - inclination
    mo
               - mean anomaly (output if ds)
    no
               - mean motion
   nodeo
               - right ascension of ascending node
    satrec
               - common values for subsequent calls
    return code - non-zero on error.
                 1 - mean elements, ecc >= 1.0 or ecc < -0.001 or a < 0.95 er
                  2 - mean motion less than 0.0
                  3 - pert elements, ecc < 0.0 or ecc > 1.0
                  4 - semi-latus rectum < 0.0
                  5 - epoch elements are sub-orbital
                  6 - satellite has decayed
  locals
    \verb"cnodm" , \verb"snodm" , \verb"cosim" , \verb"sinim" , \verb"cosomm" , \verb"sinomm" \\
    cc1sq , cc2
                   , cc3
    coef
           , coef1
    cosio4
    day
    dndt
    em
               - eccentricity
    emsq
               - eccentricity squared
    etasq
               - argument of perigee
    argpm
    nodem
               - inclination
    inclm
               - mean anomaly
    nm
   perige
               - perigee
    pinvsq
    psisq
    qzms24
    rtemsq
    s1, s2, s3, s4, s5, s6, s7
    ss1, ss2, ss3, ss4, ss5, ss6, ss7
    sz1, sz2, sz3
    sz11, sz12, sz13, sz21, sz22, sz23, sz31, sz32, sz33
    temp
    temp1, temp2, temp3
    tsi
    xpidot
    xhdot1
    z1, z2, z3
    z11, z12, z13, z21, z22, z23, z31, z32, z33
  coupling
   getgravconst-
    initl
    dpper
    dsinit
    sgp4
 references
   hoots, roehrich, norad spacetrack report #3 1980
    hoots, norad spacetrack report #6 1986
    hoots, schumacher and glover 2004
   vallado, crawford, hujsak, kelso 2006
```

int sgp4init

```
gravconsttype whichconst,
                                                        const int satn,
                                                                                          const double epoch,
   const double xbstar, const double xecco, const double xargpo, const double xinclo, const double xmo, const double xno, const double xno, elsetrec& satrec
/* ----- local variables ----- */
double ao, ainv, con42, cosio, sinio, cosio2, eccsq,
                                             rteosq,
        omeosq, posq, rp,
        cnodm , snodm , cosim , sinim , cosomm, sinomm, cc1sq ,
        cc2 , cc3 , coef , coef1 , cosio4, day , dndt em , emsq , eeta , etasq , gam , argpm , nodem
        inclm , mm , nm , perige, pinvsq, psisq , qzms24, rtemsq, s1 , s2 , s3 , s4 , s5 , s6 ,
        rtemsq, s1 , s2 , s3 , s4 , s5 , s6 s7 , sfour , ss1 , ss2 , ss3 , ss4 , ss5 ss6 , ss7 , sz1 , sz2 , sz3 , sz11 , sz12 sz13 , sz21 , sz22 , sz23 , sz31 , sz32 , sz33
                  , temp , temp1 , temp2 , temp3 , tsi , xpidot,
        xhdot1, z1 , z2 , z3 , z11 , z12 z21 , z22 , z23 , z31 , z32 , z33, qzms2t, ss, j2, j3oj2, j4, x2o3, r[3], v[3],
                                                                                      , z13
        tumin, radiusearthkm, xke, j3;
/* ----- initialization ----- */
// sgp4fix divisor for divide by zero check on inclination
const double temp4 = 1.0 + \cos(pi-1.0e-9);
 /* ----- set all near earth variables to zero ------ */
satrec.isimp = 0; satrec.method = 'n'; satrec.aycof = 0.0;
satrec.con41 = 0.0; satrec.cc1 = 0.0; satrec.cc4 = 0.0;
satrec.cc5 = 0.0; satrec.d2 = 0.0; satrec.d3 = 0.0;
satrec.cc5 = 0.0; satrec.d2 = 0.0; satrec.d3
satrec.d4 = 0.0; satrec.delmo = 0.0; satrec.eta
satrec.argpdot = 0.0; satrec.omgcof = 0.0; satrec.sinmao = 0.0;
satrec.t = 0.0; satrec.t2cof = 0.0; satrec.t3cof = 0.0; satrec.t4cof = 0.0; satrec.t5cof = 0.0; satrec.x1mth2 = 0.0;
satrec.x7thm1 = 0.0; satrec.mdot = 0.0; satrec.nodedot = 0.0;
satrec.xlcof = 0.0; satrec.xmcof = 0.0; satrec.nodecf = 0.0;
/* ----- set all deep space variables to zero ----- */
satrec.irez = 0; satrec.d2201 = 0.0; satrec.d2211 = 0.0;
satrec.d3210 = 0.0; satrec.d3222 = 0.0; satrec.d4410 = 0.0;
satrec.d4422 = 0.0; satrec.d5220 = 0.0; satrec.d5232 = 0.0;
satrec.d5421 = 0.0; satrec.d5433 = 0.0; satrec.dedt = 0.0;
satrec.del1 = 0.0; satrec.del2 = 0.0; satrec.del3 = 0.0;
satrec.didt = 0.0; satrec.dmdt = 0.0; satrec.dnodt = 0.0;
satrec.domdt = 0.0; satrec.e3 = 0.0; satrec.ee2 = 0.0;
satrec.peo = 0.0; satrec.pgho = 0.0; satrec.pho = 0.0;
satrec.pinco = 0.0; satrec.plo = 0.0; satrec.se2 = 0.0;
satrec.se3 = 0.0; satrec.sgh2 = 0.0; satrec.sgh3 = 0.0;

