Anticipez les besoins en consommation de bâtiments

PLE Coline

14/07/2023

Plan de la présentation

- Présentation de la problématique
- Présentation du jeu de données
- Feature engineering
- Modélisations: Approche et résultats
- Energy Star Score (émission gaz à effet de serre)?
- Discussion

RAPPEL DE LA PROBLEMATIQUE

Objectif de la ville de Seattle

Ville neutre en émission de carbone en 2050

Focus de l'équipe

Consommation et émission des bâtiments non destinées à l'habitation

Mission

Prédiction des émissions des gaz à effet de serre et de la consommation totale d'énergie de bâtiments **non destinés à l'habitation** pour lesquels les mesures n'ont pas encore été réalisées

Problématique

Relevés couteux

Mise à disposition des mesures déjà effectuées en 2016

Calcul fastidieux

Par l'approche utilisée dans notre équipe

Prédiction par ML

PRESENTATION ET NETTOYAGE DU JEU DE DONNEES

2 df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3376 entries, 0 to 3375

Data columns (total 46 columns):

- Relevés énergétiques de 2016 de 3376 propriétés de Seattle
- 46 variables (Superficies, localisation, conso énergétique et émission de gaz à effet de serre)
- Source: https://data.seattle.gov/dataset/2016-Building-Energy-Benchmarking
- 0 doublon

NETTOYAGE DES DONNEES

1. Elimination des propriétés destinées à l'habitation

```
df["BuildingType"].unique()
```

- 'NonResidential'
- 'Nonresidential WA'
- 'Nonresidential COS'
- 'SPS-District K-12'
- 'Campus'
- 'Multifamily LR (1-4)
- 'Multifamily MR (5-9)
- 'Multifamily HR (10+)'

1708

2. Conservation des propriétés conformes

df["ComplianceStatus"].value_counts()

Compliant	1546
Error - Correct Default Data	88
Non-Compliant	17
Missing Data	14

3. Conservation des données exprimées en kBtu pour la consommation en énergie et les émissions de gaz à effet de serre (homogénéité)

```
2 df.info()

SteamUse(kBtu)

Electricity(kWh)

Electricity(kBtu)

NaturalGas(therms)

NaturalGas(kBtu)
```

4. Choix des 2 cibles/targets

Cible Consommation en énergie

SiteEUI(kBtu/sf)
SiteEUIWN(kBtu/sf)
SourceEUI(kBtu/sf)
SourceEUIWN(kBtu/sf)
SiteEnergyUse(kBtu)

Consommation ramenée à la surface du bâtiment (intensité de consommation)

Consommation normalisée sur les conditions météorologiques

Cible Emission des gaz à effet de serre

TotalGHGEmissions
GHGEmissionsIntensity

SiteEnergyUseWN(kBtu)

Intensité de consommation (homogène par rapport au choix de la 1ère target)

Elimination des cibles/targets potentielles non retenues

PRESENTATION ET NETTOYAGE DU JEU DE DONNEES

NETTOYAGE DES DONNEES

4. Gestion des données erronées (quelques exemples)

```
# Liste du nombre de bâtiments
print(df_1["NumberofBuildings"].unique().tolist())

[1.0, 3.0, 0.0, 2.0, 4.0, 27.0, 6.0, 11.0, 14.0, 9.0, 7.0, 5.0, 8.0, 23.0, 10.0, 111.0]

52 propriétés = 1

NumberofFloors SiteEUIWN(kBtu/sf)
0 0.0
```


Les superficies

Enormément d'incohérences!!!

Modifications se basant sur les variables

- 'ListOfAllPropertyUseTypes',
- 'LargestPropertyUseTypeGFA',
- 'SecondLargestPropertyUseTypeGFA' et
- 'ThirdLargestPropertyUseTypeGFA'.

5. Gestion des données manquantes

Les superficies

- Remplacement par Nothing si absence d'activité secondaire ou tertiaire pour les variables PropertyUsedType
- Remplacement par 0 si absence d'activité secondaire ou tertiaire pour les variables PropertyUsedTypeGFA

Les ZIP Code

Recherche sur internet *via* l'adresse de la propriété

PRESENTATION ET NETTOYAGE DU JEU DE DONNEES

GESTION DES VALEURS ABERRANTES ET OUTLIERS

1. Les propriétés présentant des consommations énergétiques ou des émissions de gaz à effet de serre < ou = à 0 (zéro OK pour SteamUse)

print(f'{valeur nulle.shape[0]} propriétés présentent des valeurs aberrantes.')

