Espaces vectoriels normés

Normes

Solution 1

Clairement, N est positive, homogène et vérifie l'inégalité triangulaire. Soit alors $P \in \mathbb{R}_n[X]$ tel que N(P) = 0. Alors $P(\alpha_k) = 0$ pour tout $k \in [0, n]$. Puisque deg $P \le n$, P = 0. Ainsi N est bien une norme.

Supposons que N soit une norme euclidienne. Alors pour tout $(P, Q) \in \mathbb{R}_n[X]^2$,

$$N(P + Q)^2 + N(P - Q)^2 = 2N(P)^2 + 2N(Q)^2$$

Par interpolation de Lagrange, il existe deux polynômes P et Q tels que $P(\alpha_k) = \delta_{k,0}$ et $Q(\alpha_k) = \delta_{k,n}$ pour tout $k \in [0, n]$. Puisque $n \neq 0$, N(P+Q) = N(P-Q) = 2 tandis que N(P) = N(Q) = 1, ce qui contredit l'égalité précédente.

Solution 2

1. Soit $x \in E$. L'application $\varphi_x : y \in E \mapsto \langle x, y \rangle$ est linéaire et, d'après l'inégalité de Cauchy-Schwarz, pour tout $y \in E$, $|\varphi_x(y)| \le ||x|| ||y||$ donc φ_x est continue pour la norme $||\cdot||$ d'après le critère de continuité pour les applications linéaires. Par conséquent, $|\varphi_x|$ est également continue sur E pour la norme $||\cdot||$ par continuité de la valeur absolue sur E. E étant de dimension finie, toutes les normes sont équivalentes et $|\varphi_x|$ est donc également continue pour la norme N.

La sphère unité S est évidemment fermée et bornée pour la norme N. Comme E est de dimension finie, elle est compacte pour cette norme. L'application $|\varphi_x|$ étant continue pour la norme N, elle atteint un maximum sur S. Ceci justifie la définition de N*(x) (et prouve même que la borne supérieure est en fait un maximum).

2. N* est clairement positive.

Donnons-nous $\lambda \in \mathbb{R}$ et $x \in E$. Alors

$$N^*(\lambda x) = \sup_{y \in S} |\langle \lambda x, y \rangle| = \sup_{y \in S} |\lambda| |\langle x, y \rangle|$$

Or $|\lambda|$ est un réel positif donc on peut montrer sans difficulté que

$$\sup_{y \in S} |\lambda| |\langle x, y \rangle| = \|\lambda| \sup_{y \in S} |\langle x, y \rangle|$$

On en déduit que $N^*(\lambda x) = |\lambda| N^*(x)$.

Soit $(x_1, x_2) \in E^2$. Alors pour tout $y \in S$,

$$|\langle x_1 + x_2, y \rangle| = |\langle x_1, y \rangle + \langle x_2, y \rangle| \le |\langle x_1, y \rangle| + \langle x_2, y \rangle| \le N^*(x_1) + N_*(x_2)$$

L'inégalité étant valide pour tout $y \in S$, on en déduit que

$$N^*(x_1 + x_2) = \sup_{y \in S} |\langle x_1 + x_2, y \rangle| \le N^*(x_1) + N^*(x_2)$$

On a donc bien prouvé que N* était une norme.

3. Supposons d'abord que $N = \|\cdot\|_2$. Soit $x \in S$. Alors pour tout $y \in S$,

$$|\langle x, y \rangle \le ||x||_2 ||y||_2 = ||x||_2$$

puisque $y \in S$. Par conséquent $N^*(x) \le \|x\|_2$. Par ailleurs, si x est non nul, $y = \frac{x}{\|x\|_2} \in S$ et $|\langle x, y \rangle| = \|x\|_2$ donc $N^*(x) \ge \|x\|_2$. Finalement, $N^*(x) = \|x\|_2$. Cette égalité est encore évidemment valide lorsque x est nul.

Supposons maintenant que $N = \|\cdot\|_{\infty}$. Soit $x \in \mathbb{R}^n$. Alors pour tout $y \in S$,

$$|\langle x, y \rangle| = |\sum_{k=1}^{n} x_k y_k| \le \sum_{k=1}^{n} |x_k y_k| = \sum_{k=1}^{n} |x_k| |y_k| \le \sum_{k=1}^{n} |x_k| ||y||_{\infty} = ||y||_{\infty} ||x||_{1} = ||x||_{1}$$

1

Cette inégalité étant valide pour tout $y \in S$, $N^*(x) \le ||x||_1$. On définit alors $y \in \mathbb{R}_n$ en posant $y_k = 1$ si $x_k \ge 0$ et $y_k = -1$ si $x_k < 0$. Il est évident que $y \in S$ et

$$\langle x, y \rangle = \sum_{k=1}^{n} x_k y_k = \sum_{k=1}^{n} |x_k| = ||x||_1$$

On en déduit que $N^*(x) \ge ||x||_1$. Finalement, $N^*(x) = ||x||_1$. Supposons enfin que $N = ||\cdot||_1$. Alors pour tout $y \in S$,

$$|\langle x, y \rangle| = \left| \sum_{k=1}^{n} x_k y_k \right| \le \sum_{k=1}^{n} |x_k y_k| = \sum_{k=1}^{n} |x_k| |y_k| = \sum_{k=1}^{n} ||x||_{\infty} ||y_k|| = ||x|| \infty ||y||_1 = ||x|| \infty ||y||_1$$

Cette inégalité étant valide pour tout $y \in \mathbb{R}^n$, $N^*(x) \le ||x||_{\infty}$. Il existe $j \in [[1, n]]$ tel que $|x_j| = ||x||_{\infty}$. On définit alors $y \in \mathbb{R}^n$ en posant $y_k = \delta_{k,j}$. On vérifie sans peine que $y \in S$ et

$$|\langle x, y \rangle| = \left| \sum_{k=1}^{n} x_k y_k \right| = |x_j| = ||x||_{\infty}$$

On en déduit que $N^*(x) \ge ||x||_{\infty}$. Finalement, $N^*(x) = ||x||_{\infty}$.

Solution 3

1. Pas de problème pour N_1 et N_2 . Il suffit d'utiliser le fait que la valeur absolue est une norme. Pour simplifier, on peut même remarquer que $N_2(A) = N_1(A^T)$.

 N_3 est la norme euclidienne sur $\mathcal{M}_{n,p}(\mathbb{R})$ i.e. $N_3(A)^2 = \operatorname{tr}(A^T A)$.

On note $\|\cdot\|$ la norme euclidienne sur $\mathcal{M}_{p,1}(\mathbb{R})$. Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$. Alors $A^{\mathsf{T}}A$ est une matrice symétrique donc elle est diagonalisable. Soit x un vecteur propre associée à une valeur propre λ de $A^{\mathsf{T}}A$. Alors $x^{\mathsf{T}}A^{\mathsf{T}}Ax = (Ax)^{\mathsf{T}}(AX) = \|Ax\|^2 \in \mathbb{R}_+$ et $x^{\mathsf{T}}A^{\mathsf{T}}Ax = \lambda x^{\mathsf{T}}x = \lambda \|x\|^2$. Comme $\|x\|^2 \in \mathbb{R}_+^+$, $\lambda \geq 0$. Ainsi $\mathrm{Sp}(A^{\mathsf{T}}A) \subset \mathbb{R}_+$ donc $\mathrm{N}_4(A)$ est bien définie. Soit $\mu \in \mathbb{R}$. Alors

$$N_4(\mu A) = \sqrt{\max Sp(\mu^2 A^\mathsf{T} A)} = \sqrt{\max \mu^2 Sp(A^\mathsf{T} A)} = \sqrt{\mu^2 \max Sp(A^\mathsf{T} A)} = |\mu| \sqrt{\max Sp(A^\mathsf{T} A)} = |\mu| N_4(A)$$

donc N₄ est bien homogène.

Supposons que $N_4(A) = 0$. Alors max $Sp(A^TA) = 0$. Mais comme $Sp(A^TA) \subset \mathbb{R}_+$, $Sp(A^TA) = \{0\}$. Comme A^TA est diagonalisable, $A^TA = 0$. A fortiori, $N_3(A)^2 = tr(A^TA) = 0$ donc A = 0. Ainsi N_4 vérifie l'axiome de séparation.

Soit enfin $(A, B) \in \mathcal{M}_{n,p}(\mathbb{R})^2$. Notons λ la plus grande valeur propre de $(A + B)^T(A + B)$ et x un vecteur propre associé à cettte valeur propre. Alors $\|(A+B)x\|^2 = \lambda \|x\|^2$. Donc $\|(A+B)x\| = N_4(A+B)\|x\|$. Par ailleurs, $\|\cdot\|$ est une norme donc $\|(A+B)x\| \le \|Ax\| + \|Bx\|$. Notons $\lambda_1, \dots, \lambda_p$ les valeurs propres de A^TA et (e_1, \dots, e_p) une base orthonormée de vecteurs propres de A^TA . Alors

$$x = \sum_{i=1}^{p} x_i e_i$$
 et $A^{\mathsf{T}} A x = \sum_{i=1}^{p} x_i \lambda_i e_i$

Comme $(e_1, ..., e_p)$ est une base orthonormée de $\mathcal{M}_{p,1}(\mathbb{R})$,

$$\|\mathbf{A}x\|^2 = x^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}x = \sum_{i=1}^{p} \lambda_i x_i^2 \le \mathbf{N}_4(\mathbf{A})^2 \sum_{i=1}^{p} x_i^2 = \mathbf{N}_4(\mathbf{A})^2 \|x\|^2$$

Par conséquent, $||Ax|| \le N_4(A)||x||$. De la même manière, $||Bx|| \le N_4(B)||x||$ Finalement,

$$N_4(A + B)||x|| \le N_4(A)||x|| + N_4(B)||x||$$

et donc $N_4(A + B) \le N_4(A) + N_4(B)$ car ||x|| > 0. N_4 est bien une norme.