      satrec.ses
      = 0.0; satrec.sgn2
      = 0.0; satrec.sgn3
      = 0.0; satrec.sgn3
      = 0.0; satrec.sgn3
      = 0.0; satrec.sh3
      = 0.0; satrec.sh3
      = 0.0; satrec.sh2
      = 0.0; satrec.sh2
      = 0.0; satrec.sh2
      = 0.0; satrec.sgt0
      = 0.0; satrec.sgt0
      = 0.0; satrec.sgt0
      = 0.0; satrec.sgn3
      = 0.0; satrec.sgn3
      = 0.0; satrec.sgn3
      = 0.0; satrec.sh2
      = 0.0; satrec.sgn3
      = 0.0; satrec.sgn3
satrec.xi2 = 0.0; satrec.xi3 = 0.0; satrec.xl2 = 0.0; satrec.xl3 = 0.0; satrec.xlamo = 0.0;
satrec.zmol = 0.0; satrec.zmos = 0.0; satrec.atime = 0.0;
satrec.xli = 0.0; satrec.xni = 0.0;
// sgp4fix - note the following variables are also passed directly via satrec.
// it is possible to streamline the sgp4init call by deleting the "x"
// variables, but the user would need to set the satrec.* values first. we
// include the additional assignments in case twoline2rv is not used.
satrec.bstar = xbstar;
satrec.ecco
satrec.argpo = xargpo;
satrec.inclo
                        = xinclo;
satrec.no
                           = xno;
satrec.nodeo = xnodeo;
/* ----- */
// sgp4fix identify constants and allow alternate values
getgravconst( whichconst, tumin, radiusearthkm, xke, j2, j3, j4, j3oj2 );
          = 78.0 / radiusearthkm + 1.0;
qzms2t = pow(((120.0 - 78.0) / radiusearthkm), 4);
x203 = 2.0 / 3.0;
satrec.init = 'y';
satrec.t = 0.0;
```

