

Dinesh Atul Rodrigues Trivedi

DESENVOLVIMENTO DE SISTEMA EMBARCADO PARA CONTROLE DE PROTÓTIPO DE BOMBA DE INFUSÃO DE INSULINA

Dinesh Atul Rodrigues Trivedi

DESENVOLVIMENTO DE SISTEMA EMBARCADO PARA CONTROLE DE PROTÓTIPO DE BOMBA DE INFUSÃO DE INSULINA

Trabalho de conclusão de curso apresentado ao Instituto de Ciência e Tecnologia – UNIFESP, como parte das atividades para obtenção do título de Bacharel em Ciência da Computação.

Universidade Federal de São Paulo – UNIFESP

Instituto de Ciência de Tecnologia

Bacharelado em Ciência da Computação

Orientador: Prof. Dr. Luiz Eduardo Galvão Martins

São José dos Campos, SP Julho de 2014

Dinesh Atul Rodrigues Trivedi

DESENVOLVIMENTO DE SISTEMA EMBARCADO PARA CONTROLE DE PROTÓTIPO DE BOMBA DE INFUSÃO DE INSULINA

Trabalho de conclusão de curso apresentado ao Instituto de Ciência e Tecnologia – UNIFESP, como parte das atividades para obtenção do título de Bacharel em Ciência da Computação.

Trabalho aprovado em 01 de Julho de 2013:

Prof. Dr. Luiz Eduardo Galvão Martins	;
Orientador	
Professor	
Convidado 1	
Professor	
Convidado 2	
Professor	
Convidado 3	

São José dos Campos, SP Julho de 2014

Agradecimentos

Escreva aqui os agradecimentos ...

"Não vos amoldeis às estruturas deste mundo, mas transformai-vos pela renovação da mente, a fim de distinguir qual é a vontade de Deus: o que é bom, o que Lhe é agradável, o que é perfeito. (Bíblia Sagrada, Romanos 12, 2)

Resumo

Estima-se que o Diabetes Melito (DM) já afeta 246 milhões de pessoas em todo mundo. A estimativa é que aumente para 380 milhões até 2025, sendo que no Brasil esse número chegue à aproximadamente 7 milhões. Seu tratamento adequado, na maioria das vezes, é o uso contínuo da bomba de infusão de insulina, entretanto é inacessível a grande parte da população, devido ao seu alto custo, aproximadamente R\$ 14.000,00. Sendo assim, este projeto tem como objetivo o desenvolvimento de um sistema embarcado crítico de controle de protótipo de bomba de infusão de insulina, baseado no microcontrolador da família PIC, PIC18F452. Inicialmente houve estudos do problema citado, junto com o aprendizado do microcontrolador escolhido, utilizando um kit de desenvolvimento com seus exemplos e motores de passos.

Palavras-chaves: PIC, Microcontrolador, Sistema embarcado, Sistema crítico, Motor de passo.

Abstract

TRADUZIR DEPOIS QUE COMPLETAR O RESUMO

Key-words: PIC, Microcontroler, Embedded System, Critical System, Step Motor.

Lista de ilustrações

Figura 1 – Imagens de uma bomba de infusão de insulina	. 23
Figura 2 – Exemplo de Sistemas embarcados	. 28
Figura 3 – Sistemas embarcos críticos	. 29
Figura 4 – Forças normais e tangenciais	. 33
Figura 5 – Visão paralela e perpendicular das <i>stacks</i> e rotor	. 34
Figura 6 – Interconexão das bobinas	. 35
Figura 7 – Relação das interconexões das bobinas	. 35
Figura 8 – Stator single stack	. 36
Figura 9 – Motor híbrido	. 36
Figura 10 – PIC18F452	. 44
Figura 11 – Estrutura Interna PIC18F452	. 44
Figura 12 – Pinos PIC18F452	. 45
Figura 13 – Modelo de contexto da bomba de infusão de insulina	. 51
Figura 14 - Caso de uso do módulo de interface com o usuário	. 52
Figura 15 – Caso de uso do módulo de controle de infusão	. 53
Figura 16 – Caso de uso do módulo de monitoramento dos sensores	. 54

Lista de tabelas

Lista de abreviaturas e siglas

 μ A Microampére

ADC Analogic Digital Conversor

A/D Analogic Digital

CA Corrente alternada

CC Corrente contínua

CCP Capture / Compare / PWM

DM Diabetes Melito

EEPROM Electrically-Erasable Programmable Read-Only Memory

I/O Entrada/Saída

IDE Integrated Development Environment

kHzs Kilohertz

LCD Liquid Crystal Display

LVD Low Voltage Detect

mA Miliampére

MCLR Master Clear or Reset

MHz Megahertz

MIPS Milhões de Instruções por Segundo

MSSP Master Synchronous Serial Port

PC Personal Computer

PSP Parallel Slave Port

PWM Pulse-Width Modulation

RAM Random Access Memory

ROM Read-Only Memory

TTL Transistor-transistor Logic

V Volts

Lista de símbolos

 μ micro

Sumário

1	Introdução				
	1.1	Motiva	ação	25	
	1.2	OBJE'	TIVOS	25	
		1.2.1	OBJETIVOS SECUNDÀRIOS	25	
	1.3	PROC	EDIMENTOS METODOLÓGICOS	25	
2	SISTEMAS EMBARCADOS				
	2.1	SISTE	EMAS EMBARCADOS DE TEMPO	28	
	2.2	2 SISTEMAS EMBARCADOS CRÍTICO			
	2.3 MICROCONTROLADOR			30	
		2.3.1	PIC	30	
		2.3.2	SENSORES	30	
		2.3.3	SENSORES BIOLÓGICOS	31	
		2.3.4	ATUADORES	31	
		2.3.5	MOTOR DE PASSO	32	
		2.3.6	MOTOR DE PASSO RELUTÂNCIA VARIÁVEL – $MULTISTACK$	32	
			2.3.6.1 <i>DESIGN</i> DO MOTOR	34	
		2.3.7	MOTOR DE PASSO RELUTÂNCIA VARIÁVEL – SINGLE STACK .	35	
		2.3.8	MOTOR DE PASSO HÍBRIDO	36	
		2.3.9	COMPARAÇÃO ENTRE TIPOS DE MOTORES	37	
3	PROTEUS DESIGN SUITE				
	3.1	ISIS S	CHEMATIC CAPTURE	39	
4	MIK	ROC		41	
5	PIC18F452				
	5.1	Estrut	ura Interna	44	
	5.2	DESC	RIÇÃO DOS PINOS	45	
6	Bomba de infusão de insulina				
	6.1	6.1 Contextualização			
	6.2	Caract	rerísticas gerais da bomba de infusão	47	
	6.3	Aspec	tos de segurança da bomba de infusão	49	
	6.4	Requis	sitos da bomba de infusão	51	
7	Revisão Bibliográfica				

