PAT-NO: DE019818444A1

DOCUMENT-IDENTIFIER: DE 19818444 A1

TITLE: Focusing lens system and projection illumination

system

PUBN-DATE: October 29, 1998

INVENTOR-INFORMATION:

NAME COUNTRY

YAMAGUCHI, KOTARO JP HAYASHI, KIYOSHI JP TAKAHASHI, TOMOWAKI JP

ASSIGNEE-INFORMATION:

NAME COUNTRY

NIPPON KOGAKU KK JP

APPL-NO: DE19818444

APPL-DATE: April 24, 1998

PRIORITY-DATA: JP12345697A (April 25, 1997)

INT-CL (IPC): G02B013/18;G03B027/32

EUR-CL (EPC): G03F007/20; G02B013/18

ABSTRACT:

CHG DATE=19990905 STATUS=C>The focusing system includes six lens groups

comprising a first group (G1) with a positive refractive index; a second lens

group (G2) with a negative refractive index; a third lens group (G3) comprising

at least three lenses with positive refractive index and having an overall

positive refractive index; a fourth lens group (G4)

comprising at least three

lenses with negative refractive index and having an overall negative refractive

index; a fifth lens group (G5) comprising at least three

lenses with positive refractive index and having an overall positive refractive index; and a sixth lens group (G6) with a positive refractive index. At least one lens component of the fourth or fifth group has at least one aspheric surface. Also claimed is a projection lens arrangement with mask, lighting source, and workpiece holder.

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENTAMT

[®] Off nl gungsschrift

DE 198 18 444 A 1

(7) Aktenzeichen: 198 18 444.1 24. 4.98 ② Anmeldetag:

(3) Offenlegungstag: 29. 10. 98 (f) Int. Cl.⁶: G 02 B 13/18 G 03 B 27/32

③ Unionspriorität:

9-123456

25. 04. 97 JP

(7) Anmelder:

Nikon Corp., Tokio/Tokyo, JP

(74) Vertreter:

Viering, Jentschura & Partner, 80538 München

② Erfinder:

Yamaguchi, Kotaro, Tokio/Tokyo, JP; Hayashi, Kiyoshi, Tokio/Tokyo, JP; Takahashi, Tomowaki, Tokio/Tokyo, JP

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Abbildungsoptik, Projektionsoptikvorrichtung und Projektionsbelichtungsverfahren
- Abbildungsoptik, insbesondere eine dioptrische Hochleistungs-Verkleinerungs-Optikvorrichtung, sowie eine Projektionsoptikvorrichtung und ein Projektions-Belichtungsverfahren, bei dem diese verwendet werden. Die Abbildungsoptik weist sechs Linsengruppen auf und hat eine Anordnung mit positivem, negativem, positivem, negativem, positivem Brechwert. Die dritte und fünfte Linsengruppe hat jeweils einen insgesamt positiven Brechwert und weist mindestens drei Linsenbauteile mit positivem Brechwert auf. Die vierte Linsengruppe hat insgesamt einen negativen Brechwert und weist mindestens drei Linsenbauteile mit negativem Brechwert auf. Mindestens ein Linsenbauteil entweder in der vierten oder in der fünften Linsengruppe weist mindestens eine asphärische Oberfläche auf. Die Abbildungsoptik erfüllt vorzugsweise mindestens eine aus einer Anzahl von Konstruktionsbedingungen.

Beschreibung

Die Erfindung betrifft eine Abbildungsoptik und eine Projektionsoptikvorrichtung, insbesondere eine dioptrische Hochleistungs-Verkleinerungs-Abbildungsoptik, sowie ein Projektionsbelichtungsverfahren, bei dem diese verwendet werden.

Da der Maßstab der Integrierung (d. h. die Mikrominiaturisierung) von integrierten Schaltkreisen und anderen elektronischen Vorrichtungen (z. B. Flüssigkristallanzeigen) zunimmt, sind die Leistungsanforderungen an Projektionsoptikvorrichtungen größer geworden. Der bevorzugte Weg, diesen Anforderungen gerecht zu werden, besteht darin, die numerische Apertur der Abbildungsoptik (des Abbildungsoptiksystems) zu erhöhen und die Wellenlänge des in der Projektionsoptikvorrichtung verwendeten Lichts zu verringern.

Das vergrößern der numerischen Apertur der Abbildungsoptik stellt wegen der Schwierigkeit, Aberrationen zu korrigieren, eine große Herausforderung bei der Linsengestaltung dar, insbesondere wenn die Belichtungsfläche relativ groß sein muß. Ein Weg, das geeignete Ausmaß an Aberrationskorrektur zu erreichen besteht in der Verwendung von asphärischen Linsenbauteile. Asphärische Linsenbauteile führen außerdem zu einer Reduzierung der Anzahl der Linsenbauteile in der Abbildungsoptik, wodurch die Transmission erhöht und die Linse leichter gemacht wird. Die in den Patentanmeldungen JP 1-315709, JP 5-34593 und 7-128592 offenbarten Aaen verwenden asphärische Oberflächen, die numerische Apertur und die Belichtungsfläche sind jedoch nicht ausreichend groß.

Die Erfindung betrifft eine Abbildungsoptik, insbesondere eine dioptrische Hochleistungs-Verkleinerungs-Abbildungsoptik, sowie ein Projektionsbelichtungsverfahren, bei dem diese verwendet wird.

Gemäß einem Aspekt der Erfindung wird eine Abbildungsoptik vorgeschlagen, die eine Objektebene und eine Bildebene hat und die vom Objekt zum Bild sechs Linsengruppen aufweist. Die erste Linsengruppe hat einen positiven
Brechwert. Die zweite Linsengruppe hat einen negativen Brechwert. Die dritte Linsengruppe hat einen positiven Brechwert und weist mindestens drei Linsenbauteile mit positivem Brechwert auf. Die vierte Linsengruppe hat insgesamt einen negativen Brechwert und weist mindestens drei Linsenbauteile mit negativem Brechwert auf. Die fünfte Linsengruppe hat einen positiven Brechwert und weist mindestens drei Linsenbauteile mit positivem Brechwert auf. Die sechste Linsengruppe hat einen positiven Brechwert. Ferner weist mindestens ein Linsenbauteil entweder in der vierten oder
in der fünften Linsengruppe mindestens eine asphärische Oberfläche auf.

Gemäß einem weiteren Aspekt der Erfindung erfüllt die oben beschriebene Abbildungsoptik eine oder mehrere der folgenden Bedingungen:

 $\begin{array}{l} 0,1 < f_1/f_3 < 15 \\ 0,05 < f_2/f_4 < 6 \\ 0,01 < f_5/L < 1,2 \\ 0,02 < f_6/L < 1,8 \\ -0,3 < f_4/L < -0,005 \\ -0,5 < f_2/L < -0,005. \end{array}$

30

45

Gemäß einem anderen Aspekt der Erfindung wird eine Projektionsoptikvorrichtung geschaffen, die eine oben beschriebene Abbildungsoptik aufweist. Die Projektionsoptikvorrichtung weist ferner einen Maskenhalter auf, von dem eine Maske (Schablone, Zielmarkierung, reticle) in der oder nahe der Objektebene der Abbildungsoptik haltbar ist. Eine Beleuchtungsquelle ist dem Maskenhalter benachbart auf der der Abbildungsoptik abgewandten Seite angeordnet. Die Projektionsoptikvorrichtung weist ferner einen Werkstückhalter auf, der benachbart der Abbildungsoptik an deren der Bildebene zugewandter Seite angeordnet ist. Der Werkstückhalter ist derart ausgebildet, daß davon ein Werkstück in der oder nahe der Bildebene der Abbildungsoptik haltbar ist.

Die Erfindung wird unter Bezugnahme auf die Zeichnung beschrieben. In der Zeichnung ist:

Fig. 1 eine schematische Darstellung einer Projektionsoptikvorrichtung;

Fig. 2 eine optische Darstellung einer ersten Ausführungsform der Erfindung;

Fig. 3a-3d Kurvendarstellungen der seitlichen chromatischen Aberration (tangential und sagittal) bei unterschiedlichen Feldhöhen Y für die erste Ausführungsform der Erfindung;

Fig. 3e-3g Kurvendarstellungen der sphärischen Aberration, des Astigmatismus bzw. der Verzeichnung für die erste Ausführungsform der Erfindung;

Fig. 4 eine optische Darstellung einer zweiten Ausführungsform der Erfindung;

Fig. 5a-5d Kurvendarstellungen der seitlichen chromatischen Aberration (tangential und sagittal) bei unterschiedlichen Feldhöhen Y für die zweite Ausführungsform der Erfindung;

5 Fig. 5e-5g Kurvendarstellungen der sphärischen Aberration, des Astigmatismus bzw. der Verzeichnung für die zweite Ausführungsform der Erfindung;

Fig. 6 eine optische Darstellung einer dritten Ausführungsform der Erfindung;

Fig. 7a-7d Kurvendarstellungen der seitlichen chromatischen Aberration (tangential und sagittal) bei unterschiedlichen Feldhöhen Y für die dritte Ausführungsform der Erfindung;

60 Fig. 7e-7g Kurvendarstellungen der sphärischen Aberration, des Astigmatismus bzw. der Verzeichnung für die dritte Ausführungsform der Erfindung;

Fig. 8 eine optische Darstellung einer vierten Ausführungsform der Erfindung;

Fig. 9a-9d Kurvendarstellungen der seitlichen chromatischen Aberration (tangential und sagittal) bei unterschiedlichen Feldhöhen Y für die vierte Ausführungsform der Erfindung;

Fig. 9e-9g Kurvendarstellungen der sphärischen Aberration, des Astigmatismus bzw. der Verzeichnung für die vierte Ausführungsform der Erfindung;

Fig. 10 eine optische Darstellung einer fünften Ausführungsform der Erfindung;

Fig. 11a-11d Kurvendarstellungen der seitlichen chromatischen Aberration (tangential und sagittal) bei unterschied-

lichen Feldhöhen Y für die fünfte Ausführungsform der Erfindung;

Fig. 11e-11g Kurvendarstellungen der sphärischen Aberration, des Astigmatismus bzw. der Verzeichnung für die fünfte Ausführungsform der Erfindung;

Fig. 12 eine optische Darstellung einer sechsten Ausführungsform der Erfindung;

Fig. 13a-13d Kurvendarstellungen der seitlichen chromatischen Aberration (tangential und sagittal) bei unterschiedlichen Feldhöhen Y für die sechste Ausführungsform der Erfindung;

Fig. 13e-13h Kurvendarstellungen der sphärischen Aberration, des Astigmatismus bzw. der Verzeichnung für die sechste Ausführungsform der Erfindung;

Fig. 14 eine optische Darstellung einer siebten Ausführungsform der Erfindung;

Fig. 15a-15d Kurvendarstellungen der seitlichen chromatischen Aberration (tangential und sagittal) bei unterschiedlichen Feldhöhen Y für die siebte Ausführungsform der Erfindung;

Fig. 15e-15h Kurvendarstellungen der sphärischen Aberration, des Astigmatismus bzw. der Verzeichnung für die siebte Ausführungsform der Erfindung;

Fig. 16 eine optische Darstellung einer achten Ausführungsform der Erfindung;

Fig. 17a-17d Kurvendarstellungen der seitlichen chromatischen Aberration (tangential und sagittal) bei unterschiedlichen Feldhöhen Y für die achte Ausführungsform der Erfindung;

Fig. 17e-17h Kurvendarstellungen der sphärischen Aberration, des Astigmatismus bzw. der Verzeichnung für die achte Ausführungsform der Erfindung;

Fig. 18 eine optische Darstellung einer neunten Ausführungsform der Erfindung;

Fig. 19a-19d Kurvendarstellungen der seitlichen chromatischen Aberration (tangential und sagittal) bei unterschiedlichen Feldhöhen Y für die neunte Ausführungsform der Erfindung; und

Fig. 19e-19h Kurvendarstellungen der sphärischen Aberration, des Astigmatismus bzw. der Verzeichnung für die neunte Ausführungsform der Erfindung.

