

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА по курсу «Data Science»

Тема: Прогнозирование конечных свойств новых материалов (композиционных материалов)

Трещева Елена Ивановна



#### Описание задачи

- Основной задачей является поиск новых композитных материалов, которые могут иметь лучшие свойства чем существующие материалы.
- С помощью анализа данных и разработки моделей машинного обучения необходимо разработать систему предсказаний свойств новых композитных материалов.
- Для решения этой задачи могут быть использованы различные методы машинного обучения, такие как различные подвиды линейной регрессия, случайный лес, нейронные сети. Каждый из этих методов имеет свои преимущества и недостатки, поэтому в процессе выбора необходимо выбрать модели машинного обучения, которая больше подойдет для предсказания характеристик композитных материалов наиболее точно на основании предоставленного набора данных для исследования (данные о характеристиках базальтопластика и углепластика).



## Описание задачи

• Сложносоставной монгольский лук





#### Качество данных

Для проведения исследования получены два набора данных
 X\_bp.xlsx базальтопластика в файле 1023 строки и 10 полей с данными;
 X\_nup.xlsx, файл, углепластика в файле 1040 сток и 3 поля с данными;
 Объединить поля можно по полю-индексу, который находится в каждом файле

 Количество записей после объединения наборов данных X\_bp ∩ X\_nup составил 1023 записи

 Данные были загружены в DataFrame при помощи библиотеки Pandas Python и сохранены в сsv Формате после преобразования.





#### Качество данных

- Около 5% записей имело целочисленный тип данных, при том что остальная часть набора данных является вещественными числами с плавающей запятой с точностью до 12 знаков после запятой.
- В результате выявлено, при помощи пользовательской функции, что поле «Плотность нашивки» - имеет наибольшее число целочисленных данных.

```
1 \lor def find astype int records(df, persent = 5):
        max variation col nm = ""
        max variation col cnt = 0
        for cols in df.columns:
 5
            total row cnt = df[cols].count()
            cnt astype int = len([el for el in (df[cols].astype(int) - df[cols]) if el == 0])
            print("Всего записей {} из них целыми являются {}, что составляет: {}%".format(total row cnt
                                                                                             , cnt astype int
                                                                                             , round(cnt_astype_int/total_row_cnt,2)*100))
            if (round(cnt astype int/total row cnt, 2)*100) < persent:
10 V
                if cnt astype int > max variation col cnt:
11 \vee
12
                    max variation col nm = cols
13 >
        if max variation col nm == "":
14
            print("Столбцов - отклонений не найдено")
15 V
        else:
            print("Столбец {} имеет наибольшее число отклонений".format(max variation_col_nm))
        return max_variation_col_nm
18 max int values found = find astype int records(inner df)
19 print(max int values found)
```



## Качество данных

После проведения анализа о распределении целочисленных данных – строки, содержащие такие данные были удалены, с использованием следующего

условия:

число не имеет знаков после запят

После очистки данных проверка
 была проведена повторно
 , как видно на изображении целые
 числа присутствуют только в одног
 Поле «Угол нашивки», последнее
 имеет только два значения [0, 90]

```
1 max_int_values_found = find_astype_int_records(inner_df_res)
2 print(max_int_values_found)
3 inner_df = inner_df_res
```

```
Всего записей 983 из них целыми являются 0, что составляет: 0.0%
Всего записей 983 из них целыми являются 0, что составляет: 0.0%
Всего записей 983 из них целыми являются 0, что составляет: 0.0%
Всего записей 983 из них целыми являются 0, что составляет: 0.0%
Всего записей 983 из них целыми являются 0, что составляет: 0.0%
Всего записей 983 из них целыми являются 0, что составляет: 0.0%
Всего записей 983 из них целыми являются 0, что составляет: 0.0%
Всего записей 983 из них целыми являются 0, что составляет: 0.0%
Всего записей 983 из них целыми являются 0, что составляет: 0.0%
Всего записей 983 из них целыми являются 0, что составляет: 0.0%
Всего записей 983 из них целыми являются 0, что составляет: 0.0%
Всего записей 983 из них целыми являются 983, что составляет: 100.0%
Всего записей 983 из них целыми являются 983, что составляет: 100.0%
Всего записей 983 из них целыми являются 0, что составляет: 0.0%
Всего записей 983 из них целыми являются 0, что составляет: 0.0%
Столбцов - отклонений не найдено
```



## Описание используемых методов

#### • Регрессия:

- Линейная регрессия анализа и моделирование зависимостей между целевой переменной и одним или несколькими входными признаками
- Регрессия методом k-ближайших соседей предсказании значения целевой переменной для нового наблюдения
- Случайный лес создании множества решающих деревьев с различными характеристиками, и использовании их для прогнозирования целевой переменной
- Лассо регрессия минимизация функции потерь, то есть расстояния между прогнозированными значениями целевой переменной и фактическими значениями
- Нейронные сети сводится к настройке весов между нейронами и определении оптимального количество нейронов в каждом слое сети.



