Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/019144

International filing date:

15 December 2004 (15.12.2004)

Document type:

Certified copy of priority document

Document details:

Country/Office: JP

Number:

2003-432492

Filing date: 26 December 2003 (26.12.2003)

Date of receipt at the International Bureau: 10 February 2005 (10.02.2005)

Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

10/517 342

PCT/JP 2004/019144

15.12.2004

日本 国 特 許 庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application: 2003年12月26日.

出願番号

特願2003-432492

Application Number: [ST. 10/C]:

人

[JP2003-432492]

出 願
Applicant(s):

松下電器産業株式会社 日本冶金工業株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 1月28日

11 11

特許願 【書類名】 PH15135 【整理番号】 平成15年12月26日 【提出日】 特許庁長官 今井 康夫 殿 【あて先】 H01M 2/02 【国際特許分類】 C22C 38/00 【発明者】 大阪府門真市大字門真1006番地 松下電子部品株式会社内 【住所又は居所】 森川 幸一 【氏名】 【発明者】 大阪府門真市大字門真 1 0.0 6 番地 松下電子部品株式会社内 【住所又は居所】 芦崎 政重 【氏名】 【発明者】 大阪府門真市大字門真1006番地 松下電子部品株式会社内 【住所又は居所】 広瀬 恵理 【氏名】 【発明者】 神奈川県川崎市川崎区4-2 株式会社YAKIN川崎内 【住所又は居所】 小林 裕 【氏名】 【特許出願人】 000005821 【識別番号】 松下電器産業株式会社 【氏名又は名称】 【特許出願人】 000232793 【識別番号】 日本冶金工業株式会社 【氏名又は名称】 【代理人】 100080687 【識別番号】 【弁理士】 小川 順三 【氏名又は名称】 03-3561-2211 【電話番号】 【選任した代理人】 100077126 【識別番号】 【弁理士】 中村 盛夫 【氏名又は名称】 【手数料の表示】 【予納台帳番号】 011947 21,000円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1 【物件名】

要約曹 1

【物件名】

【曹類名】特許請求の範囲

【請求項1】

C:0.03mass%以下、Si:0.01~0.50mass%、Mn:0.20mass%以下、P:0.04mass%以下、S:0.0010mass%以下、Ni:20.0~40.0mass%、Cr:20.0~30.0mass%、Mo:5.0~10.0mass%、Al:0.001~0.10mass%、N:0.10~0.50mass%、Ca:0.001mass%以下、Mg:0.0001~0.0050mass%、0:0.005mass%以下を含有し、かつCr、MoおよびNは、下記(1)式の関係を満足する条件で含有し、残部が実質的にFe及び不可避的不純物よりなる組成を有し、かつ鋼中酸化物系介在物中のCaO含有量が20mass%以下であるオーステナイト系ステンレス鋼よりなることを特徴とする蓄電セル用ケース材料。

 $Cr+3.3\times Mo+20\times N \ge 43$ (1)

(式中Cr、Mo、Nは、各成分のmass%での含有量を示す)

【請求項2】

冷間圧延及び焼鈍後に更に15~25%の2回目冷間圧延を施すことにより、ビッカース硬さで280HV以上の硬さを有する再圧材としたことを特徴とする請求項1に記載の蓄電セル用ケース材料。

【請求項3】

Cu:0.01~1.00mass%、W:0.01~1.00mass%、Co:0.01~1.00mass%、V:0.01~1.00mass%、Nb:0.01~1.00mass%、Ti:0.01~1.00mass%、B:0.0001~0.0100mass%のうちの1種または2種以上をさらに含有することを特徴とする請求項1または2に記載の蓄電セル用ケース材料。

【曹類名】明細書

【発明の名称】蓄電セル用ケース材料

【技術分野】

[0001]

本発明は、小型大容量の電気二重層キャパシタなどのコイン型蓄電セルに用いられるケース材料に関し、とくに高耐食性、高強度の正極用ケース材料についての提案である。 【背景技術】

[0002]

一般に、コイン型蓄電セル、例えば、電気二重層キャパシタの正極ケースは、非水系電解液を使用する場合には主に金属が、水系電解液を使用する場合には導電性合成樹脂が用いられている。前記非水系電解液としては、通常、プロピレンカーボネイト、アセトニトリル等の熱的に安定な極性有機溶媒に、四フッ化ホウ酸テトラエチルアンモニウム等の溶質を溶かし込んだものが使用されるが、このような電気二重層キャパシタを充電する場合、正極ケース側は電気化学的に酸化性環境、即ち金属の溶出反応が促進される環境になり、金属の酸化物若しくは水酸化物による内部インピーダンスの上昇、あるいは著しい溶出反応が生じた場合には孔食や全面腐食が発生し、該ケースの損傷や内部電解液の漏出を招くという問題があった。

[0003]

上述した背景技術の下で、従来、金属製正極ケースとしては、アルミニウムやステンレス鋼(特許文献 1)、内面にアルミニウム層を有するオーステナイト・フェライト二相ステンレス鋼(特許文献 2)等が使用されてきた。ところが、これらの金属製のケースでは、2.8V程度の高電圧充電を行うと孔食等の腐食が発生し、信頼性のある電気二重層キャパシタが得られないという問題点があった。

