Subgradient Ellipsoid Method for Nonsmooth Convex Problems

Anton Rodomanov (UCLouvain) (joint work with Y. Nesterov)

May 6, 2022 FGP Conference on Optimization, Porto

Problem Setup

$$\min_{x \in Q} f(x)$$

- $f: \mathbb{R}^n \to \mathbb{R}$ is a general convex Lipschitz continuous function.
- $Q \subseteq \mathbb{R}^n$ is a compact convex set with nonempty interior.

First-Order Oracle: Returns $f'(x) \in \partial f(x)$ for any $x \in \mathbb{R}^n$.

Separation Oracle: Checks if $x \in Q$. If not, returns $g_Q(x) \in \mathbb{R}^n \setminus \{0\}$:

$$\langle g_Q(x), x-y\rangle \geq 0, \qquad \forall y \in Q.$$

Ex: $Q = \{x : g(x) \le 0\}$ for convex $g : \mathbb{R}^n \to \mathbb{R} \implies g_Q(x) = g'(x)$.

Combined Oracle: $G(x) := \begin{cases} f'(x), & \text{if } x \in Q, \\ g_Q(x), & \text{if } x \notin Q. \end{cases}$

Main property: For an optimal solution x^* , we have

$$\langle \mathcal{G}(x), x - x^* \rangle \ge 0, \quad \forall x \in \mathbb{R}^n.$$

Ellipsoid Method: Geometry

Ellispoid: For
$$\bar{x} \in \mathbb{R}^n$$
, $H \in \mathbb{S}^n_{++}$, $\mathcal{E}(\bar{x}, H) := \{x : \langle H^{-1}(x - \bar{x}), x - \bar{x} \rangle \leq 1\}.$

Let
$$E := \mathcal{E}(\bar{x}, H)$$
, $g \in \mathbb{R}^n \setminus \{0\}$,
 $\bar{E} := \{x \in E : \langle g, \bar{x} - x \rangle \ge 0\}$.

Minimum-volume ellipsoid $\supseteq \bar{E}$:

$$\bar{E} \subseteq E_+ := \mathcal{E}(\bar{x}_+, H_+),$$

where

$$\operatorname{vol} \mathbf{E}_{+} \leq \exp(-1/(2n)) \operatorname{vol} \mathbf{E}.$$

Ellipsoid E_+ can be easily computed:

$$\bar{x}_+ = \bar{x} - \frac{1}{n+1} \frac{Hg}{\langle g, Hg \rangle^{1/2}}, \quad H_+ = \frac{n^2}{n^2-1} \Big(H - \frac{2}{n+1} \frac{Hgg^T H}{\langle g, Hg \rangle} \Big).$$

Ellipsoid Method: Algorithm

- Choose $x_0 \in \mathbb{R}^n$ and R > 0 such that $Q \subseteq B(x_0, R)$.
- ② Set $H_0 := R^2 I$.
- **3** Iterate for $k \ge 0$:
 - **1** Query the oracle to obtain $g_k := \mathcal{G}(x_k)$.
 - Ompute the center of the new ellipsoid:

$$x_{k+1} \coloneqq x_k - \frac{1}{n+1} \frac{H_k g_k}{\langle g_k, H_k g_k \rangle^{1/2}},$$

Sompute the matrix of the new ellipsoid:

$$H_{k+1} := \frac{n^2}{n^2 - 1} \Big(H_k - \frac{2}{n+1} \frac{H_k g_k g_k^\mathsf{T} H_k}{\langle g_k, H_k g_k \rangle} \Big).$$

Output: $x_k^* := \operatorname{argmin} \{ f(x) : x \in \{x_0, \dots, x_{k-1}\} \cap Q \}, \ k \ge 1.$

Ellipsoid Method: Complexity

To obtain $x_k^* \in Q$ such that $f(x_k^*) - f^* \le \epsilon$, Ellipsoid Method needs

$$K_{\mathrm{Ell}}(\epsilon) = O\Big(rac{n^2}{r\epsilon}\lnrac{RMD}{r\epsilon}\Big)$$

iterations, where

- *M* is the Lipschitz constant of *f*.
- D is the diameter of Q.
- r is the inner radius of Q (largest of radii of Euclidean balls $\subseteq Q$).

