Risco de Credito

Carlos E. Carvalho

3/13/2021

Este documento foi criado como exercício no curso Formação Cientista de Dados da DataScience Academy (https://www.datascienceacademy.com.br/bundles?bundle_id=formacao-cientista-de-dados) O objetivo é analisar dados históricos e encontrar um modelo para prever o risco de dar crédito em uma instituição bancária.

Primeiro, carregar os pacotes necessários.

```
## Loading required package: xml2
## Attaching package: 'rvest'
## The following object is masked from 'package:readr':
##
##
      guess_encoding
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
##
      %+%, alpha
## corrplot 0.84 loaded
## -- Attaching packages ------ tidyverse 1.3.0 --
## v tibble 3.0.4
                     v dplyr 1.0.3
           1.1.2
                     v stringr 1.4.0
## v tidyr
           0.3.4
                    v forcats 0.5.0
## v purrr
## -- Conflicts ----- tidyverse_conflicts() --
## x psych::%+%()
                         masks ggplot2::%+%()
## x psych::alpha()
                         masks ggplot2::alpha()
## x dplyr::filter()
                         masks stats::filter()
## x rvest::guess_encoding() masks readr::guess_encoding()
## x dplyr::lag()
                         masks stats::lag()
## x purrr::pluck()
                          masks rvest::pluck()
```

```
##
## Attaching package: 'lattice'
## The following object is masked from 'package:corrgram':
##
##
       panel.fill
## Loading required package: grid
## Registered S3 method overwritten by 'quantmod':
     method
                       from
     as.zoo.data.frame zoo
##
## Attaching package: 'DMwR'
## The following object is masked from 'package:psych':
##
##
       crossValidation
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:dplyr':
##
##
       combine
## The following object is masked from 'package:psych':
##
##
       outlier
## The following object is masked from 'package:ggplot2':
##
##
       margin
##
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
##
       lift
## Attaching package: 'neuralnet'
```

```
## The following object is masked from 'package:ROCR':
##
       prediction
##
## The following object is masked from 'package:dplyr':
##
##
       compute
##
## Attaching package: 'kernlab'
## The following object is masked from 'package:purrr':
##
##
       cross
  The following object is masked from 'package:psych':
##
##
##
       alpha
## The following object is masked from 'package:ggplot2':
##
##
       alpha
Agora, carregar o dataset
```

dataframe1 <- read.csv("credit_dataset.csv")</pre>

Visualizando o dataframe completo. Aparentemente a primeira coluna (credit.rating) é a coluna que indica se o crédito foi concedido ou não:

head(dataframe1)

```
##
     credit.rating account.balance credit.duration.months
## 1
                  1
## 2
                  1
                                    1
                                                             9
                                    2
## 3
                  1
                                                            12
## 4
                  1
                                    1
                                                            12
## 5
                  1
                                    1
                                                            12
## 6
                  1
                                    1
                                                            10
##
     previous.credit.payment.status credit.purpose credit.amount savings
## 1
                                     3
                                                     2
                                                                  1049
                                                                             1
## 2
                                     3
                                                     4
                                                                  2799
                                                                             1
                                     2
## 3
                                                     4
                                                                  841
                                     3
## 4
                                                     4
                                                                  2122
                                                                              1
                                     3
## 5
                                                     4
                                                                  2171
                                                                              1
## 6
##
     employment.duration installment.rate marital.status guarantor
## 1
                         1
                                            4
                                                            1
                         2
                                           2
## 2
                                                            3
                                                                       1
## 3
                         3
                                           2
                                                            1
                                                                       1
                         2
                                            3
                                                            3
## 4
```

```
## 5
                          2
                                              4
                                                                3
                                                                           1
## 6
                                                                3
                                                                           1
                          1
                                              1
     residence.duration current.assets age other.credits apartment.type
##
## 1
                                              21
                         4
                                                                2
## 2
                         2
                                              36
                                                                2
                                                                                 1
## 3
                                              23
                                                                2
                         4
                                           1
                                                                                 1
## 4
                         2
                                                                2
                                           1
                                              39
                                                                                 2
## 5
                         4
                                           2
                                              38
                                                                1
## 6
                         3
                                           1
                                              48
##
     bank.credits occupation dependents telephone foreign.worker
## 1
                               3
                  1
                                            1
                  2
                               3
## 2
                                            2
                                                        1
                                                                         1
                               2
## 3
                  1
                                            1
                                                        1
                                                                         1
                  2
                               2
                                            2
                                                                         2
## 4
                                                        1
## 5
                  2
                               2
                                                                         2
                                            1
                                                        1
## 6
                  2
                               2
                                            2
                                                        1
                                                                         2
```

Dimensões do dataframe

dim(dataframe1)

[1] 1000 21

Verificando o tipo das colunas.

