

中华人民共和国国家标准

GB/T 39414.2—2020

北斗卫星导航系统空间信号接口规范 第2部分:公开服务信号 B2a

Interface specification for signal in space of BeiDou navigation satellite system— Part 2: Open service signal B2a

2020-11-19 发布 2021-06-01 实施

目 次

		N	
	前言		
Ī		ii	
	1	范围	··· 1
4	2 ;	规范性引用文件	··· 1
ć	3 :	术语和定义、缩略语·····	··· 1
		3.1 术语和定义	
	3	3.2 缩略语	
4	4 :	北斗系统概述	
		l.1 空间星座 ····································	
		上內工工 1.2 坐标系统 ·······	_
		1.3 时间系统	
ŗ		信号特性	··· 3
,		5.1 信号结构 ····································	
		5.2 信号调制	
		5.3 逻辑电平 ····································	_
		5.4 极化方式	
	5	5.5 载波相位噪声	··· 5
	5.	5.6 杂散	··· 5
	5.	5.7 相关损耗	
	5.	5.8 数据/码—致性	
	5.	5.9 信号—致性	
		5.10 地面接收功率电平	
(6	测距码特性	··· 6
	6.	5.1 测距码结构 ······	
	6.	5.2 B2a 信号测距码 ····································	
	6.	5.3 非标准码	· 14
7	7 .	导航电文结构 ·····	· 14
	7.	7.1 导航电文概述	· 14
		7.2 B-CNAV2 导航电文 ····································	
8	3 .	导航电文参数和算法····	· 21
	8	3.1 测距码编号	· 21
	8.	3.2 信息类型	
	8.	3.3 系统时间参数	
	8.	3.4 电文数据版本号	
	8.	3.5 钟差参数	
	8.	3.6 群延迟修正参数	· 24
			Ι

GB/T 39414.2—2020

8.7	星历参数	
8.8	电离层延迟改正模型参数	
8.9	中等精度历书 ······	
8.10	简约历书	
8.11	地球定向参数	35
8.12	BDT-UTC 时间同步参数 ······	36
8.13	BGTO 参数 ······	38
8.14	卫星健康状态	38
8.15	卫星完好性状态标识	39
8.16	空间信号精度指数	
8.17	空间信号监测精度指数	40
9 符合	合性验证方法	40
9.1	概述	40
9.2	信号特性验证方法 ······	40
9.3	测距码特性验证方法 ······	40
9.4	导航电文结构验证方法 ······	40
9.5	导航电文参数算法验证方法 ······	41
附录 A	(资料性附录) 多进制 LDPC 编译码方法及示例 ····································	42

前 言

GB/T 39414《北斗卫星导航系统空间信号接口规范》分为 4 个部分:

- ——第1部分:公开服务信号 B1C;
- ——第2部分:公开服务信号 B2a;
- ——第3部分:公开服务信号 B1I;
- ——第4部分:公开服务信号 B3I。
- 本部分为 GB/T 39414 的第 2 部分。
- 本部分按照 GB/T 1.1-2009 给出的规则起草。
- 本部分由中央军委装备发展部提出。
- 本部分由全国北斗卫星导航标准化技术委员会(SAC/TC 544)归口。

本部分起草单位:中国卫星导航工程中心、中国航天标准化研究所、北京卫星导航中心、中国航天科技集团公司第五研究院、中国科学院微小卫星创新研究院、华中科技大学、北京航空航天大学、清华大学、中国航天电子技术研究院。

本部分主要起草人:宿晨庚、高为广、卢鋆、阮航、王维嘉、泉浩芳、高扬、王威、王梦丽、唐祖平、黄勤、姚铮、麻智超、董海青、陆新颖。

引 言

北斗卫星导航系统分为北斗一号、北斗二号和北斗三号三个建设发展阶段。北斗卫星导航系统目前已发布的公开服务信号包括 B1I、B2I、B3I、B1C 和 B2a。其中,B1I、B3I 信号在北斗二号和北斗三号的中圆地球轨道(MEO)卫星、倾斜地球同步轨道(IGSO)卫星和地球静止轨道(GEO)卫星上播发,提供公开服务;B2I 信号在北斗二号所有卫星上播发,提供公开服务,在北斗三号卫星上将被 B2a 信号取代;B1C、B2a 信号在北斗三号中圆地球轨道(MEO)卫星和倾斜地球同步轨道(IGSO)卫星上播发,提供公开服务。

GB/T 39414 的本部分主要定义了北斗系统空间星座和用户终端之间公开服务信号 B2a 的相关内容,包括空间信号射频特性、测距码、导航电文结构、导航电文参数和用户算法等,可作为北斗卫星导航产品设计、研制及应用的重要依据。

北斗卫星导航系统空间信号接口规范 第2部分:公开服务信号 B2a

1 范围

GB/T 39414 的本部分规定了北斗卫星导航系统(以下简称北斗系统)空间星座和用户终端之间公开服务信号 B2a 的信号特性、导航电文结构及用户算法等。

本部分适用于使用 B2a 信号的卫星导航产品的研制、生产和检验。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 39267 北斗卫星导航术语

3 术语和定义、缩略语

3.1 术语和定义

GB/T 39267 界定的术语和定义适用于本文件。

3.2 缩略语

下列缩略语适用于本文件。

AIF:系统告警标识(Accuracy Integrity Flag)

BDCS:北斗坐标系(BeiDou Coordinate System)

BDGIM:北斗全球电离层延迟修正模型(BeiDou Global Ionospheric delay correction Model)

BDS:北斗卫星导航系统(BeiDou Navigation Satellite System)

BGTO: 北斗时与其他 GNSS 系统时的偏差(BDT-GNSS Time Offset)

BPSK:二进制相移键控(Binary Phase Shift Keying)

CGCS2000:2000 中国大地坐标系(China Geodetic Coordinate System 2000)

CRC:循环冗余校验(Cyclic Redundancy Check)

DIF:电文完好性标识(Data Integrity Flag)

ECI:地心惯性(坐标系)(Earth Centered Inertial)

EOP:地球定向参数(Earth Orientation Parameters)

GEO:地球静止轨道(Geostationary Earth Orbit)

GF: 伽罗瓦域(Galois Field)

GLONASS:格洛纳斯卫星导航系统(Global Navigation Satellite System)

GNSS:全球卫星导航系统(Global Navigation Satellite System)

GPS:全球定位系统(Global Positioning System)

HOW:周内小时计数(Hours Of Week)

GB/T 39414.2-2020

ICD:接口控制文件(Interface Control Document)

IERS:国际地球自转参考系服务(International Earth Rotation and Reference Systems Service)

IGSO:倾斜地球同步轨道(Inclined GeoSynchronous Orbit)

IODC:钟差参数版本标识(Issue of Data, Clock)

IODE:星历参数版本标识(Issue of Data, Ephemeris)

IRM: IERS 参考子午面(IERS Reference Meridian)

IRP: IERS 参考极(IERS Reference Pole)

LDPC:低密度奇偶校验(Low Density Parity Check)

LSB:最低有效位(Least Significant Bit)

MEO:中圆地球轨道(Medium Earth Orbit)

MJD:约化儒略日(Modified Julian Date)

MSB:最高有效位(Most Significant Bit)

NTSC:国家授时中心(National Time Service Center)

PRN: 伪随机噪声(Pseudo-Random Noise)

RHCP:右旋圆极化(Right-Hand Circular Polarization)

RMS:均方根(Root Mean Square)

SIF:信号完好性标识(Singal Integrity Flag)

SISA:空间信号精度(Singal in Space Accuracy)

SISAI:空间信号精度指数(Singal in Space Accuracy Index)

SISMA:空间信号监测精度(Singal in Space Monitoring Accuracy)

SISMAI:空间信号监测精度指数(Singal in Space Monitoring Accuracy Index)

SOH:小时内秒计数(Seconds of Hour)

TEC: 总电子含量(Total Electron Content)

TECu:总电子含量单位(Total Electron Content unit)

UT:世界时(Universal Time)

WN:整周计数(Week Number)

4 北斗系统概述

4.1 空间星座

北斗全球系统标称空间星座由 3 颗 GEO 卫星、3 颗 IGSO 卫星和 24 颗 MEO 卫星组成,并视情部署在轨备份卫星。GEO 卫星轨道高度 35 786 km,分别定点于东经 80°、110.5°和 140°; IGSO 卫星轨道高度 35 786 km,轨道倾角 55° ; MEO 卫星轨道高度 21 528 km,轨道倾角 55° 。

4.2 坐标系统

北斗系统采用北斗坐标系(BDCS),北斗坐标系的定义符合 IERS 规范,与 CGCS2000 定义一致(具有完全相同的参考椭球参数),具体定义如下:

- a) 原点、轴向及尺度定义包括:
 - 1) 原点位于地球质心;
 - 2) Z轴指向 IERS 定义的参考极(IRP)方向;
 - 3) X 轴为 IERS 定义的参考子午面(IRM)与通过原点且同 Z 轴正交的赤道面的交线;
 - 4) Y 轴与 $Z \setminus X$ 轴构成右手直角坐标系;
 - 5) 长度单位是国际单位制(SI)米。

b) 参考椭球定义:BDCS 参考椭球的几何中心与地球质心重合,参考椭球的旋转轴与 Z 轴重合。BDCS 参考椭球定义的基本常数见表 1。

表 1 BDCS 参考椭球定义的基本常数

序号	参数	定义
1	1 长半轴 a=6 378 137.0 m	
2	地心引力常数(包含大气层)	μ =3.986 004 418×10 ¹⁴ m ³ /s ²
3	扁率	f=1/298.257 222 101
4	地球自转角速度	$\Omega_{ m e} = 7.292 \ 115 \ 0 imes 10^{-5} \ { m rad/s}$

4.3 时间系统

北斗系统的时间基准为北斗时 (BDT)。BDT 采用国际单位制 (SI) 秒为基本单位连续累计,不闰秒,起始历元为 2006 年 1 月 1 日协调世界时 (UTC) 00 时 00 分 00 秒。BDT 通过 UTC(NTSC) 与国际 UTC 建立联系,BDT 与国际 UTC 的偏差保持在 50 ns 以内(模 1 s)。BDT 与 UTC 之间的闰秒信息在导航电文中播报。

5 信号特性

5.1 信号结构

B2a 信号的载波频率、调制方式及符号速率见表 2。

表 2 B2a 信号结构

信号	信号分量	载波频率/MHz	调制方式	符号速率/sps
B2a	数据分量 B2a_data	1 176 45	BPSK(10)	200
DZa	导频分量 B2a_pilot	1 176.45	BPSK(10)	0

5.2 信号调制

采用功率归一化的复包络形式来描述信号调制方式。假设一个调制信号的复包络表达见公式(1):

$$s_X(t) = s_{X1}(t) + js_{X2}(t)$$
(1)

式中:

 $s_X(t)$ ——复包络基带信号;

 $s_{X1}(t)$ ——复包络的实部,代表信号的同相分量;

i —— 虚数单位;

 $s_{X2}(t)$ — 复包络的虚部,代表信号的正交分量。

 $s_X(t)$ 基带信号形式,描述了调制信号在载波调制之前所真正包含的信号结构与信息内容。该调制信号也可以表示为带通信号见公式(2):

$$S_X(t) = \sqrt{2P_X} \left[s_{X1}(t) \cos(2\pi f_X t) - s_{X2}(t) \sin(2\pi f_X t) \right]$$
(2)

式中:

 $S_X(t)$ ——带通信号;

 P_X ——信号功率;

f_x ——信号载波频率。

 $S_X(t)$ 完整地表达了一个经载波调制后的带通信号。因此,基带信号 $S_X(t)$ 和带通信号 $S_X(t)$ 是同一个信号的两种表达方式,二者可以相互转换。B2a 信号的复包络可以表示为公式(3):

式中:

 $s_{\text{B2a data}}(t)$ —数据分量,由导航电文数据 $D_{\text{B2a data}}(t)$ 和测距码 $C_{\text{R2a data}}(t)$ 调制产生;

 $s_{\text{B2a_pilot}}(t)$ ——导频分量,仅包括测距码 $C_{\text{B2a_pilot}}(t)$ 。

数据分量与导频分量的功率比为 1:1,二者均采用 BPSK(10)调制方式。两分量的数学表达式见公式(4)和公式(5):

$$s_{\text{B2a_data}}(t) = \frac{1}{\sqrt{2}} D_{\text{B2a_data}}(t) \cdot C_{\text{B2a_data}}(t) \qquad \cdots \qquad (4)$$

$$s_{\text{B2a_pilot}}(t) = \frac{1}{\sqrt{2}} C_{\text{B2a_pilot}}(t) \qquad \cdots \qquad (5)$$

数据分量中 $D_{B2a data}(t)$ 的数学定义见公式(6):

521C

$$D_{\text{B2a_data}}(t) = \sum_{k=-\infty}^{\infty} d_{\text{B2a_data}} [k] p_{T\text{B2a_data}}(t - kT_{\text{B2a_data}}) \qquad \cdots (6)$$

式中:

d_{B2a data}——B2a信号的导航电文数据码;

$$p_T(t) = \begin{cases} 1, & 0 \leq t < T \\ 0, & \text{其他} \end{cases}$$
,是宽度为 T 的矩形脉冲函数;

T_{B2a_data}——相应的数据码片宽度。

 $C_{\text{B2a_data}}(t)$ 和 $C_{\text{B2a_pilot}}(t)$ 测距码的数学表达式见公式(7)和公式(8):

$$C_{\text{B2a_data}}(t) = \sum_{n=-\infty}^{\infty} \sum_{k=0}^{N_{\text{B2a_data}}-1} c_{\text{B2a_data}} [k] p_{T_{\text{c_B2a}}}(t - (N_{\text{B2a_data}}n + k) T_{\text{c_B2a}}) \quad \cdots (7)$$

$$C_{\text{B2a_pilot}}(t) = \sum_{n=-\infty}^{\infty} \sum_{k=0}^{N_{\text{B2a_pilot}}-1} c_{\text{B2a_pilot}} \left[k \right] p_{T_{\text{c_B2a}}}(t - \left(N_{\text{B2a_pilot}} n + k \right) T_{\text{c_B2a}}) \quad \cdots (8)$$

式中:

 c_{B2a_data} 和 c_{B2a_pilot} ——数据分量和导频分量的测距码序列(取值为±1);

 $N_{\rm B2a_data}$ 和 $N_{\rm B2a_pilot}$ ——对应分量的测距码码长,其值为主码码长与子码码长的乘积,数据分量为 $10~230\times5$,导频分量为 $10~230\times100$;

 $T_{cB2a} = 1/R_{cB2a}$ ——B2a 信号的测距码码片宽度;

 $R_{c B2a} = 10.23 \text{ Mbps}$ —B2a 信号的测距码速率。

B2a 信号的分量组成,以及各分量的调制方式、相位关系和功率比见表 3。

表 3 B2a 信号调制特性

分量	调制方式	相位关系	功率比
$s_{ m B2a_data}(t)$	BPSK(10)	0	1/2
$s_{ m B2a_poilot}(t)$	BPSK(10)	90	1/2

