# LAB 3 Measuring performance of a WiFi network in different scenarios

Fatema Mirza & Mohammad Newaj Jamil

D7030E Advanced Wireless Networks



# LAB 3 Measuring performance of a WiFi network in different scenarios

by

### Fatema Mirza & Mohammad Newaj Jamil

Submission Deadline: October 11, 2021 Teachers:

Dr. Evgeny Osipov,

LULEÅ TEKNISKA UNIVERSITET Ahmed Afif Monrat, LULEÅ TEKNISKA UNIVERSITET



### Contents

| - | Scer | nario I –Application throughput using WiFi network                                                                                                                                               | 1  |
|---|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | 1.1  | 0                                                                                                                                                                                                |    |
|   |      | simulation                                                                                                                                                                                       | 1  |
|   | 1.2  | Based on the script for the first part of Scenario 1 implement the second part as illustrated in                                                                                                 |    |
|   |      | Figure 2                                                                                                                                                                                         | 1  |
|   | 1.3  | In your experiments you will vary the transmission rate at the physical layer in the range 1                                                                                                     |    |
|   | 1.4  | Mbps, 5.5 Mbps and 11 Mbps.                                                                                                                                                                      | 2  |
|   | 1.4  | For the first part of Scenario 1 keep the distances between sender, receiver, and Access Point                                                                                                   |    |
|   |      | equal to 10 meters (equilateral triangle). For the second scenario create topology similar to one depicted in Figure 2 (two equilateral triangles opposite to each other, Access Point is in the |    |
|   |      | middle)                                                                                                                                                                                          | 2  |
|   | 1.5  | For both parts of Scenario 1 and for each bit rate run 2 experiments with different seeds for                                                                                                    | 2  |
|   | 1.5  | the random generator. In each experiment measure the application–layer throughput for each                                                                                                       |    |
|   |      | application and total throughput for the whole network                                                                                                                                           | 4  |
|   |      | 1.5.1 For Figure 1                                                                                                                                                                               | 4  |
|   |      | 1.5.2 For Figure 2                                                                                                                                                                               | 5  |
|   | 1.6  | Plot the application throughput for each seed versus the bit rate for both parts of the sce-                                                                                                     | 0  |
|   | 1.0  | nario(one figure per part)                                                                                                                                                                       | 8  |
|   |      | 1.6.1 Individual Plots For Figure 1                                                                                                                                                              |    |
|   |      | 1.6.2 Individual Plots For Figure 2                                                                                                                                                              |    |
|   | 1.7  |                                                                                                                                                                                                  |    |
| , | Scor | nario 2.Part 1.The effect of different packet sizes on the application level throughput                                                                                                          | 12 |
|   |      | For EACH transmission rate in the range of transmission rates run one experiment with EVERY                                                                                                      | 12 |
|   | 2.1  | packet size(3x3=9 experiments)                                                                                                                                                                   | 12 |
|   | 2.2  | Select measurements when packet size equals 1000 bytes. Fill in a table where in the upper                                                                                                       |    |
|   |      | row you list the physical layer transmission rate and in the lower row you write the measured                                                                                                    |    |
|   |      | throughput. Did you achieve the absolute maximum transmission rate?                                                                                                                              | 12 |
|   | 2.3  | Plot a graph showing the dependency of the average throughput versus packet size for each                                                                                                        |    |
|   |      | physical layer transmission rate in the range (3 graphs)                                                                                                                                         | 13 |
|   | 2.4  | Explain the observed behavior                                                                                                                                                                    | 14 |
|   | 2.5  | r J                                                                                                                                                                                              |    |
|   |      | time for transmission of a SINGLE packet. Taking the packet's TOTAL size (including headers                                                                                                      |    |
|   |      | on all layers) in bits calculate the transmission rate                                                                                                                                           | 14 |
|   | 2.6  | Is it equal to 11Mb/s? If not why?                                                                                                                                                               | 15 |
| 2 | Scer | nario 2. Part 2.Hidden terminal problem                                                                                                                                                          | 16 |
| • |      | Run experiments for both modes and calculate the throughput and the packet delivery ratio                                                                                                        | _  |
|   | 3.2  |                                                                                                                                                                                                  |    |
|   |      | throughput at the receiver with and without using RTS/CTS. Motivate your answer                                                                                                                  | 17 |

