Is Behavior Cloning All You Need?

Revisiting the Role of Horizon and Interaction in Imitation Learning

Dylan Foster

Microsoft Research

Based on work with Adam Block and Dipendra Misra

arXiv: 2407.15007

Imitation learning

Given: Expert demonstrations or access to demonstrator.

Goal: Learn policy to imitate expert behavior.

Imitation learning

Autonomous vehicles

Language modeling

Benefits of imitation learning:

- Easier to demonstrate desired behavior versus design reward function to elicit.
- More sample-efficient and stable than RL.

Imitation learning

Autonomous vehicles

Language modeling

Benefits of imitation learning:

- Easier to demonstrate desired behavior versus design reward function to elicit.
- More sample-efficient and stable than RL.

This talk: Revisiting theoretical foundations of imitation learning.

Two frameworks for imitation learning

Offline imitation learning: Only have logged trajectories from expert.

Online/interactive imitation learning: Can interactively query expert.

Setup:

• Finite-horizon MDP $M = (\mathcal{X}, \mathcal{A}, H, P, r)$.

Setup:

- Finite-horizon MDP $M = (\mathcal{X}, \mathcal{A}, H, P, r)$.
- Expert policy $\pi^* = (\pi_h^*)_{h=1}^H$, where $\pi_h^* : \mathcal{X} \to \Delta(\mathcal{A})$. (potentially stochastic)
- Have dataset $\mathcal{D} = \left\{ (x_1^i, a_1^i, \dots, x_H^i, a_H^i) \right\}_{i=1}^n$ of n trajectories generated from π^{\star} .

Setup:

- Finite-horizon MDP $M = (\mathcal{X}, \mathcal{A}, H, P, r)$.
- Expert policy $\pi^* = (\pi_h^*)_{h=1}^H$, where $\pi_h^* : \mathcal{X} \to \Delta(\mathcal{A})$. (potentially stochastic)
- Have dataset $\mathcal{D} = \{(x_1^i, a_1^i, \dots, x_H^i, a_H^i)\}_{i=1}^n$ of n trajectories generated from π^* .
- **Goal**: Learn policy $\widehat{\pi}$ such that

$$J(\pi^{\star}) - J(\widehat{\pi}) \leq \text{small},$$

where
$$J(\pi) = \mathbb{E}^{\pi} \left[\sum_{h=1}^{H} r_h(x_h, a_h) \right]$$
.

Setup:

- Finite-horizon MDP $M = (\mathcal{X}, \mathcal{A}, H, P, r)$.
- Expert policy $\pi^* = (\pi_h^*)_{h=1}^H$, where $\pi_h^* : \mathcal{X} \to \Delta(\mathcal{A})$. (potentially stochastic)
- Have dataset $\mathcal{D} = \{(x_1^i, a_1^i, \dots, x_H^i, a_H^i)\}_{i=1}^n$ of n trajectories generated from π^* .
- **Goal**: Learn policy $\widehat{\pi}$ such that

$$J(\pi^{\star}) - J(\widehat{\pi}) \leq \text{small},$$

where
$$J(\pi) = \mathbb{E}^{\pi} \left[\sum_{h=1}^{H} r_h(x_h, a_h) \right]$$
.

Need to imitate expert's behavior based on demonstrations alone.

(can't directly interact with M and π^* , no reward-based feedback).

Behavior cloning: [Pomerleau '89, Ross & Bagnell '10]

• Given dataset $\mathcal{D} = \left\{ (x_1^i, a_1^i, \dots, x_H^i, a_H^i) \right\}_{i=1}^n$, solve

$$\widehat{\pi} = \underset{\pi \in \Pi}{\operatorname{arg\,min}} \sum_{i=1}^{n} \sum_{h=1}^{H} \mathbb{I} \left\{ \pi_h(x_h^i) \neq a_h^i \right\}$$

[Ross & Bagnell '10]

(can use other losses, e.g., square or log)

Behavior cloning: [Pomerleau '89, Ross & Bagnell '10]

• Given dataset $\mathcal{D} = \left\{ (x_1^i, a_1^i, \dots, x_H^i, a_H^i) \right\}_{i=1}^n$, solve

$$\widehat{\pi} = \underset{\pi \in \Pi}{\operatorname{arg\,min}} \sum_{i=1}^{n} \sum_{h=1}^{H} \mathbb{I} \{ \pi_h(x_h^i) \neq a_h^i \}$$

[Ross & Bagnell '10]

(can use other losses, e.g., square or log)

✓ Appealing simplicity, essentially a "reduction" to supervised learning.

Behavior cloning: [Pomerleau '89, Ross & Bagnell '10]

• Given dataset $\mathcal{D} = \left\{(x_1^i, a_1^i, \dots, x_H^i, a_H^i)\right\}_{i=1}^n$, solve

$$\widehat{\pi} = \underset{\pi \in \Pi}{\operatorname{arg\,min}} \sum_{i=1}^{n} \sum_{h=1}^{H} \mathbb{I} \left\{ \pi_h(x_h^i) \neq a_h^i \right\}$$

[Ross & Bagnell '10]

(can use other losses, e.g., square or log)

- ✓ Appealing simplicity, essentially a "reduction" to supervised learning.
- Seemingly ignores problem of distribution shift.
 - Deploying $\widehat{\pi}$ creates feedback loop; different distribution at train vs. test time.
 - Supervised learning errors compound ("error amplification"); leads to instability.

Behavior cloning: [Pomerleau '89, Ross & Bagnell '10]

• Given dataset $\mathcal{D} = \left\{ (x_1^i, a_1^i, \dots, x_H^i, a_H^i) \right\}_{i=1}^n$, solve

$$\widehat{\pi} = \underset{\pi \in \Pi}{\operatorname{arg\,min}} \sum_{i=1}^{n} \sum_{h=1}^{H} \mathbb{I} \{ \pi_h(x_h^i) \neq a_h^i \}$$

[Ross & Bagnell '10]

(can use other losses, e.g., square or log)

- ✓ Appealing simplicity, essentially a "reduction" to supervised learning.
- X Seemingly ignores problem of distribution shift.
 - Deploying $\widehat{\pi}$ creates feedback loop; different distribution at train vs. test time.
 - Supervised learning errors compound ("error amplification"); leads to instability.

