Kapitel IV

Nichtsinguläre Kurven

§ 15 Diskrete Bewertungsringe

Definition 15.1 Eine zusammenhängende, quasiprojektive Varietät C mit dim C=1 über einem algebraisch abgeschlossenen Körper \mathbb{K} heißt Kurve.

Lemma 15.2 Sei (R, \mathfrak{m}) lokaler, noetherscher, nullteilerfreier Ring und es gelte dim R = 1. Falls \mathfrak{m} ein Hauptideal ist, so ist bereits R ein Hauptidealring.

Beweis. Es sei $I \leq R$ ein Ideal sowie $t \in \mathfrak{m}$ ein Erzeuger von \mathfrak{m} . Ohne Einschränkung gelte $0 \neq I \neq R$, das heißt, es gilt $I \subseteq \mathfrak{m}$. Wähle n maximal, sodass $I \subseteq \mathfrak{m}^n$. Sei $x \in I \cap (\mathfrak{m}^n \backslash \mathfrak{m}^{n+1})$. Wegen $\mathfrak{m}^n \supseteq \langle t^n \rangle$ können wir x schreiben als

$$x = u \cdot t^n, \quad u \in R.$$

Wäre $u \notin R^{\times}$, so wäre $u \in \mathfrak{m}$ und damit $x = u \cdot t^n \in \mathfrak{m}^{n+1}$, Widerspruch zur Annahme. Damit ist $t^n = u^{-1}x \in \langle x \rangle \subseteq I \cap (\mathfrak{m}^n \backslash \mathfrak{m}^{n+1})$. Dies ergibt $\langle t^n \rangle \subseteq \mathfrak{m}^n$, also $\langle t^n \rangle = \mathfrak{m}^n$ und

$$\langle t^n \rangle = \mathfrak{m}^n \subseteq I,$$

also insgesamt $\mathfrak{m}^n = I$, also ist I Hauptideal. Es bleibt zu zeigen, dass man ein solches n wählen kann. Angenommen, es gäbe keines. Dann gilt

$$I \subseteq \bigcap_{n=1}^{\infty} \mathfrak{m}^n =: N.$$

N ist lokal in (einem noetherschen Ring) R, also endlich erzeugt. Damit ist

$$\mathfrak{m} \cdot N = \bigcap_{n=1}^{\infty} \mathfrak{m}^{n+1} = N$$

und das Nakayama-Lemma liefert N=0 - also I=0, ein Widerspruch zur Annahme.

Proposition 15.3 Es sei C eine Kurve, $x \in C$. Dann gilt

 $x \text{ ist nichtsingul\"{a}r} \iff \mathcal{O}_{C,x} \text{ ist diskreter Bewertungsring.}$

Beweis. Da $\mathcal{O}_{C,x}$ noetherscher lokaler Ring von Dimension 1 ist, genügt die Eigenschaft Hauptidealring, um die Behauptung zu zeigen. Nach Lemma 15.2 genügt es hierfür wiederum zu zeigen, dass \mathfrak{m} ein Hauptideal ist. Nach Folgerung 14.10 gilt

$$x$$
 ist regulär \iff $\dim \mathfrak{m}_x / \mathfrak{m}_x^2 = \dim \mathcal{O}_{C,x} = 1,$

nach Krulls Hauptidealsatz kann \mathfrak{m}_x also von einem Element erzeugt werden, ist also ein Hauptideal. Damit folgt die Behauptung.

Bemerkung + **Definition 15.4** Sei C eine Kurve, C irreduzibel, $x \in C$ regulär, $t \in \mathcal{O}_{C,x}$ ein Erzeuger von \mathfrak{m}_x . Dann lässt sich $f \in \mathbb{K}(C)^{\times} = \operatorname{Quot}(\mathcal{O}_{C,x})^{\times}$ schreiben als

$$f = u \cdot t^n, \qquad n \in \mathbb{Z}, u \in \mathcal{O}_{C,x}^{\times}$$

Dann heißt $n := \operatorname{ord}_x f$ die Ordnung von f in x. Weiter ist die Zuordnung $f \mapsto \operatorname{ord}_x f$ eine diskrete Bewertung.

