Social network Graph Link Prediction - Facebook Challenge

In [1]:

```
#Importing Libraries
# please do go through this python notebook:
import warnings
warnings.filterwarnings("ignore")
import pandas as pd#pandas to create small dataframes
import datetime #Convert to unix time
import time #Convert to unix time
# if numpy is not installed already : pip3 install numpy
import numpy as np#Do aritmetic operations on arrays
# matplotlib: used to plot graphs
import matplotlib
import matplotlib.pylab as plt
import seaborn as sns#Plots
from matplotlib import rcParams#Size of plots
from sklearn.cluster import MiniBatchKMeans, KMeans#Clustering
import math
import pickle
import os
# to install xgboost: pip3 install xgboost
import xgboost as xgb
import warnings
import networkx as nx
import pdb
import pickle
from pandas import HDFStore, DataFrame
from pandas import read_hdf
from scipy.sparse.linalg import svds, eigs
import gc
from tqdm import tqdm
```

1. Reading Data

```
In [2]:
```

```
if os.path.isfile('data/after_eda/train_pos_after_eda.csv'):
train_graph=nx.read_edgelist('data/after_eda/train_pos_after_eda.csv',delimiter=',',create_using=n
x.DiGraph(), nodetype=int)
   print(nx.info(train graph))
   print("please run the FB EDA.ipynb or download the files from drive")
Type: DiGraph
Number of nodes: 1780722
Number of edges: 7550015
Average in degree: 4.2399
Average out degree: 4.2399
```

2. Similarity measures

2.1 Jaccard Distance:

http://www.statisticshowto.com/jaccard-index/

```
In [3]:
#for followees
def jaccard_for_followees(a,b):
    try:
       if len(set(train_graph.successors(a))) == 0 | len(set(train_graph.successors(b))) == 0:
           return 0
        sim = (len(set(train graph.successors(a)).intersection(set(train graph.successors(b)))))/\
(len(set(train graph.successors(a)).union(set(train graph.successors(b)))))
    except:
       return 0
    return sim
In [4]:
#one test case
print(jaccard_for_followees(273084,1505602))
0.0
In [5]:
#node 1635354 not in graph
print(jaccard_for_followees(273084,1505602))
0.0
In [6]:
#for followers
def jaccard for followers(a,b):
    try:
       if len(set(train graph.predecessors(a))) == 0 | len(set(g.predecessors(b))) == 0:
           return 0
       sim = (len(set(train graph.predecessors(a)).intersection(set(train graph.predecessors(b))))
)/\
                                (len(set(train graph.predecessors(a)).union(set(train graph.predec
ssors(b)))))
       return sim
    except:
       return 0
4
In [7]:
print(jaccard for followers(273084,470294))
0
In [8]:
#node 1635354 not in graph
print(jaccard_for_followees(669354,1635354))
0
2.2 Cosine distance
In [9]:
#for followees
def cosine for followees(a,b):
```

if len(set(train graph.successors(a))) == 0 | len(set(train graph.successors(b))) == 0:

```
return 0
        sim = (len(set(train_graph.successors(a)).intersection(set(train_graph.successors(b)))))/\
(math.sqrt(len(set(train graph.successors(a)))*len((set(train graph.successors(b)))))))
       return sim
    except:
       return 0
In [10]:
print(cosine for followees(273084,1505602))
0.0
In [11]:
print(cosine for followees(273084,1635354))
0
In [12]:
def cosine for followers(a,b):
   try:
        if len(set(train graph.predecessors(a))) == 0 | len(set(train graph.predecessors(b))) == 0
        sim = (len(set(train_graph.predecessors(a)).intersection(set(train_graph.predecessors(b))))
)/\
                                      (math.sqrt(len(set(train_graph.predecessors(a))))*(len(set(tra
n_graph.predecessors(b)))))
       return sim
    except:
       return 0
In [13]:
print(cosine for followers(2,470294))
0.02886751345948129
In [14]:
print(cosine for followers(669354,1635354))
0
```