### List of Tables

| 1.1  | Throughput for 1 Mbps for Figure 1                                              | 4  |
|------|---------------------------------------------------------------------------------|----|
| 1.2  | Throughput for 5.5 Mbps for Figure 1                                            | 5  |
| 1.3  | Throughput for 11 Mbps for Figure 1                                             | 5  |
| 1.4  | Mean APP. Throughput and Std Deviation for Figure 1                             | 5  |
| 1.5  | Throughput for 1 Mbps downlink for Figure 2                                     | 6  |
| 1.6  | Throughput for 1 Mbps uplink for Figure 2                                       | 6  |
| 1.7  | Throughput for 5.5 Mbps downlink for Figure 2                                   | 6  |
| 1.8  | Throughput for 5.5 Mbps uplink for Figure 2                                     | 7  |
| 1.9  | Throughput for 11 Mbps downlink for Figure 2                                    | 7  |
| 1.10 | Throughput for 11 Mbps uplink for Figure 2                                      | 7  |
| 1.11 | Mean APP. Throughput and Std Deviation for Figure 2 DL                          | 8  |
| 1.12 | Mean APP. Throughput and Std Deviation for Figure 2 UL                          | 8  |
| 1.13 | Comparison of App. Throughput for Figure 1 & 2 for transmission in the downlink | 11 |
| 2.1  | Comparison of different packet sizes on the application level throughput        | 12 |
| 2.2  | Comparison of transmission rate and the corresponding throughput                | 13 |
| 3.1  | Comparison of transmission rate and the corresponding throughput                | 17 |

## List of Figures

| 1.1  | Figure 1                                               | 1  |
|------|--------------------------------------------------------|----|
| 1.2  | Figure 2                                               |    |
| 1.3  | Coordinates for Figure 1                               | 3  |
| 1.4  | Coordinates for Figure 2                               | 4  |
| 1.5  | Bitrate vs App throughput for Figure 1 for seed= 1     | 8  |
| 1.6  | Bitrate vs App throughput for Figure 1 for seed= 5     | 9  |
| 1.7  | Bitrate vs App throughput for Figure 1 for seed= 10    | 9  |
| 1.8  | Bitrate vs App throughput for Figure 2 DL for seed= 1  | 9  |
| 1.9  | Bitrate vs App throughput for Figure 2 UL for seed= 1  | 10 |
| 1.10 | Bitrate vs App throughput for Figure 2 DL for seed= 5  |    |
| 1.11 | Bitrate vs App throughput for Figure 2 UL for seed= 5  |    |
| 1.12 | Bitrate vs App throughput for Figure 2 DL for seed= 10 |    |
| 1.13 | Bitrate vs App throughput for Figure 2 UL for seed= 10 | 11 |
| 2.1  | Bitrate vs App throughput for 400 B                    | 13 |
| 2.2  | Bitrate vs App throughput for 700 B                    | 13 |
| 2.3  | Bitrate vs App throughput for 1000 B                   |    |
| 2.4  | Epoch time for sender captured from wireshark          | 15 |
| 2.5  | Epoch time for receiver captured from wireshark        | 15 |
| 3.1  | Hidden terminal problem                                | 16 |
| 3.2  | Experimental Hidden terminal problem                   | 16 |

## Scenario 1 –Application throughput using WiFi network

## 1.1. Study the provided script for the scenario in Figure 1. Be able to explain the details of this simulation.

This will be explained in detail during the Lab Assessment. An AP and two STAs were created following the WIFI protocols.



Figure 1.1: Figure 1

## 1.2. Based on the script for the first part of Scenario 1 implement the second part as illustrated in Figure 2.

This was implemented by changing the code in 3 different places. 4 STAs were created to support the 4 nodes according to Figure 2. The distance was set for the 4 STAs in relation to the AP. Afterwards, two applications were created to service two of the topologies.



