

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

Library
of the
University of Wisconsin

• •

. ·

		.			
					1
					•
·		•			
			•		
			•		
•					
	•				
	•				
					-
•		•			i
				•	
·					
			•		!
•					I
					•
					i i
			,		
			1		
			٠		·
			,		

•

·

[From a photograph by Elliott and Fry

Dr. John Hopkinson, F.R.S.

ELECTRIC MACHINE DESIGN

BEING A REVISED AND ENLARGED EDITION OF

"ELECTRIC GENERATORS"

 \mathbf{BY}

HORACE FIELD PARSHALL

AND

HENRY METCALFE HOBART

LONDON:

OFFICES OF "ENGINEERING," 35 AND 36, BEDFORD STREET, STRAND, W.C.

NEW YORK:

JOHN WILEY AND SONS, 43, EAST NINETEENTH STREET

1906

[All rights reserved]

. .

TO P25 E ·3

THIS BOOK IS DEDICATED

TO

THE MEMORY OF

DR. JOHN HOPKINSON, F.R.S.

THE FOUNDER OF THE

"SCIENCE OF DYNAMO DESIGN"

		·	
	•		
		•	
	•		
			-

TABLE OF CONTENTS

PART I.—CONTINUOUS-CURRENT GENERATORS

MATERIA	LS	•••	•••		•••	•••	•••	•••		PAGE 1
	OF MATI	GRIALS	•••	•••	•••	•••	•••			1
Con	with Bal of Measu tion of H and Rot	llistic Ga rring Per Iysteresi ating Fie	lvanome rmeabilit s Loss— elds—Me	ter—Oth y not Re Conversi ethods of	er Perme quiring B on of Uni Measurin	of Iron Sability Teallistic Gats—Hystereg Hystereg of Whol	sting Met lvanomet eresis Loss sis Loss w	hods—Mer – Deter in Alter ithout B	ethods rmina nating	
PROPERT	ies of M	ATERIAL	s	•••	•••	•••	•••	•••	•••	17
The	Steel—I	Mitis Iro	n—Nick		-Forgings	Iron—Ma —Testing				
Energy	Losses 1	n Sheet	Iron	•••	•••	•••	•••	•••		31
Anı	_					Sheet Iron —Estimati				
Insulati	ng Mati	ERIALS	•••	•••	•••		•••		•••	42
Pro	— Punct Insulation Tests—I	uring Vo on Testin	oltages of g Methoof of Test—	of Mica— ds for Fs —Insulati	-Tests on actories	ir Suitabi Various I Step-up Ti Results f	Materials- ransforme	—Descrip r for Inst	tion of ulation	
ARMATU	RE WIND	INGS	•••		•••		•••		•••	64
Con	Multiple	-Circuit 38—Rote	Winding ary Conv	gs—Two- verter V	Circuit V	ng Windi Vindings— -Alternat	Formula	for Two-	Oircuit	
FORMULA	e for Ei	ECTROMO	TIVE FO	RCE		•••	•••	•••	•••	82
Con	motive I of Electr Convert	Force Associates comotive ers—Thr	Force a	be a Si and of M	ne Wave- lagnetic l Converte	rrent Dyn —Values i Flux Distr rs—Polyp	for K for ribution i	Various n Gap—1	Waves Rotary	

THERMA	L Limit o	F OUTPUT	•••					PA:	G B 94
	—C ² R I Hysteres —Consta	matures—Inter Due to Useful is Loss in Core ant-Potential Dy	Currents is—Railway	in the y Motor	Conductor s—Consta	rs—Foucs int-Curren	ult Curr t Arc Dy	ents— namos	
DESIGN	OF THE M	AGNETIC CIRCU	IT	•••	•••	•••	•••	19	26
Lea	of Comploid Core Winding Shunt-W	tor—Armature lete Magnetic (Projections—Co Formula—App ound Dynamo— tion Motor—Ex	Circuit—Es alculation : plication to -Magnetic	stimation for Mag o Calcul	n of Gap gnetic Cir lation of	Reluctan cuit of I a Spool	ce—Relu)yn a mo— Winding	ctance Field- for a	
CONSTAN	T POTENT	IAL, CONTINUOU	8-CURRENT	DYNAM	08	•••		18	4
	Strength tion—De Circuit Voltage Constant	eaction—The F in Two Extrem stermination of Windings—Mul per Commutate s—Practical De Inductance—I	e Cases—Cothe Number Segment of	onditioner of Pondings— t as Re Inducte	ns Essentions Essentions (Inc.) Two-Circulated to (Inc.)	al to Spar Jiven Out uit "Coil Inductan cription o	kless Con tput—Mu "Wind ce—Indu f Experin	muta- litiple- ings— ctance nental	
Modern	•	r Potential Co	OMMUTATING	B DYNA	MO8			19	4
		t Generator					•••	19	
55		,,	•••			•••	•••	20	_
100		"						21	5
25	_	"						. 22	7
5	0 "	,,	•••		•••	•••	•••	24	1
Designii	og Coeffi	CIENTS	. • •	•••	•••	•••	•••	25	2
		PART II	ELECTRI	C TR	ACTION	MOTOR	s		
GENERAL	DATA	•••	•••		•••		•••	25	8
Gea	red 24 Ho	rse-Power Raily	way Motor	for a Re	sted Draw	-bar Pull	of 800 lb	at a	
	Speed of	11.4 Miles per l	Hour			•••		25	8
Gea		ay Motor for a		-	27 Horse	-Power a	t an Arn	atu re	
		640 Revolution			•••	•••	• • •	26	
Dire	ect-Connec	ted 117 Horse-I	Power Rail	way Mo	tor	•••	•••	28	1
		Brush Grantance of Brushe			···	 Variona l	 Fatamiala	29	6
Con	varu ivosisi	ventos di Drushe	Drush C	rear—.D	r asmes of	A WLIORP Y	ialetibis.		
		PART I	II.—ROT	ARY (CONVER	TERS			
GENERAL	DATA	•••		•••	•••		•••	30	9
C2R		rmature Condu							
		ase Rotary Cor							
		ection of Static							
	Rotary Connection	Converters — T	welve-Phas	e Rote	ry Conv	erters —	Winding	and	

Table of Contents

vii

Table of Contents

						PAGE
Volt-Ampere Curve and Armature De	47		•••	• • •	•••	482
	•••		•••	•••	•••	492
Forty-Pole 2500-Kilowatt, Three-Ph	ase, 25-C	ycle, 650)0-Volt, 7	5 Revo	lution,	
Revolving Field Alternator		•••		• • •	•••	498
Determination of Inductance from the				•••	•••	503
Twenty-Pole, 3750-Kilowatt, Quarter-					• • •	507
Three-Phase, 850-Kilowatt, 5000-Volt,	25-Cycle,	32-Pole	Alternato	•		522
Output Coefficient	•••	•••	•••	•••	•••	529
PART V.—ALTERNATORS	FOR S	ГЕАМ Т	URBINE	SPEE	DS.	
Three-Phase Turbine Generator, 1500-Kil	owatt, 11	,000-Volt	, 6-Pole,	50-Cycle,	1000-	
Revolution Alternator	•••	•••	•••			533
Data from Test Report		•••	•••	•••	•••	541
Armature Demagnetisation		•••		•••	•••	542
Calculation of Armature Inductance	•••	•••				542
Excitation for Full-Load and Unity Power		•••		•••		54 3
" at Power-Factor =		•••		•••	. • •	543
A. E. G. Rotor Construction for Turbo-Al	ternators	•••	•••	•••	•••	543
PART VI.—CONTINUOUS-CURR	ENT DY	NAMOS	FOR S	ГЕАМ-Т	URBIN	E
	SPEEDS.					
Their Design		•••			••• 、	547
General Arrangement of 750-Kilowatt, 250	-Volt, 6-F	ole, 1500-	Revolutio	n Genera	tor	548
Winding Scheme for Auxiliary Poles	•••		•••			549
Specification for the 750-Kilowatt Machine						550
Designing Data for ", ",	•••	•••				551
A. E. G. Winding and Construction	•••	•••	•••	•••	•••	55 8
AP	PENDIX	. .				
Tables of Properties of Commercial Copper	Wire.—V	Vire-Gaug	e Tables	_Physica	l and	
Electrical Properties of Various Metal		_		•		3-567
Properties of Copper Wires for the Princi		•		ent Cou	ntries	
(Two Folding Plates)		•••		To fe	ace page	568

LIST OF ILLUSTRATIONS

Portrait of	the Late Dr.	John Ho	PKINSON, F.F	R.S	•••	•••	Front	ispiec
	CON	TINUOU	S-CURREN	T GENER	ATORS			
FIGS.								PAGE
1	Holden's Pe	rmeability	Bridge	•••	•••	•••	•••	6
2	Ewing's Per	meability	Bridge	•••	•••	•••		8
3	Cyclic Curve	e for Sheet	Iron	•••	•••	•••		9
4	Sample for	Use in Ho	den's Hystere	esis Tester	•••	•••		11
5			esting Appara		•••	•••		12
6	Modification	of Holder	a's Hysteresis	Testing Ap	paratus	•••		13
7	Ewing's Hys	steresis Te	sting Device		•••	•••	•••	14
8 to 10	Apparatus fe	or Magneti	c Tests of W	hole Sheets o	of Iron			16
11 to 14	Magnetic Cu	•		•••		•••		21
15 to 18	"		Ialleable Iron	, Steel and I	Pig Iron, s	nd Cast	Steel	23
19 to 22	"		ast Steel	••••		•••		25
23 to 26	"		litis Iron, Nic	kel Steel, St	teel, and V	Vrought 1	lron	28
27	"		orgings and S	-	•		•••	29
28			nd Specimen,	_		•••		30
		-	Reading Perm	•		Plate I.)		ace 30
29 to 32			mperature an					33
33 to 36	"Ageing" C				•••		•••	35
37 and 38			Hysteresis I	Loss in Sheet			•••	36
39 and 40		•	and Eddy-Cur			ron	•••	37
41		•	Jurve for Clot			•	•••	47
42 and 43	Transformer					•••		47
44	Apparatus fo			•••	•••			48
45	. 		Insulation T					52
46 and 47			Mica Canvas					52
48 to 51				•••	•••	•••		53
52 to 55	,,	,, ((Mica-Longelo				•••	54
56 and 57	"	••			•••		•••	55
58 to 63	"	"	Shellac'd Par			•••		58
64 to 69	"		Red Paper"		•••	•••		60
70	Gramme Rin		•			•••	•••	65
71	Multiple-Circ			Communa	•••		•••	68
72	Six-Circuit, I		_	•••	•••	•••		69
73	Two-Circuit,		_		•••			71
74	-	Double W	•	•••	•••	•••	•••	73
75	Three-Phase		_	 Cironit Sina	 le Windin	···	•••	75
76	I HIVO-I HASE	•	•	Circuit Sing		_	•••	76
	" Digenerat II	,, ,, of Wi-		orcuit wind	ııığ	•••	•••	78
77 to 82	Different Typ	es of win	uing	•••	•••	•••	•••	80
83 to 87	"	"	•••	•••	•••	•••	•••	88
88	95	"	•••	•••	•••	•••	•••	00

FIGS.		P∆G
89	Rotary Converter Characteristic Curve	90
90 and 91	Form Factor Curves	9
92 to 97	Thermal Tests of a Field Spool	9
98	<u>,, </u>	99
99	Sketch of Machine Tested	10
100 to 103	Thermal Test Curves	109
104 to 107	,, ,,	103
108 to 110	,, ,,	10-
111	,, ,,	10
112	,, ,,	104
113	Armature Slot of a Large Alternator	109
114	Core Loss Curves	110
115 and 116	,, ,,	113
117	Diagrammatic Sketch of Armature Core	113
118	Core Loss Curve	111
119 to 123	Laminations of Five Railway Motors Tested	••
124	Core Loss Curve, Railway Motors	111
125	,, Observations by Messrs. Esterline and Reid	
126	" Curves for Continuous-Current Generators	118
127 and 128	Heat and Insulating Resistance Curves	101
129 to 134	Leakage Factor Diagrams	131
135	Sketch of Slot	134
136 and 137	Sheet Iron and Density Curves	137
138	Saturation Curve	1.04
139 and 140	Typical Magnetic Circuits and their Saturation Curve	
141 and 142	•	1.41
143 and 144))))))))))))))))))))))))))	1.45
145 and 146	,, ,, ,, ,, ,, ,,	7.40
147 and 148	yy	144
149 and 150	On the Calculation Herstonesis and Edda Channer	
149 and 190	Curves for Calculating Hysteresis and Eddy-Curren	
181	former Cores	146
151	Magnetic Circuit of a Transformer	148
152	", ", an Induction Motor	
153	Curve of Distribution of M. M. F. in Induction Motor	
154	n n n n n n n n n n n n n n n n n n n	150
155 to 157	Diagrams of Distorting and Demagnetising Effects of	
158	Curves of Gap Distribution of Magnetic Flux with	
	Brushes	159
159	Saturation Curve	164
160	Curves for Calculating the Influence of Distorting An	=
161 to 165	Diagrams Illustrating Tests of Inductance	176
166 and 167	" " " "	181
168	" " " " " " " "	184
169 to 171	Diagrams of 20 Horse-Power Motor and Test Curves	185
172 and 173	Tests on an Alternator Armature	189
174	Diagram Illustrating Inductance Tests	190
175 176	12-Pole, 1500-Kilowatt, 600-Volt Railway Generator	197
1 / h		198

PIGS.						F	PAGE
177	12-Pole, 1500-Kilowat	t, 600-Volt	Railway Ger	erator		•••	200
178 and 179	Saturation and Compo	unding Cur	ves	•••	•••	•••	203
180	10-Pole, 550-Kilowatt,	550-Volt	Railway Ge	nerator; Sj	peed, 90	Revo-	
	lutions, Dublin (F	Plate II.) .		•••	•••	To face	208
	10-Pole, 550-Kilowatt	Railway G	enerator; M	agnet Fram	e and M	I agnet	
	(Plate IIa.)				•••		208
	Ditto		Details of		Constr	uction	
			(Plate 1	Ιв.)	•••	To face	208
181	10-Pole, 550-Kilowatt	, 550-Volt	•			•	
	lutions, Dublin (F						208
	10-Pole, 550-Kilowatt						
	struction (Plate I	•					208
	Ditto	ditto	Details of	General	Arrane	ement	
	2300	41000		IIIB.)	_	•	208
182 and 183	10-Pole, 550-Kilowatt	Railway G					206
184 to 188		_		rves of			207
189	16-Pole, 1000-Kilowat	 t. 550⊾Volt					20.
100			=		_		014
100	lutions, Sheffield (216
190	16-Pole, 1000-Kilowat		-				
101 1100	to Fly-wheel						217
191 and 192	Ditto		Yoke and M	-		•••	219
193	Ditto		Yoke of			•••	22 0
194 to 196	Ditto	ditto	Armature 8			•••	221
197 and 198	Ditto	ditto				•••	221
199 and 200	Ditto	ditto	End-Flange			•••	223
201 to 203	Ditto	ditto	Lamination		_		224
204 to 210	Ditto	ditto	Commutato		-		226
211 and 212	6-Pole, 250-Kilowatt,	320 Revolu	tions, Contin	uous-Currer	t Genera	itor	228
213 to 217	Ditto	ditto	Details	of Armatur	e of		229
218 to 221	Ditto	ditto	,,	,,		•••	230
222 to 224	Ditto	ditto		d Winding			232
225 to 229	Ditto	ditto	Magnet	Frame and	Pole Sh	oes for	235
230 to 233	Ditto	ditto	Commu	tator and Bi	rush Hol	der for	238
234 to 236	Ditto	ditto	Estimat	æd Curves f	or	•••	239
237 and 238	Ditto	ditto	Test Re	sults for	•••	•••	240
239	6-Pole, 50-Kilowatt,	525-Volt,	725 Revolut	tions, Cont	in <mark>uous-</mark> C	urrent	
	Generator			•••		•••	242
240 ·	Details and General	View of 6-3	Pole, 50-Kilo	watt, 525-V	olt, 725	Revo-	
	lutions, Continuo	us-Current	Generator, f	or the Sub-	stations	of the	
	Yorkshire Power	Company (Plate V.)	•••	•••	To face	242
241 to 244	6-Pole, 50-Kilowatt,	525-Volt,	725 Revolut	tions, Cont	inuous-C	urrent	
	Generator, Test	Results f	or Saturatio	n, Compou	ınding,	Losses	
	and Efficiency			•••	•••	•••	250
	ELECTI	RIC TRA	CTION MO	TORS			
245 to 248						D.,11 .£	
270 W 270					aw ngar .	. uii Oi	259
040 4- 051	800 lb., at a Spee		rries bei 1100	•	•••	•••	20

FIGS.			. ~						PAG
252 to 258	Field Coil an						•••	•••	26
259 to 264	Details of 27	Horse-l	ower Gea	red Railw	ay Mot	or	•••	•••	26
265 to 268	"	,,		,,	,,	•••	•••	•••	26
269 and 270	,,	,,		,,	,,	•••	•••	•••	27
271 to 274	Field Coil of				•		•••	•••	27
275 and 276	27 Horse-Pov	ver Gear	ed Railwa	y Motor, A	\r matur	e Speed, 64	l0 Revolu	ations	27
277 to 279	,,	,,	1			nd Speed		•••	27
280 to 283	,,	,,	:	,, ()haracte	ristic Curv	es	•••	27
284 to 287	Direct-Conne	cted Ra	ilway Mot	or	•••	•••	•••	•••	27
288 to 290	,,		,,		•••	•••		• • • •	28
291 to 294	**		,,			•••	•••	•••	28
295 and 296	Cross-Section	of Arm	ature Cor	e and Sect	tion of S	lot for 117	Horse-	Power	
	Railway	Motor		•••		•••		•••	28
297 to 306	Direct-Conne		lway Mot	or, Detail	s of		•••	•••	28
307 to 311	,,		,,	, ,,		•••		•••	28
312 to 314	"		"		ture Cor	struction			28
315 to 319				Detail		•••		•••	28
320 to 323	"		,,			Curves of			29
324 to 329	,,		"			of Commut			29
330 to 335	"		"						29
336 to 340	**		,,		,,	"	•••	•••	29
341	Apparatus fo	n Maana'	" Tryogtic		n bo Bolo	n tiona hotus	 Don Donie		43
341			_						90
940			Contacts	and Curr	ent Den	BILY	•••	•••	29
342	Curves of Mo	ore's Re	suits	•••	•••	•••	•••	•••	29
343	"	"		•••	•••	•••	•••	•••	29
344	"	"	D 1.	•••	•••	•••	•••	•••	29
345		•	Results	•••	•••	•••	•••	•••	29
346	,,	rnold's	**	•••	•••	•••	•••	•••	29
347 to 350	Brush-Holde	rs	•••	•••	•••	•••	•••	•••	30
351 to 354	,,	•••	•••	•••	•••	•••	•••	•••	3 0
355 to 359	"	•••	•••	•••	•••	•••	•••	•••	30
360 to 365	,,	•••	•••	•••	•••	•••		•••	30
		R.C	TARY	CONVER	TERS				
		100	7171101	OON VED	01 1310D.				
366	Current Cur		•••	•••	•••	•••	•••	•••	31
367	Diagrams of	Line and	l Winding	Currents	•••	••	•••	•••	31
368	Diagram of I	Rotary C	onverter	Winding	•••	•••	•••	•••	31
369	"	,,		,,	•••	•••	•••	•••	31
370	Winding for	a Sing	le-Phase	Rotary C	onverter	; Two-C	ircuit S	lingle-	
	_	_	Conduct	•			•••	•••	32
371	Ditto dit	-				nt Triple		y with	
. –			Six Poles,					••••	32
372	Ditto dit					with 72 C	onductor	s. Six	
			ch 13, Bac	_	_	•••		•••	3 2
373	Winding for					ter: Six-C	direvit !		
-,0						Front P			
							10,	_ WOR	32
	# 100H T1								~ ~

Curves for a 550-Volt, 100-Kilowatt, Series Rotary...

390

391

Rotary without Field Excitation

421

422

Pigs.		ALTER	NATO	RS.				PAGE
423	Diagram of Uni-Slot and	d Multi-	Slot Arı	matures				398
	Curves of Voltage and I							399
426 to 430	Inherent Regulation Cu	rves			•••			400
431 and 432	-		tion Re	gulatio	n Curves			401
433 and 434	Slot Inductance							404
435 and 436	"							405
437 and 438	,, ,,				•••			406
439 and 440					•••			407
441 and 442								408
443	TT 1				•••			409
446 and 447	Diagrams Relating to C	uestions	of Alte	rnator	Regulation		••.	411
448	One Magnetic Circuit of				_	nerat	or	417
449 to 451	Diagrams to Illustrate	_			-			419
452 to 454	" for Unity Po						•••	421
455 to 457	" for Power Fa			•••	•••	•••	•••	422
458	••	0.60					•••	423
459	Curve of Excitation for							425
460 to 462	Vector Diagrams of Al							426
and 463	J		•	••••				426
461	Saturation Curves	,	"				•••	426
464						•••		427
465	Excitation Regulation				•••	•••	•••	429
466	•	Curves	•••				•••	429
467	Armature Current Curv							430
468	No-Load Saturation Cu							432
469	Volt-Ampere Curves			•••		•••	•••	433
470 and 471	-	•••	•••	•••	•••	•••	•••	435
472	" "	•••	•••	•••	•••	•••	•••	436
473	Characteristic Output (····		•••		•••	•••	436
474	Magnetic Dimensions of			 Alterna		 20 /		400
212	25 Cycles	ı ızxberi		Aiveilla		s, ±0 £	•	437
475	Saturation Curve of	•••	Ditto	•••	ditto	•••	•••	439
476	Reactance Curve of		Ditto		ditto	•••	•••	440
477 and 478	Vector Diagrams for		Ditto		ditto	•••	•••	441
479	Curves of Excitation R	omlotic			ditto	•••	•••	442
480	Diagram of Circuit of	egulatio	Ditto		ditto	•••	•••	443
481	Volt-Ampere Curves of	:	Ditto		ditto	•••	•••	445
482	Vector Diagram for		Ditto		ditto	••	•••	446
483 and 484	Volt-Ampere Curves of	•	Ditto		ditto	•••	•••	447
485	Short-Circuit Curve of		Ditto		ditto	•••	•••	
486		laulatina		aad Qa4				448
487	Vector Diagram for Ca Full-Load Saturation C			vau 1381	uration Curv ditto	e or	ditto	449 450
	850-Kilowatt Three-Ph			No Too		 C:		
488 480			ince Cu					451
489 400	Ditto ditto	. Slots o		I VER OI	•••	•••	•••	451
490 4 91	Ditto ditto Ditto ditto			 nitotio-	Pomlatio-	•••	•••	453
491 492 and 493					Regulation	 - Da	 lation	453
492 and 493	Ditto ditto		_		or Excitation	u re	guia-don,	454

FIGS.	0F0 TF11 mm			-			PAG
494	850-Kilowatt Three-		-		_		
495	Ditto ditto			rve, Full-L			48
496 to 500	Ditto ditto	Diagr	ams for	Calculation	ı of Satu	ration C	
501	Ditto ditto		17	,,		"	48
502	Ditto ditto	Hatur	ation Cu	LAG8	•••	•••	46
503	Ditto ditto	Arma	ture Cu	rrent Curve	B S	•••	40
504	Ditto ditto	Volt-	Ampere	Curves	•••	•••	40
505 and 506	Inductance Curves for	or Coils F	ree in Ai	ir	•••	•••	46
507	', ',	• • •	•••	•••	•••		40
508	" "	• • • •		•••			46
509 and 510	,, ,,				•••		40
511 and 512	Armature Coils			•••	•••		40
513 to 516	Types of Armature I	Ind-Windi	ngs		•••		40
517 to 519	" Alternator		_	ζs			40
520 to 524	Coils used in Inducte	nce Tests		•••	•••		40
525 to 527)) <u>)</u>	,,		•••			4
528 and 529	" "	,,		•••	•••	•••	4
530 and 531	Inductance of Test-M			•••		•••	4
532 and 533	Diagrams of Coil Po			•••		•••	47
534 and 535	Inductance Curves		•••	•••	•••	•••	4
536 to 539	,, ,,			•••		•••	4
540 to 543		•••		•••		•••	4
544 and 545	"			•••		•••	4
546 and 547	Diagrams of Coil Po				•••	•••	47
548 and 549	_	g Distribu		•••	•••	•••	48
550 and 551	Induction Tests, Sho	_				•••	48
552	Arrangement of Pole	_					
553	•			Eleven			XXII. 48
554 and 555	Vector Diagrams for		» • M M		"		4.6
556	· Curves for Combinat						4.0
557	Poles and Slots of 15				•••	•••	4.6
558	Saturation Curve	0-12110 W &	or Winesi	IOUI	•••	•••	4.0
559 to 563	Reactance and Excit	otion Ros	 mlation (Cumuos	•••	•••	
564	Excitation and Power	-	•		 		
			Jurves 10	or 190-Willo	Wall All	ernator	49
565 and 566	Danielson's Inductar	ice Tests	•••	•••	•••	•••	49
567 and 568	" "	"	•••	•••	•••	•••	49
569 and 570))))))	,,	 4 41 - 4	''' m		 D	49
571	2500-Kilowatt Alte	rnators a		rissgow I	ram ways	Power	-House To face 49
570 to 570	(Plate VI.) Details of Alternator	n Olaszas	···· ··· Corner	otion Tran		•••	•
572 to 579	Details of Alternator	s, Glasgo	w Corpoi	ation Iran	uways	•••	49
580 to 582	No Tood Setumation	" O Ol	,,	ltomotom.		•••	50
583	No-Load Saturation	-	•		 A léan		50
584	No-Load and Full-Lo			_	OW AITE	TI STOLE	50
585 and 586		rent Kegu	iation C	urves ,,		,,	50
587	Excitation Curve	~		,,		,,	50
588 and 589				,,		"	50
5 90 and 591		ole, 30-C	-	UU-Volt W	estingho	ouse Ger	
K00 and 503	(Plate VII.)	 	•••	house (Jene	/DI	* ***	<i>To face</i> 5(

FIGS.								PAGE
594 and 596	3750-Kilowa	tt Westing	house Quarter-]	Phase Gene	erator	•••	•••	508
595		_	,,	"		•••	•••	509
597 to 600	"	39	,,	"		•••		511
601 to 603	"	,,	,,	,,		•••	•••	513
604	Ditto	ditto	Details of Ter			•••	•••	514
605	Ditto	ditto	Field-Magnet			•••	•••	515
606 to 609	Ditto	ditto	Details of		•••		516,	517
610	Ditto	ditto	,,	•••				518
611 and 612	Ditto	ditto	Load and Exc	itation Cu	rves		•••	519
613 to 615	Ditto	ditto	Excitation, Co	ore-Loss, a	nd No-L	oad Satu	ıration	
			Curves	•••	•••	•••	•••	520
616	Ditto	ditto	Short-Circuit	Curve	•••	•••	•••	521
617	Central Lon	don Railw	ay 850-Kilowa	tt, 3-Phas	se Alterr	nator; 8	Section	
	through	Slot .		•••	•••	•••	•••	522
618	Ditto	ditto	(Plate IX.)	•••	•••	•••	To face	522
619	Ditto	ditto	•••	•••	•••	•••	•••	524
620 to 622	Ditto	ditto	Efficiency, Los	s, and Out	tput Curv	es	•••	528
400			FOR STEAM					5 04
623			urbine Generat	-				534
624 to 626	Ditto	ditto	Stator Windin	• •	•	•••	To face	
627	Ditto Ditto	ditto	Field Magnet Stator Frame			•••	•••	536
62 8 629	Ditto	ditto ditto			 aaa Dlaab	•••	•••	537 538
6 30	Ditto	ditto	Stator Punchi Adjustable Co				•••	539
631	Ditto	ditto	Collector			•••	•••	540
632	Ditto	ditto	(Plate XI.)	•••	•••	•••	 To face	
633 and 634	Ditto	ditto	Field and Sta	 to= (Plete	 YII \	•••	•	540
635 to 637	Ditto	ditto	No-Load Satu				"	534
638 and 639			of A. E. G. Tur		•	•	To face	
640			rbo-Alternator,		•	•	•	, , ,
010	(Plate			•			To face	544
641	•	•	E. G. Turbo-Alte				,,	544
	•		YNAMOS FO	•		•		
642	750-Kilowat	t Continuo	s-Current Gene	erator		•••	•••	548
643			uxiliary Poles	•••	•••	•••	•••	549
644	•		Dynamo, with D				To face	
645	,, 100			hree or F			_	
	••	••	• •	Plate XIV		•••	To face	558
646	" 100	,,	•	ete Wound	•	f (Plate	-	
647	A. E. G. Cor	tinuous-Cu	rrent Turbo-Dy	namo (Pla	te XIV.)		"	558
648			urbo-Dynamo f					558
			•		, (-		. "	

LIST OF TABLES

CONTINUOUS-CURRENT GENERATORS

	CONTINUOUS CONTINUE GENERATORS							
TABLE		PAGE						
I.	Data of Ten First-Quality Samples of Cast Steel							
II.	" Ten Second-Quality Samples of Cast Steel	. 26						
III.	,, Twelve Samples of Mitis Iron	. 26						
IV.	Analysis of Samples	. 29						
V.	Results of Tests on "Ageing" of Iron	. 34						
VI.	Resistance and Density Constants of Iron, Steel and Copper	3 9						
VII.	Preece's Tests of Annealed Iron Wire	. 40						
VIII.	Influence of Carbon	. 41						
IX.	" Silicon	. 41						
X.	,, Manganese	. 41						
XI.	Puncturing Voltages of Composite Sheets of White Mica	42						
XII.	Tests on Sheets of Leatheroid	43						
XIII.	Summary of Quality of Insulating Materials	. 46						
XIV.	Insulation Tests; Mica-Canvas	. 51						
XV.	,, ,, Mica-Longeloth	. 56						
XVI.	,, ,, Shellac'd Paper	57						
XVII.	,, ,, Red Paper	59						
XVIII.	Subdivision of Windings for Rotary Converters	74						
XIX.	Drum Winding Constants	84						
XX.	Correction Factors for Voltage of Distributed Winding	85						
XXI.	Values for K in E. M. F. Calculations for Windings	86						
XXII.	,, ., ,, ., with Various Pole Arc	s 87						
XXIII.	", ", ", " ", " Percent	;-						
	ages of Spread of Armature Coil	87						
XXIV.	E. M. F. in Single and Quarter-Phase Rotary Converter	89						
XXV.	" Three-Phase Rotary Converter	89						
XXVI.		90						
XXVII.	Values for Form Factor	92						
XXVIII.	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	93						
XXIX.	Temperature Correction Coefficients for Copper	106						
XXX.	Dimensions and Observed Core Losses of Twenty-three Commutating							
	Generators	112						
XXXI.	y	116						
XXXII.	Current Density in Copper and Corresponding Rates of Generation of							
	Heat, in Watts per Pound	. 120						

TABLE	T31 T5 **	01 T	1.0		D.44		: e	PAGE
XXXIII.	Flux Density in							120
		ts per Pound			•••	•••	•••	
XXXIV.	Current Density		ectric N	lachines	• •	• • • •	•••	120
$\mathbf{X}\mathbf{X}\mathbf{X}\mathbf{V}$.	Reluctance Form		•••	•••	•••	•••	•••	136
XXXVI.	,, Calcu	lations	•••	•••	•••	•••	•••	136
XXXVII.	,, ,	•	•••	• • •	• • •	•••	•••	136
XXXVIII.	Armature Interfe	rence Calcula	tions		•••			160
XXXIX.	,, ,				•••	• • •	•••	162
XL.	Calculations of 1	Field Ampere	Turns	Required	to Overc	ome Arn	ature	
	Interference	; 550 Kilows	atts, 10	Pole, 90	Revolution	ns per M	[inute	
	Railway Ger	erator			•••			163
XLI.	Minimum Induct	ance						175
XLII.	Maximum "						•••	177
XLIII.	Conductors in Po	sition of Max	imum I	nductance	with Sho	rtened Ai	r-Gap	177
XLIV.	Position of Minin							177
XLV.	,, ,,							178
XLVI.	,, ,,							179
XLVII.); ;;							180
XLVIII.	Inductance Tests							182
XLIX.								182
L.	"							183
LI.	"						•••	183
LII.	,, ,,	• •				•••		io 188
LIII.	Log of Full-Load	Heat Run o	f 6-Pole	 50₌Kilow				<i>1</i> 00
17111.	•	Inute Contin				-		251
LIV.	Overall Efficiency					•••	• • •	252
	•		• • •		•	• • • •	•••	253
I.V.	Output Coefficien	ts			• •	• • •		200
	ELI	ECTRIC TE	RACTIO	N MOT	ORS			
T 37 T								305
LVI.	Raymond's Tests	on Graphice	and Car	non Brush	ds	•••	•••	300
		ROTARY	CONV	ERTERS				
T 37TT	O 1 4 The					4. 6	TO 1	
LVII.	Output in Terms	_					-	
		Armature Co						
		tion of a Con						310
LVIII.	Output in Terms	•					-	
		Armature Co					•	
		Gap Distril			c Flux o	ver a Pol	e-Face	
		Per Cent. of		ar Pitch	• •		•••	311
LIX.	C ² R Loss in Arn	ature Condu	ctors	• • •	• • •			316
LX.		, ,,		•••	• • • •	• • •		318
LXI.	Proportion of A							
	Continuous-	Current Gen	erator	for the S	ame Out	put, Ass	uming	
•		t. Conversion						320
LXII.	Ratio of Collecto	r Ring Volta	ge to Co	mmutator	Voltage	•••		331
LXIII.	Magnetomotive I		_		_	7 Convert	ers	387

	List of Tables	xix
Table	ALTERNATORS.	PAGR
LXIV.	Values of Excitation Regulation	402
LXV.		418
LXVI.	· · · · · · · · · · · · · · · · · · ·	424
LXVII.	A Varrian Taminal Valtara	425
LXVIII.	Field Excitation with 100 Armature Amperes and Various Power	120
132 V 111.	Factors (Inductance assumed Constant)	428
LXIX.	Excitation for Various Loads at Unity Power Factor and 2250 Terminal	120
231121.	Volts	429
LXX.	Excitation at Various Loads at 0.80 Power Factor and 2250 Terminal	120
22211	Volts	430
LXXI.	Required Ampere Turns per Field Spool for 60 Terminal Volts and	200
	External Loads with Different Power Factors	443
LXXII.	Results Obtained with Experimental Alternator	447
LXXIII.	Calculated Values for Unity Power Factor; Full-Load Saturation Curve	449
LXXIV.	Excitation Regulation	455
LXXV.	Values for 0 Power Factor	457
LXXVI.		458
LXXVII.	Values for Inductance of Embedded Portions of Windings	466
LXXVIII.	" According to the Depth in the Slot	466
LXXIX.	Particulars of Test Windings	469
LXXX.	Results of Inductance Tests	478
LXXXI.	Showing Range of Variations between Predetermined and Actual Values	482
LXXXII.	Showing Value of a for Eleven Three-Phase Generators	484
LXXXIII.	Cost and Weight of 2500-Kilowatt Three-Phase and Single-Phase	
	Generators	488
LXXXIV.	Glasgow 2500-Kilowatt Generators: Revolving Field Type	498
LXXXV.	Nett Weights of 2500-Kilowatt Glasgow Alternator	506
LXXXVI.	3750-Kilowatt Quarter-Phase Generator	509
LXXXVII.	Specification for Three-Phase 950-Kilowatt Alternator	523
LXXXVIII.	Output Coefficient of Alternators	529
	APPENDIX.	
LXXXIX.	Properties of Commercial Copper Wire. B. and S. Wire Gauge	563
XC.	" " " " " " " " " " " " " " " " " " "	564
XCI.	" " " " " " " " " " " " " " " " " " "	565
XCII.	Physical and Electrical Properties of Various Metals and Alloys.	
	Table of the Properties of Copper Wires for the Principal Gauges in	
	Use in Different Countries	566

			•	
			•	
		•		
				•
•				

PREFACE

THE present volume is a revision and an enlargement of our book entitled "Electric Generators." That volume was an amplification of the notes of a series of lectures given, first by Mr. Parshall and continued by Mr. Hobart, at the Massachusetts Institute of Technology, some years ago. Concerning that volume we made the following observations in the Preface:—

"The original notes met with so cordial an appreciation from Lord Kelvin, the late Dr. John Hopkinson, and others, that the Authors determined to follow out a suggestion made, and publish a book on the design of Electric Generators. The work of revising the original notes gradually led to the bringing together of an amount of material several times larger than was at first intended, and a comprehensive treatment of the subject prevented reducing this amount. In this form the work appeared as a series of articles in *Engineering* during the years 1898 and 1899. The interest taken in the series leads us to believe that, despite the present large number of books on the theory of commutating machines, the extended practical experience of the Authors, covering the period during which most of the modern types of machines have been developed, justifies the publication of the present treatise.

"In dealing with the practice of designing, three sub-divisions can be finally made:—

"The first may be taken as relating to the design of the magnetic circuit. The classical papers of Doctors John and Edward Hopkinson

have dealt with this subject so completely that there remains but little to be written; and this relates chiefly to the nature and properties of the different qualities of iron and steel which may be used in the construction of the magnetic circuit.

"The second sub-division considers the phenomena of commutation and the study of dimensions, with a view to securing the greatest output without diminishing the efficiency. The theory of commutation has become better understood since electrical engineers began to deal with alternating currents and to understand the effects of self-induction. However, owing to the number of variables affecting the final results, data obtained in practice must be the basis for the preparation of new designs. In this work will be found a statement of such results, and numerical values experimentally obtained from representative commutating machines. One familiar with the theory of commutation can, with comparative certainty, from the values and dimensions given, design machines with satisfactory commutating properties.

"The third sub-division relates to what we have termed the 'Thermal Limit of Output': that is, the maximum output with safe heating. It can be fairly said that while the theory of all the losses in a commutating dynamo is understood, yet, with the exception of the C²R losses, it is still a matter of practical experience to determine what relation the actual losses bear to what may be termed the predicted It is invariably found that the iron losses are in excess of those which may be predicted from the tests made upon the material before construction. The hysteresis loss in the armature core is generally found to be greater, owing to the mechanical processes to which the material in the core has to be subjected during the process of construction. Owing, probably, in a large measure to a species of side magnetisation, the eddy-current loss is found to be greater than is indicated by calculations based upon the assumption of a distribution of magnetic lines parallel to the plane of the laminations. If the armature conductors are solid, the losses therein by Foucault currents may often be considerable, even in projection-type armatures, especially when the projections are

Preface xxiii

run at high densities. Under load losses, not including friction, there have to be considered the Foucault current loss in the conductors due to distortion, and the increased loss in the armature projections from hysteresis and eddy currents likewise due thereto. There is also the loss brought about by the reversal of the current in the armature coil under commutation. It is apparent, therefore, considering that each of these variables is dependent upon the form of design, the material used, and the processes of construction, that only an approximate estimate as to the total loss can be made from the theoretical consideration of the constants. We believe, therefore, that these considerations will justify the length with which we have dealt with the thermal limit of output."

These observations largely apply to the present volume. The title "Electric Generators" was adopted when only that subject was dealt with. As our work extended, we included other classes of machines which we were from time to time called upon to design or investigate, so that the title "Electric Generators" was no longer fairly descriptive of the book. The book is intended as a work of reference for designers, and its application has been almost entirely in this field. A suggestion was made that the title "Electric Generators" was misleading as to the scope of the work comprehended; and after discussing the question with a number of engineers who have made liberal use of "Electric Generators," we decided upon the present title, viz., "Electric Machine Design," which will, we trust, more fitly describe the nature of the subjects dealt with.

To the original section, on Continuous Current Generators, many additions have been made, including designs of machines that have proved in practice to be exceptionally good. In "Electric Generators" certain designs not of the greatest excellence were included as illustrative of certain features; in the present edition we have made it as far as possible a principle to include only particulars of machines that have proved in practice to represent an advanced state of the art of Electric Machine Design.

The designs in general are to illustrate the different phases of dynamo construction, and not to furnish working models for manufacture. No well-advised engineer should blindly follow another's designs. complete description of a machine, together with the final test results, is of great use to a designer, but only as a basis from which to Few machines have been built and tested without revealing, on careful analysis, the direction in which further improvements were practicable. The manufacturer who has just standardised a design cannot sacrifice the developmental costs and proceed at once with the ultra-refinements of an improved design, but he will frequently have done so long before any published description is available, and the manufacturer who blindly copies such a published description may, on completion of a machine, find he has only reproduced a more-or-less obsolete type. While indiscriminate copying is generally accompanied with unsatisfactory results, a judicious reference to the constants of successful designs points the way for further progress. the object of this work to furnish the constants and to formulate the general principles for the systematic designing of electrical machines.

The progress made in the design of commutating machines has been along the lines indicated in our original work, and shows that our theories were valid.

Perfect commutation may be said to take place when, with the same conditions as to current density, dimensions and materials, the heating and wearing of a commutator is the same as that of a simple collector ring. Beyond certain limits as to current density and friction, collector rings roughen and wear away; hence in modern practice steel and bronze collectors with carbon brushes are employed. The fundamental conditions in both commutator and collector are the same, and in first-class commutating machines commutation does not introduce widely different results: that is to say, the current generated in a given machine should not produce widely different results as to heating and wearing of the commutator and brushes, from those produced by

an equal current sent through the same machine with its armature windings short-circuited.

Pronounced thermal effects from commutation do not occur in normal practice. The limiting conditions in practice relate to the reactance voltage of commutation, and the stability of field distribution of a commutated circuit under varying armature reaction in its relation The effect of resistance is to increase the rate at which to resistance. the current can be reversed, thereby diminishing the maximum field strength required for reversal, and lessening the deleterious currents when the reversing field is of excessive strength. The contact resistance cannot be varied beyond certain limits to effect commutation. Should these limits be exceeded, the current could not be collected, without excessive wear of the commutator or collector. The disintegration of the brushes may be caused either by friction and uneven wearing, or by excessive current density of the collected or commutated currents. This uneven wearing causes the formation of minute arcs, that eventually destroy the surface of the commutator, and lead to excessive sparking. Defective conductivity and commutation may one and both present themselves in the same machine simultaneously or separately under different conditions of working.

Certainty of results in practice can only be obtained by adjusting the inductance and distortion to bear a proper relation to the collector system. An investigation of one element is of no value unless connected with all the other elements. The whole process of designing is that of balancing one condition against another; and in the matter of commutating machines this balancing is confined by commercial necessities to comparatively narrow limits. A microscopical study of the contact surfaces of brushes often furnishes evidence of action, both mechanical and electrical, not otherwise immediately observable.

A considerable proportion of the treatise is devoted to continuouscurrent generators. The design of this class of machinery involves every problem entering into the design of any class of electrical machinery, and an engineer with reasonable mathematical training properly grounded in this class of machine, should experience no difficulty in dealing with any other class of machine. The calculation of leakage, reluctance, and reactance is as essential to the proper designing of continuous-current generators as to alternating current machines; and owing to the high frequency of commutation a closer mathematical analysis is necessary in this case than in the design of any class of alternating-current machines.

Our treatment of alternator design may be described as synthetic, since in practice broad mathematic treatment is too cumbersome in the balancing process which is the substance of all designing work.

Certain sections of the book admit of very considerable extension. The size of the present volume, however, together with our general scheme of dealing only with machinery, more or less standardised, have been the limiting factors in the treatment of the different subjects.

H. F. P.

H. M. H.

PART I CONTINUOUS - CURRENT GENERATORS

ELECTRIC GENERATORS

MATERIALS

A CONSIDERABLE variety of materials enters into the construction of dynamo electric apparatus, and it is essential that the grades used shall conform to rather exacting requirements, both as regards electric and magnetic conductivity as well as with respect to their mechanical properties.

TESTING OF MATERIALS

The metallic compounds employed in the magnetic and conducting circuits must be of definite chemical composition. The effect of slight differences in the chemical composition is often considerable; for instance, the addition of 3 per cent. of aluminium reduces the conductivity of copper in the ratio of 100 to 18. Again, the magnetic permeability of steel containing 12 per cent. of manganese is scarcely greater than unity.

The mechanical treatment during various stages of the production also in many cases exerts a preponderating influence upon the final result. Thus, sheet iron frequently has over twice as great a hysteresis loss when unannealed as it has after annealing from a high temperature. Cast copper having almost the same chemical analysis as drawn copper, has only 50 per cent. of its conductivity. Pressure exerts a great influence upon the magnetic properties of sheet iron.² Sheet iron of certain compositions, when subjected for a few weeks, even to such a moderate temperature as 60 deg. Cent., becomes several times as poor for magnetic purposes as before subjection to this temperature.³

It thus becomes desirable to subject to chemical, physical, and electromagnetic, tests samples from every lot of material intended for use in the

¹ Electrician, July 3rd, 1896. Dewar and Fleming. ² See page 36, and Figs. 37 and 38.

⁸ See pages 33 to 35, and Figs. 30 to 36.

construction of dynamo-electric apparatus. This being the case, the importance of practical shop methods, in order that such tests may be quickly and accurately made, becomes apparent.

CONDUCTIVITY TESTS

The methods used in conductivity tests are those described in text-books devoted to the subject. It will suffice to call attention to the investigations made by Professors Dewar and Fleming, the results of which show that materials in a state of great purity have considerably higher conductivity than was attributed to them as the results of Matthiessen's experiments. Manufactured copper wire is now often obtained with a conductivity exceeding Matthiessen's standard for pure copper.

Copper wire, drawn to small diameters, is apt to be of inferior conductivity, due to the admixture of impurities to lessen the difficulties of manufacture. It consequently becomes especially desirable to test its conductivity in order to guard against too low a value.

The electrical conductivity of German silver and other high resistance alloys varies to such an extent that tests on each lot are imperative, if anything like accurate results are required.⁸

PERMEABILITY TESTS

Considerable care and judgment are necessary in testing the magnetic properties of materials, even with the most recent improvements in apparatus and methods. Nevertheless, the extreme variability in the magnetic properties, resulting from slight variations in chemical composition and physical treatment, render such tests indispensable in order to obtain uniformly good quality in the material employed. Various methods have been proposed with a view to simplifying permeability tests, but the most accurate method, although also the most laborious, is that in which the sample is in the form of a ring uniformly wound with primary and secondary coils, the former permitting of the application of any desired

¹ Among the more useful books on the subject of electrical measurements are Professor S. W. Holman's *Physical Laboratory Notes* (Massachusetts Institute of Technology), and Professor Fleming's *Electrical Laboratory Notes and Forms*.

² Electrician, July 3rd, 1896.

⁸ A table of the properties of various conducting materials is given later in this volume.

magnetomotive force, and the latter being for the purpose of determining, by means of the swing of the needle of a ballistic galvanometer, the corresponding magnetic flux induced in the sample.

Description of Test of Iron Sample by Ring Method with Ballistic Galvanometer

The calibrating coil consisted of a solenoid, 80 centimetres long, uniformly wound with an exciting coil of 800 turns. Therefore, there were 10 turns per centimetre of length. The mean cross-section of exciting coil was 18.0 square centimetres. The exploring coil consisted of 100 turns midway along the solenoid. Reversing a current of 2.00 amperes in the exciting coil gave a deflection of 35.5 deg. on the scale of the ballistic galvanometer when there were 150 ohms resistance in the entire secondary circuit, consisting of 12.0 ohms in the ballistic galvanometer coils, 5.0 ohms in the exploring coil, and 133 ohms in external resistance.

$$\mathbf{H} = \frac{4 \pi n \, \mathbf{C}}{10 \, l}; \quad \frac{n}{l} = 10.0; \quad \mathbf{C} = 2.00;$$

$$\therefore \mathbf{H} = \frac{4 \pi}{10} \times 10.0 \times 2.00 = 25.1,$$

i.e., 2.00 amperes in the exciting coil set up 25.1 lines in each square centimetre at the middle section of the solenoid; therefore 18.0 × 25.1 = 452 total CGS. lines. But these were linked with the 100 turns of the exploring coil, and therefore were equivalent to 45,200 lines linked with the circuit. Reversing 45,200 lines was equivalent in its effect upon the ballistic galvanometer to creating 90,400 lines, which latter number, consequently, corresponds to a deflection of 35.5 deg. on the ballistic galvanometer with 150 ohms in circuit. Defining K, the constant of the ballistic galvanometer, to be the lines per degree deflection with 100 ohms in circuit, we obtain

$$K = \frac{90400}{35.5 \times 1.50} = 1690$$
 lines.

The cast-steel sample consisted of a ring of 1.10 square centimetres cross-section, and of 30 centimetres mean circumference, and it was wound with an exciting coil of 450 turns, and with an exploring coil of 50 turns. With 2.00 amperes exciting current,

$$H = \frac{4\pi}{10} \times \frac{450}{30} \times 2.00 = 37.7.$$

Reversing 2.00 amperes in the exciting coil gave a deflection of 40 deg. with 2,400 ohms total resistance of secondary circuit. Then with 100 ohms instead of 2,400 ohms, with one turn in the exploring coil instead of 50 turns, and simply creating the flux instead of reversing it, there would have been obtained a deflection of

$$\frac{2400}{100} \times \frac{1}{50} \times \frac{1}{2} \times 40 = 9.60 \text{ deg.};$$

consequently the flux reversed in the sample was

$$9.60 \times 1,690 = 16,200$$
 lines.

And as the cross-section of the ring was 1.10 square centimetres, the density was

 $16,200 \div 1.10 = 14,700$ lines per square centimetre.

Therefore the result of this observation was

$$H = 37.7$$
; $B = 14,700$; $\mu = 390$.

But in practice¹ this should be reduced to ampere turns per inch of length, and lines per square inch;

Ampere-turns per inch of length = 2 H = 75.4. Density in lines per square inch = $6.45 \times 14,700 = 95,000$.

This would generally be written 95.0 kilolines. Similarly, fluxes of still greater magnitude are generally expressed in megalines. For instance,

$$\mathbf{H} = \frac{4 \pi n \mathbf{C}}{10 l}, \quad l \text{ being expressed in centimetres.}$$

... Ampere-turns per centimetre of length = $\frac{10 \text{ H}}{4 \pi}$,

Ampere-turns per inch of length = $\frac{2.54 \times 10 \text{ H}}{4 \pi}$,

Ampere-turns per inch of length = 2.02 H.

Therefore ampere-turns per inch of length are approximately equal to 2 H.

Although mixed systems of units are admittedly inferior to the metric system, present shop practice requires their use. It is, therefore, necessary to readily convert the absolute B H curves into others expressed in terms of the units employed in practice. In absolute measure, iron saturation curves are plotted, in which the ordinates B represent the density in terms of the number of C G S lines per square centimetre, the abscissæ denoting the magnetomotive force H. B/H equals μ , the permeability. In the curves used in practice the ordinates should equal the number of lines per square inch. They are, therefore, equal to 6.45 B. The abscissæ should equal the number of ampere-turns per inch of length. Letting turns = n, and amperes = C, we have—

OTHER PERMEABILITY TESTING METHODS

The bar and yoke method, devised by Dr. Hopkinson, permits of the use of a rod-shaped sample, this being more convenient than a ring, in that the latter requires that each sample be separately wound, whereas in the rod and yoke method the same magnetising and exploring coils may be used for all samples. However, the ring method is more absolute, and affords much less chance for error than is the case with other methods, where the sources of error must either be reduced to negligible proportions, which is seldom practicable, or corrected for. Descriptions of the Hopkinson apparatus are to be found in text-books on electro-magnetism, and the calculation of the results would be along lines closely similar to those of the example already given for the case of a ring sample.

METHODS OF MEASURING PERMEABILITY NOT REQUIRING BALLISTIC GALVANOMETER

There have been a number of arrangements devised for the purpose of making permeability measurements without the use of the ballistic galvanometer, and of doing away with the generally considerable trouble attending its use, as well as simplifying the calculations.

Those in which the piece to be tested is compared to a standard of known permeability, have proved to be the most successful. The Eickemeyer bridge² is a well-known example, but it is rather untrustworthy, particularly when there is a great difference between the standard and the test-piece.

A method of accomplishing this, which has been used extensively with very good results, has been devised by Mr. Frank Holden. It is described by him in an article entitled "A Method of Determining Induction and Hysteresis Curves" in the *Electrical World* for December 15th, 1894. The principle has been embodied in a commercial apparatus constructed by Mr. Holden in 1895,³ and also in a similar instrument exhibited by Professor Ewing before the Royal Society in 1896.⁴

¹ Also J. Hopkinson, Phil. Trans., page 455, 1885.

² Electrical Engineer, New York, March 25th, 1891.

³ "An Apparatus for Determining Induction and Hysteresis Curves," *Electrical World*, June 27th, 1896.

⁴ "The Magnetic Testing of Iron and Steel," *Proceedings*, Institution of Civil Engineers, May, 1896.

Holden's method consists essentially of an arrangement in which two bars are wound uniformly over equal lengths, and joined at their ends by two blocks of soft iron into which they fit. The rods are parallel, and about as close together as the windings permit. In practice it has been found most convenient to use rods of about .25 in. in diameter, and about 7 in. long. Over the middle portion of this arrangement is placed a magnetometer, not necessarily a very sensitive one, with its needle tending to lie at right angles to the length of the two bars, the influence of the bars tending to set it at right angles to this position. Means are

Fig. 1. Holden's Permeability Bridge

provided for reversing simultaneously, and for measuring, each of the magnetising currents, which pass in such directions that the north end of one rod and the south end of the other, are in the same terminal block. It is evident that whenever the magnetometer shows no effect from the bars, the fluxes in them must be equal, for if not equal there would be a leakage from one terminal block to the other through the air, and this would effect the magnetometer. This balanced condition is brought about by varying the current in one or both of the bars, and reversing between each variation to get rid of the effects of residual magnetism.

For each bar

$$\mathbf{H} = \frac{4 \pi n C}{10 l},$$

where

n = number of turns

C = current in amperes,

l = distance between blocks in centimetres.

As the same magnetising coils may always be used, and as the blocks may be arranged at a fixed distance apart,

$$\frac{4 \pi n}{10 l} = K$$

and

$$H = KC$$

The BH curve of the standard must have been previously determined, and when the above-described balance has been produced and the magnetomotive force of the standard calculated, the value of B is at once found by reference to the characteristics of the standard. If the two bars are of the same cross-section, this gives directly the B in the test-piece, and H is calculated as described. The method furnishes a means of making very accurate comparisons, the whole test is quickly done, and the chances of error are minimised by the simplicity The magnetometer for use with bars of the size of the process. described need not be more delicate than a good pocket compass. Although two pieces of quite opposite extremes of permeability may be thus compared, yet it takes less care in manipulating, if two standards are at hand, one of cast iron and one of wrought iron or cast steel, and the standard of quality most like that of the test-piece should be used.

Sheet iron may be tested in the same way, if it is cut in strips about .5 in. wide and 7 in. long. This will require the use of specially-shaped blocks, capable of making good contact with the end of the bundle of strips which may be about .25 in. thick. In general the cross-sections of the test-piece and standard in this case will not be equal, but this is easily accounted for, since the induction values are inversely as the cross-sections when the total fluxes are equal. In Figs. 1 and 2 are shown both the Holden and the Ewing permeability bridges.

Fig. 2. Ewing's Permeability Bridge

DETERMINATION OF HYSTERESIS LOSS

The step-by-step method of determining the hysteresis loss, by carrying a sample through a complete cycle, has been used for some years past, and is employed to a great extent at the present time. Such a test is made with a ring-shaped sample, and consists in varying by steps the magnetomotive force of the primary coil, and noting by the deflection of a ballistic galvanometer the corresponding changes in the flux. From the results a complete cycle curve, such as is shown in Fig 3, may be plotted. If this curve is plotted with ordinates equal to B (C G S lines per square centi-

Fig. 3. Cyclic Curve for Shret Iron

metre), and with abscissæ equal to H, $\left(\frac{4\pi n}{10}\frac{C}{l}\right)$, its area divided by 4π (conveniently determined by means of a planimeter), will be equal to the hysteresis loss of one complete cycle, expressed in ergs per cubic centimetre¹; but in subsequent calculations of commercial apparatus it is more convenient to have the results in terms of the watts per pound of material per cycle per second. The relation between the two expressions may be derived as follows:

Conversion of Units

Ergs per cubic centimetre per cycle

Area complete cyclic curve

¹ Fleming, Alternate Current Transformer, second edition, page 62.

Watts per cubic centimetre at one cycle per second

$$= \frac{\text{Area}}{4 \pi \times 10^7}$$

Watts per cubic inch at one cycle per second

$$=\frac{\text{Area}\times 16.4}{4~\pi\times 10.7}$$

Watts per pound at one cycle per second

$$= \frac{\text{Area} \times 16.4}{4 \times 10^7 \times .282}$$

(One cubic inch of sheet iron weighing .282 lb.)

... Watts per pound at one cycle per second = .0000058 × ergs per cubic centimetre per cycle.

Hysteresis Losses in Alternating and Rotating Fields

Hysteresis loss in iron may be produced in two ways: one when the magnetising force acting upon the iron, and consequently the magnetisation, passes through a zero value in changing from positive to negative, and the other when the magnetising force, and consequently the magnetisation, remains constant in value, but varies in direction. The former condition holds in the core of a transformer, and the latter in certain other types of The resultant hysteresis loss in the two cases cannot be apparatus. assumed to be necessarily the same. Bailey has found that the rotating field produces for low inductions, a hysteresis loss greater than that of the alternating field, but that at an induction of about 100 kilolines per square inch, the hysteresis loss reaches a sharply defined maximum, and rapidly diminishes on further magnetisation, until, at an induction of about 130 kilolines per square inch, it becomes very small with every indication of disappearing altogether. This result has been verified by other experimenters, and it is quite in accord with the molecular theory of magnetism, from which, in fact, it was predicted. In the case of the alternating field, when the magnetism is pressed beyond a certain limit, the hysteresis loss becomes, and remains, constant in value, but does not decrease as in the

¹ See paper on "The Hysteresis of Iron in a Rotating Magnetic Field," read before the Royal Society, June 4th, 1896. See also an article in the *Electrician* of October 2nd, 1896, on "Magnetic Hysteresis in a Rotating Field," by R. Beattie and R. C. Clinker. Also *Electrician*, August 31st, 1894, F. G. Bailey. Also *Wied. Ann.*, No. 9, 1898, Niethammer. Also *Phil. Mag.*, June, 1901, R. Beattie. Also *Electricità*, Milan, September 28th, October 5th, October 19th, 1901. Also *Elektrotechn. Zeitschr.*, February 13th, 1902, "Hysteresis in a Rotating Field," by R. Heicke. Also *Elektrotechn. Zeitschr.*, May 15th, 1902, "Hysteresis in a Rotating Field," by M. Schenkel.

case of the rotating magnetisation. Hence, as far as hysteresis loss is concerned, it might sometimes be advantageous to work with as high an induction in certain types of electro-dynamic apparatus as possible, if it can be pressed above that point where the hysteresis loss commences to decrease; but in the case of transformers little advantage would be derived from high density on the score of hysteresis loss, as the density, except at very low cycles, cannot be economically carried up to that value at which the hysteresis loss is said to become constant.

Fig. 4. Sample for use in Holden's Hysteresis Tester

METHODS OF MEASURING HYSTERESIS LOSS WITHOUT THE BALLISTIC GALVANOMETER

To avoid the great labour and expenditure of time involved in hysteresis tests by the step-by-step method with the ballistic galvanometer, there have been many attempts made to arrive at the result in a more direct manner. The only type of apparatus that seems to have attained commercial success measures the energy employed either in rotating the test-piece in a magnetic field, or in rotating the magnetic field in which the test-piece is placed.

The Holden hysteresis tester is the earliest of these instruments, and

¹ "Some Work on Magnetic Hysteresis," Electrical World, June 15th, 1895.

appears to be the most satisfactory. It measures the loss in sheet-iron rings when placed between the poles of a rotating magnet, and enables the loss to be thoroughly analysed. The sheet-iron rings are just such as would be used in the ordinary ballistic galvanometer test (Fig. 4, page 11).

The rings are held concentric with a vertical pivoted shaft, around which revolves co-axially an electro-magnet which magnetises the rings. The sample rings are built up into a cylindrical pile about $\frac{1}{2}$ in. high.

FIG. 5. HOLDEN'S HYSTERESIS TESTING APPARATUS

Surrounding but not touching the sample to be tested is a coil of insulated wire, the terminals of which lead to a commutator revolving with the magnet. The alternating electromotive force of the coil is thus rectified, and measured by a Weston Voltmeter. Knowing the cross-section of the sample, the number of turns in the coil, the angular velocity of the magnet, and the constants of the voltmeter, the induction corresponding to a certain deflection of the voltmeter, can be calculated in an obvious manner.¹

^{. 1} For electromotive force calculations, see another page in this volume.

The force tending to rotate the rings is opposed by means of a helical spring surrounding the shaft and attached to it at one end. The other end is fixed to a torsion head, with a pointer moving over a scale. The loss per cycle is proportional to the deflection required to bring the rings to their zero position, and is readily calculated from the constant of the spring.

By varying the angular velocity of the magnet, a few observations give data by which the effect of eddy currents may be allowed for and the residual hysteresis loss determined; or, by running at a low speed, the eddy current loss becomes so small as to be practically negligible, and readings taken under these conditions are, for all commercial purposes, the only ones necessary. A test sample with wire coil is shown in Fig. 4, whilst the complete apparatus may be seen in Fig. 5, page 12.

A modification (Fig. 6) of this instrument does away with the adjust-

Fig. 6. Modification of Holden's Hysteresis Testing Apparatus

ment of the magnetising current and the separate determination of the induction for different tests. In this case the electro-magnet is modified into two of much greater length, and of a cross-section of about one-third that of the sample lot of rings. The air gap is made as small as practicable, so that there is very little leakage. A very high magneto-motive force is applied to the electro-magnets, so that the flux in them changes only very slightly with considerable corresponding variation in the current. With any such variation from the average as is likely to occur in the rings on account of varying permeability, the total flux through them will be nearly constant, with the magnetisation furnished in this manner. The sample rotates in opposition to a spiral spring, and the angle of rotation is proportional to the hysteresis loss. In general a correction has to be applied for volume and cross-section, as the rings do not, owing to variations in the thickness of the sheets, make piles of the same height. The

magnets are rotated slowly by giving them an impulse by hand, and the reading is made when a steady deflection is obtained.

Ewing's Hysteresis Tester

In Professor Ewing's apparatus¹ the test sample is made up of about seven pieces of sheet iron $\frac{5}{8}$ in. wide and 3 in. long. These are rotated

Fig. 7. Ewing's Hysteresis Testing Device

between the poles of a permanent magnet mounted on knife-edges. The magnet carries a pointer which moves over a scale. Two standards of known hysteresis properties are used for reference. The deflections corres-

¹ Electrician, April 26th, 1895.

ponding to these samples are plotted as a function of their hysteresis losses, and a line joining the two points thus found is referred to in the subsequent tests, this line showing the relation existing between deflections and hysteresis loss. The deflections are practically the same, with a great variation in the thickness of the pile of test-pieces, so that no correction has to be made for such variation. It has, among other advantages, that of using easily prepared samples. The apparatus is shown in Fig. 7.

A fair specification for the hysteresis loss is that samples cut at random from various sheets, shall, when tested by the Ewing Hysteresis Tester, not show on the average a hysteresis loss of more than 0.50 watts per pound when reduced to 100 cycles per second, and 24,000 lines per square inch. This reduction is readily made by comparison with the calibrating samples accompanying the instrument.

Modern practice, however, as regards hysteresis tests tends towards the simple measurement by means of an ordinary commercial wattmeter, of the watts lost in a given weight of laminations of specified dimensions, cut from plates selected at random from a car load, and built up into a small bundle and provided with a suitable winding. At some standard periodicity, the voltage at the terminals of the winding is adjusted at such a value as to correspond to a reference density—say, 24,000 lines per square inch—and the plates are accepted or rejected according as the core loss is less or greater than the specified value.

THE TESTING OF WHOLE SHEETS OF IRON

Sheets as received from the iron manufacturer are tested by the firm of Siemens and Halske, of Vienna, by sliding them by suitable means into a large cylindrical drum, so that they constitute a ring of about a metre diameter, with a section measuring a metre or more in one direction, by a couple of millimetres or so in the other. The frame is provided with a permanent annular winding enclosing the sheets. From four to six sheets are preferably tested together. Various precautionary details must be observed in arranging an interlapped closing of the magnetic circuit, in insulating the sheets from one another laterally, and especially in avoiding short circuits through their touching at their edges. Some of these precautions have been found superfluous in commercial testing.

The method is so convenient that a few sheets from a given shipment may be unloaded and tested, in order to determine whether the entire shipment shall be accepted. An early form of this apparatus was described in the *Elektrotechnische Zeitschrift*, for 1902, page 491, and a later form in the same Journal for

Fig. 10.

Figs. 8 to 10. Apparatus for Magnetic Tests of Whole Sheets of Iron.

1903, page 341, in an article entitled "Eisenprüfapparat für ganze Blechtafeln," by R. Richter. The apparatus is illustrated in Figs. 8, 9, and 10.

PROPERTIES OF MATERIALS

The magnetic properties of iron and steel depend upon the physical structure; as a primary indication of which, and as a specific basis for the description of the material, chemical analysis forms an essential part of tests. The physical structure and the magnetic properties are effected to a greater or less degree according to the chemical composition; by annealing, tempering, continued heating, and mechanical strains by tension or compression. The rate of cooling also influences the magnetic properties of the material; the permeability of cast iron, for instance, is diminished if the cooling has been too rapid, but it may be restored by annealing, the only noticeable change being that the size of the flakes of graphite is increased. The permeability of high carbon steels may also be increased by annealing and diminished by tempering, and that of wrought iron or steel is diminished by mechanical strain; the loss of permeability resulting from mechanical strain, may, however, be restored by annealing.

The effect on the magnetic properties, of the different elements entering into the composition of iron and steel, varies according to the percentage of other elements present. The presence of an element which, alone, would be objectionable may not be so when a number of others are also present; for instance, manganese in ordinary amounts is not objectionable in iron and steel, as the influence it exerts is of the same nature as that of carbon, but greatly less in degree. Some elements modify the influence of others, while some, although themselves objectionable, act as an antidote for more harmful impurities: as for instance, in cast iron, silicon tends to off-set the injurious influence of sulphur. The relative amounts and the sum of the various elements vary slightly, according to the slight variations in the process of manufacture. On account of the more or less unequal diffusion of the elements, a single analysis may not indicate the average quality, and may not, in extreme cases, fairly represent the quality of the sample used in the magnetic test. It is necessary, therefore, to make a great number of tests and analyses before arriving at an approximate result as to the effect of any one element. The conclusions here set forth, as to the effect of various elements, when acting with the other elements generally present, are the result of studying the analyses and magnetic values when the amounts of all but one of the principal elements remained constant. The results so obtained were compared

with tests in which the elements that had remained constant in the first test varied in proportion.

It will be seen that this method is only approximate, since variations of the amount of any element may modify the interactions between the other elements. The statements herein set forth have been compared with a great number of tests, and have been found correct within the limits between which materials can be economically produced in practice.

In general, the purer the iron or steel, the more important is the uniformity of the process and treatment, and the more difficult it is to predict the magnetic properties from the chemical analysis. nificant to note that, beginning with the most impure cast iron, and passing through the several grades of cast iron, steel and wrought iron, the magnetic properties accord principally with the amounts of carbon present, and in a lesser degree with the proportions of silicon, phosphorus, sulphur, manganese, and other less usual ingredients, and that an excess of any one, or of the sum of all the ingredients, has a noticeable Carbon, on account of the influence effect on the magnetic properties. it exerts on the melting point, may be regarded as the controlling element as it determines the general processes; hence also the percentage of other elements present in the purer grades of iron. However, its influence may sometimes be secondary to that of other impurities; as, for instance, in sheet iron, where a considerable percentage of carbon has been found to permit of extremely low initial hysteresis loss, and to exert an influence tending to maintain the loss at a low value during subjection to prolonged heating.

The properties of iron and steel require separate examination as to magnetic permeability and magnetic hysteresis. The permeability is of the greatest importance in parts in which there is small change in the magnetisation; hence such parts may be of any desired dimension, and may then be either cast, rolled, or forged. On account of the electrical losses by local currents when the magnetism is reversed in solid masses of metals, parts subjected to varying magnetic flux have to be finely Thicknesses of between .014 in. and .036 in. are generally laminated. found most useful for plates, which must be of good iron to withstand the rolling process. Some impurities affect the hysteresis more than Hysteresis tends towards a minimum, and the perthe permeability. meability towards a maximum, as the percentage of elements, other than iron, diminishes.

In the case of comparatively pure iron or steel, alloyed with nickel, it is found, however, that the permeability is increased beyond that which would be inferred from the other elements present. The purest iron has been found to have the highest permeability, yet the iron in which the hysteresis loss has been found smallest is not remarkable for its purity, and there was no known cause why the hysteresis was reduced to such a noticeable extent. The treatment of the iron, both during and subsequent to its manufacture, exerts a great influence upon the final result.

THE MAGNETISATION OF IRON AND STEEL

Cast Iron.—Cast iron is used for magnetic purposes on account of the greater facility with which it may be made into castings of complex form. Considering the relative costs and magnetic properties of cast iron and steel, as shown in the curves, Figs 11 to 14, page 21, it is evident that cast iron is, other things being equal, more costly for a given magnetic result than cast steel. The great progress in the manufacture of steel castings has rendered the use of cast iron exceptional in the construction of well-designed electrical machines.

The cast iron used for magnetic purposes contains, to some extent, all those elements which crude iron brings with it from the ore and from the fluxes and fuels used in its reduction. Of these elements, carbon has the greatest effect on the magnetic permeability. The amount of carbon present is necessarily high, on account of the materials used, the process employed, and its influence in determining the melting point. In cast iron of good magnetic quality, the amount of carbon varies between 3 per cent. and 4.5 per cent.; between 0.2 per cent., and 0.8 per cent. being in a combined state,² and the remainder in an uncombined or graphitic state.

¹ Exceptions are found in the case of a few alloys described in "Conductivity and Magnetic Properties of Iron Alloys," by W. F. Barrett, W. Brown and R. A. Hadfield, *Journal*, Institution of Electrical Engineers, vol. 31, pp. 674-721:—97 $\frac{3}{4}$ per cent. iron and $2\frac{1}{4}$ per cent. aluminium has nearly twice the permeability of pure iron for small densities; $97\frac{1}{2}$ per cent. iron and $2\frac{1}{2}$ per cent. silicon have also a greater permeability than pure iron. See also the paper read by the same authors before the Royal Dublin Society, *Transactions*, vol. 8, pp. 1-22, September, 1902.

² Arnold, "Influence of Carbon on Iron," *Proceedings*, Institution of Civil Engineers, vol. cxxiii., page 156.

Combined carbon is the most objectionable ingredient, and should be restricted to as small an amount as possible. Cast irons having less than 0.3 per cent. of combined carbon are generally found to be of high magnetic permeability. Fig. 11 shows curves and analyses of three different grades of cast iron. The effect of different proportions of combined carbon may be ascertained by comparison of the results with the analyses shown on the diagrams. In Fig. 12 is given the result of the test of a sample carried up to a very high saturation. It is useful for obtaining values corresponding to high magnetisation, but as shown by the analyses and also by the curve, it is a sample of rather poor cast iron, the result being especially bad at low magnetisation values. The cast iron generally used for magnetic purposes would be between curves B and C of Fig. 11.

Graphite may vary between 2 per cent. and 3 per cent. without exerting any very marked effect upon the permeability of cast iron. It is generally found that when the percentage of graphite approximates to the lower limit, there is an increase in the amount of combined carbon and a corresponding decrease of permeability. A certain percentage of carbon is necessary, and it is desirable that as much of it as possible should be in the graphitic state. Sulphur is generally present, but only to a limited extent. An excess of sulphur is an indication of excessive combined carbon, and inferior magnetic quality. Silicon in excess annuls the influence of sulphur, and does not seem to be objectionable until its amount is greater than 2 per cent., its effect being to make a casting homogeneous, and to lessen the amount of combined carbon. The amount of silicon generally varies between 2.5 per cent. in small castings, and 1.8 in large castings. Phosphorus in excess denotes an inferior magnetic quality of iron. Although in itself it may be harmless, an excess of phosphorus is accompanied by an excess of combined carbon, and it should be restricted to 0.7 per cent. or 0.8 per cent. Manganese, in the proportions generally found, has but little effect; its influence becomes more marked in irons that are low in carbon.

Figs. 13 and 14 give further data relating to irons shown in Fig. 11, grades A and C respectively.

Malleable Cast Iron.—When cast iron is decarbonised, as in the process for making it malleable, in which a portion of the graphite is eliminated, there is marked increase in the permeability. This is due, however, to the change in the physical structure of the iron which accompanies the decarbonisation, as unmalleable cast iron, of chemical analysis

Figs. 11 to 14. Magnetic Curves for Cast Iron

identical with that of malleable iron, has but a fraction of the permeability. In Fig. 15 are shown the magnetic properties of malleable cast iron; Fig. 16 illustrates the magnetic properties of mixtures of steel and pig iron.

Cast Steel.—The term "cast steel," as used in this place, is intended to refer to recarbonised iron, and not to the processes of manufacture where there has been no recarbonisation, as in irons made by the steel process. Cast steel used for magnetic purposes has been generally made by the openhearth or Siemens-Martin process, the principal reason being that this process has been more frequently used for the manufacture of small castings. The Bessemer process could, perhaps, be used to greater advantage in the manufacture of small castings than the open-hearth process, since, on account of the considerable time elapsing between the pouring of the first and last castings, there is frequently by the open-hearth process a change of temperature in the molten steel, and likewise a noticeable difference in the magnetic quality. In the Bessemer process the metal can be maintained at the most suitable temperature, and the composition is more easily regulated.

Cast steel is distinguished by the very small amount of carbon present which is in the combined state, there being generally no graphite, as in the case of cast iron, the exception being when castings are subjected to great strains, in which case the combined carbon changes to graphite. It may be approximately stated that good cast steel, from a magnetic standpoint, should not have greater percentages of impurities than the following:—

							Per Cent.
Combined ca	rbon	 				 	0.25
Phosphorus		 				 	0.08
Silicon		 •••				 	0.20
Manganese		 				 	0.50
Sulphur		 	•••	•••	•••	 	0.05

In practice, carbon is the most objectionable impurity, and may be with advantage restricted to smaller amounts than 0.25 per cent. The results of a great number of tests and analyses show that the decrease in the permeability is proportioned to the amount of carbon in the steel, other conditions remaining equal; that is, that the other elements are present in the same proportion, and that the temperature of the molten steel is

MAGNETIC CURVES FOR MALLEABLE IRON, STEEL AND PIG IRON, AND CAST STEEL Figs. 15 ro 18.

increased according to the degree of purity. Cast steel at too low a temperature considering the state of purity, shows a lower permeability than would be inferred from the analysis. Manganese in amounts less than 0.5 per cent. has but little effect upon the magnetic properties of ordinary In large proportions, however, it deprives steel of nearly all its magnetic properties, a 12 per cent. mixture scarcely having a greater permeability than air. Silicon, at the magnetic densities economical in practice, is less objectionable than carbon, and at low magnetisation increases the permeability up to 4 or 5 per cent; but at higher densities it diminishes the permeability to a noticeable extent. The objection to silicon is that when unequally diffused it facilitates the formation of blowholes and, like manganese, has a hardening effect, rendering the steel difficult to tool in machining. Phosphorus and sulphur, in the amounts specified, are not objectionable; but in excess they generally render the steel of inferior magnetic quality.

In Tables I. and II. are given the analyses and magnetic properties of what may be termed good and poor steel respectively. In Fig. 17, curves A and B represent the average values corresponding to these two sets of tests (see page 23).

The extent to which the percentage of phosphorus affects the result may be seen from the curves of Fig. 18. The curves of Fig. 19 show the deleterious effect of combined carbon upon the magnetic properties. The magnetic properties of steel are further illustrated in Figs. 20, 21, and 22.

TABLE I .- DATA OF TEN FIRST QUALITY SAMPLES OF CAST STEEL

Ampere-Turns per Inch of Length.		Kilolines per Square Inch.										
		1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	Average.
30		78.6	77.5	78.0	83.2	84.0	79.4	84.5	78.0	81.4	84.0	80.9
50		91.0	87.7	89.6	93.0	94.2	89.6	93.5	88.5	91.5	93.5	91.2
100		102	98.6	100	102	107	100	104	99.4	102	103	101.8
150		107	104	107	106	113	106	110	105	108	107	107.3
Analysis.												
Carbon		.240	.267	.294	1.180	1.290	.250	.200	.230	.170	.180	.230
Phosphorus		.071	.052	.074	.047	.037	.093	.047	.100	.089	.047	.057
Silicon		.200	.236	.202	.120	.036	.230	.173	.160	.150	.120	.195
Manganese		.480	.707	.655	.323	.550	.410	.530	.450	.390	.323	.482
Sulphur		.040	.060	.050	.050	.050	.030	.030	.040	.020	.050	.042
•		1			1							

¹ See Electrical World, December 10th, 1898, page 619.

Figs. 19 to 22. Magnetic Curves for Cast Steel

E

TABLE II .- DATA OF TEN SECOND QUALITY SAMPLES OF CAST STEEL

Ampere-Turns per				:	Kiloline	s per 8	Sq uare	Inch.			
Inch of Length.	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	Average
. 30	68.3	68.3	69.0	58.0	60.0	64.5	67.0	64.5	60.0	73.0	65.3
50	82.0	82.0	84.5	72.2	74.8	78.0	80.5	80.0	76.0	87.0	79.7
100	96.0	94.1	97.5	87.0	89.6	92.2	92.9	94.8	91.0	101	93.6
150	102	100	102	92.8	96.0	98.7	98.7	101	96.5	106	99.4
				A	ralysis.						
Carbon	.250	.280	.195	.333	.337	.366	.409	.318	.702	.380	.357
Phosphorus	. 1.087	.076	.028	.059	.045	.151	.063	.107	.084	.066	.077
Silicon	.210	.210	.683	.292	.302	.476	.444	.203	.409	.550	.378
Manganese	.790	.720	.815	.681	.642	.617	.640	1.636	.088	.790	.742
Sulphur	.020	.030	.040	.060	.070	.010	.010	.030	.050	.030	.038

Mitis Iron.—In Table III. are given analyses and magnetic properties of aluminium steel, frequently referred to as "mitis iron." The action

TABLE III.—DATA OF TWELVE SAMPLES OF MITIS IRON

Ampere-Turns per Inch of Length.		Kilolines per Square Inch.												
		1.	: 2.	3.	i 4.	5.	6.	7.	8.	9.	10.	11.	12.	Aver-
30		81.	93.	5 93.	5 82.0	0 89.6	91.5	90.3	69.6	64.5	83 1	82.0	76.0	83.1
50		87.0	6 100	101	93.				81.6	76.7	92.	92.2	86.5	92.3
100		95.	5 109	108	104	105	108	106	92.0	89.5	102	103.	96.5	101.5
150		100	114	113	109		112	110	98.0	95.5	108		101	106.5
						Analy	ysis.							
Carbon		.065	.108	5+.100	6 .125	.136	.212	1.214	.216	.235	.241	1.242	.260	1.180
Phosphorus		1.083	.093	3:.119	2 .166	.053	.056	.052	.128	.065	.093	.094	.120	.093
Silicon		.073	.04	.050	01.046	.111	.126	.111	.083	.122			.020	.080
Manganese		.112	.108	3 .099	9 .120	.191	.405	.401	.167	.107	.248		.140	.196
Sulphur		.150	.050	050	0.050	.030			.010	.030				.045
Aluminium		.079	*	.059			1	1	.152		.120		1	.113

^{*} Not determined.

of aluminium in steel is, like that of silicon, sulphur, or phosphorus, of a softening nature. It seems to act more powerfully than silicon, the castings having a somewhat greater degree of purity and a higher magnetic quality than steel castings made by processes of equal refinement. It will be seen from the analyses that the aluminium is present in amounts ranging from 0.05 per cent. to 0.2 per cent., and that this permits of making

good castings with about one-half as much silicon and manganese as in ordinary cast steel. The amount of carbon, also, is generally somewhat less. An inspection of these tests and analyses of mitis iron shows that they do not furnish a clear indication as to the effect of the various impurities. It will be noticed, however, that in those of poor magnetic qualities there is generally an excess of impurities, this excess denoting a lack of homogeneity and a greater degree of hardness than in those of good quality.

Mitis iron is, magnetically, a little better than ordinary steel up to a density of 100 kilolines, but at high densities it is somewhat inferior. The magnetic result obtained from mitis iron up to a density of 100 kilolines is practically identical with that obtained from wrought-iron forgings.

A curve representing the average of the twelve samples of Table III., is given in Fig. 23, page 28.

Nickel Steel.—Some of the alloys of steel with nickel possess remarkable magnetic properties. A 5 per cent. mixture of nickel with steel, shows a greater permeability than can be accounted for by the analysis of the properties of the components. The magnetic properties of nickel alloys are shown in Fig. 24.2

Forgings.—Forgings of wrought iron are, in practice, found to be of uniform quality and of high magnetic permeability. In curves A and B of Fig. 25 are shown the magnetic properties of wrought iron, nearly pure, and as generally obtained, respectively. The former is made by the steel process at the Elswick Works of Messrs. Sir W. G. Armstrong and Co., Limited, but owing to its excessively high melting point, it is only manufactured for exceptional purposes. Curve D illustrates an inferior grade of wrought iron, its low permeability being attributable to the excess of phosphorus and sulphur. Curve B shows the properties of a forging of Swedish iron, in the analysis of which it is somewhat remarkable to find a small percentage of graphite.

For the wrought-iron forgings and for the sheet iron and sheet steel generally used, curve B should preferably be taken as a basis for calcula-

¹ For information as to the remarkable conditions controlling the magnetic properties of the alloys of nickel and iron, see Dr. J. Hopkinson, *Proceedings*, Royal Society, vol. xlvii., page 23, and vol. xlviii., page 1. See also R. Paillot, *Comptes Rendus*, page 132, May 13th, 1901

² Various investigations have shown that the permeability of steel is greatly lessened by the presence of chromium and tungsten.

23 to 26. Magnetic Curves for Mitis Iron, Nickel Steel, Steel and Wrought Iron Figs

tions, although the composition of the sheets will not be that given by the analyses. The composition of some samples of sheet iron and sheet steel, the results of tests of which are set forth on pages 33 to 35, is given in Table IV. Such material, however, is subject to large variations in magnetic properties, due much more to treatment than to composition.

Brand. Silicon.		Phosphorus.	Manganese.	Sulphur.	Carbon.	
I.	.019	Not determined	.490	Not determined	.120	
II.	.007	Not determined	.420	Not determined	.062	
III.	.009	.083	.510	.026	.056	
IV.	.003	Not determined	.570	Not determined	.044	
V.	trace	.029	.020	trace	.050	
VI. VII.	.005	.059	.500	.048	.040	
VIII. IX. X.	.003	.018	.490	.014	.052	

TABLE IV .- ANALYSIS OF SAMPLES

Fig. 27. Magnetic Curves for Forgings and Steel Castings

In comparing wrought-iron forgings with unforged steel castings, Professor Ewing notes¹ that the former excel in permeability at low densities, and the latter at high densities. This he illustrates by the curves reproduced in Fig. 26, in which are given results for Swedish wrought iron and for a favourable example of unforged dynamo steel

¹ Proceedings, Institution of Civil Engineers, May 19th, 1896.

by an English maker. He states that annealed Lowmoor iron would almost coincide with the curves for Swedish iron.

Professor Ewing further states that there is little to choose between the best specimens of unforged steel castings and the best specimens of forged ingot metal. The five curves of Fig. 27, page 29, relate to results of his own tests, with samples of commercial iron and steel. Of these curves, A refers to a sample of Lowmoor bar, forged into a ring, annealed and turned; B to a steel forging furnished by Mr. R. Jenkins as a sample of forged ingot metal for dynamo magnets; C to an unforged steel casting for dynamo magnets made by Messrs. Edgar Allen and Co. by a special pneumatic process; D to an unforged steel casting for dynamo magnets made by Messrs. Samuel Osborne and Co. by the Siemens process; E to an unforged steel casting for dynamo magnets made by Messrs. Friedrich Krupp, of Essen.¹

THE TESTING OF CASTINGS AND FORGINGS IN BULK BY BALLISTIC GALVANOMETER

Instead of cutting a small ring from the sample, it has been suggested by Dr. Drysdale² to cut an annular recess in the casting or forging whose

Fig. 28. Section through Plug and Specimen, Dr. Drysdale's Test

magnetic quality is in question, and after locating an exciting and exploring coil therein, to close the recess with a plug, and to make the permeability

¹ Proceedings, Institution of Civil Engineers, May 19th, 1896.

² "A Permeameter for Testing the Magnetic Qualities of Materials in Bulk," Journal, Institution of Electrical Engineers, vol. xxxi., page 283.

PLATE 1

DR. DRYSDALE'S DIRECT-READING PERMEABILITY TESTING SET

tests by the methods employed on ring samples. Obviously, it is a distinct advantage to make the tests on the actual casting or forging, instead of on a small detached sample. The idea is illustrated by the section through plug and specimen shown in Fig. 28, taken from the paper above referred to.

Energy Losses in Sheet Iron

The energy loss in sheet iron in an alternating or rotating magnetic field consists of two distinct quantities, the first being that by hysteresis or inter-molecular magnetic friction, and the second that by eddy currents. The loss by hysteresis is proportional to the frequency of the reversal of the magnetism, but is entirely independent of the thickness of the iron, and increases with the magnetisation. There is no exact law of the increase of the hysteresis with the magnetisation, but within the limits of magnetisation obtaining in practice, and those in which such material can be produced to give uniform results, the energy loss by hysteresis may be taken to increase approximately with the 1.6th power of the magnetisation, as was first pointed out by Mr. C. P. Steinmetz.¹

Professor Ewing and Miss Klassen,² however, from a large number of tests, found the 1.48th power to be better representative at the densities generally met in transformers. Other extensive tests point to the 1.5th power as the average.³

The hysteresis loss is independent of the temperature at ordinary working temperatures, but from 200 deg. Cent. upward the loss decreases as the temperature increases, until at 700 deg. Cent. it has fallen to as low as from 10 per cent. to 20 per cent. of its initial value. Obviously this decrease at very high temperature is of no commercial importance at the present time.⁴

¹ Elec. Eng., New York, vol. x., page 677.

² Electrician, April 13th, 1894.

³ Elec. World, June 15th, 1895.

⁴ Tech. Quarterly, July, 1895; also Elek. Zeit., April 5th, 1894; also Phil. Måg., September, 1897; also in a very complete and valuable paper by D. K. Morris, Ph.D., "On the Magnetic Properties and Electrical Resistance of Iron as dependent upon Temperature," read before the Physical Society, on May 14th, 1897, are described a series of tests of hysteresis, permeability, and resistance, over a wide range of temperatures. Also R. L. Wills, "Effect of Temperature on Hysteresis Loss in Iron," Phil. Mag., page 5, January 5th, 1903.

The magnitude of the hysteresis loss¹ is somewhat dependent upon the chemical composition of the iron, but to a far greater degree upon the physical processes to which the iron is subjected.

Annealing of Sheet Iron.—The temperature at which sheet iron is annealed has a preponderating influence upon the nature of the results obtained. Extended experiments concerning the relation of hysteresis loss to temperature of annealing, show that the higher the temperature the lower the hysteresis loss up to about 950 deg. Cent.² Beyond this temperature deleterious actions take place; the surfaces of the sheets become scaled, and the sheets stick together badly. A slight sticking together is desirable, as it insures the iron having been brought to the desired high temperature, and the sheets are easily separated; but soon after passing this temperature (950 deg. Cent.), the danger of injuring the iron becomes great.

Curves A and B of Fig. 29, page 33, show the improvement effected in two different grades of iron by annealing from high temperatures.³

Deterioration of Sheet Iron.—It has been found that the hysteresis loss in iron increases by continued heating. No satisfactory explanation of the cause of this deterioration has yet been given. Its amount depends upon the composition of the iron, and upon the temperature from which it has been annealed. The best grades of charcoal iron, giving an exceedingly low initial loss, are particularly subject to deterioration through so-called "ageing." Iron annealed from a high temperature, although more

¹ See the tests made by S. W. Richardson and L. Lownds (*Phil. Mag.*, June, 1901), on the subject of the influence of temperature on the hysteresis losses in an alloy of iron and aluminium. See also *Phil. Mag.*, page 49, January, 1900, and March, 1901; also *Elektrotechn. Zeitschr.*, April 25th, 1901.

² This temperature depends somewhat upon the composition of the iron, being higher the more pure the iron. See E. Gumlich and E. Schmidt, *Elektrotechn. Zeitschr.*, August 29th, 1901.

⁸ In this and much of the following work on hysteresis and on the properties of insulating materials, the authors are indebted to Mr. Jesse Coates, of Lynn, Mass., and to Messrs. R. C. Clinker and C. C. Wharton, of London, for valuable assistance in the carrying out of tests.

^{4 &}quot;On Slow Changes in the Magnetic Permeability of Iron," by William M. Mordey, Proceedings of the Royal Society, January 17th, 1895; also Electrician, December 7th, 1894, to January 11th, 1895. A very valuable contribution to this subject has been made by Mr. S. R. Roget, in a paper entitled "Effects of Prolonged Heating on the Magnetic Properties of Iron," read before the Royal Society, May 12th, 1898. It contains some very complete experimental data. See also D. Mazzato, "Magnetic Ageing of Iron at Moderately High and at Ordinary Temperatures," N. Gimento, June and July, 1904.

subject to loss by "ageing," generally remains superior to the same grade of iron annealed from a lower temperature. This was the case in the tests corresponding to Figs. 30 and 31, but there are many exceptions.

Table V. shows the results of "ageing" tests at 60 deg. Cent. on several different brands of iron. It will be noticed that in the case of those brands subject to increase of hysteresis by "ageing," the percentage rise of the annealed sample is invariably greater than that of the

Figs. 29 to 32. Effect of Annealing Temperature and "Ageing" Curves

unannealed sample, and that often the annealed sample ultimately becomes worse than the unannealed samples.

Brands III., V., and VI., are the same irons whose "ageing" records are plotted in Figs. 32, 33, and 35 respectively (see above, and on page 35).

From these investigations it appears that iron can be obtained which will not deteriorate at 60 deg. Cent., but that some irons deteriorate rapidly even at this temperature; and that at a temperature of 90 deg. Cent. even the more stable brands of iron deteriorate gradually. Consequently, so far as relates to avoidance of deterioration through "ageing," apparatus, even

Table V.—Results of Tests on Ageing of Iron
(From Tests by R. C. Clinker, London, 1896-7.)
Temperature of ageing = 60 deg. Cent., except where otherwise stated.
The chemical analyses of these samples are given in Table IV., on page 29.

			Hysteresis Loss in Watts per pound at 100 Cycles per Second, and 24,000 Lines per Square Inch.										
Brand of	Iron.		Loss.		Af	ter Ageing	for		Increase in 1000 hours.				
			Initial Loss.	200 Hours.	400 Hours.	600 Hours.	800 Hours.	1000 Hours.	Increa				
I.					1	!			per cen				
Unannealed Annealed	•••	•••	1.00 0.41	1.00 0.43	1.00 0.43	1.00 0.43	1.00 0.43	1.00 0.43	0 5				
II.					 								
Unannealed Annealed	•••	;	0.46 0.39	0.46	0.46 0.40	0.46 0.41	0.46 0.42	0.46 0.43	0 10				
III.		1			i			ı					
Unannealed Annealed		•••	$0.38 \\ 0.33$	0.38 0.33	0.38 0.33	0.38 0.33	0.38 0.37	0.38	0 18				
IV.		i		!				i i					
Unannealed Annealed	•••		$\begin{array}{c} 0.86 \\ 0.42 \end{array}$	0.90 0.50	0.94 0.58	0.97 0.66	1.01 0.74	1.04 0.83	21 98				
٧.													
Unannealed Annealed	•••	•••	0.35 0.36	0.40	0.43 0.45	0.45 0.50	0.47 0.53	0.49 0.55	40 53				
VI.				1									
Unannealed Annealed		•••	0. 65 0.39	0.71 0.41	0.83 0.49	1.00 0.62	1.09 0.78	1.19 0.90	83 130				
VII.				1			ŀ	Ì					
Unannealed Annealed			0.80 0.43	0.82 8.44	0.82 0.45	0.82 0.45	0.82 0.45	0.82 0.45	3 6				
VIII.													
Unnannealed Annealed	•••		0.36 0.31	0.36 0.32	0.36 0.34	0.36 0.35	0.37 0.35	0.37 0.35	3 13				
IX			0.58	0.58	0.58	0.58	0.60	0.64	10				
X.			0.42	0.42	0.42	0.43	0.47	0.56	33				

¹ Temperature raised to 90 deg. after 600 hours.

² Temperature raised to 90 deg. after 650 hours.

³ Temperature raised to 90 deg. after 670 hours.

when constructed with selected irons, should not be allowed to reach a temperature much above 60 deg. Cent.

An examination of the results indicates that a rather impure iron gives the most stable result. It is believed that by annealing from a sufficiently high temperature, such impure iron may be made to have as

Figs. 32 to 36. "Ageing" Curves for Sheet Iron

low an initial hysteresis loss as can be obtained with the purest iron. The lower melting point of impure iron, however, imposes a limit; for such iron cannot, in order to anneal it, be brought to so high a temperature as pure iron, because the surface softens and the plates stick together at comparatively low temperatures.

The curves of Figs. 34, 35, and 36 represent the results of interesting "ageing" tests. In Fig. 34 the effect of a higher temperature upon the annealed sample is clearly shown.

A good low "ageing" sheet steel may generally be produced with the following composition:—

Figs. 37 and 38. Effect of Pressure upon Hysteresis Loss in Sheet Iron

It is often the very cheapest qualities of sheet steel which are the most suitable as regards magnetic quality and freedom from "ageing." Effect of Pressure.—Pressure and all mechanical strains are injurious even when of no great magnitude, as they decrease the permeability and increase the hysteretic loss. Even after release from pressure, the iron only partly regains its former good qualities. In the curves of Fig. 37, page 36, is shown the effect of applying pressure to two different grades of iron, the measurements having been made after the removal of the pressure.

Another interesting case is that shown in the curves A, B, and C, of Fig. 38. These show the results of tests upon a certain sample of sheet iron, as it was received from the makers, after it had been annealed, and after being subjected to a pressure of 40,000 lb. per square inch, respectively.

Figs. 39 and 40. Curves for Hysteresis and Eddy Current Losses in Shret Iron

It will be seen that the annealing in this case materially increased the permeability, but that subjecting the sample to pressure diminished the permeability below its original value.

The value of the hysteresis losses while the iron is still under pressure is probably much greater. Mr. Mordey refers to a case in which a pressure of 1500 lb. per square inch was accompanied by an increase of 21 per cent. in the core loss. Upon removing the pressure, the core loss fell to its original value. Re-annealing restores iron which has been injured by pressure, to its original condition.

This matter of injury by pressure, particularly so far as relates to the increase while the iron remains under pressure, is one of considerable

¹ "On Slow Changes in the Magnetic Permeability of Iron," by William M. Mordey, *Proceedings*, Royal Society, January 17th, 1895.

importance, and in assembling armature and transformer sheets, no more temporary or permanent pressure should be used than is essential to good mechanical construction.

Hysteresis Loss.—The curves of Fig. 39 give values for the hysteresis losses that can be obtained in actual practice. Curve B is for sheet steel such as should be used for transformer construction, and all iron used in transformer work should be required to comply with these values. For transformer work, iron of .014 in. thickness is generally used.

For armature iron there is no occasion for such exacting requirements, and curve A is representative of the armature iron generally used. Iron for armatures is usually .025 in. to .036 in. in thickness. Curve C gives the best result yet secured by Professor Ewing. It was from a strip of transformer plate .013 in. thick, rolled from Swedish iron. Its analysis was:

	Per Cent.		Per Cent.
Carbon	02	Phosphorus	.020
Silicon	032	Sulphur	.003
Manganese	trace only.	Iron (by difference)	99.925

This iron ages very rapidly. The iron of Fig. 32, page 33, is only 6 per cent. worse initially when annealed, and at 60 deg. Cent. it does not deteriorate. Its analysis has already been given.

EDDY CURRENT LOSSES

In sheet iron the eddy current losses should theoretically conform to the formula:²

 $W = 1.50 \times t^2 \times N^2 \times B^2 \times 10^{-10}$

in which

W = watts per pound at 0 deg. Cent.

t =thickness in inches.

N = periodicity in cycles per second.

B = density in lines per square inch.

The loss decreases .5 per cent. per degree Centigrade increase of temperature. The formula holds for iron, whose specific resistance is

¹ Proceedings, Institution of Civil Engineers, May 19th, 1896.

² For thicknesses greater than .025 in., magnetic screening greatly modifies the result. Regarding this, see Professor J. J. Thomson, London, *Electrician*, April 8th, 1892. Professor Ewing, London, *Electrician*, April 15th, 1892.

10 microhms per centimetre cube, at 0 deg. Cent., and which has a weight of .282 lb. per cubic inch. These are representative values for the grades used, except that in sheet steel the specific resistance is apt to be considerably higher.

Curves giving values for various thicknesses of iron are shown in Fig. 40, page 37.

Owing possibly to the uneven distribution of the flux, particularly at the joints, the observed eddy current losses are, in transformer iron, from 50 to 100 per cent. in excess of these values, even when the sheets are insulated with Japan varnish or otherwise.

Estimation of Armature Core Losses.—As regards the use of curve A, of Fig. 39, in estimating armature core losses, the values obtained from curve A may for practical purposes be considered to represent the hysteresis component of the total loss. To allow for other components of the total core loss, the values obtained from curve A should be multiplied by from 1.3 to 2.5, according to the likelihood of additional losses. Briefly, this large allowance for eddy current losses in armature iron is rendered necessary owing to the effect of machine work, such as turning down, filing, &c., these processes being destructive to the isolation of the plates from each other.

The curves in Fig. 40, page 37, are chiefly useful for transformer work, and are of little use in armature calculation, as they refer only to the eddy current losses due to eddy currents set up in the individual isolated sheets, and in armatures this often constitutes but a small part of the total loss.

