Höhere Analysis

Hans Knüpfer, Heidelberg University Wintersemester 2020/21

Diese Notizen sind nicht auf Fehler geprüft, nicht korrigiert und unvollständig (insbesondere einige Beweise). Sie sind ein zusätzliches Angebot an die Studierenden, sollen aber nicht die Vorlesungsmitschrift ersetzen. Die Mitschrift ist nur für die Studierenden der Vorlesung Höhere Analysis im Wintersemester 20/21, Universität Heidelberg, gedacht. Während des Semesters wird es kontinuierlich Updates der Mitschrift geben. Die Quelle der Bilder ist wikipedia.

Inhaltsverzeichnis

1	Ein	führung	2		
2	Gru	Grundlagen der Maßtheorie			
	2.1	Ringe, σ -Algebren und Maße	5		
	2.2	Maßerweiterung	12		
	2.3	Das Lebesguemaß auf $\mathbb R$	17		
3 Integration			22		
	3.1	Messbare Funktionen	22		
	3.2	Lebesgueintegral und Konvergenzsätze	26		
	3.3	Räume integrabler Funktionen	33		

	3.4	Vergleich von Konvergenzbegriffen	39
4	Inte	egrationssätze	43
	4.1	Produktmaße und Lebesguemaß auf \mathbb{R}^n	43
	4.2	Satz von Fubini	48
	4.3	Transformationssatz	49
5	Inte	egration auf Untermannigfaltigkeiten	56
	5.1	Untermannigfaltigkeiten des \mathbb{R}^n	56
	5.2	Integration auf Mannigfaltigkeiten	61
	5.3	Satz von Gauss	65
	5.4	Satz von Stokes	70
6	Fou	riertransformation	72
	6.1	Approximation durch glatte Funktionen	72
	6.2	Fouriertransformation auf dem Schwartzraum	77
	6.3	Fouriertransformation und L^2 -Struktur	79

1 Einführung

Durchführung:

- Synchrone Vorlesung
 - Zeiten: Mo 9:30-11:00, Fr 13:15-14:45.
 - Platform: WebEx
- Asynchrone Materialien
 - Skript wird wöchentlich im Voraus.
 - Screencast ca 1x wöchentlich im Voraus.

Organisation:

- Informationen auf Moodle und Müsli
- $\bullet\,$ Plenarübung: Mi $14{:}00{\text{-}}15{:}30$
- \bullet Übungsbetrieb: 50% Punkte der Übungszettel für Klausurzulassung
- \bullet Klausur: Termin wird noch bekanntgeben. Wahrscheinlich letzte Vorlesungswoche.

Themen: Wir beschaftigen uns in diesem Semester mit

• Maßtheorie: Maße sind Abbildungen der Form $\mu: \mathscr{A} \to [0, \infty]$ für $\mathscr{A} \subset \mathscr{P}(X)$. Mit Maßen können wir z.B. das Volumen oder das Oberflächenmaß von Mengen $A \subset \mathbb{R}^n$ messen.

- Integrationstheorie: Wir führen das Lebesgue-Integral ein (eine Verallgemeinerung des Riemann-Integrals). Das Lebesgueintegral erlaubt insbesondere Konvergenzsätze wie den Satz von der dominierten Konvergenz, ...
- Integrationssätze: Wir führen wichtige Sätz aus der Integrationstheorie ein wie den Transformationssatz, Satz von Gauss, Fubini.

Literatur

- Ambrosio, Da Prato, Mennucci –Introduction to measure theory and integration: Hauptgrundlage des Kapitels über Maß– und Integrationstheorie.
- Evans, Gariepy Fine properties of functions: Bietet interessante weitergehende Informationen. Schöne Ideen, schreckliche Notation.
- Rudin Real Analysis

Wir beginnen mit einer kurzen Motivation der grundlegenden Themen der Vorlesung:

Problem mit Riemann-Integral. Sei r_1, \ldots , eine Aufzählung von $\mathbb{Q} \cap [0, 1]$ und

$$f_k(x) = \begin{cases} 1 & \text{für } x \in \{r_1, \dots, r_k\}, \\ 0 & \text{sonst.} \end{cases}, \qquad f(x) = \begin{cases} 1 & \text{für } x \in [0, 1] \cap \mathbb{Q}, \\ 0 & \text{sonst.} \end{cases}$$

$$(1.1)$$

Dann sind die Funktionen $f_k \geq 0$ sind Riemann-integrierbar und es gilt

$$\int_0^1 f_k \ dx = 0 \quad \text{und} \quad f_k \nearrow f \text{ punktweise monoton.}$$

Abbildung 1: Riemannintegral vs. Lebesgueintegral.

Die Grenzfunktion f ist allerdings nicht Riemann-integrierbar. Die Klasse der Riemann-integrierbaren Funktionen ist also nicht abgeschlossen unter punktweiser monotoner Konvergenz. Wir führen daher einen allgemeineren Integrationsbegriff, bei dem auch der Grenzwert von integrablen Funktionsfolgen (und gewissen Bedingungen) integrierbar ist. Das Lebesgue-Integral bietet eine solche Erweiterung des Riemann-Integrals. Dies erlaubt dann die Herleitung von Konvergenzsätzen wie den Satz von der monotonen Konvergenz, welche die Integrabilität der Grenzfunktion sicherstellen.

Grundidee des Lebesgue-Integrals. Die Funktion f aus (1.1) ist an keinem Punkt $x \in [0,1]$ stetig. Eine Zerlegung des Definitionsbereiches in der Konstruktion von Oberund Untersummen führt also nicht zum Erfolg. Beim Lebesgueintegral wird nicht der Definitionsbereicht, sondern stattdessen der Bildbereich zerlegt. Für eine nichtnegative Funktion $f: \Omega \to [0, \infty), \Omega \subset \mathbb{R}^n$ betrachten wir die Mengen

$$E_k^{(h)} := f^{-1}((kh, (k+1)h]) \subset \Omega$$
 für $h > 0$ und $k \in \mathbb{Z}$.

Abbildung 2: Komplexer werdende Teilmengen der Ebene und ihre Flächeninhalte

Wir approximieren dann das Integral von f durch

$$\sum_{k=1}^{\infty} [kh] \mu(E_k^h) \le \int_{\Omega} f(x) \, dx \le \sum_{k=1}^{\infty} [(k+1)h] \mu(E_k^{(h)}). \tag{1.2}$$

Hierbei ist $\mu(E)$ das Volumen (allgemeiner <u>Maß</u>) der Menge $E \subset \Omega$. Das Integral ergibt sich dann aus (1.2) im Limes $h \to 0$. Man sieht leicht, dass mit diesem Integralbegriff die Funktion f aus (1.1) integrierbar ist!

Um das Lebesgueintegral zu konstruieren, müssen wir also das Maß einer Menge E kennen.

Das Maßproblem. Mit $\mathscr{P}(X)$ bezeichnen wir die Potenzmenge von X, d.h. die Menge aller Teilmengen von \mathbb{R}^n . Wir suchen nach einer Funktion

$$\mu: \mathscr{P}(\mathbb{R}^n) \to [0, \infty],$$

welche das Volumen von Teilmengen von \mathbb{R}^n misst. Wenn wir natürliche Annahmen an diese Maßfunktion stellen, dann führt dies auf das folgende Maßproblem:

Problem 1.1 (Maßproblem). Wir suchen $\mu: \mathscr{P}(\mathbb{R}^n) \to [0, \infty]$ mit

(i)
$$\mu(\bigcup_{i\in\mathbb{N}} A_i) = \sum_{i\in\mathbb{N}} \mu(A_i) \text{ falls } A_i \cap A_j = \emptyset$$
 (\sigma-Additivit\text{\tilde{a}}t)

(ii)
$$\mu(\emptyset) = 0, \ \mu([0,1]^n) = 1$$
 (Normierung)

(iii)
$$\mu(A+y) = \mu(A) \ \forall y \in \mathbb{R}^n$$
 (Translations invarianz)

Aus der σ -Additivität erhalten wir auch die Monotonie unserer Abbildung:

$$\mu(A) \le \mu(B) \quad \forall A \subset B.$$
 (Monotonie) (1.3)

Allerdings hat das Maßproblem 1.1 keine Lösung:

Satz 1.2 (Vitali 1905). Es gibt <u>keine</u> Abbildung $\mu : \mathscr{P}(\mathbb{R}^n) \to [0, \infty]$, welche die Forderungen des Maßproblems erfüllt.

Beweis. Wir geben den Beweis für n=1, der Beweis für allgemeine n folgt analog.

Wir definieren die Äquivalenzrelation $x \sim y$ auf E := [0, 1] durch $x \sim y$, genau dann wenn $x - y \in \mathbb{Q}$. Nach dem Auswahlaxiom (ein Axiom der Mengenlehre) gibt es eine Menge $M_0 \subset [0, 1]$, welche aus jeder Äquivalenzklasse genau ein Element enthält, d.h. zu $y \in [0, 1]$ gibt es genau ein $x \in M_0$ mit $x - y \in \mathbb{Q}$.

Sei $q_i, i \in \mathbb{N}$, eine Abzählung von $[0,1] \cap \mathbb{Q}$ und sei

$$M_j := M_0 + q_j$$
 für $j \in \mathbb{N}$.

Nach Konstruktion gilt

$$M_i \cap M_j = \emptyset \quad \forall i \neq j, \qquad [0,1] \subset \bigcup_{i=1}^{\infty} M_j \subset [0,2], \qquad \mu(M_i) = \mu(M_0) \ \forall i \qquad (1.4)$$

Falls μ die Forderungen (i)–(iii) des Maßproblems erfüllt, dann folgt aus (1.4), dass

$$1 \stackrel{(ii)}{=} \mu([0,1]) \stackrel{(1.3)}{\leq} \mu(\bigcup_{i=0}^{\infty} M_i) \stackrel{(i)}{=} \sum_{i=0}^{\infty} \mu(M_0) \stackrel{(1.3)}{\leq} \mu([0,2]) \stackrel{(i),(iii)}{<} \infty.$$
 (1.5)

Aus (1.5) erhalten wir den Widerspruch
$$\mu(M_0) > 0$$
 und $\sum_i \mu(M_0) = \infty$.

Es ist also nicht möglich einen Maßbegriff zu definieren, so dass alle Teilmengen des \mathbb{R}^n messbar sind und so dass die Eigenschaften aus Problem 1.1 gelten. Wir suchen daher eine maximale Familie $\mathscr{A} \subset \mathscr{P}(\mathbb{R}^n)$ von messbaren Mengen und eine Funktion

$$\mu: \mathscr{A} \to [0, \infty],$$

welche die Eigenschaften des Maßproblems erfüllt.

Integration über allgemeinere Maße. Das Lebesgueintegral kann auch genutzt werden, um über allgemeinere Maße μ in allgemeinen Räumen X zu integrieren. Relevante Beispiele sind

- gewichtete Maße wie das Gaußmaß $e^{-x^2}dx$
- diskrete Maße wie das Zählmaß.
- \bullet Oberflächenmaße wie das (n-1) –dimensionale Hausdorffmaß $\mathscr{H}^{n-1}.$

Wir werden daher zuerst eine allgemeine Maßtheorie einführen.

2 Grundlagen der Maßtheorie

2.1 Ringe, σ -Algebren und Maße

Mit X bezeichnen wir eine nichtleere Menge. Die Potenzmenge $\mathscr{P}(X)$ bezeichnet die Menge aller Teilmengen von X. Der Raum $\mathscr{P}(X)$ wird durch die Operatoren \cup , \cap , c (Komplement) mit einer algebraischen Struktur versehen. Wir schreiben , $A \backslash B := A \cap B^c$ für die relative Differenz und $A \Delta B := (A \backslash B) \cup (B \backslash A)$ für die symmetrische Differenz. Wir erinnern an:

$$\left(\bigcup_{n=0}^{\infty} A_n\right)^c = \bigcap_{n=0}^{\infty} A_n^c$$
 (Identität von De Morgan).

In Analogie zu algebraischen Strukturen defininieren wir:

Definition 2.1 (Ring, Algebra). Eine Teilmenge $\mathscr{A} \subset \mathscr{P}(X)$ heißt Ring, falls

- (i) $\emptyset \in \mathscr{A}$.
- $(ii)\ A,B\in\mathscr{A}\Longrightarrow A\cup B,\ A\cap B,\ A\backslash B\in\mathscr{A}.$

Falls außerdem $X \in \mathcal{A}$, dann heißt \mathcal{A} Algebra.

Ein Ring ist also stabil unter den Operatoren \cup , \cap und \setminus (und damit auch Δ). Mit der obigen Definition ist $(\mathscr{A}, \Delta, \cap)$ dann auch ein Ring im algebraischen Sinne: Das neutrale Element bezüglich der "Addition" Δ ist \emptyset , das inverse Element zu A ist A. Man rechnet leicht nach, dass Kommutativ, Assoziativ und Distributivgesetz gelten. Falls \mathscr{A} eine Algebra ist, dann ist X das neutrales Element der Multiplikation.

Der Raum $\mathscr{P}(X)$ ist teilgeordnet durch die Ordnungsrelationen \subset , \supset . Entsprechend sagen wir, dass die Folge A_k monoton steigt, wenn $A_k \subset A_{k+1} \ \forall k \in \mathbb{N}$, wir sagen, dass sie monoton fällt, wenn entsprechend $A_{k+1} \subset A_k$ gilt. Wir schreiben:

$$\limsup_{k \to \infty} A_k := \bigcap_{n=0}^{\infty} \bigcup_{k=n}^{\infty} A_k, \qquad \liminf_{k \to \infty} A_k := \bigcup_{n=0}^{\infty} \bigcap_{k=n}^{\infty} A_k$$

Die Menge $\limsup_k A_k$ besteht also aus den Elementen von X, die in unendlich vielen Mengen A_k enthalten sind. Die Menge $\liminf_k A_k$ besteht aus den Elementen von X, welche in allen, bis auf endlichen vielen Mengen A_k enthalten sind. Falls $\limsup_k A_k = \liminf_k A_k$, dann schreiben wir $\lim_{k\to\infty} A_k := \limsup_{k\to\infty} A_k = \liminf_{k\to\infty} A_k$. Falls die Folge $A_k \subset X$ monoton ist, dann existiert der Limes $\lim_{k\to\infty} A_k$. Wir bemerken, dass $A_k \to A$ genau dann, wenn $A_k \Delta A \to \emptyset$. Korrespondiert dieser Konvergenzbegriff zu einer Topologie (Übungsaufgabe)?.

Falls die Folge monoton steigt, dann gilt $\lim_{k\to\infty} A_k = \bigcup_{k=0}^{\infty} A_k$. Falls die Folge monoton fällt, d.h. $A_{k+1} \subset A_k$, dann gilt $\lim_{k\to\infty} A_k = \bigcap_{k=0}^{\infty} A_k$. Wir schreiben $A_k \nearrow L$

beziehungsweise $A_k \searrow L$.

Eine Algebra, welche abgeschlossen unter Grenzwertbildung ist heißt σ -Algebra:

Definition 2.2 (σ -Algebra). $\mathscr{A} \subset \mathscr{P}(X)$ heißt σ -Algebra auf X, falls

- (i) A ist Algebra.
- (ii) $A_i \in \mathscr{A} \ \forall i \in \mathbb{N} \Longrightarrow \bigcup_{i=1}^{\infty} A_i \in \mathscr{A}$.

Falls $A_i \in \mathscr{A}$, dann folgt aus der De Morganschen Identität, dass die Mengen $\bigcap_{i=1}^{\infty} A_i$, lim sup $A_i \in \mathscr{A}$. Falls $A_i \in \mathscr{A}$ mit $A_i \to A$, dann gilt also insbesondere $A \in \mathscr{A}$.

Nach Definition ist $\mathscr{A}\subset\mathscr{P}(X)$ also eine σ -Algebra ist, genau dann wenn

- (i) $X, \emptyset \in \mathscr{A}$
- (ii) $A \in \mathscr{A} \Longrightarrow A^c \in \mathscr{A}$
- (iii) $A_i \in A \ \forall i \in \mathbb{N} \Longrightarrow \bigcup_{i=1}^{\infty} A_i \in \mathscr{A}$.

