Lezione del 9 aprile

Teorema 0.1 (di Liouville). Una funzione intera limitata è costante

Dimostrazione. Essendo f intera si ha $f(z) = \sum a_n z^n$ e tale serie ha raggio di convergenza infinito.

Dal disuguaglianza di Cauchy si ha

$$\forall r, \forall n \geq 0 \quad |a_n| \, r^n \leq M(r)$$

Inoltre essendo f limitata, esiste M > 0 con $|f(z)| \leq M$ dunque

$$|a_n| r^n \le M \quad \Rightarrow \quad |a_n| \le \frac{M}{r^n} \quad \forall r \ge 0, \ \forall n \ge 0$$

dunque per $r \to +\infty$ si ha $|a_n| \to 0$ per $n \ge 1$ da cui $f(z) = a_0$

Teorema 0.2 (Teorema fondamentale dell'algebra).

Sia $P(z) \in \mathbb{C}[z]$ un polinomio non costante.

Allora ammette almeno uno zero.

Dimostrazione. Supponiamo per assurdo P(z)non si annulli da cui $\frac{1}{P(z)}$ è intera. Assumiamo

$$P(z) = a_n z^n + \dots + a_0 \text{ con } a_n \neq 0$$

quindi

$$P(z) = z^n \left(a_n + \frac{a_{n-1}}{z} + \dots + \frac{a_0}{z^n} \right)$$

Per $|z| \to +\infty$ si ha $P(z) \to +\infty$ da cui $\left| \frac{1}{P(z)} \right| \to 0$

Dunque $\exists R > 0$ con $\left|\frac{1}{P(z)}\right|$ limitata per |z| > R

D'altra parte anche $\left|\frac{1}{P(z)}\right|$ definita su $\{z\in\mathbb{C}\,|\,|z|\leq R\}$ è limitata (funzione continua su un compatto).

Ora per il teorema di Louville otteniamo $\frac{1}{P(z)}$ è costante dunque anche P(z) lo è, in contraddizione con l'ipotesi

1 Proprietà del valor medio

Definizione 1.1. Sia $D \subseteq \mathbb{C}$ e $f: D \to \mathbb{C}$ continua. Diciamo che f ha la proprietà del valor medio (PVM) se

$$\forall a \in D \quad \exists r_0 > 0$$

tale che

1.

$$\{z \mid |z - a| < r_0\} \subseteq D$$

2.

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f\left(a + re^{i\vartheta}\right) d\vartheta \text{ per ogni} 0 \le r < r_0$$

Osservazione 1. Se f ha la proprietà del valor medio, anche Re(f) e Im(f) lo hanno

Osservazione 2. Se f è olomorfa, f ha la proprietà del valor medio.

Sia f olomorfa in D e $a \in D$, dunque dalla formula integrale di Cauchy abbiamo

$$f(a)I(\gamma, a) = \int_{\gamma} \frac{f(z)}{z - a} dz$$

dove $\gamma: \vartheta \to a + r_0^{2i\vartheta}$ per $\vartheta \in [0, 2\pi]$ e r_0 è tale che $\{z \mid |z - a| \le r_0\} \subseteq D$. Tale curva ha indice di avvolgimento 1 da cui

$$f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - a} = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f\left(a + r_0 e^{i\vartheta}\right)}{a + r_0 e^{i\vartheta} - a} a + r_0 i e^{i\vartheta} d\vartheta$$

Concludiamo notando che la stessa formula vale per ogni $0 \le r < r_0$

Teorema 1.1 (Principio del massimo modulo).

Sia $D \subseteq \mathbb{C}$ un aperto e sia $f: D \to \mathbb{C}$ una funzione continua che ha la proprietà del massimo modulo.

Se |f| ha un massimo relativo in un punto $a \in D$ allora f è costante in un intorno di a

Dimostrazione. Se f(a) = 0 allora $|f(z)| \le |f(a)| = 0$ per z sufficientemente vicino ad a e dunque f(z) = 0 in un intorno di a.

Consideriamo adesso il caso $f(a) \neq 0$, possiamo inoltre supporre $f(a) \in \mathbb{R}$ e f(a) > 0 (se $f(a) = \alpha e^{i\beta}$ allora lo rimpiazzo con $e^{-i\beta}f(a)$.

