```
In [26]: import os
    import pandas as pd
    import spotipy
    import spotipy.util as util
    from spotipy.oauth2 import SpotifyClientCredentials

In [11]: %capture
    %run credentials.ipynb

In [12]: MY_SPOTIFY_ID = "11156353201"

In [13]: def get_token(scope, user_id):
        return util.prompt_for_user_token(user_id, scope)
```

What have I been listening to recently

```
In [14]: token = get_token('user-top-read', MY_SPOTIFY_ID)

if token:
    sp = spotipy.Spotify(auth=token)
    sp.trace = False

    artists = sp.current_user_top_artists(time_range='short_term', limit=30)
    tracks = sp.current_user_top_tracks(time_range='short_term', limit=30)

else:
    print("not found")

In [15]: df_artists = pd.DataFrame(artists['items'], columns=['name', 'genres', 'uri']

In [16]: from collections import ChainMap

df_tracks = pd.DataFrame(tracks['items'], columns=['artists', 'name'])
    concatenated_df_tracks_artists = list(map(lambda x: dict(ChainMap(*x)), df_tr
    tracks_artists_names = [x['name'] for x in concatenated_df_tracks_artists]
    df_tracks_artists_names = pd.DataFrame(tracks_artists_names, columns=['artist
    df_tracks_names = pd.DataFrame(tracks_i'items'], columns=['name'])
```

In [17]: df_tracks = df_tracks.join(df_tracks_artists_names)
 df_tracks.drop('artists', axis=1)

Out[17]:

	name	artist
0	Voice in Headphones	Mount Eerie
1	Measurement Doesn't Change The System At All	Eli Keszler
2	Exercises in Futility I	Mgła
3	Mechanical Bull	Stella Donnelly
4	AS Too Wrong	Amnesia Scanner
5	Leo	Holiday Sidewinder
6	Rattlesnake	King Gizzard & The Lizard Wizard
7	Audio Track 01	Delroy Edwards
8	Circlesong 1, Early Chant	Tomasz Chyła Quintet
9	Love Time Feel	Hen Ogledd
10	Dla Ciebie	DAVICII
11	MALAMENTE - Cap.1: Augurio	ROSALÍA
12	All Is Fair In Love And Kai Whiston	Kai Whiston
13	Love In The Time Of Lexapro	Oneohtrix Point Never
14	Boys Will Be Boys	Stella Donnelly
15	Lost and Found (Lost Mix)	Objekt
16	Dark Entries	Bauhaus
17	Water Copy	Hiroshi Yoshimura
18	Audio Track 02	Delroy Edwards
19	Mean to Me	Stella Donnelly
20	Plants	Crumb
21	Na Koniec Wszechświata I Jeszcze Dalej!	Vysoké Čelo
22	Exercises in Futility V	Mgła
23	Recently Played	Crumb
24	AS Another Life	Amnesia Scanner
25	Cedars Of Lebanon	U2
26	Computer World 2 - 2009 Remastered Version	Kraftwerk
27	Not The Time	SASAMI
28	zrobilo sie mnie dwoch	duy gebord
29	Z Białasami	Syny

What features of songs I prefer comparing to other users

the global data comes from <u>kaggle</u> (<u>https://www.kaggle.com/geomack/spotifyclassification/version/1)</u>

```
In [18]: %matplotlib inline
    import itertools as it
    import numpy as np
    import seaborn as sb

import time
    import operator as op

from sklearn import tree
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.model_selection import train_test_split
    from matplotlib import pyplot as plt
```