Wir bemerken, dass $\mathscr{P}(X)$ die größte σ -Algebra auf X ist. Die Menge $\{\emptyset, X\} \subset \mathscr{P}(X)$ ist die kleinste σ -Algebra auf X. Zu jeder Menge $\mathscr{F} \subset \mathscr{P}(X)$ gibt es eine kleinste σ -Algebra, welche \mathscr{F} enthält:

Satz 2.3 (Erzeugte σ -Algebra). $Sei \mathscr{F} \subset \mathscr{P}(X)$. Dann ist

$$\sigma(\mathscr{F}) := \bigcap \{ \mathscr{A} : \mathscr{A} \text{ ist } \sigma\text{-Algebra mir } \mathscr{F} \subset \mathscr{A} \}.$$

die kleinste σ -Algebra, welche $\mathscr F$ enthält. $\sigma(\mathscr F)$ heißt die von $\mathscr F$ erzeugt σ -Algebra.

Beweis. Nach Konstruktion ist $\sigma(\mathscr{F}) \subset \mathscr{A}$ für jede σ-Algebra \mathscr{A} , welche \mathscr{F} enthält. Es bleibt zu zeigen, dass $\sigma(\mathscr{F})$ eine σ-Algebra ist. Sei \mathbb{A} die Menge aller σ-Algebra, welche \mathscr{F} enthalten. Es gilt $\mathscr{P}(X) \in \mathbb{A}$ und daher ist \mathbb{A} nicht leer. Wir prüfen die Bedingungen (i)–(iii) aus der obigen Bemerkung:

- (i) Nach Konstruktion gilt $\emptyset, X \in \sigma(\mathscr{A}) \ \forall \mathscr{A} \in \mathbb{A} \ \text{und daher} \ \emptyset, X \in \sigma(\mathscr{F}).$
- (ii) Falls $A \in \sigma(\mathscr{F})$, dann gilt $A \in \mathscr{A} \ \forall \mathscr{A} \in \mathbb{A}$. Da die Mengen $\mathscr{A} \ \sigma$ -Algebren sind, erhalten wir $A^c \in \mathscr{A} \ \forall \mathscr{A} \in \mathbb{A}$ und daher $A^c \in \sigma(\mathscr{F})$.
- (iii) Falls $A_i \in \sigma(\mathscr{F})$, $i \in \mathbb{N}$, dann folgt $A_i \in \mathscr{A} \ \forall i \in \mathbb{N} \ \forall \mathscr{A} \in \mathbb{A}$. Damit folgt auch $\bigcup_{i=1}^{\infty} A_i \in \mathscr{A} \ \forall A \in \mathscr{A}$ und damit auch $\bigcup_{i=1}^{\infty} A_i \in \sigma(\mathscr{F})$.

Daher ist $\sigma(\mathcal{F})$ eine σ -Algebra.

Aus der Analysis wissen wir, dass sich jeder metrische Raum vervollständigen lässt. In diesem Sinne kann man $\sigma(\mathscr{F})$ die Vervollständigung des Mengensystems \mathscr{F} bezüglich unseres Konvergenzbegriffes für Mengen interpretieren.

[02.11.2020]

Definition 2.4 (Borel σ -Algebra). Sei X ein metrischer Raum und sei $\mathscr{T} \subset \mathscr{P}(X)$ die Topologie auf X, d.h. die Menge der offenen Mengen. Dann ist die Borel σ -Algebra definiert durch

$$\mathscr{B}(X) := \sigma(\mathscr{T}).$$

Nach Definition enthält $\mathcal{B}(X)$ alle offenen Mengen, alle abgschlossenen Mengen und die abzählbaren Druchschnitte und Vereinigungen dieser Mengen. Äquivalent wird die Borel σ -Algebra auch durch die abgeschlossen Mengen erzeugt. Elemente der Borel σ -Algebra heißen Borelmengen.

Wir betrachten nun additive und subadditive Funktionen auf $\mathscr{A} \subset \mathscr{P}(X)$:

Definition 2.5 (Additivität). Sei $\mathscr{A} \subset \mathscr{P}(X)$. Dann heißt $\mu : \mathscr{A} \to [0, \infty]$

- (i) <u>subadditiv</u>, falls $\mu(A \cup B) \le \mu(A) + \mu(B) \ \forall A, B \in \mathscr{A} \ mit \ A \cup B \in \mathscr{A}$.
- $(ii) \ \ \underline{additiv}, \ falls \ \mu(A \cup B) = \mu(A) + \mu(B) \ \forall A, B \in \mathscr{A} \ \ mit \ A \cap B = \emptyset \ \ und \ A \cup B \in \mathscr{A}.$

Abbildung 3: Ein Maß ordnet Teilmengen einer Grundmenge Zahlen zu. Das Bild illustriert die Monotonieeigenschaft von Maßen, das heißt größere Mengen haben auch ein größeres Maß.

(iii) $\underline{\sigma\text{-subadditiv}}$, falls für jede Folge $A_k \in \mathscr{A}$ mit $\bigcup_{k \in \mathbb{N}} A_k \in \mathscr{A}$ gilt

$$\mu(\bigcup_{k\in\mathbb{N}} A_k) \le \sum_{k\in\mathbb{N}} \mu(A_k) \qquad (\sigma\text{-Subadditivit}\ddot{a}t).$$

(iv) $\underline{\sigma}$ -additiv, falls für jede Folge $A_k \in \mathscr{A}$ mit $A_i \cap A_j = \emptyset$ für $i \neq j$ und $\bigcup_{k \in \mathbb{N}} A_k \in \mathscr{A}$

$$\mu(\bigcup_{k\in\mathbb{N}} A_k) = \sum_{k\in\mathbb{N}} \mu(A_k) \qquad (\sigma\text{-}Additivit"at).$$

Eine σ -additive Abbildung auf einer σ -Algebra nennen wir Maß:

Definition 2.6 (Maßraum, Maß).

- (i) Ein messbarer Raum (X, \mathcal{E}) ist eine Menge X mit einer σ -Algebra $\mathcal{E} \subset \mathcal{P}(X)$.
- (ii) Eine $\underline{Ma\beta} \ \mu : \mathscr{E} \to [0, \infty]$ ist eine σ -additive Funktion auf einem messbaren Raum (X, \mathscr{E}) $\underline{mit} \ \mu(\emptyset) = 0$. Dann hei $\beta t \ (X, \mathscr{E}, \mu)$ Ma β raum.

Das Maß $\mu:\mathscr{E}\to[0,\infty]$ heißt

- (iii) Wahrscheinlichkeitsmaß, falls $\mu(X) = 1$.
- (iv) endlich, falls $\mu(X) < \infty$,
- (v) $\underline{\sigma}$ -endlich, falls es $A_k \in \mathscr{E}$ gibt mit $\mu(A_k) < \infty \ \forall k \in \mathbb{N} \ und \ X = \bigcup_{k \in \mathbb{N}} A_k$.
- (vi) Ein Punkt $x \in X$ heißt Atom, falls $\mu(\{x\}) > 0$.
- (vii) Falls X ein metrischer Raum ist, dann heißt μ Borelmaß, falls $\mathscr{B}(X) \subset \mathscr{E}$.

Wir hatten für das Maßproblem gesehen, dass wir nicht das Volumen aller Teilmengen $A \in \mathscr{P}(\mathbb{R}^n)$ des \mathbb{R}^n messen können. Wir werden zeigen, dass wir zumindest jede Borelmenge messen können (und sogar ein etwas größeres System von Mengen).

Beispiel 2.7 (Beispiele diskreter Maße).

Abbildung 4: Ein Wahrscheinlichkeitsmaß, dass jedem Element aus dem Ereignisraum eine Wahrscheinlichkeit zuordnet.

(i) Sei X eine beliebige Menge. Das Diracmaß zum Punkt $x \in X$ ist

$$\delta_x(A) = \begin{cases} 1 & \text{falls } x \in A \\ 0 & \text{sonst.} \end{cases}$$

Das Diracmaß ist ein endliches Maß. Der Punkt $x \in X$ ist ein Atom von δ_x . Falls X ein metrischer Raum ist, dann ist δ_x ein Borelmaß.

(ii) Sei X eine beliebige Menge. Für $A \in \mathscr{P}(X)$ definieren wir das Zählmaß durch

$$\mu(A) = \begin{cases} \#A & \text{falls A endlich viele Elemente enthält} \\ \infty & \text{sonst,} \end{cases}$$

wobei #A die Anzahl der Elemente von A ist. Das Zählmaß ist genau dann endlich, wenn X endlich ist; es ist genau dann σ -endlich, wenn X abzählbar ist. Falls X =

 \mathbb{R}^n , dann ist das Zählmaß also nicht σ -endlich.

Aus der Additivität von Maßen erhalten wir direkt die folgenden Rechenregeln:

- $\mu(A \backslash B) = \mu(A) \mu(A \cap B) \ \forall A, B \in \mathscr{E}.$
- $\bullet \ \mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B) \ \forall A, B \in \mathscr{E}.$

Diese beiden Aussagen folgen aus der Additivität des Maßes zusammen mit den disjunkten Zerlegungen $A = (A \setminus B) \cup (A \cap B)$, $A \cup B = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$. Aus der Definition von Maßen erhalten wir Monotonie, σ -Subadditivität und Stetigkeit des Maßes bezüglich monotoner Konvergenz:

Proposition 2.8 (Eigenschaften von Maßen). Sei (X, \mathcal{E}, μ) ein Maßraum. Dann

(i)
$$\mu(A) \le \mu(B) \ \forall A, B \in \mathscr{E} \ mit \ A \subset B.$$
 (Monotonie)

$$(ii) \ \mu(\bigcup_{i=0}^{\infty} A_i) \le \sum_{i=0}^{\infty} \mu(A_i) \ \forall A_i \in \mathcal{E}, i \in \mathbb{N}.$$
 (\sigma-Subadditivit\vec{a}t)

(iii) Falls $A_k \nearrow A$ oder $A_k \searrow A$ und $\mu(A_0) < \infty$ für $A_k \in \mathscr{A}$. Dann gilt $A \in \mathscr{E}$ und

$$\lim_{k\to\infty}\mu(A_k)=\mu(A) \hspace{1cm} \textit{(Stetigkeit bzgl. monotoner Konvergenz)}$$

Beweis. (i): Folgt aus der disjunkten Zerlegung $B = A \cup (B \setminus A)$.

(ii): Wir definieren induktiv $B_0 := A_0$ und $B_{k+1} := A_{k+1} \setminus \bigcup_{i=1}^k B_i \subset A_{k+1}$. Dann gilt $\bigcup_{i=0}^{\infty} B_i = \bigcup_{i=0}^{\infty} A_i$ und $\mu(B_k) \leq \mu(A_k) \ \forall k \in \mathbb{N}$ nach (i). Da die Mengen B_k paarweise

disjunkt sind, erhalten wir

$$\mu(\bigcup_{k=0}^{\infty} A_k) = \mu(\bigcup_{k=0}^{\infty} B_k) = \sum_{k=0}^{\infty} \mu(B_k) \le \sum_{k=0}^{\infty} \mu(A_k).$$

(iii): Nach Annahme gilt $A = \bigcup_{i=0}^{\infty} A_k$ und damit $A \in \mathscr{E}$. Wir können $\mu(A_k) < \infty \ \forall k \in \mathbb{N}$ annehmen, da die Aussage sonst trivialerweise erfüllt ist. Die Mengen $B_0 := A_0$ und $B_k := A_k \backslash A_{k-1}$ für $k \geq 1$ sind disjunkt und $\mu(B_k) = \mu(A_k) - \mu(A_{k-1})$. Daher

$$\mu(A) = \mu(\bigcup_{k=0}^{\infty} B_k) = \sum_{k=0}^{\infty} \mu(B_k) = \mu(A_0) + \sum_{k=1}^{\infty} (\mu(A_k) - \mu(A_{k-1})) = \lim_{k \to \infty} \mu(A_k).$$

Für $A_k \searrow A$ betrachte man die Folge $C_k := A_0 \backslash A_k$ an. Falls $\mu(A_0) < \infty$, dann gilt $\mu(C_k) = \mu(A_0) - \mu(A_k)$ und wir können das obige Argument anwenden.

Gilt auch allgemein $\mu(A_k) \to \mu(A)$, falls $A_k \to A$ (Übungsaufgabe)?

Ein weiterer nützlicher Begriff ist der Begriff des äußeren Maßes.

Definition 2.9 (Äußeres Maß). Sei X eine Menge und $\mu^*: \mathscr{P}(X) \to [0, \infty]$. Dann heißt μ^* äußeres Maß, falls

- (i) $\mu^*(\emptyset) = 0$.
- (ii) μ^* ist σ -subadditiv.
- (iii) Für $A \subset B$ ist $\mu^*(A) \le \mu^*(B)$. (Monotonie)

Wir geben einige Beispiele: Sei X ein Menge. Falls $\mu: \mathscr{P}(X) \to [0, \infty]$ gegeben ist durch

- $\mu(\emptyset) = 0$ und $\mu(A) = 1$ für alle $A \neq \emptyset$, oder
- $\mu(A) = 0$, falls $\#A < \infty$ und $\mu(A) = 1$

Dann ist μ ein äußeres Maß.

Maße und äußere Maße sind subadditiv und erfüllen damit eine wichtige Eigenschaft einer Norm. Allerdings folgt aus $\mu(A) = 0$ im Allgemeinen nicht $A = \emptyset$. Eine Menge $A \in \mathscr{E}$ mit $\mu(A) = 0$ heißt μ -Nullmenge. Es ist allerdings sinnvoll auch die Teilmengen von Nullmengen als Nullmengen zu bezeichnen:

Definition 2.10 (Nullmengen & fast überall Aussagen). $Sei~\mathscr{E} \subset \mathscr{P}(X)~und~sei~$ $\mu:\mathscr{E} \to [0,\infty]~ein~Ma\beta~oder~\"{a}u\beta eres~Ma\beta.$

- (i) $A \in \mathscr{P}(X)$ heißt μ -Nullmenge, falls es ein $B \in \mathscr{E}$ gibt mit $A \subset B$ und $\mu(B) = 0$.
- (ii) Eine Aussage P(x) gilt μ -fast überall, falls P(x) bis auf eine Nullmenge gilt.
- (iii) Sei Y ein topologischer Raum. Wir sagen, dass $f_k: X \to Y$ μ -fast überall gegen f konvergiert, falls es eine μ -Nullmenge $N \subset X$ gibt mit $f_k(x) \to f(x)$ für alle $x \in X \setminus N$.

Die Funktionenfolge $f_k : \mathbb{R} \to \mathbb{R}$, $f_k(x) = k\chi_{[0,\frac{1}{k}]}$ konvergiert f.ü. gegen f = 0.

Nach Definition ist jede σ -Algebra $\mathscr E$ vollständig in dem Sinne, dass $A_k \in \mathscr E$ und $A_k \to A$ schon die Aussage $A \in \mathscr E$ impliziert. Ein Maß $\mu: X \to [0, \infty]$ induziert eine Konvergenz:

Wir können sagen, dass $A_k \to A$ bezüglich des Maßes μ konvergiert, falls $\mu(A\Delta A_k) \to 0$. Im Allgemeinen folgt aus $A_k \in \mathscr{E}$ und $\mu(A\Delta A_k) \to 0$ aber nicht $A \in \mathscr{E}$. Das Maß ist dann in diesem Sinne nicht vollständig. Jedes Maß lässt sich aber zu einem vollständigen Maß fortsetzen. Dies führt auf die folgende Definition:

Satz 2.11 (Maßvervollständigung). Sei (X, \mathcal{E}, μ) ein Maßraum. Dann ist

$$\mathscr{E}_{\mu} \ := \ \{A \in \mathscr{P}(X) \ : \ es \ gibt \ B, N \in \mathscr{E} \ mit \ A\Delta B \subset N \ und \ \mu(N) = 0\}.$$

eine σ -Algebra. Die Erweiterung $\overline{\mu}: \mathscr{E}_{\mu} \to [0,\infty]$ mit $\overline{\mu}(A) = \mu(B)$ ist ein Maß. Die Elemente von $E \in \mathscr{E}_{\mu}$ heißen μ -messbar Mengen. Das Maß $\overline{\mu}$ heißt Vervollständigung von μ . Falls $\mu = \overline{\mu}$, dann heisst das Maß μ vollständig. Entsprechend heißt der Maßraum (X,\mathscr{E},μ) vollständig, falls μ vollständig ist.

