操作系统 简答题 第 41 题

请求分页管理方式中的地址变换机构是什么? (2018 数据结构、画图、优缺点)

数据结构: 一定容量的内存及外存的计算 机系统,还需要有页表机制、缺页中断机构和地址变换机构。

优点:消除外部碎片:分页管理将内存分为固定大小的页,因此分配内存时不会产生外部碎片,即内存不会由于小的未使用空间而变得无法使用。

简化内存分配:由于页面大小是固定的,操作系统在分配和管理内存时不需要考虑内存块的大小差异,内存管理变得更加简单和高效。

灵活的内存使用:虚拟内存技术使得程序可以使用超过物理内存容量的内存,通过将不常用的页面换出到磁盘,提高了内存的利用率。

保护机制:每个进程的页表是独立的,进程之间无法直接访问彼此的内存 区域,提供了一定程度的内存保护。

方便实现共享内存:操作系统可以让多个进程共享相同的内存页,这对于 实现共享库或共享数据非常有用。

支持多任务处理: 分页管理允许多个程序在内存中并行运行,支持多任务处理,并可以快速切换任务。

缺点:增加内存访问开销:分页管理需要通过页表进行地址转换,增加了内存访问的开销。特别是当页表较大时,可能导致频繁的页表查找,影响性能。

页表占用内存: 页表本身需要占用内存,特别是对于大程序或需要大内存的系统,页表的开销可能会比较大。

可能产生内部碎片:虽然分页管理消除了外部碎片,但固定大小的页可能会导致内部碎片,即最后一页中的未使用空间无法被其他进程利用。

页错误开销: 当一个进程访问的页面不在内存中时,会发生页错误,这将导致操作系统需要从磁盘加载页面,产生较大的性能开销。

复杂性增加: 分页管理需要额外的硬件支持,如内存管理单元来执行地址转换和页表维护。这增加了系统的复杂性。

图 3.21 请求分页中的地址变换过程

过程图

在进行地址变换时, 先检索快表:

若找到要访问的页,则修改页表项中的访问位(写指令还需要重置修改位),然后利用页 表项中给出的物理块号和页内地址形成物理地址。

若未找到该页的页表项,则应到内存中去查找页表,再对比页表项中的状态位 F, 看该页 是否己调入内存,若页面己调入,则将该页的页表写入快表,若快表己满,则需采用某种 算法替换。若页面未调入,则产生缺页中断,请求从外存把该页调入内存。

数据结构 简答题 第 41 题 算法的特性

错别字更正:输入:有多个或者0个输入。

844 真题 2024 年

数据结构选择题第三题 A 数组默认存储**下三角** 数据结构选择题第五个**答案改为 D**;

844 真题 2022 年

第五题银行家算法 题目数据有误,补充一道王道的题。

07. 考虑某个系统在下表时刻的状态。

		Alloc	ation			M	ax	Available					
- 2	A	В	C	D	A	В	C	D	A	В	C	D	
P ₀	0	0	1	2	0	0	1	2	1				
\mathbf{P}_1	1	0	0	0	1	7	5	0			2	0	
P ₂	1	3	5	4	2	3	5	6)			
P ₃	0	0	1	4	0	6	5	6					

使用银行家算法回答下面的问题:

- 1) Need 矩阵是怎样的?
- 2) 系统是否处于安全状态? 如安全,请给出一个安全序列。
- 3)若从进程P₁发来一个请求(0,4,2,0),这个请求能否立刻被满足?如安全,请给出一个安全序列。

答案

07.【解答】

1)

$$Need = Max - Allocation = \begin{bmatrix} 0 & 0 & 1 & 2 \\ 1 & 7 & 5 & 0 \\ 2 & 3 & 5 & 6 \\ 0 & 6 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 2 \\ 1 & 0 & 0 & 0 \\ 1 & 3 & 5 & 4 \\ 0 & 0 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 7 & 5 & 0 \\ 1 & 0 & 0 & 2 \\ 0 & 6 & 4 & 2 \end{bmatrix}$$

2) Work 向量初始化值 = Available(1, 5, 2, 0)。

系统安全性分析:

资源情况		W	ork		Need					Allo	ation	1	Work + Allocation				
进程	A	В	C	D	A	В	C	D	A	В	C	D	A	В	C	D	
P_0	1	5	2	0	0	0	0	0	0	0	1	2	1	5	3	2	
P ₂	1	5	3	2	1	0	0	2	1	3	5	4	2	8	8	6	
P_1	2	8	8	6	0	7	5	0	1	0	0	0	3	8	8	6	
P ₃	3	8	8	6	0	6	4	2	0	0	1	4	3	8	9	10	

因为存在一个安全序列<P0, P2, P1, P3>, 所以系统处于安全状态。

174 - 2025 年操作系统考研复习指导

3) Request₁(0, 4, 2, 0) < Need₁(0, 7, 5, 0) Request₁(0, 4, 2, 0) < Available(1, 5, 2, 0) 假设先试者满足进程 P₁ 的这个请求,则 Available 变为(1, 1, 0, 0)。 系统状态变化见下表:

资源情况			Allo	ation			N	eed	Available							
进程	A	В	C	D	A	В	C	D	A	В	C	D	A	В	C	D
P ₀	0	0.	1	2	0	0	1	2	0	0	0	0				
P ₁	1	7	5	0	1	4	2	0	0	3	3	0	١.	١.		
P ₂	2	3	5	6	1	3	5	4	1	0	0	2	1	1	0	0
P ₃	0	6	5	6	0	0	1	4	0	6	4	2				

再对系统进行安全性分析, 见下表:

资源情况		W	ork			N	eed		. 8	Alloc	ation	ı	Work + Allocation				
进程	A	В	C	D	A	В	C	D	A	В	C	D	A	В	C	D	
P_0	1	1	0	0	0	0	0	0	0	0	1	2	1	1	1	2	
P ₂	1	1	1	2	1	0	0	2	1	3	5	4	2	4	6	6	
P ₁	2	4	6	6	0	3	3	0	1	4	2	0	3	8	8	6	
P ₃	3	8	8	6	0	6	4	2	0	0	1	4	3	8	9	10	

因为存在一个安全序列<P $_0$, P $_1$, P $_2$, P $_1$, P $_3$ >,所以系统仍处于安全状态。所以进程 P $_1$ 的这个求应该马上被满足。

08.【解答】

844 真题 2015 年操作系统第 3 题

- 2) 放满 1 号柱面需要 11 * 8 = 88 个记录, 还剩 380 -88 = 292 个记录, 一个柱面存放 16* 8 = 128 个 292 /128 = 2 ······ 36 放满 3 和 4 柱面 还剩 36 个记录 36/8=4 '''4 所以存放在 第 4 柱面 第 4 磁道 第 3 扇区。
- 3) 由 2) 可知放满第1柱面需要88个记录,放满2号柱面第0柱面需要8个记录,所以

第1磁道的第7个扇区存放了第88+8+7=103个

数据结构 简答题 第 14 题 哈夫曼树的作用

作用:可以构造最优前缀码

844 2024 年真题 快排构造序列

16 34 88 60 23 12 - 70

16 - 88 60 23 12 34 70

16 12 88 60 23 - 34 70

16 12 - 60 23 88 34 70

16 12 23 60 - 88 34 70

{16 12 23 } 25{ 60 88 34 70}