This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:	
C12N 15/86, C07K 14/015, C12N 9/00, 9/52, 15/35, 7/01	1

(11) International Publication Number:

WO 98/10086

(43) International Publication Date:

12 March 1998 (12.03.98)

(21) International Application Number:

PCT/US97/15691

(22) International Filing Date:

4 September 1997 (04.09.97)

(30) Priority Data:

60/025,323

6 September 1996 (06.09.96) US (74) Agents: KODROFF, Cathy, A. et al.; Howson and Howson, Spring House Corporate Center, P.O. Box 457, Spring House, PA 19477 (US).

(60) Parent Application or Grant

(63) Related by Continuation

US

60/025,323 (CIP)

Filed on

6 September 1996 (06.09.96)

(71) Applicant (for all designated States except US): TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA (US/US): Suite 300, 3700 Market Street, Philadelphia, PA 19104-3147 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WILSON, James, M. [US/US]; 1350 N. Avignon Drive, Gladwyne, PA 19035 (US). PHANEUF, Daniel [CA/US]; Apartment 1032, 834 Chestnut Street, Philadelphia, PA 19107 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR. BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT. SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: METHODS USING CRE-LOX FOR PRODUCTION OF RECOMBINANT ADENO-ASSOCIATED VIRUSES

(57) Abstract

Methods for efficient production of recombinant AAV are described. In one aspect, three vectors are introduced into a host cell. A first vector directs expression of cre recombinase, a second vector contains a promoter, a spacer sequence flanked by loxP sites and rep/cap, and a third vector contains a minigene containing a transgene and regulatory sequences flanked by AAV ITRs. In another aspect, the host cell stably or inducibly expresses are recombinase and two vectors carrying the other elements of the system are introduced into the host cell.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

				•			
AL	Albania	ES	Spain	1.5	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LÜ	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	iceland	MW	Malawi	US	United States of Americ
CA.	Canada	IT	Italy	MX	Mexico	UZ	l/zbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ.	New Zealand		
CM	Cameroon	•••	Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakatan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

METHODS USING CRE-LOX FOR PRODUCTION OF RECOMBINANT ADENO-ASSOCIATED VIRUSES

Field of the Invention

This invention relates generally to production methods for recombinant viruses, and more specifically, to methods of producing recombinant adeno-associated viruses.

Background of the Invention

30

35

Adeno-associated virus (AAV) is a replication-10 deficient parvovirus, the genome of which is about 4.6 kb in length, including 145 nucleotide inverted terminal repeats (ITRs). Two open reading frames encode a series of rep and cap polypeptides. Rep polypeptides (rep78, rep68, rep62 and rep40) are involved in replication, 15 rescue and integration of the AAV genome. proteins (VP1, VP2 and VP3) form the virion capsid. Flanking the rep and cap open reading frames at the 5' and 3' ends are 145 bp inverted terminal repeats (ITRs), the first 125 bp of which are capable of forming Y- or T-20 shaped duplex structures. Of importance for the development of AAV vectors, the entire rep and cap domains can be excised and replaced with a therapeutic or reporter transgene [B. J. Carter, in "Handbook of Parvoviruses", ed., P. Tijsser, CRC Press, pp.155-168 25 (1990)]. It has been shown that the ITRs represent the minimal sequence required for replication, rescue, packaging, and integration of the AAV genome.

When this nonpathogenic human virus infects a human cell, the viral genome integrates into chromosome 19 resulting in latent infection of the cell. Production of infectious virus and replication of the virus does not occur unless the cell is coinfected with a lytic helper virus, such as adenovirus or herpesvirus. Upon infection with a helper virus, the AAV provirus is rescu d and amplified, and both AAV and helper virus ar produced.

2

The infecting parental ssDNA is expanded to duplex replicating form (RF) DNAs in a rep dependent manner. The rescued AAV genomes are packaged into preformed protein capsids (icosahedral symmetry approximately 20 nm in diameter) and released as infectious virions that have packaged either + or - ss DNA genomes following cell lysis.

AAV possesses unique features that make it attractive as a vector for delivering foreign DNA to cells. Various groups have studied the potential use of AAV in the treatment of disease states. Progress towards establishing AAV as a transducing vector for gene therapy has been slow for a variety of reasons. While the ability of AAV to integrate in quiescent cells is important in terms of long term expression of a potential transducing gene, the tendency of the integrated provirus to preferentially target only specific sites in chromosome 19 reduces its usefulness.

10

15

35

However, an obstacle to the use of AAV for delivery of DNA is lack of highly efficient schemes for 20 encapsidation of recombinant genomes and production of infectious virions. See, R. Kotin, Hum. Gene Ther., 5:793-801 (1994)]. One such method involves transfecting the rAAV genome into host cells followed by co-infection with wild-type AAV and adenovirus. However, this method 25 leads to unacceptably high levels of wild-type AAV. Incubation of cells with rAAV in the absence of contaminating wild-type AAV or helper adenovirus is associated with little recombinant gene expression. the absence of rep, integration is inefficient and not 30 directed to chromosome 19.

A widely recognized means for manufacturing transducing AAV virions entails co-transfection with two different, yet complementing plasmids. One of these contains the therapeutic or reporter transgene sandwiched

WO 70/10000 PC1/US97/15691

3

between the two cis acting AAV ITRs. The AAV c mponents that are needed for rescue and subsequent packaging of progeny recombinant genomes are provided in trans by a second plasmid encoding the viral open reading frames for rep and cap proteins. Overexpression of Rep proteins have some inhibitory effects on adenovirus and cell growth [J. Li et al, J. Virol., 71:5236-5243 (1997)]. This toxicity has been the major source of difficulty in providing these genes in trans for the construction of a useful rAAV gene therapy vector.

There remains a need in the art for the methods permitting the efficient production of AAV and recombinant AAV viruses for use as vectors for somatic gene therapy.

15 Summary of the Invention

5

10

20

25

The present invention provides methods which permit efficient production of rAAV, which overcome the difficulties faced by the prior art. This method is particularly desirable for production of recombinant AAV vectors useful in gene therapy. The method involves providing a host cell with

- (a) a cre transgene, which permits splicing out of the rep and cap gene inhibitory sequences that when removed lead to activation of rep and cap;
- (b) the AAV rep and cap genes, 5' to these genes is a spacer which is flanked by lox sites;
 - (c) a minigene comprising a therapeutic transgene flanked by AAV inverse terminal repeats (ITRs); and
- 30 (d) adenovirus or herpesvirus helper functions.

Thus, in one aspect, the invention provides a method for producing a rAAV which comprises introducing into a host cell a first vector containing the cr

4

transgene under regulatory control of sequences which express the gene product thereof in vitro, a second vector containing a spacer flanked by lox sites, which is 5' to the rep and cap genes, and a third vector containing a therapeutic transgene flanked by AAV ITRs. These vectors may be plasmids or recombinant viruses. One of the vectors can be a recombinant adenovirus or herpesvirus, which can provide to the host cell the essential viral helper functions to produce a rAAV particle. However, if all the vectors are plasmids, the cell must also be infected with the desired helper virus. The cell is then cultured under conditions permitting production of the cre recombinase. The recombinase causes deletion of the spacer flanked by lox sites upstream of the rep/cap genes. Removal of the spacer allows the rep and cap genes to be expressed, which in turn allows packaging of the therapeutic transgene flanked by AAV ITRs. The rAAV is harvested thereafter.

5

10

15

30

In another aspect, the invention provides a

20 method wherein a host cell expressing cre recombinase is
co-transfected with a vector carrying a spacer flanked by
lox sites 5' to the rep and cap genes, and a vector
containing the therapeutic minigene above. With the
provision of helper functions by a means described

25 herein, the cell is then cultured under appropriate
conditions. When cultured, the cre recombinase causes
deletion of the spacer thus activating expression of
rep/cap, resulting in the rAAV as described above.

In yet another aspect, the present invention provides rAAV vectors produced by the methods of the invention.

Other aspects and advantages of the present invention are described further in the following detailed description of the preferred embodiments thereof.

10

30

Brief Description of the Drawings

Fig. 1 is a schematic illustration of a 1600 bp DNA fragment containing green fluorescent protein (GFP) cDNA, an intron and a polyadenylation (pA or polyA) signal useful as a spacer in a vector of the invention.

Fig. 2 is a schematic illustration of a 1000 bp DNA fragment containing the gene encoding neomycin resistance (neo^R) and a polyA useful as a spacer.

Fig. 3 illustrates a plasmid pG.CMV.nls.CRE, useful for transfection of human embryonic kidney 293 cells in the method of the invention.

Fig. 4 illustrates a plasmid pAd.P5.Sp.Rep/Cap, useful in the method of the invention.

Fig. 5 illustrates the construction of the recombinant adenovirus, Ad.CMV.NLS-CRE, useful in the method of the invention.

Fig. 6A illustrates the structure of the Ad.CAG.Sp.LacZ virus.

Fig. 6B provides the Southern blot analysis of genomic DNA isolated from 293 cells infected with the LacZ virus at a m.o.i. of 1 and cut with NotI. The 1000 bp ³²P-NEO spacer was used as a probe. After the digestion with NotI a 6200 bp restriction fragment (without cre-mediated recombination) and/or a 5200 bp restriction fragment (with cre-mediated recombination) can be detected.