The irons used for magnetic purposes have approximately the resistance and density constants given in Table VI.; in which are also given, for comparison, the corresponding values for very pure iron and for commercial copper:

TABLE VI

<u> </u>	Specific Resistance at 0 deg. Cent. Microhms per Centimetre Cube.	Increase in Resistance per deg. Cent.	Specific Gravity.	Pounds per Cubic Inch.
		per cent.		
Cast iron	100	.1	7.20	.260
Cast steel	20	.4	7.80	.282
Wrought iron and very mild steel	10	.5	7.80	.282
Nearly pure iron	9	.6	·,-	
Commercial copper	1.6	.388	8.90	.322

Mr. W. H. Preece, (Munroe and Jameson Pocket-book), gives the Table of Values, reproduced below, which shows in a striking manner the dependence of the specific resistance of iron upon the chemical composition.

TABLE VII.—PREECE'S TESTS OF ANNEALED IRON WIRE

Number of Sample.	1.	2.	3.	4.	5.	6.	7.	8.
Carbon	0.09	0.10	0.15	0.10	0.10	0.15	0.44	0.62
Silicon	trace	trace	0.018	trace	0.09	0.018	0.028	0.06
Sulphur	,,	0.022	0.019	0.035	0.03	0.092	0.126	0.074
Phosphorus	0.012	0.045	0.058	0.034	0.218	0.077	0.103	0.051
Manganese	0.06	0.03	0.234	0.324	0.234	0.72	1.296	1.584
Copper	trace	trace	trace	trace	0.015	trace	trace	trace
Iron	99.69	99.70	99.44	99.60	99.11	98.74	98.20	97.41
Ohm mile at 60 deg. Fahr	4546	4502	4820	5308	5974	6163	7468	8033
Specific resistance (microhms per	·		ŀ			1		1
cubic centimetre at 0 deg. Cent.)	9.65	9.60	10.2	11.3	12.7	13.1	15.9	17.1
Specific resistance in microhms per	'				ĺ	i 		
cubic inch at 0 deg. Cent	3.80	3.78	4.02	4.45	5.00	5.15	6.25	6.75
Resistance wire 1 ft. long and								l
.001 in. in diameter at 0 deg. Cent.	57.9	57.5	61.2	67.7	76.2	78.5	95.5	103.0

No. 1. Swedish charcoal iron, very soft and pure.
,, 2.
,, ,, good for P. O. specification.
,, 3.
,, ,, not suited for P.O.

specification.

,, 5. Best puddled iron.,, 6. Bessemer steel, special soft quality.

,, 7. ,, hard quality. ,, 8. Best cast steel.

Although prepared in connection with telegraph and telephone work, it is of much significance to transformer builders, and points to the desirability of using as impure iron as can, by annealing, have its hysteresis loss reduced to a low value, since the higher specific resistance will proportionately decrease the eddy current loss. Such comparatively impure iron will also be nearly free from deterioration through prolonged heating. Of course its lower melting point renders it somewhat troublesome, owing to the plates tending to stick together when heated to a sufficiently high temperature to secure good results from annealing. Transformer builders in this country have generally used iron of some such quality as that of sample No. 1, and have been much troubled by "ageing." Most transformers in America have been built from material whose chemical composition is more like Samples 4, 5 and 6, and the transformers have been very free from "ageing." At least .4 per cent. of manganese should be present, owing to its property of raising the specific resistance.

Reference should here be made to a paper by M. H. Le Chatelier,

No. 4. Swedish Siemens-Martin steel 0.10 carbon.

read before l'Académie des Sciences, June 13th, 1898, in which is given very useful data regarding the influence of varying percentages of carbon, silicon, manganese, nickel, and other elements, upon the electrical resistance of steels. The results relating to the influence of varying percentages of carbon, silicon and manganese are of especial importance, and are consequently reproduced in the following Tables:

TABLE VIII .-- INFLUENCE OF CARBON

Specific Resistance in I per Centimetre Co		ns	C.	(Composition. Mn.		Si.
10	•••	•••	0.06		0.13		0.05
12.5		•••	0.20		0.15		0.08
14			0.49		0.24	•••	0.05
16	• • •	•••	0.84		0.24	•••	0.13
18		•••	1.21		0.21	•••	0.11
18.4			1.40	•••	0.14	•••	0.09
19	•••		1.61	· • •	0.13	•••	0.08

TABLE IX.-INFLUENCE OF SILICON

Resistance in Microh	ms per			(Composition.	
Centimetre Cub				C.		Si.
12.5	•••	•••	 	0.2	•••	0.1
38.5			 	0.2	•••	2.6
15.8	•••	•••	 	0.8		0.1
26.5		•••	 	0.8		0.7
. 33.5	•••		 	0.8		1.3
17.8			 	1.0	•••	0.1
25.5			 	1.0		0.6
32.0				1.0		1.1

TABLE X .- INFLUENCE OF MANGANESE

Resistance in Microb Centimetre Cul			C.	(Composition. Mn.	Si.
17.8			0.9		0.24	 0.1
$\boldsymbol{22}$	•••		0.9		0.95	 0.1
24.5			1.2		0.83	 0.2
40			1.2	•••	1.8	 0.9
66 mag 80 non	netic -magnet	 zic ¹	} 1.	•••	13.	 0.3

¹ In another paper by the same author are set forth results showing the influence of tempering upon the electric resistance of steel. Comptes Rendus de l'Académie des Sciences, June 20th, 1898.

INSULATING MATERIALS

The insulating materials used in dynamo construction vary greatly, according to the method of use and the conditions to be withstood. The insulation in one part of a dynamo may be subjected to high electrical pressures at moderate temperatures; in another part to high temperatures and moderate electrical pressures; in still another part to severe mechanical strains. No one material in any marked degree possesses all the qualities required.

Mica, either composite or solid, has been very largely used on account of its extremely high insulating qualities, its property of withstanding high temperatures without deterioration, and its freedom from the absorption of moisture. In the construction of commutators mica is invaluable. The use of mica, however, is restricted, on account of its lack of flexibility.

Moulded mica, i.e., mica made of numerous small pieces cemented together, and formed while hot, has been used to insulate armature coils as well as commutators. Its use, however, has not been entirely satisfactory, on account of its brittleness.

Composite sheets of mica, alternating with sheets of paper specially prepared so as to be moisture-proof, have been found highly suitable for the insulation of armature and field-magnet coils. The following Table shows roughly the electrical properties of composite sheets of white mica:—

		1	TABLE XI			
Thickness.					Puncturin	g Voltage.
0.005	•••	•••			3,600 t	o 5,860
0.007					7,800 ,	, 10,800
0.009				•••		11,400
0.011					11,600	14,600

The other materials that have been found more or less satisfactory, according to method of preparation and use, are linen soaked with linseed oil and dried; shellaced linen, which is a better insulator than oiled linen, but liable to be irregular in quality and brittle; oiled bondpaper, which is fairly satisfactory when baked; "press board," which shows good qualities, and has been used with satisfaction to insulate field-magnet coils.

Where linseed oil is to be employed, the material should be thoroughly dried before applying the oil.

Red and white vulcanised fibres are made by chemically treating paper fibre. They have been used as insulators with varying success, the main objection to them being their decidedly poor mechanical qualities, so far as warping and shrinking are concerned. This is due to their readiness to absorb moisture from the air. Baking improves the insulating qualities, but renders the substance brittle. Whenever it is necessary to use this material, it should be thoroughly painted to render it waterproof. The insulating quality varies according to the thickness, but good vulcanised fibre should withstand 10,000 volts in thicknesses varying from $\frac{1}{8}$ in. to 1 in., this puncturing voltage not increasing with the thickness, owing to the increased difficulty of thoroughly drying the inner part of the thick sheets.

Sheet leatheroid possesses substantially the same qualities, and is made according to the same processes as vulcanised fibre. A thickness in this material of $\frac{1}{64}$ in. should safely withstand 5000 volts, and should have a tensile strength of 5000 lb. per square inch.

m · i	Insulatio	on Strength.
Thickness.	Total Volts.	Volts per Mil.
in.		
1 64	5,000	320
1 3 9	8,000	256
3 82	12,000	256
64 1 83 64 1 16	15,000	240
1	15,000	120
हैं 3 1 त	6,000	32
Ţ"	6,000	24

TABLE XII.—TESTS ON SHEETS OF LEATHEROID

With such materials as vulcanised fibre and sheet leatheroid, increase in thickness is not necessarily accompanied by increased insulation resistance, owing to the difficulty of obtaining uniformity throughout the thickness of the sheet. This is well shown in the tests of leatheroid sheets of various thicknesses, given in the preceding Table.

Rubber should never be used in any form in dynamo-electric machinery, as it deteriorates rapidly.

Slate is used for the insulation of the terminals of dynamos, &c. Ordinarily good slate will, when baked, withstand about 5000 volts per inch in thickness.

The chief objection to slate is its hygroscopic quality, and it requires to be kept thoroughly dry; otherwise, even at very moderate voltages, considerable leakage will take place. Where practicable, it is desirable to boil it in paraffin until it is thoroughly impregnated.

Slate is, moreover, often permeated with metallic veins, when it is quite useless as an insulator. But even when permeated with metallic veins, its mechanical and fireproof properties make it useful for switchboard and terminal-board work, in which case it is re-enforced by ebonite bushings.

Marble has the same faults as slate, though to a less extent.

Kiln-dried maple and other woods are frequently used, and will stand from 10,000 to 20,000 volts per inch in thickness.

The varnishes used for electrical purposes should, in addition to other insulating qualities, withstand baking; they should be waterproof, and not be subject to the action of oils. Further, they should not be liable to crack or to pulverise with time. Of the varnishes commonly used, shellac is one of the most useful. There are many insulating varnishes on the market, such as clear Sterling Varnish, Black Plastic Sterling Varnish, Armalac, and innumerable other brands.

One of the special insulating materials readily obtainable that has been found to be of considerable value is that known as "vulcabeston," which will withstand as high as 315 deg. Cent. with apparently no deterioration. This material is a compound of asbestos and rubber, the greater proportion being asbestos. Vulcabeston, ordinarily good, will withstand 10,000 volts per $\frac{1}{2}$ in. of thickness.

As results of tests,1 the following approximate values may be taken:—

Red press-board, .03 in. thick, should stand 10,000 volts. It should bend to a radius of five times its thickness, and should have a tensile strength along the grain of 6000 lb. per square inch.

¹ See also R. T. Glazebrook, National Physical Laboratory, "Recent Researches and Future Work," *Electrician*, September 2nd, 1904.

Red rope paper, .01 in. thick, having a tensile strength along the grain of 50 lb. per inch of width, should stand 1000 volts.

Manilla paper, .003 in. thick, and having a tensile strength along the grain of 200 lb. per inch of width, should stand 400 volts.

TESTS ON OILED FABRICS

```
Oiled cambric .007 in. thick stood from 2500 to 4500 volts.

" cotton .003 " " 6300 " 7000 "
" paper .004 " " 3400 " 4800 "
" ... ... .010 " 5000 volts.
```

A number of composite insulations are in use, consisting generally of split mica strips pasted with shellac on to sheets of some other material. The principal ones are:—

- 1. Insulation consisting of two sheets of .005 in. thick red paper, with one thickness of mica between them, the whole being shellaced together into a compound insulation .015 in. thick. This stands on the average 3,400 volts.
- 2. Combined mica and bond-paper of a thickness of .009 in. had a breaking strength of from 2000 to 3000 volts.
- 3. Composition of mica and canvas. Mica strips are pasted together with shellac on to a sheet of canvas, and covered with another sheet of canvas shellaced on. The mica pieces are split to be of approximately the same thickness—about .002 in.—and lapped over each other for half their width, and about $\frac{1}{3}$ in. beyond, so as to insure a double thickness of mica at every point. Each row of strips is lapped over the preceding row about $\frac{1}{2}$ in.

The sheets thus prepared are hung up and baked for twenty-four hours before use. The total thickness should be taken at about .048 in., using canvas .013 in. This will stand about 3000 R.M.S. volts.

- 4. Composition of mica and longcloth, made up with shellac in the same manner as the preceding material.
- 5. White cartridge paper shellaced on both sides, and baked for twelve hours at 60 deg. Cent. The total thickness is .012 in., and it will stand about 1500 volts per layer.

It will doubtless have been observed that the quantitative results quoted for various materials are not at all consistent. This is probably in part due to the different conditions of test, such as whether tested by continuous or alternating current; and if by alternating current the form

factor and periodicity would affect the results, and it should have been stated whether maximum or effective (R.M.S.) voltage was referred to. Continuous application of the voltage will, furthermore, often effect a breakdown in samples which resist the strain for a short interval.¹ It is also of especial importance that the material should have been thoroughly dried prior to testing; though on the other hand, if this is accomplished by baking, as would generally be the case, the temperature to which it is subjected may permanently affect the material. It thus appears that to be thoroughly valuable, every detail regarding the accompanying conditions and the method of test should be stated in connection with the results.

The importance of these points has only gradually come to be appreciated, and the preceding results are given for what they are worth. It is true that some tests have been made which are more useful and instructive, and various materials are being investigated exhaustively as rapidly as practicable. Such tests are necessarily elaborate and expensive and tedious to carry out, but it is believed that no simple method will give a good working knowledge of the insulating properties of the material.

_			Electrical.	Thermal.	Mechanical.	Hygroscopic.
Mica	•••	 	Excellent	Excellent	Poor	Excellent
Hard rubber		 	,,	Poor	Good	Fair
Slate		 	Very poor	Good	,,	Poor
Marble		 	Good	"	,,	٠,,
Vulcabeston		 	Fair	Excellent	,,	Good
Asbestos		 	Good	,,	Poor	,,
Vulcanised fibre		 	,,	Good	,, .	Poor
Oiled linen		 	Excellent	Fair	Fair	Fair
Shellac'd linen		 	Good	,,	Poor	Poor

TABLE XIII.—SUMMARY OF QUALITY OF INSULATING MATERIALS

EFFECT OF TEMPERATURE UPON INSULATION RESISTANCE

The resistance of insulating materials decreases very rapidly as the temperature increases, except in so far as the high temperature acts to expel moisture. Governed by these considerations, it appears that the apparatus should, so far as relates to its insulation, be run at a sufficiently high temperature to thoroughly free its insulation from moisture. The great extent of these changes in insulation resistance is very well shown in the accompanying curve (Fig. 41, opposite) taken from an investigation by

¹ See F. O. Blackwell, "Testing of Insulators," *Transactions*, American Institute of Electrical Engineers, vol xx., pages 421 to 425, April 1903.

Messrs. Sever, Monell and Perry.¹ It shows for the case of a sample of plain cotton duck, the improvement in insulation due to the expulsion of moisture on increasing the temperature, and also the subsequent deterioration of the insulation at higher temperatures.

DESCRIPTION OF INSULATION TESTING METHODS FOR FACTORIES.

The subject of testing insulating materials can be approached in two ways, having regard either to the insulation resistance or to the disruptive strength. Messrs. Sever, Monell and Perry, in the tests already alluded

Fig. 41. Insulation Resistance Curve for Cloth

Figs. 42 and 43. Transformer for Insulation Tests

to, measured the former, but for practical purposes the latter is often preferable.

Various methods of testing insulating materials have been devised from time to time; but after many experiments on different lines the following has been evolved, and has been found very suitable for investigations in factory work. The apparatus required consists of:—

1. A special step-up transformer for obtaining the high potential from the ordinary alternating current low potential circuits. The design of this transformer is illustrated in Figs. 42 and 43, which are fully dimensioned.

¹ "Effect of Temperature on Insulating Materials," American Institute of Electrical Engineers, May 20th, 1896. Also Elihu Thomson, *Transactions*, American Institute of Electrical Engineers, vol. xiv., page 265, 1897. Also C. E. Farrington, "Defective Machine Insulation," Franklin Institute, March 12th, 1903. Also Max von Recklinghausen, American Electro-Chemical Society, April 16th, 1903.

- 2. A water rheostat for regulating the current in the primary of the transformer. This consists of a glass jar, containing two copper plates immersed in water, the position of the upper one being adjustable.
- 3. A Kelvin electrostatic voltmeter, of the vertical pattern, for measuring the effective voltage on the secondary of the transformer.
- 4. A testing board for holding the sample to be tested. This, as shown in Fig. 44, is formed of two brass discs \(\frac{1}{8} \) in thick and 1\(\frac{1}{2} \) in in diameter, the inside edges of which are rounded off to prevent an excess of intensity at these points. These are pressed together against the sample by two brass strips, which also serve to apply the voltage to the discs. The pressure between the discs is just enough to hold the sample firmly.

Fig. 44. Apparatus for Insulation Tests

5. An oven for keeping the sample at the required temperature. It consists of a wooden box containing a tin case. There should be an inch clearance between the two, which should be tightly filled with asbestos packing all round, except at the front where the doors are. The tin case is divided horizontally by a shelf, which supports the testing board, while beneath is an incandescent lamp for heating the oven. Holes are drilled at the back to admit the high potential leads and lamp leads, and there is a hole in the top to admit a thermometer.

Adjustment of the temperature is made by having a resistance in series with the lamp, the amount of which can be adjusted till enough heat is generated to keep the temperature at the required value.

DESCRIPTION OF STEP-UP TRANSFORMER

Core.—The core is of the single magnetic circuit type, and is built up of iron punchings $1\frac{1}{4}$ in. by $7\frac{3}{4}$ in., and $1\frac{1}{4}$ in. by $4\frac{1}{4}$ in., for sides and ends respectively, and .014 in. thick. Every other plate is japanned, and the total depth of punchings is $3\frac{1}{4}$ in., giving with an allowance of 10 per cent. for lost space, a net depth of iron of 2.92 in., and a net sectional area of 3.65 square inches. With an impressed E.M.F. of form factor = 1.25, the density is 36.4 kilolines per square inch.

The primary and secondary coils are wound on opposite sides of the core on the longer legs.

Primary Coils.—The primary consists of two coils form-wound, and these were slipped into place side by side. The conductor is No. 13 S.W.G. bare = .092 in. in diameter. Over the double cotton covering it measures .103 in., the cross-section of copper being .0066 square inch. Each coil consists of 75 turns in three layers, giving a total of 150 primary turns.

Secondary Coils.—The secondary is wound in six sections on a wooden reel, with flanges to separate the sections, as shown in Figs. 42 and 43. The conductor is No. 33 S.W.G. bare, .010 in. in diameter. Over the double silk covering it measures .014 in., the cross-section of copper being .000079 square inch. Each coil consists of 1,600 turns, giving a total of 9600 secondary turns.

Insulation.—The primary coils are wrapped with a layer of rolled tape (white webbing) 1 in., by .018 in., half lapped and shellac'd before being put on the core; they are slipped over a layer of "mica-canvas" on the leg. The secondary coils are wound direct on the wooden reel, which is shellac'd; they are covered outside with two or three layers of black tape (1 in. by .009 in.), shellac'd.

Advantage of this Type for Insulation Tests.—By having the primary and secondary on different legs, the advantage is gained that, even on short circuit, no great flow of current occurs, because of the magnetic leakage.

Connection Boards.—The transformer is mounted on a teak board, on which are also placed the secondary connection posts, as shown in Fig. 45, page 52. The primary leads are brought to another teak board, which is for convenience mounted on the top of the transformer. This board is fitted with fuses.

A number of samples may be tested simultaneously by connecting the

testing boards in parallel, as shown in the diagram of connections given in Fig. 45, page 52. A is a single-pole switch in the main secondary circuit, and B, B, B are single-pole switches in the five branches.

The method of test is as follows: A number of samples 4 in. square are cut from the material to be tested, and are well shuffled together. Five samples are taken at random, placed between the clips of the testing boards within the ovens, and brought to the temperature at which the test is to be made. They should be left at this temperature for half an hour before test.

The apparatus may, of course, be modified to suit special requirements; but, as described, it has been used and found suitable for investigations on the disruptive voltage of various materials.

As an example of such an investigation, we give one in Table XIV. that was made to determine the effect of different durations of strain and different temperatures on the disruptive strength of a composite insulation known as mica-canvas.

Two hundred samples, measuring 4 in. by 4 in., were cut and well shuffled together, in order to eliminate variations of different sheets. Before test, all samples were baked for at least twenty-four hours at 60 deg. Cent.

METHOD OF TEST

Five samples were placed between the clips of the testing boards, and the voltage on the secondary adjusted by the water rheostat to 2000 volts, as indicated by a static voltmeter. Switch A was open and switches B, B, B closed (Fig 45). Switch A was now closed for five seconds, and if no sample broke down the voltage was raised to 3000, and Switch A again closed for five seconds. This application of the voltage is practically only momentary, as the capacity current of the samples brings down the voltage slightly because of magnetic leakage in the transformer, five seconds not being a long enough interval to admit of readjusting the pressure to the desired value.

When any sample broke down, as indicated by the voltmeter needle dropping back to zero, it was disconnected from the circuit by its switch, B; it being easy to determine which sample had broken down by lifting switches B, B, B, one by one, till one of them drew out an arc.

The remaining samples were then subjected to the next higher voltage, and so on until all five samples had broken down.

A series of four tests, as below, were taken, making a total of twenty samples tested under the same conditions.

Table XIV.—Insulation Tests; Mica-Canvas

Temperature 25 deg. Cent.

Effective Voltage		Durat	ion 5	Seco	nds.	1	Durati	ion 10	Mint	ites.	1)ur at io	on 30	Minu	tes.		
Impressed.	Num	ber of	Sampl	les Ur	- pierced.	Num	ber of	Samp	les Uı	pierced.	erced. Number of Samples Unp						
	_				percent.		_	_ [_	percent.	_		_	_	percent		
2000	5	5	5	5	100	5	5	5	5	100	5	5	5	5	100		
3000	5	5	5	5	100	5	5	5	5	100	5	5	5		100		
4000	5	5.	4	5	95	5	5	5	5	100	5	3	3	3	70		
4500	5	• • • •	4	5	95	4	2	5	5	80	5	2	2	3	60		
5000	4	5	4	5	90	1	1	3	3	40	4	1 1	1	1	35		
5500	4	4	3	5	80	0	0	3	2	25	2	1 0	0	0	10		
6000	3	2	2	3	50	. 0	0	2	1	15	2	0	0	0	10		
6500	3	1	2	1	35	0	0	2	0	10	1	0	0	0	5		
7000	1	0	1	0	10	0	0	1	0	5	1	0	0	0	5		
7500	0	0	1	0	5	: 0	0	0	0	0	1	0	0	0	5		
8000	0	0	1	0	5	0	0	0	0	0	1	0	0	0	5		
					Ten	iperai	ure (30 de	g. C	ent.							
2000	5	5	5	5	100	5	5	5	5	100	5	. 5	5	5	100		
3000	5	5	5	5	100	5		5	5	100	5	5	5	5	100		
4000	5	3	5	4	85	4	2	2	5	65	1	4	2	4	55		
4500	5	3	5	3	80	i	$\frac{2}{2}$	$\begin{bmatrix} 2\\2 \end{bmatrix}$	3	1 40	i	, $\bar{\hat{3}}$	2	4	50		
5000	3	2	5	2	60	i		$\begin{bmatrix} 2\\2 \end{bmatrix}$	2	30	Ô	3	1	4	40		
5500	1	$\frac{2}{2}$	5	í	45	Ô		1	ő	5	Ö		0	$\overset{\star}{2}$	25		
6000	0	0	5	i	30	0		0	Ö	0	ő	1	0	í	10		
6500	0	ő	0	0	0	1	0	0 :	_	0	0	0	0		5		
	- 1	- 1	- 1	-		0	-	-			1 -		-	Ô	0		
7000	0	0	0	0	. 0	0	0	0 ,	0	0	0	0	0	U	U		
7500		1															
8000	1	I	j		1	I				1	1)		
					Temp	peratu	re 10	00 de	g. C	ent.							
2000	5	5	, 5	5	100	. 5	5	5	5	100	. 5	5	5	5	100		
3000	5	5	5	5	100	5	4	5	5	100	5	5	5	5	100		
4000	4	5	5	4	90	4	4	5	5	90	2	5	0	4	60		
4500	4	5	4	4	85	3	3	3	3	60	ī	3	ŏ	2	35		
5000	2	5	3	4	70	2	2	3	2	45	i	Ö	ő	ō	5		
5500	li	5	2	3	55	ī	ī	2	2	30	Ô	ŏ	ő	ŏ	Ö		
6000	l i	3	ī	2	35	i	i	ī	ő	15		"	~				
6500	0	1	0	1	10	1	0	0	0	5							
7000	0	0	0	ō	0	0	0	0	0	ő							
7500 7500	"	U	U	U	"	U	ľ	'	U	"							
1900		ĺ			I								- 1				

A set of twenty samples was tested with the impressed voltage kept constant for ten minutes, and another set in which it was kept constant for thirty minutes.

A complete series of tests was made under the above three conditions—at three different temperatures—25 deg. Cent., 60 deg. Cent., and 100 deg. Cent. The samples were left in ovens for at least half

Fig. 45. Circuit Connections for Insulation Tests

Figs. 46 and 47. Insulation Curves for "Mica Canvas"

an hour, at approximately the right temperature, before being tested. The temperature during test did not vary more than 10 per cent.

The results of these tests are given in the Table on the preceding page, and they are plotted as curves in Figs. 46 to 51, the effective (R.M.S.) voltage impressed as abscissæ, and the percentage of samples not broken down at that voltage as ordinates. In Figs. 46, 47, and 48, curves are plotted for same temperatures and different durations, while

in Figs. 49, 50, and 51 they are plotted for different temperatures for the same duration.

As the form of the electromotive force wave would affect the results, and as it was impracticable to keep account of the same, the current being supplied by Thomson-Houston and Brush alternators running in parallel and at various loads, the effects were eliminated as much as possible by making tests on different sets of samples on different days.

It is evident from the results obtained that 3000 R.M.S. volts

is the limit of safe-working voltage of this material under all conditions tried.

It would also appear from curves in Figs. 46, 47, and 48, that with the momentary application of the voltage, the material does not have time to get so strained as for a longer duration of the applied voltage, and that between the ten-minute and thirty-minute durations the difference is not so marked.

From curves in Figs. 49, 50, and 51, it seems that in the case of this material the temperature does not have much effect on the disruptive voltage, although at 60 deg. and 100 deg. the shellac becomes softened, and the sample may be bent back on itself without cracking.

Figs. 52 to 55. Insulation Curves for "Mica-Longcloth"

A corresponding set of tests was made on material called "mica-long-cloth," which differed from the "mica-canvas" only in the nature of the cloth upon which the mica was mounted. The "long-cloth" is an inexpensive grade of linen serving merely as a structure upon which to build the mica.

The mode of manufacture is the same as that of "mica-canvas," except

Figs. 56 and 57. Insulation Curves for "Mica-Longcloth"

that the sheets of "long-cloth" are first impregnated with shellac and then dried. The mica is then put on in the same manner as with the "mica-canvas." The "long-cloth" is .0052 in. thick, and the mica varies from .001 in. to .009 in., but averages .002 in. The total thickness of the "mica long-cloth" completed, averages .025 in. This includes two sheets of "mica long-cloth," with interposed mica, the mica having everywhere at

least a double thickness. When made up, the sheets were placed for three or four hours in an oven at 60 deg. Cent. The sheets were then cut up into samples measuring 4 in. by 4 in., and were again baked for twenty-four hours before testing.

TABLE XV.—Insulation Tests: Mica-Longcloth

Temperature, 25 deg. Cent.

Effective Voltage	D	uratio	on, 5	Second	ds.	D	uratio	n, 10 I	Minut	es.	Du	ration	ı, 30 N	linut	es.		
Impressed.	Nur	nber (of San	ples (Number of Samples O K.					Number of Samples O K.						
2000	5	5	5	5	Per Cent. 100	5	5	5	5	Per Cent. 100	5	5	5	5	Cent 100		
3000	5	5	5	5	100	5	5	5	_	100	5	5	5	5	100		
4000	5	5	5	5	100	4	4	5	5	90	5	5	4	5	95		
4500	4	5	5	5	95	4	3	3	5	75	4	5	3	5	85		
5000	4	5	5	4	90	3	2	2	2	40	2	i	3	4	50		
5500	3	2	5	3	65	2	ī	ō	ī	25	ō	ô	2	4	30		
6000	2	$ar{f 2}$	4	2	50	ő	Ô	ŏ	Ô	0	ŏ	ŏ	õ	ō	O		
6500	ō	$ar{f 2}$	$\hat{2}$	ī	25	ŏ	ő	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	Õ	l ŏ		
7000	ŏ	$ar{f 2}$	ī	Ô	15	ŏ	ő	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	Ĭŏ		
7500	ŏ	ī	Ô	ŏ	5	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	l ŏ		
8000	ŏ	ī	Ö	ŏ	5	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	O		
•	•			Ten	iperat	ure (io dec	ı. Cen	ut.	•	,		•		•		
2000	5	5	5	- 5 5	1100	5	5	5		100 (5	5	5 (5	100		
3000	5	5	5	5	100	5	5	5	5	100	5	5	5	5	100		
4000	5	5	5	5	100	5	5	5	5	100	4	5	5	5	95		
4500	5	5	5	5	100	3	3	i	5	60	2	. 2	i	2	35		
5000	4	4	3	5	80	i	2	î	3	35	õ	2	o l	õ	10		
5500	3	4	2	3	60	ō	ő	ó	2	10	ŏ	õ	ŏ	ŏ	1.0		
6000	i	3	$\overline{2}$	2	40	ŏ	ŏ	ŏ	õ	0	ŏ	ŏ	ŏ	ŏ	1 6		
6500	ī	2	ō	Ιĩ	20	ŏ	ŏ	ŏ	ŏ	iŏl	ŏ	ŏ	ŏ	ŏ	1 6		
7000	î l	ī	ŏ	Ô	10	ŏ	ŏ	ŏ	ŏ	o	ŏ	ŏ	ŏ	ő	6		
7500	ō	ī	ŏ	ŏ	5	ŏ	ŏ	ŏ	ŏ	Ö	ŏ	ŏ	ŏ	ŏ	0		
8000	ŏ	i	ŏ	ŏ	5	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ő	0		
	•			Tem	' perati	, re 1	^ ∩∩ <i>∂•</i>	a Ces	at	'	'		•				
2000	5	5	5		100	5	5	9. 50. 5		100	5	5	5	5	100		
3000	5	5	5	5	100	5	5	5	5	100	5	5	5	5	100		
4000	5	4	5	5	95	5	5	4	5	95	5	3	3	3	70		
4500	5	4	5	5	95	4	4	2	5	75	4	ő	3	ő	35		
5000	4	3	4	3	70	3	3	2	3	45	1	0	1	0	10		
5500	3	$^{3}_{2}$	3	i	45	2	2	2	ő	20	ō	ŏ	ō	0	10		
6000	i	1	1	i	20	ő	ő	ő	ő	0	ő	ŏ	ŏ	ő			
6500	ō	3	Ô	1	5	0	0	0	0	0	0	0	0	ő	6		
7000	ŏ	0	ő	0	0	0	0.	0	ő	0	0	ŏ	0	0	6		
7500	ŏ	0	ő	0	0	ő	0	0	0	0	ŏ	ő	ŏ	0	6		
1000	١	U	"	"	'	٧	0	٠,	v	"	١٧	١٧	٧	v	'		

The results which are given in Table XV. and plotted as curves, show much the same character as those for "mica-canvas," the limit of safe working being about 3,000 R.M.S. volts as before. The results as plotted

in the curves support the former conclusion, that with five seconds duration of the application of the voltage, the material is not so much strained as by longer applications. As before, also, the temperature does not appear to affect the disruptive voltage.

These tests show the material to be quite as good electrically as "micacanvas," nothing being gained by the extra thickness of the latter. The "mica-canvas" and the "mica long-cloth" had the same thickness of mica, but the canvas is so much thicker than the "long-cloth" as to make the total thickness of the "mica-canvas" .048 in., as against a thickness of only .025 in. for the "mica long-cloth." The insulation strength is evidently due solely to the mica.

TABLE XVI.—Insulation Tests: Shellac'd Paper (Two Sheets)

Temperature, 25 deg. Cent.

Effective Voltage Impressed.	D	uratio	n, 5	Secon	ds.	D	uratio	n, 10	Minut	Duration, 30 Minutes. Number of Samples O K.					
	Nur	nber o	of San	ples	0 K.	Nu	mber o	of San	ples						
2522	_	_			Per Cent.					Per Cent.	ا ہ	_	ا ہ	_	Cent
2500	5	5	5	5	100	5	5	5	5	100	5	5	5	5	100
3000	5	5	5	5	100	5	5	5	5	100	5	5	4	5	100
3500	4	4	4	4	80	4	5	2	3	70	4	4	2	5	75
4000	3	2	3	3	55	3	2	1	1	35	0	1	0	0	5
4500	2	1	2	1	30	1	0	0	0	5	0	0	0	0	0
5000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				Ten	perat	ure, 6	0 deg	. Cen	ıt.						
2500	5	5	5	5	100	5	5	5	5	100	5	5	5	5	100
3000	4	5	4	5	90	5	3	5	5	90	4	4	4	5	85
3500	4	4	3	4	75	2	3	3	3	55 .	2	2	3	2	45
4000	2	3	3	3	55	1	0	0	0	5	0	0	0	1	5
4500	1	2	0	2	25	0	0	0	0	0	0	0	0	0	0
5000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				Tem	perati	ure, 1	00 de	g. Ce	nt.						
2500	5	5	5	5	100	5	5	5	5	100	5	5	5	5	100
3000	3	3	4	4	70	2	2	2	2	35	1	3	2	2	44
3500	2	1	3	2	40	2	0	0	0	15	1	2	0	2	25
4000	0	0	1	1	10	1	0	0	0	5	0	0	0	0	0
4500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5000	0 ¦	0	0	0	0	0	0	0	0	0	0	0	0	0	0

In the following set of tests the same method of procedure was employed, the material in this case being so-called "Shellac'd Paper," which consists of cartridge paper about .010 in. thick, pasted with shellac on both sides and then thoroughly baked. The average thickness when finished is about .012 in. This material is often used as insulation between layers of the windings of transformers, in thicknesses of from one to three

58

INSULATION CURVES FOR "SHELLAC'D PAPER To 63. Figs. 58

sheets, according to the voltage per layer. It was found convenient to test two sheets of the material together, in order to bring the disruptive voltage within the range of the voltmeter. The use of two thicknesses also tended to produce more uniform results. As will be seen, the duration of the application of the voltage, and the temperature up to 100 deg. Cent., exert a slight but definite influence upon the results. But at 100 deg. Cent. the shellac becomes quite soft.

The tests show that this material withstands a little over 1000 R.M.S. volts per single sheet, although in employing it for construction, a factor of safety of two or three should be allowed under good conditions, and a still higher factor for the case of abrupt bends and other unfavourable conditions.

Further tests showed the disruptive strength of this material to be proportional to the number of sheets.

Curves (Figs. 64 to 69, page 60, and Table XVII.) are given of the results obtained in similar tests on a material known as "Red Paper." It is .0058 in. thick, of a fibrous nature, and mechanically strong; hence it is especially useful in conjunction with mica, to strengthen the latter.

TABLE XV II.— INSULATION TESTS: RED PAPER (Four Sheets)

Temperature, 25 deg. Cent.

Effective Voltage Impressed.	D	uratio	n 5 Se	cond	a.	D	u rat io	n 10 M	linute	Duration 30 Minutes. Number of Samples O K.				
	Nur	nber o	f Sam	ples	о к.	Nur	nber o	f Sam	ples C					
2500	5	5	5	5	Per Cent. 100	5	5	5	 5	Per Cent. 100	5	5	5	5 100
3000	5	5	5	5	100	5	5	5	_	100	5	5	5	5 100
3500	5	4	5	5	95	2	4	5	5	65	2	4	2	0 40
4000	4	ō	1 '	3	40	Õ	ō	ő	ő	0	ī	ō	Õ	0 0
4500	ō	ŏ	0	ő	0	ŏ	ŏ	ő	ŏ	Ŏ	ō	ŏ	0 :	ŏ
5000	ŏ ¦	ŏ	o !	Ŏ	ŏ	ŏ.	ŏ	ŏ	Ŏ	lŏ,	ŏ	ŏ	Ŏ	ŏ č
				Ten	iperat:	ure, (30 de	g. Ce	nt.					
2500	5	5	5 :	5	100	5	ı 5	5 1	5	100	5	5 I	5 1	5 (100
3000	5	5	5	4	95	5	5	5	5	100	4	2	2	5 65
3500	0	1	2	2	20	3	1	l i l	0	25	0	1	1	1 15
4000	0	0	0 .	0	0	0	0	0	0	0	0	0	0	0 0
4500	0	0	0 1	0	0	0	0	o	0	' o '	0	0	0	0 0
5000	0	0	0 ,	0	0 .	0	0	0	0	0	0	0	0	$0 \mid 0$
				Tem	perati	ıre, 1	00 d	eg. Ce	ent.					
2500	5	5	5	5	100	5	5	5 '	5	100 !	5	5	5	5 1100
3000	5	5	5	5	100	3	2	2	3	50	3	3	2	1 45
35 00	2	3	2	3	50	1	0	0	0	5	0	1	0	0 5
4000	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
4500	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
5000	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0

The method of test was the same as that employed in the case of the preceding set of tests on "Shellac'd Paper;" and for the reasons set forth in those tests, it was found in this case convenient to test four sheets of the material together.

An examination of the curves and Table will show that the limit of safe working is 2,500 R.M.S. volts for four sheets, or 625 volts for a single sheet, other tests having been made which showed the breakdown pressure to be proportional to the number of sheets.

It also appears from the curves, that "Red Paper" has a more uniform insulation strength than the materials previously tested. As in the case of "Shellac'd Paper," it showed weakening of the insulation at a temperature of 100 deg. Cent.

From tests such as the four sets just described, very definite conclusions may be drawn. For instance, if it were desired to use "mica-canvas" as the chief constituent of the main insulation of a 2000 volt transformer, which should withstand an 8,000 volt breakdown test, between primary and secondary, for one half hour, three layers of this composite insulation would be sufficient and would probably be inserted; though the chances would be in favour of its withstanding a 10,000 or 12,000 volt test if due attention is given to guarding against surface leakage, bending and cracking and bruising of insulation, and other such matters. A comparison with the tests on "mica-longcloth," would, however, show that a given insulation strength could be obtained with a much thinner layer.

There are on the market patented composite materials giving much better results. But they are expensive, and hence it is often impracticable to use them.

In designing electrical machinery, similar tests of all insulating material to be used should be at hand, together with details of their mechanical, thermal, and other properties, and reasonable factors of safety should be taken.

Armature coils are often insulated by serving them with linen or cotton tape wound on with half-lap. A customary thickness of tape is .007 in., and the coil is taped with a half over-lap, so that the total thickness of the insulation is .014 in. The coils are then dipped in some approved insulating varnish, and baked in an oven at a temperature of about 90 deg. Cent. These operations of taping, dipping, and drying, are repeated a number of times, until the required amount of insulation is

obtained. It has been found in practice that a coil treated in this manner, and with but three layers of .007-in. tape (wound with half over-lap), dipped in varnish twice after the first taping, once after the second, and twice after the third, i.e., five total dippings, and thoroughly baked at 90 deg. cent. after each dipping in varnish, withstands a high potential test of 5,000 R.M.S. volts, which is considered sufficient for machines for not over 600 volts. Armature coils insulated in the above manner are generally placed in armature slots lined with an oil-treated cardboard of about .012 in. in thickness; but this contributes but little to the insulation strength, serving rather to protect the thin skin of varnish from abrasion when forcing the coil into the armature slot. In this treatment of the coils, great care must be taken to see that the taping be not more than one half over-lap, and that the varnish does not become too thick through evaporation of the solvent. All coils should be thoroughly dried and warmed before dipping, as the varnish will then penetrate farther into them. slot parts of coils are dipped in hot paraffin and the slots lined with oil- or varnish-treated cardboard, to prevent abrasion of the insulations. greatest care should be used in selecting insulating varnishes and compounds, as many of them have proved in practice to be worthless; a vegetable acid forming in the drying process, which corrodes the copper through the formation of acetates or formates of copper which in time lead to short-circuits in the coil. Some excellent preparations have their effectiveness impaired by unskilful handling. If, for instance, the first coat of the compound is not thoroughly dried, the residual moisture corrodes the copper and rots the insulations. By far the best method of drying is by the vacuum hot oven. By this method, the coils steam and sweat, and all moisture is sucked out. A vacuum oven, moreover, requires a much lower temperature, consequently less steam, and very much less time. Such an oven is almost a necessity where field spools have deep metal flanges, for in the ordinary oven, in such cases, the moisture simply cooks and steams, but does not come out. Cases have occurred where spools have been kept in an ordinary drying oven for ten days at a temperature of 90 deg. cent., and then the spools had to be further dried with a heavy current to sweat the moisture out. Field spools may be treated with tape and varnished in the same manner as armature coils, thus doing away with the needless metal flanges, and also saving space.

As further instances of taping and varnishing, may be cited the cases of some coils treated with the same kind of tape and varnish as

already described. In one case, a half over-lapped covering of .007 in tape giving a total thickness of .014 in., had seven successive dippings and bakings, resulting in a total thickness of tape and varnish of .035 in. Coils thus insulated withstood 6,000 R.M.S. volts. An insulation suitable for withstanding 15,000 R.M.S. volts consists in taping four times with half over-lap, and giving each taping three coats of varnish, making in all eight layers of .007-in. tape, and twelve layers of varnish. The total thickness of insulation was then about .09 in. The quality of tape, thickness of varnish, and care in applying and drying the latter, play an important part. One disadvantage of this method of insulating by taping and impregnating with varnish and baking, consists in the brittleness of the covering; a coil thus treated should preferably be warmed before pressing it into place on the armature.

Other methods of treating coils, such as dipping the slot part in shellac and then pressing it in a steam-heated press form, thus baking the slot part hard and stiff, have the advantage of rendering the coils less liable to damage in being assembled on the armature, and also make them more uniform in thickness. Coils thus pressed are subsequently taped and dipped in the way already described. Coils may be treated in a vacuum, to a compound of tar and linseed oil, until they become completely impregnated. They are then forced into shape under high pressure. Coils thus prepared cannot be used in rotating armatures, as the centrifugal force tends to throw the compound out.

For further details of "The Insulation of Electric Machines," see the treatise under this title by H. W. Turner and H. M. Hobart (Whittaker, 1905). This treatise also contains a Chapter devoted to an extensive bibliography of the subject of insulating materials and methods.

While this work is in the press there has come to hand an advance copy of a very interesting paper by E. H. Rayner, entitled:—"Report on Temperature Experiments carried out at the National Physical Laboratory." This paper was read at the Institution of Electrical Engineers, on March 9th, 1905; it gives useful data on Press-spahn, Manila Paper, Excelsior Paper and Linen, Grey and Red Fibre, and other materials. The tests include comparisons at various temperatures and for various thicknesses. It is to be hoped, however, that the National Physical Laboratory will regard these tests as merely preliminary to far more comprehensive and precise tests.

ARMATURE WINDINGS

CONTINUOUS-CURRENT ARMATURE WINDINGS

In the design of dynamo machines a primary consideration is with respect to the armature windings. Many types have been, and are, at present employed, but the large continuous-current generators now most extensively used for power and lighting purposes, as well as in the numerous other processes where electrical energy is being commercially utilised on a large scale, are constructed with some one selected from a comparatively small number of types of winding. Although the many other types may be more or less useful in particular cases, it will not be necessary for our present purpose to treat the less-used types.

The windings generally used may be sub-divided into two chief classes—one, in which the conductors are arranged on the external surface of a cylinder, so that each turn includes, as a maximum, the total magnetic flux from each pole, termed drum windings; the other, in which the conductors are arranged on and threaded through the interior of a cylinder, so that each turn includes as a maximum only one-half of the flux from each magnet pole; this is known as the Gramme, or ring winding.

One of the chief advantages of the Gramme winding is that the voltage between adjacent coils is only a small fraction of the total voltage, while in drum-wound armatures the voltage between adjacent armature coils is periodically equal to the total voltage generated by the armature. On account of this feature, Gramme windings are largely used in the armatures of arc-light dynamos, in which case the amount of space required for insulation would become excessive for drum windings. There is also the practical advantage that Gramme windings can be arranged so that each coil is independently replaceable.

Gramme-ring windings have been used with considerable success in large lighting generators, the advantage in this case being that the armature conductors are so designed that the radial ends of each turn at one side of the armature are used as a commutator; and with a given number of conductors on the external surface of the cylinder, the number of the commutator bars is twice as great as in the drum-wound armature—an important

feature in the generation of large currents. Having one commutator segment per turn, the choice of a sufficient number of turns keeps the voltage per commutator segment within desirably low limits. The use of a large number of turns in such cases, while permitting the voltage per commutator segment to be low, would entail high armature reaction, manifested by excessive demagnetisation and distortion, if the number of poles should be too small; but by the choice of a sufficiently large number of poles, the current per armature turn may be reduced to any desired extent. While it is necessary to limit the armature strength in this way, the cost

Fig. 70. Gramme Ring Winding with Lateral Commutator

of the machine is at the same time increased, so that commercial considerations impose a restriction.

Fig. 70 is an outline drawing of the armature and field of a 12-pole 400-kilowatt Gramme-ring lighting generator, of the type just described. Machines of this type have been extensively used in large central stations in America, and it is one of the most successful types that have ever been built.

In small machines where, instead of two-face conductors, there is often a coil of several turns between adjacent commutator segments, the Gramme ring is, on the score of mechanical convenience, inferior to the drum winding; since, in the case of the latter, the coils may be wound upon a form,

and assembled afterwards upon the armature core. This is only made practicable in the case of a Gramme ring, by temporarily removing a segment of the laminated core. This plan has obvious disadvantages.

These two practical classes of windings, Gramme ring and drum, may be subdivided, according to the method of interconnecting the conductors, into "two-circuit" and "multiple-circuit" windings. In the two-circuit windings, independently of the number of poles, there are but two circuits through the armature from the negative to the positive brushes; in the multiple-circuit windings, there are as many circuits through the armature as there are poles.

Making comparison of these two sub-classes, it may be stated that in the two-circuit windings the number of conductors is, for the same voltage, only 2/N times the number that would be required with a multiple-circuit winding, N being the number of poles; hence a saving is effected in the labour of winding and in the space required for insulation. This last economy is frequently of great importance in small generators, either lessening the diameter of the armature or the depth of the air gap, and thereby considerably lessening the cost of material.

It has been stated that Gramme-ring armatures have the advantage that only a small fraction of the total voltage exists between adjacent coils. This is only true when the Gramme armature either has a multiple-circuit winding, or a certain particular type of two-circuit winding, known as the Andrews winding, i.e. the long-connection type of two-circuit Gramme-ring winding. This reservation having been made for the sake of accuracy, it is sufficient to state that multiple-circuit Gramme-ring windings are the only ones now used to any extent in machines of any considerable capacity; and, as already stated, these possess the advantage referred to, of having only a small fraction of the total voltage between adjacent coils.

DRUM WINDINGS

In the case of drum windings, it is obvious that all the connections from bar to bar must be made upon the rear and front ends exclusively; it not being practicable, as in the case of Gramme-ring windings, to bring connections through inside from back to front. From this it follows that the face conductors forming the two sides of any one coil must be situated in fields of opposite polarity; so that the electromotive forces generated in

¹ This term applies to single armature windings

the conductors composing the turns, by their passage through their respective fields, shall act in the same direction around the turns or coils.

Bipolar windings are, in some cases, used in machines of as much as 100 or even 200 kilowatts output; but it is now generally found desirable to employ multipolar generators even for comparatively small outputs. The chief reasons for this will be explained hereafter, in the section relating to the electro-magnetic limit of output.

Drum windings, like Gramme-ring windings, may be either multiple-circuit or two-circuit, requiring in the latter case, for a given voltage, only 2/N times as many conductors as in the former, and having the advantages inherent to this property. Owing to the relative peripheral position of successively connected conductors (in adjacent fields), two-circuit drum windings are analogous to the short-connection type, rather than to the long-connection type of two-circuit Gramme-ring windings. The multiple-circuit drum windings are quite analogous to the multiple-circuit Gramme-ring windings, the multiple-circuit drum possessing, however, the undesirable feature of full armature potential between neighbouring conductors; whereas one of the most valuable properties of the multiple-circuit Gramme-ring winding is that there is but a very small fraction of the total armature potential between adjacent conductors.

In Fig. 71, page 68, is given the diagram of a multiple-circuit drum winding. It is arranged according to a plan which has proved convenient for the study of drum windings. The radial lines represent the face conductors. The connecting lines at the inside represent the end connections at the commutator end, and those on the outside the end connections at the other end. The brushes are drawn inside the commutator for convenience. The arrowheads show the direction of the current through the armature, those without arrowheads (in other diagrams) being, at the position shown, short-circuited at the brushes. By tracing through the winding from the negative to the positive brushes, it will be found that the six paths through the armature are along the conductors, and in the order given in the six following lines:—

In making the connections, each conductor at the front end is connected to the eleventh ahead of it; and at the back to the ninth behind

it. In other words, the front end pitch is 11, and the back end pitch is — 9. In practically applying such a diagram, the conductors would generally be arranged with either one, two, or four conductors in each slot. Suppose there were two conductors per slot, one above the other; then the odd-numbered conductors could be considered to represent the upper conductors, the lower ones being represented by conductors with even numbers. In order that the end connections may be of the ordinary

Fig. 71. Multiple-Circuit, Drum Winding

double-spiral arrangement or its equivalent, the best mechanical result will be secured by always connecting an upper to a lower conductor; hence the necessity of the pitches being chosen odd.

The small sketch at the top of Fig. 71 shows the actual location of the conductors on the section of the armature. There might, of course, have been only one conductor per slot; or when desirable, there could be more than two. The grouping of the conductors in the diagram in pairs is intended to indicate an arrangement with two conductors

per slot. But in subsequent diagrams it will be more convenient to arrange the face of the conductors equi-distantly.

The following is a summary of the conditions governing multiplecircuit single windings, such as that shown in Fig. 71:

- a. There may be any even number of conductors, except that in ironclad windings the number of conductors must also be a multiple of the number of slots.
- b. The front and back pitches must both be odd, and must differ by 2; therefore the average pitch is even.

Fig. 72. Six-Circuit, Double-Winding

c. The average pitch y should not be very different from c/n when c = number of conductors, and n = number of poles. For chord windings, y should be smaller than c/n by as great an amount as other conditions will permit, or as may be deemed desirable.

Multiple-circuit windings may also be multiple-wound, instead of being single-wound, as in the above instance. We refer to a method in which two or more single windings may be superposed upon the same armature, each furnishing but a part of the total current of the machine. The rules governing such windings are somewhat elaborate, and it is not necessary at present to go fully into the matter. In Fig. 72 is shown a six-circuit

double winding. Each of the two windings is a multiple-circuit winding, with six circuits through the armature, so that the arrangement results in only one-twelfth of the sixty conductors being in series between negative and positive brushes; each of the conductors, consequently, carrying one-twelfth of the total current. This particular winding is of the doubly re-entrant variety. That is to say, if one starts at conductor 1, and traces through the conducting system, conductor 1 will be re-entered when only half of the conductors have been traced through. The other half of the conductors form an entirely separate conducting system, except in so far as they are put into conducting relation by the brushes. If fifty-eight conductors are chosen, instead of sixty, the winding becomes singly re-entrant, i.e., the whole winding has to be traced through before the original conductor is again reached.

A singly re-entrant double winding is symbolically denoted thus O, and a doubly re-entrant double winding by O O. There is no limit for such arrangements. Thus we may have

Sextuply re-entrant, sextuple windings,

Triply re-entrant, sextuple windings,

Doubly re-entrant, sextuple windings,

Singly re-entrant, sextuple windings,

by suitable choice of total conductors and pitch. In practice, multiple windings beyond double, or at most triple, would seldom be used. Such windings are applicable to cases where large currents are to be collected at the commutator. Thus, in the case of a triple winding, the brushes should be made of sufficient width to bear at once on at least four segments, and one-third of the current passing from the brush will be collected at each of three points of the bearing surface of the brush, such division of the current tending to facilitate its sparkless collection. A double winding has twice as many commutator segments as the equivalent single winding. Another property is that the bridging of two adjacent commutator segments by copper or carbon dust does not short-circuit any part of the armature winding, and an arc is much less likely to be established on the commutator from any cause.

Two-Circuit Drum Windings

Two-circuit drum windings are distinguished by the fact that the pitch is always forward, instead of being alternately forward and backward, as in the multiple-circuit windings.

The sequence of connections leads the winding from a certain bar opposite one pole-piece to a bar similarly situated opposite the next pole-piece, and so on, so that as many bars as pole-pieces are passed through before another bar in the original field is reached.

A two-circuit single winding in a six-pole field is shown in Fig. 73. Two-circuit windings have but two paths through the armature, independently of the number of poles. Only two sets of brushes are needed, no matter how many poles there may be, so far as collection of the current

Fig. 73. Two-Circuit, Single Winding

is concerned; but in order to prevent the commutator being too expensive, it is customary in large machines to use as many sets of brushes as there are pole-pieces. Where more than two sets of brushes must be used, that is, in machines of large current output, the advantages possible from equal currents in the two circuits have been overbalanced by the increased sparking, due to unequal division of the current between the different sets of brushes of the same sign.

An examination of the diagrams will show that in the two-circuit windings, the drop in the armature, likewise the armature reaction, is independent of any manner in which the current may be subdivided among

the different sets of brushes, but depends only upon the sum of the currents at all the sets of brushes at the same sign. There are in the two-circuit windings no features that tend to cause the current to subdivide equally between the different sets of brushes of the same sign; and in consequence, if there is any difference in contact resistance between the different sets of brushes, or if the brushes are not set with the proper lead with respect to each other, there will be an unequal division of the current.

When there are as many sets of brushes as poles, the density at each pole must be the same; otherwise the position of the different sets of brushes must be shifted with respect to each other to correspond to the different intensities, the same as in the multiple-circuit windings.

In practice it has been found difficult to prevent the shifting of the current from one set of brushes to another. The possible excess of current at any one set of brushes increases with the number of sets; likewise the possibility of excessive sparking. For this reason the statement has been sometimes made that the disadvantages of the two-circuit windings increase in proportion to the number of poles.

From the above it may be concluded that any change of the armature with respect to the poles will, in the case of two-circuit windings, be accompanied by shifting of the current between the different sets of brushes; therefore, to maintain a proper subdivision of the current, the armature must be maintained in one position with respect to the poles, and with exactness, since there is no counter action in the armature to prevent the unequal division of the current.

But in the case of multiple-circuit windings, it will be noted that the drop in any circuit, likewise the armature reaction on the field in which the current is generated, tend to prevent an excessive flow of current from the corresponding set of brushes. On account of these features (together with the consideration that when there are as many brushes as poles the two-circuit armatures require the same nicety of adjustment with respect to the poles as the multiple-circuit windings), the latter are generally preferable, even when the additional cost is taken into consideration.

In the section upon "The Electro-Magnetic Limit of Output," it will be shown that the limitations imposed by the use of practicable electro-magnetic constants restrict the application of two-circuit windings to machines of relatively small output.

Two circuit windings may be multiple as well as single-wound. Thus

in Fig. 74 we have a two-circuit, doubly re-entrant, double winding. An illustration of the convenience of a double winding, in a case where either one of two voltages could be obtained without changing the number of face conductors, may be given by that of a six-pole machine with 104 armature conductors. The winding may be connected as a two-circuit single winding by making the pitch 17 at each end, or as a two-circuit doubly re-entrant double winding, by making the pitch 17 at one end and 19 at the other.

Fig. 74. Two-Circuit, Double Winding

The second would be suitable for the same watt output as the first, but at one-half the voltage and twice the current.

FORMULA FOR TWO-CIRCUIT WINDINGS

The general formula for two-circuit windings is:

 $0 = ny \pm 2m$.

where

C = number of face conductors.

n = number of poles.

y =average pitch.

m = number of windings.

The m windings will consist of a number of independently re-entrant windings, equal to the greatest common factor of y and m. Therefore, where it is desired that the m windings shall combine to form one re-entrant system, it will be necessary that the greatest common factor of y and m be made equal to 1.

Also, when y is an even integer the pitch must be taken alternately, as (y-1) and (y+1), instead of being taken equal to y.

Thus, in the case of the two-circuit single windings we have

$$C = ny \pm 2$$

and in double windings (m being equal to 2) we have

$$C = ny \pm 4$$
.

As a consequence of these and other laws controlling the whole subject of windings, many curious and important relations are found to exist between the number of conductors, poles, slots, pitches, &c., and with regard to re-entrancy and other properties.¹

WINDINGS FOR ROTARY CONVERTERS

As far as relates to their windings, rotary converters consist of continuous-current machines in which, at certain points of the winding, connections are made to collector rings, alternating currents being received or delivered at these points.

The number of sections into which such windings should be subdivided are given in the following Table:

TABLE XVIII.

		「wo-Circuit Single Winding.	MultiCircuit Single Winding.	
		Sections.	Sections per Pair Poles.	
Single-phase rotary converter	 	2	2	
Three-phase rotary converter	 	3	3	
Quarter-phase rotary converter	 	4	4	
Six-phase rotary converter	 •••	6	6	

For multiple windings, the above figures apply to the number of

 $^{^{1}}y - 3$ and y + 3, etc., also give re-entrant systems, but the great difference between the pitches at the two ends would make their use very undesirable except in special cases; thus, for instance, it would be permissible with a very large number of conductors per pole.

sections per winding: thus, a three-phase converter with a two-circuit double winding would have $3 \times 2 = 6$ sections per pair of poles. In the case of the three-phase rotary converter winding shown in Fig. 75, which is a two-circuit single winding, connection should be made from a conductor to one of the collector rings, and the winding should be traced through until one-third of the total face conductors have been traversed. From this point, connection should be made to another collector ring. Tracing through another third, leads to the point from which connection

Fig. 75. Three-Phase Rotary Converter, Two-Circuit Single Winding

should be made to the remaining collector ring, between which and the first collector ring the remaining third of the total number of conductors would be found to lie. It is desirable to select a number of conductors, half of which is a multiple of three, thus giving an equal number of pairs of conductors in each branch. Where a multiple-circuit winding is used, the number of conductors per pair of poles should be twice a multiple of three. A multiple-circuit three-phase rotary converter winding is given in Fig. 76. Further information regarding the properties of rotary converters, and the resultant distribution of current in their windings, is reserved for the section on "Rotary Converters."

ALTERNATING CURRENT WINDINGS

In general, any of the continuous-current armature windings may be employed for alternating current work, but the special considerations leading to the use of alternating currents generally make it necessary to abandon the styles of winding best suited to continuous-current work, and to use windings specially adapted to the conditions of alternating current practice.

Attention should be called to the fact that all the re-entrant (or closed circuit) continuous-current windings must necessarily be two-circuit or

FIG. 76. THREE-PHASE ROTARY CONVERTER, SIX-CIRCUIT WINDING

multiple-circuit windings, while alternating current armatures may, and generally do, from practical considerations, have one-circuit windings, i.e., one circuit per phase. From this it follows that any continuous-current winding may be used for alternating current work, but an alternating current winding cannot generally be used for continuous-current work. In other words, the windings of alternating current armatures are essentially non-re-entrant (or open circuit) windings, with the exception of the ring-connected polyphase windings, which are re-entrant (or closed circuit) windings. These latter are, therefore, the only windings which are applicable to alternating-continuous-current commutating machines.

Usually for single-phase alternators, one slot or coil per pole-piece is used (as shown in Figs. 77 and 78, page 78), and this permits of the most effective disposition of the armature conductors as regards generation of electromotive force. If more slots or coils are used (as in Fig. 79), or, in the case of face windings, if the conductors are more evenly distributed over the face of the armature, the electromotive forces generated in the various conductors are in different phases, and the total electromotive force is less than the algebraic sum of the effective electromotive forces induced in each conductor.

But, on the other hand, the subdivision of the conductors in several slots or angular positions per pole, or, in the case of face windings, their more uniform distribution over the peripheral surface, decreases the inductance of the winding, with its attendant disadvantages. It also utilises more completely the available space, and tends to bring about a better distribution of the necessary heating of core and conductors. Therefore, in cases where the voltage and the corresponding necessary insulation permit, the conductors are sometimes spread out to a greater or less extent from the elementary groups necessary in cases where very high potentials are used. Windings in which such a subdivision is adopted are said to have a multi-coil construction (Fig. 79), as distinguished from the form in which the conductors are assembled in one group per pole-piece (Figs. 77 and 78), which latter are called unicoil windings.

In most multiphase windings, multi-coil construction involves only very slight sacrifice of electromotive force for a given total length of armature conductor, and in good designs is generally adopted to as great an extent as proper space allowance for insulation will permit.

It is desirable to emphasise the following points regarding the relative merits of unicoil and multi-coil construction. With a given number of conductors arranged in a multi-coil winding, the electromotive force at the terminals will be less at no load than would be the case if they had been arranged in a unicoil winding; and the discrepancy will be greater in proportion to the number of coils into which the conductors per pole-piece are subdivided, assuming that the spacing of the groups of conductors is uniform over the entire periphery.

But when the machine is loaded, the current in the armature causes reactions which play an important part in determining—as will be shown

¹ Otherwise often designated "smooth core windings," as opposed to "slot windings."

later—the voltage at the generator terminals; and this may only be maintained constant as the load comes on, by increasing the field excitation, often by a very considerable amount. Now, with a given number of armature conductors, carrying a given current, these reactions are greatest when the armature conductors are concentrated in one group per pole-piece

Figs. 77 to 82. Different Types of Winding

(Figs. 77 and 78); that is, when the unicoil construction is adopted; and they decrease to a certain degree in proportion as the conductors are subdivided into small groups distributed over the entire armature surface, that is, they decrease when the multi-coil construction (Fig. 79) is used. Consequently, there may be little or no gain in voltage at full load by the

use of a unicoil winding over that which would have been obtained with a multi-coil winding of an equal number total of turns, although at no load the difference would be considerable. This matter will be found treated from another standpoint in the section on "Formulæ for Electromotive Force."

Multi-coil design (Fig. 79) also results in a much more equable distribution of the conductors; and, in the case of iron-clad construction, permits of coils of small depth and width, which cannot fail to be much more readily maintained at a low temperature for a given cross-section of conductor; or, if desirable to take advantage of this point in another way, it should be practicable to use a somewhat smaller cross-section of conductor for a given temperature limit. A final advantage of multi-coil construction is that it results in a more uniform reluctance of the magnetic circuit for all positions of the armature; as a consequence of which, hysteresis and eddy current losses are more readily avoided in such designs. A thorough discussion of this matter is given in the section relating to the design of the magnetic circuit.

The unicoil winding of Fig. 77 may often with great advantage be modified in the way shown in Fig. 78, where the sides of the tooth are parallel, enabling the form-wound coil to be readily slipped into place. The sides of the slots are notched for the reception of wedges, which serve to retain the coil in place. Parallel-sided slots become more essential the less the number of poles. For very large numbers of poles, radial slots are practically as good.

Fig. 80 shows a Y-connected unicoil three-phase winding; Fig. 81 differs from it only in having the windings of the three-phases Δ connected.

Fig. 82 gives a portion of a three-phase winding, with fourteen field poles and twenty-one armature coils (three coils per two-pole pieces). This is a representative of a type of windings known as fractional pitch windings, the relative merits of which will be discussed in the section on the design of polyphase generators. The diagrams in Figs. 83 and 84, page 80, give two more examples of fractional pitch—polyphase windings.

INDUCTION MOTOR WINDINGS

The windings of induction motors are not essentially different from many already described. In order to keep the inductance low, the

¹ See also British Patent Specification No. 30,264, 1897,

Figs. 83 to 87. Different Types of Winding

windings both for the rotor and stator are generally distributed in as many coils as there can be found room for on the surface, instead of being concentrated in a few large coils of many turns each. This becomes of especial importance in motors of large capacity; in smaller motors the windings may consist of comparatively few coils. This is the case in Fig. 85, where the stator winding of a $7\frac{1}{2}$ horse-power four-pole three-phase motor is divided up into two slots per pole-piece per phase. The rotor, whose winding is generally made up of few conductors, each of large cross-section, is often most conveniently arranged with but one conductor per slot, as shown in Fig. 85. The connection diagrams of these stator and rotor windings are given in Fig. 86. Fig. 87 gives a useful type of winding for either the stator or the rotor of induction motors, the conductors, represented by radial lines, being, in the case of the stator, generally replaced by coils.

FORMULÆ FOR ELECTROMOTIVE FORCE

In this section, the dynamo will be considered with reference to the electromotive force to be generated in the armature.

CONTINUOUS-CURRENT DYNAMOS

The most convenient formula for obtaining the voltage of continuouscurrent dynamos is:

$V = 4.00 \text{ T N M } 10^{-8}$

in which

V = the voltage generated in the armature.

T = the number of turns in series between the brushes.

N = the number of magnetic cycles per second.

M = the magnetic flux (number of CGS lines) included or excluded by each of the T turns in a magnetic cycle.

V, the voltage, is approximately constant during any period considered, and is the integral of all the voltages successively set up in the different armature coils according to their position in the magnetic field; and since in this case only average voltages are considered, the resultant voltage is independent of any manner in which the magnetic flux may vary through the coils. Therefore we may say that for continuous-current dynamos, the voltage is unaffected by the shape of the magnetic curve, *i.e.*, by the distribution of the magnetic flux.

It will be found that the relative magnitudes of T, N, and M may (for a given voltage) vary within wide limits, their individual magnitudes being controlled by considerations of heating, electro-magnetic reactions, and specific cost and weight.

This formula, if correctly interpreted, is applicable whether the armature be a ring, a drum, or a disc; likewise for two-circuit and multiple-circuit windings, and whether the winding be single, double, triple, &c.

To insure, in all cases, a correct interpretation of the formula, it will be desirable to consider these terms more in detail:

T = turns in series between brushes,

i.e., total turns on armature divided by number of paths through armature from negative to positive brushes.

For a Gramme-ring armature, total turns = number of face conductors.

For a drum armature, total turns = $\frac{1}{2}$ number of face conductors.

With a given number of total turns, the turns in series between brushes depend upon the style of winding, thus:

For two-circuit winding,

If single, two paths, independently of the number of poles. If double, four paths, independently of the number of poles. If triple, six paths, independently of the number of poles, &c.

For multiple-circuit winding,

If single, as many paths as poles.

If double, twice as many paths as poles.

If triple, three times as many paths as poles, &c.

N = the number of magnetic cycles per second $= \frac{R.P.M. \times \text{number of pairs of poles}}{60}.$

It has been customary to confine the use of this term (cycles per second) to alternating current work, but it is desirable to use it also with continuous currents, because much depends upon it. Thus N, the periodicity, determines or limits the core loss and density, tooth density, eddy current loss, and the armature inductance, and, therefore also affects the sparking at the commutator. It is, of course, also necessarily a leading consideration in the design of rotary converters.

Although in practice dynamo speeds are expressed in revolutions per minute, the periodicity N is generally expressed in cycles per second.

M = flux linked successively with each of the T turns.

In the case of the

Gramme-ring machine, $M = \frac{1}{2}$ flux from one pole-piece into armsture. Drum machine, M = total flux from one pole-piece into armsture.

(M is not the flux generated in one pole-piece, but that which, after deducting leakage, finally not only crosses the air-gap, but passes to the roots of the teeth, thus linking itself with the armature turns.)

Armature cores are very often built up as rings for the sake of ventilation, and to avoid the use of unnecessary material; but they may be, and usually are, wound as drums, and should not be confounded with Gramme-wound rings.

The accompanying Table of drum-winding constants affords a convenient means of applying the rules relating to drum windings.

	Class of Winding.		Number of Poles.							
			4.	6.	8.	10.	12.	14.	16.	
Volts per 100 conductors per 100 revolutions per minute and flux equal to one megaline Average volts between commutator segments, per megaline and per 100 revolutions per minute (independent of number of conductors)	Multiple- circuit Two- circuit Multiple- circuit Two- circuit	Double	1.667 1.111 .1333 .0668 .0445 .267	.200 .100 .0667	3.33 2.22 .267 .1333		1.667 .833 .556 10.00 5.00 3.33 .400 .200 .1333 2.40 1.200 .800	1.667 .833 .556 11.67 5.83 3.89 .467 .233 .1555 3.27 1.635 1.09	1.667 .833 .556 13.33 6.67 4.44 .533 .267 .1778 4.27 2.14 1.42	

TABLE XIX.—DRUM-WINDING CONSTANTS

ALTERNATING CURRENT DYNAMOS

For alternating current dynamos it is often convenient to assume that the curve of electromotive force is a sine wave. This is frequently not the case; and, as will presently be seen, it is practicable and often necessary to consider the actual conditions of practice instead of assuming the wave of electromotive force to be a sine curve.

Curve of Electromotive Force Assumed to be a Sine Wave

The formula for the effective no-load voltage at the collector ring is:

$$V = 4.44 \text{ T N M } 10^{-8}$$
.

this being the square root of the mean square value of the sine wave of electromotive force whose maximum value is:

$V = 6.28 \text{ T N M } 10^{-8}.$

In order that these formulæ may be used, the electromotive force wave must be a sine curve, i.e., the magnetic flux must be so distributed as to

give this result. The manner of distribution of the magnetic flux in the gap, necessary to attain this result, is a function of the distribution of the winding over the armature surface.

T = number of turns in series between brushes.

N = number of magnetic cycles per second.

M = number of CGS lines simultaneously linked with the T turns.

The flux will be *simultaneously* linked with the T turns only in the case of unicoil windings, *i.e.*, windings in which the conductors are so grouped that they are all similarly situated in respect to the magnetic flux; in other words, they are all in the same phase.¹

The effective voltage at no load, generated by a given number of turns, will be a maximum when that is the case; and if the voltage for such a case be represented by unity, then the same number of conductors arranged in "two-coil," "three-coil," &c., windings will, with the same values for T, N, M, generate (at no load) voltages of the relative values, .707, .667, &c.; until, when we come to a winding in which the conductors are distributed over the entire surface, as in ordinary continuous-current dynamos, the relative value of the alternating current voltage at no load, as compared with that of the same number of turns arranged in a unicoil winding, will

be .637 (which
$$=\frac{2}{\pi}$$
).

Tabulating these results we have:

TABLE XX

Correction Factor for Voltage of Distributed Winding.

Unicoil winding ... V = 1.000

Two-coil winding ... V = .707 × unicoil winding.

Three-coil winding ... $V = .667 \times ...$, , , Four-coil winding ... $V = .654 \times ...$, , ,

Many-coil winding ... $V = .637 \times ...$

The terms uni-, two-, three-coil, &c., in the above Table indicate whether the conductors are arranged in one, two, three, &c., equally-spaced groups per pole-piece. The conditions are equivalent to the component electromotive forces generated in each group; being in one, two, three, &c., different phases, irrespective of the number of resultant windings into which they are combined.

¹ Fig. 88, on page 88 will be of assistance in understanding the nomenclature employed in designating these windings.

The values given in the Table may be easily deduced by simple vector diagrams.

Instead of using such "correction factors," the following values may be substituted for K in the formula $V = K T N M 10^{-8}$:

IABUE AAI											
			Values for K	in Formula.							
			For Effective Voltage.	For Maximum Voltage.							
Unicoil winding			4.44	6.28							
Two-coil ,,			3.13	4.44							
Three-coil ,,			2.96	4.19							
Four-coil ,,	•••		2.90	4.11							
Many-coil "	•••		2.83	4.00							

TABLE XXI

(In all the preceding cases, as they apply only to sine wave curves, the maximum value will be 1.414 times the effective value.)

VALUES OF K FOR VARIOUS WAVES OF ELECTROMOTIVE FORCE AND OF MAGNETIC FLUX DISTRIBUTION IN GAP

The relative width and arrangement of pole arc and armature coil exert a great influence upon the magnitude of the effective (and maximum) voltage for given values of T, N, M, because of the different shapes of the waves of gap distribution and induced electromotive force. This is shown by Tables XXII. and XXIII., where are given the values of K in the formula:

$V = K T N M 10^{-8},$

it being assumed that the magnetic flux M emanates uniformly from the pole face, and traverses the gap along lines normal to the pole face. This assumption being usually far from the facts, the following results must be considered more in the light of exhibiting the tendency of various relative widths of pole face and the various arrangements of armature coil, rather than as giving the actual results which would be observed in practice. The results are, nevertheless, of much practical value, provided it is clearly kept in mind that they will be modified to the extent by which the flux spreads out in crossing the gap from pole face to armature face.

The following Table applies to cases where the various components of the total winding are distributed equi-distantly over the armature.

Table XXII.—Values for K In the Formula $V = KTNM 10^{-8}$, where V = Effective Voltage

W:- 1:		Pole Arc (expressed in per Cent. of Pitch).									
Winding.	10.	20.	30.	40.	50.	60.	70.	80.	90.	100.	
Unicoil	12.6	8.96	7.30	6.32	5.66	5.17	4.78	4.46	4.21	4.00	
Two-coil	8.96	6.32	5.17	4.46	4.00	3.64	3.40	3.12	3.00	2.83	
Three-coil	7.30	5.17	4.21	3.84	3.55	3.35	3.08	2.90	2.76	2.55	
Four-coil	6.32	4.46	4.00	3.72	3.45	3.24	3.02	2.83	2.63	2.45	
Many-coil	3.93	3.79	3.63	3.44	3.27	3.08	2.88	2.70	2.52	2.32	

When the coils are gathered in groups of a greater or less width, the values of K should be taken from Table XXIII. given below.

A better understanding of the nomenclature employed in these two Tables will be obtained by an examination of the diagrams in Fig. 88.

Probably the method used in obtaining these values (simple graphical plotting) is substantially that used by Kapp in 1889. The six values he gives check the corresponding ones in Tables XXII and XXIII.

Table XXIII.—Values of K In the Formula $V = KTNM 10^{-8}$, where V = Effective Voltage

Spread of Armature Coil in per Cent. of Pitch.	Pole Arc (expressed in per Cent. of Pitch).											
	10.	20.	30.	40.	50.	60.	70.	80.	90.	100.		
0	12.60	8.96	7.30	6.32	5.66	5.17	4.78	4.46	4.21	4.00		
10	9.80	8.20	6.85	6.00	5.50	5.05	4.74	4.42	4.15	3.88		
2 0	8.20	7.40	6.55	5.75	5.25	4.90	4.60	4.35	4.05	3.75		
30	7.10	6.55	6.00	5.45	5.05	4.75	4.45	4.20	3.90	3.60		
40	6.20	5.80	5.45	5.15	4.85	4.55	4.30	4.00	3.72	3.43		
50	5.60	5.32	5.10	4.85	4.60	4.35	4.10	3.85	3.60	3.27		
60	5.08	4.90	4.71	4.55	4.39	4.15	3.95	3.68	3.40	3.10		
70	4.72	4.60	4.44	4.30	4.18	3.95	3.75	3.45	3.20	2.90		
80	4.44	4.30	4.15	4.00	3.85	3.66	3.50	3.25	3.00	2.78		
90	4.18	4.00	3.90	3.75	3.60	3.40	3.20	3.00	2.78	2.58		
100	3.93	3.79	3.63	3.44	3.27	3.08	2.88	2.70	2.52	2.39		

It thus appears that by merely varying the spread of the pole arc and the armature coil, there may be obtained for given values of T, N, and M, values of the effective electromotive force, varying from a little more than half the corresponding value for a sine wave, up to several times that value (in fact, with an infinitely small spread of pole arc, provided the flux could be maintained, an infinitely large value of K would be obtained). The maximum value increases at the same time, in a still greater proportion.

ROTARY CONVERTERS

In rotary converters we have an ordinary distributed continuous-current-winding, supplying continuous-current voltage at the commutator, and alternating-current voltage at the collector-rings. The same winding, therefore, serves both for continuous-current voltage and for alternating voltage.

Suppose that such a distributed winding, with given values of T, N, and M, generates a continuous-current voltage V at the commutator. Imagine superposed on the same armature a winding, with the same number of turns T in series, but with these turns concentrated in a unicoil winding. For the same speed and flux, and assuming a sine wave curve of

Fig. 88. DIFFERENT Types of Winding

electromotive force, this imaginary superposed winding would supply 1.11 V, $\left(=\frac{\pi}{2\sqrt{2}}V\right)$ effective volts to the collector rings. But, re-arranging this same number of turns in a "many-coil" (distributed) winding, would, for the same speed and flux, reduce the collector ring voltage to

$$.637 \times 1.11 \times V = .707 \times V$$

Therefore, in a distributed winding, with T turns in series, there will be obtained a continuous-current voltage V, and an alternating-current voltage .707 V, on the assumption of a sine wave curve of electromotive force.

But often the electromotive force curve is not a sine wave, and the value of the voltage becomes a function of the pole arc. Thus, examining the case of a single or quarter-phase rotary converter by the aid of the Tables for K, the results given in Table XXIV. are obtained.

TABLE XXIV .- SINGLE AND QUARTER-PHASE ROTARY CONVERTERS

Spread of Pole Arc in per Cent. of Pitch.	K in V=KTNM 10 ⁻⁸ for Collector Ring Voltage.	K for Continuous-Current Voltage.	Ratio of Alternating Voltage between Collector Rings to Continuous Current Voltage at Commutator.
10	3.93	4.00	.982
20	3.79	4.00	.947
30	3.63	4.00	.908
40	3.44	4.00	.860
50	3.27	4.00	.816
60	3.08	4.00	.770
70	2.88	4.00	.720
80	2.70	4.00	.675
90	2.52	4.00	.630
100	2.32	4.00	.580

THREE-PHASE ROTARY CONVERTERS

An examination of three-phase rotary converters will show that the conductors belonging to the three phases have relative positions on the armature periphery, which may be represented thus:

Consequently, it appears that the coils of one phase have a spread equal to 66.7 per cent. of the pitch. Observing also that each three-phase alternating branch has two-thirds as many turns in series between collector rings as has each branch, considered with reference to the commutator brushes, we obtain the following Table of values:

TABLE XXV.—THREE-PHASE ROTARY CONVERTERS

Spread of Pole Arc in per Cent. of Pitch.	K in V=KTNM 10 ⁻⁸ for Collector-Ring Voltage.	K for Continuous-Current Voltage.	Ratio of Alternating Voltage between Collector Rings to Continuous- Current Voltage at Commutator.
10	4.89	4.00	.815
20	4.70	4.00	.785
3 0	4.53	4.00	.755
40	4.39	4.00	.732
50	4.25	4.00	.710
60	4.02	4.00	.670
70	3.82	4.00	.636
80	3.52	4.00	.585
90	3.26	4.00	.544
100	2.96	4.00	.495

The last column, giving the ratio of alternating-current voltage between collector rings, to continuous-current voltage at commutator, is the one of chief interest. This ratio varies from .495, when the pole arc is equal to the pitch, up to .815 with a 10 per cent. pole arc.

These results only apply to rotary converters when independently driven, unloaded, from some mechanical source, or when driven unloaded as a continuous-current motor. That is to say, the electromotive forces referred to are counter-electromotive forces. When driven synchronously, the ratio of the terminal voltages may be made to vary through a very wide range by varying the conditions of lag and lead of the current in

Fig. 89. Rotary Converter Characteristic Curve

the armature. In Fig. 89 is given a curve showing through what a very extended range this ratio may be varied, according to the conditions of load and excitation.

Converter,		Proportion that T is of Turns on Arm.						
	2-Circuit Winding.	Multiple-Circuit Winding.						
	1/2	$\frac{1}{2 \times \text{number of pairs of poles}}$						
	12	$\frac{1}{2 \times \text{number of pairs of poles}}$						
	1 3	$\frac{1}{3 \times \text{number of pairs of poles}}$						
		2-Circuit Winding						

In rotary converters, Table XXVI. will be of assistance in determining the value of T (number of turns in series between collector rings).

Polyphase Machines.—In considering polyphase machines in general, it may be said that the most convenient way of considering the relations between V, T, N, and M, is to make the calculations for one phase. Thus in the case of a three-phase machine, one would calculate the volts per

phase, by using as T, in the formula, the turns in series per phase. Then if the winding is "delta" connected, this will give also the volts between collector rings (since there is only the winding of one phase lying between each pair of collector rings). If, on the other hand, the winding is Y connected, the volts between collector rings will be $\sqrt{3}$, (1.732) times the volts per phase. Thus the calculation should be carried out with reference to one phase, the results of interconnecting the windings of the different phases being subsequently considered.

ELECTROMOTIVE FORCE AND FLUX IN TRANSFORMERS

In the case of transformers, the relation between voltage and flux is dependent upon the wave form of the applied electromotive force, and determinations of these quantities involve the use of the term "form factor," proposed by Fleming.¹ He defines the form factor as the ratio of the square root of the mean of the squares of the equi-spaced ordinates of a curve, to the true mean value of the equi-spaced ordinates. The mean square value he denotes by the letters R.M.S. (root mean square), and the mean value by the letters T.M. (true mean).

Form factor =
$$\frac{R.M.S}{T.M.}$$
 = f

In the case of a rectangular wave, the R.M.S. value, the T.M. value and the maximum value are equal, and the form factor becomes equal to 1. In this case the form factor has the minimum value.

Peaked waves have high form factors. Denoting the form factor by f, the relation between voltage, turns, periodicity, and flux may be expressed by the equation

$$V = 4.00 f T N M 10^{-8}$$
.

The extent of the dependence of the form factor upon the proportions and winding of the generator may be obtained from Tables XXVII. and XXVIII.; the former applies to equi-distantly distributed windings, and the latter to windings in which the face conductors are gathered in groups more or less spread over the surface of the armature, these groups alternating with unwound spaces.

Winding	<u>'</u>		Pole Arc (Expressed in Per Cent. of Pitch).										
	•	10	20	30	40	50	60	70	80	90	100		
Uni-coil		3.16	2.24	1.82	1.58	1.41	1.29	1.19	1.12	1.06	1.00		
Гwo-coil		2.24	1.58	1.29	1.12	1.00	1.10	1.18	1.26	1.34	1.41		
Three-coil	•••	1.82	1.29	1.06	1.08	1.15	1.21	1.22	1.19	1.17	1.18		
Four-coil		1.58	1.12	1.07	1.13	1.16	1.14	1.11	1.12	1.17	1.22		
Many-coil	•••	1.02	1.04	1.06	1.08	1.09	1.11	1.12	1.14	1.15	1.1		

TABLE XXVII.—VALUES FOR FORM FACTOR (f)

¹ Alternate Current Transformers, vol. i., second edition, page 583.

TABLE XXVIII.—VALUES FOR FORM FACTOR (f)

Spread of Armature Coil in per Cent. of Pitch.	Pole Arc (Expressed in Per Cent. of Pitch.)											
	10	20	30	40	50	60	70	80	90	100		
0	3.16	2.24	1,82	1.58	1.41	1.29	1.19	1.12	1.06	1.00		
10	2.61	2.05	1.73	1.53	1.37	1.26	1.17	1.11	1.05	1.02		
20	2.05	1.83	1.59	1.48	1.31	1.23	1.13	1.08	1.04	1.04		
30	1.73	1.59	1.50	1.40	1.25	1.19	1.12	1.07	1.06	1.06		
40	1.53	1.48	1.40	1.30	1.21	1.16	1.12	1.09	1.08	1.08		
50	1.37	1.31	1.25	1.21	1.17	1.13	1.12	1.09	1.09	1.09		
60	1.26	1.23	1.19	1.16	1.13	1.13	1.12	1.11	1.11	1.11		
70	1.17	1.13	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.15		
80	1.11	1.08	1.07	1.09	1.09	1.11	1.12	1.13	1.14	1.14		
90	1.05	1.04	1.06	1.08	1.09	1.11	1.12	1.14	1.15	1.18		
100	1.02	1.04	1.06	1.08	1.09	1.11	1.12	1.14	1.15	1.1		

From the formula V = 4.00 f T N M 10^{-8} , it appears that for a given effective voltage V, the flux M may be low in proportion as the form factor f is high. This is a distinct advantage in the case of transformers, since their core loss is dependent upon the density of the flux circulating in their iron cores. If a given voltage can be obtained with a small flux, the transformer can be operated at a higher all-day efficiency. Commercial generators of different types differ often by 25 per cent. and more, as regards the form factor of their electromotive force waves. The predetermination of the form factor thus becomes a matter of considerable interest in the design of alternating current generators.

While, however, peaked waves insure low core losses for transformers on the circuits, they have the disadvantage that the maximum electromotive force is more in excess of the effective electromotive force than for the less peaked waves. It is, therefore, generally undesirable to so proportion a generator as to obtain an excessively peaked wave.

The curves of Figs. 90 and 91, page 91, correspond to values given in the Tables, and show the extent of the variations obtainable.

THERMAL LIMIT OF OUTPUT

Viewed from a thermal standpoint, the maximum output of an electric machine is determined by the maximum increase of temperature consistent with good working. The limiting increase of temperature may be determined with respect to durability of the insulating materials used, the efficiency, and the regulation. The increase of temperature is commonly expressed by the ratio of the heat generated in watts, to the radiating surface in square inches, i.e., watts per square inch radiating surface. increase of temperature of any surface above the atmosphere, and therefore, also, the permissible expenditure of energy per square inch radiating surface, varies according to the nature of the surface, its speed, location, For static surfaces, such as the surfaces of field magnets, the increase of temperature may be taken to be about 80 deg. Cent. per watt per square inch, as measured by a thermometer placed against the cylindrical For cylindrical surfaces of the same nature, but rotated with surface. a peripheral speed of about 3,000 ft. per minute, the increase of temperature per watt per square inch may be taken to be between 30 deg. Cent. and The increase of temperature per watt per square inch 40 deg. Cent. increases as the surface speed is diminished. Thus for smooth-core armatures the increase of temperature is about 25 per cent. greater at a peripheral velocity of 2,000 ft. than at a peripheral velocity of 3,000 ft. per minute. For ventilated armatures of ordinary design, i.e., armatures with interstices, the increase of temperature is between 15 deg. Cent. and 20 deg. Cent. per watt per square inch for a peripheral speed of 3,000 ft. per minute, and between 10 deg. Cent. and 12 deg. Cent. for a peripheral speed of 6,500 ft. per minute. The increase of temperature per watt per square inch varies somewhat with the temperature of the surface, but remains fairly constant for the temperatures used in practice.

In transformers submerged in oil in iron cases, the rise in temperature, as measured by the increased resistance of the windings, is about 35 deg. Cent. per $\frac{1}{10}$ watt per square inch of radiating surface of

¹ The increase of temperature, as determined from resistance measurements, will generally be from 50 per cent. to 100 per cent. in excess of these values. This is clearly shown in the various tests described in the following pages.

the iron case, at the end of ten hours' run. Before this time has elapsed, small transformers will already have reached their maximum temperature, but transformers of 25 kilowatts capacity and larger may continue increasing in temperature for a much longer period. However, transformers are seldom called upon to carry their full load for a longer period than 10 hours. The same transformers, without oil, will have 30 per cent. greater rise.

Large transformers are generally artificially cooled by forced circulation of oil, air, or water, the latter being circulated in pipes coiled about the transformers; and sometimes in the low potential coils of very large transformers the conductors are made tubular, the cooling medium being forced through them. With artificially-cooled transformers, by using sufficient power for forcing the circulation, the rise of temperature may be kept down to almost any value desired. But, of course, the power applied to this purpose lowers the efficiency of the equipment.

Although constants such as those given above, are very useful for obtaining a general idea of the amount of the increase of temperature, they should be used with discretion, and it should be well understood that the rise of temperature is greatly modified by various circumstances, such as:

Field-magnet coils—depth of winding; accessibility of air to surface of spools; force with which air is driven against spool surfaces; shape and extent of magnet cores on which coils are located; season, latitude, nature of location, *i.e.*, whether near boiler-room or in some unventilated corner, or in a large well-ventilated station, or under a car, &c.

Armature windings and cores—similar variable factors, particularly method and degree of ventilation; shape and details of spider; centrifugal force with which air is urged through ventilating ducts; degree of freedom from throttling in ducts; number of ducts; freedom of escape of air from periphery; and peripheral speed. Thus it will be readily understood that the values for rise of temperature per watt per square inch have to be determined from a number of conditions.

Small machines quickly reach the maximum temperature; large machines continue to rise in temperature for many hours. Hence the length of a heat run should be decided upon with reference to the nature of the apparatus and the use to which it is to be put. The heat should be distributed in proportion to the thermal emissivity of each part, with due regard to the permissible rise of temperature. Heating is of positive advantage, in so far as it is limited to temperatures that will keep the

insulation thoroughly dry, and thus tend to preserve it. But it is disadvantageous as regards preservation of insulation, in so far as it overheats and deteriorates it. The permissible temperature is thus dependent upon the nature of the insulation. In railway motors, the field conductors are often insulated with an asbestos covering, as the location of the motors does not permit of their being sufficiently large to run cool under heavy loads.

MAGNETS

The radiating surface of magnets of ordinary design, *i.e.*, those in which the diameter of the magnet coil approximately equals the length, is ordinarily taken to be the cylindrical surface, no account being taken of the ends, which in general are not very efficient for the radiation of heat; when, however, the magnets are very short, and the surface of the ends large, they should be considered.

ARMATURES

As radiating surface of the armature, one should, strictly speaking, take the sum of the bounding surfaces of all those parts which are directly exposed to the air, and in which heat is generated.

Allowance should be made for the different linear velocities of different portions of the armature windings. Thus in the ordinary Siemens type of armature the radiation per square inch, or thermal emissivity, at the ends, averages only about two-thirds that at the cylindrical surface, the difference being due to the difference in surface speed. In the case of armatures of very large diameter, the thermal emissivity at the ends becomes approximately equal to that of the cylindrical portion when the armatures are not very long. When the armatures have a length approaching half the diameter of the armature, the thermal emissivity at the ends may considerably exceed that midway between the ends of the armatures, unless special means for ventilating are resorted to.

In the "barrel" type of winding, now largely used, the end connections are approximately in the same cylindrical surface as the peripheral conductors, being supported upon a cylindrical extension from the spider. Here the entire armature winding revolves at the same peripheral speed, and is in the best position as regards ventilation.

The radiation of heat from an armature is not affected greatly by varying the surface of the pole-pieces, within the limits attained in ordinary

practice. If, however, the magnets are rectangular in section, and placed closely together, the radiation of heat from the armature may be considerably restricted. Further, unless the magnets are so placed with respect to each other that the heat of each is carried off independently of that of the others, special means for ventilating will have to be resorted to, and the values given above will not hold. Such constructions as the last two mentioned are not recommended for general practice.

Example of Estimation of Temperature Rise

```
Diameter of a certain ironclad armature
                                                                     = 35 in.
Length, over winding ... ...
Speed
            • • •
                                                                     = 360 revs. per min.
Internal diameter ...
                                    ...
                                            ...
35 \times \pi \times 25 ...
                                                                     = 2750. sq. in.
18 \times \pi \times 25
                          ...
                                                                     = 1420.
\frac{\pi}{4} \times (25^2 - 18^2) \times 2
                     Total radiating surface
                                                                     = 4640.
           Peripheral speed = \pi \times \frac{35}{12} \times 360. = 3300. ft. per min.
```

If well ventilated by internal ducts, it should be very safe to take 22 deg. Cent. rise of temperature per watt per square inch.

									Watts.
Core loss	•••	•••	•••	•••		•••	•••		5000
Armature C ²	\mathbf{R}	•••	•••	•••	•••	•••	•••	•••	2600
•			l loss	•••	•••	•••	•••		7600
		·· 46	$\frac{300}{340} = 1$	1.64 wa	tts per	square	inch.		

.: 1.64 × 22 = 36 deg. Cent. rise of temperature at end of 10 hours run at full load.

INTERNAL AND SURFACE TEMPERATURE OF COILS

The importance of determining the internal temperature of coils by resistance measurements, instead of relying upon the indications of a thermometer placed upon the surface, is well shown by the results of the following test. An experimental field-magnet coil was wound up with 2646 total turns of No. 21 B.W.G., the winding consisting in 38 layers, from every pair of which separate leads were brought out, to enable the temperature of all parts of the coil to be determined by resistance measurements.

Two distinct tests were made, one with the armature at rest, and the

other with the armature running at a peripheral speed of 2,000 ft. per minute. Each test lasted two hours, the current through the coil being maintained constant at one ampere throughout both tests. Every ten minutes a reading was taken on a voltmeter across each pair of layers, thus giving a record of the change in resistance as the test progressed. A dimensioned sketch of the coil, pole-piece, and armature is given in Fig. 92, and the results of the tests are plotted in the curves of Figs. 93 to 96.

For the armature at rest, Fig. 93 shows the ultimate rise of temperature in the different layers plotted against the positions of those layers; and Fig. 94 shows the rise of temperature in the innermost layers, the middle layers, and the outside layers, plotted against time.

Fig. 98. THERMAL TEST OF A FIELD SPOOL

The curves show well that without the aid of the circulation of air set up by the rotation of the armature, the metal of the field-magnet core is as effective in carrying away the heat, as is the air which bathes the surface of the spool. For the armature running at a peripheral speed of 2,000 revolutions per minute, the results are plotted in the curves of Figs. 95 and 96. The latter figure shows that with the circulation of air set up by the rotation of the armature, the outside of the coil is maintained much cooler than is the inner surface adjoining the field-magnet core. But the most significant conclusion to be drawn from the tests is that shown by Figs. 93 and 95, namely, that the temperature of the interior layer of a coil may considerably exceed that corresponding to the average rise of resistance of the total winding.

In Figs. 97 and 98 are given respectively a sketch of the field-magnet and spool of a machine, and the result of a heat test taken upon it, in

which the average temperature of the field spools was determined from time to time, by means of resistance measurements of the field winding.

The influence of the peripheral speed of the armature upon the constants for determining the temperature increase of field spools, as well as the effect of covering the wire with a final serving of protecting cord, are clearly shown by the results of the following test made upon the

Fig. 99. Sketch of Machine Tested

field spools of a continuous-current generator of 35 kilowatts rated output.* The tests were made with a wide range of field excitation, and the temperatures were determined both by thermometric and resistance measurements. The results afford a check upon the more general values given on page 94 for predetermining the temperature rise of spools. In Fig. 99 is given a dimensioned sketch of the machine, and in Figs. 100 to 111 are curves of results of the various heat runs. The curves of Fig. 112 summarise the average results obtained (see pages 102 to 105).

^{*} See "Rise of Temperature in Field Coils of Dynamos," by E. Brown (Journal, Institution of Electrical Engineers, vol. xxx., pages 1159 to 1199, August, 1901); and "Report on Temperature Experiments, carried out at the National Physical Laboratory," by E. H. Rayner; paper read by Dr. Glazebrook before the Institution of Electrical Engineers, March 9th, 1905. See also the very interesting paper, "Temperature Curves and the Rating of Electrical Machinery," read by R. Goldschmidt before the Institution of Electrical Engineers, March 9th, 1905.

Out of the four field spools, two only were under observation, i.e., the top two. On one of these two spools the cording and insulation were taken off, and the winding exposed directly to the air; the other spools remained corded. For the purpose of measuring the outside temperature of the spools, thermometers were placed, for the one spool on the outside of the winding and for the other spool on the outside of the cording; the third temperature measurement was determined from the resistance increase of the four spools in series. Thus, three temperature measurements were made:—

1st. On the outside of the uncorded spool, by thermometer.

2nd. ,, ,, corded ,, ,,

3rd. Increase of temperature of the four spools by resistance.

The four spools were connected in series, the amperes input being kept constant, and the volts drop across the four spools noted.

In the first case, the armature remained stationary, and results were obtained with .5, .75 and 1 ampere. These results are set forth in the curves of Figs. 100 to 105.

The armature was then revolved at a peripheral speed of 2000 ft. per minute, and temperature rises observed at .75, 1 and 1.25 amperes. In this case, a different procedure was adopted. On the temperature reaching a constant value with .75 ampere, the test was carried on, the amperes being raised to 1, and again, after reaching a constant value, to 1.25 amperes. At this point the temperature reached a value above which it was not advisable to go. Results of this test are set forth in the curves of Figs. 106 and 107.

Two further tests were carried out on similar lines, at peripheral speeds of 3500 ft. and 4800 ft. per minute, results of which are set forth in the curves of Figs. 108 to 111.

From the curves of Fig. 112, in which the average results of all these tests are summarised, it will be noted that a considerable increase of speed above 2000 ft. per minute does not, for this machine, reduce the temperature rise to any very great extent.

On each of the curves a table is given, setting forth the working data, and the constants derived from the tests. It will be noted that the results are figured from the assumption that the watts dissipated remain constant, whereas in reality they vary as the temperature alters; but as this variation would complicate the calculations, these are based on the resistance at 20 deg. Cent., namely, 108 ohms per spool.

Figs. 100 to 103. THERMAL TEST CURVES

Figs. 104 to 107. THERMAL TEST CURVES

BADOH

ζ

u

W . . 5

LOUGHVENCHING

AN SCA OT GESIAN

0.76 Amp.

RISE OF

2

N TIME IN HOURS.

INFLUENCE OF PERIPHERAL SPEED ON TEMPERATURE RISE

The peripheral radiating surfaces of the two spools differ, owing to the cording having been removed in the one case; therefore, in figuring on the thermometer measurements of the corded and uncorded spools, their respective radiating surfaces are used; but in the case of the measurements of temperature rise by resistance, a mean peripheral radiating surface is taken.

It should furthermore be noted that the higher the peripheral speed of the armature, the less is the difference between the temperature rise observed from thermometric readings on the surfaces of the corded and the uncorded spools.

The armature had two ventilating ducts, each one half-inch wide, through which air was thrown out centrifugally, after entering through the open end of the armature spider.

HEAT LOSSES—C2 R DUE TO USEFUL CURRENTS IN THE CONDUCTORS

Heat generated, due to the current and resistance, is calculated directly from these two factors. The resistances should be taken to correspond to the temperature the conductors attain in practice. To determine this temperature, resistance measurements are much more reliable than thermometric measurements. For standard sizes of wire,

the resistance is most conveniently determined by ascertaining from Tables the ohms per 1000 ft. of the size of wire in question. Then the length of wire in the magnet spool or armature, as the case may be, should be computed from the number of turns and the mean length of one turn. The total resistance can then be obtained.

The Appendix contains Tables of this description, which give the properties of commercial copper wire for three standard gauges, namely, B. and S. (American); S.W.G. (Board of Trade); and B.W.G. (Birmingham Wire Gauge). They have been arranged with especial reference to convenience in designing electrical apparatus, but they do not differ greatly from the Tables arranged for exterior wiring and other purposes. They serve as a basis for thermal calculations, and are also useful in the calculation of spool windings, as considered in the section on the design of the magnetic circuit.

Example.—A certain transformer has, in the primary, 1200 turns of No. 7 B. and S. Mean length of one turn = 28 in. = 2.33 ft. Total length = $2.33 \times 1200 = 2800$ ft. No. 7 B. and S. has (see Table in Appendix), at 20 deg. Cent., .497 ohms per 1000 ft. Therefore, the primary resistance at 20 deg. Cent. = $2.8 \times .497 = 1.40$ ohms. Suppose full load current = 13 amperes. Then the primary $C^2 R = 169 \times 1.40 = 237$ watts.

