LEC019 MAB I

VG441 SS2021

Cong Shi Industrial & Operations Engineering University of Michigan

Basic RL for combining learning and decisions

Multi-Armed Bandit Problem

MAB

- Different machine generates different random rewards
- Gambler decides which slot machine to play with each token
- Maximize reward (\$\$)

Online decision-making: learning while doing

- Online decision-making involves a fundamental choice:
 - Exploration: Gather more information
 - Exploitation: Make the best decision given current information

The best long-term strategy may involve short-term sacrifices

It turns out

always pays \$5/round

It turns out

always pays \$5/round

It turns out

always pays \$5/round

A/B Testing

- Exploration: Gather more information about which design is better
- Exploration: Show the best design to the customer

Revenue Management

- Retailers are interested in finding an optimal (pricing) policy to max revenue
- Unknown relationship between price and customer's purchasing decision (demand distribution)
 - Exploration: Gather more information about customers behavior using different prices
 - Exploitation: Make the best price based on the current information

Inventory Management

- Retailers are interested in finding an optimal (ordering) policy to min cost
- Unknown demand distribution (can only observe sales censored demand)
 - Exploration: Order more to find out about true demand distribution
 - Exploitation: Order just right to minimize the cost

Other Applications

- Clinical trials
- Recommender systems
- Advertising: what ad to put on a web-page?
- Auctions
- Financial portfolio design
- Crowdsourcing

Many algorithms for MAB

- ϵ -greedy algorithm
- Upper confidence bound (UCB)
 - Add confidence bonus to the estimated mean
 - If the estimator is reliable, add less; if not, add more

$$i_t = \arg\max\left[\hat{\mu}_i + \underbrace{\sqrt{\frac{c\log t}{n_i}}}_{\text{ucb}_i}\right]$$

- Thompson sampling
 - Bayesian setup with a prior distribution over reward parameters
 - Choose the auction that maximizes the expected reward under posterior

Online Network RM using TS

- \sim \$300B industry with \sim 10% annual growth over the last 5 years
 - IBISWorldUS Industry Report; excludes online sales of traditionally brick & mortar stores

- Online retailers have additional information as compared to brick & mortar retailers, e.g. real-time customer purchase decisions (buy / no buy)
 - How can we use this information to develop a more effective revenue management strategy?

Setting

- Finite selling horizon of T periods
 - One customer arrives per period
 - Sequentially observe customer purchase decisions
- Finite set of prices; i-th price denoted by p_i
- Unknown mean demand per price ("purchase probability") d_i
- Given unlimited inventory and known demand, select price with highest revenue = $p_i \times d_i$
- Challenges: unknown demand
- Exploration vs. Exploitation Tradeoff

- Retailer decides...
 - Which price to offer to a customer
 - How many times to offer each price
 - In what order to offer prices to customers
- · Learns demand at each price to max revenue

 $\hat{d}_1 \sim Beta(1,1)$ True (unknown) $d_1 = 0.6$

$$\hat{d}_2 \sim Beta(1,1)$$

True (unknown) $d_2 = 0.3$

- Customer arrives
- 2. Retailer samples θ_1 and θ_2 from current distributional estimation of d_1 and d_2
- 3. Retailer offers price that maximizes $p_i\theta_i$
- 4. Customer makes purchase decision (according to d_i)
- Retailer observes purchase decision and updates demand estimation

 $\hat{d}_1 \sim Beta(1,1)$ True (unknown) $d_1 = 0.6$

 $\hat{d}_2 \sim Beta(1,1)$ True (unknown) $d_2 = 0.3$

 $\hat{d}_2 \sim Beta(1, 1 + 1)$ True (unknown) $d_2 = 0.3$

Customer does not buy item 2

p₂ = \$39.90

 $\hat{d}_2 \sim Beta(1,2)$ True (unknown) $d_2 = 0.3$

update

Customer buys item 1

RM-MAB: 2 Price Example

As each price is offered more times...

- · Beta pdf converges to reflect true mean demand
- Will choose optimal price with high probability

 $\hat{d}_1 \sim \text{Beta}(1 + \# \text{"buy"}, 1 + \# \text{"no buy"})$ True (unknown) $d_1 = 0.6$

 $\hat{d}_2 \sim \text{Beta}(1 + \text{# "buy"}, 1 + \text{# "no buy"})$ True (unknown) $d_2 = 0.3$

Advantages of Thompson Sampling

- Empirical and theoretical results show it's a highly competitive algorithm for unlimited inventory
- Easy to implement and understand
- Non-parametric
- Continuous exploration & exploitation

How do we incorporate inventory constraints?

Key Tradeoffs:

- Exploration vs. Exploitation
- Explore at the cost of running out of inventory

RM-with inventory constraint

- 1. Customer arrives
- 2. Retailer samples θ_1 and θ_2
- 3. Retailer solves a deterministic LP to identify the optimal fraction of remaining customers to offer p_1 and p_2 , using
 - θ_1 and θ_2
 - Remaining unsold inventory & customers
- 4. Retailer offers price p_i with probability based on fraction found in Step 3
- 5. Customer makes purchase decision
- 6. Retailer observes decision and updates \hat{d}_i

RM-with inventory constraint

 $x_i = \text{fraction of remaining customers } (T-t) \text{ to offer price } p_i$

$$\max_{x_1, x_2} \sum\nolimits_{T-t} p_1 \theta_1 x_1 + p_2 \theta_2 x_2$$

$$s.t. x_1 + x_2 \le 1$$

$$(T-t)(\theta_1x_1+\theta_2x_2)\leq Inv(t)$$

$$x_1, x_2 \ge 0$$

maximize revenue over remaining customers

fraction of remaining customers ≤ 1

expected inventory sold is upperbounded by remaining inventory

RM-with inventory constraint

- Regret = E[Revenue of Optimal Policy with Known Demand] E[Revenue of Algorithm]
 - ≤ Upper Bound on Optimal Policy –
 E[Revenue of Algorithm]

<u>Theorem</u>

Suppose the LP of the underlying true demand (i.e. benchmark) is nondegenerate. Then, for the modified Thompson Sampling with Inventory Algorithm,

$$Regret(T) \le O(\sqrt{T} \log T \log \log T) = \tilde{O}(\sqrt{T})$$