2. Soit $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$. Pour simplifier, posons $S_i(M) = \sum_{i=1}^n |M_{i,j}|$ pour $M \in \mathcal{M}_n(\mathbb{R})$. Ainsi $N_1(M) = \max_{1 \le i \le n} S_i(M)$. Soit $i \in [[1, n]]$.

$$\begin{split} \mathbf{S}_{l}(\mathbf{A}\mathbf{B}) &= \sum_{j=1}^{n} |(\mathbf{A}\mathbf{B})_{i,j}| \\ &= \sum_{j=1}^{n} \left| \sum_{k=1}^{n} \mathbf{A}_{i,k} \mathbf{B}_{k,j} \right| \\ &\leq \sum_{j=1}^{n} \sum_{k=1}^{n} |\mathbf{A}_{i,k}| |\mathbf{B}_{k,j}| \quad \text{par inégalité triangulaire} \\ &= \sum_{k=1}^{n} \sum_{j=1}^{n} |\mathbf{A}_{i,k}| |\mathbf{B}_{k,j}| \quad \text{par permutation des sommes} \\ &= \sum_{k=1}^{n} |\mathbf{A}_{i,k}| \sum_{j=1}^{n} |\mathbf{B}_{k,j}| \quad \\ &= \sum_{k=1}^{n} |\mathbf{A}_{i,k}| \mathbf{S}_{k}(\mathbf{B}) \\ &\leq \sum_{k=1}^{n} |\mathbf{A}_{i,k}| \mathbf{S}_{k}(\mathbf{B}) \\ &\leq \sum_{k=1}^{n} |\mathbf{A}_{i,k}| \mathbf{S}_{k}(\mathbf{B}) \\ &= \mathbf{N}_{1}(\mathbf{B}) \sum_{k=1}^{n} |\mathbf{A}_{i,k}| \\ &= \mathbf{N}_{1}(\mathbf{B}) \mathbf{S}_{i}(\mathbf{A}) \leq \mathbf{N}_{1}(\mathbf{B}) \mathbf{N}_{1}(\mathbf{A}) \end{split}$$

On en déduit que $N_1(AB) \le N_1(A)N_1(B)$ donc N_1 est bien une norme d'algèbre. On rappelle que $N_2(M) = N_1(M^T)$. Ainsi

$$N_2(AB) = N_1((AB)^T) = N_1(B^TA^T) \le N_1(B^T)N_1(A^T) = N_2(A)N_2(B)$$

donc N₂ est également une norme d'algèbre.

Remarquons que

$$N_3(AB)^2 = \sum_{1 \le i,j \le n} \left(\sum_{k=1}^n A_{i,k} B_{k,j} \right)^2$$

Par inégalité de Cauchy-Schwarz,

$$\left(\sum_{k=1}^{n} A_{i,k} B_{k,j}\right)^{2} \le \left(\sum_{k=1}^{n} A_{i,k}^{2}\right) \left(\sum_{k=1}^{n} B_{k,j}^{2}\right)$$

Pour clarifier, posons $S_i = \sum_{k=1}^n A_{i,k}^2$ et $T_j = \sum_{k=1}^n B_{k,j}^2$. Ainsi

$$N_3(AB)^2 \leq \sum_{1 \leq i,j \leq n} S_i T_j = \left(\sum_{i=1}^n S_i\right) \left(\sum_{j=1}^n S_j\right) = \left(\sum_{i=1}^n \sum_{k=1}^n A_{i,k}^2\right) \left(\sum_{j=1}^n \sum_{k=1}^n B_{k,j}^2\right) = N_3(A)^2 N_3(B)^2$$

Puis $N_3(AB) \le N_3(A)N_3(B)$ donc N_3 est une norme d'algèbre.

Soit x un vecteur propre associé à la plus grande valeur propre de $(AB)^T(AB)$. On a alors $||ABx|| = N_4(A)||x||$ (cf. précédemment). De plus, $||ABx|| \le N_4(A)||Bx|| \le N_4(A)N_4(B)||x||$ (cf. précédemment). Comme ||x|| > 0, $N_4(AB) \le N_4(A)N_4(B)$ donc N_4 est également une norme d'algèbre.

Solution 4

1. Par inégalité triangulaire

$$2||x|| = ||(x+y) + (x-y)|| \le ||x+y|| + ||x-y||$$

$$2||y|| = ||(x+y) + (y-x)|| \le ||x+y|| + ||x-y||$$

En additionnant

$$||x|| + ||y|| \le ||x + y|| + ||x - y|| \le 2 \max\{||x + y||, ||x - y||\}$$

2. Prenons $E = \mathbb{R}^2$ muni de la norme uniforme. Posons x = (1,0) et y = (0,1). Alors

$$||x|| = ||y|| = ||x + y|| = ||x - y|| = 1$$

L'inégalité de la question précédente est donc bien une égalité dans ce cas.

3. Remarquons que

$$||x + y||^2 = ||x||^2 + ||y||^2 + 2\langle x, y \rangle$$

$$||x - y||^2 = ||x||^2 + ||y||^2 - 2\langle x, y \rangle$$

donc

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$$

Mais d'une part

$$||x + y||^2 + ||x - y||^2 \le 2 \max \{||x + y||^2, ||x - y||^2\} = 2 \max \{||x + y||, ||x - y||\}^2$$

et d'autre part

$$2\|x\|^2 + 2\|y\|^2 = (\|x\| + \|y\|)^2 + (\|x\| - \|y\|)^2 \ge (\|x\| + \|y\|)^2$$

Par conséquent,

$$(\|x\| + \|y\|)^2 \le 2 \max\{\|x + y\|, \|x - y\|\}^2$$

puis

$$||x|| + ||y|| \le \sqrt{2} \max\{||x + y||, ||x - y||\}$$

La constante $\sqrt{2}$ ne peut être améliorée car si on prend x et y orthogonaux et de même norme n, alors

$$||x|| + ||y|| = 2n$$

et, d'après le théorème de Pythagore,

$$||x + y||^2 = ||x - y||^2 = ||x||^2 + ||y||^2 = 2n^2$$

donc

$$\max\{\|x+y\|, \|x-y\|\} = n\sqrt{2}$$

de sorte que l'inégalité est bien une égalité dans ce cas.

Solution 5

Soit $(x_1, \dots, x_n) \in \mathbb{K}^n$.

Comme les $|x_i|$ sont positifs, il est clair que $N_{\infty}(x) \le N_1(x)$. L'égalité est atteinte pour x = (1, 0, ..., 0).

Pour tout $i \in [[1,n]], |x_i| \le N_\infty(x)$ donc $N_1(x) \le nN_\infty(x)$. L'égalité est atteinte pour $x = (1,\dots,1)$.

Comme les $|x_i|^2$ sont positis, il est clair que $N_{\infty}(x)^2 \le \sum_{\substack{i=1\\ n}}^n |x_i|^2$ puis $N_{\infty}(x) \le N_2(x)$. L'égalité est atteinte pour $x = (1, 0, \dots, 0)$.

A nouveau, pour tout $i \in [1, n]$, $|x_i|^2 \le N_\infty(x)^2$ puis $\sum_{i=1}^n |x_i|^2 \le nN_\infty(x)^2$ puis $N_2(x) \le \sqrt{n}N_\infty(x)$.

Comme les $|x_i||x_j|$ sont positifs

$$N_1(x)^2 = \left(\sum_{i=1}^n |x_i|\right)^2 = \sum_{i=1}^n |x_i|^2 + 2\sum_{1 \le i \le n} |x_i||x_j| \ge \sum_{i=1}^n |x_i|^2 = N_2(x)^2$$

donc $N_2(x) \le N_1(x)$. L'égalité est atteinte pour x = (1, 0, ..., 0). Par inégalité de Cauchy-Schwarz,

$$N_1(x) = \sum_{i=1}^{n} 1 \cdot |x_i| \le \sqrt{\sum_{i=1}^{n} 1} \sqrt{\sum_{i=1}^{n} |x_i|^2} = \sqrt{n} N_2(x)$$

L'égalité est atteinte pour x = (1, ..., 1).

Solution 6

Notons (e_1, \dots, e_n) la base canonique de \mathbb{R}^n .

Supposons que (x_1, \dots, x_n) soit libre. L'inégalité triangulaire et l'homogénéité découle quasi directement que $\|\cdot\|$ est une norme. Si $(\lambda_1, \dots, \lambda_n)$

vérifie
$$N(\lambda_1, \dots, \lambda_n) = 0$$
, alors $\sum_{k=1}^n \lambda_k x_k = 0$ par séparation de la norme $\|\cdot\|$. Comme (x_1, \dots, x_n) est libre, $(\lambda_1, \dots, \lambda_n) = (0, \dots, 0)$.

Réciproquement, supposons que N soit une norme. Si on se donne $(\lambda_1, \dots, \lambda_n)$ tel que $\sum_{k=1}^n \lambda_k x_k = 0_E$, alors $N(\lambda_1, \dots, \lambda_n) = \|0_E\| = 0$ et donc $(\lambda_1, \dots, \lambda_n) = (0, \dots, 0)$ par séparation de la norme N. Ceci prouve que (x_1, \dots, x_n) est libre.

Solution 7

Il est clair que si $N_1 = N_2$, alos $B_1 = B_2$.

Réciproquement supposons $B_1 = B_2$. Soit $x \in E$. Si $x = 0_E$, alors $N_1(x) = N_2(x) = 0$. Supposons donc $x \ne 0_E$. Alors $x/N_1(x) \in B_1 = B_2$ donc $N_2(x/N_1(x)) \le 1$ puis $N_2(x)/N_1(x) \le 1$ par homogénéité de la norme N_2 et enfin $N_2(x) \le N_1(x)$. En échangeant les rôles de N_1 et N_2 ainsi que de N_2 et enfin $N_2(x) \le N_2(x)$. Alors $N_1(x) \le N_2(x)$.

Solution 8

Comme f_n est positive sur \mathbb{R}_+ ,

$$||f_n||_{\infty} = \sup_{\mathbb{R}_+} |f_n| = \sup_{\mathbb{R}_+} f_n$$

On étudie f_n sur \mathbb{R}_+ . f_n est dérivable sur \mathbb{R}_+ et

$$\forall x \in \mathbb{R}_+, f'_n(x) = e^{-nx}(1 - nx)$$

On en déduit le tableau de variations suivant :

x	0	$\frac{1}{n}$	+∞
$f_n'(x)$		+ 0	-
Variations de f_n	0	$\frac{1}{ne}$	0

Ainsi
$$||f_n||_{\infty} = \frac{1}{ne}$$
.

