

Математические основы теории систем

Практическое занятие Свойства функций от матриц Матричная экспонента

Определение 1. Пусть

$$p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_m x^m \tag{1}$$

является многочленом скалярной переменной x, α_i - числа, $A - (n \times n)$ —матрица

Тогда

$$p(A) = \alpha_0 I + \alpha_1 A + \alpha_2 A^2 + \dots + \alpha_m A^m \tag{2}$$

называется многочленом от матрицы, соответствующим скалярному многочлену p(x) (1).

Определение 2. Если бесконечный степенной ряд скалярной переменной x сходится к некоторой функции f(x)

$$\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots = \sum_{i=0}^{\infty} \alpha_i x^i = f(x),$$
 (3)

то соответствующий ему бесконечный степенной ряд от квадратной матрицы A называется функцией данной матрицы

$$\alpha_0 I + \alpha_1 A + \alpha_2 A^2 + \dots = \sum_{i=0}^{\infty} \alpha_i A^i = f(A), \tag{4}$$

1. Матричная показательная функция

$$e^{\alpha} = 1 + \alpha + \frac{1}{2!}\alpha^2 + \frac{1}{3!}\alpha^3 + \dots = \sum_{i=0}^{\infty} \frac{1}{i!}\alpha^i$$

$$e^{A} = I + A + \frac{1}{2!}A^{2} + \frac{1}{3!}A^{3} + \dots = \sum_{i=0}^{n} \frac{1}{i!}A^{i}$$

2. Матричный косинус

$$\cos \alpha = 1 - \frac{1}{2!}\alpha^2 + \frac{1}{4!}\alpha^4 - \frac{1}{6!}\alpha^6 + \cdots$$

$$\cos A = 1 - \frac{1}{2!}A^2 + \frac{1}{4!}A^4 - \frac{1}{6!}A^6 + \cdots$$

Основные свойства функций от матриц

1) Матричная функция от матрицы f(A) сохраняет блочно-диагональную форму матрицы A (A — диагональная матрица $A = diag\{a_i\}$) , т.е.

$$f(A) = diag\{f(a_i)\}.$$

Пример 1.
$$A = \begin{bmatrix} -1 & 0 \\ 0 & -3 \end{bmatrix}$$
 $\sin(A) = \begin{bmatrix} \sin(-1) & 0 \\ 0 & \sin(-3) \end{bmatrix}$ $\cos(A) = \begin{bmatrix} \cos(-1) & 0 \\ 0 & \cos(-3) \end{bmatrix}$

Если A — не диагональная матрица, то это свойство не выполняется.

2. Матричная функция от матрицы f(A) сохраняет матричное соотношение подобия, т.е. если $B=T^{-1}AT$, то

$$f(B) = T^{-1}f(A)T.$$

- 3. Произведение матрицы и функции от нее перестановочно $A \cdot f(A) = f(A) \cdot A$
- 4. Если скалярные функции связаны каким-любо соотношением, то этими же соотношениями связаны и соответствующие функции от матриц:

$$\cos(2\,A) = 2\cos^2{({\rm A})} - {\rm I}, \qquad \sin(2\,A) = 2\sin(A)\cos(A) \ \cos^2{A} + \sin^2(A) = {\rm I} \ \sin({\rm A} \pm B) = \sin(A)\cos(B) \pm \cos({\rm A})\sin(B), \; {\rm ec}$$
ли AB=BA $\cos({\rm A} \pm B) = \cos(A)\cos(B) \mp \sin({\rm A})\sin(B), \; {\rm ec}$ ли AB=BA

Способы вычисления функций от матриц

1) Приближенный способ

$$F(A) \cong \sum_{i=0}^{m} \alpha_i A^i, m = 4 \div 6$$

Задание. Вычислите $f(A) = e^A$ для $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ приближенным способом (используйте 4 члена ряда)

$$e^A = I + A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + \cdots$$

$$A^{2} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} A^{k} = 0 \text{ k} \ge 2$$

$$f(A) = e^{\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}} = I + A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

2) Точный способ на основе собственных значений

$$A$$
 — простая матрица, λ_1 , ... , λ_n — собственные значения $\Lambda = M^{-1}AM$

где
$$\Lambda=egin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{bmatrix}$$
 , $M=[\xi_1 & \cdots & \xi_n]$ — матрица из собственных векторов.

В силу свойства 2

$$F(A) = M^{-1}F(\Lambda)M$$

Алгоритм вычисления функции от матрицы на основе собственных значений:

- Найти собственные значения матрицы $\lambda_1, \dots, \lambda_n$
- Построить диагональную матрицу Λ
- Вычислить собственные векторы матрицы и построить матрицу преобразования подобия, состоящую из собственных векторов
- 4) Воспользоваться свойством 2 и вычислить функцию от матрицы

Пример 2.
$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$
 $\sin(A) = ?$

Вычислим собственные значения: $\lambda_1 = -1$, $\lambda_2 = -2$.

$$\Lambda = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}$$

Вычисление функций от матриц

Вычислим собственные векторы:
$$\xi_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
, $\xi_2 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$.

