·证券与投资·

基于主成分分析的股票流动性的度量

胡克嫚,曾志坚

(湖南大学 工商管理学院,湖南 长沙 410082)*

摘 要:流动性是一个多维变量,因此要度量股票的流动性,必须采用一种多维的计量方法。以上证 180 指数成分股中的 30 只股票为研究样本,利用高频数据,运用主成分分析方法获得了一种新的流动性度 量方法,该方法能够更好地描述中国股市的流动性。

关键词:股票:流动性:主成分分析

中图分类号:F832 文献标识码: A 文章编号.1003 - 7217(2005)06 - 0049 - 04

一、流动性的定义与内涵

流动性是证券市场的生命力所在。二级市场的流动性 为投资者提供了转让和买卖证券的机会,也为投资者提供了 筹资的必要前提;如果市场缺乏流动性而导致交易难以完 成,市场也就失去了存在的必要。对于流动性,存在多种定 义。O'Hara认为,流动性就是"立即完成交易的价格"(the Price of Immediacy)。[1] Amihud 和 Mendelson 认为,流动性即 在一定时间内完成交易所需的成本,或寻找一个理想的价格 所需用的时间。[2] Massimb 和 Phelps 把流动性概括为"为进 入市场的订单提供立即执行交易的一种市场能力"(通常称 为"即时性")和"执行小额市价订单时不会导致市场价格较 大幅度变化的能力"(通常称为"市场深度"或"弹性")。[3] Gen 把流动性界定为迅速交易且不造成大幅价格变化的能 力。[4] Shen 和 Starr 认为金融市场的流动性是"平稳地吸收 买入和卖出订单的能力"。[5]当一种资产和现金能够以较小 的交易成本迅速相互转换时,就说该资产具有流动性。因此 可以认为,流动性实际上就是投资者根据市场的基本供给和 需求状况,以合理价格迅速交易一定数量资产的能力。

从以上定义可以看出,流动性不是一个一维变量,而包 括 4 个方面。

- (1)速度(交易时间)。速度主要指证券交易的即时性 (Immediacy)。从这一层面衡量,流动性意味着一旦投资者 有买卖证券的愿望,通常总可以立即得到满足。
- (2) 紧度(交易成本)。流动性的第2个要素是交易即时 性必须在成本尽可能小的情况下获得。从这一层面衡量,流 动性意味着买卖某一证券的价格必须等于或接近占主导地 位的市场价格。紧度最清楚的展示了交易成本或直接成本。
- (3) 深度(交易数量)。流动性的第3个要素是数量上的 限制,即较大数量的交易可以按照合理的价格较快执行。

(4) 弹性。假定由于较大数量的交易在较短的时间内得 到执行,从而造成价格的较大变化,就可以得到流动性的第 4 个要素 ——弹性(Resiliency),即由于一定数量的交易导致 价格偏离均衡水平后,恢复均衡价格的速度。

上述流动性的几个方面可以重新分为 5 类,表示流动性 的不同水平:

- (1) 完全交易的能力。流动性的第1个能力很明显:如 果一个市场上完全没有流动性,就不会发生交易。在一个具 有流动性的市场上,至少存在一个买方报价或卖方报价,使 得可能产生交易。
- (2) 买卖一定数量资产但影响报价的能力。如果交易是 可能的,下一个问题就是交易的价格影响。在一个具有流动 性的市场上,有可能交易一定数量的股票,但会影响报价。
- (3) 买卖一定数量资产而不影响报价的能力。市场的流 动性越高,对报价的影响越小。因此,随着流动性的增加,最 终会达到一点,在这一点对于一定数量的股票,不会再有价 格影响。
 - (4) 几乎在同时,以相同的价格买、卖资产的能力。
 - (5) 从第 2 点到第 4 点立即执行交易的能力。
- O 'Hara 考虑不同的交易机制,对模拟流动性性质的不同 方法提供了理论介绍,并将它们嵌在几个市场微观结构模型 中。[1]但是大多数有关证券市场流动性的研究,要么集中研究 流动性的一个方面,要么用几个流动性度量方法去刻画流动 性的不同方面,比如 Chan 和 Pinder 以及 Elyasiani, Hauser 和 Lauterbach。[6,7] Fernandez 则强调了用不同的流动性度量方法 去刻画流动性不同方面的必要性。[8]另一个可行的方法就是 利用多维的度量方法同时度量流动性的各个方面。