12 propriétés présentent des valeurs aberrantes. Si

SiteEnergyUse(kBtu)	SiteEnergyUseWN(kBtu)	SteamUse(kBtu)	Electricity(kBtu)	NaturalGas(kBtu)	
1.150804e+07	1.185445e+07	0.00	0.0	11508035.0	
1.252517e+07	1.284386e+07	0.00	0.0	0.0	

2. La gestion des outliers/valeurs atypiques

Seuil de tolérance

1483 propriétés entièrement renseignées pour toutes les variables à l'exception de l'Energy Star Score (967 données)

VISUALISATIONS PRINCIPALES DES DONNEES: Impact de l'activité principale sur les 2 cibles

VISUALISATIONS PRINCIPALES DES DONNEES: Impact de la localisation sur les 2 cibles

FEATURE ENGINEERING

1. Passage en pourcentage des différents types d'énergie avant leur élimination

Douglas: L'objectif est de te passer des relevés de consommation annuels futurs (attention à la fuite de données). Nous ferons de toute façon pour tout nouveau bâtiment un premier relevé de référence la première année, donc rien ne t'interdit d'en déduire des variables structurelles aux bâtiments, par exemple la nature et proportions des sources d'énergie utilisées..

2. Création d'une feature Age de la propriété avant élimination de la variable 'YearBuilt'

3. Création de nouvelles variables à partir des variables existantes pour les types d'activités

- Présence d'activités très peu représentées
- Regroupement permettant à la fois un meilleur apprentissage et un encodage plus simple
 - Hébergement
 Education
 Entrepôts réfrigérés et Data Center
 Bureaux
 - 3. Stockage 10. Autres et services
 - 4. Santé et Recherche 11. Les usines
 - 5. Restauration 12. Parking
 - 6. Gros commerces 13. Nothing
 - 7. Petits commerces
 - Encodage manuel (% des activités en fonction de la superficie totale de la propriété)

FEATURE ENGINEERING

4. Passage à l'échelle logarithmique des 2 cibles présentant une distribution non normale

AVANT PASSAGE Intensité des émissions Consommation énergétique des gaz à effet de serre 175 250 150 200 125 150 O 100 001 75 100 50 50 25 300 400 10.0 12.5 15.0 SiteEUIWN(kBtu/sf) GHGEmissionsIntensity

Test de Skew

Test sur la target énergie: 23.3889295701429

Test sur la target émission: 26.672138901291113

APRES PASSAGE (FunctionTransformer de Sklearn)

Les cibles seront passées au Log lors des modélisations (meilleur apprentissage)

FEATURE ENGINEERING

5. Choix de la variable de localisation : Neighborhood

6. Création du jeu de modélisation et du jeu de validation

JEU DE MODELISATION APRES ENCODAGE

#	columns (total 36 columns): Column	Non	-Null Count	Dtype
			-Null Count	
0	NumberofBuildings	967	non-null	float64
1	NumberofFloors		non-null	int64
2	PropertyGFATotal	967	non-null	float64
3	ENERGYSTARScore	967	non-null	float64
4	SiteEUIWN(kBtu/sf)	967	non-null	float64
5	GHGEmissionsIntensity	967	non-null	float64
6	SteamUse(%)	967	non-null	float64
7	Electricity(%)	967	non-null	float64
8	NaturalGas(%)	967	non-null	float64
9	AgePropriete	967	non-null	int64
10	Usines	967	non-null	float64
11	Bureaux	967	non-null	float64
12	Santé et Recherche	967	non-null	float64
13	Autre et services	967	non-null	float64
14	Stockage	967	non-null	float64
15	Hébergement	967	non-null	float64
16	Petits commerces	967	non-null	float64
17	Entrepôts réfrigérés et Data Center	967	non-null	float64
18	Parking	967	non-null	float64
19	Education		non-null	float64
20	Activités sociales		non-null	float64
21	Restauration	967	non-null	float64
22	Gros commerces		non-null	float64
23	Neighborhood_ballard		non-null	int64
24	Neighborhood_central		non-null	int64
25	Neighborhood_delridge		non-null	int64
26	Neighborhood_downtown		non-null	int64
27	Neighborhood_east		non-null	int64
28	Neighborhood_greater duwamish		non-null	int64
29	Neighborhood_lake union		non-null	int64
30	Neighborhood_magnolia and queen anne		non-null	int64
31	Neighborhood_north		non-null	int64
32	Neighborhood_northeast		non-null	int64
33	Neighborhood_northwest		non-null	int64
34	Neighborhood_southeast		non-null	int64
35	Neighborhood southwest	96/	non-null	int64

- 80% des données dans le jeu d'entraînement
- 20% des données dans le jeu test

JEU DE VALIDATION APRES ENCODAGE

#	columns (total 36 columns): Column	Non-Null Count	Dtype
 0	NumberofBuildings	516 non-null	float64
1	NumberofFloors	516 non-null	int64
2	PropertyGFATotal	516 non-null	float64
3	ENERGYSTARScore	0 non-null	float64
4	SiteEUIWN(kBtu/sf)	516 non-null	float64
5	GHGEmissionsIntensity	516 non-null	float64
6	SteamUse(%)	516 non-null	float64
7	Electricity(%)	516 non-null	float64
8	NaturalGas(%)	516 non-null	float64
9	AgePropriete	516 non-null	int64
10	Usines	516 non-null	float64
11	Bureaux	516 non-null	float64
12	Santé et Recherche	516 non-null	float64
13	Autre et services	516 non-null	float64
14	Stockage	516 non-null	float64
15	Hébergement	516 non-null	float64
16	Petits commerces	516 non-null	float64
17	Entrepôts réfrigérés et Data Center	516 non-null	float64
18	Parking	516 non-null	float64
19	Education	516 non-null	float64
20	Activités sociales	516 non-null	float64
21	Restauration	516 non-null	float64
22	Gros commerces	516 non-null	float64
23	Neighborhood_ballard	516 non-null	int64
24	Neighborhood_central	516 non-null	int64
25	Neighborhood_delridge	516 non-null	int64
26	Neighborhood_downtown	516 non-null	int64
27	Neighborhood_east	516 non-null	int64
28	Neighborhood_greater duwamish	516 non-null	int64
29	Neighborhood_lake union	516 non-null	int64
30	Neighborhood_magnolia and queen anne	516 non-null	int64
31	Neighborhood_north	516 non-null	int64
32	Neighborhood_northeast	516 non-null	int64
33	Neighborhood_northwest	516 non-null	int64
34	Neighborhood_southeast	516 non-null	int64
35	Neighborhood_southwest es: float64(21), int64(15)	516 non-null	int64

MODELISATION: Choix des modèles de régression

Modèle servant de baseline: Linear Regression (Classique)

Modèles de régression linéaire suivant un chemin de régularisation

Réduction du poids de l'amplitude des variables

Réduction de dimension supervisée

Combinaison des 2 modèles

XGBoost

Version améliorée du Gradient Boosting Regressor

Utilisation de paramètres avancés de régularisation (L1 et L2)

Méthodes ensemblistes de régression non linéaires basées sur des arbres

Gradient Boosting Regressor

Random Forest Regressor

MODELISATION: Prédiction de la consommation en énergie

MODELES LINEAIRES	METHODES ENSEMBLISTES
Ridge (random_state = 42, cv=5)	Random Forest Regressor (random_state = 42, cv=5)
alpha: [0.0001, 0.001, 0.01, 0.1, 1] max_iter: [10, 100, 200, 400, 600, 800, 1000]	n_estimators : [50, 100, 200, 400], max_depth : [5, 10, 15, 20] max_features : ['sqrt', 'log2'], criterion: ['squared_error', 'absolute_error']
Lasso (random_state = 42, cv=5)	Gradient Boosting Regressor (random_state = 42, cv=5)
alpha: [0.0001, 0.001, 0.01, 0.1, 1] max_iter: [1000, 2000, 5000, 10000]	n_estimators: [50, 100, 200, 400, 1000], max_depth: [5, 10, 15, 20, 25] max_features: ['sqrt', 'log2'], criterion: ['squared_error', 'absolute_error']
ElasticNet (random_state = 42, cv=5)	XGBRegressor (cv=5)
I1-ratio: [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] alpha: [10,1,0.1, 0.01, 0.001] max_iter: [500, 1000, 2000, 5000]	n_estimators : [10,50,100,500,1000], max_depth : [2,4,8,16]

