

### МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

"МИРЭА - Российский технологический университет"

### РТУ МИРЭА

Институт Исскуственного ИнтеллектаКафедра общей информатики

### ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 8

Реализация заданной логической функции от четырех переменных на мультиплексорах 16-1, 8-1, 4-1, 2-1

## по дисциплине «ИНФОРМАТИКА»

| Выполнил студент группы ИКБО-32-22  |                    | Таир Фатима    |  |
|-------------------------------------|--------------------|----------------|--|
| Приняла ассистент                   |                    | Корчемная А.И. |  |
| Практическая<br>работа<br>выполнена | « <u>»</u> 2024 г. |                |  |
| «Зачтено»                           | « <u>»</u> 2024 г. |                |  |

# СОДЕРЖАНИЕ

| 1 ПОСТАНОВКА ЗАДАЧИ                                                              | 3  |
|----------------------------------------------------------------------------------|----|
| 2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ                                                    | 4  |
| 2.1 Восстановленная таблица истинности                                           | 4  |
| 2.2 Схемы, реализующие логическую функцию намультиплексорах требуемыми способами | 5  |
| 3 ВЫВОДЫ                                                                         | 11 |
| 4 СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ                                               | 12 |

### 1 ПОСТАНОВКА ЗАДАЧИ

Логическая функция от четырех переменных задана в 16-ричной векторной форме - 78BD <sub>16</sub>. Восстановить таблицу истинности. По таблице истинности реализовать в лабораторном комплексе логическую функцию на мультиплексорах следующими способами:

- используя один мультиплексор 16-1;
- используя один мультиплексора 8-1;
- используя минимальное количество мультиплексоров 4-1;
- используя минимальную комбинацию мультиплексоров 4-1 и 2-1;
- протестировать работу схем и убедиться в правильности их работы.

## 2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ

### 2.1 Восстановленная таблица истинности

 $F(a,b,c,d) = 78BD_{16}$ 

Преобразуем ее в двоичную запись:  $0111\ 1000\ 1011\ 1101_2$  - получили столбец значений логической функции, который необходим для восстановления полной таблицы истинности (табл. 1).

Таблица 1 – Таблица истинности для функции F

| a | В | C | d | F |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |

# 2.2 Схемы, реализующие логическую функцию намультиплексорах требуемыми способами

Реализуем функцию в лабораторном комплексе, используя один мультиплексор 16-1 (рис. 1).



Рисунок 1 – Схема, на мультиплексоре 16-1

Реализуем функцию, используя мультиплексоры 8-1 возьмем в качестве адресных переменных три старшие переменные нашей функции, т.е. а, b, c. Тогда пары наборов, на которых эти переменные будут иметь одинаковое значение, будут располагаться в соседних строчках таблицы истинности и поэтому можно будет легко увидеть, как значение логической функции для каждой пары наборов соотносится со значением переменной d. Таблица 2 отображает «сжатую» таблицу истинности.

Таблица 2 - Сжатая таблица истинности для функции F

| a | b | c | F  |
|---|---|---|----|
| 0 | 0 | 0 | d  |
| 0 | 0 | 1 | 1  |
| 0 | 1 | 0 | đ  |
| 0 | 1 | 1 | 0  |
| 1 | 0 | 0 | -d |
| 1 | 0 | 1 | 1  |
| 1 | 1 | 0 | 1  |
| 1 | 1 | 1 | d  |

Выполним реализацию заданной логической функции при помощи мультиплексора 8-1 (рис. 2).



Рисунок 2 — Схема, на мультиплексоре 8-1

Реализуем функцию, используя мультиплексоры 4-1 разобьем исходную таблицу истинности на зоны ответственности между операционными мультиплексорами, а заодно посмотрим, нельзя ли в некоторых случаях обойтись вообще без операционного мультиплексора (см. табл. 3).

Таблица 3 - Разбиение исходной таблицы истинности на зоны ответственности для потенциальных операционных мультиплексоров

| a | В | Примечание                           |
|---|---|--------------------------------------|
| 0 | 0 | мультиплексор действительно нужен    |
| 0 | 1 | мультиплексор действительно не нужен |
| 1 | 0 | мультиплексор действительно нужен    |
| 1 | 1 | мультиплексор действительно нужен    |

Как видно из табл. 3, в четырех случаях требует реализации операционного мультиплексора. С учетом только что сказанного, схема логической функции на минимальном количестве мультиплексоров 4-1 будет такой, как показано на рис. 3. Тестирование подтвердило правильность работы схемы.



Рисунок 3 — Схема, на минимальном количестве мультиплексоров 4-1

Реализуем логическую функцию, используя минимальную комбинацию мультиплексоров 4-1 и 2-1. Из табл. 3 выпишем отдельно 4 фрагмента таблицы истинности, за которые данный мультиплексор отвечает (см. табл. 4 - 8).

Таблица 4 - Таблица истинности для фрагмента когда «ab» равно 00

| c | d | F |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

Из таблицы 4 видно, что когда «с» равно 0, то функция равна «d», а когда «с» равно 1, то функция равна 1. Значит, переменную «с» можно рассматривать как адресную для мультиплексора 2-1, а «d» и 1 будут поданы на его информационные входы.

Таблица 5 - Таблица истинности для фрагмента когда «ab» равно 01

| c | d | F |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |

Из таблицы 5 видно, что когда «с» равно 0, то функция равна  $\bar{d}$ , а когда «с» равно 1, то функция равна 0. Значит, переменную «с» можно рассматривать как адресную для мультиплексора 2-1, а 0 и « $\bar{d}$ » будут поданы на его информационные входы.

Таблица 6 - Таблица истинности для фрагмента, когда «ab» равно 10

| c | d | F |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

Из таблицы 6 видно, что когда «с» равно 0, то функция равна «d», а когда «с» равно 1, то функция равна 1. Значит, переменную «с» можно рассматривать как адресную для мультиплексора 2-1, а 1 и «d» будут поданы на его информационные входы.

Таблица 7 - Таблица истинности для фрагмента, когда «ab» равно 11

| c | d | F |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

Из таблицы 7 видно, что когда «с» равно 0, то функция равна «1», а когда «с» равно 1, то функция равна «d». Значит, переменную «с» можно рассматривать как адресную для мультиплексора 2-1, а 1 и «d» будут поданы на его информационные входы.

В результате получим схему, изображенную на рис. 4.



Рисунок 4 — Схема, на основе минимальной комбинации мультиплексоров 4-1 и 2-1

### 3 ВЫВОДЫ

По заданной логической функции от четырех переменных в 16-ричной векторной форме: восстановлена таблица истинности; по таблице истинности реализована в лабораторном комплексе логическую функцию на мультиплексорах следующими способами:

- используя один мультиплексор 16-1;
- используя один мультиплексора 8-1;
- используя минимальное количество мультиплексоров 4-1;
- используя минимальную комбинацию мультиплексоров 4-1 и 2-1;
- протестирована работа схем и подтверждена их правильность.

### 4 СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

- 1. Смирнов С.С., Карпов Д. А. Информатика: Методические указания по выполнению практических работ / Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА Российский технологический университет» / -М., 2020. 102 с.
- 2. Карпов Д.А., Воронов Г.Б., Смирнов С.С. Лекции по информатике для 1-го курса всех направлений института ИТ / Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА Российский технологический университет» / -М., 2021.
- 3. Файлы реализации (PW8.mux16-1.circ, PW8.mux8-1.circ, PW8.mux4-1.circ, PW8.mux4-2-1(2) .circ) : <a href="https://github.com/Fatiprogramist/s1">https://github.com/Fatiprogramist/s1</a>