Fenômenos de Transferência – FEN/MECAN/UERJ

Prof $^{\circ}$ Gustavo Rabello – 2° período 2014 – lista de exercícios – 06/11/2014

Conservação de Quantidade de Movimento

- 1. A componente de velocidade v_y de um escoamento bi-dimensional, estacionário e incompressível, de um fluido newtoniano é dada por $v_y = e^{-2y} \cos x$. Determinar a componente v_x da velocidade e o gradiente de pressões, desprezando-se a força gravitacional.
- 2. O campo de velocidades incompressível de um escoamento de água é dado por $\mathbf{v} = (Ax + By)\mathbf{i} Ay \mathbf{j}$, onde $A = 1s^{-1}$ e $B = 2s^{-1}$ e as coordenadas são medidas em metros. Determinar a magnitude e o sentido da aceleração de uma partícula no ponto (x,y) = (1,2) e o gradiente de pressão no mesmo ponto. Massa específica da água: $\rho = 993 \, kg/m^3$. Viscosidade dinâmica da água: $\mu = 1,0 \times 10^{-3} Ns/m^{-2}$.
- 3. O campo de velocidades dado por:

$$v_r = 10\left(1 + \frac{1}{r^2}\right) \operatorname{sen}\theta$$
 $v_\theta = 10\left(1 - \frac{1}{r^2}\right) \cos\theta$ $v_z = 0$

representa um possível escoamento incompressível? Em caso afirmativo determine o gradiente de pressão desprezando efeitos viscosos e gravitacionais.

- 4. A componente radial de um escoamento incompressível é dada, no plano (r, θ) por $v_r = -A\cos(\theta/r^2)$. Determinar uma solução possível para a componente v_{θ} , o gradiente de pressões e calcular o **rot v**.
- 5. Calcular a vazão e os fluxos de quantidade de movimento e de energia cinética por unidade de comprimento na direção z, de uma lâmina de fluido com espessura δ , que escoa sobre uma placa plana conforme figura ao lado. A massa específica do fluido é ρ . O campo de velocidades é dado por:

$$\mathbf{v} = \frac{g \mathrm{sen}\,\alpha}{\nu} \left(y \delta - \frac{y^2}{2} \right) \mathbf{i}$$

Calcular o perfil de velocidades se a viscosidade do fluido variar ao longo da direção y segundo a lei $\mu = \mu_0 (1 + y/\delta)$.

6. O número de Reynolds crítico para a transição laminar-turbulento em tubos é $Ud/\nu=2000$. Qual é o valor crítico da velocidade U em tubos de diâmetro $d=6\,cm$ e $d=60\,cm$ para:

	T(K)	$\mu \left(Ns/m^2\right)$	$\rho \left(kg/m^3\right)$
água	300	855×10^{-6}	1017
Ar	300	$18,46 \times 10^{-6}$	0,861
óleo lubrificante	350	$3,56 \times 10^{-2}$	853,9
Etilenoglicol	350	$0,342 \times 10^{-2}$	1079

- 7. Um bombeiro reduz a área de saída do bocal de uma mangueira de incêndio, de modo que a velocidade dentro da mangueira seja muito pequena quando comparada com a da saída. Qual é a altura máxima que a água pode atingir se a pressão dentro da mangueira for de 700 kPa? Massa específica da água: $\rho = 1016 \, kg/m^3$; Pressão atmosférica: $P_{atm} = 101, 3 \, kPa$.
- 8. Uma tubulação é utilizada para elevar água ($\rho = 1013\,kg/m^3$) entre dois pontos. A diferença de nível (altura) entre os dois pontos é de $5,0\,m$. A curva característica da bomba e a curva da perda de carga da tubulação por efeito viscoso são dadas pela tabela abaixo. Pede-se determinar:
 - A vazão de operação do sistema de bombeamento;
 - A potência de bombeamento requerida, no ponto de operação do sistema.

$Q_{vol} \ (m^3/s)$	2,0	2,5	3,0	3,5	4,0	4,5	5,0	5,5	6,0	6,5	7,0
$\frac{\Delta H_B (m)}{\Delta H_T (m)}$,	,	,	11,4 7,83	,	,	,	,	,	,	,

onde:

• Q_{vol} : Vazão volumétrica da bomba ou da tubulação;

• ΔH_B : Altura manométrica da bomba;

• ΔH_T : Perda de carga da tubulação por efeito viscoso.

