МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ІВАНА ФРАНКА

Факультет прикладної математики та інформатики

Кафедра програмування

Індивідуальне завдання № 5 Вибір лінійної моделі та регуляризація

Виконала: студентка групи ПМОм-11 Кравець Ольга

Хід роботи

Варіант - 3

Визначаю значення змінної variant. Встановлюю set.seed(3) та генерую redundant як випадкове ціле число з рівномірного розподілу

```
> variant=3
> variant
[1] 3
> set.seed(variant)
> redundant=floor(runif(1,5,25))
> redundant
[1] 8
```

Завдання 1.

Модифікувала дані Auto

```
> Auto_new=Auto[-sample(1:nrow(Auto), round((redundant / 100) * nrow(Auto))), ]
> fix(Auto new)
```

	row.names	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin	name	varll	var12	var13
1	1	18	8	307	130	3504	12	70	1	chevrolet chevelle malibu			
2	2	15	8	350	165	3693	11.5	70	1	buick skylark 320			
3	3	18	8	318	150	3436	11	70	1	plymouth satellite			
4	4	16	8	304	150	3433	12	70	1	amc rebel sst			
5	5	17	8	302	140	3449	10.5	70	1	ford torino			
6	6	15	8	429	198	4341	10	70	1	ford galaxie 500			
7	7	14	8	454	220	4354	9	70	1	chevrolet impala			
8	8	14	8	440	215	4312	8.5	70	1	plymouth fury iii			
9	9	14	8	455	225	4425	10	70	1	pontiac catalina			
10	10	15	8	390	190	3850	8.5	70	1	amc ambassador dpl			
11	11	15	8	383	170	3563	10	70	1	dodge challenger se			
12	13	15	8	400	150	3761	9.5	70	1	chevrolet monte carlo			
13	14	14	8	455	225	3086	10	70	1	buick estate wagon (sw)			
14	16	22	6	198	95	2833	15.5	70	1	plymouth duster			
15	17	18	6	199	97	2774	15.5	70	1	amc hornet			
16	18	21	6	200	85	2587	16	70	1	ford maverick			
17	19	27	4	97	88	2130	14.5	70	3	datsun p1510			
18	20	26	4	97	46	1835	20.5	70	2	volkswagen 1131 deluxe sedan			
19	21	25	4	110	87	2672	17.5	70	2	peugeot 504			
20	23	25	4	104	95	2375	17.5	70	2	saab 99e			

Розбила дані на навчальний та тестовий набори

```
> set.seed(variant)
> test_size=round((2 * redundant / 100) * nrow(Auto_new))
> test_ind=sample(1:nrow(Auto_new), test_size)
> Auto_test=Auto_new[test_ind, ]
> Auto train=Auto new[-test ind, ]
```

Викинула пате. Лінійна модель на основі методу найменших квадратів

```
> Auto_train$name=NULL
> Auto_test$name=NULL
>
> lm_fit=lm(mpg ~ ., data = Auto_train)
> lm_pred=predict(lm_fit, Auto_test)
> lm_mse=mean((lm_pred - Auto_test$mpg)^2)
> lm_mse
[1] 14.12197
```

Модель гребеневої регресії

```
> x_train=model.matrix(mpg ~ ., Auto_train)[, -1]
> y_train=Auto_train$mpg
> x_test=model.matrix(mpg ~ ., Auto_test)[, -1]
> y_test=Auto_test$mpg
>
> set.seed(variant)
> cv_ridge=cv.glmnet(x_train, y_train, alpha = 0)
> ridge_pred=predict(cv_ridge, s = cv_ridge$lambda.min, newx = x_test)
> ridge_mse=mean((ridge_pred - y_test)^2)
> ridge_mse
[1] 13.77018
```

Модель ласо

```
> cv_lasso=cv.glmnet(x_train, y_train, alpha = 1)
> lasso_pred=predict(cv_lasso, s = cv_lasso$lambda.min, newx = x_test)
> lasso_mse=mean((lasso_pred - y_test)^2)
> lasso_mse
[1] 13.93794
```

Модель PCR

```
> pcr_fit=pcr(mpg ~ ., data = Auto_train, scale = TRUE, validation = "CV")
> validationplot(pcr_fit, val.type = "MSEP")
> pcr_ncomp=which.min(pcr_fit$validation$PRESS)
> pcr_pred=predict(pcr_fit, Auto_test, ncomp = pcr_ncomp)
> pcr_mse=mean((pcr_pred - Auto_test$mpg)^2)
> pcr_mse
[1] 14.29458
```


Модель PLS

```
> set.seed(variant)
> pls_fit=plsr(mpg ~ ., data = Auto_train, scale = TRUE, validation = "CV")
> validationplot(pls_fit, val.type = "MSEP")
> pls_ncomp=which.min(pls_fit$validation$PRESS)
> pls_pred=predict(pls_fit, Auto_test, ncomp = pls_ncomp)
> pls_mse=mean((pls_pred - Auto_test$mpg)^2)
> pls_mse
[1] 14.12298
```


Для кожної з моделей оцінила тестову помилку

Завдання 2.

