Evolución de la energía

- 1. Dada la simulación EB1F1 de la *Práctica 2*, graficar para el día 2 (desde que se introduce la fuente puntual):
 - a. Las energías potencial y cinética del flujo medio, superpuestas con las anomalías de altura de superficie libre (en dos paneles dispuestos verticalmente).
 - b. Las energías potencial y cinética de las perturbaciones, superpuestas con las anomalías de altura de la superficie libre (en dos paneles dispuestos verticalmente).

NOTA: Considere $H = \frac{40000}{9.8} m$

Evolución de la energía cinética de las perturbaciones

- 2. Considerar la simulación EB1F1 en el dominio $(60^{\circ}S 5^{\circ}N)$ X $(170^{\circ}E 60^{\circ}O)$. Grafique para los días 2, 4, 6 y 8 (desde que se introduce la fuente puntual), en cuatro paneles y manteniendo la misma escala.
 - a. La advección total de energía cinética de las perturbaciones (*, en sombreado) y la energía cinética de las perturbaciones (en contornos).
 - b. El término de conversión baroclínica (*, en sombreado) y la energía cinética de las perturbaciones (en contornos).
 - c. El término de dispersión de energía cinética (*, en sombreado), el flujo ageostrófico de geopotencial (**, en vectores) y la energía cinética de las perturbaciones (en contornos).
 - d. El término de conversión barotrópica (*, en sombreado) y la energía cinética de las perturbaciones (en contornos).
- 3. Graficar en una sola figura la contribución promedio a nivel global de cada uno de los términos de la evolución de la energía cinética de las perturbaciones.
 - (*) Graficar estos términos en unidades de $\rm Jm^{-2}dia^{-1}$
 - (**) Se sugiere calcular el viento geostrófico, para todos los días de la simulación, desde 90°S hasta 5°S, para evitar los errores causados por la aproximación geostrófica cerca de Ecuador.