Specific resistance of commercial copper at 0 deg. Cent.

- =.00000160 ohms per cubic centimetre.
- =.00000063 ohms per cubic inch.

i.e., between opposite faces of a cubical unit. The above constants are of use when other than standard sizes of wire are employed. In connection with them it should be kept in mind that the resistance of copper changes about .39 per cent. per deg. Cent. Where more convenient, and where greater accuracy is desired, use may be made of the following factors, by which the resistance at 0 deg. Cent. should be multiplied in order to obtain the resistance at the temperature employed:—

TABLE XXIX 1.000 20 ... 1.080 40 ... 1.160 60 ... 1.250 80 1.337 ... 100 ... 1.422 ...

Example.—An armature has a conductor .60 in. by .30 in. = .180 square inches in cross-section. It has an eight-circuit double winding. Total turns = 800. Mean length of one turn = 60 in. Turns in series between brushes = $\frac{800}{8 \times 2}$ = 50. Therefore, length of winding between positive and negative brushes = 50×60 = 3000 in. Cross-section = $8 \times 2 \times .18 = 2.88$ square inches. Therefore, resistance at 0 deg. Cent. = $\frac{3000 \times .00000063}{2.88}$ = .000655 ohms. Suppose the full - load current of 4000 amperes heats the armature conductors to 60 deg. Cent. Then the armature C^2 R at 60 deg. Cent. = $4000^2 \times .000655 \times 1.25 = 13,100$ watts.

The Tables of properties of commercial copper wire are supplemented by a Table in the Appendix, giving the physical and electrical properties of various metals and alloys. This Table, used in connection with the others, permits of readily determining resistances, weights, dimensions, &c. of various conducting materials.

FOUCAULT CURRENTS

In addition, to the C² R losses in the conductors, there are losses due to parasitic currents, often termed eddy or Foucault currents, when solid conductors, if stationary, are exposed to the influence of varying induction from magnetic fields; and whenever they are moved through constant magnetic fields, except in cases where the solid conductors are shielded from these magnetic influences.

In armatures with smooth-core construction, the conductors are not screened from the magnetic field, consequently there may be considerable loss in the conductors from Foucault currents. This loss has been found to vary greatly, according to the distribution and density of magnetism in the air gap, and cannot be accurately predetermined.

In practice this loss is kept as small as possible; in the case of bar windings, by laminating the bars and insulating them from each other; or in the case of wire windings, by using conductors $\mathbf{1}_{6}^{1}$ -in. or less in diameter, and twisting these into a cable. The amount by which the Foucault current loss can be lessened in this last method is forcibly illustrated by the following example: The winding of a certain armature consisted of four wires in parallel, each 0.165 in. in diameter. These conductors were replaced by nineteen strands of cable having the same cross-section

of copper, and the total loss of the armature was diminished by one-third.

In iron-clad dynamos, the conductors are more or less protected from eddy currents by being embedded in slots. This exemption from such losses depends upon the extent to which the teeth overhang, and upon the density in the teeth; very high density throwing part of the lines through the slots, instead of permitting them all to be transmitted along the teeth. Even where the tooth density is low, stranded conductors must sometimes be used in iron-clad armatures. As an instance may be cited the case of an alternating current armature, with a slot of the proportions shown in Fig. 113. Here solid conductors of the proportions shown were at first used, but the cross-flux set up by the armature current was perpendicular to the plane of the conductors, and excessive heating resulted from the eddy currents set up in the solid conductors. Stranded conductors should be used in such a case.

Stranded conductors are open to the objections of increased first cost, and of having from 15 per cent. to 20 per cent. higher resistance for given outside dimensions. This increased resistance is not entirely due to the lesser total cross-section of the component conductors, but also partly to their increased length, caused by the twist given them in originally making up the conductor. The stranded conductor, constructed, in the first place, with a circular cross-section, is pressed to the required rectangular section, in a press operated by hydraulic pressure. No precautions, such as oxidising, or otherwise coating the surface of the component wires, are necessary. The mere contact resistance suffices to break up the cross-currents.

Closely related to the losses just described are the eddy-current losses in all solid metal parts subjected to inductive influences. This occurs chiefly in pole-faces; but if the proportions of the armature are such that, in passing the pole-pieces, the reluctance of the magnetic circuit is much varied, eddy currents will be found throughout all solid parts of the entire magnetic circuit. Consequently, in such cases, not only the pole-pieces but the entire magnetic yoke should be laminated. Such a construction has been used in alternators, with the result that, especially in the case of uni-slot armatures, a very marked improvement has been made in efficiency and in heating.

In continuous-current machines, the surface of the armature is broken up by a large number of small slots, and the disturbance is mainly local, the reluctance of the magnetic circuit, as a whole, remaining unchanged. Nevertheless, in such cases, the loss in the neighbourhood of the pole-face may be large, and will be found to depend chiefly upon the depth of the air gap as related to the width of the slot opening. Instances have occurred in small machines, where increasing the depth of the air gap from $\frac{1}{6}$ in. to $\frac{1}{4}$ in. has greatly modified the magnitude of such pole-face losses. Straight-sided armature slots give, of course, much greater losses in the pole-face than slots with overhanging projections; while if the slots are completely closed over, the loss is practically eliminated.

Pole-faces frequently consist of a laminated structure, cast in, or sometimes bolted on, to the upper portion of the magnet core. Another

Fig. 113. Armature Slot of a Large Alternator

type of construction consists in laminating the entire magnet core, and casting it into the solid yoke.

In the neighbourhood of conductors and coils which are the seat of high magnetomotive forces, solid supports, shields, and the like, should be avoided, unless of high resistance, non-magnetic material, such as manganese steel. For this reason, spool flanges could also well be made of manganese steel.

Eddy-current losses in the sheets of armature cores are dependent upon the square of the density of the flux, the square of the periodicity, and the square of the thickness of the sheets. Also, upon the care with which the laminations are insulated from each other. It is, therefore, important to avoid milling and filing in slots, as this tends to destroy the insulation, and makes a more or less continuous conductor parallel to the copper conductors. Consequently, the eddy-current loss is quite largely dependent upon the relative magnitudes of flux, number of turns, and length of armature parallel to the shaft, as upon these quantities depends the voltage per unit of length tending to set up parasitic currents in the armature core. Owing to the less amount of machine work, smooth-core armatures are much more apt to be free from parasitic currents in the core. The more such losses from eddy currents are anticipated from the nature of the design, the greater should be the safety factor applied to the value of the core loss as derived from the curves of Figs. 39 and 40 (see page 37).

Armature punchings should, when possible, be assembled without any milling or filing. Cases are on record where the milling of armature slots

Fig. 114. Core Loss Curves

has increased the core loss to three times its original value, the metal removed by milling being merely a thin layer from the sides of the slot. Even light filing increases the core loss considerably. Most of the increase, in both these cases, is due to the burring of the edges making a more or less continuous conductor, although there is also a slight increase due to injuring the quality of the iron by mechanical shock.

In a modern railway motor, this matter was studied by testing the core loss at various stages of the process of manufacture. The curves of Fig. 114 represent the average results from tests of two armatures.

```
Curve 1 was taken after assembling the punchings.
,, 2 ,, teeth were wedged straight.
,, 3 ,, slots were slightly filed.
,, 4 ,, winding.
```

The difference between curves 3 and 4 gives the eddy-current loss in the conductors. The particular shape of the curves possesses no especial significance in connection with the object of the investigation, and is merely due to the armature having been driven at the various speeds corresponding to the conditions of practice for the corresponding values of the current.

Hysteresis Loss in Cores

The hysteresis loss in armature cores may be estimated directly from curve A of Fig. 39 (page 37), which represents the magnetic grade of iron generally used in armature construction. However, the temperature of

annealing, and the subsequent treatment of the iron, materially influence the result.

In Fig. 115 are given three curves of total core losses of three railway motor armatures.

- Curve 1. Iron annealed after punching.
- Curve 2. Iron annealed before punching.
- Curve 3. Iron not annealed.

Nevertheless, it is very likely that in the case of a railway motor armature, the rough conditions of service soon largely destroy any temporary gain from annealing subsequent to punching.

In Fig. 116 the total core loss in the armature with unannealed iron has been analysed, and the hysteresis and eddy-current components

NS AND OBSERVED CORE LOSSES OF TWENTY-THREE COMMUTATING GENERATORS.	
TWENTY-THREE COM	
OF	,
CORE LOSSES OF	Own Grd 117 /
CORE	•
OBSERVED	
AND	
-DIMENSIONS	
XX	
M	

K. $\left(\frac{OD}{1000} \times K = Watts per Pound$).	1.82	1.48	2.12	1.43	1.36	1.35	1.45	1.82	2.12	1.88	1.43	1.30	1.54	2.14	1.62	111	2.18	1.42	1.96	2.08	1.83	1.54	1.89
. <u>000</u> 1	8	.318	.499	454	.595	.513	742	.437	.457	.487	727.	.625	99.	96	.486	1.09	1.16	1.23	1.56	1.36	241	211	2.40
Kilolines of Density below Slots = D.	87	8	88	7.97	88	92	72	58.3	19	8	6.66	86	80	25	37.3	87.6	4	80.8	78.8	Z,	80.4	70.4	88
Cycles per Second = C.	5.00	5.06	6.00	6.00	6.66	6.75	7.50	7.50	7.50	7.50	8.00	8,00	8.33	10.00	11.70	12.50	15.00	15.85	20.00	25.0	30.00	30.00	30.00
Watts of Core Loss, per Pound.	5.	1.4.	1.06	89.	18.	89.	762	76.	26:	ä.	1.04	.87	1.00	2.03	3 8.	1.94	2.52	1.75	808	8	4.41	3.28	4. 70
-ima.l to tall Weight of Lami- nations.	1b. 6,760	4,870	8,735	5,023	9,350	000 '	6,644	5,235	9,530	2,680	10,240	6,300	4,080	1,630	4,844	1,036	497	1,270	2,535	7,000	530	832	515
Weight of Teeth.	4.8	88	200	498	1050	9	72	545	88	8	1070	650	98	88	28	176	119	170	240	8	108	124	8
Weight of Laminations below Slots.	41 6100	4250	0777	4530	8800	3808	5720	4690	8650	2350	9170	2980	3500	1400	4480	88	4460	1100	2296	999	424	117	33
Total Observed Core Loss in Watta.	5,350	2,260	9,300	3,265	7,600	2,760	5,270	4,150	9,250	2,510	10,670	5,480	4,050	8,300	8,210	2,010	12,520	2,230	7,800	19,850	2,335	2,725	2.420
Density below. Slote in Kilolines.	84	8	88.2	7.97	8	6 .	22	58.3	19	\$	80.9	82	82	ž	37.3	87.6	4	80.8	78.3	Z	80.4	70.4	88
sa yisang Density st Koot Teeth in Kilo- Jines	152	125	187.2	138	187	128	128.2	100.8	971	133	149.5	130	130	182	121.1	187	141	182	141	13	134.6	182	138
Number of Teeth As- sumed to Transmit Flux per Pole.	ផ	15	ន	8	31	83	32	2	19	જ્ઞ	88	8	14	18	16	16	21	16	22	17	81	11	16
Megalines Flux Enter- ing Armature per Pole.	25.6	18.9	23.95	16.4	87.8	18.3	24.04	13.08	61	12.5	3.09	18.1	11.1	7.75	1.91	2.06	16.6	5.22	11.06	10.4	8 G	5.16	8.75
Number of Slots.	8	180	188	280	812	220	236	ş	240	154	272	240	180	167	8	110	168	166	192	88	130	128	125
Batic of Pole Arc to Pitch.	88	.67	.742	.642	55	7.	92:	8	8	22	97.	26.	8	92:	669	882	.67	.67	317.	22.	22.	233	8.
Effective Width of Core.	in. 16.9	14.6	18.9	12.375	20.0	6.6	11.238	12.825	16.3	11.9	22.06	14.6	12.7	91	11.925	9.11	11.0	7.875	11.8125	6.6	6.1875	6.75	7.38
Gross Width of Core. (G.)	in. 21.26	18.125	24.75	16.25	22.22	14.25	83	16.75	18.5	15.25	27.625	18.125	17.625	12.125	14.75	12	14.6	9.5	16	12.6	7.25	.	8.5
Depth of Laminations below Blot. (F.)	ñ. 7.	8.6	7.625	8.76	7.68	8.75	9.08	8.75	10.2	8.125	7.72		5.44	£13	06.8	4.48	8.3	4.125	2.98	9.72	3.65	5.423	8 08
Width of Tooth at Arm Face, (E.)		873	5425	4276	.357	624	374	064	069	.467	988	424	.539	405	4075	.468	.524	386	88º.	.475	385	.4275	963
Width of Tooth at Root. (E.)	₽ 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	209	183	385	321	\$	88	487	.445	808	946	88	478	354	.883	.874	.466	883.	\$	449	.258	28	230
Width of Arm Slot. (D.)	. <u>#</u> 38	9	• •	416	88	416	8	4	88	3	-445	4	.59	\$.52	\$	8	474	.412	\$.342	85	.87
Depth of Armature Blot. (C.)	i.88	1.76	1.8	1.625	1.762	1.6%	1.7	1.625	1.8	1.5	1.73	1.625	1.75	1.3125	1.48	1.5	1.625	1.8125	1.178	1.25	1.6	1.80	1.812
Internal Diameter of Armature Lamina- tions. (B.)	in. 38.5	4 2.5	63.16	38.5	68.125	38.6	31.64	38.5	68.1875	28.75	53.1	46.75	25.44	34.25	38.49	19.66	37.4	34.25	30.684	23	17.5	16.55	17.75
External Diameter of Armature, (A.)	in. 59.25	59.25	22	59.25	22	59.25		59.25	88.5	43	22	 	32.625	46.125	20.52	31.5	59.25	45.125		22	88	8	28.5
Date of Construction.	<u>!</u>		8681 06						801888												8681	800 1888	
Speed, Revolutions per Minute.	100 1897	86 1898	8	120 1898	1001898	135 1898	150 1897	150 1897	8	1501898	120 1898	120 1898	100 1897	150 1897	140 1898	250 1897	300 1896	230 1898	400 1897	250 1899	600 1898	90	600 1897
Kilowatta.	9	00	80	9	80	8	8	8	500 10	150 6	8	400 8	300 10	8 001	300 10	100 6	9 099	160 8	325 6	21	110 6	200	100 6
Rited Output in	8 :	225	385	225	525	- 200	8 :	225	-:- 26	:-	500	- <u>÷</u>	_ <u>ಕ</u>	=	<u>ਲ</u> :	<u>≍</u>	<u>نج</u>	=	÷	-	=		=
Type of Generator.	Railway .	Lighting .	Railway .	Railway .	Railway .	Railway .	Railway .	Power	Railway .	Railway	Power	Railway .	Lighting	Power	Lighting	Lighting	Power	Lighting	Railway	1	Power	Rot. Converter	Railway

are shown in curves Nos. 2 and 3, the resultant loss being given in curve No. 1.

In determining the core losses of electric generators, it is frequently convenient to resort to empirical devices, as a check upon more theoretical

Fig. 117. Diagrammatic Sketch of Armature Core

Fig. 118. Core Loss Curve

Observations made on Twenty-three Large Continuous-Current Generators

methods, owing to the conditions in practice affecting the results. As already explained, the machine-work upon the armature, the periodic variations in the magnetic reluctance, with resulting eddy current and hysteretic losses in the magnet frame, and the eddy currents in the armature conductors, supports, shields, &c., all tend to introduce uncertain factors.

Figs. 119 to 123. Laminations of the Five Railway Motors on which the Tests shown in Fig. 124 were made

Table XXX. gives the dimensions and the observed core losses of twenty-three large multipolar commutating machines, in the design of which there was a wide range of periodicities and magnetic densities. The letters A to G in the headings of the first columns of Table XXX. refer to those in Fig. 117, which is a sketch for an armature core. The results set forth in this Table are useful in drawing practical conclusions as to the probable core losses of new designs. Although in these designs the rate of dissipation of energy in the teeth is high, the small percentage which the mass in the teeth bears to the total mass of the core of the armature makes it practicable, as shown by the results given in the Table, to draw conclusions from a comparison of the

Fig. 124. Core Loss Curve, Railway Motors

watts per pound of total laminations as related to the periodicity and to the density below slots. But this would not be found to be the case, except when tooth densities are chosen, lying within the limits generally adopted, since the higher the density in the projections, the more considerable is the loss due to eddy currents in the embedded copper conductors, owing to the stray field crossing them. One would, therefore, expect in railway motors where the weight of the teeth is a larger percentage of the total weight, and where the densities are considerably higher, that relatively higher values for the apparent core losses would be found. The authors have therefore given, in Table XXXI., an analysis based on five railway motors, sketches of the laminations of which are given in Figs. 119 to 123. Another factor affecting the value of the core loss in commutating dynamos is the influence of the conditions during commuta-

ΔĴ
OTORS
2
Ξ
¥
4
2
7
>
Н
ı
3
H
OF I
H
_
700
闰
20
92
3
_
闰
OR
COR
Ö
OF.
H
0
m
H
92
7
ı
7
4
4
$\dot{\mathbf{H}}$
X
Ы
74
囝
Н
8

Ratio of Pole Arc to Pitch.	٤ <u>٠</u>	.786	.582	.655	8 .	$K\left(\frac{OD}{OD} \times K = Watta per I.b.\right)$	2.61	3.03	3.51	3.05	2.96
Effective Length of Core.	in. 25.2	6.75	7.66	7.8	7.42	1000. O.D.	586	2.38	ġ.	86	8.78
•	 				_	Density below Blots = D.	88	170	28	46.5	171
Number of Vent Ducts.	None	:	:	:	"	Cycles per Second = ('.	6.1	13.9	16.8	18.5	21.4
Width of Vent Ducks.	None	:	:	:	ii.	Watte per Pound.	1.396	7.16	3.30	2.52	11.20
-imal enutamna to dibblw secto ancidan	48	42	8.5	00	۵.	enoitanima. I to theight LatoT (sbnnod)	1900	88	023	308	100
Depth of Leminations below	ii.4 1.7.	#	4.14	4.35	1.125	Weight of Laminations in Teeth (Pounds).	418	8	28	8	46.7
						Weight of Leminations below	1487	117	212	246	2
Width of Tooth at Armeture	ii.89.	.970	.245	<u>8</u>		Total Core Loss.	2650	1420	88	8	1120
Width of Tooth at Root.	й ў	.708	.154	.164	.445	Density below Slots.	88	170	28	4.65	171
Width of Armature Slot.	-i-33-	.542	245	0#7	#	Maximum Apparent Tooth Density at Root of Tooth (Kilo- lines).	140	130	171	130	148
Depth of Armsture Slot.	in. 1.78	1.589	1.46	1.4	1.29	Number of Teeth taken as Trans- mitting Flux.	13	7	11	19	9
Internal Diameter of Armature Laminations.	ii.	37.6	3.81	\$	6.17	Number of Teeth Directly Under Pole-Pace.	11.1	6.4	18.8	11	5.1
External Diameter of Armature.	ë.	16	14.5	91	=	Flux-Megalines.	21.2	4.02	8.54	26.2	86 64
Counter Electromotive Force of Motor.	471	448	442	463.6	171	Cycles per Second at Rated Output.	6.1	18.9	16.8	18.5	21.4
Terminal Voltage, Full Load.	2009	200	200	999	200	Winding-Turns in Series between Brushes.	16	196	186	210	174
Speed, Revolutions per Minute at Rated Output.	183	417	702	999	070	Winding. Number of Windings.	Single	:	:	:	:
Rated Output, Horse-Power.	111	- 75	83.8	2.4.2	23	Winding. Number of Circuite.	21	21	61	93	23
Number of Poles.	4	4	-	4	,	Conductors per Slot,	9	- 3	30	∞	3
Figure Numbers.	119	180	121	182	23	Number of Slots.	5	3 3		105	83

tion of coils, in relation to which the frequency of commutation has an important bearing. The curves of Figs. 118 and 124 are plotted from the tabulated results, and will be found useful for the corresponding type of machine.

Suppose, for example, we wish to predetermine the core loss of a multipolar generator having, say, eight poles and running at 240 revolutions per minute. From previous calculations we find it requires 7000 lb. weight of total laminations, including teeth and core body, allowing a full load working density of 76 kilolines per square inch of cross-sectional area of

FIG. 125. CORE LOSS OBSERVATIONS BY MESSES, ESTERLINE AND REID

the core body. Now, eight poles and 240 revolutions per minute correspond to sixteen cycles per second.

$$\frac{\text{Cycles} \times \text{density in kilolines}}{1000} = \frac{16 \times 76}{1000} = 1.22.$$

According to curve, Fig. 118, we obtain 2.1 watts per pound, and as there is a weight of 7000 lb., the total core loss will be $2.1 \times 7000 = 14,700$ watts.

For the range of periodicity and flux density covered by the above tabulated machines, an average value of 1.7 is obtained for K. Hence the following approximate rule is derived:—

Watts per lb. =
$$1.7 \times \text{cycles per second} \times \text{kilolines density}$$
.

The authors have found this method to afford a more reliable guide than any other process, either theoretical or empirical; and it is obviously far more direct than the theoretically more attractive methods set forth in most treatises on dynamo design. The value of our method has recently been strikingly confirmed by the results of a most elaborate investigation, described in a paper contributed by Messrs. Esterline and Reid to the Transactions of the American Institute of Electrical Engineers, 1903. Messrs. Esterline and Reid's investigations comprised 12,000 observations on variously-proportioned armatures, and the practical results at which they ultimately arrived are given in Fig. 125. It will be seen that the core loss in watts per kilogram is found to be a function of the product of periodicity and core density, the conclusion at which the present writers had arrived several years ago. In Fig. 125 it is stated by Messrs. Esterline and Reid that curve No. 1 may be taken as representative of smooth cores within either solid or laminated poles, curve No. 2 of toothed cores within solid

Fig. 126. Core Loss Curves for Continuous-Current Generators

poles, and curve No. 3 of toothed cores within laminated poles. To these curves Messrs. Esterline and Reid have added a broken line curve, which they have obtained from the core-loss tests of a large number of commercial machines, having, in the majority of cases, tooth cores and solid cast poles.

We have re-plotted this last curve in Fig. 126, together with our own curve of Fig. 118. The agreement is so close as to dispel any further doubt as to the best method of procedure in calculating the core losses in practical designing.

In dealing with dynamo calculations generally, due allowance must be made for variations in materials, and slight variations in dimensions and finish incident to ordinary shop methods. This applies more particularly to calculations of iron losses, since in practice it is almost impossible to

make two identically similar cores. We do not suggest, therefore, that in a rigorous examination of results there will not be found considerable variations from the calculated results by the empirical methods suggested. The successful designer must invariably allow for such variations in material and dimensions as occur in reasonably well-regulated practice. Within these limits, the above method has been found to be accurate. Within the limits obtainable in really scientific work, the empirical way of proceeding would not be of any particular value. Dynamo design, however, cannot become a strictly scientific process, until dynamos are built in a laboratory, and not in a commercial workshop.

The question of core loss, as affecting the economy, is not of vital importance in armatures, being of chief interest from the thermal But with transformers it is of the utmost importance, standpoint. as it is the controlling factor in determining the all-day efficiency. Special consideration will be given hereafter to the matter of core loss in transformers. At this point it will be sufficient to state that iron of at least as good quality as that shown in Curve B of Fig. 39, page 37, should be specified and secured. Even with sheets carefully japanned, or separated by paper, the eddy-current loss in transformers will be from one-and-a-half to twice the theoretical value given in the curves of Fig. 40, page 37. This may, perhaps, be explained by supposing the flux not to follow the plane of the sheet, but to sometimes follow a slightly transverse path, thus having a component in a direction very favourable for the setting up of eddy currents in the plane of the sheets. In Figs. 149 and 150, on page 146, will be found curves especially arranged for convenience in determining transformer core losses.

In addition to considering the subject of heating from the standpoint of degrees rise of temperature per watt per square inch of radiating surface, it is useful in certain cases to consider it on the basis of rate of generation of heat, expressed in watts per pound of material. Similarly to the manner in which the curves of Figs. 39 and 40, above referred to, give the rate of generation of heat in iron by hysteresis and eddy currents, there are given in Fig. 127 curves showing the rate of generation of heat in copper, due to ohmic resistance. One's conception of the relative magnitudes of these quantities in copper and iron is rendered more definite by a study of the values given in Tables XXXII. and XXXIII.

Table XXXIII. should also be used in calculating iron losses at high densities, as it extends beyond the range of the curves of Figs. 39 and 40.

Smooth-core armatures can be run at higher current densities than iron-clad armatures, owing to the better opportunity for cooling the copper. Likewise with iron-clad armatures, those with a few large coils have to be designed with lower current densities than those in which the winding is subdivided into many smaller coils.

TABLE XXXII.—COPPER

Current Density in	Rate of Generation of Heat by Ohmic resistance. Watts per Pound.									
Amperes per Square Inch.	0 Deg. Cent.	20 Deg. Cent.	40 Deg. Cent.	60 Deg. Cent.	80 Deg. Cent.	100 Deg Cent.				
500	.50	.54	.58	.62	.67	.71				
1000	2.00	2.15	2.33	2.48	2.68	2.84				
1500	4.40	4.74	5.1	5.5	5.9	6.2				
2000	7.9	8.4	9.1	9.1	10.6	11.2				
2500	12.3	13.3	14.3	15.3	16.5	17.3				
3000	17.7	19.0	20.6	22.8	23.7	25.0				

TABLE XXXIII.—SHEET IRON

Flux Density (Kilolines per	Rate of Generation to t	on of Heat by Hystere he Extent to which Ed	stic Resistance (and by ldy Currents are Prese	Ohmic Resistand nt).
Square Inch.)	25 Cycles.	60 Cycles.	100 Cycles.	125 Cycles
20	.10	.25	.44	.59
40	.27	.75	1.3	1.85
60	.56	1.5	2.8	4.0
80	.92	2.5	4.8	6.7
100	1.4	3.8	7.3	10.5
120	2.0	5.4	10.5	15
140	2.8	7.7	15	22

In Table XXXIV. are given some rough figures for the current densities used in various cases:—

TABLE XXXIV.

						Amp Squa	eres re I	s per Inch.	
Small h	igh-speed	d armatures				 3500	to	4000	
Large	"	"				 2000	,,	3000	
Small lo	ow-speed	armatures				 2000	,,	3000	
Large	"	"				 1500	,,	2500	
Transfo	rmers wi	th forced circ	ulation	of oil	or air	 800	,,	1500	
Large t	ransform	ers immersed	in oil	or air	• • • •	 500	"	900	
Small	1)	,,	,,			 500	,,	1100	

In the case of small transformers the current density could be very much higher without causing excessive temperature rise, but such transformers would have poor regulation. On the other hand, large transformers, when properly designed, have better regulation than is necessary, the current density being limited from thermal considerations. Although many large transformers were until recently so poorly designed that a few hours' run at full load heated them up to above 100 deg. Cent., this was bad practice, as it caused deterioration both of insulation and of iron. A rise of not more than 60 deg. Cent. should be aimed at, even with large transformers.

Figs. 127 and 128. Heat and Insulating Resistance Curves

The curve of Fig. 128 shows that even a rise of 60 deg. Cent. reduces the insulation resistance of a transformer to a small percentage of its resistance when cold. In other words, insulating substances have a very large negative temperature coefficient. In this case, where the insulating material was a composition of mica and cloth, the transformer being immersed in oil with which the insulation was thoroughly impregnated, the average temperature coefficient between 20 deg. Cent. and 80 deg. Cent.

¹ See pages 34 to 38 for discussion of deterioration of iron at high temperatures.

was -0.8, that is, the insulation resistance increased 80 per cent. per deg. Cent. decrease of temperature. But the ability of this insulating material to withstand the disruptive effects of very high potentials is practically unimpaired. Consequently, it is important to distinguish carefully between the ability to withstand the application of high voltages and the insulation resistance, as measured in megohms. The insulation resistance in megohms returns to its original high value when the transformer is again cold.

RAILWAY MOTORS

The necessity in this class of apparatus of having high efficiency at light loads (which is the condition under which railway motors operate the greater part of the time), requires that they shall be designed with an efficiency curve which quickly reaches its maximum, and falls off very much at larger loads. As a consequence, a good railway motor cannot be operated for long periods at its full rated drawbar pull, without reaching an excessive and dangerous temperature. The need for compactness also requires running at high temperature under the condition of long-sustained full load. In the section relating to the design of railway motors, this matter is more fully considered.

CONSTANT-CURRENT ARC DYNAMOS

Arc dynamos are designed to maintain constant current, partly, and sometimes almost entirely, by inherent self-regulation. This requires a large number of turns both on field and armature, and in order to obtain reasonable efficiency, the conductors have to be run at very low-current densities. As a consequence, a properly-designed arc dynamo will run much cooler than would be at all necessary from the thermal standpoint. Such a machine must be, of course, large and expensive for its output.

In apparent contradiction to the above statement stands the fact that almost all arc machines at present in operation run very warm. But this is because almost all arc machines as now in use have such low efficiencies, particularly at anything less than full load, as to render it extremely wasteful to continue them in service. By throwing them all out, and installing well-designed apparatus, the saving in maintenance would quickly cover the expenses incurred by the change. Constant-current dynamos are now rapidly going out of use, arc lighting being more and more extensively done from constant potential circuits.

CONSTANT POTENTIAL DYNAMOS

In constant potential dynamos it should be the aim to have the electromagnetic and thermal limits coincide. Forty or fifty degrees Centigrade, thermometrically determined, rise in temperature during continuous running is generally considered entirely satisfactory, although the requirements for Admiralty and other Government work are usually more rigid. In constant-potential machines the efficiency is so high (especially when compared with the engine efficiency) when the temperature limit is satisfactory, that the efficiency should seldom be a determining factor. Proper thermal and electromagnetic constants should be the limiting considerations.

In dynamos it is customary to quote the efficiency at the temperature reached by the machine at the end of several (generally ten) hours' run; but in the case of transformers, it is generally quoted at 20 deg. Cent. Nothing except prevailing practice justifies these contradictory methods.

COMMUTATOR HEATING

The heating of the commutator arises from three causes—the mechanical friction of the brushes, the C²R due to the useful current flowing across the contact resistances, and the heating due to the waste currents caused by short-circuiting of adjacent segments, and by sparking. Copper brushes may, under good conditions, be run up to a density of 200 amperes per square inch of contact surface, and even higher in small machines. Carbon brushes should preferably not be run above 35 amperes per square inch of contact surface, except in small machines, where, with good conditions, somewhat higher densities may be used. The pressure need seldom exceed 2 lb. per square inch of brush-bearing surface, and a pressure of 20 oz. per square inch corresponds to good practice. In the case of railway motors this has to be considerably increased, because of the excessive jarring to which the brushes are subjected.

At a peripheral speed of commutator of 2500 ft. per minute, which corresponds to good practice, the rise of temperature of the commutator will seldom exceed 20 deg. Cent. per watt per square inch of peripheral radiating surface for unventilated commutators; and, with careful design as regards ventilation, this figure may be considerably improved upon. The total rise of temperature should not exceed 50 deg. Cent. for continuous running at full load.

The contact resistance offered by carbon brushes at a pressure of

20 oz. per square inch of bearing surface, and at ordinary current densities and peripheral speeds, may be taken at 0.3 ohms per square inch of contact surface. That is, if there are, for instance, four positive and four negative brushes, each with 1.25 square inches of bearing surfaces, the resistance of the positive brushes will be $\frac{.03}{4 \times 1.25} = .006$ ohms, and this will also be the resistance at the negative brushes; consequently, the total contact resistance will be .012 ohms from positive to negative brushes.

The contact resistance of copper brushes need not exceed .003 ohms per square inch of contact surface, and with good conditions will be less.

In estimating the friction loss, the coefficient of friction at the standard pressure, and with the commutator and brushes in good condition may be taken equal to .3.

To illustrate the application of these constants in estimating the heating of a commutator, the case may be taken of a six-pole 120-kilowatt generator with a 30 in. diameter commutator, whose length, parallel to shaft, is 8 in., and which is furnished at each of its six neutral points with a set of four carbon brushes, each having a bearing surface of $1.5 \text{ in.} \times .75 \text{ in.} = 1.13 \text{ square inches.}$ Consequently, there being twelve positive and twelve negative brushes, the total cross-section of contact for the current is $12 \times 1.13 = 13.5 \text{ square inches.}$

The capacity of the machine is 480 amperes at 250 volts; consequently, the current density is 36 amperes per square inch. Taking the contact resistance at .03 ohms per square inch, the total contact resistance

amounts to $\frac{.03}{12 \times 1.13} \times 2 = .0045$ ohms from positive to negative terminals. Therefore, the C² R loss is $480^2 \times .0045 = 1050$ watts. Pressure is adjusted to about $1\frac{1}{4}$ lb. per square inch. Total pressure $1.25 \times 13.5 \times 2 = 34$ pounds. Speed = 300 revolutions per minute. Peripheral speed = 2360 ft. per minute. Therefore, foot-pounds per minute = 2360 \times 34 \times .3 = 24,000 foot - pounds = .73 horse-power = 545 watts.

			Tot	tal com	mutato	r loss			==	1695
Allow for	stray	losses	•••	•••	•••	•••	•••	•••	=	100
Friction										545
		•••							***	1050

Radiating surface = $8 \times 30 \times \pi = 760$ square inches. Watts per square inch = $1695 \div 760 = 2.2$. Figuring the rise at 20 deg. Cent. per watt per square inch, there is obtained:—

Total rise temperature = $2.2 \times 20 = 44$ deg. Cent.

Careful tests fail to show any considerable decrease in resistance of contact on increasing the brush pressure beyond 20 oz. per square inch, nor does it change very greatly for different speeds and current densities; at least, not enough to be worth taking into account in the necessarily rough approximate calculations. It will, of course, be understood that when brushes or commutator are in poor condition, friction, C² R and stray losses, are certain to greatly increase.

FRICTION LOSS

The loss through windage and bearing friction is necessarily very dependent upon the nature of the design and the method of driving. When the armature is directly driven from the engine shaft, and is not provided with an outboard bearing, the loss has to be shared by both engine and dynamo. With belt-driven dynamos a third bearing beyond the pulley is sometimes necessary. The loss due to belt friction is not properly ascribable to the dynamo. If the armature and spider are furnished with internal fans and flues, or other ventilating arrangements, the advantage in cooling thereby gained necessarily involves increased friction loss. In a line of high-speed alternators thus designed, the friction loss ranged from 1 per cent. in the large sizes up to 3 per cent. in the small sizes, the range being from 400 kilowatts down to 60 kilowatts capacity; all the machines were belt-driven, the belt losses, however, were not included. The speeds were from 360 revolutions per minute for the 400 kilowatt, up to 1500 revolutions per minute for the 60 kilowatts.

Some similar continuous-current belt-driven generators, for rather lower speeds, had friction losses ranging from 0.8 per cent. in the 500 kilowatt sizes up to 2 per cent., or rather less, in the 50 kilowatt sizes.

Large direct-coupled slow-speed generators will have considerably less than 1 per cent. friction loss, and such machines for 1000 kilowatts and over should have friction losses well within } per cent.

DESIGN OF THE MAGNETIC CIRCUIT

In practice, the solution of magnetic problems is generally largely empirical, on account of the very great difficulty in calculating the magnetic leakage, as well as in determining the precise path which will be followed by the magnetic flux in those parts of the magnetic circuit which are composed of non-magnetic material, such as—in dynamos and motors—the air-gap between the pole-face and the armature surface. In closed circuit transformers no such difficulties arise, and the determination of the reluctance of the magnetic circuit becomes comparatively simple.

Analogies between electric and magnetic circuits are misleading, since a magnetic circuit of iron located in air is similar to an electric circuit of high conductivity immersed in an electric circuit of low conductivity, the stream flow being proportional to the relative conductance of the two circuits. Moreover, in magnetic circuits the resistance varies with the flux in a manner dependent upon the form and materials of the magnetic circuit.

For the purpose of calculation it is assumed that the magnetic flux distributes itself according to the reluctance of the several paths between any two points. The difference of magnetic potential between two points is equal to the sum of the several reluctances between these points, multiplied by the flux density along the line over which the reluctances are taken. The permeability of air being unity, and that of iron being a function of the flux density, it follows that a proportion of leakage flux, or flux external to the core of an electromagnet, increases with the flux density in the core, and with the magnetic force. Practically, the function of a magnetic circuit is to deliver from a primary or magnetising member a definite magnetic flux to a secondary member. Thus, in the case of a dynamo or alternator, the function of the field magnets or primary member is to deliver a certain flux to the armature; in the case of a transformer, that of passing through the secondary coils a certain magnetic

flux. The secondary member reacts upon the primary member, and affects the effective magnetic flux according to the amount of current generated in the secondary member. This reaction acts to change the magnetic flux in the secondary member in two ways: first, by reducing the resultant effective magnetomotive force acting on the magnetic circuit; and, secondly, by affecting the magnetic leakage by altering the differences of magnetic potential and distribution of magnetic forces around the magnetic circuit.

In the case of a generator with brushes set with a forward lead, the reaction is such as to demagnetise the field magnets and increase the leakage.

In the case of a motor with brushes set with a forward lead, the reaction is such as to increase the flux through the armature by added magnetomotive force and diminished leakage.

In the case of an alternating-current generator, the reaction is such as to diminish the flux with lagging armature current, or with leading current to increase the flux.

In the case of a transformer with lagging current, the effect is to diminish the effect of the primary current, and with leading current to increase this effect.

As stated above, however, the leakage in general is affected according to the magnetomotive force between any two points. flux in any magnetic circuit is equal to the resultant magnetomotive force divided by the reluctance of the magnetic circuit. Obviously, then, in the design of a magnetic circuit the effects of these reactions have to be carefully calculated. In the design of the field-magnet circuit of dynamos and alternators, the influence of the armature reaction on the effective magnetomotive force may be taken into consideration in the calculations, by assuming a certain definite maximum armature reaction. These armature reactions will be discussed subsequently. Obviously, the flux density and magnetising force may in all cases vary very widely for a given total flux. Therefore, fulfilling equivalent conditions as to efficiency and heating, there is no fixed ratio between the amount of copper and iron required to produce a certain magnetic flux. designing of a magnetic circuit may then be said to be a question of producing in the secondary member a given effective magnetic flux, with a given amount of energy expended in the primary magnetic coils, combined with a minimum cost of material and labour; the most economical

result is arrived at by means of a series of trial calculations. The energy wasted in the field magnets should not, in the case of continuous-current machinery, generally exceed 1 or $1\frac{1}{2}$ per cent. of the rated output, the permissible values being dependent mainly upon the size and speed. In all cases there is, of course, the condition that the magnetising coils shall be so proportioned as not to heat beyond a safe limit.

In the case of transformers the condition becomes different. There is a constant loss of energy in the magnetic circuit, due to hysteresis. The amount of energy consumed in the magnetising coils at no load is negligible. At full load it is a considerable fraction of the total loss. Transformers are seldom worked at full load for any length of time; consequently the open-circuit losses should be made consistent with the mean load of the transformer. The general design of the magnetic circuit of an alternating-current transformer may then be said to consist, for a given stated output, in securing a satisfactory "all-day" efficiency and satisfactory thermal conditions for a minimum cost of material and labour, both the iron and copper losses being considered.

In the case of continuous-current dynamos, the armature reaction as a factor in determining the design of the field magnets is of greater importance now than heretofore. Thorough ventilation of the armature has so reduced the heating, that from this standpoint the output of dynamos has been greatly increased. The general introduction of carbon brushes, and a more thorough knowledge of the actions in commutation, has greatly increased the output for good operation from the standpoint of sparking. Thus the magnetomotive force of the armature has naturally become a much greater factor of the magnetomotive force of the field magnets. Taking the magnetomotive force of the armature as the line integral through the armature from brush to brush, there are numerous examples of very good commutating dynamos, in which the magnetomotive force of the armature at full load is equal to that of the field magnets. In several large dynamos designed by Mr. H. F. Parshall, which have now been in use for so long a time that there is no question as to satisfactory operation, the magnetomotive force of the armature at full load was 50 per cent. greater than the magnetomotive force of the field magnets; and the number of turns required in the series coils to maintain constant potential was approximately equal to that in the shunt coils to give the initial magnetisa-It is found in practice that the component of the armature magnetomotive force opposing the field magnets, i.e., the demagnetising component,

is from 18 to 30 per cent. of the total armsture magnetomotive force. This corresponds to a lead of the brushes of from 9 to 15 per cent. of the total angular distance between successive neutral points, *i.e.*, to an angular lead of from 16 deg. to 27 deg., the angular span of two magnetic fields (north and south) being taken as 360 deg.

The armature reaction, therefore, in modern practice greatly increases the amount of material required in the field-magnet coils and in the field-magnetic circuit, by increasing the economical length of the magnetic core and coils, which in turn tends to increase the magnetic leakage, and therefore to require greater cross-section of magnetic circuit. As yet, however, practice has not been sufficiently developed to reach the limit beyond which the total cost of the dynamo is increased, by increasing the armature reaction. The field magnet may, therefore, be considered, in general practice, a subservient member. The limit, of course, to the armature reaction is frequently reached in the case of such compound dynamos as are required to give an approximately constant potential over the whole working range.

In the case of alternators, the thermal limit of output has been increased by ventilation, as in commutating machines. By the introduction of a general system of air passages, shorter armatures have become possible, consequently, natural ventilation of the armature has been vastly increased.

The tendency in recent practice has been to limit the output of alternators from the standpoint of inherent regulation, and the thermal limit of output has been generally determined to conform with the conditions laid down as to regulation and inductance. Alternators designed to work over inductive lines for power purposes are very frequently designed with one-half the armature reaction that would be used in the case of lighting machines.

A full discussion of the armature reaction of alternators will be given in a later section. It may be stated here, that in uni-slot single-phase alternators, the value of the reluctance of the magnetic circuit becomes very dependent upon the position of the armature slot with respect to the pole-face; hence the reluctance undergoes a periodic variation of n cycles per revolution of the armature, n being the number of field-poles. The variation is generally of so great an amplitude as to make it important to construct the entire magnetic circuit of laminated iron, otherwise the field frame becomes the

seat of a very substantial loss of energy through eddy currents. Although this loss is less serious in multi-slot single-phase alternators and in polyphase alternators, it should be carefully considered; and it will sometimes be found desirable in such machines to adopt a laminated construction of the entire field frame. Even in continuous-current machines, the loss may sometimes be considerable, being of greater value, the fewer the slots per pole-piece, the wider the slot openings, and the shorter the air gap. But in continuous-current machines there are almost always enough slots to insure the restriction of the magnetic pulsations to the vicinity of the pole-face, and hence it is often the practice to laminate the pole-faces only. The pulsations of the flux throughout the magnetic circuit, due to periodic variations in the reluctance, reach their greatest extent in the inductor type of alternator, and constitute one of the objections to most varieties of this type of alternator.

LEAKAGE FACTOR

The coefficient by which the flux which reaches the armature and becomes linked with the armature turns must be multiplied, in order to derive the total flux generated by the field coils, is known as the "leakage factor," and in most cases is considerably greater than unity. It is evident that the "leakage factor" should increase with the load, since the armature ampere turns serve to raise the magnetic potential between the surfaces of the adjacent pole-faces, and tend to increase the component of flux leaking between adjacent pole-tips and over the surface of the armature teeth above the level of the armature conductors. The diagrams illustrated in Figs. 129 to 134, page 131, give the values of the leakage factors as determined from actual measurements for several cases. It will be noted that in Fig. 132 are given results both with and without current in the armature.

ARMATURE CORE RELUCTANCE

The reluctance of the armature core proper is generally fixed by thermal conditions, which are dependent upon the density and periodicity at which the core is run, the reluctance being chosen as high as is consistent with the permissible core loss.

Figs. 129 to 134. LEAKAGE FACTOR DIAGRAMS

AIR GAP RELUCTANCE

The reluctance between the armature core and the faces of the polepieces is determined by the space required by the armature conductors, and the necessary mechanical clearance between the armature surface and the pole-faces.¹

RELUCTANCE OF COMPLETE MAGNETIC CIRCUIT

The reluctance for a given length of magnetic circuit should be such that the combined cost of magnetic iron and magnetising copper is a minimum. The length of the magnetic circuit should be such that, with what may be termed the most economical densities, the cost of the copper and iron is a minimum. By magnetising copper is meant that amount of copper required by the magnetising coils to give, under fixed thermal conditions, that magnetomotive force that will maintain the proper flux

¹ In discussing the sparking limit of output of a smooth-core armature, it has been frequently asserted that the sparking limit of a generator is a function of the depth of the air gap. But the inductance of the armature coils when under commutation is not appreciably diminished by increasing the depth of the air gap, except in machines where the brushes have to be set forward into the near neighbourhood of the pole-tip, which is not necessary in well-designed generators. Therefore, the depth of the air gap has no relation to the magnetic sparking output, except in so far as it may alter the distribution of magnetism in the gap. Beyond a certain limit, increasing the depth of the air gap acts deleteriously on the sparking limit, since the distribution of the magnetic flux in the gap becomes such that the permissible angular range of commutation is very small. In the case of toothed armatures (which are now common practice), the air gap in good practice is made as small as is consistent with mechanical safety. The density in the projections is carried to a very high value, it being generally recognised that the greater the magnetic density at the pole-face, the greater armature reaction is possible without sparking. To satisfy this condition alone, a high density in the projections becomes necessary. It has, however, been pointed out that, with the projection normally worked out, magnetic distortion in the air gap may be made greatly less than in the case of a well-designed smooth-core armature. In the smooth-core machine the distortion in the gap is proportional to the armature reaction; whereas in the case of highly magnetised projections the distortion is greatly less than proportional to the armature reaction. Considered with relation to the inductance of the armature coils, it appears that the inductance of the coils becomes smaller and smaller as the magnetic reluctance in the circuit surrounding the coils becomes increased. All of these conditions may be included broadly by saying that for a given output there is a certain limiting minimum reluctance in the air gap, having regard both to distortion and self-induction. As will be shown later, however, sparkless commutation has to be considered not only in its relation to the inductance of the armature coils and to the strength of the reversing field, but also in respect to the nature of the collecting brushes. Generally speaking, visible sparking, or that external to the brushes, is least injurious to the commutator.

through the armature at full load. The densities should be taken to correspond with the full voltage generated by the armature. The proportions of the magnets should be taken to correspond with the magnetomotive force required at full load.

For a given density the magnet coils should be of a certain length; if too long, the cost of the iron will be excessive; if too short, the cost of the copper will be excessive, since the radiating surface of the coil will be too restricted. The depth of the magnet coil must, in practice, be restricted; otherwise, the temperature of the inner layers will become excessive.¹

ESTIMATION OF GAP RELUCTANCE

The magnetomotive force (expressed in ampere turns) expended in maintaining a flux of D lines per square inch, across an air gap of length L (expressed in inches) is $.313 \times D \times L$. The proof of this is as follows:

D lines per sq. in. = $\frac{D}{6.45}$ lines per square centimetre.

$$B = \frac{D}{6.45}.$$

For air

$$H = B.$$

$$H = \frac{D}{6.45}.$$

But H = $\frac{4 \pi n C}{10 l}$, l being length expressed in centimetres, and n C being ampere turns (number of turns × current).

$$n C = \frac{10}{4 \pi} \times H \times l.$$

$$\cdot = \frac{10}{4 \pi} \times \frac{D}{6.45} \times 2.54 L.$$

$$= .313 \times D \times L.$$

¹ The increase of temperature of the magnet coils should be determined by the increase in their resistance. Placing the thermometer on the external surface, unless the winding is very shallow, does not give a satisfactory indication. This fails to show whether the inner layers may not be so hot as to increase the resistance of the coil to such an extent that its magnetomotive force at a given voltage is greatly diminished.

RELUCTANCE OF CORE PROJECTIONS

The armature projections between the conductors are generally magnetised well towards saturation, so that the determination of the magnetic force required for a given flux across this part of the magnetic circuit is of importance. The following method will be found useful:

The magnetic flux divides between two paths:

- 1. The iron projections.
- 2. The slots containing the conductors, and the spaces between the laminations.

The proportion of the flux flowing along each path is proportional to its magnetic conductance. There are several considerations which make the cross-section of the iron path small compared with that of the other paths.

- 1. In practice, the width of the tooth is generally from 50 to 80 per cent. of the width of the slot.
- 2. The slot is broader in a direction parallel to the shaft than the iron portion of the lamination, because of the 25 per cent. of the length of the armature frequently taken up by insulation between laminations, and by ventilating ducts.
- 3. This 25 per cent. of insulation and ducts itself offers a path, which in the following calculation it will be convenient to add to the slot, denoting the total as the air path.

It thus appears that although the iron path is of higher permeability, the air path has sufficiently greater cross-section, so that it takes a considerable portion of the flux; and it will be readily understood that the resultant reluctance of the paths in multiple being considerably less, and the density of the flux being decreased at a point where the permeability increases rapidly with decreasing density, the magnetomotive force necessary for a given flux may be greatly less than that required to send the entire flux through the projections.

Let a = width of tooth.

,, b =,, slot. (See Fig. 135.)

,, k = breadth between armature heads, of iron part of lamination. a k = cross-section of iron in one tooth. $\frac{b k}{dk} =$ cross-section of slot (because 25 per cent. of the breadth of the

 $\frac{b \ k}{.75}$ = cross-section of slot (because 25 per cent. of the breadth of the armature is taken up by ventilating ducts and insulation between laminations, and the breadth of the slot exceeds that of the iron in the tooth by that amount).

If in any particular design this proportion varies from 25 per cent., new calculations may be made, if the magnitude of the variation is sufficient to warrant it. Moreover, there is 25 per cent. of ventilating ducts and insulation in the breadth of the tooth itself. The cross-section of this will

be .25 $\frac{a k}{.75}$ = .33 a k. It will be convenient to add this to the slots, and denote the total as the air path.

Cross-section of air path =
$$\frac{b k}{.75} \times .33 a k = 1.34 b k + .33 a k$$

This air path, therefore, takes in all paths except the iron lamination.

Let l = depth of tooth and slot.

,, N = lines to be transmitted by the combined tooth and slot, and

 μ = permeability of iron and tooth, at true density.

Let the N lines so divide that there shall be

n in iron path, and N - n in air path.

$$\frac{n}{a k}$$
 = density in iron path.

and

$$\frac{N - n}{1.34 b k + .33 a k} = \text{density in air path.}$$

Conductivity of iron path =
$$\frac{a k \mu}{l}$$
;

Conductivity of air path =
$$\frac{1.34 \ b \ k + .33 \ a \ k}{l}$$

Now, the fluxes n and N-n in iron and air will be directly proportional to the respective conductivities:

$$\frac{n}{N-n} = \frac{\frac{a k \mu}{l}}{\frac{1.34 b k + .33 a k}{l}} = \frac{\mu a}{1.34 b + .23 a}$$

$$1.34 b n + .33 a n = a \mu N - a \mu n;$$

$$n (1.34 b + .33a + a \mu) = a \mu N;$$

$$\frac{N}{n} = \frac{1.34 b + .33a + a \mu}{a \mu}.$$

Let B = true density in iron, and B¹ = density calculated on the assumption that the iron transmits the entire flux. Therefore, the ratio of N (the total lines) to n (those in iron), i.e, $\frac{N}{n}$, will equal the ratio of B¹

(the density figured on the assumption that all the lines are in iron), to B (the actual density in iron).

$$\frac{B^{1}}{B} = \frac{N}{n} = \frac{1.34 \ b + .33a + a \ \mu}{a \ \mu}.$$

In Table XXXV. are calculated some values of $\frac{B^1}{B}$ for different values of $\frac{a}{b}$.

TABLE XXXV.

1.
$$\frac{a}{b} = 1$$
 (i.e., width tooth = width slot) $\frac{B^1}{B} = \frac{1.67 + \mu}{\mu}$.
2. $\frac{a}{b} = .75$ (, $\frac{3}{4}$,,) $\frac{B^1}{B} = \frac{2.12 + \mu}{\mu}$.
3. $\frac{a}{b} = .50$ (, $\frac{1}{2}$,,) $\frac{B^1}{B} = \frac{3.00 + \mu}{\mu}$.

The next step in this process requires reference to the iron curves of Fig. 136. From these curves Tables XXXVI. and XXXVII. are derived:

TABLE XXXVI.

Corrected on Densities.		Densities Figured on Assumption that Iron Transmits Entire Flux.							
В.	μ	$B^{l}\left(\frac{a}{b}=1.\right)$	$B^{1}\left(\frac{a}{b}=.75\right)$	$B^{1}\left(\frac{a}{b}=.50\right)$					
17,000	133	17,200	17,300	17,400					
18,000	92	18,400	18,500	18,600					
19,000	56	19,500	19,800	20,000					
20,000	33	21,000	21,300	21,800					
21,000	23	22,500	23,000	23,700					
22,000	17	24,200	24,700	26,000					
23,000	13	26,000	26,800	28,300					

TABLE XXXVII.—Densities in Inches

Corrected Iron Densities.	Densities Figu	red on Assumption that Ire Entire Flux.	on Transmits
Kilolines per Square Inch.	$\frac{a}{b} = 1.$	$\frac{a}{b} = .75$	$\frac{a}{b} = .50$
110	111	112	113
116	119	120	121
123	127	128	129
129	136	138	141
136	145	149	153
142	156	160	168
149	168	173	183
1			

In the curves of Fig. 137, the values of the densities in the Tables have been transposed into kilolines density per square inch, and are thus available for use in dynamo calculations, where the process simply consists in figuring the iron density as if the iron transmitted the entire

Figs. 136 and 137. Sheet Iron and Density Curves

Fig. 138. SATURATION CURVE

flux, and obtaining from the curves a corrected value for use in figuring the magnetomotive force.¹ The number of teeth to be taken as transmitting

¹ This method was devised by one of the writers in 1892, and the results were at that time incorporated in the set of curves here produced in Fig. 137. These curves are identical with those published ten years later, in 1902, in Fig. 7, at page 32 of Dr. Thompson's "Design of Dynamos"; and at page 147 of Vol. I. of the Seventh Edition of the same author's "Dynamo-Electric Machinery." They had already been published in 1900, in Fig. 127, on page 126 of the First Edition of "Electric Generators." The assumptions are crude; nevertheless the now fairly general use of this method twelve years after it was first employed, and notwithstanding the appearance of numerous alternative methods in the meantime, justifies the belief that it is probably one of the most useful methods for approximate practical calculations, where economy in time is an object.

the flux has to be determined by judgment, and is influenced by the length of the gap. Generally, increasing by one the number lying directly under the pole-face gives good results for machines with very small air gaps, while two or three extra teeth should be added for larger gaps.

Fig. 138 gives for high densities the magnetomotive force in ampereturns per inch of length, in dependence upon the density in kilolines per square inch.

CALCULATION FOR MAGNETIC CIRCUIT OF DYNAMO

The following example of a very simple case may be of interest, as giving some idea of the general method of handling such problems:

A certain ironclad dynamo has an air-gap density of 40 kilolines (per square inch), the density in the magnet core is 90 kilolines, and in the magnet yoke 80 kilolines. The frame is of cast steel. The tooth density is 110 kilolines, and the armature density is 50 kilolines.

					in.
Length of	gap	•••	•••	=	.25
,,	magnet core (as related to the magnet	c circ	uit)	=	10
,,	yoke (corresponding to one spool)		•••	==	6
,,	tooth		•••	_	1.5
,,	armature (corresponding to one spool)			=	4

Required number of ampere-turns per spool at no load:

Ampere-turns for gap = $.313 \times 40,000 \times .25 \dots$ =	3130
Ampere-turns for magnet core (from curve A of Fig. 17, page 23)	
$= 47 \times 10 \dots \dots \dots =$	470
Ampere-turns for yoke = $29 \times 6 \dots \dots =$	170
Ampere-turns for teeth (from curve B of Fig. 25) = $150 \times 1.5 =$	230
Ampere-turns for armature core = 6×4 =	20
Total	4020

Therefore ampere-turns per pole-piece at no load = 4020.

It thus appears that, for practical purposes, it is much more direct to proceed as in the above example than to go through a laborious calculation of the total reluctance of the magnetic circuit, incidentally bringing in the permeability and other factors, as described in many text-books.

FIELD WINDING FORMULA

In making field winding calculations, the following formula is of great service:

$$Lb. = \frac{31 \times \left(\frac{\text{Ampere-feet}}{1000}\right)^2}{\text{watts}}$$

in which

Lb. = Pounds of copper per spool.

Ampere-feet = Ampere-turns × mean length of one turn, expressed in feet.

Watts = watts consumed in the spool at 20 deg. Cent.

This formula is derived as follows:

Resistance between opposite faces of a cubic inch of commercial copper at 20 deg. Cent. = .00000068 ohms.

If length in inches = L, and cross-section in square inches = S, then

$$R = \frac{.00000068 \text{ L}}{8}$$

$$8 \text{ L} = \frac{.00000068 \text{ L}}{R}$$

Let l = mean length of one turn in inches.

t = number of turns.

$$lt = L$$

$$S L = \frac{.00000068 l^{2} t^{2}}{R}$$
$$= \frac{.00000068 C^{2} l^{2} t^{2}}{C^{2} R}$$

 $\frac{C l t}{12} = \text{ampere-feet (ampere-turns} \times \text{mean length of one turn in feet.)}$

 $C l t = 12 \times ampere feet.$

 $C^2 l^2 t^2 = 144 \text{ (ampere-feet)}^2$.

 $C^{2}R = watts$

$$8 L = \frac{.68 \times 144 \times \left(\frac{\text{ampere-feet}}{1000}\right)^2}{\text{watts}}$$

Lb. = .32 S L =
$$\frac{.32 \times .68 \times 144 \times \left(\frac{\text{ampere-feet}}{1000}\right)}{\text{watts}}$$

Lb. =
$$\frac{31 \times \left(\frac{\text{ampere-feet}}{1000}\right)^2}{\text{watts}}$$

Figs. 139 and 140. Typical Magnetic Circuits and their Saturation Curves

FIGS. 141 AND 142. TYPICAL MAGNETIC CIRCUITS AND THEIR SATURATION CURVES

Figs. 143 and 144. TYPICAL MAGNETIC CIRCUITS AND THEIR SATURATION CURVES

TYPICAL MAGNETIC CIRCUITS AND THEIR SATURATION CURVES Figs. 145 and 146.

Application to Calculation of a Spool Winding for a Shunt-Wound Dynamo

Thus, suppose the case of a machine for which it had been determined that 5,000 ampere-turns per spool would be required. Assume that the mean length of one turn is 4.0 ft. Then

$$\left(\frac{\text{ampere-feet}}{1000}\right)^2 = \left(\frac{5000 \times 4}{1000}\right)^2 = 400.$$

FIGS. 147 AND 148. TYPICAL MAGNETIC CIRCUIT AND SATURATION CURVE

The radiating surface of the spool may be supposed to have been 600 square inches. After due consideration of the opportunities for ventilation, it may be assumed to have been decided to permit .40 watts per square inch of radiating surface at 20 deg. Cent. (it, of course, increasing to a higher value as the machine warms up).

... watts = 600 × .40 = 240 per spool.
... lb. copper per spool =
$$\frac{31 \times 400}{240}$$
 = 52 lb.

This illustrates the application of the formula, but it will be of interest to proceed further and determine the winding to be used.

A six-pole machine will be taken, designed for separate excitation from a 250 volt exciter. In order to have room for adjustment, as well as

to allow for probable lack of agreement between the calculated and actual values, it is desirable to have but 220 volts at the winding terminals under normal conditions of operation. This is 220/6 = 36.7 volts per spool.

The conditions as regards ventilation indicate a rise of 30 deg. Cent. in the temperature of the spool winding under the conditions of operation. Then the watts per spool are:

$$1.17 \times 240 = 280$$
 watts at 50 deg. Cent. Amperes = $\frac{280}{36.7} = 7.6$ Turns per spool = $\frac{5000}{7.6} = 655$

And as the mean length of one turn is 4.0 ft., the total length of winding is:

$$655 \times 4 = 2620 \text{ ft.}$$
Pounds per 1000 ft. = $\frac{52}{2.62} = 19.8$

From the Table of properties of commercial copper wire, it will be found that No. 12 B. and S. has 19.8 lb. per 1000 ft., and is, therefore, the proper size. Generally, the desired value for the pounds per 1000 ft. does not come out very nearly like that of any standard size of wire. In such a case the winding may be made up of two different sizes of wire, one smaller and the other larger than the desired size. Generally, however, it is sufficiently exact to take the nearest standard size of wire.

Suppose the space inside the spool flanges to have been 10 in. long, then, after insulating, $9\frac{1}{2}$ in. would probably be available for winding. From the Table of properties of commercial copper wire it will be found that double cotton-covered No. 12 B. and S. has a diameter of .091 in. Therefore it should have 9.5/.091 = 105 turns per layer. The plan is to take only 100 turns per layer, so as to have a margin.

Number of layers =
$$655/100 = 6.6$$
 layers.

Therefore, the winding will consist of 6.6 layers of 100 turns each, of D.C.C. No. 12 B. and S., and will require 220 volts at its terminals when warm, it carrying 7.6 amperes.

Calculations relating to the compounding coils of machines will be given later, after the theory of armature reaction has been developed.

It is now proposed to give experimentally determined no-load saturation curves for several different types of machines, together with sufficient of the leading dimensions of the machines to enable the results to be profitably studied and compared. In the case of Fig. 139, page 140, two machines were tested, the fields being the same, but one armature having slots as shown at A and B, and the other as shown at C, D, and E. The armature coils used in the tests were those in slots A and C respectively. For figuring the flux in the case of A, the "form factor" was taken as 1.25. For C, the "form factor" was taken as 1.11. In the case of a winding at B, the results would probably have corresponded to an appreciably different "form factor" from that used for A. In the tests the coils contained in the slots B were not employed.

Figs. 149 and 150. Curves for Calculating Hysteresis and Eddy-Current Losses in Transformer Cores

The saturation curves A and C exhibit the results and show the total reluctance of the magnetic circuit to be substantially the same for the two cases. In Figs. 140 to 148, inclusive, pages 140 to 144, eight other examples are given, the necessary data accompanying the figures.

MAGNETIC CIRCUIT OF THE TRANSFORMER

The following example will give a general idea of the considerations involved in the calculation of the magnetic circuit of a transformer, and will illustrate the use of B-H and hysteresis and eddy-current curves:

Ten-kilowatt Transformer.—The magnetic circuit is shown in the sketch (Fig. 151, page 148). Primary voltage = 2000 volts. Secondary voltage = 100 volts. Primary turns = 2340, periodicity 80 cycles per second. E = 4 F.T.N.M. $\times 10^{-8}$. Assume that the transformer is to be used on a circuit having a sine wave of electromotive force. The "form factor" of a sine wave is 1.11; hence

$$F = 1.11$$

 $2000 = 4 \times 1.11 \times 2340 \ 80 \times M \times 10^{-8}$
 $M = 240,000 \ lines = .24 \ megalines.$

Effective cross-section of magnetic circuit = $3.13 \times 3.13 \times .90^1 = 8.8$ square inches.

Density = 27.3 kilolines per square inch.

First calculate the magnetising component of the leakage current. From curve B of Fig. 25 (page 28), we find that at a density of 27.3 kilolines there is required about three ampere-turns of magnetomotive force per inch length of magnetic circuit.

Mean length of magnetic circuit = 59.5 in.

... Require magnetomotive force of $59.5 \times 3 = 179$ ampere-turns.

There are 2340 turns.

... Require a maximum current of
$$\frac{179}{2340}$$
 = .077 amperes.

$$R.M.S. current = \frac{.077}{\sqrt{2}} = .054$$
 amperes.

Next estimate the core loss component of the leakage current. Weight of sheet iron = $59.5 \times 8.8 \times .282 = 148$ lb. At 80 cycles and 27.3 kilolines, Fig. 149 shows that there will be a hysteresis loss of $.6 \times .48 = .8$ watts per pound.

Volts per turn per square inch of iron cross-section = $\frac{2000}{2340 \times 8.8}$ = .097. From Fig. 150 the eddy current loss is found to be .21 watts per pound.

Consequently, the hysteresis and eddy current loss will be .48 + .21 = .69 watts per pound. Total iron loss = $148 \times .69 = 102$ watts. Core loss component of leakage current = $102 \div 2000 = .051$ R.M.S. amperes.

¹ Ninety per cent. of the total depth of laminations is iron, the remaining 10 per cent. being japan varnish or paper for insulating the laminations from each other.

Resultant leakage current = $\sqrt{.054^2 + .051^2} = .074$ amperes. Full load current = $\frac{10,000}{2,000}$ 5.0 amperes.

Consequently the resultant leakage current = 1.4 per cent. of the full-load current. Core loss = 1.02 per cent. of the full-load rated output.

Example.—Find the core loss and the leakage current for the same transformer with the same winding when running on a 2,200 volt, 60 cycles circuit.

MAGNETIC CIRCUIT OF THE INDUCTION MOTOR

In Fig. 152 is represented the magnetic structure of a six-pole threephase induction motor. The primary winding is located in the external

Figs. 151 and 152. Magnetic Circuit of a Transformer of an Induction Motor

stator, which has 54 slots. There are 12 conductors per slot, consequently $12 \times 54 = 648$ total face conductors, 324 turns, and 108 turns in series per phase. The motor is for 100 volts, and 60 cycles, and its primary windings are Δ connected. When run from a sine wave circuit, we have

$$110 = 4 \times 1.11 \times 108 \times 60 \times M \times 10^{-8}$$

M = .38 megalines.

Before proceeding to the calculations directly concerned in the determination of the magnetising current for the magnetic circuit of this induction motor, it will be necessary to study the relations between magnetomotive force and flux distribution in this type of magnetic circuit and winding.

In Fig. 153 a portion of the gap face of the primary is developed along a straight line, and the slots occupied by the three windings are lettered A, B, and C. The relative magnitudes of the currents in the three windings at the instant under consideration are given numerically immediately under the letters, and the relative directions of these currents are indicated in the customary manner by points and crosses. The instant chosen is that at which the current in phase A is at its maximum, denoted by 1, the currents in B and C then having the value .5.

The curve plotted immediately above this diagram shows the distribution of magnetic flux in the gap, at this instant, on the assumption that the gap density is at each point directly proportional to the sum total of the magnetomotive forces at that point. Thus the magnetic line which, in closing upon itself, may be conceived to cross the gap at the points

Fig. 153. Curve of Distribution of M. M. F. in Induction Motors

M and N, is linked with the maximum ampere turns. Taking the instantaneous current in conductors of phase A as 1, and in phases B and C as .5, and for the moment considering there to be but one conductor per slot, the total linkage of ampere turns with the line m n is $3 \times 1 + 6 \times .5 = 6$, and the maximum ordinate is plotted at this point with the value 6.

In the same way the other ordinates are plotted. From this curve it appears that the resultant of the magnetomotive forces of the three phases at the points M and N is twice the maximum magnetomotive force of one phase alone. This is a general property of such a three-phase winding.

Moreover, an analysis of the curve shows the maximum ordinate to be approximately 1.7 times as great as the average ordinate. But this is only in this particular case. With different numbers of slots per pole-piece, this value would vary, and, owing partly to the increased reluctance in the high density teeth, the curve would tend to be smoothed out and become less peaked.

The above considerations are sufficient, as they enable us to determine the maximum values of magnetomotive force and flux, and it is from such values that the maximum magnetising current is derived. But it will be of interest to refer also to Fig. 154, in which are represented the conditions one-twelfth of a complete cycle (30 deg.) later, when the current in phase B

Fig. 154. Curve of Distribution of M. M. F. in Induction Motors

has become zero, the current in phases A and C having become .867. Figs. 153 and 154 represent the limiting values between which the resultant magnetomotive force fluctuates as the magnetic field proceeds in its rotatory course about the magnetic structure. Various experimenters have shown this small variation in intensity to be, in practice, practically eliminated. An examination of the diagrams, Figs. 153 and 154, shows that the maximum ordinates are 6 and 5.2 respectively, which corresponds to the theoretical ratio of

$$\frac{\sqrt{3}}{2}:1=1:1.16.$$

From Fig. 152 the following cross-sections of the magnet circuit per pole-piece at different positions are obtained:

A.	Cross-section of air gap per pole-piece at face of st	tator,	i.e.,	Sq. in.
	surface area of exposed iron of projections			21
В.	Ditto for rotor face			21
C.	Cross-section at narrowest part of projections in stator	• • • •		10
D.	Cross-section at narrowest part of projections in rotor			8
E.	Cross-section of stator laminations above slots			10
F.	Cross-section of rotor laminations above slots			8

FLUX DENSITY

				Average.		Maximum.		
Α.	•••	•••	•••	18 kilolin	e s	30.7 1	kilolines	
В.	•••			18 ,,		30.7	"	
C.	•••		•••	3 8 ,,	•••	64.8	"	
D.	•••	•••	•••	48 "	•••	82	"	
E.	•••	•••	•••		•••	3 8	"	
F.	•••				•••	48	"	

The depth of the air gap is $\frac{3}{64}$ in. (.047 in.), and the ampere-turns for the air gap amount to

$$.313 \times 30{,}700 \times .047 = 450.$$

For the iron there will be required about 8 ampere-turns per inch of . length of the magnetic circuit, which, through the teeth at maximum density, is about 9 in.

Ampere-turns for iron =
$$8 \times 9 = 72$$

Total ampere-turns per pole-piece = $450 + 72 = 522$.

Magnetomotive force of the three phases is equal to twice the maximum ampere-turns per pole-piece per phase. There are 18 turns per pole-piece per phase, therefore, letting C = R. M. S. amperes per phase, we have

$$1.41 \times C \times 18 \times 2 = 552.$$

$$C = \frac{552}{1.41 \times 18 \times 2} = 10.9 \text{ amperes} = \text{magnetising current per phase.}$$

Taking the core loss at 300 watts, the friction at 150 volts, and the C² R loss running light, at 50 watts, gives a total power, running light, of 500 watts, or 167 watts per phase. Energy component of leakage current

per phase =
$$\frac{167}{110}$$
 = 1.5 amperes.

Resultant leakage current per phase = $\sqrt{10.9^2 + 1.5^2} = 11$ amperes. Ditto per line leading to motor $11 \times \sqrt{3} = 19$ amperes.

Letting power factor, running light, equal P, we have

$$P \times 11 \times 110 = 168$$

 $P = .14$.

EXAMPLES

The following examples relate to matters dealt with in the foregoing sections:

- 1. A three-phase generator has 24 poles, 36 slots, 20 conductors per slot, Y connection. Volts between collector rings at no load and 500 revolutions per minute = 3500. What is the flux from each pole-piece into the armature, assuming the curve of electromotive force to be a sine wave? (For type of winding, see Fig. 82, page 78.)
- 2. A continuous-current dynamo has a two-circuit single winding (drum). Its output is 100 kilowatts at 550 volts. The current density in the armature conductors is 1200 amperes per square inch. It has 668 face conductors. Mean length of one armature turn is 75 in.

What is the cross-section of the armature conductors?

What is the resistance of the armature from positive to negative brushes at 60 deg. Cent.?

The dynamo has six poles. If the speed is 200 revolutions per minute, what is the magnetic flux entering the armature from each pole-piece?

3. A six-pole continuous-current generator with a two-circuit, single winding, gives 600 volts with a certain field excitation and speed. There are 560 face conductors, arranged two per slot in 280 slots. If this winding is tapped off at two points, equi-distant with reference to the winding, what would be the alternating-current voltage at two collector rings connected to these points?

Assume the pole arc to be 60 per cent. of the polar pitch.

4. 100-kilowatt dynamo, 250 volts, 4 poles; 500 revolutions per minute; armature wound with a two-circuit, triple-winding; 402 face conductors arranged in 201 slots. Therefore $\frac{402}{2} = 201$ total turns. $\frac{201}{6}$

= 33.5 turns in series between brushes. $\frac{500 \times 2}{60}$ = 16.7 cycles per second.

$$250 = 4 \times 33.5 \times 16.7 \times 10^{-8}.$$

$$\therefore M = 11.2 \text{ megalines.} \quad \text{Take leakage factor} = 1.20.$$

Flux in magnet cores = $11.2 \times 1.20 = 13.5$ megs. Magnet cores of cast steel, and run at density of 95 kilolines per square inch, therefore cross-section = $\frac{13,500,000}{95,000} = 142$ square inches. Circular cross-section. Diameter = 13.5 in.

Length of armature core parallel to shaft = 16 in., of which 12 in. is solid iron, the remainder being occupied by ventilating ducts and the space lost by the japanning of the iron sheets. Diameter of armature = 30 in. Length of air gap = $\frac{1}{4}$ in. Length of magnet cores = 12 in. Length of magnetic circuit in yoke = about 24 in. per pole-piece. Yoke of cast iron and run at density of 35 kilolines. Tooth density = 120 kilolines. Core density = 70 kilolines. Therefore, depth of iron under teeth = $\frac{11,200,000}{2 \times 70,000 \times 12}$ = 6.7 in. Length of magnetic circuit in armature = 10 in. per pole-piece. Pole arc measured along the arc = 17.5 in. Cross-section of pole-face = 16 in. × 17.5 in. = 280 square inches.

Pole-face density = $\frac{11,200,000}{280}$ =	= 40 kilolines.
Ampere-turns per pole-piece for yoke =	$24 \times 60 = 1440$
Ampere-turns per pole-piece for mag-	
netic core =	$12 \times 50 = 600$
Ampere-turns per pole-piece for teeth = 1.	$.5 \times 350 = 525$
Ampere-turns per pole-piece for arma-	
ture core ==	$10 \times 12 = 120$
Ampere-turns per pole-piece for air gap = .	$.25 \times 40,000 \times .313 = 3130$

Total ampere-turns per pole-piece at no load and 250 volts = 5815

CONSTANT POTENTIAL, CONTINUOUS-CURRENT DYNAMOS

The problems peculiar to the design of the continuous-current dynamo are those relating to commutation. The design of the magnetic circuit, and considerations relating to the thermal limit of output, to efficiency and to regulation, although matters of importance in obtaining a satisfactory result, are nevertheless secondary to the question of commutation; and they will consequently be considered incidentally to the treatment of the design from the commutating standpoint.

Under the general class of constant potential dynamos are included not only dynamos designed to maintain constant potential at their terminals for all values of the current output, but also those to maintain constant potential at some distant point or points, in which latter case the voltage at the generator terminals must increase with the current output, to compensate for the loss of potential in the transmission system.

In the commutating dynamo, great improvement has been made in the last few years in the matter of sparkless collection of the commutated current; in consequence of which, the commutator undergoes very little deterioration; and it is customary to require the dynamo to deliver, without harmful sparking, any load up to, and considerably in excess of, its rated output, with constant position of the brushes. This has been made necessary by the conditions of service under which many of these machines must operate; and the performance of such machines is in marked contrast to that of the dynamos of but a few years ago, in which the necessity of shifting the brushes forward in proportion to the load was looked upon as a matter of course. The change has been brought about by the better understanding of the occurrences during commutation, and to the gradual acquisition of data from which satisfactory constants have been deduced. One of the most important factors has been the very general introduction of high-resistance brushes, the use of copper brushes now generally being resorted to only for special purposes.

Radial bearing carbon brushes are now used very extensively, and

although they were at first considered to be applicable only to high potential machines, where the quantity of current to be collected would not require too large and expensive a commutator, their use has been extended to low-voltage machines of fairly large output, the advantages being considered to justify the increased cost of the commutator. Various types of brushes have been developed, intermediate in resistance between carbon and copper, and different grades of carbon brushes, from high-resistance grades with fine grain for high potential machines, to grades of coarser grain and lower resistance for low potential machines. A corresponding development has been taking place in the design of brush-holding devices. In the construction of the commutator, care is now taken to insulate the segments by mica, which shall wear at as near as possible the same rate as the copper segments; and the construction of the commutator has now reached a stage where uneven bars and other sources of trouble of earlier days now no longer give concern. Of less importance, owing to the greatly increased durability of the modern commutator, are the modes of construction whereby sectors of the commutator may be renewed without disturbance to the remainder of the commutator. This is a method much employed in large commutators. Amongst the examples of modern dynamos which follow the discussion of matters of design, will be found illustrations of various types of commutator construction.

The advance thus briefly summed up, in the mechanical design and in the careful choice of material for brushes, brush holders, and commutators, has been in no small measure responsible for the improvement in commutating dynamos; and, when accompanied by correct electro-magnetic proportions, has enabled manufacturers to dispense, in machines for normal conditions, with the many ingenious but complicated windings and devices arranged to modify sparking by the use of various electro-magnetic principles requiring auxiliary windings, subsidiary poles, and other additions. Some of these non-sparking devices accomplish their purpose very effectively; but, notwithstanding the care and ingenuity displayed in their application, it does not appear likely that it will be commercially profitable to resort to them, except in the case of dynamos to be driven by steam turbines and of motors for very high speeds, since the careful application of ordinary methods appears to have already brought the constant potential commutating dynamo to that stage of development where the thermal limit of output of armature and field is reached below that output where harmful sparking occurs. Further improvement rendering it permissible to use more

highly-conducting brushes without encountering sparking, would of course result in a saving in the cost of the commutator, and from some source or other such improvement may appear. But as the saving can apparently only be effected at the commutator, it will not be sufficient in amount not to be more than offset by the increased cost of resorting to any of the auxiliary windings and devices yet proposed.

ARMATURE REACTION

The study of the problems relating to sparking resolves itself down principally to the study of the reaction of the armature, which will now be considered and illustrated with relation to its influence upon the proportioning of commutating dynamos, the choice of windings, and, finally, by descriptions of some modern dynamos.

When discussing the formulæ for electromotive force and the design of the magnetic circuit, it was pointed out that considerations relating to armature reaction make it necessary to modify the conclusions arrived at when these phenomena are left out of consideration. The formula for the electromotive force $E = K T N M 10^{-8}$, has already been given. Additional conditions are, however, imposed by the necessity of giving T, the turns, add M, the flux, such relative values as to fulfil the conditions necessary to obtain sparkless collection of the current, and satisfactory regulation of the voltage, with varying load.

The requirements for commutating or reversing the current in the coil that is to be transferred from one side of the brush to the other, consist in so placing the brushes that when the coil reaches the position of short-circuit under the brushes, it shall have just arrived in a magnetic field of the direction and intensity necessary to reverse the current it has just been carrying, and to build up the reversed current to a strength equal to that of the current in the circuit of which it is about to become a part. In such a case, there will be no spark when the coil passes out from the position of short circuit under the brush. Now it is plain that, as the current delivered from the machine is increased, it will require a stronger field to reverse in the coil this stronger current. But, unfortunately, the presence of this stronger current in the turns on the armature, so magnetises the armature as to distort the magnetic field into a position in advance of the position of the brushes, and also to weaken the magnetic flux. The brushes must therefore be shifted still further, whereupon the demagnetising effect of the armature is again intensified. Finally, a current output will be reached at which sparkless collection of the current will be impossible at any position, there being nowhere—by the time the brushes are moved to it—any place with sufficient strength of field to reverse and build up to an equal negative value the strong armature current, during the time the coil is passing under the brush.

These distorting and demagnetising effects of the armature current are made quite plain by the diagrams given in Figs. 155 to 157, page 158, in which the winding is divided into demagnetising and distorting belts of conductors.

In Fig. 155 the brushes are in the neutral zone, and the current is distributed in the two sets of conductors, so as to tend to set up a flux at right angles to that which, the armature carrying no current, would be set up by the field. The resultant flux will be distorted toward the forward pole tip, considered with reference to the direction Therefore, at this position of the brushes, the electromagnetic effect of the armature is purely distortional. Similarly, if, as in Fig. 156, the brushes were moved forward through 90 deg. until they occupied positions opposite the middle of the pole faces, and if in this position, current were sent through the brushes into the armature (the armature with this position of the brushes being incapable of generating current), the electromagnetic effect of the armature would be purely demagnetising, there being no component tending to distort the field; and in any intermediate position of the brushes, such, for instance, as that shown in Fig. 157, the electromagnetic effect of the armature current may be resolved into two components, one demagnetising, and due to the ampere turns lying in the zone defined by two lines $(\alpha \alpha)$ drawn perpendicularly to the direction of the magnetomotive force of the impressed field, and passing through the forward position of the two brushes, and the other component due to the ampere turns lying outside of the zone, and purely distortional in its tendency. Fig. 157, of course, represents roughly the conditions occurring in actual practice, Figs. 155 and 156 being the limiting cases, shown for explanatory purposes.

In this connection, it will be of interest to give the results of a test on armature reaction. A small four-pole iron-clad generator of 17-kilowatt capacity, at 250 volts, with a four-circuit single-winding, was tested with regard to the distribution of the magnetic flux in the gap. For this purpose the gap was divided up into a number of sections,

from each of which successively an exploring coil was withdrawn. The coil was in circuit with a resistance box, and with the moveable coil of a Weston voltmeter. From the deflections and the total resistances of the circuit, the intensity of the flux at different portions of the gap was determined. These determinations were made with the armature at rest. As shown on the curves of Fig. 158, readings were taken, first with the field excited, but with no current in the armature (curve A), and then with full-load current

Figs. 155 to 157. Diagrams of Distorting and Demagnetising Effects of Armature Current

in the armature, and for various positions of the brushes. With the brushes at the neutral point (curve B), the distortion is at a maximum, but there is no demagnetisation. It would have been expected that the distortional crowding of the lines would have so increased the maximum density as to slightly diminish the total flux at the excitation used, this excitation being maintained at a constant value throughout the test. The integration of curves A and B, however, gives equal areas, consequently there was in this case no diminution of the total flux.

But when the brushes are shifted over to the middle of the pole face

(curve E), the demagnetisation becomes very marked, as may be seen not only by the shape of the curve, but by its total area which is proportional to the total flux, but there is no longer any distortion. This last curve (curve E), representing the flux distribution corresponding to the position of the brushes at the middle of the pole face, should have been symmetrical, its lack of symmetry possibly being due to variation in the depth of the gap.

Fig. 158. Curves of Gap Distribution of Magnetic Flux with Various Leads of Brushes

Dr. Hopkinson¹ has made experiments upon the distribution of the magnetic flux in the air gap of two Siemens Brothers' bipolar dynamos, the results of which correspond very closely with his calculations with reference to the influence of armature reaction. A

¹ "Original Papers on Dynamo Machinery and Allied Subjects." By John Hopkinson. Whittaker and Co., London, 1893.

D

E

similar analysis of the curves of Fig. 158 also confirms the theory of armature reaction. The machine experimented upon had a four-circuit drum-winding, with 79 coils of six turns each, in 79 slots in the periphery. There were, therefore, $\frac{79 \times 6}{4} = 119$ turns per pole piece on the armature. The armature current being 71.5 amperes, there were $71.5 \div 4 = 18$ amperes per turn; consequently, $119 \times 18 = 2140$ ampere turns per pole piece on the armature. The area of the curves, which are proportional to the flux entering the armature, are as follows:

```
A. 49 square centimetres = 100 per cent.
B. 49 ,, ,, = 100 ,,
C. 36 ,, , = 74 ,,
D. 27 ,, ,, = 55 ,,
E. 20 ,, ,, = 41 ,,
```

For curves A and B, the demagnetising component is zero, there being, however, in the case of B, maximum distortion, which would have been expected to so increase the maximum gap density as to cut down the total flux due to the 3000 field ampere turns per pole piece. This was not, however, the case.

In curves C, D, and E, the demagnetising component of the armature strength rose to $\frac{1}{3} \times 2140 = 710$ at C, $\frac{2}{3} \times 2140 = 1420$ at D, and to the full strength of 2140 ampere turns at E. These results can be tabulated as follows:

1	2	3	4	5	6	7
Designa- tion of Curve.	Percentage that Flux Entering Armature is of Total Flux at no Load. Determined from Area of Curves of Fig. 147.	Field Ampere Turns, Maintained Constant throughout the Tests.	Armature Ampere Turns, Maintained Constant throughout the Tests.	Demagnetising Component of Armature Ampere Turns determined from Position of Brushes. See Dia- grams of Figs. 144, 145, and 146.	Ampere Turns, Determined from Columns 3	Percentage that Resultant Am- pere Turns are of no Load Ampere Turns, Determined from Column 6.
A	100	3000	0	0	3000	100
В	100	3000	2140	0	3000	100

TABLE XXXVIII

The large percentage of flux in curve E (41 per cent.), as compared with the small percentage of resultant ampere turns (29 per cent.), is

explained by the fact that with the brush at the middle of the pole face, as was the case in curve E, many of the armature turns are so situated in space as not to be linked with the entire flux, and consequently cannot be so effective in demagnetisation. In other words, the armature turns are uniformly distributed, instead of being concentrated in a coil placed so as to fully oppose the field coils. The extent of this non-effectiveness is proportionate to the pole arc, but with the positions of the brushes which would occur in practice, the demagnetising component of the armature ampere turns would be fully effective.

It will be observed that for curves A, B, C and D, the proportion of flux to resultant ampere turns is very close.

The above experiments show that the effect of the distorting component of the total ampere-turns, in decreasing the total effective flux, is in this case negligible. The authors have, however, made further tests, and have found that this is only the case in machines with a low saturation of the teeth, and generally also a deep air-gap.

To clear up this subject, a study of armature demagnetisation was carried out by the authors on the 550-kilowatt, 550-volt, ten-pole, slow-speed (90 revolutions per minute) generator, described in detail further on (see Index). During all the tests, which will here be described, the brushes were set with a lead of eight segments, and the series spools were disconnected. The terminal voltage, the armature current, and the field magnetomotive force, were measured, and are set forth in the first three columns of Table XXXIX. The values in Column III. are obtained by subtracting the values in Column III. for zero armature current, from the following values in Column III. with increasing armature current.

The influence of the distorting ampere-turns may be obtained by subtracting from the total armature reaction the components due to ohmic drop and to armature demagnetisation.

The armature winding of this machine consists of ten parallel circuits of 90 turns per circuit (i.e., per pole). As there is one turn per segment, the number of segments per pole is also 90. A displacement of the brushes by eight segments corresponds therefore to $2 \times 8 = 16$ demagnetising turns per pole, or to $\frac{16 \times C}{10}$ demagnetising ampere-turns per pole, where C is the total armature current. These values are given in Column v, Table XXXIX. The ohmic drop per ampere in the armature and brush

TABLE XXXIX

Brush Lead = 8 Segments.

I.	II.	III.	IV.	₹.	VI.	VII.	VIII.	IX.	X.	XI.
Terminal Voltage, Volta.	Armature Current, Amperes.	Field Magnetomotive Force, Ampere Turns per Pole.	Field Magnetomotive Force Required to Overcome Arma- ture Interference (M).	Demagnetising, Ampere Turns per Pole (G).	Ohmic Drop in Volts.	Ampere Turns for Over- coming Ohmic Drop, from Saturation Curve (H).	G + H.	Field Ampere Turns for Overcoming Distortion, F = M - (G + H).	Total Distortioning Ampere Turns, 7.4 × Armsture Current (D).	F in Percentage of Total Distortioning Ampère Turns (D).
400	0	4,650	0	0	0	0	0	0	0	
400 400	300	5,350 6,100	700	480	4.5	85	565	135	2220	6.1 13.8
400	500	6,100	1450	800	7.3	142	942	508	3700	13.8
40 0	690	6,800	2150	1110	10.3	195	1305	845	5100	16.5
450	0	5,600 6,680 7,250	0	0	0	0	0	o	0	0
450	335	6,680	1080	530	5	100	630	450	2480	17.0
450	570	7,250	1650	915	8.5	170	1085	565	4220	13.4
450	785	8,750	3150	1250	11.7	235	1485	1665	5800	29.9
500	0	6,630	0	0	0	0	0	0	0	' <u>-</u>
500	380	7,660	1030	610	5.7	140	750	280	2810	10.0
500	650	9,050	2420	1040	9.7	240	1280	1140	4810	23.7
500	870	10,300	3670	1400	13.0	325	1725	1945	6440	30.2
550	0	7,980	0	0	0	0	0	0	0	
550	420	9,340	1320	670	6.3	190	860	460	3110	14.7

contact is about 0.015 volts, therefore the ohmic drop = 0.015 C volts, and is given in Column vi.

The ampere-turns necessary to overcome the ohmic drop (Column vii.) may be estimated from the saturation curve given in Fig. 159, page 164. The ampere-turns, F, remaining after deducting these two components, G and H, from the total armature demagnetisation, are given in Column ix., and represent the magnetomotive force required for overcoming distortion. The total distorting ampere-turns, D, on the armature per pole are equal to 9.0 C - 1.6 C = 7.4 C. These values are set forth in Column x. The percentages which, F, the field ampere-turns required for overcoming distortion (values in Column ix.), bear to, D, the total distorting ampereturns on the armature (values in Column x.), are set forth in Column x.

This percentage varies somewhat erratically, as must be expected in rough tests on so large a machine; but with the exception of one out of

TABLE XI.—Calculation of Field Ampere-Turns Required to Overcome Armature Interference, 550 Kilowatts, 10 Pole, 90 R.P.M. Railway Generator

GENERATOR
RAILWAY
R.P.M.
Polk, 90
$\overline{}$

+0.6	+0.8	+4.8	-3.7	+1.5	-3.0	+0.4	-3.0	-2.1	-0.8
5,350	6,100	6,800	6,680	7,250	8,750	7,660	9,050	10,300	9,300
5,381	6,148	7,125	6,428	7,360	8,485	7,690	8,775	10,085	9,230
4650	4650	4650	2600	2600	2600	6630	6630	9830	1980
*8	142	195	100	170	235	140	240	325	190
8	8	110	530	916		610			029
188	556	1170	198	929	400	310	865	130	390
0.075	0.15	0.23	90.0	0.16	0.24	0.11	0.18	0.27	0.125
0.54	0.89	1.21	0.53	0.89	1.21	0.52	0.87	1.14	0.45
2220	3700	5100	2480	4220	2800	2810	4810	6440	3110
8	22	69	33.5	0.73	78.5	88	99	28	24
300	200	6 6	335	220	786	280	920	870	420
4120	4160	4220	4690	4750	4790	5440	2280	5630	0069
4040	4080	4140	4560	4600	4630	2080	5150	6170	9209
0.375	:	2	:	:	:	:	:	:	:
34,500	34,800	35,300	38,700	39,200	39,300	43,200	43,500	43,900	48,000
8	8	8	130	150	160	360	410	460	1200
03	:	:	•	:	•	:	:	•	
88	88	88	8	92	81	178	203	529	610
92,000	93,500	95,000	104,000	105,000	106,000	113,500	114,000	115,000	125,000
l		_	9	8	8	8	8	8	
92,000	93,500	96,000	104,000	106,000	106,000	116,000	117,000	117,500	129,000
15 92,000	15.2 93,500	15.4 95,000	16.9 104,00	17.1 106,00	17.2 106,0	18.9 116,0	19.0 117,0	19.1 117,5	21.0 129,0
	38 2 80 34,500 0.375 4040 4120 300 30 2220 0.54 0.075 168 480 85 4650 5,381 5,350	38 2 80 34,500 0.375 4040 4120 300 30 2220 0.54 0.075 168 480 85 4650 5,381 5,350 38 ,, 80 34,800 ,, 4080 4160 500 50 50 0.15 556 800 142 4650 6,148 6,100	38 2 80 34,500 0.375 4040 4120 300 30 2220 0.54 0.075 168 480 85 4650 5,381 5,350 38 ,, 80 34,800 ,, 4080 4160 500 50 50 0.89 0.15 556 800 142 4650 6,148 6,100 38 ,, 80 35,300 ,, 4140 4220 690 69 5100 1.21 0.23 1170 1110 195 4650 7,125 6,800	38 2 80 34,500 0.375 4040 4120 300 30 2220 0.54 0.075 168 480 85 4650 5,381 5,380 38 80 34,800 4080 4160 50 50 60 69 5100 1.21 0.23 11701110 195 4650 7,125 6,800 66 130 38,700 4660 335 33.5 2480 0.63 0.08 198 530 100 5600 6,428 6,680	38 2 80 34,500 0.375 4040 4120 300 30 2220 0.54 0.075 168 480 85 4650 5,381 5,350 38 80 34,800 4080 4160 50 50 50 0.15 556 80 142 4650 6,148 6,100 38 80 35,300 4140 4220 69 69 5100 1.21 0.23 1170 110 196 4650 7,126 6,800 66 4560 4690 335 33.5 2480 0.53 108 196 67 108 67 67 108 108 67 100	38 2 80 34,500 0.375 4040 4120 300 30 2220 0.54 0.075 168 480 85 4650 5,381 5,350 38 80 34,800 4080 4160 500 60 <td>38 2 80 34,500 0.375 4040 4120 300 30 2220 0.54 0.075 168 480 85 4650 5,381 5,380 38 80 34,800 4080 4160 50 50 60 6.89 0.15 556 80 142 4650 5,125 6,100 38 80 35,300 4140 4220 69 69 5100 1.21 0.23 1170 110 195 4650 7,125 6,800 66 130 38,700 4600 4750 570 0.89 0.16 675 140 170 5600 7,360 7,250 76 160 39,200 4630 4790 78.5 580 0.16 140 126 140 150 140 150 140 150 140 140 140</td> <td>38 2 80 34,500 0.375 4040 4120 300 30 2220 0.54 0.075 168 480 85 4650 5,381 5,380 38 80 34,800 4080 4160 50 50 60 6.59 6.15 6.69 6.16 6.69 6.16 6.69 6.10 6.89 6.12 6.60 6.42 6.80 6.48 6.10 6.89 6.10 6.89 6.11 6.80 6.42 6.80 6.42 6.80 6.42 6.80 6.42 6.80 6.42 6.60 6.22 6.60 6.23 1.70 1.70 1.70 1.70 1.70 6.80 6.428 6.80 6.428 6.80 6.428 6.80 6.428 6.80 6.428 6.80 6.62 6.80 6.62 6.80 6.82 6.80 6.75 6.80 6.75 6.80 6.75 6.80 6.16 6.75 6.80</td> <td>38 2 80 34,500 0.375 4040 4120 300 30 2220 0.54 0.075 168 480 85 4650 5,381 5,380 38 80 34,800 4080 4160 50 60</td>	38 2 80 34,500 0.375 4040 4120 300 30 2220 0.54 0.075 168 480 85 4650 5,381 5,380 38 80 34,800 4080 4160 50 50 60 6.89 0.15 556 80 142 4650 5,125 6,100 38 80 35,300 4140 4220 69 69 5100 1.21 0.23 1170 110 195 4650 7,125 6,800 66 130 38,700 4600 4750 570 0.89 0.16 675 140 170 5600 7,360 7,250 76 160 39,200 4630 4790 78.5 580 0.16 140 126 140 150 140 150 140 150 140 140 140	38 2 80 34,500 0.375 4040 4120 300 30 2220 0.54 0.075 168 480 85 4650 5,381 5,380 38 80 34,800 4080 4160 50 50 60 6.59 6.15 6.69 6.16 6.69 6.16 6.69 6.10 6.89 6.12 6.60 6.42 6.80 6.48 6.10 6.89 6.10 6.89 6.11 6.80 6.42 6.80 6.42 6.80 6.42 6.80 6.42 6.80 6.42 6.60 6.22 6.60 6.23 1.70 1.70 1.70 1.70 1.70 6.80 6.428 6.80 6.428 6.80 6.428 6.80 6.428 6.80 6.428 6.80 6.62 6.80 6.62 6.80 6.82 6.80 6.75 6.80 6.75 6.80 6.75 6.80 6.16 6.75 6.80	38 2 80 34,500 0.375 4040 4120 300 30 2220 0.54 0.075 168 480 85 4650 5,381 5,380 38 80 34,800 4080 4160 50 60

the ten total observations, the values show that it is a function of the total distortion and of the saturation of the teeth and air-gap.

Let D = total distorting ampere-turns per pole.

Let F = field ampere-turns for overcoming D, the total distorting ampere-turns per pole.

Then the ratio $\frac{\mathbf{F}}{\mathbf{D}}$ may be obtained from Fig. 160, in which it is plotted as a function of the ratio $\frac{\mathbf{D}}{\mathbf{S}}$, where

S = ampere-turns required for air gap and teeth.

Fig. 160. Curves for Calculating the Influence of Distorting Ampere-Turns

The higher the tooth saturation the more one will approach the upper limit of the shaded area in Fig. 160, and vice versa.

It will now be of interest to work from this data as a basis for illustrating the application of this method of determining the total field excitation required for a given load and voltage. This is carried out in Table XL., on the preceding page, for the 10-pole 550-kilowatt machine, on which the experimental data was obtained.

Application of these Considerations to the Proportioning of Dynamos

If it were not for the effects due to the electromagnetic reaction of the armature, the proportioning of dynamos would resolve itself

into a determination of those values of T and M in the formula E = KTNM \times 10⁻⁸, which would, with a minimum cost of material, give the desired current and voltage; suitable cross-section of copper and iron being chosen, to secure immunity from excessive heating. suppose the problem should arise, of the best design for a 500-volt 100-kilowatt generator, to run at 600 revolutions per minute. The current output is 200 amperes. Let us try a two-pole drum winding with 10 face conductors. Then T = 5; N = 10; $500 = 4 \times 5 \times 10 \times M \times 10^{-8}$, M =The armature iron could not properly be run at 250,000,000 lines. more than 100,000 lines per square inch. Therefore, the cross-section of the armature = 2500 square inches at least. It thus appears that the armature would have to be 50 in. in diameter and 50 in. long, or else some other equally extreme dimensions. The field turns would be of great length, and as the air-gap density would be very high, there would be need for very many field ampere turns. Without carrying the calculations any farther, it is apparent that, as regards cost of materials alone, the machine would be poorly designed.

On the other hand, suppose the armature had 2000 face conductors. Then T = 1000; $500 = 4 \times 1000 \times 10 \times M \times 10^{-8}$, M = 1,250,000 lines. Necessary cross-section = 12.5 square inches as far as regards transmitting the flux. Therefore, the magnet cores would be 4 in. in diameter. But to have on the armature 2000 face conductors, each carrying 100 amperes, would require a very large armature, probably as large a diameter as was necessary in the former case; but then it was a question of carrying a large magnetic flux, which determined the size of the armature. In this case we should have a very large weight of armature copper, and though the other material would not cost much (if we look no further into the matter of field copper than relates to that necessary to obtain the required flux at no load), nevertheless, on the score of material alone, some intermediate number of conductors would be found to give a more economical result.

INFLUENCE OF ARMATURE STRENGTH IN THESE TWO EXTREME CASES

In the first case, that of the armature with only five turns, three would have been but $\frac{5 \times 100}{2} = 250$ ampere-turns per pole-piece on the armature, which, as far as armature reaction effects are concerned, would

be entirely negligible; but, as relates to the collection of the current, there would be $\frac{500}{2.5} = 200$ average volts between commutator segments, and this would have corresponded to such a high inductance per coil as to have rendered quite impossible the reversal of 100 amperes, 20 times per second, with any ordinary arrangement of commutator and brushes.

