CLUSTERING

CLUSTERING

- Définition générale
 - Données initiales
 - Un ensemble d'objets ou individus à organiser
 - Objectif
 - Organiser l'ensemble des objets ou individus en un ensemble de clusters respectant les conditions suivantes :
 - La similarité entre deux objets ou individus appartenant à un même cluster doit être importante
 - La similarité entre deux objets ou individus appartenant à des clusters différents doit par contre être faible
 - Clustering = Classification non supervisée : pas de classes prédéfinies, à découvrir automatiquement

Applications

- Marketing : segmentation du marché en découvrant des groupes de clients distincts à partir de bases de données d'achats.
- Environnement : identification des zones terrestres similaires (en termes d'utilisation) dans une base de données d'observation de la terre.
- Assurance : identification de groupes d'assurés distincts associés à un nombre important de déclarations.
- Planification de villes : identification de groupes d'habitations suivant le type d'habitation, valeur, localisation géographique, ...
- Médecine: Localisation de tumeurs dans le cerveau Nuage de points du cerveau fournis par le neurologue - Identification des points définissant une tumeur:

Qualité d'un clustering

- Une bonne méthode de regroupement permet de garantir
 - Une grande similarité intra-groupe
 - Une faible similarité inter-groupe
- La qualité d'un regroupement dépend donc de la mesure de similarité utilisée par la méthode et de son implémentation
- La qualité d'une méthode de clustering est évaluée par son abilité à découvrir certains ou tous les "patterns" cachés.

Types de données

Matrices de données

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

 Matrices de proximité ou individus x individus

$$\begin{bmatrix} 0 & & & & & \\ d(2,1) & 0 & & & \\ d(3,1) & d(3,2) & 0 & & \\ \vdots & \vdots & \vdots & & \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

Mesurer la qualité d'un clustering

- Métrique pour la similarité: La similarité est exprimée par le biais d'une mesure de distance
- Les définitions de distance sont très différentes que les variables soient des intervalles (continues), catégories, booléennes ou ordinales
- En pratique, on utilise souvent une pondération des variables

Mesures de similarité

- Fonctions des types des variables descriptives
 - Variables continue sur un intervalle (ex: poids, taille)
 - Variables binaires
 - Variables nominales (ex: couleur)
 - Variables ordinales
- Problème posé
 - Comment prendre en compte des variables descriptives de différents types?

Variables numériques

- Standardiser les données (Normaliser)
 - Pour ne pas favoriser certaines variables par rapport à d'autres
 - Calculer l'écart absolu moyen:

$$S_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + \dots + |x_{nf} - m_f|)$$

où

$$m_f = \frac{1}{n} (x_{1f} + x_{2f} + \dots + x_{nf})$$

Calculer la mesure standardisée (z-score)

$$z_{if} = \frac{x_{if} - m_f}{s_f}$$

Exemple

	Age	Salaire
Personne1	50	11000
Personne2	70	11100
Personne3	60	11122
Personne4	60	11074

$$M_{Age} = 60 \qquad S_{Age} = 5$$

$$M_{salaire} = 11074$$
 $S_{salaire} = 148$

Variables numériques

- Les distances expriment une similarité
- Comment calculer une distance?
 - Par l'utilisation d'une distance de Minkowski
- la distance de Minkowski :

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + ... + |x_{ip} - x_{jp}|^q)}$$

où $i = (x_{i1}, x_{i2}, ..., x_{ip})$ et $j = (x_{j1}, x_{j2}, ..., x_{jp})$ sont deux objets pdimensionnels et q un entier positif

• Si q = 1, d est la distance de Manhattan

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

Similarité entre objets(I)

• Si q = 2, d est la distance Euclidienne :

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

Propriétés

- $d(i,j) \geq 0$
- d(i,i) = 0
- d(i,j) = d(j,i)
- $d(i,j) \leq d(i,k) + d(k,j)$

Exemple: distance de Manhattan

	Age	Salaire	
Personne1	50	11000	
Personne2	70	11100	
Personne3	60	11122	
Personne4	60	11074	

$$d(p1,p2)=120$$

$$d(p1,p3)=132$$

Conclusion: p1 ressemble plus à p2 qu'à p3 ?

	Age	Salaire
Personne1	-2	-0,5
Personne2	2	0,175
Personne3	0	0,324
Personne4	0	2

$$d(p1,p2)=4,675$$
 $d(p1,p3)=2,324$

Conclusion: p1 ressemble plus à p3 qu'à p2 !!

