Problem Statement

Assuming you are a data analyst/ scientist at Retail Company, you have been assigned the task of analyzing the given dataset to extract valuable insights and provide actionable recommendations.

- 1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:
- 1. Data type of all columns in the "customers" table.

Query: SELECT column_name, data_type FROM `retailer-businesscase.retail.INFORMATION_SCHEMA.COLUMNS` where table_name = 'customers'

Output:

2. Get the time range between which the orders were placed.

Query: SELECT min(order_purchase_timestamp), max(order_purchase_timestamp) FROM `retailer-businesscase.retail.orders`

Output:

3. Count the Cities & States of customers who ordered during the given period.

Query : SELECT count(distinct customer_city) customer_city, count(distinct customer_state) customer state

FROM `retailer-businesscase.retail.customers`

Output:

- 2. In-depth Exploration:
- 1. Is there a growing trend in the no. of orders placed over the past years?

Yes, there is growing trend

 $\label{lem:count} \mbox{Query :SELECT EXTRACT(YEAR from order_purchase_timestamp) year, count(order_id)} \\ \mbox{order_count}$

FROM 'retailer-businesscase.retail.orders'

group by EXTRACT(YEAR from order_purchase_timestamp)

Output:

Quer	y results			
JOB IN	IFORMATION		RESULTS	JSON
Row	year ▼	li	order_count	~
1		2017		45101
2		2018		54011
3		2016		329

2. Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

Query: SELECT month, count(order_purchase_timestamp) monthly_order_count from (
SELECT order_purchase_timestamp, EXTRACT(YEAR FROM order_purchase_timestamp) year,
EXTRACT(MONTH FROM order_purchase_timestamp) month
FROM `retailer-businesscase.retail.orders`) year_mon_wise_orders
GROUP BY month

ORDER BY month

Output:

G. C C G. C.	_		
Row /	month ▼	1	monthly_order_count
1	1		8069
2	2	2	8508
3	3	}	9893
4	4		9343
5	5	5	10573
6	6	,	9412
7	7	'	10318
8	8	3	10843
9	g		4305
10	10)	4959
4.4			7544

3. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

0-6 hrs : Dawn
 7-12 hrs : Mornings
 13-18 hrs : Afternoon
 19-23 hrs : Night

Query: **SELECT**

CASE WHEN EXTRACT(HOUR from order_purchase_timestamp) BETWEEN 0 and 6 THEN "Dawn"

WHEN EXTRACT(HOUR from order_purchase_timestamp) BETWEEN 7 and 12 THEN "Mornings"

WHEN EXTRACT(HOUR from order_purchase_timestamp) BETWEEN 13 and 18 THEN "Afternoon"

WHEN EXTRACT(HOUR from order_purchase_timestamp) BETWEEN 19 and 23 THEN "Night" END AS timeofday,

 ${\color{red} \textbf{count}} (order_purchase_timestamp) \ order_count$

FROM `retailer-businesscase.retail.orders`

GROUP BY timeofday

- 3. Evolution of E-commerce orders in the Brazil region:
- 1. Get the month on month no. of orders placed in each state.

Query: SELECT c.customer_state,

EXTRACT(MONTH from order_purchase_timestamp) month, count(order_id) orders_count

FROM `retailer-businesscase.retail.orders` o

JOIN `retailer-businesscase.retail.customers` c

ON o.customer_id=c.customer_id

GROUP BY c.customer_state, month

Output:

2. How are the customers distributed across all the states?

Query: SELECT customer_state, count(customer_id) no_of_customers FROM `retailer-businesscase.retail.customers`

GROUP BY customer_state

Output:

JOB IN	NFORMATION	RESULTS	JSON	EXECUTION	N DETAILS	CHART	PREVIEW	E	X
low /	customer_state •	. //	no_of_custom	ers 🔻					
1	RN			485					
2	CE			1336					
3	RS			5466					
4	SC			3637					
5	SP		4	1746					
6	MG		1	1635					
7	BA		;	3380					
8	RJ		1:	2852					
9	GO		:	2020					
10	MA			747					

- 4.Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
- 1. Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

You can use the "payment_value" column in the payments table to get the cost of orders.

