

Mahindra University Hyderabad École Centrale School of Engineering Spring Semester Regular Examinations (2022 Batch), June-2024 Program: B. Tech. Branch: CM Year: 2nd Semester: II Subject: MA-2213 Stochastic Processes

Date: 04/06/2024

Time Duration: 3 Hours

Start Time: 10:00 AM Max. Marks: 100

Marks: 10 × 2=20

Instruction:

1. All answers that belong to a particular question should be answered at one place.

2. Use of scientific but non-programmable calculators permitted.

Q 1: Each MCQ carries equal marks.

1. Auto-correlation function of a zero-mean Weiner process is:

(a)
$$\sigma^2 |t_1 - t_2|$$

(b) $\sigma^2 \min(t_1, t_2)$

(c) $\sigma^2 \max(t_1, t_2)$

(d)
$$\sigma^2 |t_1 + t_2|$$

2. Consider the following statements:

I. Weiner process is WSS random process.

II. White noise process is mean square derivative of a Weiner process.

(a) Both I and II are true.

(c) I is false and II is true.

(b) I is true and II is false.

(d) Both I and II are false.

3. Let Z(t) = X(t) + N(t), where X(t) and N(t) are independent zero-mean WSS random process. Then power spectral density $S_Z(\omega)$ and $S_{Z,X}(\omega)$ are:

(a)
$$S_X(\omega) + S_N(\omega)$$
 and $S_X(\omega) + S_{Z,N}(\omega)$ (b) $S_X(\omega) - S_N(\omega)$ and $S_X(\omega) - S_{Z,N}(\omega)$ (c) $S_X(\omega) + S_N(\omega)$ and $S_X(\omega)$ (d) $S_X(\omega) + S_N(\omega)$ and $S_{Z,N}(\omega)$

(c)
$$S_X(\omega) + S_N(\omega)$$
 and $S_X(\omega)$

(b)
$$S_X(\omega) - S_N(\omega)$$
 and $S_X(\omega) - S_{Z,N}(\omega)$

(d)
$$S_X(\omega) + S_N(\omega)$$
 and $S_{Z,N}(\omega)$

4. Let Y(t) = X(t-d), where d is a constant delay and X(t) is WSS. Then correlation function $R_Y(\tau)$ is

(a)
$$R_X(\tau-d)$$

(c)
$$R_X(\tau) - d$$

(b)
$$R_X(au)$$

(d)
$$R_X(\tau+d)$$

5. Let $Y(t) = X(t) \cos(2\pi\omega_0 t + \Theta)$, where ω_0 $(0, 2\pi)$, $X(t)$ is WSS and independent of Ω	$0 > 0$ is constant, Θ is uniform random variable on Θ for all t . Then $R_Y(\tau)$ is
(a) $(1/2)R_X(\tau)\cos(2\pi\omega_0\tau)$ (b) $(1/2)R_X(\tau)\sin(2\pi\omega_0\tau)$	(c) $(1/4)R_X(\tau)\cos(2\pi\omega_0\tau)$ (d) $(1/4)R_X(\tau)\sin(2\pi\omega_0\tau)$
6. Let $X(t)$ be WSS and mean square different $R_{X'}(\tau)$ is	ntiable for all $t \geq 0$. Then auto-correlation function
(a) $-\frac{d^2}{d\tau^2}R_X(\tau)$	(c) $-\frac{d}{d\tau}R_X(\tau)$
(b) $rac{d}{d au}R_X(au)$	(d) $-\frac{d^2}{d au^2}R_X(au)$
7. Let $X'(t)$ denote the mean square derived correlation function $R_{X',X}(t_1,t_2)$ is	ative of a random process $X(t)$. Then the cross-
(a) $\frac{\partial^2}{\partial t_1^2} R_X(t_1, t_2)$	(c) $\frac{\partial}{\partial t_1} R_X(t_1, t_2)$
(b) $\frac{\partial^2}{\partial t_2^2} R_X(t_1, t_2)$	(d) $\frac{\partial}{\partial t_2} R_X(t_1, t_2)$
 8. Let X_n denote a Binomial counting proce X_n is WSS. II. X_n satisfy Markov property. (a) Both I and II are true. 	ess. Then consider the following statements: (c) I is false and II is true.
(b) I is true and II is false.	(d) Both I and II are false.
9. Let $Y(t) = \int_0^t h(s)X(t-s)ds$ where $X(t)$ is I. $Y(t)$ is WSS. II. $R_{X,Y}(\tau) = R_{X,Y}(-\tau)$.	s WSS random process. Then consider the following:
(a) Both I and II are true.	(c) I is false and II is true.
(b) I is true and II is false.	(d) Both I and II are false.
10. Consider the autoregressive process $Y_n = \text{random process } N(0, \sigma^2)$. Then	$0.5Y_{n-1} + X_n$, where $Y_0 = 0$ and X_n is iid Gaussian
(a) Y_n is iid random process.	(c) Y_n is Markov process.
(b) Y_n is non-Markov process.	(d) None of these.
Q 2:	Marks: 20
a) Let $Z(t) = X(t) - aX(t-s)$, where $X(t)$ is (i) Find the pdf of $Z(t)$. (ii) Find $m_Z(t)$ and $C_Z(t_1, t_2)$.	the Wiener process.

Q3:

Marks: 20

- a) Let X(t) be a zero-mean random process with autocovariance $R_X(\tau) = \sigma^2 e^{-\alpha |\tau|}$.
 - (i) Write the eigenvalue integral equation for the Karhunen-Loeve expansion of X(t) on the interval [-T, T].
- (ii) Differentiate the above integral equation to obtain the differential equation

$$\frac{d^2}{dt^2}\phi(t) = \frac{\alpha^2}{\lambda} \left(\lambda - 2\sigma^2/\alpha\right) \phi(t).$$

(iii) Show that the solutions to the above differential equation are of the form $\phi(t) = A\cos bt$ and $\phi(t) = B \sin bt$. Find an expression for b.

Q4:

Marks: 20

- a) Let $X_{\alpha} = Z_{\alpha} + N_{\alpha}$, $\alpha \in \{n-p, n-p+1, \cdots, n\}$. Here Z_{α} has $R_{Z}(k) = \sigma_{Z}^{2}(r_{1})^{|k|}$ and N_{α} has $R_N(k) = \sigma_N^2(r_2)^{|k|}$, where r_1 and r_2 are less than one in magnitude.
 - (i) Find the equation for the optimum filter for estimating Z_{α} .
 - (ii) Write the matrix equation for the optimum filter coefficients.
- (iii) Find the mean square error for the optimum filter.

Q5:

Marks: 20

- a) A machine consists of two parts that fail and are repaired independently. A working part fails during any given day with probability α . A part that is not working is repaired by the next day with probability β . Let X_n be the number of working parts in day n.
 - (i) Show that X_n is a three-state Markov chain and give its one-step transition probability matrix.
- (ii) Show that the steady state pmf π is binomial with parameter $p = \beta/(\alpha + \beta)$.