glimpse(dataframe1)

```
## Rows: 1,000
## Columns: 21
## $ credit.rating
                                    <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ account.balance
                                    <int> 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, ...
## $ credit.duration.months
                                    <int> 18, 9, 12, 12, 12, 10, 8, 6, 18, 24,...
## $ previous.credit.payment.status <int> 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, ...
## $ credit.purpose
                                    <int> 2, 4, 4, 4, 4, 4, 4, 4, 3, 3, 4, 1, ...
## $ credit.amount
                                    <int> 1049, 2799, 841, 2122, 2171, 2241, 3...
## $ savings
                                    <int> 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 2, ...
## $ employment.duration
                                    <int> 1, 2, 3, 2, 2, 1, 3, 1, 1, 1, 2, 3, ...
## $ installment.rate
                                    <int> 4, 2, 2, 3, 4, 1, 1, 2, 4, 1, 2, 1, ...
## $ marital.status
                                    <int> 1, 3, 1, 3, 3, 3, 3, 1, 1, 3, 4, ...
## $ guarantor
                                    <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ residence.duration
                                    <int> 4, 2, 4, 2, 4, 3, 4, 4, 4, 4, 2, 4, ...
## $ current.assets
                                    <int> 2, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 3, ...
## $ age
                                    <int> 21, 36, 23, 39, 38, 48, 39, 40, 65, ...
                                    <int> 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, ...
## $ other.credits
## $ apartment.type
                                    <int> 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, ...
                                    <int> 1, 2, 1, 2, 2, 2, 2, 1, 2, 1, 2, 2, ...
## $ bank.credits
## $ occupation
                                    <int> 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 3, 3, ...
## $ dependents
                                    <int> 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, ...
## $ telephone
                                    <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
## $ foreign.worker
                                    <int> 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, ...
```

Aparentemente todas as colunas foram consideradas numéricas.

Criando funções para converter variáveis categóricas para tipo fator.

```
to.factors <- function(df, variables){
  for (variable in variables){
    df[[variable]] <- as.factor(df[[variable]])
  }
  return(df)
}</pre>
```

Como as variáveis numéricas estão em escalas diferentes, deve-se fazer uma escala e normalização

```
scale.features <- function(df, variables){
  for (variable in variables){
    df[[variable]] <- scale(df[[variable]], center=T, scale=T)
  }
  return(df)
}</pre>
```

Normalizando as variáveis

```
numeric.vars <- c("credit.duration.months", "age", "credit.amount")
dataframe2 <- scale.features(dataframe1, numeric.vars)</pre>
```

Variáveis categóricas que serão transformadas para fator

```
credit.rating account.balance credit.duration.months
## 1
                                                -0.2407368
                 1
                                  1
## 2
                                  1
                                                -0.9870788
                 1
                                  2
## 3
                                                -0.7382981
                 1
                                  1
                                                -0.7382981
                 1
                                                -0.7382981
## 5
                                  1
## 6
                 1
                                  1
                                                -0.9041519
    previous.credit.payment.status credit.purpose credit.amount savings
## 1
                                   3
                                                  2
                                                       -0.7872630
                                                                         1
## 2
                                                       -0.1673006
                                   3
                                                  4
## 3
                                   2
                                                  4
                                                       -0.8609500
                                                                         2
                                   3
## 4
                                                  4
                                                       -0.4071375
## 5
                                   3
                                                  4
                                                       -0.3897785
                                                                         1
## 6
                                   3
                                                        -0.3649800
##
     employment.duration installment.rate marital.status guarantor
## 1
                       1
                       2
                                         2
## 2
                                                        3
                                                                   1
## 3
                       3
                                         2
                                                         1
                       2
## 4
                                         3
                                                        3
                                                                   1
                       2
                                         4
                                                        3
## 5
                                                         3
## 6
                       1
                                         1
```

```
residence.duration current.assets
                                                age other.credits apartment.type
                                      2 -1.28093214
## 1
                      4
                                                                 2
## 2
                                      1 0.04034293
                                                                 2
                                                                                 1
## 3
                      4
                                                                 2
                                                                                 1
                                      1 -1.10476213
                      2
                                                                 2
## 4
                                         0.30459795
                                                                                 1
## 5
                                      2 0.21651294
                                                                 1
                                                                                 2
                      3
                                      1 1.09736299
##
     bank.credits occupation dependents telephone foreign.worker
## 1
                1
                            3
                                       1
## 2
                2
                            3
                                       2
                                                  1
                                                                 1
## 3
                1
                            2
                                       1
                                                  1
                                                                 1
                2
                            2
                                       2
                                                  1
                                                                 2
## 4
                2
                            2
                                                  1
                                                                 2
## 5
                                       1
                                       2
## 6
                2
                            2
                                                  1
                                                                 2
```

Criando um dataframe apenas com as colunas numéricas do dataset original:

```
dataframe3 <- dataframe1[,c(3,6,14)]
head(dataframe3)</pre>
```

```
credit.duration.months credit.amount age
## 1
                          18
                                       1049
                                             21
## 2
                           9
                                       2799
## 3
                          12
                                             23
                                        841
## 4
                          12
                                       2122
                                             39
## 5
                          12
                                       2171
                                             38
## 6
                          10
                                       2241
```

Observando algumas medidas de tendência central das variáveis numéricas:

summary(dataframe3)

```
credit.duration.months credit.amount
                                             age
## Min. : 4.0
                         Min. : 250
                                              :19.00
## 1st Qu.:12.0
                         1st Qu.: 1366
                                        1st Qu.:27.00
## Median :18.0
                         Median: 2320
                                        Median :33.00
                                              :35.54
## Mean
         :20.9
                         Mean : 3271
                                        Mean
## 3rd Qu.:24.0
                         3rd Qu.: 3972
                                        3rd Qu.:42.00
                                        Max.
## Max.
          :72.0
                         Max.
                                :18424
                                               :75.00
```

Observando a correlação entre as colunas numéricas:

```
cols <- c("credit.duration.months", "credit.amount", "age")</pre>
```

Vetor com os métodos de correlação:

```
metodos <- c("pearson", "spearman")

cors <- lapply(metodos, function(method)
  (cor(dataframe2[,cols], method = method)))</pre>
```

Plot de Correlação Usando Método pearson

Mapa de correlação:

Plot de Correlação Usando Método spearman


```
## [[1]]
## NULL
##
## [[2]]
## NULL
```

Aparentemente existe uma forte correlação entre as variáveis credit.
amount e credit.duration.months. Verificando a quantidade de crédito bom e ruim

```
table(dataframe2$credit.rating)
```

É possível verificar que existem muito mais casos com crédito bom (1) do que com crédito ruim (0). Então é necessário balancear para que haja quantidades parecidas e o modelo não fique tendencioso.