Die Erfindung betrifft eine Abbildungsoptik und eine Projektionsoptikvorrichtung sowie ein diese verwendendes Projektionsbelichtungsverfahren, und insbesondere eine dioptrische Hochleistungs- Verkleinerungs- Abbildungsoptik geeignet für ultraviolette und tief-ultraviolette Photolithographie, sowie eine diese verwendende Projektionsoptikvorrichtung und ein Projektionsbelichtungsverfahren.

Es wird Bezug auf Fig. 1 genommen. Eine Projektionsoptikvorrichtung 10 weist eine Abbildungsoptik PL mit einer Objektebene 12, einer Bildebene 14, einer optischen Achse 16 und eine Aperturblende AS auf. Eine Maske B ist in der oder nahe der Objektebene 12 angeordnet. Die Maske B ist typischerweise ein transparentes Substrat, wie etwa Quarzglas, und weist kleine Markierungen auf (d. h. im Mikrometer- oder Sub-Mikrometer-Bereich). Die Maske B wird von einem Maskenhalter RS in Position gehalten bzw. in die Position in der oder nahe der Objektebene bewegt. Auf der optischen Achse 16 ist benachbart der Maske B auf der der Abbildungsoptik PL abgewandten Seite eine Beleuchtungsvorrichtung IS angeordnet. Das Beleuchtungssystem IS ist derart gestaltet, daß es gleichmäßig die Maske B beleuchten kann und bei entfernter Maske ein Quellbild an der Aperturblende AS bildet (d. h. Kohler Beleuchtung). Ein Werkstück W, wie etwa ein mit Photoresist beschichteter Siliziumwafer ist auf der optischen Achse 16 in der oder nahe der Bildebene 14 angeordnet. Das Werkstück W wird von einem Werkstückhalter WS in Position gehalten bzw. in die Position bewegt.

Um das Werkstück W mit der Projektionsoptikvorrichtung 10 mit Mustern zu versehen, werden die Maske B und das Werkstück W mittels des Maskenhalters RS bzw. des Werkstückhalters WS in eine exakt zueinander ausgerichtete Anordnung bewegt. Die Maske B wird dann von der Beleuchtungsvorrichtung IS für eine bestimmte Zeitspanne beleuchtet. Eine Bild der Maskenmarkierungen wird über die Abbildungsoptik PL auf einem Belichtungsfeld EF auf das Werkstück W projiziert. Der Werkstückhalter WS wird dann um ein Inkrement bewegt und eine weitere Belichtung des Werkstücks W wird ausgeführt. Dieser Ablauf wird wiederholt, bis eine gewünschte Fläche des Werkstücks W belichtet ist.

Kern der Projektionsoptikvorrichtung 10 ist die Abbildungsoptik PL. Es wird Bezug auf Fig. 2 genommen, aus der ein Beispiel für eine Abbildungsoptik 20 ersichtlich ist. Die erfindungsgemäße Abbildungsoptik weist von der Objektebene zur Bildebene eine erste Linsengruppe G1 mit einem positiven Brechwert, eine zweite Linsengruppe G2 mit einem negativen Brechwert, eine dritte Linsengruppe G3 mit einem positiven Brechwert, eine vierte Linsengruppe G4 mit einem negativen Brechwert, eine fünfte Linsengruppe G5 mit einem positiven Brechwert und eine sechste Linsengruppe G6 mit einem positiven Brechwert auf.

Die erste Linsengruppe G1 trägt hauptsächlich zu der Korrektur von Verzeichnung bei, während Telezentrie aufrechterhalten wird. Die erste Linsengruppe G1 korrigiert ferner die negative Verzeichnung, die von den Linsengruppen erzeugt wird. Die zweite Linsengruppe G2 und die dritte Linsengruppe G3 bilden ein Umkehr-Teleobjektiv-System und tragen zu einer Verkürzung der Gesamtlänge der Abbildungsoptik bei. Die Erfindung verwendet ferner in der dritten Linsengruppe G3 drei oder mehr Linsen mit einem positiven Brechwert, um einen von der dritten Linsengruppe G3 erzeugten Asymmetriefehler (Koma, coma) zu berichtigen.

55

Ferner tragen die zweite Linsengruppe G2 und die vierte Linsengruppe G4 hauptsächlich zu der Korrektur der Petzval-Summe (Petzval-Krümmung) bei und bewirken dadurch eine Abflachung der Bildebene. Insbesondere werden in der vierten Linsengruppe G4 drei oder mehr Linsen mit einem negativen Brechwert verwendet, so daß die Petzval-Summe null erreicht. Die fünfte Linsengruppe G5 und die sechste Linsengruppe G6 korrigieren die negative Verzeichnung und tragen dazu bei, die von der vergrößerten numerischen Apertur auf der Bildebenenseite herrührende sphärische Aberration zu korrigieren. In der fünften Linsengruppe G5 werden zum Korrigieren der sphärischen Aberration drei oder mehr Linsen mit positivem Brechwert verwendet.

Ferner können erfindungsgemäß Aberrationen bezüglich des Feldwinkels, die bei optischen Systemen mit großer numerischer Apertur, die nur sphärische Linsen aufweisen, problematisch werden können (insbesondere Koma in sagittaler Richtung), korrigiert werden, indem in der vierte Linsengruppe G4 eine asphärische Oberfläche vorgesehen wird. Insbesondere wird es bevorzugt, eine asphärische konkave Oberfläche vorzusehen, die den Brechwert des einzelnen Linsenbauteils in der Nähe der optischen Achse abschwächt.

Ferner können durch Vorsehen einer asphärischen Oberfläche in der fünften Linsengruppe G5 große mit der numeri-

schen Apertur zusammenhängende Aberrationen, insbesondere sphärische Aberrationen höherer Ordnung, korrigiert werden. Das gleiche Ergebnis wird durch die Verwendung einer asphärischen Oberfläche in der vierten Linsengruppe G4 erreicht, falls die Oberfläche nah genug an der Bildebene ist. Falls in diesem Fall die asphärische Oberfläche eine konvexe Oberfläche ist, schwächt sie den Brechwert des einzelnen Linsenbauteils in der Nähe der optischen Achse 16 ab. Falls die asphärische Oberfläche konkav ist, verstärkt sie den Brechwert des einzelnen Linsenbauteils in der Nähe der optischen Achse 16. Mit anderen Worten wird es, damit die erfindungsgemäße Abbildungsoptik eine große numerische Apertur und einen großen Belichtungsbereich hat, im Hinblick auf die Aberrationskorrektur bevorzugt, daß zumindest ein Linsenbauteil entweder in der vierten Linsengruppe G4 oder in der fünsten Linsengruppe G5 mindestens eine asphärische Oberfläche aufweist.

Ferner wird eine wirksame Aberrationskorrektur erreicht, selbst wenn eine asphärische Oberfläche in einer anderen Linsengruppe als der vierten Linsengruppe G4 oder der fünften Linsengruppe G5 vorgesehen ist. Zum Beispiel kann Verzeichnung korrigiert werden, indem eine asphärische Oberfläche in der ersten Linsengruppe G1 vorgesehen ist. Außerdem können Eintrittspupillen-Aberrationen (d. h. Schwankungen der Eintrittspupillenposition in Funktion Bildhöhe) vermindert werden, indem eine asphärische Oberfläche (Linsenfläche) in der zweiten Linsengruppe G2 vorgesehen ist. Ferner kann Koma korrigiert werden, indem eine asphärische Oberfläche in der dritten Linsengruppe G3 oder in der sechsten Linsengruppe G6 vorgesehen ist. Selbst wenn einige der Optikbauteile der oben beschriebenen Linsengruppen keinen Brechwert haben, z. B. parallele Platten sind, kann eine befriedigende Aberrationskorrektur erreicht werden, indem diese asphärisch gestaltet werden.

Erfindungsgemäß werden bevorzugt eine oder mehrere der folgenden Konstruktionsbedingungen eingehalten:

 $0.1 < f_1/f_3 < 15$ (1)

 $0.05 < f_2/f_4 < 6$ (2)

25 $0.01 < f_5/L < 1.2$ (3)

 $0.02 < f_6/L < 1.8$ (4)

wobei f₁ die Brennweite der ersten Linsengruppe ist, f₂ die Brennweite der zweiten Linsengruppe ist, f₃ die Brennweite der dritten Linsengruppe ist, f₄ die Brennweite der vierten Linsengruppe ist, f₅ die Brennweite der fünsten Linsengruppe ist, f₆ die Brennweite der sechsten Linsengruppe ist, und L der Abstand von der Objektebene 12 zu der Bildebene 14, d. h. die Gesamtlänge ist (vgl. z. B. Fig. 2).

Bedingung (1) setzt das optimale Verhältnis der Brennweite f₁ der ersten Linsengruppe G1 zu der Brennweite f₃ der dritten Linsengruppe G3 fest. Diese Bedingung dient hauptsächlich dem Zweck des Ausgleichens von Verzeichnung. Falls f₁/f₂ in der Bedingung (1) unter den unteren Grenzwert fällt, wird infolge der relativen Abschwächung der Brechzahl der dritten Linsengruppe G3 im Verhältnis zu der Brechzahl der ersten Linsengruppe G1 eine starke negative Verzeichnung erzeugt. Ferner wird, falls f₁/f₂ in der Bedingung (1) den oberen Grenzwert übersteigt, infolge der relativen Abschwächung der Brechzahl der ersten Linsengruppe G3 eine starke negative Verzeichnung erzeugt.

Bedingung (2) setzt das optimale Verhältnis der Brennweite f₂ der zweiten Linsengruppe G2 mit einem negativen Brechwert zu der Brennweite f₄ der vierten Linsengruppe G4 mit einem negativen Brechwert fest. Diese Bedingung dient hauptsächlich dem Zweck des Reduzierens der Petzval-Summe (nahezu auf null). Falls f₂/f₄ in der Bedingung (2) unter den unteren Grenzwert fällt, wird infolge der relativen Abschwächung der Brechzahl der vierten Linsengruppe G4 im Verhältnis zu der Brechzahl der zweiten Linsengruppe G2 eine große positive Petzval-Summe erzeugt. Ferner wird, falls f₂/f₄ in der Bedingung (2) den oberen Grenzwert übersteigt, infolge der relativen Abschwächung der Brechzahl der zweiten Linsengruppe G2 im Verhältnis zu der Brechzahl der vierten Linsengruppe G4 eine große positive Petzval-Summe erzeugt.

Bedingung (3) setzt den optimalen Brechwert der fünften Linsengruppe G5 fest. Diese Bedingung dient dem Zweck der Korrektur von sphärischer Aberration, Verzeichnung und Petzval-Summe, während eine große numerische Apertur aufrechterhalten wird. Falls f₃/L in der Bedingung (3) unter den unteren Grenzwert fällt, wird der Brechwert der fünften Linsengruppe G5 extrem groß. Dies führt dazu, daß eine negative Verzeichnung und ein großes Maß an negativer sphärischer Aberration erzeugt werden. Falls f₃/L in der Bedingung (3) den oberen Grenzwert übersteigt, wird der Brechwert der fünften Linsengruppe G5 extrem gering. Infolgedessen wird der Brechwert der vierten Linsengruppe G4 abgeschwächt und die Petzval-Summe bleibt groß.

