QUANTUM ALGORITHMS HOMEWORK 12 SELECTED SOLUTIONS

PROF. MATTHEW MOORE

AP 1. Let U be a unitary operator and suppose that $|\alpha\rangle$ and $|\beta\rangle$ are eigenvectors with respective eigenvalues $\lambda, \mu \in \mathbb{C}$. Prove that if $\lambda \neq \mu$ then $\langle \alpha \mid \beta \rangle = 0$ (i.e. $|\alpha\rangle$ and $|\beta\rangle$ are orthogonal).

Solution:

Proof. Without loss of generality, let us assume that $|\alpha\rangle$ and $|\beta\rangle$ have norm 1. We have

$$1 = \left\langle \alpha \mid \alpha \right\rangle = \left\langle \alpha \right| U^{\dagger} U \left| \alpha \right\rangle = \left(\left\langle \alpha \right| \overline{\lambda} \right) \! \left(\lambda \left| \alpha \right\rangle \right) = \overline{\lambda} \lambda \left\langle \alpha \mid \alpha \right\rangle,$$

which implies that $\overline{\lambda}\lambda = 1$.

Replacing one instance of $|\alpha\rangle$ with $|\beta\rangle$ and performing a similar calculation yields

$$\left\langle \alpha\mid\beta\right\rangle =\left\langle \alpha\right|U^{\dagger}U\left|\beta\right\rangle =\left(\left.\left\langle \alpha\right|\overline{\lambda}\right)\!\left(\mu\left|\beta\right\rangle\right.\right)=\overline{\lambda}\mu\left\langle\alpha\mid\beta\right\rangle.$$

Let us assume that $\langle \alpha \mid \beta \rangle \neq 0$. The above series of equalities then implies that $\overline{\lambda}\mu = 1$. Multiplying both sides of this by λ and using the result from the previous paragraph that $\overline{\lambda}\lambda = 1$ results in $\mu = \lambda$, contradicting our initial hypothesis.

Date: April 27, 2020.

1

AP 2. Let $t \in \mathbb{N}$.

(i) Prove that

$$x^{t} - 1 = (x - 1) \sum_{k=0}^{t-1} x^{k}.$$

- (ii) Prove that $x = e^{2\pi i(m/t)}$ is a solution to $x^t 1$ for $m \in \mathbb{Z}$.
- (iii) Let $m \in \mathbb{Z}$ with $0 \le m < t$. Use the previous parts to prove that

$$\sum_{k=0}^{t-1} e^{2\pi i (km/t)} = \begin{cases} t & \text{if } m = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Solution:

(i): Proof. We have

$$x^{t} - 1 = x^{t} + (x^{t-1} - x^{t-1}) + (x^{t-2} - x^{t-2}) + \dots + (x - x) - 1$$

$$= (x^{t} - x^{t-1}) + (x^{t-1} - x^{t-2}) + \dots + (x^{2} - x) + (x - 1)$$

$$= (x - 1)x^{t-1} + (x - 1)x^{t-2} + \dots + (x - 1)x + (x - 1)$$

$$= (x - 1)(x^{t-1} + x^{t-2} + \dots + x + 1) = (x - 1)\sum_{k=0}^{t-1} x^{k},$$

as claimed.

(ii): *Proof.* Recall that $e^{2\pi i} = 1$. We have

$$(e^{2\pi i(m/t)})^t - 1 = e^{2\pi i(mt/t)} - 1 = e^{2\pi i m} - 1 = (e^{2\pi i})^m - 1 = (1)^m - 1$$
$$= 1 - 1 = 0.$$

Therefore $e^{2\pi i(m/t)}$ is a root of $x^t - 1$.

(iii): Proof. Let $z = e^{2\pi i(m/t)}$. We have

$$0 = z^{t} - 1 = (z - 1) \sum_{k=0}^{t-1} z^{k},$$

so z=1 or $\sum z^k=0$. If $m\neq 0$ then $z=e^{2\pi i(m/t)}\neq 1$, so it must be that $\sum z^k=0$. If m=0 then $z=e^{2\pi i(m/t)}=1$, so $\sum z^k=t$. Hence

$$\sum_{k=0}^{t-1} e^{2\pi i (km/t)} = \sum_{k=0}^{t-1} z^k = \begin{cases} t & \text{if } m = 0, \\ 0 & \text{otherwise.} \end{cases}$$

AP 3. Fix $q \in \mathbb{N}$ and let t = per(a, q). Use the previous question to show that

$$|1\rangle = \frac{1}{\sqrt{t}} \sum_{k=0}^{t-1} |\alpha_k\rangle,$$

where

$$|\alpha_k\rangle = \frac{1}{\sqrt{t}} \sum_{m=0}^{t-1} e^{-2\pi i(km/t)} |a^m\rangle$$

and "1" and " a^m " are the binary encodings of $1, a^m \in (\mathbb{Z}/q\mathbb{Z})^{\times}$, respectively.

Solution:

Proof. We have

$$\frac{1}{\sqrt{t}} \sum_{k=0}^{t-1} |\alpha_k\rangle = \frac{1}{\sqrt{t}} \sum_{k=0}^{t-1} \left(\frac{1}{\sqrt{t}} \sum_{m=0}^{t-1} e^{-2\pi i (km/t)} |a^m\rangle \right)
= \frac{1}{t} \sum_{k=0}^{t-1} \sum_{m=0}^{t-1} e^{-2\pi i (km/t)} |a^m\rangle = \frac{1}{t} \sum_{m=0}^{t-1} \sum_{k=0}^{t-1} e^{-2\pi i (km/t)} |a^m\rangle
= \frac{1}{t} \sum_{m=0}^{t-1} \left(\sum_{k=0}^{t-1} e^{-2\pi i (km/t)} \right) |a^m\rangle.$$

Let us consider the coefficient $\sum_k e^{-2\pi i(km/t)}$. From the previous problem, $\sum_k e^{-2\pi i(km/t)} = 0$ except when m=0, in which case $\sum_k e^{-2\pi i(km/t)} = t$. Returning to the main summation, we have

$$\frac{1}{t} \sum_{m=0}^{t-1} \left(\sum_{k=0}^{t-1} e^{-2\pi i (km/t)} \right) |a^{m}\rangle = \frac{1}{t} \left(t |a^{0}\rangle + 0 |a^{1}\rangle + \dots + 0 |a^{t-1}\rangle \right) = |1\rangle,$$

finishing the proof.