- 9. Água a $20^{\circ}C$ ($\rho = 1000 \, kg/m^3$ e $\mu = 1 \times 10^{-3} Ns/m^2$) escoa em um canal de concreto, com largura $a = 0, 3 \, m$ e profundidade $b = 0, 2 \, m$. Se a velocidade do escoamento for de $0, 1 \, m/s$ qual deve ser a inclinação do canal? Assumir f = 0, 027.
- 10. Água a $20^{\circ}C$ ($\rho = 1000 \, kg/m^3$, $\mu = 1,0 \times 10^{-3} NS/m^2$) corre por efeito gravitacional em um tubo de $1 \, mm$ de diâmetro. Calcule a vazão supondo que o escoamento seja laminar e a pressão, constante ao longo do tubo. É razoável supor que o escoamento seja laminar?
- 11. Calcular a altura manométrica total e a potência da bomba de um sistema de água de resfriamento conforme fluxograma abaixo.

- 17. Água escoa verticalmente para baixo saindo de uma torneira cujo diâmetro de saída é D. Determinar o perfil do filete d'água em função da altura, D = D(z), considerando z = 0 na saída da torneira e sabendo que a velocidade nesse ponto é V_s . Considerar que a aceleração da gravidade tem módulo g e que o escoamento se faz em regime laminar. Utilizar a equação da continuidade para obter uma relação entre a velocidade e o diâmetro ao longo do filete para complementar a equação de Bernoulli e desprezar os efeitos viscosos (perdas).
- 18. Ar quente $(\rho_q = 1, 08 \, kg/m^3)$ escoa por uma chaminé vertical de seção quadrada com lado $b = 0, 20 \, m$ e altura $h = 3, 0 \, m$. Determine a velocidade e a vazão em massa pela chaminé sabendo que a massa específica do ar exterior é $\rho_f = 1, 2 \, kg/m^3$. Considere K = 1, 0 na entrada, K = 0, 3 na saída e f = 0,003 no trecho reto da chaminé.
- 19. As equações da continuidade e de Navier-Stokes para o escoamento bi-dimensional de um fluido incompressível são:

$$\begin{array}{rcl} \mathbf{div} \, \mathbf{v} & = & 0 \\ \frac{D\mathbf{v}}{Dt} & = & -\frac{1}{\rho} \, \mathbf{grad} \, p + \nu \, \nabla^2 \mathbf{v} + \mathbf{g} \end{array}$$

onde $\mathbf{v} = v_x \mathbf{i} + v_y \mathbf{j}$. Mostrar que este sistema pode ser reduzido à forma:

$$\frac{D\boldsymbol{\omega}}{Dt} = \nu \nabla^2 \boldsymbol{\omega} \qquad \qquad \boldsymbol{\omega} = \mathbf{rot} \, \mathbf{v} = \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}\right) \mathbf{k}$$

Sugestão: Derivar a equação de v_y em relação a x, a de v_x em relação a y, subtrair uma da outra, utilizar a equação da continuidade e a definição de **rot v**.

20. Escrever as equações de Euler (sem viscosidade) e de Navier-Stokes (viscosidade cinemática constante) sem a pressão, utilizando a notação tensorial cartesiana; Nos casos em que a viscosidade cinemática não é constante a Conservação de Quantidade de Movimento angular em sua forma diferencial toma a forma:

$$\frac{\partial}{\partial t}(\,\mathbf{rot}\,\mathbf{v}) = \,\mathbf{rot}\,(\mathbf{v}\times\,\mathbf{rot}\,\mathbf{v}) + \,\mathbf{rot}\,\left[\,\mathbf{div}\,\boldsymbol{\nu}\,\big(\,\mathbf{grad}\,\mathbf{v} + \,\mathbf{grad}\,^T\mathbf{v}\big)\right].$$

Reescrever essa equação na forma tensorial cartesiana.

