

Área Académica de Ingeniería en Computadores Análisis Numérico para Ingeniería – CE-3102

Tarea #1

Manual de usuario para el paquete FunTras

Estudiantes:

Yordi Brenes Roda Gabriel Antonio Conejo Valerio Ricardo Gatgens Rodríguez Ignacio Morales Chang

Profesor:

Juan Pablo Soto Quirós

Tabla de contenido

Tabla de contenido	1
Explicación	2
Instalación	3
Conceptos Básicos	4
Funciones básicas	2
Funciones Trigonométricas	8
Constantes	12

Explicación

El paquete FunTras nos permite aproximar mediante los operadores básicos de suma, resta y multiplicación; funciones trascendentales como el seno, tangente, logaritmo, exponenciación, potencia. A partir del uso de métodos iterativos se desarrolla la lista de funciones dadas en la especificación.

Este paquete computacional está desarrollado en GNU Octave e incluye las siguientes funciones

- X⁻¹
- sin(x)
- tan(x)
- $log_a(x)$
- sinh(x)
- tanh(x)
- $\sqrt[a]{x}$
- tan⁻¹(x)
- e^x
- cos(x)
- ln(x)
- a^x
- cosh(x)
- \sqrt{x}
- sin⁻¹(x)
- cos⁻¹(x)

Instalación

Primero debe cerciorarse tener instalado el software GNU octave

https://www.gnu.org/software/octave/download

Para instalar el paquete se ubica este en el directorio donde se encuentra la carpeta del usuario dependiendo del sistema operativo y se ejecuta el comando

```
pkg install funTras.tar.gz
```

Para cargar el paquete se ejecuta el comando

pkg load image

Conceptos Básicos

Funciones básicas

Inverso multiplicativo

Esta función da el resultado del inverso de un número "x" usando el eps (cero de máquina) elevado a un número específico dependiendo del valor x se aproxima utilizando un proceso iterativo.

$$div_{-}t(x) = x^{-1}$$

Potenciación de Euler

A partir de método iterativo donde se evalúa *x* potenciando con el número de iteración actual y multiplicando por el inverso multiplicativo del factorial de la iteración actual, se obtiene el resultado de multiplicar euler "x" cantidad de veces.

```
>> e=exp_t(2)
e = 7.389056098516415
>> e=exp_t(8)
e = 2980.957987040617
>> |
```

$$exp_t(x) = e^x$$

Logaritmo natural

Mediante un serie de números representado con un ciclo de obtiene el valor del logaritmo natural de ${\bf x}$

```
>> ln_t(2)
Salida por tolerancia
ans = 0.693147180559945
>> ln_t(exp_t(1))
Salida por tolerancia
ans = 0.999999999936402
>> |
```

Potenciación

A partir de la función $e^{x*\ln a}$ se obtiene el resultado de potenciar "a" la cantidad "x" veces

```
>> p=power_t(8,2)
Salida por tolerancia
p = 256.00
>> p=power_t(3,2)
Salida por tolerancia
p = 8.0000
>> p=power_t(10,5)
Salida por tolerancia
p = 9.7656e+06
power_t(x,a) = a<sup>x</sup>
```

Logaritmo x en base a

Usando las propiedades de lo logaritmos el cual para obtener logaritmo de un base "n"

en específico se puede descomponer en $\frac{\ln x \cdot \frac{1}{\ln a}}{\ln a}$ y con la ayuda de la funciones ya implementadas de ln_t y div_t. Este puede dar un valor muy cercano debido a nivel de tolerancia

```
>> l=log_t(128,2)
Salida por tolerancia
Salida por tolerancia
1 = 6.9999999999994
>> l=log_t(1000,10)
Salida por tolerancia
1 = 2.999998202528801
>> l=log_t(1,2)
Salida por tolerancia
Salida por tolerancia
Salida por tolerancia
1 = 0
>> |
```

$$log_{-}t(x,a) = log_{a}(x)$$

Raíz a-ésima de x

Esta se basa en el método de newton-raphson tomando como valor inicial $x_0=\frac{a}{2}\ \text{como método de parada}\ |(x_{k+1}-x_k)|< tol\ |(x_{k+1})|\ \text{donde "tol" ya es un valor fijado}.$

```
>> r=root_t(256,2)

r = 16

>> r=root_t(9,3)

r = 2.080083823051904

>> r=root_t(3,2)

r = 1.732050807568877

>> |
```

$$root_t(x, a) = \sqrt[a]{x}$$

Raíz cuadrada

Este usa la función potencia pero el exponente es 1 / 2 el cual usa el inverso multiplicativo de 2. Puede dar valores muy cercanos debido al número fijo de tolerancia

```
>> s=sqrt_t(3)
Salida por tolerancia
s = 1.732050807532812
>> s=sqrt_t(1024)
s = 31.99991443176868
>> |
```

$$sqrt_t(x) = \sqrt{x}$$

Funciones Trigonométricas

Seno de x

Esta función usa la computarización de la serie de senos hecha a base de la serie de Taylor. La cual consiste en una sumatoria de donde el valor de entrada es elevando a un factor "2n+1" y dividido por el factorial del factor; "n" es el número de iteración actual, además dependiendo de este "n" el número obtenido en la iteración por su negativo.

```
>> y=sin_t(0)

y = 0

>> y=sin_t(pi)

y = 1.0348e-11

>> y=sin_t(pi*div_t(2))

y = 1.0000

>> y=sin_t(pi*div_t(4))

y = 0.7071

>> y=sin_t((3*pi)*div_t(2))

y = -1.0000

>> |

sin_t(x) = sin x
```