Bedingung (4) setzt den optimalen Brechwert der sechsten Linsengruppe G6 fest. Diese Bedingung dient dem Zweck des Unterdrückens der Erzeugung sphärischer Aberration höherer Ordnung und negativer Verzeichnung, während eine große numerische Apertur aufrechterhalten wird. Falls f₆/L in der Bedingung (4) unter den unteren Grenzwert fällt, wird eine große negative Verzeichnung erzeugt. Falls f₆/L in der Bedingung (4) den oberen Grenzwert übersteigt, wird in nicht wünschenswertem Ausmaß eine sphärische Aberration höherer Ordnung erzeugt.

Ferner erfüllt vorzugsweise die vierte Linsengruppe G4 die folgende Bedingung:

 $-0.3 < f_4/L < -0.005$ (5)

60

Bedingung (5) setzt den optimalen Brechwert der vierten Linsengruppe G4 fest. Falls f₄/L in der Bedingung (5) unter den unteren Grenzwert fällt, wird die Korrektur sphärischer Aberration schwierig. Falls f₄/L in der Bedingung (5) den oberen Grenzwert übersteigt, wird in nicht wünschenswertem Ausmaß Koma erzeugt. Um die Korrektur der sphärischen Aberration und der Petzval-Summe sicherzustellen, wird der untere Grenzwert der Bedingung (5) vorzugsweise auf -0,078 festgesetzt. Um die Erzeugung von Koma zu unterdrücken, wird ferner vorzugsweise der obere Grenzwert der

Bedingung (5) auf -0,047 festgesetzt.

Ferner erfüllt vorzugsweise die zweite Linsengruppe G2 die folgende Bedingung:

 $-0.5 < f_2/L < -0.005$ (6)

Bedingung (6) setzt den optimalen Brechwert der zweiten Linsengruppe G2 fest. Falls f₂/L in der Bedingung (6) unter den unteren Grenzwert fällt, nimmt die Petzval-Summe einen hohen positiven Wert an. Falls f₂/L in der Bedingung (6) den oberen Grenzwert übersteigt, kommt es zu einer negativen Verzeichnung. Um die Korrektur der Petzval-Summe noch stärker sicherzustellen, wird der untere Grenzwert der Bedingung (6) vorzugsweise auf –0,16 festgesetzt. Um die Erzeugung von negativer Verzeichnung und Koma zu unterdrücken, wird ferner vorzugsweise der obere Grenzwert der Bedingung (6) auf –0,0710 festgesetzt.

5

20

25

35

Um die Petzval-Summe und die Verzeichnung zu korrigieren, weist ferner vorzugsweise die zweite Linsengruppe G2 drei Linsen auf, die jeweils einen negativen Brechwert aufweisen, und wird die folgende Bedingung erfüllt:

 $-0.3 < f_2 n/L < 0.01$ (7)

wobei f2n die zusammengesetzte Brennweite von der dritten Linse L23 bis zu der fünften Linse L25 in der zweiten Linsengruppe G2 ist (vgl. Fig. 2). Falls f_2n/L in der Bedingung (7) unter den unteren Grenzwert fällt, nimmt die Petzval-Summe einen hohen positiven Wert an. Falls f_2n/L in der Bedingung (7) den oberen Grenzwert übersteigt, kommt es zu einer negativen Verzeichnung.

Ferner weist vorzugsweise die fünfte Linsengruppe G5 ein Negativ-Meniskus-Linsenbauteil auf, das folgende Bedingung erfüllt:

 $0.1 < R_5 nVL < 0.5$ (8)

wobei R5n der Krümmungsradius der konkaven Oberfläche der Negativ-Meniskus-Linse L54 in der fünften Linsengruppe G5 ist (vgl. Fig. 2). Indem mindestens ein Linsenbauteil mit negativem Meniskus in der fünften Linsengruppe G5 vorgesehen ist, können sphärische Aberrationen höherer Ordnung, die mit einer großen numerischen Apertur verbunden sind, korrigiert werden. Falls [R5nVL] in der Bedingung (8) unter den unteren Grenzwert fällt, kommt es in großem Maß zur "überkorrigierenden" sphärischen Aberration. Falls [R5nVL] in der Bedingung (8) den oberen Grenzwert übersteigt, kommt es in großem Maß zu einer "unterkorrigierenden" sphärischen Aberration. Um die Korrektur von sphärischer Aberration sicherzustellen, wird bevorzugt der obere Grenzwert der Bedingung (8) auf 0,3 festgesetzt und der untere Grenzwert der Bedingung (8) auf 0,15 festgesetzt.

Ferner weist vorzugsweise die sechste Linsengruppe G6 ein Negativ-Meniskus-Linsenbauteil auf, das folgende Bedingung erfüllt:

 $0.03 < IR_{6}nVL < 0.15$ (9)

wobei R6n der Krümmungsradius der konkaven Oberfläche der Negativ-Meniskus-Linse L62 in der sechsten Linsengruppe G6 ist (vgl. Fig. 2). Indem mindestens eine Linse mit negativem Meniskus in der sechsten Linsengruppe G6 vorgesehen ist, können negative sphärische Aberrationen und negative Verzeichnung, die von der positiven Linse L63 in der sechsten Linsengruppe G6 erzeugt werden, korrigiert werden. Falls IR₆nl/L in der Bedingung (9) unter den unteren Grenzwert fällt, wird die Korrektur sowohl von Verzeichnung als auch von sphärischer Aberration schwierig. Falls IR₆nl/L in der Bedingung (9) den oberen Grenzwert übersteigt, kommt es in großem Maß zu einer Erzeugung von Koma. Um die Korrektur dieser Aberrationen sicherzustellen, wird bevorzugt der untere Grenzwert der Bedingung (9) auf 0,05 festgesetzt.

Ferner weist vorzugsweise die erste Linsengruppe G1 ein Linsenbauteil mit negativem Brechwert auf, das folgende Bedingung erfüllt:

 $0.1 < IR_1 n I/L < 0.5$ (10)

wobei R1n der Krümmungsradius auf der der Bildebene zugewandten Seite der Linse L11 mit negativem Brechwert in der sechsten Linsengruppe G6 ist (vgl. Fig. 2). Falls IR₁nl/L in der Bedingung (10) unter den unteren Grenzwert fällt, wird eine starke negative Verzeichnung erzeugt. Falls IR₁nl/L in der Bedingung (10) den oberen Grenzwert übersteigt, wird die Korrektur von Feldkrümmung schwierig.

Die Ausführungsformen eins bis neun der Erfindung sind detailliert aus den Tabellen 1a, b, c bis 9a, b, c sowie den Fig. 2, 4, 6, 8, 10, 12, 14, 16 und 18 zusammen mit den dazugehörenden Aberrationskurvendarstellungen (Fig. 3a-g, 5a-g, 7a-g, 9a-g, 11a-g, 13a-h, 15a-h, 17a-h und 19a-h) ersichtlich. In den Aberrationskurven für Astigmatismus (Fig. 3f, 5f, 7f, 9f, 11f, 13g, 15g, 17g und 19g) stellt die durchgezogene Linie S die sagittale Bildebene und die gestrichelte Linie M die meridionale Bildebene dar.

In den unten dargestellten Figuren und Tabellen werden zusätzlich zu den in den obigen Bedingungen und Gleichungen erwähnten die folgenden Variablen verwendet:

n = Brechungsindex bei 248,4 nm;

S = Oberflächenzahl;

r = Krümmungsradius einer Linsenbauteiloberfläche, die bei einem positiven Wert das Krümmungszentrum rechts von 65 der Linsenoberfläche hat;

d = Abstand zwischen benachbarten Linsenoberflächen;

Y = Feldhöhe.

Ferner wird eine asphärische Oberfläche mittels der folgenden Gleichung beschrieben, wobei

$$S(y) = (cy^2)/(1+(1-(1+\kappa)c^2y^2)^{1/2}) + Ay^4 + By^6 + Cy^8 + Dy^{10} + Ey^{12} + Fy^{14} + Gy^{16} [eq. 9]$$

wohei

 κ = konische Konstante;

S(y) = sag der optischen Oberfläche bei der Höhe y; und

A-G = Asphärenkoeffizienten sind.

Die Daten der asphärischen Oberflächen sind in den Tabellen 1b-9b dargestellt. Ferner wird die Richtung vom Objekt zum Bild hin positiv gezählt.

Erste Ausführungsform

Die Abbildungsoptik 20 gemäß Fig. 2 ist die erste Ausführungsform und weist von der Objektebene 12 zu der Bildebene 14 eine erste Linsengruppe G1 mit einem bikonvexen Linsenbauteil L11, einem bikonvexen Linsenbauteil L12, einem bikonvexen Linsenbauteil L13 und einem bikonvexen Linsenbauteil L14 auf. Es folgt eine zweite Linsengruppe G2, die ein Linsenbauteil L21 mit Negativ-Meniskus, das objektseitig eine konvexe Oberfläche aufweist, ein Linsenbauteil L22 mit Negativ-Meniskus, das objektseitig eine konvexe Oberfläche aufweist, ein bikonkaves Linsenbauteil L23, ein bikonkaves Linsenbauteil L24 und ein Linsenbauteil L25 mit Negativ-Meniskus aufweist, das objektseitig eine konvexe Oberfläche aufweist. Es folgt eine dritte Linsengruppe G3, die ein Linsenbauteil L31 mit Positiv-Meniskus, das objektseitig eine konkave Oberfläche aufweist, ein Linsenbauteil L32 mit Positiv-Meniskus, das objektseitig eine konkave Oberfläche aufweist, ein Linsenbauteil L33 mit Positiv-Meniskus, das objektseitig eine konkave Öberfläche aufweist, ein bikonvexes Linsenbauteil L34, ein bikonvexes Linsenbauteil L35 und ein Linsenbauteil L36 mit Positiv-Meniskus aufweist, das objektseitig eine konvexe Oberfläche aufweist. Es folgt eine vierte Linsengruppe G4, die ein Linsenbauteil L41 mit Negativ-Meniskus, das objektseitig eine konvexe Oberfläche aufweist, ein bikonkaves Linsenbauteil L42, ein Linsenbauteil L43 mit Negativ-Meniskus, das objektseitig eine konkave Oberfläche aufweist, und ein Linsenbauteil L44 mit Negativ-Meniskus aufweist, das objektseitig eine konkave Oberfläche aufweist. Es folgt eine fünste Linsengruppe G5, die ein Linsenbauteil L51 mit Positiv-Meniskus, das objektseitig eine konkave Oberfläche aufweist, ein bikonvexes Linsenbauteil L52, ein bikonvexes Linsenbauteil L53, ein Linsenbauteil L54 mit Negativ-Meniskus, das objektseitig eine konkave Oberfläche aufweist, ein Linsenbauteil L55 mit Positiv-Meniskus, das objektseitig eine konvexe Oberfläche aufweist, ein Linsenbauteil L56 mit Positiv-Meniskus, das objektseitig eine konvexe Oberfläche aufweist und ein Linsenbauteil L57 mit Positiv-Meniskus aufweist, das objektseitig eine konvexe Oberfläche aufweist. Es folgt eine sechste Linsengruppe G6, die ein Linsenbauteil L61 mit Positiv-Meniskus, das objektseitig eine konvexe Oberfläche aufweist, ein Linsenbauteil L62 mit Negativ-Meniskus, das objektseitig eine konvexe Oberfläche aufweist, und ein Linsenbauteil L63 mit Positiv-Meniskus aufweist, das objektseitig eine konvexe Oberfläche aufweist. Die Aperturblende AS ist zwischen den Linsenbauteilen L51 und L52 in der fünften Linsengruppe angeordnet.

