Adam P. Generale

CONTACT INFORMATION	33-45 29th Street Astoria, NY 11106	E-mail: adam.generale@gmail.com Phone: (914) 646-5393
		,
EDUCATION	Georgia Institute of Technology, Atlanta, GA, USA Ph.D. Materials Informatics, George W. Woodruff School of Mechanical Engineering • Thesis: "Neural Inverse Microstructure Design with Bayesian Scale-Bridging" • Advisor: Surya R. Kalidindi	
	 University of Manchester, Manchester, UK M.S. Mechanical Engineering, School of Engineering Thesis: "Generalized Deformation in Heterogeneous Mate Advisor: Andrey Jivkov 	rials in Mode I Fracture"
	Rensselaer Polytechnic Institute, Troy, NY, USA	2011
	B.S. Mechanical Engineering, School of Mechanical, Aerospa	
RESEARCH EXPERIENCE	Georgia Institute of Technology, Atlanta, GA, USA Graduate Research Assistant France on flow based generative models (e.g., continuous per	Sep 2019 - Jan 2024
	 Focus on flow-based generative models (e.g., continuous normalizing flows, flow matching), Bayesian statistics, and Gaussian processes applied towards enabling data-driven materials exploration, learning latent process dynamics, and statistical model calibration. 	
	Air Force Research Laboratory, Dayton, OH, USA Research Intern	Jun 2020 - Oct 2020
	 Developed framework for the Bayesian calibration of a mul fusing information from disparate experimental measurem 	-
	Pratt & Whitney, East Hartford, CT, USA	July 2023 - Present
EXPERIENCE	 Senior Principal Engineer Developed and applied advanced machine learning architectures (e.g., diffusion models and normalizing flows), to solve scientific inverse problems involving physics-based models. Utilized Bayesian inference to quantify uncertainty and calibrate models, driving more accurate predictions and informed decision-making. 	
	 Integrated and analyzed multimodal data (multivariate time series, images, destructive measurements) to inform product performance and field deployment strategies, leveraging insights from inverse prob- lem solving to optimize product design and development. 	
	Multiscale Technologies, Atlanta, GA, USA Principal Applied Scientist	Jan 2023 - July 2024
	 Developed Neural ODE/SDE architectures for efficiently learning dynamical systems from unaligned marginal data and identifying families of inverse solutions (e.g., materials and process synthesis de- sign) through conditional transport maps. 	
	• Implemented information-theoretic strategies for the construction of optimal experimental designs through active learning towards identifying novel materials.	
Awards	IMECE Travel Award, American Society of Mechanical Engine CMS3 Fellowship, Texas A&M University Sloan Foundation Fellowship, Alfred P. Sloan Foundation	neers 2023 2023 2020
	President's Fellowship, Georgia Institute of Technology	2020
	Team of the Quarter, Pratt & Whitney	Q2 2016, Q4 2017
	Best Dissertation, University of Manchester	2014
	Best Overall Performance, University of Manchester	2014
	Rensselaer Leadership Award, Rensselaer Polytechnic Institut	ze 2007

TECHNICAL KNOWLEDGE Statistical Modeling, Bayesian Statistics, Machine Learning, Signal Processing, Data Analysis, Numerical Methods, Finite Element Analysis, Continuum Mechanics, High-Performance Computing

Software: ABAQUS, ANSYS, Fluent, Star-CCM+

Languages: Proficient: Python (*PyTorch*, *GPyTorch*, *Pyro*, *Jax*), MATLAB; Familiar: Fortran C/C++,

PUBLICATIONS

Generale, A.P., Robertson, A.E., Kalidindi, S.R. (2024). Conditional Variable Flow Matching: Transforming Conditional Densities with Amortized Conditional Optimal Transport. *arXiv*. arXiv:2411.08314 Buzzy, M.O., Montes de Oca Zapain, D., **Generale, A.P.**, Kalidindi, S.R., Lim, H. (2025). Active learning for the design of polycrystalline textures using conditional normalizing flows. *Acta Materialia*. doi: 10.1016/j.actamat.2024.120537

Generale, A.P., Robertson, A.E., Kelly, C., Kalidindi, S.R. (2024). Inverse Stochastic Microstructure Design. *Acta Materialia*. doi: 10.1016/j.actamat.2024.119877

Marshall, A., **Generale, A.P.**, Kalidindi, S.R., Radhakrishnan, B., Belak, J. (2024). A Gaussian process autoregressive model capturing microstructure evolution paths in a Ni–Mo–Nb alloy. *J. Mater. Sci.*. doi: 10.1007/s10853-024-09345-6

Robertson, A.E., **Generale, A.P.**, Kelly, C., Buzzy, M.O., Kalidindi, S.R. (2024). MICRO2D: A Large, Statistically Diverse, Heterogeneous Microstructure Dataset. *Integrating Materials and Manufacturing Innovation*. doi: 10.1007/s40192-023-00340-4

Generale, A.P., Kelly, C., Harrington, G.R., Robertson, A.E., Buzzy, M., Kalidindi, S.R. (2023). A Bayesian Approach to Designing Microstructures and Processing Pathways for Tailored Material Properties. *NeurIPS Workshop - AI for Accelerated Materials Design*.