Solution 9

Remarquons que $|f_n|$ est π -périodique et paire. Ainsi

$$||f_n||_{\infty} = \sup_{\mathbb{R}} |f_n| = \sup_{[0,\pi/2]} |f_n| = \sup_{[0,\pi/2]} f_n$$

car f_n est positive sur $\left[0, \frac{\pi}{2}\right]$. f_n est dérivable sur $\left[0, \frac{\pi}{2}\right]$ et

$$\forall x \in \left[0, \frac{\pi}{2}\right], \ f_n'(x) = \sin^{n-1}(x)(n\cos^2(x) - \sin^2(x)) = \sin^{n-1}(x)((n+1)\cos^2(x) - 1)$$

On en déduit le tableau de variation suivant :

x	$0 \qquad \arccos\left(\frac{1}{\sqrt{n+1}}\right) \qquad +\infty$	
$f_n'(x)$	+ 0 -	
Variations de f_n	$f_n\left(\arccos\left(\frac{1}{\sqrt{n+1}}\right)\right)$	

Ainsi

$$||f_n||_{\infty} = f_n \left(\arccos\left(\frac{1}{\sqrt{n+1}}\right) \right)$$

On rappelle que $\sin(\arccos(x)) = \sqrt{1 - x^2}$ pour tout $n \in \mathbb{N}$ donc

$$||f_n||_{\infty} = \left(\sqrt{\frac{n}{n+1}}\right)^n \cdot \frac{1}{\sqrt{n+1}} = \frac{\left(\sqrt{n}\right)^n}{\left(\sqrt{n+1}\right)^{n+1}}$$

Solution 10

1. Soit $(u, v) \in (\mathbb{R}_+^*)^2$. Par concavité de ln sur \mathbb{R}_+^* , puisque $\frac{1}{p} + \frac{1}{q} = 1$,

$$\ln\left(\frac{u^p}{p} + \frac{u^q}{q}\right) \ge \frac{1}{p}\ln(u^p) + \frac{1}{q}\ln(u^q)$$

c'est-à-dire,

$$\ln\left(\frac{u^p}{p} + \frac{u^q}{q}\right) \ge \ln(uv)$$

Ainsi par croissance de la fonction exponentielle,

$$uv \leq \frac{u^p}{p} + \frac{u^q}{q}$$

2. Posons pour tout $k \in [1, n]$

$$x'_{k} = \frac{x_{k}}{\left(\sum_{k=1}^{n} x_{k}^{p}\right)^{1/p}}$$
 et $y'_{k} = \frac{y_{k}}{\left(\sum_{k=1}^{n} y_{k}^{q}\right)^{1/q}}$

D'après l'inégalité de Young, pour tout $k \in [1, n]$,

$$x_k'y_k' \le \frac{x_k'^p}{p} + \frac{y_k'^q}{q}$$

En additionnant ces n inégalités membre à membre, on obtient,

$$\sum_{k=1}^{n} x_k' y_k' \le A + B$$

où

$$A = \frac{1}{p} \frac{\sum_{k=1}^{n} x_{k}^{p}}{\sum_{k=1}^{n} x_{k}^{p}} = \frac{1}{p} \quad \text{et} \quad B = \frac{1}{q} \frac{\sum_{k=1}^{n} y_{k}^{q}}{\sum_{k=1}^{n} y_{k}^{q}} = \frac{1}{q}$$

On a donc,

$$\sum_{k=1}^{n} x_k y_k \le \left(\sum_{k=1}^{n} x_k^p\right)^{1/p} \left(\sum_{k=1}^{n} y_k^q\right)^{1/q}$$

3. On remarque que, pour tout entier naturel $k \in [1, n]$,

$$(x_k + y_k)^p = x_k(x_k + y_k)^{p-1} + y_k(x_k + y_k)^{p-1}$$

Par application de l'inégalité de Hölder à p > 1 et $q = \frac{p}{p-1} > 0$ (on a bien 1/p + 1/q = 1), on obtient

$$\sum_{k=1}^{n} x_k (x_k + y_k)^{p-1} \le \left(\sum_{k=1}^{n} x_k^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} (x_k + y_k)^p\right)^{\frac{p-1}{p}}$$

puis une seconde fois,

$$\sum_{k=1}^{n} y_k (x_k + y_k)^{p-1} \leq \left(\sum_{k=1}^{n} y_k^p\right)^{\frac{1}{p}} \times \left(\sum_{k=1}^{n} (x_k + y_k)^p\right)^{\frac{p-1}{p}}$$

et donc, en sommant ces deux inégalités,

$$\sum_{k=1}^{n} (x_k + y_k)^p \le \left[\left(\sum_{k=1}^{n} x_k^p \right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} y_k^p \right)^{\frac{1}{p}} \right] \left(\sum_{k=1}^{n} (x_k + y_k)^p \right)^{\frac{p-1}{p}}$$

En divisant l'inégalité de ci-dessus par

$$\left(\sum_{k=1}^{n} (x_k + y_k)^p\right)^{\frac{p-1}{p}} > 0$$

on obtient donc,

$$\left(\sum_{k=1}^{n}(x_{k}+y_{k})^{p}\right)^{\frac{1}{p}}\leq\left(\sum_{k=1}^{n}x_{k}^{p}\right)^{\frac{1}{p}}+\left(\sum_{k=1}^{n}y_{k}^{p}\right)^{\frac{1}{p}}$$

Convexité

Solution 11

Notons \mathcal{E} l'épigraphe de f. Soient (x_1, y_1) et (x_2, y_2) dans \mathcal{E} et $t \in [0, 1]$. Posons $(x, y) = (1 - t)(x_1, y_1) + t(x_2, y_2) = ((1 - t)x_1 + tx_2, (1 - t)y_1 + ty_2)$. Comme f est convexe, $f(x) = f((1 - t)x_1 + tx_2) \le (1 - t)f(x_1) + tf(x_2)$. Puisque (x_1, y_1) et (x_2, y_2) sont dans \mathcal{E} , $f(x_1) \le y_1$ et $f(x_2) \le y_2$. On en déduit $f(x) \le (1 - t)y_1 + ty_2 = y$. Ainsi $(x, y) \in \mathcal{E}$. Ainsi \mathcal{E} est convexe.

Solution 12

Soit $(A, B) \in f(C)^2$ et $\lambda \in [0, 1]$. Il existe $(M, N) \in C^2$ tel que A = f(M) et B = f(N). Alors

$$(1 - \lambda)A + \lambda B = (1 - \lambda)f(M) + \lambda f(N) = f((1 - \lambda)M + \lambda N)$$

Or C est convexe donc $(1 - \lambda)M + \lambda N \in C$ puis $(1 - \lambda)A + \lambda B \in f(C)$. On en déduit que f(C) est convexe.

Solution 13

Soit $(M, N, \lambda) \in S^2 \times [0, 1]$. Posons $P = (1 - \lambda)M + \lambda N$. Comme $\lambda \ge 0$ et $1 - \lambda \ge 0$, $P_{i,j} = (1 - \lambda)M_{i,j} + \lambda N_{i,j} \ge 0$ pour tout $(i, j) \in [\![1, n]\!] \times [\![1, p]\!]$. De plus, pour tout $i \in [\![1, n]\!]$,

$$\sum_{i=1}^{p} P_{i,j} = (1 - \lambda) \sum_{i=1}^{p} M_{i,j} + \lambda \sum_{i=1}^{p} N_{i,j} = (1 - \lambda) + \lambda = 1$$

Ainsi $P \in S$ et S est convexe.

Distance

Solution 14

Remarquons que $0 \in F$ et $||u - 0||_{\infty} = ||u||_{\infty} = 1$. Ainsi $d(u, F) \le 1$. Soit $x \in F$. Alors pour tout $n \in \mathbb{N}$,

$$||u - x||_{\infty} \ge |u_{2n} - x_{2n}| = |1 - x_{2n}|$$
 et $||u - x||_{\infty} \ge |u_{2n+1} - x_{2n+1}| = |1 + x_{2n+1}|$

En passant à la limite et en notant ℓ la limite de x,

$$||u - x||_{\infty} \ge |1 - \ell|$$
 et $||u - x||_{\infty} \ge |1 + \ell|$

En additionnant ces deux inégalités,

$$2|u - x|_{\infty} \ge |1 - \ell| + |1 + \ell| \ge |(1 - \ell) + (1 + \ell)| = 2$$

puis $||u - x||_{\infty} \ge 1$. Ainsi $d(u, F) \ge 1$. Finalement, d(u, F) = 1.

Solution 15

Soit $(x, y) \in E^2$. Rappelons que $d(x, A) = \inf_{a \in A} \|x - a\|$ et $d(y, A) = \inf_{a \in A} \|y - a\|$. Soit $a \in A$. Alors $d(x, A) \le \|x - a\|$. Or, par inégalité triangulaire

$$||x - a|| = ||(x - y) + (y - a)|| \le ||x - y|| + ||y - a|| = d(x, y) + ||y - a||$$

On en déduit que

$$d(x, A) - d(x, y) \le ||y - a||$$

Comme $d(y, A) = \inf_{a \in A} ||x - a||$, on en déduit que

$$d(x, A) - d(x, y) \le d(y, A)$$

ou encore

$$d(x, A) - d(y, A) \le d(x, y)$$

En échangeant les rôles de x et y on a également

$$d(y, A) - d(x, A) \le d(y, x)$$

d'où le résultat attendu.

Equivalence de normes

Solution 16

1. N est bien à valeurs dans \mathbb{R}_+ .

Séparation Soit $f \in E$ telle que N(f) = 0. Alors $||f||_{\infty} = ||f'||_{\infty} = 0$. Comme $||.||_{\infty}$ est une norme, on a notamment f = 0. Homogénéité Pour $\lambda \in \mathbb{R}$ et $f \in E$,

$$N(\lambda f) = \|\lambda f\|_{\infty} + \|\lambda f'\|_{\infty} = |\lambda| \|f\|_{\infty} + |\lambda| \|f'\|_{\infty} = |\lambda| N(f)$$

car $\|.\|_{\infty}$ est une norme.

Inégalité triangulaire Pour $f, g \in E$,

$$N(f+g) = \|f+g\|_{\infty} + \|f'+g'\|_{\infty} \le \|f\|_{\infty} + \|g\|_{\infty} + \|f'\|_{\infty} + \|g'\|_{\infty} = N(f) + N(g)$$

Ainsi N est bien une norme.

Posons $e_n: x \in [0,1] \mapsto x^n$. Alors pour tout $n \in \mathbb{N}$, $||e_n|| = 1$ tandis que $N(e_n) = 1 + n$. Puisque $N(e_n) \xrightarrow[n \to +\infty]{} +\infty$, N et $||.||_{\infty}$ ne peuvent être équivalentes.

2. N' est bien à valeurs dans \mathbb{R}_+ .

Séparation Soit $f \in E$ telle que N'(f) = 0. Alors f(0) = 0 et f' = 0. Ainsi f est constante (car f' = 0) et cette constante est nulle (car f(0) = 0).

Homogénéité Pour $\lambda \in \mathbb{R}$ et $f \in E$,

$$N'(\lambda f) = |\lambda f(0)| + ||\lambda f'||_{\infty} = |\lambda||f(0)| + |\lambda|||f'||_{\infty} = |\lambda|N'(f)$$

car $\|.\|_{\infty}$ est une norme.

Inégalité triangulaire Pour $f, g \in E$,

$$N'(f+g) = |f(0) + g(0)| + ||f' + g'||_{\infty} \le |f(0)| + |g(0)| + ||f'||_{\infty} + ||g'||_{\infty} = N'(f) + N'(g)$$

Ainsi N' est bien une norme

Puisque $|f(0)| \le ||f||_{\infty}$ pour tout $f \in E$, N' \le N. Soit $f \in E$. Pour tout $x \in [0,1]$, $f(x) = f(0) + \int_0^x f'(t) dt$. Par inégalité triangulaire

$$|f(x)| \le |f(0)| + \left| \int_0^x f'(t) \, dt \right|$$

Par inégalité de continuité

$$\left| \int_{0}^{x} f'(t) \, dt \right| \le \int_{0}^{x} |f'(t)| \, dt \le x \|f'\|_{\infty} \le \|f'\|_{\infty}$$

Finalement, pour tout $x \in \mathbb{R}$,

$$|f(x)| \le |f(0)| + ||f'||_{\infty}$$

puis $||f||_{\infty} \leq |f(0)| + ||f'||_{\infty}$. Finalement

$$N(f) \le |f(0)| + 2||f'||_{\infty} \le 2|f(0)| + 2||f'||_{\infty} = 2N'(f)$$

On a donc $N' \le N \le 2N'$, ce qui signifie que N est équivalente à N'.

