Análise de Redes Avançada

Aula 3

Medidas

TAMANHO E DENSIDADE DA REDE

- O tamanho de uma rede é caracterizado pelo número de nós e arestas que ela contém.
- A densidade de uma rede é a fração entre 0 e 1 que nos diz qual parte de todas as arestas possíveis são realmente realizadas na rede. Para uma rede G feita de G nós e G arestas, a densidade de G é dada por:

$$ho(G)=rac{m}{rac{n(n-1)}{2}}=rac{2m}{n(n-1)}$$
 , para uma rede não direcionada

$$ho(G) = rac{m}{n(n-1)}$$
 , para uma rede direcionada

GRAU DE UM NÓ

Não direcionado

Grau de um nó: o número de ligações desse nó

$$k_A = 1$$
 $k_B = 4$

Em redes direcionadas podemos definir um grau de entrada e um grau de saída. O grau do nó (total) é a soma dos dois.

$$k_C^{in} = 2 \quad k_C^{out} = 1 \quad k_C = 3$$

Fonte: um nó com kⁱⁿ= 0; Ralo: um nó com k^{out}= 0.

ALGUMAS MÉTRICAS ESTATÍSTICAS

Média

$$\langle x \rangle = \frac{x_1 + x_2 + \dots + x_N}{N} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

N-ésimo momento

$$\langle x^n \rangle = \frac{x_1^n + x_2^n + \dots + x_N^n}{N} = \frac{1}{N} \sum_{i=1}^N x_i^n$$

Desvio padrão

$$\sigma_{x} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_{i} - \langle x \rangle)^{2}}$$

Distribuição de p_x

$$p_{x} = \frac{1}{N} \sum_{i} \delta_{x,x_{i}}$$

Onde p_x :

$$\sum_{x} p_x = 1 \left(\int p_x \, dx = 1 \right)$$

GRAU MÉDIO

Não direcionado

$$\langle k \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} k_i \qquad \langle k \rangle \circ \frac{2L}{N}$$

N – número de nós no grafo

Direcionado

$$\left\langle k^{in}\right\rangle \equiv \frac{1}{N} \sum_{i=1}^{N} k_{i}^{in}, \left\langle k^{out}\right\rangle \equiv \frac{1}{N} \sum_{i=1}^{N} k_{i}^{out}, \left\langle k^{in}\right\rangle = \left\langle k^{out}\right\rangle$$

$$\langle k \rangle \circ \frac{L}{N}$$

GRAU MÉDIO

NETWORK	NODES	LINKS	DIRECTED UNDIRECTED	N	L	<k></k>
Internet	Routers	Internet connections	Undirected	192,244	609,066	6.33
WWW	Webpages	Links	Directed	325,729	1,497,134	4.60
Power Grid	Power plants, transformers	Cables	Undirected	4,941	6,594	2.67
Mobile Phone Calls	Subscribers	Calls	Directed	36,595	91,826	2.51
Email	Email addresses	Emails	Directed	57,194	103,731	1.81
Science Collaboration	Scientists	Co-authorship	Undirected	23,133	93,439	8.08
Actor Network	Actors	Co-acting	Undirected	702,388	29,397,908	83.71
Citation Network	Paper	Citations	Directed	449,673	4,689,479	10.43
E. Coli Metabolism	Metabolites	Chemical reactions	Directed	1,039	5,802	5.58
Protein Interactions	Proteins	Binding interactions	Undirected	2,018	2,930	2.90
	1		I	I	1 1	

Distribuição de grau

P(k): probabilidade de um Nó escolhido aleatóriamente tenha grau *k*

 N_k = número de nós com grau k

$$P(k) = N_k / N$$

A **distribuição de grau** de uma rede é a distribuição de probabilidade:

$$P(k) = \frac{\left| \left\{ i \mid \deg(i) = k \right\} \right|}{n},$$

Que denota a probabilidade de um nó ter um grau k.

Representação discreta: p_k é a probabilidade que o nó tem o grau k

Representação continua: p(k) é a fdp do grau, onde

representa a probabilidade que o grau do nó está entre $\mathbf{k_1}$ e $\mathbf{k_2}$.

Condição de normalização:

onde K_{min} é o grau mínimo da rede/grafo.

REDES DIRECIONADAS E NÃO DIRECIONADAS

NÃO DIRECIONADAS

Ligações: não direcionadas (simétricas)

Grafo:

Casos:

Ligações de co-autoria Redes de atores Interações de proteinas

DIRECIONADAS

Ligações: direcionadas (arcos).

