fs-laser-driven dynamics of CO on Ru(0001) a computational study using electronic friction (MDEF) and the generalized Langevin oscillator (GLO)

Robert Scholz

Institut für Chemie Universität Potsdam

30. November 2016

Gliederung

- Introduction
 - Motivation

2 models and methods

General motivation

Why investigate fs-laser-driven surface dynamics?

- gain fundamental understanding of adsorbate bonding
 additional tool besides scattering experiments and STM
- possible direct application in catalysis: "femtochemistry"
 new reaction pathways opened up by fs-lasers

CO/O-coadsorbate @ Ru(0001)

M. Bonn et al., SCIENCE 1999

Specific motivation for the CO/Ru-System

CO/Ru system important for catalysis

e. g. Fischer-Tropsch synthesis

Experimentally well studied system

- especially regarding fs-laser irradiation e.g. Bonn,
 SCIENCE 1999 and Funk J. CHEM. PHYS 2000 (Ertl group chemistry Nobel prize 2007).
- recently, time resolved x-ray spectra (XAS and XES)
 - ⇒ "movie" of changes in orbital DOS

Details of the time-resolved x-ray experiment

What was done?

- pump: vis-fs-laser
- probe: x-ray free electron laser (K edge of O-atom)

What is observed?

- orbital density of states at O
- energies shift towards gas-phase values of CO
- intensities change
 - $2\tilde{\pi}^* \Rightarrow$ increase by $\sim 30\%$
 - $\tilde{d}_{\pi} \Rightarrow$ decrease by $\sim 30\%$
 - participator peak appears

What happens after fs-laser excitation of the metal?

Coupling between three different kinds of degrees of freedom:

- electron gas ($T_{\rm el}$)
- lattice vibrations (T_{ph})
- adsorbate movement (T_{ads})

Two-Temperature Model

$$C_{\rm el} \frac{\partial T_{\rm el}}{\partial t} = \frac{\partial}{\partial z} \kappa \frac{\partial}{\partial z} T_{\rm el} - g(T_{\rm el} - T_{\rm ph}) + S(z, t),$$
$$C_{\rm ph} \frac{\partial T_{\rm ph}}{\partial t} = g(T_{\rm el} - T_{\rm ph}).$$

Non-adiabatic coupling

Langevin Dynamics

$$m_k \frac{d^2\underline{r}_k}{dt^2} = -\underline{\nabla}_k V(\underline{r}_1,\underline{r}_2) - \eta_{\mathrm{el},k}(\underline{r}_k) \frac{d\underline{r}_k}{dt} + \underline{R}_{\mathrm{el},k}(t).$$
 Force due to PES slows movement from e-h pairs

- $R_{el,k}(t)$ = Gaussian white noise, dependent on:
 - $\eta_{\mathrm{el},k}(\underline{r}_k)$
 - and $T_{\rm el}$

Local density friction approx. plus independent atoms

Laser-Driven Diffusion