Сформируем матрицы
$$M=\begin{bmatrix}1&1\\-1&-2\end{bmatrix}$$
 и $M^{-1}=\begin{bmatrix}2&1\\-1&-1\end{bmatrix}$.

$$f(\Lambda) = \sin(\Lambda) = \begin{bmatrix} \sin(-1) & 0 \\ 0 & \sin(-2) \end{bmatrix}$$

$$F(A) = M^{-1}F(\Lambda)M = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} \sin(-1) & 0 \\ 0 & \sin(-2) \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix} =$$

$$= \begin{bmatrix} -2\sin 1 + \sin 2 & -\sin 1 - \sin 2 \\ 2\sin 1 - 2\sin 2 & \sin 1 - 2\sin 2 \end{bmatrix}$$

Вычисление полиномов от матриц с помощью теоремы Гамильтона-Кэли

Теорема Гамильтона-Кэли. Квадратная матрица A с характеристическим полиномом

$$D(\lambda) = \det(\lambda I - A) = \lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n$$

обнуляет свой характеристический полином так, что выполняется матричное соотношение

$$D(A) = A^{n} + a_{1}A^{n-1} + \dots + a_{n-1}A + a_{n}I = 0$$

где 0 - $(n \times n)$ нулевая матрица.

Пусть
$$p(A) = \alpha_0 I + \alpha_1 A + \alpha_2 A^2 + \dots + \alpha_m A^m$$

Запишем скалярный полином, соответствующий матричному полиному

$$p(\lambda) = \alpha_0 + \alpha_1 \lambda + \alpha_2 \lambda^2 + \dots + \alpha_n \lambda^n$$

Представим
$$p(\lambda) = \varphi(\lambda)D(\lambda) + r(\lambda)$$
, где $r(\alpha) = rest \frac{p(\lambda)}{D(\lambda)}$.

Тогда

$$p(\lambda) = \varphi(\lambda)D(\lambda) + r(\lambda) = r(\lambda) \ (D(\lambda) = 0)$$

Полином от матрицы равен остатку от деления данного полинома на характеристический полином матрицы.

Пример. Для матрицы
$$D = \begin{bmatrix} 2 & 0 \\ 5 & 3 \end{bmatrix}$$
 вычислить полиномы

1)
$$p(A) = 3A^3 - 15A^2 + 18A + I$$

2)
$$p(A) = 2A^4 - 10A^3 + 13A^2 + 6I$$

Матричная экспонента

$$e^{At} = I + At + \frac{1}{2!}A^2t^2 + \frac{1}{3!}A^3t^3 + \dots = \sum_{i=0}^{n} \frac{1}{i!}A^it^i$$

A-(n imes n) —матрица, t — скалярная переменная

Свойства матричной экспоненты:

- 1. Если A = 0 или t = 0, то $e^{At} = I$
- 2. Если AB = BA, то $e^{At}e^{Bt} = e^{(A+B)t}$

В общем случае $AB \neq BA$ и $e^{At}e^{Bt} \neq e^{(A+B)t}$

3.
$$e^{At}e^{A\tau} = e^{A(t+\tau)}$$

$$4. \frac{d}{dt}e^{At} = Ae^{At} = e^{At} \cdot A$$

Матричная экспонента

Вычисление матричной экспоненты с помощью метода диагонализации (или метода собственных значений)

Применяется к матрицам простой структуры, для которых справедливо соотношение $M\Lambda = AM$

$$e^{At}=Me^{\Lambda t}M^{-1}=Mdiag\{e^{\lambda_i t},i=1\dots n\}M^{-1},$$

$$M=row\{M_i=\xi_i,i=1,\dots n\}$$

M — матрица собственных векторов матрицы A.

Матричная экспонента

Пример. Найдем
$$f(A) = e^{At}$$
 для $A = \begin{bmatrix} 4 & 1 & 0 \\ 3 & 2 & 0 \\ 2 & 3 & 4 \end{bmatrix}$.

Вычислим собственные числа: $\lambda_1 = 1, \lambda_2 = 4, \lambda_3 = 5$

Вычислим собственные векторы :
$$\xi_1 = \begin{bmatrix} 3 \\ -9 \\ 7 \end{bmatrix}$$
 , $\xi_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $\xi_2 = \begin{bmatrix} 1 \\ 1 \\ 5 \end{bmatrix}$.

