Branch: palla_discreta 2022-05-01 17:03:14+02:00

CONTINUOUS MODEL THEORY WITHOUT THE HASSLE

1. FORMULAS AND THEIR INTERPRETATION

The following definition extends that of classical first-order logic with clause 3.

- 1 **Definition.** A signature or language L consists of
 - 1. two sets of symbols: L_{rel} , for relations, and L_{fun} , for functions;
 - 2. an arity function Ar : $L_{\rm rel} \cup L_{\rm fun} \rightarrow \omega$;
 - 3. a function $n_{-}: L_{at} \to \mathbb{N}$;

The function in 3 above is called the bounding function. With $L_{\rm at}$ we denote the set of atomic formulas as defined below.

- **2 Definition.** A structure or model of signature L consists of
 - 1. a set *M*:
 - 2. a set $\bar{M} \supset M$;
 - 3. for every $f \in L_{\mathrm{fun}}$, a function $f^M: \bar{M}^{\mathrm{Ar}(f)} \to \bar{M};$
 - 4. for every $r \in L_{\text{rel}}$, a function $r^M: \bar{M}^{\text{Ar}(r)} \to \mathbb{R}$;

The set M is the unit ball of the model and is required to saisfy the axioms in Definition 5. It will be clear below that the unit ball determines, in a sense, the whole model. (E.g. in Definition 4 we define the interpretation only of formulas that have parameters in the unit ball.) Therefore it feels justified to denote the whole model with the same symbol M used for the unit ball. In principle, two models could coincide when restricted to the unit ball and yet be distinct overall. This will never be the case below.

The syntax and semantic of terms is as in classical first-order logic. We write L_{trm} for the set of terms in the language L. Atomic formulas are defined as in classical first-order logic: they have the form rt, where r is a relation symbol and t is a tuple of terms. The set of atomic formulas is denoted by L_{at} .

The set of all formulas is denoted as usual by L, the same symbol as the language. Formulas are defined inductively from the atomic formulas using the following connectives.

The propositional (or Riesz) connectives are those in $\{1, +, \wedge\} \cup \mathbb{R}$, where + and \wedge are binary connectives, the elements of \mathbb{R} are unary connectives, 1 is a logical constant (i.e. a zero-ary connective). There is also the infimum quantifier \bigwedge .

3 Definition. The inductive definition of formula is as follows

atomic formulas are formulas

iv. $\varphi \wedge \psi$ is a formula;

1 is a formula; ii.

v. $\alpha \varphi$ is a formula for every $\alpha \in \mathbb{R}$;

iii. $\varphi + \psi$ is a formula;

vi. $\bigwedge \varphi$ is a formula.

If $\alpha \in \mathbb{R}$, we may write α for the formula $\alpha 1$. We write $-\varphi$ for $(-1)\varphi$ and $\varphi - \psi$ for $\varphi + (-\psi)$ and we write $\varphi \vee \psi$ for $-(-\varphi \wedge -\psi)$. Also, φ^+ and φ^- stand for $0 \vee \varphi$ respectively $0 \vee (-\varphi)$, and we write $|\varphi|$ for $\varphi \vee (-\varphi)$. Finally, $\bigvee \varphi$ stands for $-\bigwedge -\varphi$.

If $A \subseteq M$ (that is, A is a subset of the unit ball), we write L(A) for the language L expanded with a 0-ary function symbol for every element of a. As in classical first-order logic, the model M is canonically expanded to a structure of signature L(A) by setting $a^M = a$ for every $a \in A$.

Let M be a model and let t be be a tuple of closed terms with parameters in M. We write t^M for the element of \bar{M} obtained interpreting function symbols and parameters in M just as in classical first-order logic.

- **4 Definition.** If $\varphi \in L(M)$ is a sentence (i.e. a closed formula) we define φ^M inductively as follows
 - i. $(rt)^M = r^M(t^M)$. iv. $(\alpha\varphi)^M = \alpha\varphi^M$;

- $\begin{array}{lll} \text{ii.} & 1^M = 1; & \text{v.} & (\psi \wedge \xi)^M = \min \left\{ \psi^M, \, \xi^M \right\}; \\ \text{iii.} & (\psi + \xi)^M = \psi^M + \xi^M; & \text{vi.} & \left(\bigwedge^* \psi \right)^M = \inf \left\{ \psi[x/b]^M : \, b \in M \right\}. \end{array}$

In Fact 6 below we prove that the infimum in (vi) above is indeed finite, hence that the definition is sound.

