

Exploiting Independent Instruments: Identification and Distribution Generalization

VILLUM FONDEN novo nordisk fonden

Sorawit Saengkyongam, Leonard Henckel, Niklas Pfister and Jonas Peters

Department of Mathematical Sciences, University of Copenhagen, Denmark (contact: ss@math.ku.dk)

Instrumental Variable (IV) Setting

We consider the following structural causal model M^0

$$egin{aligned} Z \coloneqq \epsilon_Z \ U \coloneqq \epsilon_U \ X \coloneqq g^0(Z,U,\epsilon_X) \ Y \coloneqq f^0(X) + h^0(U,\epsilon_Y) \end{aligned}$$

where $Z \in \mathbb{R}^r$ are instruments, $U \in \mathbb{R}^q$ are unobserved variables, $X \in \mathbb{R}^d$ are predictors, $Y \in \mathbb{R}$ is a response, and $(\epsilon_Z, \epsilon_U, \epsilon_X, \epsilon_Y)$ are jointly independent noise terms. f^0 is called causal function.

Contributions

- 1. We discuss the use of the independence restriction $Y f(X) \perp \!\!\! \perp Z$ in IV estimation and its implication on the identifiability of f^0 .
- 2. We propose HSIC-X, a gradient-based learning method that exploits the independence restriction to estimate f^0 and prove its consistency.
- 3. We propose to use the independence restriction for distribution generalization and prove theoretical guarantees.

Identifiability: Moment versus Independence Restrictions

E.g., consider a linear causal function $f^0(x) = x^{\top} \theta^0$ for some $\theta^0 \in \mathbb{R}^d$.

Classical IV approach

 $\mathbb{E}[Y - X^{\mathsf{T}}\theta \mid Z] = 0. \quad (1)$ $Y - X^{\mathsf{T}}\theta \perp Z.$

 $\mathbb{E}[X \mid Z] = 0.$

Independence-based IV

Identification of f^0 is based on the Identification of f^0 is based on the (conditional) moment restriction: independence restriction:

$$Y - X^{\top}\theta \perp \!\!\! \perp Z. \tag{2}$$

 f^0 (or, θ^0) is not identifiable when We can still identify f^0 even when $\mathbb{E}[X \mid Z] = 0.$

The independence restriction (2) yields

- (i) Strictly stronger identifiability results.
- (ii) (in some settings) More efficient estimators (e.g., under weak instruments).

Independence-based IV with HSIC-X

Given an i.i.d. sample $(x_i, y_i, z_i)_{i=1}^n$ of (X, Y, Z), our method aims to find a function \hat{f} that minimizes the dependency between the residuals $(r_i^f)_{i=1}^n$, with $r_i^f := y_i - \hat{f}(x_i)$, and the instruments $(z_i)_{i=1}^n$.

We propose the HSIC-X ('X' for 'exogenous') estimator:

$$\hat{f} \coloneqq \operatorname*{arg\,min}_{f \in \mathcal{F}} \ \widehat{\mathrm{HSIC}}((r_i^f, z_i)_{i=1}^n; k_{R^f}, k_Z),$$

Two heuristics to alleviate the non-convexity issue:

- (i) Initialize the parameters in the first trial at the OLS/2SLS solutions.
- (ii) Restarting heuristic: Test for the independence restriction (2) at the solution. If the test is rejected, randomly re-initialize the parameters and restart the optimization.

Under-identified IV and Distribution Generalization

In the under-identified case when Z is not rich enough to identify f^0 , we can still get a meaningful estimator where we find the most predictive invariant function.

Theorem [Generalization to interventions on Z]

Let $\ell: \mathbb{R} \to \mathbb{R}$ be a convex loss function and \mathcal{I} be a set of interventions on Z. If the interventions \mathcal{I} are 'strong enough', then

$$\inf_{f \in \mathcal{F}_{inv}} \mathbb{E}_{M^0} \left[\ell(Y - f(X)) \right] = \inf_{f \in \mathcal{F}} \sup_{i \in \mathcal{I}} \mathbb{E}_{M^0(i)} \left[\ell(Y - f(X)) \right], \tag{3}$$

where $\mathcal{F}_{\text{inv}} \coloneqq \{f_{\diamond} \in \mathcal{F} \mid Z \perp\!\!\!\perp Y - f_{\diamond}(X) \text{ under } \mathbb{P}_{M^0} \}$ is the space of invariant functions.

Regularizing towards Predictive Functions

Motivated by (3), we propose HSIC-X-pen ('pen' for 'penalization'):

$$\hat{f}^{\lambda} \coloneqq \underset{f \in \mathcal{F}}{\operatorname{arg \, min}} \ \widehat{\mathrm{HSIC}}((r_i^f, z_i)_{i=1}^n; k_{R^f}, k_Z) + \lambda \sum_{i=1}^n \ell(y_i - f(x_i)),$$

where the tuning parameter $\lambda \in [0, \infty)$ is selected as the largest possible value for which an independence test is not rejected.

Simulation: Estimating the Causal Function f^0

Here, α is the strength of the instruments Z on the mean of X and $MSE = \mathbb{E}[(\hat{f}(X) - f^0(X))^2]$. Top: more efficient in weak instrument settings. Bottom: more efficient in all settings.

Simulation: Distribution Generalization

Application: Effect of Education on Wage Earning

Y: $\log(\text{wage})$, X: years of education, Z: college proximity (whether an individual grew up near a four-year college).

METHOD	Point Estimate	Lower	Upper
OLS	0.072	0.065	0.079
2SLS	0.142	0.050	0.273
HSIC-X	0.160	0.097	0.208

References