Figure 1.2: Figure 2

## 1.3. In your experiments you will vary the transmission rate at the physical layer in the range 1 Mbps, 5.5 Mbps and 11 Mbps.

The transmission rate was varied using the following: wifi.SetRemoteStationManager ("ns3::ConstantRateWifiManager", "DataMode",StringValue ("DsssRate5\_5Mbps"));
The result of this will be demonstrated in the later questions.

1.4. For the first part of Scenario 1 keep the distances between sender, receiver, and Access Point equal to 10 meters (equilateral triangle). For the second scenario create topology similar to one depicted in Figure 2 (two equilateral triangles opposite to each other, Access Point is in the middle).

The coordinates for the Figure 1 were set as follows:



Figure 1.3: Coordinates for Figure 1

Using the Pythagoras equation, the vertical height for the equilateral triangle, that is the AP is found as follows:  $\sqrt{10^2 - 5^2} = 8.66$ .

Similarly, the coordinates for figure 2 were also set in the following manner - by setting the coordinates according the to the previous logic for 4 STAs.



Figure 1.4: Coordinates for Figure 2

## 1.5. For both parts of Scenario 1 and for each bit rate run 2 experiments with different seeds for the random generator. In each experiment measure the application—layer throughput for each application and total throughput for the whole network.

Random seed value of 1 is the default and two random seeds are chosen at increments of 5. The throughput is viewed from wireshark statistics (from the capture file properties) and divided by 2 because half of the data comes from the AP. The application throughput is calculated using the following formula  $throughput * \frac{1000}{1064}$  where 1000B is the payload size and 1064B is the payload size including the headers.

The random seed was set using the following: RngSeedManager::SetSeed (5);

#### 1.5.1. For Figure 1

Table 1.1: Throughput for 1 Mbps for Figure 1

| Random Seed | Throughput (kbps) | Throughput/2 (kbps) | Application throughput (kbps) |
|-------------|-------------------|---------------------|-------------------------------|
| 1           | 893               | 446.5               | 419.6428571                   |
| 5           | 887               | 443.5               | 416.8233083                   |
| 10          | 884               | 442                 | 415.4135338                   |

Table 1.2: Throughput for 5.5 Mbps for Figure 1

| Random Seed | Throughput (kbps) | Throughput/2 (kbps) | Application throughput (kbps) |
|-------------|-------------------|---------------------|-------------------------------|
| 1           | 3696              | 1848                | 1736.842105                   |
| 5           | 3685              | 1842.5              | 1731.672932                   |
| 10          | 3670              | 1835                | 1724.62406                    |

Table 1.3: Throughput for 11 Mbps for Figure 1  $\,$ 

| Random Seed | Throughput (kbps) | Throughput/2 (kbps) | Application throughput (kbps) |
|-------------|-------------------|---------------------|-------------------------------|
| 1           | 5675              | 2837.5              | 2666.823308                   |
| 5           | 5640              | 2820                | 2650.37594                    |
| 10          | 5631              | 2815.5              | 2646.146617                   |

Table 1.4: Mean APP. Throughput and Std Deviation for Figure 1  $\,$ 

| Bitrate (Mbps) | Mean App. Throughput (Kbps) | Std dev  |
|----------------|-----------------------------|----------|
| 1              | 417.2932                    | 2.153466 |
| 5.5            | 1731.046                    | 6.133074 |
| 11             | 2654.449                    | 10.92344 |

#### 1.5.2. For Figure 2

For this scenario, there are two applications, the downlink and the uplink for each bitrate.

