Univariate: Parkinson

Jose Tamez

2023-01-27

Contents

ARKINSON Univariate	1
The Data	 1
Univariate	 2
Decorrelation Analysis	 4
Univariate Decorrelated	 6
CV ROC Analysis	 8
Feature Frequency Plots	 11

PARKINSON Univariate

Loading the libraries

```
library("FRESA.CAD")
library(readxl)
op <- par(no.readonly = TRUE)
pander::panderOptions('digits', 3)
pander::panderOptions('table.split.table', 400)
pander::panderOptions('keep.trailing.zeros',TRUE)</pre>
```

The Data

```
pd_speech_features <- as.data.frame(read_excel("~/GitHub/FCA/Data/pd_speech_features.xlsx",sheet = "pd_
```

The Average of the Three Repetitions

Each subject had three repeated observations. Here I'll use the average of the three experiments per subject.

```
rep1Parkison <- subset(pd_speech_features,RID==1)
rownames(rep1Parkison) <- rep1Parkison$id
rep1Parkison$id <- NULL
rep1Parkison[,1:ncol(rep1Parkison)] <- sapply(rep1Parkison,as.numeric)

rep2Parkison <- subset(pd_speech_features,RID==2)
rownames(rep2Parkison) <- rep2Parkison$id
rep2Parkison$id <- NULL
rep2Parkison$RID <- NULL
rep2Parkison[,1:ncol(rep2Parkison)] <- sapply(rep2Parkison,as.numeric)</pre>
```

```
rep3Parkison <- subset(pd_speech_features,RID==3)
rownames(rep3Parkison) <- rep3Parkison$id
rep3Parkison$id <- NULL
rep3Parkison$RID <- NULL
rep3Parkison[,1:ncol(rep3Parkison)] <- sapply(rep3Parkison,as.numeric)

whof <- !(colnames(rep1Parkison) %in% c("gender","class"));
avgParkison <- rep1Parkison;
avgParkison[,whof] <- (rep1Parkison[,whof] + rep2Parkison[,whof] + rep3Parkison[,whof])/3

pander::pander(table(avgParkison$class))</pre>
```

0	1
64	188

```
dataframe <- avgParkison
outcome <- "class"

pander::pander(c(rows=nrow(dataframe),col=ncol(dataframe)-1))</pre>
```

Standarize the names for the reporting

rows	col
252	753

pander::pander(table(dataframe[,outcome]))

0	1
64	188

```
varlist <- colnames(dataframe)
varlist <- varlist[varlist != outcome]
varlist <- as.data.frame(cbind(name=varlist,desc=varlist))</pre>
```

Univariate

description = ".", uniType = "Binary")

 $100: std_MFCC_1st_coef~200: app_entropy_shannon_10_coef~300: app_LT_entropy_log_9_coef~400: tqwt_entropy_log_dec_7~500: tqwt_TKEO_std_dec_35$

 $600: tqwt_stdValue_dec_27~700: tqwt_skewnessValue_dec_19$

pander::pander(univar\$orderframe[1:20,univariate_columns])

	caseMean	caseStd	controlMea	ancontrolStd	controlKS	PROCA	U W ilcoxRes	.pFRes.p
std_delta_delta_log	_ dneingy 02	8.19e- 03	8.83e-03	4.35e-03	0.151717	0.798	2.91e-11	4.44e- 16
std_delta_log_energ	~ —	2.76e- 02	2.43e-02	1.23e-02	0.172528	0.794	5.93e-11	2.89e- 15
std_9th_delta_delta	-	4.69e- 03	1.46e-02	2.48e-03	0.448029	0.787	1.72e-10	1.26e- 13
std_8th_delta_delta	1.94e- 02	4.73e- 03	1.51e-02	2.23e-03	0.908376	0.780	1.39e-09	2.39e- 12
std_7th_delta_delta	2.10e- 02	5.62e-03	1.60e-02	2.94e-03	0.830363	0.776	4.53e-10	1.26e- 12
tqwt_entropy_log_d	$1.68e{+05}$	3.86e + 04	1.32e + 05	3.25e + 04	0.361893	0.770	3.44e-11	3.09e- 13
std_6th_delta_delta	02	6.42e- 03	1.71e-02	2.97e-03	0.549789	0.768	3.41e-09	1.09e- 11
${ m std}_8{ m th}_{ m delta}$	4.09e- 02	1.02e- 02	3.20e-02	5.14e-03	0.960141	0.767	1.08e-08	1.04e- 11
${ m std_9th_delta}$.	3.94e- 02	1.01e- 02	3.08e-02	5.80e-03	0.117295	0.764	7.85e-09	9.93e- 12
tqwt_entropy_shann				2.52e + 02	0.013604	0.763	7.98e-17	3.78e- 11
$tqwt_stdValue_dec_$	02	2.10e- 02	4.45e-02	3.45e-02	0.292343	0.763	9.69e-16	3.45e- 13
${ m std}$ ${ m 7th}$ ${ m delta}$	4.41e- 02	1.21e- 02	3.41e-02	6.99e-03	0.748746	0.760	4.85e-09	1.88e- 11
tqwt_TKEO_mean_	$\overline{04}$	3.49e- 03	4.06e-03	5.98e-03	0.000563	0.760	1.56e-18	5.80e- 10
std_10th_delta_delt	02	4.91e- 03	1.46e-02	2.62e-03	0.920800	0.759	6.88e-09	9.10e- 11
tqwt_TKEO_std_de	03	2.51e- 03	4.21e-03	5.24e-03	0.001059	0.759	1.00e-17	3.60e- 12
tqwt_entropy_log_d	1.14e+05	3.17e + 04	8.82e + 04	2.42e + 04	0.265432	0.757	3.04e-09	8.77e- 11
std_11th_delta_delt	02	4.04e- 03	1.40e-02	2.21e-03	0.963577	0.757	6.64e-09	2.24e- 10
tqwt_stdValue_dec_	02	4.32e- 02	8.75e-02	5.82e-02	0.650816	0.755	4.71e-13	1.61e- 10
tqwt_entropy_log_d	$2.21\mathrm{e}{+05}$	4.22e+04	$1.86\mathrm{e}{+05}$	3.69e + 04	0.321073	0.754	9.01e-10	3.73e- 11
tqwt_entropy_shann	dn <u>86</u> de02	13 84e+02	4.74e+02	4.39e + 02	0.140805	0.754	4.68e-14	2.16e- 09

```
topfiveOrg <- rownames(univar$orderframe[1:5,])</pre>
```

Decorrelation Analysis

```
DEdataframe <- GDSTMDecorrelation(dataframe, thr=0.80, verbose = TRUE)
```

Included: 717, Uni p: 0.01155156, Uncorrelated Base: 207, Outcome-Driven Size: 0, Base Size: 207