Passando a coluna alvo para a última posição do dataframe:

```
dataframe4 <- dataframe2$credit.rating
dataframe2$credit.rating <- NULL
dataframe2 <- cbind(dataframe2, dataframe4)
dataframe2 <- dataframe2 %>%
    rename(
```

```
credit.rating = dataframe4
)
```

Fazendo o balanceamento:

```
dataframe2 <- SMOTE(credit.rating ~ ., data = dataframe2, perc.over = 100)</pre>
```

Agora vamos ver como ficou a proporção:

```
table(dataframe2$credit.rating)
```

Agora o dataset tem a mesma quantidade de observações com crédito bom e ruim.

Criando gráfico de barras para observar as variáveis:

[[1]]

Total de Crédito Bom/Ruim por account.balance


```
## [[2]]
## NULL
##
## [[3]]
```

Total de Crédito Bom/Ruim por previous.credit.payment.status

[[4]]

[[5]]
NULL
##
[[6]]

[[7]]

Total de Crédito Bom/Ruim por employment.duration

[[8]]

Total de Crédito Bom/Ruim por installment.rate

[[9]]

Total de Crédito Bom/Ruim por marital.status

[[10]]

Total de Crédito Bom/Ruim por guarantor

[[11]]

Total de Crédito Bom/Ruim por residence.duration

[[12]]

[[13]]
NULL
##
[[14]]

Total de Crédito Bom/Ruim por other.credits

[[15]]

Total de Crédito Bom/Ruim por apartment.type

[[16]]

Total de Crédito Bom/Ruim por bank.credits

[[17]]

Total de Crédito Bom/Ruim por occupation

[[18]]

Total de Crédito Bom/Ruim por dependents

[[19]]

Total de Crédito Bom/Ruim por telephone

[[20]]

Verificando a importância de cada variável para os modelos. Criando uma função para seleção de variáveis:

Executando a função para poder escolher as variáveis mais importantes para o modelo:

Visualizando os resultados

```
rfe.results
```

```
##
## Recursive feature selection
##
```

```
## Outer resampling method: Cross-Validated (20 fold)
##
## Resampling performance over subset size:
##
##
   Variables Accuracy Kappa AccuracySD KappaSD Selected
##
               0.6650 0.3300
                                0.07028 0.14055
           1
              0.6675 0.3350
                                0.06409 0.12818
##
           3
              0.7225 0.4450
                                0.05442 0.10883
##
                                0.04426 0.08852
##
           4
              0.7667 0.5333
           5
##
              0.7992 0.5983
                                0.05115 0.10230
##
              0.8192 0.6383
                                0.04402 0.08804
           7
##
              0.8333 0.6667
                                0.05187 0.10373
##
           8
              0.8283 0.6567
                                0.04959 0.09918
                                0.05256 0.10512
           9
              0.8325 0.6650
##
##
          10
              0.8342 0.6683
                                0.05115 0.10230
##
          20
              0.8425 0.6850
                                0.04475 0.08949
##
## The top 5 variables (out of 20):
     account.balance, credit.duration.months, previous.credit.payment.status, credit.amount, savings
##
varImp((rfe.results))
##
                                   Overall
## account.balance
                                 40.267095
## credit.duration.months
                                 33.209097
## previous.credit.payment.status 26.309938
## credit.amount
                                 24.790839
## savings
                                 23.728994
## age
                                 23.454627
## employment.duration
                                 20.338702
```

Utilização do modelo random forest para criação de um plot de importância das variáveis preditoras

18.672133

17.597194

16.819531

15.163763

13.750345

13.611361

12.814906

12.028133

10.551408

10.193481

9.313668

9.286134

5.531636

current.assets

credit.purpose

apartment.type

marital.status

other.credits

occupation

telephone

guarantor

dependents

bank.credits

foreign.worker

installment.rate

residence.duration

modelo

A princípio será montado um modelo com todas as variáveis e outro apenas com as 6 variáveis mais importantes indicadas pelo random forest. Isso será feito para comparação entre os modelos e como forma de validação para a retirada de algumas variáveis.

