Mecânica e Campo Eletromagnético 2019/2020 – parte 6 Luiz Pereira luiz@ua.pt

Tópicos

- Sistemas oscilatórios
 - Movimento harmónico simples (M.H.S.)

Se a força que atua sobre um corpo:

- é proporcional ao deslocamento em relação à posição de equilíbrio
- aponta sempre para a posição de equilíbrio

O corpo tem movimento periódico, harmónico, oscilatório ou vibracional

Ex: Bloco preso a uma mola, baloiço (pêndulo), corda a vibrar, moléculas a vibrar num sólido, etc..

Massa presa a uma mola: M.H.S.

2ª Lei de Newton

$$F = -kx$$

$$ma = -kx$$

$$m\frac{d^{2}x}{dt^{2}} = -kx$$

$$m\frac{d^{2}x}{dt^{2}} + kx = 0$$

$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$

F: Força restauradora k: constante da mola

$$a = -\frac{k}{m}x = -\omega^2 x \qquad \omega = \sqrt{\frac{k}{m}}$$

 ω é a frequência angular (radianos)

Massa presa a uma mola: M.H.S.

$$a = \frac{dx^2}{dt} = -\omega^2 x$$

Qual será a solução, x, desta equação diferencial?

Tipicamente é uma função do tipo:

$$x = A\cos(\omega t)$$

Massa presa a uma mola: M.H.S.

$$x = A\cos(\omega t)$$

$$\frac{dx}{dt} = \frac{d[A\cos(\omega t)]}{dt} = -\omega A\sin(\omega t)$$

$$\frac{d^2x}{dt^2} = \frac{d[-\omega A\sin(\omega t)]}{dt} = -\omega^2 A\cos(\omega t) = -\omega^2 x$$
É solução!

Mas haverá outras soluções ?

3

Massa presa a uma mola: M.H.S.

SIM!

$$x = A \sin(\omega t)$$

Também é solução

$$x = B\sin(\omega t) + C\cos(\omega t)$$

(Verifique que é solução)

 $x = A \cos(\omega t + \phi)$ é equivalente a $x = B \sin(\omega t) + C \cos(\omega t)$ $x = A \cos(\omega t + \phi) = A \cos(\omega t) \cos\phi - A \sin(\omega t) \sin\phi$ $x = C \cos(\omega t) + B \sin(\omega t)$ Onde $C = A \cos(\phi) = B = -A \sin(\phi)$

Portanto, podemos usar $X = A \cos(\omega t + \phi)$ como solução geral

Massa presa a uma mola: M.H.S.

A solução é:

As 2 constantes de integração são:

Amplitude (deslocamento máximo)

 $x(t) = A\cos(\omega t + \phi)$

Fase

- ω é determinada pelas propriedades do sistema (k e m)
- A e φ são determinados pelas condições iniciais

Este movimento designa-se Movimento Harmónico Simples (M.H.S.)

4

•

Massa presa a uma mola: M.H.S.

10

Massa presa a uma mola: M.H.S. – Fase inicial

Massa presa a uma mola: M.H.S. – Velocidade

$$x(t) = A\cos(\omega t + \phi)$$

$$v = \frac{dx}{dt} = -\omega A sen(\omega t + \phi)$$

$$v_{m\acute{a}x} = \omega A$$

- v está desfasada 90° em relação a x.
- v é zero quando x é máximo ou mínimo.
- v é máximo quando x = 0

12

Massa presa a uma mola: M.H.S. - Aceleração

$$a = \frac{dv}{dt} = -\omega^2 A \cos(\omega t + \phi) = -\omega^2 x$$

a tem sentido contrário a X (relembrar Lei de Hooke)

$$a_{m\acute{a}x} = \omega^2 A$$

- a está desfasada 180° em relação a x
- a está desfasada 90° em relação a v
- a é zero quando x =0
- a é máxima quando x é mínimo (e vice-versa)

Massa presa a uma mola: M.H.S.- gráficos

14

Mola vertical

.5

M.H.S. - Pêndulo Simples

16

M.H.S. - Pêndulo

- Portanto: o Pêndulo também executa M.H.S.!
- A sua frequência (e o período) só depende do seu comprimento

M.H.S.

