

KT AIVLE School

1일차 정리

전체 Process(CRISP-DM)

모델링을 위해 필요한 것 두가지 - ② 알고리즘

✓ 알고리즘 한판 정리

	선형회귀	로지스틱회귀	KNN	SVM	Decision Tree	Random Forest	Gradient Boost (GBM, XGB, LGBM)
개념	✔오차를 최소화 하는 직선, 평면	✓오차를 최소화 하는 직선, 평면 ✓직선을 로지스틱 함수로 변환 (0~1 사이 값으로)	✔예측할 데이터와 train set과의 거리 계산 ✔가까운 [k개 이웃의 y] 의 평균으로 예측	✓마진을 최대화 하는 초 평면 찾기 ✓데이터 커널 변환	 ✓정보전달량 = 부모 불순도 - 자식 불순도 ✓정보 전달량이 가장 큰 변수를 기준으로 split 	✔여러 개의 트리 ✔각각 예측 값의 평균 ✔행과 열에 대한 랜덤 : 조금씩 다른 트리들 생성	✔여러 개의 트리 ✔트리를 더해서 하나의 모델로 생성 ✔더해지는 트리는 오차를 줄이는 모델
전제 조건	✓ NaN조치 ✓ 가변수화 ✓ x들 간 독립	✔NaN조치 ✔가변수화 ✔x들 간 독립	✓ NaN조치 ✓ 가변수화 ✓ 스케일링	✔NaN조치 ✔가변수화 ✔스케일링	✓ NaN조치 ✓ 가변수화	✔NaN조치 ✔가변수화	✓NaN조치 ✓가변수화
성능	✓변수 선택 중요 ✓x가 많을 수록 복잡	✓변수 선택 중요 ✓x가 많을 수록 복잡	✔주요 hyper-parameter - n_neighbors : k 작을수록 복잡 - metric : 거리계산법	✔주요 hyper-parameter - C : 클수록 복잡 - gamma : 클수록 복잡	√주요 hp - max_depth : 클수록 복잡 - min_samples_leaf 작을수록 복잡	✓주요 hp 기본값으로도 충분! - n_estimators - max_features ✓기본값으로 생성된 모 델 ==> 과적합 회피	✓주요 hp - n_estimators - learning_rate ✓ XGB, LGBM : 과적합 회피를 위한 규제

회귀모델 평가

딥러닝 개념 - 학습 절차

✓ model.fit(x_train, y_train) 하는 순간...

단계①: 가중치에 (초기)값을 할당한다.

■ 초기값은 랜덤으로 지정

단계② : (예측) 결과를 뽑는다.

단계③ : 오차를 계산한다.

단계(4): 오차를 줄이는 방향으로 가중치를 조정

• Optimizer : GD, Adam...

단계(5): 다시 단계(1)로 올라가 반복한다.

■ max iteration에 도달.(오차의 변동이 (거의) 없으면 끝.)

■ 가중치(weight)의 다른 용어 **파라미터(parameter)**

medv	Istat	\widehat{y}
20	10	13
10	11	14
8	15	18

$$mse = \frac{\sum (y - \hat{y})^2}{n} = \frac{7^2 + 6^2 + 8^2}{3}$$

$$w_1: 1 \to 0.8$$

$$w_0^-: 3 \to 3.3$$

$$medv = w_1 \cdot lstat + w_0$$

forward propagation

back propagation

딥러닝 개념 - 학습 절차

✓ 30번 조정하며 최적의 Weight를 찾아가는 과정

모델의 오차가 줄어드는 과정

딥러닝 구조

 $medv = w_1 \cdot lstat + w_2 \cdot ptratio + w_3 \cdot crim + w_0$

딥러닝 코드 - Dense

- ✓ input_shape = (,)
 - **분석단위**에 대한 shape
 - 1차원 : (feature 수,)
 - 2차원 : (rows, columns)
- ✓ output
 - 예측 결과가 1개 변수(y가 1개 변수)

딥러닝 코드 - Compile

✓ 컴파일(Compile)

선언된 모델에 대해 몇 가지 설정을
 한 후, 컴퓨터가 이해할 수 있는 형태로
 변환하는 작업

Python Code

✓ loss function(오차함수)

- 오차 계산을 무엇으로 할지 결정
- mse: mean squared error, 회귀모델은 보통 mse로 오차 계산

✓ optimizer

- 오차를 최소화 하도록 가중치를 조절하는 역할
- optimizer = 'adam' : learning_rate 기본값 = 0.001
- optimizer = Adam(lr = 0.1) : 옵션 값 조정 가능
 - Ir과 learning_rate은 같지만, learning_rate 사용을 권장

딥러닝 코드 - 학습곡선

✓ .history

- 학습을 수행하는 과정 중에
- 가중치가 업데이트 되면서
- 그때그때마다의 성능을 측정하여 기록
- 학습 시 계산된 오차 기록
- 그것을 저장한 후 차트를 그리면...