```
initl
      satn, whichconst, satrec.ecco, epoch, satrec.inclo, satrec.no, satrec.method,
      ainv, ao, satrec.con41, con42, cosio, cosio2, eccsq, omeosq,
      posq, rp, rteosq, sinio, satrec.gsto
satrec.error = 0;
if (rp < 1.0)
      printf("# *** satn%d epoch elts sub-orbital ***\n", satn);
    satrec.error = 5;
if ((omeosq >= 0.0) |  (satrec.no >= 0.0))
    satrec.isimp = 0;
     if (rp < (220.0 / radiusearthkm + 1.0))
         satrec.isimp = 1;
     sfour = ss;
    qzms24 = qzms2t;
    perige = (rp - 1.0) * radiusearthkm;
     /* - for perigees below 156 km, s and qoms2t are altered - */
     if (perige < 156.0)
         sfour = perige - 78.0;
         if (perige < 98.0)
              sfour = 20.0;
         qzms24 = pow(((120.0 - sfour) / radiusearthkm), 4.0);
         sfour = sfour / radiusearthkm + 1.0;
    pinvsq = 1.0 / posq;
    tsi = 1.0 / (ao - sfour);
satrec.eta = ao * satrec.ecco * tsi;
     etasq = satrec.eta * satrec.eta;
     eeta = satrec.ecco * satrec.eta;
     psisq = fabs(1.0 - etasq);
     coef = qzms24 * pow(tsi, 4.0);
     coef1 = coef / pow(psisq, 3.5);
    cc2 = coef1 * satrec.no * (ao * (1.0 + 1.5 * etasq + eeta * (4.0 + etasq)) + 0.375 * j2 * tsi / psisq * satrec.con41 *
                      (8.0 + 3.0 * etasq * (8.0 + etasq)));
    satrec.cc1 = satrec.bstar * cc2;
     cc3 = 0.0;
     if (satrec.ecco > 1.0e-4)
         cc3 = -2.0 * coef * tsi * j3oj2 * satrec.no * sinio / satrec.ecco;
     satrec.x1mth2 = 1.0 - cosio2;
                   = 2.0* satrec.no * coef1 * ao * omeosq *
                           (satrec.eta * (2.0 + 0.5 * etasq) + satrec.ecco * (0.5 + 2.0 * etasq) - j2 * tsi / (ao * psisq) * (-3.0 * satrec.con41 * (1.0 - 2.0 * eeta + etasq *
     (1.5 - 0.5 * eeta)) + 0.75 * satrec.x1mth2 * \\ (2.0 * etasq - eeta * (1.0 + etasq)) * cos(2.0 * satrec.argpo))); \\ satrec.cc5 = 2.0 * coef1 * ao * omeosq * (1.0 + 2.75 * \\ 
                      (etasq + eeta) + eeta * etasq);
     cosio4 = cosio2 * cosio2;
     temp1 = 1.5 * j2 * pinvsq * satrec.no;
temp2 = 0.5 * temp1 * j2 * pinvsq;
     temp3 = -0.46875 * j4 * pinvsq * pinvsq * satrec.no;

satrec.mdot = satrec.no + 0.5 * temp1 * rteosq * satrec.con41 + 0.0625 *

temp2 * rteosq * (13.0 - 78.0 * cosio2 + 137.0 * cosio4);
     satrec.argpdot = -0.5 * temp1 * con42 + 0.0625 * temp2 *
                            (7.0 - 114.0 * cosio2 + 395.0 * cosio4) + temp3 * (3.0 - 36.0 * cosio2 + 49.0 * cosio4);
                           = -temp1 * cosio;
    satrec.nodedot = xhdot1 + (0.5 * temp2 * (4.0 - 19.0 * cosio2) +
                            2.0 * temp3 * (3.0 - 7.0 * cosio2)) * cosio;
                          = satrec.argpdot+ satrec.nodedot;
    satrec.omgcof = satrec.bstar * cc3 * cos(satrec.argpo);
catrog ymgof = 0.0.
                       = 0.0;
     satrec.xmcof
     if (satrec.ecco > 1.0e-4)
        satrec.xmcof = -x2o3 * coef * satrec.bstar / eeta;
     satrec.nodecf = 3.5 * omeosq * xhdot1 * satrec.cc1;
     satrec.t2cof = 1.5 * satrec.cc1;
     // sgp4fix for divide by zero with xinco = 180 deg
     if (fabs(cosio+1.0) > 1.5e-12)
         satrec.xlcof = -0.25 * j3oj2 * sinio * (3.0 + 5.0 * cosio) / (1.0 + cosio);
       else
```

