

Machine Intelligence 2 1.2 Online-PCA / Hebbian Learning

Prof. Dr. Klaus Obermayer

Fachgebiet Neuronale Informationsverarbeitung (NI)

SS 2017

Recap: PCA

assuming centered data ($\underline{\mathbf{m}}_a=0$), we have complex features $\underline{\mathbf{u}}_a=\underline{\mathbf{X}}\underline{\mathbf{e}}_a$

$$\sigma_{\alpha}^2 = \frac{1}{p}\underline{\mathbf{u}}_a^T\underline{\mathbf{u}}_a \qquad = \frac{1}{p}(\underline{\mathbf{e}}_a^T\underline{\mathbf{X}}^T)\cdot(\underline{\mathbf{X}}\underline{\mathbf{e}}_a) \qquad = \underline{\mathbf{e}}_a^T\underline{\mathbf{C}}\underline{\mathbf{e}}_a$$

Goal:

$$\begin{split} \underline{\mathbf{e}}_{a}^{*} &= \operatorname*{argmax}_{\underline{\mathbf{e}}_{a}} \left(\sigma_{a}^{2} \right) & \text{with} & \|\underline{\mathbf{e}}_{a}\| = 1 \\ \underline{\mathbf{e}}_{a}^{T} \underline{\mathbf{C}} \underline{\mathbf{e}}_{a} - \lambda \left(\underline{\mathbf{e}}_{a}^{T} \underline{\mathbf{e}}_{a} - 1 \right) \stackrel{!}{=} \max \end{split}$$

$$\underbrace{\mathbf{e}_{a}^{T}\mathbf{C}\mathbf{e}_{a}}_{\text{objective}} - \lambda \underbrace{\left(\mathbf{e}_{a}^{T}\mathbf{e}_{a} - 1\right)}_{\text{constraints}} \stackrel{!}{=} \max$$

Constrained optimization → Eigenvalue problem

$$\underline{\mathbf{Ce}}_a = \lambda \underline{\mathbf{e}}_a$$

 \Rightarrow Principal Components: normalized eigenvectors $\underline{\mathbf{e}}_{\alpha}$ of $\underline{\mathbf{C}}$

Linear connectionist neurons

$$y = \underline{\mathbf{w}}^T \underline{\mathbf{x}}$$

observations:
$$\underline{\mathbf{x}}^{(\alpha)}, \quad \alpha = 1, \dots, p, \quad \underline{\mathbf{x}}^{(\alpha)} \in \mathbb{R}^N$$

Hebbian learning (Donald Hebb,1949): "fire together - wire together"

Hebbian learning

initialization of weights (e.g. to small numbers)

choose learning rate ε

begin loop

choose an observation $\underline{\mathbf{x}}^{(\alpha)}$ change weights according to:

$$\Delta \underline{\mathbf{w}} = \varepsilon y_{\left(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}}\right)} \underline{\mathbf{x}}^{(\alpha)}$$

end

⇒ weights increase (decrease), if input and output are correlated (anticorrelated)

Proposition

Weight vector converges to the Principal Component with the largest eigenvalue.

Hebbian learning

assumption: centered data small learning steps \longrightarrow average over patterns:

$$\Delta \mathbf{w}_{j} \approx \frac{\varepsilon}{p} \sum_{\alpha=1}^{p} y_{\left(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}}\right)} \mathbf{x}_{j}^{(\alpha)}$$

$$= \frac{\varepsilon}{p} \sum_{\alpha=1}^{p} \sum_{k=1}^{N} \mathbf{w}_{k} \mathbf{x}_{k}^{(\alpha)} \mathbf{x}_{j}^{(\alpha)}$$

$$= \varepsilon \sum_{k=1}^{N} \mathbf{w}_{k} \left\{ \frac{1}{p} \sum_{\alpha=1}^{p} \mathbf{x}_{k}^{(\alpha)} \mathbf{x}_{j}^{(\alpha)} \right\}$$

$$= \varepsilon \sum_{k=1}^{N} \mathbf{w}_{k} C_{kj}$$

 $\Delta \mathbf{w} \approx \varepsilon \mathbf{C} \mathbf{w}$

Hebbian learning

eigenvectors of $\underline{\mathbf{C}}$: $\underline{\mathbf{e}}_1, \underline{\mathbf{e}}_2, ..., \underline{\mathbf{e}}_N$ corresponding eigenvalues: $\lambda_1 > \lambda_2 > ... > \lambda_N$

$$\Delta \underline{\mathbf{w}} = \varepsilon \underline{\mathbf{C}} \underline{\mathbf{w}}$$

$$\Delta a_j = \varepsilon \lambda_j a_j$$
(see blackboard)

consequence

- $\mathbf{v} t \to \infty \qquad \sim |\mathbf{w}| \to \infty$
- $lackbox{\underline{e}}_w = rac{\mathbf{w}}{|\mathbf{w}|}$ converges to $\mathbf{\underline{e}}_1$ (eigenvector with the largest eigenvalue)