Coseno de x

Esta función usa la computarización de la serie de cosenos hecha a base de la serie de Taylor. La cual consiste en una sumatoria de donde el valor de entrada es elevando a un factor "2n" y dividido por el factorial del factor; "n" es el número de iteración actual , además dependiendo de este "n" el número obtenido en la iteración por su negativo.

```
>> y=cos_t(0)

y = 1

>> y=cos_t(pi*div_t(2))

y = -6.5134e-11

>> y=cos_t(pi*div_t(4))

y = 0.7071

>> y=cos_t(pi)

y = -1.0000

>> y=cos_t((3*pi)*div_t(2))

y = -2.2681e-11

cos_t(x) = cos x
```

Tangente de x

Esta función usa la computarización de la mezcla a razón de la propiedad de la tangente usando la serie de cosenos y la serie de senos hecha a patir de la serie de Taylor como base. La cual consiste en una sumatoria de donde el valor de entrada es elevando a un factor "2n+1" y dividido por el factor; "n" es el número de iteración actual, además dependiendo de este "n" el número obtenido en la iteración por su negativo.

```
>> t=tan_t(pi_t()*div_t(6))

t = 0.577261383749336

>> t=tan_t(pi_t()*div_t(4))

t = 0.999800019995003

>> t=tan_t(pi_t()*div_t(3))

t = 1.731517597321098

>> | tan_t(x) = tan x
```

Seno hiperbólico de x

Esta función usa la computarización de la serie de senos hecha a base de la serie de taylor. La cual consiste en una sumatoria de donde el valor de entrada es elevado a un factor "2n+1" y dividido por el factorial del factor; "n" es el número de iteración actual, este no incluye la variante de positivo o negativo dependiendo del "n".

```
>> s=sinh_t(1)

s = 1.175201193643034

>> s=sinh_t(2)

s = 3.626860407842667

>> | sinh_t(x) = sinh x
```

Tangente hiperbólico de x

Esta función usa la computarización de la mezcla a razón de la propiedad de la tangente donde se puede definir como senh(x) multiplicado por el inverso multiplicativo de cosh(x)

```
>> s=tanh_t(1)

s = 0.761594155960953

>> s=tanh_t(2)

s = 0.964027580085263

>> s=tanh_t(pi_t())

s = 0.996269098260027

>> | tanh_t(x) = tanh x
```

Coseno hiperbólico de x

Esta función usa la computarización de la serie de cosenos hecha a base de la serie de Taylor. La cual consiste en una sumatoria de donde el valor de entrada es elevando a un factor "2n" y dividido por el factorial del factor; "n" es el número de iteración actual, este no incluye la variante de positivo o negativo dependiendo del "n"

Seno inverso de x

 $\frac{(2n)!}{4^n\cdot (n!)^2\cdot (2n+1)}\cdot x^{2n+1}$ Esta función usa el polinomio $\frac{4^n\cdot (n!)^2\cdot (2n+1)}{4^n\cdot (n!)^2\cdot (2n+1)}\cdot x^{2n+1}$ dentro de un proceso iterativo donde "n" es el valor de la iteración actual y su tolerancia está dada por $|S_{k+1}-S_k|< tol \text{ donde S es el valor final de la función}.$

```
>> as=asin_t(0.43)

as = 0.444492775674573

>> as=asin_t(0.5)

as = 0.523598774479260

>> | asin_t(x) = sin^{-1} x
```

Tangente inversa de x

Esta función usa el polinomio $(-1)^n \cdot \frac{a^{2n+1}}{2n+1}$ dentro de un proceso iterativo donde "n" es el valor de la iteración actual y su tolerancia está dada por $|S_{k+1} - S_k| < tol$ donde S es el valor final de la función.

```
>> at=atan_t(1)

at = 0.785298163401448

>> at=atan_t(-1)

at = -0.785298163401448

>> at=atan_t(0)

at = 0

atan_t(x) = tan^1 x
```

Coseno inverso de x

Utilizando la propiedad de este coseno es equivalente a pi entre 2 sumado al negativo del valor de seno inverso de x.

```
>> c=cosh_t(0.43)

c = 1.0939

>> c=cosh_t(0.5)

c = 1.1276

>> c=cosh_t(1)

c = 1.5431

>> c=cosh_t(0)

c = 1

>> | acos_t(x) = cos^{-1} x
```

Constantes

Ρi

Para obtener esta constante se utiliza la serie de Leibniz con la modificación de un 4 para obtener pi y no pi por 1/4.

```
>> pi_t() ans = 3.141192653605793 pi_t() \approx \pi >> |
```