

Universidade Federal de Santa Catarina

Centro Tecnológico

Sistemas Digitais

INE 5406

Aula 5-T

2. Processadores Dedicados (Blocos Aceleradores). Método de Projeto no Nível RT. Exemplos 5, 6 e 7 (multiplicação sequencial). Exploração do Espaço de Soluções: comparações de desempenho e custo.

Profs. José Luís Güntzel e Cristina Meinhardt

{j.guntzel, cristina.meinhardt}@ufsc.br

Método de Projeto de Sistemas Digitais no Nível RT

Exemplo 5: Enunciado

SD para multiplicação sequencial de dois inteiros sem sinal

Especificação:

- O sistema digital "Multseq" deve calcular, de maneira sequencial, a multiplicação entre dois números inteiros sem sinal **A** e **B**, representados com 8 bits;
- Há dois sinais de controle externos: "iniciar" e "pronto".
- Há duas entradas de dados de 8 bits, "entA" e "entB", pelas quais A e B são fornecidos simultaneamente, no momento adequado;
- O resultado é fornecido pela saída "mult", representado com 8 bits, e deve ficar disponível mesmo enquanto um novo cálculo é realizado. Suponha que A e B sejam tais que o resultado de A x B < 256. Adote um algoritmo apropriado...

Requisitos:

- O custo de implementação do B.O. deve ser mínimo;
- Não há restrição quanto ao desempenho mínimo necessário.

Novidade!

Exemplo 5: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial de dois inteiros sem sinal

Escolha do Algoritmo*:

multiplicador

Solução mais ingênua → escolher um operando para servir de multiplicador e realizar somas sucessivas usando o outro operando (enquanto o multiplicador vai sendo decrementado até atingir zero). Exemplo:

Problema: o número de operações de soma é dependente do valor dos operandos, especialmente do valor do multiplicador

iniciai

0 Início

7. pronto $\leftarrow 1$:

^{*} Faz parte do passo 0 do método de projeto no nível RT

Exemplo 5: Passo 1 (Captura do comportamento por meio de uma FSMD)


```
0. Início
1. A ← entA; B ← entB; P ← 0; pronto ← 0;
2. Se B ≠ 0 então
3. Enquanto A ≠ 0 faça {
4. P ← P + B;
5. A ← A - 1; }
6. mult ← P;
7. pronto ← 1;
```


Exemplo 5: Passo 1 (Captura do comportamento por meio de uma FSMD)

- 1. A \leftarrow entA; B \leftarrow entB; P \leftarrow 0; pronto \leftarrow 0;
- 2. Se $B \neq 0$ então
- 3. Enquanto $A \neq 0$ faça {
- 4. $P \leftarrow P + B$;
- 5. $A \leftarrow A 1;$
- 6. mult \leftarrow P;
- 7. pronto \leftarrow 1;

Componente RT	Custo
Somador	24n
Subtrator	26n
Somador/subtrator	30n

Alocar estas duas operações em estados distintos permite que se use um único somador/subtrator (custo = 30 transistores por bit), ao invés de se usar um somador e um subtrator (custo = 24+26=50 transistores por bit), o que auxilia a minimizar o custo do BO, conforme especificado no enunciado deste exemplo.

Exemplo 5: Passo 2 (Projeto do BO) 1ª questão para guiar o projeto do BO:

iniciar **FSMD** pronto $\leftarrow 1$ pronto $\leftarrow 0$: A ← entA: B ← entB: S2 $mult \leftarrow P$

1ª questão para guiar o projeto do BO: Quais são os sinais de interface do BO?

• "entA", "entB" e "mult"

Exemplo 5: Passo 2 (Projeto do BO)

2ª questão para guiar o projeto do BO:

Quais variáveis são usadas para armazenar dados?

- "A", "B", "P" e "mult"
- Quantos registradores para armazenar tais variáveis?

Análise do tempo de vida das variáveis:

	0	1	2	3	4	5	6
A			х	Х	х	х	
В			х	Х	х	Х	
P			х	Х	х	х	Х
mult	х	х	х	х	х	х	Х

Uma variável está "viva" desde o ciclo de relógio subsequente àquele em que ela recebe um valor novo até o último ciclo no qual ela é consultada.

Exemplo 5: Passo 2 (Projeto do BO)

2ª questão para guiar o projeto do BO:

Quais variáveis são usadas para armazenar dados?

- "A", "B", "P" e "mult"
- Quantos registradores para armazenar tais variáveis?

Análise do tempo de vida das variáveis:

		0	1	2	3	4	5	6
I	A			х	Х	х	х	
Ī	В			х	Х	х	Х	
	P			х	Х	х	Х	Х
Ī	mult	х	х	х	х	х	х	Х

"mult" está sempre viva porque seu objetivo é armazenar o último resultado, mesmo enquanto "multiseq" executa um novo cálculo.

Exemplo 5: Passo 2 (Projeto do BO)

2ª questão para guiar o projeto do BO:

Quais variáveis são usadas para armazenar dados?

- "A", "B", "P" e "mult"
- Quantos registradores para armazenar tais variáveis?

Análise do tempo de vida das variáveis:

		0	1	2	3	4	5	6
I	4			х	Х	х	Х	
I	3			х	Х	х	х	
]	P			х	Х	Х	Х	Х
m	ult	х	х	х	Х	х	Х	Х

O número máximo de variáveis simultaneamente "vivas" é 4.

Exemplo 5: Passo 2 (Projeto do BO)

Logo, são necessários **4 registradores**, exclusivos para armazenar cada variável: A, B, P e mult.

Exemplo 5: Passo 2 (Projeto do BO) 3ª questão para guiar o projeto do BO:

Quais operações são realizadas?

- Uma adição e uma subtração
- Como a adição e a subtração são realizadas em estados distintos, usaremos um somador/subtrator para minimizar o custo do B.O.

Exemplo 5: Passo 2 (Projeto do BO) 3ª questão para guiar o projeto do BO:

Quais operações são realizadas?

- Também há 2 testes: "A=0?" e "B=0?"
- Usaremos dois testadores, pois seu custo é baixo
- → Logo, poderemos realizar os testes A≠0 e B≠0 no mesmo estado

Exemplo 5: Passo 2 (Projeto do BO) 4ª questão para guiar o projeto do BO:

Nova FSMD pronto ← iniciar pronto $\leftarrow 0$; $A \leftarrow entA; B \leftarrow entB;$ A=0 ou B= A≠0 e B≠0 $mult \leftarrow P$

Quais conexões? Variáveis x operações

- $P \leftarrow 0$, $P \leftarrow P + B$; $A \leftarrow \text{entA}$; $A \leftarrow A 1$; $B \leftarrow \text{entB}$; $\text{mult} \leftarrow P$;
- Deve haver mux2:1 nas entradas de P, A e +/-

Exemplo 5: Passo 3 (Esboçando o Diagrama BO/BC)

Exemplo 5: Passo 3 (Esboçando o Diagrama BO/BC)

Exemplo 5: Passo 4 (Projeto do BC): Criando uma FSM a partir da FSMD e do BO

Exemplo 5: Passo 4 (Projeto do BC): Definindo o número de flip-flops

FSM

Quantos flip-flops são necessários para implementar a FSM?

