Discrete Martingale

1

Problem

If $\{Z_n, n \geq 1\}$ is a martingale, prove that for $1 \leq k < n$,

$$\mathbb{E}\left[Z_n\mid Z_k,\ldots,Z_1\right]=Z_k$$
.

Similarly, if $\{Z_n, n \geq 1\}$ is a submartingale, prove that

$$\mathbb{E}\left[Z_n\mid Z_k,\ldots,Z_1
ight]\geq Z_k$$

Proof (a)

Notice:

$$\mathbb{E}[Z_n \mid Z_k, \dots, Z_1] \\ = E[E[Z_n | Z_{n-1}, \dots, Z_1] | Z_k, \dots, Z_1] \\ = E[Z_{n-1} | Z_k, \dots, Z_1]$$

By induction, we can get:

$$\mathbb{E}\left[Z_n\mid Z_k,\ldots,Z_1
ight]=Z_k$$

Proof (b)

Similarly, we have:

$$\mathbb{E}[Z_n \mid Z_k, \dots, Z_1] = E[E[Z_n | Z_{n-1}, \dots, Z_1] | Z_k, \dots, Z_1] \\ \geq E[Z_{n-1} | Z_k, \dots, Z_1]$$

By induction, we can get:

$$\mathbb{E}\left[Z_n\mid Z_k,\ldots,Z_1\right]\geq Z_k$$

Let $S_0=0, S_n=\epsilon_1+\cdots+\epsilon_n$ for $n\geq 1$, where $\{\epsilon_i\}$ are i.i.d. exponential random variables with $\lambda=1$. Show that

$$X_n=2^n\exp\left(-S_n
ight),\quad n\geq 1$$

is a martingale.

Solution

First:

$$\begin{split} E[|X_n|] &= E[2^n e^{-n}] \\ &< \infty \end{split}$$

Then:

$$E[X_{n+1}|X_1,\ldots,X_n] = E[2^{n+1}e^{-S_n}e^{-\epsilon_{n+1}}] = 2^{n+1}e^{-S_n}E[e^{-\epsilon_{n+1}}] = 2^{n+1}e^{-S_n}\int_0^\infty e^{-x}e^{-x}dx = 2^ne^{-S_n} = X_n$$

3

Problem

If $X_i (i \geq 1)$ are i.i.d. with $\mathbb{E}[|X|] < \infty$, and N is a stopping time for $\{X_i\}$ with $\mathbb{P}(N < 1)$ $\infty)=1$ and $\mathbb{E}[N]<\infty$, show that $\mathbb{E}\left[\sum_{i=1}^{N}X_i
ight]=\mathbb{E}[N]\mathbb{E}[X].$

$$\mathbb{E}\left[\sum_{i=1}^{N}X_i
ight]=\mathbb{E}[N]\mathbb{E}[X].$$

Solution

$$egin{aligned} E[\sum_{i=1}^{N} X_i] \ &= E[\sum_{i=1}^{\infty} X_i I_{i \leq N}] \ &= \sum_{i=1}^{\infty} E[X] P(N \geq i) \ &= \sum_{i=1}^{\infty} E[X] \sum_{j=i}^{\infty} P(N = j) \ &= \sum_{j=1}^{\infty} E[X] \sum_{i=1}^{j} P(N = j) \ &= \sum_{j=1}^{\infty} E[X] j P(N = j) \ &= E[N] E[X] \end{aligned}$$

4

Problem

Consider a process $\{X_n, n \geq 0\}$ where X_0 is a positive integer. If $X_n = 0$, then $X_{n+1} = 0$. If $X_n > 0$,

$$X_{n+1} = \left\{ egin{array}{ll} X_n + 1, & ext{with probability } 0.5 \ X_n - 1, & ext{with probability } 0.5 \end{array}
ight.$$

- (a) Show that X_n is a non-negative martingale.
- (b) For $X_0=i>0$, use Kolmogorov's inequality for submartingales to bound $\mathbb{P}\left(\exists n\geq 0, X_n\geq N\mid X_0=i\right)$