Table 1.5: Throughput for 1 Mbps downlink for Figure 2

| Random Seed | Throughput (10.1.1.2) (kbps) | Throughput (10.1.1.4) (kbps) | Total DL (kbps) | App. Throughput (kbps) |
|-------------|------------------------------|------------------------------|-----------------|------------------------|
| 1           | 455                          | 443                          | 898             | 213.8157895            |
| 5           | 451                          | 455                          | 906             | 211.9360902            |
| 10          | 567                          | 377                          | 944             | 266.4473684            |

Table 1.6: Throughput for 1 Mbps uplink for Figure 2

| Random Seed | Throughput (10.1.1.2) (kbps) | Throughput (10.1.1.4) (kbps) | Total UL (kbps) | App. Throughput (kbps) |
|-------------|------------------------------|------------------------------|-----------------|------------------------|
| 1           | 446                          | 463                          | 909             | 217.575188             |
| 5           | 439                          | 463                          | 902             | 217.575188             |
| 10          | 558                          | 387                          | 945             | 181.8609023            |

Table 1.7: Throughput for 5.5 Mbps downlink for Figure 2

| Random Seed | Throughput (10.1.1.2) (kbps) | Throughput (10.1.1.4) (kbps) | Total DL (kbps) | App. Throughput (kbps) |
|-------------|------------------------------|------------------------------|-----------------|------------------------|
| 1           | 1866                         | 1825                         | 3691            | 876.8796992            |
| 5           | 1825                         | 1845                         | 3670            | 857.612782             |
| 10          | 2100                         | 1821                         | 3921            | 986.8421053            |

Table 1.8: Throughput for 5.5 Mbps uplink for Figure 2

| Random Seed | Throughput (10.1.1.2) (kbps) | Throughput (10.1.1.4) (kbps) | Total UL (kbps) | App. Throughput (kbps) |
|-------------|------------------------------|------------------------------|-----------------|------------------------|
| 1           | 1858                         | 1826                         | 3684            | 858.0827068            |
| 5           | 1820                         | 1851                         | 3671            | 869.8308271            |
| 10          | 2097                         | 1825                         | 3922            | 857.612782             |

Table 1.9: Throughput for 11 Mbps downlink for Figure 2  $\,$ 

| Random Seed | Throughput (10.1.1.2) (kbps) | Throughput (10.1.1.4) (kbps) | Total DL (kbps) | App. Throughput (kbps) |
|-------------|------------------------------|------------------------------|-----------------|------------------------|
| 1           | 2852                         | 2808                         | 5660            | 1340.225564            |
| 5           | 2839                         | 2841                         | 5680            | 1334.116541            |
| 10          | 3145                         | 2865                         | 6010            | 1477.913534            |

Table 1.10: Throughput for 11 Mbps uplink for Figure 2  $\,$ 

| Random Seed | Throughput (10.1.1.2) (kbps) | Throughput (10.1.1.4) (kbps) | Total UL (kbps) | App. Throughput (kbps) |
|-------------|------------------------------|------------------------------|-----------------|------------------------|
| 1           | 2852                         | 2808                         | 5660            | 1319.548872            |
| 5           | 2839                         | 2841                         | 5680            | 1335.056391            |
| 10          | 3145                         | 2865                         | 6010            | 1346.334586            |

Table 1.11: Mean APP. Throughput and Std Deviation for Figure 2 DL

| Bitrate (Mbps) | Mean App. Throughput (Kbps) | Std dev  |
|----------------|-----------------------------|----------|
| 1              | 230.7331                    | 30.94375 |
| 5.5            | 907.1115                    | 69.71748 |
| 11             | 1384.085                    | 81.3151  |

Table 1.12: Mean APP. Throughput and Std Deviation for Figure 2 UL

| Bitrate (Mbps) | Mean App. Throughput (Kbps) | Std dev  |
|----------------|-----------------------------|----------|
| 1              | 205.6704                    | 20.61965 |
| 5.5            | 861.8421                    | 6.922425 |
| 11             | 1333.647                    | 13.44839 |

## 1.6. Plot the application throughput for each seed versus the bit rate for both parts of the scenario(one figure per part).

The general conclusion can be that as bitrate increases, throughput increases.