7.1 Introdução	55		
8 Resultados	57		
9 Conclusão	59		
Referências	61		
Apêndices			
APÊNDICE A Título de Apêndice	65		
APÊNDICE B Título do Apêndice	67		
Anexos	69		
ANEXO A Título do Anexo	71		

1 Introdução

A Diabetes Melito é uma doença que surge quando o organismo deixa de produzir insulina ou quando a essa passa a não atuar com a mesma eficácia. Atualmente existe duas classificações para ela: Diabetes Melito tipo 1 e 2. A primeira se caracteriza por ser autoimune que lesa, de forma irreversível, as células do pâncreas, produtoras de insulina e conhecidas como células beta, e seu diagnóstico se dá durante a infância do portador. Enquanto a segunda é consequência da resistência do próprio organismo contra as ações da insulina, o principal fator para se desenvolver essa resistência é a obesidade(PORTALDIABETES, 2008). Bomba de infusão de insulina é um pequeno aparelho eletrônico, do tamanho de um celular ou pager, que está ligado ao corpo do portador da doença por um finíssimo cateter com uma agulha flexível na ponta. Essa agulha é inserida no braço, coxa ou abdômen e deve ser trocada em um período de 2 ou 3 dias. Essa bomba não mede o índice glicêmico ou a quantidade de insulina a ser utilizada, essa medição é feita através do glicosímetro. A Figura 1¹ representa um aparelho comercial.

Figura 1 – Imagens de uma bomba de infusão de insulina

Seu funcionamento é bem simples, libera-se uma quantidade de insulina, programada pelo médico, durante o dia todo, simulando o funcionamento do pâncreas de uma pessoa saudável, entretanto existem cuidados a serem tomados: calcular a quantidade de carboidratos ingeridos a cada refeição e programar o aparelho para injetar uma quantidade de insulina com maior velocidade no organismo. Quanto a quem pode usar, a pessoa deve cumprir alguns prérequisitos que são:

- Conseguir medir o índice glicêmico no mínimo 4 vezes por dia;
- Durante a fase de adaptação e ajuste da dosagem a serem utilizadas pela bomba, fazer a medição glicêmica de 6 a 8 vezes por dia;
- Seguir as recomendações médicas além de manter contato e um constante feedback com os responsáveis pela bomba e, além de tudo, seguir a dieta recomendada, respeitando quantidades ingeridas;

http://www.diabetes.org.br/sala-de-noticias/2316-bombas-de-infusao-de-insulina

• Ter condição financeira para custear o equipamento e o contato com os responsáveis por ele;

- Estar disposto ao uso da bomba durante o dia todo, 24 horas junto ao corpo;
- Aprender sobre contagem de carboidratos para saber seu consumo durante as refeições;
- Praticar exercícios.

Cumprindo os pré-requisitos citados temos as vantagens de seu uso que são:

- Maior flexibilidade no horário das refeições;
- Se usada corretamente o risco de hipoglicemia é reduzido, e a longo prazo as complicações devido ao diabetes também;
- Melhora o controle glicêmico;
- Melhora no controle do fenômeno do amanhecer, responsável pelo aumento do índice glicêmico durante a manha, entre as 4 e 8 horas da manha, causador da hipoglicemia se o diabético não calculou a dose de insulina antes de dormir, ou não se levantou durante a noite para gerenciá-la.

Mas mesmo com todas as vantagens dada devido ao uso do equipamento caso o diabético seja obeso, ingira grandes quantidades de alimento ou açúcar, ou seja, carboidratos, não praticar atividades físicas, não fazer a medição do índice glicêmico na quantidade de vezes recomendada, ou até mesmo determinar por si só a quantidade de insulina a ser utilizada, não existe vantagem no seu uso. É importante ter em mente que mesmo com toda facilidade e tecnologia existente o acompanhamento médico não deve ser deixado de lado. As principais indicações médicas para o uso do equipamento são:

- Fenômeno do amanhecer;
- Hipoglicemia;
- Diminuir a variação do índice glicêmico;
- Hiperglicemia;
- Recorrente ceatosidade, que é o acumulo de ceatócidos, pois o fígado quebra a gordura e proteína devido à falta de insulina, pois o corpo não consegue utilizar a glicose como energia;
- Flexibilidade, especialmente para crianças pequenas;

1.1. Motivação 25

- Gestação, viagens e atividade físicas;
- Fobia de injeção;

• Desejo do diabético (DIABETES, 2013; PORTALDIABETES, 2009).

1.1 Motivação

Segundo a Sociedade Brasileira de Diabetes (SBC, 2014), diversos estudos realizados mostram que o tratamento feito através da Infusão de insulina tem diversas melhorias quando comparado com outros tratamentos existentes. Entretanto não é o mais utilizado devido ao seu alto custo, devido a importação. Logo, esse projeto vem com foco social: facilitar o acesso da população brasileira de baixa renda ao equipamento, melhorando sua qualidade de vida dos portadores da doença que se encaixem nesse perfil.

1.2 OBJETIVOS

Esse projeto tem como objetivo principal desenvolver um protótipo de uma Bomba de Infusão de insulina utilizando o microcontrolador da família PIC, PIC18F452.

1.2.1 OBJETIVOS SECUNDÀRIOS

Em segundo plano este trabalho foca em:

- Aprendizado sobre as características e funcionalidades disponíveis do microcontrolador escolhido;
- Aprendizado das tecnologias utilizadas como: compilador, simulador e bibliotecas disponíveis;
- Desenvolvimento das funcionalidades básicas de uma bomba de infusão de insulina;
- Aprendizado sobre a escolha e uso de um motor de passo;
- Aprendizado sobre a forma de uso de um Display de LCD para comunicação com o usuário.

1.3 PROCEDIMENTOS METODOLÓGICOS

@TODO: REVISAR QUANDO TERMINAR

Como todo trabalho de pesquisa, foi iniciado com o levantamento bibliográfico sobre o tema escolhido para que então seja feito uma leitura e análise desses materiais a fim de entender

melhor sobre as dificuldades e possíveis formas de desenvolvimento. A elaboração da fundamentação teórica consiste nos assuntos: Microcontroladores – a base de nossa arquitetura e recursos de desenvolvimento –, PIC – plataforma escolhida para o desenvolvimento –, Motor de passo – responsável pela dinâmica da bomba –, e, por último, display de LCD – responsável por mostrar dados e estados da bomba em funcionamento. Entendendo todos os conceitos citados o próximo passo deve ser a especificação do projeto de hardware do sistema embarcado, ou seja, qual placa usar, quais periféricos serão necessários, qual motor será utilizada, qual API do PIC utilizar. A simulação e desenvolvimento do hardware serão feitos na ferramenta Proteus, pois possui integração com PIC. Tendo todo o hardware definido é necessário levantar os requisitos de software. Para entender o que deve ser desenvolvido e ter uma orientação do próprio desenvolvimento. Com os requisitos em mãos será possível definir a arquitetura do sistema. Para enfim dar inicio a implementação e testes do software. Quando ele tiver uma base concreta daremos inicio a integração com o hardware e validação de seu funcionamento. E por fim levantaremos os indicadores para que seja feita a comparação de desenvolvimento entre as plataformas citadas e poder concluir a pesquisa.