Implicit normalization: Oja's rule 🦲

- adaptive tracking of the direction of largest variance: "on-line" PCA
- implicit normalization

Oja's rule

$$\Delta \mathbf{w}_{j} = \varepsilon y_{\left(\underline{\mathbf{x}}^{(\alpha)}; \underline{\mathbf{w}}\right)} \left\{ \underbrace{\mathbf{x}_{j}^{(\alpha)}}_{\substack{\text{Hebbian} \\ \text{learning}}} - \underbrace{y_{\left(\underline{\mathbf{x}}^{(\alpha)}; \underline{\mathbf{w}}\right)} \mathbf{w}_{j}}_{\substack{\text{decay term}}} \right\}$$

decay = Zerfall

Proposition

Oja's rule converges to the unit vector which points into the direction of the largest variance.

Derivation of Oja's rule

- Let $y^{(\alpha)} = y(\underline{\mathbf{x}}^{(\alpha)}; \underline{\mathbf{w}}(t)).$
- Normalization of $|\underline{\mathbf{w}}(t)|=1 \; orall t$ is achieved by the learning rule

$$\underline{\mathbf{w}}(t+1) = \frac{\underline{\mathbf{w}}(t) + \varepsilon y^{(\alpha)} \underline{\mathbf{x}}^{(\alpha)}}{\underline{\mathbf{w}}(t) + \varepsilon y^{(\alpha)} \underline{\mathbf{x}}^{(\alpha)}}$$
 Euclidean weights normalization

However

→ Multiplicative constraint requires computation of the norm in each step

Derivation of Oja's rule

■ Small learning step ε : Taylor expansion around $\varepsilon = 0$ gives (\rightarrow calculation: exercise sheet)

$$\underline{\mathbf{w}}(t+1) = \underline{\mathbf{w}}(t) + \varepsilon \left\{ y^{(\alpha)} \underline{\mathbf{x}}^{(\alpha)} - \underline{\mathbf{w}}(t) y^{(\alpha)} \left(\underline{\mathbf{w}}(t)^T \underline{\mathbf{x}}^{(\alpha)} \right) \right\} + \mathcal{O}(\varepsilon^2)$$

Oja's rule

$$\Delta \mathbf{w}_j = \varepsilon y_{\left(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}}\right)} \left\{ \underbrace{\mathbf{x}_j^{(\alpha)}}_{\substack{\text{Hebbian} \\ \text{learning}}} - \underbrace{y_{\left(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}}\right)} \mathbf{w}_j}_{\substack{\text{decay term}}} \right\}$$

Oja's rule = Hebbian Learning with weight normalization

Convergence properties of Oja's rule

a) The learning rule analyzes the covariance matrix C of the data Small learning steps → average over all patterns

$$\Delta\underline{\mathbf{w}} \approx \frac{1}{p} \sum_{\alpha=1}^{p} \overbrace{\varepsilon y^{(\alpha)}(\underline{\mathbf{x}}^{(\alpha)} - y^{(\alpha)}\underline{\mathbf{w}})}^{\text{Oja's rule}} = \varepsilon \left(\underbrace{\underline{\mathbf{C}}\underline{\mathbf{w}}}_{\text{Hebbian rule}} - \underbrace{\underbrace{(\underline{\mathbf{w}}^T\underline{\mathbf{C}}\underline{\mathbf{w}})}_{\text{decay term}}}^{\geq 0}\underline{\mathbf{w}}\right)$$

- b) stationary states $\underline{\mathbf{w}}^*$ of Oja's rule $\hat{\mathbf{e}}$ normalized eigenvector $\underline{\mathbf{e}}_i$ of $\underline{\mathbf{C}}$
- Proof: See supplementary material
- c) the stationary state $\underline{\mathbf{w}}^* = \underline{\mathbf{e}}_i$ is stable if and only if $\underline{\mathbf{e}}_i = \pm \underline{\mathbf{e}}_1$, i.e., if $\underline{\mathbf{e}}_i$ is the eigenvector with the largest eigenvalue λ_1

