Математические модели обработки сигналов

Тема 15: Кратномасштабный анализ

Лектор: Кривошеин А.В.

Всплеск-анализ

Основная идея теории всплесков как аппарата анализа функций — это анализ функции в разных масштабах.

На функцию можно "взглянуть" как бы под микроскопом на разных уровнях приближения. Пусть есть максимально подробное "изображение" функции в максимальном приближении. Уменьшая уровень приближения, "изображение" функции сглаживается, мелкие детали становятся не видны. Причём микроскоп позволяет сохранять разницу между соседними уровнями приближений. Таким образом:

- 1. Произвольный сигнал f представляется как сумма "грубого" приближения сигнала и уточняющих деталей.
- 2. "Грубое" приближение является сглаженной копией сигнала (содержащей в основном низкие частоты)
- 3. Уточняющие детали содержат быстро меняющиеся компоненты сигнала (то есть высокочастотную компоненту).
- 4. Степень "огрубления" можно изменять добавляя или убирая детали, а алгоритмы расчета автоматически являются быстрыми, за счёт внутренней структуры систем всплесков. Для характеризации "грубого" приближения сигнала и уточняющих деталей служат две различные функции φ и ψ , которые должны обладать целым рядом свойств.

Функцию φ называют **масштабирующей**, она отвечает за построение приближения сигнала с той или иной точностью (или же с тем или иным масштабом).

 Φ ункцию ψ называют **всплеск-функцией**, она отвечает за детали. Её название возникло из-за типичного вида этой функции: она похожа на всплеск - маленькую волну.

Функции ϕ и ψ

Будем рассматривать функции φ и ψ из $L_2(\mathbb{R})$.

"Строительные блоки" для построения приближения функции и её деталей — это всевозможные целочисленные сдвиги и двоичные сжатия растяжения этих функций:

$$\varphi_{j,k}(x) = \varphi\left(2^{j}x - k\right) = \varphi\left(2^{j}\left(x - \frac{k}{2^{j}}\right)\right), \quad \psi_{j,k}(x) = \psi\left(2^{j}x - k\right), \ j, k \in \mathbb{Z}.$$

График всплеск-функции

За счет сдвигов функции мы можем охватить всю вещественную ось, а за счет сжатий улавливать достаточно быстрые колебания.

Функции ϕ и ψ

С математической точки зрения, возможность "отслоения" деталей сигнала на разных масштабах обеспечивается тем, что сдвиги и сжатия ψ

$$\psi_{j,k}(x)=2^{j/2}\,\psiig(2^j\,x\,-\,kig),\;j,k\,\in\mathbb{Z}$$
 образуют ортонормированный базис в $L_2(\mathbb{R}).$

То есть любая функция $f \in L_2(\mathbb{R})$ может быть представлена в виде

$$f(x) \ = \ \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} A_{j,k} \, \psi_{j,k}(x) \ = \ \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \left\langle f, \, \psi_{j,k} \right\rangle \, \psi_{j,k}(x).$$

Для фиксированного уровня j внутренняя сумма $\sum_{k\in\mathbb{Z}}A_{j,k}\psi_{j,k}(x)$ отвечает за вклад в сигнал компонентов, которые меняются с определенной частотой.

Чем больше j, тем более быстро меняющиеся компоненты содержатся в этой сумме. Также, на практике используется разложение

$$f(x) = \sum_{k \in \mathbb{Z}} \langle f, \varphi_{0,k} \rangle \varphi_{0,k}(x) + \sum_{i=0}^{+\infty} \sum_{k \in \mathbb{Z}} \langle f, \psi_{j,k} \rangle \psi_{j,k}(x).$$

где первая сумма отвечает за "грубое" приближения сигнала.

Одним из простейших базисов всплесков являются всплески Хаара. Для изложения основных идей, лежащих в основе теории всплесков, будем использовать всплески Хаара.

Напоминание основных понятий

Рассмотрим гильбертово пространство \mathcal{H} , и пусть $\|\cdot\|$ — это норма в \mathcal{H} , порождённая скалярным произведением.

Ряд из элементов
$$x_n \in \mathcal{H}$$
: $S = \sum_{n=1}^{+\infty} x_n$ — **сходится**,

если
$$||S-S_N|| o$$
 о, при $N o \infty$, где $S_N = \sum_{n=1}^N x_n$.