5.3 逻辑电平

调制信号的逻辑电平与信号电平之间的对应关系见表 4。

表 4 逻辑电平与信号电平之间的映射关系

逻辑电平	信号电平
1	-1.0
0	+1.0

5.4 极化方式

卫星发射信号为右旋圆极化(RHCP)。

5.5 载波相位噪声

未调制载波的相位噪声谱密度应满足单边噪声带宽为 10 Hz 的三阶锁相环的载波跟踪精度达到 0.1 rad(RMS)。

5.6 杂散

卫星发射的杂散信号不超过-50 dBc。

5.7 相关损耗

由星上载荷失真导致的相关损耗不超过 0.6 dB。

5.8 数据/码一致性

每个数据符号的边沿与码片的边沿对齐,周期性的测距码第一个码片的起始时刻与数据符号位起始时刻对齐。每个子码的边沿与主码的边沿对齐,主码第一码片起始时刻与子码码片起始时刻对齐。

5.9 信号一致性

任意信号分量间伪码相位互差不超过 10 ns。

5.10 地面接收功率电平

当卫星仰角大于 5° ,在地球表面附近的接收机右旋圆极化天线为 0 dBi 增益时,卫星发射的导航信号到达接收机天线输出端的最小功率电平见表 5 。

表 5 地面接收的最小功率电平

信号	卫星类型	最小接收功率 ^a /dBW
B2a	MEO 卫星	— 156
D2a	IGSO 卫星	-158

[&]quot;对于包含数据分量和导频分量的信号,最小接收功率为数据和导频的合路功率,数据、导频之间的功率分配由调制方式定义,分量间的有效功率比偏差小于 0.5 dB。卫星播发的 B2a 信号具有以下特性:波束轴向相对于地球边缘滚降不超过 2 dB。

6 测距码特性

6.1 测距码结构

B2a 信号测距码采用分层码结构,由主码和子码相异或构成。子码的码片宽度与主码的周期相同,子码码片起始时刻与主码第一个码片的起始时刻严格对齐,时序关系见图 1。

图 1 主码、子码时序关系示意图

B2a 信号测距码参数见表 6。

表 6 B2a 信号测距码参数

信号分量	主码码型	主码码长	主码周期/ms	子码码型	子码码长	子码周期/ms
B2a 数据分量	Gold	10 230	1	固定码	5	5
B2a 导频分量	Gold	10 230	1	Weil 码截短	100	100

对于 MEO 和 IGSO 卫星,每颗卫星对应唯一的测距码编号(PRN 号),同一颗卫星播发的 B1C 和 B2a 信号采用相同的 PRN 号。

6.2 B2a 信号测距码

6.2.1 B2a 信号主码

B2a 信号主码的码速率为 10.23 Mcps,码长为 10 230,由两个 13 级线性反馈移位寄存器通过移位 及模二和生成的 Gold 码扩展得到。B2a 数据分量主码见公式(9):

$$g_1(x) = 1 + x + x^5 + x^{11} + x^{13}$$

$$g_2(x) = 1 + x^3 + x^5 + x^9 + x^{11} + x^{12} + x^{13}$$
(9)

B2a 导频分量主码见公式(10):

$$g_1(x) = 1 + x^3 + x^6 + x^7 + x^{13}$$

 $g_2(x) = 1 + x + x^5 + x^7 + x^8 + x^{12} + x^{13}$ (10)

具体实现见图 2 和图 3。

图 2 B2a 数据分量的主码发生器

图 3 B2a 导频分量的主码发生器

在同一卫星上,B2a 信号两个分量的主码生成多项式不同,但采用相同的初始状态:寄存器 1 的初始值均为全 1,寄存器 2 的初始值在表 7、表 8 中给出,排列方式为 $[S_{2,1},S_{2,2},S_{2,3},\cdots,S_{2,13}]$ 。在主码周期起始时刻,寄存器 1 和寄存器 2 同步复位;主码周期中,第 8190 码片的结束时刻,寄存器 1 需复位。重复以上过程,得到长度为 10 230 的测距码。

B2a 信号测距码共有 126 个,数据码和导频码各 63 个。具体参数见表 7 和表 8。表 7 和表 8中,头 24 个码片和末尾 24 个码片用八进制表示,最高有效位(MSB)先传。

PRN 号	寄存器 2 初始值(二进制)	头 24 个码片(八进制)	末尾 24 个码片(八进制)
1	1 0 0 0 0 0 0 1 0 0 1 0 1	26771056	42646672
2	1000000110100	64771737	43261240

表 7 B2a 数据分量的主码参数

表 7 (续)

PRN 号	寄存器 2 初始值(二进制)	头 24 个码片(八进制)	末尾 24 个码片(八进制)
3	1 0 0 0 0 1 0 1 0 1 1 0 1	22570544	22122147
4	1 0 0 0 1 0 1 0 0 1 1 1 1	03270060	37130044
5	1 0 0 0 1 0 1 0 1 0 1 0 1	25270173	62604441
6	1 0 0 0 1 1 0 1 0 1 1 1 0	42473731	32223757
7	1000111101110	42073211	75444074
8	10001111111111	10070275	72155517
9	1 0 0 1 1 0 0 1 0 1 0 0 1	32630236	23340625
10	1001111011010	51032336	70730557
11	1 0 1 0 0 0 0 1 1 0 1 0 1	24751346	12470110
12	1 0 1 0 0 0 1 0 0 0 1 0 0	67350347	43367447
13	1 0 1 0 0 0 1 0 1 0 1 0 1	25350426	42740075
14	1 0 1 0 0 0 1 0 1 1 0 1 1	11351730	26275034
15	1 0 1 0 0 0 1 0 1 1 1 0 0	61353105	77007136
16	1 0 1 0 0 1 0 1 0 0 0 1 1	16553042	21516371
17	1010011110111	04152767	57170016
18	1 0 1 0 1 0 0 0 0 0 0 0 1	37653046	73363551
19	1010100111110	40653671	01726764
20	1010110101011	12450445	65504556
21	1010110110001	34450556	30230153
22	1 0 1 1 0 0 1 0 1 0 0 1 1	15311110	06600771
23	1 0 1 1 0 0 1 1 0 0 0 1 0	56310431	10770505
24	1 0 1 1 0 1 0 0 1 1 0 0 0	71511012	76447734
25	1011010110110	44511144	05425133
26	1011011110010	54112361	44374741
27	101101111111	00112147	77505753
28	1 0 1 1 1 0 0 0 1 0 0 1 0	55611514	30732736
29	1 0 1 1 1 0 0 1 1 1 1 0 0	60611442	43750131
30	1 0 1 1 1 1 0 1 0 0 0 0 1	36413134	24525367
31	1011111001000	73011377	41152341
32	1011111010100	65011630	73304761
33	1011111101011	12011007	01741554
34	101111110011	14012245	35421025
35	1 1 0 0 0 0 1 0 1 0 0 0 1	35360637	50337664

表 7 (续)

PRN 号	寄存器 2 初始值(二进制)	头 24 个码片(八进制)	末尾 24 个码片(八进制)
36	1 1 0 0 0 1 0 0 1 0 1 0 0	65561423	44445660
37	1 1 0 0 0 1 0 1 1 0 1 1 1	04561753	04256075
38	1 1 0 0 1 0 0 0 1 0 0 0 1	35662052	50515704
39	1 1 0 0 1 0 0 0 1 1 0 0 1	31663710	53542760
40	1 1 0 0 1 1 0 1 0 1 0 1 1	12463151	71045216
41	1 1 0 0 1 1 0 1 1 0 0 0 1	34463042	24771613
42	1 1 0 0 1 1 1 0 1 0 0 1 0	55063612	23705725
43	1 1 0 1 0 0 1 0 1 0 1 0 1	25322050	75623014
44	1 1 0 1 0 0 1 1 1 0 1 0 0	64321071	54464775
45	1 1 0 1 0 1 1 0 0 1 0 1 1	13121416	45712211
46	1 1 0 1 1 0 1 0 1 0 1 1 1	05223044	53232723
47	1 1 1 0 0 0 0 1 1 0 1 0 0	64742223	57720500
48	1 1 1 0 0 1 0 0 0 0 0 1 1	17543106	45401000
49	1 1 1 0 0 1 0 0 0 1 0 1 1	13542644	46456064
50	1 1 1 0 0 1 0 1 0 0 0 1 1	16542346	52156646
51	1 1 1 0 0 1 0 1 0 1 0 0 0	72542534	06245671
52	1 1 1 0 1 0 0 1 1 1 0 1 1	10643011	42540225
53	1 1 1 0 1 1 0 0 1 0 1 1 1	05440046	33645207
54	1 1 1 1 0 0 1 0 0 1 0 0 0	73302166	16264764
55	1 1 1 1 0 1 0 0 1 0 1 0 0	65502351	00166336
56	1 1 1 1 0 1 0 0 1 1 0 0 1	31502177	33717324
57	1 1 1 1 0 1 1 0 1 1 0 1 0	51103567	23234454
58	1 1 1 1 0 1 1 1 1 1 0 0 0	70101476	55337366
59	1 1 1 1 0 1 1 1 1 1 1 1 1	00103243	04145264
60	1 1 1 1 1 1 0 1 1 0 1 0 1	24403035	66364214
61	0 0 1 0 0 0 0 0 0 0 1 0	57754771	16642116
62	1 1 0 1 1 1 1 1 1 0 1 0 1	24021305	46402740
63	0 0 0 1 1 1 1 0 1 0 0 1 0	55037136	06147764

表 8 B2a 导频分量的主码参数

PRN 号 寄存器 2 初始值(二进制)		头 24 个码片(八进制)	末尾 24 个码片(八进制)
1	1 0 0 0 0 0 0 1 0 0 1 0 1	26772435	05133452
2	100000110100	64771100	32506731
3	1000010101101	22573033	46030461

表 8 (续)

PRN 号	寄存器 2 初始值(二进制)	头 24 个码片(八进制)	末尾 24 个码片(八进制)
4	1 0 0 0 1 0 1 0 0 1 1 1 1	03272567	46247217
5	1000101010101	25270312	25242712
6	1000110101110	42471450	30604612
7	1000111101110	42073477	46162133
8	1000111111011	10071171	01037517
9	1001100101001	32631672	70661477
10	1001111011010	51030525	11057614
11	1010000110101	24752054	60410454
12	1010001000100	67350376	57214270
13	1010001010101	25353643	60621113
14	1010001011011	11350203	05270220
15	1010001011100	61350565	55150062
16	1010010100011	16550214	30076625
17	1010011110111	04153006	40344732
18	1010100000001	37653767	46567772
19	1010100111110	40650022	62054544
20	1010110101011	12453537	12272230
21	1010110110001	34451342	71277735
22	1011001010011	15311341	56036234
23	1011001100010	56311044	17154331
24	1011010011000	71513035	43013023
25	1011010110110	44513245	50115176
26	1011011110010	54110251	56313110
27	1011011111111	00112144	13102726
28	1011100010010	55613763	37225071
29	1011100111100	60613513	24323124
30	1011110100001	36410413	20375533
31	1011111001000	73012122	15635105
32	1011111010100	65013702	67011450
33	101111101011	12010047	43522666
34	101111110011	14010654	41666474
35	1 1 0 0 0 0 1 0 1 0 0 0 1	35362324	06151354
36	1 1 0 0 0 1 0 0 1 0 1 0 0	65563410	76525270
37	1100010110111	04561575	20632513

表 8 (续)

PRN 号	寄存器 2 初始值(二进制)	头 24 个码片(八进制)	末尾 24 个码片(八进制)
38	1 1 0 0 1 0 0 0 1 0 0 0 1	35663035	26643303
39	1 1 0 0 1 0 0 0 1 1 0 0 1	31663420	52433060
40	1 1 0 0 1 1 0 1 0 1 0 1 1	12463063	04062730
41	1 1 0 0 1 1 0 1 1 0 0 0 1	34461616	67067235
42	1 1 0 0 1 1 1 0 1 0 0 1 0	55061754	47416277
43	1 1 0 1 0 0 1 0 1 0 1 0 1	25322640	51407764
44	1 1 0 1 0 0 1 1 1 0 1 0 0	64322743	66451710
45	1 1 0 1 0 1 1 0 0 1 0 1 1	13120015	75211676
46	1 1 0 1 1 0 1 0 1 0 1 1 1	05223510	66732705
47	1 1 1 0 0 0 0 1 1 0 1 0 0	64741454	24716231
48	1 1 1 0 0 1 0 0 0 0 0 1 1	17543717	43326034
49	1 1 1 0 0 1 0 0 0 1 0 1 1	13543302	37156357
50	1 1 1 0 0 1 0 1 0 0 0 1 1	16540127	35671252
51	1 1 1 0 0 1 0 1 0 1 0 0 0	72541267	61241434
52	1 1 1 0 1 0 0 1 1 1 0 1 1	10642411	56632466
53	1 1 1 0 1 1 0 0 1 0 1 1 1	05441614	13706174
54	1 1 1 1 0 0 1 0 0 1 0 0 0	73300134	71335154
55	1 1 1 1 0 1 0 0 1 0 1 0 0	65502720	42104070
56	1 1 1 1 0 1 0 0 1 1 0 0 1	31500435	07315646
57	1 1 1 1 0 1 1 0 1 1 0 1 0	51103347	51233462
58	1 1 1 1 0 1 1 1 1 1 0 0 0	70102511	46425113
59	111101111111	00102277	16705351
60	1 1 1 1 1 1 0 1 1 0 1 0 1	24401515	23126772
61	1 0 1 0 0 1 0 0 0 0 1 1 0	47551324	77540116
62	0 0 1 0 1 1 1 1 1 1 0 0 0	70057625	31062540
63	0 0 0 1 1 0 1 0 1 0 1 0 1	25236023	01076040

6.2.2 B2a 信号子码

式中:

对于不同的卫星,B2a 数据分量的子码相同,B2a 导频分量的子码不同。要求如下:

- a) B2a 数据分量子码:B2a 数据分量的子码码长为 5,采用固定的 5 位码序列作为子码,子码序列 为 00010,最高有效位(MSB)先传;
- b) B2a 导频分量子码: B2a 信号导频分量子码由 Weil 码通过截断产生,其生成方式描述如下:
- 一个码长为 N 的 Weil 码序列定义见公式(11):

11

GB/T 39414.2—2020

L(k) — 码长为 N 的 legendre 序列;

w ——两个 legendre 序列之间的相位差。

码长为 N 的 legendre 序列 L(k) 可根据公式(12)定义产生:

式中:

mod——模除运算。

通过对上述码长为 N 的 Weil 码序列进行循环截取,可得到码长为 N。的测距码,即截断序列见公式(13):

$$c(n; w; p) = W((n + p - 1) \bmod N; w), n = 0, 1, 2, \dots, N_0 - 1$$
(13)

式中:

p——截取点,表示从 Weil 码的第 p 位开始截取,取值范围为 $1\sim N$ 。

B2a 导频分量的子码码长为 100,由长度为 1 021 的 Weil 码通过截断得到,w 取值范围是 $1\sim510$ 。 B2a 导频分量子码的具体参数见表 9。表 9 中,头 24 个码片和末尾 24 个码片用八进制表示,最高有效位(MSB)先传。

