100001.tex —	$ 5 - 3\sqrt{2} > 1.$
100002.tex —	
100003.tex —	
100004.tex —	Faux $ x+1 < 2 \text{ est \'equivalent \`a} -1 < x < 1. $
$100005.\mathrm{tex}$ —	Faux $ x-2 < 3 \text{ est \'equivalent \`a} -1 < x < 5. $
100006.tex —	
100007.tex —	Vrai Si $ x < 2$, alors $ x - 1 < 1$.
100008.tex —	Faux Si $ x+3 \le 1$ et $ x+1 \le 1$, alors $x = -2$.
100009.tex	
$100010.\mathrm{tex}$ —	Si $ x-2 < 1$ et $ x < 1$, alors $x = 1$.
100011.tex —	Faux Si $ x-2 \le 3$ ou $ x \le 3$, alors $-3 \le x \le 5$.
100012.tex —	
100013.tex —	
100014.tex —	Faux Si $x^2 + 2x \le 0$, alors $ x+1 \le 1$. Vrai
100015.tex —	Si $x^2 - 6x + 8 \le 0$, alors $ x - 3 \le 1$. Vrai
100016.tex —	Si $ x+2 \le 1$, alors $ x \le 3$
100017.tex —	Si $ x-1 \le 3$, alors $ x \le 2$ Faux
	Si $ x-1 > 1$, alors $ 2x-1 > 1$. Vrai
100019.tex —	Si $ x+1 > 1$, alors $ x+2 > 1$. Faux
100020.tex —	La somme d'une fonction paire et d'une fonction impaire est impaire. Faux Faux Faux
100021.tex —	Le produit d'une fonction paire et d'une fonction impaire est impair. Vrai
100022.tex —	Le produit de deux fonctions impaires est impair. Faux
100023.tex —	La somme de deux fonctions paires est paire. Vrai
100024.tex —	La somme de deux fonctions périodiques est périodique. Faux
100025.tex —	La somme de deux fonctions 2π -périodiques est 2π -périodique. Vrai
100026.tex —	Une fonction dérivable est continue. Vrai
100027.tex —	Il existe des fonctions à la fois croissantes et décroissantes. Vrai
100028.tex —	Une fonction continue est dérivable. Faux
100029.tex —	Une fonction dérivable à dérivée positive est croissante. Faux Faux Faux
100030.tex —	Une fonction dérivable sur $\mathbb R$ à dérivée positive est croissante. Vrai
100031.tex —	Une fonction croissante est à dérivée positive. Faux
100032.tex —	Une fonction croissante est continue. Faux Faux
100033.tex —	Si f est dérivable, alors f' est continue.

100034.tex —	Une fonction $f:E\to F$ est injective ssi tout élément de F possède au moins un antécédent.	
100035. tex	Une fonction $f:E\to F$ est injective ssi tout élément de F possède exactement un antécédent.	
100036.tex —	Une fonction $f:E\to F$ est injective ssi tout élément de F possède au plus un antécédent.	
100037.tex —	Une fonction $f: E \to F$ est surjective ssi $f(E) = F$.	
100038.tex —	Si une fonction $f: E \to F$ est bijective, elle est surjective.	
100039.tex —	Si une fonction $f: E \to F$ est injective, elle est bijective.	
100040.tex —	Une fonction $f: E \to F$ est surjective ssi pour tout $y \in F$, $f^{-1}(\{y\})$ est non vide.	
100041.tex —	Soit A, B deux parties de E . L'affirmation " $\forall x \in E, \ x \in A \ \Rightarrow \ x \in B$ " entraı̂ne $A \subset B$.	
100042.tex —	$\forall A, B, C \in \mathcal{P}(E), \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$	
100043.tex —	$\forall A, B \in \mathcal{P}(E), \ (A \cap B)^{\complement} = A^{\complement} \cup B^{\complement}.$	
100044.tex —	$\forall B \in \mathcal{P}(F), \ f^{-1}(B)^{\complement} = f^{-1}(B^{\complement}).$	
100045.tex —	$\forall A \in \mathcal{P}(E), \ f(A)^{\complement} = f(A^{\complement}).$	
100046.tex —	$\forall A, A' \in \mathcal{P}(E), \ f(A) \cap f(A') = f(A \cap A').$	
100047.tex —	Soit $f: E \to F$. Alors $\forall A \in \mathcal{P}(F), \ \exists X \subset f^{-1}(A), \ f(X) = A$.	
100048.tex —	$\forall B \in \mathcal{P}(F), \ f(f^{-1}(B)) \subset B.$	
100049.tex —	$\forall A, B \in \mathcal{P}(E), \ A \subset B \implies f(A) \subset f(B).$	
100050.tex —	$\forall A, B \in \mathcal{P}(E), \ A \neq B \implies f(A) \neq f(B).$	
100051.tex —	$f:E \to F$ est surjective si, et seulement si, tout élément de F admet un antécédent par f .	
100052.tex —	$f:\mathbb{R}\to\mathbb{R}$ est surjective si, et seulement si, toute droite horizontale coupe la courbe représentative d	le f.
100053.tex —	Si $f: E \to F$ est injective, alors $f: E \to f(E)$ est bijective.	
100054.tex —	$f: \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & 2n \end{array} \right. \text{ est surjective.}$	vrai
	```	Faux
	$f: \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & 2n \end{array} \right. \text{ est injective.}$	Vrai
$100056. {\rm tex} - $	$f: \left\{ \begin{array}{ccc} 2\mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & n/2 \end{array} \right. \text{ est surjective.}$	
100057. tex	Si $f: E \to F$ est surjective, alors $f^{-1}(f(A)) = A$ pour tout $A \in \mathcal{P}(E)$ .	
100058. tex	Si $f: E \to F$ est injective, alors $f^{-1}(f(A)) = A$ pour tout $A \in \mathcal{P}(E)$ .	
100059.tex	Une application $f: E \to E$ est bijective si, et seulement si, elle est injective.	
100060.tex —	Si une application $f: \mathbb{N} \to \mathbb{N}$ est surjective, alors elle est injective.	
100061.tex —	Soit $f: E \to F$ linéaire et $B$ une base de $E$ . Si la famille $f(B)$ est une base, alors $f$ est injective.	Faux
100062.tex —	Soit $f: E \to F$ linéaire et $B$ une base de $E$ . Alors la famille $f(B)$ est une base ssi $f$ est injective.	
100063.tex —	Soit $f: E \to F$ linéaire et $B$ une base de $E$ . Alors $f$ est injective ssi la famille $f(B)$ est libre.	
100064.tex —	Soit $f: E \to F$ linéaire et $B$ une famille libre de $E$ . Si la famille $f(B)$ est libre, alors $f$ est injective.	
		CAHY

	Soit $f: E \to F$ linéaire et $B$ une famille libre de $E$ . Si $f$ est injective, alors la famille $f(B)$ est libre.
$100066.\mathrm{tex}$ —	
100067.tex —	Faux Soit $f: E \to F$ linéaire et $B$ une base de $E$ . Si la famille $f(B)$ est génératrice, alors $f$ est surjective.
100068.tex —	Vrai L'image d'un sous-ev par une application linéaire est un sous-ev.
$100069.\mathrm{tex}$ —	Vrai L'image réciproque d'un sous-ev par une application linéaire est un sous-ev.
$100070.\mathrm{tex}$ —	La composée de deux applications linéaires est une application linéaire.
100071.tex —	
$100072.\mathrm{tex}$ —	Une application constante entre espaces vectoriels est linéaire.
100073.tex —	L'application nulle entre deux ev est linéaire.
100074.tex —	Une application linéaire est inversible ssi son déterminant est non nul.
100075.tex —	Une application linéaire entre deux ev est inversible ssi elle admet une réciproque.
100076.tex —	Vrai Si application linéaire entre deux ev est inversible, son inverse est une application linéaire.
100077.tex — également.	Vrai Si deux applications entre deux ev sont réciproques l'une de l'autre, alors l'une est linéaire ssi l'autre l'est
100078.tex —	
100079.tex —	Faux Si $p \in \mathcal{L}(E)$ et si $p \circ p = p$ , alors $p$ n'est pas inversible.
$100080.\mathrm{tex}$ —	Faux Si $p \in \mathcal{L}(E)$ et si $E = Ker(p) \oplus Im(p)$ , alors $p \circ p = p$ .
100081.tex —	Faux Si $p \in \mathcal{L}(E)$ et si $p \circ p = p$ , alors $E = Ker(p) \oplus Im(p)$ .
100082.tex —	
100083.tex —	Faux Si $f: E \to F$ est linéaire et $dim(E) < \infty$ , alors $dim(E) = dim(Im(f)) + dim(Ker(f))$ .
100084.tex —	Vrai Soient $f$ et $g$ deux applications linéaires de $E$ dans $F$ . On a $Im(f+g)=Im(f)+Im(g)$ . Faux
100085.tex —	Soient $f$ et $g$ deux applications linéaires de $E$ dans $F$ . On a $Ker(f+g)=Ker(f)+Ker(g)$ .  Faux  Faux
100086.tex —	Si $F$ et $G$ sont des sous-ev de $E$ et $u \in \mathcal{L}(E)$ , alors $u(F+G)=u(F)+u(G)$ . Vrai
100087.tex —	La somme de deux automorphismes de $E$ est un automorphisme. Faux
100088.tex —	La somme de deux endomorphismes de $E$ est un endomorphisme de $E$ .  Vrai
100089.tex —	La somme de deux isomorphismes de $E$ sur $F$ est un isomorphisme de $E$ sur $F$ .  Faux
100090.tex —	La composée de deux automorphismes de $E$ est un automorphisme de $E$ .  Vrai
100091.tex — phisme.	Si la composée de deux endomorphismes de $E$ est bijective, alors chaque endomorphisme est un automor-
100092.tex —	Faux 1 est un nombre premier.
100093.tex —	Tout nombre est divisible par 1.
100094.tex —	Tout nombre est divisible par lui-même.
100095.tex —	
100096.tex —	

	Vrai
	Il existe quatre nombres premiers compris entre 20 et 30.  Faux
	Il existe trois nombres premiers compris entre 20 et 30.  Faux
$100099. {\rm tex} - $	12 et 8 ont une infinité de diviseurs communs.
$100100.\mathrm{tex} -\!\!\!\!-$	Faux 16 et 18 ont une infinité de multiples communs.
100102.tex —	
100103.tex —	26 possède deux diviseurs.
	24 possède huit diviseurs. Faux
$100105.\mathrm{tex} -\!\!\!\!-$	
100106. tex	Faux 57 est premier. Faux Faux
100107.tex —	43 est premier.
100108.tex —	51 est premier. Faux
100109.tex —	9991 est premier.
$100110.\mathrm{tex} -\!\!\!\!-$	121 est premier. Faux
100112.tex —	Le pgcd de 48 et 60 est 6.
100113.tex —	
100114.tex —	30 possède trois facteurs premiers.
100115.tex —	
	Faux $8 \times 7 = 56$ et $6 \times 9 = 54$ .
100117.tex —	Vrai $8 \times 7 = 56$ ou $6 \times 9 = 54$ .
	Vrai $7 \times 8 = 56 \text{ et } 9 \times 7 = 63.$
100119.tex —	Vrai $7 \times 8 = 56 \text{ et } 9 \times 7 = 63.$
$100120.\mathrm{tex}$ —	
	Faux $8 \times 7 = 56$ ou $9 \times 6 = 53$ .
100123.tex —	Faux $9 \times 5 = 40$ et $8 \times 6 = 48$ .
100124.tex —	Faux $8 \times 9 = 73 \text{ et } 9 \times 9 = 81.$
100125.tex —	Faux $8 \times 9 = 73$ ou $9 \times 9 = 81$ .
100128.tex —	
	Faux

100129.tex —	$6 \times 8 = 56 \text{ et } 9 \times 9 = 81.$	Faur
100130.tex —	$9 \times 6 = 73 \text{ et } 8 \times 3 = 24.$	
100131.tex —	$8 \times 5 = 40 \text{ ou } 6 \times 7 = 42.$	
100132.tex —	(1+i)(1+i) = 2i	
100133.tex —	(1+i)(1-i) = -2	
100134.tex —	(1+i)(2+i) = -1+3i	
100135.tex —	(1+i)(1+2i) = -1+3i	
100136.tex —	(1+i)(1-2i) = -3-i	
100137.tex —	(1+i)(3+i) = 2-4i	
100138.tex —	(1+i)(3-2i) = 5-i	
100139.tex —	(1+i)(1+3i) = 2+4i	
100140.tex —	(1-i)(1-i) = -2i	
100141.tex —	(1-i)(2+i) = -3-i	
100142.tex —	(1-i)(1+2i) = -3+i	
100143.tex —	(1-i)(1-2i) = 1-3i	
100144.tex —	(1-i)(3+i) = -4-2i	
100145.tex —	(1-i)(3-2i) = 1-5i	
100146.tex —	(1-i)(1+3i) = -4+2i	
100147.tex —	(2+i)(2+i) = -3+4i	
100148.tex —	(2+i)(1+2i) = -5i	
100149.tex —	(2+i)(1-2i) = -4-3i	
100150.tex —	(2+i)(3+i) = -5+5i	
100151.tex —	(2+i)(3-2i) = 8-i	
100152.tex —	(2+i)(1+3i) = -1 - 7i	
100153.tex —	(1+2i)(1+2i) = -3+4i	
100154.tex —	(1+2i)(1-2i) = 5	
100155.tex —	(1+2i)(3+i) = 1-7i	
100156.tex —	(1+2i)(3-2i) = 7+4i	
100157.tex —	(1+2i)(1+3i) = -5+5i	
100158.tex —	(1-2i)(1-2i) = -3+4i	
100159.tex —	(1-2i)(3+i) = 5-5i	
100160.tex —	(1-2i)(3-2i) = -1-8i	
100161.tex —	(1-2i)(1+3i) = -7+i	Vrai

100162.tex —	Faux $(3+i)(3+i) = 8-6i$
100163.tex —	Faux $(3+i)(3-2i) = 11-3i$
100164.tex —	
100165.tex —	
100166.tex —	Faux $(3-2i)(1+3i) = -9+7i$
100167. tex	Faux $ (1+3i)(1+3i) = -8+6i $
100168. tex	
100169. tex	Un argument de $3 - i\sqrt{3}$ est $-\pi/6$ .
	Un argument de $\sqrt{2} + i\sqrt{6}$ est $\pi/3$ .
100171. tex	Un argument de $-\sqrt{3}+i$ est $5\pi/6$ .
100172. tex	
100173.tex —	
$100174. tex -\!\!\!\!-$	
100175. tex	Un argument de $-1 - i\sqrt{3}$ est $5\pi/6$ .
100176. tex	Un argument de $-\sqrt{3}-i$ est $-2\pi/3$ .
$100177. tex -\!\!\!\!-$	Un argument de $-3 + i\sqrt{3}$ est $2\pi/3$ Faux
	Un argument de $\frac{1}{2} + i \frac{\sqrt{3}}{2}$ est $7\pi/3$ .
100179.tex —	Un argument de $-\frac{1}{2} + i\frac{\sqrt{3}}{2}$ est $-4\pi/3$ .
	Un argument de $-\frac{\sqrt{3}}{2} + \frac{i}{2}$ est $7\pi/6$ .
100181.tex —	Un argument de $-\frac{1}{2} - i\frac{\sqrt{3}}{2}$ est $2\pi/3$ .
100182.tex —	Un argument de $1-i$ est $7\pi/4$ . Vrai
100183. tex	Un argument de $-1+i$ est $-5\pi/4$ . Vrai
100184. tex	Un argument de $1+i$ est $5\pi/4$ . Faux
100185.tex —	Un argument de $2i$ est $10\pi/4$ . Vrai
100186. tex	Un argument de $-3i$ est $9\pi/2$ . Faux
100187.tex —	
100188.tex —	
100189.tex —	$\overline{z+w}=\overline{z}+\overline{w}.$ Vrai
100190.tex —	Re(z+w) = Re(z) + Re(w). Vrai
100191.tex —	Re(zw) = Re(z)Re(w). Faux
	Im(zw) = Im(z)Im(w). Faux
100193.tex —	$Re(z) = \frac{z + \overline{z}}{2}$ . Vrai

100194.tex —	$Im(z) = \frac{z - \overline{z}}{2}.$	
100195.tex —	$ z+w  \le  z  +  w .$	Faux
100196.tex —	z+w  <  z  +  w .	Vrai
100197.tex —	z+w  =  z  +  w .	Faux
100198.tex —	$ z+w  \ge  z  +  w .$	Faux
100199.tex —	$Re(z) \le  z $ .	Faux
100200.tex —	$ Re(z)  =  z  \iff z \in \mathbb{R}.$	Vrai
100201.tex —	$Re(z) =  z  \iff z \in \mathbb{R}_+.$	
100202.tex —	$ Re(z)  \le  z .$	Vrai
100203.tex —	$ Re(z\overline{w})  \le  zw .$	Vrai
100204.tex —	$ z+w  =  z  +  w  \iff z\overline{w} \in \mathbb{R}_+.$	
100205.tex —	$ z+w = z + w \iff (w=0 \text{ ou } \exists \lambda\in\mathbb{R}_+,z=\lambda w).$	
100206.tex —	$ z+w ^2 =  z ^2 + 2Re(z\overline{w}) +  w ^2.$	
100207.tex —	$ z+w ^2 =  z ^2 + 2 zw  +  w ^2.$	
100208.tex —	$ z+w ^2 =  z ^2 + 2 z\overline{w}  +  w ^2.$	
100209.tex —	$ z+w ^2 =  z ^2 + 2Re(zw) +  w ^2.$	
100210.tex —	L'équation $2z = \overline{z}$ a une unique solution.	
100211.tex —	Les points d'affixe $-3-2i$ , $-1-i$ et $3+i$ sont alignés.	
100212.tex —	Le triangle dont les sommets ont pour affixes $i$ , $3$ et $4 + 3i$ est isocèle.	Vrai
100213.tex —	Les solutions complexes de l'équation $ z-1 =3$ forment un cercle	
100214.tex —	Les solutions complexes de l'équation $ z-1 = z $ forment une droite	
100215.tex —	Les solutions complexes de l'équation $ z-1 = 2z $ forment un cercle	
100216.tex —	Les solutions complexes de l'équation $ z-1 =Re(z)+1$ forment une parabole	
100217.tex —	Les solutions complexes de l'équation $ z-1 =Im(z)+1$ forment une parabole	
100218.tex —	L'ensemble des solutions de l'équation $z=-\overline{z}$ est une droite.	
100219.tex —	Les solutions complexes de l'équation $ z-1 =Re(z)$ forment une parabole	
100220.tex —	Si $\frac{c-a}{b-a} \in \mathbb{R}$ , alors $A, B$ et $C$ sont alignés	
100221.tex —	Si $\frac{c-a}{b-a} \in i\mathbb{R}$ , alors $ABC$ est rectangle en $A$	
100222.tex —	Si $\frac{c-a}{b-a} = i$ , alors $ABC$ est un triangle indirect	
100223.tex —	Si $\frac{c-a}{b-a} = i$ , alors $ABC$ est isocèle	
100224.tex —	Si $ABC$ est isocèle, $\left \frac{c-a}{b-a}\right  = 1$ .	
100225.tex —	Si $ABC$ est isocèle en $A$ , alors $\frac{c-a}{b-a}=i$ ,	
100226.tex —	Si $a+c=b+d$ , alors $ABCD$ est un parallélogramme	raux

Vrai
100227.tex — $a+c=b+d$ si et seulement si $ABCD$ est un parallélogramme
100228.tex — Si $ABCD$ est un carré, alors $\frac{d-b}{c-a} = i$ .
<b>100229.tex</b> — Si $ABCD$ est un carré direct, alors $\frac{d-b}{c-a} = i$ . Vrai
<b>100230.tex</b> — Si $ABCD$ est un carré, alors $\frac{d-b}{c-a} \in \{i, -i\}$
100231.tex — Si $\frac{d-b}{c-a}=i$ , alors $ABCD$ est un carré
100232.tex — Si $ABCD$ est un losange, alors $\frac{d-b}{c-a}$ est imaginaire pur. Vrai
<b>100233.tex</b> — Si $ABCD$ est un losange, alors $\left  \frac{d-b}{c-a} \right  = 1$ .
Faux $100234.tex$ — Si $\frac{d-b}{c-a}$ est imaginaire pur, alors $ABCD$ est un losange.
<b>100235.tex</b> — Si $ABCD$ est un rectangle, alors $\left  \frac{d-b}{c-a} \right  = 1$ .
100236.tex — Si $ABCD$ est un rectangle, alors $a-b=c-d$ .
100238.tex — Si $\frac{c-a}{b-a} = 1+i$ , alors $ABC$ est isocèle.
100239.tex — La dérivée de $x\mapsto -1/x$ est $x\mapsto 1/x^2$ .
100243.tex — La dérivée seconde de $x\mapsto 1/x$ est $x\mapsto 3/x^3$ . Faux
<b>100244.tex</b> — La dérivée de $x \mapsto x\sqrt{x}$ est $x \mapsto \frac{1}{2\sqrt{x}}$ .
Faux 100245.tex — La dérivée de $x\mapsto\cos(x)$ est $x\mapsto-\sin(x)$ .
100246.tex — $x \mapsto \sin(x)$ est la dérivée de $x \mapsto \cos(x)$ .
Vrai $\mathbf{100248.tex} - (f \times g)' = f' \times g + f \times g'.$
Vrai $\mathbf{100249.tex} - (f \times g)' = f' \times g - f \times g'.$
Faux $100250.\text{tex} - (f/g)' = \frac{f' \times g - f \times g'}{g^2}$ .
$100251.\text{tex} - (f/g)' = \frac{g \times f' - g' \times f}{g^2}.$ Vrai
Vrai $100252.\text{tex} - (f/g)' = \frac{f' \times g + f \times g'}{g^2}$ .
Faux $100253.\text{tex} - (f/g)' = \frac{f \times g' - f' \times g}{g^2}.$
Faux $100254.\text{tex} - (g/f)' = \frac{g' \times f - g \times f'}{f^2}$ .
100255.tex — Si $n \in \mathbb{N}^*$ , la dérivée de $x \mapsto 1/x^n$ est $x \mapsto -n/x^{n+1}$ .
100256.tex — Si $n \in \mathbb{N}$ , la dérivée de $x \mapsto 1/x^n$ est $x \mapsto -n/x^{n+1}$ .
Faux 100257.tex — Si $n \in \mathbb{Z}^*$ , la dérivée de $x \mapsto 1/x^n$ est $x \mapsto -n/x^{n+1}$ .
100258.tex — Si $n \in \mathbb{N}$ , la dérivée de $x \mapsto 1/x^n$ est $x \mapsto n/x^{n+1}$ .
Faux

<b>100259.tex</b> — Si $n \in \mathbb{Z}$ , la dérivée de $x \mapsto 1/x^n$ est $x \mapsto n/x^{n-1}$ .
Faux $\mathbf{100260.tex} \ \ \mathrm{Si} \ n \in \mathbb{Z}^*, \ \mathrm{la} \ \mathrm{d\acute{e}riv\acute{e}e} \ \mathrm{de} \ x \mapsto x^n \ \mathrm{est} \ x \mapsto nx^{n-1}.$
100261.tex — Si $n \in \mathbb{Z}$ , la dérivée de $x \mapsto x^n$ est $x \mapsto nx^{n-1}$ .
Faux $\mathbf{100262.tex} \ -\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
Faux $\mathbf{100263.tex} \ \ \mathrm{Si} \ n \in \mathbb{N}^*, \ \mathrm{la} \ \mathrm{d\acute{e}riv\acute{e}e} \ \mathrm{de} \ x \mapsto x^n \ \mathrm{est} \ x \mapsto nx^{n-1}.$
Vrai $100264.\text{tex} - (\sqrt{f})' = \frac{f'}{2\sqrt{f}}.$
100265.tex — Si $n \in \mathbb{N}$ , la dérivée de $f^n$ est $f'f^{n-1}$ .
Faux 100266.tex — La dérivée de $x \mapsto x \ln(x) - x$ est $x \mapsto \ln(x)$ .
Vrai $ 100267. tex - Une primitive de x \mapsto 1/x \text{ est } x \mapsto \ln x . $
Vrai $\mathbf{100268.tex} - x \mapsto -1/x^2 \text{ est une primitive de } x \mapsto 2/x^3.$
Vrai $\mathbf{100269.tex} \ \ \text{Une primitive de } x \mapsto -1/x^3 \text{ est } x \mapsto 1/2x^2.$
100270.tex — Une primitive de $x \mapsto 1/x^3$ est $x \mapsto -2/x^2$ . Faux
100271.tex — $x \mapsto 2/x^2$ est une primitive de $x \mapsto 1/x^3$ .
100272.tex — La dérivée seconde de $x\mapsto \ln(x)$ est $x\mapsto -1/x^2$ . Vrai
100273.tex — $x \mapsto \sin(x)$ est une primitive de $x \mapsto \cos(x)$ . Vrai
100274.tex — Une primitive de $x \mapsto \sin(x)$ est $x \mapsto -\cos(x)$ . Vrai
<b>100275.tex</b> — Une primitive de $x \mapsto \cos(x)$ est $x \mapsto -\sin(x)$ .
$\mathbf{100276.tex} - (g \circ f)' = (g' \circ f) \times f'.$ Vrai
100277.tex — Si $f: \mathbb{R} \to \mathbb{R}_+^*$ est dérivable, $\sqrt{f}$ est dérivable.  Vrai
100278.tex — Si $f: \mathbb{R} \to \mathbb{R}_+$ est dérivable, $\sqrt{f}$ est dérivable.
100279.tex — Si $f: \mathbb{R} \to \mathbb{R}_+^*$ est dérivable, la dérivée de $\ln f$ est $\frac{f'}{f}$ .  Vrai
100280.tex — Si $f: \mathbb{R} \to \mathbb{R}^*$ est dérivable, une primitive de $\frac{f'}{f}$ est $\ln  f $ .  Vrai
100281.tex — Si $f: \mathbb{R} \to \mathbb{R}^*$ est dérivable, une primitive de $\frac{f'}{f}$ est $\ln f$ .