1 < R=1.000, w=1, N=291>, Top: 95(3)1:95:0.975,<|>Tot Used: 272, Added: 178, Zero Std: 0, Max Cor: $1.000\ 2 < R = 1.000, w = 1, N = 291 >$, Top: 15(2)1 : 15 : 0.975, < | > Tot Used: 282, Added: 29, Zero Std: 0, Max Cor: 0.975 3 < R = 0.975, w = 2, N = 227 >, Top: 85(2) 1 : 85 : 0.937, < | > Tot Used: 399, Added: 113, Zero Std: 0, Max Cor: $0.991 \le R = 0.991$, w= 2N = 227 > R = 0.91 > 1 : 9 : 0.946 < TotUsed: 403, Added: 13, Zero Std: 0, Max Cor: 0.941 5 < R = 0.941, w = 3, N = 249 >, Top: 82(4)1:82:0.871, <|>Tot Used: 501, Added: 124, Zero Std: 0, Max Cor: 0.990 6 <R=0.990,w= 3,N= 249>, Top: 12(1)1:12:0.895,<|>Tot Used: 509, Added: 14, Zero Std: 0, Max Cor: 0.894, 7 < R=0.894, w= 4, N= 183>, Top: 66(3)1:66:0.827, <|>Tot Used: 546, Added: 83, Zero Std: 0, Max Cor: 0.942 8 < R = 0.942, w = 0.9424,N= 183>, Top: 12(2)1:12:0.821,<|>Tot Used: 551, Added: 15, Zero Std: 0, Max Cor: 0.8269 <R=0.826,w= 5,N= 20>, Top: 9(1)1 : 9 : 0.800,<|>Tot Used: 551 , Added: 10 , Zero Std: 0 , Max Cor: $0.945\ 10 < R = 0.945, w = 5, N = 20 >$, Top: 1(1)1:1:0.800, <| > Tot Used: 551, Added: 1, Zero Std: 0, Max $\label{eq:condition} \text{Cor: 0.799 11} < \text{R=0.000,w=6,N=0} > - \{ \text{ std_MFCC_4th_coef std_MFCC_6th_coef std_MFCC_8th_coef std_MFCC_8tf_MFCC_8tf_MFCC_8tf_MFCC_8tf_MFCC_8tf_MFCC_8tf_MFCC_8tf_MFCC_8tf_MFCC_8tf_MFCC_8tf_MFCC_8tf_M$ std_MFCC_10th_coef std_MFCC_12th_coef std_9th_delta Ed_1_coef det_entropy_shannon_2_coef det_entropy_log_5_coef det_LT_entropy_shannon_6_coef tqwt_energy_dec_7 tqwt_energy_dec_10 tqwt energy dec 33 tqwt energy dec 35 tqwt entropy shannon dec 1 tqwt entropy shannon dec 3 tqwt_entropy_shannon_dec_10 tqwt_entropy_shannon_dec_27 tqwt_entropy_shannon_dec_28 tqwt_entropy_shannon_dec_31 tqwt_entropy_log_dec_10 tqwt_entropy_log_dec_20 tqwt_entropy_log_dec_22 tqwt_TKEO_mean_dec_15 tqwt_TKEO_mean_dec_17 tqwt_TKEO_mean_dec_21 tqwt_TKEO_mean_dec_23 tqwt TKEO mean dec 31 tqwt TKEO mean dec 35 tqwt TKEO mean dec 36 tqwt TKEO std dec 19 tqwt minValue dec 1 tqwt skewnessValue dec 4 tqwt skewnessValue dec 34 tqwt kurtosisValue dec 34 }- [11], 0.799405 Decor Dimension: 551 . Cor to Base: 286 , ABase: 55 , Outcome Base: 0

pander::pander(c(Decorrleated_Fraction=sum(str_detect(colnames(DEdataframe), "La_"))/(ncol(DEdataframe)-

Decorrleated_Fraction	
0.612	

pander::pander(c(Base_Fraction=sum(str_detect(colnames(DEdataframe), "Ba_"))/(ncol(DEdataframe)-1)))

```
Base_Fraction
0
```

```
demat <- attr(DEdataframe, "GDSTM")
pander::pander(c(sparse_Fraction=1.0-sum(demat==0)/ncol(demat)/nrow(demat)))</pre>
```

```
sparse_Fraction
0.00386
```

```
varlistDe <- colnames(DEdataframe)[colnames(DEdataframe) != "class"];
varlistDe <- as.data.frame(cbind(name=varlistDe,desc=varlistDe))</pre>
```

The heat maps.

Spearman Correlation Original


```
main = "Spearman Correlation: After GDSTM",
    cexRow = 0.35,
    cexCol = 0.35,
    key.title=NA,
    key.xlab="Spearman Correlation",
    xlab="Feature", ylab="Feature")
```

Count 0 150000

Spearman Correlation: After GDSTM

Univariate Decorrelated

par(op)

 $100: La_std_MFCC_1st_coef 200: La_app_entropy_shannon_10_coef 300: La_app_LT_entropy_log_9_coef 400: La_tqwt_entropy_log_dec_7 500: La_tqwt_TKEO_std_dec_35$

 $600: La_tqwt_stdValue_dec_27~700: tqwt_skewnessValue_dec_19$

pander::pander(univarDe\$orderframe[1:20,univariate_columns])

	caseMean	caseStd	controlMea	accontrolStd	controlKS	PROCA	U W ilcoxRes	.pFRes.p
std_delta_log_energy	4.20e- 02	2.76e- 02	2.43e-02	1.23e-02	1.73e-01	0.794	5.93e-11	2.89e- 15
La_tqwt_entropy_log	dec33 2.53e+02	2.32e+02	6.61e+01	3.72e + 02	5.55e-01	0.792	9.17e-16	0.00e+00
${ m std}_9{ m th}_{ m delta}$	3.94e- 02	1.01e- 02	3.08e-02	5.80e-03	1.17e-01	0.764	7.85e-09	9.93e- 12
mean_MFCC_2nd_co	ef 65e+00	1.37e + 00	1.27e-01	1.71e+00	9.59e-01	0.753	5.17e-11	5.16e- 14
$La_tqwt_kurtosisValu$	<u>&.4de∉0(</u> B3	3 .33e+00	-3.33e-01	4.52e+00	9.49e-03	0.749	3.03e-10	1.10e- 11
tqwt_minValue_dec_1	1 3 1.60e- 01	1.26e- 01	-2.92e-01	1.68e-01	6.80e-01	0.746	1.11e-12	8.76e- 11
La_std_delta_delta_l	o<u>g.4</u>&æerg 03	y 3.09e- 03	1.84e-03	1.64e-03	8.73e-02	0.744	1.99e-07	2.28e- 06
La_apq11Shimmer	1.38e- 02	1.45e- 02	4.49e-03	9.78e-03	3.25e-02	0.731	4.41e-07	6.24e- 08
$tqwt_kurtosisValue_d$	_	7.90e- 01	2.09e+00	4.00e-01	2.44e-01	0.727	5.86e-07	6.25e- 09
La_std_6th_delta	9.37e- 03	7.37e- 03	5.06e-03	3.64e-03	7.46e-01	0.726	2.39e-07	3.34e- 05
$tqwt_energy_dec_26$	7.22e- 02	8.33e- 02	2.92e-02	5.56e-02	1.34e-05	0.726	9.12e-05	5.30e- 06
$tqwt_energy_dec_27$	5.24e- 02	9.45e- 02	1.30e-02	3.57e-02	7.68e-08	0.725	3.58e-03	1.52e- 04
La_tqwt_entropy_sha	01			3.68e + 00	3.36e-06	0.720	7.00e-07	4.49e- 06
$tqwt_energy_dec_12$	3.68e- 03	7.60e- 03	1.27e-02	1.66e-02	2.80e-03	0.717	4.38e-15	2.09e- 09
${ m La_GNE_std}$	-7.89e- 02	6.02e- 02	-1.27e-01	6.85e-02	9.30e-01	0.714	6.01e-09	3.99e- 09
$tqwt_entropy_log_decorption$	c_10 2.63e+05	5.18e+04	$\frac{1}{2.29e+05}$	3.92e+04	2.37e-01	0.713	1.87e-06	2.15e- 07
${f rapJitter}$	7.04e- 04	9.87e- 04	3.14e-04	3.46e-04	6.25e-03	0.711	4.56e-04	3.73e- 06
DFA	7.13e- 01	6.33e- 02	6.64e-01	6.16e-02	8.65e-01	0.711	4.83e-07	3.82e- 08
tqwt_entropy_shanno	n <u>5.9</u> de <u>¢ 0</u> 21.7	4.67e+02	9.44e + 02	4.14e + 02	2.96e-01	0.709	6.78e-06	1.77e- 07
tqwt_energy_dec_28	2.28e- 02	5.50e- 02	6.13e-03	2.34e-02	6.81e-11	0.709	3.51e-01	5.47e- 03