Resp.: como são **6** estados (=**6** combinações), o cálculo do número de flip-flops é log, **6** = 3

Exemplo 5: Passo 4 (Projeto do BC): Mapeando as interfaces do BC para o

modelo de FSM de Moore

Sugestão: tal como nos Exemplos anteriores, codificar o estado S0 como "000", uma vez que ele será o estado de Reset.

Exemplo 5: Passo 4 (Projeto do BC): projetando a Lógica de Próximo Estado (LPE)

Tabela de Transição de Estados (Assumindo Moore)

Estado		Próx.		
atual	iniciar	Bz	Az	Estado
S0	0	-	-	S0
	1	-	-	S1
S1	-	-	-	S2
S2	-	0	0	S3
	-	0	1	S5
	-	1	0	S5
	-	1	1	S5
S3	-	-	1	S4
S4	-	-	-	S2
S5	-	-	-	S0

Exemplo 5: Passo 4 (Projeto do BC): projetando a Lógica de Saída (LS)

Tabela de Saídas (Assumindo modelo de Moore)

Estado	Re	g. P	Re	g. A		Soi	mador/	Sub	Sa	ıída
	mP	cР	mA	cA	сВ	m1	m2	op	cmult	pronto
S0	-	0	-	0	0	-	-	-	0	1
S1	1	1	1	1	1	-	-	-	0	0
S2	-	0	-	0	0	-	-	-	0	0
S3	0	1	-	0	0	0	0	0	0	0
S4	-	0	0	1	0	1	1	1	0	0
S5	-	0	-	0	0	-	-	-	1	0
1 sinal							1 sina	 I		
mP = mA = CB CP CA = op = m1 = m2 cmult pronto							ais S: tabela, resent		cares e	estão

INE/CTC/UFSC Sistemas Digitais - semestre 2021/1

Slide5T.21

Profs. Güntzel & Meinhardt

Exemplo 5: Passo 4 (Projeto do BC)

Os passos faltantes são similares aos Exemplos 1, 2, 3 e 4

Exemplo 5: Estimativa de Custo para o BO (e para o BC)

Componente do B.O.	Custo
1 Somador/subtrator de n bits	30n
4 Muxes 2:1 de n bits	4x4n=16n
4 Registradoresde n bits com carga paralela controlada	4x22n=88n
2 testadores de zero ("= 0 ?")	Desprezível
Total	134n

Para $n=8 \rightarrow custo = 134 \times 8 = 1072 \text{ transistores}$

Estimativa de custo para o BC:

- Número de estados da FSMD/FSM: 6
- Número de saídas distintas da LS*= 5

^{* =} sinais de comando + sinais de controle de saída, diferentes entre si

Exemplo 5: Estimativa de Desempenho

Tempo de Execução:

$$T_{\text{exec}} = n_{\text{ciclos } x} T$$

- n_ciclos é o nº de ciclos de relógio, no pior caso, para concluir o cálculo
- T é o período (mínimo) do relógio

Exemplo 5: Estimativa de Desempenho

Tempo de Execução:

$$T_{\text{exec}} = n_{\text{ciclos}} \times T$$

- n_ciclos é o nº de ciclos de relógio, no pior caso, para concluir o cálculo
- T é o período (mínimo) do relógio

Se n = 8 bits:

- Maior inteiro sem sinal: 255 (⇒11111111)
- Pior caso: A=255, B≠0
- Sequência de execução: S1, 255x[S2,S3,S4], S2, S5
- → 768 ciclos de relógio

Exemplo 5: Estimativa de Desempenho

Tempo de Execução:

$$T_{\text{exec}} = n_{\text{ciclos}} \times T$$

- n_ciclos é o nº de ciclos de relógio, no pior caso, para concluir o cálculo
- T é o período (mínimo) do relógio

Se n = 8 bits:

- Maior inteiro sem sinal: 255 (⇒11111111)
- Pior caso: A=255, B≠0
- Sequência de execução: S1, 255x[S2,S3,S4], S2, S5
- → 768 ciclos de relógio

Generalizando para n bits:

- Maior inteiro sem sinal: 2n-1
- Pior caso: A= 2ⁿ-1, B≠0
- Sequência de execução: S1, (2ⁿ-1)x [S2,S3,S4], S2, S5
- → 3x(2ⁿ-1)+3 ciclos de relógio = 3x2ⁿ ciclos de relógio

Falta estimar T...

Exemplo 6: Enunciado

SD para multiplicação sequencial de dois inteiros sem sinal

Especificação:

- O sistema digital "Multseq2" deve calcular, de maneira sequencial, a multiplicação entre dois números inteiros sem sinal A e B, representados com 8 bits;
- Há dois sinais de controle externos: "iniciar" e "pronto".
- Há duas entradas de dados de 8 bits, "entA" e "entB", pelas quais A e B são fornecidos simultaneamente, no momento adequado;
- O resultado é fornecido pela saída "mult", representado com 8 bits, e deve ficar disponível mesmo enquanto um novo cálculo é realizado. Suponha que A e B sejam tais que o resultado de A x B < 256. Adote um algoritmo apropriado...

entA entB + 8 + 8 iniciar Reset ck Multiseq2 pronto

Requisitos:

- O desempenho deve ser máximo;
- Não há restrição quanto ao custo de implementação.

Exemplo 6: Passo 1 (Captura do comportamento por meio de uma FSMD)

0. Início
1. A ← entA; B ← entB; P ← 0; pronto ← 0;
2. Se B ≠ 0 então
3. Enquanto A ≠ 0 faça {
4. P ← P + B; A ← A - 1; }
5. mult ← P;
6. pronto ← 1;

Exemplo 6: Passo 1 (Captura do comportamento por meio de uma FSMD)

- 0 Início
- 1. A \leftarrow entA; B \leftarrow entB; P \leftarrow 0; pronto \leftarrow 0;
- 2. Se $B \neq 0$ então
- 3. Enquanto $A \neq 0$ faça {
- 4. $P \leftarrow P + B; A \leftarrow A 1;$
- 5. mult \leftarrow P;
- 6. pronto ← 1;

Estas duas operações serão executadas no mesmo estado (portanto, em paralelo), a fim de aumentar o desempenho mediante a redução do número de ciclos de relógio necessários para concluir a execução. Isso exigirá o uso de um somador e de um subtrator (portanto, aumentado o custo do BO)

Exemplo 6: Passo 2 (Projeto do BO) 1ª questão para guiar o projeto do BO:

FSMD iniciar pronto $\leftarrow 1$ S0 pronto $\leftarrow 1$ iniciar pronto $\leftarrow 0$; $A \leftarrow \text{entA}$; $B \leftarrow \text{entB}$; $A \leftarrow 0$ ou $B \leftarrow 0$ S2 $A \neq 0$ e $B \neq 0$ S3 $A \leftarrow A \rightarrow 0$ S3 $A \leftarrow A \rightarrow 0$ S4 $A \leftarrow A \rightarrow 0$

1ª questão para guiar o projeto do BO:Quais são os sinais de interface do BO?"entA", "entB" e "mult"

mult .