Proof: See supplementary material

Hebbian PCA (generalized Hebbian algorithm)

One linear neuron: $y = \underline{\mathbf{w}}^T \underline{\mathbf{x}}$ observations: $\underline{\mathbf{x}}^{(\alpha)}, \quad \alpha = 1, \dots, p, \quad \underline{\mathbf{x}}^{(\alpha)} \in \mathbb{R}^N$

Weight vector converges to the first principal component

Hebbian PCA (generalized Hebbian algorithm)

M linear neurons:
$$y_i = \underline{\mathbf{w}}_i^T \underline{\mathbf{x}} = \sum_{j=1}^N \mathbf{w}_{ij} \mathbf{x}_j, \ i = 1, \dots, M$$
 observations: $\underline{\mathbf{x}}^{(\alpha)}, \quad \alpha = 1, \dots, p, \quad \underline{\mathbf{x}}^{(\alpha)} \in \mathbb{R}^N$

The (feedforward) neural network extracts the ${\cal M}$ PCs with the largest eigenvalues

→ online-PCA for data with time-varying statistics

Hebbian PCA (generalized Hebbian algorithm)

Extended learning (Sanger's rule)

$$\Delta \mathbf{w}_{ij} = \varepsilon y_i \bigg\{ \underbrace{\mathbf{x}_j}_{\text{Hebbian rule}} - \underbrace{\sum_{k=1}^i \mathbf{w}_{kj} y_k}_{\sum_{k=1}^{i-1} \mathbf{w}_{kj} y_k \text{ is added to Oja's rule}} \bigg\}$$

ightarrow weights converge to the M eigenvectors with the largest eigenvalues

$$\begin{array}{ccc} \underline{\mathbf{w}}_1 & \rightarrow & \underline{\mathbf{e}}_1 \\ \underline{\mathbf{w}}_2 & \rightarrow & \underline{\mathbf{e}}_2 \\ & \vdots & \\ \underline{\mathbf{w}}_M & \rightarrow & \underline{\mathbf{e}}_M \end{array}$$

$$\rightarrow y_i = \mathbf{e}_i^T \mathbf{x} =: a_i \text{ after learning}$$

Sanger's rule:
$$\Delta \mathbf{w}_{ij} = \varepsilon y_i \left\{ \mathbf{x}_j - \sum_{k=1}^i \mathbf{w}_{kj} y_k \right\}$$

- Define $\hat{\mathbf{x}}_{i}^{(i)} := \mathbf{x}_{i} \sum_{k=1}^{i-1} \mathbf{w}_{ki} y_{i}$
- Then $\Delta \mathbf{w}_{ij} = \varepsilon y_i \left\{ \hat{\mathbf{x}}_i^{(i)} y_j \mathbf{w}_{ij} \right\}$ \longrightarrow Oja's rule with modified input

Case i=1:

$$\hat{\mathbf{x}}_j^{(1)} = \mathbf{x}_j \quad \leadsto \quad \text{original form of Oja's rule}$$

 \mathbf{w}_1 converges to eigenvector $\pm \mathbf{e}_1$

Sanger's rule:
$$\Delta \mathbf{w}_{ij} = \varepsilon y_i \left\{ \mathbf{x}_j - \sum_{k=1}^i \mathbf{w}_{kj} y_k \right\}$$

- Define $\hat{\mathbf{x}}_j^{(i)} \coloneqq \mathbf{x}_j \sum_{k=1}^{i-1} \mathbf{w}_{kj} y_k$
- lacktriangle Then $\Delta \mathrm{w}_{ij} = arepsilon y_i \left\{ \hat{\mathrm{x}}_j^{(i)} y_j \mathrm{w}_{ij}
 ight\} \longrightarrow \mathsf{Oja's}$ rule with modified input

Case i=2:

$$\hat{\mathbf{x}}_{j}^{(2)} = \mathbf{x}_{j} - \mathbf{w}_{1j}y_{1}$$

$$\underline{\mathbf{w}}_{1} = \underline{\mathbf{e}}_{1} \to y_{1} = \underline{\mathbf{x}}^{T}\underline{\mathbf{e}}_{1} =: a_{1}$$

$$\& \hat{\mathbf{x}}_{i}^{(2)} = \mathbf{x}_{j} - (\underline{\mathbf{e}}_{1})_{i} a_{1}$$