#### 1.6.1. Individual Plots For Figure 1



Figure 1.5: Bitrate vs App throughput for Figure 1 for seed= 1



Figure 1.6: Bitrate vs App throughput for Figure 1 for seed= 5



Figure 1.7: Bitrate vs App throughput for Figure 1 for seed= 10

#### 1.6.2. Individual Plots For Figure 2



Figure 1.8: Bitrate vs App throughput for Figure 2 DL for seed= 1

#### 

Figure 1.9: Bitrate vs App throughput for Figure 2 UL for seed= 1



Figure 1.10: Bitrate vs App throughput for Figure 2 DL for seed= 5



Figure 1.11: Bitrate vs App throughput for Figure 2 UL for seed= 5



Figure 1.12: Bitrate vs App throughput for Figure 2 DL for seed= 10



Figure 1.13: Bitrate vs App throughput for Figure 2 UL for seed= 10

## 1.7. Compare how application throughput for the whole network varies for Figure 1 and Figure 2.

The table below summarizes the result of the whole section. The table compares the Application Throughput for transmission in the downlink for both the figures. It can be observed that the Figure 1 receives double the throughput of Figure 2. This is because Figure 2 has to supply half of the throughput to the uplink communication. This behaviour is demonstrated below.

Table 1.13: Comparison of App. Throughput for Figure 1  $\&\,2$  for transmission in the downlink

| Random Seed | Fig1_1Mbps | Fig2_1Mbps | Fig1_5.5Mbps | Fig2_5.5Mbps | Fig1_11Mbps | Fig2_11Mbps |
|-------------|------------|------------|--------------|--------------|-------------|-------------|
| 1           | 419.6429   | 213.8158   | 1736.842     | 876.8797     | 2666.823    | 1340.226    |
| 5           | 416.8233   | 211.9361   | 1731.673     | 857.6128     | 2650.376    | 1334.117    |
| 10          | 415.4135   | 266.4474   | 1724.624     | 986.8421     | 2646.147    | 1477.914    |
| Mean        | 417.2932   | 230.7331   | 1731.046     | 907.1115     | 2654.449    | 1384.085    |
| Std.dev     | 2.153466   | 30.94375   | 6.133074     | 69.71748     | 10.92344    | 81.3151     |

# Scenario 2.Part 1.The effect of different packet sizes on the application level throughput

In this scenario you will use the topology as depicted in Figure 1. Use Two-Ray Ground propagation model. Place the nodes(sender –Access Point –receiver) at distance di/2, where di you have calculated in the previous lab. In this scenario you will use UDP traffic. In your experiments you will vary the transmission rate at the physical layer in the range 1Mbps, 5.5 Mbps and 11 Mbps. You will also vary the UDP payload in the range 400B, 700B, 1000B.

## 2.1. For EACH transmission rate in the range of transmission rates run one experiment with EVERY packet size(3x3=9 experiments).

From previous lab experiments, it is determined that the maximum or the initial distance for two ground propagation model is 251.2 metres. Therefore the nodes are placed accordingly (sender –Access Point –receiver) at distance 251.1/2 = 125.6. The experiment is then repeated for various bitrates with various UDP payload.

The payload was varied using the following: onOffHelper.SetAttribute("PacketSize", UintegerValue(1000));

Table 2.1: Comparison of different packet sizes on the application level throughput

| Bitrate (Mbps) | UDP Payload (B) | Throughput (kbps) | Throuput/2 (kbps) | App. Throughput (kbps) |
|----------------|-----------------|-------------------|-------------------|------------------------|
| 1              | 400             | 415               | 207.5             | 178.8793103            |
| 1              | 700             | 444               | 222               | 203.4031414            |
| 1              | 1000            | 456               | 228               | 214.2857143            |
| 5.5            | 400             | 1360              | 680               | 586.2068966            |
| 5.5            | 700             | 1692              | 846               | 775.1308901            |
| 5.5            | 1000            | 1897              | 948.5             | 891.4474               |
| 11             | 400             | 1808              | 904               | 779.3103448            |
| 11             | 700             | 2452              | 1226              | 1123.298429            |
| 11             | 1000            | 2908              | 1454              | 1366.541               |

2.2. Select measurements when packet size equals 1000 bytes. Fill in a table where in the upper row you list the physical layer transmission rate and in the lower row you write the measured throughput. Did you achieve the absolute maximum transmission rate?