Comparing Decorrelation vs Original

```
pthr <- 0.20/(ncol(dataframe)-1)

topDecorNames <- rownames(univarDe$orderframe[univarDe$orderframe$FRes.p<pthr,])
topDecorNames <- unique(c(topDecorNames,rownames(univarDe$orderframe[1:5,])))</pre>
```

```
#topDecorNames <- rownames(univarDe$orderframe[univarDe$orderframe$FRes.p<1.0e-5,])
dc <- getLatentCoefficients(DEdataframe)</pre>
### 2a Get only the ones that in the top features
deNames_in_dc <- topDecorNames[topDecorNames %in% names(dc)]</pre>
selectedlist <- dc[deNames_in_dc]</pre>
theDeFormulas <- selectedlist
rawuniv <- univariate Wilcoxon(dataframe,outcome,limit=-1)</pre>
deuniv <- univariate_Wilcoxon(DEdataframe,outcome,limit=-1)</pre>
matsize <- (ncol(dataframe)-1)^2</pre>
nocorrelated <- ncol(dataframe) - 1 - ncol(demat)</pre>
pander::pander(c(sparse_Fraction=(sum(demat != 0) + nocorrelated)/matsize))
                                        sparse_Fraction
                                            0.00243
pander::pander(c(raw=length(rawuniv),decor=length(deuniv)))
                                                  decor
                                       raw
                                                   382
                                       505
pander::pander(c(Number_Latent=length(dc)))
                                        Number Latent
                                              461
pander::pander(c(meanSize=mean(sapply(dc,length))))
                                           meanSize
                                              2.35
```

CV ROC Analysis

```
par(op)
par(mfrow=c(1,2),cex=0.9)
fraction <-0.70
repetitions <- 100

fcout <- round(fraction*nrow(dataframe)/15+1.0)
pander::pander(c(NumberofFeatures=fcout))</pre>
```

NumberofFeatures
13

bpraw <- predictionStats_binary(cvRaw\$medianTest,"RAW",cex=0.75)</pre>

RAW

pander::pander(bpraw\$CM.analysis\$tab)

	$Outcome \ +$	Outcome -	Total
Test +	182	39	221
Test -	6	25	31
Total	188	64	252

pander::pander(bpraw\$accc)

est	lower	upper
0.821	0.768	0.867

pander::pander(bpraw\$aucs)

est	lower	upper
0.838	0.78	0.896

pander::pander(bpraw\$berror)

50%	2.5%	97.5%
0.319	0.26	0.379

bpDecor <- predictionStats_binary(cvDe\$medianTest,"Decorrelated",cex=0.75)</pre>

par(op)

pander::pander(bpDecor\$CM.analysis\$tab)

	Outcome +	Outcome -	Total
Test +	184	35	219
Test -	4	29	33
Total	188	64	252

pander::pander(bpDecor\$accc)

est	lower	upper
0.845	0.795	0.888

pander::pander(bpDecor\$aucs)

est	lower	upper
0.852	0.791	0.913

pander::pander(bpDecor\$berror)

50%	2.5%	97.5%
0.283	0.219	0.344

Here we compute the probability that the outcome-driven decorrelation ROC is superior to the RAW RO pander::pander(roc.test(bpDecor\$ROC.analysis\$roc.predictor,bpraw\$ROC.analysis\$roc.predictor,alternative

Table 22: DeLong's test for two correlated ROC curves: bpDecor\$ROC.analysis\$roc.predictor and bpraw\$ROC.analysis\$roc.predictor

Test statistic	P value	Alternative hypothesis	AUC of roc1	AUC of $roc2$
0.691	0.245	greater	0.852	0.838

Feature Frequency Plots

```
par(mfrow=c(2,1),cex=0.9,cex.axis=0.8)

rawtopf <- cvRaw$featureFrequency/repetitions
crawtopf <- rawtopf

if (length(rawtopf) > 30)
{
    rawtopf <- rawtopf[1:30]
}
barplot(100*rawtopf,las=2,main="Raw Features",ylim=c(0,100.0),cex.names = 0.35,cex.axis = 0.35,ylab="Sedetopf <- cvDe$featureFrequency/repetitions
cdetopf <- detopf</pre>
```

```
names(cdetopf) <- str_remove_all(names(cdetopf), "Ba_")
names(cdetopf) <- str_remove_all(names(cdetopf), "La_")
if (length(detopf) > 30)
{
    detopf <- detopf[1:30]
}
barplot(100*detopf,las=2,main="Decorrelated Features",ylim=c(0,100.0),cex.names = 0.35,cex.axis = 0.35,</pre>
```

Raw Features

Decorrelated Features

Final Table

```
unlistdecorr <- selectedlist
names(unlistdecorr) <- NULL
unlistdecorr <- unique(names(unlist(unlistdecorr)))
finalTableDe <- univarDe$orderframe[deNames_in_dc,univariate_columns]</pre>
```

```
finalTableOr <- univar$orderframe[unique(c(topfiveOrg,unlistdecorr,names(crawtopf)[1:2],names(cdetopf)[
finalTable <- rbind(finalTableOr,finalTableDe)</pre>
deFromula <- character(length(theDeFormulas))</pre>
names(deFromula) <- names(theDeFormulas)</pre>
for (dx in names(deFromula))
  coef <- theDeFormulas[[dx]]</pre>
  cname <- names(theDeFormulas[[dx]])</pre>
  names(cname) <- cname</pre>
  for (cf in names(coef))
    if (cf != dx)
      if (coef[cf]>0)
        deFromula[dx] <- paste(deFromula[dx],</pre>
                                  sprintf("+ %5.3f*%s",coef[cf],cname[cf]))
      }
      else
      {
        deFromula[dx] <- paste(deFromula[dx],</pre>
                                  sprintf("%5.3f*%s",coef[cf],cname[cf]))
    }
 }
}
orgnamez <- rownames(finalTable)</pre>
orgnamez <- str_remove_all(orgnamez, "Ba_")</pre>
orgnamez <- str_remove_all(orgnamez,"La_")</pre>
finalTable$uAUC <- univar$orderframe[orgnamez,"ROCAUC"]</pre>
finalTable$raw_Freq <- crawtopf[orgnamez]</pre>
finalTable$La_Freq <- cdetopf[orgnamez]</pre>
finalTable$DecorFormula <- deFromula[rownames(finalTable)]</pre>
fscores <- attr(DEdataframe, "fscore")</pre>
finalTable$fscores <- fscores[rownames(finalTable)]</pre>
finalTable <- finalTable[order(-finalTable$ROCAUC),]</pre>
pander::pander(finalTable)
```

		casel	TeanseS	t d ontro	l Meatr o	l Stal tro	l RSPCAViC ox	:HeR.eps.puAUGaw_	_Fteq_F	r Þ æcorFormula	fscores
std_{-}	_delta_	_ delt5 6e	log <u>19</u> ei	nerege-	4.35e-	1.52e-	0.798 2.91e-	4.44e- 0.798 0.92	0.16	NA	NA
		02	03	03	03	01	11	16			
$\operatorname{\mathbf{std}}_{-}$	$_{ m delta}$	_log <u>t.2</u> @e	e2gy 6e-	- 2.43e-	1.23e-	1.73e-	0.794 5.93e-	2.89e- 0.794 0.03	0.11	NA	4
		02	02	02	02	01	11	15			