Beweis. Der Beweis ist Übungsaufgabe.

Für ein vollständiges Maß $\mu:\mathscr{E}\to[0,\infty]$ gilt insbesondere $A\in\mathscr{E}$ für jede Nullmenge A.

2.2 Maßerweiterung

Wir wenden uns wieder dem Maßproblem zu, d.h. das Ziel ist ein Maß zur Volumenmessung zu definieren. Wir betrachten zuerst die Menge der linksgeschlossenen Intervalle

$$\mathscr{J} := \{ [a, b) : a, b \in \mathbb{R} \}.$$

Wir benutzen dabei die Konvention, dass $[a,b) = \emptyset$ falls $b \le a$. Man zeigt leicht, dass

$$\mathscr{B}(\mathbb{R}) = \sigma(\mathscr{J}).$$

Dies folgt aus der Tatsache, dass sich jedes offene Intervall als abzählbare Überdeckung von Mengen in \mathscr{J} darstellen lässt und umgekehrt (Übungsaufgabe). Jedem Intervall $I = [a,b) \in \mathscr{J}$ mit $I \neq \emptyset$ ordnen wir die Länge |I| := |b-a| und wir setzen $|\emptyset| = 0$. In einem ersten Schritt definieren wir ein Volumenmaß auf der endlichen Vereingung von Mengen in \mathscr{J} :

Lemma 2.12 (Lebesgue–Prämaß). Sei $\mathcal{K} \subset \mathcal{P}(\mathbb{R})$ die Menge der Mengen, welche sich als endliche Vereinigung von linksgeschlossenen Intervallen darstellen lässt, d.h.

$$\mathscr{K} = \left\{ A \subset \mathbb{R} : A = \bigcup_{j=1}^{N} I_j \quad mit \ I_j \in \mathscr{J}, \ 1 \leq j \leq N, \ f\"{u}r \ ein \ N \in \mathbb{N}. \right\}$$
 (2.1)

Wir definieren das Lebesgue-Prämaß $\lambda: \mathscr{K} \to [0,\infty)$ durch

$$\lambda(A) := \inf \Big\{ \sum_{I \in \mathscr{I}} |I_j| : A = \bigcup_{j=1}^N I_j f \ddot{u} r \ N \in \mathbb{N} \ und \ I_j \in \mathscr{J} \Big\},$$

Dann ist $\mathcal{K} \subset \mathcal{P}(\mathbb{R})$ ein Ring und λ ist σ -additiv auf \mathcal{K} .

Beweis. Man zeigt leicht, dass \mathcal{K} ein Ring ist. Wir bemerken, dass jede Menge $A \in \mathcal{K}$ als endliche, disjunkte Vereinigung von Mengen $I_j \in \mathcal{J}$ geschrieben werden kann. Mit

einer solchen disjunkten Vereinigung gilt $\lambda(A) := \sum_{j=1}^{n} |I_j|$ und das Maß ist unabhängig von der Wahl der disjunkten Vereinigung. Die Details sind Übungsaufgabe.

[06.11.2020] [09.11.2020]

Das Lebesgueprämaß $\lambda: \mathscr{K} \to [0, \infty]$ erfüllt die Eigenschaften (i)—(iii) des Maßproblemes ist aber nur auf dem kleinen System $\mathscr{K} \subset \mathscr{P}(\mathbb{R})$ von Mengen definiert. Unser Ziel ist λ zu einem Maß auf $\mathscr{B}(\mathbb{R}) = \sigma(\mathscr{K}) = \sigma(\mathscr{J})$ fortzusetzen. Die folgende Konstruktion geht auf Constantin Carathéodory (1873-1950) zurück.

Proposition 2.13 (Induziertes äußeres Maß). Sei $\mathscr{A} \subset \mathscr{P}(X)$ und sei $\mu : \mathscr{A} \to [0,\infty]$ σ -additiv. Sei $\mu^* : \mathscr{P}(X) \to [0,\infty]$ gegeben durch

$$\mu^*(E) := \inf\{\sum_{i=1}^{\infty} \mu(A_i) : \mathscr{A} \in \mathscr{A}, E \subset \bigcup_{i \in \mathbb{N}} A_i\}.$$

Dann ist μ^* äußeres Maß mit $\mu^* = \mu$ auf $\mathscr A$ und heißt das von μ induzierte äußere Maß.

Beweis. Aus der Definition und der Monotonie von μ erhalten wir direkt, dass $\mu(A) = \mu^*(A) \ \forall A \in \mathscr{A}$. Insbesondere gilt $\mu^*(\emptyset) = 0$. Offensichtlich ist μ^* monoton. Es bleibt zu zeigen, dass μ^* subadditiv ist: Sei $E_i \in \mathscr{P}(X)$ und sei $E := \bigcup_i E_i$. OBdA nehmen wir an,

dass $\sum_i \mu^*(E_i) < \infty$. Nach Konstruktion gibt es dann zu $\varepsilon > 0$ und E_i eine Folge A_{ij} mit

$$\sum_{j=1}^{\infty} \mu^*(A_{ij}) < \mu^*(E_i) + \frac{\varepsilon}{2^{i+1}}, \quad \text{und} \quad E_i \subset \bigcup_j A_{ij}$$

Wir summieren über i und erhalten

$$\sum_{i,j=1}^{\infty} \mu^*(A_{ij}) < \sum_{i=1}^{\infty} \mu^*(E_i) + \varepsilon, \quad \text{und} \quad E \subset \bigcup_{i,j} A_{ij}$$

Die Subadditivität folgt im Limes $\varepsilon \to 0$.

Wir möchten zeigen, dass die Einschränkung von μ^* auf einer hinreichend großen Menge σ -additiv ist. Dafür benötigen wir einige technische Definitionen und Resultate:

Definition 2.14 (Dynkinsystem, π -System).

- (i) $\mathscr{D} \subset \mathscr{P}(X)$ heißt Dynkinsystem, falls
 - $\emptyset, X \in \mathscr{D}$.
 - $\bullet \ \ A \in \mathscr{D} \Longrightarrow A^c \in \mathscr{D}.$
 - $A_i \in \mathcal{D} \ \forall i \in \mathbb{N}, \ A_i \cap A_j = \emptyset \ \text{für } i \neq j \Longrightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{D}.$
- (ii) $\mathscr{K} \subset \mathscr{P}(X)$ heißt π -System, falls $\mathscr{K} \neq \emptyset$ und $A \cap B \in \mathscr{K} \ \forall A, B \in \mathscr{K}$.

Wir bemerken, dass das Mengensystem ${\mathscr K}$ aus Lemma 2.1 eine Algebra und damit ins-

Abbildung 5: Archimedes hat die Fläche des Kreises durch Ausschöpfen von innen approximiert. Bei der Konstruktion des äußeren Maßes approximieren wir das Volumen von Mengen von außen.

besondere ein π -System ist. Wir haben das folgende Resultat:

Proposition 2.15 (Dynkinsystem). Falls \mathscr{D} ein Dynkinsystem ist und $\mathscr{K} \subset \mathscr{D}$ ein π -System, dann ist $\sigma(\mathscr{K}) \subset \mathscr{D}$.

Beweis. Übungsaufgabe.

Falls insbesondere $\mathscr{A}\subset\mathscr{P}(X)$ sowohl Dynkinsystem als auch π -System ist, dann ist \mathscr{A} eine σ -Algebra. Die folgende Charakterisierung von messbaren Mengen in (2.2) heißt Carathéodory-Kriterion.

Satz 2.16 (Maßerweiterung). Sei $\mathscr{A} \subset \mathscr{P}(X)$ ein Ring. Sei $\mu : \mathscr{A} \to [0, \infty]$ ein Maß und sei $\mu^* : \mathscr{P}(X) \to [0, \infty]$ das von μ induzierte äußere Maß. Sei

$$\mathscr{M} := \{ A \in \mathscr{P}(X) : \mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c) \quad \forall E \in \mathscr{P}(X). \}$$
 (2.2)

Dann gilt

- (i) \mathcal{M} ist eine σ -Algebra mit $\mathcal{A} \subset \mathcal{M}$
- (ii) μ^* ist σ -additiv auf \mathcal{M} .
- (iii) Der Maßraum (X, \mathcal{M}, μ^*) ist vollständig.

Beweis. Da μ^* subadditiv ist, ist die Bedingung in (2.2) äquivalent zu

$$\mu^*(E \cap A) + \mu^*(E \cap A^c) \le \mu^*(E) \qquad \forall E \in \mathscr{P}(X) \text{ mit } \mu^*(E) < \infty. \tag{2.3}$$

Schritt 1: $\mathscr{A} \subset \mathscr{M}$: Sei $A \in \mathscr{A}$. Für $E \in \mathscr{P}(X)$ mit $\mu^*(E) < \infty$ wählen wir $B_i \in \mathscr{A}$ mit $\sum_{i=0}^{\infty} \mu^*(B_i) < \mu^*(E) + \varepsilon$ und $E \subset \bigcup_{i=0}^{\infty} B_i$. Da μ^* subbaditiv und auf \mathscr{A} additiv ist erhalten wir

$$\mu^*(E \cap A) + \mu^*(E \cap A^c) \leq \sum_{i=0}^{\infty} \left(\mu^*(B_i \cap A) + \mu^*(B_i \cap A^c) \right) \stackrel{(??)}{=} \sum_{i=0}^{\infty} \mu^*(B_i)$$
$$< \mu^*(E) + \varepsilon.$$

Im Limes $\varepsilon \to 0$ erhalten wir (2.3) und daher $A \in \mathcal{M}$.

Schritt 2: \mathcal{M} ist eine σ -Algebra. Nach Proposition 2.15 reicht es zu zeigen, dass \mathcal{M} ein Dynkinsystem und ein π -System ist. Nach Definition gilt $\emptyset, X \in \mathcal{M}$. Aus der Definition sieht man auch direkt, dass $A^c \in \mathcal{M}$, falls $A \in \mathcal{M}$.

Wir zeigen zuerst, dass $A \cup B \in \mathcal{M}$, falls $A, B \in \mathcal{M}$. Dafür schreiben wir $A \cup B = A \cup (B \cap A^c)$ als Vereinigung zweier disjunkter Mengen. Für $E \in \mathcal{P}(X)$ erhalten wir mit der Subadditivität von μ^* dann

$$\mu^* (E \cap (A \cup B)) + \mu^* (E \cap (A \cup B)^c) \leq \mu^* (E \cap A) + \mu^* (E \cap A^c \cap B) + \mu^* (E \cap A^c \cap B^c)$$
$$= \mu^* (E \cap A) + \mu^* (E \cap A^c)$$
$$= \mu^* (E).$$

Für die beiden Identitäten haben wir $A, B \in \mathcal{M}$ genutzt. Für $A, B \in \mathcal{M}$ gilt damit auch $A \cap B = (A^c \cup B^c)^c \in \mathcal{M}$. Damit ist \mathcal{M} ein π -System.

[09.11.2020] [13.11.2020]

Indem wir E in (2.2) durch $E \cap (A \cup B)$ ersetzen erhalten wir für alle $E \in \mathscr{P}(X)$

$$\mu^*(E \cap (A \cup B)) = \mu^*(E \cap A) + \mu^*(E \cap B) \quad \forall A, B \in \mathscr{M} \text{ mit } A \cap B = \emptyset.$$
 (2.4)

Mit der Wahl $E := A \cup B$ gilt insbesondere

$$\mu^*(A \cup B) = \mu^*(A) + \mu^*(B) \qquad \forall A, B \in \mathscr{M} \text{ mit } A \cap B = \emptyset, \tag{2.5}$$

d.h. μ^* ist additiv auf \mathcal{M} .

Um zu sehen, dass \mathscr{M} ein Dynkinsystem ist reicht es zu zeigen, dass $S := \bigcup_n A_n \in \mathscr{M}$, falls die Mengen $A_n \in \mathscr{M}$ disjunkt sind. Nach der obigen Rechnung gilt $S_n := \bigcup_{i=1}^n A_i \in \mathscr{M}$. Da $S^c \subset S_n^c$ und für $E \in \mathscr{P}(X)$ gilt also

$$\mu^{*}(E) = \mu^{*}(E \cap S_{n}^{c}) + \mu^{*}(E \cap S_{n}) \geq \mu^{*}(E \cap S^{c}) + \mu^{*}(E \cap S_{n})$$

$$\stackrel{(2.4)}{\geq} \mu^{*}(E \cap S^{c}) + \sum_{i=1}^{n} \mu^{*}(E \cap A_{i}) \forall n \in \mathbb{N}.$$

$$(2.6)$$

Da μ^* subadditiv ist, erhalten wir im Limes $n \to \infty$

$$\lim_{n \to \infty} \sum_{i=0}^{n} \mu^*(E \cap A_i) = \sum_{i=1}^{\infty} \mu^*(E \cap A_i) \ge \mu^*(E \cap S)$$
 (2.7)

Wenn wir (2.7) in (2.6) einsetzen, folgt $S \in \mathcal{M}$. Daher ist \mathcal{M} also sowohl Dynkinsystem als auch π -System und damit eine σ -Algebra.

Schritt 3: μ^* ist σ -additiv auf \mathcal{M} . Für eine Folge $A_n \in \mathcal{A}$ von disjunkten Mengen und da μ^* monoton ist, erhalten wir

$$\sum_{i=1}^{n} \mu^*(A_i) \stackrel{(2.5)}{=} \mu^*\left(\bigcup_{i=1}^{n} A_i\right) \leq \mu^*\left(\bigcup_{i=1}^{\infty} A_i\right) \qquad \forall n \in \mathbb{N}.$$

Im Limes $n \to \infty$ erhalten wir die σ -Additivität von μ^* .

Schritt 4: Der Maßraum (X, \mathcal{M}, μ^*) ist vollständig. Sei $A, N \in \mathcal{M}$, sei $\mu^*(N) = 0$ und es gelte $B \subset A\Delta N$. Dann gilt (2.2) auch für B, d.h. $B \in \mathcal{M}$.

Die Eindeutigkeit der Maßerweiterung wird in folgender Proposition behandelt:

Proposition 2.17 (Eindeutigkeitskriterium). Seien μ_1 , μ_2 Maße auf (X, \mathcal{E}) und sei $\mathcal{F} := \{A \in \mathcal{E} : \mu_1(A) = \mu_2(A)\}$. Die folgenden beiden Bedingungen seien erfüllt:

- (i) Es gibt ein π -System $\mathcal{K} \subset \mathcal{F}$ mit $\sigma(\mathcal{K}) = \mathcal{E}$.
- (ii) Es gibt eine Folge $X_i \in \mathcal{E}$ mit $X_i \nearrow X$ und $\mu_1(X_i) = \mu_2(X_i) < \infty$.

Dann gilt $\mu_1 = \mu_2$ auf \mathscr{E} .

Beweis. Wir nehmen zuerst an, dass μ_1 , μ_2 endliche Maße sind. Wir behaupten, dass \mathscr{F} ein Dynkinsystem ist: Offensichtlich gilt $\emptyset \in \mathscr{F}$. Für disjunkte Mengen $A_i \in \mathscr{F}$ gilt nach der σ -Additivität der Maße auch $\bigcup_{i=1}^{\infty} A_i \in \mathscr{F}$. Um zu sehen, dass $X \in \mathscr{K}$ bemerken wir, dass nach Voraussetzung $\mathscr{E} = \sigma(\mathscr{K})$. Insbesondere gilt $X \in \sigma(\mathscr{K})$. Daher gibt es eine abzählbare Vereinigung disjunkter Mengen $K_i \in \mathscr{K}$ mit $X = \bigcup_i K_i$. Insbesondere erhalten wir $X \in \mathscr{F}$. Für $A \in \mathscr{F}$ gilt auch $\mu_1(A^c) = \mu_1(X) - \mu_1(A) = \mu_2(X) - \mu_2(A) = \mu_2(A^c)$, d.h. $A^c \in \mathscr{F}$. Daher ist \mathscr{F} ein Dynkinsystem. Mit Proposition 2.15 und nach (i) gilt dann $\mathscr{E} = \sigma(\mathscr{K}) \subset \mathscr{F}$. Insbesondere gilt $\mu_1 = \mu_2$ auf \mathscr{E} .

