# LAB # 12

04/08/2025

## 1 Introduction

This lab is centered around *Adaptive Quadrature*. Throughout this lab, we will be investigating the performance of adaptive quadrature and its relation to the underlying quadrature used in each sub-interval.

#### 2 Pre-Lab

The Pre-Lab for this lab requires us to develop code for the following methods in Python.

- 1. Composite trapezoidal on an interval: Takes the inputs a, b, f(x) and N number of points
- 2. Composite Simpsons rule on an interval: Takes the inputs a, b, f(x) and N number of points

The code that is developed in python will be avalaible on the GitHub repository under Lab\_12. In addition to the above, we are to watch the posted video on *Adaptive Quadrature* in preparation for lab.

### 3 Lab Day: Adaptive Quadrature

In this portion of the lab, we are asked to review the posted code, adaptive\_quad.py as well as the Pre-Lab video. The provided code is an implementation of the methods described in the video which uses *Gaussian Quadrature* for each of the underlying sub-intervals. We are to review both and discuss the results with the TA.

### 4 Exercises

### 4.1 Different Adaptive Quadratures

In this exercise, we are to develop three different Adaptive Quadrature sub-routines where each uses a different Quadrature method on each sub-interval. We are asked to develop a routine that uses Composite Trapezoidal, Composite Simpsons, and Gaussian Quadrature on the sub-intervals. The first two methods will use the sub-routines from the Pre-Lab while the last is already implemented in the provided code, adaptive\_quad.py. All of the produced code can be found in the GitHub repository in the Lab\_12 directory.

#### 4.2

For this question, we will be approximating the following function in (1) using each of the methods from the last question. For the approximations, we are to let n = 5 denote the number of nodes within each sub-interval. For each approximation, we are to approximate to within  $10^{-3}$ .

$$f(x) = \int_{0.1}^{2} \sin\left(\frac{1}{x}\right) dx \tag{1}$$

Using the code produced in the Pre-Lab and for the last question, the following plots were produced. The first figures use the  $Gaussian\ Quadrature$ .



Figure 1: Gaussian Quadrature Error



Figure 2: Gauss Quadrature

The following plots were created using the code for  $Composite\ Trapezoidal\ method.$ 



Figure 3: Composite Trapezoidal Error



Figure 4: Composite Trapezoidal

The following plots were created using the code for the *Composite Simpsons* method.



Figure 5: Composite Simpsons Error



Figure 6: Composite Simpsons