Exemplo 6: Passo 2 (Projeto do BO)

2ª questão para guiar o projeto do BO:

Quais variáveis são usadas para armazenar dados?

- "A", "B", "P" e "mult"
- Quantos registradores para armazenar tais variáveis?

Análise do tempo de vida das variáveis:

	0	1	2	3	4
A			х	х	
В			х	х	
P			х	Х	Х
mult	х	х	х	х	Х

"mult" está sempre viva porque seu objetivo é armazenar o último resultado, mesmo enquanto "multiseq" executa um novo cálculo.

Exemplo 6: Passo 2 (Projeto do BO)

2ª questão para guiar o projeto do BO:

Quais variáveis são usadas para armazenar dados?

- "A", "B", "P" e "mult"
- Quantos registradores para armazenar tais variáveis?

Análise do tempo de vida das variáveis:

	0	1	2	3	4
A			Х	Х	
В			Х	Х	
P			Х	Х	Х
mult	Х	х	Х	Х	Х

O número máximo de variáveis simultaneamente "vivas" é 4.

Exemplo 6: Passo 2 (Projeto do BO)

Logo, são necessários **4 registradores**, exclusivos para armazenar cada variável: A, B, P e mult.

Exemplo 6: Passo 2 (Projeto do BO) 3ª questão para guiar o projeto do BO:

Quais operações são realizadas?

• Uma adição e uma subtração, realizadas simultaneamente

Exemplo 6: Passo 2 (Projeto do BO) 3ª questão para guiar o projeto do BO:

FSMD pronto $\leftarrow 1$ pronto $\leftarrow 0$; $A \leftarrow entA; B \leftarrow entB;$ A=0 ou B=0 A≠0 e B≠0

Quais operações são realizadas?

- Uma adição e uma subtração, realizadas simultaneamente
- Também há 2 testes: "A=0" e "B=0"
- Usaremos dois testadores, pois seu custo é baixo

Exemplo 6: Passo 2 (Projeto do BO) 4ª questão para guiar o projeto do BO:

FSMD pronto $\leftarrow 1$ iniciar pronto $\leftarrow 0$; $A \leftarrow entA; B \leftarrow entB;$ A=0 ou B=0 A≠0 e B≠0

Quais conexões? Variáveis x operações

- $P \leftarrow 0$, $P \leftarrow P + B$; $A \leftarrow \text{entA}$; $A \leftarrow A 1$; $B \leftarrow \text{entB}$; $\text{mult} \leftarrow P$;
- Deve haver um mux2·1 nas entradas de P e de A

Exemplo 6: Passo 3 (Esboçando o Diagrama BO/BC)

Exemplo 6: Passo 4 (Projeto do BC): Criando uma FSM a partir da FSMD e do BO

Exemplo 6: Passo 4 (Projeto do BC): Definindo o número de flip-flops

Quantos flip-flops são necessários para implementar a FSM?

Resp.: como são 5 estados (=5 combinações), o cálculo do número de flip-flops é $\log_2 5 = 3$

Exemplo 6: Passo 4 (Projeto do BC): projetando a Lógica de Próximo Estado (LPE)

FSM

Tabela de Transição de Estados (Assumindo Moore)

Estado		Próx.		
atual	iniciar	Bz	Az	Estado
S0	0	-	-	S0
	1	-	-	S1
S1	-	-	-	S2
S2	-	0	0	S3
	-	0	1	S4
	-	1	0	S4
	-	1	1	S4
S3	-	-	-	S2
S4	-	-	-	S0

Exemplo 6: Passo 4 (Projeto do BC): projetando a Lógica de Saída (LS)

Tabela de Saídas (Assumindo modelo de Moore)

Estado	Reg. P		Re	g. A		Sa	ida
	mP	сP	mA	cA	cB	cmult	pronto
S0	-	0	-	0	0	0	1
S1	1	1	1	1	1	0	0
S2	-	0	-	0	0	0	0
S3	0	1	0	1	0	0	0
S4	-	0	-	0	0	1	0

OBS: na tabela, don't cares estão representados por "-"

Exemplo 6: Estimativa de Custo para o BO (e para o BC)

Componente do B.O.	Custo
1 Somador de n bits	24n
1 Subtrator de n bits	26n
2 Muxes 2:1 de n bits	2x4n=8n
4 Registradores de n bits com carga paralela controlada	4x22n=88n
2 testadores de zero ("= 0 ?")	Desprezível
Total	146n

Para n=8 → custo = 146 x 8 = **1168 transistores** (eram **1072**)

Estimativa de custo para o BC:

- Número de estados da FSMD/FSM: 5 (eram 6)
- Número de saídas distintas da LS*= 4 (eram 5)

^{* =} sinais de comando + sinais de controle de saída, diferentes entre si

Exemplo 6: Estimativa de Desempenho

Tempo de Execução:

$$T_{\text{exec}} = n_{\text{ciclos } x} T$$

- n_ciclos é o nº de ciclos de relógio, no pior caso, para concluir o cálculo
- T é o período (mínimo) do relógio

Exemplo 6: Estimativa de Desempenho

Tempo de Execução:

$$T_{\text{exec}} = n_{\text{ciclos x T}}$$

- n_ciclos é o nº de ciclos de relógio, no pior caso, para concluir o cálculo
- T é o período (mínimo) do relógio

Se n = 8 bits:

- Maior inteiro sem sinal: 255 (⇒11111111)
- Pior caso: A=255, B≠0
- Sequência de execução: S1, 255x[S2,S3], S2, S4
- → 513 ciclos de relógio (BO de Mulseq: 768 ciclos)

Exemplo 6: Estimativa de Desempenho

Tempo de Execução:

$$T_{\text{exec}} = n_{\text{ciclos}} \times T$$

- n_ciclos é o nº de ciclos de relógio, no pior caso, para concluir o cálculo
- T é o período (mínimo) do relógio

Se n = 8 bits:

- Maior inteiro sem sinal: 255 (⇒11111111)
- Pior caso: A=255, B≠0
- Sequência de execução: S1, 255x[S2,S3], S2, S4
- → 513 ciclos de relógio (BO de Mulseq: 768 ciclos)

Generalizando para n bits:

- Maior inteiro sem sinal: 2n-1
- Pior caso: A= 2ⁿ-1, B≠0
- Sequência de execução: S1, (2ⁿ-1)x [S2,S3], S2,S4
- \rightarrow 2x(2ⁿ-1)+3 = 2x 2ⁿ+1 ciclos de relógio (BO de Mulseq: 3x 2ⁿ ciclos de relógio)

Falta estimar T...

Comparação de Custos: Mulseq x Mulseq2

Nome do S.D.	Mulseq	Mulseq2
Característica Principal	Custo mínimo	Desempenho Máximo
Custo do BO (nº de transistores)	134n	146n
n=8	1072	1168
Custo do BC nº de estados	6	5
nº de sinais de controle	5	4
Nº de ciclos de relógio n=8	~ 3x 2 ⁿ 768	2x 2 ⁿ +1 513

A exploração do paralelismo inerente ao algoritmo resultou em:

- Redução do número de ciclos de relógio. No caso estudado, a redução foi de 33%.
- Maior custo do BO. No caso estudado, +9%.
- Menor número de sinais de controle (indício de redução do custo do BC)

Exemplo 7: Enunciado

SD para multiplicação sequencial por somas e deslocamentos

O desempenho do algoritmo utilizado nos exemplos 5 e 6 dependente da ordem em que os operandos são tomados...

