Distance between degree distributions

To select the important vertices associated with the between-group difference, we first obtain the degree distribution for each group.

Over each vertex, we have two distributions for every pair of groups (e.g. SEX=1 vs SEX=2 over vertex 1). We can compute their between-group distance. Through this, we can get the distances over all vertices. The ones with the largest distances are likely the important vertices. In this case, we will pick the vertices with distances in the top 5%.

There are 3 types of popular nonparametric distances: Total variation, Wasserstein and Kolmogorov-Smirnov. Obviously, there is no best choice, but one sensible approach would be picking the distance by which the top 5% appear very different from the remaining 95%. We will illustrate and explain in the first analysis related to sex.

1. Distances between SEX

Here are the plots of distances over vertices, using three types of distance.

Three distances produce three different sets of top vertices. But, in Wasserstein, the top few appear to be farther apart from the remaining, compared against the other two distances. That is, it gives a clearer separation of the top from the others. So Wasserstein would be the recommended choice in this case.

Here are the lists of important vertices, selected by three different distances:

Total variation

[1] 17 20 80 102 106 120 134 161 163 238 248 269 295

Wasserstein

[1] 18 30 41 64 66 67 84 101 114 127 161 163 164 237 241 269 281 Kolmogorov-Smirnov

[1] 11 15 19 72 106 117 161 163 217 267 269 274 281 298 327 331

2. Distances between GENOTYPES

1. Genotype 0 vs 1

Important vertices

Total variation

[1] 13 83 124 158 165 218 322

Wasserstein

[1] 3 18 38 39 40 50 54 56 57 63 73 75 79 114 124 159 253 Kolmogorov-Smirnov

[1] 57 73 79 121 156 159 176 192 200 225 230 238 285 288 304

2. Genotype 0 vs 2

Important vertices

Total variation

[1] 30 38 56 107 121 136 158 181 183 186 293 296

Wasserstein

[1] 29 57 66 80 83 101 110 113 120 131 153 186 212 241 263 305 Kolmogorov-Smirnov

[1] 17 54 79 91 107 110 120 150 151 158 186 196 204 212 263 266

3. Genotype 1 vs 3

Important vertices

Total variation

[1] 7 42 50 53 84 121 139 152 183 204 253 268 279 284 290 293

Wasserstein

[1] 18 29 30 38 40 41 50 54 103 104 117 120 122 124 144 249 290 Kolmogorov-Smirnov

[1] 7 19 41 62 103 122 144 153 172 204 221 284 290 305 307 318 327

3. Distances between Age Groups

We first use k-means to obtain 3 age groups (with min and max age):

- ## [1] 48.3 50.0
- ## [1] 61.7 78.0
- ## [1] 88.1 95.0

1. Age group 1 vs 2

Important vertices

Total variation

[1] 101 120 127 129 138 143 144 153 154 161 162 164 177 178 182 241 242 Kolmogorov-Smirnov

[1] 7 60 126 129 130 135 136 154 164 190 194 210

2. Age group 1 vs 3

Important vertices

Total variation

integer(0)

Wasserstein

[1] 30 101 127 129 143 144 149 161 162 164 194 208 241 246 288 295 326

Kolmogorov-Smirnov

integer(0)

3. Age group 2 vs 3

Important vertices

Total variation

[1] 12 126 162 166 214 231 246 280 302 308 323

Wasserstein

[1] 29 30 49 101 113 114 128 137 138 143 144 161 163 170 214 240 241 Kolmogorov-Smirnov

[1] 101 126 143 144 162 166 207 208 214 296 302 321