[0004]

この問題点に対し、従来、0.1~2.0mass%のNを含有する合金鋼や高耐食オーステナイト・フェライト二相ステンレス鋼や高耐食オーステナイト系ステンレス鋼(特許文献 3)が提案されている。しかしながら、これらのステンレス鋼や合金鋼製の正極ケースでは、2.8Vの充電を行うものでは十分な耐食性が得られないことがあった。しかも近年では、電気二重層キャパシタが使用される機器は高性能化によって、電気二重層キャパシタの耐電圧が2.8Vを超える場合があるが、この場合、ステンレス鋼や合金鋼製の正極ケースでは耐食性が不十分であった。

[0005]

【特許文献1】特公昭62-62449号公報

【特許文献2】特開昭62-94908号公報

【特許文献3】特開昭63-81914号公報

【特許文献4】特開平6-215738号公報

【発明の開示】

【発明が解決しようとする課題】

[0006]

ところで、上記電気二重層キャパシタの正極ケースは、内部圧に耐えるための十分な強度が必要とされており、その強度が不足すると、内部電解液の漏出等の問題が生じることがあった。この点、アルミニウムやSUS304、あるいはSUS836L等のステンレス鋼などの上述した既知の材料では強度が十分とは言えず、これらの材料を用いる場合、必要強度を得るために、材料の厚肉化が必要とされていた。

[0007]

そこで、本発明では、2.8Vを超えるような高電圧充電環境下においても十分な耐食性ならびに強度を有し、薄肉化が可能な電気二重層キャパシタ正極ケース用材料、蓄電セル用ケース材料、特にコイン型蓄電セル用ケース材料を提供することを目的とする。

【課題を解決するための手段】

[0008]

従来技術が抱えている上述した課題に対し、発明者らはその解決に向けた研究の中で、 非水系電解液中での充電状態、即ち正極ケース表面が酸化性雰囲気になった場合、MnSやC aOといった鋼中介在物あるいは酸化物系介在物が腐食の起点となり、これらの介在物存在 比率が高い程、ケース材料の耐食性が劣化するとの知見を得た。そして、上記雰囲気中に おいて、正極ケース材の耐食性を向上させるためには、耐食性に有害な介在物の構成元素 であるMn、S、Ca、0を極力低減させ、かつ酸化物系介在物中に含まれるCaOの比率を下げ てその組成を耐食性に悪影響を及ぼさないSiO2、MgOあるいはA12O3主体のものにすること が有効であり、さらには、所定の成分組成と下記特定成分については (1) 式を満足する ものとし、このことによって下地金属の耐食性そのものを向上させることが必要であるこ とが判明した。

 $Cr+3.3\times Mo+20\times N \ge 43$ (1)

(式中のCr、MoおよびNの含有量は、各成分ともmass%で示される)

即ち、蓄電セル、特にコイン型蓄電セル、例えば、電気二重層キャパシタの内部圧に耐 え得る十分な強度を有し、耐食性や加工性にも優れたケース材料を得るには、とくに冷間 圧延および焼鈍後にさらに15~25%の2回目冷間圧延を施せばよいことがわかり、以下に 示す本発明に想到した。

さらに、本発明においては、上記成分に加えて、Cu:0.01~1.00mass%、₩:0.01~1.00 mass%、Co:0.01~1.00mass%、V:0.01~1.00mass%、Nb:0.01~1.00mass%、Ti:0.01~1 .00mass%、B:0.0001~0.0100mass%のうち、1種または2種以上を含有させることが好ま LVIO

【発明の効果】

本発明によれば、Cr、MoのNの相互関係を考慮した上でそれらの総量規制を行うと共に 、MnやSの含有量を極力低減させ、さらには鋼中酸化物系介在物中のCaO比率を制御したの で、蓄電セル、特にコイン型蓄電セル、電気二重層キャパシタにおける2.8Vを越えるよう な高電圧の充電環境においても十分な耐食性を有し、しかも高い強度の故に薄肉化が可能 なケース用材料を提供することができる。

【発明を実施するための最良の形態】

[0012]

本発明に係るケース材料は、上述したとおり、

- (i)鋼中MnS介在物構成元素及び酸化物系介在物組成を制限すること、
- (ii)所定の成分とそれらの適正含有量の範囲を規制すること、

(iii)強度の付与方法 などの点に特徴がある。以下に、この発明を開発するに到った知見の基となった試験に ついて説明する。

[0013]

発明者らはまず、電気二重層キャパシタの充電状態において、耐食性に及ぼすステンレ 試験1 ス鋼中におけるMnS介在物、および酸化物系介在物の影響について調査した。この試験に は、コイン型ケース材料として23mass%Cr-35mass%Ni-7.5mass%Mo-0.2mass%Nを主成分とす るオーステナイト系ステンレス鋼をベースとして、表1に示すように、鋼中のMn及びS含 有量、SiO2、A1203、CaO、MgOといった酸化物系介在物の重量比率が異なるオーステナイ ト系ステンレス鋼を大気溶解炉によって溶製し、インゴットを得た。