	LinearRegression	Ridge	Lasso	ElasticNet	RFR	GBR	XGBR
Grid Training Time	0.014315	0.022668	0.050628	0.129862	1.603764	1.80675	1.904382
Grid Train R ²	0.555011	0.555006	0.554992	0.553906	0.912153	0.998212	0.728402
Grid Train RMSE	39.199428	39.199647	39.200288	39.248065	17.416808	2.484572	30.624462
Grid Train MSE	1536.595151	1536.612295	1536.662603	1540.410609	303.345205	6.1731	937.857653
Grid Train MAE	25.040228	25.038394	25.030529	24.855676	10.705327	1.680279	20.032042
Grid Test R ²	0.41836	0.418983	0.420176	0.430508	0.502572	0.48517	0.496288
Grid Test RMSE	34.793804	34.775164	34.739433	34.428527	32.176591	32.734584	32.379177
Grid Test MSE	1210.608782	1209.312028	1206.828179	1185.3235	1035.332982	1071.552994	1048.411098
Grid Test MAE	24.37326	24.353228	24.342202	23.936694	22.914644	23.875604	23.201573

Random Forest Regressor

MODELISATION: Prédiction de la consommation en énergie

RandomForestRegressor 2	RandomForestRegressor 3
n_estimators : [10, 20, 50, 100, 200, 400], max_depth : [10, 20, 25], max_features : ['sqrt', 'log2'], criterion: ['squared_error', 'absolute_error']	n_estimators: [100, 200, 400, 800], max_depth: [8, 16, 32] max_features: ['sqrt', 'log2'], criterion: ['squared_error', 'absolute_error']

MODELISATION: Prédiction de la consommation en énergie

Les 10 variables les plus importantes pour l'entraînement du modèle: features_importances

Importance des variables sur la prédiction du modèle: Les valeurs de Shapley (TreeExplainer)

MODELISATION: Prédiction de la consommation en énergie sur de nouvelles données

SCORE SUR LE JEU DE VALIDATION

R²: 0.8937233636738723 RMSE: 25.3191157572625 MSE: 641.0576227296583 MAE: 17.786946830750235 POURCENTAGE D'ERREURS SUR LE JEU DE VALIDATION

3 print(1-rfr_val.score(X_val, y_val))

0.10627663632612772

Majorité des erreurs de faibles ampleurs

CONCLUSION POUR LA PREDICTION DE LA CONSOMMATION EN ENERGIE

Modèle utilisable mais qui serait davantage robuste par la mise à disposition de plus de données

MODELISATION: Prédiction des émissions de gaz à effet de serre

MODELES LINEAIRES	METHODES ENSEMBLISTES
Ridge (random_state = 42, cv=5)	Random Forest Regressor (random_state = 42, cv=5)
alpha: [0.0001, 0.001, 0.01, 0.1, 1] max_iter: [10, 100, 200, 400, 600, 800, 1000]	n_estimators : [50, 100, 200, 400], max_depth : [5, 10, 15, 20] max_features : ['sqrt', 'log2'], criterion: ['squared_error', 'absolute_error']
Lasso (random_state = 42, cv=5)	Gradient Boosting Regressor (random_state = 42, cv=5)
alpha: [0.0001, 0.001, 0.01, 0.1, 1] max_iter: [2000, 5000, 10000, 1000000]	n_estimators: [50, 100, 200, 400, 1000], max_depth: [5, 10, 15, 20, 25] max_features: ['sqrt', 'log2'], criterion: ['squared_error', 'absolute_error']
ElasticNet (random_state = 42, cv=5)	XGBRegressor (cv=5)
I1-ratio: [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] alpha: [100, 10, 1, 0.1, 0.01, 0.001] max_iter: [1000, 2000, 5000]	n_estimators : [10,50,100,500,1000], max_depth : [2,4,8,16]

	LinearRegression	Ridge	Lasso	ElasticNet	RFR	GBR	XGBR
Grid Training Time	0.008048	0.02528	0.029827	0.096135	1.274874	5.232662	5.342513
Grid Train R ²	0.637779	0.633705	0.486115	0.636281	0.939131	0.902864	0.813935
Grid Train RMSE	1.024497	1.030242	1.220273	1.026614	0.419974	0.530536	0.73427
Grid Train MSE	1.049593	1.061399	1.489066	1.053936	0.176378	0.281469	0.539152
Grid Train MAE	0.601932	0.593388	0.729805	0.598232	0.22999	0.262768	0.435181
Grid Test R ²	0.540722	0.57977	0.494271	0.546846	0.74221	0.732488	0.713737
Grid Test RMSE	0.849015	0.812122	0.890915	0.843335	0.636078	0.647961	0.670287
Grid Test MSE	0.720827	0.659542	0.79373	0.711215	0.404595	0.419854	0.449284
Grid Test MAE	0.550068	0.53361	0.630064	0.545772	0.42279	0.403539	0.444862

RandomForestRegressor? GradientBoostingRegressor?