2.3 Preferential Attachment

```
In [15]:
```

```
In [16]:
```

```
#one test case
```

```
print(preferentialAttachment for followees(273084,1505602))
0
In [17]:
#node 1635354 not in graph
print(preferentialAttachment for followees(273084,1505602))
0
In [18]:
#for followers
def preferentialAttachment for followers (a, b):
        if len(set(train_graph.successors(a))) == 0 | len(set(train_graph.successors(b))) == 0:
        sim = len(train graph.neighbors(a))*len(train graph.neighbors(b))
    except:
        return 0
    return sim
In [19]:
print(preferentialAttachment_for_followers(273084,470294))
0
In [20]:
#node 1635354 not in graph
print(preferentialAttachment for followers(669354,1635354))
0
```

3. Ranking Measures

https://networkx.github.io/documentation/networkx-

1.10/reference/generated/networkx.algorithms.link_analysis.pagerank_alg.pagerank.html

PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links.

Mathematical PageRanks for a simple network, expressed as percentages. (Google uses a logarithmic scale.) Page C has a higher PageRank than Page E, even though there are fewer links to C; the one link to C comes from an important page and hence is of high value. If web surfers who start on a random page have an 85% likelihood of choosing a random link from the page they are currently visiting, and a 15% likelihood of jumping to a page chosen at random from the entire web, they will reach Page E 8.1% of the time. (The 15% likelihood of jumping to an arbitrary page corresponds to a damping factor of 85%.) Without damping, all web surfers would eventually end up on Pages A, B, or C, and all other pages would have PageRank zero. In the presence of damping, Page A effectively links to all pages in the web, even though it has no outgoing links of its own.

3.1 Page Ranking

https://en.wikipedia.org/wiki/PageRank

```
In [22]:
```

```
if not os.path.isfile('data/fea_sample/page_rank.p'):
    pr = nx.pagerank(train_graph, alpha=0.85)
    pickle.dump(pr,open('data/fea_sample/page_rank.p','wb'))
else:
    pr = pickle.load(open('data/fea_sample/page_rank.p','rb'))
```

```
In [23]:

print('min',pr[min(pr, key=pr.get)])
print('max',pr[max(pr, key=pr.get)])
print('mean',float(sum(pr.values())) / len(pr))

min 1.6556497245737814e-07
max 2.7098251341935827e-05
mean 5.615699699389075e-07

In [24]:

#for imputing to nodes which are not there in Train data
mean_pr = float(sum(pr.values())) / len(pr)
print(mean_pr)

5.615699699389075e-07
```

4. Other Graph Features

4.1 Shortest path:

Getting Shortest path between twoo nodes, if nodes have direct path i.e directly connected then we are removing that edge and calculating path.

```
In [25]:
```

```
#if has direct edge then deleting that edge and calculating shortest path
def compute_shortest_path_length(a,b):
    p=-1
    try:
        if train_graph.has_edge(a,b):
            train_graph.remove_edge(a,b)
            p= nx.shortest_path_length(train_graph,source=a,target=b)
            train_graph.add_edge(a,b)
    else:
        p= nx.shortest_path_length(train_graph,source=a,target=b)
    return p
    except:
        return -1
```

```
In [26]:
```

```
#testing
compute_shortest_path_length(77697, 826021)

Out[26]:
10

In [27]:
#testing
compute_shortest_path_length(669354,1635354)

Out[27]:
```