						l RSPCAViC cox			1	
La_tqwt_e	$\operatorname{ntropy}_{_}$	1 0ge-	d626 1e3	3 31.72e+	- 5 255e-	0.792~9.17e-	0.00e + 0.06440.04	1.00	-	-1
	2.53e +	-02			01	16			$0.693 tqwt_ent$	$ropy_log_dec\$
									+	
										$tropy_log_dec_$
${ m td}$ ${ m 9th}$ ${ m de}$	elta. <u>89</u> de				4.48e-	$0.787\ 1.72e$ -	1.26e-0.7870.19	NA	NA	NA
	02	03	02	03	01	10	13			
${ m td}$ ${ m 8th}$ ${ m de}$	elta. <u>9</u> 4de				9.08e-	$0.780\ 1.39e-$	2.39e-0.7800.05	NA	NA	NA
	02	03	02	03	01	09	12			
${ m td}$ ${ m 7th}$ ${ m det}$	elt2a <u>.10</u> de	l ta 62e-	1.60e-	2.94e-	8.30e-	$0.776 \ 4.53e$ -	1.26e-0.7760.25	NA	NA	NA
	02	03	02	03	01	10	12			
qwt_entrop	$py\log_$	<u>3</u> d&c_	\pm 02	3.25e+	- 3 462e-	$0.770\ 3.44e-$	3.09e-0.770 NA	0.01	NA	NA
	1.68e +	-05	1.32e +	-05	01	11	13			
td _8 th _ $\mathrm{d}\epsilon$	elt a .09e-	1.02e-	3.20e-	5.14e-	9.60e-	0.767 1.08e-	1.04e-0.7670.07	0.04	NA	NA
	02	02	02	03	01	08	11			
id $\mathrm{9th}$ de	elt a .94e-	1.01e-	3.08e-	5.80e-	1.17e-	$0.764\ 7.85e-$	9.93e-0.7640.03	0.96	NA	3
	02	02	02	03	01	09	12			
qwt_entrop	py <u>6.1</u> s 3ea	101116310 _	<u>+</u>2012e& e+	102 52e+	-0236e-	0.763 7.98e-	$3.78e-0.763 \mathrm{NA}$	NA	NA	NA
					02	17	11			
${ m qwt_stdVa}$	dule <u>81</u> de	<u> 2.1</u> 102-	4.45e-	3.45e-	2.92e-	$0.763 \; 9.69e$ -	3.45e-0.7630.17	0.02	NA	NA
	02	02	02	02	01	16	13			
$\mathrm{td}_{-}7\mathrm{th}_{-}\mathrm{de}$	elt a .41e-	1.21e-	3.41e-	6.99e-	7.49e-	$0.760\ 4.85e-$	1.88e-0.7600.05	0.22	NA	NA
	02	02	02	03	01	09	11			
qwt_entro	pylog_	4 dæ e-	± 04	3.69e +	- 3 421e-	0.754 9.01e-	3.73e-0.754 NA	0.04	NA	NA
	2.21e+		-1.86e +		01	10	11			
qwt TKE(O 5.1714ea	nl.9dee			9.85e-	0.753 1.92e-	7.27e-0.753 NA	0.27	NA	NA
• —	03	$\frac{-}{02}$	02	02	04	16	07			
qwt_minVa	alue de	e 6 .74 c2					2.49e- 0.752 0.21	0.03	NA	NA
• —	9.07e-		1.77e-	01	01	13	13			
	02		01				-			
td 6th de	-	1.36e-		6.86e-	3.36e-	0.749 2.69e-	2.35e- 0.749 0.12	0.04	NA	NA
	02	02	02	03	01	08	10	0.0 -		
a towt k		-					1.10e- 0.628 NA	0.46	_	-1
aa			3.33e-	.55.0201	03	10	11	0.10	0.872 tawt kur	$tosisValue_dec_$
			01		00	10	11		+	
			01						1 000 tawt ku	rtosisValue dec
td 10th d	lelt&0e-	1 05e-	3 07e-	5 57e-	8 51e-	0 746 4 51e-	1.07e- 0.746 0.01	0.46	NA	NA
.a10111_0	02	02	02	03	0.010-	0.740 4.910	09	0.10	1111	1111
qwt_minVa						0.746 1.11e-		0.24	NA	4
4w ciiiii v c	1.60e-		2.92e-	01	0.000-	12	11	0.24	11/11	4
	01	O1	01	01	01	12	11			
a std dal		13 ()(1 24		rotu64o	8 730	0.744.1.005	2.28e- 0.798 0.92	0.16		-1
a_stu_uei	па <u>о.4</u> моен 03		_		02	0.744 1.996-	06	0.10	0.288std delta	
	U3	03	03	03	02	07	υυ			епетуу
									+ 1 000gtd dolt	a dalta 1am
	0 FAI- 1	aus.	(0)17 (2	1011 07- 1	MO71 -	0.744.1.64	7600 0744001	0.01		a_delta_log_er
qwt_entro	pyz <u>.5x10:a</u>	-19AAA+CXAG-	+ wanewe+				7.60e- 0.744 0.01	0.01	NA	NA
, mirr	0 4 401	HI 01	111 0 4	0.70	03	14	11	0.00	TA T A	DT A
qwt_TKE(-				9.27e- 0.741 0.25	0.08	NA	NA
1 46:1	04	04	03	03	04	15	12	0.04	37.4	DT 4
: a_12th_ d						0.734 2.74e-		0.04	NA	NA
	02	03	02	03	02	07	09			