In the other case (that of the machine with 1000 armature turns), there would have been one volt per turn, a value which, with the methods of construction generally employed, would correspond to a very low inductance indeed; but there would have been on the armature $\frac{1000 \times 100}{2} = 50,000$ ampere - turns per pole-piece, which would completely overpower the field excitation, and the design would be entirely out of the question.

We find, therefore, that while in the first case the armature strength is small, the voltage between segments is excessive. In the second case the voltage between segments is small; the armature is altogether too strong. With but two poles, some intermediate value would have to be sought for both quantities; probably something like 100 turns would give a fairly good result.

CONDITIONS ESSENTIAL TO SPARKLESS COMMUTATION

As a consequence of armature reaction and inductance, it becomes not only desirable but necessary to limit the armature strength to such an amount (at full load current) as shall not too greatly interfere with the distribution and amount of the magnetic flux set up by the magnet spools. It is furthermore necessary to make each armature coil between adjacent commutator segments of so low inductance as to permit of the complete reversal of the current by means of the residual flux in the commutating field. The location and amount of this residual flux is determined by the strength of the armature, and the position of the brushes and the reluctance of the gap. To best understand the method of fulfilling these conditions, attention should be given to the following illustrations, which lead up to a very definite method for assigning the most desirable electromagnetic proportions to constant potential dynamos, particularly with reference to the determination of the proper number of poles.

DETERMINATION OF THE NUMBER OF POLES FOR A GIVEN OUTPUT

Suppose we want a 50-kilowatt 400-volt bipolar generator. We conclude to limit the armature strength to 3000 ampere-turns per pole-piece, and the volts per commutator segment to 16 volts (a very high limit): Amperes output = $\frac{50,000}{400}$ = 125 amperes. Therefore, each conductor carries $\frac{125}{2}$ = 62.5 amperes. Turns per pole-piece = $\frac{3,000}{62.5}$ = 48, *i.e.*, 96 total turns. $\frac{400}{16}$ = 25 commutator segments between brushes, or 50 total commutator segments. Therefore $\frac{96}{50}$ = about two turns per coil (*i.e.*, per commutator segment).

In the 100 kilowatt machine for the same voltage, to retain the same strength of armature, and the same volts per commutator segment, we must have only one turn per coil.

For these values of armature strength and volts per commutator segment we have now reached the limiting output, and the problem arises What shall be done in the case of a machine of twice the size, in this case 200 kilowatts, if the type of winding remains the same? We cannot have less than one turn per commutator segment, so we find that in a bipolar machine it will be necessary to either double the armature strength, in which case we can retain the low voltage per commutator segment, or we can double the voltage per commutator segment, and keep the armature strength of the same low value used in the previous cases; or we can compromise by raising both limits to a less extent. This latter plan is that which would be adopted to retain the bipolar design. But the result would be unsatisfactory as regards sparking, and even though it could be made passable at this output, the same question would arise with the next But by the use of a multipolar design, the difficulty is entirely larger size. Suppose we let our 200-kilowatt 400-volt machine, have four Then there will be four paths through the armature, each carrying a quarter of the total current. Amperes output = $\frac{200,000}{400}$ = 500 amperes. Therefore, amperes per conductor = $\frac{500}{4}$ = 125. The turns per pole-piece $=\frac{3000}{125}=24$. We have, also, 24 commutator segments per pole-piece, giving $\frac{400}{24} = 16.6$ volts per commutator segment.

It might thus appear that a machine can be made to operate entirely satisfactorily as regards sparking, by designing it with a suitable number of poles. While this is the case over a wide range of speeds and voltages, certain difficulties are ultimately encountered with increasing speed, especially for machines of high voltage. A consideration of this must be reserved until after we have treated the subject of the "reactance voltage."

MULTIPLE-CIRCUIT WINDINGS

With multiple-circuit windings, the armature strength and the volts per bar may be reduced to any desired extent by sufficiently increasing the number of poles, except in so far as limitations of cost, peripheral speed, and the practicable minimum width of segment, intervene. Thus, suppose that in a certain case the conditions given are that the armature strength of a 500-killowatt 600-volt generator shall be 4000 ampere-turns per polepiece, and that there may be 15 volts per commutator segment. Then the number of poles would be determined as follows:

Commutator segments per pole-piece $\frac{600}{15} = 40$.

Therefore, 40 turns per pole-piece. $\frac{4000}{40} = 100 \text{ amperes per armature branch.}$ Full load current $\frac{500,000}{600} = 833 \text{ amperes.}$ Therefore, we want $\frac{833}{100} = 8 \text{ poles.}$

But suppose it were considered advisable that this generator should have only 3000 ampere-turns per pole-piece on the armature, and that it should have but 8 volts per commutator segment, then turns per

pole-piece =
$$\frac{600}{8}$$
 = 75.

Amperes per armature conductor
$$=\frac{3000}{75}=40$$

Therefore, number of poles $=\frac{833}{40}=20$.

Two-Circuit Windings

But in the case of two-circuit windings, these values cannot be adjusted by changing the number of poles, for the reason that the current divides into two paths through the armature, independently of the number of poles, instead of dividing into as many paths as there are poles.

Suppose, for example, that it were desired to use a two-circuit winding

in a 500-kilowatt, 600-volt generator, and to have 15 volts per commutator segment. Then:

Number of segments per pole-piece
$$=\frac{600}{15}=40$$
.
Full load amperes $=\frac{500,000}{600}=833$.
Amperes per turn $=\frac{833}{2}=417$.

Therefore, ampere-turns per pole-piece on armature = 40×417 = 16,700.

This would be impracticable. To reduce this to 6000 ampere-turns, the turns have to be reduced, and consequently the commutator segments, to $\frac{6000}{16,700} \times 40 = 14$ per pole-piece. There would then be $\frac{600}{14} = 43$ volts per commutator segment, which, with ordinary construction, would correspond to so high a reactance voltage in the short-circuited coil (in a machine of this output) as not to be permissible. Moderate values can only be obtained by interpolating commutator segments in accordance with some well-known method, or by the use of double, triple, or other multiple windings. Such methods generally give unsatisfactory results, and two-circuit windings are seldom used for machines of large output. When they are used, in such cases, exceptional care has to be taken to counteract their objectionable features by the choice of very conservative values for other constants.

MULTIPLE WINDINGS

But the use of multiple windings (such, for instance, as the double winding of Fig. 74, page 73), permits of employing two-circuit windings.

Thus, suppose in the case of the design of a 350-kilowatt, 250-volt generator, it appears desirable, when considered with reference to cost of material, or for some other reason, to use 14 poles; and that, furthermore, a two-circuit multiple winding is to be used. The question arises, how many windings shall be employed, in order to have only 9 volts per commutator segment, and to permit not over 5000 ampere-turns per pole-piece on the armature?

$$\frac{250}{9} = 28 \text{ commutator segments per pole-piece.}$$
Therefore, 28 turns per pole-piece.

Therefore, $\frac{5000}{28} = 180 \text{ amperes per turn.}$

Amperes output $= \frac{350,000}{250} = 1400 \text{ amperes,}$

$$\frac{1400}{180} = 7.8.$$

Therefore, there must be eight paths through the armature from the positive to the negative brushes. Consequently, a two-circuit quadruple winding is required.

It may, however, be well to again emphasise the fact that poor results generally follow from the adoption of such windings, except in cases where a width of commutator can be afforded which permits of dispensing with all but two sets of brushes.¹ By adopting such a width of commutator, one of the savings effected by the use of multipolar designs is lost. By careful designing, two-circuit double and sometimes two-circuit triple windings have given good results.

Two-Circuit "Coil" Windings

But two-circuit single windings can be very properly applied to machines of such small capacity, that, when good constants are chosen, they work out to have one or more turns per segment. It follows that, within certain ranges, any desired values of armature strength and volts per commutator segment may be obtained; not, however, by a suitable choice of poles, but by the use of a suitable number of turns between commutator segments. Suppose, for instance, a 10-kilowatt 100-volt generator, with an armature strength of 2,000 ampere turns per pole-piece, and with 5 volts per commutator segment.

Then

Segments per pole-piece =
$$\frac{100}{5}$$
 = 20

Full load current = $\frac{10,000}{100}$ = 100 amperes.

Amperes per conductor = $\frac{100}{2}$ = 50.

Turns per pole-piece = $\frac{2000}{50}$ = 40.

Therefore, $\frac{40}{20}$ = two turns per commutator segment.

If 3,000 ampere-turns had been permissible, we should have used $\frac{3000}{2000} \times 2 = 3$ turns per commutator segment.

Finally, it may be stated that two-circuit armatures are built multi-

¹ If only two sets of brushes are retained, the short-circuited set of conductors no longer consists of the two corresponding to one turn, but now includes as many in series as there are poles. A high reactance voltage is consequently present in this short-circuited set. The presence of the full number of sets of brushes, if correctly adjusted, *should* reduce this, but cannot in practice be relied upon to do so.

polar mainly from considerations of cost, and should not be used for large outputs except in special cases.

Aside from the reasons dependent strictly upon the magnetic limit of output, it may be said that two-circuit windings are more or less unsatisfactory whenever the output is so large as to require the use of more than two sets of brushes (in order to keep the cost of the commutator, and the "reactance voltage"—to be discussed later—within reasonable limits), because of the two-circuit windings lacking the property of compelling the equal subdivision of the current among all the sets of brushes used. Selective commutation occurs, one set of brushes carrying for a time a large part of the total current; this set of brushes becoming heated. This trouble is greater the greater the number of sets of brushes, and the practicability of two-circuit windings may be said to be inversely as the number of poles. If, however, in multiple circuit windings the part of the winding opposite any one pole-piece should tend to take more than its share of the current, the increased armature demagnetisation and CR drop tends to restore equilibrium, this property constituting a great advantage.

VOLTAGE PER COMMUTATOR SEGMENT AS RELATED TO INDUCTANCE

As already stated, the average voltage between commutator segments, although it can be relied on to give good results, if care is used in special cases, is not a true criterion of the inductance of a coil. For, in different types, this expression may have the same value for coils of different inductances.

Thus, if the design is for an armature in which the conductors are located in holes beneath the surface, the inductance will be very high, and it would be necessary to limit the average voltage per commutator segment to a very low value. If the slots are open, the inductance will be somewhat lower, and in a smooth core construction with the winding on the surface, the inductance is very low. In this latter case, a much higher value for the average volts per commutator segment could be used.

The possible value also varies according to whether carbon or copper brushes are used. Carbon¹ brushes may be much less correctly set and still have sparkless commutation, due to the high resistance of

¹ There has lately been a tendency amongst some designers to attribute still other properties to high-resistance brushes, and even to maintain that they play an important part,

the brush limiting extreme variation of current in the short-circuited coil; as well as because the brushes are not so subject to injury through this cause, as would be the case with copper brushes; consequently, the average volts per commutator segment may be permitted to be three or four times as great as with copper brushes, without endangering the durability either of the brushes or of the commutator; and on account of this, it is found desirable to increase the density in the air-gap to correspond with this higher inductance between commutator segments.

We have now shown that although the preliminary design for a commutating machine may be arrived at from the maximum permissible armature reaction and the number of commutator segments per pole necessary for good commutation, the average voltage between the commutator segments is not the ultimate expression as regards commutation. The ultimate expression must be in terms of the inductance of the coil or coils included between a pair of commutator bars.

In general, commutation occurs when a coil is in a feebly magnetised field, so that the inductance can be approximately calculated from the

not only in limiting the short-circuit current, but in accelerating the building up of the reversed current. However, one would feel inclined to hold that the main element in the commutating, i.e., stopping and reversing of the current, is attributable to the influence of the residual commutating field; and that while the carbon brush aids in promptly arresting the original current, it is perhaps of still more importance in virtue of its possessing a certain inertness in combination with the copper commutator segments which renders the sparking much less destructive than between copper brushes and copper segments. It has the property of burnishing the commutator, giving it a lustrous refractory surface.

The following bibliography comprises the most recent contributions to the discussion of the subject of sparking in commutating dynamos:—

Reid.—"Sparking: Its Cause and Effects." Am. Inst. Elec. Engrs.; December 15th, 1897. Also The Electrician, February 11th, 1898.

Thomas.—"Sparking in Dynamos." The Electrician, February 18th, 1898.

Girault.—"Sur la Commutation dans les Dynamos à Courant Continu." Bull. de la Soc. Int. des Electr., May, 1898, vol. xv, p. 183.

Dick.—"Ueber die Ursachen der Funkenbildung an Kollektor und Bürsten bei Gleichstrom-Dynamos." Elek. Zeit., December 1st, 1898, vol. xix, p. 802.

Fischer-Hinnen.—Ueber die Funkenbildung an Gleichstrom-Maschinen." Elek. Zeit., December 22nd and 29th, 1898, vol. xiv, pp. 850 and 867.

Arnold.—"Die Kontactwiderstand von Kohlen und Kupferbürsten und die Temperaturerhohung eines Kollektors." Elek. Zeit., January 5th, 1899, vol. xx, p. 5.

Kapp.—Die Funkengrenze bei Gleichstrom-Maschinen." Elek. Zeit., January 5th, 1899, vol. xx, p. 32.

Arnold and Mie.—"Ueber den Kurschluss der Spulen und die Kommutation des Stromes eines Gleichstromankers." Elek. Zeit., February 2nd, 1899, vol. xx, p. 97.

magnetomotive force of the coils, and the reluctance of the magnetic circuit around which the coils act. The frequency of reversal is determined from the brush and the commutator speed.

The commutated current consists of two components: one a wattless magnetising component, and the other an energy current, due firstly to the dissipation of energy by C² R loss in the coil, and secondly to eddy currents generated internally in the copper conductors, and in the surrounding mass of metal.

It follows from this that there is a loss increasing with the load in commutating machines due to the commutation of the currents. There are also other load losses in commutating machines, brought about by the distortion and the increasing magnetisation in the iron, so that the hysteresis and eddy current losses increase from no load to full load, as also the eddy current losses in the armature conductors themselves.¹ It has been generally assumed on the part of designers that these losses in the armatures of commutating dynamos do not increase with the load. This, however, is incorrect. The increase does exist, and is in general of

Hobart.—"Modern Commutating Dynamo Machinery, with Special Reference to the Commutating Limits." *Proc.* Inst. Elec. Engrs., 1901, vol., xxxi. p. 170.

Alexander Rothert.—"Wie viel Kollektorlamellen soll eine Gleichstrommaschine haben?" Elek. Zeit., 1902, Heft. 15, p. 309.

Emil Dick.—"Funkenlose Kommutirung." Elek. Zeit., 1902, Heft. 18, p. 369.

E. Arnold.—"Beitrag zur experimentellen Untersuchung von Gleichstrommaschinen." Elek. Zeit., 1902, Heft. 25, p. 469.

Karl Pichelmeyer.—"Zur Theorie der Stromwendung." Elek. Zeit., 1902, Heft. 29, p. 623.
Franklin Punga.—"Beitrag zur Theorie der Stromwendung." Zeit. für Elek., 1902, Heft. 30. 31. 32.

Friedrich Eichberg.—"Ueber kompensirte Gleichstrommaschinen." System Deri, 1902, Heft. 37, p. 817.

Alexander Rothert.—"Beitrag zur Theorie der Stromwendung." Elek. Zeit., 1902, Heft. 39, p. 865.

P. Prenzlin.—"Ueber funkenfreies Kommutiren des Stromes von Gleichstrommaschinen mit Kohlenbürsten bei Vor-und Rücklauf der Maschine und konstanter Bürstenstellung in der neutralen Linie." *Elek. Zeit.*, 1902, Heft. 43, p. 933.

Karl Czeija.—"Kommutationsvorgänge in Gleichstrommaschinen." Sammlung Elektrotechnischer Vorträge, Stuttgart, Ferd. Euke, 1903.

Adolf Railing. — Ueber Kommutierungsvorgänge und zusätzliche Bürstenverluste." Sammlung Elektrotechnisher Vorträge, Stuttgart, Ferd. Euke, 1903.

Karl Pichelmeyer.—"Die Stromwendung in Kommutirenden Maschinen." Zeit. für Elek., 1904, Heft., 1, p. 1.

Franklin Punga.—"Das Funken von Kommutatormotoren, mit besonderer Berücksichtigung der Einphasen-Kommutatormotoren. Hannover, Gebr. Jänecke.

¹ See Fig. 114, on page 110, for experimental confirmation of this statement.

the same nature as the increase in these losses in alternators, due to the load, although they may be restricted to a greater extent by proper designing. The effect of the induced eddy currents on commutation is often appreciable, since the frequency of commutation is generally from 200 to 700 cycles per second. For this reason, calculations on inductance in reference to commutation have to be considered with reference to the particular construction of the armature core. Constants as to inductance are, therefore, best determined by actual measurements. In practice, a good average expression is, that one ampere turn will give a field of 20 C.G.S. lines per inch of length of armature core.

It is convenient to assume this as a basis upon which to work out a design. As the design develops, the figures should be corrected according to the dimensions selected. This is the most satisfactory method, and several tests will be described, the results of which have a direct bearing upon the value of the constant. By a study of these results one may determine the most desirable proportions to give to the armature slot in order to bring the inductance down to, or even below, the value of 20 C.G.S. lines per ampere turn and per inch of length of armature lamination. In cases where it is impracticable to use such slot proportions as shall give the minimum value, the tests afford an indication of the value to be used. It is, of course, very desirable that such experiments should be independently carried out on the particular line of commutating dynamo with which the individual designer is concerned. In this connection, that is, in relation to inductance in commutating dynamos, interest attaches, not to the inductance of the armature winding as a whole, as in the case of alternating-current dynamos,2 but to the inductance of those components of the winding which simultaneously undergo commutation at the brushes. In well-designed dynamos of this

¹This method has subsequently been developed by one of the authors (see *Proc.* Inst. Elec. Engrs., 1901, vol. xxxi., p. 170; and also "Technics," vol. i, page 60, et seq., to a greater degree of exactness, by dividing the inductance into the two components associated respectively with the end connections ("free length") and the slot portions ("embedded length"). While this method is preferable, and is now widely employed, it would not have materially modified the conclusions arrived at in the present treatise, and hence the original method is adhered to in this edition.

² Rotary converters contain the elements of both these types, and in their subsequent treatment it will appear that, while the coil undergoing commutation should have the least practicable inductance, the inductance of the coils in series between collector rings must have a suitable value, for reasons entirely other than those related to commutation.

type such coils will, at the time of commutation, be located in the space between pole-tips, practically at the position of minimum inductance. The measurement of this inductance was the object of the tests now to be described.

PRACTICAL DEFINITION OF INDUCTANCE

A coil has an inductance of one henry when it is situated in a medium of such permeability, and is so dimensioned that a current of one ampere sets up a magnetic flux of such a magnitude that the product of the number of lines linked with the coil, by the number of turns in the coil, is equal to 100,000,000. If the coil has but one turn, then its inductance, expressed in henrys, becomes 10⁻⁸ times the number of lines linked with the turn when one ampere is passing through it. If the coil has T turns, then not only is the magnetomotive force T times as great (except in so far as saturation sets in), but this flux is linked with T turns; hence the product of flux and turns, i.e., the total linkage, the inductance of the coil, is proportional to the square of the number of turns in the coil.

DESCRIPTION OF EXPERIMENTAL TESTS OF INDUCTANCE

First Experiment.—In Fig. 161 is shown a sketch of a commutating dynamo with a projection type of armature with a four-circuit single winding. The inductance of several groups of coils was measured with a 25-cycle alternating current, and the results, together with the steps of the calculation, are set forth in the following Tables.

TABLE XLI.—MINIMUM INDUCTANCE

Conductors in position of minimum inductance are in the commutating zone, i.e., midway between pole corners.

Number of Turns Under Test.	Amperes in these Turns.	Volts.	Impe- dance in Ohms.	Resist- ance in Ohms.	React- ance in Ohms.	Induct- ance in Henrys.	C.G.S. Lines per Ampere Turn and per Inch of Length of Lamination.
4	75	.594	00790	.00692	.00388	.0000247	15.0
5	65	.728	.0120	.00865	.00708	.0000450	18.0
6	68	.944	.0139	.0104	.00930	.0000592	16.5

The air gap of this machine was afterwards shortened from its original depth of about .188 in. to about .1 in., and the inductance in the position of

maximum inductance was again measured. In the position of minimum inductance, the values are unaffected by the depth of the air gap.

Second Experiment.—A commutating dynamo, illustrated in Fig. 162,

Figs. 161 to 165. Diagrams Illustrating Tests of Inductance

has a four-circuit single winding consisting of 75 coils of three turns each, arranged in 75 slots. Tests with 25-cycle alternating current were made on the inductance of from one to five adjacent coils, and the results are set forth in Table XLIV.

TABLE XLII.—MAXIMUM INDUCTANCE

Conductors in position of maximum inductance are under the middle of the pole-faces.

Number of Turns Under Test.	Amperes in these Turns.	Volta.	Impe- dance in Ohms.	Resist- ance in Ohms.	React- ance in Ohms.	Induct- ance in Henrys.	C.G.S. Lines per Ampere Turn and per Inch of Length of Lamination.
2	73	.391	.00535	.00346	.00407	.0000260	65.0
3	71	.730	.0103	.00529	.00890	.0000567	63. 0
4	$\left\{egin{array}{c} 60 \ 23 \end{array} ight\}$	\{\begin{aligned} \{1.096\} \\ .378\end{aligned}	.0174	.00692	.0159	.000102	63.5
5	22	.594	.0270	.00865	.0256	.000163	65.0
6	22	.770	.0350	.0104	.0333	.000212	59.0

TABLE XLIII.—Conductors in Position of Maximum Inductance with Shortened Air Gap

Number of Turns Under Test.	Amperes in these Tests.	Volts.	Impedance in Ohms.	Resist- ance in Ohms.	React- ance in Ohms.	Induct- ance in Henrys.	C. G. S. Lines per Ampere Turn and per Inch of Length of Lamination.
1	80.5	.189	.00235	.00173	.00138	.00000876	87.6
2 2	40.0 78.0	$.230 \\ .472$.00575	.00346	.00452	.0000288	72.0
3	20.5	.256	.0125	.00519		1	
3 3	39.0 76.5	.500 1.02	.0128	.00519	.0116	.0000735	81.5
4	20.5	.432 .850	.0210	.00692	.0202	.000129	80.5
4 5	38.0 19.5	.640	.0224	.00692 \$.00865	.0315	.000200	80.0
6	19.7	.915	.0465	.0104	.0452	.000288	80.0

Hence shortening the air gap has increased the inductance in the position of maximum inductance by about 27 per cent.

TABLE XLIV .- Position of Minimum Inductance

Number of Coils Under Test.	Number of Turns Under Test.	Amperes.	Volts.	Impedance in Ohms.	Resist- ance in Ohms.	React- ance in Ohms.	Induct- ance in Henrys.	C.G.S. Lines per Ampere Turn and per Inch of Length of Lamination.
3	9	63	2.25	.0357	.0309	.0173	.000110	15.5
4	12	58	3.00	.0518	.0412	.0308	.000197	15.6
5	15	52	3.70	.0710	.0515	.0482	.000307	15.6
			Position	of Maxim	um Indu	ctance		•
1	3	61	.75	.0123	.0103	.00655	.000042	53
2	6	58	1.95	.0339	.0206	.0268	.000171	54
3	9	52	3.45	.0668	.0309	.0590	.000376	53
4	12	21	2.30	.111	.0412	.103	.000655	52
4 5	15	20	3.20	.165	.0515	.156	.00099	50
	İ							

Attention should again be drawn to the fact that it is the minimum inductance, which corresponds to the inductance in the position of commutation, which is of chief interest in the present section.

Tables XLII. and XLIII., and the last half of Table XLIV., relating to the position of maximum inductance, are useful for a correct understanding of the relation of the proportions of the magnetic circuit of the armature coil to the resulting inductance, but are not directly applicable to the conditions obtaining during commutation.

Third Experiment.—Tests were made with 60-cycle alternating current upon the inductance of a six-pole commutating generator, the armature of which had 166 slots with a six-circuit single-winding of 166 complete coils, each of two turns. Fig. 163, page 176, gives the dimensions. The results are set forth in Table XLV.

TABLE XLV.—Position of Minimum Inductance

Number of Coils Under Test.	Number of Turns Under Test.	Am- peres.	Volts.	Impedance	Mean Impe- dance.	Resist- ance in Ohms.	React- ance in Ohms.	Induct- ance in Henrys.	C.G.S. Lines per Ampere Turn and per Inch Length of Armature Lamination.
1 1	2 2	98.5 126.5	.46 .585	.00467	.00465	.0015	.00439	.0000117	26.0
2 2 2	4 4 4	85.0 95.7 105.	1.42 1.62 1.79	.0167 .0169 .0169	.0168	.0030	.0165	. 000044 0	24.5
3 3 3	6 6 6	65.3 75.0 87.0	2.24 2.60 3.00	.0343 .0346 .0345	.0345	.0045	.0342	.000091	21.8
4 4 4	8 8 8	65.5 76.0 87.0	3.74 4.36 5.00	.0571 .0573 .0575	.0573	.0060	.0570	.000152	21.1
			Positi	on of Mo	aximum	Inducta	nce		
1 1 1	2 2 2	89.8 95.2 111.8	.71 .77 .91	.0078 .0081 .0081	.0080	.0015	.0078	.0000208	46.3
2 2 2	4 4 4	71.0 78.0 84.2	2.24 2.42 2.60	.0316 .0310 .0309	.0312	.0030	.0310	.000082	45.6
3 3 3	6 6 6	72.3 83.7 89.3	4.68 5.38 5.74	.0648 .0643 .0643	.0644	.0045	.064	.000170	42.0
4 4 4	8 8 8	66.6 77.0 86.3	7.14 8.32 8.9	.1072 .1062 .1032	.1052	.0060	.105	.000279	38.8

Fourth Experiment.—This relates to the carcass of a 30 horse-power railway armature, the leading dimensions of which are indicated in Fig. 164, page 176. Only four coils, of three turns each, were in position in four adjacent armature slots. The armature was out of its field frame, which was equivalent to its being in the position of minimum inductance. The testing current was supplied at a frequency of 100 cycles per second. Gross length of armature lamination = 8.5 in. The results obtained are set forth in the following Table:

TABLE XLVI.—Position of Minimum Inductance

Number of Coils Under Test.	Number of Turns in these Coils.	Amperes in these Turns.	Volts at Ter- minals.	Impe- dance in Ohms.	Resist- ance in Ohms.	React- ance in Ohms.	Induct- ance in Henrys.	C.G.S. Lines po Ampere Turn and per Inch Gross Length of Armature Lamination.
1	3	55.5	1.11	.0200	.0085	.0181	.0000286	37.4
ī	3	47.0	.94	.0200	.0085	.0181	.0000286	37.4
1	3	34.0	68	.0201	.0085	.0182	.0000287	37.5
1	3	31.5	.62	.0195	.0085	.0176	.0000278	37.7
2	6	51.9	2.78	.0536	.017	.0507	.000080	26.2
2 2 2 2	6	42.5	2.27	.0536	.017	.0507	.000080	26.2
2	6	36.3	1.97	.0542	.017	.0513	.000081	26.2
2	6	31.4	1.71	.0545	.017	.0517	.000082	26.7
3	9	23.7	2.27	.0960	.026	.0924	.000147	21.4
3	9	18.9	1.84	.0974	.026	.0937	.000149	21.6
3	, 9	16.9	1.62	.0959	.026	.0921	.000146	21.2
3	9	15.8	1.50	.0947	.026	.0910	.000145	21.1
4	12	19.8	2.91	.147	.034	.143	.000227	18.5
4	12	15.9	2.51	.158	.034	.154	.000245	20.0
4	12	14.4	2.15	.149	.034	.145	.000230	18.8
4	12	12.4	1.88	.152	.034	.148	.000235	19.2

Mean of the	four observation	ons for three to	urns		 	 		37.5
,,	,,	six	,,		 	 	• • •	26.4
,,	,,	nine	,,	•••	 •••	 •••		21.3
,,	13	twelve	,,		 •••	 		19.1

Fifth Experiment.—Fig. 165, page 176, gives a sketch showing the leading dimensions of the dynamo experimented upon. The armature was in place in the cast-steel frame. Testing current had a periodicity of 100 cycles per second. The gross length of the armature lamination = 8.7 in. The results are given in Table XLVII.

TABLE XLVII.—Position of Minimum Inductance

Number of Coils Under Test.	Number of Turns in these Coils.	Amperes in these Turns.	Volts at Ter- minals.	Impedance in Ohms.	Resist- ance in Ohms.	React- ance in Ohms.	Induct- ance in Henrys.	C.G.S. Lines per Ampere Turn and per Inch Gross Length of Armature Lamination.
1	3	39.0	.838	.0215	.0065	.0205	.0000330	42.2
	3	43.5	.941	.0216	.0065	.0206	.0000332	42.4
1 1	3		•			1		
1	3	46.0	.992	.0216	.0065	.0206	.0000332	42.4
2	6	20.0	1.18	.0590	.0130	.0584	.0000924	29.5
	6	21.5	1.24	.0577	.0130	.0562	.0000324	28.6
2 2 2	6	24.0		.0580	.0130	.0565	.0000899	
2			1.39				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	28.8
Z	6	25.0	1.45	.0581	.0130	.0565	.0000900	28.8
3	9	14.9	1.84	.124	.0195	.122	.000194	27.6
3	9	16.9	2.05	.122	.0195	.120	.000191	27.2
3	9	18.9	2.29	.122	.0195	.120	.000191	27.2
3	9							
3	9	20.9	2.52	.121	.0195	.119	.000190	26.9
4	12	13.4	2.46	.184	.026	.182	.000290	23.2
$\hat{f 4}$	12	14.8	2.74	.185	.026	.183	.000291	23.3
4	12	15.8	3.01	.190	.026	.188	.000299	23.9
4	12	18.3	3.44	.188	.026	.186	.000296	23.7
*	12	10.0	3.44	.100	.020	.100	.000290	20.1
	M 6 Ab	1		<u> </u>	1	1	1	10.0
	MIGHT OF TU	e observatio			•••			42.3
	"	,,	six	.,	•••	•••		28.9
	**	,,	nir	.,,	•••		•••	27.2
	"	,,	tw	elve "	•••		•••	23.5

Sixth Experiment.—This experiment was made in respect to the inductance of an armature of a 25 horse-power tramway motor.

The following data applies to this armature:—

Diameter of arms	ture						• • •	16 in.
Number of slots			•••					105
,, coils					•••	•••	•••	105
Turns per coil			•••		•••			4
Conductors per s	lot		•••	•••			•••	12
Gross length of a	rmatur	e lamin	ations					8 in.

The inductance tests were made with a current of a periodicity of 100 cycles per second.

Inductance measurements were made upon one, two, three, and four coils in series, and under the condition of minimum inductance, which was considered to correspond with the armature in air, and then with air gaps of various lengths arranged by a special pole-piece of laminated iron of the dimensions shown in Fig. 166, on page 181, which shows the pole-piece in place, with pieces of leatheroid between it and the armature. Owing to this pole-piece being of the same radius as the

armature, on inserting the leatheroids a gap was obtained which was larger at the inner edge of the pole-piece than at the outer (see Fig. 166), so that in the calculations and curves a mean gap is given.

Figs. 166 and 167.—Diagrams Illustrating Tests of Inductance

In Tables XLVIII. to LI. inclusive, and in the curves of Figs. 167 and 168, are given the results of these tests.

TABLE XLVIII.—ONE COIL OF FOUR TURNS PER COIL. RESISTANCE = 0.014 OHMS.

Amperes.	Volts.	Imped- ance.	Reactance.	Cycles per Second.	Inductance in Henrys.	C.G.S. Lines Per Ampere Turn and per Inch Length of Armature.	Mean.	Mean Air Gap.
23.75	1.08	_ .0455	.0433	97	.0000710	55,5	_	in.
23	1.07	.0466	.0444	97	.0000728	57.0	56.6	œ
20.2	.945	.0468	.0466	97	.0000732	57.2		1
23.5	1.325	.0562	.0549	99	.0000884	69.0		ł
22	1.268	.0576	.0558	99	.0000897	70.0	69.8	23 64
19.75	1.120	.0568	.0551	99	.0000887	69.3		••
20	1.385	.0693	.0678	99	.000109	85.2		
22.5	1.56	.0694	.0679	99	.000109	85.2	85.5	11 64
24	1.675	.0698	.0684	99	.000110	86.0		0.4
24.5	2.18	.0891	.0880	99	.000141	110.0		
20	1.725	.0863	.0852	99	.000137	107.0	108.2	3 3 2
22	1.91	.08 6 8	.0857	99	.000138	107.8		32
22	2.53	.1151	.1141	99	.000189	143.6		
20	2.29	.1145	.1137	99	.000183	143.0	142.5	3 64
18	2.03	.1128	.1119	99	.000180	141.0		0.4

TABLE XLIX.—Two Coils of Four Turns per Coil. Resistance = 0.033 Ohms.

Amperes.	Volts.	Impedance.	Reactance.	Cycles per Second.	Inductance in Henrys.	C.G.S. Lines per Ampere Turn and per Inch Length of Armature.	Mean.	Mean Air Gap.
01	0.04	1070	1010	00	000105	00.1		in.
21	2.64	.1256	.1212	99	.000195	38.1		
19	2.42	.1274	.1230	99	.000198	38.7	38.2	œ
17.5	2.18	.1245	.1202	. 99 :	.000193	37.8		
17	2.85	.1676	.1645	100	.000262	51.3		
15.5	2.61	.1680	.1646	100	.000262	51.3	51.0	23 64
13	2.15	.1655	.1620	100	.000258	50.4		04
13	2.81	.216	.213	100	.000340	66.4		
15	3.20	.213	.210	100	.000334	65.3	65.9	11
16.5	3.55	.215	.212	100	.000338	66.1	00.0	64
12.5	3.48	.278	.276	100	.000440	86.0		
11	3.03	.275	273	100	.000435	85.0	85.6	3 3 2
10	2.77	.277	.275	100	.000438	85.8		32
10	3.59	.359	.358	99	.000576	112.5		
9	3.20	.356	.355	99	.000572	111.7	111.6	3
1 ₀ 9 8	2.82	.353	.352	99	.000567	110.7		21

TABLE L.—THREE COILS OF FOUR TURNS PER COIL

Amperes.	Volts.	Impedance.	Reactance.	Cycles per Second.	Inductance in Henrys.	C.G.S. Lines per Ampere Turn and per Inch Length of Armature.	Mean.	Mean Air Gap.
	-			_				in.
15	3.6 8	.245	.240	99	.000386	33 .5		
13.5	3.35	. 24 8	.243	99	.000391	33.9	33.7	oc .
12	2.96	.246	.241	99	.000388	33.7		
10	3.47	.347	.344	98	.000558	48.5		
9	2.98	.331	.328	98	.000553	46.3	45.8	33 54
8	2.45	.306	.303	98	.000492	42.7	: !	
17	7.8	.458	.452	98		63.8		
15	6.75	.450	.447	98	.000726	63.0	63.2	11
14	6.3	.450	.447	98	.000726	63.0		
13	7.84	.603	.601	98	.000976	84.6	! !	
12	7.08	.590	.588	98	.000958	83.3	80.8	3 2
10	5.32		.530	98	.000863	74.7		32
18	14.6	.812	.811	98	.001317	114.2		
16	12.5	.782	.781	98	.001270	110.1	111.1	84
					.001210			64
15	11.6	.774	.773	98 TURNS P	.001255 ER COIL. RE	109.0 BISTANCE = .06	37 Онм	
15 TA	11.6	.774	.773 				37 Ohm Mean.	Mean Air
15 Ta	11.6	Four Co	.773	TURNS P	ER COIL. RE	BISTANCE = .06 C.G.S. Lines per Ampere Turn and per Inch Length of		Mean Air
TA Amperes.	11.6	.774 —Four Co Impedance.	.773 ILS OF FOUI Reactance.	Cycles per Second.	Inductance in Henrys.	C.G.S. Lines per Ampere Turn and per Inch Length of Armature.	Mean.	Mean Air (łap.
15 Ta Amperes. 19 17	11.6 BLE LI Volts. 7.42 6.47	.774 —Four Co Impedance390 .380	.773 ILS OF FOUI Reactance.	Cycles per Second.	Inductance in Henrys.	C.G.S. Lines per Ampere Turn and per Inch Length of Armature.		Mean Air (łap.
TA Amperes.	11.6 BLE LI Volts. 7.42	.774 —Four Co Impedance.	.773 ILS OF FOUI Reactance.	Cycles per Second.	Inductance in Henrys.	C.G.S. Lines per Ampere Turn and per Inch Length of Armature.	Mean.	Mean Air (łap.
15 Ta Amperes. 19 17	11.6 BLE LI Volts. 7.42 6.47	.774 —Four Co Impedance390 .380	.773 ILS OF FOUI Reactance.	Cycles per Second.	Inductance in Henrys.	C.G.S. Lines per Ampere Turn and per Inch Length of Armature.	Mean.	Mean Air (lap.
15 Ta Amperes. 19 17 14	7.42 6.47 5.32	.774 —Four Co Impedance390 .380 .380	.773 ILS OF FOUI Reactance385 .375	Cycles per Second.	Inductance in Henrys. .000613 .000598 .000598	C.G.S. Lines per Ampere Turn and per Inch Length of Armature.	Mean.	Mean Air (łap. in.
15 Ta Amperes. 19 17 14 15	7.42 6.47 5.32 8.23	.774 —Four Co Impedance390 .380 .380	.773 ILS OF FOUI Reactance385 .375 .375	Cycles per Second. 100 100 100	Inductance in Henrys. .000613 .000598 .000598	C.G.S. Lines per Ampere Turn and per Inch Length of Armature.	Mean.	Mean Air (łap.
15 Ta Amperes. 19 17 14 15 13	7.42 6.47 5.32 8.23 7.06	.774 —Four Co Impedance390 .380 .380 .544 .543	.773 ILS OF FOUI Reactance. .385 .375 .375 .539 .539	Cycles per Second. 100 100 100 100 100	Inductance in Henrys. .000613 .000598 .000598 .000872 .000871 .000802	C.G.S. Lines per Ampere Turn and per Inch Length of Armature.	Mean 29.5 41.5	Mean Air (lap. in.
15 TA Amperes. 19 17 14 15 13 11 10	7.42 6.47 5.32 8.23 7.06 5.48	.774 .—Four Co Impedance390 .380 .380 .544 .543 .500	.773 ILS OF FOUR Reactance. .385 .375 .375 .539 .538 .495	Cycles per Second. 100 100 100 100 100 100	Inductance in Henrys. .000613 .000598 .000598 .000872 .000871 .000802	C.G.S. Lines per Ampere Turn and per Inch Length of Armature. 29.9 29.3 29.3 42.6 42.6 39.2	Mean.	Mean Air (lap. in.
15 TA Amperes. 19 17 14 15 13 11	7.42 6.47 5.32 8.23 7.06 5.48	.774 .—Four Co Impedance390 .380 .380 .544 .543 .500	.773 ILS OF FOUR Reactance. .385 .375 .375 .539 .538 .495	Cycles per Second. 100 100 100 100 100 100 100	Inductance in Henrys. .000613 .000598 .000598 .000872 .000871 .000802	C.G.S. Lines per Ampere Turn and per Inch Length of Armature. 29.9 29.3 29.3 42.6 42.6 39.2 58.7	Mean 29.5 41.5	Mean Air (lap.
15 TA Amperes. 19 17 14 15 13 11 10 9	7.42 6.47 5.32 8.23 7.06 5.48 7.58 6.64	.774 .—Four Co Impedance390 .380 .380 .544 .543 .500 .758 .738	.773 ILS OF FOUR Resctance. .385 .375 .375 .539 .538 .495 .755 .735	Cycles per Second. 100 100 100 100 100 100 100 100	Inductance in Henrys. .000613 .000598 .000598 .000872 .000871 .000802 .00120 .00117	C.G.S. Lines per Ampere Turn and per Inch Length of Armature. 29.9 29.3 29.3 42.6 42.6 39.2 58.7 57.3	Mean 29.5 41.5	Mean Air (lap. in.
15 TA Amperes. 19 17 14 15 13 11 10 9 8	7.42 6.47 5.32 8.23 7.06 5.48 7.58 6.64 5.40	.774 .—Four Co Impedance390 .380 .380 .544 .543 .500 .758 .738 .672	.773 ILS OF FOUN Reactance. .385 .375 .375 .539 .538 .495 .755 .735 .672	Cycles per Second. 100 100 100 100 100 100 100 100 100	Inductance in Henrys. .000613 .000598 .000598 .000872 .000871 .000802 .00120 .00117 .00107	C.G.S. Lines per Ampere Turn and per Inch Length of Armature. 29.9 29.3 29.3 42.6 42.6 39.2 58.7 57.3 52.3	Mean 29.5 41.5	Mean Air (lap.
15 TA Amperes. 19 17 14 15 13 11 10 9 8	7.42 6.47 5.32 8.23 7.06 5.48 7.58 6.64 5.40	.774 .—Four Co Impedance390 .380 .380 .544 .543 .500 .758 .738 .672	.773 ILS OF FOUN Reactance. .385 .375 .375 .539 .538 .495 .755 .735 .672 1.117	Cycles per Second. 100 100 100 100 100 100 100 100 100 1	Inductance in Henrys. .000613 .000598 .000598 .000872 .000871 .000802 .00120 .00117 .00107	C.G.S. Lines per Ampere Turn and per Inch Length of Armature. 29.9 29.3 29.3 42.6 42.6 39.2 58.7 57.3 52.3	Mean 29.5 41.5	Mean Air (lap. in.
15 TA Amperes. 19 17 14 15 13 11 10 9 8 17 15 13	7.42 6.47 5.32 8.23 7.06 5.48 7.58 6.64 5.40 19.04 16.25 13.75	.774 .—Four Co Impedance390 .380 .380 .544 .543 .500 .758 .738 .672 1.12 1.082 1.057	.773 ILS OF FOUL Resctance. .385 .375 .375 .539 .538 .495 .755 .755 .735 .672 1.117 1.079 1.054	Cycles per Second. 100 100 100 100 100 100 100 100 100 1	Inductance in Henrys. .000613 .000598 .000598 .000872 .000871 .000802 .00120 .00117 .00107 .00178 .00178 .00172 .00170	C.G.S. Lines per Ampere Turn and per Inch Length of Armature. 29.9 29.3 29.3 42.6 42.6 39.2 58.7 57.3 52.3 87.0 84.2 83.2	Mean 29.5 41.5	Mean Air (lap.
15 TA Amperes. 19 17 14 15 13 11 10 9 8 17 15	7.42 6.47 5.32 8.23 7.06 5.48 7.58 6.64 5.40	.774 .—Four Co Impedance390 .380 .380 .544 .543 .500 .758 .738 .672 1.12 1.082	.773 ILS OF FOUN Reactance. .385 .375 .375 .539 .538 .495 .755 .735 .672 1.117 1.079	Cycles per Second. 100 100 100 100 100 100 100 100 100 1	Inductance in Henrys. .000613 .000598 .000598 .000872 .000871 .000802 .00120 .00117 .00107 .00178 .00178	C.G.S. Lines per Ampere Turn and per Inch Length of Armature. 29.9 29.3 29.3 42.6 42.6 39.2 58.7 57.3 52.3	Mean 29.5 41.5	Mear Air (†ap. in. co

The curves in Figs. 167 and 168 are plotted from the above results.

No results are given for the position of zero air gap, since great inaccuracy was introduced by the pole-piece not making a uniform magnetic contact each time it was replaced.

Seventh Experiment.—The armature of a 20 horse-power railway motor characterised by an especially small number of slots (twenty-nine) was measured as to inductance; and it is interesting to note that despite the concentration of many turns in each slot, the inductance as expressed in terms of the number of C.G.S. lines per ampere turn and per inch

Fig. 168.—Diagram Illustrating Tests of Inductance

length of armature lamination, is but very little greater than in machines with many slots and but few conductors per slot.

The principal dimensions of the armature are given below, and in Fig. 169, page 185.

Diameter of armature			•••	•••	 •••	11 in.
Number of segments			•••	•••	 	29
" coils			•••		 	87
Turns per coil					 	6
Conductors per slot					 	36
Gross length of armatur	e lami	nations	•••		 	9 in.
Length of air gap avera		•••	•••	• • • •	 	5 in.

The values for the position of minimum inductance were taken with the armature out of its frame; i.e., in air.

Figs. 169 to 171.—Diagrams of 20 Horse-Power Motor and Test Curves. 2 B

For the position of maximum inductance, the armature was in its frame with the coils under test directly under the pole-face. The pole-face was built of laminations.

Fig. 170 shows the arrangement of the coils in the slots, and also serves as a key to the combinations of coils taken. Taking slot 1, it was found that the inductance of coils A, B, and C were practically the same.

The results are plotted in Fig. 171. In the curve marked A, the turns are situated in one and the same slot except for the last point (i.e., twenty-four turns), in which case, eighteen turns were in one slot and six turns in the adjacent one. In curve B, the turns were situated six in each slot (i.e., one coil per slot), the slots being adjacent.

The observations are given below in tabulated form.

7	٠.	DT	70	т	TT
	ι Α	RI.	.R		

			L /	ARPR TITI			
Amperes.	Volts.	Impedance.	Mean Impedance.	Reactance.	Cycles per Second.	Inductance in Henrys.	C.G.S. Lines per Ampere Turn and per Inch Length of Armature.
		One Coil of 6	Turns. P	osition of M	inimum I	nductance	
		Slot 1	Coil B.	Resistance =	= .0230 oh	ms.	
15 17 19		.0793 .0782 .0784	.0786	.0752	97	.0001237	38.2
	Two	Coils of 6 Tu	rns per Coil	. Position	of Minima	um Inductance	!
			oils B and C		acc = .048		
8		.299	1		1	1	ı
10 11	=	.290 .291	.293	.289	97	.000476	36.7
	8	Slot 1, Coil E	3. Slot 2, C	oil B. Res	istance =	.049 ohms.	
10 13 15	_	.204 .199 .195	.199	.195	96	.000322	24.8
	Three	Coils of 6 T	urns per Coi	il. Position	of Minin	um Inductano	e
		-	s A, B, and		•		
9 11 13	5.78 6.68 7.7	.643 .607 .593	.614	.609	97	.0010	34.3
	Slot	1, Coils A a	nd B. Slot	2. Coil B.	Resistance	= .0722 ohm	B.
13 15 17	5.26 6.52 7.23	-	.412	.405	96	.000673	23.1
	Slot 1, C	oil B. Slot	2, Coil B.	Slot 3, Coil	B. Resist	ance $= .0722$	ohms.
13 15	4.4 5.08	.338 .339	.338	.330	96	.000548	18.1
15 17	5.08 5.72	.339 .336	.338	.330	96	.000548	18.1

TABLE LIL -Continued

	inimum Industanse
Four Coils of 6 Turns per Coil. Position of M	
Slot 1, Coils A, B, and C. Slot 2, Coil B. Resi	stance $= .0976$ ohms.
13 10.17 .782	.
15 11.5 .767 .772 .765 9	6 .001272 24.6
	l l
Slot 1, Coil A and B. Slot 2, Coils A and B. R.	esistance = .098 ohms.
8 6.02 .752	
$egin{array}{c c c c c c c c c c c c c c c c c c c $.001223 23.6
	1
Slot 1, Coils A and B. Slot 2, Coil B. Slot 3, Coil B.	Resistance = $.0984$ ohms.
8.5 5.45 .642	_
$egin{array}{c c c c c c c c c c c c c c c c c c c $	97 .001020 19.7
Slot 1, Coil B. Slot 2, Coil B. Slot 3, Coil B. Slot 4, Co	il B. Resistance = 0894 ohms.
10 5.25 .525	000004 150
13 6.65 .512 .511 .501 9	.000824 15.9
One Coil of 6 Turns. Position of Maxim	um Inductance
Slot 1, Coil B. Resistance = .023	2 ohms.
15 2.16 .144	
13 1.89 .145 .144 .142 10	01 .000224 69.2
10 1.42 .142	l l
Two Coils of 6 Turns per Coil. Position of Mo	ximum Inductance.
Slot 1, Coils B and C. Resistance = .	0649 ohms.
10 5.6 .56	
	00 .000877 67.7
8 4.4 .55	
Slot 1, Coil B. Slot 2, Coil B. Resistanc	e = .0479 ohms.
10 4.35 .435	1
	01 .000687 53.0
12 5.32 .443	1
Three Coils of 6 Turns per Coil. Position of M	Taximum Inductance.
Slot 1, Coils A, B, and C. Resistance	
15 19.2 1.28	1
	02 .0020 68.9
13 16.6 1.28	
Slot 1, Coils A and B. Slot 2, Coil B. Resis	tance = .0748 ohms.
9 9.6 1.07	1
	01 .00169 58.3
11 11.85 1.08	ı

TABLE LII.—Continued.

Amperes.	Volts.	Impedance.	Mean Impedance.	Reactance.	Cycles per Second.	Inductance in Henrys.	C. G. S. Lines per Ampere Turn and per Inch Length of Armature.
	Slot 1, Co	oil B. Slot 2	Coil B. S.	lot 3, Coil E	3. Resista	nce = .0739 o	hms.
11 12 13	9.2 10 10.85	.837 .834 .835	.835	.830	97	.00136	46.8
	Four (Coils of 6 Tr	urns per Co	il. Position	n of Maxin	num Inductan	ice '
:			nd C. Slo	t 2, Coil I	3. Resista	$\mathbf{ance} = .0984$	ohms.
12 13 14	23.3 25.3 27.3	1.94 1.95 1.95	1.94	1.94	103	.0030	59.2
	Slot 1, C	oils A and B	. Slot 2, Co	oils A and H	3. Resista	nce = .0992 o	hms.
12 13 15	22.4 24 27.6	1.87 1.85 1.84	1.85	1.85	101	.00292	57.6
Slo	t 1, Coils	A and B. S	lot 2, Coil E	3. Slot 3, C	Coil B. Re	sistance = .10	01 ohms.
13 15 17	20.7 23.6 26.5	1.59 1.57 1.56	1.57	1.57	101	.00247	48.7
Slot 1, C	oil B. Sl	ot 2, Coil B.	Slot 3 Co	oil B. Slot	4, Coil B.	Resistance	= .0986 ohm
15 16 17	19.6 20.9 22.2	1.31 1.31 1.31	1.31	1.31	101	.00206	40.6

Eighth Experiment.—These measurements related to an armature of an alternating-current dynamo. The considerable number of slots, however, make the results instructive from the standpoint of commutating machines. First, the coils A A and B B of Fig. 172 were connected in series, and the inductance was measured at a periodicity of 30 cycles in the position of minimum and maximum inductance, the position shown in Fig. 172 being, of course, the position of maximum inductance.

The values deduced from the observations were:—

Position of minimum inductance 20. C.G.S. lines per ampere turn and per inch gross length of armature lamination.

Then the turns in four adjacent slots were connected in series, and then, as shown in Fig. 173, inductance was measured in the positions

of minimum and maximum inductance. The following results were obtained:—

Position of minimum inductance

13. C.G.S. lines per ampere turn and per inch gross length of armature lamination.

Figs. 172 and 173. Tests on an Alternator Armature

A study of these tests indicates that in projection armatures it is practicable to so proportion the slots and conductors as to obtain as small a flux as 20 C.G.S. lines per ampere turn and per inch of gross length of armature lamination for the coils in the position of minimum inductance. When the conditions conform approximately to any particular case regarding which more definite experimental data is available, this more exact data should, of course, be employed.

The experimental data in the possession of other designers relating to the types with which they are accustomed to deal, may lead them to the use of numerical values for this constant other than those indicated by the preceding tests; but it will be at once admitted that the chief value of such data lies more in the relative results obtained for various machines, than in the absolute results. The method of applying the constant must hold equally for all types, but doubtless the most suitable value to take for the constant will vary to some extent according to the degree of divergence between the types.

ILLUSTRATIONS OF THE CALCULATION OF THE REACTANCE VOLTAGE

The determination of the inductance having so important a bearing upon the design, the method will be explained by working out several cases; and when in the following sections several complete working designs

Fig. 174. DIAGRAM ILLUSTRATING INDUCTANCE TESTS

are described, the value of the inductance as related to the general performance of the machine will be considered. All the following cases relate to drum windings:

Case I.—In a four-pole continuous-current dynamo for 200 kilowatts output at 550 volts, and a speed of 750 revolutions per minute, the armature is built with a four-circuit single-winding, arranged in 120 slots, with four conductors per slot. The commutator has a diameter of 20 in., and has 240 segments.

The brushes are .75 in. thick. The segments are .26 in. wide; consequently, as there is one complete turn per segment, three complete turns is the maximum number undergoing short circuit at one brush at any instant.

Considering a group of adjoining conductors in the slots occupying the commutating zone between two pole-tips, six of these conductors, occupying one and one-half slots will be short-circuited, three at one set of brushes

and three at another, as shown digrammatically in Fig. 174. Now the full-load current of this machine is $\frac{200,000}{550} = 364$ amperes, the current per circuit being $\frac{364}{4} = 91$ amperes. Consequently, while any one coil is short-circuited under the brush, the current of 91 amperes in one direction must be reduced to zero, and there must be built up in it a current of 91 amperes in the other direction by the time it emerges from the position of short circuit under the brush, to join the other side of the circuit. This change is at times occuring simultaneously in a group of six adjacent conductors.

A coil has an inductance of one henry when it is situated in a medium of such permeability, and is so dimensioned that a current of one ampere sets up a magnetic flux of such magnitude that the product of the number of lines linked with the coil by the number of turns in the coil is equal to 100,000,000. If the coil has but one turn, then its inductance becomes 10⁻⁸ times the number of lines linked by the turn when one ampere is passing through it. In the case under consideration, the coil is of one turn, but the varying flux linked with it, and hence the voltage induced in it, is proportional not only to the rate of change of its own current, but to the rate of change of the currents in the adjacent turns simultaneously undergoing commutation at different sets of brushes, and at different points of the surface of the same brushes. In this case five other turns are concerned in determining this varying flux, hence the voltage induced will be six times as great as if the coil had alone been undergoing commutation at the moment. It will not be the square of six times as great, since it is the voltage in the one turn that it is required to determine.

Had the six turns in series belonged to the one coil undergoing commutation, then the induced voltage would have been the square of six times as great as for a one-turn coil.

Gross length of lamination = 10 in.

Flux set up in one turn, per ampere in that turn and per inch of length of armature lamination = 20 C.G.S. lines.

Hence flux of self-inductance = $10 \times 20 = 200$ lines.

Self-inductance = $200 \times 10^{-8} = .0000020$ henrys.

Mutual inductance of one turn with relation to the six turns simultaneously undergoing commutation = $6 \times .000020 = .000012$ henrys.

Circumference of commutator = $20 \times \pi = 62.8$ in.

```
Revolutions per second = 750 \div 60 = 12.5.
Peripheral speed of commutator = 62.8 \times 12.5 = 785 in. per second.
Thickness of radial carbon brush = .75 in.
```

Current is completely reversed in $\frac{.75}{.785} = .00095$ seconds, which is the time of completion of a half-cycle. Consequently, the reversal occurs at an average rate of $\frac{.1}{2 \times .00095}$ = 530 cycles per second.

We are now prepared to obtain the reactance of the turn, and shall, for want of a better, make the—in this case—very unwarranted assumption of a sine wave rate of variation:

```
Reactance = 2 \times \pi \times 530 \times .000012 = .040 ohms.
Reactance voltage = 91 \times .040 = 3.6 volts.
```

This is the voltage estimated to be induced in the turn during the process of commutation. In each of the other five turns independently undergoing commutation under other sets of brushes, and under other parts of the bearing surface of the same set of brushes, there is also an induced voltage of 3.5 volts.

In this design, the factors most concerned in the process of commutation are the following:

Case II.—A six-pole continuous-current dynamo has a rated output of 200 kilowatts at 600 revolutions per minute and 500 volts.

The armature has a six-circuit winding, arranged in 126 slots, with eight conductors per slot. The commutator has 252 segments. There are two turns in series per segment. The diameter of the commutator is 20 in. and the width of a segment is .24 in. The thickness of the radial bearing carbon brushes is .63 in., consequently the maximum number of coils short-circuited at any time at one set of brushes is three. Hence $3 \times 2 \times 2 = 12$ conductors grouped together in the neutral zone between two pole tips, and occupying one and one-half slots, are simultaneously undergoing commutation, that is, six conductors at one set of brushes and the other six at the next set.

Flux set up in 12 turns by 1 ampere in those turns, and with 9 in. length of armature lamination = $12 \times 20 \times 9 = 2160$ C.G.S. lines. Mutual inductance of one coil (two turns) with relation to the six coils simultaneously undergoing commutation = $2160 \times 10^{-8} \times 2 = .0000432$ henrys.

Circumference of commutator = 62.8 in.

Revolutions per second = $600 \div 60 = 10$.

Peripheral speed commutator = $62.8 \times 10 = 628$ in. per second.

Thickness of radial bearing carbon brush = .63 in.

Current completely reversed in $\frac{.63}{628} = .0010$ seconds.

Average rate of reversal = $\frac{1}{2 \times .0010} = 500$ cycles per second.

Reactance = $2 \times \pi \times 500 \times .0000432 = .136$ ohms.

Amperes per armature circuit = $\frac{200,000}{500 \times 6} = 66.7$ amperes.

Reaction voltage = $66.7 \times .136 = 9.1$ volts.

(This, of course, is an undesirably high figure, and would only be permissible in connection with especially good constants in other respects.)

Case III.—A 10-pole lightning generator has a rated output of 300 kilowatts at 125 volts and 100 revolutions per minute. It has a 10-circuit, single-winding, arranged, four conductors per slot, in 180 slots. The commutator has 360 segments, one segment per turn. Diameter of commutator is 52 in., and the width of a segment is .45 in.

The thickness of the radial bearing carbon brushes is 1 in., and the maximum number of coils short-circuited at any time at one set of brushes is three. Hence six conductors, grouped together at the neutral zone between any two pole tips, are concerned simultaneously in the commutating process.

Gross length of lamination = 17.6 in.

Flux set up in six turns by one ampere in each of them, and with 17.6 in. length of armature lamination = $6 \times 20 \times 17.6 = 2110$ C.G.S. lines.

Mutual inductance of one coil of one turn, with relation to the six coils simultaneously undergoing commutation = $2110 \times 10^{-8} \times 1 = .0000211$ henrys.

> Circumference of commutator = $52 \times \pi = 164$ in. Revolutions per second = $100 \div 60 = 1.67$ revolutions. Peripheral speed commutator = $164 \times 1.67 = 274$ in. per second. Thickness of radial bearing carbon brush = 1 in. Current completely reversed in $\frac{1}{274}$ = .03365 seconds. Average rate of reversal = $\frac{1}{2 \times .00365}$ = 137 cycles per second.

Reactance = $2 \times \pi \times 137 \times .0000211 = .018$ ohms.

Rated full load current output = $\frac{300,000}{125}$ = 2400 amperes.

Current per armature conductor = $\frac{2400}{10}$ = 240 amperes.

Reactance voltage = $240 \times .018 = 4.3$ volts.

4.3 volts Reactance voltage of short-circuited coil Inductance per commutator segment .000021 henrys ... 8600 ampere turns Armature ampere turns per pole-piece ... Current per armature circuit ••• ... 240 amperes ... 3.5 volts Average voltage per commutator segment

MODERN CONSTANT POTENTIAL COMMUTATING DYNAMOS

Direct-Connected, 12-Pole, 1500-Kilowatt, 600-Volt Railway Generator. Speed = 75 Revolutions per Minute.—This machine is remarkable in that at the time it was designed no commutating dynamo of more than a fraction of its capacity had been constructed. Owing to the great weight of the various parts, and the short time in which the machine had to be constructed, it was assembled and tested for the first time at the Columbian Exposition.

It was found that the machine complied with the specification in all particulars as to heating, and that sparking did not occur between the limits of no-load and 50 per cent. overload. Mention is made of this, since this was the first of the modern traction generators developed in the United States; and the constants of this machine, which were novel at that time, have since become common in the best practice in designing. Perhaps the most remarkable feature of this machine is the range of load at which sparkless commutation occurs, and the great magnetic strength of the armature as compared with that of the field-magnets. This result was accomplished, first, by comparatively low inductance of the armature coils; secondly, high magnetisation in the armature projections, which to some extent keeps down distortion of the magnetic field; and, thirdly, by the over-compounding of the machines to suit railway practice: that is, no-load volts of 550 and full-load volts of 600. The increase of magnetisation corresponding to this increase of voltage is a condition favourable to sparkless commutation; and it will be noted from the particulars given of the machine that the magnetising force of the series coil at full load is approximately equal to that of the shunt coil at no load.

Drawings are given, Figs. 175 to 177, pages 196, 198, and 200, showing the construction; Figs. 178 and 179, page 203, show saturation and compounding curves for this machine. The following specification sets forth its constants and the steps in the calculations.

Specification	0 F	12-Pole,	1500-Kilowatt,	600-Volt	GENERATOR,	FOR	Speed	OF
		7	5 REVOLUTIONS P	RR MINUT	K			

Number of poles		•••				12
Kilowatts			•••		•••	1500
Revolutions per minute	• • •				•••	75
Frequency in cycles per second						7.5
Terminal volts, no load						55 0
,, ,, full load	•••					600
Amperes, full load	•••		•••	•••	•••	2500

DIMENSIONS

Armature :

Diameter over all		•••					126 iı	n.
Length over conductors							481,	,
Diameter at bottom of si	lots	•••					1213,	19
Internal diameter of cor-	в					•••	1033	
Length of core over all							33 1 ,	,
Effective length, magnet	ic iron					•••	26.8	•
Pitch at surface							33 in.	
Insulation between sheet	ts						10 per ce	nt.
Thickness of sheets							.014 in	
Depth of slot		•••					$2\frac{1}{8}$,	_
Width of slot at root							-8 , 11 16 ,	
	•••				•••			•
" " suriace	•••	•••	•••	•••	• • • •	• • •	₹,	,
Number of slots	•••	•••	•••	•••		•••	34 8	
Minimum width of tooth	١	•••	•••				.412 i	n.
Width of tooth at armat	ure face	٠	•••			•••	.763 ,	,
" conductor	•••				•••		7 32 ,	,
Depth of ,	•••	•••	•••				$\frac{3}{4}$,	
• ,							_	

44

N		4						0
Number of ventil	-		•••	•••	•••	•••	•••	8
Width of each ve				•••	•••	•••	•••	½ in.
Effective length of	i core ÷	- total	length	•••	• • • •	•••	•••	.795
Magnet Core:								
Length of pole-fa	na							223 in
_1.		•••	•••	• •	•••	•••	•••	33½ in.
,, pole ar Pole arc ÷ pitch	C	•••	•••	•••	•••	•••	•••	24½ ,, .73
Thickness of pole	nicos et	odao	 of acro	•••	• • •	•••	•••	
Radial length of	-	_		•••	•••	•••	•••	l 9 in.
Width of magnet	-		•••	•••	•••	•••	•	18 ,,
Thickness of mag		•••	••	•••	•••	•••	•••	14 ,, 30
Diameter of bore			•••	•••	•••	•••	•••	"
			•••	•••	•••	•••	•••	$126\frac{7}{8}$,,
Depth of air gap	•••	•••	•••	•••	•••	•••	•••	7 16 "
Spool:								
Length over flang	rea							17 i in.
			•••		•••	•••	•••	107
Donth					•••		•••	27
Depon ,,	,,	•••	•••	•••	•••	•••	•••	J₿ ,,
Yoke:								
Outside diameter								190½ in. and 180½ in.
Inside				•••			•••	168 in.
Thickness, body							•••	61,
Length along arm		••		•••	•••			36,
Tought arong arm		••	•••	•••	•••	•••	•••	,,
Commutator:								
Diameter				•••		•••	•••	$86\frac{1}{2}$ in.
Number of segme	nts	•••						696
,, ,,	per s	_	•••		•••			2
Width of segment	-		r face					.342 ,,
,, ,,	root							.313 ,,
Depth of segment		.						3 ,,
Thickness of mica								.05 ,,
Available length	of surfac	e of se	gment					88 7 ,,
Cross-section of co		_	-		•••			.130 square inches
								•
Brushes :								
Number of sets	•••							12
" in one se	t				•••	•••		6
Width					•••	•••		2.5
Thickness	•••				•••			.75
Area of contact of	one bru	ısh			•••			1.875
Type of brush					•••			Radial carbon
								
			MATER	IALS				
Armature core	•••	•••	•••	•••		•••	•••	Sheet iron
,, spider		•••		•••		•••		Cast iron
Conductors		•••	•••	•••				Copper

Commutator	segments	•••	•••	•••	•••	•••		Copper
,,	leads	•••	•••		•••	•••	•••	German silver
Spider	•••		• • •					Cast iron
Pole piece				•••	•••		•••	Cast steel
Yoke	•••	•••	•••))
Magnet core						•••	•••	**
Brushes		•••	•••	• • •	•••		•••	Carbon
		Tı	CHNIC	AL DAT	ΓΑ			
Armature, no	load volta	ge	•••	•••	•••	•••		550
Number of fa		_						1392
Conductors pe	r slot							4
Number of cir		•••						12
Style of wind					•••			Single
Gramme ring	_							Drum
Type construc				•••				Evolute end
- JP			•••	•••	•••	•••	•••	connections
Mean length o	ne armatu	re turn						176 in.
Total armatur		•••	•••		•••			696
Turns in serie	s between.	brushes	.		•••	•••		58
Length between	en brushes		•	•••				10.200 in.
Cross-section,						•••		.161
Ohms per cubi				•••	•••		•••	.00000068 ohms.
Resistance bet								.043 ,,
			60 60	,,	•••	•••		080
Volts drop in	», armature s							10.3
-	brush cont					•••		2,5
	series wind		···	•••	•••	•••		1.9
orminal volts		•••	•••	•••	•••	•••	•••	600
Fotal internal	-					•••		620
Amperes per s	_				···			1290
	_			or segm	_		••	3200
**	"	COIII	шими	or segu	ICHUS	•••	•••	3200
mutation:								10.0
Average voltag			utator	segmen	168	•••	•••	10.3
Armature turn			•••	•••	•••	••	•••	58
Amperes per t		•••	•••	• • •	•••		• • •	208
Armature amp			· · · ·	•••	•••	•••	•••	12,100
Segments lead			•••	•••	•••	•••	••	61
Percentage les			•••	• • •	•••	•••	•••	10.8
	magnetizir			ns	•••	•••	•••	21.6
	storting an	_		•••		•••	•••	78.4
Demagnetizing	g ampere t	urns pe	r pole	•••	•••	• • •	•••	26 10
Distorting	"		,,	•••	•••	•••	•••	9490
Frequency of						•••	•••	227
Number of coi	ls simultar	aeously	short-	circuite	d per l	orush	•••	2
Turns per coil	•••	•••	•••	•••	•••		•••	1
Number of co	onductors	per gr	oup si	multan	eously	underg	going	
commutat	ion	•••	•••	•••	•••	•••	•••	4

Fig. 177. Details of 12-Pole, 1500-Kilowatt, 600-Volt Railway Generator

Flux per ampere turn per inch length	20 (assumed)			
,, linked with four turns = $36.7 \times$	20×4	•••	•••	2700
Inductance in one turn constituting	one coi	l, in henry	78 =	
$1 \times 2700 \times 10^{-8}$	•••		•••	.000027
Reactance short-circuited turn			•••	.0385 ohms
$,, voltage = .0385 \times 208$				8.0 volts

In operating these machines, the brushes are set at a constant lead of $6\frac{1}{4}$ segments for all loads, and the output may temporarily exceed the full load rated output by 50 per cent.

MAGNETIC DATA

Coefficient	of magnetic le	eakage	•	•••					1.15
	entering arm	ature	per	pole-piece	at	no	load	and	•
550 v	olts	•••	•••	•••			•••		31.6
	entering arm	ature	per	pole-piece	at	full	load	and	
620 ir	iter. volts	•••		•••			•••	•••	35.6
Armature:									
Section	•••								241 square inches
Length (m	agnetic)			•••					19 in.
Density at	no load			•••					66 kilols.
;;	at full load	•••		•••					74 ,,
Ampere to	ırns per inch l	ength	no le	oad		,			15
"	"	-	full	load					18
,,	no load								290
,,	full load	•••		•••					340
Teeth:									
Transmitt	ing flux from o	one po	le-pie	есе					.24
Section at									264 square inches
Length		•••							2.125 in.
•	density at no		•••						120 kilols.
,,	•	lload	•••	•••	•••				135 ,,
	density at no		•••						116 ,,
,,	•	load							126 ,,
	urns per inch l		no l					• • •	1800
- ,,	,,			load					1400
,,	no load								1700
,,	full load								3000
Gap:									
Section at	nole face								890 gameno in sta-
Length ga	-	•••	•••	•••	•••		•••	•••	820 square inches
	p t pole face, no		•••	•••	•••		•••	•••	.43 in. 32 kilols.
	£1	l load	•••	•••	••		•••	•••	4.4
Amnere tu	ırns, no load		•••		•••		••	•••	5300
-	full load	•••	•••	•••	•••		•••	•••	6000
"	Iun road	•••	•••	•••	•••		•••	•••	2 D
									4 V

Magnet Core:									
Section									420 square inches
Length (ma	gnetic)						•••		20 in.
Density, no									87 kilols.
" fu	ll load			•••				•	98 "
Ampere tu	rns per	inch le	ength	no load		•••	•••		67
- ,,	-	"		full load					160
,,	no	load		•••		•••			1350
٠,	full	load				•••			3200
Magnet Yoke:									
Section									225 square inche
Length per				•••		•••	•••		27 in.
Density, no	•	•••		•••					81 kilols.
• • •	ll load								91 "
Ampere tu	rns per	inch l	ength	, no load		•••			49 ″
· ,,	•	,,		full load	١	•••			110
"	no	load	•••	•••					1 32 0
,,	ful	load		•••	•••	•••	•••	•••	3000
			Амре	RE TURNS	B PEI	s Spool			
							No Load 550 Ve		No Load and 620 Internal Volts.
Armature	core	•••		•••		•••	29	0	340
,,	teeth	•••	•••	•••	•••		170	0	3000
Air gap	•••	•••		•••		•••	53 0	0	6000
Magnet co	re			•••		•••	135	0	3200
Yoke		•••	•••	•••	•••	•••	132	0	3000
							996	- 60	15,540
Demagneti	sing am	pere t	urns	per pole-n	iece	at full l	oad		2600
Allowance									1000
Total amp				•	_				
					•				

If the field rheostat is so adjusted that the shunt winding shall supply the 9960 ampere turns necessary for the 550 volts at no load, then, when the terminal voltage has risen to 600 volts at full load, the shunt winding will be supplying $\frac{600}{550} \times 9960 = 10,840$ ampere turns. The series winding must, at full load, supply the remaining excitation, i.e., 19,140 - 10,840 = 8300 ampere turns. The armature has 1392 face conductors, hence the armature strength expressed in ampere turns per pole piece is, at full load current of 2500 amperes (208 amperes per circuit):

19,140

terminal volts ...

 $[\]frac{1392}{2 \times 12} \times 208 = 12,100$ ampere turns per pole-piece, on armature.

CALCULATION OF SPOOL WINDINGS

Shunt:

Mean length of or	ne shunt turr	ı		• • •	•••	•••	8.5 ft.
Ampere turns per	shunt at full	load	•••		•••	•••	10,840
" feet			•••		•••		92,000
Radiating surface	one shunt sp	ool	•••			11	30 square inches
Permit .36 watts	per spool at 2	20 deg.	Cent.				_
Then shunt watts	per spool at	20 deg	. Cent.		•••	•••	405
And "	,,	60	,,			•••	468
Pounds copper pe	$\mathbf{r} \text{ coil } = \frac{31}{4}$	$\frac{\times 92^2}{05}$ =	= 650 lb.				

A margin of 16.6 per cent. in the shunt rheostat when coils are hot leaves 83 per cent. of the available 600 volts, or 500 volts, at the terminals

Figs. 178 and 179. Saturation and Compounding Curves

of field spools. This is equivalent to 432 volts, or 36 volts per spool, when spools have a temperature of 20 deg. Cent.

Hence require $\frac{405}{36} = 11.3$ amperes in shunt coils.

Turns per shunt spool = $\frac{10,800}{11.3}$ 960 Length of 960 turns 8150 ft. Pounds per 1000 feet 79.8

No. 6 B. and S. gauge weighs 79.5 lb. per 1000 feet.

Bare diameter = .162 in. D.C.C.D. = .174 inch.

Cross section = .0206 square inch.

Current density = 546 amperes per square inch

Length of the portion of winding space available for shunt

coil = 9.0 inches.

Depth of winding, 3.9 inches.

Series Winding.—The series winding is required to supply 8300 ampere turns at full load. With 4.5 turns per spool, the full load current

will give $2500 \times 4.5 = 11,250$ ampere turns. Consequently, 650 amperes must be diverted through the diverter rheostat, leaving 1850 amperes in the series winding, giving 8300 ampere turns.

The 4.5 turns consist of ten bands in parallel, each 7 in. wide by $\frac{1}{16}$ in. thick.

Cross-section conductors			•••		•••	4.375 square inches
Current density	•••	•••	• • •		4	124 amperes per sq. in.
Resistance of 12 spools at 20						.000855 ohms
Series C ² R at 20 deg. Cent.	per spo	ol	•••	•••	•••	244 watts
,, ,, 60 ,,	,,	•••	•••	•••		282 "
Weight series copper per spo	ol		•••	•••		650 lb.
Es	TIMATE	D Cori	E Loss			
Total weight armature lamin	ations	•••	•••	•••		26,000 lb.
Cycles per second		•••		•••		7.5
Kilolines density in core		•••		• • •		74.
Cycles × Density						K.C
1000	•••	•••	•••	•••	•••	.56
Corresponding watt core loss	per por	ınd	•••			.9
Total estimated core loss	•••	•••				23,400 watts
TH	ERMAL	Calcu	LATIONS	3		
Armature:						
C ² R loss at 60 deg. Cent.						25,850 watts
Core loss (estimated value)	•••				•••	02.400
Total armature loss			· · · ·	•••	•••	49,250 ,,
Peripheral radiating surface				•••		19,100 square inches
Watts per square inch radiat						2.6 watts
Peripheral speed armature, for					•••	2480
Rise in temperature at 15 de						2100
inch		, <u>r</u>				39 deg. Cent.
Spool:		***		•••	•••	ou dog. Cont.
						L
Total C ² R loss at 60 deg. Ce		-		•••	•••	750 watts
Peripheral radiating surface,			•••	•••	•••	2080 square inches
Watts per square inch of rad					•••	.41 watts
At 80 deg. Cent. rise per	watt		uare in	ich, ris	e in	
temperature of field sp	ool is	•••	•••	•••	•••	33 deg. Cent.
Commutator:						
Area bearing surface all posi	itive bru	ıshes				67.5 square inches
Amperes per square inch of			surface		•••	37 amperes
Ohms per square inch bearin					•••	.03 ohm
Brush resistance, positive +				• • • • • • • • • • • • • • • • • • • •		.00089 ohm
Volts drop at brush contacts				•••	•••	2.22 volts
C ² R at brush contacts	•••	•••	•••	•••		5550 watts
Brush pressure				•••	•••	1.25 lb.
•			•••	•••	•••	1.80 10,

Coefficient of fr	iction	•••			•••			.3
Peripheral speed	d of con	nmute	ator in f	eet pe	r minut	е		1700
					•••		•••	1040 watts
Stray power los	s in cor	nmut	ator					750 "
Total commutat	or loss			•••				7340 ,,
Radiating surfa	ce com	mutat	tor					5400 square inche
Watts per squar				surface	.			1.36 watts
Rise in tempera	ture at	20 d	eg. Cent	. rise j	per wat	t per s	quare	
inch	•••	•••	•••		••••		•	27 deg. Cent.
		Epp	ICIENCY	CALC	ULATION	78		
	_							Watte.
Output at full le		•••	•••	•••	•••	•••	•••	1,500,000
Core loss (estimate	•	•••	•••	•••	•••	•••	•••	23,400
C ² R armature a			nt.	•••	•••	•••		25,850
Commutator and			•••		••			5,550
Shunt spools C ²	R at 60	deg.	Cent.	•••	•••	•••	•••	5,650
" rheostat	,,		"	•••	•••	•••		1,130
Series spools -	C ² R at	t 6 0 d	leg. Cen	t.	•••		• • •	. 3,380
" rheostat	٠ ,,		••		•••	•••		1,190
	Total i	nput						1,566,150
Commercial effic	ciency a	t full	load an	d 60 d	leg. Cen	it. = 9	5.7 per	cent.
			WEIGHT	rs (Po	unds)			
nature:								
U	•••	•••	•••	•••	•••	• • •	•••	24,000
Teeth	•••	•••	••	•••	•••	•••	•••	2,420
Copper	• • •	•••	•••	•••	•••	•••	•••	6,360
Commutator, se				•••	•••	• • •	•••	3,100
Twelve magnet	cores a	nd po	le-pieces	• • •	•••	•••	•••	30,000
Yoke		•••		••	•••	• • •	•••	35,000
Twelve shunt co		•••	•••	•••	•••		•••	7,800
", series co		•••	•••	•••	•••	•••	•••	7,800
Total spool copp	oer							15,600

10-Pole, 550-Kilowatt Railway Generator

This machine was designed by Mr. H. F. Parshall, and a number have been used in leading installations with satisfactory results. Figs. 180 and 181, Plates II. and III., illustrate one of a number of these sets as installed at the King's End power-house of the Dublin United Tramways Company. Figs. 182 and 183, page 206, show the principal dimension of the machine. From the results of tests made by the authors, the curves given in Figs. 184 to 188, on page 207, have been derived.

Figs. 184 to 188. Curves of 10-Pole, 550-Kilowatt Railway Generator

SPECIFICATION

			CI BUI	LICALIO	41			
	Number of poles	s		•••			•••	10
	Kilowatts						•••	550
	Revolutions per	minute				• • • •		90
	Terminal volts f	ull load	• • •			•••		550
	,, ,, n	o load			•••			500
	A							1000
	- ₋ -							
		Dn	4ENSION	18 IN I	nches			
Ar	mature:							
	External diamet	er	•••				•••	96
•	Internal diamete	er			•••			71
	Length over con-	ductors						39.4
	Gross length of							20.5
	Percentage insul		n lamii	ations				12.5
	Effective length						•••	14.9
	Number of venti		•••		•••			8
	Width of each d	_						.437
	Thickness of lam	inations					•••	.014
	Pole pitch at arn	nature surfac	e					30.2
	Number of slots							300
	Slot pitch at sur	face			•••			1.0
		•••					•••	.525
	Depth "	•••						${f 2}$
	Width of tooth a							.475
	,, n	root (minir	num)				•••	.436
70	•	•	•					
Ba	r-winding:	-1-4-3						0.08×0.8
	Conductor uning		•••	•••	•••	•••	• • •	0.00 x 0.0
	Conductors per s			•••	•••	•••	• • •	1.05
	Cross-section of	_		•••	* *	•••	• • •	
	•••	copper per sl	ot	•••	•••	•••	•••	0.384
	Space factor of a	lot	•••	•••	•••	•••	•••	.365
Ма	gnet Core:							
	Length of pole fa	ace parallel t	o sh af t	•••		•		18.5
		rc						23.5
	TO 1 11 1							30.2
	,, arc ÷ pole p	pitch						.78
	Radial length of	-	•••		•••			18
	Diameter of mag	_	•••					18.5
	_	at pole face						96.75
	Depth of air gap	-						.375
Spo								
ωpt								10
	Length over flan	-	•••	•••	•••	•••	•••	18
	,, of windir	ng space	•••	•••	•••	•••	•••	15.875
	Depth ,,	,, 6		•••	•••	•••	•••	2
	Available length			•••	•••	•••	•••	8.5
	" "	for series	•••	•••	•••	•••	•••	7.375

Fig. 180. 10-Pole, 550-Kilowatt, 550-Volt Railway Generator: Speed, 90 Revolutions.

Dublin

	•		
		•	
• •			
		•	

10-Pole, 550-Kilowatt Railway Generator. Magnet Frame and Magnet

		•	

10-Pole, 550-Kilowatt Railway Generator. Details of Armature Construction

		•	
			·

Fig. 181. 10-Pole, 550-Kilowatt, 550-Volt Railway Generator; Spred, 90 Revolutions. Dublin

	•		

Yoke:								
Internal diam	eter							138.25
Diameter over	ribs				•••	•••	•••	157.5
Thickness of y	oke, exc	lusive	of ribs					5.625
Length parall								24
Commutator:								
Diameter	•••	•••	•••	•••	•••	•••	•••	86.5
Number of seg	-		•••	•••	•••	•••	•••	900
"	•	er slot		•••	•••	•••	•••	3
Width of segn	_			t surfa	се	•••	•••	0.302
Thickness of n				•••	•••	•••	•••	0.05
Width of segn				•••	•••	•••	•••	0.252
Available leng			tor fac	е	•••	•••	•••	8.875
Size of commu	tator les	ıds	•••	•••	•••	•••	•••	$1.0 \times .0625$
Equalisers :								
Number of rin	og.		•••		•••		•••	10
Equaliser poin	_		•••		•••	•••	•••	5
	por	8	•••	•••	•••	•••	•••	ŭ
Brushes :								
Number of set	8	•••	•••		•••	•••	•••	10
" per se	et	•••	• • •	• • •	•••	•••	• • •	5
Width of brus		•••			•••	•••		1.25
Length of arc					•••	•••	•••	0.8
Area of contac	-		-		•••	•••	•••	1.00
" "	of all	positiv	e brus	nes		•••	•••	25
Type of brush	•••	•••	•••	•••	•••	•••	•••	Carbon
			Ма	TERIAI	LS			
Armature core	·					:		Sheet iron
" spid					•••		•••	Cast iron
•	ductors				•••		•••	Copper
Commutator se		•••	•••				•••	"
	ads		•••		•••	•••	•••	,,
**	oider	•••	•••			•••		Cast iron
Pole shoes	•••	•••	•••	•••		•••	•••	Cast steel
W.L.	•••		•••		•••			91
Magnet cores						•••		,,
8								,,
			Techni	ICAL I)ata			
rmature:								
No load voltage	е	•••	•••	•••	•••	••	•••	500
Full load volta	ge		•••		•••	•••	•••	550
Style of windir	ng				•••	•••	•••	10 circuit single
Gramme ring o	-	`				•••	•••	Drum
Number of pat		gh wi	nding	•••	•••		•••	10
	ductors			•••	•••	•••	•••	6
		-						2 E

Arrangement in slot						$3 \times 2 \text{ deep}$
Amperes per square inch in ar			ctors			1560
Total number of face conduct						1800
,, ,, turns				•••		900
***						113
Cross-section of one conductor						0.064
Specific resistance of copper a						0.0008
Resistance of armature at 60		-				0.0127
Volts drop in armature at full	_					12.7
", ", brush contacts						2.4
,, ,, series winding						2.6
Total volts drop				•••		18
Internal volts at full load	•••	•••	•••			568
		•••	•••	•••	•••	
Commutator (Sparking Constants):					
Width of one segment plus in	sulatio	n	• • • •		•••	0.302
Arc of contact		•••			٠	0.8
Number of turns short-circui	ted				•••	3
Turns per segment						1
$6 \times 20 \times 20.5 = \dots$	• • • •		•••		•••	2460 C.G.S. lines
$2460 \times 10^{-8} \times 1 = inducta$	nce in	henrys	•••			0.0000246
Circumference of commutator	r					272
Revolutions per second						1.5
Peripheral speed, inches per s	econd					410
Current completely reversed	in $(\frac{.8}{})$	_ (_				0.00195 seconds
	•	. *				
Frequency of commutation	2 ×	00195) =			257
Reactance = $2 \pi 257 \times .000$	•		,			0.039
Current per conductor $\frac{1000}{10}$	=	•••	•••	•••	• • •	100
Reactance voltage = $100 \times$.039		•••		•••	3.9
Ма	GNETIC	CALCU	LATION	8		
Megalines entering armature	0070 D	on nolo	at na l	ood		18.5
•	_			load	•••	21.5
Coefficient of magnetic leaka	"	"	Lum	Ivau		1.125
Megalines in magnet core, no	_	•••	•••	•••	•••	20.8
for	ll lead	***	•••	•••	•••	23.6
" " " " tu	II Ivau	•••	•••	•••	•••	20.0
Armature:						
Cross-section in square inches	3		• • • •			312
Density at no load	• • •	•••			• • •	59,000
" full load						67,000
Magnetic length	•••		•••			12.8
Ampere-turns per inch lengt	h at no	load		•••		16.0
,, ,,		l load				27.0
,, for armature a	t no lo	ad				204
"	full	load	•••			345
•						

Ratio of polar arc to pole pitch Total number of teeth Number of teeth per pole (taking 5 per cent. for spread)	0.78
Total number of teeth	
	3 00
$=\frac{300}{10} \times .78 \times 1.05 = \dots \dots \dots \dots$	24.5
Cross-section teeth at root	160
Apparent density at no load	116,000
,, ,, full load	131,000
Mean width of tooth ÷ width of slot	0.88
Corrected density, no load	114,000
A 33 1	124,000
,, ,, full load	2
Ampere turns per inch, no load	200
A 11 1 1	600
for tooth no load	400
full load	1400
	1400
Magnet Core:	0.00
Cross-section in square inches	268
Density at no load	78,000
" full load	88,000
Magnetic length	18
Ampere turns per inch length, no load	35
", ", full load	70
,, for magnet core at no load	630
,, ,, full load	1080
Air Gap:	
Cross-section of pole face	430
Density at no load	43,000
" full load	48,000
Magnetic length	0.375
Ampere turns for air gap, no load	5000
,, ,, full load	5700
Cross-section in square inches	300
Density at no load	69,000
,, full load	79,000
Magnetic length	22.5
Ampere turns per inch length at no load	30
" " full load	50
" at no load	670
,, full load	1130
SATURATION AMPERE TURNS PER SPOOL No Load.	Full Load.
Armature core 204	345
,, teeth 400	1400
Gap 5000	5700
Magnetic core 630	1080
" yoke 670	1130
Total 6904	9655

""" """ 558 internal voltage 9600 Ampere turns to overcome ohmic drop 8800 Armature Interference: 800 Armature turns per pole 90 Amperes per circuit 100 Ampere turns per pole 9000 Segments lead of brushes 8 Percentage 9 Apparent tooth density, full load 131,000 Field ampere turns at no load, 550 volt (K) 8800 Ampere turns to overcome ohmic drop (H) 800 Demagnetising ampere turns per pole (C) 1600 Total distorting ampere turns per pole (D) 7400 Ampere turns for teeth and gap, full load (S) 7100 D + 8 1.04 F ÷ D (from curve of Fig. 149, page 146) 0.23 Field ampere turns to overcome distortion (F) 1700 Total ampere turns full load (F+G+H+K) 12,900 Shunt Spool: 23.2 External diameter of spool 23.2 Internal , 10 Mean length of one turn in inches 66 , 65	Value of am	pere turns at	no load,	500 v	olt	•••			6900
Ampere turns per pole	***	,,	"	568 in	ternal	voltage		•••	9600
Ampere turns to overcome ohmic drop						•			8800
Armature Interference: Armature turns per pole	_			drop					800
Armature turns per pole	_								
Ampere sper circuit									90
Ampere turns per pole Segments lead of brushes									
Segments lead of brushes 8 Percentage 9 Apparent tooth density, full load 131,000 Field ampere turns at no load, 550 volt (K) 8800 Ampere turns to overcome ohmic drop (H) 800 Demagnetising ampere turns per pole (C.) 1600 Total distorting ampere turns per pole (D.) 7400 Ampere turns for teeth and gap, full load (S.) 7100 D + S 1.04 F ÷ D (from curve of Fig. 149, page 146) 0.23 Field ampere turns to overcome distortion (F) 1700 Total ampere turns full load (F+G+H+K) 12,900 Shunt Spool :				•					
Percentage 9 Apparent tooth density, full load 131,000 Field ampere turns at no load, 550 volt (K) 8800 Ampere turns to overcome obmic drop (H) 800 Demagnetising ampere turns per pole (C.) 1600 Total distorting ampere turns per pole (D) 7400 Ampere turns for teeth and gap, full load (S) 7100 D ÷ S 1.04 F ÷ D (from curve of Fig. 149, page 146) 0.23 Field ampere turns to overcome distortion (F) 1700 Total ampere turns full load (F+G+H+K) 12,900 Shunt Spool: External diameter of spool 23.2 Internal 19 Mean length of one turn in inches 66 " feet 5.6 Ampere feet per spool 7750 x*5.6 43,500 Watts per spool at 20 deg. Cent. 31 x 242 Watts lost in shunt and rhoestat 3640 Amperes per shunt spool at 550 volts 6.6 Resistance shunt at 60 deg. Cent. 6.4 " 64 Length of wire per spool in feet 6600 B. and S. guage No. 9 780 turns	-								
Apparent tooth density, full load	. •								
Field ampere turns at no load, 550 volt (K)	_								
Ampere turns to overcome ohmic drop (H)									
Demagnetising ampere turns per pole (C.)									
Total distorting ampere turns per pole (D)					•				
Ampere turns for teeth and gap, full load (S)	_	-		•	-				
D ÷ S 1.04 F ÷ D (from curve of Fig. 149, page 146) 0.23 Field ampere turns to overcome distortion (F) 1700 Total ampere turns full load (F+G+H+K) 12,900 Shunt Spool : External diameter of spool 23.2 Internal , , , ,		-	_	- `	•				
F ÷ D (from curve of Fig. 149, page 146) 0.23 Field ampere turns to overcome distortion (F) 1700 Total ampere turns full load (F+G+H+K) 12,900 Shunt Spool: External diameter of spool 23.2 Internal 19 Mean length of one turn in inches 66 , , feet 5.6 Ampere turns per shunt spool 7750 Ampere feet per spool 7750 x 5.6 43,500 Watts per spool at 20 deg. Cent. = 31 x 242 Watts lost in shunt and rheostat 3640 Amperes per shunt spool at 550 volts 6.6 Resistance shunt at 60 deg. Cent. 6.4 , of 10 spools 64 Length of wire per spool in feet 6600 B. and S. guage No. 9 780 turns , No. 10 374 Turns per spool, total 1154 Bare diameter 0.114 and 0.102 D. C. C. diameter 0.0103, 0.00818 Amperes per square inch 640 8.5 Average number of turns per layer 86 Number of layers 17	-				•	•••	•••	• • •	
Field ampere turns to overcome distortion (F) 1700 Total ampere turns full load (F+G+H+K) 12,900 Shunt Spool: 23.2 External diameter of spool 23.2 Internal 19 Mean length of one turn in inches 66 ,, feet 5.6 Ampere turns per shunt spool 7750 Ampere feet per spool 7750 x'5.6 43,500 Watts per spool at 20 deg. Cent. 31 x Watts lost in shunt and rheostat 3640 Amperes per shunt spool at 550 volts 6.6 Resistance shunt at 60 deg. Cent. 6.4 ,, of 10 spools 64 Length of wire per spool in feet 6600 B. and S. guage No. 9 780 turns ,, No. 10 374 Turns per spool, total 1154 Bare diameter 0.114 and 0.102 D. C. C. diameter 0.0103, 0.00815 Amperes per square inch 640 ,, 810 Average number of turns per layer 86 Number of layers 17	_ • •					•••	•••	•••	
Total ampere turns full load (F+G+H+K) 12,900 Shunt Spool: External diameter of spool 23.2 Internal ,, ,, 19 Mean length of one turn in inches 66 ,, ,, feet 5.6 Ampere turns per shunt spool 7750 Ampere feet per spool 7750 × 5.6 43,500 Watts per spool at 20 deg. Cent. = 31 × (43,500)/(1000) / (242) 240 Watts lost in shunt and rheostat 3640 Amperes per shunt spool at 550 volts 6.6 Resistance shunt at 60 deg. Cent 6.4 ,, of 10 spools 64 Length of wire per spool in feet 6600 B. and S. guage No. 9 780 turns ,, No. 10 374 ,, Turns per spool, total 1154 Bare diameter 0.114 and 0.102 D. C. C. diameter 0.126 ,, 0.112 Cross-section, square inches 0.0103 , 0.00815 Amperes per square inch 640 ,, 810 Average number of turns per layer 86 Number of layers 17	•			_	•	•••	•••	•••	
Shunt Spool: 23.2 Internal , , ,						• • •	•••	•••	
External diameter of spool	Total ampere	turns full lo	ad (F+	G + H	+K)	•••	• • •	• • •	12,900
Internal	Shunt Spool:								
Internal	External dia	meter of spo	ol						23.2
Mean length of one turn in inches 66 ,,,,,, feet 5.6 Ampere turns per shunt spool 7750 Ampere feet per spool 7750 x 5.6 43,500 Watts per spool at 20 deg. Cent. 43,500 Watts lost in shunt and rheostat 3640 Amperes per shunt spool at 550 volts 6.6 Resistance shunt at 60 deg. Cent. 6.4 ,, of 10 spools 64 Length of wire per spool in feet 6600 B. and S. guage No. 9 780 turns ,, No. 10 374 Turns per spool, total 1154 Bare diameter 0.114 and 0.102 D. C. C. diameter 0.0103, 0.00816 Amperes per square inch 640, 810 Available winding space for shunt 8.5 Average number of turns per layer 86 Number of layers 17		-							19
""" """ feet 5.6 Ampere turns per shunt spool	Mean length								66
Ampere turns per shunt spool									
Ampere feet per spool 7750 x 5.6 43,500 Watts per spool at 20 deg. Cent. = 31 x 240 Watts lost in shunt and rheostat 6.6 Amperes per shunt spool at 550 volts 6.6 Resistance shunt at 60 deg. Cent. 6.4 6.4 Length of wire per spool in feet 64 Length of wire per spool in feet 6600 B. and S. guage No. 9									
Watts per spool at 20 deg. Cent. = 31 ×	-	-							
Watts per spool at 20 deg. Cent. = 31 × 1000 242 240 Watts lost in shunt and rheostat	F	por special con-							,
Watts per spool at 20 deg. Cent. = 31 × -242 240 Watts lost in shunt and rheostat 3640 Amperes per shunt spool at 550 volts 6.6 Resistance shunt at 60 deg. Cent. 6.4 , of 10 spools 64 Length of wire per spool in feet 6600 B. and S. guage No. 9 780 turns , No. 10 374 , Turns per spool, total 1154 Bare diameter 0.114 and 0.102 D. O. C. diameter 0.126 ,, 0.112 Cross-section, square inches 0.0103 ,, 0.00815 Auperes per square inch 85 Average number of turns per layer 86 Number of layers 17									
Watts lost in shunt and rheostat 3640 Amperes per shunt spool at 550 volts 6.6 Resistance shunt at 60 deg. Cent. 6.4 , of 10 spools 64 Length of wire per spool in feet 6600 B. and S. guage No. 9 780 turns , No. 10 374 Turns per spool, total 1154 Bare diameter 0.114 and 0.102 D. C. C. diameter 0.126 Cross-section, square inches 0.0103 Amperes per square inch 640 Available winding space for shunt 8.5 Average number of turns per layer 86 Number of layers 17	Watts per sp	ool at 20 deg	. Cent. :	= 31 :	–		•••	•••	240
Amperes per shunt spool at 550 volts Resistance shunt at 60 deg. Cent	Watts lost in	shunt and r	heostat						364 0
Resistance shunt at 60 deg. Cent. 6.4 , of 10 spools 64 Length of wire per spool in feet 6600 B. and S. guage No. 9 780 turns , No. 10 374 , Turns per spool, total 1154 Bare diameter 0.114 and 0.102 D. C. C. diameter 0.126 ,, 0.112 Cross-section, square inches 0.0103 ,, 0.00815 Auperes per square inch 640 ,, 810 Available winding space for shunt 8.5 Average number of turns per layer 86 Number of layers 17									6.6
,, of 10 spools 64 Length of wire per spool in feet 6600 B. and S. guage No. 9 780 turns ,, No. 10 374 ,, Turns per spool, total 1154 Bare diameter 0.114 and 0.102 D. C. C. diameter 0.126 ,, 0.112 Cross-section, square inches 0.0103 ,, 0.00815 Amperes per square inch 640 ,, 810 Available winding space for shunt 8.5 Average number of turns per layer 86 Number of layers 17									6.4
Length of wire per spool in feet			•						
B. and S. guage No. 9		-							
""" No. 10 374 """ """ """ """ """ """ """ """ """ "									
Turns per spool, total	· ·	No 10	•••	•••	•••		274		
Bare diameter	"	, 110. 10	•••	•••	•••	•••		"	
Bare diameter 0.114 and 0.102 D. C. C. diameter 0.126 , 0.112 Cross-section, square inches 0.0103 , 0.00815 Amperes per square inch 640 , 810 Available winding space for shunt 8.5 Average number of turns per layer 86 Number of layers 17	Turns per spe	ool, total				•••	1154		
Cross-section, square inches 0.0103 ,, 0.00815 Amperes per square inch 640 ,, 810 Available winding space for shunt 8.5 Average number of turns per layer 86 Number of layers				•••				0.1	14 and 0.102
Amperes per square inch 640 ,, 810 Available winding space for shunt 8.5 Average number of turns per layer 86 Number of layers	D. C. C. diam	eter		•••		•••		0.13	26 ,, 0.112
Aunperes per square inch 640 ,, 810 Available winding space for shunt 8.5 Average number of turns per layer 86 Number of layers	Cross-section.	square inch	es			•••		0.0	103 ,, 0.008
Available winding space for shunt 8.5 Average number of turns per layer 86 Number of layers 17		-						64	010
Average number of turns per layer 86 Number of layers 17									
Number of layers 17									
7									
Watts per spool at 60 deg. Cent 278		•	Cent						278
External cylindrical surface for shunt spool, square inches 620		-							

213

Watts per square inch of ext	ternal a	surface					0.45
Weight of shunt copper per	spool,	pounds					242
	all spo	-	•••				2420
Shunt Rheostat:							
O							6,6
D 11	•••	•••	•••	•••	• • •	•••	
	- • •	•••	•••	•••	•••	•••	16.8
Watts loss in rheostat	•••	•••	•••	•••	•••	•••	730
Series Spool:							
Ampere turns per series spoo	ol at 5	50 volta	3		•••	• • •	5150
Amperes per series spool	• • •	•••	•••	•••	•••		600
Amperes diverted	• • •	•••	•••	•••	•••	• • •	400
Turns per spool	• • •		•••				8.5
Size of conductor							$.145 \times 6.5$
Number in parallel	•••		•••	•••			1
Cross-section—square inches	i						.95
~ · .							630
							65
Total length of copper in 10	sloods	in feet	ե				460
Resistance of 10 spools at 60	_		• • •				0.00435
C R drop in series windings	-	•••	• • •				2.6
Watts lost in series spools at							1560
Weight of series copper, in p		_			•••		1700
	Journas	•••	•••	•••	•••	•••	1100
Series Diverter:							
Resistance at 60 deg. Cent.	• • •	•••	•••	•••	•••	• • •	0.0065
Amperes in diverter	•••	•••	•••	•••	• • •		400
Watts lsot in ,,		•••	• • •	•••		• • •	1040
,, series spool				•••			1560
Total watts lost in series win	ndings					•••	2600
Tr	IBRMAI	L CALC	JLATION	8.			
Armature:							
Current in armature							1000
Resistance of ,, 60 deg.	Cent.						0.0127
Watts lost in ,, 60	,,						12,700
Density in core, full load		•••		•••			67,000
Cycles per second							7.5
Density × cycles per second	l						
1000	-	•••	•••	•••	•••	•••	500
Watts per pound, from core	loss c	urve					1.02
Weight of core laminations-				•••	•••		10,800
Watts iron loss	Pour		•••	•••	•••		11,000
Total loss in armature	•••	•••	•••	•••	•••	•••	23,700
Peripheral radiating surface	of arm		_9/110 20	inches	•••	•••	12,000
	OI WILL		-	menes	•••	•••	1.98
Watts per square inch	 no./ f oo±		 nutol	•••	•••	•••	
Peripheral speed of armatur	•	-	•	 nomo in	 .h	•••	2250
Assumed increase of tempera	_	er wati	her sd	uare In	CII	•••	15 deg.
Estimated rise in temperatu	T.A.	•••	• • •	•••	•••	•••	30 "

Spool:						
Watts per shunt spool at 60 deg.	Cent.		•••			278
,, series ,, ,,						156
Total watts lost per spool, 60 deg		•••				434
Cylindrical radiating surface	•••					1350
Watts per square inch of radiati	ng surfs	ce				32
Rise of temperature by resistance	method	l per w	att per	square	inch	120 degCent.
Mean temperature rise of spool b						38.5 ,,
Commutator:						
Area of positive brushes—square	inches					25
			•••	•••		40
Specific resistance per square inc						0.03
Brush resistance, positive + neg						0.0024
						2.4
C ² R loss at brush contacts						2400
Brush pressure (assumed 1.25 lb.	per squ					62.5
Coefficient of friction	•		<i>,</i>			0.3
Peripheral speed in feet per minu	ıte					2040
Brush friction $\frac{0.3 \times 2040 \times 62.0}{44.2}$						870
Stray watts lost in commutator	•••	•••	•••	•••	•••	400
Total ", ",	• • •	•••	•••	•••	•••	3670
Radiating surface in square inch		•••	• • •	•••	•••	2400
Watts per square inch radiating		•••		•••		1.53
Increase of temperature per watt			of surf	ace assi		15 deg. Cent.
Estimated increase of temperatu	re	•••	•••	•••	•••	23 ,,
Efficie	VOV. CAT	CITT.AT	IONS			
20110111			101.0			Watts.
Output, full load						550,000
Armature copper loss				•••		12,700
Core loss	•••			•••		11,000
Commutator loss at brush contac	ts					2400
Allowance for stray losses in con	mutato	r				400
Brush friction loss at commutato	r	• • •				870
Loss in shunt winding						2780
" series " …					••	1560
" shunt rheostat		•••				730
" series diverter …						1040
Constant losses	• • •			•••		15,780
Variable "						17,700
Total losses				•••		33,480
Efficiency at full load	•••		•••	•••	•••	94.26
" half load	•••		•••			93.17
" quarter load …	•••					89.05

16-Pole, 1000-Kilowatt Railway Generator

The drawings given in Figs. 190 to 210, on pages 217 to 226, relate to a 1000-kilowatt slow-speed railway generator designed by Mr. H. M. Hobart, and built by the Union Elektricitäts Gesellschaft of Berlin, to whose courtesy the authors are indebted for permission to publish this description.

