Statintical Data Analysin (Ansignment)
sat sun mon tue wed thu fri Date: 28/10/2022
1. (1) E[a+bx] = a+bF[x], when a,b ER
1)
Now, $\#[a+bX] = \sum_{x} (a+bx) P(x)$
Suppose, put of Xin
P(x)
$= \sum a \cdot P(x) + bx \cdot P(x)$
= \(\(\alpha \cdot P(x) + \(\subseteq \(\beta \cdot P(x) \)
$= a\left(\sum_{x} P(x)\right) + b\left(\sum_{x} x \cdot P(x)\right)$
An we know, # [x] = \(\in \chi \chi p(x) \) and \(\xi \chi \gamma \) in 1.
:. E [a+6x] = a + b E[x]
proofied)
(ii) $Var(X) = E[X] - (E[X])^{\vee}$
An we know, Var (x) = # [(x-4)]
= E[(x) - E[x])
=E[x'-2xE[x]+(E[x])]
Mariae leman
= E[x]-2EX]E[x]+(E[x])
= #[x]-(F[x])
(proofed)
- Sa Heari Z

7

T

7 70

7

1

H

3

LAUTH BE

sat sun mon tue wed thu fri O O O O O O O
And, $Var(\bar{x}) = F(\bar{x}) - [F(\bar{x})]$
And, $Var(\bar{x}) = E(\bar{x}) - [E(\bar{x})]$
= E(x') - u'
: E(x) = - + /1 .
Now, $E[\Sigma(x_i-\bar{x})^{\gamma}]$
= E [\(\times (\times - 2\tilde i \times + \tilde r)]
-412(M 2MXIX)]
= E[Σx, - 2x nx + nx]
= E[Sxiv-uxv]
= \(\mathbb{E}(\mathbb{X}') - \mathbb{E}(\mathbb{N}\mathbb{X}')
$=\sum \left(\overline{\nabla}^{+} + \mu^{-} \right) - N \left(\frac{\overline{\nabla}^{+}}{\overline{\nabla}^{+}} + \mu^{-} \right)$
MOV MUY ON
= 407 + nur - 0r - nur
= (n-1)σ" 1 = (x1-x) ² 1 = [(x1-x) ²]
$= \frac{1}{n-1} \mathbb{E}\left[\Sigma(x_i - \overline{x})^{\nu}\right]$
$=\frac{1}{(N-1)}$
= or (proofed)
- CONTRACT

- Statistical Data Analysis assignment -1
- Excercise 3
 - 1. Plot the probability of a random variable that follows the Binomial distribution Bin(n,P) for different $P \in \{0.3, 0.5, 0.8\}$ and $n \in \{10,50\}$

```
[1] #importing libraries
   import matplotlib.pyplot as plt
   Xmatplotlib inline
   import numpy as np
   import scipy
   from scipy.stats import geom
   import seaborn as sns
[46] #setting random seed
   np.random.seed(9)
```

```
[46] #setting random seed
    np.random.seed(9)
    size = 200
    nb = [10,50]
    pb = [0.3,0.5,0.8]
    sns.color_palette("Set2")
    sns.set_style("whitegrid")
    #creating and plotting the distributions
    for i in nb:
        for k in pb:
            sns.kdeplot(np.random.binomial(i, k, size), label = "n,p = {},{}".format(i,k))

plt.legend()
    plt.title("Binomial distribution", fontsize = 20)
    plt.rcParams['figure.figsize'] = [15, 12]
    plt.show();
```



```
[48] #importing geometric distribution
    from scipy.stats import geom
    import matplotlib.pyplot as plt
    import numpy as np

x = np.arange(1, 12,1)

for p in [0.3, 0.5, 0.8]:
    plt.plot(x, geom.cdf(x, p), label = "P = {}".format(p))
    plt.ylabel("P(X \le X)")
    plt.xlabel("x")
    plt.title("Geometric distribution", fontsize = 20)
    plt.legend()
    plt.rcParams['figure.figsize'] = [12, 10]
    plt.show();
```



```
[50] def poisson(x,lmbda):
    return lmbda**x* np.exp(-lmbda)/scipy.special.factorial(x)
    x = np.arange(1,17)
    for l in [0.3, 2, 6]:
        plt.plot(x,poisson(x,l),label=f'$\lambda$ = {l}')
    plt.ylabel("P(X=x)")
    plt.xlabel("x")
    plt.legend()
    plt.title("Poisson distribution", fontsize = 20)
    plt.rcParams['figure.figsize'] = [12, 10]
    plt.show()
```