Variables binaires

- Différents types
 - Symétrique si les deux états possibles sont équivalents
 - Cas d'une variable indiquant le sexe d'un individu
 - Asymétrique si un état est plus important qu'un autre : Ex.
 Test HIV. Le test peut être positif ou négatif (0 ou 1) mais il y a une valeur qui sera plus présente que l'autre.
 Généralement, on code par 1 la modalité la moins fréquente
 - 2 personnes ayant la valeur 1 pour le test sont *plus similaires* que 2 personnes ayant 0 pour le test

Variables binaires

• Une table de contingence pour données

	•		ojei <i>j</i>	1
bir	1	0	sum	
	1	а	b	a+b
Objet i	0	$\boldsymbol{\mathcal{C}}$	d	c+d
	sum –	a+c	b+d	p

a= nombre de positions où i a 1 et j a 1

• Exemple $o_i = (1,1,0,1,0)$ et $o_j = (1,0,0,0,1)$

Mesures de distances

 Coefficient d'appariement (matching) simple (Similarité invariante si la variable binaire est symétriques):

$$d(i,j) = \frac{b+c}{a+b+c+d}$$

Exemple $o_i = (1,1,0,1,0)$ et $o_j = (1,0,0,0,1)$ $d(o_i, o_j) = 3/5$

 Coefficient de Jaccard (Similarité non invariante si la variable binaire est asymétriques):

$$d(i,j) = \frac{b+c}{a+b+c}$$

$$d(o_i, o_i)=3/4$$

Variables binaires

Exemple

Nom	Sexe	Fièvre	Toux	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Ibra	M	Y	P	N	N	N	N

- Sexe est un attribut symétrique
- Les autres attributs sont asymétriques
- Y et P = 1, N = 0, la distance n'est mesurée que sur les asymétriques : calcul de la distance basée sur le Coefficient de Jaccard

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, Ibra) = \frac{1+1}{1+1+1} = 0.67$$
$$d(Ibra, mary) = \frac{1+2}{1+1+2} = 0.75$$

Les plus similaires sont Jack et Mary⇒atteints du même mal

Variables nominales

- Généralisation des variables binaires avec plus de 2 états:
 - Une variable nominale peut prendre une valeur parmi « k » possibles avec k>2
 - Couleur : rouge, vert , bleu, ...
- Comment calculer une distance?
 - Méthode 1: Matching simple
 - Si deux individus ont les mêmes caractéristiques selon « m » variables nominales parmi « p », alors :
 - m=nombre de correspondances, p=nombre total de variables

$$d(i,j) = \frac{p-m}{p}$$

- Méthode 2: utiliser un grand nombre de variables binaires
 - Créer une variable binaire pour chaque modalité (ex: variable rouge qui prend les valeurs vrai ou faux)

Variables ordinales

- Différence par rapport aux variables nominales
 - Un ordre peut être défini sur l'ensemble des valeurs possibles de la variable en question
 - Exemple : Niveau E { Insuffisant, Passable, Bien, Très Bien} avec Insuffisant < Passable < Bien < Très Bien
- Comment calculer une distance?
 - Même méthode que celle utilisée pour les variables numériques
 - Remplacer chaque valeur « xij » par son rang « rij » dans l'ordre défini sur l'ensemble des valeurs
 - Exemple: Insuffisant = 1, Passable = 2, Bien = 3, Très Bien = 4
 - Remplacer toute variable « x_j » avec « k_j » modalités par une nouvelle variable « y_j »

$$y_{ij} = \frac{r_{ij} - 1}{kj - 1}$$

Utiliser une distance pour calculer la similarité

Mesures de similarité

- Prise en compte de variables de types différents
 - Dans une même mesure de similarité

$$d(i,j) = \frac{\sum_{k=1}^{p} \delta_{k}^{(i,j)} d_{k}^{(i,j)}}{\sum_{k=1}^{p} \delta_{k}^{(i,j)}}$$

- Avec $\delta_k^{(i,j)}$ = 0 ou 1, $\delta_k^{(i,j)}$ = 0 dans les cas suivants
 - « xik » ou « xjk » sont inconnus
 - « xik = xjk = 0 » et la variable « k » est binaire asymétrique
- Avec $d_k^{(i,j)}$ calculé en fonction du type de la variable « xk »
 - Binaire ou nominale

$$- d_k^{(i,j)} = 0 \text{ ssi } \ll x_{ik} = x_{jk}$$

• Numérique ou ordinale

$$d_k^{(i,j)} = |x_{ik} - x_{jk}| / (\max(x_{hk}) - \min(x_{hk}))$$

Mesures de similarité : exemple

soit les deux individus suivants :

