Mock Exam

CSCI 127: Introduction to Computer Science Hunter College, City University of New York

December 10, 2024

Exam Rules

- Show all your work. Your grade will be based on the work shown.
- The exam is closed book and closed notes.
- When taking the exam, you may have with you pens, pencils, and an 8 1/2" x 11" piece of paper filled with notes, programs, etc.
- You may not use a computer, calculator, tablet, smartwatch, or other electronic device.
- Do not open this exam until instructed to do so.

Hunter College regards acts of academic dishonesty (e.g., plagiarism, cheating on examinations, obtaining unfair advantage, and falsification of records and official documents) as serious offenses against the values of intellectual honesty. The College is committed to enforcing the CUNY Policy on Academic Integrity and will pursue cases of academic dishonesty according to the Hunter College Academic Integrity Procedures.

I understand that all cases of academic dishonesty will be reported to the Dean of Students and
will result in sanctions.
Name:
EmpID:
Signature:

ASCII TABLE

Hex Char	,	В	q	U	p	0	ų.	6	٩		_	×	_	E	_	0	d	. o	L	S	t.	3	>	>	×	>	N	Ļ	_	_	≀	[DEL]
Hex	09	61	62	63	64	65	99	29	89	69	6A	6B	29	GD	9E	6F	70	71	72	73	74	75	9/	77	78	79	7A	78	JC	7D	7E	7F
mal																																
Decimal	96	26	86	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
Char	0																							_								
Hex C	0	۷	m	O		ш	ш	ט	Ι	_		¥	_	2	Z	0	Δ.	O	œ	S	۲	-	>	>	×	\	N	_	_		(1
	40	41	42	43	44	45	46	47	48	49	4 A	4B	4C	4D	4E	4F	20	51	52	53	54	52	26	57	28	59	5A	5B	2C	SD	2E	
Decimal																																
Dec	64	65	99	29	89	69	20	71	72	73	74	75	9/	77	78	79	80	81	82	83	84	85	98	87	88	89	90	91	92	93	94	92
Hex Char	[SPACE]		_	#	€9-	%	Š		_		*	+					0	1	2	3	4	2	9	7	8	6			٧	II	٨	c :
ex (2	m	4		0	7	m	0	 «	m	()	0		11	0	1	2	m	4	10	S	_	m	0	< ✓	m	O	Ω	ш	ш
	2(2	2	2	5	25	5	2	28	29	2	2	5	2	2	2	m	m	m	m	ň	m	m	m	ñ	m	'n	m	m	m	m	m
Decimal																																
ă	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52		54	52	26	57	28	59	09	61	62	63
		3]			SION]									- []	1]	2]	3]	4]	VLEDGE]	[E]	OCK]						3]	OR]	
		START OF HEADING	EXT]	E	END OF TRANSMISSION		DGE]			IL TAB]		AB]	1	CARRIAGE RETURN			DATA LINK ESCAPE	VTROL .	DEVICE CONTROL 2	DEVICE CONTROL 3	DEVICE CONTROL 4]	NEGATIVE ACKNOWLEI	SYNCHRONOUS IDLE]	ENG OF TRANS. BLOCK		DIUM]	ΕĴ		ATOR]	GROUP SEPARATOR]	RECORD SEPARATOR]	'ATOR]
ar	[7]	RT OF H	START OF TEXT	END OF TEXT	OF TR	ENQUIRY]	ACKNOWLEDGE	[]	BACKSPACE	HORIZONTAL TABJ	LINE FEED]	VERTICAL TAB	FORM FEED]	RIAGE	SHIFT OUT]	SHIFT IN]	A LINK I	DEVICE CONTROL	ICE COI	ICE COI	ICE COI	ATIVE A	CHRON	OF TR	CANCEL]	END OF MEDIUM]	SUBSTITUTE	ESCAPE]	FILE SEPARATOR	UP SEP	ORD SE	UNIT SEPARATOR
Hex Char	[NULL]	[STA	[STA	[END	[END	[ENC	[ACK	[BELL]	[BAC	[HOF	[LINE	[VER	[FOR	[CAR	[SHIF	[SHIF	[DAT	[DEV	[DEV	[DEV	[DEV	[NEG	[SYN	[ENG	[CAN	[END	[SUB	[ESC	[FILE	[GRC	[REC	[UN]
Hex	0	1	7	m	4	2	9	7	œ	6	⋖	В	O	Δ	ш	ш	10	11	12	13	14	15	16	17	18	19	14	18	1C	1D	1E	11
mal																																
Decimal	0	1	2	ω	4	2	9	7	œ	6	10	11	12	13	14	15	16	17	18	19	50	21	22	23	24	25	56	27	28	29	30	31
_	1		•	. ,	•		_	•		3,								•			•	•	. •	•	•	•	. •	•	•	• •		

(Image from wikipedia commons)

1.	(a) What will the following Python code print? Note that each section is run sequentially,
	so the commands from part i will affect part ii and so on.

i. apples = "Honeycrisp;Pink Lady"
 print(apples.find(";"))

Output:

ii. apples += ";Gala"
 aList = apples.split(";")
 print(len(aList))

Output:

iii. low = aList[1].lower()
 print(ord(low[0]))

Output:

for apple in aList:
iv. print(apple.count("a"))

Output:

(b) Consider the contents of the current directory, /Users/John:

bison.csv lion.txt parrot.csv zebra.py zoo

Note that each section is run sequentially, so the commands from part i will affect part ii and so on.

i. What is the output for:

Output:

\$ ls *on*

ii. What is the output for:

\$ mv *.csv ./zoo

\$ ls

Output:

iii. What is the output for:

\$ cd ./zoo

\$ pwd

Output:

2. Complete the Python program below that creates a topographic map. Your program should first ask the user for the amount of red.