Digrafo = grafo direcionado:

Uma ligação não direcionada é a sobreposição de duas ligações direcionadas opostas.

Casos:

URLs na www Chamadas telefónicas Relações metabólicas

REDES DE REFERÊNCIA

NETWORK	NODES	LINKS	DIRECTED UNDIRECTED	N	
Internet	Routers	Internet connections	Undirected	192,244	609,066
WWW	Webpages	Links	Directed	325,729	1,497,134
Power Grid	Power plants, transformers	Cables	Undirected	4,941	6,594
Mobile Phone Calls	Subscribers	Calls	Directed	36,595	91,826
Email	Email addresses	Emails	Directed	57,194	103,731
Science Collaboration	Scientists	Co-authorship	Undirected	23,133	93,439
Actor Network	Actors	Co-acting	Undirected	702,388	29,397,908
Citation Network	Paper	Citations	Directed	449,673	4,689,479
E. Coli Metabolism	Metabolites	Chemical reactions	Directed	1,039	5,802
Protein Interactions	Proteins	Binding interactions	Undirected	2,018	2,930

Matriz de Adjacência

Matriz de Adjacência

	Α	В	С	D
A	0	1	0	0
В	0	0	1	1
С	0	0	0	0
D	0	0	1	0

	Α	В	С	D
A	0	0.8	0	0
В	0	0	0.9	0.75
С	0	0	0	0
D	0	0	1.0	0

ADJACENCY MATRIX

$$A_{ij} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \qquad A_{ij} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

 $A_{ij} = 1$ se há uma ligação entre os nós i e j $A_{ij} = 0$ se os nós i e j não estão conectados entre si.

Notar que para um grafo direcionado (à direita) a matriz não é simétrica.

MATRIZ DE ADJACÊNCIA E GRAU DE UM NÓ

Não direcionado

$$A_{ij} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$A_{ij} = A_{ji} A_{ii} = 0$$

$$k_i = \mathop{\mathring{\text{a}}}_{j=1}^N A_{ij}$$

$$k_{j} = \mathop{\text{a}}_{i=1}^{N} A_{ij}$$

$$L = \frac{1}{2} \mathop{\tilde{a}}_{i=1}^{N} k_i = \frac{1}{2} \mathop{\tilde{a}}_{ij}^{N} A_{ij}$$

Direcionado

$$A_{ij} \stackrel{1}{=} A_{ji}$$
$$A_{ii} = 0$$

$$k_i^{in} = \sum_{j=1}^{N} A_{ij}$$

$$k_j^{out} = \mathop{\bigcirc}\limits_{i=1}^N A_{ij}$$

$$L = \mathop{\overset{N}{\overset{}_{\stackrel{}}{\overset{}_{\stackrel{}}{\overset{}}{\overset{}}}}}_{i=1} k_i^{in} = \mathop{\overset{N}{\overset{}_{\stackrel{}}{\overset{}}}}_{j=1} k_j^{out} = \mathop{\overset{N}{\overset{}_{\stackrel{}}{\overset{}{\overset{}}{\overset{}}}}}_{i,j} A_{ij}$$

A MATRIZ DE ADJACÊNCIA É NORMALMENTE ESPARSA

A MATRIZ DE ADJACÊNCIA É NORMALMENTE ESPARSA

AS REDES REAIS SÃO ESPARSAS

A maioria das redes observadas nos sistemas reais são esparsas

$$L \ll L_{max}$$
 or $\ll N-1$

WWW(amostra ND) N=325,729 L=1.4 10^6 Lmax= 10^{12} <k>=4.51 Proteinas(S. Cerevisiae) N=1,870 L=4,470 Lmax= 10^7 <k>=2.39 Coautoria(Math) N=70,975 L=2 10^5 Lmax= $3 10^{10}$ <k>=3.9 Actores N=212,250 L=6 10^6 Lmax= $1.8 10^{13}$ <k>=28.78

(Fonte: Albert, Barabasi, RMP2002)

LEI DE METCALFE

O valor de um sistema de comunicações cresce na razão do quadrado do número de utilizadores do sistema

O número máximo de linques é dado por:

$$L_{\text{max}} = {N \choose 2} = \frac{N(N-1)}{2}$$

CAMINHOS

Um caminho é uma sequência de nós em que cada nó é adjacente de um outro

 $P_{i0,in}$ de tamanho n entre os nós i₀ e i_n é uma coleção ordenada de n+1 nós e n linques

$$P_n = \{i_0, i_1, i_2, ..., i_n\}$$
 $P_n = \{(i_0, i_1), (i_1, i_2), (i_2, i_3), ..., (i_{n-1}, i_n)\}$

• Numa rede direccionada um cominho só pode tomar uma direção.