100282.tex — Si $f: \mathbb{R} \to \mathbb{R}_+^*$ est dérivable, une primitive de $\frac{f'}{f}$ est $\ln f$ .
<b>100283.tex</b> — Le domaine de définition de l'expression $\frac{x-1}{x+1}$ est $\mathbb{R} \setminus \{-1\}$ .
100284.tex — Le domaine de définition de l'expression $\frac{x-1}{x+1}$ est $\mathbb{R}\setminus\{0\}$ .
<b>100285.tex</b> — Le domaine de définition de l'expression $\frac{x}{x^2+1}$ est $\mathbb{R}\setminus\{0\}$ .
100286.tex — Le domaine de définition de l'expression $\frac{2x-1}{(x+1)(x-2)}$ est $\mathbb{R}\setminus\{-1,2\}$ .
100287.tex — Le domaine de définition de l'expression $\frac{2x-1}{(x+1)(x-2)}$ est $\mathbb{R} \setminus \{-2,1\}$ .
<b>100288.tex</b> — Le domaine de définition de l'expression $\frac{3+x}{(x+1)(x-2)}$ est $\mathbb{R} \setminus [-1,2]$ .
<b>100289.tex</b> — Le domaine de définition de l'expression $\frac{3x^2+x+1}{x+2}$ est $]-\infty,-2[\cup]-2,+\infty[$ .

<b>100290.tex</b> — Le domaine de définition de l'expression $\frac{x+2}{x^2+2x+1}$ est $]-\infty,-1[\cup]-1,+\infty[$ .
100291.tex — Le domaine de définition de l'expression $\frac{x+2}{x^2+2}$ est $\mathbb{R}$ .
100292.tex — Le domaine de définition de l'expression $\frac{x+2}{x^2+1}$ est $\mathbb{R}\setminus\{-1,1\}$ .
<b>100293.tex</b> — Le domaine de définition de l'expression $\frac{2x-1}{x^2-6x+9}$ est $]-\infty,3[\cup]3,+\infty[$ . Vrai
<b>100294.tex</b> — Le domaine de définition de l'expression $\frac{x^2+3}{x^2-1}$ est $\mathbb{R}\setminus\{-1,1\}$ .
<b>100295.tex</b> — Le domaine de définition de l'expression $\frac{x^2-1}{x^2-4}$ est $\mathbb{R}\setminus\{-2,2\}$ .
<b>100296.tex</b> — Le domaine de définition de l'expression $\frac{x^2-1}{x^2-4}$ est $]-\infty,-2[\cup]2,+\infty[$ .
100297.tex — Le domaine de définition de l'expression $\frac{1}{x^2-3x}$ est $\mathbb{R}\setminus\{0,3\}$ .
<b>100298.tex</b> — Le domaine de définition de l'expression $\frac{x-2}{x^2-x}$ est $]-\infty,0[\cup]1,+\infty[$ .
<b>100299.tex</b> — Le domaine de définition de l'expression $\frac{x-2}{x^2+2x}$ est $\mathbb{R}\setminus\{0,2\}$ .
<b>100300.tex</b> — Le domaine de définition de l'expression $\frac{1}{3x^2 + 5x}$ est $\mathbb{R} \setminus \{-5/3, 0\}$ .
<b>100301.tex</b> — Le domaine de définition de l'expression $\frac{2+x}{2x^2+3x}$ est $\mathbb{R}\setminus\{0,3/2\}$ .
<b>100302.tex</b> — Le domaine de définition de l'expression $\frac{2+x}{2x^2+3x}$ est $\mathbb{R}\setminus\{0,-2/3\}$ .
<b>100303.tex</b> — Le domaine de définition de l'expression $\frac{x-1}{x+1}$ est $\mathbb{R} \setminus \{1\}$ .
100304.tex — Le domaine de définition de l'expression $\sqrt{x}$ est $[0, +\infty[$
100305.tex — Le domaine de définition de l'expression $\sqrt{x+2}$ est $[0, +\infty[$ . Faux 100306.tex — Le domaine de définition de l'expression $\sqrt{x+2}$ est $[2, +\infty[$ .
Faux <b>100307.tex</b> — Le domaine de définition de l'expression $\sqrt{2x-6}$ est $[6,+\infty[$ .
100308.tex — Le domaine de définition de l'expression $\sqrt{x+3}$ est $]3,+\infty[$ .
<b>100309.tex</b> — Le domaine de définition de l'expression $\sqrt{x-1}$ est $]-1,+\infty[$ .
<b>100310.tex</b> — Le domaine de définition de l'expression $\sqrt{x-4}$ est $]-\infty,4]$ . Faux <b>100311.tex</b> — Le domaine de définition de l'expression $\sqrt{x-5}$ est $[5,+\infty[$ .
100313.tex — Le domaine de définition de l'expression $\sqrt{1-x}$ est $]-\infty,-1].$ Faux
100314.tex — Le domaine de définition de l'expression $\frac{\sqrt{x-1}}{\sqrt{x+1}}$ est le même que celui de l'expression $\sqrt{\frac{x-1}{x+1}}$ .
<b>100315.tex</b> — Le domaine de définition de l'expression $\sqrt{x-1}\sqrt{x+1}$ est le même que celui de l'expression $\sqrt{(x-1)(x+1)}$ . Faux
100316.tex — Le domaine de définition de l'expression $\frac{1}{\sqrt{x-2}}$ est $[2,+\infty[$ .
<b>100317.tex</b> — Le domaine de définition de l'expression $\frac{1}{\sqrt{2x-6}}$ est $]3,+\infty[$ .

Vrai 100318.tex — Le domaine de définition de l'expression $\sqrt{\sqrt{x-2}-1}$ est $[3,+\infty[$ .	i
Vrai 100319.tex — Le domaine de définition de l'expression $\sqrt{\sqrt{x-1}-2}$ est $[3,+\infty[$ .	
Faux 100320.tex — Le domaine de définition de l'expression $\sqrt{\sqrt{x-2}-2}$ est $[6,+\infty[$ .	
Vrai 100321.tex — Le domaine de définition de l'expression $\sqrt{x^2-2}$ est $[-2,2]$ .	
Faux 100322.tex — Le domaine de définition de l'expression $\sqrt{x^2-2}$ est $]-\infty,-2]\cup[2,+\infty[$ .	
Faux 100323.tex — Le domaine de définition de l'expression $\sqrt{x^2-1}$ est $]-\infty,-1]\cup[1,+\infty[$ .	
100324.tex — Les expressions $\ln(x^2)$ et $2\ln(x)$ ont le même domaine de définition.	
<b>100325.tex</b> — Les expressions $\ln(x^2 - 1)$ et $\ln(x + 1) + \ln(x - 1)$ ont le même domaine de définition.	
<b>100326.tex</b> — Le domaine de définition de l'expression $\ln(x-1)$ est $[1,+\infty[$ .	
100327.tex — Le domaine de définition de l'expression $\ln(x-5)$ est $]5, +\infty[$ .	
100328.tex — Le domaine de définition de l'expression $\ln(x-2)$ est $]-2,+\infty[$ .	
<b>100329.tex</b> — Le domaine de définition de l'expression $\ln(2-x)$ est $]2, +\infty[$ .	
<b>100330.tex</b> — Le domaine de définition de l'expression $\ln(3-x)$ est $]-\infty,3[$ . Vrai	
100331.tex — Le domaine de définition de l'expression $\ln(2x+1)$ est $]-1,+\infty[$ .	x
100332.tex — Le domaine de définition de l'expression $\ln(2x+2)$ est $]-1,+\infty[$ . Vrai	i
100333.tex — Le domaine de définition de l'expression $\ln(2x+2)$ est $]-2,+\infty[$ .	X
100334.tex — Le domaine de définition de l'expression $\ln(1+x+x^2)$ est $\mathbb{R}$ .	i
100335.tex — Le domaine de définition de l'expression $\ln(x^2 + 3x + 2)$ est $\mathbb{R}$ .	X
100336.tex — Le domaine de définition de l'expression $\ln(x^2 - 1)$ est $] - \infty, -1[\cup]1, +\infty[$ . Vrai	i
100337.tex — Le domaine de définition de l'expression $\ln(x^2 - 1)$ est $] - \infty, 1[\cup]1, +\infty[$ .	X
100338.tex — Le domaine de définition de l'expression $\ln(x^2-2)$ est $]-\infty, -2[\cup]2, +\infty[$ .	x
100339.tex — Le domaine de définition de l'expression $\ln(2-x^2)$ est $]-\sqrt{2},\sqrt{2}[$ . Vrai	i
<b>100340.tex</b> — Le domaine de définition de l'expression $\ln(x^2 - 4)$ est $]2, +\infty[$ . Faux <b>100341.tex</b> — Le domaine de définition de l'expression $\frac{x-3}{\ln(x+1)}$ est $]-1, +\infty[$ .	X
Faur	X
<b>100342.tex</b> — Le domaine de définition de l'expression $\frac{x+5}{\ln(x-2)}$ est $]2,+\infty[$ .	
100343.tex — Le domaine de définition de l'expression $\frac{2x}{\ln(x-1)}$ est $]1,2[\cup]2,+\infty[$ .	
Vrain volume :	ı 7a-
luer : « Soit $x \in \mathbb{R}$ . L'expression $\frac{x-2}{x-3}$ est bien définie ssi $x \neq 3$ . Si c'est le cas, l'expression $\sqrt{\frac{x-2}{x-3}}$ e	est
bien définie ssi $\frac{x-2}{x-3}$ est positive, autrement dit ssi $x-2 \ge x-3$ autrement dit jamais. L'expression $\sqrt{\frac{x-2}{x-3}}$ n'est dor jamais bien définie.»	nc

```
100345.tex —

b>Énoncé</br/>/b> : déterminer le domaine de définition de \sqrt{\frac{1}{x+1}}.

b>Solution rédigée à éva-
luer :
 « Soit x \in \mathbb{R}. L'expression \frac{1}{x+1} est bien définie ssi x \neq -1.
 Si c'est le cas, l'expression \sqrt{\frac{1}{x+1}} est bien définie ssi x \neq -1.
bien définie ssi \frac{1}{x+1} est positive, autrement dit ssi x+1 l'est, et donc ssi x \ge -1.
sbr> Le domaine de définition de \sqrt{\frac{1}{x+1}}
100346.tex —

b>Énoncé</br/>/b> : déterminer le domaine de définition de \sqrt{\frac{x-3}{x-2}}.

b>Solution rédigée à éva-
luer :</br/>b>
br> « Soit x \in \mathbb{R}. L'expression \frac{x-3}{x-2} est bien définie ssi x \neq 2.
c'est le cas, l'expression \sqrt{\frac{x-3}{x-2}} est
bien définie ssi \frac{x-3}{x-2} > 0, autrement dit ssi x > 3 ou x < 2. Le domaine de définition de \sqrt{\frac{x-3}{x-2}} est donc]-\infty, 2[\cup]3, +\infty[.] Faux
100347.tex — \langle b \rangleÉnoncé\langle b \rangle: déterminer le domaine de définition de \sqrt{\frac{x}{x+2}}.\langle br \rangle \langle b \rangleSolution rédigée à éva-
luer :</br/>b>
 « Soit x \in \mathbb{R}. L'expression \frac{x}{x+2} est bien définie si et seulement si x \neq -2.
si c'est le cas, l'expression
\sqrt{\frac{x}{x+2}} est bien définie ssi \frac{x}{x+2} \ge 0, autrement dit ssi x \ge 0 ou x < -2. Le domaine de définition de \sqrt{\frac{x}{x+2}} est donc
100348.tex —

b>Énoncé</br/>/b> : déterminer le domaine de définition de \sqrt{\frac{x}{x+2}}.

b>Solution rédigée à éva-
luer :</br/> « Soit x \in \mathbb{R}. L'expression \frac{x}{x+2} est bien définie si et seulement si x \neq -2.
 Si c'est le cas, l'expression
\sqrt{\frac{x}{x+2}} est bien définie ssi \frac{x}{x+2} \ge 0, autrement dit ssi x \ge 0 et x \ge -2. Le domaine de définition de \sqrt{\frac{x}{x+2}} est donc
100349.tex — \langle b \rangleÉnoncé\langle b \rangle: déterminer le domaine de définition de \sqrt{\frac{x}{x+2}}.\langle b \rangleSolution rédigée à éva-
luer :</br/> « Soit x \in \mathbb{R}. L'expression \frac{x}{x+2} est bien définie si et seulement si x \neq -2.
 Si c'est le cas, l'expression
\sqrt{\frac{x}{x+2}} est bien définie ssi \frac{x}{x+2} \ge 0, autrement dit ssi x \ge 0 ou x \ge -2. Le domaine de définition de \sqrt{\frac{x}{x+2}} est donc
100350.tex — Énoncé : déterminer le domaine de définition de \sqrt{x-3}^2.

luer :
 « Soit x \in \mathbb{R}. On a \sqrt{x-3}^2 = \sqrt{(x-3)^2} = |x-3|. Le domaine de définition de \sqrt{x-3}^2 est donc \mathbb{R} tout
entier.»
100351.tex — Énoncé : déterminer le domaine de définition de \sqrt{-1+x-x^2}.

b> Solution rédigée à évaluer :
 'Soit x \in \mathbb{R}. L'expression \sqrt{-1+x-x^2} est bien définie si et seulement si -1+x-x^2 \geq 0. Ce trinôme
a un discriminant égal à \Delta = b^2 - 4ac = -3 donc n'a aucune racine réelle. Il ne s'annule donc jamais et donc est toujours
positif. Le domaine de définition de \sqrt{-1+x-x^2} est donc \mathbb R tout entier.»
100352.tex — Énoncé : déterminer le domaine de définition de \sqrt{x-1}\sqrt{x-2}.

b>Solution rédigée à évaluer :
b>
 «Soit x \in \mathbb{R}. On a \sqrt{x-1}\sqrt{x-2} = \sqrt{(x-1)(x-2)} = \sqrt{x^2-3x+2} est bien définie si et seulement si x^2-3x+2 \geq 0 Le discriminant du trinôme vaut \Delta=9-4\times 2=1, les racines sont 1 et 2. Le domaine de définition de
l'expression est donc \mathbb{R} \setminus [1, 2].»
100353.tex — \langle b \rangleÉnoncé\langle b \rangle: déterminer le domaine de définition de \sqrt{x-1}\sqrt{x+1}.\langle br \rangle \langle b \rangleSolution rédigée à
évaluer :
 «Soit x \in \mathbb{R}. L'expression \sqrt{x-1} est bien définie si et seulement si x \ge 1. L'expression \sqrt{x+1} est bien
définie si et seulement si x \le -1 Le domaine de définition de \sqrt{x-1}\sqrt{x+1} est donc vide.»
100354.tex — \langle b \rangleÉnoncé\langle b \rangle: déterminer le domaine de définition de \sqrt{x+2}\sqrt{x+3}.\langle b \rangle Solution rédigée à
évaluer :</br/>b>
br> «Soit x \in \mathbb{R}. L'expression \sqrt{x+2} est bien définie si et seulement si x \ge -2. L'expression \sqrt{x+3} est
bien définie si et seulement si x \ge -3 Le domaine de définition de \sqrt{x+2}\sqrt{x+3} est donc [-2,+\infty[].»
100355.tex — \langle b \rangleÉnoncé\langle b \rangle: déterminer le domaine de définition de \sqrt{2+3x+4x^2}.\langle br \rangle \langle b \rangleSolution rédigée à
évaluer :
 «Soit x \in \mathbb{R}. Comme les coefficients 2, 3 et 4 du trinôme 2 + 3x + 4x^2 sont positifs, celui-ci est positif
et sa racine carrée est donc bien définie. Le domaine de définition de \sqrt{2+3x+4x^2} est donc \mathbb R tout entier.»
```

<b>100356.tex</b> — $\langle b \rangle$ Énoncé $\langle b \rangle$ : déterminer le domaine de définition de $\sqrt{(x+2)(x-3)}$ . $\langle br \rangle \langle b \rangle$ Solution rédigée à évaluer : $\langle b \rangle \langle br \rangle$ «Soit $x \in \mathbb{R}$ . L'expression $\sqrt{(x+2)(x-3)}$ est bien définie si et seulement si $(x+2)(x-3)$ est positive c'est-à-dire ssi $x \geq 3$ ou $x \leq -2$ . Le domaine de définition de $\sqrt{(x+2)(x-3)}$ est donc $\mathbb{R} \setminus [-2,3[.]]$
Vrai 100357.tex —  **Enoncé* /b>: déterminer le domaine de définition de $\sqrt{(x-2)(x+1)}$ . **Enoncé* **Soit $x \in \mathbb{R}$ . L'expression $\sqrt{(x-2)(x+1)}$ est bien définie si et seulement si $(x-2)(x+1)$ est positive c'est-à-dire ssi $x \ge 2$ ou $x \le -1$ . Le domaine de définition de $\sqrt{(x-2)(x+1)}$ est donc $\mathbb{R} \setminus [-1,2]$ .
Faux 100358.tex — <b></b> $<$ b>Énoncé : déterminer le domaine de définition de $\sqrt{(1-x)(x-2)}$ . $<$ b>Solution rédigée à évaluer : $<$ br> «Soit $x \in \mathbb{R}$ . L'expression $\sqrt{(1-x)(x-2)}$ est bien définie ssi $(1-x)(x-2)$ est positive c'est-à-dire ssi $x \in [1,2]$ . Le domaine de définition de $\sqrt{(1-x)(x-2)}$ est donc $[1,2]$ .»
Vrai 100359.tex — $\langle b \rangle$ Énoncé $\langle b \rangle$ : déterminer le domaine de définition de $\sqrt{x^2 - 5x + 6}$ . $\langle b \rangle$ Solution rédigée à évaluer : $\langle b \rangle$ $\langle b \rangle$ «Soit $x \in \mathbb{R}$ . L'expression $\sqrt{x^2 - 5x + 6}$ est bien définie ssi $x^2 - 5x + 6$ est positive. Le discriminant de ce trinôme vaut $\Delta = 25 - 24 = 1$ , les deux racines sont 2 et 3 et son coefficient dominant est positif. Le domaine de définition de $\sqrt{x^2 - 5x + 6}$ est donc $] - \infty, 2] \cup [3, +\infty[.)$
Vrai 100360.tex — $\langle b \rangle$ Énoncé $\langle b \rangle$ : déterminer le domaine de définition de $\sqrt{x^2 - 6x + 9}$ . $\langle b \rangle$ Solution rédigée à évaluer : $\langle b \rangle$ $\langle b \rangle$ «Soit $x \in \mathbb{R}$ . L'expression $\sqrt{x^2 - 6x + 9}$ est bien définie ssi $x^2 - 6x + 9$ est positive. Le discriminant de ce trinôme vaut $\Delta = 36 - 4 \times 9 = 0$ , il y a une racine double égale à 3. Comme le coefficient dominant du trinôme est positif celui-ci est donc toujours positif. Le domaine de définition de $\sqrt{x^2 - 6x + 9}$ est donc $\mathbb{R}$ tout entier.»
Vrai 100361.tex — $<$ b>Énoncé : déterminer le domaine de définition de $\sqrt{x^2-9}$ . $<$ b>Solution rédigée à évaluer : $<$ br/> $<$ comme le coefficient dominant du trinôme est positif, le domaine de définition de $\sqrt{x^2-9}$ est donc $\mathbb{R}\setminus ]-3,3[.$ »  Vrai Vrai
100362.tex — $\langle b \rangle$ Énoncé $\langle b \rangle$ : déterminer le domaine de définition de $\sqrt{\frac{x}{(x-1)(x+1)}}$ . $\langle br \rangle$ $\langle b \rangle$ Solution rédigée à
évaluer : «Soit $x \in \mathbb{R}$ . L'expression $\frac{x}{(x-1)(x+1)}$ est bien définie ssi $(x-1)(x+1) \neq 0$ c'est-à-dire ssi $x \notin \{-1,1\}$ .
Si c'est le cas, $\sqrt{\frac{x}{(x-1)(x+1)}}$ est bien définie ssi $\frac{x}{(x-1)(x+1)} \ge 0$ , autrement dit ssi $-1 \le x \le 0$ ou $x \ge 1$ . Le domaine
de définition de $\sqrt{\frac{x}{(x-1)(x+1)}}$ est donc ] $-1,0$ ] $\cup$ ]1, $+\infty$ [.»
<b>100363.tex</b> — Les droites d'équations $2x + y = 1$ et $x - 2y = 3$ sont perpendiculaires. Vrai
<b>100364.tex</b> — Les droites d'équations $2x + y = 1$ et $x + 2y = 1$ sont perpendiculaires.
<b>100365.tex</b> — Les droites d'équations $3x - y = 1$ et $3x - y = 5$ sont parallèles.
100366.tex — Les droites d'équations $2x - 3y = 1$ et $4x - 6y = 3$ sont parallèles.
100367.tex — Les droites d'équations $x + y = 1$ et $x - 2y = 0$ se coupent dans le premier quadrant.
Vrai 100368.tex — Les droites d'équations $x - y = 1$ et $x - 2y = 0$ se coupent dans le deuxième quadrant.
Faux $\mathbf{100369.tex}$ — La droite d'équation $x+y=1$ intersecte le cercle de centre $O$ et de rayon 1.
Vrai $100370.tex$ — La droite d'équation $x + y = -1$ intersecte le cercle de centre $O$ et de rayon 1.
Vrai 100371.tex — La droite d'équation $3x + 2y = 6$ intersecte le cercle de centre $O$ et de rayon 1.
Faux $\mathbf{100372.tex}$ — Le point de coordonnées $(1,1)$ appartient à la droite d'équation $2x+3y+5=0$
Faux 100373.tex — Le point de coordonnées $(2,3)$ appartient à la droite $\left\{ \begin{pmatrix} 2t+1\\3t+1 \end{pmatrix} \middle  t \in \mathbb{R} \right\}$ .
Faux
100375.tex — La droite $\left\{ \begin{pmatrix} 2t+1\\3t+1 \end{pmatrix} \middle  t \in \mathbb{R} \right\}$ est orthogonale à la droite d'équation $2x+3y+7=0$ .
$\left( \left\langle 3t+1 \right\rangle \right)$ Vrai

<b>100376.tex</b> — La droite $\left\{ \begin{pmatrix} t+1\\3t-1 \end{pmatrix} \middle  t \in \mathbb{R} \right\}$ peut être définie par l'équation $3x-y-4=0$ .
100377.tex — La droite $\left\{ \begin{pmatrix} 2t+1\\3t+2 \end{pmatrix} \middle  t \in \mathbb{R} \right\}$ peut être définie par l'équation $3x+2y-7=0$ .
Faux $\mathbf{100378.tex}$ — La droite $\left\{ \begin{pmatrix} 2t \\ 3t+1 \end{pmatrix} \middle  t \in \mathbb{R} \right\}$ est parallèle à la droite d'équation $3x-2y+7=0$ .
Vrai <b>100379.tex</b> — La droite $\left\{ \begin{pmatrix} 5t+1\\2t-1 \end{pmatrix} \middle  t \in \mathbb{R} \right\}$ est orthogonale à la droite d'équation $2x-5y+7=0$ .
Faux $\mathbf{100380.tex}$ — La droite d'équation $3x-y=1$ est dirigée par le vecteur de coordonnées $(3,-1)$ .
<b>100381.tex</b> — La droite d'équation $3x - 2y = 5$ est dirigée par le vecteur de coordonnées $(2,3)$ .
Vrai ${\bf 100382.tex}$ — Le vecteur de coordonnées $(-1,2)$ est un vecteur normal à la droite d'équation $x-2y=1$ .
100383.tex — Le vecteur de coordonnées $(1,3)$ dirige la droite d'équation $x+3y=2$ .
<b>100384.tex</b> — 2 est une solution de l'équation $x^4 - 3x^3 + x^2 + 4 = 0$ .
100385.tex — 2 est une solution de l'équation $x^6 - x^4 - 6x^3 = 0$ .
100386.tex — 2 est une solution de l'équation $-x^5 + 3x^4 - 6x + 2 = 0$ .  Faux
<b>100387.tex</b> — Une solution de l'équation $x^3 - 10x + 3 = 0$ est 3. Vrai
<b>100388.tex</b> — 3 est une solution de l'équation $x^3 - 6x + 8 = 0$ .
Faux $ \textbf{100389.tex} \ - \ \text{L'équation} \ x^2 - 3x + 2 = 0 \ \text{a une solution dans} \ \mathbb{Z}. $
100390.tex — L'équation $x^2 - 3x + 2 = 0$ a deux solutions dans $\mathbb{Z}$ .
100391.tex — $1/2$ est une solution de l'équation $x^2 + x - 1 = 0$ .
Faux $\mathbf{100392.tex}$ — $-1$ est une solution de l'équation $ x+2/3 -1/3=0$ .
100393.tex — 5 est une solution de l'équation $x^2 - 6x + 1 = 0$ .
<b>100394.tex</b> — L'équation $x^2 - 6x + 1 = 0$ a deux solutions distinctes dans $\mathbb{R}$ .
100395.tex — L'équation $x^2 - 6x + 1 = 0$ a deux solutions distinctes dans $\mathbb{Q}$ .
Faux 100396.tex — L'équation $x^2 - 3x - 4 = 0$ a deux solutions distinctes dans $\mathbb{Q}$ .
100397.tex — Le trinôme $X^2 - X - 3$ a deux racines distinctes dans $\mathbb{R}$ .
100398.tex — Le trinôme $X^2 - 3X + 3$ a deux racines distinctes dans $\mathbb{R}$ .
<b>100399.tex</b> — Le trinôme $X^2 - 6X + 9$ a deux racines distinctes.
$\textbf{100400.tex} \ \ \ \ \text{Le trinôme} \ X^2 + 8X + 16 \ \text{a deux racines distinctes}.$
Faux 100401.tex — L'équation $e^x = -5$ , d'inconnue $x \in \mathbb{R}$ , admet $\ln(-5)$ comme solution.