The pixels of the image should be colored as follows:

If the elevation is less than or equal to 0, color the pixel the amount of red the user specified.

If the elevation is divisible by 5, color the pixel black.

Otherwise, the pixel should be colored white.

The resulting image should be displayed to the user after all the pixels are colored.

```
import numpy as np
import matplotlib.pyplot as plt
elevations = np.loadtxt("elevationsNYC.txt")
mapShape = elevations.shape + (3,)
topoMap = np.zeros(mapShape)
#YOUR CODE HERE
```

3.	(a) Select the correct option.
	i. What color is tina after this command? tina.color("#0000DD") \Box green \Box gray \Box white \Box red \Box blue
	ii. Select the LARGEST binary number: $ \square \ 1011 \qquad \square \ 1000 \qquad \square \ 0111 \qquad \square \ 0010 \qquad \square \ 1001$
	iii. Select the SMALLEST hexadecimal number: $ \square \ 96 \qquad \square \ 8A \qquad \square \ 9F \qquad \square \ AD \qquad \square \ CE$
	iv. What is the binary number equivalent to the decimal number 20? \Box 01011 \Box 10010 \Box 11100 \Box 10111 \Box 10011
	v. What is the hexadecimal number equivalent to the decimal number 60? \Box 34 \Box 32 \Box 2C \Box 3D
	(b) i. What is the value (True/False):
	<pre>in1 = True A. in2 = False out = (not (in1 and in2)) and in2</pre>
	in1 = True
	B. in2 = False out = out
	in1 = True $C. in2$ = False or $in1$ $in3$ = ($in1$ and $in2$) or True $out =$

out = in2 and not in3

Write a logical expression equivalent to the circuit above.

out =

(d) Design a circuit that implements the logical expression:

out = (in1 and not(in2 or in3)) and (in3)

4. Write a Python program to make a turtle walk 100 times. Each "walk" is 30 steps forward. The turtle should turn left 0, 10, 20, ..., 350 degrees (chosen randomly) at the beginning of each walk.

5. Consider the following dataset:

Temperature	Luminosity	Radius	Absolute magnitude	Star type	Star color	Spectral class
3068	0.0024	0.17	16.12	Brown Dwarf	Red	M
3042	0.0005	0.1542	16.6	Brown Dwarf	Red	M
2600	0.0003	0.102	18.7	Brown Dwarf	Red	М

Assume this data is stored in stars.csv

(a) Write a Python program that finds the hottest star in the dataset and prints its temperature in Fahrenheit. The temperature data is originally in Kelvin. The formula to convert Kelvin to Fahrenheit is $F = \frac{9}{5}(K - 273.15) + 32$, where K is the degrees in Kelvin and F is the degrees in Fahrenheit.

(b) Write a Python program that prints the average luminosity of the "Supergiant" star type.

6. Consider the following main function: import matplotlib.pyplot as plt import numpy as np def main(): blueImg = makeBlue(10,20) plt.imshow(blueImg) plt.show() Define the function below: def makeBlue(height, width): Takes in two integers as input, creates an all-blue image with the given dimensions, and then returns the image

EmpID:

7. Write a complete Python program that asks the user for the name of an image file and prints the number of pixels that are mostly purple in that image. A pixel is mostly purple if the amount of red and blue are both above 0.75 and the amount of green is below 0.25.

8. (a) Consider the following MIPS program:

ADDI \$s1, \$zero, 300 ADD \$s2, \$s1, \$s1 ADDI \$s2, \$s2, 10 ADDI \$s3, \$s2, 50

After the program runs, what is the value stored in:

i.	register \$s1

ii. register \$s2

iii. register \$s3

What is the output for a run of this MIPS program:

Output:		

#Loop through six letters: ADDI \$sp, \$sp, -7 ADDI \$t0, \$zero, 70 ADDI \$s2, \$zero, 76 SETUP: SB \$t0, 0(\$sp) ADDI \$sp, \$sp, 1 ADDI \$t0, \$t0, 1

Set up stack # Start \$t0 at 70 (F)

Use to test when you reach 76 (L) # Next letter in \$t0

BEQ \$t0, \$s2, DONE J SETUP

Increment the stack # Increment the letter

Jump to done if \$t0 == 76# If not, jump back to SETUP for loop

Null (0) to terminate string DONE: ADDI \$t0, \$zero, 0 SB \$t0, 0(\$sp) # Add null to stack

ADDI \$sp, \$sp, -6 # Set up stack to print ADDI \$v0, \$zero, 4 # 4 is for print string

ADDI \$a0, \$sp, 0 # Set \$a0 to stack pointer for printing syscall

print to the log

9. Translate the following Python program into a complete C++ program:

```
start,end = (0,0)
while start >= end:
    start = int(input("Enter a number:"))
    end = int(input("Enter a number:"))
while start < end:
    print(start)
    start += 1</pre>
```

10. Write a complete C++ program that prints the first 10 numbers of the Fibonacci sequence using a for-loop. Use the following pseudocode to implement your main function:

```
    Declare three integers: a, b, and c. Initialize a to 0 and b to 1.
    Print out a and then b, separated by newline characters
    For i = 2, 3, 4, ..., 9:
        c = a + b
        Print c followed by a newline
        a = b
        b = c
```