Álgebras, Grupos y Representaciones Ejercicios

Luis Antonio Ortega Andrés, Guillermo Galindo Ortuño

March 23, 2020

Ejercicio 1. Sea A un anillo. Diremos que A es trivial si $A = \{0\}$. Demostrar que A es trivial si, y sólo si, 1 = 0.

Supongamos que A es trivial, entonces como A es un anillo, $\exists 1 \in A \implies 0 = 1$. Sea ahora 1 = 0, sea $a \in A$ se tiene que $a = a * 1 = a * 0 = 0 \implies A = \{0\}$.

Ejercicio 2. Sea K un cuerpo y $M_n(K)$ el anillo de matrices cuadradas de orden n con entradas en K. Demostrar que $Z(M_n(K)) = \{kI_n \mid k \in K\}$, donde I_n es la matriz identidad de orden n.

Es evidente que $\{kI_n \mid k \in K\} \subset Z(M_n(K))$. Tomemos $A \in Z(M_n(K))$, $E_{ij} \in M_n(K)$ la matriz de ceros salvo un 1 en la position (i, j). Se tiene que

$$E_{ij}A = AE_{ij} \ \forall i, j \in \{0, \dots, n-1\}$$

Pero es sencillo comprobar que $E_{ij}A$ es una matriz de ceros salvo por tener la fila j-ésima de A en la fila i-ésima. De igual forma AE_{ij} es una matriz de ceros salvo por tener la columna i-ésima de A en la columna j-ésima.

Luego estamos igualando una matriz con una sola fila no nula y una con una sola columna no nula, por ello A debe ser diagonal. Además, el valor i-ésimo y el valor j-ésimo de la diagonal deben coincidir. Con esto $A \in \{kI_n \mid k \in K\}$.

Ejercicio 3. Sea V un espacio vectorial sobre un cuerpo K y el conjunto

$$End_K(V) = \{ f : V \rightarrow V \mid f \text{ es } K\text{-lineal} \}$$

comprobar que es un subanillo de End(V). Consideremos la aplicación $h: K \to End_K(V)$ que asigna a cada $k \in K$ la homotecia $h(k): V \to V$, definido por $h(k)(v) = kv \ \forall v \in V$. Comprobar que h está bien definida y que es un morfismo de anillos. Además si $T: V \to V$ es K-lineal y $k \in K$, comprobar que $T \circ h(k) = h(k) \circ T$, luego $Im(h) \subset Z(End_K(V))$. Con esto $End_K(V)$ es una K-álgebra.

Es claro que con las operaciones de End(V), se converva la K-linealidad, luego $End_K(V)$ es un subanillo.

La aplicación h está bien definida por ser V un espacio vectorial sobre K. Veamos que es un morfismo de anillos.

- Sean $a, b \in K$ y $v \in V$, h(a+b)(v) = (a+b)v = av + bv = h(a)(v) + h(b)(v) = (h(a) + h(b))(v)
- Sean $a, b \in K$ y $v \in V$, $h(ab)(v) = (ab)v = a(bv) = ak(b)(v) = k(a) \circ k(b)(v)$
- Sea $v \in V$, k(1)(v) = 1v = v = Id(v)

Hagamos la última comprobación que se nos pide $T \circ h(k)(v) = T(kv) = kT(v) = h(k) \circ T(v)$.

Ejercicio 4. Supongamos que A y B son K-álgebras con morfismos de estructura ρ_A y ρ_B . Sea $\phi: A \to B$ un morfismo de anillos. Demostrar que ϕ es un morfismo de K-álgebras si, y sólo si, $\phi \circ \rho_A = \rho_B$.

Supongamos que $\phi \circ \rho_A = \rho_B$, sean $k \in K$ y $a \in A$

$$\phi(ka) = \phi(\rho_A(k) \star a) = \phi \circ \rho_A(k) \star \phi(a) = \rho_B(k) \star \phi(a) = k\phi(a)$$

Que es la única propiedad que necesita ϕ para ser un morfismo de K-espacios vectoriales. Supongamos ahora que ϕ un morfismo de K-álgebras, veamos que $\phi \circ \rho_A = \rho_B$. Sea $k \in K, b \in B$

$$\phi \circ \rho_A(k) = \phi(k \star 1_A) = \phi(k) \star \phi(1_A) = k \star 1_B = k1_B = \rho_B(k)$$

