

МЕХАНИЗМЫ ИСПОЛНИТЕЛЬНЫЕ ЭЛЕКТРИЧЕСКИЕ МНОГООБОРОТНЫЕ

МЭМ ГРУППЫ 40

ООО «Поволжская электротехническая компания»

Почтовый адрес:

Российская Федерация, Чувашская Республика, 428000, г. Чебоксары, а/я 163

Тел./факс: (8352) 57-05-16, 57-05-19

E-mail: info@piek.ru *Caŭm:* www.piek.ru

Руководство по эксплуатации предназначено для ознакомления потребителя с механизмами исполнительными электрическими многооборотными МЭМ (в дальнейшем механизмы) с целью обеспечения полного использования их технических возможностей и содержит следующие основные разделы:

- описание и работа изделия;
- использование по назначению;
- хранение и транспортирование;
- утилизация.

Работы по монтажу, регулировке и пуску механизмов разрешается выполнять лицам, имеющим специальную подготовку и допуск к эксплуатации электроустановок напряжением до 1000 V.

Руководство по эксплуатации распространяется на типы механизмов, указанные в таблице 1.

Питание механизмов осуществляется электрическим током трехфазного напряжения 220/380 V. Во избежание поражения электрическим током при эксплуатации механизма должны быть осуществлены меры безопасности, изложенные в разделе 2.1 «Подготовка изделия к использованию» настоящего руководства.

Приступать к работе с механизмами только после ознакомления с настоящим руководством по эксплуатации!

1. ОПИСАНИЕ И РАБОТА ИЗДЕЛИЯ

1.1 Назначение изделия.

Механизмы предназначены для привода запорной арматуры в системах автоматического регулирования технологическими процессами в соответствии с командными сигналами, поступающими от регулирующих и управляющих устройств.

Механизмы могут применяться в различных отраслях народного хозяйства: в газовой, нефтяной, металлургической, пищевой промышленности, в жилищно-коммунальном хозяйстве и т.д.

Управление механизмами – бесконтактное, с помощью пускателя бесконтактного реверсивного типа ПБР.

Механизмы устанавливаются непосредственно на трубопроводной арматуре и соединяются со штоком регулирующего органа посредством втулки.

Условия эксплуатации механизмов зависят от климатического исполнения и категории размещения.

В районах с холодным климатом категории УХЛ категория размещения 2 (УХЛ2):

- температура окружающего воздуха от минус 60°C до плюс 50°C;
- относительная влажность окружающего воздуха до 95% при температуре плюс 35°C и более низких температурах без конденсации влаги.

Климатическое исполнение «У», категория размещения «2»:

- температура окружающего воздуха от минус 40 до плюс 50 °C;
- относительная влажность окружающего воздуха до 95 % при температуре 35 0 С и более низких температурах без конденсации влаги.

Климатическое исполнение «Т» (тропическое), категория размещения «2»:

- температура окружающего воздуха от минус 10 до плюс 50 °C;
- относительная влажность окружающего воздуха до 100 % при температуре $35 \ ^{0}$ С и более низких температурах с конденсацией влаги.

Механизмы должны быть защищены от прямого воздействия солнечной радиации и атмосферных осадков.

Степень защиты механизмов IP65 по ГОСТ 14254-96 обеспечивает работу механизма при наличии в окружающей среде пыли и брызг воды.

Механизмы не предназначены для работы в средах, содержащих агрессивные пары, газы и вещества, вызывающие разрушение покрытий, изоляции и материалов, и во взрывоопасных средах.

Механизмы устойчивы и прочны к воздействию синусоидальных вибраций по группе исполнения VI ГОСТ 12997-84.

Рабочее положение механизмов – любое, определяемое положением трубопроводной арматуры.

Механизмы могут поставляться с комплектом монтажных частей, за дополнительную плату.

1.2. Технические характеристики.

Типы механизма и его основные технические данные приведены в таблице 1.

Таблица 1.

Условное наименование механизма	Номинальный крутящий момент на выходном валу, Nm	Номинальное время полного хода выходного вала, S	Полный ход выходного вала, об	Потребляемая мощность W, не более	Масса, kg, не более
МЭМ-40/160-25(У,Р,М,И)-13К	40	160	25	180	17
МЭМ-40/400-63(У,Р,М,И)-13К		400	63		

Примечание:

Буквы **У,Р,М,И** указанные в скобках обозначают один из типов блока сигнализации положения:

- **У** блок сигнализации положения токовый (далее блок БСПТ-10M);
- Р блок сигнализации положения реостатный (далее блок БСПР-10);
- **М** блок концевых выключателей (далее блок БКВ);
- И блок сигнализации положения индуктивный (далее блок БСПИ-10).