MODELISATION: Prédiction des émissions de gaz à effet de serre

RandomForestRegressor 2	GradientBoostingRegressor 2
n_estimators: [50, 100, 200, 400], max_depth: [15, 20, 25], max_features: ['sqrt', 'log2'], criterion: ['squared_error', 'absolute_error']	n_estimators: [25, 50, 100, 200, 400], max_depth: [2, 4, 8, 16] max_features: ['sqrt', 'log2'], criterion: ['squared_error', 'absolute_error']

MODELISATION: Prédiction des émissions de gaz à effet de serre

Les 10 variables les plus importantes pour l'entraînement du modèle: features_importances

Importance des variables sur la prédiction du modèle: Les valeurs de Shapley (TreeExplainer)

MODELISATION: Prédiction des émissions de gaz à effet de serre sur de nouvelles données

SCORE SUR LE JEU DE VALIDATION

POURCENTAGE D'ERREURS SUR LE JEU DE VALIDATION

R²: 0.9028826989512889 RMSE: 0.8344032771331279 MSE: 0.6962288288905035 MAE: 0.49247897286821696

3 print(1-rfr_val.score(X_val, y_val))
0.09711730104871108

CONCLUSION POUR LA PREDICTION DES EMISSIONS DES GAZ A EFFET DE SERRE:

Modèle davantage robuste que celui obtenu pour la prédiction de la consommation en énergie Optimal si mise à disposition de plus de données...

MODELISATION: Impact de l'Energy Star Score sur la prédiction des émissions de gaz à effet de serre

	RFR sans EnergyStarScore		RFR avec Energy Star Score
Train R ²		0.939131	0.948906
Train RMSE		0.419974	0.384776
Train MSE		0.176378	0.148053
Train MAE		0.22999	0.196019
Test R ²		0.74221	0.777909
Test RMSE		0.636078	0.590395
Test MSE		0.404595	0.348566
Test MAE		0.42279	0.365365

CONCLUSION DE L'IMPACT DE L'ENERGY STAR SCORE POUR LA PREDICTION DES EMISSIONS DES GAZ A EFFET DE SERRE

Impact non négligeable de l'incorporation de l'Energy Star Score

CONCLUSION GENERALE

Modèles utilisables avec le modèle de prédiction de l'émission de gaz davantage performant

- Malgré le cout, des relevés supplémentaires seraient vraiment souhaitables...
- Intérêt non négligeable de l'incorporation de l'Energy Star Score même si calcul fastidieux...

- Débat / Réflexion -

Analyse des corrélations entre variables > ou = à 0,85

```
strong pairs = sorted pairs[(abs(sorted pairs) >= 0.85) & (abs(sorted pairs)!=1)]
  2 print(strong pairs)
TotalGHGEmissions
                                 SiteEnergyUseWN(kBtu)
                                                                     0.893592
SiteEnergyUseWN(kBtu)
                                 TotalGHGEmissions
                                                                     0.893592
SecondLargestPropertyUseTypeGFA
                                 PropertyGFAParking
                                                                     0.896050
                                 SecondLargestPropertyUseTypeGFA
PropertyGFAParking
                                                                     0.896050
TotalGHGEmissions
                                 NaturalGas(kBtu)
                                                                     0.911821
                                 TotalGHGEmissions
NaturalGas(kBtu)
                                                                     0.911821
Electricity(kBtu)
                                 SiteEnergyUseWN(kBtu)
                                                                     0.922263
SiteEnergyUseWN(kBtu)
                                 Electricity(kBtu)
                                                                     0.922263
SourceEUIWN(kBtu/sf)
                                 SiteEUIWN(kBtu/sf)
                                                                     0.945329
SiteEUIWN(kBtu/sf)
                                 SourceEUIWN(kBtu/sf)
                                                                     0.945329
                                 PropertyGFATotal
LargestPropertyUseTypeGFA
                                                                     0.976698
PropertyGFATotal
                                 LargestPropertyUseTypeGFA
                                                                     0.976698
                                 PropertyGFABuilding(s)
                                                                     0.980842
                                 PropertyGFATotal
PropertyGFABuilding(s)
                                                                     0.980842
                                 LargestPropertyUseTypeGFA
                                                                     0.983838
LargestPropertyUseTypeGFA
                                 PropertyGFABuilding(s)
                                                                     0.983838
```

dtype: float64

Transformation des Latitudes et Longitudes en distance Haversienne à partir des coordonnées de centre de Seattle?