Para iniciar a construção do modelo é necessário dividir os dados em treino e teste, de forma aleatória. Essa divisão será 70% do dataset para dados de treino e 30% para dados de teste.

```
amostra <- sample.split(dataframe2$credit.rating, SplitRatio = 0.70)

# Criando dados de treino - 70% dos dados
treino = subset(dataframe2, amostra == TRUE)

# Criando dados de teste - 30% dos dados
teste = subset(dataframe2, amostra == FALSE)</pre>
```

Os modelos estudados serão: - Regressão Logística; - Random Forest; - Support Vector Machine; - Naive Bayes

Construindo um modelo de regressão logística com todas as variáveis:

```
formula.init <- "credit.rating ~ ."
formula.init <- as.formula(formula.init)
modelo_RL_1 <- glm(formula = formula.init, data = treino, family = "binomial")</pre>
```

Visualizando o modelo:

summary(modelo_RL_1)

```
##
## Call:
  glm(formula = formula.init, family = "binomial", data = treino)
##
## Deviance Residuals:
##
                         Median
                                       3Q
       Min
                   10
                                                Max
  -2.27847 -0.85532
                        0.07559
                                  0.84219
                                            2.56427
##
## Coefficients:
##
                                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                    0.031582
                                               0.797138
                                                        0.040 0.968397
## account.balance2
                                    0.390547
                                               0.219089
                                                          1.783 0.074653 .
## account.balance3
                                    1.554545
                                               0.219989
                                                          7.066 1.59e-12 ***
## credit.duration.months
                                   -0.426891
                                               0.124205 -3.437 0.000588 ***
## previous.credit.payment.status2 1.054649
                                               0.286334
                                                          3.683 0.000230 ***
## previous.credit.payment.status3 1.361920
                                               0.300223
                                                          4.536 5.72e-06 ***
## credit.purpose2
                                   -1.076818
                                              0.387015 -2.782 0.005396 **
## credit.purpose3
                                   -1.098674
                                               0.362181 -3.033 0.002417 **
## credit.purpose4
                                   -1.454038
                                               0.352407 -4.126 3.69e-05 ***
## credit.amount
                                   -0.270174
                                               0.135526 -1.994 0.046205 *
## savings2
                                    0.115384
                                               0.277771
                                                          0.415 0.677854
## savings3
                                    0.519036
                                               0.302890
                                                          1.714 0.086600 .
## savings4
                                    0.820537
                                               0.248561
                                                          3.301 0.000963 ***
## employment.duration2
                                                          2.108 0.035043 *
                                    0.512413
                                               0.243096
## employment.duration3
                                   0.894564
                                               0.296001
                                                          3.022 0.002510 **
## employment.duration4
                                   0.475976
                                               0.271068
                                                          1.756 0.079100 .
## installment.rate2
                                  -0.530066
                                               0.310142 -1.709 0.087431 .
## installment.rate3
                                  -0.394401
                                               0.343137 -1.149 0.250392
## installment.rate4
                                  -0.566309
                                               0.292782 -1.934 0.053084 .
## marital.status3
                                   0.271426
                                               0.190212
                                                          1.427 0.153590
## marital.status4
                                    0.428126
                                               0.337477
                                                          1.269 0.204581
## guarantor2
                                    0.483938
                                               0.270624
                                                         1.788 0.073739 .
## residence.duration2
                                               0.304385 -1.622 0.104854
                                  -0.493641
## residence.duration3
                                   -0.123171
                                               0.334694 -0.368 0.712865
## residence.duration4
                                   0.007963
                                               0.296743
                                                          0.027 0.978590
## current.assets2
                                   -0.537425
                                               0.246927 -2.176 0.029521 *
## current.assets3
                                   -0.126031
                                               0.230688 -0.546 0.584841
                                   -0.643056
                                               0.328005 -1.961 0.049937 *
## current.assets4
## age
                                    0.086944
                                               0.103514
                                                          0.840 0.400951
                                               0.202172
## other.credits2
                                                          1.317 0.187901
                                    0.266223
## apartment.type2
                                   0.622655
                                               0.219922
                                                          2.831 0.004637 **
## apartment.type3
                                   0.055270
                                               0.378264
                                                          0.146 0.883830
## bank.credits2
                                   -0.124596
                                               0.201039 -0.620 0.535416
## occupation2
                                  -1.220482
                                               0.574869 -2.123 0.033749 *
## occupation3
                                   -1.109486
                                               0.555737 -1.996 0.045888 *
## occupation4
                                   -1.213383
                                               0.581942 -2.085 0.037064 *
## dependents2
                                   -0.546920
                                               0.233404 -2.343 0.019118 *
## telephone2
                                    0.106976
                                               0.189962
                                                          0.563 0.573336
## foreign.worker2
                                    0.616293
                                               0.487069
                                                          1.265 0.205761
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

```
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 1164.49 on 839 degrees of freedom
## Residual deviance: 872.31 on 801 degrees of freedom
## AIC: 950.31
## Number of Fisher Scoring iterations: 4
Testando o modelo nos dados de teste
prevendo_RL_1 <- predict(modelo_RL_1, teste, type="response")</pre>
prevendo_RL_1 <- round(prevendo_RL_1)</pre>
test.feature.vars <- teste[,-21]
test.class.var <- teste[,21]</pre>
Criando uma confusion matrix para avaliar os resultados dos testes:
CF_1 <- confusionMatrix(table(data = prevendo_RL_1, reference = test.class.var), positive = '1')</pre>
CF_1$table
##
       reference
## data
         0
              1
##
      0 130 42
##
      1 50 138
Acurácia do modelo de regressão logística com todas as variáveis do dataset:
CF_1$overall["Accuracy"]
## Accuracy
## 0.744444
Visualizando os valores previstos e observados
resultados_RL_1 <- cbind(prevendo_RL_1, teste$credit.rating)</pre>
```

```
resultados_RL_1 <- cbind(prevendo_RL_1, teste$credit.rating)
colnames(resultados_RL_1) <- c('Previsto','Real')
resultados_RL_1 <- as.data.frame(resultados_RL_1)
head(resultados_RL_1)</pre>
```

```
Previsto Real
##
## 639
               0
                     2
## 106
               1
## 309
               0
                     2
                    2
## 31
               1
                     2
## 140
               1
                     2
## 74
               1
```

Feature selection - Observando o gráfico com as variáveis mais importantes para os modelos.

