

Bayesian Analysis

USAID MENA Advanced MEL Workshop

Session Objectives

- Understand how to derive Bayes' Rule from the laws of probability
- Understand how to interpret Bayes' Rule in the context of a data analysis
- Understand how thinking like a Bayesian follows the scientific method and should guide how we think about the world

Session Objectives

Bonus content:

- Setting Bayesian priors as qualitative research
- Naive Bayes'
- Expectation Maximization

Level Set

Deriving Bayes' Rule

Bayes' Rule

Consider two overlapping events A and B occurring within a universe U.

$$P(A) = rac{A}{U}$$
 $P(AB) = rac{AB}{U}$

How Much of A is in B?

$$P(A|B) = rac{P(AB)}{P(B)}$$
 $P(AB) = P(A \mid B)P(B)$

How Much of B is in A?

$$P(B \mid A) = \frac{P(AB)}{P(A)}$$
 $P(AB) = P(B \mid A)P(A)$

Putting the Two Together

We can put the two identities together and solve for $A \mid B$:

$$P(A \mid B)P(B) = P(B \mid A)P(A)$$

$$P(A \mid B) = \frac{P(B|A)P(A)}{P(B)}$$

And that's it. That's Bayes' Rule.

Bayes' Rule as an Analytical Tool

We just used the laws of probability to derive Bayes' Rule:

$$P(A \mid B) = \frac{P(B|A)P(A)}{P(B)}$$

Now let's use this in the context of a data analysis

$$P(model \mid data) = rac{P(data \mid model)P(model)}{P(data)}$$

Can also think in terms of hypothesis and evidence

$$P(hypothesis \mid evidence) = rac{P(evidence \mid hypothesis)P(hypothesis)}{P(evidence)}$$

Using Bayes' Rule

$$P(model \mid data) = rac{P(data \mid model)P(model)}{P(data)}$$

 $P(model \mid data)$: probability of a hypothesis given data $P(data \mid model)$: the likelihood of our data for each hypothesis P(model): the prior probability of the model, before data P(data): a normalizing constant

Bayesian Inference

- 40 subjects, half randomly assigned a treatment expected to reduce the probability of an event
- By random assignment, we would expect the event to fall evenly across treatment and control groups¹
- What is the probability p that an observed event occurred within the treatment group?

Setting Up Our Hypotheses

 $H_0: p=50\%$ No treatment effect

 $H_1:p<50\%$ Treatment effect

- 20 events 4 events in the treatment group and 16 events in the control group
- How likely are these four events to have occurred within the treatment group?

Frequentist Hypothesis Test

$$P\left(data \geq data_{observed} \mid H_0\right)$$

estimate	statistic	p.value	parameter	conf.low	conf.high	method	alternative
0.2	4	0.0118	20	0.0573	0.437	Exact binomial test	two.sided

$$\frac{4}{20} = 20\%$$

$$p = .012$$

Setting Up the Bayesian Engine

- 1. Set a range of plausible values (the model space)
- 2. Calculate the likelihood of the data for each plausible value
- 3. Set the prior probability of each plausible value
- 4. Multiply the likelihood by the prior (numerator)
- 5. Divide by the denominator to get the posterior probability

Results of the Bayesian Engine

hypothesis	likelihood	prior	numerator	posterior
10%	0.090	6%	0.005	17.5%
20%	0.218	6%	0.013	42.5%
30%	0.130	6%	0.008	25.4%
40%	0.035	6%	0.002	6.8%
50%	0.005	52%	0.002	7.8%
60%	0.000	6%	0.000	0.1%
70%	0.000	6%	0.000	0.0%
80%	0.000	6%	0.000	0.0%
90%	0.000	6%	0.000	0.0%

A treatment effect of 20 percent is most likely

But notice that we get back an entire distribution, not just a point estimate

From Prior to Posterior

Bayesian Analysis as Science

- Recall what we learned as kids about the scientific method:
 - Observe a state of the world
 - Develop a hypothesis about how the world works
 - Test your hypothesis with new data
 - Update your beliefs and repeat

Think Like a Bayesian

- Using Bayes' Rule to conduct inference follows the scientific method!
- Let's think like a Bayesian
- Stay tuned for Bayes' Rule used in machine learning

Bonus Content

- Setting Bayesian priors as qualitative research
- Naive Bayes Classifier
- Expectation Maximization (EM) algorithm

Bayesian Priors

- The prior probability P(model) reflects our current state of understanding about our hypothesis
- Stakeholders have a prior probability of the hypothesis, even if they don't think of it in terms of a Bayesian analysis
- What if we used the elicitation of prior probability as a qualitative research method?

