(2 pts.) Dado el siguien			
	$p \leftarrow not q$		
	$q \leftarrow not r$		
	$r \leftarrow not p$		
Indica cuáles son sus mo	delos clásicos mediante una	tabla de verdad.	
p q r			
0 0 0			
$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$			
$egin{array}{ccc} 0 & 1 & 0 \ 0 & 1 & 1 \ \end{array}$			
$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$			
$\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$			
1 U 1			
$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$			
$ \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \end{vmatrix} $ (3 pts.) Para cada mod P^I correspondiente, su n	delo clásico I obtenido ante nodelo mínimo y, finalmente		
1 1 0 1 1 1 (3 pts.) Para cada mod	nodelo mínimo y, finalmente		
$ \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \end{vmatrix} $ (3 pts.) Para cada mod P^I correspondiente, su model). Usa tantas filas	nodelo mínimo y, finalmente como precises.	e, indica si I es mo	delo estable (
$egin{array}{c c} 1 & 1 & 0 \\ 1 & 1 & 1 \\ \hline \end{array}$ (3 pts.) Para cada mod P^I correspondiente, su model). Usa tantas filas modelo clásico	nodelo mínimo y, finalmente como precises. programa reducto	e, indica si I es mo	delo estable (
$ \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \end{vmatrix} $ (3 pts.) Para cada mod P^I correspondiente, su model). Usa tantas filas	nodelo mínimo y, finalmente como precises.	e, indica si I es mo	delo estable (
$egin{array}{c c} 1 & 1 & 0 \\ 1 & 1 & 1 \\ \hline \end{array}$ (3 pts.) Para cada mod P^I correspondiente, su model). Usa tantas filas modelo clásico	nodelo mínimo y, finalmente como precises. programa reducto	e, indica si I es mo	delo estable (
$egin{array}{c c} 1 & 1 & 0 \\ 1 & 1 & 1 \\ \hline \end{array}$ (3 pts.) Para cada mod P^I correspondiente, su model). Usa tantas filas modelo clásico	nodelo mínimo y, finalmente como precises. programa reducto	e, indica si I es mo	delo estable (
$egin{array}{c c} 1 & 1 & 0 \\ 1 & 1 & 1 \\ \hline \end{array}$ (3 pts.) Para cada mod P^I correspondiente, su model). Usa tantas filas modelo clásico	nodelo mínimo y, finalmente como precises. programa reducto	e, indica si I es mo	delo estable (
$egin{array}{c c} 1 & 1 & 0 \\ 1 & 1 & 1 \\ \hline \end{array}$ (3 pts.) Para cada mod P^I correspondiente, su model). Usa tantas filas modelo clásico	nodelo mínimo y, finalmente como precises. programa reducto	e, indica si I es mo	delo estable (
$egin{array}{c c} 1 & 1 & 0 \\ 1 & 1 & 1 \\ \hline \end{array}$ (3 pts.) Para cada mod P^I correspondiente, su model). Usa tantas filas modelo clásico	nodelo mínimo y, finalmente como precises. programa reducto	e, indica si I es mo	delo estable (
$egin{array}{c c} 1 & 1 & 0 \\ 1 & 1 & 1 \\ \hline \end{array}$ (3 pts.) Para cada mod P^I correspondiente, su model). Usa tantas filas modelo clásico	nodelo mínimo y, finalmente como precises. programa reducto	e, indica si I es mo	delo estable (

- 2) En la lista de invitados de una boda, la familia nos facilita una lista con hechos para el predicado odia(X,Y) donde X e Y son personas numeradas de 1 a n=m*c y m es el número de mesas con capacidad para c personas cada una. Queremos obtener asignaciones a mesas en las que la gente no coincida con ninguna persona a la que odie. Las soluciones deben expresarse en términos del predicado sienta(X,M), que sienta a la persona X en la mesa M.
- 2a) (3 pts.) Nos proporcionan el siguiente código ASP con algunos datos de ejemplo y la restricción principal. Completa el código para resolver correctamente el problema:

```
#const m=3.
#const c=3.
#const n=m*c.
persona(1..n).
mesa(1..m).
odia(3,5).
odia(1,9).
odia(8,9).
odia(2,4).
:- sienta(X,M), sienta(Y,M), odia(X,Y). % (*)
```

- 2b) (1 pt.) Explica al menos dos situaciones en los datos de entrada que provocarían que el problema no tenga solución.
- 2c) (1 pt.) Dados los hechos de entrada y la restricción (*) que se proporciona en el apartado 2a) ¿Cuántos casos ground (esto es, sin variables) generará la regla (*)? Razona la respuesta.