100402.tex — Il est possible qu'un espace vectoriel possède un seul élément.
100403.tex — Il est possible qu'un espace vectoriel ne possède aucun élément.
Faux

<b>100407.tex</b> — Soit $E$ un $\mathbb{R}$ -ev, et $F, G$ des sous-ev. Alors, $F + G$ est un sous-ev.
Vrai $100408.\mathbf{tex}$ — Soit $E$ un $\mathbb{R}$ -ev de dimension finie, et $F,G$ des sous-ev. Si $dim(F) + dim(G) = dim(E)$ , alors $F$ et $G$ sont supplémentaires.
$\textbf{100409.tex} \ -\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
Faux 100410.tex — Soit $E$ un $\mathbb{R}$ -ev, et $F,G$ des sous-ev. Le complémentaire de $F$ est un sous-ev de $G$ .
100411.tex — Soit $E$ un $\mathbb{R}$ -ev, $F$ un sous-ev, et cF le complémentaire de $F$ . Alors, $E=F^cF$ .
Faux 100412.tex — Soit $E$ un $\mathbb{R}$ -ev, $F$ un sous-ev, et cF le complémentaire de de $F$ . Alors, $E = Vect\{F, {}^cF\}$ .
Vrai $ \textbf{100413.tex} \ \ \text{Soit} \ E \ \text{un} \ \mathbb{R}\text{-ev}, \ F, G, H \ \text{des sous-ev}. \ \text{Si} \ E = F \oplus G \ \text{et} \ E = F \oplus H, \ \text{alors} \ G = H. $
Faux 100414.tex — Soit $E$ un $\mathbb{R}$ -ev, et $F,G$ des sous-ev. Si $dim(F)=dim(G)=2$ et $F\cap G=\{0\},$ alors $dim(E)\geq 4$ .
Vrai $\mathbf{100415.tex} \ \ \mathrm{Soit} \ E = \mathbb{R}^5, \ \mathrm{et} \ F, G \ \mathrm{des} \ \mathrm{sous\text{-}ev}. \ \mathrm{Si} \ \dim(F) = \dim(G) = 3 \ \mathrm{alors} \ F \cap G \neq \{0\}.$
Faux 100417.tex — $\{(x,y,z)\in\mathbb{R}^3, 3x+2y=0 \text{ et } x+y=0\}$ est un sous-ev de $\mathbb{R}^3$
100418.tex — $\{(x,y,z)\in\mathbb{R}^3, x+y\geq 0\}$ est un sous-ev de $\mathbb{R}^3$
100419.tex — $\{(x,y) \in \mathbb{R}^2, x=y^2\}$ est un sous-ev de $\mathbb{R}^2$
100420.tex — $\{(x,y) \in \mathbb{R}^2, (x-y)^2 = 0\}$ est un sous-ev de $\mathbb{R}^2$
100421.tex — $\{P \in \mathbb{R}[X], \int_0^1 P(t)dt = 0\}$ est un sous-ev de $\mathbb{R}[X]$
100422.tex — $\{P \in \mathbb{R}[X], P + P' = 1\}$ est un sous-ev de $\mathbb{R}[X]$
100423.tex — $\{P \in \mathbb{R}[X], P(3) + P'(3) = 0\}$ est un sous-ev de $\mathbb{R}[X]$
100424.tex — $\{P \in \mathbb{R}[X], P(3) = 3\}$ est un sous-ev de $\mathbb{R}[X]$
100425.tex — $\{P \in \mathbb{R}[X], P = 3P'\}$ est un sous-ev de $\mathbb{R}[X]$
100426.tex — Une famille liée à laquelle on enlève un vecteur reste liée.
100428.tex — Une famille libre à laquelle on ajoute un vecteur reste libre.
${\bf 100430.tex} \ \ \ {\bf Une} \ {\bf famille} \ {\bf liée} \ {\bf à} \ {\bf laquelle} \ {\bf on} \ {\bf ajoute} \ {\bf un} \ {\bf vecteur} \ {\bf reste} \ {\bf liée}.$

<b>100439.tex</b> — $a^2 + 3a + 2$ est factorisable par $a + 1$ .
Faux $100447.$ tex — $a^2 - 3a + 2$ est factorisable par $a + 2$ .
Faux $100448.$ tex — $a^2 + a - 2$ est factorisable par $a + 1$ .
Faux $100449.tex - n^2 + n + 1$ est factorisable par $n + 1$ .
Faux $100450.tex - a^2 + 2a - 8$ est factorisable par $a + 2$ .
Faux $100451.tex - p^2 + 3p + 3$ est factorisable par $p + 3$ .
Faux $100452.$ tex — $a^2 + 3a + 9$ est factorisable par $a + 3$ .
Faux $100455.tex - ab + 2a + 3b + 6$ est factorisable par $a + 3$ .
Faux $100457.$ tex — $ab + 2a + 3b + 5$ est factorisable par $a + 3$ .
Faux $100458.$ tex — $xy + x + 2y + 2$ est factorisable par $x + 2$ .
Vrai $ 100459.tex - xy + x + 2y + 2 \text{ est factorisable par } x + 1. $
Faux $100460.$ tex — $ax - a + 2x - 2$ est factorisable par $a + 2$ .
Faux $100462.tex - a^2 + 3ab + 2b^2$ est factorisable par $a + 2b$ .
Faux $100465.tex$ — La fraction $\frac{21}{34}$ est irréductible.
100466.tex — La fraction $\frac{15}{123}$ est irréductible.
123
100468.tex — La fraction $\frac{48}{39}$ est irréductible.
Faux
100469.tex — $\frac{48}{70} \le \frac{2}{3}$ Faux
100470.tex — $\frac{34}{50} \le \frac{2}{3}$

	42 2	aux
100471.tex —		
100472.tex —	$\frac{1}{7} + \frac{7}{9} \le 1$	vraı
100473.tex —	$\frac{5}{12} + \frac{2}{3} \le 1$	Vrai
100474.tex —		Faux
	12 0	Vrai
100475.tex —	$\frac{7}{10} + \frac{2}{7} \ge 1$	∃aux
100476.tex —	$\frac{7}{12} + \frac{3}{8} = \frac{23}{24}$	
100477.tex —		
100478.tex —	$\frac{a}{b} + \frac{c}{d} = \frac{a+c}{b+d}$	Faux
	$\frac{a}{b} + \frac{c}{d} = \frac{ab + cd}{b + d}$	Taux
		Faux
100480.tex —	$\frac{a}{b} + \frac{c}{d} = \frac{ab + cd}{bd}$	Faux
100481.tex —	$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$	
100482.tex —	$\frac{1}{n} + \frac{1}{n+1} = \frac{1}{n(n+1)}$	vrai
	$\frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)}$	Taux
		Vrai
100484.tex —	$\frac{n+1}{n^2-1} = \frac{1}{n-1}$	Vroi
100485.tex —	« $A \implies B$ » signifie « $A$ ou non- $B$ ».	
100487.tex —		d'aux
		7
	« $A \implies B$ » peut se lire « $A$ est fausse ou $B$ est vraie ».	Faux
	« $A \Longrightarrow B$ » peut se lire « $A$ est fausse ou $B$ est vraie »	
100489.tex —	« $A \implies B$ » peut se lire « $A$ est fausse ou $B$ est vraie ».	Vrai
100489.tex —  100490.tex —	$ \begin{picture}(20,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){10$	Vrai Vrai
100489.tex — 100490.tex — 100491.tex — 100492.tex —	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Vrai Vrai Vrai
100489.tex — 100490.tex — 100491.tex — 100492.tex — 100493.tex —	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Vrai Vrai Vrai Vrai
100489.tex — 100490.tex — 100491.tex — 100492.tex — 100493.tex — 100494.tex —	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Vrai Vrai Vrai Vrai Vrai
100489.tex — 100490.tex — 100491.tex — 100492.tex — 100493.tex — 100494.tex — 100495.tex —		Vrai Vrai Vrai Vrai Vrai Faux
100489.tex — 100490.tex — 100491.tex — 100492.tex — 100493.tex — 100495.tex — 100496.tex —		Vrai Vrai Vrai Vrai Faux Faux
100489.tex — 100490.tex — 100491.tex — 100492.tex — 100493.tex — 100494.tex — 100496.tex — 100497.tex —	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Vrai Vrai Vrai Vrai Vrai Faux Faux Vrai
100489.tex —	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Vrai Vrai Vrai Vrai Faux Vrai Vrai Vrai
100489.tex — 100490.tex — 100491.tex — 100492.tex — 100493.tex — 100495.tex — 100496.tex — 100497.tex — 100498.tex — 100499.tex —	« $A \Rightarrow B$ » peut se lire « $A$ est fausse ou $B$ est vraie ».       « $A \Rightarrow B$ » peut se lire « $A$ est une condition suffisante pour $B$ ».       « $A \Rightarrow B$ » peut se lire « $A$ est une condition nécessaire pour $A$ ».       « $A \Rightarrow B$ » signifie « non- $A$ ou $B$ ».       Si « $A \Rightarrow B$ » est vraie, alors $B$ est vraie.       Si « $A \Rightarrow B$ » est vraie, alors $A$ est vraie (et $B$ aussi).       Si $A \Rightarrow B$ » est vraie, alors $A$ est vraie (et $B$ aussi).       Si $A \Rightarrow B$ » est vraie, alors $A$ est vraie (et $B$ aussi).       Si $A \Rightarrow B$ » est vraie, alors $A$ est vraie (et $A$ aussi).       Si $A \Rightarrow B$ » est vraie, alors $A$ est vraie (et $A$ aussi).       Si $A \Rightarrow B$ » est vraie, alors $A$ est vraie (et $A$ aussi).       Si $A \Rightarrow B$ » est vraie, alors $A$ est vraie (et $A$ aussi).       Si $A \Rightarrow B$ » est vraie, alors $A$ est vraie (et $A$ aussi).       Si $A \Rightarrow B$ » est vraie, alors $A$ est vraie (et $A$ aussi).       Si $A \Rightarrow B$ » est vraie, alors $A$ est vraie (et $A$ aussi).	Vrai Vrai Vrai Vrai Faux Vrai Vrai Vrai Vrai Vrai

	$2+2=5$ est une condition nécessaire pour que $2\times 2=6$ .	
100501.tex —	- $6 \times 7 = 42$ est une condition suffisante pour que $2 \times 2 = 5$ .	
$100502. {\rm tex} -$	$6 \times 7 = 42$ est une condition nécessaire pour que $2 \times 2 = 5$ .	
100503. tex -	- $6 \times 7 = 42$ est une condition nécessaire pour que $5 \times 7 = 35$ .	
100504. tex -	- $6 \times 7 = 42$ est une condition suffisante pour que $5 \times 7 = 35$ .	
100505. tex -	$-2+5=8 \implies 3\times 7=21.$	
100506.tex —	$-9 \times 8 = 72 \implies 3 \times 7 = 21.$	
100507.tex —	$6 \times 9 = 54 \implies 7 \times 8 = 48.$	
100508.tex —	Pour que $2+2=5$ , il faut que $3\times 8=24$ .	
100509.tex —	Pour que $2+2=5$ , il suffit que $9\times 5=40$ .	
100510.tex —	Pour que $2+2=4$ , il suffit que $9\times 5=40$ .	
100511.tex —	$-9 \times 7 = 63 \implies 6 \times 8 = 46.$	
	$ 2+2=4 \implies 7\times 9=53. $	
	Si $x \in [2,3]$ , alors $x^2 \in [4,9]$	
100514.tex —	- Si $x \in [-1, 2]$ , alors $x^2 \in [0, 4]$	
	Si $x \in [-1, 2]$ , alors $x^2 \in [1, 4]$	
	Si $x \in [-3, -1[$ , alors $x^2 \in ]1, 9]$	
	Si $x \in [-3, -1[$ , alors $x^2 \in [1, 9[$	
	Si $x \in [1, 4[$ , alors $\sqrt{x} \in [1, 2]$	
100519.tex —	Si $x \le -1$ , alors $2x + 1 \le -1$	Vrai
100520.tex —	Si $x \le 2$ , alors $x^2 \le 4$	
100521.tex —	- Si $x \le 4$ , alors $\sqrt{x} \le 2$	
100522.tex —	Si $x \ge 2$ , alors $x^2 \ge 4$	
100523.tex —	- $x \ge 2$ si et seulement si $x^2 \ge 4$	
100524.tex —		
100525.tex —	- Si $x^2 \le 4$ , alors $x \le 2$	
$100526. ext{tex}$ —	- Si $x^2 \le 4$ , alors $x \ge -2$	
100527.tex —	- Si $x^2 \ge 4$ , alors $x \ge 2$	
100528.tex —	Si $x \in [2,3]$ , alors $x^2 - x \in [-1,7]$	
100529.tex —	Si $x \in [2,3]$ , alors $x^2 - x \in [2,6]$	
100530.tex —	Si $x \in [0,3]$ , alors $x^2 - x \in [0,6]$	
100531.tex —	Si $x \in [0,3]$ , alors $x^2 - x \in [-3,9]$	
100532.tex —	Si $x \in [1, 2]$ , alors $x^2 - x \in [0, 3]$	√rai

100533.tex — Si $x \in [2, 3]$ , alors $\sqrt{x} - x \in [\sqrt{2} - 3, \sqrt{3} - 2]$
Faux
<b>100535.tex</b> — Si $x \in [2,3]$ , alors $\sqrt{x} - x \in [\sqrt{2} - 3, 0[$
100536.tex — Deux isométries commutent. Faux
100537.tex — La composée de deux isométries est une isométrie.  Vrai
100538.tex — La composée de deux isométries indirectes est indirecte.  Faux
100539.tex — La composée de deux isométries directes est directe.  Vrai
100540.tex — La composée d'une isométrie directe et d'une indirecte est indirecte.
Vrai  100541.tex — Une isométrie préserve l'alignement.
Vrai  100542.tex — Une isométrie préserve les milieux.
Vrai  100543.tex — Une isométrie préserve les barycentres.
Vrai  100544.tex — Une isométrie envoie une droite sur une autre droite qui lui est parallèle.  Faux
100545.tex — Une isométrie directe est soit une rotation, soit une translation.
Vrai  100546.tex — Une isométrie est soit une rotation, soit une translation, soit une réflexion (symétrie axiale).
100547.tex — La composée de deux réflexions (symétries axiales) est une réflexion.
100548.tex — La composée de deux réflexions (symétries axiales) est une translation.
100549.tex — La composée de deux réflexions (symétries axiales) est une rotation.  Faux  Faux
100550.tex — La composée de deux réflexions (symétries axiales) est une rotation ou une translation.
Vrai 100551.tex — La composée d'une réflexion et d'une translation est une réflexion.
Faux  100552.tex — Les isométries qui laissent un carré invariant sont au nombre de quatre.
Faux  100553.tex — Les isométries qui laissent un carré invariant sont au nombre de huit.
100554.tex — Les isométries qui laissent un parallélogramme (non losange et non rectangle) invariant sont au nombre de deux.
Vrai  100555.tex — Les isométries qui laissent un rectangle (non carré) invariant sont au nombre de quatre.
100556.tex — Les isométries qui laissent un rectangle (non carre) invariant sont au nombre de quatre.  Vrai  100556.tex — Les isométries qui laissent un triangle invariant sont au nombre de six.
Faux
100557.tex — Toute isométrie directe possède des points fixes.  Faux
100558.tex — Toute isométrie indirecte possède des points fixes.  Faux
100559.tex — Une isométrie directe possède soit aucun, soit un seul point fixe.  Faux
100560.tex — Une isométrie ayant deux points fixes (distincts) est l'identité.  Faux
100561.tex — Une isométrie directe ayant deux points fixes (distincts) est l'identité.  Vrai
100562.tex — Une isométrie ayant trois points fixes (distincts) est l'identité.  Faux
<b>100563.tex</b> — Soient $A$ et $B$ deux points distincts. Il existe une isométrie vérifiant $f(A) = B$ .
Vrai 100564.tex — Soient $A$ et $B$ deux points distincts. Il y a une infinité d'isométries vérifiant $f(A) = B$ .

	I	Vrai
100565.tex —	Soient $A$ et $B$ deux points distincts. Il y a une infinité d'isométries directes vérifiant $f(A) = B$ .	Vrai
$100566. {\rm tex} - \\$	Soient $A, B, A'$ et $B'$ quatre points. Il existe une isométrie vérifiant « $f(A) = A'$ et $f(B) = B'$ ».	Faux
100567.tex — $f(B) = B'$ .	Soient $A, B, A'$ et $B'$ quatre points, avec $A \neq A'$ et $B \neq B'$ . Il existe une isométrie vérifiant $f(A) =$	A' et
100568.tex — $f(B) = B'$ .	Soient $A, B, A'$ et $B'$ quatre points, avec $AB = A'B'$ . Il existe une isométrie vérifiant $f(A) = A'B'$ .	A' et
100569.tex — $f(B) = B'$ .	Soient $A, B, A'$ et $B'$ quatre points, avec $AB = A'B'$ . Il existe une isométrie directe vérifiant $f(A) =$	A' et
100570.tex - f(A) = A'  et  f(A)	,	rifiant
	Soient $A, B, A'$ et $B'$ quatre points, avec $AB = A'B'$ et $A \neq B$ . Il existe exactement une isométrie di $A'$ et $A' \in A'$ et $A' \in$	irecte
	Soient $A, B, A'$ et $B'$ quatre points, avec $AB = A'B'$ et $A \neq A'$ . Il existe exactement une isométrie di $A'$ et $f(B) = B'$ .	irecte
	Soient A, B, A' et B' quatre points, avec $AB = A'B'$ et $A \neq B$ . Il existe exactement deux isome $A'$ et $f(B) = B'$ .	étries
 100574.tex —		Vrai
	La somme de deux matrices carrées de même taille non inversibles est non inversible.	
100576. tex	Si le produit de deux matrices existe et est inversible, alors chaque matrice est inversible.	Faux
100577.tex —	Soient $A, B \in M_n(\mathbb{R})$ . Si $AB$ est inversible, alors $A$ et $B$ aussi.	
100578. tex	Si $AB = I$ , alors on a automatiquement $BA = I$ et $B$ est l'inverse de $A$ .	
100579. tex	Soient $A, B \in M_n(\mathbb{R})$ . Alors $AB = I \Leftrightarrow BA = I$ .	Faux
$100580. ext{tex}$ —	Tr(AB) = Tr(BA).	Vrai
100581.tex —	Pour $A, B, C \in M_n(\mathbb{R}), Tr(ABC) = Tr(CBA)$	Vrai
100582. tex	Pour $A, B, C \in M_n(\mathbb{R}), Tr(ABC) = Tr(BCA)$	Faux
100583.tex —	$Tr(AB) = Tr(A) \cdot Tr(B).$	Vrai
 100584.tex —	Tr(A+B) = Tr(A) + Tr(B).	Faux
100585.tex —	${}^{t}(AB) = {}^{t}B \cdot {}^{t}A$	Vrai
	Toute matrice carrée réelle est somme d'une matrice symétrique et d'une antisymétrique.	Vrai
	Les lignes d'une matrice sont indépendantes ssi ses colonnes le sont également.	Vrai
	Une matrice carrée est inversible ssi son noyau est vide.	Faux
	Une matrice est inversible ssi son noyau est réduit à zéro.	Faux
	Si la $k$ -ème colonne de $A$ est nulle, la $k$ -ème colonne de $AB$ l'est aussi.	Faux
		Faux
	Si la k-ème colonne de A est nulle, la k-ème colonne de BA l'est aussi.	Vrai
	Si une matrice carrée vérifie $A^5 + A = I$ , alors elle est inversible	Vrai
$100593.\mathrm{tex} - $	Si une matrice carrée vérifie $A^k = I$ pour un entier $k$ , alors elle est inversible.	

	F	aux
	Si une matrice vérifie $A^p=0$ pour un certain entier $p,$ alors elle n'est jamais inversible	/roi
	Si deux matrices non nulles vérifient $AB=0$ , aucune d'entre elles n'est inversible.	
	Si deux matrices vérifient $AB = 0$ , alors $A = 0$ ou $B = 0$ .	
100597.tex — S	Soit $A$ une matrice. S'il existe $B \neq 0$ tq $AB = 0$ , alors $BA = 0$ aussi.	
		aux
100599.tex — S	Si une matrice carrée vérifie $A^2+2A=0$ , alors soit $A=0$ , soit $A=-2I$	
100600.tex — I	La somme de deux complexes de module un est de module un.	
	F La somme de deux racines de l'unité est une racine de l'unité.	Faux
		aux
100603.tex - I	Le produit de deux racines de l'unité est une racine de l'unité.	
100604.tex - I		
100605.tex - I		
	Le produit d'une racine de l'unité par un complexe de module un est une racine de l'unité.	
100607.tex —	$rac{3}{5}+irac{4}{5}  ext{ est de module un.}$	
100608.tex —	-i est une racine de l'unité.	/rai
$100609. ext{tex} - \epsilon$	$V^{i\pi/n}$ est une racine $n$ -ème de l'unité.	/rai
	T	٦.
100610.tex —	$rac{3}{5}+irac{4}{5}$ est une racine de l'unité.	