Comparison with Subgradient Method

Suppose that

$$Q=B(x_0,R).$$

Then, we obtain the following estimate:

$$K_{\mathrm{Ell}}(\epsilon) = O\left(\frac{n^2 \ln \frac{2MR}{\epsilon}}{\epsilon}\right)$$

Cf: Subgradient Method (π_Q is the Euclidean projection on Q)

$$x_{k+1} := \pi_Q(x_k - h_k g_k), \qquad k \ge 0,$$

where $h_k := 2R/(\|g_k\|\sqrt{k+1})$, has the "dimension-independent" bound:

$$K_{\mathrm{Subgr}}(\epsilon) = O\left(\frac{M^2R^2}{\epsilon^2}\right).$$

Note: $K_{\text{Ell}}(\epsilon) \ll K_{\text{Subgr}}(\epsilon) \iff n \ll \frac{MR}{\epsilon}$.

Note: $K_{\text{Ell}}(\epsilon) \to \infty$ when $n \to \infty$.

Main Issue

Recall the iteration of the Ellipsoid Method:

$$\begin{aligned} x_{k+1} &= x_k - \frac{1}{n+1} \frac{H_k g_k}{\langle g_k, H_k g_k \rangle^{1/2}}, \\ H_{k+1} &= \frac{n^2}{n^2 - 1} \Big(H_k - \frac{2}{n+1} \frac{H_k g_k g_k^T H_k}{\langle g_k, H_k g_k \rangle} \Big) \end{aligned}$$

When $n \to \infty$, we obtain:

$$x_{k+1} = x_k, H_{k+1} = H_k.$$

 \implies No convergence.

Can we improve the Ellipsoid Method?

(Make it at least as good as the Subgradient Method while retaining the original guarantee of the Ellipsoid Method.)

Subgradient Ellipsoid Method: General Scheme

- ① Choose $x_0 \in \mathbb{R}^n$ and R > 0 such that $Q \subseteq B(x_0, R)$.
- ② Define functions $\ell_0(x) := 0$, $\omega_0(x) := \frac{1}{2} ||x x_0||^2$.
- **3** Iterate for $k \ge 0$:
 - **1** Query the oracle to obtain $g_k := \mathcal{G}(x_k)$.
 - **2** Compute $U_k := \max_{x \in \Omega_k \cap L_k^-} \langle g_k, x_k x \rangle$, where

$$\Omega_k := \{ x \in \mathbb{R}^n : \omega_k(x) \le \frac{1}{2}R^2 \}, \qquad L_k^- := \{ x \in \mathbb{R}^n : \ell_k(x) \le 0 \}.$$

3 Choose coefficients $a_k, b_k \ge 0$ and update functions

$$\begin{split} \ell_{k+1}(x) &:= \ell_k(x) + a_k \langle g_k, x - x_k \rangle, \\ \omega_{k+1}(x) &:= \omega_k(x) + \frac{1}{2} b_k (U_k - \langle g_k, x_k - x_k \rangle) \langle g_k, x - x_k \rangle. \end{split}$$

3 Set $x_{k+1} := \operatorname{argmin}_{x \in \mathbb{R}^n} [\ell_{k+1}(x) + \omega_{k+1}(x)].$

Note: Ω_k is an ellipsoid, L_k^- is a halfspace.

Explicit Formulas

By definitions:

- $\ell_k(x) = \sum_{i=0}^{k-1} a_i \langle g_i, x x_i \rangle$.
- $\omega_k(x) = \frac{1}{2} ||x x_0||^2 + \frac{1}{2} \sum_{i=0}^{k-1} b_i (U_i \langle g_i, x_i x \rangle) \langle g_i, x x_i \rangle$.
- $x_k = \operatorname{argmin}_{x \in \mathbb{R}^n} [\psi_k(x) := \ell_k(x) + \omega_k(x)].$

Note that:

• ψ_k is a quadratic function with Hessian G_k :

$$G_0 = I,$$
 $G_{k+1} = G_k + b_k g_k g_k^T,$ $k \ge 0.$

• We can maintain their inverses $H_k := G_k^{-1}$:

$$H_0 = I,$$
 $H_{k+1} = H_k - \frac{b_k H_k g_k g_k^T H_k}{1 + b_k \langle g_k, H_k g_k \rangle},$ $k \ge 0.$

• Then:

$$x_{k+1} = x_k - \frac{a_k + \frac{1}{2}b_k U_k}{1 + b_k \langle g_k, H_k g_k \rangle} H_k g_k, \qquad k \ge 0.$$