Os sistemas mecânicos têm uma **frequência natural** de oscilação que depende de:

 $\sqrt{\frac{\text{propriedade elástica}}{\text{propriedade inercial}}}$

mola

Pêndulo simples

18

M.H.S. – Energia no M.H.S

Relembrando:

Como F é conservativa:

$$F_{ex} = -\frac{dE_{Pe}}{dx} = -kx$$

Energia potencial elástica

$$E_{Pe} = \frac{1}{2}kx^{2} \equiv \frac{1}{2}m\omega^{2}x^{2}$$

$$\omega^{2} = \frac{k}{m} \Leftrightarrow k = \omega^{2}m$$

E_{pe}(0)=0 (posição de equilíbrio)

M.H.S. – Energia no M.H.S

Energia cinética

$$E_c = \frac{1}{2}mv^2 = \frac{1}{2}m(-\omega Asen(\omega t + \phi))^2 = \frac{1}{2}m\omega^2 A^2 sen^2(\omega t + \phi)$$

Utilizando a identidade trigonométrica

$$sen^2\theta + cos^2\theta = 1 \Leftrightarrow sen^2\theta = 1 - cos^2\theta$$

Obtém-se:

$$\Leftrightarrow E_c = \frac{1}{2} m \omega^2 A^2 \left[1 - \cos^2(\omega t + \phi) \right] = \frac{1}{2} m \omega^2 \left(A^2 - x^2 \right)$$

20

M.H.S. – Energia no M.H.S

Energia mecânica $E = E_{Pe} + E_c = \frac{1}{2}k(A\cos(\omega t + \phi))^2 + \frac{1}{2}m\omega^2(Asen(\omega t + \phi))^2$

Utilizando de novo a identidade trigonométrica

$$sen^2\theta + cos^2\theta = 1 \Leftrightarrow sen^2\theta = 1 - cos^2\theta$$

Num M.H.S. a Energia mecânica é constante!!

M.H.S. – Energia em função de t no M.H.S

M.H.S. – Energia em função de $t\,$ no M.H.S

22

M.H.S. – Energia em função de x no M.H.S

<u>Oscilações livres - M.H.S. Mola</u> <u>Oscilações livres - M.H.S. Pêndulo</u>

Energia no M.H.S.

Oscilações acopladas

Podemos escrever a equação do movimento para casa oscilador

$$\begin{cases} m_1 \frac{d^2 x_1}{dt^2} = -k_1 x_1 - k(x_1 - x_2) \\ m_2 \frac{d^2 x_2}{dt^2} = -k_2 x_2 - k(x_2 - x_1) \end{cases}$$

Analisando a dinâmica de cada uma das massa supondo que a outra está fixa na posição de equilíbrio

$$\begin{cases} \frac{d^2x_1}{dt^2} + \frac{k_1 + k}{m_1} x_1 = \frac{k}{m_1} x_2 \\ \frac{d^2x_2}{dt^2} + \frac{k_2 + k}{m_2} x_2 = \frac{k}{m_2} x_1 \end{cases}$$
Termos de acoplamento

24

Oscilações acopladas

Vejamos as seguinte soluções:

$$\begin{cases} x_1 = A\cos(\omega t) \\ x_2 = B\cos(\omega t) \end{cases}$$

$$\begin{cases} -\omega^2 A \cos(\omega t) + \frac{k_1 + k}{m_1} A \cos(\omega t) = \frac{k}{m_1} B \cos(\omega t) \\ -\omega^2 B \cos(\omega t) + \frac{k_2 + k}{m_2} B \cos(\omega t) = \frac{k}{m_2} A \cos(\omega t) \end{cases} \Leftrightarrow$$

$$\begin{cases} \left(-\omega^2 + \frac{k_1 + k}{m_1} \right) A - \frac{k}{m_1} B = 0 \\ -\frac{k}{m_2} A - \left(\omega^2 + \frac{k_2 + k}{m_2} \right) B = 0 \end{cases}$$

Resolução do sistema utilizando matrizes !

Determinação das frequências normais de vibração

$$\begin{cases} \left(-\omega^2 + \frac{k_1 + k}{m_1}\right) A - \frac{k}{m_1} B = 0 \\ -\frac{k}{m_1} A + \left(-\omega^2 + \frac{k_2 + k}{m_2}\right) B = 0 \end{cases} \Leftrightarrow \begin{bmatrix} \left(-\omega^2 + \frac{k_1 + k}{m_1}\right) & -\frac{k}{m_1} \\ -\frac{k}{m_2} & \left(-\omega^2 + \frac{k_2 + k}{m_2}\right) \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = 0$$

As soluções não triviais são aquelas em que o determinante da matriz dos coeficientes A=[(a_{ii})] é nulo!

$$\begin{vmatrix} \left(-\omega^2 + \frac{k_1 + k}{m_1}\right) & -\frac{k}{m_1} \\ -\frac{k}{m_2} & \left(-\omega^2 + \frac{k_2 + k}{m_2}\right) \end{vmatrix} = 0 \iff \left(-\omega^2 + \frac{k_1 + k}{m_1}\right) \times \left(-\omega^2 + \frac{k_2 + k}{m_2}\right) - \left(-\frac{k}{m_1} \times \left(-\frac{k}{m_2}\right)\right) = 0$$

