

119148 – Prática de Circuitos Eletrônicos 1

Experimento 02: Leis de Kirchhoff

1) Objetivos

O objetivo deste experimento é a prática do método dos nós e das malhas para análise de circuitos eletrônicos. São abordadas as resoluções de circuitos utilizando estes métodos, bem como a montagem dos circuitos correspondentes e sua verificação experimental através da medição das grandezas elétricas consideradas nas resoluções.

2) Estudo pré-laboratorial

2.1) Utilizando as Leis de Kirchhoff, resolva os circuitos A e B (Figuras 2.1a e 2.1b). Você deverá determinar as tensões elétricas nos pontos indicados em função das fontes e dos valores de resistores. Obtenha ainda as correntes em R_1 e R_4 para cada caso.

Figura 2.1: Circuitos com fontes de corrente e fontes de tensão independentes

- 2.2) Utilize o método nodal para calcular as tensões e o método dos laços para calcular as correntes em todos os resistores do circuito C (Fig. 2.2).
- 2.3) Obtenha uma fórmula para a resistência equivalente entre os pontos A e B do circuito C. Dica: retire do circuito a fonte de alimentação e o resistor R_1 . Em seguida, utilize uma conversão entre associação delta (triângulo) para estrela.
- 2.4) Fazendo $R_2 = R_3$ e $R_4 = R_5$ no circuito C, determine quais modificações deveriam ser feitas no layout do circuito, <u>sem modificar_os_valores_dos_componentes_utilizados</u>, para que a tensão se anule sobre o resistor R_6 (ou seja, para obter uma configuração análoga a uma *Ponte de Wheatstone*). Dica: faça i_{R6} igual a zero em suas equações e verifique a relação que surge entre os resistores restantes.

R1 A R2 R6 R4 R5 R5 R3

Figura 2.2: Circuito C

2.5) Simule os circuitos A, B e C (Figuras 2.1a, 2.1b e 2.2) e obtenha os valores correspondentes de tensão e corrente usando o QUCS 0.0.18. Inclua no estudo pré-laboratorial os desenhos do circuito simulado juntamente com as medições realizadas. Para os circuitos das Figuras 2.1a e 2.1b, assuma $R_1=R_4=2.2\mathrm{k}\Omega$, $R_2=R_6=1\mathrm{k}\Omega$, $R_3=R_5=4.7\mathrm{k}\Omega$, $V_1=12\mathrm{V}$, $V_2=20\mathrm{V}$, $I_1=12\mathrm{m}$ e $I_2=20\mathrm{m}$ A. Para o circuito da Figura 2.2, assuma $R_1=2.2\mathrm{k}\Omega$, $R_2=R_3=1\mathrm{k}\Omega$, $R_4=R_5=4.7\mathrm{k}\Omega$, $R_6=100\Omega$ e $V_1=10\mathrm{V}$. Em seguida, substitua os mesmos valores nas fórmulas encontradas nos itens 2.1 e 2.2. Complete as tabelas a seguir com seus resultados teóricos e simulados.

Circuito	$V_A(V)$	$V_A(V)$	$V_B(V)$	$V_B(V)$	$V_C(V)$	$V_C(V)$	$V_D(V)$	$V_D(V)$	i(A)	$i_{R1}(A)$	$i_{R4}(A)$	$i_{R4}(A)$
Circuito	(teórico)	(simulado)	(teórico)	(simulado)								
Α												
В												

Circuito C											
$V_{R1}(V)$	$V_{R1}(V)$	$V_{R2}(V)$	$V_{R2}(V)$	$V_{R3}(V)$	$V_{R3}(V)$	$V_{R4}(V)$	$V_{R4}(V)$	$V_{R5}(V)$	$V_{R5}(V)$	$V_{R6}(V)$	$V_{R6}(V)$
(teórico)	(simulado)										
$i_{R1}(A)$	$i_{R1}(A)$	$i_{R2}(A)$	$i_{R2}(A)$	$i_{R3}(A)$	$i_{R3}(A)$	$i_{R4}(A)$	$i_{R4}(A)$	$i_{R5}(A)$	$i_{R5}(A)$	$i_{R6}(A)$	$i_{R6}(A)$
(teórico)	(simulado)										

Prática de Circuitos Eletrônicos 1 Experimento 02: Leis de Kirchhoff 1/3

2.6) Ainda em sua simulação do circuito C, retire a fonte de alimentação e o resistor R_1 e meça a resistência equivalente	entre
os pontos A e B. Em seguida, substitua os mesmos valores na fórmula encontrada no item 2.3 e complete a seguir.	

$$R_{AB}\left(te \, \acute{o} rico\right) = \underline{\hspace{1cm}} \left[\mathbf{k} \Omega \right] \quad R_{AB}\left(simulado\right) = \underline{\hspace{1cm}} \left[\mathbf{k} \Omega \right]$$

2.7) Refaça a simulação do circuito C, rearranjando os resistores de forma que i_{R6} seja nula. Inclua no estudo pré-laboratorial os desenhos do circuito simulado juntamente com as medições realizadas.

