Assignment #5 Solutions

due Friday, September 27th, 2019

1

Let x_{ij} = the amount of steels (tons) supplied from City i to city j every week, where i = A,B,C and j = 1,2,3,4.

Data:

Let c_{ij} = shipping cost per ton from city i to city j,where i = A,B,C and j = 1,2,3,4.

 S_j = weekly production in city i, where i = A, B, C.

 D_i = weekly demand in city j, where j = 1,2,3. Then the model is as follows:

$$\min z = \sum_{i=A}^{C} \sum_{j=1}^{4} c_{ij} x_{ij}$$

$$s.t. \quad \sum_{i=A}^{C} x_{ij} \le S_j, \ \forall j$$

$$\sum_{j=1}^{4} x_{ij} \ge D_i, \ \forall i$$

$$x_{B3} = 0$$

$$x_{ij} \ge 0, \forall i, j \ and \ integer.$$

The minimum cost is \$8260 with optimal solution shown below.

1 Variables	Destinations						
2 Sources	1. Detroit	2. St. Louis	3. Chicago	4. Norfolk	Slack demand	Steel shipped	Supply
3 A. Bethlehem	0	0	0	150	0	150	150
B. Birmingham	120	0	0	90	0	210	210
C. Gary	10	70	180	0	60	320	320
5 Steel shipped	130	70	180	240	60		
7 Demand	130	70	180	240	60		
8							
9							
LO		Costs	Destinations				
1		Sources	1. Detroit	2. St. Louis	3. Chicago	4. Norfolk	
.2		A. Bethlehem	14	9	16	18	
.3		B. Birmingham	11	8	7	16	
.4		C. Gary	16	12	10	22	
15							
16							
17							
18		Total cost =	8260				

 $\mathbf{2}$

Let i = A (Charlotte), B(Memphis), C (Louisville) and j = 1 (St. Louis), 2 (Atlanta), 3 (New York). x_{ij} = number of trucks from warehouse i to terminal j every week, where i = A,B,C and j = 1,2,3.

Let p_{ij} = profit per truckload shipment from warehouse i to terminal j, where i = A,B,C and j = 1,2,3.

 C_j = additional trucks capacity at terminal j, where j = 1,2,3. Then the model is as follows:

$$\max z = \sum_{i=A}^{C} \sum_{j=1}^{3} p_{ij} x_{ij}$$

$$s.t. \quad \sum_{j=1}^{3} x_{ij} = 30, \ \forall i$$

$$\sum_{i=A}^{C} x_{ij} \le C_j, \ \forall j$$

$$x_{ij} \ge 0, \ \forall i, j \ and \ integer.$$

From the table, we can see that the maximum profit is \$159,000.

1 Transporting stee	to plants								
2 Variables	Terminal					Profit	Terminal		
4 Warehouses	1. St. Louis	2. Atlanta	3. New York	Steel shipped	Trucks	Warehouses	1. St. Louis	2. Atlanta	3. New York
5 A. Charlotte	0	30	0	30	30	A. Charlotte	1800	2100	1600
6 B. Memphis	30	0	0	30	30	B. Memphis	1000	700	900
7 C. Louisville	0	0	30	30	30	C. Louisville	1400	800	2200
8 Steel shipped	30	30	30						
9 Extra truck space	40	60	50						
10									
11 Total profit =	159000								

3

(a) Let
$$i=1$$
 (Math), 2 (History), 3 (English), 4 (Biology), (Spanish), 5 (Psychology) $j=1(8M),\,2(9M),\,3(11M),\,4(12M),\,5(14M),\,6(8T),\,7(9T),\,8(11T),\,9(12T),\,10(14T)$

$$x_{ij} = \left\{ \begin{array}{ll} 1 & \text{if enroll in course i section j, } i=1,...,5, j=1,...,10 \\ 0 & \text{otherwise} \end{array} \right.$$

Data:

$$y_{ij} = \left\{ \begin{array}{ll} 1 & \text{if course i section j is available, } i=1,...,5, j=1,...,10 \\ 0 & \text{otherwise} \end{array} \right.$$

 p_{ij} = level of preference for course i section j, i = 1, ..., 5, j = 1, ..., 10 and $p_{ij} \in \{1, ..., 8\}$, where 1 is the most preferred, and 8 is the least preferred.

$$\min z = \sum_{i=1}^{5} \sum_{j=1}^{10} p_{ij} x_{ij}$$

$$s.t. \quad \sum_{j=1}^{10} x_{ij} = 1, \ \forall i$$

$$x_{ij} \leq y_{ij}, \ \forall i, j$$

$$0 \leq x_{ij} \leq 1, \ \forall i, j \ and \ integer$$

The minimum preference is 10 with optimal solution shown below.

1	Time													
Indicator	1. 8M	2. 8T	3. 9M	4. 9T	5. 11M	6. 11T	7. 12M	8. 12T	9. 14M	10. 14T	# sessions		only one session	min preference
Course														1
A. Math	0	0	0	0	0	0	0	1	0	0	1	=	1	
B. History	0	0	0	0	0	1	o	0	0	0	1	=	1	
C. English	0	0	0	1	0	0	o	0	0	0	1	=	1	
D. Biology	0	0	0	0	1	0	o	0	0	0	1	=	1	
E. Spanish	0	0	0	0	0	0	1	. 0	0	0	1	=	1	
F. Psychology	0	0	0	0	0	0	o	0	0	1	1	=	1	
time slot	0	0	0	1	1	1	1	. 1	0	1				
	<=	<=	<=	<=	<=	<=	<=	<=	<=	<=				
	1	1	1	1	1	1	1	. 1	1	1				
	Time													
Preference	1. 8M	2. 8T	3. 9M	4. 9T	5. 11M	6. 11T	7. 12M	8. 12T	9. 14M	10. 14T				
Course A. Math														
A. Math	8	7	6	3	4	1	5	2	10000	10000				
B. History	6	5	10000	10000	2	1	10000	10000	4	3				
C. English	10000	10000	8	1	4	2	7	5	6	3				
D. Biology	7	6	5	10000	2	10000	3	10000	4	1				
E. Spanish	10000	4	10000	1	2	10000	3	10000	10000	10000				
F. Psychology	6	999	999	4	999	2	999	3	5	1				