これらのインゴットを1250℃、8時間の鋼塊熱処理を施した後鍛造し、次いで冷間圧延 後、1150℃、30秒加熱した後、水冷による溶体化熱処理を施し、厚さ2mmの冷延板を作製 した。なお、各冷延板中に含まれる酸化物系介在物組成は、エネルギー分散型X線分光分 析装置により同定した。次いで、プロピレンカーポネイトに、四フッ化ホウ酸テトラエチ ルアンモニウムを溶かし込んだ電解液を調整し、Ar置換したグローブボックス内にてこの

電解液の中に上記冷延板を正極として、SUS304ステンレス鋼の冷延板を負極として挿入し、その後、両極に3.3Vの電圧を24時間印可した。このときの電解液の温度は60℃に保持し、正極冷延板は電圧印加前にSiC800研磨紙による湿式研磨を施した。

[0014]

24時間電圧を印加した後、正極の表面を走査型電子顕微鏡で観察し、腐食損傷の有無を評価した。孔食形態の腐食損傷が生じたものは評価×、全く腐食が生じなかったものを評価○とした。その結果を表1に示すが、Mn及びS含有量がそれぞれ0.20mass%以下、0.0010mass%以下の場合、あるいは鋼中酸化物系介在物中に含まれるCaOが20mass%以下の場合に3.3Vの電圧を24時間印可しても腐食損傷はなく、良好な耐食性を示すことが認められた。またCaOが20mass%以下であれば、酸化物系介在物中のSiO2、Al2O3、MgOのそれぞれの重量比率がどうであれ、耐食性には影響を与えないことが認められた。

[0015]

以上の結果から、電解液中で高電圧印加を行った場合の正極金属板の耐食性は、Mn及びS、さらには酸化物系介在物中のCaOの重量比率に大きく左右されることから、これらの範囲を上記のように限定する必要があることがわかった。

なお、Mn及びS含有量が増加すると耐食性が劣化する理由は、これらの成分が多いと非金属介在物 (MnS)を生成し、これが腐食の起点となるからと推察される。ただし、MnSは極めて微小なため走査型電子顕微鏡においてもその存在及び存在割合を確定することには困難であることから、本発明においては、MnSの割合を特定するのに代え、上記のようなMnおよびS含有量との比例関係に鑑み、Mn及びSの含有量を限定することで対処することにした。

【0016】 【表1】

No.						化学	組成(r	nass%	5)				
140.		Si	Mn	P	S	Ni	Cr	Мо	Al	N	Ca	Mg	0
1*	0.007	0.05	0.10	0.012	0.0005	35.47	23.27	7.48	0.007	0.220	0.0002	0.0003	0.0028
2*	0.019	0.08	0.18	0.013	0.0004	34.92	23.11	7.50	0.011	0.217	0.0004	0.0001	0.0015
3	0.013	0.07	0.16	0.011	0.0007	34.79	23.24	7.44	0.020	0.208	0.0003	0.0012	0.0032
4	0.016	0.07	0.14	0.015	0.0013	35.32	23.18	7.37	0.010	0.223	0.0002	0.0007	0.0020
5	0.009	0.05	0.35	0.013	0.0017	35.28	23.20	7.52	0.008	0.214	0.0005	0.0002	0.0018
6*	0.003	0.03	0.33	0.011	0.0005	34,90	23.16	7.50	0.034	0.218	0.0008	0.0003	0.0025
13-	0.007	0.10	0.11	0.014	0.0005	35.02	22.97	7.46	0.023	0.221	0.0014	0.0002	0.0022
1		0.10	0.08	0.014	0.0006	35.09	23.21	7.55	0.018	0.205	0.0022	0.0011	0.0019
8	0.011	0.00	0.00	0.014	0,0000	1 00.00	20.2.	1	0.0.0	1 0.2.2			

No.	Mn:0.20mass%以下且つ S:0.0010mass%以下を 満たすもの	鋼中酸化物系 介在物中における CaO の mass%	鋼中酸化物系 介在物中における その他の組成	60℃電解液中での 24 時間、3.3V 電圧印加結果
1*	O	0.1	SiO ₂ , Al ₂ O ₃ , MgO	0
2*	0	0.6	Al ₂ O ₃ , MgO	0
3	×	1.4	Al ₂ O ₃ , MgO	×(孔食発生)
4	×	0.2	Al ₂ O ₃ , MgO	×(孔食発生)
5	×	1.1	SiO ₂ , Al ₂ O ₃ , MgO	×(孔食発生)
6*	- ô	12.4	Al ₂ O ₃ , MgO	0
7		24.8	Al ₂ O ₃ , MgO	×(孔食発生)
8	 	43.9	Al ₂ O ₃ , MgO	×(孔食発生)

は本発明材料を示す。

[0017]

