

FORMATO DE SYLLABUS

Macroproceso: Direccionamiento Estratégico

Código: AA-FR-003 Versión: 01

Fecha de Aprobación: Proceso: Autoevaluación y Acreditación 27/07/2023

FACULTAD:		Tecnológica							
PROYECTO CUF	RICULAR:		Tecnología en Electrónica Industrial			CÓDIGO PLAN DE ESTUDIOS:			
I. IDENTIFICACIÓN DEL ESPACIO ACADÉMICO									
NOMBRE DEL ESPACIO ACADÉMICO: INGENIERÍA DE TRÁFICO									
Código del espacio académico:			24703	Número de créditos académicos:			2		
Distribución horas de trabajo:			HTD	2	нтс	2	НТА	2	
Tipo de espacio académico:			Asignatura	х	Cátedra				
NATURALEZA DEL ESPACIO ACADÉMICO:									
Obligatorio Básico	х	Obligatorio Complementario			Electivo Intrínseco		Electivo Extrínseco		
CARÁCTER DEL ESPACIO ACADÉMICO:									
Teórico		Práctico		Teórico-Práctico	x	Otros:		Cuál:	
MODALIDAD DE OFERTA DEL ESPACIO ACADÉMICO:									
Presencial	х	Presencial con incorporación de TIC		Virtual		Otros:		Cuál:	
II. SUGERENCIAS DE SABERES Y CONOCIMIENTOS PREVIOS									

Para abordar de manera adecuada esta asignatura, se recomienda que el estudiante tenga conocimientos en probabilidad y estadística, fundamentos de teoría de señales, análisis de sistemas y procesos estocásticos. También es importante que posea habilidades para el uso de herramientas de simulación computacional y programación básica en entornos como Python o MATLAB. Estos saberes permiten una comprensión adecuada del modelado de tráfico y del comportamiento de los sistemas de telecomunicaciones bajo distintas

condiciones de carga.

III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

La Ingeniería de Tráfico permite comprender y modelar el comportamiento de las redes de telecomunicaciones desde una perspectiva cuantitativa. En un contexto donde las redes deben adaptarse a la demanda creciente de datos, servicios multimedia y conectividad ubicua, esta asignatura brinda herramientas para optimizar el rendimiento de las redes y garantizar la calidad de servicio (QoS) y la calidad de experiencia (QoE) de los usuarios. La formación en esta asignatura contribuye a preparar profesionales capaces de analizar tráfico en redes 5G, IoT, vehiculares y de baja latencia, siendo clave en la gestión eficiente de recursos en sistemas complejos.

IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Objetivo General:

Aplicar modelos estocásticos y teoría de colas al análisis, dimensionamiento y optimización del tráfico en redes de telecomunicaciones, con énfasis en la calidad del servicio y el rendimiento de sistemas.

Objetivos Específicos:

Comprender los fundamentos de los procesos estocásticos y su aplicación en la modelación de tráfico.

Estudiar y aplicar los modelos de teoría de colas en el análisis del comportamiento de redes.

Diseñar sistemas de telecomunicaciones con base en parámetros de eficiencia, retardo y capacidad.

Analizar herramientas modernas de simulación de tráfico en redes y su aplicación a redes IP, IoT y redes vehiculares.

V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

Propósitos de Formación:

Desarrollar competencias para el modelado estocástico del tráfico de redes.

Promover el análisis crítico de problemas de rendimiento en redes modernas.

Fomentar el uso de herramientas de simulación y análisis de datos para la toma de decisiones técnicas.

Resultados de Aprendizaje:

Modela procesos estocásticos aplicados al tráfico en telecomunicaciones.

Aplica modelos de teoría de colas para analizar y optimizar el rendimiento de redes.

Evalúa el comportamiento de redes bajo distintos escenarios de carga.

Utiliza herramientas computacionales para simular tráfico y validar diseños.

VI. CONTENIDOS TEMÁTICOS

1. Fundamentos de Procesos Estocásticos

Variables aleatorias. Funciones de densidad.

Procesos en tiempo continuo y discreto.

Estacionariedad y ergodicidad.

2. Modelos de Tráfico y Procesos de Llegada

Procesos de Poisson.

Cadenas de Markov.

Procesos de nacimiento y muerte.

Modelo Erlang B y C.

3. Teoría de Colas Clásica

Teorema de Little.

Modelos M/M/1, M/M/1/K, M/M/ ∞ .

M/G/1 y G/G/1 (introducción).

Simulación de colas.

4. Ingeniería de Tráfico Avanzada

Análisis de tráfico en redes IP, MPLS y SDN.

QoS y QoE.

Tráfico en redes 5G y vehiculares.

Modelado y simulación con herramientas como NS-3, OMNet++, Python-SimPy.

VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

La asignatura se desarrolla bajo metodologías activas, incluyendo aprendizaje basado en proyectos (ABP), estudios de caso, análisis de tráfico real, simulaciones computacionales y trabajo colaborativo. Se fomentan las presentaciones orales, ejercicios en clase, experimentación con herramientas de simulación y la investigación aplicada. El docente actúa como facilitador del conocimiento.

VIII. EVALUACIÓN

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) à 35%

Segundo corte (hasta la semana 16) à 35%

Proyecto final (hasta la semana 18) à 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico

IX. MEDIOS Y RECURSOS EDUCATIVOS

Para el adecuado desarrollo de este espacio académico, se requiere el uso de medios institucionales y recursos individuales que faciliten los procesos de enseñanza y aprendizaje, tanto en ambientes presenciales como virtuales. Las actividades teóricas se apoyarán en aulas de clase dotadas de medios audiovisuales (tablero, videobeam, sillas) y plataformas virtuales institucionales como Microsoft Teams o Google Meet. Además, será fundamental el acceso a presentaciones digitales, textos base, hojas de datos, artículos técnicos y bibliotecas digitales.

En cuanto al trabajo práctico, se utilizarán aulas de laboratorio equipadas con fuentes de voltaje DC, generadores de señales, osciloscopios, multímetros y otros instrumentos de medición. Adicionalmente se cuenta con licencias de software como MATLAB, Python (SimPy), NS-3, OMNet++, y laboratorios de cómputo para la realización de simulaciones.

Como recursos propios, el estudiante debe disponer de una calculadora científica, conexión estable a internet que la universidad proporciona, un sistema para la toma de apuntes (cuaderno, tablet o computador) y acceso a los materiales de clase. Será responsabilidad del estudiante descargar los insumos digitales y contar con los elementos necesarios que serán especificados previamente en cada práctica o proyecto.

X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

Se podrán programar visitas a centros de datos, operadores de telecomunicaciones o proveedores de servicios que implementen sistemas de monitoreo y gestión de tráfico en tiempo real. También se promueve la participación en eventos académicos como semilleros de investigación o ferias de tecnología.

XI. BIBLIOGRAFÍA

Bertsekas, D., & Gallager, R. (1992). Data Networks. F	Prentice Hall.							
Kleinrock, L. (1975). Queueing Systems Vol. I. Wiley.								
Trivedi, K. S. (2002). Probability and Statistics with Reliability, Queuing, and Computer Science Applications. Wiley.								
Walrand, J. (1988). An Introduction to Queueing Networks. Prentice Hall.								
XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS								
Fecha revisión por Conseio Curricular:								

Número de acta:

Ortiz, Jorge (2012). Introducción a la Ingeniería de Teletráfico. Ed. Universidad Nacional de Colombia. Carrión, Hugo (2012). Ingeniería de tráfico de telecomunicaciones. Ed. Escuela Politécnica Nacional.

Fecha aprobación por Consejo Curricular: