Phys 359

STATISTICAL MECHANICS

University of Waterloo

Course notes by: TC Fraser Instructor: Michel Gingras

 ${\it tcfraser@tcfraser.com} \\ {\it Version: 1.0}$

Table Of Contents

			Page
1		What is Statistical Mechanics	. 4 . 4
2	Fou	indations	4
	2.1	Essence of Statistical Mechanics	. 4
	2.2	Postulate of Statistical Mechanics	. 5
	2.3	Perspective from Coin Tossing	
	2.4	Stirlings Formula and Gaussian Integrals	. 6
		2.4.1 Differentiation Trick	. 7
		2.4.2 Stirling's Formula	. 7
		2.4.3 Gaussian Integrals	. 8
	2.5	Connections between Thermodynamics and Statistical Mechanics	. 9

TC Fraser Page 2 of 9

Disclaimer

These notes are intended to be a reference for my future self (TC Fraser). If you the reader find these notes useful for yourself in any capacity, please feel free to use these notes as you wish, free of charge. However, I do not garantee their complete accuracy and mistakes are likely present. If you notice any errors please email me at tcfraser@tcfraser.com, or contribute directly at https://github.com/tcfraser/course-notes. If you are the professor of this course and you've managed to stumble upon these notes and would like to make larges changes or additions, email me please.

Latest versions of all my course notes are available at www.tcfraser.com.

TC Fraser Page 3 of 9

Winter 2016 Statistical Mechanics 2 FOUNDATIONS

1 Introduction

1.1 What is Statistical Mechanics

Statistical Mechanics is thearea of Physics interested in systems with a large number of degress of freedon n. Note that these variables can be interacting or not.

There are two distinct class of Statistical Mechanics: equilibrium and non-equilibrium.

The Statistical part of Statistical Mechanics implies that it is inherently a study of probabilities and probability distributions. These laws must still remain fully consistent with physical laws.

Typically, systems are analyzed on a microscopic level. For a system of particles with charges $\{q_i\}$ and their positions $\{\vec{r}_i\}$, the dynamics are governed by the forces acting on each particle,

$$\vec{F}_i = m_i \vec{a}_i = \sum_{i \neq j} \frac{q_i q_j}{4\pi\epsilon_0} \frac{1}{|\vec{r}_{ij}|^2}$$

But does labelling the particles really matter? For the case of $N \to \infty$, the global phenomenology is of interest.

1.2 History

1738 Daniel Bernoulli

- molecules moving in container, they collide with one another
- collisions with walls explains pressure

1850 Gay Lussac, Joule, Thomson (Lord Kelvin), Carnot

1859 James Clerk Maxwell

$$-D(\nu) \sim e^{-\frac{\nu^2}{2k_BT}}$$

1884 Josiash Willard Gibbs

ensemble averaging

1900 Planck, Einstein, Bose, Pauli, Fermi, Dirac

Today Frontier is in non-equilibrium Statistical Mechanics

- cold atoms
- biology
- quantum information

2 Foundations

2.1 Essence of Statistical Mechanics

Laws of Thermodynamics:

Pros	Cons
• great because they are totally general	• does not tell us how to compute anything
• relationship's (Maxwell's realtions) between c_p, c_v, α, κ	• does not tell us what entropy is

The 2nd law of Thermodynamics reveals dU = dQ - dW where dQ = TdS.

TC Fraser Page 4 of 9

But what is S and what does it **physically** mean? Boltzman reveals the relation:

$$S = k_B \ln(\Omega)$$

Which we will come back to.

2.2 Postulate of Statistical Mechanics

There is only one postulate of Statistical Mechanics:

For an isolated system in equlibrium, all microstates accessible to the system are equally probable.

In order to digest this postulate, we will require some definitions.

Definitions:

- system
 - part of the universe we care about
 - only weakly coupled to the rest of the universe
 - the dynamics/mechanics are dominated by the internal degrees of freedom and forces
- isolated
 - idealization
 - eliminates all external influences; no force, no energy/heat flux and no particle flux
 - equantities such as the energy, number of particles and colume assumed constant forever $\mathrm{d}U,\mathrm{d}N,\mathrm{d}V=0$
- \bullet equilibrium
 - everything is no-longer changing
- microstate
 - a complete/total description of everything at the microscopic level $\{\vec{r}_i, \vec{p}_i\}$ for each i
- macrostate
 - a decription at the macroscopic level in accordance with the external constraints
 - $-U, P, T, \bar{M}$
- equally probable
 - we are dealing with probabilities and statistics
 - microstates are somehow describing probabilistically the properties at the macroscopic level
- accessible
 - consistancy with the macroscopic constaints imposed by the conservation laws (fixed energy, fixed number of particles)

Posulate Follow-up:

We assume that the observed/realized macrostate is the one with the most microstates.

TC Fraser Page 5 of 9

2.3 Perspective from Coin Tossing

Consider 4 coins to assed many, many times. What are the microstates describing this system?