Fig. 6C provides the Southern blot analysis of genomic DNA isolated from 293 cells infected with the LacZ virus at a m.o.i. of 10 and cut with NotI. The 1000 bp ³²P-NEO spacer was used as a probe. After the digestion with NotI a 6200 bp restriction fragment (without cre-mediated recombination) and/or a 5200 bp restriction fragment (with cre-mediated recombination) can be det cted.

6

Fig. 6D provides the Southern blot analysis genomic DNA isolated from 293 cells infected with the LacZ virus at a m.o.i. of 100 and cut with NotI. The 1000 bp ³²P-NEO spacer was used as a probe. After the digestion with NotI a 6200 bp restriction fragment (without cre-mediated recombination) and/or a 5200 bp restriction fragment (with cre-mediated recombination) can be detected.

Fig. 7 illustrates the structure of the 10 Ad.Tre.CMV.GFP.Rep/Cap virus.

Detailed Description of the Invention

5

15

20

25

30

The invention provides a method for rAAV production using the cre-lox system, which overcomes the difficulties previously experienced in providing efficient production systems for recombinant AAV. The method of this invention produces rAAV carrying therapeutic transgenes, which are particularly useful in gene therapy applications.

In summary, the method involves culturing a selected host cell which contains

- (a) a cre transgene
- (b) the AAV rep and cap genes, 5' to these genes is a spacer flanked by lox sites;
- (c) a minigene comprising a therapeutic transgene flanked by AAV ITRs; and
 - (d) adenovirus or herpesvirus helper functions.

The use of the term "vector" throughout this specification refers to either plasmid or viral vectors, which permit the desired components to be transferred to the host cell via transfection or infection. By the term "host cell" is meant any mammalian cell which is capable of functioning as an adenovirus packaging cell, i.e., expresses any adenovirus proteins essential to the

7

production of AAV, such as HEK 293 cells and other packaging cells. By the term "minigene" is meant the sequences providing a therapeutic transgene in operative association with regulatory sequences directing expression thereof in the host cell and flanked by AAV ITRs. The term "transgene" means a heterologous gene inserted into a vector.

10

15

20

25

30

Desirably, components (a), (b) and (c) may be carried on separate plasmid sequences, or carried as a transgene in a recombinant virus. Alternatively, the cre protein may be expressed by the selected host cell, therefor not requiring transfection by a vector. For each of these components, recombinant adenoviruses are currently preferred. However, using the information provided herein and known techniques, one of skill in the art could readily construct a different recombinant virus (i.e., non-adenovirus) or a plasmid vector which is capable of driving expression of the selected component in the host cell. For example, although less preferred because of their inability to infect non-dividing cells, vectors carrying the required elements of this system, e.g., the cre recombinase, may be readily constructed using e.g., retroviruses or baculoviruses. Therefore, this invention is not limited by the virus or plasmid selected for purposes of introducing the cre recombinase, rep/cap, or minigene into the host cell.

Desirably, however, at least one of the vectors is a recombinant virus which also supplies the helper functions (d) to the cell. Alternatively, the helper functions may be supplied by co-infecting the cell with a helper virus, i.e., adenovirus or herpesvirus, in a conventional manner. The resulting rAAV containing the minigene may be isolated therefrom.

A. The Cre Transgene

5

10

15

20

25

30

35

The cre protein is a recombinase isolated from bacteriophage P1 which recognizes a specific sequence of 34 bp (loxP). Recombination between two loxP sites (catalyzed by the cre protein) causes, in certain cases, the loss of sequences flanked by these sites [for a review see N. Kilby et al, Trends Genet., 9:413-421 (1993)]. The sequences of cre are provided in N. Sternberg et al, J. Mol. Biol., 187:197-212 (1986) and may alternatively be obtained from other commercial and academic sources. The expression of the cre protein in the cell is essential to the method of this invention.

Without wishing to be bound by theory, the inventors believe that the expression of cre recombinase in the host cell permits the deletion of the "spacer" DNA sequence residing between the promoter and rep/cap genes in the second vector. This deletion of rep and cap gene inhibitory sequences, allows expression and activation of the rep and cap proteins and resulting in the replication and packaging of the AAV genome.

The cre protein may be provided in two alternative ways. The gene encoding the protein may be a separate component transfected into the desired host cell. Alternatively, the host cell selected for expression of the rAAV may express the cre protein constitutively or under an inducible promoter.

B. Triple Infection/Transfection Method
In one embodiment of the present
invention, the method employs three vectors, i.e.,
recombinant viruses or plasmids, to infect/transfect a
selected host cell for production of a rAAV. A first
vector comprises the cre transgene operatively linked to
expression control sequences. A second vector comprises
the AAV rep and cap genes downstream of a spacer sequence
which is flanked by lox sites and which itself is

9

downstream of xpression control sequences. A third vector comprises the therapeutic minigene, i.e., a transgene flanked by AAV ITRs and regulatory sequences. Suitable techniques for introducing these vectors into the host cell are discussed below and are known to those of skill in the art. When all vectors are present in a cell and the cell is provided with helper functions, the rAAV is efficiently produced.

1. First Vector

5

25

30

35

10 As stated above, in a preferred embodiment, a first vector is a recombinant replicationdefective adenovirus containing the cre transgene operatively linked to expression control sequences in the site of adenovirus E1 deletion, e.g., Ad.CMV.NLS-CRE. See Fig. 5. Preferably, as in the examples below, the 15 cre gene is operably linked to a suitable nuclear localization signal (NLS). A suitable NLS is a short sequence, i.e., in the range of about 21 bp, and may be readily synthesized using conventional techniques, or engineered onto the vector by including the NLS sequences 20 in a PCR primer. As described in detail in Example 1 below, the cre gene and a nuclear localization signal (NLS) are obtained from a previously described plasmid.

Desirably, the cre gene is under the control of a cytomegalovirus (CMV) immediate early promoter/enhancer [see, e.g., Boshart et al, Cell, 41:521-530 (1985)]. However, other suitable promoters may be readily selected by one of skill in the art. Useful promoters may be constitutive promoters or regulated (inducible) promoters, which will enable control of the amount of the cre gene product to be expressed. For example, another suitable promoter includes, without limitation, the Rous sarcoma virus LTR promoter/enhancer. Still other promoter/enhancer sequences may be selected by one of skill in the art.

In addition, the recombinant virus also includes conventional regulatory elements necessary to drive expression of the cre recombinase in a cell transfected with the vector. Such regulatory elements are known to those of skill in the art, including without limitation, polyA sequences, origins of replication, etc.

2. Second Vector

5

10

20

25

30

Another, "second", vector useful in this embodiment of the method is described in Example 2 as Ad.sp.Rep/Cap. It contains the AAV rep and cap genes downstream of a spacer sequence which is flanked by lox sites and which itself is downstream of expression control sequences.

The AAV rep and cap sequences are

obtained by conventional means. Preferably, the promoter
is the AAV P5 promoter. However, one of skill in the art
may readily substitute other suitable promoters.

Examples of such promoters are discussed above in
connection with the first vector.

The spacer is an intervening DNA sequence (STOP) between the promoter and the gene. It is flanked by *loxP* sites and contains multiple translational start and stop codons. The spacer is designed to permit use of a "Recombination-Activated Gene Expression (RAGE)" strategy [B. Sauer, Methods Enzymol., 225:890-900 (1993)]. Such a strategy controls the expression of a given gene (in this case, rep/cap). The spacer must be excised by expression of the cre protein of the first vector and its interaction with the lox sequences to express rep/cap.

Currently, there are two particularly preferred spacers. These spacers include a 1600 bp DNA fragment containing the GFP cDNA, an intron and a polyadenylation signal (Fig. 1) which was derived from a

11

commercial plasmid (Clontech) as described below. A second preferred spacer is a 1300 bp fragment containing translational start and stop sequences obtained as a 1.3 kbp ScaI-SmaI fragment of pBS64 as described [M. Anton and F. Graham, J. Virol., 69:4600-4606 (1995)]. Another desirable spacer is a 1000 bp fragment containing the neomycin resistance coding sequence and a polyadenylation signal [Y. Kanegae et al, Nucl. Acids Res., 23:3816-3821 (1995)] (see, Fig. 2).

5

10

15

20

25

30

Using the information provided herein, one of skill in the art may select and design other suitable spacers, taking into consideration such factors as length, the presence of at least one set of translational start and stop signals, and optionally, the presence of polyadenylation sites. These spacers may contain genes, which typically incorporate the latter two elements (i.e., the start/stop and polyA sites). Desirably, to reduce the possibility of recombination, the spacer is less than 2 kbp in length. However, the invention is not so limited.

As stated above, the spacer is flanked by loxP sites, which are recognized by the cre protein and participate in the deletion of the spacer. The sequences of loxP are publicly available from a variety of sources [R. H. Hoess and K. Abremski, Proc. Natl. Acad. Sci., 81: 1026-1029 (1984)]. Upon selection of a suitable spacer and making use of known techniques, one can readily engineer loxP sites onto the ends of the spacer sequence for use in the method of the invention.