Cutting Plane Property

Recall that

$$\begin{split} \Omega_k &:= \{x \in \mathbb{R}^n : \omega_k(x) \leq \tfrac{1}{2}R^2\}, \qquad L_k^- := \{x \in \mathbb{R}^n : \ell_k(x) \leq 0\}, \\ \text{where } \omega_0(x) &:= \tfrac{1}{2}\|x - x_0\|^2, \ \ell_0(x) := 0, \ \text{and, for any } k \geq 0, \\ \ell_{k+1}(x) &:= \ell_k(x) + a_k \langle g_k, x - x_k \rangle, \\ \omega_{k+1}(x) &:= \omega_k(x) + \tfrac{1}{2}b_k (U_k - \langle g_k, x_k - x \rangle) \langle g_k, x - x_k \rangle \\ \text{with } U_k &:= \max_{x \in \Omega_k \cap L_k^-} \langle g_k, x_k - x \rangle. \end{split}$$

Cutting plane property: For all $k \ge 0$, we have

- $x^* \in \Omega_k \cap L_k^-$.
- $\{x \in \Omega_k \cap L_k^- : \langle g_k, x x_k \rangle \leq 0\} \subseteq \Omega_{k+1} \cap L_{k+1}^-$

Explicit Representation of Ω_k

Lemma. For all $k \ge 0$, we have

$$\Omega_k = \{x \in \mathbb{R}^n : -\ell_k(x) + \frac{1}{2} \|x - x_k\|_{G_k}^2 \le \frac{1}{2} R_k^2 \},$$

where

$$R_0 := R, \qquad R_{k+1}^2 = R_k^2 + (a_k + \frac{1}{2}b_k U_k)^2 \frac{(\|g_k\|_{G_k}^*)^2}{1 + b_k (\|g_k\|_{G_k}^*)^2}, \quad k \ge 0.$$

Consequences:

Sliding gap: For any $k \ge 0$, such that $\Gamma_k := \sum_{i=0}^{k-1} a_i \|g_i\| > 0$, define

$$\Delta_k := \max_{x \in \Omega_k} \frac{1}{\Gamma_k} [-\ell_k(x)] \equiv \max_{x \in \Omega_k} \frac{1}{\Gamma_k} \sum_{i=0}^{k-1} a_i \langle g_i, x_i - x \rangle \leq \frac{R_k^2}{2\Gamma_k}.$$

Note: By appropriately choosing a_k and b_k , we can ensure that $\Delta_k \to 0$.

Gap and Functional Residual

Gap: Given $\lambda := (\lambda_0, \dots, \lambda_{k-1}) \ge 0$ with $\Gamma_k(\lambda) := \sum_{i=0}^{k-1} \lambda_i \|g_i\| > 0$, set

$$\delta_k(\lambda) := \max_{x \in \Omega_0} \frac{1}{\Gamma_k(\lambda)} \sum_{i=0}^{k-1} \frac{\lambda_i}{\langle g_i, x_i - x \rangle}.$$

Recall that $\Omega_0 = B(x_0, R) \supseteq Q$.

Main result: If $\delta_k := \delta_k(\lambda) < r$ for some λ , then the approximate solution $x_k^* := \operatorname{argmin}\{f(x) : x \in \{x_0, \dots, x_{k-1}\} \cap Q\}$ is well-defined, and

$$f(x_k^*) - f^* \le \frac{\delta_k}{r} MD,$$

Note: We will see that $\delta_k(\lambda) \leq \Delta_k$ for some λ (explained later).

Bounding Sliding Gap

Recall:

$$\Delta_k \leq \frac{R_k^2}{2\Gamma_k}.$$

Let us choose

$$a_k := \frac{\alpha_k R + \frac{1}{2}\theta \gamma R_k}{\|g_k\|_{G_k}^*}, \qquad b_k := \frac{\gamma}{(\|g_k\|_{G_k}^*)^2}, \qquad k \ge 0,$$

where $\alpha_k, \theta, \gamma \geq 0$ (to be chosen later).

