Exercise 3.2 Page No: 3.29

Solve the following system of equations graphically:

1.
$$x + y = 3$$

$$2x + 5y = 12$$

Solution:

Given,

$$x + y = 3.....(i)$$

$$2x + 5y = 12.....(ii)$$

For equation (i),

When y = 0, we have x = 3

When x = 0, we have y = 3

Thus we have the following table giving points on the line x + y = 3

Х	0	3
у	3	0

For equation (ii),

We solve for y:

$$\Rightarrow$$
 y = $(12 - 2x)/5$

So, when x = 1

$$y = (12 - 2(1))/5 = 2$$

And, when
$$x = 6$$

$$\Rightarrow$$
 y = $(12 - 2(6))/5 = 0$

Thus we have the following table giving points on the line 2x + 5y = 12

Thus we have the following table g	rying points on the line 211 + 27	
X	1	6
y	2	0

Clearly the two lines intersect at a single point P (1, 2) Hence, x = 1 and y = 2

2.
$$x - 2y = 5$$

 $2x + 3y = 10$

Solution:

Given,

$$x - 2y = 5.....(i)$$

2x + 3y = 10..... (ii)

For equation (i),

$$\Rightarrow$$
 y = (x - 5)/2

When y = 0, we have x = 5

When x = 1, we have y = -2

Thus we have the following table giving points on the line x - 2y = 5

Thas we have the following table g	rying points on the line it 2 j	
X	5	_ O × 1
у	0	-2

For equation (ii),

We solve for y:

$$\Rightarrow$$
 y = $(10 - 2x)/3$

So, when x = 5

$$y = (10 - 2(5))/3 = 0$$

And, when x = 2

$$\Rightarrow$$
 y = $(10 - 2(2))/3 = 2$

Thus we have the following table giving points on the line 2x + 3y = 10

thus we have the following tuble giving points on the line 2n + 5j 10		
X	5	2
y	0	2

Clearly the two lines intersect at a single point P (5, 0) Hence, x = 5 and y = 0

3.
$$3x+y+1=0$$

 $2x-3y+8=0$

Solution:

Given,

$$3x + y + 1 = 0 \dots (i)$$

$$2x - 3y + 8 = 0$$
.....(ii)

For equation (i),

$$\Rightarrow$$
 y = -(1 + 3x)

When x = 0, we have y = -1

When x = -1, we have y = 2

Thus we have the following table giving points on the line 3x + y + 1 = 0

X	-1	0
у	2	-1

For equation (ii),

We solve for y:

$$\Rightarrow$$
 y = $(2x + 8)/3$

So, when
$$x = -4$$

$$y = (2(-4) + 8)/3 = 0$$

And, when
$$x = -1$$

$$\Rightarrow$$
 y = $(2(-1) + 8)/3 = 2$

Thus we have the following table giving points on the line 2x - 3y + 8 = 0

х	-4	-1
y	0	2

Clearly the two lines intersect at a single point P (-1, 2) Hence, x = -4 and y = 0

4.
$$2x + y - 3 = 0$$

 $2x - 3y - 7 = 0$

Solution:

Given,

$$2x + y - 3 = 0.....$$
 (i) $2x - 3y - 7 = 0.....$ (ii)

For equation (i),

$$\Rightarrow$$
 y = $(3 - 2x)$

When x = 0, we have y = (3 - 2(0)) = 3

When x = 1, we have y = (3 - 2(1)) = 1

Thus we have the following table giving points on the line 2x + y - 3 = 0

Thus we have the following table g	iving points on the line 2n + y =	0
X	0	1
у	3	1

For equation (ii),

We solve for y:

$$\Rightarrow$$
 y = $(2x - 7)/3$

So, when x = 2

$$y = (2(2) - 7)/3 = -1$$

And, when x = 5

$$\Rightarrow$$
 y = $(2(5) - 7)/3 = 1$

Thus we have the following table giving points on the line 2x - 3y - 7 = 0

X	2	5
y	-1	1

Clearly the two lines intersect at a single point P (2, -1) Hence, x = 2 and y = -1

5.
$$x + y = 6$$

 $x - y = 2$

Solution:

Given,

$$x + y = 6.....(i)$$

$$x - y = 2.....(ii)$$

For equation (i),

$$\Rightarrow$$
 y = (6 - x)