DISTÂNCIA NUM GRAFO

A distância d (caminho mais curto, caminho geodésico) entre dois nós é definida como o número de arestas ao longo do caminho mais curto que os conecta.

*Se os dois nós estiverem desconectados, a distância é infinita.

$$d(i \rightarrow j)$$

Em grafos direcionados, cada caminho precisa seguir a direção das setas.

Assim, em um dígrafo, a distância do nó A ao B (em um caminho AB) é geralmente diferente da distância do nó B a A (em um caminho BCA).

NÚMERO DE CAMINHOS ENTRE DOIS NÓS

N_{ij} , número de caminhos entre quaisquer dois nós i e j:

Tamanho n=1: se há uma ligação entre i e j, então $A_{ij}=1$ e $A_{ij}=0$ senão.

<u>Tamanho</u> n=2: se há um caminho de tamanho dois entre i e j, então $A_{ik}A_{kj}=1$, e $A_{ik}A_{kj}=0$ senão.

Número de caminhos de tamanho 2:

$$N_{ij}^{(2)} = \overset{N}{\underset{k=1}{\overset{N}{\circ}}} A_{ik} A_{kj} = [A^2]_{ij}$$

<u>Tamanho n:</u> em geral, e há um caminho de tamanho n entre i e j, então $A_{ik}...A_{lj}=1$ e $A_{ik}...A_{lj}=0$ senão.

O número de caminhos de tamanho n entre i e j é*

$$N_{ij}^{(n)} = [A^n]_{ij}$$

^{*} não só nas redes direcionadas como nas não direcionadas.

Distância entre nó 0 e nó 4:

1. Começar em 0.

Distância entre nó 0 e nó 4:

- 1.Começar em 0.
- 2. Encontrar os nós adjacentes. Marcar com distância 1. Colocá-los numa fila.

Distância entre nó 0 e nó 4:

- 1.Começar em 0.
- 2. Encontrar os nós adjacentes. Marcar com distância 1. Colocá-los numa fila.
- 3. Tirar o primeiro nó da fila. Encontrar os nós não marcados adjacentes a ele no grafo. Marcar esses nós com rótulo 2. Colocá-los na fila.

Distância entre nó 0 e nó 4:

- 1.Repetir até encontrar o nó 4 ou não haver mais nós na fila.
- 2.A distância entre 0 e 4 é o rótulo de 4 ou, se 4 não tiver rótulo, infinito.

DIÂMETRO DA REDE E DISTÂNCIA MÉDIA

Diâmetro: d_{max} a distância máxima entre qualquer par de nós no grafo.

Raio: d_{min} a distância mínima entre qualquer par de nós no grafo.

Excentricidade: e(i) é a distância máxima a um dos outros nós na rede

Distância média, <d>, para um grafo conectado: $\langle d \rangle \circ \frac{1}{2L_{\max_{i,j^{-1}i}}} \mathring{a}_{ij} d_{ij}$ (também chamada distância característica)

Num grafo não direcionado $d_{ij} = d_{ji}$, só temos que contar uma vez: $\langle d \rangle \circ \frac{1}{L_{\max_{i,j>i}}} \mathring{a}_{ij} d_{ij}$

O caminho com a menor distância entre os nós

Diâmetro

Tamanho médio dos caminhos

O maior caminho mais curto

A média dos caminhos mais curtos entre todos os pares de nós.

Um caminho com o mesmo nó de partida e chegada

Um caminho que não se intersecta a si próprio.

Caminho que atravessa cada ligação apenas uma vez

Caminho que visita todos os nós apenas uma vez.

CONETIVIDADE

CONETIVIDADE DE GRAFOS NÃO DIRECIONADOS

Grafo conetado (não direcionado): quaisquer dois nós podem ser unidos por um caminho. Um grafo desconetado contém dois ou mais grafos conetados.

Maior componente:

Component Gigante

O resto: Isolados

Ponte: se a removemos o grafo fica desconetado.

CONETIVIDADE DE GRAFOS NÃO DIRECIONADOS

A matriz de adjacência de uma rede com vários componentes pode ser escrita numa forma de blocos-diagonais, tal que os elementos não nulos estão confinados a quadrados, sendo todos os outros nulos:

CONNECTIVIDADE DE GRAFOS DIRECIONADOS

Grafo direcionado fortemente conetado: tem um caminho de um nó para qualquer outro nó e vice versa (e.x. caminho AB e caminho BA).

