

中华人民共和国国家计量检定规程

JJG 951-2000

模拟式温度指示调节仪

Analogue Temperature Indicators and Controllers

2000-05-08 发布

2000-10-01 实施

国家质量技术监督局发布

模拟式温度指示调节仪 检定规程

Verification Regulation of Analogue

JJG 951—2000

Temperature Indicators and Controllers

本规程经国家质量技术监督局于 2000 年 5 月 8 日批准, 并自 2000 年 10 月 1 日起施行。

归 口 单 位:全国温度工作器具计量技术委员会

主要起草单位: 上海市计量测试技术研究院

杭州市质量计量监测中心

参加起草单位: 杭州晶达电子技术公司

本规程委托全国温度工作器具计量技术委员会负责解释

本规程主要起草人:

朱家良 (上海市计量测试技术研究院)

卢仲碧 (上海市计量测试技术研究院)

李 行 (杭州市质量计量监测中心)

须君恒 (杭州市质量计量监测中心)

参加起草人:

管志初 (杭州晶达电子技术公司)

徐承梅 (杭州晶达电子技术公司)

目 录

1	Ÿ	范围	(1)
2	フ	术语	(1)
2.	1	标称电量值	(1)
2.	2	设定点误差	(1)
2.	3	切换值	(1)
2.	4	切换差	(1)
2.	5	时间比值 (ρ)	(1)
2.	6	非线性系数 (r)	(1)
2.	7	零周期	(1)
2.	8	比例带	(1)
2.	9	再调时间(积分时间)	(1)
2.	10) 预调时间(微分时间)	(2)
2.	11	静差	(2)
2.	12	2 干扰系数	(2)
3	木	既述	(2)
4	ì	十量性能要求	(2)
4.	1	指示基本误差(最大允许误差)	(2)
4.	2	回程误差(回差)	(3)
4.	3	位式控制仪表要求	(3)
4.	4	时间比例控制仪表要求	(3)
4.	5	连续及断续(二位式)比例积分微分控制仪表要求	(4)
4.	6	稳定性	(5)
5	ì	通用技术要求	(5)
5.	1	外观	(5)
5.	2	绝缘电阻	(5)
5.	3	绝缘强度	(5)
6	ì	十量器具控制	(6)
6.	1	检定条件	(6)
6.	2	检定项目	(7)
6.	3	检定方法	(8)
6.	4	检定结果的处理	(15)
			1

JJG 951—2000

6.5	检算	定周期	(15)
附录	А	时间比例控制的仪表检定的几点说明	(16)
附录	В	比例带、再调时间、预调时间检定的图解法	(18)
附录	С	模拟式温度指示调节仪检定记录	(20)
附录	D	本规程的符号汇总	(24)
附录	Е	误差分析实例	(26)

模拟式温度指示调节仪检定规程

1 范围

本规程适用于配热电偶或热电阻的模拟式温度指示及指示调节仪的首次检定、后续 检定和使用中检验;也适用于以直流电压、电流和电阻作为模拟电信号输入的,反映其 他物理变量的模拟式指示及指示调节仪的检定。

模拟式温度指示及指示调节仪(以下简称仪表)包括对输入电信号未作线性化处理的仪表,也包括对输入电信号经线性化处理后使标尺为等刻度的仪表(如光柱指示的仪表和线性刻度的指针式仪表)。这些仪表可以是台式的、盘装式的和便携式的。

2 术语

下列术语适用于本规程。

2.1 标称电量值

热电偶(或热电阻)分度表中各温度点所对应的热电势(或电阻)值。

2.2 设定点误差

输出变量按规定的要求输出时,测得的输入电量值与设定温度所对应的标称电量值之差。对输入电信号作线性化处理的仪表,应为测得的实际输入值与设定期望值之差。

2.3 切换值

位式控制仪表上行程(或下行程)中,输出从一种状态变换到另一种状态时所测得的输入(电量)值。

2.4 切换差

上、下行程切换值之差。

2.5 时间比值 (ρ)

在时间比例作用输出中,一个周期脉冲的持续时间与持续、间歇时间之和的比值。 时间比值的上、下限理论值应等于1和0。

2.6 非线性系数 (r)

在时间比例作用中,平均比例增益与时间比值 ρ 为 0.5 时的比例增益之差与平均比例增益之比。

2.7 零周期

在时间比例作用中,当一个周期脉冲中的持续时间与间歇时间相等时,所测得的持续、间歇时间之和。

2.8 比例带

又称比例范围。由于比例控制作用,输出产生全范围变化所需的输入变化量(以百分数表示)。

2.9 再调时间(积分时间)

具有比例积分作用的仪表,当输入变量给定为阶跃变化时,再调时间为输出变量达到阶跃施加后,立即得到的变化值的2倍所需时间。

2.10 预调时间 (微分时间)

具有比例微分作用的仪表,当输入变量给定为斜坡状(等速)变化时,预调时间为输出变量达到斜坡施加后立即得到的变化值的2倍所需的时间。

2.11 静差

比例积分微分作用的仪表,输出在稳态时输入的电量值与设定温度所对应的标称电量值之差。对输入电信号作线性化处理的仪表,应为输出在稳态时测得的实际输入值与设定期望值之差。

2.12 干扰系数

具有多控制作用的仪表,各特性指标互相影响的系数。

3 概述

仪表配热电偶或热电阻以测量温度,辅以相应的执行机构组成温度控制系统。当接 受标准化模拟直流电信号或其他产生电阻变化的传感器信号,就可以测量和控制其他物 理量。

仪表原理框图如图 1 所示。

图 1 模拟式温度指示调节仪原理框图

其中读数机构用以指示被测量温度。有全量程指示和偏差指示两种方式,并可以通过指针、色带和光柱等来实现。

控制模式的信号输出可分为两大类: 断续的(继电器触点等开关量信号)和连续的 $[如:(0\sim10) \text{ mA} \ 和(4\sim20) \text{ mA}$ 等直流电信号]。按调节规律,通常有位式、时间比例、比例积分微分 (PID) 等。