21. HIDROESTÁTICA: fazer exercícios passados em sala de aula.

Conservação de Energia

1. Mostrar que a função dissipação de um fluido newtoniano incompressível é dada por:

$$\tau: \mathbf{grad} \mathbf{v} = \mu \left\{ 2 \left[\left(\frac{\partial v_x}{\partial x} \right)^2 + \left(\frac{\partial v_y}{\partial y} \right)^2 + \left(\frac{\partial v_z}{\partial z} \right)^2 \right] + \left(\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} \right)^2 + \left(\frac{\partial v_x}{\partial z} + \frac{\partial v_z}{\partial x} \right)^2 + \left(\frac{\partial v_y}{\partial z} + \frac{\partial v_z}{\partial y} \right)^2 \right\}$$

2. Mostrar que:

$$\frac{D}{Dt}\left(\frac{v^2}{2}\right) = -\frac{1}{\rho}v_i\frac{\partial p}{\partial x_i} + \frac{1}{\rho}\frac{\partial v_i\tau_{ij}}{\partial x_j} - \frac{1}{\rho}\tau_{ij}\frac{\partial v_i}{\partial x_j} + v_ig_i.$$

- 3. O campo bi-dimensional, estacionário e incompressível de um fluido newtoniano é tal que $v_x = Ax^2y^2$. Determinar a taxa de variação com o tempo, da energia cinética de uma partícula que se move nesse campo.
- 4. Um fluido newtoniano incompressível, escoa em regime permanente, em um campo bidimensional de velocidades, (v_x, v_y) . A componente v_x é dada por $v_x = Ax^2y^2$, onde A é uma constante. Pede-se determinar a forma mais simples da componente v_y deste escoamento e a função dissipação.
- 5. O campo bi-dimensional, estacionário e incompressível de um fluido newtoniano, no qual ocorre uma reação química que libera calor, é tal que $v_x = Axy$ e $T = T_0(1 e^{-xy/L^2})$, onde L é uma constante, $0 \le x \le L$ e $0 \le y \le L$. Determinar:
 - (a) A forma mais simples da componente v_y da velocidade;
 - (b) A Função Dissipação;
 - (c) A taxa de variação da temperatura com o tempo, de uma partícula que se move com a velocidade do campo;
 - (d) A taxa de produção de calor por unidade de volume, \dot{Q} .
- 6. A componente v_x do campo de velocidades bi-dimensional de um fluido incompressível, sem fontes de calor, é dada, em um certo instante de tempo, por $v_x = x \operatorname{sen} y$. O campo de temperaturas é dado, nesse mesmo instante, por $T = T_0 \operatorname{sen} x \operatorname{cos} y$. Pede-se:
 - (a) A forma mais simples da componente v_y do campo de velocidades nesse instante;
 - (b) A função dissipação nesse instante;
 - (c) O valor de $\partial T/\partial t$ nesse instante.
- 7. Definir o potencial gravitacional ϕ , tal que a força gravitacional por unidade de massa, F_i , que se origina desse potencial e age sobre uma partícula do meio contínuo, seja da forma $F_i = \partial \phi / \partial x_i$. Definir também a energia total por unidade de massa e_t , de um meio contínuo por:

$$e_t \equiv e + \frac{1}{2}v^2 + \phi.$$

Mostrar que a equação da energia interna pode ser escrita na forma:

$$\frac{\partial \rho e_t}{\partial t} + \frac{\partial \rho v_i e_t}{\partial x_j} \equiv -\frac{\partial q_i}{\partial x_i} + \frac{\partial v_i \sigma_{ij}}{\partial x_j}.$$

8. Mostrar que a equação da entropia pode ser escrita na forma:

$$\rho \frac{Ds}{Dt} \equiv -\frac{\partial}{\partial x_i} \left(\frac{q_i}{T} \right) - \frac{1}{T^2} q_i \frac{\partial T}{\partial x_i} + \tau_{ij} \frac{\partial v_i}{\partial x_j}.$$

O primeiro termo do membro direito da equação acima representa a variação reversível de entropia de uma partícula do meio devido a transferência de calor. O sinal desse termo muda segundo o sentido do fluxo de calor. A segunda e a terceira parcelas representam acréscimos irreversíveis de entropia da partícula em virtude de efeitos de transferência de calor e viscosos. Essa análise não inclui efeitos irreversíveis de difusão e mistura. A equação mostra que o escoamento de um fluido de composição uniforme, sem efeitos viscosos e sem transferência de calor é isoentrópico.