```
satrec.xlcof = -0.25 * j3oj2 * sinio * (3.0 + 5.0 * cosio) / temp4;
 satrec.aycof = -0.5 * j3oj2 * sinio;
satrec.delmo = pow((1.0 + satrec.eta * cos(satrec.mo)), 3);
  satrec.sinmao = sin(satrec.mo);
  satrec.x7thm1 = 7.0 * cosio2 - 1.0;
  /* ----- deep space initialization ----- */
 if ((2*pi / satrec.no) >= 225.0)
      satrec.method = 'd';
      satrec.isimp = 1;
      tc = 0.0;
      inclm = satrec.inclo;
            epoch, satrec.ecco, satrec.argpo, tc, satrec.inclo, satrec.nodeo,
            satrec.no, snodm, cnodm, sinim, cosim, sinomm,
            day, satrec.e3, satrec.ee2, em, emsq, gam,
            satrec.peo, satrec.pgho, satrec.pho, satrec.pinco,
            satrec.plo, rtemsq,
                                         satrec.se2, satrec.se3,
            satrec.sgh2, satrec.sgh3, satrec.sgh4,
            satrec.sh2, satrec.sh3, satrec.si2, satrec.si3,
satrec.sl2, satrec.sl3, satrec.sl4, s1, s2, s3, s4, s5,
            s6, s7, ss1, ss2, ss3, ss4, ss5, ss6, ss7, sz1, sz2, sz3, sz11, sz12, sz13, sz21, sz22, sz23, sz31, sz32, sz33,
            satrec.xgh2, satrec.xgh3, satrec.xgh4, satrec.xh2,
                                        satrec.xi3, satrec.xl2,
nm, z1, z2, z3, z11,
            satrec.xh3, satrec.xi2,
            satrec.xl3, satrec.xl4,
            z12, z13, z21, z22, z23, z31, z32, z33,
            satrec.zmol, satrec.zmos
      dpper
            satrec.e3, satrec.ee2, satrec.peo, satrec.pgho,
            satrec.pho, satrec.pinco, satrec.plo, satrec.se2
            satrec.se3, satrec.sgh2, satrec.sgh3, satrec.sgh4,
            satrec.sh2, satrec.sh3, satrec.si2, satrec.si3,
            satrec.sl2, satrec.sl3, satrec.sl4, satrec.t,
            satrec.xgh2, satrec.xgh3, satrec.xgh4, satrec.xh2,
            satrec.xh3, satrec.xi2, satrec.xi3, satrec.xl2,
            satrec.xl3, satrec.xl4, satrec.zmol, satrec.zmos, inclm, satrec.init,
            satrec.ecco, satrec.inclo, satrec.nodeo, satrec.argpo, satrec.mo
      argpm = 0.0;
      nodem = 0.0;
            = 0.0;
      dsinit
            cosim, emsq, satrec.argpo, s1, s2, s3, s4, s5, sinim, ss1, ss2, ss3, ss4,
            ss5, sz1, sz3, sz11, sz13, sz21, sz23, sz31, sz33, satrec.t, tc,
            satrec.gsto, satrec.mo, satrec.mdot, satrec.no, satrec.nodeo,
            satrec.nodedot, xpidot, z1, z3, z11, z13, z21, z23, z31, z33,
            satrec.ecco, eccsq, em, argpm, inclm, mm, nm, nodem,
            satrec.irez, satrec.atime,
            satrec.d2201, satrec.d2211, satrec.d3210, satrec.d3222,
            satrec.d4410, satrec.d4422, satrec.d5220, satrec.d5232,
            satrec.d5421, satrec.d5433, satrec.dedt, satrec.didt,
            satrec.dmdt, dndt, satrec.dondt, satrec.dondt satrec.del1, satrec.del2, satrec.del3, satrec.xfact,
            satrec.xlamo, satrec.xli,
                                         satrec.xni
/* ----- set variables if not deep space ----- */
if (satrec.isimp != 1)
  {
    cc1sq
                   = satrec.cc1 * satrec.cc1;
                 = 4.0 * ao * tsi * cc1sq;
    satrec.d2
                   = satrec.d2 * tsi * satrec.cc1 / 3.0;
    temp
                 = (17.0 * ao + sfour) * temp;
= 0.5 * temp * ao * tsi * (221.0 * ao + 31.0 * sfour) *
                     satrec.cc1;
    satrec.t3cof = satrec.d2 + 2.0 * cc1sq;
    satrec.t4cof = 0.25 * (3.0 * satrec.d3 + satrec.cc1 *
                     (12.0 * satrec.d2 + 10.0 * cc1sq));
    satrec.t5cof = 0.2 * (3.0 * satrec.d4 +
                      12.0 * satrec.cc1 * satrec.d3 +
```