2 SISTEMAS EMBARCADOS

Sistema embarcado em geral é uma combinação de *hardware* e *software* para executar uma tarefa específica diferente dos computadores do dia-a-dia que possuem inúmeros propósitos: verifica e-mail, escrever monografias, entre outros. Sistemas embarcados podem possuir ou não um sistema operacional, seja um RTOS, possui requisitos de tempo de execução, ou um Linux e, portanto, pode ser desenvolvido em um *hardware* com microcontrolador ou microprocessador (WIKIBOOK, 2012).

Segundo (CUNHA, 2013) a inteligência embarcada é uma tendência futura, cada vez mais inteligência será adicionada aos equipamentos do dia-a-dia, considera que um microondas atual tem mais capacidade computacional do que tinha o projeto Apolo, que levou o homem a lua. Esta crescente utilização se dá basicamente pelo preço e consumo reduzido dos microcontroladores, além da grande flexibilidade ao atender os mais diversos problemas visto o vasto número de arquiteturas disponíveis: ARM, MIPS, Coldfire/68k, PowerPC, x86, PIC, 8051, Atmel AVR, Renesas H8, SH, V850, FR-V, M32R, Z80, Z8 e outras. Um contraste que atrai diversos desenvolvedores quando comparado com o número limitado de arquiteturas diponíveis para microprocessadores do mercado de computadores pessoais (GERMANO, 2011).

A comunicação dos microcontroladores com o meio externo, segundo (GERMANO, 2011), se dá pelos periféricos e o mais comuns são:

- Entrada de dados através de teclas (geralmente através de teclados feitos com varredura matricial);
- Leds:
- Display's de LCD (sendo os mais comuns os alfanuméricos por exemplo o HD44780);
- Interface serial (Por exemplo RS 232, I2C);
- Universal Serial Bus (USB);
- TCP/IP.

Como dito anteriormente, esses sistemas estão cada vez mais no dia-a-dia das pessoas e, claro, facilitando a vida delas, mas muitas vezes não são percebidos. E cada vez mais estão mais acessíveis podendo automatizar funções até mesmo dentro das próprias casas. A Figura 2¹ mostra alguns sistemas embarcados e onde são utilizados:

http://bytesdontbite.com/2012/06/26/embedded-systems-no-bdb/

Figura 2 – Exemplo de Sistemas embarcados

2.1 SISTEMAS EMBARCADOS DE TEMPO

O conceito Tempo Real é complexo para ser explicado, mas sua ideia básica é que se espera que o computador responda algo para o ambiente externo em tempo. Normalmente pessoas assumem que tempo real significa "muito rápido", entretanto não é verdade, tempo real simplesmente significa "rápido o suficiente" no contexto de operação do sistema. Um exemplo é a ação do motor, pode-se dizer que é "rápida", pois o sistema deve tomar decisões como fluxo de combutível, tempo da faísca - toda vez que o motor completa um ciclo.

Sistemas de tempo real são baseados em previsibilidade e, segundo (FARINES; FRAGA; OLIVEIRA, 2000), essa previsibilidade de um sistema de tempo real é obtida quando independente de falhas, sobrecargas e variações de hardware, e assim é possível que seu comportamento seja antecipado antes de sua execução. Isso tem a finalidade de poder prever o funcionamento de um sistema de tempo real e garantir as suas restrições temporais, e para isso é necessário definir hipóteses em relação a carga e falhas em relação ao ambiente externo deste sistema (FARINES; FRAGA; OLIVEIRA, 2000). Segundo (MALL, 2009) os sistemas de tempo real são classificados em dois tipos:

- Soft Real Time Systems: Sistemas não críticos de tempo real, onde a ocorrência de uma falha temporal é da mesma ordem de grandeza que os resultados em que o funcionamento está correto, exemplos: Máquina de lavar e portão eletrônico de uma casa;
- Hard Real Time Systems: Sistemas Críticos de Tempo Real, onde a ocorrência de uma falha temporal complicam, e muito, os resultados quando comparado com seu funcionamento correto, exemplos: sistema de controle de um avião e um sistema de controle de semáforos.

2.2 SISTEMAS EMBARCADOS CRÍTICO

Sistema Crítico é um sistema no qual a confiança é fundamental, ou melhor, a questão mais importante em seu desenvolvimento. Isso porque sistemas críticos, em caso de falha, podem causar consequências gravíssimas para os humanos, economia e outras áreas. Pode-se dizer que seus indicadores são: Disponibilidade, confiabilidade, segurança e proteção. E para que essa confiança seja alcançada deve-se evitar erros durante seu desenvolvimento e realizar diversos testes para que seja possível detectar e corrigir os erros que passarem de forma que seja possível limitar os danos causados por falhar operacionais (SOMMERVILLE, 2004; FELDMANN et al., 2007; JORDAN, 2006).

Segundo (KOPETZ, 2011) as classificações dos sistemas embarcados críticos podem ser:

- Fail Safe: Classficação para sistemas onde o estado seguro pode ser atingido em caso de falha, como por exemplo, esgotar a bateria de uma bomba de insulida;
- Fail Operational: Classificação para sistemas que em caso de falhas ainda são capazes de fornecer algum tipo de serviço, mesmo que mínimo. Um exemplo é um sistema de controle de vôo que, mesmo em caso de falha, é capaz de fornecer serviços e ser seguro.

Abaixo a Figura 3, mostra exemplos de sistemas embarcados críticos.

Figura 3 – Sistemas embarcos críticos

2.3 MICROCONTROLADOR

Microcontroladores são chips inteligentes que utilizam a arquitetura Harvard, RISC. É constituído basicamente por pinos de entradas e saídas e memória. Suas saídas podem ser controladas através de programação e em função do processamento de suas entradas. Sua programação pode ser feita em diversas linguagens como: C, C++, entre outras (RADIOAMADORES, 2009).

Segundo (GANSSLE, 1999), o microcontrolador é a parte mais importante de um sistema embarcado e sua principal diferença quando comparada com um microprocessador é o fato de ser um sistema computacional completo que integra todos as principais partes da arquitetura de Von Neumann em um único componente, as partes citadas são:

- CPU: Central Processor Unit;
- Memória RAM: Random Access Memory;
- Portas I/O: Portas de entrada e saída.

Além de ser composto por temporizadores, memória ROM (*Read Only Memory*), conversor AD, analógico – digital, e DA, digital – analógico. Comparados com microprocessadores, os microcotroladores possuem consumo e clock, processamento, reduzidos, isso devido ao fato que o primeiro é destinado a tarefas que necessita uma alta capacidade de processamento como, por exemplo, os microprocessadores dos nossos desktop do dia-a-dia. Por padrão, os microprocessadores são utilizados em situações que os requisitos são abrangentes, com entradas e saída variadas como: sensores, atuadores e periféricos de comunicação (LEE; SESHIA, 2011).