Python Code

Epoch	1/20					
	[]	- 1s	31ms/step - loss	571.5110	- val_loss	577.0120
Epoch	2/20				_	
11/11	[]	- Os	8ms/step - loss:	489.2647 -	val_loss:	499.1079
Epoch	3/20					
11/11	[]	- Os	11ms/step - loss	418.2319	- val_loss	432.6833
Epoch	4/20					
11/11	[]	- Os	11ms/step - loss	: 359.0570	- val_loss	377.7811
Epoch						
	[]	- Os	7ms/step - loss:	309.7421 -	val_loss:	332.4446
Epoch						
	[]	- Os	7ms/step - loss:	270.8658 -	val_loss:	296.9759
Epoch						
	[]	- Os	6ms/step - loss:	240.5217 -	val_loss:	270.1676
Epoch						
	[]	- Os	12ms/step - loss	218.4201	- val_loss	: 249.3737
Epoch						
	[]	- Os	7ms/step - loss:	200.8222 -	val_loss:	233.2946
Epoch		_	40 /	407.0407		040 4540
	[]	- Us	IUms/step - loss	187.6137	- val_loss	219.1513
Epoch		0-	7	175 6700		200 0100
Epoch		- 08	/ms/step = ross.	175.6799 -	val_loss.	200.9100
	[======]	- 0-	Emoloton - Loos	167 5604 -	ual laco'	200 2505
Epoch		- 05	JIII2/216b - 1022	107.3094 -	Val_1055.	200.2000
	[]	- Ne	7me/stan = loss:	160 9632 -	ual loce:	103 0237
Epoch		03	1 m 3/ 3 CCP 1033	100.0002	va1_1033.	130.0201
	[]	- As	Ams/sten − Loss:	154.9114 -	val loss:	186, 9379
Epoch			,			
11/11	[]	- Os	9ms/step - loss:	149.6200 -	val_loss:	181.1366
Epoch	16/20					
11/11	[]	- Os	6ms/step - loss:	145.2706 -	val_loss:	176.1777
Epoch						
11/11	[]	- Os	7ms/step - loss:	141.4094 -	val_loss:	172.2429
Epoch						
	[]	- Os	8ms/step - loss:	138.0926 -	val_loss:	168.4736
Epoch						
	[]	- Os	7ms/step - loss:	135.0007 -	val_loss:	164.8660
Epoch						
11/11	[]	- Os	13ms/step - loss	: 131.7069	- val_loss	: 161.3870

딥러닝 코드 - 학습곡선

✓ 바람직한 곡선의 모습

- Epoch가 증가하면서 Loss가 큰 폭으로 축소
- 점차 Loss 감소 폭이 줄어들면서 완만해짐.

- Loss가 줄어들기는 하나, 들쑥날쑥
- → Learning_rate을 줄여 봅시다.

- Val_loss가 줄어들다가 다시 상승(과적합)
- → Epochs와 learning_rate을 조절해 봅시다.

딥러닝 구조 - Hidden Layer

✓ layer 여러 개 : 리스트[]로 입력

√ hidden layer

- input_shape 는 첫번째 layer만 필요
- activation
 - 히든 레이어는 활성함수를 필요로 합니다.
 - 활성함수는 보통 'relu'를 사용

✓ output layer

■ 예측 결과가 1개

활성화 함수 Activation Function

✓ 그래서 활성화 함수는...

- Hidden Layer에서는 : 선형함수를 비선형 함수로 변환
- Output Layer에서는 : 결과값을 다른 값으로 변환해 주는 역할
 - 주로 분류Classification 모델에서 필요

Maxout $max(u)^T m + b = u$

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

요약:회귀모델링

✓ 딥러닝 전처리

■ NaN 조치, 가변수화, 스케일링

✓ Layer

- 첫번째 Layer는 input_shape를 받는다.(분석단위의 shape)
 - 2차원 데이터셋의 분석단위 1차원 → shape는 (feature수,)
- Output layer의 node 수:1
- Activation Function
 - Hidden layer에 필요 :
 - 비선형 모델로 만들려고 → hidden layer를 여럿 쌓아서 성능을 높이려고.
 - 회귀 모델링에서 Output Layer에는 활성화 함수 필요하지 않음!