```
procedure sgp4
this procedure is the sgp4 prediction model from space command. this is an
  updated and combined version of sgp4 and sdp4, which were originally
  published separately in spacetrack report #3. this version follows the nasa
  release on the internet. there are a few fixes that are added to correct
  known errors in the existing implementations.
author
              : david vallado
                                               719-573-2600 28 jun 2005
  satrec
            - initialised structure from sgp4init() call.
  tsince
            - time eince epoch (minutes)
outputs
              - position vector - velocity
  r
  v
                                                     km/sec
return code - non-zero on error.
                1 - mean elements, ecc >= 1.0 or ecc < -0.001 or a < 0.95 er
                  2 - mean motion less than 0.0
                 3 - pert elements, ecc < 0.0 or ecc > 1.0
                  4 - semi-latus rectum < 0.0
                  5 - epoch elements are sub-orbital
                  6 - satellite has decayed
locals
  axnl, aynl
  betal
  cosim
          , sinim
                    , cosomm , sinomm , cnod
                                                  , snod
                                                            , cos2u
         , coseo1 , sineo1 , cosi , sini , cossu , sinsu , cosu , sinsu
                                                  , cosip , sinip
  cosisq , cossu
  delm
  delomg
  dndt
  eccm
  emsq
  ecose
  e12
  eo1
  esine
  \operatorname{argpm}
  argpp
  omgadf
  pl
  rtemsq
  rdotl
  rl
  rvdot
  rvdotl
      , t3
             , t4
                     , tc
   tem5, temp , temp1 , temp2 , tempa , tempe , temp1
  u , ux , uy
                     , uz
                               , vx , vy
  inclm
              - inclination
              - mean anomaly
  mm
              - mean motion
  nodem
              - right asc of ascending node
  xinc
  xincp
  xlm
  mp
  xmdf
  xmx
  xmy
  nodedf
  xnode
  nodep
  np
coupling
  getgravconst-
  dpper
  dpspace
references
```

```
hoots, roehrich, norad spacetrack report #3 1980
hoots, norad spacetrack report #6 1986
hoots, schumacher and glover 2004
vallado, crawford, hujsak, kelso 2006
                                           ·----*/
  gravconsttype whichconst, elsetrec& satrec, double tsince,
  double r[3], double v[3]
double am , axnl , aynl , betal , cosim , cnod
    cos2u, coseo1, cosi , cosip , cosisq, cossu , cosu,
    delm , delomg, em , emsq , ecose , el2 , eo1 , ep , esine , argpm, argpp , argpdf, pl, mrt = 0.0, mvt , rdotl , rl , rvdot , rvdotl, sinim ,
    sin2u, sineo1, sini , sinip , sinsu , sinu ,
    sinzu, sineol, sini, sinip, sinsu, sinu, sinu, sindu, su , t2 , t3 , t4 , tem5 , temp, temp1, temp2 , tempa, tempe , temp1 , u , ux , uy , uz , vx , vy , vz , inclm , mm , nodem, xinc , xincp , xl , xlm , mp , xmdf , xmx , xmy , nodedf, xnode , nodep, tc , dndt, twopi, x203 , j2 , j3 , tumin, j4 , xke , j3oj2, radiusearthkm,
    vkmpersec;
int ktr;
/* ----- set mathematical constants ----- */
// \operatorname{sgp4fix} divisor for divide by zero check on inclination
                      = 1.0 + \cos(pi-1.0e-9);
const double temp4
twopi = 2.0 * pi;
x2o3 = 2.0 / 3.0;
// sgp4fix identify constants and allow alternate values
getgravconst( whichconst, tumin, radiusearthkm, xke, j2, j3, j4, j3oj2 );
              = radiusearthkm * xke/60.0;
/* ------ clear sgp4 error flag ------ */
satrec.t = tsince;
satrec.error = 0;
/* ----- update for secular gravity and atmospheric drag ---- */
xmdf = satrec.mo + satrec.mdot * satrec.t;
argpdf = satrec.argpo + satrec.argpdot * satrec.t;
nodedf = satrec.nodeo + satrec.nodedot * satrec.t;
argpm = argpdf;
       = xmdf;
        = satrec.t * satrec.t;
nodem = nodedf + satrec.nodecf * t2;
tempa = 1.0 - satrec.cc1 * satrec.t;
       = satrec.bstar * satrec.cc4 * satrec.t;
= satrec.t2cof * t2;
tempe
if (satrec.isimp != 1)
  {
    delomg = satrec.omgcof * satrec.t;
    delm = satrec.xmcof *
              (pow((1.0 + satrec.eta * cos(xmdf)), 3) -
              satrec.delmo);
    temp = delomg + delm;
           = xmdf + temp;
    mm
    argpm = argpdf - temp;
    t3 = t2 * satrec.t;
t4 = t3 * satrec.t;
    tempa = tempa - satrec.d2 * t2 - satrec.d3 * t3 -
                       satrec.d4 * t4;
    tempe = tempe + satrec.bstar * satrec.cc5 * (sin(mm) -
                       satrec.sinmao);
    templ = templ + satrec.t3cof * t3 + t4 * (satrec.t4cof +
                       satrec.t * satrec.t5cof);
     = satrec.no;
      = satrec.ecco;
inclm = satrec.inclo;
if (satrec.method == 'd')
    tc = satrec.t;
    dspace
           satrec.irez,
           satrec.d2201, satrec.d2211, satrec.d3210,
```

