Review: Elements of Computation Theory

XIAOGANG JIN

AI Institute, College of Computer Science
Zhejiang University

 $\textbf{E-Mail:} \ xiaogangj@cise.zju.edu.cn$

1 / 24

-0

- Regular Language
- Context-free Language(CFL)
- Turing Machine and Recursive Enumerable Language
- Undecidablity
- \bigcirc \mathcal{P} and \mathcal{NP} Problems

- Regular Language
- Context-free Language(CFL)
- Turing Machine and Recursive Enumerable Language
- 4 Undecidablity
- \bigcirc \mathcal{P} and \mathcal{NP} Problems

Regular Language

- Regular Expression
- Deterministic finite automata(DFA)
- Non-deterministic finite automata(NFA)
- Closure properties and Pumping Theorem
- State Minimization (graduated course)

Regular Language

- Regular Expression
- Deterministic finite automata(DFA)
- Non-deterministic finite automata(NFA)
- Closure properties and Pumping Theorem
- State Minimization (graduated course)

Question:

- Give a DFA or NFA \Rightarrow Regular Expression (Example 2.3.2 P 81);
- Give a Regular Expression \Rightarrow DFA or NFA (Theorem 2.3.1 P 75);
- Show a given language be regular or non-regular? (Yes, regular expression, DFA, NFA and closure property; No, Pumping theorem or closure property)

Regular Language

- **2.4.8** Are the following statements true od false? Explain you answer in each case. (P 91)
 - Every subset of a regular language is regular. (**F**)
 - \bullet Every regular language has a regular proper subset. (**F**) (Hint: $\emptyset)$
 - If L is regular, then so is $\{xy \mid x \in L \text{ and } y \notin L\}$. (T) (Hint: $\{xy \mid x \in L \text{ and } y \notin L\} = L \circ \overline{L}$)
 - $\{w \mid w = w^R\}$ is regular. (**F**)
 - If L is regular, then so is $\{w \mid w \in L \text{ and } w^R \in L\}$. (**T**) (Hint: $L = L \cap L^R$.)
 - \bullet If C is any set of regular languages, then $\cup C$ is a regular language. (F)
 - $\{xyx^R \mid x, y \in \Sigma^*\}$ is regular. (**T**) (Hint: $\{xyx^R \mid x, y \in \Sigma^*\} = \Sigma^*$. By letting x = e, y can vary over all the strings of Σ^* .)

- Regular Language
- Context-free Language(CFL)
- Turing Machine and Recursive Enumerable Language
- 4 Undecidablity
- \bigcirc \mathcal{P} and \mathcal{NP} Problems
- \bigcirc $\mathcal{NP}-$ Complete Problems

- Context-free Grammar(CFG)
- Pushdown automata
- Closure properties and Pumping Theorem

- Context-free Grammar(CFG)
- Pushdown automata
- Closure properties and Pumping Theorem

Question:

- Give a context-free language \Rightarrow Context-free Grammar
- Give a context-free language \Rightarrow PDA
- Give a context-free grammar \Rightarrow PDA (Lemma 3.4.1, Example 3.4.1 P 136)
- Show a given language be context-free or non-context free?

Example: Show that language $L = \{a^i b^j c^k \mid j \ge i + k\}$ is context-free.

Solution:

- $\square \{a^i b^j c^k \mid j \ge i + k\} = a^i b^i \circ b^* \circ b^k c^k$
- \square Language L can be generated by the following CFG:

$$S \rightarrow XYZ, \, X \rightarrow aXb, \, Y \rightarrow bY, \, Y \rightarrow bYc, \, X \rightarrow e, \, Y \rightarrow e, \, Z \rightarrow e$$

0

3.1.9 Show that the following language are context-free by exhibiting context-free grammars generating each (P 122):

- $\{a^m b^n \mid m \ge n\}$ $\{S \to aSb, S \to aS, S \to e\}$
- $\{a^mb^nc^pd^q\mid m+n=p+q\}$ Let m+n=p+q=N, then n=N-m, p=N-q. $a^mb^nc^pd^q=a^mb^{N-m}c^{N-q}d^q$ In case of $m\geq q$, $a^mb^nc^pd^q=a^qa^{m-q}b^{N-m}c^{N-m}c^{m-q}d^q$ $S\to aSd$, $S\to A$, $A\to aAc$, $A\to B$, $B\to bBc$, $B\to e$ In case of m< q,we can obtain the similar results.
- $\{w \in \{a,b\}^* : w \text{ has twice as many b's as a's } \}$ $\{S \to e, S \to Sabb \mid aSbb \mid abSb \mid abbS, S \to Sbab \mid bSab \mid baSb \mid babS, S \to Sbba \mid bSba \mid bbSa \mid bbaS \}$
- $\{uawb: u, w \in \{a, b\}^* | u| = |w| \}$ $\{S \to Tb, T \to aTa, T \to aTb, T \to bTa, T \to bTb, T \to a \}$

