The Universe

Robin Adams

July 25, 2022

Contents

1	Category Theory 5			
	1.1	Categories	5	
	1.2	Functors	6	
2	Topology 7			
	2.1	Topologies and Topological Spaces	7	
	2.2	Closed Sets	8	
	2.3	Basis for a Topology	8	
	2.4	Continuous Functions	8	
	2.5	Homotopy Theory	9	
3	Metric Spaces 11			
	3.1	Metrics	11	
	3.2	Subspaces	12	
	3.3	Complete Metric Spaces	12	
4	Gro	oup Theory	13	
5	Ring Theory			
		Modules	15	
6	Linear Algebra 17			
		Vector Spaces	17	

4 CONTENTS

Category Theory

1.1 Categories

Definition 1.1 (Category). A category C consists of:

- a class $|\mathcal{C}|$ of *objects*;
- for any objects $X,Y\in\mathcal{C}$, a set $\mathcal{C}[X,Y]$ of morphisms. We write $f:X\to Y$ for $f\in\mathcal{C}[X,Y]$
- for any object $X \in \mathcal{C}$, an identity morphism $\mathrm{id}_X : X \to X$
- for any morphisms $f: X \to Y$ and $g: Y \to Z$, a morphism $g \circ f: X \to Z$, the *composite* of f and g

such that:

Unit Laws For any $f: X \to Y$ we have $f = \mathrm{id}_Y \circ f = f \circ \mathrm{id}_X$

Associativity For any $f: X \to Y$, $g: Y \to Z$ and $h: Z \to W$, we have

$$h\circ (g\circ f)=(h\circ g)\circ f$$

Definition 1.2 (Category of Sets). The *category of sets* **Set** is the category with objects all sets and morphisms all functions.

Definition 1.3 (Category of Pointed Sets). The category of pointed sets \mathbf{Set}_* is the category with objects all pairs (A, a) such that A is a set and $a \in A$; and morphisms $f: (A, a) \to (B, b)$ all functions $f: A \to B$ such that f(a) = b.

Definition 1.4 (Opposite Category). Let \mathcal{C} be a category. The *opposite* category $[\mathcal{C}]^{\mathrm{op}}$ is the category with $|[\mathcal{C}]^{\mathrm{op}}| = |\mathcal{C}|$ and $[\mathcal{C}]^{\mathrm{op}}[X,Y] = \mathcal{C}[Y,X]$.

Definition 1.5 (Section, Retraction). Let \mathcal{C} be a category. Let $r: A \to B$ and $s: B \to A$ in \mathcal{C} . Then r is a retraction of s, and s is a section of r, if and only if $r \circ s = \mathrm{id}_B$.

Definition 1.6 (Isomorphism). Let \mathcal{C} be a category. A morphism $f: A \to B$ is an *isomorphism* in \mathcal{C} , $f: A \cong B$, if and only if there exists a morphism $f^{-1}: B \to A$, the *inverse* of f, that is both a section and a retraction of f.

Two objects A and B are isomorphic, $A \cong B$, if and only if there exists an isomorphism between them.

Proposition 1.7. The inverse of an isomorphism is unique.

Proposition 1.8. A morphism is an isomorphism if and only if it is both a section and a retraction.

Proposition 1.9. For any object X, we have $id_X : X \cong X$ and $id_X^{-1} = id_X$.

Proposition 1.10. For any isomorphism $f: X \cong Y$ we have $f^{-1}: Y \cong X$ and $(f^{-1})^{-1} = f$.

Proposition 1.11. For any isomorphisms $f: X \cong Y$ and $g: Y \cong Z$ we have $g \circ f: X \cong Z$ and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proposition 1.12. A function is an isomorphism in **Set** if and only if it is bijective.

Theorem 1.13. Let C be a category. Let $f: A \to B$ in C. Then the following are equivalent.

- 1. f is an isomorphism.
- 2. For all X, the function $C[f, -] : C[B, X] \to C[A, X]$ is a bijection.
- 3. For all X, the function $\mathcal{C}[-,f]:\mathcal{C}[X,A]\to\mathcal{C}[X,B]$ is a bijection.

1.2 Functors

Definition 1.14 (Functor). Let \mathcal{C} and \mathcal{D} be categories. A functor $F:\mathcal{C}\to\mathcal{D}$ consists of:

- for every object $A \in \mathcal{C}$, an object $FA \in \mathcal{D}$
- for every morphism $f:A\to B:\mathcal{C}$, a morphism $Ff:FA\to FB:\mathcal{D}$ such that
 - for every object $A \in \mathcal{C}$, we have $Fid_A = id_{FA}$
 - for any morphisms $f:A\to B$ and $g:B\to C$ in $\mathcal C$, we have $F(g\circ f)=Fg\circ Ff$.

