Automorphic forms and *L*-functions for the unitary group*

Re-TEXed by Seewoo Lee[†]

Stephen Gelbart
Department of Mathematics
Cornell University
Ithaca, New York 14853/USA

and

Ilya Piatetski-Shapiro
Department of Mathematics
Yale University, New Haven, CT. 06520/USA
Tel Aviv University, Ramat-Aviv, Israel

Last updated: October 19, 2023

Introduction

Our purpose is to define and analyze L-functions attached to automorphic cusp forms on the unitary group $G = U_{2,1}$ and a six-dimensional representation

$$\rho: {}^LG \to \mathrm{GL}_6(\mathbb{C})$$

of its *L*-group.

^{*}Notes based on the lectures by S. G. at the University of Maryland Special Year on Lie Group Representations, 1982-83.

[†]seewoo5@berkeley.edu

The motivation for this work is three fold.

Firstly, we use these L-functions to analyze the lifting of cusp forms from $U_{1,1}$ to $U_{2,1}$; here the model for our work is Waldspurger's L-function theoretic characterization of the image of Shimura's map for modular forms of half-integral weight (cf. [Wald]).

A second motivation comes from the need to relate the poles of the L-functions for G, to integrals of cusp forms over cycles coming from $U_{1,1}$. The prototype here is the recent proof of Tate's conjecture for Hilbert modular surfaces due to Harder, Langlands, and Rapaport.

Thirdly, we view this work as a special contribution to the general program of constructing local L and ε factors of Langlands type for representations of arbitrary reductive groups. In [PS1], such a program was sketched generalizing classical methods of Heeke, Rankin–Selberg, and Shimura. Related developments are discussed in [Jacquet], [Novod], [PS2], and [PS3]. For the unitary group $U_{2,1}$ the present paper extends the developments initiated in [PS3].

Contents

Whittaker Models (Ordinary and Generalized)

Some Fourier Expansions and Hypercuspidality

6

Notation

- (i) F is a field (sometimes local, somtimes a global field), E is a quadratic extension of F with Galois involution $z \mapsto \bar{z}$.
- (ii) V is a 3-dimensional vector space over E, with basis $\{\ell_{-1}, \ell_0, \ell_1\}$. $(-, -)_V$ is a Hermitian form on V, with matrix

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

with respect to $\{\ell_{-1}, \ell_0, \ell_1\}$.

(iii) $G = U_{2,1} = U(V)$ is the unitary group for the form $(-,-)_V$. P=parabolic

subgroup stabilizing the isotropic line through $\ell_{-1} = MN$ with

$$M = \left\{ \begin{bmatrix} \delta & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \bar{\delta}^{-1} \end{bmatrix} : \delta \in E^{\times}, \beta \in E^{1} = \{z : z\bar{z} = 1\} \right\}$$

and unipotent radical

$$N = \left\{ \begin{bmatrix} 1 & b & z \\ 0 & 1 & -\bar{b} \\ 0 & 0 & 1 \end{bmatrix} : z, b \in E, z + \bar{z} = -b\bar{b} \right\}.$$

The center of N is

$$Z = \left\{ \begin{bmatrix} 1 & 0 & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} : \bar{z} = -z \right\}$$

Whittaker Models (Ordinary and Generalized)

Some kind of Whittaker model is needed in order to introduce *L*-functions on *G*.

Fix F local (not of characteristic two), and suppose (π, H_{π}) is an irreducible admissible representation of G. Naively, we should look for functionals on H_{π} which transform under N according to a one-dimensional representation. However, since such functionals need not exist in general, and since there are irreducible representations of N which are not 1-dimensional, it is natural to pursue a more general approach.

1.1

Recall N is the maximal unipotent subgroup of G and E is a quadratic extension of F. We fix, once and for all, an element i in E such that $\bar{i}=-i$, so $\Im(z)=(z-\bar{z})/2i$. Regarding E as a 2-dimensional symplectic space over F with skewform $\langle z_1,z_2\rangle=\Im(z_1\overline{z_2})$ we have

$$N = \left\{ \begin{bmatrix} 1 & b & z \\ 0 & 1 & -\bar{b} \\ 0 & 0 & 1 \end{bmatrix} : z, b \in E, z + \bar{z} = -b\bar{b} \right\} \simeq H(E),$$

the Heisenberg group attached to E over F. In particular, N is non-abelian, with commutator subgroup

$$[N,N] = \left\{ \begin{bmatrix} 1 & 0 & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\} = Z,$$

the center of N. The maximal abelian subgroup of N is

$$N' = \left\{ \begin{bmatrix} 1 & b & z \\ 0 & 1 & -b \\ 0 & 0 & 1 \end{bmatrix} \in N : b \in F \right\}.$$

1.2

The irreducible representations of the $\underline{\text{Heisenberg group}}$, and hence those of N, are well known:

(i) σ is 1-dimensional.