- Considerando Mulseq2 com n=8 bits:
 - A=1 e B=255 (1x255) executa em 5 passos
 - A=255 e B=1 (255x1) executa em **513** passos
- Solução: projetar outro algoritmo, tentando explorar características inerentes ao problema a ser resolvido...
- Exigência: necessário conhecer detalhadamente o problema a ser resolvido

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

1º Exemplo Numérico:

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD) SD para multiplicação sequencial por somas e deslocamentos

1º Exemplo Numérico:

Seja **n** = n° de bits do multiplicador e **m** = n° de bits do multiplicando;

- Gerar **n** produtos parciais (de **m** bits)
- Calcular a soma de n produtos parciais com esquema monociclo ou com esquema multiciclo.
- Se usar multiciclo:
 - Inicializar uma variável acumuladora com zero
 - Calcular n adições de m bits, considerando o carry out para evitar overflow.

multiplicando	1001	
multiplicador	1011	X
produtos	1001 1001 - 0000 1001	+
resultado	1100011	

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

		1	0	0	1	B = 9 (= Multiplicando)
2	x	0	1	0	1	A = 5 (= Multiplicador)
		0	0	0	0	P (é um acumulador)

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

	1	0	0	1	B = 9 (= Multiplicando)
х	0	1	0	1	A = 5 (= Multiplicador)
	0	0	0	0	Р
	1	0	0	1	Prod. parcial 0 (= A(0).B<<0)

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

	1	0	0	1	B = 9 (= Multiplicando)
x	0	1	0	1	A = 5 (= Multiplicador)
	0	0	0	0	Р
+	1	0	0	1	Prod. parcial 0 (= A(0).B<<0)
	1	0	0	1	Р

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

	1	0	0	1	B = 9 (= Multiplicando)
х	0	1	0	1	A = 5 (= Multiplicador)
	0	0	0	0	P
+	1	0	0	1	Prod. parcial 0 (= A(0).B<<0)
	1	0	0	1	P
0	0	0	0	-	Prod. Parcial 1 (= A(1).B<<1)

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

		1	0	0	1	B = 9 (= Multiplicando)
	х	0	1	0	1	A = 5 (= Multiplicador)
		0	0	0	0	P
	+	1	0	0	1	Prod. parcial 0 (= A(0).B<<0)
		1	0	0	1	P
+	0	0	0	0	-	Prod. Parcial 1 (= A(1).B<<1)
	0	1	0	0	1	Р

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

		1	0	0	1	B = 9 (= Multiplicando)
	х	0	1	0	1	A = 5 (= Multiplicador)
		0	0	0	0	P
	+	1	0	0	1	Prod. parcial 0 (= A(0).B<<0)
		1	0	0	1	P
+	0	0	0	0	-	Prod. Parcial 1 (= A(1).B<<1)
	0	1	0	0	1	Р
1	0	0	1	-	-	Prod. Parcial 2 (= A(2).B<<2)

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

			1	0	0	1	B = 9 (= Multiplicando)
		х	0	1	0	1	A = 5 (= Multiplicador)
			0	0	0	0	Р
		+	1	0	0	1	Prod. parcial 0 (= A(0).B<<0)
			1	0	0	1	Р
	+	0	0	0	0	-	Prod. Parcial 1 (= A(1).B<<1)
		0	1	0	0	1	Р
+	1	0	0	1	-	-	Prod. Parcial 2 (= A(2).B<<2)
	1	0	1	1	0	1	Р

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

							_
			1	0	0	1	B = 9 (= Multiplicando)
		х	0	1	0	1	A = 5 (= Multiplicador)
			0	0	0	0	Р
		+	1	0	0	1	Prod. parcial 0 (= A(0).B<<0)
			1	0	0	1	P
	+	0	0	0	0	-	Prod. Parcial 1 (= A(1).B<<1)
		0	1	0	0	1	P
+	1	0	0	1	-	-	Prod. Parcial 2 (= A(2).B<<2)
	1	0	1	1	0	1	Р
0	0	0	0	-	-	-	Prod. Parcial 3 (= A(3).B<<3)

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

				1	0	0	1	B = 9 (= Multiplicando)
			х	0	1	0	1	A = 5 (= Multiplicador)
				0	0	0	0	Р
			+	1	0	0	1	Prod. parcial 0 (= A(0).B<<0)
				1	0	0	1	Р
		+	0	0	0	0	-	Prod. Parcial 1 (= A(1).B<<1)
			0	1	0	0	1	Р
	+	1	0	0	1	-	-	Prod. Parcial 2 (= A(2).B<<2)
		1	0	1	1	0	1	Р
+	0	0	0	0	-	-	-	Prod. Parcial 3 (= A(3).B<<3)
0	0	1	0	1	1	0	1	P= 45 = resultado

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

					1	0	0	1	B = 9 (= Multiplicando)
				х	0	1	0	1	A = 5 (= Multiplicador)
					0	0	0	0	Р
As adições podem				+	1	0	0	1	Prod. parcial 0 (= A(0).B<<0)
considerar apenas número de bits do	0				1	0	0	1	P
multiplicador			+	0	0	0	0	-	Prod. Parcial 1 (= A(1).B<<1)
				0	1	0	0	1	P
		+	1	0	0	1	-	-	Prod. Parcial 2 (= A(2).B<<2)
			1	0	1	1	0	1	P
+		0	0	0	0	-	-	-	Prod. Parcial 3 (= A(3).B<<3)
0		0	1	0	1	1	0	1	P= 45 = resultado

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

				1	0	0	1	B = 9 (= Multiplicando)
			х	0	1	0	1	A = 5 (= Multiplicador)
				0	0	0	0	Р
Após cada nova			+	1	0	0	1	Prod. parcial 0 (= A(0).B<<0)
adição, um novo bit mas à direita torna-				1	0	0	1	P
se definitivo		+	0	0	0	0	-	Prod. Parcial 1 (= A(1).B<<1)
			0	1	0	0	1	P
	+	1	0	0	1	-	-	Prod. Parcial 2 (= A(2).B<<2)
		1	0	1	1	0	1	P
+	0	0	0	0	-	-	-	Prod. Parcial 3 (= A(3).B<<3)
0	0	1	0	1	1	0	1	P= 45 = resultado

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD) SD para multiplicação sequencial por somas e deslocamentos

2º Exemplo Numérico: 5 x 9 em binário, usando soma sequencial

No exemplo ao lado, n=m e portanto, o resultado cabe em 2n (s/ overflow) Logo, P tem 2n bits.

Dividiremos P em PH (n bits mais significativos) e PL (n bits menos significativos).

Algoritmo $P \leftarrow 0$; $n \leftarrow n^{\circ}$ de bits dos operandos Enquanto n > 0 faça $\begin{cases} 1. PH \leftarrow PH + Prod. Parcial n \end{cases}$

2. $P \leftarrow P > 1$; 3. $n \leftarrow n - 1$:

Obs: quando (Prod. Parcial *n*) = 0, passo 1 não precisa ser feito.