Très mauvaise idée car disparition des quartiers!!!

→ Conservation de la variable Neighborhood

Scaling has an impact on the magnitude of coefficients but it does not have any impact on the model predictions

Le chemin de régulation du modèle Ridge

Le chemin de régulation du modèle Lasso

PERFORMANCE POUR LA PREDICTION EN CONSOMMATION D'ENERGIE

Choix du modèle pour la prédiction de la consommation en énergie

	RFR 1	RFR 2	GBR 1	GBR 2
Grid Training Time	1.485762	14.243245	14.495047	18.521609
Grid Train R ²	0.912153	0.928917	0.998212	0.642353
Grid Train RMSE	17.416808	15.667131	2.484572	35.142501
Grid Train MSE	303.345205	245.458997	6.1731	1234.995377
Grid Train MAE	10.705327	9.855735	1.680279	19.12991
Grid Test R ²	0.502572	0.533306	0.48517	0.5181
Grid Test RMSE	32.176591	31.166698	32.734584	31.670374
Grid Test MSE	1035.332982	971.363043	1071.552994	1003.012615
Grid Test MAE	22.914644	22.590148	23.875604	20.521693
Grid Test MAE	22.914644	22.590148	23.875604	20.521693

PERFORMANCE BASIQUE DES DIFFERENTS MODELES

Comparaison des différents modèles pour la prédiction de la consommation en énergie

	LinearRegression	Ridge	Lasso	ElasticNet	RFR	GBR	XGBR
Training Time	0.012702	0.025505	0.049137	0.065884	1.12785	1.407364	2.007535
Train R ²	0.566386	0.566168	0.429531	0.491093	0.893437	0.73301	0.993598
Train RMSE	38.695159	38.704901	44.383445	41.920284	19.182597	30.363566	4.701817
Train MSE	1497.315325	1498.069331	1969.890171	1757.310241	367.972036	921.946123	22.107087
Train MAE	23.153982	23.140432	25.753467	24.567122	9.42841	17.61397	2.488531
Test R ²	0.527032	0.527473	0.436409	0.480473	0.50413	0.489696	0.452347
Test RMSE	31.375479	31.360862	34.249702	32.883547	32.126134	32.590371	33.761938
Test MSE	984.420695	983.503687	1173.042069	1081.327643	1032.088512	1062.132253	1139.868445
Test MAE	20.869678	20.836738	22.359822	21.207503	21.284427	21.113808	23.227955

Comparaison des différents modèles pour la prédiction de l'intensité de l'émission des gaz à effet de serre

	LinearRegression	Ridge	Lasso	ElasticNet	RFR	GBR	XGBR
Training Time	0.01301	0.016727	0.028735	0.033494	0.457	0.582772	1.205339
Train R ²	0.624847	0.625227	0.534675	0.576581	0.911985	0.82556	0.996601
Train RMSE	1.042625	1.042096	1.161187	1.107666	0.505013	0.710963	0.099248
Train MSE	1.087068	1.085965	1.348356	1.226925	0.255038	0.505468	0.00985
Train MAE	0.540101	0.539771	0.599104	0.57187	0.21878	0.368146	0.047067
Test R ²	0.477957	0.489518	0.455774	0.521177	0.741191	0.760482	0.714724
Test RMSE	0.905172	0.895092	0.924202	0.866893	0.637334	0.613121	0.66913
Test MSE	0.819336	0.80119	0.85415	0.751503	0.406195	0.375918	0.447735
Test MAE	0.448059	0.446534	0.480689	0.455982	0.377495	0.371699	0.405424

DISTRIBUTION DES ERREURS DU MODELE POUR PREDICTION DE LA CONSOMMATION EN ENERGIE

DISTRIBUTION DES ERREURS DU MODELE POUR PREDICTION DES EMISSIONS DES GAZ A EFFET DE SERRE

