作者: 张陈成

学号: 023071910029

K-理论笔记 C* 代数简介

C^* 代数的 K_0 群

定义 1 (投影). 定义 Banach 代数中的投影元为幂等的自伴元. 以下采用记号

$$\operatorname{Proj}(X) := \operatorname{Idem}(X) \cap \operatorname{SA}(X).$$

定义 2 (正交补). 显然 $x \in \text{Proj}(X)$ 当且仅当 $e - x \in \text{Proj}(X)$.

命题 1. 对任意 $p \in (\text{Proj}(X) \setminus \{0, e\})$, 总有 $\sigma_X(x) = \{0, 1\}$.

命题 2. 定义 Proj(X) 上偏序如下: $x \le y$ 当且仅当 (y-x) 是投影, 亦当且仅当 x(y-x)=0.

定义 3 (等距). 给定 C^* 代数 X, 称 $x \in X$ 部分等距当且仅当 $x^*x \in \text{Proj}(X)$. 称 x 是等距当且仅当 $x^*x = e$. 特别地, $x = x^*$ 均为等距当且仅当 x 是西元.

定义 4 (Murray-von Neumann 等价). 定义 Proj(X) 上的等价关系 [·] 如下: [p] = [p'] 当且仅当存在部分等距 x 使得 $x^*x = p$ 且 $xx^* = p'$.

定义 5 (酉等价). 定义 Proj(X) 上的酉等价关系 $[\cdot]_u$ 如下: $[p]_u = [p']_u$ 当且仅当 [p] = [p'] 且同时存在酉元 x 使得 $p = x^*p'x$.

定义 6. 若 [p] = [p'], 则 $[p]_u = [p']_u$ 当且仅当 [e - p] = [e - p'].

证明. 一方面, 若存在酉元 x 使得 $x^*px = p'$, 则

$$x^*(e-p)x = x^*x - x^*px = e - p'.$$

另一方面, 若存在部分等距 x 与 y 使得

$$x^*x = p$$
, $xx^* = p'$, $y^*y = e - p$, $yy^* = e - p'$.

依照命题 ??, $x^*y = 0$ 当且仅当 $xx^*yy^* = p'(e - p') = 0$. 从而 $(x + y)(x^* + y^*) = e + yx^* + xy^* = e$. 由于 (x + y) 是酉元, 结合 $(x + y)p(x + y)^* = (p')^3 = p'$ 知 $[p]_u = [p']_u$.

定义 7 (同伦). 拓扑空间 X 中元素 x 与 y 同伦, 当且仅当 x 与 y 属于同一道路连通分支, 记作 $[x]_h = [y]_h$.

例 1. 记 C^* 代数 X 的酉元全体为拓扑群 U, 记 e 所在的连通分支为 U_0 , 则 U_0 为 U 的子群. 由于任意 $x \in U$ 的共轭作用保持同伦与单位元 e, 即,

$$x(-)x^*: [0,1] \to U, t \mapsto \gamma(t)] \mapsto [0,1] \to U, t \mapsto x\gamma(t)x^*].$$

因此 $U_0 \triangleleft U$. 下证明 U_0 无非群

$$G := \exp\left(i\sum_{\lambda \in \Lambda_0} r_{\lambda}\right) \qquad (r_{\lambda} \, \, \dot{\boxminus} \, \dot{H}, |\Lambda_0| < \omega).$$

显然 $\gamma: t \mapsto e^{itr_{\lambda}}$ 表明 G 是 U_0 的子群. 往证 G 开. 任取 $g \in G$ 与 $x \in B(g,2) \cap U$, 总有 $||1 - xg^*|| < 2$. 因此 $-1 \notin \sigma(xg^*)$, 进而存在 $\varepsilon > 0$ 使得 $\sigma(xg^*) \subseteq [e^{-i(-\pi+\varepsilon)}, e^{-i(\pi-\varepsilon)}] =: V$. 记连续函数

$$\Phi: V \to \mathbb{C}, \quad e^{i\theta} \mapsto \theta.$$

因此存在自伴算子 $\Phi(xg^*)$ 使得 $xg^* = \exp i\Phi(xg^*)$,于是 $x = xg^*g \in G$. 同理, 若存在 $u \in U_0 \setminus G$,则 $u:G \to u \cdot G$ 给出开集间的同构. 从而陪集划分给出无交并

$$U_0 = (U_0 \setminus G) \dot{\cup} G.$$

由于 U_0 连通, 从而 $U_0 \setminus G$ 为空. 据以上, U_0 为 U 的开且闭的正规子群.

