

Trabajo Práctico 1

Wiretapping

22 de septiembre de 2015

Teoría de las comunicaciones

Integrante	LU	Correo electrónico
Ladelfa, Hernán Nahuel	318/04	nahueladelfa@gmail.com
González, Sergio Martín	723/10	sergiogonza90@gmail.com

Instancia	Docente	Nota
Primera entrega		
Segunda entrega		

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina Tel/Fax: $(++54\ +11)\ 4576-3300$ http://www.exactas.uba.ar

Índice

1. Introducción					
2.	Utilización de la herramienta	3			
	Métodos3.1. Primera Consigna: Caputando tráfico	4 4			
4.	Resultados	5			
5 .	Conclusiones	6			

1. Introducción

El primer paso del trabajo consiste en implementar una herramienta que, dada

 $P_{t_i;t_f} = \{p_1 \cdots p_n\}$ siendo p_i el i-esimo paquete transmitido en la red entre los instantes de tiempo $[t_i, t_f]$

sea capas de generar las siguiente fuente de información:

$$S_{t_i;t_f} = \{s_1 \cdots s_n\}$$
 siendo $s_i = p_i.type/p_i \in P$ entre los instantes de tiempo $[t_i;t_f]$.

Y luego, adaptarla para poder obtener una fuente de información que nos permita encontrar nodos distinguidos en la red, solo basándonos en paquetes ARP. Tomemos el siguiente subconjunto de P:

$$\overline{P}_{t_i;t_f} = \{\overline{p}_1 \cdots \overline{p}_n\} \ \forall \ \overline{p}_i \in \mathbf{P} \ / \ \overline{p}_i.type = ARP \ \text{entre los instantes de tiempo} \ [t_i;t_f].$$

Teniendo esto, la fuente de información que proponemos es la siguiente:

$$R_{t_i;t_f} = \{r_{ai} \mid r_{ai} = \overline{p}_i.ip_origen\} \bigcup \{r_{bi} \mid r_{bi} = \overline{p}_i.ip_destino\}$$
 entre los instantes de tiempo $[t_i;t_f]$.

Osea, nos quedamos con las ips origen y destino, solo de los paquetes ARP. De esta forma, podemos medir la cantidad de pedidos y respuestas que envía y recibe, y de esta forma poder saber que tan distinguido es en la red.

Utilización de la herramienta

2.

3. Métodos

- 3.1. Primera Consigna: Caputando tráfico
- 3.2. Tercera Consigna: Gráficos y Análisis

4. Resultados

5. Conclusiones