Several have been installed in England and on the Continent. A photograph of one of the machines supplied to an English specification is reproduced in Fig. 189, on Plate IV.

SPECIFICATION FOR 1000-KILOWATT RAILWAY GENERATOR

	1000	LILOWAII	LUMINUM	CAMBIE	LIUM	
Number of poles						16
Kilowatts		• • •				1000
Revolutions per minute .		•••				90
Frequency in cycles per sec	ond					12
		•••				500
" no load						500
Amperes at full load .	••	•••			•••	2000
mature :	Dimens	ions in I	nches			
External diameter .						138
Internal ,, .	••					108
Length over conductors .				•••		31.6
Diameter at bottom of slot	g			•••		135.48
Gross length of armature co	ore					13.8
Effective length ,,						8.9
Per cent. insulation between	n lamii	nations				10
Number of ventilating duc				•••		8
Width of each ventilating						10.5
Thickness of laminations .						0.025
Pole pitch at surface .						27.2
NT 1 6 1 4				•••		384
Slot pitch at surface .	••					1.13
3371313 6 3 1 1 6						0.53
,, ,, root .						0.53
D		•••		•••		1.26
Width of tooth at surface.		•••		•••		0.6
,, ,, root (mi	inimum)				0.57
Bar winding, width of insu						0.112
hoight	,,					0.494

Electric Generators

Cross-section of slot, s	quare incl	hes	•••	•••		0.67
	r per slot,				•••	0.33
Space factor of slot	•••	•••	•••			0.49
Magnet Core:						
Length of pole face pa	rallel to s	haft		•••		13.8
,, ,, arc	•••	•••				19.3
Ratio of pole arc to pi	tch	•••				0.71
Radial length of magn	et core				•••	19
Diameter of magnet co	ore					15
Bore of field (diameter)			•••		13,879
Depth of air gap					•••	0.393
Spool:						
Length of spool over fl	anges					17.5
" winding spa	-	•••		•••	•••	17.15
Donah of			•••	•••	•••	2
Available length for sh			•••	•••	•••	13.5
-	ries spool		•••	•••	•••	3.65
	stice shoo	•••	•••	•••	•••	3.00
Yoke:						
External diameter over	r ribs	•••		•••		210
Internal diameter			•••	•••		182
Height of ribs			•••	•••	•••	7.5
Thickness of yoke, exc	lusive of 1	ribs	• • •	•••	•••	6.5
Length of yoke paralle	l to shaft		•••	•••		19.5
Commutator :						
Diameter	•••	•••				106.5
Number of segments	•••	•••				1152
•	er slot		•••			3
Width of segment plus				•••		0.29
Thickness of mica insul					•••	0.03
Width of segment at su					•••	0.26
Available length of con						14.5
Brushes:		1400	•••	•••	•••	11.0
Number of sets						1.6
	•••	•••	•••	•••	•••	16 1
" per set … Width of the brushes	•••	•••	•••	•••	•••	
	 A of hand	•••	•••	•••	•••	1.025
Length of arc of contact			•••	•••	•••	0.79 0.81
Area of contact of one				•••	•••	51
	ositive or	usnes, so	uare inch		•••	
Material of brush	•••	•••	•••	•••	•••	Carbon
]	MATERIA	L8			
Armature core						Sheet iron
Spider				•••		Cast iron
Conductors	•••	•••	•••	•••	•••	Copper
Commutator segments	•••	•••	•••	•••	•••	
leads	•••	•••	•••	•••	•••	"
" TOOMD	• • •	• • •			• • •	93

Fig. 189. 16-Pole, 1000-Kilowatt, 500-Volt Railway Generator. Speed, 90 Revolutions. Sheffield

		•

2 F

Commutator sp	ider			•••			Cast iron
Pole shoes							"
Yoke							Cast steel
Magnet cores	•••	•••		•••	•••		"
		Тися	NICAT	. Дата			
Armature:		1101					
No-load voltage	в			•••			500
Style of windir						1	6 circuit single
Gramme ring o	_	•••		•••		•••	drum
Number of pat		h winding					16
	ductors pe					•••	6
Arrangement	,,	"		•••			3 wide, 2 deep
Amperes per so							2220
Total number of	_				•••	•••	2304
Total number of			•••				1152
Number of tur							72
Mean length of			•••	•••		•••	94.5
Cross-section of	_				•••		0.055
Specific resista						•••	0.0000008
Resistance of a		-		•••	•••	•••	0.00605
Volts drop in		•		• •••	•••	•••	12.1
- L)) mahaa and	" l contacts	"	•••	•••	•••	2.2
,,		ing		•••	•••	•••	17
Internal voltag		**			•••	•••	16
Commutator (Spark	ing Const	ants):				•	
Periphery of co				•••			334
Revolutions pe		•••				•••	1.5
Peripheral spec		mutator (i	nches	per second)			502
Current comple		-					0.00158
Frequency of c	-			•••	•••		318
Maximum num				ed under one		•••	3
Length of cont					•••	•••	0.79
Gross length of			•••	•••		•••	13.8
Total lines lin					20 x 1		20.0
C.G.S. lin							1660
Inductance per							0.0000166
Reactance, ohr				•••	•••	•••	0.0033
Current per ar		nductor	•••	•••	•••	•••	125
Reactance volt			•••	•••	•••	•••	4.13
Iveacuance voice	ago, voius	•••	•••	•••	•••	•••	1.10
		Magnet	ic Ca	LCULATIONS			
Megalines ente	ring arms	ture per j				•••	14.45
"	,,	,,	1	full load	•••	•••	14.9
Coefficient of le	•	•••	•••	•••	•••	•••	1.125
Megalines per	-		•••		•••	•••	16.25
" "	full l	load	•••	•••	•••	•••	16.77

Figs. 191 and 192. Yoke and Magnet Core of 16-Pole, 1000-Kilowatt Railway Generator

Armature:					
Cross-section in square inches		•••		•••	244
Density at no load	•••				59,500
,, full load	•••	•••			61,500
Magnetic length	•••				11.9
Ampere-turns per inch length	at no load	•••			8.4
1))) 1)	full load	•••			9.2
,, in armature at n	o load				100
,, ,, ft	ıll load	•••		•••	110
Teeth:					
Ratio of pole arc to pole pitch			•••		0.71
Total number of teeth				•••	384
Number of teeth per pole	(taking 5	per cent.	for	spread),	
$\frac{384}{16} \times .71 \times 1.05 =$	·	•••			18
Cross-section teeth at root		•••		•••	93

Fig. 193. Yoke of Similar Generator, of Different Dimensions, for a Special Purpose

load		•••			156,000
l load					161,000
width of s	lot				1.1
load	•••		• • • •	•••	142,000
l load		•••			147,000
		•••			1.26
at no load		•••			1570
full load		•••	•••	•••	1900
at no load		•••	• • • •	•••	2200
full load	•••	•••	•••	•••	2400
ches	. <i>:</i> .	•••			177
•••				•••	92,000
•••		•••	•••	•••	95,000
	l load width of s load l load at no load full load at no load full load ches	l load width of slot load l load at no load full load full load ches	l load	l load	l load

ARMATURE SPIDER OF 16-POLE, 1000-KILOWAIT RAILWAY GENERATOR SHOWING CONSTRUCTION OF ARMATURE BOLTED TO FLY-WHEEL Figs. 197 AND 198. Figs. 194 To 196.

36	1						10
Magnetic	_		•••	•••		•••	19
Ampere to	arns per inch,		•••	•••	•••	•••	5
"	,,	full load	•••	•••	•••	•••	61
**	magnet o	core, no lo		• • •	•••	· • •	1000
**	,,	full l	oad	•••	•••	• • •	1150
Yoke:							
Cross-secti	ion in square i	inches (exc	l. ribs)				254
Density, n	io load	•••		•••			64,000
" f	ull load	••	•••	•••	•••		66,000
Magnetic	length in inch	es '					19
Ampere ti	ırns per inch,	no load					18.8
- ,,	,,	full load			•••		20.5
"	for yoke,	no load					356
"	,,	full load			•••		385
Air Gap:	,,						
-	ion at pole fac	10					266
	_		•••	•••	•••	•••	
•	t pole face, no		•••	•••	•••	•••	5 4, 500
))	••	l load	•••	•••	•••	•••	56,200
Magnetic	•		• • •	***	•••	•••	.393
Ampere to	urns for air ge				•••	•••	6700
"	"	full lose	d	•••	•••	•••	6900
Ampere Turns	per Spool for	Saturation	n:				
					No Load.		Full Load.
Armature	core	•••		• • •	100		110
	_						
"	teeth	•••	•••		2,200		2,400
Gap	•••			•••	6,700		6,900
	•••				6,700 1,000		-
Gap Magnet co	•••				6,700		6,900
Gap Magnet co	 ore				6,700 1,000 400		6,900 1,150 440
Gap Magnet co	 ore ke	 To	otal		6,700 1,000 400 10,400		6,900 1,150 440 11,000
Gap Magnet co ,, yo Ampere to	ore ke urns for overc	 To oming ohn	otal nic drop	= 11,000	6,700 1,000 400 10,400		6,900 1,150 440 11,000 600
Gap Magnet co ,, yo Ampere to	 ore ke	 To oming ohn	otal nic drop	= 11,000	6,700 1,000 400 10,400		6,900 1,150 440 11,000
Gap Magnet co ,, yo Ampere to	ore ke urns for overc winding ampe	 To oming ohn	otal nic drop	= 11,000	6,700 1,000 400 10,400 0 - 1,400		6,900 1,150 440 11,000 600
Gap Magnet co ,, yo Ampere to The shunt	ore ke urns for overce-winding ampe	 To oming ohn ore turns a	otal nic drop re taken	 = 11,000 as	6,700 1,000 400 10,400 0 - 1,400	•••	6,900 1,150 440 11,000 600 11,000
Magnet co ,, yo Ampere to The shunt Armature Inter	ore ke urns for overce winding amperference: urns per pole	 To oming ohn ore turns a	otal nic drop re taken	 = 11,000 as	6,700 1,000 400 10,400 0 - 1,400 		6,900 1,150 440 11,000 600 11,000
Ampere to Ampere to Ampere to Ampere to Ampere to Ampere to	ore ke urns for overce-winding amperference: urns per pole per circuit	 To oming ohn ere turns a 	otal nic drop re taken 	 = 11,000 a.s	6,700 1,000 400 10,400 0 - 1,400 		6,900 1,150 440 11,000 600 11,000
Ampere to Ampere to Ampere to Ampere to Ampere to Ampere to	ore ke urns for overce- winding amper ference: urns per pole per circuit urns per pole	To oming ohu ere turns a	otal nic drop re taken	 = 11,000 as	6,700 1,000 400 10,400 0 - 1,400 		6,900 1,150 440 11,000 600 11,000 72 125 9000
Ampere to Segments	winding amperence: urns per pole per circuit urns per pole lead of brush	oming ohnere turns a	otal nic drop re taken 	 = 11,000 a.s	6,700 1,000 400 10,400 0 - 1,400 		6,900 1,150 440 11,000 600 11,000 72 125 9000 7.2
Ampere to Ampere to Ampere to Ampere to Ampere to Ampere to Segments Percentage	wins for overce-winding amperence: urns per pole per circuit urns per pole lead of brushe	oming ohnere turns a	otal nic drop re taken		6,700 1,000 400 10,400 0 - 1,400 		6,900 1,150 440 11,000 600 11,000 72 125 9000 7.2 10
Ampere to Ampere to Ampere to Ampere to Ampere to Ampere to Segments Percentag Apparent	wrns for overce-winding amper ference: urns per pole per circuit urns per pole lead of brush e lead of brush tooth density	To oming ohn ere turns a es hes	otal nic drop re taken	 = 11,000 a.s	6,700 1,000 400 10,400 0 - 1,400 		6,900 1,150 440 11,000 600 11,000 72 125 9000 7.2 10 161,000
Ampere to Ampere to Ampere to Ampere to Ampere to Ampere to Segments Percentag Apparent Saturation	winding amperence: urns per pole per circuit urns per pole lead of brush tooth density of Field amp	oming ohm ore turns a es hes , full load here turns,	otal nic drop re taken no load	 = 11,000 as (K)	6,700 1,000 400 10,400 0 - 1,400 		6,900 1,150 440 11,000 600 11,000 72 125 9000 7.2 10 161,000 11,000
Ampere to Ampere to Ampere to Ampere to Ampere to Ampere to Segments Percentag Apparent Saturation Ampere to	winding amperence: urns for overce- winding amperence: urns per pole per circuit urns per pole lead of brush tooth density of Field amp	oming ohn ore turns a es hes , full load ore turns, me ohmic o	otal nic drop re taken no load	 = 11,000 ass (K)	6,700 1,000 400 10,400 0 - 1,400 		6,900 1,150 440 11,000 600 11,000 72 125 9000 7.2 10 161,000 11,000 600
Ampere to Ampere to Ampere to Ampere to Ampere to Ampere to Segments Percentag Apparent Saturation Ampere to Demagnet	winding amper circuit tooth density of Field ampers to overcoising ampered	oming ohnere turns a es hes full load ere turns, me ohmic o	otal nic drop re taken no load drop (H) oole (G)	= 11,000 ass (K)	6,700 1,000 400 10,400 0 - 1,400 		6,900 1,150 440 11,000 600 11,000 72 125 9000 7.2 10 161,000 11,000 600 1800
Ampere to Ampere to Ampere to Ampere to Ampere to Ampere to Segments Percentag Apparent Saturation Ampere to Demagnet Total dista	winding ampered in the control of th	oming ohnere turns a es hes , full load here turns, me ohmic of	otal nic drop re taken no load drop (H) pole (G) pole (D)	= 11,000 ass (K)	6,700 1,000 400 10,400 0 - 1,400 		6,900 1,150 440 11,000 600 11,000 72 125 9000 7.2 10 161,000 11,000 600 1800 7100
Ampere to Ampere to Ampere to Ampere to Ampere to Ampere to Segments Percentag Apparent Saturation Ampere to Demagnet Total dist Ampere to	winding amper circuit tooth density of Field ampers to overcoising ampered	oming ohnere turns a es hes , full load here turns, me ohmic of	otal nic drop re taken no load drop (H) pole (G) pole (D)	= 11,000 ass (K)	6,700 1,000 400 10,400 0 - 1,400 		6,900 1,150 440 11,000 600 11,000 72 125 9000 7.2 10 161,000 11,000 600 1800 7100 9300
Ampere to Ampere to Segments Percentag Apparent Saturation Ampere to Demagnet Total dista Ampere to D ÷ S =	winding ampered in the control of th	oming ohnere turns a es hes , full load here turns, me ohmic of	otal nic drop re taken no load drop (H) pole (G) pole (D)	= 11,000 ass (K)	6,700 1,000 400 10,400 0 - 1,400		6,900 1,150 440 11,000 600 11,000 72 125 9000 7.2 10 161,000 11,000 600 1800 7100 9300 0.76
Ampere to Ampere to Ampere to Segments Percentag Apparent Saturation Ampere to Demagnet Total dista Ampere to D ÷ S = F ÷ D =	wrns for overce-winding amperence: urns per pole per circuit arns per pole lead of brush tooth density of Field amperes to overcomising ampere arns for teeth	oming ohnere turns a coming ohnere turns a coming ohnere turns a coming ohnere turns, a dere turns, a turns per p turns per p turns per and gap (S	otal nic drop re taken no load drop (H) cole (G) pole (D)		6,700 1,000 400 10,400 0 - 1,400		6,900 1,150 440 11,000 600 11,000 72 125 9000 7.2 10 161,000 11,000 600 1800 7100 9300 0.76 0.21
Ampere to Ampere to Ampere to Segments Percentag Apparent Saturation Ampere to Demagnet Total dista Ampere to D ÷ S = F ÷ D = Field amp	winding ampered in the control of th	oming ohmere turns a coming ohmere turns a coming ohmere turns, me ohmic of turns per p turns per and gap (S coming ohmic of turns per and gap (S) otal nic drop re taken no load drop (H) cole (G) pole (D)) istortion		6,700 1,000 400 10,400 0 - 1,400		6,900 1,150 440 11,000 600 11,000 72 125 9000 7.2 10 161,000 11,000 600 1800 7100 9300 0.76	

Shunt S	Spool:
---------	--------

Mean length of one turn in inch	1 08	 	 54
,, ,, ,, feet		 •••	 4.5
External diameter of spool		 •••	 19.2
Internal ,, ,,		 	 15.25
Mean diameter of spool		 	 17.225
Ampere turns per shunt spool		 	 11,000
Ampere feet		 	 49,500

Figs. 199 and 200. End-Flange of 16-Pole, 1000-Kilowatt Railway Generator

		$\left(\frac{4}{1}\right)$	$(\frac{9,500}{1000})^2$				
Watts at 60 de	g. Cent. 35.	.6 × \(\frac{\cdot 1}{2}\)	168	•••	•••	•••	515
Watts lost in s	hunt and rh	neostat	•••				9500
Amperes per sl	nunt spool		•••	•••	•••		19
Turns "	"				•••		580
Resistance per	shunt spool	at 60 c	leg. Cent.		•••	• • •	1.44
,, ,,	16 shunt sp	ools at	60 deg. C	ent.	•••	•••	23
Length of wire	per spool .			•••			2630
B.W.G.			•••		•••		No. 9

Bare diameter						0.148
D.C.O. ,,					•••	0.16
Cross-section in square	inches					0.0172
Amperes per square inc		•••	•••			1100
Winding space for shun		s	•••	•••		14
Number of layers	,	•••	•••			7
" turns per la	ver	•••			•••	83
70 41 4 4 34	• • • •	•••	•••			1.15
Weight of shunt copper		ol in pour	ds			173
» "		pools in p		•••		2750
Shunt Rheostat:						
Current in rheostat			•••	•••		19
Resistance of rheostat,	ohms					3.42
C ² R loss in rheostat		•••	•••	•••		1250

Figs. 201 to 203. Laminations and Ventilating Pieces of 16-Pole, 1000-Kilowatt Railway Generator'

Series Spool: Ampere turns per series spool 3900 1650 Amperes per series spool ... Number of turns per series spool $2\frac{1}{2}$ Mean length of one turn ... 54 11.3 Total length of series winding, in feet 0.122 Cross-section of one series turn ... fourteen series turns in parallel 1.70 Amperes per square inch ... 980 ... Resistance of one series spool at 60 deg. Cent. 0.00006250.001 16 series spools at 60 deg. Cent. Watts lost in series spools at 60 deg. Cent. ... 2700

Radiating surface of series spools	•••	•••	•••		1140
Watts per square inch of surface	•••	•••	•••	•••	2.38
Series conductor		•••	•••	•••	0393×3.15
Total weight of series copper, in p	ounds	•••	•••	•••	1200
Series Diverter:					
Resistance at 60 deg. Cent., ohms		•••			0.00465
Amperes in diverter					350
Watts lost in diverter		•••			580
" series spool					2700
Total watts lost in compounding	•••	•••	• • •	•••	3280
THERMA	l Calc	ULATIONS			
Armature:					
Current in armsture					2000
Resistance of armature at 60 deg.	Cent.	•••			0.00605
C ² R loss of armature at 60 deg. Ce					24,200
Density in core, full load			•••		61,500
Cycles per second					12
Density × cycles per second		•••	•••	•••	
1000	•••	•••	•••	• • •	740
Watts per pound, from core loss c	urve				1.36
Weight of core laminations	,,,	•••	•••		13,200
Watts iron loss		•••	•••		18,000
Total loss in armature					42,200
Peripheral radiating surface of arr				•••	13,600
Watts per square inch	•••			•••	3.1
Peripheral speed of armature, feet			•••		3240
Assumed increase of temperature	_				11.3 deg. Cent.
Estimated rise in temperature	por wa				95
Estimatou 1250 III temperature	•••	•••	•••	•••	oo ,,
Commutator:					
Area of positive brushes, square in	nches		•••		51
Amperes per square inch		•••			39.3
Specific resistance per square inch	of bru	sh surface, e	ohms		0.03
Brush resistance (positive × nega-		•••			0.00110
Volts drop at brush contacts		•••			2.2
C ² R loss ,,		•••			4400
Brush pressure (assumed 1.63 lb.	per squ	are inch)	• • •		165
Coefficient of friction	·	•••	•••		0.3
Peripheral speed of commutator in	n feet p	er minute	• • •		2800
$3 \times 2500 \times 168$	_	'			0000
Brush friction = $\frac{3}{44.2}$		•••	• • •	• • • •	2800 watts
Allowance for stray losses in com	mutato	r			200
Total watts lost in commutator					7400
Radiating surface					4800
Watts per square inch					1.54
Increase of temperature per watt			surface		20 deg. Cent.
Estimated increase of temperature		•••			31 ,,
	•				$ {2}$ G

EFFICIENCY CALCULATIONS

	13F F 101	BRUI CAL	CODATION	9		
						Watts.
Output, full load	•••	•••	•••	•••	1,	,000,000
Core loss	•••	•••	•••	•••		18,000
Armature copper loss	•••					24,200
Commutator loss at br	ush conta	icts				4,400
Allowance for stray lo	sses in co	mmutato	·			200
Brush friction loss at	commutat	or	•••			2,800
Loss in shunt winding	,	•••				8,250
" series winding				•••		2,700
,, shunt rheostat	t	•••				1,250
" series diverter	•			•••		580
Total constant losses						30,500
" variable losses				•••		31,880
" losses …						62,380
Efficiency, full load						94.15
" half load						92.85
" quarter load	d			•••	•••	88.52
Veights in Pounds:						
Armature copper				•••		1980
Field copper			•••			3950
Commutator segments	.	•••		•••		4200
Armature laminations	.			•••		13,200
Pole face			•••			2200
Magnet cores						15,400
Magnet yoke (includi	ng feet)		•••			33,000
	_ ,					

SIX-POLE 250-KILOWATT ELECTRIC GENERATOR

The following is one of the latest designs: In Figs. 211 to 224, pages 228 to 232, are given diagrammatical sketches, setting forth the electromagnetic dimensions to which the ultimate designs should correspond. Figs. 225 to 233, pages 235 to 238, show some interesting details of construction of frame, spider, commutator, brush holders, bearing, &c., suggested among other alternative schemes, in the mechanical development of the generator.

SPECIFICATION

Number of poles		•••	•••	•••		6
Kilowatts		• • • •		•••		250
Revolutions per minute		•••		•••		320
Frequency in cycles per s	econd					16
Terminal volts, full load		•••			•••	550
" " no load		•••			•••	500
Amperes		•••	• • •	•••	•••	455

Figs. 211 and 212. Six-Pole, 250-Kilowatt, 320 Revolutions per Minute Continuous-Current Generator

DIMENSIONS Armature: Diameter over all 46 in. Length over conductors ... 32.3 " Diameter at bottom of slots 43.4 ,, Internal diameter of core ... 30 ,, Fig.214. Fig. 218. Fig.216. Fig. 216. Fig. 211.

Figs. 213 to 217. Details of Armature of 6-Pole, 250-Kilowatt, 320 Revolutions per Minute Continuous-Current Generator

Length of core over all	 •••		 12.3 in.
Effective length, magnetic iron	 •••	•••	 9.9 "
Pitch at surface	 •••		 24 "
Insulation between sheets	 •••		 10 per cent.

Thickness of sheets						0.014 in.
Depth of slot		•••	•••			1.28 ,,
Width of slot at root					•••	0.582 ,,
,, ,, surface		•••	•••	•••	• • •	0.582 "
Number of slots		•••				150
Minimum width of tooth	١					0.327

Figs. 218 to 221. Details of Armature of 6-Pole, 250-Kilowatt, 320 Revolutions per Minute Continuous-Current Generator

Width of tooth at armature face		•••			0.379 in.
Width of conductor	•••		•••	•••	0.10 ,,
Depth of conductor	•••	•••			0.45 ,,
Number of ventilating ducts	•••				3
Width of each ventilating duct		•••	•••	•••	0.44 ,,
Efficient length of core + total len	gth	•••	•••	•••	0.80 "

Magnet core, length of pol	e face	•				12.3
T						17 in.
That is a second and the second	· · ·	•••	•••			0.70
Thickness of pole-piece at	edge of	core				0.50
Radial length, magnet core	_					10.5
Diameter of magnet core		•••	•••			12.3
Bore of field (diameter)						465 in.
Donth of air can		•••				16 "
_ open or all gap		•••	•••		•••	16 "
Spool:						
Length over flanges		•••	•••			10.5 in.
" of winding space.			•••	•••		9.3 ,,
Depth	•••	•••				2.75 ,,
Yoke:						
						011:
	•••	• • •	• • •	•••	•••	81.1 in.
***	•••	•••	•••	•••	•••	72.1 ,,
	••	•••	•••	•••	•••	4.5 ,,
Length along armature .	•••	•••	•••	•••	•••	15 ,,
Commutator:						
D:						37.4 "
	•••	•••	•••	•••	•••	600
J	lot	•••	•••	•••	•••	4
,, ,, per s		 •	•••	•••	• • •	0.167 in.
Width of segment at community Thickness of mica insulation			•••	•••	•••	0.107 iii.
			•••	•••	•••	0.00
Available length surface of			•••	•••	• • • •	9.06 ,,
Cross-section commutator	leads	•••	•••	•••	•••	0.03 square inch
Brushes :						
Number of sets						6
•						4
Wilth of house						1.75 in.
Thickness of brush .						0.625 ,,
Area of contact one brush						1.09 square inches
Type of brush						Carbon
• •						
	М	ATERIALS				
Armature core		,				Sheet iron
0:3						Cast iron
O. 1				•••		Copper
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		•••		•••))
, ,				•••		**
midon						Cast iron
Delement				•••		Cast steel
37 - 1				•••		,,
V			•••			"
D						Carbon
	- · ·					

Armature:	TECHNICAL	Data			
No load voltage					500
Number face conductors		•••	•••		1200
Conductors per slot		•••			8
Fig.222.		<u> </u>	ONO DILE		
1 24 - 1					\ \>
	Fig. 223.		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		
				! -+-	11111
12 042 04 15 0 1 2 8 4 5 6	nices + 98		91 ·Bo	ttom Distri	
			+		
ach it is	+ ! ! !	1111	+++		ナササ
	3 3	1	' '	-//	
111			İ		//
111		1	1 /		
111			i	/ ~	
		9	1		
ig.224			1		\wedge
	111		!	/	
9999	111		1	//	
150 25	1	1			
44444	4688.D.		114111		

Figs. 222 to 224. Core and Winding of 6-Pole, 250-Kilowatt, 320 Revolutions PER MINUTE CONTINUOUS-CURRENT GENERATOR

Number of circuits	 	 		6
Style winding	 	 	•••	Multiple
Gramme ring, or drum	 	 		Drum

	••				
Type of construction of wind	_	•••	•••	•••	Barrel-wound
Mean length, one armature	turn	•••	•••	•••	84.5 in.
Total armature turns	•••	•••	•••	•••	600
Turns in series between brus	hes	•••	•••	•••	100
Length between brushes	•••	•••	•••	•••	8450 in.
Oross-section one armature of	onductor	•••	•••	•••	0.045 sq. in.
Ohms per cubic inch at 20 d	eg. Cent.		• • •		0.00000068
Resistances between brushes	at 20 deg. Ce	ent.			0.0213 ohms
"	60 ,,				0.0245 ,,
Volts drop in armature at 6	0 deg. Cent.	•••			11.3
,, brushes and co	_	•••			2.1
Total internal voltage, full le	oad				564
Amperes per square inch in				•••	1700
	commutator c		•••		2500
,, ,,			•••	•••	2000
Commutation:					
•					
Average voltage between co	•	ments	•••	•••	5.5
Armature turns per pole	•••	•••	• • •	•••	100
Amperes per turn		•••	•••	•••	76
Armature ampere turns per	•	•••	• • •	•••	7600
Segments lead of brushes	•••	•••	•••		8
Percentage ,,	•••	•••	•••		8 per cent.
" demagnetising a	mpere turn	•••			16 ,,
,, distorting	"	•••			84 ,,
Demagnetising ampere turn	s per pole				1220
Distorting ,,	,,	•••			6380
Frequency of commutation,		ond	•••		500
Number of coils simultaneou	-			•••	4
Turns per coil				•••	i
Number of conductors per a	rroun simulta	neonaly und	ergoing		•
mutation	group simurous	icousiy und	orgoing (8
Flux per ampere turn per in	ah lanatharn	 satura lami:	notion	•••	20
	_			•••	
Flux linked with eight turn				•••	1970 lines
Inductance of one turn in h	•	.970 × 10 ⁻⁴	•••	•••	0.0000197
Reactance short-circuited co		• • •	•••	•••	0.062 ohms
" voltage short-circ	uited coil	•••	•••	•••	4.7 volts
MAGNUMO	Motive Force	e Catomea	PIONE		
Megalines entering armatur	e, per pole pie	ce, no load	• • •		7.80
" "	,,	full load	l		8.80
Coefficient of magnetic leaks	age				1.15
Megalines in magnet frame,		, no load			8.97
" " "	,,	full load			10.1
"					
Armature:					
Section					190
	•••	•••	•••	•••	132 sq. in.
Length, magnetic	•••	•••	•••	• • •	13.0 ,,
					2 н

Dens	ity, no load	•••	•••	•••	•••	•••	59 kilolines
"		•••	•••	•••	•••	•••	66 ,,
Amp	ere turns per inch l	ength,		•••	•••	•••	11
***	>>	"	full load	•••	•••	• • •	13
"	no load	•••	•••	•••	•••	•••	140
,,	full load	•••	•••	•••	•••	•••	179
Teeth:							
	smitting flux from	224	Jo.				20
	on at roots	_		•••	•••	•••	65
		•••	•••	•••	•••	•••	1.28
Leng		٠	•••	•••	•••	•••	1.20 132 kilolines
	arent density, no los full le		•••	•••	•••	•••	
	"		•••	•••	•••	•••	148 " 124 "
Corre	,, £_11_1		•••	•••	•••	•••	.,
	" " full k			•••	•••	•••	134 ,,
Amp	ere turns per inch l	•	-	•••	•••	•••	700
"		"	full load	•••	•••	•••	1250
**		•••	•••	•••	•••	•••	890
"	full load	•••	•••	•••	•••	•••	1600
Gap:							
Secti	on at pole-face						210 sq. in.
	th gap					•••	0.31 in.
_	sity at pole-face, no		•••		•••		37.2 kilolines
	£11	load		•••		•••	40
Amn	ere turns, no load				•••	•••	3640
	£-11 1 J						5150
	" rum losa	•••	•••	•••	•••	•••	0100
16	1						
Magnet C							
Secti		•••	•••	•••	•••	•••	119 sq. in.
_	th (magnetic)	•••	•••	•••	•••	•••	12.75 in.
Dens	ity, no load	•••	•••	•••	•••	•••	76 kilolines
"	full load	•••	•••	•••			85 "
Amp	ere turns per inch	length	, no load		•••		35
,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	"	full load	•••	•••	•••	46
,,		•••	•••	•••		•••	450
31	full load	•••		•••	•••	•••	590
Magnetic	Yoke:						
Secti	ion						140 sq. in.
	gth per pole		•••		•••		18 in.
	sity, no load				•••		64 kilolines
10111			•••				79
	pere turns per inch				•••		25
22.00	-	-ongti	full load		•••	•••	32
	" " "			•••	•••	•••	450 .
	full load		•••	•••	•••	•••	450 . 570
	., Iun iosa	•••	•••	•••	•••	•••	910

Figs. 225 to 229. Magnet Frame and Pole Shors for 6-Pole, 250-Kilowatt, 320 Revolutions per Minute Continuous-Current Generator

SATURATION AMPERE TURNS PER SPOOL

					Load and 600 Volts.	No Load and 564 Volts, Corresponding to Internal Voltage at Full Load, when Terminal Voltage is 550.
Armati	ire core				140	170
,,	teeth				890	1600
Gap	•••				3640	4150
Magnet	core		• • •		450	590
,,	yoke				450	570
					5570	7080
Demagnetising ampere turns per pole, at full load						1220
Allowa	nce for inc	rcase in	density t	hrough o	listortion	700
Total ampere turns at full load and 550 terminal volts						8920

If the rheostat in the shunt circuit is adjusted to give 5570 ampere turns at 500 volts, then when the terminal voltage is 550 the shunt excitation will amount to $\frac{550}{500}$ × 5570 = 6130 ampere turns.

8900 - 6130 = 2770 ampere turns, must be supplied by the serieswinding.

CALCULATION OF SPOOL WINDING

Shunt:

Mean length of one shunt turn			==	48.5 in. = 4.05 ft.
Ampere turns per shunt spool at full load	l			6,130
Ampere feet				24,800
Total radiating surface of one field spool				530 square inches
Proportion available for shunt = $\frac{6130}{8900}$ ×	: 530		=	365 "
Permit .40 watts per square inch at	•••			20 deg. Cent.
$\therefore 365 \times .40 = 146$ watts per shunt spoo	l at			20 ,,
And 168 watts per shunt spool at	•••			60 ,,
Shunt copper per spool = $\frac{31 \times 615}{146} = 1$	31 1ь. [L	31 × b. = —	wat	np. feet 1000 2.

Plan to have 80 per cent. of the available 550 volts, *i.e.*, 440 volts at the terminals of the field spools when hot, the remainder being consumed in the field rheostat. This is 382 volts at 20 deg. Cent., or 63.5 volts per spool. Hence require $\frac{146}{63.5} = 2.3$ amperes per spool.

Turns per shunt spo	ol = $\frac{6130}{2.3}$	•••		•••	=	2660			
Length of 2660 turn	1 8					10,800 ft.			
Pounds per 1000 ft.	•••		• • •			12.1			
No. 14 B. and S. has 12.4 per 1000 ft.									
Bare diameter						0.0641 in.			
D.C.C. "						0.075 ,,			
Cross-section					0.00	323 square inch			
Amperes per square	inch			•••		710			
Length of the portion of winding space available for shunt winding, 6.5 in.									
Winding consists of 33 layers of 81 turns each, of No. 14 B. and S.									

SERIES WINDING

The series winding is required to supply 2770 ampere turns at full load of 455 amperes.

Planning to divert 25 per cent. through a rheostat in parallel with the series winding, we find we have $.75 \times 455 = 342$ amperes available for the series excitation; hence each series coil should consist of $\frac{2770}{342} = 8$ turns.

Copper cross-section = .46 square inch.

Series winding per spool may consist of eight turns made up of four strips of sheet copper 2.3 in. \times .050 in.

Weight of series copper in one spool = 58 lb.

Current density series winding = 740.

THERMAL CALCULATIONS

Armature:

C ² R loss at 60 deg.	Cent					5050 watts		
Core loss				•••		4000 ,,		
Total armature loss	•••		•••	•••		9050 ,,		
Peripheral radiating	g surface of ar	mature			4	700 square inches		
Watts per square in	ich radiating	surface				1.93		
Peripheral speed ar	mature feet p	er minute			• • • •	3850		
Assumed increase of temperature per watt per square inch in								
radiating surfa	istance	=	25 deg. Cent.					
Hence estimated to	nature	=	48 ,,					

Commutator:

Area of all positive brushes	•		 13.1 square inches
Amperes per square inch brush-bearing surface	9		 35 amperes
Ohms per square inch bearing surface carbon l	brushes	•••	 0.3 ohm
Brush resistance, positive and negative		•••	 0.0046 ,,
Volts drop at brush contacts	••	•••	 2.1 volts
C ³ R at brush contacts		•••	 950 watts
Brush pressure, assumed 1.25 lb. per square in	ch		 32.8 lb.

Figs. 230 to 233. Commutator and Brush Holder for 6-Pole, 250-Kilowatt, 320 Revolutions per Minute Continuous-Current Generator

Coefficient friction	• • •	•••	0.3
Peripheral speed of commutator, feet per minute	•••	•••	3130
Brush friction			700 watts
Allowance for stray power lost in commutator	•••	•••	150 "
Total commutator loss	•••	•••	1800 ,,
Radiating surface in square inches	•••	•••	1100

Watts per square inch radiating surface of commutator	•••	1.64
Increase of temperature per watt per square inch radial	ting	
surface		20 deg. Cent.
Total estimated increase of temperature of commutator		33

Figs. 234 to 236. Estimated Curves for 6-Pole, 250-Kilowatt, 320 Revolutions per Minute Continuous-Current Generator

EFFICIENCY CALCULATION

					Watts.
Output, full load	•••	•••	•••	•••	 250,000
Core loss	•••		•••		 4,000
Commutator and brush	losses				 1,800
Armature C^2R at 60 d	leg. Cent.		•••	•••	 5,050
Shunt spools C2R at 6	0 deg. Cent.		•••		 1,000
" rheostat at 60 d	leg. Cent.		•••		 250
Series spools C2R at 6	0 deg. Cent.	•••			 460
" rheostat at 60 d	leg. Cent.		•••		 150
Friction in bearings, a	nd windage		•••	•••	 2,000
					264,710
Commercial efficiency	at full load	and 60	deg. Cent.	•••	 94 per cent.

			WEIGHT	18			
Armature:							Lb.
Magnetic core	•••	•••	•••		•••		2100
Teeth		•••		•••			210
Spider							860
Shafting							1700
End flanges				•••			750
Copper	•••			•••			730
Commutator:							
Segments	•••			•••			680
Spider	•••	•••		•••			530
Rings			•••				260
Other parts of	armatu	re and co	mmutator	•			180
Armature com					aft	•••	8000
Fig.237.		14		Fig. 288) .		

Figs. 237 and 238. Test Results for 6-Pole, 250-Kilowatt, 320 Revolutions per Minute Continuous-Current Generator

Field:				
Six pole-pieces and mag	net core	 	•••	 240 0
Magnet yoke		 		 5000
Six shunt coils		 		 790
Six series coils		 	•••	 350
Total spool copper	•••	 •••		 1140
Brush gear	•••	 •••	•••	 300
Bedplate and bearings	•••	 •••		 2600
Machine complete	•••	 		 20,000

In Figs. 234, 235, and 236, on page 239, are given saturation, compounding, and efficiency curves in accordance with estimated values. Figs. 237 and 238 show the results of saturation and core loss tests. They agree very well with the predetermined values of the above specification. As shown in Fig. 237, the excitation required at no load and 500 volts was, by observation, 5400 ampere turns, as against the predetermined value of 5570 ampere turns given in the calculation on page 236.

6-Pole, 50-Kilowatt, 525-Volt, 725 Revolutions per Minute, Continuous-Current Generator

Through the courtesy of the British Thomson-Houston Company, we are permitted to publish the following description of a 6-pole, 50-kilowatt, 525-volt, 725 revolutions per minute, continuous-current generator, designed by Mr. David P. Thomson. The machine constitutes the generator component of a motor-generator set designed for the substations of the Yorkshire Power Company. The motor is an 8-pole induction motor, running from a 50-cycle circuit; hence the speed at no load is 750 revolutions per minute, and this decreases to 725 revolutions per minute at full load. The dynamo is compounded to give with this $3\frac{1}{2}$ per cent. drop in speed, a 5 per cent. increase in voltage from 500 volts at no load to 525 volts at full load.

Outline drawings of the dynamo are given in Fig. 239, and a photograph of the set is reproduced in Fig. 240, Plate V.

The designing specification of the machine is given below:-

SPECIFICATION

NI.	MOIL TOUR	1014			
Number of poles		•••	•••		6
Normal rating in kilowatts		•••			50
Speed in revolutions per minute					725
,, ,, second					12.1
Periodicity in cycles per second	•••	•••		•••	36.3
Terminal voltage, full load				•••	525
,, ,, no load		•••			500
Amperes output, full load	•••	•••		•••	100
Dimen	SIONS IN	Inches			
External diameter		•••		•••	201
Axial length of the winding	•••		• • •	:. .	15
External diameter of the lamina	tions	•••	•••	•••	201
Diameter at the bottom of the sle	ots	•••			18.29
Internal diameter of the laminati	ions	•••		•••	11 <u>‡</u>
Axial length of core between flar	nges			•••	7.625
Effective length of core (magnet	ic iron)				6.52
Circumference (external)					64.5
Pitch at circumference				•••	10.8
Circumference at the bottom of t	he slots		•••	•••	57.5
Insulation between laminations,	per cent.			•••	10
	material			•••	$\mathbf{Varnish}$
Thickness of punchings	•••			•••	0.02
Depth of the slot					0.98
•				2	I

Fig. 240. Details and General View of 6-Pole, 50-Kilowatt, 525-Volt, 725 Revolutions, Continuous-Current Generator for the Sub-stations of the Yorkshire Power Company

Width of tooth + slot at periphe	•	•••	•••	•••	0.68
,, ,, + ,, bottom	of slot	•••	•••	•••	0.606
Width of the slot as stamped	•••	•••	•••	•••	0.34
,, ,, assembled	•••	•••	•••	•••	0.33
Number of slots	•••	•••	•••	•••	95
,, " per pole	•••	•••	•••	•••	15.8 3
Width of tooth at periphery, as s	tamped	•••	•••	•••	0.34
Minimum width of tooth,	,,	•••	• • • •	• • •	0.278
Average ", ",	"	•••	•••		0.309
Radial depth of the laminations	•••	•••	•••	•••	8.75
", ", "t	elow slot	B	•••	•••	6.79
Number of ventilating ducts	•••		• • •	•••	1
Width of the duct	•••	•••	•••	•••	0.375
Bar Winding:					
Height of uninsulated conductor		•••	•••	• • •	0.35
Width of ,, ,,			•••	•••	0.06
Height of insulated conductor	•••	•••	•••	•••	0.37
Width of ,, ,,	•••	•••	•••		0.08
Thickness of the slot insulation—					0.055
Cross section bare conductor, squa		•••	•••		0.021
Amperes per conductor			•••		50
non square inch	•••				2380
Conductors per slot	•••				6
Total copper cross section per slot		•••			0.126
Width × depth of slot, square in				•••	0.324
"Space factor" of slot		•••			0.39
-	•••	•••	•••	•••	0.00
Magnet Core:					C 5
Length of the pole face parallel to			•••	•••	6.5
Diameter of the bore of the pole f		•••	•••	•••	20.58
Mean length of the pole arc	•••	•••	•••	•••	7.5
Ratio of pole arc to pitch	•••	•••	•••	•••	0.695
Radial length of the magnet core		···	•••	•••	7.3
Width of the magnet core parallel				•••	6.5
	t angles t	o tne sn	aic	•••	4.625
Radial depth of the air gap	•••	•••	•••	•••	0.165
Distance between pole tips	•••	•••	•••	•••	6.6
Yoke:					
External diameter	•••	•••	•••	•••	41.75
Internal ,,	•••	•••	•••	•••	35.75
Thickness of yoke	•••	•••	•••	•••	6.0
Axial width	•••	•••	•••	•••	150
Commutator :			•		
Diameter		·		•••	15.0
Circumference	•••		:. .		47.2
Number of segments	•••	•••		•••	284
Thickness of segment + insulatio				•••	0.166
Useful depth of a segment	FF				0.75
Total length of a segment	•••	•••			4.0
<u> </u>					

Brushes:				
Number of sets				6
· · · · · · · · · · · · · · · · · · ·	•••	•••	•••	2
Width of the househor	•••	•••	•••	1.25
Tanadh af dha ann af a maraid	•••	•••	•••	0.5
Contact surface per brush, square inche	•••	•••	•••	0.625
Material of the brushes		•••	•••	Carbon
material of the brushes	•••	•••	•••	Carbon
ELECTRICAL AND M	Agnetic D	ATA		
Armature:				
Total induced voltage, full load		•••		548
Terminal ,, ,,				525
No load voltage	•			500
Number of face conductors	•••			570
,, slots				95
" conductors per slot			•••	6
Arrangement of the conductors in the s			•••	2×3
Total amperes from commutator		•••	•••	100
Number of circuits	•••			2
Amperes per circuit as dynamo	•••			50
Total number of parallel paths through				2
Number of conductors in series between				284
Transcript of contamount in notice both con	0140400	•••	•••	201
Winding:				
Mean length of a single turn, inches	•••	• • •	•••	52.5
Total number of turns (one dead coil)	•••			285
Number of turns in series between brus	hes			142
Total length of conducting path between	brushes, in	ch es		7460
Cross section of one conductor, square in	nches			0.021
,, all parallel conductors		•••		0.042
Specific resistance at 60 deg. Cent	•••		•••	0.000000846
Resistance of winding from + to - at	60 deg. Cent	;.		0.15
CR loss in armature at 60 deg. Cent., v	_			15
,, in the series spools at 60 deg. (4.5
", ", brush contact surfaces, v	olts		• • •	2.0
Further CR Loss, volts				1.5
Total internal C R loss, volts				23
Commutation:				
Diameter of the commutator	•••	• • • •	•••	15
Periphery " "	•••	•••	•••	47.2
Revolutions per second	•••	•••	•••	12.08
Peripheral speed in inches per second (=		•••	• • •	570
Length of the arc of contact $(=b)$, inch		•••	•••	0.5
Frequency of commutation (cycles per	second) (=	$\frac{\mathbf{A}}{2b} = n$)	570
Width of a segment at the periphery (in	cluding insu	lation)		0.166
Maximum number of coils short-circuite			•••	3.0
Turns per coil (q)				1
· ·				

Maximum number of simulta	neously-cor	nmutated	conducto	rs per	
group (<i>r</i>)	•••	•••	•••	•••	6.0
Lines per ampere turn per inc					20
Total lines linked with short-o	circuited co	il per amp	ere		910
Inductance per segment (= he	nrys)	•••	•••		0.000009
Reactance ,, ohm (2	$2 \pi nl)$	•••	•••	•••	0.03
Reactance voltage, volts	•••	•••	•••	•••	1.6
м	agnetic C	IRCUIT			
Flux entering armature per p	oole, no loa	d, megalin	es (750 r	evolu-	
tions per minute)	•••	•••	•••		2.36
Corresponding voltage	•••	•••	•••		500
Flux entering armature per po	ole, full loa	d, megalin	es (727 r	evolu-	
tions per minute)			`		2.66
Corresponding internal voltage					548
,, terminal ,,	•••	•••	•••	•••	525
Leakage factor					1.2
Flux generated per pole, no lo					2.83
£11 1	, ,				3,2
,, ,, ruii i	oad ,,	•••	•••	•••	0.2
rmature :					
Cross-section of the core, squa	re inches	•••		• • • •	44.14
Density, no load, c.g.s. lines	•••	•••	•••	• • •	53,500
Density, full load "		•••	•••		59,200
Ampere turns per inch, no loa		•••			7.5
", ", full lo	oad	•••			10
Magnetic length per pole, inch	nes		•••		6
Ampere turns, no load					45
,, full load		•••	•••		60
eeth:					
Number of teeth per pole	• • •				15.8
Number of teeth directly belo		pole arc			11.2
Percentage increase allowed for		•••	•••	• • •	10
Total number of flux-carrying			•••		12.1
Cross-section of one tooth at r			•••		1.55
Total cross-section at the botto					18.8
Apparent density, no load, c.g					12,600
Apparent density, no load, e.g	.s. imes	•••	•••	•••	
	"	•••	•••	•••	14,200
Mean width of tooth, inches	"	• • •	•••	•••	0.31
Width of slot, inches		•••	•••	•••	0.33
Mean width of tooth ÷ width		•••	•••	•••	0.94
Corrected density, no load, c.g	g.s. lines	•••	•••	•••	12,200
" full load	,,	•••	•••		13,200
Ampere turns per inch, no loa		•••	•••	•••	510
", ", full los	sd	•••	•••	•••	990
Length, inches		•••	•••		0.98
Ampere turns, no load		•••	•••	•••	500
,, full load	••.	•••			970

Air Gap:					
Cross-section at pole-face, squ	are inches	•••			48.0
Density at pole-face, no load,		•••			49,000
", ", full load	•				55,500
Length of air gap, iron to iron	•••				0.165
Ampere turns, no load				•••	2560
full load					2880
,, run load	•••	•••	•••	•••	2000
Magnet Core:	•				
Cross-section, square inches	•••	•••	•••		29.0
Density, no load, c.g.s. lines					97,200
" full load "	•••		•••		11,000
Ampere turns per inch, no lo	ad				96
", ", full le					152.5
Magnetic length, inches				•••	7.25
Ampere turns, no load					695
full load					1110
" full load	•••	•••		•••	1110
Yoke:					
Cross-section (magnetic), squa	are inches				84
Density, no load, c.g.s. lines	•••				34,000
" full load "	•••				38,000
Ampere turns per inch, no lo	oad				68.5
£11 1		••••	•••		84
Magnetic length per pole, inc		•••	•••		11
Ampere turns, no load		•••	•••	•••	760
£11 1	•••	•••	•••	•••	930
" run 108 a	•••	•••	•••		900
Ampere Turns per Spool for No I	Load Voltage	of 500:			
Armature core	•••	•••			45
,, teeth		•••	•••		500
Air gap					2560
Magnet core	•••				695
Yoke	•••				760
Total number of ampere turn					4560
Corresponding speed					750 R.P.M.
Ammerica Thomas man Surveil Con Table	T 1 17 . 14	£505)			
Ampere Turns per Spool for Full	Load Young	5 <i>0</i> 7 020, (rui 110 L0	ua:	
Armature core	•••		•••		60
" teeth	•••	•••	•••		970
Air gap	•••	•••			2880
Magnet core	•••	•••	•••		1110
Yoke					9 3 0
Total number of ampere tur	ns per spool	full load	voltage	but no	
load		• • • •		•••	5950
Corresponding speed		•••	• • •	•••	725 R.P.M
9 -F				•••	

ARMATURE INTERFERENCE

-	CLEATURE INI	BEF BEBRUE			
Armature ampere turns p	er pole	•••	•••	•••	2380
Percentage brush shift, ne	ot stated but a	ssumed =	•••	•••	5 per cent
Percentage of demagnetiz	ing turns	•••	•••	•••	10
Demagnetizing ampere tu	rns per pole		. :.		238
Distorting "	"	•••	•••	•••	2142
Distortion factor $\left(\frac{\mathbf{F}}{\mathbf{D}}\right)$)		••.		0.18
	Summa	RY			
Ampere turns per field	spool with r	no armatu	re curren	t, for	
uniform flux distrib	_				
minute)	•			•	5950
Ampere turns per pole to	overcome arm	ature dema	gnetizatio	on	238
		ortion	•		386
Total ampere turns per p		•••	•••	•••	6574
Calculated ampere turns		l, no load	•••		4560
_		6.31.1 . 3	4500	525	4000
" "	" "	run 108a	4560 ×	$\overline{500}$	4800
yy 1y yy	series ,,	"	•••	• • •	1774
Actually allowed for in a	hunt spool	•••	•••	•••	5100
,, ,, ,, s	eries ,,	•••	•••	•••	2150
	SHUNT W	INDING			
Mean length of one turn	in feet	•••	•••	•••	2.66
Ampere turns, full load		•••	•••	•••	5,150
", feet "		•••	•••	•••	13,700
Total radiating surface p		e inches	•••	•••	221
Allow 0.54 watts per squ					
Watts in one shunt spool				•••	120
Pounds of copper per spe	JUL = JL '	ere feet) ²		$\frac{38}{2} = 48.$	5 lb.
	-	1000	120		
37.14	•	watts			100
Volts in rheostat	•••	•••	•••	•••	100
" 6 spools	•••	•••	•••	•••	400
" 1 spool	•••	•••	•••	•••	66.5
Amperes per spool $\frac{120}{66.5}$	•••	·	•••	•••	1.8
5150					
Turns per spool $\frac{3130}{1.8}$	•••	•••	•••	•••	2860
Length of wire in feet					7600
Pounds per 1000 ft.		•••	•••		6.4
Number 17 B. and S. ga	uge weighs 6.2	lb. per 10	00 ft.		V.1
Watts in 6 shunt spools		•	•••	720	
" shunt rheostat	•••	•••		180	
					
Tot	tal watts in sh	ant circuit	•••	900	

SERIES WINDING

	SERIES MINI	DING			
Ampere turns (series), full lo	ad				2150
Total amperes of the machine	e, full load	•••			100
Amperes in the series diverte	er rheos ta t		•••	•••	
" " windin	g		•••		100
Turns per spool (series)					21.5
Dimensions of the conductor,	inches				1.0×0.075
Number in parallel					
Total cross-section, square in	ches				0.075
Amperes per square inch	•••	•••			1333
Mean length of turn, inches	•••				31.95
Total length of conductor per	series spool				686
Resistance per spool at 60 de	-		•••		0.00766
Watts lost ,, ,,	•		• • •		76.6
Cylindrical surface, square in	ches				48.3
Watts lost per square inch a					1.6
Resistance of all series spools		•			0.046
Watts lost in ,,	,,		•••		460
Weight of copper per series s			•••		17
Total weight of series copper	. ,,	•••	•••		102
3	"				
	ARMATURE Lo	.core			
	ARMAIURE LA	,0010			
Armature Copper Loss:		00.1	0 4 .1		0.15
Resistance of the winding fro		ou deg	. Cent., on	ms	0.15
Total amperes from commuta		• • • •	•••	•••	100
Watts lost in armature coppe	er at 60 deg. (ent.	•••	•••	1500
Core Loss:					
Total core loss (observed), wa	tts		•••	•••	2400
Friction Losses:					
Bearing and air friction, wat	ts				300
Douring and an interior, was		•••			
Armatur	E TEMPERATU	RE INC	REASE		
Armature copper loss					1500
Armature copper loss	•••	•••	•••	•••	2400
m . 1	•••	•••	•••	•••	3900
Ci. C	•••	•••	•••	•••	63.5
Axial length of the winding,	 inches		•••	•••	15
Peripheral surface, square inc		• • •	•••	•••	950
Watts per square inch of per			•••	•••	4.1
Number of ventilating ducts	-			•••	1
Total temperature increase by	 thermometer		····		32 deg. Cent.
Total temperature increase by	mermometer	(ODBCI)	euj	•••	on dog. Conc.
Co	MMUTATOR L	ossrs			
Length of brush contact arc,	inches				0.5
Width of brush, inches				•••	1.25
Contact surface per brush, squ	are inches		•••		0.625
Number of brushes per pole	•••				2

Total number of positive brushes	•••	•••	•••	•••	6
Contact surface of all positive bru	ıshes, squ	aare inche	BS	•••	3.76
Current strength of the machine,	amperes	•••	•••	•••	100
Amperes per square inch of brush	h contact	surface	•••		26.6
Voltage drop at brush contacts, p	ositive p	lus negat	tive		1.66
Total I2R loss at brush contacts,	watts	•••			166
" contact surface of brushes,	positive	plus nega	tiv e		7.5
Brush pressure, pounds per square	_		•••	•••	1.3
Total brush pressure, pounds	•••		•••		9.8
Friction coefficient		•••	•••	•••	0.25
Effective component of brush pres				•••	2.44
Diameter of commutator, inches	p				15
Revolutions per second	•••	•••	•••	•••	12.1
Peripheral speed of commutator i			•••	•••	47.5
Brush friction loss in watts per a			•••	•••	3.2
-	mpere	•••	•••		320
Total commutator loss, watts	•••	•••	•••	•••	486
Total commutator loss, watts	•••	•••	•••	•••	400
Commutator !	Tempera [.]	TURE INC	REASE		
					400
Total commutator loss, watts	•••	•••	•••	•••	486
Circumference, inches		••	•••	•••	47.2
Length of commutator surface, in			•••	•••	4.0
Cylindrical surface of commutato	_		•••	•••	190
Watts per square inch of cylindri			•••	•••	2.52
Total temperature increase at the	periphe	ral surface	в	•••	28 deg. Cent.
Eppiciency	. Am 60	Пис Сик	rm.		
	AI UU	DAG. CAN	11.		
Iron loss, watts	•••	•••	•••	•••	2400
Watts lost in armature copper	•••	•••	•••	•••	1500
" at the brush contact r	esistant :	at the con	nmutator	•••	166
Brush friction loss at the commut	tator	•••	•••	•••	320
Friction loss at bearings and air i	riction	•••	•••	•••	300
Watts lost in shunt winding	•••		•••	•••	720
,, series ,,	•••		•••	•••	460
,, shunt rheostat	•••		•••	•••	180
Total of all losses		•••			6046
Output at full load, watts	•••	•••	•••		50,000
Input ,, ,,			•••	•••	56,046
Commercial efficiency at full load		•••	•••		89.6
Efficiencies deduced from tests:	-				per cent.
At 1 full load	•••		•••		80.0
,, ½ ,,					86.5
17 🙎 17					
., 3	•••		•••		89.0
,, ³ 4 ,,				•••	
,, ,,		•••			89.0 90.0
					89.0

MATERIAL

			1	ATVLERIV	ш										
Ar	mature :														
	Core			•••				••					ight inati	-iron	
	Spider												mati st ir		
	Conductors	•••	•••	•••	••	•	-	••		•••	•				
	Binding band	 Is on the o		•••	• •	•	•	••		• • •	•		oppe el w		
	Binding band			otiona	••	•	•	• •		• • •	•	Ste	ei w	ıre	
	Diliding band	P OAOT PHO	ena conne	COLOILS	••	•	•	••		•••			"		
600 -	Fig.241.					Fig.	242								
•••[50	KW. GI	ENE.	RATO	R. ()	ORKS	HIRE	POW	TH CO	-
500		فتحرار			500	4	₩	\vdash		\pm			\pm		
L				_	F	4_	₩.	ļ_	$\sqcup \sqcup$	\perp		Ш		$\perp \downarrow$	
Armadure Volts		444	1111	4	400	MA	THOD	OM I	POUN TEST :-	DIN .	TES	t.	SH	JAT	4
101	50 KI	W. GENERATO	DIRECT	4	-	_F16	LOAD	JUS	TED	TO	GIVE	500	POL	rs	4
300		LED TO INDUG P.M. VOLTAG		ي ل⊢	300	TH	ROUGH	וטקי	TES	7.	SAM	f 7	OSITI	ON	┥
神	PUER	COMPOUNDE	TO GIVE	رة ⊢ الم	200	Wo	te:- 1	No.	MOT	OR S	PEED	080		- FRA	
200	525 V	OLTS (YORKSH)	IRE POWER CO	~	200	+	1 1	747	R.RM.	Na	LOAL			R.P.A	
₹		++++	+++	-		\top	 		4 200		+	H		++	\dashv
100	FULL CURVE			┪				П			\top	H	\top	++	┪
7	POTTED CURVE	- 100 AMPS	727 R.P.M					П				H	\top	$\dagger \dagger$	٦
O			7000 800		0 1872 C j	2		Ю	60	8	o to	00	180	140	
•	Fig. 243.									,	_	-		•	
Í															
	TO INDUCTIO	ERATOR DIF N MOTOR 7		Н											
3.4	SOUTAGE SOO	OVERCOMPO VORKSHIRE PI	UNDED TO GIVE	57		.									
8.0					ŕ	ig. 2		ENE	RATO	A. (V	ORKS	INE	POWE	A COM	i Pil
2.8	ANALYSIS OF				-	+	 	FF	CIENC	₩	URVES		_	1	\dashv
2.6	NOUCTION A				100	+	 	Μa	tor E	no c	iency	H	-	1	ᅱ
2.4	50 ~ 746 R. 727 R.P.M. F	RM. NO LOAD.	10	Ц і	3	21	CHOR		neral	7	nav	1	_	Ħ	=
2.2		1111	$+ \times +$	Н :	50 60 40 20	V	Cor		LEFF	cie	ncy a	34		\sqcap	┪
\$ 2.0					i	16	Ov					П	\top	\sqcap	٦
1.8		nt Losses				$I\!Z$									
\$ 1.6	Eddy Curt	- C	7	-	40 1	4_		Ш						Ш	ℶ
ž 1.4	 	1397		H	3	\perp	Ш	Ш		Ш		\sqcup	\perp	\sqcup	
Kilowalls Loss 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		80		4	20	+		Ш		Ш			-	\sqcup	4
1.0	1	N. C.	كرية د.		` -	+	-	\vdash	-	\sqcup	4	$\vdash \downarrow$		\vdash	4
0.6	Shurt Field B	Anstati 4	-105		ا ،	2	0 4		60	00	, 10		120	140	لہ
0.4					<i>(8872.0)</i>						of Fr	W I	oad	ı ~	
0.2	H TUGIV FI CIVAN	rearung X	unuage												
L	120 12	400	0 120 M	ليا											
<i>(8873.)</i>	s) Percentage	of Full I	Load	•							_				
rigs. 24			TS FOR SA	TURATIO	on, C	OMP	OUND	ING	. Lo	881	S AN	D F	CFF1(CIEN	CY
					, -				,						

Commutator: Copper Segments Connections to the winding ,, Cast iron

...

...

. . .

Spider and clamp rings ...

Insulation be	tween se	gments	•••	•••	•••	\mathbf{R}	econstr	ucted	mice	L
	spider a	ınd cl am p	rings	•••	•••		"		,,	
Pole shoes	•••	•••	•••	•••	•••		Wrou lamir	0		
Magnet cores	•••	•••	•••				Do.	do.	do.	
voke							Cast	iro	a	

Test results for saturation, compounding, losses and efficiency, are given in the curves in Figs. 241 to 244, page 250.

On the occasion of the tests on this machine, the following notes were made:—

OPERATION

The commutation of this machine under all its tests was excellent. As compound-wound generator:

On 530 Volts-

- 25 per cent. overload was carried with practically no sparking.
- 50 per cent. overload was carried with slight sparking.
- 100 per cent. overload was carried without serious sparking.

On 500 Volts-

- 25 per cent. overload was carried with very slight sparking.
- 75 per cent. overload was carried without serious sparking.

On 450 Volts-

- 25 per cent. overload was carried with slight sparking.
- 60 per cent. overload was carried without serious sparking.

SATURATION

Sufficient margin is allowed in the field coils to reach 550 volts full load if necessary at any time.

TABLE LIII.—Log of Full Load Heat Run of 6-Pole, 50-Kilowatt, 525-Volt, 725 Revolutions Per Minute, Continuous-Current Generator

Time.	Arma- ture	Arma- ture Current.	ture	ture	ture	ture	ture	ture	ture	4	Field. Current	Speed	Temperati Run in I	ure During Deg. Cent.	Temperature of Air in	Remarks.
	Voltage.			R.P.M.	Field.	Frame.	Deg. Cent.									
10.40	500	100	1.25	725	22.2	18.7	18.4									
11.10	,,	,,	,,	,,	3 5,3	20.0	18.8									
11.40	,,	,,	,,	"	41.8	22.0	19.0									
12.00	,,	,,	,,	"	45.0	23.5	19.0	O								
1.0	,,	,,	,,	,,	53.8	27.3	. 19.1	Commutation good								
2.0	,,,	,,	,,	"	57.0	30.3	19.2	throughout.								
3.0	,,	,,	,,	,,	59.5	31.9	18.9									
4.0	,,	,,	,, 1	"	61.1	32.5	18.4									
5.0	,,	,,	,,	,,	62.0	32.7	18.2									

Temperatures in deg. Cent. after six hours run, by thermometer:

			Final.		Rise.
Armature core	 	 	50	 	32 28 37
Commutator	 	 	46	 	28
Spools, shunt	 	 	55	 	37
Frame	 	 	33	 	15
Air			18		

Resistances:

Shunt Field.

Cold. 245 volts. Hot. 334 volts.

1.25 amperes. 196 ohms. 1.50 amperes. 223 ohms.

Per cent. increase, 13.8.

Rise, 34 deg. Cent.

Date of tests, February 14th and 15th, 1905.

TABLE LIV. - OVERALL EFFICIENCY TESTS

			Input,	A.C.					Outp	ut, D.(D.	
						e of	Fie	old.	Arma	ture.		E GE
Volts.	Amperes.	Watts 1.	Watts 2.	Total.	Power Factor.	Per Centage Load.	Amperes.	Volts.	Amperes.	Volts.	1 1	Per Centage Overall Ef
2100	8.0	3,900	14,810	18,710	51.1	25	1.405	275	25	500	12,500	66.9
2100	10.7	10,780	22,400	33,180	85.3	50	1.345	259	50	500	25,000	75.4
2100	14.5 19.0		29,850 36,300	47,270	89.3 88.5	75 100	$1.305 \\ 1.300$	254 250	75 100	500 500	37,500	79.4
2100 2100	24.2		48,000	$61,200 \\ 77,220$	87.7	100 125	1.260	244	125	500	50,000 62,500	81.65
	30.0		60,100	94,320	86.5	150	1.300	250	150	500	75,000	79.50
2100	10.7	10,460	22,800	33,260	85.2	50	1.745	345	47.5	530	25,150	75.5
2100	19.0	24,600	36,450	61,050	89.5	100	1.53	310	95.0	530	50,300	82.4
2100	10.7	10,460	22,700	33,160	85.2	50	0.95	194	55.5	450	25,000	75.4
2100	19.0		39,150	62,550	90.4	100	0.91		111	450	50,000	80.0

Date of test, April 3rd, 1905.

DESIGNING COEFFICIENTS

The term "output coefficient," often denoted by the letter ϕ , appears to have been first suggested by Kapp and by Esson. Letting

D = diameter at air gap in centimetres

 λg = the gross core length in centimetres

R.P.M. = the speed in revolutions per minute

and

K.W. = the kilowatts rated output

then

$$\phi = \frac{\text{K.W.}}{\text{D}^2 \times \lambda g \times \text{R.P.M.}}$$

The output coefficient is very useful to the designer. He knows the values attainable for given conditions, and strives in each case to obtain as high a value as is consistent with the specification to which the machine must comply. The cost for a given rating will generally be less the higher the output coefficient, though this need not necessarily be the case. Thus an increase in the output coefficient, obtained by disproportionate decrease in λg and increase in D, may even lead to an increase in cost. For the five multipolar continuous-current machines which have just been described, the output coefficients are set forth in Table LV.

			TABLE	Li V			
Mac	hine.		I).	λ,	g.	
Kilowatts Rated Output	Speed in R.P.M.	Voltage.	In Inches.	In Centi- metres.	In Inches.	In Centi- meters.	Output Co- efficient ϕ
1500	75	{ 550 } { 600 }	126	320	33.75	85.7	0.00228
1000	90	500	138	350	13.8	35.1	0.00259
550	90	\ \ \ 500 \ \ 550 \ \ \ \ \ \ \ \ \ \ \	96	244	20.5	52.1	0.00197
250	320	550 }	46	117	12.3	31.2	0.00183
50	72 5	500 { 525 }	201	51.5	7.265	18.5	0.0014
	Kilowatts Rated Output 1500 1000 550 250	Rated Output Speed in R.P.M.	Kilowatts Rated Output Speed in R.P.M. Voltage.	Kilowatts Rated Output Speed in R.P.M. Voltage. In Inches.	Kilowatts Speed in R.P.M. Voltage. In Inches. In Centimetres.	Machine, D. Acceptable Machine, D. Machine, Machine, D. Machine, Mac	Machine. D. λg. Kilowatts Rated Output Speed in R.P.M. Voltage. In Inches. In Centimetres. In Inches. In Inches. </td

TABLE LV

One of the writers has put forward a proposition to define as "Specific Output" the output in watts per square centimetre of peripheral surface of the armature over the end connections of a "barrel-wound" armature, per revolution per minute.¹ Thus,

"Specific Output" =
$$\frac{K.W.}{\pi D L \times R.P.M.}$$

where L is equal to the length of armature over end connections, the other terms having the same signification as in the "output coefficient" formula. Letting

$$\lambda g = \text{Gross length of armature core}$$

 $\tau = \text{Polar pitch at air gap},$

then it will be a fair approximation to substitute

$$\mathbf{L} = \lambda g + 0.7 \tau.$$

Then

"Specific Output" =
$$\frac{\text{K.W.}}{\pi \text{ D} (\lambda g + 0.7 \tau) \times \text{R.P.M.}}$$

¹ Electrician, vol. 51, September 11th, 1903, pages 840 to 842.

This latter is the preferable form, owing to the diversity of arrangements of end connections which are nowadays employed.

The idea of the "specific output" was suggested by the chance discovery that the total works cost of continuous-current dynamos per square centimetre of peripheral surface of armature, as measured from end to end of the armature winding, is subject to comparatively slight variations. In other words, if we denote the total works cost in shillings by T.W.C., we have

T.W.C. =
$$K \times D \times (\lambda g + 0.7 \tau)$$
.

K will only vary extremely slowly with varying rated output, voltage and speed. As the result of a rather exhaustive study of this matter, it appears that machines of outputs varying from 100 kilowatts to 1000 kilowatts, and from 220 volts to 600 volts, and for all customary rated speeds for slow and high speed reciprocating engines, the values of K lie between 1.0 and 2.0. Of course, it varies considerably with the facilities, organisation, and scope of the manufacturing company, and on the cost of material and the cost and quality of labour in different countries.

PART II ELECTRIC TRACTION MOTORS

ELECTRIC TRACTION MOTORS

COTORS for electric traction must, from the nature of their work, be designed to be reversible, and to have the brushes set in a fixed position at a point midway between pole ends. Since the brushes cannot be shifted, the magnetic field cannot be utilised to reverse the current in the short-circuited coil; in fact, whatever impressed magnetic flux is passing through the coil while it is short-circuited under the brush, is in such a direction as to tend to maintain the current in its original direction, instead of assisting to reverse it. The commutation may be termed brush commutation, and the commutating element is in the resistance of the brushes. For satisfactory commutation, traction motors are designed with very high magnetisation at full load. Much higher densities are practicable as regards the heating limit, than in machines running at constant loads, since the average current input to a traction motor is not ordinarily above one-fourth of its rated capacity, so that in average work the magnetisation of the air gap and armature core is not very different from that in machines designed for constant load. At rated capacity, however, the magnetisation in the projections and armature core is frequently 50 per cent. higher than in machines designed for constant load, and at rated load the heat guaranteed per square inch of radiating surface is generally more than double that of machines for constant load.

Because of the unfavourable commutating conditions, the armature reaction of railway motors and the reactance voltage of the short-circuited coil should be comparatively small at rated capacity. This is the more important on account of the desirability of lessening the diameter of the armature, so as to shorten the magnetic circuit and diminish the weight of the motor. Material progress has been made in this direction by putting three, four, or even five, coils in one slot, where in former practice but one, corresponding to one commutator bar, was placed in one slot. This is a condition which would be adverse to satisfactory commutation with reasonable heating, in large generators for constant load; but in the case

of railway motors, on account of the lesser number of projections and consequent less room occupied for insulation, the cross-section of the projections has been increased so that a higher magnetisation in the gap is permissible, under which condition sparking is diminished at heavy loads. A material advance has been made in efficiency at average loads, and in sparking, by greatly increasing the magnetisation of the armature core proper.

It may be fairly said that all efforts to improve commutation have been, first, to increase magnetisation, so that distortion is diminished; and secondly, to diminish the inductance of the armature coils by employing open and wider slots. Machines have been constructed of 300 and 400 horse-power capacity, capable of being reversed in either direction without much sparking. That the commutation is never so perfect as in the case of machines where the reversing field can be utilised, is shown by the gradual roughening of the commutator, which requires more attention than in the case of generators or other non-reversible machines. The remarkable progress that has been made in the design of this class of machinery will be apparent by comparing the drawings and constants of well-known types of machines with those of machines constructed but a few years ago.

DESCRIPTION OF A GEARED RAILWAY MOTOR FOR A RATED DRAWBAR PULL OF 800 LB. AT A SPEED OF 11.4 MILES PER HOUR

This motor has been in extensive use for some years, hence it does not represent the latest developments, except in so far as modifications have been introduced from time to time. The fundamental design, however, is not in accordance with the best examples of recent practice. On account of its established reputation for reliability, it is still, however, built in large numbers. Its constants are set forth below, in specification form, and in Figs. 245 to 254, pages 259, 261, and 265, are given drawings of the motor.

SPECIFICATION

Number of poles	 •••	 •••	•••	4
Rated drawbar pull	 	 		800 lb.

Under standard conditions at this rating, the field windings are

ARMATURE OF GEARED RAILWAY MOTOR FOR A RATED DRAW-BAR PULL OF 800 LB., AT A SPEED OF 11.4 MILES PER HOUR

connected in parallel with an external shunt which diverts from the field winding, 30 per cent. of the total current.

Revolutions of armature per minu	te at t	his rating			555
Number of teeth on armature pini	on				14
,, ,, axle gear		•••			67
Ratio of gear reduction		•••			4.78
Revolutions of axle per minute	•••	•••			116
Speed of car in feet per minute on			•••		1000
					11.4
" mnes per nour Foot-pounds per minute, output			···	ll and	
		above diawo	-		800,000
•	 	 null and anad	•••	• • •	24.2
Horse-power output for above draw	_	_	• • • •	•••	
Kilowatts output for above drawb	_	-	•••	• • •	18.1
Efficiency of above rating, motor v		•••	•••		79.5 per cent.
Corresponding kilowatts input	• • •	• • •	• • •		22.8
" amperes "	• • •	• • •	• • •		45.5
Terminal voltage	•••	•••	• • •		500
Frequency in cycles per second at	rated	conditions			18.5
D	IMENSI	ONS			
Armature:					
Diameter over all					16 in.
at battom of slate					13.2 ,,
Internal diameter of core					41 ,,
Length of core over all					ō
Effective length, magnetic iron	•••	• • •	• •	• • •	70
Pitch at armature surface	•••	•••	•••	•••	••
	•••	•••	•••	•••	12.6 "
Japan insulation between laminat	lons	•••	•••	• • •	10 per cent.
Thickness of laminations	••	•••	•••		0.025 in.
Depth of slot	•••	•••	• • •	• • •	1.40 "
Width of slot at root, die punch	•••	• • • •	• • •	• • • •	0.240 ,,
,, ,, surface, die punch	١	• • •	• • •		0.240 "
Number of slots	•••	• • •		• . •	105
Minimum width of tooth		•••	• • •	٠	0.164 in.
Width of tooth at armature face	•••	•••	• • •		0.239 "
Size of armature conductor, B. and	l S. ga	uge		• • •	No. 9
Bare diameter of armature conduc	tor	•••			0.114 in.
Cross-section				0.	0102 square inch
Magnet Core:					
-					0 :
Length of pole face	•••	•••	•••	•••	'8 in.
,, arc	•••	•••	•••	• • • •	8.25 ,,
Pole arc ÷ pitch	•••	•••	•••	• • •	0.655 "
Length of magnet core	•••	•••	•••	• • • •	8 "
Width " " …	•••	•••	•••	• • •	7.75 ,,
Diameter of bore of field	•••	•••	•••	•••	$16\frac{9}{32}$,,
Length of gap clearance above arm	ature	•••	• • •	• • •	1 "
,, ,, below	"	• • •	•••		5 "

Commutator: Diameter Number of segments ,, ,, per	 slot			8½ in. 105 1
		Fig. 249.	105	,,,
		g. 250 SEAR END		
Figs. 249 to 251. Width of segment at com	mutator face	LAILWAY MOTOR C		0.214 in. 0.128 "
Thickness of mica insulat Available length of surfac				0.04 ,, 3 ³ / ₄ ,,

shes : Number of sets						2
of hunghes in or		•••	•••	•••	•••	
,, of brushes in or		•••	•••	•••	•••	1 93 in
Length, radial	•••	•••	•••	•••	•••	2 3 in.
Width	•••	•••	•••	•••	•••	21 ,,
Thickness	•••	•••	•••	•••	•••	0.5 ,,
Area of contact of one br	ush	•••	•••	•••	1.	l 25 square inch
Type of brush	•••	•••	•••	•••	•••	radial carbon
	Тесн	NICAL]	Data			
Terminal voltage	•••			•••		500
Number of face conducto	rs	•••		•••	•••	840
Conductors per slot				•••		8
" coil	•••		•••			4
Number of circuits	•••	•••		•••	•••	2
Style of winding		•••		•••	•••	Single
Gramme ring or drum		•••				Drum
Type of construction of w	rinding		•••	•••		Formed coil winding
Number of coils						105
Mean length of one arma	ture turn					43 in.
Total armature turns		•••				420
Turns in series between b	rushes		•••		•••	210
Length between brushes		•••	•••	•••		9000 in.
Cross-section of one arma						0102 square in
Ohms per cubic inch at 2	0 deg. Ce	nt.	•••	•••		00000068 ohm
Resistance between brush						0.305 "
))))	95	,,	•••	•••	•••	0.394 "
Volts of drop in armatu		• •		•••	•••	18
Mean length of one field			•••	• • •	•••	46.5 in.
Field conductor, B. and		•••		•••	•••	No. 6
Bare diameter			•••			0.162 in.
Cross-section of field cond	• • • •				0.	0205 square inc
Turns per field spool			•••			203
Number of field spools	•••		•••	•••	•••	200
Total field turns in series		•••	•••	•••		406
longth of small som			•••			18.800 in.
modistance of smeet	_	 at 20 de	og Cent	•••	•••	0.625 ohm.
_	_	95	_	•••	•••	0.01
Thirty per cent. of the	,, na main		,, at of 45	 5 amper		0.81 "
				o ampei suitable		
diverted from the		-				39 ammana-
resistance, hence cur Volta drop in field windi			-	•••	•••	32 amperes 26 volts
Volts drop in field winding				•••	•••	
Resistance brush contact	-	e <i>pius</i> n	iegative)	•••		0.055 ohm
Volts drop in brush cont			•••	•••	•••	2.5 volts
,, armature, i	-		3	•••	•••	46.5 ,,
Counter electromotive for			•••	•••	•••	453.5 ,,
Amperes per square inch		ure win	ding	•••	•••	2230
"	field	•••	•••	•••	•••	1560

Commutation:		
Average voltage between commutator segments		18
Armature turns per pole		105
Amperes per turn	•••	22. 8
Armature ampere turns per pole	•••	2400
Frequency of commutation (cycles per second)	•••	250
Number of coils simultaneously short-circuited per brush		3
Turns per coil		4
Number of conductors per group simultaneously under	going	
commutation	•••	24
Flux per ampere turn per inch length of armature laminatio	n	20
" linked with 24 turns with one ampere in those	turns	
$= 20 \times 8 \times 42 = \dots \dots \dots \dots \dots \dots$	•••	3840
Inductance of four turns = $4 \times 3480 \times 10^{-8} = \dots$	•••	0.000154 henrys

But in a two-circuit winding with four poles and only two sets of brushes, there are two such four-turn coils in series, being commutated under one brush, and their inductance is $= 2 \times 0.000154 = 0.000308$ henrys.

	Reactance of these two short-circuited coils Amperes in short-circuited coils						•••	.484 ohm 22.8
	Reactance voltage of short-circuited coils			•••			11 volts	
			Magnet	OMOTIVE	Force			
	Megalines er	tering arma	ture, per	pole-piece				2,92
	•	f magnetic le			•••			1.25
	Megalines p	_		•••	•••	•••	•••	3.65
Arm	ature:							
	Section	•••					62	2.8 square inches
	Density	•••	•••	•••	•••			46.5 kilols.
	Length (mag	gnetic path)		•••		• •	•••	4 in.
	Ampere turi	ns per inch of	length				•••	8
	"	for armatu	re core	•••	•••	•••	•••	30
Teet	h :							
	Transmittin	g flux from o	ne pole-pi	iece	•••	•••	•••	19
	Section at re	ots	•••	•••	•••	•••	22	2.5 square inches
	Length	•••	•••	•••			•••	1.4 in.
	Apparent de	ensity at roof	tooth	•••		•••	•••	130 kilols.
	Corrected	,,	,,		•••	•••	•••	125 "
	Ampere tur	ns per inch o	f length	•••			•••	700
	**	for teeth	•••	•••	•••	••	•••	980
Gap	:							
	Section at p	ole-face	•••	•••	•••	•••	6	6 square inches
	Length, ave	rage of top a	nd bottor	m	•••	•••	•••	0.14 in.
	Density at p	ole- fa ce	•••	•••	•••	•••	•••	44 kilols.
	Ampere turn	as for gap	•••	•••	•••	•••	•••	1920

Cast-Steel Portion of Circuit:

Average cross-section	•••	•••	•••	•••	5	2 square inches
Length, magnetic	•••	•••	•••	•••	•••	9 in.
Average density			•••	•••		70 kilols.
Ampere turns per inch	of length		•••	•••		35
•	teel frame		le-piece	•••		320

Only two of the four poles carry exciting windings; hence of the 203 turns on one spool, only 101.5 are to be taken as corresponding to one pole-piece. Thirty per cent. of the main current being diverted from the fields, the field exciting current is 32 amperes, and field ampere turns per pole-piece are $32 \times 101.5 = 3250$ ampere turns. These are probably distributed somewhat as follows:

Ampere	turns í	for armatı	ire core	•••	•••		30
- ,,	,,	teeth		•••	•••	•••	980
,,	,,	gap	•••	•••			1920
,,	"	frame		•••	•••	•••	320
	-	D. 4 . 1	4		.		2050
	1	Cotal amp	ere turns	per por	e-piece		3250

THERMAL CONSTANTS

Armature:

Resistance between brushes at 95 deg. Cent			0.394 ohm
Amperes input at rated capacity			45.5 amperes
Armature C ² R loss at 95 deg. Cent	•••		815 watts
Total weight of armature laminations, including teeth	١		314 lb.
" observed core loss (only apparently core loss)	•••		800 watts
Watts per pound in armature laminations			2.55 ,,
Total of armature losses	•••		1615 "
Length of armature (over conductors)			12 in.
Peripheral radiating surface of armature			600 square inches
Watts per square inch peripheral radiating surface		•••	2.7 watts
ald Smoote .			

Field Spools:

Total resistance of the two field	spools at	: 95 deg. (Cent.		0.81 ohm
Amperes in spool winding		•••	•••	•••	32 amperes
Spool C ² R loss at 95 deg. Cent.	•••		•••		830 watts

Commutator:

mmulline in the second						
Area of bearing surface of	positive	brush	•••	•••	1	.13 square inches
Amperes per square inch	of brush	-bearing	g surface	•••	•••	40 amperes
Ohms per square inch of b	earing s	urface o	of carbon	brushes		0.03 ohm
Brush resistance, positive	+ negat	tive	•••			0.053 ,,
Volts drop at brush contact	cts	•••	•••	•••		2.4 volts
C2 R at brush contacts	•••	•••	•••			110 watts
Brush pressure per square	inch					2 lb.
Total brush pressure	•••	•••	•••			4.5 ,,

Figs. 252 to 258. Field Coil and Diagrams of Geared Railway Motor

Coefficient of friction	n	•••	•••	•••		0.3
Peripheral speed of	commutator	in feet per	minute	•	•••	1240
Brush friction	•••	•••		•••		36 watts
Stray power lost in o	commutator	(allowance)		•••		50 "
Total commutator los	88	·		•••		198 "
Peripheral radiating	surface	•••			10	00 square inche
Watts per square inc	ch radiating	surface of c	ommut	tator	•••	2 watts
	Efficie	NCY CALCU	LATION	3		
						Watte.
Output at rated caps	city	•••		•••	•••	18,100
Core loss	•••	•••		•••		800
Commutator and bru	sh loss	•••				198
Armature C ² R loss a	at 95 deg. C	ent.	•••	• • •		815
Field spool C ² R	,, ,,					830
Gearing friction	•••	•••	•••	•••		2,000
	Total input	t				22,743
Commercial efficiency	y at rated c	apacity and	95 deg	c. Cent. =	79.5 pe	cent.1
		Weights				
						lb.
Armature core (magn	ietic)	•••	• • • •	•••	• • •	250
" teeth	•••	•••	• • •	•••	•••	67
", copper	•••	•••	• • •	•••	• • •	60
Commutator bars	• • •	•••	• • •	•••	•••	45
Armature complete						635

In Figs. 255 to 258, page 265, are given respectively curves of drawbar pull, output, speed, and efficiency for this motor.

520 129

1525

Magnetic pole ...

Machine complete

Spool copper

In many of the more modern street-railway motors, the design has followed lines differing in many respects from those of the motor just described. Thus several armature coils are arranged in one slot, largely reducing the number of slots, and the pole-faces are laminated, since otherwise these few wide slots would set up too great an eddy-current loss in the pole-face. It has been found preferable to have one field spool per pole-piece, instead of having two salient and two consequent poles. The armature diameter has been largely reduced, and sparking is minimised by running not only the teeth, but also the core, up to extremely high magnetic density; nevertheless, owing to the greatly reduced mass of the

¹ In this result, the loss in the diverting shunt to the field spool winding is not allowed for.

armature iron, the core loss is small. A motor designed on these lines, and of not very different capacity from the one just described, will next be reviewed.

GEARED RAILWAY MOTOR FOR A RATED OUTPUT OF 27 HORSE-POWER AT
AN ARMATURE SPEED OF 640 REVOLUTIONS PER MINUTE

The rating of this motor is in accordance with the now generally-accepted standard practice of limiting the temperature rise of field and

Figs. 259 to 264. Details of 27 Horse-Power Geared Railway Motor.

Armature Speed, 640 Revolutions per Minute

armature to 75 deg. Cent., as measured by thermometer after a full-load run of one hour's duration. The motor is illustrated in Figs. 259 to 277 inclusive (see above, and pages 268, 270, 272, 273, and 275).

Applying this same standard permissible temperature rise to runs of different durations, the corresponding ratings at 500 terminal volts are as follow:

Figs. 265 to 268. Details of 27 Horse-Power Geared Railway Motor.
Armature Speed, 640 Revolutions per Minute.

The following specification is prepared on the basis of the rating of 27 horse-power for one hour's continuous operation at full load. In tramway service, of course, the motor is on the average called upon to develop but a small percentage of its full capacity; and hence such a motor, when continuously in service under normal conditions, runs much cooler than the above-quoted temperatures.

SPECIFICATION

Number of poles	•••	•••	•••		•••	4
Rated horse-power ou	tput					27
" kilowatts	•••	•••	•••	•••	•••	20.2
Efficiency at above rat	ting and a	t 95 deg.	Cent.	•••		79 per cent.

The efficiency is a little higher at lighter loads, and is at its maximum at about two-thirds full-rated load, so that it is high throughout the entire range of working, that is, from quarter-load to heavy overloads. (See efficiency curve in Fig. 282, page 276.)

Kilowatts input at rated load		•••		• • • •	25.6
Terminal voltage				•••	500
Corresponding amperes input			•••	•••	51
" revolutions per m	inute of	armature			640
Number of teeth on armature pir				•••	14
,, ,, axle gear		•••	•••	•••	67
Ratio of gear reduction					4.78
Revolutions of axle per minute					134
Speed of car in feet per minute,	on 33-in	. wheels			1160
" miles per hour	,	,			13.1
Output in foot-pounds per minute	e, at no	rmal rating		•••	890,000
Pounds drawbar pull, at normal i					770
Frequency at rated conditions in	cycles	per second	• • •		21.4

DIMENSIONS

Armature:

Diameter over all	•••	•••	•••	•••	11 in.
" at bottom of slots		•••	•••		8.42 "
Internal diameter of useful magn	etic po	rtion of co	re		6.17 ,,
Length of core over all				•••	9 "
Number of ventilating ducts, each	h l in.	wide			3
Effective length of magnetic iron				•••	7.42 in.
Pitch at armature surface		•••			8.65 "
Japan insulation between laminat	tions	•••			10 per cent.
Thickness of laminations	•••				0.025 in.
Depth of slot	•••	•••		•••	1.29 "
Width of slot at root	•••		•••	•••	$\frac{15}{32}$,,
" " surface				•••	$\frac{15}{32}$,,
Number of slots					29
Minimum width of tooth	•••	•••	•••		0.445 in.
Width of tooth at armature face		•••			0.724 "
Size of armature conductor, B. an	d S. ga	auge			No. 10
Bare diameter of armature conductors			•••		0.102 in.
Cross-section ", ",		•••	•••	00	081 square inches

ARMATURE SPEED, 640 REVOLUTIONS PER MINUTR 27 HORSE-POWER GEARED RAILWAY MOTOR. FIGS 269 AND 270.

					•	
Magnet Core:						
Length of pole-f	ace	•••			•••	9 in.
• •		•••		•••	•••	6.1 ,,
Pole arc ÷ pitcl	h	• • •				0.69 ,,
Length of magn						87 ,,
Width		• • •	• • •			4 ,,
Diameter of bor			•••		•••	$11\frac{9}{32}$,,
Length of gap c						1 ,
-		elow	,,	•••		8 " 89 ",
,,	,, ~		"	•••		83 "
Commutator:						
Diameter	•••	•••	•••	• • •	•••	8 in.
Number of segn		•••	•••	•••	•••	87
	ents per sle		•••	•••	•••	3
Width of segme			ace	•••	•••	0.243 in.
• • • • • • • • • • • • • • • • • • • •	nt at root		•••		•••	0.108 "
Thickness of mi	ca insulatio	ac	•••	•••	•••	0.050 ,,
Available lengt	h of surfac	e of segm	ent	•••		$2\frac{7}{8}$,
Brushes :						
Number of sets						2
		•••		•••	•••	2
,, in one Length, radial		•••	•••	•••	•••	
Width	•••	•••	•••	•••	•••	2½ in.
Thickness	•••	•••	•••	•••	•••	11,
		 L	•••	•••	•••	½ ,,
Area of contact			• • •	•••	•••	625 square inches
Type of brush	•••	• •	•••	•••	•••	Radial carbon
		w	.====			
		MI	ATERIALS			
Armature core	•••	•••	•••	•••	•••	Sheet steel
Magnet frame	•••	•••	•••	•••	•••	Cast "
Pole-faces	•••	•••	•••	•••	•••	Sheet "
Brushes		•••	•••	•••	•••	Carbon
		TECH	NICAL DA	.TA		
Terminal voltage	(e			•••		500
Number of face	conductor	8				696
Conductors per	slot					24
-	coil					4
Number of circ	uits					2
Style of windin						Single
Gramme ring or		•••				Drum
Type constructi						Formed coil winding
Number of coils						87
Mean length of			-			38,5 in.
Total armature		uso tuin	•••	•••	•••	940
Turns in series		mahea	•••	• • • •	•••	348
			••	•••	•••	6700 in.
Length between			notor	•••	•••	
Cross-section of	one armai	ure cond	uctor	•••	•••	0.0081 square inch

Figs. 271 to 274. Field Coil of 27 Horse-Power Geared Railway Motor

Figs. 275 and 276. 27 Horse-Power Geared Railway Motor,
Armature Speed, 640 Revolutions per Minute

Ohms per cubic inch at 20 deg. (Jent	• • •	•••		0.00000068
Resistance between brushes at 26	0 deg. Cen	ıt	•••	•••	0.28 ohm
,, ,, 9	5 "	•••	•••		0.36 ,,
Volts drop in armature at 95 de	g. Cent.		•••		18.3 volts
Mean length of one field turn					36 in.
Size of field conductor, B. and S	. gauge				No. 5
Bare diameter					0.182 in.
Cross-section of field conductor				0	0.026 square inch
Turns per field spool					156.5
Number of field spools			•••		4
Total field turns in series					626
,, length of spool copper		•••			22,000 in.
			•••		0.59 ohm
	QK	501101	•••		0.76 ,,
Volts drop in field winding at	"		•••	•••	38.6 volts
Resistance brush contacts (positi		ativo\	•••	• • • •	0.048 ohm
Volts drop in brush contacts	tvo + neg	au140)	•••	•••	2.4 volts
fold on	d hwydhad	•••	•••	•••	70.0
		3	•••	•••	***************************************
Counter electromotive force of n			•••	•••	441
Amperes per square inch in arm	_	aing	•••	• • • •	3130
" " " " field	l	,,	•••	•••	192 0
Commutation:					
Average voltage between commu	ıtator segn	nents	•••		21
Armature turns per pole			•••		87
Amperes per turn					25.5
Armature ampere turns per pole					2200
Frequency of commutation, cycle		ond	•••		270
Number of coils simultaneously	_		r brush		2
Turns per coil	•••				4
Number of conductors per gr	roup, sim	ultaneou	sly under	going	
commutation			•		16
Flux per ampere turn per inch-le					20 lines
" linked with 16 turns v					
$= 20 \times 9 \times 16 \dots$					2880
Inductance of four turns = 4 >		10-8	•••		.000115 henrys
In a four-pole, two-circuit win					
brushes, there are two such					
commutated under the brus			•	• • •	0.000230 henrys
Reactance of these two short-cir					0.39 ohm
Amperes in short-circuited coils	041004 001				25.5 amperes
Reactance voltage of short-circu	ited coils				9.9 volts
_		•••	•••	•••	O.O TOLUS
Magnetomotive Force Estimations:					
Megalines entering armature, pe	r pole-pied	:е	•••	• • • •	2.96
Coefficient of magnetic leakage	•••	,	•••	•••	1.25
Megalines per field pole	•••	•••	•••	• • •	3.70
Armature:					
Section					16.7 square inches
Density	•••		•••		177 kilols.
•		•			

Figs. 277 to 279. 27 Horse-Power Geared Railway Motor Torque and Speed Curves

But, as is evident from the drawing of Fig. 260, page 267, many lines will flow through the inner parts of the punchings, and also, to a certain extent, through the shaft, and a corrected density may be taken of, say 130 kilolines.

Figs. 280 to 283. Characteristic Curves of 27 Horse-Power Geared Railway Motor

Length (magnetic)	•••		•••	• • • •	3 in.
Ampere turns per inch of lengt	th		•••		900
" for armature con	e	•••	•••		2700
Teeth:					
Transmitting flux from one po	le-piece				6
Section at root of six teeth	• •••	•••			20 square inches

_						
Length	•••	•••	•••	••		1.29 in.
Apparent density in root t	tooth		•••	•••	•••	148
Corrected ,, ,,	•	•••	•••	•••		138
Ampere turns per inch of	length		•••			1300
" for teeth	•••	•••	•••	•••	•••	1680
Gap:						
Section at pole-face	•••		•••	•••	5	5 square inches
But owing to the specia	l metho	d of co	on st ructin	g the po	le-face	•
(see Figs. 262 and 2				_		
equally effective, a co	• •	•				
taken, equal to, say		•••	•••		4	5 square inches
Mean length of air gap				• • • •		0.14 in.
Pole-face density (from co	rrected	section)				66 kilols.
Ampere-turns for gap	•••				•••	2900
Cast-Steel Portion of Circuit:						
Average cross-section					8	39 square inches
Length (magnetic)			•••	•••		7.5 in.
Average density	•••			•••		96 kilols.
Ampere turns per inch of	length		•••		•••	90
" for cast-stee		per pole	e-piece	•••		670

Each spool carries 156.6 turns, and in this motor full field is always used, i.e., no portion of the main current is diverted through an auxiliary shunt. Hence

Ampere-turns per field spool at full rated load are equal to $156.5 \times 51 = 7950$ ampere turns.

This magnetomotive force of 7950 ampere turns can be considered to be distributed somewhat in the following manner:

Armature core		•••	•••	•••			Ampere Turns 2700
Teeth			•••	•••	•••		1680
Gap	•••		•••	•••	•••	•••	2900
Steel Frame	•••		•••	•••	•••	•••	670
Total	magne	tomotive f	force per i	nole-niece			7950

It is not intended to convey the impression that any high degree of accuracy is obtainable in these magnetomotive force estimations in railway motors; but working from the observed results, and from the known dimensions of the apparatus, and the assumed properties of the material employed, some rough idea of the distribution of the magnetomotive force is obtained.

