实变函数

乐绎华

学号: 23363017 2025 年 3 月 14 日

第 2 次作业 (截止时间: 3月19日23:59)

- 1. 证明教材 p. 16 的**推论**: 若 A 是无穷集, B 是可数集, 则 $A \cup B \sim A$.
- 2. 证明: 可列集 A 的所有有限子集构成的集合 A 是可列集.
- 3. 所谓代数数, 是指满足某个整系数多项式方程的复数. 显然所有的有理数都是代数数, 但代数数也可能是无理数, 甚至虚数, 例如 $\sqrt{2}$ 和 $\sqrt{-1}$ 都是代数数. 证明: 全体代数数构成的集合是可列集.
- 4. 设 $E \subset (0, +\infty)$. 证明:
 - (1) 若存在常数 M, 使得 E 中任意有限个不同的数之和都不超过 M, 则 E 是可数集;
 - (2) 若 E 是无穷集, 且 E 中任意选取可列个不同的数所组成的正项级数都收敛, 则 E 是可列集.
- 5. 证明: (a, b) 上的凸函数 f 的不可导的点只有可数个.
- 6. 证明: (a, b) 上的函数 f 的局部极小值只有可数个. y 称为函数 f 的局部极小值, 若存在 f 的局部极小值点 x 使得 y = f(x).
- 7. 是否存在集合 E, 使得 $\mathcal{P}(E)$ 是可列集?

给爱思考的同学的问题

- 1. 证明: (a, b) 上的函数 f 的第一类间断点只有可数个.
- 2. 证明: (a, b) 上的函数 f 的不可导但单侧可导的点只有可数个.
- 3. 教材第一章习题第 19 题.

习题 1. 若 A 是无穷集, B 是可数集, 则 $A \cup B \sim A$.

只需要建立一个一一映射,用来说明 $A \cup B$ 和 A 的元素个数一样多。

定理 1.6 A 为无穷集的充分必要条件是 A 与自己的某个真子集对等.

证明 必要性. 设 A 为无穷集,则存在 $a_0 \in A$,而 $A_0 = A \setminus \{a_0\}$ 仍为无穷集,故由前一定理,存在可列子集 $\{a_1,a_2,\cdots,a_k,\cdots\} \subset A_0$. 作映射 $f:A_0 \to A$ 如下,对于任意 $x \in A_0$,令

$$f(x) = \begin{cases} a_{j-1}, & x = a_j (j = 1, 2, \dots), \\ x, & \text{i.e.} \end{cases}$$

显然是 A_0 到 A 的——映射, 故 $A \sim A_0$, 而 A_0 是 A 的真子集. 充分性显然, 因为有限集不可能与它的任何真子集对等. \square

定理 1.

不妨设 $A \cap B = \emptyset$. 由于 B 可数,不妨设为 $\{b_1, b_2, \ldots, b_n, \ldots\}$,由于 A 是无穷集,根据 theorem 1 我们知道 $A \sim A_0$,其中 $A_0 = A \setminus \{a_1, a_2, \ldots, a_n, \ldots\}$, $\{a_1, a_2, \ldots\} \subset A$ 是一个可数集。那么我们构造映射如下

$$f: A \cup B \to A_0$$
 $x \mapsto \begin{cases} a_{2j-1} & \text{if } x = b_j \\ a_{2j} & \text{if } x = a_j \\ x & \text{otherwise} \end{cases}$

显然 $f(A \cup B) = A_0$, $x, y \in A \cup B, x \neq y \Rightarrow f(x) \neq f(y)$. 因此 f 是一一映射,故 $A \cup B \sim A_0 \sim A$.

习题 2. 证明: 可列集 A 的所有有限子集构成的集合 $\mathscr A$ 是可列集.

不妨设 $A = \{a_1, a_2, \ldots, a_n, \ldots\}$,构造一个嵌入映射

$$f: \mathscr{A} \to \mathbb{Q} \qquad \{a_i\}_{i \in I} \mapsto \sum_{i \in I} 2^{-i}$$

其中 $I \subset \mathbb{N}$ 有限,显然 f 是一个单射,因此 $f: \mathscr{A} \to f(\mathscr{A})$ 是一个一一映射,由于 $f(\mathscr{A}) \subset \mathbb{Q}$,所以 $f(\mathscr{A})$ 至多可数,故 \mathscr{A} 至多可数。由于 $\{a_i\} \in \mathscr{A}, \forall i$,所以 \mathscr{A} 不可能有限,因此 \mathscr{A} 可数。

习题 3. 所谓代数数,是指满足某个整系数多项式方程的复数. 显然所有的有理数都是代数数,但代数数也可能是无理数,甚至虚数,例如 $\sqrt{2}$ 和 $\sqrt{-1}$ 都是代数数。证明:全体代数数构成的集合是可列集.