Finally, we complete Definition 2 by stating the axioms that the unit ball has to satisfy.

- **5 Definition.** The unit ball is required to satisfy the following axioms
 - 1. $\bar{M} = \{t^M : t \in L_{trm}(M) \text{ a closed term }\};$
 - 2. $|\varphi(a)^M| \le n_{\varphi(x)}$ for every $a \in M^{|x|}$ and every $\varphi(x) \in L_{at}$.

For $\varphi(x) \in L(M)$ we write φ^M for the function $\varphi^M : M^{|x|} \to \mathbb{R}$ that maps $a \mapsto \varphi(a)^M$.

A straightforeward proof by induction on the syntax yields the following.

6 Fact. For every formula $\psi(x)$ there is an $n \in \mathbb{N}$ such that $|\psi(a)^M| \leq n$ for all $a \in M^{|x|}$.

2. Examples

1. Firstly, we leave to the reader to check that classical first-order models are a (trivial) special cases of the models introduced above. Classical relations take values in {0,1} where 0 is interpreted as "true". The unit ball is the whole of \bar{M} . The function n_{-} is constantly 1. To

obtain the full strength of first-order logic one has to add equality as a predicate as it is absent from our logic.

- 2. Secondly, any BBHU-premodel is also a model as those in Section 1 if we let the unit ball coincide with \bar{M} . The language L contains a relation symbol d(x, y) for a metric and, possibly, symbols for all other functions and relations of M. As all relations of M (including the metric) take values in the interval [0, 1], the function n_{-} can be set to be the constant 1.
- 3. Now we consider an example that is non trivial and distant both from classical models and from BBHU-models: weighted graphs. The set L_{fun} is empty and L_{rel} contains only a binary relation r. We require that $r^M(a,b) = r^M(b,a) \in [0,1]$. As unit ball take, again, the whole of \bar{M} . The function n_- is constant 1.
- 4. Finally, and example where the unit ball is non trivial. Let L be the language of Banach spaces. Here we have only one symbol in $L_{\rm rel}$, the symbol $\|\cdot\|$ for the norm. The set $L_{\rm fun}$ is the same as for real vector spaces in classical logic. Let \bar{M} be a Banach space and define a continuous model as follows. The interpretation of the symbols in $L_{\rm rel} \cup L_{\rm fun}$ is the natural one. The unit ball of is $M = \{a \in M : \|a\| \le 1\}$. If $\varphi(x)$ is the atomic formulas

$$\varphi(x) = \left\| \sum_{i=1}^{n} \lambda_i x \right\|$$

then

$$n_{\varphi(x)} = \sum_{i=1}^{n} |\lambda_i|.$$

3. CONDITIONS AND TYPES

For $\varphi, \psi \in L(M)$ some closed formulas, we write $M \models \varphi \leq \psi$ for $\varphi^M \leq \psi^M$. The meaning of $M \models \varphi = \psi$ and of $M \models \varphi < \psi$ is similar.

Expressions of the form $\varphi(x) \le 0$ are called **conditions**. We write $M \models \exists x \varphi(x) \le 0$ if there is an $a \in M^{|x|}$ such that $M \models \varphi(a) \le 0$. Observe that $\varphi(x) = 0$ is equivalent to $|\varphi(x)| \le 0$ and that $\varphi(x) \le 0$ is equivalent to $|\varphi(x)| \le 0$. So, when convenient, we may use equalities to denote conditions.

The negation of a condition is called a co-conditions. So, $\varphi(x) \neq 0$, $\varphi(x) < 0$ or $\varphi(x) > 0$ are co-conditions.

It is easy to see that conditions are cosed under logical disjunction and logical conjunction.

$$M \models \varphi \lor \psi \le 0 \Leftrightarrow M \models \varphi \le 0 \text{ and } M \models \psi \le 0$$

 $M \models \varphi \land \psi \le 0 \Leftrightarrow M \models \varphi \le 0 \text{ or } M \models \psi \le 0$

Condition are also closed under universal quantication (over the unit ball).

$$M \models \bigvee_{x} \varphi(x) \le 0 \iff M \models \forall x \ \varphi(x) \le 0$$

Closure under existential quantication is a more subtle point. It is not true in general but it can be ensured by a small amount of saturation (cf. Fact 17).