- Jean : age = 30 ans, poids = 80kg, sexe = masculin, actif = non, nationalité = française
- Marie : age = 28 ans, poids = ?, sexe = féminin, actif = non, nationalisé = allemande

sachant que:

- le ? signifie que la donnée est inconnue,
- que les variables binaires 'sexe' et 'actif' sont considérées comme asymétriques (ce qui dépend de l'application considérée),
- que masculin est codé par la valeur 1 (et féminin par la valeur 0),
- que pour la variable actif, "oui" est codée par la valeur 1 et non par la valeur 0,
- que pour les variables 'age' et 'poids' les valeurs minimale et maximale sont respectivement 0 et 100

Mesures de similarité : exemple

Dans ce cadre, nous avons :

- d_age (Jean, Marie) = 30 28 / 100 0 = 0,02 et delta_age(Jean, Marie) = 1,
- d_poids(Jean, Marie) est indéterminée (on supposera nul), car le poids de Marie est inconnue, et donc delta_poids(Jean, Marie) = 0,
- d_sexe(Jean, Marie) = 1 car leur sexe sont différents et delta(Jean, Marie) =1

(car le sexe de Jean est associée à la valeur 1),

- d_actif(Jean, Marie) = 0 (même valeur) et delta_actif(Jean, Marie) = 0 car à la fois pour Jean et Marie, la valeur associée à la variable actif est nulle (non est codé par 0).
- d_nationalité(Jean, Marie) = 1 (car leurs nationalités sont différentes) et delta_nationalité(Jean, Marie) = 1

En appliquant la formule, on obtient finalement :

- -d(Jean,Marie) = (1*0,02 + 0*0 + 1*1 + 0*0 + 1*1) / (1 + 0 + 1 + 0 + 1)
- = 2,02 / 3, soit environ 0,66

Approches de clustering

- Méthodes de partitionnement
 - Construire plusieurs partitions puis les évaluer selon certains critères
- Méthodes hiérarchiques
 - Créer une décomposition hiérarchique des objets selon certains critères
 - Par division ou agglomération successive des données
- Méthodes basées sur la densité
 - Par recherche de sous-ensembles denses de données

Méthodes de partitionnement

- Problème posé
 - Comment construire une partition en K classes d'un ensemble de N objets ou individus?
 - Etant donné le nombre K de partitions à déterminer
 - Comment déterminer la partition dont la qualité est la plus grande?
 - Minimiser les distances intra-classes (à l'intérieur des différentes classes)
 - Maximiser les distances inter-classes (entre les différentes classes)
- Solutions proposées
 - Méthode exacte
 - Par évaluation de toutes les partitions possibles
 - Méthodes approchées
 - **K-means** (MacQueen'67) : classe représentée par son centre de gravité
 - K-medoids (Kaufman & al'87) : classe représentée par son élément le plus représentatif

- Principe de base
 - Une classe est représentée par son centre de gravité
 - Un objet O_i appartient à la classe du centre de gravité le plus proche de O_i
 - 1. Découper les données en K sous-ensembles P₁, P₂, ..., P_K
 - 2. Calculer les centres de gravité C_1 , C_2 , ..., C_K de chaque sous-ensemble P_1 , P_2 , ..., P_K
 - 3. **Mettre à jour les sous-ensembles** P₁, P₂, ..., P_K tel que pour tout objet O_i, O_i ∈ P_j si C_j est le centre de gravité le plus proche de O_i
 - 4. **Retourner à l'étape (2)** si un ou plusieurs sous-ensembles P_j ont été modifiés à l'étape (3)

K-Means: Exemple

- A={1,2,3,6,7,8,13,15,17}. Créer 3 clusters à partir de A
- On prend 3 objets au hasard. Supposons que c'est 1, 2 et 3. $C_1=\{1\}$, $M_1=1$, $C_2=\{2\}$, $M_2=2$, $C_3=\{3\}$ et $M_3=3$
- Chaque objet O est affecté au cluster au milieu duquel, O est le plus proche. 6 est affecté à C₃ car dist(M₃,6)<dist(M₂,6) et dist(M₃,6)<dist(M₁,6)

On a
$$C_1=\{1\}$$
, $M_1=1$, $C_2=\{2\}$, $M_2=2$ $C_3=\{3, 6,7,8,13,15,17\}$, $M3=69/7=9.86$

K-Means: Exemple (suite)