表 9 B2a 导频分量的子

PRN 号	相位差(w)	截取点(p)	头 24 个码片(八进制)	末尾 24 个码片(八进制)
1	123	138	32063050	65322167
2	55	570	51032554	16507723
3	40	351	26031355	03244075
4	139	77	00016672	51467525
5	31	885	43414712	46604555
6	175	247	03313653	56202042
7	350	413	41103653	71007450
8	450	180	42370454	34256747
9	478	3	06231051	40430077
10	8	26	37047570	06442617
11	73	17	36242432	16314440
12	97	172	62600563	05321123
13	213	30	77411542	56573352
14	407	1008	41654772	55730776
15	476	646	63255352	01324146
16	4	158	16034451	17500531
17	15	170	56753432	66634453
18	47	99	62660722	37240150
19	163	53	11300714	32673101
20	280	179	46564670	76643076

表 9 (续)

PRN 号	相位差(w)	截取点(p)	头 24 个码片(八进制)	末尾 24 个码片(八进制)
21	322	925	51453710	41236437
22	353	114	75520773	47126073
23	375	10	55105576	24605443
24	510	584	31050323	07347067
25	332	60	76030274	41470462
26	7	3	61576715	07552423
27	13	684	21353627	15306360
28	16	263	11326621	43507041
29	18	545	77304426	12537651
30	25	22	26565352	32362347
31	50	546	34135261	14550406
32	81	190	30407566	60014143
33	118	303	52113374	61116102
34	127	234	54145235	20702236
35	132	38	63100104	23455231
36	134	822	57/35317452	17352571
37	164	57	10714032	07417741
38	177	668	43602423	47415564
39	208	697	13700511	36550046
40	249	93	67442654	41615230
41	276	18	42621301	70270411
42	349	66	25413532	73527103
43	439	318	73475715	20344205
44	477	133	60600610	33470052
45	498	98	22362271	73213175
46	88	70	73341370	21175624
47	155	132	76412463	71174640
48	330	26	10475522	77336306
49	3	354	31662361	52645772
50	21	58	72164341	10166636
51	84	41	03600703	62442252
52	111	182	12734207	47205776
53	128	944	66744236	67053707
54	153	205	66354613	12103375

PRN 号	相位差(w)	截取点(p)	头 24 个码片(八进制)	末尾 24 个码片(八进制)
55	197	23	42710457	01304276
56	199	1	72744364	62223707
57	214	792	76720625	03111453
58	256	641	46643276	34250037
59	265	83	53525215	71514224
60	291	7	42453402	36620001
61	324	111	26604754	70502406
62	326	96	35027021	07344636

表 9 (续)

6.3 非标准码

63

卫星可通过切换至非标准码,防止用户接收和使用异常信号。用户不使用非标准码,这里不对其进行具体说明。

12073317

7 导航电文结构

7.1 导航电文概述

7.1.1 导航电文类型

B2a 信号采用 B-CNAV2 电文格式。

340

7.1.2 校验码

B-CNAV2 导航电文采用了循环冗余校验(CRC),具体实现方式为 CRC-24Q,其生成多项式见公式(14):

30264212

式中:

$$g_i = \begin{cases} 1, i = 0, 1, 3, 4, 5, 6, 7, 10, 11, 14, 17, 18, 23, 24 \\ 0, \text{\sharp} \text{th} \end{cases};$$

$$g(x)$$
——见公式(15)。

$$g(x) = (1+x)p(x) \qquad \cdots (15)$$

式中:

$$p(x) = x^{23} + x^{17} + x^{13} + x^{12} + x^{11} + x^{9} + x^{8} + x^{7} + x^{5} + x^{3} + 1$$

92

长度为 k 的信息序列 $m_i(i=1\sim k)$ 可以表示为公式(16)多项式:

多项式 $m(x)x^{24}$ 除以生成多项式 g(x),得到余式见公式(17):

$$R(x) = p_{24} + p_{23}x + p_{22}x^2 + \dots + p_1x^{23} \dots (17)$$

式中:

 p_1, p_2, \dots, p_{24} ——依次输出构成 CRC 校验序列。实现过程中,寄存器初始值设为全 0。

7.2 B-CNAV2 导航电文

7.2.1 基本描述

B-CNAV2 导航电文在 B2a 信号中播发,电文数据调制在 B2a 数据分量上。每帧电文长度为 600 符号位,符号速率为 200 sps,播发周期为 3 s。基本的帧结构定义如图 4 所示。

图 4 B-CNAV2 帧结构

每帧电文的前 24 符号位为帧同步头(Pre),其值为 0xE24DE8,即 111000100100110111101000,采用高位先发。

每帧电文在纠错编码前的长度为 288 比特,包括 PRN 号(6 比特)、信息类型(6 比特)、周内秒计数 (18 比特)、电文数据(234 比特)、循环冗余校验位(24 比特)。PRN 号、信息类型、周内秒计数、电文数据均参与循环冗余校验计算。采用 64 进制 LDPC(96,48)编码后,长度为 576 符号位。

7.2.2 编码方案和编码参数

B-CNAV2 导航电文采用 64 进制 LDPC(96,48)编码,其每个码字符号同样由 6 比特构成,定义于本原多项式为 $p(x)=1+x+x^6$ 的有限域 GF(26)。多进制符号与二进制比特的映射采用向量表示法,且高位在前。信息长度 k=48 码字符号,即 288 比特。其校验矩阵是一个 48×96 稀疏矩阵 $\mathbf{H}_{48,96}$,定义于本原多项式为 $p(x)=1+x+x^6$ 的有限域 GF(26),前 48×48 部分对应信息符号,后 48×48 部分对应校验符号,其非零元素的位置定义如下:

$H_{48,96}$	$_{\mathrm{index}} =$															
	[19	46	49	76	5	29	53	71	17	30	64	72	22	36	59	82
	22	41	68	94	20	44	54	75	9	41	61	86	6	47	60	89
	8	40	60	87	15	26	66	81	19	24	67	95	2	26	50	72
	5	38	70	89	16	34	64	92	21	45	55	74	0	24	48	78
	23	37	58	83	15	43	56	91	18	47	48	77	14	42	57	90
	6	30	54	76	14	27	67	80	17	35	65	93	7	46	61	88
	1	25	49	79	12	45	69	79	18	25	66	94	23	40	69	95

GB/T 39414.2—2020

8	36	51	84	3	38	56	86	0	29	62	85	2	39	57	87
11	33	59	81	20	43	74	93	13	32	63	91	11	35	52	83
16	31	65	73	4	28	52	70	1	28	63	84	12	33	62	90
21	42	75	92	7	31	55	77	9	37	50	85	10	34	53	82
4	39	71	88	13	44	68	78	3	27	51	73	10	32	58	80]

其中的每个元素为有限域 GF(26)的多进制符号,其元素按向量表示法表示,如下矩阵所示:

$\boldsymbol{H}_{48,96,\mathrm{element}} =$

[1	45	15	6	1	44	53	24	45	15	6	1	30	24	1	44
18	15	32	61	3	55	9	34	35	31	50	44	45	15	6	1
24	1	44	53	30	24	1	44	32	42	47	37	6	1	45	15
44	53	24	1	39	36	34	33	44	53	24	1	44	53	24	1
45	15	6	1	6	1	45	15	24	1	44	53	9	41	57	58
32	61	18	40	1	45	15	6	22	14	2	50	24	1	44	30
30	24	1	44	15	46	45	44	45	15	6	1	1	44	30	24
24	1	44	53	15	6	1	45	53	24	1	44	7	38	23	54
1	45	15	6	44	53	24	1	57	25	9	41	35	13	51	60
33	45	36	34	6	1	45	15	6	1	45	15	6	1	45	15
44	35	31	50	26	27	37	5	24	1	44	30	33	42	14	5
24	1	44	30	24	1	44	30	1	44	53	24	1	44	30	24]

以上矩阵自上而下按栏读取,一栏读完后自左向右换下一栏继续读取。一栏中,每行的 4 个数字对应矩阵中一行 4 个非零元素。 $H_{48,96}$ 的读取流程如图 5 所示。

图 5 H_{48,96}读取流程图

编译码方法及示例参见附录 A。

7.2.3 编排格式

B-CNAV2 导航电文最多可定义 63 种信息类型,当前定义了 8 个有效信息类型,分别为信息类型 $10\,11\,30\,31\,32\,33\,34\,40\,$ 其编排格式如图 $6\sim$ 图 13 所示。

B-CNAV2 信息类型的播发顺序可动态调整,但信息类型 10 和信息类型 11 保持前后接续播发。用户接收机每次接收到 B-CNAV2 导航电文时,均应识别其信息类型(MesType)。

图 6 B-CNAV2 信息类型 10 编排格式

图 7 B-CNAV2 信息类型 11 编排格式

图 8 B-CNAV2 信息类型 30 编排格式

图 9 B-CNAV2 信息类型 31 编排格式

注:信息类型 31 播发 3 颗卫星的简约历书, WN。和 toa 为简约历书对应的参考时间。

图 10 B-CNAV2 信息类型 32 编排格式

图 11 B-CNAV2 信息类型 33 编排格式

注:信息类型 33 播发 1 颗卫星的简约历书, WN。和 toa 为该简约历书对应的参考时间。

-	★ 发射数据流顺序 高位(MSB) 先发 ★ 288 bits																
MS	B B							00 0115					5 /10				LSB
Pre	PRN 6 bits	MesType 6 bits	SOW 18 bits		(B2a)	I(BZa)I	(BZa)	SISMAI 4 bits	DIF (B1C) 1 bit	SIF (B1C) 1 bit	AIF (B1C) 1 bit	SISAI _{OC} 22 bits		IODC 10 bits	BDT-UTC时 间同步参数 97 bits	Rev 24 bits	CRC 24 bits

图 12 B-CNAV2 信息类型 34 编排格式

图 13 B-CNAV2 信息类型 40 编排格式

其中,"星历Ⅱ""星历Ⅲ""钟差参数""SISAI。""电离层延迟改正模型参数""BDT-UTC 时间同步参数""简约历书""EOP 参数""BGTO 参数""中等精度历书"均为一组参数构成的数据块,且"星历Ⅱ"与"星历Ⅱ"构成一组完整的星历参数。各数据块的详细编排格式如图 14~图 23 所示。

图 14 星历 [(共 203 比特)

图 15 星历 I (共 222 比特)

图 16 钟差参数(共 69 比特)

图 17 SISAIoc(共 22 比特)

图 18 电离层延迟改正模型参数(共 74 比特)

MSB LSB $\Delta\,t_{\rm LSF}$ WN_{LSF} DN $A_{1 \cup IC}$ Δt_{LS} WNot $A_{\rm 2UIC}$ $A_{\rm 0UTC}$ $t_{\rm ot}$ 16 bits 13 bits 16 bits 13 bits 13 bits 3 bits 7 bits 8 bits 8 bits

图 19 BDT-UTC 时间同步参数(共 97 比特)

图 20 简约历书(共 38 比特)

图 21 EOP 参数(共 138 比特)

图 22 BGTO 参数(共 68 比特)

图 23 中等精度历书(共 156 比特)

B-CNAV2导航电文中各参数说明见表 10。

表 10 B-CNAV2 导航电文各参数说明

序号	电文参数	参数定义及描述
1	测距码(PRN)	见 8.1
2	信息类型(MesType)	见 8.2
3	周内秒计数(SOW)	见 8.3
4	星历参数版本标识(IODE)	见 8.4.1
5	钟差参数版本标识(IODC)	见 8.4.2
6	钟差参数	见 8.5
7	$T_{ m GDB2ap}$	见 8.6
8	$\mathrm{ISC}_{\mathrm{B2ad}}$	见 8.6

表 10 (续)

序号	电文参数	参数定义及描述
9	$T_{ m GDB1Cp}$	见 8.6
10	星历参数(星历Ⅰ、星历Ⅱ)	见 8.7
11	电离层延迟改正模型参数	见 8.8
12	中等精度历书	见 8.9
13	历书参考时刻周计数(WNa)	见 8.10
14	历书参考时刻(ton)	见 8.10
15	简约历书	见 8.10
16	EOP 参数	见 8.11
17	BDT-UTC 时间同步参数	见 8.12
18	BGTO 参数	见 8.13
19	卫星健康状态(HS)	见 8.14
20	电文完好性标识(DIF)	见 8.15
21	信号完好性标识(SIF)	见 8.15
22	系统告警标识(AIF)	见 8.15
23	卫星轨道的切向和法向精度指数(SISAI _{ce})	见 8.16
24	卫星轨道径向和卫星钟差精度指数(SISAI _{cc})	见 8.16
25	空间信号监测精度指数(SISMAI)	见 8.17
26	循环冗余校验(CRC)	见 7.1.2

8 导航电文参数和算法

8.1 测距码编号

导航电文中播发的 PRN 号为 6 比特,无符号整型,有效范围为 1~63。

8.2 信息类型

信息类型(MesType)用于标识 B-CNAV2 每帧电文的类型,共 6 比特,无符号整型,定义见表 11。

表 11 信息类型定义

MesType(二进制)	信息类型
000000	无效
001010	信息类型 10
001011	信息类型 11
011110	信息类型 30

表 11 (续)

MesType(二进制)	信息类型			
011111	信息类型 31			
100000	信息类型 32			
100001	信息类型 33			
100010	信息类型 34			
101000	信息类型 40			
其他	预留			

8.3 系统时间参数

B-CNAV2 导航电文播发的系统时间参数包括周内秒计数(SOW)和整周计数(WN),各参数定义及特性说明见表 12。

 参数
 定义
 比特数
 比例因子
 有效范围
 单位

 SOW
 周内秒计数
 18
 3
 0~604 797
 s

 WN
 整周计数
 13
 1
 0~8 191
 周

表 12 系统时间参数定义及说明

周内秒计数(SOW)在 B-CNAV2 所有信息类型中播发。SOW 对应的秒时刻表示本帧同步头第一个脉冲上升沿所对应的秒时刻。SOW 在北斗时每周日 00 时 00 分 00 秒从零开始计数,在每周的结束时刻被重置为零。

整周计数(WN)为北斗时的整周计数,在 B-CNAV2 信息类型 10 中播发,共 13 比特。WN 以北斗时的起始历元(2006 年 1 月 1 日 00 时 00 分 00 秒 UTC)为起点,从零开始计数。

8.4 电文数据版本号

8.4.1 星历参数版本标识(IODE)

星历参数版本标识(IODE)共8比特,其含义包括如下两方面:

- a) IODE 是一组星历参数的版本标识。当星历参数中任意一个参数更新时,IODE 也将更新。用户可通过 IODE 的变化来判断星历参数是否发生变化。
- b) IODE 数值反映本组星历数据龄期的范围。星历数据龄期是星历参数的外推时间间隔,定义为本组星历参数参考时刻 (t_{oe}) 与计算星历参数所作测量的最后观测时刻之差。IODE 数值与星历数据龄期的对应关系见表 13。

表 13 IODE 数值与星历数据龄期的对应关系

IODE 数值	星历数据龄期		
0~59	小于 12 h		
60~119	12 h∼24 h 571C		

表 13 (续)

IODE 数值	星历数据龄期
120~179	1 d∼7 d
180~239	预留
240~255	超过 7 d

8.4.2 钟差参数版本标识(IODC)

钟差参数版本标识(IODC)共 10 比特。其含义包括如下两方面:

- a) IODC 是一组钟差参数的版本标识。当钟差参数中任意一个参数更新时,IODC 也将更新。用户可通过 IODC 的变化来判断钟差参数是否发生变化。
- b) IODC 数值反映本组钟差数据龄期的范围。钟差数据龄期是钟差参数的外推时间间隔,定义为本组钟差参数参考时刻 (t_{∞}) 与计算钟差参数所作测量的最后观测时刻之差。钟差数据龄期的范围由 IODC 的高 2 比特和低 8 比特共同标识。其对应关系见表 14。

IODC 高 2 比特 IODC 低 8 比特 钟差数据龄期 $0 \sim 59$ 小于 12 h $60 \sim 119$ 12 h∼24 h 0 $120 \sim 179$ $1 d\sim 7 d$ $180 \sim 239$ 预留 $240 \sim 255$ 超过 7 d $0 \sim 59$ 小于 12 h $60 \sim 119$ 小于 12 h 1 $120 \sim 179$ 小于 1 d $180 \sim 239$ 预留 $240 \sim 255$ 不超过7d $0 \sim 59$ 超过 12 h $60 \sim 119$ 超过 24 h $120\!\sim\!179$ 2 超过 7 d $180 \sim 239$ 预留 $240 \sim 255$ 超过7 d 预留 预留

表 14 IODC 数值与钟差数据龄期的对应关系

8.4.3 IODE 与 IODC 使用约束

对于一组匹配的星历参数和钟差参数而言,IODE与IODC低8比特保持一致,二者的更新将同步进行。当用户接收到的IODE与IODC低8比特相同时,表示本组星历、钟差参数匹配,用户可正常使用该组星历、钟差参数,IODE可视为该组星历、钟差参数的版本标识。

GB/T 39414.2—2020

在星历、钟差参数更新过程中,由于电文播发时延,用户收到的 IODE 与 IODC 低 8 比特可能不一致。此时用户应使用原有版本标识一致的星历、钟差参数,直到 IODE 与 IODC 低 8 比特更新一致后,使用新的星历、钟差参数。IODE、IODC 的值在 1 d 内不重复(数据龄期大于 7 d 的情况除外)。

8.5 钟差参数

8.5.1 参数说明

一组钟差参数包括 to, a, a, a, a, h IODC 标识, 钟差参数定义及特性说明见表 15。

明
IJ

序号	参数	定义	比特数	比例因子	有效范围 ^b	单位
1	$t_{\rm oc}$	钟差参数参考时刻	11	300	0~604 500	s
2	a_0	卫星钟偏差系数	25ª	2^{-34}	_	s
3	a_1	卫星钟漂移系数	22ª	2^{-50}	_	s/s
4	a_2	卫星钟漂移率系数	11ª	2^{-66}	_	s/s ²

^a 为 2 进制补码,最高有效位(MSB)是符号位(+或一)。

8.5.2 用户算法

接收机用户可通过公式(18)计算出信号发射时刻的 BDT 时间:

$$t = t_{sv} - \Delta t_{sv}$$
 ······ (18)

式中:

t ——信号发射时刻的 BDT 时间,单位为秒(s);

 t_{sv} ——信号发射时刻的卫星测距码相位时间,单位为秒(s);

 Δt_{sy} ——卫星测距码相位时间偏移,单位为秒(s),由公式(19)给出:

$$\Delta t_{\rm sv} = a_0 + a_1(t - t_{\rm oc}) + a_2(t - t_{\rm oc})^2 + \Delta t_r$$
(19)

式中:

t ——可用 t_{sv} 替代;

 Δt_r —相对论校正项,单位为秒(s),其值由公式(20)计算:

$$\Delta t_r = \mathbf{F} \cdot e \cdot \sqrt{A} \cdot \sin E_k \qquad \cdots \qquad (20)$$

式中:

 $F = -2\mu^{1/2}/C^2$;

 μ =3.986 004 418×10¹⁴ m³/s²——地心引力常数;

C=2.997 924 58×10⁸ m/s ——光速;

e ──卫星轨道偏心率,由本卫星星历参数得到;

 \sqrt{A} ——卫星轨道长半轴的开方,由本卫星星历参数计算得到;

——卫星轨道偏近点角,由本卫星星历参数计算得到。

8.6 群延迟修正参数

8.6.1 参数说明

 $E_{\scriptscriptstyle k}$

星上设备群延迟是指卫星信号从星载频率源到卫星发射天线相位中心的传输时延。星上设备群延 24

b 除非在"有效范围"栏中另有说明,否则参数的有效范围是所给定的位数与比例因子共同确定的最大范围。

迟对码相位测量的影响可通过钟差参数 a_0 和群延迟修正参数共同补偿。导航电文播发的 a_0 包含了 B3I 信号的星上设备群延迟。参数的定义及特性说明见表 16。

注:星上设备群延迟(T_{GDBICp} 和 T_{GDB2ap})在 B-CNAV2 电文中播发,以 B3I 信号为基准,分别用于补偿 B1C 导频分量、B2a 导频分量的时延差。此外,频内时延修正项 ISC B2a在 B-CNAV2 电文中播发,用于补偿 B2a 数据分量与 B2a 导频分量间的时延差。

表 16 群延迟参数定义及说明

序号	参数	定义	比特数	比例因子	有效范围b	单位
1	$T_{\rm GDB1Cp}$	B1C 导频分量时延差	12ª	2^{-34}		s
2	T_{GDB2ap}	B2a 导频分量时延差	12ª	2^{-34}	_	s
3	ISC _{B2ad}	B2a 数据分量相对于 B2a 导频 分量的时延修正项	12ª	2^{-34}	_	s

^a 为 2 进制补码,最高有效位(MSB)是符号位(+或一)。

8.6.2 用户算法

用户算法包括如下内容:

a) B2a 导频分量延迟修正

对于使用 B2a 导频分量进行测距的单频接收机用户,码相位需进一步修正见公式(21):

b) B2a 数据分量延迟修正

对于使用 B2a 数据分量进行测距的单频接收机用户,码相位需进一步修正见公式(22):

$$(\Delta t_{SV})_{B2ad} = \Delta t_{SV} - T_{GDB2ap} - ISC_{B2ad}$$
 (22)

式中:

Δt_{sv}——通过钟差参数计算得到的卫星测距码相位时间偏移,具体计算方法见 8.5。

8.7 星历参数

8.7.1 参数说明

卫星的星历由 18 个准开普勒轨道参数和 1 个卫星轨道类型参数构成,由 IODE 进行标识。星历参数定义见表 17。

表 17 星历参数定义及说明

序号	参数	定义	比特数	比例因子	有效范围b	单位
1	t oc	星历参考时刻	11	300	0~604 500	s
2	SatType ^d	卫星轨道类型	2		_	_
3	ΔA°	参考时刻长半轴相对于参考值的偏差	26ª	2^{-9}	_	m
4	À	长半轴变化率	25ª	2^{-21}	_	m/s
5	Δn_0	参考时刻卫星平均角速度与计算值之差	17ª	2-44	_	π/s

b 除非在"有效范围"栏中另有说明,否则参数的有效范围是所给定的位数与比例因子共同确定的最大范围。

表 17 (续)

序号	参数	定义	比特数	比例因子	有效范围b	单位
6	$\Delta \dot{n}_{0}$	参考时刻卫星平均角速度与 计算值之差的变化率	23ª	2^{-57}	_	π/s^2
7	M_0	参考时刻的平近点角	33ª	2^{-32}	_	π
8	e	偏心率	33	2^{-34}	_	无量纲
9	ω	近地点幅角	33ª	2^{-32}	_	π
10	Ω_0	周历元零时刻计算的升交点经度	33ª	2^{-32}	_	π
11	i_0	参考时刻的轨道倾角	33ª	2^{-32}	_	π
12	Ω	升交点赤经变化率	19ª	2^{-44}	_	π/s
13	<i>i</i> ₀	轨道倾角变化率	15ª	2^{-44}	_	π/s
14	$C_{ m is}$	轨道倾角的正弦调和改正项的振幅	16ª	2^{-30}	_	rad
15	$C_{ m ic}$	轨道倾角的余弦调和改正项的振幅	16ª	2-30	_	rad
16	$C_{ m rs}$	轨道半径的正弦调和改正项的振幅	24ª	2^{-8}	_	m
17	$C_{ m re}$	轨道半径的余弦调和改正项的振幅	24ª	2-8	_	m
18	$C_{ m us}$	纬度幅角的正弦调和改正项的振幅	21ª	2^{-30}	_	rad
19	$C_{ m us}$	纬度幅角的余弦调和改正项的振幅	21ª	2^{-30}	_	rad

^{*} 为 2 进制补码,最高有效位(MSB)是符号位(+或一)。

8.7.2 用户算法

用户接收机根据接收到的星历参数,可以计算相应卫星(实际是卫星天线相位中心)在北斗坐标系中的坐标,相应的算法如表 18。

表 18 星历用户算法

公式	说明				
μ = 3.986 004 418×10 ¹⁴ m ³ /s ²	BDCS 坐标系下的地心引力常数				
$\dot{\Omega}_{\rm e} = 7.292 \ 115 \ 0 \times 10^{-5} {\rm rad/s}$	BDCS坐标系下的地球自转角速度				
$\pi = 3.141 592 653 589 8$	圆周率				
$t_k = t - t_{ m oe}^{- m a}$	计算与参考时刻的时间差				
$A_{\scriptscriptstyle 0}\!=\!A_{\scriptscriptstyle \mathrm{ref}}\!+\!\Delta A^{\scriptscriptstyle \mathrm{b}}$	计算参考时刻的长半轴				
$A_{\mathbf{k}} = A_{0} + (A)t_{\mathbf{k}}$	计算长半轴				

^b 除非在"有效范围"栏中另有说明,否则参数的有效范围是所给定的位数与比例因子共同确定的最大范围。

[。]长半轴参考值 $A_{\rm ref} = 27~906~100~{\rm m(EMO)}$, $A_{\rm ref} = 42~162~200~{\rm m(IGSO/GEO)}$ 。

^d SatType 含义(2 进制数):01 代表 GEO 卫星,10 代表 IGSO 卫星,11 代表 MEO 卫星,00 为预留。

- * 表达式中, t 是信号发射时刻的 BDT 时间,即修正信号传播时延后的系统时间。 t_k 是 t 和星历参考时刻 t_∞ 之间的总时间差,并考虑了跨过一周开始或结束的时间,即:如果 $t_k > 302\,400$,就从 t_k 中减去 604 800;如果 $t_k < -302\,400$ 时,就对 t_k 加上 604 800。
- $^{\rm b}$ 长半轴参考值 $A_{\rm ref}=27~906~100~{\rm m(MEO)}$, $A_{\rm ref}=42~162~200~{\rm m(IGSO/GEO)}$ 。

8.8 电离层延迟改正模型参数

8.8.1 参数说明

北斗全球电离层延迟修正模型(BDGIM)包含 9 个参数,用于单频用户接收机修正信号传播过程中的电离层延迟效应,各参数特性说明见表 19。对于使用 B1C 和 B2a 信号的双频用户,可采用双频无电离层组合伪距算法来修正电离层延迟效应。

参数	比特数	比例因子	有效范围b	单位
α_1	10	2^{-3}	_	TECu
α_2	8ª	2^{-3}	_	TECu
α_3	8	2^{-3}	_	TECu
α_4	8	2^{-3}	_	TECu
α ₅	8	-2^{-3}	_	TECu
α ₆	8 a	2^{-3}	_	TECu
α 7	8ª	2^{-3}	_	TECu
α ₈	8ª	2^{-3}	_	TECu
α 9	8ª	2^{-3}	_	TECu

表 19 电离层延迟改正模型参数说明

8.8.2 单频用户算法

北斗全球电离层延迟修正模型(BDGIM)以改进的球谐函数为基础,用户接收机根据 BDGIM 计算 电离层延迟改正值见公式(23):

$$T_{ion} = M_{\rm F} \cdot \frac{40.28 \times 10^{16}}{f^2} \cdot \left[A_0 + \sum_{i=1}^{9} \alpha_i A_i \right]$$
(23)

式中:

 T_{ion} ——卫星与接收机视线方向的电离层延迟改正值,单位为米(m);

——投影函数,用于垂向和斜向电离层总电子含量(TEC)之间的转换,计算公式 $M_{\scriptscriptstyle
m E}$ 见公式(34);

——当前信号对应的载波频率,单位为赫兹(Hz);

 $\alpha_i(i=1\sim9)$ ——电离层延迟改正模型参数(见表 19),单位为 TECu;

 $A_i(i=1\sim9)$ — 根据公式(28)计算得到的数值;

——根据公式(31)计算得到的电离层延迟预报值,单位为 TECu。

用户接收机采用 BDGIM 计算卫星与接收机视线方向电离层延迟的具体步骤如下:

a) 电离层穿刺点位置的计算

以 ϕ 表示用户和电离层穿刺点之间的地心张角,单位为弧度(rad),其计算见公式(24):

$$\psi = \frac{\pi}{2} - E - \arcsin\left(\frac{Re}{Re + H_{\text{ion}}} \cdot \cos E\right) \quad \cdots \quad (24)$$

式中.

E ——卫星高度角,单位为弧度(rad);

 H_{ion} 电离层薄层高度; Re — 地球平均半径。

电离层穿刺点在地球表面投影的地理纬度 φ_{s} 和地理经度 λ_{s} 的计算见公式(25):

$$\begin{cases} \varphi_{g} = \arcsin(\sin\varphi_{u} \cdot \cos\psi + \cos\varphi_{u} \cdot \sin\psi \cdot \cos A) \\ \lambda_{g} = \lambda_{u} + \arctan\left(\frac{\sin\psi \cdot \sin A \cdot \cos\varphi_{u}}{\cos\psi - \sin\varphi_{u} \cdot \sin\varphi_{g}}\right) \end{cases}$$
(25)

式中:

 φ_u ——用户地理纬度,单位为弧度(rad);

 λ_{**} ——用户地理经度,单位为弧度(rad);

A ——卫星方位角,单位为弧度(rad)。

地固坐标系下,电离层穿刺点在地球表面投影的地磁纬度 φ_m 和地磁经度 λ_m 的计算见公式(26):

$$\begin{cases} \varphi_{m} = \arcsin(\sin\varphi_{M} \cdot \sin\varphi_{g} + \cos\varphi_{M} \cdot \cos\varphi_{g} \cdot \cos(\lambda_{g} - \lambda_{M})) \\ \lambda_{m} = \arctan\left(\frac{\cos\varphi_{g} \cdot \sin(\lambda_{g} - \lambda_{M}) \cdot \cos\varphi_{M}}{\sin\varphi_{M} \cdot \sin\varphi_{m} - \sin\varphi_{g}}\right) \end{cases}$$
(26)

式中:

 φ_{M} —— 地磁北极的地理纬度,单位为弧度(rad);

λ_M ——地磁北极的地理经度,单位为弧度(rad)。

日固坐标系下,电离层穿刺点的地磁纬度 φ' 和地磁经度 λ' 的计算见公式(27):

$$\begin{cases} \varphi' = \varphi_m \\ \lambda' = \lambda_m - \arctan\left(\frac{\sin(S_{lon} - \lambda_M)}{\sin\varphi_M \cdot \cos(S_{lon} - \lambda_M)}\right) \end{cases}$$
 (27)

式中:

 S_{lon} ——平太阳地理经度,单位为弧度(rad);