In addition, the recombinant virus which carries the rep/cap genes and the spacer, also includes conventional regulatory elements necessary to drive expression of rep and cap in a cell transfected with the recombinant virus, following excision of the

12

loxP-flank d spacer by the cre recombinas . Such
regulatory elements are known to those of skill in the
art.

3. Third Vector

5

10

which is defined as a sequence which comprises a suitable transgene, a promoter, and other regulatory elements necessary for expression of the transgene, all flanked by AAV ITRs. In the examples below, where the third vector carries the LacZ gene, the presence of rAAV is detected by assays for beta-galactosidase activity. However, desirably, the third vector carries a therapeutic gene which can be delivered to an animal via the rAAV produced by this method.

The AAV sequences employed are 15 preferably the cis-acting 5' and 3' inverted terminal repeat (ITR) sequences [See, e.g., B. J. Carter, in "Handbook of Parvoviruses", ed., P. Tijsser, CRC Press, The ITR sequences are about 143 bp pp.155-168 (1990)]. in length. Preferably, substantially the entire 20 sequences encoding the ITRs are used in the vectors, although some degree of minor modification of these sequences is expected to be permissible for this use. The ability to modify these ITR sequences is within the 25 skill of the art. [See, e.g., texts such as Sambrook et al, "Molecular Cloning. A Laboratory Manual.", 2d edit., Cold Spring Harbor Laboratory, New York (1989); Carter et al, cited above; and K. Fisher et al., J. Virol., 70:520-532 (1996)].

from any known AAV, including presently identified human AAV types. Similarly, AAVs known to infect other animals may also be employed in the vector constructs of this invention. The selection of the AAV is not anticipated

13

to limit the following invention. A vari ty of AAV strains, types 1-4, are available from the American Type Culture Collection or available by request from a variety of commercial and institutional sources. In the following exemplary embodiment an AAV-2 is used for convenience.

5

10

15

20

The 5' and 3' AAV ITR sequences flank the selected transgene sequence and associated regulatory elements. The transgene sequence of the vector is a nucleic acid sequence heterologous to the AAV sequence, which encodes a polypeptide or protein of interest. composition of the transgene sequence will depend upon the use to which the resulting vector will be put. For example, one type of transgene sequence includes a reporter sequence, which upon expression produces a detectable signal. Such reporter sequences include without limitation an E. coli beta-galactosidase (LacZ) cDNA, an alkaline phosphatase gene and a green fluorescent protein gene. These sequences, when associated with regulatory elements which drive their expression, provide signals detectable by conventional means, e.g., ultraviolet wavelength absorbance, visible color change, etc.

sequence is a therapeutic gene which expresses a desired gene product in a host cell. These therapeutic nucleic acid sequences typically encode products for administration and expression in a patient in vivo or ex vivo to replace or correct an inherited or non-inherited genetic defect or treat an epigenetic disorder or disease. The selection of the transgene sequence is not a limitation of this invention.

In addition to the major elements identified above, the minigene also includes conventional regulatory elements necessary to drive expression of the

10

15

20

25

30

transgene in a cell transfect d with this vector. Thus, the minigene c mpris s a selected promoter which is linked to the transgene and located within the transgene between the AAV ITR sequences.

Selection of the promoter used to drive expression of the transgene is a routine matter and is not a limitation of the vector. Useful promoters include those which are discussed above in connection with the first vector component.

The minigene also desirably contains heterologous nucleic acid sequences including sequences providing signals required for efficient polyadenylation of the transcript and introns with functional splice donor and acceptor sites. A common poly-A sequence which is employed in the exemplary vectors of this invention is that derived from the papovavirus SV-40. The poly-A sequence generally is inserted following the transgene sequences and before the 3' AAV ITR sequence. A common intron sequence is also derived from SV-40, and is referred to as the SV-40 T intron sequence. A minigene of the present invention may also contain such an intron, desirably located between the promoter/enhancer sequence and the transgene. Selection of these and other common vector elements are conventional and many such sequences are available [see, e.g., Sambrook et al, and references cited therein].

The rAAV vector containing the minigene may be carried on a plasmid backbone and used to transfect a selected host cell or may be flanked by viral sequences (e.g., adenoviral sequences) which permit it to infect the selected host cell. Suitable Ad/AAV recombinant viruses may be produced in accordance with known techniques. See, e.g., International patent applications W096/13598, published May 9, 1996;

15

W095/23867 published Sept. 8, 1995, and W0 95/06743 published March 9, 1995, which are incorporated by reference herein.

5

10

25

C. Host Cell/Double Infection or Transfection
System

In another embodiment of the method of this invention, a packaging cell line is constructed which expresses the cre recombinase. According to this aspect of the method, this cell line expressing the cre recombinase can be substituted for the vector or plasmid bearing the cre gene, as described above. Thus, only the second and third vectors described above are subsequently introduced into the cell.

line has been generated using the vector illustrated in Fig. 3. Generation of this cell line is described in detail in Example 4 below. However, the present invention is not limited to these constructs. Given the information provided herein, one of skill in the art can readily generate another plasmid containing a suitable selectable marker (e.g., neo^R). Such a plasmid may then be used for the generation of a cre recombinase-expressing cell line according to the invention.

Having obtained such a cre-expressing cell line, this cell line can be infected (or transfected) with the vector containing the rep/cap genes and the vector containing the minigene described above.

D. Production of Vectors and rAAV

Assembly of the selected DNA sequences

contained within each of the vectors described above utilize conventional techniques. Such techniques include cDNA cloning such as those described in texts [Sambrook et al, cited above], use of overlapping oligonucleotide sequences of the adenovirus, AAV genome combined with

30

polymerase chain reaction, and any other suitable m thods which provid the desir d nucleotid s quenc.

Whether using the three vector system, or the cre-expressing host cell and two vectors, 5 introduction of the vectors into the host cell is accomplished using known techniques. Where appropriate, standard transfection and co-transfection techniques are employed, e.g., CaPO, transfection techniques using the complementation human embryonic kidney (HEK) 293 cell line (a human kidney cell line containing a functional 10 adenovirus Ela gene which provides a transacting Ela protein). Other conventional methods employed in this invention include homologous recombination of the viral genomes, plaquing of viruses in agar overlay, methods of 15 measuring signal generation, and the like.

Following infection/transfection, the host cell is then cultured under standard conditions, to enable production of the rAAV. See, e.g., F. L. Graham and L. Prevec, Methods Mol. Biol., 7:109-128 (1991).

Desirably, once the rAAV is identified by conventional means, it may be recovered using standard techniques and purified.

The following examples illustrate the preferred methods of the invention. These examples are illustrative only and are not intended to limit the scope of the invention.

Example 1 - Construction of Ad. CMV. NLS-CRE

The construction of a recombinant adenovirus containing a nuclear localization signal and the cre gene under control of a cytomegalovirus promoter is described below, with reference to Fig. 5.

The nls-Cre cDNA was isolated from the plasmid pexCANCRE [Y. Kanegae et al, <u>Nucl. Acids Res.</u>, 23:3816-3821 (1995)] by digestion with SfciI and PacI and then

30

blunt ended with Klenow and T4 DNA polymerase. The NLS-Cre fragment was then cloned into the EcoRV site of the plasmid pAd.CMV.Link (a plasmid containing the human Ad5 sequences, map units 0 to 16, which is deleted of Ela and Elb as described in X. Ye et al, J. Biol. Chem., 271:3639-3646 (1996). The orientation and presence of the nuclear localization signal in the resulting plasmid pAd.CMV.NLS-CRE was verified by sequencing.

To produce the recombinant adenovirus carrying the cre transgene, the pAd.CMV.NLS-CRE recombinant vector 10 was co-transfected with the Ad dl327 backbone into 293 Ten days later, 15 plaques were picked up and 5 of them were expanded on 293 cells. Viruses were screened for their recombinase activity by assessing their ability to remove a spacer positioned between the 15 CAG promoter (beta-actin) and the bacterial LacZ coding sequence using an adenoviral construct described in Y. Kanegae et al, Nucl. Acids Res., 23:3816-3821 (1995). Two viruses tested positive for beta-galactosidase activity, indicating cre recombinase activity. 20 desired, these recombinant viruses may be purified by two rounds of plaque purification.

Example 2 - Construction of Ad.sp.Rep/Cap

An exemplary recombinant adenovirus containing the AAV rep and cap genes may be produced as follows.

An AAV P5 promoter was obtained from the 121 bp XbaI-BamHI fragment from plasmid psub201, which contains the entire AAV2 genome [R.J. Samulski et al, <u>J. Virol.</u>, 61:3096-3101 (1987)] by PCR using the following primer pairs:

XbaI ITR rightward: SEQ ID NO:2:
GGCCTCTAGATGGAGGGGTGGAGTCGTGAC;
Ramps rightward: SEO ID NO:3:

BamP5 rightward: SEQ ID NO:3: GGCCGGATCCAACGCGCAGCCGCCATGCCG;

18

Bam P5 leftward: SEQ ID NO:4: GGCCGGATCCCAAACCTCCCGCTTCAAAAT;

SacI leftward: SEQ ID NO:5: GGCCGAGCTCAGGCTGGGTTTTGGGGAGCA.