THERMAL CONSTANTS

1 11 15 15	MAL CON	STANTS			
Armature:					
Resistance between brushes at 9	5 deg. Ce	nt			0.36 ohm
Amperes input at rated capacity	_				51 amperes
Armature C ² R loss at 95 deg. C		•••			925 watts
Total weight of armature lamina		luding tee	th		120 lb.
" observed core loss (only ap		_			1120 watts
Watts per lb. in armature lamin					9.3 "
Total of armature losses	•••		•••		2045 ,,
Length of armsture, over condu	ctors				13.5 in.
Peripheral radiating surface of a		•••			465 square inches
Watts per square inch periphera					4.4 watts
Field Spools:					
Total resistance, all field spools a	at 95 deg.	Cent.			0.76 ohm
Current in spool winding					51 amperes
Spool C ² R loss at 95 deg. Cent.		•••			2000 watts
Spool of tribb at to dog. Cont.	•••	•••	•••	•••	2000 # 2005
Commutator:					
Area of bearing surface of posit	ive brush	es			1.25 square inches
Amperes per square inch of bru	sh-bearin	g surface	•••		40.5 amperes
Ohms per square inch of bearing	g surface	of carbon	b rushes		0.03 ohm
Brush resistance, positive + neg	gative	•••	•••		0.048 "
Volts drop at brush contacts					2.4 volts
C2R at brush contacts (watts)					122 watts
Brush pressure, pounds per squa	re inch				2 lb.
Total brush pressure			•••		5,,
Coefficient of friction		•••			0.3
Peripheral speed of commutator	(feet per	minute)			1850 ft.
Brush friction					46 watts
Allowance for stray power lost i	n commu	tator			50 ,,
Total commutator loss	•••				216 "
Peripheral radiating surface		•••	•••		95 square inches
Watts per square inch periphers	ıl radiatir	ng surface	of comm	utator	2.3 watts
Effici	ENCY Est	rimations			
Output at rated capacity		•••			Watts. 20,200
Core loss	•••		•••	•••	1,120
Commutator and brush loss	•••	•••	•••		218
Armature C ² R loss at 95 deg. C					925
Field ,, ,, ,,					2,000
Gearing friction	•••		•••	•••	1,200
-					-
Total input	•••	•••	•••	•••	25,663

Commercial efficiency at rated capacity and 95 deg. Cent. = 79 per cent.

Figs. 288 to 290. Direct-Connected Railway Motor

WEIGHTS

					Ib.
Armature laminations	•••	•••		•••	= 120
" complete (with pinion)		•••	•••		=357
Motor complete (without axle gear	and ge	ar case)	•••		=1460

In Figs. 278 to 283, on pages 275 and 276, are given curves of D.P.B., speed, output, core loss, efficiency, and thermal characteristics.

DIRECT-CONNECTED RAILWAY MOTOR

This motor gives an output of 117 horse-power, at a speed of 23.8 miles per hour on 42-in. wheels. It contributes 1840 lb. to the drawbar pull of the 35-ton locomotive, for the equipment of which four such motors are employed. Consequently, the total drawbar pull of this locomotive at the above speed is 7350 lb., but the motor is capable of exerting a torque far in excess of this figure; in fact, up to the limit of the tractive effort possible for a locomotive of this weight, before slipping takes place. Drawings for this motor are given in Figs. 284 to 319 (see pages 278 to 289), and its constants are set forth in the following:

Number of poles	•••				4	
Drawbar pull at 23.8 miles per he	our		•••		1840 lb.	
Corresponding speed, miles per he	Corresponding speed, miles per hour					
Speed in feet per minute		•••	•••		2100 ft.	
Diameter of driving wheels		•••	•••		42 in.	
Armature revolutions per minute			•••		190	
Output in foot-pounds per minu	te for s	bove dra	wbar pull	and		
speed			• • •		3,860,000	
Ditto in horse-power		•••			117	
" kilowatts	•••				87.5	
Corresponding kilowatts input		•••	•••		95 .8	
Terminal voltage			•••		500 volts	
Current input		•••	•••		192 amperes	
Frequency in cycles per second	•••		•••		6.35 cycles	
I	Dimensio)NS				
Armature:						
Diameter over all			•••		$22\frac{1}{2}$ in.	
Length over conductors			•••		45 3 ,,	
Diameter at bottom of slots			•••		19.04 ,,	
Internal diameter of core		•••	•••		$9\frac{1}{2}$,,	
Length of core over all		• • • •			28 "	
Effective length, magnetic iron	••		•••		25.2 ,,	
Pitch at armature surface	•••	•••	•••		17.7 " 2 o	

Figs. 291 to 294. DIRECT-CONNECTED RAILWAY MOTOR

Japan insulation between	laminatio	ons			•••	10 per cent.		
Thickness of laminations	•••				•••	0.025 in.		
Depth of slot	•••					1.73 ,,		
Width ,, at root					•••	0.52 ,,		
", ", surface	•••					0.52 ,,		
Number of slots			•••			61		
Minimum width of tooth						0.463 in.		
Width of tooth at armatu	re face	•••				0.635 ,,		
" conductor						0.10 ,,		
Depth "					•••	0.60 ,,		
Apparent cross-section of	armature	conducto	r		0.0	60 square inch		
This is a pressed stranded	d conduct	tor, made	up of 4	9 strands	of			
No. 19 B. and S. guage. The cross-section of a No. 19 guage								
wire is 0.0101 square inch, hence the cross-section of the 49								
strands is 49×0.010	01			•••	0.0	495 square inch		

Figs. 295 and 296. Cross-Section of Armature Corr and Section of Slot for the 117 Horse-Power Railway Motor

This was the experimentally-determined value in this case, and is fairly representative of stranded conductors of about these dimensions.

Magnet Core:						
Length of pole-face		•••	•••			28 in.
" arc	•••	•••		•••		13.2 "
Pole arc \div pitch	•••			•••		73 per cent
Length of magnet cor	e	•••	•••	•••		28 in.
Width "	•••	•••	•••			9 3 ,,
Diameter of bore of fi	ield		•••			$23\frac{1}{16}$,,
Length of gap clearan	nce above a	rmature	•••	•••	•	<u>5</u>
" "	below	,,	•••			1 "
Commutator:						
Diameter	•••		•••	•••	•••	19 "
Number of segments	•••	•••	•••	•••		183
_	er slot	•••	•••			3

Width of	segment at comm	nutator f	ace				0.286 in.
,,	" root				••		0.200 "
	of mica insulation	on				·	0.04 "
Available	length of surface	of segm	ent				8 "
shes :	•						
Number o	f sets			•••	•••		2
							4
Jength (r		•••					2½ in.
Width		•••					1¾ "
Thickness							11 16 "
	ontact of one bru						1.2 square inch
Type of b		•••		•••			Radial Carbon
••							
		M	ATERIALS				
Armature	core		•••		•••		Sheet Steel
19	spider				•••		No. 3 metal
,,	flanges		•••	•••	•••		Cast iron
59	conductors				•••		Pressed stranded
							copper
Commuta	tor segments	• • •		•••	•••		Copper
,,	spider				•••		Malleable cast iron
Pole-piece	s				• • •		Sheet steel
Yoke and	magnet cores				•••		Cast ,,
Brushes	•••	•••		•••	•••	•••	Carbon
		Твен	NICAL DA	NTA			
Terminal	voltage						500 volts
	of face conductor	8		•••			366
Conductor	rs per slot						6
Number o	. -	•••					2
Style wine	ding	•••		•••			Single
•	•	• • •					Drum
	truction of wind	ing					Barrel-wound
	gth of one armat	-	•••		•••		103 in.
-		•••	•••	•••			183
	series between b			•••			91
		•••		•••			9400 in.
_	coss-section of on	e armatu	re condu	ctor			0.046 square inch
Ohms per	cubic inch at 20	deg. Ce	nt.				0.00000068
_	e between brush	_		• • • •			0.070 ohms
"	,, ,,	70	,,				0.084 ,,
	p in armature at	70 deg.			•••		16 volts
	gth of one field t		•••				95 in.

The winding on the small spools consists of fifteen turns, whose section is made up of two strips of 0.050 in. by 0.875 in., in multiple with

Figs. 297 to 306. Details of Direct-Connected Railway Motor

Figs. 307 to 311. Details of Direct-Connected Railway Motor

two of 0.060 in. by 0.875 in. Insulation between turns consists of a thickness of 0.010 in. of asbestos.

Cross-section of field conductor on small spools ... 0.193 square inch

The winding on the large spools consists of seventy-six turns, whose section is made up of a strip of 0.050 in. by $2\frac{1}{8}$ in., in multiple with one of 0.060 in. by $2\frac{1}{8}$ in.

Cross-section of field conductor on large spools		0.234 square inch
Total turns on all four spools—all are in series		182
Resistance of two small spools at 70 deg. Cent.		0.012 ohm
,, ,, large ,, ,,		0.047 ,,
Total spool resistance at 70 deg. Cent.		0.059 ,,
Volts of drop in field		11 volts
Resistance of brush contacts (positive + negative)		0.012 ohm.
Volts of drop in brush contacts		2 volts
" " armature, field and brushes		29 ,,
Counter-electromotive force of motor		471 "
Amperes per square inch in armature winding		2100
", ", " winding of small spools		1000
,, ,, ,, ,, large ,,		820
Commutation:		
Average voltage between commutator segments		10.7
Armature turns per pole		46
Amperes per turn		91
Armature ampere turns per pole		4200
Frequency of commutation, cycles per second		138
Number of coils simultaneously short-circuited per br	ush	3
Turns per coil	•••	1
Number of conductors per group simultaneously	undergoing	
commutation		6
Flux per ampere turn per inch of length of arms	ture lamina-	
tions		20
Flux linked with six turns with one ampere in those t	urns	336 0
Inductance of one turn		0.0000336 henrys
The armature having a two-circuit winding with	four poles	•
and only two sets of brushes, there are two su		
series, being commutated under the brush,		
inductance is		0.000067 henrys
Reactance of short-circuited turns	•••	0.058 ohm
Amperes in ,, ,,		91
Reactance voltage of short-circuited turns		5.3 volts
Magnetomotive Force Estimation	ЭМВ	
Megalines entering armature, per pole-piece		20.6
Coefficient of magnetic leakage taken at		1.15
Megalines in magnet frame, per pole-piece		23.8
	•••	

Armature:

Section ... 240 square inches Density 86 kilolines 6 in. Length, magnetic 40 Ampere turns per inch of length 240 for armature core Fig. 322 Fig. 320 DIRECT CONNECTED RAILWAY MOTOR. DIRECT CONNECTED RAILWAY MOTOR. - SATURATION CURYE ---- CORE LOSS CURVES. - Core Loss from analysis of efficiency curve Core Loss when driven at speeds corresponding to those of Curve Land with corresponding field excitations, but with no current in the armature. Fig. 321 Fig. 323 DIRECT CONNECTED RAILWAY MOTOR-DIRECT CONNECTED RAILWAY MOTOR. E OF SPEED AND DRAW BAR PULL AT 500 VOLTS CURVE OF COMMERCIAL EFFICIENCY. -500 Volts and 70° Cent. Figs. 320 to 323. Characteristic Curves of Direct-Connected Railway Motor Teeth: Transmitting flux from one pole-piece 13 Section at roots 152 square inches Length... 1.73 in.

Apparent density at toot	h root					137 kilolines
Corrected ,,	,,	•••	•••		•••	127 ,,
Ampere turns per inch of						1000
· " for teeth		•••	•••	•••	•••	1730
Gap:						
Section at pole-face			•••			370 square inches
Length gap, average of to	p and be	ottom	•••			0.28 in.
Density at pole-face	-	•••		•••		56 kilolines
Ampere turns for gap	•••	•••	•••	•••	•••	5000
Cast-Steel Portion of Circuit:						
Average cross-section			•••			240 square inches
Length, magnetic		•••				17 in.
Average density						102 kilolines
Ampere turns per inch of	length		•••			105
" for cast-ste	•	(per po	le-piece)	•••	•••	1780

In the following is given the estimated subdivision of the magnetomotive force observed among the different portions of the magnetic circuit:

Armature	core	•••		•••		 Ampere Turns. 240
>> 1	teeth	•••	•••	•••	•••	 1730
Gap	•••	•••		•••	•••	 5000
Cast-steel f	rame		•••	•••	•••	 1780
Total ampe	re turns pe	r field spoo	1	•••	•••	 8750

The field excitation is furnished by two small spools on the top and bottom poles, and two large spools on the other two poles. There being fifteen turns per small spool, and seventy-six per large spool, the average excitation per spool at full rated load is $\frac{15+76}{2} \times 192 = 8750$ ampere turns.

THERMAL CONSTANTS.

Armature:

Resistance between brushes at 70 deg. Cent	•••	0.084 ohm	
Amperes input at rated capacity		192 amperes	
Armature C ² R loss at 70 deg. Cent	•••	0.3100 watts	
Total weight of armature laminations, including tee	th	1900 lb.	
Watts per pound in armature laminations		1.15 watts	
Total core loss (apparently core-loss)		2200 ,,	
,, of armature losses		5300 ,,	
Peripheral radiating surface of armature	• • •	$\dots 3250$ square inche	8
Watts per square inch peripheral radiating surface	•••	1.63 watts	

eld Spools:					
Total resistance of four field spo	ol at 70 de	g. Cent.			0.059 ohm
Spool C ² R loss at 70 deg. Cent.	•••	•••	•••	•••	2200 watts
mmutator :					
Area of bearing surface of all po	sitive brus	hes	•••		4.8 square inches
Amperes per square inch of brus					40 amperes
Ohms per square inch of bearing	_		brushes		0.03 ohm
Brush resistance, positive + neg					0.0125 "
Volts drop at brush contacts					2.4 volts
C ² R at brush contacts					460 watts
Brush pressure, pounds per squa					2 lb.
Total brush pressure	•••		•••		19.2 ,,
Coefficient of friction			•••	•••	.3
Peripheral speed commutator, fe			•••		915
Brush friction	•				120 watts
Allowance for stray power lost i			•••		150 "
Total commutator loss		•••			730 ,,
Radiating surface					510 square inches
Watts per square inch of radiat	ing surface				1.43 watts
Effici	ency Esti	MATION8			
					Watts.
Output at rated capacity	•••	•••	•••	•••	87,500
Core loss	• • •	• • •	•••	•••	2,200
Commutator and brush loss	•••	•••	•••	•••	730
Armature C ² R loss at 70 deg. C		•••	•••	•••	3,100
Field spool C ² R loss at 70 deg.	Cent.	•••	•••	• • •	2,200
Tot	tal input				95,730
	-	. 3 70 3		019-	•
Commercial efficiency at rated	capacity ar	10 10 a98	. Септ. =	91.3 J	or cent.
	Wrights	l			Lb.
Weight of amounting law-itions					
Weight of armature laminations		•••	•••	•••	1,900
Total weight of armature copper		•••	•••	• • • •	270
**	ommutato	r	•••		3,000
Total weight of spool copper	•••	•••	•••	•••	1,300
" frame with field	coils	•••			9,000

Insulation resistance, measured on 500 volts circuit, was, for the average of several motors, 2 megohms from frame to windings of armature and field, at 20 deg. Cent., and 30,000 ohms at 70 deg. Cent.

12,000

Total weight of motor

The results of experimental tests of efficiency, saturation, speed, torque, and core loss, are given in Figs. 320 to 323, page 290.

Figs. 324 to 329. Construction of Commutators

Figs. 330 to 335. Construction of Commutators

Figs. 336 to 340. Construction of Commutators

COMMUTATORS AND BRUSH GEAR

A number of illustrations of various types of commutators are given in Figs. 324 to 340, on pages 293 to 295. Figs. 324 to 331 illustrate designs widely employed in traction motors, that of Figs. 330 and 331 being used on a 100 horse-power direct-connected motor, the three former in smaller, geared motors.

Arrangement of Apparatus for Moore's Investigation of the Relations between Resistance of Carbon Brush Contacts and Current Density in Amperes per Square Inch of Contact Surface. Resistance measured from A to B.

Figs. 332 to 334 give some early designs of Mr. Parshall's, which have been much used with general success in many later machines, especially for traction. Other useful modifications and alternative designs are shown in Figs. 335 to 340, the last one being employed in a 1600-kilowatt generator.

Commutator segments should preferably be drawn, although good results have also been attained with drop-forged segments; cast segments have been generally unsatisfactory. It is not on the score of its superior conductivity that wrought-copper segments are necessary, since the loss due to the resistance itself is negligible, but it is of primary importance that the material shall possess the greatest possible uniformity throughout, and freedom from any sort of flaw or inequality. Any such that may develop during the life of the segments will render the commutator unequal to further thoroughly satisfactory service until turned down or

otherwise remedied, as the effect of uneven wear, once started, is cumulative. For similar reasons great care must be exercised in the selection of the mica for the insulation between segments; it should preferably be just soft enough to wear at the same rate as the copper, but should in no event wear away more slowly, as under such conditions the commutator will not continue to present a suitably smooth surface to the brush.

The writers have found the method of predetermining the commutator losses and heating, set forth briefly on page 112, to give very good results, and to amply cover practical determinations. But an intelligent handling of the subject of the relations existing between commutator speeds, brush pressure, and contact resistance, is facilitated

by a study of the results of tests that have been made, showing the dependence of these values upon various conditions.

The most complete and careful tests on carbon brushes at present

available, appear to be those conducted by Mr. A. H. Moore, in 1898, and the results are graphically represented in Figs. 341 to 344. In Fig. 341 is given a sketch showing the disposition and nature of the parts. A rotating cylinder, A, of 6.8 in. diameter, of cast copper, took the

place of a commutator, and this introduced an element of doubt as to whether a segmental structure of hard-drawn copper segments and mica would have given the same results. But inasmuch as the constants derived from these tests agree with those which have been found to lead to correct predictions of the performance of new commutators, it may be safely concluded that this point of dissimilarity was of no special consequence. In all other respects the tests seem especially good. The set of test also includes values for the resistances of the brush holders, but with good designs of brush holders the resistance should be negligible;

hence it has been deemed advisable not to divert attention from the important results relating to contact resistance, by the addition of these less useful observed values.

Mr. E. B. Raymond has, in America, conducted tests on this same subject. Some of the results for carbon brushes are shown in the curves of Fig. 345; and it will be observed that, for all practical purposes, his results, like Mr. Moore's, lead to the general working constants given on page 112.

Dr. E. Arnold, in the *Electrotechnische Zeitschrift*, of January 5th, 1899, page 5, described investigations on both copper and carbon brushes,

Figs. 347 to 350. Brush-Holders

Figs. 351 TO 354. BRUSH-HOLDERS

from which have been derived the curves set forth in Fig. 346, page 299, showing the relative values for the contact resistances in the two cases. Dr. Arnold also points out that while the coefficient of friction for carbon brushes on copper commutators is in the neighbourhood of 0.3, he has found 0.2 to be a more suitable value for copper-gauze brushes. But in the absence of thorough tests in support of this, the writers would be inclined to continue using a coefficient of 0.3 for both carbon and copper brushes.¹

Of course, all values relating to this whole matter of commutator losses must necessarily be, in practice, but little better than very roughly approximate, as they are so dependent upon the material, quality, and adjustment of the brushes, and the condition of their surfaces, as also upon the construction, condition, and material of the commutator and brush holders, and—fully as important as anything else—upon the electromagnetic properties of the design of the dynamo.

Various designs of brush holders for generators and railway motors are given in Figs. 347 to 365, pages 300 to 304, the first six (Figs. 347 to 352) being for use with radial carbon brushes on traction motors, where the direction of running is frequently reversed. In Figs. 353 and 354 is shown a brush holder which has been used on a 3 horse-power launch motor, for reversible running, with carbon brushes. Figs. 355 to 358 illustrate useful types for generators with carbon brushes, and in Fig. 359 is shown a holder designed for a copper-gauze brush.

The Bayliss reaction brush holder, shown in Figs. 360 and 361, is one of the latest and most successful developments in brush-holder design. Another design, where the holder is constructed largely of stamped parts, is given in Figs. 362 and 363. The holder shown in Figs. 364 and 365 is essentially a modification of the design represented in Fig. 357.

Of carbon brushes a wide range of grades have been used, varying from the soft, amorphous, graphite brushes up to hard, rather crystalline,

¹ Tibbals, Löwenberg and Burnshave (*Electrical World and Engineer*, September 16, 1899), and Hellmund (*Elektrotechn. Zeitschr.*, September 11, 1902) have made investigations regarding brush friction losses. Especially exhaustive experiments have been made by Dettmar (*Elektrotechn. Zeitschr.*, May 31, 1900), who studied the dependency of the contact resistance upon speed, pressure and current density, for slip-rings as well as for commutators. The tests of Bourguignon (*Société Electr. Bull.*, January, 1903), though very instructive, are of less practical usefulness, due to the use of a higher pressure per square centimetre than is usual in modern practice.

carbon brushes. The latter have the lower specific resistance, a lower contact resistance, and a lower coefficient of friction on copper commutators, and are for most cases much to be preferred. Tests made by Mr. Raymond show the extent of these differences between graphite and carbon brushes of two representative grades.

TABLE LVI.—RAYMOND'S TESTS ON GRAPHITE AND CARBON BRUSHES

Amperes per Square I Brush-bearing Surfs	nch of	Ohms per Square Inch of Brush-bearing Surface.			
J		Graphite.		Carbon.	
10		0.075	•••	0.048	
20	•••	0.045	•••	0.035	
30	•••	0.033		0.026	
40	•••	0.027		0.022	
50		0.022		0.019	
60	•••	0.019		0.017	
70		0.017	•••	_	
80		0.015			

The above results were obtained at peripheral speeds in the neighbour-hood of 2000 ft. per minute, and with brush pressures of about 1.3 lb. per square inch.

While the coefficient of friction for carbon brushes is about 0.3, Mr. Raymond obtained the value of 0.47 for these graphite brushes.

The specific resistance of a good grade of carbon brush is 2500 microhms per cubic inch, i.e., about 4000 times the resistance of copper.

Another objection to graphite brushes, at any rate on higher potential commutators, say 500 volts, is that they are liable to have their contact surface gradually pitted out to a greater extent than occurs with the hard-grained, coarser carbon brushes. Nevertheless, the matter of obtaining the best commutating conditions for each particular case still remains partly experimental, and graphite brushes have, in certain instances, been found helpful, although the commutator surface requires more constant attention to be kept clean and bright; indeed, with soft graphite brushes it is almost impossible to obtain such a hard, glazed, commutator surface, as with coarser, harder carbon brushes.

There are very many more varieties of brushes, made of all sorts of

¹ Some types of graphite brushes have a lower specific resistance than some types of carbon brushes. A great deal depends upon the composition and upon the methods of manufacture. By varying these, a wide range of specific resistances may be obtained, both for carbon and for graphite brushes.

materials, and giving many intermediate grades of resistances, lying between the limits of carbon and copper. It is not worth while to attempt to classify and describe these varieties of brushes; their relative merits are dependent partly upon the choice of materials, but still more upon the methods of constructing the brush from these materials. Scarcely any one type of brush and grade of resistance is suitable for any considerable range of variety of dynamo-electric machine.

PART III ROTARY CONVERTERS

ROTARY CONVERTERS

ROTARY converter is, structurally, in many respects similar to a continuous - current generator, the chief outward difference consisting in the addition of a number of collector rings, and in the commutator being very much larger, in comparison with the dimensions of the rest of the machine, than in an ordinary continuous-current dynamo. Under the usual conditions of running, the armature is driven, as in a plain synchronous motor, by alternating current, supplied to the collector rings from an external source. Superposed upon this motor current in the armature winding is the generator current, which is delivered from the commutator to the external circuit as continuous current. Occasionally rotary converters are used for just the opposite purpose, namely, to convert continuous into alternating current. With this latter arrangement, however, some sort of centrifugal cut-off governor should always be used, as the reactions on the field strength occasioned by sudden changes in the alternating-current load may so weaken the field as to cause dangerous increase of speed. But in by far the greater number of cases the apparatus is employed for transforming from alternating to continuous current.

The most interesting property of a rotary converter is the overlapping of the motor and generator currents in the armature conductors; in virtue of which, not only may the conductors be of very small cross-section for a given output, from the thermal standpoint, but, the armature reactions also being neutralised, large numbers of conductors may be employed on the armature, which permits of a very small flux per pole-piece, and a correspondingly small cross-section of magnetic circuit. The commutator, however, must be as large as for a continuouscurrent generator of the same output; hence a consistently designed rotary converter should be characterised by a relatively large commutator, and small electro-magnetic system. This is best achieved by an armature of fairly large diameter and small axial length; this, furthermore, gives room for the many, though small, armature conductors, and for the many poles required for obtaining reasonable speeds at economical periodicities. The mechanical limit imposed by centrifugal force becomes an important factor in the design of the armature and commutator of a rotary converter, as compared with continuous-current generators.

In some installations a good deal has been heard of "surging" troubles in operating rotary converters. These were largely due to insufficiently uniform angular velocity of the engines driving the Central Station generators, whose power was ultimately used to operate the rotary converters. This lack of uniformity in angular velocity had the effect of causing cumulative oscillations in the rotary converters, in their efforts to keep perfectly in synchronism with the direct-driven generators throughout a revolution. This caused especial difficulty when it was attempted to operate several rotary converters at different sub-stations in parallel. The true solution for these difficulties is to have engines of such design as to give uniform angular velocity. In describing the proper lines on which to design rotary converters, it will be assumed that this condition, as regards the generating set, has been complied with; otherwise it is necessary to employ auxiliary devices to counteract such influences, and there results a serious loss in economy through the dissipation of energy in steadying devices.

Table LVII.—Output in Terms of Output of Continuous-Current Generator for Equal C²R Loss in Armature Conductors for Unity Power Factor, and on the Assumption of a Conversion Efficiency of 100 Per Cent.

	ype of y Convert	ter.	Number of Collector Rings.	Uniform Distribution of Magnetic Flux over Pole-Face Spanning Entire Polar Pitch.	Uniform Distribution of Magnetic Flux over Surface of Pole-Faces Spanning 67 per Cent. of Entire Polar Pitch.
Single pl	hase		2	0.85	0.88
Three	"	•••	3	1.34	1.38
Four	,,		4	1.64	1.67
Six	,,		6	1.96	1.98
Twelve	,,	•••	12	2.24	2.26

The extent to which the motor and generator currents neutralise one another, and permit of small armature conductors to carry the residual

current, varies with the number of phases. Table LVII. gives the output of a rotary converter for a given C²R loss in the armature conductors, in terms of the output of the same armature when used as a continuous-current generator, this latter being taken at 1.00.

Table LVIII. shows the extent to which the preceding values have to be modified for power factors other than unity.

TABLE LVIII.—OUTPUT IN TERMS OF OUTPUT OF CONTINUOUS-CURRENT GENERATOR FOR EQUAL C²R Loss in Armature Conductors for 100 Per Cent. Efficiency, and for Uniform Gap Distribution of Magnetic Flux over a Pole-Face Spanning 67 Per Cent. of the Polar Pitch

Тур	e of		Number of		Power Factor of	
tary Co	nvertei	r.	Collector Rings.	1.00.	0.90.	0.80.
hase			2	0.88	0.81	0.73
,,	•••		3	1.38	1.28	1.17
,,	•••	•••	4	1.67	1.60	1.44
,,			6	1.98	1.92	1.77
,,			12	2.26	2.20	2.05
	ohase	nhase ,, ,,	hase ,, ,, ,,	collector Rings. chase 2 ,, 3 ,, 4 ,, 6	Collector Rings. 1.00.	Type of Collector Rings. 1.00. 0.90. 1.00. 0.90. 1.00

The writers have investigated by graphical and other methods the subject of the C² R loss in the armature of a three-phase rotary converter, in comparison with the C² R loss for the same load delivered from the commutator when the machine is used in the ordinary way as a mechanically-driven continuous-current dynamo. Not only are the results of considerable value, but a study of the graphical method of investigation pursued, leads to an understanding of many interesting features of the rotary converter.

As a basis for the analysis, Figs. 366 to 369, pages 312 to 315, were prepared. In Fig. 366 are given sine curves of instantaneous current values in the three sections of the armature winding (as it would be if the alternating currents alone were present), and also the corresponding curves of resultant current in the three lines leading to the collector rings. The first three curves are lettered α , b, and c, and a current clockwise directed about the delta is indicated as positive. The line currents are derived by Kirchhoff's law, that the sum of the currents from the common junction of several conductors must always equal zero. Outwardly-directed

currents are considered positive. These curves of resultant line current are designated in Fig. 366 as a-b, b-c, and c-a. Thirteen ordinates, lettered from A to M, divide one complete cycle up into 30 deg. sections. In Fig. 367 are given diagrams of line and winding currents from each of the ordinates from A to F. The remainder, i.e., from G to M, would merely be a repetition of these. An examination shows that these six diagrams, so far as relates to current magnitudes, are of two kinds, of which A and B

Fig. 366. Current Curves

are the types. In A, the three current values in the windings are respectively 0, 0.867 and—0.867, whilst these become in B, 0.5, 0.5 and —1.00. Hence it is sufficient for practical purposes to study the current distribution in the armature conductors corresponding to positions A and B, and to then calculate the average C²R loss for these two positions. For this purpose, developed diagrams have been mapped out in Figs. 368 and 369, for the winding of a rotary converter, from whose commutator 100 amperes at 100 volts are to be delivered from each pair (positive and negative) of brushes. The number of poles is immaterial. The armature

has a multiple-circuit single winding, and it may be assumed that there are two conductors per slot, though this assumption is not necessary. It was thought best to take a fairly large number of conductors, and to take into account, just as it comes, the disturbing influence of the brushes, which somewhat modifies the final result. Of course, this disturbing influence would vary with the width of the brushes. Comparatively narrow brushes are shown, and this will tend to offset the circumstance

Fig. 367. Diagrams of Line- and Winding-Currents

that the number of conductors is considerably less than would be taken in practice for this voltage.

The assumption is made that the rotary converter is of 100 per cent. efficiency, only calling for an input equal to the output. To supply 100 amperes to the commutator brushes calls for 50 amperes per conductor, so far as the continuous-current end is concerned. This is shown in direction and magnitude by arrow-heads and figures at the lower ends of the vertical lines representing face conductors.

100 volts and 100 amperes give 10,000 watts per pair of poles. Therefore, input per phase = 3330 watts. Volts between collector rings

FIG. 368 DIAGRAM OF ROTARY-CONVERTER WINDING

		.*(Current)	6,900	6,900	6,900	6,900	2,500	6,900	2,500	6,900	2,500	6,900	2,500	6,900	2,500	33,500	2,500	33,500	2,500	33,500	2,500	6,900
	Phase.)0.	Resultant Current.	+ 83	+ 83	+ 83	+ 83	- 50	+ 83	- 50	+ 83	- 50	+ 83	- 50	+ 83	- 50	- 183	- 50	- 183	- 50	- 183	- 50	- 83
	Current 60 Deg. out of Phase. Cos. 60 Deg. = .500.	-nrOgnitametiA 003. ÷ iner	+ 133	+ 133	+ 133	+ 133	0	+ 133	0	+ 133	0	+ 133	0	+ 133	0	- 133	0	- 133	0	- 133	0	- 133
	Current 60 Cos. 6	Alternating Current, not Considering Power Factor.	+ 66.5	+ 66.5	+ 66.5	+ 66.5	0	+ 66.5	0	+ 66.5	0	+ 66.5	0	+ 66.5	0	- 66.5	0	- 66.5	0	- 66.5	0	- 66.5
		Continuous Current.	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 20	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 20	- 20	- 50	+ 20
30.)		² (taerruO)	710	710	710	710	710	710	710	710	2,500	710	2,500	710	2,500	710	2,500	710	2,500	16,000	2,500	710
(See page 320.)	f Phase. 166.	Resultant Juerrad	+ 26.7	+ 26.7	+ 26.7	+ 26.7	+ 26.7	+ 26.7	+ 26.7	+ 26.7	- 50	+ 26.7	- 20	+ 26.7	- 20	+ 26.7	- 50	+ 26.7	- 50	- 126.7	- 50	- 26.7
LIX. (Se	Current 30 Deg. out of Phase. Cos. 30 Deg. = .866.	-1nD gnisarrestfA 888. ÷ tnen	+ 76.7	+ 76.7	+ 76.7	+ 76.7	+ 76.7	+ 76.7	+ 76.7	+ 76.7	0	+ 76.7	0	+ 76.7	0	+ 76.7	0	+ 76.7	0	- 76.7	0	- 76.7
TABLE	Current 36 Cos.	Alternating Anorman, motor. Considering Power Factor.	+ 66.5	4 66.5	+ 66.5	+ 66.5	+ 66.5	+ 66.5	+ 66.5	+ 66.5	0	4 66.5	0	+ 66.5	0	+ 66.5	0	+ 66.5	0	- 66.5	0	- 66.5
		Continuous Carrent.	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	09 -	- 50	+ 50
		.*(JaerinO)	272	2,500	272	2,500	272	272	272	272	272	272	272	272	2,500	272	2,500	272	2,500	272	2,500	13,500
	Phase.	Resultant Current.	+ 16.5	- 50	+ 16.5	- 50	+ 16.5	+ 16.5	+ 16.5	+ 16.5	+ 16.5	+ 16.5	+ 16.5	+ 16.5	- 50	+ 16.5	- 50	+ 16.5	- 50	+ 16.5	- 50	+ 116.5
	Current in Phase.	Alternating Current.	+ 66.5	0	+ 66.5	0	+ 66.5	+ 66.5	+ 66.5	+ 66.5	+ 66.5	+ 66.5	+ 66.5	ين.	0	+ 66.5	0	+ 66.5	0	+ 66.5	0	+ 66.5
		Continuous Current.	- 50	- 50	- 50	- 50	- 50	- 20	- 50	- 50	- 20	- 50	- 50	- 50	- 20	- 50	- 50	- 50	- 50	- 50	- 50	- 50
		Number of Conductor.	-	ଟୀ	က	4	2	9	7	00	6	10	11	13	13	14	15	16	17	18	19	70

6,900	6,900	6,900	6,900	6,900	6,900	6,900	6,900	6,900	2,500	6,900	2,500	6,900	2,500	6,900	2,500	33,000	2,500	33,500	2,500	33,500	2,500	33,500	2,500	6,900	6,900	6,900	006'9	
83	83	83	83	83	83	83	83	83	20	83	20	83	20	83	50	183	20	183	20	183	20	183	20	83	83	83	83	<u>ن</u> بن
1	ı	1	1	1	<u> </u>	!	1	1	+	ı	+	ı	+	ı	+	+	+	+	+	+	+	+	ı	+	+	+	+	8,00 r cen
- 133	- 133	- 133	- 133	- 133	- 133	- 133	- 133	- 133	0	- 133	0	- 133	0	- 133	0	+ 133	0	+ 133	0	+ 133	0	+ 133	0	+ 133	+ 133	+ 133	F 133	$\Sigma \text{ (Current}^2) = 448,000.$ Of R is 373 per cent.
																		——		т —		-		т	Т	т	_	rent R is
- 66.5	- 66.5	- 66.5	- 66.5	- 66.5	- 66.5	- 66.5	- 66.5	- 66.5	0	- 66.5	0	- 66.5	0	- 66.5	0	+ 66.5	0	+ 66.5	0	+ 66.5	0	+ 66.5	0	+ 66.5	+ 66.5	+ 66.5	+ 66.5	x (Cun
 20 +	+ 20	+ 50	+ 20	+ 20	+ 20	+ 50	+ 20	+ 20	+ 20	+ 20	+ 20	+ 50	+ 20	+ 50	+ 20	+ 20	+ 20	+ 20	+ 50	+ 50	+ 20	+ 20	- 50	- 50	- 50	- 50	- 50	
2,500	710	2,500	710	710	710	710	710	710	710	710	710	710	2,500	710	2,500	710	2,500	710	2,500	16,000	2,500	710	2,500	710	2,500	710	2,500	
50	26.7	20	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	20	26.7	20	26.7	20	26.7	20	126.7	20	126.7	20	26.7	20	26.7	20	= 108,600. 3.3 per cent.
+		ı		1	·	1	_ [1		ı	1		+	1	+	1	+	1	+	+	+	+	ı	+	1	+		108 Per
0	- 76.7	0	- 76.7	- 76.7	- 76.7	- 76.7	- 76.7	- 76.7	- 76.7	- 76.7	- 76.7	- 76.7	0	- 76.7	0	- 76.7	0	- 76.7	0	+ 76.7	0	+ 76.7	0	+ 76.7	0	+ 76.7	0	$Current^3$) = C^2 R is 90.3
0	66.5	0	66.5	66.5	66.5	66.5	66.5	66.5	66.5	66.5	66.5	66.5	0	66.5	0	66.5	0	66.5	0	66.5	0	66.5	0	66.5	0	66.5	0	$\Sigma \left(\operatorname{Current}^{2} \right) = \cdots \operatorname{C}^{2} \left(\operatorname{R} \right) = 0$
	I		I	1	t	1	ı	I	1	I	ı	ı		. 1		1		1		+		+		+		+		
+ 50	+ 20	+ 20	+ 50	+ 50	+ 50	+ 20	+ 50	+ 20	+ 50	+ 50	+ 50	+ 50	+ 50	+ 50	+ 50	+ 50	+ 20	+ 50	+ 50	+ 50	+ 50	+ 50	- 50	- 50	- 50	- 50	- 50	
2,500	272	2,500	272	2,500	272	2,500	272	272	272	272	272	272	272	272	272	272	2,500	272	2,500	272	2,500	272	2,500	272	2,500	272	2,500	0. 20,000. of that
- 50	- 16.5	+ 50	- 16.5	+ 50	- 16.5	+ 20	- 16.5	- 16.5	- 16.5	- 16.5	16.5	- 16.5	- 16.5	- 16.5	- 16.5	- 16.5	+ 20	- 16.5	+ 50	- 16.5	+ 20	- 16.5	- 50	+ 16.5	- 50	+ 16.5	- 50	= 61,900 2500 = 15 er cent. of
0	- 66.5	0	- 66.5	0	- 66.5	0	- 66.5	- 66.5	- 66.5	- 66.5	- 66.5	- 66.5	- 66.5	- 66.5	- 66.5	- 66.5	0	- 66.5	0	- 66.5	0	- 66.5	0	+ 66.5	0	+ 66.5	0	$\Sigma (\text{Current}^2) = 61,900.$ 48 × 50 ² = 48 × 2500 = 120,000 C ² R is 51.5 per cent. of that of continuous current alone.
+ 50	+ 50	+ 20	+ 50	+ 20	+ 50	+ 50	+ 50	+ 50	+ 20	+ 50	+ 20	+ 50	+ 20	+ 20	+ 20	+ 50	+ 20	+ 50	+ 20	+ 20	+ 20	+ 20	- 20	- 50	- 50	- 50	- 20	3 × 50. . C. B.
_	22	23	24	25		27	28	59	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	3 ₩ .

Rotary Converters.

	510			•	200		<i>y</i> \	<i>,</i>	,001	•	٥.											
		.f(JuerruD)	700	10,600	700	10,600	700	10,600	100	10,600	700	10,600	700	10,600	70Ò	16,000	700	16,000	700	16,000	700	16,000
	Phase.	Resultant Current.	+ 26.5	+ 103	+ 26.5	+ 103	+ 26.5	+ 103	+ 26.5	+ 103	+ 26.5	+ 103	+ 26.5	+ 103	+ 26.5	- 126.5	+ 26.5	- 126.5	+ 26.5	- 126.5	+ 26.5	- 126.5
	Current 60 Deg. Out of Phase. Cos. 60 Deg. = .500.	-110 gnitanresIfA .003. ÷ tnen	+ 76.5	+ 153	+ 76.5	+ 153	+ 76.5	+ 153	+ 76.5	+ 153	+ 76.5	+ 153	+ 76.5	+ 153	+ 76.5	- 76.5	+ 76.5	- 76.5	+ 76.5	- 76.5	+ 76.5	- 76.5
	Current 60 Deg. Cos. 60 Deg.	Alternating ton transf. not considering considering Power Factor.	+ 38.3	+ 76.5	+ 38.3	+ 76.5	+ 38.3	+ 76.5	+ 38.3	+ 76.5	+ 38.3	+ 76.5	+ 38.3	+ 76.5	+ 38.3	- 38.3	+ 38.3	- 38.3	+ 38.3	- 38.3	+ 38.3	- 38.3
		Continuous Juerno	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 20	- 50
320.)		(Current) ² .	35	1450	. 35	1450	35	1450	35	1450	35	1450	35	1450	35	1450	35	1450	35	8900	35	8900
page	of Phase.	Resultant Current.	- 5.9	+ 38.2	- 5.9	+ 38.2	- 5.9	+ 38.2	+ 5.9	+ 38.2	- 5.9	+ 38.2	- 5.9	+ 38.2	- 5.9	+ 38.2	- 5.9	+ 38.2	- 5.9	- 94.1	- 5.9	- 94.1
LX. (See	# j	Alternating Cur. 586. ÷ tner	+ 44.1	+ 88.2	+ 44.1	+ 88.2	+ 44.1	+ 88.2	+ 44.1	+ 88.2	+ 44.1	+ 88.2	+ 44.1	+ 88.2	+ 44.1	+ 88.2	+ 44.1	+ 88.2	+ 44.1	- 44.1	+ 44.1	- 44.1
TABLE	Current 30 Deg. (Cos. 30 Deg.	Alternating Current, not considering Power Factor.	+ 38.3	+ 76.5	+ 38.3	+ 76.5	+ 38.3	+ 76.5	+ 38.3	+ 76.5	+ 38.3	+ 76.5	+ 38.3	+ 76.5	+ 38.3	+ 76.5	+ 38.3	+ 76.5	+ 38.3	+ 38.3	+ 38.3	- 38.3
		Continuous Current.	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	09 -
	· 	.²(JnerruD)	137	7800	137	7800	137	700	137	400	137	700	137	200	137	700	137	200	137	700	137	700
	Phase.	Resultant Current.	- 11.7	- 88.3	+ 11.7	- 88.3	- 11.7	+ 26.5	- 11.7	+ 26.5	- 11.7	+ 26.5	- 11.7	+ 26.5	- 11.7	+ 26.5	- 11.7	+ 26.5	- 11.7	+ 26.5	- 11.7	+ 26.5
i	Current in Phase.	Alternating Current.	+ 38.3	- 38.3	+ 38.3	- 38.3	+ 38.3	+ 76.5	+ 38.3	+ 76.5	+ 38.3	+ 76.5	+ 38.3	+ 76.5	+ 38.3	+ 76.5	+ 38.3	+ 76.5	+ 38.3	+ 76.5	+ 38.3	+ 76.5
	I	Continuous Current.	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 50	- 20
,		Number of Con- ductor.	1	67	က	4	5	9	7	œ	6	10	11	13	13	14	15	16	17	18	19	20

	ļ	= 451,700. 76 per cent.	451 per		R is	∑ (Current²) C² R is 3				h it.	= 95,240. 5 per cent.	∥ મ્હં	(Current ²) C ² R is 79	(Cu (Cu (Cu (Cu (Cu (Cu (Cu (Cu (Cu (Cu				f) = 76,900. 64 per cent.	_ 76	nt*)	Current ³) = 76,900. C ³ R is 64 per cent.	M :	1	
2	10,600	+ 103	_	153	+	+ 76.5	20	1	8900	94.1) 	44.1	!	- 38.3	20	<u> </u>	7800	88.3	1	38.3	- 36 	20	_	48
2	16,000	+ 126.5	76.5	92	+	+ 38.3	20	+	8900	94.1	+	44.1	+	+ 38.3	20	+	7800	+ 88.3	+	38.3	+	. 20	+	47
2	41,000	+ 203		153	+	+ 76.5	20	+	35	5.9	+	44.1	ı	- 38.3	20	+	137	+ 11.7	+	38.3	<u>ه</u> ا	. 20	+	46
2	16,000	+ 126.5	5	76.5	+	+ 38.3	20	+	8900	94.1	+	44.1	+	+ 38.3	20	+	7800	88.3	+	38.3	+ 38	. 20	+	45
2		- 26.5	2.92	92	1	- 38.3	20	+	35	5.9	+	44.1	1_	- 38.3	20	+	137	11.7	+	38.3	- 38	. 50	+	44
2	16,000	+126.5	2.92	9.2	+	+ 38.3	20	+	8900	94.1	+	44.1	+	+ 38.3	20	+	700	26.5	1	2.92	- 70	. 50	+	43
ر و	100	- 26.5	2.92	92	-	- 38.3	20	+	35	5.9	+	44.1	ı	- 38.3	20	+	137	11.7	+	38.3	- -	. 50	+	42
2	16,	+ 126.5	76.5	92	+	+ 38.3	20	+	8900	94.1	+	44.1	+	+ 38.3	20	+	700	26.5	1	76.5	- 76	. 50	+	4 1
2	200	- 26.5	76.5	16	ı	- 38.3	20	+	35	5.9	+	44.1	1	- 38.3	20	+	137	11.7	+	38.3	<u>چ</u>	- 50	+	40
9	16,000	+ 126.5	76.5	9.	+	+ 38.3	20	+	1450	38.2	 	88.2	1	- 76.5	20	+	700	26.5	1	76.5	1	- 50	+	39
2	200	- 26.5	2.92	92	-	- 38.3	20	+	35	5.9	+	44.1	1	- 38.3	20	+	137	11.7	+	38.3	<u>چ</u> ا	- 50	+	38
2	16,000	+ 126.5	2.92	92	+	+ 38.3	20	+	1450	38.2	-	88.2	1	- 76.5	20	+	700	26.5	1	76.5	- 7	- 50	+	37
	100	- 26.5	5.	76.5	1	- 38.3	20	+	35	5.9	1	44.1	1	- 38.3	20	+	137	11.7	+	38.3	1	- 50	+	36
9	10,600	- 103		153	ı	- 76.5	20	+	1450	38.2	1	88.2	ı	- 76.5	20	+	700	26.5	1	76.5	1	- 50	+	35
	70	- 26.5	5	76.5	1	- 38.3	20	+	35	5.9	+	44.1	1	- 38.3	20	+	137	11.7	+	38.3	1	- 50	+	34
2	10,600	- 103		153	1	- 76.5	20	+	1450	38.2		88.2	ı	- 76.5	20	+	700	26.5	1	76.5	1	50	+	33
	700	- 25.6	5	76.5	1	- 38.3	20	+	35	5.9	+	44.1	1	- 38.3	20	+	137	11.7	+	38.3	1	- 50	+	32
	10,600	- 103		153	1	- 76.5	20	+	1450	38.2		88.2	l 	- 76.5	20	+	200	26.5	1	76.5	1	- 50	+	31
2		- 26.5	5.	76.5	1	- 38.3	20	+	35	5.9	+	44.1		- 38.3	20	+	137	11.7	+	38.3	 	- 50	+	30
2	10,600	- 103		153	1	- 76.5	20	+	1450	38.2	1	88.2	1	- 76.5	20	+	700	26.5	1	76.5	<u> </u>	- 50	+	29
2	700	- 26.5	٠. ت	76.5	1	- 38.3	20	+	35	5.9	+	44.1	ı	- 38.3	20	+	137	11.7	+	38.3	ı	. 20	+	28
2	10,600	- 103		153	1	- 76.5	20	+	1450	38.2	1	88.2	ı	- 76.5	20	+	7800	88.3	+	38.3	+	- 50	+	27
2		- 26.5	5.	76.	1	- 38.3	20	+	35	5.9	+	44.1	ı	- 38.3	20	+	107	11.7	+	38.3	1	- 50	+	26
2	10,600	- 103		153	1	- 76.5	20	+	1450	38.2	1	88.2	ı	- 76.5	20	+	7800	88.3	+	38.3	+	- 50	+	25
2		- 26.5	5.	76.		- 38.3	20	+	35	5.9	+	44.1	1	- 38.3	20	+	137	11.7	+	38.3	1	- 50	+	24
2	41,000	-203		153	1	- 76.5	20	1	35	5.9	1	44.1	+	+ 38.3	20	1	137	11.7	7	38.3	+	- 50	<u> </u>	23
0		- 126.5	70	76.5		+ 38.3	20	1	8900	94.1	I 	44.1	1	- 38.3	50	1	7800	88.3	ĭ	38.3	1	. 50		22
2	41,000	- 203	_	153		- 76.5	20	_	35	5.9	1	44.1	+	+ 38.3	20		137	11.7	ī	38.3	+	- 50		21

= volts per winding = $100 \times 0.615 = 61.5 \text{ volts.}^1$ Amperes per winding $\frac{3330}{61.5} = 54$ amperes (effective). In this analysis, which considers instantaneous values, a sine wave current curve has been assumed, working from the maximum value of $54 \times \sqrt{2} = 76.5$ amperes.

When the current is in phase with the electromotive force, the distribution of things for positions A and B respectively is as shown in the diagrams of Figs 368 and 369, on pages 314 and 315. There are 48 conductors, corresponding to two poles, and these are numbered from 1 to 48. Any 48 successive conductors will give the same result. The values and arrow-heads at the upper part of the lines representing the face conductors give the instantaneous values and directions of the currents corresponding to the instantaneous conditions. The figures and arrow-heads at the middle of these lines show the instantaneous values and directions of the resultant currents. These results are also set forth in Tables LIX. and LX., where a current from bottom to top is regarded as positive, and from top to bottom as negative. There are also given values for lagging currents, the results from which show a rapid rise in C²R loss.

These results are summed up in Table LXI., the figures given being the average for positions A and B:—

Table LXI. — Showing Proportion of Armature C²R Loss to that of a similar Armature in a Continuous-Current Generator for the same Output, assuming 100 Per Cent. Conversion Efficiency

Power Factor.						Per Cent.
1.00			•••	• • •	 	58
0.87					 	85
0.50					 	375
0	•••	•••		•••	 	œ

Some indefiniteness is introduced by the exact position and width of the brushes under the condition of power factor of unity, the results for this value being higher in proportion as the number of conductors per pole is low. But for the other values of the power factor, this

¹ The Estimation of the Electro-Motive Force in Rotary Converters, Tables of Values of the Ratio of the Alternating Voltage between Collector Rings to the Continuous-Current Voltage at the Commutator, and the Estimation of the Effect of the Pole Face Spread upon these Values, have already been given in the section on Formulæ for Electro-Motive Force. (See page 88 ante).

indefiniteness does not appear. It will be noted that, just before reaching the position of short circuit under the brush, the current is often the sum of the alternating and continuous currents.

Throwing the results into the above form brings out forcibly the fact that it is only for comparatively high power factors that the residual C²R loss is so greatly decreased.

SINGLE-PHASE ROTARY CONVERTERS

The winding is connected up to the commutator segments, exactly as

Fig. 370.—Winding for a Single-Phase Rotary Converter. Two-Circuit Single Winding with 64 Conductors, Six Poles, Pitch 11

for an ordinary continuous-current dynamo. For the alternating-current connections, the winding is tapped for a two-circuit winding, at some one point to one collector ring. Then, after tracing through one-half of the armature conductors, a tap is carried to the other collector ring. This case of a two-circuit single winding connected up as a single-phase rotary converter is illustrated in the winding diagram of Fig. 370, which relates to a six-pole armature with 64 conductors.

Fig. 371.—Winding for a Single-Phase Rotary Converter. Two-Circuit Singly Re-entrant triple Winding with 72 Conductors, Six Poles. Pitch 11

Fig. 372.—Winding for a Single-Phase Rotary Converter. Six-Circuit Single Winding with 72 Conductors, Six Poles, Front Pitch 13, Back Pitch 11

In Fig. 371 is given a diagram for a six-pole single-phase rotary converter, with a two-circuit singly re-entrant triple winding. This winding has 72 conductors. Single-phase rotary converters with two-circuit multiple windings, have two taps per winding, hence the two-circuit triple winding of Fig. 371 has $2 \times 3 = 6$ equi-distant taps.

Fig. 373.—Winding for a Three-Phase Rotary Converter. Six-Circuit Single Winding with 108 Conductors, Six Poles, Front Pitch 19, Back Pitch 17

In Fig. 372, a six-circuit single winding, also with 72 conductors, is connected up as a single-phase rotary converter. For such a winding there are two taps per pair of poles, hence six taps in all, the winding being divided up into six equal sections of 12 conductors each.

In single-phase rotary converters, the overlapping of the commutator

and collector-ring currents is so much less complete than for multiphase, as shown on pages 310 and 311, Tables LVII. and LVIII., as to render their use very uneconomical, because of the reduced output in a given machine. There is the further disadvantage that a single-phase rotary cannot be run up to synchronism from the alternating-current side.

Fig. 374. Winding for a Three-Phase Rotary Converter. Two-Circuit Single Winding with 90 Conductors, Eight Poles, Pitch 11

In general, the operation of single-phase rotary converters is distinctly unsatisfactory, and they are rarely used except for small capacities. An examination of the windings shows that, owing to the distribution of the conductors over the entire peripheral surface, the turns in series between collector rings are never simultaneously linked with the entire magnetic

flux; in fact, such a winding used as a pure alternating current single-phase generator gives but 71 per cent. as great a voltage at the collector rings as the same machine used as a continuous-current dynamo would give at the commutator.¹ The ratio of the outputs, under such conditions, is for equal loads in the armature conductors, 71:100. It will be seen in

Fig. 375. Winding for a Three-Phase Rotary Converter. Two-Circuit Singly Re-entrant Triple Winding with 108 Conductors, Six Poles, Pitch 17

the following that this is largely avoided when the winding is subdivided for polyphase connections, and the relative advantages of these different polyphase systems is largely dependent upon the extent to which they are free from this objection.

¹ A discussion of the ratio of commutator and collector-ring voltages in rotary converters has already been given on pages 88 to 90, in the section relating to Formulæ for Electromotive Force.

THREE-PHASE ROTARY CONVERTERS

The earlier rotaries were generally operated as three-phasers, the output for a given C²R loss in the armature winding being 38 per cent. greater than for the same armature as used in a continuous-current

Fig. 376.—Winding for a Six-Phase Rotary Converter. Six-Circuit Single Winding with 108 Conductors, Six Poles, Pitch, Front 19, Back 17

generator. To-day, however, most rotaries are being arranged to be operated either as four or six-phasers, with the still further advantages of 67 per cent. and 98 per cent. increased output respectively, for a given heating in the armature conductors. These are the values given in Table LVII., page 310.

For three-phase rotary converters, there are three sections per pair of poles in multiple-circuit single windings, and three sections per pair of poles per winding in multiple-circuit multiple windings. There are three sections per winding, regardless of the number of pairs of poles

Fig. 377. Winding for a Six-Phase Rotary Converter. Two-Circuit Single Winding with 90 Conductors, Eight Poles, Pitch 11

in two-circuit windings. Thus, a six-pole machine with a six-circuit triple winding would have $\frac{a}{2} \times 3 = 9$ sections. At equal ninths through the winding from beginning to end, leads would be carried to collector rings, three leads to each of the three collector rings. But if the armature had had a two-circuit double winding, there would have been

but three sections per winding, regardless of the number of poles; hence, for this two-circuit double winding there would be $2 \times 3 = 6$ sections, and six leads to the three collector rings. In Figs. 373 to 375, on pages 323 to 325, are given diagrams of three-phase rotary converter

Fig. 378. Winding for a Six-Phase Rotary Converter. Two-Circuit Singly Re-entrant Triple Winding with 108 Conductors, Six Poles, Petch 17

windings, from a study of which familiarity with the inherent characteristics of such windings may be obtained. The most distinctive characteristic is the overlapping distribution of the conductors of the three phases, in consequence of which any one portion of the periphery of the armature carries conductors belonging to two phases. At one portion the conductors will belong alternately to phases 1 and 2, then to 2 and 3, and then to

3 and 1, then again to 1 and 2, the repetition occurring once per pair of poles. As a consequence of this property, the conductors of any one phase are distributed over two-thirds of the entire periphery; and when the width of the magnetic flux exceeds one-third of the polar pitch—and it is generally, when spreading is considered, at least three-quarters of the polar pitch—all the turns of one phase will not be simultaneously linked with the entire flux; the consequence is a lower alternating-current voltage per phase than if simultaneous linkage of all the turns of one phase with the entire flux occurred. Hence, for a given heating the output is limited, although being 56 per cent. higher than for single-phase rotaries, by reason of more effective linkage of turns and flux.

SIX-PHASE ROTARY CONVERTER

This disadvantage is mainly overcome in the so-called six-phase rotary converter, in which—as will appear later—the conductors of any one phase

Fig. 379. Diagram of Rotary Converter Winding

are distributed over only one-third of the entire periphery, as a result of which an almost simultaneous linkage of all the turns of one phase with the entire magnetic flux is obtained. The resultant output of such a machine, for a given heating of the armature conductors, increases, as stated in Table LVII., on page 310, in the ratio of 1.38 to 1.98, *i.e.*, by 44 per cent. beyond that of an ordinary three-phase machine. As a matter of fact, this so-called six-phase is only a special case of three-phase arrangement. This distinction will be subsequently made clear.

Figs. 376 to 378, pages 326 to 328, are the same winding diagrams as for Figs. 373 to 375, pages 323, 324, and 325, but with the connections made for so-called "six-phase," with six collector rings. This requires in each case subdividing the winding up into just twice as many sections as for the case of three-phase windings. A study of these windings will

show that with these connections with six sections (where before there were three), the first and fourth, second and fifth, and third and sixth, taken in pairs, give a distribution of the conductors suitable for a three-phase winding, each of the above pairs constituting a phase. Furthermore, each portion of the periphery is now occupied exclusively by conductors belonging to one phase, *i.e.*, the first and fourth groups, the second and fifth, or the third and sixth, and in this way is distinguished from the previously-described three-phase windings in which the phases overlapped.

FIG. 380.—Interconnection of Static Transformer and Rotary Converter

This distinction will be made more clear by a study of the diagram given in Fig. 379.

INTERCONNECTION OF STATIC TRANSFORMERS AND ROTARY CONVERTERS

For three-phase rotary converters, the transformers should preferably be connected in "delta," as this permits the system to be operated with two transformers in case the third has to be cut out of circuit temporarily for repairs.

A satisfactory method of connection is given in Fig. 380.

For six-phase rotary converters, either of two arrangements will be satisfactory. One may be denoted as the "double-delta" connection, and the other as the "diametrical" connection. Let the winding be represented by a circle (Fig. 381), and let the six equidistant points on the circumference represent collector rings, then the secondaries of the transformers may be connected up to the collector rings in a "double-delta," as in the first

diagram, or across diametrical pairs of points as in the second diagram. In the first case it is necessary that each of the three transformers have two independent secondary coils, as A and A¹, B and B¹, C and C¹, whereas in the second case there is need for but one secondary coil per transformer. The two diagrams (Fig. 382) make this clear.

In the first case, the ratio of collector ring to commutator voltage is the same as for a three-phase rotary converter, it simply consisting of two

Figs. 381 and 382. Examples of Rotary Converter Connections

"delta" systems. In the second case, the ratio is the same as for a single-phase rotary converter, it being analogous to three such systems.

	TABLE	TXII			
Style of Connection for Six-Phase Rotary Converter.					Collector Ring Voltage to
Double-delta connection	 		 	Commu	tator Voltage. 0.612
Diametrical	 		 		0.707

The latter—the "diametrical"—connection, is, on the whole, to be

preferred. The higher voltage at the collector rings permits of carrying lighter cables about the station, in wiring up from the static transformers to the rotary converter. It also only requires two secondary leads to be brought out—per transformer—and it simplifies the switching arrangements.

A switchboard connection suitable for a plant with four, six-phase rotary converters is given in Fig. 383, where it is arranged that the synchronising shall be done on the high-tension side of the transformer. This method of synchronising avoids the necessity of six-bladed, heavy current, low-tension switches. The switches A and B are more for the purpose of connectors; the line circuits are intended to be made and broken by the high-tension, quick-break, switches C. Another feature of the arrangement shown is that it brings the entire alternating-current system to the left of the line L, and the entire continuous-current system to the right of the line L, thus keeping them entirely separate. The particular scheme shown has two independent sets of high-tension feeders coming to the two feeder panels illustrated.

In conclusion, it may be said that six-phase rotary converters have in practice been found to run stably, and have been free from surging and flashing. The six collector rings can hardly be said to constitute any serious disadvantage, and there is the already explained gain of 44 per cent. in output from the standpoint of the heating of the armature conductors. This latter is, of course, an important advantage; but it must be kept in mind that this gain does not apply to the commutator, which must be—for a given output—just as large for a six-phase rotary as for a three-phaser.

FOUR-PHASE ROTARY CONVERTERS

In Fig. 384, on page 334, is given a six-circuit single winding connected up as a four-phase rotary converter. Here we subdivide the winding into four sections per pair of poles—hence in this case $4 \times \frac{6}{2} = 12$ total sections, and four collector rings.

A two-circuit single winding connected up for a four-phase rotary converter is shown in Fig. 385, on page 335. It is subdivided into four sections; the rule for two-circuit windings used as four-phase rotary converters being that they shall have four sections per winding, independent of the number of poles. Hence, in the two-circuit triple winding shown in Fig. 386, page 336, the winding is subdivided into $4 \times 3 = 12$ sections. All these four-phase windings are characterised

Fig. 383. Switchboard Connection for Four Six-Phase Rotary Converters

by the winding per phase having a spread of 50 per cent. of the polar pitch. Sections 1 and 3, as also 2 and 4, are really in the same phase; in this sense such rotary converters are sometimes called two-phase,

Fig. 384. Winding for a Four-Phase Rotary Converter. Six-Circuit Single Winding, with 96 Conductors, Six Poles, Pitch 17 and 15

also occasionally quarter-phase. The distribution is also well shown in Fig. 387, on page 336.

There are also in four-phase, as in six-phase, alternative methods of connecting from secondary transformer terminals to collector rings. The diametrical connection is to be preferred, and for the same reasons as in the case of six-phase.

TWELVE-PHASE ROTARY CONVERTERS

Another interesting combination of apparatus permits of obtaining the advantages of a 12-phase rotary converter with only two static transformers. Each transformer has one primary and four equal secondary

Fig. 385. Winding for a Four-Phase Rotary Converter. Two-Circuit Single Winding, with 80 Conductors, Six Poles, Pitch 13

coils. The primaries are excited from two circuits in quadrature with each other, and there are twelve tappings into the armature per pair of poles in a multiple-circuit winding, and twelve tappings per winding, independently of the number of poles in two-circuit windings. The diagram, Fig. 388,

sets forth the underlying idea as applied to a bi-polar armature, the circle representing the winding, tapped at the points 1 to 12. Transformers I.

Fig. 386. Winding for a Four-Phase Rotary Converter. Two-Circuit Triple Winding, with 96 Conductors, Six Poles, Pitch 17

and II. have their primaries connected to circuits in quadrature with each other.

Fig. 387. Diagram Showing Distribution of Four-Phase Converter Windings

The 60 deg. chords represent the transformer secondaries 11-9, 3-5, 12-2, and 8-6, while the two diameters represent the series-connected

pairs of secondaries 1-7 and 10-4. Obviously the whole idea is based on two inscribed hexagons, the one standing at an angle of 90 deg. from the other. The four equally-wound secondary coils conform to the equality requirement between sides and radii.

By letting the transformer primaries have different windings, the well-known method of changing from three to quarter-phase permits of retaining the greater economy and other advantages of three-phase

Figs 388 and 389. Diagram Showing Converter Windings and Connections

transmission, the further advantages of only two transformers per rotary, and a greatly increased output per rotary. This system is sufficiently indicated in diagram, Fig. 389.

Design of a Six-Phase 400-Kilowatt, 25-Cycle, 600-Volt Rotary Converter

The first question to decide is the number of poles. The periodicity being given, the speed will be inversely as the number of poles. High

speed, and hence as few poles as are consistent with good constants, will generally lead to the best results for a given amount of material.

In considering the design of continuous-current generators, it was shown that the minimum permissible number of poles is determined by the limiting armature interference expressed in armature ampere turns per pole-piece, and by the reactance voltage per commutator segment, for which, in the very first steps of the design, the average voltage per commutator segment is taken. But in polyphase rotary converters, the superposed motor and generator currents leave a very small resultant current in the armature conductors, and in six-phase rotary converters this is so small that armature interference would not be a limiting consideration; in fact, as many turns per pole-piece will be used on the armature as other considerations, first among which is that of permissible peripheral speed, shall determine. As the motor and generator currents cancel each other to a very considerable extent, the conductors have only to be of relatively small cross-section in order to carry the resultant current; nevertheless, by the time each conductor is separately insulated, no extraordinarily large number can be arranged on a given periphery, and hence no excessive armature interference can result. With insufficiently uniform angular velocity per revolution of the generator supplying the rotary converter, this assertion could not safely be made. In such a case, the pulsations of the motor component of the rotary converter current, caused by the inability of the rotary converter to keep in perfect step with the generator, and by the consequent oscillatory motion superposed upon its uniform rate of revolution, greatly decrease the extent to which the motor and generator components neutralise one another, and hence there results a large and oscillatory armature interference. But where a satisfactory generating set is provided, armature interference in the rotary converter is not a limiting consideration.

The reactance voltage of the coil under commutation must be made as low as possible, as in rotary converters one has a kind of "forced commutation;" in other words, one does not make use of a magnetic field to reverse the current in the short-circuited coil. The brushes remain at the neutral point for all loads, since any alteration in their position from the neutral point would interfere with the proper superposition of the collector ring and commutator currents. Moreover, the collector ring current must continue independently of the commutation going on in the generator component of the resultant current. The process

is complicated, and for practical purposes it appears desirable to estimate a nominal reactance voltage based upon that which would be set up in the short-circuited turns by the reversal of the continuous-current component.

The diameter of the armature is chosen as large as is consistent with retaining the armature conductors in place, using a reasonable amount of

Fig. 390. Eight-Pole, Six-Phase, 400-Kilowatt, Rotary Converter

binding wire, figured with a conservative factor of safety. Upon this armature is generally placed as large a number of conductors as current and magnetic flux densities permit. For some ratings, however, a sufficiently low reactance voltage may be obtained without approaching extremes, either of armature diameter or of number of armature conductors. Another limitation often met with in rotary converter design is that of width of commutator segment at the commutator face. It is not desirable, on machines of several hundred kilowatts output, that the commutator

segments should be much less than $\frac{1}{4}$ in. in width. For a given diameter and number of poles, this at once restricts the number of commutator segments, and on the basis of one turn per commutator segment, also restricts the number of armature turns. For large rotary converters, two turns per segment would almost always lead to an undesirably high reactance voltage of the coil being commutated.

Fig. 391. Eight-Pole, Six-Phase, 400-Kilowatt Rotary Converter

The speed, expressed in revolutions per minute, is, in rotary converters, generally two or three times as high as for good continuous-current generators of the same output, and with an equal number of poles. Hence the frequency of commutation is also very high, often from 600 to 1000 complete cycles per second. Consequently, the inductance of the short-circuited coil must be correspondingly low, in order not to lead to high reactance voltage.

Rotary converters have been built with two commutators, in order

to escape the limitations referred to, of high peripheral speed and narrow commutator segments. This method is rather unsatisfactory, since the chief gain would be in connecting the two commutators in series; but by so doing, the entire current output has to pass through both, and the commutator losses are thereby doubled; while the cost of each commutator is so slightly reduced below that of one, as to render the construction expensive. A parallel connection of the two commutators at once sacrifices the chief gain, there only remaining the advantage of commutating half the current at each set of brushes; this, however, will not permit of very great reduction in the number of segments. Moreover, there is

Figs. 392 and 393. Details of Armature of Eight-Pole, Six-Phase, 400-Kilowatt, Rotary Converter

the further difficulty that unequal contact resistance at the brushes would bring about an unequal division of the load between the two windings.

In smaller rotary converters it sometimes becomes practicable to employ multiple windings (i.e., double, or occasionally, even triple). In such cases, the tendency to increase the frequency of commutation must not be overlooked. If, for instance, one uses a double winding the calculation of the time during which one armature coil is short-circuited must be made with due regard to the fact that the two terminals of this coil are connected, not to adjacent but to alternative segments, and the intervening segment is, so far as time of short circuit is concerned, to be considered as a wide insulating gap. Hence, for a given width of brush, the time of short circuit is considerably reduced; but as the number of paths through the armature from the positive to the negative brushes has

been doubled, the current to be reversed is half what it would be for the equivalent single winding. No general conclusions, however, should be drawn, and the reactance voltage must be estimated for each particular case, from the inductance of the coil, the frequency of its reversal under the brush, and the current to be reversed.

In a similar manner, if one were comparing the relative advantages of, say, four and six poles, one should keep distinctly in mind that while

Figs. 394 and 395. Saturation and Efficiency Curves of Six-Phase, 400-Kilowatt, Rotary Converter

the final effect on the frequency of reversal may not be great (because of the inverse change in speed), the inductance per turn (largely dependent upon the length of the armature), may be quite different; and that the current to be reversed is, in the case of the larger number of poles, less than in the machine with few poles. It is much safer to make rather complete comparative calculations, as the probability of overlooking the effect of a certain change on all the constants involved is very considerable.

As a general rule, it is preferable to arrange the conductors in many slots, thus having but few per slot. It is also necessary to keep the

width of slot opening as small as possible; it should not be much, if any, greater than the radial depth of the air-gap. This is important, because laminated pole-faces should not be used where there is the least possibility of "surging," due to inconstant angular velocity per revolution of the generating set. In cases where this "surging" is present to any extent with laminated pole-pieces—it will be diminished and sometimes prevented, if solid pole-faces of good conductivity, such as wrought-iron forgings of good quality, are used. The tendency of the superposed oscillations of the armature, and of the consequent variations in the magnetic field, is to set up induced currents in the pole-face, which produce reaction, and in turn tend to check these oscillations. The required result may be accomplished with minimum loss of energy, by suitably arranged copper circuits; but under favourable conditions the "surging" will be of small extent, and may be made negligible with but little dissipation of energy in the wrought-iron pole-faces. The magnet cores may be of cast steel; this, however, has not so high a specific conductivity as the best wrought iron, which latter should be employed for the pole-faces. The prevention of the surging will also be more complete the shorter the air-gap, but the high speeds of rotary converters generally render very small clearances undesirable.

Given the output, periodicity, and the voltage, trial calculations made with the foregoing various considerations in mind lead one very definitely to the choice of a certain number of poles, and the corresponding speed, which best combine good constants in operation with economy in material. At most, the choice will lie between two successive numbers of pairs of poles, in which case both designs should be thoroughly worked out, and the constants and costs compared.

For a six-phase rotary converter for 400 kilowatts output at 25 cycles, and 600 volts at commutator, the following design is worked out. The number of poles is eight, and the speed is 375 revolutions per minute, A good design with six poles and 500 revolutions per minute could have been obtained; and excellent practice in the application of these principles would be found in working out a corresponding specification for such a machine, then making a comparison of the costs of material.

The eight-pole design is illustrated in Figs. 390 to 393, on pages 339 to 341 inclusive, and in Figs. 394 and 395 are given the estimated saturation and efficiency curves.

Tabulated Calculation and Specification for a 400-Kilowatt Six-Phase Rotary Converter

	DESCRI	PTION			
Number of poles	•••		••••	•••	8
Kilowatt output					400
Speed, revolutions per minute				•••	375
Terminal volts, full load					600
Amperes		•••	•••		667
Frequency (cycles per second)	•••	•••	•••	•••	25
•	DIMEN	sions			
nature:					
Diameter over all	•••	•••	•••	• • •	58 in.
Length over conductors	•••	•••	•••	•••	29 ,,
Diameter of core at periphery	•••	•••	•••	•••	58 ,,
,, ,, bottom of s	lots	•••	•••	• • •	$55\frac{1}{2}$,,
n n ==	aminati	ions	•••	•••	40 "
Length of core over laminations	B	•••	•••	• • •	9 1 ,,
Number of ventilating ducts	•••	•••	•••	• • • •	4
Width of each ventilating duct	•••	•••	•••	•••	₹ in.
Effective length, magnetic iron	•••		•••	•••	7.2 ,,
,, of core ÷ total	length		•••	•••	0.76 "
Length round periphery	•••	•••	•••	•••	183 "
Pitch at surface		•••	•••	•••	22.8 ,,
Insulation between sheets	•••	•••	•••	•••	10 per cent.
Thickness of sheets		•••	•••	• • •	0.014 in.
Depth of slot	••	•••	•••	•••	1.25 "
Width of slot at root		•••	•••	•••	0.28 "
,, at surface		•••	•••	•••	0.28 ,,
Number of slots			•••	•••	30 0
Gross radial depth of lamination	n		•••		9 in.
Radial depth below teeth	• • •	•••	•••	•••	7.75 "
Width of teeth at root	•••				0.303,,
", " armature face			•••		0.330 ,,
Size of conductor	•••		•••	0	0.05 in. \times 0.45 in
Magnet core, length of pole-piec	е	•••	•••	9	9.5 in, along shaft
Length of pole-arc			•••		14 in.
Thickness of pole-piece at edge		•••	•••		$1\frac{1}{8}$,,

Pole-piece to consist of soft wrought-iron forging, so as to have maximum specific conductivity.

Pole-arc \div p	itch	•••	•••	•••	•••		61 per cent.
Length of co	re, radial	l	•••		•••	•••	14 in.
Diameter of	magnet c	ore		•••	•••	•••	12 "
Bore of field	•••		•••	•••			58 1 "
Clearance	•••	•••	•••	•••	•••		1,,

Spool:						
Length	•••	•••	•••			14 in.
" of sh	unt winding	g space				. 11¼,,
,, of ser	ries	,,	•••			23,,
Depth of sh	unt	,,		• • • •		2 "
" of se	ries	,,	• • •			2 "
" of wi	nding space					2 "
Yoke:						
Outside diar	meter					104 in. and 951 in.
T.,		•••	•••	•••	•••	00 :-
Thickness	•••	•••	•••	•••		9.5
Length alon		•••	•••	:		00
Tienken gion	g armature	•••	•••	•••	•••	20 ,,
Commutator:						
Diameter	•••	•••	•••	•••	·	52.5 in.
Number of a	_	•••	•••	•••	•••	600
17	· ·	slot	•••	• • •		2
Width of se	gments at s	urface	•••	• • •	•••	0.23 in.
"	"at r		•••	•••	•••	0.21 ,,
Total depth	-		•••	• • •	•••	2 ,,
_	of segmen		•••	•••	•••	11 "
Available le	-		•••	•••	•••	9 "
Width of in	sulation be	tween se	gments	•••	•••	0.045 ,,
Collector:						
Diameter	•••				•••	15 in.
Number of	rings				•••	6
Width of ri	•	•••	•••		•••	2 in.
	een rings	•••	•••			$\frac{7}{8}$,
Length over	_				•••	22 ,,
Ü						,
Brushes:					Continuous Current.	Alternating Current.
Number of	sets	•••	•••	• • •	8	6
,,	ne set	• • •	•••	•••	4	3
Radial leng		•••	•••	• • •	$2\frac{1}{2}$ in.	
Width of br		• • •	•••	٠	$1\frac{1}{2}$,,	1 in.
Thickness of		•••	•••	•••	0.63 "	1/2 "
Dimensions			one brush		$1.5 \text{ in.} \times 0.75 \text{ i}$	
Area of con		rush	• • •	•••	1.13 square inch	_
Type of bru	sh	•••	•••	•••	Radial barbon	Copper
Insulation:						
On core in s	slots		•••		Oil-tr	eated cardboard about .012 in. thick
Of conducto	or	•••	•••	•••	V 8	arnished linen tape 2 y

ELECTRICAL

Arm	ature:							
	Terminal	volts full lo	oad	•••		•		600
	Total inter	rnal volts	•••	•••			• • •	614
	Number o	f circuits	•••	•••		•••		8
	Style of w	inding	•••	•••			M	ultiple circuit drum
	Times re-e	ntrant	•••					1
	Total para	llel paths t	through	armature	•••			8
	Conductor	s in series	between	brushes	•••	•••	•••	150
	Type cons	truction of	winding	y	•••	•••	• • •	Bar
	Number of	f face cond	uctors	•••	•••		•••	1200
	,,	slots		•••	•••	• • •	• • •	300
	"	conductor	s per slo	t	•••	•••	•••	4
	Arrangem	ent of cond	luctors i	n slot	•••	•••		2×2
	Number in	n parallel n	naking v	p one con	ductor	•••		1
	Mean leng	th of one s	ırmature	turn	• • •	•••		78 in.
	Total num	ber of turn	18	•••	•••	• • •	• • • •	600
	Turns in s	eries betwe	een brus	hes	•••	•••	•••	75
	Length of	conductor	between	brushes	•••		•••	5850 in.
	Cross-secti	ion, one co	nductor	•••	•••	••	(0.0225 square inch
	"	eight c	onducto	rs in paral	llel			0.18 ,,
		inch cube			•••	•••	• • • •	0.0000068
	Per cent.	increase in	resistan	ce 20 deg.	Cent. to	60 deg. C	ent.	16
	Resistance	e between l	bru s hes,	20 deg. C	\mathbf{ent}	•••	•••	0.022 ohm.
	,,	,,	"	60 deg. O	ent	•••		0.0256

It has already been seen that in six-phase rotaries, 1.96 times the output may be taken from the commutator for the same \dot{C}^2R loss in the armature conductors as in a continuous-current generator with the same winding. Hence, for a given load, the resultant current in the armature conductors is a little over half that delivered from the commutator. In the present machine, the full load output is 667 amperes. Allowing for efficiency, and not quite unity power factor, we may take the current in the armature conductors at 667 \times 0.55 = 370 amperes.

C R drop in ar	mature at	60 deg. Cent.			•••	9.5 volts
,, se:	ries coils				•••	1 "
" br	ush contac	ct surface	•••		•••	2.2 ,,
,, no	t allowed	for in above	•••	•••	1.	3 in. cables and connections
Amperes per so	quare inch,	, conductor	•••	•••		2050 figured on esultant current
,,	**	brush-bearing	surface	•••	37 1	figured on current output from commutator.
,,	,,	shunt winding	8		•••	980
"	,,	series winding	3	•••	•••	1000

All but the armature current density and drop results are derived later in the specification, but are brought together here for reference.

SPACE FACTOR

In transformers, it is the aim to secure as high a ratio as possible of the total section of copper to the space in which it is wound, for a given specified insulation resistance. The same ratio, termed "space factor," is of service in proportioning the conductors and insulation to the armature slots.

```
Sectional area of slot = 1.25 \times 0.28 = 0.35 square inches.

,, copper in slot = 4 \times 0.0225 = 0.09 square inches.

"Space factor" = 0.09 \div 0.35 = 0.26.
```

i.e., 26 per cent. of the space is occupied by copper, and 74 per cent. by the necessary insulation.

Commutation:

```
Average volts between commutator segments ... ... 8 Armature turns per pole ... ... ... ... 75 Resultant current per conductor = \frac{667 \times 0.55}{8} = 46 amperes. Resultant armature strength per pole = 46 \times 75 = 3450 ampere turns.
```

As the brushes remain at the mechanical neutral point, these exert only a distorting tendency, and do not have any demagnetising effect so long as the power factor of the alternating-current component is unity. It is also to be noted that, while the resultant armature current is 46 amperes, the 3450 corresponding ampere turns are by no means fully effective as magnetomotive force, being positive and negative in successive groups—sometimes even in successive turns—opposite one pole-piece. (See Figs. 368 and 369, pages 314 and 315.)

DETERMINATION OF REACTANCE VOLTAGE OF COIL UNDER COMMUTATION

Diameter of commutator	•••	•••		52.5 in.
Circumference of commutator	•••	•••		165 ,,
Revolutions per second	•••	•••		6.25
Peripheral speed, inches per second	•••	•••		1030
Width of brush surface, across segmen	nts	•••		0.75 in.
Time of one complete reversal	•••			0.00073 secs.
Frequency of commutation, cycles per	second			685
Coils short-circuited together per brus	h	•••	•••	3
Turns per coil	•••	•••		1

Turns short-circuited together per	3			
Conductors per group commutate	d together	•••		6
Flux per ampere turn per i	inch gross	length	armature	
lamination		• • • • • • • • • • • • • • • • • • • •		20
Flux through six turns carrying of	one ampere	•••		1140
Inductance one coil of one turn		. • • •		0.0000114 henrys
Reactance of one coil of one turn	ı			0.049 ohm
Current in one coil (continuous-cu	onent)		83.5 amperes	
Reactance voltage, one coil		4.1 volts		

PROPORTIONING THE BINDING WIRE

This is an important consideration in machines which must run at the high speeds customary with rotary converters. Cases might easily occur where an otherwise good machine might be designed; but on calculating the binding wire, it would be found to require a larger portion of the total peripheral surface than could properly be devoted to it.

```
Length of conductor between brushes ... ... ... = 5850 in. Cross-section of conductor between brushes ... ... = 0.18 square inch Weight of armsture copper = 5850 \times 0.18 \times 0.32 = 340 lb.
```

Every pound of material at the periphery is subject to a centrifugal force of 0.0000142 D N² pounds, where

```
D = dismeter in inches.N = revolutions per minute.
```

hence, in this case, to a force of

```
0.0000142 \times 58 \times 375^2 = 115 \text{ lb.}
```

The iron laminations are dovetailed into the spider, so the binding wire need only be proportioned to retain the weight of the copper wire in place.

```
Total centrifugal force = 340 \times 115 = 39,000 lb.

Force per square inch of armature surface = \frac{39,000}{29 \times 58 \times \pi} = 7.4 lb.

Total projected area = 29 \times 58 = 1680 square inches.

Total stress on binding wire = 1680 \times 7.4 = 12,500 lb., or 6250 lb. per side.
```

Using phosphor-bronze binding wire, and estimating on the basis of a tensile strength of 100,000 lb. per square inch, with a factor of safety of 10, we require

$$\frac{6250 \times 10}{100,000} = 0.63 \text{ square inch.}$$

Taking No. 12 Stubbs wire gauge with a diameter of 0.109 in, and cross-section of 0.00933 square inch, 72 of these would be required. These should be arranged in nine bands of eight turns each. Three of these bands should be over the laminated body of the armature, and three over each set of end connections. (See Fig. 392 on page 341.)

MAGNETIC CIRCUIT CALCULATIONS

(614 internal volts) 8.20 Coefficient of magnetic leakage 1.15 Megalines in one pole at full load 9.5 Armature:	Megalines from one p	oole at f	ull load s	nd 600	terminal	volts	
Megalines in one pole at full load 9.5 Armature: - 200 Core section = 7.75 × 7.2 × 2 = 112 square inches Length, magnetic 7 in. Density (kilolines) 73 Ampere turns per inch 20 Ampere turns 140 Testh: Number transmitting flux per pole piece 27 Section at face 64 square inches " roots 60 " Mean section 62 " Length 1.25 in. Apparent density (kilolines) 132 Width of tooth "a" (mean) 0.32 " slot "b" 0.28 Ratio "a" + "b" 1.14 Corrected density 127 Ampere turns per inch 1100 Ampere turns 137 Gap: 133 square inches Length, one side 0.25 in. Density at pole-face 133 square inches Length 14 in. Density (kilolines) 84 Ampere turns per inch 50 Ampere turns 700 Yoke: 124 square inches <t< th=""><th>(614 internal volt</th><th>s)</th><th></th><th></th><th>•••</th><th></th><th>8.20</th></t<>	(614 internal volt	s)			•••		8.20
Armature : Core section = 7.75 × 7.2 × 2	Coefficient of magnetic	leakage		•••			1.15
Core section = 7.75 × 7.2 × 2 = 112 square inches Length, magnetic 7 in. Density (kilolines)	Megalines in one pole	at full le	ad	•••		•••	9.5
Length, magnetic 7 in. Density (kilolines) 73 Ampere turns per inch 20 Ampere turns. 140 Test. Number transmitting flux per pole piece 27 Section at face 64 square inches , roots 60 Mean section 62 Length 1.25 in. Apparent density (kilolines) 132 Width of tooth "a" (mean) 0.32 , slot "b" 0.28 Ratio "a" + "b" 1.14 Corrected density 127 Ampere turns per inch 1100 Ampere turns 133 square inches Length, one side 0.25 in. Density at pole-face (kilolines) 61 Ampere turns (0.313 × 61,000 × 0.25) 4800 Magnet Core: Section Section 113 square inches Length 14 in. Density (kilolines) 84 Ampere turns per inch 50 Ampere turns. 700 Yoke: Section - 2 × 62 124 square inches Length (per p	Armature:						
Length, magnetic 7 in. Density (kilolines) 73 Ampere turns per inch 20 Ampere turns. 140 Test. Number transmitting flux per pole piece 27 Section at face 64 square inches , roots 60 Mean section 62 Length 1.25 in. Apparent density (kilolines) 132 Width of tooth "a" (mean) 0.32 , slot "b" 0.28 Ratio "a" + "b" 1.14 Corrected density 127 Ampere turns per inch 1100 Ampere turns 133 square inches Length, one side 0.25 in. Density at pole-face (kilolines) 61 Ampere turns (0.313 × 61,000 × 0.25) 4800 Magnet Core: Section Section 113 square inches Length 14 in. Density (kilolines) 84 Ampere turns per inch 50 Ampere turns. 700 Yoke: Section - 2 × 62 124 square inches Length (per p	Core section = $7.75 \times$	7.2 × 2	·				= 112 square inches
Density (kilolines) 73 Ampere turns per inch 20 Ampere turns 140 Teeth: Number transmitting flux per pole piece 27 Section at face 64 square inches , roots 60 , Mean section 62 , Length 1.25 in. Apparent density (kilolines) 132 Width of tooth "a" (mean) 0.32 , slot "b" 0.28 Ratio "a" ÷ "b" 1.14 Corrected density 127 Ampere turns per inch 1100 Ampere turns. 133 square inches Length, one side 0.25 in. Density at pole-face (kilolines) 61 Ampere turns (0.313 × 61,000 × 0.25) 4800 Magnet Core: Section 113 square inches Length 14 in. Density (kilolines) 84 Ampere turns. 700 Yoke: 124 square inches Section - 2 × 62 124 square inches Length (per pole) 17 in. Donsity (kilolines) 77 <td>Length, magnetic</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>. -.</td>	Length, magnetic						. - .
Ampere turns per inch 20 Ampere turns 140 Teeth:	• •				•••		73
Ampere turns 140 Teeth: 27 Section at face 64 square inches , roots 60 , Mean section 62 , Length 1.25 in. Apparent density (kilolines) 132 Width of tooth "a" (mean) 0.32 , slot "b" 0.28 Ratio "a" + "b" 1.14 Corrected density 127 Ampere turns per inch 1370 Gap: 133 square inches Length, one side 0.25 in. Density at pole-face (kilolines) 61 Ampere turns (0.313 × 61,000 × 0.25) 4800 Magnet Core: Section Section 113 square inches Length 14 in. Density (kilolines) 84 Ampere turns per inch 50 Ampere turns. 700 Yoke: Section - 2 × 62 124 square inches Length (per pole) 17 in. Donsity (kilolines) 77		1			•••		20
Teeth: Number transmitting flux per pole piece 27 Section at face 64 square inches , roots 60 , Mean section 62 , Length 1.25 in. Apparent density (kilolines) 132 Width of tooth "a" (mean) 0.32 , slot "b" 0.28 Ratio "a" ÷ "b" 1.14 Corrected density 127 Ampere turns per inch 1100 Ampere turns. 1370 Gap: 133 square inches Length, one side 0.25 in. Density at pole-face (kilolines) 61 Ampere turns (0.313 × 61,000 × 0.25) 4800 Magnet Core: Section Section 113 square inches Length 14 in. Density (kilolines) 84 Ampere turns per inch 50 Ampere turns. 700 Yoke: Section - 2 × 62 124 square inches Length (per pole) 17 in. Donsity (kilolines) 77					•••		140
Number transmitting flux per pole piece 27 Section at face 64 square inches , roots 60 ,, Mean section 62 ,, Length 1.25 in. Apparent density (kilolines) 132 Width of tooth "a" (mean) 0.32 , slot "b" 0.28 Ratio "a" ÷ "b" 1.14 Corrected density 127 Ampere turns per inch 1100 Ampere turns 1370 Gap: 133 square inches Length, one side 0.25 in. Density at pole-face (kilolines) 61 Ampere turns (0.313 × 61,000 × 0.25) 4800 Magnet Core: 113 square inches Length Ampere turns per inch Ampere turns							
Section at face 64 square inches , roots 60 ,, Mean section 62 ,, Length 1.25 in. Apparent density (kilolines) 132 Width of tooth "a" (mean) 0.32 , slot "b" 0.28 Ratio "a" + "b" 1.14 Corrected density 127 Ampere turns per inch 1100 Ampere turns 1370 Gap: 133 square inches Length, one side 0.25 in. Density at pole-face (kilolines) 61 Ampere turns (0.313 × 61,000 × 0.25) 4800 Magnet Core: 113 square inches Length Section Magnet Core: <t< td=""><td></td><td>Any ner</td><td>nole niece</td><td></td><td></td><td></td><td>27</td></t<>		Any ner	nole niece				27
,, roots							
Mean section 62 " Length 1.25 in. Apparent density (kilolines) 132 Width of tooth "a" (mean) 0.32 " slot "b" 0.28 Ratio "a" ÷ "b" 1.14 Corrected density 127 Ampere turns per inch 1100 Ampere turns 1370 Gap: Section at pole-face Length, one side 0.25 in. 61 Ampere turns (0.313 × 61,000 × 0.25) 4800 Magnet Core: 113 square inches Length Mapere turns (0.313 × 61,000 × 0.25)							60
Length 1.25 in. Apparent density (kilolines) 132 Width of tooth "a" (mean) 0.32 " slot "b" 0.28 Ratio "a" ÷ "b" 1.14 Corrected density 127 Ampere turns per inch 1100 Ampere turns 1370 Gap: 133 square inches Length, one side 0.25 in. Density at pole-face (kilolines) 61 Ampere turns (0.313 × 61,000 × 0.25) 4800 Magnet Core: Section Section 113 square inches Length 14 in. Density (kilolines) 84 Ampere turns per inch 50 Ampere turns 700 Yoke: Section - 2 × 62 124 square inches Length (per pole) 17 in. Density (kilolines) 77							60
Apparent density (kilolines) 132 Width of tooth "a" (mean) 0.32 ", alot "b" 0.28 Ratio "a" ÷ "b" 1.14 Corrected density 127 Ampere turns per inch 1100 Ampere turns. 1370 Gap: Section at pole-face 133 square inches Length, one side 0.25 in. Density at pole-face (kilolines) 61 Ampere turns (0.313 × 61,000 × 0.25) 4800 Magnet Core: Section 113 square inches Length 14 in. Density (kilolines) 84 Ampere turns per inch 50 Ampere turns. 700 Yoke: Section - 2 × 62 124 square inches Length (per pole) 17 in. Density (kilolines) 77							
Width of tooth "a" (mean) 0.32 " slot "b" 0.28 Ratio "a" ÷ "b" 1.14 Corrected density 127 Ampere turns per inch 1100 Ampere turns 1370 Gap: 133 square inches Length, one side 0.25 in. Density at pole-face (kilolines) 61 Ampere turns (0.313 × 61,000 × 0.25) 4800 Magnet Core: 113 square inches Length 14 in, Density (kilolines) 84 Ampere turns per inch 50 Ampere turns 700 Yoke: Section - 2 × 62 124 square inches Length (per pole) 17 in. Density (kilolines) 77	•						
Ratio "a" ÷ "b" 1.14 Corrected density 127 Ampere turns per inch 1100 Ampere turns 1370 Gap: 133 square inches Section at pole-face 133 square inches Length, one side 0.25 in. Density at pole-face (kilolines) 61 Ampere turns (0.313 × 61,000 × 0.25) 4800 Magnet Core: Section Section 113 square inches Length 14 in. Density (kilolines) 84 Ampere turns per inch 50 Ampere turns. 700 Yoke: Section - 2 × 62 124 square inches Length (per pole) 17 in. Donsity (kilolines) 77		•					
Ratio "a" ÷ "b" 1.14 Corrected density 127 Ampere turns per inch 1100 Ampere turns 1370 Gap:	1-1 (17 2)	•					
Corrected density 127 Ampere turns per inch 1100 Ampere turns 1370 Gap:	,,						
Ampere turns per inch 1100 Ampere turns 1370 Gap:							
Ampere turns 1370 Gap:							
Gap: Section at pole-face 133 square inches Length, one side 0.25 in. 0.25 in. Density at pole-face (kilolines) 61 Ampere turns (0.313 × 61,000 × 0.25) 4800 Magnet Core: Section 113 square inches Length 14 in. Density (kilolines) 84 Ampere turns per inch 50 Ampere turns. 700 Yoke: 124 square inches Length (per pole) 17 in. Density (kilolines) 77	•						
Section at pole-face	-	•••	•••	•••	•••	•••	1070
Length, one side 0.25 in. Density at pole-face (kilolines) 61 Ampere turns (0.313 × 61,000 × 0.25) 4800 Magnet Core: Section Length Density (kilolines) Ampere turns per inch Ampere turns Section - 2 × 62 Length (per pole) Density (kilolines)	-						100 ' 1
Density at pole-face (kilolines) 61 Ampere turns (0.313 × 61,000 × 0.25) 4800 Magnet Core:	_	• • •	• • •	•••	• • •		_ • • · · · · · · · · · · · · · · · · ·
Ampere turns (0.313 × 61,000 × 0.25)				•••	•••	•••	
Magnet Core: Section 113 square inches Length 14 in. Density (kilolines) 84 Ampere turns per inch 700 Yoke:				•••	•••	•••	
Section 113 square inches Length 14 in. Density (kilolines) 50 Ampere turns 700 Yoke:	Ampere turns (0.313	× 61,000	× 0.25)	•••	•••	•••	4800
Length 14 in. Density (kilolines) 84 Ampere turns per inch 50 Ampere turns 700 Yoke: Section - 2 × 62 124 square inches Length (per pole) 17 in. Density (kilolines)	Magnet Core:						
Density (kilolines) 84 Ampere turns per inch 50 Ampere turns 700 Yoke: 124 square inches Length (per pole) 17 in. Density (kilolines)	Section		•••	•••	•••	•••	113 square inches
Ampere turns per inch 50 Ampere turns 700 Yoke: 124 square inches Length (per pole) 17 in. Density (kilolines)	${\bf Length} \qquad \dots$		•••	•••	• • •		14 in.
Ampere turns	Density (kilolines)			•••	•••		84
Yoke: Section - 2 × 62	Ampere turns per incl	ı	•••		•••		50
Section - 2 × 62 124 square inches Length (per pole) 17 in. Density (kilolines)	Ampere turns			•••	•••	•••	700
Section - 2 × 62 124 square inches Length (per pole) 17 in. Density (kilolines)	-						
Length (per pole) 17 in. Density (kilolines) 77					•••		124 square inches
Density (kilolines) 77							•
Donately (Milosimos)			***				1
	• • • • • • • • • • • • • • • • • • • •						640

Rotary Converters

SUMMARY OF AMPERE TURNS

Armature core			•••	• • •		140
,, teeth	•••	•••				1370
Gap		•••	•••	•••	•••	4800
Magnet core		•••		•••		700
Yoke	•••			•••		640
		Total pe	r spool			7650
ent:		Spool Wil	ndings			
Mean length, one tu	ırn	•••		•••		3.66 ft.
Ampere turns per sl		ol, full load				7,650
. · ·	-	••••		•••		28,000
Radiating surface, o	ne field s	pool			7	00 square inches
Watts per square in	ch to be	allowed at 2	20 deg. C	ent.		0.40
" spool at 2						280
,, ,, shu	nt windir	ng at 20 deg	. Cent.			220
,, ,, serie	9 8 ,,	"	,,			60
,, ,, shur	nt windin	g at 60 deg			•••	255
Shunt copper per sp	ool		•••			110
Volts at terminals o	f spool at	t 20 deg. Ce	nt.			56
Amperes per shunt	spool	•				3.92
Turns "	-,,	•••			• • •	1950
Total length of shun		tor				7150 ft.
Resistance per spool	at 20 de	g. Cent.				14.4 ohms
Pounds per 1000 ft.						15.4 lb.
Size of conductor		•••				No. 15 S.W.G.
Dimensions bare			• • •		0.	072 in. in diam.
Dimensions double of	otton co	vered			0.	082 ,, ,,
Cross-section	•••			•••	0.	00407 sq. inches
Current density, am	peres per	square inch	١			980
Available winding s		-	• • •	•••	•••	10 in.
Number of layers	• • • • • • • • • • • • • • • • • • • •	•••		•••	•••	17
T						115

Rotary converters do not run so well with much lag or lead, and the superposition of the motor and generator currents is far less perfect; but it is often found convenient to use a series coil of some 25 per cent. of the strength of the shunt coil, and to have, on the side of the machine, a switch, which when completely open sends all the main current, except a very small percentage, through the series winding, the small balance passing through a diverter rheostat. In the next position, about half of the current is diverted through the rheostat, the series coil being much weaker; and in the final position, the series coil is completely short-circuited, all the current being diverted from it. This enables the series

winding to be employed to the extent found desirable, considered with relation to the high-tension transmission line, as well as to the low-tension continuous-current system, on which latter system it is desirable to have the terminal voltage increase with the load.

By adjusting the shunt excitation so that the current lags slightly at no load, and by having sufficient series excitation, the total field strength increases as the load comes on, and thus controls the phase of the motor current. At some intermediate load the motor current will be exactly in phase with the electromotive force, and at higher loads will slightly lead, thus also maintaining rather higher commutator voltage.

Series:

2000
667
167
500
4
y 0.05 in.
5
uare inch
1000
66 ft.
00 in.
019 ohm
475
60
70
225 lb.