In theory: Need quadratic $\Omega(H^2)$ trajectories to learn a good policy [RB '10]. (Assuming $r_h \in [0,1]$)

Setup:

- Can directly interact with MDP M and expert π^* for n episodes. (don't observe rewards, just states and actions)
- **Goal**: Learn policy $\widehat{\pi}$ such that $J(\pi^*) J(\widehat{\pi}) \leq \text{small}$.

Setup:

- Can directly interact with MDP M and expert π^* for n episodes. (don't observe rewards, just states and actions)
- **Goal**: Learn policy $\widehat{\pi}$ such that $J(\pi^*) J(\widehat{\pi}) \leq \text{small}$.

Online IL algorithms:

- Dagger [Ross, Gordon, Bagnell '11], Aggrevate [Ross & Bagnell '14], etc.
- Roll in with $\widehat{\pi}$, ask expert π^* for feedback, update, ...
- Learn to correct mistakes in $\widehat{\pi}$ on-policy, avoiding distribution shift.

In theory: Can achieve linear O(H) sample comp. for "recoverable" MDPs.

Our question

Is online IL truly more sample-efficient than offline IL?

Or can existing algorithms and analyses be improved?

Our question

Is online IL truly more sample-efficient than offline IL?

Or can existing algorithms and analyses be improved?

Focus on horizon.

Why I care about this problem

Connection to autoregressive language modeling

Can use other losses for behavior cloning, e.g. log loss:

$$\widehat{\pi} = \underset{\pi \in \Pi}{\operatorname{arg\,min}} \sum_{i=1}^{n} \sum_{h=1}^{H} -\log(\pi_h(a_h^i \mid x_h^i)).$$

- Next-token prediction (pretraining/SFT) for autoregressive language models (LLMs) is a special case where $x_h = a_1, \ldots, a_{h-1}$ ("token-level MDP").
- Similar phenomena (error amplification, instability, ...) in both domains
 [Holtzmann et al. '19, Braverman et al. '20, Block-F-Krishnamurthy-Simchowitz-Zhang '24].

Why I care about this problem

Connection to autoregressive language modeling

Can use other losses for behavior cloning, e.g. log loss:

$$\widehat{\pi} = \underset{\pi \in \Pi}{\operatorname{arg\,min}} \sum_{i=1}^{n} \sum_{h=1}^{H} -\log(\pi_h(a_h^i \mid x_h^i)).$$

- Next-token prediction (pretraining/SFT) for autoregressive language models (LLMs) is a special case where $x_h = a_1, \ldots, a_{h-1}$ ("token-level MDP").
- Similar phenomena (error amplification, instability, ...) in both domains
 [Holtzmann et al. '19, Braverman et al. '20, Block-F-Krishnamurthy-Simchowitz-Zhang '24].

IL + RL fine-tuning as a new paradigm for decision making?

- Embodied decision making (self-driving, robotics, ...)
- Symbolic decision making (LLMs, Al agents, game playing, ...)

Outline

- 1. Revisit analysis of behavior cloning (focusing on horizon)
- 2. Behavior cloning is better than you might think
- 3. Discussion and implications

Outline

- 1. Revisit analysis of behavior cloning (focusing on horizon)
- 2. Behavior cloning is better than you might think
- 3. Discussion and implications

Behavior cloning: [Pomerleau '89, Ross & Bagnell '10]

• Given dataset $\mathcal{D} = \left\{(x_1^i, a_1^i, \dots, x_H^i, a_H^i)\right\}_{i=1}^n$, solve

$$\widehat{\pi} = \operatorname*{arg\,min}_{\pi \in \Pi} \widehat{L}_{\mathsf{bc}}(\pi) \coloneqq \frac{1}{n} \sum_{i=1}^{n} \frac{1}{H} \sum_{h=1}^{H} \mathbb{I} \left\{ \pi_{h}(x_{h}^{i}) \neq a_{h}^{i} \right\}$$

Behavior cloning: [Pomerleau '89, Ross & Bagnell '10]

• Given dataset $\mathcal{D} = \left\{ (x_1^i, a_1^i, \dots, x_H^i, a_H^i) \right\}_{i=1}^n$, solve

$$\widehat{\pi} = \operatorname*{arg\,min}_{\pi \in \Pi} \widehat{L}_{\mathsf{bc}}(\pi) \coloneqq \frac{1}{n} \sum_{i=1}^{n} \frac{1}{H} \sum_{h=1}^{H} \mathbb{I} \left\{ \pi_{h}(x_{h}^{i}) \neq a_{h}^{i} \right\}$$

Assumptions for analysis:

• Expert π^* is deterministic.

Behavior cloning: [Pomerleau '89, Ross & Bagnell '10]

• Given dataset $\mathcal{D} = \left\{(x_1^i, a_1^i, \dots, x_H^i, a_H^i)\right\}_{i=1}^n$, solve

$$\widehat{\pi} = \operatorname*{arg\,min}_{\pi \in \Pi} \widehat{L}_{bc}(\pi) \coloneqq \frac{1}{n} \sum_{i=1}^{n} \frac{1}{H} \sum_{h=1}^{H} \mathbb{I} \left\{ \pi_h(x_h^i) \neq a_h^i \right\}$$

Assumptions for analysis:

- Expert π^* is deterministic.
- Realizability: $\pi^* \in \Pi$.

Behavior cloning: [Pomerleau '89, Ross & Bagnell '10]

• Given dataset $\mathcal{D} = \left\{ (x_1^i, a_1^i, \dots, x_H^i, a_H^i) \right\}_{i=1}^n$, solve

$$\widehat{\pi} = \operatorname*{arg\,min}_{\pi \in \Pi} \widehat{L}_{bc}(\pi) \coloneqq \frac{1}{n} \sum_{i=1}^{n} \frac{1}{H} \sum_{h=1}^{H} \mathbb{I} \left\{ \pi_h(x_h^i) \neq a_h^i \right\}$$

Assumptions for analysis:

- Expert π^* is deterministic.
- Realizability: $\pi^* \in \Pi$.
- Rewards have $\sum_{h=1}^{H} r_h \in [0, R]$ and $r_h \in [0, 1]$.
 - Sparse rewards (e.g., single reward at goal): R = O(1).
 - Dense rewards $(r_h \in [0,1])$ for all h: R = H.