5

10

15

20

25

30

A 5' portion of the Rep/Cap gene was similarly excised via PCR from a BamI-SacI fragment (504 bp) obtained from psub201. The BamHI PCR primer creates a unique site between the rep mRNA and the first rep ATG.

The P5 promoter and the Rep/Cap gene fragment were subcloned into the XbaI-SacI sites of the pSP72 vector (Promega), resulting in P5.Rep/Cap. The spacer DNA, a 1300 bp fragment flanked by loxP sites, was obtained from the plasmid pMA19 [M. Anton and F. Graham, J. Virol., 69:4600-4606 (1995)] following digestion with BamHI. This spacer DNA was cloned into the unique BamHI site of the P5.Rep/Cap construct, resulting in the P5.Spacer.Rep/Cap construct.

The complete fragment containing the P5 promoter, the spacer and the rep/cap genes was obtained by subcloning the 3' portion of the Rep/Cap gene (SacI/blunt ended fragment, 3680 bp) into the SacI-EcoRV sites of the P5.Spacer.Rep/Cap plasmid. The 3' portion of the Rep/cap gene was isolated from the SSV9 plasmid (which contains a complete wild-type AAV genome) as a SacI-blunt ended fragment. This involved digesting SSV9 with XbaI, filling the XbaI site with Klenow and liberating the fragment by digesting with SacI.

The complete fragment containing the P5 promoter, the spacer and the rep/cap sequence was subcloned into the BglII site of the pAd.link vector. This was accomplished by adding a BglII linker at the 5' end of the P5.Spacer.Rep/Cap plasmid construct and using the BglII site located at the 3' end of the multiple cloning site of pSP72.

WU 9810080 PUT/US97/15691

The resulting plasmid (11250 bp) contains Ad5 map units (mu) 0-1, the P5 promoter, the spacer s quence flanked by loxP sites, rep/cap, and Ad5 mu 9-16. This plasmid is termed pAd.P5.spacer.Rep/Cap [Fig. 4].

5

10

15

20

25

30

To produce recombinant adenovirus capable of expressing rep and cap, pAd.P5.spacer.Rep/Cap was first used to transform a cre-expressing bacterial strain E. coli strain BNN132 (ATCC Accession No. 47059) in order to determine whether the spacer could be removed after recombination between the loxP sites (catalyzed by the cre recombinase). Analysis on agarose gels of the plasmid DNA isolated from several transformed colonies showed that, indeed, most of the constructs analyzed lost the spacer following transformation (data not shown).

The plasmid P5.spacer.Rep/Cap was also cotransfected with the Ad dl327 backbone in HEK 293 cells. Ten days later, 20 plaques were picked up and expanded. The structure of the viruses was analyzed by Southern blot using the complete AAV genome and the 1300 bp DNA spacer as probes. One plaque (P3) showed the expected band pattern after digestion with the restriction enzyme BamHI (data not shown).

Similar constructs may be made using other suitable spacers. For example, a 1600 bp spacer was derived from plasmid phGFP-S65T plasmid (Clontech) which contains the humanized GFP gene. phGFP-S65T was cut with the restriction enzymes HindIII and BamHI. After adding a BglII linker at the 5' end (BglII is compatible with BamHI), the 1.6 kb fragment was subcloned into the BamHI site of the flox vector [H. Gu et al, Science, 265:103-106 (1994)] in order to add a loxP site on each side of the fragment. The GFP DNA fragment flanked by loxP sites was subsequently cut with PvuI and SmaI and subcloned into the EcoRV site of the Bluescript II cloning vector

10

15

20

(Stratagene). The resulting GFP spacer can be used to construct a P5.spacer.Rep/cap plasmid or adenovirus as described above.

Example 3 - Production of rAAV

The supernatant from several plaques (containing viruses) obtained from the study described in Example 2 was tested for the ability to produce AAV in a functional assay involving the adenovirus encoding the cre protein constructed as described in Example 1 above and pAV.CMVLacZ.

The plasmid AV.CMVLacZ is a rAAV cassette in which rep and cap genes are replaced with a minigene expressing B-galactosidase from a CMV promoter. The linear arrangement of AV.CMVLacZ includes:

- (a) the 5' AAV ITR (bp 1-173) obtained by PCR using pAV2 [C. A. Laughlin et al, <u>Gene</u>, <u>23</u>: 65-73 (1983)] as template [nucleotide numbers 365-538 of SEQ ID NO:1];
- (b) a CMV immediate early enhancer/promoter [Boshart et al, Cell, 41:521-530 (1985); nucleotide numbers 563-1157 of SEQ ID NO:1],
- (c) an SV40 intron (nucleotide numbers 1178-1179 of SEQ ID NO:1),
- (d) E. coli beta-galactosidase cDNA (nucleotide numbers 1356 - 4827 of SEQ ID NO:1),
- 25 (e) an SV40 polyadenylation signal (a 237 BamHI-BclI restriction fragment containing the cleavage/poly-A signals from both the early and late transcription units; nucleotide numbers 4839 5037 of SEQ ID NO:1) and
- 30 (f) 3'AAV ITR, obtained from pAV2 as a SnaBI-BglII fragment (nucleotide numbers 5053 5221 of SEQ ID NO:1).

The functional assay was performed by infecting 293 cells with the cre virus and the Rep/Cap virus

21

(multiplicity of infection (MOI) 10) followed by a transfection 2 hours later with 5 μ g pAV.CMVLacZ. Forty-eight hours later, cells were harvested and freeze-thawed. One-fifth of the supernatant (containing rAAV) was used to infect 293 cells. Twenty-four hours later an X-gal assay was performed.

Viruses from plaque #3 yielded positive for beta-galactosidase transduction in this assay.

Supernatant from plaque #3 was used in a second round of purification (plaque amplification). Twenty plaques were picked up and expanded.

Example 4 - Production of Cre Expressing Cell Line

5

10

15

20

25

30

A plasmid vector, pG.CMV.nls.cre was constructed as follows for use in transfecting 293 cells. The nls-Cre cDNA was isolated from the plasmid pexCANCRE (Kanegae, cited above) as described in Example 1 above. The nls-Cre fragment was then subcloned into the XbaI sites of vector pG downstream of a CMV promoter. This plasmid vector is illustrated in Figure 3 and contains a human growth hormone (hGH) termination sequence, an SV40 ori signal, a neomycin resistance marker, an SV40 polyadenylation site, an ampicillin marker, on a backbone of pUC19.

This plasmid was transfected into 293 cells using conventional techniques. Cells were selected in the presence of G-418 for neomycin resistance. Cells were identified by infecting them at different MOI (1 to 100) with Ad.CAG.Sp.LacZ, an adenovirus containing the bacterial LacZ coding sequence separated from its beta-actin (CAG) promoter by a neomycin spacer DNA flanked by two loxP sites followed by the bacterial LacZ gene. Cells were selected on the basis of their ability to remove the spacer fragment inducing the expression of the LacZ gene. After X-gal staining, six cell lines were

22

found to be positive. DNA from these inf cted cells was isolated and analyzed by Southern blot using the spacer DNA (NEO) as a probe. Results shown in Fig. 6A, with reference to Table 1, and Figs. 6B - 6D indicate that cell line #2 can remove the DNA spacer with much more efficacy than the other 293/cre cell lines analyzed.

Table 1

10

5

NEO Probe					
Without Recombination	With Recombination				
6200	6200 5200				

15

20

25

30

35

Example 5 - Generation of the Ad.GFP Rep/Cap

As described in Example 2 for the construction of the Ad.Sp.Rep/Cap virus, the link plasmid containing the P5 promoter, the GFP spacer flanked by two loxP sites and the Rep and Cap coding sequences was co-transfected with the Ad d1327 backbone into HEK 293 cells. Ten days later, 20 plaques were picked up and expanded. this expansion, the monolayer of HEK 293 cells were screened for the expression of GFP by microscopic analysis using a mercury lamp with a 470-490 nm band-pass excitation filter (Nikon). One of the monolayers (from plaque #13) showed a region positive for the expression of GFP. This region was further expanded and purified by two other rounds of plaque purification. The presence of the Ad.GFP.Rep/Cap virus was monitored by the expression of GFP, as described, and/or by the expression of the Rep and Cap proteins by Western blot analysis using specific monoclonal antibodies (American Research Products, Inc.). One cell lysate (from one purified plaque) containing the Ad.GFP rep/cap was used in order to infect 293 cells

10

15

20

25

30

doxycycline (DOX).

(adenovirus preparation with 40 x 150 mm dishes of HEK 293 cells). A total of 6.86×10^{13} particles/ml were obtained after purification. This virus is currently being tested for the production of rAAV, as described in Example 3.