Ejercicio 5. Sea A un espacio vectorial sobre un cuerpo K. Demostrar que dar una estructura de K-álgebra asociativa unital sobre A es equivalente a dar una multiplicación asociativa K-bilineal $\star: A \times A \to A$ junto con una aplicación K-lineal $\tau: K \to A$ tal que $\tau(k) \star a = ka = a \star \tau(k) \ \forall k \in K, a \in A$

Supongamos que tenemos una estructura de K-álgebra sobre A. Denotamos \star a la multiplicación de A como anillo y $\tau: K \to Z(A)$ al morfismo que dota de estructura de K-álgebra. Veamos que τ es K-lineal, sea $k \in K$:

$$\tau(k) = \tau(k) \star 1_A = k1_A = k\tau(1_K)$$

Comprobemos ahora que \star es K-bilineal, la bilinealidad viene dada por la estructura de anillo. Sean $k \in K, a, b \in A$

$$k(a \star b) = \tau(k) \star (a \star b) = (\tau(k) \star a) \star b = (ka) \star b$$

$$k(a \star b) = \tau(k) \star (a \star b) = (\tau(k) \star a) \star b = (a \star \tau(k)) \star b = a \star (\tau(k) \star b) = a \star (kb)$$

Supongamos ahora que tenemos ambas aplicaciones definidas. Notamos que $\tau(1_K) \star a = 1_K a = a = a \star \tau(1_K)$. Luego $\tau(1_K) := 1_A$ actua como elemento neutro de A para la operación \star . Si comprobamos que A con $(\star, 1_A)$ es un anillo, entonces tendremos que A es una K-álgebra. Como la operación es asociativa por hipótesis y ya tenemos el elemento neutro, solo nos quedaría comprobar la distributividad que la tenemos por ser \star una aplicación bilineal.

Ejercicio 6. * Sea K un cuerpo. Comprobar que el anillo de polinomios es una K[X]-álgebra. Si ahora tomamos un ideal no nulo I de K[X], comprobar que A = K[X]/I tiene estructura de K-álgebra. Sabemos que existe un único polinómio $p(X) \in K[X]$ tal que $I = \langle p(X) \rangle$. Llamamos n

al grado de p(X), y suponemos n > 0. Comprobar que $\mathcal{B} = \{1 + I, x + I, \dots, x^{n-1} + I\}$ es una base de A como K-espacio vectorial y, por tanto $dim_K A = n$. Sea

$$p(X) = p_0 + p_1 X + p_2 X^2 \cdots + X^n$$

Comprobar que la matriz de $M_n(K)$ que representa al endomorfismo $\lambda(x+I)$ con respecto a la base \mathcal{B} es

$$\tilde{N}(p) = \begin{bmatrix} 0 & \dots & 0 & -p_0 \\ 1 & \dots & 0 & -p_1 \\ \vdots & & \vdots & \vdots \\ 0 & \dots & 1 & -p_{n-1} \end{bmatrix}$$

y que A es isomorfa a la subálgebra $\{a_0I + a_1\tilde{N}(p) + \cdots + a_{n-1}\tilde{N}(p)^{n-1} : a_0, a_1, \dots, a_{n-1} \in K\} \subset M_n(K)$

El anillo de polinomios K[X] es una K-álgebra utilizando el morfismo de anillos

$$\rho: K \to K[X]$$
$$k \mapsto k$$

El morfismo de anillos que da a A = K[X]/I estructura de K-álgebra es el siguiente:

$$\rho: K \to K[X]/I$$
$$k \mapsto k + I$$

La comprobación de que se tratan de morfismos de anillos es rutinaria. El algoritmo de división nos asegura que todos los polinomios de A tienen grado a lo sumo n-1, por tanto \mathcal{B} es un sistema de generadores de A y forman una base por ser linealmente independientes.

Sea el endomorfismo $\lambda(x+I)(a)=(x+I)a$, es claro que las primeras n-1 columnas de la matriz $\tilde{N}(p)$ corresponden a multiplicar x+I por los elementos $1+I,\ldots,x^{n-2}+I$. Ahora,

$$(x+I)(x^{n-1}+I) = x^n + I = -p(X) + I$$

De ahí la última columna de la matriz.

Dado $a \in A$ con $a = (a_0, \dots, a_{n-1})$ en \mathcal{B} el morfismo de K-álgebras lleva $(a_0, \dots, a_{n-1}) \to a_0 I + a_1 \tilde{N}(p) + \dots + a_{n-1} \tilde{N}(p)^{n-1}$

TODO terminar

Ejercicio 7. * Sea K un cuerpo. Dar la lista, salvo isomorfismos, de todas las K-álgebras asociativas unitales de dimensión 2.

Sea A una K-álgebra con morfismo de estructura ρ . Sea $\{1,a\}$ la base de A como espacio vectorial. Consideramos

$$f: K[X] \to A$$
$$\alpha \mapsto \rho(\alpha)$$
$$x \mapsto a$$

Es un morfismo de álgebras por ser $\rho = f \circ \rho_K$ con ρ_K el morfismo de estructura de K[X]. Notamos que la imagen de f tiene dimensión 2 como espacio vectorial, luego es sobreyectivo (?). Esto nos dice que existe I ideal de K[X] tal que $K[X]/I \cong A$. Por ello, buscar álgebras de dimensión 2 es equivalente a buscar ideales del anillo de polinomios K[X]. Tenemos entonces 3 opciones

- $K[X]/\langle x^2-1\rangle$
- $K[X]/\langle x^2+1\rangle$
- $K[X]/\langle x^2 \rangle$

TODO Comprobar que es verdad TODO Comprobar cuales son asociativos unitales

Ejercicio 8. Expresar el cuerpo $\mathbb{Q}(\sqrt{2} \text{ como una } \mathbb{Q}\text{-álgebra de un álgebra de matrices sobre } \mathbb{Q}$.

Tomamos la base $\mathcal{B} = \{1, \sqrt{2}\}$, el morfismo inyectivo de \mathbb{Q} -álgebras $m = M_{\mathcal{B}} \circ \lambda : \mathbb{Q} \to M_{\mathbb{P}}(\mathbb{Q})$ verificando:

- $\lambda(a+b\sqrt{2})(1) = a+b\sqrt{2} \implies (a,b) \text{ en } \mathbb{B}$
- $\lambda(a+b\sqrt{2})(\sqrt{2}) = a\sqrt{2} + 2b \implies (2b,a) \text{ en } \mathbb{B}$

Luego

$$\mathbb{Q}(\sqrt{2})\cong \{m(a+b\sqrt{2}), a,b\in\mathbb{Q}\}\cong \left\{\begin{bmatrix} a & 2b\\ b & a\end{bmatrix}, a,b\in\mathbb{Q}\right\}$$

Ejercicio 9. Sea

$$\mathbb{H} = \left\{ \begin{bmatrix} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{bmatrix} : \alpha, \beta \in \mathbb{C} \right\}$$

- 1. Demostrar que \mathbb{H} es una subálgebra real de $M_2(\mathbb{C})$ y que $Z(\mathbb{H}) = \mathbb{R}$
- 2. Demostrar que todo elemento no nulo de \mathbb{H} es una unidad
- 3. Demostrar que las matrices

$$\mathbf{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \mathbf{i} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \mathbf{j} = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \mathbf{k} = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$$

forman una base de \mathbb{H} como espacio vectorial real.

4. Comprobar las identidades

$$i^2 = i^2 = k^2 = -1$$
, $ij = k$, $ik = i$, $ki = i$

Para ver que es una subálgebra, vemos que \mathbb{H} es un subespacio vectorial de $M_2(\mathbb{C})$, vemos que es cerrado para la suma de matrices

$$\begin{bmatrix} \alpha_1 & -\bar{\beta}_1 \\ \beta_1 & \bar{\alpha}_1 \end{bmatrix} \begin{bmatrix} \alpha_2 & -\bar{\beta}_2 \\ \beta_2 & \bar{\alpha}_2 \end{bmatrix} = \begin{bmatrix} \alpha_1 + \alpha_2 & -\bar{\beta}_1 + \bar{\beta}_2 \\ \beta_1 + \beta_2 & \bar{\alpha}_1 + \bar{\alpha}_2 \end{bmatrix}$$

y para la multiplicación

$$\begin{bmatrix} \alpha_1 & -\bar{\beta}_1 \\ \beta_1 & \bar{\alpha}_1 \end{bmatrix} \begin{bmatrix} \alpha_2 & -\bar{\beta}_2 \\ \beta_2 & \bar{\alpha}_2 \end{bmatrix} = \begin{bmatrix} \alpha_1\alpha_2 - \bar{\beta}_1\beta_2 & -\alpha_1\bar{\beta}_2 - \bar{\beta}_1\bar{\alpha}_2 \\ \beta_1\alpha_2 + \bar{\alpha}_1\beta_2 & -\beta_1\bar{\beta}_2 + \bar{\alpha}_1\bar{\alpha}_2 \end{bmatrix}$$

