Img Classification Transfer Learning VGGnet

Fashion Items: Shoes

Itwill 12th LKYJ Team

CONTENTS

- 01. Datasets
- **02.** CNN
- 03. VGGnet
- 04. Transfer Learning
- 05. Tuning

Datasets

- 1. Web scrolling
- 2. Get picture by camera
- 3. Pre-processing

01. Web scrolling

- Web scrolling sites : Google, Pinterest, Naver, Instagram, Bing
- Python code : https://github.com/LemonChocolate/Web_Scrolling_img
- Get srcs

02. Get picture by camera

■ Take a picture for Testsets

Testsets (5 classes, 50 imgs)

Trainsets (5 classes, 9000 imgs)

03. Pre-processing

- Data generating in local
- 600 imgs to 1800 imgs
- Examples

CNN

- 1. Layer
- 2. Activation
- 3. Paper

01. Layer

Convolution layer

합성곱 연산 (input : 4x4, filter : 3x3)

RGB img 1장의 합성곱 연산의 형태 (input : 3x4x4, filter : 3x3x3)

Layer가 깊어질수록 더 추상화된 feature map 을 추출

(edge(선), volume(덩어리) 를 인식)

(추상화된 feature map을 인식)

01. Layer

Pooling(sub sampling): Max pooling, average pooling... etc

I	2	1	U		
0	1	2	3	2	
3	0	1	2		
2	4	0	1		

1	2	1	0		
0	1	2	3	2	3
3	0	1	2		
2	4	0	1		

1	2	1	0			
0	1	2	3		2	3
3	0	1	2		4	
2	4	0	1	·		

About Stride

Zero padding: 1

01. Layer

■ FC(fully connected) layer

Flatten(3), dense(4, activation=relu), dense(2, activation=softmax)

Larger version

02. Activation

Sigmoid

Relu

Softmax

$$\sigma(\vec{z})_i = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

Sum(softmax(x)) = 1

03. Paper

■ VGGnet: Very Deep Convolution Layer (https://arxiv.org/pdf/1409.1556.pdf)

CNN Architectures

Comparison							
Network	$\mathbf{Y}\mathbf{e}\mathbf{a}\mathbf{r}$	Salient Feature	top5 accuracy	Parameters	FLOP		
AlexNet	2012	Deeper	84.70%	62M	1.5B		
VGGNet	2014	Fixed-size kernels	92.30%	138M	19.6B		
Inception	2014	Wider - Parallel kernels	93.30%	6.4M	$2\mathrm{B}$		
ResNet-152	2015	Shortcut connections	95.51%	60.3M	11B		

VGGnet

- 1. VGGnet
- 2. Architecture

01. VGGnet

Paper : VGGnet

Table 1: **ConvNet configurations** (shown in columns). The depth of the configurations increases from the left (A) to the right (E), as more layers are added (the added layers are shown in bold). The convolutional layer parameters are denoted as "conv \langle receptive field size \rangle - \langle number of channels \rangle ". The ReLU activation function is not shown for brevity.

ConvNet Configuration							
A	A-LRN	В	С	D	Е		
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight		
layers	layers	layers	layers	layers	layers		
	i	nput (224×22	_	e)			
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64		
	LRN	conv3-64	conv3-64	conv3-64	conv3-64		
			pool				
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128		
		conv3-128	conv3-128	conv3-128	conv3-128		
			pool				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
			conv1-256	conv3-256	conv3-256		
					conv3-256		
			pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
			pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
			pool				
FC-4096							
FC-4096							
	FC-1000						
		soft-	-max				

Table 2: **Number of parameters** (in millions).

Network	A,A-LRN	В	С	D	E
Number of parameters	133	133	134	138	144

Table 3: ConvNet performance at a single test scale.

Table 5. Convince performance at a single test scale.							
ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)			
	train(S)	test(Q)					
A	256	. 256	29.6	10.4			
A-LRN	256	256	29.7	10.5			
В	256	256	28.7	9.9			
	256	256	28.1	9.4			
C	384	384	28.1	9.3			
	[256;512]	384	27.3	8.8			
	256	256	27.0	8.8			
D	384	384	26.8	8.7			
	[256;512]	384	25.6	8.1			
	256	256	27.3	9.0			
E	384	384	26.9	8.7			
	[256;512]	384	25.5	8.0			

Table 5: ConvNet evaluation techniques comparison. In all experiments the training scale S was sampled from [256; 512], and three test scales Q were considered: $\{256, 384, 512\}$.

L / J/	•	/	, ,
ConvNet config. (Table 1)	Evaluation method	top-1 val. error (%)	top-5 val. error (%)
	dense	24.8	7.5
D	multi-crop	24.6	7.5
	multi-crop & dense	24.4	7.2
	dense	24.8	7.5
E	multi-crop	24.6	7.4
	multi-crop & dense	24.4	7.1

02. Architecture

■ VGG16

Input

Conv 1-1 Conv 1-2 Pooing

Conv 2-1 Conv 2-2 Pooing

Conv 3-1 Conv 3-2 Conv 3-3

Pooing

Conv 4-1 Conv 4-2 Conv 4-3

Pooing

Conv 5-1 Conv 5-2 Conv 5-3 Pooing

> Dense Dense Dense

VGG-16

Transfer Learning

- 1. What is Transfer Learning?
- 2. Imgnet weights
- 3. Strategy

01. What is Transfer Learning?

with 3 units.

- Get Architecture & weights
 - + training Dense
 - + (high conv layer)

02. Imgnet weights

- Initial weight : Imagenet (ILSVRC) IM GENET
- 14,197,122 images, 21841 synsets indexed
- 가중치 초기값으로 설정
- Convolusion Layer 10 까지 가중치 동결
- custom dataset 의 feature map 추출용도로 사용

03. Strategy

Strategy

[그림 4] 각 상황에 따른 Fine-tuning 방법

[그림 3] 데이터크기-유사성 그래프

Tuning

- 1. Hyper parameters
- 2. Overfitting regularizations
- 3. Graphs

01. Hyper parameters

Hyper parameters

- optimizer
- metrics
- loss function
- batch size
- epochs
- img size

02. Overfitting regularizations

Overfitting regularizations

- Batch Normalization
- dropout
- 21 regularizer
- callback(early stopping)

[1] 모델복잡도에 따른 overfitting

[2] Dataset size 에 따른 overfitting

03. Graphs

■ After tuning

Index: source for srcs

- p.8 src1, src2 : https://github.com/WegraLee
- p.9 src1 : https://github.com/WegraLee
- p.14: https://arxiv.org/pdf/1409.1556.pdf
- p.17 : https://livebook.manning.com/book/grokking-deep-learning-for-computer-vision/chapter-6/v-8/106
- p.19 : https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751

Thank you