A set of conditions is called a type or, when x is the empty tuple, a theory. For $p(x) \subseteq L(M)$, we define

$$p(x) \le 0 = \{ \varphi(x) \le 0 : \varphi(x) \in p \}.$$

Up to equivalence, all types have the form above.

Beware that p(x) denotes just a set of formulas, the expression $p(x) \le 0$ denotes a type.

We write $M \models p(a) \le 0$ if $M \models \varphi(a) \le 0$ for every $\varphi(x) \in p$. We write $M \models \exists x \ p(x) \le 0$ if $M \models p(a) \le 0$ for some $a \in M^{|x|}$.

4. Elementary relations

We say that $R \subseteq M \times N$ is an elementary relation between M and N if for every $\varphi(x) \in L$

$$\varphi^M(a) = \varphi^N(b)$$
 for every $a, b \in M^{|x|}, N^{|x|}$ such that aRb .

We define an equivalence relation (\sim_M) on the unit ball of a given model M as follows

$$a \sim_M b \Leftrightarrow \varphi(a)^M = \varphi^M(b)$$
 for every $\varphi(x) \in L(M)$.

In ther words,

$$a \sim_M b \Leftrightarrow I_M \cup \{(a,b)\} \subseteq M^2$$
 is an elementary relation.

As elementary relations are closed under composition, if $a \sim_M b$ and $a' \sim_M b'$ then the relation $I_M \cup \{(a,b),(a',b')\} \subseteq M^2$ is also elementary. In general, for any $a=a_1,\ldots,a_n$ and $b=b_1,\ldots,b_n$ we have that

$$a_i \sim_M b_i$$
 for every $i \in (n] \Leftrightarrow \varphi(a)^M = \varphi^M(b)$ for every $\varphi(z) \in L(M)$.

From the consideration above we deduce the following.

7 Lemma. The relation $(\sim_M) \subseteq M^2$ is a maximal elementary relation. That is, no elementary relation contains (\sim_M) properly.

Proof. The claim above the lemma proves that (\sim_M) is elementary. By the definition of (\sim_M) , a pair $a \sim_M b$ cannot belong to any elementary relation. Therefore (\sim_M) is maximal.

8 Lemma. Let $R \subseteq M \times N$ be total and surjective elementary relation. Then there is a unique maximal elementary relation containing R. This maximal elementary relation is equal to both $(\sim_M) R$ and $R(\sim_N)$.

Proof. It is immediate to verify that (\sim_M) R is an elementary relation containing R. Let S be any maximal elementary relation containing R. By maximality, (\sim_M) S = S. As S is a total relation

 $(\sim_M) \subseteq SS^{-1}$. Therefore, by the lemma above, $(\sim_M) = SS^{-1}$. As R is a surjective relation, $S \subseteq SS^{-1}R$. Finally, by maximality, we conclude that $S = (\sim_M)R$. A similar argument proves that $S = R(\sim_N)$.

We write $\operatorname{Aut}(M)$ for the set of maximal, total and surjective, elementary relations $R \subseteq M^2$. The choice of the symbol Aut is motivated by the lemma above. In fact any such relation R induces a unique automorphism on the (properly defined) quotient structure M/\sim_M .

5. Elementary substructures

An elementary embedding is an elementary relation that is functional, injective and total.

When \emptyset is an elementary relation between M and N we say that these are elementarily equivalent and write $M \equiv N$. We write I_A for the diagonal relation on A. We write $M \equiv_A N$ if I_A is an elementary relation. In words, we say that M and N are elementary equivalent over A. Finally, we write $M \leq N$ if $M \equiv_M N$ and M is a substructure of N in the classical sense. In wards, we say that M is an elementary substructure of N.

Let $A \subseteq M$. The limit A-topology on $M^{|x|}$ is the initial topology with respect to the functions interpret the formulas in L(A). The sets $\{a \in M^{|x|}: \varphi^M(a) \le 0\}$, as $\varphi(x)$ ranges over L(A), form a base of closed sets for the limit A-topology. Note that the sets $\{a \in M^{|x|}: \varphi^M(a) < 0\}$ are a base of open sets of the same topology.