Solution 17

L'espace normé en question doit nécessairement être de dimension infinie. Considérons par exemple $\mathbf{E} = c\mathbf{C}([0,1])$. Pour $f \in \mathbf{E}$, on pose $\|f\|_{\infty} = \sup_{t \in [0,1]} |f(t)|$ et $\|f\|_{1} = \int_{0}^{1} |f(t)|$ dt. On sait que $\|.\|_{\infty}$ et $\|.\|_{1}$ sont des normes sur \mathbf{E} . Pour $n \in \mathbb{N}$, on pose $f_{n}(x) = \begin{cases} n-n^{2}x & \text{si } 0 \leq x \leq \frac{1}{n} \\ 0 & \text{si } \frac{1}{n} \leq x \leq 1 \end{cases}$. On vérfie que $\|f_{n}\|_{\infty} = n$ et $\|f_{n}\|_{1} = \frac{1}{2}$ pour tout $n \in \mathbb{N}$. Puisque $\|f_{n}\|_{\infty} \xrightarrow[n \to +\infty]{} +\infty$, $\|.\|_{\infty}$ et $\|.\|_{1}$ ne peuvent être équivalentes.

Solution 18

1. Pour tout $f \in E$,

$$||f||_2^2 = \int_{[0,1]} f^2 \le \int_{[0,1]} ||f||_{\infty}^2 = ||f||_{\infty}^2$$

Par conséquent, $||f||_2 \leq ||f||_{\infty}$.

- 2. Les normes ∥.∥₂ et ∥.∥∞ induisent des normes sur V. Comme V est de dimension finie, ces normes sont équivalentes et on en déduit l'inégalité demandée.
- 3. On peut munir V du produit scalaire $(f,g) \mapsto \int_{[0,1]} fg$. On se donne une famille libre de V à p éléments. On peut alors l'orthonormaliser en une famille (f_1, \dots, f_p) . Soit $x \in [0,1]$. Alors pour $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$

$$\left(\sum_{i=1}^{p} \lambda_{i} f_{i}(x)\right)^{2} \leq \|\sum_{i=1}^{p} \lambda_{i} f_{i}\|_{\infty}^{2} \leq n^{2} \|\sum_{i=1}^{p} \lambda_{i} f_{i}\|_{2}^{2}$$

Or la famille (f_1, \dots, f_p) étant orthonormale, $\|\sum_{i=1}^p \lambda_i f_i\|_2^2 = \sum_{i=1}^p \lambda_i^2$. L'astuce consiste à prendre maintenant $\lambda_i = f_i(x)$ pour $1 \le i \le p$. On obtient alors

$$\left(\sum_{i=1}^{p} f_i(x)^2\right)^2 \le n^2 \sum_{i=1}^{p} f_i(x)^2$$

et donc

$$\sum_{i=1}^{p} f_i(x)^2 \le n^2$$

Il suffit alors d'intégrer entre 0 et 1 pour obtenir

$$\sum_{i=1}^p \|f_i\|^2 \le n^2$$

La famille $(f_1, ..., f_p)$ étant normée, on aboutit à $p \le n^2$, ce qui prouve que V est nécessairement de dimension finie et que dim $V \le n^2$.

Solution 19

- 1. N_{∞} est la norme de la convergence uniforme. On en déduit sans peine que N et N_1 sont également des normes.
- 2. Posons $f_n: x \in [0,1] \mapsto x^n$. On a clairement $N_{\infty}(f_n) = 1$ pour tout $n \in \mathbb{N}$. Cependant, $N(f_n) = N_1(f_n) = n^2 n + 1 \underset{n \to +\infty}{\longrightarrow} +\infty$. Donc N_{∞} n'est équivalente ni à N ni à N_1 .
- 3. Soit $x \in [0, 1]$. Par intégration par parties

$$\int_0^x \sin(x-t)f''(t) dt = \left[\sin(x-t)f'(t)\right]_0^x + \int_0^x \cos(x-t)f'(t) dt$$

Puisque $f \in E$, f'(0) = 0 de sorte que le crochet est nul. Par une seconde intégration par parties,

$$\int_0^x \sin(x-t)f''(t) dt = \left[\cos(x-t)f(t)\right]_0^x - \int_0^x \sin(x-t)f(t) dt$$

Finalement

$$\int_0^x \sin(x-t)(f(t) + f''(t)) dt = \left[\cos(x-t)f(t)\right]_0^x = f(x) - f(0)\cos x = f(x)$$

car f(0) = 0 puisque $f \in E$.

4. On a clairement $N \le N_1$. Soit $f \in E$. D'après la question précédente, pour tout $x \in E$

$$f(x) = \int_0^x \sin(x - t)(f(t) + f''(t)) dt$$

puis

$$|f(x)| \le \int_0^x |\sin(x-t)||f(t) + f''(t)| dt \le \int_0^x N(f) = xN(f) \le N(f)$$

Par conséquent $N_{\infty}(f) \leq N(f)$. Par ailleurs,

$$N_{\infty}(f'') = N_{\infty}(f'' + f - f) \le N(f) + N_{\infty}(f)$$

puis $N_{\infty}(f'') - N_{\infty}(f) \le N(f)$. Finalement

$$N_1(f) = N_{\infty}(f'') - N_{\infty}(f) + 2N_{\infty}(f) \le 3N(f)$$

Ainsi $N \le N_1 \le 3N$ donc N et N_1 sont équivalentes.

Solution 20

1. Soit $f \in \mathcal{C}^0([a,b],\mathbb{K})$.

Pour tout $t \in [a, b]$, $|f(t)| \le N_{\infty}(f)$. Par croissance de l'intégrale, $N_1(f) \le (b - a)N_{\infty}(f)$. L'égalité est atteinte pour f constante égale à 1.

Pour tout $t \in [a, b]$, $|f(t)|^2 \le N_{\infty}(f)^2$ puis, par croissance de l'intégrale, $N_2(f)^2 \le (b - a)N_{\infty}(f)^2$ puis $N_2(f) \le \sqrt{b - a}N_{\infty}(f)$. L'égalité est atteinte pour f constante égale à 1. Par inégalité de Cauchy-Schwarz,

$$N_1(f) = \int_a^b 1 \cdot |f(t)| dt \le \sqrt{\int_a^b dt} \sqrt{\int_a^b |f(t)|^2 dt} = \sqrt{b - a} N_2(f)$$

L'égalité est atteinte pour f constante égale à 1.

2. Posons $f_n: t \mapsto (t-a)^n$ pour $n \in \mathbb{N}$. Alors,

$$N_1(f_n) = \frac{(b-a)^n}{n+1} \qquad N_2(f_n) = \frac{\sqrt{b-a(b-a)^n}}{\sqrt{2n+1}} \qquad N_{\infty}(f_n) = (b-a)^n$$

Alors

$$\lim_{n \to +\infty} \frac{\mathrm{N}_1(f_n)}{\mathrm{N}_2(f_n)} = 0 \qquad \qquad \lim_{n \to +\infty} \frac{\mathrm{N}_1(f_n)}{\mathrm{N}_\infty(f_n)} = 0 \qquad \qquad \lim_{n \to +\infty} \frac{\mathrm{N}_2(f_n)}{\mathrm{N}_\infty(f_n)} = 0$$

Donc ces trois normes ne sont pas équivalentes.

Solution 21

Il faut déjà que A soit bornée pour que la borne supérieure définissant $N_A(P)$ soit définie pour tout polynôme P. Une autre condition nécessaire est également que A soit infini. Si ce n'est pas le cas, il suffit de considérer $P = \prod_{a \in A} (X - a)$. Il est clair que $N_A(P) = 0$ mais que P n'est pas nul. Si A est infinie et bornée, on vérifie aisément que N_A est une norme sur $\mathbb{R}[X]$.

Solution 22

- 1. Sachant que $\|\cdot\|_1$ est une norme sur $\mathcal{C}^0([0,1],\mathbb{R})$. On prouve sans difficulté que N_1 et N_2 sont des normes sur E. Détaillons seulement l'axiome de séparation pour la norme N_2 . Soit donc $f \in E$ telle que $N_2(f) = 0$. Comme une somme de termes positifs ne peut être nulle que si chacun des termes est nul, on en déduit que $f(0) = \|f'\|_1 = 0$. Comme $\|\cdot\|_1$ est une norme, f' est nulle sur [0,1] i.e. f est constante sur [0,1]. Comme f(0) = 0, f est nulle sur [0,1].
- **2.** Soit $f \in E$. Remarquons que

$$\forall x \in [0, 1], \ f(x) = f(0) + \int_0^x f'(t) \ dt$$

Par inégalité triangulaire,

$$\forall x \in [0,1], \ |f(x)| \le |f(0)| + \left| \int_0^x f'(t) \ \mathrm{d}t \right| \le |f(0)| + \int_0^x |f'(t)| \ \mathrm{d}t \le |f(0)| + \int_0^1 |f'(t)| \ \mathrm{d}t = \mathrm{N}_2(f)$$

Ainsi

$$||f||_1 \le \int_0^1 N_2(f) dt = N_2(f)$$

puis

$$N_1(f) = ||f||_1 + ||f'||_1 \le N_2(f) + ||f'||_1 \le 2N_2(f)$$

De même,

$$\forall x \in [0, 1], \ f(0) = f(x) - \int_0^x f'(t) \ dt$$

puis, par inégalité triangulaire,

$$\forall x \in [0,1], \ |f(0)| \le |f(x)| + \left| \int_0^x f'(t) \ \mathrm{d}t \right| \le |f(x)| + \int_0^x |f'(t)| \ \mathrm{d}t \le |f(x)| + \int_0^1 |f'(t)| \ \mathrm{d}t = |f(x)| + ||f'||_1$$

Par croissance de l'intégrale,

 $\langle P, P \rangle = 0$ mais P n'est pas nul.

$$|f(0)| = \int_0^1 |f(0)| \, \mathrm{d}t \le \int_0^1 |f(x)| \, \mathrm{d}x + \int_0^1 |f'|_1 \, \mathrm{d}x = ||f||_1 + ||f'||_1$$

Enfin,

$$N_2(f) = |f(0)| + ||f'||_1 \le ||f||_1 + 2||f'||_1 \le 2N_1(f)$$

Les normes N₁ et N₂ sont bien équivalentes.