además $1 \in \mathbb{H}$

Para que un elemento esté en el centro deben coincidir

$$\begin{bmatrix} \alpha_1 & -\bar{\beta}_1 \\ \beta_1 & \bar{\alpha_1} \end{bmatrix} \begin{bmatrix} \alpha_2 & -\bar{\beta}_2 \\ \beta_2 & \bar{\alpha_2} \end{bmatrix} = \begin{bmatrix} \alpha_1\alpha_2 - \bar{\beta}_1\beta_2 & -\alpha_1\bar{\beta}_2 - \bar{\beta}_1\bar{\alpha}_2 \\ \beta_1\alpha_2 + \bar{\alpha}_1\beta_2 & -\beta_1\bar{\beta}_2 + \bar{\alpha}_1\bar{\alpha}_2 \end{bmatrix}$$

$$\begin{bmatrix} \alpha_2 & -\bar{\beta}_2 \\ \beta_2 & \bar{\alpha}_2 \end{bmatrix} \begin{bmatrix} \alpha_1 & -\bar{\beta}_1 \\ \beta_1 & \bar{\alpha}_1 \end{bmatrix} = \begin{bmatrix} \alpha_2\alpha_1 - \bar{\beta}_2\beta_1 & -\alpha_2\bar{\beta}_1 - \bar{\beta}_2\bar{\alpha}_1 \\ \beta_2\alpha_1 + \bar{\alpha}_2\beta_1 & -\beta_2\bar{\beta}_1 + \bar{\alpha}_2\bar{\alpha}_1 \end{bmatrix}$$

Para tener esto necesitamos $\beta_1\alpha_2 + \bar{\alpha_1}\beta_2 = \beta_2\alpha_1 + \bar{\alpha_2}\beta_1 \implies \beta_1 = 0 \text{ y } \alpha_1 = \bar{\alpha_1}$. Luego $\alpha \in \mathbb{R}$

$$Z(\mathbb{H}) = \left\{ \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} : a \in \mathbb{R} \right\} \cong \mathbb{R}$$

2. Para ver que todo elemento es una unidad basta tomar

$$\begin{bmatrix} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{bmatrix}^{-1} = \begin{bmatrix} \bar{\alpha}/\|\alpha\| & \bar{\beta}/\|\beta\| \\ -\beta/\|\beta\| & \alpha/\|\alpha\| \end{bmatrix}$$

3. Veamos ahora que dichas matrices son una base, es sencillo ver que son linealmente independientes, luego comprobemos que son un sistema de generadores

$$\begin{bmatrix} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{bmatrix} = Re(\alpha)\mathbf{1} + Re(\beta)\mathbf{i} + Im(\alpha)\mathbf{j} + Im(\beta)\mathbf{k}$$

4. Para comprobar dichas identidades basta con realizar las cuentas correspondientes.

Ejercicio 10. Dado un A-módulo V no nulo, demostrar que

$$Ann_A(V) = \{ a \in A : av = 0 \ \forall v \in V \}$$

es un ideal de A. Dotar a V de estructura de $A/Ann_A(V)$ -módulo fiel (es decir, la representación correspondiente es fiel).

Sean $a, b \in Ann_A(V)$, tenemos que $(a+b)(v) = av + bv = 0 \implies a+b \in Ann_A(V)$. Sea ahora $a \in Ann_A(V), b \in A, (ab)v = a(bv) = 0 \implies ab \in Ann_A(V)$ luego tenemos un ideal.

Una representación es fiel si y solo si su núcleo es trivial. Sea ρ el morfismo de estructura de V, tenemos que $Ker(\rho) = Ann_A(V)$ que hemos visto es un ideal, luego para dotar a V de estructura de $A/Ann_A(V)$ -módulo fiel definimos el morfismo de estructura

$$\tau: A/Ann_A(V) \to End(V)$$

 $a + Ann_A(V) \mapsto \rho(a)$

Ejercicio 11. Sea M un A-módulo

1. Dados submódulos N_1, \ldots, N_m de M, tenemos que

$$N_1 + \dots + N_m = \{n_1 + \dots + n_m : n_i \in Ni\}.$$

- 2. Dado $X = \{m_1, \dots, m_n\} \subset M$, tenemos que $RX = Rm_1 + \dots + Rm_n$.
- **1.** Por N_1, \ldots, N_m submódulos es claro que $N_1 \cup \cdots \cup N_m \subset \{n_1 + \cdots + n_m : n_i \in Ni\}$ y que $\{n_1 + \cdots + n_m : n_i \in Ni\}$ es también un submódulos de M.