Grafo direcionado fracamente conetado: é o grafo conectado não considerando as direções Os componentes fortemente conetados podem ser identificados, embora nem todos os nós possam fazer parte de um componente conectado não trivial.

Componente-in: nós que conseguem chegar à fonte.

Componente-out: nós a que se consegue chegar a partir da fonte.

ENCONTRAR OS COMPONENTES CONETADOS DE UMA REDE

- 1. Começar por um nó *i* escolhido ao acaso e efetuar uma pesquisa *Breath First*. Rotular todos os nós alcançados como 1.
- 2. Se o número total de nós rotulados for N, então a rede é conectada. Se o número for menor, a rede contém vários componentes.
- 3. Aumente o rótulo de *n* para *n*+1. Escolher um nó arbitrário não rotulado *j* e rotulá-lo n+1. Usar pesquisa *Breath First* para encontrar todos os nós alcançáveis a partir de *j*, rotulá-los todos com *n*+1. Retornar ao passo 2.

Coeficiente de clustering

COEFICIENTE DE CLUSTERING

* Coeficiente de *clustering*:

Que fração dos seus vizinhos está ligada?

- * Nó i com grau ki
- * C_i em [0,1]

$$C_i = \frac{2e_i}{k_i(k_i - 1)}$$

Watts & Strogatz, Nature 1998.

COEFICIENTE DE CLUSTERING

* Coeficiente de *clustering*:

Que fração dos seus vizinhos está ligada?

- * Nó i com grau ki
- * C_i em [0,1]

$$C_i = \frac{2e_i}{k_i(k_i - 1)}$$

Watts & Strogatz, Nature 1998.

SUMÁRIO

TRÊS QUANTIDADES CENTRAIS NA CIÊNCIA DE REDES

- A. Distribução de grau: p_k
- B. Distância média: <d>
- C. Coeficiente de *clustering*: $C_i = \frac{2e_i}{k_i(k_i-1)}$

Não direcionado

$$A_{ij} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$A_{ii} = 0 A_{ij} = A_{ji}$$

$$L = \frac{1}{2} \mathop{\mathring{o}}_{i, j=1}^{N} A_{ij} \langle k \rangle = \frac{2L}{N}$$

Direcionado

$$A_{ij} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$A_{ii} = 0$$
 $A_{ij} \stackrel{1}{-} A_{ji}$ $L = \mathop{\mathring{a}}_{i,j=1}^{N} A_{ij}$ $< k > = \frac{L}{N}$

WWW, redes de citações

Não ponderado

$$A_{ij} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$A_{ii} = 0$$
 $A_{ij} = A_{ji}$
$$L = \frac{1}{2} \mathop{a}\limits_{i, j=1}^{N} A_{ij} \qquad \langle k \rangle = \frac{2L}{N}$$

Ponderado

$$A_{ij} = \begin{pmatrix} 0 & 2 & 0.5 & 0 \\ 2 & 0 & 1 & 4 \\ 0.5 & 1 & 0 & 0 \\ 0 & 4 & 0 & 0 \end{pmatrix}$$

$$A_{ii} = 0$$
 $A_{ij} = A_{ji}$ $L = \frac{1}{2} \mathop{arrange}^{N} nonzero(A_{ij})$ $< k > = \frac{2L}{N}$

Auto-ligações

$$A_{ij} = egin{pmatrix} 1 & 1 & 1 & 0 \ 1 & 0 & 1 & 1 \ 1 & 1 & 0 & 0 \ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$A_{ii} \stackrel{1}{0} \qquad A_{ij} = A_{ji}$$

$$L = \frac{1}{2} \mathop{\mathring{a}}_{i,j=1,i^{1} j}^{N} A_{ij} + \mathop{\mathring{a}}_{i=1}^{N} A_{ii} \qquad ?$$

Multigrafo

$$A_{ij} = \begin{pmatrix} 0 & 2 & 1 & 0 \\ 2 & 0 & 1 & 3 \\ 1 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{pmatrix}$$

$$A_{ii} = 0$$
 $A_{ij} = A_{ji}$ $L = \frac{1}{2} \mathop{arrange}^{N} nonzero(A_{ij})$ $< k > = \frac{2L}{N}$

Grafo Completo

(não direcionado)

$$A_{ij} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$A_{ii} = 0$$
 $A_{i^{1}j} = 1$ $L = L_{\text{max}} = \frac{N(N-1)}{2}$ $< k >= N-1$