4 计量性能要求

4.1 指示基本误差(最大允许误差)

仪表的指示基本误差,包括全量程指示和偏差指示均应不超过(电)量程的 $\pm a\%$

(其中 a 为准确度等级。可选取 0.5, 1.0, 1.5, 2.0, 2.5, 4.0)。

注:对输入电信号未作线性化处理的仪表,引用误差中的约定值为电量程。

4.2 回程误差(回差)

仪表的回程误差应不超过指示基本误差绝对值的 1/2。

- 4.3 位式控制仪表要求
- 4.3.1 设定点误差

仪表的设定点误差应不超过(电)量程的 $\pm a_1\%$ 。(a_1 可选取 0.5, 1.0, 1.5, 2.0, 2.5)。

4.3.2 切换差

- a) 切换差一般不大于(电)量程的 $a_1\%$;量程大于 1 000 ℃的仪表,应不大于(电)量程的 0.5 $a_1\%$ 。
- b) 切换差可调的仪表,应满足切换差调整范围的要求;有切换差设定标度值的仪表,除制造厂另有规定外,实际切换差与切换差设定值之间的偏差一般不超过切换差设定值±25%。
- 4.4 时间比例控制仪表要求
- 4.4.1 设定点误差

仪表的设定点误差应不超过(电)量程的 $\pm a_2\%$ 。(a_2 可选取 0.5, 1.0, 1.5, 2.0, 2.5)。

4.4.2 比例带

- a) 比例带是固定值的仪表,其额定值通常有 4%, 10%, 20%, 实际的比例带应在 (1 ± 0.25) P (P 为额定比例带) 范围内;小于 10% 的(包括 10%)实际的比例带应在 (1 ± 0.5) P 范围内。
 - b) 比例带是固定范围值的仪表,实际比例带应在该范围内。
 - c) 具有比例带可调范围的仪表,实际比例带的上、下限应能覆盖可调范围。
- d) 具有比例带设定标度值的仪表,实际比例带与比例带设定值的偏差一般不超过设定值的±25%;小于10%的比例带,最多不超过设定值的±50%。

4.4.3 零周期

- a) 零周期是固定值的仪表,其额定值通常有 2.5 s, 5 s, 10 s, 20 s, 30 s, 40 s, 50 s, 60 s 八种。小于 10 s (含 10 s) 的实际零周期应在 (1 ± 0.5) T_0 (T_0) 为额定零周期)范围内;大于 20 s (含 20 s) 的实际零周期应在 (1 ± 0.25) T_0 范围内。
 - b) 零周期是固定范围值的仪表,实际零周期应在该范围内。
 - c) 具有零周期可调范围的仪表,实际零周期的上、下限应能覆盖可调范围。
- d) 具有零周期设定标度值的仪表,实际零周期与零周期设定值的偏差一般不超过设定值的 $\pm 25\%$,小于 10 s 的零周期,最多不超过设定值的 $\pm 50\%$ 。

4.4.4 手动再调

具有手动再调功能的仪表,不进行设定点误差的检定,但须进行手动再调范围的检定。当偏差为零时,只改变手动再调信号,输出的时间比值 ρ 应能在 $0\sim1$ 之间变化。

具有手动再调功能的仪表,其比例带和零周期的检定应在 ρ =0.5 附近进行。

4.5 连续及断续(二位式)比例积分微分控制仪表要求

4.5.1 静差

仪表的静差应不超过(电)量程的 $\pm a_3\%$ 。 (a_3 可选取 0.5, 1.0, 1.5, 2.0, 2.5)。

4.5.2 输出及其输出阶跃响应

- a) PID 连续控制的仪表,在负载为 $1 \text{ k}\Omega$ [输出为 $(0\sim10)$ mA 的仪表] 或 500Ω [输出为 $(4\sim20)$ mA 的仪表] 时,其输出电流分别为 $(0\sim10)$ mA 和 $(4\sim20)$ mA。 上限值的误差不超过输出量程的 $-1\%\sim+3\%$,下限值的误差不超过输出量程的 $-3\%\sim+1\%$ 。
- b) PID 断续控制的仪表,输出端通、断(或高、低电平)的时间比值 ρ 的范围为 $0\sim1$ 。
- c) 仪表在开环情况下,输出的阶跃响应应具有正常的比例、积分、微分输出特性。输出特性曲线如图 2 所示(图中纵坐标的 I_0 为连续输出的电流, ρ 为断续输出的时间比值)。

图 2

4.5.3 比例带

- a) 比例带固定的仪表,实际比例带应在(1 ± 0.25) P 范围内; 比例带小于 10% 的应在(1 ± 0.5) P 范围内,或制造厂规定的范围内。断续 PID 控制的仪表,其允差可比连续PID 控制的仪表扩大一倍。
 - b) 比例带可调的仪表,实际比例带的上、下限应能覆盖可调范围。
- c) 有比例带设定标度值的仪表,实际比例带与比例带设定值的偏差一般不超过设定值的 $\pm 50\%$ (在 P 为 $5\% \sim 10\%$ 处); 断续 PID 控制的仪表一般不超过设定值的 $\pm 80\%$ 。
- 4.5.4 再调时间(积分时间) T_1
- a) 再调时间固定的仪表,实际再调时间应在(1 ± 0.5) $T_{\rm I}$ 范围内,或制造厂规定的范围内。
 - b) 再调时间可调的仪表,实际再调时间的上、下限应能覆盖可调范围。
 - c) 具有再调时间设定标度值的仪表,实际再调时间与再调时间设定值的偏差,除

制造厂另有规定外一般不超过设定值的 $\pm 50\%$ (在 T_1 为 2 min 时)。断续 PID 控制的仪表一般不超过设定值的 $\pm 80\%$ 。

