

Tutorial Exercises on BDD

CS 4271 Abhik Roychoudhury National University of Singapore

Abhik Roychoudhury, CS4271 lectures

Ex. I (Simple)

- A) Represent the transition relation of the following Kripke Structure as a boolean formula. The atomic propositions are p,q. You must specify the boolean variables appearing the formula and the meaning of each of these boolean variables.
- B) Then construct the ROBDD specify your variable ordering used.

Abbile Developed by CC4271 Jactures

Ex 2. (more involved)

Consider the boolean function corresponding to the even parity checker circuit. It is a boolean function which takes in n boolean inputs x_1, \dots, x_n . The output is I if there is an even number of inputs with value I. Otherwise the output is I

 Without constructing the BDD representation, argue that the size of the BDD representation of this function is independent of the input variable ordering.

Abhik Roychoudhury, CS4271 lectures

Ex 2. (more involved)

- Construct the reduced ordered BDD representation of the boolean function corresponding to a 3-bit even parity checker.
- What is the total number of nodes for the reduced ordered BDD representation of a n-bit even parity checker for any n? You should give a general formula in terms of n, and not just the number of BDD nodes for n=3,4,...

Abhik Roychoudhury, CS4271 lectures

Ex. 3

- Following is a case-statement lifted from a SMV specification of a mutual-exclusion protocol we worked out earlier.
 - next(turn) := case{
 (schedule = 0 & pc0 = I2) : I;
 (schedule = I & pcI = m2) : 0;
 I : turn;
- Describe the above as a boolean function (what will be the boolean inputs) and then as a ROBDD.

Abhik Roychoudhury, CS4271 lectures

Ex. 4

Suppose we want to construct a Reduced Ordered Binary Decision Diagram (ROBDD) for the following boolean function func which has four input variables x1, x2, x3, x4.

- func(x1, x2, x3, x4) = (x1 \Rightarrow (x2 \Rightarrow x3)) \land (\neg x1 \Rightarrow (x2 \Rightarrow x4))
- Choose a variable ordering which results in as small a ROBDD as possible. Clearly state and justify your choice of variable ordering without actually constructing the ROBDDs for each variable ordering.

Abhik Rovchoudhury, CS4271 lectures