	$rac{3}{5}+irac{4}{5}$ est une racine de l'unité	aux
100611.tex — 1	$rac{3}{5}+irac{4}{5}$ est une racine de l'unité	⁷ aux ⁷ aux
100611.tex — 1	$\frac{3}{5}+i\frac{4}{5}$ est une racine de l'unité	Faux Faux Faux
$100611. ext{tex} - 1$ $100612. ext{tex} - 1$ $100613. ext{tex} - 1$ $100614. ext{tex} - 1$	$\frac{3}{5}+i\frac{4}{5}$ est une racine de l'unité. Function de l'unité de l'unit	Faux Faux Faux Vrai
100611.tex — 1 100612.tex — 1 100613.tex — 1	$\frac{3}{5}+i\frac{4}{5}$ est une racine de l'unité.	Faux Faux Faux Vrai
$100611. ext{tex} - 1$ $100612. ext{tex} - \frac{1}{2}$ $100613. ext{tex} - \frac{1}{2}$	$\frac{3}{5}+i\frac{4}{5} \text{ est une racine de l'unit\'e}.$ $1+i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $\frac{1}{2}+i\frac{\sqrt{3}}{2} \text{ est une racine cubique de l'unit\'e}.$ $\frac{1}{2}+i\frac{\sqrt{3}}{2} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3}  est une racine cubique$	Faux Faux Faux Vrai Faux Faux
$100611. ext{tex} - 1$ $100612. ext{tex} - 1$ $100613. ext{tex} - 1$ $100614. ext{tex} - 1$	$\frac{3}{5} + i\frac{4}{5} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $\frac{1}{2} + i\frac{\sqrt{3}}{2} \text{ est une racine cubique de l'unit\'e}.$ $\frac{1}{2} + i\frac{\sqrt{3}}{2} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 + i\sqrt{3} \text{ est une racine cubique de l'unit\'e}.$ $1 +$	Faux Faux Faux Frai Frai Faux Frai
$100611. ext{tex} - 100612. ext{tex} - 100613. ext{tex} - 100614. ext{tex} - 100615. ext{tex} - 100616. ext{tex} - 100617. ext$	$\frac{3}{5}+i\frac{4}{5} \text{ est une racine de l'unit\'e}.$ $1+i\sqrt{3} \text{ est une racine de l'unit\'e}.$ $\frac{1}{2}+i\frac{\sqrt{3}}{2} \text{ est une racine cubique de l'unit\'e}.$ $\frac{1}{2}+i\frac{\sqrt{3}}{2} \text{ est une racine de l'unit\'e}.$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$	Faux Faux Faux Frai Frai Faux Frai
$100611. ext{tex} - 100612. ext{tex} - 100613. ext{tex} - 100614. ext{tex} - 100615. ext{tex} - 100616. ext{tex} - 100617. ext{tex} - 100618. ext$	$\frac{3}{5} + i\frac{4}{5} \text{ est une racine de l'unité.} \qquad \qquad$	Faux Faux Vrai Faux Vrai Vrai Vrai Vrai
$100611. ext{tex} - 100612. ext{tex} - 100613. ext{tex} - 100614. ext{tex} - 100615. ext{tex} - 100616. ext{tex} - 100618. ext{tex} - 100619. ext$	$\frac{3}{5} + i \frac{4}{5} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $\frac{1}{2} + i \frac{\sqrt{3}}{2} \text{ est une racine cubique de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine cubique de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine cubique de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine cubique de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine cubique de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $1 +$	Faux Faux Faux Frai Faux Frai Frai Frai Frai Frai Frai
$100611. ext{tex} - 100612. ext{tex} - 100613. ext{tex} - 100614. ext{tex} - 100615. ext{tex} - 100616. ext{tex} - 100618. ext{tex} - 100619. ext{tex} - 100620. ext$	$\frac{3}{5} + i\frac{4}{5} \text{ est une racine de l'unité}.$ $1 + i\sqrt{3} \text{ est une racine de l'unité}.$ $\frac{1}{2} + i\frac{\sqrt{3}}{2} \text{ est une racine cubique de l'unité}.$ $\frac{1}{2} + i\frac{\sqrt{3}}{2} \text{ est une racine de l'unité}.$ $\frac{1}{2} + i\frac{\sqrt{3}}{2} \text{ est une racine de l'unité}.$ $U_3 \subset \mathbb{U}_6.$ $U_4 \cap \mathbb{U}_5 = \emptyset.$ $U_4 \cap \mathbb{U}_5 = \{1\}.$ $U_4 \cap \mathbb{U}_6 = \mathbb{U}_2.$ $U_7 \cap \mathbb{U}_q = \mathbb{U}_{pgcd(p,q)}.$ $U_p \cap \mathbb{U}_q = \mathbb{U}_{ppcm(p,q)}.$ $U_p \cup \mathbb{U}_q = \mathbb{U}_{ppcm(p,q)}.$ $U_p \cup \mathbb{U}_q = \mathbb{U}_{ppcd(p,q)}.$ $U_p \cup \mathbb{U}_q = \mathbb{U}_{ppcd(p,q)}.$ $U_p \cup \mathbb{U}_q = \mathbb{U}_{ppcd(p,q)}.$	Faux Faux Faux Frai Frai Frai Frai Frai Frai Frai Frai
$100611. ext{tex} - 100612. ext{tex} - 100613. ext{tex} - 100614. ext{tex} - 100615. ext{tex} - 100616. ext{tex} - 100617. ext{tex} - 100619. ext{tex} - 100620. ext{tex} - 100621. ext$	$\frac{3}{5} + i\frac{4}{5} \text{ est une racine de l'unité}.$ $1 + i\sqrt{3} \text{ est une racine de l'unité}.$ $\frac{1}{2} + i\frac{\sqrt{3}}{2} \text{ est une racine cubique de l'unité}.$ $\frac{1}{2} + i\frac{\sqrt{3}}{2} \text{ est une racine de l'unité}.$ $U_3 \subset \mathbb{U}_6.$ $U_4 \cap \mathbb{U}_5 = \emptyset.$ $U_4 \cap \mathbb{U}_5 = \{1\}.$ $U_4 \cap \mathbb{U}_6 = \mathbb{U}_2.$ $U_7 \cap \mathbb{U}_q = \mathbb{U}_{pgcd(p,q)}.$ $U_7 \cap \mathbb{U}_q = \mathbb{U}_{ppcm(p,q)}.$ $U_7 \cup \mathbb{U}_q = \mathbb{U}_{ppcm(p,q)}.$ $U_7 \cup \mathbb{U}_q = \mathbb{U}_{ppcm(p,q)}.$ $U_7 \cup \mathbb{U}_q = \mathbb{U}_{ppcd(p,q)}.$	Faux Faux Faux Frai Frai Frai Frai Frai Frai Frai Fraux Fraux Fraux Fraux
$100611. ext{tex} - 100612. ext{tex} - 100613. ext{tex} - 100614. ext{tex} - 100615. ext{tex} - 100616. ext{tex} - 100617. ext{tex} - 100619. ext{tex} - 100620. ext{tex} - 100621. ext{tex} - 100622. ext{tex} - 1006222. ext{tex} - 1$	$\frac{3}{5} + i \frac{4}{5} \text{ est une racine de l'unité}.$ $1 + i \sqrt{3} \text{ est une racine de l'unité}.$ $\frac{1}{2} + i \frac{\sqrt{3}}{2} \text{ est une racine cubique de l'unité}.$ $\frac{1}{2} + i \frac{\sqrt{3}}{2} \text{ est une racine de l'unité}.$ $U_3 \subset \mathbb{U}_6.$ $U_4 \cap \mathbb{U}_5 = \emptyset.$ $U_4 \cap \mathbb{U}_5 = \{1\}.$ $U_4 \cap \mathbb{U}_6 = \mathbb{U}_2.$ $U_p \cap \mathbb{U}_q = \mathbb{U}_{pgcd(p,q)}.$ $U_p \cap \mathbb{U}_q = \mathbb{U}_{ppcm(p,q)}.$ $U_p \cup \mathbb{U}_q = \mathbb{U}_{pgcd(p,q)}.$	Faux Faux Faux Frai Frai Frai Frai Frai Frai Fraux Frai Fraux Fraux Fraux Fraux Fraux
$100611. ext{tex} - 100612. ext{tex} - 100613. ext{tex} - 100614. ext{tex} - 100615. ext{tex} - 100615. ext{tex} - 100617. ext{tex} - 100618. ext{tex} - 100619. ext{tex} - 100620. ext{tex} - 100622. ext{tex} - 100623. ext$	$\frac{3}{5} + i \frac{4}{5} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $\frac{1}{2} + i \frac{\sqrt{3}}{2} \text{ est une racine cubique de l'unité.}$ $\frac{1}{2} + i \frac{\sqrt{3}}{2} \text{ est une racine de l'unité.}$ $\frac{1}{2} + i \frac{\sqrt{3}}{2} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} $	Faux Faux Faux Frai Frai Frai Frai Frai Fraux
100611.tex — 1 100612.tex — 2 100613.tex — 2 100614.tex — 1 100615.tex — 1 100615.tex — 1 100617.tex — 1 100619.tex — 1 100620.tex — 1 100621.tex — 1 100623.tex — 2 100624.tex — 3 100625.tex — 3	$\frac{3}{5} + i \frac{4}{5} \text{ est une racine de l'unité.}$ $1 + i \sqrt{3} \text{ est une racine de l'unité.}$ $\frac{1}{2} + i \frac{\sqrt{3}}{2} \text{ est une racine cubique de l'unité.}$ $\frac{1}{2} + i \frac{\sqrt{3}}{2} \text{ est une racine de l'unité.}$ $\frac{1}{2} + i \frac{\sqrt{3}}{2} \text{ est une racine de l'unité.}$ $U_3 \subset \mathbb{U}_6.$ $U_4 \cap \mathbb{U}_5 = \emptyset.$ $U_4 \cap \mathbb{U}_5 = \{1\}.$ $U_4 \cap \mathbb{U}_6 = \mathbb{U}_2.$ $U_p \cap \mathbb{U}_q = \mathbb{U}_{pgcd(p,q)}.$ $U_p \cap \mathbb{U}_q = \mathbb{U}_{pgcd(p,q)}.$ $U_p \cup \mathbb{U}_q = \mathbb{U}_{pgcd(p,q)}.$	Faux Faux Faux Frai Frai Frai Frai Fraux

<b>100626.tex</b> — $x \ge 0 \Rightarrow x > 0$ est toujours fausse.	П
<b>100627.tex</b> — $x > 0 \Rightarrow x \ge 0$ est fausse si $x = -1$ .	
100628.tex — $x > 0 \Rightarrow x \ge 0$ est parfois vraie, parfois fausse, ça dépend de $x$ .	
100629.tex — L'assertion « $x>0 \Rightarrow x\geq 0$ » est parfois vraie, parfois fausse, ça dépend de $x$ .	
100630.tex — L'assertion « $x \geq 3 \Rightarrow x \geq 2$ » est vraie quel que soit le paramètre réel $x$ .	
<b>100631.tex</b> — L'assertion « $x \ge 3 \Rightarrow x \ge 2$ » est vraie si $x = 0$ .	
<b>100632.tex</b> — L'assertion « $x \ge 2 \Rightarrow x \ge 3$ » est toujours fausse.	
100633.tex — L'assertion « $x \ge 2 \Rightarrow x \ge 3$ » est parfois vraie, parfois fausse, ça dépend de $x$ .	
<b>100634.tex</b> — L'assertion « $x \ge 2 \Rightarrow x \ge 3$ » est vraie si $x \ge 3$ .	
100635.tex — L'assertion « $x \ge 2 \Rightarrow x \ge 3$ » est vraie si et seulement si $x \ge 3$ .	
<b>100636.tex</b> — L'assertion « $x \ge 2 \Rightarrow x \ge 3$ » est vraie si et seulement si $(x \ge 3 \text{ ou } x < 2)$ .	
<b>100637.tex</b> — L'assertion « $x \ge 2 \Rightarrow x \ge 3$ » est vraie si $x = 4$ .	
<b>100638.tex</b> — L'assertion « $x \ge 2 \Rightarrow x \ge 3$ » est vraie si $x = 2$ .	
<b>100639.tex</b> — L'assertion « $x \ge 2 \Rightarrow x \ge 3$ » est vraie si $x = 1$ .	
<b>100640.tex</b> — L'assertion « $x \ge 2 \Leftrightarrow x \ge 3$ » est vraie si $x \ge 3$ .	
100641.tex — L'assertion « $x \ge 2 \Leftrightarrow x \ge 3$ » est vraie si et seulement si $x \ge 3$ .	
<b>100642.tex</b> — L'assertion « $x \ge 2 \Leftrightarrow x \ge 3$ » est vraie si et seulement si $(x \ge 3 \text{ ou } x < 2)$ .	
<b>100643.tex</b> — L'assertion « $x \le 2 \Rightarrow x \ge 3$ » est toujours fausse.	
<b>100644.tex</b> — L'assertion « $x \le 2 \Rightarrow x \ge 3$ » est vraie si $x = 2, 5$ .	Faux
100645.tex — L'assertion « $x \le 2 \Rightarrow x \ge 3$ » est vraie si $x = 2$ .	
100646.tex — L'assertion « $x \le 2 \Rightarrow x \ge 3$ » est vraie si et seulement si $x > 2$ .	
<b>100647.tex</b> — L'assertion « $x \le 2 \Rightarrow x \ge 3$ » est vraie si $x \in ]2;3[$ .	
<b>100648.tex</b> — L'assertion « $x \le 2 \Leftrightarrow x \ge 3$ » est toujours fausse.	
<b>100649.tex</b> — L'assertion « $x \le 2 \Leftrightarrow x \ge 3$ » est vraie si $x = 2, 5$ .	
100650.tex — L'assertion « $x \le 2 \Leftrightarrow x \ge 3$ » est vraie si $x \ge 3$ .	
<b>100651.tex</b> — L'assertion « $x \le 2 \Leftrightarrow x \ge 3$ » est vraie si et seulement si $x \ge 3$ .	
<b>100652.tex</b> — L'assertion « $x \le 2 \Leftrightarrow x \ge 3$ » est vraie si et seulement si $x \in ]2;3[$ .	
100653.tex — L'assertion « $x \ge 2 \Rightarrow x \le 3$ » est vraie si et seulement si $x \le 3$ .	
<b>100654.tex</b> — L'assertion « $x \ge 2 \Rightarrow x \le 3$ » est vraie si et seulement si $x \in ]2;3[$ .	
100655.tex — L'assertion « $x \ge 2 \Rightarrow x \le 3$ » est fausse si $x < 2$ .	
100656.tex — La somme des angles d'un quadrilatère convexe vaut 360°.	
100657.tex — La somme des angles d'un quadrilatère vaut 360°.	
100658.tex — Si $ABCD$ est un carré, les diagonales se coupent en leur milieu à angle droit.	гаих

Vrai
100659.tex — Si $[AC]$ et $[BD]$ se coupent en leur milieu à angle droit, alors $ABCD$ est un carré.
Faux $\mathbf{100660.tex}$ — Si $[AC]$ et $[BD]$ se coupent en leur milieu et ont même longueur, alors $ABCD$ est un carré.
100661.tex — Si $[AC]$ et $[BD]$ se coupent en leur milieu et ont même longueur, alors $ABCD$ est un losange.
100662.tex — Si ABCD est un rectangle, les diagonales se coupent en leur milieu.  Vrai
100663.tex — Si ABCD est un rectangle, les diagonales se coupent à angle droit.
Faux  100664.tex — ABCD est un parallélogramme si et seulement si ses diagonales se coupent en leur milieu.  Vrai
<b>100665.tex</b> — $ABCD$ est un parallélogramme si et seulement si $AB = CD$ .
$\textbf{100666.tex}  \text{Si } (AB)//(CD), \text{ alors } ABCD \text{ est un parall\'elogramme.}$
$\textbf{100667.tex}  \text{Si } AB = CD, \text{ alors } ABCD \text{ est un parall\'eloramme.}$
${\bf 100668.tex} \ \ {\rm Si} \ AB = CD \ {\rm et} \ (BC)//(AD) \ {\rm alors} \ ABCD \ {\rm est} \ {\rm un} \ {\rm parall\'elogramme}.$ Faux
<b>100669.tex</b> — Si $ABCD$ est un parallélogramme, alors $AB = CD$ et $(BC)//(AD)$ .
100670.tex — Tout parallélogramme avec deux côtés égaux est un carré  Faux
100671.tex — Tout parallélogramme avec deux côtés consécutifs égaux est un carré
100672.tex — Tout parallélogramme avec un angle droit est un rectangle
100673.tex — Tout parallélogramme avec des diagonales de même longueur est un rectangle
$\Pi$
$\mathbf{100675.tex}  - \text{Si } AB = CD \text{ alors } ABCD \text{ est un trapèze.}$
<b>100675.tex</b> — Si $AB = CD$ alors $ABCD$ est un trapèze. Faux
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
100675.tex — Si $AB = CD$ alors $ABCD$ est un trapèze.  Faux 100676.tex — Si $AB = CD$ alors $ABCD$ est un trapèze isocèle.  Faux 100677.tex — Si $AB = CD$ et $(AB)//(CD)$ alors $ABCD$ est un trapèze isocèle.  Faux 100678.tex — Si $ABCD$ est un trapèze isocèle alors ses diagonales se coupent en leur milieu.  Faux 100679.tex — Si $ABCD$ est un losange, alors ses diagonales se coupent en leur milieu.  Vrai 100680.tex — Si $[AC]$ et $[BD]$ se coupent en leur milieu à angle droit, alors $ABCD$ est un losange.  Vrai 100681.tex — Si $ABCD$ est un losange avec des diagonales de même longueur est un rectangle.  Vrai 100683.tex — Tout losange avec des diagonales de même longueur est un rectangle.  Vrai 100684.tex — Les sommets d'un trapèze isocèle sont sur un même cercle.  Faux 100685.tex — $\forall x \in \mathbb{R}$ , $x > 3$ .
$\begin{array}{c} \textbf{100675.tex} & \text{Si } AB = CD \text{ alors } ABCD \text{ est un trapèze}. \\ & \text{Faux} \\ \textbf{100676.tex} & \text{Si } AB = CD \text{ alors } ABCD \text{ est un trapèze isocèle}. \\ & \textbf{Faux} \\ \textbf{100677.tex} & \text{Si } AB = CD \text{ et } (AB) // (CD) \text{ alors } ABCD \text{ est un trapèze isocèle}. \\ & & \text{Faux} \\ \textbf{100678.tex} & \text{Si } ABCD \text{ est un trapèze isocèle alors ses diagonales se coupent en leur milieu}. \\ & \textbf{Faux} \\ \textbf{100679.tex} & \text{Si } ABCD \text{ est un trapèze isocèle alors ses diagonales se coupent en leur milieu}. \\ \textbf{Vrai} \\ \textbf{100680.tex} & \text{Si } [AC] \text{ et } [BD] \text{ se coupent en leur milieu à angle droit, alors } ABCD \text{ est un losange}. \\ \textbf{Vrai} \\ \textbf{100681.tex} & \text{Si } AB = BC = CD = DA, \text{ alors } (AC) \bot (BD). \\ \textbf{Vrai} \\ \textbf{100682.tex} & \text{Tout losange avec des diagonales de même longueur est un rectangle}. \\ \textbf{Vrai} \\ \textbf{100683.tex} & \text{Les sommets d'un trapèze isocèle sont sur un même cercle}. \\ \textbf{Vrai} \\ \textbf{100684.tex} & \text{Les sommets d'un losange sont sur un même cercle}. \\ \textbf{Faux} \\ \textbf{100685.tex} & \textbf{V} x \in \mathbb{R}, x > 3. \\ \textbf{Faux} \\ \textbf{100686.tex} & \textbf{B} x \in \mathbb{R}, x > 3. \\ \textbf{Faux} \\ \textbf{100686.tex} & \textbf{B} x \in \mathbb{R}, x > 3. \\ \textbf{Faux} \\ \textbf{100686.tex} & \textbf{B} x \in \mathbb{R}, x > 3. \\ \textbf{100686.tex} & \textbf{B} x \in \mathbb{R}, x > 3. \\ \textbf{100686.tex} & \textbf{B} x \in \mathbb{R}, x > 3. \\ \textbf{100686.tex} & \textbf{B} x \in \mathbb{R}, x > 3. \\ \textbf{100686.tex} & \textbf{B} x \in \mathbb{R}, x > 3. \\ \textbf{100686.tex} & \textbf{B} x \in \mathbb{R}, x > 3. \\ \textbf{100686.tex} & \textbf{B} x \in \mathbb{R}, x > 3. \\ \textbf{100686.tex} & \textbf{B} x \in \mathbb{R}, x > 3. \\ \textbf{100686.tex} & \textbf{B} x \in \mathbb{R}, x > 3. \\ \textbf{100686.tex} & \textbf{B} x \in \mathbb{R}, x > 3. \\ \textbf{100686.tex} & \textbf{B} x \in \mathbb{R}, x > 3. \\ \textbf{100686.tex} & \textbf{B} x \in \mathbb{R}, x > 3. \\ \textbf{100686.tex} & \textbf{B} x \in \mathbb{R}, x > 3. \\ \textbf{100686.tex} & \textbf{B} x \in \mathbb{R}, x > 3. \\ \textbf{100686.tex} & \textbf{B} x \in \mathbb{R}, x > 3. \\ \textbf{100686.tex} & \textbf{B} x \in \mathbb{R}, x > 3. \\ \textbf{100686.tex} & \textbf{B} x \in \mathbb{R}, x > 3. \\ \textbf{100686.tex} & \textbf{B} x \in \mathbb{R}, x > 3. \\ \textbf{100686.tex} & \textbf{B} x \in \mathbb{R}, x > 3. \\ \textbf{100686.tex} & \textbf{B} x \in \mathbb{R}, x > 3. \\ \textbf{100686.tex} & \textbf{B} x \in \mathbb{R}, x \in \mathbb{R}, x > 3. \\ \textbf{100686.tex} & \textbf{B} x \in \mathbb{R}, x > 3. \\ 100686$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} \textbf{100675.tex} & -\text{Si } AB = CD \text{ alors } ABCD \text{ est un trapèze.} \\ & \textbf{Faux} \\ \textbf{100676.tex} & -\text{Si } AB = CD \text{ alors } ABCD \text{ est un trapèze isocèle.} \\ & -\text{Faux} \\ \textbf{100677.tex} & -\text{Si } AB = CD \text{ et } (AB)//(CD) \text{ alors } ABCD \text{ est un trapèze isocèle.} \\ & -\text{Faux} \\ \textbf{100678.tex} & -\text{Si } ABCD \text{ est un trapèze isocèle alors ses diagonales se coupent en leur milieu.} \\ & -\text{Faux} \\ \textbf{100679.tex} & -\text{Si } ABCD \text{ est un losange, alors ses diagonales se coupent en leur milieu.} \\ & -\text{Vrai} \\ \textbf{100680.tex} & -\text{Si } [AC] \text{ et } [BD] \text{ se coupent en leur milieu à angle droit, alors } ABCD \text{ est un losange.} \\ & \text{Vrai} \\ \textbf{100681.tex} & -\text{Si } AB = BC = CD = DA, \text{ alors } (AC) \bot (BD). \\ & \text{Vrai} \\ \textbf{100682.tex} & -\text{Tout losange avec des diagonales de même longueur est un rectangle.} \\ & \text{Vrai} \\ \textbf{100683.tex} & -\text{Les sommets d'un trapèze isocèle sont sur un même cercle.} \\ & \text{Vrai} \\ \textbf{100684.tex} & -\text{Les sommets d'un losange sont sur un même cercle.} \\ & \text{Faux} \\ \textbf{100685.tex} & - \forall x \in \mathbb{R}, x > 3. \\ & \text{Vrai} \\ \textbf{100686.tex} & - \exists x \in \mathbb{R}, x > 3. \\ & \text{Sux} \\ \textbf{100687.tex} & -\text{Le contraire de } \forall x \in \mathbb{R}, x > 3 \text{ est \'equivalent \'a } 2 + 2 = 4. \\ & \text{Vrai} \\ \textbf{100688.tex} & -\text{Le contraire de } \exists x \in \mathbb{R}, x > 3 \text{ est \'equivalent \'a } 2 + 2 = 4. \\ \\ & \text{Vrai} \\ \textbf{100688.tex} & -\text{Le contraire de } \exists x \in \mathbb{R}, x > 3 \text{ est \'equivalent \'a } 2 + 2 = 4. \\ \\ & \text{Vrai} \\ \textbf{100688.tex} & -\text{Le contraire de } \exists x \in \mathbb{R}, x > 3 \text{ est \'equivalent \'a } 2 + 2 = 4. \\ \\ \end{array}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} \textbf{100675.tex} & \text{Si } AB = CD \text{ alors } ABCD \text{ est un trapèze}. \\ & \textbf{Faux} \\ \textbf{100676.tex} & \text{Si } AB = CD \text{ alors } ABCD \text{ est un trapèze isocèle}. \\ & \textbf{Faux} \\ \textbf{100677.tex} & \text{Si } AB = CD \text{ et } (AB) // (CD) \text{ alors } ABCD \text{ est un trapèze isocèle}. \\ & \textbf{Faux} \\ \textbf{100678.tex} & \text{Si } ABCD \text{ est un trapèze isocèle alors ses diagonales se coupent en leur milieu}. \\ & \textbf{Faux} \\ \textbf{100679.tex} & \text{Si } ABCD \text{ est un losange, alors ses diagonales se coupent en leur milieu}. \\ & \textbf{Vrai} \\ \textbf{100680.tex} & \text{Si } [AC] \text{ et } [BD] \text{ se coupent en leur milieu à angle droit, alors } ABCD \text{ est un losange}. \\ & \textbf{Vrai} \\ \textbf{100681.tex} & \text{Si } AB = BC = CD = DA, \text{ alors } (AC) \bot (BD). \\ & \textbf{Vrai} \\ \textbf{100682.tex} & \text{Tout losange avec des diagonales de même longueur est un rectangle}. \\ & \textbf{Vrai} \\ \textbf{100683.tex} & \textbf{Les sommets d'un trapèze isocèle sont sur un même cercle}. \\ & \textbf{Vrai} \\ \textbf{100684.tex} & \textbf{Les sommets d'un losange sont sur un même cercle}. \\ & \textbf{Faux} \\ \textbf{100685.tex} & \forall x \in \mathbb{R}, x > 3. \\ & \textbf{Faux} \\ \textbf{100687.tex} & \textbf{Le contraire de } \forall x \in \mathbb{R}, x > 3 \text{ est équivalent à } 2 + 2 = 4. \\ & \textbf{Vrai} \\ \textbf{100688.tex} & \textbf{Le contraire de } \exists x \in \mathbb{R}, x > 3 \text{ est équivalent à } 2 + 2 = 4. \\ & \textbf{Faux} \\ \textbf{100688.tex} & \textbf{Le contraire de } \exists x \in \mathbb{R}, x > 3 \text{ est équivalent à } 2 + 2 = 4. \\ & \textbf{Vrai} \\ \textbf{100688.tex} & \textbf{Le contraire de } \exists x \in \mathbb{R}, x > 3 \text{ est équivalent à } 2 + 2 = 4. \\ & \textbf{Faux} \\ \textbf{100688.tex} & \textbf{Le contraire de } \exists x \in \mathbb{R}, x > 3 \text{ est équivalent à } 2 + 2 = 4. \\ & \textbf{Faux} \\ \textbf{100688.tex} & \textbf{Le contraire de } \exists x \in \mathbb{R}, x > 3 \text{ est équivalent à } 2 + 2 = 4. \\ & \textbf{Faux} \\ \textbf{100688.tex} & \textbf{Le contraire de } \exists x \in \mathbb{R}, x > 3 \text{ est équivalent à } 2 + 2 = 4. \\ & \textbf{100688.tex} & \textbf{100688.tex} & \textbf{100688.tex} & \textbf{100688.tex} & \textbf{100688.tex} \\ \textbf{100688.tex} & \textbf{100688.tex} & \textbf{100688.tex} & \textbf{100688.tex} & \textbf{100688.tex} \\ \textbf{100688.tex} & \textbf{100688.tex} & \textbf{100688.tex} & \textbf{100688.tex} & \textbf{100688.tex} \\ \textbf{100688.tex} & \textbf{100688.tex} & \textbf{100688.tex} & 100688.t$