4.2 Checking for same community

```
In [28]:
```

```
wcc=list(nx.weakly connected_components(train_graph))
def belongs_to_same_wcc(a,b):
   index = []
    if train graph.has edge(b,a):
        return 1
    if train graph.has edge(a,b):
            for i in wcc:
                if a in i:
                    index= i
                    break
            if (b in index):
                train graph.remove edge(a,b)
                if compute shortest path length(a,b) ==-1:
                    train_graph.add_edge(a,b)
                    return 0
                else:
                    train_graph.add_edge(a,b)
                    return 1
            else:
                return 0
    else:
            for i in wcc:
                if a in i:
                    index= i
                    break
            if(b in index):
               return 1
            else:
                return 0
```

```
In [29]:
```

```
In [29]:
belongs_to_same_wcc(861, 1659750)

Out[29]:
0

In [30]:
belongs_to_same_wcc(669354,1635354)

Out[30]:
```

4.3 Adamic/Adar Index:

Adamic/Adar measures is defined as inverted sum of degrees of common neighbours for given two vertices. $A(x,y)=\sum_{u \in N(x)}\frac{u \in N(x)}{(u)}}$

```
In [31]:
```

```
#adar index
def calc_adar_in(a,b):
    sum=0
    try:
        n=list(set(train_graph.successors(a)).intersection(set(train_graph.successors(b))))
    if len(n)!=0:
        for i in n:
            sum=sum+(1/np.log10(len(list(train_graph.predecessors(i)))))
        return sum
    else:
        return 0
    except:
        return 0
```

In [32]:

```
calc_adar_in(1,189226)
```

```
Out[32]:

O

In [33]:

calc_adar_in(669354,1635354)

Out[33]:

O
```

4.4 Is persion was following back:

```
In [34]:

def follows_back(a,b):
    if train_graph.has_edge(b,a):
        return 1
    else:
        return 0

In [35]:

follows_back(1,189226)

Out[35]:

In [36]:

follows_back(669354,1635354)

Out[36]:

Out[36]:
```

4.5 Katz Centrality:

https://en.wikipedia.org/wiki/Katz_centrality

where A is the adjacency matrix of the graph G with eigenvalues \$\$\lambda\$\$.

The parameter $\$ controls the initial centrality and $\$ and $\$ controls the initial centrality and $\$

```
In [37]:
```

```
if not os.path.isfile('data/fea_sample/katz.p'):
    katz = nx.katz.katz_centrality(train_graph,alpha=0.005,beta=1)
    pickle.dump(katz,open('data/fea_sample/katz.p','wb'))
else:
    katz = pickle.load(open('data/fea_sample/katz.p','rb'))
```

```
In [38]:
```

```
print('min', katz[min(katz, key=katz.get)])
print('max', katz[max(katz, key=katz.get)])
print('mean', float(sum(katz.values())) / len(katz))
```

```
min 0.0007313532484065916
max 0.003394554981699122
mean 0.0007483800935562018

In [39]:

mean_katz = float(sum(katz.values())) / len(katz)
print(mean_katz)

0.0007483800935562018
```

4.6 Hits Score

The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the incoming links. Hubs estimates the node value based on outgoing links.

https://en.wikipedia.org/wiki/HITS algorithm

```
In [40]:
```

```
if not os.path.isfile('data/fea_sample/hits.p'):
    hits = nx.hits(train_graph, max_iter=100, tol=1e-08, nstart=None, normalized=True)
    pickle.dump(hits,open('data/fea_sample/hits.p','wb'))
else:
    hits = pickle.load(open('data/fea_sample/hits.p','rb'))
```

In [41]:

```
print('min',hits[0][min(hits[0], key=hits[0].get)])
print('max',hits[0][max(hits[0], key=hits[0].get)])
print('mean',float(sum(hits[0].values())) / len(hits[0]))
```

```
min 0.0
max 0.004868653378780953
mean 5.615699699344123e-07
```

5. Featurization

5. 1 Reading a sample of Data from both train and test

In [42]:

```
import random
if os.path.isfile('data/after_eda/train_after_eda.csv'):
    filename = "data/after_eda/train_after_eda.csv"
    # you uncomment this line, if you dont know the lentgh of the file name
    # here we have hardcoded the number of lines as 15100030
    # n_train = sum(1 for line in open(filename)) #number of records in file (excludes header)
    n_train = 15100028
    s = 100000 #desired sample size
    skip_train = sorted(random.sample(range(1,n_train+1),n_train-s))
    #https://stackoverflow.com/a/22259008/4084039
```