```
formula <- "credit.rating ~ ."</pre>
formula <- as.formula(formula)</pre>
control <- trainControl(method = "repeatedcv", number = 10, repeats = 2)</pre>
model <- train(formula, data = treino, method = "glm", trControl = control)</pre>
print(model)
## Generalized Linear Model
##
## 840 samples
## 20 predictor
    2 classes: '0', '1'
##
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 2 times)
## Summary of sample sizes: 756, 756, 756, 756, 756, 756, ...
## Resampling results:
##
##
     Accuracy
                Kappa
     0.7053571 0.4107143
importance <- varImp(model, scale = FALSE)</pre>
importance
## glm variable importance
##
##
     only 20 most important variables shown (out of 38)
##
##
                                    Overall
## account.balance3
                                      7.066
## previous.credit.payment.status3
                                      4.536
## credit.purpose4
                                      4.126
## previous.credit.payment.status2
                                      3.683
## credit.duration.months
                                      3.437
                                      3.301
## savings4
## credit.purpose3
                                      3.033
## employment.duration3
                                      3.022
## apartment.type2
                                      2.831
## credit.purpose2
                                      2.782
## dependents2
                                      2.343
## current.assets2
                                      2.176
## occupation2
                                      2.123
## employment.duration2
                                      2.108
## occupation4
                                      2.085
## occupation3
                                      1.996
## credit.amount
                                      1.994
## current.assets4
                                      1.961
## installment.rate4
                                      1.934
## guarantor2
                                      1.788
plot(importance)
```


Pode se ver que as 6 varáveis mais importantes são: - account.balance - credit.purpose - credit.amount - previous.credit.payment.status - savings - current.assets

Construindo o modelo com as variáveis selecionadas

```
formula.new <- "credit.rating ~ account.balance + credit.purpose + previous.credit.payment.status + sav
formula.new <- as.formula(formula.new)
modelo_RL_2 <- glm(formula = formula.new, data = treino, family = "binomial")</pre>
```

Visualizando o modelo

```
summary(modelo_RL_2)
```

```
##
## Call:
## glm(formula = formula.new, family = "binomial", data = treino)
##
## Deviance Residuals:
##
        Min
                   10
                         Median
                                       3Q
                                                Max
  -2.15422 -0.93900
                        0.08157
                                  0.93194
                                            2.54622
##
## Coefficients:
                                   Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                                   -0.52821
                                               0.40922 -1.291 0.196790
## account.balance2
                                                        1.932 0.053358 .
                                    0.39401
                                               0.20394
## account.balance3
                                    1.46236
                                               0.20181 7.246 4.29e-13 ***
```

```
## credit.purpose2
                                  -1.03849
                                              0.35941 -2.889 0.003860 **
## credit.purpose3
                                              0.34096 -3.183 0.001458 **
                                  -1.08525
                                              0.33023 -4.133 3.58e-05 ***
## credit.purpose4
                                  -1.36478
## previous.credit.payment.status2 1.17777
                                              0.26234 4.489 7.14e-06 ***
## previous.credit.payment.status3 1.42688
                                              0.27072 5.271 1.36e-07 ***
## savings2
                                   0.09638
                                              0.25652 0.376 0.707119
## savings3
                                              0.28277 1.820 0.068807 .
                                   0.51455
                                              0.22713 3.755 0.000173 ***
## savings4
                                   0.85283
## current.assets2
                                  -0.52797
                                              0.22962 -2.299 0.021485 *
## current.assets3
                                  -0.20098
                                              0.21009 -0.957 0.338745
                                  -0.97271
## current.assets4
                                              0.26357 -3.690 0.000224 ***
## credit.amount
                                  -0.50215
                                              0.10253 -4.898 9.69e-07 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 1164.49
                              on 839
                                      degrees of freedom
## Residual deviance: 940.63 on 825 degrees of freedom
## AIC: 970.63
##
## Number of Fisher Scoring iterations: 4
Testando o modelo nos dados de teste
prevendo_RL_2 <- predict(modelo_RL_2, teste, type = "response")</pre>
prevendo_RL_2 <- round(prevendo_RL_2)</pre>
Avaliando o modelo
CF_2 <- confusionMatrix(table(data = prevendo_RL_2, reference = test.class.var), positive = '1')
CF 2$table
##
      reference
## data
         0
             1
##
      0 120 48
##
      1 60 132
```

Acurácia do modelo de regressão logística com as 6 variáveis mais importantes, indicadas pelo modelo random forest:

```
CF_2$overall["Accuracy"]

## Accuracy
## 0.7

Criação de um vetor para salvar a acurácia de todos os modelos estudados

accuracyVector <- c(CF_1$overall["Accuracy"], CF_2$overall["Accuracy"])</pre>
```

Criação do modelo Random Forest com todas as variáveis:

```
modelo_RF_1 <- randomForest(credit.rating ~ .,</pre>
                       data = treino,
                       ntree = 100,
                       nodesize = 10)
print(modelo_RF_1)
##
## Call:
##
    randomForest(formula = credit.rating ~ ., data = treino, ntree = 100,
                                                                               nodesize = 10)
##
                  Type of random forest: classification
##
                        Number of trees: 100
## No. of variables tried at each split: 4
##
##
           OOB estimate of error rate: 22.02%
## Confusion matrix:
##
           1 class.error
## 0 334 86
               0.2047619
## 1 99 321
               0.2357143
```

Visualizando o comportamento do erro do modelo:

```
plot(modelo_RF_1)
```

modelo_RF_1

Fazendo as previsões com o modelo random forest:

```
prevendo_RF_1 <- predict(modelo_RF_1, newdata = teste)</pre>
head(prevendo_RF_1)
## 639 106 309 31 140 74
   1 1
## Levels: 0 1
Visualizando os valores previstos e observados:
resultados_RF_1 <- cbind(prevendo_RF_1, teste$credit.rating)</pre>
colnames(resultados_RF_1) <- c('Previsto', 'Real')</pre>
resultados_RF_1 <- as.data.frame(resultados_RF_1)</pre>
head(resultados_RF_1)
##
       Previsto Real
## 639
               2
## 106
               2
                    2
## 309
                    2
               1
               2
                    2
## 31
               2
                    2
## 140
               2
                    2
## 74
Gerando a confusion matrix do modelo random forest com todas as variáveis:
resultados_RF_1$Previsto <- factor(resultados_RF_1$Previsto)</pre>
resultados_RF_1$Real <- factor(resultados_RF_1$Real)</pre>
CF_3 <- confusionMatrix(resultados_RF_1$Real, resultados_RF_1$Previsto)
CF_3$table
             Reference
##
## Prediction 1
##
             1 146 34
             2 35 145
##
Acurácia do modelo random forest com todas as variáveis:
CF_3$overall["Accuracy"]
## Accuracy
## 0.8083333
```

Criação do modelo Random Forest com seis variáveis:

accuracyVector <- c(accuracyVector,CF_3\$overall["Accuracy"])</pre>

Salvando a acurácia no vetor:

```
##
## randomForest(formula = credit.rating ~ account.balance + previous.credit.payment.status +
##
                 Type of random forest: classification
                       Number of trees: 100
##
## No. of variables tried at each split: 2
##
##
          OOB estimate of error rate: 25%
## Confusion matrix:
##
      0
         1 class.error
## 0 313 107 0.2547619
## 1 103 317 0.2452381
```

cred

Visualizando o comportamento do erro do modelo:

```
plot(modelo_RF_2)
```

modelo_RF_2

Fazendo as previsões:

```
prevendo_RF_2 <- predict(modelo_RF_2, newdata = teste)
head(prevendo_RF_2)

## 639 106 309 31 140 74

## 1 1 0 1 1 1

## Levels: 0 1</pre>
```

Visualizando os valores previstos e observados:

```
resultados_RF_2 <- cbind(prevendo_RF_2, teste$credit.rating)
colnames(resultados_RF_2) <- c('Previsto', 'Real')
resultados_RF_2 <- as.data.frame(resultados_RF_2)
head(resultados_RF_2)</pre>
```

```
##
       Previsto Real
                     2
## 639
               2
                     2
## 106
## 309
               1
                    2
               2
                     2
## 31
                    2
## 140
               2
## 74
```

Gerando a confusion matrix do modelo random forest com 6 variáveis:

```
resultados_RF_2$Previsto <- factor(resultados_RF_2$Previsto)</pre>
resultados_RF_2$Real <- factor(resultados_RF_2$Real)</pre>
CF_4 <- confusionMatrix(resultados_RF_2$Real, resultados_RF_2$Previsto)
CF_4$table
##
             Reference
## Prediction 1 2
##
            1 132 48
##
            2 39 141
Acurácia do modelo:
CF_4$overall["Accuracy"]
## Accuracy
## 0.7583333
Salvando a acurácia no vetor:
accuracyVector <- c(accuracyVector,CF_4$overall["Accuracy"])</pre>
Modelo Naive Bayes com todas as variáveis:
modelo_NB_1 <- naiveBayes(credit.rating ~ .,treino)</pre>
print(modelo_NB_1)
##
## Naive Bayes Classifier for Discrete Predictors
##
## naiveBayes.default(x = X, y = Y, laplace = laplace)
## A-priori probabilities:
## Y
##
     0
## 0.5 0.5
##
## Conditional probabilities:
      account.balance
##
## Y
               1
                          2
                                    3
     0 0.3880952 0.3904762 0.2214286
##
     1 0.1904762 0.2595238 0.5500000
##
##
      credit.duration.months
##
## Y
             [,1]
                        [,2]
     0 0.3003034 1.0238460
##
##
     1 -0.2213872 0.8429229
##
      previous.credit.payment.status
## Y
                                       3
                1
```