设全体代数数构成的集合为 \mathscr{A} , 全体 n 次整系数多项式构成的集合为 P_n , 全体满足 n 次整系数多项式方程的代数数构成的集合为 \mathscr{A}_n , 我们构造如下的

映射

$$f_n: P_n \to \mathscr{A}_n \qquad \sum_{k=0}^n a_k x^k = a_n \prod_{k=1}^n (x - x_k) \mapsto (x_1, x_2, \dots, x_n)$$

显然 $\mathscr{A} = \bigcup_{n=1}^{\infty} f_n(P_n)$,由于可数集的可数并也是可数集,故只需要证明 $f_n(P_n)$ 都是至多可数集即可。由代数数的定义可知, f_n 是一个满射,由于 $P_n \sim \mathbb{Z}^{n+1}$ 可数,所以 $\mathscr{A}_n = f_n(P_n)$ 至多可数。得证!

习题 4. 设 $E \subset (0, +\infty)$. 证明: (1) 若存在常数 M , 使得 E 中任意有限个不同的数之和都不超过 M , 则 E 是可数集; (2) 若 E 是无穷集,且 E 中任意选取可列个不同的数所组成的正项级数都收敛,则 E 是可列集.

(1) 显然 $\sup E \leq M < \infty$,不妨设 M=1,否则用 $\left\{\frac{x}{M}: x \in E\right\}$ 代替 E。由于 E 中任意有限个不同的数之和不超过 M=1,那么 $\#(E\cap (1/n,1]) \leq n$,又因为

$$E = E \cap (0,1] = E \cap \left(\bigcup_{n=1}^{\infty} (1/n,1]\right) = \bigcup_{n=1}^{\infty} (E \cap (1/n,1])$$

是一列至多可数集的可数并,故 E 至多可数。(2) 考虑

$$E = \left\{ \{a_1, a_2, \dots\} \subset E : \sum_{n=1}^{\infty} a_n < \infty \right\} = \bigcup_{m=1}^{\infty} \left\{ \{a_1, a_2, \dots\} \subset E : \sum_{n=1}^{\infty} a_n < m \right\} =: \bigcup_{m=1}^{\infty} A_m$$

由 (1) 可知:存在常数 m 使得 A_m 中任意有限个不同的数之和都不超过 m,于是 A_m 是至多可数集。由于至多可数集的可数并可数。所以 $E = \bigcup_{n=1}^{\infty} A_n$ 可数。

习题 5. 证明: (a,b) 上的凸函数 f 的不可导的点只有可数个.

根据凸函数的定义,对于任意 $(x,y) \subset (a,b)$,对于任意 $\lambda \in (0,1)$,我们有

$$\lambda f(x) + (1 - \lambda)f(y) \le f(\lambda x + (1 - \lambda)y)$$

任意给定 $x \in (a,b)$, 考虑函数

$$g(y) = \frac{f(y) - f(x)}{y - x} \qquad y \in (a, b) \setminus \{x\}$$

显然 g(y) 在 (a,x) 和 (x,b) 上分别单调递减,显然 g(y) 在 (a,x) 上单调递减且有下界 $\frac{f\left(\frac{x+b}{2}\right)-f(x)}{\frac{x+b}{2}-x}$,于是 $\lim_{y\to x^-}g(y)=f'(x-)$ 存在,由于 g(y) 在 (x,b) 上单调递减且有上界 $\frac{f\left(\frac{a+x}{2}\right)-f(x)}{\frac{a+x}{2}-x}$,于是 $\lim_{y\to x^+}f(y)=f'(x+)$ 存在。定义集合

$$C = \{x \in (a,b) : f'(x-) \neq f'(x+)\}$$

由于 f 的凸性,我们知道 $f'(x-) \leq f'(x+)$ 。因此,对于 $x \in C$,考虑区间 (f'(x-),f'(x+)),由于 $\mathbb Q$ 在 $\mathbb R$ 中稠密, $\mathbb Q \cap (f'(x-),f'(x+)) \neq \varnothing$,任取 $\mathbb Q \cap (f'(x-),f'(x+))$ 的一个代表元 r_x ,我们得到如下的嵌入映射

$$F: C \to \mathbb{Q}$$
 $x \mapsto r_x$

显然这是一个单射,那么 $C \sim F(C) \subset \mathbb{Q}$,于是C至多可数。

习题 6. 证明: (a,b) 上的函数 f 的局部极小值只有可数个.

