Text file to create

We need to set red words

The blue part can be omitted

■ Neural network setting 「NET.txt」

CrossEntropy	Square or CrossEntropy
BATCH_SIZE 50	Mini batch size
EPOCH 10	Epoch number
LAMBDA 0. 000000	Load decay (weight decay)
EPS 0. 001000	Learning rate
OPTIMIZER Adam	Optimizer
	Xoptimizer solver is listed on the final page

^{*} Leave the setting of LAMBDA to 0 (there is a problem)

■ Layer setting 「LAYER.txt」

LAYER 4	Number of layers
1 [28, 28]	Input feature map from left, input unit width,
	input unit height
Each layer setting	
See layer description	* Width and height are numbers when input units
	are regarded as a matrix
END	

■ Describing layers

Fully Connected layer

LAYER_TYPE_FullyConnected/layerName 1 [7, 7] -> [1, 10] Softmax	From the left, input of feature map, output unit width, output unit height, start function
	 The width and height are the numbers when looking at the input device as a matrix Activation function described on final page

Convolutional layer

LAYER_TYPE_Convolutional/layerName	From the left, input feature map, convolution
20 [28, 28]→(5, 5)→[28, 28] st 1 ReLU	width, convolution height, stride, activation
	function

maxPooling layer

LAYER_TYPE_maxPooling/layerName	From the left, input feature map, convolution
20 [28, 28] \rightarrow (4, 4) \rightarrow [7, 7] st 4 Identity	width, convolution height, stride, activation
	function

■ Activation function can use

Identity
$$h(x) = x$$

ReLU
$$h(x) = \max(0, x)$$

Sigmoid
$$h(x) = \frac{1}{1 + e^{-x}} = \frac{\tanh(x/2) + 1}{2}$$

Tanh
$$h(x) = \tanh(x)$$

Abs
$$h(x) = |x|$$

Softsign
$$h(x) = \frac{x}{1 + |x|}$$

Softplus
$$h(x) = \log(1 + e^x)$$

LReLU $h(x) = \max(0.01x, x)$

ELU
$$h(x) = \begin{cases} e^x - 1 & x < 0 \\ x & x \ge 0 \end{cases}$$

■Optimizer solver

Adam

$$m_{t+1} = \beta_1 m_t + (1 - \beta_1) \nabla E(\mathbf{w}^t)$$

$$v_{t+1} = \beta_2 v_t + (1 - \beta_2) \nabla E(\mathbf{w}^t)^2$$

$$\hat{m} = \frac{m_{t+1}}{1 - \beta_1^t}$$

$$\hat{v} = \frac{v_{t+1}}{1 - \beta_2^t}$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \alpha \frac{\hat{m}}{\sqrt{\hat{v}} + \epsilon}$$

 $\alpha = 0.001$, $\beta = 1 = 0.9$, $\beta = 2 = 0.999$, $\epsilon = 10E - 8$

AdaGrad

$$egin{aligned} h_0 &= \epsilon \ h_t &= h_{t-1} +
abla E(\mathbf{w}^t)^2 \ \eta_t &= rac{\eta_0}{\sqrt{h_t}} \ \mathbf{w}^{t+1} &= \mathbf{w}^t - \eta_t
abla E(\mathbf{w}^t) \end{aligned}$$

 ϵ =10E-8 , η 0 =0.001

RMSprop

$$h_t = \alpha h_{t-1} + (1 - \alpha) \nabla E(\mathbf{w}^t)^2$$
$$\eta_t = \frac{\eta_0}{\sqrt{h_t} + \epsilon}$$
$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta_t \nabla E(\mathbf{w}^t)$$

 $\alpha = 0.99$, $\epsilon = 10E - 8$, $\eta 0 = 0.01$

AdaDelta

$$h_t = \rho h_{t-1} + (1 - \rho) \nabla E(\mathbf{w}^t)^2$$

$$v_t = \frac{\sqrt{s_t + \epsilon}}{\sqrt{h_t + \epsilon}} \nabla E(\mathbf{w}^t)$$

$$s_{t+1} = \rho s_t + (1 - \rho) v_t^2$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - v_t$$

 ρ =0. 95, ϵ =10E-6