								1
				1	0	0	1	B = 9 (= Multiplicando)
_			x	0	1	0	1	A = 5 (= Multiplicador)
				0	0	0	0	Р
	+_/		+/	1	0	0	1	Prod. parcial 0 (= A(0).B<<0)
	Cout		C _{ou} t	1	0	0	1	P
	+ 0		0	0	0	0	-	Prod. Parcial 1 (= A(1).B<<1)
		ď	0	1	0	0	1	Р
	+/	1	0	0	1	-	-	Prod. Parcial 2 (= A(2).B<<2)
	Cout	1	0	1	1	0	1	P
+/	0	0	0	0	-	-	-	Prod. Parcial 3 (= A(3).B<<3)
Cout	0	1	0	1	1	0	1	P= 45 = resultado

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

Formalizando o algoritmo:

```
início
  pronto ← 0;
  A ← entA; B ← entB; P ← 0; cont ← n; // numero de bits de A
Se (A ≠ 0 E B ≠ 0) então
  Enquanto cont ≠ 0 faça
  {
     Se A(0)=1
        PH ← PH + B; // soma B à parte alta de P
        P ← P >> 1; // desloca P à direita de 1 bit, o novo bit à esquerda pode ser Cout ou 0
        A ← A >> 1; // desloca A à direita de 1 bit, o novo bit que entra pode ter X
        cont ← cont − 1; // incrementa contador
   }
   mult ← P;
   pronto ← 1;
fim
```

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

Testando algoritmo:

```
Suponha que entA=5 e entB=9 (5 x 9) e
portanto, ao final, P=45
   início
    pronto \leftarrow 0;
 0 A \leftarrow entA; B \leftarrow entB; P \leftarrow 0; cont \leftarrow n;
    Se (A \neq 0 E B \neq 0) então
      Enquanto cont ≠ 0 faça Analisaremos estes 2
                                   testes como se fossem
                                   executados em
     Se A(0) = 1
                                   paralelo
     PH \leftarrow PH + B;
                                  Analisaremos estes 3
    P \leftarrow P >> 1;
                                  comandos como se
    A \leftarrow A >> 1:
                                  fossem executados em
         cont \leftarrow cont - 1:
                                  naralelo
 6 mult ← P;
 7 pronto \leftarrow 1;
   fim
```

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

Testando algoritmo:

Suponha que **entA=5** e **entB=9** (5 x 9) e portanto, ao final, P=45

```
        A
        B
        PH
        PL
        cont

        0
        0101
        1001
        0000
        0000
        100 (4)
```

```
infcio
  pronto ← 0;
0 A ← entA; B ← entB; P ← 0; cont ← n;
1 Se (A ≠ 0 E B ≠ 0) então
2 Enquanto cont ≠ 0 faça
  {
3     Se A(0) = 1
4     PH ← PH + B;
5     P ← P >> 1;
5     A ← A >> 1;
5     cont ← cont - 1;
    }
6 mult ← P;
7 pronto ← 1;
fim
```

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

Testando algoritmo:

Suponha que **entA=5** e **entB=9** (5 x 9) e portanto, ao final, P=45

```
В
      Α
                        PH
                                PL
                                          cont
0
     0101
               1001
                        0000
                                 0000
                                           100 (4)
     0101
               1001
                        0000
                                 0000
                                           100 (4)
```

```
início
  pronto ← 0;
0 A ← entA; B ← entB; P ← 0; cont ← n;
1 Se (A ≠ 0 E B ≠ 0) então
2 Enquanto cont ≠ 0 faça
  {
3     Se A(0) = 1
4     PH ← PH + B;
5     P ← P >> 1;
5     A ← A >> 1;
6     mult ← P;
7   pronto ← 1;
fim
```

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

Testando algoritmo:

```
Suponha que entA=5 e entB=9 (5 x 9) e portanto, ao final. P=45
```

```
infcio
  pronto ← 0;
0 A ← entA; B ← entB; P ← 0; cont ← n;
1 Se (A ≠ 0 E B ≠ 0) então
2  Enquanto cont ≠ 0 faça
  {
     Se A(0) = 1
4     PH ← PH + B;
5     P ← P >> 1;
5     A ← A >> 1;
5     cont ← cont − 1;
    }
6  mult ← P;
7  pronto ← 1;
```

	Α	В	PH	PL	cont
0	0101	1001	0000	0000	100 (4)
1	0101	1001	0000	0000	100 (4)
2 e 3	0101	1001	0000	0000	100 (4)

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

Testando algoritmo:

```
Suponha que entA=5 e entB=9 (5 x 9) e
portanto, ao final, P=45
   início
    pronto \leftarrow 0;
 0 A \leftarrow entA; B \leftarrow entB; P \leftarrow 0; cont \leftarrow n;
    Se (A \neq 0 E B \neq 0) então
      Enquanto cont ≠ 0 faça
       Se A(0) = 1
     PH \leftarrow PH + B;
     P \leftarrow P >> 1;
    A \leftarrow A >> 1:
       cont \leftarrow cont - 1:
 6 mult ← P;
 7 pronto ← 1;
```

-					
	Α	В	PH	PL	cont
0	0101	1001	0000	0000	100 (4)
1	0101	1001	0000	0000	100 (4)
2 e 3	0101	1001	0000	0000	100 (4)
4	0101	1001	1001	0000	100 (4)

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

Testando algoritmo:

```
Suponha que entA=5 e entB=9 (5 x 9) e
portanto, ao final, P=45
   início
    pronto \leftarrow 0;
 0 A \leftarrow entA; B \leftarrow entB; P \leftarrow 0; cont \leftarrow n;
 1 Se (A \neq 0 E B \neq 0) então
      Enquanto cont ≠ 0 faça
     Se A(0) = 1
    PH \leftarrow PH + B;
5 P \leftarrow P >> 1;
5 A ← A >> 1:
      cont \leftarrow cont - 1:
 6 mult ← P;
 7 pronto \leftarrow 1;
```

	Α	В	PH	PL	cont
0	0101	1001	0000	0000	100 (4)
1	0101	1001	0000	0000	100 (4)
2 e 3	0101	1001	0000	0000	100 (4)
4	0101	1001	1001	0000	100 (4)
5	X010	1001	0100	1000	011(3)

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

Testando algoritmo:

```
Suponha que entA=5 e entB=9 (5 x 9) e
portanto, ao final, P=45
   início
    pronto \leftarrow 0;
 0 A \leftarrow entA; B \leftarrow entB; P \leftarrow 0; cont \leftarrow n;
 1 Se (A \neq 0 E B \neq 0) então
    Enquanto cont ≠ 0 faça
    Se A(0) = 1
    PH \leftarrow PH + B;
5 P \leftarrow P >> 1;
5 A ← A >> 1:
     cont \leftarrow cont - 1:
 6 mult ← P;
 7 pronto \leftarrow 1;
```