```
satrec.d3222, satrec.d4410, satrec.d4422,
                  satrec.d5220, satrec.d5232, satrec.d5421,
                  satrec.d5433, satrec.dedt, satrec.del1,
satrec.del2, satrec.del3, satrec.didt,
satrec.dmdt, satrec.dnodt, satrec.domdt,
                  satrec.argpo, satrec.argpdot, satrec.t, tc,
                  satrec.gsto, satrec.xfact, satrec.xlamo,
                  satrec.no, satrec.atime,
                  em, argpm, inclm, satrec.xli, mm, satrec.xni,
                  nodem, dndt, nm
        } // if method = d
     if (nm <= 0.0)
11
            printf("# error nm %f\n", nm);
          satrec.error = 2;
      am = pow((xke / nm), x2o3) * tempa * tempa;
     nm = xke / pow(am, 1.5);
      em = em - tempe;
      // fix tolerance for error recognition
      if ((em \ge 1.0) | | (em < -0.001) | | (am < 0.95))
            printf("# error em %f\n", em);
          satrec.error = 1;
     if (em < 0.0)
          em = 1.0e-6;
     mm = mm + satrec.no * templ;

xlm = mm + argpm + nodem;

emsq = em * em;

temp = 1.0 - emsq;
      nodem = fmod(nodem, twopi);
      argpm = fmod(argpm, twopi);
     xlm = fmod(xlm, twopi);
             = fmod(xlm - argpm - nodem, twopi);
      /* ----- compute extra mean quantities ----- */
      sinim = sin(inclm);
     cosim = cos(inclm);
      /* ----- add lunar-solar periodics ----- */
      ep = em;
      xincp = inclm;
      argpp = argpm;
     nodep = nodem;
             = mm;
     mp
      sinip = sinim;
      cosip = cosim;
      if (satrec.method == 'd')
        {
          dpper
              (
                 satrec.e3, satrec.ee2, satrec.peo,
                  satrec.pgho, satrec.pho, satrec.pinco,
                  satrec.plo, satrec.se2, satrec.se3, satrec.sgh2, satrec.sgh3, satrec.sgh4,
                 satrec.sgh2, satrec.sgh3, satrec.si2, satrec.si2, satrec.si3, satrec.sl2, satrec.sl3, satrec.sl4, satrec.t, satrec.xgh2, satrec.xgh3, satrec.xgh4, satrec.xgh2,
                                                 satrec.xgh2,
                  satrec.xh3, satrec.xi2, satrec.xi3, satrec.xl2, satrec.xl3, satrec.xl4, satrec.zmol, satrec.inclo,
                  'n', ep, xincp, nodep, argpp, mp
          if (xincp < 0.0)
               xincp = -xincp;
               nodep = nodep + pi;
               argpp = argpp - pi;
          if ((ep < 0.0 ) || ( ep > 1.0))
                 printf("# error ep %f\n", ep);
              satrec.error = 3;
        } // if method = d
```

