Логика высказываний.

Математическая логика делится на несколько разделов:

- 1) математическая логика(в узком смысле);
- 2) теория алгоритмов;
- 3) основание математики.

Начнем с определений:

Определение: $A n \phi a s u m$ - это определенный набор символов. Алфавит может определяться как конечный так и бесконечный. Определение: C noso - любой конкретный, конечный набор знаков. Пустое слово обозначается знаком Λ . Всего называемых объектов счетно.

Определение: *Высказывание* - это, что бывает либо истинным, либо ложным. Соответственно у любого высказывания A есть истинностное значение. Их

обохначают так: $\mathrm{H}(\mathrm{T})$ - истина, $\mathrm{\Pi}(\mathrm{F})$ - ложь. $|\mathrm{A}|=\{_F^T$

Определение: Два высказывания с одинаковым истинностным значением

называются равносильными.

Обозначение: $A \equiv B$

Определение: Закон логики - это такое утверждение, которое верно независимо

от его состава.

Логические связки

1) Одноместные

Это связка НЕ.

Обозначение: ¬

Таблица истинности этой связки такова:

 $A \neg A$

0 1

1 0

Например, $\neg \neg A = A$ - закон логики (снятие двойного отрицания)

- 2) Двуместные
- а) ...И... конъюнкция.

Обозначение: ∧ или &

б) ...ИЛИ... - дизъюнкция.

Обозначение: ∨

в) Если,...то... - импликация.

Обозначение: ⇒

Таблица истинности для этих связок такова:

A	B	A&B	$A \vee B$	$A \Rightarrow B$
0	0	0	0	1
0	1	0	1	1
1	0	0	1	0
1	1	1	1	1

Можно установить Законы де Моргана:

- 1) $\neg (A \lor B) \equiv \neg A \& \neg B$
- 2) $\neg (A \& B) \equiv \neg A \lor \neg B$

Доказываются эти законы вписыванием таблиц истинности для левой и правой части.

Также верны такие равенства:

- 3) $A \Rightarrow B \equiv \neg A \lor B$
- 4) $A \Leftrightarrow B \equiv (A \Rightarrow B) \& (B \Rightarrow A)$
- 5) $A \vee B \equiv \neg (\neg A \& \neg B)$
- 6) $A\&B \equiv \neg(\neg A \lor \neg B)$

Буквы алфавита: () ¬ & ∨

Высказывательные переменные: $A, ..., Z, A_1, ..., Z_1, ...$

Язык логики высказываний

Определение: Формулы - это выражения, построенные по следующим условиям:

- 1) Каждая высказывательная переменная есть формула.
- 2) Если α (метапеременная, значением является выражение языка объекта) есть формула, то $\neg \alpha$ формула.
- 3) Если α и β есть формула, то $(\alpha \& \beta)$, $(\alpha \lor \beta)$, $(\alpha \Rightarrow \beta)$ тоже формулы.

Теорема о главном знаке (единственность представления): Если α - формула, то верен один из пяти вариантов:

- 1) α есть высказывательная переменная;
- 2) α есть $\neg(\alpha')$, где α есть формула;
- 3) α есть $\alpha_1 \& \alpha_2$, где α_1 и α_2 формулы.
- 4) α есть $\alpha_1 \vee \alpha_2$, где α_1 и α_2 формулы.
- 5) α есть $\alpha_1 \Rightarrow \alpha_2$, где α_1 и α_2 формулы.

Доказательство: ■ Без доказательства. ▶

Определение: Формула называется безимпликативной, если она не содержит импликаций.

Определение: Формула называется нормальной, если она безимпликативна и обладает следующим свойством: за каждым знаком отрицания следует высказывательная переменная.

Теорема: Каждая формлуа может быть приведена к нормальному виду Доказательство:

✓ Уничтожим импликацию по приведенному выше равенству. Далее раскроем скобки по законам де Моргана. Видно, что так формула будет приведена к нормальному виду.

✓

Высказывание может быть представлено как функция: $I = \{ \Pi, \Pi \},$ тогда высказывание - это $f: I^n \to I.$

Рассмотрим теперь λ - обозначения:

Сдулаем это на примере функции $y + x^2$

 λxy : $y + x^2(3,5) = 3 + 5^2$

 λxy : $y + x^2(3,5) = 5 + 3^2$

 $\lambda zyuxv$: $y+x^2(3,5)$ - бессмысленно

 $\lambda zyuxv: y + x^2(3, 0, 5, 8, 11) = 0 + 8^2$

 $\lambda z t u x v$: $y + x^2(3, 0, 5, 8, 11) = y + 8^2$

Таким образом для любой формулы логики высказываний существует присоединчнная формула:

$$\lambda AB \quad A \lor B(1,1) = 1$$

Имя присоединчнной функции

Замечание: знак = означает, что слева и справа от него стоят имена одного и того же объекта.

Определение: Высказывания, которые истинны всегда называются тавтологией и обозначаются \models .

Например, $A \vee \neg A$ - тавтология.

$$\alpha \equiv \beta \iff \models (\alpha \Leftrightarrow \beta)$$

$$\models \alpha \Leftrightarrow \alpha \equiv A \vee \neg A$$

Определение: Язык называется разрешимым, если

- 1) Некоторое высказывание отмечено как истинное;
- 2) Существует алгоритм, который для любого высказывания определяет истинно оно или ложно.

Язык логики высказываний разрешим.