[Jiang-Agarwal '18, Wang et al. '20]

Assumptions for analysis:

- Expert π^* is deterministic.
- Realizability: $\pi^* \in \Pi$.
- Rewards have $\sum_{h=1}^{H} r_h \in [0, R]$.

Assumptions for analysis:

- Expert π^* is deterministic.
- Realizability: $\pi^* \in \Pi$.
- Rewards have $\sum_{h=1}^{H} r_h \in [0, R]$.

Standard analysis of BC: Define $L_{bc}(\pi) = \frac{1}{H} \sum_{h=1}^{H} \mathbb{P}^{\pi^*} \left[\pi(x_h) \neq \pi^*(x_h) \right]$.

Assumptions for analysis:

- Expert π^* is deterministic.
- Realizability: $\pi^* \in \Pi$.
- Rewards have $\sum_{h=1}^{H} r_h \in [0, R]$.

Standard analysis of BC: Define $L_{bc}(\pi) = \frac{1}{H} \sum_{h=1}^{H} \mathbb{P}^{\pi^*} \left[\pi(x_h) \neq \pi^*(x_h) \right]$.

1. By uniform convergence, $L_{bc}(\widehat{\pi}) \lesssim \frac{\log |\Pi|}{n}$ whp. (supervised learning guarantee)

Assumptions for analysis:

- Expert π^* is deterministic.
- Realizability: $\pi^* \in \Pi$.
- Rewards have $\sum_{h=1}^{H} r_h \in [0, R]$.

Standard analysis of BC: Define $L_{bc}(\pi) = \frac{1}{H} \sum_{h=1}^{H} \mathbb{P}^{\pi^*} \left[\pi(x_h) \neq \pi^*(x_h) \right]$.

- 1. By uniform convergence, $L_{bc}(\widehat{\pi}) \lesssim \frac{\log |\Pi|}{n}$ whp. (supervised learning guarantee)
- 2. Performance difference lemma: $J(\pi^*) J(\widehat{\pi}) \lesssim RH \cdot L_{bc}(\widehat{\pi})$.

Assumptions for analysis:

- Expert π^* is deterministic.
- Realizability: $\pi^* \in \Pi$.
- Rewards have $\sum_{h=1}^{H} r_h \in [0, R]$.

Standard analysis of BC: Define $L_{bc}(\pi) = \frac{1}{H} \sum_{h=1}^{H} \mathbb{P}^{\pi^*} \left[\pi(x_h) \neq \pi^*(x_h) \right]$.

- 1. By uniform convergence, $L_{bc}(\widehat{\pi}) \lesssim \frac{\log |\Pi|}{n}$ whp. (supervised learning guarantee)
- 2. Performance difference lemma: $J(\pi^*) J(\widehat{\pi}) \lesssim RH \cdot L_{bc}(\widehat{\pi})$.
- 3. Combining gives $J(\pi^*) J(\widehat{\pi}) \lesssim RH^{\frac{\log|\Pi|}{n}}$.

[Ross & Bagnell '10]

igwedge Under dense rewards (R=H), need $\Omega(H^2)$ trajectories for constant accuracy.

Standard analysis of BC: Define $L_{bc}(\pi) = \frac{1}{H} \sum_{h=1}^{H} \mathbb{P}^{\pi^*} \left[\pi(x_h) \neq \pi^*(x_h) \right]$.

- 1. By uniform convergence, $L_{bc}(\widehat{\pi}) \lesssim \frac{\log |\Pi|}{n}$ whp. (supervised learning guarantee)
- 2. Performance difference lemma: $J(\pi^*) J(\widehat{\pi}) \lesssim RH \cdot L_{bc}(\widehat{\pi})$.
- 3. Combining gives $J(\pi^*) J(\widehat{\pi}) \lesssim RH^{\frac{\log|\Pi|}{n}}$.

Standard analysis of BC: Define $L_{bc}(\pi) = \frac{1}{H} \sum_{h=1}^{H} \mathbb{P}^{\pi^*} \left[\pi(x_h) \neq \pi^*(x_h) \right]$.

- 1. By uniform convergence, $L_{bc}(\widehat{\pi}) \lesssim \frac{\log |\Pi|}{n}$ whp. (supervised learning guarantee)
- 2. Performance difference lemma: $J(\pi^*) J(\widehat{\pi}) \lesssim RH \cdot L_{bc}(\widehat{\pi})$.
- 3. Combining gives $J(\pi^*) J(\widehat{\pi}) \lesssim RH^{\frac{\log|\Pi|}{n}}$.

Discussion:

- Step (1) is tight even when $|\Pi|=2$ (dependent nature of trajectories).
 - Even though \mathcal{D} contains $n \cdot H$ examples $(x_h, \pi^*(x_h))$, get 1/n rate instead of 1/(nH) due to dependence.

Standard analysis of BC: Define $L_{bc}(\pi) = \frac{1}{H} \sum_{h=1}^{H} \mathbb{P}^{\pi^*} \left[\pi(x_h) \neq \pi^*(x_h) \right]$.

- 1. By uniform convergence, $L_{bc}(\widehat{\pi}) \lesssim \frac{\log |\Pi|}{n}$ whp. (supervised learning guarantee)
- 2. Performance difference lemma: $J(\pi^*) J(\widehat{\pi}) \lesssim RH \cdot L_{bc}(\widehat{\pi})$.
- 3. Combining gives $J(\pi^*) J(\widehat{\pi}) \lesssim RH^{\frac{\log|\Pi|}{n}}$.

Discussion:

- Step (1) is tight even when $|\Pi|=2$ (dependent nature of trajectories).
 - Even though \mathcal{D} contains $n \cdot H$ examples $(x_h, \pi^*(x_h))$, get 1/n rate instead of 1/(nH) due to dependence.
- Step (2) is tight for MDPs with 3 states [Ross & Bagnell '10]
 - Distribution shift?

Standard analysis of BC: Define $L_{bc}(\pi) = \frac{1}{H} \sum_{h=1}^{H} \mathbb{P}^{\pi^*} \left[\pi(x_h) \neq \pi^*(x_h) \right]$.