Supongamos ahora que existe N submódulo de M con $\cup_i N_i \subset N$ submódulo de M. Para cualesquiera n_1, \ldots, n_m en N_1, \ldots, N_m respectivamente, por contener N a la unión de todos los N_i ,

$$n_i \in N \forall i = 1, \dots, m.$$

Y por N submódulo,

$$\sum_{i} n_i \in N \implies \{n_1 + \dots + n_m : n_i \in Ni\} \subset N.$$

- **2.** La inclusión de izquierda a derecha es inmediata pues $Rm_1 + \cdots + Rm_n$ es un submódulo que contiene X. Para la otra inclusión, claramente $Rm_1, \ldots, Rm_n \subset Rx$. Ahora, usando el apartado anterior, y que Rx es un submódulo de M, tenemos $Rm_1 + \cdots + Rm_n \subset Rx$
- **Ejercicio 12.** Demostrar que un conjunto de generadores $m_i : i \in I$ de un módulo ${}_AM$ es una base si, y solo si, la igualdad $\sum_i r_i m_i = 0$ para $r_i \in A$ implica $r_i = 0$ para todo $\forall i \in I$. Dar un ejemplo de módulo no nulo finitamente generado que no sea libre.

Razonemos por contradicción para la primera implicación. Supongamos que m_1, \ldots, m_n es base de AM y que existen r_1, \ldots, r_n , con $r_k \neq 0$ tal que $\sum_i r_i m_i = 0$. Sea $m \in M$ con $m = \sum_i a_i m_i$. Entonces

$$m = \sum_{i} a_i m_i = \sum_{i} a_i m_i + \sum_{i} r_i m_i = \sum_{i} (a_i + r_i) m_i$$

con $a_k + r_k \neq a_k$. Por tanto m_1, \ldots, m_n no sería base.

Para la otra implicación, supongamos que existen $a_1, \ldots, a_n, a'_1, \ldots a'_n \in A$ tales que $\sum_i a_i m_i = \sum_i a'_i m_i$. Entonces,

$$\sum_{i} a_i m_i - \sum_{i} a'_i m_i = 0 \implies \sum_{i} (a_i - a'_i) m_i = 0 \implies a_i = a'_i \quad \forall i \in I.$$

Un ejemplo de módulo no nulo finitamente generado que no sea libre es \mathbb{Z}_2 visto como \mathbb{Z} -módulo. Claramente es finitamente generado pues solo tiene 2 elementos, y la única posible base sería 1, pero no lo es por $2 \cdot 1 = 0$

Ejercicio 13. Para cada A-módulo M, demostrar que el conjunto $End_A(M)$ es un subanillo de End(M). Demostrar que si, además, M es libre con base m_1, \ldots, m_n , entonces $End_A(M)^{op}$ es isomorfo, como anillo, a $M_n(A)$. Discutir qué ocurre cuando A es un álgebra sobre un cuerpo K.

Veamos que $End_A(M)$ es un subanillo. Sean $f, g \in End_A(M)$. Entonces

- (f+g)(am) = f(am) + g(am) = a(f(m) + g(m)) = a(f+g)(m)
- (fg)(am) = f(g(am)) = a(f(g(m))) = a(fg)(m)
- id(am) = am = a(id)(m)

Ahora, por m_1, \ldots, m_n base de M, dado $f \in End_A(M)$, podemos realizar el procedimiento similar al que utilizamos para aplicaciones lineales en espacios vectoriales, definiendo el morfismo $\varphi : End_A(M)^{op} \to M_n(A)con$:

$$\varphi(f) = (a_{ij})^t =: \Lambda_f$$

donde a_{ij} viene dado por $f(m_j) = \sum_i a_{ij} m_i$. La inversa sería, dada una matriz, el endomorfismo asociado a su transpuesta (de manera análoga a como se hace para aplicaciones lineales de espacios vectoriales). Para ver que son morfismo de anillos únicamente probaremos que respetan el producto, pues el resto de propiedades son inmediatas. Sean $f, g \in End_A(M)^{op}$,

$$\varphi(f*g) = \varphi(g \circ f) = (\Lambda_g * \Lambda_f)^t = (\Lambda_f)^t * (\Lambda_g)^t = \varphi(f) * \varphi(g).$$

Ejercicio 14. Sea M un módulo sobre una álgebra finito-dimensional A. Demostrar que si M admite bases $\{m_1, \ldots, m_r\}$ y $\{n_1, \ldots, n_t\}$, entonces r = t.