The limit A-topology is a completely regular topology, almost by definition. Typically, it is not T_0 .

- **9 Proposition** (Tarski-Vaught test). Let $M \subseteq N$ and assume that \bar{M} is a substructure of \bar{N} . Let x be a single variable. Then the following are equivalent:
 - 1. $M \leq N$;

a.

- 2. M is dense in N w.r.t. the M-limit topology on N;
- 3. for every $\varphi(x) \in L(M)$, if $\varphi(N) < 0$ is non empty, then $N \models \varphi(b) < 0$ for some $b \in M^{|x|}$.

Proof. Equivalence $2 \Leftrightarrow 3$ is tautological. Implication $1 \Rightarrow 2$ is clear. To prove $3 \Rightarrow 1$ we prove by induction on the syntax of $\varphi(z)$, where z is a finite tuple, that for every $\alpha \in \mathbb{R}$

$$M \models \varphi(a) < \alpha \iff N \models \varphi(a) < \alpha$$
 for every $a \in M^{|z|}$

We use the equivalence above as induction hypothesis. As M is a substructure of N, this equivalence holds for atomic $\varphi(z)$. We leave the case of the propositional connectives to the reader and consider only the case of the infimum quantifier.

$$N \models \bigwedge_{x} \varphi(x,a) < \alpha \quad \Leftrightarrow \quad \text{there is a } b \in N \text{ such that } N \models \varphi(b,a) < \alpha$$

$$\Leftrightarrow \quad \text{there is a } b \in M^{|x|} \text{ such that } N \models \varphi(b,a) < \alpha$$

b.
$$\Leftrightarrow M \models \bigwedge_{x} \varphi(x) < \alpha$$
.

Implication \Rightarrow in a uses the assumption 3 and the equivalence in b uses the induction hypothesis.

10 Theorem (Downward Löwenheim-Skolem). For every $A \subseteq N$ there is a model $A \subseteq M \leq N$ of cardinality $\leq |L(A)|$.

Proof. (Needs some checking.) For every set A there is a base for the A-topology that has cardinality $\leq |L(A)|$. A set M of the required cardinality that is dense in the M-topology is obtained as in the classical downward Löwenheim-Skolem theorem.

6. Ultraproducts

Firstly, we recall some standard definitions about limits. Let I be a non-empty set. Let F be a filter on I. If $r: I \to \mathbb{R}$ and $\lambda \in \mathbb{R}$ we write

$$\lim_{i \uparrow F} r(i) = \lambda$$

if $r^{-1}[A] \in F$ for every $A \subseteq \mathbb{R}$ that is a neighborhood of λ . When r is bounded and F is an ultrafilter, such a λ always exists.

Let I be an infinite set. Let $\langle M_i : i \in I \rangle$ be a sequence of models. Let F be an ultrafilter on I.

- **11 Definition.** Write N for the set of all functions $\hat{a}: I \to \bigcup_{i \in I} M_i$ such that $\hat{a}i \in M_i$. Such N is the unit ball of a structure N that we call the ultraproduct of $\langle M_i : i \in I \rangle$ and is defined as follows.
 - 1. the elements of \bar{N} are functions $\hat{c}: I \to \bigcup_{i \in I} \bar{M}_i$ such that $\hat{c}: t = t(\hat{a}: i)$ for some $\hat{a} \in M^{|x|}$ and some term $t(x) \in L_{\text{trm}}$ below we write $t(\hat{a})$ for \hat{c} ;
 - 2. if $f \in L_{\text{fun}}$ and $r \in L_{\text{rel}}$ and $t_1(\hat{a}), \dots, t_n(\hat{a})$ are elements of \bar{N} then
 - a. $f^N(t_1(\hat{a}), \dots, t_n(\hat{a})) = t(\hat{a})$ where t is the term obtained composing f with t_1, \dots, t_n ;
 - b. $r^N(t_1(\hat{a}),\ldots,t_n(\hat{a})) = \lim_{i\uparrow F} r^{M_i}(t_1(\hat{a}i),\ldots,t_n(\hat{a}i)).$

A usual, if we have that $M_i = M$ for all $i \in I$, we say that N is an ultrapower of M.