When x = 2, we have y = (6 - 2) = 4

When
$$x = 3$$
, we have $y = (6 - 3) = 3$

Thus we have the following table giving points on the line x + y = 6

Thus we have the following twell giving points on the line is a j		
X	2	3
y	4	3

For equation (ii),

We solve for y:

$$\Rightarrow$$
 y = (x - 2)

So, when x = 2

$$y = (0 - 2) = -2$$

And, when x = 5

$$\Rightarrow$$
 y = (2 - 2) = 0

Thus we have the following table giving points on the line x - y = 2

X	0	2
y	-2	0

Clearly the two lines intersect at a single point P (4, 2) Hence, x=4 and y=2

6.
$$x - 2y = 6$$

 $3x - 6y = 0$

Solution:

Given, x - 2y = 6......(i)3x - 6y = 0......(ii)

For equation (i), \Rightarrow y = (x - 6)/2 When x = 2, we have y = (2 - 6)/2 = -2 When x = 0, we have y = (0 - 6)/2 = -3

Thus we have the following table giving points on the line x - 2y = 6

X	2	0
у	-2	-3

For equation (ii),

We solve for y:

$$\Rightarrow$$
 y = x/2

So, when x = 0

$$y = 0/2 = 0$$

And, when x = 2

$$\Rightarrow$$
 y = 2/2 = 1

Thus we have the following table giving points on the line 3x - 6y = 0

X	0	2
y	0	1

Clearly the two lines are parallel to each other. So, the two lines do not intersect. Hence, the given system has no solutions.

7.
$$x + y = 4$$

2x - 3y = 3
Solution:

Given,

$$x + y = 4......(i)$$

 $2x - 3y = 3......(ii)$

For equation (i),

$$\Rightarrow$$
 y = (4 - x)

When x = 4, we have y = (4 - 4) = 0

When x = 2, we have y = (4 - 2) = 2

Thus we have the following table giving points on the line x + y = 4

Thus we have the ratio wing twelf graing paints on the interaction		
X	4	2
y	0	2

For equation (ii),

We solve for y:

$$\Rightarrow$$
 y = $(2x - 3)/3$

So, when
$$x = 3$$

$$y = (2(3) - 3)/3 = 1$$

And, when
$$x = 0$$

$$\Rightarrow$$
 y = (2(0) - 3)/3 = -1

Thus we have the following table giving points on the line 2x - 3y = 3

X	3	0
y	1	-1

Clearly the two lines intersect at a single point P (3, 1) Hence, x=3 and y=1

8.
$$2x + 3y = 4$$

 $x - y + 3 = 0$

Solution:

Given,

$$2x + 3y = 4.....$$
 (i) $x - y + 3 = 0.....$ (ii)

For equation (i),

$$\Rightarrow$$
 y = $(4 - 2x)/3$

When x = -1, we have y = (4 - 2(-1))/3 = 2

When x = 2, we have y = (4 - 2(2))/3 = 0

Thus we have the following table giving points on the line 2x + 3y = 4

X	-1	2
у	2	0

For equation (ii),

We solve for y:

$$\Rightarrow$$
 y = (x + 3)

So, when x = 0

$$y = (0 + 3) = 3$$

And, when x = 1

$$\Rightarrow$$
 y = (1 + 3) = 4

Thus we have the following table giving points on the line x - y + 3 = 0

	<u> </u>	
X	0	1
у	3	4

Clearly the two lines intersect at a single point P (-1, 2) Hence, x=-1 and y=2

9.
$$2x - 3y + 13 = 0$$

$$3x - 2y + 12 = 0$$

Solution:

Given,

$$2x - 3y + 13 = 0....(i)$$

$$3x - 2y + 12 = 0$$
.....(ii)

For equation (i),

$$\Rightarrow$$
 y = $(2x + 13)/3$

When
$$x = -5$$
, we have $y = (2(-5) + 13))/3 = 1$

When
$$x = -2$$
, we have $y = (2(-2) + 13))/3 = 3$

Thus we have the following table giving points on the line 2x - 3y + 13 = 0

Thus we have the fonowing those giving points on the line 2n - 2j + 15 - 0		
X	-5	-2
у	1	3