## Разведочный анализ данных

 изучении основных характеристик и закономерностей произвольных данных с помощью графиков, статистического анализа и визуализации, выявления выбросов и аномалий, и определения связей между переменными ('mean', '50%')

|                                      | count  | mean    | std    | min     | 25%     | 50%     | 75%     | max     | median  |
|--------------------------------------|--------|---------|--------|---------|---------|---------|---------|---------|---------|
| Соотношение матрица-наполнитель      | 983.00 | 2.93    | 0.92   | 0.39    | 2.32    | 2.91    | 3.56    | 5.59    | 2.91    |
| Плотность, кг/м3                     | 983.00 | 1975.98 | 73.76  | 1731.76 | 1925.40 | 1977.66 | 2021.28 | 2207.77 | 1977.66 |
| модуль упругости, ГПа                | 983.00 | 737.74  | 329.63 | 2.44    | 497.87  | 738.96  | 962.21  | 1911.54 | 738.96  |
| Количество отвердителя, м.%          | 983.00 | 110.49  | 28.30  | 17.74   | 92.11   | 110.10  | 129.88  | 198.95  | 110.10  |
| Содержание эпоксидных групп,%_2      | 983.00 | 22.23   | 2.41   | 14.25   | 20.55   | 22.21   | 23.98   | 28.96   | 22.21   |
| Температура вспышки, С_2             | 983.00 | 285.66  | 40.96  | 160.26  | 258.40  | 285.41  | 313.06  | 413.27  | 285.41  |
| Поверхностная плотность, г/м2        | 983.00 | 482.19  | 281.69 | 0.60    | 267.14  | 451.31  | 694.34  | 1399.54 | 451.31  |
| Модуль упругости при растяжении, ГПа | 983.00 | 73.32   | 3.12   | 64.05   | 71.29   | 73.24   | 75.36   | 82.68   | 73.24   |
| Прочность при растяжении, МПа        | 983.00 | 2464.78 | 484.96 | 1036.86 | 2136.60 | 2456.40 | 2759.08 | 3848.44 | 2456.40 |
| Потребление смолы, г/м2              | 983.00 | 218.68  | 59.94  | 33.80   | 179.63  | 217.48  | 257.63  | 414.59  | 217.48  |
| Угол нашивки, град                   | 983.00 | 44.22   | 45.02  | 0.00    | 0.00    | 0.00    | 90.00   | 90.00   | 0.00    |
| Шаг нашивки                          | 983.00 | 6.90    | 2.57   | 0.04    | 5.12    | 6.89    | 8.56    | 14.44   | 6.89    |
| Плотность нашивки                    | 983.00 | 57.15   | 12.36  | 11.74   | 49.80   | 57.34   | 64.94   | 103.99  | 57.34   |

 Так же была выполнена проверка на отсутствие пропущенных значений (тепловая карта)



## Разведочный анализ данных





#### Диаграммы «Ящик с усам»



Диаграммы «Распределения данных по каждой переменной»
На нижнем график – поле «Угол нашивки»



## Разведочный анализ данных

• Попарные графики рассеивания атрибутов (признаков) данных

На данном наборе данных не выявлены явные закономерсности





# Разведочный анализ данных. Выбросы

- Было получено распределение выбросов по атрибутам данных методами: 3-х сигм и межквартильного интервала
- По результатам из набора
   Данных удалены строки, которые содержали выбросы установленныє при помощи метода 3-х сигм

```
Соотношение матрица-наполнитель
                                         920
Плотность, кг/м3
                                         920
модуль упругости, ГПа
                                         920
Количество отвердителя, м.%
                                         920
Содержание эпоксидных групп,%_2
                                         920
Температура вспышки, С 2
                                         920
Поверхностная плотность, г/м2
                                         920
Модуль упругости при растяжении, ГПа
                                        920
                                         920
Прочность при растяжении, МПа
Потребление смолы, г/м2
                                         920
Угол нашивки, град
                                         920
                                         920
Шаг нашивки
Плотность нашивки
                                         920
dtype: int64
```

```
метод 3-х сигм: 0 метод irq: 4 - атрибут Соотношение матрица-наполнитель метод 3-х сигм: 3 метод irq: 9 - атрибут Плотность, кг/м3 метод 3-х сигм: 2 метод irq: 2 - атрибут модуль упругости, ГПа метод 3-х сигм: 2 метод irq: 11 - атрибут Количество отвердителя, м.% метод 3-х сигм: 1 метод irq: 1 - атрибут Содержание эпоксидных групп,%_2 метод 3-х сигм: 2 метод irq: 7 - атрибут Температура вспышки, С_2 метод 3-х сигм: 2 метод irq: 2 - атрибут Поверхностная плотность, г/м2 метод 3-х сигм: 1 метод irq: 6 - атрибут Модуль упругости при растяжении, метод 3-х сигм: 0 метод irq: 13 - атрибут Прочность при растяжении, МПа метод 3-х сигм: 3 метод irq: 8 - атрибут Потребление смолы, г/м2 метод 3-х сигм: 0 метод irq: 0 - атрибут Угол нашивки, град метод 3-х сигм: 0 метод irq: 5 - атрибут Шаг нашивки метод 3-х сигм: 6 метод irq: 20 - атрибут Плотность нашивки
```

