AIDA-Project Telekom Customer Churn Prediction

M. Sauer GIT, data models, feature selection J. E. Dietert EDA, classic fit, NN T. Habermann NN models, KNN

Definition

Churn rate (sometimes called attrition rate), in its broadest sense, is a measure of the number of individuals or items moving out of a collective group over a specific period. It is one of two primary factors that determine the steady-state level of customers a business will support.

source: wikipedia.org

Project And Objectives

Knowing the intent of a customer to leave, is a highly valuable information. It can be used for prevention, by providing specific offers to these.

Objective of this project, is to create a machine learning algorithm, which is able to provide this knowledge based on everyday data of a telecommunication company.

Knowing the data

- Set of 5000 customers
- 21 features about each of them (including a binary value if they do churn or not)
- 1/7 churn customers, 6/7 no churn customers

class (target)	state	account_length	total_day_minutes	total_eve_minutes	total_night_minutes	total_intl_minutes
international_plan	area_code	number_vmail_ messages	total_day_calls	total_eve_calls	total_night_calls	total_intl_calls
voice_mail_plan	phone_number	number_customer_s ervice_calls	total_day_charge	total_eve_charge	total_night_charge	total_intl_charge

Raw data class distribution

Metrics...Metrics

The given task is a **binary classification**

- Since we have an *imbalanced class* distribution accuracy is not the optimal metric.
 E.g. if a model would predict always 0 (no churn), we get approx. 0.86 accuracy but would totally fail to predict churns
- It is necessary to have a high recall value i.e. to have nearly all churners in the set of customers identified for potential churn
- But increasing number of retaining customers seen as churners by mistake makes it necessary to monitor precision

Data Inspection

distribution of #customers
per (US)state: 50...125

average churn rate per (US) state: 5%...27%

Data Inspection: eliminate correlations

Data Preprocessing

#vmail_messages <= 30: true: no churn</pre> #vmail messages <= 30: false: churn</pre>

abs number

international plan distribution

some misalignment of international charges.

International charges per minute (27ct/min) do not differ for customers with or without international plan

grouping according to class churn build the ratio of feature means: mean (no_churn) / mean (churn)

Data Preprocessing:

total day minutes <= 265.4

This decision is valid since also seen in the statistics of no_churn vs churn customers. There seem two sub-sets of churners in their day-minutes.

total eve minutes <= 168.35

This decision is valid since also seen in the statistics of no_churn vs churn customers.

number customer calls <= 3.5

This decision is valid since also seen in the statistics of no_churn vs churn customers. If a customer calls less than 3.5 times the hotline to complain, they could be identified as "happy", so they stay.

Feature Selection:

Feature Importance Comparison for different Classifiers

Decision Tree Classifier (DTC)	Random Forest Classifier (RFC)		
Extra Trees Classifier (ETC)	Ada Boost Classifier (ABC)		

Standard classifiers: Decision Tree with best results

Standard classifier with individual parameterization:

DT with reasonable decisions backed by statistics

Dietert

Classification result

The hyperparameter tuning of the DT classifier comes up with a degree of 17, slightly higher than the input feature dimension of 13.

The classifier on test set leads to

- accuracy of 93.6%
- true positive rate of 79.4%
- ~20% (28) were classified as no-churners despite they were churned customers.
- 869* 4%= 35 customers are misclassified as potential churners

best true positive: 79.43

Alternative visualization as ROC plot with the ideal target prediction as black line with the top-most left corner as the ideal point.

The area below the curve is 0.877 which is close to optimal value 1.0, compared to the poor 0.5 as dice-solution

Simple Neural Network

Feed forward neural network with one hidden layer of 32 neurons (activation relu) and a single output (activation sigmoid)

Accuracy reaches up to 95% and recall and precision converge at approx. 80%

Multiple Hidden Layer Neural Network

Performance for different hidden layer sizes and more hidden layers with models chosen by different metrics:

hidden	Model taken with	Accuracy	0 Precision	0 Recall	1 Precision	1 Recall
layer neurons	best parameter					
[16]	Loss	0.952000	0.963415	0.981366	0.872340	0.773585
[16]	Accuracy	0.954667	0.966361	0.981366	0.875000	0.792453
[32]	Accuracy	0.953333	0.963470	0.982919	0.881720	0.773585
[128]	Accuracy	0.956000	0.963581	0.986025	0.901099	0.773585
[256]	Precision	0.956000	0.963581	0.986025	0.901099	0.773585
(128, 128)	Recall	0.937333	0.971564	0.954969	0.752137	0.830189
(128, 32, 64)	Accuracy	0.953333	0.964885	0.981366	0.873684	0.783019
(128, 32, 128)	Recall	0.957333	0.972222	0.978261	0.862745	0.830189
(64, 64, 32, 32)	Accuracy	0.956000	0.969278	0.979814	0.868687	0.811321

 An input-128-32-128-1 fully connected neural network with best recall outperforms the decision tree classifier for churn prediction

Conclusions

- 1. The classical classifiers lead to broad results/performances.
- 2. The decision tree with advantage of clear guidance for action and good results: high accuracy 93.6% and high true positives 79.4%
- 3. Neural Networks with low complexity outperform classical classifiers.
- 4. results: higher accuracy >95% and high true positives >80% possible

Thus a neural network is recommended for predictions!

In general it is possible to further reduce the false positives and reach a better precision for churn predictions but this also reduces the recall rate.

This decision would be done by the business owner.