- \Rightarrow $\hat{\underline{\mathbf{x}}}^{(2)}$ is the projection of $\underline{\mathbf{x}}$ onto subspace orthogonal to $\underline{\mathbf{e}}_1$:
 - $\sim \underline{\mathbf{w}}_2$ converges to $\pm \underline{\mathbf{e}}_2$ by Oja's rule since $\underline{\mathbf{e}}_2$ is the direction of largest variance in that subspace

Sanger's rule:
$$\Delta \mathbf{w}_{ij} = \varepsilon y_i \left\{ \mathbf{x}_j - \sum_{k=1}^i \mathbf{w}_{kj} y_k \right\}$$

- Define $\hat{\mathbf{x}}_{i}^{(i)} := \mathbf{x}_{i} \sum_{k=1}^{i-1} \mathbf{w}_{kj} y_{k}$
- lacktriangle Then $\Delta \mathrm{w}_{ij} = arepsilon y_i \left\{ \hat{\mathrm{x}}_j^{(i)} y_j \mathrm{w}_{ij}
 ight\} \longrightarrow \mathsf{Oja's}$ rule with modified input

Case i=3:

$$\hat{\mathbf{x}}_{j}^{(3)} = \mathbf{x}_{j} - \mathbf{w}_{1j}y_{1} - \mathbf{w}_{2j}y_{2}$$

$$\underline{\mathbf{w}}_{1} = \underline{\mathbf{e}}_{1} \& \underline{\mathbf{w}}_{2} = \underline{\mathbf{e}}_{2} \to y_{1} = a_{1}, y_{2} = \underline{\mathbf{x}}^{T}\underline{\mathbf{e}}_{2} =: a_{2}$$

$$\& \hat{\mathbf{x}}_{j}^{(3)} = \mathbf{x}_{j} - a_{1}(\underline{\mathbf{e}}_{1})_{j} - a_{2}(\underline{\mathbf{e}}_{2})_{j}$$

 $\rightarrow \hat{\mathbf{x}}^{(3)}$ is the projection of \mathbf{x} onto subspace orthogonal to $\mathrm{span}\left\{\underline{\mathbf{e}}_1,\underline{\mathbf{e}}_2\right\}$

 \sim w₃ converges to \pm e₃ by Oja's rule

Sanger's rule:
$$\Delta \mathbf{w}_{ij} = \varepsilon y_i \left\{ \mathbf{x}_j - \sum_{k=1}^i \mathbf{w}_{kj} y_k \right\}$$

- Define $\hat{\mathbf{x}}_{j}^{(i)} := \mathbf{x}_{j} \sum_{k=1}^{i-1} \mathbf{w}_{kj} y_{k}$
- lacktriangle Then $\Delta \mathrm{w}_{ij} = arepsilon y_i \left\{ \hat{\mathrm{x}}_j^{(i)} y_j \mathrm{w}_{ij}
 ight\} \longrightarrow \mathsf{Oja's}$ rule with modified input

:

Case i = M:

$$\hat{\mathbf{x}}_{j}^{(M)} = \mathbf{x}_{j} - \sum_{k=1}^{M-1} \mathbf{w}_{kj} y_{k}$$

$$\underline{\mathbf{w}}_k = \underline{\mathbf{e}}_k \text{ for } k = 1, \dots, M - 1 \to y_k = \underline{\mathbf{x}}^T \underline{\mathbf{e}}_k =: a_k$$

$$\& \ \hat{\mathbf{x}}_j^{(M)} = \mathbf{x}_j - \sum_{k=1}^{M-1} a_k \left(\underline{\mathbf{e}}_k\right)_j$$

 $\sim \hat{\mathbf{x}}^{(M)}$ is the proj. of $\underline{\mathbf{x}}$ onto subspace orthogonal to $\mathrm{span}\left\{\underline{\mathbf{e}}_1,\ldots,\underline{\mathbf{e}}_{M-1}\right\}$

 $\rightsquigarrow \underline{\mathbf{w}}_M$ converges to $\pm \underline{\mathbf{e}}_M$ by Oja's rule