100691.tex —	$\forall x \in \mathbb{R}_+, \ (x+2)^2 > 3.$	:
100692.tex —		
$100693. ext{tex}$	Factor $\forall x \in \mathbb{R}, \ 1/x > -3.$	
100694.tex $-$	Factor $\forall x \in \mathbb{R}^*, \ 1/x > -3.$	
$100695.\mathrm{tex}$ —	Far. $\exists x \in \mathbb{R}^*, \ 1/x > -3.$	
$100696.\mathrm{tex}$ —	$\forall x \in \mathbb{R}_+^*, \ 1/x > -3.$	
100697.tex —	$\forall x \in \mathbb{R}, \ \sqrt{x} > 3.$	
	Factor $\forall x \in \mathbb{R}_+, \ \sqrt{x} > 3.$	
	Farabox Farab	
100700.tex —	$\forall x \in \mathbb{R}_+, \ \sqrt{x^3} > 0.$ Fa	
100701.tex —	$\forall x \in \mathbb{R}_+, \ \sqrt{x}^3 \ge 0.$	
100702.tex —	$\forall x \in \mathbb{R}, \ \sqrt{x^3} > 0.$	
	Factor $\exists x \in \mathbb{R}, \ \exists y \in \mathbb{R}, \ x > y.$	
100704.tex $-$	$\forall x \in \mathbb{R}, \ \exists y \in \mathbb{R}, \ x > y.$	
$100705.\mathrm{tex}$ —	$ \exists x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ x > y. $	
$100706.\mathrm{tex}$ —	Factor $\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ x > y.$	
	Factor $\forall x \in \mathbb{R}, \ \exists x \in \mathbb{R}, \ x > y.$	
100708.tex —	Le contraire de $\forall x \in \mathbb{R}, \ x>0$ est $\exists x \in \mathbb{R}, \ x\leq 0$ . Le contraire de $\forall x \in \mathbb{R}, \ x>0$ est $\exists x \in \mathbb{R}, \ x<0$ .	rai
100708.tex —  100709.tex —	Le contraire de $\forall x \in \mathbb{R}, \ x>0$ est $\exists x \in \mathbb{R}, \ x\leq 0$	rai aux
100708.tex — 100709.tex — 100710.tex —	Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x \leq 0$	rai aux aux
100708.tex — 100709.tex — 100710.tex — 100711.tex —	Le contraire de $\forall x \in \mathbb{R}, \ x>0$ est $\exists x \in \mathbb{R}, \ x\leq 0$ . Vr. Le contraire de $\forall x \in \mathbb{R}, \ x>0$ est $\exists x \in \mathbb{R}, \ x<0$ . False Le contraire de $\forall x \in \mathbb{R}, \ x>0$ est $\exists x \in \mathbb{R}, \ x>0$ . False $\forall n \in \mathbb{N}, \ n^2 \leq 2^n$ . False $\exists n \in \mathbb{N}, \ n^2 \leq 2^n$ .	cai nux nux nux
100708.tex — 100709.tex — 100710.tex — 100711.tex — 100712.tex —	Le contraire de $\forall x \in \mathbb{R}, \ x>0$ est $\exists x \in \mathbb{R}, \ x\leq 0$	rai nux nux nux rai
100708.tex —  100709.tex —  100710.tex —  100711.tex —  100712.tex —  100713.tex —	Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x \leq 0$ .  Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x < 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .	rai nux nux nux rai
100708.tex —  100709.tex —  100710.tex —  100711.tex —  100712.tex —  100713.tex —  100714.tex —	Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x \leq 0$ .  Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x < 0$ .  False Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  False $\forall n \in \mathbb{N}, \ n^2 \leq 2^n$ False $\exists n \in \mathbb{N}, \ n^2 \leq 2^n$ Vr $\exists n \in \mathbb{N}^*, \ 1/n < 1/\pi$ .  Vr $\forall n \in \mathbb{N}^*, \ 1/n < 1/\pi$ .  False $\forall n \in \mathbb{N}, \ \cos(n) \leq 1$ .	rai uux uux uux rai rai
100708.tex — 100709.tex — 100710.tex — 100711.tex — 100712.tex — 100713.tex — 100714.tex — 100715.tex —	Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x \leq 0$ .  Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x < 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .	rai uux uux rai uux rai uux
100708.tex —  100709.tex —  100710.tex —  100711.tex —  100712.tex —  100713.tex —  100715.tex —  100716.tex —	Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x \leq 0$ .  Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x < 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall $\forall n \in \mathbb{N}, \ n^2 \leq 2^n$ The sum of the su	rai uux uux uux rai rai uux
100708.tex —  100709.tex —  100710.tex —  100711.tex —  100712.tex —  100713.tex —  100715.tex —  100716.tex —	Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x \leq 0$ .  Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x < 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall $\forall n \in \mathbb{N}, \ n^2 \leq 2^n$ Fall $\exists n \in \mathbb{N}, \ n^2 \leq 2^n$ Vi $\exists n \in \mathbb{N}^*, \ 1/n < 1/\pi$ .  Vr $\forall n \in \mathbb{N}^*, \ 1/n < 1/\pi$ .  Fall $\forall n \in \mathbb{N}, \ \cos(n) \leq 1$ .  Vr $\forall n \in \mathbb{N}, \ 1/\cos(n) \geq 1$ .  Fall $\forall n \in \mathbb{N}, \  1/\cos(n)  \geq 1$ .  Fall $\forall n \in \mathbb{N}, \  1/\cos(n)  \geq 1$ .  Fall $\forall n \in \mathbb{N}, \  1/\cos(n)  \geq 1$ .  Vr $\forall n \in \mathbb{N}, \  1/\cos(n)  \geq 1$ .	rai uux uux rai rai uux rai uux
100708.tex —  100709.tex —  100710.tex —  100711.tex —  100712.tex —  100713.tex —  100715.tex —  100716.tex —  100717.tex —	Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x < 0$ .	rai uux uux rai uux rai uux rai uux
100708.tex — 100709.tex — 100710.tex — 100711.tex — 100712.tex — 100714.tex — 100715.tex — 100716.tex — 100717.tex — 100717.tex —	Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x < 0$ .  Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x < 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x < 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x < 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x < 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x < 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x < 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x < 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x < 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x < 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x < 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x < 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x < 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x < 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fall Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .	rai uux uux uux rai uux rai uux rai uux
100708.tex —  100709.tex —  100710.tex —  100711.tex —  100712.tex —  100713.tex —  100715.tex —  100716.tex —  100716.tex —  100719.tex —  100719.tex —	Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x < 0$ .  Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x < 0$ .  Fa  Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fa $\exists n \in \mathbb{N}, \ n^2 \leq 2^n$ $\exists n \in \mathbb{N}, \ n^2 \leq 2^n$ $\forall n \in \mathbb{N}^*, \ 1/n < 1/\pi$ $\forall n \in \mathbb{N}^*, \ 1/n < 1/\pi$ $\forall n \in \mathbb{N}, \ 1/n < 1/\pi$ $\forall n \in \mathbb{N}, \ 1/\cos(n) \leq 1$ $\forall n \in \mathbb{N}, \ 1/\cos(n) \geq 1$ $\forall n \in \mathbb{N}, \ 1/\cos(n) = 1$ $\forall n$	rai uux uux rai uux rai uux rai uux rai uux rai
100708.tex —  100709.tex —  100710.tex —  100711.tex —  100712.tex —  100713.tex —  100715.tex —  100716.tex —  100716.tex —  100719.tex —  100719.tex —	Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x < 0$ .  Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x < 0$ .  Fa  Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$ .  Fa $\exists h \in \mathbb{N}, \ h^2 \leq 2^n$ $\exists h \in \mathbb{N}, \ h^2 \leq 2^n$ $\forall h \in \mathbb{N}^*, \ 1/n < 1/\pi$ $\forall h \in \mathbb{N}^*, \ 1/n < 1/\pi$ $\forall h \in \mathbb{N}, \ 1/\cos(n) \leq 1$ $\forall h \in \mathbb{N}, \ 1/\cos(n) \geq 1$ $\forall h \in \mathbb{N}, \ 1/\cos(n) = 1$ $\forall $	rai uux uux rai uux rai uux rai uux rai uux rai uux

100724 tox	Vrai
100124.tex -	$-3\sqrt{3} < 5$ Faux
100725.tex -	$-\sqrt{5}+1>3$
100726.tex -	
100727.tex -	Faux $-2\sqrt{30} < 11$
100728.tex -	Vrai $-\sqrt{1024} = 32$
100729.tex -	Vrai $-\sqrt{1000} = 10\sqrt{10}$
100730.tex -	Vrai $-\sqrt{800} = 5\sqrt{32}$
 100731.tex –	Vrai $-\sqrt{800} = 20\sqrt{2}$
100732.tex -	Vrai $-\sqrt{800} = 6\sqrt{50}$
 100733.tex -	Faux $-\sqrt{600} = 5\sqrt{30}$
 100734.tex -	Faux $-\sqrt{99} = 9\sqrt{9}$
 100735.tex -	Faux $-\sqrt{169} = 13$
 100736.tex -	
 100737.tex -	Faux $-\sqrt{150} > 12$
100738.tex -	
 100739.tex -	Faux $-\sqrt{180} = 9\sqrt{20}$
 100740.tex -	Faux $-\sqrt{180} < 14$
	Vrai
100741.tex -	
	$-\sqrt{2700} = 30\sqrt{3}$
100742.tex -	$-\sqrt{2700} = 30\sqrt{3}$ $-\sqrt{72} = 3\sqrt{8}$ Vrai
100742.tex - 	$-\sqrt{2700} = 30\sqrt{3}$ Vrai $-\sqrt{72} = 3\sqrt{8}$ Vrai $-\sqrt{72} = 6\sqrt{2}$ Vrai
100742.tex 100743.tex 100744.tex -	$-\sqrt{2700} = 30\sqrt{3}$
100742.tex - 100743.tex - 100744.tex - 100745.tex -	$-\sqrt{2700} = 30\sqrt{3}$ $-\sqrt{72} = 3\sqrt{8}$ $-\sqrt{72} = 6\sqrt{2}$ $-\sqrt{72} = 2\sqrt{9}$ $-\sqrt{2} + \sqrt{8} = 3\sqrt{2}$ Vrai
100742.tex - 100743.tex - 100744.tex - 100745.tex -	$-\sqrt{2700} = 30\sqrt{3}$ $-\sqrt{72} = 3\sqrt{8}$ $-\sqrt{72} = 6\sqrt{2}$ $-\sqrt{72} = 2\sqrt{9}$ $-\sqrt{2} + \sqrt{8} = 3\sqrt{2}$ $-\sqrt{3} + \sqrt{2} = \sqrt{5}$ Vrai
100742.tex - 100743.tex - 100744.tex - 100745.tex - 100746.tex -	$-\sqrt{2700} = 30\sqrt{3}$ $-\sqrt{72} = 3\sqrt{8}$ $-\sqrt{72} = 6\sqrt{2}$ $-\sqrt{72} = 2\sqrt{9}$ $-\sqrt{2} + \sqrt{8} = 3\sqrt{2}$ $-\sqrt{3} + \sqrt{2} = \sqrt{6}$ Vrai $-\sqrt{3} + \sqrt{2} = \sqrt{6}$ Vrai $-\sqrt{3} + \sqrt{2} = \sqrt{6}$
100742.tex	$-\sqrt{2700} = 30\sqrt{3}$ $-\sqrt{72} = 3\sqrt{8}$ $-\sqrt{72} = 6\sqrt{2}$ $-\sqrt{72} = 2\sqrt{9}$ $-\sqrt{2} + \sqrt{8} = 3\sqrt{2}$ $-\sqrt{3} + \sqrt{2} = \sqrt{5}$ $-\sqrt{3} + \sqrt{2} = \sqrt{6}$ $-\sqrt{3} + \sqrt{3} = 4\sqrt{3}$ Vrai  Faux  Faux  Faux
100742.tex - 100743.tex - 100744.tex - 100745.tex - 100746.tex - 100747.tex - 100748.tex -	$-\sqrt{2700} = 30\sqrt{3}$ $-\sqrt{72} = 3\sqrt{8}$ $-\sqrt{72} = 6\sqrt{2}$ $-\sqrt{72} = 2\sqrt{9}$ $-\sqrt{72} = 2\sqrt{9}$ $-\sqrt{2} + \sqrt{8} = 3\sqrt{2}$ $-\sqrt{3} + \sqrt{2} = \sqrt{6}$ $-\sqrt{3} + \sqrt{2} = \sqrt{6}$ $-\sqrt{27} + \sqrt{3} = 4\sqrt{3}$ $-\sqrt{12} + \sqrt{3} = 5\sqrt{3}$ Vrai  Vrai  Vrai  Faux  Faux  Vrai
100742.tex - 100743.tex - 100744.tex - 100745.tex - 100746.tex - 100747.tex - 100748.tex - 100749.tex -	$-\sqrt{2700} = 30\sqrt{3}$ $-\sqrt{72} = 3\sqrt{8}$ $-\sqrt{72} = 6\sqrt{2}$ $-\sqrt{72} = 6\sqrt{2}$ $-\sqrt{72} = 2\sqrt{9}$ $-\sqrt{2} + \sqrt{8} = 3\sqrt{2}$ $-\sqrt{3} + \sqrt{2} = \sqrt{5}$ $-\sqrt{3} + \sqrt{2} = \sqrt{6}$ $-\sqrt{3} + \sqrt{2} = \sqrt{6}$ $-\sqrt{27} + \sqrt{3} = 4\sqrt{3}$ $-\sqrt{12} + \sqrt{3} = 5\sqrt{3}$ $-\sqrt{18} - \sqrt{2} = \sqrt{8}$ Faux Faux Faux Faux Faux
100742.tex	$-\sqrt{2700} = 30\sqrt{3}$ $-\sqrt{72} = 3\sqrt{8}$ $-\sqrt{72} = 6\sqrt{2}$ $-\sqrt{72} = 6\sqrt{2}$ $-\sqrt{72} = 2\sqrt{9}$ $-\sqrt{2} + \sqrt{8} = 3\sqrt{2}$ $-\sqrt{3} + \sqrt{2} = \sqrt{5}$ $-\sqrt{3} + \sqrt{2} = \sqrt{6}$ $-\sqrt{27} + \sqrt{3} = 4\sqrt{3}$ $-\sqrt{12} + \sqrt{3} = 5\sqrt{3}$ $-\sqrt{18} - \sqrt{2} = \sqrt{8}$ $-\sqrt{20} + 7\sqrt{5} = \sqrt{15}$ Vrai  Faux  Faux  Vrai  Faux  Vrai  Vrai  Vrai
100742.tex - 100743.tex - 100744.tex - 100745.tex - 100746.tex - 100747.tex - 100749.tex - 100750.tex - 100751.tex -	$-\sqrt{2700} = 30\sqrt{3}$ $-\sqrt{72} = 3\sqrt{8}$ $-\sqrt{72} = 6\sqrt{2}$ $-\sqrt{72} = 6\sqrt{2}$ $-\sqrt{72} = 2\sqrt{9}$ $-\sqrt{2} + \sqrt{8} = 3\sqrt{2}$ $-\sqrt{3} + \sqrt{2} = \sqrt{5}$ $-\sqrt{3} + \sqrt{2} = \sqrt{6}$ $-\sqrt{3} + \sqrt{2} = \sqrt{6}$ $-\sqrt{12} + \sqrt{3} = 4\sqrt{3}$ $-\sqrt{12} + \sqrt{3} = 5\sqrt{3}$ $-\sqrt{12} + \sqrt{3} = 5\sqrt{3}$ $-\sqrt{12} + \sqrt{3} = \sqrt{15}$ $-\sqrt{12} + \sqrt{3} = 4\sqrt{6}$ Faux  Faux  Faux  Faux  Faux  Faux
100742.tex - 100743.tex - 100744.tex - 100745.tex - 100746.tex - 100747.tex - 100749.tex - 100750.tex - 100751.tex - 100752.tex -	$-\sqrt{2700} = 30\sqrt{3}$ $-\sqrt{72} = 3\sqrt{8}$ $-\sqrt{72} = 6\sqrt{2}$ $-\sqrt{72} = 6\sqrt{2}$ $-\sqrt{72} = 2\sqrt{9}$ $-\sqrt{2} + \sqrt{8} = 3\sqrt{2}$ $-\sqrt{3} + \sqrt{2} = \sqrt{5}$ $-\sqrt{3} + \sqrt{2} = \sqrt{6}$ $-\sqrt{27} + \sqrt{3} = 4\sqrt{3}$ $-\sqrt{27} + \sqrt{3} = 5\sqrt{3}$ $-\sqrt{12} + \sqrt{3} = 5\sqrt{3}$ $-\sqrt{12} + \sqrt{2} = \sqrt{8}$ $-\sqrt{12} + \sqrt{3} = \sqrt{15}$ $-\sqrt{12} + \sqrt{3} = 4\sqrt{6}$ $-\sqrt{20} + 7\sqrt{5} = \sqrt{15}$ $-2\sqrt{12} + 4\sqrt{3} = 4\sqrt{6}$ Faux $-\sqrt{20} + 7\sqrt{5} = \sqrt{15}$ Faux $-\sqrt{20} + 7\sqrt{5} = \sqrt{15}$ Faux $-\sqrt{20} + 7\sqrt{5} = \sqrt{15}$ Faux
100742.tex - 100743.tex - 100744.tex - 100745.tex - 100746.tex - 100747.tex - 100749.tex - 100750.tex - 100752.tex - 100753.tex -	$-\sqrt{2700} = 30\sqrt{3} \qquad \qquad$
100742.tex - 100743.tex - 100744.tex - 100745.tex - 100746.tex - 100747.tex - 100749.tex - 100750.tex - 100752.tex - 100753.tex - 100754.tex -	$-\sqrt{2700} = 30\sqrt{3} \qquad \qquad$

100756.tex —		V.a.:
100757.tex —	$2\sqrt{81} + 4\sqrt{49} = 36$	
100758.tex —	$(\sqrt{2}+2)(\sqrt{2}-1) = \sqrt{2}$	
100759.tex —	$(\sqrt{2}+2)(\sqrt{2}+1) = 2+3\sqrt{2}$	
100760.tex —	$(\sqrt{2}+1)(\sqrt{2}+1) = 3+\sqrt{8}$	
100761.tex —	$(\sqrt{3}-1)(1-\sqrt{3}) = -4-2\sqrt{3}$	
100762.tex —	$\sqrt{2}(\sqrt{2}+\sqrt{3})=2+\sqrt{6}$	
100763.tex —	$\sqrt{2}(\sqrt{8} - \sqrt{2}) = 2$	
100764.tex —	$(\sqrt{5} + \sqrt{2})\sqrt{10} = 5\sqrt{2} + 2\sqrt{5}$	
100765.tex —	$(\sqrt{2} + \sqrt{3})(\sqrt{2} - \sqrt{3}) = 1$	
100766.tex —	$\sqrt{3}(\sqrt{12} - \sqrt{3}) = 3$	
100767.tex —	$(\sqrt{18} + \sqrt{8})\sqrt{2} = 10$	
100768.tex —	$\sqrt{2}(\sqrt{18} - \sqrt{8}) = 4$	
100769. tex	$\sqrt{3+2\sqrt{2}} = 1+\sqrt{2}$	
100770.tex —		
100771.tex —		
100772. tex	$\sqrt{\sqrt{8}} = 2$	Faux
100773.tex —	$\sqrt{\sqrt{128}} = 4$	Faux
100774.tex —	$\sqrt{6 + 2\sqrt{2}} = 2 + 2\sqrt{2}$	Faux
100775.tex —	$\sqrt{4+2\sqrt{3}} = 1+\sqrt{3}$	
100776.tex —	$\sqrt{3}(\sqrt{6} + \sqrt{8}) = 3\sqrt{2} + 2\sqrt{3}$	
100777.tex —	$(\sqrt{3}+1)(3+\sqrt{3}) = 6+4\sqrt{3}$	
100778.tex —	Va	
100779.tex —	$\frac{\sqrt{3}}{\sqrt{20}} = \frac{1}{2}\sqrt{\frac{3}{5}}$	
100780.tex —	$\frac{3}{\sqrt{6}} = \frac{6}{\sqrt{2}}$	
100781.tex —	$\frac{6}{\sqrt{2}} = \sqrt{3}$	
100782.tex —	$\frac{10}{\sqrt{8}} = \frac{5}{\sqrt{2}}$	
100783.tex —	$\frac{6}{\sqrt{12}} = \sqrt{3}$	
100784.tex —	$\frac{1}{\sqrt{2}+1} = \sqrt{2}-1$	Vrai
	$\frac{\sqrt{2}+1}{\sqrt{3}-1} = 1+\sqrt{3}$	Vrai
	√3 − 1 	Vrai

100786.tex —	$\frac{\sqrt{2}-1}{\sqrt{2}+1} = 3 - \sqrt{8}$	
	$\sqrt{2}+1$ V	rai
100787.tex —	$\frac{\sqrt{8}}{\sqrt{3}-1} = \sqrt{6} - \sqrt{2}$	101
	$\sqrt{3}-1$ $\sqrt{3}-1$ $\sqrt{3}-1$ $\sqrt{3}-1$	aux
100788.tex —	$\frac{1}{\sqrt{8}} + \frac{1}{\sqrt{20}} = \frac{\sqrt{5} + \sqrt{2}}{4\sqrt{10}}$	
	$\sqrt{8} \sqrt{20} 4\sqrt{10}$ F	aux
100789.tex —	$\frac{\sqrt{2}}{\sqrt{3}} + \frac{\sqrt{3}}{\sqrt{2}} = \frac{5}{\sqrt{6}}$	
	V	rai
100790.tex —	$-\frac{\sqrt{48}+\sqrt{75}}{\sqrt{3}}=9$	
	V	rai
100791.tex —	$\frac{\sqrt{2}}{\sqrt{8}-\sqrt{2}}=1$	
	m V	rai
100792.tex —	$\frac{2}{\sqrt{5}+1} = \frac{\sqrt{5}-1}{2}$	
	V	rai
100793.tex —	$\frac{2}{\sqrt{3}+1} = \frac{\sqrt{3}-1}{2}$	
100704 tox	From $\sqrt{3} + \frac{1}{\sqrt{3}} = \frac{4}{\sqrt{3}}$	aux
100754.tex	$\sqrt{3} + \sqrt{3} = \sqrt{3}$	rai
100795.tex —	$\sqrt{2} + \frac{1}{\sqrt{2}} = 3\sqrt{2}$	101
	F	aux
100796.tex —	$\frac{1}{3+\sqrt{5}} = \frac{3-\sqrt{5}}{2}$	
	F.	aux
100797.tex —	$\frac{1}{1+\sqrt{2}} = 1 - \sqrt{2}$	
		aux
100798.tex —	$\frac{1}{1+\sqrt{3}} = \frac{1-\sqrt{3}}{2}$	
100799 tex —	$\frac{1}{\sqrt{5} + \sqrt{3}} = \sqrt{5} - \sqrt{3}$	aux
		aux
100800.tex —	$\frac{1}{\sqrt{2}+\sqrt{8}} = \frac{\sqrt{2}}{6}$	
	$\mathbf{V}$	rai
100801.tex —	$\frac{1}{2+\sqrt{5}} = \sqrt{5}-2$	
	V	rai
100802.tex —	$\frac{1}{\sqrt{3} + \sqrt{4}} = \sqrt{3} - 2$	
100803 tex —	$\frac{1}{\sqrt{2} + \sqrt{3}} = \sqrt{3} - \sqrt{2}$	aux
100003.16x	$\sqrt{2} + \sqrt{3} - \sqrt{3} - \sqrt{2}$	rai
100804.tex —	$\frac{\sqrt{2}}{\sqrt{3}} + \frac{1}{\sqrt{6}} = \frac{\sqrt{3}}{\sqrt{2}}$	101
	V	rai
100805.tex —	$\sqrt{2} - \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$	
	V	rai
100806.tex —	3/5 est une solution de l'équation $5x + 4 = 7$ .	rai
100807.tex —	3/2 est une solution de l'équation $4x + 1 = 7$ .	
100808.tex —	V 3/4 est une solution de l'équation $4x - 3 = 6$ .	rai
	F	aux
tonona.tex —	5/6 - 3/4 = 1/12. V	rai
100810.tex —	7/9 + 5/6 = 29/18.	roi

100811.tex —	-11/4 - 13/8 = 9/8.	Vrai
100812.tex $-$	-5/14 + 5/6 = 25/21.	Vrai
100813.tex —	-1/6 - 3/4 = 7/12.	Faux
100814.tex —	-3/9 + 5/6 = 22/18.	
100815.tex —	-7/4 + 13/8 = 25/8.	Faux
100816.tex —	-3/14 + 5/6 = 43/42.	Faux
100817.tex —	$-5 \times 13 = 65 \text{ et } 7 \times 19 = 133.$	Faux
100818.tex —	$-5 \times 13 = 65$ ou $7 \times 15 = 115$ .	
100819.tex —	$-5 \times 13 = 65 \text{ et } 7 \times 15 = 115.$	
100820.tex —	- Soit $z \in \mathbb{C}$ . On a $\overline{z}^2 = \overline{z^2}$ .	Faux
100821.tex —	– Soient $z$ et $z'$ deux complexes. On a $\overline{z+z'}=\overline{z}+\overline{z'}$ .	Vrai
100822.tex —	– Soient $z$ et $z'$ deux complexes. On a $ z + z'  =  z  +  z' $ .	Vrai
100823.tex $-$	- (2+i)(1+2i) = 5i	Faux
100824.tex —	- (2+i)(1-2i) = -i	Vrai
100825.tex $-$	$-  2+i  = \sqrt{3}.$	Faux
100826.tex $-$	$-  2+i  = \sqrt{5}.$	Faux
100827.tex —	$-  4+i  \ge  3+3i .$	Vrai
100828.tex $-$	$-  3+i  \ge  2+2i .$	Faux
$100829. ext{tex}$		Vrai
100830.tex $-$		
100831.tex —	$-\frac{i-1}{i+1} = -i.$	
100832.tex —	$-\frac{2i-3}{2i+3} = \frac{5-6i}{13}.$	Faux
100833.tex —	– Le trinôme $3X^2 - 6X + 3$ a une racine double dans $\mathbb{R}$ .	
	– Le trinôme $8X^2 - 8X + 2$ a une racine double dans $\mathbb{R}$ .	
100835.tex -	– Le trinôme $2X^2 - 4X + 2$ a une racine double dans $\mathbb{R}$ .	
	Le trinôme $3x^2 - 11x + 9$ a une racine double dans $\mathbb{R}$ .	
100837.tex —	– Si $x$ est un réel, alors $(\sqrt{x^2})^3 = x^3$ .	
100838.tex —	$- (a+b)^3 = a^3 + 3ab + b^3$	Faux
100839.tex —	$- (a+b)^3 = a^3 + 3ab + 3ba + b^3$	
100840.tex —	$- (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$	
	$-a^3 - b^3 = (a-b)(a^2 + ab + b^2).$	Vrai
	- La dérivée de $x \mapsto \sin(3+2x)$ est $x \mapsto 3\cos(3+2x)$ .	Vrai
	- La dérivée de $x \mapsto \cos(3-2x)$ est $x \mapsto 2\sin(3-2x)$	Faux

100844.tex —	La dérivée de $x\mapsto \sin(3x+2)$ est $x\mapsto 3\cos(3x+2)$ .	Vrai
100845.tex —	La dérivée de $x \mapsto \cos(2x+3)$ est $x \mapsto 2\sin(2x+3)$ .	Vrai
100846.tex —	Soit $x \in \mathbb{R}$ . Le domaine de définition de l'expression $\sqrt{(x^2 - 5)}$ est $]-\infty, -\sqrt{5}[\cup]\sqrt{5}, +\infty[$ .	Faux
	Soit $x \in \mathbb{R}$ . Le domaine de définition de l'expression $\sqrt(5-x^2)$ est $[-\sqrt{5},\sqrt{5}]$ .	Faux
100848.tex —	Soit $x \in \mathbb{R}$ . Le domaine de définition de l'expression $\sqrt(5 - \ln x)$ est $]0, e^5]$ .	Vrai Vrai
100849.tex —	Soit $x \in \mathbb{R}$ . Le domaine de définition de l'expression $\sqrt{(\ln x)}$ est $\mathbb{R}_+^*$ .	