c	aseMe	ecanseSt	dontro	l Meatr o	1.Stochtro	ol RSPCAV iCe	oxHeRes.puAUGaw_	_Fheq_I	Fr Þ æcorFormula	fscores
	n38er 02	1.45e- 02	4.49e- 03	9.78e- 03	3.25e- 02	0.731 4.41e 07	- 6.24e- 0.713 NA 08	0.28	- 1.278 <i>apq3Shin</i> +	$\frac{-1}{nmer}$
									1.000apq11Sh	immer
_							- 7.40e- 0.731 0.09	NA	NA	NA
La std 6th 9	04 ปลิวิ ยล	04 7.37e-	03 5.06e-	03 3 64e-	05 7 46e-	14 0.726.2.39e	09 - 3.34e- 0.749 0.12	0.04	_	0
	03	03	03	03	01	07	05	0.01	0.106 <i>std_MF</i>	
									1.000std_6th	_delta
-							- 2.23e- 0.723 NA	NA	NA	NA
	02	02	02	02	02	0.700.1.10-	07	NT A	NT A	NT A
$\operatorname{qwt_entropy}_{\circ}$	10g_ 3.08e+		⊑ա 4∎ 6.34e+		-02428e- 01	0.720 1.10e 06	- 3.29e- 0.720 NA 08	NA	NA	NA
							- 4.49e- 0.621 0.01	0.04	_	0
5	5.89e- 01		01	<u></u> ,	06	07	06	0.0 -	$0.725 tqwt_ens$	$tropy_shannon_$
										tropy_shannon
					01	09	- 6.36e- 0.718 NA 08	NA	NA	NA
_				3.92e- 02			- 5.96e- 0.717 NA	NA	NA	NA
$_{ m a_GNE_std}$	02	02 6.02e-	02		02 9.30e-	11 0.714.6.01e	06 - 3.99e- 0.574 NA	0.08	_	-1
7	7.89e- 02		1.27e- 01	02	01	0.714 0.010	09	0.00	0.280 GNE_m	
									1.000 GNE_st	d
_							- 1.36e- 0.713 0.04	NA	NA	NA
	05	04	04	04	06	11	05	0.00	NT A	NT A
	r:99e- 02	2.83e- 02	4.21e- 02	2.52e- 02	01	0.713 7.02e 06	- 6.42e- 0.713 NA 08	0.28	NA	NA
qwt_entropy							- 2.15e- 0.713 NA	NA	NA	3
	2.63e+		2.29e +		01	06	07			
qwt_entropyl	5 slea i	Qili3dra _	-@1764 e+	7 61.26e+	-07168e- 05	0.712 1.39e 09	- 3.79e- 0.712 0.08 06	NA	NA	NA
$ m a_std_4th_3$	d&0ta 03	6.70e- 03	8.40e-	5.55e- 03	2.35e- 01	0.708 1.40e 07	- 2.01e- 0.679 NA 05	0.20	0.127 <i>std_MF</i>	$0 \\ CC_4th_coef$
			04						+ 1.000std_4th	delta
a_tgwt_stdV	Value	2. d&c -	<u>1</u> 2438e-	2.73e-	7.96e-	0.708 1.00e	- 6.15e- 0.607 NA	0.15	+	aerta -1
5	5.08e- 03		02	02	01	07	07		1.000 <i>tqwt_std</i> +	Value_dec_20
) <u>(</u> 21	0.170	ione1	0 0774 ·	011 A	0.707.1.00	6 07 - 0 707 0 01	TNT A		inValue_dec_20
qwt_entropy <u>2</u>	<u>4</u> 810c8 1		- ane.c e+	™ 4e+	-ur14e- 03	0.707 1.08e 10	- 6.87e- 0.707 0.01 06	NA	NA	NA
td_MFCC_8	8 t98<u>e-</u>c 01	⊽e3 0e- 02	2.50e- 01	4.52e- 02				0.03	NA	1
$ m _a_std_10th_7^2$	-		-			0.704 7.65e		0.46	-	0
	05	03	3.02e-03	03	01	08	06		+	CC_10th_coef
		0.0=	4 25	0.00	4 4=	0 =0 + 0 =0	4.00 0 =0 :37:	3.7.4	1.000std_10tl	
_	_ .i7ilea r 04	1 <u>8.3</u> dec 04	2 <u>4.6</u> 5e- 04	9.80e- 04	4.47e- 06	0.704 3.70e 12	- 4.69e- 0.704 NA 05	NA	NA	NA

	caseM	eaaseSt	dontro	l M eatr o	l Setochtro	1 IRSPC AVICE	oxReReps.puAUGaw_	_Fteq_F	Frequencies frequencies
La_tqwt_	_std %43 u-6	e <u>6.</u> doc 03	_1 132 8e- 02	7.53e- 03	2.10e- 01	0.703 1.416	5.17e- 0.763 0.17 08	0.02	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
La_app_l	LT_3e7ffær	₽₽ \$ <u>92d</u> €	o <u>g.7</u> 42 <u>+</u>	Ch&f e- 01	3.16e- 01	0.702 5.60e 06	- 1.30e- 0.647 NA 05	0.01	1.000tqwt_stdValue_dec_121 0.576app_LT_entropy_log_1_coe_ +
.qwt_entr	copy <u>8. 1</u> slea	+ 9 bili6719-	+ 7d127 e+	100. 84e+	-07170e- 03	0.701 1.706	e- 2.07e- 0.701 NA 07	0.19	1.000app_LT_entropy_log_2_co NA 6
La_std_N	AFC7© <u>8e</u> 2 02	n 7d<u>17</u>ee 02	01	7.21e- 02			7.54e- 0.508 NA 06	0.42	$+ -1 \\ 1.000std_MFCC_2nd_coef$
La_app_l	LT_8BKÆ	1 <u>0(12</u> 3et 1	<u>#170</u> 962 <u>e-</u> e	6128 9e+	- 9 059e- 02	0.701 1.50e 06	- 1.64e- 0.685 NA 04	0.04	- 6.424std_2nd_delta + -3 0.651app_entropy_log_1_coef - 2.238app_LT_entropy_log_1_co
									+ 2.761 app_LT_entropy_log_8_coe
									3.019app_LT_TKEO_mean_6_c
${ m tqwt_stdV}$	Valuæ <u>93</u> de 03	e c<u>3.8</u>4 e- 03	7.10e- 03	7.26e- 03	2.39e- 02	0.701 1.146	- 1.37e- 0.701 0.20 05	0.05	1.000app_LT_TKEO_std_6_coo NA NA
La_tqwt_							5.84e- 0.608 NA 05	0.10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
qwt_entr	ropylog 6.73e-		<u>⊦</u>6 5- 5.90e+		- 34 13e-	0.696 1.356	2.86e- 0.696 NA	0.19	1.000 tqwt_minValue_dec_33 NA NA
ipp_LT_							e- 3.77e- 0.690 NA 06	NA	NA NA
_a_std7	'th_1d'elle a 03	5.22e- 03	1.80e- 03	5.30e- 03	2.38e- 01	0.689 9.556	e- 2.45e- 0.760 0.05 06	0.22	- 0 0.131std_MFCC_7th_coef + 1,000+1,7th_th_th_coef
La_tqwt_	_ entropy _ 8.33e-		dee3 1.28e+		- 92 64e- 01	0.689 1.25e 07	- 8.81e- 0.548 NA 11	0.04	1.000std_7th_delta + 2 1.000tqwt_entropy_log_dec_31
La_app_l	LT_le0stere	⊅∮ 5 <u>0</u> de 05	o <u>ģ.04</u> 9 <u>+</u>	@4.09 e- 05	7.58e- 01	0.688 7.716	- 1.12e- 0.682 NA 04	0.02	1.241 tqwt_entropy_log_dec_34 2 0.001 det_LT_TKEO_mean_9_c
app_LT_'	TK E Ø <u>4e</u> 4	2 0625 12 <u>-</u> 01	_ 3 .67æk	960 .13e- 01	7.30e- 01	0.687 5.25e 07	e- 1.66e- 0.687 0.01 05	0.01	1.000app_LT_entropy_log_8_cd + 1.000*app_LT_entropy_log_9_c NA NA

	3.1	C	. 1 .	13 f	10, 1,	1112012	ALTE ACT	IED ALIC	T3T T	
T4.1 041-								1.65e- 0.767 0.07		Frequencies from from from from from from from from
La_std_oth	_ 304e0ea 03	03	04	03	01	0.087	06	05	0.04	- 0 0.126std_MFCC_8th_coef +
app_entropy	_shan 1.85e+		8 09 coe 2.74e+		- 3 908e-	0.686	5.83e- 09	2.22e- 0.686 0.01 07	. NA	1.000std_8th_delta NA NA
app_entropy		iddi g <u>e</u>		f 3.31e+		0.686		2.21e- 0.686 NA 07	0.06	NA NA
La_tqwt_Tl						0.686		2.04e- 0.741 0.25 07	0.08	1 1.309tqwt TKEO mean dec 11
La_app_LT						0.686		1.21e- 0.654 NA 05	NA	1.000tqwt_TKEO_metn_acc_11 + 1.000tqwt_TKEO_std_dec_11 + -2 0.185app_entropy_log_1_coef - 0.337app_entropy_log_2_coef
La_tqwt_Tl	KEO_ 9.68e- 05		dec 1.43e- 04	_	1.09e- 04	0.685	5.01e- 06	1.40e- 0.704 NA 04	NA	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
La_tqwt_en	tīro∕py±	<u>-6406</u> 66	⊭1861 1 <u>0e</u> €	1600 <u>427</u> e+	-0089e- 02	0.685	7.91e- 08	2.15e- 0.712 0.08 04	8 NA	+ -1 1.000tqwt_entropy_shannon_dec_7
app_LT_TK	E.62 <u>e</u> \$	601 386	<u>+5</u> c180ef+	-0 2 38e+	- 24177 e-	0.685	1.48e- 06	7.50e- 0.685 NA 07	0.04	137039.733tqwt_TKEO_mean_dec NA NA
app_LT_TK	ŒØ 6 <u>e</u> ‡	n029 .tr <u>e</u>	± 0 .D9∞	e 62 226e+	-04166e- 01	0.684	1.81e- 06	5.58e- 0.684 NA 07	NA	NA NA
La_std_12tl	n <u>1.</u> 8Kelt 03	a 4.45e- 03	9.07e- 04	4.00e- 03	7.47e- 01	0.683	4.39e- 06	1.50e- 0.734 NA 05	0.04	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
La_tqwt_ste	d M@Oue 01	e <u>5.</u> £&c 02	<u>-1</u> 1376e-	3.76e- 02	8.45e- 01	0.683	3.54e- 05	1.51e- 0.681 NA 06	0.18	1.000 std_12th_delta - 0 0.929tqwt_TKEO_mean_dec_17 +
app_LT_ent	т ор у <u>е</u> +	- 1004 8e	<u> </u>	2 012.68e+	-3053e- 01	0.682	8.64e- 06	1.86e- 0.682 NA 06	0.02	7.000 tqwt_stdValue_dec_17 NA 34
app_LT_ent	r lo⊉3 e <u>+</u>	-104 8e	<u>9-0</u> æðæf	-01268e+		0.682		1.86e- 0.682 NA 06	0.02	NA NA