In []: | token = get token('user-library-read', MY SPOTIFY ID)

```
if token:
             sp = spotipy.Spotify(auth=token)
             results = sp.current user saved albums(limit=50)
         else:
             print("not found")
         items = results['items']
         while results['next']:
             results = sp.next(results)
             items.extend(results['items'])
         albums id = list(map(lambda x: x.get('album', {}).get('id'), items))
         tracks = []
         for album_id in albums_id:
                 tracks.append(sp.album tracks(album id)['items'])
             except:
                 time.sleep(5)
                 tracks.append(sp.album_tracks(album_id)['items'])
         tracks = list(it.chain.from iterable(tracks))
         tracks ids = [track['id'] for track in tracks]
         track grouper = it.groupby(enumerate(tracks ids), key=lambda pair: pair[0]//5
         track_chunks = [list(map(op.itemgetter(1), group)) for _, group in track_grou
         features = list(it.chain.from iterable(sp.audio features(chunk) for chunk in
         #pd.Dataframe(features)
         #pd.to_csv('my_data.csv')
In [19]:
         my_data = pd.read_csv('my_data.csv')
         my data = my data.drop(['analysis url', 'id', 'uri', 'type', 'track href', 't
         global data = pd.read csv('data.csv')
         global data = global data.drop(columns=['time signature', 'song title', 'arti
In [20]: maxs = my data.max()
         for column in my data.columns:
             my_data[column] = my_data[column].div(maxs[column])
         for column in global data.columns:
             global data[column] = global data[column].div(maxs[column])
```

```
In [21]: loudness_min = my_data['loudness'].min()
    my_data['loudness'] = (my_data['loudness'] + abs(loudness_min)) * 0.1
    global_data['loudness'] = (global_data['loudness'] + abs(loudness_min)) * 0.1

In [22]: my_data_means = pd.DataFrame(my_data.mean(axis=0)).T
    global_data_means = pd.DataFrame(global_data.mean(axis=0)).T

    my_data_means['owner'] = 'me'
    global_data_means['owner'] = 'kaggle users'
    means = my_data_means.append(global_data_means)
```

```
In [23]: melted = means.melt('owner', var_name='columns', value_name='values')
    sb.catplot(x='columns', y='values', hue='owner', data=melted, kind='bar', hei
    plt.xticks(rotation=90, fontsize=12)
    plt.xlabel('Music Features', fontsize=15)
    plt.ylabel('Value', fontsize=15)
    plt.legend(fontsize=12)
    plt.show()
```



```
In [27]: | sb.set(rc={'figure.figsize':(22,15)})
         plt.subplot(331)
         sb.distplot(my data['danceability'], label='me')
         sb.distplot(global data['danceability'], color='r', label='kaggle users')
         plt.xlabel('danceability', fontsize=12)
         plt.legend(fontsize=12)
         plt.subplot(332)
         sb.distplot(my_data['loudness'], label='me')
         sb.distplot(global data['loudness'], color='r', label='kaggle users')
         plt.xlabel('loudness', fontsize=12)
         plt.legend(fontsize=12)
         plt.subplot(333)
         sb.distplot(my data['instrumentalness'], label='me')
         sb.distplot(global data['instrumentalness'], color='r', label='kaggle users')
         plt.xlabel('instrumentalness', fontsize=12)
         plt.legend(fontsize=12)
         plt.subplot(334)
         sb.distplot(my data['liveness'], label='me')
         sb.distplot(global data['liveness'], color='r', label='kaggle users')
         plt.xlabel('liveness', fontsize=12)
         plt.legend(fontsize=12)
         plt.subplot(335)
         sb.distplot(my data['valence'], label='me')
         sb.distplot(global data['valence'], color='r', label='kaggle users')
         plt.xlabel('valence', fontsize=12)
         plt.legend(fontsize=12)
         plt.subplot(336)
         sb.distplot(my data['acousticness'], label='me')
         sb.distplot(global data['acousticness'], color='r', label='kaggle users')
         plt.xlabel('acousticness', fontsize=12)
         plt.legend(fontsize=12)
         plt.subplot(337)
         sb.distplot(my data['tempo'], label='me')
         sb.distplot(global_data['tempo'], color='r', label='kaggle users')
         plt.xlabel('tempo', fontsize=12)
         plt.legend(fontsize=12)
         plt.subplot(338)
         sb.distplot(my data['speechiness'], label='me')
         sb.distplot(global data['speechiness'], color='r', label='kaggle users')
         plt.xlabel('speechiness', fontsize=12)
         plt.legend(fontsize=12)
         plt.subplot(339)
         sb.distplot(my data['energy'], label='me')
         sb.distplot(global_data['energy'], color='r', label='kaggle users')
         plt.xlabel('energy', fontsize=12)
         plt.legend(fontsize=12)
```

plt.tight_layout()
plt.show()