In this case, σ must be trivial on

$$Z = [N, N]$$

and define a character of N/Z. So

$$N/Z \simeq \left\{ \begin{bmatrix} 1 & a & 0 \\ 0 & 1 & -\bar{a} \\ 0 & 0 & 1 \end{bmatrix} \right\} \simeq E$$

implies σ corresponds to a character of E, i.e.

$$\sigma = \psi_N \begin{pmatrix} \begin{bmatrix} 1 & a & z \\ 0 & 1 & -\bar{a} \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} = \psi(\mathfrak{I}a)$$

with ψ a character of F.

(ii) σ is infinite-dimensional.

In this case (by the Stone-von Neumann uniqueness theorem), σ is completely determined by its "central" character. In particular, if

$$\sigma\left(\begin{bmatrix} 1 & 0 & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\right) = \psi(\Im z)I$$

for some (additive) character ψ of F, then

$$\sigma = \rho_{\psi} = \operatorname{Ind}_{N'}^{N} \psi_{N'},$$

with $\psi_{N'}$ the character of (the maximal abelian subgroup) N' obtained by trivially extending ψ from Z to N'.

1.3

<u>Definition</u>. By a (generalized) Whittaker functional for (π, H_{π}) we understand N-map from N_{π} to some irreducible representation of (σ, L_{σ}) of N (possibly infinite dimensional).

1.4

Remark. The torus

$$T = \left\{ \begin{bmatrix} \delta & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \bar{\delta}^{-1} \end{bmatrix} : \delta \in E^{\times} \right\}$$

acts by conjugation on N, taking

$$\begin{bmatrix} 1 & b & z \\ 0 & 1 & -\overline{b} \\ 0 & 0 & 1 \end{bmatrix} \quad \text{to} \quad \begin{bmatrix} 1 & \delta b & \delta \overline{\delta} z \\ 0 & 1 & -\overline{\delta b} \\ 0 & 0 & 1 \end{bmatrix}.$$

So if ψ_N denotes the 1-dimensional representation of N corresponding to the fixed character of F as in 1.2 (i), Pontrygin duality for $E \simeq N/Z$ implies that any other 1-dimensional representation is trivial or of the form

$$\psi_N^{\delta}(n) = \psi_N \left(\begin{bmatrix} \delta & & & \\ & 1 & & \\ & & \bar{\delta}^{-1} \end{bmatrix} n \begin{bmatrix} \delta & & & \\ & 1 & & \\ & & \bar{\delta}^{-1} \end{bmatrix}^{-1} \right)$$

for some $\delta \in E^{\times}$.

1.5

If σ is a one-dimensional representation of N of the form ψ_N , a given irreducible admissible representation (π, H_{π}) need <u>not</u> possess a nontrivial ψ_N -Whittaker

functional \mathcal{L} . However, if it does, then by 1.4 it possesses a σ -Whittaker functional for any one-dimensional representation ψ_N^{δ} , given by the formula

$$\mathcal{L}^{\delta}(v) = \mathcal{L}\left(\pi\left(\begin{bmatrix} \delta & & \\ & 1 & \\ & & \bar{\delta}^{-1} \end{bmatrix}\right)v\right), \quad v \in H_{\pi}.$$

In this case, we call (π, H_{π}) non-degenerate. By a well-known theorem of Shalika and Gelfand-Kazhdan (cf. [Sha1]), the space of such σ -Whittaker functionals is one-dimensional. In particular, the corresponding Whittaker models

$$\mathcal{W}(\pi, \psi) = \{ W(g) = \mathcal{L}(\pi(g)v) : v \in H_{\pi} \}$$

are unique.

1.6

$$R = \left\{ \begin{bmatrix} \delta & * & * \\ 0 & \beta & * \\ 0 & 0 & \delta \end{bmatrix} \in P : \delta, \beta \in E^1 \right\} \simeq (E^1 \times E^1) \ltimes N.$$

In particular, each irreducible infinite dimensional representation ρ_{ψ} of N extends to a like representation ρ_{ψ}^{α} of R with α a character of $E^1 \times E^1$.

Theorem (Existence and Uniqueness of Generalized Whittaker Models: [PS3).] Any (π, H_{π}) possesses a ρ_{ψ}^{α} -Whittaker functional for some choice of ρ_{ψ}^{α} ; moreover, the space of such functionals is at most one dimensional.

We shall discuss this result in more detail in the global context of §??.