試験 2

次に、発明者らは、電気二重層キャパシタの充電状態において、耐食性に及ぼすステンレス鋼の含有成分(Cr、Mo、N)の影響について試験した。この試験には、表2に示す組成で、しかも鋼中酸化物系介在物中のCa0を20mass%以下に抑えたオーステナイト系およびオーステナイト・フェライト系ステンレス鋼を用いた。これらは試験1と同様に大気溶解炉によって溶製し、最終的に厚さ2mmの冷延板を作製した。なお、この冷延板は以下の電圧印加実験前にSiC800研磨紙による湿式研磨を施した。

ついで、試験1と同様に、プロピレンカーボネイトに四フッ化ホウ酸テトラエチルアンモニウムを溶かし込んだ電解液を調整し、Ar置換したグローブボックス内にてこの電解液の中に上記冷延板を正極として、SUS304ステンレス冷延板を負極として挿入後、両極に3.3Vの電圧を24時間印可した。このときの電解液の温度は60℃に保持した。24時間印加後、正極の表面を金属顕微鏡で観察し、腐食損傷の有無と、腐食している場合その腐食深さを計測した。その結果を図1に示す。

【0018】 【表2】

No.						- 1	匕学組 成	(mas	s%)					
1	С	Si	Mn	P	Ś	Ni	Cr	Мо	Cu	Al	N	Ca	Mg	0
1	0.053	0.56	0.11	0.034	0.0009	8.29	18.12	0.19	0.30	0.007	0.050	0.0002	0.0003	0.0028
12	0.039	0.66	0.18	0.031	0.0010	10,79	16.84	2.13	0.16	0.011	0.030	0.0004	0.0001	0.0015
3	0.009	0.35	0.19	0.026	0.0007	6.67	24.73	3.32	0.11	0.020	0.160	0.0003	0.0012	
4	0.011	0.15	0.19	0.021	0.0005	22.51	21.37	5.13	0.02	0.010	0.145	0.0003	0.0008	0.0024
5*	0.009	0.38	0.16	0.025	0.0005	17.73	20.01	6.07	0.78	0.010	0.148	0.0002	0.0007	0.0020
6*	0.006	0.10	0.20	0.019	0.0006	24.19	23.00	5.54	0.09	0.008	0.193	0.0005	0.0002	0.0018
70	0.007	0.05	0.10	0.012	0.0005	35.47	23.27	7.48	0.02	0.007	0.220	0.0002	0.0003	0.0028

No.	Cr+3.3×Mo+20×N (mass%)	Mn: 0.20mass%以下且つ S: 0.0010mass%以下を 満たすもの	鋼中酸化物系 介在物中における CaO の mass%	60℃電解液中での 24 時間、3.3V 電圧印加結果
1	19.7	0	0.3	×(孔食発生)
	24.5	0	3.7	×(孔食発生)
3	38.9	0	2.5	×(孔食発生)
4	41.2	Ö	1.8	×(孔食発生)
5*	43.0	Ö	2.9	0
6*	45.1	Ō	1.4	0
7*	52,4	0	0	

^{*}は本発明材料を示す。

[0019]

なお、図1の横軸には、含有成分のうち、耐食性への寄与が大きいCr、Mo、Nについて、その寄与の程度から各元素がほぼ等価となるように重み付けした「 $Cr+3.3 \times Mo+20 \times N$ 」にて示してある。この図1より、MnとSの含有量をそれぞれ0.20mass%以下、0.0010mass%以下に、さらに鋼中酸化物系介在物中のCa0を20mass%以下に抑えても、CrとMoとNとの関係が、次式:

$Cr+3.3 \times Mo+20 \times N$ (1)

(但し、Cr、MoおよびNの含有量は、各成分元素のmass%で示す)

が43を下回るようなステンレス鋼を正極側として3.3Vの電圧を印加した場合、孔食形態の腐食損傷が生じ、耐食性が不十分になることが認められた。従って、3.3Vという高電圧充電環境下で用いられる電気二重層キャパシタの正極ケースには、少なくともCr、Mo、Nについては、Cr+3.3×Mo+20×N≥43の関係を維持できる程度の含有量にすることが必要であることがわかった。

[0020]

試験3

また、発明者らは、試験1、2で得られた電気二重層キャパシタ正極ケース材としての 適正成分オーステナイト系ステンレス鋼に、耐食性を維持しつつ、正極ケースに加工可能 な範囲において強度を付与する方法について検討した。上述したとおり、オーステナイト 系ステンレス鋼は、オーステナイト・フェライト系ステンレス鋼に比べて、冷間圧延及び 焼鈍後の強度が低いため、正極ケース材として用いる場合、内部圧に耐えうるように厚肉 化する必要がある。

オーステナイト系ステンレス鋼を高強度化する方法としては、焼鈍温度を下げるか、冷間圧延及び焼鈍後に軽度の2回目冷間圧延(再冷間圧延)を施す方法があるが、低温焼鈍の場合、σ相等の金属間化合物が析出し、耐食性の劣化を招く恐れがあるため、発明者らは後者の方法を検討した。

[0021]