In [43]:

```
if os.path.isfile('data/after_eda/train_after_eda.csv'):
    filename = "data/after_eda/test_after_eda.csv"
    # you uncomment this line, if you dont know the lentgh of the file name
    # here we have hardcoded the number of lines as 3775008
    # n_test = sum(1 for line in open(filename)) #number of records in file (excludes header)
    n_test = 3775006
    s = 50000 #desired sample size
    skip_test = sorted(random.sample(range(1,n_test+1),n_test-s))
    #https://stackoverflow.com/a/22259008/4084039
```

```
In [44]:
```

```
print("Number of rows in the train data file:", n_train)
print("Number of rows we are going to elimiate in train data are",len(skip_train))
print("Number of rows in the test data file:", n_test)
print("Number of rows we are going to elimiate in test data are",len(skip_test))
```

Number of rows in the train data file: 15100028 Number of rows we are going to elimiate in train data are 15000028 Number of rows in the test data file: 3775006 Number of rows we are going to elimiate in test data are 3725006

In [45]:

```
df_final_train = pd.read_csv('data/after_eda/train_after_eda.csv', skiprows=skip_train, names=['sou rce_node', 'destination_node'])
df_final_train['indicator_link'] = pd.read_csv('data/train_y.csv', skiprows=skip_train, names=['ind icator_link'])
print("Our train matrix size ",df_final_train.shape)
df_final_train.head(2)
```

Our train matrix size (100002, 3)

Out[45]:

source_node destination_node indicator_link

0	273084	1505602	1
1	1316661	1170389	1

In [46]:

```
df_final_test = pd.read_csv('data/after_eda/test_after_eda.csv', skiprows=skip_test,
names=['source_node', 'destination_node'])
df_final_test['indicator_link'] = pd.read_csv('data/test_y.csv', skiprows=skip_test, names=['indicator_link'])
print("Our test matrix size ",df_final_test.shape)
df_final_test.head(2)
```

Our test matrix size (50002, 3)

Out[46]:

	source_node	destination_node	indicator_link
0	848424	784690	1
1	1390318	134750	1

5.2 Adding a set of features

we will create these each of these features for both train and test data points

- 1. jaccard_followers
- 2. jaccard_followees
- 3. cosine_followers
- 4. cosine_followees
- 5. preferentialAttachment_for_followees
- 6. preferentialAttachment_for_followers
- 7. num_followers_s
- 8. num_followees_s
- 9. num_followers_d
- 10. num followees d
- 11. inter_followers
- 12. inter_followees

```
if not os.path.isfile('data/fea sample/storage sample stage1.h5'):
    #mapping jaccrd followers to train and test data
   df final train['jaccard followers'] = df final train.apply(lambda row:
jaccard_for_followers(row['source_node'], row['destination node']), axis=1)
   df_final_test['jaccard_followers'] = df_final test.apply(lambda row:
jaccard for followers(row['source node'],row['destination node']),axis=1)
    #mapping jaccrd followees to train and test data
   df final train['jaccard followees'] = df final train.apply(lambda row:
jaccard_for_followees(row['source_node'],row['destination node']),axis=1)
   df final test['jaccard followees'] = df final test.apply(lambda row:
jaccard for followees(row['source node'],row['destination node']),axis=1)
        #mapping jaccrd followers to train and test data
   df final train['cosine followers'] = df final train.apply(lambda row:
cosine for followers(row['source node'],row['destination node']),axis=1)
   df final test['cosine followers'] = df final test.apply(lambda row:
cosine for followers(row['source node'],row['destination node']),axis=1)
    #mapping jaccrd followees to train and test data
   df final train['cosine followees'] = df final train.apply(lambda row:
cosine for followees(row['source node'], row['destination node']), axis=1)
   df final test['cosine followees'] = df final test.apply(lambda row:
cosine for followees(row['source node'], row['destination node']), axis=1)
    #mapping jaccrd followers to train and test data
   df final train['preferentialAttachment for followees'] = df final train.apply(lambda row:
jaccard_for_followers(row['source_node'], row['destination_node']), axis=1)
   df final test['preferentialAttachment for followees'] = df final test.apply(lambda row:
jaccard for followers(row['source node'],row['destination node']),axis=1)
    #mapping jaccrd followers to train and test data
   df_final_train['preferentialAttachment_for_followers'] = df final train.apply(lambda row:
jaccard for followers(row['source node'],row['destination node']),axis=1)
   df final test['preferentialAttachment for followers'] = df final test.apply(lambda row:
jaccard_for_followers(row['source_node'],row['destination_node']),axis=1)
```