- 1. By uniform convergence, $L_{bc}(\widehat{\pi}) \lesssim \frac{\log |\Pi|}{n}$ whp. (supervised learning guarantee)
- 2. Performance difference lemma: $J(\pi^*) J(\widehat{\pi}) \lesssim RH \cdot L_{bc}(\widehat{\pi})$.
- 3. Combining gives $J(\pi^*) J(\widehat{\pi}) \lesssim RH^{\frac{\log|\Pi|}{n}}$.

Discussion:

- Step (1) is tight even when $|\Pi|=2$ (dependent nature of trajectories).
 - Even though \mathcal{D} contains $n \cdot H$ examples $(x_h, \pi^*(x_h))$, get 1/n rate instead of 1/(nH) due to dependence.
- Step (2) is tight for MDPs with 3 states [Ross & Bagnell '10]
 - Distribution shift?

Out of luck?

Online imitation learning: Dagger

$$Q_h^{\pi^*}(x, a) = \mathbb{E}^{\pi^*} \left[\sum_{h'=h}^{H} r_{h'} \mid x_h = x, a_h = a \right]$$

Define recoverability constant

$$\mu_{\text{rec}} = \max_{x \in \mathcal{X}, a \in \mathcal{A}, h \in [H]} \left\{ (Q_h^{\pi^*}(x, \pi_h^*(x)) - Q_h^{\pi^*}(x, a))_+ \right\} \in [0, R].$$

• Intuition: $\mu_{\text{rec}} = O(1)$ if we can quickly recover from taking a bad action.

Ex: H independent contextual bandits problems. R = H but $\mu_{rec} = 1$.

Online imitation learning: Dagger

$$Q_h^{\pi^*}(x, a) = \mathbb{E}^{\pi^*} \left[\sum_{h'=h}^{H} r_{h'} \mid x_h = x, a_h = a \right]$$

Define recoverability constant

$$\mu_{\text{rec}} = \max_{x \in \mathcal{X}, a \in \mathcal{A}, h \in [H]} \left\{ (Q_h^{\pi^*}(x, \pi_h^*(x)) - Q_h^{\pi^*}(x, a))_+ \right\} \in [0, R].$$

• Intuition: $\mu_{rec} = O(1)$ if we can quickly recover from taking a bad action.

Ex: H independent contextual bandits problems. R = H but $\mu_{rec} = 1$.

Dagger [Ross, Gordon, & Bagnell '11] uses online expert access to achieve

$$J(\pi^{\star}) - J(\widehat{\pi}) \lesssim \mu_{\mathsf{rec}} H \cdot \frac{\log|\Pi|}{n}.$$

Other online IL methods (e.g., Aggrevate) have similar guarantees.

• Improves over BC whenever $\mu_{\rm rec} \ll R$ (recall: $\mu_{\rm rec} H$ vs. RH).

Our result

Behavior cloning is horizon-independent

(if you use the log loss)

Outline

- 1. Revisit analysis of behavior cloning (focusing on horizon)
- 2. Behavior cloning is better than you might think
- 3. Discussion and implications

Behavior cloning with logarithmic loss:

$$\widehat{\pi} = \underset{\pi \in \Pi}{\operatorname{arg\,min}} \, \widehat{L}_{\log}(\pi) \coloneqq \frac{1}{n} \sum_{i=1}^{n} \frac{1}{H} \sum_{h=1}^{H} \log \left(\frac{1}{\pi(a_h^i \mid x_h^i)} \right)$$

Behavior cloning with logarithmic loss:

$$\widehat{\pi} = \underset{\pi \in \Pi}{\operatorname{arg\,min}} \widehat{L}_{\log}(\pi) \coloneqq \frac{1}{n} \sum_{i=1}^{n} \frac{1}{H} \sum_{h=1}^{H} \log \left(\frac{1}{\pi(a_h^i \mid x_h^i)} \right)$$

Intuition:

- Suppose π^* and π are both deterministic.
- Then

$$\widehat{L}_{\log}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{H} \sum_{h=1}^{H} \log \left(\frac{1}{\pi(a_h^i \mid x_h^i)} \right) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{\infty} \{ \exists h : \pi(x_h) \neq \pi^{\star}(x_h) \}.$$

Behavior cloning with logarithmic loss:

$$\widehat{\pi} = \underset{\pi \in \Pi}{\operatorname{arg\,min}} \widehat{L}_{\log}(\pi) \coloneqq \frac{1}{n} \sum_{i=1}^{n} \frac{1}{H} \sum_{h=1}^{H} \log \left(\frac{1}{\pi(a_h^i \mid x_h^i)} \right)$$

Intuition:

- Suppose π^* and π are both deterministic.
- Then

$$\widehat{L}_{\log}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{H} \sum_{h=1}^{H} \log \left(\frac{1}{\pi(a_h^i \mid x_h^i)} \right) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{\infty} \{ \exists h : \pi(x_h) \neq \pi^{\star}(x_h) \}.$$

Penalizes deviations more aggressively than indicator loss BC, since

$$\mathbb{I}\{\exists h : \pi(x_h) \neq \pi^*(x_h)\} \geq \frac{1}{H} \sum_{h=1}^{H} \mathbb{I}\{\pi(x_h) \neq \pi^*(x_h)\}.$$

Get loss 1 if we deviate *anywhere* along trajectory (vs avg. loss along trajectory).

Behavior cloning with logarithmic loss:

$$\widehat{\pi} = \underset{\pi \in \Pi}{\operatorname{arg\,min}} \widehat{L}_{\log}(\pi) \coloneqq \frac{1}{n} \sum_{i=1}^{n} \frac{1}{H} \sum_{h=1}^{H} \log \left(\frac{1}{\pi(a_h^i \mid x_h^i)} \right)$$

Supervised learning guarantee:

• Hellinger distance: $D^2_{\text{Hel}}(P,Q) = \sum_z (\sqrt{P(z)} - \sqrt{Q(z)})^2$.

Behavior cloning with logarithmic loss:

$$\widehat{\pi} = \underset{\pi \in \Pi}{\operatorname{arg\,min}} \widehat{L}_{\log}(\pi) \coloneqq \frac{1}{n} \sum_{i=1}^{n} \frac{1}{H} \sum_{h=1}^{H} \log \left(\frac{1}{\pi(a_h^i \mid x_h^i)} \right)$$

Supervised learning guarantee:

- Hellinger distance: $D^2_{\text{Hel}}(P,Q) = \sum_z (\sqrt{P(z)} \sqrt{Q(z)})^2$.
- Define $\mathbb{P}^{\pi} = \mathbb{P}^{\pi}[(x_1, a_1), \dots, (x_H, a_H) = \cdot]$. Equivalent to MLE over set $\{\mathbb{P}^{\pi}\}_{\pi \in \Pi}$.