即ち、この試験では、上記試験 2 で使用した23mass%Cr-35mass%Ni-7.5mass%Mo-0.2mass %N(表 2 中のNo.6鋼)を主成分とするオーステナイト系ステンレス鋼を用いた。 2 回目冷間圧延前の板厚を変え、 2 回目冷間圧延後の板厚を0.15mmに揃えることで 2 回目冷間圧延の圧下率を $0\sim30\%$ まで変化させた。

その結果、表3に示すように、2回目冷間圧延の圧下率が15%以上で、代表的なオーステナイト・フェライト系ステンレス鋼であるSUS329J4Lと同等若しくはそれ以上の硬さ(ビッカース硬さで280HV以上)が得られることが認められた。一方、これらの板から径6mmのコイン型電気二重層キャパシタの正極ケースをプレスするテストを行った結果、2回目圧延の圧下率が25%までならプレス可能であることが認められた。

[0022]

【表3】

No.	2回目 冷間圧延の 圧下率	ビッカース硬さ	60℃電解液中での 24 時間、3.3V 電圧印加結果	径 6mm コイン型電気二重層 キャパシタ正極ケースの プレステスト結果
1*	0%	213HV	0	0
2*	10%	277HV	0	00
3*	15%	308HV	0	0
4*	20%	353HV	0	0 .
5*	25%	367HV	0	0
6	30%	385HV	0	×(プレス割れ)

^{*}は本発明材料を示すが、高強度化をする場合は No.3~5 のみ本発明範囲となる。

[0023]

なお、2回目冷間圧延の圧下率を変えたそれぞれの板に対し、試験1、2と同様に60℃ 電解液中での3.3V、24時間電圧印加実験を行った結果、何れも腐食損傷は認められなかった。

[0024]

以上の結果より、電気二重層キャパシタ正極ケース材としての適正なオーステナイト系ステンレス鋼に、耐食性を維持しつつ、かつケースに加工可能な範囲において高い強度を付与するには、冷間圧延及び焼鈍後に、再び15~25%の軽度の2回目冷間圧延を施せばよく、代表的なオーステナイト・フェライト系ステンレス鋼であるSUS329J4Lと同等若しくはそれ以上の硬さが得られ、薄肉化が可能になることが明らかとなった。

なお、このような方法による高強度化は必要に応じて実施すればよい。

[0 0 2 5]

次に、本発明にケース材料として好適に用いられるオーステナイト系ステンレス鋼の成分組成の限定の理由について述べる。

C: 0.03mass%以下

Cは、特に溶接時に鋭敏化を誘発し耐食性を低下させる元素であるので少ない方が望ましいが、極端に低減させることは強度の低下を招くと共に製造コストが増加するので、このCの含有量は0.030mass%までは許容できるので、この値を上限値とした。

[0026]

$Si: 0.01 \sim 0.50 \text{mass}$ %

Siは、脱酸のために必要な元素であり、特に鋼中酸化物系介在物中のCaO比率を下げてAlやMgの酸化物とともに酸化物系介在物の主体を構成させるために必須の元素であるので、0.01mass%以上を添加する。ただし、過剰の添加はその効果が飽和すると共に、延性の低下を招き、さらには σ 相や χ 相などの金属間化合物の析出を助長して耐食性を劣化させるため、その上限を0.50mass%とした。望ましくは0.30mass%以下、より望ましくは0.20mass%以下が良い。

[0027]

Mn: 0.20mass%以下

Mnは、Sと鋼中介在物 (MnS) を形成し、特に電気二重層キャパシタの非水電解液中では 出証特2005-3003998 試験1の結果から明らかなように、腐食の起点となり、耐食性を劣化させるので、本発明 においては極力低減させる必要のある元素である。また、同様に耐食性を劣化させるσ相 やχ相などの金属間化合物の析出を促進するので、0.20mass%以下にする。望ましくは0.1 5mass%以下がよい。

[0028]

P: 0.04mass%以下

Pは、不純物として不可避的に混入する元素であり、結晶粒界に偏析しやすく耐食性及 び熱間加工性の観点からは少ない方が望ましい。しかしながら、Pの含有量を極端に低減 させることは製造コストの増加を招く。Pは、0.04mass%までは許容できるのでこの値を上 限値とした。ただし、望ましくは0.03mass%以下がよい。

[0029]

S:0.0010mass%以下

Sは、Mnと鋼中介在物(MnS)を形成し、特に電気二重層キャパシタの非水電解液中での 腐食の起点となり耐食性を劣化させる。さらには、Pと同様に結晶粒界に偏析し易く、熱 間加工性を劣化させるので、本発明においては極力低減させる必要のある元素である。試 験1の結果から明らかなように、Sは0.0010mass%を超えて含有するとその有害性が顕著に 現れるので、その含有量を0.0010mass%以下とした。望ましくは0.0005mass%以下がよい。

[0030]

Ni: 20.00~40.00mass%

Niは、 σ 相や χ 相などの金属間化合物の析出を抑制する上で有効であり、また組織をオ ーステナイトにする場合には必須な元素であるので、少なくとも20.0mass%以上の含有量 が必要である。しかしながら、40.0mass%を超えると熱間加工性の劣化や熱間変形抵抗が 増大し、製造性が劣化するので、その上限を40.0mass%とした。