Lemma. For any $k \ge 0$ and any $\tau > 0$, we have

$$R_k^2 \leq q^k C_k R^2, \qquad \Gamma_k \geq R\Big(\sum_{i=0}^{k-1} \alpha_i + \frac{1}{2}\theta \sqrt{\gamma n[(1+\gamma)^{k/n} - 1]}\Big),$$

where

$$q := 1 + \frac{c\gamma^2}{2(1+\gamma)}, \quad c := \frac{1}{2}(\tau+1)(\theta+1)^2, \quad C_k := 1 + \frac{\tau+1}{\tau}\sum_{i=0}^{k-1}\alpha_i^2.$$

Subgradient Method

$$\alpha_k > 0, \qquad \theta \coloneqq 0, \qquad \gamma \coloneqq 0.$$

Then:

$$x_{k+1} = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \left[\frac{1}{2} \|x - x_0\|^2 + \sum_{i=0}^{k-1} a_i \langle g_i, x - x_i \rangle \right] = x_k - a_k g_k.$$

In this case, $\Omega_k = \Omega_0 = B(x_0, R)$ (no sliding), and

$$\delta_k = \Delta_k \le \frac{1 + \sum_{i=0}^{k-1} \alpha_i^2}{2 \sum_{i=0}^{k-1} \alpha_i} R.$$

• Constant step size: Fix $k \ge 1$ and set

$$\alpha_i := \frac{1}{\sqrt{k}} \quad (0 \le i \le k - 1) \quad \Longrightarrow \quad \Delta_k \le \frac{R}{\sqrt{k}}.$$

• Time-varying step size:

$$\alpha_k := \frac{1}{\sqrt{k+1}} \quad \Longrightarrow \quad \Delta_k \le \frac{2 + \ln k}{2\sqrt{k}} R.$$

(Standard) Ellipsoid Method

$$\alpha_k \coloneqq 0, \qquad \theta \coloneqq 0, \qquad \gamma \coloneqq \frac{2}{n-1}.$$

In this method:

- $a_k = 0$ for all $k \ge 0$.
- $\ell_k(x) \equiv \sum_{i=0}^{k-1} a_i \langle g_i, x x_i \rangle = 0.$
- $L_k^- = \mathbb{R}^n$ and $\Omega_k \cap L_k^- = \Omega_k = \{x : \|x x_k\|_{G_k} \le R_k\}.$
- $\Gamma_k := \sum_{i=0}^{k-1} a_i \|g_i\| = 0 \implies \Delta_k := \frac{1}{\Gamma_k} \max_{x \in \Omega_k} [-\ell_k(x)]$ undefined.
- Substitute: average radius

$$\rho_k := \left[\frac{\operatorname{vol}\Omega_k}{\operatorname{vol}B(0,1)}\right]^{1/n} = R_k[\det G_k]^{-1/(2n)} \le \exp(-k/(2n^2))R.$$

Can be shown that $f(x_k^*) - f^* \le \frac{\rho_k}{r} MD$.

Ellipsoid Method with Preliminary Certificate

$$\alpha_k \coloneqq 0, \qquad \theta \coloneqq \sqrt{2} - 1 \ (\approx 0.41), \qquad \gamma \coloneqq \gamma_1(2n) \in \left[\frac{1}{2n}, \frac{1}{n}\right].$$

In this method:

- $a_k > 0$, hence the sliding gap Δ_k is well-defined.
- Rate:

$$\Delta_k \le 6 \exp\left(-k/(8n^2)\right) R.$$

Subgradient Ellipsoid Method

$$\alpha_k := \beta_k \sqrt{\frac{\theta}{\theta+1}}, \quad \theta := \sqrt[3]{2} - 1 \ (\approx 0.26), \quad \gamma := \gamma_1(2n) \in \left[\frac{1}{2n}, \frac{1}{n}\right].$$

Then:

$$\Delta_k \leq \begin{cases} 2(\sum_{i=0}^{k-1}\beta_i)^{-1}(1+\sum_{i=0}^{k-1}\beta_i^2)R, & \text{if } k \leq n^2, \\ 6\exp\bigl(-k/(8n^2)\bigr)(1+\sum_{i=0}^{k-1}\beta_i^2)R, & \text{if } k \geq n^2. \end{cases}$$

• Constant step size: Fix $k \ge 1$ and set

$$\beta_i := \frac{1}{\sqrt{k}} \ (0 \le i \le k-1) \implies \Delta_k \le \begin{cases} 4R/\sqrt{k}, & \text{if } k \le n^2, \\ 12R \exp\left(-k/(8n^2)\right), & \text{if } k \ge n^2. \end{cases}$$

