

ChatBCI: A Fast P300 Speller Brain-Computer Interface Incorporating Generative Al-Based Word Prediction

Jiazhen Hong*, Weinan Wang*, and Laleh Najafizadeh

Integrated Systems and Neurolmaging Laboratory, Department of Electrical and Computer Engineering Rutgers University

*Equal Contributions

Background

- □ Brain-computer interface (BCI) spellers enable users to compose sentences by selecting target keys from a graphical user interface (GUI) keyboard via detection of P300 event-related potentials (ERPs) in the electroencephalogram (EEG) signals following the presentation of a visual stimulus
- ☐ Existing BCI-based spellers spell each word, letter by letter, or predict a word after its initial letters are spelled, thereby, requiring high number of keystrokes, prolonged spelling time, and high cognitive load

⇒I WANT TO BUY A NEW PHONE ⇒I WANT TO BUY A NEW PHONE

Proposed System

Key Selection

☐ ChatBCI, an innovative P300 speller BCI powered by Generative AI

⇒I WANT TO BUY A NEW PHONE

- Word Completion: Complete a partially spelled word
- Word Prediction: Directly predict the next word

Methods

☐ EEG (from Brain Products):

- > 32-channel cap @250Hz
- Used 16 channels (Fz, Cz, Pz, Oz, P3, P4, P7, P8, FC1, FC2, CP1, CP2, C3, C4, O1, O2)
- ➤ Bandpass filter (0.5-30 Hz)
- > 240-dimensional feature vector after utilizing the moving average
- > [0-700 ms] post stimulus interval

☐ P300 Detection:

> Stepwise linear discriminant analysis (SWLDA)

☐ Target Key Recognition:

- > Select row and column with highest cumulative SWLDA score
- > Intersection of selected row and column locates the target key

Experiments

☐ Sessions:

- 1. Calibration: 20 keys were used for training the SWLDA model
- 2. Validation: 3 consecutive correct key selections within 10 attempts using the trained model
- 3. Online Spelling:
 - Copy-spell user-created target sentence
 - with ChatBCI
 - > letter-by-letter spelling (LL)

Large Language Model (LLM) Integration

Results

An example of experimental setup

Images shown to subjects for creating target sentence for the copy-spell task

☐ Complete Time: 58% faster than letter-by-letter spelling

☐ Character Rate: 151% higher than letter-by-letter spelling

- ☐ ITR: 220% higher than letter-by-letter spelling
- a iiii. 220 /6 ingilei than letter by letter spenii
- ☐ Keystroke Saving:
- > Over 61% keystrokes saved in copy-spell tasks
- Over 84% keystrokes saved in improvision tasks

Subject	Task	Image	Composed Sentence	# Char.	ChatBCI Results			LL Results		
					Complete Time (min)	Character Rate (characters/min)	ITR (bits/min)	Complete Time (min)	Character Rate (characters/min)	ITR (bits/min)
S01	Copy-spell	Phone	I-W <u>ANT-TO-</u> B <u>UY-A-</u> N <u>EW-PHONE</u>	25	13.62	2.78	16.99	28.53	1.33	6.38
S02	Copy-spell	Apple	AN-APPLE-A-DAY-KEEPS-DOCTORS-AWAY	33	8.70	5.76	35.31	24.18	2.07	9.94
Average	Copy-spell			29	11.16	4.27	26.15	26.36	1.70	8.16

Acknowledgment

☐ The authors are grateful for the support from IEEE Brain and NSF.