Behavior cloning with logarithmic loss:

$$\widehat{\pi} = \operatorname*{arg\,min}_{\pi \in \Pi} \widehat{L}_{\log}(\pi) \coloneqq \frac{1}{n} \sum_{i=1}^{n} \frac{1}{H} \sum_{h=1}^{H} \log \left(\frac{1}{\pi(a_h^i \mid x_h^i)} \right)$$

Supervised learning guarantee:

- Hellinger distance: $D^2_{\text{Hel}}(P,Q) = \sum_z (\sqrt{P(z)} \sqrt{Q(z)})^2$.
- Define $\mathbb{P}^{\pi} = \mathbb{P}^{\pi}[(x_1, a_1), \dots, (x_H, a_H) = \cdot]$. Equivalent to MLE over set $\{\mathbb{P}^{\pi}\}_{\pi \in \Pi}$.

Supervised learning guarantee (Wong & Shen '95, van de Geer '00, Zhang '06)

As long as $\pi^* \in \Pi$, with probability at least $1 - \delta$, Log-Loss BC satisfies

$$D^2_{\mathsf{Hel}}(\mathbb{P}^{\widehat{\pi}}, \mathbb{P}^{\pi^{\star}}) \leq \frac{2\log(|\Pi|\delta^{-1})}{n}.$$

Holds regardless of whether π^* is deterministic or stochastic.

Main result (deterministic case)

Theorem (Horizon-independent regret; deterministic case)

For any deterministic expert policy π^* and potentially stochastic imitator policy $\widehat{\pi}$,

$$J(\pi^{\star}) - J(\widehat{\pi}) \le 4R \cdot D^2_{\mathsf{Hel}}(\mathbb{P}^{\widehat{\pi}}, \mathbb{P}^{\pi^{\star}}).$$

No explicit dependence on horizon!

Main result (deterministic case)

Theorem (Horizon-independent regret; deterministic case)

For any deterministic expert policy π^* and potentially stochastic imitator policy $\widehat{\pi}$,

$$J(\pi^*) - J(\widehat{\pi}) \le 4R \cdot D^2_{\mathsf{Hel}}(\mathbb{P}^{\widehat{\pi}}, \mathbb{P}^{\pi^*}).$$

No explicit dependence on horizon!

Corollary (Horizon-independent regret for Log-Loss BC)

For any deterministic expert $\pi^* \in \Pi$, Log-Loss BC ensures with prob at least $1 - \delta$,

$$J(\pi^*) - J(\widehat{\pi}) \le 8R \cdot \frac{\log(|\Pi|\delta^{-1})}{n}.$$

Features:

- Tightest known guarantee for IL with general policy classes.
- Improves rate for vanilla BC $(RH \cdot \frac{\log(|\Pi|\delta^{-1})}{n})$ and Dagger $(\mu_{\text{rec}}H \cdot \frac{\log(|\Pi|\delta^{-1})}{n})$.

Interpreting the main theorem

Corollary (Horizon-independent regret for Log Loss BC)

For any deterministic expert $\pi^* \in \Pi$, Log-Loss BC ensures with prob at least $1 - \delta$,

$$J(\pi^*) - J(\widehat{\pi}) \le 8R \cdot \frac{\log(|\Pi|\delta^{-1})}{n}.$$

Special case: Stationary policies (or parameter sharing)

• Ex:
$$\pi_{\theta}(x_h) = \arg \max_{a \in \mathcal{A}} \langle \theta, \phi(x_h, a) \rangle$$

$$(\theta \in \mathbb{R}^d; d \text{ parameters})$$

Interpreting the main theorem

Corollary (Horizon-independent regret for Log Loss BC)

For any deterministic expert $\pi^* \in \Pi$, Log-Loss BC ensures with prob at least $1 - \delta$,

$$J(\pi^*) - J(\widehat{\pi}) \le 8R \cdot \frac{\log(|\Pi|\delta^{-1})}{n}.$$

Special case: Stationary policies (or parameter sharing)

- Ex: $\pi_{\theta}(x_h) = \arg\max_{a \in \mathcal{A}} \langle \theta, \phi(x_h, a) \rangle$ $(\theta \in \mathbb{R}^d; d \text{ parameters})$
- Typically have $\log |\Pi| = O(1)$.
 - All stationary policies in a tabular MDP: $\log |\Pi| = |\mathcal{X}| \log |\mathcal{A}|$.
 - Linear policies: $\log |\Pi| = \widetilde{O}(d)$.

Interpreting the main theorem

Corollary (Horizon-independent regret for Log Loss BC)

For any deterministic expert $\pi^* \in \Pi$, Log-Loss BC ensures with prob at least $1 - \delta$,

$$J(\pi^*) - J(\widehat{\pi}) \le 8R \cdot \frac{\log(|\Pi|\delta^{-1})}{n}.$$

Special case: Stationary policies (or parameter sharing)

• Ex: $\pi_{\theta}(x_h) = \arg\max_{a \in \mathcal{A}} \langle \theta, \phi(x_h, a) \rangle$

 $(\theta \in \mathbb{R}^d; d \text{ parameters})$

- Typically have $\log |\Pi| = O(1)$.
 - All stationary policies in a tabular MDP: $\log |\Pi| = |\mathcal{X}| \log |\mathcal{A}|$.
 - Linear policies: $\log |\Pi| = \widetilde{O}(d)$.
- Sparse rewards: For R = O(1), $O(\frac{1}{\varepsilon})$ trajectories suffice for ε -optimal policy.
- **Dense rewards**: For R = H, $O(\frac{H}{\varepsilon})$ trajectories suffice.

Log-Loss BC beats the curse of horizon!

(O(H)) under dense rewards)

Main result (deterministic case)

Theorem (Horizon-independent regret; deterministic case)

For any deterministic expert policy π^* and potentially stochastic imitator policy $\widehat{\pi}$,

$$J(\pi^*) - J(\widehat{\pi}) \le 4R \cdot D^2_{\mathsf{Hel}}(\mathbb{P}^{\widehat{\pi}}, \mathbb{P}^{\pi^*}).$$

No explicit dependence on horizon!