- 4.5.5 预调时间(微分时间) $T_{\rm D}$
- a) 预调时间固定的仪表,实际预调时间应在(1+0.5) $T_{\rm D}$ 范围内,或制造厂规定的范围内。
 - b) 预调时间可调的仪表,实际预调时间的上、下限应能覆盖可调范围。
- c) 具有预调时间设定标度值的仪表,实际预调时间与预调时间设定值的偏差,除制造厂另有规定外一般不超过设定值的 $\pm 50\%$ (在 T_D 为 1 min 时)。
 - d) 断续 PID 控制的仪表不进行预调时间的检定。

4.6 稳定性

仪表经 24 h 连续工作后,其基本误差、设定点误差、静差仍应符合 4.1, 4.3.1, 4.4.1 及 4.5.1 的要求。

5 通用技术要求

- 5.1 外观
- 5.1.1 仪表正面应标明制造厂名称或商标、产品名称及计量单位符号;
- 5.1.2 仪表铭牌上应注明:型号规格、准确度等级、测温元件分度号、出厂编号、制造年月和制造计量器具许可证标志(即**还**标志)及编号,铭牌的信息应不易丢失;
- 5.1.3 仪表的标尺及接线端子铭牌上的文字、数字与符号应正确、鲜明、清晰、不应 沾污和残缺:
- 5.1.4 指示指针不应歪斜,在移动中应平稳,无卡针、迟滞等现象;光柱的亮度应均匀,不应有缺段现象;设定机构的旋钮、按钮、数码拨盘应操作灵活;
- 5.1.5 输入为热电偶信号并具有控制作用的仪表,应具有断偶保护功能。

5.2 绝缘电阻

在环境温度为 15 $\mathbb{C} \sim 35$ \mathbb{C} ,相对湿度 $45\% \sim 75\%$ 的条件下,仪表的电源、输入、输出、接地端子(或外壳)相互之间(输入端子与输出端子间不隔离的除外)的绝缘电阻应不低于 $20~M\Omega$ 。

5.3 绝缘强度

在环境温度为 15℃~35℃,相对湿度 45%~75%的条件下,仪表的电源、输入、输出、接地端子(或外壳)相互之间(输入端子与输出端子间不隔离的除外)施加表 1 所规定的试验电压,保持 1 min 应不出现击穿或飞弧现象。

表 1

仪表端子标称电压 (V)	试验电压 (V)
0< <i>U</i> <60	500
60 ≤ U<130	1 000
130 ≤ <i>U</i> <250	1 500

6 计量器具控制

计量器具控制包括首次检定、后续检定和使用中检验。

6.1 检定条件

6.1.1 检定设备

检定时所需的标准仪器及配套设备见表 2。选用的标准器,包括整个检定装置以置信概率 p=0. 95 提供估计值的扩展不确定度 U_{95} 应不超过被检仪表最大允许误差的 1/5。

表 2

序号	仪器设备名称	技术要求	用途	备注
1	标准直流电压发生 器或直流低电势 电位差计	1. U ₉₅ 不超过被检仪表允差的 1/5	配热电偶的仪表及 电压、电流输入型 仪表检定用标准器	1. 检定具有参考端温度自动补偿的仪表时,标准设备
2	标准直流电 流发生器	2. 标准电压发生器的输出阻 抗应小于 5 Ω		的扩展不确定度应 包括补偿导线修正
3	数字电压表			值及冰槽在内 2. 直流低电势电
4	直流毫伏发生器	1. 能连续输出 (0~80) mV 2. 输出阻抗小于 5 Ω		位差计不作信号源 使用
5	直流电阻箱	U ₉₅ 小于被检仪表允差的 1/5	配热电阻仪表及电 阻输入型仪表检定 用标准器	
6	补偿导线及0℃恒 温器(冰点槽)	补偿导线应有 20 ℃的修正值	具有参考端温度自 动补偿仪表检定用 连接导线	
7	三根连接导线	阻值按说明书中确定,三根 连接导线阻值之差不能超过 仪表允差的 1/10		阻值无明确规定时 每根连接导线应在 $(0\sim5)$ Ω 之间选配
8	频率周期多功能 测试分析仪 (ρ值测量仪)	ρ值测量范围: 0.005~0.995 允差: ±0.001	检定时间比例仪表 及断续 PID 控制仪 表的设定点误差、	
9	秒表	最小分辨力不大于 0.1 s	阶跃响应、静差用	
10	自动电位差计 (长图)	测量范围: 直流 (0~10) mV 直流 (0~20) mV 准确度等级: 0.5 级 走纸速度: 不低于 20 mm/min	录阶跃响应曲线	不记录时可用 0.5 级相应测量范围的 直流电流表

表 2 (续)

序号	仪器设备名称	技术要求	用途	备注
11	绝缘电阻表	输出电压: 直流 500 V, 10 级	检定绝缘电阻	
12	耐电压试验仪	输出电压:交流 (0~1 500) V 频率: (45~55) Hz 输出功率: 不低于 0.25kW	检定绝缘强度	
13	交流稳压源	输出电压:交流 220 V 输出功率:不低于 0.5 kW 电压稳定度:1%	仪表供电电源	

6.1.2 环境条件

环境温度: (20+5)℃;

相对湿度: 45%~75%;

仪表的供电电源:电压变化不超过额定值的 $\pm 1\%$;频率变化不超过额定值的 $\pm 1\%$;除地磁场外,无影响仪表正常检定的外磁场。

6.2 检定项目

仪表各控制管理阶段的检定项目见表 3。

表 3

检定项目	首次检定	后续检定	使用中检验
4.1 指示基本误差	+	+	+
4.2 回程误差	+	+	_
4.3 位式控制仪表			
4.3.1 设定点误差	+	+	+
4.3.2 切换差	+	+	_
4.4 时间比例控制仪表			
4.4.1 设定点误差	+	+	+
4.4.2 比例带	+	*	_
4.4.3 零周期	+	*	_
4.4.4 手动再调	+	*	_
4.5 连续及断续 PID 控制仪表			
4.5.1 静差	+	+	+