なお、Niの含有量は24.00~37.00mass%であることが好ましく、30.00~36.00mass%であ ればさらに好ましい。

[0031]

Cr: 20.00~30.00mass%

Crは、耐食性を向上させる元素であり、その効果を得るためには20.00mass%以上含有す る必要があるが、30.00mass%を超えて含有すると σ 相や χ 相などの金属間化合物の形成を 助長し、かえって耐食性を劣化させるので、Crの含有量を20.00~30.00mass%とした。

なお、Crの含有量は22.00mass%以上であることが好ましい。

[0032]

Mo: $5.00 \sim 10.00$ mass%

Moは、耐食性を向上させるのに有効な元素であり、その効果を得るためには5.00mass% 以上含有する必要がある。

しかしながら、10.00mass%を超えて含有すると、金属間化合物の析出を助長し、耐食性 を逆に劣化させてしまうので、その範囲を5.00~10.00mass%とした。なお、Moの含有量は 6.00mass%以上であることが好ましく、7.00mass%以上とすることがより好ましい。

[0033]

Al: 0.001~0.100mass%

Alは、強力な脱酸材であり、特に鋼中酸化物系介在物中のCaO比率を下げ、SiやMgの酸 化物とともに酸化物系介在物の主体を構成させるためには積極的に添加する必要があるが 、0.001mass%以下ではその効果はなく、また0.100mass%を超えて含有させるとその効果が 飽和するとともに、鋼板の美観や耐食性に影響を及ぼす巨大介在物の形成を助長し、さら にはNとの化合物であるAINの析出が顕著になり、耐食性に有効なNの効果を低減させるの で、その範囲を0.001~0.100mass%とした。

[0034]

$N: 0.10 \sim 0.50 \text{mass}$ %

Nは、強力なオーステナイト生成元素であり、CrやMoと同様に耐食性を向上させるとと もに、金属間化合物の析出を抑制するのに有効な元素であり、その効果を得るには0.10ma

ss%以上含有させる必要がある。しかしながら、0.50mass%を超えて含有すると、熱間変形 抵抗が極めて上昇して熱間加工性を阻害するので、その範囲を0.10~0.50mass%とした。 なお、Nの含有量は0.15mass%以上が好ましく、0.20mass%以上であればより好ましい。

[0035]

Ca: 0.001mass%以下

Caは、鋼中酸化物系介在物中にCaOとして不可避的に含まれるものであるが、特に電気 L重層キャパシタの非水電解液中ではCaOは腐食の起点となり耐食性を劣化させるので、 本発明においては、極力低減させる必要のある元素である。試験1の結果から明らかなよ うに、Caは0.0010mass%を超えて含有するとその有害性が顕著に現れるので、その含有量 を0.0010mass%以下とした。望ましくは0.0005mass%以下がよい。

[0036]

 $Mg: 0.0001 \sim 0.0050 \text{mass}$ %

Mgは、脱酸剤であるが、それぞれ0.0001mass%以下ではその効果はなく、また0.0050mas s%を超えて含有するとその効果が飽和すると共に、鋼板の美観や耐食性に影響を及ぼす巨 大介在物の形成を助長するので、その含有量を0.0001~0.0050mass%とした。

[0037]

0:0.005mass%以下

0は、Caと鋼中酸化物系介在物を形成し、特に電気二重層キャパシタの非水電解液中で の腐食の起点となり耐食性を劣化させるので、本発明においては極力低減させる必要のあ る元素である。この0は、0.005mass%を超えて含有するとその有害性が顕著に現れるので 、その含有量を0.005mass%以下とした。望ましくは0.003mass%以下がよい。

[0038]

Cu: 0.01~1.00mass%

W: 0.01~1.00mass%

Co: 0.01~1.00mass%

V: 0.01~1.00mass%

Nb: 0.01~1.00mass%

Ti: 0.01~1.00mass%

本発明では、上記成分に加えて、Cu:0.01~1.00mass%、W:0.01~1.00mass%、Co:0.0 1~1.00mass%、V:0.01~1.00mass%、Nb:0.01~1.00mass%、Ti:0.01~1.00mass%の1種 または2種以上を含有することができる。

これら元素はいずれも、一般的な耐食性の向上に有効な成分であるが、その効果を得る ためには各々0.01mass%以上含有させる必要がある。一方、1.00mass%を超えて含有すると 、 σ 相や χ 相などの金属間化合物の析出を助長して耐食性が劣化し、また熱間加工性を阻 害するので、それぞれの含有量を0.01~1.00mass%とした。

[0039]

B: 0.0001~0.0100mass%

本発明では、上記成分に加えてさらに、 $B:0.0001\sim0.0100$ mass%を含有させることがで きる。このBは、熱間加工性の向上に極めて有効であるが、0.0001mass%以下ではその効果 が少なく、0.0100mass%を上回ると逆に熱間加工性が劣化する。よって、Bの含有量は0.00 01∼0.0100mass%とした。

[0040]