100850.tex —	Soit $x \in \mathbb{R}$ . Le domaine de définition de l'expression $\ln(5-\sqrt{x})$ est $[0,25[$ .	Faux
100851.tex	Soit $x \in \mathbb{R}$ . Le domaine de définition de l'expression $\sqrt(2 - \ln x)$ est $[0, e^2]$ .	Vrai
100852.tex —	$\lim \frac{3\sqrt{n}+n}{2\sqrt{n}+n} = \frac{3}{2}.$	Faux
100853.tex	La fonction $f: \mathbb{R}^* \to \mathbb{R}, x \mapsto 1/x$ est décroissante.	Faux
100854.tex —	$\sqrt{68} = 4\sqrt{17}.$	Faux
100855.tex —	$\sqrt{48} = 4\sqrt{3}.$	Faux
100856.tex —	$\frac{2+\sqrt{3}}{2-\sqrt{3}} = 7 + 4\sqrt{3}.$	Vrai
100857.tex —	$\frac{\sqrt{2}+3}{\sqrt{2}-3} = \frac{5+6\sqrt{2}}{5}.$	Vrai
100858.tex —	La relation $\star$ sur $\mathbb R$ définie par $x\star y\iff xy^2=yx^2$ est une relation d'équivalence	Faux
100859.tex —	La relation $\star$ sur $\mathbb{R}$ définie par $x \star y \iff \cos^2(x) + \sin^2(y) = 1$ est une relation d'équivalence	Vrai
100860.tex —	La relation $\star$ sur $\mathbb R$ définie par $x\star y\iff xy^2=yx^2$ coïncide avec l'égalité.	Vrai Faux
100861.tex —	La relation $\star$ sur $\mathbb R$ définie par $x\star y\iff xe^y=ye^x$ est une relation d'équivalence	
100862.tex —	La relation $\square$ sur $\mathbb{R}^2$ définie par $(x,y)\square(x',y')\iff x=x'$ est une relation d'équivalence.	Vrai
	La relation $\square$ sur $\mathbb{R}^2$ définie par $(x,y)\square(x',y')\iff x^2=x'^2$ est une relation d'équivalence.	
100864.tex-	La relation $\square$ sur $\mathbb{R}^2$ définie par $(x,y)\square(x',y')\iff x=-y'$ est une relation d'équivalence.	
$100865. tex -\!\!\!\!-$	La relation $\heartsuit$ sur $\mathbb{R}^2$ définie par $y\heartsuit y\iff x+3y=5$ est une relation d'équivalence.	
$100866. tex -\!\!\!\!-$	La relation $\bullet$ sur $\mathbb{R}^2$ définie par $x \bullet y \iff (\exists \lambda \in \mathcal{R}, x + 3y = \lambda))$ est une relation d'équivalence.	
100867. tex	La relation $\mathcal{R}$ sur $\mathbb{N}$ définie par $n\mathcal{R}m \iff n^2 + m^2 = 2nm + 2n$ est une relation d'équivalence.	
$100868. tex -\!\!\!\!-$	La relation $\mathcal{R}$ sur $\mathbb{N}$ définie par $n\mathcal{R}m \iff n^2-m^2=2nm+2n$ est une relation d'équivalence.	
100869.tex-	La relation $\mathcal{R}$ sur $\mathbb{N}$ définie par $n\mathcal{R}m\iff n^2+m^2=2nm$ est une relation d'équivalence.	
$100870.\mathrm{tex} -\!\!\!\!-$	La relation $\mathcal{R}$ sur $\mathbb{N}$ définie par $n\mathcal{R}m \iff 3 (n-m)$ est une relation d'équivalence.	
100871. tex	La relation $\mathcal{R}$ sur $\mathbb{N}$ définie par $n\mathcal{R}m \iff (\exists k \in \mathbb{N}, n = km)$ ) est une relation d'équivalence.	
$100872. {\rm tex} -\!\!\!\!-$	La relation $\mathcal{R}$ sur $\mathbb{N}$ définie par $n\mathcal{R}m \iff (\exists k \in \mathbb{N}, n = k + m))$ est une relation d'équivalence.	
100873. tex	La relation $\mathcal{R}$ sur $\mathbb{N}$ définie par $n\mathcal{R}m \iff (\exists k \in \mathbb{Z}, n = k + m))$ est une relation d'équivalence.	
$100874. tex -\!\!\!\!-$	La relation $\mathcal{R}$ sur $\mathbb{N}$ définie par $n\mathcal{R}m\iff n m$ est une relation d'équivalence.	
	La relation $\star$ sur $\mathbb R$ définie par $x\star y\iff  x-1 \leq 1$ est une relation d'équivalence.	Faux

$100876. tex -\!\!\!\!-$	La relation $\star$ sur $\mathbb R$ définie par $x\star y\iff xy^2=yx^2$ est une relation d'équivalence	<b>T</b> 7 •
100877.tex — d'équivalence	La relation $\star$ sur un ensemble $E$ dont le graphe est la diagonale $\Delta_E := \{(t,t) \mid t \in E\}$ est une re	
100878.tex —	La relation $\star$ sur un ensemble $E$ dont le graphe est $E\times E$ est une relation d'équivalence	Vrai
100879.tex —	La relation $\star$ sur un ensemble $E$ non vide dont le graphe est vide est une relation d'équivalence	Vrai
100880.tex —	La relation $\star$ sur $\mathbb R$ dont le graphe est $\Gamma_\star=\{(x,y)\in\mathbb R^2\mid y=x^2\}$ est une relation d'équivalence	Faux
100881.tex —	La relation $\star$ sur $\mathbb R$ dont le graphe est $\Gamma_\star = \mathbb R \times \{0\}$ est une relation d'équivalence	Faux
100882.tex —	La relation $\star$ sur $\mathbb R$ définie par $x\star y\iff x\in\mathbb Z$ ou $y\in\mathbb Z$ est une relation d'équivalence	Faux
100883.tex —	La relation $\star$ sur $\mathbb R$ dont le graphe est $\Gamma_\star = \mathbb Z^2$ est une relation d'équivalence	Faux
100884.tex —	La relation $\diamond$ sur $\mathbb R$ dont le graphe est $\Gamma_{\diamond}=\{(x,y)\in\mathbb R^2\mid x=y \text{ ou } x=-y\}$ est une relation d'équiva	Faux alence Vrai
100885. tex	La relation † sur $\mathbb R$ dont le graphe est $\Gamma_{\dagger}=\{(x,y)\in\mathbb R^2\mid x^2+y^2\leq 2\}$ est une relation d'équivalence	Faux
100886.tex —	La relation $\odot$ sur $\mathbb R$ définie par $x\odot y\iff\cos^2(x)+\sin^2(y)=1$ est une relation d'équivalence	Vrai
100887.tex —	La relation $\star$ sur $\mathbb{R}$ définie par $x \star y \iff xy^2 = yx^2$ coïncide avec l'égalité.	vrai Faux
100888.tex —	La relation $\otimes$ sur $\mathbb{R}$ définie par $x \otimes y \iff xe^y = ye^x$ est une relation d'équivalence	raux Vrai
100889.tex —	La relation $\square$ sur $\mathbb{R}^2$ définie par $(x,y)\square(x',y')\iff x=x'$ est une relation d'équivalence.	Vrai Vrai
100890.tex —	La relation $\oplus$ sur $\mathbb{R}^2$ définie par $(x,y)\oplus(x',y')\iff x^2=x'^2$ est une relation d'équivalence.	Vrai Vrai
100891.tex —	La relation $\square$ sur $\mathbb{R}^2$ définie par $(x,y)\square(x',y')\iff x=-y'$ est une relation d'équivalence.	Viai Faux
100892.tex —	La relation $\heartsuit$ sur $\mathbb R$ définie par $x \heartsuit y \iff x + 3y = 5$ est une relation d'équivalence.	
100893.tex —	La relation $\bullet$ sur $\mathbb R$ définie par $x \bullet y \iff (\exists \lambda \in \mathcal R, x + 3y = \lambda))$ est une relation d'équivalence.	Faux
100894.tex —	La relation $\mathcal{R}$ sur $\mathbb{N}$ définie par $n\mathcal{R}m\iff n^2+m^2=2nm+2n$ est une relation d'équivalence.	Vrai E
100895.tex —	La relation $\mathcal{R}$ sur $\mathbb{N}$ définie par $n\mathcal{R}m\iff n^2-m^2=2nm+2n$ est une relation d'équivalence.	
	La relation $\mathcal{R}$ sur $\mathbb{N}$ définie par $n\mathcal{R}m\iff n^2+m^2=2nm$ est une relation d'équivalence.	
100897.tex —	La relation $\mathcal{R}$ sur $\mathbb{N}$ définie par $n\mathcal{R}m \iff 3 (n-m)$ est une relation d'équivalence.	
	La relation $\mathcal{R}$ sur $\mathbb{N}$ définie par $n\mathcal{R}m \iff (\exists k \in \mathbb{N}, n = km))$ est une relation d'équivalence.	
	La relation $\mathcal{R}$ sur $\mathbb{N}$ définie par $n\mathcal{R}m \iff (\exists k \in \mathbb{N}, n = k + m))$ est une relation d'équivalence.	
	La relation $\mathcal{R}$ sur $\mathbb{N}$ définie par $n\mathcal{R}m \iff (\exists k \in \mathbb{Z}, n = k + m))$ est une relation d'équivalence.	
	La relation $\mathcal{R}$ sur $\mathbb{N}$ définie par $n\mathcal{R}m\iff n m$ est une relation d'équivalence.	
100902.tex —	La relation $\star$ sur $\mathbb R$ définie par $x\star y\iff  x-1 \le 1$ est une relation d'équivalence.	
$100903. {\rm tex} - \\$	La relation $\triangleleft$ sur $\mathbb R$ définie par $x \triangleleft y \iff x^2 \leq y^2$ est une relation d'ordre.	
$100904. tex -\!\!\!\!-$	La relation $\triangleleft$ sur $\mathbb R$ définie par $x \triangleleft y \iff x^3 \leq y^3$ est une relation d'ordre.	
$100905. tex -\!\!\!\!-$	La relation $\preccurlyeq$ sur $\mathbb{N}^*$ définie par $p \preccurlyeq q \iff \exists k \in \mathbb{N}^*, q = p^k$ est une relation d'ordre.	
	La relation de divisibilité sur $\mathbb{N}^*$ est une relation d'ordre.	
100907.tex —	La relation de divisibilité sur $\mathbb N$ est une relation d'ordre.	vraı
		Vrai

100908.tex —	La relation de divisibilité sur N est une relation d'ordre total.	Б
100909.tex —	La relation de divisibilité sur $\mathbb{N}^*$ n'a pas de plus grand élément.	
100910.tex —	La relation de divisibilité sur $\mathbb N$ n'a pas de plus grand élément.	
100911.tex —	La relation de divisibilité sur $\{1,2,3,4\}$ n'a pas de plus grand élément.	
100912.tex —	La relation de divisibilité sur $\{0,1,2,3,4\}$ n'a pas de plus grand élément.	
100913.tex —	L'ensemble $\{0,1,2,3,4\}$ muni de la relation de divisibilité admet 4 comme plus grand élément.	
100914.tex —	L'ensemble $\{0,1,2,3,4\}$ muni de la relation de divisibilité admet $0$ comme plus petit élément.	Faux
100915.tex —	L'ensemble $\{0,1,2,3,4\}$ muni de la relation de divisibilité admet 1 comme plus petit élément.	
100916.tex —	L'ensemble $\{0,1,2,3,4\}$ muni de la relation de divisibilité admet $0$ comme plus grand élément.	
100917.tex —	La relation de divisibilité sur $\mathbb Z$ est une relation d'ordre.	Faux
100918.tex —	Si $E$ est un ensemble, la relation d'inclusion sur $\mathcal{P}(E)$ est une relation d'ordre.	
100919.tex —	Si $E$ est un ensemble, la relation d'inclusion sur $\mathcal{P}(E)$ est une relation d'ordre total.	
100920.tex —	Si $E$ est un ensemble, la relation d'inclusion sur $\mathcal{P}(E)$ possède un plus grand élément	
100921.tex —	La relation $<$ sur $\mathbb{R}^2$ définie par $(x,y)<(x',y')\iff (x\leq x' \text{ ou } y\leq y')$ est une relation d'ordre.	
100922.tex —	La relation $\mathcal{R}$ sur $\mathbb{R}^2$ définie par $(x,y)\mathcal{R}(x',y') \iff (x \leq x' \text{ et } y \leq y')$ est une relation d'ordre.	
100923.tex —	La relation $\star$ sur $\mathbb N$ définie par $x\star y\iff x-y\geq 1$ est une relation d'ordre.	
100924.tex —	La relation $\star$ sur $\mathbb N$ définie par $x\star y\iff \exists k\in\mathbb N, x^2=k-y^2$ est une relation d'ordre.	
100925.tex —	La relation $\star$ sur $\mathbb N$ définie par $x\star y\iff \exists k\in\mathbb N, x^2=k+y^2$ est une relation d'ordre.	
100926.tex —	Soit $f: \mathcal{P} \to \mathcal{P}$ . L'assertion « $f$ est une rotation» signifie « $\exists \Omega \in \mathcal{P}, \exists \theta \in \mathbb{R}, \forall z \in \mathbb{C}, \tilde{f}(z) = e^{i\theta}(z - \omega)$	
100927.tex —	Soit $f: \mathcal{P} \to \mathcal{P}$ . L'assertion « $f$ est une rotation» signifie « $\exists \Omega \in \mathcal{P}, \exists \theta \in \mathbb{R}, \forall z \in \mathbb{C}, \tilde{f}(z) = e^{i\theta}(z + \omega)$	
100928.tex — $e^{i\theta}(z-\omega) + \omega$ .»	Soit $f: \mathcal{P} \to \mathcal{P}$ et $\Omega \in \mathcal{P}$ . L'assertion « $f$ est rotation de centre $\Omega$ » signifie « $\exists \theta \in \mathbb{R}, \forall z \in \mathbb{C}, \tilde{f}$	(z) =
$\begin{array}{ccc} \textbf{100929.tex} & \\ e^{i\theta}(z-\omega) + \omega. \end{array}$		(z) =
$100930. ext{tex} - e^{i heta}(z-\omega) + \omega.  ext{``}$	Soit $f: \mathcal{P} \to \mathcal{P}$ , $\Omega \in \mathcal{P}$ et $\theta \in \mathbb{R}$ . L'assertion « $f$ est rotation d'angle $\theta$ et centre $\Omega$ » signifie « $\forall z \in \mathbb{C}$ , $\tilde{f}$	
$\begin{array}{ll} \mathbf{100931.tex} &  \\ \mathbb{C}, \tilde{f}(z) = e^{i\theta}(z -  ) \end{array}$		$\forall z \in$
$\mathbf{100932.tex} - \mathbb{C}, \tilde{f}(z) = e^{i\theta}(z - \mathbb{C})$	· · · · · · · · · · · · · · · · · · ·	$,\forall z\in$
$\mathbf{100933.tex} - \mathbb{C}, \tilde{f}(z) = e^{i\theta}(z - \mathbb{C})$		$, \forall z \in$
100934.tex —	Deux rotations commutent toujours.	
100935.tex —	Deux rotations de même centre commutent toujours.	
100936.tex —	La composée de deux rotations est une rotation.	
100937.tex —	La composée de deux rotations de même centre est une rotation de même centre.	Faux

Faux
100939.tex — La composée de deux rotations de centre distincts est une translation.  Faux
<b>100940.tex</b> — Soient $\theta, \theta' \in \mathbb{R}$ . La composée de deux rotations d'angles $\theta$ et $\theta'$ est une rotation d'angle $\theta + \theta'$ . Faux
100941.tex — Une rotation conserve l'alignement.  Vrai
100942.tex — Une rotation conserve les distances.
Vrai  100943.tex — Une rotation conserve les rapports de longueurs (autrement dit les proportions).
100944.tex — Une rotation conserve les milieux.
100946.tex — $\begin{cases} 5x - y = 1 \\ 2x + 3y = 2 \end{cases}$ admet une unique solution.
100947.tex — $\begin{cases} 2x + 3y = 1 \\ 4x + 6y = 2 \end{cases}$ admet une unique solution.
100948.tex — $\begin{cases} -x + 3y &= -1 \\ 2x - 6y &= 0 \end{cases}$ n'admet pas de solutions. Vrai
100949.tex — $\begin{cases} 2x + 3y = 1 \\ 4x + 6y = 2 \end{cases}$ n'admet pas de solutions. Faux $100950.\text{tex} \longrightarrow \begin{cases} 2x + y = 1 \\ 3x + y = 1 \end{cases}$ admet des solutions.
x-y = 2
100951.tex — $\begin{cases} 2x + 3y = 1 \\ 4x + 6y = 2 \end{cases}$ admet des solutions.
$4x + 6y = 2$ $100952.tex - \begin{cases} 3x + 2y = 1 \\ 6x + 4y = 1 \end{cases}$ admet des solutions.  Faux
100953.tex — $\begin{cases} x - 3y = 1 \\ 2x - 6y = 2 \end{cases}$ admet une infinité de solutions. Vrai
100954.tex — $\begin{cases} 2x + 3y = 1 \\ x + 3y = 2 \end{cases}$ admet une infinité de solutions. Faux
100955.tex — $\begin{cases} 2x - y = 3 \\ 4x - 2y = 6 \end{cases}$ admet plusieurs solutions.
100956.tex — $\begin{cases} 2x - y = 6 \\ x - 2y = 3 \end{cases}$ admet plusieurs solutions.
100957.tex — $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ est une solution de $\begin{cases} 6x - 2y = 4 \\ 2x + y = 3 \end{cases}$ . Vrai
100958.tex — $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ est une solution de $\begin{cases} 2x + y = 1 \\ x - y = 2 \end{cases}$ . Vrai
100959.tex — $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ est une solution de $\begin{cases} x - 2y = 0 \\ -x + y = 1 \end{cases}$ . Faux
<b>100960.tex</b> — $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ est l'unique solution de $\begin{cases} 3x - 2y = 1 \\ x + y = 2 \end{cases}$ .
vrai

<b>100961.tex</b> — $\binom{2}{1}$ est l'unique solution de $\begin{cases} x-3y & = -1 \\ -2x+6y & = 2 \end{cases}$ . Faux
<b>100962.tex</b> — L'ensemble des solutions de $\begin{cases} 2x - y = 3 \\ 4x - 2y = 6 \end{cases}$ est une droite.
100963.tex — L'ensemble des solutions de $\begin{cases} 2x-y &= 6 \\ x-2y &= 3 \end{cases}$ est une droite. Faux
<b>100964.tex</b> — L'ensemble des solutions de $\begin{cases} x-y = 1 \\ x+y = 2 \end{cases}$ contient un seul élément.
100965.tex — L'ensemble des solutions de $\begin{cases} 2x - 4y = -2 \\ -x + 2y = 1 \end{cases}$ contient un seul élément.
<b>100966.tex</b> — L'ensemble des solutions de $\begin{cases} -x + 2y = 1 \\ 2x - 4y = 3 \end{cases}$ contient un seul élément.
100967.tex — L'ensemble des solutions de $\begin{cases} -x + 2y = 1 \\ 2x - 4y = 3 \end{cases}$ est vide.
100968.tex — L'ensemble des solutions de $\begin{cases} -x + 2y &= 1 \\ 2x - y &= 1 \end{cases}$ est vide.
100969.tex — L'ensemble des solutions de $\begin{cases} x+y = 4 \\ x-y = 2 \end{cases}$ est $\left\{ \begin{pmatrix} 3 \\ 1 \end{pmatrix} \right\}$ .
100970.tex — L'ensemble des solutions de $\begin{cases} x+y = 4 \\ x-y = 2 \end{cases}$ est $\left\{ \begin{pmatrix} 1 \\ 3 \end{pmatrix} \right\}$ .
Faux $ \begin{array}{lll} \mathbf{100971.tex} & & = 0 \\ -x + 3y & = -1 \end{array} $ est équivalent à $0 = 1$ .
100972.tex — $\begin{cases} -x+3y & = -1 \\ 2x-6y & = 2 \end{cases}$ est équivalent à l'équation $x-3y=1$ .
100973.tex — $\begin{cases} 5x - 2y = 3 \\ x + 2y = 3 \end{cases}$ est équivalent au système $\begin{cases} x = 1 \\ y = 1 \end{cases}$ .
100974.tex — $\begin{cases} 4x - y = 2 \\ x + y = 2 \end{cases}$ est équivalent au système $\begin{cases} x = 1 \\ y = 2 \end{cases}$ .
Faux $100975.tex - \cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$ .
100976.tex — $\cos(a+b) = \sin(a)\sin(b) + \cos(a)\cos(b)$ . Faux
100977.tex — $\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b)$ . Vrai
100978.tex — $\sin(a+b) = \sin(a)\sin(b) + \cos(a)\cos(b)$ . Faux
100979.tex — $\sin(a - b) = \sin(a)\cos(b) - \sin(b)\cos(a)$ . Vrai
100980.tex — $\sin(a-b) = \cos(a)\sin(b) - \sin(a)\cos(b)$ . Faux
100981.tex — $\cos(2a) = 2\sin^2(a) - 1$ . Faux
<b>100982.tex</b> — $\cos(2a) = 1 - 2\cos^2(a)$ .
Faux $100983.\text{tex} - \cos(2a) = \cos^2(a) - \sin^2(a)$ . Vrai
100984.tex — $\cos(2a) = \cos^2(a) + \sin^2(a)$ . Faux

100985.tex —	$\sin(2a) = 2\sin(a)\cos(a).$	Vnoi
100986.tex —	$\sin(2a) = 2\sin^2(a) - 1.$	Vrai
100987.tex —	$\cos^2(a) = \frac{1 + \cos(2a)}{2}$ .	Faux
100988.tex —	$\sin^2(a) = \frac{1+\sin(2a)}{2}$ .	Vrai
100989.tex —	$\sin(a+\pi) = -\sin(a).$	Faux
100990.tex —	$\sin(a + \frac{\pi}{2}) = \cos(a).$	Vrai
100991.tex —	$\sin(a+2\pi) = -\sin(a).$	Vrai
100992.tex —	$\sin(-a) = \sin(a).$	Faux
100993.tex —	$\cos(a+\pi) = -\cos(a).$	Faux
100994.tex —	$\cos(a + \frac{\pi}{2}) = -\sin(a).$	Vrai
100995.tex —	$\cos(-a) = \cos(a).$	Vrai
100996.tex —	$\cos(a+\pi) = \cos(a).$	Vrai
100997.tex —	$\cos(a + \frac{\pi}{2}) = \sin(a).$	Faux
100998.tex —	$\cos(a+2\pi) = -\cos(a).$	Faux
100999.tex —	$\cos(-a) = -\cos(a).$	Faux
101000.tex —	$\cos(a - \frac{\pi}{2}) = \sin(a).$	Faux
101001.tex —	$\cos(\frac{\pi}{2} - a) = \sin(a).$	Vrai
101002.tex —	$\sin(a - \frac{\pi}{2}) = \cos(a).$	Vrai
	$\sin(\frac{\pi}{2} - a) = \cos(a).$	Faux
101004.tex —	$\cos(7\pi/6) = -\sqrt{3}/2.$	
101005.tex —	$\cos(5\pi/4) = -1/\sqrt{2}.$	
$101006. {\rm tex} -\!\!\!\!-$	$\cos(4\pi/3) = -1/2.$	
101007.tex —	$\cos(11\pi/6) = -1/2.$	
101008.tex —	$\sin(2\pi/3) = \sqrt{2}/2.$	
101009. tex	$\sin(5\pi/6) = -\sqrt{3}/2.$	
101010.tex —		
101011.tex —	$\sin(7\pi/6) = -\sqrt{2}/2.$	
	$\sin(5\pi/4) = -1/2.$	
101013.tex —	$\sin(4\pi/3) = \sqrt{3}/2.$	
	$\cos(11\pi/6) = \sqrt{3}/2.$	
101015.tex —	$\sin(2\pi/3) = \sqrt{3}/2.$	
	$\sin(3\pi/4) = 1/\sqrt{2}.$	
	$\sin(5\pi/6) = 1/2$	vral

101018.tex —		rai
	$ \begin{array}{ll} \operatorname{Cos}(a-b) & = \operatorname{cos}(a)\operatorname{cos}(b) - \sin(a)\sin(b). \\ \end{array} $	rai
	F	aux
	$\sin(a+b) = \cos(a)\sin(b) + \sin(a)\cos(b).$ V	rai
	$\cos(2a) = 2\cos^2(a) - 1.$ V	rai
101022.tex —	$\cos(2a) = 1 - 2\sin^2(a).$ V	rai
101023.tex —	$\sin^2(a) = \frac{1 - \cos(2a)}{2}.$ $V$	
101024.tex —	$-\cos^2(a) = \frac{1-\cos(2a)}{2}.$	
101025.tex —	$Fax = \sin(a + 2\pi) = \sin(a).$	
101026.tex —	$V = \sin(-a) = -\sin(a).$	
101027.tex —	$V = \sin(a + \pi) = \sin(a).$	
101028.tex —	$\sin(a + \frac{\pi}{2}) = -\cos(a).$	aux
	$\sin(7\pi/6) = -1/2.$	aux
		rai
	$V = \sin(4\pi/3) = -\sqrt{3}/2.$	rai
	V	rai
		aux
	$\cos(5\pi/4) = \sqrt{2}/2.$ From Fig. 1. From Fig. 1. From Fig. 2. From Fig.	aux
101034.tex —	$\cos(4\pi/3) = -\sqrt{3}/2.$ From Eq. (4)	aux
101035.tex —	$\cos(3\pi/2) = 0.$	rai
101036.tex —	$-\cos(5\pi/3) = 1/2.$ V	rai
101037.tex —	$\cos(7\pi/4) = \sqrt{2}/2.$ V	
101038.tex —	$\cos(3\pi/2) = -1.$	
101039.tex —	$-\cos(5\pi/3) = -\sqrt{3}/2.$	
101040.tex —	$-\cos(7\pi/4) = 1/2.$	
101041.tex —	$\sin(3\pi/4) = 1/2.$	
101042.tex —	$\cos(a+2\pi) = \cos(a).$	aux
101043.tex —	$\tan(a+b) = \frac{\tan(a)+\tan(b)}{1-\tan(a)\tan(b)}.$	rai
	$V = \tan(a) \tan(b)$ $-\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 + \tan(a) \tan(b)}.$	rai
	Fig. 1	aux
	$\tan(a+b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a) \tan(b)}.$ Fraction $\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a) - \tan(b)}.$	aux
101046.tex —	$\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}.$ V	rai
101047.tex —	$- \tan(0) = 0.$ V	rai
101048.tex —	$\tan(\pi/6) = \sqrt{3}/3.$ V	
101049.tex —	$\tan(\pi/3) = \sqrt{3}.$	
		T C0.1

$101050.\mathrm{tex} - $	$\tan(\pi/2)$ n'est pas défini.