Some Fourier Expansions and Hypercuspidality

Now F is a global field not of characteristic 2, and π is an automorphic cuspidal representation of $G(\mathbb{A})$ which we suppose realized in some subspace of cusp

forms H_{π} in $L_0^2(G(F)\backslash G(\mathbb{A}))$. To attach an L-function to π , it is useful to take forms f in H_{π} and examine their Fourier coefficients along the maximal unipotent subgroup N. When such coefficients are non-zero, π is non-degenerate, and we are led back to the local Whittaker models of 1.5; in this case, we can (and eventually do) introduce L-functions using Jacquet's generalization of the "Rankin–Selberg method".

On the other hand, if these Fourier coefficients represent zero, then π is <u>hypercuspidal</u>; in this case, looking at Fourier expansions <u>along Z</u> will bring us back to the generalized Whittaker models of 1.6, and ultimately allow us to introduce an *L*-function for π using the so-called "Shimura method".

Henceforth, let us fix a non-trivial character ψ of $F \setminus \mathbb{A}$, and define characters ψ_N and ψ_Z of $N = N(\mathbb{A})$ and $Z = Z(\mathbb{A})$ by

$$\psi_N \begin{pmatrix} \begin{bmatrix} 1 & a & z \\ 0 & 1 & -\bar{a} \\ 0 & 0 & 1 \end{pmatrix} \end{pmatrix} = \psi(\Im a)$$

and

$$\psi_Z \begin{pmatrix} \begin{bmatrix} 1 & 0 & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} = \psi(\Im z).$$

2.1

Fix f in H_{π} . To obtain a Fourier expansion of f "along N", we introduce the familiar ψ -th coefficient

$$W_f^{\psi}(g) = \int_{N(F)\backslash N(\mathbb{A})} f(ng) \overline{\psi_N(n)} \mathrm{d}n.$$

The transitivity of $T(\mathbb{A}) = \left\{ \left[\begin{smallmatrix} \delta & 1 \\ & \bar{\delta}^{-1} \end{smallmatrix} \right] \right\}$ acting on $Z(\mathbb{A}) \backslash N(\mathbb{A})$ implies - as in the local theory - that

$$\begin{split} W_f^{\psi^\delta}(g) &= \int_{N(F)\backslash N(\mathbb{A})} f(ng) \overline{\psi_N^\delta(n)} \mathrm{d}n \\ &= \int_{N(F)\backslash N(\mathbb{A})} f(ng) \psi_N \left(\begin{bmatrix} \delta & & \\ & 1 & \\ & & \bar{\delta}^{-1} \end{bmatrix} n \begin{bmatrix} \delta & & \\ & 1 & \\ & & \bar{\delta}^{-1} \end{bmatrix}^{-1} \right) \mathrm{d}n \\ &= W_f^\psi \left(\begin{bmatrix} \delta & & \\ & 1 & \\ & & \bar{\delta}^{-1} \end{bmatrix} g \right). \end{split}$$

In other words, knowing W_f^{ψ} determines $W_f^{\psi^{\delta}}$ for all ψ^{δ} , $\delta \in E^{\times}$.

However, through $N(F)\backslash N(\mathbb{A})$ is compact, it is <u>not</u> abelian; to obtain a nice Fourier expansion, we must bring into play the compact abelian group $N(F)Z(\mathbb{A})\backslash N(\mathbb{A})$.

2.2

We compute

$$W_f^{\psi}(g) = \int_{N(F)\backslash N(\mathbb{A})} f(ng)\overline{\psi_N(n)} dn$$

$$= \int_{N(F)Z(\mathbb{A})\backslash N(\mathbb{A})} \int_{Z(F)\backslash Z(\mathbb{A})} f(nzg) dz \overline{\psi_N(n)} dn$$

$$= \int_{N(F)Z(\mathbb{A})\backslash N(\mathbb{A})} f_{00}(ng)\overline{\psi_N(n)} dn$$

with

$$f_{00}(g) = \int_{Z(F)\backslash Z(\mathbb{A})} f(zg) dz \tag{1}$$

the <u>constant term</u> (in the Fourier expansion) of f(zg) along Z.

