

Evolution of the HER/ERBB Receptor System

Worms:

1 Ligand and 1 Receptor

Flies:

4 Ligands and 1 Receptor

Mammals:

12 Ligands and 4 Receptors

The HERs A Dysfunctional Family of Receptors

HER2 Activation in Cancer

**Ligand-independent
(Amplified HER2 tumors)**

**Ligand-dependent
(Non-amplified HER2 tumors)**

HER2 Associates with HER3 in a Heregulin-Dependent Manner

- 2C4 blocks ligand-dependent HER2-HER3 association, Herceptin does not.

IP: α HER2

MCF7

Low/Normal ErbB2

175 -

83 -

HRG: $\frac{- + - + - + - +}{1 \ 2 \ 3 \ 4}$

1. Control
2. 2C4
3. Herceptin
4. α EGFR

Rob Akita

Ovarian Tumor Cell Lines

		3	420	429	432
	-	-	-	-	-
2C4	+	+	+	+	+
HRG	+	+	+	+	+

IP: H2
WB: H3

IP: H2
WB: H2

ErbB2 is recruited to ErbB3-HRG Complexes

Ligand-Activated
Hetero-oligomer

High
Affinity
Receptor

Low
Affinity
Receptor

ErbBX

2C4 Disrupts Ligand-Dependent ErbB2 Signaling

EGFR

Closed

EGFR-EGF Complex

Open

Ogiso et al. *Cell* (2002) 110: 775
Garret et al. *Cell* (2002) 110: 763
Ferguson et al. *Mol Cell* (2003) 11:507

EGFR-EGF Complex

HER2

Cho et al. *Nature* 421: 756.
Matt Franklin & Bart de Vos, Genentech

Receptor dimerization via a domain II handshake

A

Comparison of HER2-EGFR to EGFR-EGFR Complexes

Characteristics of heterocomplexes

Higher affinity

Decreased internalization rates

Altered trafficking

Diverse downstream signalling

HER2-HER3 Complex: A Paradigm for Efficient Molecular Collaboration

Symbiotic relationship

- Ligand-less HER2 and defective-kinase HER3
- Most potent HER signaling complex.
- Efficiently activates both MAPK and PI3K signaling pathways.
- HER2's active kinase
- HER3 serves as a kinase substrate for HER2.
- Multiple potential tyrosine phosphorylation sites.
- Especially for PI3-kinase.
- Most active complex with regard to transformation potential.

Heregulin Binding to Cos Cell Transfectants

Gabriele Schaefer

Scatchard Analysis of Heregulin Binding to Cells Transfected with HER3 and HER2

Gabriele Schaefer

Inhibition of Heregulin Binding by 2C4
a Monoclonal Antibody to ErbB2

Gabriele Schaefer

Cho et al. *Nature* 421:756.
Matt Franklin & Bart de Vos, Genentech

2C4 Inhibits Heregulin-Dependent HER3-HER2 Signaling

Rob Akita

Coupling of HER2/3 to the MAPK and Akt Pathways

2C4 Inhibits Ligand-Dependent HER2 Signaling (MAPK)

B

Julie Lofgren

2C4 Inhibits Heregulin-Dependent Akt Activation

ErbB3

GSK3 α/β \rightarrow

HRG	-	+	-	+	-	-	-	+
2C4	-	-	+	+	+	-	-	-
Herceptin	-	-	-	-	-	+	+	-

Rob Akita

HER2/HER3 receptor activation

increases the rate of hypoxia-inducible factor (HIF-1 α) synthesis

2C4 Blocks Heregulin-Induced Expression of VEGF

Genentech Acknowledgments

Rob Akita Gail Phillips Gabriele Schaefer Julie Lofgren Paul Pisacane Ralph Schwall Lisa Crocker Matt Franklin Ken Carey Bart de Vos Inessa Balter Cam Adams Len Presta

Prostate Cancer and HER2

Clinical studies:

HER2 gene amplification or protein overexpression is rare.

HER ligand expression (e.g., TGF- α) frequently occurs with the onset of the androgen-independent phenotype.

Prostate Cancer and HER2

Laboratory studies:

Onset of the androgen-independent phenotype corresponds with HER2 overexpression. (Sawyers).

Evidence for cross-talk between HER2 and androgen receptor signal transduction pathways (Chung).

Androgen-Independent Prostate Cancer

Autocrine
activation of HER-
kinase axis

Dysregulation of
AR; unresponsive
to androgen
ablation

Increased
expression of
HER2?

adapted from Kim et al. (1999)

CWR Prostate Cancer Models

Derived from a primary prostate cancer patient by Thomas Pretlow, Case Western Reserve.

Xenograft maintained by serial transplantation in nude mice.

Growth is androgen-dependent (CWR22).

Good correlation between tumor growth and serum PSA levels.

Tumors regress after androgen withdraw.

Relapsed tumors are androgen-independent (CWR22R & CWRSA6).

Relative Expression of ErbB Receptors and Ligands in CWR Tumors

Effect of 2C4 on the Growth of the Androgen-Independent Human Prostate Cancer Xenograft CWRSA6

Proof of Concept Experiment: 2C4 Does Not Require An Intact Fc For Anti-Tumor Activity

Androgen-Independent Prostate Cancer Xenograft (CWR22R)

Breece & Schmelzer

Agus & Higgins, MSK

Effect of 2C4 on the Growth of the Androgen-Dependent Human Prostate Cancer Models

Summary of prostate cancer studies

In contrast to Herceptin[®], 2C4 inhibits the growth of androgen-independent prostate tumor xenografts

model represents a patient population that is readily available for clinical studies

Combining 2C4 with low-dose Taxol[®] results in significant tumor regression and in many cases tumor elimination

2C4 also inhibits the growth of androgen-independent prostate tumor xenografts. These data suggest that 2C4 may be active in patients with early-stage prostate cancer

9 8718

Breast Cancer Studies

2C4 Has Herceptin-Like Activity Against High HER2 Expressing Tumors

Effect of rhuMAb 2C4 or Herceptin® on the growth of human breast cancer cells (low HER2 expression)

K. Totpal

Evaluation of rhuMAb 2C4 in the breast cancer xenograft MAXF 449 (low HER2 expression)

Treatment schedule: i.p.; once/week (Day 1, 8, 15, 22, 29 and 36; 2x loading dose at day 1)

Hilfiebig, Oncotest

Properties of rhuMAb 2C4

Trastuzumab Herceptin

- Binds in IV near JM.
- Protects against receptor shedding.
- Moderately affects receptor down-modulation.
- Slight effect on HER2's role as a coreceptor.

Pertuzumab 2C4

- Binds in II at dimerization interface.
- Does not prevent receptor shedding.
- Moderately affects receptor down-modulation.
- Major effect on HER2's role as a coreceptor.

Collaborators

David Agus: Cedars Sinai

Howard Scher: Memorial Sloan-Kettering

Hans-Joachim Mueller: Roche-Penzberg

HH Fiebig: OncoTest Freiburg