12.

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

 $P = ((A + ((B^{\wedge}C) - D)) * (E - (A/C)))$

MID SEMESTER EXAMINATION WINTER SEMESTER, 2011-2012

FULL MARKS: 75

DURATION: 1 Hour 30 Minutes

CSE 4303: Data Structures

Programmable calculators are not allowed. Do not write anything on the question paper.

There are 4 (four) questions. Answer any 3 (three) of them.

Figures in the right margin indicate marks.

1.	a)	What is Abstract Data Type (ADT)?	4
	b)	What are the major operations in Data Structure? Briefly Explain.	5
	c)	Suppose, an array A[-15 64] is stored in a memory whose starting address is 459. Assume that the word size for each element is 2 bytes. Then obtain the following: i. How many numbers of elements are there in the array A? ii. How much memory is required to store the entire array? iii. What is the location for A[50]? iv. What is the location of the 10 th element? v. Which element is located at 589?	5 x 2
	d)	Suppose a <i>InsetArray</i> algorithm only checks the last elements for vacancy. While $(i \le Location)$ it needs to push down all the trailing elements from that location. But an array can be empty from any <i>i</i> th position $(L \le i \le U)$; in that case the number of push	6
		down can be reduced instead of pushing down the entire trailing part of the array. Write an algorithm <i>InserArray</i> when the last element is at the <i>i</i> th location ($i \le U$).	
2.	a)	Explain the Dynamic representation of Linked List in memory.	6
	b)	Given two sorted list $L1$ and $L2$, write an algorithm to find $L1 \cup L2$.	6
	c)	What advantages do the circular linked lists have over ordinary linked list?	6
	d)	Write an algorithm which accepts a stack as input and reverses the element of the stack using one additional queue.	7
3.	a)	Convert the given expression into a postfix expression:	10

b) The celebrated Fibonacci sequence (denoted as F_0 , F_1 , F_2 , F_3 , ..., F_n) is as: 1, 1, 2, 3, 5, 8, 13, ...

The above sequence can be defined using recursion as follow:

If
$$n = 0$$
 or $n = 1$ then $F_n = 1$

Else $F_n = F_{n-1} + F_{n-2}$

Show how recursive implementation of this Fibonacci sequence can be done using stack.

- c) When is a recursive procedure and function called well-defined?
- d) What are the possible difficulties one might face implementing priority queue using an array and multi-queue implementation.
- 4. a) Prove that the maximum and minimum levels that are possible for a binary tree with *n* nodes are

$$\begin{aligned} l_{\text{max}} &= n - 1 \\ l_{\text{min}} &= \left\lceil \log_2(n+1) - 1 \right\rceil \end{aligned}$$

b) Suppose the inorder and postorder of a binary tree are as follows: Inorder: D B H E A I F J C G

Postorder: D H E B I J F G C A

Construct the Binary Tree.

c) Let the following data are given:

34, 20, 40, 12, 50, 45, 67, 45

Sort these data in ascending order using heap tree without storing the output into another array. Show the required steps.

d) What is the disadvantage of Huffman coding?

2

12

6