计算公式为 $S_{lon}=\pi \cdot (1-2 \cdot (t-\mathrm{int}(t)))$ 。其中,t 表示计算时刻,以约化儒略日(MJD)表示,单位为天(d); $\mathrm{int}(\cdot)$ 表示向下取整。

b) $A_i(i=1\sim9)$ 的计算

 A_i 的具体计算见公式(28):

$$A_{i} = \begin{cases} \widetilde{P}_{|n_{i}|,|m_{i}|}(\sin\varphi') \cdot \cos(m_{i} \cdot \lambda') & m_{i} \geqslant 0 \\ \widetilde{P}_{|n_{i}|,|m_{i}|}(\sin\varphi') \cdot \sin(-m_{i} \cdot \lambda') & m_{i} < 0 \end{cases}$$
(28)

式中 $,n_i$ 和 m_i 对应的取值见表 20。

表 20 n_i 和 m_i 对应取值

i	1	2	3	4	5	6	7	8	9
n_i/m_i	0/0	1/0	1/1	1/-1	2/0	2/1	2/-1	2/2	2/-2

 φ' 与 λ' 根据公式(27)计算得到。 $\tilde{P}_{n,m}$ 表示 n 度 m 阶的归化勒让德函数, $\tilde{P}_{n,m}=N_{n,m}$ • $P_{n,m}$ ($\tilde{P}_{n,m}$)计算时,n、m 均取绝对值)。 $N_{n,m}$ 为正则化函数,其计算见公式(29):

$$\begin{cases}
N_{n,m} = \sqrt{\frac{(n-m)! \cdot (2n+1) \cdot (2-\delta_{0,m})}{(n+m)!}} \\
\delta_{0,m} = \begin{cases}
1, m = 0 \\
0, m > 0
\end{cases}$$
.....(29)

 $P_{n,m}$ 为标准的勒让德函数,其递推计算见公式(30):

$$\begin{cases} P_{n,n}\left(\sin\varphi'\right) = (2n-1) \,! \,! \, \left(1-\left(\sin\varphi'\right)^{\,2}\right)^{\,n/2}, n = m \\ P_{n,m}\left(\sin\varphi'\right) = \sin\varphi' \, \bullet \, \left(2m+1\right) \, \bullet \, P_{m,m}\left(\sin\varphi'\right), n = m+1 \\ P_{n,m}\left(\sin\varphi'\right) = \frac{(2n-1) \, \bullet \, \sin\varphi' \, \bullet \, P_{n-1,m}\left(\sin\varphi'\right) - (n+m-1) \, \bullet \, P_{n-2,m}\left(\sin\varphi'\right)}{n-m}, 其他 \\ & \cdots \qquad (30) \end{cases}$$

式中, $(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 1$,且 $P_{0,0}(\sin \varphi') = 1$ 。

c) 电离层延迟预报值 A。的计算

 A_0 的具体计算见公式(31):

$$\begin{cases} A_0 = \sum_{j=1}^{17} \beta_j \cdot B_j, \\ B_j = \begin{cases} \widetilde{P}_{\lfloor n_j \rfloor, \lfloor m_j \rfloor}(\sin\varphi') \cdot \cos(m_j \cdot \lambda') & m_j \geqslant 0 \\ \widetilde{P}_{\lfloor n_j \rfloor, \lfloor m_j \rfloor}(\sin\varphi') \cdot \sin(-m_j \cdot \lambda') & m_j < 0 \end{cases}$$
体取值参见表 21, $\widetilde{P}_{\lfloor n_i \rfloor, \lfloor m_j \rfloor}(\sin\varphi')$ 的计算参照公式(29)和公式(30);

式中, n_j 及 m_j 的具体取值参见表 21, $\tilde{P}_{|n_j|,|m_j|}(\sin\varphi)$ 的计算参照公式(29)和公式(30); β_i ($i=1\sim17$) 由公式(32)计算得到:

$$\begin{cases} \beta_{j} = a_{0,j} + \sum_{k=1}^{12} \left(a_{k,j} \cdot \cos(\omega_{k} \cdot t_{p}) + b_{k,j} \cdot \sin(\omega_{k} \cdot t_{p}) \right) \\ \omega_{k} = \frac{2\pi}{T_{k}} \end{cases}$$
.....(32)

式中:

 $a_{k,j}$ 与 $b_{k,j}$ ——表 21 中 BDGIM 模型的非发播系数,单位为 TECu;

 T_k ——表 21 中各非发播系数对应的预报周期;

*t*_p ——对应当天约化儒略日的奇数整点时刻(01:00:00, 03:00:00, 05:00:00, ..., 23: 00:00),单位为天(d),用户计算时选取距离当前计算时刻最近的 *t*_p 使用。

d) 穿刺点处垂直方向电离层延迟的计算

穿刺点处垂直方向电离层延迟 VTEC(单位为 TECu)的计算见公式(33):

$$VTEC = A_0 + \sum_{i=1}^{9} \alpha_i A_i$$
 (33)

e) 穿刺点电离层投影函数 $M_{\rm F}$ 的计算

电离层穿刺点处的投影函数 $M_{\rm F}$ 的计算见公式(34)

$$M_{\rm F} = \frac{1}{\sqrt{1 - \left[\frac{Re}{Re + H_{\rm ion}} \cdot \cos(E)\right]^2}} \qquad \cdots (34)$$

式中,Re、 H_{ion} 及 E 参数含义同式(24)

f) 计算信号传播路径上的电离层延迟改正值

结合穿刺点处的垂向电离层延迟及投影函数,按照公式(23)即可计算得到信号传播路径上电离层延迟改正值。

上述计算中,相关参数宜取值如下:

电离层薄层高度: $H_{ion} = 400 \text{ km}$;

地球平均半径:Re=6 378 km;

地磁北极的地理经度: $\lambda_{\rm M} = \frac{-72.58^{\circ}}{180^{\circ}} \cdot \pi \text{ rad};$

地磁北极的地理纬度: $\varphi_{\rm M} = \frac{80.27^{\circ}}{180^{\circ}} \cdot \pi \text{ rad } .$

表 21 BDGIM 模型的非发播系数及预报周期

编号 k	编号 <i>j</i>	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	周期 T _k /d
		3/0		3/-1	3/2	3/-2	3/3	3/-3	4/0	4/1	4/-1	4/2	4/-2	5/0	5/1	5/-1	5/2	5/-2	
	n_j/m_j	·	3/1						,	,			,	,	,			<u> </u>	
0	$a_{0,j}$	-0.61	-1.31	-2.00	-0.03	0.15	-0.48	-0.40	2.28	-0.16	-0.21	-0.10		0.21	0.68	1.06	0	-0.12	_
1	$a_{k,j}$	-0.51	-0.43	0.34	-0.01	0.17	0.02	-0.06	0.30	0.44	-0.28	-0.31		0.04	0.39	-0.12	0.12	0	1
	$b_{k,j}$	0.23	-0.20	-0.31	0.16	-0.03	0.02	0.04	0.18	0.34	0.45	0.19	-0.25	-0.12	0.18	0.40	-0.09	0.21	
2	$a_{k,j}$	-0.06	-0.05	0.06	0.17	0.15	0	0.11	-0.05	-0.16	0.02	0.11	0.04	0.12	0.07	0.02	-0.14	-0.14	0.5
	$b_{k,j}$	0.02	-0.08	-0.06	-0.11	0.15	-0.14	0.01	0.01	0.04	-0.14	-0.05	0.08	0.08	-0.01	0.01	0.11	-0.12	
3	$a_{k,j}$	0.01	-0.03	0.01	-0.01	0.05	-0.03	0.05	-0.03	-0.01	0	-0.08	-0.04	0	-0.02	-0.03	0	-0.03	0.33
	$b_{k,j}$	0	-0.02	-0.03	-0.05	-0.01	-0.07	-0.03	-0.01	0.02	-0.01	0.03	-0.10	0.01	0.05	-0.01	0.04	0.00	
4	$a_{k,j}$	-0.01	0	0.01	0	0.01	0	-0.01	-0.01	0	0	0	0	0	0	0	0	0	14.6
	$b_{k,j}$	0	-0.02	0.01	0	-0.01	0.01	0	-0.02	0	0	0	0	0	0	0	0	0	
5	$a_{k,j}$	0	0	0.03	0.01	0.02	0.01	0	-0.02	0	0	0	0	0	0	0	0	0	27.0
	$b_{k,j}$	0.01	0	0	0.01	0	0	0	0	0	0	0	0	0	0	0	0	0	
6	$a_{k,j}$	-0.19	-0.02	0.12	-0.10	0.06	0	-0.02	-0.08	-0.02	-0.07	0.01	0.03	0.15	0.06	-0.05	-0.03	-0.10	121.6
	$b_{k,j}$	-0.09	0.07	0.03	0.06	0.09	0.01	0.02	0	-0.04	-0.02	-0.01	0.01	-0.10	0	-0.01	0.02	0.05	
7	$a_{k,j}$	-0.18	0.06	-0.55	-0.02	0.09	-0.08	0	0.86	-0.18	-0.05	-0.07	0.04	0.14	-0.03	0.37	-0.11	-0.12	182.51
	$b_{k,j}$	0.15	-0.31	0.13	0.05	-0.09	-0.03	0.06	-0.36	0.08	0.05	0.06	-0.02	-0.05	0.06	-0.20	0.04	0.07	
8	$a_{k,j}$	1.09	-0.14	-0.21	0.52	0.27	0	0.11	0.17	0.23	0.35	-0.05	0.02	-0.60	0.02	0.01	0.27	0.32	365.25
	$b_{k,j}$	0.50	-0.08	-0.38	0.36	0.14	0.04	0	0.25	0.17	0.27	-0.03	-0.03	-0.32	-0.10	0.20	0.10	0.30	
9	$a_{k,j}$	-0.34	-0.09	-1.22	0.05	0.15	-0.29	-0.17	1.58	-0.06	-0.15	0.00	0.13	0.28	-0.08	0.62	-0.01	-0.04	4 028.71
	$b_{k,j}$	0	-0.11	-0.22	0.01	0.02	-0.03	-0.01	0.49	-0.03	-0.02	0.01	0.02	0.04	-0.04	0.16	-0.02	-0.01	
10	$a_{k,j}$	-0.13	0.07	-0.37	0.05	0.06	-0.11	-0.07	0.46	0.00	-0.04	0.01	0.07	0.09	-0.05	0.15	-0.01	0.01	2 014.35
	$b_{k,j}$	0.05	0.03	0.07	0.02	-0.01	0.03	0.02	-0.04	-0.01	-0.01	0.02	0.03	0.02	-0.04	-0.04	-0.01	0	
11	$a_{k,j}$	-0.06	0.13	-0.07	0.03	0.02	-0.05	-0.05	0.01	0	0	0	0	0	0	0	0	0	1 342.90
	$b_{k,j}$	0.03	-0.02		-0.01	-0.03		0.01	0.04	0	0	0	0	0	0	0	0	0	
12	$a_{k,j}$	-0.03	0.08	-0.01		0.01	-0.02		-0.04	0	0	0	0	0	0	0	0	0	1 007.18
	$b_{k,j}$	0.04		-0.04		-0.01	0.02	0.01	0.07	0	0	0	0	0	0	0	0	0	
	$v_{k,j}$	0.04	0.02	0.04	0.00	V.VI	U	0.01	0.07	U	U		U	U	U .		L	"	

8.8.3 双频用户算法

对于使用 B1C 和 B2a 信号的双频用户,采用双频无电离层组合伪距算法来修正电离层延迟的影响,计算方法如下:

a) 对于使用 B1C 导频分量和 B2a 导频分量的双频用户,计算方法见公式(35):

$$PR_{\text{B1Cp-B2ap}} = \frac{PR_{\text{B2ap}} - k_{12} \cdot PR_{\text{B1Cp}}}{1 - k_{12}} - \frac{C \cdot (T_{\text{GDB2ap}} - k_{12} \cdot T_{\text{GDB1Cp}})}{1 - k_{12}} \qquad \cdots (35)$$

b) 对于使用 B1C 导频分量和 B2a 数据分量的双频用户,计算方法见公式(36):

$$PR_{\text{BICp-B2ad}} = \frac{PR_{\text{B2ad}} - k_{12} \cdot PR_{\text{BICp}}}{1 - k_{12}} - \frac{C \cdot (T_{\text{GDB2ap}} + \text{ISC}_{\text{B2ad}} - k_{12} \cdot T_{\text{GDBICp}})}{1 - k_{12}} \dots (36)$$

c) 对于使用 B1C 数据分量和 B2a 导频分量的双频用户,计算方法见公式(37):

$$PR_{\text{BICd-B2ap}} = \frac{PR_{\text{B2ap}} - k_{12} \cdot PR_{\text{BICd}}}{1 - k_{12}} - \frac{\text{C} \cdot (\text{T}_{\text{GDB2ap}} - k_{12} \cdot \text{T}_{\text{GDB1Cp}} - k_{12} \cdot \text{ISC}_{\text{BICd}})}{1 - k_{12}} \quad \dots (37)$$

d) 对于使用 B1C 数据分量和 B2a 数据分量的双频用户,计算方法见公式(38):

$$PR_{\text{B1Cd-B2ad}} = \frac{PR_{\text{B2ad}} - k_{12} \cdot PR_{\text{B1Cd}}}{1 - k_{12}} - \frac{\text{C} \cdot (\text{T}_{\text{GDB2ap}} + \text{ISC}_{\text{B2ad}} - k_{12} \cdot \text{T}_{\text{GDB1Cp}} - k_{12} \cdot \text{ISC}_{\text{B1Cd}})}{1 - k_{12}} \cdots (38)$$

式中:

$$k_{12} = \left(\frac{1}{1176.45}\right)^2$$
 ——与频率有关的因子;

 $PR_{BICP-B2ap}$ ——BIC 导频分量和 B2a 导频分量的双频无电离层组合伪距;

 $PR_{BICP-B2ad}$ ——BIC 导频分量和 B2a 数据分量的双频无电离层组合伪距;

 $PR_{BICd-B2ap}$ ——BIC 数据分量和 B2a 数据分量的双频无电离层组合伪距;

 $PR_{BICd-B2ad}$ ——BIC 数据分量和 B2a 数据分量的双频无电离层组合伪距;

 $PR_{BICd-B2ad}$ ——BIC 数据分量和 B2a 数据分量的双频无电离层组合伪距;

 PR_{BICp} ——BIC 与频分量的观测伪距(经钟差修正但不经 T_{GDBICp} 修正);

 PR_{BICd} ——BIC 数据分量的观测伪距(经钟差修正但不经 T_{GDBICp} 、ISC T_{BICd} 修正);

 PR_{B2ap} ——B2a 导频分量的观测伪距(经钟差修正但不经 T_{GDB2ap} 修正);

 PR_{B2ad} ——B2a 数据分量的观测伪距(经钟差修正但不经 T_{GDB2ap} 修正);

 T_{GDBICp} ——B1C 导频分量时延差;

 T_{GDBICp} ——B1C 导频分量时延差;

——B1C 数据分量相对于 B1C 导频分量的时延修正项;

-B2a 数据分量相对于 B2a 导频分量的时延修正项;