101051.tex —	$\tan(2\pi/3) = -\sqrt{3}.$ Vrai
101052.tex —	$\tan(3\pi/4) = -1.$
101053.tex —	$\tan(3\pi/4)$ est défini.
101054.tex —	
101055. tex	$\tan(3\pi/4)$ n'est pas défini.
101056.tex —	$\tan(5\pi/6) = \sqrt{3}/3.$
101057.tex —	
101058.tex —	$\tan(\pi)$ n'est pas défini.
101059.tex —	$\tan(7\pi/6) = -\sqrt{3}/3.$
101060. tex	$\tan(5\pi/4) = -1.$ Faux
101061.tex —	tan( $5\pi/4$ ) n'est pas défini. Faux Faux Faux
101062.tex —	$\tan(4\pi/3) = -\sqrt{3}.$
101063. tex	$\tan(3\pi/2)$ est défini.
101064.tex —	$\tan(5\pi/3) = \sqrt{3}.$ Faux Faux
101065.tex —	$\tan(7\pi/4) = 1.$
101066. tex	$\tan(7\pi/4)$ n'est pas défini.
101067.tex —	$\tan(11\pi/6) = \sqrt{3}/3.$ Faux
 101068.tex —	$\tan(a) = \tan(b) \Leftrightarrow (a \equiv b[\pi]).$ Faux
$101069. ext{tex}$ —	
101070.tex —	$\cos(a) = \cos(b) \Leftarrow (a \equiv -b[2\pi]).$ Vrai
 101071.tex —	
101072.tex —	
101073. tex	$\cos(a) = \cos(b) \Rightarrow (a \equiv b[2\pi]).$ Vrai
101074.tex —	Faux $\cos(a) = \cos(b) \Rightarrow (a \equiv -b[2\pi]).$
101075.tex —	$\sin(a) = \sin(b) \Rightarrow (a \equiv b[2\pi]).$ Faux
101076.tex —	$\sin(a) = \sin(b) \Rightarrow (a \equiv \pi - b[2\pi]).$ Faux
101077.tex —	$\cos(a) = \cos(b) \Leftarrow (a \equiv \pi - b[2\pi]).$
101078. tex	Si $t = \tan \frac{x}{2}$ , on a $\cos(x) = \frac{1-t^2}{1+t^2}$ .
101079.tex —	Vrai Si $t = \tan \frac{x}{2}$ , on a $\sin(x) = \frac{2t}{1+t^2}$ .
101080.tex —	Si $t = \tan \frac{x}{2}$ , on a $\tan(x) = \frac{2t}{1+t^2}$ .
101081.tex —	$\tan(a-b) = \frac{\tan(a)-\tan(b)}{1-\tan(a)\tan(b)}.$ Faux
	$\tan(a-b) = \frac{\tan(a)+\tan(b)}{1-\tan(a)\tan(b)}.$ Faux

101002 tox	ton(0) agt défini	Faux
	$\tan(0)$ est défini.	Vrai
101084.tex —	$\sin(a) = \sin(b) \Leftarrow (a \equiv -b[2\pi]).$	Faux
101085.tex —	$\cos(a) = \cos(b) \Leftrightarrow (a \equiv b[2\pi]).$	
101086.tex —	$\sin(a) = \sin(b) \Leftrightarrow (a \equiv b[2\pi]).$	
101087.tex —	$\cos(a) = \cos(b) \Leftrightarrow (a \equiv b[2\pi] \text{ et } a \equiv -b[2\pi]).$	
101088.tex —	$\sin(a) = \sin(b) \Leftrightarrow (a \equiv b[2\pi] \text{ et } a \equiv \pi - b[2\pi]).$	
101089.tex —	$\cos(a) = \cos(b) \Leftrightarrow (a \equiv b[2\pi] \text{ ou } a \equiv \pi - b[2\pi]).$	
101090.tex —	$\sin(a) = \sin(b) \Leftrightarrow (a \equiv b[2\pi] \text{ ou } a \equiv -b[2\pi]).$	
101091.tex —	$\tan(a) = \tan(b) \Leftrightarrow (a \equiv b[2\pi] \text{ ou } a \equiv -b[2\pi]).$	
101092.tex —	Si $t = \tan \frac{x}{2}$ , on a $\tan(x) = \frac{2t}{1-t^2}$ .	
101093.tex —	Si $t = \tan \frac{x}{2}$ , on a $\cos(x) = \frac{1+t^2}{1-t^2}$ .	
101094.tex —	Si $t = \tan \frac{x}{2}$ , on a $\sin(x) = \frac{2t}{1-t^2}$ .	
101095.tex —	$\cos(a) = \cos(b) \Leftrightarrow (a \equiv b[2\pi] \text{ ou } a \equiv -b[2\pi]).$	
101096.tex —	$\sin(a) = \sin(b) \Leftrightarrow (a \equiv b[2\pi] \text{ ou } a \equiv \pi - b[2\pi]).$	
	$\tan(a) = \tan(b) \Leftrightarrow (a \equiv b[2\pi]).$	
	$\tan(5\pi/6) = -\sqrt{3}/3.$	
101099.tex —		
101100.tex —	$\tan(\pi)$ est défini.	
101101.tex —	$\tan(7\pi/6) = \sqrt{3}/3.$	
101102.tex —	$\tan(\pi/4) = 1.$	
101103.tex —	$\tan(\pi/4)$ est défini.	
101104.tex —	$\tan(5\pi/4) = 1.$	
101105.tex —	$\tan(5\pi/4)$ est défini.	
101106.tex —	$\tan(4\pi/3) = \sqrt{3}.$	
101107.tex —	$\tan(3\pi/2)$ n'est pas défini.	
101108.tex —	$\tan(\pi/2)$ est défini.	
101109.tex —	$\tan(2\pi/3) = -\sqrt{3}/3.$	
101110.tex —	$\tan(5\pi/3) = -\sqrt{3}.$	
101111.tex —	$\tan(7\pi/4) = -1.$	
101112.tex —	$\tan(7\pi/4)$ est défini.	
101113.tex —	$\tan(11\pi/6) = -\sqrt{3}/3.$	
101114.tex —		
		Faux

$ 101115.tex — \tan(0) \text{ n'est pas défini.} $ Faux
101116.tex — $\tan(\pi/6) = \sqrt{3}$ . Faux
<b>101117.tex</b> — $\tan(\pi/4)$ n'est pas défini.
$\mathbf{101118.tex} \ - \ \tan(\pi/3) = \sqrt{3}/3.$ Faux
<b>101119.tex</b> — Le fait que deux assertions $P$ et $Q$ sont incompatibles peut se traduire, au choix, par l'assertion $P \implies$ non $(Q)$ ou par $Q \implies$ non $(P)$ .
$\textbf{101120.tex} \ \ \text{Si} \ f: E \to F \ \text{est une application et} \ A \subset B \subset E, \ \text{alors} \ f[A] \subset f[B].$ Vrai
101121.tex — Si $f: E \to F$ est une application et $A \neq B \subset E$ , alors $f[A] \neq f[B]$ .
<b>101122.tex</b> — Toute application $f: [1, 10] \rightarrow [1, 20]$ est injective. Faux
<b>101123.tex</b> — Aucune application $f : [1, 10] \to [1, 20]$ n'est surjective.
Vrai
$\textbf{101125.tex} \ \ \text{Le nombre } 12^{2019} + 13^{2019} \text{ est divisible par 25}.$ $\textbf{Vrai}$
<b>101126.tex</b> — $(n+1)! \underset{n \to +\infty}{\sim} n!$ .
Faux 101127.tex — Si $c_n$ est le nombre de chiffres de $n$ dans l'écriture décimale de l'entier $n$ , alors $c_n \underset{n \to +\infty}{\sim} \log n$ .  Faux
<b>101128.tex</b> — Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Alors $1 = \underset{n \to +\infty}{o} (u_n)$ si et seulement si $u_n \xrightarrow[n \to +\infty]{} +\infty$ .
Faux 101129.tex — Si $f(x) = \frac{1}{x+1} + \underset{x \to +\infty}{o} \left(\frac{1}{x^2}\right)$ , alors $f(x) \underset{x \to +\infty}{\sim} \frac{1}{x}$ .
101130.tex — Si $u_n \underset{n \to +\infty}{\sim} v_n$ et que $(v_n)_n$ est strictement positive à partir d'un certain rang, alors $(u_n)_n$ est strictement positive à partir d'un certain rang.
Vrai <b>101131.tex</b> — Si $u_n \underset{n \to +\infty}{\sim} v_n$ et que $(v_n)_n$ est décroissante à partir d'un certain rang, alors $(u_n)_n$ est décroissante à partir d'un certain rang.
Faux 101132.tex — Si $u_n \underset{n \to +\infty}{\sim} v_n$ et que $(v_n)_n$ est strictement décroissante à partir d'un certain rang, alors $(u_n)_n$ est strictement décroissante à partir d'un certain rang.
101133.tex — Si une suite a valeurs entreres converge, ene est stationnane. Vrai $101134.tex$ — Si le produit de deux suites tend vers $+\infty$ , alors au moins l'une des deux tend également vers $+\infty$ .
Faux 101135.tex — Il existe $\theta \in \mathbb{R}$ tel que la suite $(\sin(n\theta))_{n \in \mathbb{N}}$ converge.
101136.tex — La suite $(u_n)$ définie par $\begin{cases} u_0 = \frac{3}{2} \\ \forall n \in \mathbb{N}, u_{n+1} = -3u_n + 10 \end{cases}$ converge.
101136.tex — La suite $(u_n)$ definie par $\begin{cases} \forall n \in \mathbb{N}, u_{n+1} = -3u_n + 10 \end{cases}$ converge.  101137.tex — La suite $(u_n)$ définie par $\begin{cases} u_0 = \frac{5}{2} \\ \forall n \in \mathbb{N}, u_{n+1} = -3u_n + 10 \end{cases}$ converge.  Vrai
Vrai
101139.tex — Une suite monotone converge.
Faux 101140.tex — Une suite bornée converge.
Faux 101141.tex — Deux suites bornées $(u_n)n \in \mathbb{N}$ et $(v_n)n \in \mathbb{N}$ telles que $u_n - v_n \xrightarrow[n \to +\infty]{} 0$ convergent vers la même limite.
Faux 101142.tex — Si les deux sous-suites $(u_{2n})n \in \mathbb{N}$ et $(u2n+1)n \in \mathbb{N}$ convergent vers la même limite alors $(un)_{n \in \mathbb{N}}$ converge Vrai

101143.tex —	Soit $(u_n)n \in \mathbb{N}$ une suite croissante. On suppose que $(u2n)n \in \mathbb{N}$ converge. Alors la suite $(u_n)n \in \mathbb{N}$ con	iverge Vrai
101144.tex —	Si la série $\sum_n u_n$ converge, alors la suite $(u_n)_{n\in\mathbb{N}}$ converge.	
101145.tex —	$-\sum_{k=1}^{n} \frac{1}{k} \underset{n \to +\infty}{\sim} \ln n.$	
101146.tex —	- La série $\sum_n \rho^n$ converge si et seulement si $ \rho  < 1$ .	
101147.tex —	- La série de terme général $\frac{1}{\sqrt{n} \ln n}$ converge.	Vrai
		Faux
	- Le produit de deux fonctions croissantes est croissant.	Faux
	- La fonction $x \mapsto \lfloor x \rfloor$ est impaire.	Faux
	Si $f$ est périodique, alors $g \circ f$ est périodique.	Vrai
101151.tex —	Pour tout $x \in \mathbb{R}$ , $\exp(x) \ge 1 + x + \frac{x^2}{2}$ .	Faur
101152.tex —	$-\cos:\left[-\frac{\pi}{2},\frac{\pi}{2}\right] \to [-1,1]$ est une bijection.	
101153.tex —	- Dès que la formule a un sens, on a $\arctan(\tan x) = x$ .	
101154.tex —	- Dès que la formule a un sens, on a $\tan(\arctan x) = x$ .	
101155.tex —	- Sur $\mathbb{R}^*$ , la dérivée de $x\mapsto \ln  x $ est $x\mapsto \frac{1}{ x }$ .	vrai
		Faux
	- Une fonction monotone admet une limite en tout point intérieur à son domaine de définition.	
	Étant donné une fonction $f: \mathbb{R} \to \mathbb{R}$ , il existe une fonction $g: \mathbb{R} \to \mathbb{R}$ croissante telle que $f \leq g$ .	Faux
		Faux
		Vrai
	- Une fonction continue bornée atteint ses bornes.	Faux
	- Une fonction polynomiale $\mathbb{R} \to \mathbb{R}$ de degré impair admet au moins une racine réelle.	Faux
		Vrai
101163.tex —	- La fonction $x \mapsto \frac{x}{ x }$ est prolongeable par continuité en 0.	Faux
101164.tex —	- La fonction $x \mapsto \frac{\cos x - 1}{ x }$ est prolongeable par continuité en 0.	
	La dérivée en 0 de $x \mapsto \ln(1 + (\tan x)^2)$ est 0.	Vrai
	- Une fonction de classe $C^1$ est dérivable.	Vrai
	La fonction $x \mapsto x x $ est de classe $C^1$ .	Vrai
	- Une fonction de classe $C^1$ sur un segment est lipschitzienne.	Vrai
	Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable. La fonction $ f $ est dérivable si et seulement si $f$ ne s'annule pas.	Vrai
	Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable.	Faux
Si la dérivée de	f s'annule en 0, alors $f$ admet un extremum local en 0.	Faux
101171.tex —	Soit $f:[0,1] \to \mathbb{R}$ dérivable. maximum en 0, alors $f'(0) = 0$ .	
ar j admitte dir .		Faux

```
101172.tex — Soit f : \mathbb{R} \to \mathbb{R} dérivable.
Si f admet un maximum en 0, alors f'(0) = 0.
 101173.tex — Si une fonction réelle f est de classe C^n et admet n+1 zéros distincts sur un intervalle, alors sa dérivée
n-ième s'annule au moins une fois.
 101174.tex — Une primitive de x \mapsto \ln x est x \mapsto x \ln x - x - 1.
101175.tex — Soit f, g \in C^0([0,1]). Alors, \left| \int_0^1 f(t)g(t)dt \right| \le ||f||_{\infty} \left| \int_0^1 g(t)dt \right|.

101176.tex — Soit f, g \in C^0([0,1]). Alors, \left| \int_0^1 f(t)g(t)dt \right| \le ||f||_{\infty} \int_0^1 |g(t)| dt.
 101177.tex — Une fonction f \in C^0([0,1],\mathbb{R}) admet exactement une primitive d'intégrale nulle sur le segment [0,1].
 Vrai
101178.tex — Une fonction f dérivable vérifie f' = 2f si et seulement si, pour tout x, il existe C tel que f(x) = Ce^{2x}.
 Faux
101179.tex — Les solutions de y' + ay = 0 sont de la forme x \mapsto Ce^{ax} avec C \in \mathbb{R}.
 Faux
101180.tex — Les solutions de y' + 2y = 0 sont deux à deux proportionnelles.
 Vrai
101181.tex — Les solutions de y'' + 2y' = 0 sont deux à deux proportionnelles.
 Faux
101182.tex — Les fonctions x \mapsto \sin(x) et x \mapsto \sin(2x) sont solutions d'une même équation linéaire d'ordre 2 à coefficients
constants réels.
 101183.tex — Pour tous a \leq b entiers, le cardinal de \{a, \ldots, b\} = b - a.
 101184.tex — Il y a 50 entiers pairs dans l'intervalle [0, 100].
 Faux
101185.tex — Le produit de sept entiers consécutifs est toujours divisible par 720.
 101186.tex — Il est possible de construire 2^n parties différentes de [1, 2n] à n éléments, donc \binom{2n}{n} \ge 2^n.
 Vrai
101187.tex — Une matrice et sa transposée ont même noyau.
 Faux
101188.tex — Pour A, B \in M_n(\mathbb{R}), \operatorname{Tr}(AB) = \operatorname{Tr}(BA).
 101189.tex — Pour A, B, C \in M_n(\mathbb{R}), \operatorname{Tr}(ABC) = \operatorname{Tr}(ACB).
 101190.tex — Deux systèmes linéaires ont les mêmes ensembles de solutions si et seulement si leurs matrices augmentées
sont équivalentes par lignes.
101191.tex — Multiplier A à droite par une matrice d'opération élémentaire fait agir l'opération élémentaire correspondante
sur ses colonnes.
 101192.tex — Soit \alpha_1, \ldots, \alpha_n \in \mathbb{R}^*.
La matrice «antidiagonale»
 est inversible.
 x + 2y + 3z = 13
101193.tex — Le système \langle 4x+5y+6z=6 \rangle a une unique solution.
 7x + 8y + 9z = 2019
101194.tex — Si le système AX = Y admet des solutions, alors A est inversible.

101195.tex — Soit A, B, C \in M_n(K). Alors la matrice \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} \in M_{2n}(K) est inversible si et seulement si A et C sont
inversibles.
 101196.tex — L'ensemble M_n(\mathbb{R}) \setminus GL_n(\mathbb{R}) des matrices non-inversibles est un sous-espace vectoriel de M_n(\mathbb{K}).
 Faux
101197.tex — L'ensemble constitué des suites monotones est un sous-espace vectoriel de l'espace vectoriel \mathbb{R}^{\mathbb{N}}.
```

$101198. {\rm tex} -$	L'ensemble des solutions de l'équation différentielle $y'' + 2y' + 3y = 0$ est un sous-espace vectoriel de $C^{\infty}(\mathbb{R})$ .
101199.tex —	
101200.tex —	L'ensemble des suites bornées est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$ . Vrai
101201.tex —	L'intersection de deux sous-espaces vectoriels d'un même espace vectoriel est un sous-espace vectoriel.  Vrai
101202.tex —	La réunion de deux sous-espaces vectoriels d'un même espace vectoriel est un sous-espace vectoriel.  Faux
101203.tex —	La somme de deux sous-espaces vectoriels d'un même espace vectoriel est un sous-espace vectoriel.  Vrai
101204.tex — $G = H$ .	Soit $F$ , $G$ , $H$ trois sous-espaces vectoriels d'un meme espace vectoriel tels que $F + G = F + H$ . Alors
101205.tex —	Soit $F$ , $G$ deux sous-espaces vectoriels de $E$ tels que $F+G=F\cap G$ . On a alors l'égalité $F=G$ .
101206.tex —	Soit $F$ , $G$ deux sous-espaces vectoriels de $E$ tels que $F+G=F$ . On a alors l'égalité $F=G$ .
101207.tex —	Une famille de vecteurs deux à deux non colinéaires est libre.  Faux Faux Faux
101208.tex —	La famille des fonctions $x\mapsto x,\ x\mapsto -x$ et $x\mapsto  x $ est libre. Faux
101209.tex —	La famille des fonctions $x\mapsto 1, \ x\mapsto  x $ et $x\mapsto  x-1 $ est libre. Vrai
<b>101210.tex</b> — libre.	Si $(e_1, \ldots, e_n)$ est une famille libre d'un espace vectoriel $E$ et $x \in E$ , alors la famille $(e_1 + x, \ldots, e_n + x)$ est
	Si $(e_1, \ldots, e_n)$ et $(f_1, \ldots, f_n)$ sont des familles libres de $E$ , alors $(e_1 + f_1, \ldots, e_n + f_n)$ est une famille libre. Faux
101212.tex —	Si $u \in \mathcal{L}(E)$ , alors $\mathrm{Im}u$ et $\ker u$ sont supplémentaires
101213.tex —	Si $u, v \in \mathcal{L}(E)$ , alors $\mathrm{Im}(u+v) \subset \mathrm{Im} u + \mathrm{Im}(v)$ . Vrai
101214.tex —	Si $u \in \mathcal{L}(E)$ et que $G$ et $H$ sont deux sous-espaces vectoriels de $E$ , alors on a l'égalité $u[G+H] = u[G] + u[H]$ .  Vrai
101215.tex —	Soit $u, v \in \mathcal{L}(E)$ . Alors $u \circ v = 0$ si et seulement si $\operatorname{Im} v \subset \ker u$ .
101216.tex —	Soit $p \in \mathcal{L}(E)$ . Alors $p$ est un projecteur si et seulement si la différence $\mathrm{Id}_E - p$ est un projecteur. Vrai
	Si $p \in \mathcal{L}(E)$ est un projecteur, alors $\operatorname{Im} p = \ker(p - \operatorname{Id}_E)$ .  Vrai
$101218. {\rm tex} -\!\!\!\!-$	Si $s \in \mathcal{L}(E)$ est une symétrie, alors $\operatorname{Im} s = \ker(s - \operatorname{Id}_E)$ .
101219. tex	De toute famille génératrice d'un espace vectoriel de dimension finie, on peut extraire une base.  Vrai
	Tout vecteur d'un espace vectoriel de dimension finie peut être complété en une base.  Faux
$101221.tex - \dim E = \dim F.$	Soit $F$ un sous-espace d'un espace vectoriel $E$ de dimension finie. Alors $E=F$ si, et seulement si,
101222.tex — une base de $E$ ,	
	Si $u \in \mathcal{L}(E,F)$ est une application linéaire injective entre deux espaces vectoriels de dimension finie, alors
	Soit $E$ et $F$ deux espaces vectoriels de dimension finie tels que dim $E \ge \dim F$ . Alors toute application est surjective.
$egin{array}{ll} {\bf 101225.tex} & \\ { m On \ a \ Mat}_{\mathscr{B}}({ m Id}_E \ \end{array}$	Soit $E$ un espace vectoriel de dimension $n$ possédant une base $\mathcal{B}$ . ) = $I_n$ .
	Soit $E$ un espace vectoriel de dimension $n$ possédant deux bases $\mathscr{B},\mathscr{C}.$ $I_E)=I_n.$

$101227.\mathrm{tex} -\!\!\!-$	Une matrice et sa transposée ont même rang.	
	Pour $A, B \in M_n(\mathbb{R})$ , $\operatorname{rg}(AB) \le \operatorname{rg} B$ .	Vrai
$101229. {\rm tex} -\!\!\!\!-$	Si $A \in M_{2,3}(\mathbb{R})$ et $B \in M_{3,2}(\mathbb{R})$ sont deux matrices vérifiant $AB \in GL_2(\mathbb{R})$ , alors rg $A = \operatorname{rg} B = 2$ .	
$101230.\mathrm{tex} -\!\!\!-$	Il existe une base de $M_n(\mathbb{R})$ composée de matrices de rang 1.	
$101231.\mathrm{tex} -\!\!\!\!-$	Il existe une base de $M_n(\mathbb{R})$ composée de matrices inversibles.	
	Un polynôme constant est de degré nul.	Vrai
$101233.\mathrm{tex} -\!\!\!\!-$	Si $(P,Q,R,S)$ est une base de $\mathbb{R}_3[X]$ , alors les degrés des quatre polynômes sont tous distincts.	
$101234.\mathrm{tex} -\!\!\!\!-$	$X^2 + X + 1$ est irréductible dans $\mathbb{R}[X]$ .	
$101235. {\rm tex} -\!\!\!\!-$	$X^2 + X + 1$ est irréductible dans $\mathbb{C}[X]$ .	
$101236. {\rm tex} -\!\!\!\!-$	$X^3 + X + 1$ est irréductible dans $\mathbb{R}[X]$ .	
$101237.\mathrm{tex} -\!\!\!-$	Le nombre 1 est racine simple de $1 + X + X^2 + X^3 + X^4 + X^5$ .	
$101238. {\rm tex} -\!\!\!\!-$	Si $P$ est un polynôme réel vérifiant $\forall n \in \mathbb{Z}, P(n) \in \mathbb{Z}$ , alors les coefficients de $P$ sont entiers.	
101239.tex — $\ \vec{x}\ ^2 + \ \vec{y}\ ^2$ .	Soit $\vec{x}$ et $\vec{y}$ deux vecteurs d'un espace euclidien. Alors $\vec{x}$ et $\vec{y}$ sont orthogonaux si et seulement si $  \vec{x} + \vec{y}  $	$\vec{y} \parallel^2 =$
$101240.\mathrm{tex} -\!\!\!\!-$	Toute famille orthonormale d'un espace euclidien est libre.	
$101241.\mathrm{tex} -\!\!\!\!-$	Aucun vecteur de $\overrightarrow{\mathscr{P}}$ n'est orthogonal à tous les vecteurs de $\overrightarrow{\mathscr{P}}$ .	
$101242.\mathrm{tex} -\!\!\!\!-$	Deux droites disjointes dans le plan sont parallèles.	
$101243.\mathrm{tex} -\!\!\!\!-$	Deux droites disjointes dans l'espace sont parallèles.	
	Deux plans disjoints dans l'espace sont parallèles.	
101245. tex	Étant donné deux droites quelconques de $\mathbb{R}^3$ , il existe une droite simultanément perpendiculaire aux	deux.
	On considère un point $O$ et deux droites $\Delta$ , $\Delta'$ du plan. Alors il existe une rotation envoyant $\Delta$ sur $d(O, \Delta) = d(O, \Delta')$ .	Vrai $\Delta'$ si
$egin{aligned} \mathbf{101247.tex} & \cdots & \\ \mathbf{101247.tex} & \mathbf{P}(\{k\}) &= p_k. \end{aligned}$	Soit $p_1,, p_n \in \mathbb{R}_+$ de somme 1. Il existe une unique probabilité $\mathbb{P}$ sur l'univers $\Omega = \{1,, n\}$ tell	Vrai le que
101248.tex —	Soit $A$ de probabilité non nulle. Alors, pour tout $B \in \mathscr{P}(\Omega), \mathbb{P}(B A) \leq \mathbb{P}(B)$ .	