二、流动性的度量方法

流动性本身是不能观察的,因此必须用不同的流动性度

* 收稿日期: 2005 - 04 - 28

作者简介: 胡克嫚(1966-),女,湖南益阳人,湖南大学工商管理学院研究生,研究方向:金融管理。

量方法来刻画。但正如 Baker 所说的那样, 当评估金融市场 的流动性时,不同的流动性度量方法会导致相矛盾的结 果。[9]

流动性度量方法可以分成一维的和多维的:一维的流动 性度量方法只考虑一个方面,而多维的流动性度量方法试图 刻画几个不同的方面。

(一)一维的流动性度量方法

- 一维的流动性度量方法可以粗略的分为 3 类:它们可以 分别刻画公司交易量、随后交易的间隔时间和价差。
- 1. 与交易量相关的流动性度量方法。基于交易量的流 动性度量方法主要有以下几个:成交量;成交金额;市场深 度;对数深度;美元深度;换手率。
- 2. 与时间相关的流动性度量方法。与时间相关的流动 性度量方法说明交易或订单发生的频率。因此,这些度量方 法的值越高说明流动性越高。主要包括:单位时间的交易次 数;单位时间的订单次数。
- 3. 与价差相关的流动性度量方法。基于价差的流动性 度量方法是从流动性的紧度属性演变而来的,主要包括:绝 对价差或报价价差;对数绝对价差;相对价差;用最后交易的 价格计算的相对价差:对数价格的相对价差:对数价格的对 数相对价差;有效价差;用最后交易的价格计算的相对有效 价差:用中间价格计算的相对有效价差。

(二)多维的流动性度量方法

多维流动性度量方法把不同一维流动性度量方法的属 性结合起来。主要包括:报价斜率;对数报价斜率;调整的对 数报价斜率;合成流动性。

本文所列的流动性度量方法尽管有很多,但肯定还不完 全。流动性不是一个一维变量,因此用单个的一维流动性度 量方法不能进行刻画。要度量股票的流动性,必须采用一个 多维的流动性度量方法。本文试图利用股票交易的高频数 据,采用主成分分析方法获取一种新的流动性度量方法,能 够更好的度量中国股市的流动性。

三、实证研究方法设计

(一)主成分分析方法

统计学上的主成分分析方法是由 Hotelling 于 1933 年首 先提出的,其主要思想是:通过对原始指标相关矩阵内部结 构关系的研究,找出影响某一经济状况的几个综合指标(主 成分),使综合指标为原始指标的线性组合,综合指标不仅保 留了原始指标的主要信息,彼此又完全不相关,同时比原始 指标具有某些更优越的性质,使得在研究复杂的经济问题时 能够容易抓住主要矛盾。

设原始变量为 $x_1, x_2, x_3, ..., x_m$, 主成分因子为 z_1, z_2 , $\dots, z_n(n < m)$,则主成分分析的数学模型可以写成:

 $z_1 = a_{11} x_1 + a_{12} x_2 + \ldots + a_{1m} x_m$

 $z_2 = a_{21} x_1 + a_{22} x_2 + \ldots + a_{2m} x_m$

 $z_n = a_{n1} x_1 + a_{n2} x_2 + ... + a_{nm} x_m$

写成矩阵形式为: Z = AX。其中, Z为主成分向量, A为 主成分变换矩阵, X 为原始变量向量。主成分分析的目的是 求出系数矩阵 A 。主成分 $z_1, z_2, ..., z_n$ 在总方差中所占比重 依次递减。从理论上讲 m = n,即有多少原始变量就有多少 主成分,但实际上前面几个主成分集中了大部分方差,因此 选取的主成分数目可远远小于原始变量的数目,并使信息损 失很小。

