2014 数学分析 A 期中试题

Zavalon from TG

2014.11

- 一. 基本概念题 $(5 \times 8 = 40 \text{ })$
- 1. 求 $\{(-1)^n + \frac{2}{\sqrt{n}}\}$ 的上下极限.
- 2. 用定义求 $\lim_{x \to \infty} (\sqrt{x+2} \sqrt{x})$.
- 3. 设函数 f 定义在 $I = [a, +\infty)$ 上. 说明 f 在 I 上一致连续和连续的区别与联系.
- 4. 设函数 f 在 $[x_0, x_0 + \delta)$ 上有定义, $\underset{r \to 0^+}{\omega}(x_0) := \lim_{\substack{x_1, x_2 \in \\ [x_0, x_0 + \delta)}} |f(x_1) f(x_2)|$.

若 f 在 x_0 处右连续, 证明: $\omega_{x_0,0+}(x_0) = 0$.

- 5. 证明: 无限集 A 为可数集当且仅当 A 与其任一无限真子集间存在双射.
- 二. 计算题 $(2 \times 10 = 20 \text{ 分})$
- 1. 求极限 $\lim_{n \to +\infty} \frac{\ln n}{\sum_{k=1}^{n} \frac{1}{k}}$.

 $2. 求极限 \lim_{x\to 0^+} x^{\sin x}.$

- 三. 证明题 $(4 \times 10 = 40 \text{ 分})$
- 1.(1). 设 A 为集合. 求证: A 为闭集当且仅当 A 中收敛点列的极限都属于 A.
- (2). 把 \mathbb{R} 分成 A,B 两个非空集合, 求证:A 中有收敛点列的极限属于 B 或 B 中有收敛点列的极限属于 A.
- 2. 设 $f:[0,+\infty)\to\mathbb{R}$ 为有界函数. $h(x):=\sup_{t\in[0,x]}f(t), \forall x\in(0,+\infty)$.
- 问 h(x) 是否在 $(0, +\infty)$ 上连续?
- 3. 证明下面两个声明等价:
- (1). 设非空集合 A, B 满足 $A \cap B = \mathbb{R}$, 且 A 中所有元素均小于 B 中所有元素,则 A 有最大数,B 无最小数,或者 A 无最大数,B 有最小数.
- (2). 确界原理成立.
- 4. 设 f 在 $(-\infty, +\infty)$ 上一致连续, f(0) = 0. 求证: 存在 M > 0, 使得

$$|f(x)| \le 1 + M|x|, \, \forall x \in \mathbb{R}.$$