caseMe za se	StocontrolMontrolS	State trolk (SP	CAViCox	aHenangs.puAUGaw_	_Fteq_F	PrecorFormula fscores
La_app_entropy_l&g4 1.69e+0 2 1	<u>e</u>4_coef 1.17e+0 1.69e+02	1021e- 0.68 01	1 1.28e- 07	7.70e- 0.668 NA 06	0.02	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
						0.733app_LT_entropy_log_1_c - 2.529*app_LT_entropy_log_8_
qwt_stdValue <u>03ded.5</u> 8 01 01	7 -2.85e-1.18e-01 01	6.10e- 0.68 01	1 2.20e- 05	3.10e- 0.681 NA 04	0.18	NA NA
pp_LT_TKE@e_mle44 01 01	e <u>- 1.0</u> 4 cole #10.23e- 8	8.21e- 0.68 01	1 9.92e- 07	9.84e- 0.681 0.04 05	NA	NA NA
qwt_entropylog_7de9 3.29e+03				3.86e- 0.681 0.01 06	0.10	NA 3
a_tqwt_stdValue <u>4.</u> d@ 3.59e- 02 02		9.79e- 0.68 02	05 1.40e-	1.58e- 0.628 NA 05	0.43	$\begin{array}{c} + & -1 \\ 1.000 tqwt_stdValue_dec_18 \\ + \end{array}$
La_app_LT_TKEO <u>.87</u> 8.86e- 02 01	nean_2_5c57ef- (8.69e- 02 01	6.10e- 0.68 05	00 1.20e- 06	4.72e- 0.687 0.01 05	0.01	0.427tqwt_minValue_dec_182 0.003app_LT_entropy_log_1_c 3.057app_LT_TKEO_mean_1
La_tqwt_ent&App+1&g	e_ db2 5e 6 -05.34e+0	9443e- 0.67 01	79 5.18e- 06	3.98e- 0.696 NA 07	0.19	+ 1.000*app_LT_TKEO_mean_21 0.483tqwt_entropy_log_dec_2 +
td_4th_delt ā .32e- 1.81	e- 4.17e- 7.95e- 8	8.94e- 0.67 01	9 4.36e- 05	1.38e- 0.679 NA 06	0.20	$\begin{array}{ccc} 1.000 \mathrm{tqwt_entropy_log_dec_6} \\ \mathrm{NA} & \mathrm{NA} \end{array}$
td_MFCC_ 7 t2 <u>Ne</u> -c 8 e20					NA	NA NA
.a_app_entr&p̃y <u>e</u> ⊣s¶æ	nak316 8 9 +086916+0	96 00e- 0.67 01	78 9.96e- 07	6.35e- 0.686 NA 07	0.06	1 2.076app_entropy_shannon_8_ + 1.000app_entropy_shannon_9_ +
app_det_TK E© e_ ենԹ	a<u>+</u>133<u>4</u>e+eft 22e+0	1455e- 0.67 01	7 2.15e- 08	2.88e- 0.677 0.04 06	NA	2864300.369*app_LT_entropy_ NA NA
qwt_TKEO <u>1</u> .inleanl5d1 01 01	ec 1. 607 e- 1.12e- 4	-			NA	NA 2
ua_app_det_TKE 0 02 4.58e+02				-	NA	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
qwt_kurtosi sW2hie IU3	ed<u>-0</u>.26 e+01.40e+0	7162e- 0.67 06	5 1.06e- 14	4.27e- 0.675 0.75 11	0.64	- 0.358app_det_TKEO_mean_3 NA NA

			du OII 01	TOTOLOGIC	TO COMPLETO	III OIC F	WUNCOX	Heakeps.puAUGaw_	_բազ_բ	rececorrormui	a iscores
La_app_LT_	<u> 217Kæ</u> (0 <u>0</u> 9 m	e 2u7 1 <u>e1</u> ⊢	02 02	9.80e- 04	0.673	5.06e- 04	2.00e- 0.681 0.04 04	NA		$\overline{1 \atop tropy_log_1_coef}$
										0.021 app_L7 +	$\Gamma_{\rm entropy_log_1_}$
td_MFCC_						0.672		7.68e- 0.672 NA	NA		T_TKEO_mean_ 3
						0.672		06 1.81e- 0.672 NA	NA	NA	NA
	2.20e+ 1. d&c - 03		2.39e+ 5.04e- 03		01 3.63e- 06	0.672	06 8.36e- 13	06 4.30e- 0.672 0.32 10	0.31	NA	NA
La_tqwt_ent						0.671		9.76e- 0.577 NA 07	NA	- 0.859tqwt_en +	-1 ntropy_log_dec_31
a_tqwt_Tk	XE/O e-s		lec <u></u> 36 9.37e- 03	2.43e- 02	1.18e- 05	0.669	6.24e- 11	6.33e- 0.637 NA 06	0.29	1.000 tqwt_e	ntropy_log_dec_3 -1 KEO_mean_dec_3
pp_entropy	<u>3.136g+</u>	4 <u>24</u> 00	e5 .114e+	0 2 57e+	- 021 94e-	0.668	3.06e- 05	6.18e- 0.668 NA 06	0.02	1.000 tqwt_7 NA	CKEO_std_dec_36 NA
a_tqwt_Tk	6E:0 <u>e-</u> s	s t.ds<u>3e</u>d 05	05 05	2.95e- 05	-	0.667		1.59e- 0.611 NA 04	0.25	- 0.000 <i>tqwt_en</i> +	-1 $atropy_shannon_de$
qwt_TKEO	<u>1</u> Bic ar 02	1 <u>4.0</u> 12ec	2 <u>2.</u> 65 e- 02	6.11e- 02	8.30e- 07	0.666	4.68e- 10	3.15e- 0.666 NA 02	NA		TKEO_std_dec_1 2
pp_det_TK						0.666	-	3.12e- 0.666 NA 05	NA	NA	NA
a_tqwt_Tk	4E:0 <u>e-</u> s 03		lec <u></u> 20 7.49e- 03	2.33e- 02		0.666		1.80e- 0.542 NA 04	0.05	+	-1 KEO_mean_dec_2
-	l Value 3.72e- 04		_8 6 30e- 04	2.43e- 03	5.37e- 02	0.665	1.42e- 06	1.47e- 0.701 0.20 04	0.05	+	CKEO_std_dec_20 0 dValue_dec_6
td_MFCC_		666 -	2.45e- 01	4.89e- 02	5.30e- 01	0.665	3.32e- 04	2.57e- 0.665 NA 05	NA		ninValue_dec_5 1
a_tqwt_ent	t r∂py ±	<u>(</u> 1821/14/en+	r062 h1 <u>e</u> ∙d	612 <u>44</u> 1 ⊳4	-0 7 224e- 01	0.664	1.25e- 04	2.60e- 0.718 NA 05	NA	+ 1.000 tqwt_er	$0 \\ atropy_shannon_de$
a_locShimn	12e8 7e- 03	6.68e- 03	- 5.43e- 04	5.51e- 03	8.32e- 03	0.664	2.09e- 04	6.63e- 0.663 NA 05	NA	11956.752tqv + 1.000loc- Shimmer	vt_TKEO_mean_ 0
4-1 MEG	5 G 2e3r	51.24co		6.18e-	2.62e- 02	0.664	3.74e- 06	1.91e- 0.448 NA 04	0.08	1.905apq3Sh +	immer -1 FCC_3rd_coef