Siano u = Re(f) e v = Im(f) e sia $r_0 > 0$ tale che

- 1. r_0 è come nella definizione della proprietà del massimo modulo
- 2. $|f(z)| \le |f(a)| \text{ per } z \in B(a, r_0)$

Dunque se pongo

$$M(r) = \sum \{|f(z)| : |z - a| = r\} \text{ per } 0 \le r < r_0$$

si ha che $M(r) \leq |f(a)|$ per ogni $0 \leq r < r_0$ infatti ciò segue dalla proprietà 2 sopra esposta. Inoltre poichè f soddisfa la proprietà del massimo modulo otteniamo

$$|f(a)| = |f(a)| \le \frac{1}{2\pi i} \int_0^{2\pi} |f(a + re^{i\vartheta})| d\vartheta \le \frac{1}{2\pi} \int_0^{2\pi} M(r) d\vartheta = M(r) \quad \text{per } 0 \le r < r_0$$

dunque otteniamo f(a) = M(r) dunque poichè $f(a) \in \mathbb{R}$ otteniamo

$$\int_0^{2\pi} \left[M(r) - u \left(a + re^{i\vartheta} \right) \right] d\vartheta = 0$$

Sia

$$g(\vartheta) = M(r) - u\left(a + re^{i\vartheta}\right)$$

ora $g(\vartheta) \ge 0$ in quanto $M(r) \le |f(s)|$.

Abbiamo dunque definito una funzione g non negativa su $[0, 2\pi]$ e tale che il suo integrale su $[0, 2\pi]$ sia nullo dunque g è costante su tale intervallo ovvero

$$M(r) = u\left(a + re^{i\theta}\right) \tag{1}$$

Usando la definizione di M(r) otteniamo

$$M(r) \ge \left| f\left(a + re^{i\vartheta}\right) \right| = \left(u\left(a + re^{i\vartheta}\right)^2 + v\left(a + re^{i\vartheta}\right)^2\right)^{\frac{1}{2}}$$

dunque dall'uguaglianza 1 otteniamo

$$M(r) \le \left(M(r)^2 + v\left(a + re^{i\vartheta}\right)^2\right)^{\frac{1}{2}} \quad \Rightarrow \quad v\left(a + re^{i\vartheta}\right) = 0$$

Concludendo otteniamo che $\forall z$ tale che $|z-a| < r_0$ vale

$$f(z) = u(z) = M(|z|) = f(a)$$

Corollario 1.2. Sia D un aperto connesso e limitato.

Sia f una funzione continua su \overline{D} che la proprietà del valor medio su D. Sia $M = \sup\{|f(z)| : z \in \partial D\}$ allora

- $|f(z)| \le M \text{ per ogni } z \in D$
- Se $\exists a \in D$ tale che |f(a)| = M allora f è costante su D

Dimostrazione. Sia

$$M' = \sup\{|f(z)| : z \in \overline{D}\}$$

allora chiaramente si ha $M' \ge M$ inoltre M' è finito infatti |f| è continua su un compatto, da cui $\exists a \in \overline{D}$ con |f(a)| = M'.

Andiamo a distinguere 2 casi

• Se $a \in D$ allora per il principio del massimo modulo si ha che f è costante su un intorno di a. Sia

$$D' = \{ z \in D : |f(z)| = |f(a)|$$

Ora D' è preimmagine di |f(a)| dunque è chiuso.

Mostriamo che D' è aperto, il che conclude D' = D.

Se $a' \in D$ dunque |f(a')| = M allora con gli stessi argomenti usati nella dimostrazione della proprietà del massimo modulo si osserva che

$$f(z) = f(a') \text{ per } |z - a| < r'_0$$

dunque D è aperto.

Essendo f continua su \overline{D} si ha f costante su \overline{D} da cui M=M'

• $a \notin D$ allora $a \in \partial D$ dunque otteniamo $M' \leq |f(a)| = M'$ ma poichè $M \leq M'$ si ha la tesi

Corollario 1.3 (Principio del massimo modulo per funzioni olomorfe).

 $Sia\ f\ olomorfa\ su\ un\ aperto\ connesso\ D.$

Se f non è costante su D allora |f| non ha massimo relativo in D

Inoltre se D è limitata ed f continua in \overline{D} allora |f| ammette massimo nel bordo di D

Dimostrazione. Essendo f olomorfa, f ha la proprietà del valor medio .

Se |f| ha un massimo relativo in D allora per il principio del massimo modulo, otteniamo che f è costante su un aperto di D, da cui, per il principio di continuazione analitica f è costante in D (il che è assurdo).

Assumendo che D sia limitata, la tesi segue dal lemma precedente

Osservazione 3. Sia f olomorfa in $D(0,r) = \{z \in \mathbb{C} : |z| < r\}$ e continua in $\overline{D(0,r)}$ allora

$$|f(z)| \le M(r) \quad \forall z \text{ con } |z| \le r$$