Definition 1.15 (Hom-Set Functor). Let \mathcal{C} be a category. The hom-set functor $\mathcal{C}[-,-]:[\mathcal{C}]^{\mathrm{op}}\times\mathcal{C}\to\mathbf{Set}$ is the functor defined by:

- Given objects $A, B \in \mathcal{C}$, we have $\mathcal{C}[A, B]$ is the set of all morphisms from A to B.
- Given morphisms $f:A\to A'$ and $g:B\to B'$, then $\mathcal{C}[f,g]:\mathcal{C}[A',B]\to \mathcal{C}[A,B']$ is defined by

$$C[f, q](h) = q \circ h \circ f$$

Topology

2.1 Topologies and Topological Spaces

Definition 2.1 (Topology). Let X be a set. A *topology* on X is a set $\mathcal{T} \subseteq \mathcal{P}X$ such that:

- 1. $X \in \mathcal{T}$
- 2. $\forall \mathcal{U} \subseteq \mathcal{T}. \bigcup \mathcal{U} \in \mathcal{T}$
- 3. $\forall U, V \in \mathcal{T}.U \cap V \in \mathcal{T}$

Definition 2.2 (Topological Space). A topological space X consists of a set X and a topology \mathcal{T} on X. We call the elements of X points and the elements of \mathcal{T} open sets.

Definition 2.3 (Discrete Topology). Let X be a set. The *discrete* topology on X is $\mathcal{P}X$.

Definition 2.4 (Indiscrete Topology). Let X be a set. The *indiscrete* or *trivial* topology on X is $\{\emptyset, X\}$.

Definition 2.5 (Open Neighbourhood). Let X be a topological space. Let $x \in X$ and $U \subseteq X$. Then U is an *open Neighbourhood* of x if and only if $x \in U$ and U is open.

Definition 2.6 (Coarser, Finer). Let \mathcal{T} and \mathcal{T}' be two topologies on the same set X. Then \mathcal{T} is coarser, smaller or weaker than \mathcal{T}' , and \mathcal{T}' is finer, larger or stronger than \mathcal{T} , if and only if $\mathcal{T} \subseteq \mathcal{T}'$.

Proposition 2.7. Let X be a set. The intersection of a set of topologies on X is a topology on X.

Corollary 2.7.1. Let X be a set. The poset of topologies on X is a complete lattice.

2.2 Closed Sets

Definition 2.8 (Closed Set). Let X be a topological space and $C \subseteq X$. Then C is *closed* if and only if X - C is open.

2.3 Basis for a Topology

Definition 2.9 (Basis for a Topology). Let X be a set. A *basis* for a topology on X is a set $\mathcal{B} \subseteq \mathcal{P}X$ such that:

- 1. $\bigcup \mathcal{B} = X$
- 2. $\forall B_1, B_2 \in \mathcal{B}. \forall x \in B_1 \cap B_2. \exists B_3 \in \mathcal{B}. x \in B_3 \subseteq B_1 \cap B_2$

The topology generated by \mathcal{B} is then the coarsest topology that includes \mathcal{B} . Given $x \in X$, a basic open neighbourhood of x is a set $B \in \mathcal{B}$ such that $x \in B$.

Proposition 2.10. Let X be a set and \mathcal{B} be a basis for a topology \mathcal{T} on X. Let $U \subseteq X$. Then $U \in \mathcal{T}$ if and only if $\forall x \in U. \exists B \in \mathcal{B}. x \in B \subseteq U$.

2.4 Continuous Functions

Definition 2.11 (Continuous). Let X and Y be topological spaces and $f: X \to Y$. Then f is *continuous* if and only if, for any open set V in Y, we have $f^{-1}(V)$ is open in X.

Proposition 2.12. For any topological space X, the identity function on X is continuous.

Proposition 2.13. Let X, Y and Z be topological spaces. Let $f: X \to Y$ and $g: Y \to Z$ be continuous functions. Then $g \circ f$ is continuous.

Definition 2.14 (Category of Topological Spaces). The *category of topological spaces* **Top** is the category with objects all topological spaces and morphisms all continuous functions.

Definition 2.15 (Category of Pointed Topological Spaces). The category of pointed topological spaces \mathbf{Top}_* is the category with objects all pairs (X, x) where X is a topological space and $x \in X$; and morphisms $f: (X, x) \to (Y, y)$ all continuous functions $f: X \to Y$ such that f(x) = y.

