Lecture 3 — Calculus I

Henry Watson

Georgetown University

8/16/23

Agenda

① Differentiation

Optimization

Morning challenge!

- Find $C = \begin{bmatrix} 4 & 2 \\ -\frac{2}{3} & -1 \end{bmatrix} + \begin{bmatrix} 3 & 43 \\ -4 & 3 \end{bmatrix}$
- Suppose $A = \begin{bmatrix} 3 & 6 \\ -4 & -8 \end{bmatrix}$ and $B = \begin{bmatrix} -10 & -4 \\ 5 & 2 \end{bmatrix}$. Find AB and BA. Is AB = BA?
- Find x, y and z: $\begin{bmatrix} 3 & 1 & 4 \\ 1 & 5 & x \\ 2 & 6 & 5 \end{bmatrix} \begin{bmatrix} 2 & 7 & 1 \\ 8 & 2 & 8 \\ 1 & 8 & y \end{bmatrix} = \begin{bmatrix} z & 55 & 19 \\ 51 & 89 & 59 \\ 57 & 66 & 60 \end{bmatrix}$
- Suppose $A = \begin{bmatrix} 4 & -2 \\ 3 & -1 \end{bmatrix}$. Find A^{-1}

Agenda

① Differentiation

Optimization

Types of changes:

• Discrete change: "first difference"; a measure of change in a variable across two *discrete* moments in time

- Discrete change: "first difference"; a measure of change in a variable across two *discrete* moments in time
- First difference = $x_{t+1} x_t$

- Discrete change: "first difference"; a measure of change in a variable across two *discrete* moments in time
- First difference = $x_{t+1} x_t$
- Percentage change = $\frac{X_{t+1}-X_t}{X_t}$

Types of changes:

- Discrete change: "first difference"; a measure of change in a variable across two discrete moments in time
- First difference = $x_{t+1} x_t$
- Percentage change = $\frac{X_{t+1} X_t}{X_t}$

Aggregate Heavy Weapons, China

•	Year 1995 1996 1997 1998 1999	Total 37095 35747 36910 37032 36494	First Difference NA -1348 1163 122 -538	Percentage Change NA -3.6% 3.3% 0.3% -1.5%
			-538 -5059	
	2001	34281	2846	9.1%

Types of changes:

• Instantaneous change: a measure of change in a variable at a single point (or moment in time)

- Instantaneous change: a measure of change in a variable at a single point (or moment in time)
- A derivative is the instantaneous rate of change of a function.

- Instantaneous change: a measure of change in a variable at a single point (or moment in time)
- A derivative is the instantaneous rate of change of a function.
- Notation: the derivative of a function is represented as $\frac{dy}{dx}$ or f'(x)

- Instantaneous change: a measure of change in a variable at a single point (or moment in time)
- A derivative is the instantaneous rate of change of a function.
- Notation: the derivative of a function is represented as $\frac{dy}{dx}$ or f'(x)
- Calculated using limits

Figure 5.1: Graph of $y = x^2$ with Secant Line

Figure 5.1: Graph of $y = x^2$ with Secant Line

• Discrete change is computed as $m = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$

Figure 5.1: Graph of $y = x^2$ with Secant Line

- Discrete change is computed as $m = \frac{f(x_2) f(x_1)}{x_2 x_1} = \frac{y_2 y_1}{x_2 x_1}$
- Secant line: line connecting two discrete points on a function

Figure 5.1: Graph of $y = x^2$ with Secant Line

- Discrete change is computed as $m = \frac{f(x_2) f(x_1)}{x_2 x_1} = \frac{y_2 y_1}{x_2 x_1}$
- Secant line: line connecting two discrete points on a function
- Discrete change is the slope of the secant line

Figure 5.2: Graph of $y = x^2$ with Tangent Line

 Tangent line: a line that touches the function at one point, and has a slope equal to the instantaneous rate of change of the function at that point