< □ > < 圖 > < ≣ > < ≣ > へ ○ < つ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

9 / 24

3.5.1 Use closure under union to show that the following language are context-free (P 148).

a)
$$\{a^m b^n \mid m \neq n\}$$

 $\{a^m b^n \mid m \neq n\} = \{a^m b^n \mid m > n\} \cup \{a^m b^n \mid m < n\}$
or $\{a^m b^n \mid m > n\} = a \circ a^* \circ \{a^m b^n \mid m = n\}$

b) $\{a,b\}^* - \{a^nb^n : n \ge 0\}$ This language cab be expressed as $\{a^mb^n \mid m \ne n\} \cup \Sigma^*a\Sigma^*b\Sigma^*a\Sigma^* \cup \Sigma^*b\Sigma^*a\Sigma^*b\Sigma^*$

10 / 24

- **3.5.8** Show that the language $\{ww \mid w \in \{a,b\}^*\}$ is not context-free. **Proof:** Let $L = \{ww \mid w \in \{a,b\}^*\}$, and $s = a^pb^pa^pb^p$, $s \in L$. p is the pumping length. Use the Pumping Theorem to prove that. If L is CFL, such that s = uvxyz, $|vxy| \le p$.
- (1) Consider that the substring vxy of s is over the midpoint of s. Pump the s as uxz, the string s is as $a^pb^ia^jb^p$ form, where i and j are not equal to p at the same time. Such that the s is not the form s ww. (2) If s is placed before the midpoint of s, by the Pumping Theorem, when $s = uv^2xy^2z$, the s has to be put the first place of the last part of s after the midpoint, such that the s is not the form s ww. Similarly, if s is placed after the midpoint of s, when $s = uv^2xy^2z$, the s has to be moved to the last place of the first part of s before the midpoint, also the s is not the form s ww. So, L is not CFL.

3.5.14 Which of the following languages are context-free? Explain briefly in each case.

```
a) \{a^mb^nc^p \mid m=n \text{ or } n=p \text{ or } m=p\}
This language is context-free.
\{a^mb^nc^p \mid m=n \text{ or } n=p \text{ or } m=p\}
=\{a^mb^nc^p \mid m=n\} \cup \{a^mb^nc^p \mid n=p\} \cup \{a^mb^nc^p \mid m=p\}
and
\{a^mb^nc^p \mid m=n\} = \{a^nb^n\} \circ c^*
\{a^mb^nc^p \mid n=p\} = a^* \circ \{b^nc^n\}
\{a^mb^nc^p \mid m=p\} \text{ can be generated by the following CFG:}
\{S \to aSb, S \to T, T \to cT, T \to e\}.
```

(D) 4 🗗 > 4 🖹 > 4 🖹 > 9 Q (~

12 / 24

- b) $\{a^m b^n c^p \mid m \neq n \text{ or } n \neq p \text{ or } m \neq p\}$ This language is context-free. $\{a^m b^n c^p \mid m \neq n \text{ or } n \neq p \text{ or } m \neq p\}$ $= \{a^m b^n c^p \mid m \neq n\} \cup \{a^m b^n c^p \mid n \neq p\} \cup \{a^m b^n c^p \mid m \neq p\}$ and $\{a^m b^n c^p \mid m \neq n\} = \{a^m b^n c^p \mid m > n\} \cup \{a^m b^n c^p \mid m < n\}$
- c) $\{a^mb^nc^p\mid m=n \text{ and } n=p \text{ and } m=p\}$ This language is not context-free.
- $\{a^mb^nc^p\mid m=n \text{ and } n=p \text{ and } m=p\}=\{a^nb^nc^n\mid n\geq 0\}$ (Pump Theorem).