Summary of Hebbian learning

$$y = \underline{\mathbf{w}}^T \underline{\mathbf{x}}$$

I. Hebbian learning without constraint

$$\underbrace{\Delta \underline{\mathbf{w}} = \varepsilon y \underline{\mathbf{x}}}_{\text{Hebb's rule}} \leadsto \lim_{t \to \infty} \underline{\mathbf{w}} ||\underline{\mathbf{e}}_1 \text{ (orthogonal)}$$

 $\ensuremath{\leadsto}$ weights converge to direction of largest variance in the data

 \sim but: $|\mathbf{w}| \to \infty$ for $t \to \infty$

Summary of Hebbian learning

$$y = \underline{\mathbf{w}}^T \underline{\mathbf{x}}$$

II. Hebbian learning with normalization

$$\underbrace{\Delta \underline{\mathbf{w}} = \varepsilon y \, (\underline{\mathbf{x}} - y \underline{\mathbf{w}})}_{\text{Oja's rule}} \leadsto \lim_{t \to \infty} \underline{\mathbf{w}} \in \{ +\underline{\mathbf{e}}_1, -\underline{\mathbf{e}}_1 \}$$

 \rightsquigarrow weights remain finite: $|\mathbf{w}|=1$

Summary of Hebbian learning

III. Hebbian PCA with ${\cal M}$ neurons and normalization

$$\underbrace{\Delta\mathbf{w}_{ij} = \varepsilon y_i \left\{\mathbf{x}_j - \sum_{k=1}^i \mathbf{w}_{kj} y_k\right\}}_{\text{Sanger's rule}} \leadsto \lim_{t \to \infty} \underline{\mathbf{w}}_i \in \left\{+\underline{\mathbf{e}}_i, -\underline{\mathbf{e}}_i\right\}, i = 1, \dots, M$$

→ combination of Oja's rule & Gram-Schmidt-orthonormalization

Novelty Filter

Reminder

$$y = \underline{\mathbf{e}}_N^T \underline{\mathbf{x}} =: a_N$$
 after learning \leadsto projection onto smallest PC

 \rightarrow large output for unexpected data \rightarrow Novelty Filter

Novelty Filter: On-line Learning

$$y = \underline{\mathbf{w}}^T \underline{\mathbf{x}}$$

Anti-Hebbian rule:

$$\Delta \mathbf{w}_j = \overbrace{-}^{\text{"Anti"-}} \varepsilon y^{(\alpha)} \mathbf{x}_j^{(\alpha)}$$

	$y \\ small$	y large
$x_j \ extsf{small}$	\rightarrow	\rightarrow
x_j large	\rightarrow	\downarrow

Novelty Filter: On-line Learning

Conjecture:

 $\underline{\mathbf{w}}$ converges to the direction of smallest eigenvector.

Proof:

Learning rule:

$$\Delta \mathbf{w}_j = -\varepsilon y^{(\alpha)} \mathbf{x}_j^{(\alpha)}$$

Assume small learning steps \rightarrow average over all patterns

$$\Delta \mathbf{w}_{j} = -\frac{\varepsilon}{p} \sum_{\alpha=1}^{p} y^{(\alpha)} \mathbf{x}_{j}^{(\alpha)} = -\frac{\varepsilon}{p} \sum_{\alpha=1}^{p} \mathbf{x}_{j}^{(\alpha)} \sum_{k=1}^{N} \mathbf{x}_{k}^{(\alpha)} \mathbf{w}_{k} = -\varepsilon \sum_{k=1}^{N} C_{jk} \mathbf{w}_{k}$$
$$\Delta \mathbf{w} = -\varepsilon \mathbf{C} \mathbf{w}$$

Novelty Filter: On-line Learning

Proof cont.:

$$\Delta \underline{\mathbf{w}} = -\varepsilon \underline{\mathbf{C}}\underline{\mathbf{w}}$$

Transformation into eigenbasis of covariance matrix:

$$\underline{\mathbf{w}} = a_1 \underline{\mathbf{e}}_1 + a_2 \underline{\mathbf{e}}_2 + \dots + a_N \underline{\mathbf{e}}_N$$

$$\Delta a_j = -\varepsilon \lambda_j a_j$$

 \rightarrow for $\lambda_j > 0: a_j \rightarrow 0$, constraints required

 \rightsquigarrow for $\lambda_j = 0 : a_j$ remains unchanged

weights converge to the direction of smallest eigenvalue

Novelty Filter and linear regression

ordinary least squares:

$$\frac{1}{p} \sum_{\alpha=1}^{p} \left(e^{(\alpha)} \right)^2 \stackrel{!}{=} \min.$$