CALCULATIONS OF LOSSES AND HEATING

Armature:

Resistance between brushes				•••	0.0256 ohm at
					60 deg. Cent.
C ² R loss at 60 deg. Cent.	•••		•••	3500	watts figured from
-				re	sultant current
Frequency, cycles per second =	C =	•••			25
Weight of armature teeth	•••	•••		• • •	245 lb.
,, ,, core	•••	•••	•••		2310 ,,
Total weight armature laminati	ons =				2555 "
Apparent flux density in teeth	(kilolines)			•••	132
Flux density in core (kilolines)	– D =	•••	•••	•••	73
$C.D. \div 1000 =$	•••		•••	•••	1.83
K =	•••	•••	•••	•••	1.65
$\frac{\text{K.C.D.}}{1000} = \text{watts core loss per l}$	b. =	•••			3.02
Total core loss = 3.02×2555	=	•••			7700 watts

Total armature loss =			•••	•••	11,200	watts
Armature diameter	•••	•••	•••		58	8 in.
,, length	•••	•••	•••		34	4 ,,
Peripheral radiating surface	•••	•••	•••		5300 squ	are inches
,, speed, feet per min	ute			•••	57	700
Watts per square inch in radis	ting surf	ace			2	.1
Assumed rise of temperature	e per wa	tt per s	quare in	eh by		
thermometer, after 10 ho	ours' run	•••	•••	• • • •	20 deg	g. Cent.
Total rise estimated on above	basis	•••	•••	•••	42	"
Assumed rise of temperature	per wat	t per squ	uare inch	by		
resistance, after 10 hours'	run	•••	•••	•••	30	"
Total rise estimated on above	basis	•••	•••	•••	63	,,

It will be observed that the total weight of iron in armature, i.e., 2555 lb., is multiplied by the "watts core loss per pound" to obtain total core loss. This includes loss in teeth, as the curve (see Fig. 117, page 113) from which the constant was taken, is so proportioned as to allow for core and tooth losses for this type of construction and range of magnetic densities.

COMMUTATOR	T.neepe	AWD	HPATTEG
COMMUTATOR	LIUBBES	AND	LIKATING

Area of all positive br	ushe s	•••	• • •	•••		18 square inches
Amperes per square in	ch contac	t surface				37
Ohms per square inch	contact s	urface, as	sumed			0.03
Brush resistance, posit	ive and n	egative	•••			0.0033
Volts drop at brush co				•••		2.2
O'R loss						1500 watts
Brush pressure						1.25 lb. per sq. in.
" " total	•••		•••	•••		45 lb.
Coefficient of friction		•••		•••		0.3
Peripheral speed	•••	•••		•••		5150 ft. per min.
Brush friction					7	0,000 ftlb. per min.
			•••	•••		1600 watts
Stray watts lost in cor				•••		400
Total ,,		, assumou				3500
Diameter of commutat))	•••	•••	•••		52.5 in.
Tanath	,OI	•••	•••	•••		•
•		•••	•••	•••	•••	- "
Radiating surface			• • •	•••		1500 square inches
Watts per square inch		-		• • •	· · · ·	2.3
Assumed rise of temp		per watt	per squ	are inch	after	
10 hours' run	•••	•••	• • •	•••	• • •	15 deg. Cent.
Total rise estimated or	above b	asis	•••	•••	• • • •	35 "
C	OLLECTOR	LOSSES A	AND HE	ATING		•
Total contact area of	all brushe	8		•••		18 square inches
Amperes per square in	ch contac	t surface				110
Ohms per square inch			•••	•••		0.003

Total resistance of brushes per	ring		•••		0.00	01
Volts drop at brush contacts	•••	•••	•••	•••	0.03	34
C ² R loss at brush contacts per r	_	•••	•••	•••	110 v	watts
	x rings	•••	•••	•••	660	"
Brush pressure, pounds per squa	ure inch	•••	•••	•••	1.	.0
", ", total pounds	•••	•••	•••	•••	18	8
Coefficient of friction	•••	•••	•••	•••	0.3	3
Peripheral speed, feet per minut	æ	•••	•••	•••	147	0
Brush friction, foot-pounds per n	ninute	• • •	•••	•••	800	0
" " watts lost	•••	•••	•••	•••	18	U
Total watts lost in collector	•••	•••	•••	•••	840	0
Diameter collector	•••	•••	•••		15	in.
Effective length of radiating sur	face		•••		12	"
Radiating surface	•••	•••	4		570 squar	re inches
Watts per square inch radiating	surface	•••	•••	• • •	1	5
Assumed rise of temperature p	er watt p	er s	quare inch a	fter		
10 hours' run	•••		•••	•••	2 0 deg	. Cent.
Total rise estimated on above be	sis		•••		30	"
Spoot. T	INA BERRO	·нъ	AMING			
	MODEO ANI	, 112	ATING			
Spool:						
C ² R loss at 60 deg. Cent. per sh		•••	•••	•••	255 v	watts
" per ser	ies coil	•••	•••	•••	70	"
Total watts lost per spool	•••	•••	•••	• • •	325	"
Length of winding space, total	•••	•••	•••	•••		in.
Circumference of spool	•••	•••	•••	•••	50	
Peripheral radiating surface per	-	•••	•••	• • •	700 squar	
Watts per square inch radiating		•••		•••	.40	65
Assumed rise of temperature	-	per	square inch	by		
thermometer, after 10 hour		•••	•••	•••	_	. Cent.
Total rise estimated on above ba		•••		•••	37	,,
Assumed rise of temperature		per	square inch	by		
resistance, after 10 hours' r		•••	•••	• • •	120	"
Total rise estimated on above ba	sis	•••	•••	• • •	56	,,
	Efficienc	Y.				
Output, full-load watts		_			400	,000
α · ,		· • •	•••	•••		,700
Core loss Armature C^2R loss at 60 deg. Co	nt.	•••	•••	•••		,500
~	J11 U.	•••	•••	•••		,500
Commutator losses Collector losses	•••	•••	•••	•••	· ·	840
	•••	•••	•••	•••	ŋ	,040
Shunt spools losses	•••	•••	•••	•••	4	300
", rheostat losses …	•••	•••	•••	•••		560
Series spools losses	•••	•••	•••	•••		190
" diverter losses …	•••	•••	•••	•••	ถ	
Friction, bearings, and windage	•••	•••	•••	•••		,000
Input, total	•••	•••	•••	•••		,630
Commercial efficiency, full load	•••	•••	•••	•••	95 per	
					2	Z

			MATERIA	LS				
Armature cor	В	•••		•••	•••	•••	Sheet st	
", вріс		•••		•••	•••	• • •	Cast ire	m
" con	ductors	•••	•••	•••	•••		Coppe	r
Commutator s	egments		•••	•••	•••		,,	
,, le	eads	•••	•••	•••			Rheota	n
,, 8	piders				•••		Cast ire	n
Pole-piece	•••			•••			Wrought-iron	forgin
Yoke	•••	•••					Cast ste	el
Magnet core	•••	•••		•••			,,	
Brushes	•••	•••		•••			Carbon and	Copper
Brush-holder							Brass	
" У	oke				•••		Gun-met	tal
Binding wire					• • •		Phosphor b	ronze
Insulation, co			•				Mica	
	mature			•••	•••		Varnished lin	en ten
,, &r		•••	•••	•••	•••	•••	. withing III	om b
			WEIGHT	18				
rmature:							Lb.	
	•••	•••	•••	•••	•••	•••	2,550	
Copper	•••	•••	•••	•••	•••	•••	340	
Spider	•••	•••	•••	•••	• • •	•••	1,550	
Shaft	•••	•••	•••	•••	•••	•••	1,230	
Flanges	•••	•••	•••	•••	•••	•••	700	
ommutator:								
Segments	•••		• • •	•••	•••		1,000	
Mica	•••		•••	•••			80	
Spider		•••		•••			1,000	
Press rings	•••		•••	•••	•••		200	
Other parts	•••	•••	• • •	•••			300	
Collector, com	plete	•••	•••	•••	•••		700	
Armature, con	nmutator,	collecto	r, and sha	ft comple	te	•••		9,650
lagnet :								
Cores	• • •	•••	•••		•••		3,550	
Pole-pieces	•••						400	
Yoke	•••			•••	•••		5,000	
ield:								
Shunt coils		•••					880	
Series ,,		•••	•••	•••	•••		225	
Total copper		•••	•••				1,105	
Spools comple		•••	•••	•••	•••	•••	1,800	
Bedplate, bear		•••	•••	•••	•••	•••	6,300	
Brush rigging	-		•••	•••	•••	•••		
		•••	•••	•••	•••	•••	450	
Other parts	•••	•••	•••	•••	•••	•••	1,000	
Magnet and f	ield	•••	•••	•••	•••			20,710
	Co	mplete w	eight rote	ry conve	rter	•••	-	30,360

TABULATED CALCULATIONS AND SPECIFICATIONS FOR A 900-KILOWATT THREE-PHASE ROTARY CONVERTER

The machine is illustrated in Figs. 396 to 398, pages 357 and 358; curves of its performance are given in Figs. 399 to 402 on page 359.

	DESCRIP	TION			
Number of poles			•••		12
Kilowatt output	•••	•••	•••	•••	900
Speed, revolutions per minute			•••	•••	250
Terminal volts, full load	•••				500
", ", no load					500
Amperes, output					1800
Frequency, cycles per second	•••	•••		•••	25
	Dimensi	ONS			
mature:					
Diameter over all	•••	•••	•••		84 in.
Length over conductors	•••	•••	•••	•••	27 "
Diameter of core at periphery	•••	•••	•••	•••	84 "
" bottom of	slots	•••	•••	•••	81 <u>1</u> "
))))))))	laminatio	ns			62 ,,
Length of core over lamination	ns				12.5 "
Number of ventilating ducts	•••		•••	•••	3
Width, each	•••			•••	$\frac{1}{2}$,,
Effective length, magnetic iron				•••	9.9 ,,
,, ,, of core ÷ to		•••		•••	0.79
Length round periphery			•••		264 in.
Pitch at surface	•••				22 ,,
Insulation between sheets	•••	•••	•••	•••	10 per cent.
Thickness of sheets	•••	•••	•••		0.016 in.
Donal of stat	•••	•••	•••	•••	1.95
TTT: 1.1 A 1	•••	•••	•••	•••	,,
-	•••	•••	•••	•••	0.44 ,,
,, ,, surface	•••	•••	•••	•••	0.44 ,,
Number of slots	•••	•••	•••.	•••	288
Gross radial depth of laminati	ons	•••	•••	•••	11 in.
Radial depth below teeth	•••	•••	•••		9.75 ,,
Width of tooth at root	•••	•••	•••	•••	0.449 "
", ", armature fa	ке	•••	•••	•••	0.475 ,,
Size of conductor	•••	•••	•••	0.	125 in. by 0.400 in
ignet Core:					
Length of pole-piece along sha	.ft	•••	•••	•••	12 in.
" pole-arc, average	•••	•••	•••	•••	$15\frac{7}{8}$,
Pole-piece and core consists	of sheet-i	ron pun	chings 0.0	04 in.	
thick, japanned on one	side, and	built up	to a de	oth of	
12 in. The edges of po		-	_	-	
by 5 in., and a copper					
13 in. under pole-tips,	_	_	•	_	
prevent "surging."					

Area of contact (one b Type of brush	rasn)	•••	1	.08 square in Radial carb		1.35 square inch Copper
Dimensions of bearing	-	one brus				1.25 in. by 1.1 in.
	enrfeas /	nne herre	 .h\ 1 '		7 in	,,,
Thickness of brush	•••	•••	•••	1 ¼ ,, 3 ,,		1½ in. 6
Radial length of brush Width of brush	1	•••	•••			11 :
		•••	•••	0 2 in.		O
Number of sets Number in one set	• • •	•••	•••	12 8		ა 8
Brushes: Number of sets				Current.		Current.
n 1				Continuous		Alternating
Length over all	•••		•••	•••		18½ ,,
" between rings	•••		•••			$1\frac{1}{2}$ "
Width of each ring	•••	•••		•••		3½ in.
Number of rings	•••	2		•••	•••	3
Diameter	•••			•••		24 in.
Collector:						
Width of insulation be	etween seg	ments	•••	•••		0.05 "
Available length of se	•	•••	•••	•••	•••	14 ,,
" length of segmen		•••	•••	•••	•••	$17\frac{1}{2}$,,
Total depth of segmen		•••	•••	•••	•••	$2\frac{1}{2}$ in.
"	root	•••	•••	•••	•••	0.215
••	surface	•••	•••	•••	•••	0.24
	r slot	•••	• • •	•••	•••	2
Number of segments	•••	•••	• • •	•••	•••	576
Diameter	•••	•••	• • •	•••	•••	54 in.
Commutator:						
rocking gear.	o, which i	2 RIOUAG	A 10 I	COSTAG AITE A	ı uou	
a ring 11 in. wid						
Beyond the 22-in. len		 armatn	 re nro	 iects on one	 side	44
Thickness Length along armature	 A	•••	•••	•••	•••	$rac{4rac{1}{2}}{22}$,,
m1 1 1	•••	•••	•••	•••	•••	
Outside diameter Inside diameter	•••	•••	•••	•••	•••	123 in. & 114 in. 105 in.
Yoke: Outside diameter						199 in C-114 i-
		•••	•••	•••	•••	4 "
,, ,, series-windi Depth of winding space		•••	•••	•••	•••	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
,, of shunt-windi		•••	•••	•••	•••	4.9 ,,
Length		•••	•••	•••	•••	8 ₇₆ in.
Spool:						
Clearance (magnetic ge	ap)	•••	•••	•••	•••	3 1 6 "
Bore of field	•••	•••	•••	•••		84 § in.
Size of magnet core (la	minations)		•••		12 in. by 12 in.
Length of core radial	•••					$9\frac{15}{16}$ in.
Pole arc + pitch		•••			•••	$\boldsymbol{0.722}$
TO 1						0.700

TECHNICAL DATA.—ELECTRICAL

Ar	mature :							
	Terminal volts, full le	oad			•••		500	
	Total internal volts	•••	•••			•••	513	
	Number of circuits				•••		12	
	Style of winding				•••	Mul	tiple-circuit d	rum
	Times re-entrant	•••	•••		•••		1	
	Total parallel paths t	hrough a	armature		•••	•••	12	
	Conductors in series				96			
	Type construction of	winding		•••	•••	•••	Bar	

Fig. 398. 900-Kilowatt, Three-Phase, Rotary Converter

Number of	face con	ductors				•••		1152
"	slots			•••	•••	••.		288
,,	conduct	ors per s	lot			•••		4
Arrangeme	ent of con	ductors	in sle	\mathbf{ot}		•••		2 by 2
Number in	parallel:	making	up or	ne condu	ctor	•••	•••	1
Mean leng	th of one	armatu	re tu	rn	•••			78 in.
Total num	ber of tur	ns		•••		•••		576
Turns in s	eries betw	een bru	shes			•••	•••	48
Length of	conducto	r betwee	n br	ushes	• • •			3744 in.
Cross-secti	on, one co	nductor		•••		•••		0.05 square inch
,,	12 co	nductors	in p	arallel				0.60 ,,
Ohms per	inch cube	at 20 d	eg. C	ent.				0.00000068
Per cent.	increase i	n resist	ance	20 deg.	Cent.	to 60 deg.	Cent.	16 per cent.
Resistance	between	brushes	20 d	eg. Cent	; .			0.00425
"	"	"	60	"		•••		0.00493

Assuming the current in three-phase rotary converter armature to be about three-fourths of that for continuous-current generator of same output, and a power factor of not quite unity, we may take current in armature conductor as $1800 \times 0.8 = 1440$ amperes.

Figs. 399 to 402. Curves of 900-Kilowatt, Three-Phase Rotary Converter

C R dro	p in arm	ature at (60 deg. Cent.		•••	•••	7.1 volts
,,	seri	es coils	•••		•••	•••	16 "
,,	at bru	sh contact	t surfaces		•••	•••	2.1 "
,,	not all	lowed for	in above	•••		1	.5 volts for cables
							and connections;
							figured on compo-
							nent currents
Ampere	s per squ	are inch	conductor (arm	ature)			2400
,,	-,,	,,	brush-bearing s	urface		•••	34.5
,,	,,	,,	shunt windings	I			970
,,	,,		series windings		•••	•••	970
Space Factor							
"Space	factor" copper,	copper i = .2 ÷ (1.25 × 0.44 = n slot = 4 × 0 0.55 = 0.364, c 3.6 per cent. for	0.125 x or 36.4 j	0.4 = 0 per cent.	.2 square of tota	l space is occupied
"Space by Commutation	factor" copper,	copper i = .2 ÷ (leaving 63	n slot = 4 × 6 0.55 = 0.364, 6 3.6 per cent. for	0.125 x or 36.4 j	0.4 = 0 per cent.	.2 square of tota	l space is occupied
"Space by Commutation Volts be	factor" copper, l	copper i = .2 ÷ (leaving 63	n slot = 4 × 0 0.55 = 0.364, c 3.6 per cent. for average	0.125 × or 36.4 p r the nec	0.4 = 0 per cent. essary in	.2 square of tota sulation 	l space is occupied
"Space by Commutation Volts be Armatu Resulta: Resulta:	factor" copper, l : etween s ire turns int curre int arma	copper i = .2 ÷ (leaving 63 egments, a per pole nt per con	n slot = 4×6 $0.55 = 0.364$, of $0.55 = 0.364$, of $0.55 = 0.364$, or average ductor = $\frac{1800}{1000}$ ngth = 120×6	0.125 × or 36.4 p r the nec 0 × 0.8	0.4 = 0 per cent. cessary in = 120 a	.2 square of tota sulation	l space is occupied 10.4

Diameter of commutator			•••		54 in.	
Circumference of commutator					170 ,,	
Revolutions per second	•••	•••	•••		4.2	
Peripheral speed, inches per seco	ond	•••	•••		708	
Width of brush surface across s	egments		•••		0.87 in.	
Time of one complete reversal, s	econds	•••	•••	•••	0.00123	
Frequency of commutation, cycl	les per se	cond	•••		407	
Coils, short-circuited together pe	r brush	•••	•••		3	
Turns per coil	•••		•••	•••	1	
Turns short-circuited together pe	er brush	•••	•••		3	
Conductors per group commutat	ed togetl	ner			6	
Flux per ampere turn per inch	gross le	ngth a	rmature la:	min a -		
tion	•••	•••			20	
Flux through six turns carrying	one amp	ere	•••		1500	
Inductance one coil of one turn	•••				0.000015 henrys	
Reactance of one coil of one turn	n.		•••	•••	0.039 ohms	
Current in one coil, amperes	•••				150	
				(continuous-eurrent	
				-	component)	
Reactance voltage one coil	•••		•••		5.8 volts	

 \dots 9.9 \times 9.75 \times 2

BINDING WIRE

Length of conductor	between	•••	•••		3774 in.	
Cross-section of cond	uctor bet		0.6 square inch			
Weight of armature	copper	•••	•••	•••	37	$744 \times 0.6 \times 0.32$ = 721 lb.
Centrifugal force			•••		= 0	0.0000142 D N ² lb.

Therefore, $0.0000142 \times 84 \times 250^2 = 74.7$ lb. exerted as centrifugal force by every pound of copper conductor on armature, and as there are 721 lb. weight of copper conductors, the total centrifugal force = 721×74.7 = 54,000 lb.

Part of the centrifugal force is resisted by strips of hard wood driven into dovetail grooves running parallel to the length of the shaft at the tops of the slots, while the end projections and connections are held in place by 84 strands of No. 11 B. and S. phosphor-bronze wire arranged over both ends, in bands of six strands each, seven of these bands being employed for each end.

MAGNETIC CIRCUIT CALCULATIONS

Megalines from one pole at full load a	ind 500	terminal	volts	
(512.5 internal volts)	•••	•••		10.4
Assumed coefficient of magnetic leakage				1.20
Megalines in one pole at full load				12.5

The magnetic reluctance and the observed total number of ampere turns per field spool required were probably distributed approximately as follows:

Armature :

Core section ...

					-	194 square inches
Length of magnetic cir	rcuit	•••		•••	•••	11 in.
Density (kilolines)	•••	•••		•••		54
Ampere turns per incl)	•••	•••	•••		16
Ampere turns		•••	•••	•••	•••	180
Teeth:						
Number transmitting	flux per	pole-piece	•••	•••		17
Section at face				•••		76 square inches
,, roots	•••	•••	•••	•••	•••	80 "
Mean section			•••	••.	•••	78 "
Length	•••	•••			•••	1.25 in.
Apparent density (kile	olines)	•••				134
Width of tooth (mean) "a"	•••	•••	•••		0.462 in.
,, slot "b"		•••				0.44 ,,
Ratio of $a \div b$	•••	•••	•••			1.05
Corrected density (kile	olines)	•••		•••		128
Ampere turns per incl	•		•••			1160
Ampere turns	•••	•••			•••	1460
-	•					3 A

Gap:							
Section at po	le-fece						190
Length		•••	•••	•••	•••	•••	0.1875
Density at po	 alo fogo /ki	 lolines	•••	•••	•••	•••	54.5
Ampere turn	•			 _ 3900	•••	•••	04.0
Ampere turn	s ≔ .010 X	04,200	X 0.1019	= 3200			
Magnet Core:							
Section (effec	tive)		•••			135	square inches
Length	•••			• • •			$9\frac{15}{16}$ in.
Density (kilo	lines)		•••				95
Ampere turn	s per inch		•••	•••	•••		53
Ampere turn	s	•••	•••				530
Yoke:							
Section magn	atia 9 v 1	36 - 95	79 sanomo i	nahaa			
Length per p			-				14.5 in.
		•••	•••	•••	•••	•••	14.5 III. 48
Density (kilo	•	•••	•••	•••	•••	•••	29
Ampere turn	-		•••	•••	•••	•••	- -
Ampere turn	18	•••	•••	•••	•••	• • • •	430
	a_			- m			
		MMARY	OF AMPER	E TURNS			
Armature con	re	•••	•••	•••	•••	•••	180
,,	eth	•••	•••	•••	•••	••	1460
Gap	•••	•••	•••		•••	•••	3200
Magnet core	•••	•••	•••	•••	•••	•••	530
Yoke	•••	•••	•••	•••	•••	•••	430
							5800
		Sı	POOL WIN	DINGS			
Ampere turn	s per shun	t spool,	full load	•••	•••		5800
Watts per sp	-	_		•••			405
,, sh	unt windi	ng at 20	deg. Cent		•••		200
,, 80	ries "	,,	,,	•••	•••	•••	143
" sh	unt "	60	deg. Cent.				240
Shunt copper	r per spool			•••			110 1ь.
Volts at tern			0 deg. Cer	nt.	•••		36
Amperes per	shunt spo	ol		•••	•••		6.3
Resistance a	t 20 deg. (Cent. per	spool, oh	ms			5.7
Turns per sh		•••	•••	•••	•••		912
Total length	of shunt c	onducto	r		•••	•••	4400 ft.
Pounds per 1	1000 ft.	•••	•••	•••		•••	24.9
Size of condu	ıctor	•••	•••	•••		No.1	1 B. and S. gauge
Dimensions 1	bare	•••	•••				7 in. in diameter
,, d	louble cott	on cover	ed			0.10	l ", "
Cross-section		••		•••	•••	0.006	347 square inch
Current dens	sity, amper	res per s	quare inch	ı			970
Available wi			-		•••		4 in.
Number of la	-	•••	•••	•••	•••	•••	23
Turns per la	-		•••		•••	•••	40
- '	-						

Series:

Ampere turns, full los	d	•••		•••		3 630
Full-load amperes	•••	•••		•••		1800
Amperes diverted	•••	•••		•••		350
,, in series spoo	ols		•••	•••		1450
Turns per spool	•••	•••		•••		$2\frac{1}{2}$
Size of conductor used	l	•••		•••		2.5 in, by 0.075 in.
Number in parallel						8
Total cross-section	•••		•••	•••		1.5 square inch
Current density, ampe	res pe	r square inch	٠	•••	• • •	970
Mean length of one tu	m	-		•••		4.83 ft.
Total length, all turns	on 12	spools		•••		150 ft. = 1800 in.
Resistance of 12 spool	s at 20	deg. Cent.	•••			0.000816 ohm
Series C2R watts, tota		-	•••			1718
	spool	•••	•••		•••	143
,, ,, ,,	_	at 60 deg. Ce	ent.	•••	•••	165
Total weight of series	•	_	•••	•••		864
-						

CALCULATION OF LOSSES AND HEATING

Armature:

Resistance between brushes, ohms	•••	•••	0.004	93 at 60 deg. Cent.
C ² R loss at 60 deg. Cent		•••		9700
Frequency, cycles per sec. = C =	•••	•••		25
Weight of armature teeth		•••		500 lb.
,, ,, core		•••		6500 "
Total weight of laminations	•••	•••		7000 ,,
Flux density in teeth, kilolines	• .			128
" ,, core = D =	•••	•••		54
C.D. ÷ 1000	•••	•••	•••	1.36
Observed core loss per pound, watts		•••		2.8
watts core loss per pound				
$K = \frac{\text{watts core loss per pound}}{(\text{C.D.} \div 1000)} =$	•••	•••	•••	2.05
Total core loss	•••			19,850
armature losses	•••			29,550
Armature diameter	•••	•••		84 in.
" length		•••		27 ,,
Peripheral radiating surface		•••	•••	7150 square inches
,, speed, feet per minute				5500
Watts per square inch radiating surf	ace	•••		4.1
Wates per square men radiating surr	acc	•••	•••	7.1

COMMUTATOR LOSSES AND HEATING

Commutator:

Area of all positive brus	hes	•••	•••			51 square inches
Amperes per square incl	h contac	ct surface	·	•••	•••	35
Ohms	••	.,	assumed			0.03

Brush resistance, positive and	negative		•••	•••	0.00116 ohm
Drop at brush contacts		•••	•••	•••	2.1 volts
C2R loss at brush contacts	•••		•••		3700 watts
Brush pressure, pounds per squ	are inch		•••		1.15
,, ,, total		•••	•••		117 lb.
Coefficient of friction		•••	•••		0.3
Peripheral speed, feet per minu		•••	•••		3550
Brush friction, foot-pounds per			•••		124,000
,, ,, watts	•••				2800
Stray watts lost in commutator	r. assumed				600
Total ,, ,, ,,		•••	•••		7100
Diameter of commutator	•••		•••		54 in.
Available length of commutato					14 "
Radiating surface	•••	•••			2400 square inch
Watts per square inch of radia			•••		2.9
Assumed rise of temperature	_				
10 hours' run		r1-			15 deg. Cent.
Total rise estimated on above h		•••	•••		43 ,,
Collector	D TAGGER	AND H	ATTWG		
Total contact area of all brushe		AND III	MIING		33 5 gavere inch
Amperes per square inch of con		• • • • · · · · · · · · · · · · · · · ·	•••	•••	33.5 square inche
					150
			•••	•••	150
Ohms per square inch of contac	ct (assume		•••	•••	0.003
Ohms per square inch of contact Total resistance of brushes per	ct (assume	ed) 		•••	0.003 0.00027
Ohms per square inch of contact Total resistance of brushes per Volts drop at brush contacts	ct (assume ring 	ed) 		•••	0.003 0.00027 0.48
Ohms per square inch of contact Total resistance of brushes per Volts drop at brush contacts C ² R loss at brush contacts per	ct (assume ring ring	ed) 		•••	0.003 0.00027 0.48 850
Ohms per square inch of contact Total resistance of brushes per Volts drop at brush contacts C ² R loss at brush contacts per ,, ,, in t	ct (assume ring ring hree rings	ed) s		•••	0.003 0.00027 0.48 850 1,700
Ohms per square inch of contact Total resistance of brushes per Volts drop at brush contacts C ² R loss at brush contacts per ,, ,, in t Brush pressure, pounds per squ	ct (assume ring ring hree rings	ed) 		•••	0.003 0.00027 0.48 850 1,700
Ohms per square inch of contact Total resistance of brushes per Volts drop at brush contacts C ² R loss at brush contacts per ,, ,, in t Brush pressure, pounds per squ ,, ,, total pounds	et (assume ring ring hree rings are inch 	ed) s			0.003 0.00027 0.48 850 1,700 1.6 54
Ohms per square inch of contact Total resistance of brushes per Volts drop at brush contacts C ² R loss at brush contacts per ,,,,, in t Brush pressure, pounds per squ ,,, total pounds Coefficient of friction	et (assume ring ring hree rings are inch 	ed) s			0.003 0.00027 0.48 850 1,700 1.6 54 0.3
Ohms per square inch of contact Total resistance of brushes per Volts drop at brush contacts C ² R loss at brush contacts per ,,,,, in t Brush pressure, pounds per squ ,,,, total pounds Coefficient of friction Peripheral speed, feet per minu	et (assume ring ring hree rings are inch 	ed) s			0.003 0.00027 0.48 850 1,700 1.6 54 0.3 1,580
Ohms per square inch of contact Total resistance of brushes per Volts drop at brush contacts C ² R loss at brush contacts per ,,,,, in t Brush pressure, pounds per squ ,,, total pounds Coefficient of friction Peripheral speed, feet per minu Brush friction, pounds per minu	et (assume ring ring hree rings are inch 	ed) s			0.003 0.00027 0.48 850 1,700 1.6 54 0.3 1,580 25,500
Ohms per square inch of contact Total resistance of brushes per Volts drop at brush contacts C ² R loss at brush contacts per ,,,,, in t Brush pressure, pounds per squ ,,,, total pounds Coefficient of friction Peripheral speed, feet per minu Brush friction, pounds per min ,,, watts lost	et (assume ring ring hree rings are inch 	ed) s			0.003 0.00027 0.48 850 1,700 1.6 54 0.3 1,580 25,500 600
Ohms per square inch of contact Total resistance of brushes per Volts drop at brush contacts C ² R loss at brush contacts per ,,,,, in t Brush pressure, pounds per squ ,,, total pounds Coefficient of friction Peripheral speed, feet per minu Brush friction, pounds per min ,,,, watts lost Total watts lost in collector	et (assume ring ring hree rings are inch 	ed) s			0.003 0.00027 0.48 850 1,700 1.6 54 0.3 1,580 25,500 600 2,300
Ohms per square inch of contact Total resistance of brushes per Volts drop at brush contacts C ² R loss at brush contacts per ,,,,, in t Brush pressure, pounds per squ ,,,, total pounds Coefficient of friction Peripheral speed, feet per minu Brush friction, pounds per minu y,,,, watts lost Total watts lost in collector Diameter collector	et (assume ring ring hree rings are inch ate 	ed) s			0.003 0.00027 0.48 850 1,700 1.6 54 0.3 1,580 25,500 600 2,300 24 in.
Ohms per square inch of contact Total resistance of brushes per Volts drop at brush contacts C ² R loss at brush contacts per ,,,,,, in t Brush pressure, pounds per squ ,,,, total pounds Coefficient of friction Peripheral speed, feet per minu Brush friction, pounds per min ,,,, watts lost Total watts lost in collector Diameter collector Effective length radiating surfs	et (assume ring ring hree rings are inch ate 	ed) s			0.003 0.00027 0.48 850 1,700 1.6 54 0.3 1,580 25,500 600 2,300 24 in. 11 ,,
Ohms per square inch of contact Total resistance of brushes per Volts drop at brush contacts C ² R loss at brush contacts per ,,,,,, in t Brush pressure, pounds per squ ,,,, total pounds Coefficient of friction Peripheral speed, feet per minu Brush friction, pounds per min ,,,, watts lost Total watts lost in collector Diameter collector Effective length radiating surface Total radiating surface	ct (assume ring ring hree rings are inch ate 	ed) s			0.003 0.00027 0.48 850 1,700 1.6 54 0.3 1,580 25,500 600 2,300 24 in. 11 ,,
Ohms per square inch of contact Total resistance of brushes per Volts drop at brush contacts C ² R loss at brush contacts per ,,,,, in t Brush pressure, pounds per squ ,,,, total pounds Coefficient of friction Peripheral speed, feet per minu Brush friction, pounds per min ,,, watts lost Total watts lost in collector Diameter collector Diameter collector Effective length radiating surfac Total radiating surface Watts per square inch radiatin	ct (assume ring ring hree rings are inch tte are	ed) s			0.003 0.00027 0.48 850 1,700 1.6 54 0.3 1,580 25,500 600 2,300 24 in. 11 ,,
Ohms per square inch of contact Total resistance of brushes per Volts drop at brush contacts C ² R loss at brush contacts per ,,,,, in t Brush pressure, pounds per squ ,,,, total pounds Coefficient of friction Peripheral speed, feet per minu Brush friction, pounds per min ,,,, watts lost Total watts lost in collector Diameter collector Effective length radiating surfac Total radiating surface Watts per square inch radiatin Assumed rise of temperature	ct (assume ring ring hree rings are inch tte are	ed) s			0.003 0.00027 0.48 850 1,700 1.6 54 0.3 1,580 25,500 600 2,300 24 in. 11 ,, 820 square inche
Ohms per square inch of contact Total resistance of brushes per Volts drop at brush contacts C ² R loss at brush contacts per ,,,,,, in t Brush pressure, pounds per squ ,,,, total pounds Coefficient of friction Peripheral speed, feet per minu Brush friction, pounds per min ,,,,, watts lost Total watts lost in collector Diameter collector Effective length radiating surfac Total radiating surface Watts per square inch radiatin Assumed rise of temperature 10 hours' run	ct (assume ring ring hree rings are inch ate aute ece g surface per watt	ed) s			0.003 0.00027 0.48 850 1,700 1.6 54 0.3 1,580 25,500 600 2,300 24 in. 11 ,,
Ohms per square inch of contact Total resistance of brushes per Volts drop at brush contacts C ² R loss at brush contacts per ,,,,, in t Brush pressure, pounds per squ ,,,, total pounds Coefficient of friction Peripheral speed, feet per minu Brush friction, pounds per min ,,,, watts lost Total watts lost in collector Diameter collector Effective length radiating surfac Total radiating surface Watts per square inch radiatin Assumed rise of temperature	ct (assume ring ring hree rings are inch ate aute ece g surface per watt	ed) s		 	0.003 0.00027 0.48 850 1,700 1.6 54 0.3 1,580 25,500 600 2,300 24 in. 11 ,, 820 square inche
Ohms per square inch of contact Total resistance of brushes per Volts drop at brush contacts C ² R loss at brush contacts per ,,,,,, in t Brush pressure, pounds per squ ,,,, total pounds Coefficient of friction Peripheral speed, feet per minu Brush friction, pounds per min ,,,,, watts lost Total watts lost in collector Diameter collector Effective length radiating surfac Total radiating surface Watts per square inch radiatin Assumed rise of temperature 10 hours' run	ct (assume ring ring hree rings are inch ate aute ece g surface per watt	ed) s		 after	0.003 0.00027 0.48 850 1,700 1.6 54 0.3 1,580 25,500 600 2,300 24 in. 11 ,, 820 square inche 2.8
Ohms per square inch of contact Total resistance of brushes per Volts drop at brush contacts C ² R loss at brush contacts per ,,,,, in t Brush pressure, pounds per squ ,,,, total pounds Coefficient of friction Peripheral speed, feet per minu Brush friction, pounds per min ,,,, watts lost Total watts lost in collector Diameter collector Effective length radiating surfac Total radiating surface Watts per square inch radiatin Assumed rise of temperature 10 hours' run Total rise estimated on above h d Spool Losses:	et (assume ring ring hree rings are inch ate ece g surface per watt 	ed) s		 after	0.003 0.00027 0.48 850 1,700 1.6 54 0.3 1,580 25,500 600 2,300 24 in. 11 ,, 820 square inche 2.8
Ohms per square inch of contact Total resistance of brushes per Volts drop at brush contacts C ² R loss at brush contacts per ,,,,,, in t Brush pressure, pounds per squ ,,,, total pounds Coefficient of friction Peripheral speed, feet per minu Brush friction, pounds per minu Brush friction, pounds per minu ,,,,, watts lost Total watts lost in collector Diameter collector Effective length radiating surface Total radiating surface Watts per square inch radiatin Assumed rise of temperature 10 hours' run Total rise estimated on above to d Spool Losses: Spool C ² R loss at 60 deg. Cent	et (assume ring ring hree rings are inch ate ece g surface per watt oasis	ed) s		 after	0.003 0.00027 0.48 850 1,700 1.6 54 0.3 1,580 25,500 600 2,300 24 in. 11 ,, 820 square inche 2.8 15 deg. Cent. 42 ,,
Ohms per square inch of contact Total resistance of brushes per Volts drop at brush contacts C ² R loss at brush contacts per ,,,,, in t Brush pressure, pounds per squ ,,,, total pounds Coefficient of friction Peripheral speed, feet per minu Brush friction, pounds per min ,,,, watts lost Total watts lost in collector Diameter collector Effective length radiating surfac Total radiating surface Watts per square inch radiatin Assumed rise of temperature 10 hours' run Total rise estimated on above h d Spool Losses:	et (assume ring ring hree rings are inch te aute ece eg surface per watt basis	ed) s		 after	0.003 0.00027 0.48 850 1,700 1.6 54 0.3 1,580 25,500 600 2,300 24 in. 11 ,, 820 square inche 2.8 15 deg. Cent. 42 ,,

		900,000 19,850 7,100 2,300 9,700 2,900 300 1,700 500 5,100 ——— 949,450 95 per cent. Sheet steel Cast iron Copper Cast iron aminated sheet iron
		7,100 2,300 9,700 2,900 300 1,700 500 5,100 949,450 95 per cent. Sheet steel Cast iron Copper Cast iron
		2,300 9,700 2,900 300 1,700 500 5,100 949,450 95 per cent. Sheet steel Cast iron Copper Cast iron
		2,300 9,700 2,900 300 1,700 500 5,100 949,450 95 per cent. Sheet steel Cast iron Copper Cast iron
		9,700 2,900 300 1,700 500 5,100 949,450 95 per cent. Sheet steel Cast iron Copper Cast iron
		2,900 300 1,700 500 5,100 949,450 95 per cent. Sheet steel Cast iron Copper "Stranded copper Cast iron
		300 1,700 500 5,100 949,450 95 per cent. Sheet steel Cast iron Copper "Stranded copper Cast iron
		1,700 500 5,100 949,450 95 per cent. Sheet steel Cast iron Copper ,,, Stranded copper Cast iron
		500 5,100 949,450 95 per cent. Sheet steel Cast iron Copper ,,, Stranded copper Cast iron
		5,100 949,450 95 per cent. Sheet steel Cast iron Copper ,,, Stranded copper Cast iron
		949,450 95 per cent. Sheet steel Cast iron Copper ,,, Stranded copper Cast iron
		95 per cent. Sheet steel Cast iron Copper ,,, Stranded copper Cast iron
		Sheet steel Cast iron Copper ,,, Stranded copper Cast iron
		Sheet steel Cast iron Copper ,,, Stranded copper Cast iron
		Cast iron Copper ,, Stranded copper Cast iron
		Cast iron Copper ,, Stranded copper Cast iron
		Copper ,,, Stranded copper Cast iron
		Stranded copper Cast iron
	•••	Stranded copper Cast iron
•••	•••	Cast iron
	 Le 	
	Le	aminated sheet iro
•••		Cast steel
	Le	aminated sheet iro
	•••	Carbon
•••	•••	Brass
•••		Gun-metal
•••		Phosphor-bronze
•••	•••	Mica
•••	•••	Mica
		Lb.
•••	•••	7,000
•••	•••	720
•••	•••	3,000
•••	•••	3,000
•••	•••	800
•••	•••	2,100
	•••	130
•••	•••	1,650
	•••	280
•••		
•••	•••	350
	•••	350 1,070

Bro	aght forwa	ard	•••	•••	•••	•••		20,100
Magnet:								•
Yok	: e			•••		•••	•••	13,000
Pole	8			•••		•••	•••	6,000
Field:								
Shu	nt coils, co	pper	•••		•••	•••	1,320)
Seri	es "	,,	•••		•••	•••	860)
Tota	d copper		•••		•••	•••	2,180)
Spoo	ols comple	te, incl	uding fla	anges and	all insula	tion	•••	5,600
Bedy	plate, bear	rings, d	zc	• • • • • • • • • • • • • • • • • • • •	•••	•••	•••	18,000
Bru	sh gear			•••	•••		•••	1,200
Sun	dry other	parts	•••	•••	•••		•••	2,200
		T	otal weig	ght of rote	ary conve	rter	•••	66,100

THE STARTING OF ROTARY CONVERTERS

The starting and synchronising of rotary converters may be accomplished in any one of several ways. The simplest, at first sight, is to throw the alternating-current terminals of the rotary converter directly on the alternating-current mains: but this, although often practicable, has several disadvantages. By this method, the current rush at the moment of starting is generally in excess of the full-load current input to the rotary converter; and as it lags in phase by a large angle, it causes a serious drop of line voltage and affects the normal line conditions, to the serious detriment of other apparatus on the line. This large current gradually decreases as the speed of the rotary converter increases. The action of the rotary converter in starting is analogous to that of an induction motor. The rotating magnetic field set up by the currents entering the armature windings induces—but very ineffectively—secondary currents in the polefaces, and the mutual action between these secondary currents and the rotating field imparts torque to the armature, which revolves with constantly accelerating speed up to synchronism. Then the circuit of the rotary converter field spools is closed and adjusted to bring the current into phase. But when the armature is first starting, the field spools are interlinked with an alternating magnetic flux generated by the current in the armature windings, and, in normally-proportioned field spools, with several hundreds or thousands of turns per spool, a dangerously high secondary voltage is generated in these spools. Hence they must be insulated better than field spools ordinarily are, not only between layers, but between adjacent turns; and wire with double or triple cotton covering should be used. However, the most frequently-occurring breakdown due to this cause is from winding to frame, hence extra insulation should be used between these parts.

The terminals of the different field spools should be connected up to a suitable switch, arranged so that the field winding may be conveniently broken up into several sections; otherwise, if a thousand volts or so are induced in each spool, the strain on the insulation between the ends of these spools in series and the frame is severe.

At starting, this switch must always be open; it must not be closed until the armature has run up to synchronous speed, which is observed by the line current falling to a much smaller value. This special switch is then closed, afterwards the main field switch is closed also; whereupon a still further decrease in the line-current occurs, due to improved phase relations, and the process of synchronising is completed.

Fig. 403. Connections for a Three-Phase Rotary, with Compensator

By means of a compensator, this heavy current on the line at starting may be dispensed with. The connections for a three-phase rotary, with compensator, are as shown in the diagram of Fig. 403.

At the instant of starting the collector rings are connected to the three lowest contacts, hence they receive but a small fraction of the line voltage, and would receive several times the line current; i.e, if the taps into the compensator winding are, say, one-fifth of the way from common connection to line, then the rotary converter has one-fifth the line voltage and five times the line current. As the converter runs up in speed, the terminals are moved along until, at synchronism, the collector is directly on the line.

Another difficulty encountered when the rotary converter is started from the alternating-current end, is the indeterminate polarity at the commutator when the rotary is made to furnish its own excitation. Unless some independent source of continuous current is available at

the rotary converter substation, the rotary is dependent for its excitation upon the polarity that its commutator happens to have at the instant of attaining synchronism. If there are two rotary converters at the substation, and the first comes up with the wrong polarity, then it may be allowed to run so, temporarily, till the second one is synchronised. The second one can be given either polarity desired, by using the first as an independent source of continuous current. Then from the second one, the polarity of the first may be reversed into the correct direction, and the second rotary converter shut down. Obviously, however, this indeterminateness of the initial polarity constitutes a further inconvenience and objection to starting rotary converters, by throwing them directly on to the alternating-current line. But in the case of large capacity, slowspeed rotary converters, containing therefore heavy armatures, it has been found practicable to control the polarity of the first machine when it is started up from the alternating current side. One must stand ready by the field switch as the machine approaches synchronism, when the pointer of the continuous-current voltmeter will commence to vibrate rapidly with short swings about the zero mark. These will finally be followed by a couple of fairly slow, indecisive, long swings, in opposite directions from the zero mark. Near the maximum point of whichever of these swings is in the direction of the desired polarity, the field switch should be closed, and the machine will excite itself, provided the field terminals are correctly positive and negative. Otherwise—which might happen on the first run, or after alterations—the field terminals will require to be reversed.

The required line current is greatly reduced by starting generator and rotary converter up simultaneously. The latter is then, from the instant of starting, always in synchronism with its generator, and the conditions of running are arrived at with a minimum strain to the system. But the conditions of routine operation rarely render this plan practicable.

A method sometimes used is to have a small induction motor directcoupled to the shaft of the rotary converter, for the purpose of starting the latter with small line currents. This, however, is an extra expense, and results in an unsightly combination set.

Where there are several rotary converters in a substation, a much better way is that described in a recent British patent specification, in which the station is provided with a small auxiliary set, consisting of an

3 B

induction motor direct-coupled to a continuous-current dynamo, the latter being only of sufficient capacity to run the rotary converters one at a time up to synchronous speed as continuous-current motors. When this speed is arrived at, and synchronism attained, between the alternatingcurrent collector rings and the line, the switch between them is closed, and the rotary converter runs on from the alternating-current supply.

In many cases a continuous-current system derives its supply partly from continuous-current generators and partly from rotary converters. In

Fig. 406. Quick-Break Switch

such cases the rotary converter is simply started up as a motor from the continuous-current line, and then synchronised.

On the Continent it is very customary to operate storage batteries in the substations, in parallel with the rotary converters; the batteries being charged by the rotaries during times of light load, and helping out the rotaries with heavy loads. They are known as "buffer batteries," and are of considerable assistance in maintaining uniform voltage and more uniform load on the generating plant. Moreover, they render the substation independent of the rest of the system for starting up the rotary converters.

Synchronising Rotary Converters

One has the choice of synchronising the rotary converter, either by a switch between the collector rings and the low potential side of the step-down transformers, or of considering the step-down transformers and the rotary converter to constitute one system, transforming from low-voltage continuous current to high-voltage alternating current, and synchronising by a switch placed between the high-tension terminals of the transformers and the high-tension transmission line. This latter plan

Figs. 407 and 408. Quick-Break Switch

is, perhaps, generally the best; as for the former plan, one requires a switch for rather heavy currents at a potential of often from 300 to 400 volts; and such a switch, to be safely opened, is of much more expensive construction than a high-tension switch for the smaller current. Moreover, for six-phase rotaries, the low-tension switch should preferably have six blades, as against three for the high-tension switch. It is much simpler, in six-phase rotary converters, to have an arrangement which obviates opening the connections between the low-tension terminals of the transformers and the collector ring terminals; although in such cases

some type of connectors should be provided which may be readily removed when the circuits are not alive, for purposes of testing.

The arrangement shown in Fig. 404, on page 369, represents a plan for synchronising and switching, on the high-tension circuits, and adapted to six-phase rotaries.

Fig. 405, on same page, shows diagrammatically a plan for a three-phase system where the switching is done on the low-tension circuits. The quick-break switch used, which is necessarily of rather elaborate construction, is illustrated in Figs. 406 to 408, pages 370 and 371. This switch was designed by Mr. Samuelson. The switch is designed for the breaks to occur on the back of the board, thus protecting the operator.

Voltage Ratio in Rotary Converter Systems

As already shown, there is a tolerably definite ratio between the alternating-current voltage at the collector rings and the continuous-current voltage at the commutator. This lack of flexibility is to a certain degree a source of inconvenience; hence, methods whereby it may be avoided possess interest. A rotary converter with adjustable commutator voltage is desirable for the same purposes as an over-compounded generator, and also for charging storage batteries.

If the generators, transmission line, transformers and rotary converters possess sufficient inductance, the commutator voltage may be varied within certain limits, by variations of the field excitation of converter or generator, or both. By weakening the generator excitation or strengthening the rotary excitation, the line current may be made to lead, and a leading current through an inductive circuit causes an increased voltage at the distant end of the line. Hence, by suitable adjustment of the excitation, the voltage at the collector rings of the rotary, and consequently also its commutator voltage, may be increased. Strengthening the generator field or weakening the converter field, or both, causes the current to lag, and results in a decreased commutator voltage. These effects may be intensified by placing inductance coils in series in the circuits.

Another method of controlling the commutator voltage is by equipping the step-down transformers with switches, whereby the number of turns in primary or secondary, and hence the ratio of transformation, may be adjusted. A much better method is that in which an induction

regulator is used between the transformer secondary terminals and the rotary converter. This consists of a structure like an induction motor. Series windings are put on the one element, say the stator, and potential

Fig. 409. Diagram of Connections for Converter Set

windings on the rotor. The rotor may be progressively advanced through a certain angle, and at each angular position will raise or lower the voltage at the collector rings by a certain amount, by virtue of the mutual action of the series and potential coils. The connections are shown diagrammatically in Fig. 409.

A small auxiliary rotary converter, having a voltage equal to the amount by which it is desired to increase or decrease the commutator voltage of the main rotary, and with a current capacity equal to that of the main rotary, may be employed with its commutator in series with that of the main rotary. The auxiliary rotary should have field coils capable of exerting a great range of excitation. Its collector should be supplied from a special transformer or transformers, with the primary and secondary coils considerably separated, so as to permit of much magnetic leakage between them. This gives large inductance to the small branch circuit

Fig. 410. Diagram of Connections for Converter Set

leading to the auxiliary rotary, and by regulation of its field excitation, a very wide range of voltage at its commutator is secured. It has the great advantage over inductance in the main circuit that it gives a wide range of voltage variation for the combined set, consisting of main and auxiliary rotary, without working at low power factors. This is obviously the case, since the main rotary may be adjusted to work at a power factor of unity, while it is only the relatively small amount of energy consumed by the small-capacity auxiliary rotary, which is supplied at a low power factor. The effect on the power factor of the main system, caused by the power factor of the small rotary, may be completely

Fig. 411. Diagram of Connections for Converter Set

neutralised, and the resultant power factor restored to unity by the simple method of running the large main rotary with a slight over- or under-excitation, and hence with a power factor slightly lower than unity, to compensate for the lagging or leading current, as the case may be, consumed by the small auxiliary rotary converter. The scheme is illustrated diagrammatically in Fig. 410, page 374.

A similar kind of apparatus has been used for the express purpose of charging storage batteries from a 500-volt line. With maximum excitation, it supplied 200 volts more, giving the 700 volts required by the battery toward completion of the charge. This rotary converter had a shunt winding, and also a negative series coil; and when finally adjusted it had the interesting property of automatically charging the battery from a minimum potential in the neighbourhood of 530 volts at

Figs. 412 and 413. Diagrams of Connections for Converter Sets

the commencement of the charge, up to about 700 volts when fully charged. Moreover, the current, amounting to some 40 amperes at the commencement, gradually fell off to about 30 amperes when the battery was fully charged. That is, when the battery charge is low, and this rotary converter is thrown on in series with the 500-volt line, it automatically regulates its own excitation, so that, while giving 30 volts and 40 amperes at first, it finished up with 200 volts and 30 amperes. Its shunt coils are excited from its own commutator; hence at gradually increasing voltage.

Its series winding is connected to act in opposition to the shunt winding. This negative series winding was at first put on to protect the rotary from the effect of sudden variations of voltage on this 500-volt circuit. Thus, if the line voltage suddenly rose to 520 volts, the addition of the rotary voltage would have sent a much heavier current into the battery; a negative series winding tended to equalise the resultant

voltage in spite of line variations, and proved to contribute very markedly to the automatic regulation of current and voltage to the varying requirements during the process of charging the storage battery.

In Fig. 411, page 375, is given a diagram of its connections.

An alternative scheme to that of a small auxiliary rotary converter, and perhaps, on the whole, the best arrangement of all, consists in the addition of a small continuous-current machine on an extension of the shaft of the main rotary converter. If its fields are excited in series with the load, and its commutator connected in series with that of the main rotary converter, the combined set may be adjusted to over-compound to any desired extent. Fig. 412 gives a diagram of this scheme.

A great disadvantage of both these last schemes is that the commutator of the auxiliary machine carrying the main current must have substantially as great a radiating surface as the main commutator, and hence is expensive. The commutator losses are also doubled.

Still another interesting arrangement for giving an adjustable ratio of conversion of voltage is that illustrated in Fig. 413, wherein a small synchronous motor is directly connected on the shaft of the rotary, which requires no collector rings, those of the synchronous motor serving for the set. The synchronous motor has a separate field system, by varying the excitation of which the percentage of the voltage consumed in the sychronous motor is varied, and consequently also the total ratio of conversion. This scheme avoids the losses in an extra commutator, and is a very flexible method.

RUNNING CONDITIONS FOR ROTARY CONVERTERS

The conditions relating to starting rotary converters have been considered on pages 366 to 370. After being finally brought to synchronous speed, there remain various adjustments requisite to secure the most efficient performance, and to adapt them to best fulfil the special requirements.

Phase Characteristic.—The term "phase characteristic" is generally applied to a curve plotted with field excitation (preferably expressed in ampere-turns per field spool), for abscissæ, and with amperes input per collector ring as ordinates. Such a curve has been given for no load in Fig. 400, on page 359, and from an examination of it, one learns that at normal voltage between collector rings (310 volts in the machine in question), and a field excitation of 6.4 amperes (5800 ampere-

turns per pole), there was required only about 80 amperes per phase to run the rotary converter unloaded. This is the condition of minimum current input; with weaker field excitation the current lags, and with stronger it leads, in both cases increasing rapidly in amount with the varying field excitation. The curve shows that with no field excitation, the current per phase increases to about 2100 amperes, and it also reaches approximately this same value with twice the normal field excitation.

If the current is in phase at the point of minimum current input, then the volt-amperes will be equal to the sum of the no-load losses.

No-LOAD LOSSES

~							Watts.
Core and stray losses	st nor	nal voltage	в	•••			= 20,000
Friction and collector C2R losses				•••		•••	= 8,000
Shunt field self excita-	tion =	6.4×500)	•••		•••	= 3,200
Tot	al no-l	oad losses	•••	•••		•••	= 31,200
Watts per phase		•••		•••		•••	= 10,400
"Y" voltage = $\frac{310}{\sqrt{3}}$	•••	•••	•••	•••	=	180	volts.
Current per phase	(i.e.,	entering	each	collector			
$ring) = \frac{10,400}{180}$			•••		=	58 a	mperes.
Hence we have an una	ccoun	ted-for bal	ance of	80 – 58	=	22 s	mperes.

This is due partly to a difference in the wave forms of the generator and the rotary, but chiefly to so-called "surging" effects, and will be a varying value, depending upon the motive power driving the generating alternator, and upon the methods employed to limit the effect. It will be considered in a subsequent paragraph.

Neglecting the "surging" effect for a given field excitation, the power factor of the incoming current may be estimated. Thus the curve of Fig. 400 shows that with the excitation of 3.2 amperes (half the normal excitation) there is an incoming current of 1000 amperes per phase. One thousand amperes entering a collecting ring corresponds to $\frac{1000}{\sqrt{3}} = 580$ amperes in the armature conductor.

Resistance of armature between commutator brushes has been given as 0.005 ohm at 60 deg. Cent. = R. (See page 358.)

Then the resistance of one branch (i.e., one side of the Δ) will be 1.33 R = 0.0067 ohm.¹

In each branch there will be a C^2R loss of $580^2 \times 0.0067 = 2250$ watts, and therefore a total armature C^2R of $3 \times 2250 = 6750$ watts. The field excitation with regulating rheostat losses will be one-half its former value, *i.e.*, 1650 watts. The core loss and friction remain substantially as before, but the collector C^2R loss is increased by 500 watts.

		Summary				
						Watts.
Armature C ² R		•••		•••		6,750
Field self-excitation .	••		•••			1,650
Core and stray losses .					•••	20,000
Friction and collector C2R	losses	•••		•••		8,500
	Total	of losses		•••		36,900
Total per phase	••	•••		•••		12,300
Volt-amperes input phase	= 580 :	\times 310 =	180,000			
Hence power factor = $\frac{12.3}{180}$	$\frac{3}{3} = 0.00$	68.				

¹ Proof that, if R = armature resistance between commutator brushes, then 1.33 R = resistance of one side of the Δ .

Take the case of the present rotary. It has 12 poles, and a multiple-circuit single winding. Therefore, there are 12 paths through the armature from the positive to the negative brushes. There are 576 total turns on the armature. Hence, each of the 12 paths has 48 turns. R = the resistance of the 12 paths in parallel. ... 12 R = resistance of one path of 48 turns. But between two collector rings, the 576 total turns are divided into three groups of 192 turns each. One side of the Δ is made up of one such group arranged

in six parallel paths of $\frac{192}{6}$ = 32 turns each; 32 turns in series will have a resistance of

$$\frac{32}{48} \times 12 R = 8 R,$$

and six paths in parallel will have a resistance of $\frac{8 \text{ R}}{6} = 1.33 \text{ R}$, and this equals the resistance of one side of the Δ . Q.E.D.

Any difficulties in understanding this subdivision of the winding into groups and parallel paths may be removed by a study of the winding diagram for the multiple-circuit single winding shown in Fig. 373, on page 323. Analogous investigations of two-circuit single windings, and of multiple windings of both the two-circuit and multiple-circuit type, will yield the same result, i.e., that the resistance of one side of the Δ is equal to 1.33 R, for three-phase rotaries. For an examination of these latter cases, one may make use of the winding diagrams of Figs. 374 and 375, on pages 324 and 325.

Similar calculations for other values of the field excitation give data for plotting other phase characteristic curves for no load, that is, for no

Figs. 414 and 415. Power Factor Curves for a 900-Kilowatt Rotary Converter

output from the commutator. Thus in Fig. 414 the power factor is plotted in the terms of the field excitation; and in Fig. 415 in terms of the amperes input of the collector ring. These curves have all corresponded to

no load, but other phase characteristic curves may be obtained for various conditions of load.

In Fig. 416 are given phase characteristic curves at no load, half load, and full load for a 125-kilowatt rotary converter. It will be observed that the phase characteristic curves with load possess the same general features as the curve for no load, though less accentuated.

Fig. 416. Characteristic Curves for a 125-Kilowatt Rotary Converter

In Fig. 417, on page 382, these curves are transformed into three others, in which the power factors are plotted in terms of field excitation; and in Fig. 418 the power factors are plotted in terms of amperes input per collector ring.

Figs. 414, 416, and 417 show the importance, especially with light loads, of careful adjustment of the excitation. The power factor falls off very rapidly indeed with variations of the field excitation from

the normal value. However, with load the variations are comparatively moderate, and field regulation can then advantageously be employed as a means of phase control; and through the intermediation of line and armature inductances, sometimes aided by auxiliary inductances employed for the express purpose, a considerable working range of voltage at the commutator of the rotary converter may be obtained.

FIG. 417. CHARACTERISTIC CURVES FOR A 125-KILOWATT ROTARY CONVERTER

This brief description of the phase characteristic curves permits of now explaining in a rough, practical way, what causes the current to lag or lead with varying field excitation, and also what controls and determines the extent by which it shall lag or lead. Suppose a generator say by hand regulation of the field excitation, is made to furnish 310 volts under all conditions of load and phase, to the collector rings of a rotary converter. (Assuming the rotary converter to be of very small capacity relatively to that of the generator, these variations will not materially affect the generator voltage, which will remain approximately constant.)

It has been shown that there will be substantially 500 volts at the commutator when there are 310 volts between collector rings. This is fairly independent of the field excitation. But figuring from the 310 volts at the collector rings, or the 500 volts at the commutator, the result arrived at is that there is a magnetic flux M per pole-piece, linked with the armature winding turns. When the field excitation is such as to afford the requisite magnetomotive force for impelling this flux M against the reluctance of the magnetic circuit, there will be no current in the armature: or, rather, only the small amount necessary to supply the power repre-

Fig. 418. CHARACTERISTIC CURVES FOR A 125-KILOWATT ROTARY CONVERTER

sented by the no-load losses. But if the field excitation is weakened, say, to one-half, then, since there is still the same terminal voltage, it follows that there must also be the same flux M impelled through the same magnetic circuit. The remaining part of the required magnetomotive force has, therefore, to be sought for elsewhere. It is, in fact, furnished by a lagging armature current, which then flows into the collector rings. This component does no work, hence it is 90 deg. out of phase. The resultant current is composed of the energy component which overcomes the losses, and this wattless current. Thus in the analysis on page 378 of the phase characteristic curve of Fig 400, it was found that reducing the field excitation from 6.4 amperes, (corresponding to unity power factor), to

3.2 amperes, increased the input from 80 amperes per collector ring to 1000 amperes per ring. The magnetising component of this 1000 amperes was $\sqrt{1000^2-80^2}$, and hence scarcely differed from 1000 amperes. There are, therefore, $\frac{1000}{\sqrt{3}} = 580$ amperes per side of the "delta," or $\frac{580}{6} = 97$ amperes per armature conductor. This, assuming a sine wave of incoming current, is $97 \times \sqrt{2} = 138$ maximum amperes. A current of 6.4 amperes in the field corresponded to a magnetomotive force of 5,800 ampere-turns.

Fig. 419. Diagram Showing Distribution of Resultant Magnetomotive Force and Arrangement of Conductors

This, with 3.2 amperes, was reduced to 2,900 ampere-turns, the remaining 2,900 ampere-turns per pole-piece being supplied by the lagging current in the armature winding. The 12-pole armature has 576 total turns, or 48 per pole-piece; but these 48 turns per pole-piece belong to three different phases, hence there are 16 turns per pole-piece per phase. The maximum ampere-turns per phase are

 $16 \times 138 = 2200$ ampere turns.

In Figs. 419 and 420 are shown, diagrammatically, the arrangement of the conductors of the different phases in the armature slots of a three-phase rotary; and directly above, the corresponding curve of magneto-

motive force due to the currents in the armature conductors. Fig. 419 represents the instant when these relative current values in the phases A, B, and C are, respectively, 1, 0.5, and 0.5. In Fig. 420 these have become 0867, 0, and 0.867. Hence it is in Fig. 419 that one phase reaches the maximum value 1, and as there are six conductors per polepiece per phase its maximum magnetomotive force may be represented by 6. But although, in Fig. 419, the corresponding maximum value of

Fig. 420. Diagram Showing Distribution of Resultant Magnetomotive Force and Abrangement of Conductors

the magnetomotive force of the three phases is 9, it becomes 10.4, one-twelfth of a cycle later, at the instant represented by Fig. 420. Hence, in a three-phase rotary converter winding, the maximum magnetomotive force exerted by the armature conductors of all the phases, is, per pole-10.4

piece, $\frac{10.4}{6}$ = 1.73 times as great as the maximum magnetomotive force per pole-piece per phase.

Now, for the case under consideration (the 900-kilowatt rotary), the value of 2200 ampere-turns per pole-piece was found for the maximum

magnetomotive force per phase. Therefore, the maximum resultant armature reaction for the three phases would be

 $1.73 \times 2200 = 3800$ ampere-turns per pole-piece.

But it is only in opposition to the flux at the very centre of the pole-face that the armature magnetomotive force would exert this strength. Aproaching both sides, it shades off towards zero, as may be seen from the curves of magnetomotive force distribution of Figs. 419 and 420, whereas the field spool against which it reacts is linked with the entire In practice, these magnetomotive force curves would be smoothed out into something like sine curves. Were the pole arc to extend over the entire pole pitch, the average magnetomotive force exerted over the whole face of the pole shoe would be $\frac{2}{\pi}$ times the maximum value, a sine wave form being assumed for the distribution of the magnetomotive force about the circumference. As, however, the pole arc generally covers only from 65 per cent. to 70 per cent. of the pole pitch, the average magnetomotive force must be greater. In addition to this smaller pole are there is the further circumstance to be considered, that the location of the armature magnetomotive force is more effective than that of the field ampere-turns; and this factor will also tend to increase the field ampere-turns that are necessary to compensate the armature ampere-turns.

In the above case, the field magnetomotive force amounts to 2900 ampere-turns, a value 24 per cent. smaller than the maximum magnetomotive force of the armature; or, conversely the maximum magnetomotive force of the armature is 1.31 times as great as the field magnetomotive force $\left(\frac{3800}{2900} = 1.31\right)$. To be able to estimate this with fair approximation, there are given in Table LXIII. an analysis of a series of test results leading up to its derivation. The factor by which the maximum armature magnetomotive force has to be divided in order to get the observed field ampere-turns, is given in the last column, and varies between 1.0 and 1.3, the average value being 1.15.

The difference between three-phase and six-phase windings, as regards the manner of distribution of the conductors of the different phases over the armature surface, has already been pointed out on page 329, and is illustrated diagrammatically in Fig. 379. Bearing in mind the difference there explained, it should be further noted that the so-called six-phase

winding gives a distribution of its armature magnetomotive force, in accordance with the diagrams for the magnetomotive force in induction motors which were shown and explained on pages 148 to 151. It is there shown that the three phases of such a winding exert a resultant

TABLE LXIII. -MAGNETOMOTIVE FORCE DATA OF ELEVEN THREE-PHASE
ROTARY CONVERTERS

							Observed.		Maximum	
	Speed in Revolu- tions per Minute.	Number of Poles.	Cycles per Second.	Commu tator Voltage.	Armature Turns per Pole- Piece.	Field Ampere Turns for Minimum Current at No Load. A	Amperes per Ring at No Load, and no Field Excita- tion.	Amperes per Conductor at No Load, and no Field Excitation.	Magneto- motive Force per Pole, Corre- sponding to Preceding Column B	Ratio of B; A.
200	375	8	25	125	30	4150	1400	200	4900	1.17
200	600	6	30	510	84	3880	335	64.5	4450	1.15
50	750	4	25	125	31.5	5860	800	230	6000	1.02
120	900	4	30	550	72.6	4120	292	84	2500	1.22
150	750	4	25	600	96	7810	375	108	8600	1.1
30 0	532	6	26.6	550	72	4650	510	98	5750	1.23
25 0	750	4	25	550	60	4290	385	111	5500	1.28
100	1200	6	60	550	72	5650	555	106	6300	1.11
75	1200	6	60	550	99	4580	305	59	4800	1.04
250	500	6	25	550	72	4070	435	83	4900	1.2
100	750	4	25	125	24	4850	1030	300	5900	1.22

magnetomotive force, whose maximum value is equal to twice the maximum value of the magnetomotive force per phase. But by Figs. 419 and 420, on pages 384 and 385 ante, it has been shown that in the winding of the ordinary three-phase rotary converter (when the windings of the different phases overlap), this maximum value is only 1.73 times the magnetomotive force per phase. A six-phaser will, therefore, give equally effective response to field variations, with but $\frac{1.73}{2.00}$, or 87 per cent. as great an incoming current, as will a three-phase rotary

converter. This is a distinct advantage even for the shunt-wound and for the compound-wound rotary, but it is still more important in the case of the series rotary, and for the rotary without field excitation (which will shortly be discussed), since the chief objections to these latter types relate to the large incoming current due to absence of control of field excitation, except by means of armature reactions.

The choice of as many turns per pole-piece on the armature as good constants, in other respects, will permit is, of course, conducive in all types of rotaries to the best result from the standpoint of securing the required magnetomotive force from the armature with as little idle current as possible.

By similar methods the magnetomotive force relations may be analysed from the phase characteristics with load. Under these conditions, i.e., with current delivered from the commutator, there are further considerations: The demagnetising influence of the commutated current may be neglected, as the brushes remain at the neutral point, and even the distorting influence upon the magnetic distribution may be considered to be substantially offset by the overlapping energy component of the incoming alternating current. The main difference appearing in the analysis of the phase characteristic with load, is that the energy component, except with great weakening or strengthening of the normal field, will be a very appreciable component of the total resultant incoming alternating current. Thus in Fig. 416 (page 381, ante), the upper curve represents the phase characteristic with full-load output of 1100 amperes at 115 volts from the commutator. At normal field of 2750 ampere-turns, the amperes input per collector ring are 1030. Reducing the field excitation to zero increases this incoming current to 1290 amperes. The output is 125,000 watts.

The internal losses under these conditions of full-load output and zero field excitation, are approximately as follow:

						Watts.
Total armature C2R l	088	•••		•••		5,000
Bearing and all brush	friction	•••	•••	•••		2,700
Core loss	•••	•••	•••	•••		2,700
Brush C*R losses	•••	•••	•••	•••		3,500
	Tota	al intern	al loss	•••	•••	13,900
Watts output	•••	•••	•••	•••	•••	125,000
	Tota	al watts	input	•••		138,900

```
46,300
Total watts input per phase ...
Voltage per phase ...
                                                                75 volts.
Energy component of current per phase in armature
                                                               616 amperes.
Observed current input per collector ring
                                                             1290
                                                               745
                 in armature winding
Magnetising component = \sqrt{745^2 - 616^2} =
                                                               406
The armature has a six-circuit single winding with 180 total turns;
    therefore, 10 turns per pole-piece per phase.
Magnetising current per turn = \frac{406}{3} = 135 amperes.
Maximum magnetomotive force per phase = \sqrt{2} × 135 × 10 =
    1900 ampere turns.
Hence maximum of resultant magnetomotive force of armature per pole-
    piece = 1.73 \times 1900 = 3300 ampere-turns.
Field ampere-turns (observed at no load) =
                                                                       2750
                            Ratio \frac{3300}{2750} =
                                                                        1.2
```

"Surging" Effect.—Reference has been made to the "surging" effect in rotary converters as being chiefly responsible for the discrepancy between the observed current input when the field is adjusted for minimum input, and the energy current input. This additional current is of the nature of an interchanging current amongst the generators and rotary converters. When, in the first place, the source of power driving the generator has not a constant angular effort, the flywheel may not be sufficiently large to make the angular velocity uniform throughout the revolution.

The rotary converter, to remain strictly in synchronism, must respond perfectly to those changes in angular velocity. Of course, it cannot do so perfectly, so the result is that at one instant it lags behind by a more or less small fraction of an alternation, (distance from mid-pole-face position), and takes more current; then it accelerates more rapidly, gains on the generator, and swinging too far forward, on account of its momentum, acts for the instant as a generator, returning current to the source of its supply. This is the nature of the superposed current above referred to.

According to the degree of unevenness of the angular speed of the generator, and to the absolute and relative inertia of the moving parts of the generators and rotary converters, this superposed swinging motion may be more or less great; and may, either between generators and rotary, or between rotaries, develop into sympathetic swings of considerable magnitude, leading in some cases to falling out of phase, but more often

to serious and rather destructive sparking at the commutator, due to the pulsations. As already pointed out, these troubles may be remedied in practice by employing copper coils or plates specially located between pole-pieces; or more easily, but less economically and effectively, by using wrought-iron pole-pieces of the highest practicable conductivity, with small clearance between pole-face and armature.

FIG. 421. CURVES FOR A 550-VOLT, 100-KILOWATT, SERIES ROTARY

Compound-Wound Rotary.—The purpose of the compounding coil (series winding) has already been set forth (see page 350), and it merely remains to state that in practice it has been found to distinctly diminish the tendency to stability when the "surging" effect is present to any extent. Nevertheless, it is an aid to automatic phase regulation, being, of course, more especially valuable where quick changes of load are

constantly occurring, as in the operation of tramways. For gradually varying load, pure shunt excitation with hand regulation is more satisfactory, unless the generator is driven with an extremely uniform angular motion.

The current delivered from the commutator of a rotary converter is never very uniform; it has always a superposed alternating-current

Fig. 422. Curves for a 550-Volt, 100-Kilowatt Rotary, Without Field Excitation

component, which may be readily demonstrated by sending such a commutated current through a reactance coil of sufficient inductance, when there may be observed across the terminals of the coil (by an alternating-current voltmeter) a difference of potential many times in excess of the CR drop. Although this is best observed by means of the drop across it, such a reactance coil tends to eliminate these

¹ See Journal, Institution of Electrical Engineers, vol. xxvii., page 710, 1898.

variations, and they are much less than when no inductance is in circuit. A compound winding will, to a certain degree, have this same effect; and while the difficulties attending its use are probably partly due to this effect, it should at the same time tend in some measure to make the commutated current more free from superposed variations. The series winding is cut out when starting up from the continuous-current side, and this is conveniently accomplished by a double-throw switch, which in one position connects the junction of the series winding and the negative brushes to the starting rheostat, and in the other position connects this point with the equalising bar.

Series Rotary.—The shunt winding may be dispensed with altogether in a rotary converter, the excitation being supplied by the series winding alone. The conditions, however, are not satisfactory, as the excitation is controlled entirely by the load current; and from what we have learned by a study of phase characteristics, such wide variation of excitation cannot be made to give an economical power factor for any extended range of load. Curves taken upon a 550-volt, 100-kilowatt rotary, operated in this manner, are given in Fig. 421, on page 390.

Rotary without Field Excitation.—A rotary with no field winding supplies its excitation by virtue of the magnetising effect of the lagging currents flowing through its armature, and which enter from the collector rings. In Fig. 422 is given a curve of the alternating-current, in terms of the continuous-current output for the above-mentioned 100-kilowatt rotary when operated with no field excitation. In this case, the excitation of the generator was raised from 5,500 ampere-turns per spool, when no amperes were delivered from the commutator of the rotary converter, up to 7000 ampere-turns per spool at full load amperes delivered from the commutator of the rotary converter. This served to maintain the commutator potential of the rotary constant at 550 volts, throughout the whole range of load. This increased excitation of the generator was necessary, as it also was of only 100-kilowatt capacity; and the large demagnetising magnetomotive force of the lagging armature current acting against its own impressed field, required to be overcome by the increase of field excitation from 5500 to 7000 ampere-turns per spool. Such rotaries without field windings have, however, actually been employed commercially.

The advantage of having, for rotaries of this type, a very strong armature, even to the sacrifice of the most favourable values for other

constants, will now be clearly seen. The armature winding will thereby be enabled to supply the required magnetomotive force with less excessive magnetising currents from the source of supply. The use of six collector rings (so called six-phase), has in this respect an advantage of 14 per cent. for a given armature and winding over the ordinary method with three rings.

RELATIVE ADVANTAGES OF ROTARY CONVERTERS AND MOTOR GENERATORS

A great deal has been written on the question of the relative advantages of rotary converters and motor generators. It may be shown by an analysis of the properties of the rotary converter, that only in cases where the distance of transmission is comparatively short, the transmission voltage high, and the outlay for cables relatively great, is it practicable to operate rotary converters satisfactorily with respect to automatic control of the commutator voltage for practically constant voltage at all loads. The range of cases in which 5 per cent. to 10 per cent. automatic over-compounding from no-load to full is practicable is still more restricted. Even with a low resistance per phase it is necessary to provide large, expensive, and wasteful auxiliary reactance coils, in order to obtain satisfactory control by automatic phase adjustment; and for anything more than a very low resistance per phase there is soon reached a value of the reactance beyond which it is ineffective in producing improved conditions in this respect. In fact, with shunt-excited rotary converters, and even with a small percentage of series-winding, reactance makes the regulation still worse.

In long-distance transmission systems, where one must, from economical considerations, have 20 per cent. voltage drop, and even more, in the high-tension line, the necessary conditions are not fulfilled, and motor generators should be employed.

The continuous-current generator of such a motor generator set is, so far as relates to voltage regulation, the equivalent of a generator driven direct from an engine with the same speed regulation as that of the engine at the power-house. It may be shunt-wound, or it may be compounded for constant terminal voltage at all loads, or for a voltage increasing with the load. The amount of loss in the high-tension transmission line has no influence upon its operation.

Thus, in a case where motor generators are employed, one will

expend just as much for transmission cables as is necessary to obtain maximum economy, when estimated on the basis of the interest on this capital outlay for cables and the cost of producing the energy dissipated in the transmission line. But when rotary converters are used, it becomes practically impossible to obtain satisfactory automatic control of the commutator voltage with more than from 5 per cent. to 10 per cent. resistance drop in the high-tension line, and a thoroughly excellent result is only to be obtained by a very low resistance drop. Hence, a successful plant, with rotary converter, in the sub-stations, only becomes economically possible where the length of transmission is not great, or where a higher voltage is employed for transmission than would be required for the operation of motor generators. Although these considerations have not been very prominently emphasised by writers in comparing the two systems, they corroborate the generally-accepted view that the use of rotary converters is attended with higher efficiency in operation than is the case where motor generators are used. But they are at variance with another generally-accepted conclusion, viz., that a lesser first cost may be attained by the use of rotary converters. This may sometimes be the case for short distances, but for other conditions the greatly increased outlay necessary for cables will generally lead to the opposite . result. Thus the question resolves itself, for any given case, into comparing the greater interest on capital expenditure when rotary converters are used against the cost of operation with motor generators. conditions where this comparison shows little to choose between the two systems, motor generators should be employed on the score of their great superiority in convenience of operation.

PART IV ALTERNATORS

:						
				•		
					•	

ALTERNATORS

THE method of designing alternators here set forth is founded upon experimental data, and it is not proposed to encumber its presentation with any superfluous theoretical considerations. Single and polyphase machines will often be considered together, it being quite unnecessary to devote entirely separate sections to them.

The controlling consideration in the design of commutating dynamos relates to the securing of sparkless commutation, and this imposes limitations, chiefly with respect to the permissible inductance of a coil between adjacent commutator segments, and the permissible armature reaction expressed in ampere turns per pole-piece on the armature.

In alternator design these limitations do not exist, so far as relates to their influence upon commutation, but they still in a large measure require to be observed in relation to their influence upon other matters affecting the general performance of the machine.

An alternator has to be designed for a given periodicity, and generally the speed of the engine or turbine is fixed from mechanical considerations; hence, if the alternator is to be direct-driven, the number of poles is fixed by these two values—the periodicity and the speed—and the designer has no freedom of choice in this respect. He must, nevertheless, make the armature strength and inductance sufficiently small to comply with specified standards of regulation. The number of poles being fixed, the armature strength can only be limited by limiting the number of turns thereon; but the inductance may also be maintained low, by transmitting the required total magnetic flux at the

¹ In fact, the method is admittedly slightly defective from the theoretical standpoint. This, however, is in the authors' opinion justified by the great gain in simplicity and utility thereby obtained. Nevertheless, although slight theoretical errors are introduced, much larger theoretical and practical errors, common to many other methods of designing alternators, have been avoided, and this is the distinguishing feature of the method.

greatest permissible flux density, and by subdividing the winding as much as practicable. From a mechanical standpoint, the best results are secured by the projection core construction; and, by due care in proportioning, machines of excellent electrical properties as to regulation may be obtained.

Ironclad armatures may be subdivided into uni-slot and multi-slot armatures. In the former, the conductors are concentrated in one slot per pole per phase; in the latter, they are more or less distributed in many slots per pole. These slots may be spaced at equal distances around the periphery, or more or less grouped, according to circumstances. This method of designating types is illustrated in Fig. 423.

Fig. 423. Diagram of Uni-slot and Multi-slot Armatures

The number of poles having been determined from the speed and periodicity, the next step is to consider the number of ampere turns per pole to be permitted upon the armature. Some designers advocate fairly strong armatures, reasoning that this obviates the necessity of automatic circuit-breaking devices, with the attending difficulties of adapting them to use on high-tension circuits of considerable capacity; since strongly reactive armatures, even if short-circuited, will not, with normal excitation, carry a dangerously high current. At short circuit the armature current opposes the field magnetisation, and the voltage falls, thus rendering it impossible for any excessive demand to be put on the steam-engine or other source of motive power. This is seen at a glance from Figs. 424 and 425, where, for constant excitation, and in terms of the amperes output, the curves of voltage and of kilowatts

output are given for a generator with so strong an armature reaction that, even on short circuit, the armature current only increases to 50 per cent. above its normal value.

Fig. 425 shows that, if the field excitation remain constant at the value required to maintain the normal voltage at the rated output, it is impossible to load the generator up to more than 205 kilowatts; hence the steam-engine or other source of power is protected from severe strains, as well as the generator.

Such a machine, with strong armature, is characterised by the small amount of iron in its magnetic circuit, in consequence of which the copper turns are short, and the amount of copper employed is also by

CURVES OF VOLTAGE AND KILOWATT OUTPUT

no means excessive: hence the design is very economical of material, and compact. The chief disadvantage, however, is the inferior inherent regulation.¹

INHERENT REGULATION

We may define inherent regulation as the percentage variation in the voltage of the machine, from no-load to full-rated amperes output, when the field excitation remains unchanged at such a value as to give the rated voltage at the rated amperes output. The inherent regulation will be different, according to the nature of the external load. It should preferably be quoted for a non-inductive external load (i.e., power factor = 1), and also for a completely-inductive external load

¹ With the advent of good automatic pressure regulators external to the machine, the inherent regulation becomes of less importance, and machines with strong armatures become permissible.

(power factor = 0). The latter condition can be approached in commercial tests with sufficient exactness for practical purposes.

In Fig. 426, the curve given shows the inherent regulation, with unity power factor, for a machine with low armature strength and low inductance. Fig. 427 shows the effect upon the regulation of doubling the armature strength, but retaining the same inductance (in practice, of course, difficult to accomplish, but nevertheless valuable as showing

Figs. 426 to 430. Inherent Regulation Curves

the way such changes tend to affect the regulation). In Fig. 428, the armature strength is restored to its original low value, but the inductance is doubled. Fig. 429 shows the case of doubling the original value, both of the armature strength and of the inductance. In Fig. 430, the curves of Figs. 426 and 429 are brought together for comparison.

THE INHERENT REGULATION FOR ZERO POWER FACTOR

For power factor = 0, the inherent regulation becomes a straight line, except in so far as magnetic saturation sets in, and is entirely dependent upon the value of the armature strength; being at the same time independent of the value of the reactance, except as regards modifications of quite a secondary order of importance.

In Fig. 431 are given curves of the inherent regulation for zero power factor, corresponding to the two cases where Fig. 430 shows the inherent regulation for unity power factor.

EXCITATION REGULATION

Excitation regulation may be defined as the percentage increase, above that for no-load, required in the excitation of a machine in order that, at rated amperes output, it may maintain the rated voltage. The

excitation regulation is also a function of the power factor of the external load. In Fig. 432 are given two curves of excitation regulation, one for unity power factor and the other for zero power factor. They are for the same machine of which Fig. 426 gave the inherent regulation curve.

The values of the excitation regulation corresponding to all the above cases are tabulated on the following page, and the numerical values for the inherent regulation are reproduced for comparison.

This Table is only intended to give a general idea of the influence that the variations, in the different designs indicated, would have upon the final results. The most important point to be learned from the table is that for cases where, with fairly good excitation and inherent regulation, it is desired that the regulation shall be more or less independent of the value of the power factor of the external load, one must work in the direction indicated by column 3, namely, to have the smallest possible armature strength (as expressed in ampere-turns per

pole-piece on the armature), and at the same time the highest possible reactance consistent therewith. This is not an impracticable combination, except from the mechanical standpoint. An armature, with very few turns, completely buried below the surface of the iron, could be proportioned to have high reactance voltage, notwithstanding the small number of turns. On non-inductive loads, however, it would not show (see column 1) nearly so good regulation as with the same number of armature turns in wide open slots, or (better still from this standpoint) secured to the armature surface; or, again, other arrangements might be made calculated to lessen the inductance; such, for instance, as dispensing with the armature iron altogether, as has been done in some designs.

TABLE LXIV.—VALUES OF EXCITATION REGULATION

	Armature Strength 1. Reactance Voltage 1.	Armature Strength 2. Reactance Voltage 1.	Armature Strength 1. Reactance Voltage 2.	Armature Strength 2. Reactance Voltage 2.
Excitation regulation for unity power factor	per cent.	per cent. 21	per cent. 18	per cent. 39
Excitation regulation for zero power factor	28	63	28	63
Inherent regulation for unity power factor	11	20	16	33
Inherent regulation for zero power factor	23	48	23	48
	<u>: </u>		<u> </u>	<u> </u>

Hence it follows that the nature of the load for which the generator is intended, and the method adopted for regulating the excitation, control the choice of lines on which to base the design. Enough has now been said to make it plain that the inherent regulative properties of an alternator will be improved by employing an initial field of high magnetomotive force to obtain the rated voltage at no-load, since the armature interference must be proportionately less the stronger the impressed magnetomotive force is in comparison with the interfering armature magnetomotive force and reactance. On the whole, though it will be now well understood that no sweeping assertion should be made, rather better results will generally be obtained by limiting the armature reaction and inductance to fairly low values. It is, at first sight, a curious result that low armature inductance improves the regulation on non-inductive loads, but does not in itself improve the regulation on inductive loads. Good regulation for inductive loads is secured by low armature strength, as expressed in ampere turns per pole-piece upon the armature. Decreasing the number of turns tends to keep the coils of moderate depth, thus also leading to better thermal conditions. On the score of safety at short-circuit, it may be said that any well-designed

alternator is capable of carrying three or four times its rated full-load current for a minute or more, and the armature reaction cannot economically be made so low as to permit more current than this, even at short-circuit. The force of the argument in favour of armatures with few turns of low inductance is weakened by the necessity of also protecting the source of power. Hence it may be said that the automatic cut-outs, now available for high-tension circuits, serve to protect the line, instruments, switchboards, and the source of motive power, rather than the alternator. The authors are of the opinion that automatic pressure regulators external to the alternator afford good promise of a solution to the question.

CALCULATION OF THE INDUCTANCE OF THE WINDINGS OF ALTERNATORS

Inductance is expressed in henrys, and a coil has an inductance of one henry when it is of such dimensions that a current of one ampere sets up a magnetic flux of such a magnitude that the product of the number of lines linked with the coil, multiplied by the number of turns in the coil, is equal to 100,000,000. If the coil has but one turn, then its inductance in henrys becomes 10⁻⁸ times the number of lines linked by the turn when one ampere is passing through it. And since one ampere passing around two turns sets up twice as great a flux, and as this flux is linked with both of the turns, the product of the flux multiplied by the turns will be four times as great as with one turn. The inductance of a coil is proportional to the square of the number of turns.

Measurements have been made of the inductance of many alternating current windings in slots of various proportions. The values derived, expressed in terms of the flux per R.M.S. ampere turn and per inch gross length of the armature laminations, have, for ironclad alternators of customary types, been found to generally lie between the limits of 20 and 50 C.G.S. lines for the position of maximum inductance, and between the limits of 10 and 35 in the position of minimum inductance. For rough trial values, one might take:—

For position of maximum inductance 40 C.G.S. lines per R.M.S. ampere turn, and per inch length of armature laminations.

For position of minimum inductance 25 C.G.S. lines per R.M.S. ampere turn, and per inch length of armature laminations.

And for average value, 33 C.G.S. lines per R.M.S. ampere-turn, and per inch length of armature laminations.

Fig. 433.		Position of Maximum Inductance.	Position of Minimum Inductance.
Number of poles	18	_	_
Number of armature coils	9		
Periodicity used in tests	125	_	
Reactance		1530 volts ÷ 65 am-	900 volts ÷ 65 am-
		peres = 23.5 ohms	peres = 13.84 ohms
Reactance per coil		2.62 ohms	1.54 ohms
Inductance per coil		0.00333 henry	0.00196 henry
Turns per coil	$\bf 32$	_	
Inductance for one turn		0.00000328 henry	0.00000193 henry
Flux per ampere turn		328 C.G.S. lines	193 C.G.S. lines
Length of laminations	15 in.	·	
Flux per ampere turn per inch	•••	21.8 C.G.S. lines	12.8 C.G.S. lines

Figs. 433 and 434. SLOT INDUCTANCE

Fig. 434 .		Position of Maximum Inductance.	Position of Minimum Inductance.
Number of poles	12		_
Number of armature coils	6		
Periodicity used in tests	125		
Reactance of total armature	•••	$\begin{array}{c} \downarrow 2080 \text{ volts} \div 43.5 \text{ am} \\ \text{peres} = 47.8 \text{ ohms} \end{array}$	$1100 \text{ volts} \div 43.5 \text{ amperes} = 25.25 \text{ ohms}$
Reactance per coil		7.98 ohms	4.2 ohms
Inductance per coil	•••	0.00102 henry	000532 henry
Turns per coil	46	_	
Inductance for one turn		0.00000478 henry	0.0000025 henry
Flux per ampere turn		478 C.G.S. lines	250 C.G.S. lines
Length of laminations	14 in.	<u> </u>	_
Flux per ampere turn per inch of length	•••	34.1 C.G.S. lines	17.8 C.G.S. lines

Fig. 435.		Position of Maximum Inductance.	Position of Minimum Inductance.
Number of poles	16		_
Number of armature coils	24	_	
Periodicity used in tests	60	-	
Reactance of one branch—i.e., 8 coils	}	$120 \text{ volts} \div 500 \text{ am}$ $peres = 0.24 \text{ ohms}$	$96 \text{ volts} \div 500 \text{ am}$ peres = 0.192 ohm
Reactance per coil		0.03 ohm	0.024 ohm
Inductance per coil	•••	0.0000795 henry	0.0000635 henry
Turns per coil	4		
Inductance per turn		0.00000495 henry	0.00000396 henry
Flux per ampere turn	•••	495 C.G.S. lines	396 C.G.S. lines
Length of laminations	20 in.		
Flux per ampere turn per inch of length	•••	24.8 C.G.S. lines	19.8 C.G.S. lines

Figs. 435 and 436. SLOT INDUCTANCE

Fig. 436.			Position of Maximum Inductance.	Position of Minimum Inductance.
Number of poles		20	_	_
Manufacture of the state of the		10	· —	
Periodicity used in tests		60		
Reactance of total armature	•••	•••	$105 \text{ volts} \div 10.4 \text{ amperes} = 10.1 \text{ ohms}$	$_{1}103.5 \text{ volts} \div 16.2 \text{ am}$ peres = 6.39 ohms
	•••	•••	1.04 ohms	0.639 ohm
Inductance per coil	'	•••	0.00277 henry	0.0017 henry
Manufacture of Assessment and a self-		24	_	
. To do show as four forms from			0.00000482 henry	0.00000295 henry
. Floor non among tour			482 C.G.S. lines	295 C.G.S. lines
Tamenth is lamin attended	•••	20 in.	_	
Flux per ampere-turn per in		•••	24.1 C.G.S. lines	14.7 C.G.S lines

Fig. 437.		Position of Maximum Inductance.	Position of Minimum Inductance.
Number of poles	24		_
Number of armature coils		_	_
Periodicity used in tests	each 60	_	,
Reactance of 12 sets of coils		109 volts ÷ 30.3 am-	$103 \text{ volts} \div 77.5 \text{ am}$
Posstance man set of 9 soils	•••	$\begin{array}{c} \mathbf{peres} = 1.33 \text{ ohm} \\ 0.3008 \text{ ohm} \end{array}$	peres = 3.61 ohms $0.1108 ohm$
Reactance per set of 2 coils Inductance per set of 2 coils		.000798 henry	0.000294 henry
Number of turns per set of 2	•••	'	:
coils	12	_	
Inductance for one turn	•••	0.00000555 henry	0.00000204 henry
∴ Flux per ampere turn	•••	555 C.G.S. lines	204 C.G.S. lines
Length of laminations	16 in.		
Flux per ampere turn per inch	•••	34.7	12.7

Figs. 437 and 438. SLOT INDUCTANCE

Fig. 438.		Position of Maximum Inductance.	Position of Minimum Inductance.
Number of poles	32	_	
Number of coils in test	16		
Periodicity used in test	25	_	
Total reactance of coils in test	•••	385 volts ÷ 46 am-	$370 \text{ volts} \div 88 \text{ am}$
,		peres = 8.36 ohms	peres = 4.2 ohms
Inductance of coils in test	•••	0.554 henry	0.0279 henry
Number of coils tested	16	_	_ •
Number of turns per coil	24		
Inductance per turn	•••	0.00006 henry	0.0000303
Flux per ampere turn	•••	600 C.G.S. lines	303 C.G.S. lines
Length of laminations	10 in.	_	<u> </u>
Flux per ampere turn per inch	•••	60.0 C.G.S. lines	30.3 C.G.S. lines
			İ

Coil AA consists of 24 turns in series. Position shown is that of maximum inductance. The intermediate slots may be considered empty, as their windings were not connected up.

Fig. 439.		Position of Maximum Inductance.	Position of Minimum Inductance.
Number of poles Number of armature coils in test Periodicity used in test Total reactance of coils tested	32 16 25 		 388 volts ÷ 36.7 am-
Inductance of coils tested Number of coils tested Number of turns per coil ∴ Inductance per turn ∴ Flux per ampere turn ∴ Flux per ampere turn per inch	Taken as 16 48 10 in	peres = 15.8 ohms 0.105 henry — 0.00000285 henry 285 C.G.S. lines 28.5 C.G.S. lines	peres = 10.6 ohms. 0.07 henry 0.00000190 henry 190 C.G.S. lines 19.0 C.G.S. lines

This is the same magnetic structure as in the preceding figure; but two coils, AA, BB, are connected in series. The position shown is that of maximum inductance. AA, BB, each consist of a coil of 24 turns in series, called coil AA, BB. The intermediate slots may considered empty, as their windings were not connected up.

Figs. 439 and 440. SLOT INDUCTANCE

Fig. 440.		Position of Maximum Inductance.	Position of Minimum Inductance.
Number of poles	20	_	_
37 1 6	10		
The of a 12 of the county of the county	60		_
Reactance of total armature		$196 \text{ volts} \div 8.25 \text{ amperes} = 23.8 \text{ ohms}$	$186 \text{ volts} \div 12 \text{ amperes} = 15.6 \text{ ohms}$
Reactance per coil	• • • • • • • • • • • • • • • • • • • •	2.38 ohms	1.56 ohms
Today stance man and		0.00634 henry	0.00415 henry
Turns per coil		_	_
T 1 4		0.00000275 henry	0.00000180 henry
T01	•••	275 C.G.S. lines	180 C.G.S. lines
Tanath of laminations	9½ in.	_	
Flux per ampere turn per in			
- Ît 1 4 L		28.9 C.G.S. lines	19.0 C.G.S. lines

Fig. 441.		Position of Maximum Inductance.	Position of Minimum Inductance.
Number of poles	24		_
Number of armature coils in test	2 coils of 24		
l .	turns each		
Periodicity used in test	30		
Reactance of coils tested		133 volts ÷ 24 am-	87 volts ÷ 27 am-
:		peres = 5.53 ohms	peres = 3.22 ohms
Inductance of coils tested		0.029 henry	
Turns per coil—i.e., test coil	24		_
.:. Inductance per turn		0.0000042 henry	0.00000245 henry
Flux per ampere-turn		420 C.G.S. lines	245 C.G.S. lines
Depth of laminations	12 in.		_
Flux per ampere-turn per inch		35 C.G.S. lines	20.4 C.G.S. lines.

Coil AA = 12 turns in series.

empty, as their windings were not connected up.

Gross Depth Laminations = 12 in.

Coil BB = 12 turns in series. Net depth laminations = 8.5 in.

Consider coils AA and BB in series to make up one coil of 24 turns called coil AA, BB.

Position shown is that of maximum inductance. The intermediate slots may be considered

Figs. 441 AND 442. SLOT INDUCTANCE

Fig. 442.		Position of Maximum Inductance.	Position of Minimum Inductance.
Number of poles	24	_	_
Number of armature coils in test	12 coils of 48		_
	turns each		
Periodicity used in test	3 0		<u>-</u>
Total reactance of coils tested		$288 \text{ volts} \div 24.5 \text{ am}$	230 volts ÷ 28 am-
		peres = 11.8 ohms	peres = 8.2 ohms
Inductance tested	_	0.0626 henry	0.0435 henry
Number of coils tested	Taken as 12	_ •	
Turns per coil	48	-	_
Inductance per turn	•••	0.00000226 henry	0.00000157 henry
Flux per ampere turn		226 C.G.S. lines	157 C.G.S. lines
Length of laminations	12 in.	_	_
.: Flux per ampere-turn per inch	•••	19.0 C.G.S. lines	13.1 C.G.S. lines

This is the same magnetic structure as in the preceding figure, but four coils AA, BB, CC, and DD, are connected in series. Opposite successive pairs of poles are other coils similarly disposed, but the results will be expressed in terms of the one set of coils shown. The intermediate slots may be considered empty, as their windings were not connected up. The position shown is that of maximum inductance, AA, BB, CC, and DD each consist of a coil of 12 turns in series. Consider coils AA, BB, CO, DD to make up one coil of 48 turns in series called AA, BB, CO, DD.

But, of course, it is very desirable to consider each case by itself, and the experimental data given in Figs. 433 to 442, pages 404 to 408, will be of use for the purpose.

From such data as that of the preceding tests, it is possible, in designing a new machine, to make a fair estimate of its inductance. As an example of the process, the case may be taken of a uni-slot, 20-pole, ironclad armature, with 10 coils of 20 turns each. The length of the armature laminations, parallel to the shaft, may be taken as 15 in. After comparing the slot dimensions with the cases in Figs. 433 to 442, it is decided to assume an average inductance for all positions, of 30 lines per ampere

Fig. 443. Volt-Ampere Curve

turn and per inch length of armature lamination. Then the average inductance of one coil is: $20^2 \times 0.00000030 \times 15 = 0.0018$ henry.

And the inductance of the entire armature between collector rings (10 coils in series) = $10 \times 0.0018 = 0.018$ henry.

If the periodicity of this machine were 80 complete cycles per second, then the reactance of the winding would be: $2 \pi \times 80 \times 0.018$ = 9.0 ohms. And, at a current output of 200 amperes, the reactance voltage equals $200 \times 9.0 = 1800$ volts.

Whereas, in considering the inductance of the short-circuited coil in commutating generators, it is the value for the position of minimum inductance which possesses the chief interest; in the case of alternators, account must be taken of the inductance in all positions, from maximum

to minimum, in order to consider with exactness the performance of a machine under all circumstances. The reason for this will appear later. Here, however, may be given, without further explanation, characteristic volt-ampere curves for constant field excitation, and for non-inductive load. The first, curve A, Fig. 443, is calculated from the average value of the inductance. In the second, curve B of Fig. 443, approximate allowance is made for the variation of the inductance at different points of the curve, from its maximum to its minimum value.

Before proceeding to thoroughly practical applications of the methods of calculating these and similar curves and quantities, it is very necessary to clear up another point where our method is at variance with those in general use.

In such methods, one frequently finds the inductance of the alternator considered as a quantity quite as separable and independent as the inductance of the line, or of a reactance coil. In certain respects this is quite right; but care should be taken not to forget that there is, in an alternator, an impressed magnetic flux traversing the same iron core which is the seat of the inductance flux. Alternators have been analysed on the assumption that one could rightly represent the inductive armature as equivalent to a non-inductive armature, devoted solely to the work of generating energy by the mechanical passage of its conductors through an impressed magnetic field, plus a separate reactance coil, independent of the impressed magnetic field, and having an inductance equal to that of the armature. Fig. 444 represents this conception.

From this it has been said that the non-inductive armature must generate a voltage equal to the vector sum of the terminal voltage E_t , and the reactance voltage E_r ; and this has been called the internal voltage E_t . Their relative values and phase relations are shown in Fig. 445.

When the load is non-inductive, the current is in phase with the terminal voltage, hence ϕ represents the angle of lag of the current behind the internal voltage. Diminishing the load, and consequently the armature current, reduces the reactance voltage, until, at no load, it becomes zero; and if the excitation remain unaltered, the terminal voltage finally comes to coincide, both in phase and magnitude, with the internal voltage. In Fig. 446 the diagram is given corresponding to a current output of one-half that taken for Fig. 445; and in

Fig. 447 the current (and hence also the E_r), having become zero, E_t has become equal to E_t .