	caseM	ezanseS	t d ontro	ol Monataro	lSctoditro	IRSEC.	AV iCox	eHenenger.puAUGaw_	_Fteq_I	Fr Þ ¢corFormula	fscores
locShimmer	7.15e- 02	3.71e- 02	- 5.56e- 02	3.69e- 02	3.38e- 02	0.663	2.99e- 03	2.15e- 0.663 NA 04	NA	NA	NA
La_tqwt_st						0.660		2.30e-0.624 NA	0.05	-	-1
	03	03	03	03	02		05	04			$ropy_shannon_dec_3$
										+ 1.000 tqwt_sto	dValue_dec_4
app_entropy	/ <u>1</u> .lb7ge±	<u>- T35</u> 000	e6 .20e⊣	+0 3 08e+	- 21 53e-	0.659	8.93e-	1.86e-0.659 NA	0.04	\overline{NA}	NA
			1 0.4		01		05	05			
La_tqwt_en		_	_tde€1 4.20e⊣			0.659	1.59e- 05	1.15e- 0.770 NA	0.01	+ 1 000 taut on t	0
	5.34e+	-04	4.20e -	-04	01		05	05		1.000 tqwt_ent -	$ropy_log_dec_12$
										1.415 tqwt_en	tropy_log_dec_14
app_entropy	7 .1663e ±	<u>-020</u> 00	e 16.22e⊣	⊢0 2 93e+	- 21 73e-	0.658	9.28e-	1.87e-0.658 NA	NA	NA	NA
T 14 T/D		0.501	. 00 0	4.500	01	0.057	05	05	NT A		9
La_det_LT_	_entro 4.95e+		∌g<u>)0-</u>2_ 5.14e⊣		- 600 04e- 01	0.657	1.70e- 05	2.04e- 0.618 NA 04	NA	+ 0.511 det _entr	-2 $opy_log_1_coef$
	4.5067	01	o.14e∃	01	01		UU	U4		- -	opg_10g_1_0ej
										0.989 det_entr	copy_log_2_coef
											_entropy_log_1_coef
										+ 1.000det LT	_entropy_log_2_coef
app_LT_ent	trlojo(je <u>⊣</u>	_ li2<u>8</u>5 e₄	4 <u>0</u> 68e1	£0 2 67e+	-0068e-	0.654	4.86e-	1.24e-0.654 NA	NA	NA	NA
					01		04	04			
$\operatorname{std}_{-}\operatorname{MFCC}_{-}$	_ 125t2ke_ 01	_ 5&f -	- 2.27e- 01	4.99e- 02	1.91e- 01	0.652	7.72e- 04	1.90e- 0.652 NA 04	NA	NA	1
La towt en						0.651		6.14e- 0.754 NA	0.04	_	-1
_ · _ ·	1.05e+	_	2.50e+		01		05	05		$0.803 tqwt_ent$	$ropy_log_dec_10$
										+	
ann IT and	+mh94n	D 04.0 °.	1 112001	F 0D 71 a +	Ø100a	0.650	0.010	2.61e- 0.650 NA	NA	1.000 tqwt_en NA	tropy_log_dec_11
app_L1_em	паоруе <u>⊣</u>	-m 200:	<u>#-₩.</u> ₿О (С1	FUL/1e+	-w199e- 02	0.050	04	04	NA	NA	7
tqwt_minVa	lue_d	e c .255e-		5.37e-		0.648		2.47e- 0.648 NA	NA	NA	5
	3.78e-	02	5.52e-	02	04		06	03			
T.M.	02	1 0000	02	con =	Ø01.0	0.045	1.10	202 0045314	0.01	3.7.4	DT 4
app_LT_ent	tr zopo ge <u>⊣</u>	- libg 6e:	<u>4-1).</u> Boei	-U2278e+	-09010e- 02	0.647	1.19e- 03	3.92e- 0.647 NA 04	0.01	NA	NA
std 3rd del	l ta .74e-	2.19e-	- 4.58e-	9.83e-		0.645		3.71e- 0.645 NA	NA	NA	3
	02	02	02	03	01	- 0-0	03	05			-
$tqwt_entrop$						0.644		1.66e- 0.644 0.04	1.00	NA	NA
To 44 m	3.66e+		3.20e+		01	0.640	04	04	0.07		1
La_tqwt_T	кео_ 7.35е-		dec 5.28e-		3.78e- 03	0.640	3.61e-	5.44e- 0.753 NA 09	0.27		-1 ropy_shannon_dec_1
	04	υo	03	UΔ	υo		19	U Ø		+ 0.000 tqwt_ent	пору_эниннон_исс_1
			~~								KEO_mean_dec_13
tqwt_TKEC						0.637		$1.60 \text{e-}\ 0.637\ \text{NA}$	0.29	NA	NA — —
T _	02	02	02	01	07	0.004	09	01	TAT A		1
La_tqwt_T.	KÆÆ <u>e-</u> 03	st.d. 3ee	1.6c 01. d .4 03	9.56e- 03	9.27e- 02	0.634	1.00e- 07	1.38e- 0.723 NA 04	NA	- 0 772 tawt - TK	-1 XEO_mean_dec_14
	00	UJ	UJ	UJ	02		O1	U-±		0.1121qwi1K +	.DOmeunaec14
										,	

