Midterm 2 Review

13 November 2018

1. Differentiate the following functions at the given points using the limit definition of derivative (difference quotient).

(a)
$$f(x) = x^3 - 4x$$
 at $x = 1$

(b)
$$f(x) = \frac{1}{x+4}$$
 at $x = 4$

(c)
$$f(x) = \sqrt{x-4}$$
 at $x = 3$

(d)
$$\frac{x-1}{x+2} \text{ at } x = 0$$

2. Differentiate the following functions.

(a)
$$f(x) = \frac{x^5}{7} - \frac{x^2}{3} - \frac{1}{x^2}$$

(b)
$$f(x) = \frac{x^2 - 2x - 3}{x^3 + 2x - 1}$$

(c)
$$f(x) = (x^4 - 2x^3 + 5x^2 - 2x + 1)(x^5 - x^4 + 4x^3 - 3x^2 + 1)$$

(d)
$$f(x) = \frac{1 + \cos^2(x)}{1 + \sin^2(x)}$$

(e)
$$f(x) = \cot(x)(1 - \sec(x))$$

(f)
$$f(x) = \csc(x) + \tan(x)\sin(x)$$

(g)
$$f(x) = (x^3 - 1)^{17}$$

(h)
$$f(x) = (\cos(x) - \sin(x))^{12}$$

(i)
$$f(x) = \cos^7(1 - x^2)$$

3. Find the equation of the tangent line to the graph of the following function at the given point.

(a)
$$f(x) = x^2 - 3x + 4$$
 at $(0,4)$

(b)
$$f(x) = \cos(x) + 2x$$
 at $(\frac{\pi}{4}, \frac{\sqrt{2} + \pi}{2})$

(c)
$$\frac{1}{x-2}$$
 at $(3,1)$

4. Calculate

(a)
$$\frac{d^2}{dx^2} \left[(2x+3)\cos(x) \right]$$

(b)
$$\frac{d^3}{dx^3} \left[x^3 - 2x^2 + x + 5 \right]$$

(c)
$$\frac{d^2}{dx^2} \left[\csc(x) \right]$$

(d)
$$\frac{d^4}{dx^4} \left[\cos(x) \right]$$

5. A bucket which is in the shape of an inverted cone. The height of the bucket is 10 m and the radius of its base is 5 m. The bucket is being filled with paint at a rate of 0.25 m³/s. Find the rate at which the height of the water is rising when there is 1 m³ of water in the bucket.

Given a cone of height h with base radius r, its volume is given by $V = \frac{1}{3}\pi r^2 h$.

Hint: You will need to use similar triangles to find a relationship between the base radius and height of the water in the bucket (r = h/2).

6. A rubber band is stretched along the equator of a spherical balloon which is being filled at a rate of 3 cm³/s. How fast is the rubber band stretching when the balloon contains 50 cm³ of air?

The volume of a sphere of radius r is $V = \frac{4}{3}\pi r^3$ and the circumference of a circle of radius r is $C = 2\pi r$.

7. Find the **equation of the tangent line** to the curve given by the following equation at the given point.

(a)
$$2x^3 + y^2 - 3xy = 0$$
 at $(1, 2)$

(b) $\cos(xy) = x^2 - 1$ at $(1, \frac{\pi}{2})$.