8.9 中等精度历书

8.9.1 参数说明

 ISC_{B2ad}

中等精度历书包括14个参数,参数定义及特性说明见表22。

5210

C=2.997 924 58×10⁸ m/s——光速。

表 22	中等精度历书参数定义及说明
~~ ~~	

序号	参数	定义	比特数	比例因子	有效范围 ^b	单位
1	PRN _a	本组历书数据对应的卫星编号	6	1	1~63	_
2	SatType ^c	卫星轨道类型	2	_	_	_
3	WN _a	历书参考时刻周计数	13	1	_	周
4	t oa	历书参考时刻	8	2^{12}	0~602 112	s
5	e	偏心率	11	2^{-16}	_	_
6	${oldsymbol{\delta}}_i$	参考时刻轨道倾角相对于参考值的偏差	11ª	2^{-14}	_	π
7	\sqrt{A}	长半轴的平方根	17	2^{-4}	_	$m^{1/2}$
8	Ω_0	周历元零时刻计算的升交点经度	16ª	2^{-15}	_	π
9	Ω	升交点赤经变化率	11ª	2^{-33}	_	π/s
10	ω	近地点幅角	16ª	2^{-15}	_	π
11	$M_{\scriptscriptstyle 0}$	参考时刻的平近点角	16ª	2^{-15}	_	π
12	a_{f0}	卫星钟偏差系数	11ª	2^{-20}	_	s
13	a_{f1}	卫星钟漂移系数	10ª	2^{-37}	_	s/s
14	Health	卫星健康信息	8	_	_	_

^a 为 2 进制补码,最高有效位(MSB)是符号位(+或一)。

Health 表示卫星健康信息,共8比特,具体含义见表23。

表 23 卫星健康信息定义

信息位	数值	定义
第 8 位(MSB)	0	卫星钟健康
	1	а
第 7 位	0	B1C 信号正常
第 7 世	1	B1C 信号不正常 ^b
第 6 位	0	B2a 信号正常
第 0 世	1	B2a 信号不正常 ^b
第 5~1 位	0	预留
第 5~1 位	1	预留

^{*} 当第8位为1,后7位均为0时表示卫星钟不可用,后7位均为1时表示卫星故障或永久关闭。

8.9.2 用户算法

接收机用户可通过公式(39)计算出信号发射时刻的 BDT 时间:

^b 除非在"有效范围"栏中另有说明,否则参数的有效范围是所给定的位数与比例因子共同确定的最大范围。

SatType 含义(二进制数):01 代表 GEO 卫星,10 代表 IGSO 卫星,11 代表 MEO 卫星,00 为预留。

^b 信号不正常指信号功率比额定值低 10 dB 以上。

$$t = t_{sv} - \Delta t_{sv}$$
 (39)

式中:

t ——BDT 时间,单位为秒(s);

 t_{sv} ——信号发射时刻的卫星测距码相位时间,单位为秒(s);

 Δt_{sv} ——卫星测距码相位时间偏移,单位为秒(s)。

卫星测距码相位时间偏移由公式(40)给出:

$$\Delta t_{sv} = a_{f0} + a_{f1}(t - t_{oa}) \qquad \cdots \qquad (40)$$

其中, 历书参考时刻 toa 是以历书周计数(WNa)的起始时刻为基准的。

接收机用户利用历书参数计算卫星位置的用户算法见表 24。

表 24 中等精度历书参数的用户算法

公式	说明
μ =3.986 004 418 \times 10 ¹⁴ m ³ /s ²	BDCS 坐标系下的地心引力常数
$\dot{\Omega}_{\rm e} = 7.292 \ 115 \ 0 \times 10^{-5} \ { m rad/s}$	BDCS坐标系下的地球自转角速度
π=3.141 592 653 589 8	圆周率
$A = (\sqrt{A})^2$	计算长半轴
$n_0 = \sqrt{rac{\mu}{A^3}}$	计算参考时刻的卫星平均角速度
$t_k = t - t_{ m oa}^{ m a}$	计算与参考时刻的时间差
$M_{\scriptscriptstyle k} = M_{\scriptscriptstyle 0} + n_{\scriptscriptstyle 0} t_{\scriptscriptstyle k}$	计算平近点角
$M_k = E_k - e \sin E_k$	迭代计算偏近点角
$egin{aligned} \sin\! u_k &= rac{\sqrt{1-e^2}\sin\!E_k}{1-e\cos\!E_k} \ \cos\! u_k &= rac{\cos\!E_k - e}{1-e\cos\!E_k} \end{aligned}$	计算真近点角
$arphi_k = \! u_k + \! \omega$	计算纬度幅角
$r_k = A \left(1 - e \cos E_k \right)$	计算径向距离
$\left\{egin{aligned} x_k = r_k \cos\!arphi_k \ y_k = r_k \sin\!arphi_k \end{aligned} ight.$	计算卫星在轨道平面内的坐标
$\Omega_k = \Omega_0 + (\dot{\Omega} - \dot{\Omega}_{ m e})t_k - \dot{\Omega}_{ m e}t_{ m oa}$	计算改正后的升交点经度
i $=$ i $_{\scriptscriptstyle 0}$ $+$ $\delta_{\scriptscriptstyle i}$ $^{\scriptscriptstyle \mathrm{b}}$	计算参考时刻的轨道倾角
$\left\{egin{aligned} X_k = x_k \cos\Omega_k - y_k \cos i \sin\Omega_k \ Y_k = x_k \sin\Omega_k + y_k \cos i \cos\Omega_k \ Z_k = y_k \sin i \end{aligned} ight.$	计算卫星在 BDCS 坐标系中的坐标

^{*}表达式中,t 是信号发射时刻的 BDT 时间,即修正信号传播时延后的系统时间。 t_k 是 t 和历书参考时刻 t_{oa} 之间的总时间差,并考虑了跨过一周开始或结束的时间,即:如果 $t_k > 302~400$,就从 t_k 中减去 604 800;而如果 $t_k < -302~400$,就对 t_k 加上 604 800。

^b 对于 MEO/IGSO 卫星, $i_0 = 0.30\pi$;对于 GEO 卫星, $i_0 = 0.00$ 。

8.10 简约历书

8.10.1 参数说明

简约历书的参数定义及特性说明见表 25。

表 25 简约历书参数定义

序号	参数	定义	比特数	比例因子	有效范围 ^b	单位
1	PRN _a	本组历书数据对应的卫星编号	6	1	1~63	_
2	SatType ^e	卫星轨道类型	2	_	_	_
3	$\delta_A{}^{ m c}$	参考时刻长半轴相对于参考值的偏差	8ª	2^9	_	m
4	Ω_0	周历元零时刻计算的升交点经度	7ª	2^{-6}	_	π
5	$arphi_0^{ m d}$	参考时刻纬度幅角	7ª	2^{-6}	_	π
6	Health	卫星健康信息	8	_	_	_

^a 为 2 进制补码,最高有效位(MSB)是符号位(+或一)。

8.10.2 用户算法

简约历书的用户算法与中等精度历书用户算法相同。对于中等精度历书用户算法中出现的参数,但简约历书没有给出的参数值,将相应参数初始值设为0。

简约历书的 B2a 导频分量时延差和历书参考时刻(toa)的定义及特性说明见表 26。

表 26 历书参考时刻参数定义及说明

序号	参数	定义	比特数	比例因子	有效范围	单位
1	WN _a	历书参考时刻周计数	13	1	0~8 191	周
2	t oa	历书参考时刻	8	2^{12}	0~602 112	s

8.11 地球定向参数

8.11.1 参数说明

地球定向参数(EOP)的定义及特性说明见表 27。

^b 除非在"有效范围"栏中另有说明,否则参数的有效范围是所给定的位数与比例因子共同确定的最大范围。

 $^{^{\}circ}$ δ_A 对应的参考值为 A_{ref} =27 906 100 m(MEO), A_{ref} =42 162 200 m(IGSO/GEO)。

 $^{^{}d}$ $\varphi_0 = M_0 + \omega$;相关参考值:e = 0; $\delta_i = 0$, $i = 55^{\circ}$ (MEO/IGSO), $i = 0^{\circ}$ (GEO)。

[。]SatType 含义:01 表 GEO 卫星,10 代表 IGSO 卫星,11 代表 MEO 卫星,00 为预留。

参数	定义	比特数	比例因子	有效范围 ^b	单位
$t_{ m EOP}$	EOP 数据参考时间	16	24	0~604 784	s
PM_X	参考时间 X 轴极移	21ª	2^{-20}	_	弧秒
$P\dot{M_{-}}X$	参考时间 X 轴极移漂移率	15° 2 ⁻²¹ —		弧秒/d	
PM_Y	参考时间 Y 轴极移	21ª	2^{-20}	_	弧秒
$P\dot{M}_{_}Y$	参考时间 Y 轴极移漂移率	15ª	2^{-21}	_	弧秒/d
$\Delta UT1$	参考时间 UT1-UTC 的差值	31ª	2^{-24}	_	s
$\Delta \dot{UT}1$	参考时间 UT1-UTC 的差值变化率	19ª	2^{-25}	_	s/d

表 27 地球定向参数定义及说明

8.11.2 用户算法

用户使用星历参数计算得到的是卫星天线相位中心在北斗坐标系中的坐标,如果用户需要将其转换到相应的地心惯性坐标系(ECI)中的坐标,则需使用表 28 中提供的算法来获得坐标转换矩阵。完整坐标系转换算法遵循 IERS 规范。

公式 说明 $UT1-UTC=\Delta UT1+\Delta \dot{U}T1(t-t_{EOP})$ 计算 t 时刻的世界协调时之差 $x_{p}=PM_{-}X+P\dot{M_{-}}X(t-t_{EOP})$ 计算 t 时刻的X 轴和Y 轴极移 $y_{p}=PM_{-}Y+P\dot{M_{-}}Y(t-t_{EOP})$ 注: t 是信号发射时刻的 BDT 时间。

表 28 地球定向参数用户算法

8.12 BDT-UTC 时间同步参数

8.12.1 参数说明

BDT-UTC 时间同步参数反映了北斗时(BDT)与协调世界时(UTC)之间的关系。BDT-UTC 时间同步参数的定义及特性说明见表 29。

^a 为 2 进制补码,最高有效位(MSB)是符号位(+或一)。

b 除非在"有效范围"栏中另有说明,否则参数的有效范围是所给定的位数与比例因子共同确定的最大范围。

序号	参数	定义	比特数	比例因子	有效范围 ^b	单位
1	$A_{ ext{outc}}$	BDT 时标相对于 UTC 时标的偏差系数	16ª	2^{-35}	_	s
2	$A_{ m 1UTC}$	BDT 时标相对于 UTC 时标的漂移系数	13ª	2^{-51}	_	s/s
3	$A_{ m 2UTC}$	BDT 时标相对于 UTC 时标的漂移率系数	7ª	2^{-68}	_	s/s^2
4	$\Delta t_{ m LS}$	新的闰秒生效前 BDT 相对于 UTC 的 8ª 1 — — — — — — — — — — — — — — — — — —		s		
5	t ot	参考时刻对应的周内秒	16	24	0~604 784	s
6	WNot	参考时间周计数	13	1	_	周
7	WN _{LSF}	闰秒参考时间周计数	13	1	_	周
8	DN	闰秒参考时间日计数	3	1	0~6	d
9	$\Delta t_{ m LSF}$	新的闰秒生效后 BDT 相对于 UTC 的 累积闰秒改正数	8ª	1	_	s
a		多考周数 WN _{LSF} 与日计数 DN 确定的闰 是差大于 6 h,计算方法见公式(41)和公式 $t_{\rm UTC} = (t_{\rm E} - \Delta t_{\rm U})$ $\Delta t_{\rm UTC} = \Delta t_{\rm LS} + A_{\rm 0UTC} + A_{\rm 1UTC} [t_{\rm E} - \Delta t_{\rm U}]$	(42): UTC) mod 8 -tot +604	6 400 ····· 800(WN-	-WN _{ot})]+	······(41
	式中:	$A_{2\mathrm{UTC}} \left[t_{\mathrm{E}} - t_{\mathrm{ot}} + 604 \right]$	800 (WN-	$-\mathrm{WN}_{\mathrm{ot}}$)] ²	•••••	·····(42
		·用户估计的 BDT 时间。				
b) 用户当	前前时间处于由闰秒参考周数 WN _{LSF} 与日 内,计算方法见公式(43)和公式(44):	I计数 DN	确定的闰	秒时刻的前 6 h	与闰秒后
		$t_{\rm UTC} = W \mod(86^{\circ})$				
		$W = \left[(t_{\rm E} - \Delta t_{\rm UTC} - 43\ 20\right]$	00) mod 86	400]+43	200	••••• 44
c)) 由闰秒	——计算方法见公式(42)。		经过去,并	且用户当前时间	可与闰秒 时
	•	$t_{\rm UTC} = (t_{\rm E} - \Delta t_{\rm U})$		6 400	•••••	(45)
		$\Delta t_{\rm UTC} = \Delta t_{\rm LSF} + A_{\rm 0UTC} + A_{\rm 1UTC} [t_{\rm E}$				
					•••••	

表 29 BDT-UTC 时间同步参数定义及说明

$$t_{\text{UTC}} = (t_{\text{E}} - \Delta t_{\text{UTC}}) \mod 86 \ 400 \qquad (45)$$

$$\Delta t_{\text{UTC}} = \Delta t_{\text{LSF}} + A_{\text{0UTC}} + A_{\text{1UTC}} \left[t_{\text{E}} - t_{\text{ot}} + 604 \ 800 (\text{WN} - \text{WN}_{\text{ot}}) \right] + A_{\text{2UTC}} \left[t_{\text{E}} - t_{\text{ot}} + 604 \ 800 (\text{WN} - \text{WN}_{\text{ot}}) \right]^{2} \qquad (46)$$

8.13 BGTO 参数

8.13.1 参数说明

BGTO 参数用于计算 BDT 与其他 GNSS 系统时之间的时间偏差。BGTO 参数的定义及特性说明见表 30。

序号	参数	定义	比特数	比例因子	有效范围 ^b	单位
1	GNSS ID	GNSS 系统标识	GNSS 系统标识 3 — — —		无量纲	
2	WN _{0BGTO}	参考时间周计数	参考时间周计数 13 1 — —		周	
3	$t_{ m 0BGTO}$	参考时刻对应的周内时间	16 2 ⁴ 0~604 784		s	
4	$A_{0 m BGTO}$	BDT 时标相对 GNSS 时标的偏差系数	16ª	2^{-35}	_	s
5	$A_{ m 1BGTO}$	BDT 时标相对 GNSS 时标的漂移系数	13ª	2^{-51}	_	s/s
6	$A_{ m 2BGTO}$	BDT 时标相对 GNSS 时标的漂移率系数	7ª	2^{-68}	_	s/s ²

表 30 BGTO 参数定义及说明

其他 GNSS 以 GNSS ID 区分,其含义如下:

- a) 000 为无效,表示本组数据不可用;
- b) 001 表示 GPS 系统;
- c) 010 表示 Galileo 系统;
- d) 011 表示 GLONASS 系统;
- e) 100~111 为预留。

在一帧中播发的WN_{OBGTO}、 t_{OBGTO} 、 A_{OBGTO} 、 A_{OBGTO} 、 A_{2BGTO} 是针对本帧中 GNSS ID 标识的系统,不同帧中播发的 GNSS 系统可能不同,用户应当区分接收。