For equation (ii),

We solve for y:

$$\Rightarrow$$
 y = $(3x + 12)/2$

So, when
$$x = -4$$

$$y = (3(-4) + 12)/2 = 0$$

And, when
$$x = -2$$

$$\Rightarrow$$
 y = $(3(-2) + 12)/2 = 3$

Thus we have the following table giving points on the line 3x - 2y + 12 = 0

X	-4	-2
y	0	3

Clearly the two lines intersect at a single point P (-2, 3) Hence, x=-2 and y=3

10.
$$2x + 3y + 5 = 0$$

 $3x + 2y - 12 = 0$

Solution:

Given,

$$2x + 3y + 5 = 0$$
..... (i)
 $3x - 2y - 12 = 0$ (ii)

For equation (i),

$$\Rightarrow$$
 y = -(2x + 5)/3

When
$$x = -4$$
, we have $y = -(2(-4) + 5))/3 = 1$

When
$$x = -2$$
, we have $y = -(2(-2) + 5))/3 = -1$

Thus we have the following table giving points on the line 2x + 3y + 5 = 0

Thus we have the rone wing tweet grains on the line in a first of		
X	-4	-1
y	1	-1

For equation (ii),

We solve for y:

$$\Rightarrow$$
 y = $(3x - 12)/2$

So, when
$$x = 4$$

$$y = (3(4) - 12)/2 = 0$$

And, when
$$x = 6$$

$$\Rightarrow$$
 y = $(3(6) - 12)/2 = 3$

Thus we have the following table giving points on the line 3x - 2y - 12 = 0

X	4	6
y	0	3

Clearly the two lines intersect at a single point P (2, -3) Hence, x=2 and y=-3

Show graphically that each one of the following systems of equation has infinitely many solution:

11.
$$2x + 3y = 6$$

$$4x + 6y = 12$$

Solution:

Given.

$$2x + 3y = 6....(i)$$

$$4x + 6y = 12.....$$
 (ii)

For equation (i),

$$\Rightarrow$$
 y = $(6 - 2x)/3$

When
$$x = 0$$
, we have $y = (6 - 2(0))/3 = 2$

When
$$x = 3$$
, we have $y = (6 - 2(3))/3 = 0$

Thus we have the following table giving points on the line 2x + 3y = 6

inds we have the ions wing twelf giving points on the line and egy of		
X	0	3
у	2	0

For equation (ii),

We solve for y:

$$\Rightarrow$$
 y = $(12 - 4x)/6$

So, when
$$x = 0$$

$$y = (12 - 4(0))/6 = 2$$

And, when
$$x = 3$$

$$\Rightarrow$$
 y = $(12 - 4(3))/6 = 0$

Thus we have the following table giving points on the line 4x + 6y = 12

Thus we have the following table g	ring points on the line in i of	-
X	0	3
y	2	0

Thus, the graphs of the two equations are coincident.

Hence, the system of equations has infinitely many solutions.

12.
$$x - 2y = 5$$

 $3x - 6y = 15$

Solution:

Given,

$$x - 2y = 5......(i)$$

 $3x - 6y = 15......(ii)$

For equation (i),

$$\Rightarrow$$
 y = (x - 5)/2

When
$$x = 3$$
, we have $y = (3 - 5)/2 = -1$

When
$$x = 5$$
, we have $y = (5 - 5)/2 = 0$

Thus we have the following table giving points on the line x - 2y = 5

X	3	5
у	-1	0

For equation (ii),

We solve for y:

$$\Rightarrow$$
 y = $(3x - 15)/6$

So, when
$$x = 1$$

$$y = (3(1) - 15)/6 = -2$$

And, when
$$x = -1$$

$$\Rightarrow$$
 y = $(3(-1) - 15)/6 = -3$

Thus we have the following table giving points on the line 3x - 6y = 15

X	1	-1
y	-2	-3

Thus, the graphs of the two equations are coincident.

Hence, the system of equations has infinitely many solutions.

