Key Concepts for section IV (Electrokinetics and Forces)

- 1: Debye layer, Zeta potential, Electrokinetics
- 2: Electrophoresis, Electroosmosis
- 3: Dielectrophoresis
- 4: Inter-Debye layer force, Van-Der Waals force
- 5: Coupled systems, Scaling, Dimensionless Numbers

Goals of Part IV:

- (1) Understand electrokinetic phenomena and apply them in (natural or artificial) biosystems
- (2) Understand various driving forces and be able to identify dominating forces in coupled systems

Image removed due to copyright restrictions. Photo of EviDots (TM) vials - 490nm to 680nm.

From www.evidenttech.com (Evident Technology)

The problem of colloid (nanoparticle) stability

Image removed due to copyright restrictions.

Figure 4 in A. Yethiraj and A. van Blaaderen. *Nature* **421**, 513 (2003)

M. M. Baksh, M. Jaros, J. T. Groves, *Nature* **427**, 139 (2004)

Coagulation / Flocculation

Courtesy of J. T. Groves. Used with permission.

Source: Figure 2b in Baksh, M. M., M. Jaros, and J. T. Groves. "Detection of Molecular Interactions at Membrane Surfaces through Colloid Phase Transitions." *Nature* 427 (January 8, 2004): 139-141.

Schulze-Hardy Rule

	•	gulation conce plutions (milli		2 1	
As_2S_3 (-ve sol)		AgI (-ve sol)		Al_2O_3 (+ve sol)	
LiCl	58	LiNO ₃	165	NaCl	43.5
NaCl	51	NaNO ₃	140	KCl	46
KCl	49.5	KNO ₃	136	KNO ₃	60
KNO ₃	50	RbNO ₃	126		
K acetate	110	AgNO ₃	0.01		
CaCl ₂	0.65	Ca(NO ₃) ₂	2.40	K ₂ SO ₄	0.30
MgCl ₂	0.72	Mg(NO ₃) ₂	2.60	K ₂ Cr ₂ O ₇	0.63
MgSO ₄	0.81	Pb(NO ₃) ₂	2.43	K ₂ oxalate	0.69
AlCl ₃	0.093	Al(NO ₃) ₃	0.067	K ₃ [Fe(CN) ₆]	0.08
1/2 Al ₂ (SO ₄) ₃	0.096	La(NO ₃) ₃	0.069		
Al(NO ₃) ₃	0.095	Ce(NO ₃) ₃	0.69		

Figure by MIT OCW.

Source: "Introduction to Colloid and Surface Chemistry" By Duncan J. Shaw (Butterworth Heinemann)

Electrostatic interaction within electrolyte solution

weak or no interaction

significant repulsive interaction (inter-Debye layer repulsion)

Van der Waals Forces (attractive forces) London Dispersion Forces (F. London, 1930)

Non-polar molecules

weak or no interaction

Attractive interaction

Figure by MIT OCW.

Van der Waals Forces (attractive forces) London Dispersion Forces (F. London, 1930)

Non-polar molecules

weak or no interaction

Attractive interaction

Values of Hamaker Constants				
16. 1	A ₁₁ (microscopic)	A_{11} (macroscopic)		
Material	10 ⁻²⁰ J	10 ⁻²⁰ J		
Water	3.3 - 6.4	3.0 - 6.1		
Ionic Crystals	15.8 - 41.8	5.8 - 11.8		
Metals	7.6 - 15.9	22.1		
Silica	50	8.6		
Quartz	11.0 - 18.6	8.0 - 8.8		
Hydrocarbons	4.6 - 10	6.3		
Polystyrene	6.2 - 16.8	5.6 - 6.4		

Figure by MIT OCW.

Source: "Introduction to Colloid and Surface Chemistry" By Duncan J. Shaw (Butterworth Heinemann)

Tokay Gecko (Gekko gecko)

Photo courtesy of 'elbisreverri'. http://www.flickr.com/photos/elbisreverri/53226345/

Photo courtesy of David Clements.