• Time-varying step size:

$$\beta_k := \frac{1}{\sqrt{k+1}} \implies \Delta_k \leq \begin{cases} 2(2+\ln k)R/\sqrt{k}, & \text{if } k \leq n^2, \\ 6(2+\ln k)R\exp\left(-k/(8n^2)\right), & \text{if } k \geq n^2. \end{cases}$$

Discussion

Rate of the Subgradient Ellipsoid Method:

$$\Delta_k \leq \begin{cases} 4R/\sqrt{k}, & \text{if } k \leq n^2, \\ 12R \exp\left(-k/(8n^2)\right), & \text{if } k \geq n^2. \end{cases}$$

Rates of the Subgradient and Ellipsoid methods:

- $\Delta_k^{\text{Subgr}} := R/\sqrt{k}$.
- $\rho_k^{\text{Ell}} := R \exp(-k/(2n^2))$.

Note: $\Delta_k^{\text{Subgr}} \leq \rho_k^{\text{Ell}} \iff k \leq K_0$, where $n^2 \ln(2n) \leq K_0 \leq 3n^2 \ln(2n)$.

Conslusion: $\Delta_k \lesssim \min\{\Delta_k^{\text{Subgr}}, \rho_k^{\text{Ell}}\}.$

From Sliding Gap to (Usual) Gap

Sliding gap:

$$\Delta_k := \max_{x \in \Omega_k} \frac{1}{\Gamma_k} \sum_{i=0}^{k-1} a_i \langle g_i, x_i - x \rangle, \qquad \Gamma_k := \sum_{i=0}^{k-1} a_i \|g_i\|.$$

• **Gap** (for a certificate $\lambda := (\lambda_0, \dots, \lambda_{k-1}) \ge 0$):

$$\delta_k(\lambda) := \max_{x \in \Omega_0} \frac{1}{\Gamma_k(\lambda)} \sum_{i=0}^{k-1} \lambda_i \langle g_i, x_i - x \rangle, \qquad \Gamma_k(\lambda) := \sum_{i=0}^{k-1} \lambda_i \|g_i\|.$$

Main result: There exists $\mu:=(\mu_0,\dots,\mu_{k-1})\geq 0$ such that $\delta_k(a+\mu)\leq \Delta_k.$

Note: μ can be efficiently computed (next slide).

Computing Accuracy Certificate

Recall the **cutting plane property**: for $Q_k := \Omega_k \cap L_k^-$, we have

$$\hat{Q}_k := \{x \in Q_k : \langle g_k, x - x_k \rangle \le 0\} \subseteq Q_{k+1}.$$

Dual multiplier: For any $s \in \mathbb{R}^n$, we can find $\mu_i := \mu_i(s) \geq 0$ such that

$$\max_{x \in \hat{Q}_i} \langle s, x \rangle = \max_{x \in Q_i} [\langle s, x \rangle + \mu_i \langle g_i, x_i - x \rangle].$$

Note: μ_i can be efficiently computed in $O(n^2)$ operations.

Augmentation Algorithm [~ Nemirovski, Onn, Rothblum, 2010]

- **1** Set $s_k := -\sum_{i=0}^{k-1} a_i g_i$.
- 2 Iterate for $i = k 1, \dots, 0$:
 - **1** Compute $\mu_i := \mu_i(s)$.
 - **2** Set $s_i := s_{i+1} \mu_i g_i$.

Total cost: $O(kn^2)$.

Conclusions

- The standard Ellipsoid Method has an "incorrect" dependency on n.
- We have proposed a new version which is more robust w.r.t. n.
- It can be seen as a combination of:
 - "Dimension-dependent" Ellipsoid Method.
 - "Dimension-independent" Subgradient Method.
- Can be extended to more general problems with "convex structure" (primal-dual problems, saddle-point problems, variational inequalities).

Open questions:

• Get rid of extra ln k for time-varying step sizes?

(Dual Averaging?)
$$x_k = \underset{x}{\operatorname{argmin}} \left[\frac{\beta_k}{2} \|x - x_0\|^2 + \sum_{i=0}^{k-1} a_i \langle g_i, x - x_i \rangle \right].$$

- Continuous (monotone) convergence rate estimate?
- Other combinations of methods?

Paper

A. Rodomanov and Y. Nesterov.

Subgradient Ellipsoid Method for Nonsmooth Convex Problems.

ArXiv:2106.13340.

Thank you!