```
0 0.23333333 0.48809524 0.27857143
##
##
    1 0.06428571 0.50714286 0.42857143
##
##
     credit.purpose
## Y
                         2
##
    0 0.06428571 0.16428571 0.30000000 0.47142857
    1 0.10476190 0.17857143 0.37619048 0.34047619
##
     credit.amount
##
## Y
     [,1]
                      [,2]
    0 0.2608186 1.1452485
    1 -0.1757464 0.7692527
##
##
##
     savings
## Y
                     2
                              3
               1
##
    0 0.67619048 0.13571429 0.06904762 0.11904762
##
    1 0.54047619 0.10952381 0.13571429 0.21428571
##
##
     employment.duration
## Y
     1 2
##
    0 0.2952381 0.3380952 0.1285714 0.2380952
##
    1 0.1761905 0.3452381 0.1833333 0.2952381
##
##
     installment.rate
## Y
       1
                       2
    0 0.1047619 0.2428571 0.1428571 0.5095238
##
    1 0.1380952 0.2095238 0.1666667 0.4857143
##
##
     marital.status
## Y
     1
                         3
    0 0.39761905 0.54285714 0.05952381
##
##
    1 0.32380952 0.56428571 0.11190476
##
##
     guarantor
      1
## Y
    0 0.8928571 0.1071429
##
##
    1 0.8785714 0.1214286
##
##
     residence.duration
## Y
             1
                       2
                                 3
    0 0.1166667 0.3071429 0.1547619 0.4214286
    1 0.1166667 0.2976190 0.1547619 0.4309524
##
##
##
     current.assets
## Y
                       2
             1
    0 0.1904762 0.2452381 0.3071429 0.2571429
##
    1 0.3190476 0.2119048 0.3500000 0.1190476
##
##
##
     age
             [,1] [,2]
## Y
    0 -0.06629672 0.900965
##
    1 0.04768335 1.033655
##
##
##
   other.credits
```

```
## Y
                1
##
     0 0.3142857 0.6857143
##
     1 0.1809524 0.8190476
##
##
      apartment.type
## Y
                             2
                                        3
                1
##
     0 0.24285714 0.58333333 0.17380952
     1 0.19047619 0.72857143 0.08095238
##
##
##
      bank.credits
## Y
               1
     0 0.6309524 0.3690476
##
     1 0.6047619 0.3952381
##
##
##
      occupation
## Y
                                        3
##
     0 0.02142857 0.21666667 0.56190476 0.20000000
     1 0.03095238 0.20000000 0.64285714 0.12619048
##
##
##
      dependents
## Y
                1
##
     0 0.7809524 0.2190476
     1 0.8500000 0.1500000
##
##
##
      telephone
## Y
##
     0 0.5714286 0.4285714
##
     1 0.5833333 0.4166667
##
##
      foreign.worker
                             2
## Y
     0 0.97619048 0.02380952
##
     1 0.95238095 0.04761905
prevendo_NB_1 <- predict(modelo_NB_1, teste[,-21])</pre>
head(prevendo_NB_1)
## [1] 1 1 0 1 1 1
## Levels: 0 1
table(prevendo_NB_1, true = teste$credit.rating)
##
                 true
## prevendo_NB_1
                    0
##
                0 115
                       39
##
                1 65 141
Visualizando os valores previstos e observados
resultados_NB_1 <- cbind(prevendo_NB_1, teste$credit.rating)</pre>
colnames(resultados NB 1) <- c('Previsto', 'Real')</pre>
resultados_NB_1 <- as.data.frame(resultados_NB_1)</pre>
head(resultados NB 1)
```

```
##
    Previsto Real
## 1
         2
## 2
         2
## 3
         1 2
            2
## 4
          2
## 5
          2
              2
## 6
              2
```

Gerando a confusion matrix:

```
resultados_NB_1$Previsto <- factor(resultados_NB_1$Previsto)
resultados_NB_1$Real <- factor(resultados_NB_1$Real)

CF_5 <- confusionMatrix(resultados_NB_1$Real, resultados_NB_1$Previsto)

CF_5$table
```

```
## Reference
## Prediction 1 2
## 1 115 65
## 2 39 141
```

Acurácia do modelo Naive Bayes com todas as variáveis do dataset:

```
CF_5$overall["Accuracy"]
```

```
## Accuracy ## 0.7111111
```

Salvando no vetor de acurácia:

```
accuracyVector <- c(accuracyVector, CF_5$overall["Accuracy"])
```

Modelo Naive Bayes com 6 variáveis:

```
##
## Naive Bayes Classifier for Discrete Predictors
##
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
##
## A-priori probabilities:
## Y
```

```
##
   0
## 0.5 0.5
##
## Conditional probabilities:
##
      account.balance
## Y
                          2
                                     3
               1
     0 0.3880952 0.3904762 0.2214286
     1 0.1904762 0.2595238 0.5500000
##
##
##
      previous.credit.payment.status
## Y
                1
                            2
     0 0.23333333 0.48809524 0.27857143
##
     1 0.06428571 0.50714286 0.42857143
##
##
##
      credit.duration.months
## Y
              [,1]
                        [,2]
##
     0 0.3003034 1.0238460
     1 -0.2213872 0.8429229
##
##
##
      credit.amount
## Y
              [,1]
                        [,2]
##
     0 0.2608186 1.1452485
     1 -0.1757464 0.7692527
##
##
##
      current.assets
## Y
               1
                          2
##
     0 0.1904762 0.2452381 0.3071429 0.2571429
##
     1 0.3190476 0.2119048 0.3500000 0.1190476
##
##
      savings
## Y
                            2
                                        3
     0 0.67619048 0.13571429 0.06904762 0.11904762
##
     1 0.54047619 0.10952381 0.13571429 0.21428571
prevendo_NB_2 <- predict(modelo_NB_2, teste[,-21])</pre>
head(prevendo_NB_2)
## [1] 0 1 0 1 1 1
## Levels: 0 1
table(prevendo_NB_2, true = teste$credit.rating)
##
                 true
## prevendo_NB_2
                    0
##
                0 102 36
##
                1 78 144
Visualizando os valores previstos e observados
resultados_NB_2 <- cbind(prevendo_NB_2, teste$credit.rating)</pre>
colnames(resultados_NB_2) <- c('Previsto', 'Real')</pre>
resultados_NB_2 <- as.data.frame(resultados_NB_2)</pre>
head(resultados NB 2)
```