Beispiel 15.5 Sei $C = V(Y^2 - X^3 + X)$, P = (0,0) sowie $x, y \in \mathbb{K}(C)$. Es gilt $Y^2 = X(X^2 - 1)$ auf C. Wegen

$$X = \underbrace{\frac{1}{X^2 - 1}}_{\in \mathcal{O}_{C,P}^{\times}} \cdot Y^2 \in \mathcal{O}_{C,P} \qquad (*)$$

erhalten wir

$$\operatorname{ord}_P(x) = 2\operatorname{ord}_P(y).$$

Weiter wird \mathfrak{m}_P erzeugt von $(\overline{X}-0,\overline{Y}-0)$, mit (*) gilt also

$$\operatorname{ord}_P(y) = 1, \qquad \operatorname{ord}_P(x) = 2$$

Proposition 15.6 Sei C nichtsinguläre irreduzible Kurve, $f \in \mathbb{K}(C)^{\times}$. Dann gibt es nur endlich viele Punkte $x \in C$ mit $ord_x f \neq 0$.

Beweis. Es gilt

$$\operatorname{ord}_x f > 0 \iff f \in \mathfrak{m}_x \iff f(x) = 0$$

sowie

$$\operatorname{ord}_x f < 0 \iff \operatorname{ord}_x \frac{1}{f} > 0 \iff \frac{1}{f} \in \mathfrak{m}_x \iff \frac{1}{f}(x) = 0$$

damit ist

$${x \in C \mid \operatorname{ord}_x f \neq 0} = V(f) \cup V\left(\frac{1}{f}\right).$$

Da $f \neq 0 \neq \pm \frac{1}{f}$, sind $V(f), V\left(\frac{1}{f}\right)$ abgeschlossene, echte Teilmengen von C. Da dim C=1 und C irrreduzibel ist, haben V(f) und $V\left(\frac{1}{f}\right)$ Dimension 0, das heißt, die irreduziblen Komponenten der beiden Verschwindungsmengen sind Punkte. Da beide aus endlich vielen irreduziblen Komponenten bestehen, ist auch die Vereinigung endlich und somit folgt die Behauptung.

Proposition 15.7 Sei C nichtsinguläre, irreduzible Kurve, $U \subseteq C$ offen und nichtleer, V projektive Varietät sowie $f: U \longrightarrow V$ ein Morphismus. Dann gibt es genau einen Morphismus $\overline{f}: C \longrightarrow V$ mit $\overline{f}|_{U} = f$, das heißt, f lässt sich in regulären Punkten fortsetzen.

Beweis. Eindeutigkeit. Seien $g, h: C \longrightarrow V, g|_{U} = f = h|_{U}$. Dann ist

$$U = \{x \in C \mid g(x) = h(x)\}\$$

abgeschlossen und wegen $\overline{U} = C$ folgt g = h.

Existenz. Ohne Einschränkung sei $C \setminus U = \{p\}$ sowie $V = \mathbb{P}^n(\mathbb{K})$. Außerdem gelte $f(U) \subseteq V(X_i)$ (denn sonst wäre $f(U) \subseteq \mathbb{P}^{n-1}(\mathbb{K})$). Sei weiter

$$W := f^{-1} \left(\bigcap_{i=0}^{n} U_i \right).$$

 W_i ist nichtleer, offen und damit dichte Teilmenge. Definiere

$$h_{ij} = \left(\frac{X_i}{X_j} \circ f\right) = "\frac{f_i}{f_j}".$$

 h_{ij} ist eine wohldefinierte, reguläre Funktion auf W für alle $i, j \in \{0, ..., n\}$, also $h_{ij} \in \mathbb{K}(C)^{\times}$. Sei

$$r_i := \operatorname{ord}_p h_{i0}, \quad i \in \{0, \dots, n\}$$

und wähle k, sodass

$$r_k = \min\{r_i \mid i \in \{0, \dots, n\}\}.$$

Es gilt

$$\operatorname{ord}_{p} h_{ik} = \operatorname{ord}_{p} \frac{h_{i0}}{h_{k0}} = \operatorname{ord}_{p} h_{i0} - \operatorname{ord}_{p} h_{k0} = r_{i} - r_{k} \geqslant 0,$$

also $h_{ik} \in \mathcal{O}_{C,p}$. Damit existiert eine Umgebung \tilde{U} von p mit $h_{ik} \in \mathcal{O}(\tilde{U})$. Setze

$$\overline{f}(x) := \begin{cases} f(x), & x \neq p \\ (h_{0k}(x) : \dots : h_{nk}(x)), & x = p \end{cases}$$

Beachte: \overline{f} ist wohldefiniert, da $h_{kk}=1.$ In einer Umgebung \tilde{U} von p gilt $x\in \tilde{U}\backslash\{p\}$, also

$$\overline{f}(x) = f(x) = ((X_0 \circ f)(x) : \dots : (X_n \circ f)(x))$$

$$= \left(\left(\frac{X_0}{X_k} \circ f\right)(x) : \dots : \left(\frac{X_n}{X_k} \circ f\right)(x)\right)$$

$$= (h_{0k}(x) : \dots : h_{nk}(x)),$$

also ist \overline{f} Morphismus.