2.3.1 PIC

PIC é um circuito integrado produzido pela *Microchip Technology Inc*. Seu nome significa: *Programmable Interface Controller*, Controlador de Interface Programável. Externamente possui uma aparência de um circuito integrado mais comuns - TTL ou CMOS -, mas na verdade contém todos os componentes de um sistema microprocessado como: CPU, *Central Processor Unit*, sua finalidade é interpretar as instruções de programa; Memória PROM, *Programmable Read Only Memory*, na qual memorizará as instruções do programa; Memória RAM, *Random Access Memory*, utilizada pra memorizar as variáveis do programa; Linhas de I/O, entrada e saída, para controlar dispositivos internos e receber informações do meio externo; entre outros (RADIOAMADORES, 2009; WIKIPEDIA, 2012b).

2.3.2 SENSORES

A definição de sensor pode ser a de um transdutor capaz de alterar sua característica física interna em resposta à um fenômeno físico externo. Além disso, existem sensores consi-

derados de operação indireta que são os quais alteram suas propriedades como capacitância, resistência, ou, até mesmo, sua indutância, sob ação de algum gradeza ou evento externo (RO-SÁRIO, 2006).

Segundo (NOMADSUSP, 2012), os sensores são largamente utilizados na medicina, indústria, robótica, além de outras aplicações. Considerando que o sinal é sempre uma forma de energia, os sensores podem ser classificados em função da energia que é capaz de detectar, como:

- Sensores de luz: células solares, fotodíodos, fototransistores, tubos fotoelétricos, e outros;
- Sensores de som: microfones e hidrofone;
- Sensores de temperatura: termômetros e termopares;
- Sensores de resistência elétricas: ohmímetro.
- Outros:

2.3.3 SENSORES BIOLÓGICOS

Segundo (NOMADSUSP, 2012), os sensores citados anteriormente são corretamente chamados de sensores artificiais. Isto devido ao fato de existir sensores naturais ou biológicos, já que todos os organismos vivos possuem sensores capazes de agir da mesma forma que os sensores artificias. Esses sensores biológicos são células especializadas, sensíveis a:

- Luz, movimento, temperatura, vibração, pressão, campos eléctricos, som, e outros aspectos físicos do ambiente;
- Grande variedade de moléculas ambientais, incluindo toxinas e nutrientes;
- Aspectos metabólicos, tais como os níveis de glicose e oxigênio;
- Até mesmo as diferenças entre proteínas do ambiente externo e do próprio organismo.

Esses sensores artificiais que imitam sensores biológicos, utilizando componentes biológicos, são chamados biossensores.

2.3.4 ATUADORES

Segundo (CHIRONIS; SCLATER, 1991), dispositivos considerados atuadores são aqueles que transformam uma forma de energia em outra, causando mudanças no ambiente em que estão atuando, ou seja, de acordo com sinais, ou impulsos, recebidos realizam ações capazes de alterar as grandezas físicas do ambiente em questão. Eles são capazes de converter energias como: energia elétrica, hidráulica e pneumática em energia mecânica. Segue exemplos de alguns tipos de atuadores:

- Atuadores eletromagnéticos: São os motores elétricos como motores de passos, servos;
- Atuadores hidráulicos: Utilizam um fluido submetido a uma pressão para movimentar um braço, são utilizados em robô que operam grandes cargas;
- Atuadores pneumáticos: Utilizam um gás submetido a uma pressão para movimentar o braço, possuem menor custo que os hidráulicos, sendo utilizados em robôs de menor porte;

2.3.5 MOTOR DE PASSO

Motor de passo é um dispositivo eletromecânico. Sua principal propriedade é sua habilidade de transformar pulsos elétricos em movimentos, esses movimentos são precisamente incrementados na posição do rotor e são denominados 'passos'. Esse tipo de motor é caracterizado como máquina duplamente saliente, o que significa que possui dentes, compostos por matérias magnéticos nas duas partes que o compõe: A parte imóvel chamada estator e a móvel rotor (SANTOS, 2008; ACARNLEY, 2002).

Seu uso é interessante em situações em que precisão nos movimentos é necessária. Isso porque com ele é possível controlar: ângulo de rotação, velocidade, posição e sincronismo. Suas vantagens não são seu torque nem a capacidade de gerar movimentos de alta velocidade, mas sim a precisão em seus movimentos. Devido a essas características esse tipo de motor é amplamente utilizado em: câmeras de vídeo, robôs, brinquedos, scanners, impressoras, entre outros (SANTOS, 2008).

De forma simples o funcionamento de um motor de passo consiste no uso de materiais magnéticos, ou solenoides, como dito anteriormente, alinhados dois a dois, representando os polos norte e sul, que quando energizados atraem o rotor fazendo-o se alinhar as partes energizadas do estator, causando assim um pequeno movimento: o passo. Sua velocidade e sentido estão diretamente relacionados à forma com que os solenoides são acionados, o primeiro com a frequência e o segundo a ordem de acionamento (SANTOS, 2008; ACARNLEY, 2002; WI-KIPEDIA, 2012a).

2.3.6 MOTOR DE PASSO RELUTÂNCIA VARIÁVEL - MULTI STACK

A fonte do fluxo magnético desse tipo de motor são as bobinas colocadas nos dentes do estator. O acionamento das bobinas é feito em sequência para incentivar o movimento, alinhamento, dos conjuntos de dentes sucessivos do estator e do rotor dando ao motor a característica de passos. Ao longo de eu eixo ele é dividido em seções isoladas magneticamente chamadas

stacks, daí o nome *multi stack*, e cada uma pode ser excitada por uma bobina separadamente chamada phase. Cada *stack* possui um estator, preso em sua posição pela caixa, suporte, do motor junto com as bobinas e o elemento móvel, rotor.

O rotor é uma unidade única e maciça que será utilizado para a movimentação da carga. O material do rotor é um metal elétrico laminado o que permite que o campo magnético possa mudar rapidamente sem grandes perdas. O estator de cada rotor possui um determinado número de polos e uma parte da *phase*, bobina, é enrolada em torno de cada polo para produzir o campo magnético. Os polos adjacentes são enrolados no sentido oposto assim os campos magnéticos adjacentes possuem sentidos opostos. Com isso o circuito magnético completo é considerado um polo do estator, o dente do rotor, o vão de ar entre os dentes de ambos e, por fim, um polo adjacente do estator. E esse circuito é repetido a cada par de polos do estator. As forças normais produzidas pelos polos do estator e os dentes do rotor são iguais e se anulam assim sobra apenas a força tangencial o que causa o movimento, isso pode ser visto conforme a Figura 4.

Figura 4 – Forças normais e tangenciais

A posição do rotor com relação ao estator é ajustada toda vez que as bobinas são excitadas. O ajuste ocorre, pois os dentes de ambos são alinhados o que tende a diminuir a relutância do circuito magnético, daí surgiu o nome do motor. Considerando a Figura 5 é possível perceber que para girar no sentido horário a ordem de acionamento deve ser A, B, C, A, B, C, A... e no sentido anti-horário A, C, B, A, C, B, A...