8.13.2 用户算法

北斗时与其他 GNSS 系统时之间转换的时间偏差可由公式(47)实现:

$$\Delta t_{\text{Systems}} = t_{\text{BD}} - t_{\text{GNSS}} = A_{\text{0BGTO}} + A_{\text{1BGTO}} \left[t_{\text{BD}} - t_{\text{0BGTO}} + 604 \ 800 (\text{WN} - \text{WN}_{\text{0BGTO}}) \right] + A_{\text{2BGTO}} \left[t_{\text{BD}} - t_{\text{0BGTO}} + 604 \ 800 (\text{WN} - \text{WN}_{\text{0BGTO}}) \right]^{2} \qquad \cdots (47)$$

式中:

 $\Delta t_{\text{Systems}}$ —北斗时与其他 GNSS 系统时之间转换的时间偏差,单位为秒(s);

 t_{BD} ——BDT 时间;

t_{GNSS} ——其他 GNSS 系统时间。

8.14 卫星健康状态

卫星健康状态(HS),共2比特,无符号整型,用于描述本卫星当前健康状态。其定义见表31。

^a 为 2 进制补码,最高有效位(MSB)是符号位(+或一)。

^b 除非在"有效范围"栏中另有说明,否则参数的有效范围是所给定的位数与比例因子共同确定的最大范围。

HS 值	定义	说明
0	卫星健康	该颗卫星提供服务
1	卫星不健康或在测试中	该颗卫星不提供服务
2	预留	预留
3	预留	预留

表 31 卫星健康状态参数定义

8.15 卫星完好性状态标识

卫星完好性状态采用电文完好性标识(DIF)、信号完好性标识(SIF)和系统告警标识(AIF)三个参数进行描述。三个标识参数均为1比特,其定义见表32。

标识	数值	定义
DIF	0	本信号播发的电文参数误差未超出预测精度
DIF	1	本信号播发的电文参数误差超出预测精度
SIF	0	本信号正常
SIF	1	本信号不正常
AIF	0	本信号 SISMAI [®] 值有效
AIF	1	本信号 SISMAI 值无效
* SISMAI 定义见	8.17。	

表 32 卫星完好性状态标识定义

B1C 信号的完好性状态标识[DIF $_{(BIC)}$ 、SIF $_{(BIC)}$ 、AIF $_{(BIC)}$]除了在 B1C 信号中播发外,同时也在 B2a 信号导航电文 B-CNAV2 中播发。由于 B2a 信号导航电文的更新频度更高,对于使用 B1C 和 B2a 信号的双频用户,宜优先使用 B2a 信号播发的完好性状态标识。

B2a 信号的完好性状态标识[DIF_(B2a)、SIF_(B2a)、AIF_(B2a)]只在 B2a 信号导航电文 B-CNAV2 中播发。

8.16 空间信号精度指数

空间信号精度描述的是导航电文中播发的轨道和钟差的预测精度,包括 2 个参数,分别是卫星轨道切向和法向精度(SISA $_{oc}$)、卫星轨道径向和卫星钟差精度(SISA $_{oc}$)。

为计算 SISA。。和 SISA。,导航电文中给出了空间信号精度指数参数,分别为:

- a) SISAI。:卫星轨道的切向和法向精度(SISA。)指数;
- b) SISAI_{ocb}:卫星轨道的径向及卫星钟固定偏差精度(SISA_{ocb})指数;
- c) SISAI_{oc1}:卫星钟频偏精度(SISA_{oc1})指数;
- d) SISAI_{oc2}:卫星钟频漂精度(SISA_{oc2})指数;
- e) t_{on} :数据预测的周内时刻。

8.17 空间信号监测精度指数

利用零均值高斯分布模型对空间信号精度的估计误差进行描述,该高斯分布的方差称为空间信号 监测精度(SISMA),用空间信号监测精度指数(SISMAI)表征。

9 符合性验证方法

9.1 概述

针对北斗卫星导航系统空间信号接口相关内容的符合性验证主要是验证导航卫星、信号模型器等导航信号生成设备产生的信号是否符合第5章~第8章的相关要求,本章给出了符合性验证的基本方法。

9.2 信号特性验证方法

9.2.1 测试设备与连接

测试设备包括频谱仪、导航接收机、导航信号质量分析设备等。

测试设备可通过有线连线或者无线连接方式接收卫星、模拟源发射的信号:有线连接方式下,将卫星、模拟源输出信号适当衰减后,通过信号线缆直接连接在频谱仪、导航接收机、导航信号质量分析设备射频入口端;在无线连接方式下,将接收天线的信号线缆连接在频谱仪、导航接收机、信号质量分析设备射频入口端。

9.2.2 测试与判别方法

利用频谱仪对载波相位噪声、杂散、极化方式、地面接收功率电平进行分析,获得结果并判别是否符合规范要求。

利用导航接收机和信号质量分析设备对信号结构、信号调制、电平映射、相关损耗、数据/码一致性、信号—致性进行分析,获得结果并判别是否符合规范要求。

9.3 测距码特性验证方法

9.3.1 测试设备与连接

同 9.2.2 信号特性验证方法设备与连接内容。

9.3.2 测试与判别方法

导航接收机能够捕获锁定所有指定的信号,则判定信号结构符合规范。

9.4 导航电文结构验证方法

9.4.1 测试设备与连接

同 9.2.2 信号特性验证方法设备与连接内容。

9.4.2 测试与判别方法

导航接收机能够进行信息比特的同步,解调出电文信息内容与预期一致,则判定电文结构符合规范。

9.5 导航电文参数算法验证方法

9.5.1 测试设备与连接

同 9.2.2 信号特性验证方法设备与连接内容。

9.5.2 测试与判别方法

导航接收机能够根据电文信息进行计算,解算结果与预期一致,则判定电文参数和算法符合规范。

附 录 A (资料性附录) 多进制 LDPC 编译码方法及示例

A.1 多进制 LDPC 编码

A.1.1 编码方法

由多进制 LDPC(n,k)编码的校验矩阵 $\mathbf{H} = [\mathbf{H}_1, \mathbf{H}_2]$ 可以计算得到生成矩阵 \mathbf{G} 。再利用生成矩阵 \mathbf{G} ,对长度为 k 的输入信息序列 m 进行编码,可得到长度为 n 的码字 $\mathbf{c} = (\mathbf{c}_0, \mathbf{c}_1, \cdots, \mathbf{c}_{n-1}) = \mathbf{m} \cdot \mathbf{G} = [\mathbf{m}, \mathbf{p}]$ 。其中, $\mathbf{c}_j (0 \leq j \leq n)$ 为码字 \mathbf{c} 中的第 j 个码字符号, $\mathbf{p} = \mathbf{m} \cdot (\mathbf{H}_2^{-1} \cdot \mathbf{H}_1)^{\mathrm{T}}$ 为校验序列。

生成矩阵 G 的产生方法如下:

- a) 第 1 步:将大小为 $(n-k)\times n$ 的矩阵 H 表示为 $H=[H_1,H_2]$,其中 H_1 大小为 $(n-k)\times k$, H_2 大小为 $(n-k)\times (n-k)$ 。
- b) 第 2 步:将矩阵 H 转化为系统形式,用 H_2^{-1} 左乘 H,得到右边为单位阵的校验矩阵 $\hat{H} = [H_2^{-1} \cdot H_1, I_{n-k}]$,其中 I_{n-k} 为(n-k)×(n-k)单位阵。
- c) 第 3 步:得到矩阵 $G = [I_k, (H_2^{-1} \cdot H_1)^T]$,其中 I_k 为 $k \times k$ 单位阵。

A.1.2 编码示例

以 B-CNAV2 导航电文采用 64 进制 LDPC(96,48)编码为例,若输入信息为:

[001000	110010	010011	100001	001010	100110	010000	101001	101100	101111
011100	000101	001110	111010	001001	110100	100010	111111	000101	011100
000110	111101	000000	110001	110100	110111	000101	011001	010000	110011
011011	111010	001011	010000	001001	001000	110111	100101	100011	001001
110110	100111	010110	100000	011001	000100	001111	000111]		
经过编码	马,输出码与	字为:							
[001010	110010	010011	100001	001010	100110	010000	101001	101100	101111
011100	000101	001110	111010	001001	110100	100010	111111	000101	011100
000110	111101	000000	110001	110100	110111	000101	011001	010000	110011
011011	111010	001011	010000	001001	001000	110111	100101	100011	001001
110110	100111	010110	100000	011001	000100	001111	000111	100000	001000
101101	111001	001011	110111	101101	111111	000000	100011	000110	101110
101011	001100	100001	100101	010111	010010	000101	000010	111011	001010
101111	101100	011000	101010	010011	000001	000001	001101	111000	001100
111001	110101	100111	110100	101111	010111	111010	111111	101100	011111
101011	000010	000110	000001	110000	101100]				

A.1.3 映射关系

64 进制 LDPC 编码后,每个码字符号由 6 比特构成,定义于本原多项式为 $p(x)=1+x+x^6$ 的有 42

64 个元素的向量表示法到幂次表示法的映射表如下:

$[\infty$	0	1	6	2	12	7	26	3	32	13	35	8	48	27	18
4	24	33	16	14	52	36	54	9	45	49	38	28	41	19	56
5	62	25	11	34	31	17	47	15	23	53	51	37	44	55	40
10	61	46	30	50	22	39	43	29	60	42	21	20	59	57	58]
63 个非零元素从幂次表示法到向量表示法的映射表如下:															
[1	2	4	8	16	32	3	6	12	24	48	35	5	10	20	40
19	38	15	30	60	59	53	41	17	34	7	14	28	56	51	37
9	18	36	11	22	44	27	54	47	29	58	55	45	25	50	39
13	26	52	43	21	42	23	46	31	62	63	61	57	49	337	

A.2 多进制 LDPC 译码

A.2.1 概述

多进制 LDPC(n,k)编码生成的码字 $c = (c_0, c_1, \dots, c_{n-1})$ 在信号调制后进行信道传输,经过信道传输后,接收端可得到相应的接收序列 $y = (y_0, y_1, \dots, y_{n-1})$ 。其中, $y_j = (y_{j,0}, y_{j,1}, \dots, y_{j,r-1})$ 为码字符号 c_i 对应的信道接收信息, $c_i \in GF(q)$, $q = 2^r$, $0 \le j < n$ 。

利用多进制 LDPC 码的校验矩阵 \mathbf{H} 可以对接收序列 y 进行校验,具体方法是:对接收序列 y 进行逐比特硬判决,得到硬判决码字 $\hat{\mathbf{c}} = (\hat{\mathbf{c}}_0, \hat{\mathbf{c}}_1, \cdots \hat{\mathbf{c}}_{n-1})$,据此计算校验和 $\mathbf{s} = \hat{\mathbf{c}} \mathbf{H}^T$ 。若 $\mathbf{s} = 0$,则将 $\hat{\mathbf{c}}$ 作为正确的译码结果输出,否则表明 $\hat{\mathbf{c}}$ 是错误的译码信息。

校验矩阵 H 给出了 LDPC 码校验节点和变量节点之间的连接关系,相互连接的校验节点和变量节点之间能够传递置信度信息。对于大小为 $m \times n$ 的校验矩阵 H, 记 $h_{i,j} \in GF(q)$ 为 H 矩阵中第 i 行第 j 列的元素,H 中的每一行对应一个校验节点 CN,每一列对应一个变量节点 VN。两个序数集合定义见公式(A,1)和公式(A,2):

若 $h_{i,j}\neq 0$,则校验节点 CN_i 与变量节点 VN_j 之间相连并可以相互传递置信度信息。由变量节点 VN_j 传递给相连校验节点 CN_i ($i\in M_j$)的置信度向量表示为 $V2C_{j\rightarrow i}$,可用于计算校验节点 CN_i 的校验和;由校验节点 CN_i 传递给相连变量节点 VN_j ($j\in N_i$)的置信度向量表示为 $C2V_{i\rightarrow j}$,可用于估算变量节点 VN_j 的符号值。采用置信度传播译码算法,迭代更新 $V2C_{j\rightarrow i}$ 和 $C2V_{i\rightarrow j}$,能够纠正接收序列 y,从而实现对传输码字 c 的估计。

下面给出两种迭代的置信度传播译码算法,用以估计传输码字 c。

A.2.2 扩展最小和法

A.2.2.1 算法流程

设加性高斯白噪声信道的噪声均值为 0,方差为 σ^2 。根据每个码字符号对应的接收符号向量 y_i 计算其置信度向量 L_i 。所有 q 个有限域元素 $x \in GF(q)$ 及其对应的对数似然比(LLR)值 LLR(x)一起构成了置信度向量 L_i ,其中向量 L_i 的第 l 个元素($0 \le l < q$)由第 l 个有限域符号x 及其 LLR 值组成。置信度向量 L_i 中有限域元素 x 的对数似然比计算见公式(A.3):

其中, \hat{x} 是 GF(q)中使概率 $P(y_i|x)$ 最大的有限域元素,即直接对接收符号 y_i 逐比特作硬判决得到的元素。有限域元素 x 和 \hat{x} 对应的比特序列分别为 $x = (x_0, x_1, \dots, x_{r-1})$ 和 $\hat{x} = (\hat{x}_0, \hat{x}_1, \dots, \hat{x}_{r-1})$, $\Delta_{j,b} = x_b \operatorname{XOR} \hat{x}_b$,XOR 为异或运算,即若 x_b 和 \hat{x}_b 相同则 $\Delta_{j,b} = 0$,否则 $\Delta_{j,b} = 1$ 。

在扩展最小和译码算法中,传递的置信度向量 L_i 的长度从 q 个有限域元素减至 $n_m(n_m \ll q)$ 个,即在置信度向量中只保留 LLR 值最小(即置信度最高)的 n_m 个元素。扩展最小和译码的算法流程如下:

- a) 初始化:设置最大迭代次数 irt_{max} ,当前迭代次数 itr=0。根据接收向量 y_j 计算置信度向量 $L_i(0 \le j \le n)$ 。利用 L_i 初始化各变量节点 VN_j 的所有 $V2C_{j \to i}$ 向量。
- b) 第 1 步:对各变量节点 VN_j ($0 \le j \le n$),根据变量节点更新规则计算判决符号 \hat{c}_j 与置信度向量 $V2C_{j \to i}$ 。
- c) 第 2 步:利用多进制 LDPC 码的校验矩阵 H,计算校验和 $s=\hat{c}H^T$ 。若 s=0,则将判决值序列 \hat{c} 作为译码输出并终止译码;否则执行第 3 步。
- d) 第 3 步:对各校验节点 $CN_i(0 \le i \le m)$,根据校验节点更新规则计算置信度向量 $C2V_{i \to i}$ 。
- e) 第4步:令itr=itr+1。若itr=itr_{max},则终止译码并声明失败;否则转至第1步。

A.2.2.2 变量节点更新规则

若当前迭代次数 itr=0,对于每个码字符号的置信度向量 L_j ,按照其 q 个有限域元素的 LLR 值进行升序排列,取排序后 L_j 中的前 n_m 个元素构成截断置信度向量 $L_{j,n_m}=(\mathbf{x}_{n_m}, LLR(\mathbf{x}_{n_m}))$ 。将 $V2C_{j\rightarrow i}$ 初始化为 L'_{i,n_m} ,见公式(A.4):

$$V2C_{i \rightarrow i} = L'_{i,n_m} = L_{i,n_m} \cdot h_{i,j} = (x_{n_m} \cdot h_{i,j}, LLR(x_{n_m})) \quad \cdots \quad (A.4)$$

