4 有理型関数・バーゼル問題

岩井雅崇 2023/04/11

以下断りがなければ, Ω は \mathbb{C} の領域 (連結開集合) とし, $\mathbb{D} = \{z \in \mathbb{C} | |z| < 1\}$ とする.

ローラン展開・極に関する問題

問 4.1 ●次の問いに答えよ.

- (a) 「a が f の除去可能特異点である」,「a が f の極である」,「a が f の真性特異点である」ことの定義をそれぞれ述べよ.
- (b) 「f が Ω の有理型関数である」、「f が Ω の有理関数である」ことの定義をそれぞれ述べよ.また二つの定義の違いは何か?¹
- 問 $4.2 \cdot \frac{e^z}{z^3}$ の z=0 での留数を求めよ.
- 問 $4.3 \cdot \frac{z^4+3}{z^4-1}$ の z=i での留数を求めよ.
- 問 $4.4 \cdot e^{z+\frac{1}{z}}$ の z=0 でのローラン展開を求めよ.
- 問 4.5 $\frac{1}{(z-1)(z-2)}$ の円環領域 $\{z\in\mathbb{C}|1<|z|<2\}$ におけるローラン展開を求めよ.
- 問 $4.6 * \frac{1}{(\sin z)^2}$ の z=0 におけるローラン展開を z^4 の係数まで求めよ.
- 問 $4.7\ f$ を $\mathbb C$ 上の有理型関数で極は有限個であると仮定する. $\lim_{|z|\to\infty}=\alpha$ となる $\alpha\in\mathbb C$ が存在するとき f(z) は有理関数であることを示せ. また「極は有限個である」という仮定を外したとき、この主張は成り立つか?
- 問 4.8 (偏角の原理) f を円盤 D 上の正則関数とし, ∂D 上に f の零点はないものとする. f の D での零点の個数を N とする (ただし, m 位の零点は m この零点と重複して考える.) このとき

$$\frac{1}{2\pi i} \int_{\partial D} \frac{f'(z)}{f(z)} dz = N$$

が成り立つことを示せ、また f が有理型関数の場合はどうなるか?

問 4.9 問 4.8 を用いて代数学の基本定理を示せ.

正則関数の拡張に関する問題

- 問 4.10 \bullet $\mathbb{D}^* = \{z \in \mathbb{C} | 0 < |z| < 1\}$ とし、 f を \mathbb{D}^* 上の正則関数とする. f が \mathbb{D}^* 上で有界ならば、 f は \mathbb{D} 上の正則関数に拡張できることを示せ.
- 問 4.11 $\mathbb{D}^* = \{z \in \mathbb{C} | 0 < |z| < 1\}$ とし, f を \mathbb{D}^* 上の正則関数とする. $z \in \mathbb{D}^*$ によらない定数 M > 0 があって, \mathbb{D}^* 上で $|f(z)| \leq M \log |z|$ を満たすとき, f は \mathbb{D} 上の正則関数に拡張できることを示せ. 2

¹ 有理型関数だが有理関数でないものの例をあげても良い.

 $^{^2}$ もっと強く f が L^2 関数なら拡張できる.(演習でこれを示しても良い).

- 問 4.12 $(-1,1)\setminus\{0\}$ 上の有界な C^∞ 級関数で (-1,1) に C^∞ 級拡張できないものを構成せよ.
- 問 4.13 $\mathbb{C}\setminus\{0\}$ 上の正則関数 $f(z)=rac{1-\cos z}{z^2}$ は f(0) をうまく定めれば \mathbb{C} 上の正則関数に拡張できる ことを示せ.
- 問 $4.14 \ f(z)$ を \mathbb{C} 上の正則関数とする. 任意の $z \in \mathbb{C}$ について $|f(z)| < |\sin z|$ が成り立つならば、あ る $a \in \mathbb{C}$ が存在して $f(z) = a \sin z$ となることを示せ.

第5回授業に関する問題

- 問 4.15 (授業の内容) $\sum_{n=-\infty}^{\infty}\frac{1}{(z-n\pi)^2}$ は領域 $\{z\in\mathbb{C}||\mathrm{Im}(z)|>1,0<\mathrm{Re}(z)<1\}$ 上において一様収 東することを示せ.
- 問 4.16 (授業の内容) 次の問いに答えよ.
 - (a) $\sin z = 0$ となる $z \in \mathbb{C}$ を全て求めよ.
 - (b) $\sin z = 2$ となる $z \in \mathbb{C}$ を全て求めよ.
- 問 4.17 (授業の内容) $|\operatorname{Im}(z)| \to \infty$ ならば $|\sin z| \to \infty$ となることを示せ.
- 問 4.18 $\sum_{n=1}^{\infty} \frac{1}{n^4}$ と $\sum_{n=1}^{\infty} \frac{1}{n^6}$ をそれぞれ求めよ.

院試の問題

問 4.19 * a > 0 とし

$$f(z) = \frac{e^{iz}}{z(z^2 + a^2)}$$

と定める. 次の問いにこたえよ.

- (a) z = 0 における f(z) のローラン展開の主要部を求めよ.
- (b) r>0 とし $\mathbb C$ 上の積分路を $C_r:z=re^{i\theta}(0\leq\theta\leq\pi)$ とおく. $I(r):=\int_{C_r}f(z)dz$ とおく とき, $\lim_{r\to 0} I(r)$ と $\lim_{r\to \infty} I(r)$ の値をそれぞれ求めよ.
- (c) 0 < r < a < R なる実数に対し

$$D_{r,R} = \{ z \in \mathbb{C} | r < |z| < R, \operatorname{Im}(z) > 0 \}$$

- とおく. $\int_{\partial D_{r,R}}f(z)dz$ の値を求めよ. (d) 広義積分 $\int_0^\infty \frac{\sin x}{x(x^2+a^2)}dx$ は収束することを示し, その値を求めよ.
- 問4.20 * 大阪大学の数学科の院試の問題で複素解析に関係あるものを解け. ただし解答前に教官(岩 井) に問題を見せること.

演習の問題は授業ページ (https://masataka123.github.io/2023_ summer_complex/) にもあります. 右下の QR コードからを読み込んでも 構いません.