구분	Hidden Layer	Output	Layer	Compile	
丁 世	Activation	Activation	Node수	optimizer	loss
Regression	relu	X	1	adam	mse

KT AIVLE School

2일차 정리

Hidden Layer에서 무슨 일이 일어나는가?

✓ 처음으로 돌아와서...Hidden Layer에서는 어떤 일이 일어났나요?

- 기존 데이터를 받아들여,
- (우리는 정확히 알기 어렵지만) 뭔가 새로운 특징(New Feature)을 만들어 냈습니다.
- 그 특징은 분명히 예측된 값과 실제 값 사이의 오차를 **최소화** 해주는
- 유익한 특징일 것입니다. (여기서-우리는 믿음이-필요합니다.^^)
- Hidden Layer에서는 기존 데이터가 **새롭게 표현(Representation)** 되였습니다. **Feature Engineering**이 진행된 것입니다!

Feature Representation

✓ Deep Learning → Representation Learning

딥러닝 구조 - 이진분류

- ✓ Node의 결과를 변환해주는 함수가 필요
 - 그것을 **활성 함수**Activation Function 라고 합니다.

딥러닝 구조 – 활성 함수Activation Function

✓ node의 결과를 변환시켜 주는 역할

Layer	Activation Function		기능		
Hidden Layer	ReLU		좀 더 깊이 있는 학습(Deep Learning)을 시키려고. (Hidden Layer를 여러 층 쌓으려고) (선형 모델을 비선형 모델로 바꾸려고)		
	회귀	Х	X		
Output Layer	이진분류	sigmoid	결과를 0, 1로 변환하기 위해		
20,70.	다중분류	softmax	각 범주에 대한 결과를 범주별 확률 값으로 변환		

딥러닝 구조 - Output Layer

√ Softmax

■ 각 Class 별(Output Node)로 예측한 값을, 하나의 확률 값으로 변환.

요약: 회귀 vs 이진분류 vs 다중분류

		Regression	Two-Class	Multi-Class			
전	х	가변수화, 스케일링					
처 리	У			정수 인코딩 원핫 인코딩			
	은닉층	activation = 'relu'					
모 델	출력층	activation : 없음 Node 수 : 1	activation = 'sigmoid' node 수 : 1	activation = 'softmax' node 수 : y의 class 수			
리	컴파일 (loss)	mse	binary_crossentropy	sparse_categorical_crossentropy categorical_crossentropy			
검 증	예측결과 처리		np.where(pred>.5, 1, 0)	np.argmax(pred, axis = 1) np.argmax(y_val, axis = 1)			

[참조]가중치 업데이트

- ✓ Gradient : 기울기(벡터)
- ✓ Gradient Decent(경사 하강법, optimizer의 기본)
 - *w*의 초기값 지정 : *w*₀
 - 초기값에서의 기울기(방향) 확인 : $\frac{df(w)}{dw}$, $w = w_0$
 - 기울기가 이면 *x* 는 오른쪽(+방향)
 - 기울기가 + 이면 *x* 는 왼쪽(– 방향)
 - 조금 **조정** : $\eta \times \frac{df(w)}{dw}$
 - η: eta, 조정하는 비율, Learning Rate

$$\mathbf{w}_{new} = \mathbf{w}_0 - \eta \times \frac{\partial f(\mathbf{w})}{\partial \mathbf{w}}$$

[참조] Vanishing Gradient(기울기 소실)

✓ 기울기 소실

- 네트워크의 깊은 부분으로 갈수록 기울기가 점점 작아져서, 가중치가 거의 또는 전혀 업데이트되지 않게 되는 현상
- 초기 activation = 'sigmoid' 를 사용 → 특히 기울기 소실 문제가 심각

[참조] Vanishing Gradient(기울기 소실)

✓기울기 소실 문제를 최소화 하기 위한 노력

- 활성화 함수 조정
 - ReLU(Rectified Linear Unit)
 - 음수 입력 0 출력, 양수 입력 그대로 출력 → 양의 기울기 유지하여 기울기 소실 문제를 완화
 - ReLU의 변형된 활성화 함수
 - Leaky ReLU, PReLU, ELU → 음수 입력에 대해서도 매우 작은 기울기를 허용
- 그 외 방법들
 - 가중치 초기화 기법
 - 배치 정규화(Batch Normalization)
 - Residual Connections
 - Gradient Clipping