13.
$$3x + y = 8$$

$$6x + 2y = 16$$

Solution:

Given,

$$3x + y = 8.....(i)$$

$$6x + 2y = 16....$$
 (ii)

For equation (i),

$$\Rightarrow$$
 y = $(8 - 3x)$

When
$$x = 2$$
, we have $y = (8 - 3(2)) = 2$

When
$$x = 3$$
, we have $y = (8 - 3(3)) = -1$

Thus we have the following table giving points on the line 3x + y = 8

Thus we have the following tuble giving points on the line $3x + y = 0$			
X	2	3	
у	2	-1	

For equation (ii),

We solve for y:

$$\Rightarrow$$
 y = $(16 - 6x)/2$

So, when
$$x = 3$$

$$y = (16 - 6(3))/2 = -1$$

And, when
$$x = 1$$

$$\Rightarrow$$
 y = $(16 - 6(1))/2 = 5$

Thus we have the following table giving points on the line 6x + 2y = 16

X	3	1
y	-1	5

Thus, the graphs of the two equations are coincident.

Hence, the system of equations has infinitely many solutions.

14.
$$x - 2y + 11 = 0$$

$$3x + 6y + 33 = 0$$

Solution:

Given,

$$x - 2y + 11 = 0.....(i)$$

$$3x - 6y + 33 = 0$$
.....(ii)

For equation (i),

$$\Rightarrow$$
 y = (x + 11)/2

When
$$x = -1$$
, we have $y = (-1 + 11)/2 = 5$

When
$$x = -3$$
, we have $y = (-3 + 11)/2 = 4$

Thus we have the following table giving points on the line x - 2y + 11 = 0

	5- 1-1-8 F - 1-1-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	•
X	-1	-3
y	5	4

For equation (ii),

We solve for y:

$$\Rightarrow$$
 y = $(3x + 33)/6$

So, when
$$x = 1$$

$$y = (3(1) + 33)/6 = 6$$

And, when
$$x = -1$$

$$\Rightarrow$$
 y = $(3(-1) + 33)/6 = 5$

Thus we have the following table giving points on the line 3x - 6y + 33 = 0

X	1	-1
y	6	5

Thus, the graphs of the two equations are coincident.

Hence, the system of equations has infinitely many solutions.

Show graphically that each one of the following systems of equations is in-consistent (i.e has no solution):

15.
$$3x - 5y = 20$$

$$6x - 10y = -40$$

Solution:

Given.

$$3x - 5y = 20.....(i)$$

$$6x - 10y = -40....$$
 (ii)

For equation (i),

$$\Rightarrow$$
 y = $(3x - 20)/5$

When
$$x = 5$$
, we have $y = (3(5) - 20)/5 = -1$

When
$$x = 0$$
, we have $y = (3(0) - 20)/5 = -4$

Thus we have the following table giving points on the line 3x - 5y = 20

X	5	0
у	c-1 : (°	-4

For equation (ii),

We solve for y:

$$\Rightarrow$$
 y = $(6x + 40)/10$

So, when x = 0

$$y = (6(0) + 40)/10 = 4$$

And, when x = -5

$$\Rightarrow$$
 y = $(6(-5) + 40)/10 = 1$

Thus we have the following table giving points on the line 6x - 10y = -40

X	0	-5
У	4	1

It is clearly seen that, there is no common point between these two lines. Hence, the given systems of equations is in-consistent.

16.
$$x - 2y = 6$$

 $3x - 6y = 0$

Solution:

Given,

$$x - 2y = 6.....(i)$$

 $3x - 6y = 0.....(ii)$

For equation (i),

$$\Rightarrow$$
 y = (x - 6)/2

When
$$x = 6$$
, we have $y = (6 - 6)/2 = 0$

When
$$x = 2$$
 we have $y = (2 - 6)/2 = -2$

Thus we have the following table giving points on the line x - 2y = 6

	5 6 F	
X	6	2
y	0	-2

For equation (ii),

We solve for y:

$$\Rightarrow$$
 y = x/2

So, when
$$x = 0$$

$$y = 0/2 = 0$$

And, when
$$x = 2$$

$$\Rightarrow$$
 y = $2/2 = 1$

Thus we have the following table giving points on the line 3x - 6y = 0

X	0	2
у	0	1

It is clearly seen that, there is no common point between these two lines. Hence, the given systems of equations is in-consistent.