Macrostate Label	Macro	ostate		Micro	ostate		Thermo Probability	True Probability
	N_H	N_T	A	В	\mathbf{C}	D		
1	4	0	Н	Н	Н	Н	1	1/16
2	3	1	Н	Н	Н	Т	4	4/16
			Н	Η	${ m T}$	Η		
			Η	${ m T}$	Η	Η		
			${ m T}$	Η	Η	Η		
3	2	2	Н	Н	Τ	Т	6	6/16
			Н	${ m T}$	${ m T}$	Η		
			Τ	${ m T}$	Η	Η		
			Τ	Η	Η	Τ		
			Н	${ m T}$	Η	Τ		
			Τ	Η	${ m T}$	Η		
4	1	3	Т	Τ	Т	Н	4	4/16
			Τ	${ m T}$	Η	Τ		
			${ m T}$	Η	${ m T}$	${ m T}$		
			Η	${ m T}$	${ m T}$	${ m T}$		
5	0	4	Т	Т	Т	Τ	1	1/16

We note that the most probable macrostate 3 is the one with the most microstates 6.

How do we deal with very large N, N_H, N_T in order to locate the most likely macrostate? First likes get a general expression for Ω were Ω is the number of microstates. Since $N = N_H + N_T$ and N is considered fixed, there is only one free parameter N_H (taken by choice). Thus Ω can be considered a function of N_H and nothing else.

Recall from probability that the form for Ω is given by,

$$\Omega = \frac{N!}{N_H! \left(N - N_H\right)!}$$

The most likely macrostate is given when Ω (the number of microstates) is maximized. This means that we are interested in finding values of N_H , namely N_H^* where,

$$\left. \left(\frac{\mathrm{d}\Omega}{\mathrm{d}N_H} \right|_{N_H = N_H^*} = 0 \qquad \left. \left(\frac{\mathrm{d}^2\Omega}{\mathrm{d}N_H^2} \right|_{N_H = N_H^*} > 0 \right.$$

In order to do this, we will need to explore some mathematics ideas.

2.4 Stirlings Formula and Gaussian Integrals

Consider the integral,

$$I = \int_{0}^{\infty} x^N e^{-x} \mathrm{d}x$$

This can be evaluated using integration by parts,

$$I = N \int_{0}^{\infty} x^{N-1} e^{-x} dx = \dots = N!$$
 (2.1)

TC Fraser Page 6 of 9

2.4.1 Differentiation Trick

However, integration by parts N times on (2.1) is annoying. There is a nice trick. Notice that,

$$\int_{0}^{\infty} e^{-ax} dx = \left(-\frac{1}{a} e^{-ax} \Big|_{0}^{\infty} = \frac{1}{a}$$

$$(2.2)$$

One can treat a as a dummy variable, and examine (2.2)'s derivative with respect to a,

$$\frac{\partial}{\partial a} \int_{0}^{\infty} e^{-ax} dx = \int_{0}^{\infty} \frac{\partial}{\partial a} e^{-ax} dx = \int_{0}^{\infty} -xe^{-ax} dx = \frac{\partial}{\partial a} \left(\frac{1}{a}\right) = -\frac{1}{a^2}$$

The reason for doing this is to simplify the process of (2.1).

If one explores the N^{th} derivative of (2.2) with respect to a, you will derive the expression,

$$\left[(-1)^N \frac{\partial^N}{\partial a^N} \int_0^\infty e^{-ax} dx \right]_{a=1} = N!$$
 (2.3)

The $(-1)^N$ term is a result of the alternating sign induced by bringing down a -x each time you take a derivative.

2.4.2 Stirling's Formula

Looking back at the integral (2.1),

$$\int_{0}^{\infty} x^N e^{-x} dx = N! \tag{2.4}$$

How can we approximate N! using the left had side of (2.4)? To derive Stirling's Formula, we need to make a change of variables $x = N + \sqrt{Ny}$. Substituting into (2.4) gives,

$$N! = \int_{0}^{\infty} \sqrt{N} e^{-N} e^{N \ln(N + \sqrt{N}y)} e^{-\sqrt{N}y} dy$$

The approximation begins by expanding the logarithm for large N.

$$\ln\left(N + \sqrt{N}y\right) = \ln\left(N\left[1 + \frac{y}{\sqrt{N}}\right]\right) = \ln\left(N\right) + \ln\left(1 + \frac{y}{\sqrt{N}}\right)$$

Take $\epsilon = \frac{y}{\sqrt{N}} \ll 1$ and apply taylor series,

$$\ln\left(1+\epsilon\right) \approx \epsilon - \frac{\epsilon^2}{2}$$

Thus,

$$N! \approx \sqrt{N}e^{-N}N^N \int_{-\sqrt{N}}^{\infty} e^{-\frac{y^2}{2}} dy$$

The lower bound can be approximated as ∞ since N is so large,

$$N! \approx \sqrt{N}e^{-N}N^N \int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} dy$$

