Câu	Ý	Nội dung	Thang điểm
1		Giải phương trình $(f \circ g)(x) = 2 \Leftrightarrow f(g(x)) = 2$ $\Leftrightarrow 4g^2 - 7g + 5 = 2$	0.5
		$\Leftrightarrow \begin{bmatrix} g = 1 \\ g = \frac{3}{4} \Leftrightarrow \begin{bmatrix} \tan^{-1} x = 1 \\ \tan^{-1} x = \frac{3}{4} \end{bmatrix}$	0.5
		$\Leftrightarrow \begin{bmatrix} x = \tan 1 \\ x = \tan \frac{3}{4} \end{bmatrix}$	0.5
2		$\lim_{x \to 0^{-}} h(x) = \lim_{x \to 0^{-}} (x^{3} + 4) = 4$ $h(0) = 4$	0.5
		$\lim_{x \to 0^+} h(x) = \lim_{x \to 0^+} \frac{\sin(ax)^2}{x^2} = \lim_{x \to 0^+} \frac{2a^2x\cos(ax)^2}{2x} = a^2$	0.5
		Hàm số h(x) liên tục tại x = 0 khi $\lim_{x \to 0^{-}} h(x) = \lim_{x \to 0^{+}} h(x) = h(0) \Leftrightarrow a^{2} = 4 \Leftrightarrow a = \pm 2$	0.5
	a	$g'(0) = \lim_{x \to 0} \frac{g(x) - g(0)}{x - 0} = \lim_{x \to 0} \frac{\frac{1 - \sqrt[3]{1 + 4x}}{x} + \frac{4}{3}}{x}$	0.5
3		$\lim_{x \to 0} \frac{-4(1+4x)^{-\frac{2}{3}} + 4}{6x} = \lim_{x \to 0} \frac{\frac{32}{3}(1+4x)^{-\frac{3}{3}}}{6} = \frac{16}{9}$	0.5
		$g'(x) = \frac{-\frac{4x}{3}(1+4x)^{\frac{7}{3}} - (1-\sqrt[3]{1+4x})}{x^2} \Rightarrow g'(2) = \frac{19-3\sqrt[3]{81}}{12\sqrt[3]{81}}$	0.5
		Tại $x=2$ ta có $g(2) = \frac{1-\sqrt[3]{9}}{2}$ Phương trình tiếp tuyến của đồ thị hàm $g(x)$ tại điểm có hoành độ $x=2$ là $y = \frac{19-3\sqrt[3]{81}}{12\sqrt[3]{81}}(x-2) + \frac{1-\sqrt[3]{9}}{2}$	0.5
4		TXD: D = R $f'(x) = (x+1)^2 - x - 7 = x^2 + x - 6$ $f'(x) = 0 \Leftrightarrow x = 2 \lor x = -3$	0.5 0.5

	1	1
	f''(x) = 2x + 1	
	f''(2) = 5 > 0	0.5
	f''(-3) = -5 < 0	0.5
	Vậy hàm số đạt cực tiểu tại $x = 2$, $f_{min}(2) = -4$	
	Hàm số đạt cực đại tại $x = -3$, $f_{max}(-3) = \frac{101}{6}$	0.5
	6	
5	Gọi r, h lần lượt là bán kính đáy và chiều cao của mực nước tại từng thời	
	điểm t.	
	Ta có $\frac{r}{h} = \frac{40}{80} \Rightarrow r = \frac{h}{2}$	0.5
	n 00 2	0.5
	Thể tích của khối nón $V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi \left(\frac{h}{2}\right)^2 h = \frac{\pi h^3}{12}$	
	3 3 (2) 12	0.5
	$dV = \pi + dh$	
	$\frac{dV}{dt} = \frac{\pi}{4}h^2\frac{dh}{dt}$	
	Tại h = 30cm =3dm, vận tốc thay đổi chiều cao của mực nước là	
	$3 = \frac{\pi}{4} 3^2 \frac{dh}{dt} \Rightarrow \frac{dh}{dt} = \frac{4}{3\pi} (dm / phut)$	0.5
6	Phương trình vi phân $ydx - (1 + y^3)x \ln^2 x dy = 0$ (1)	
	TH: $x > 0, x \ne 1, y \ne 0$	0.5
	Đưa pt (1) về phương trình tách biến	0.5
	$\frac{dx}{x\ln^2 x} = \frac{1+y^3}{y}dy$	
	$x \ln^2 x$ y y	
	$\int \frac{dx}{x \ln^2 x} = \int \left(\frac{1}{y} + y^2\right) dy$	
	Nghiệm tổng quát của phương trình $\frac{-1}{\ln x} = \ln y + \frac{y^3}{3} + C$, trong đó C là	0.5
	hằng số tùy ý	
	Tìm nghiệm thỏa y = 1 khi x= 2	0.5
	$\frac{-1}{1} - \ln 1 + \frac{1^3}{1} + C \rightarrow C - \frac{-1}{1} - \frac{1}{1}$	
	$\left \frac{-1}{\ln 2} = \ln 1 + \frac{1^3}{3} + C \Rightarrow C = \frac{-1}{\ln 2} - \frac{1}{3} \right $	
	Vậy nghiệm của pt thỏa yêu cầu bài toán là $\frac{-1}{\ln x} = \ln y + \frac{y^3}{3} - \frac{1}{\ln 2} - \frac{1}{3}$	
		l .