2. Встановивши попередньо seed, що дорівнює значенню змінної variant, використайте функцію rnorm() та згенеруйте предиктор X довжиною n=100 * (1+variant %/% 10) з середнім $\mu=[\text{variant/5}]+1$ та середньоквадратичним відхиленням $\sigma=[(2*\text{variant})^{(1/2)}]+1)$, та вектор залишків є такої ж довжини п з параметрами $\mu=0$ та $\sigma=1$). Виберіть β_0 , β_1 , β_2 і β_3 (попередньо встановивши seed, що дорівнює значенню змінної variant) як реалізації рівномірно розподіленої випадкової величини на відрізку [-10, 10] заокруглені до найближчого цілого та обчисліть

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \varepsilon$$
.

```
> set.seed(variant)
> n = 100 * (1 + variant %/% 10)
> mu = (variant / 5) + 1
> sigma = sqrt(2 * variant) + 1
>
> set.seed(variant)
> x = rnorm(n, mu, sigma)
> eps = rnorm(n, 0, 1)
>
> set.seed(variant)
> b0 = round(runif(1, -10, 10))
> b1 = round(runif(1, -10, 10))
> b2 = round(runif(1, -10, 10))
> b3 = round(runif(1, -10, 10))
```

Для виконання наступних завдань, об'єднала необхідні предиктори в один датафрейм

Використовуючи функцію regsubsets() вибрала найкращу модель методом вибору найкращої підмножини з множини предикторів X,

```
X^2 ,..., X^{10}.

> library(leaps)
>
```

```
> set.seed(variant)
> best_subset_model = regsubsets(y ~ ., data = xy_dataframe, nvmax = 10)
> best_subset_summary = summary(best_subset_model)
> par(mfrow = c(2, 2))
```

Яка модель найкраща за показниками $\,^{C_p}$, ВІС і скорегований $\,^{R^2}$?

```
> set.seed(variant)
> best_subset_model = regsubsets(y ~ ., data = xy_dataframe, nvmax = 10)
> best_subset_summary = summary(best_subset_model)
> par(mfrow = c(2, 2))
> plot(best_subset_summary$cp, xlab = "Number of variables", ylab = "Cp", type = "b", main = "Cp")
> plot(best_subset_summary$cp, xlab = "Number of variables", ylab = "BIC", type = "b", main = "BIC")
> plot(best_subset_summary$adjr2, xlab = "Number of variables", ylab = "Adjusted R2", type = "b", main = "Adjusted R2")
> best_cp = which.min(best_subset_summary$cp)
> best_bic = which.min(best_subset_summary$bic)
> best_adjr2 = which.max(best_subset_summary$djr2)
```


 $_{3a} \; C_{p} \; _{i \; {
m BIC} \; {
m найкраща \; модель \; має 3 \; змінні:}} \; x, \; x^2, \; x^3.$

За скорегованим R^2 , модель з найбільшим R^2 включає ще більше змінних: від x до x^{10} .