Folgerung 15.8 (i) Eine Funktion $f \in \mathbb{K}(C)$ induziert einen Morphismus $f: C \longrightarrow \mathbb{P}^1(\mathbb{K})$.

(ii) Ist C nichtsinguläre, zusammenhängende Kurve, so ist C bereits irreduzibel, denn gäbe es zwei irreduzible Komponenten mit nichtleerem Schnitt, so wäre $x \in Z_1 \cap Z_2$ singulär (Übung 12.2).

§ 16 Divisoren

In diesem Abschnitt sei C nichtsinguläre Kurve über einem algebraisch abgeschlossenen Körper \mathbb{K} .

Definition 16.1 (i) Ein(Weil-) Divisor D auf C ist eine formale Summe

$$D = \sum_{i=1}^{n} n_i P_i, \qquad n_i \in \mathbb{Z}, n \in \mathbb{N}, P_i \in C$$

Schreibweise: (P) für $1 \cdot P$.

(ii) Die Divisorengruppe auf C ist

$$Div(C) := \{D \mid D \text{ ist Divisor auf } C\}$$

- (iii) Div(C) ist freie abelsche Gruppe über der Menge C.
- (iv) Für eine Divisor D wie in (i) heißt

$$\deg(D) := \sum_{i=1}^{n} n_i$$

der Grad von D.

(v) Wir haben einen surjektiven Gruppenhomomorphismus

$$deg : Div(C) \longrightarrow \mathbb{Z}, \quad D \mapsto deg(D)$$

(vi) Ein Divisor $D = \sum_{i=1}^{n} n_i P_i \in \text{Div}(C)$ heißt effektiv, falls $n_i \ge 0$ für alle $i \in \{1, ..., n\}$. Schreibweise: $D \ge 0$.

Definition + **Bemerkung 16.2** (i) Für $f \in \mathbb{K}(C)^{\times}$ heißt

$$\operatorname{div}(f) := \sum_{p \in C} \operatorname{ord}_p(f) \cdot P$$

 $\det Divisor \ von \ f.$

- (ii) $\operatorname{div}(f)$ ist Divisor.
- (iii) Ein Divisor $D \in \text{Div}(C)$ heißt Haupt divisor, falls es $f \in \mathbb{K}(C)^{\times}$ gibt mit D = div(f).
- (iv) Haben einen Gruppenhomomorphismus

$$\operatorname{div}: \mathbb{K}(C)^{\times} \longrightarrow \operatorname{Div}(C), f \mapsto \operatorname{div}(f),$$

d.h. es gilt für alle $f, g \in Div(C)$:

$$\operatorname{div}(f \cdot g) = \operatorname{div}(f) + \operatorname{div}(g)$$

(v) Die Hauptdivisoren bilden eine Untergruppe

$$Div_H(C) := Im div$$

(vi) D, D' heißen linear äquivalent, wenn ihre Differenz D - D' ein Hauptdivisor ist, schreibe $D \equiv D'$.

§ 16 DIVISOREN 67

(vii) Der Quotient

$$Cl(C) := Div(C)/Div_H(C)$$

heißt Divisorenklassengruppe von C.

Beispiel 16.3 Sei $C := \mathbb{P}^1(\mathbb{K})$. Da \mathbb{K} algebraisch abgeschlossen ist, lässt sich jedes $f \in \mathbb{K}(C)^{\times} = \mathbb{K}(X)^{\times}$ eindeutig schreiben als

$$f = \frac{\prod_{i=1}^{n} (X - a_i)}{\prod_{j=1}^{m} X - b_j}, \quad a_i \neq b_j \in \mathbb{K} \text{ für alle } i, j.$$