Wir betrachten nun den allgemeinen Fall, wenn μ_1 , μ_2 σ -endlich sind. Nach Voraussetzung

gilt $\mu_1(X_i) = \mu_2(X_i) < \infty$ und $X_i \nearrow X$. Die Maße μ_1, μ_2 sind endliche Maße auf (X_i, \mathscr{E}_i) für jedes $i \in \mathbb{N}$, wobei die σ -Algebra $\mathscr{E}_i \subset \mathscr{P}(X_i)$ gegeben ist durch $\mathscr{E}_i := \{E \in \mathscr{E} : E \subset X_i\}$. Nach Annahme gilt $\mu_1 = \mu_2$ auf dem π -System $\mathscr{K}_i := \{E \in \mathscr{K} : E \subset X_i\}$. Nach der vorherigen Rechnung erhalten wir $\mu_1 = \mu_2$ auf $\sigma(\mathscr{K}_i) \subset \mathscr{P}(X_i)$.

Wir betrachten nun die Mengen $\mathscr{F}_i := \{B \in \mathscr{P}(X) : B \cap X_i \in \sigma(\mathscr{K}_i)\}$. Dann ist \mathscr{F}_i eine σ -Algebra und $\mathscr{K} \subset \mathscr{F}_i$. Nach Proposition 2.15 gilt $\mathscr{E} = \sigma(\mathscr{K}) \subset \mathscr{F}_i$. Aus der σ -Algebraeigenschaft der Maße folgt also

$$\mu_1(B \cap X_i) = \mu_2(B \cap X_i) \qquad \forall B \in \mathscr{E} \ \forall i \in \mathbb{N}$$

Im Limes $i \to \infty$ ergibt dies $\mu_1 = \mu_2$ auf \mathscr{E} .

2.3 Das Lebesguemaß auf $\mathbb R$

Mit der Konstruktion aus dem vorigen Kapitel können wir unser Prä-Lebesguemaß eindeutig zu einem Borelmaß erweitern:

Satz 2.18 (Lebesguemaß auf \mathbb{R}). Es gibt ein eindeutiges, translationsinvariantes Maß

$$\lambda: \mathscr{B}(\mathbb{R}) \to [0, \infty]$$
 mit $\lambda([0, 1]) = 1$.

Dieses Maß heißt Lebesquemaß auf \mathbb{R} .

Beweis. Sei $\lambda: \mathscr{K} \to [0,\infty]$ das Lebesgue-Prämaß aus Lemma 2.12. Nach Satz 2.16

induziert dieses Pramäß eine Erweiterung $\lambda: \mathscr{M} \to [0, \infty]$. Da \mathscr{M} eine σ -Algebra ist, gilt $\mathscr{B}(\mathbb{R}) = \sigma(\mathscr{K}) \subset \mathscr{M}$. Durch Einschränkung unseres Maßes auf die Borelmengen erhalten wir also ein Borelmaß $\lambda: \mathscr{B}(\mathbb{R}) \to [0, \infty]$. Jedes weitere translationsinvariante, normierte Maß $\tilde{\lambda}$, welches die Anforderungen des Satzes erfüllt ist σ -endlich und erfüllt $\tilde{\lambda} = \lambda$ auf \mathscr{K} . Nach Proposition 2.17 ist die Erweiterung damit eindeutig definiert.

Für jedes $h \in \mathbb{R}$ ist auch $A \mapsto \lambda(A+h)$ eine σ -additive Erweiterung von $\lambda|_{\mathscr{A}}$. Aus der Eindeutigkeit der Erweiterung erhalten wir, dass λ translationsinvariant ist.

Das Lebesguemaß lässt sich aber zu einem vollständigen Maß erweitern:

• Das Lebesguemaß hat eine Erweiterung zu einem vollständigen Maß

$$\lambda: \mathscr{L}_1 \to [0, \infty]$$

Die Erweiterung ist durch Satz 2.11 mit $\mathcal{L}_1 := \mathcal{M}$ gegeben.

- Die Mengen in \mathcal{L}_1 heißen auch Lebesguemengen.
- Es gilt $\mathscr{B}(\mathbb{R}) \subsetneq \mathscr{L}_1$ (Übungsaufgabe).

In der Literatur wird das Lebesguemaß auch als vollständiges Maß $\lambda: \mathscr{L}_1 \to [0, \infty]$ definiert (Ich folge der Notation aus dem Buch von Ambrosio). Die Notation ist dann in manchen Bereichen etwas umständlicher.

Wir haben in Proposition 2.8 gesehen, dass Maße stetig sind bezüglich der Approximation durch messbare Mengen. Borelmengen lassen sich im Lebesguemaß sogar durch offene

bzw. abgeschlossene Mengen approximieren. Wir formulieren dies Aussage in einem etwas allgemeineren Setting:

Proposition 2.19 (Regularität von σ -endliche Maßen). Sei X ein metrischer Raum und sei $\mu: \mathcal{B}(X) \to [0, \infty]$ σ -endlich. Dann gilt für jedes $B \in \mathcal{B}(X)$:

$$\mu(B) = \sup\{\mu(A) : A \subset B, abgeschlossen\} = \inf\{\mu(U) : U \supset B, offen\}$$
 (2.8)

Beweis. Der Beweis wurde in der VOrlesung nicht behandelt. Der Fall, wenn μ endlich ist: Wir nehmen zuerst an, dass μ ein endliches Maß ist. Sei \mathcal{K} die Menge, so dass (2.8) gilt. Wir bemerken zuerst, dass \mathcal{K} alle offenen Mengen enthalt. In der Tat, für eine U offen definieren wir die Folge abgeschlossener Mengen

$$A_n := \{x \in U : d(x, U^c) \ge \frac{1}{n}\} \subset U.$$

Dann gilt $A_n \nearrow U$ und damit $\mu(A_n) \nearrow \mu(U)$. Daher enthält \mathscr{K} alle offenen Mengen und es reicht zu zeigen, dass \mathscr{K} eine σ -Algebra ist.

Offensichtlich gilt $\emptyset, X \in \mathcal{K}$. Falls $B \in \mathcal{K}$, dann gilt nach Definition auch $B^c \in \mathcal{K}$ (da μ endlich ist). Sei nun $B_n \in \mathcal{K}$. Dann gibt es zu $\varepsilon > 0$ abgeschlossene Mengen A_n und offene Mengen U_n mit $A_n \subset B_n \subset U_n$ mit $\mu(A_n \setminus C_n) \leq \frac{\varepsilon}{2^{n+1}}$. Wir definieren $S := \bigcup_n A_n$

und $U := \bigcup_n U_n$. Dann gilt $S \subset \bigcup_n B_n \subset U$ und

$$\mu(U \backslash S) \leq \sum_{n} \frac{\varepsilon}{2^{n+1}} \leq \varepsilon.$$

Die Menge U ist offen, die Menge S im Allgemeinen aber nicht abgeschlossen. Allerdings sind die Mengen $S^n := \bigcup_{k=0}^n A_n$ abgeschlossen und es gilt $\mu(S^n) \nearrow \mu(S)$. Daher gibt es ein $n_0 \in \mathbb{N}$ mit $\mu(S^{n_0}) \ge \mu(S) - \varepsilon$. Mit der Wahl $A := S^{n_0}$ erhalten wir also $A \subset \bigcup_n B_n \subset U$ und $\mu(U \setminus A) \le 2\varepsilon$.

Der allgemeine Fall: Übungsaufgabe.

Nach Konstruktion des Lebesguemaßes ist jede abzählbare Menge eine Nullmenge (Übungsaufgabe).

> [13.11.2020] [16.11.2020]

Ein Beispiel für eine Nullmengen, welche nicht abzählbar ist, ist die <u>Cantormenge</u> C. Diese ist wie folgt konstruiert: Sei $I_{0,1}=[0,1]$. Wir entfernen aus I_0 das mittlere offene Drittel des Intervalls und erhalten die beiden kompakten Intervalle $I_{1,1}=\frac{1}{3}[0,1],\ I_{1,2}=\frac{1}{3}[2,3]$. Aus den beiden Intervallen $I_{1,1},\ I_{1,2}$ entfernen wir jeweils das mittlere Drittel und erhalten die vier kompakten Intervalle $I_{2,1}=\frac{1}{9}[0,1],\ I_{2,2}=\frac{1}{9}[2,3],\ I_{2,3}=\frac{1}{9}[6,7],\ I_{2,4}=\frac{1}{9}[8,9]$. Induktiv erhalten wir die kompakten Intervalle $I_{n,k}$ für $n\in\mathbb{N},\ k=1,\ldots,2^n$.

Abbildung 6: Die ersten Iterationsschritte zur Konstruktion der Cantormenge

Die Cantormenge $C \subset [0,1]$ ist definiert

$$C := \bigcap_{n=0}^{\infty} C_n$$
 wobei $C_n := \bigcup_{k=1}^{2^n} I_{n,k}$.

Die Cantormenge gibt uns ein Beispiel für eine überabzählbare Nullmenge:

Lemma 2.20 (Cantormenge). Sei $C \subset [0,1]$ die Cantormenge. Dann gilt

- (i) $C \subset [0,1]$ ist kompakt.
- (ii) $\lambda(C) = 0$.
- (iii) C ist überabzählbar

Beweis. C is beschränkt und als Vereinigung abgeschlossener Mengen abgeschlossen; ins-

Abbildung 7: Die Koch Schneeflocke ist ein Beispiel einer fraktalen Menge. Im Bild sind die ersten vier Iterationsschritte skizziert.

besondere ist C kompakt. C_n ist die Vereinigung von 2^n disjunkten Intervallen der Länge 3^{-n} und daher $\lambda(C_n) = 2^n 3^{-n} = (\frac{2}{3})^n$. Aus der Monotonie des Lebesguemaßes erhalten wir also $\lambda(C) \leq \lim_{n \to \infty} (C_n) = 0$. Der Beweis, dass C überabzählbar ist, ist Übungsaufgabe.

Analog zur Definition des Lebesguesmaßes kann man auch allgemeiner s-dimensionale Maße konstrieren. Wir bemerken zuerst, dass für $n \in \mathbb{N}$ das Volumen der n-dimensionalen Einheitskugel gegeben ist durch $\alpha(n) := \pi^{\frac{n}{2}}/\Gamma(\frac{n}{2}+1)$. Das Hausdorffmaß ist dann durch Überdeckung mit skalierten Kugeln definiert:

Definition 2.21 (Hausdorffmaß). Sei $A \subset \mathbb{R}^n$, $0 \le s < \infty$. Sei $\alpha(s) := \pi^{\frac{s}{2}}/\Gamma(\frac{s}{2}+1)$, wobei Γ die Gamma-Funktion bezeichnet. Sei

$$\mathscr{H}^{s}_{\delta}(A) := \inf \Big\{ \sum_{j=1}^{\infty} \alpha(s) \Big(\frac{\operatorname{diam} C_{j}}{2} \Big)^{s} : A \subset \bigcup_{j \in \mathbb{N}} C_{j}, \operatorname{diam} C_{j} \leq \delta \Big\}.$$

Das Hausdorffmaß $\mathscr{H}^s: \mathscr{P}(\mathbb{R}^n) \to [0,\infty]$ ist dann definiert durch

$$\mathscr{H}^s(A) := \limsup_{s \to 0} \mathscr{H}^s_{\delta}(A). \tag{2.9}$$

Für jede Menge $A \subset \mathbb{R}^n$ ist $\mathscr{H}^s_{\delta}(A)$ monoton steigend für $s \to 0$, insbesondere ist der Limsup in (2.9) auch ein Limes. Eine Menge $A \subset \mathbb{R}^n$ heißt \mathscr{H}^s -Nullmenge, falls $\mathscr{H}^s(A) = 0$. Frage: Geben Sie Beispiele für \mathscr{H}^s -Nullmengen im \mathbb{R}^n .

Die Einschränkung des Hausdorffmaßes auf Borelmengen ist ein Maß. Allgemein ist das Hausdorffmaß aber nur ein äußeres Maß. Ein Maß heißt lokal endlich, wenn es zu jedem Punkt eine Umgebung mit endlichem Maß gibt.

Satz 2.22 (Eigenschaften des Hausdorffmaßes). Sei $0 \le s < \infty$. Dann gilt

- (i) $\mathscr{H}^s: \mathscr{P}(\mathbb{R}^n) \to [0,\infty]$ ist ein äußeres Maß
- (ii) $\mathscr{H}^s: \mathscr{B}(\mathbb{R}^n) \to [0,\infty]$ ist ein Borelmaß (aber für $s \in (0,n)$ nicht lokal endlich).

(iii)
$$\mathscr{H}^s(\lambda A) = \lambda^s(A)$$
 $\forall A \in \mathscr{P}(X), \lambda > 0.$

(iv)
$$\mathscr{H}^s(A+y) = \mathscr{H}^s(A) \qquad \forall A \in \mathscr{P}(X), y \in \mathbb{R}^n.$$

Beweis. Dies ist Übungsaufgabe. Zum Beweis von (ii) verwendet man das Carathéodory–Kriterion (2.2).

Für n=0 ist \mathscr{H}^0 das Zählmaß. Für n=1 gilt außerdem $\mathscr{H}^1=\mathscr{L}^1$ auf $\mathscr{B}(\mathbb{R})$. Für s>n gilt $\mathscr{H}^s=0$. Für 0< s< n kann das Hausdorffmaß genutzt werden, um die Hausdorfdimension von Mengen $E\subset\mathbb{R}^n$ zu definieren:

$$\dim(E) := \inf\{s \ge 0 : \mathcal{H}^s(X) = 0\}.$$

Die Menge $Q = [0,1]^1 \times \{0\} \subset \mathbb{R}^3$ hat zweidimensionales Hausdorffmaß $\mathscr{H}^2(Q) = 1$ und es gilt $\dim(Q) = 2$. Die Hausdorffdimension der Cantormenge C ist $\dim(C) = \ln 2 / \ln 3$. Man kann analog Cantormengen mit beliebiger Dimension $s \in (0,1)$ konstruieren (Übungsaufgabe).

3 Integration

3.1 Messbare Funktionen

Wir beschäftigen uns mit Funktionen auf messbaren Räumen. Dies führt auf den Begriff der messbaren Funktion. Wir erinnern an einige Identitäten für das Urbild: Seien (X, \mathcal{E}) ,

Abbildung 8: Das Sierpinsky-Dreieck hat Hausdorffdimension ln 3/ln 2.

Abbildung 9: Riemannintegral vs. Lebesgueintegral.

 (Y,\mathscr{F}) messbare Räume und $f:X\to Y$. Das Urbild $f^{-1}(F)$ für $F\subset Y$ ist definiert als $f^{-1}(F)=\{x\in X:\varphi(x)\in F\}$. Man sieht leicht, dass

- $f^{-1}(F^c) = f^{-1}(F)^c$
- $\bigcup_{i \in I} f^{-1}(F_i) = f^{-1}(\bigcup_{i \in I} F_i)$
- $\bigcap_{i \in I} f^{-1}(F_i) = f^{-1}(\bigcap_{i \in I} F_i)$

Für eine Teilmenge $\mathscr{F}\subset\mathscr{P}(X)$ definieren wir entsprechend $f^{-1}(\mathscr{F})=\{E\in\mathscr{P}(X):$

 $f(E) \in \mathscr{F}$ }. Falls $\mathscr{F} \subset \mathscr{P}(Y)$ eine σ -Algebra ist, dann ist nach den obigen Identitäten auch $f^{-1}(\mathscr{F})$ eine σ -Algebra.

Definition 3.1 (Messbare Funktionen). Seien (X, \mathcal{E}) , (Y, \mathcal{F}) messbare Räume.

- (i) $f: X \to Y$ heißt $(\mathscr{E}, \mathscr{F})$ -messbar, falls $f^{-1}(\mathscr{F}) \subset \mathscr{E}$.
- (ii) Falls X ein metrischer Raum ist und $\mathscr{E} = \mathscr{B}(X)$, dann heisst f borelmessbar.
- (iii) Falls $X = \mathbb{R}$ und $\mathscr{E} = \mathscr{L}_1$, dann heisst f lebesguemessbar.