Solution (a)

Notice $X_n \geq 0$, and:

$$E[X_{n+1}|X_1,\ldots,X_n] = E[X_{n+1}|X_n] = \begin{cases} 0.5(X_n+1) + 0.5(X_n-1) & X_n > 0 \\ X_n & X_n = 0 \end{cases} = X_n$$

Then:

$$E[|X_n|]$$

$$= E[X_n]$$

$$= E[X_0]$$

$$= X_0 < \infty$$

Solution (b)

$$egin{aligned} &P(\max(X_0,\ldots,X_n)>N|X_0=i)\ &\leq rac{E[X_n|X_0=i]}{N}\ &=rac{i}{N} \end{aligned}$$

which is the upper bound.

5

Problem

Prove Kolmogorov's Inequality: Let X_1,X_2,\ldots be independent random variables with mean 0 . Define $S_k=X_1+\cdots+X_k$. For any a>0, show that:

$$P\left\{\max_{1 \leq k \leq n} |S_k| \geq a
ight\} \leq rac{ ext{Var}(S_n)}{a^2}$$

Proof (1)

(1) Show that $\{S_k, k=1,2,\ldots\}$ is a martingale with mean 0 .

We have:

$$|E[|S_n|] \leq \sqrt{E[S_n^2]} = Var[S_n] < \infty$$

Also:

$$E[S_{n+1}|S_1, \dots, S_n]$$

$$= E[\sum_{i=1}^{n+1} X_i | X_1, \dots, X_n]$$

$$= E[X_1 + \dots + X_n | X_1, \dots, X_n] + E[X_{n+1}]$$

$$= S_n$$

Proof (2)

(2) Define $\{Z_k\}$:

$$Z_{k+1} = \left\{egin{array}{ll} S_{k+1}, & ext{if } \max_{1 \leq i \leq k} |S_i| < a \ Z_k, & ext{if } \max_{1 \leq i \leq k} |S_i| \geq a \end{array}
ight.$$

with $Z_0=0.$ Show $\{Z_k\}$ is a martingale.

Notice $E[|Z_{n+1}|] < \infty$, and:

$$egin{aligned} E[Z_{n+1}|Z_1,\ldots,Z_n] \ &= E[S_{n+1}|Z_1,\ldots,Z_n]P(\max_{1\leq i\leq n}|S_i| < a) + E[Z_n|Z_1,\ldots,Z_n]P(\max_{1\leq i\leq n}|S_i| \geq a) \ &= E[S_{n+1}|S_1,\ldots,S_n]P(\max_{1\leq i\leq n}|S_i| < a) + Z_nP(\max_{1\leq i\leq n}|S_i| \geq a) \ &= S_nP(\max_{1\leq i\leq n}|S_i| < a) + Z_nP(\max_{1\leq i\leq n}|S_i| \geq a) \ &= Z_nP(\max_{1\leq i\leq n}|S_i| < a) + Z_nP(\max_{1\leq i\leq n}|S_i| \geq a) \ &= Z_n \end{aligned}$$

Proof (3)

(3) For a martingale $\{M_k\}$ with $M_0=0$, show:

$$\sum_{i=1}^n E\left[\left(M_i-M_{i-1}
ight)^2
ight]=E\left[M_n^2
ight].$$

We have:

$$\begin{split} &\sum_{i=1}^n E[(M_i - M_{i-1})^2] \\ &= \sum_{i=1}^n E[E[M_i^2 - 2M_i M_{i-1} + M_{i-1}^2] | M_{i-1}] \\ &= \sum_{i=1}^n E[E[M_i^2] - M_{i-1}^2] \\ &= \sum_{i=1}^n E[M_i^2] - E[M_{i-1}^2] \\ &= E[M_n^2] - E[M_0^2] \\ &= E[M_n^2] \end{split}$$

Proof (4)

(4) Use Chebyshev's inequality to show:

$$P\left\{\max_{1\leq k\leq n}|S_k|\geq a
ight\}\leq rac{E\left[S_n^2
ight]}{a^2}=rac{ ext{Var}(S_n)}{a^2}.$$

We have:

$$egin{aligned} &P\left\{ \max_{1 \leq k \leq n} |S_k| \geq a
ight\} \ &= P\{|Z_n| \geq a\} \ &\leq rac{E[Z_n^2]}{a^2} \ &\leq rac{E[S_n^2]}{a^2} \ &= rac{Var(S_n)}{a^2} \end{aligned}$$

Answer (5)

(5) Does this proof apply to all $\{S_k\}$ that are mean-0 martingales?