Corollary (Horizon-independent regret for Log-Loss BC)

For any deterministic expert $\pi^* \in \Pi$, Log-Loss BC ensures with prob at least $1 - \delta$,

$$J(\pi^*) - J(\widehat{\pi}) \le 8R \cdot \frac{\log(|\Pi|\delta^{-1})}{n}.$$

Remarks:

- Squared Hellinger critical; $J(\pi^*) J(\widehat{\pi}) \leq R \cdot D_{\mathsf{TV}}(\mathbb{P}^{\widehat{\pi}}, \mathbb{P}^{\pi^*})$ trivially but no fast rate.
- Benefits of log-loss in RL: [F & Krishnamurthy '21], [Wang et al. '23/24], [Ayoub et al. '24].

Define "variance" of expert policy: $\sigma_{\pi^{\star}}^2 = \sum_{h=1}^H \mathbb{E}^{\pi^{\star}} \left[(V_h^{\pi^{\star}}(x_h) - Q_h^{\pi^{\star}}(x_h, a_h))^2 \right]$

Define "variance" of expert policy:
$$\sigma_{\pi^*}^2 = \sum_{h=1}^H \mathbb{E}^{\pi^*} \left[(V_h^{\pi^*}(x_h) - Q_h^{\pi^*}(x_h, a_h))^2 \right]$$

Theorem (Horizon-independent regret; stochastic case)

For any expert policy π^* and imitator policy $\widehat{\pi}$,

$$J(\pi^\star) - J(\widehat{\pi}) \leq \sqrt{6\sigma_{\pi^\star}^2 \cdot D_{\mathsf{Hel}}^2\big(\mathbb{P}^{\widehat{\pi}}, \mathbb{P}^{\pi^\star}\big)} + \widetilde{O}\Big(R \cdot D_{\mathsf{Hel}}^2\big(\mathbb{P}^{\widehat{\pi}}, \mathbb{P}^{\pi^\star}\big)\Big).$$

Define "variance" of expert policy: $\sigma_{\pi^*}^2 = \sum_{h=1}^H \mathbb{E}^{\pi^*} \left[(V_h^{\pi^*}(x_h) - Q_h^{\pi^*}(x_h, a_h))^2 \right]$

Theorem (Horizon-independent regret; stochastic case)

For any expert policy π^* and imitator policy $\widehat{\pi}$,

$$J(\pi^\star) - J(\widehat{\pi}) \leq \sqrt{6\sigma_{\pi^\star}^2 \cdot D_{\mathsf{Hel}}^2\big(\mathbb{P}^{\widehat{\pi}}, \mathbb{P}^{\pi^\star}\big)} + \widetilde{O}\Big(R \cdot D_{\mathsf{Hel}}^2\big(\mathbb{P}^{\widehat{\pi}}, \mathbb{P}^{\pi^\star}\big)\Big).$$

Corollary (Horizon-independent regret for Log-Loss BC; stochastic case)

For any expert policy $\pi^* \in \Pi$, Log Loss BC achieves with prob at least $1 - \delta$:

$$J(\pi^*) - J(\widehat{\pi}) \lesssim \sqrt{\frac{\sigma_{\pi^*}^2 \cdot \log(|\Pi|\delta^{-1})}{n}} + R\log(n) \cdot \frac{\log(|\Pi|\delta^{-1})}{n}.$$

Define "variance" of expert policy: $\sigma_{\pi^*}^2 = \sum_{h=1}^H \mathbb{E}^{\pi^*} \left[(V_h^{\pi^*}(x_h) - Q_h^{\pi^*}(x_h, a_h))^2 \right]$

Corollary (Horizon-independent regret for Log-Loss BC; stochastic case)

For any expert policy $\pi^* \in \Pi$, Log Loss BC achieves with prob at least $1 - \delta$:

$$J(\pi^*) - J(\widehat{\pi}) \lesssim \sqrt{\frac{\sigma_{\pi^*}^2 \cdot \log(|\Pi|\delta^{-1})}{n}} + R\log(n) \cdot \frac{\log(|\Pi|\delta^{-1})}{n}.$$

Slower rate: $1/\sqrt{n}$ instead of 1/n, but recovers deterministic case ($\sigma_{\pi^*}^2 = 0$).

Still horizon-independent:

- 1. Always have $\sigma_{\pi^*}^2 \leq R^2$ (law of total variance).
- 2. \Longrightarrow For ε -optimal policy, $\frac{R^2 \log(|\Pi|\delta^{-1})}{\varepsilon^2}$ trajectories suffice.

But worse dependence on R than deterministic case (fundamental).

Theorem (Horizon-independent regret; deterministic case)

For any deterministic expert policy π^* and potentially stochastic imitator policy $\widehat{\pi}$,

$$J(\pi^{\star}) - J(\widehat{\pi}) \le 4R \cdot D^{2}_{\mathsf{Hel}}(\mathbb{P}^{\widehat{\pi}}, \mathbb{P}^{\pi^{\star}}).$$

Theorem (Horizon-independent regret; deterministic case)

For any deterministic expert policy π^* and potentially stochastic imitator policy $\widehat{\pi}$,

$$J(\pi^*) - J(\widehat{\pi}) \le 4R \cdot D^2_{\mathsf{Hel}}(\mathbb{P}^{\widehat{\pi}}, \mathbb{P}^{\pi^*}).$$

Define trajectory-level distance function between (potentially stochastic) policies π, π' :

$$\rho(\pi \parallel \pi') := \mathbb{E}^{\pi} \mathbb{E}_{a'_1 \sim \pi'(x_1), \dots, a'_H \sim \pi'(x_H)} \big[\mathbb{I} \big\{ \exists h : a_h \neq a'_h \big\} \big],$$

Theorem (Horizon-independent regret; deterministic case)

For any deterministic expert policy π^* and potentially stochastic imitator policy $\widehat{\pi}$,

$$J(\pi^{\star}) - J(\widehat{\pi}) \leq 4R \cdot D^2_{\mathsf{Hel}}(\mathbb{P}^{\widehat{\pi}}, \mathbb{P}^{\pi^{\star}}).$$