In [48]:

```
def compute features stage1(df final):
   #calculating no of followers followees for source and destination
    #calculating intersection of followers and followees for source and destination
   num followers s=[]
   num followees s=[]
   num followers d=[]
   num followees d=[]
   inter followers=[]
   inter followees=[]
   for i, row in df final.iterrows():
            s1=set(train_graph.predecessors(row['source_node']))
            s2=set(train graph.successors(row['source node']))
        except:
           s1 = set()
            s2 = set()
            d1=set(train_graph.predecessors(row['destination_node']))
           d2=set(train graph.successors(row['destination node']))
        except:
           d1 = set()
```

```
d2 = set()
        num followers s.append(len(s1))
        num followees s.append(len(s2))
        num followers d.append(len(d1))
        num followees d.append(len(d2))
        inter followers.append(len(s1.intersection(d1)))
        inter_followees.append(len(s2.intersection(d2)))
    return num followers s, num followers d, num followees s, num followees d, inter followers, int
er followees
In [49]:
if not os.path.isfile('data/fea sample/storage sample stage1.h5'):
    df final train['num followers s'], df final train['num followers s'], \
    df final_train['num_followees_s'], df_final_train['num_followees_d'], \
    df_final_train['inter_followers'], df_final_train['inter_followees'] = compute_features_stage1(c
f final train)
    df final test['num followers s'], df final test['num followers s'], \
    df_final_test['num_followees_s'], df_final_test['num_followees_d'], \
    df_final_test['inter_followers'], df_final_test['inter_followees']=
compute features stage1(df final test)
    hdf = HDFStore('data/fea sample/storage sample stage1.h5')
    hdf.put('train df', df final train, format='table', data columns=True)
    hdf.put('test_df',df_final_test, format='table', data_columns=True)
    hdf.close()
else:
    df_final_train = read_hdf('data/fea_sample/storage_sample_stage1.h5', 'train_df',mode='r')
    df final test = read hdf('data/fea sample/storage sample stage1.h5', 'test df',mode='r')
```

5.3 Adding new set of features

we will create these each of these features for both train and test data points

- 1. adar index
- 2. is following back
- 3. belongs to same weakly connect components
- 4. shortest path between source and destination

In [50]:

```
if not os.path.isfile('data/fea sample/storage sample stage2.h5'):
    #mapping adar index on train
   df final train['adar index'] = df final train.apply(lambda row: calc adar in(row['source node']
,row['destination_node']),axis=1)
    #mapping adar index on test
   df final test['adar index'] = df final test.apply(lambda row: calc adar in(row['source node'],r
ow['destination_node']),axis=1)
   #mapping followback or not on train
   df_final_train['follows_back'] = df_final_train.apply(lambda row:
follows_back(row['source_node'], row['destination_node']), axis=1)
    #mapping followback or not on test
   df final test['follows back'] = df final test.apply(lambda row: follows back(row['source node']
,row['destination node']),axis=1)
   #mapping same component of wcc or not on train
   df final train['same comp'] = df final train.apply(lambda row: belongs to same wcc(row['source
node'], row['destination node']), axis=1)
    ##mapping same component of wcc or not on train
   df_final_test['same_comp'] = df_final_test.apply(lambda row: belongs_to_same_wcc(row['source_no
de'], row['destination node']), axis=1)
```

