Algorithms and Data Structures

Week 13 - Lecture A

Computational Complexity

- All problems can be classified into one of a number of classes, depending on how difficult they are to solve.
- These classes include:
 - P the set of all problems which can be solved in *Polynomial* time;
 - EXP the set of all problems which can be solved in *Exponential* time;
 - R the set of all problems which can be solved in *Finite* time.
- Beyond R there are still problems, these are *unsolvable*.
 - There are more of these than in any other class. ☺
- Almost all of the problems we have looked at in this subject are members of P.

Some Sample Problems

- Negative-Weight Cycle Detection:
 - ∈ P.
- *n* × *n* Chess:
 - ∈ EXP;
 - ∉ P.
- Tetris:
 - ∈ EXP;
 - We don't know if it is in P.
- Halting Problem:
 - ∉ R.

Most Decision Problems ∉ R

- Decision problems are ones with a Yes/No answer.
- Program
 - ⇒ Binary string
 - ⇒ Natural number.
- So there are no more programs than there are integers.
- Decision Problem
 - \Rightarrow function: inputs \rightarrow {Yes, No}
 - \Rightarrow function: binary string \rightarrow {0,1}
 - \Rightarrow function: natural number \rightarrow {0,1}.

Most Decision Problems ∉ R

• We can tabulate any decision problem for each of its possible inputs...

	Input	1	2	3	4	5	6	7	8	
• We (Yes/No	0	1	0	0	1	1	0	1	

- We described any desired problem in terms of the number sequence of bits in the Yes/No row.
- If we express it as a binary fraction e.g. .01001101... we can equate each decision problem to a real number between 0 and 1.

Most Decision Problems ∉ R

- So:
 - Every program $\in \mathcal{Z}$;
 - \mathcal{Z} is *countably* infinite.
 - Every decision problem $\in \Re$.
 - \Re is *uncountably* infinite.
- $|\Re| >> |\mathcal{Z}|$.
 - There are far more real numbers than integers;
 - There are far more decision problems than programs;
 - Almost every problem is non-computable;
 - Almost every problem is unsolvable by any program.
- Depressed?

One More Class?

- NP the set of all problems solvable in polynomial time using a "lucky" algorithm.
 - Lucky = always makes the right guess.
- Nondeterministic model:
 - Algorithm makes guesses;
 - Guess leads to Yes or No;
 - Guesses will always lead to Yes if there is at least one solution in the decision tree;
 - This is a sort of "magic greedy algorithm".

Tetris

- If we play a finite game of Tetris we can make guesses for each piece:
 - Where to drop it;
 - How to rotate it;
 - Whether to make last-minute adjustments.
- If we have a "lucky" algorithm for Tetris we can answer the question "Can I survive?" in a number of guesses which is polynomial in the number of pieces.
- This means that Tetris \in NP.

NP – an Alternative View

- NP the set of all problems whose "solutions" can be "checked" in polynomial time.
 - Whenever the answer is Yes there exists a proof which can be verified in polynomial time.
- It is usually easier to check a solution than to produce it.
 - E.g. Is 54727067 a composite number? hard to test.
 - The factors of 54727067 are 6701 and 8167. easy to verify.
- It should be obvious that every problem in P is also in NP.
 - $P \subseteq NP$
 - P = NP ? (Probably not.)

Tetris Again

- If P≠NP we can prove that some problems, including Tetris, are in NP-P.
- We do this by demonstrating that such problems are as hard as possible while still being in NP.
- We can demonstrate that Tetris is NP-hard;
 - At least as hard as every problem in NP.
- In fact, Tetris is NP-complete.
 - NP-hard and in NP.

Reduction: Defining "As Hard As"

- Given a problem, A, that you want to solve.
- If we can convert it into some other problem, B, then we can solve B and use this solution to solve A.
- This process is called *reduction*.
- We say the problem A is reducible to problem B.
- Note: this may not be the best way to solve problem A.
- If A is reducible to B we can say that B is at least as hard as A.

An Example of Reduction

- A:
 - Given a weighted graph, G, find the path between S and D which minimizes the *product* of the path weights.
- B:
 - Given a weighted graph, G', find the path between S and D which minimizes the *sum* of the path weights.
- Reduction A→B:
 - Replace the weights in G with their logarithms.

Proving a Problem is NP-complete

- To prove a problem is NP-complete we need only to prove:
 - The problem is in NP;
 - Some other problem that is already known to be NP-complete is reducible to the new problem.
- This avoids the issue of finding the first NP-complete problem.
- Stephen Cook did this in 1971:
 - Formula Satisfiability (Sat).
- Richard Karp extended Cook's work:
 - In fact, he showed that 21 different problems were all NP-complete.

Some other NP-complete Problems

- The knapsack problem:
 - Given n elements, $\{w_1, ..., w_n\}$ and a target W, is there a subset of elements which adds up exactly to W?
- The Hamiltonian cycle problem:
 - Given a graph, G=(V, E), is there a sequence of distinct edges e ∈ E forming a closed path such that each vertex v ∈ V is visited exactly once?
- The three colour problem.
 - Given a graph, G=(V, E), can colours be assigned to its vertices such that for any two vertices v_1 , v_2 such that:
 - if $(v_1, v_2) \in E$ then $colour(v_1) \neq colour(v_2)$ using no more than 3 colours.

Some other NP-complete Problems

- The travelling salesman problem:
 - Given a weighted graph, G=(V, E, W), is there a sequence of distinct edges $e \in E$ forming a closed path such that each vertex $v \in V$ is visited exactly once and the sum of the weights of the traversed edges is minimized?
- Satisfiability:
 - Given a set of Boolean variables b_1 , b_2 , ..., b_n and the operators AND, OR and NOT can values be assigned to each variable such that a well formed expression involving only these components such that the expression evaluates to true?
 - A version of this was the first problem shown to be NP-complete.

Who Wants to be a Millionaire?

- You can win \$1,000,000.
- All you have to do is either:
 - Find a polynomial time algorithm to solve any NP-Complete problem, (your choice of problem), or;
 - Prove that at least one NP-complete problem has no polynomial time solution algorithm.
- Note: "I can't find one" ≠ "There isn't one"