MCA/D11

4518

Discrete Mathematical Structures

Paper: MCA-103

Time: Three Hours [Maximum Marks: 80

Note: - Attempt FIVE questions. Question No.1 is compulsory and attempt ONE question from each Unit.

- (a) Prove that a subgroup of an abelian group is a normal subgroup.
 - (b) Find order of each element of permutation group P, over {1, 2, 3}.
 - (c) State necessary and sufficient condition for a graph to represent as an Euler circuit.
 - (d) Differentiate between reachability matrix and adjacency matrix of a digraph.
 - (e) What is splitting field?
 - Find complement of each element of the lattice $L = \{1, 2, 3, 5, 10, 30\}$ under the relation divides.
 - (g) Write join and meet operation table for the lattice $L = \{1, 2, 3, 6, 10, 30\}.$
 - (h) Prove that the polynomial $x^2 + x + 1$ is reducible over z_3 .

UNIT-I

- (a) Let G be a finite group under the operation multiplication and (H, *) be a subgroup of (G, *). Prove that the set of left cosets of H in G partitions the set G.
 - (b) Write generating set for each element of (z6, t6). Describe whether (z₆, t₆) is a cyclic group or not.

- (a) Find the regular expression that defines the language consisting of all words in which the pattern abb appears. Draw finite state machine for the language.
 - (b) Characterize the language defined by the regular expression (b)* + [(b*) (a) (b)* (a) (b)*]*.
 4

UNIT-II

- (a) Write algorithm for breadth first-search tree and breadth first spanning tree.
 - (b) Define Planar graph, and state and prove Euler's formula for this graph.
- Write Warshall's algorithm to find reachability matrix and find the reachability matrix for the following digraph:

14

UNIT-III

- (a) Let L = {1, 2, 3, 4, 5, 6, 7, 8} and R be a relation ≤ on L. Verify whether L is a lattice.
 - (b) Define complement lattice and distributive lattice. Prove that if a lattice is complement and distributive then complement of each element is unique.
- Define Boolean algebra. Verify the set D₁₀₅ of positive divisors of 105 under the relation divides is a Boolean algebra or not.

UNIT-IV

- 8. Find splitting for the polynomial $f = x^2 + 1$ over z₂.
- (a) Write an example of an integral domain that is not a field.
 - (b) Write an example of a field. 7