Class	:	BE - 8
Roll. No	:	42410
Assignment No.	:	B.3 (a,b)
Assignment Name	:	1 Bit SRAM Cell using NMOS and TG S/W
Date of Performance	:	30-11-2020

0 92 19 19	*	TQ1	742	00	74	SIW's
------------	---	-----	-----	----	----	-------

& function - Table

C	SRAM_WR	SRAM-RD
1	D	srong - I
1	1	STRONG-0
0	X	0/4010

LAYOUT

1) 1-bit SRAM using NMOS Switches

2) 1-bit SRAM cell using TG.

WAVEFORMS

1. C = 1, SRAM_WRITE = 0 using NMOS Switches.

2. C =1, SRAM_WRITE=1 using NMOS Switches.

3. C = 0 using NMOS Switches. Display delay Bus value between.. SRAM_WR ▼ and... SRAM_RD ▼ Evaluate | min/max/av | Frequency SRAM_RD ▼ 1.20 FFT FFT Time scale SRAM_WR Step(ps) 0.100 Reset 1.20 ₩ More Close Print P=0.927μW SRAM_RD

5.0

6.0

7.0

8.0

0.11

Time(ns)

9.0

С

0.0

3.0

2.0 Voltage vs. time (Voltages and currents (Voltage vs. voltage), Frequency vs. time (Eye diagram /

4. C =1, SRAM_WRITE=0 using TG Logic.

6. C =0 using TG Logic.

Conclusions:

Thus, we have:

- 1) Drawn the LAYOUT for 1-bit SRAM Cell using NMOS Switches and TG Switches using 90 nm Foundry.
- 2) Verified the waveforms of SRAM Cell.
- 3) Compared them with Truth table.
- 4) Verified the functionality of SRAM Cell.