Schreibe $\mathbb{P}^1(\mathbb{K}) = \mathbb{A}^1(\mathbb{K}) \cup \{\infty\}$. Für $P \in \mathbb{A}^1(\mathbb{K})$ ist

$$\operatorname{ord}_P f = |\{i \in \{1, \dots, n\} \mid a_i = P\}| - |\{j \in \{1, \dots, m\} \mid b_j = P\}|,$$

denn

$$\mathcal{O}_{\mathbb{P}^1(\mathbb{K}),P} = \mathcal{O}_{\mathbb{A}^1(\mathbb{K}),P} = \mathbb{K}[X]_{\langle X-p \rangle}$$

wird von X - p erzeugt. Für $P = \infty$ ist

$$\mathcal{O}_{\mathbb{P}^1(\mathbb{K}),\infty} = \mathbb{K}\left[\frac{1}{X}\right]_{\langle \frac{1}{X}\rangle}$$

Schreibe

$$f = \frac{X^n}{X^m} \cdot \frac{\prod_{i=1}^n 1 - \frac{a_i}{X}}{\prod_{j=1}^m 1 - \frac{b_j}{X}} = \left(\frac{1}{X}\right)^{m-n} \cdot \frac{\prod_{i=1}^n 1 - \frac{a_i}{X}}{\prod_{j=1}^m 1 - \frac{b_j}{X}}.$$

Dann folgt $\operatorname{ord}_{\infty} f = m - n$. Damit ist

$$\operatorname{div}(f) = \sum_{i=1}^{n} 1 \cdot a_i - \sum_{j=1}^{m} 1 \cdot b_j + (m-n) \cdot \infty,$$

also $\deg \operatorname{div}(f) = 0$.

Sei umgekehrt $D \in \text{Div}(C)$ mit deg D = 0. Schreibe

$$D = \sum_{i=1}^{m} 1 \cdot a_i - \sum_{j=1}^{m} 1 \cdot b_j, \qquad a_i \neq b_j \text{ für alle } i, j.$$

Setze

$$f := \frac{\prod_{a_i \neq \infty} X - a_i}{\prod_{b_i \neq \infty} X - b_j} \in \mathbb{K}(C)^{\times}.$$

Dann gilt $\operatorname{div}(f) = D$ und damit

$$\operatorname{Div}_{H}(\mathbb{P}^{1}(\mathbb{K})) = \{ D \in \operatorname{Div}(\mathbb{P}^{1}(\mathbb{K})) \mid \deg D = 0 \} = \ker \deg$$

und mit dem Homomorphiesatz

$$\operatorname{Cl}(\mathbb{P}^1(\mathbb{K})) = \operatorname{Div}(\mathbb{P}^1(\mathbb{K})) / \operatorname{Div}_H(\mathbb{P}^1(\mathbb{K})) \cong \mathbb{Z}.$$

Weiters Vorgehen: Zeige deg div(f) = 0 für alle Kurven C und $f \in \mathbb{K}(C)^{\times}$. Fasse hierfür f als Morphismus $f: C \longrightarrow \mathbb{P}^1(\mathbb{K})$ auf. Wollen haben:

- (i) $\operatorname{div}(f) = f^*((0) (\infty)) =$ "Nulstellen minus Polstellen".
- (ii) $\deg f^*(D) = \deg f \deg D$.

Bemerkung + Definition 16.4 Sei $f: C_1 \longrightarrow C_2$ surjektiver, nichtkonstanter Morphismus zwischen zwei nichtsingulären Kurven.

(i) Sei $Q \in C_2$, $P \in f^{-1}(Q) \subseteq C_1$ sowie $t \in \mathfrak{m}_Q$ eine Uniformisierende, d.h. es gilt $\langle t \rangle = \mathfrak{m}_Q$. Dann heißt

$$e_P := e_P(f) = \operatorname{ord}_P(t \circ f)$$

der Verzweigungsindex von f in P.

(ii) Definiere den Gruppenhomomorphismus

$$f^* : \operatorname{Div}(C_2) \longrightarrow \operatorname{Div}(C_1), \quad Q \mapsto \sum_{P \in f^{-1}(Q)} e_P(f) \cdot P$$

(iii) Für $g \in \mathbb{K}(C_2)^{\times}$ gilt:

$$f^*(\operatorname{div}(g)) = \operatorname{div}(g \circ f).$$

Insbesondere ist $f^*(\operatorname{Div}_H(C_2)) \subseteq \operatorname{Div}_H(C_1)$.