Answer: No

The proof relies on the independent increments of $\{S_k\}$.

Specifically:

- Step (3) assumes $\{M_k\}$ has orthogonal increments (true for martingales).
- Step (4) uses the fact that $Z_n=S_n$ if no stopping occurs, which implicitly requires S_n to be a sum of independent variables.

For general martingales, Kolmogorov's inequality does not hold; instead, Doob's inequality is used, which requires different techniques. Thus, independence is essential here.

Chapter 4

2

Problem

Suppose whether it rains today depends on the weather conditions of the previous three days. Explain how to analyze this system using a Markov chain. How many states must there be?

Solution

8, each day has 2 states, and there are:

$$2^3 = 8$$

states.

In Exercise 2, suppose that if it has rained for the past three days, then it will rain today with probability 0.8; if there was no rain in the past three days, then it will rain today with probability 0.2; and in other cases, today's weather will be the same as yesterday's with probability 0.6. Determine the transition probability matrix P

Solution

We denote R as rain and N as no rain, then:

	RRR	RRN	RNR	RNN	NRR	NNR	NNR
RRR	0.8	0.2	0	0	0	0	0
RRN	0	0	0.4	0.6	0	0	0
RNR	0	0	0	0	0.6	0	0
RNN	0	0	0	0	0	0.4	0.6
NRR	0.6	0.4	0	0	0	0	0
NRN	0	0	0.4	0.6	0	0	0
NNR	0	0	0	0	0.6	0.2	0.8
NNN	0	0	0	0	0	0	0

4

Problem

Consider a process $\{X_n, n \geq 0\}$ taking values 0,1 , or 2 . Suppose

$$\mathrm{P}\left\{X_{n+1}=j\mid X_n=i, X_{n-1}=i_{n-1}, \cdots, X_0=i_0
ight\} = \left\{egin{array}{ll} P_{ij}^{\mathrm{II}}, & ext{if n is even} \ P_{ij}^{\mathrm{II}}, & ext{if n is odd.} \end{array}
ight.$$

Is $\{X_n, n \geq 0\}$ a Markov chain? If not, explain how to enlarge the state space to make it a Markov chain.

Solution

No, it depends on if n is odd.

5

Problem

A Markov chain $\{X_n, n \geq 0\}$ with states 0, 1, 2 has the transition probability matrix:

$$\left[\begin{array}{ccc} \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \\ 0 & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{2} & 0 & \frac{1}{2} \end{array}\right].$$

Given $\mathrm{P}\left(X_0=0\right)=\mathrm{P}\left(X_0=1\right)=\frac{1}{4}$, find $\mathrm{E}\left[X_3\right]$.

Solution

Notice:

$$\begin{bmatrix} \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \\ 0 & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}^3 = \begin{bmatrix} \frac{13}{36} & \frac{11}{54} & \frac{47}{108} \\ \frac{4}{9} & \frac{4}{27} & \frac{11}{27} \\ \frac{5}{12} & \frac{2}{9} & \frac{13}{36} \end{bmatrix}$$

Then:

$$\begin{bmatrix} \frac{1}{4}, \frac{1}{4}, \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{13}{36} & \frac{11}{54} & \frac{47}{108} \\ \frac{4}{9} & \frac{4}{27} & \frac{11}{27} \\ \frac{5}{12} & \frac{2}{9} & \frac{13}{36} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{59}{144}, \frac{43}{216}, \frac{169}{432} \end{bmatrix}$$

Therefore:

$$\mathrm{E}\left[X_{3}\right] = 0 \cdot \frac{59}{144} + 1 \cdot \frac{43}{216} + 2 \cdot \frac{169}{432} = \frac{43}{216} + \frac{338}{432} = \frac{53}{54}$$

Suppose Coin 1 lands heads with probability 0.7, and Coin 2 lands heads with probability 0.6. If the coin tossed today lands heads, we choose Coin 1 to toss tomorrow; if it lands tails, we choose Coin 2 to toss tomorrow. Initially, we toss either Coin 1 or Coin 2 with equal probability.