In der Abbildungsoptik 20 gemäß Fig. 2 beträgt die numerische Apertur 0,75, die Vergrößerung 1/4, L beträgt 1200, die Entfernung auf der Achse von der Objektebene 12 bis zu der am weitesten objektseitigen Oberfläche des Linsenbauteils L11 beträgt 60,0, der Brennpunktsabstand von der Linsenrückseite beträgt 12,805970 und die maximale Bildhöhe beträgt 14,5.

45

50

55

60

Tabelle 1a

		,			~
S	ī	ď	n	Gruppe	
1	-552.07638	18.000000	1.50839	G1	5
2	· 265.90878	3.120094			
3	303.56674	25.392455	1.50839		10
4	-350.79337	0.500000			
5	290,31959	23.811936	1.50839		
6	-624.97721	0.500000		<u> </u>	15
7	312.56146	21.494338	1.50839		
8	-797.18857	0.500000			
9	261.54552	29.172376	1.50839	G2	
10	125.42248	18.785151			
11	624.94963	13.000000	1.50839		25
12	168.74192	19.573060			
13	-425.29079	· 13.000000	1.50839		30
14	305.76133	20.876454			
15	-199.33811	13.000000	1.50839	•	35
. 16	856.47160	28.317472			1
17	-133.88550	13.515883	1.50839		
18	-1224.09463	12.256929			40
19	-424.87732	25.795588	1.50839	. 33	
20	-190.54844	1.165877		•	45
21	-1188.77588	34.579068	1.50839		
22	-245.12631	0.500000			
23	-17375,73600	39.303374	1.50839	·	50
24	-300,00000	0.500000			
25	619.48904	39.230416	1.50839	•	55
26	-600.00000	0.500000			
27	333.78553	38.548189	1.50839		
28	-3403.39561	0,834915			60
29	200.00000	35.678083	1,50839		
30	595,18114	18.729269			65
31	1345.40672	15.064622	1.50839	. G4	

	· s	ſ,	đ	n	Gruppe
5	32	150.40751	33.085337	·	·
	33	-2376.89219	13.177083	1.50839	
	34 .	153.73077	46.252835		
10	. 35 :	-154.61578	13.177083	1.50839	
	36	-693.63984	27.484948		
15	37	-151.27474	23,185494	1.50839	
	38	-41891.41764	18.136222	•	
	39 ·	-780.08694	25.875000	1.50839	G5
20	40	-216.11014	2.191161		
	41	0.00000	12.650000		
25	42 .	11593.32693	39.563021	1.50839	
	43	-286.19552	0.500000		
30	44 .	449.04044	49.373870	. 1.50839	
	45	-449.10638	19.592109		
	46	-285.87741	21.961806	1.50839	
35	47	-400.00000	4.525940		
	48	. 404.59626	28.919442	1.50839	
40	49	2500.00000	3.401017		
	50	278,77327	34.590495	1.50839	
	51	1210.33063	0.500000		
45	52	161.00000	37.613837	1.50839	
	53	344.55156	1.726253		
50	54	149.63156	28.524224	1.50839	G6
	55	292.14056	9.604067		
55	56	550.00000	13.000000	1,50839	
" [57	88.88938	27.500000		
.[58	85.56699	65.287238	1.50839	
60	. 59 .	492.74526			

Tabelle 1b

Daten der asphärischen Oberfläche

S34	κ = 0.090293	A =697976E-08	B =581783E-12	C =238374E-16	
<i> </i>	D =634191E-21			·	
S39	κ=4.380884	A =197323E-08	B = 0.451378E-13	C=-151975E-17	
<i> </i>	D = 0.174755E-21	E=741606E-26	F = 0.143029E-30	G=-390455E-36	

Tabelle 1c

Konstruktionsparameter

Parameter	Wert
f ₁ /f ₃	1.622
f ₂ /f ₄	0.960
f./L	0.116
f/L	0.351
£/L	-0.050
f ₂ /L	-0.048
f ₂ n/L	-0.093
[R ₃ n//L	0.238
R _e n /L	0.074
R ₁ n /L	0.222

Wie aus den Aberrationskurven gemäß Fig. 3a-3g ersichtlich ist, ist die Anordnung gemäß dieser Ausführungsform hinsichtlich Aberrationen gut korrigiert und geeignet, das der Erfindung zugrundeliegende Problem zu beseitigen.

Zweite Ausführungsform

Die Abbildungsoptik 40 gemäß Fig. 4 ist die zweite Ausführungsform und weist die gleiche Anzahl und den gleichen Typ von Linsenbauteilen auf wie oben in Verbindung mit der Abbildungsoptik 20 gemäß der ersten Ausführungsform beschrieben. Bei der Abbildungsoptik 40 gemäß Fig. 4 beträgt die numerische Apertur 0,75, die Vergrößerung 1/4, L beträgt 1200, der Abstand auf der Achse von der Objektebene 12 bis zu der am weitesten objektseitigen Oberfläche des Linsenbauteils L11 beträgt 60,0, der Brennpunktabstand von der Linsenrückseite beträgt 14,728158 und die maximale Bildhöhe beträgt 14,5.

55

45

5

10

15

60

Tabelle 2a

	S	г	đ	п	Gruppe
5	1	-417.40181	18.000000	1.50839	G1
	2	294,54444	3.333675		
10	3	334.45870	24.993761	1.50839	
	4	-339.46258	0.500000		
15	5	388.46405	22.695257	1.50839	
13	6	-475.96837	0.500000		
	7	261.49728	22.822544	1.50839	
20	8	-1115.97742	0.500000		
	9	212.83142	29.172376	1.50839	G2
25	10	124.37798	17.392876		
	11	398.03023	13,000000	<u>1.50</u> 839	
	12	147,41084	19.332678		
30	13	-791.18158	13.000000	1.50839	
	14	201.19761	21.922400		
35	15	-247.90314	13.000000	1,50839	
	. (16)	465.71573	· 30.747889		
	17	-130,57 94 5	13.011599	1.50839	<u> </u>
40	18	-934.63444	12.339136		
	. 19	-407.40602	25,381972	1,50839	G3
45	20	-188.40893	1.223561		
	21	-1400,47996	34.176948	1.50839	
	22	-252,53836	0,500000		
50	23	-17379.23724	39.131937	1.50839	
	24	-300.00000	0.500000		
55	25	606,80606	39,230416	1.50839	
	26	-600.00000	0.500000		
	27	353.96511	38.782843	1.50839	
60	28	-2125.11370	2.168618		<u>.</u>

S	r	ď.	n	Gruppe	
29	208.12823	34.974979	1.50839		
30	681.68307	18.204990			
31	1293.20817	14.087040	1.50839	G4	
32	150.44667	33.112502			
· 33	-2376,89219	13.177083	1.50839		
34	157.22015	46.101506			
35	-155.71365	13.177083	1.50839		
36	-849.18622	27.476866			
37	-152.68796	20.775187	1.50839		
38	-8671.69720	16.726849			
39	-661.58711	25.875000	1.50839	G5	
40	-204.76811	2.156136			
41	0.00000	12.650000			
42	. 5120.14440	41.798891	1.50839		
43	-294.95271	0.500000			
44	446.90928	49.373870	1.50839		
45	-451.25900	18.201385			
46	-280.36427	21.961806	1.50839		
47	-400.00000	4.804497		·	
. 48	387.56604	34.446973	1.50839		
49	2500,00000	4,429387		· ·	
50	273.26334	35.779749	1.50839		
51	1264.70932	0.500000			
52	161.00000	35.902736	1.50839		
53	324.49673	0.500000		· · · · · · · · · · · · · · · · · · ·	
54	144.97966	30.031914	1.50839	G6	
55	292.80624	9.288710		·	
56	550.00000	13.000000	1.50839		
57 [°]	88.32098	26.733677			
58	86,45884	61.662542	1.50839		
59	502.09604				

Tabelle 2b

Daten der asphärischen Oberfläche

5	S16	κ = -2.932132	A= - 264382E-08	B =678762E-12	C =836895E-17
	///	D =537613E-21			
10	S34	$\kappa = 0.122316$	A = - 747792E-08	B =577389E-12	C =256679E-16
	///	D =256545E-21			
15	S39	κ = 2.181635 -	A = - 108977E-08	B= 0.154837E-13	C =107182E-17
IJ	///	D = 0.935404E-22	E = 0.174717E-26	F =388438E-30	G=0.118356E-34

20

Tabelle 2c

Konstruktionsparameter

25	Parameter	Wert
	f ₁ /f ₃	1.666
Γ	f _z /f ₄	1.000
30	£/L	0.117
	f/L	0.349
35	f./L	-0.050
	f/L	-0.050 ·
	f₂n/L	-0.090
40	R₃n/L	0.234
	[R _e n /L	0.074
45	[R₁n∤/L	0.245

Wie aus den Aberrationskurven gemäß Fig. 5a-5g ersichtlich ist, ist die Anordnung gemäß dieser Ausführungsform hinsichtlich Aberrationen gut korrigiert und geeignet, das der Erfindung zugrundeliegende Problem zu beseitigen.

Dritte Ausführungsform

Die Abbildungsoptik 60 gemäß Fig. 6 ist die dritte Ausführungsform und weist die gleiche Anzahl und den gleichen Typ von Linsenbauteilen auf wie oben in Verbindung mit der Abbildungsoptik 20 gemäß der ersten Ausführungsform beschrieben. Bei der Abbildungsoptik 60 beträgt die numerische Apertur 0,75, die Vergrößerung 1/4, L beträgt 1200, der Abstand auf der Achse von der Objektebene 12 bis zu der am weitesten objektseitigen Oberfläche des Linsenbauteils L11 beträgt 60,0, der Brennpunktabstand von der Linsenrückseite beträgt 14,571124 und die maximale Bildhöhe beträgt 14,5.

60

50

Tabelle 3a

S	r	d	n	Gruppe	
1	-444,41905	18.000000	1.50839	G1	
2	263.95589	3.115278			
3	306,30710	25.595338	1.50839		
4	-353.72876	0.500000			
5	401.53161	22,629592	1.50839		
6	-458.32974	0.500000			
7	260.42411	22.384483	1.50839		
8	-1332.14165	0,500000			
9	201.56696	29.172376	1.50839	G2	
10	123.44572	17.498236		•	
11	391,40156	13.000000	1.50839		
12	148.83020	19.339575			
13	-756.35940	13.000000	1.50839		
14	199.64333	21.883300			
15	-251.99565	13.000000	1.50839		
16	457.35347	30.933422		•	
17	-130.24344	13.000000	1.50839		
13	-920.27012	12.350072			
19 .	-409.12942	25.374524	1.50839	G3	
20	-188.90615	1.181273			
21	-1424.75959	34.047906	1.50839		
22	-253.26753	0.500000			
23	-17379.22377	39.132597	1.50839		•
24	-300.00000	0.500000			
25	606,80606	39.230416	1.50839		
26	-600.00000	0.500000			
27	354.99225	38.635587	1.50839		

13

		, , , , , , , , , , , , , , , , , , , 	,		
	S	r	đ	n	Gruppe
5	28	-2087.99596	2.226818		
	29	207.60159	35.002784	1.50839	
	30	675.59635	18.256602		
10	31	1287.29080	14.110578	1.50839	G4
	32	150.42360	33.005885		
15	33	-2376.89219	13.177083	1,50839	
13	34	.157.03647	46,068055		
	35	-155.91252	13.177083	1.50839	
20	36	-866.58591	27.490041		
	37	-153,16663	20.801532	1.50839	
٠	38	-84 <i>9</i> 3,66686	16.758746		
25	39	-660,86379	25.875000	1.50839	G5
	40	-205.11225 ·	2.176870		
30	41	0.00000	12.650000		
	42	4630.94239	0.000000	1.50839	
	43	-296.67705	0.612232		
35	44	450.13834	49.373870	1.50839	<u> </u>
	45	-448.11047	18.090639	•.	
40	46	-280.56579	21.961806	1.50839	
	· 47	-400,00000	4.069219		
	48	387.42237	34,838224	1.50839	
45	49	2500.00000	4.694122		
	50	273.67184	35.838683	1.50839	
	51	1255,46173	0.539463		
50	52	161.00000	35.919890	1.50839	
ļ	53	325.11630	0.500000		
55	54	144.91170	30.069410	1,50839	
	55	293.52341	9.245852		· G6
	56	550.00000	13.000000	1,50839	
60	57	88,42714	26,801733		
İ	58	86.53412	61.790454	1.50839	
65	59	498.55162			
ω <u>[</u>		L			 .