(iv) f induziert einen Homomorphismus

$$f^*: \operatorname{Cl}(C_2) \longrightarrow \operatorname{Cl}(C_1), \quad [D] \mapsto [f^*(D)]$$

Beweis. (i) Zu zeigen: $e_P(f)$ ist unabhängig von der Wahl von t. Sei $t' \in \mathfrak{m}_Q$ eine weitere Uniformisierende. Dann gibt es $u \in \mathcal{O}_{C_2,x}^{\times}$ mit t' = ut. Damit ist

$$\operatorname{ord}_{P}(t'\circ f)=\operatorname{ord}_{P}(ut\circ f)=\operatorname{ord}_{P}((u\circ f)\cdot (t\circ f))=\underbrace{\operatorname{ord}_{P}(u\circ f)}_{=0}+\operatorname{ord}_{P}(t\circ f)=\operatorname{ord}_{P}(t\circ f),$$

wobei letzte Gleichung gilt, da $u \circ f$ Einheit in $\mathcal{O}_{C_1,P}$ mit Inverser $\frac{1}{n} \circ f$ ist.

- (ii) Zu zeigen: $f^{-1}(Q)$ ist endlich, denn dann ist $f^*(Q)$ Divisor. Da f stetig ist, ist $f^{-1}(Q)$ abgeschlossen und echte Teilmenge von C_1 , denn $f^{-1}(Q) \neq C_1$ (da sonst f konstant wäre). Da dim $C_1 = 1$, folgt damit dim $f^{-1}(Q) = 0$, also ist $f^{-1}(Q)$ nach 2.2 endlich.
- (iii) Es gilt

$$f^*\left(\operatorname{div}(g)\right) = f^*\left(\sum_{Q \in C_2} \operatorname{ord}_Q(g) \cdot Q\right) = \sum_{Q \in C_2} \operatorname{ord}_Q(g) \cdot f^*(Q) = \sum_{Q \in C_2} \sum_{P \in f^{-1}(Q)} \operatorname{ord}_Q(g) e_P(f) \cdot P$$

sowie

$$\operatorname{div}(g \circ f) = \sum_{P \in C_1} \operatorname{ord}_P(g \circ f) \cdot P = \sum_{Q \in C_2} \sum_{P \in f^{-1}(Q)} \operatorname{ord}_P(g \circ f) \cdot P$$

das heißt, es ist zu zeigen:

$$s := \operatorname{ord}_P(g \circ f) = \operatorname{ord}_Q(g)e_P(f) =: r \cdot e_P(f)$$

§ 16 DIVISOREN 69

für alle Q = f(P).

Seien dazu t_Q, t_P Uniformisierende von \mathfrak{m}_Q bzw. \mathfrak{m}_P , d.h. es gilt $\langle t_Q \rangle = \mathfrak{m}_Q, \langle t_P \rangle = \mathfrak{m}_P$. Dann gibt es $u.u' \in \mathcal{O}_{C_1,P}^{\times}$ sowie $v \in \mathcal{O}_{C_2,Q}^{\times}$ sodass gilt:

$$g \circ f = u \cdot t_P^s$$
, $g = v \cdot t_Q^r$, $t_Q \circ f = u' \cdot t_P^{r \cdot e_P(f)}$.

Wir rechnen

$$ut_{P}^{s} = g \circ f = (v \cdot t_{Q}^{r}) \circ f = (v \circ f) \cdot (t_{Q} \circ f)^{r} = (v \circ f) \left(u't_{P}^{e_{P}(f)}\right)^{r} = (v \circ f) \cdot u'^{r} \cdot t_{P}^{e_{P}(f) \cdot r}$$

und wegen der Eindeutigkeit der Darstellungen links und rechts folgt

$$s = e_P(f) \cdot r$$
,

also die Behauptung.

Folgerung 16.5 Sei C nichtsingulär, $f \in \mathbb{K}(C)^{\times}$. Dann definiert f einen Morphismus $f: C \longrightarrow \mathbb{P}^1(\mathbb{K})$ und es gilt

$$\operatorname{div}(f) = f^*((0) - (\infty)).$$

Beweis. Die erste Aussage folgt aus Proposition 15.7.