Note that the unit ball N satisfies the axioms in Definition 5.

The limit in 2b of Definition 11 exists because F is an ultrafilter and it is finite because all models M_i have the same bounding functions. In fact, the function $i \mapsto r^{M_i}(t_1(\hat{a}i), \dots, t_n(\hat{a}i))$ is bounded by $n_{\varphi(x)}$, where $\varphi(x) = r(t_1(x), \dots, t_n(x))$.

12 Proposition (Łŏś Theorem). Let N be as above and let $\varphi(x) \in L$. Then for every $\hat{a} \in N^{|x|}$,

$$\varphi^N(\hat{a}) = \lim_{i \uparrow F} \varphi^{M_i}(\hat{a}i).$$

Proof. This is just the usual run-of-the-mill proof. We proceed by induction on the syntax of $\varphi(x)$. If $\varphi(x)$ is atomic holds the equality above holds by definition. We spell out the proof for the infimum quantifier. Assume inductively that

$$\varphi^{N}(\hat{a},\hat{b}) = \lim_{i \uparrow F} \varphi^{M_{i}}(\hat{a}i,\hat{b}i).$$

We want to prove that

$$\left(\bigwedge_{x} \varphi(\hat{a}, x)\right)^{N} = \lim_{i \uparrow F} \left(\bigwedge_{x} \varphi(\hat{a}i, x)\right)^{M_{i}}$$

By the interpretation of the infimum quantifier, this amounts to prove that

$$\inf \left\{ \varphi \left(\hat{a}, \hat{b} \right)^{N} \ : \ \hat{b} \in (uN) \right\} = \lim_{i \uparrow F} \inf \left\{ \varphi \left(\hat{a}i, b \right)^{M_{i}} \ : \ b \in (uM_{i}) \right\}$$

First we prove the \leq inequality. Let α be an arbitrary positive real number.

Assume that for some $\hat{b} \in (uN)$ $\varphi^{N}(\hat{a}, \hat{b}) < \alpha$.

By induction hypothesis $\lim_{i \uparrow F} \varphi^{M_i}(\hat{a}i, \hat{b}i) < \alpha$,

then for some $u \in F$ $\varphi^{U_i}(\hat{a}i, \hat{b}i) < \alpha$ for every $i \in u$.

Hence $\inf \left\{ \varphi^{M_i} (\hat{a}i, b) : b \in (uM_i) \right\} < \alpha \text{ for every } i \in u.$

Finally, $\lim_{i \uparrow F} \inf \left\{ \varphi^{M_i} (\hat{a}i, b) : b \in (uM_i) \right\} < \alpha.$

This proves the \geq inequality. As for the \leq inequality, assume that

$$\lim_{i \uparrow F} \inf \left\{ \varphi (\hat{a}i, b)^{M_i} : b \in (uM_i)^{|x|} \right\} < \alpha.$$

Therefore, for some $u \in F$

$$\inf \left\{ \varphi(\hat{a}i, b)^{M_i} : b \in (uM_i)^{|x|} \right\} < \alpha \quad \text{for every } i \in u.$$

$$\inf \left\{ \varphi \big(\hat{a}i, b \big)^{M_i} : b \in (uM_i)^{|x|} \right\} < \alpha \quad \text{for every } i \in u.$$

Therefore, for some $\hat{b} \in (uN)^{|x|}$ $\varphi^{M_i}(\hat{a}i, \hat{b}i) < \alpha$ for every $i \in u$.

Then $\lim_{i\uparrow F} \varphi^{M_i} \big(\hat{a}i, \hat{b}i \big) < \alpha,$

and finally $\varphi^N \left(\hat{a}, \hat{b} \right) < \alpha.$

This proves the desired inequality.

The following corollary of Łŏś Theorem is identical to its classical counterpart.

13 Corollary. For every model M and every ultrafilter F on I, an infinite set, let N be corresponding ultrapower of M. Then there is an elementary embedding of M in N.

We add the following easy remark for future reference.

14 Remark. Let $R \subseteq N^2$ be the set of those pairs (\hat{a}, \hat{b}) such that $\{i \in I : \hat{a}i = \hat{b}i\} \in F$. Then R is an elementary relation.