Nach Definition ist $f: X \to Y$ also genau dann messbar, wenn $f^{-1}(F) \in \mathscr{E} \ \forall f \in \mathscr{F}$. Falls $\mathscr{E}, \mathscr{B} \in X$ σ -Algebren sind mit $\mathscr{E} \subset \mathscr{B}$, dann ist jede \mathscr{E} -messbare Funktion auch \mathscr{B} messbar. Nach Definition ist eine borelmessbare Funktion $f: \mathbb{R} \to Y$ also auch lebesguemessbar, da $\mathscr{B}(\mathbb{R}) \subset \mathscr{L}_1$. Nach dem Satz von Lusin gibt es zu jeder lebesguemessbaren Funktion f eine borelmessbare Funktion mit f = g f.ü. (Übungsaufgabe). Eine charakteristische Funktion $\chi_A : \mathscr{E} \to \mathbb{R}$ ist genau dann \mathscr{E} -messbar, wenn $A \in \mathscr{E}$.

Direkt aus der Definition erhalten wir: Seien $(X,\mathscr{E}),\ (Y,\mathscr{F}),\ (Z,\mathscr{G})$ messbare Räume. Falls $f:X\to Y$ $(\mathscr{E},\mathscr{F})$ -messbar und $g:Y\to Z$ $(\mathscr{F},\mathscr{G})$ -messbar ist, dann ist $g\circ f$ $(\mathscr{E},\mathscr{G})$ -messbar.

Es reicht, Messbarkeit für eine hinreichend große Menge von Funktionen zu testen:

Proposition 3.2. Seien (X, \mathcal{E}) , (Y, \mathcal{F}) messbare Räume und sei $\mathcal{G} \subset \mathcal{F}$ mit $\sigma(\mathcal{G}) = \mathcal{F}$. Dann ist $f: X \to Y$ genau dann messbar, wenn $f^{-1}(\mathcal{G}) \subset \mathcal{E}$.

Beweis. Übungsaufgabe.

Falls Y metrischer Raum ist und $\mathscr{F} = \mathscr{B}(Y)$, dann ist also $f: X \to Y$ schon messbar, wenn $f^{-1}(\Omega) \in \mathscr{E}$ für alle offenen Mengen Ω . Falls $f: X \to \mathbb{R}$, dann ist f schon messbar, wenn $f^{-1}([a,b))$ für alle halboffenen Intervalle der Form [a,b).

Insbesondere betrachten wir den Fall von Funktionen $F: X \to \overline{\mathbb{R}}$, wobei $\overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$. Der Raum $\overline{\mathbb{R}}$ kann metrisiert werden mit der Metrik $d: \overline{\mathbb{R}} \times \overline{\mathbb{R}} \to 0$

$$d(x,y) = \frac{|x-y|}{1+|x-y|}.$$

Eine Funktion $f: X \to \overline{\mathbb{R}}$ ist dann \mathscr{E} -messbar genau dann, wenn

$$f^{-1}(\{\infty\}) \in \mathscr{E} \qquad f^{-1}(\{-\infty\}) \in \mathscr{E} \qquad \text{und} \qquad f^{-1}(\mathscr{B}(\mathbb{R})) \subset \mathscr{E}.$$

Für $a, b \in \overline{\mathbb{R}}$ definieren wir $f \wedge g := \min\{a, b\}$ und $a \vee b := \max\{a, b\}$. Wir schreiben auch $a_+ := 0 \vee 0$ und $a_- := -a \wedge 0$. Dann gilt $a = a_+ - a_-$ und $|a| = a_+ + a_-$. Entsprechend sind für $f, g : X \to \overline{\mathbb{R}}$ die Funktionen $f \wedge g$, $f \vee g$, f_{\pm} punktweise definiert.

Lemma 3.3 (Messbarkeitskriterien). Sei (X, \mathcal{E}, μ) ein Maßraum.

- (i) Falls X ein metrischer Raum ist und $f: X \to \overline{\mathbb{R}}$ stetig, dann ist f borelmessbar.
- (ii) Falls $I \subset \mathbb{R}$ ein Intervall und $f: I \to \overline{\mathbb{R}}$ monoton ist, dann ist f borelmessbar.
- (iii) Falls der Maßraum (X, \mathcal{E}, μ) vollständig ist und falls f = g f.ü. für $f, g : X \to \overline{\mathbb{R}}$, dann ist f genau dann messbar, wenn g messbar ist.
- (iv) Falls $f = (f_1, ..., f_m) : X \to \overline{\mathbb{R}}^m$, dann ist f genau dann messbar, wenn jede Komponente f_i , $1 \le i \le m$ messbar ist.

Beweis. Für den Beweis verwenden wir wiederholt Proposition 3.2.

- (i): Für jede offene Menge $\Omega \subset \mathbb{R}$ ist $f^{-1}(\Omega)$ offen und daher $f^{-1}(\Omega) \in \mathcal{B}(X)$.
- (ii): Dann ist $f^{-1}((t,\infty))$ ein Intervall und daher eine Borelmenge.
- (iii): Sei also f messbar und es gelte f = g auf $X \setminus N$ mit $\mu(N) = 0$. Sei X offen. Dann gibt es zwei Mengen $N_1, N_2 \subset N$ mit $\mu(g^{-1}(X) = (f^{-1}(X) \setminus N_2) \cup N_1$. Da f messbar ist und da der Maßraum vollständig ist, sind die Mengen $f^{-1}(X), N_1$ und N_2 messbar und daher ist $g^{-1}(X)$ messbar.
- (iv): Wir betrachten den Fall m=2. Falls $f=(f_1,f_2):X\to\mathbb{R}^2$ messbar ist, dann gilt $f^{-1}(X\times\mathbb{R})=f_1^{-1}(X)\in\mathscr{E}\ \forall X\subset\mathbb{R}$ offen. damit ist f_1 messbar. Genauso zeigt man, dass f_2 messbar ist. Falls f_1,f_2 messbar sind, dann gilt $f^{-1}(X_1\times X_2)\in\mathscr{E}$ für alle offenen Quader Q der Form $Q=X_1\times X_2$. Jede offene Menge $X\subset\mathbb{R}^2$ lässt sich aber schreiben

als $X = \bigcup_{k=1}^{\infty} Q_k$ für offene Quader $Q_k \subset \mathbb{R}^2$. Die Messbarkeit von f folgt dann aus

$$f^{-1}(X) = (f_1, f_2)^{-1}(\bigcup_{k=1}^{\infty} Q_k) = \bigcup_{k=1}^{\infty} (f_1, f_2)^{-1}(Q_k) \in \mathscr{E}.$$

Sei f die Dirichlet Funktion mit f(x) = 1 für $\forall x \in \mathbb{Q}$ und 0 sonst. Dann gilt f = 0 (Lebesgue) fast überall, da $\lambda(\mathbb{Q}) = 0$ eine Nullmenge ist. Insbesondere ist f messbar.

Proposition 3.4 (Eigenschaften messbarer Funktionen).

(i) Falls f, g messbar sind, dann sind auch

$$-f$$
, f_- , f_+ , $|f|$, $f \wedge g$, $f \vee g$, $f \pm g$, fg , f/g

messbar. Wir verstehen dabei f/g als eine Funktion auf $X \setminus g^{-1}(0)$.

(ii) Falls die Elemente der Folge $f_n: X \to \overline{\mathbb{R}}, n \in \mathbb{N}$, messbar sind, dann sind auch

$$\sup_{n\in\mathbb{N}}f,\quad \inf_{n\in\mathbb{N}}f,\quad \limsup_{n\to\infty}f,\quad \liminf_{n\to\infty}f,\quad \lim_{n\to\infty}f$$

messbar (falls existent).

Beweis. Wir geben den Beweis in einigen Fällen, die übrigen Fälle sind Übungsaufgabe. Für den Beweis nehmen wir an, dass der Zielraum der Funktionen \mathbb{R} ist, die Erweiterung

des Beweisen auf den allgemeineren Fall ist einfach. Wir nutzen mehrfach, dass die Menge der messbaren Mengen $\mathscr E$ eine σ -Algebra ist.

" $f \wedge g, f_+, f_-$ ": Für alle $t \in \mathbb{R}$ ist $(f \wedge g)^{-1}((t, \infty)) = f^{-1}((t, \infty)) \cap g^{-1}((t, \infty))$ messbar. Nach Proposition 3.2 ist dann $f \wedge g$ messbar. Damit sind auch f_+, f_- messbar.

"f+g": Wir bemerken, dass (f+g)(x)>t genau dann, wenn f(x)>q und g(x)>t-q für ein $q\in\mathbb{Q}$. Daher ist für $t\in\mathbb{R}$ die Menge

$$(f+g)^{-1}((t,\infty)) = \bigcup_{q \in \mathbb{Q}} \left(f^{-1}((q,\infty)) \cap g^{-1}((t-q,\infty)) \right)$$

messbar. Daher ist f + g messbar.

"fg": Es reicht zu zeigen, dass f^2 messbar ist. Die Messbarkeit von fg folgt dann aus der Identität $fg = \frac{1}{2}((f+g)^2 - f^2 - g^2)$. Für $t \in \mathbb{R}$ ist die Menge

$$(f^2)^{-1}((t,\infty)) = f^{-1}(\sqrt{t},\infty) \cup f^{-1}(-\infty,-\sqrt{t})$$

messbar. Daher ist f^2 messbar.

"sup_n f": Für $t \in \mathbb{R}$ ist die Menge

$$(\sup_{n} f)^{-1}((t,\infty)) = \bigcap_{n} f_{k}^{-1}((t,\infty))$$

als abzählbarer Durchschnitt messbarer Mengen messbar.

Im Falle eines volllständiger Massraumes (X, \mathcal{E}, μ) lassen sich die meisten Resultate verallgemeinern, indem wir punktweise Konvergenz durch f.ü. –Konvergenz ersetzen.

Definition 3.5 (Einfache Funktionen). Seien X, Y Mengen. Eine Funktion $f: X \rightarrow Y$ heisst einfach, wenn sie nur endlich viele Werte annimmt.

Satz 3.6 (Approximation durch einfache Funktionen). Eine Funktion $f: X \to [0, \infty]$ ist genau dann messbar, wenn es eine monoton wachsende Folge $f_j: E \to [0, \infty]$ von einfachen, messbaren Funktionen gibt mit $f_k(x) \nearrow f(x) \ \forall x \in E$.

Beweis. Aus Proposition 3.4 folgt, dass der Grenzwert einer monoton wachsenden Folge messbarer Funktionen messbar ist. Es bleibt zu zeigen, dass es für jede messbare Funktion eine monoton wachsende Folgende einfacher Funktionen konstruiert werden kann mit $f_k(x) \nearrow f(x) \ \forall x \in E$.

Zu $k \in \mathbb{N}$ definieren wir $I_{kj} := [2^{-k}(j-1), 2^{-k}j)$ für $j = 1, \dots, k2^k$. Die Mengen $f^{-1}(I_{kj})$, $f^{-1}([k,\infty))$ sind messbar da f messbar ist. Wir definieren die einfachen und messbaren Funktionen f_k durch

$$f_k(x) := \begin{cases} 2^{-k}(j-1) & \text{falls } f(x) \in I_{kj} \text{ für ein } j = -k2^k, \dots, k2^k, \\ k & \text{falls } f(x) \in [k, \infty). \end{cases}$$
(3.1)

Beachte, dass für festes k die Familie von Mengen

$$\mathscr{U}_k = \{[k, \infty), I_{kj} \text{ für } j = 0, \dots, k2^k\}$$

eine Überdeckung von $[0, \infty]$ darstellt. Für jedes $k \in \mathbb{N}$ ist die Familie \mathscr{U}_{k+1} eine Verfeinerung von \mathscr{U}_k . Daraus folgt, dass $f_k(x) \leq f_{k+1}(x) \leq f(x)$ für alle $x \in E$. Falls $f(x) = \infty$, dann gilt $f_k(x) = k$. Falls $f(x) < \infty$, dann gibt es ein $k_0 \in \mathbb{N}$ mit $f(x) < k_0$, Aus der Definition (3.1) folgt dann $|f(x) - f_k(x)| \leq 2^{-k}$ für $k \geq k_0$ und daher $f_k(x) \to f(x)$. Dies ergibt $f_k(x) \to f(x)$.

3.2 Lebesgueintegral und Konvergenzsätze

In diesem Abschnitt ist (X, \mathcal{E}, μ) ein Maßraum. Wir definieren das Integral für eine Klasse von "integrierbaren" Funktionen $f: X \to \overline{\mathbb{R}}$. Wir schreiben außerdem:

- $\mathscr{S} := \{ f : X \to \mathbb{R} : f \text{ ist einfach und messbaren} \},$
- $\bullet \ \mathscr{S}_+ \ := \ \{f \in \mathscr{S} \ : \ f \geq 0\}.$

Wir benutzen im folgenden die Konvention $0 \cdot \infty = 0$.

Definition 3.7 (Integral auf \mathscr{S}_+). Für $f \in \mathscr{S}_+(X,\mu)$ mit $f = \sum_{k=1}^N \alpha_k \chi_{A_k}$, wobei $\alpha_k \geq 0$ und für messbare Mengen $A_k \in \mathscr{E}$, definieren wir

$$\int f \ d\mu := \sum_{k=1}^{N} \alpha_k \mu(A_k) \in [0, \infty).$$

Man überprüft induktiv leicht, dass die Definition nicht von der Wahl der Darstellung von f abhängt (Übungsaufgabe). Wir sammeln einige Eigenschaften des Integrals:

Proposition 3.8. Für $f, g \in \mathscr{S}_+$ gilt

(i)
$$\int (\alpha f + \beta g) \ d\mu = \alpha \int f \ d\mu + \beta \int g \ d\mu \qquad \forall \alpha, \beta \ge 0.$$

(ii)
$$\int f \ d\mu \le \int g \ d\mu$$
, falls $f \le g$.

(iii)
$$\int f \ d\mu \le \mu(\operatorname{spt} f) \sup_{x \in X} f(x).$$

Beweis. (i),(ii) folgen aus der Definition. (iii) folgt aus $f \leq \sup_x f\chi_E$ und (ii).

Definition 3.9 (Integral für nichtnegative Funktionen). Falls $f: X \to [0, \infty]$ messbar ist, dann definieren wir

$$\int f \ d\mu := \sup \left\{ \int g \ d\mu \ : \ g \le f, g \in \mathscr{S}_+ \right\} \ \in [0, \infty].$$

 $Falls\ das\ Integral\ endlich\ ist,\ dann\ nennen\ wir\ f\ integrierbar.$

Für $f \in \mathscr{S}_+$ ist das Integral von f nun sowohl durch Definition 3.7 als auch Definition 3.9 definiert. Beide Definition stimmen aber wegen Proposition 3.8(ii) überein.

Satz 3.10 (Satz von der monotonen Konvergenz in \mathscr{S}_+). Sei $f_k \in \mathscr{S}_+$ eine Folge mit $f_k \nearrow f$. Dann ist f messbar und es gilt

$$\lim_{k \to \infty} \int f_k \ d\mu = \int f \ d\mu.$$

Beweis. Nach Proposition 3.4 ist f messbar. Nach Proposition 3.8 steigt die Folge $\int f_k$ monoton. Daher existiert der Limes und

$$\lim_{k \to \infty} \int f_k \ d\mu \ \le \ \int f \ d\mu.$$

Nach Definition 3.9 existiert zu $\varepsilon > 0$ ein $g \in \mathcal{S}_+$ mit $\int g \ d\mu < \infty$ und

$$\int g \ d\mu \ge \begin{cases}
\int f d\mu - \varepsilon, & \text{falls } \int f d\mu < \infty, \\
\int g \ d\mu \ge \frac{1}{\varepsilon}, & \text{falls } \int f d\mu = \infty.
\end{cases}$$
(3.2)

Insbesondere gilt $\mu(\operatorname{spt} g) < \infty$. Für $g_k := g \wedge f_k \in \mathscr{S}_+$ gilt dann $g_k(x) \nearrow g(x)$ für $k \to \infty$ und $\forall x \in X$. Mit $M := \sup_{x \in X} g$, $M_k := \sup_{x \in X} g_k$ und $E := \operatorname{spt} g$, $E_k := \operatorname{spt} g_k$ erhalten wir

$$M_k \le M_{k+1} \le M < \infty$$
 und $\mu(E_k) \le \mu(E_{k+1}) \le \mu(E) < \infty$.