式中:

 x_{nm} ——被截取的前 n_m 个有限域元素组成的向量;

 $\mathbf{x}_{n_m} \cdot , h_{i,j}$ — 截取的 n_m 个有限域元素与 $h_{i,j}$ 的有限域乘法。

若当前迭代次数 $itr \neq 0$,设 $C2V_{f\rightarrow j}$ 是校验节点 CN_f 传递给相连变量节点 VN_j 的长度为 n_m 的置信度向量,利用 VN_j 收到的所有置信度向量 $C2V_{f\rightarrow j}$ ($f\in M_j$, $f\neq i$),计算 VN_j 传递给相连校验节点 CN_i 的置信度向量 $V2C_{j\rightarrow i}$,计算见公式(A.5):

$$V2C_{j\rightarrow i} = h_{i,j} \cdot \left(\sum_{f \in M_j, f \neq i} C2V_{f\rightarrow j} \cdot h_{f,j}^{-1} + L_j \right)_{n_m} = (Rs_{j\rightarrow i}, R_{j\rightarrow i}) \quad \cdots \cdots (A.5)$$

其中,有限域元素 $h_{f,j}^{-1}$ 是 $h_{f,j}$ 的逆元,即 $h_{f,j}^{-1}$ • $h_{f,j}=1$ 。式(A.5)中的加和运算将各置信度向量 $C2V_{f\to j}$ • $h_{f,j}^{-1}$ 中相同元素的 LLR 值进行相加,(•) n_m 操作表示将置信度向量中的元素进行升序排序并 截取前 n_m 个元素,且这 n_m 个有限域元素互不相同。 $Rs_{j\to i}$ 是前 n_m 个有限域元素组成的向量, $R_{j\to i}$ 是对 应的 LLR 值向量。被置信度向量 $C2V_{f\to j}$ 舍弃的 $q-n_m$ 个有限域元素的 LLR 值取为 $C2V_{f\to j}$ 中最大的 LLR 值与一个固定偏移量之和。在每个置信度向量 $V2C_{j\to i}$ 计算完成后,找到该置信度向量中 LLR 的最小值 LLR $_{min}$,将该置信度向量中各元素的 LLR 值减去 LLR $_{min}$ 。

此外,每个变量节点在每次计算时都进行一次判决,选取长度为q的置信度向量 $\left\{\sum_{f\in M} \operatorname{C2V}_{f\to j} \bullet h_{f,j}^{-1} + L_{j}\right\}$ 中 $\operatorname{LLR}_{\min}$ 对应的有限域元素作为判决值,判决方法见公式(A.6):

$$\hat{c}_{j} \! = \! \arg \min_{(x \in GF(q))} \left\{ \sum_{f \in M_{j}} \! C2V_{f \rightarrow j} \, \boldsymbol{\cdot} \, h_{f,j}^{-1} + L_{j} \right\}, 0 \leqslant j < n \qquad \cdots \cdots (A.6)$$

判决符号 \hat{c}_j 与置信度向量 $V2C_{j\rightarrow i}$ 一起传递给对应的校验节点。检查当前迭代译码结果 $\hat{c} = (\hat{c}_0, \hat{c}_1, \cdots \hat{c}_{n-1})$ 是否能通过校验矩阵校验,即 $s = \hat{c} H^T$ 是否为零向量。

A.2.2.3 校验节点更新规则

对每个校验节点 $CN_i(0 \le i < m)$,接收所有与之相连的变量节点传递的置信度向量 $V2C_{j \to i}$,计算置信度向量 $C2V_{i \to i}$,见公式(A.7):

$$C2V_{i \to j} = \sum_{\gamma \in N, \gamma \neq i} V2C_{\gamma \to i} \qquad \cdots \qquad (A.7)$$

其中,每次加和运算定义为校验节点基本计算:输入两个 n_m 长的置信度向量(各包含 n_m 长的有限域元素向量及对应的 LLR 向量),对来自不同置信度向量的有限域元素做加法得到候选元素并计算对应的 LLR 值,将所有候选元素的 LLR 值升序排列,截取前 n_m 个最小的 LLR 值及其对应的有限域元素构成输出置信度向量。设校验节点基本计算的输入置信度向量分别为(U_s ,U)和(Q_s ,Q),输出置信度向量为(V_s ,V),其中 U,Q,V 为升序排列的 n_m 长 LLR 向量, U_s , Q_s , V_s 为相对应的有限域元素向量。根据输入置信度向量,构建大小为 $n_m \times n_m$ 的置信度矩阵 M 和有限域元素矩阵 M_s 。 M_s 和 M 的计算见公式(A.8)和公式(A.9):

$$M_s[d,\rho]=U_s[d]\oplus Q_s[\rho]$$
(A.8)

$$M[d,\rho]=U[d]+Q[\rho]$$
(A.9)

其中,d, $\rho \in \{0,1,\dots,n_{m-1}\}$, \oplus 为有限域加法。校验节点基本计算见公式(A.10):

$$V[\varepsilon] = \min_{d,\rho \in \lceil 0.1, \dots, n_{m-1} \rceil} \{M[d,\rho]\}_{V_s[\varepsilon] = M_s[d,\rho]}, 0 \leqslant \varepsilon < n_m \quad \dots (A.10)$$

上式的具体实现可以通过对大小为 n_m 的寄存器S进行如下操作完成:

- a) 初始化:将 M 的第 1 列存入 S,使 $S[\zeta] = M[\zeta,0], \zeta \in \{0,1,\dots,n_{m-1}\}$ 。令 $\varepsilon = 0$ 。
- b) 第 1 步:找到 S 中的最小值。(假设 $M[d,\rho]$ 对应 S 中的最小值)。
- c) 第 2 步:若 S 中最小值对应的有限域元素不存在于向量 V_s 中,则将 S 中的最小值给 $V[\varepsilon]$,将对应的有限域元素给 $V_s[\varepsilon]$, $\varepsilon=\varepsilon+1$;否则,不执行操作。
- d) 第 3 步 : 将 S 中的最小值替换为其在 M 中对应元素的右边元素,(即假设当前 S 中的最小值为 $M[d,\rho]$,则将其替换为 $M[d,\rho+1]$)。
- e) 第 4 步:转至第 1 步,直到 $\varepsilon = n_m$ 。

A.2.3 固定路径译码算法

固定路径译码算法是一种高效的译码算法,其整个算法流程和扩展最小和译码算法一致。不同的 地方在于具体的校验节点更新规则。以校验节点的行重值 d_e=4 为例(即每个校验节点接收到 4 个输 入信息向量),固定路径译码算法校验节点更新规则介绍如下:

对于每个校验节点 $CN_i(0 \le i < m)$,利用与之相连的变量节点传递的 4 个置信度向量 $V2C_{j \to i} = (Rs_{j \to i}, R_{j \to i})$ ($j \in N_i$),计算长为 $8 + 2n_m$ 的固定路径偏差值向量 $E_i = (Rs, R_i)$,其中 Rs_i 是长度为 $8 + 2n_m$ 的有限域元素向量(向量中可能存在重复的有限域元素), R_i 是对应的 LLR 向量。

每次计算时,将 4 个置信度向量 V2C_{j→i}按照其第二个元素 V2C_{j→i}[1]=($Rs_{j→i}$ [1], $R_{j→i}$ [1])(索引下标为 1)的 LLR 值 $R_{j→i}$ [1]从小到大排序,排序后的 4 个新向量定义为($Rs_{l,i}$, $R_{l,i}$),0 \leqslant l<4,即 $R_{0,i}$ [1] \leqslant $R_{1,i}$ [1] \leqslant $R_{2,i}$ [1] \leqslant $R_{3,i}$ [1]。其中, $Rs_{l,i}$ 为排序后的 n_m 长度的有限域元素向量, $R_{l,i}$ 是对应的 LLR 向量。根据 4 个新向量($Rs_{l,i}$, $R_{l,i}$)计算固定路径偏差值向量 E_i =(Rs_i , R_i),各元素 Rs_i [e]及其 LLR 值 R_i [e]计算见公式(A.11)和公式(A.12):

$$Rs_{e-1,i} [1] \oplus \sum_{0 \le l < 4, l \ne e-1} Rs_{l,i} [0], \qquad e = 0$$

$$Rs_{e-1,i} [1] \oplus \sum_{0 \le l < 4, l \ne e-1} Rs_{l,i} [0], \qquad 1 \le e \le 4$$

$$Rs_{0,i} [1] \oplus Rs_{e-4,i} [1] \oplus \sum_{1 \le l < 4, l \ne e-4} Rs_{l,i} [0], \qquad 5 \le e \le 7$$

$$Rs_{0,i} [0] \oplus Rs_{1,i} [1] \oplus Rs_{2,i} [1] \oplus Rs_{3,i} [0], \qquad e = 8$$

$$Rs_{0,i} [0] \oplus Rs_{1,i} [1] \oplus Rs_{2,i} [0] \oplus Rs_{3,i} [1], \qquad e = 9$$

$$Rs_{e-10,i} [2] \oplus \sum_{0 \le l < 4, l \ne e-10} Rs_{l,i} [0], \qquad 10 \le e < 14$$

$$Rs_{\theta,i} [e - 11] \oplus \sum_{0 \le l < 4, l \ne \theta} Rs_{l,i} [0], \qquad 14 \le e < 11 + n_m$$

$$Rs_{\beta,i} [e - 8 - n_m] \oplus \sum_{0 \le l < 4, l \ne \beta} Rs_{l,i} [0], \qquad 11 + n_m \le e < 8 + 2n_m$$

$$\begin{cases} 0, & e = 0 \\ R_{e-1,i} [1], & 1 \le e \le 4 \\ R_{0,i} [1] + R_{e-4,i} [1], & 5 \le e \le 7 \end{cases}$$

$$R_{i} [e] = \begin{cases} R_{1,i} [1] + R_{e-4,i} [1], & 8 \le e \le 9 \\ R_{e-10,i} [2], & 10 \le e < 14 \\ R_{\theta,i} [e - 11], & 14 \le e < 11 + n_m \end{cases}$$

$$R_{\theta,i} [e - 11], \qquad 14 \le e < 11 + n_m$$

$$R_{\theta,i} [e - 11], \qquad 14 \le e < 11 + n_m$$

$$R_{\theta,i} [e - 11], \qquad 14 \le e < 11 + n_m$$

$$R_{\theta,i} [e - 11], \qquad 14 \le e < 11 + n_m$$

$$R_{\theta,i} [e - 11], \qquad 14 \le e < 11 + n_m$$

$$R_{\theta,i} [e - 11], \qquad 14 \le e < 11 + n_m$$

$$R_{\theta,i} [e - 8 - n_m], \qquad 11 + n_m \le e < 8 + 2n_m$$

其中, θ 和 β 分别表示全部 $R_{l,i}$ 向量中第 $[n_m/2]+1$ 个 LLR 值(索引下标为 $[n_m/2]$)的最小值和次 小值所对应的 R₁,向量下标 l,加和运算及①为有限域加法运算。

设定两个长为 $8+2n_m$ 的标志向量 T 和 \overline{T} 并将其初始化为全 1 向量。对于 $0 \leq k_R < 8+2n_m$,标志 向量 T 和 \overline{T} 的更新见公式(A.13)和公式(A.14):

$$T[k_R] = \begin{cases} 1, R_i[k_R] \leq R_{\theta,i}[\lfloor n_m/2 \rfloor] \\ 0, R_i[k_R] > R_{\theta,i}[\lfloor n_m/2 \rfloor] \end{cases}$$

$$\overline{T}[k_R] = \begin{cases} 1, R_i[k_R] \leq R_{\beta,i}[\lfloor n_m/2 \rfloor] \\ 0, R_i[k_R] > R_{\beta,i}[\lfloor n_m/2 \rfloor] \end{cases}$$

$$(A.13)$$

$$\overline{T}[k_R] = \begin{cases} 1, R_i[k_R] \leq R_{\beta,i}[n_m/2] \\ 0, R_i[k_R] > R_{\beta,i}[n_m/2] \end{cases} \qquad \dots \qquad (A.14)$$

根据固定路径偏差和标志向量更新 4 个长度为 n_m 的输出置信度向量($Us_{i,1},U_{i,1}$),计算见公式 (A.15)和公式(A.16):

$$U_{\mathbf{S}_{i,1}} = (Rs_i \llbracket w \rrbracket \oplus Rs_{l,i} \llbracket 0 \rrbracket)_{n_m} \qquad \cdots \qquad (A.15)$$

$$U_{i,1} = (R_i \llbracket w \rrbracket)_{n_m} \qquad \cdots \qquad (A.16)$$

其中, $0 \le l \le 4$; w 的取值范围由不同的情况决定,对于 l=0 的情况,如果 $\theta \ne 0$,w 的取值范围见公 式(A.17):

 $\{w \mid T \lceil w \rceil = 1\} \cap \{\{w = 0\} \cup \{1 < w \le 4\} \cup \{8 \le w < 10\} \cup \{10 < w < 11 + n_m\}\} \cdots (A.17)$ 否则, ω 的取值范围见公式(A.18):

 $\{w \mid \overline{T}[w] = 1\} \cap \{\{w = 0\} \cup \{1 < w \le 4\} \cup \{8 \le w < 10\} \cup \{10 < w < 14\} \cup \{w \ge 11 + n_m\}\}$ ··· (A.18) 对于 $1 \le l < 4$ 的情况,如果 $l = \theta$ 时, ω 的取值范围见公式(A.19):

$$\langle w \mid \overline{T} [w] = 1 \rangle \cap \langle \{0 \leqslant w \leqslant 7\} \cup \{10 \leqslant w \leqslant 14\} \cup \{w \geqslant 11 + n_m\} \} \cap$$

$$\langle \{w \neq l+1\} \cap \{w \neq 4+l\} \cap \{w \neq 10+l\} \} \qquad \cdots (A.19)$$

否则 w 的取值范围见公式(A.20):

$$\{w \mid T[w] = 1\} \cap \{\{0 \le w \le 7\} \cup \{10 \le w < 11 + n_m\}\} \cap \{\{w \ne l + 1\} \cap \{w \ne 4 + l\} \cap \{w \ne 10 + l\}\}$$
(A.20)

 $Us_{i,l}[z](0 \le z < n_m)$ 对应于 w 的前 n_m 个最小值计算得到的 $Rs_i[w] \oplus Rs_{l,i}[0]$,且不需要排除 $Us_{i,l}[z]$ 中相同的元素, $U_{i,l}[z]$ 是 $Us_{i,l}[z]$ 对应的 LLR 值。

计算得到的 4 个向量(Us_{i,1}, U_{i,1})的排列顺序与 4 个排序后的输入向量(Rs_{l,i}, R_{l,i})——对应。因为每一个输入向量(Rs_{l,i}, R_{l,i})对应一个 V2C_{j→i}向量,根据置信度向量 V2C_{j→i}与(Rs_{l,i}, R_{l,i})的之间的排列顺序,更新输出置信度向量 C2V_{i→j}=(Us_{i,1}, U_{i,1}),($j \in N_i$)。