- dist(3,M2)<dist(3,M3) \rightarrow 3 passe dans C₂. Tous les autres objets ne bougent pas. C₁={1}, M₁=1, C₂={2,3}, M₂=2.5,C₃={6,7,8,13,15,17} et M₃= 66/6=11
- dist $(6,M_2)$ <dist $(6,M_3)$ \rightarrow 6 passe dans C2. Tous les autres objets ne bougent pas. C_1 ={1}, M_1 =1, C_2 ={2,3,6}, M_2 =11/3=3.67, C3={7,8,13,15,17}, M_3 = 12
- dist(2,M1)<dist(2,M2)→2 passe en C1. dist(7,M2)<dist(7,M3)→7 passe en C2. Les autres ne bougent pas. C1={1,2}, M1=1.5, C2={3,6,7}, M2=5.34, C3={8,13,15,17}, M3=13.25
- dist(3,M1)<dist(3,M2)→3 passe en 1. dist(8,M2)<dist(8,M3)→8 passe en 2 C1={1,2,3}, M1=2, C2={6,7,8}, M2=7, C3={13,15,17}, M3=15

Plus rien ne bouge

K-means: enjeux

- Forces
 - Relativement efficace
 - Passage à l'échelle : complexité linéaire en nombre d'objets
- Faiblesses
 - N'est pas applicable en présence d'attributs qui ne sont pas du type intervalle (moyenne=?)
 - On doit spécifier k (nombre de clusters)
 - Les clusters sont construits par rapports à des objets inexistants (les milieux)

Méthodes hiérarchiques

- 1. On commence avec m clusters (cluster = 1 enregistrement)
- 2. Grouper les deux clusters les plus « proches ».
- 3. S'arrêter lorsque tous les enregistrements sont membres d'un seul groupe
- 4. Aller en 2.

AGNES (Agglomerative Nesting)

- Principe de base
 - Introduit par Kaufmann et Rousseeuw (1990)
 - Au départ : un objet = une classe
 - A chaque étape : regroupement des classes les plus proches
 - On peut se retrouver dans la situation où tous les nœuds sont dans le même groupe

Méthodes hiérarchiques

Exemple

	Individus						
Variables	A	В	С	D	Ш	F	G
V1	3	4	4	2	6	7	6
V2	2	5	7	7	6	7	4

Méthodes hiérarchiques Matrice des distances Euclidiennes pour l'exemple

	Α	В	С	D	Е	F	G
Α		3.162277660	5.099019514	5.099019514	5.000000000	6.403124237	3.605551275
В	3.162277660		2.000000000	2.828427125	2.236067977	3.605551275	2.236067977
С	5.099019514	2.000000000		2.000000000	2.236067977	3.000000000	3.605551275
D	5.099019514	2.828427125	2.000000000		4.123105626	5.000000000	5.000000000
Е	5.000000000	2.236067977	2.236067977	4.123105626		1.414213562	2.000000000
F	6.403124237	3.605551275	3.000000000	5.000000000	1.414213562		3.162277660
G	3.605551275	2.236067977	3.605551275	5.000000000	2.000000000	3.162277660	

Méthodes hiérarchiques Formation des groupes

- Solution initiale: chaque individu forme un groupe.
- Première étape: distance minimum= 1,414; les individus E et F sont regroupés.
- Deuxième étape: distance minimum entre les points de groupes différents = 2,0 entre les points B-C, C-D et E-G.
 - G est regroupé avec E et F.
 - B et C sont regroupés.
 - D est regroupé avec B et C.
- Nous avons maintenant 3 groupes: (A), (B C D), (E F G).
 - Distance minimum entre les points de groupes différents= 2,236 entre B-E et C-E.
 - Les groupes (B C D) et (E F G) sont regroupés.
- Nous avons maintenant 2 groupes: (A), (B C D E F G).
 - Distance minimum = 3,162 entre A-B.
 - Étape finale: tous les points sont regroupés en un seul groupe.

Méthodes hiérarchiques

Représentation graphique (dendogram)

Méthodes hiérarchiques : enjeux

- Points faibles des méthodes hiérarchiques
 - Passage à l'échelle difficile : complexité quadratique
 - Pas de remise en question possible des divisions ou agglomérations
 - Deux classes agglomérées à un niveau ne peuvent pas être séparées à un autre niveau
- Recherches en cours
 - Algorithme BIRCH (1996) : basée sur la représentation d'une classe par ses traits caractéristiques

Méthodes basées sur la densité

- Principe de base
 - Le regroupement d'objets au sein d'une même classe est basé sur un critère local évaluant la densité d'objets en un point donné de l'espace d'entrée
- Caractéristiques de ces méthodes
 - Découvre des classes de formes quelconques
 - Ne sont pas sensibles à la présence de bruit ou points isolés
 - Nécessite seulement un parcours des données
- Différentes propositions
 - DBSCAN: introduite par Ester, et al. (KDD '96)