续表

检定项目	首次检定	后续检定	使用中检验
4.5.2 输出及输出阶跃响应	+	+	_
4.5.3 比例带	+	*	_
4.5.4 再调时间	+	*	_
4.5.5 预调时间	+	*	_
4.6 稳定性	+	_	_
5.1 外观	+	+	+
5.2 绝缘电阻	+	+	_
5.3 绝缘强度	+	_	_
注:表中"十"表示应检定,"一"表之	示可不检定,"*"	表示修理后或必要	时应检定。

6.3 检定方法

仪表检定前的准备工作:

- a) 按规定接线
- 1) 具有热电偶参考端温度自动补偿的仪表,检定时所用的标准器和接线如图 3 (a) 和图 3 (b) 所示。
- 2)不具有热电偶参考端温度自动补偿的仪表(包括直流电压输入的仪表),检定时所用的标准器和接线如图 4 (a) 和图 4 (b) 所示。
- 3)输入为直流电流信号的仪表,检定时所用的标准器和接线如图 5 (a) 和图 5 (b) 所示。
- 4)与热电阻配合使用的仪表,包括与电阻型传感器配合使用的仪表,检定时所用的标准器和接线如图 6 (a) 和图 6 (b) 所示。R 为连接导线的阻值。
 - b) 机械调零和通电预热

仪表置于规定的水平位置(允差±1°),在通电前可将指示指针的零点调准;然后接通电源,按制造厂规定的时间预热。如果没有明确规定,一般预热 15 min。具有参考端温度自动补偿的仪表可预热 30 min。通电期间可对输入为热电偶信号,并具有控制作用的仪表进行断偶保护功能的检查:断开输入信号,仪表指示值应趋向最大,并符合 5.1.5 的要求。

- 6.3.1 指示基本误差的检定
- 6.3.1.1 全量程指示的仪表

改变输入信号,使指示指针缓慢上升至上限值,然后缓慢下降至下限值。期间指针的移动(包括光柱的显示)应符合 5.1.4 的要求;

检定应在主刻度线上进行。检定点应包括上、下限在内至少5个点;

增大输入信号,使指针(光柱)缓慢上升,并对准各被检刻度线中心(光段最亮),分别读取标准仪器的示值,直至上限值。即为上行程中与各被检点对应的实际输入(电量)值 A_1 ;

在读取上限值后,减小输入信号,使指针(光柱)平衡下降,并对准各被检刻度线中心(光段最亮),分别读取标准仪器的示值,直至下限值。即为下行程中与各被检点对应的实际输入(电量)值 A₂。

仪表的指示基本误差按公式(1)、(2)计算:

$$\Delta_1 = A - (A_1 + e) \tag{1}$$

$$\Delta_2 = A - (A_2 + e) \tag{2}$$

式中: Δ_1 , Δ_2 ——仪表上、下行程指示基本误差 ($^{\circ}$, mV, Ω);

A——被检点温度值或对应的标称电量值 (\mathbb{C} , mV, Ω);

 A_1 , A_2 ——上、下行程中与被检点对应的实际输入(电量)值(\mathbb{C} , mV , Ω); e——对具有参考端温度自动补偿的仪表,e 表示补偿导线 20 \mathbb{C} 时的修正

值 (\mathbb{C} , mV); 不具有参考端温度自动补偿的仪表, e 为 0。

注:对输入电信号未作线性化处理的仪表,以电量值进行误差计算;对输入电信号作线性化处理的仪表,以被测物理量的单位(如℃)进行误差计算。(以下同)

图 4

图 5

(a) 配三线制热电阻

(b) 配四线制热电阻

图 6

6.3.1.2 偏差指示的仪表

检定一般应在设定值分别置于量程的 10%,50%,90%附近处进行(如果偏差指示范围超过量程的±10%,则设定值的 10%和 90%作相应调整)。

输入小于设定值的信号,并开始增大输入信号,使指针(光柱)缓慢上升,并对准 零及上限刻度线中心(光段最亮),分别读取标准仪器的示值。即为上行程偏差为零及 偏差为上限的实际输入(电量)值 A'_1 ;

减小输入信号,使指针(光柱)平稳下降,并对准零及下限刻度线中心(光段最亮),分别读取标准仪器的示值。即为下行程偏差为零及偏差为下限的实际输入(电量)值 A'_2 ;

仪表的指示基本误差按公式(3)、(4) 计算:

$$\Delta'_{1} = A' - (A'_{1} + e) \tag{3}$$

$$\Delta'_{2} = A' - (A'_{2} + e) \tag{4}$$

式中: Δ'_1 , Δ'_2 ——仪表上、下行程指示基本误差 ($^{\circ}$, mV, Ω);

A'——设定值与偏差指示值的代数和,或所对应的标称电量值($^{\circ}$ 、 $^{\circ}$ mV, $^{\circ}$ Ω);

 A'_1 , A'_2 ——上、下行程中与被检点对应的实际输入(电量)值(℃,mV, Ω)。

注:指示基本误差检定中如对结果产生疑义或仲裁检定时,应进行上述至少 3 个循环的检定。基本误差计算时,公式 (1) 至 (4) 中的 A_1 、 A_2 、 A'_1 、 A'_2 均取使误差最大的值;并进行示值重复性的计算;同一行程的最大差值,应不超过最大允许基本误差绝对值的 1/3。

6.3.2 回程误差的检定

仪表回程误差的检定与基本误差同时进行。全量程指示仪表和偏差指示仪表的回程 误差分别按公式(5)、(6)计算:

$$\Delta A = |A_1 - A_2| \tag{5}$$

$$\Delta A = |A'_1 - A'_2| \tag{6}$$

6.3.3 位式控制仪表的检定

6.3.3.1 设定点误差的检定

检定应在仪表量程 10%,50%,90%附近的设定点上进行。切换差可调的仪表将切换差设在中间位置;