Индекс ${\bf K}$ обозначает, что данный механизм изготавливается в трехфазном исполнении.

Параметры питающей сети электродвигателей механизмов:

- трехфазный ток напряжением: 220/380V, частотой 50Hz.

Параметры питающей сети блока сигнализации положения БСП:

- а) токового БСПТ-10:
- постоянный ток напряжением 24 V;
- однофазный переменный ток напряжением 220 V, частотой 50 Hz через блок питания БП-20.
 - б) реостатного БСПР-10:
 - постоянный ток напряжением до 12 V;
 - переменный ток напряжением до 12 V, частотой 50 Hz.
 - в) индуктивного БСПИ-10:
 - переменный ток напряжением до 12 V частотой 50Hz.

Параметры питающей сети выносного блока питания БП-20 - однофазное переменное напряжение: 220 V частотой 50 Hz

Допустимые отклонения от номинального значения параметров переменного тока питающей сети электродвигателя, БСП, блока БП-20:

- напряжения питания от минус 15 до плюс 10%;
- частоты питания от минус 2 до плюс 2 %;

Пусковой крутящий момент механизмов при номинальном напряжении питания должен превышать номинальный момент не менее чем в 1,7 раза.

Люфт выходного вала механизмов должен быть не более 0,75⁰.

Механизмы должны обеспечивать фиксацию положения выходного вала при отсутствии напряжения питания.

Механизмы являются восстанавливаемыми, ремонтопригодными, однофункциональными изделиями.

1.3. Состав, устройство и работа изделия.

Механизмы состоят из следующих основных узлов (приложения А):

привода, редуктора, блока сигнализации положения, ручного привода, штепсельного разъема, сальникового ввода.

Механизмы изготавливаются с одним из следующих блоков сигнализации положения выходного вала:

- реостатным БСПР-10;
- индуктивным БСПИ-10;
- блок концевых выключателей БКВ
- токовым БСПТ-10M с унифицированным сигналом 0-5; 0-20; 4-20 mA по ГОСТ 26.011-80. Нелинейность блока сигнализации положения 2,5 %.

В механизмах предусмотрено два микровыключателя для ограничения перемещения выходного вала и два микровыключателя для блокирования и сигнализации промежуточных положений выходного вала. Эти четыре микровыключателя расположены компактно и образуют собственно блок концевых выключателей БКВ. Каждый микровыключатель имеет размыкающийся и замыкающийся контакты с раздельными выводами на контакты клеммных колодок.

Дифференциальный ход микровыключателей должен быть не более 4 % полного хода выходного вала.

Примечания:

- 1. Руководство по эксплуатации блока сигнализации положения входит в комплект поставки механизма по требованию заказчика.
 - 2. Тип блока сигнализации положения или БКВ оговаривается в заказе.

Принцип работы механизма заключается в преобразовании электрического сигнала, поступающего от регулирующего или управляющего устройства, во вращательное перемещение выходного вала.

Режим работы механизмов – повторно-кратковременный с частыми пусками S4 по ГОСТ 183-74 продолжительностью включений (ПВ) до 25 % и номинальной частотой включений до 320 в час при нагрузке на выходном валу в пределах номинальной противодействующей до 0,5 номинального значения сопутствующей. Максимальная частота включений до 630 в час при ПВ до 25%.

При реверсировании интервал времени между выключением и включением на обратное направление должен быть не менее 50 mS.

Электрическая принципиальная схема и схема подключений механизмов приведены в приложениях Б, В. Подключение внешних электрических цепей к механизму осуществляется штепсельным разъемом через сальниковый ввод .

Редуктор является основным узлом, к которому присоединяются все остальные узлы, входящие в механизм.

В качестве привода используются асинхронные трехфазные электродвигатели.

2. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Подготовка изделия к использованию.

Осмотреть механизм и убедиться в отсутствии внешних повреждений. Проверить комплектность поставки механизма в соответствии с паспортом.

Проверить с помощью ручного привода легкость вращения всех звеньев кинематической цепи. Выходной вал должен вращаться плавно.

Тщательно зачистить место присоединения заземляющего проводника, подсоединить провод сечением не менее 4 mm² и затянуть болт. Проверить сопротивление заземляющего устройства, оно должно быть не более $10~\Omega$.

Место подсоединения заземляющего проводника защитить от коррозии нанесением слоя консистентной смазки.