Uncertain About Hypothesis

Beta Distribution

 $X \sim Beta(\alpha, \beta)$

$$\alpha = 3$$

$$\beta = 7$$

$$x =$$

$$\mu = E(X) = 0.3$$
 $\sigma = SD(X) = 0.1382$ $\sigma^2 = Var(X) = 0.0191$

Help

©2021 Matt Bognar Department of Statistics and Actuarial Science University of Iowa

More Confident About Hypothesis

Beta Distribution

 $X \sim Beta(lpha,eta)$

$$lpha = 70$$

$$\beta = 30$$

$$x =$$

$$\mu = E(X) = 0.7$$
 $\sigma = SD(X) = 0.0456$ $\sigma^2 = Var(X) = 0.0021$

Help

©2021 Matt Bognar Department of Statistics and Actuarial Science University of Iowa

Bayes Priors as Qualitative Inquiry

	Percentage (%)	Margin of Error (%)
West Bank	Enter answer	Enter answer
Gaza	Enter answer	Enter answer
Can you share a bit more	about why you entered those estimates?	
er answer		
What percent of responde	ents do you expect to report a somewhat or very positive pero	eption of USAID (respond for both West Bank and Gaza
What percent of responde	ents do you expect to report a somewhat or very positive perc	eption of USAID (respond for both West Bank and Gaza
What percent of responde	ents do you expect to report a somewhat or very positive pero Percentage (%)	eption of USAID (respond for both West Bank and Gaza Margin of Error (%)
What percent of responde		
est Bank	Percentage (%)	Margin of Error (%)
West Bank	Percentage (%) Enter answer	Margin of Error (%) Enter answer
	Percentage (%) Enter answer	Margin of Error (%) Enter answer
West Bank Gaza	Percentage (%) Enter answer Enter answer	Margin of Error (%) Enter answer
West Bank Gaza	Percentage (%) Enter answer	Margin of Error (%) Enter answer
West Bank Gaza	Percentage (%) Enter answer Enter answer	Margin of Error (%) Enter answer

Prior Probability Elicitation

Naive Bayes

Consider a logic model where we can assign actual probabilities

Putting the Naive in Naive Bayes

- Assume each variable is independent of the others, even if we know that is not true ("naive")
- Given the assumption of independence, all we have to do is multiply probabilities together to estimate an outcome

$$posterior \propto prior \times likelihood$$

Automagically, naive Bayes gives us helpful answers!

Expectation Maximization (EM)

- Expectation maximization is an algorithm that iteratively updates probabilities using Bayes' Rule
- EM is used to impute missing data, or detect latent variables
- Starting with a reasonable best-guess of parameter values, the model learns from the data and updates the probabilities
- Automagically, the model converges to the best parameter values

E to the M to the E

Expectation step

• For our best-guess of parameter values and observed data, what is the posterior distribution?

Maximization step

 Use the most likely values from the expectation step to make our next best-guess of parameter values

Expectation step.. Maximization step..

EM Climbs the Hill of Likelihood

https://yangxiaozhou.github.io/data/2020/10/20/EM-algorithm-explained.html

Recap of bonus content

- Bayesian analysis starts simple with Bayes' Rule
- Because Bayes' Rule is based on the laws of probability, we can build very complex algorithms on top of it
- It is important to practically understand Bayes' Rule, and use it in our every day thinking about the world
- It is important to conceptually understand how Bayes' Rule can be applied in more complex ways to help us learn

Looking forward

Stay tuned for sessions on

- Machine Learning
- Large Language Models
- Artificial General Intelligence

Thank you!