Open Science

Publicly Available Resources

Alberto Santos & Yesid Cuesta-Astroz

Outline

- What is Open Science?
- FAIR Data and Software
- Challenges sharing and reusing data
- Standardisation and Ontologies
- Publicly available resources

What is Open Science Impact, Contribution, Trust

- Make scientific research accessible to all levels of society:
 - Publications
 - Samples
 - Methods
 - Software
 - Data
- Advantages:
 - Reproducibility and replicability
 - Societal **responsibility** publicly funded, publicly available
 - Multi-purpose of research outputs
- Disadvantages: concerns of data misuse

FAIR Data and Software

- Findable and Accessible
 - Add enough metadata data about your data

Minimum Information for Biological and Biomedical Investigations

• Deposit your data in **public repositories** or make them available in **databases**

Zenodo Figshare Pride Metabolights GEO GitHub

- Interoperable:
 - Use standard and open formats
 - Provide all data needed to reproduce your analysis
- Reusable:
 - Describe your data well, e.g., good metadata but also

Provide README files describing the data Use descriptive column headers for the data tables

Attach a license

Challenges Sharing and Reusing

The marshmallow test — delayed gratification

- Open does not mean FAIR
- Requires an effort
- Metadata becomes the most important data
- In many cases there are no standards or multiple ones
- Most of the data out there not FAIR

https://imgflip.com/memegenerator

https://en.wikipedia.org/wiki/Stanford_marshmallow_experiment

Standardisation and Ontologies

- Data standardisation requires defining terminologies and vocabularies that:
 - Assign unique identifiers to entities/concepts such as proteins, genes, diseases
 - Describe those entities/concepts and provide meaning
 - Relate those concepts to other terms
 - Classify those entities/concepts into categories
- Solution —> Ontologies
- Ontology:

formal way of representing knowledge in which concepts are described both by their meaning and their relationship to each other

A collection of terms and their definitions for a specific domain

Ontologies

Disease Ontology

REACTOME Pathways

https://www.ebi.ac.uk/ols/ontologies

https://reactome.org/

http://geneontology.org/

- Do not reinvent the wheel
- Extend the life and purpose of publicly available data
- Build in-silico hypotheses before jumping into experiments (cheaper, higher success rate)
- Download Use Test Transform Upload
- Growing number of resources and datasets available

Examples of Microbes Resources

ALEdb 1.0: a database of mutations from adaptive laboratory evolution experimentation https://aledb.org/

MiMeDB: the Human Microbial Metabolome Database https://mimedb.org/

Web of microbes (WoM): a curated microbial exometabolomics database for linking chemistry and microbes https://metatlas.nersc.gov/wom/project-begin.view

mBodyMap: a curated database for microbes across human body and their associations with health and diseases https://mbodymap.microbiome.cloud/

MicroPhenoDB Associates Metagenomic Data with Pathogenic Microbes, Microbial Core Genes, and Human Disease Phenotypes http://www.liwzlab.cn/microphenodb

BacDive in 2022: the knowledge base for standardized bacterial and archaeal data https://bacdive.dsmz.de/

MASI: microbiota—active substance interactions database http://www.aiddlab.com/MASI/

iModulonDB: a knowledgebase of microbial transcriptional regulation derived from machine learning https://imodulondb.org/index.html

MIBiG 3.0: a community-driven effort to annotate experimentally validated biosynthetic gene clusters https://mibig.secondarymetabolites.org/