Tabelle 3b

Daten der asphärischen Oberfläche

ĸ = 0.651961	A = 0.288809E-08	B =142241E-12	C = 0.138026E-16	5
D =260214E-20	E = 0.163779E-24	F = 0.112908E-28	G=964063E-33	
$\kappa = -2.416851$	A =203332E-08	B =639430E-12	C =155725E-16	10
D =489171E-22				
$\kappa = -0.129246$	A =729364E-08	B =586956E-12	C = -260844E-16	
D =284984E-21				15
ĸ = 2.269617	A =113325E-08	B = 0.135572E-13	C =115763E-17	
D = 0.101617E-21	E = 0.188022E-27	F =278178E-30	G=0.871254E-35	20
	$D =260214E-20$ $\kappa = -2.416851$ $D =489171E-22$ $\kappa = -0.129246$ $D =284984E-21$ $\kappa = 2.269617$	$\begin{array}{lll} D =260214E-20 & E = 0.163779E-24 \\ \kappa = -2.416851 & A =203332E-08- \\ D =489171E-22 & \\ \kappa = -0.129246 & A =729364E-08 \\ D =284984E-21 & \\ \kappa = 2.269617 & A =113325E-08 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Tabelle 3c

Konstruktionsparameter

Parameter	Wert
f ₁ /f ₃	1.705
f ₂ /f ₄	1.017
£/L	0.117
F./L	0.349
f./L	-0.050
f _r /L	-0.051
. f ₂ n/L	-0.091
ļR₅n /L	0.234
[R _e n /L	0.074
]R ₁ n /L	0.220

Wie aus den Aberrationskurven gemäß Fig. 7a-7g ersichtlich ist, ist die Anordnung gemäß dieser Ausführungsform hinsichtlich Aberrationen gut korrigiert und geeignet, das der Erfindung zugrundeliegende Problem zu beseitigen.

Vierte Ausführungsform

Die Abbildungsoptik 80 gemäß Fig. 8 ist die vierte Ausführungsform und weist die gleiche Anzahl und den gleichen Typ von Linsenbauteilen auf, wie oben in Verbindung mit der Abbildungsoptik 20 gemäß der ersten Ausführungsform beschrieben. Bei der Abbildungsoptik 80 beträgt die numerische Apertur 0,75, die Vergrößerung 1/4, L beträgt 1200, der Abstand auf der Achse von der Objektebene 12 bis zu der am weitesten objektseitigen Oberfläche des Linsenbauteils L11 beträgt 60,0, der Brennpunktabstand von der Linsenrückseite beträgt 14,412672 und die maximale Bildhöhe beträgt 14,5.

65

25

30

35

40

45

50

Tabelle 4a

	S	£.	d	n	Gruppe
5	1	-468,68095	18.000000	1.50839	G1
	2	252.77895	3,233640		
10	3	298.24991	25.839827	1.50839	
	4	360.06032	0.500000		
	5	417.93565	22.562122	1.50839	
15	6	-441.51797	0.500000		
	7	263.82049	22,126107	1,50839	
20	8	-1375.42189	0.500000	·	
	9	198,61141	29,172376	1,50839	G2 .
	10	125,13733	. 17,593360		
25	11	416.27288	13.000000	1.50839	
	12	154.18091	19.238100		
30	13	-668.92020	13.000000	1.50839	
	14	199.41335	21.813538	-	
35	15	-256,36164	13.000000	1.50839	
33	16	444,96150	31.095384		
	17	-130,59220	13.000000	1.50839	
40	18	-921.24542	12.380140		
	19	-411.14738	25.384580	1.50839	·G3
45	20	-189.32775	1,174238		
45	21	-1445.99115	33.934711	1.50839	
	22	-253.88856	0.500000		
50	. 23	-17379.37023	39,125426	1.50839	
	24	-300.00000	0.500000		
55	25	596.09906	39.230416	1.50839	
<i>3.</i>	26	-610.85050	0.500000		
	27	355,24038	38.551690	1.50839	
60	28	-2079.35584	2.303654		

S	r	d	n	Gruppe
29	207.42218	35.035451	1.50839	
30	673.51306	18.314100		
31	1277.16954	14.138411	1.50839	G4
32	150,32702	32,930730		
33	-2376,89219	13.177083	1.50839	
34	156,56831	46,042396		
35	-155,65637	13,177083	1.50839	
36	-845.75387	27,494867		
37	-151,25828	20.850589	1.50839	
38	-4346.25296	16.782509	<u>·</u>	
39	-616.99314	25,875000	1.50839	G5 ·
40	-202.18912	2.221807		
41	ω	12.650000		
42	4310,61591	41,857209	1.50839	
43	-298.03165	0,760827		
44	448.01359	49.373870	1.50839	
45	-450.13834 ·	18.123926		
46	-280.66611	21,961806	1.50839	
47	-400,00000	3,771463		
48	388,15249	35,013919	1.50839	
49	2500.00000	4,945986		
50	274.68742	35.755123	1.50839	
51	1268,22336	0,500000		
52.	161.00000	35,804931	1.50839	
53	325.39957	0.500000		
54	144.80153	30.033841	1.50839	G6
55	293.86133	9.204704		
56	550.00000	13.000000	1,50839	
57	89.52230	26.819022		
58	87.53044	61.711363	1.50839	~. •
	495.57398	01.71150		
59	6271.724			

Tabelle 4b

Daten der asphärischen Oberfläche

5	S 3	K=0.965373	A = 0.469769E-08	B =190197E-12	C = 0.112631E-16
	111	D =355099E-20	E = 0.709289E-24	7 =916514E-28	G = 0.586833E-32
10	S 16	κ= -2.033092	A =153014E-08	B =574525E-12	C =170686E-16
	///	D = 0.650293E-21			
15	S 30	·κ = -0.023006	A =104624E-10	B = 0.152933E-14	C = 0.581083E-18
	///	D =550392E-22	E = 0.124756E-26		
	S34	× = 0.135728	A =715391E-08	B =607874E-12	C = -350272E-16
20	<i>III</i> .	D = 0.234373E-21			
	\$ 39	×=2.262632	A =112080E-08	B = 0.686428E-14	C =143140E-17
25	///	D=0.112838E-21	E =714641E-27	F =208714E-30	G=0.705742E-35
23					

Tabelle 4c

30

60

Konstruktionsparameter

Ì	Parameter	Wert
35	f _s /f ₃	1.722
	£/£,	1.023
	£/L	0.117
40	. f/L	0.350
	.f./L	-0.050-
45	ť⁄ľ	-0.052
	£ıı∕L	-0.090
Ī	[R ₂ 0]/L	0.234
50	[R _s □/L	0.075
Į	ĮR _i π/L	0.211

Wie aus den Aberrationskurven gemäß Fig. 9a-9g ersichtlich ist, ist die Anordnung gemäß dieser Ausführungsform hinsichtlich Aberrationen gut korrigiert und geeignet, das der Erfindung zugrundeliegende Problem zu beseitigen.

Fünfte Ausführungsform

Die Abbildungsoptik 100 gemäß Fig. 10 ist die fünfte Ausführungsform und weist die gleiche Anzahl und den gleichen Typ von Linsenbauteilen auf, wie oben in Verbindung mit der Abbildungsoptik 20 gemäß der ersten Ausführungsform beschrieben. Bei der Abbildungsoptik 100 beträgt die numerische Apertur 0,75, die Vergrößerung 1/4, L beträgt 1200, der Abstand auf der Achse von der Objektebene 12 bis zu der am weitesten objektseitigen Oberfläche des Linsenbauteils L11 beträgt 60,0, der Brennpunktabstand von der Linsenrückseite beträgt 14,165006 und die maximale Bildhöhe beträgt 14,5.

Tabelle 5a

S	r	đ	n	Gruppe
1	-468.07699	18.000000	1.50839	. G1
2	250.12651	3.380259 .		
3	300,99856	25.794382	1.50839	
4	-362,12163	0.500000		
5	400.86991	22.811466	1.50839	
6	-450.23466	0.500000		
7 .	268.97200	22.038806	1.50839 [:]	:
. 8	-1313.26659	0.500000		
9	197.05591	29.172376	1.50839	G2 .
10	124,31498	17.663331		
-11	407.81022	13.000000	1.50839	
12	161.89912	19.175412		
13	-566,17721	13.000000	1.50839	
14	197,37620	21.758555		
15	-263.68269	13.000000	1.50839	
16	429.32073	31.288348		
17 .	-131.12939	13:039244	1.50839	
18	-917.99488	12,437120		
19	-413.92024	25.461495	1.50839	G3
20	-189.63472	1.144736		
21	-1419.86877	33.734236	1.50839	
22	-253.10206	0.500000		
23	-17379.50305	39.118922	1.50839	
24	-300.00000	0,500000		
2 <u>5</u>	585.23935	39 <u>.2</u> 30416	1.50839	
26	-622,70279	0.500000		
27	352.49897	38.565268	1.50839	

65

	S	r	d	n	Gruppe
5	28	-2181.80512	2.424434		
	29	208.28348	35.119714	1.50839	
10	. 30	683.31272	18.431385		•
	31	1260.29479	14.211733	1.50839	G4
	32	150.00119	32.620701	•	•
15	33	-2376.89219	13.177083	1.50839	
	34	154.81553	45.778399		
20	35	-157.58025	13.177083	1.50839	
	36	-865,39866	27.070384		
	37	-153.61567	20.819650	1.50839	•
25	38	-64924.10051	16,788651		
	39	-712.18966	25.875000	1.50839	G5
30	40	-206.41949	2.097883		
	41	8	12.650000		
	42	3973.02616	41.592649	1.50839	
35	43	-299.72179	0.500000		
	44	447.61811	49.373870	1.50839	
40	45	-450.53837	19.003149		
	46	-279.78056	21.961806	1.50839	
	47	-404.06473	6.780768		
45	48	379.72454	33.386064	1.50839	
	· 49	2500,00000	4.142460		
50	50	283.16075	35.076227	1.50839	·
	51	1489.01547	0.500000		
	52	164.88650	35.591626	1.50839	
55	53	339.88457	0.500000		
	54	144.51257	30.264029	1.50839	G6
60	55	294.74328	9.221153		•
	56	550,00000	13.000000	1.50839	·
	57	<i>9</i> 2.59167	25,876306		
65	58	90.49578	63.008413	1.50839	
Į	59	487.58159			

Tabelle 5b

Daten der asphärischen Oberfläche

S3	κ=1.188206	A = 0.616724E-08	B =261943E-12	C = 0.117836E-16
///	D =276255E-20	E = 0.421652E-24	F =526812E-28	G=0.415909E-32
S16	κ=-1.301521	A =465204E-09	B =629003E-12	C =166260E-16
///	D = 0.121986E-20			
S30	$\kappa = -0.350261$	A =149448E-09	B = 0.999815E-14	C = 0.678281E-18
<i> i</i>	D =619666E-22	E = 0.152611E-26		
S34	κ = 0.145290	A =672935E-08	B =638504E-12	C=369923E-16
///	D = 0.382079E-21			
S 39	ĸ=2.321086	A=116397E-08	B = 0.107347E-13	C=124164E-17
///	D = 0.119458E-21	E =185166E-26	F = - 163469E-30	G=0.519016E-35
S56	κ = -0.669816 ·	A =531655E-09	B = 0.331972E-13	C =471706E-17
<i> </i>	D = 0.347702E-21	E =101574E-25		

Tabelle 5c

Konstruktionsparameter

	. · · ·
Parameter	Wert
f ₁ /f ₃	1.734
f ₂ /f ₄	1.036
£/L ·	0.118
f/L	0,357
f/L	-0.050
f ₂ /L	-0.052
f ₂ n/L	-0.091
[R,n]/L	0.233
R _e n /L	0.077
[R _i n /L	0.208

Wie aus den Aberrationskurven gemäß Fig. 11a-11f ersichtlich ist, ist die Anordnung gemäß dieser Ausführungsform hinsichtlich Aberrationen gut korrigiert und geeignet, das der Erfindung zugrundeliegende Problem zu beseitigen.