Solution 23

- 1. Si PQ est nul, alors $u_n = 0$ pour tout $n \in \mathbb{N}$ et alors $\sum u_n$ converge. Sinon, en notant d le degré de PQ, PQ $(n) = O(n^d)$. Comme (a_n) est bornée, $u_n = O(n^d/2^n)$. Par croissances comparées, on peut par exemple affirmer que $u_n = O(1/n^2)$. Comme $\sum \frac{1}{n^2}$ est une série convergente à termes positifs, $\sum u_n$ converge.
- 2. La symétrie, la bilinéarité et la positivité sont évidentes (à faire néanmoins). Si l'on se donne $P \in E$ tel que $\langle P, P \rangle = 0$, alors P(n) = 0 pour tout $n \in \mathbb{N}$ car une somme de termes positifs ne peut être nulle que si chacun des termes est nul. Ainsi P possède une infinité de racines : il est nul.
- 3. Tout d'abord, la symétrie, la bilinéarité et la positivité restent conservées même si les a_n sont positifs ou nul. On va montrer que ⟨·,·⟩ définit encore un produit scalaire si et seulement si il existe une infinité d'entiers n tels que a_n > 0. Si c'est le cas, un polynôme P vérifiant ⟨P, P⟩ = 0 s'annule encore en tous les entiers n tels que a_n > 0. Il possède donc encore une infinité de racines et il est nul.
 Si ce n'est pas le cas, notons A l'ensemble fini des entiers n tels que a_n > 0. Posons alors P = ∏(X n). On vérifie alors que
- **4.** Posons $P_k = X^k$ pour $k \in \mathbb{N}$. Il est clair que $N_2(P_k) = 1$ pour tout $k \in \mathbb{N}$. De plus,

$$\forall k \in \mathbb{N}, \ N_1(P_k)^2 = \sum_{n=0}^{+\infty} \frac{n^{2k}}{2^n} \ge \frac{2^{2k}}{2^2}$$

car une somme de termes positifs est supérieure à chacun de ses termes (ici le terme d'indice n=2). Ainsi $N_1(P_k) \geq 2^{k-1}$ pour tout $k \in \mathbb{N}$ puis $\frac{N_1(P_k)}{N_2(P_k)} \underset{n \to +\infty}{\longrightarrow} +\infty$ de sorte que N_1 et N_2 ne sont pas équivalentes.

Suites

Solution 24

1. Soit $x \in \text{Ker}(\text{Id}_E - u) \cap \text{Im}(\text{Id}_E - u)$. Alors u(x) = x et il existe $a \in E$ tel que x = a - u(a). On a alors

$$nx = \sum_{k=0}^{n-1} x = \sum_{k=0}^{n-1} u^k(x) = \sum_{k=0}^{n-1} u^k(a) - u^{k+1}(a) = a - u^n(a)$$

Ainsi $x = \frac{1}{n}(a - u^n(a))$. Par conséquent,

$$||x|| \le \frac{1}{n} (||a|| + ||u^n(a)||)$$

 $\le \frac{2||a||}{n}$

En faisant tendre n vers $+\infty$, on obtient ||x|| = 0 et donc $x = 0_E$. On conclut grâce au théorème du rang.

2. D'après la question précédente, il existe $y \in \text{Ker}(\text{Id}_E - u)$ et $a \in E$ tel que x = y + a - u(a). Pour tout $k \in \mathbb{N}$, $u^k(x) = y + u^k(a) - u^{k+1}(a)$. Par télescopage, $x_n = y + \frac{1}{n}(a - u^n(a))$. En raisonnant comme à la question précédente, on montre que $\|x_n - y\| \le \frac{2\|a\|}{n}$. Ceci montre que (x_n) converge vers y qui est justement la projection de x sur $\text{Ker}(\text{Id}_E - u)$ parallélement à $\text{Im}(\text{Id}_E - u)$.

Solution 25

Notons L la limite de la suite (A^n) . La suite (A^{2n}) étant une suite extraite de la suite (A^n) , elle converge vers L. Mais par continuité de l'application $M \in \mathcal{M}_n(\mathbb{R}) \mapsto M^2$, la suite (A^{2n}) converge vers L². Par unicité de la limité, $L = L^2$ et donc L est une matrice de projecteur.

Solution 26

- **1. a.** Supposons que la suite (x_n) converge faiblement vers x et x'. Soit $y \in E$. Alors $\lim_{n \to +\infty} \langle x_n x, y \rangle = 0$ et $\lim_{n \to +\infty} \langle x_n x', y \rangle = 0$. Par différence, $\langle x' x, y \rangle = 0$. Ainsi $x' x \in E^{\perp} = \{0_E\}$ et x = x'.
 - **b.** Supposons que (x_n) converge fortement vers x. Soit $y \in E$. Alors, par l'inégalité de Cauchy-Schwarz,

$$|\langle x_n - x, y \rangle| \le ||x_n - x|| ||y||$$

On en défuit immédiatement que $\lim_{n\to+\infty} \langle x_n - x, y \rangle = 0$. Ainsi (x_n) converge faiblement vers x.

2. Supposons que (x_n) converge fortement vers x. Alors, d'après la question précédente, (x_n) converge faiblement vers x. De plus, par inégalité triangulaire,

$$|||x_n|| - ||x||| \le ||x_n - x||$$

Donc $\lim_{n\to +\infty} ||x_n|| = ||x||$.

Supposons maintenant que (x_n) converge faiblement vers x et $\lim_{n \to +\infty} ||x_n|| = ||x||$. Remarquons que

$$||x_n - x||^2 = ||x_n||^2 + ||x||^2 - 2\langle x_n, x \rangle$$

Par hypothèse, $\lim_{n\to+\infty} \|x_n\|^2 = \|x\|^2$. De plus, (x_n) converge faiblement vers x $\lim_{n\to+\infty} \langle x_n - x, x \rangle = 0$ ou encore $\lim_{n\to+\infty} \langle x_n, x \rangle = \|x\|^2$. Finalement,

$$\lim_{n \to +\infty} \|x_n - x\|^2 = 0$$

ce qui prouve que (x_n) converge fortement vers x.

3. Supposons que E soit de dimension finie.

Soit donc une suite (x_n) convergeant faiblement vers x. Notons (e_1, \dots, e_n) une base orthonormale de E. Par convergence faible, pour tout $i \in [1, n]$, $\lim_{n \to +\infty} \langle x_n - x, e_i \rangle = 0$. De plus, la base (e_1, \dots, e_n) étant orthonormée, pour tout $n \in \mathbb{N}$,

$$||x_n - x||^2 = \sum_{i=1}^n \langle x_n - x, e_i \rangle^2$$

On en déduit que

$$\lim_{n \to +\infty} \|x_n - x\|^2 = 0$$

ou encore $\lim_{n \to +\infty} ||x_n - x|| = 0$.

4. Considérons $E = \mathbb{R}[X]$, que l'on munit de sa norme usuelle (somme des produits des coefficients), c'est-à-dire

$$(P, Q) \in \mathbb{R}[X]^2 \mapsto \sum_{k=0}^{+\infty} \frac{P^{(k)}(0)}{k!} \cdot \frac{Q^{(k)}(0)}{k!}$$

On considère alors la suite (X^n) . Pour tout $P \in \mathbb{R}[X]$, $\langle X^n, P \rangle = 0$ dès lors que $n > \deg P$. Ainsi $\lim_{n \to +\infty} \langle X^n, P \rangle = 0$, ce qui permet d'affirmer que (X^n) converge faiblement vers 0. Mais, pour tout $n \in \mathbb{N}$, $||X^n|| = 1$ donc la suite (X^n) ne peut converger fortement vers 0.

Solution 27

1. Soient a et b deux valeurs d'adhérence de (u_n) (a < b). Donnons-nous $c \in]a, b[$ et montrons que c est également une valeur d'adhérence de (u_n) .

Fixons $\varepsilon \in \mathbb{R}_+^*$ et $N \in \mathbb{N}$.

- Comme $\lim_{n \to +\infty} u_{n+1} u_n = 0$, il existe un entier $N_0 \ge N$ tel que pour tout entier $n \ge N_0$, $|u_{n+1} u_n| \le \varepsilon$.
- Comme a est valeur d'adhérence, il existe un entier $N_1 \ge N_0$ tel que $u_{N_1} < c$.
- Comme b est valeur d'adhérence, il existe un entier $N_2 \ge N_1$ tel que $u_{N_2} > c$.

L'ensemble $\{n \in \mathbb{N}, \ N_1 \le n \le N_2, u_n < c\}$ est une partie non vide (il contient N_1) et majorée (par N_2) de \mathbb{N} . Il admet donc un plus grand élément M. Notamment, $u_M < c \le u_{M+1}$ i.e. $0 < c - u_M \le u_{M+1} - u_M$. Mais comme $M \ge N_1 \ge N_0$, $|u_{M+1} - u_M| \le \varepsilon$. On en déduit que $0 < c - u_M \le \varepsilon$ et a fortiori $|u_M - c| \le \varepsilon$ avec $M \ge N$. Ceci prouve que c est également une valeur d'adhérence de (u_n) . L'ensemble des valeurs d'adhérence de (u_n) est donc bien un intervalle.

2. Il est évident que si (u_n) converge, alors $\lim_{n \to +\infty} u_{n+1} - u_n = 0$. Réciproquement, supposons que $\lim_{n \to +\infty} u_{n+1} - u_n = 0$ et montrons que (u_n) converge. Comme (u_n) est bornée, il suffit de montrer qu'elle admet une unique valeur d'adhérence.

Remarquons déjà que toute valeur d'adhérence est un point fixe de f. En effet, si ℓ est une valeur d'adhérence, il existe une suite extaite $(u_{\varphi(n)})$ convergeant vers ℓ . Mais alors la suite de terme général $f(u_{\varphi(n)}) - u_{\varphi(n)} = u_{\varphi(n)+1} - u_{\varphi(n)}$ converge vers $f(\ell) - \ell$ par continuité de f et vers 0 par hypothèse de l'énoncé. Ainsi $f(\ell) = \ell$.

Supposons que (u_n) admette deux valeurs d'adhérence c et d (c < d). Il existe alors $p \in \mathbb{N}$ tel que $u_p \in [c, d]$. Si ce n'était pas le cas la suite (u_n) serait à valeurs dans $\mathbb{R} \setminus [c, d]$ et aucun réel de]c, d[ne pourrait alors être valeur d'adhérence, ce qui contredirait le fait que l'ensemble des valeurs d'adhérence est un intervalle. Comme $u_p \in [c, d]$ et que l'ensemble des valeurs d'adhérence est un intervalle, u_p est lui-même une valeur d'adhérence et donc un point fixe. La suite (u_n) est donc stationnaire à partir du rang p et a fortiori convergente, ce qui contredit l'existence de deux valeurs d'adhérence.

En conclusion, la suite (u_n) est bornée et admet une unique valeur d'adhérence : elle converge.

Solution 28

Notons L la limite de la suite (A^n) . Alors la suite $((A^n)^T)$ converge vers L^T (on peut arguer du fait que la transposition est continue en tant qu'endomorphisme d'un espace vectoriel de dimension finie). Par ailleurs,

$$\forall n \in \mathbb{N}, (A^n)^{\mathsf{T}} = (A^{\mathsf{T}})^n = (-A)^n = (-1)^n A^n$$

La suite $((A^{2n})^T)$ converge donc vers L et la suite $((A^{2n+1})^T)$ vers -L car (A^{2n}) et (A^{2n+1}) sont des suites extraites de (A^n) . Mais comme $((A^{2n})^T)$ et $((A^{2n+1})^T)$ sont elles-mêmes sdes suites extraites de $((A^n)^T)$, on en déduit que $L^T = L = -L$ et donc L = 0.