注 1. 以上论证表明谱非 S^1 的酉元在 U 中彼此同伦等价, 因此距离小于 2 的酉元在 U 中彼此同伦等价. 特别地, 矩阵代数 $M_n(\mathbb{C})$ 的酉群连通.

 $C(S^1)$ 中函数 id_{S^1} 的谱为 S^1 , 下断言 $\mathrm{id}_{S^1} \notin U_0(C(S^1))$. 依照拓扑学常识 (如 de Rham 上同调等), 不存在自伴算子 $x \in C(S^1)$ 使得 $\mathrm{id}_{S^1} = \exp(ix)$.

命题 3. C^* 代数 X 中投影元 p 与 p' 在 Proj(X) 中同伦等价, 当且仅当其相差 U_0 中某元素的共轭.

证明. 充分性显然 (见例 1). 往证必要性. 不妨设 $\|p-p'\|$ 足够小, 记 T:=pp'+(e-p)(e-p'), 则

$$||e - T|| = ||2pp' - p - p'|| = ||p(p' - p) + p'(p - p')|| \le 2||p - p'|| < 1.$$

从而 T 可逆, 遂得 $Tp'T^{-1} = (pp')T^{-1} = (pT)T^{-1} = p$. 从而

$$p = \frac{T}{\|T\|} \cdot p' \cdot \left(\frac{T}{\|T\|}\right)^{-1}.$$

注意到
$$\left[\frac{T}{\|T\|}\right]_h = [e]_h$$
,得证.

注 2. C^* 代数的投影元空间 Proj(X) 中恒有

$$[p] = [p'] \implies [p]_u = [p']_u \implies [p]_h = [p']_h$$

反之未必. 反例显然.

定理 1. 给定 Banach 代数 X, 则 $X \hookrightarrow M_2(X), x \mapsto \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix}$ 将 Murray-von Neumann 等价强化作酉等价,将酉等价强化作同伦.

证明. 注意到

$$\begin{pmatrix} xx^* & e - xx^* \\ e - xx^* & xx^* \end{pmatrix} \begin{pmatrix} x & e - xx^* \\ e - x^*x & x^* \end{pmatrix} \begin{pmatrix} x^*x & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} xx^* & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} xx^* & e - xx^* \\ e - xx^* & xx^* \end{pmatrix} \begin{pmatrix} x & e - xx^* \\ e - x^*x & x^* \end{pmatrix},$$

从而 Murray-von Neumann 等价给出酉等价. 注意到 $\sigma:\begin{pmatrix} 0 & e \\ e & 0 \end{pmatrix} \mapsto \{\pm 1\}$, 依照例 1 计算得

$$\begin{bmatrix} \begin{pmatrix} e & 0 \\ 0 & e \end{bmatrix} \end{bmatrix}_h = \begin{bmatrix} \begin{pmatrix} 0 & e \\ e & 0 \end{pmatrix} \end{bmatrix}_h.$$

遂有

$$\begin{bmatrix} \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \end{bmatrix}_h = \begin{bmatrix} \begin{pmatrix} x & 0 \\ 0 & e \end{pmatrix} \begin{pmatrix} 0 & e \\ e & 0 \end{pmatrix} \begin{pmatrix} y & 0 \\ 0 & e \end{pmatrix} \begin{pmatrix} 0 & e \\ e & 0 \end{pmatrix} \end{bmatrix}_h = \begin{bmatrix} \begin{pmatrix} xy & 0 \\ 0 & e \end{pmatrix} \end{bmatrix}_h.$$

置 x 与 y 为某酉元及其伴随, 从而 X 中酉等价为 $M_{2}(X)$ 中同伦.

例 2 (满 *-同态性质举例). 给定 C^* 代数满同态 $X \stackrel{f}{\rightarrow} Y$ (保持 * 与单位元), 则有以下论断.

