BioinfoRmatyka nowotworów

Ewa Szczurek

Universytet Warszawski

28 września 2017

Rak to choroba genomu

- Dane o mutacjach w genomach komórek nowotworowych
 - Genomy komórek rakowych noszą liczne mutacje genów
 - Rak "wyłącza" bądz "aktywuje" geny
 - Komórki tracą/zyskują nową funkcjonalność
- ② Dane z experymentów perturbacyjnych RNA interference (RNAi)
 - pozwalają naukowcom "wyłączać" geny w liniach komórkowych w laboratorium

Dżungla danych: mutacje genów w genomach rakowych

Jak znalezć drogę w tej dżungli danych?

- W jaki sposób wyłączanie genów zmienia funkcjonalność szlaków sygnalizacyjnych w raku?
 - Mutacje genów z tego samego szlaku wykluczają się wzajemnie.^{1,2}
 - Modelowanie szlaków sygnalizacyjnych z danych perturbacji RNAi³
- Które mutacje możemy wykorzystać w terapii raka?
 - Syntetycznie letalni partnerzy genów zmutowanych ^{4,5}

¹ Szczurek & Beerenwinkel, PLoS Comput. Biol., 2014

² Constantinescu et al. Bioinformatics, 2015

³ Szczurek & Beerenwinkel, Bioinformatics, 2016

⁴ Szczurek et al. Int J Cancer, 2013

⁵ Matlak & Szczurek, PLoS Comput. Biol., 2017

Wzorzec wzajemnego wykluczania się mutacji w raku a szlaki sygnalizacyjne

Wzorzec wzajemnego wykluczania się mutacji w raku a szlaki sygnalizacyjne

Test ilorazu wiarogodności wykluczania się genów.

Generative process

Cover patients Add impurity (γ) (δ) (α,β)

Null: Independence model

Mutual exclusivity model

• Estymacja parametrów: algorytm expectation maximization

Ewa Szczurek

• Implementacja: Paczka R *muex*

Co experymenty RNAi mogą powiedzieć o szlakach sygnalizacyjnych

Linear effects models

Algorytmy przeszukiwania przestrzeni struktury modeli

Ewa Szczurek

- Inferencja modelu: regresja bayesowska
- Implementacja: Paczka R lem

Linear effects models (paczka R lem)

Jak znalezć drogę w tej dżungli danych?

- Które mutacje możemy wykorzystać w terapii raka?
 - Syntetycznie letalni partnerzy genów zmutowanych ^{4,5}

⁴ Szczurek et al. Int J Cancer, 2013

⁵ Matlak & Szczurek, PLoS Comput. Biol., 2017

Odziaływanie genów

- Dla dwóch genów, ich genotyp to binarna para $g \in \{0,1\}^2$, określająca który z genów jest zmutowany.
- Możliwe genotypy: 00, 10, 01, 11

Odziaływanie genów

- Dla dwóch genów, ich genotyp to binarna para $g \in \{0,1\}^2$, określająca który z genów jest zmutowany.
- Możliwe genotypy: 00, 10, 01, 11
- Fitness Δ_g miara sukcesu reprodukcyjnego i przeżycia komórki/organizmu o genotypie g

Oddziaływanie genów

Zachodzi, gdy efekty właściwy i oczekiwany jednoczesnej mutacji genów są różne: $\Delta_{00}\cdot\Delta_{11}\neq\Delta_{01}\cdot\Delta_{10}$

Odziaływanie genów

- ullet Dla dwóch genów, ich genotyp to binarna para $g\in\{0,1\}^2$, określająca który z genów jest zmutowany.
- Możliwe genotypy: 00, 10, 01, 11

Oddziaływanie genów

Zachodzi, gdy efekty właściwy i oczekiwany jednoczesnej mutacji genów są różne: $\Delta_{00}\cdot\Delta_{11}\neq\Delta_{01}\cdot\Delta_{10}$

Syntetyczna letalność: szczególny przypadek oddziaływania genów

Zachodzi, gdy $\Delta_{00} \cdot \Delta_{11} < \Delta_{01} \cdot \Delta_{10}$.