-					
	Α	В	PH	PL	cont
0	0101	1001	0000	0000	100 (4)
1	0101	1001	0000	0000	100 (4)
2 e 3	0101	1001	0000	0000	100 (4)
4	0101	1001	1001	0000	100 (4)
5	X010	1001	0100	1000	011(3)
2 e 3	X01 0	1001	0100	1000	011(3)

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

Testando algoritmo:

```
Suponha que entA=5 e entB=9 (5 x 9) e
portanto, ao final, P=45
   início
    pronto \leftarrow 0;
 0 A \leftarrow entA; B \leftarrow entB; P \leftarrow 0; cont \leftarrow n;
 1 Se (A \neq 0 E B \neq 0) então
      Enquanto cont ≠ 0 faça
     Se A(0) = 1
     PH \leftarrow PH + B;
    P \leftarrow P >> 1;
    A \leftarrow A >> 1:
      cont \leftarrow cont - 1:
 6 mult ← P;
```

	Α	В	PH	PL	cont
0	0101	1001	0000	0000	100 (4)
1	0101	1001	0000	0000	100 (4)
2 e 3	0101	1001	0000	0000	100 (4)
4	0101	1001	1001	0000	100 (4)
5	X010	1001	0100	1000	011(3)
2 e 3	X010	1001	0100	1000	011(3)
5	XX01	1001	0010	0100	010(2)

7 pronto ← 1;
fim

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

Testando algoritmo:

```
Suponha que entA=5 e entB=9 (5 x 9) e
portanto, ao final, P=45
   início
    pronto \leftarrow 0;
 0 A \leftarrow entA; B \leftarrow entB; P \leftarrow 0; cont \leftarrow n;
 1 Se (A \neq 0 E B \neq 0) então
   Enquanto cont ≠ 0 faça
   Se A(0) = 1
    PH \leftarrow PH + B;
5 P ← P >> 1;
5 A ← A >> 1:
    cont \leftarrow cont - 1:
 6 mult ← P;
 7 pronto \leftarrow 1;
```

1					
	Α	В	PH	PL	cont
0	0101	1001	0000	0000	100 (4)
1	0101	1001	0000	0000	100 (4)
2 e 3	0101	1001	0000	0000	100 (4)
4	0101	1001	1001	0000	100 (4)
5	X010	1001	0100	1000	011(3)
2 e 3	X010	1001	0100	1000	011(3)
5	XX01	1001	0010	0100	010(2)
2 e 3	XX01	1001	0010	0100	010(2)

fim

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

Testando algoritmo:

```
Suponha que entA=5 e entB=9 (5 x 9) e
portanto, ao final, P=45

início
pronto ← 0;

0 A ← entA; B ← entB; P ← 0; cont ← n;

1 Se (A ≠ 0 E B ≠ 0) então

2 Enquanto cont ≠ 0 faça
{
3 Se A(0) = 1

4 PH ← PH + B;

5 P ← P > 1;

5 A ← A >> 1;

5 cont ← cont − 1;
}

6 mult ← P;
```

	Α	В	PH	PL	cont
0	0101	1001	0000	0000	100 (4)
1	0101	1001	0000	0000	100 (4)
2 e 3	0101	1001	0000	0000	100 (4)
4	0101	1001	1001	0000	100 (4)
5	X010	1001	0100	1000	011(3)
2 e 3	X010	1001	0100	1000	011(3)
5	XX01	1001	0010	0100	010(2)
2 e 3	XX01	1001	0010	0100	010(2)
4	XX01	1001	1011	0100	010(2)

7 pronto ← 1;
fim

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

Testando algoritmo:

```
Suponha que entA=5 e entB=9 (5 x 9) e portanto, ao final, P=45 \begin{array}{c} \text{inicio} \\ \text{pronto} \leftarrow 0; \\ 0 \text{ A} \leftarrow \text{entA}; \text{ B} \leftarrow \text{entB}; \text{ P} \leftarrow 0; \text{cont} \leftarrow n; \\ 1 \text{ Se } (\text{A} \neq 0 \text{ E B} \neq 0) \text{ então} \\ 2 \text{ Enquanto cont} \neq 0 \text{ faça} \\ \{ 3 \text{ Se A}(0) = 1 \\ 4 \text{ PH} \leftarrow \text{PH} + \text{B}; \\ 5 \text{ P} \leftarrow \text{P} > 1; \\ 5 \text{ A} \leftarrow \text{A} >> 1; \\ 5 \text{ cont} \leftarrow \text{cont} - 1; \\ \} \end{array}
```

	Α	В	PH	PL	cont
0	0101	1001	0000	0000	100 (4)
1	0101	1001	0000	0000	100 (4)
2 e 3	0101	1001	0000	0000	100 (4)
4	0101	1001	1001	0000	100 (4)
5	X010	1001	0100	1000	011(3)
2 e 3	X010	1001	0100	1000	011(3)
5	XX01	1001	0010	0100	010(2)
2 e 3	XX01	1001	0010	0100	010(2)
4	XX01	1001	1011	0100	010(2)
5	XXX0	1001	0101	1010	001(1)

6 mult ← P;
7 pronto ← 1;
fim

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

Testando algoritmo:

```
Suponha que entA=5 e entB=9 (5 x 9) e
portanto, ao final, P=45
   início
    pronto \leftarrow 0;
 0 A \leftarrow entA; B \leftarrow entB; P \leftarrow 0; cont \leftarrow n;
 1 Se (A \neq 0 E B \neq 0) então
    Enquanto cont ≠ 0 faça
    Se A(0) = 1
    PH \leftarrow PH + B;
5 P \leftarrow P >> 1;
5 A ← A >> 1:
     cont \leftarrow cont - 1:
 6 mult ← P;
 7 pronto \leftarrow 1;
```

1					
	Α	В	PH	PL	cont
0	0101	1001	0000	0000	100 (4)
1	0101	1001	0000	0000	100 (4)
2 e 3	0101	1001	0000	0000	100 (4)
4	0101	1001	1001	0000	100 (4)
5	X010	1001	0100	1000	011(3)
2 e 3	X010	1001	0100	1000	011(3)
5	XX01	1001	0010	0100	010(2)
2 e 3	XX01	1001	0010	0100	010(2)
4	XX01	1001	1011	0100	010(2)
5	XXX0	1001	0101	1010	001(1)
2 e 3	XXX 0	1001	0101	1010	001(1)

fim

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

Testando algoritmo:

```
Suponha que entA=5 e entB=9 (5 x 9) e
portanto, ao final, P=45

início
    pronto ← 0;

0     A ← entA; B ← entB; P ← 0; cont ← n;

1     Se (A ≠ 0 E B ≠ 0) então

2     Enquanto cont ≠ 0 faça
    {
3          Se A(0) = 1
4          PH ← PH + B;

5          P ← P > 1;
5          cont ← cont − 1;
     }
6     mult ← P;
```

	Α	В	PH	PL	cont
0	0101	1001	0000	0000	100 (4)
1	0101	1001	0000	0000	100 (4)
2 e 3	0101	1001	0000	0000	100 (4)
4	0101	1001	1001	0000	100 (4)
5	X010	1001	0100	1000	011(3)
2 e 3	X010	1001	0100	1000	011(3)
5	XX01	1001	0010	0100	010(2)
2 e 3	XX01	1001	0010	0100	010(2)
4	XX01	1001	1011	0100	010(2)
5	XXX0	1001	0101	1010	001(1)
2 e 3	XXX0	1001	0101	1010	001(1)
5	XXXX	1001	0010	1101	000(0)