[참조]Local Minima problem

[참조]Local Minima problem → Optimizer

[참조] 모델의 성능 최적화

✓모델링의 목표

- 완벽한적절한 예측력을 얻기 위해
- 적절한 복잡도의 모델을 생성

✓모델의 복잡도

- 학습데이터 안에 포함된 패턴을 모델에 반영한 정도
- 대체로 하이퍼 파라미터 조정에 따라 복잡도가 달라짐

✓하이퍼 파라미터(hyper-parameter)

■ 우리가 조정해 줘야 할 대상

KNN	DT	XGB	DL
n_neighbors metric	max_depth min_samples_leaf	n_estimators max_depth learning_rate	Hidden Layer 수, node 수 learning_rate, epochs

[참조] 모델의 성능 최적화

✓ 하이퍼 파라미터 튜닝

- 튜닝 기본 방법 : 다양한 값들도 시도
 - Random Search : 지정한 범위 내에서 무작위로 시도
 - Grid Search : 지정한 범위 내에서, 모든 경우의 수 만큼 시도
- 최적의 모델 선정 → 검증 성능으로 평가
- 검증 성능을 기반으로 최적의 모델을 선정하면, 과적합을 피할 수 있음.

KT AIVLE School

3일차 정리

요약:성능관리

✓ 딥러닝 모델 성능 높이기

- 데이터
 - 입력 데이터 정제, 적절한 전처리
 - 데이터 늘리기:
 - 열(적절한 feature 추가) → 성능 향상(Bias 줄이기)
 - 행(데이터 건수 늘리기) → 성능 편차 줄이기(Variance 줄이기)

■ 모델 구조

- 은닉층, 노드 수 늘리기 : 성능이 증가할 때 까지
- 반복문 / keras-tuner

■ 학습

- Epochs: 10~50 에서 시작
 - Model check point / early stopping 으로 최적 모델 저장 가능
- learning_rate : 0.1 ~ 0.001 사이에서 시작

요약:성능관리

✓ 과적합 문제

- 모델링 목적 : **모집단 전체**에서 두루 잘 맞추는 (적당한) 모델 만들기
- 과적합 : **학습 데이터**에서만 높은 성능, 다른 데이터에서는 낮은 성능

✓ 과적합 문제 해결

- 데이터 건수 늘리기
- 모델 복잡도 조절하기
 - 반복 학습 횟수(epochs) 적절히 → early stopping
 - 너무 많은 가중치 줄이기 → 가중치 규제(Regularization)

✓모델 저장하기

- 최종 모델 저장 : model.save()
- 체크포인트에서 모델 저장 : ModelCheckpoint()
 - 성능이 개선되면 저장하기 가능.

Function API 코드 연습

Sequential

• Sequential 함수 안에 리스트로 레이어 입력

Functional

- ① Input 함수
- ② 레이어: 앞 레이어 연결 지정
- ③ Model 함수로 시작과 끝 연결해서 선언

```
clear_session()

il = Input(shape=(nfeatures, ))
hl1 = Dense(18, activation='relu')(il)
hl2 = Dense(4, activation='relu')(hl1)
ol = Dense(1)(hl2)

model = Model(inputs = il, outputs = ol)
model.summary()
```


다중 입력 예제

✓ 카시트 판매 데이터를 두가지 입력으로 구분

- 입력1 판매 관련 정보 : Advertising, Price, ShelveLoc, US, Urban, CompPrice
- 입력2 외부 환경 정보 : Income, Population, Age, Education


```
# 모델 구성
input_1 = Input(shape=(nfeatures1,), name='input_1')
input_2 = Input(shape=(nfeatures2,), name='input_2')

# 입력을 위한 레이어
hl1_1 = Dense(10, activation='relu')(input_1)
hl1_2 = Dense(20, activation='relu')(input_2)

# 두 히든레이어 옆으로 합치기(= pd.concat)
cbl = concatenate([hl1_1, hl1_2])

# 추가레이어
hl2 = Dense(8, activation='relu')(cbl)
output = Dense(1)(hl2)

# 모델 선언
model = Model(inputs = [input_1, input_2], outputs = output)
```