Aus $g_k(x) \nearrow g(x)$ und mit der Notation

$$B_k := \{ x \in X : g(x) - g_k(x) > \frac{\varepsilon}{\mu(E)} \}$$

erhalten wir $B_{k+1} \subset B_k$ und $\bigcap_{k \in \mathbb{N}} B_k = \emptyset$. Mit Proposition 2.8(ii) folgt $\mu(B_k) \to 0$ für $k \to \infty$. Daher gibt es ein $k_0 \in \mathbb{N}$ mit

$$\mu(B_k) < \frac{\varepsilon}{M} \qquad \forall k \ge k_0.$$

Aus Proposition 3.8(i) erhalten wir

$$\int g \ d\mu - \int g_k \ d\mu = \int (g - g_k) \ d\mu = \int_{B_k} (g - g_k) \ d\mu + \int_{X \setminus B_k} (g - g_k) \ d\mu.$$

Mit Proposition 3.8(iii) folgt $\forall k \geq k_0$,

$$\int g \ d\mu - \int g_k \ d\mu = \int_{B_k} (g - g_k) \ d\mu + \int_{X \setminus B_k} (g - g_k) \ d\mu$$

$$= \mu(B_k) \sup_{x \in B_k} (g - g_k) + \mu(E_k) \sup_{x \in E_k \setminus B_k} (g - g_k)$$

$$= \mu(B_k) M + \frac{\mu(E)\varepsilon}{\mu(E)} \le \frac{\varepsilon M}{M} + \frac{\mu(E)\varepsilon}{\mu(E)} = 2\varepsilon.$$

Zusammen mit (3.2) erhalten wir

$$\int f_k \ d\mu \ge \int g_k \ d\mu \ge \int g \ d\mu - 2\varepsilon \ge \min \left\{ \int f \ d\mu, \frac{1}{\varepsilon} \right\} - 3\varepsilon,$$

für $k \geq k_0$. Im Limes $\varepsilon \to 0$ folgt die Behauptung.

Die Eigenschaften des Integrals übertragen sich auf nichtnegative, messbare Funktionen:

Proposition 3.11. Seien $f, g: X \to [0, \infty]$ messbar. Dann gilt

(i)
$$\int (\alpha f + \beta g) d\mu = \alpha \int f d\mu + \beta \int g d\mu \qquad \forall \alpha, \beta \ge 0.$$

(ii)
$$\int f \ d\mu \leq \int g \ d\mu$$
, falls $f \leq g$.

(iii)
$$\int f \ d\mu \le \mu(\operatorname{spt} f) \sup_{x} f.$$

Beweis. (i): Nach Satz 3.6 gibt es Folgen von Funktionen $f_n, g_n \in \mathscr{S}_+$ mit $f_n(x) \nearrow f(x)$, $g_n(x) \nearrow g(x)$. Nach Proposition 3.8 und Satz 3.10 gilt im Limes $n \to \infty$,

$$\int f \ d\mu + \int g \ d\mu \ \leftarrow \ \int f_n \ d\mu + \int g_n \ d\mu \ = \int (f_n + g_n) \ d\mu \ \rightarrow \ \int (f + g) \ d\mu.$$

Der Beweis von (ii),(iii) ist analog zum Beweis von (i).

Satz 3.12 (Chebyshev Ungleichung). Sei $f: X \to [0, \infty]$ messbare. Dann gilt

$$\mu\Big(\big\{x\in X: f(x)\geq t\big\}\Big) \leq \frac{1}{t}\int f\ d\mu \qquad \forall t>0.$$

Beweis. Für $A_t = \{x \in X : f(x) \ge t\}$ gilt $t\chi_{A_t} \le f\chi_{A_t} \le f$ und daher

$$t\mu(A_t) = \int t\chi_{A_t} \ d\mu \le \int f\chi_{A_t} \ d\mu \le \int f \ d\mu.$$

Lemma 3.13. Seien $f, g: X \to [0, \infty]$ messbar.

(i) Es gilt $\int f d\mu = 0$ genau dann, wenn f = 0 f.ü..

(ii) Falls $f = g f.\ddot{u}$., dann gilt $\int f d\mu = \int g d\mu$.

(iii) Falls $\int f \ d\mu < \infty$, dann gilt $f < \infty$ f.ü..

Beweis. (i): Falls f=0 f.ü., dann erhalten wir $\int f \ d\mu =0$ aus Proposition 3.11. Umgekehrt, falls $\int f \ d\mu =0$, dann gilt mit der Chebyshevschen Ungleichung $t\mu(\{x\in X: |f(x)|\geq t\})=0 \ \forall t>0$. Daher ist

$$\mu(\{f(x)>0\}) = \mu(\bigcup_{n\in\mathbb{N}} \{f(x)\geq \frac{1}{n}\}) \leq \sum_{n\in\mathbb{N}} \mu(\{f(x)\geq \frac{1}{n}\}) = 0.$$

(ii): Aus (i) erhalten wir $\int |f-g|=0.$ Daraus folgt die Aussage.

(iii): Folgt aus Chebyshevschen Ungleichung Ungleichung.

Um Funktionen der Form $f:X\to \overline{\mathbb{R}}$ zu integrieren, zerlegen wir diese in der Form $f=f_+-f_-$ mit $f_\pm:X\to [0,\infty].$

Definition 3.14. Eine messbare Funktion $f: X \to \overline{\mathbb{R}}$ heißt integrierbar, falls beide Funktionen f_- und f_+ integrierbar sind. Wir definieren dann das Integral von f durch

$$\int f \ d\mu \ := \ \int f_+ \ d\mu - \int f_- \ d\mu \ \in \ \mathbb{R}.$$

Falls $f\chi_A$ integrierbar ist für $A\in\mathscr{E}$, dann heißt f auf A integrierbar ist und wir schreiben

$$\int_A f \ d\mu \ := \ \int f \chi_A \ d\mu.$$

Im Allgemeinen bilden die integrablen Funktionen mit Zielraum \mathbb{R} keinen Vektorraum, da f+g nicht unbedingt punktweise definiert ist. Dies erklärt die Einschränkung in der nächsten Proposition.

Proposition 3.15 (Eigenschaften des Integrals). Seien $f, g: X \to \overline{\mathbb{R}}$ integrierbar.

(i) Falls $\alpha f + \beta g$ für α, β definiert ist, dann ist diese Funktion integrierbar und

$$\int_{X} \alpha f + \beta g \ d\mu = \alpha \int_{X} f \ d\mu + \beta \int_{X} g \ d\mu \qquad (Linearität)$$

(ii)
$$\int_X f \ d\mu \le \int_X g \ d\mu$$
 falls $f \le g$

(iii)
$$\int_X f \ d\mu \le \mu(\operatorname{spt} f) \sup_x |f|.$$

$$(iv) \int_X f \ d\mu \ \le \ \int_X |f| \ d\mu \ < \infty$$

Beweis. (i): Wir geben den Beweis für den Fall $\alpha > 0$, $\beta = 0$, die anderen Fälle verlaufen analog. Aus Proposition 3.11 und mit der Notation $f = f_+ - f_-$ folgt

$$\int \alpha f \ d\mu + \int g \ d\mu = \int \alpha f_{+} \ d\mu - \int \alpha f_{-} \ d\mu + \int g_{+} \ d\mu - \int g_{-} \ d\mu$$
$$= \int (\alpha (f_{+} - f_{-}) + (g_{+} - g_{-}) \ d\mu = \int (\alpha f + g) \ d\mu.$$

- (ii): Aus $f \leq g$ folgt $f_+ \leq g_+$ und $-f_- \leq -g_-$. Wende Proposition 3.11(ii) an.
- (iii): Folgt aus $f \leq \sup f \chi_E$ und (ii).

(iv): Folgt aus
$$|f| = f_+ + f_-$$
 und (ii).

Wir erinnern daran, dass eine Funktion $f = (f_i)_{i=1}^m : X \to \mathbb{R}^n$ genau dann messbar ist, wenn jede Komponente f_i messbar ist. Auch das Integral ist komponentenweise definiert:

Bemerkung 3.16 (Integral vektorwertiger Funktionen). Eine messbare Funktion

 $f: X \to \mathbb{R}^m$ heisst integrabel, falls f_i integrierbar ist für i = 1, ..., m. Wir schreiben

$$\int f \ d\mu := \Big(\int f_1 \ d\mu, \dots, \int f_m \ d\mu \Big).$$

Die Funktion f heißt dann integrabel, wenn jede Komponente f_i integrabel ist. Die vorherigen Resultate lassen sich leicht verallgemeinern: Insbesondere ist der Raum der integrablen Funktionen $f: X \to \mathbb{R}^m$ ein Vektorraum. Es gilt:

(i)
$$\int_{E} \alpha f + \beta g \ d\mu = \alpha \int_{E} f \ d\mu + \beta \int_{E} g \ d\mu$$

(ii)
$$\left| \int_{E} f \ d\mu \right| \le \mu(\operatorname{spt} f) \sup_{x} |f|.$$

(iii)
$$\left| \int_{E} f \ d\mu \right| \leq \int_{E} |f| \ d\mu.$$

Ein grosser Vorteil des Lebesgueintegrals ist das Vorhandensein von allgemeinen Konvergenzsäzten. In Kapitel 3.2 hatten wir schon das erste Konvergenzresultat hergeleitet, den Satz von der monotonen Konvergenz, welcher auch Satz von Beppo-Levi genannt wird. Dieser gilt allgemein für nichtnegative, messbare Funktionen:

Satz 3.17 (Satz von der monotonen Konvergenz). Sei $f_n : X \to [0, \infty]$ eine monoton wachsende Folge messbarer Funktionen. Dann ist $f := \lim f_n$ messbar und

$$\int f \ d\mu = \lim_{n \to \infty} \int f_n \ d\mu.$$

Beweis. Nach Satz 3.6 gibt es zu f_n eine Folge $h_{nj} \in \mathscr{S}_+$ mit $h_{nj} \nearrow f_n$. Wir definieren

$$g_n := \max\{h_{jk} : 1 \le j, k \le n\} \in \mathscr{S}_+.$$

Dann steigt die Folge g_n monoton und $g_n \leq \max\{f_j\}_{j=1}^n \leq f_n$. Wir behaupten, dass

$$g_n(x) \nearrow f(x) \qquad \forall x \in X.$$

Seien $x \in X$ und $\varepsilon > 0$ gegeben. Da $f_n \nearrow f$ gilt $f_{n_0}(x) > f(x) - \varepsilon$ für ein $n_0 \in \mathbb{N}$. Da $h_{n_0 j} \nearrow f_{n_0} h_{n_0 j_0}(x) \ge f_{n_0}(x) - \varepsilon$ für ein $j_0 \in \mathbb{N}$. Mit $m_0 := \max\{n_0, j_0\}$ gilt dann

$$g_{m_0}(x) \ge h_{n_0 j_0}(x) \ge f_{n_0}(x) - \varepsilon \ge f(x) - 2\varepsilon.$$

Da $\varepsilon > 0$ beliebig ist, folgt $g_n(x) \nearrow f(x)$ und $g_n \in \S_+$. Dann folgt die Aussage des Satzes aus einer Anwendung von Satz 3.10.

Aus Satz 3.17 erhalten wir ein Konvergenzkriterium für Reihen: Für eine Folge $f_n: X \to [0, \infty]$ von messbaren Funktionen mit $f_n \nearrow f$ gilt

$$\int \sum_{n=0}^{\infty} f_n \ d\mu = \sum_{n=0}^{\infty} \int f_n \ d\mu.$$

Die monotone Konvergenz der Folge ist eine notwendige Voraussetzung für Satz 3.17: Sei $f: \mathbb{R} \to [0, \infty]$ mit $\int f \, dx = 1$ und sei $f_n(x) := nf(nx)$. Dann gilt $f_n \to 0$, aber $1 = \int f_n dx \not\to \int f dx = 0$. Allerdings ist das Integral unterhalbstetig für eine Folge von nichtnegativen Funktionen, welche punktweise konvergiert: Lemma 3.18 (Lemma von Fatou). Sei $f_n: X \to [0, \infty]$ eine Folge messbarer Funktionen. Dann ist $\liminf_{n\to\infty} f_n$ messbar und es gilt

$$\int \liminf_{n \to \infty} f_n \ d\mu \le \liminf_{n \to \infty} \int f_n \ d\mu.$$

Beweis. Für $f := \liminf f_n \ge 0$ und $g_n = \inf \{f_k\}_{k=n}^{\infty} \le f_n$ erhalten wir $g_n \nearrow f$ nach Definition des Limes inferior. Anwendung von Satz 3.17 ergibt

$$\int \liminf_{n \to \infty} f_n \ d\mu = \int f \ d\mu = \lim_{n \to \infty} \int g_n \ d\mu \le \liminf_{n \to \infty} \int f_n \ d\mu.$$

Der Satz von der dominierten Konvergenz heißt auch Satz von der majorisierten Konvergenz oder Satz von Lebesgue

Satz 3.19 (Satz von der dominierten Konvergenz). Sei $f_n: X \to \overline{\mathbb{R}}$ eine Folge messbarer Funktionen mit $f_n \to f$ für ein $f: X \to \mathbb{R}$. Es gelte $\sup\{|f_n|\}_{n \in \mathbb{N}} \leq g$ für eine integrable Funktion $g: X \to [0, \infty]$. Dann ist f integrabel und es gilt

$$\int f \ d\mu = \lim_{n \to \infty} \int f_n \ d\mu.$$

54

Beweis. Nach Proposition 3.4 ist f messbar. Da g integrabel ist und und $|f| \leq \sup_n |f_n(x)| \leq g(x)$ ist auch f integrabel. Nach Voraussetzung gilt $g - f_n \geq 0$ und $g - f_n \rightarrow g - f$. Nach dem Lemma von Fatou erhalten wir also

$$\int g - f \ d\mu \le \liminf_{n \to \infty} \int g - f_n \ d\mu = \int g \ d\mu - \limsup_{n \to \infty} f_n \ d\mu.$$

Es gilt weiterhin $g+f_n\geq 0$ und $g+f_n\rightarrow f+g.$ Mit dem Lemma von Fatou folgt

$$\int g + f \ d\mu \le \liminf_{n \to \infty} \int g + f_n \ d\mu = \int g \ d\mu + \liminf_{n \to \infty} f_n \ d\mu.$$

Beide Aussagen ergeben die Behauptung.

Die drei Konvergenzsätze sind äquivalent und können in beliebiger Reihenfolge auseinander abgeleitet werden (Übungsaufgabe). Wir können nun zeigen, dass das Lebesgueintegral eine Erweiterung des Riemannintegrals ist:

Satz 3.20 (Lebesgueintegral vs. Riemannintegral). Sei $f:[a,b] \to \mathbb{R}$.

- (i) Falls f Riemann-integrierbar ist, dann ist f Lebesgue-integrierbar und die Integrale stimmen überein.
- (ii) f ist genau dann Riemann-integrierbar, wenn f λ -fast überall stetig ist.
- (iii) Falls $|f|: I \to \mathbb{R}$ uneigentlich Riemann-integrierbar auf I, dann ist f Lebesgue-integrierbar.

3.3 Räume integrabler Funktionen

Im Abschnitt ist (X, \mathcal{E}, μ) ein Maßraum. Wir können das Integral nutzen, um neue Funktionenräume zu definieren. Wir definieren wir das <u>essentielle Supremum</u> und das essentielle Infimum von f durch

$$\operatorname{ess\,sup}_E f := \inf \{ \sup_{x \in E \backslash N} f(x) : N \subset E, \mu(N) = 0 \},$$

$$\operatorname{ess\,inf}_E f := \sup\{\inf_{x \in E \backslash N} f(x) : N \subset E, \mu(N) = 0\}$$

Die Ungleichung ess $\sup_X f(x) \leq M$ bedeutet also $f(x) \leq M$ f.ü. .