Example 6 - Construction of the Ad.TRE.CMV.GFP.Rep/Cap Fig. 7 shows the final structure of the Ad.TRE.CMV.Rep/Cap virus. The AAV P5 promoter was replaced by the tetracycline (Tet) inducible promoter (Clontech). This promoter contains the tetracycline responsive elements (TRE) followed by the CMV minimal promoter without the CMV enhancer. This promoter is inducible in the presence of the antibiotic doxycycline (Sigma) in the 293/Tet-On cell line (Clontech) which contains a stable gene expressing the rTetR (reverse Tet repressor) fused to the GP16 transcriptional activation domain. The objective here is to construct a double inducible expression system in order to limit the expression of the cytotoxic Rep gene products. In order to fully induce the expression of the Rep and Cap genes, the virus must be in the presence of 1- the cre recombinase (in order to delete the GFP spacer as

The link plasmid containing the construct described above was used to transfect HEK 293 cells in the presence or the absence of DOX and/or the cre recombinase (from the adenovirus expressing nls-cre). Proteins from cell homogenates were analyzed by Western blot using the Rep antibodies. Rep proteins are fully induced only in the presence of DOX and the cre recombinase.

described previously) and 2- the Tet-On inducible factor

In ord r to construct pAd.TRE.CMV.link.1, the pTRE plasmid (Clontech) was cut with the restriction

10

15

20

endonucleases Xho and EcoR1 to isolate the TRE and the minimal CMV promoter. The Xho and EcoR1 sites were filled with Klenow and the 448 bp fragment was inserted into the EcoRV site of the pAdlink.1 plasmid. The GFP.Rep/Cap fragment was subsequently cut with ClaI and BglIII and inserted into the pAd.TRE.CMV.link.1 cut with ClaI and BamHI.

This link recombinant plasmid was cotransfected with the Ad dl327 backbone in HEK 293 cells. Ten days later, 20 plaques were picked up and expanded. These plaques are currently being analyzed for the expression of GFP and the Rep and Cap proteins. Two adenoviruses expressing large amounts of rep proteins were identified. These viruses are currently being purified and studied.

Numerous modifications and variations of the present invention are included in the above-identified specification and are expected to be obvious to one of skill in the art. Such modifications and alterations to the processes of the present invention are believed to be encompassed in the scope of the claims appended hereto.

25

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Trustees of the University of Pennsylvania Wilson, James M.
 Phaneuf, Daniel
 - (ii) TITLE OF INVENTION: Methods using Cre-Lox for Production of Recombinant Adeno-Associated Viruses
 - (iii) NUMBER OF SEQUENCES: 5
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Howson and Howson
 - (B) STREET: Spring House Corporate Cntr, PO Box 457
 - (C) CITY: Spring House
 - (D) STATE: Pennsylvania
 - (E) COUNTRY: USA
 - (F) ZIP: 19477
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: WO
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 60/025,323
 - (B) FILING DATE: 06-SEP-1996
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Kodroff, Cathy A.
 - (B) REGISTRATION NUMBER: 33,980
 - (C) REPERENCE/DOCKET NUMBER: GNVPN.024CIP1PCT
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 215-540-9200
 - (B) TELEFAX: 215-540-5818
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10398 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GAATTCGCTA GCATCATCAA TAATATACCT TATTTTGGAT TGAAGCCAAT ATGATAATGA 60

GGGGGTGGAG TTTGTGACGT GGCGCGGGC GTGGGAACGG GGCGGTGAC GTAGTAGTGT 120

GCGGAAGTG	TGATGTTGCA	AGTGTGGCGG	AACACATGTA	AGCGACGGAT	GTGGCAAAAG	180
rgacgtttt t	GGTGTGCGCC	GGTGTACACA	GGAAGTGACA	ATTTTCGCGC	GGTTTTAGGC	240
GGATGTTGTA	GTAAATTTGG	GCGTAACCGA	GTAAGATTTG	GCCATTTTCG	CGGGAAAACT	300
GAATAAGAGG	AAGTGAAATC	TGAATAATTT	TGTGTTACTC	ATAGCGCGTA	ATATTTGTCT	360
AGGGAGATCT	GCTGCGCGCT	CGCTCGCTCA	CTGAGGCCGC	CCGGGCAAAG	CCCGGGCGTC	420
GGCGACCTI	TGGTCGCCCG	GCCTCAGTGA	GCGAGCGAGC	GCGCAGAGAG	GGAGTGGCCA	480
ACTCCATCAC	TAGGGGTTCC	TTGTAGTTAA	TGATTAACCC	GCCATGCTAC	TTATCTACAA	540
rtcgagcttg	CATGCCTGCA	GGTCGTTACA	TAACTTACGG	TAAATGGCCC	GCCTGGCTGA	600
CCGCCCAACG	ACCCCCCCC	ATTGACGTCA	ATAATGACGT	ATGTTCCCAT	AGTAACGCCA	660
ATAGGGACTI	TCCATTGACG	TCAATGGGTG	GAGTATTTAC	GGTAAACTGC	CCACTTGGCA	720
GTACATCAAG	TGTATCATAT	GCCAAGTACG	CCCCCTATTG	ACGTCAATGA	CGGTAAATGG	780
CCCGCCTGGC	ATTATGCCCA	GTACATGACC	TTATGGGACT	TTCCTACTTG	GCAGTACATC	840
TACGTATTAG	TCATCGCTAT	TACCATGGTG	ATGCGGTTTT	GGCAGTACAT	CAATGGGCGT	900
GGATAGCGG1	TTGACTCACG	GGGATTTCCA	AGTCTCCACC	CCATTGACGT	CAATGGGAGT	960
TTGTTTTGG	CACCAAAATCA	ACGGGACTTT	CCAAAATGTC	GTAACAACTC	CGCCCCATTG	1020
ACGCAAA TGG	GCGGTAGGCG	TGTACGGTGG	GAGGTCTATA	TAAGCAGAGC	TCGTTTAGTG	1080
aaccgtcag <i>i</i>	A TCGCCTGGAG	ACGCCATCCA	CGCTGTTTTG	ACCTCCATAG	AAGACACCGG	1140
GACCGATCC	A GCCTCCGGAC	TCTAGAGGAT	CCGGTACTCG	AGGAACTGAA	AAACCAGAAA	1200
GTTAACTGG1	r aagtttagtc	TTTTTGTCTT	TTATTTCAGG	TCCCGGATCC	GGTGGTGGTG	1260
CAAATCAAA	AACTGCTCCT	CAGTGGATGT	TGCCTTTACT	TCTAGGCCTG	TACGGAAGTG	1320
TTACTTCTG	C TCTAAAAGCT	GCGGAATTGT	ACCCGCGGCC	GCAATTCCCG	GGGATCGAAA	1380
GAGCCTGCT	A AAGCAAAAA	GAAGTCACCA	TGTCGTTTAC	TTTGACCAAC	AAGAACGTGA	1440
TTTTCGTTG	C CGGTCTGGGA	GGCATTGGTC	TGGACACCAG	CAAGGAGCTG	CTCAAGCGCG	1500
ATCCCGTCG'	r tttacaacgt	CGTGACTGGG	AAAACCCTGG	CGTTACCCAA	CTTAATCGCC	1560
TTGCAGCAC	A TCCCCCTTTC	GCCAGCTGGC	GTAATAGCGA	AGAGGCCCGC	ACCGATCGCC	1620
CTTCCCAAC	A GTTGCGCAGC	CTGAATGGCG	AATGGCGCTT	TGCCTGGTTT	CCGGCACCAG	1680
AAGCGGTGC	C GGAAAGCTGG	CTGGAGTGCG	ATCTTCCTGA	GGCCGATACT	GTCGTCGTCC	1740
CCTCAAACT	G GCAGATGCAC	GGTTACGATG	CGCCCATCTA	CACCAACGTA	ACCTATCCCA	1800
TTACGGTCA	A TCCGCCGTTT	GTTCCCACGG	AGAATCCGAC	GGGTTGTTAC	TCGCTCACAT	1860
TTAATGTTG	A TGAAAGCTGG	CTACAGGAAG	GCCAGACGCG	AATTATTTT	GATGGCGTTA	1920
ACTCGGCGT	T TCATCTGTG	G TGCAACGGG	GCTGGGTCGG	TTACGGCCAG	GACAGTCGTT	1980