Sechste Ausführungsform

Die Abbildungsoptik 120 gemäß Fig. 12 ist die sechste Ausführungsform und weist die gleiche Anzahl und den gleichen Typ von Linsenbauteilen auf, wie oben in Verbindung mit der Abbildungsoptik 20 gemäß der ersten Ausführungsform beschrieben, mit der Ausnahme der Linsengruppe G4, die nun ein Linsenbauteil L41 mit Negativ-Meniskus, das objektseitig eine konvexe Oberfläche aufweist, ein bikonvexes Linsenbauteil L42 und ein Linsenbauteil L43 mit Negativ-Meniskus aufweist, das objektseitig eine konkave Oberfläche aufweist.

Bei der Abbildungsoptik 120 beträgt die numerische Apertur 0,75, die Vergrößerung 1/4, L beträgt 1200, der Abstand auf der Achse von der Objektebene 12 bis zu der am weitesten objektseitigen Oberfläche des Linsenbauteils L11 beträgt 60,0, der Brennpunktabstand von der Linsenrückseite beträgt 12,647270 und die maximale Bildhöhe beträgt 14,5.

Tabelle 6a

_		T .		Grunne	1
S	r	d	n	Gruppe	1
1	-420.30684	18.000000	1.50839	G1	-
2 .	. 304.38947	4.844904			
3	409.93724	25.000000	1.50839		10
4.	-345.79137	0.500000			
5	344.48673	24.000000	1.50839		1:
6	-492.43913	0.500000			
7	268.47429	. 22,000000	1.50839		
8	-561.19048	0.500000			20
9	228.49034	29.172376	1.50839	G2	
10	124.66129	21.915174			2.
11	2782.29168	13.000000	1.50839		
12	168.55342	21.234352			
13	-322,47044	13.000000	1.50839		3(
14	323.01386	22,100306			
15	-182.39320	13.000000	1,50839		3:
16	1378.53916	25.743800			
17	-144.71537	13.000000	1.50839		
. 18	-834.60001	13 <i>.</i> 279960			41
19	-543.83120	27.401869	1.50839	G3	
20	-205.14464	0.500000			4:
21	-800.01554	34,638631	1.50839		
22	-224.70509	0.500000			
23	-25065.93947	39.466543	1.50839		5(
24	-301.52652	0.500000			
25	345.26248	39.230416	1.50839		55
26	-2517.70773	0.500000	-		
27	314.76800	38.166279	1.50839		
28	-17038,75030	0.500000	•		66
29	200,00000	34.537615	1.50839		
30	557.24026	17.007268			6

	S	r	d	n	Gruppe
5	31	2180.25083	13.025262	1.50839	G4
	32	123.59069	61.421633		
	33	-205.98730	13.177083	1.50839	
10	34	202.28713	68,572390		
	35	-159.41306	24.495231 ·	1.50839	
15	36	-3005.44394	14.667092		
	. 37	-697.48612	25,875000	1.50839	G5
20	38	-225.08993	0.500000		
20	39	0.00000	12.650000		
	40	1639.18095	38.602593	1.50839	
25	41	-334.50135	0.500000	•	
	42	578.12145	49,373870	1.50839	
30	43	-367.69622	. 15.341733		
	44	-266.45720	21.961806	1.50839	·
	45	-400,63356	0,733794		
35	46	387.43403	35.000000	1.50839	
	47	2408.33297	0.500000		
40	48	250.43557	. 35.000000	. 1.50839	
	49	806.42950	0_500000		
	50	175.00000	35.921145	1.50839	
45	51	377.77144	1.715742		
	52	146.02491	30.182778	1,50839	G6
50	53	302.71543	10.356697		
	54	550.00000	13.000000	1.50839	<u></u>
	55	88.62882	21.641507		
55	56	89.87518	67.897884	1.50839	
	57	610.57068		· .	<u> </u>

Tabelle 6b

Daten der asphärischen Oberfläche

	<u>-</u> ·	· · ·			•
S34	κ = 0.022695	A=127712E-07	B =986372E-12	C = 0.160059E-16	5
///	D = 0.143506E-20	·			
S37	κ = -6.954337	A=0.176680E-09	B = 0.544891E-13	C = 0.110204E-17	10
///	D = 0.158373E-21	E =249194E-26	F = 0.166870E-30	G =294689E-36	

Tabelle 6c

Konstruktionsparameter

Parameter	Wert
f _t /f ₃	1:584
f ₂ /f ₄	0.930
f./L	0.117
f ₆ /L	0.361
£/L ·	-0.052
£/L	-0.048
f ₂ n/L	-0.082
[R₅n /L	0.222
[R ₆ n]/L	0.074
R ₁ n /L	0.254

Wie aus den Aberrationskurven gemäß Fig. 13a-13h ersichtlich ist, ist die Anordnung gemäß dieser Ausführungsform hinsichtlich Aberrationen gut korrigiert und geeignet, das der Erfindung zugrundeliegende Problem zu beseitigen.

Siebte Ausführungsform

Die Abbildungsoptik 140 gemäß Fig. 14 ist die siebte Ausführungsform und weist die gleiche Anzahl und den gleichen Typ von Linsenbauteilen auf, wie oben in Verbindung mit der Abbildungsoptik 120 gemäß der ersten Ausführungsform beschrieben. Bei der Abbildungsoptik 140 beträgt die numerische Apertur 0,75, die Vergrößerung 1/4 L beträgt 1200, der Abstand auf der Achse von der Objektebene 12 bis zu der am weitesten objektseitigen Oberfläche des Linsenbauteils L11 beträgt 60,0, der Brennpunktabstand von der Linsenrückseite beträgt 12,598236 und die maximale Bildhöhe beträgt 14,5.

60

55

15

20

25

30

35

40

45

Tabelle 7a

	S	r	d	n	Gruppe
5	1	-394.79113	18.000000	1.50839	· G1
	2	316.86963	3.432096		·
10	3 .	385.17199	23.971420	1.50839	
	4	-332.08412	0.500000		•
	5	385.76588	23.018363	1.50839	•
15	6	-462.41329	0.500000		
	7	261.83315	24.873425	1.50839	
20	8	-662.07882	0.500000		
	9	217.44326	26.470552	1.50839	G2
	10	130.19538	18.160493		
25	11	577.89686	13.000000	1.50839	
	12	151.58758	21.170084		
30	13	-399.45469	13.000000	1.50839	
	14	213.97370	23.645709		
35	15	-198.33421	13.000000	1.50839	
33	16	596.96132	28.357042		
Ī	17	-145.18221	13,000000	1.50839	
40	18	-662.45369	12.854593		• 10
	19	-556.70481	27.433961	1.50839	G3
45	20	-204.71209	0.500000		
7.	21	-1365.15240	34.520424 ·	1.50839	
	22	-251.45530	0,500000		
50	23	16097.83839	39.574978	1.50839	
	24	-310.66803	. 0.500000		
55	25	443.70292	39.230416	1.50839	
	26	-946.94062	0.500000		
ţ	27	322.23157	38.264073	1.50839	
60	28	-5486.68682	0.500000		
	29	217.22460	34.776707	1.50839	
65	30	799.91884	18.173304		
~	31	12387.52204	13.000000	1.50839	G4
ı	 				

34 191.97054 68.673889 35 -173.96143 23.724806 1. 36 -1430.00455 12.091296	.50839 G5 15
34 191.97054 68.673889 35 -173.96143 23.724806 1. 36 -1430.00455 12.091296 37 -518.50264 25.875000 1. 38 -213.41585 0.500095	.50839 G5 15
35 -173.96143 23.724806 1. 36 -1430.00455 12.091296 37 -518.50264 25.875000 1. 38 -213.41585 0.500095	.50839 G5 15
36 -1430.00455 12.091296 37 -518.50264 25.875000 1. 38 -213.41585 0.500095	.50839 G5 15
37 -518.50264 25.875000 1. 38 -213.41585 0.500095	
38 -213.41585 0.500095	
39 0.00000 12.650000	1
40 1394.83283 38.762785 1.	.50839
41 -348.55455 0.514756	
42 589.68098 49.373870 1.	.50839 25
43 -363.24607 18.952009	
44 -261.91151 21.961806 1.	.50839
45 -400.00000 0.500000	30
46 380.51168 35.000000 I.	50839
47 2500.00000 0,500000	35
48 255.67104 35,000000 1.	50839
49 850,67403 0,500000	40
50 175.00000 33.349227 1	.50839
51 354.54268 0.500000	
52 147.57414 30.804902 1.	.50839 G6 ⁴⁵
53 309.21683 8.726274	
54 550.00000 13.000000 1.	.50839 50
55 92.71485 21.778859	
56 94.51983 75.002069 1.	50839
57 660.56474 12.598236	55

Tabelle 7b

Daten der asphärischen Oberfläche

5	S16	κ = -0.080829	A= 0.257830E-08	B =623179E-12	C =103089E-17	
10	///	D = 0.254598E-21	•			
	\$34	κ = -0.091698	A =162846E-07	B =980291E-12	C = 0.203271E-16	
	///	D = 0.178089E-20			·	
15	S37	κ = -6.872295	A = 0.413563E-09	B = 0.166773E-12	C = 0.144211E-17	
	<i>i</i> //	D = 0.194986E-21	E =432989E-27	F = 0.197137E-30	G =735338E-36	

20

50

Tabelle 7c

Konstruktionsparameter

•	
Parameter	Wert
f ₁ /f ₃	1.602
f ₂ /f ₄	0.933
£/L	0.119
f/L	0.361
f./L	-0.052
f ₂ /L	-0.049
f ₂ n/L	-0.079
R,n /L	0.218
[R _e n]/L	0.077
[R ₁ ni/L	0.264
	Parameter f ₁ /f ₃ f ₂ /f ₄ f ₂ /L f ₄ /L f ₄ /L f ₄ /L f ₂ /L f ₂ /L [R ₃ n /L [R ₄ n /L.

Wie aus den Aberrationskurven gemäß Fig. 15a-15h ersichtlich ist, ist die Anordnung gemäß dieser Ausführungsform hinsichtlich Aberrationen gut korrigiert und geeignet, das der Erfindung zugrundeliegende Problem zu beseitigen.