Definition 3.21 ($\mathcal{L}^p(X,\mathcal{E},\mu)$). Zu jeder messbaren Funktion $f:X\to\mathbb{R}$ definieren wir

$$\|f\|_p \ := \ \Big(\int |f|^p \ d\mu\Big)^{1/p} \ f\ddot{u}r \ 1 \le p < \infty, \qquad \|f\|_\infty \ := \ \mathrm{ess} \sup_X |f|.$$

Der entsprechende Raum ist definiert durch

$$\mathscr{L}^p(X,\mathscr{E},\mu) := \{f: X \to \mathbb{R}: f \text{ messbar und } ||f||_p < \infty \}$$

Wir betrachten den Raum \mathbb{R} als Zielraum, da der Raum $\overline{\mathbb{R}}$ kein Vektorraum ist. Wir zeigen als nächstes. dass $\mathscr{L}^p(X,\mathscr{E},\mu)$ in der Tat ein Vektorraum ist. Dafür leiten wir zuerst einige

wichtige Ungleichungen her:

Lemma 3.22 (Youngsche Ungleichung). $F\ddot{u}r \ \forall x,y \geq 0 \ gilt$

$$xy \le \frac{x^p}{p} + \frac{x^q}{q} \qquad \forall 1 < p, q < \infty \text{ mit } \frac{1}{p} + \frac{1}{q} = 1.$$
 (3.3)

Zu $p \ge 1$ bezeichnen wir den dualen Exponenten $p' \ge 1$ durch

$$\frac{1}{p} + \frac{1}{p'} = 1.$$

Beweis. Für x=0 oder y=0 ist die Ungleichung trivial. Wir nehmen daher x,y>0 an.

Da der Logarithmus ln : $(0,\infty) \to \mathbb{R}$ monoton ist, ist (3.3) aquivalent zu

$$\frac{1}{p}\ln x^p + \frac{1}{q}\ln y^q = \ln x + \ln y = \ln(xy) \le \ln\left(\frac{x^p}{p} + \frac{y^q}{q}\right).$$

Diese Ungleichung folgt, da der Logarithmus konkav ist.

Insbesondere gibt es jedem $\varepsilon > 0$ gibt es $C_{\varepsilon pq} < \infty$ mit $xy = \le \varepsilon x^p + C_{\varepsilon pq} x^q$.

Satz 3.23 (Hölderungleichung). Sei $1 \leq p \leq \infty$. Für $f \in \mathcal{L}^p(X)$, $g \in \mathcal{L}^{p'}(X)$ gilt

 $fg \in \mathcal{L}^1(X)$ und

$$\int |fg|d\mu \le ||f||_p ||g||_{p'}.$$

Beweis. Wir schreiben q:=p'. Für $p=1, q=\infty$ gilt $|g(x)|\leq ||g||_{\infty}$ f.ü. und

$$\int |fg| d\mu \le ||g||_{\infty} \int |f| \ d\mu = ||g||_{\infty} ||f||_{1},$$

insbesondere $fg \in \mathcal{L}^1(X,Y)$. Die Behauptung für $p = \infty, q = 1$ gilt analog. Sei nun $1 < p, q < \infty$. Mit der Young'schen Ungleichung gilt für alle s > 0,

$$\int |fg|d\mu \le \int \left(\frac{s^p|f|^p}{p} + \frac{|g|^q}{s^q q}\right) d\mu \le \frac{s^p}{p} ||f||_p^p + \frac{1}{qs^q} ||g||_q^q.$$
 (3.4)

und insbesondere $fg \in \mathcal{L}^1(X)$. Wir können die rechte Seite von (3.6) durch eine geschickte Wahl von s minimieren. Aus $\frac{1}{p} + \frac{1}{q} = 1$ erhalten wir $\frac{1}{p} = \frac{q-1}{q}$, $p = \frac{q}{q-1}$ und $\frac{q}{p} = q-1$. Mit der Wahl $s = \|f\|_p^{\frac{1-p}{p}} \|g\|_p^{\frac{1}{p}}$ folgt

$$s^{p} = \|f\|_{p}^{1-p} \|g\|_{p} \quad \text{und} \quad s^{-q} = \|f\|_{p}^{\frac{(p-1)q}{p}} \|g\|_{p}^{-\frac{q}{p}} = \|f\|_{p} \|g\|_{p}^{1-q}$$
 (3.5)

Aus (3.6)–(3.5) folgt damit

$$\int |fg|d\mu \le \left(\frac{1}{p} + \frac{1}{q}\right) ||f||_p ||g||_q = ||f||_p ||g||_q.$$
 (3.6)

Die Höldergleichung lässt sich auf Produkte mit mehr als zwei Faktoren (Übungsaufgabe). Die Abbildung $\|\cdot\|_p$ erfüllt die Dreiecksungleichung:

Satz 3.24 (Minkowski Ungleichung). Für $p \in [1, \infty]$ gilt $f + g \in \mathcal{L}^p(X, Y)$ und

$$||f + g||_p \le ||f||_p + ||g||_q \qquad \forall f, g \in \mathcal{L}^p(X, Y).$$
 (3.7)

Insbesondere ist $\mathcal{L}^p(X)$ ein Vektorraum mit Seminorm $||f||_p$.

Beweis. Es gilt $||0||_p = 0$ und $||\lambda f||_p = |\lambda| ||f||_p$. Für die Aussage bleibt die Ungleichung (3.7) zu zeigen:

 $\begin{aligned} & \text{Der Fall } p = \infty \text{: Es gilt } |f(x)| \leq \|f\|_{L^{\infty}} \text{ für } x \in X \backslash N_1 \text{ und } |g(x)| \leq \|g\|_{\infty} \text{ für } x \in X \backslash N_2 \\ & \text{für zwei Nullmengen } N_1, \, N_2 \text{. Damit ist } N := N_1 \cup N_2 \text{ eine Nullmenge und } |f(x) + g(x)| \leq \|f\|_{L^{\infty}} + \|g\|_{L^{\infty}} \, \forall x \in X \backslash N \text{. Daraus folgt } \|f + g\|_{L^{\infty}} \leq \|f\|_{L^{\infty}} + \|g\|_{L^{\infty}} < \infty. \end{aligned}$

Der Fall $p \in (1, \infty)$: Wir schreiben

$$||f+g||_p^p = \int |f(x)+g(x)||f(x)+g(x)|^{p-1}d\mu$$

$$\leq \int |f(x)||f(x)+g(x)|^{p-1}d\mu + \int |g(x)||f(x)+g(x)|^{p-1}d\mu.$$

Aus $\frac{1}{p} + \frac{1}{q} = 1$ erhalten (p-1)q = p. Mit der Hölderungleichung erhalten wir also

$$||f+g||_p^p \le \left(\int |f(x)|^p d\mu\right)^{\frac{1}{p}} \left(\int |f(x)+g(x)|^{(p-1)q} d\mu\right)^{\frac{1}{q}} + \left(\int |g(x)|^p d\mu\right)^{\frac{1}{p}} \left(\int |f(x)+g(x)|^{(p-1)q} d\mu\right)^{\frac{1}{q}} \le \left(||f||_p + ||g||_p\right) ||f+g||_p^{p/q}.$$

Wir teilen die Ungleichung durch $||f+g||_p^{p/q}$. Die Aussage folgt dann aus $p-\frac{p}{q}=1$.

Aus $||f||_p = 0$ folgt im Allgemeinen nur f = 0 f.ü.. Um normierte Räume zu erhalten, betrachten wir Äquivalenzklassen: Wir schreiben $f \sim g \iff f(x) = g(x)$ f.ü.. Die zugehörige Aquivalenzklasse ist

$$[f] := \{g \in \mathcal{L}(X, \mathbb{R}^n) : f(x) = g(x) \text{ f.ü. } \}$$

Man überprüft leicht, dass die Relation \sim eine Aquivalenzrelation ist (d.h. reflexiv, symmetrisch und transitiv). Für $f, g \in \mathcal{L}^p(X, \mathbb{R}^n)$, $\lambda \in \mathbb{R}$ definieren wir

- [f+g] := [f] + [g], $[\lambda f] = \lambda [f]$
- $||[f]||_p := ||f||_p$.

Man überpruft leicht, dass diese Definitionen konsistent sind. Zum Beispiel gilt $f(x) + g(x) = \tilde{f}(x) + \tilde{g}(x)$ f.ü., falls $f(x) = \tilde{f}(x)$ und $g(x) = \tilde{g}(x)$ f.ü. Wir sagen, dass

- $[f_k]$ messbar ist, falls ein Repräsentant f_k messbar ist.
- $[f_k] \rightarrow [f]$ f.ü.,

falls es ein Repräsentanten gibt mit $f_k \to f$ f.ü. . Auch diese Definitionen sind unabhängig vom Repräsentanten. Falls die Funktionen $[f_k]$ messbar sind und $[f_k] \to [f]$ f.ü. , dann gibt es messbare Repräsentanten f_k mit $f_k \to f$ f.ü. . Wir können den Repräsentanten f so wählen, dass $f_k \to f$ punktweise überall gilt. Dann ist auch f messbar. Wir erhalten also die Aussage:

• Falls $[f_k]$ messbar ist und $[f_k] \to [f]$ f.ü., dann ist [f] messbar.

Definition 3.25 (L^p -Räume). Sei $p \in [1, \infty]$. Für $f, g \in \mathcal{L}^p(X, \mathbb{R}^n)$ definieren wir

$$L^{p}(X, \mathcal{E}, \mu) := \mathcal{L}^{p}(X, \mathcal{E}, \mu) / \sim = \{ [f] : f \in \mathcal{L}^{p}(X, \mathcal{E}, \mu) \}.$$

Wir sagen $f_k \to f$ in L^p , falls $||f_k - f||_{L^p} \to 0$ für $p \to \infty$.

Elemente in L^p sind keine Funktionen sondern Äquivalenzklassen von Funktionen. Wir stellen uns trotzdem Elemente von L^p als Funktionen vor mit der Konvention, dass zwei Funktionen gleich sind, wenn sie fast überall übereinstimmen. Wir werden die Notation $\mathscr{L}^p(X,\mathscr{E},\mu)$ nicht mehr benutzen und schreiben $f\in L^p(X,\mathscr{E},\mu)$ mit der Bedeutung, dass $f\in\mathscr{L}^p(X,\mathscr{E},\mu)$ ein Repräsentant der Äquivalenzklasse $[f]\in L^p(X,\mathscr{E},\mu)$ ist.

Die Konvergenztheorem lassen sich auch in L^p formulieren. So gilt

Bemerkung 3.26.

(i) Die Konvergenzsätze lassen sich für $1 \le p < \infty$ auch in einer Form formulieren, die an L^p -Räume angepasst ist: Sei $1 \le p < \infty$. Sei $f_n \in L^p(X, \mathcal{E}, \mu)$ eine Folge

messbarer Funktionen mit $f_n \to f$ μ -f. \ddot{u} . und $|f_n| \le g$ μ -f. \ddot{u} . $\forall n \in \mathbb{N}$ für ein $f: X \to \mathbb{R}$ und ein $g \in L^p(X, \mathscr{E}, \mu)$. Dann gilt $f \in L^p(X, \mathscr{E}, \mu)$ und

$$f_k \to f$$
 in $L^p(X, \mathscr{E}, \mu)$.

Dies folgt direkt mit der folgenden Argumentation: Für $h_n := |f_n - f|^p$ gilt $h_n \to 0$ f.ü.und $0 \le h_n \le (2g)^p \in L^1$ f.ü.. Aus dem Satz von der dominierten Konvergenz (Satz 3.19) folgt $||f_n - f||_{L^{\infty}} p^p = ||h_n||_{L^1} \to 0$.

(ii) Die entsprechende Aussage gilt nicht für $p = \infty$. Betrachte zum Beispiel $g, f_k : \mathbb{R} \to \mathbb{R}$, $f_k = \chi_{[k,k+1]}$, g = 1. Dann gilt $f_k \to 0 \ \forall x \in \mathbb{R}$, $f_k \leq g$ und $g \in L^{\infty}(\mathbb{R})$.

Wir erinnern, dass ein metrischer/normierter Raum vollständig heißt, falls jede Cauchyfolge konvergiert. Dies führt auf die folgende Definition:

Definition 3.27 (Banachraum, Hilbertraum).

- (i) Ein vollständiger normierter Raum heißt <u>Banachraum</u>.
- (ii) Ein vollständiger Raum mit Skalarprodukt heißt <u>Hilbertraum</u>.

Frage: Sind die Räume $C^k(\overline{\Omega})$, $C^k(\overline{\Omega})$ für $\Omega \subset \mathbb{R}^n$ offen, Banachräume? Frage: Kennen Sie weitere unendlich dimensionale Banachräume/Hilberträume?

Satz 3.28 (L^p -Räume als Banachräume, L^2 als Hilbertraum).

- (i) Für $p \in [1, \infty]$ ist $L^p(X, \mathcal{E}, \mu)$ ein Banachraum mit Norm $\|\cdot\|_p$.
- (ii) Der Raum $L^2(X, \mathcal{E}, \mu)$ ist ein Hilbertraum mit Skalarprodukt $(\cdot, \cdot)_{L^2}$.

Beweis. Aus $||[f]||_{L^p} = 0$ folgt f = 0 f.ü. und daher [f] = 0 nach Lemma 3.13. Zusammen mit Satz 3.24 erhalten wir, dass L^p ein normierter Vektorraum ist. Es bleibt zu zeigen, dass X vollständig ist. Sei also $f_n \in L^p$ eine Cauchyfolge.

Der Fall $p = \infty$: Nach Annahme gibt es Nullmengen N_{kj} , $k, j \in \mathbb{N}$ so dass es für $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ gibt mit

$$|f_k(x) - f_j(x)| < \varepsilon$$
 $\forall x \in X \backslash N_{jk}, \forall k, j \ge n_0$

Dann ist auch $N := \bigcup_{j,k} N_{jk}$ eine Nullmenge und es gilt

$$|f_k(x) - f_j(x)| < \varepsilon$$
 $\forall x \in X \backslash N, \forall k, j \ge n_0$ (3.8)

Daher ist $f_n(x)$ eine Cauchyfolge $\forall x \in X \backslash N$ und $f(x) := \lim_{n \to \infty} f_n(x)$ existiert. Hier haben wir genutzt, dass \mathbb{R} vollständig ist. Wir setzen ausserdem f(x) := 0 für $x \notin N$. Dann ist f messbar als f.ü. Limes von messbaren Funktionen. Im Limes $n \to \infty$ und $\varepsilon \to$ erhalten wir aus (3.8), dass $f_n \to f$ in L^{∞} und $f \in L^{\infty}$.

Der Fall $p \in (1, \infty)$: Es reicht zu zeigen, dass es eine Teilfolge von f_n gibt, welche in L^p

gegen f konvergiert. Da f_n eine Cauchyfolge ist, konvergiert dann die ganze Folge. Da f_n eine Cauchyfolge ist, können wir nach Auswahl einer Teilfolge also annehmen, das

$$||f_n - f_{n+1}||_p \le 2^{-n}.$$

Wir definieren nun die monoton wachsende Folge von Funktionen

$$F_k(x) := |f_0(x)| + \sum_{n=1}^k |f_{n+1}(x) - f_n(x)|, \qquad F(x) := \lim_{k \to \infty} F_k(x). \tag{3.9}$$

Da die Folge F_k monoton steigend ist, ist $F(x) \in [0, \infty]$ wohldefiniert für alle $x \in X$. Nach dem Satz von der monotonen Konvergenz gilt daher

$$||F||_p = \lim_{k \to \infty} ||F_k||_p \le ||f_0||_p + \sum_{n=1}^{\infty} ||f_{k+1} - f_k||_p \le ||f_0||_p + \sum_{n=1}^{\infty} 2^{-k} < \infty$$

Insbesondere gilt $F \in L^p$. Wir schreiben f_k als Teleskopsumme, d.h.

$$f_k(x) := f_0(x) + \sum_{n=1}^k (f_{n+1}(x) - f_n(x)).$$
(3.10)

Da F_k f.ü. konvergiert, konvergiert im Vergleich (3.9)–(3.10) auch f_k f.ü. Bis auf eine $N \subset X$ existiert also der Limes $f(x) := \lim_{k \to \infty} f_k(x) \ \forall x \notin N$. Dann gilt $|f_k| \leq F$ f.ü. und $f_k \to f(x)$ f.ü. Aus Satz ?? erhalten wir $f \in L^p$ und $f_k \to f$ in L^p .

