Announcement

- Homework 1: search, CSP, adversarial search
 - Available in Blackboard -> Homework
 - Due: March 8, 11:59pm

- Programming Assignment 1A
 - Submission at AutoLab
 - Due: Mar 5, 11:59pm

Constraint Satisfaction Problems

AIMA Chapter 6

Structure

Problem Structure

- Extreme case: independent subproblems
 - Example: Tasmania and mainland do not interact
- Independent subproblems are identifiable as connected components of constraint graph
- Suppose a graph of n variables can be broken into subproblems of only c variables:
 - Worst-case solution cost is O((n/c)(d^c)), linear in n
 - E.g., n = 80, d = 2, c = 20
 - 2⁸⁰ = 4 billion years at 10 million nodes/sec
 - $(4)(2^{20}) = 0.4$ seconds at 10 million nodes/sec

Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d²) time
 - Compare to general CSPs, where worst-case time is O(dⁿ)
- This property also applies to probabilistic reasoning (later)
- An example of the relation between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children

- Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(X_i),X_i)
- Assign forward: For i = 1 : n, assign X_i consistently with Parent(X_i)
- Runtime: O(n d²)

Tree-Structured CSPs

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each X→Y was made consistent at one point and Y's domain could not have been reduced thereafter (because Y's children were processed before Y)

- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
- Easy to prove
- Why doesn't this algorithm work with cycles in the constraint graph?
- Note: we'll see this basic idea again with Bayes' nets

Cutset Conditioning

Nearly Tree-Structured CSPs

- Cutset: a set of variables s.t. the remaining constraint graph is a tree
- Cutset conditioning: instantiate (in all ways) the cutset and solve the remaining tree-structured CSP
 - Cutset size c gives runtime O((d^c) (n-c) d²), very fast for small c

Cutset Conditioning

Choose a cutset

Instantiate the cutset (all possible ways)

Compute residual CSP for each assignment

Solve the residual CSPs (tree structured)

Finding Cutset

Find the smallest cutset for the graph below.

- Finding the smallest cutset is NP-hard
- But there are efficient approximation algorithms

Iterative Improvement

Iterative Algorithms for CSPs

- Idea:
- ea: "Correct"

 Take a complete assignment with unsatisfied constraints
 - Reassign variable values to minimize conflicts

- Algorithm: While not solved,
 - Variable selection: randomly select any conflicted variable
 - Value selection: min-conflicts heuristic:
 - Choose a value that violates the fewest constraints

re-assign to the

fenost anflicts

Example: 4-Queens

- States: 4 queens in 4 columns (4⁴ = 256 states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: c(n) = number of attacks

Performance

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)!
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

Local Search

Local Search

- Goal: identification, optimization
- Local search: improve a single option until you can't make it better
- State: a complete assignment
- Successor function: local changes

Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

Simple, general idea:

Start wherever

Repeat: move to the best neighboring state

If no neighbors better than current, quit

What's good about this approach?

Simple, fast

What's bad about it?

Hill Climbing Diagram

Hill Climbing Quiz

Starting from X, where do you end up?

Starting from Y, where do you end up?

Starting from Z, where do you end up?

Beam Search

Like greedy hill climbing search, but keep K states at all times:

Greedy Search

Beam Search

- The best choice in MANY practical settings
- Optimal?

Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - Pick a random move
 - Always accept an uphill move
 - Accept a downhill move with probability e ΔΕ/Τ
 - But make the probability smaller (by decreasing T) as time goes on
- Theoretical guarantee
 - If T decreased slowly enough, will converge to optimal state!
- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all

Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
 - Keep the best (or sample) N states at each step based on a fitness function
 - Pairwise crossover operators, with optional mutation to give variety

Summary: CSPs

- CSPs are a special kind of search problem:
 - States are partial assignments
 - Goal test defined by constraints
- Basic solution: backtracking search
- Speed-ups:
 - Filtering
 - Forward Checking, Arc Consistency
 - Ordering
 - MRV, LCV
 - Structure
 - Tree structured, Cutset conditioning
- Iterative min-conflicts (local search) is often effective in practice