Figura 5 – Visão paralela e perpendicular das stacks e rotor

Segundo (ACARNLEY, 2002), existe uma pequena relação entre o comprimento do passo. Considere N o número de dentes do estator e p o número de dentes do rotor logo:

$$step \ length = 360/(N*p) \tag{2.1}$$

2.3.6.1 DESIGN DO MOTOR

Cada polo do estator produz um campo magnético quando excitado com uma corrente DC. A performance do motor depende da força do campo magnético gerado pelas bobinas quando excitadas, logo o campo magnético está diretamente ligado ao torque do motor. A força do campo magnético está relacionada à intensidade da corrente que passa pelas bobinas, portanto em teoria aumentar a corrente para aumentar o torque seria o suficiente, entretanto existe um limitante que é o aumento da temperatura nas bobinas.

No exemplo da Figura 5 cada *stack* tem 4 polos. Uma vez que todas as quatro bobinas devem ser excitadas concorrentemente uma prática comum é interconectar as bobinas para formar apenas uma *phase*. A forma com que as bobinas são interconectadas influência na temperatura que será dissipada pela bobina uma vez que isso está diretamente ligada à intensidade da corrente. A potência não varia conforme a interconexão.

Existem 3 formas de interconexão conforme a Figura 6. Na verdade a potência não varia conforme a interconexão, mas sim qual *driver* de controle será utilizado: baixa voltagem e alta corrente com uma conexão paralela ou alta voltagem e baixa corrente com uma conexão em série. A diferença entre as 3 interconexões pode ser vista na Figura 7 (ACARNLEY, 2002).

Figura 6 – Interconexão das bobinas

Connection	Rated current	Resistance	Rated voltage	Power
Series	I	4r	4rI	$4rI^2$
Series/parallel	21	r	2rI	$4rI^2$
Parallel	41	r/4	rI	$4rI^2$

Figura 7 – Relação das interconexões das bobinas

2.3.7 MOTOR DE PASSO RELUTÂNCIA VARIÁVEL - SINGLE STACK

Como o nome já diz esse motor é construído com apenas uma stack, ou melhor, uma unidade. Entretanto quanto ao funcionamento e princípios básicos é idêntico ao *multi stack*. Cada dente do estator ainda possui uma bobina separada que produz um campo magnético quando excitada por uma corrente DC.

Uma mudança é que as bobinas do lado oposto são conectadas para formar uma phase. Na Figura 8 existe 3 phases que é o número mínimo para poder rotacionar para os dois lados. A bobina no dente oposto no estator está no sentido oposto para que sejam gerados campos magnéticos em sentidos opostos. E por fim a relação de comprimento do passo se mantém conforma o motor *multi stack* (ACARNLEY, 2002).

Figura 8 – Stator single stack

2.3.8 MOTOR DE PASSO HÍBRIDO

A diferença principal desse com os tipos anteriores é que o circuito magnético é excitado por uma combinação de bobinas e imã permanente. Seu funcionamento e princípios básicos são idênticos ao *multi* e *single stack*. As bobinas ainda permanecem nos dentes do estator já o imã compõe o eixo do rotor conforme Figura 9.

Figura 9 – Motor híbrido

Existem duas bobinas, phases, situadas em 4 dos 8 polos do estator, conforme Figura

9. A bobina A está nos polos 1, 3, 5, 7 e a B nos polos 2, 4, 6, 8. Polos adjacentes ainda são envolvidos pelas bobinas em sentidos opostos, portanto se a bobina A é alimentada com corrente positiva o campo magnético é direcionado para fora nas bobinas 3 e 7, mas para dentro nos polos 1 e 5 e o mesmo acontece na bobina B.

Quando se aplica corrente nas bobinas a mesma ideia de alinhamento dos dentes do rotor e stator acontece. Considerando a Figura 9 e o exemplo da excitação positiva na bobina A, citada anteriormente, o estator e o rotor são alinhados sob os polos 3 e 7 na seção X e polos 1 e 4 na seção Y.

Para uma rotação continua o motor necessita de uma excitação sequencial das bobinas. Se retirar a excitação de A e colocar em B o alinhamento dos dentes vai acontecer com 4 e 8 na seção X e 2 e 6 na seção Y. Isso faz com que o motor gire no sentido horário, a sequência deve ser A+, B+, A-, B-,... Para o sentido anti-horário A+, B-, A-, B+.

Segundo (ACARNLEY, 2002), a relação de comprimento do passo é similar ao de relutância variável. Existe uma relação com o número de dentes do rotor p, e com um ciclo completo de excitação. Como um esse ciclo em um motor hibrido consiste em 4 estados e produz 4 passos de movimento no rotor, logo conclui-se que:

$$step \ length = 360/(4*p) = 90/p$$
 (2.2)

2.3.9 COMPARAÇÃO ENTRE TIPOS DE MOTORES

Não é possível dizer categoricamente que um motor é melhor do que o outro em todas as situações. Os híbridos têm menor comprimento de passo, normalmente 1,8 graus, o que pode ser uma grande vantagem quando alta precisão é necessária. Eles também possuem maior torque devido ao uso do imã permanente no rotor. E, além disso, quando nenhuma bobina esta excitada o motor hibrido ainda possui um "torque de retenção" que mantém a posição do rotor. E isso pode ser uma característica na aplicação onde a posição do rotor deve ser preservada durante uma falha de energia, mas é bom lembra que esse torque é menor do que o torque com 1 ou mais bobinas excitadas.

Já o de relutância variável tem duas vantagens quando se trata de movimentar carga em distâncias consideráveis. A primeira é que tipicamente o comprimento de seu passo é de 15 graus, maior que o do híbrido, portanto ele precisa de menos passos para mover a mesma distância. Com a redução do número de excitações das bobinas o consumo também é reduzido, em caso de uso de baterias é uma característica muito interessante. A segunda é que por não possuir imã permanente possui uma menor inércia para início de movimento, também diminuindo o consumo inicial (ACARNLEY, 2002).

3 PROTEUS DESIGN SUITE

Proteus é um suíte, conjunto de *features*, desenvolvido pela Labcenter Eletronics Ltd. É um software para: simulação de microcontroladores, simulação de circuitos eletrônicos e para desenvolvimento de placa de circuito impresso. Os componentes desse sistema são:

- ISIS *Schematic Capture*: Ferramenta utilizada para se adicionar objetos, componentes para simulação;
- PROSPICE Mixed mode SPICE simulation: Simulador industrial padrão SPICE3F5, combinado com simulador digital de alta velocidade. Spice, Simulation Program with Integrated Circuit Emphasis, é um simulador para propósitos gerais para sistemas eletrônicos analógicos.
- ARES PCB Layout: Sistema de PCB, Printed Circuit Board, ou melhor, placa de circuito impresso, design de alto desempenho com posicionamento automático de componente, auto-roteamento, entre outras features relacionadas ao desenvolvimento de placas de circuito impresso.
- VSM Virtual System Modelling: Permite simular software embarcado para microcontroladores, disponíveis em suas bibliotecas, ao lado de seu projeto de hardware (LABCEN-TER, 2013; WIKIPEDIA, 2013).