Der Dualraum V^* eines endlich-dimensionalen Vektorraum V ist definiert als der Raum der linearen Funktionale auf V. Jeder endlich dimensionale Raum isomorph zu seinem

Dualraum. Der Dualraum V^* eines endlich-dimensionalen Raumes ist isomorph zu seinem Dualraum. Alle linearen Funktionale auf einem endlich dimensionalen Vektorraum sind stetig. Für einen unendlich-dimensionalen Vektorraum gelten diese Aussagen im Allgemeinen nicht mehr. Allgemein definieren wir den Dualraum als Raum der stetigen, linearen Funktionale:

Definition 3.29 (Dualraum). Der Dualraum des topologischen Vektorraum V ist

$$V^* := \{ \varphi : V \to \mathbb{R} : \varphi \text{ ist stetig und linear} \}.$$

Falls der Raum V normiert ist, dann lässt sich auf V^* eine Norm $\|\cdot\|_{V^*}$ definieren durch $\|\varphi\|_{V^*} := \sup_{|x|=1} |\varphi(x)|$ (Übungsaufgabe).

Man kann zeigen, dass für $1 der Raum <math>L^{p'}$ isometrisch isomorph $(L^p)^*$ ist. Die Isometrie ist gegeben durch

$$\varphi: L^{p'} \to (L^p)^*, \qquad \qquad \varphi(f)(g) \; := \; \int_X fg \; d\mu \quad \forall f \in L^{p'}, g \in L^p$$

Die Surjektivität dieser Abbildung folgt aus dem Satz von Hahn-Banach (Funktionalanalysis). Die Injektivität der Einbettung folgt aus:

Satz 3.30 (Duale Darstellung der L^p -Norm). Sei $1 \le p < \infty$. Dann gilt

$$||f||_p = \sup_{g \in L^{p'}(X), ||g||_{p'} = 1} \int_X fg \ d\mu \qquad \forall f \in L^p(X, \mathscr{E}, \mu).$$

Beweis. Sei $f \in L^p$ mit $f \neq 0$ und sei q := p'. Aus der Hölderungleichung erhalten wir

$$\sup_{g \in L^q(X), \|g\|_q = 1} \int fg \ d\mu \le \sup_{g \in L^q(X), \|g\|_q = 1} \|f\|_p \|g\|_q = \|f\|_p.$$

Für die umgekehrte Ungleichung wählen wir die Testfunktion

$$g^* := \frac{|f|^{p-1}}{\|f\|_p^{p/q}} \operatorname{sgn}(f) \in L^q \quad \text{wobei} \quad \|g^*\|_q = \frac{1}{\|f\|_p^{p/q}} \left(\int |f|^{q(p-1)} d\mu \right)^{1/q} = 1,$$

da q(p-1) = p. Damit erhalten wir

$$\sup_{g \in L^q(X), \|g\|_q = 1} \int fg \ d\mu \ge \int fg^* \ d\mu = \int \frac{|f|^p}{\|f\|_p^{p/q}} d\mu = \|f\|_p^{p(1 - 1/q)} = \|f\|_p.$$

3.4 Vergleich von Konvergenzbegriffen

In endlich dimensionalen Vektorräumen sind alle Normen äquivalent. Für Funktionenräume unterscheiden sich verschiedene Konvergenzbegriffe deutlich. In diesem Abschnitt ist (X, \mathcal{E}, μ) ein Maßraum. Wir haben bisher verschiedene Begriffe für die Konvergenz von Funktionen

eingeführt. Sei $f, f_k : E \to \mathbb{R}, k \in \mathbb{N}$.

- Punktweise Konvergenz: $f_k(x) \to f(x)$ für $k \to \infty \ \forall x \in E$.
- f.ü. punktweise Konvergenz: $f_k(x) \to f(x)$ für $k \to \infty$ für μ -fast alle $x \in E$.
- Gleichmäßige Konvergenz: $||f_k(x) f(x)||_{L^{\infty}} \to 0$.
- Konvergenz in L^p : $||f_k(x) f(x)||_{L^p} \to 0$.

Offensichtlich impliziert gleichmäßige Konvergenz die punktweise f.ü. –Konvergenz. Wir führen einen weiteren natürliche Konvergenzbegriff ein:

Definition 3.31 (Konvergenz im Maß). Seien $f_k, f: X \to \mathbb{R}$, $k \in \mathbb{N}$ messbar. Wir sagen, dass f_k gegen f im Maß μ konvergiert, falls für alle $\varepsilon > 0$ gilt

$$\mu(\lbrace x \in X : |f_k(x) - f(x)| > \varepsilon \rbrace) \to 0$$
 für $k \to \infty$.

Wir bemerken, dass der Grenzwert für Konvergenz im Maß nicht eindeutig ist: Aus $f_k \to f$ und $f_k \to g$ im Maß folgt nur f = g f.ü.. Genauso sind die Grenzwerte für L^p -Konvergenz und f.ü. –Konvergenz nur eindeutig bis auf eine Nullmenge.

Im Folgenden vergleichen wir die verschiedenen Konvergenzbegriffe miteinander. Gleichmässige Konvergenz ist im wesentlichen die stärkste Konvergenz:

Proposition 3.32 (Gleichmäßige Konvergenz vs. andere Konvergenzen). Sei $f, f_k : X \to \mathbb{R}$ messbar und es gelte $f_k \rightrightarrows f$. Dann folgt

- (i) $f_k \to f$ im Ma β .
- (ii) Falls $\mu(X) < \infty$ und $f \in L^1(X, \mathcal{E}, \mu)$, dann folgt $f_k \to f$ in $L^1(X, \mathcal{E}, \mu)$.

Beweis. (i): Zu $\varepsilon > 0$ gibt es ein $k_0 \in \mathbb{N}$ mit $|f(x) - f_k(x)| < \delta \ \forall x \in X, k \geq k_0$, d.h.

$$\mu(\{x \in X : |f_k(x) - f(x)| = 0\} \quad \forall k \ge k_0.$$

Daraus folgt Konvergenz im Maß.

(ii): Da f_k gleichmässig konvergiert, ist $\sup_{x \in X} |f_k(x) - f(x)|$ eine Nullfolge und daher beschränkt. Wir erhalten also

$$\int |f_k| d\mu \le \int |f| d\mu + \int |f_k - f| d\mu \le ||f||_1 + \mu(X) ||f_k - f||_{L^{\infty}} < \infty,$$

d.h. $f_k \in L^1(X, \mathcal{E}, \mu) \ \forall k \in \mathbb{N}$. Weiterhin gilt

$$\int |f_k - f| d\mu \le \mu(X) \sup_{x \in X} |f_k(x) - f(x)| \to 0,$$

und daher erhalten wir $f_k \to f$ in $L^1(X, \mathcal{E}, \mu)$.

Bis auf eine beliebig kleine Menge konvergiert eine f.ü.-konvergente Folge gleichmässig:

Satz 3.33 (Satz von Egorov). Sei $\mu(X) < \infty$. Es gelte $f_k \to f$ f.ü. für messbare Funktionen $f_k, f: X \to \mathbb{R}$. Dann gibt es zu jedem $\varepsilon > 0$ eine Menge $E_{\varepsilon} \in \mathscr{E}$ mit $\mu(E_{\varepsilon}) \leq \varepsilon$ und $f_k \rightrightarrows f$ in $X \setminus E_{\varepsilon}$.

Beweis. Wir können o.B.d.A annehmen, dass $f_k(x) \to f(x) \ \forall x \in X$. Wir definieren

$$E_{kn} := \{x \in X : |f_j(x) - f(x)| < \frac{1}{n} \text{ für alle } j \ge k\} \in \mathscr{E}.$$

Insbesondere gilt für $k, n \in \mathbb{N}$ und für $\delta > \frac{1}{n}$, dass

$$\{x \in E_{kn} : |f_j(x) - f(x)| > \delta\} = \emptyset \qquad \text{für } j \ge k. \tag{3.11}$$

Da f_k punktweise konvergiert, gilt $\bigcup_{k=1}^{\infty} E_{kn} = X$ für alle $n \in \mathbb{N}$. Da $\mu(X) < \infty$, gibt es zu $n \in \mathbb{N}$, $\varepsilon > 0$ ein $k_n \in \mathbb{N}$ mit

$$\mu(X \setminus E_{k_n,n}) \le \varepsilon 2^{-n}$$
.

Wir definieren $E_{\varepsilon} := \bigcap_{n=1}^{\infty} E_{k_n,n}$ und $E_{\varepsilon} := X \setminus E_{\varepsilon}$. Aus (3.11) folgt für alle $n \in \mathbb{N}$, dass

$$|f_j(x) - f(x)| < \frac{1}{n}| \} = 0$$
 $\forall x \in E_{\varepsilon}, j \ge k_n,$

d.h. $f_j \rightrightarrows f$ gleichmässig in $E_{\varepsilon} = X \backslash E_{\varepsilon}$. Ausserdem gilt

$$\mu(E_{\varepsilon}) = \mu(X \setminus E_{\varepsilon}) = \mu(X \setminus \bigcap_{n=1}^{\infty} E_{k_n,n}) \le \sum_{n=1}^{\infty} \mu(X \setminus E_{k_n,n}) \le \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n} = \varepsilon.$$

Eine Folgerung aus dem Satz von Egorov ist der Satz von Lusin Übungsaufgabe. Man kann auch leicht zeigen, dass die Umkehrung von Satz 3.33 gilt.

Lemma 3.34 (f.ü. vs. Maßkonvergenz). Seien $f_k, f: X \to \mathbb{R}$ messbar.

- (i) Falls $f_k \to f$ im Ma β , dann gibt es eine Teilfolge f_{k_j} mit $f_{k_j} \to f$ punktweise $f.\ddot{u}$.
- (ii) Falls $\mu(X) < \infty$ und $f_k \to f$ f.ü., dann konvergiert $f_k \to f$ im Ma β ,

Beweis. (i): Da $f_k \to f$ im Mass, gilt für alle $\delta > 0$,

$$\lim_{k \to \infty} \mu(\{x \in X : |f_k(x) - f(x)| > \delta\}) = 0.$$

Zu $j \in \mathbb{N}$ gibt es also ein $k_j \in \mathbb{N}$ mit

$$\lim_{k \to \infty} \mu(\{x \in X : |f_k(x) - f(x)| > 2^{-j}\}) \le 2^{-j}.$$

Wir können ohne Beschränkung der Allgemeinheit k_j so wählen, dass k_j streng monoton

wächst, d.h. f_{k_j} definiert eine Teilfolge von f_k . Mit der Notation

$$N := \bigcap_{n \in \mathbb{N}} \bigcup_{j > n} B_j \qquad \text{für} \qquad B_j := \{ x \in X : |f_{k_j}(x) - f(x)| > 2^{-j} \}$$

erhalten wir also $\mu(B_{k_j}) \leq 2^{-j}$ und daher $\mu(N) = 0$. Für $x \in N^c = \bigcup_{n \in \mathbb{N}} \bigcap_{j > n} B_j^c$ gibt es ein $n_0 \in \mathbb{N}$ mit $x \notin B_j$ für alle $j \geq n_0$, d.h. $f_{k_j}(x) - f(x)| \leq 2^{-j}$ für alle $j \geq n_0$, d.h. $f_{k_j}(x) \to f(x)$ für $j \to \infty$.

(ii): Sei $\delta > 0$. Nach dem Satz von Egorov gibt es zu jedem $\varepsilon > 0$ ein $E_{\varepsilon} \subset X$ mit $\mu(E_{\varepsilon}) < \varepsilon$, so dass $f_k \Rightarrow f$ gleichmässig in $X \setminus E_{\varepsilon}$. Da μ subadditiv ist, erhalten wir

$$\mu(\lbrace x \in X : |f_k - f| > \delta \rbrace) \le \varepsilon + \mu(\lbrace x \in X \setminus E_\varepsilon : |f_k - f| > \delta \rbrace).$$

Nach Proposition 3.32 konvergiert $f_k \to f$ in $X \backslash E_{\varepsilon}$ im Maß und für $k \to \infty$ folgt also

$$\limsup_{k \to \infty} \mu(\{x \in X : |f_k - f| > \delta\}) \le \varepsilon.$$

Da $\varepsilon > 0$ beliebig ist, erhalten wir die Konvergenz im Maß.

Aus Konvergenz in L^1 folgt Maßkonvergenz und f.ü. Konvergenz (für eine Teilfolge):

Proposition 3.35 (L^1 vs. f.ü. und Maßkonvergenz). Falls $f_k \to f$ in L^1 , dann

- (i) $f_k \to f$ im Ma β ,
- (ii) Es gibt eine Teilfolge mit $f_{k_j} \to f$ f.ü..

Beweis. Aus der Chebyshev-Ungleichung in Satz 3.12 erhalten wir für $\delta > 0$,

$$\mu\{x \in X : |f(x) - f_k(x)| > \delta\} \le \frac{1}{\delta} \int |f_k - f| \ d\mu \to 0 \qquad \text{für } k \to \infty$$

d.h. $f_k \to f$ im Maß. (ii) folgt aus Lemma 3.34(i).

Falls das Maß endlich ist, d.h. $\mu(X) < \infty$, dann erhalten wir also

- Gleichmässige Konvergenz ist der stärkste Konvergenzbegriff
- \bullet \mathscr{L}^1 -Konvergenz und f.ü. punktweise Konvergenz sind stärker als Maßkonvergenz und schwächer als gleichmässige Konvergenz.
- Maßkonvergenz ist der schwächste Konvergenzbegriff.

Beispiel 3.36 (Vergleich der Konvergenzbegriffe).

- (i) Für $f_k : [0,1] \to \mathbb{R}$, $k \in \mathbb{N}$, $mit f_k(x) = \chi_{(0,\frac{1}{k}]}(x)$ gilt $f_k(x) \to f(x) \ \forall x \in X$, aber $f_k \not\to f$ in L^1 , $da \int f_k = 1 \ \forall k \in \mathbb{N}$.
- (ii) Sei $a_k := \sum_{j=1}^j \frac{1}{j}$ und sei $\psi_k, \psi : [0,1] \to \mathbb{R}$ definiert durch $\varphi_k = \chi_{[a_k, a_{k+1}]}$. Dann gilt $\int |\psi_k| \ dx = \frac{1}{k+1} \to 0$ und daher $\psi_k \to 0$ in \mathscr{L}^1 , aber $\psi_k(x) \not\to \psi(x)$ f.ü.. In der $Tat, \ \psi_k(x)$ konvergiert in keinem Punkt. Es gibt aber Teilfolgen von ψ_{k_j} mit $\psi_{k_j}(x) \to \psi(x)$ f.ü..
- (iii) Sei $f: \mathbb{R} \to \mathbb{R}$ mit $f_k(x) = \frac{1}{k}\chi_{k,\infty}$. Dann gilt $f_k \rightrightarrows 0$ gleichmässig und im Ma β , aber $f_k \not\to 0$ in \mathscr{L}^1 .

Lemma 3.37 (f.ü.-Konvergenz ist nicht durch Metrik induziert). Es gibt keine Metrik d auf $L^1([0,1], \mathcal{B}(\mathbb{R}), \lambda)$, welche die f.ü. punktweise Konvergenz induziert.

Beweis. Wir argumentieren indirekt und nehmen an es gibt eine Metrik d auf dem metrischen Raum $Z=L^1$, so dass $f_k\to f$ f.ü., genau dann wenn $d(f_k,f)\to 0$ für beliebige Folgen.

Sei f_k die Folge aus Beispiel 3.36(ii). Dann gilt $f_k \to 0$ in L^1 , aber f_k konvergiert nicht punktweise. Nach Korollar ?? gibt es zu jeder Teilfolge eine weitere Teilfolge f_{k_j} mit $f_{k_j} \to 0$ f.ü.. Nach Annahme gibt es zu jeder Teilfolge also eine weitere Teilfolge f_{k_j} mit $d(f_{k_j}, 0) \to 0$. Andererseits gilt $d(f_k, 0) \not\to 0$.

Der Widerspruch ergibt sich nun aus der folgenden Aussage: Sei eine Folge f_k in einem metrischen Raum Z und sei $f \in Z$. Falls $d(f_k, f) \not\to 0$, dann gibt es ein $\varepsilon_0 > 0$ und eine Teilfolge f_{k_j} mit $d(f_{k_j}, f) \ge \varepsilon_0$. Insbesondere gibt es für diese Teilfolge keine Teilfolge, welche gegen f konvergiert.