```
##
     Previsto Real
## 1
            1
## 2
            2
                  2
## 3
                 2
            1
                  2
## 4
            2
## 5
            2
                  2
## 6
                  2
```

Geraando confusion matrix:

```
resultados_NB_2$Previsto <- factor(resultados_NB_2$Previsto)
resultados_NB_2$Real <- factor(resultados_NB_2$Real)</pre>
CF_6 <- confusionMatrix(resultados_NB_2$Real, resultados_NB_2$Previsto)
CF_6$table
##
             Reference
## Prediction
               1 2
            1 102 78
            2 36 144
##
Acurácia do modelo Naive Bayes com 6 variáveis:
CF_6$overall["Accuracy"]
## Accuracy
## 0.6833333
accuracyVector <- c(accuracyVector, CF_6$overall["Accuracy"])</pre>
Modelo Support Vector Machine com todas as variáveis-SVM
modelo_SVM_1 <- ksvm(credit.rating ~ .,data = treino, kernel="vanilladot" )</pre>
## Setting default kernel parameters
Fazendo previsões com os dados de teste:
prevendo_SVM_1 <- predict(modelo_SVM_1, teste)</pre>
head(prevendo_SVM_1)
## [1] 0 1 0 1 1 1
## Levels: 0 1
Visualizando os valores previstos e observados
```

resultados_SVM_1 <- cbind(prevendo_SVM_1, teste\$credit.rating)</pre>

colnames(resultados_SVM_1) <- c('Previsto','Real')
resultados_SVM_1 <- as.data.frame(resultados_SVM_1)</pre>

head(resultados_SVM_1)

```
##
    Previsto Real
## 1
           1
## 2
           2
## 3
           1
                2
                 2
## 4
           2
## 5
           2
                 2
## 6
```

Gerando a confusion matrix para o modelo support vector machine:

```
resultados_SVM_1$Previsto <- factor(resultados_SVM_1$Previsto)
resultados_SVM_1$Real <- factor(resultados_SVM_1$Real)
CF_7 <- confusionMatrix(resultados_SVM_1$Real, resultados_SVM_1$Previsto)
CF_7$table</pre>
```

```
## Reference
## Prediction 1 2
## 1 135 45
## 2 43 137
```

Acurácia do modelo SVM com todas as variáveis:

```
CF_7$overall["Accuracy"]
```

```
## Accuracy
## 0.755556
```

Salvando a acurácia no vetor:

```
accuracyVector <- c(accuracyVector, CF_7$overall["Accuracy"])
```

Modelo Suport Vector Machine com 6 variáveis- SVM:

Setting default kernel parameters

Fazendo previsões com os dados de teste:

```
prevendo_SVM_2 <- predict(modelo_SVM_2, teste)
head(prevendo_SVM_2)</pre>
```

```
## [1] 0 1 0 1 1 1
## Levels: 0 1
```

Visualizando os valores previstos e observados:

```
resultados_SVM_2 <- cbind(prevendo_SVM_2, teste$credit.rating)</pre>
colnames(resultados_SVM_2) <- c('Previsto','Real')</pre>
resultados_SVM_2 <- as.data.frame(resultados_SVM_2)</pre>
head(resultados_SVM_2)
##
     Previsto Real
## 1
           1
## 2
            2
                 2
## 3
            1
## 4
            2
                2
            2
                 2
## 5
## 6
            2
                 2
Gerando a confusion matrix:
resultados_SVM_2$Previsto <- factor(resultados_SVM_2$Previsto)</pre>
resultados_SVM_2$Real <- factor(resultados_SVM_2$Real)</pre>
CF_8 <- confusionMatrix(resultados_SVM_2$Real, resultados_SVM_2$Previsto)
CF_8$table
##
             Reference
## Prediction 1 2
            1 132 48
##
            2 51 129
Acurácia do modelo SVM com 6 variáveis:
CF_8$overall["Accuracy"]
## Accuracy
      0.725
##
Salvando no vetor de acurácias:
accuracyVector <- c(accuracyVector, CF_8$overall["Accuracy"])</pre>
Criando um dataframe com todas as acurácias conseguidas nos 6 modelos testados.
Modelos <- c("Regressao Logistica Todas", "Regressao Logistica 6", "RandomForest Todas", "RandomForest 6
             "Naive Bayes 6", "SVM Todas", "SVM 6")
accuracyDataFrame <- data.frame(Modelos, accuracyVector)</pre>
colnames(accuracyDataFrame) <- c("Modelos", "Acurácia")</pre>
head(accuracyDataFrame)
                        Modelos Acurácia
##
## 1 Regressao Logistica Todas 0.7444444
## 2
         Regressao Logistica 6 0.7000000
## 3
            RandomForest Todas 0.8083333
                RandomForest 6 0.7583333
## 4
## 5
            Naive Bayes Todas 0.7111111
                 Naive Bayes 6 0.6833333
## 6
```

Pode se ver que o modelo que alcançou a maior acurácia foi o random forest com todas as variáveis. O próximo passo seria otimizar o modelo de forma a aumentar a acurácia.