После удаления выбросов набор данных имеет 13 полей и 920 записей



### Описание задачи

 Оценка плотности ядра до нормализации:



• Оценка плотности ядра после Нормализации при помощи MinMaxScaler:





## Разведочный анализ данных. Корреляции

• Составлена матрица корреляции после нормализации данных



• Сильных или явных признаков корреляции не выявлено



## Разработка и обучение модели

- Применяемые модели:
  - Линейная регрессия; sklearn.linear\_model.LinearRegression
  - Лассо регрессия; sklearn.linear\_model.LassoCV
  - Случайный лес; sklearn.ensemble. GradientBoostingRegressor
  - Метод К ближайших соседей; sklearn.model\_selection.GridSearchCV
  - Нейронная сеть; tensorflow.keras.models. Sequential
- Оценка точности модели при помощи инструментов библиотеки sklearn.metrics:
  - средняя квадратичная ошибка mean\_squared\_error;
  - средняя абсолютная ошибка mean\_absolute\_error;
  - коэффициент детерминации r2\_score;

Все дата сет делится на тренировочный и основной при помощи метода train\_test\_split

sklearn.model\_selection



## Разработка и обучение модели

Потери модели при обучении для признака "прочности при растяжении"

Архитектура нейронной сети для прогнозирования модуля упругости при

растяжении





## Разработка и обучение модели

#### • Оценка точности работы модели

Модуль упругости при растяжении

|   | Perpeccop                 | MAE      | MSE      | R2        |
|---|---------------------------|----------|----------|-----------|
| 1 | ЛАССО-регрессия           | 0.156849 | 0.156849 | -0.000028 |
| 0 | Линейная регрессия        | 0.155982 | 0.037360 | -0.004109 |
| 2 | Случайный лес             | 0.159042 | 0.159042 | -0.039755 |
| 4 | Нейросеть                 | 0.160830 | 0.039832 | -0.070556 |
| 3 | Метод К-ближайших соседей | 0.216157 | 0.216157 | -0.881344 |

Прочность при растяжении

|   | Perpeccop                 | MAE      | MSE      | R2        |
|---|---------------------------|----------|----------|-----------|
| 2 | Случайный лес             | 0.141529 | 0.141529 | 0.004428  |
| 0 | Линейная регрессия        | 0.145424 | 0.033081 | -0.004109 |
| 1 | ЛАССО-регрессия           | 0.143141 | 0.143141 | -0.004375 |
| 4 | Нейросеть                 | 0.153287 | 0.036876 | -0.127655 |
| 3 | Метод К-ближайших соседей | 0.205078 | 0.205078 | -1.105589 |

Соотношение матрица - наполнитель

• В результате выбрана модель линейно Регрессии. Все выбранные показали себя одинаково неэффективно.

|     | Perpeccop                 | MAE      | MSE      | R2        |
|-----|---------------------------|----------|----------|-----------|
| C 1 | ЛАССО-регрессия           | 0.148999 | 0.148999 | -0.001983 |
| 0   | Линейная регрессия        | 0.151212 | 0.034224 | -0.004109 |
| 4   | Нейросеть                 | 0.152025 | 0.033793 | -0.005034 |
| 2   | Случайный лес             | 0.151666 | 0.151666 | -0.024878 |
| 3   | Метод К-ближайших соседей | 0.198215 | 0.198215 | -0.789185 |



## Разработка модели. Выгрузка

- Все подготовленные модели выгружены в формат pkl
- Разработан **Web server** к которому могут обращаться



#### 

#### Расчет модуля упругости при растяжении

# ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА по курсу «Data Science» Тема: Прогнозирование конечных свойств новых материалов (композиционных материалов).

Модуль упругости при растяжении, ГПа Прочности при растяжении, ГПа Соотношение матрица-наполнитель

| Соотношение матрица-наполнитель, МПа: |  |  |  |  |  |
|---------------------------------------|--|--|--|--|--|
| Плотность, кг/м3:                     |  |  |  |  |  |
| Модуль упругости, ГПа:                |  |  |  |  |  |
| Количество отвердителя, м.%:          |  |  |  |  |  |
| Содержание эпоксидных групп,%_2:      |  |  |  |  |  |
| Температура вспышки, С_2:             |  |  |  |  |  |
| Поверхностная плотность, г/м2:        |  |  |  |  |  |
| Прочность при растяжении, МПа:        |  |  |  |  |  |
| Потребление смолы, г/м2:              |  |  |  |  |  |
| Шаг нашивки:                          |  |  |  |  |  |
| Плотность нашивки:                    |  |  |  |  |  |
| Получит расчет                        |  |  |  |  |  |
|                                       |  |  |  |  |  |

Модуля упругости: [0.46542748] ГПа





do.bmstu.ru