增大输入信号,使偏差指示缓慢趋向零点,当输出状态改变时,读取输入(电量)值,然后缓慢减小输入信号,当输出状态改变时,读取输入(电量)值。一般只进行1个上、下循环的检定。如果有疑义或仲裁时,必须进行上述3个循环的检定。

多位控制作用的仪表,应对每位的设定点按上述二位控制作用的检定方法分别进行 检定。

位式控制作报警作用的仪表,上限报警点只要测得上切换值,下限报警点只要测得下切换值。

设定点误差按公式(7)计算:

$$\Delta_{SW} = (A_{SW1} + A_{SW2}) / 2 + e - A_{SP} \tag{7}$$

式中: Δ_{sw} ——位式控制的设定点误差 (\mathbb{C} , mV, Ω);

 A_{SW_1} , A_{SW_2} ——分别为上下行程输出状态改变时读得的输入(电量)值(或 3 个循 环的平均值。 \mathbb{C} , mV , Ω);

 A_{SP} ——设定点温度值或所对应的标称电量值($^{\circ}$, mV, $^{\circ}$)。

6.3.3.2 切换差的检定

切换差的检定与设定点误差检定同时进行。

切换差可调的仪表,应在量程 50%的设定点上进行最大、最小切换差的检定。计算切换差,确定切换差可调范围或切换差设定值的误差。切换差按公式(8)计算:

$$\Delta_{\rm SD} = |A_{\rm SW1} - A_{\rm SW2}| \tag{8}$$

切换差可调的仪表,同时还应按公式(7)计算不同切换差时的设定点误差。并仍须符合 4.3.1 的要求。

6.3.4 时间比例控制仪表的检定

6.3.4.1 设定点误差的检定

12

检定应在仪表量程 10%,50%,90% 附近的设定点上进行。比例带可调的仪表, 将比例带设在最大位置;零周期可调的仪表将零周期设在最小位置。如制造厂另有规 定,则按规定设置。

将仪表的输出端(通断型输出的常开触点两端)接到ρ值测量仪的输入端。

输入信号,使指示值接近设定值,当时间比值 ρ 稳定在 $0.5\pm\Delta\rho$ 时(允差 $\Delta\rho$ 的取值见附录 A)读取输入电量值。当仪表的零周期满足附录 B 要求时,也可以用秒表测量输出端的通断时间来计算 ρ 值。但有疑义时仍需用 ρ 值测量仪。

当比例带较大,检定设定点误差时要求的 $\Delta \rho$ 很小,操作难以保证时,可按附录 A. 3 的方法进行检定。

设定点误差按公式(9)计算:

$$\Delta_{\rm ST} = A_{\rm H} + e - A_{\rm SP} \tag{9}$$

式中: Δ_{ST} ——时间比例控制的设定点误差(\mathbb{C} , mV, Ω);

 $A_{\rm H}$ ── ρ 为 0.5 时的输入(电量)值(\mathbb{C} ,mV, Ω)。

6.3.4.2 比例带的检定

将设定点置于量程的50%检定点上,周期可调的仪表,将周期处于中间位置。

输入信号使时间比值 ρ 为 1, 对于非等周期的仪表需等待一段时间(一般取大于 5 倍的零周期)。然后增大信号,当开始有循环周期脉冲输出时(一般取 ρ 大于 0.9),读取输入(电量)值;接着增大输入信号,使时间比值 ρ 为 0。对于非等周期的仪表等 待上述同样的时间后,减小输入信号,当开始有循环周期脉冲输出时(一般取 ρ 小于 0.1),读取输入(电量)值。

仪表的实际比例带按公式(10)计算:

$$P_{AC} = (A_{P2} - P_{P1}) / FS \times 100\%$$
 (10)

式中: P_{AC} ——实际比例带;

 A_{P1} , A_{P2} — 分别为输入信号增大、减小后刚出现循环周期脉冲输出时的输入(电量)值(\mathbb{C} , mV, Ω);

FS——仪表的(电)量程(℃, mV, Ω)。

6.3.4.3 零周期的检定

零周期的检定可与设定点误差检定同时进行。读取 ρ 为 0.5 $\pm \Delta \rho$ 时的周期值即为 仪表的零周期。

零周期可调的仪表还应在仪表量程 50%的设定点上,进行可调范围或周期设定误差的检定。检定时将周期设置在最大和最小位置上,读取 ρ 为 $0.5\pm\Delta\rho$ 时的周期值。以此确定仪表实际的可调范围或周期设定值误差。

6.3.4.4 手动再调的检定

检定时将仪表的设定点置于量程 50%的设定点上。周期可调的仪表,将周期处于最小位置。比例带可调的仪表,分别将比例带处于最大和最小位置。输入信号使仪表指

示值与设定值相等。然后调节手动再调信号至最大、最小和中间位置;测量输出 ρ 值的实际范围。

6.3.5 连续和断续(二位式)PID控制仪表的检定

6.3.5.1 静差的检定

仪表的输出端接上制造厂规定负载电阻的最大值 [$(0\sim10)$ mA 的仪表一般为 1 k Ω , $(4\sim20)$ mA的仪表一般为 500 Ω], 并串联电流输入的自动电位差计(或直流电流表)。对于断续控制的仪表,输出端接上频率周期多功能测试分析仪。

检定应在仪表量程的 10%, 50%, 90% 附近的设定点上进行,后续检定的仪表可只选 1至 2 个常用的设定点检定。

PID 参数可调的仪表。为便于操作,可将比例带置于 5%~10%;再调时间和预调时间均置于最小,周期可调时,也应将其置于最小处。

输入一个与设定值相应的电量值,并作适当调整使输出分别稳定在输出量程的 10% 及 90% 附近,后续检定的仪表可稳定在输出量程的 50% 附近。在 $10T_1$ 时间内,达 到输出单方向变化不大于输出量程的 $2 a_3\%/P$ 时,可认为输出已稳定,此时可读取输入(电量)值。