Generale, A.P., Kalidindi, S.R. (2023). Uncertainty quantification and propagation in the microstructure-sensitive prediction of stress-strain response of woven ceramic matrix composites. *Computers & Structures*, 286, 107110. doi: 10.1016/j.compstruc.2023.107110.

Wang, S., **Generale, A.P.**, Kalidindi, S.R., Joseph, V.R. (2023). Sequential Designs for Filling Output Spaces. *Technometrics*, 0, 1-12. doi: 10.1080/00401706.2023.2231042

Generale, A.P., Hall, R.B., Brockman, R.A., Joseph, V.R., Jefferson, G., Zawada, L., Pierce, J., Kalidindi, S.R. (2022). Bayesian calibration of continuum damage model parameters for an oxide-oxide ceramic matrix composite using inhomogeneous experimental data. *Mechanics of Materials*, 175, 104487. doi: 10.1016/j.mechmat.2022.104487.

Hall, R.B., Brockman, R.A., **Generale, A.P.**, Joseph, V.R., Kalidindi, S.R. (2022). A Viscous Damage Theory for Ceramic Matrix Composites in Multi-Axial Loading. *Proceedings of the 12th International Conference on the Mechanics of Time Dependent Materials*.

Generale, A.P., Kalidindi, S.R. (2021). Reduced-order Models for Microstructure-Sensitive Effective thermal Conductivity of Woven Ceramic Matrix Composites with Residual Porosity. *Compos. Structures*, 274, 114399. doi: 10.1016/j.compstruct.2021.114399

PATENTS

Jackson, R.W., **Generale, A.P.**, Liu, X., Zelesky, M.F., 2023. Airfoil having environmental barrier top-coats that vary in composition by location. US11608749B2.

Quach, S., Generale, A.P., Surace, R., Dvorozniak, L., 2022. Engine with cooling passage circuit for air prior to ceramic component. US11492914B2.

Generale, A.P., Dvorozniak, L., Quach, S., 2022. Ceramic airfoil with cooling air turn. US11473444B2.

Generale, A.P., Dvorozniak, L., Quach, S., 2022. Baffle with impingement holes. US11415002B2.

Generale, A.P., Mongillo, D.J., 2022. Components for gas turbine engines. US11371360B2.

Quach, S., Dube, B.P., Propheter-Hinckley, T.A., Arisi, A.N., **Generale, A.P.**, Dvorozniak, L., Liles, H.J., 2022. Cooling arrangement including overlapping diffusers. US11339667B2.

Generale, A.P., Dvorozniak, L., Quach, S., Dube, B.P., 2022. Baffle with tail. US11280201B2.

Generale, A.P., Mongillo, D.J., 2022. Components for gas turbine engines. US11261749B2.

Generale, A.P., Mongillo, D.J., 2022. Trailing edge insert for airfoil vane. US11242758B2.

Generale, A.P., Propheter-Hinckley, T.A., 2021. Airfoil assembly with ceramic airfoil pieces and seal. US11162368B2.

Spangler, B.W., Generale, A.P., Vu, K.H., 2021. Gas turbine engine cooling component. US11131212B2.

Generale, A.P., Liles, H.J., 2021. Airfoil with metallic shield. US11092015B2.

Generale, **A.P.**, Dube, B.P., 2021. Thermal gradient reducing device for gas turbine engine component. US11078844B2.

Generale, A.P., Dube, B.P., 2021. CMC airfoil with cooling holes. EP3808940A1.

Spangler, B.W., Generale, A.P., 2021. Shell and spar airfoil. US10934857B2.

Vu, K.H., Generale, A.P., 2020. Vane platform leading edge recessed pocket with cover. US10822962B2.

Devore, M.A., **Generale, A.P.**, Propheter-Hinckley, T.A., 2020. Airfoil with geometrically segmented coating section. US10711624B2.

Spangler, B.W., **Generale**, **A.P.**, 2020. Axial flow cooling scheme with castable structural rib for a gas turbine engine. US10822963B2.

Mongillo, D.J., **Generale**, **A.P.**, 2020. Platform flow turning elements for gas turbine engine components. US10655496B2.

Spangler, B.W., Generale, A.P., 2020. Gas turbine engine cooling component. US10648351B2.

Generale, A.P., Howard, B.L., 2020. Vane air inlet with fillet. US10619492B2.

Clum, C., **Generale**, **A.P.**, 2019. Adjustable flow split platform cooling for gas turbine engine. US1051 3947B2.

Thornton, L.M., Generale, A.P., 2019. Vane including internal radiant heat shield. EP3567220B8.

PRESENTATIONS AI/Data Informatics: Computational Model Development, Verification, Validation, and Uncertainty Quantification (TMS). Inverse Stochastic Microstructure Design. May, 2024.

Minisymposium on Integrated Computational Materials Engineering (ICME). Inverse Stochastic Microstructure Design. October, 2023.

Artificial Intelligence for Materials Science (AIMS) Workshop. National Institute of Standards and Technology (NIST). Stochastic Scale-Bridging. July, 2023.