UNIT-III CONVOLUTIONAL NEURAL NETWORKS

PRESENTED BY:
MRS.J.BENITA
AP/CSE
KARE

DEFINITION

A Convolutional Neural Network (CNN) is a type of Deep Learning neural network architecture commonly used in Computer Vision. Computer vision is a field of Artificial Intelligence that enables a computer to understand and interpret the image or visual data.

CNN architecture

How Convolutional Layers works

How Convolutional Layers works

Types of layers:

- Input Layers
- Convolutional Layers
- Activation Layer
- Pooling layer
- Output Layer

Pooling layer

X

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

EXAMPLE

Input image

Steps:

- import the necessary libraries
- set the parameter
- define the kernel
- Load the image and plot it.
- Reformat the image
- Apply convolution layer operation and plot the output image.
- Apply activation layer operation and plot the output image.
- Apply pooling layer operation and plot the output image.

Output:

Output:

Advantages of Convolutional Neural Networks (CNNs):

- Good at detecting patterns and features in images, videos, and audio signals.
- Robust to translation, rotation, and scaling invariance.
- End-to-end training, no need for manual feature extraction.
- Can handle large amounts of data and achieve high accuracy.

Disadvantages of Convolutional Neural Networks (CNNs):

- Computationally expensive to train and require a lot of memory.
- Can be prone to overfitting if not enough data or proper regularization is used.
- Requires large amounts of labeled data.
- Interpretability is limited, it's hard to understand what the network has learned.

VISUALIZATION OF 2D CNN

https://adamharley.com/nn_vis/cnn/2d.html

VISUALIZATION OF 3-D CNN

https://adamharley.com/nn_vis/cnn/3d.html

WILL BE CONTINUE IN NEXT SESSION....