17.
$$2y - x = 9$$

6y - $3x = 21$

Solution:

Given,

$$2y - x = 9......(i)$$

6y - $3x = 21......(ii)$

For equation (i),

$$\Rightarrow$$
 y = (x + 9)/2

When
$$x = -3$$
, we have $y = (-3 + 9)/2 = 3$

When
$$x = -1$$
, we have $y = (-1 + 9)/2 = 4$

Thus we have the following table giving points on the line 2y - x = 9

Thus we have the reme wing twelves	string points on the line = j ii >	
X	-3	-1
y	3	4

For equation (ii),

We solve for y:

$$\Rightarrow$$
 y = $(21 + 3x)/6$

So, when
$$x = -3$$

$$y = (21 + 3(-3))/6 = 2$$

And, when x = -1

$$\Rightarrow$$
 y = $(21 + 3(-1))/6 = 3$

Thus we have the following table giving points on the line 6y - 3x = 21

Thus we have the following thole g	$\frac{111115}{1115}$ points on the line of $\frac{3N-2}{111}$	1
X	-3	-1
y	2	3

It is clearly seen that, there is no common point between these two lines. Hence, the given systems of equations is in-consistent.

18.
$$3x - 4y - 1 = 0$$

 $2x - (8/3)y + 5 = 0$

Solution:

Given,

$$3x - 4y - 1 = 0......$$
 (i)
 $2x - (8/3)y + 5 = 0......$ (ii)

For equation (i),

$$\Rightarrow$$
 y = $(3x - 1)/4$

When
$$x = -1$$
, we have $y = (3(-1) - 1)/4 = -1$

When
$$x = 3$$
, we have $y = (3(3) - 1)/4 = 2$

Thus we have the following table giving points on the line 3x - 4y - 1 = 0

	i i i i i i i i i i i i i i i i i i i	0
X	-1	3
y	-1	2

For equation (ii),

We solve for y:

$$\Rightarrow$$
 y = $(6x + 15)/8$

So, when
$$x = -2.5$$

$$y = (6(-2.5) + 15)/8 = 0$$

And, when
$$x = 1.5$$

$$\Rightarrow$$
 y = $(6(1.5) + 15)/8 = 3$

Thus we have the following table giving points on the line 2x - (8/3)y + 5 = 0

Thus we have the following tuble g	ring points on the line 2x (0/3)	1 5 - 6
X	-2.5	1.5
y	0	3

It is clearly seen that, there is no common point between these two lines.

Hence, the given systems of equations is in-consistent.

19. Determine graphically the vertices of the triangle, the equations of whose sides are given below:

(i)
$$2y - x = 8$$
, $5y - x = 14$ and $y - 2x = 1$ Solution:

Given,

$$2y - x = 8.....(i)$$

$$5y - x = 14....$$
 (ii)

$$y - 2x = 1$$
.....(iii)

For equation (i),

$$\Rightarrow$$
 y = (x + 8)/2

When
$$x = -4$$
, we have $y = (-4 + 8)/2 = 2$

When
$$x = 0$$
, we have $y = (0 + 8)/2 = 4$

Thus we have the following table giving points on the line 2y - x = 8

	4	0
X	-4	0
y	2	4

For equation (ii),

We solve for y:

$$\Rightarrow$$
 y = (x + 14)/5

So, when x = -4

$$y = ((-4) + 14)/5 = 2$$

And, when x = 1

$$\Rightarrow$$
 y = $(1 + 14)/5 = 3$

Thus we have the following table giving points on the line 5y - x = 14

v	-A	1
Α		2
y	2	3

Finally, for equation (iii),

$$\Rightarrow$$
 y = $(2x + 1)$

When
$$x = -1$$
, we have $y = (2(-1) + 1) = -1$

When
$$x = 1$$
, we have $y = (2(1) + 1) = 3$

Thus we have the following table giving points on the line y - 2x = 1

X	-1	1
у	1	3

From the above graph, we observe that the lines taken in pairs intersect at points A(-4,2), B(1,3) and C(2,5)

Hence the vertices of the triangle are A(-4, 2), B(1, 3) and C(2,5)

(ii)
$$y = x$$
, $y = 0$ and $3x + 3y = 10$
Solution:

Given,

$$y = x(i)$$

$$y = 0(ii)$$

$$3x + 3y = 10....$$
 (iii)