Query:

```
with ORDERS HISTORY as (
select order_id, EXTRACT(MONTH from order_purchase_timestamp) month, EXTRACT(YEAR
from order purchase timestamp) year
from retailer-businesscase.retail.orders
),
FILTERING_YEAR_2017_ORDERS as (
select month month_2017, year year_2017, sum(payment_value) payment_value_2017
from ORDERS HISTORY oh
left join retailer-businesscase.retail.payments p on p.order_id = oh.order_id
where month between 1 and 8 and year = 2017
group by year, month),
FILTERING_YEAR_2018_ORDERS as (
select month month_2018, year year_2018, sum(payment_value) payment_value_2018
from ORDERS_HISTORY oh left join retailer-businesscase.retail.payments p on p.order_id =
oh.order id
where month between 1 and 8 and year = 2018
group by year, month
)
```

```
select year_2017, year_2018, month_2017 month, ((payment_value_2018-
payment_value_2017)/payment_value_2017)*100
pct_increase_in_cost_of_orders
from FILTERING_YEAR_2017_ORDERS payments_2017 join FILTERING_YEAR_2018_ORDERS
payments_2018
on payments_2017.month_2017 = payments_2018.month_2018
order by month_2017
```

Output:

Query results

JOB IN	IFORMATION	RESULTS JSC	ON	EXECUTION	I DETAILS C	HART
Row	year_2017 ▼	year_2018 ▼	month	▼	pct_increase_in_co	st //
4	2017	2018		4	177.8407701149	
5	2017	2018		5	94.62734375677	
6	2017	2018		6	100.2596912456	
7	2017	2018		7	80.04245463390	
8	2017	2018		8	51.60600520477	

2.Calculate the Total & Average value of order price for each state

Query:

SELECT c.customer_state, sum(price) total_order_price, avg(price) avg_order_price FROM `retailer-businesscase.retail.customers` c
join `retailer-businesscase.retail.orders` o on c.customer_id = o.customer_id
join `retailer-businesscase.retail.order_items` oi on oi.order_id = o.order_id
group by c.customer_state
order by c.customer_state

3. Calculate the Total & Average value of order freight for each state.

Query:

SELECT customer_state, sum(freight_value) total_order_freight_val, avg(freight_value) avg_order_freight_val FROM `retailer-businesscase.retail.customers` c join `retailer-businesscase.retail.orders` o on c.customer_id = o.customer_id join `retailer-businesscase.retail.order_items` oi on oi.order_id = o.order_id group by customer_state order by customer_state

5. Analysis based on sales, freight and delivery time.

1. Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Do this in a single query.

You can calculate the delivery time and the difference between the estimated & actual delivery date using the given formula:

- time to deliver = order delivered customer date order purchase timestamp
- diff_estimated_delivery = order_estimated_delivery_date order_delivered_customer_date

Query:

SELECT order_id, DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY) time_to_deliver,

DATE_DIFF(order_estimated_delivery_date,order_delivered_customer_date,DAY)
diff_estimated_delivery

FROM 'retailer-businesscase.retail.orders'

where order_status = 'delivered'

2. Find out the top 5 states with the highest & lowest average freight value.

Query:

Top 5 states with highest average freight value

SELECT customer_state, avg(freight_value) avg_freight_val
FROM `retailer-businesscase.retail.order_items` oi
join `retailer-businesscase.retail.orders` o on oi.order_id=o.order_id
join `retailer-businesscase.retail.customers` c on c.customer_id = o.customer_id
group by customer_state
order by avg_freight_val desc
limit 5

Quer	y results			
JOB IN	FORMATION	RESULTS	JSON	EXECUTION
Row	customer_state	,	avg_freight_val	~
1	RR	,,,	42.9844230769	2
2	PB		42.7238039867	1
3	RO		41.0697122302	1
4	AC		40.0733695652	1
5	PI		39.1479704797	0