3.1 ISIS SCHEMATIC CAPTURE

Como já foi dito, essa feature se trata da funcionalidade de simulação e montagem de circuitos eletrônicos. Permite que o circuito em questão seja debugado de forma simples e, além disso, possibilita uma integração com códigos desenvolvidos para microcontroladores suportados por ele. Seus componentes são:

- Circuitos integrados das famílias: 74ALS, 74AS, 74F, 74HC, 74HCT, 74LS, 74S e 74STD;
- Componentes analógicos;
- Medidores de corrente e tensão para serem utilizados durante o debug;
- Geradores como fontes e clock, ambos ajustáveis para o valor desejado;
- Semicondutores como diodo, transistor, LEDs e outros;
- Componentes básicos como chaves, resistores, capacitores e indutores;

- Atuadores como motor DC, motor de passo e outros;
- Microcontroladores da família 80XXX, AT e PIC;
- Memórias, displays, CMOS e outros.

Seu uso é bem simples, pois é como se estivesse desenhando o circuito em um papel. Após ser desenhado é possível utilizar as ferramentas de auxilio para debug e assim coletar dados como voltagem e corrente do circuito e até mesmo se o funcionamento está conforme o esperado.

4 MIKROC

MikroC é um *toolchain* poderoso, uma ferramenta de desenvolvimento completa para microcontroladores PIC. Ele foi criado de forma que disponibilize ao usuário a forma mais fácil de desenvolver suas aplicações para sistemas embarcados, sem compromisso de desempenho ou controle. MikroC permite que seja feito um rápido desenvolvimento e embarcar aplicações complexas:

- Escrever códigos em C utilizando um editor de código avançado;
- Utilizar as bibliotecas do próprio MikroC para acelerar o desenvolvimento: aquisição de dados, memória, display, comunicação, entre outros;
- Auxilia na evolução e desenvolvimento do código monitorando a estrutura do programa, variáveis e funções. Gera um código comentado, humanamente legível em assembly, e um padrão HEX compatível com o padrão conhecido;
- Possui um debugger integrado capaz de gerar relatórios detalhados, estatísticas, pilha de execução, entre outras opções que auxiliam analisar o fluxo do programa (MIKROELE-TRONIKA, 2006).

5 PIC18F452

O PIC18F452 é um microcontrolador fabricado pela empresa *Microchip Technology*. Possui tecnologia CMOS, como consequência tem um consumo baixíssimo, possui memória do tipo FLASH, um grande facilidade para desenvolvimento de protótipos, uma vez que para apagá-la não é preciso utilizar luz ultravioleta como em versões antigas, utilizavam memória EEPROM. Abaixo seguem as principais características desse microcontrolador:

- Microcontrolador de 40 Pinos;
- Memória de programa FLASH de 32Kbytes;
- Memória RAM de 1536 bytes;
- Memória EEPROM de 256 bytes;
- Processamento de até 10MIPS;
- Quatro *timers*, ou temporizadores, internos um de 8 bits e 3 de 16 bits TIMER0, TIMER1, TIMER2 e TIMER3;
- 2 canais capture/compare/PWM Módulo CCP;
- Módulo *Master Synchronous Serial Port* (MSSP);
- Unhaced Usart;
- 8 canais A/D de 10 bits;
- Detector de baixa voltagem programável;
- Permite até 100.000 ciclos de escrita e leitura na memória FLASH;
- Permite 1.000.000 ciclos de escrita e leitura na memória EEPROM.
- Retenção de dados na FLASH por 40 anos;
- Watchdog timer com oscilador próprio e programável;
- Três pinos de interrupções externas: INT0, INT1 e INT2

A Figura 10 representa uma imagem do microcontrolador.

Figura 10 – PIC18F452

5.1 Estrutura Interna

A Figura 11 ilustra como é a estrutura interna do microcontrolador:

Figura 11 – Estrutura Interna PIC18F452

5.2 DESCRIÇÃO DOS PINOS

Dos 40 pinos desse microcontrolador 34 são pinos I/O, entrada e saída, divididos em 5 "PORT". A Figura 12 representa uma relação dos pinos do microcontrolador.

Figura 12 - Pinos PIC18F452

A divisão dos pinos I/O citada é da seguinte maneira:

- PORTA: São 7 pinos nomeados de RA0 a RA6. Podem ser utilizados como I/O geral ou conversor A/D, essa segundo opção tem exceção o pino RA4. Além de possuir a opção LVD, detecção de baixa tensão;
- PORTB: São 8 pinos nomeados de RB0 a RB7. Podem ser utilizados para I/O geral e, além disso, pode-se trabalhar com três interrupções externas, módulo CCP, pinos de gravação e debug;
- PORTC: São 8 pinos nomeados de RC0 a RC7. Podem ser utilizados para I/O geral, saída do oscilador do *timer*, módulo CCP, Clock e data(dados) para os modos SPI, I2C e UART;
- PORTD: São 8 pinos nomeados de RD0 a RD7. Podem ser utilizados para I/O geral ou como PSP para ter saída TTL, para interfaceamento com microprocessadores, por exemplo;
- PORTE: São 3 pinos nomeados de RE0 a RE2. Podem ser utilizados para I/O geral ou pinos de controle de acesso.

6 Bomba de infusão de insulina

6.1 Contextualização

Glicose, a principal fonte de energia do corpo humano, é absorvida a partir dos alimentos e distribuída ao corpo através da corrente sanguínea. Uma vez que está no sangue ela pode ser absorvida pelo fígado, temporariamente, utilizada pela células ou, em último caso, ser eliminada através da urina. Processos do corpo regulados pelos hormônios, que mantém a quantidade de glicose estável na corrente sanguínea. Dos hormônios existentes os mais importante é a insulina. Sua produção é feita pelo pâncres e sua função é controlar absorção de glicose pelas células (SBC, 2014)

Segundo (SBC, 2014) existem conjunto de doenças crônicas, chamadas diabetes, que dificultam o metabolismo da glicose e da insulina. A diagnósticação dessa doença geralmente pode ser feita através da aferição da concentração de glicose na corrente sanguínea. O resultado positivo se dá em caso de ser constatado hiperglicemia, ou seja, elevada concentração de glicose.

Dentre os tipos de diabetes o mais raro é o tipo 1. O paciente com esse tipo de doença faz com que seja necessário a aplicações diárias de insulina, consequência da secreção desse hormônio. Esse tipo da doença ocorre por causa desconhecida ou, ainda sim, pela destruição das células betas pelo pâncres, ocasionada por um processo auto-imune (MARTINS et al., 2012). Os principais tipos tratamentos para o quadro citado são:

- Infusão Contínua Subcutânea de Insulina através de uma bomba de infusão, situação abordada neste trabalho;
- Múltiplas Doses de Insulina (MDI).