- \rightarrow correct if data points are noisy along x_2 -component only
- \rightarrow wrong if data points are also noisy along x_1 -component

Novelty Filter and linear regression

total least squares:

$$\frac{1}{p} \sum_{\alpha=1}^{p} \left(d^{(\alpha)} \right)^2 \stackrel{!}{=} \min.$$

centered data $\rightarrow \mathbf{w}^T \mathbf{x} = 0$

Novelty Filter and linear regression

Cost function:

$$\mathbb{E}(\underline{\mathbf{w}}) = \frac{1}{p} \sum_{\alpha=1}^{p} \left(d^{(\alpha)} \right)^2 \stackrel{!}{=} \min_{\underline{\mathbf{w}}} \quad \text{s.t.} |\underline{\mathbf{w}}| = 1$$

$$\underline{\mathbf{e}}_{\mathbf{w}}^{T}\underline{\mathbf{C}}\underline{\mathbf{e}}_{\mathbf{w}} \stackrel{!}{=} \min_{\mathbf{w}} \quad \text{s.t.} |\underline{\mathbf{w}}| = 1$$

solution:

w is the normalized eigenvector to the smallest eigenvalue of the covariance matrix.

Novelty Filter with normalization

$$\Delta\underline{\mathbf{w}} = -\varepsilon \frac{y^{(\alpha)} \left\{\underline{\mathbf{x}}^{(\alpha)} - y^{(\alpha)}\underline{\mathbf{w}}\right\}}{\left|\underline{\mathbf{w}} - \varepsilon y^{(\alpha)} \left\{\underline{\mathbf{x}}^{(\alpha)} - y^{(\alpha)}\underline{\mathbf{w}}\right\}\right|}$$

Anti-Hebbian version of Oja's rule:

$$\Delta \mathbf{w}_{j} = -\varepsilon y^{(\alpha)} \Big\{ \underbrace{ \begin{array}{c} \mathbf{x}_{j}^{(\alpha)} \\ \mathbf{x}_{j}^{(\alpha)} \end{array}}_{\text{normalization}} \underbrace{ -y^{(\alpha)} \mathbf{w}_{j} \Big\} + \varepsilon \Big\{ 1 - \sum_{k=1}^{N} \mathbf{w}_{k}^{2} \Big\} \mathbf{w}_{j} }_{\text{normalization}} \Big\}$$

w converges to $\pm \mathbf{e}_N$

Feedforward network as Novelty Filter

Extension of the learning rule to N neurons:

$$\begin{split} & -\sum_{k=1}^{i-1} \mathbf{w}_{kj} y_k^{(\alpha)} \text{is added} \\ \Delta \mathbf{w}_{ij} &= -\varepsilon y_i^{(\alpha)} \Big\{ \mathbf{x}_j^{(\alpha)} - \sum_{k=1}^{i} \mathbf{w}_{kj} y_k^{(\alpha)} \\ & + \varepsilon \Big\{ 1 - \sum_{k=1}^{N} \mathbf{w}_{ik}^2 \Big\} \mathbf{w}_{ij} \end{split}$$

$$\mathbf{w}_1 o \mathbf{e}_N$$
 (PC with smallest eigenvalue)
$$\mathbf{w}_2 o \mathbf{e}_{N-1} \qquad \vdots$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\mathbf{w}_M o \mathbf{e}_{N-M+1} \qquad \text{(PC with largest eigenvalue, if } N=M \text{)}$$

Sequential calculation of eigenvectors (cf. Sanger's rule).

$$y_i^{(\alpha)}(t+1) = \sum_{j=1}^N \mathbf{w}_{ij} y_j^{(\alpha)}(t) + \mathbf{x}_i^{(\alpha)}$$
$$\underline{\mathbf{y}}^{(\alpha)}(t+1) = \underline{\mathbf{W}}\underline{\mathbf{y}}^{(\alpha)}(t) + \underline{\mathbf{x}}^{(\alpha)}$$