101249.tex —	Dans un espace probabilisé $(\Omega,P)$ fini, tout événement $A$ indépendant de $\Omega\setminus A$ est de probabilité $0$	
$101250.\mathrm{tex} -$	Soit $A$ et $B$ deux événements. Alors $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ si et seulement si $A$ et $B$ sont indépendent $A$ et $B$ et	
101251.tex — $C$ sont indépend	Soit $A, B$ et $C$ des événements tels que $A$ et $B$ sont indépendants et $B$ et $C$ sont indépendants. Alors lants.	
101252. tex	Trois événements indépendants sont indépendants deux à deux.	
101253.tex —	La somme de deux variables de loi de Bernoulli de paramètre $p$ suit une loi binomiale de paramètre $p$	-
101254.tex —	Si $X \sim \mathcal{U}(\{0,\ldots,n\})$ , alors $n-X \sim \mathcal{U}(\{0,\ldots,n\})$ .	
101255.tex —	Si $X \sim \mathcal{B}(n, p)$ , alors $n - X \sim \mathcal{B}(n, p)$ .	Vrai Faux
101256.tex —	Si une variable aléatoire $X:\Omega\to\mathbb{R}$ est d'espérance nulle, alors la variable $e^X$ est d'espérance 1.	Faux

<b>101257.tex</b> — Soit $X: \Omega \to \mathbb{R}$ une variable aléatoire réelle. Alors, pour tout $a \in \mathbb{R}$ , on a l'inégalité $\mathbb{E}(X) \geq a  \mathbb{P}(X \geq a)$ .
101258.tex — Tout rectangle dont les diagonales sont perpendiculaires est un losange.
Vrai  101259.tex — Tout trapèze ayant un angle droit est un rectangle.
Faux  101260.tex — Tout trapèze ayant deux angles droits est un rectangle.  Faux
101261.tex — Tout trapèze isocèle ayant un angle droit est un rectangle.
Vrai 101262.tex — Tout trapèze isocèle ayant un angle droit est un carré.
Faux  101263.tex — Tout quadrilatère dont les diagonales sont perpendiculaires et de même longueur est un carré.
Faux  101264.tex — Tout losange avec un angle droit est un carré.  Vrai
101265.tex — Tout losange avec un angle droit a des diagonales de même longueur.  Vrai
101266.tex — Tout losange avec deux angles égaux est un carré.  Faux
101267.tex — Tout losange avec deux angles consécutifs égaux est un carré.
Vrai  101268.tex — Tout trapèze avec deux angles égaux est un trapèze isocèle.
Faux  101269.tex — Tout trapèze avec deux angles consécutifs égaux est un trapèze isocèle.
Faux  101270.tex — Tout trapèze avec deux bases de même longueur est un rectangle.
Faux  101271.tex — Tout trapèze avec deux bases de même longueur est un losange.
Faux 101272.tex — Tout trapèze avec deux bases de même longueur est un parallélogramme.
Vrai  101273.tex — Tout quadrilatère ayant au moins un axe de symétrie est un losange ou bien un trapèze isocèle.
Faux  101274.tex — Tout quadrilatère ayant exactement un axe de symétrie est un trapèze isocèle.
Faux  101275.tex — Tout carré possède exactement deux axes de symétrie.
Faux  101276.tex — Tout carré possède exactement huit axes de symétrie.  Faux
101277.tex — Tout carré possède exactement quatre axes de symétrie.
Vrai  101278.tex — Tout rectangle possède exactement quatre axes de symétrie.
Faux  101279.tex — Tout rectangle possède exactement deux axes de symétrie.
Faux  101280.tex — Tout rectangle possède au moins deux axes de symétrie.
Vrai  101281.tex — Tout losange possède exactement deux axes de symétrie.
101282.tex — Tout losange possède au moins deux axes de symétrie.
Vrai  101283.tex — Tout losange possède exactement quatre axes de symétrie.
101284.tex — Tout pentagone possède cinq axes de symétrie.
Faux  101285.tex — Tout pentagone régulier possède cinq axes de symétrie.
Vrai  101286.tex — Tout triangle équilatéral possède trois axes de symétrie.  Vrai
101287.tex — Tout triangle isocèle possède exactement un axe de symétrie.
101288.tex — Tout triangle isocèle possède au moins un axe de symétrie.

	Fau - Les axes de symétrie d'un pentagone régulier passent par ses sommets.	ux
	Vra  - Les axes de symétrie d'un carré passent par ses sommets.	ai
	T. T	ux
	Vra  - Les axes de symétrie d'un carré sont ses diagonales.	ai
	Fat Les axes de symétrie d'un losange sont ses diagonales	ux
	Fau  Tout trapèze possède au moins un axe de symétrie.	ux
	- Tout trapèze isocèle possède au moins un axe de symétrie.  Fau  Fau	ux
	- Tout parallélogramme possède un axe de symétrie	ai
	- Tout parallélogramme possède un axe de symétrie.  Fau - Tout parallélogramme possède un centre de symétrie.	ux
	- Tout losange possède un centre de symétrie	ai
	- Tout losange possède un centre de symétrie	ai
	Vra	ai
	- Tout carré possède un centre de symétrie	ai
	- Tout trapèze possède un centre de symétrie	ux
	- Tout trapèze isocèle possède un centre de symétrieFai	ux
		ai
		ai
		ai
	Fat	ux
101308.tex —	$-14 \times 6 = 84$	ai
101309.tex —	$-7 \times 13 = 91$ Vre	ai
101310.tex —	$5 \times 17 = 85$	ai
101311.tex —	- $5 \times 17 = 95$ Fai	ux
101312.tex —	$-18 \times 4 = 72$	ai
101313.tex —	- $18 \times 4 = 76$ Fai	ux
101314.tex —	$-18 \times 5 = 80$ Far	ux
101315.tex $-$		
101316.tex -		
101317.tex $-$		
101318.tex $-$	-21  imes 5 = 105 Vra	
101319.tex -		
$101320.{ m tex}$	$-11 \times 11 = 111$ Far	
	$-12 \times 12 = 144$	

101322.tex —		Faux
101323.tex —	$13 \times 13 = 169$	
101324.tex —	$13 \times 13 = 159$	
101325.tex —	$14 \times 14 = 196$	
101326.tex —	$14 \times 14 = 206$	
101327.tex —	$15 \times 15 = 225$	
101328.tex —	$15 \times 15 = 255$	
101329. tex	$16 \times 16 = 256$	
101330.tex —	$8 \times 32 = 256$	
101331.tex —	$8 \times 16 = 256$	
101332.tex —	$11 \times 13 = 133$	
101333.tex —	$12 \times 11 = 132$	
101334.tex —	$12 \times 14 = 168$	
101335.tex —	$12 \times 14 = 158$	
101336.tex —	$11 \times 14 = 164$	
101337.tex —	$(a+1)(a+2) = a^2 + 3a + 2$	Faux
101338.tex —	$(a-1)(a+2) = a^2 + a - 2$	
101339. tex	$(a+1)(a-2) = a^2 - a - 2$	
101340.tex —	$(a-1)(a-2) = a^2 - 3a + 2$	Vrai
101341.tex —	$(a+1)(a+3) = a^2 + 4a + 3$	
101342.tex —	$(a-1)(a+3) = a^2 + 2a - 3$	
101343.tex —	$(a+1)(a-3) = a^2 - 2a - 3$	
101344.tex —	$(a-1)(a-3) = a^2 - 4a + 3$	
101345.tex —	$(a+2)(a+3) = a^2 + 5a + 6$	
101346.tex —	$(a-2)(a+3) = a^2 + a - 6$	
101347.tex —	$(a+2)(a-3) = a^2 - a - 6$	
101348.tex —	$(a-2)(a-3) = a^2 - 5a + 6$	
101349.tex —	$(a+1)(a+1) = a^2 + 2a + 1$	
101350.tex —	$(a-1)(a-1) = a^2 - 2a + 1$	
101351.tex —	$(a+2)(a+2) = a^2 + 4a + 4$	
101352.tex —	$(a-2)(a-2) = a^2 - 4a + 4$	
101353.tex —	$(a+1)(a+2) = a^2 + 2a + 2$	
101354.tex —	$(a-1)(a+2) = a^2 + 2a - 2$	Faux

101255 tox	Fa	uх
	$(a+1)(a-2) = a^2 - a + 2$ FaFa	ux
101356.tex —	$(a-1)(a-2) = a^2 - 3a - 2$ FaFa	
101357.tex —	$(a+1)(a+3) = a^2 + a + 3$	
101358.tex —	Fa $ (a-1)(a+3) = a^2 + 2a + 3 $	
101359.tex —	Fa $ (a+1)(a-3) = a^2 + a - 3 $	υX
101360.tex —	Fa $(a-1)(a-3) = a^2 - 2a + 3$	ux
	Fa $ (a+2)(a+3) = a^2 + 6a + 6 $	ux
	Fa $(a-2)(a+3) = a^2 + a + 6$	ux
	Fa	ux
101363.tex —	$(a+2)(a-3) = a^2 + a - 6$ Fa	ιux
101364.tex —	$(a-2)(a-3) = a^2 + 5a + 6$ Fa	
101365.tex —	$(a+1)(a+1) = a^2 + 2a + 2$	
101366.tex —	Fa $ (a-1)(a-1) = a^2 - 2a - 1 $	
101367.tex —	Fa $ (a+2)(a+2) = a^2 + 2a + 4 $	
101368.tex —	Fa $ (a-2)(a-2) = a^2 - 4a - 4 $	
101369.tex —	Fa $ (2a+1)(a+1) = 2a^2 + 3a + 1 $	
101370.tex —	$(2a-1)(a+1) = 2a^2 + a - 1$ Vr	ai
101371.tex —		ai
101372.tex —		ai
	$(2a+1)(a+3) = 2a^2 + 7a + 3$ Vr	ai
	$(2a+1)(a+3) = 2a^2 + 7a + 6$	ai
	(2a+1)(a-3) = 2a-3a-3	ai
		ai
101376.tex —	$(2a-1)(a-3) = 2a^2 - 7a + 3$	ai
101377.tex —	$(2a+1)(a+1) = 2a^2 + 3a + 2$ Fa	111X
101378.tex —	$(2a-1)(a+1) = 2a^2 - a - 1$	
101379.tex —	Fa $ (2a+1)(a-1) = 2a^2 - 2a - 1 $	
101380.tex —	Fa $(2a-1)(a-1) = 2a^2 - 3a - 1$	
101381.tex —	Fa $ (2a+1)(a+3) = 2a^2 + 4a + 3 $	
101382.tex —	Fa $ (2a+1)(a-3) = 2a^2 - 6a - 3 $	υX
101383.tex —	Fa $ (2a-1)(a+3) = 2a^2 + 7a - 3 $	υX
101384.tex —	Fa $(2a-1)(a-3) = 2a^2 - 5a + 3$	ux
101385.tex —	Fa $(a+1)(b+1) = ab+a+b+1$	ux
	(a+1)(b-1) = ab - a + b - 1 Vr	ai
TOTOOUTEX —		.o.i

101387.tex —	- (a-1)(b+1) = ab + a - b - 1	Vnoi
101388.tex $-$	- (a-1)(b-1) = ab - a - b + 1	
101389.tex —	- (a+2)(b+1) = ab + a + 2b + 2	
101390.tex —	- (a+2)(b-1) = ab - a + 2b - 2	
101391.tex $-$	- (a-2)(b+1) = ab + a - 2b - 2	
101392.tex $-$	- (a-2)(b-1) = ab - a - 2b + 2	
101393.tex $-$	$- (a+b)(a+1) = a^2 + ab + a + b$	
101394.tex $-$	$- (a+b)(a-1) = a^2 + ab - a - b$	
101395.tex $-$	$- (a-b)(a+1) = a^2 - ab + a - b$	
101396.tex $-$	$- (a-b)(a-1) = a^2 - ab - a + b$	
101397.tex —	$- (a-2b)(a+2) = a^2 - 2ab + 2a - 4b$	
101398.tex —	$- (a+2b)(a-3) = a^2 + 2ab - 3a - 6b$	
101399.tex —	$- (2a - 3b)(3a + 2) = 6a^2 - 9ab + 4a - 6b$	
101400.tex —	$- (3a - 2b)(2a + 3) = 6a^2 - 4ab + 9a - 6b$	
101401.tex —	$- (a+b)(a-b) = a^2 - b^2$	Vrai
101402.tex —	$- (a+2b)(a+3b) = a^2 + 5ab + 6b^2$	Vrai
101403.tex —	$- (2a+b)(a-b) = 2a^2 - ab - b^2$	Vrai
101404.tex —	$-(2a-b)(3a+b) = 6a^2 - ab - b^2$	Vrai
101405.tex —	$-(2a+b)(a-3b) = 2a^2 - 5ab - 3b^2$	Vrai
101406.tex —	- (a+1)(b+1) = ab + 2a + 2b + 1	
101407.tex —	- (a+1)(b-1) = ab + a + b - 1	
101408.tex —	- (a-1)(b+1) = ab - a - b - 1	
101409.tex —	- (a-1)(b-1) = ab - a - b - 1	
101410.tex —	- (a+2)(b+1) = ab + a + b + 2	
101411.tex —	- (a+2)(b-1) = ab - a + 2b + 2	
101412.tex —	- (a-2)(b+1) = ab + a + 2b - 2	
101413.tex —	- (a-2)(b-1) = ab - a - 2b - 2	
101414.tex —	$- (a+b)(a+1) = a^2 + 2ab + a + b$	
101415.tex $-$	$- (a+b)(a-1) = a^2 + ab + a - b$	
101416.tex —	$- (a-b)(a+1) = a^2 + ab + a - b$	
101417.tex —	$- (a-b)(a-1) = a^2 - ab + a + b$	
101418.tex —	$- (a-2b)(a+2) = a^2 - 2ab - 2a - 4b$	
101419.tex —	$-(a+2b)(a-3) = a^2 + 2ab + 3a - 6b$	raux

	Faux
101420.tex	$ (2a - 3b)(3a + 2) = 6a^2 - 9ab - 4a - 6b $ Faux
101421.tex	$ (3a - 2b)(2a + 3) = 6a^2 - 4ab + 9a + 6b $
101422.tex	Faux $-(a+b)(a-b) = a^2 + b^2$
101423.tex	Faux $ (a+2b)(a+3b) = a^2 + 6ab + 5b^2 $
101424.tex	Faux $ (2a+b)(a-b) = 2a^2 + ab - b^2$
101425.tex	Faux $ (2a-b)(3a+b) = 6a^2 - 5ab - b^2 $
101426.tex	Faux $-(2a+b)(a-3b) = 2a^2 - 5ab + 3b^2$
101427.tex	
101428.tex	— Tout losange possède au moins deux angles égaux.
101429.tex	Vrai — Tout parallélogramme possède au moins deux angles égaux.
101430.tex	Vrai $(a+1)^3 = a^3 + 3a^2 + 3a + 1.$
101431.tex	Vrai $(a+1)^3 = 1 + 3a + 3a^2 + a^3$ .
101432.tex	Vrai $(a+2)^3 = a^3 + 3a^2 + 3a + 2.$
101433.tex	Faux $-(a+2)^3 = a^3 + 3a^2 + 3a + 8.$
101434.tex	Faux $-(a+2)^3 = a^3 + 6a^2 + 12a + 8.$
101435.tex	Vrai $(a+3)^3 = a^3 + 9a^2 + 27a + 27.$
101436.tex	Vrai $(a+1)^3 = 1 + a + a^2 + a^3$ .
101437.tex	Faux $ (a+1)^3 = a^3 + 2a^2 + 2a + 1. $
101438.tex	Faux $ (a-1)^3 = a^3 - 3a^2 + 3a - 1. $
101439.tex	
101440.tex	Faux $ (a-1)^3 = 1 - 3a + 3a^2 - a^3. $
101441.tex	Faux $ (1-a)^3 = 1 - 3a + 3a^2 - a^3. $
101442.tex	
101443.tex	Vrai $(a-1)^3 = (1-a)^3$ .
101444.tex	Faux $ (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3. $
101445.tex	
101446.tex	Faux $ (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3. $
101447.tex	
101448.tex	
101449.tex	Faux $a^3 - b^3 = (a - b)(a^2 + ab + b^2).$
101450.tex	
101451.tex	Faux $$
	Four

101452.tex —	$a^3 - 1 = (a - 1)(a^2 + a + 1).$	
101453.tex —	$a^3 + b^3 = (a+b)(a^2 - ab + b^2).$	
101454.tex —	$a^3 + b^3 = (a+b)(a^2 + ab + b^2).$	
101455.tex —	$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4.$	
101456. tex	$(a+b)^4 = a^4 + 4a^3 + 6a^2 + 4a + 1.$	
101457.tex —	$(a+b)^4 = a^4 + 4a^3b + 4a^2b^2 + 4ab^3 + b^4.$	
101458.tex —	$(a-b)^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4.$	
101459.tex —	$(a-b)^4 = a^4 - 4a^3b - 6a^2b^2 - 4ab^3 + b^4.$	
101460.tex -	$(a+2)^4 = a^4 + 8a^3b + 24a^2 + 32a + 16.$	
101461.tex —	$(a+3)^4 = a^4 + 12a^3b + 54a^2 + 108a + 81.$	
101462.tex -	$(a+3)^4 = a^4 + 12a^3b + 54a^2 + 108a + 27.$	
101463.tex —	$(a+2)^4 = a^4 + 4a^3b + 6a^2 + 4a + 2.$	
101464.tex —	$(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5.$	
101465.tex —	$(a+1)^5 = a^5 + 5a^4 + 10a^3 + 10a^2 + 5a + 1.$	
	Toute fonction affine est linéaire.	
$101467.\mathrm{tex} -\!\!\!\!-$	Toute fonction linéaire est affine.	
101468. tex	Toute fonction constante est affine.	
$101469. tex -\!\!\!\!-$	Toute fonction constante est linéaire.	
	La fonction nulle est linéaire.	
101471.tex —	la fonction nulle est affine.	Vrai Vrai
	La fonction $x \mapsto -3x + 5$ est linéaire.	
101473. tex	La fonction $x \mapsto -3x + 5$ est affine.	
	L'image de 2 par la fonction $x \mapsto 2x + 7$ est 11.	
	L'image de 3 par la fonction $x \mapsto -5x + 2$ est $-13$ .	
101476. tex	L'image de 3 par la fonction $x \mapsto 9x + 7$ est 33.	
101477. tex	L'image de 7 par la fonction $x \mapsto 3x + 11$ est 22.	
$101478. {\rm tex} -\!\!\!\!-$	L'image de 11 par la fonction $x\mapsto 9x+22$ est 121.	
$101479. tex -\!\!\!\!-$	L'image de 12 par la fonction $x\mapsto 7x-35$ est 49.	
	L'image de 8 par la fonction $x\mapsto 11x-59$ est 39.	
101481.tex —	L'antécédent de 7 par la fonction $x\mapsto 2x+3$ est 17.	
101482.tex —	L'antécédent de 7 par la fonction $x\mapsto 2x+3$ est 2.	
101483.tex —	L'antécédent de 9 par la fonction $x\mapsto 5x+7$ est 2/5.	
101484.tex —	L'antécédent de 12 par la fonction $x \mapsto 5x + 7$ est 1.	Vrai

<b>101485.tex</b> — L'antécédent de 13 par la fonction $x \mapsto 5x + 7$ est $6/5$ .
<b>101487.tex</b> — L'antécédent de 11 par la fonction $x \mapsto 5x + 7$ est $2/5$ .
Toute fonction constante est croissante.  Vrai
101489.tex — Toute fonction constante est décroissante.
Vrai  101490.tex — Toute fonction affine est croissante.  Faux
101491.tex — Toute fonction croissante est affine.
Faux $\mathbf{101492.tex}$ — La fonction $x \mapsto 11x - 7/2$ est croissante.
Faux 101494.tex — La fonction $x \mapsto 2 - x/7$ est croissante.
Faux 101495.tex — Si une fonction affine de la forme $x \mapsto ax + b$ est croissante, alors $a > 0$ .
Faux $ \textbf{101496.tex} \ \ \text{Si une fonction affine de la forme} \ x \mapsto ax + b \ \text{est croissante, alors} \ a \leq b. $ Faux
<b>101497.tex</b> — Si une fonction affine de la forme $x \mapsto ax + b$ est croissante, alors $a \ge b$ .
Faux 101498.tex — Si une fonction affine de la forme $x\mapsto ax+b$ est décroissante, alors $a\leq 0$ .
Faux 101500.tex — La droite qui représente la fonction affine $x\mapsto -5x+11$ a un coefficient directeur égal à 5.
Faux $ \textbf{101501.tex} \ \ \text{La droite qui représente la fonction affine } x \mapsto 8x - 3 \text{ a un coefficient directeur égal à 8.}                                  $
<b>101502.tex</b> — La droite qui représente la fonction affine $x \mapsto 8x - 3$ a une ordonnée à l'origine égale à 3.
Faux ${\bf 101503.tex} \ \ {\it La droite qui représente la fonction affine} \ x \mapsto 8x-3 \ {\it a une ordonnée à l'origine égale à 8}.$
Faux 101504.tex — La droite qui représente la fonction affine $x\mapsto 11x+7$ a une ordonnée à l'origine égale à 7/11.
Faux 101505.tex — La droite qui représente la fonction affine $x\mapsto 9x-5$ a une ordonnée à l'origine égale à $-5$ .
Vrai 101506.tex — Une fonction affine de la forme $x \mapsto ax + b$ est linéaire si et seulement si $a = 0$ .
Faux ${\bf 101507.tex} \ \ \ {\rm Une\ fonction\ affine\ de\ la\ forme\ } x\mapsto ax+b\ {\rm est\ lin\'eaire\ si\ et\ seulement\ si\ } b=0.$ Vrai
101508.tex — Une fonction affine est linéaire si et seulement si son coefficient directeur est nul.
101509.tex — Une fonction affine est linéaire si et seulement si son ordonnée à l'origine est nulle.
Vrai  101510.tex — Une fonction affine est croissante si et seulement si son coefficient directeur est positif.
Vrai  101511.tex — Si le coefficient directeur d'une fonction affine est strictement positif, alors elle est croissante.
Vrai  101512.tex — Si une fonction affine est croissante, alors son coefficient directeur est strictement positif.  Faux
101513.tex — Si une fonction affine est croissante, alors son ordonnée à l'origine est positive.
${\bf 101514.tex} \ -\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
<b>101515.tex</b> — Le discriminant du trinôme $X^2 - X + 1$ est égal à $-3$ .
101516.tex — Le discriminant du trinôme $X^2 + X + 1$ est égal à $-3$ . Vrai
······································

<b>101517.tex</b> — Le discriminant du trinôme $X^2 - X - 1$ est égal à 3.
Faux 101518.tex — Le discriminant du trinôme $X^2 - X - 1$ est égal à 5.
Faux $ \textbf{101520.tex} \   - \   \text{Le discriminant du trinôme} \   X^2 - 18X + 36 \ \text{est égal à 0}. $
Faux $ \textbf{101521.tex} \   - \   \text{Le discriminant du trinôme} \   X^2 + 4X + 16 \ \text{est égal à 0}. $
${\bf 101522.tex} \ -\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
Faux $ \textbf{101523.tex} \   - \   \text{Le discriminant du trinôme} \   X^2 - 6X + 9 \ \text{est égal à 0}. $
101524.tex — Le discriminant du trinôme $X^2 - 8X + 16$ est égal à 0.
Vrai
Vrai
Vrai ${\bf 101529.tex} \ \ \ {\rm Le \ discriminant \ du \ trinôme} \ X^2 + 30X + 225 \ {\rm est \ \'egal \ \`a} \ 0.$
Faux <b>101534.tex</b> — Le discriminant du trinôme $9X^2 - 12X + 16$ est égal à 0.
$\textbf{101535.tex} \   - \   \text{Le discriminant du trinôme} \   X^2 + 12X + 144 \   \text{est égal à 0}.$ Faux
101536.tex — Le discriminant du trinôme $X^2 - 8X + 64$ est égal à 0.
101537.tex — Le discriminant du trinôme $X^2 - 16X - 64$ est égal à 0.
101538.tex — Le discriminant du trinôme $X^2 - 3X + 1$ est égal à $-13$ .
101539.tex — Le discriminant du trinôme $X^2 - 2X + 3$ est égal à $-16$ .
101540.tex — Le discriminant du trinôme $X^2 - 2X - 3$ est égal à 16. Vrai
101541.tex — Le discriminant du trinôme $X^2 - X + 3$ est égal à $-11$ . Vrai
101542.tex — Le discriminant du trinôme $X^2 - X + 3$ est égal à 13.
<b>101543.tex</b> — Le discriminant du trinôme $X^2 - 5X + 1$ est égal à 29.
<b>101544.tex</b> — Le discriminant du trinôme $X^2 - 5X + 1$ est égal à $-21$ .  Faux
<b>101545.tex</b> — Le discriminant du trinôme $X^2 - 5X + 2$ est égal à 17. Vrai
101546.tex — Le discriminant du trinôme $X^2 - 9X + 11$ est égal à 37. Vrai
101547.tex — Le discriminant du trinôme $X^2 - 7X - 5$ est égal à 69. Vrai
101548.tex — Le discriminant du trinôme $X^2 - 6X - 7$ est égal à 8.
<b>101549.tex</b> — Le discriminant du trinôme $9X^2 - 6X + 1$ est égal à 0.

	Vrai
<b>101550.tex</b> — Le discriminant du trinôme $2X^2 - 5X + 3$ est égal à 1.	Vroi
<b>101551.tex</b> — Le discriminant du trinôme $2X^2 - 3X - 7$ est égal à 65.	
<b>101552.tex</b> — Le discriminant du trinôme $3X^2 - 6X + 1$ est égal à 32.	
<b>101553.tex</b> — Le discriminant du trinôme $2X^2 + 5X + 3$ est égal à 13.	
	Faux