Построим матрицы
$$M = \begin{bmatrix} 3 & 0 & 1 \\ -9 & 0 & 1 \\ 7 & 1 & 5 \end{bmatrix}$$
 и $M^{-1} = \begin{bmatrix} \frac{1}{12} & -\frac{1}{12} & 0 \\ \frac{13}{3} & -\frac{2}{3} & 1 \\ \frac{3}{4} & \frac{1}{4} & 0 \end{bmatrix}$.

Подставим в формулу $e^{At}=Mdiag\{e^{\lambda_i t},i=1...n\}M^{-1}$

$$e^{At} = \begin{bmatrix} 3 & 0 & 1 \\ -9 & 0 & 1 \\ 7 & 1 & 5 \end{bmatrix} \begin{bmatrix} e^{t} & 0 & 0 \\ 0 & e^{4t} & 0 \\ 0 & 0 & e^{5t} \end{bmatrix} \begin{bmatrix} \frac{1}{12} & -\frac{1}{12} & 0 \\ -\frac{13}{3} & -\frac{2}{3} & 1 \\ \frac{3}{4} & \frac{1}{4} & 0 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{e^{t} + 3e^{5t}}{4} & \frac{-e^{t} + e^{5t}}{4} & 0 \\ \frac{-3e^{t} + 3e^{5t}}{4} & \frac{3e^{t} + e^{5t}}{4} & 0 \\ \frac{7e^{t} - 52e^{4t} + 45e^{5t}}{12} & \frac{-7e^{t} - 8e^{4t} + 15e^{5t}}{12} & e^{4t} \end{bmatrix}$$

Задание. Найдите
$$f(A) = e^{At}$$
 для $A = \begin{bmatrix} 2 & -2 \\ 0 & -1 \end{bmatrix}$ методом диагонализации

Матричная экспонента. Жорданова матрица

Пример. Найдем
$$f(A) = e^{At}$$
 для $A = \begin{bmatrix} 3 & 1 \\ -1 & 1 \end{bmatrix}$

$$\lambda_1 = \lambda_2 = 2$$
 $A - 2I = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$

 $rank(A - \lambda I) = 1$ количество жордановых блоков k = n - 1 = 1

$$J = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$

$$J = T^{-1}AT$$

$$T = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} T^{-1} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$$

Матричная экспонента. Жорданова матрица

$$e^{Jt} = e^{\lambda t} \begin{pmatrix} 1 & t & \frac{t^2}{2!} & \cdots & \frac{t^{r-1}}{(r-1)!} \\ 0 & 1 & t & \cdots & \frac{t^{r-2}}{(r-2)!} \\ 0 & 0 & 1 & \cdots & \frac{t^{r-3}}{(r-3)!} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$e^{Jt} = e^{2t} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$

$$\frac{e^{At}}{1 + e^{At}} = Te^{Jt}T^{-1} = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} e^{2t} & te^{2t} \\ 0 & e^{2t} \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} (t+1)e^{2t} & te^{2t} \\ -te^{2t} & (1-t)e^{2t} \end{pmatrix}$$

Вычисление матричной экспоненты с помощью преобразования Лапласа.

- 1) Записать матрицу sI A
- 2) Вычислить резолвенту $(sI A)^{-1}$
- 3) Разложить элементы резолвенты на простейшие сомножители вида $\frac{1}{s-\alpha}$
- 4) Вычислить $e^{At} = \mathcal{L}^{-1}\{(sI A)^{-1}\}$

$$A = \begin{bmatrix} 0 & 1 \\ -10 & -7 \end{bmatrix}$$

$$sI - A = \begin{bmatrix} s & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -10 & -7 \end{bmatrix} = \begin{bmatrix} s & -1 \\ 10 & s+7 \end{bmatrix}$$

$$\frac{(sI - A)^{-1}}{(sI - A)^{-1}} = \frac{1}{s^2 + 7s + 10} \begin{bmatrix} s + 7 & 1 \\ -10 & s \end{bmatrix} = \begin{bmatrix} \frac{s + 7}{(s + 2)(s + 5)} & \frac{1}{(s + 2)(s + 5)} \\ \frac{-10}{(s + 2)(s + 5)} & \frac{s}{(s + 2)(s + 5)} \end{bmatrix}$$