Всякая ли истинностная функция является присоединчнной к некоторой высказывательной формуле?

$$I = \{H, \Pi\}$$

$$f: I^n \to I.$$

Всего функций соответственно: 2^{2^n}

Определение: $(a_1,...,a_n)$ - кортеж длины n.

$$\overline{(a_1,...,a_n) \in \mathbf{M}} \Leftrightarrow \mathbf{f}(a_1,...,a_n) = \mathbf{M}.$$

$$a^e = 1 \Leftrightarrow \mathbf{a} = \mathbf{e}$$
, где $a^1 = a, a^0 = \neg a$.

$$a = 1 \Leftrightarrow a = e,$$
 где $a = a, a = a$.
 $f = \lambda a_1...a_n \bigvee_{e_1...e_n \in M} (A_1^{e_1} \& ... \& A_n^{e_n})$, если M - не пустое множество.

Если же M - пустое, то $\mathbf{f} = \lambda a_1...a_n \ A_1 \& A_n$

Таким образом каждая формула задачт функцию.

Определение: Если у двух формлу совпадают присоединчные функции, то они называются равносильными.

Определение: Конъюнкцией формул $A_1...A_n$ называют формулу $(...(A_1\&A_2)\&A_3)...\&A_n)$ и обозначают $A_1\&...\&A_n$.

Дизъюнкция n формул определяется аналогично. **Определение:** Формула, которая есть пропозициональная переменная или отрицание переменной, называется литералом.

Определение: Произвольная конъюнкция (дизъюнкция) литералов назывется конъюнктом (дизъюнктом).

Определение: Дизъюнктивной (конъюнктивной) нормальной формой (д.н.ф. (к.н.ф.)) называется произвольная дизъюнкция конъюнктов (конъюнкция дизъюнктов).

Определение: Д.н.ф(К.н.ф) называется совершенной и обозначается с.д.н.ф(с.к.н.ф.) если каждая переменная формулы А входит с отрицанием или без отрицания в каждый конъюнкт(дизъюнкт) ровно один раз.

Teopema: Каждая истинностная функция, не принимающая тождественно значение ложь ???????????????????????

Пример

```
\overline{\text{Рассмотрим }}\lambda AB A
```

Упорядоченные множества.

Определение: $x \preccurlyeq y$ ("х предшествует у") тогда и только тогда $x \leqslant y$ Свойства:

- 1) рефлексивность: $\forall x \ x \leq x$
- 2) транзитивность: $\forall x, y \ ((x \leq y) \& (y \leq z) \Rightarrow (x \leq z))$
- 3) $\forall x, y \ ((x \leq y) \& (y \leq x) \Rightarrow (x = y))$
- 4) связанность: $\forall x, y \ ((x \leq y) \lor (y \leq x))$

Определение: Множество называется линейно-упорядоченным, если на нем введено отношение, обладающее свойствами 1-4.

Бинарное отношение - свойство пары чисел.

Пример: Делимость натуральных чисел.

 $\overline{x} \leq y$ превращется в высказывание, если переменным придать фиксированные значения ("высказывательная форма").

Определение: Изоморфизм упорядоченных множеств - такое биективное отображение, при котором $x \le y \equiv \varphi(x) \le \varphi(y)$.

Для множества множеств - порядок: $A \preccurlyeq B \Leftrightarrow A \subset B$

Задача: Доказать, что любое упорядоченное множество изоморфно множеству множеств.

Определение: Отношение квазипорядка(предпорядка) называется отношение, обладающее рефлексивностью и транзитивностью.

Задача: Пусть есть квазипорядок: $a \sim b \iff a \leq b \& a \leq b$.

 $\overline{\text{Доказать}}$, что \sim - порядок.

Задача: M - квазипорядок, \sim - отношение из предыдущей задачи. Тогда возникает естественное отношение порядка на фактор множестве M/\sim .

 $A \preccurlyeq B \Leftrightarrow$

- 1) $\exists x \in A \ \exists y \in B \ x \leq y$
- 2) $\forall x \in A \ \forall y \in B \ x \leq y$

Доказать, что $1) \Leftrightarrow 2$).

Задача: α, β - формулы математической логики $\alpha \preccurlyeq \beta \Leftrightarrow \models (\alpha \Leftrightarrow \beta)$.

Доказать, что это предпорядок.

Введя отношение эквивалентности $\alpha \sim \beta \Leftrightarrow (\alpha \equiv \beta)$ получим Алгебру Линденбаума. Элементами Алгебры Линденбаума являются классы эквивалентных формул.

Обозначение: $\ddot{\mathbf{A}}$ (готическое \mathbf{A}) - элементы Алгебры Линденбаума. $\ddot{\mathbf{A}}$ & $\ddot{\mathbf{B}} := [\alpha \& \beta]$, где $\alpha \epsilon A$, $\beta \epsilon B$.

Ясно, что это определение корректно, поскольку не зависит от выбора α и β .

Пусть множество линейно упорядочено, тогда некоторые разбиения называются сечениями. Пусть $A \neq \emptyset$ $B \neq \emptyset$ $A \cap B = \emptyset$

 $M = A \bigcup B$ - разбиение на смежные файлы: A - левый(нижний) класс, B - правый(верхний) класс.

Рассмотрим названия разбиений:

- 1) Существует ли наибольший элемент в левом смежном классе?
- 2) Существует ли наименьший элемент в правом смежном классе?

І. да,да - СКАЧОК

II. да,нет - ДЕДЕКИНДОВО СЕЧЕНИЕ

III. нет,да - ДЕДЕКИНДОВО СЕЧЕНИЕ

IIII. нет,нет - ЩЕЛЬ

Заметим, что при изоморфизмах сечение переходит в сечение.

_ _