Achte Ausführungsform

Die Abbildungsoptik 160 gemäß Fig. 16 ist die achte Ausführungsform und weist von der Objektebene 12 zu der Bildebene 14 eine erste Linsengruppe G1 mit einem Linsenbauteil L11 mit Negativ-Meniskus, das objektseitig eine konvexe Oberfläche aufweist, einem bikonvexen Linsenbauteil L12, einem bikonvexen Linsenbauteil L13, einem Linsenbauteil L14 mit Negativ-Meniskus, das objektseitig eine konvexe Oberfläche aufweist, und einem bikonvexen Linsenbauteil L15 auf. Es folgt eine zweite Linsengruppe G2, die ein bikonkaves Linsenbauteil L21, ein bikonkaves Linsenbauteil L22 und ein Linsenbauteil L23 mit Negativ-Meniskus aufweist, das objektseitig eine konkave Oberfläche aufweist. Es folgt eine dritte Linsengruppe G3, die ein Linsenbauteil L31 mit Positiv-Meniskus, das objektseitig eine konkave Oberfläche aufweist, ein Linsenbauteil L32 mit Positiv-Meniskus, das objektseitig eine konkave Oberfläche aufweist, ein bikonvexes Linsenbauteil L33, ein bikonvexes Linsenbauteil L34, ein bikonvexes Linsenbauteil L35, ein Linsenbauteil L36 mit Positiv-Meniskus, das objektseitig eine konvexe Oberfläche aufweist, ein Linsenbauteil L37 mit Positiv-Meniskus, das objektseitig eine konvexe Oberfläche aufweist, und ein Linsenbauteil L38 mit Positiv-Meniskus aufweist, das objektseitig eine konvexe Oberfläche aufweist. Es folgt eine vierte Linsengruppe G4, die ein Linsenbauteil L41 mit Negativ-Meniskus, das objektseitig eine konvexe Oberfläche aufweist, ein bikonvexes Linsenbauteil L42, und ein bikonvexes Linsenbauteil LA3 aufweist. Es folgt eine fünfte Linsengruppe G5, die ein bikonvexes Linsenbauteil L51, ein Linsenbauteil L52 mit Positiv-Meniskus, das objektseitig eine konkave Oberfläche aufweist, ein bikonvexes Linsenbauteil L53, ein Linsenbauteil L54 mit Negativ-Meniskus, das objektseitig eine konkave Oberfläche aufweist, ein bikonvexes Linsenbau-

teil L55, ein bikonvexes Linsenbauteil L56 und ein Linsenbauteil L57 mit Positiv-Meniskus aufweist, das objektseitig eine konvexe Oberfläche aufweist. Es folgt eine sechste Linsengruppe G6, die ein Linsenbauteil L61 mit Positiv-Meniskus, das objektseitig eine konvexe Oberfläche aufweist, ein bikonkaves Linsenbauteil L62 und ein Linsenbauteil L63 mit Positiv-Meniskus aufweist, das objektseitig eine konvexe Oberfläche aufweist. Die Aperturblende AS ist zwischen dem Linsenbauteil L51 und dem Linsenbauteil L52 in der fünften Linsengruppe angeordnet.

In der Abbildungsoptik 160 gemäß Fig. 16 beträgt die numerische Apertur 0,80, die Vergrößerung 1/4, L beträgt 1500, die Entfernung auf der Achse von der Objektebene 12 bis zu der am weitesten objektseitigen Oberfläche des Linsenbauteils L11 beträgt 92,0, der Brennpunktsabstand von der Linsenrückseite beträgt 27,74 und die maximale Bildhöhe beträgt 14.5.

Tabelle 8a

10	1 2 .3 4 5 6 7	718.85125 419.76270 37714.38709 -310.65200 350.56680 -839.94573 187.27742	20,000000 10,000000 22,138562 0,100000 25,585801	1.50839	G1
	. 3 4 5 6 7	37714.38709 -310.65200 350.56680 -839.94573	22.138562 0.100000 25.585801		
	4 5 6 7	-310.65200 350.56680 -839.94573	0.100000 25.585801		
15	5 6 7	350.56680 -839.94573	25.585801	1 50830	
15	6 7	-839.94573		1 50830	
15	7		0.100000	1.50033	
-		187 27742	. 0,100000		
1	8	LUI.AIITA	- 15.000000	1.50839	
20	- 1	129.63561	10.193899		•
	9.	185.52772	37.726567	1.50839	
25	10	-359.67498	10.000000		•
25	11	-380.92840	10.032688	1.50839	G2
	12	117.09613	32.010931		
30	13	-287.93550	10.000000	1.50839	
	14	194.76378	32.284079		
35	15	-158.72745	10.003793	1.50839	
	16	-1178.65823	36.540933		
	17	-123.26109	29.351802	1.50839	G3
40	18	-133.12159	1.000000		
	19	-502.15858	25,000000	1.50839	
45	20	-302.23345	0,100000		
	· 21	7363.85681	43.843308	1.50839	
	22	-425.68991	0.100000		
50	23	1729.87203	45.555947	1.50839	
	24	-600.00000	0.200000		
55	25	865.80263	40.012505	1.50839	
	26	-1554.86289	2.156975		
	27	509.31991	43.360383	1.50839	
60	. 28	99999.00000	3.749801		
	29	378.69505	44.864067	1.50839	
65	30	3000.00000	0.000001		
	31	308.96606	53.780418	1.50839	

	1		 -	Gruppe
<u> </u>	r	d	n	
32	506,87544	5,000000		
. 33	802,31214	13.801460	1.50839	G4
34	146,21750	72.358454		
35	-229.01266	15.000000	1.50839	
36	241.96265	73,389500		·
37	-309.06925	10.000000	1.50839	
38	551.94211	6.102207		
39	752,97283	45.581180	1.50839	: G5
40	-416.05599	15.000000		
41		15.000000		
42	-4226.71251	38.697035	1.50839	
43	-420.41230	0.100000		
44	546.12722	57.018027	1.50839	
45	-752.79962	36,208246		
46	-292.99042	25.000000	1.50839	
47	-526.52023	4.113016		
48	1204.71132	54.118430	1.50839	
49	-639.03474	0.100000		
50	556.47285	50,363514	1.50839	
51	-1972.93848	0.100000		
52	244.15849	53.094475	1.50839	
53	700.00000	0.100000		
54	192.23824	49.559672	1.50839	G6
55	568.53429	14.794053		
56	99999,00000	30.754870	1.50839	
57	307,32702	11.653900		
58	186.45334	68.559500	1.50839	
59	1043.98610			

Tabelle 8b

Daten der asphärischen Oberfläche

S14	$\kappa = 0.000000$	A =825926E-07	B =220422E-11	C=447231E-16
. /// ·	D=146561E-19	E = 0.184702E-23	F =287752E-27	
\$35	κ=0.000000	A =502044E-08	B = -:264019E-12	C =964365E-17
///	D =133885E-23	E =303209E-25	F = 0.972304E-30	
S40	κ = 0.000000	A = 0.295553E-08	B = 0.182366E-12	C = 0.650083E-17
<i> </i>	D = 0.376932E-21	E=-240887E-26	F = 0.849451E-30	
_	/// \$35 /// \$40	/// D =146561E-19 S35 κ = 0.000000 /// D =133885E-23 S40 κ = 0.000000	D =146561E-19	D =146561E-19 E = 0.184702E-23 F =287752E-27 S35 κ = 0.000000 A =502044E-08 B =264019E-12 D =133885E-23 E =303209E-25 F = 0.972304E-30 S40 κ = 0.000000 A = 0.295553E-08 B = 0.182366E-12

20

Tabelle 8c

Konstruktionsparameter

- :		
25	Parameter	Wert
	f ₁ /f ₃	1.134
	£_/£_	0.836
30	f./L	0.133
	f/L	0.280
35	£/L	-0.052
	f _s /L	-0.043
	f ₂ n/L	-0.043
40	[R ₅ n /L	0.195
	[R ₁ n//L	0.280 .

45

Wie aus den Aberrationskurven gemäß Fig. 17a-17h ersichtlich ist, ist die Anordnung gemäß dieser Ausführungsform hinsichtlich Aberrationen gut korrigiert und geeignet, das der Erfindung zugrundeliegende Problem zu beseitigen.

Neunte Ausführungsform

50

Die Abbildungsoptik 180 gemäß Fig. 18 ist die neunte Ausführungsform und weist von der Objektebene 12 zu der Bildebene 14 eine erste Linsengruppe G1 mit einem Linsenbauteil L11 mit Negativ-Meniskus, das objektseitig eine konvexe Oberfläche aufweist, einem bb-konvexen Linsenbauteil L12 und einem bikonvexen Linsenbauteil L13 auf. Es folgt eine zweite Linsengruppe G2, die ein Linsenbauteil L21 mit Negativ-Meniskus aufweist, das objektseitig eine konvexe Oberfläche aufweist, ein Linsenbauteil L22 mit Negativ-Meniskus aufweist, das objektseitig eine konvexe Oberfläche aufweist, ein bikonvexes Linsenbauteil L23, ein Linsenbauteil L24 mit Negativ-Meniskus aufweist, das objektseitig eine konkave Oberfläche aufweist, und ein Linsenbauteil L25 mit Negativ-Meniskus aufweist, das objektseitig eine konkave Oberfläche aufweist. Es folgt eine dritte Linsengruppe G3, die ein Linsenbauteil L31 mit Positiv-Meniskus, das objektseitig eine konkave Oberfläche aufweist, ein Linsenbauteil L32 mit Positiv-Meniskus, das objektseitig eine konkave Oberfläche aufweist, ein bikonvexes Linsenbauteil L33, ein bikonvexes Linsenbauteil L34, ein Linsenbauteil L35 mit Positiv-Meniskus, das objektseitig eine konvexe Oberfläche aufweist, und ein bikonvexes Linsenbauteil L36 aufweist, Es folgt eine vierte Linsengruppe G4, die ein plan-konkaves Linsenbauteil L41, das objektseitig eine ebene Oberfläche aufweist, ein bikonkaves Linsenbauteil L42 und ein bikonkaves Linsenbauteil L43 aufweist. Es folgt eine fünfte Linsengruppe G5, die ein Linsenbauteil L51 mit Positiv-Meniskus, das objektseitig eine konkave Oberfläche aufweist, ein Linsenbauteil L52 mit Negativ-Meniskus, das objektseitig eine konkave Oberfläche aufweist, ein bikonvexes Linsenbauteil L53, ein Linsenbauteil L54 mit Negativ-Meniskus, das objektseitig eine konkave Oberfläche aufweist, ein bikonvexes Linsenbauteil L55, ein Linsenbauteil L56 mit Positiv-Meniskus aufweist, das objektseitig eine konvexe Oberfläche aufweist, und ein Linsenbauteil L57 mit Positiv-Meniskus aufweist, das objektseitig eine konvexe Oberfläche aufweist. Es

folgt eine sechste Linsengruppe G6, die ein Linsenbauteil L61 mit Positiv-Meniskus, das objektseitig eine konvexe Oberfläche aufweist, ein bikonkaves Linsenbauteil L62 und ein Linsenbauteil L63 mit Positiv-Meniskus aufweist, das objektseitig eine konvexe Oberfläche aufweist. Die Aperturblende AS ist zwischen dem Linsenbauteil L51 und dem Linsenbauteil L52 in der fünften Linsengruppe angeordnet.

