Linear Algebra: Linear Dependence and Independence

Steven Schmatz, University of Michigan: College of Engineering

August 17, 2014

stevenschmatz@gmail.com

Introduction to linear independence

If two vectors are *linearly dependent*, any linear combination of the vectors will produce a scalar combination of one vector. For example,

$$\hat{\mathbf{a}} = (2,3)$$

$$\hat{\mathbf{b}} = (4,6)$$
 $c_1 \hat{\mathbf{a}} + c_2 \hat{\mathbf{b}} = c_1 \hat{\mathbf{a}} + 2c_2 \hat{\mathbf{b}}$

$$= (c_1 + 2c_2)\hat{\mathbf{a}} = c_3 \hat{\mathbf{a}}$$

Hence $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$ are linearly dependent.

Two vectors are linearly dependent if one vector in the set can be represented by a linear combination of another vector in that set.

Even a set of three vectors in \mathbb{R}^2 would be linearly dependent, because the third vector could be represented by a linear combination of the other two vectors *if* they span the vector space. The third vector would have to be outside of the \mathbb{R}^2 plane to be linearly independent.

A good *basis* for \mathbb{R}^2 would be two, linearly independent vectors. Hence, unit vectors $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$ would be a good basis for \mathbb{R}^2 .

More on linear independence

A set $s = \{v_1, v_2 \dots v_n\}$ is linearly dependent $\iff c_1v_1 + c_2v_2 + \dots c_nv_n = \mathbf{0}$, for some c_i where at least one is $\neq 0$. This means that one vector can be represented by the sum of the other vectors:

$$v_1 = a_2v_2 + a_3v_3 + \dots + a_nv_n$$

 $0 = -1v_1 + a_2v_2 + a_3v_3 + \dots + a_nv_n$

Assuming $c_1 \neq 0$, you can divide both sides by c_1 , yielding:

$$v_1 + \frac{c_2}{c_1}v_2 + \dots \frac{c_n}{c_1} = \mathbf{0}$$

 $\frac{c_2}{c_1}v_2 + \dots \frac{c_n}{c_1}v_n = -v_1$

Hence, if at least one of these constants is nonzero, you can represent v_1 as a linear combination of the other vectors.

Testing for linear independence

If you have a linear combination of two vectors $c_1v_1 + c_2v_2 = \mathbf{0}$:

- If c_1 or c_2 are nonzero \rightarrow they are dependent.
- Else if c_1 and c_2 are both zero \rightarrow they are independent.

For example:

$$v_1 = (2, 1), v_2 = (3, 2)$$

$$2c_1 + 3c_2 = 0$$

$$c_1 + 2c_2 = 0$$

$$c_1 + \frac{3}{2}c_2 = 0$$

$$\frac{1}{2}c_2 = 0$$

$$c_2 = 0 = c_1$$

Hence, these vectors are linearly independent.

For three vectors in \mathbb{R}^2 :

$$v_1 = (2,1), v_2 = (3,2), v_3 = (1,2)$$

 $2c_1 + 3c_2 + c_3 = 0$
 $c_1 + 2c_2 + 2c_3 = 0$

Picking a $c_3 = -1$:

$$2c_1 + 3c_2 - 1 = 0$$
$$2c_1 + 4c_2 - 4 = 0$$
$$-c_2 + 3 = 0$$
$$c_2 = 3$$
$$c_1 = -4, c_2 = 3, c_3 = -1$$

If you had three vectors in two-dimensional space, one of them has to be linearly dependent.

If you can show that you can satisfy $c_1v_1 + c_2v_2 = \mathbf{0}$ with at least one nonzero constant, the vectors are linearly dependent.

Span and linear independence example

- 1. Does the following set of vectors span \mathbb{R}^3 ?
- 2. Are the vectors linearly independent?

Testing for span

$$s = \{v_1 = (1, -1, 2), v_2 = (2, 1, 3), v_3 = (-1, 0, 2)\}\$$

Can $c_1v_1 + c_2v_2 + c_3v_3 = (a, b, c)$ for any a, b, c?

$$c_1 + 2c_2 - c_3 = a$$

 $-c_1 + c_2 = b$
 $2c_1 + 3c_2 + 2c_3 = c$

$$b + a = 3c_2 - c_3$$

Multiplying a by -2:

$$c - 2a = -c_2 + 4c_3$$

To eliminate the $-c_2$ term in the last equation, we multiply it by 3 and add it to the b+a term.

$$11c_3 = 3c - 5a + b$$

$$c_3 = \frac{1}{11}(3c - 5a + b)$$

$$c_2 = \frac{1}{3}(b + a + c_3)$$

$$c_1 = a - 2c_2 + c_3$$

Hence, with any a, b, c, you can find c_1, c_2, c_3 . They are then said to span \mathbb{R}^3 .

Testing for linear independence

 $c_1v_1 + c_2v_2 + c_3v_3 = \mathbf{0}$

.

It's the same procedure as the last problem, but using ${\bf 0}$ instead of a,b,c.

$$c_3 = \frac{1}{11}(3(0) - 5(0) + 0) = 0$$
$$c_2 = \frac{1}{3}(0 + 0 + 0) = 0$$
$$c_1 = (0 - 2(0) + 0) = 0$$

Since all of these constants are equal to zero, these vectors are linearly independent