Figure 5.2: Graph of $y = x^2$ with Tangent Line

- Tangent line: a line that touches the function at one point, and has a slope equal to the instantaneous rate of change of the function at that point
- Our discrete equation is undefined for a single point: $m = \frac{f(x_1) f(x_1)}{x_1 x_1} = \frac{y_1 y_1}{x_1 x_1}$

Figure 5.2: Graph of $y = x^2$ with Tangent Line

- Tangent line: a line that touches the function at one point, and has a slope equal to the instantaneous rate of change of the function at that point
- Our discrete equation is undefined for a single point: $m = \frac{f(x_1) f(x_1)}{x_1 x_1} = \frac{y_1 y_1}{x_1 x_1}$
- Calculate the discrete change for smaller and smaller differences
 (h) between x₂ and x₁

Figure 5.2: Graph of $y = x^2$ with Tangent Line

- Tangent line: a line that touches the function at one point, and has a slope equal to the instantaneous rate of change of the function at that point
- Our discrete equation is undefined for a single point: $m = \frac{f(x_1) - f(x_1)}{x_1 - x_1} = \frac{y_1 - y_1}{x_1 - x_1}$
- Calculate the discrete change for smaller and smaller differences (h) between x_2 and x_1
- $\frac{dy}{dx} = f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$

Lecture 3

Example

Calculate f'(x) using the definition of the derivative:

$$f(x) = x^3 - 16x + 7$$

Solution:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{((x+h)^3 - 16(x+h) + 7) - (x^3 - 16x + 7)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{((x^3 + 3x^2h + 3xh^2 + h^3) - 16x - 16h + 7) - (x^3 - 16x + 7)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3 - 16h}{h}$$

$$f'(x) = \lim_{h \to 0} 3x^2 + 3xh + h^2 - 16$$

$$f'(x) = 3x^2 - 16$$

Five minutes practice

Calculate f'(x) using the definition of the derivative:

$$f(x) = x^2 - 4x + 3$$

Five minutes practice!

Calculate f'(x) using the definition of the derivative:

$$f(x) = x^2 - 4x + 3$$

Solution:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{((x+h)^2 - 4(x+h) + 3) - (x^2 - 4x + 3)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{((x^2 + 2xh + h^2) - 4x - 4h + 3) - (x^2 - 4x + 3)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2xh + h^2 - 4h}{h}$$

$$f'(x) = \lim_{h \to 0} 2x + h - 4$$

$$f'(x) = 2x - 4$$

Rules of differentiation

Table 6.1: List of Rules of Differentiation

(f(x) + g(x))' = f'(x) + g'(x) (f(x) - g(x))' = f'(x) - g'(x)
f'(ax) = af'(x)
(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)
$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$
(g(f(x))' = g'(f(x))f'(x)
$(f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$
(a)' = 0
$(x^n)' = nx^{n-1}$
$(e^x)' = e^x$
$(a^x)' = a^x(\ln(a))$
$(\ln(x))' = \frac{1}{x}$
$(\log_a(x))' = \frac{1}{x(\ln(a))}$
$(\sin(x))' = \cos(x)$
$(\cos(x))' = -\sin(x)$
$(\tan(x))' = 1 + \tan^2(x)$
Treat each piece separately

Rules of differentiation Cont

Table 6.1: List of Rules of Differentiation

Sum rule Difference rule	(f(x) + g(x))' = f'(x) + g'(x) (f(x) - g(x))' = f'(x) - g'(x)
Multiply by constant rule Product rule Tricky	$f'(ax) = af'(x)$ $(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$ $(f(x))' \qquad f'(x)g(x) - f(x)g'(x)$
Chain rule	$ \frac{n}{g(x)} \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} $ $(g(f(x))' = g'(f(x))f'(x)$
Inverse function rule Constant rule Power rule	$ (f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))} $ $ (a)' = 0 $ $ (x^n)' = nx^{n-1} $
Exponential rule 1 Exponential rule 2	$(e^x)' = e^x$ Easy Differentiation $(a^x)' = a^x (\ln(a))$
Logarithm rule 1 Logarithm rule 2	$(\ln(x))' = \frac{1}{x}$ $(\log_a(x))' = \frac{1}{x(\ln(a))}$
Trigonometric rules	$(\sin(x))' = \cos(x)$ $(\cos(x))' = -\sin(x)$ $(\tan(x))' = 1 + \tan^2(x)$
Piecewise rules	Treat each piece separately