Систему элементов $\{e_n,\ n\in\mathbb{N}\}\subset\mathcal{H}$ называют **базисом (Шаудера)**, если для каждого $x\in\mathcal{H}$ существует единственная последовательность чисел $\{\lambda_n\}$ такая, что $x=\sum^{+\infty}\lambda_n\,e_n$. Если при этом $\{e_n, n \in \mathbb{N}\}$ ортонормированная система, то это ОНБ.

Пусть элементы $x_n \in \mathcal{H}, n \in \mathbb{N},$ попарно ортогональны. Тогда сходимость ряда $\sum x_n$

равносильна сходимости числового ряда $\sum_{n=1}^{\infty} ||x_n||^2$, при этом $\sum_{n=1}^{\infty} ||x_n||^2 = \left\|\sum_{n=1}^{\infty} x_n\right\|^2$ (Теорема Пифагора).

Ортогональным дополнением подпространства U в $\mathcal H$ называется множество

$$U^{\perp} = \{x \in \mathcal{H} : \langle x, y \rangle = 0, \ \forall \ y \in U\} -$$

также является подпространством в \mathcal{H} и $U \cap U^{\perp} = \{0\}$.

При этом гильбертово пространство $\mathcal H$ представимо в виде прямой суммы: $\mathcal H=U\oplus U^\perp$, то есть каждый элемент $x \in \mathcal{H}$ представим единственным образом в виде x = y + z, где $y \in U$, $z \in U^{\perp}$.

Оператор проектирования

Для (замкнутого) подпространства W в \mathcal{H} , ортогональная проекция \mathcal{H} на W это оператор $\mathcal{P}:\mathcal{H}\to W$ для которого

$$\mathcal{P}x = x$$
, если $x \in W$, и $\mathcal{P}x = 0$, если $x \in W^{\perp}$.

Пусть W замкнутое подпространство гильбертова пространства \mathcal{H} . Пусть в W есть ОНБ $\{e_n\}_{n\in\mathbb{Z}}$. Определим оператор $P_W:\mathcal{H} o W$ следующим образом: для элемента x из \mathcal{H} оператор действует по правилу

$$P_W(x) = \sum_{n \in \mathbb{Z}} \langle x, e_n \rangle e_n.$$

Свойства оператора P_W .

- 1. $P_W(x) \in W$.
- 2. Оператор P_W является ортогональной проекцией \mathcal{H} на W: если $x \in W$, то $P_W(x) = x$, если $x \in W^{\perp}$, to $P_W(x) = 0$.
- $3.\,P_W(x)$ является элементом наилучшего приближения x в W и $P_W(x)$ единственный такой элемент, то есть $||x - P_W(x)|| = \min_{y \in W} ||x - y||$.
- $4. x P_W(x) \perp W$
- 5. $||P_W(x)|| \le ||x||$
- 6. Оператор P_W линейный и непрерывный

КМА Хаара: пространство V_0

Основная структура при построении всплесков — это Кратномасштабный Анализ (КМА, англ. MRA, Multiresolution Analysis, Стефан Малла, Ив Мейер, 1986).

КМА — это математический микроскоп, он позволяет взглянуть на любую функцию в различных масштабах.

Технически, КМА — это последовательность вложенных подпространств V_i , с помощью которых можно точнее и точнее приближать функции из $L_2(\mathbb{R})$.

Базовой при построении КМА Хаара является масштабирующая функция Хаара

$$\varphi\left(x\right)=\ \chi_{\left[0,1\right)}\!\left(x\right)= \ \left\{ egin{array}{ll} 1, & x\in\left[0,\,1\right) \\ 0, & \mathrm{иначe} \end{array} \right.$$

Рассмотрим в $L_2(\mathbb{R})$ пространство V_0 кусочно-постоянных функций на отрезках вида $[k,\ k+1),\ k\in\mathbb{Z}.$ Система $\ \varphi_{0,n}(x)=\ \varphi\ (x-n),\ n\in\mathbb{Z},$ образует ортонормированный базис в пространстве V_0 .