(二) 流动性指标选择

本文研究使用的是股票交易的高频数据,由于数据获取 的限制,本文只选择了18种流动性度量方法,即18个流动性 指标:成交量(O)、成交金额(V)、市场深度(D)、对数深度 (Dlog)、美元深度(D\$)、绝对价差(Sabs)、对数绝对价差 (LogSabs)、相对价差(SrelM)、用最后交易价格计算的相对 价差(Srelp)、对数价格的相对价差(Srellog)、对数价格的对 数相对价差(LogS rellog)、有效价差(Seff)、用最后交易价格 计算的相对有效价差(Seffrelp)、用中间价格计算的相对有 效价差(SeffrelM)、报价斜率(QS)、对数报价斜率 (LogQS)、调整的对数报价斜率(LogQSadj)、合成流动性 $(CL)_{o}$

主成分分析方法要求其所选指标具有同趋势性。本文初 步选定的 18 个指标中,成交量、成交金额、市场深度、对数深 度和美元深度这 5 个指标的数值越大, 代表股票流动性越 好:而其他的 13 个指标则是数值越小,代表股票流动性越 好。为保证指标的同趋势性,将交易量等5个指标取了倒数。 同时,为了保证各指标的量纲一致,将所有的指标进行了均 值化处理,即将每一个比率除以该比率的平均值。

(三) 数据来源与说明

本文使用的数据来源于深圳天软科技开发有限公司的 《天软金融分析. NET》数据库。从 2002 年 7 月 1 日至 2004 年 7月1日间,一直是上证180指数成分股的股票有112只,本 文选择其中资产总额最大的 30 只作为研究样本,以保证样 本具有代表性(30 只股票参见表 3)。研究采用的数据期间为 2003 年 7 月 1 日至 2004 年 6 月 30 日 共 243 个样本日。本文 将每一天的交易时间按照 5 分钟一个间隔进行划分,这样共 分成 48 个交易间隔。对于每一只股票的每一个流动性指标, 先计算其在5分钟交易间隔内的值,然后把一天中的48个值 进行平均从而得到其每一天的值。

四、实证研究结果及其分析

(一) 按照不同流动性指标的股票排序

本文首先分别对30支股票按照18种流动性指标在样本 期间内的平均值进行了排序。发现似乎存在两组不同的流动 性度量方法,在不同股票的排序中产生很高的相关性。第一 组方法包括:成交量、成交金额、市场深度、对数深度、美元深 度、绝对与对数绝对价差、有效价差、报价斜率和合成流动性 等度量方法。总体而言,这些流动性度量方法都依赖于绝对

股票价格。第二组方法包括:所有的相对价差度量方法、对数 报价斜率与调整的对数报价斜率。总体而言,这些流动性度 量方法与股票价格无关。

依据 18 种排序结果,平均而言,600016 是流动性最好的 股票。它的平均排位是 4.39。600016 的后面是 600019,其平 均排位是 5.56,接着是 600000,其平均排位是 7.00。流动性 最差的 3 只股票是 600377、600835 和 600266,其平均排位分 别是 28.44、22.67 和 22.39。

(二) 基于主成分分析方法的实证结果

本文使用 30 只股票作为研究总样本,就所选定的 18 个 流动性指标进行了主成分分析。

运用 SPSS 统计软件进行主成分分析,首先得到的是各 指标的相关性矩阵。从相关性矩阵中发现用中间价格计算的 相对价差、用最后交易价格计算的相对价差与对数价格的相 对价差三者之间两两相关,且相关系数几乎为1;用中间价 格计算的相对有效价差与用最后交易价格计算的相对有效 价差的相关系数也几乎为 1。为了消除这种极端的共线性, 删去了用最后交易价格计算的相对价差、对数价格的相对价 差和用最后交易价格计算的相对有效价差 3 个指标。从而, 保证了剩下的 15 个流动性指标的相关性矩阵为正交矩阵。