6.2 Características gerais da bomba de infusão

Segundo (MINICUCCI, 2008), para gerenciar o processo de infusão de insulina no paciente é utilizado um dispositivo eletrômecanico portátil conhecido como: bomba de insusão de insulina. A idéia desse aparelho é atuar como um pâncres artificial, ou seja, atuar de forma similar ao organismo de uma pessoa que não possui diabetes, liberando insulina durante o dia todo e no horário das refeições. A primeira forma de funcionamento, liberação de insulina entre as refeições, é chamada de basal e a segunda bolus.

A bomba geralmente é ligada a um tubo de plástico fino, cateter, que uma cânula flexível de teflon, colocada sob a pele do obdômen ou coxa. É posicionada externamente ao corpo e

possui um peso entre 80 e 100 gramas. Além das posições citadas a bomba pode ser posicionada na região lombar ou até mesmo nos membros superiores (MINICUCCI, 2008).

Segundo (AMORIM, 2008), o software embarcado, responsável pelo controle da bomba possui algumas funcionalidades como:

- avisos para monitoração da glicose;
- programação de doses de taxas basais para cada hora do dia;
- programação de doses de taxas bolus para certa quantidade de refeições;
- possibilidade de bloqueio do sistema voltados principalmente para utilização em crianças;
- possibilidade de escolha de menus operacionais;
- programação de quantidade de insulina a ser injetada;
- alarmes vibratórios e/ou sonoros para quantidade de insulina no reservatório;
- avisos para monitoração da glicose;
- ajuda de Bolus que auxilia no cálculo da dose bolus necessária para correção de hiperglicemia e/ou alimentação (essa funcionalidade mais difícil de ser encontrada);
- dentre outras verificações de segurança.

Hoje em dia, a configurabilidade das funcionalidades da bomba de infusão é muito mais do que as funcionalidades básicas, o que aumentam seu custo e podem não agregar muito valor ao consumidor final. Funcionalidade essas como:

- integração com algum sistema de monitoração contínuo de glicose;
- sistema bluetooth onde o paciente utiliza um dispositivo externo para o controle da bomba;
- sistema de transferência de dados para um computador;
- lembretes;
- personalizações de menu;
- gráficos;
- visores coloridos;
- entre outros.

6.3 Aspectos de segurança da bomba de infusão

A bomba de infusão é considerado um sistema embarcado de tempo real crítico uma vez que dever ser extremamente seguro e fornecer respostas em prazos precisos e determinados. Considerações essas que implicam em diferenças importantes de projeto em relação a sistemas mais simples, pois complicações em sistemas desse tipo podem causar até mesmo a morte. Logo, esses dispositivos devem ser desenvolvidos com critérios de segurança robustos e requisitos funcionais e não-funcionais bem definidos (SOMMERVILLE, 2004).

É importante que o sistema seja confiável ao fornecer a quantidade correta de insulina requisitada, ou seja, ter disponibilidade sempre que for requisitada e, não menos importante, a bomba deve ser segura tratando falhas que possam suspender o fornecimento de insulina ou a infusão demasiada da mesma. Segundo (SOMMERVILLE, 2004), todas as condições anteriores retratam alguns requisitos de sistemas críticos, que no contexto deste trabalho podem ser representados por algumas funcionalidades essenciais, tais como:

- Alarmes para o nível da bateria;
- Sensor de pressão;
- Redundância de partes do hardware essenciais;
- Rotinas de verificação do funcionamento interno em geral (hardware e software);
- Implementação de rotinas que prevêem iterações de forma errada por parte do paciente;
- Inacessibilidade de algumas configurações avançadas por meio do paciente;
- Alarmes para o nível de reservatório;
- Hardware de boa qualidade com as devidas certificações.

Segundo (ZHANG; JONES; JETLEY, 2010) pode-se listar situações referentes ao uso da bomba que podem causar alguma falha, podendo levar o paciente a perder a consciência no caso de uma hipoglicemia e cetoacidose para uma considerável hiperglicemia. A divisão é feita em seis grupos principais: causas operacionais, falhas de software, falhas de hardware, causas ambientais, elétricas e químicas.

Levantamento este importantíssimo para servir como gui do projeto, de forma que se possa medir e garantir os mais altos níveis de segurança tanto no *software* quanto no *hardware*. Ainda existe classificações de riscos que podem ser energéticas, mecânicas, biológicas, químicas, ambiental e terapêutica (ZHANG; JONES; JETLEY, 2010).

Exemplos de causas operacionais que levam a situação de riscos:

• Bomba está desconectada do conjunto de infusão sem o conhecimento do paciente;

- Excessiva administração da taxa de bolus devido a várias requisições do paciente;
- Vazamento da bomba;
- Taxa atual de infusão não está de acordo com o programado;

Exemplos de falhas de software que levam a situação de riscos:

- Looping infinito;
- Acesso indevido da memória;
- Taxa incorreta de bolus recomendada pelo cálculo do sistema;
- Estouro de pilha.

Exemplos de falhas de hardware que levam a situação de riscos:

- Falha na memória ROM ou flash;
- Falhas do motor;
- Falha no sensor de reservatório de insulina;
- Falha no sensor de bateria;
- Falha no microcontrolador.

Exemplos de causas ambientais que levam a situação de riscos:

- Aquecimento da bomba durante o funcionamento;
- Alta diferença de pressão entre o interior da bomba e o ambiente externo;
- Uso da bomba em temperaturas fora do especificado;
- Uso da bomba em ambientes com alta umidade.

Exemplos de causas elétricas que levam a situação de riscos:

- Interferência eletromagnética vinda de outros aparelhos eletrônicos;
- Bateria desconectada;
- Vazamento de corrente pela superfície da bomba;
- Nível de bateria baixo;

• Descarga eletrostática.

Exemplos de causas químicas e/ou biológicas que levam a situação de riscos:

- Material do equipamento de baixa qualidade, problemas alérgicos;
- Infecção na região (pele) da infusão;
- Perda das propriedades bioquímicas da insulina durante a infusão, hiperglicemia;
- Precipitação química dentro do cateter, problemas alérgicos, infecções;
- Equipamento não higienizado, problemas alérgicos, infecções.

6.4 Requisitos da bomba de infusão

A bomba será implementada utilizando um microcontrolador de baixo custo da família PIC, de forma a manter as características mais importante, qualidade e segurança do dispositivo. A Figura 13 representa o modelo do contexto da bomba de infusão de insulidade, com todas as entidadesque deverão ser monitoradas e/ou controladas pelo software.

Figura 13 - Modelo de contexto da bomba de infusão de insulina

(MARTINS et al., 2012)

A divisão dos requisitos funcionas da bomba foi feita da seguinte forma:

- Módulo de interface com o usuário;
- Módulo de controle de infusão;
- Módulo de monitoramento de sensores.