3) Experimento

- 3.1) Monte o circuito da Fig. 2.1b. Utilize $R_1=R_4=2.2\mathrm{k}\Omega,\ R_2=R_6=1\mathrm{k}\Omega,\ R_3=R_5=4,\ 7\mathrm{k}\Omega,\ V_1=12\mathrm{V}$ e $V_2=20\mathrm{V}$. Anote os valores reais dos resistores utilizados. Meça as tensões sobre os pontos indicados e as correntes em R_1 e R_4 , comparando com os valores teóricos e simulados do seu estudo pré-laboratorial. Justifique eventuais discrepâncias encontradas e, se necessário, refaça seus cálculos teóricos.
- 3.2) Monte o circuito da Fig. 2.2. Utilize $R_1=2.2\mathrm{k}\Omega$, $R_2=R_3=1\mathrm{k}\Omega$, $R_4=R_5=4$, $7\mathrm{k}\Omega$, $R_6=100\Omega$ e $V_1=10\mathrm{V}$ e tome cuidado especial para não inverter os pares R_2R_3 e R_4R_5 na montagem. Anote os valores reais dos resistores utilizados. Meça as tensões e correntes em todos os resistores, comparando com os valores teóricos e simulados do seu estudo pré-laboratorial. Justifique eventuais discrepâncias encontradas e, se necessário, refaça seus cálculos teóricos.
- 3.3) Desconecte a fonte de tensão e o resistor R_1 do circuito C e meça a resistência entre os pontos A e B. Compare com os valores obtidos em teoria e simulação, justificando sua análise.
- 3.4) Rearrange os resistores do circuito C de forma a anular a corrente em R_6 . Meça a corrente neste resistor. Compare com os valores obtidos em teoria e simulação, justificando sua análise.

Prática de Circuitos Eletrônicos 1 Experimento 02: Leis de Kirchhoff 2/3

119148 – Prática de Circuitos Eletrônicos 1 – Folha de Dados

Turma:			Data:/_				
Aluno:		Matrícula:					
		Experi	mento 02:	Leis de Ki	rchhoff		
Duagadina anta O.1. Tana			D				
Procedimento 3.1: Tensô				_			
$R_1 = \underline{\qquad} [k\Omega] R_2 =$	=[kΩ	$R_3 = \underline{\hspace{1cm}}$	$[k\Omega] R_4$	=[k	$[k\Omega] R_5 =$		$=$ [k Ω]
G:	$V_A(V)$	$V_B(V$	$V_C(V)$	$V_D(V)$	$i_{R1}(A$	$i_{R4}(A)$)
Circ	(experimer	ntal) (experime	ntal) (experime	ntal) (experime	ental) (experime	ntal) (experimen	ntal)
E							_
		1	1		'	1	
Procedimento3.2: Tensõ	es e corrente:	s no circuito (C				
$R_1 = [k\Omega] R_2 =$	- [k0	$R_0 =$	[kO] R.	_ [lz	$O[R_r =$	[kO] R _o	$=$ $[k\Omega]$
1t ₁ =[Kat] 1t ₂ =	[10.0	L] 163 —	[K21] 104	[K	1t ₀ —	[K22] 100	[Kd b]
			Circu	uito C			
	$V_{R1}(V)$	$V_{R2}(V)$	$V_{R3}(V)$	$V_{R4}(V)$	$V_{R5}(V)$	$V_{R6}(V)$	
	(experimental)	(experimental)	(experimental)	(experimental)	(experimental)	(experimental)	
	$i_{R1}(A)$	$i_{R2}(A)$	$i_{R3}(A)$	$i_{R4}(A)$	$i_{R5}(A)$	$i_{R6}(A)$	
	(experimental)	(experimental)	(experimental)	(experimental)	(experimental)	(experimental)	
Procedimento 3.3: Resis	tência entre c	os pontos A e	B do circuito	С			
$R_{AB} (experimental) = 1$	[kO	!]					
,	-	-					
Procedimento 3.4: Corre	nte sobre R_6	após rearrar	ijo dos compo	onentes do ci	rcuito C		
$i_{R6}(experimental) = _$	[mA]						

Prática de Circuitos Eletrônicos 1 Experimento 02: Leis de Kirchhoff 3/3