Chapitre 10

Convexité des fonctions

I. Approche graphique

1) Fonctions convexes et concaves

Définition:

Soit f une fonction définie sur un intervalle I et \mathcal{C} sa courbe représentative dans un repère.

- f est **convexe** sur I si, pour tous réels a et b de I, la portion de la courbe $\mathscr C$ située entre les points A(a; f(a)) et B(b; f(b)) est **en dessous** de la sécante (AB).
- f est **concave** sur I si, pour tous réels a et b de I, la portion de la courbe $\mathscr C$ située entre les points A(a; f(a)) et B(b; f(b)) est **au-dessus** de la sécante (AB).

Exemples:

• La fonction représentée ci-dessous est convexe :

• La fonction représentée ci-dessous est concave :

- La fonction carrée et la fonction exponentielle sont convexes sur \mathbb{R} .
- La fonction racine carrée est concave sur [0; +∞[.
- La fonction inverse est concave sur]- ∞ ; 0[et convexe sur]0; + ∞ [.
- La fonction cube est concave sur $]-\infty$; 0] et convexe sur $[0; +\infty[$.
- La fonction logarithme népérien est concave sur]0; $+\infty[$.

Remarque:

Étudier la convexité d'une fonction revient à déterminer sur quel(s) intervalle(s) elle est convexe et sur quel(s) intervalle(s) elle est concave.

Propriétés:

• Si f est une fonction **convexe** sur un intervalle I alors, pour tous réels x et y de I et pour tout t∈ [0; 1]:

$$f(t x + (1 - t) y) \le t f(x) + (1 - t) f(y)$$

• Si f est une fonction **concave** sur un intervalle I alors, pour tous réels x et y de I et pour tout t∈ [0; 1]:

$$f(t x + (1 - t) y) \ge t f(x) + (1 - t) f(y)$$

Démonstration:

Soient deux réels x et y et soit t un réel de [0; 1].

Soient A(x; f(x)) et B(y; f(y)).

Alors le point M(t x + (1 - t) y ; t f(x) + (1 - t) f(y)) appartient au segment [AB], sécante de \mathcal{C}_f .

f étant convexe, cette sécante est située au-dessus de \mathcal{C}_f .

M est donc située au-dessus du point N de coordonnées

$$(t x + (1 - t) y ; f(t x + (1 - t) y)).$$

D'où
$$f(t x + (1 - t) y) \le t f(x) + (1 - t) f(y)$$
.

Propriété:

f est convexe sur I si et seulement si -f est concave sur I.

2) Point d'inflexion

Définition:

Soit f une fonction définie sur un intervalle I, \mathscr{C} sa courbe représentative et A un point de \mathscr{C} .

A est un **point d'inflexion** de \mathscr{C} si \mathscr{C} admet une tangente en A et si \mathscr{C} traverse cette tangente en A.

Exemples:

Remarque:

En l'abscisse d'un point d'inflexion A de la courbe représentative de f, la fonction f change de convexité.

II. Convexité des fonctions dérivables

1) Caractérisation de la convexité

Propriétés:

Soit f une fonction définie et deux fois dérivable sur un intervalle I.

On note f' sa dérivée et f'' sa dérivée seconde.

Les propositions suivantes sont équivalentes :

- f est convexe sur l'intervalle I.
- f" est positive sur l'intervalle I.
- f'est croissante sur I.

Exemple:

On considère la fonction polynôme f, définie sur \mathbb{R} par $f(x) = 3x^2 - 5x + 1$.

La fonction f est deux fois dérivable sur \mathbb{R} . On a f''(x) = 6.

La fonction f" est positive sur \mathbb{R} , donc la fonction f est convexe sur \mathbb{R} .

2) Convexité et tangente

Propriétés:

Soit f une fonction définie et \mathcal{C}_f sa courbe représentative dans un repère.

Soit I un intervalle sur lequel f est dérivable.

- Sur l'intervalle I, f est convexe si et seulement si \mathcal{C}_f est au-dessus de toutes ses tangentes.
- Sur l'intervalle I, f est concave si et seulement si \mathcal{C}_f est en dessous de toutes ses tangentes.

Démonstration :

On suppose f convexe sur I. Soit $x_0 \in I$.

• L'équation de la tangente T_{x_0} à \mathcal{C}_f au point d'abscisse x_0 est :

$$y = f'(x_0)(x - x_0) + f(x_0)$$

Soit Φ la fonction définie sur I par la différence entre la fonction et sa tangente.

$$\Phi(x) = f(x) - (f'(x_0)(x - x_0) + f(x_0)) = f(x) - f'(x_0)x + f'(x_0)x_0 - f(x_0).$$

Alors Φ est dérivable comme somme de fonctions dérivables et, en notant Φ ' sa dérivée, on obtient :

$$\Phi'(x) = f'(x) - f'(x_0) + 0 - 0 = f'(x) - f'(x_0).$$

• La fonction f est convexe sur I, donc la fonction f' est croissante sur I, donc la fonction Φ ' l'est aussi.

Or $\Phi'(x_0) = 0$, donc pour tout réel x de I :

- si $x \le x_0$, alors $\Phi'(x) \le 0$
- $\operatorname{si} x \ge x_0$, alors $\Phi'(x) \ge 0$

Donc, la fonction Φ est décroissante sur $]-\infty$; $x_0] \cap I$ et croissante sur $]x_0$; $+\infty$ [\cap I.

De plus, $\Phi(x_0) = 0$, donc 0 est le minimum de Φ sur I, donc la fonction Φ est positive sur I.

Donc, pour tout réel x appartenant à $I, f(x) - (f'(x_0)(x - x_0) + f(x_0)) \ge 0$.

Donc \mathcal{C}_f est au-dessus de T_{x_0} sur l'intervalle I.

• En conclusion, sur I, la courbe \mathcal{C}_f est au-dessus de toutes ses tangentes.

Exemple:

La fonction f représentée ci-dessous est convexe.

La fonction g représentée ci-dessous est concave.

Remarque:

Une fonction croissante et convexe sur un intervalle I est une fonction qui croît « de plus en plus vite » sur I. Si elle est dérivable sur I, les pentes des tangentes à sa courbe représentative augmentent quand les abscisses augmentent.

Pour une fonction croissante et concave, c'est le contraire : elle croît « de moins en moins vite ».

3) Point d'inflexion

Propriétés:

Soit f une fonction définie et deux fois dérivables sur un intervalle I, C_f sa courbe représentative et a un réel appartenant à I.

- Si f' change de sens de variation en a, alors \mathcal{C}_f admet un point d'inflexion au point d'abscisse a.
- Si f" s'annule et change de signe en a, alors \mathcal{C}_f admet un point d'inflexion au point d'abscisse a.