7. COMPACTNESS THEOREM

From Łŏś Theorem we obtain a form of compactness with the usual argument. A theory $T \le 0$ is finitely consistent if for every φ , that is a disjunction of sentences in T, there is a model M such that $M \models \varphi \le 0$. Note that it is implicit that all these models M have the same bounding function.

15 Theorem (Compactness Theorem). Every finitely consistent theory is consistent.

Proof. We construct a model N of $T \leq 0$. Let I be the set of closed formulas ξ such that $\xi \leq 0$ holds in some model M_{ξ} . For every condition $\varphi \leq 0$ define $X_{\varphi} \subseteq I$ as follows

$$X_{\varphi} \ = \ \Big\{ \xi \in I \ : \ \xi \le 0 \ \vdash \ \varphi \le 0 \Big\}$$

Note that $\varphi \leq 0$ is consistent if and only if $X_{\varphi} \neq \emptyset$. Moreover $X_{\varphi \vee \psi} = X_{\varphi} \cap X_{\psi}$. Then, as T is finitely consistent, the set $B = \{X_{\varphi} : \varphi \in T\}$ has the finite intersection property. Extend B to an ultrafilter F on I. Define

$$N = \prod_{\xi \in I} M_{\xi}$$

Check that $N \models T \leq 0$. Let $\varphi \in T$. By Łŏś Theorem,

$$\varphi^N = \lim_{\xi \uparrow F} \varphi^{M_{\xi}}.$$

Note that $X_{\varphi}\subseteq\left\{ \xi\ :\ \varphi^{M_{\xi}}\leq0\right\}$ and recall that $X_{\varphi}\in F$ whenever $\varphi\in T$. Therefore $\varphi^{N}\leq0$. $\ \Box$

8. SATURATION

Let $p(x) \subseteq L(M)$. We say that $p(x) \le 0$ is finitely satisfied if for every disjunction of formulas in p(x), say $\psi(x)$, there is an $a \in M^{|x|}$ such that $M \models \psi(a) \le 0$.

We say that M is λ -saturated if for every p(x) as in 1 and 2 below, there is an $a \in M^{|x|}$ such that $M \models p(a) \leq 0$.

- 1. $p(x) \subseteq L(A)$ for some $A \subseteq M$ of cardinality $< \lambda$;
- 2. $p(x) \le 0$ is finitely satisfied in M.

If λ is the cardinality of M we say that M is saturated.

16 Theorem (???). Let λ be an inaccessible cardinal larger than |L| and |M|. Then M has a saturated elementary superstructure of cardinality M.

We conclude with a convenient property of ω -saturated models.

- 17 Fact. Let M is ω -saturated. Then for every $\varphi(x) \in L(M)$ the following are equivalent
 - 1. $M \models \exists x \ \varphi(x) \le 0;$

2.
$$M \models \bigwedge_{x} \varphi(x) \le 0$$

Proof. Only $2\Rightarrow 1$ requires a proof. Let $p(x) = \{\varphi(x) - \alpha : \alpha \in \mathbb{R}^+\}$. If 2, then $p(x) \leq 0$ is finitely satisfied in M. Hence 1 follows by saturation.

Di qui in poi solo esperimenti selvaggi.

9. THE MONSTER MODEL

Throughout the following we fix a saturated model \mathcal{U} of cardinality κ , an inaccessible cardinal larger than |L|, where |L| stands for max $\{|L_{\text{fun}}|, |L_{\text{rel}}|, 2^{\omega}\}$.

18 Fact. Let $R \subseteq \mathcal{U}^2$ be an elementary relation of cardinality $< \kappa$. Then there is a total and surjective elementary relation $S \subseteq \mathcal{U}^2$ containing R.

Proof.
$$\Box$$

Let $a \in \mathcal{U}^{|x|}$. We write $p(x) = \operatorname{tp}(a/A)$ for $p(x) = \{ \psi(x) \in L(A) : \mathcal{U} \models \psi(a) \leq 0 \}$.