Solution 29

On note $R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ la matrice de rotation d'angle θ . On rappelle que

$$\forall (\theta, \varphi) \in \mathbb{R}^2, \ R(\theta + \varphi) = R(\theta)R(\varphi)$$

Posons $d_n = \det(\mathbf{A}_n) = 1 + \frac{a^2}{n^2}$. Alors $\mathbf{A}_n/\sqrt{d_n} \in \mathrm{SO}(2)$ donc il existe $\theta_n \in]-\pi,\pi]$ tel que $\mathbf{A}_n = \sqrt{d_n}\mathbf{R}(\theta_n)$. Par ailleurs, $\cos\theta_n = \frac{1}{\sqrt{d_n}} > 0$

donc $\theta_n \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. Or $\tan \theta_n = \frac{a}{n}$ donc $\theta_n = \arctan \frac{a}{n}$. De plus.

$$A_n^n = d_n^{n/2} R(\theta_n)^n = d_n^{n/2} R(n\theta_n)$$

Comme arctan x = x + o(x), $\lim_{n \to +\infty} n\theta_n = a$. L'application R est continue donc $\lim_{n \to +\infty} R(n\theta_n) = R(a)$. Enfin,

$$d_n^{n/2} = \exp\left(\frac{n}{2}\ln\left(1 + \frac{a^2}{n^2}\right)\right)$$

Mais comme $\ln(1+x) = x + o(x)$, $\lim_{n \to +\infty} \frac{n}{2} \ln\left(1 + \frac{a^2}{n^2}\right) = 0$ puis $\lim_{n \to +\infty} d_n^{n/2} = 1$. Finalement,

$$\lim_{n \to +\infty} A_n^n = R(a) = \begin{pmatrix} \cos a & -\sin a \\ \sin a & \cos a \end{pmatrix}$$

Solution 30

- 1. M_{2n} est le milieu de $[BM_{2n-1}]$ et M_{2n+1} est le milieu de $[AM_{2n}]$.
- **2.** D'après ce qui précède , pour tout $n \in \mathbb{N}$

$$z_{2n+2} = \frac{1}{2}(z_{2n+1} - i)$$
 et $z_{2n+1} = \frac{1}{2}(z_{2n} + i)$

Aini

$$z_{2n+2} = \frac{1}{4}z_{2n} - \frac{i}{4}$$
 et $z_{2n+3} = \frac{1}{4}z_{2n+1} + \frac{i}{4}$

Les suites $(z_{2n})_{n\in\mathbb{N}}$ et $(z_{2n+1})_{n\in\mathbb{N}}$ sont arithméticogéométriques.

3. L'unique solution de

$$z = \frac{z}{4} - \frac{i}{4}$$

est $-\frac{i}{3}$. On vérifie que la suite $\left(z_{2n} + \frac{i}{3}\right)$ est géométrique de raison $\frac{1}{4}$. La suite $(z_{2n})_{n \in \mathbb{N}}$ converge donc vers $-\frac{i}{3}$. L'unique solution de

$$z = \frac{z}{4} + \frac{i}{4}$$

est $\frac{i}{3}$. On vérifie que la suite $\left(z_{2n+1}-\frac{i}{3}\right)$ est géométrique de raison $\frac{1}{4}$. La suite $(z_{2n+1})_{n\in\mathbb{N}}$ converge donc vers $\frac{i}{3}$.

Les suites de points correspondantes $(M_{2n})_{n\in\mathbb{N}}$ et $(M_{2n+1})_{n\in\mathbb{N}}$ convergent donc vers les images respectives de $-\frac{i}{3}$ et $\frac{i}{3}$. La suite $(M_n)_{n\in\mathbb{N}}$ n'est donc pas convergente.

4. La suite $(M_{3n})_{n\in\mathbb{N}}$ ne converge pas car les suites $(M_{6n+3})_{n\in\mathbb{N}}$ et $(M_{6n})_{n\in\mathbb{N}}$ sont extraites de $(M_{3n})_{n\in\mathbb{N}}$ mais aussi (et respectivement!) de $(M_{2n+1})_{n\in\mathbb{N}}$ et $(M_{2n})_{n\in\mathbb{N}}$, et convergent donc vers des limites différentes.

Solution 31

- 1. a. Comme $|z_n| \in \mathbb{R}$, $y_{n+1} = \frac{y_n}{2}$. On en déduit que (y_n) converge vers 0.
 - **b.** Par inégalité triangulaire, pour tout $n \in \mathbb{N}$:

$$|z_{n+1}| \le \frac{|\operatorname{Re}(z_n)| + |z_n|}{2} \le |z_n|$$

puisque pour tout complexe z, $|\operatorname{Re}(z)| \le |z|$.

c. On a pour tout $n \in \mathbb{N}$:

$$\operatorname{Re}(z_{n+1}) = \frac{\operatorname{Re}(z_n) + |z_n|}{2} \ge \operatorname{Re}(z_n)$$

puisque pour tout complexe z, $Re(z) \le |z|$. Ainsi (x_n) est croissante.

- **d.** Pour tout $n \in \mathbb{N}$, $\text{Re}(z_n) \le |z_n| \le |z_0|$ par décroissance de $(|z_n|)$. Ainsi (x_n) est croissante et majorée; elle converge.
- e. Comme (x_n) et (y_n) convergent, (z_n) converge. Puisque (y_n) converge vers 0, la limite de (z_n) est réelle.
- **f.** Si $z_0 \in \mathbb{R}_+$, on montre par récurrence que $z_n = z_0$ pour tout $n \in \mathbb{N}$. Donc (z_n) converge vers z_0 . Si $z_0 \in \mathbb{R}_-$, alors $z_1 = 0$ et on montre par récurrence que $z_n = 0$ pour tout $n \ge 1$. Donc (z_n) converge vers 0.

2. a. En appliquant la méthode de l'arc-moitié, on a :

$$z_{n+1} = r_n \cos \frac{\theta_n}{2} e^{i\frac{\theta_n}{2}}$$

Puisque $\theta_n \in]-\pi,\pi]$, $\frac{\theta_n}{2} \in \left]-\frac{\pi}{2},\frac{\pi}{2}\right]$ et donc $r_n \cos \frac{\theta_n}{2} \geq 0$. On en déduit que $r_{n+1} = r_n \cos \frac{\theta_n}{2}$. Comme $\frac{\theta_n}{2} \in]-\pi,\pi]$, $\theta_{n+1} = \frac{\theta_n}{2}$.

- **b.** On en déduit immédiatement que (θ_n) converge vers 0.
- c. Comme $\alpha \in]-\pi, 0[\cup]0, \pi[, \frac{\alpha}{2^k} \not\equiv 0[\pi]$ pour tout $k \in [\![1,n]\!]$. On utilise alors l'indication de l'énoncé :

$$S_n = \prod_{k=1}^n \frac{\sin \frac{\alpha}{2^{k-1}}}{2\sin \frac{\alpha}{2^k}}$$

Par télescopage, on a $S_n = \frac{\sin \alpha}{2^n \sin \frac{\alpha}{2^n}}$.

Comme $\frac{\alpha}{2^n} \xrightarrow[n \to +\infty]{} 0$, $\sin \frac{\alpha}{2^n} \underset{n \to +\infty}{\sim} \frac{\alpha}{2^n}$. Par conséquent, $2^n \sin \frac{\alpha}{2^n} \xrightarrow[n \to +\infty]{} \alpha$ puis $S_n \xrightarrow[n \to +\infty]{} \frac{\sin \alpha}{\alpha}$.

d. Par une récurrence facile, $\theta_n = \frac{\theta_0}{2^n}$. On montre aussi facilement que pour $n \ge 1$:

$$r_n = r_0 \prod_{k=0}^{n-1} \cos \frac{\theta_k}{2} = r_0 \prod_{k=0}^{n-1} \cos \frac{\theta_0}{2^{k+1}} = r_0 \prod_{k=1}^{n} \cos \frac{\theta_0}{2^k}$$

Si $\theta_0 = 0, z_0 \in \mathbb{R}_+$ et on a vu que (z_n) est constante égale à z_0 . Ainsi (z_n) converge vers z_0 .

Si $\theta_0 = \pi$, $z_0 \in \mathbb{R}_-$ et on a vu que (z_n) est nulle à partir du rang 1. Ainsi (z_n) converge vers 0.

Si $\theta_0 \in]-\pi, 0[\cup]0, \pi[$, la question précédente montre que (r_n) converge vers $r_0 \frac{\sin \theta_0}{\theta_0}$. Comme (θ_n) converge vers $0, (z_n)$ converge également vers $r_0 \frac{\sin \theta_0}{\theta_0}$.

Suites extraites

Solution 32

Posons $u_n = \{\sqrt{n}\}$. Alors $u_{n^2} = 0$ pour tout $n \in \mathbb{N}$. De plus, $n-1 \le \sqrt{n^2-1} < n$ pour $n \ge 1$ donc $\{\sqrt{n^2-1}\} = n$. Enfin

$$\{\sqrt{n^2 - 1}\} = \sqrt{n^2 - 1} - (n - 1) = 1 + \sqrt{n^2 - 1} - n = 1 - \frac{1}{n + \sqrt{n^2 - 1}}$$

Les suites $(u_{n^2})_{n\in\mathbb{N}}$ et $(u_{n^2-1})_{n\geq 1}$ sont des suites extraites de la suite (u_n) de limites respectives 0 et 1. La suite (u_n) n'admet donc pas de limite.

Solution 33

Première méthode

Supposons qu'une des suites ne soit pas majorée – la suite (a_n) pour fixer les idées. Alors on peut extraire une suite $(a_{\varphi(n)})$ qui diverge vers $+\infty$. Puisque $e^{a_{\varphi(n)}} + e^{b_{\varphi(n)}} + e^{c_{\varphi(n)}} \geq e^{a_{\varphi(n)}}$, $e^{a_{\varphi(n)}} + e^{b_{\varphi(n)}} + e^{c_{\varphi(n)}}$ tend vers $+\infty$, ce qui contredit le fait que $e^{a_n} + e^{b_n} + e^{c_n}$ tend vers 3. Supposons maintenant qu'une des suites ne soit pas minorée – la suite (a_n) pour fixer les idées. Alors on peut extraire une suite $(a_{\varphi(n)})$ qui diverge vers $-\infty$. Les deux autres suites ne peuvent pas être majorées sinon $a_{\varphi(n)} + b_{\varphi(n)} + c_{\varphi(n)}$ tendrait vers $-\infty$. Ainsi une des suites n'est pas majorée et on est ramené au cas précédent dont on a vu qu'il était impossible. Par conséquent, les trois suites sont bornées.