TGCCGTCTGA ATTTGACCTG AGCGCATTTT TACGCGCCGG AGAAAACCGC CTCGCGGTGA	2040
TGGTGCTGCG TTGGAGTGAC GGCAGTTATC TGGAAGATCA GGATATGTGG CGGATGAGCG	2100
GCATTTTCCG TGACGTCTCG TTGCTGCATA AACCGACTAC ACAAATCAGC GATTTCCATG	2160
TTGCCACTCG CTTTAATGAT GATTTCAGCC GCGCTGTACT GGAGGCTGAA GTTCAGATGT	2220
GCGGCGAGTT GCGTGACTAC CTACGGGTAA CAGTTTCTTT ATGGCAGGGT GAAACGCAGG	2280
TCGCCAGCGG CACCGCGCCT TTCGGCGGTG AAATTATCGA TGAGCGTGGT GGTTATGCCG	
ATCGCGTCAC ACTACGTCTG AACGTCGAAA ACCCGAAACT GTGGAGCGCC GAAATCCCGA	2340
ATCTCTATCG TGCGGTGGTT GAACTGCACA CCGCCGACGG CACGCTGATT GAAGCAGAAG	2400
CCTGCGATGT CGGTTTCCGC GAGGTGCGGA TTGAAAATGG TCTGCTGCTG CTGAACGGCA	2460
AGCCGTTGCT GATTCGAGGC GTTAACCGTC ACGAGCATCA TCCTCTGCAT GGTCAGGTCA	2520
TGGATGAGCA GACGATGGTG CAGGATATCC TGCTGATGAA GCAGAACAAC TTTAACGCCG	2580
TGCGCTGTTC GCATTATCCG AACCATCCGC TGTGGTACAC GCTGTGCGAC CGCTACGGCC	2640
TGTATGTGGT GGATGAAGCC AATATTGAAA CCCACGGCAT GGTGCCAATG AATCGTCTGA	2700
CCGATGATCC GCGCTGGCTA CCGGCGATGA GCGAACGCGT AACGCGAATG GTGCAGCGCG	2760
ATCGTAATCA CCCGAGTGTG ATCATCTGGT CGCTGGGGAA TGAATCAGGC CACGGCGCTA	2820
ATCACGACGC GCTGTATCGC TGGATCAAAT CTGTCGATCC TTCCCGCCCG GTGCAGTATG	2880
AAGGCGGCGG AGCCGACACC ACGGCCACCG ATATTATTTG CCCGATGTAC GCGCGCGTGG	2940
ATGAAGACCA GCCCTTCCCG GCTGTGCCGA AATGGTCCAT CAAAAAATGG CTTTCGCTAC	3000
CTGGAGAGAC GCGCCCGCTG ATCCTTTGCG AATACGCCCA CGCGATGGGT AACAGTCTTG	3060
GCGGTTTCGC TAAATACTGG CAGGCGTTTC GTCAGTATCC CCGTTTACAG GGCGGCTTCG	3120
	3180
TCTGGGACTG GGTGGATCAG TCGCTGATTA AATATGATGA AAACGGCAAC CCGTGGTCGG	3240
CTTACGGCGG TGATTTTGGC GATACGCCGA ACGATCGCCA GTTCTGTATG AACGGTCTGG	3300
TCTTTGCCGA CCGCACGCCG CATCCAGCGC TGACGGAAGC AAAACACCAG CAGCAGTTTT	3360
TCCAGTTCCG TTTATCCGGG CAAACCATCG AAGTGACCAG CGAATACCTG TTCCGTCATA	3420
GCGATAACGA GCTCCTGCAC TGGATGGTGG CGCTGGATGG TAAGCCGCTG GCAAGCGGTG	3480
AAGTGCCTCT GGATGTCGCT CCACAAGGTA AACAGTTGAT TGAACTGCCT GAACTACCGC	3540
AGCCGGAGAG CGCCGGGCAA CTCTGGCTCA CAGTACGCGT AGTGCAACCG AACGCGACCG	3600
CATGGTCAGA AGCCGGGCAC ATCAGCGCCT GGCAGCAGTG GCGTCTGGCG GAAAACCTCA	3660
GTGTGACGCT CCCCGCCGCG TCCCACGCCA TCCCGCATCT GACCACCAGC GAAATGGATT	3720
TTTGCATCGA GCTGGGTAAT AAGCGTTGGC AATTTAACCG CCAGTCAGGC TTTCTTTCAC	3780
AGATGTGGAT TGGCGATAAA AAACAACTGC TGACGCCGCT GCGCGATCAG TTCACCCGTG	3840

CACCGCTGGA	TAACGACATT	GGCGTAAGTG	AAGCGACCCG	CATTGACCCT	AACGCCTGGG	3900
TCGAACGCTG	GAAGGCGGCG	GGCCATTACC	AGGCCGAAGC	AGCGTTGTTG	CAGTGCACGG	3960
CAGATACACT	TGCTGATGCG	GTGCTGATTA	CGACCGCTCA	CCCCTCCCAC	CATCAGGGGA	4020
AAACCTTATT	TATCAGCCGG	AAAACCTACC	GGATTGATGG	TAGTGGTCAA	ATGGCGATTA	4080
CCGTTGATGT	TGAAGTGGCG	AGCGATACAC	CGCATCCGGC	GCGGATTGGC	CTGAACTGCC	4140
AGCTGGCGCA	GGTAGCAGAG	CGGGTAAACT	GGCTCGGATT	AGGGCCGCAA	GAAAACTATC	4200
CCGACCGCCT	TACTGCCGCC	TGTTTTGACC	GCTGGGATCT	GCCATTGTCA	GACATGTATA	4260
CCCCGTACGT	CTTCCCGAGC	GAAAACGGTC	TGCGCTGCGG	GACGCGCGAA	TTGAATTATG	4320
GCCCACACCA	GTGGCGCGGC	GACTTCCAGT	TCAACATCAG	CCGCTACAGT	CAACAGCAAC	4380
TGATGGAAAC	CAGCCATCGC	CATCTGCTGC	ACGCGGAAGA	AGGCACATGG	CTGAATATCG	4440
ACGGTTTCCA	TATGGGGATT	GGTGGCGACG	ACTCCTGGAG	CCCGTCAGTA	TCGGCGGAAT	4500
TACAGCTGAG	CGCCGGTCGC	TACCATTACC	AGTTGGTCTG	GTGTCAAAAA	TAATAATAAC	4560
CGGGCAGGCC	ATGTCTGCCC	GTATTTCGCG	TAAGGAAATC	CATTATGTAC	TATTTAAAAA	4620
ACACAAACTT	TTGGATGTTC	GGTTTATTCT	TTTTCTTTTA	CTTTTTTATC	ATGGGAGCCT	4680
ACTTCCCGTT	TTTCCCGATT	TGGCTACATG	ACATCAACCA	TATCAGCAAA	AGTGATACGG	4740
GTATTATTTT	TGCCGCTATT	TCTCTGTTCT	CGCTATTATT	CCAACCGCTG	TTTGGTCTGC	4800
TTTCTGACAA	ACTCGGCCTC	GACTCTAGGC	GCCCCCGGG	ATCCAGACAT	GATAAGATAC	4860
ATTGATGAGT	TTGGACAAAC	CACAACTAGA	ATGCAGTGAA	AAAAATGCTT	TATTTGTGAA	4920
ATTTGTGATG	CTATTGCTTT	ATTTGTAACC	ATTATAAGCT	GCAATAAACA	AGTTAACAAC	4980
AACAATTGCA	TTCATTTTAT	GTTTCAGGTT	CAGGGGGAGG	TGTGGGAGGT	TTTTTCGGAT	5040
CCTCTAGAGT	CGAGTAGATA	AGTAGCATGG	CGGGTTAATC	ATTAACTACA	AGGAACCCCT	5100
AGTGATGGAG	TTGGCCACTC	CCTCTCTGCG	CGCTCGCTCG	CTCACTGAGG	CCGGGCGACC	5160
AAAGGTCGCC	CGACGCCCGG	GCTTTGCCCG	GGCGGCCTCA	GTGAGCGAGC	GAGCGCGCAG	5220
CAGATCTGGA	AGGTGCTGAG	GTACGATGAG	ACCCGCACCA	GGTGCAGACC	CTGCGAGTGT	5280
GGCGGTAAAC	ATATTAGGAA	CCAGCCTGTG	ATGCTGGATG	TGACCGAGGA	GCTGAGGCCC	5340
GATCACTTGG	TGCTGGCCTG	CACCCGCGCT	GAGTTTGGCT	CTAGCGATGA	AGATACAGAT	5400
TGAGGTACTG	AAATGTGTGG	GCGTGGCTTA	AGGGTGGGAA	AGAATATATA	AGGTGGGGGT	5460
CTTATGTAGT	TTTGTATCTG	TTTTGCAGCA	GCCGCCGCCG	CCATGAGCAC	CAACTCGTTT	5520
GATGGAAGCA	TTGTGAGCTC	ATATTTGACA	ACGCGCATGC	CCCCATGGGC	CGGGGTGCGT	5580
CAGAATGTGA	TGGGCTCCAG	CATTGATGGT	CGCCCCGTCC	TGCCCGCAAA	CTCTACTACC	5640
TTGACCTACG	AGACCGTGTC	TGGAACGCCG	TTGGAGACTG	CAGCCTCCGC	CGCCGCTTCA	5700