7 pronto ← 1;
fim

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

Testando algoritmo:

```
Suponha que entA=5 e entB=9 (5 x 9) e
portanto, ao final, P=45
   início
    pronto \leftarrow 0;
 0 A \leftarrow entA; B \leftarrow entB; P \leftarrow 0; cont \leftarrow n;
 1 Se (A \neq 0 E B \neq 0) então
    Enquanto cont ≠ 0 faça
    Se A(0) = 1
    PH \leftarrow PH + B;
5 P \leftarrow P >> 1;
5 A ← A >> 1:
     cont \leftarrow cont - 1:
 6 mult ← P;
 7 pronto \leftarrow 1;
```

1					
	Α	В	PH	PL	cont
0	0101	1001	0000	0000	100 (4)
1	0101	1001	0000	0000	100 (4)
2 e 3	0101	1001	0000	0000	100 (4)
4	0101	1001	1001	0000	100 (4)
5	X010	1001	0100	1000	011(3)
2 e 3	X010	1001	0100	1000	011(3)
5	XX01	1001	0010	0100	010(2)
2 e 3	XX01	1001	0010	0100	010(2)
4	XX01	1001	1011	0100	010(2)
5	XXX0	1001	0101	1010	001(1)
2 e 3	XXX0	1001	0101	1010	001(1)
5	XXXX	1001	0010	1101	000(0)
2 e 3	XXXX	1001	0010	1101	000(0)

fim

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

Testando algoritmo:

```
Suponha que entA=5 e entB=9 (5 x 9) e
portanto, ao final, P=45
   início
    pronto \leftarrow 0;
 0 A \leftarrow entA; B \leftarrow entB; P \leftarrow 0; cont \leftarrow n;
 1 Se (A \neq 0 E B \neq 0) então
      Enquanto cont ≠ 0 faça
    Se A(0) = 1
    PH \leftarrow PH + B;
 5 P ← P >> 1;
5 A ← A >> 1:
     cont \leftarrow cont - 1:
 6 mult \leftarrow P;
    pronto \leftarrow 1;
   fim
```

	Α	В	PH	PL	cont
0	0101	1001	0000	0000	100 (4)
1	0101	1001	0000	0000	100 (4)
2 e 3	0101	1001	0000	0000	100 (4)
4	0101	1001	1001	0000	100 (4)
5	X010	1001	0100	1000	011(3)
2 e 3	X010	1001	0100	1000	011(3)
5	XX01	1001	0010	0100	010(2)
2 e 3	XX01	1001	0010	0100	010(2)
4	XX01	1001	1011	0100	010(2)
5	XXX0	1001	0101	1010	001(1)
2 e 3	XXX0	1001	0101	1010	001(1)
5	XXXX	1001	0010	1101	000(0)
2 e 3	XXXX	1001	0010	1101	000(0)
6	XXXX	1001	0010	1101	000(0)

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

SD para multiplicação sequencial por somas e deslocamentos

Testando algoritmo:

```
Suponha que entA=5 e entB=9 (5 x 9) e
portanto, ao final, P=45
   início
    pronto \leftarrow 0;
 0 A \leftarrow entA; B \leftarrow entB; P \leftarrow 0; cont \leftarrow n;
 1 Se (A \neq 0 E B \neq 0) então
      Enquanto cont ≠ 0 faça
    Se A(0) = 1
    PH \leftarrow PH + B;
5 P ← P >> 1;
5 A ← A >> 1:
     cont \leftarrow cont - 1:
 6 mult \leftarrow P;
    pronto \leftarrow 1;
   fim
```

	Α	В	PH	PL	cont
0	0101	1001	0000	0000	100 (4)
1	0101	1001	0000	0000	100 (4)
2 e 3	0101	1001	0000	0000	100 (4)
4	0101	1001	1001	0000	100 (4)
5	X010	1001	0100	1000	011(3)
2 e 3	X010	1001	0100	1000	011(3)
5	XX01	1001	0010	0100	010(2)
2 e 3	XX01	1001	0010	0100	010(2)
4	XX01	1001	1011	0100	010(2)
5	XXX0	1001	0101	1010	001(1)
2 e 3	XXX0	1001	0101	1010	001(1)
5	XXXX	00	010 1 ⁻	101. =	= 45 ₁₀
2 e 3	XXXX			12	• • • • • • • • • • • • • • • • • • • •
6	XXXX	1001	0010	1101	000(0)

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

```
    Início
    A ← entA; B ← entB; P ← 0; cont ← n; pronto ← 0
    Se (A ≠ 0 E B ≠ 0) então
    Enquanto cont ≠ 0 faça {
    Se A(0) = 1
    PH ← PH + B;
    P ← P >> 1;
    A ← A >> 1;
    cont ← cont − 1; }
    mult ← P;
    pronto ← 1;
```


O algoritmo assume 2n bits para o resultado

Observações:

 $P \leftarrow P >> 1$; - \rightarrow desloca P à direita de 1 bit, o novo bit à esquerda pode ser Cout ou 0

 $A \leftarrow A >> 1$; \rightarrow desloca A à direita de 1 bit, o novo bit que entra pode ser X (don't care)

Exemplo 7: Passo 1 (Captura do comportamento por meio de uma FSMD)

Se houver hardware para fazer estes dois testes simultaneamente, é possível uni-los em um único estado

Exemplo 7: Passo 2 (Projeto do BO)

1ª questão para guiar o projeto do BO:

Quais são os sinais de interface do BO?

- "entA", "entB" e "mult"
- Usaremos 16 bits para "mult" de modo a evitar overflow

Exemplo 7: Passo 2 (Projeto do BO)

2ª questão para guiar o projeto do BO:

Quais variáveis são usadas para armazenar dados?

- •"A", "B", "P" ("PH" & "PL"), "cont" e "mult"
- Quantos registradores para armazenar tais variáveis?

Análise do tempo de vida das variáveis:

	0	1	2	3	4	5	6
A			Х	Х	х	Х	
В			х	х	х	Х	
P			Х	Х	х	Х	Х
cont			х	х	х	Х	
mult	х	х	Х	х	Х	Х	х

"mult" está sempre viva porque seu objetivo é armazenar o último resultado, mesmo enquanto "multiseq" executa um novo cálculo.

Exemplo 7: Passo 2 (Projeto do BO)

2ª questão para guiar o projeto do BO:

Quais variáveis são usadas para armazenar dados?

- "A", "B", "P" ("PH" & "PL"), "cont" e "mult"
- Quantos registradores para armazenar tais variáveis?

Análise do tempo de vida das variáveis:

	0	1	2	3	4	5	6
A			Х	Х	х	Х	
В			х	х	х	Х	
P			х	Х	х	Х	х
cont			Х	Х	х	Х	
mult	х	х	х	х	х	х	х

O número máximo de variáveis simultaneamente "vivas" é 5.

