Урок №46

Тема: Синус, косинус, тангенс гострого кута прямокутного трикутника Мета: сформувати поняття синуса, косинуса, тангенса гострого кута прямокутного трикутника; формувати вміння застосовувати ці поняття до розв'язування задач.

Тип уроку: засвоєння нових знань та вмінь

Повторення

- 1. Який трикутник називають прямокутним?
- 2. Як називаються сторони у прямокутному трикутнику?
- 3. Що таке катети?
- 4. Що таке гіпотенуза?
- 5. Порівняйте їх.
- 6. Сформулюйте теорему Піфагора.

Засвоєння нових знань.

Розглянемо прямокутний трикутник ABC, (кут $C = 90^{\circ}$)

Синусом гострого кута прямокутного трикутника називають відношення протилежного катета до гіпотенузи.

$$\sin A = \frac{BC}{AB}$$
 $\sin B = \frac{AC}{AB}$

Косинусом гострого кута прямокутного трикутника називають відношення протилежного катета до гіпотенузи.

$$\cos A = \frac{AC}{AB}$$
 $\cos B = \frac{BC}{AB}$

Тангенсом гострого кута прямокутного трикутника називають відношення протилежного катета до прилеглого.

$$tg A = \frac{BC}{AC}$$
 $tg B = \frac{AC}{BC}$

Котангенсом гострого кута прямокутного трикутника називають відношення прилеглого катета до протилежного

$$\operatorname{ctg} B = \frac{BC}{AC} \qquad \operatorname{ctg} A = \frac{AC}{BC}$$

- **1.** Чи правильна нерівність $sin \alpha > 1$? Відповідь пояснити.
- **2.** Чи правильна нерівність $cos\alpha > 1$? Відповідь пояснити.
- **3.** Чи правильна нерівність $tg\alpha > 1$? Відповідь пояснити.

Висновок

Значення *sina* , *cosa* не може бути більше одиниці, тому, що катет завжди менший від гіпотенузи.

Значення $tg\alpha$, $ctg\alpha$ може бути більше одиниці і менше одиниці, тому, що катети можуть бути і менше і більше один одного.

Розв'язування письмових задач.

№740

A	30°	45°	60°
sin A	$\frac{1}{2}$	$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cos A	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$	$\frac{1}{2}$
tg A	$\frac{1}{\sqrt{9}} = \frac{\sqrt{3}}{9}$	1	$\sqrt{3}$

$$\sin 30^0 + tg45^0 = \frac{1}{2} + 1 = 1\frac{1}{2} = 1,5$$

$$\cos 30^{0} \cdot \sin 60^{0} = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{3}{4} = 0.75$$

Задача 1. Знайдіть синус, косинус, тангенс найменшого кута єгипетського трикутника.

$$\sin \alpha = \frac{3}{5}$$

$$\cos \alpha = \frac{4}{5}$$

$$tg \alpha = \frac{3}{4}$$

№736

Задача 2.

Катети прямокутного трикутника дорівнюють 8 см і 15 см. Обчисліть синус, косинус і тангенс найменшого кута трикутника.

Задача 3. У прямокутному трикутнику ABC (кут $C = 90^{\circ}$) катет a = 5 см, гіпотенуза c = 13 см. Знайдіть синус, косинус, тангенс кута A.

Задача 4. У прямокутному трикутнику гіпотенуза дорівнює 13 см, а косинус одного з гострих кутів дорівнює — $\frac{5}{13}$. Знайдіть катети трикутника.

$$\cos B = \frac{5}{13} i \cos B = \frac{BC}{AB}$$

$$\frac{BC}{AB} = \frac{5}{13}$$

Тоді $BC = 5$ см, $AC = \sqrt{13^2 - 5^2} = 12$ (см)

Задача 5.

Домашне завдання

Повторити §16, 18, 19 Опрацювати §20 Виконати завдання за посиланням https://vseosvita.ua/test/start/cca431 або №747, 749 $LC = 90^{\circ}$, AB = 12 см, $\sin B = 0.5$ Знайти невідомі сторони і кути

$$\sin B = \frac{AC}{AB}$$
 $0.5 = \frac{AC}{12};$ $AC = 0.5 \cdot 12 = 6 \text{ (см)}$
 $BC = \sqrt{12^2 - 6^2} = \sqrt{108} = \sqrt{36 \cdot 3}$
 $= 6\sqrt{3}$
Якщо $\sin B = 0.5$, тоді $\Box B = 30^0$,

 $\triangle A = 90^{\circ} - 30^{\circ} = 60^{\circ}$