Superpixel

14. November 2016

1 Einleitung

- Superpxiel: Menge von n Pixeln $S_i = \{t_1, \ldots, t_n\}$, wobei $t_i \in \{1, \ldots, N\}$ jeweils einen Pixel beschreibt und die Menge von S_i räumlich verbunden ist
- Menge von Superpixeln: $S = \{S_1, \dots, S_m\}$, sodass $S_i \cap S_j = \emptyset$ für alle i, j und $\cup_i S_i = \bigcup_j t_j$
- Nachbarschaft: $(S_i, S_j) \in \mathcal{N}$, wenn S_i und S_j räumlich verbunden sind
- ⇒ Superpixel bieten eine Möglichkeit, die Größe des Problems zu minimieren
- $\bullet \Rightarrow$ Superpixel haben aber folglich einen bestimmten Fehlergrad
- ullet \Rightarrow finde den besten Ausgleich zwischen Größe und Fehlergrad

2 Lernen von Superpixeln

3 Umwandlung in eine Graph-Repräsentation

- jeder Superpixel bildet einen Knoten im Graphen
- es existiert eine Kante zwischen den Knoten, wenn die entsprechenden Superpixel benachbart sind oder die Distanz zwischen Superpixeln unter eine Schranke ϵ fällt (müsste aber durch die Distanz der Kanten abgedenkt sein im CNN auf Graphen)

• Knotenattribute:

- Farbe (RGB)
- Schwerpunkt/Position
- Größe, d.h. Anzahl Pixel (prozentual?)
- Ausdehnunng/Form \Rightarrow z.B. über vereinfachten Polygonzug
- minimales gedrehtes Hüllrechteck

• Kantenattribute:

- Distanz zu den Schwerpunkten der Superpixel