 $Cr+3.3 \times Mo+20 \times N \ge 43$

本発明において、Cr、MoおよびN相互の関係を次の関係式

Cr+3.3×Mo+20×N≥43 (1)

(式中Cr、Mo、Nは、各成分のmass%での含有量を示す)

を満足するように添加する。その理由は、試験2の結果から明らかなように、Cr+3.3×Mo +20×Nが43を下回ると、本発明の主要な構成要素である鋼中酸化物系介在物中のCaOの重 量比率を最適化しても、特に2.8Vを越える高電圧で電気二重相キャパシタを充電する環境 では十分な耐食性を示さないためである。

[0041]

鋼中酸化物系介在物中のCaO含有量:20mass%以下

本発明においては、鋼中酸化物系介在物中のCaOを20mass%以下に限定する。その理由は 試験1の結果から明らかなように、これを満たさないと、高電圧で電気二重相キャパシ タを充電する環境では十分な耐食性を示さないためである。なお、本発明では、鋼中の全 ての酸化物系介在物がSiO2、Al2O3、CaO、MgOの単独、あるいは複合酸化物である必要は なく、どのような酸化物系介在物でも単にCaOが20mass%以下であればよい。また、その他 の酸化物が単独、あるいは上記酸化物とともに複合酸化物を形成する場合であってもよい 。その他の酸化物としては、MnO、FeO、TiO2等が考えられる。

[0042]

2回目冷間圧延(再冷間圧延)

本発明のケース材については、必要に応じ、冷間圧延及び焼鈍後に、さらに15~25%の 軽度の2回目冷間圧延を施し、ビッカース硬さで280HV以上の硬さを付与した再圧鋼とす ることが好ましい。一般に、ケース材の薄肉化には材料の強度を上昇させる必要があるが 、特にオーステナイト系ステンレス鋼は、冷間圧延及び焼鈍後の強度は十分ではない。そ こで、冷間圧延及び焼鈍後に、さらに、15~25%の2回目冷間圧延を施してオーステナイ トステンレス鋼の再圧鋼とすることにより、耐食性や加工性を維持しつつSUS329J4Lと同 等の強度を付与させることが試験3により明らかとなった。その理由は、15%以下の圧下 率ではその強度上昇が不十分であり、一方25%を超える圧下率ではケース材に対し加工が できなくなるほどに延性が低下する。従って、前記冷間圧延及び焼鈍後の2回目冷間圧延 の圧下率範囲を15~25%に限定した。

【実施例】

[0043]

以下、本発明の実施例について説明する。

まず、上述した試験1~3と同様の製造方法により、表4に示す成分組成を有する本発 明に係るオーステナイト系ステンレス鋼からなるケース材料と比較材料の厚さ0.15mmの供 試材を作製した。鋼中の酸化物系介在物組成は、エネルギー分散型X線分光分析装置によ り同定した。供試材の最終焼鈍では光輝熱処理を施したが、一部のものは所定の板厚まで 冷間圧延後に光輝熱処理を行い、その後、厚さ0.15mmまで2回目冷間圧延を実施した。

これら供試材は、その後ビッカース硬さ測定、径6mmコイン型電気二重層キャパシタの 正極ケースのプレステスト、さらには径6mmコイン型電気二重層キャパシタを組み立て、6 0℃、湿度95mass%に保持して両極に3.3Vの電圧を500時間印加し、正極ケース表面の腐食 損傷の有無を評価した。

なお、本電気二重層キャパシタは、有機電解液としてプロピレンカーボネイトに所定濃 度の四フッ化ホウ酸テトラエチルアンモニウムに相当する電解質を溶かし込んだもの、分 極性電極としてカーボンペースト上に活性炭及びバインダーを担持させたもの、更にはセ パレータと封口材、正負極ケースから構成されている。表4に、これらのテスト結果を示 す。

[0044]

【表4】

	No.							化学組成	(mas	s%)					
l i	NO.	-	SI	Mn	P	S	Ni	Cr	Mo	Cu	Al	N	Ca	Mg	0
		0.006	0.10	0.20	0.019	0.0006	24.19	23.00	5.54	0.09	0.008	0.193	0.0005	0.0002	0.0018
本	<u> </u>	0.007	0.10	0.20	0.012	0.0005	35.47	23.27	7.48	0.02	0.007	0.220	0.0002	0.0003	0.0028
発	1	0.007	0.05	0.10	0.012	0.0005		23.27	7.48	0.02	0.007	0.220	0.0002	0.0003	0.0028
明	3	0.007	0.05	0.10	0.012	0.0005	35.47	23.27	7.48	0.02	0.007	0.220	0.0002	0.0003	0.0028
材	=-	0.007	0.10	0.16	0.025		34.94	23.05	7.53	0.26	0.010	0.219	0.0003	0.0007	0.0020
100	15	0.009	0.10	0.16	0.011	0.0007	34.79	23.24		0.01	0.020	0.208	0.0003	0.0012	0.0032
比	15	0.011	0.07	0.08	0.014	0.0006	35.09	23.21	7.55	0.02	0.018	0.205	0.0022	0.0011	0.0019
較	1/	0.007	0.05	0.10	0.012	0.0005	35.47	23.27	7.48	0.02	0.007	0.220	0.0002	0.0003	0.0028
村	8*	0.007	0.35	0.19	0.012	0.0007	6.67	24.73	3.32	0.11	0.020	0.160	0.0003	0.0012	0.0032