其次,得到各主成分因子特征值和贡献率的表格 (见表 1)。

表 1 主成分特征值与贡献率

主成分	特征值	贡献率(%)	累计贡献率(%)
1	5. 299	35. 328	35. 328
2	5.037	33.578	68. 906
3	4. 251	28.340	97. 246

取累计贡献率为 97.246 %,则主成分因子个数为 3,即 用3个主成分因子来代替原来的15个指标,这3个主成分因 子包含原来指标信息的97.246%。为了对所取得的这3个主 成分因子进行经济解释,需要得到15个原始指标对3个主成 分因子的因子负荷量(即原始指标与主成分因子的相关系 数),因子负荷矩阵见表 2。

从因子负荷矩阵中,可以得出如下结论:

- (1) 主成分因子 Z_i 中 , Sabs , LogSabs , Seff 和 QS 的因子 负荷量远大于其他指标的因子负荷量,所以 Zi 主要是绝对 价差、对数绝对价差、有效价差和报价斜率 4 个指标反映。它 主要刻画股票交易的绝对价差。
- (2) 主成分因子 Z₂中, SrelM, LogSrellog, Seff relM, LogOS 和LogOS adj 的因子负荷量远大于其他指标的因子负 荷量,所以 Z2 主要是相对价差、对数价格的对数相对价差、 用中间价格计算的相对有效价差、对数报价斜率和调整的对 数报价斜率 5 个指标反映。它主要刻画股票交易的相对 价差。
- (3) 主成分因子 Z_3 中 1/Q 1/V 1/D 和 1/D \$的因子 负荷量远大于其他指标的因子负荷量,所以 Zi 主要是交易

量、流通量、市场深度和美元深度 4 个指标反映。它主要刻画 股票交易数量 ,即深度。

表 2 因子负荷矩阵

	Z_1	Z_2	Z_3
1/ Q	0.277	0.126	0.940
1/ V	- 0.146	0.460	0.844
1/D	0.487	- 0.126	0.827
1/Dlog	0.669	- 0.152	0.687
1/D \$	0.224	0.135	0.953
Sabs	0.979	0.111	0.150
LogSabs	0.965	- 1.579E - 02	0.227
SrelM	- 3.292E - 02	0.996	7.481E - 03
LogSrellog	- 0.402	0.901	- 3.106E - 02
Seff	0.987	4.726E - 02	0.144
SeffrelM	6.363E - 03	0.996	1.887E - 02
QS	0.959	9.923E - 02	0.258
LogQS	0.319	0.897	0.296
LogQSadj	0.359	0.895	0.240
CL	0.537	0.571	0.532

注:主成分进行了最大方差旋转。

根据表 2, 可以得到各主成分因子与原始指标的线性表 达式为:

 $Z_1 = 0.979 \times Sabs + 0.965 \times LogSabs + 0.987 \times Seff +$ $0.959 \times QS$

 Z_2 0.996 × SrelM + 0.901 × LogSrellog + 0.996 × $Seff rel M + 0.897 \times Log QS + 0.895 \times Log QS adj$

$$Z_3 = 0.940 \times (1/Q) + 0.844 \times (1/V) + 0.827 \times (1/D) + 0.953 \times (1/D \$)$$
 (1)

同时,根据表1中各个主成分因子的贡献率,可以得到 主成分预测函数为:

$$PS = 0.35328 * Z_1 + 0.33578 * Z_2 + 0.28340 * Z_3$$
 (2)

这样,就得到了一种新的基于主成分分析的流动性度量 方法。

随后,分别把30只股票作为单独的研究样本,就所选定 的 15 个流动性指标进行了主成分分析。得到类似的结果,这 里也就不再赘述。

(三) 比较按不同方法的排序结果

把 30 只股票的各个指标代入公式(1) 和(2),计算得到 各股票的分值,然后进行排序,并与分别按照 15 个流动性指 标/初步选定的 18 个流动性指标中删除了用最后交易价格 计算的相对价差、对数价格的相对价差和用最后交易价格计 算的相对有效价差3个指标)单独排序的平均排序结果进行 对比(见表 3)。