```
/* ------ long period periodics ----- */
if (satrec.method == 'd')
         sinip = sin(xincp);
         cosip = cos(xincp);
          satrec.aycof = -0.5*j3oj2*sinip;
          // sgp4fix for divide by zero for xincp = 180 deg
          if (fabs(cosip+1.0) > 1.5e-12)
                   satrec.xlcof = -0.25 * j3oj2 * sinip * (3.0 + 5.0 * cosip) / (1.0 + cosip);
                  satrec.xlcof = -0.25 * j3oj2 * sinip * (3.0 + 5.0 * cosip) / temp4;
axnl = ep * cos(argpp);
temp = 1.0 / (am * (1.0 - ep * ep));
aynl = ep* sin(argpp) + temp * satrec.aycof;
xl = mp + argpp + nodep + temp * satrec.xlcof * axnl;
/* ----- solve kepler's equation ----- */
u = fmod(xl - nodep, twopi);
eo1 = u;
tem5 = 9999.9;
ktr = 1;
// sgp4fix for kepler iteration // the following iteration needs better limits on corrections \frac{1}{2} = 
while (( fabs(tem5) >= 1.0e-12) && (ktr <= 10) )
         sineo1 = sin(eo1);
          coseo1 = cos(eo1);
         tem5 = 1.0 - coseo1 * axnl - sineo1 * aynl;
tem5 = (u - aynl * coseo1 + axnl * sineo1 - eo1) / tem5;
         if(fabs(tem5) >= 0.95)
               tem5 = tem5 > 0.0 ? 0.95 : -0.95;
          eo1
                        = eo1 + tem5;
        ktr = ktr + 1;
/* ----- short period preliminary quantities ----- */
ecose = axnl*coseo1 + aynl*sineo1;
esine = axnl*sineo1 - aynl*coseo1;
el2 = axnl*axnl + aynl*aynl;
            = am*(1.0-e12);
if (pl < 0.0)
   {
             printf("# error pl %f\n", pl);
        satrec.error = 4;
     else
     {
         rl
                         = am * (1.0 - ecose);
         rdotl = sqrt(am) * esine/rl;
         rvdotl = sqrt(pl) / rl;
         betal = sqrt(1.0 - el2);
         cosu = am / rl * (coseol - axnl * temp);
cosu = am / rl * (coseol - axnl + aynl * temp);
                         = atan2(sinu, cosu);
          sin2u = (cosu + cosu) * sinu;
          cos2u = 1.0 - 2.0 * sinu * sinu;
         temp = 1.0 / pl;
temp1 = 0.5 * j2 * temp;
         temp2 = temp1 * temp;
           /* ----- update for short period periodics ----- */
         if (satrec.method == 'd')
             {
                                                                         = cosip * cosip;
                   satrec.con41 = 3.0*cosisq - 1.0;
                   satrec.x1mth2 = 1.0 - cosisq;
                  satrec.x7thm1 = 7.0*cosisq - 1.0;
                      = rl * (1.0 - 1.5 * temp2 * betal * satrec.con41) +
         mrt
                          0.5 * temp1 * satrec.x1mth2 * cos2u;
                     = su - 0.25 * temp2 * satrec.x7thm1 * sin2u;
         xnode = nodep + 1.5 * temp2 * cosip * sin2u;
         minc = xincp + 1.5 * temp2 * cosip * sinip * cos2u;
mvt = rdotl - nm * temp1 * satrec.x1mth2 * sin2u / xke;
         rvdot = rvdot1 + nm * temp1 * (satrec.x1mth2 * cos2u +
1.5 * satrec.con41) / xke;
```