Exemplo 7: Passo 2 (Projeto do BO)

- Logo, são necessários 5 registradores, exclusivos para armazenar cada variável: A, B, P, cont e mult
- Porém, P é composto por duas parte, PH e PL, sendo possível realizar "P>>1" e "PH + B"
- PH e A podem ser deslocados à direita

Exemplo 7: Passo 2 (Projeto do BO)

3ª questão para guiar o projeto do BO:

Quais operações são realizadas

• "Uma adição, uma subtração (que poderiam usar um somador/subtrator) e deslocamentos para direita de P e A

Exemplo 7: Passo 2 (Projeto do BO)

3ª questão para guiar o projeto do BO:

Quais operações são realizadas

- Também há 4 testes: "A=0", "B=0", "cont=0" e "A(0)=0"
- Usaremos três testadores de zero e consultaremos o bit A(0)

Exemplo 7: Passo 2 (Projeto do BO)

4ª questão para guiar o projeto do BO:

Quais conexões? Variáveis x operações

- P←0, PH←PH+B; P←P>>1; A←entA; A←A>>1; cont←n; cont←cont − 1; B←entB; mult←P;
- Deve haver um mux2:1 nas entradas de PH e de cont

Exemplo 7: Passo 2 (Projeto do BO)

Observação:

 E se ocorrer um overflow em uma operação intermediária do tipo PH←PH+B?

Exemplo 7: Passo 2 (Projeto do BO)

Observação:

 E se ocorrer um overflow em uma operação intermediária do tipo PH←PH+B?

Resposta: injetar overflow pela esquerda de "P" em S5 caso antes de S5 tenha ocorrido S4. (Senão, injetar um zero.)

Exemplo 7: Estimativa de Custo para o BO (e para o BC)

Componente do B.O.	Custo
1 Somador de n bits	24n
1 Subtrator de 1+log₂n bits	26(1+log ₂ n)
1 Mux 2:1 de n bits	4n
1 Mux 2:1 de 1+log ₂ n bits	4(1+log ₂ n)
1 Registrador de n bits com carga paralela controlada (B) e 1 Registrador de 2n bits com carga paralela	3x22n=66n
1 Registrador de 1+log ₂ n bits com carga paralela controlada (cont)	22(1+log ₂ n)
3 Registradores de n bits com carga paralela controlada e deslocamento p/ dir (A, PH e PL)	3x26n=78n
4 testadores de zero ("= 0 ?")	Desprezível
Total	172n + 52(1+log ₂ n)

Para n=8 → custo = 1584 transistores

Estimativa de custo para o BC:

- Número de estados da FSMD/FSM: 7 (versões anteriores: 6 e 5)
- Número de saídas distintas da LS*= 4 (versões anteriores: 4 e 5)

^{* =} sinais de comando + sinais de controle de saída, diferentes entre si Slide5T.92 Profs. Güntzel & Meinhardt

Exemplo 7: Estimativa de Desempenho

Tempo de Execução:

$$T_{\text{exec}} = n_{\text{ciclos } x} T$$

- n_ciclos é o nº de ciclos de relógio, no pior caso, para concluir o cálculo
- T é o período (mínimo) do relógio

Exemplo 7: Estimativa de Desempenho

Tempo de Execução:

$$T_{\text{exec}} = n_{\text{ciclos}} \times T$$

- n_ciclos é o nº de ciclos de relógio, no pior caso, para concluir o cálculo
- T é o período (mínimo) do relógio

Se n = 8 bits:

- Maior inteiro sem sinal: 255 (⇒11111111)
- Pior caso A=255, B≠0
- Sequência de execução: S1, S2, 8x[S3,S4,S5], S3, S6
- → 28 ciclos de relógia (BO Mulseq: 768 ciclos, BO Mulseq2: 513 ciclos)

Para não "pular" a execução de S3 é preciso que todos os bis de A seja "1".

Exemplo 7: Estimativa de Desempenho

Tempo de Execução:

$$T_{\text{exec}} = n_{\text{ciclos}} \times T$$

- n_ciclos é o nº de ciclos de relógio, no pior caso, para concluir o cálculo
- T é o período (mínimo) do relógio

Se n = 8 bits:

- Maior inteiro sem sinal: 255 (⇒11111111)
- Pior caso: A=255, B≠0
- Sequência de execução: S1, S2, 8x[S3,S4,S5], S3, S6
- → 28 ciclos de relógio (BO Mulseq: 768 ciclos, BO Mulseq2: 513 ciclos)

Generalizando para *n* bits:

- Maior inteiro sem sinal: 2ⁿ-1
- Pior caso: A=2n-1, B≠0
- Sequência de execução: S1, S2, n x[S3,S4,S5], S3, S6 → 3n+4 passos (=~ 3n ciclos de relógio) (BO Mulseq: 3x 2ⁿ ciclos, BO Mulseq2: 2x 2ⁿ+1 ciclos)

Falta estimar T...

Profs. Güntzel & Meinhardt

Comparação de Custos: Mulseq x Mulseq2 x Mulseq3

Nome do Bloco Acelerador	Mulseq	Mulseq2	Mulseq3
Característica Principal	Custo mínimo	Desempenho máximo	Algoritmo otimizado
Custo do BO (nº de trans.)	134n	146n	172n + 52(1+log₂n)
n=8	1072	1168	1584
n=16	2144	2336	3012
Custo do BC			
nº de estados	6	5	7
nº de sinais de controle	5	4	4
Nº de ciclos de relógio	3x 2 ⁿ	2x 2 ⁿ +1	3n+4
n=8	768	513	28
n=16	196.608	131.073	52

- Multseq3 tem a vantagem de calcular o resultado com precisão, sem gerar overflow
- Multseq e Multseq2 desconsidera a possibilidade de overflow.
- Para a comparação de custo do BO ser justa, é necessário alterar os BOs de Multseq e Multseq2, de modo que eles consigam realizar o cálculo com precisão, assim como Multseq3 o faz

Comparação de Custos: Mulseq x Mulseq2 x Mulseq3

Nome do Bloco Acelerador	Mulseq	Mulseq2	Mulseq3
Característica Principal	Custo mínimo	Desempenho máximo	Algoritmo otimizado
Custo do BO (nº de trans.) n=8 n=16	134n 1072 2144	146n 1168 2336	172n + 52(1+log₂n) 1584 3012
Custo do BC nº de estados nº de sinais de controle	6 5	5 4	7 4
Nº de ciclos de relógio n=8 n=16	3x 2 ⁿ 768 196.608	2x 2 ⁿ +1 513 131.073	3n+4 28 52

Conclusão principal:

Em geral, alterações no algoritmo tem impacto maior no custo e no desempenho do que alterações na arquitetura do bloco operativo.

Comparação de Custos: Mulseq x Mulseq2 x Mulseq3

Tarefas de Casa:

- Usando as características de atraso propostas na aula 3T (tabela de atrasos), estimar o período do relógio e o tempo de execução (TE) de cada uma das 3 versões de Mulseq.
- 2) Faça o Exercício 6 da 2ª Lista de Exercícios*
- 3) Faça o Exercício 7 da 2ª Lista de Exercícios*

^{*} Disponível no topo da página Moodle da disciplina.