

Huawei HCCDA-AI certification

Trainer: Fawad Bahadur Marwat

Training Objective & Outcomes

AI/ML Fundamentals

Huawei Cloud AI services

ModelArts

Deep learning frameworks

Real-world AI application development

Artificial Intelligence

Definition

CORVIT

Artificial Intelligence (AI) is the simulation of human intelligence in machines that are programmed to think, learn, and make decisions.

Autonomous Vehicle

Traditional Programming	Artificial Intelligence
Rule-based	Data-driven
Fixed logic	Learns and adapts
No learning	Improves over time

Core Abilities

Perception - Understanding input (e.g., images, speech)

Reasoning - Making decisions or solving problems

Learning – Improving from data over time

Interaction_ - Communicating via speech, text, etc.

Autonomy – Acting independently

Artificial Intelligence

Definition

Artificial Intelligence (AI) is the simulation of human intelligence in machines that are programmed to think, learn, and make decisions.

Traditional Programming	Artificial Intelligence
Rule-based	Data-driven
Fixed logic	Learns and adapts
No learning	Improves over time

Core Abilities

Perception – Understanding input (e.g., images, speech)

Reasoning - Making decisions or solving problems

Learning – Improving from data over time

Interaction_ - Communicating via speech, text, etc.

Autonomy – Acting independently

Weak VS Strong AI

Weak

AI designed for a specific task and operates within a limited context.

Characteristics

- Excels at one particular function
- Does not possess consciousness or self-awareness.
- Cannot generalize beyond its trained domain.

Strong

AI with human-like cognitive abilities, capable of reasoning, learning, and applying knowledge across various domains.

Characteristics

- Can perform any intellectual task a human can.
- Possesses self-awareness, consciousness, and understanding.
- Adapts to new situations without explicit programming.

Current Status: Does not yet exist; remains theoretical.

Early Foundations (1940–1950)

Golden Age & Early Optimism (1950–1970)

First AI Winter (1970–1980)

Rise of Machine Learning 1980–1990

Modern AI Boom 2000-Present

Early Foundations (1940s–1950s)

1943 McCulloch & Pitts

Propose a computational model of neural networks, laying groundwork for AI.

Early Foundations (1940s-1950s)

1943 McCulloch & Pitts

1950 Alan Turing

Publishes "computing machinery and intelligence", introducing the turing test for machine intelligence.

Early Foundations (1940s-1950s)

1943 McCulloch & Pitts

1950 Alan Turing

1956
Dartmouth conference

Coins the term "Artificial Intelligence" and establishes ai as a field.

Golden Age & Early Optimism (1950s–1970s)

1956-1969

Logic-Based AI: Programs like Logic Theorist (Newell & Simon) prove mathematical theorems.

ELIZA (1966): Early chatbot simulating a psychotherapist (Joseph Weizenbaum).

Perceptrons (1957): Frank Rosenblatt's early neural network model.

Golden Age & Early Optimism (1950s–1970s)

1969 Shakey the Robot

First general-purpose mobile robot using logic and planning.

First AI Winter (1970s–1980s)

1970 Marvin Minsky

Expert Systems (e.g., MYCIN for medical diagnosis) gain traction using rule-based logic.

Japan's Fifth Generation Project (1982) reignites interest but eventually stalls.

Trainer: Fawad Bahadur Marwat

Rise of Machine Learning 1980s-1990s

1986s Backpropagation

(Rumelhart, Hinton, Williams) revives neural networks.

Rise of Machine Learning 1980s-1990s

1986s Backpropagatio

1990s Statistical ML

(e.g., SVMs, Bayesian networks) replaces symbolic AI in many domains..

Modern AI Boom 2000s-Present

2000s Big Data & GPUs

Cheap storage and parallel computing enable training complex models.

Modern AI Boom 2000s-Present

2000s Big Data & GPUs

2010s Deep Learning Revolution

2012: AlexNet (Hinton et al.) dominates ImageNet, popularizing CNNs.

2014: GANs (Generative Adversarial Networks) emerge.

2017: Transformer architecture (Vaswani et al.) revolutionizes NLP (later used in GPT, BERT).

Modern AI Boom 2000s-Present

2000s Big Data & GPUs

2010s
Deep Learning Revolution

2020s Generative AI

ChatGPT (2022), DALL-E, and multimodal models blur lines between human/machine creativity.

Symbolic vs Machine Learning AI

Symbolic AI

- 1. Uses predefined rules and knowledge representation
- 2. Relies on human expertise and logic
- 3. Suitable for well-defined problems

Examples

Logic Based

Rule-based systems

Machine Learning AI

- 1. Learns from data and identifies patterns
- 2. Improves performance over time
- 3. Suitable for complex, data-driven problems Examples

Image Recognition

Natural Language Processing

Key Domains in AI

Natural Language Processing

NLP deals with the interaction b/w computers and human (natural) language.

- Natural Language Understanding
- Natural Language Generation
- Speech Recognition
- Machine Translation etc.

Computer Vision

Computer Vision enables computers to see, interpret and understand the visual world.

- Image classification
- Object Detection
- Object Tracking
- Facial Recognition etc.

Robotics

Robotics is a **multidisciplinary** field that integrates AI with **Physical** machines (robots) to enable them to perform tasks, often autonomously in the real world.

- Perception
- Motion Planning
- Manipulation
- Human-robot interaction

Artificial Intelligence in Different Fields

Healthcare

- Disease prediction
- Medical imaging
- AI in diagnostics

Example: Cancer detection using DL models

Finance

- Fraud detection
- Credit scoring
- Algorithmic trading

Example: Real-time transaction monitoring

Agriculture

- Crop yield prediction
- Pest and disease detection using drones
- Soil and weather analysis

Example: AI image analysis for plant diseases

Manufacturing

- Predictive maintenance
- Robotics in assembly lines
- Defect detection
- Example: AI visual inspection systems

Conti...

Education

- Adaptive learning systems
- Automated grading
- Virtual tutors

Example: Al-based learning apps

Transportation

- Self-driving technology
- Traffic prediction
- Route optimization

Example: Tesla Autopilot, Google Maps traffic forecasting

Cybersecurity

- Threat detection
- Anomaly detection
- Automated response systems.

Example: AI identifying malware patterns

Manufacturing

- Content recommendations
- AI-generated content (music, art)
- Deepfake technology

Example: Netflix & YouTube recommendations

Global AI Industry Landscape

Artificial Intelligence Trends

Generative AI

Creates new content

Text, images, music, code Based on models like GPT, DALL-E, Sora

Edge AI

AI than runs on device (not cloud)

Low latency, privacy-friendly, work offline **Example:** AI in phones, smart cameras, wearables

CORVIT

Large Language Models

Trained on massive text data
Understand and generate human-like language

Example: GPT-4, Claude, Gemini

Agentic AI

AI systems that take initiative, act autonomously

Goal-directed, can plan, adapt and execute **Example:** Al agents managing tasks, self-improving bots

Trainer: Fawad Bahadur Marwat

Challenges in AI Adoption

Data

- Garbage in, Garbage out
- Siloed Data
- Data Scarcity
- Privacy Concerns

Cost and ROI Justification

- Significant Upfront Investment
- Uncertain ROI
- Operational Costs
- Talent Acquisition

Regulation and Compliance

- Evolving Landscape
- Ethical Concerns
- "Black Box" Problem

Gartner Hype Cycle for Artificial Intelligence

As of June 2024