GCCGCTGCAG CCACCGCCCG CGGGATTGTG ACTGACTTTG CTTTCCTGAG CCCGCTTGCA 5760 5820 AGCAGTGCAG CTTCCCGTTC ATCCGCCCGC GATGACAAGT TGACGGCTCT TTTGGCACAA 5880 TTGGATTCTT TGACCCGGGA ACTTAATGTC GTTTCTCAGC AGCTGTTGGA TCTGCGCCAG CAGGTTTCTG CCCTGAAGGC TTCCTCCCCT CCCAATGCGG TTTAAAACAT AAATAAAAAA 5940 CCAGACTCTG TTTGGATTTG GATCAAGCAA GTGTCTTGCT GTCTTTATTT AGGGGTTTTG 6000 CGCGCGCGGT AGGCCCGGGA CCAGCGGTCT CGGTCGTTGA GGGTCCTGTG TATTTTTTCC 6060 AGGACGTGGT AAAGGTGACT CTGGATGTTC AGATACATGG GCATAAGCCC GTCTCTGGGG 6120 TGGAGGTAGC ACCACTGCAG AGCTTCATGC TGCGGGGTGG TGTTGTAGAT GATCCAGTCG 6180 TAGCAGGAGC GCTGGGCGTG GTGCCTAAAA ATGTCTTTCA GTAGCAAGCT GATTGCCAGG 6240 GGCAGGCCCT TGGTGTAAGT GTTTACAAAG CGGTTAAGCT GGGATGGGTG CATACGTGGG 6300 GATATGAGAT GCATCTTGGA CTGTATTTTT AGGTTGGCTA TGTTCCCAGC CATATCCCTC 6360 CGGGGATTCA TGTTGTGCAG AACCACCAGC ACAGTGTATC CGGTGCACTT GGGAAATTTG 6420 TCATGTAGCT TAGAAGGAAA TGCGTGGAAG AACTTGGAGA CGCCCTTGTG ACCTCCAAGA 6480 TTTTCCATGC ATTCGTCCAT AATGATGGCA ATGGGCCCAC GGGCGGCGGC CTGGGCGAAG 6540 ATATTTCTGG GATCACTAAC GTCATAGTTG TGTTCCAGGA TGAGATCGTC ATAGGCCATT 6600 TTTACAAAGC GCGGGCGGAG GGTGCCAGAC TGCGGTATAA TGGTTCCATC CGGCCCAGGG 6660 GCGTAGTTAC CCTCACAGAT TTGCATTTCC CACGCTTTGA GTTCAGATGG GGGGATCATG 6720 TCTACCTGCG GGGCGATGAA GAAAACGGTT TCCGGGGTAG GGGAGATCAG CTGGGAAGAA 6780 AGCAGGTTCC TGAGCAGCTG CGACTTACCG CAGCCGGTGG GCCCGTAAAT CACACCTATT 6840 6900 ACCGGGTGCA ACTGGTAGTT AAGAGAGCTG CAGCTGCCGT CATCCCTGAG CAGGGGGGCC ACTTCGTTAA GCATGTCCCT GACTCGCATG TTTTCCCTGA CCAAATCCGC CAGAAGGCGC 6960 TCGCCGCCCA GCGATAGCAG TTCTTGCAAG GAAGCAAAGT TTTTCAACGG TTTGAGACCG 7020 TCCGCCGTAG GCATGCTTTT GAGCGTTTGA CCAAGCAGTT CCAGGCGGTC CCACAGCTCG 7080 GTCACCTGCT CTACGGCATC TCGATCCAGC ATATCTCCTC GTTTCGCGGG TTGGGGCGGC 7140 TTTCGCTGTA CGGCAGTAGT CGGTGCTCGT CCAGACGGGC CAGGGTCATG TCTTTCCACG 7200 GGCGCAGGGT CCTCGTCAGC GTAGTCTGGG TCACGGTGAA GGGGTGCGCT CCGGGCTGCG 7260 CGCTGGCCAG GGTGCGCTTG AGGCTGGTCC TGCTGGTGCT GAAGCGCTGC CGGTCTTCGC 7320 CCTGCGCGTC GGCCAGGTAG CATTTGACCA TGGTGTCATA GTCCAGCCCC TCCGCGGCGT 7380 GGCCCTTGGC GCGCAGCTTG CCCTTGGAGG AGGCGCCGCA CGAGGGGCAG TGCAGACTTT 7440 TGAGGGCGTA GAGCTTGGGC GCGAGAAATA CCGATTCCGG GGAGTAGGCA TCCGCGCCGC 7500 AGGCCCCGCA GACGGTCTCG CATTCCACGA GCCAGGTGAG CTCTGGCCGT TCGGGGTCAA 7560

AAACCAGGTT TCCCCCATGC	TTTTTGATGC	GTTTCTTACC	TCTGGTTTCC	ATGAGCCGGT	7620
GTCCACGCTC GGTGACGAAA	AGGCTGTCCG	TGTCCCCGTA	TACAGACTTG	AGAGGCCTGT	7680
CCTCGACCGA TGCCCTTGAG	AGCCTTCAAC	CCAGTCAGCT	CCTTCCGGTG	GCCCCGGGC	7740
ATGACTATCG TCGCCGCACT	TATGACTGTC	TTCTTTATCA	TGCAACTCGT	AGGACAGGTG	7800
CCGGCAGCGC TCTGGGTCAT	TTTCGGCGAG	GACCGCTTTC	GCTGGAGCGC	GACGATGATC	7860
GGCCTGTCGC TTGCGGTATT	CGGAATCTTG	CACGCCCTCG	CTCAAGCCTT	CGTCACTGGT	7920
CCCGCCACCA AACGTTTCGG	CGAGAAGCAG	GCCATTATCG	CCGGCATGGC	GGCCGACGCG	7980
CTGGGCTACG TCTTGCTGGC	GTTCGCGACG	CGAGGCTGGA	TGGCCTTCCC	CATTATGATT	8040
CTTCTCGCTT CCGGCGGCAT	CGGGATGCCC	GCGTTGCAGG	CCATGCTGTC	CAGGCAGGTA	8100
GATGACGACC ATCAGGGACA	GCTTCAAGGA	TCGCTCGCGG	CTCTTACCAG	CCTAACTTCG	8160
ATCACTGGAC CGCTGATCGT	CACGGCGATT	TATGCCGCCT	CGGCGAGCAC	ATGGAACGGG	8220
TTGGCATGGA TTGTAGGCGC	CGCCCTATAC	CTTGTCTGCC	TCCCCGCGTT	GCGTCGCGGT	8280
GCATGGAGCC GGGCCACCTC	GACCTGAATG	GAAGCCGGCG	GCACCTCGCT	AACGGATTCA	8340
CCACTCCAAG AATTGGAGCC	AATCAATTCT	TGCGGAGAAC	TGTGAATGCG	CAAACCAACC	8400
CTTGGCAGAA CATATCCATC	GCGTCCGCCA	TCTCCAGCAG	CCGCACGCGG	CGCATCTCGG	8460
GCAGCGTTGG GTCCTGGCCA	CGGGTGCGCA	TGATCGTGCT	CCTGTCGTTG	AGGACCCGGC	8520
TAGGCTGGCG GGGTTGCCTT	ACTGGTTAGC	AGAATGAATC	ACCGATACGC	GAGCGAACGT	8580
GAAGCGACTG CTGCTGCAAA	ACGTCTGCGA	CCTGAGCAAC	AACATGAATG	GTCTTCGGTT	8640
TCCGTGTTTC GTAAAGTCTG	GAAACGCGGA	AGTCAGCGCC	CTGCACCATT	ATGTTCCGGA	8700
TCTGCATCGC AGGATGCTGC	TGGCTACCCT	GTGGAACACC	TACATCTGTA	TTAACGAAGC	8760
CTTTCTCAAT GCTCACGCTG	TAGGTATCTC	AGTTCGGTGT	AGGTCGTTCG	CTCCAAGCTG	8820
GGCTGTGTGC ACGAACCCCC	CGTTCAGCCC	GACCGCTGCG	CCTTATCCGG	TAACTATCGT	8880
CTTGAGTCCA ACCCGGTAAG	ACACGACTTA	TCGCCACTGG	CAGCAGCCAC	TGGTAACAGG	8940
ATTAGCAGAG CGAGGTATGT	AGGCGGTGCT	ACAGAGTTCT	TGAAGTGGTG	GCCTAACTAC	9000
GGCTACACTA GAAGGACAGT	ATTTGGTATC	TGCGCTCTGC	TGAAGCCAGT	TACCTTCGGA	9060
AAAAGAGTTG GTAGCTCTTC	ATCCGGCAAA	CAAACCACCG	CTGGTAGCGG	: TGGTTTTTT	9120
GTTTGCAAGC AGCAGATTAG	GCGCAGAAAA	AAAGGATCTC	: AAGAAGATCO	TTTGATCTTT	9180
TCTACGGGGT CTGACGCTC	GTGGAACGAA	AACTCACGTT	AAGGGATTT	GGTCATGAGA	9240
TTATCAAAAA GGATCTTCAG	CTAGATCCTT	KAATTAAATT	AATGAAGTTI	TAAATCAATC	9300
TAAAGTATAT ATGAGTAAA	TTGGTCTGAC	C AGTTACCAAT	GCTTAATCAG	TGAGGCACCT	9360
ATCTCAGCGA TCTGTCTAT	TCGTTCATC	C ATAGTTGCC	GACTCCCCGT	CGTGTAGATA	9420

					GCGAGACCCA	9480
CGCTCACCG	G CTCCAGATT1	TATCAGCAATA	AACCAGCCAG	CCGGAAGGG	CGAGCGCAGA	9540
AGTGGTCCT	G CAACTTTATO	CGCCTCCATC	CAGTCTATTA	ATTGTTGCCG	GGAAGCTAGA	9600
GTAAGTAGT	r cgccagttaa	TAGTTTGCGC	AACGTTGTTG	CCATTGCTGC	AGGCATCGTG	9660
GTGTCACGCT	CGTCGTTTGG	TATGGCTTCA	TTCAGCTCCG	GTTCCCAACG	ATCAAGGCGA	9720
	CCCCCATGTT					9780
	' AGTTGGCCGC					9840
	TGCCATCCGT					9900
	AGTGTATGCG					
	ATAGCAGAAC					9960
	GGATCTTACC					10020
					-	10080
	CAGCATCTTT				· · · - -	10140
	CAAAAAAGGG					10200
CTTTTTCAAT	ATTATTGAAG	CATTTATCAG	GGTTATTGTC	TCATGAGCGG	ATACATATTT	10260
GAATGTATTT	AGAAAAATAA	ACAAATAGGG	GTTCCGCGCA	CATTTCCCCG	Aaaagtgcca	10320
CCTGACGTCT	AAGAAACCAT	TATTATCATG	ACATTAACCT	ataaaaatag	GCGTATCACG	10380
AGGCCCTTTC	GTCTTCAA					10398