Define trajectory-level distance function between (potentially stochastic) policies π, π' :

$$\rho(\pi \parallel \pi') := \mathbb{E}^{\pi} \, \mathbb{E}_{a'_{1} \sim \pi'(x_{1}), \dots, a'_{H} \sim \pi'(x_{H})} \big[\mathbb{I} \big\{ \exists h : \, a_{h} \neq a'_{h} \big\} \big],$$

Proof:

1. For all (potentially stochastic) policies π^* and $\widehat{\pi}$,

$$J(\pi^*) - J(\widehat{\pi}) \le R \cdot \rho(\pi^* \parallel \widehat{\pi}).$$

Theorem (Horizon-independent regret; deterministic case)

For any deterministic expert policy π^* and potentially stochastic imitator policy $\widehat{\pi}$,

$$J(\pi^{\star}) - J(\widehat{\pi}) \leq 4R \cdot D^2_{\mathsf{Hel}}(\mathbb{P}^{\widehat{\pi}}, \mathbb{P}^{\pi^{\star}}).$$

Define trajectory-level distance function between (potentially stochastic) policies π, π' :

$$\rho(\pi \parallel \pi') := \mathbb{E}^{\pi} \, \mathbb{E}_{a'_{1} \sim \pi'(x_{1}), \dots, a'_{H} \sim \pi'(x_{H})} \big[\mathbb{I} \big\{ \exists h : \, a_{h} \neq a'_{h} \big\} \big],$$

Proof:

1. For all (potentially stochastic) policies π^* and $\widehat{\pi}$,

$$J(\pi^*) - J(\widehat{\pi}) \le R \cdot \rho(\pi^* \parallel \widehat{\pi}).$$

2. Whenever π^* is deterministic, Hellinger distance satisfies

$$D^2_{\mathsf{Hel}} ig(\mathbb{P}^{\widehat{\pi}}, \mathbb{P}^{\pi^{\star}} ig) \geq rac{1}{4} \cdot
ho ig(\widehat{\pi} \parallel \pi^{\star} ig).$$

Theorem (Horizon-independent regret; deterministic case)

For any deterministic expert policy π^* and potentially stochastic imitator policy $\widehat{\pi}$,

$$J(\pi^{\star}) - J(\widehat{\pi}) \leq 4R \cdot D^2_{\mathsf{Hel}}(\mathbb{P}^{\widehat{\pi}}, \mathbb{P}^{\pi^{\star}}).$$

Define trajectory-level distance function between (potentially stochastic) policies π, π' :

$$\rho(\pi \parallel \pi') := \mathbb{E}^{\pi} \, \mathbb{E}_{a'_{1} \sim \pi'(x_{1}), \dots, a'_{H} \sim \pi'(x_{H})} \big[\mathbb{I} \big\{ \exists h : \, a_{h} \neq a'_{h} \big\} \big],$$

Proof:

1. For all (potentially stochastic) policies π^* and $\widehat{\pi}$,

$$J(\pi^*) - J(\widehat{\pi}) \le R \cdot \rho(\pi^* \parallel \widehat{\pi}).$$

2. Whenever π^* is deterministic, Hellinger distance satisfies

$$D^2_{\mathsf{Hel}}ig(\mathbb{P}^{\widehat{\pi}},\mathbb{P}^{\pi^{\star}}ig) \geq rac{1}{4} \cdot
hoig(\widehat{\pi} \parallel \pi^{\star}ig).$$

3. Trajectory-level distance is symmetric: $\rho(\widehat{\pi} \parallel \pi^*) = \rho(\pi^* \parallel \widehat{\pi})$.

See also [Rajaraman et al '21] (directly minimizes $\rho(\widehat{\pi} \parallel \pi^*)$ for linear policies)

Outline

- 1. Revisit analysis of behavior cloning (focusing on horizon)
- 2. Behavior cloning is better than you might think
- 3. Discussion
 - Is this real?
 - Implications for online vs. offline IL

Outline

- 1. Revisit analysis of behavior cloning (focusing on horizon)
- 2. Behavior cloning is better than you might think
- 3. Discussion
 - Is this real?
 - Implications for online vs. offline IL

Experiments: Control

Setup:

- Multiple environments (discrete + continuous control, language)
- Train (stationary) expert π^* using RL.
- Train imitator $\widehat{\pi}$ using log-loss BC w/ same policy network architecture (randomly initialized).
- Repeat process for varying values of H (normalizing so R = O(1)).

Learning curves are constant or improving as a function of horizon H!

Experiments: Language

Dyck language task:

- Goal of "agent": complete a valid word of a given length in a Dyck language Dyck₃.
 - Sequences of open and closed parentheses in '()', '[]', and '{}'.
 - Word is valid if parentheses are closed in correct order.
- Ex: '([()]){}' is a valid word, '([)]' and '((({})' are not.
- Autoregressive task where $x_h = a_{1:h-1}$. Action a_h is next token.

Effect of horizon on performance is explained by supervised learning complexity for π^* .

Outline

- 1. Revisit analysis of behavior cloning (focusing on horizon)
- 2. Behavior cloning is better than you might think
- 3. Discussion
 - Is this real?
 - Implications for online vs. offline IL

Main result (deterministic case)

Theorem (Horizon-independent regret; deterministic case)

For any deterministic expert policy π^* and potentially stochastic imitator policy $\widehat{\pi}$,

$$J(\pi^*) - J(\widehat{\pi}) \le 4R \cdot D^2_{\mathsf{Hel}}(\mathbb{P}^{\widehat{\pi}}, \mathbb{P}^{\pi^*}).$$

No explicit dependence on horizon!

Corollary (Horizon-independent regret for Log-Loss BC)

For any deterministic expert $\pi^* \in \Pi$, Log-Loss BC ensures with prob at least $1 - \delta$,

$$J(\pi^*) - J(\widehat{\pi}) \le 8R \cdot \frac{\log(|\Pi|\delta^{-1})}{n}.$$

Features:

- Tightest known guarantee for IL with general policy classes.
- Improves rate for vanilla BC $(RH \cdot \frac{\log(|\Pi|\delta^{-1})}{n})$ and Dagger $(\mu_{\text{rec}}H \cdot \frac{\log(|\Pi|\delta^{-1})}{n})$.