- (a) What is the probability that Coin 1 is tossed on the third day after starting?
- (b) If the coin tossed on Monday lands heads, what is the probability that the coin tossed on Friday of the same week also lands heads?

Solution (a)

The probability transition matrix:

	1	2
1	0.7	0.3
2	0.6	0.4

Then for the third day:

$$[0.5, 0.5] \left[egin{array}{cc} 0.7 & 0.3 \ 0.6 & 0.4 \end{array}
ight]^2 = [0.665, 0.335]$$

So the probability is 0.665

Solution (b)

For Thursday:

$$[1,0] \left[egin{array}{cc} 0.7 & 0.3 \ 0.6 & 0.4 \ \end{array}
ight]^3 = [0.6667, 0.3333]$$

Then for Friday:

$$P(H) = 0.6667 * 0.7 + 0.3333 * 0.6 = 0.6667$$

In Example 4.3, Gary was in glum 4 days ago. Given that he has not felt cheerful for a week, what is the probability that he is in glum today?

The transition probability matrix of (C,S,G) (cheerful, so-so, glum) is: $oldsymbol{P}=$

$$\left[\begin{array}{cccc} 0.5 & 0.4 & 0.1 \\ 0.3 & 0.4 & 0.3 \\ 0.2 & 0.3 & 0.5 \end{array}\right]$$

Solution

Notice:

$$\left[\frac{7}{15}, \frac{8}{15}\right] \left[\begin{array}{cc} \frac{4}{7} & \frac{3}{7} \\ \frac{3}{8} & \frac{5}{8} \end{array}\right] = \left[\frac{7}{15}, \frac{8}{15}\right]$$

Therefore, we can approximate that:

$$[0,1] \left[egin{array}{ccc} rac{4}{7} & rac{3}{7} \ rac{3}{8} & rac{5}{8} \end{array}
ight]^4 pprox rac{8}{15}$$

12

Problem

For a Markov chain $\{X_n, n \geq 0\}$ with transition probabilities $P_{i,j}$, consider the conditional probability $\mathrm{P}\left(X_n = m \mid X_0 = i, X_k \neq r \text{ for } k = 1, \dots, n\right)$. Is this equal to the n-step transition probability $Q^n_{i,m}$ of a chain with state space excluding r and adjusted transitions $Q_{i,j} = \frac{P_{i,j}}{1-P_{i,r}}$? Prove or provide a counterexample.

Solution

Consider a Markov chain with states $\{0,1,2\}$ where r=2.

Transition probabilities from state 0: $P_{0,0} = 1/3$, $P_{0,1} = 1/3$, $P_{0,2} = 1/3$.

Transition probabilities from state $1:P_{1,0}=1/2,P_{1,1}=1/4,P_{1,2}=1/4.$

Then:

$$\begin{split} Q_{0,0}^2 &= (1/2)(1/2) + (1/2)(2/3) = 1/4 + 1/3 = 7/12 \\ & \qquad \qquad \qquad \qquad \qquad P\left(X_2 = 0 \mid X_0 = 0, X_1 \neq 2, X_2 \neq 2\right) \\ &= \frac{1/9 + 1/6}{1/9 + 1/9 + 1/6 + 1/12} \\ &= 10/17 \end{split}$$

Answer is No.

13

Problem

Prove that if $m{P}^r$ has all positive entries for some r, then $m{P}^n$ has all positive entries for $n \geq r$

Solution

We have:

$$P^n(i,j) = \sum_k P^r(i,k) P^{n-r}(k,j) > 0$$