Використала методи покрокового вибору вперед та назад та порівняла результати з результатами вибору найкращої підмножини.

```
> step_forward=step(lm(y ~ 1, data = xy_dataframe), scope = ~., direction = "forward") Start: AIC=1127.69 y ~ 1
```

```
> step_backward=step(lm(y ~ ., data = xy_dataframe), direction = "backward")
Start: AIC=29.05
y \sim x + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10
       Df Sum of Sq
                       RSS
                                AIC
        1 0.15 107.46 27.195
- x4
              0.87 108.18 27.864
- x6
        1
<none>
                     107.31 29.052
       -1
              7.10 114.40 33.456
- x9
- x7
       1
              7.57 114.88 33.868
              8.00 115.31 34.242
- x5
        1
              8.47 115.78 34.651
- x10
       1
       1
- x8
               8.52 115.83 34.696
             145.13 252.44 112.599
- x2
        1
             374.85 482.16 177.310
       1
- x
           592.32 699.62 214.537
- x3 1
Step: AIC=27.2
y \sim x + x2 + x3 + x5 + x6 + x7 + x8 + x9 + x10
                        RSS
       Df Sum of Sq
                                AIC
                      107.46 27.195
<none>
- x6
        1
               7.64 115.10 32.063
- x8
        1
               8.81 116.27 33.076
               8.88 116.34 33.136
- x5
        1
- x10 1
               8.94 116.40 33.188
- x9
              9.27 116.73 33.470
       1
- x7
       1
              9.32 116.78 33.513
       1 381.27 488.73 176.664
- x
- x3 1 647.08 754.54 220.094
- x2 1 1188.34 1295.81 274.172
> cat("Cp:\n", coef(best_subset_model, which.min(best_subset_summary$cp)), "\n")
 -6.973545 5.947367 -1.994704 -2.999569
 \verb|cat("BIC:\n", coef(best_subset_model, which.min(best_subset_summary\$bic)), "\n"||
 -6.973545 5.947367 -1.994704 -2.999569
> \mathtt{cat}("\mathtt{R}^2: \mathtt{\n"}, \ \mathtt{coef}(\mathtt{best\_subset\_model}, \ \mathtt{which.max}(\mathtt{best\_subset\_summary} \mathtt{\$adjr2})), \ "\mathtt{\n"})
 -6.948556 5.372283 -2.04455 -2.712351 -0.03782885 0.001977547 0.001737674 -0.0001470506 -2.434344e-05 2.505909e-06
> print(summary(step forward))
Call:
lm(formula = y ~ 1, data = xy dataframe)
Residuals:
                 1Q Median
                                                Max
      Min
                                      30
-1235.79 -81.42 132.57 143.17
                                             749.40
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
 (Intercept) -150.51 27.96 -5.383 4.94e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 279.6 on 99 degrees of freedom
```

```
> print(summary(step backward))
Call:
lm(formula = y \sim x + x2 + x3 + x5 + x6 + x7 + x8 + x9 + x10,
   data = xy dataframe)
Residuals:
    Min 1Q Median 3Q
                                     Max
-2.08356 -0.72361 -0.08313 0.70165 2.78144
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.949e+00 2.121e-01 -32.767 < 2e-16 ***
           5.372e+00 3.006e-01 17.870 < 2e-16 ***
          -2.045e+00 6.481e-02 -31.548 < 2e-16 ***
x3
          -2.712e+00 1.165e-01 -23.280 < 2e-16 ***
          -3.783e-02 1.387e-02 -2.727 0.00768 **
x5
           1.978e-03 7.818e-04 2.529 0.01316 *
           1.738e-03 6.219e-04 2.794 0.00636 **
x7
          -1.471e-04 5.413e-05 -2.716 0.00791 **
x8
          -2.434e-05 8.737e-06 -2.786 0.00650 **
x9
           2.506e-06 9.157e-07 2.737 0.00748 **
x10
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.093 on 90 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared:
F-statistic: 7.203e+05 on 9 and 90 DF, p-value: < 2.2e-16
```

Моделі після покрокового вибору (вперед і назад) дають одну і ту ж фінальну модель у $\sim x$ + x^2 + x^3 + x^5 + x^6 + x^7 + x^8 + x^9 + x^{10}

Моделі за допомогою найкращої підмножини дають різні набори змінних залежно від обраного критерію. У випадку ^{C}p та ВІС модель обирає лише x, x^2 , x^3 , тоді як R^2 включає всі 10 змінних.

Пристосувала модель ласо до згенерованих даних, використовуючи $X,\ X^2$, . . . , X^{10} як предиктори.

```
> x_lasso = model.matrix(y ~ ., data = xy_dataframe)[, -1]
> y_lasso = xy_dataframe$y
> set.seed(variant)
> cv_lasso_gen = cv.glmnet(x_lasso, y_lasso, alpha = 1)
> lasso_pred_gen = predict(cv_lasso_gen, s = cv_lasso_gen$lambda.min, newx = x_lasso)
> lasso_mse_gen = mean((lasso_pred_gen - y_lasso)^2)
> lasso_mse_gen
[1] 73.71023
```

Отримані оцінки коефіцієнтів моделі

```
> lasso_coef = coef(cv_lasso_gen, s = cv_lasso_gen$lambda.min)
> print(lasso coef)
11 x 1 sparse Matrix of class "dgCMatrix"
(Intercept) -10.529006889
           -1.509607325
x2
x3
            -2.649972149
           -0.008811359
x4
           -0.003397106
x6
x7
x8
x9
x10
```

Значущими залишилися лише x^2 , x^3 , x^4 , x^5 , що свідчить про наявність нелінійної залежності.

Найкращою моделлю, як нам показує модель ласо, буде:

$$-1.51 * x^2 - 2.65 * x^3 - 0.0088 * x^4 - 0.0034 * x^5 - 10.53.$$