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single

 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: other nucleic acid
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2: GGCCTCTAGA TGGAGGGGTG GAGTCGTGAC

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: other nucleic acid
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GGCCGGATCC AACGCGCAGC CGCCATGCCG

30

WO 98/10086

32

(2)	INFORMATION FOR SEQ 15 NO.4:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: other nucleic acid	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
GGC	CGGATCC CAAACCTCCC GCTTCAAAAT	30
(2)	INFORMATION FOR SEQ ID NO:5:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: other nucleic acid	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
GGC	CGAGCTC AGGCTGGGTT TTGGGGAGCA	30

WHAT IS CLAIMED IS:

- 1. A method for production of recombinant adeno-associated virus (AAV) comprising culturing a host cell comprising and capable of expressing
- (a) a cre transgene, which permits splicing out of the rep and cap gene inhibitory sequences that when removed lead to activation of rep and cap;
- (b) AAV rep and cap genes having a spacer 5' thereto, said spacer flanked by lox sites;
- (c) a minigene comprising a therapeutic transgene flanked by AAV inverse terminal repeats (ITRs); in the presence of sufficient helper virus functions, wherein a recombinant AAV capable of expressing said transgene is produced.
- 2. The method according to claim 1 further comprising:
- (a) introducing into a selected host cell
 i. a first vector comprising a cre
 gene under control of sequences which permit expression
 of cre recombinase;
- ii. a second vector comprising from 5' to 3', a selected promoter, a spacer sequence flanked by loxP sites, an AAV rep gene and an AAV cap gene;
- iii. a third vector comprising a minigene consisting essentially of, from 5' to 3', a 5' AAV inverse terminal repeat (ITR), a selected promoter, a selected transgene and 3' AAV ITR;
- (b) culturing the host cell under conditions which permit expression of the cre recombinase; and
- (c) recovering recombinant AAV capable of expressing the product of said transgene.

- 3. The method according to claim 1 wherein at least one of said vectors is a recombinant adenovirus and the host cell is a 293 cell.
- 4. The method according to claim 1 wherein the first vector is a recombinant adenovirus and the sequences which permit expression comprise a cytomegalovirus promoter, the vector further comprising a nuclear localization signal operably linked to the cre gene.
- 5. The method according to claim 1 wherein the second vector is a recombinant adenovirus and the selected promoter comprises AAV P5.
- 6. The method according to claim 5 wherein the spacer sequence is selected from the group consisting of:
- (a) a 1300 bp fragment containing translational start and stop sequences;
- (b) a 1600 bp fragment containing the GFP cDNA, an intron and a polyadenylation signal; and
- (c) a 1000 bp fragment containing the neomycin coding sequence and a polyadenylation signal.
- 7. A method for production of recombinant adeno-associated virus (AAV) comprising:
 - (a) providing a host cell expressing cre;
- (b) introducing into said host cell
 a first vector comprising from 5' to
 3', a selected promoter, a spacer sequence flanked by
 loxP sites, and AAV rep and cap genes; and

a second vector comprising from 5' to 3', a minig ne consisting essentially of 5' AAV inverse terminal repeat (ITR), a selected promoter, a selected transgene, and a 3' AAV ITR;

- (c) culturing the host cell under conditions which permit expression of the cre recombinase and replication and packaging of a recombinant AAV; and
- (d) recovering the recombinant AAV capable of expressing the product of the transgene.
- 8. The method according to claim 7 wherein the first and second vectors are recombinant adenoviruses.
- 9. The method according to claim 8 wherein the spacer sequence is selected from the group consisting of:
- (a) a 1300 bp fragment containing translational start and stop sequences;
- (b) a 1600 bp fragment containing the GFP cDNA, an intron and a polyadenylation signal; and
- (c) a 1000 bp fragment containing the neomycin coding sequence and a polyadenylation signal.
- 10. A recombinant AAV produced according to the method of any one of claims 1 9.

Fig. 1

NEO SPACER

Fig.

Fig. 3

Fig. 4

Construction of the Ad. CMV. NLS-CRE

6/8

Fig. 6A

Fig. 6B

Fig. 6C

Fig. 6D

FIG.

PCT/US 97/15691 CLASSIFICATION OF SUBJECT MATTER
PC 6 C12N15/86 C07K IPC 6 C07K14/015 C12N9/00 C12N9/52 C12N15/35 C12N7/01 According to International Patent Classification/IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C07K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Υ WO 96 17947 A (TARGETED GENETICS CORP 1-10 :ALLEN JAMES M (US)) 13 June 1996 see the whole document Υ ANTON M ET AL: "SITE-SPECIFIC 1-10 RECOMBINATION MEDIATED BY AN ADENOVIRUS VECTOR EXPRESSING THE CRE RECOMBINASE PROTEIN: A MOLECULAR SWITCH FOR CONTROL OF GENE EXPRESSION" JOURNAL OF VIROLOGY, vol. 69, no. 8, August 1995. pages 4600-4606, XP002011775 see page 4602, column 1, line 4 - page 4604, column 2, line 41; figures 1,4A,5A -/--X Further documents are listed in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of theinternational search Date of mailing of the international search report 13 February 1998 23/02/1998 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk

Chambonnet, F

Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,

Fax: (+31-70) 340-3016

PCT/US 97/15691

C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
	Citation or document, with indication where appropriate, of the relevant passages	Aglevant to claim No	
Y	KANEGAE Y ET AL: "EFFICIENT GENE ACTIVATION IN MAMMALIAN CELLS BY USING RECOMBINANT ADENOVIRUS EXPRESSING SITE-SPECIFIC CRE RECOMBINASE" NUCLEIC ACIDS RESEARCH, vol. 23, no. 19, 11 October 1995, pages 3816-3821, XP002011774 see page 3818, column 1, paragraph 4 - page 3819, column 1, paragraph 2; figures 1,3 see page 3821, column 1, paragraph 5	1-3.6-10	
Y	WANG P ET AL: "HIGH FREQUENCY RECOMBINATION BETWEEN LOXP SITES IN HUMAN CHROMOSOMES MEDIATED BY AN ADENOVIRUS VECTOR EXPRESSING CRE RECOMBINASE" SOMATIC CELL AND MOLECULAR GENETICS, vol. 21, no. 6, November 1995, pages 429-441, XP000617918 see page 439, column 2, paragraph 2 - page 440, column 1, paragraph 2	1-4	
Ρ,Χ	KANEGAE Y ET AL: "Efficient gene activation system on mammalian cell chromosomes using recombinant adenovirus producing Cre recombinase" GENE, vol. 181, no. 1-2, 28 November 1996, page 207-212 XP004071882 see page 212, column 1, line 1 - line 10; figure 1	1-10	
Y	WO 95 13392 A (OHIO MED COLLEGE ;TARGETED GENETICS CORP (US); TREMPE JAMES P (US)) 18 May 1995 see the whole document	1-10	
Y	WO 95 13365 A (TARGETED GENETICS CORP; UNIV JOHNS HOPKINS (US); FLOTTE TERENCE R) 18 May 1995 see the whole document	1-10	
Y,P	WO 97 06272 A (AVIGEN INC) 20 February 1997 see page 6, line 28 - page 7, line 4	1-5,7,8, 10	
Α	SNAITH M R ET AL: "Multiple cloning sites carrying loxP and FRT recognition sites for the Cre and Flp site-specific recombinases" GENE, vol. 166, no. 1, 1 January 1995, page 173-174 XP004043130	1	

PCT/US 97/15691

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate of the relevant passages Relevant to claim No BEATON A ET AL: "EXPRESSION FROM THE 1 ADENO-ASSOCIATED VIRUS P5 AND P19 PROMOTERS IS NEGATIVELY REGULATED IN TRANS BY THE REP PROTEIN"
JOURNAL OF VIROLOGY, vol. 63, no. 10. October 1989, pages 4450-4454, XP000609489

information on patent family members

Inter inal Application No

PCT/US 97/15691

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9617947 A	13-06-96	AU 4596396 A CA 2207927 A EP 0796339 A	26-06-96 13-06-96 24-09-97
WO 9513392 A	18-05-95	AU 678867 B AU 8130994 A CA 2176215 A EP 0728214 A JP 9510602 T	12-06-97 29-05-95 18-05-95 28-08-96 28-10-97
WO 9513365 A	18-05-95	AU 1129395 A CA 2176117 A EP 0733103 A JP 9509564 T US 5658776 A	29-05-95 18-05-95 25-09-96 30-09-97 19-08-97
WO 9706272 A	20-02-97	US 5622856 A	22-04-97