Table 2.2: Comparison of transmission rate and the corresponding throughput

| Categories         | 1 Mbps | 5.5 Mbps | 11 Mbps |
|--------------------|--------|----------|---------|
| Physical (kbps)    | 1000   | 5500     | 11000   |
| Measured (kbps)    | 456    | 1897     | 2908    |
| Measured /2 (kbps) | 228    | 948.5    | 1454    |

As it can be observed, the absolute maximum throughput is not reached.

## 2.3. Plot a graph showing the dependency of the average throughput versus packet size for each physical layer transmission rate in the range (3 graphs).



Figure 2.1: Bitrate vs App throughput for 400 B  $\,$ 



Figure 2.2: Bitrate vs App throughput for 700 B



Figure 2.3: Bitrate vs App throughput for 1000 B

#### 2.4. Explain the observed behavior.

The graphs above illustrate that greater the payload size, greater the throughput. For smaller packets size, the overall number of bytes sent will be larger because the a large portion of the packet is for packet headers, and therefore packets have to be sent more often. This will be demonstrated mathematically now. Let us assume that we want to send 3000B and then calculate individually the number of packets required to transmit this message.

For 400 Bytes

Number of Packets = 
$$\frac{\text{Data Size}}{PayloadSize}$$

Number of Packets =  $\frac{3000}{400} = 8$ 

For 700 Bytes

Number of Packets =  $\frac{\text{Data Size}}{PayloadSize}$ 

Number of Packets =  $\frac{3000}{700} = 5$ 

For 1000 Bytes

Number of Packets =  $\frac{\text{Data Size}}{PayloadSize}$ 

Number of Packets =  $\frac{3000}{PayloadSize} = 3$ 

2.5. Select the simulation trace for 11Mb/s transmission rate and 400B payload size. Measure the time for transmission of a SINGLE packet. Taking the packet's TOTAL size (including headers on all layers) in bits calculate the transmission rate.

To calculate the throughput the following equation is used:

$$Throughput = \frac{\text{Packet size in bits}}{\text{receiver time} - \text{sender time}}$$

|      |                                                                 |                    | WIFI_STA-1-0.pca           | D              |             | _ 0 🔕            |  |  |  |  |
|------|-----------------------------------------------------------------|--------------------|----------------------------|----------------|-------------|------------------|--|--|--|--|
| File | Edit View Go C                                                  | apture Analyze Sta | tistics Telephony Wireless | Tools Help     |             |                  |  |  |  |  |
| 4    |                                                                 |                    | > <b>&gt; ⊩ ⊣</b> 🗐 🛭      |                | <u>II</u>   |                  |  |  |  |  |
| I    | iip.src=10.1.1.2 ⊠ □ ▼ •                                        |                    |                            |                |             |                  |  |  |  |  |
| No.  | Time                                                            | Source             | Destination                | Protocol       | Length Info |                  |  |  |  |  |
| _    | 15 0.065500                                                     |                    |                            |                | 464 49153 - | - 1000 Len=400   |  |  |  |  |
|      | 17 0.066479                                                     | 10.1.1.2           | 10.1.1.3                   | UDP            |             | - 1000 Len=400   |  |  |  |  |
|      | 19 0.067538                                                     | 10.1.1.2           | 10.1.1.3                   | UDP            |             | - 1000 Len=400   |  |  |  |  |
|      | 21 0.068927                                                     | 10.1.1.2           | 10.1.1.3                   | UDP            | 464 49153 - | - 1000 Len=400   |  |  |  |  |
|      | 22 0.069315                                                     | 10.1.1.2           | 10.1.1.3                   | UDP            |             | - 1000 Len=400   |  |  |  |  |
|      | 24 0.070454                                                     | 10.1.1.2           | 10.1.1.3                   | UDP            | 464 49153 - | - 1000 Len=400   |  |  |  |  |
|      | 26 0.071842                                                     | 10.1.1.2           | 10.1.1.3                   | UDP            | 464 49153 - | - 1000 Len=400   |  |  |  |  |
|      | 27 0.072330                                                     | 10.1.1.2           | 10.1.1.3                   | UDP            | 464 49153 - | - 1000 Len=400   |  |  |  |  |
|      | 29 0.074039                                                     | 10.1.1.2           | 10.1.1.3                   | UDP            | 464 49153 - | - 1000 Len=400   |  |  |  |  |
|      | 30 0.074527                                                     | 10.1.1.2           | 10.1.1.3                   | UDP            | 464 49153 - | - 1000 Len=400 - |  |  |  |  |
| 4    |                                                                 |                    |                            |                |             | Þ.               |  |  |  |  |
| + F  |                                                                 |                    | bits), 464 bytes captur    | ed (3712 bits) | )           |                  |  |  |  |  |
|      |                                                                 |                    | Wireless LAN (20)          |                |             |                  |  |  |  |  |
|      |                                                                 |                    | :00.139056000 CET          |                |             |                  |  |  |  |  |
|      |                                                                 |                    | 00000000 seconds]          |                |             |                  |  |  |  |  |
|      |                                                                 | 39056000 seconds   |                            |                |             |                  |  |  |  |  |
|      |                                                                 |                    | ed frame: 0.000518000 s    |                |             |                  |  |  |  |  |
|      | [Time delta from previous displayed frame: 0.000000000 seconds] |                    |                            |                |             |                  |  |  |  |  |
|      |                                                                 |                    | rame: 0.065500000 secor    | ids]           |             |                  |  |  |  |  |
|      | Frame Number: 1                                                 |                    |                            |                |             |                  |  |  |  |  |
|      |                                                                 | 64 bytes (3712 bi  |                            |                |             |                  |  |  |  |  |
|      |                                                                 | 464 bytes (3712    | bits)                      |                |             |                  |  |  |  |  |
|      | [Frame is marke                                                 | d: False]          |                            |                |             | -                |  |  |  |  |