考虑集合

$$C = \{x \in (a, b) : x \in f$$
的局部极小值点\\ D = \{y = f(x) : x \in C\}\\

由局部极小值的定义可知,D 是 f 的全部局部极小值构成的集合,显然 $\#D \le \#C$. 只需证明集合 C 至多可数即可。对于任意的 $x \in C$,将 (a,x) 中离 x 最近的极小值点记作 x',将 (x,b) 中离 x 最近的极小值点记作 x''. 由于 x 是一个局部极小值点,所以存在 x 的一个充分小的邻域 $U_x \subset (x',x'')$,使得 $f(y) \ge f(x)$, $\forall y \in U_x$ 。让 x 取遍 x 中的所有元素,这样得到的所有 x 两两无交。对于任意给定的 $x \in x$ 由于 x 在 x 中稠密,可以任取一个 x 是 x 个为代表元,构造如下嵌入映射

$$F: C \to \mathbb{Q} \qquad x \mapsto r_x$$

这显然是一个单射,于是 $C \sim F(C) \subset \mathbb{Q}$,于是 C 至多可数。

习题 7. 是否存在集合 E , 使得 $\mathscr{P}(E)$ 是可列集?

 $\mathscr{P}(E)$ 表示 E 的幂集,这是一个 σ 代数,若 E 有限,那么显然 $\#\mathscr{P}(E) = 2^{|E|}$ 有限。若 E 无限,假设 $\mathcal{A} = \{A_1, A_2, \ldots, A_n, \ldots\}$ 是 E 的一个可数子集,不是一般性,我们不妨假设 \mathcal{A} 中集合两两无交,否则令

$$\overline{A}_1 = A_1, \quad \overline{A}_2 = A_2 \setminus A_1, \dots, \overline{A}_n = A_n \setminus \left(\bigcup_{k=1}^{n-1} A_k\right), \dots$$

由于 $\mathcal{P}(E)$ 表示 E 的幂集,必然有 $\mathcal{P}(A) \subset \mathcal{P}(E)$ 。断言 $\mathcal{P}(A)$ 不可数,我们现在考虑 $\mathcal{P}(A)$ 的任意一列子集 S_1, S_2, \ldots ,构造一个新的子集 S_1 若 $A_n \in S_n$,则 $A_n \notin S_n$,否则 $A_n \in S_n$ 。于是 $S \notin \{S_1, S_2, \ldots\}$,但 $S \in \mathcal{P}(A)$. 这意味着 $\mathcal{P}(A)$ 的任意一个可数子集都是真子集,若 $\mathcal{P}(A)$ 可数,那么 $\mathcal{P}(A)$ 便是它自身的真子集,这与真子集的定义矛盾! 故 $\mathcal{P}(A)$ 不可数,因此 $\mathcal{P}(E)$ 包含一个不可数集,故也不可数。综上,不存在集合 E 使得 $\mathcal{P}(E)$ 可列。

习题 8. 证明: (a,b) 上的函数 f 的第一类间断点只有可数个.

记

$$C = \{x \in (a,b) : x \in f$$
的第一类间断点}

固定 $x \in C$,记 x' 是 x 左侧最近的第一类间断点,x'' 是 x 右侧最近的第一类间断点。x' < x < x'',根据有理数的稠密性,任取 $r_x \in \left(\frac{x'+x}{2}, \frac{x+x''}{2}\right)$,构造如下映射

$$F: C \to \mathbb{Q}$$
 $x \mapsto r_x$

这显然是一个单射,于是 $C \sim F(C) \subset \mathbb{Q}$ 至多可数。

习题 9. 证明: (a,b) 上的函数 f 的不可导但单侧可导的点只有可数个.

记

$$C = \{x \in (a,b) : f \in \mathbb{Z}$$
 在 x 处不可导但单侧可导 $\} = \{x \in (a,b) : f'(x-) \neq f'(x+)\}$

固定 $x \in C$,记 x' 是 x 左侧最近的不可导但单侧可导的点,x'' 是 x 右侧最近的不可导但单侧可导的点。x' < x < x'',根据有理数的稠密性,任取 $r_x \in \left(\frac{x'+x}{2}, \frac{x+x''}{2}\right)$,构造如下映射

$$F: C \to \mathbb{Q}$$
 $x \mapsto r_x$

这显然是一个单射,于是 $C \sim F(C) \subset \mathbb{Q}$ 至多可数。

习题 10. 教材第一章习题第 19 题. 19. 设 $E \subset \mathbb{R}^2$ 且为可数集,试构造 E 的一个分解 $E = A \cup B$,使得平行于 x 轴的直线与 A 的交点为可数个,平行于 y 轴的直线与 B 的交点为可数个.

这是显然的!