Basic Mathematics Solutions

Michael Rocke

August 17, 2019

0.1 Chapter 1

0.1.1 Exercise §2

Using Commutativity and Associativity in proving the following

$$(a+b)+(c+d)=(a+d)+(b+c)$$

 $a+b+c+d$ by associativity
 $a+b+c+d=a+b+d+c=a+d+b+c$ by commutativity

$\mathbf{2}$

$$(a+b)+(c+d)=(a+c)+(b+d)$$

 $a+b+c+d$ by associativity
 $a+b+c+d=a+c+b+d$ by commutativity

Solve for
$$x$$

 $-2 + x = 4$
 $x = 4 + 2 = 6$

$$2-x=5$$
 $-x=5-2=3$
 $x=-3$

$$x - 3 = 7$$
$$x = 7 + 3 = 10$$

$$-x + 4 = -1$$

 $-x = -1 - 4 = -5$
 $x = 5$

$$4 - x = 8$$

 $-x = 8 - 4 = 4$
 $x = -4$

$$-5 - x = -2$$

 $-x = -2 + 5 = 3$
 $x = -3$

$$-7 + x = -10$$

 $x = -10 + 7 = -3$

$\mathbf{21}$

$$-3 + x = 4$$
$$x = 4 + 3 = 7$$