Проверить работу механизма в режиме реверса. Для этого:

- подать на механизм трехфазное напряжение питания на клеммы 1, 2, 3, при этом выходной вал должен прийти в движение (приложение В). Поменять местами концы любых 2-х проводов, подключенных к контактам 1, 2, 3, при этом выходной вал должен прийти в движение в другую сторону.

Прежде чем приступать к установке механизма на арматуру необходимо выполнить следующие **МЕРЫ БЕЗОПАСНОСТИ:**

- эксплуатацию механизма разрешается проводить лицам, имеющим доступ к эксплуатации электроустановок напряжением до 1000 V и ознакомленным с настоящим руководством по эксплуатации.
- эксплуатация механизма должна осуществляться при наличии инструкции по технике безопасности, учитывающей специфику соответствующего производства и утвержденной руководством предприятия-потребителя.
- корпус механизма должен быть заземлен, а место подсоединения проводника должно быть защищено от коррозии нанесением слоя консистентной смазки.
- все работы с механизмом производить при полностью снятом напряжении питания. На щите управления необходимо укрепить табличку с надписью «Не включать работают люди!».
- перед пользованием ручным приводом должны быть приняты меры исключающие возможность подачи напряжения питания на электродвигатель.
 - работы с механизмом производить только исправным инструментом.
- если при проверке на какие-либо цепи механизма подается напряжение, то не следует касаться токоведущих частей.
- приемка механизмов после монтажа, организация эксплуатации, соблюдение мероприятий по технике безопасности и ремонт механизмов должны производиться в полном соответствии с требованиями «Правил технической эксплуатации электроустановок потребителей» (ПТЭ); «Межотраслевых правил по охране труда при эксплуатации электроустановок» (ПОТ)).
- при эксплуатации механизмов должно поддерживаться их работоспособное состояние.

Эксплуатация механизмов с поврежденными деталями и другими неисправностями категорически запрещается: детали заменить или все изделие отправить на ремонт.

Установить на механизме монтажные детали в соответствии с приложением. С помощью ручного привода установить выходной вал механизма в положение (положение «Открыто»).

Установить механизм на трубопроводную арматуру.

При установке механизма на трубопроводную арматуру регулирующий орган арматуры и выходной вал механизма должны быть в одинаковом положении: «Открыто». Выходной вал механизма и шток регулирующего органа арматуры соединяются втулкой. При соединении механизма с трубопроводной арматурой на трубопроводной арматуре необходимо предусмотреть свободный доступ к блоку сигнализации положения и ручному приводу для обслуживания механизма.

Электрическое подключение механизмов производить только через сальниковый ввод многожильным гибким кабелем сечением от 0,35 до 0,5 mm², согласно схеме подключения. Провода, идущие к блоку датчика, должны быть пространственно разделены от силовых цепей.

Присоединить провода к РП-10-30, согласно схеме электрической принципиальной (приложение Б).

Пайку монтажных проводов цепей внешних соединений к контактам розетки разъема производить оловянно-свинцовым припоем с применением бескислотных флюсов. После пайки флюс необходимо удалить путем промывки мест паек спиртом, а затем покрыть бакелитовым лаком или эмалью.

Ручным приводом повернуть рабочий орган трубопроводной арматуры в положение «Закрыто», при этом стрелка должна находиться на символе («Закрыто») на шкале.

Произвести настройку блока сигнализации положения в соответствии с его руководством по эксплуатации.

Пробным включением проверить работоспособность механизма в обоих направлениях.

2.2. Использование изделия.

В процессе эксплуатации механизмы должны подвергаться профилактике, ревизии и ремонту. Периодичность профилактических осмотров механизмов устанавливается в зависимости от производственных условий, но не реже чем через год, а блока сигнализации положения – через каждые 6 месяцев. Во время профилактических осмотров необходимо производить следующие работы:

- очистить наружные поверхности механизма от грязи и пыли;
- проверить затяжку всех крепежных болтов, болты должны быть равномерно затянуты;
- проверить состояние заземляющего устройства, в случае необходимости (при наличии ржавчины) заземляющие элементы должны быть очищены и после затяжки болта заземления вновь покрыты консистентной смазкой;
- проверить уплотнение штуцерного ввода. При легком подергивании кабель не должен выдергиваться и проворачиваться в узле уплотнения.
- проверить настройку блока сигнализации положения, в случае необходимости произвести его подрегулировку.

Перечень часто встречающихся или возможных неисправностей и способы их устранения приведены в таблице 2.

