Name: Roll Number: Department:

Program: BTech / MTech TA / MTech RA / PhD (Tick one)

Al5090: STOCHASTIC PROCESSES

Quiz 5

DATE: 15 APRIL 2025

Question	1	2	Total
Marks Scored			

 $\mbox{Fix a probability space } (\Omega, \mathscr{F}, \mathbb{P}). \mbox{ Assume that all random variables appearing in the problems below are defined w.r.t. } \mathscr{F}. \\$

- 1. Consider a random walk on the integer line \mathbb{Z} with IID uniform $\{\pm 1\}$ step size at every time instant, that starts at 0.
 - (a) **(1 Mark)**Classify the states of the random walk as transient, positive recurrent, or null recurrent.
 - (b) **(2 Marks)**If P denotes the TPM of the random walk, identify a left eigenvector of P corresponding to the eigenvalue $\lambda = 1$.

Name: Roll Number: Department:

Program: BTech / MTech TA / MTech RA / PhD (Tick one)

2. (2 Marks)

Consider a game in which a biased coin $C \sim \text{Ber}(0.9)$ is tossed repeatedly and independently. At the start of the game, you are given exactly 2 lives. Each toss of the coin results in the following outcomes: if the coin lands heads, you gain one life, up to a maximum of 3 lives. In particular, if you already have 3 lives and the coin lands heads, your lives remain unchanged. Every time the coin lands tails, you lose a life. The game continues until you lose all your lives. Determine the probability that the game terminates without you ever reaching the state of 3 lives at any point during the gameplay.