19 Fact. Let $a \in \mathcal{U}^{|x|}$, where $|x| < \kappa$. Let $A \subseteq \mathcal{U}$ have cardinality $< \kappa$. Then

$$p(\mathcal{U}) \leq 0 \ = \ \left\{ ha : h \in \operatorname{Aut}(\mathcal{U}/A) \right\}$$

10. RANDOM VARIABLES

Consider a model with three sorts with domains $\mathcal{A}, \mathcal{R}, \mathcal{M}$. The domain of the first sort consists of a set $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ that is a Boolean algebra under the usual set operations. The domain of the second sort \mathcal{R} consists of a set of those functions $f: \Omega \to \mathbb{R}$ that are linear combinations of indicator functions of sets in \mathcal{A} . The third sort \mathcal{M} contains all finitely additive signed measures μ on \mathcal{A} with bounded values.

The language contains functions for the Boolean operations on \mathcal{A} . It contains also the functions that make \mathcal{R} and \mathcal{M} two \mathbb{R} -algebras. On \mathcal{R} we also include the functions \wedge and \vee for the pointwise minimum and maximum between to functions.

Finally, there is a predicate I of sort $A \times R \times M$ which we interprete with the function that maps

$$(A, f, \mu) \mapsto \int_A f d\mu$$

If $\varphi(X)$ is a formula, where X is a variable of sort \mathcal{A} , then $\sup_{Y \subseteq X} \varphi(Y)$ is a formula. In fact, it is equivalent to $\sup_{Y} \varphi(Y \cap X)$.

- **20 Theorem.** [Finitary Radon-Nikodym] Let $\mu, \nu \in \mathcal{M}$. For every $\varepsilon, \delta > 0$ there exist an exceptional set $E \in \mathcal{A}$ and an $f \in \mathcal{R}$ such that
 - 1. $\sup_{X \subseteq \neg E} \left| I(X, \nu) I(X, f, \mu) \right| \le \varepsilon;$
 - $2. \quad \sup_{X\subseteq E} |I(X,\mu)| \leq \delta.$

We now consider a saturated extension \mathcal{A} , \mathcal{A} , \mathcal{A} .

A set *E* is μ -null if $I(X, \mu) = 0$ for every $X \subseteq E$.

21 Corollary. Let $\mu \in \mathcal{M}$. There are a μ -null set $E \in \mathcal{A}$ and An $f \in \mathcal{R}$ such that for all $v \in \mathcal{M}$ we have $I(X, v) = I(X, f, \mu)$ for evey $X \subseteq \neg E$.

Proof. It is easy to see that the theorem above, if applied simultaneously to a finite set of measures $v_1, \ldots, v_n \in \mathcal{M}$, yields a single $f \in {}^*\mathcal{R}$ such that 1 and 2 hold for all v_i .

Recall that conditions are closed under Boolean conjunction and discipunction. Read $\mu, \nu \in \mathcal{M}$ as parameters. Read E and f as variables, then 1 & 2 in the theorem above, is a condition.

For every $\varepsilon, \delta > 0$ and $v \in \mathcal{M}$ each of these conditions is consistent. Moreover, as remarked above, any finite conjunctions of these conditions is also consistent. Therefore, by saturation, there is an $E \in {}^{*}\!\mathcal{A}$ that satisfies all these conditions as v ranges over \mathcal{M} .

22 Fact. Let $\mu \in {}^*\mathcal{M}$ be a nonnegative measure. Let $A \in {}^*\mathcal{A}$. Define

$$m_i = \sup\{\mu(X) : X \in \mathcal{A}, X \subseteq A\}$$

 $m_e = \inf\{\mu(X) : X \in \mathcal{A}, A \subseteq X\}$

Then for every $m_i \le r \le m_e$ there is a measure $v \in {}^*\!\mathcal{A}$ such that $\mu_{\uparrow \mathcal{A}} = v_{\uparrow \mathcal{A}}$ and v(A) = r.

Proof. It is easy to se that the following type is finitely consistent (read ν as a variable).

$$\left\{ v(X) = \mu(X) \, : \, X \in \mathcal{A} \right\} \ \cup \ \left\{ v(A) = r \right\}.$$

Any ν realizing this type is as required by the lemma.

23 Corollary. If \mathcal{A} is a σ -algebra and $\mu \in \mathcal{M}$ is sigma additive then for every $E \in \mathcal{A}$ there are $A, B \in \mathcal{A}$ such that $A \subseteq E \subseteq B$ and $\mu(B \setminus A) = 0$.