Definition 2.16 (Homeomorphism). A *homeomorphism* is an isomorphism in **Top**.

Topological spaces are *homeomorphic* if and only if they are isomorphic in **Top**.

2.5 Homotopy Theory

Definition 2.17. Let **hTop** be the category with objects all topological spaces and morphisms $X \to Y$ all continuous functions $X \to Y$ quotiented by homotopy.

Definition 2.18 (Homotopy Equivalence). A homotopy equivalence is an isomorphism in \mathbf{hTop} .

Topological spaces are *homotopic* if and only if they are isomorphic in **hTop**.

Metric Spaces

3.1 Metrics

Definition 3.1 (Metric, Metric Space). Let X be a set. A *metric* on X is a function $d: X^2 \to \mathbb{R}$ such that:

- 1. $\forall x, y \in X.d(x, y) \ge 0$
- 2. $\forall x, y \in X.d(x, y) = 0 \Leftrightarrow x = y$
- 3. $\forall x, y \in X.d(x, y) = d(y, x)$
- 4. $\forall x, y, z \in X.d(x, z) \leq d(x, y) + d(y, z)$

A metric space X consists of a set X and a metric on X.

Definition 3.2 (Open Ball). Let X be a metric space. Let $x \in X$ and $\epsilon > 0$. The *open ball* with *center* x and *radius* ϵ is $B(x, \epsilon) = \{y \in X \mid d(x, y) < \epsilon\}$.

Definition 3.3 (Metric Topology). On any metric space, the *metric topology* is the topology generated by the basis consisting of the open balls.

Definition 3.4 (Metrizable). A topological space X is *metrizable* if and only if there exists a metric d on X such that the topology on X is the metric topology induced by d.

Definition 3.5 (Euclidean Metric). The *Euclidean metric* on \mathbb{R}^n is defined by

$$d((x_1,\ldots,x_n),(y_1,\ldots,y_n)) = \sqrt{(x_1-y_1)^2 + \cdots + (x_n-y_n)^2}.$$

We write just \mathbb{R}^n for the metric space \mathbb{R}^n under the Euclidean metric.

3.2 Subspaces

Proposition 3.6. Let X be a set and $Y \subseteq X$. Let d be a metric on X. Then $d \upharpoonright Y^2$ is a metric on Y.

Given a metric space (X,d) and a set $Y\subseteq X$, we will write just Y for the metric space $(Y,d\upharpoonright Y^2)$.

Definition 3.7 (Interval). The *interval* I is the metric space I = [0,1] as a subspace of \mathbb{R} .

Definition 3.8 (Disk). Let $n \in \mathbb{Z}^+$. The *n*-disk D^n is the metric space

$$D^n = \{ x \in \mathbb{R}^n \mid d(x,0) \le 1 \}$$

as a subspace of \mathbb{R}^n .

Definition 3.9 (Sphere). Let $n \in \mathbb{Z}^+$. The *n*-sphere S^n is the metric space

$$D^n = \{ x \in \mathbb{R}^{n+1} \mid d(x,0) = 1 \}$$

as a subspace of \mathbb{R}^{n+1} .

Proposition 3.10. Boundedness is not a topological property. That is, there exist homeomorphic metric spaces such that one is bounded and the other is not.

PROOF: We have \mathbb{R} is complete but (-1,1) is not. \square

3.3 Complete Metric Spaces

Definition 3.11 (Complete). A metric space is *complete* if and only if every Cauchy sequence converges.

Proposition 3.12. Completeness is not a topological property. That is, there exist homeomorphic metric spaces such that one is complete and the other is not.

PROOF: We have \mathbb{R} is complete but (-1,1) is not. \square

Group Theory

Definition 4.1 (Category of Groups). The *category of groups* **Grp** is the category with objects all groups and morphisms all group homomorphisms.

Definition 4.2. We identify any group G with the category with one object \bullet such that $G[\bullet, \bullet]$ is the set of elements of G and composition is the group multiplication.

Ring Theory

5.1 Modules

Definition 5.1 (Category of Modules). Let R be a ring. The *category of* R-modules R-Mod is the category with objects the modules over R and morphisms the R-linear maps.

Linear Algebra

6.1 Vector Spaces

Definition 6.1 (Category of Vector Spaces). Let K be a field. The *category* of vector spaces over K, \mathbf{Vect}_K , is the category with objects all vector spaces over K and morphisms all linear transformations.