La suite (a_n) est bornée donc, d'après le théorème de Bolzano-Weierstrass, il existe donc une suite extraite $(a_{\varphi_1(n)})$ convergente. La suite $(b_{\varphi_1(n)})$ est également bornée donc il existe une suite extraite $(b_{\varphi_1\circ\varphi_2(n)})$ convergente. Enfin, la suite $(c_{\varphi_1\circ\varphi_2(n)})$ est bornée donc il existe une suite extraite $(c_{\varphi_1\circ\varphi_2\circ\varphi_3(n)})$ convergente. Pour simplifier les notations, posons $\varphi = \varphi_1 \circ \varphi_2 \circ \varphi_3$. Ainsi les suites $(a_{\varphi(n)}), (b_{\varphi(n)}), (c_{\varphi(n)})$ convergent. Notons a,b,c leurs limites. On a donc a+b+c=0 et $e^a+e^b+e^c=3$. Pour tout $x\in\mathbb{R}$, on a $e^x\geq 1+x$ avec inégalité stricte lorsque $x\neq 0$. Supposons que l'un des réels a,b,c soit non nul -a pour fixer les idées. Alors $e^a>1+a$, $e^b\geq 1+b$ et $e^c\geq 1+c$ donc

 $e^a + e^b + e^c > 3 + a + b + c$ i.e. 3 > 3 ce qui est absurde. Ainsi a = b = c = 0.

Ce qui précède montre que 0 est la seule valeur d'adhérence des suites (a_n) , (b_n) , (c_n) . Il est classique de montrer que 0 est la limite de ces trois suites.

Seconde méthode

Posons $f(x) = e^x - 1 - x$. On montre facilement que f est positive et ne s'annule qu'en 0. D'après l'énoncé $u_n = f(a_n) + f(b_n) + f(c_n)$ tend vers 0 lorsque n tend vers $+\infty$. De plus, $0 \le f(a_n) \le u_n$ donc, par encadrement, $(f(a_n))$ converge vers 0. La représentation graphique de f montre bien que (a_n) doit converger vers 0. Soit $\varepsilon > 0$. Posons $m = \min(f(\varepsilon), f(-\varepsilon))$. Il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$, $|f(a_n)| < m$. Les variations de f montrent alors que pour $n \ge N$, $|a_n| < \varepsilon$. Ainsi (a_n) converge vers 0. On raisonne de la même manière pour (b_n) et (c_n) .

Solution 34

1. Il suffit par exemple de remarquer que $[0,7]^2$ est stable par l'application $f:(x,y)\mapsto(\sqrt{7-y},\sqrt{7+y})$. Soit en effet $(x,y)\in[0,7]^2$.

$$\sqrt{7-y} \le \sqrt{7} \le 7$$
 et $\sqrt{7+x} \le \sqrt{17} \le 7$

2. Supposons que (x_n) et (y_n) convergent respectivement vers ℓ et ℓ' . Alors $\ell = \sqrt{7 - \ell'}$ et $\ell' = \sqrt{7 + \ell}$. En particulier,

$$\ell^2 = 7 - \ell'$$
 et $\ell'^2 = 7 + \ell$

En soustrayant membre à membre ces deux égalités, on obtient

$$\ell'^2 - \ell^2 = \ell + \ell'$$

ou encore

$$(\ell' + \ell)(\ell' - \ell - 1) = 0$$

On ne peut avoir $\ell + \ell' = 0$. En effet, (x_n) et (y_n) sont clairement positives donc leurs limites ℓ et ℓ' également. Si on avait $\ell + \ell' = 0$, on aurait donc $\ell = \ell' = 0$, ce qui est impossible puisque $\ell^2 = 7 - \ell'$ par exemple. On en déduit que $\ell' - \ell - 1 = 0$ i.e. $\ell' = \ell + 1$. Ainsi

$$\ell^2 = 7 - \ell' = 6 - \ell$$

Il en résulte que $\ell = 2$ ou $\ell = -3$. Puisque $\ell \ge 0$, $\ell = 2$ puis $\ell' = 3$.

3. Posons $u_n = x_n - 2$ et $v_n = y_n - 3$ pour $n \in \mathbb{N}$. Remarquons que pour tout $n \in \mathbb{N}$,

$$u_{n+1} = \sqrt{4 - v_n} - 2 = -\frac{v_n}{\sqrt{4 - v_n} + 2}$$
$$v_{n+1} = \sqrt{9 + u_n} - 3 = \frac{u_n}{\sqrt{9 + u_n} + 3}$$

On en déduit que pour tout $n \in \mathbb{N}$,

$$|u_{n+1}| = \frac{|v_n|}{\sqrt{4 - v_n} + 2} \le \frac{|v_n|}{2}$$
$$|v_{n+1}| = \frac{|u_n|}{\sqrt{9 + u_n} + 3} \le \frac{|u_n|}{3}$$

Par conséquent, pour tout $n \in \mathbb{N}$,

$$|u_{n+2}| \le \frac{|v_{n+1}|}{2} \le \frac{|u_n|}{6}$$

On en déduit sans peine que pour tout $n \in \mathbb{N}$,

$$|u_{2n}| \le \frac{1}{6^n} |u_0|$$
 et $|u_{2n+1}| \le \frac{1}{6^n} |u_1|$

Les suites (u_{2n}) et (u_{2n+1}) convergent donc vers 0: il en est donc de même de la suite (u_n) . On en déduit alors que (v_n) converge également vers 0. Finalement, les suites (x_n) et (y_n) convergent respectivement vers 2 et 3.

Solution 35

1. Supposons (u_n) non majorée, on peut en extraire une suite $(u_{\varphi(n)})$ divergeant vers $+\infty$. Mais comme $(u_{\varphi(n)}+v_{\varphi(n)})$ converge vers 0 en tant que suite extraite, $(v_{\varphi(n)})$ diverge vers $-\infty$. Alors, $(u_{\varphi(n)}^p)$ diverge vers $+\infty$ et $(v_{\varphi(n)}^q)$ diverge vers $-\infty$ car q est impair. On en déduit que $(u_{\varphi(n)}^p-v_{\varphi(n)}^q)$ diverge vers $+\infty$, ce qui contredit $\lim_{n\to+\infty}u_n^p-v_n^q=0$. On aboutit de la même manière à une contradiction si on suppose (u_n) non minorée. Ainsi (u_n) est bornée. On montre de la même manière que (v_n) est bornée ou on remarque que $(v_n)=(u_n+v_n)-(u_n)$ est bornée en tant que différence de deux suites bornées $((u_n+v_n)$ est convergente donc bornée).

- 2. Soient ℓ une valeur d'adhérence de (u_n). Alors il existe une suite extraite (u_{φ(n)}) convergeant vers ℓ. Alors (v_{φ(n)}) converge vers −ℓ. Par conséquent, (u^p_{φ(n)} − v^q_{φ(n)}) converge vers ℓ^p + ℓ^q car q est impair. Mais elle converge également vers 0 en tant que suite extraite. Ainsi ℓ^p + ℓ^q = 0. On en déduit sans peine que ℓ = 0 (les deux termes de l'égalité précédente sont de même signe car p et q sont impairs). Ainsi 0 est la seule valeur d'adhérence de (u_n). On montre de la même manière que 0 est l'unique valeur d'adhérence de (v_n).
- 3. Il est classique de montrer qu'une suite bornée possédant une unique valeur d'adhérence converge vers cette valeur d'adhérence. Ainsi (u_n) et (v_n) convergent vers 0.

Révision suites

Solution 36

1. Tout d'abord, une récurrence évidente montre que $u_n>0$ et $v_n>0$ pour tout $n\in\mathbb{N}$. Ensuite, pour tout $n\in\mathbb{N}$, $v_{n+1}-u_{n+1}=\frac{1}{2}\,(v_n-u_n)$. Puisque $v_0-u_0>0$, on en déduit par une récurrence évidente que $v_n-u_n>0$ i.e. $u_n< v_n$ pour tout $n\in\mathbb{N}$. On en déduit également que la suite de terme général v_n-u_n est géométrique de raison $\frac{1}{2}$ et donc $\lim_{n\to+\infty}v_n-u_n=0$. Pour tout $n\in\mathbb{N}$

$$u_{n+1} - u_n = \frac{1}{2} \left(\sqrt{u_n v_n} - u_n \right) = \frac{\sqrt{u_n}}{2} \left(\sqrt{v_n} - \sqrt{u_n} \right) \ge 0$$
$$v_{n+1} - v_n = \frac{1}{2} \left(\sqrt{u_n v_n} - v_n \right) = \frac{\sqrt{v_n}}{2} \left(\sqrt{u_n} - \sqrt{v_n} \right) \le 0$$

Ainsi (u_n) est croissante tandis que (v_n) est décroissante. Les suites (u_n) et (v_n) sont donc adjacentes : elles convergent donc vers une limite commune l.

2. On rappelle l'inégalité classique $\ln(1+u) \le u$ pour tout $u \in]-1, +\infty[$. Il s'ensuit que

$$\ln y - \ln x = \ln \frac{y}{x} = \ln \left(1 + \frac{y - x}{x} \right) \le \frac{y - x}{x}$$
$$\ln x - \ln y = \ln \frac{x}{y} = \ln \left(1 + \frac{x - y}{y} \right) \le \frac{x - y}{y}$$

On en déduit alors facilement l'inégalité voulue en tenant compte du fait que y - x > 0 et x - y < 0.

3. On a vu à la question **1** que $0 < u_n < v_n$ pour tout $n \in \mathbb{N}$, ce qui justifie que (c_n) est bien définie.

Pour tout $n \in \mathbb{N}$.

$$\begin{split} c_{n+1} &= \frac{\upsilon_{n+1} - u_{n+1}}{\ln \upsilon_{n+1} - \ln u_{n+1}} \\ &= \frac{\upsilon_n - u_n}{\ln \left(\upsilon_n + \sqrt{u_n \upsilon_n}\right) - \ln \left(u_n + \sqrt{u_n \upsilon_n}\right)} \\ &= \frac{\upsilon_n - u_n}{\ln \left(\sqrt{\upsilon_n} \left(\sqrt{u_n} + \sqrt{\upsilon_n}\right)\right) - \ln \left(\sqrt{u \upsilon_n} \left(\sqrt{u_n} + \sqrt{\upsilon_n}\right)\right)} \\ &= \frac{\upsilon_n - u_n}{\ln \upsilon_n - \ln u_n} = c_n \end{split}$$

Ainsi la suite (c_n) est bien constante.