- 1. $f: U_0(X) = U_0(Y)$.
- 2. $y \in f(U(X))$ 在 U(Y) 中的同伦元仍属于 f(U(X)).
- 3. 对任意 $y \in U(Y)$, 存在 $a \in U_0(M_2(X))$ 使得 $f(a) = \begin{pmatrix} y \\ y^* \end{pmatrix}$.
- 4. 对任意自伴元 $y \in Y$, 存在同为自伴元的原像 $x \in X$ 使得 ||x|| = ||y||.
- 5. 对任意 $y \in Y$, 存在原像 $x \in X$ 使得 ||x|| = ||y||.

证明. 依次证明如下.

1. 一方面, *-同态表明 $f: U_0(X) \to U_0(Y)$. 另一方面, 例 1 表明任意 $y \in U_0(Y)$ 形如 $\exp i \sum t_i$, 其中 $\sum t_i$ 为自伴算子的有限和. 任取 s_i 使得 $f(s_i) = t_i$, 则

$$f: \exp i \sum \frac{s_i + s_i^*}{2} \mapsto y.$$

从而 $f: U_0(X) \to U_0(Y)$ 满.

- 2. 即证任意 $f(x) \in f(U(X))$ 在 U(B) 中的同伦元 y 仍属于 f(U(X)). 显然 $yf(x^*)$ 与 1 同伦, 从而 $yf(x^*) \in U_0(Y)$. 根据第一条结论, 存在 $z \in X$ 使得 $f(z) = yf(x^*)$, 故 y = f(zx).
- 3. 定理 1 表明 $\begin{pmatrix} y \\ y^* \end{pmatrix}$ 与 $I \in U_0(M_2(Y))$ 同伦. 根据上一则, f 保持 U_0 之满射, 是以 a 存在.
- 4. 对任意自伴元 $y \in Y$,取 $x_0 \in X$ 使得 $f(x_0) = y$. 不妨设 $x_0 = \frac{x_0 + x_0^*}{2}$ 为自伴的. 今考虑截断函数 $\varphi(t) = \min\{\max\{t, -\|b\|\}, \|b\|\}$. 记 $x = \varphi(x_0)$,则 $\sigma_X(x) = \sigma_X(\varphi(x_0)) \subseteq [-\|b\|, \|b\|]$. 从而 $\|x\| \leq \|y\|$. 另一方面, $f(\varphi(x_0)) = \varphi(f(x_0)) = \varphi(y) = y$,从而 $\|y\| \leq \|x\|$. 综上, $\|x\| = \|y\|$.
- 5. 对任意 $y \in Y$,考虑 $M_2(Y)$ 中自伴元 $y' := \begin{pmatrix} 0 & y \\ y^* & 0 \end{pmatrix}$. 则存在 $x' \in M_2(X)$ 使得 $\|x'\| = \|y'\|$ 且 f(x') = y'. 写作矩阵形式,则

$$f: x' = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} \mapsto \begin{pmatrix} f(x_1) & f(x_2) \\ f(x_3) & f(x_4) \end{pmatrix} = \begin{pmatrix} 0 & y \\ y^* & 0 \end{pmatrix}.$$

此处 x_2 自伴且 $||x_2|| \le ||x'|| = ||y'|| = \sqrt{||y'y'^*||} = ||y||$. 另一方面,第三则证明表明 $||y|| = ||f(x_2)|| \le ||x_2||$. 从而 $||x_2|| = ||y||$.

注 3. 满 *-同态 $X \stackrel{f}{\rightarrow} Y$ 未必保持投影或酉元.

- 1. 考虑 $C([0,1]) \to \mathbb{C} \oplus \mathbb{C}, f \mapsto (f(0), f(1)), 则投影 (0,1)$ 的提升必不为投影.
- 2. 考虑正合列 $0 \to C(\mathbb{D}) \to C(\overline{\mathbb{D}}) \to C(S^1) \to 0$. 显然 id_{S^1} 为 $C(S^1)$ 中的酉元. 依照拓扑学常识, id_{S^1} 的任意提升均有零点, 从而不是酉元.

定义 8 (幂等等价). 称幂等元 $e, e' \in X$ 等价, 若存在 $x, y \in X$ 使得 e = xy 且 e' = yx. 记等价关系为 $[e]_i = [e']_i$.

定理 2. 对任意幂等元 $e \in Idem(X)$, 总存在 $p \in Proj(X)$ 使得 $[p]_h = [e]_h$ 在 Proj(X) 中成立, 且 $[p]_i = [e]_i$. 证明.