Sei $P \in C$ mit f(P) = 0. Dann ist X eine Uniformisierende von \mathfrak{m}_P und wir erhalten

$$e_P(f) = \operatorname{ord}_P(X \circ f) = \operatorname{ord}_P(f)$$

Ist $P = \infty$, so ist $\frac{1}{X}$ Uniformisierende von \mathfrak{m}_P und wir erhalten

$$e_P(f) = \operatorname{ord}_P\left(\frac{1}{X} \circ f\right) = \operatorname{ord}_P\left(\frac{1}{f}\right) = -\operatorname{ord}_P(f).$$

Damit gilt

$$f^*((0) - (\infty)) = \sum_{P \in f^{1-}(0)} e_P(f) \cdot P - \sum_{P \in f^{-1}(\infty)} e_P(f) \cdot P = \sum_{P \in C} \operatorname{ord}_P(f) \cdot P = \operatorname{div}(f),$$

was zu zeigen war.

Bemerkung + **Definition 16.6** Sei $f: C_1 \longrightarrow C_2$ surjektiver Morphismus nichtsingulärer, projektiver Kurven. Dann induziert f einen Körperhomomorphismus

$$f^{\#}: \mathbb{K}(C_2) \longrightarrow \mathbb{K}(C_1)$$

 $\mathbb{K}(C_2)$ kann damit via $f^{\#}$ als Teilkörper von $\mathbb{K}(C_1)$ aufgefasst werden. Die Erweiterung $\mathbb{K}(C_1)/\mathbb{K}(C_2)$ ist endlich. deg $f := [\mathbb{K}(C_1) : \mathbb{K}(C_2)]$ heißt Grad von f.

Beweis. Sicherlich sind $\mathbb{K}(C_1)$, $\mathbb{K}(C_2)$ endlich erzeugt über \mathbb{K} . Weiter gilt $\operatorname{trdeg}_{\mathbb{K}}\mathbb{K}(C_1) = 1 = \operatorname{trdeg}_{\mathbb{K}}\mathbb{K}(C_2)$, d.h. die Erweiterung ist algebraisch. Insgesamt folgt also $[\mathbb{K}(C_1) : \mathbb{K}(C_2)] < \infty$.

Satz 16.7 (i) Jeder Hauptdivisor auf einer nichtsingulären, projektiven Kurve hat Grad 0.

(ii) Sei $f: C_1 \longrightarrow C_2$ surjektiver Morphismus nichtsingulärer, projektiver Kurven. Dann gilt für jeden Punkt $Q \in C_2$

$$\deg f^*(Q) = \sum_{P \in f^{-1}(Q)} e_P(f) = \deg f.$$

Weiter gilt damit für jeden Divisor $D \in Div(C_2)$

$$\deg f^*(D) = \deg f \cdot \deg D.$$

Beweis. (i) Es sei $f \in \mathbb{K}(C)^{\times}$. Dann lässt sich f fortsetzen zu $f: C \longrightarrow \mathbb{P}^{1}(\mathbb{K})$. Damit ist

$$\deg(\operatorname{div} f) = \sum_{P \in f^{-1}(0)} e_P(f) - \sum_{P \in f^{-1}(\infty)} e_P(f) = \deg f^*((0) - (\infty)) = \deg f \cdot \deg((0) - (\infty)) = 0.$$

(ii) Wird noch hinzugefügt.

§ 17 Der Satz von Riemann-Roch

In diesem Paragraphen sei C stets nichtsinguläre, projektive Kurve über einem algebraisch abgeschlossenen Körper \mathbb{K} .

Definition + **Bemerkung 17.1** Es sei $D = \sum_{P \in C} n_P \cdot P$ ein Divisor auf C.

(i) Der Riemann-Roch-Raum zu D

$$\mathcal{L}(D) := \{ f \in \mathbb{K}(C)^{\times} \mid \operatorname{div}(f) + D \geqslant 0 \} \cup \{ 0 \}$$

ist ein \mathbb{K} -Vektorraum.

- (ii) $l(D) := \dim_{\mathbb{K}} \mathcal{L}(D)$.
- (iii) Es gilt $\mathcal{L}(0) = \mathbb{K}$.
- (iv) Ist $\deg D < 0$, so ist $\mathcal{L}(D) = \{0\}$.
- (v) Für linear äquivalente Divisoren gilt $\mathcal{L}(D) \cong \mathcal{L}(D')$.
- (vi) Für $D' \ge D$ gilt $\mathcal{L}(D) \le \mathcal{L}(D')$.