(b)

$$\min z = \sum_{i=1}^{5} \sum_{j=1}^{10} p_{ij} x_{ij}$$

$$s.t. \quad \sum_{j=1}^{10} x_{ij} = 1, \ \forall i$$

$$x_{ij} \le y_{ij}, \ \forall i, j$$

$$\sum_{i=1}^{5} x_{i3} = 0$$

$$\sum_{i=1}^{5} x_{i8} = 0$$

$$x_{ij} \ge 0, \ \forall i, j \ and \ integer$$

The minimum preference is 15 with optimal solution shown below.

	Time													
Indicator	1. 8M	2. 8T	3. 9M	4. 9T	5. 11M	6. 11T	7. 12M	8. 12T	9. 14M	10. 14T	# sessions		only one session	min preferen e
Course														1
A. Math	0	0	0	0	0	0	0	1	. 0	0	1	=	1	
B. History	0	0	0	0	0	0	0	0	1	0	1	=	1	
C. English	0	0	0	1	0	0	0	0	0	0	1	=	1	
D. Biology	0	0	0	0	0	0	1	0	0	0	1	=	1	
E. Spanish	0	1	0	0	0	0	0	0	0	0	1	=	1	
F. Psychology	0	0	0	0	0	0	0	o	o	1	1	=	1	
time slot	0	1	. 0	1	0	0	1	1	. 1	1			_	
	<=	<=	<=	<=	<=	<=	<=	<=	<=	<=				
	1	1	1	1	1	1	1	1	1	1				
	Time													
Preference	1. 8M	2. 8T	3. 9M	4. 9T	5. 11M	6. 11T	7. 12M	8. 12T	9. 14M	10. 14T				
Course														
A. Math	8	7	6	3	10000	10000	5	2	10000	10000				
B. History	6	5	10000	10000	10000	10000	10000	10000	4	3				
C. English	10000	10000	8	1	10000	10000	7	5	6	3				
D. Biology	7	6	5	10000	10000	10000	3	10000	4	1				
E. Spanish	10000	4	10000	1	10000	10000	3	10000	10000	10000				
F. Psychology	6	10000	10000	4	10000	10000	10000	3	5	1				

(c) Since there're only 5 class periods but we have 6 classes, it's impossible to take all classes on the same days.

4 Assume i = A (Adams), B (Baxter), C (Collins), D (Davis), E (Evans), F (Forrest), G (Gomez), H (Huang), I (Inchio), J (Jones), K (King), L (Lopez), and j = 1 (8am-4pm), 2 (4pm-midnight), 3(midnight-8am).

Let

$$x_{ij} = \left\{ \begin{array}{ll} 1 & \text{if nurse i is assigned to shift j, } i=1,...,5, j=1,...,10 \\ 0 & \text{otherwise} \end{array} \right.$$

Data: Let r_{ij} = rank assigned by nurse i to shift j, where i = A,...,L and j = 1,2,3. $r_{ij} \in \{1,2,3\}$ e_i = experience (in years) of nurse i, where i = A,...,L. Then the model is as follows:

Goal is to minimize the sum of $e_i * r_{ij} * x_{i,j}$. Note that such an objective function "penalizes" more

the assignment of senior nurses to low-ranked shifts (higher valued ones).

$$\min z = \sum_{i=A}^{L} \sum_{j=1}^{3} e_{i} r_{ij} x_{ij}$$

$$s.t. \quad \sum_{j=1}^{3} x_{ij} = 1, \ \forall i$$

$$\sum_{i=A}^{L} x_{i1} = 5$$

$$\sum_{i=A}^{L} x_{i2} = 4$$

$$\sum_{i=A}^{L} x_{i3} = 3$$

$$0 \le x_{ij} \ge 1, \ \forall i, j \ and \ integer$$

We can solve the model using excel shown below. The schedule is as follows: Baxter, Collins, Evans, Forrest, King work on 8AM-4PM

Adams, Davis, Gomez, Jones work on 4PM-12AM

Huang, Inchio, Lopez work on 12AM-8am.

1	Shifts								Shifts		
2 Variable	8am - 4pm	4pm - midnight	midnight - 8am				Pre	eference*	8am - 4pm	4pm - midnight	midnight - 8an
3 Nurse				shifts		1 shift per pers	son Nu	ırse			
4 A	0	1	0	1	=	1	Α		2	4	6
5 B	1	0	0	1	=	1	В		5	15	10
6 C	1	0	0	1	=	1	С		7	14	21
7 D	0	1	0	1	=	1	D		3	1	2
8 E	1	0	0	1	=	1	E		3	9	6
9 F	1	0	0	1	=	1	F		4	8	12
10 G	0	1	0	1	=	1	G		2	1	3
11 H	0	0	1	1	=	1	Н		3	2	1
12	0	0	1	1	=	1	ı		2	6	4
1 3 J	0	1	0	1	=	1	J		6	3	9
14 K	1	0	0	1	=	1	к		5	15	10
15 L	0	0	1	1	=	1	L		4	6	2
16 People	5	4	3								
17	=	=	=								
18 Total demand	5	4	3								
19 Total preference	40										