

Running Time

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
 - Easier to analyze
 - Crucial to applications such as games, finance and robotics

Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a method like clock()
 to get an accurate
 measure of the actual
 running time
- Plot the results

© 2010 Goodrich, Tamassia

Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n.
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Pseudocode

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find max element of an array

Algorithm arrayMax(A, n)Input array A of n integers
Output maximum element of A $currentMax \leftarrow A[0]$ for $i \leftarrow 1$ to n - 1 do if A[i] > currentMax then

 $currentMax \leftarrow A[i]$

return currentMax

Pseudocode Details

- Control flow
 - if ... then ... [else ...]
 - while ... do ...
 - repeat ... until ...
 - for ... do ...
 - Indentation replaces braces
- Method declaration

Algorithm method (arg [, arg...])

Input ...

Output ...

- Method call
 - var.method (arg [, arg...])
- Return value
 - return expression
- **Expressions**
 - ← Assignment (like = in C++)
 - = Equality testing
 (like == in C++)
 - n² Superscripts and other mathematical formatting allowed

Seven Important Functions

- Seven functions that often appear in algorithm ^{1E+30} analysis:
 - Constant ≈ 1
 - Logarithmic $\approx \log n$
 - Linear $\approx n$
 - $N-Log-N \approx n \log n$
 - Quadratic $\approx n^2$
 - Cubic $\approx n^3$
 - Exponential $\approx 2^n$
- In a log-log chart, the slope of the line corresponds to the growth rate

© 2010 Goodrich, Tamassia

Functions Graphed Using "Normal" Scale

Slide by Matt Stallmann included with permission.

$$g(n) = n \lg n$$

$$g(n) = n^3$$

© 2010 Stallmann

Analysis of Algorithms

9

Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model

- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

Counting Primitive Operations

 By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

```
Algorithm arrayMax(A, n)# operationscurrentMax \leftarrow A[0]2for i \leftarrow 1 to n - 1 do2nif A[i] > currentMax then2(n-1)currentMax \leftarrow A[i]2(n-1)\{ increment counter i \}2(n-1)return currentMax1Total 8n-2
```


- □ Algorithm arrayMax executes 8n 2 primitive operations in the worst case. Define:
 - a = Time taken by the fastest primitive operation
 - b = Time taken by the slowest primitive operation
- □ Let T(n) be worst-case time of arrayMax. Then $a(8n-2) \le T(n) \le b(8n-2)$
- \Box Hence, the running time T(n) is bounded by two linear functions

Growth Rate of Running Time

- Changing the hardware/ software environment
 - Affects T(n) by a constant factor, but
 - Does not alter the growth rate of T(n)
- The linear growth rate of the running time T(n) is an intrinsic property of algorithm arrayMax

Slide by Matt Stallmann included with permission.

Why Growth Rate Matters

if runtime is	time for n + 1	time for 2 n	time for 4 n
c lg n	c lg (n + 1)	c (lg n + 1)	c(lg n + 2)
c n	c (n + 1)	2c n	4c n
c n lg n	~ c n lg n + c n	2c n lg n + 2cn	4c n lg n + 4cn
c n ²	~ c n ² + 2c n	4c n ²	16c n ²
c n ³	$\sim c n^3 + 3c n^2$	8c n ³	64c n ³
c 2 ⁿ	c 2 ⁿ⁺¹	c 2 ²ⁿ	c 2 ⁴ⁿ

runtime quadruples when problem size doubles

Slide by Matt Stallmann included with permission.

Comparison of Two Algorithms

insertion sort is

n² / 4

merge sort is
2 n lg n

sort a million items?

insertion sort takes
roughly 70 hours
while

merge sort takes
roughly 40 seconds

This is a slow machine, but if 100 x as fast then it's 40 minutes versus less than 0.5 seconds

Constant Factors

- The growth rate is not affected by
 - constant factors or
 - lower-order terms
- Examples
 - 10^2 **n** + 10^5 is a linear function
 - $10^5 n^2 + 10^8 n$ is a quadratic function

© 2010 Goodrich, Tamassia

Analysis of Algorithms

16

More Big-Oh Examples

7n-27n-2 is O(n)

$$-3n^3 + 20n^2 + 5$$

 $3n^3 + 20n^2 + 5$ is O(n³)

■ 3 log n + 5
3 log n + 5 is O(log n)

Big-Oh Rules

- □ If is f(n) a polynomial of degree d, then f(n) is $O(n^d)$, i.e.,
 - Drop lower-order terms
 - 2. Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is $O(n^2)$ "
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
 - We find the worst-case number of primitive operations executed as a function of the input size
 - We express this function with big-Oh notation
- Example:
 - We determine that algorithm arrayMax executes at most 8n-2 primitive operations
 - We say that algorithm arrayMax "runs in O(n) time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages
- The *i*-th prefix average of an array *X* is average of the first (*i* + 1) elements of *X*:

$$A[i] = (X[0] + X[1] + ... + X[i])/(i+1)$$

 Computing the array A of prefix averages of another array X has applications to financial analysis

Prefix Averages (Quadratic)

The following algorithm computes prefix averages in quadratic time by applying the definition

Algorithm <i>prefixAverages1(X, n)</i>	
Input array X of n integers	
Output array A of prefix average	es of X #operations
$A \leftarrow$ new array of n integers	n
for $i \leftarrow 0$ to $n-1$ do	n
$s \leftarrow X[0]$	\boldsymbol{n}
for $j \leftarrow 1$ to i do	1+2++(n-1)
$s \leftarrow s + X[j]$	1+2++(n-1)
$A[i] \leftarrow s / (i+1)$	n
return A	1

Arithmetic Progression

- The running time of prefixAverages1 isO(1 + 2 + ...+ n)
- □ The sum of the first n integers is n(n + 1)/2
 - There is a simple visual proof of this fact
- Thus, algorithm
 prefixAverages1 runs in
 O(n²) time

Prefix Averages (Linear)

The following algorithm computes prefix averages in linear time by keeping a running sum

Algorithm <i>prefixAverages2(X, n)</i>	
Input array X of n integers	
Output array A of prefix averages of X	#operations
$A \leftarrow$ new array of n integers	n
$s \leftarrow 0$	1
for $i \leftarrow 0$ to $n-1$ do	n
$s \leftarrow s + X[i]$	n
$A[i] \leftarrow s/(i+1)$	n
return A	1

lacktriangle Algorithm *prefixAverages2* runs in O(n) time