Сдвиги функции φ и пространство V_0

Тогда для любой $f \in V_0$: $f = \sum_{k \in \mathbb{Z}} \langle f, \varphi_{0,k} \rangle \varphi_{0,k}$ или $V_0 = \overline{\operatorname{span} \{\varphi_{0,k}, \ k \in \mathbb{Z}\}}.$

 $\mathrm{span}\,\{\varphi_{0,k},\ k\in\mathbb{Z}\}\,:=\,\Bigl\{\sum_{k=1}^N \alpha_k\,\varphi_{0,k},\ \alpha_k\in\mathbb{R}\Bigr\},\ \mathrm{to}\ \mathrm{всевозможныe}\ \mathrm{линейныe}\ \mathrm{комбинaции}.$

Также говорят, что пространство V_0 порождено целочисленными сдвигами функции φ .

КМА Хаара: пространство V_1

Рассмотрим в $L_2(\mathbb{R})$ пространство V_1 кусочно-постоянных функций на отрезках вида $\left[\frac{k}{2}, \frac{k}{2} + \frac{1}{2}\right), k \in \mathbb{Z}.$

Если сжать функцию Хаара в два раза, то система сдвигов функции $\varphi(2\,x)$ на полуцелые числа $\frac{n}{2}$

(то есть система функций $\, \varphi(2\,(x\,-\,n/\,2)) \,=\, \varphi\,(2\,x\,-\,n),\, n\in \mathbb{Z})\,$ также образует ортогональную систему.

Нормируем функции из этой системы:

$$\varphi_{1,n} := \sqrt{2} \varphi(2^1 x - n), \qquad ||\sqrt{2} \varphi(2 \cdot - n)||^2 = 2 \int_{\mathbb{R}} \varphi^2(2 x - n) dx = 1.$$

Таким образом, система функций $\{\varphi_{1,n}\}$ образует ортонормированный базис в V_1 . Сдвиги функции $\varphi(2x)$ и пространство V_1

Тогда для любой
$$f \in V_1$$
: $f = \sum_{k \in \mathbb{Z}} \langle f, \varphi_{1,k} \rangle \varphi_{1,k}$ или $V_1 = \overline{\operatorname{span} \{ \varphi_{1,k}, \ k \in \mathbb{Z} \}}.$

Также говорят, что пространство V_1 порождено целочисленными сдвигами функции $\varphi_{1,0}$.

КМА Хаара: основное свойство

Ключевое свойство КМА: пространство V_1 является масштабированной (сжатой) копией пространства V_0 . То есть

$$f(x) \in V_0 \iff f(2x) \in V_1.$$

Кроме того $V_0 \subset V_1$, поскольку любая кусочно-постоянная функция на отрезках длины 1, является кусочно-постоянной на отрезках длины $\frac{1}{2}$.

При этом
$$\varphi(x) = \varphi\left(2\,x\right) \,+\, \varphi\left(2\,x-1\right) \,=\, \frac{1}{\sqrt{2}}\, \varphi_{1,0} \,+\, \frac{1}{\sqrt{2}}\, \varphi_{1,1} \,=\, \sum_{k\in\mathbb{Z}}\, h[n]\, \varphi_{1,n}$$

где $h[0] = h[1] = \frac{1}{\sqrt{2}}$. Это соотношение называют **масштабирующим**, то есть функция,

порождающая базис для более "грубого" масштаба, представляется в виде линейной комбинации сдвигов функции, порождающей базис более "мелкого" масштаба.

Масштабирующее свойство $\varphi(x) = \varphi(2x) + \varphi(2x-1)$

КМА Хаара: пространство V_i

Процесс построения **пространств** V_j можно продолжать и далее.

Пространство $V_i \subset L_2(\mathbb{R})$ — это пространство кусочно-постоянных функций на отрезках вида $\left[rac{k}{2^j}, \; rac{k}{2^j} + rac{1}{2^j}
ight), k \in \mathbb{Z}$. Функции Хаара сжаты в 2^j раз, и система сдвигов функции $arphi_{j,\mathrm{O}} = 2^{j/2}\,arphiig(2^j\,xig)$ на числа $\frac{n}{2^j}$ (то есть система функций $\,arphiig(2^jig(x-\,n\,ig/\,2^jig)ig) = \,arphi\,ig(2^j\,x-\,nig),$ $n \in \mathbb{Z}$) образует ортонормированный базис в V_j .