The Power Rule

$$\bullet (x^n)' = nx^{n-1}$$

The Power Rule

- $(x^n)' = nx^{n-1}$ $f(x) = x^3$

The Power Rule

- $\bullet (x^n)' = nx^{n-1}$
- $f(x) = x^3$
- $f'(x) = 3x^2$

The Product Rule

•
$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$

The Product Rule

- (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)
- Sum the derivative of the first part, multiplied by the second part, and the derivative of the second part, multiplied by the first part

The Product Rule

- (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)
- Sum the derivative of the first part, multiplied by the second part, and the derivative of the second part, multiplied by the first part
- $f(x) = (x^2 + 1) \times (x^3 + 2)$

The Product Rule

- (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)
- Sum the derivative of the first part, multiplied by the second part, and the derivative of the second part, multiplied by the first part
- $f(x) = (x^2 + 1) \times (x^3 + 2)$
- $f'(x) = (2x)(x^3+2)+(x^2+1)(3x^2)$

The Product Rule

- (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)
- Sum the derivative of the first part, multiplied by the second part, and the derivative of the second part, multiplied by the first part
- $f(x) = (x^2 + 1) \times (x^3 + 2)$
- $f'(x) = (2x)(x^3+2)+(x^2+1)(3x^2)$
- $f'(x) = 2x^4 + 4x + 3x^4 + 3x^2$
- $f'(x) = 5x^4 + 3x^2 + 4x$

•
$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

$$\bullet \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

•
$$f(x) = \frac{x^2+1}{x^3+2}$$

$$\bullet \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

•
$$f(x) = \frac{x^2+1}{x^3+2}$$

•
$$f'(x) = \frac{(2x)(x^3+2)-(x^2+1)(3x^2)}{(x^3+2)(x^3+2)}$$

$$\bullet \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

•
$$f(x) = \frac{x^2+1}{x^3+2}$$

•
$$f'(x) = \frac{(2x)(x^3+2)-(x^2+1)(3x^2)}{(x^3+2)(x^3+2)}$$

•
$$f'(x) = \frac{(2x^4+4x)-(3x^4+3x^2)}{x^6+4x^3+4}$$

$$\bullet \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

•
$$f(x) = \frac{x^2+1}{x^3+2}$$

•
$$f'(x) = \frac{(2x)(x^3+2)-(x^2+1)(3x^2)}{(x^3+2)(x^3+2)}$$

•
$$f'(x) = \frac{(2x^4+4x)-(3x^4+3x^2)}{x^6+4x^3+4}$$

•
$$f'(x) = \frac{-x^4 - 3x^2 + 4x}{x^6 + 4x^3 + 4}$$

•
$$(g(f(x))' = g'(f(x))f'(x)$$

- (g(f(x))' = g'(f(x))f'(x)
- $f(x) = (3x+1)^2$

- (g(f(x))' = g'(f(x))f'(x)
- $f(x) = (3x+1)^2$
- $f'(x) = (2(3x+1)) \times 3$

- (g(f(x))' = g'(f(x))f'(x)
- $f(x) = (3x+1)^2$
- $f'(x) = (2(3x+1)) \times 3$
- f'(x) = 18x + 6

Examples

- $f(x) = 3x^2$
- $f(x) = \sqrt{x}$
- $f(x) = 2x^9 + x^2 + 8$
- $f(x) = \frac{x^2+5}{x^3+1}$
- $f(x) = (x+5)(x^3+x^2+2)$
- $f(x) = (4x^2 + 2x + 1)^3$
- $f(x) = ln(2x^4 x^3 + 3x^2 3x)$

Agenda

① Differentiation

Optimization

• A method for finding all the extrema of a function.

- A method for finding all the extrema of a function.
- In political science and economics, several approaches assume that (political) agents want to maximize/minimize an objective function.
 For example:

- A method for finding all the extrema of a function.
- In political science and economics, several approaches assume that (political) agents want to maximize/minimize an objective function.
 For example:
 - Maximization of Utility
 - Minimization of Risk
 - Maximization of Welfare
 - Maximization of the survival probability
 - Minimization of errors (for calculating best fit liens)

 A real-valued function that is continuous on a closed and bounded interval [a,b] must hit both its global maximum and minimum on that interval, at least once each

- A real-valued function that is continuous on a closed and bounded interval [a,b] must hit both its global maximum and minimum on that interval, at least once each
- A high point is called a maximum

- A real-valued function that is continuous on a closed and bounded interval [a,b] must hit both its global maximum and minimum on that interval, at least once each
- A high point is called a maximum
- A low point is called a minimum

- A real-valued function that is continuous on a closed and bounded interval [a,b] must hit both its global maximum and minimum on that interval, at least once each
- A high point is called a maximum
- A low point is called a minimum
- An extrema is local whenever it is the largest (or smallest) value of the function over some interval of values in the domain of a function (over some interval on the x-axis). Think of them as "valleys" and "peaks".

- A real-valued function that is continuous on a closed and bounded interval [a,b] must hit both its global maximum and minimum on that interval, at least once each
- A high point is called a maximum
- A low point is called a minimum
- An extrema is local whenever it is the largest (or smallest) value of the function over some interval of values in the domain of a function (over some interval on the x-axis). Think of them as "valleys" and "peaks".
- A global extremum is the highest (or lowest) point on the function across the full domain

Derivatives and the "shape" of a function

1 Take the derivative of f(x) to get f'(x)

- **1** Take the derivative of f(x) to get f'(x)
- 2 First derivative test: Set f'(x) = 0 and solve for x^* (critical points).

- **1** Take the derivative of f(x) to get f'(x)
- **2** First derivative test: Set f'(x) = 0 and solve for x^* (critical points).
- **3** Take the derivative of f'(x) to get f''(x)

- **1** Take the derivative of f(x) to get f'(x)
- **2** First derivative test: Set f'(x) = 0 and solve for x^* (critical points).
- **3** Take the derivative of f'(x) to get f''(x)
- **4** Second derivative test: Calculate $f''(x^*)$
 - If $f''(x^*) > 0$, x^* is a local minimum.
 - If $f''(x^*) < 0$, x^* is a local maximum.
 - If $f''(x^*) = 0$, x^* may be an inflection point.

- **1** Take the derivative of f(x) to get f'(x)
- **2** First derivative test: Set f'(x) = 0 and solve for x^* (critical points).
- **3** Take the derivative of f'(x) to get f''(x)
- **4** Second derivative test: Calculate $f''(x^*)$
 - If $f''(x^*) > 0$, x^* is a local minimum.
 - If $f''(x^*) < 0$, x^* is a local maximum.
 - If $f''(x^*) = 0$, x^* may be an inflection point.
- **5** Substitute each x^* into f(x) to get (x, y) for each point.

- **1** Take the derivative of f(x) to get f'(x)
- **2** First derivative test: Set f'(x) = 0 and solve for x^* (critical points).
- **3** Take the derivative of f'(x) to get f''(x)
- **4** Second derivative test: Calculate $f''(x^*)$
 - If $f''(x^*) > 0$, x^* is a local minimum.
 - If $f''(x^*) < 0$, x^* is a local maximum.
 - If $f''(x^*) = 0$, x^* may be an inflection point.
- **6** Substitute each x^* into f(x) to get (x,y) for each point.
- **6** If the function is bounded, check the value of f(x) at each bound

- **1** Take the derivative of f(x) to get f'(x)
- **2** First derivative test: Set f'(x) = 0 and solve for x^* (critical points).
- 3 Take the derivative of f'(x) to get f''(x)
- **4** Second derivative test: Calculate $f''(x^*)$
 - If $f''(x^*) > 0$, x^* is a local minimum.
 - If $f''(x^*) < 0$, x^* is a local maximum.
 - If $f''(x^*) = 0$, x^* may be an inflection point.
- **6** Substitute each x^* into f(x) to get (x, y) for each point.
- **6** If the function is bounded, check the value of f(x) at each bound
- **?** Compare the values of f(x) and f(bounds) to find global min/max.

Inflection point or extrema?

- If $f'(x^*) = 0$ and $f''(x^*) = 0$, you should continue taking the derivative until $f''(x^*) = a$ nonzero number.
 - If $n = \text{odd number then } x^*$ is an inflection point, not and extremum.
 - If *n* = even number continue to step 2.
- **2** Calculate $f^n(x^*)$:
 - If $f^n(x^*) > 0$, the point is a local minimum.
 - If $f^n(x^*) < 0$, the point is a local maximum.

Find the extrema of the following equation:

$$f(x) = x^3 - 3x^2 + 7, x \in [-4, 4]$$

Also, graph the function.

1. Take the derivative of f(x) to get f'(x).

$$f(x) = x^3 - 3x^2 + 7$$
$$f'(x) = 3x^2 - 6x$$

1. Take the derivative of f(x) to get f'(x).

$$f(x) = x^3 - 3x^2 + 7$$
$$f'(x) = 3x^2 - 6x$$

2. First derivative test: Set f'(x) = 0 and solve for x^* :

$$f'(x) = 3x^2 - 6x = 0$$
$$3x^2 - 6x = 0$$
$$3x(x - 2) = 0$$

Therefore, we will have $x_1^* = 0$ and $x_2^* = 2$

3. Take the derivative of f'(x) to get f''(x).

$$f'(x) = 3x^2 - 6x$$
$$f''(x) = 6x - 6$$

3. Take the derivative of f'(x) to get f''(x).

$$f'(x) = 3x^2 - 6x$$
$$f''(x) = 6x - 6$$

- 4. Second derivative test: calculate $f''(x^*)$
 - For $x_1^* = 0$: f''(0) = 6(0) 6 = -6. If $f''(x^*) < 0$, x^* is a local maximum.
 - For $x_2^* = 2$: f''(2) = 6(2) 6 = 6. If $f''(x^*) > 0$, x^* is a local minimum.

- 5. Substitute each x^* into f(x) to get (x,y) for each point: Remember that $f(x) = x^3 - 3x^2 + 7$
 - For $x_1^* = 0$: $f(0) = 0^3 3(0)^2 + 7 = 7$. Local maximum at (0,7).
 - For $x_2^* = 2$: $f(2) = 2^3 3(2)^2 + 7 = 3$. Local minimum at (2,3).

- 5. Substitute each x^* into f(x) to get (x,y) for each point: Remember that $f(x) = x^3 - 3x^2 + 7$
 - For $x_1^* = 0$: $f(0) = 0^3 3(0)^2 + 7 = 7$. Local maximum at (0,7).
 - For $x_2^* = 2$: $f(2) = 2^3 3(2)^2 + 7 = 3$. Local minimum at (2,3).
- 6. If the function is bounded, check the value of f(x) at each bound: Remember that $f(x) = x^3 3x^2 + 7, x \in [-4, 4]$
 - Lower bound: $f(-4) = (-4)^3 3(-4)^2 + 7 = -105$ Global minimum at (-4, -105)
 - Upper bound: $f(4) = (4)^3 3(4)^2 + 7 = 23$ Global maximum at (4,23).

7. Compare the values of $f(x^*)$ and f(bounds) to find global min/max:

- Global minimum at (-4,-105)
- Local maximum at (0,7)
- Local minimum at (2,3)
- Global maximum at (4,23)