5.4 Adding new set of features

we will create these each of these features for both train and test data points

- 1. Weight Features
 - · weight of incoming edges
 - · weight of outgoing edges
 - · weight of incoming edges + weight of outgoing edges
 - weight of incoming edges * weight of outgoing edges
 - · 2*weight of incoming edges + weight of outgoing edges
 - weight of incoming edges + 2*weight of outgoing edges
- 2. Page Ranking of source
- 3. Page Ranking of dest
- 4. katz of source
- 5. katz of dest
- 6. hubs of source
- 7. hubs of dest
- 8. authorities_s of source
- 9. authorities s of dest

Weight Features

In order to determine the similarity of nodes, an edge weight value was calculated between nodes. Edge weight decreases as the neighbor count goes up. Intuitively, consider one million people following a celebrity on a social network then chances are most of them never met each other or the celebrity. On the other hand, if a user has 30 contacts in his/her social network, the chances are higher that many of them know each other. credit - Graph-based Features for Supervised Link Prediction William Cukierski, Benjamin Hamner, Bo Yang

 $\label{eq:weighted} $$ \operatorname{quation} W = \frac{1}{\sqrt{1+|X|}} \end{equation} $$$

it is directed graph so calculated Weighted in and Weighted out differently

In [51]:

```
#weight for source and destination of each link
Weight_in = {}
Weight_out = {}
for i in tqdm(train_graph.nodes()):
    sl=set(train_graph.predecessors(i))
    w_in = 1.0/(np.sqrt(1+len(s1)))
    Weight_in[i]=w_in

    s2=set(train_graph.successors(i))
    w_out = 1.0/(np.sqrt(1+len(s2)))
    Weight_out[i]=w_out

#for imputing with mean
mean_weight_in = np.mean(list(Weight_in.values()))
mean_weight_out = np.mean(list(Weight_out.values()))
```

In [52]:

```
if not os.path.isfile('data/fea sample/storage sample stage3.h5'):
    #mapping to pandas train
    df final train['weight in'] = df final train.destination node.apply(lambda x: Weight in.get(x,m
ean weight in))
   df final train['weight out'] = df final train.source node.apply(lambda x: Weight out.get(x,mean
weight out))
    #mapping to pandas test
    df final test['weight in'] = df final test.destination node.apply(lambda x: Weight in.get(x, mea
n weight in))
    df final test['weight out'] = df final test.source node.apply(lambda x: Weight out.get(x, mean w
eight out))
    #some features engineerings on the in and out weights
    df final train['weight f1'] = df final train.weight in + df final train.weight out
    df_final_train['weight_f2'] = df_final_train.weight_in * df_final_train.weight_out
    df final train['weight f3'] = (2*df final train.weight in + 1*df_final_train.weight_out)
    df final train['weight f4'] = (1*df final train.weight in + 2*df final train.weight out)
    #some features engineerings on the in and out weights
    df final test['weight f1'] = df final test.weight in + df final test.weight out
    df final test['weight_f2'] = df_final_test.weight_in * df_final_test.weight_out
    df final test['weight f3'] = (2*df final test.weight in + 1*df final test.weight out)
    df final test['weight f4'] = (1*df final test.weight in + 2*df final test.weight out)
```