Abaixo segue figuras para representar os módulos do sistema citados anteriormente. A Figura 14 representa o módulo de interface com o usuário, pode-se observar as possíveis ações que o usuário pode realizar de forma a interagir com o sistema. A Figura 15 representa o segundo módulo, controle de infusão, que tem a responsabilidade de administrar as duas formas de infusão: basal e bolus. O último, módulo de monitoramento dos sensores, está representado na Figura 16 e é responsávels pela verificação do sistema como um todo.

Figura 14 – Caso de uso do módulo de interface com o usuário

(MARTINS et al., 2012)

Figura 15 – Caso de uso do módulo de controle de infusão

(MARTINS et al., 2012)

Figura 16 – Caso de uso do módulo de monitoramento dos sensores

(MARTINS et al., 2012)

7 Revisão Bibliográfica

7.1 Introdução

8 Resultados

9 Conclusão

Referências

ACARNLEY, P. P. Stepping motors: a guide to theory and practice. [S.1.]: Iet, 2002. Citado 4 vezes nas páginas 32, 34, 35 e 37.

AMORIM, A. C. P. d. Novas abordagens em insulinoterapia. Universidade da Beira Interior, 2008. Citado na página 48.

CHIRONIS, N. P.; SCLATER, N. *Mechanisms & mechanical devices sourcebook*. [S.l.]: McGraw-Hill New York, 1991. Citado na página 31.

CUNHA, A. *O que são sistemas embarcados?* 2013. Acessado em 20/05/2014. Disponível em: http://www.techtraining.eng.br/files/uploads/2013/04/19/artigo-sist-emb.pdf. Citado na página 27.

DIABETES. *Bomba de infusão de insulina*. 2013. Acessado em 08/03/2013. Disponível em: http://www.diabetes.org.br/sala-de-noticias/2316-bombas-de-infusao-de-insulina. Citado na página 25.

FARINES, J.-M.; FRAGA, J. d. S.; OLIVEIRA, R. d. Sistemas de tempo real. *Escola de Computação*, v. 2000, p. 201, 2000. Citado na página 28.

FELDMANN, R. L. et al. A survey of software engineering techniques in medical device development. In: IEEE. *High Confidence Medical Devices, Software, and Systems and Medical Device Plug-and-Play Interoperability, 2007. HCMDSS-MDPnP. Joint Workshop on.* [S.l.], 2007. p. 46–54. Citado na página 29.

GANSSLE, J. *The art of designing embedded systems*. [S.l.]: Newnes, 1999. Citado na página 30.

GERMANO, A. *Você sabe o que são sistemas embarcado?* 2011. Acessado em 20/05/2014. Disponível em: http://www.gruponetcampos.com.br/2011/05/voce-sabe-o-que-sao-sistemas-embarcados/>. Citado na página 27.

JORDAN, P. Standard iec 62304-medical device software-software lifecycle processes. In: IET. *Software for Medical Devices, 2006. The Institution of Engineering and Technology Seminar on.* [S.1.], 2006. p. 41–47. Citado na página 29.

KOPETZ, H. *Real-time systems: design principles for distributed embedded applications*. [S.l.]: Springer, 2011. Citado na página 29.

LABCENTER. *Labcenter Eletronics*. 2013. Acessado em 05/03/2013. Disponível em: http://www.labcenter.com/index.cfm. Citado na página 39.

LEE, E. A.; SESHIA, S. A. *Introduction to embedded systems: A cyber-physical systems approach.* [S.l.]: Lee & Seshia, 2011. Citado na página 30.

MALL, R. *Real-Time Systems: Theory and Practice*. [S.l.]: Pearson Education India, 2009. Citado na página 28.

62 Referências

MARTINS, L. E. G. et al. Desenvolvimento de um protótipo de bomba de infusão de insulina de baixo custo: em busca de uma alternativa para a população de baixa renda portadora de diabetes. Projeto submetido ao MCTI, 2012. Citado 5 vezes nas páginas 47, 51, 52, 53 e 54.

MIKROELETRONIKA. *MikroC Making it Simple User's Manual*. [S.1.], 2006. Disponível em: http://www.mikroe.com/pdf/mikroc/mikroc_manual.pdf>. Acesso em: 16.4.2013. Citado na página 41.

MINICUCCI, W. J. Uso de bomba de infusão subcutânea de insulina e suas indicações:[revisão]. *Arq. bras. endocrinol. metab*, v. 52, n. 2, p. 340–348, 2008. Citado 2 vezes nas páginas 47 e 48.

NOMADSUSP. *Sensores*. 2012. Acessado em 02/04/2014. Disponível em: http://www-nomads.usp.br/pesquisas/design/dos/Capacitacao/arquivos/sensores.pdf. Citado na página 31.

PORTALDIABETES. *Iniciando insulinoterapia no diabetes mellitus tipo* 2. 2008. Acessado em 04/03/2013. Disponível em: http://www.portaldiabetes.com.br/conteudocompleto-asp?idconteudo=3267>. Citado na página 23.

PORTALDIABETES. *Bombas de Infusão de Insulina*. 2009. Acessado em 10/03/2013. Disponível em: http://www.portaldiabetes.com.br/conteudocompleto.asp?idconteudo=3267. Citado na página 25.

RADIOAMADORES. *Microcontroladores*. 2009. Acessado em 02/12/2012. Disponível em: http://www.radioamadores.net/files/microcontroladores_pic.pdf>. Citado na página 30.

ROSÁRIO, J. M. *Princípios de mecatrônica*. [S.l.]: Pearson Prentice Hall, 2006. Citado na página 31.

SANTOS, V. P. de A. Motor de passo. 2008. Citado na página 32.

SBC. *Tudo sobre diabetes*. 2014. Acessado em 20/05/2014. Disponível em: http://www.diabetes.org.br. Citado 2 vezes nas páginas 25 e 47.

SOMMERVILLE, I. *Software Engineering. International computer science series.* [S.l.]: Addison Wesley, 2004. Citado 2 vezes nas páginas 29 e 49.

WIKIBOOK. *Embedded Systems Introduction*. 2012. Acessado em 02/12/2012. Disponível em: http://en.wikibooks.org/wiki/Embedded_Systems/Embedded_Systems_Introductio. Citado na página 27.

WIKIPEDIA. *Motor de passo*. 2012. Acessado em 04/12/2012. Disponível em: http://pt-wikipedia.org/wiki/Motor_de_passo. Citado na página 32.

WIKIPEDIA. *Pic*. 2012. Acessado em 01/12/2012. Disponível em: http://pt.wikipedia.org/wiki/Microcontrolador_PIC. Citado na página 30.

WIKIPEDIA. *SPICE*. 2013. Acessado em 06/03/2013. Disponível em: http://en.wikipedia.org/wiki/SPICE. Citado na página 39.

ZHANG, Y.; JONES, P. L.; JETLEY, R. A hazard analysis for a generic insulin infusion pump. *Journal of diabetes science and technology*, SAGE Publications, v. 4, n. 2, p. 263–283, 2010. Citado na página 49.

APÊNDICE A – Título de Apêndice

APÊNDICE B – Título do Apêndice

ANEXO A – Título do Anexo