Тогда для любой $f \in V_j$: $f = \sum_{k \in \mathbb{Z}} \langle f, \ \varphi_{j,k} \rangle \ \varphi_{j,k}$ или $V_j = \overline{\operatorname{span} \{ \varphi_{j,k}, \ k \in \mathbb{Z} \}}.$

Сдвиги функции $\varphi(\mathbf{2}^{\mathbf{j}}\mathbf{x})$ и пространство $V_{\mathbf{j}}$

Также говорят, что пространство V_j порождено системой функций $\varphi_{j,n}$. Аналогично, имеет место и цепочка вложений $V_0 \subset V_1 \subset ... \subset V_j$ и свойство $f(x) \in V_0 \iff f\left(2^j x\right) \in V_j$.

Продолжая процесс до бесконечности, получим бесконечную последовательность вложенных подпространств $V_i \subset L_2(\mathbb{R})$

$$V_0 \subset V_1 \subset ... \subset V_j \subset ...$$

Аналогично, можно ввести эти пространства и для отрицательных j.

$$V_{-j} \subset \dots V_{-1} \subset V_0 \subset \dots$$

КМА Хаара: пространства V_i

Пространство V_j имеет ортонормированный базис $\{\varphi_{j,n}\}$ и состоит из кусочно-постоянных функций. Известно, что такие функции образуют всюду плотное множество в $L_2(\mathbb{R})$, то есть любую функцию из $L_2(\mathbb{R})$ можно сколь угодно близко приблизить некоторой кусочно-постоянной функцией. Или, для любой $f\in L_2(\mathbb{R})\,$ и $\varepsilon>0$ существует такой номер $j\in\mathbb{N}$ и кусочно-постоянная функция $g\in V_j$, что

$$||f-g|| < \varepsilon$$
.

Коротко, этот факт можно записать

$$\overline{\bigcup_{j=0}^{+\infty} V_j} = L_2(\mathbb{R}).$$

Аналогично, можно ввести эти пространства и для отрицательных j. Причем, продолжая этот процесс до $-\infty$, ясно, что

$$\bigcap_{j=-\infty}^{0} V_j = \{0\},\,$$

поскольку в предельном пространстве должны содержаться функции постоянные на всей оси и содержащиеся в $L_2(\mathbb{R})$, а это только тождественно равная нулю функция.

КМА Хаара: оператор P_j

Построенная последовательность вложенных подпространств

 $... \subset V_{-1} \subset V_0 \subset V_1 \subset ... \subset V_j \subset ...$, в некотором смысле работает как микроскоп, обладающий неограниченной разрешающей способностью, который все функции "видит" в кусочно-постоянном виде.

Приближения с помощью V_i

 $L_2(\mathbb{R})$ гильбертово пространство, V_j его подпространства, и каждое из них снабжено ортонормированным базисом, тогда **наилучшее приближение** произвольной функции fс помощью пространства V_j — это **ортогональная проекция** f с на пространство V_j , определяемая как

$$\sum_{k\in\mathbb{Z}} \langle f, \varphi_{j,k} \rangle \varphi_{j,k}.$$

Оператор проектирования из $L_2(\mathbb{R})$ на V_j — это $P_j\colon L_2(\mathbb{R}) \to V_j$,

$$P_{j}(f)(x) = \sum_{k \in \mathbb{Z}} \langle f, \varphi_{j,k} \rangle \varphi_{j,k}(x).$$

Отметим, что для каждого фиксированного x сумма на самом деле конечна и состоит из одного слагаемого, поскольку носители функций $\varphi_{j,k}$ не пересекаются.

КМА Хаара: оператор P_i

Приближение функции в $V_{\rm o}$ и V $_{\scriptscriptstyle 1}$

Ясно, что чем больше j, тем точнее проекция $P_j(f)$ приближает функцию f. При переходе от $P_j(f)$ к $P_{j+1}(f)$ появляются дополнительные уточняющие детали.

Недостатком КМА на данном этапе является то, что переходя от приближения $P_j(f)$ к $P_{j+1}(f)$ целиком меняется ортонормированный базис по которому идет разложение.

$$P_j(f) = \sum_{k \in \mathbb{Z}} \langle f, \varphi_{j,k} \rangle \varphi_{j,k}, \quad P_{j+1}(f) = \sum_{k \in \mathbb{Z}} \langle f, \varphi_{j+1,k} \rangle \varphi_{j+1,k}.$$

Гораздо более удобно было бы, если бы к базису пространства V_j можно было бы добавить некоторый набор функций и получить базис пространства V_{j+1} . Структура построенного КМА позволяет это сделать.