4. D'après la question **2** et le fait que $0 < u_n < v_n$ pour tout $n \in \mathbb{N}$, on a $\frac{1}{v_n} \le \frac{\ln v_n - \ln u_n}{v_n - u_n} \le \frac{1}{u_n}$ i.e. $u_n \le c_n \le v_n$ pour tout $n \in \mathbb{N}$. Le théorème des gendarmes assure que (c_n) converge vers l. Mais comme (c_n) est constante,

$$l = c_0 = \frac{b - a}{\ln b - \ln a}$$

Solution 37

1. Distinguons les trois cas.

• Si $x \in [0, 1]$,

$$f(x) = \int_0^x |x - t| \, dt + \int_x^1 |x - t| \, dt = \int_0^x (x - t) \, dt + \int_x^1 (t - x) \, dt$$
$$= \left[xt - \frac{t^2}{2} \right]_{t=0}^{t=x} + \left[\frac{t^2}{2} xt \right]_{t=x}^{t=1} = x^2 - x + \frac{1}{2}$$

• Si $x \leq 0$,

$$f(x) = \int_0^1 (t - x) dt = \left[\frac{t^2}{2} - xt \right]_{t=0}^{t=1} = \frac{1}{2} - x$$

• Si $x \ge 1$,

$$f(x) = \int_0^1 (x - t) dt = \left[xt - \frac{t^2}{2} \right]_{t=0}^{t=1} = x - \frac{1}{2}$$

2. Pour $x \in [0,1]$, $f(x) = x^2 - x + \frac{1}{2}$. f est donc décroissante sur $\left[0,\frac{1}{2}\right]$ et croissante sur $\left[\frac{1}{2},1\right]$. De plus, $g(0) = \frac{1}{2}$, $g\left(\frac{1}{2}\right) = \frac{1}{4}$ et $g(1) = \frac{1}{2}$. Ainsi $f([0,1]) = \left[\frac{1}{4},\frac{1}{2}\right] \subset]0$, 1[. Comme $u_0 \in [0,1]$ et que $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$, on montre par récurrence que $u_n \in [0,1]$ pour tout $n \in \mathbb{N}$.

3. Comme $u_0 \in [0,1]$ et que $f([0,1]) = \left[\frac{1}{4},\frac{1}{2}\right], u_1 \in \left[\frac{1}{4},\frac{1}{2}\right]$. De plus, $f\left(\left[\frac{1}{4},\frac{1}{2}\right]\right) \subset f([0,1]) = \left[\frac{1}{4},\frac{1}{2}\right]$. On en déduit que $u_n \in \left[\frac{1}{4},\frac{1}{2}\right]$ pour tout $n \ge 1$.

4. f est dérivable sur [0,1] et f'(x)=2x-1. Donc pour $x\in\left[\frac{1}{4},\frac{1}{2}\right]$, $f'(x)\in\left[-\frac{1}{2},0\right]$. Ainsi |f'| est majorée par $\frac{1}{2}$ sur $\left[\frac{1}{4},\frac{1}{2}\right]$. On sait que si (u_n) converge, elle converge vers un réel de l'intervalle [0,1] et nécessairement vers un point fixe de f car f est continue sur [0,1]. Les points fixes de f sur [0,1] sont les solutions de $x^2-x+\frac{1}{2}=x$. La seule solution de cette équation comprise entre f0 et f1 est f2. Remarquons que f3. On applique alors classiquement l'inégalité des accroissements finis. Soit f3. Puisque f4 appartiennent à f5 et que f6 est majorée par f7 sur cet intervalle, on a :

$$|f(u_n) - f(c)| \le \frac{1}{2}|u_n - c| \text{ i.e. } |u_{n+1} - c| \le \frac{1}{2}|u_n - c|$$

On prouve alors par récurrence que $|u_n - c| \le \frac{1}{2^{n-1}} |u_1 - c|$ pour tout $n \ge 1$, ce qui prouve que (u_n) converge vers c.

5. Supposons $u_0 > 1$. Montrons qu'il existe $n_0 \in \mathbb{N}$ tel que u_{n_0} appartient à [0,1]. Tant que $u_n \ge 1$, $u_{n+1} = u_n - \frac{1}{2}$. On ne peut avoir $u_n > 1$ pour tout $n \in \mathbb{N}$, sinon on aurait $u_n = u_0 - \frac{n}{2}$ pour tout $n \in \mathbb{N}$ et (u_n) divergerait vers $-\infty$ ce qui contredirait le fait que $u_n \ge 1$ pour tout $n \in \mathbb{N}$. Notons donc $n_0 = \min\{n \in \mathbb{N} \mid u_{n_0} \le 1\}$. On a donc $u_{n_0-1} > 1$. Ainsi $u_{n_0} = u_{n_0-1} - \frac{1}{2} > \frac{1}{2}$. Donc $u_{n_0} \in [0,1]$ et on est ramené au cas précédent. On prouve de la même façon que (u_n) converge vers c. Supposons maintenant $u_0 < 0$. Alors $u_1 = \frac{1}{2} - u_0 > 0$. On a donc $u_1 \in [0,1]$ ou $u_1 > 1$ et on est ramené à un des deux cas traités précédemment. On en déduit à nouveau que (u_n) converge vers c.

Remarque. Il est encore plus facile de se convaincre de ces résultats à l'aide d'un petit dessin faisant figurer le graphe de f et la première bissectrice.

Solution 38

1. Posons $\varphi \colon x \mapsto \frac{\ln x}{x}$. φ est clairement continue sur \mathbb{R}_+^* et une étude rapide montre que φ est strictement croissante sur]0,e] et strictement décroissante sur $[e,+\infty[$. De plus, pour tout entier $n \ge 3$,

$$-\infty = \lim_{0^{+}} \varphi < \frac{1}{n} < \frac{1}{e} = \varphi(e)$$
 et $\varphi(e) > \frac{1}{n} > 0 = \lim_{+\infty} \varphi$

donc le théorème des valeurs intermédiaires montre que l'équation (E_n) admet exactement deux solutions, l'une sur]0,e[et l'autre sur $]e,+\infty[$.

Autrement dit, pour $n \ge 3$, il existe bien deux solutions u_n et v_n à l'équation (E_n) et $0 < u_n < e < v_n$.

- 2. Pour tout $n \ge 3$, $\ln(u_n) = \frac{u_n}{n}$. On en déduit que $0 \le \ln(u_n) \le \frac{e}{n}$ puis $\lim_{n \to +\infty} \ln(u_n) = 0$ par encadrement. Par continuité de l'exponentielle en 0, $\lim_{n \to +\infty} u_n = e^0 = 1$.
- **3.** Comme (u_n) converge vers 1 i.e. $(u_n 1)$ converge vers 0

$$\frac{1}{n} = \frac{\ln(1 + (u_n - 1))}{u_n} \underset{n \to +\infty}{\sim} u_n - 1$$

Solution 39

- 1. Soit $n \in \mathbb{N}^*$. Posons $f_n : x \mapsto \cos x nx$. f_n est dérivable et $f'_n(x) = -\sin x n < 0$ pour tout $x \in [0,1]$. f_n est continue et strictement décroissante sur [0,1]. De plus, $f_n(0) = 1 > 0$ et $f_n(1) = \cos(1) n < 0$. On en déduit que f_n s'annule une unique fois sur [0,1]. D'où l'existence et l'unicité de x_n .
- 2. On a $\cos x_n = nx_n$ et donc $x_n = \frac{\cos x_n}{n}$ pour tout $n \in \mathbb{N}^*$. On en déduit que $|x_n| \le \frac{1}{n}$ pour tout $n \in \mathbb{N}^*$ puis que (x_n) converge vers 0.
- 3. Soit $n \in \mathbb{N}^*$. Remarquons que $f_n \ge f_{n+1}$ sur [0,1]. Donc $f_n(x_{n+1}) \ge f_{n+1}(x_{n+1}) = 0 = f_n(x_n)$. La stricte décroissance de f_n implique que $x_{n+1} \le x_n$. Par conséquent la suite (x_n) est décroissante.
- **4.** Comme $x_n \xrightarrow[n \to +\infty]{} 0$ et que cos est continue en 0, $\cos x_n \xrightarrow[n \to +\infty]{} \cos 0 = 1$. Donc $x_n = \frac{\cos x_n}{n} \sim \frac{1}{n}$.
- 5. Comme $x_n \underset{n \to +\infty}{\longrightarrow} 0$, $\cos x_n \underset{n \to +\infty}{=} 1 \frac{x_n^2}{2} + o(x_n^2)$. Or $x_n \underset{n \to +\infty}{\sim} \frac{1}{n}$ donc $\cos x_n \underset{n \to +\infty}{=} 1 \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$. Ainsi $x_n = \frac{\cos x_n}{n} \underset{n \to +\infty}{=} \frac{1}{n} \frac{1}{2n^3} + o\left(\frac{1}{n^3}\right)$. On en déduit que $x_n \frac{1}{n} \underset{n \to +\infty}{\sim} -\frac{1}{2n^3}$.

Séries à valeurs dans un espace vectoriel normé

Solution 40

On prouve aisément par récurrence que $\|u_{n+1}-u_n\| \le k^n\|u_1-u_0\|$ et donc que $u_{n+1}-u_n=\mathcal{O}(k^n)$. Puisque $k\in[0,1[$, la série télescopique $\sum_{n\in\mathbb{N}}u_{n+1}-u_n$ converge abolument donc converge i.e. la suite u converge.

Solution 41

1. Comme les séries $\sum u_n$ et $\sum \frac{1}{2^n}$ sont absolument convergentes, leur produit de Cauchy à savoir $\sum v_n$ est convergente. De plus,

$$\sum_{n=0}^{+\infty} v_n = \left(\sum_{n=0}^{+\infty} v_n\right) \left(\sum_{n=0}^{+\infty} \frac{1}{2^n}\right) = 2 \sum_{n=0}^{+\infty} u_n$$

2. Soit (e_1, \dots, e_d) une base de cet espace vectoriel E. Comme $\sum u_n$ converge absolument, on en déduit que les séries $\sum e_k^*(u_n)$ convergent également absolument $(k \in [\![1,d]\!])$. En effet, puisque toutes les normes sont équivalentes, on peut par exemple munir E de la norme définie par $\|x\| = \sum_{k=1}^d |e_k^*(x)|$ de sorte que $|e_k^*(x)| \le \|x\|$ pour $k \in [\![1,d]\!]$. En appliquant ce qui précéde aux séries absolument convergentes $\sum e_k^*(u_n)$, on en déduit que les séries $\sum e_k^*(v_n)$ converge et que $\sum_{n=0}^{+\infty} e_k^*(v_n) = 2\sum_{n=0}^{+\infty} e_k^*(u_n)$. On en déduit alors que la série $\sum v_n$ converge et que $\sum_{n=0}^{+\infty} v_n = 2\sum_{n=0}^{+\infty} u_n$.

Solution 42

Il est clair que D^k est nul pour k > n donc

$$\exp(D) = \sum_{k=0}^{n} \frac{D^{(k)}}{k!}$$

Soit $p \in [0, n]$. Alors

$$D^{(k)}(X^p) = (X^p)^{(k)} = \begin{cases} 0 & \text{si } k > p \\ \frac{p!}{(p-k)!} X^{p-k} & \text{si } k \le p \end{cases}$$

Ainsi, d'après la formule du binôme

$$\exp(D)(X^p) = \sum_{k=0}^{p} {k \choose p} X^{p-k} = (X+1)^p = T(X^p)$$

Les endomorphismes $\exp(D)$ et T coïncident sur la base canonique de $\mathbb{K}_n[X]$: ils sont donc égaux.