In der Abbildungsoptik 180 gemäß Fig. 18 beträgt die numerische Apertur 0,78, die Vergrößerung 1/4, L beträgt 1500, die Entfernung auf der Achse von der Objektebene 12 bis zu der am weitesten objektseitigen Oberfläche des Linsenbauteils L11 beträgt 92,0, der Brennpunktsabstand von der Linsenrückseite beträgt 19,095569 und die maximale Bildhöhe beträgt 14,5.

Tabelle 9a

	S	r	đ	מ	Gruppe
5	1	500,00000	20.000000	1.50839	GI
	2	430,00000	10.000000		
10	3	931,80900	23.718892	1,50839	
	4	-362.97952 ·	0.100000		
	5 .	332,06640	25.995825	1.50839	
15	6	-732.52220	13,842797	•	
	7	206.89029	15.000000	1.50839	G2
20	8	149.50025	15.414059		
	.9	511.22833	39,506945	1.50839	
	10	149.73196	30.626199		
25	11	-187.69536	10,000000	1.50839	
	12	215.87573	24.165184		
30	13	-280.84891	15.000000	1.50839	
	14	-1495.99441	32,241853	•	
25	15	-132.56240	23.125310	1,50839	
35	16	-193.90245	0.536304		
	17	-246.39953	33.677028	1.50839	G3
40	. 18	-170,42850	0.449647		
	19	-18093.58705	- 52.266017	1.50839	
45	20	-307.72240	0.100000		•
43	21	1028.99344	52_040848	. 1.50839	
	22	-564.72447	0.200000		
50	23	463.92013	- 47,252819	1.50839	<u> </u>
į	24	-5413.06676	10.736526		
55	25	565.81685	37,800000	1.50839	
33	26	2892.95526	6.361992		
	27	298.99587	75.000000	1.50839	
60	28	-3000,00000	5.000000		
	29	ω	24.356049	1.50839	G4
65	30	164.11897	50.949748		
ம ப					

S	r	d	n	Gruppe
31	-357.71936	10.000000	1,50839	
32 .	195.03967	58.555088		
33	-182.56313	41.236081	1.50839	
34	5843.26761	11.029510		
35	-883.21453	48,737208	1.50839	G5
∴36	-295.17959	5.000000		
37	ω .	25.000000		
38	-5542,32804	44.564616	1.50839	
39	-367,50993	0.100000		
40	443.75606	75.000000	1.50839	
41	-1085,66088	30.000000		
42	-400.26612	25.000000	1.50839	
43	-525,63201	4.113016		
44	658.76285	48.097310	1.50839	
45	-5983.44019	0.100000		
46	345.33254 .	43.329194	1.50839	
47	1409.15145	0.100000		
48	262.42521	46.228330	1.50839	
49	750.00000	. 0.100000		
50	198.86479	48.865418	1.50839	G6
51	623.68097	17.416378		
52	-942.86893	30.754870	1,50839	
53	625.62224	11.553900		•
54	196.70372	68.559500	1.50839	· · ·
.55	860.93535			

Tabelle 9b

Daten der asphärischen Oberfläche

-					
,	S12	$\kappa = 0.000000$	A =415050E-07	B =756052E-12	C = 0.260560E-16
	///	D = 0.209992E-20	E=-,237405E-24	F = 0.483178E-29	•
10	\$29	x = 0.000000	A = 0.102099E-09	B =188042E-13	C = 0.267234E-17
	///	D =475339E-22	E=256151E-27	F = 0.160661E-31	·
15	S36	κ=0.000000	A = 0.403820E-09	B = 0.262131E-13	C = 0.256593E-18
13	///	D =436766E -22	E =138744E-26	F = 0.520594E-31	
	S52	κ = 0.000000	A = 0.118684E-07	B =447939E-12	C = 0.245274E-16
20	///	D=116536E-20	E = 0.385264E-25	F =631033E-30	

Tabelle 9c

25

60

65

Konstruktionsparameter

	•	
[Parameter	Wert
30	f ₁ /f ₃	1.658
	f ₂ /f ₄	1.033
35	£/L	0.128
7	f./L	0.280
	£/L	-0.053
40	£/L	-0.055
	f ₂ n/L	-0.070
45	[R _s n[/L	0.267
	[R,n /L	. 0.287

Wie aus den Aberrationskurven gemäß Fig. 19a-19h ersichtlich ist, ist die Anordnung gemäß dieser Ausführungsform hinsichtlich Aberrationen gut korrigiert und geeignet, das der Erfindung zugrundeliegende Problem zu beseitigen.

Patentansprüche

- 1. Abbildungsoptik mit einer Objektebene (12) und einer Bildebene (14), die von der Objektebene (12) zu der Bildebene (14) hin aufweist:
 - a) eine erste Linsengruppe (G1) mit einem positiven Brechwert;
 - b) eine zweite Linsengruppe (G2) mit einem negativen Brechwert;
 - c) eine dritte Linsengruppe (G3) mit einem insgesamt positiven Brechwert, die mindestens drei Linsenbauteile mit positivem Brechwert aufweist;
 - d) eine vierte Linsengruppe (G4) mit einem insgesamt negativen Brechwert, die mindestens drei Linsenbauteile mit negativem Brechwert aufweist;
 - e) eine fünfte Linsengruppe (G5) mit einem insgesamt positiven Brechwert, die mindestens drei Linsenbauteile mit positivem Brechwert aufweist;
 - f) eine sechste Linsengruppe (G6) mit einem positiven Brechwert; wobei
 - g) mindestens ein Linsenbauteil der vierten Linsengruppe (G4) oder der fünften Linsengruppe (G5) mindestens eine asphärische Oberfläche aufweist.
 - 2. Abbildungsoptik gemäß Anspruch 1, die eine oder mehrere der folgenden Konstruktionsbedingungen erfüllt:

 $0.1 < f_1/f_3 < 15$ $0.05 < f_2/f_4 < 6$ $0.01 < f_5/L < 1.2$ $0.02 < f_6/L < 1.8$ 5 $-0.3 < f_4/L < -0.005$ $-0.5 < f_2/L < -0.005$ wobei f1 die Brennweite der ersten Linsengruppe (G1) ist, f2 die Brennweite der zweiten Linsengruppe (G2) ist, f3 die Brennweite der dritten Linsengruppe (G3) ist, f4 die Brennweite der vierten Linsengruppe (G4) ist, f5 die Brennweite der fünsten Linsengruppe (G5) ist, 16 die Brennweite der sechsten Linsengruppe (G6) ist, und L der Abstand von der Objektebene (12) zu der Bildebene (14) ist. 3. Abbildungsoptik gemäß Anspruch 2, wobei die zweite Linsengruppe (G2) mindestens fünf Linsenbauteile aufweist, von denen drei Linsenbauteile einen negativen Brechwert aufweisen, und die Bedingung: 15 $-0.3 < f_2 n/L < 0.01$ erfüllt ist, wobei fen die zusammengesetzte Brennweite von dem dritten (L23) bis zu dem fünften Linsenbauteil (L25) in der zweiten Linsengruppe (G2) ist. 4. Abbildungsoptik gemäß Anspruch 3, wobei mindestens eines der fünf Linsenbauteile in der zweiten Linsengruppe (G2) mindestens eine asphärische Oberfläche aufweist. 5. Abbildungsoptik gemäß Anspruch 4, wobei die erste Linsengruppe (G1) ein Linsenbauteil oder mehrere Linsenbauteile aufweist und mindestens eine asphärische Oberfläche auf dem Linsenbauteil bzw. einem der Linsenbauteile aufweist. 6. Abbildungsoptik gemäß Anspruch 5, wobei die dritte Linsengruppe (G3) ein Linsenbauteil oder mehrere Linsenbauteile aufweist und mindestens eine asphärische Oberfläche auf dem Linsenbauteil bzw. einem der Linsenbauteile 7. Abbildungsoptik gemäß Anspruch 6, wobei die sechste Linsengruppe (G6) ein Linsenbauteil oder mehrere Linsenbauteile aufweist und mindestens eine asphärische Oberfläche auf dem Linsenbauteil bzw. einem der Linsenbauteile aufweist. 30 8. Abbildungsoptik gemäß Anspruch 3, wobei die fünfte Linsengruppe (G5) ein Linsenbauteil mit Negativ-Meniskus aufweist, das objektseitig eine konkave Oberfläche aufweist, und die Konstruktionsbedingung $0.1 < IR_{5}nVL < 0.5$ 35 erfüllt ist, wobei R5n der Krümmungsradius der konkaven Oberfläche ist. 9. Abbildungsoptik gemäß Anspruch 8, wobei die sechste Linsengruppe (G6) ein Linsenbauteil mit Negativ-Meniskus aufweist, das objektseitig eine konkave Oberfläche aufweist, und die Konstruktionsbedingung $0.03 < IR_{cn}/L < 0.15$ 40 erfüllt ist, wobei R6n der Krümmungsradius der konkaven Oberfläche ist. 10. Abbildungsoptik gemäß Anspruch 9, wobei die erste Linsengruppe (G1) ein Linsenbauteil mit einem negativen Brechwert und einem bildebenenseitigen Krümmungsradius R1n aufweist und die Konstruktionsbedingung 45 $0.1 < IR_1 nVL < 0.5$ erfüllt ist. 11. Projektionsoptikvorrichtung (10), die aufweist: a) eine Abbildungsoptik gemäß einem der Ansprüche 1 bis 10; 50 b) einen Maskenhalter (RS), von dem eine Maske (R) in der oder nahe der Objektebene (12) der Abbildungsoptik haltbar ist; c) eine Beleuchtungsquelle (IS), die dem Maskenhalter (RS) benachbart auf dessen der Abbildungsoptik abgewandten Seite angeordnet ist; und d) einen Werkstückhalter (WS), der der Abbildungsoptik benachbart an deren der Bildebene (14) zugewandter Seite angeordnet ist, wobei der Werkstückhalter (WS) derart ausgebildet ist, daß von ihm ein Werkstück (W) in der oder nahe der Bildebene (14) der Abbildungsoptik haltbar ist. 12. Verfahren des Projizierens von Belichtungsmustern auf ein Werkstück (W), wobei das Verfahren die Schritte a) Bereitstellen einer Abbildungsoptik gemäß einem der Ansprüche 1 bis 10; 60 b) Anordnen einer Maske (R), die die Muster aufweist, in der oder nahe der Objektebene (12) der Abbildungsoptik: c) Anordnen des Werkstücks (W) in der oder nahe der Bildebene (14); und d) Beleuchten der Maske (R) mit einer Kohler-Beleuchtungsquelle (IS), die dem Maskenhalter (RS) benachbart auf dessen der Abbildungsoptik abgewandten Seite angeordnet ist. 65 13. Abbildungsoptik mit den Bauteilen und Eigenschaften gemäß den Tabellen 1a bis 1c. 14. Abbildungsoptik mit den Bauteilen und Eigenschaften gemäß den Tabellen 2a bis 2c.

15. Abbildungsoptik mit den Bauteilen und Eigenschaften gemäß den Tabellen 3a bis 3c.

- 16. Abbildungsoptik mit den Bauteilen und Eigenschaften gemäß den Tabellen 4a bis 4c.
- Abbildungsoptik mit den Bauteilen und Eigenschaften gemäß den Tabellen 5a bis 5c.
 Abbildungsoptik mit den Bauteilen und Eigenschaften gemäß den Tabellen 6a bis 6c.

- Abbildungsoptik mit den Bauteilen und Eigenschaften gemäß den Tabellen 7a bis 7c.
 Abbildungsoptik mit den Bauteilen und Eigenschaften gemäß den Tabellen 8a bis 8c.
 Abbildungsoptik mit den Bauteilen und Eigenschaften gemäß den Tabellen 9a bis 9c.

Hierzu 23 Seite(n) Zeichnungen

- Leerseite -