TC Fraser Page 7 of 9

Notice the remaining integral term. It is called the *Gaussian Integral* and has solution (see Gaussian Integrals),

$$\int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} dy = \sqrt{\frac{\pi}{a}}$$
(2.5)

Thus letting a = 1/2,

$$N! \approx \sqrt{2\pi N} e^{-N} N^N \tag{2.6}$$

Equation (2.6) is known as *Stirling's Formula*. However, there is a much more useful form of Stirling's Formula. It is obtained by taking the logarithm of both sides,

$$\ln(N!) \approx \left(N + \frac{1}{2}\right) \ln(N) - \left(N - \underbrace{\frac{1}{2} \ln(2\pi)}_{\text{small compared to large } N}\right)$$

$$\ln(N!) \approx N \ln N - N \tag{2.7}$$

Note that the remaining N is not dropped. This is because for $N \sim 10^{23}$, $N \ln N - N$ and $N \ln N$ differ by about 2%.

Now we can apply this to the problem of maximizing Ω (which is equivalent to maximizing $\ln \Omega$) because the logarithm is monotonically increasing.

$$0 = \frac{\partial \ln \Omega}{\partial N_H} = \frac{\partial}{\partial N_H} \left[\ln \left(\frac{N!}{N_H! (N - N_H)!} \right) \right]$$

Through some manipulation, and applying (2.7), one obtains the expected result,

$$N_H = \frac{N}{2}$$

2.4.3 Gaussian Integrals

Before continuing, we should take a moment to explore how (2.5) is solved. Let,

$$I_x = \int_{-\infty}^{\infty} e^{-ax^2} \mathrm{d}x$$

Here comes the trick. Multiply I_x by itself and switch from rectangular coordinates to polar coordinates,

$$I_x I_y = \int_{-\infty}^{\infty} e^{-ax^2} dx \int_{-\infty}^{\infty} e^{-ay^2} dy$$

$$I^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-a(x^{2}+y^{2})} dxdy$$

Where we take $\mathbb{R}^2(x,y) \mapsto \mathbb{R}^2(r,\phi)$

$$I^2 = \int_0^{2\pi} \int_0^\infty re^{-ar^2} \mathrm{d}r \mathrm{d}\phi$$

Which reveals that $I^2 = \pi/a$. Thus,

TC Fraser Page 8 of 9

$$I = \sqrt{\frac{\pi}{a}}$$

2.5 Connections between Thermodynamics and Statistical Mechanics

Consider a lattice of Cu²⁺ atoms. In a lattice the Cu²⁺ atoms are distinguishable because they have unique locations. Now apply an external magnetic field.

$$H_{\mathrm{zeaman}} = -\vec{\mu} \cdot \vec{B}$$

Recall that $\vec{u} = g\mu_B \vec{s}$ has units J/T where T is tesla. Where for an electron,

$$\mu_B = \frac{e\hbar}{2m} = 9 \times 10^{-24} \,\text{JT}^{-1} \qquad g \approx 2$$

For $\vec{B} = B\hat{z}$, $H_{\text{zeaman}} = 2\mu_B B s_z \equiv b s_z$. The splitting of the two spin states $s_z = \pm 1$ for B = 1 T has characteristic temperature of,

$$\frac{H_{\rm zeaman}}{k_B} = \frac{\varepsilon}{k_B} = \frac{10 \times 10^{-23} \,\text{J}}{1.4 \times 10^{23} \,\text{JK}^{-1}} \approx 0.6 \,\text{K}$$

Now consider N electrons subject to the field \vec{B} where there are N_+ spins "up" and N_- spins "down". This is completely analogous to the coin flipping example. The total energy of the system is given by,

$$U = -N_{-}\varepsilon + N_{+}\varepsilon$$

Not that $N = N_+ + N_-$ and thus,

$$\frac{U}{N} = \varepsilon - 2\varepsilon \frac{N_{-}}{N}$$

Constraining U and using the substitution,

$$\frac{N_{-}}{N} = \frac{1-x}{2}$$
 $\frac{N_{+}}{N} = \frac{1+x}{2}$

Then the microstate measure is given by,

$$\Omega = \frac{N!}{N_+! N_-!}$$

Becomes (after some manipulation as using (2.7))

$$\ln \Omega = -N \left[\left(\frac{1+x}{2} \right) \ln \left(\frac{1+x}{2} \right) + \left(\frac{1-x}{2} \right) \ln \left(\frac{1-x}{2} \right) \right]$$

Now recall that for fixed volume dV = 0,

$$\frac{1}{T} = \left(\frac{\partial S}{\partial U}\right)_V$$

But since U depends only on x, we can write.

$$\frac{1}{T} = \left(\frac{\partial S}{\partial x}\right) \left(\frac{\partial x}{\partial U}\right)$$

Thus reveals a slight connection between S the entropy and Ω through x in this example. Further analysis with motivate Boltzman's equation,

$$S = k_B \ln \Omega + S_0$$

TC Fraser Page 9 of 9