Top 5 states with lowest average freight value

SELECT customer_state, avg(freight_value) avg_freight_val
FROM `retailer-businesscase.retail.order_items` oi
join `retailer-businesscase.retail.orders` o on oi.order_id=o.order_id
join `retailer-businesscase.retail.customers` c on c.customer_id = o.customer_id
group by customer_state
order by avg_freight_val
limit 5

Output:

Query results

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION D
Row	customer_state	•	avg_freight_val 🔻	. //
1	SP		15.14727539041	
2	PR		20.53165156794	
3	MG		20.63016680630	
4	RJ		20.96092393168	
5	DF		21.04135494596	

3. Find out the top 5 states with the highest & lowest average delivery time.

Top 5 states with highest average delivery time

SELECT customer_state, avg(DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY)) avg_time_to_deliver
FROM `retailer-businesscase.retail.orders` o
JOIN `retailer-businesscase.retail.customers` c
ON o.customer_id = c.customer_id

```
where order_status = 'delivered'
group by customer_state
order by avg_time_to_deliver desc
limit 5
```

Output:

Query results

JOB IN	FORMATION	RESULTS	JSON	EXECU.
Row	customer_state	▼	avg_time_to_deliv	/er
1	RR		28.97560975609	
2	AP		26.73134328358	
3	AM		25.98620689655	
4	AL		24.04030226700	
5	PA		23.31606765327	

Top 5 states with lowest average delivery time Query:

```
SELECT customer_state, avg(DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY)) avg_time_to_deliver
FROM `retailer-businesscase.retail.orders` o
JOIN `retailer-businesscase.retail.customers` c
ON o.customer_id = c.customer_id
where order_status = 'delivered'
group by customer_state
order by avg_time_to_deliver
limit 5
```

Quer	y results			
JOB IN	IFORMATION	RESULTS	JSON E	EXECUTION
Row	customer_state	~	avg_time_to_delive	er
1	SP	,,	8.298093544722	,,
2	PR		11.52671135486	
3	MG		11.54218777523	
4	DF		12.50913461538	
5	SC		14.47518330513	

4. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.

Query:

```
SELECT customer_state,
avg(DATE_DIFF(order_estimated_delivery_date,order_delivered_customer_date,DAY))
avg_delivery_between_estimated_actual
FROM `retailer-businesscase.retail.orders` o

JOIN `retailer-businesscase.retail.customers` c

ON o.customer_id = c.customer_id
where order_status = 'delivered'
group by customer_state
order by avg_delivery_between_estimated_actual
limit 5
```

Output:

Quer	y results			
JOB IN	IFORMATION	RESULTS	JSON E	XECUTION
Row	customer_state -	,	avg_delivery_betwe	ee
1	AL	**	7.947103274559	
2	MA		8.768479776847	
3	SE		9.173134328358	
4	ES		9.618546365914	
5	BA		9.934889434889	

6. Analysis based on the payments:

1. Find the month on month no. of orders placed using different payment types.

Query:

```
SELECT EXTRACT(YEAR from order_purchase_timestamp) year,
EXTRACT(MONTH from order_purchase_timestamp) month, payment_type,
count(o.order_id) no_of_orders
FROM `retailer-businesscase.retail.orders` o
join `retailer-businesscase.retail.payments` p
on p.order_id = o.order_id
group by payment_type, year, month
order by year, month
```


2. Find the no. of orders placed on the basis of the payment installments that have been paid.

Query:

SELECT payment_installments, count(order_id) no_of_orders FROM `retailer-businesscase.retail.payments` group by payment_installments

JOB IN	FORMATION	RESULTS	JSON
ow /	payment_installment	no_of_orders •	- /1
1	0		2
2	1	525	546
3	2	124	113
4	3	104	1 61
5	4	70	98
6	5	52	239
7	6	39	920
8	7	16	526
9	8	42	268
10	9	6	544

Actionable Insights and Recommendations

- 1. More number of orders were placed in May, July and August.
- 2. State with code SP has placed more number of orders.
- 3. More number of orders has been placed using credit cards
- 4. In some of states, the freight value has costed upto 1lakh. We can try to reduce this cost
- 5. Some of the orders are getting delivered late than the estimated delivery
- 6. Cost of orders has been increased over the years