从表3中可以发现,按新方法得到的排序结果与按15个 流动性指标单独排序的平均排序结果基本相符。这说明本文 利用主成分分析方法得到的新的流动性度量方法基本上可 以涵盖原来的 15 种流动性度量方法所蕴含的信息。

12. 02 20 10 10 10 10 10 10 10 10 10 10 10 10 10											
	新方法排序	平均排序	序号	新方法排序	平均排序	序号	新方法排序	平均排序			
1	600019	600016	11	600362	600362	21	600102	600098			
2	600016	600019	12	600001	600001	22	600011	600170			
3	600028	600028	13	600642	600642	23	600600	600102			
4	600000	600000	14	600010	600010	24	600098	600871			
5	600839	600839	15	600863	600795	25	600188	600058			
6	600602	600808	16	600795	600863	26	600835	600663			
7	600808	600018	17	600221	600011	27	600170	600188			
8	600018	600602	18	600115	600115	28	600266	600835			
9	600688	600104	19	600871	600221	29	600663	600266			
10	600104	600688	20	600058	600600	30	600377	600377			

表 3 股票的流动性排序

五、结论

流动性是股市的血液。它是实现股票收益的前提,是实现股票安全性的基础。虽然已经有大量的学者利用特定的方法度量股票流动性,但到目前为止,没有一种公认的最好的度量方法。而且,使用不同的流动性度量方法,往往会得到不同的结果,甚至会出现矛盾的结果。本文以上证 180 指数成分股中的 30 只股票为研究样本,利用日内交易的高频数据,运用主成分分析方法获得了一种新的流动性度量方法。这种流动性度量方法不是一维的,而是多维的,因此能够更好的度量中国股市的流动性。

参考文献:

- O 'Hara, M. Market Microstructure Theory[M]. Blackwell Publisher Inc., Cambridge, MA, 1995.
- [2] Amihud, Y. and Mendelson, H. Liquidity, maturity and the

yields on U. S[J]. Treasury securities. Journal of Finance, 1991, (4):1411-1425.

- [3] Massimb and Phelps. Electronic Trading, Market Structure and Liquidity[J]. FAJ, 1994.
- [4] Gen, J. A Introduction to the Microstructure of Emerging Market [D]. International Finance Corporation Discussion Paper No. 2 Washington D. C. IFC, 1994.
- [5] Shen, P. and Starr, R. M. Market makers' supply and pricing of financial market liquidity[D]. Economics Letters 1, 2002.
- [6] Chan, H. W. H. and Pinder, S. M. The value of liquidity: Evidence from the derivatives market [J]. Pacific Basin Finance Journal, 2000, (8):483 503.
- [7] Elyasiani , E. , Hauser , S. and Lauterbach , B. Market response to liquidity improvements: Evidence from exchange listings [J]. The Financial Review , 2000, (41): 1 14.
- [8] Fernandez, F. A. Liquidity risk[D]. SIA Working Paper, 1999.
- [9] Baker, H. K. Trading location and liquidity: An analysis of U.S. dealer and agency markets for common stocks[J]. Financial Markets, Institutions & Instruments, 1996, (4):1-51.

Measuring Stock Liquidity Based on Principal Component Analysis

HU Ke-man, ZEN G Zhi-jian

(College of Business Administration, Hunan University, Changsha, Hunan 410082, China)

Abstract:Liquidity is a multi - dimensional variable, so we should use a multi - dimensional liquidity measure to estimate stock liquidity. In this paper, based on principal component analysis, we get a new liquidity measure by using high - frequency data. It can better measure stock liquidity.

Key words: Stock; Liquidity; Principal Component Analysis