Вычисляем обратное преобразование Лапласа:

$$\mathcal{L}^{-1}\left\{\frac{s+7}{(s+2)(s+5)}\right\} = \mathcal{L}^{-1}\left\{\frac{5}{3(s+2)} - \frac{2}{3(s+5)}\right\} = \frac{5}{3}e^{-2t} - \frac{2}{3}e^{-5t}$$

$$\mathcal{L}^{-1}\left\{\frac{-10}{(s+2)(s+5)}\right\} = \mathcal{L}^{-1}\left\{-\frac{10}{3(s+2)} + \frac{10}{3(s+5)}\right\} = -\frac{10}{3}e^{-2t} + \frac{10}{3}e^{-5t}$$

$$\mathcal{L}^{-1}\left\{\frac{1}{(s+2)(s+5)}\right\} = \mathcal{L}^{-1}\left\{-\frac{1}{3(s+2)} + \frac{1}{3(s+5)}\right\} = -\frac{1}{3}e^{-2t} + \frac{1}{3}e^{-5t}$$

$$\mathcal{L}^{-1}\left\{\frac{s}{(s+2)(s+5)}\right\} = \mathcal{L}^{-1}\left\{-\frac{2}{3(s+2)} + \frac{5}{3(s+5)}\right\} = -\frac{2}{3}e^{-2t} + \frac{5}{3}e^{-5t}$$

Таблица преобразований Лапласа:

Function, $f(t)$	Laplace transform, $F(s)$	Function, $f(t)$	Laplace transform, $F(s)$
1	$\frac{1}{s}$.	$e^{-at}\cos bt$	$\frac{s+a}{(s+a)^2+b^2}$
t	$\frac{1}{s^2}$	sinh bt	$\frac{b}{s^2-b^2}$
t^2	$\frac{2}{s^3}$	$\cosh bt$	$\frac{s}{s^2-b^2}$
t ⁿ	$\frac{n!}{s^{n+1}}$	$e^{-at} \sinh bt$	$\frac{b}{(s+a)^2-b^2}$
e ^{at}	$\frac{1}{s-a}$	$e^{-at}\cosh bt$	$\frac{s+a}{(s+a)^2-b^2}$
e ^{-at}	$\frac{1}{s+a}$	t sin bt	$\frac{2bs}{(s^2+b^2)^2}$
$t^n e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$	t cos bt	$\frac{s^2 - b^2}{(s^2 + b^2)^2}$
sin <i>bt</i>	$\frac{b}{s^2 + b^2}$	u(t) unit step	$\frac{1}{s}$
cos bt	$\frac{s}{s^2 + b^2}$	u(t-d)	$\frac{e^{-sd}}{s}$
$e^{-at} \sin bt$	$\frac{b}{(s+a)^2+b^2}$	$\delta(t)$	1
	$(3+a)^-+b^-$	$\delta(t-d)$	e^{-sd}

$$e^{At} = \begin{bmatrix} \frac{5}{3}e^{-2t} - \frac{2}{3}e^{-5t} & -\frac{1}{3}e^{-2t} + \frac{1}{3}e^{-5t} \\ -\frac{10}{3}e^{-2t} + \frac{10}{3}e^{-5t} & -\frac{2}{3}e^{-2t} + \frac{5}{3}e^{-5t} \end{bmatrix}$$

Задание. Найдите $f(A) = e^{At}$ для $A = \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix}$ с помощью преобразования Лапласа

$$f(A) = e^{At} = L^{-1}[sI - A]^{-1}$$

$$det(sI - A) = s^2 + 3s + 2 = (s + 1)(s + 2)$$

$$sI - A = s \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} s+3 & -1 \\ 2 & s \end{bmatrix}$$

$$Adj(sI - A)^{T} = \begin{bmatrix} s & 1 \\ -2 & s + 3 \end{bmatrix}$$

ITMO UNIVERSITY

$$F(s) = (sI - A)^{-1} = \frac{Adj(sI - A)}{det(sI - A)} = \begin{bmatrix} \frac{s}{(s+1)(s+2)} & \frac{1}{(s+1)(s+2)} \\ \frac{-2}{(s+1)(s+2)} & \frac{s+3}{(s+1)(s+2)} \end{bmatrix} =$$

$$= \begin{bmatrix} \frac{-1}{s+1} + \frac{2}{s+2} & \frac{1}{s+1} + \frac{-1}{s+2} \\ \frac{-2}{s+1} + \frac{2}{s+2} & \frac{2}{s+1} + \frac{-1}{s+2} \end{bmatrix}$$

$$f(A) = e^{At} = f(t) = \begin{bmatrix} -e^{-t} + 2e^{-2t} & e^{-t} - e^{-2t} \\ -2e^{-t} + 2e^{-2t} & 2e^{-t} - e^{-2t} \end{bmatrix}$$

№	Ориги- нал	Изображе- ние	
1	$\delta(t)$	1	
2	1	$\frac{1}{s}$	
3	t	$\frac{1}{s^2}$	
4	$(n=1, 2, \dots)$	$\frac{n!}{s^{n+1}}$	
5	e ^{-at}	$\frac{1}{s+\alpha}$	
6	t e ^{-at}	$\frac{1}{(s+\alpha)^2}$	
7	t ⁿ e ^{-at}	$\frac{1}{(s+\alpha)^{n+1}}$	

Спасибо за внимание!

www.ifmo.ru

ITSMOre than a
UNIVERSITY