Beweis. (i) Es gilt $f \in \mathcal{L}(D) \iff$ für jeden Punkt $P \in C$ ist $\operatorname{ord}_P(f) + n_P \geqslant 0$. Für $f, g \in \mathcal{L}(D)$ ist

$$\operatorname{ord}_P(f+g) \geqslant \min\{\operatorname{ord}_P(f), \operatorname{ord}_P(g)\} \geqslant -n_P,$$

also $f + g \in \mathcal{L}(D)$.

- (iii) Es gilt $f \in \mathcal{L}(0)$ genau dann, wenn $\operatorname{ord}_P(f) \ge 0$ für alle $P \in C$. Damit gilt $f \in \mathcal{O}_C(C) = \mathbb{K}$.
- (iv) Es gilt $\deg(\operatorname{div} f) = 0$, also $\deg(\operatorname{div} f + D) = \deg D < 0$ für alle $f \in \mathbb{K}(C)^{\times}$.
- (v) Es sei $D' = D + \operatorname{div} f$ für ein $f \in \mathbb{K}(C)^{\times}$. Dann ist

$$\alpha: \mathcal{L}(D') \longrightarrow \mathcal{L}(D), \quad g \mapsto f \cdot g$$

ein K-Vektorraumisomorphismus, denn es gilt

$$g \in \mathcal{L}(D') \iff \operatorname{div} g + D' \geqslant 0 \iff \operatorname{div} g + \operatorname{div} f + D \geqslant 0 \iff \operatorname{div} f \cdot g + D \geqslant 0. \iff f \cdot g \in \mathcal{L}(D).$$

Damit folgt insgesamt die Behauptung.

Proposition 17.2 Für jeden Divisor $D \in Div(C)$ und jeden Punkt $P \in C$ gilt

- (i) $l(D+P) \le l(D) + 1$.
- (ii) $l(D) \leq \deg D + 1$, falls $\deg D \geq -1$.

Insbesondere ist $\mathcal{L}(D)$ endlichdimensional.

Beweis. (i) Es gilt $\mathcal{L}(D) \subseteq \mathcal{L}(D+P)$ nach 17.1. Für $f \in \mathcal{L}(D+P) \setminus \mathcal{L}(D)$ gilt $\operatorname{ord}_P(f) = -n_P - 1$. Für $f, g \in \mathcal{L}(D+P) \setminus \mathcal{L}(D)$ ist also

$$\operatorname{ord}_P(f) = \operatorname{ord}_P(g) = -n_P - 1.$$

Sei nun $t \in \mathfrak{m}_P$ Uniformisierende, d.h. es gilt $\langle t \rangle = \mathfrak{m}_P$. Schreibe

$$f = u \cdot t^{-n_P - 1}, \quad g = v \cdot t^{-n_P - 1}, \quad u, v \in \mathcal{O}_{CP}^{\times}.$$

Für

$$h = u(P)g - v(p)f \in \mathcal{L}(D+P)$$

gilt

$$\operatorname{ord}_{P}(h) = \operatorname{ord}_{P}\left((u(P)v - v(P)u)t^{-n_{P}-1}\right) \geqslant -n_{P},$$

also $h \in \mathcal{L}(D)$. Damit ist $g \in \mathcal{L}(D) + \langle f \rangle$, also

$$\dim \mathcal{L}(D+P) \leqslant \dim \mathcal{L}(D) + 1.$$

(ii) per Induktion über $d = \deg D$:

d=-1. Klar, denn es ist $\mathcal{L}(0)=0$.

 $d \ge 0$. Sei $P \in C$, D' = D - P. Mit der Induktionsvoraussetzung folgt $l(D') \le \deg D' + 1 = d$, also mit (i) $l(D) = l(D' + P) \le d + 1$.

Satz + Definition 17.3 (Satz von Riemann) Es gibt eine Konstante $\gamma \in \mathbb{N}_0$, sodass für jeden Divisor $D \in \text{Div}(C)$ gilt:

$$l(D) \geqslant \deg D + 1 - \gamma$$
.

Das kleinste γ mit dieser Eigenschaft nennen wir das Geschlecht von C. Schreibe

$$g := g(C) = \min\{\gamma \in \mathbb{N}_0 \mid l(D) \leqslant \deg D + 1 - \gamma\}$$

Satz 17.4 (Satz von Riemann-Roch) Es gibt einen (bis auf lineare Äquivalenz eindeutigen) Divisor K auf C, der sogenannte kanonische Divisor, sodass für alle Divisoren $D \in \text{Div}(C)$ gilt:

$$l(D) - l(K - D) = \deg D + 1 - g(C).$$