	No.		1t	学組成	(mass	5%)		Cr+3.3×Mo +20×N	Mn: 0.20mass%以下且つ S: 0.0010mass%以下を	鋼中酸化物系 介在物中における
1	i '	w	Co	V	Nb	Ti	В		潜たすもの	CaO Ø mass%
本	1	0.01	0.01		-	-	0.0020	45.1	0	1,4
発	2	0.01	0.02	-		-	0.0009	52.4	0	0.1
明	3	0.01	0.02	-		-	0.0009	52.4	0	0.1
\$13	4	0.01	0.02	-	-	•	0.0009	52.4	0	0.1
***	5	0.08	0.38	0.16	0.11	0.10	0.0021	52.3	0	0.7
走	6	0.02	0.03	-	-	-	0.0006	53.0	×	2.2
較	7 –	0.01	0.02	-	-	-	0.0027	52.2	0	43.9
鋼	8*	0.01	0.02	-	-	-	0.0009	52.3	0	0.1
343	9	0.12	0.04	-	-	-	0.0033	38.9	0	5.4

	No.	2回目 冷間圧延の 圧下率	ピッカース硬さ	径6mm コイン型電気二重層 キャパシタ正極ケースの プレステスト結果	60℃、過度 95%環境における 電気二重層キャパシタの 500 時間 3.3V 電圧印加実験結果 (正極ケース表面状態)
本	1	0%	210HV	0	
発	2	0%	213HV	0	
明	3	15%	308HV	0	
材	4	20%	353HV	0	
ייי	5	0%	227HV	0	<u> </u>
比	6	0%	209HV	0	×(孔食発生)
較	1	0%	221HV	0	×(孔食発生)
材材	8	30%	385HV	×(プレス割れ)	- (実施せず)
1 473	9	0%	283H\/	0	×(孔食発生)
Ь	13		8*01	上学組成は本発明材料の範囲内で	である。

[0045]

表4に示す結果から明らかなように、本発明に係るケース材料は、何れも正極ケースに プレスが可能で、しかも充電環境を模擬した500時間の3.3V電圧印加において腐食損傷が なく、比較鋼に比べて優れた耐食性を有する材料であること、さらには必要とあれば最終 焼鈍後に15~25%の2回目冷間圧延を施した再圧鋼とすれば、このケース材料にSUS329J4L と同等若しくはそれ以上の強度を付与することができることがわかった。

【産業上の利用可能性】

[0046]

本発明は、電気二重層キャパシタの如きコイン型蓄電セルの正極ケース用材料を主用途 として、特に非水系電解液を用いるものに適用され、電力応用機器、電気自動車(燃料電 池)、電子機器用バックアップ電源、電池、モバイル電源あるいは瞬時停電対応電源用の 材料として用いることができる。

【図面の簡単な説明】

[0047]

【図1】60℃の電気二重層キャパシタ電解液中において3.3Vの電圧を24時間印加した 後の供試材表面に認められた孔食の発生数とCr+3.3×Mo+20×Nの関係を示すグラフで ある。

【書類名】図面 【図1】

【書類名】要約書

・2.8Vを越えるような高電圧充電環境下においても十分な耐食性ならびに強度を有し、そ のために薄肉化が可能な電気二重層キャパシタ正極ケース用材料、即ち蓄電セル用ケース 材料を提供する

【解決手段】

C:0.03mass%以下、Si:0.01~0.50mass%、Mn:0.20mass%以下、P:0.04mass%以下、S :0.0010mass%以下、Ni:20.0~40.0mass%、Cr:20.0~30.0mass%、Mo:5.0~10.0mass% 、Al:0.001~0.10mass%、N:0.10~0.50mass%、Ca:0.001mass%以下、Mg:0.001~0.00 50mass%、0:0.005mass%以下を含有し、かつCr、MoおよびNは、下記(1)式の関係を満 足する条件で含有し、残部が実質的にFe及び不可避的不純物よりなる組成を有し、かつ鋼 中酸化物系介在物中のCaO含有量が20mass%以下であるオーステナイト系ステンレス鋼より なることを特徴とする蓄電セル用ケース材料。

 $Cr+3.3\times Mo+20\times N \ge 43$ (1)

(式中Cr、Mo、Nは、各成分のmass%での含有量を示す)

図 1 【選択図】

特願2003-432492

出願人履歴情報

識別番号

[000005821]

1. 変更年月日 [変更理由] 1990年 8月28日

新規登録

住 所氏名

大阪府門真市大字門真1006番地

松下電器産業株式会社

特願2003-432492

出願人履歴情報

識別番号

[000232793]

1. 変更年月日 [変更理由] 住 所 氏 名 2003年 7月 2日 住所変更 東京都中央区京橋1丁目5番8号 日本冶金工業株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.