```
sinsu = sin(su);
               cossu = cos(su);
snod = sin(xnode);
               cnod = cos(xnode);
               sini = sin(xinc);
cosi = cos(xinc);
               xmx = -snod * cosi;
xmy = cnod * cosi;
xmy = cnod * cosi;
ux = xmx * sinsu + cnod * cossu;
uy = xmy * sinsu + snod * cossu;
                       = sini * sinsu;
                        = xmx * cossu - cnod * sinsu;
= xmy * cossu - snod * sinsu;
= sini * cossu;
               vx
               νу
               /* ------ position and velocity (in km and km/sec) ----- */ r[0] = (mrt * ux)* radiusearthkm;
               r[1] = (mrt * uy) * radiusearthkm;
r[2] = (mrt * uz) * radiusearthkm;
           Li2] - (mrt ^ uz) ^ radiusearthkm;
v[0] = (mvt * ux + rvdot * vx) * vkmpersec;
v[1] = (mvt * uy + rvdot * vy) * vkmpersec;
v[2] = (mvt * uz + rvdot * vz) * vkmpersec;
} // if p1 > 0
         // sgp4fix for decaying satellites
        if (mrt < 1.0)
                  printf("# decay condition %11.6f \n",mrt);
              satrec.error = 6;
//#include "debug7.cpp"
      return satrec.error;
} // end sgp4
```

```
/* ______
          function gstime
 this function finds the greenwich sidereal time.
 author
           : david vallado
                                   719-573-2600 1 mar 2001
                                  range / units
days from 4713 bc
 inputs
            description
           - julian date in ut1
  jdut1
 outputs
          :
- greenwich sidereal time
  gstime
                                  0 to 2pi rad
 locals
  temp
            - temporary variable for doubles rad
           - julian centuries from the
  tut1
             jan 1, 2000 12 h epoch (ut1)
 coupling
  none
* references
          :
2004, 191, eq 3-45
  vallado
            ----- */
double gstime
      double jdut1
   const double twopi = 2.0 * pi;
   const double deg2rad = pi / 180.0;
   double
            temp, tut1;
   temp = fmod(temp * deg2rad / 240.0, twopi); //360/86400 = 1/240, to deg, to rad
   // ----- check quadrants -----
   if (temp < 0.0)
     temp += twopi;
   return temp;
  } // end gstime
```

```
function getgravconst
  this function gets constants for the propagator. note that mu is identified to
    facilitiate comparisons with newer models.
                                                  719-573-2600 21 jul 2006
  author
                : david vallado
  inputs
    which const - which set of constants to use 72, 84
    tumin
                 - minutes in one time unit
     radiusearthkm - radius of the earth in km
    xke - reciprocal of tumin
j2, j3, j4 - un-normalized zonal harmonic values
               - j3 divided by j2
  locals
                - earth gravitational parameter
  coupling
    none
    norad spacetrack report #3
    vallado, crawford, hujsak, kelso 2006
void getgravconst
      gravconsttype whichconst,
      double& tumin,
      double& radiusearthkm,
      double& xke,
      double& j2,
      double& j3,
      double& j4,
      double& j3oj2
       double mu;
       switch (whichconst)
           // -- wgs-72 low precision str#3 constants --
           case wgs72old:
           radiusearthkm = 6378.135;
                = 0.0743669161;
           tumin = 1.0 / xke;
           j2 = 0.001082616;
j3 = -0.00000253881;
j4 = -0.00000165597;
           j3oj2 = j3 / j2;
         break;
          // ----- wgs-72 constants -----
           case wgs72:
                                          // in km3 / s2
                 = 398600.8;
                                         // km
           radiusearthkm = 6378.135;
           xke = 60.0 / sqrt(radiusearthkm*radiusearthkm*radiusearthkm/mu);
           tumin = 1.0 / xke;
           j2 = 0.001082616;
j3 = -0.00000253881;
j4 = -0.00000165597;
           j3oj2 = j3 / j2;
         break;
           case wgs84:
           // ----- wgs-84 constants -----
           = 60.0 / sqrt(radiusearthkm*radiusearthkm*radiusearthkm/mu);
           xke
           tumin = 1.0 / xke;
               = 0.00108262998905;
= -0.00000253215306;
           j3
           j4 = -0.00000161098761;

j30j2 = j3 / j2;
           fprintf(stderr, "unknown gravity option (%d)\n", whichconst);
         break;
        // end getgravconst
```