КМА Хаара: оператор P_j^W

Обозначим за W_j ортогональное дополнение к пространству V_j в V_{j+1} , то есть $V_{j+1} = V_j \oplus W_j, \quad V_j \perp W_j.$

Обозначим за $P_j^W(f)$ ортогональную проекцию f на W_j .

Формула $P_{j+1}(f) = P_j(f) + P_j^W(f)$ соответствует этому ортогональному разложению пространства V_{j+1} . То есть более точное приближение $P_{j+1}(f)\,$ является суммой более грубого приближения $P_j(f)$ и деталей $P_j^W(f)$.

Приближение функции в V_{0} и \mathbf{V}_{1}

Разность приближений в V_{o} и V_{1}

КМА Хаара: всплеск-функция

Рассмотрим пространства V_{0} и W_{0} и найдём в пространстве W_{0} базис, состоящий из сдвигов одной функции.

Для любой функции $\psi \in W_0 \subset V_1$ есть разложение по ОНБ в V_1 :

$$\psi = \sum_{k \in \mathbb{Z}} c_k \varphi_{1,k}.$$

Но $V_0 \perp W_0$ и тогда $\langle \psi, \varphi_{0,n} \rangle = 0 \ \ \forall \ n \in \mathbb{N}$. При этом

$$\varphi(x) = \varphi(2x) + \varphi(2x-1) = \frac{1}{\sqrt{2}}\varphi_{1,0} + \frac{1}{\sqrt{2}}\varphi_{1,1}.$$

Тогда соотношение $\langle \psi, \, \varphi_{0,n} \rangle = 0$ можно записать так

$$\left\langle \sum_{k \in \mathbb{Z}} c_k \varphi_{1,k}, \frac{1}{\sqrt{2}} \varphi_{1,2n} + \frac{1}{\sqrt{2}} \varphi_{1,2n+1} \right\rangle = \frac{1}{\sqrt{2}} (c_{2n} + c_{2n+1}) = 0, \quad \forall n \in \mathbb{N}.$$

Эти система уравнений имеет бесконечно много решений (собственно, множество всех решений составляет пространство $W_{
m o}$). Рассмотрим самое простое из них, а именно $c_0 = \frac{1}{\sqrt{2}}, \ c_1 = -\frac{1}{\sqrt{2}}$. Тогда

$$\psi = \frac{1}{\sqrt{2}} \varphi_{1,0} - \frac{1}{\sqrt{2}} \varphi_{1,1} = \varphi\left(2\,x\right) - \varphi\left(2\,x-1\right), \quad \text{или} \quad \psi\left(x\right) = \begin{cases} 1 & x \in [0,1/2) \\ -1 & x \in [-1/2,1) \\ 0 & \text{иначе.} \end{cases}$$

КМА Хаара: всплеск-функция

Для построения ортонормированного базиса W_{0} мы и используем эту функцию ψ :

$$\psi(x) = \left\{ egin{array}{ll} 1, & x \in [0,1/2) \\ -1, & x \in [1/2,1) \\ 0 & \hbox{иначе.} \end{array} \right.$$

Её называют всплеском Хаара. Функция ψ кусочно-постоянна на отрезках длины 1/2 и значит лежит в пространстве V_1 .

КМА Хаара: пространство W_0

Можно показать, что система $\{\psi_{0,n},\ n\in\mathbb{Z}\}$ является ортонормированным базисом для W_0 , Сначала установим, что система $\{\varphi_{0,n},\,\psi_{0,n},\,\,n\in\mathbb{Z}\}$ — это ОНБ для V_1 . Функции $\varphi_{0,n},\,\psi_{0,n}$ попарно ортогональны и любая базисная функция $\, \varphi_{\scriptscriptstyle 1,n} \, (x) \,$ пространства $\, V_{\scriptscriptstyle 1} \,$ может быть выражена через $\varphi_{0,n}, \psi_{0,n}$:

$$\varphi_{1,0}(x) = \frac{\varphi_{0,0}(x) + \psi_{0,0}(x)}{\sqrt{2}}, \quad \varphi_{1,1}(x) = \frac{\varphi_{0,0}(x) - \psi_{0,0}(x)}{\sqrt{2}},$$

Выражения для остальных $\varphi_{1,n}\left(x\right)$ получаются сдвигами на n.