Figure 2.4: Epoch time for sender captured from wireshark

|              | WIFI_STA-2-0.pcap                                               |                                      |                                     |                |               |                        |            |  |  |
|--------------|-----------------------------------------------------------------|--------------------------------------|-------------------------------------|----------------|---------------|------------------------|------------|--|--|
| <u>F</u> ile | Edit View Go                                                    | Capture <u>A</u> nalyze <u>S</u> tal | tistics Telephon <u>y W</u> ireless | Tools Help     |               |                        |            |  |  |
| 1            |                                                                 |                                      | > 3· II4 🕎 🛚                        |                | ***           |                        |            |  |  |
| II ip        | o.src==10.1.1.2                                                 |                                      |                                     |                |               | $\times$ $\rightarrow$ | ~ <b>+</b> |  |  |
| No.          | Time                                                            | Source                               | Destination                         | Protocol       | Length Info   |                        | -          |  |  |
| _            | 17 0.068927                                                     | 10.1.1.2                             | 10.1.1.3                            | UDP            | 464 49153 - 1 | .080 Len=480           |            |  |  |
|              | 21 0.071842                                                     | 10.1.1.2                             | 10.1.1.3                            | UDP            | 464 49153 → 1 | .000 Len=400           |            |  |  |
|              | 24 0.074039                                                     | 10.1.1.2                             | 10.1.1.3                            | UDP            | 464 49153 → 1 | .000 Len=400           |            |  |  |
|              | 28 0.076895                                                     | 10.1.1.2                             | 10.1.1.3                            | UDP            | 464 49153 → 1 |                        |            |  |  |
|              | 31 0.078712                                                     | 10.1.1.2                             | 10.1.1.3                            | UDP            | 464 49153 → 1 |                        |            |  |  |
|              | 34 0.080909                                                     | 10.1.1.2                             | 10.1.1.3                            | UDP            | 464 49153 → 1 |                        |            |  |  |
|              | 37 0.083105                                                     | 10.1.1.2                             | 10.1.1.3                            | UDP            | 464 49153 → 1 |                        |            |  |  |
|              | 41 0.086221                                                     | 10.1.1.2                             | 10.1.1.3                            | UDP            | 464 49153 → 1 |                        |            |  |  |
|              | 44 0.088418                                                     | 10.1.1.2                             | 10.1.1.3                            | UDP            | 464 49153 → 1 | .000 Len=400           |            |  |  |
|              | 46 0.089277                                                     | 10.1.1.2                             | 10.1.1.3                            | UDP            | 464 49153 → 1 |                        | ¥          |  |  |
| 4            |                                                                 |                                      |                                     |                |               | ) b                    |            |  |  |
| + F          |                                                                 |                                      | bits), 464 bytes captu              | red (3712 bits | )             |                        |            |  |  |
|              |                                                                 | type: IEEE 802.11                    |                                     |                |               |                        |            |  |  |
|              |                                                                 | Jan 1, 1970 01:00                    |                                     |                |               |                        |            |  |  |
|              |                                                                 | r this packet: 0.0                   | 00000000 seconds]                   |                |               |                        | _          |  |  |
|              |                                                                 | 142483000 seconds                    |                                     |                |               |                        |            |  |  |
|              |                                                                 |                                      | ed frame: 0.000600000               |                |               |                        |            |  |  |
|              | [Time delta from previous displayed frame: 0.000000000 seconds] |                                      |                                     |                |               |                        |            |  |  |
|              |                                                                 |                                      | rame: 0.068927000 seco              | nds]           |               |                        |            |  |  |
|              | Frame Number: :                                                 |                                      |                                     |                |               |                        |            |  |  |
|              |                                                                 | 164 bytes (3712 bi                   |                                     |                |               |                        |            |  |  |
|              |                                                                 | : 464 bytes (3712                    | bits)                               |                |               |                        |            |  |  |
|              | [Frame is marke                                                 | ed: False]                           |                                     |                |               |                        | w          |  |  |