Таблица 2

Наименование неисправности	Вероятная причина	Способ устранения
Механизм при включении не	Нарушена	Проверить цепь и
работает	электрическая цепь	устранить неисправность
	Не работает	Заменить электродвигатель
	электродвигатель	или произвести его ремонт
При работе механизма происходит	Сбилась настройка	Произвести настройку
срабатывание концевых микровы-	микровыключателя	микропереключателя
ключателей раньше или после про-		
хождения крайних положений		
рабочего регулирующего органа		
трубопроводной арматуры		
Увеличенный люфт выходного вала	Большой износ	См. раздел 2.2
механизма	червячного колеса	«Руководства по
		эксплуатации»

Через пять лет эксплуатации необходимо произвести разборку, осмотр и замену старой смазки. Для этого механизм необходимо отсоединить от источника питания, снять с места установки и последующие работы производить в мастерской.

Разобрать механизм до состояния возможности удаления старой смазки в редукторе, промыть все детали и высушить. Собрать редуктор, обильно смазав трущиеся поверхности подвижных частей редуктора смазкой ЛИТОЛ-24 или ЦИАТИМ-203. На остальные поверхности деталей, кроме корпуса, нанести тонкий слой смазки. Расход на один механизм составляет 50g.

После сборки механизма произвести его обкатку: режим работы при обкатке – см. раздел 1.3.

3. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

Хранение механизмов со всеми комплектующими изделиями должно производиться с консервацией и в заводской упаковке в условиях «3» по ГОСТ 15150-69.

Срок хранения механизмов не более 24 месяцев со дня отгрузки. При необходимости более длительного хранения должна производиться переконсервация механизмов по варианту защиты ВЗ-14 или ВЗ-15 по ГОСТ 9.014-78

Условия транспортировании механизмов должны соответствовать условиям хранения «5» для климатического исполнения «У2» или «6» для климатического исполнения «Т2», но при атмосферном давлении не ниже 35,6 кРа и температуре не ниже минус 50°С, или условиям хранения «3» при морских перевозках в трюмах.

Время транспортирования – не более 45 суток.

Механизмы транспортируются всеми видами транспорта в соответствии с правилами перевозки грузов, действующими на каждом виде транспорта. Транспортирование на самолетах должно осуществляться в герметизированных отапливаемых отсеках.

Во время погрузочно-разгрузочных работ и транспортирования, упакованные механизмы не должны подвергаться резким ударам и воздействию атмосферных осадков.

Способ укладки упакованных механизмов на транспортное средство должен исключать их самопроизвольное перемещение.

4. УТИЛИЗАЦИЯ

Механизм не представляет опасности для жизни, здоровья людей и окружающей среды и подлежит утилизации после окончания срока службы по технологии, принятой на предприятии, эксплуатирующем механизм.

Приложения

- А- Общий вид, габаритные и присоединительные размеры механизма МЭМ 40.
- Б- Схемы электрические принципиальные механизма МЭМ.
- В Схема подключения механизма МЭМ к трехфазной сети с датчиком БСПТ-10М при бесконтактном управлении.

Приложение А (обязательное) Общий вид, габаритные и присоединительные размеры механизма МЭМ 40

1-редуктор;2-привод;3-блок сигнализации положения; 4-штепсельный разъем; 5-привод ручной; 6- болт заземления 7- сальниковый ввод. Диаметр кабеля сальникового ввода (D) должен быть в пределах (9-13)мм.

ПРИЛОЖЕНИЕ Б(обязательное) Схемы электрические принципиальные механизма МЭМ

Рисунок Б.1 Схема трехфазного механизма с блоком БКВ

Х2

S1- промежуточный выключатель открытия S2 - промежуточный выключатель закрытия

S3 – конечный выключатель открытия

S4 – конечный выключатель закрытия

Рисунок Б.2 Схема механизма с блоком БСПР–10. Остальное см. рисунок Б.1

Рисунок Б.3 Схема механизма с блоком БСПИ–10 Остальное см. рисунок Б.1

Рисунок Б.4 Схема механизма с блоком БСПТ–10М Остальное см.рисунок Б.1

Диаграмма работы микровыключателей

микро Выклю-	контакт соедини-	Положение арматуры			
иы к лю- Чатель	теля X1	открыто	промежуточное	закрыт о	
C1	5-6				
51	7–8				
C2	9–10				
52	11–12				
C_{2}	19-20				
<i>S3</i>	21–22				
CI	23–24				
54	25-26				

Обоз– начение	Наименование	примечание
L1 L2	Катушка индуктивности	
М	Электродвигатель АИР 56B4	380 B
R1 R2	Датчик реостатный	120 Om
<i>S1S4</i>	Микровыключатели	
БД-20	Датчик токовый	
X1	Разъемы РП10-30	
X2	Клемник соединительный	

— контакт замкнут

_____ – контакт разомкнут