仪表的静差按公式(11)计算:

$$\Delta_{\rm OF} = A_{\rm OF} + e - A_{\rm SP} \tag{11}$$

式中: Δ_{OF} —— 仪表的静差 (\mathbb{C} , mV, Ω);

 A_{OF} ——输出稳定时的输入(电量)值($^{\circ}$ 0, mV, $^{\circ}$ 0)。

6.3.5.2 输出及其输出阶跃响应的检定

仪表与检定设备的连接同静差检定。将设定点设置在量程的 50%处。PID 参数可调的仪表,将比例带设在 $5\% \sim 10\%$ 左右,再调时间设在 2 min 处,预调时间设在 1 min。断续输出的仪表,周期可调的应将周期置于最小 $(1 \text{ s} \sim 10 \text{ s})$;

输入信号,使输出为最小(和最大),并记录其大小。然后输入一个上升(和下降)的阶跃信号,阶跃信号的大小以微分作用不致使输出产生饱和为准(一般约为比例范围的 1/5),在直流电流表上观察输出的变化,或在记录仪上观察输出特性曲线。断续 PID 控制的仪表在 ρ 值测量仪观察 ρ 的变化。

6.3.5.3 比例带、再调时间、预调时间的检定

首次检定和控制部分修理后的仪表需进行比例带、再调时间、预调时间的检定。整体检定可按附录 B 的图解法进行。由于 PID 控制实现方式的不同,有些仪表不适宜整体检定,则可按制造厂规定的检验方法进行。

6.3.6 稳定性的检定

给仪表输入一个量程 80%的信号,连续运行 24 h 后,按本规程 6.3.1 的方法在仪表量程的 20%和 80%附近测量指示基本误差;并分别按本规程 6.3.3.1,6.3.4.1 及 6.3.5.1 的方法在仪表量程的 50%附近测量设定点误差和静差。

6.3.7 外观检查

14

按本规程 5.1 的要求用目力观察。其中 5.1.4 可在基本误差和设定点误差的检定过程中观察; 5.1.5 可在通电预热时进行。

6.3.8 绝缘电阻的检定

断开电源,仪表电源开关(如果有)处于接通位置,将各电路本身端钮短路。用绝缘电阻表按本规程5.2规定的部位进行测量。测量时,应稳定5 s 后读数。

6.3.9 绝缘强度的检定

断开电源,仪表电源开关(如果有)处于接通位置,将各电路本身端钮短路。按本规程 5.3 规定的部位,在耐电压试验仪上进行测量。测量时,试验电压应从零开始增加,在(5~10) s内平滑均匀地升至试验电压规定值(误差不大于 10%),保持 1 min后,平滑地降低电压至零,切断试验电源。

注: 仪表在试验时,可使用具有报警电流设定的耐电压试验仪。设定值一般为 10 mA。使用该 仪器时,以是否报警作为判断绝缘强度合格与否的依据。

6.4 检定结果的处理

在读取电量值及相应的误差计算中,小数点后应保留的位数以舍入误差小于仪表允许误差的 1/10~1/20 为限;判断仪表是否合格应以化整以后的数据为准。

经检定符合本规程要求的仪表,出具检定证书;不合格的仪表,出具检定结果不合格通知书,并注明不合格项目。

6.5 检定周期

仪表的检定周期可根据使用条件和使用时间来确定,一般不超过1年。

附录A

时间比例控制的仪表检定的几点说明

A.1 $\Delta \rho$ 的取值

 $\Delta \rho$ 的大小与被检仪表的允许误差有关,与比例带的大小有关。对于有些仪表,还必须考虑比例增益的非线性影响。 $\Delta \rho$ 的取值为由此造成的测量误差不大于允许误差的 1/5,其值可以按公式 A. 1 计算:

$$\Delta \rho = a_2 \% (1 - r) / (5P)$$
 (A. 1)

式中: r---比例增益的非线性系数 (一般可取 0.2);

P——仪表的比例带。

r 为 0.2 时的 $\Delta \rho$ 取值列于表 A.1。

表 A.1

14 m + n (0 /)		Δho	
比例带 P (%)	$a_2\% = 0.5\%$	$a_2\% = 1.0\%$	$a_2\% = 1.5\%$
3	0.027	0.054	0.081
4	0.020	0.040	0.060
5	0.016	0.032	0.048
6	0.013	0.026	0.039
8	0.010	0.020	0.030
10	0.008	0.016	0.024
15	0.005	0.011	0.016
20	0.004	0.008	0.012

A. 2 用秒表测量 ρ 值的限制

如果通过秒表测量输出端的通断时间来计算 ρ 值,则秒表的操作误差将引起 ρ 值的测量误差。在 A. 1 中已确定了设定点误差检定时 $\Delta \rho$ 的大小,用秒表测量时引起的 ρ 值测量误差不大于 $\Delta \rho$ 的 1/5 时,A. 1 的 $\Delta \rho$ 取值才有效。 ρ 值的测量误差与秒表的操作误差之间的关系可以用公式 A. 2 来表示:

$$\delta_{\rho} = \Delta t / \left(\sqrt{2} T_{0} \right) \tag{A. 2}$$

式中: δ_{ρ} ——秒表的操作误差引起的 ρ 值测量误差;

 Δt 一秒表的操作误差;

16

T₀——零周期。

取 $\Delta t = 0.1 \text{ s}$ 时,只有对 T_0 大于 $0.5/(\sqrt{2}\Delta\rho)$ 的仪表,用秒表测量 ρ 值,其操作误 差才可忽略不计。表 A. 2 列出了可以用秒表测量仪表 T_0 的下限值。