Stationary state:

$$\underline{\tilde{\mathbf{y}}}^{(\alpha)}(t+1) = \underline{\tilde{\mathbf{y}}}^{(\alpha)}(t) =: \underline{\tilde{\mathbf{y}}}^{(\alpha)} \\
\underline{\tilde{\mathbf{y}}}^{(\alpha)} = (\underline{\mathbf{I}} - \underline{\mathbf{W}})^{-1} \underline{\mathbf{x}}^{(\alpha)}$$

$$y_i^{(\alpha)}(t+1) = \sum_{j=1}^N \mathbf{w}_{ij} y_j^{(\alpha)}(t) + \mathbf{x}_i^{(\alpha)}$$
$$\underline{\mathbf{y}}^{(\alpha)}(t+1) = \underline{\mathbf{W}}\underline{\mathbf{y}}^{(\alpha)}(t) + \underline{\mathbf{x}}^{(\alpha)}$$

$$\Delta \mathbf{w}_{ij} = -\varepsilon \tilde{y}_i \tilde{y}_j$$

$$\underline{\tilde{\mathbf{y}}}^{(\alpha)} = (\underline{\mathbf{I}} - \underline{\mathbf{W}})^{-1} \underline{\mathbf{x}}^{(\alpha)}$$

$$\underline{\tilde{\mathbf{y}}}^{(\alpha)} = \underline{\mathbf{\Phi}} \mathbf{x}^{(\alpha)}$$

$$\Delta\underline{\boldsymbol{\Phi}} = -\varepsilon\underline{\boldsymbol{\Phi}}^2\underline{\mathbf{x}}^{(\alpha)} \left(\underline{\mathbf{x}}^{(\alpha)}\right)^T\underline{\boldsymbol{\Phi}}^2$$

initialization of Φ with identity matrix, $\Phi = \mathbf{I}$

repeat

choose an observation $\mathbf{x}^{(\alpha)}$ change weight matrix according to:

$$\Delta \underline{\mathbf{\Phi}} = -\varepsilon \underline{\mathbf{\Phi}}^2 \underline{\mathbf{x}}^{(\alpha)} \left(\underline{\mathbf{x}}^{(\alpha)}\right)^T \underline{\mathbf{\Phi}}^2$$

until convergence

 \rightarrow Φ converges to a matrix, which projects onto the subspace orthogonal to the training data

example:

$$\overline{\text{training data}} \left\{ \underline{\mathbf{x}}^{(1)}, \dots, \underline{\mathbf{x}}^{(p)} \right\} \subseteq \operatorname{span} \left\{ \underline{\mathbf{e}}_1, \dots, \underline{\mathbf{e}}_{N-1} \right\}$$

$$\underline{\boldsymbol{\Phi}} \xrightarrow[t \to \infty]{} \underline{\mathbf{I}} - \sum_{k=1}^{N-1} \underline{\mathbf{e}}_k \underline{\mathbf{e}}_k^T \leadsto \underline{\boldsymbol{\Phi}} \underline{\mathbf{e}}_j = \underline{\mathbf{e}}_N \delta_{jN} \leadsto \underline{\boldsymbol{\Phi}} \underline{\mathbf{x}} = \underbrace{\left(\underline{\mathbf{e}}_N^T \underline{\mathbf{x}}\right)}_{\text{Pin}} \underline{\mathbf{e}}_N$$

(taken from Kohonen 1989)

- training data: "neutral" facial expressions (not shown here)
 - $\leadsto \ \underline{\Phi}$ projects into space orthogonal to this data
- \blacksquare top row: faces $\underline{\mathbf{x}}^{(\beta)}$ with different expressions
- lacksquare bottom row: projection $oldsymbol{\Phi}\mathbf{x}^{(eta)}$

Novelty Filter: Summary

One neuron:

$$y = \underline{\mathbf{w}}^T \underline{\mathbf{x}}$$

Anti-Hebbian learning rule

$$\Delta \mathbf{w}_{j} = -\varepsilon y^{(\alpha)} \Big\{ \underbrace{\mathbf{x}_{j}^{(\alpha)}}_{\text{learning}} \underbrace{-y^{(\alpha)} \mathbf{w}_{j} \Big\} + \varepsilon \Big\{ 1 - \sum_{k=1}^{N} \mathbf{w}_{k}^{2} \Big\} \mathbf{w}_{j}}_{\text{normalization}} \Big\}$$

Novelty Filter: Summary

N neurons:

Learning rule:

$$\Delta \underline{\boldsymbol{\Phi}} = -\varepsilon \underline{\boldsymbol{\Phi}}^2 \underline{\mathbf{x}}^{(\alpha)} \left(\underline{\mathbf{x}}^{(\alpha)}\right)^T \underline{\boldsymbol{\Phi}}^2$$

 $ightarrow \underline{\Phi}$ converges to projection matrix onto subspace orthogonal to training data