Smart Sorting System Using Flask & VGG16 - Project Report

1. INTRODUCTION

1.1 Project Overview

This project classifies fruits and vegetables as healthy or rotten using a VGG16-based deep learning model. The model is integrated into a Flask web application for user interaction.

1.2 Purpose

To develop an intelligent classification system that aids in the sorting of produce for agricultural or supply chain industries.

2. IDEATION PHASE

2.1 Problem Statement

Manual identification of rotten or healthy produce is inefficient and error-prone, especially on a large scale.

2.2 Empathy Map Canvas

Think & Feel: Needs fast, reliable food classification.\ **See:** Inconsistent sorting.\ **Say & Do:** Looks for a techbased solution.\ **Hear:** Peers facing the same problem.\ **Pain:** Time-consuming, costly.\ **Gain:** Faster, automated sorting system.

2.3 Brainstorming

- Use of machine learning or computer vision
- Mobile or web interface for ease of access
- Use of pre-trained models for better accuracy

3. REQUIREMENT ANALYSIS

3.1 Customer Journey Map

- · User accesses the application
- Uploads image
- System predicts label
- Receives feedback/output

3.2 Solution Requirement

- Frontend (HTML)
- Backend (Flask, Python)
- Model (.h5 file)
- Dataset (Kaggle)

3.3 Data Flow Diagram

Input: Image \rightarrow Model Prediction \rightarrow Output Label

3.4 Technology Stack

- Python, Flask
- TensorFlow, Keras
- HTML/CSS
- GitHub

4. PROJECT DESIGN

4.1 Problem Solution Fit

The proposed ML system can automatically and accurately classify input images.

4.2 Proposed Solution

Use pre-trained VGG16 model and deploy through a Flask web interface.

4.3 Solution Architecture

• User uploads image → Flask receives input → Model classifies → UI displays result

5. PROJECT PLANNING & SCHEDULING

5.1 Project Planning

Phase	Timeline
Data Collection	Week 1
Model Building	Week 2
Testing & Debugging	Week 3
Web Integration	Week 4
Report & Video	Week 5

6. FUNCTIONAL AND PERFORMANCE TESTING

6.1 Performance Testing

- Accuracy on test set
- Time taken per prediction
- UI responsiveness

7. RESULTS

7.1 Output Screenshots

8. ADVANTAGES & DISADVANTAGES

Advantages: - High accuracy - Real-time prediction - Easy to use

Disadvantages: - Needs internet connection for GitHub usage - Dependent on image quality

9. CONCLUSION

This project successfully applies AI/ML techniques for sorting produce and demonstrates practical deployment using Flask.

10. FUTURE SCOPE

- Expand dataset
- Add mobile integration
- Introduce multi-language support

11. APPENDIX

Source Code: Included in GitHub repo

Dataset Link: Kaggle Fruit & Vegetable Dataset

GitHub & Demo Link:

GitHub: https://github.com/jadaamruthalakshmi/Smart-Sorting-Project/tree/main

Demo Video: https://github.com/jadaamruthalakshmi/Smart-Sorting-Project/blob/main/Project%20demonstration%20video/Demo%20video.mp4