Поскольку $\{\varphi_{0,n},\,\psi_{0,n},\,\,n\in\mathbb{Z}\}$ — это ОНБ для V_1 , а $\,\{\varphi_{0,n},\,n\in\mathbb{Z}\}$ — это ОНБ для V_0 , то $\{\psi_{0,n},\ n\in\mathbb{Z}\}$ является ОНБ для $W_0,\$ в силу того что W_0- это ортогональное дополнение V_0 в V_1 .

При этом формуле

$$\begin{split} P_{\mathbf{1}}(f) &= P_{\mathbf{0}}(f) + P_{\mathbf{0}}^{W}(f) \quad \text{или} \ V_{\mathbf{1}} = V_{\mathbf{0}} \oplus W_{\mathbf{0}} \quad \text{соответствует разложение} \\ \sum_{k \in \mathbb{Z}} \left\langle f, \ \varphi_{\mathbf{1},k} \right\rangle \ \varphi_{\mathbf{1},k} &= \sum_{k \in \mathbb{Z}} \left\langle f, \ \varphi_{\mathbf{0},k} \right\rangle \ \varphi_{\mathbf{0},k} + \sum_{k \in \mathbb{Z}} \left\langle f, \ \psi_{\mathbf{0},k} \right\rangle \ \psi_{\mathbf{0},k} \,. \end{split}$$

КМА Хаара: пространства W_j

Аналогичным образом

$$V_{j+1} = V_0 \oplus W_0 \oplus W_1 \dots \oplus W_j,$$

$$\sum_{k\in\mathbb{Z}}\left\langle f,\;\varphi_{j+1,k}\right\rangle\;\varphi_{j+1,k}\;=\;\sum_{k\in\mathbb{Z}}\left\langle f,\;\varphi_{0,k}\right\rangle\;\varphi_{0,k}\;+\;\sum_{i=0}^{j}\sum_{k\in\mathbb{Z}}\left\langle f,\;\psi_{i,k}\right\rangle\;\psi_{i,k},\;\;\forall\;f\in L_2(\mathbb{R}).$$

И более того,
$$L_2(\mathbb{R}) = V_0 \oplus W_0 \oplus W_1 \dots \oplus W_j \oplus \dots = V_0 \oplus \bigoplus_{j=0}^{+\infty} W_j$$
.

При этом ортонормированный базис $L_2(\mathbb{R})$ состоит из функций

$$\{ \varphi_{0,n},\, \psi_{j,n},\ j=0,\,1\,....\,,\,n\in\mathbb{Z} \}$$
 и

$$f = \sum_{k \in \mathbb{Z}} \langle f, \varphi_{0,k} \rangle \varphi_{0,k} + \sum_{j=0}^{+\infty} \sum_{k \in \mathbb{Z}} \langle f, \psi_{j,k} \rangle \psi_{j,k}.$$

КМА Хаара: пространства W_i

Построение пространств W_j можно осуществить и для отрицательных j точно также. То есть

$$V_0 = \ V_{-j} \oplus W_{-j} \oplus W_{-j+1} \dots \oplus W_{-1},$$

И более того,
$$V_0 = \bigoplus_{j=-\infty}^{-1} W_j$$
 .

Таким образом,

$$L_2(\mathbb{R}) = \bigoplus_{j=-\infty}^{+\infty} W_j$$

и система функций $\{\psi_{j,n},\ j,\ n\in\mathbb{Z}\}$ образует ортонормированный базис пространства $L_2(\mathbb{R})$. То есть для любой функции $f \in L_2(\mathbb{R})$, выполнено

$$f = \sum_{j=-\infty}^{+\infty} \sum_{k \in \mathbb{Z}} \langle f, \psi_{j,k} \rangle \psi_{j,k}.$$

Ортогональный КМА

Ортогональным КМА для пространства $L_2(\mathbb{R})$ называется последовательность замкнутых подпространств $\{V_i\}$, обладающая свойствами:

 $... \subset V_{-1} \subset V_0 \subset V_1 \subset ...$ **КМА1.** Они вложены друг в друга

КМА2. Замыкание их объединения совпадает с $L_2(\mathbb{R})$: $\overline{\bigcup_{j\in\mathbb{Z}}V_j}=L_2(\mathbb{R})$.

