Compositional memory matters for early molecular systems

Barnabe Ledoux

Evolution of complexity

^[1] P.Nghe, A stepwise emergence of evolution in the RNA world, FEBS Letters, 10.1002/1873-3468.70065 (2025)

^[2] R Mizuuchi, T Furubayashi, N Ichihashi, Evolutionary transition from a single RNA replicator to a multiple replicator network. Nat. Commun. 13, 1460 (2022)

The need for compartments

 \sim 500 nt In a **pool** with replicases and parasites: Parasite replication (fast) Self replication (slow) ⇒ Parasites invade the system

The need for compartments

With compartments:

- Parasite replication (fast)
- Self replication (slow)
- Parasites alone cannot replicate

Modeling dynamics

Transient compartmentalization with natural selection and mutations

Evolution equations

$$\lambda = \frac{m_0 + m_1 + y_0 + y_1}{d}$$

Dilution

$$x_{0} = \frac{m_{0}}{m_{0} + m_{1} + y_{0} + y_{1}}$$

$$x_{1} = \frac{m_{0}}{m_{0} + m_{1} + y_{0} + y_{1}}$$

$$z_{0} = \frac{y_{0}}{m_{0} + m_{1} + y_{0} + y_{1}}$$

$$z_{1} = \frac{y_{1}}{m_{0} + m_{1} + y_{0} + y_{1}}$$

Compartmentalization

 $P(m_0, m_1, y_0, y_1 | x_0, x_1, z_0, z_1, \lambda)$ $= \sum \frac{\lambda^n}{n!} e^{-\lambda} \frac{n!}{m_0! \, m_1! \, y_0! \, y_1!} x_0^{m_0} x_1^{m_1} \, z_0^{y_0} \, z_1^{y_1}$

 dy_1

Compartment

Pooling

Maturation

$$\frac{dm_0}{dt} = (-(\mu_0 + \nu_0)m_0) + \alpha_{0,0}m_0^2 + (\mu_1 + \nu_1)m_1 + \mu_0 m_0 + \alpha_{1,1}m_1^2$$

Mutations dy_0 $|v_0 m_0| + |\gamma_{0,0} m_0 y_0|$

Replication

Variation

Oscillatory dynamics

Carrying capacity K = 2.9 Dilution M = 3.2

1 parasite1 replicase

Replicases mo $x_{ini} = 0.1$, $\lambda_{ini} = 1.0$ $x_{ini} = 0.1$, $\lambda_{ini} = 1.0$ Replicases m₁ $x_{ini} = 0.7, \lambda_{ini} = 1.0$ $x_{ini} = 0.7$, $\lambda_{ini} = 1.0$ Parasites y₀ --- $x_{ini} = 0.9$, $\lambda_{ini} = 1.0$ $x_{ini} = 0.9, \lambda_{ini} = 1.0$ Parasites y₁ 2.5 **<** 2.0 1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.0 1.2 0.4 0.8 1.0 0.2 Round number 0.6 0.8 4.0_T $x_{ini} = 0.1$, $\lambda_{ini} = 1.0$ Replicases m₀ 3.5 • $x_{ini} = 0.5, \lambda_{ini} = 1.0$ Replicases m₁ $x_{ini} = 0.9, \lambda_{ini} = 1.0$ Parasites y₀ 3.0 Parasites y_1 2.5 2.5 **~** 2.0 ★ 2.0 1.5 $x_{ini} = 0.1, \lambda_{ini} = 1.0$ 1.0 $x_{ini} = 0.5, \lambda_{ini} = 1.0$ 0.5 $x_{ini} = 0.9, \lambda_{ini} = 1.0$ 0.0 0.2 0.4 1.0 0.8 Round number

2 parasites2 replicases

Comparison to experiments

Stirring

Stirring in serial transfer

Single compartment evolution

Increasing heterogeneity

Stirring in serial transfer

Tested experimentally

Increasing stirring

Stirring favors replicases

Small s

Large s

Conclusion

- Compartments along with stirring are a way to ensure coevolution and appearance of complexity.
- More species and strong dilution stabilizes the system.
- Stirring homogenizes the system, which tend to isolate parasites and favors replicases.

David Lacoste

Ryo Mizuuchi

Ryoka Kuwabara

Taro Furubayashi

Philippe Nghe

Additional content

Experimental tests

With 2 species:

- From bimodal to monomodal distribution
- Depends on stirring process

- (ii). Long, weak stirring
- (iii). Medium length, strong stirring
- (iv). Long, strong stirring

Influence of dilution factor and maturation time