表 A.2

LL fal #t D (0/)		零周期 T ₀ (s)	
比例带 P(%)	$a_2\% = 0.5\%$	$a_2\% = 1.0\%$	$a_2\% = 1.5\%$
3	20	10	5
4	20	10	10
5	30	20	10
6	30	20	10
8	40	20	20
10	50	30	20
15	_	40	30
20	_	50	30

A. 3 时间比例控制的仪表比例带较大时设定点误差的检定

仪表设定后,首先输入设定值所对应的标称电量值,并在输出端测得时间比值 ρ_s ; 然后减小(或增大)输入信号,测得第二个时间比值 ho_n (输入信号的变化必需满足 ho_n 与 0.5 之差的绝对值不大于 0.1),并记下该输入信号值。

设定点误差可按公式(A.3)计算:

$$\Delta_{\rm ST} = (\rho_{\rm s} - 0.5) |A_{\rm sp} - A_{\rm n}| / |\rho_{\rm s} - \rho_{\rm n}|$$
 (A.3)

式中: ρ_s ——输入设定值所对应的标称电量值时测得的实际时间比值;

 ρ_{n} ——输入减小(或增大)后测得的实际时间比值; A_{n} ——输入减小(或增大)后的电量值;

A_{sp}——设定点温度所对应的标称电量值。

附录B

比例带、再调时间、预调时间检定的图解法

检定是在输出阶跃响应检定的基础上进行。

比例带、再调时间和预调时间可以在正向输出特性曲线上作图得到。 正向输出特性曲线如图 B. 1 所示。

图 B.1

作积分作用直线 EF 的反向延长线与 $t=t_0$ 坐标轴相交,得到输出电流 I_1 ,实际比例带可按公式(B. 1) 计算:

$$P_{AC} = \Delta A_{j} F S' / [FS (I_{1} - I_{0})] \times 100\%$$
 (B. 1)

式中: P_{AC} ——实际比例带;

 ΔA_i —— 阶跃输入前后,输入(电量)值之差($^{\circ}$ 、mV, Ω);

FS'----仪表输出量程 (mA);

FS——仪表 (电) 量程 (℃, mV, Ω);

I₀——阶跃信号输入前的输出电流值 (mA), 一般为略大于输出下限的稳定值 (稳定程度的掌握可按静差检定中的要求进行)。

令 $I_2 - I_1 = I_1 - I_0$,在输出轴上找到 I_2 ,并在积分作用直线 EF 上找到与输出电流 I_2 对应的时间 t_2 。再调时间按公式(B. 2)计算:

$$T_1 = t_2 - t_0$$
 (B. 2)

在输出轴上,按公式 (B.3) 计算找到 I_3 :

$$I_3 = (I_4 - I_1) \times 36.8\% + I_1$$
 (B. 3)

过 $G(t=t_0$ 与 $I=I_3$ 的交点)作 EF 的平行线交 PID 曲线于 H。

 t_1 为 H 点在时间轴上的对应时间。预调时间可按公式(B.4)计算:

$$T_{\rm D} = (I_4 - I_0) (t_1 - t_0) / (I_1 - I_0)$$
 (B. 4)

PID 参数可调的仪表,分别改变其参数,用上述方法测量并计算实测结果,判定参数的覆盖面。

上述 P_{AC} , T_I 和 T_D 的结果是针对干扰系数 F=1 或略大于 1 的仪表, 如果 F 的影响不可忽略,则必须对上述结果加以修正。

$$P_{AC}' = P_{AC} \cdot F$$

$$T_{I}' = T_{I}/F$$

$$T_{D}' = T_{D} \cdot F$$

式中, P_{AC}' 、 T_{I}' 、 T_{D}' 为修正后的比例带、再调时间和预调时间。

附录C

模拟式温度指示调节仪检定记录

1 指示部分	(全量程指示)				
送检单位:	,型号:		,分度号:_		
测量范围:	, 准确度	等级:	,制造	記:	
出厂编号:	, 标准器	名称及编号	:	_, 室温:	°C
相对湿度:	%RH,	补偿导线修正	E值: e=	mV	
被检	刻度线	标准器示	()	# + 11 + /)	回却"招光" / _ /
刻度值()	标称电量值()	上行程		基本误差()	四程误差()
	_				
	_				
	,实际最		,允	公许回程误差:_	
实际最大回程	误差:		有 # 日		□1 + 4±1
	检定员	Į	,复核员	,检定	□ 朔

2 指示部分			Λ	莊 口		
		,型号: ,准确度等级:				
		, 证				
		%RH,补偿导				0
被检亥]度线	标	准器示值()	甘木汨光	同租担关
		标称电量值	上行程	下行程	. 基平误差 ()	回程误差
	+			/		
	0	-				
	_		/			
	+			/		
	0					
	_		/			
	+	_		/		
	0					
	_		/			
		,实际最大误。 ,结ì				

送检单位:
出厂编号:,标准器名称及编号:,室温:
相对湿度:%RH,补偿导线修正值: e= mV 设定点 A _{SP} 上切换值 A _{SW1} 下切换值 A _{SW2} 设定点误差 切换差 () ()
设定点 A _{SP} 上切换值 A _{SW1} 下切换值 A _{Sw2} 设定点误差 切换差 () ()
允许设定点误差:, 实际最大设定点误差:
允许切换差:,实际最大切换差:
结论:
检定员,复核员,检定日期
4 时间比例控制部分
送检单位:, 型号:, 分度号:
测量范围:, 准确度等级:, 制造厂:
出厂编号:,标准器名称及编号:,室温:
设定点 $\rho=0.5$ 时 设定点误差 零周期 $\rho\geqslant0.9$ 时 $\rho\leqslant0.1$ 时 实际比例带
T_{\circ} (s) $\frac{1}{2}$ 输入值() $\frac{1}{2}$ $\frac{1}$

