

Contrôle Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

(35)

Exercice 1.

Questions de cours (4 points – pas de points négatifs)

Choisissez la ou les bonnes réponses :

- 1. Le théorème de Millman vient de :
 - a. La loi des nœuds

- 2. Quelle est l'unité de la capacité C d'un condensateur ?
 - a. Ohm (Ω)
 - (b.) Farad (F)

- c. Henry (H)
- d. Mathieu (M)
- 3. Quelle est l'unité de l'inductance L d'une bobine ?
 - a. Ohm (Ω)
 - b. Farad (F)

- c. Henry (H)
- d. Mathieu (M)
- 4. En régime permanent continu (DC), on peut remplacer une bobine par :
 - a. un condensateur

c. un fil

b. un interrupteur ouvert

d. une résistance

Soit le circuit suivant, où E est une source de tension continue. Le condensateur est initialement déchargé. A t=0, on ferme l'interrupteur K

- 5. Que vaut $u_{\mathcal{C}}$ juste après avoir fermé K.
- (a) 0

b. *E*

c. $\frac{E}{R}$

- d. R.E
- **6.** Que vaut $u_{\mathcal{C}}$ quand le régime permanent est atteint.
- a. 0

b.) *E*

c. $\frac{E}{R}$

d. R.E

Exercice 2. Les régimes transitoires (10 points)

Soit le circuit suivant. L'interrupteur est ouvert depuis suffisamment longtemps pour que tous les $\it E$ courants soient nuls.

A t = 0, on ferme l'interrupteur K.

1. Remplir le tableau suivant :

	i	i_R	i_L	u_L
$t = 0^{+}$	-0	長	n	1
$t \to \infty$	EC	0	ER	0

- 2. On souhaite déterminer l'équation de la tension $u_L(t)$ aux bornes de la bobine. Pour cela, on va chercher à simplifier le circuit, en utilisant les équivalences Thévenin/Norton.
 - a. Déterminer E_{th} et R_{th} afin que le circuit de la figure 2 soit équivalent à celui de la figure 1.

Figure 2

b. En utilisant les résultats précédents (schéma Figure 2), établir l'équation différentielle qui décrit l'évolution de u_L au cours du temps, et déterminer alors l'expression de $u_L(t)$. Vous donnerez cette équation en fonction de E, R et L. Quelle est la constante de temps τ de ce circuit ?

D'après le schéma tigure 2 et la mailles: -Ex+UL+Rx iz=0 Nous derivons: duc(+) + PH × dic(+) = 0 On u= Ldat) => dict = uc => duc(f) + Pith xul = 0 => du(t) + 1 x u = 0 La constante, de temps de ce cincuit est: $\mathcal{C} = \frac{L}{2L}$ and $C = \frac{2L}{D}$ Mous avers dere: du (+) + 1 x u =0 La solution de cette equation homogoine est: On a (+=0), $u_1=E=0$ soit $u_1=E=0$ done $u_1=E=0$ soit $u_2=E=0$

53)

Exercice 3. Théorème de Millman (6 points)

1. Soit le montage ci-contre. En utilisant le théorème de $_{2E}$ Millman, déterminer l'expression de la tension U.

2. Soit le montage ci-contre. En utilisant le théorème de Millman, déterminer l'expression de la tension U.