 $1.000\,\mathrm{tqwt_TKEO_std_dec_14}$

caseN	 IeaanseSt	t d ontro		l Sctochtro	l RSPCAV iCcox	:Hekes.puAUGaw_	Fheq_I		nula fscores
 Latqwtenergy_	de& 4e3	11.32e-	3.70e-	1.67e-	0.632 1.30e-	4.40e- 0.672 0.32	0.31		-1
1.44e-		03	03	03	12	07		0.883 tqwt	$_energy_dec_10$
04								+	
								1.000 tqwt	$_{ m energy_dec_11}$
pq3Shimmer3.60e					$0.630\ 2.56e$ -		NA	NA	6
02	02	02	02	02	02	03			
t d_2nd_delta 19e							NA	NA	2
02	02	02	02	01	02	04			
qwt_kurtosi dV5 h	⊯ 14 2e €	±<u>9</u>.₿3 e+	-01000e+				0.46	NA	NA
				04	01	03		27.4	37.1
${ m pwt_stdValu2e} { m 31d}$							0.43	NA	NA
01	01	01	01	01	04	03	0.04	27.4	
\mathbf{wt} _energy_1_00e							0.01	NA	2
03	03	03	02	07	06	05	0.05	D.T.A.	NT A
pwt_stdValue <u>06</u> d							0.05	NA	NA
03	03	03	03	02 071150	04	02	0.04	TAT A	NT A
qwt_entropyl <u>.7</u> slæ	+mithous-		აა .७∪e+				0.04	NA	NA
a tant antron-	245~	01 Halatta ad	16% 60km	14 Ø100a	01	01 4.80a 0.7440.01	0.01		2
${ m a_tqwt_entropy}$		± morroe €	ier <u>oor</u>				0.01	1.047+****	-
7.77e	±00			02	09	05		1.04 t tqwt_ +	$_entropy_shannon_$
									ontrone shannon
et_LT_entropy_	14400	ല ∩8aaf	6.2701	01600	0.618.2.536	1 590 O 619 N A	NA	1.000 tqwt_ NA	$_{ m entropy}_{ m shannon}_{ m NA}$
et_L1_entropy_ 7.70e	_	8.12e+		-mooe- 01	0.018 2.55e-	03	INA	NA	NA
a_tqwt_kur5tdSis							0.10	+	-1
atqwtkut.use 01	varue_			03	0.013 6.34e-	9.57e- 0.490 NA 06	0.10		$_kurtosisValue_dec_$
01				03	01	00		1.000 tqwt_	_kariosisvaiaeaec_
								1 025tawt	_kurtosisValue_dec
NE_mean 1.06e	⊥0 0160-	_1 20₀⊥	-0067-	2 010-	0 611 1 210-	1 30 ₀₋ 0 611 NΔ	NA	NA	kartosis varacacc 1
TIL_mean 1.00c	01	1.200	01	02	0.011 1.210	03	11/11	11/11	1
qwt_TKEO <u>2</u> stld		.14 15e-					0.25	NA	NA
05		05	0.000	04	0.011 1.940	02	0.20	1111	1111
qwt_TKEO <u>6</u> 1210ee							NA	NA	NA
02	01	02	02	01	05	01	1111	1111	1111
\mathbf{qwt} $\mathbf{minValue}$				-		7.25e- 0.608 NA	0.10	NA	NA
8.81e	_	1.53e-		04	0.000 1.490	04	0.10	1117	1111
0.010	01	01	01	υī	00	V I			
qwt_entrop <u>y8.8</u> slæ	an(1)(1)7n-	-	3 0032e∃	-04144e -	0.608 1.00e+	-040.82e- 0.608 NA	NA	NA	6
1	TANKALI BI			05	5.000 1.000	01	1111	1117	V
qwt_stdValule60d	ed .12A	- 1.85e-	8.02e-		0.607 1 90e-	-	0.15	NA	NA
1wt_sta varue <u>o</u> ur 01	01	01	02	01	0.007 1.300	02	5.10	1111	1111
et_LT_entropy_						-	NA	NA	3
1.67e-	_	1.75e+		01	02	03		1111	<u> </u>
					_		NA	NA	1
d MFCC 211912e	01	01	02	01	02	03		1111	÷
						1.82e- 0.598 NA	NA	NA	4
01	,	1.48e+		01	02	02		1111	÷
01 qwt_entropylog	-	1.400-		O T		-	37.4	3.7.4	TN T A
01 qwt_entropylog 1.57e-	+06			- 3 399e-	0.577 3.66e-	2.10e- 0.577 N A	NΑ	NA	NA
qwt_entropylog 1.57e- qwt_entropylog	+06 g_1dee -	± 62	1.00e +	- 33 99e- 01		2.10e- 0.577 NA 02	NA	NA	NA
01 qwt_entropylog 1.57e-	+06 g_1de3e - +03	± 62 3.81e+	1.00e+ -03	01	02	02	NA NA	NA NA	NA 7

	caseM	ezanseSt	dontro	l Monatro	l Stoc htro	l RSPCAViC ox	Heres.puAUGaw	_Fheq_F	Fr Þ ¢corFormula	fscores
GNE_std	2.17e-	9.70e-	2.08e-	1.47e-	4.23e-	0.574 3.70e-	2.28e- 0.574 NA	0.08	NA	NA
	01	02	01	01	02	01	01			
${f tqwt_minVa}$	due_d	e& <u>.8</u> 3æ					8.53e-0.572 NA	NA	NA	4
	6.26e-	01	7.07e-	01	01	02	02			
	01		01							
${ m La_tqwt_m}$		_					9.51e- 0.752 0.21	0.03	+	0
	1.17e-	02	1.42e-	02	02	04	05		$1.000 tqwt_mis$	$nValue_dec_$
	03		02						-	
	0.04	= ~-			@1 = 0	0 700 0 10	4 40 0 700 374	37.4	0.558 tqwt_m	
qwt_entrop	oy <u>s. 2</u> slea	HORTONG-		32 .90e⊣			1.49e- 0.562 NA	NA	NA	NA
. 1	• 1 3 0 7	M150	01	Off OF	14	01	01	NT A	NT A	9
qwt_kurtos	31 S. X 2a.BU	en Tage	<u>+u</u> .⊌ z e+	-ш.25е⊣			1.80e- 0.559 NA	NA	NA	2
erret minimiza	اء ما	പ 1 വഹ		2.26	04	01	01	NA	NA	5
.qwt_mmva	1.07e-		1.56e-	2.20e- 01	05	0.559 7.42e-	1.12e- 0.559 NA 02	NA	NA	9
	01	01	01	01	0.0	04	02			
qwt_entrop	~ -	1 പ് ക്രം_		1 19⊖⊣	-03385e-	0.548 1.18e-	1.18e- 0.548 NA	0.04	NA	NA
qwt_entrop	4.91e⊣		5. 4.71e+		01	0.546 1.166	01	0.04	11/1	11/1
qwt_minVa						-	3.79e- 0.544 NA	NA	NA	3
	4.26e-	_	4.40e-	01	01	02	01	1111	1111	9
	01	01	01	01	01	~ -	01			
awt TKEC) 4 s 955de-	8.de -		3.86e-	8.33e-	0.542 9.65e-	2.85e-0.542 NA	0.05	NA	NA
1 -	02	02	02	02	02	01	01			
td MFCC	2168e-	cb é fe-	4.59e-	1.34e-	5.43e-	0.508 6.57e-	3.40e- 0.508 NA	0.42	NA	NA
	01	01	01	01	01	01	01			
qwt_kurtos	sis!Washu	<u>e015dee</u>	<u>+0.</u> 88e+	-011.79e+	-04154e-	0.490 3.95e-	2.90e- 0.490 NA	0.10	NA	NA
-					04	02	01			
${ m let_entropy}$	_leg_	<u>11.9</u> 000	≥f 02-	1.48e⊣	-04287e-	$0.479\ 4.89e$ -	6.69e-0.479 NA	NA	NA	NA
	5.77e⊣	⊢ 02	6.20e +	-02	01	01	02			
qwt_entrop	oy <u>5.2</u> 91na	+10 66661a_	<u>-</u>1011966 <u>e</u> +	100 30e+	- 31 98e-	$0.471\ 3.27e$ -	3.17e-0.471 NA	NA	NA	3
					07	04	01			
$\det_ ext{entropy}$	_leg_	<u>21.0</u> 806			-07138e-	$0.468\ 3.73e-$	6.69e-0.468 NA	NA	NA	NA
	1.52e+		1.76e +		01	01	02			
${f std_MFCC}_{_}$	_ 3r28 e-	cole∌ f6e-	3.82e-	9.15e-	4.58e-	$0.448\ 2.31e$ -	2.53e-0.448 NA	0.08	NA	NA
	01	01	01	02	01	01	02			