

Soft X-ray cameraTomographic imaging in EXTRAP T2R

Richard Fridström

Outline

- Soft X-rays (SXR)
- SXR diagnostic
- Tomographic imaging
 - The inversion algorithm (Cormack)
 - SXR emissivity maps in EXTRAP T2R

SXR sources

- Bremsstrahlung (free-free)
 - Main SXR source
 - Acceleration of electrons in Coulomb collisions
 - Depends on density n, the electron temperature T_e, and the charge Z:

$$\varepsilon_B = \left(\frac{\sqrt{2}}{3\pi^{\frac{5}{2}}}\right) \left(\frac{e^6}{\epsilon_0 c^3 h m_e^{\frac{3}{2}}}\right) Z^2 n_i n_e \sqrt{T_e} \quad \text{[W/m}^3].$$

- Other SXR sources:
 - Recombination radiation (free-bound)
 - Line radiation (bound-bound)

SXR diagnostic

- Detector head
 - Pinhole collimator
 - High-pass filter (Beryllium)
 - ✓ Study the core plasma
 - Silicon photodiode detectors
 - ✓ Low-pass filter (finite diode width)

Many detectors → radial profile Viewing chords Pinhole **Detectors** SXR camera Plasma

SXR diagnostic

Measured brightness along a single chord:

$$f(p,\beta) = \int_{L(p,\beta)} \varepsilon(r,\theta) ds$$
 [W/m]

• Emissivity: $\varepsilon(r,\theta)$ [W/m²]

Impact parameter: p [m]

SXR cameras for tomography

Tomographic reconstruction

- Multiple cameras
 - e.g. RFX-mod, ASDEX-U

SXR image at each time instant

SXR cameras for tomography

Tomographic reconstruction

- Multiple cameras
 - e.g. RFX-mod, ASDEX-U

SXR image at each time instant

- Simulate additional cameras
 - e.g. MST, EXTRAP T2R
 - ✓ Plasma poloidal rotation

One time instant not enough

→ Use two or more measurements

SXR cameras for tomography

Tomographic reconstruction

- Multiple cameras
 - e.g. RFX-mod, ASDEX-U

SXR image at each time instant

- Simulate additional cameras
 - e.g. MST, EXTRAP T2R
 - ✓ Plasma poloidal rotation

One time instant not enough

→ Use two or more measurements

Tomographic imaging of SXR emissivity

Cormack's method:

Measured brightness along a single chord:

$$f(p,\beta) = \int_{L(p,\beta)} \varepsilon(r,\theta) ds$$

Model: expand in Fourier series:

$$\varepsilon(r,\theta) = \sum_{m=0}^{\infty} [\varepsilon_m^c(r)\cos(m\theta) + \varepsilon_m^s(r)\sin(m\theta)],$$

$$f(p,\beta) = \sum_{m=0}^{\infty} [f_m^c(p)\cos(m\beta) + f_m^s(p)\sin(m\beta)].$$

 $\varepsilon_m^{c,s}(r)$ are then further expanded

$$\varepsilon_m^{c,s}(r) = \sum_{l=0}^{\infty} a_{ml}^{c,s} a_{ml}(r).$$

• Chose Bessel functions of the first kind: $\varepsilon_{ml}(r) = J_m(x_{ml}r)$, where $J_m(x_{ml}) = 0$.

$$f_{ml}(p) = -2J'_{m}(x_{ml}) \int_{0}^{\cos^{-1} p} \cos(m\theta) \sin[x_{ml}(\cos\theta - p)] d\theta$$

Minimizing the squared error (model-measured) in all chords gives $oldsymbol{a_{ml}^{c,s}}$

SXR imaging EXTRAP T2R using mode rotation

- Simulate SXR cameras using mode rotation (SXR signals at three time instants)
- Single dominant mode (*m*=1,*n*=-13)

- m=1 modes via magnetic pick-up coils
- SXR signal in central chords
 - Up-down chord signals:
 ~180° phase shifted (rotating m=1 mode)
- SXR phase via the Hilbert transform.

SXR imaging EXTRAP T2R using mode rotation

Simulate SXR cameras using mode rotation (SXR signals at three time instants)

Single dominant mode (*m*=1,*n*=-13)

Reconstruction of six instants (almost one period in the SXR and magnetic signal)

(18)

SXR map and Poincare map of magnetic field

- Field line tracing: $\frac{dr}{b_r} = \frac{rd\theta}{B_{\Phi}} = \frac{Rd\Phi}{B_{\Theta}}$,
 - Magnetic field: $\bar{B} = B_{\theta}\hat{\theta} + B_{\phi}\hat{\phi} + \overline{\delta b}$,
 - perturbation: $\overline{\delta b} = b_r \hat{r} + b_\theta \hat{\theta} + b_\varphi \hat{\phi}$, where $b_r = \sum_n b_{r,n}(r) cos(m\theta + n\varphi + \alpha_n)$
 - B_{θ} and B_{Φ} from equilibrium reconstruction
 - $b_{r,n}(r)$: profile from Newcomb's equation and amplitude via edge measurements

Conclusion

- In quasi-single helicity:
 - Reconstructed SXR show a m=1 structure
 - SXR and magnetic structure has the same
 - ✓ Position (angle and radius)
 - ✓ Rotational velocity