КМА3. Пересечение всех подпространств состоит из нулевой функции: $\bigcap_{j\in\mathbb{Z}}V_j=\{\mathbf{0}\}.$

КМА4. Масштабируемость: $f(x) \in V_j \iff f(2x) \in V_{j+1}$.

КМА5. Существует функция $\varphi(x) \in V_0$ с компактным носителем, что ее целочисленные сдвиги $\varphi_{0,n}(x) = \varphi(x-n)$ образуют ОНБ в пространства V_0 .

 $V_0 = \operatorname{span} \{ \varphi_{0,k}, \ k \in \mathbb{Z} \}$. В силу масштабируемости $V_i = \operatorname{span} \{ \varphi_{i,k}, \ k \in \mathbb{Z} \}$.

Основное свойство функции φ : поскольку $\varphi \in V_0 \subset V_1$, то φ раскладывается по базису пространства V_1 , то есть φ представима в виде линейной комбинации собственных сдвинутых, сжатых копий

$$\varphi(x) = \sum_{n \in \mathbb{Z}} h[n] \ \varphi_{1,n} = \sqrt{2} \sum_{n \in \mathbb{Z}} h[n] \ \varphi(2x - n).$$

Это соотношение называется **масштабирующим уравнением**. Функции φ из $L_2(\mathbb{R})$, удовлетворяющие масштабирующему уравнению для некоторой конечной последовательности h называются масштабирующей функцией (англ. scaling, refinable function). Последовательность h называется масштабирующей маской.

Всплеск-функцию можно получить из масштабирующей функции в виде

$$\psi(x) = \sum_{k \in \mathbb{Z}} (-1)^n \overline{h[1-n]} \varphi_{1,n} = : \sum_{k \in \mathbb{Z}} g[n] \varphi_{1,n},$$

где последовательность g называют всплеск-маской.

Всплеск Хаара

Функция Хаара
$$\varphi(x) = \chi_{[0,1]}(x) = \begin{cases} 1, & x \in [0,1) \\ 0, & \text{иначе} \end{cases}$$

удовлетворяет масштабирующему уравнению с $h[0] = h[1] = \frac{1}{\sqrt{2}}$.

$$\varphi(x) \ = \varphi\left(2\,x\right) \ + \ \varphi\left(2\,x - 1\right) \ = \ \frac{1}{\sqrt{2}}\,\varphi_{1,0} \ + \ \frac{1}{\sqrt{2}}\,\varphi_{1,1} \ = \ \sum_{k \in \mathbb{Z}}\,h[n]\,\varphi_{1,n},$$

$$\psi(x) \; = \; \sum_{k \in \mathbb{Z}} \; (-1)^n \, \overline{h[1-n]} \, \varphi_{1,n} \; = \; \frac{1}{\sqrt{2}} \, \varphi_{1,0} - \frac{1}{\sqrt{2}} \, \varphi_{1,1}.$$

Масштабирующая фукция Хаара $\varphi(x) = \varphi\left(2\,x\right) \,+\, \varphi\left(2\,x-1\right)$

Пример φ

Масштабирующая функция Добеши второго порядка удовлетворяет масштабирующему уравнению с коэффициентами

$$h[0] = \frac{1}{4\sqrt{2}} \left(1 + \sqrt{3} \right), \quad h[1] = \frac{1}{4\sqrt{2}} \left(3 + \sqrt{3} \right),$$
$$h[2] = \frac{1}{4\sqrt{2}} \left(3 - \sqrt{3} \right), \quad h[3] = \frac{1}{4\sqrt{2}} \left(1 - \sqrt{3} \right).$$

Масштабирующая фукция Добеши $\varphi(x)$

Для этой функции нет аналитического выражения, график строится с помощью итерационных процедур. Также, известно, что целочисленные сдвиги этой функции образуют ортонормированную систему.

Пример ψ

Всплески Добеши второго порядка строятся по коэффициентам

$$g[0] = \frac{1}{4\sqrt{2}} (1 - \sqrt{3}), \ g[1] = -\frac{1}{4\sqrt{2}} (3 - \sqrt{3}),$$

$$g[2] = \frac{1}{4\sqrt{2}} (3 + \sqrt{3}), \ g[3] = -\frac{1}{4\sqrt{2}} (1 + \sqrt{3}).$$

Для этой функции нет аналитического выражения, график строится с помощью итерационных процедур. Также, известно, что целочисленные сдвиги этой функции образуют ортонормированную систему.