Figure 2.5: Epoch time for receiver captured from wireshark

From the above mentioned images, the sender and receiver time is captured and the throughput is calculated:

 $Throughput = \frac{464*8}{0.142483 - 0.139056} \\ Throughput = 1083163bps = 1Mbps$ 

#### 2.6. Is it equal to 11Mb/s? If not why?

The transmission is not equal to 11 Mbps. This is because the access point can only transmit it further after it has received the packets causing an additional delay (due to the re-transmission of packets by AP). From the equation used to derive throughput, it can be observed that an increase in transmission time will lead to a decrease in throughput since they are inversely related. So it can be concluded that due to to increased transmission time, the throughput experiences a reduction.

## Scenario 2. Part 2.Hidden terminal problem

## 3.1. Run experiments for both modes and calculate the throughput and the packet delivery ratio.

The hidden terminal problem occurs when a terminal is visible from a wireless access point (APs), but not from other nodes communicating with AP (ques10, 2021).



Figure 3.1: Hidden terminal problem

The experiment is set up as follows:



Figure 3.2: Experimental Hidden terminal problem

with a distance of 250 metres between each node, packet's payload size of 1000B, bitrate of 1Mbps and using the two ground propagation model. The experiment is repeated with RTS/CTS enabled and disabled to see the effect of RTS/CTS on the hidden terminal problem.

Table 3.1: Comparison of transmission rate and the corresponding throughput

| RTS/CTS Mode | Bitrate (Mbps) | STA1 throughput (kbps) | STA2 throughput (kbps) | STA1 Packet Del. | STA2 Packet Del. |
|--------------|----------------|------------------------|------------------------|------------------|------------------|
| Disabled     | 1              | 215                    | 304                    | 0.289706         | 0.412043         |
| Enabled      | 1              | 506                    | 330                    | 0.982935         | 0.989637         |

## 3.2. Study the PCAP traces for both modes: Do you observe any difference between the measured throughput at the receiver with and without using RTS/CTS. Motivate your answer.

The PCAP traces (demonstrated in table 3.1) reveals that the enabling the RTS/CTS protocol assists in avoiding collisions leading to less packet loss and therefore less retransmission. This leads to increased throughput and packet delivery ratio (almost double in comparison to when there is no RTS/CTS enabled).

### Bibliography

 $ques 10.\ (2021).\ \textit{Explain Hidden and Exposed Terminal Problem}. \ Retrieved\ October\ 9, 2021, from\ https://www.ques 10.com/p/30462/explain-hidden-and-exposed-terminal-problem/$