Detectando retinopatia diabética utilizando Deep Learning

João Carlos Pandolfi Santana

Outubro 2018

1 Introdução

A retinopatia diabética é a principal causa de cegueira na população em idade ativa do mundo desenvolvido. Estima-se que a condição afete mais de 93 milhões de pessoas.

A necessidade de um método abrangente e automatizado de triagem de retinopatia diabética tem sido reconhecida há muito tempo, e os esforços anteriores fizeram um bom progresso usando classificação de imagem, reconhecimento de padrões e aprendizado de máquina. Com fotos de olhos como entrada, o objetivo deste trabalho é criar um novo modelo, idealmente resultando em potencial clínico realista.

As motivações para este projeto são duas:

- O processamento de imagem e classificação eficiente de imagens tem sido um interesse pessoal e objeto de estudo há anos, além de classificação a análise de dados em grande escala e auxílio a exames médicos.
- O processo normal de avaliação e diagnóstico é relativamente lento, consistindo em analise de imagens pelos médicos e agendamento da consulta de acompanhamento. Ao processar imagens em tempo real, o sistema permitiria uma redução de custos e agilização do diagnóstico e tratamento do paciente.

2 Projeto

A pesquisa consiste em desenvolver um sistema, utilizando Redes Neurais (*Deep Learning*), que classifique imagens de fundo de olho e detecte *retinopatia diabética*. De forma que consiga agilizar o diagnóstico do paciente e iniciar o tratamento mais rápido possível.

Outra vantagem do produto gerado pela pesquisa, é a redução de custos e aumento de eficiência em diagnósticos. Com isto, melhorando o atendimento do Hospital e/ou Clínica que utilize o sistema.

2.1 Produto

O produto gerado poderá ser comercializado em forma de serviço, onde a imagem será aplicada para diagnóstico e receberá o resultado em poucos segundos. Podendo assim, ser cobrado por imagem ou diagnóstico efetuado, aumentando a renda do hospital e instituição.

Como o sistema utilizará o conceito de aprendizado contínuo supervisionado, a cada diagnóstico bem sucedido, aumentará progressivamente a sua base de dados e ficará mais assertivo.

A interface de utilização será disponibilizada por um serviço web acessível por uma página de internet, onde o usuário terá que efetuar um cadastro (a ser discutido o processo) para utilizar o sistema. Após o cadastro, poderá carregar as imagens do exame para serem analisadas pelo sistema. Após o processamento, o resultado é exibido em uma página de internet e pode ser feito o download no formato pdf. Provavelmente não será abordada neste trabalho em questão, em vista deste requisito fugir do propósito da disciplina.

2.1.1 Ferramentas

Ferramentas necessárias para desenvolvimento:

- Rede Neural na estrutura Deep Learning (Aprendizado Profundo)
- Processamento de imagem
 - Filtragem de ruídos
 - Normalização de cores
 - Segmentação
- Análise de dados

3 Metodologia

Metodologia aplicada na pesquisa

3.1 Obtenção dos dados

A obtenção da massa crítica de dados será feita utilizando bases de dados abertas disponíveis na internet, assim como bases de dados cedidas por instituições de pesquisa.

Os dados de validação e adaptação a realidade atual, irão ser obtidos pelos alunos da *Emescam* em parceria com o professor doutor em oftalmologia *Bruno Valbon*, onde serão utilizados para validação e adaptação da ferramenta a realidade do *Hospital Santa Casa de Misericórdia do Espirito Santo*.

3.1.1 Estruturação dos dados

Os dados coletados, serão categorizados por idade e diagnóstico real feito por especialista. Assim como por doenças oculares prévias que o paciente desenvolveu durante a vida.

3.2 Tratamento dos dados

Após a categorização dos dados obtidos, a separação em dois pacotes será aplicada da seguinte forma: *Treino* e *Teste*. Onde serão utilizados para treinamento e regulação dos resultados obtidos.

3.2.1 Filtragem de ruído

Remoção de possíveis ruídos gerados pela captação da imagem, sejam eles provenientes do aparelho ou do processo de captação.

3.2.2 Normalização das cores

Diferentes aparelhos podem gerar tons e escalas de cores variados, isso faz com que dificulte a curva de aprendizado do algoritmo, assim a normalização da escala e tons será feita, potencializando assim o resultado.

3.2.3 Segmentação

Seleção automática das regiões de interesse do algoritmo. Essas regiões serão utilizadas para treinamento e direcionamento do aprendizado.

Figure 1: Imagem antes do processamento.

Figure 2: Imagem normalizada após o processamento

3.3 Modelagem da rede

Será feita a modelagem da rede neural para adaptação ao problema.

3.4 Treinamento e validação

Nesta etapa será feito o treinamento do algoritmo e validação dos resultados.

3.5 Acurácia

Será comparado os resultados obtidos do sistema com diagnósticos feitos por especialistas, assim, podemos medir a eficiência e taxa de acerto real da ferramenta desenvolvida

4 Conclusão

O projeto será desenvolvido com o intuito de obter um produto final que sirva para gerar recurso para a *Santa Casa* e *Emescam*, assim como aumentar a velocidade e eficiência no diagnóstico.