Analyzing NTSB Airplane Crash Reports

This tutorial demonstrates how to analyze National Transportation Safety Board (NTSB) airplane crash reports using PDF processing capabilities of certain LLM providers. We'll build a pipeline that extracts crash causes and synthesizes common patterns across incidents.

LLM Requirements

PDF processing is only supported with Claude (Anthropic) or Gemini (Google) models.

Dataset Overview

The dataset contains 689 NTSB airplane crash reports—the reports corresponding to fatal accidents after 2020. You can download it here: NTSB Airplane Crashes

Pipeline Overview

Our pipeline will:

- 1. Process PDF crash reports from the NTSB database to extract causes and recommendations
- 2. Synthesize common patterns across all analyzed crashes

Let's examine the pipeline structure:

```
pipeline:
    steps:
    - name: analyze_crashes
    input: crashes
    operations:
        - extract_crash_cause # this is a map operation
        - synthesize_findings # this is a reduce operation
```

Full Pipeline Configuration

```
datasets:
 crashes:
   type: file
    path: "fatal.json"
default_model: gemini/gemini-2.0-flash
operations:
  - name: extract_crash_cause
    type: map
    pdf_url_key: ReportUrl
    skip_on_error: true # Skip llm calls where the PDF is malformed or not
found
    output:
     schema:
        contributing_factors: "list[str]"
       recommendations: str
    prompt: |
     Analyze this NTSB airplane crash report and extract:
     1. The primary cause of the crash (2-3 sentences)
      2. Any contributing factors (list)
     3. Key safety recommendations made
  - name: synthesize_findings
    type: reduce
    reduce_key: _all
   output:
     schema:
       summary: str
    prompt: |
     Analyze the following airplane crash reports:
      {% for item in inputs %}
      Report {{loop.index}}:
      Cause: {{ item.cause }}
      Contributing Factors: {{ item.contributing_factors | join(", ") }}
      Recommendations: {{ item.recommendations }}
      {% endfor %}
      Generate a comprehensive analysis that:
      1. Identifies common causes across incidents
      2. Lists recurring contributing factors
      3. Synthesizes key safety recommendations
      4. Highlights any notable patterns
      Format your response as a structured report.
pipeline:
  steps:
    - name: analyze_crashes
     input: crashes
     operations:
        - extract_crash_cause
       - synthesize_findings
```

```
output:
   type: file
   path: "crash_analysis.json"
   intermediate_dir: "checkpoints"
```

Sample Output

Here's the output we get from running the pipeline:

Sample Analysis Output

Airplane Crash Report Analysis:

1. Common Causes:

After analyzing the provided airplane crash reports, the most common primary causes include:

- Loss of Control (often due to aerodynamic stall, spatial disorientation, or pilot incapacitation)
- Engine Failure (often due to fuel exhaustion, mechanical issues, or improper maintenance)
- Controlled Flight Into Terrain (CFIT) (often in IMC or low visibility)
- Pilot Error (poor decision-making, failure to maintain airspeed, inadequate pre-flight planning).

2. Recurring Contributing Factors:

Several contributing factors recur across multiple reports:

- Improper Maintenance (inadequate inspections, incorrect repairs)
- Fuel Issues (fuel exhaustion, fuel contamination, improper fuel management)
- Adverse Weather Conditions (IMC, icing, turbulence, low visibility)
- Pilot Impairment (fatigue, alcohol/drug use, medical conditions)
- Failure to Maintain Airspeed (leading to stalls)
- Low Altitude Maneuvering
- · Lack of Instrument Proficiency
- Poor Decision-Making (continuing flight into adverse conditions, improper risk assessment)
- Spatial Disorientation (particularly in IMC or at night)
- Inadequate Pre-flight Planning (weather, fuel, weight and balance).
- Exceeding Aircraft Limitations (weight, structural, etc.)

3. Synthesized Key Safety Recommendations:

Based on the analyzed reports, key safety recommendations can be synthesized:

Enhanced Pilot Training:

- Stall recognition and recovery techniques
- Instrument meteorological conditions (IMC) flight procedures and spatial disorientation awareness.
- Mountain flying techniques and high-density altitude operations

- Emergency procedures training, particularly related to engine failures.
- · Aerobatic Maneuver training

• Improved Maintenance Practices:

- Adherence to manufacturer's recommended maintenance schedules and procedures
- Thorough inspections of critical components (fuel systems, control cables, engines)
- Proper documentation of maintenance and repairs
- Emphasis on proper installation and torquing of critical parts.

• Robust Pre-flight Planning:

- · Thorough weather briefings and in-flight weather monitoring
- · Accurate fuel planning and management
- · Weight and balance calculations
- Familiarization with terrain, obstacles, and airport characteristics.

• Sound Aeronautical Decision-Making:

- · Avoid flying under the influence of alcohol or drugs
- · Avoid self-induced pressure to complete a flight
- Recognize personal limitations and make conservative go/no-go decisions
- · Proper risk management

• Effective Use of Technology:

- Installation and proper use of angle-of-attack indicators
- Use of autopilot systems and electronic flight displays
- Ensure aircraft has and is broadcasting ADS-B signals, and use traffic advisory systems when available

Awareness of Physiological Factors:

- Understanding of spatial disorientation and how to mitigate its effects
- Awareness of the effects of fatigue, medical conditions, and medications on pilot performance.
- · Use of oxygen at night.

• Adherence to Regulations and Procedures:

- Compliance with minimum safe altitudes and approach procedures
- Proper use of checklists
- Following air traffic control instructions.
- Maintain proper aircraft certification.

4. Notable Patterns:

- **VFR into IMC:** A significant number of accidents involve pilots without instrument ratings continuing visual flight into instrument meteorological conditions.
- Loss of Control on Approach: A recurring theme is loss of control during the approach phase, often related to stalls, wind shear, or unstable approaches.
- **Pilot Actions Under Stress:** Many accidents involve pilots making poor decisions under stressful situations, such as engine failures or adverse weather conditions.
- Experimental Aircraft Issues: Several reports involve experimental amateur-built aircraft, highlighting potential risks associated with construction, maintenance, and pilot familiarity.
- **Medical Incapacitation:** Several accidents were potentially caused by medical incapacitation of the pilot, suggesting that it may be necessary to have health safety standards, especially for older pilots.
- **Power Lines:** A concerning number of incidents involve collision with power lines during aerial application or low-altitude maneuvering.

The pipeline costs < \$0.05 USD to run.