Modélisation des chaînes de solides dans le but de déterminer les contraintes géométriques dans les mécanismes

Chapitre 2 - Hyperstatisme

Sciences
Industrielles de

l'Ingénieur

TD

Système de dépose de poudre

Concours Centrale Supelec – TSI 2016 Savoirs et compétences :

- Mod2.C34 : chaînes de solides;
- Mod2.C34 : degré de mobilité du modèle;
- Mod2.C34 : degré d'hyperstatisme du modèle;
- □ Mod2.C34.SF1 : déterminer les conditions géométriques associées à l'hyperstatisme;
- Mod2.C34: résoudre le système associé à la fermeture cinématique et en déduire le degré de mobilité et d'hyperstatisme.

Mise en situation

Objectif L'objectif de cette partie est de proposer un modèle du mécanisme constituant le déplacement de l'axe \overrightarrow{x} et de justifier certains choix technologiques.

Travail demandé

Question 1 Déterminer le degré d'hyperstatisme de la liaison entre les solides 0 et 1.

Correction

Méthode cinématique :

- mobilité utile : $m_u = 1$;
- mobilité interne : $m_i = 0$;
- nombre de cycles : $\gamma = 1$;
- nombre d'équations cinématiques : $E_c = 6\gamma = 6$;
- nombres d'inconnues cinématiques : $I_c = 2 \cdot 1 = 2$.

Au final : $h = m - I_c + E_c = 1 - 2 + 6 = 5$.

Méthode statique

- mobilité utile : $m_u = 1$;
- mobilité interne : $m_i = 0$;
- nombre d'équations cinématiques : $E_s = 6(p-1) = 6(2-1) = 6$;
- nombres d'inconnues cinématiques : $I_s = 2 \cdot 5 =$

Au final : $h = m - E_s + I_s = 1 - 6 + 10 = 5$.

Question 2 Tracer le nouveau graphe de liaisons en tenant compte de l'introduction des deux soufflets métalliques.

Question 3 Déterminer en le justifiant le degré de mobilité du mécanisme ainsi modélisé en question précédente.

Correction

En réalisant une fermeture cinématique, on a $\{\mathcal{V}(1_a/0)\}+\{\mathcal{V}(1_b/1_a)\}+\{\mathcal{V}(1_c/1_b)\}=\{\mathcal{V}(1_c/0)\}$. Les torseurs étant considérés écrits au même point P, on a :

$$\begin{cases} p_{ba} + p_{cb} = 0 \\ q_{ba} + q_{cb} = 0 \\ r_{a0} = r_{c0} \end{cases} \qquad \begin{cases} v_{xba} + v_{xcb} = 0 \\ v_{yba} + v_{ycb} = 0 \\ v_{zba} + v_{zcb} = 0 \end{cases}.$$

Il s'agit d'un système de rang 6 avec 12 inconnues. On a donc $m = I_c - r_c = 12 - 6 = 6$.

Question 4 En déduire le degré d'hyperstatisme du système avec ses deux soufflets métalliques.

Correction

On a $h = m - I_c + E_c = 6 - 12 + 6 = 0$.

Retour sur le cahier des charges

Question 5 Conclure en justifiant l'utilisation des soufflets.

Correction

1

Le soufflet permet donc de rendre le système isostatique. Il est ainsi possible de monter le système sans avoir à imposer des contraintes géométriques sur le mécanisme.