COCNOME	MOME	MATDICOLA	
COGNOME	 NOME	 MATRICOLA	

Risolvere il massimo numero di esercizi accompagnando le risposte con spiegazioni chiare ed essenziali. Inserire le risposte negli spazi predisposti. NON SI ACCETTANO RISPOSTE SCRITTE SU ALTRI FOGLI. Scrivere il proprio nome anche nell'ultima pagina. 1 Esercizio = 5 punti. Tempo previsto: 2 ore. Nessuna domanda durante la prima ora e durante gli ultimi 20 minuti.

FIRMA	1	2	3	4	5	6	7	8	TOT.

1. Rispondere alle sequenti domande fornendo una giustificazione di una riga (giustificazioni incomplete o poco chiare comportano punteggio nullo):

.....

a. Quali sono i valori di $b \in \mathbf{C}$ tali che $[\mathbf{Q}[\sqrt{bi}] : \mathbf{Q}] = 2$?

b. Scrivere una ${f Q}$ –base del campo di spezzamento del polinomio $X^6-1\in {f Q}[X].$

c. È vero che se K è il campo di spezzamento di $X^6+X^2+1\in \mathbf{F}_2[X],$ allora $[K:\mathbf{F}_2]=3?$

d. È vero che le estensioni finite di campi finiti sono sempre cicliche?

	Descrivere out	ti gli elementi d	lel gruppo di Galois o	del polinomio $x^6 - 9 \in \mathbf{Q}[x]$:].
5.	Spiegare perch	ıè non è possibi	le quadrare il cerchio		

6. Si enunci nella completa generalità il Teorema di corrispondenza di Galois.
7. Dato un campo finito \mathbf{F}_{p^n} . Dimostrare che se $\gamma \in \mathbf{F}_{p^n}^*$ è un generatore (del gruppo moltiplicativo), allora tutte le radici de polinomio minimo $f_{\gamma}(X) \in \mathbf{F}_p[X]$ sono generatori.
8. Considerare l'estensione elsebrice complice $\Omega[a]$ $\alpha^4 = \alpha$ 1 (essumende l'irriducibilità di $V^4 = V + 1$). Determinere u
8. Considerare l'estensione algebrica semplice $\mathbf{Q}[\alpha], \alpha^4 = \alpha - 1$ (assumendo l'irriducibilità di $X^4 - X + 1$). Determinare u espressione per il polinomio minimo su \mathbf{Q} di $\alpha/(a\alpha+b)$ per ogni $a,b\in\mathbf{Q}$.