JJG 951—2000

设定点误差:允许比例带:标称值或零周期:标称值或手动再调:实际范结论:	范围, 范围, 围	实际值或范围_实际值或范围_		定日期
5 比例积分微分数 送检单位	,型号: ,准确度等约,标准器名标	级:, 弥及编号:	制造厂: ,室温:	℃
设定点	输出稳	定时的输入值 A _{OF} 输出 50%附近	()	静差 ()
输出范围: 标称_ 输出特性: 静差: 允许值 P: 标称值或范围_ T _I : 标称值或范围 T _D : 标称值或范围	,(周期 T) ,实际最为 ,实际 ,实际	大值 大值 示值或范围 际值或范围		
46:			 艮,检	定日期

附录D

本规程的符号汇总

本规程中所用符号汇总如下:

a 仪表的准确度等级。

A 被检点温度值或对应的标称电量值 ($^{\circ}$, mV, $^{\circ}$)。

A' 设定值与偏差指示值的代数和 (\mathbb{C}),或所对应的标称电量值 (mV , Ω)。

 A_1, A_2 上、下行程中与被检点对应的实际输入(电量)值(\mathbb{C}, mV, Ω)。

 A'_1 , A'_2 偏差指示的仪表上、下行程中与被检点对应的实际输入(电量)值(\mathbb{C} ,mV, Ω)。

 $A_{\rm H}$ 时间比例控制的仪表, ρ 为 0.5 时的输入(电量)值($^{\circ}$, mV, Ω)。

A_{next} 时间比例控制的仪表比例带较大时,检定设定点误差时输入减小(或增大)后的电量值。

 A_{OF} PID 控制的仪表,输出稳定时的输入(电量)值($^{\circ}$ C,mV, $^{\circ}$ D)。

 A_{P1} , A_{P2} 分别为时间比例控制的仪表在输入信号增大、减小后,刚出现循环周期脉冲输出时的输入(电量)值(\mathbb{C} ,mV, Ω)。

 A_{SP} 设定点温度值或所对应的标称电量值 ($^{\circ}$, mV, Ω)。

 A_{sw_1} , A_{sw_2} 分别为位式控制的仪表,上、下行程输出状态改变时读得的输入(电量)值($^{\circ}$ C, $^{\circ}$ mV, $^{\circ}$ Q)。

e 对具有参考端温度自动补偿的仪表,e 表示为补偿导线 20℃时的修正值 ($^{\circ}$ C, $^{\circ}$ mV);不具有参考端温度自动补偿的仪表,e 为 0。

FS' 连续 PID 控制仪表的输出电量程 (mA)。

P 仪表的比例带。

 P_{AC} 仪表的实际比例带。

I₀ 连续 PID 控制的仪表,在阶跃信号输入前的输出电流值 (mA),一般为略大于输出下限的稳定值。

r 比例增益的非线性系数(一般可取 0.2)。

T。 零周期。

 $T_{\rm D}$ 预调时间(微分时间)。

 T_1 再调时间 (积分时间)。

 U_{95} 以置信概率 p=0.95 提供置信区间 $Y=y\pm U_{95}$ 的输出估计值 y 的扩展不确定度。它等于包含因子 k_{95} 与合成标准不确定度 u_{c} (y) 之积:

$$U_{95} = k_{95} u_{\rm c}(y)$$

 ρ 时间比值。

ρ_s 输入设定值所对应的标称电量值时测得的实际时间比值。

ρ_n 输入减小(或增大)后测得的实际时间比值。

 Δ_1 , Δ_2 全量程指示仪表的上、下行程指示基本误差 ($^{\circ}$, mV, Ω)。

 Δ'_1, Δ'_2 偏差指示仪表的上、下行程指示基本误差 (\mathbb{C} , mV, Ω)。

ΔΑ 仪表的回程误差。

 ΔA_i 阶跃输入前后,输入(电量)值之差($^{\circ}$ 0, mV, Ω);

 Δ_{0F} PID 控制的仪表的静差 (\mathbb{C} , mV, Ω)。

 Δ_{SD} 位式控制仪表的切换差。

 Δ_{ST} 时间比例控制的设定点误差(\mathbb{C} , mV, Ω)。 Δ_{SW} 位式控制仪表的设定点误差(\mathbb{C} , mV, Ω)。

附录E

误差分析实例

规程中要求检定用标准器,包括整个检定设备和比较过程以置信概率 p=0.95 提供估计值的扩展不确定度 U_{95} 应不超过被检仪表允许误差的 1/5。现以配热电偶的仪表为例,如何按上述要求选择标准器。

被检仪表的规格为: 0.5 级, S分度号, 测量范围 (0~1 600)℃, 有参考端温度自动补偿。选用的标准器为标准直流电压发生器。

标准器的最大允许误差为± (0.02%读数+0.010 mV)。

被检仪表的允许误差为±0.084 mV。

按规程要求: U₉₅≤0.084/5=0.0168 mV。

误差来源及分析见表 E.1。

表 E.1 中: i——误差或不确定度来源的序号;

 x_i ——不确定度来源;

 a_i —— x_i 的误差分散区间半宽、最大允许误差或扩展不确定度;

 k_i ——包含因子;

 $u(x_i) = a_i/k_i$ 一 x_i 的标准不确定度;

で。――自由度。

检定时环境温度对标准器的影响很小,忽略不计。

表 E.1

i	x_i	a_i	k_i	$u(x_i)$	v_i
1	标准器 s	13. 35 μV	1.732	7. 71 μV	8
2	补偿导线修正值 e	1. 34 μV	2.00	0.67 μV	71
3	0℃恒温器 t	0.50 μV	1.732	0. 29 μV	50

$$u_c = \sqrt{u(x_1)^2 + u(x_2)^2 + u(x_3)^2} = 7.74 \, \mu \text{V}$$

 $\nu_{\rm eff} = \infty$

$$k_{95} = 1.96$$

 $U_{95} = 8.26 \times 1.96 = 15 \ \mu V$

分析结果表明标准器的选择符合规程要求。