In [53]:

```
if not os.path.isfile('data/fea sample/storage sample stage3.h5'):
    #page rank for source and destination in Train and Test
    #if anything not there in train graph then adding mean page rank
    df final train['page rank s'] = df_final_train.source_node.apply(lambda x:pr.get(x,mean_pr))
    df final train['page rank d'] = df final train.destination node.apply(lambda x:pr.get(x,mean pr
))
    df final test['page rank s'] = df final test.source node.apply(lambda x:pr.get(x,mean pr))
    df final test['page rank d'] = df final test.destination node.apply(lambda x:pr.get(x,mean pr))
    #Katz centrality score for source and destination in Train and test
    #if anything not there in train graph then adding mean katz score
    df final train['katz s'] = df final train.source node.apply(lambda x: katz.get(x,mean katz))
   df final train['katz d'] = df final train.destination node.apply(lambda x: katz.get(x, mean katz
) )
    df_final_test['katz_s'] = df_final_test.source_node.apply(lambda x: katz.get(x,mean_katz))
    df final test['katz d'] = df final test.destination node.apply(lambda x: katz.get(x,mean katz))
    #Hits algorithm score for source and destination in Train and test
    #if anything not there in train graph then adding 0
    df_final_train['hubs_s'] = df_final_train.source_node.apply(lambda x: hits[0].get(x,0))
    df final train['hubs d'] = df final train.destination node.apply(lambda x: hits[0].get(x,0))
    df final test['hubs s'] = df final test.source node.apply(lambda x: hits[0].get(x,0))
    df final test['hubs d'] = df final test.destination node.apply(lambda x: hits[0].get(x,0))
    #Hits algorithm score for source and destination in Train and Test
    #if anything not there in train graph then adding 0
    df_final_train['authorities_s'] = df_final_train.source_node.apply(lambda x: hits[1].get(x,0))
    df_final_train['authorities_d'] = df_final_train.destination_node.apply(lambda x: hits[1].get(x
, 0))
    df final test['authorities s'] = df final test.source node.apply(lambda x: hits[1].get(x,0))
    df final test['authorities d'] = df final test.destination node.apply(lambda x: hits[1].get(x,0
) )
```

```
hdf = HDFStore('data/fea_sample/storage_sample_stage3.h5')
hdf.put('train_df',df_final_train, format='table', data_columns=True)
hdf.put('test_df',df_final_test, format='table', data_columns=True)
hdf.close()
else:
    df_final_train = read_hdf('data/fea_sample/storage_sample_stage3.h5', 'train_df',mode='r')
    df_final_test = read_hdf('data/fea_sample/storage_sample_stage3.h5', 'test_df',mode='r')
```

5.5 Adding new set of features

we will create these each of these features for both train and test data points

1. SVD features for both source and destination

```
In [54]:

def svd(x, S):
    try:
        z = sadj_dict[x]
        return S[z]
    except:
        return [0,0,0,0,0,0]
```

2. SVD_dot features for both source and destination

```
In [60]:

def svd_dot(x, S):
    try:
        return sum(i*j for i,j in zip(x,S))
    except:
        return [0,0,0,0,0,0]
```

```
In [55]:
#for svd features to get feature vector creating a dict node val and inedx in svd vector
sadj_col = sorted(train_graph.nodes())
sadj_dict = { val:idx for idx,val in enumerate(sadj_col)}
```

```
In [56]:
Adj = nx.adjacency_matrix(train_graph, nodelist=sorted(train_graph.nodes())).asfptype()
```

```
In [57]:

U, s, V = svds(Adj, k = 6)
print('Adjacency matrix Shape', Adj.shape)
print('U Shape', U.shape)
print('V Shape', V.shape)
print('s Shape', s.shape)

Adjacency matrix Shape (1780722, 1780722)
U Shape (1780722, 6)
V Shape (6, 1780722)
```

```
In [61]:
```