Implications for online vs. offline IL

Theorem (Lower bound; deterministic expert case)

There exists Π with $|\Pi|=2$ such that for any (online or offline) imitation learning algorithm, there exists a reward function $r=\{r_h\}_{h=1}^H$ with $r_h\in[0,1]$ (so $R\leq H$) and (optimal) deterministic expert policy $\pi^*\in\Pi$ with $\mu_{\rm rec}=1$ such that

$$\mathbb{E}[J(\pi^*) - J(\widehat{\pi})] \gtrsim \frac{H}{n} = H \cdot \frac{\log|\Pi|}{n}.$$

In addition, the dynamics, rewards, and expert policies are stationary.

Implications for online vs. offline IL

Theorem (Lower bound; deterministic expert case)

There exists Π with $|\Pi|=2$ such that for any (online or offline) imitation learning algorithm, there exists a reward function $r=\{r_h\}_{h=1}^H$ with $r_h\in[0,1]$ (so $R\leq H$) and (optimal) deterministic expert policy $\pi^*\in\Pi$ with $\mu_{\rm rec}=1$ such that

$$\mathbb{E}[J(\pi^*) - J(\widehat{\pi})] \gtrsim \frac{H}{n} = H \cdot \frac{\log|\Pi|}{n}.$$

In addition, the dynamics, rewards, and expert policies are stationary.

Analogous lower bound for stochastic experts (Log-Loss BC regret is tight when $|\Pi|=2$; online access cannot improve).

Implication: Without further assumptions on Π , online imitation learning cannot improve upon offline imitation learning with Log-Loss BC.

Online IL can still help for <u>some</u> classes II [Rajaraman et al '20].

Benefits of online IL: No parameter sharing

Corollary (Horizon-independent regret for Log Loss BC)

For any deterministic expert $\pi^* \in \Pi$, Log-Loss BC ensures with prob at least $1 - \delta$,

$$J(\pi^*) - J(\widehat{\pi}) \le 8R \cdot \frac{\log(|\Pi|\delta^{-1})}{n}.$$

Special case: Non-stationary policies (or no parameter sharing)

- Ex: $\pi_{\theta}(x_h) = \arg\max_{a \in \mathcal{A}} \langle \theta_h, \phi(x_h, a) \rangle$ $(\theta \in \mathbb{R}^d; d \text{ parameters})$
- Have $\Pi = \Pi_1 \times \cdots \Pi_H$, so $\log |\Pi| = \sum_{h=1}^H \log |\Pi_h| = O(H)$.
 - All non-stationary policies in a tabular MDP: $\log |\Pi| = H|\mathcal{X}|\log |\mathcal{A}|$.
 - Linear policies: $\log |\Pi| = \widetilde{O}(Hd)$.

Benefits of online IL: No parameter sharing

Corollary (Horizon-independent regret for Log Loss BC)

For any deterministic expert $\pi^* \in \Pi$, Log-Loss BC ensures with prob at least $1 - \delta$,

$$J(\pi^*) - J(\widehat{\pi}) \le 8R \cdot \frac{\log(|\Pi|\delta^{-1})}{n}.$$

Special case: Non-stationary policies (or no parameter sharing)

- Ex: $\pi_{\theta}(x_h) = \arg\max_{a \in \mathcal{A}} \langle \theta_h, \phi(x_h, a) \rangle$ $(\theta \in \mathbb{R}^d; d \text{ parameters})$
- Have $\Pi = \Pi_1 \times \cdots \Pi_H$, so $\log |\Pi| = \sum_{h=1}^H \log |\Pi_h| = O(H)$.
 - All non-stationary policies in a tabular MDP: $\log |\Pi| = H|\mathcal{X}|\log |\mathcal{A}|$.
 - Linear policies: $\log |\Pi| = \widetilde{O}(Hd)$.
- Log Loss BC gives $J(\pi^*) J(\widehat{\pi}) \lesssim \frac{RH}{n}$ at best.
- Dagger can get $J(\pi^\star) J(\widehat{\pi}) \lesssim \frac{\mu_{\text{rec}} \cdot H}{n}$; not possible w/ offline [Rajaraman et al. '20].

Online IL still helps for non-stationary policies!

But for stationary policies, not possible to beat Log-Loss BC?

Likely still beneficial, but in a problem-dependent, policy class-dependent sense.

Likely still beneficial, but in a problem-dependent, policy class-dependent sense.

Some examples (see paper):

- Representational benefits
 - Learning to correct $\widehat{\pi}$ (Dagger-style) can be simpler representationally than directly learning π^* .
 - Dagger can get away with smaller policy class: $\log |\Pi'| \ll \log |\Pi|$.

Likely still beneficial, but in a problem-dependent, policy class-dependent sense.

Some examples (see paper):

- Representational benefits
 - Learning to correct $\hat{\pi}$ (Dagger-style) can be simpler representationally than directly learning π^* .
 - Dagger can get away with smaller policy class: $\log |\Pi'| \ll \log |\Pi|$.
- Exploration
 - Deliberately visit states that are informative for learning π^* .
 - Ex: Try to discover state where π^* takes different action from all other $\pi \in \Pi$.

Likely still beneficial, but in a problem-dependent, policy class-dependent sense.

Some examples (see paper):

- Representational benefits
 - Learning to correct $\hat{\pi}$ (Dagger-style) can be simpler representationally than directly learning π^* .
 - Dagger can get away with smaller policy class: $\log |\Pi'| \ll \log |\Pi|$.
- Exploration
 - Deliberately visit states that are informative for learning π^* .
 - Ex: Try to discover state where π^* takes different action from all other $\pi \in \Pi$.

Further examples:

- Control-theoretic considerations (instability)
- Misspecification (benefits of inverse RL-style algos?)

Opportunity to ~align~ theory and practice!

Conclusion

arXiv: 2407.15007

Summary:

- Log-loss behavior cloning is horizon-independent.
- Instabilities of offline IL / benefits of online IL are probably real, but current theory
 may be too coarse to capture.
- Opportunity for better theory + new algorithmic interventions

Intersection of RL theory + language modeling:

- Error amplification in behavior cloning and autoregression: arXiv:2403.15371
- In-context exploration: arXiv:2403.15371
- Principled algorithms for alignment:
 - XPO: Exploratory preference optimization: arXiv:2405.21046
 - χ PO: Rethinking KL-regularization and overoptimization: 2407.13399