For equation (i),

When x = 1, we have y = 1

When x = -2, we have y = -2

Thus we have the following table giving points on the line y = x

Х	1	-2
y	1	-2

For equation (ii),

When x = 0

y = 0

And, when x = 10/3

 \Rightarrow y = 0

Thus we have the following table giving points on the line y = 0

	5- 1-1-6 F	
X	0	10/3
V	0	10/3

Finally, for equation (iii),

$$\Rightarrow$$
 y = $(10 - 3x)/3$

When x = 1, we have y = (10 - 3(1))/3 = 7/3

When x = 2, we have y = (10 - 3(2))/3 = 4/3

Thus we have the following table giving points on the line 3x + 3y = 10

х	1	2
у	7/3	4/3

Graph of the equations (i), (ii) and (iii) is as below:

From the above graph, we observe that the lines taken in pairs intersect at points A(0,0) B(10/3,0) and C(5/3,5/3)

Hence the vertices of the triangle are A(0,0) B(10/3,0) and C(5/3,5/3).

20. Determine graphically whether the system of equations x - 2y = 2, 4x - 2y = 5 is consistent or in-consistent.

Solution:

$$x - 2y = 2.....(i)$$

$$4x - 2y = 5.....(ii)$$

For equation (i),

$$\Rightarrow$$
 y = (x - 2)/2

When
$$x = 2$$
, we have $y = (2 - 2)/2 = 0$

When
$$x = 0$$
, we have $y = (0 - 2)/2 = -1$

Thus we have the following table giving points on the line x - 2y = 2

Х	2	0
у	0	-1

For equation (ii),

We solve for x:

$$\Rightarrow$$
 x = $(5 + 2y)/4$

So, when y = 0

$$x = (5 + 2(0))/4 = 5/4$$

And, when
$$y = 1.5$$

$$\Rightarrow$$
 x = $(5 + 2(1))/4 = 7/4$

Thus we have the following table giving points on the line 4x - 2y = 5

Thus we have the following there g	iving points on the line in 2, e	
X	5/4	7/4
y	0	1

Graph of the equations (i) and (ii) is as below:

It is clearly seen that the two lines intersect at (1,0) Hence, the system of equations is consistent.

21. Determine by drawing graphs, whether the following system of linear equation has a unique solution or not:

(i)
$$2x - 3y = 6$$
 and $x + y = 1$ Solution:

Given,

$$2x - 3y = 6$$
(i)
 $x + y = 1$(ii)

For equation (i),

$$\Rightarrow$$
 y = $(2x - 6)/3$

When x = 3, we have y = (2(3) - 6)/3 = 0

When x = 0, we have y = (2(0) - 6)/3 = -2

Thus we have the following table giving points on the line 2x - 3y = 6

Thus we have the following table g	grang points on the line 2n eg	
X	3	0
y	0	-2

For equation (ii),

We solve for y:

$$\Rightarrow$$
 y = (1 - x)

So, when x = 0

$$y = (1 - 0) = 1$$

And, when x = 1

$$\Rightarrow$$
 y = (1 - 1) = 0

Thus we have the following table giving points on the line x + y = 1

X	0	1
у	1	0

Graph of the equations (i) and (ii) is as below:

It's seen clearly that the two lines intersect at one.

Thus, we can conclude that the system of equations has a unique solution.

(ii) 2y = 4x - 6 and 2x = y + 3 Solution:

Given,

$$2y = 4x - 6....(i)$$

$$2x = y + 3.....(ii)$$

For equation (i),

$$\Rightarrow$$
 y = $(4x - 6)/2$

When x = 1, we have y = (4(1) - 6)/2 = -1

When x = 4, we have y = (4(4) - 6)/2 = 5

Thus we have the following table giving points on the line 2y = 4x - 6

X	1	4
y	-1	5

For equation (ii),

We solve for y:

$$\Rightarrow$$
 y = 2x - 3

So, when x = 2

$$y = 2(2) - 3 = 1$$

And, when x = 3

$$\Rightarrow$$
 y = 2(3) - 3 = 3

Thus we have the following table giving points on the line 2x = y + 3

X	2	3
y	VI.	3

Graph of the equations (i) and (ii) is as below:

We see that the two lines are coincident. And, hence it has infinitely many solutions. Therefore, the system of equations does not have a unique solution.