Syntetyczna letalność: szczególny przypadek oddziaływania genów

Wykorzystanie syntetycznej letalności w terapii nowotworów

- Eksperymentalnie nie jesteśmy w stanie zbadać
 - wszystkich możliwych par genów: $\sim 200 M$
 - tych par genów, dla których istnieją celujące w nie leki: ~ 500K
- Potrzebne są metody analizy danych, wyszukujące pary genów będące obiecującymi kandydatami do syntetycznej letalności!

Uogólnienie oddziaływań genów

Oddziaływanie pary genów

Zachodzi, gdy efekty właściwy i oczekiwany jednoczesnej mutacji genów są różne: $\Delta_{00}\cdot\Delta_{11}\neq\Delta_{01}\cdot\Delta_{10}$, gdzie Δ_g to fitness dla genotypu $g\in\{0,1\}^2$.

Uogólnienie oddziaływań genów

Oddziaływanie pary genów

Zachodzi, gdy efekty właściwy i oczekiwany jednoczesnej mutacji genów są różne: $\Delta_{00}\cdot\Delta_{11}\neq\Delta_{01}\cdot\Delta_{10}$, gdzie Δ_g to fitness dla genotypu $g\in\{0,1\}^2$.

Oddziaływanie trójki genów

Zachodzi, gdy $\Delta_{g_0} \cdot \Delta_{g_3} \neq \Delta_{g_1} \cdot \Delta_{g_2}$, gdzie $g_0 + g_3 - g_1 - g_2 = 0$, a Δ_{g_i} to fitness dla genotypu $g_i \in \{0,1\}^3$.

Uogólnienie oddziaływań genów

Oddziaływanie pary genów

Zachodzi, gdy efekty właściwy i oczekiwany jednoczesnej mutacji genów są różne: $\Delta_{00}\cdot\Delta_{11}\neq\Delta_{01}\cdot\Delta_{10}$, gdzie Δ_g to fitness dla genotypu $g\in\{0,1\}^2$.

Oddziaływanie trójki genów

Zachodzi, gdy $\Delta_{g_0} \cdot \Delta_{g_3} \neq \Delta_{g_1} \cdot \Delta_{g_2}$, gdzie $g_0 + g_3 - g_1 - g_2 = 0$, a Δ_{g_i} to fitness dla genotypu $g_i \in \{0,1\}^3$.

Przykład: syntetyczna letalność warunkowana brakiem mutacji w trzecim genie (biomarker)

Zachodzi, gdy $\Delta_{000} \cdot \Delta_{110} < \Delta_{100} \cdot \Delta_{010}$.

Model oparty o alternatywy Lehmanna

- S(t) funkcja przeżycia u zdrowych,
- $ullet S_g(t) = S(t)^{\Delta_g}$ -funkcja przeżycia dla pacjenta, którego komórki nowotworowe mają fitness Δ_g i genotyp g
- Ponieważ $S(t) \in [0,1]$, im większy fitness nowotworu Δ_g , tym niższe przeżycie pacjenta $S_g(t)$.
- Dla dwóch nieoddziałujących genów oczekujemy

$$\left(G(t)^{\Delta_{g_{00}}}\right)^{\Delta_{g_{11}}}=\left(G(t)^{\Delta_{g_{01}}}\right)^{\Delta_{g_{10}}}$$

Ewa Szczurek

Wykres Kaplana-Meiera dla pray syntetycznie letalnej

BRCA1-PARP1 i różnych genotypów

survLRT

Test ilorazu wiarogodności dla oddziaływań genów przy

- ullet hipotezie zerowej: brak oddziaływania $\Delta_{g_0}\Delta_{g_3}=\Delta_{g_1}\Delta_{g_2}$
- ullet hipotezie alternatywnej: $\Delta_{g_0}\Delta_{g_3}
 eq \Delta_{g_1}\Delta_{g_2}$

gdzie
$$g_0 - g_1 - g_2 + g_3 = 0$$
.

- wiarogodność (ang likelihood) obliczamy zakładając, że $\Delta_{g_0}, \Delta_{g_3}, \Delta_{g_1}, \Delta_{g_2}$ są parametrami.
- parametry estymowane metodą największej wiarogodności.
- implementacja w paczce R. survLRT

Dziękuję za uwagę!

Szczególne podziękowania dla

- Niko Beerenwinkel, ETH Zurich,
- Dariusz Matlak, Uniwersytet Warszawski
- R
- Bioconductor

Zapraszam do zadawania pytań!

