

CIFAR100

Deep Learning - Part B by Kenneth Chen (2100072) 1 EXPLORATORY DATA ANALYSIS

2 DATA AUGMENTATION

3 MODELING

4 IMPROVEMENT

5 FINAL ANALYSIS

Exploratory Data Analysis

The basics

no class imbalance

average of first 20 fine classes

Exploratory Data Analysis

Outlier analysis

ResNet-SFeature Extractor

Last two layers are removed to give feature embedding

Embedding vector passed to **TSNE** (n_components = 4)

Class-wise distance from class mean

Exploratory Data Analysis

Rotation analysis

Hand-crafted convolution kernel to **extract** vertical and horizontal lines

Vertical

Horizontal

Engineered and designed algorithm to detect rotated images

What Model to use?

Val: 0.6601

What Model to use?

50-Layer Deep Residual Network

~25 million parameters

Let's proceed with Residual Networks

MODEL	DESCRIPTION	TRAIN ACCURACY	VALIDATION ACCURACY
ResNet50	Simple ResNet 50	66.68	66.01
ResNeXt 29x4d	Combination of VGG, ResNet and Inception.	97.41	68.41
Wide ResNet	ResNet with larger expansion factor	96.13	59.91

Fine labels. Val: 0.68

Coarse labels. Val: 0.76

ResNeXt 29x4d

I discovered that simply mapping the fine output to coarse label gives a validation score of 0.76

Model Improvement

Tuning and improving.

SGD with **Nesterov**

momentum, AdamW and

Model Improvement

Tuning and improving.

Trained and tuned on 4x NVIDIA RTX 3090s for 10 hours

The best classes

Class	Accuracy	
Skunk	0.98	
Motorcycle	0.96	
Road	0.96	
Wardrobe	0.94	
Orange	0.94	

orange

skunk

orange

wardrobe

motorcycle

wardrobe

The worst classes

Class	Accuracy	
Otter	0.46	
Bowl	0.47	
Girl	0.49	
Willow Tree	0.52	
Boy	0.54	

willow_tree

bowl

willow_tree

otter

Which images was the model most wrong on?

True: turtle

True: beetle Pred:orchid

True: caterpillar Pred:lobster

True: baby Pred:bed

True: cup Pred:bottle

True: camel Pred:telephone

True: ray Pred:shrew

True: pear Pred:poppy

True: lobster Pred:crab

True: caterpillar Pred:beetle

Thank you

References

- Adam, A. (2018) Early Stopping and its Faults, Early Stopping and its Faults. Available at: https://alexadam.ca/2018/08/03/early-stopping/ (Accessed: 25 October 2022).
- Burnham, K.P. and Anderson, D.R. (2010) Model selection and multimodel inference: a practical information-theoretic approach. 2. ed. New York, NY: Springer.
- Dosovitskiy, A. et al. (2020) 'An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale'. Available at: https://doi.org/10.48550/ARXIV.2010.11929.
- Gastaldi, X. (2017) 'Shake-Shake regularization'. arXiv. Available at: http://arxiv.org/abs/1705.07485 (Accessed: 22 November 2022).
- Hendrycks, D. et al. (2020) 'AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty'. arXiv. Available at: http://arxiv.org/abs/1912.02781 (Accessed: 22 November 2022).
- Huang, G. et al. (2016) 'Deep Networks with Stochastic Depth'. arXiv. Available at: http://arxiv.org/abs/1603.09382 (Accessed: 22 November 2022).
- Loshchilov, I. and Hutter, F. (2017) 'SGDR: Stochastic Gradient Descent with Warm Restarts'. arXiv. Available at: http://arxiv.org/abs/1608.03983 (Accessed: 22 November 2022).
- Loshchilov, I. and Hutter, F. (2019) 'Decoupled Weight Decay Regularization'. arXiv. Available at: http://arxiv.org/abs/1711.05101 (Accessed: 22 November 2022).
- Wu, H. et al. (2021) 'CvT: Introducing Convolutions to Vision Transformers'. Available at: https://doi.org/10.48550/ARXIV.2103.15808.
- Xie, S. et al. (2017) 'Aggregated Residual Transformations for Deep Neural Networks'. arXiv. Available at: http://arxiv.org/abs/1611.05431 (Accessed: 22 November 2022).
- Yamada, Y. et al. (2019) 'ShakeDrop Regularization for Deep Residual Learning', IEEE Access, 7, pp. 186126–186136. Available at: https://doi.org/10.1109/ACCESS.2019.2960566.
- Yun, S. et al. (2019) 'CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features'. arXiv. Available at: http://arxiv.org/abs/1905.04899 (Accessed: 22 November 2022).