Supongamos $r \neq t$, entonces $M \cong A^r$ y $M \cong A^t \implies A^r \cong A^t$, pero como A es finito-dimensional, sabemos que eso no puede pasar si $r \neq t$.

Ejercicio 15 . Sea θ y T_{θ} : $\mathbb{R}^2 \to \mathbb{R}^2$ el endomorfismo que gira los vectores un ángulo θ en sentido contrario de las agujas del reloj. Consideremos la correspondiente estructura de R[X]-módulo definida por T_{θ} sobre \mathbb{R}^2 . Llamamos a este módulo V_{θ} . Discutir para que valores de θ es V_{θ} simple.

Claramente, si $\theta = k\pi$ para algún $k \in \mathbb{N}$, el submódulo generado por cualquier vector es la recta vetorial con ese vector director, y por tanto V_{θ} no es simple.

Por otro lado, si $\theta \neq k\pi \forall k \in \mathbb{N}$, tomando un vector v cualquiera, y $T_{\theta}(v)$ forman una base de \mathbb{R}^2 , y por tanto cualquier submódulo distinto del vacío es el total y V_{θ} es simple

Ejercicio 20. * Consideramos $T: \mathbb{R}^3 \to \mathbb{R}^3$ una aplicación lineal, y la estructura de $\mathbb{R}[X]$ -módulo correspondiente sobre \mathbb{R}^3 . Discutir los posibles valores de la longitud de \mathbb{R}^3 como $\mathbb{R}[X]$ -módulo, dependiendo de como sea T. Poner un ejemplo de T para que se alcance cada longitud.

Notemos primero que la noción de submódulo equivale a subgrupo cerrado bajo la acción del anillo, y los únicos subgrupos que tenemos son

$$\langle (1,0,0) \rangle \qquad \langle (0,1,0) \rangle \qquad \langle (0,0,1) \rangle$$

$$\langle (1,0,0), (0,1,0) \rangle$$
 $\langle (1,0,0), (0,0,1) \rangle$ $\langle (0,0,1), (0,1,0) \rangle$

Por ello, la mayor cadena de subgrupos maximales que vamos a poder obtener será de longitud 3, por ejemplo,

$$0 \subset \langle (1,0,0) \rangle \subset \langle (1,0,0), (0,1,0) \rangle \subset \mathbb{R}^3$$

que sean submódulos o no dependerá de T. Por ejemplo, si tomamos T=id, entonces estamos ante una serie de composición de \mathbb{R}^3 como $\mathbb{R}[X]$ -módulo.

Pero si tomamos T tal que la imagen de cualquiera de los generadores sea (1,0,0), entonces el único submódulo que tenemos es $\langle (1,0,0) \rangle$, luego tendríamos la serie de composición

$$0 \subset \langle (1,0,0) \rangle \subset \mathbb{R}^3$$

lo que nos daría una longitud de 2.

Por último, si hacemos que T permite los elementos de la base, entonces no habría ningun submódulo propio y tendríamos una longitud de 1.

Ejercicio 27. ** Sea R un álgebra sobre un cuerpo de característica distinta de 2, y $a, b, e \in R$ idempotentes. Demostrar que si e = a + b, entonces ab = ba = 0. Si la característica es 2, encontrar un contraejemplo con $b \neq a$.

Por e, a, b idempotentes, tenemos que

$$a + b = e = e^2 = a^2 + b^2 + ab + ba = a + b + ab + ba \implies ab + ba = 0.$$

Luego

$$ab = -ba. (1)$$

Multiplicando a izquierda y derecha por a, por ser este idempotente tenemos que aba = -aba. Ahora, usando que $char(R) \neq 2$, aba = 0. Por último, sustituyendo ab ó ba respectivamente usando (1), tenemos

$$0 = aba = -baa = -ba \implies ba = 0$$

$$0 = aba = -aab = -ab \implies ab = 0.$$

Veamos ahora el contraejemplo. Sea \mathbb{F}_2 el cuerpo de dos elementos (el más sencillo con característica 2), y $M_2(\mathbb{F}_2)$ la \mathbb{F}_2 -álgebra usual de matrices de orden 2 sobre este cuerpo. Entonces, tomamos

$$a = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, b = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, e = a + b = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}.$$

En efecto, es sencillo comprobar que a, b, y e son idempotentes, y que por $b = I_2$, efectivamente $ab = ba = a \neq 0$