0. Formules à utiliser

- Soient a et b deux nombres complexes. On a alors $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$.
- Formules d'Euler.

Résultats préliminaires

Soit *x* un réel. Démontrer que :

- $1 + e^{ix} = 2\cos(\frac{x}{2})e^{\frac{ix}{2}}$.
- $1 e^{ix} = -2i\sin\left(\frac{x}{2}\right)e^{\frac{ix}{2}}$.
- Soit *x* un complexe et *n* un entier naturel.

Démontrer que
$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$
.

De belles égalités 2.

Soient $n \in \mathbb{N}^*$ et x un réel. On pose $C_n = \sum_{k=0}^n \cos(kx)$ et $S_n = \sum_{k=0}^n \sin(kx)$.

- 1. Dans cette question, on suppose que $x \equiv 0$ [2 π]. En déduire les valeurs de C_n et S_n .
- 2. On suppose désormais que x n'est pas congru à 0 modulo 2π .
 - (a) Démontrer que $C_n + iS_n = \sum_{i=0}^{n} (e^{ix})^k$.
 - (b) En déduire que $C_n + iS_n = \frac{\sin\left(\frac{n+1}{2}x\right)}{\sin\left(\frac{x}{2}\right)} e^{i\frac{n}{2}x}$.
 - (c) En déduire l'expression de C_n et de S_n .
- 3. Soient $n \in \mathbb{N}^*$ et x un réel.

On pose
$$U_n = \sum_{k=0}^n \binom{n}{k} \cos(kx)$$
 et $V_n = \sum_{k=0}^n \binom{n}{k} \sin(kx)$.

- (a) Démontrer que $U_n + iV_n = \sum_{k=0}^n \binom{n}{k} (e^{ix})^k$.
- (b) En déduire que $U_n + iV_n = \left(2\cos\left(\frac{x}{2}\right)e^{i\frac{x}{2}}\right)^n$.
- (c) Déduire alors l'expression de U_n et de V_n .