Fix g in $G(\mathbb{A})$. As a function on the <u>compact abelian</u> group $N(F)Z(\mathbb{A})\backslash N(\mathbb{A})$, $f_{00}(ng)$ has a Fourier expansion

$$f_{00}(g) = \sum_{\delta \in E^{\times}} W_F^{\psi^{\delta}}(g) + \int_{N(F)Z(\mathbb{A}) \setminus N(\mathbb{A})} f_{00}(n'g) \mathrm{d}n'. \tag{2}$$

Indeed, the last paragraph says precisely that $W_f^{\psi}(g)$ is the ψ -th Fourier coefficient of $f_{00}(ng)$ along $Z \setminus N \simeq E$. Moreover, the constant term is actually zero since f cuspidal implies

$$\int_{N(F)Z(\mathbb{A})\backslash N(\mathbb{A})} f_{00}(n'g) dn' = \int_{N(F)Z(\mathbb{A})\backslash N(\mathbb{A})} \int_{Z(F)\backslash Z(\mathbb{A})} f(zn'g) dz dn'$$
$$= \int_{N(F)\backslash N(\mathbb{A})} f(ng) dn = 0.$$

2.3

Let $W(\pi, \psi)$ denote the space of ψ -th Fourier coefficients $W_f^{\psi}(g)$, $f \in H_{\pi}$.

Proposition 2.1. The vanishing or nonvanishing of $W(\pi, \psi)$ is independent of ψ ; in particular, $W(\pi, \psi) = 0$ if and only if

$$f_{00}(g) = 0 \quad \forall f \in H_{\pi}.$$

Proof. According to (1) and (2),

$$f_{00}(g) = \sum_{\delta \in E^{\times}} W_f^{\psi^{\delta}}(g)$$

$$= \sum_{\delta \in E^{\times}} W_f^{\psi} \begin{pmatrix} \begin{bmatrix} \delta & & & \\ & 1 & & \\ & & \bar{\delta}^{-1} \end{bmatrix} g \end{pmatrix}$$
(3)

with

$$W_f^{\psi}(g) = \int_{N(F)Z(\mathbb{A})\backslash N(\mathbb{A})} f_{00}(ng) \overline{\psi_N(n)} dn.$$

2.4

Definition 2.2. We call (π, H_{π}) hypercuspidal if $f \in H_{\pi}$ implies $f_{00} = 0$.

Proposition 2.3. Let $L_{0,1}^2$ be the orthogonal complement in L_0^2 of all cusp forms. Then

- (i) $L_{0.1}^2$ has multiplicity 1.
- (ii) each $(\pi, H_{\pi}) \subset L^2_{0,1}$ is non-degenerate, and
- (iii) for any $f \in H_{\pi} \subset L^2_{0,1}$, the constant term

$$f_{00}(g) = \sum_{\delta \in E^{\times}} W_f^{\psi^{\delta}}(g)$$

completely determines f.

Proof. We start with (iii). Suppose f and f' are in H_{π} such that $f_{00} = f'_{00}$. Then $(f - f')_{00} = 0$ implies f - f' = 0 (by the hypothesis $H_{\pi} \in L^2_{0,1}$). This proves (iii). To prove (i) and (ii), suppose there exists $H'_{\pi} \subset L^2_{0,1}$ such that the right regular representation restricted to H'_{π} again realizes π . If $f \in H_{\pi}$ and $f' \in H'_{\pi}$, then

$$f_{00}(g) = \sum_{\delta \in E^{\times}} W_f^{\psi} \begin{pmatrix} \delta & & \\ & 1 & \\ & & \bar{\delta}^{-1} \end{pmatrix} g$$
 (4)

and

$$f_{00}'(g) = \sum_{\delta \in E^{\times}} W_{f'}^{\psi} \left(\begin{bmatrix} \delta & & \\ & 1 & \\ & & \bar{\delta}^{-1} \end{bmatrix} g \right).$$

Note that each W_f^{ψ} (or $W_{f'}^{\psi}$) satisfies the condition $W_f^{\psi}(ng) = \psi(n)W_f^{\psi}(g)$, $n \in N$, i.e. the spaces (W_f^{ψ}) and $W_{f'}^{\psi}$ afford Whittaker models for π . But by §2.3 these spaces are nonzero (which proves (ii)) and by the uniqueness of Whittaker models quoted in §1.5, these spaces coincide. Thus by (4), the spaces (f_{00}) and (f'_{00}) coincide; by (iii) the spaces $H_{\pi} = (f)$ and $H'_{\pi} = (f')$ also coincide, thereby proving (i).

2.5

- **Remark.** (i) It is conjectured (c.f. [Flicker]) that multiplicity one holds for the entire space of cusp forms; however, at the present time, we can prove this only for $L_{0.1}^2$.
- (ii) Hypercuspforms <u>do</u> exist; again, the examples are provided by the Weil representation discussed in §??.
- (iii) Although $W(\pi, \psi) \neq \{0\}$ implies π non-degenerate (in the sense that an abstract functional exists), the converse is not clear. Indeed, the work of [Wald] indicates that characterizing the nonvanishing of a space of Fourier coefficients is a delicate matter.