s Shape (6,)

```
df final train.destination node.apply(lambda x: svd(x, U)).apply(pd.Series)
df final train[['svd v s 1','svd v s 2', 'svd v s 3', 'svd v s 4', 'svd v s 5', 'svd v s 6',]]
df final train.source node.apply(lambda x: svd(x, V.T)).apply(pd.Series)
 df_final_train[['svd_v_d_1', 'svd_v_d_2', 'svd_v_d_3', 'svd_v_d_4', 'svd_v_d_5', 'svd_v_d_6']] = 0 
df final train.destination node.apply(lambda x: svd(x, V.T)).apply(pd.Series)
df final test[['svd u s 1', 'svd u s 2', 'svd u s 3', 'svd u s 4', 'svd u s 5', 'svd u s 6']] =
df final test.source node.apply(lambda x: svd(x, U)).apply(pd.Series)
df_final_test[['svd_u_d_1', 'svd_u_d_2', 'svd_u_d_3', 'svd_u_d_4', 'svd_u_d_5','svd_u_d_6']] =
df_final_test.destination_node.apply(lambda x: svd(x, U)).apply(pd.Series)
df_final_test[['svd_v_s_1','svd_v_s_2', 'svd_v_s_3', 'svd_v_s_4', 'svd_v_s_5', 'svd_v_s_6',]] =
df final test.source node.apply(lambda x: svd(x, V.T)).apply(pd.Series)
df_{inal_test[['svd_v_d_1', 'svd_v_d_2', 'svd_v_d_3', 'svd_v_d_4', 'svd_v_d_5', 'svd_v_d_6']] = 0
df final test.destination node.apply(lambda x: svd(x, V.T)).apply(pd.Series)
df_final_train[['svd_u_s_1', 'svd_u_s_2','svd_u_s_3', 'svd_u_s_4', 'svd_u_s_5', 'svd_u_s_6']] =
df final train.source node.apply(lambda x: svd dot(x, U)).apply(pd.Series)
df_final_train[['svd_u_d_1', 'svd_u_d_2', 'svd_u_d_3', 'svd_u_d_4', 'svd_u_d_5','svd_u_d_6']] =
df_final_train.destination_node.apply(lambda x: svd_dot(x, U)).apply(pd.Series)
df_final_train[['svd_v_s_1','svd_v_s_2', 'svd_v_s_3', 'svd_v_s_4', 'svd_v_s_5', 'svd_v_s_6',]]
df_final_train.source_node.apply(lambda x: svd_dot(x, V.T)).apply(pd.Series)
 df_final_train[['svd_v_d_1', 'svd_v_d_2', 'svd_v_d_3', 'svd_v_d_4', 'svd_v_d_5', 'svd_v_d_6']] = 0 
df final train.destination node.apply(lambda x: svd dot(x, V.T)).apply(pd.Series)
df_final_test[['svd_u_s_1', 'svd_u_s_2','svd_u_s_3', 'svd_u_s_4', 'svd_u_s_5', 'svd_u_s_6']] =
df final test.source node.apply(lambda x: svd dot(x, U)).apply(pd.Series)
df_final_test[['svd_u_d_1', 'svd_u_d_2', 'svd_u_d_3', 'svd_u_d_4', 'svd_u_d_5','svd_u_d_6']] =
df final test.destination node.apply(lambda x: svd dot(x, U)).apply(pd.Series)
 df_final_test[['svd_v_s_1','svd_v_s_2', 'svd_v_s_3', 'svd_v_s_4', 'svd_v_s_5', 'svd_v_s_6',]] = \\  df_final_test[['svd_v_s_1','svd_v_s_2', 'svd_v_s_3', 'svd_v_s_4', 'svd_v_s_5', 'svd_v_s_6',]] = \\  df_final_test[['svd_v_s_1', 'svd_v_s_2', 'svd_v_s_3', 'svd_v_s_4', 'svd_v_s_5', 'svd_v_s_6',]] = \\  df_final_test[['svd_v_s_1', 'svd_v_s_6', '
df_final_test.source_node.apply(lambda x: svd_dot(x, V.T)).apply(pd.Series)
```