26

Determinação das frequências normais de vibração

No caso em que m1 = m2 = m e K1 = K2 = K, temos

$$\left(-\omega^2 + \frac{2k}{m}\right) \times \left(-\omega^2 + \frac{2k}{m}\right) - \left(\frac{k^2}{m^2}\right) = 0$$

$$\omega^4 - 4\omega^2 \frac{k}{m} + 3\frac{k^2}{m^2} = 0$$

$$como \qquad \omega_0^2 = \frac{k}{m}$$

$$\omega^2 = \frac{\omega_0^2 (4 \pm 2)}{2}$$

O sistema tem duas frequências próprias de vibração

i)
$$\omega_1^2 = \omega_0^2$$

ii) $\omega_1^2 = 3\omega_0^2$

A relação com as amplitudes de cada movimento (A e B) são:

Se A = B, as massas oscilam em fase Se A = -B, as massas oscilam em oposição de fase

Coordenadas normais: graus de liberdade e modos de vibração

- As coordenadas normais conduzem a equações do movimento que tomam a forma de um conjunto de equações diferenciais com coeficientes constantes em que cada equação tem apenas uma variável dependente.
- Uma vibração que envolve apenas uma variável dependente X ou Y é designada de modo normal de vibração e tem a sua frequência própria de vibração. Em cada modo normal de vibração cada componente oscila com a mesma frequência.
- A importância do modo normal de vibração é que cada um é inteiramente independente do outro. A energia de um modo normal nunca é transferida para o outro modo norma de vibração.
- Cada processo independente pelo qual o sistema adquire energia é designado de grau de liberdade. O número destes processos define o nº de graus de liberdade e o nº de coordenadas normais de vibração.
 - Cada oscilador harmónico tem dois processos independentes de adquirir energia por energia potencial (coordenada x); por energia cinética (derivada da coordenada x)

28

Amortecimento

Aplicando 2ª Lei de Newton:

$$\sum \vec{F} = m\vec{a} \Leftrightarrow -kx - bv = ma_x \longleftrightarrow -kx - b\frac{dx}{dt} = m\frac{d^2x}{dt^2}$$

Quando o amortecimento não é muito intenso, inferior a um valor crítico (b_c) esperamos que a solução corresponda a uma oscilação cuja amplitude diminua com o tempo

Amortecimento

A solução é:

$$x = A_o e^{-\frac{b}{2m}t} \cos(\omega t + \phi)$$

E a frequência de oscilação é

$$\omega = \sqrt{\frac{k}{m} - \left(\frac{b}{2m}\right)^2}$$

Esta solução só é válida se:

$$\frac{b}{2m} < \omega_o$$

$$\omega_0 = \sqrt{\frac{k}{m}}$$

 $\frac{b}{2m} < \omega_o$ $b < 2m \omega_0$ Coeficiente de amortecimento crítico (b_c) $b_c = 2m \omega_0$

$$b_c = 2m\,\omega_0$$

Amortecimento

Graus de Amortecimento

À medida que b aumenta, o decréscimo da amplitude das oscilações é cada vez mais rápido.

Amortecimento

Sub-Amortecido

(Amortecimento fraco)

Amortecido criticamente

(Amortecimento forte)

Sobre Amortecido

(Amortecimento muito forte)

Forçamento

- Se se pretende manter um sistema a oscilar, na presença de forças dissipativas, tem de se lhe fornecer energia, aplicando uma força externa
- Ao fim de algum tempo, o movimento terá a frequência da força excitadora
- Isto fará com que ao fim de algum tempo a energia fornecida (numa oscilação) será igual à dissipada, e assim a amplitude mantém-se constante, e o seu valor dependerá da frequência excitadora.

Este movimento designa-se por oscilação forçada

34

Forçamento

Considere força harmónica:

$$F_{ext} = F_0 \cos(\omega_f t)$$

A magnitude da força varia harmonicamente com *t* entre

$$-F_0$$
 e + F_0 , com $\omega = \omega_f$

2ª Lei de Newton:

$$\sum \vec{F} = m\vec{a} = -kx - bv + F_0 \cos(\omega_f t)$$

$$-kx - b\frac{dx}{dt} + F_0 \cos(\omega t) = m\frac{d^2x}{dt^2}$$

Forçamento

Equação diferencial, cuja solução é:

$$x = A\cos(\omega_f t + \phi)$$

Verifique que é solução !!

Onde:

$$A = \frac{\frac{F_0}{m}}{\sqrt{\left(\omega_f^2 - \omega_0^2\right)^2 + \left(\frac{b\omega_f}{m}\right)^2}}$$

O desfasamento ϕ entre a posição x e a força é:

ATENÇÃO: não é fase inicial!!!

$$tan \phi = \frac{b\omega_f}{m(\omega_f^2 - \omega_0^2)}$$

Forçamento

Sistema oscila com $\omega = \omega_f$

A é constante em t

A é máximo quando $\omega_{\rm f} \approx \omega_{\rm o}$

ressonância

Na ausência de amortecimento $A \longrightarrow \infty$

quando $\omega_{\rm f} \longrightarrow \omega_0$