◆ロト ◆団ト ◆豊ト ◆豊ト 豊 めなべ

13 / 24

- d) $L = \{ w \in \{a, b, c\}^* : w \text{ does not contain equal numbers of occurrences of } a, b \text{ and } c \}$
- This language is context-free.
- $L = \{w \in \{a,b,c\}^* : w \text{ has different numbers of } a\text{'s and } b\text{'s}\}$
 - $\cup \{w \in \{a, b, c\}^* : w \text{ has different numbers of } b$'s and c's}
- $\cup \{w \in \{a, b, c\}^* : w \text{ has different numbers of } a\text{'s and } c\text{'s}\}.$
- and the language
- $\{w \in \{a,b,c\}^*: w \text{ has different numbers of } a\text{'s} \text{ and } b\text{'s}\}$ is context-free.
- **3.5.15** Suppose that L is context-free and R is regular. Is L-R necessarily context-free? What about R-L? Justify your answers.
- (1) L R is context-free.
- $L R = L \cap \overline{R}$ and Theorem 3.5.2 (P 144)
- (2) we can not conclude that R-L is context-free.
- $R = a^*b^*c^*$, $L = \{a^mb^nc^p \mid m \neq n \text{ or } n \neq p \text{ or } m \neq p\}$ then
- $R L = \{a^n b^n c^n\}$ is not context-free.

- Regular Language
- Context-free Language(CFL)
- Turing Machine and Recursive Enumerable Language
- 4 Undecidablity
- lacksquare \mathcal{P} and \mathcal{NP} Problems

TM and R.E. Language

- Turing Machine
- Grammar
- Numerical Functions
 Basic Functions, composition, function defined recursively; primitive recursive functions, primitive recursive predicate; minimalizable, μ-recursive

TM and R.E. Language

- Turing Machine
- Grammar
- Numerical Functions
 Basic Functions, composition, function defined recursively; primitive recursive functions, primitive recursive predicate; minimalizable, μ-recursive

Question:

- a) design a Turing Machine to compute a function or decide (semidecide) a language;
- b) Given a $TM \rightarrow function$;
- c) Show a function be a primitive recursive function.

- Regular Language
- Context-free Language(CFL)
- 3 Turing Machine and Recursive Enumerable Language
- Undecidablity
- \bigcirc \mathcal{P} and \mathcal{NP} Problems

17 / 24

- Church-Turing Thesis
- Chomsky hierarchy
- Universal Turing Machine
- Halting Problem
- Some Undecidable problems

-()

- Church-Turing Thesis
- Chomsky hierarchy
- Universal Turing Machine
- Halting Problem
- Some Undecidable problems

Question:

Establish reduction between some undecidable problems

Example: (Halting Problem) Show that it is undecidable whether a TM halts on all inputs.

Solution: Consider some TM M with input w. We can then create a second TM M_0 that works as follows:

Given any input w_0 , M_0 ignores w_0 and simulates running M on w (M is hard-coded into M_0). M_0 halts on all inputs M halts on w. We know that the problem of determining whether a TM halts on a single input is undecidable and thus, in general, we cannot decide whether M halts on w. It follows that it is undecidable whether M_0 halts on all inputs.

20 / 24

- Regular Language
- Context-free Language(CFL)
- Turing Machine and Recursive Enumerable Language
- 4 Undecidablity
- \bigcirc \mathcal{P} and \mathcal{NP} Problems

0

\mathcal{P} and \mathcal{NP} Problems

• P Problems

$$\mathcal{P} = \bigcup_{p} \text{TIME}(p)$$
, where p is a polynomial

 \bullet \mathcal{NP} Problems

$$NTIME(t) = \{L : L \text{ is decided in time } t \text{ by some NTM}\}\$$

$$\mathcal{NP} = \bigcup_{p} \text{NTIME}(p)$$
, where p is a polynomial

\mathcal{P} and \mathcal{NP} Problems

• P Problems

$$\mathcal{P} = \bigcup_{p} \text{TIME}(p)$$
, where p is a polynomial

 \bullet \mathcal{NP} Problems

$$NTIME(t) = \{L : L \text{ is decided in time } t \text{ by some NTM}\}\$$

$$\mathcal{NP} = \bigcup_{p} \text{NTIME}(p)$$
, where p is a polynomial

Question:

Show a given language be \mathcal{P} Problem or \mathcal{NP} Problem

22 / 24

 \mathbf{C}

- Regular Language
- Context-free Language(CFL)
- 3 Turing Machine and Recursive Enumerable Language
- 4 Undecidablity
- lacksquare \mathcal{P} and \mathcal{NP} Problems

$\mathcal{NP}-$ Complete Problems

 \bullet $\mathcal{NP}-$ Complete Problems

24 / 24

$\mathcal{NP}-$ Complete Problems

 \circ $\mathcal{NP}-$ Complete Problems

Question:

Establish reduction between some $\mathcal{NP}-$ Complete Problems