The method goes on to the conclusion that, to obtain a terminal voltage of the value E_i , there must be present in the armature an impressed flux of the relative value E_i , and that

$$\mathbf{E}_{i} = \sqrt{\mathbf{E}_{i}^{2} + \mathbf{E}_{r}^{2}}.$$

This would be the case for such a circuit as that represented in Fig. 444, where an inductance is actually exterior to a non-inductive armature, but it will not be the case where the inductance is an

DIAGRAMS RELATING TO QUESTIONS OF ALTERNATOR REGULATION

attribute of the very same conductor-wound armature, whose conductors, by being driven through an impressed magnetic field, generate the current delivered from the terminals at the voltage E_t . In such a case there is the reactance voltage E_r , set up by the flux of self-induction corresponding to the alternating current in the conductors, and the magnitude of this reactance voltage E_r corresponds to the magnitude of this flux of self-induction. There is also the terminal voltage E_t , set up by the cutting of the impressed flux by the armature conductors, and the magnitude of this terminal voltage E_t corresponds to the magnitude of this impressed flux.

¹ The impressed flux is the actual flux which crosses the air gap from the pole-faces, and becomes linked with the armature coils; not the greater flux which is set up in the magnet core itself, a part of which latter completes its circuit by other paths, and does not enter the armature winding.

But the theory above commented on, and to which we take exception, led to the conclusion that for a given terminal voltage \mathbf{E}_{i} and reactance voltage \mathbf{E}_{n} , there would be necessary an impressed flux corresponding in magnitude to the internal voltage \mathbf{E}_{i} ; *i.e.*, greater than corresponded to the magnitude of the terminal voltage \mathbf{E}_{i} , in the following ratio:—

$$\frac{\mathbf{E}_{t}}{\mathbf{E}_{t}} = \frac{\sqrt{\mathbf{E}_{t}^{2} + \mathbf{E}_{r}^{2}}}{\mathbf{E}_{t}} = \sqrt{1 + \tan^{2} \phi}.$$

The terminal voltage E, exists, and the reactance voltage E, exists, and the armature inductance (to which E, is proportional) causes a retardation in the rise and fall of the alternating current, in accordance with precisely the same laws which would hold for inductance contained in the conducting circuit external to the armature. And also the results of the retardation, so far as relates to the reaction of the armature upon the magnetic field, are in all respects the same as if the inductance were external to the armature, and were not a property of the armature itself. But the one point which must be insisted upon is that (armature CR drop being neglected), there is no so-called internal voltage bearing the relation to the terminal voltage set forth in the expression—

$$\frac{\mathbf{E}_{i}}{\mathbf{E}_{i}} = \sqrt{1 + \tan^{2} \phi}.$$

The cyclic curve of terminal voltage, it is true (and that of current also when the external circuit is non-inductive), is retarded in attaining its maximum value with relation to the relative positions in space of conductors and pole-face, by the angle ϕ (whose tangent is $\frac{E_r}{E_t}$) behind the position at which it attained its maximum value when there was no current in the armature, this latter position being that where the conductors stand opposite the middle of the pole-face. Hence, for convenience sake, we may draw the geometrical resultant of

$$E_{t}$$
 and E_{t} and call it E_{t} and cos. $\frac{E_{t}}{E_{t}} = \phi$,

the angle of the lag just described. But, in so far as the estimation of the magnitude of the magnetic flux under various conditions is concerned, this flux must be estimated not of such magnitude as to correspond to E, but as only sufficient in magnitude to account for E. The same result could be arrived at by reasoning that there is

the internal voltage E_i and the corresponding flux, but that a component of that flux is neutralised by the flux corresponding to the reactance voltage E, leaving a residual flux corresponding in magnitude to E_i ; but this is unsatisfactory, inasmuch as this larger flux has no existence in fact.

EXPERIMENTAL CONFIRMATION OF THE THEORY

The above assertion has been experimentally confirmed by tests on alternators of various proportions.

The nature of the results of these will be made clear by the following description of a hypothetical case:—

The alternator has two extra collector rings provided, which constitute terminals of an exploring coil, wound at the bottom of the slots carrying one of the main coils. The voltage at the terminals of the exploring coil is measured when there is no load and 2020 volts on the main winding, and again when there are 200 amperes and 2000 volts on the main winding. The ohmic resistance of the armature winding is 0.1 ohm.

Whereas 4000 ampere turns per pole-piece sufficed to maintain the terminal voltage at 2020 with no load, in the second case there is required a field excitation of 5000 ampere turns per pole-piece to maintain the potential at 2000 volts at the main collector rings with a load of 200 amperes. But in both cases we obtain the same potential at the terminals of the exploring coil; from which it follows that the magnetic flux linked with the main coil is also the same in both cases, *i.e.*, the same at full load as at no load.

The significance of this conclusion lies in the consequence that, to correctly interpret the performance of alternators, we must only take the reactance voltage into account in determining the phase displacement of the terminal voltage E_t from the mid-pole-face position; and we must disabuse our minds of the impression that the reactance voltage and the terminal voltage combine to make an internal voltage, with which latter there is associated a resultant magnetic flux greater than suffices for

the terminal voltage in the ratio $\frac{\mathbf{E}_{i}}{\mathbf{E}_{t}}$

Thus the field excitation, to maintain the same collector-ring voltage at no load as at full load, need only be increased by an amount corresponding to the demagnetising component of the armature ampere turns, i.e., by an amount sufficient to maintain through the armature winding the same main flux as at no load.

The authors are of opinion that, even if allowance is made for a reactance voltage component in deriving the true internal flux, great care should be taken in this case to employ only that component of the "apparent" reactance voltage which corresponds to that part of the armature stray flux which does not enter the field pole-face. This is a much smaller flux than that corresponding to the "apparent" reactance voltage; and the vectorial inclusion of the reactance voltage corresponding to this small component flux will lead to a total internal flux and voltage but little greater than the flux corresponding to the terminal voltage. Hence this small component could exist, and still escape detection in the tests described above. These tests are, however, conclusive in negativing the existence of a vector component of the internal voltage of any such magnitude as corresponds to the "apparent" reactance voltage.

In a paper in which one of the authors recently collaborated¹, a method is laid down in which this plan of procedure is followed. For machines with low or moderate saturation of the magnetic circuit, the results obtained by this latter method are in very fair agreement with the results obtained by the method set forth in the present treatise. Where high saturation of the magnetic circuit is employed, the results obtained by the American Institute paper above referred to, are considerably more accurate², and it is often preferable in such cases to employ it in the final design, although the very great simplicity of the calculations and diagrams employed in the method set forth in the present treatise permit of a much more comprehensive grasp of the subject in preparing the preliminary designs. In fact, it is the authors' practice to employ the present method very generally, and to make approximate corrections proportionate to the degree of saturation employed. The exigencies of commercial designing generally render simple

¹ "Contribution to the Theory of the Regulation of Alternators," H. M. Hobart and F. Punga, read before the American Institute of Electrical Engineers, New York, April 22nd, 1904.

² One other feature to which much attention has been given in the American Institute paper is the influence of the ratio of the pole arc to the pole pitch. This has also been neglected in the present method, as alternators generally vary but slightly in this respect. It need only be mentioned here that a very small value for this ratio considerably improves the regulation for unity power factor, but impairs it slightly for lower power factors.

methods preferable, even when the final results require correction by more elaborate methods. In the present case, however, such correction is only necessary in designs with highly-saturated circuits. In such designs the uncorrected results indicate an inherent regulation inferior to that which will be actually obtained. Hence the error is on the safe side.

It has been necessary to treat this question at considerable length, since on the value of the actual maximum magnetic flux present depends not only a series of conclusions with reference to the saturation of the magnetic circuit under various conditions, and the corresponding necessary excitation, but also all calculations relating to core loss. It is, however, the first group of considerations which will now occupy our attention.

The terms "reactance," "reactance voltage," "angle of lag," "impressed flux," etc., as used in the preceding explanations, may be thought by some not to be the most satisfactory that might have been adopted. It can only be stated that, as nearly as appeared practicable, use has been made of the most approved and widely-adopted conceptions of these terms, while at the same time some very thoroughly experimentally-demonstrated facts had also to be taken into consideration. After a large amount of investigation, the present use of terms was decided upon as best reconciling these two conditions; and the writers are of the opinion that a careful consideration of the examples of the application of these terms to alternator design will lead to a recognition that, from the practical standpoint, they are correct, exact, and useful. Tests will subsequently be described, which will show the experimental curves of alternators to be in close agreement with the curves predetermined on this basis.

MAGNETIC LEAKAGE (INCREASE WITH LOAD)

In alternators it is customary to make a rough allowance, say from 10 to 15 per cent. up to sometimes 30 or even 40 per cent., for the stray leakage magnetic flux. That is to say, if the magnet cores are long, and with broad sides, and only a few inches apart, and if the air gap is only moderately short, simple approximate calculations of length and cross-section of the various more direct magnetic paths will often show that, of a flux of 130 or 140 kilolines, not over 100 will actually, at no load, cross the air gap to the armature surface, and eventually become linked with the armature winding. In other better cases, with short magnet cores and small air gap, the discrepancy may be as low as 10

per cent. or 15 per cent. There is also a reasonable amount of experimental data constituting an independent basis for such estimates.

When the armature turns carry no current, and hence have no magnetomotive force, there is hardly any fall of magnetic potential from that portion of the surface of the armature where the lines from the north pole enter, to the portion of the surface of the armature where they leave to return to the south pole. But as soon as the armature coils carry current, they become the seat of an independent magnetomotive force, which sets up differences of magnetic potential at the different poles of the armature surface, just as do the field coils at the different poles of the magnetic field. There is one main difference, however; whereas, at a given point of the field, the polarity remains the same, the polarity at a given point of the armature surface changes periodically in response to the alternations in the armature current.

Such changes are in synchronism with the revolutions, and hence this given point on the armature surface will have, at any instant, a given polarity relatively to the pole to which it may be adjacent at In other words, suppose that this given point on the armature be energised as a pole (N) by the armature current, by the time the armature has moved round till this point faces a field-pole (S) the armature current alternation will have reversed the polarity sign of the point on the armature, and made it into a pole (S) also; hence it follows that, although the point on the armature changes polarity, it always retains the same sign in relation to the pole-face it may be With 90 degs. lagging current, the armature polarity is of maximum strength when directly opposed to the field polarity. 90 degs. leading current, the armature polarity is of maximum strength, but in exactly the same direction as the field polarity. armature current is in phase (i.e., neither lagging nor leading with relation to the uniformly distributed magnetic field) the armature polarity is at a maximum when its poles are midway between the fieldmagnet poles, and hence in a position where it can have no effect, either to oppose or aid the field-poles, except to the extent of distorting the flux distribution. But the point here under consideration is not the demagnetising or magnetising effect, but a secondary result, namely, the variations which these effects bring about in the magnetic leakage.

In Fig. 448, on the next page, is shown one magnetic circuit of a multipolar machine.

The field excitation may be assumed to be 5000 ampere turns per pole. Of this magnetomotive force of 5000 ampere turns, 2500 are required to overcome the magnetic reluctance of the field magnet, 1000 for each air gap, and the remaining 500 overcome the magnetic reluctance of the armature part of the circuit A. Between the surfaces m and n, the difference of magnetic potential is 2500 ampere turns, and between o and p it is 500 ampere turns.

But suppose, in the position shown in Fig. 448, there flows such a current in the armature coils as to set up a magnetomotive force of

Fig. 448. One Magnetic Circuit of Multipolar Alternating-Current Generator

2000 ampere turns in this same magnetic circuit. In the first place, the current may be supposed to be lagging by 90 deg. Let the field excitation be increased from 5000 to 7000 ampere turns, so as to maintain the same total of magnetic flux in spite of the demagnetising influence of the armature current. The magnetic potential between the points m and n increases from 2500 to 4500 ampere turns, and that between the points o and p, from 500 to 2500 ampere turns. Hence, there will be a greatly-increased leakage flux, especially towards the lower ends of the magnet cores, and over the armature surface. Assuming the same value for the armature current, but assuming it to lead by 90 deg. instead of to lag, then the field excitation must be reduced from 5000 to 3000 in order to maintain the same magnetic flux. This reduces the difference

of magnetic potential between points m and n from 2500 to 500 ampere turns, but that between o and p is increased from 500 to 1500; that is to say, of the magnetomotive force of 2000 ampere turns, furnished by the magnetising armature current, 500 are consumed in overcoming the magnetic reluctance of the armature laminations, and 1500 remain available beyond o and p. But as 2000 are necessary for the gaps (1000 for each), the 1500 ampere turns of the magnetomotive force of the armature require 500 of the 3000 supplied by the field coils, to overcome the reluctance of the gap up to the pole-faces m n, leaving 2500 ampere turns as before, to overcome the reluctance of the field magnets.

From Table LXV. it appears that, representing the leakage flux from the region m m m, o o o, to n n n, p p p, at no-load, by $\frac{2500 + 500}{2} = 1500$, then with 90 deg. lag, and an armature strength of 2000 ampere turns, this leakage flux will have increased to $\frac{4500 + 2500}{2} = 3500$, but that with 90 deg. leading current, it decreases to $\frac{500 + 1500}{2} = 1000$. Or, letting 1 represent the leakage flux under the first condition (no-load),

				2000 Armature	Ampere Turns.	
			No-Load.	With 90 Deg. Lag.	With 90 Deg. Lead.	
m and n		 	2500	4500	500	
o and p	•••	 	500	2500	1500	
Field excitation		 	5000	7000	3000	

TABLE LXV.-MAGNETIC POTENTIAL BETWEEN SURFACES WITH FLUX F.

then 2.3 represents the leakage flux for lagging full-load current, and 0.67 for leading full-load current, a very wide range of alteration.

This brief statement makes no pretence to exactness, but is merely intended to emphasise the fact that the leakage coefficient may be considerably affected by the amount and nature of the load. Alternators in which the field excitation is strong, and the armature strength, in ampere turns per pole, weak, are, of course, less subject to this variation. Moreover, in practice, machines rarely carry loads making up a total

power factor of less than 0.85; but, even with unity power factor, if the armature winding is very inductive, the armature current will reach its maximum value at a position corresponding to a considerable displacement of the armature polarity beyond the neutral point; and, as will now be explained, will be effective in opposing the field magnetisation.

DEMAGNETISING EFFECT OF THE ARMATURE CURRENT

It may be said that the armature demagnetising effect increases proportionally to the sine of the angle, by which the maximum value

Figs. 449 to 451. Diagrams to Illustrate the Influence of Armature M.M.F.

of the current lags behind the mid-pole-face position, and tests made for the purpose prove this to be approximately the case.

Particular notice should, however, be drawn to the fact that the demagnetisation increases at first very rapidly, as the position of maximum value of the current begins lagging in phase behind the mid-pole-face position, and reaches nearly its full value when the conductors of the armature coils are opposite the pole-corners at the moment of maximum current; afterwards increasing more slowly.

In Fig. 449, page 419, suppose a b to form conductors of a coil on the armature, and N S two pole-faces. The position shown illustrates the case in which the maximum value of the current is reached when the centre of the coil a b is exactly midway between the two poles N S, the conductors being exactly at the mid-pole-face position. In this position, therefore, the demagnetising effect of the current in the armature coil a b is a minimum.

In Fig. 450, page 419, the maximum value of the current occurs somewhat later, hence this represents the case of a considerable angle of lag. From the position in Fig. 449 up to this point (conductors opposite pole-corners, see dotted line) the demagnetising effect increases very rapidly, but when this position is passed it increases much more slowly.

Fig. 451 shows the position where the current is at a maximum when the centre of the coil a b is exactly opposite the pole-face N, the conductors a b thus being midway between two poles, S N and N S. In this case the angle of lag is 90 deg. At this position the demagnetising effect of the armature current is greatest; but, as before pointed out, it increases but very little after the conductors a b of the coil pass the pole-corner shown by dotted line.

It is convenient and sufficiently accurate to take the demagnetising effect as increasing proportionately to the sine of the angle of lag between the mid-pole-face position and the position of the conductors when carrying maximum current; and this is of importance in predicting the performance of an alternator under various conditions of service.

PREDETERMINATION OF CHARACTERISTIC CURVES FOR A 225-KILOWATT SINGLE-PHASE ALTERNATOR

The method may best be illustrated by applying it to an example. A certain single-phase alternating current generator has a magnetic circuit of such proportions as to require, at no-load and 2250 volts, a field excitation of 3100 ampere turns per field spool.

The machine has 28 poles. It has 14 armature coils of 28 turns each. Therefore, $\frac{14 \times 28}{28} = 14$ turns on armature per pole-piece.

Full load = 225 kilowatts.

Therefore, full-load current = 100 amperes (at 2250 volts).

Gross length of armature lamination parallel to shaft = 10.5 in

Average inductance may in this case be taken at 25 C.G.S. lines per ampere turn and per inch gross length of armsture laminations.

Inductance of one coil = $28^2 \times 0.00000025 \times 10.5 = 0.00205$ henry.

Inductance of entire armature (14 coils in series) = $14 \times 0.00205 = 0.0287$ henry.

Speed of armature = 356 revolutions per minute.

Periodicity = $\frac{356 \times 28}{2 \times 60}$ = 83 cycles per second.

Reactance = $\pi \times 83 \times 0.0287 = 15.0$ ohms.

Reactance voltage with full-load current of 100 amperes = 100 x 15 = 1500 volts.

Figs. 452 to 454. Diagrams for Unity Power Factor

Assuming a sine wave-current curve, there are on the armature, at full-load current,

 $14 \times 100 \times \sqrt{2} = 1980$ ampere turns per pole-piece.

When the external load is non-inductive (see Figs. 452 to 454), the tangent of the angle of lag of the position of maximum current behind the mid-pole-face position

$$= \frac{AB}{AO} = \frac{1500}{2250} = 0.665.$$

Therefore, angle of lag = 33.5 deg.; And sine of angle of lag = 0.552 deg. Hence, demagnetising effect of armature under these conditions (i.e., non-inductive full-load beyond collector rings) = $0.552 \times 1980 = 1100$ ampere turns.

Therefore, field excitation required with full load (externally non-inductive) = 3100 + 1100 = 4200 ampere turns per field spool.¹

Figs. 455 to 457. Diagrams for Power Factor 0.90

Furthermore, the method admits of the predetermination of the necessary field excitation for any load in amperes, and for any power-factor. Thus, in the machine under consideration, determination may be made as follows, of a curve showing the necessary excitation for maintaining the terminal voltage constant at 2250, when full-load current of 100 amperes is furnished, the power-factor of the external

¹ The armature CR drop is not considered in any of these calculations and diagrams, as the error thereby introduced is negligible.

load varying from 1.00 down to very small values. The requisite excitation for an external load having a power-factor of 1.00 has already been found to be 4200 ampere turns per field spool.

For power-factor of 0.90 in the external circuit (see Figs. 455 to 457), proceed as follows:—

In Fig. 455 lay off the angle dac = 25.5 deg. (cos. 25.5 deg. = .90) as shown.

Angle abc has already been found to be 33.5 deg.

Angle $afb = \tan^{-1}\frac{ab}{af} = \tan^{-1}\frac{1500}{1200} = \tan^{-1}1.25 = 51.3$ deg. = total angle of lag between mid-pole-face position and position of maximum current.

Therefore, sine afb = 0.780.

And ampere turns per field spool = $3100 \times (0.780 \times 1980) = 3100 + 1550 = 4650$ ampere turns.

Fig. 458. Diagram for Power Factor of 0.60

Thus it appears that, in the case of this particular machine, a power-factor of 0.90 for the external load demands an increase of 11 per cent. in the excitation over that required for a non-inductive external load of the same amperage. Next, with a power-factor of 0.60 for the external load, construct Fig. 458, in which angle

$$dac = 53.0 \text{ deg.} = \cos^{-1} 0.60.$$

This gives

$$afb = \tan^{-1} \frac{1500}{630} = \tan^{-1} 2.38 = 67.20 \text{ deg.}$$

Sine 67.2 deg. = 0.922
 $1930 \times 0.922 = 1830$
 $1830 + 3100 = 4930$

Therefore, 4930 = ampere turns necessary for 2250 terminal volts when power-factor of external load = 0.60.

Lastly, as the power-factor approaches zero (90 deg.), the armature demagnetisation will approach 1980 (maximum ampere turns per polepiece on armature). Therefore, in this case, the field excitation for 2250 terminal volts and full-load current (100 amperes) = 1980 + 3100 = 5080 ampere turns.

The above results are, for convenience, summarised in Table LXVI.:—

TABLE LXVI.								
Power factor of external load	1.00	0.90	0.60	0.0				
External angle of lag (i.e., angle of lag of maximum value of current behind maximum value of terminal voltage) deg.	0.0	25.5	53.0	90.0				
Internal angle of lag (i.e., angle of lag of maximum value of terminal voltage behind mid-pole-face position) deg.	33.5	33.5	33.5	33.5				
Resultant angle of lag (i.e., angle of lag of maximum value of current behind mid-pole-face position deg.	33,5	51.3	67.2	90.0				
Excitation per field spool for 2250 terminal volts and 100 amperes	4200	4650	4930	5080				

Fig. 459 gives a curve showing the necessary excitation for 2250 volts and 100 amperes, with various power-factors.

LOAD SATURATION CURVES

It is proposed to next calculate the saturation curve at full (externally non-inductive) load of 100 amperes.

- (1) Terminal voltage = 0. Excitation per field spool will be slightly in excess of maximum ampere turns per pole-piece on armature. Therefore, field excitation = 1980 ampere turns per spool.
- (2) Terminal voltage = 400. The saturation curve of this machine at no-load is a straight line up to 2250 volts; see Fig. 461, page 426.

¹ In reality, the line a b ought to have been shortened with each increase of lag of the current, as the current reaches its maximum value when the slot is nearer the position of minimum inductance, as already pointed out. Hence, in practice, the necessary ampere turns per field spool should not increase so much, with decreased power factor of the external load, as the results of this calculation show.

Then $\frac{400}{2250} \times 3100 = 550$ ampere turns per field spool. And to obtain armsture demagnetisation by foregoing method (Fig. 460, page 426):

Angle of lag of current behind the mid-pole-face position

$$= \phi = \tan^{-1} \frac{1500}{400} = \tan^{-1} 3.75 = 75.1 \text{ deg.}$$

Therefore

sine
$$\phi = 0.966$$
.

And $0.966 \times 1980 = 1910$ ampere turns armsture demagnetisation. Hence 550 + 1910 = 2460 ampere-turns per field spool for 400 terminal volts, and 100 amperes with non-inductive load.

Fig. 459. Curve of Excitation for Various Power Factors

Following this method, calculations are made for 1000 and 2000 volts, and all the results incorporated in Table LXVII., and illustrated by the curves of Fig. 461, page 426.

TABLE LXVII.									
Amperes in armature		•••	100	100	100	100	100		
Voltage at armature terminals			0	400	1000	2000	2250		
Ampere turns per field spool			1980	2460	3010	3945	4200		

Here again, while the first point and the last point would be

almost correct, the intermediate points, especially that at 400 volts, would be very inaccurate through taking the average inductance as a basis for the line ab. As a matter of fact, it would be very near the minimum inductance, and the angle ϕ is very dependent at this point on the length of ab as compared with ac. If corrected, the curve would more resemble the dotted line shown in Fig. 461, in which the full line gives the

VECTOR DIAGRAMS OF ALTERNATOR REGULATION

uncorrected calculated curve of ampere turns per field spool for various voltages, with non-inductive external load. When the external load is inductive, the saturation curve for a given current (say, full-load current of 100 amperes) differs from the load saturation curve of Fig. 461; and, in fact, there is a different curve for each value of the power factor of the external load. We have already derived the curve for 100 amperes and unity power factor, and have plotted it in Fig. 461.

CALCULATION OF SATURATION CURVES FOR VARIOUS POWER FACTORS

1. Power factor = 0.

For terminal voltage = 0, we have already determined that 2000 ampere turns per field spool are required for 100 amperes in the armature.

For terminal voltage = 400. The full armature strength of 1980 ampere turns exerts an effective magnetomotive force in opposition to the field excitation. Consequently we require

$$\frac{400}{2250}$$
 × 3100 + 1980 = 550 + 1980 = 2530 ampere turns.

For 800 terminal volts:

$$\frac{800}{2250}$$
 × 3100 + 1980 = 3080 ampere turns.

And so the curve will keep on in a straight line, and at 2250 terminal volts it will reach the value of 5080 ampere turns, already determined in the power-factor curve of Fig. 459, page 425.

2. Power factor = 0.5.

The curve starts, of course, from the same value of 2000 ampere turns at zero terminal voltage.

Terminal voltage = 800. Construct Fig. 462 with ab = 1500, ad = ac = 800. Sin afb = 0.98. Hence the curve continues to this point substantially the same as the curve for power factor = 0.

Terminal voltage = 1600. Construct Fig. 463, where a d has become 1600.

Sin
$$afb = 0.96$$
.
Field excitation = $\frac{1600}{2250} \times 3100 + 0.96 \times 1980 = 2200 + 1900 = 4100$.

At terminal voltage of 2250 the excitation will be 4975 ampere turns per field spool, as shown by the power factor curves of Fig. 459. The results for similar calculations at power factors of 0.8 and 0.95 are arranged with the preceding in the following Table, and are plotted in the curves of Fig. 464.

Table LXVIII.—Field Excitation with 100 Armature Amperes and Various Power Factors (Inductance Assumed Constant)

Terminal Voltage.	Power Factor.							
	0	0.5	0.8	0.95	1.0			
0	2000	2000	2000 -	2000	2000			
800	3100	3050	2980	2910	2840			
1600	4200	4100	3950	3770	3500			
2250	5080	4975	4760	4500	4200			

CALCULATION OF CURVES OF EXCITATION REGULATION

First case: Non-inductive external load. (Power factor = 1.00.)

To obtain the curve of excitation regulation, showing ampere turns per field spool required for 2250 terminal volts at all currents from no load to full load, and with non-inductive external load, proceed thus:—

First: Amperes = 0. There are required (see no-load saturation curve of Fig. 461, page 426) 3100 ampere turns per field spool.

Second:

Amperes = 33. Reactance voltage =
$$\frac{33}{100} \times 1500 = 500$$
 volts.
Angle of lag = $\tan^{-1} \frac{500}{2250} = \tan^{-1} 0.222 = 12.5$ deg.
Sin 12.5 deg. = 0.217. 0.217 × $\frac{33}{100} \times 1980 = 142$.

Hence, 142 + 3100 = 3242 ampere turns per field spool for 33 amperes and 2250 terminal volts.

Similarly, the remaining values in the following Table are obtained:

TABLE	LXIX.—Excitation	FOR	VARIOUS	LOAD8	AT	Unity	Power	FACTOR	AND
2250 Terminal Volts									

Volts at terminals			2250	2250	2250	2550
Amperes in armature		•••	0	33	67	100
Ampere turns per field	spool	1	3100	3242	3640	4200
				1		

And these values are plotted in the lower curve of Fig. 466.

Second case: External load with power factor = 0.08.

For zero amperes, 3100 ampere turns are, of course, required as

Fig. 465. Excitation Regulation

CURVES OF EXCITATION REGULATION

Fig. 466.

before. For 33 amperes, reactance voltage = 500 volts. Construct Fig. 465, with

ab = 500, ad = 2250, and angle dac = 37 deg. (cos. 37 deg. = 0.8). Then angle afb = 45.8 deg. Sin 45.8 deg. = 0.716. $0.716 \times \frac{33}{100} \times 1980 = 465$.

465 + 3100 = 3565 = excitation required for 2250 terminal volts when the alternator delivers 33 amperes to an external circuit with a power factor of 0.8. The remaining values in the following Table are similarly calculated:

TABLE LXX.—Excitation for Various Goods at 0.80 Power Factor and 2250 Terminal Volts

Volts at terminals	 2250	2250	2250	2250
Amperes in armature	 0	33	67	100
Ampere turns per field spool	 3100	3565	4155	4760

These values are plotted in the middle curve of Fig. 466.

Third case: External circuit with power factor = 0.

In this case the full armature strength is exerted in opposition to the field excitation, which latter must, therefore, receive increments in direct proportion to the armature amperes, in order to maintain the terminal voltage constant at 2250 volts for all values of the amperes output. Hence the curve of excitation regulation for power factor = 0

Fig. 467.

must be a straight line connecting 3100 ampere turns (the excitation for zero amperes output), with 5080 ampere turns (the value for 100 amperes output already found for the curve of Fig. 464, page 427). This is shown in the upper curve of Fig. 466.

THE "SHORT-CIRCUIT" CURVE

The "short-circuit" curve is a curve plotted with field excitation as abscissæ, and with armature currents on short circuit as ordinates, the alternator being driven at its normal speed. The current reaches its maximum value when the slot is 90 deg. behind the mid-pole-face position (i.e., the angle of lag is 90 deg.). Hence the full armature strength is exerted in direct opposition to the field spool magnetomotive force, and the field excitation requires to be of such a value as to suffice to overcome the small C R drop in the armature conductors. Therefore,

the ampere turns per field spool will for each value of the armature current, be just about equal to the maximum value of the armature ampere turns per pole-piece. The curve will be a straight line passing through the origin, and through the point having 100 amperes for its ordinate and 1980 ampere turns for its abscissæ, this being the maximum armature ampere-turns per pole-piece at full-load current of 100 amperes. The curve is given in Fig. 467.

CALCULATION OF THE VOLT-AMPERE CURVE

The volt-ampere curve is taken with constant field excitation, and is plotted with ordinates representing the terminal voltage, and abscissæ representing the amperes output. The curve is a function of the power factor of the load.

VOLT-AMPERE CURVE FOR POWER FACTOR = 1

For the greatest accuracy, the calculation of the volt-ampere curve requires a knowledge of the inductance of the armature winding for all positions, from the mid-pole-face position to the position of minimum inductance. Generally, however, one obtains a curve amply satisfactory for practical purposes by taking at all positions the average value of the inductance. We shall now proceed to make the calculation for the alternator, using the maximum value of the reactance (18 ohms) for all current outputs from zero amperes up to 75 amperes (75 per cent. of full-load current), the average value (15 ohms) from 75 amperes up to about 150 amperes, and the minimum value (12 ohms) from 150 amperes up to the current at short circuit.

The no-load saturation curve Fig. 468, page 432, which differs from that of Fig. 461 only in being carried up to high saturation values, is used in the calculations.

It has already been found (see Fig. 459, page 425), that 4200 ampere turns are required for 2250 volts with full non-inductive load of 100 amperes. So the volt-ampere curve will be calculated with a constant field excitation of 4200 ampere turns.

For zero amperes output we find from the saturation curve of Fig. 468 that we shall have 2900 volts.

For 40 amperes: Reactance = 18 ohms. Reactance voltage = 720.

The problem is to obtain the corresponding terminal voltage: Let terminal voltage = x. Then tangent of angle of lag of position of maximum current behind mid-pole-face position = $\frac{720}{x}$.

Full armature strength, with 40 amperes, is

$$\frac{40}{100} \times 1980 = 790$$
 ampere turns.

The demagnetising component of these 790 ampere turns is equal to

$$\sin\left(\tan^{-1}\frac{720}{x}\right) \times 790.$$

Fig. 468.

Hence the residual ampere turns are equal to

4200 -
$$\sin \left(\tan^{-1} \frac{720}{x} \right) \times 790$$
. (A.)

And in Fig. 468, the ordinate corresponding to this abscissa must equal the volts x. The quickest practical method is to substitute trial values for x in the term (A) until the correct value is found, thus:

Try
$$x = 2500$$
 volts.
 $4200 - \sin(\tan^{-1}\frac{720}{2500}) \times 790 =$
 $4200 - \sin(\tan^{-1}0.29) \times 790 =$
 $4200 - \sin 16 \text{ deg.} \times 790 =$
 $4200 - 0.28 \times 790 =$
 $4200 - 221 =$
 $3979 \text{ ampere turns.}$

This corresponds (see saturation curve of Fig. 468) to 2780 volts. Hence the assumed value was too low.

Hence try x = 2800 volts. $4200 - \sin(\tan^{-1}\frac{720}{2800}) \times 790_{\circ}$ $4200 - \sin(\tan^{-1}0.257) \times 790_{\circ}$ $4200 - 0.25 \times 790$. $4200 - 198 \times 198$. 4002 ampere turns.

This corresponds to 2800 volts. Hence x = 2800 volts.

Similar calculations for other points give values from which the full line curve of Fig. 469 is plotted. If the average value for the

Fig. 469. Volt-Ampere Curves

reactance (15 ohms) had been taken throughout the whole range of the curve, the shape would have been altered, as shown by the dotted curve of Fig. 469. Of course, the full line is the more correct curve, and will more nearly check the experimental curve. But the saving in time secured by the use of the average value throughout is justified in the majority of cases where there is occasion to calculate such curves.

The upper portion of the volt-ampere curve, i.e., the portion representing the range from no-load to full-rated load, gives the curve of inherent regulation. This should often be calculated with considerable care; but throughout its range, with most alternators, the current, for unity power factor, reaches its maximum value with a sufficiently small angle of lag behind mid-pole-face position to correspond to the condition of maximum reactance; and for non-inductive loads the maximum value

of the reactance should generally be taken in calculating the curve of inherent regulation.

VOLT-AMPERE CURVE FOR POWER FACTOR = 0

As the angle of lag is now 90 deg., the armature current is always fully demagnetising, its magnetomotive force increasing in direct proportion to the current. Hence, but for magnetic saturation, the volt-ampere curve would be a straight line. Excitation required for 2250 terminal volts with 100 amperes and zero power factor = 5080 (see Fig. 459, page 425). Hence the field excitation per spool is maintained constant at 5080 ampere turns throughout the curve. From the no-load saturation curve of Fig. 468, the voltage for zero amperes output is found to be 3320 volts.

At 50 amperes output, the armature magnetomotive force = $\frac{50}{100}$ × 1980 = 990 ampere turns. Hence, resultant magnetomotive force = 5080 - 990 = 4090 ampere turns, and from the saturation curve the corresponding voltage is found to be 2800 volts.

At 100 amperes output we already know the voltage, with 5080 ampere turns of field excitation, to be 2250 volts. Below 2250 volts, the saturation curve for this alternator is a straight line; hence it only remains to locate the armature amperes at short circuit, with 5080 ampere turns per field spool. Fig. 467 shows this to be 255 amperes. Hence the following quantities, from which the upper curve of Fig. 470 is plotted:—

Amperes Outp at Zero Powe Factor.	r					Vol Exci	ponding Termi tage when Field tation per Spo Equals 5080 mpere Turns.	l
0		•••	•••		•••		3320	
50	•••	•••				•••	2840	
100	•••	•••	•••	•••	•••		2250	
255	•••	•••	•••	•••	•••	•••	0	

It is evident that this volt ampere curve for zero power factor is independent of the armature inductance, hence of any assumption as to its magnitude. But, as a matter of fact, the minimum value of the reactance corresponds to the conditions of the curve, since the slot, at the instants when the current has its maximum value, lies 90 deg. behind the mid-pole-face position. The full line volt-ampere curve for unity power factor has, in Fig. 470, been reproduced from Fig. 469

to facilitate comparison with the volt-ampere curve for zero power factor. Curves for other power factors could be similarly calculated, and would be found to lie in intermediate positions. But it is instructive to show, for the same field excitation in both cases, the volt-ampere curves for

VOLT-AMPERE CURVES

zero and unity power factors; and this is done in the two curves of Fig. 471, where the field excitation per spool is 4200 ampere turns.

In Fig. 472, a series of volt-ampere curves for unity power factor, but at different field excitations, is plotted. The average value of the inductance has been taken throughout. By decreasing the inductance to the minimum value at the lower end of the curves, the second bend would have disappeared. This would have been more accurate.

CHARACTERISTIC OUTPUT CURVE

This is nothing more than a transformation of the volt-ampere curve for unity power factor, but for certain purposes it throws the

Fig. 472. Volt-Ampere Curves

FIG. 473. CHARACTERISTIC OUTPUT CURVES

results into a more useful form. In Fig. 473 the volt-ampere curves of Fig. 472 are thus transformed into output curves.

Similar characteristic output curves may be constructed for other

power factors, but the work is tedious, and the curves of Fig. 473 possess the greater interest.

APPLICATION OF THE METHOD TO A SMALL EXPERIMENTAL ALTERNATOR
Having now set forth the leading features of the method, it is
proposed to apply it to an actual case, and to show how the theoretical

MAGNETIC DIMENSIONS OF EXPERIMENTAL ALTERNATOR; 60 VOLTS, 20 AMPERES, 25 CYCLES

and test results compare. For this purpose a small 4-pole continuous-current machine, which happened to be available, was transformed into a uni-slot single-phase alternator, by cutting out four large slots and winding in them two coils of 48 turns each of No. 14 B.W.G. Fig. 474 gives a diagrammatic sketch of the machine.

The theory has been repeatedly tested, in various respects, on large

commercial machines, and the results of such tests will be examined and commented upon in subsequent pages of this treatise. But the small machine at present under consideration has some interesting properties, the study of which will be instructive, and will illustrate the application of the theory to a case where the armature CR drop is a very considerable factor, and must enter into the calculations. Saturation also plays an important part.

The calculated and experimental curves have been carried to points sometimes from two and a-half to three times the normal output; and this, and the abnormal proportions of the machine, should be kept carefully in mind when comparing the values obtained by calculation with the experimentally observed values—as it would be, perhaps, too much to expect closer accordance under these extreme conditions. Entirely aside from the question of confirming the theory set forth in the preceding pages, a description of these tests brings out clearly some very interesting properties of alternating-current generators.

As a matter of fact, the writers have themselves not been entirely satisfied at the outcome of the tests on this small machine, so far as relates to supporting their theory. But they have nevertheless found the results so instructive, for the reasons set forth above, that they have adhered to their original purpose of including the tests in the present treatise. In the meantime, they have pushed forward tests on normally proportioned machines of large capacities, and are obtaining results in every way as satisfactory as the preliminary examinations made during the last few years, all of which pointed very convincingly to the theory now put forth in fairly complete form.

The employment of a small machine, moreover, made it practicable, at slight expense, to arrange loads of various power factors and amounts, up to values far in excess of what would constitute a fair normal rating, and to thoroughly investigate the performance of the machine from all standpoints. The alternator was given a rating of 20 amperes at 60 terminal volts, and at a speed of 750 revolutions per minute, which corresponds to a periodicity of 25 cycles per second.

There will first be given an estimate of the theoretical values of the curves; the test results will follow, and will be set forth in such form as to facilitate comparison.

The saturation curve could have been predetermined, by the well-known methods, but this does not concern the present theory; hence

the experimental values, as set forth in the curve of Fig. 475, are taken as a basis for the calculation.

The inductance was also experimentally determined. In Fig. 476 is given a curve in which the ordinates show the values of the reactance between collector rings, and the abscissæ the corresponding positions of the centre of the slot with respect to the pole-face. The curve shows that, in the position of maximum inductance (i.e., with the centre of the slot opposite the centre of the pole-face), the reactance is (at 25 cycles) 2.4 ohms. In the position of minimum inductance it is but 1.4 ohms.

Fig. 475. SATURATION CURVE

From the maximum value of the reactance (2.4 ohms) the corresponding value of the inductance is found to be 0.0153 henry, since

$$l = \frac{2.4}{6.28 \times 25} = 0.0153.$$

Applying the dimensions given in Fig. 474 (gross length armature laminations = 4.5 in.), there is found to be 74 lines per ampere turn and per inch length of armature lamination.

Lines =
$$\frac{0.0153 \times 10^4}{2 \times 48^2 \times 4.5} = \frac{1530000}{2 \times 2300 \times 4.5} = 74$$
.

This very high value is attributable to the abnormal dimensions of the machine.

An examination of Fig. 474 will show that the coil is of approximately square cross-section, that the air gap is but $\frac{3}{32}$ in. deep, and that the pole arc is very broad (almost seven times the width of the slot). All these, together with the fact that the embedded portion of the armature winding is but 32 per cent. of the whole armature winding (the exposed end connections constituting the remaining 68 per

cent.) conspire to result in this high value for the inductance when expressed in terms of the magnetic lines per ampere turn and per inch length of armature lamination. The value for the position of minimum inductance is $\frac{1.4}{2.4} \times 74 = 43$ lines.

In large machines of the customary proportions, it has already been shown that the values seldom reach such high figures.

The ohmic resistance of the winding, between collector rings, is 0.31 ohm, which is sufficiently high to materially affect the results, and hence it has been taken into account. In the preliminary descriptions this would have diverted attention from the more important points of the

Fig. 476. REACTANCE CURVE

method, but it is now just as well that the effect upon the diagrams of taking the internal resistance into account should be explained. But it must be remembered that—in well-proportioned machines for lighting and power at constant potential—the resistance is practically negligible, and is never accompanied by an armature CR drop of any such percentage of the terminal voltage as is the case in this small experimental machine.

CURVES OF EXCITATION REGULATION

First case: Unity power factor. When the amperes output equals 0, the ampere turns per field spool are found from the no-load saturation curve of Fig. 475 to be 1140 for 60 terminal volts.

Amperes output = 10. In Fig. 477 the line A C represents the terminal voltage of 60 volts. Not knowing in advance of a preliminary calculation the angle of lag of the maximum value of the current behind mid-pole-face position, we make a preliminary assumption of 20 deg., and, from Fig. 476, find the reactance at this position to be 2.28 ohms.

Therefore, the reactance voltage is $2.28 \times 10 = 22.8$ volts.

This is represented in Fig. 477 by A B. The internal drop of voltage is 10 (the current) times 0.31 (the resistance of the winding), or 3.1 volts. This is represented by E B. $\frac{BA}{EB+AC} = \frac{22.8}{63.1} = 0.361 = \text{tangent of the}$ angle of lag of the current behind the mid-pole-face position = $\tan \phi$. $\phi = 19.8$ deg.

VECTOR DIAGRAMS FOR EXPERIMENTAL ALTERNATOR

This corresponds so nearly to our assumed value (20 deg.) that no re-calculation is necessary.

The full armsture strength, expressed in ampere turns per polepiece upon the armsture, = $24 \times 10 \times \sqrt{2} = 340$ ampere turns.

The demagnetising component = $340 \times \sin 20 \text{ deg.} \times 340 \times 0.34 = 116 \text{ ampere turns.}$

The magnetomotive force required for the magnetic saturation is, at 63.1 volts, 1225 ampere turns. Hence the total excitation required for 60 terminal volts and 10 amperes, and unity power factor, is 1225 + 116 = 1341 ampere turns. By a similar calculation, the value for 20 amperes (full-rated load) is determined to be 1680 ampere turns; and the diagram for this case is given in Fig. 478. The total 1680 ampere turns are made up of 1310 ampere turns for saturation (corresponding 66.2 volts), and 370 ampere turns to offset demagnetisation, this being 0.54 of the total armature strength of $24 \times 20 \times \sqrt{2} = 680$ armature ampere turns per pole-piece.

In the same way the values for higher currents have been calculated, they are set forth in the following figures, and are plotted in the lower full-line curve of Fig. 479, which also gives, in the lower dotted line curve, the experimentally-observed values for unity power factor.

Amperes Output at Unity Power Factor.							quired Ampere irns per Field Spool for Ferminal Volts.
0	•••						11 4 0
10							13 4 0
20							1670
30		• • • •			•••		2110
40							2420
50			•••	•••	•••	•••	2830
60	• • •	•••	•••	•••	•••	•••	3250
00	• • •	• • •	• • •	• • •			0 <i>20</i> 0

Fig. 479. Curves of Excitation Regulation

The calculation for external loads with power factors of less than unity is accomplished as follows:—First case:

Power factor = 0.5 Terminal voltage = 60 Ampere output = 20

Now, for such a case, one may represent the circuit as in Fig. 480, where a resistanceless armature lies between the points A and B, a resistance of 0.31 ohm (the true resistance of the armature) between B and E, the resistance component of the load between A and C, and the reactance component between C and D. As the power factor of the external load equals 0.5, and as the terminal voltage equals 60, we have AD = 60.

A C = A D
$$\cos \phi = 60 = 0.5 = 30$$

O D = $\sqrt{\text{A D}^2 - \text{A C}^2} = 52$,

For a trial value we estimate that the angle of lag behind the mid-pole-face position will be 66 deg., in which case the reactance of the armature winding will be 1.4 ohms, and its reactance voltage at 20 amperes will equal 28 volts. So AB is made equal to 28. BE equals 6.2 volts, the resistance drop in the armature at 20 amperes.

Then tangent
$$\phi = \frac{28 + 52}{6.2 + 30} = \frac{80}{36} = 2.22$$
.

Hence, $\phi = 65.8$ deg., a value which checks the trial value (66 deg.) sufficiently well.

Armature strength = $20 \times 24 \times \sqrt{2} = 680$ ampere turns per polepiece. Sin 66 deg. = 0.91.

Hence, demagnetising component = $0.91 \times 680 = 620$. The internal voltage is

 $\sqrt{(E B + A C)^2 + C D^2} = \sqrt{36.2^2 + 52^2} = 63.4 \text{ volts};$

for which are required 1230 saturation ampere turns. Total magneto motive force = 1230 + 620 = 1850 ampere turns per field spool.

Fig. 480.

In the same way the values given in the following Table were obtained for other loads and for power factor = 0.5, and for various loads and still other power factors.

TABLE LXXI.—REQUIRED AMPERE TURNS PER FIELD SPOOL FOR 60 TERMINAL VOLTS AND EXTERNAL LOADS WITH THE FOLLOWING POWER FACTORS

ere Output.	. ! 0	0.3	0.5	0.9	1.0
0	1140	1140	1140	1140	1140
10	1480	1480	1480	1420	1340
20	1840	1850	1850	1770	1670
30	2190	2210	2210	2135	2010
40	2550	2570	2580	2520	2420
50	2900	2945	2965	2935	2830
60	3250	3310	3350	3340	3250

It is evident from the Table that the values of the inductance, of the saturation curve, and of the armature resistance, by chance combine to render the excitation regulation largely independent of the power factor. In normally-proportioned machines the values generally diverge rapidly from each other as the ampere load increases.

The curve for zero power factor is plotted in the upper solid line of Fig. 479. It is interesting to note that for this particular machine it would cross the curve for unity power factor at some slightly higher current output; hence, for higher current outputs, less excitation would be required for zero power factor than for unity power factor. The writers are not aware that it has ever before been pointed out that this could occur.

The upper dotted line of Fig. 479 gives a curve of excitation experimentally obtained on this machine for loads with power factors of less than 0.1. This curve intersects the curve for unity power factor, as the theory points out would be the case, but at a somewhat lower point than the intersection of the calculated curves. Nevertheless, it is interesting to find thus confirmed the statement just made, based upon the calculated curves, that for high amperes output, less excitation would be required for power factor = 0 than for power factor = 1.

Both the experimental curves of Fig. 479 check the calculated values very well up to 30 amperes output, or 50 per cent. over load, while beyond this point the rapidly increasing variation may be accounted for by reason of the rise of resistance due to excessive currents in the conductors; at 50 amperes output the density in these would be 9300 amperes per square inch in cross section. In the calculated curves no allowance has been made for this rise, as it would be impossible to accurately estimate the actual temperature of the embedded conductors; the readings were taken as rapidly as possible to prevent destroying the insulation, and even then the core surface adjacent to that part occupied by the coils attained a temperature of about 100 deg. Cent., or a rise of 80 deg. Cent. This would tend largely to increase the excitation at the higher points, and would also cause the curve of unity power factor to cut that of zero power factor at a lower value, also corresponding more nearly to the observations.

VOLT-AMPERE CURVES

The value of 1670 ampere turns per field spool has already been estimated to be the excitation required to maintain 60 terminal volts with a non-inductive load of 20 amperes.

In Fig. 481 are plotted not only a volt-ampere curve, with this excitation, calculated for non-inductive loads, but also one for loads of zero power factor. These are the two full-line curves of Fig. 481.

The values were derived as follow:-

Unity power factor: Consider the conditions at short circuit. Resistance of the armature = 0.31 ohm. To determine the point at

4 Pole Experimental Alternator Rating 60 Volts – 20 Amperes–25 Cycles Excitation constant at 1670 Ampere Turns per Field Speel.

Fig. 481. Volt-Ampere Curves

which the volt-ampere curve meets the axis of abscissæ, one reasons as follows:—The armature turns are then practically fully demagnetising. At 20 amperes the full armature strength = 680 ampere turns per pole-piece. As the current lags nearly 90 deg. behind mid-pole-face position, the armature ampere turns will only be less than the impressed field magnetomotive force by the amount necessary to set up a flux corresponding to 0.31 C volt, if C = the amperes at short circuit. (This neglects magnetic leakage.)

From the no-load saturation curve is taken the value of 170 ampere turns as required for 10 volts.

Then,
$$\frac{C}{20} \times 680 + \frac{0.31 \text{ C}}{10} \times 170 = 1670.$$

Solving, we obtain C = 42.5 amperes, and this is the value of the abscissa where the axis is crossed by the curve.

On open circuit the saturation curve shows that the 1670 ampere turns will set up 78 volts, and this is the value of the ordinate where the axis is crossed by the curve.

Calculation for 10 amperes :-

Make the trial assumption of 73 volts.

Internal drop (with 10 amperes) = 3.1 volts.

If the lag is such as to correspond to a value of 2.3 ohms for the reactance, then we have an armature reactance voltage of 23 volts. The diagram is given in Fig. 482.

Tan
$$\phi = \frac{23}{73 + 3.1} = \frac{23}{76.1} = 0.302 \ \phi = 17 \ \text{deg.}$$

Fig. 482. Vector Diagram for Experimental Alternator

and we find from Fig. 476 that at 17 deg. the reactance does equal 2.3 ohms.

Sin
$$\phi=0.29$$
. $0.29\times 10\times 24$ $\sqrt{2}=99$ ampere turns demagnetisation. Saturation magnetomotive force for 76.1 volts = 1600 99

1700

Hence our assumption of 73 volts was a little too high; 72 volts would have been about right. The other points for the curve were obtained in the same manner.

FOR POWER FACTOR = 0

At open circuit and short circuit, the curve cuts the axles at the same point as the curve for power factor = 1, and it is so shown in Fig. 481. The intermediate points remain to be determined.

At 10 AMPERES

Fig. 483 represents the conditions: Assume that the value of the ordinate corresponding to 10 amperes will be 67 volts. The armature strength is practically fully demagnetising, and equal to

$$10 \times 24 \times \sqrt{2} = 345$$
 ampere turns.

Magnetomotive force corresponding to 67 volts will be 1330 ampere turns. Hence, total magnetomotive force = 340 + 1330 = 1670 ampere turns, so that the trial value of 67 volts was the correct value.

It is interesting to note the change which this diagram undergoes with larger currents as the resistance component becomes appreciable; this appears in Fig. 484, which corresponds to the conditions at 30 amperes.

THIRTY AMPERES

Assume 35 volts (see Fig. 484). The armature ampere turns are, as before, practically entirely demagnetising, and are equal to

$$30 \times 24 \times \sqrt{2} = 1020$$
,

but the saturation ampere turns have to correspond to

$$\sqrt{9.3^3 + 35^2} = 36.2$$
 volts,

which (from saturation curve) requires 659 ampere turns. Hence excitation equals 1020 + 650 = 1670 ampere turns. Therefore, the assumption

EXPLANATORY DIAGRAMS FOR EXPERIMENTAL ALTERNATOR

of 35 volts as corresponding to 30 amperes is correct for the zero power factor volt-ampere curve. The other points were obtained in the same manner.

TABLE LXXII .- SUMMARY OF RESULTS

Amperes Output.			Ter	minal Voltag	Terminal Voltage. $P.F. = 0$		
0	• • •	•••		78		78	
10				72	•••	67	
20				6 0		52	
30				42		35	
40				10	•••	13	
42.5				0	•••	0	

The curves of observed values are also given in Fig. 481, in dotted line. The power factor for the lower curve was, however, from 0.08 to 0.12, never, of course, being absolutely 0.

SHORT-CIRCUIT CURVE

The full-line curves of Fig. 481 cut the axis of abscissæ at 42.5 amperes. They were taken with an excitation of 1670 ampere turns per field spool. The short circuit curve should, therefore, be a straight line passing through zero and through this point. It is drawn full in Fig. 485, and in the same figure the observed curve is shown in dotted line.

Calculation of Saturation Curves for Full-Load Current of 20 Amperes, for Unity and for Zero Power Factor

The value for terminal voltage of 0 is found from Fig. 485 to be 790 ampere turns per field spool at 20 amperes.

Fig. 485. Short-Circuit Curves

For 20 TERMINAL VOLTS

The reactance with 20 amperes may, for a trial value, be taken at 1.6 ohms; hence the reactance voltage = 32. CR drop in armsture = $20 \times 0.31 = 6.2$ volts.

$$\phi = \tan^{-1} \frac{32}{6.2} = \tan^{-1} 1.22 = 51 \text{ deg.}$$

Fig. 476, page 440, shows that the value of the reactance is 1.6 ohms at 51 deg., confirming the assumed value. The diagram for these values is given in Fig. 486.

From Fig. 475, page 439, the magnetising component corresponding to 26.2 volts is found to be 460 ampere turns per field spool. To overcome armature demagnetisation, there will be required

$$24 \times 20 \times \sqrt{2} \times \sin 51 \deg = 680 \times 0.78 = 530$$
 ampere turns.

Total field excitation for 20 terminal volts at 20 amperes at unity power factor = 460 + 530 = 990 ampere turns.

In the same way, values have been calculated for other points, and these are plotted in the left-hand full-line curve of Fig. 487, page 450, in which the left-hand dotted curve gives the observed values.

TABLE LXXIII.—CALCULATED	VALUES	FOR	Unity	POWER-FACTOR.	Full-Load			
SATURATION CURVE								

			DA:	NULLARUL	CURVE				
Terminal Volts.								Ampere Turns per Field Spool.	
0		•••						790 ~	
20			•••		• • •	•••		990	
40		•••				•••		1280	
60	• • •	•••				•••		1670	
80		•••	•••			•••		2300	
90			•••					2900	

Fig. 486. Vector Diagram for Calculating Full-Load Saturation Curve of Experimental Alternator

For zero power factor, the calculation is modified. The armature demagnetisation has a constant value of 680 ampere turns for all values of the terminal voltage, and the armature CR drop is in quadrature with the terminal voltage. The calculated values for zero power factor are:—

Terminal Volts.		Ampere Turns per Field Spool.				
0	 	 •••			•••	790
20	 	 	•••			1040
40	 	 				1400
60	 •••	 	•••	•••		1840
80	 	 		•••		2430
90	 •••	 				2860

REGULATION CALCULATION FOR 850-KILOWATT ALTERNATOR

Although we have not as yet covered the necessary ground to permit of profitably discussing complete designs, it is, nevertheless, desirable at this stage to describe a large modern alternator, and give the curves of its performance as experimentally obtained, and to compare them with curves determined by the theory as already set forth. It is

believed that it will be generally admitted that the close agreement thus demonstrated to exist between the theoretical and experimental curves will prove its practical usefulness. In the following brief specification, and in Fig. 490, page 453, are given just enough data to carry out the calculation of the curves for the alternator in question.

Specification for a Three-Phase Alternator of the Internal Revolving Field Type:—1

Rated output 850 kilowatts.

Connection of windings ... Y

Terminal voltage ... 5000 volts.

FIG. 487. FULL-LOAD SATURATION CURVE

Voltage per phase...2800 volts.Current per phase... $850,000 \times 1 = 98.5$ amperes.Speed......Periodicity......Slots per pole-piece on the armature...6Slots per pole-piece per phase...

The machine is of the internal revolving field type, with 32 radial salient poles.

Conductors per slot 14

Turns per pole-piece per phase ... 14

R. M. S. ampere turns per pole-piece per phase ... 1380

Maximum armature magnetomotive force per

pole-piece per phase $\sqrt{2} \times 1380 = 1950$

¹ A more complete specification and description of this Central London Railway alternator is given at the end of this Chapter.

Now, it must here be stated, subject to subsequent explanation,¹ that the total maximum armature magnetomotive force per pole-piece of a machine of this particular type and proportions is about twice the maximum magnetomotive force per pole-piece = 3900.

The experimentally determined no-load saturation curve of the machine is given in Fig. 488. Unfortunately, of the several machines available, it became necessary to take some of the tests upon one and some upon another. This has led to slight discrepancies, mainly with

Fig. 488. No-Load Saturation Curve

relation to the no-load ampere turns corresponding to various voltages. Nevertheless, it is believed that one cannot but admit that the tests, as a whole, correspond very closely with the calculated results.

In Fig. 489 are given two reactance curves, A and B, the first taken for the reactance of one phase when there are three phasially related currents in all three phases—the normal condition—and the second taken with current in one phase only. Both curves are given in order to point out that in a machine of these proportions, at any rate, the current in the other two windings does not very much affect the average value of the inductance of one winding; hence, in cases where it is only

¹ See description of the Central London Railway alternator at the end of this Chapter.

practicable to make determinations on but one phase, useful conclusions can nevertheless be drawn. In this case, however, curve A should be used as the basis for calculations. The inductance does not vary greatly at different positions, and it is amply exact to use, throughout the calculations, the average values of the reactance for all positions, which is 9.6 ohms at 25 cycles.

Reactance =
$$2 \pi n l$$
.
 $\therefore l = \frac{9.6}{2 \times 3.14 \times 25} = 0.061 \text{ henry.}$

There are 32 poles, and 16 groups of coils per phase.

... Inductance per group of coils = $\frac{0.061}{16}$ = 0.0038 henry.

Expressed in C.G.S. lines, this is 380,000 lines, linked with a coil.

The gross length of armature laminations is 14.5 in.

 \therefore Linkage of lines per inch = $\frac{380,000}{14.5}$ = 26,300.

One side of one group of coils is wound in two adjacent slots, there being 14 conductors per slot, or 28 total turns in series per group of coils, as seen in Fig. 490.

Hence there are $\frac{26,300}{28^2} = 33.5$ lines per ampere turn per inch of length of armsture laminations, for the average of all positions.

From the saturation curve of Fig. 488 and the reactance curve of Fig. 489, and from the known windings of the armature, which give a resultant armature magnetomotive force of 3900 maximum ampere turns in the position of maximum demagnetisation, the other characteristic curves of the machine will next be calculated and plotted. The only especial point to be kept in mind in these calculations, which will differ from those for a single-phase machine, is that it is clearer in some cases to consider each phase separately. For this purpose Fig. 488 gives also a saturation curve in terms of the voltage per phase, which bears to the voltage between collector rings the relation of 1 to 1.73, or of 2880 to 5000.

CALCULATION OF CURVE OF EXCITATION REGULATION FOR UNITY POWER FACTOR

This is a curve showing the ampere turns per field spool which are required for maintaining a constant collector-ring voltage of 5000 volts between any pair of collector rings, or 2880 volts per phase (i.e., from any collector ring to the common connection of the "Gamma") for all values of the current output, from 0 amperes up to and above the full-load rating of 98.5 amperes, with non-inductive external load.

- (1) Amperes = 0. From the lower saturation curve of Fig. 488, page 451, the required excitation for the normal potential of 2880 volts per phase is 7650 ampere turns per field spool.
- (2) Amperes = 98.5 (full-rated load). The reactance voltage = $9.6 \times 98.5 = 945$ volts.

$$Tan^{-1} \frac{945}{2880} = tan^{-1} 0.328 = 18 deg.$$
 Sin 18 deg. = 0.31.

Maximum resultant armature strength = 3900 ampere turns. Demagnetising component = $0.31 \times 3900 = 1210$ ampere turns. Hence, at 98.5 amperes load (power factor = 1) there is required

(for 2880 volts per phase) a total excitation of 7650 + 1210 = 8860 ampere turns per field spool. (The corresponding observed value was 9000 ampere turns.) Similar calculations for other loads yield the results plotted in the curve of Fig. 491 for unity power factor.

CALCULATION OF CURVE OF EXCITATION REGULATION FOR ZERO POWER FACTOR

For this case the armature ampere turns are fully demagnetising, hence at full load there will be required an excitation of 7650 + 3900 = 11,550 ampere turns per field spool. The other calculated values will be on a straight line passing through the value of 7650 ampere turns for 0 amperes output, and 11,550 ampere turns for 98.5 amperes output. This curve for zero power factor is also drawn in Fig. 491.

CALCULATION OF CURVE OF EXCITATION REGULATION FOR POWER FACTOR OF .8

First, 98.5 amperes output. The conditions are shown in the diagram of Fig. 492.

Cos 37 deg. = 0.8. DAC = 37 deg.

AC = AD = 2880 = volts per phase.

AB = 945 = reactance voltage per phase for 98.5 amperes.

$$A F B = \tan^{-1} \frac{A B + E}{A E} D$$

 $ED = AD \sin 37 \text{ deg.} = 2880 + 0.6 = 1720.$

 $A E = A D \cos 37 \deg = 2880 \times 0.8 = 2300.$

$$\therefore$$
 A F B = $\tan^{-1} \frac{945 + 1720}{2300}$ = $\tan^{-1} 1.15 = 49.2$ deg.

 $\sin 49.2 \deg = 0.755.$

Demagnetising component of total armsture strength = $0.755 \times 3900 = 2950$ ampere turns.

Fig. 492. Full Load

Fig. 493. HALF LOAD

VECTOR DIAGRAMS FOR EXCITATION REGULATION CALCULATIONS. POWER FACTOR = 0.8

Sin
$$\phi$$
 = sin A F B.
= sin $(\tan^{1-}\frac{473 + 2880 \sin 37 \text{ deg.}}{2880 \cos 37 \text{ deg.}})$
= sin $(\tan^{-1} 0.95)$
= sin 43.5 deg. = 0.69.

Demagnetising component = $0.69 + \frac{3900}{2} = 1340$.

7650 + 1340 = 8990 ampere turns required to maintain 2880 volts per phase with a load of 49.3 amperes at power factor = 0.8.

Therefore, with full-load current of 98.5 amperes, at power factor = 0.8, there will be required to maintain a potential of 2880 volts per phase, an excitation of 7650 + 2950 = 10,600 ampere turns per field spool.

For other values of the current, and also for other power factors, the calculations are similar. A diagram for half-load current and power factor = 0.8 is given in Fig. 493, with the corresponding calculations below it. Table LXXIV. exhibits the calculated results, which will also be found plotted in the curves of Fig. 491, page 453.

Amperes Output.	Ampere Turns per Fiel (5000 Vo	ld Spool Required to Maintain olts between Rings) for Variou	2880 Volts per Phas s Loads.
	$\mathbf{P.} \ \mathbf{F.} \ = \ 0.$	P. F. = 0.8.	P. F. = 1.
0	7,650	7,650	7,650
25	8,640	8,290	7,730
50 '	9,630	9,015	7,970
75	10,620	9,810	8,380
98.5	11,550	10,600	8,860
125	12,600	11,550	9,540
150	13,590	12,470	10,310

TABLE LXXIV.—Excitation Regulation

EXPERIMENTAL TESTS OF EXCITATION REGULATION

The excitation regulation curve for unity power factor as experimentally obtained is given in curve A, of Fig. 494, page 456, and for the lowest obtainable power factors, in curve B of the same figure. The corresponding calculated curves of Fig. 491, page 453, are reproduced in dotted lines.

Power Factor Curve

In Fig. 495 is plotted a curve showing the excitation corresponding to the full-load current of 98.5 amperes, and to the normal potential of 2880 volts per phase (5000 volts between collector rings) for all values of the power factor. These results have been taken, partly from the preceding curves (Fig. 491), and partly from other values similarly calculated, but for other power factors.

Calculation of Saturation Curve with Full-Load Current of 98.5 Amperes

1. Unity Power Factor.—For 0 volts per phase. Excitation will be about 3900 ampere turns per field spool, or rather a slight trifle in excess of this required to send 98.5 amperes through the ohmic resistance of the armature winding.

For 1000 volts per phase:-

The conditions are shown diagrammatically in Fig. 496, page 457, in

which A B represents the reactance voltage, and A C the terminal voltage per phase.

A C B =
$$\tan^{-1} \frac{945}{1000}$$
 = $\sin^{-1} 0.69$
0.69 × 3900 = 2690.

Fig. 494. Excitation Regulation Curves

FIG. 495. EXCITATION CURVE, FULL-LOAD CURRENT

Therefore the demagnetising component of the total required excitation = 2690 ampere turns. From the lower saturation curve of Fig. 488, page 451, the saturation component corresponding to 1000 volts is seen to be 2000 ampere turns. Hence there is required a total excitation of

2690 + 2000 = 4690 ampere turns per field spool. In the same way, the conditions for 2000 volts per phase are shown in Fig. 497. The value for full-load voltage (2880 per phase) has already been calculated to be 8860 ampere turns. Fig. 498 gives a diagram and calculation for 3500 volts per phase.

2. Zero Power Factor.—In this case, all that is required is to add to the saturation components the full armature strength of 3900 ampere turns. Thus:—

TABLE LXXV .- VALUES FOR 0 POWER FACTOR.

Voltage per Phase.	Saturation Component.	Demagnetisation Component.	Total Excitation		
0	0	3,900	3,900		
1000	2,000	3,900	5,900		
2000	4,400	3,900	8,300		
2880	7,650	3,900	11,550		
3500	14,000	3,900	17,900		

3. Power Factor = 0.8.—The case for 1000 volts per phase is given in Fig. 499, for 2000 volts in Fig. 500, and for 3500 volts in Fig. 501.

All these saturation curve values (as well as those for no load) are brought together in the annexed Table, and plotted in Fig. 502, page 460.

			Ampere Turns	per Field Spool.	
Volts per Phase.	Volts at Collector Rings.	Amperes = 0.	Amperes = 98.5 P.F. = 1.	Amperes = 98.5 P.F. = 0.8.	Amperes = 98.5 P.F. = 0
0	0	0	3,900	3,900	3,900
1,000	1,730	2,000	4,690	5,460	5,900
2,000	3,460	4,400	6,080	7,510	8,300
2,880	5,000	7,650	8,860	10,600	11,550
3,500	6,060	14,000	15,020	16,870	17,900

TABLE LXXVI .- SATURATION CURVE VALUES.

In Fig. 502 the dotted line curve is plotted from the results of test with full-load current and unity power factor.

THE "SHORT-CIRCUIT" CURVE

In Fig. 503, page 461, the full line represents the relation between the armature ampere on short circuit, and the corresponding required field excitation. Under these conditions, the armature ampere turns are in direct opposition to the field ampere turns; hence, at 98.5 amperes per phase, when the total armature strength is 3900 ampere turns per pole-piece, there should be required a field excitation only just enough in excess of 3900 ampere turns per pole-piece to set up sufficient potential to overcome the CR drop in the armature windings (about 30 volts in the case in question), and to supply the losses due to magnetic leakage. There is shown in dotted line the observed "short-circuit" curve.

THE VOLT-AMPERE CURVE

In calculating the excitation regulation curve for unity power factor, the excitation required for 5000 terminal volts (2880 volts per phase) and 98.5 amperes was determined to be 8860 ampere turns per field spool.

With this excitation constant, and varying resistance of the external load, the upper full-line curve of Fig. 504 represents the calculated values. Points are also plotted representing the results of tests.

CALCULATION FOR UNITY POWER FACTOR

To illustrate the method of procedure according to which the upper

Fig. 501.

curve of Fig. 504 was derived, a calculation is carried out for 150 amperes,

Take $\frac{4350}{\sqrt{3}}$ = 2150 volts as a trial assumption :—

Reactance voltage = $9.6 \times 150 = 1440$ volts.

 $Tan^{-1} \frac{1440}{2510} = tan^{-1} 0.573 = 30 deg.$

Sin 30 deg. = 0.5.

 $0.5 \times \frac{150}{98.5} \times 3900 = 2960.$

Ampere turns per field spool = 8860.

Demagnetising ampere turns = 2960.

Residual ampere turns ... = 5900.

Corresponding voltage from saturation curve (Fig. 488, page 451) = 2490 volts.

Hence the trial assumption of 2510 volts was practically correct.

We conclude that 150 amperes corresponds to 2500 volts.

The other points of the curve were calculated by the same process.

CALCULATION FOR ZERO POWER FACTOR

The two extremes of the curve—i.e., open circuit and short circuit—will have the same values as for unity power factor. The other values are shown in the lower curve of Fig. 504. From the saturation curve for zero power factor, given in Fig. 502, the value of the voltage for 8860 ampere turns excitation is 2200 volts at 98.5 ampere. Other

Fig. 502. Saturation Curves

points of the curve have been calculated by the same method as the value at 150 amperes, for which the calculation is given below:—

Ampere turns per field spool	•••	•••	•••		8860
Demagnetising ampere turns ×	$\frac{150}{98.5}$ ×	3900			5920
		Residual	ampere	turns	2940
Volts (from s	aturatio	n curve) =	1400.		

The results of tests both at unity power factor and at very low-power factors, are also indicated in Fig. 504.

Up to this point, rough representative values have been used for the inductance per unit length of armature laminations, in cases where experimental observations of the inductance were not available. This has been desirable in order not to divert attention from the general lines of the method of predetermining the characteristic curves. But the matter of predetermining the inductance of the windings is one of considerable importance; and, before proceding further, it is desirable to consider it much more thoroughly, in the light of additional experimental data now available.

In continuous-current commutating machinery it is the inductance of the turns undergoing commutation at the brushes which possesses the chief interest. This can be estimated with a fair degree of exactness—first, because the range of shapes of coils and sizes of slots is not extremely great; and, secondly, because the required value of the inductance is that corresponding to the position of the coil in the open space between poletips, i.e., away from the influence of the pole-face. Numerous tests on

Fig. 503. Curve of Armature Current

Fig. 504. Volt-Ampere Curves

such coils have shown the inductance of the coils under these conditions to be about the same when the armature is in place in the field frame as when it is free in air. In alternating-current machinery it is required to be able to estimate the inductance for all positions of the armature with respect to the magnetic circuit, and not for a small compact group of turns, but often for more or less distributed windings. Moreover, a greater variety of shapes of coils and sizes and shapes of slots are encountered.

It will, however, be desirable to begin the study of the subject by examining the results for windings, first quite free in air, and secondly in armatures removed from the rest of the magnetic circuit.

Coils Free in Air

Professor Perry gives the following approximate formula for the inductance L (in centimetres)¹ of a cylindrical spool of N turns free in air, the spool having, as dimensions in centimetres, a width w, mean radius r, and height of winding h, the formula applying for those cases where $\frac{w}{r}$ and $\frac{h}{r}$ are very small:

$$\mathbf{L} = \frac{\mathbf{N}^{2} r^{2}}{0.0184 \, r \, + \, 0.031 \, h \, + \, 0.035 \, w}.$$

Solving this for a coil of the cross-section of 1 square centimetre

INDUCTANCE CURVES FOR COILS FREE IN AIR

for various diameters, we derive the curve given in Fig. 505; and for a similar corresponding curve for a coil of a cross-section of 1 square inch, and of various diameters, as given in Fig. 506, with the dimensions of the spool in inches, this becomes:—

L (in centimetres) =
$$\frac{N^2 r^2}{0.00725 r + 0.0122 h + 0.0138 w}$$

The curves of Fig. 507 give the corresponding values for square cross-sections of coil for diameters of 50, 100, and 200 centimetres, and in Fig. 508 are given curves for square cross-sections of coil for diameters of 30 in., 50 in., and 100 in. (see page 464).

 $^{^{1}}$ To reduce L to henrys, multiply by 10^{-9} , and to reduce to linkage of turns and C.G.S. lines, multiply by 10^{-1} .

These curves (Figs. 505 to 508) have been found, by experiment, to hold approximately for cases where the shapes of the coils depart very considerably from the circular form. Figs. 509 and 510 show the results of an especially instructive test in which a hexagonal coil, of the dimensions shown in Fig. 511 was distorted gradually from a width of 27.5 in. (70 centimetres) down to a width of 7.9 in. (20 centimetres), the inductance only decreasing from 0.5 to 0.37 C.G.S. line per inch length (1.22 to 0.95 per centimetre length) for this great range of widths.

The results shown in Figs. 509 and 510 were obtained with current

Fig. 507. INDUCTANCE CURVES

from a machine giving 23 per cent. higher values than a sine wave machine.

The curves of Figs. 505 to 508 may be employed for roughly estimating the inductance per centimetre and per inch of those portions of the winding not embedded in the armature slots. These portions may be termed the "free length," as distinguished from the "embedded length."

For continuous-current machines, where the coil undergoing commutation (i.e., temporarily short-circuited under the brushes), generally consists of but a single group of concentrated turns, of which Fig. 512, page 466, is a typical example, it has been found amply exact to estimate the inductance of the "free length" on the basis of 0.8 C.G.S. line per ampere turn per centimetre of "free length," or 2.0 lines per inch of "free length"). In alternating-current machinery it would generally be

less. For considering the case of uni-coil windings, the coil is generally of a large cross-section, often from 1 to 3 centimetres wide, and several centimetres deep; and for coils of larger cross-sections, the curves of Figs. 507 and 508 show a pronounced downward tendency. If, on the other hand, the winding is distributed, as in most modern alternators and in induction motors, the individual coils will be shallow, but the group of coils will—even for polyphase windings—be quite wide. Hence, one rarely meets with cases of alternating current windings where the inductance of the end connections should be estimated at more than

Fig. 508. Inductance Curves

0.5 to 0.6 C.G.S. line per ampere turn per centimetre of length (1.25 to 1.5 lines per inch of length), and in many cases the value would be considerably less. The writers prefer, in alternator design, to take for the "free length" the rough value of 0.5 C.G.S. line per ampere turn per centimetre of length (1.25 lines per inch of length), although in extreme cases it is sometimes worth while to examine the proportions with a view to choosing a more suitable value. Examples of the arrangement of the end connections (the "free length") are shown in Figs. 513 to 521, pages 467 to 469.

Setting the polar pitch (i.e., the gap circumference per pole-piece), equal to τ , the "free length" may be roughly taken at 3τ . For machines for 10,000 volts or more, the "free length" would be somewhat greater, approaching 4.0 in extreme cases. The alternative to such a rough approximation for the "free length" is to make rough preliminary

drawings, and prior to a final decision on the general lines of design; this involves annoying interruptions to the calculations, and, as a matter of fact, the results scaled off from such drawings generally reveal a value for the "free length" not much different from 3τ .

THE INDUCTANCE OF COILS LAID ON THE SURFACE

Tests are available on two coils, A and B, the sections of which are shown in Fig. 522, where the other important dimensions are also given. (See page 469.)

Eliminating the influence of the end connections in both cases, on the basis of 0.8 line per ampere turn per centimetre of "free length,"

INDUCTANCE CURVES

or 2 lines per inch (the groups being of such small cross-sections), the observations gave the following results:—

For Coil A.—1.9 lines per ampere turn per centimetre of length laid on iron laminations (4.8 lines per inch).

For Coil B.—2.6 lines per ampere turn per centimetre of length laid on iron laminations (6.6 lines per inch).

One would be inclined to take for surface-wound armatures the approximate value of 2 lines per ampere turn per centimetre of length (5 lines per inch) laid on iron laminations for coils of the above proportions, the values decreasing for wider coils.

THE INDUCTANCE OF THE EMBEDDED PORTIONS OF WINDINGS

To obtain a general idea of the extent of the influence of the shape of the slot, five models were built with the winding and slot dimensions shown in Fig. 523, page 469.

Making allowance for the end connections (on the basis of 0.8 line per ampere turn per centimetre of "free length," or 2 lines per inch), the values for the embedded portions are as shown in the following Table:

TABLE LXXVII.—VALUES FOR INDUCTANCE OF EMBEDDED PORTIONS OF WINDINGS

Model.	Lines per Centimetre of Embedded Length.	Lines per Inch of Embedded Length.			
1	1.9	4.8			
2	2.8	7.1			
3	3.2	8.1			
4	4.2	10.7			
5	7.5	19			

Figs. 511 AND 512.

Models 2, 3, and 4 may be said to represent the extreme limits encountered in practice for parallel-sided open slots.

It is desirable to note the influence of the depth in the slot. Tests were made on a coil for the three positions shown in Fig. 524, page 469, and the results are given in the following Table:—

TABLE LXXVIII .- VALUES ACCORDING TO THE DEPTH IN THE SLOT

Position.	Lines per Centimetre of Embedded Length.	Lines per Inch of Embedded Length.		
Coil at bottom of slot	7.2	18.3		
Top of coil just level with top of slot	. 4.2	10.7		
Bottom of coil just level with top of slot	. 2.6	6 .6		

the values representing the flux due to the embedded length alone.

Partly closed over and totally enclosed slots would, per single coil, have still greater values for the inductance, say 7 to 14 C.G.S. lines per ampere turn per centimetre of embedded length (18 to 36 lines per inch).

All these values are applicable to single coils or small groups of coils.

We must next consider the case of distributed windings, for in alternating-current windings, as already pointed out, it is not merely a

Figs. 513 to 516. Types of Armature End Windings

small group of turns temporarily short-circuited at the brushes with which we have to deal, but—except in the case of uni-coil windings—more or less broad bands of coils covering considerable angular widths of the armature circumference. Such spread-out windings have less inductance as arbitrarily expressed in C.G.S. lines per ampere turn per centimetre of length, because there is very incomplete mutual linkage of all the flux with all the turns; and a rough idea of the extent of this decrease in the inductance may be formed by a consideration of the results of the following tests.

Five sets of punchings were prepared, of the same external size, but with different numbers of slots, namely, with 1, 2, 3, 4, and 6 slots

per pole-piece. The slots were so proportioned that the ratio of width to depth was the same for all five models. The punchings were cut from annealed transformer iron, about 0.38 millimetre thick, and built up to a depth of 63 millimetres. Each sheet was japanned on one side only, and the japanning may be taken as corresponding to some 10 per

Fig. 518.

Fig. 519.

Types of Alternator Armature Windings

cent. of the total depth. The laminations were held together by end plates of manganese steel 6.4 millimetres thick, bolted together by means of insulated brass bolts. The coils were wound on formers, taped up, and forced into the slots. The wire used was No. 14 S.W.G. (2.04 millimetres bare diameter) and 144 turns were wound on each set, the total turns being evenly distributed among the slots. Engravings of

the five sets are given in Figs. 525 to 529, pages 470 and 471. The data contained in Table LXXIX. relate to these five models.

While fundamental quantitative results were not the purpose of these tests, the models being too small, it may be pointed out that the approximate equivalent diameter of coil is 13 centimetres, and the

Coils used in Inductance Tests

TABLE LXXIX.—PARTICULARS OF TEST WINDINGS

Size of Slot in Millimetres.	Number of Slots.	Number of Coils.	Turns per Coil.	Total Turns.	Measured Resistance (Ohms at 20 Deg. Cent.).	Corresponding Mean Length of Turn. Centimetres.
36.8 × 24.2	1	1	144	144	0.33	43
26.2×17.2	2	2	72	144	0.31	41
21.4 × 14.0	3	3	48	144	0.29	38
18.4×12.1	4	4	36	144	0.31	41
15.0 × 9.9	6	6	24	144	0.31	41

Fig. 525.

Fig. 526.

Fig. 527.

Models of Windings used for Inductance Tests

approximate equivalent cross-section of coil for the first model is about 3 centimetres square. For such dimensions Professor Perry's formula would not apply. One would, however, infer from the shape of the curves of Figs. 505 to 508, that there would be probably not over 0.3 C.G.S. line per ampere turn per centimetre of "free length" for the unislot model, and still less for the other models; hence the magnetomotive

Fig. 528.

Fig. 529.

Models of Windings used for Inductance Tests

force of the "free length" would not affect the results by more than some 10 to 20 per cent.

In the curves of Figs. 530 and 531 are given the results obtained on these models when free in air—i.e., removed from any magnetic material. It is interesting to observe that, for the 6-coil model, the inductance is still 45 per cent. of that of the uni-coil model; and when it is pointed out that these two models represent very extreme cases

one feels greater confidence in employing representative values without undue concern as to the precise slot dimensions in individual cases. As already pointed out, these models are too small to serve suitably for a basis for obtaining useful fundamental constants, being intended for ascertaining the approximate percentage decrease in the inductance secured by distributing a winding of a given number of turns in many slots.

THE INFLUENCE OF MAGNET FRAME AND POLE-PIECES

We now come to the most difficult part of the subject, and a part where the difficulties are increased by a dearth of experimental data. The data and curves heretofore given have all related to windings

INDUCTANCE OF TEST-MODEL COILS IN AIR

removed from the neighbourhood of the field structure. As is well known, the proximity of additional magnetic material, so situated as to decrease the reluctance of the magnetic circuit, will have a tendency to increase the values of the inductance. But with windings embedded in completely closed-over tunnels (as distinguished from open slots) the difference will not be so marked. It also makes a great difference whether the magnetic material is laminated or solid. The approach of solid magnetic material affords paths for induced secondary currents, and the inductance will not be increased to such an extent as for correspondinglysituated laminated magnetic material; indeed, in rare cases, the inductance might even be decreased by the proximity of suitably-located solid magnetic material. As is well-known, it may be readily decreased by suitably-located non-laminated non-magnetic material (such as thick copper slabs).

¹ See British Patents, No. 17,641 (1901), No. 22,035 (1901).

Now, in dynamo-electric machinery the circuits are sometimes completely laminated, as, for instance, in the newer polyphase generators of the Allgemeine Elektricitäts-Gesellschaft, and in induction motors. But in most generators portions of the magnetic circuit exterior to the armature are of solid magnetic material.

For continuous-current generators it has been frequently observed that the presence or absence of the field magnetic circuit was almost without influence upon the value of the inductance of the coils when in the neutral position (i.e., winding between pole-tips). Hence for such machines, measurements as those heretofore described afforded ample data for estimating the reactance of the short-circuited coil. But for alternating-current generators with laminated magnetic cores, the position of maximum inductance has sometimes been found to correspond to that

Fig. 532.

Fig. 533.

DIAGRAMS OF COIL POSITIONS

where the sides of the coils are in the space between pole-tips, i.e., in the position shown in Fig. 532.

This is proof of the presence of a flux set up by the armature currents, penetrating the entire main magnetic circuit, superposed on the local flux around the armature winding, and giving a resultant inductance greater even than that for the conductors when lying directly under the pole-face, i.e., in the position shown in Fig. 533, which latter, owing to the better magnetic circuit afforded to the local flux about the coils, is generally the position of maximum inductance. Hence it is rather difficult to exactly analyse the occurrence, and one finds it most practicable—where the results of observations on a suitable machine are not available—to take a value for the average of the inductance of all positions of the armature. Fig. 533 is much more likely to be the position of maximum, and Fig. 532 that of minimum inductance, the more the magnetic circuit is composed of non-laminated material; because then the flux corresponding to Fig. 532, owing to the generation of secondary currents, cannot so well penetrate around the main magnetic circuit, hence the local flux constitutes

¹ See articles by Herr Lasche in Engineering, Vol. LXXII., pages 173, 205, 240, 277.

more nearly the total resultant flux. With non-laminated pole-faces, however, the values of the inductance in the positions shown in Fig. 533 will be smaller than with laminated pole-faces.

To sum up, we have examined into the matter of the relative values—for the armature free in air—of the inductance of surface and slotwound armatures; the next step is to determine the limiting values for these same windings when in the magnetic field. Let us first take the case of the uni-slot model of Fig. 525, page 470. The magnetic circuit was more or less closed for this model, by approaching to it a magnetic yoke and pole-piece, first to one of laminated iron, and afterwards to one

of solid steel. For the position shown (A and B), the curves of Fig. 534 were obtained for the laminated, and those of Fig. 535 for the solid steel pole-pieces. It is interesting to note:—

- (1) The decreased values of the inductances occasioned by the greater opportunity for secondary currents offered by the solid steel pole-pieces.
- (2) The interchanged positions of maximum and minimum inductance occasioned by the change in the material of the pole-pieces.

While in this case the position of the slots with reference to the magnetic circuit denoted as position A is that of maximum inductance for the laminated pole-pieces, it is, for the solid pole-pieces, the position of minimum inductance; since, for this latter case, the increased opportunity for eddy-currents decreases very greatly the number of lines which can,

at 100 cycles, penetrate through the main magnetic circuit. Corresponding sets of curves for the multi-coil models are given in Figs. 536 to 543, (see next page); and it is interesting to note that, in all of these cases, the

maximum inductance corresponds to position A, even with the solid steel pole-pieces, instead of, (as in the uni-coil model with solid pole-pieces) to position B. In Fig. 544, on page 477, are given curves of the average value of the inductance for 0.1 in. air gap. Curve I is for the laminated, and Curve II for the solid pole-pieces.

It is thought that this collection of results is very instructive in showing the tendencies exerted by various conditions (such as solid or laminated pole-faces, length of air gap, number of coils, etc.) upon the values of the inductance. But it is very important to point out that the results are only to be employed qualitatively. The models were altogether too different, from the conditions of practice, to yield reliable

quantitative results. In Fig. 545 are given curves for the inductance, with 0.1 in air gap, in the position denoted as B, for a 2-pole and for a 3-pole pole-piece, both of the structures being laminated. At first only the 2-pole pole-piece had been provided. The 3-pole pole-piece was also required, because it better corresponded to the conditions of practice in the other position of the models, *i.e.*, that denoted as position A.

The results on the various experimental inductance tests, on coils and on small models, have been given partly in metric units; and this has often been more convenient, since the henry is based upon that system. As, however, we must now return to the consideration of actual machines, it is convenient to tabulate the conclusions, and devote a column to the results as expressed in lines per ampere turn per inch of length, since this conforms with the nomenclature heretofore employed in this work. This is done in Table LXXX., page 478.

Of course, such values are subject to wide variations, and the aim of these tests and tables is merely to assist in developing a capacity to

INDUCTANCES OF TEST-MODEL COILS WITH LAMINATED AND SOLID POLE-PIECES

intelligently judge the tendencies of variations in type and proportions, and to arrive at rough estimates of the numerical values.

The derivation of the last column may not be sufficiently evident; the values in the immediately preceding column were doubled because they are there expressed in units of length of embedded winding, whereas the constants, in the last column, are expressed in units length of core. These doubled values were then multiplied by 0.8, since the net length of core ranges generally between 75 per cent. and 85 per cent. of the gross length. The final results were obtained by dividing by 0.6, on the assumption that, for the average proportions, the length between flanges contributes 60 per cent., and the length consisting in end connections the remaining 40 per

cent. of the total inductance. These proportions in practice vary very greatly; nevertheless, it will often be found sufficient, for preliminary approximations, to make use of these rough values; but where an attempt at greater accuracy is thought desirable, the embedded length and the end

TABLE LXXX.—RESULTS OF INDUCTANCE TESTS

Description.	Lines per Ampere Turn per Centi- metre of Embedded Length for the Average Inductance.	Lines per Ampere Turn per Inch of Embedded Length for the Average Inductance.	Approximate Values for the Lines per Ampere Turn per Inch of Gross Length of Armature Core between End Flanges for Average Inductance.
Coils laid on laminated surface (coils of small breadth)	2	5	13
Coils laid on laminated surface (coils			
of breadth equal to pitch) Uni-coil windings in open, straight-	1	2.5	6.5
sided slots Thoroughly distributed windings in	3 to 6	7 6 to 15	20 to 40
open, straight-sided slots	1.5 to 3	3.8 to 7.6	10 to 20
Uni-coil windings in completely closed-over tunnels	7 to 14	18 to 36	48 to 96
Thoroughly distributed windings in completely closed-over tunnels	3 to 6	7.6 to 15	20 to 40

connections may be treated independently, although this takes much more time. Generally the main consideration is to be able to estimate correctly the tendencies of variations in the proportions, and to be able to predetermine approximate limits within which the actual values will fall.

FURTHER CONSIDERATION OF THE INFLUENCE OF THE TYPE OF WINDING, STYLE OF SLOT, AND CONSTRUCTION OF THE MAGNETIC CIRCUIT, UPON THE POSITION OF MAXIMUM INDUCTANCE

From the preceding tests it appears, as has already been briefly mentioned, that whereas in uni-slot alternators there is a very considerable difference between the values of the inductance in the positions of minimum and maximum inductance, this difference diminishes in proportion to the extent of the distribution of the winding; and that with multi-coil windings it is, in fact, often the case that what would be the position of minimum inductance in a uni-slot winding (centre of coil, *i.e.*, midway position maximum between two slots, opposite centre of pole-face) is the position of

inductance in a multi-coil winding. This is clearly illustrated in Figs. 546 and 547.

These considerations show that the inductance depends upon the combined magnetic conductivity to a magnetic flux of the periodicity of reversal of the machine, of two paths, one more or less local, the lines taking a short path around the armature coil, some crossing to the pole face but not extending far from the pole-face surface, and the other following the main magnetic circuit, i.e., flowing through the magnet cores and the connecting yoke. There is, of course, no abrupt distinction to be made between these two sets of lines, the first merges into the second. Obviously, the first class constitutes the greater number, in proportion as the slots are deep, or largely or entirely closed over. The other class will be observed in greater number in low periodicity machines, and in machines with

Figs. 546 and 547. Diagrams of Coil Positions

entirely laminated magnetic circuits. Any unlaminated masses in the magnetic circuit, or any closed conductors linked therewith (such as the field-spool flanges in some machines) constitute the seat of opposing magnetomotive forces. This second class of inductance lines has been experimentally observed and measured by exploring coils wound round the yoke. The large proportion which these lines sometimes form of the whole inductance flux is often, at first glance, a source of surprise. The number of lines thus located would be considerably affected by the degree of magnetic saturation of the main magnetic circuit, caused by the constant magnetic flux impressed by the field excitation coils. But in the majority of cases, the total inductance flux is but slightly influenced by the presence of the field excitation, and it is permissible and more convenient to neglect variations from this source in the predetermination of the alternator characteristics.

INDUCTANCE OF POLYPHASE WINDINGS

These cannot be treated as mere distributed windings; that is to say, the inductance of a winding with three total slots per pole-piece (one slot per pole-piece per phase) is not to be calculated as if it were a single-phase winding, with three slots per pole-piece, but each of the three phases must be separately handled, and each treated as a uni-slot winding.

Thus, suppose the case of a three-phase machine with two slots per pole-piece per phase (therefore a total of six slots per pole-piece). The three windings are Y connected, and the terminal voltage is 2500 volts. The voltage per phase is therefore $\frac{2500}{\sqrt{3}} = 1440$ volts, and the inductance per phase should be estimated as if this one winding alone were present upon the armature, distributed in two slots per pole-piece. But these

Figs. 548 and 549. Diagrams of Winding Distribution

two slots are not equi-distantly placed on the armature surface, but are close together, with four interposed slots of the other two phases before the next two slots of the first phase come. It is obvious from Figs. 548 and 549 that this state of affairs will lead to a higher value for the inductance than would be the case for a single-phase machine with two equi-spaced slots per pole-piece.

Some tests were made on the experimental models, already shown in Figs. 525 and 529, pages 470 and 471, to illustrate this point.

The results with laminated pole-pieces are given in the curves of Fig. 550, and corresponding results, with cast-steel pole-pieces, are given in Fig. 551. The two sets of curves give a fair idea of the extent of the influences at work, and afford a rough basis for modifying the constants of Table LXXVIII. to apply to the cases of polyphase windings.

INTER-ACTION OF THE PHASES AS AFFECTING THE INDUCTANCE VALUES

For the present it will suffice to say that, so far as relates to obtaining the reactance voltage for the purpose of mapping out the characteristics, the inter-action of the phases may be neglected. It has been observed to have but slight quantitative effect, though the nature of the effect is very interesting.

In Fig. 489, Curve B (see page 451), the inductance of the winding of one phase of an 850-kilowatt revolving field three-phase alternator was given, and Curve A of the same figure shows the inductance of one phase

when the windings of the other two phases also carry their corresponding currents. This has had the effect of interchanging the maximum and minimum positions, but has not materially altered the average value of the inductance of one winding.

In general, it may be said that polyphase windings, even more than uni-phase distributed windings, will have much less marked maxima and minima in the inductance values.

The reason why they have such slight effect in modifying the value of the reactance of a single phase is in a general way readily apparent, since the current in each phase successively arrives at its maximum value, and, when at that value, the currents in the other phases are much less,

and, being located in other slots, do not exert much influence on the first phase. In some polyphase windings, conductors of different phases come to be located in the same slot, and in such cases the resultant magnetomotive force should be taken into consideration in deriving the inductance.

THE VOLT-AMPERE CURVE AND ARMATURE DEMAGNETISATION

It has already been explained that a volt-ampere curve, taken with a given field excitation, will cut the axis of abscissæ at a value of the armature current such that the armature ampere turns per pole-piece are roughly equal to the field ampere turns per pole-piece. This will fail to be the case to the extent that magnetic leakage is present, that is, to the extent that the field turns and the armature turns are, at the instant of maximum value of the wave of armature current, linked with independent magnetic fluxes. Hence, the form of the magnetic circuit in general, and the shape and the type of the armature slots especially, exert considerable influence in determining in how far this equality exists. Moreover, the assumption of a sine wave of current will, when not justified, lead to discrepancies between the observed values and the values predetermined on that assumption.

TABLE LXXXI.—Showing Range of Variations between Predetermined and Actual Values

Reference number	I.	II.	III.	IV.	v.	VI.	VII.
Number of poles	8	14	20	10	32	20	20
Rated output in kilowatts	75	120	100	60	300	180	150
Speed, revolutions per minute	900	1070	360	1500	470	750	750
Normal voltage	2300	1150	1150	2300	1150	1150	2300
Periodicity, cycles per second	60	125	60	125	125	125	125
Field spool excitation in ampere turns	İ		,		! { !		
$per pole = a \dots \dots \dots \dots \dots \dots$	4000	2900	2875	2900	3650	3250	2950
Number of main slots per pole-piece on	İ			}	İ	1	
armature	1	1	1	1	1	1	1
Turns per pole-piece on armature	40	10	12	40	4	12	16
Amperes in armature winding at short	1	i I		r	!		ł
circuit with above excitation	80	188	152	45.5	545	320	102
R.M.S. ampere turns per armature pole	3200	1880	1820	1820	2180	1920	1630
Maximum ampere turns per armature						Ī	
pole (on sine wave assumption) = $b \dots$	4500	2650	2570	2570	3075	2700	2300
$a \div b$	0.89	1.12	1.12	1.16	1.19	1.21	1.29
					i	1	

Although in practice the method is generally amply sufficient, there are given in Table LXXXI. a number of instances of single-phase alternators sufficient to show the range of variation generally occurring in practice between the predetermined and actual values.

In Fig. 552 are sketched, on a reduced scale, the poles and slots corresponding to the above seven cases. These are all uni-slot machines (except that some of them, Cases I., III., and VII., have an intermediate

slot, designed to contain an auxiliary winding for feeding motors), and hence would have a wave form in which the ratio of maximum to R.M.S. value is considerably greater than for a sine wave. This would tend toward a value of $\frac{a}{b}$ exceeding unity.

The machines shown in Table LXXXI. and Fig. 552 are rather

old-fashioned, as is almost inevitably the case with single-phase designs. A corresponding analysis for three-phase generators is given in Table LXXXII. and Fig. 553, the Table including instances of machines with one, two, and three slots per pole-piece per phase. The values obtained for the ratio of a to b for the eleven cases ranged between the limits of 1.76 and 2.43, but ten of them fell between 1.76 and 2.19, the mean value for all the cases being 2.02; thus in none of the ten was there a greater deviation than 13 per cent. from the mean value.

TABLE LXXXII.—Showing Value of # FOR ELEVEN THREE-PHASE GENERATORS

Reference number	I.	II.	III.	IV.	v.	VI.	VII.	VIII.	IX.	X.	XI.
Number of phases	3	3	3	3	3	. 3	3	3	3	3	3
Connection of phases	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Number of poles	12	12	6	14	12	20	24	12	12	16	48
Rated output in kilo-	}				_						
watts	360	300	225	150	150	75	250	100	150	250	200
Speed, revolutions per				1		1	l I				
minute	600	347	500	514	600	150	125	600	600	450	100
Normal voltage	700	3450	6300	2300	2300	3300	5500	2300	3450	2300	300
Voltage per phase	404	2000	3630		1330	1900		1330	2000	1330	175
Periodicity, cycles per						1				ł	
second	60	35	25	60	60	25	25	60	60	60	40
Field spool excitation in	1			ļ							
ampere turns per pole		i		ł		1					, I
$= a \dots \dots \dots$	3550	5255	6750	3400	4100	4800	7850	3950	3850	3800	5300
Number of armature				}						1	l I
slots per pole-piece per		}				1]	
phase	3	2	2	2	2	2	2	1	1	1	2
Armature turns per pole-								}			
piece per phase	3	16	60	16	14	60	48	21	18	8	3
Amperes per phase at				l			1		l		
short circuit	480	130	43	81	107	29	56	62	70	154	515
R.M.S. armature ampere	Ì			1						l	
turns per pole-piece			ļ			ł	l		ļ		
per phase	1440	2080	2580	1296	1500	1740	2680	1300	1260	1232	1545
Maximum do. on sine			1								1
wave assumption $= b$	2000	2930	3650	1830	2125	2450	3775	1840	1780	1740	2180
$a \div b \dots \dots \dots \dots$	1.76	1.80	1.85	1.86	1.94	1.96	2.10	2.15	2.16	2.19	2.43
		1		1						1	

A very interesting point to observe in this Table is the rise in the ratio a:b accompanying the decrease in the number of armature slots per pole-piece per phase, Case XI. being the only exception in this respect. This increase in the ratio is probably mainly due to the more pointed character of the wave with the concentrated windings.

It has already been explained, and diagrammatically illustrated on pages 148 and 149, that the resultant of the magnetomotive forces of three

¹ There is much to indicate that something was wrong with the tests on Case XI.

phases is twice the magnetomotive force of one phase alone for the types of winding used in the generators on which Table LXXXII. is based. Three-phase windings of the types generally employed in rotary converters have been shown, on pages 384 and 385, to have the property that the maximum magnetomotive force, exerted by the armature conductors of all the phases, is, per pole-piece, only 1.73 times as great as the maximum magnetomotive force per pole-piece per phase.

The result for the ordinary winding for three-phase generators, namely, that the resultant magnetomotive force of the armature winding is twice that of the magnetomotive force per phase, may also be shown by other well-known methods; thus Fig. 554 shows the three vectors, each of value unity, combined to the resultant of value 2; and, in fact, in three-phase generators, one arranges the three windings on the periphery, so that the

VECTOR DIAGRAMS FOR ARMATURE MAGNETOMOTIVE FORCE

electromotive forces generated in them differ from one another by 60 deg. in phase, as shown in Fig. 538, page 475, and, merely by reversing the connections of the intermediate phase, the voltages between the three collector rings become 120 deg. apart in phase, as shown in Fig. 555, the voltage between any pair of collector rings then being, as explained in all elementary text-books, 1.73 times the value of the volts per phase. Fig. 556 illustrates another well-known way of handling the matter. The three sine waves of maximum value 1, drawn in full lines, when combined, form the sine wave shown dotted, which has a maximum value 2.

But all such ways have the fault that, in practice, the waves sometimes depart widely from the sine form, the values of the pole arc and the type of winding exerting wide influences. Very often these influences may with advantage be neglected for preliminary calculations; but one must guard against drawing radically inaccurate conclusions, as would, for

instance, be the case in failing to distinguish between the difference in the resultant magnetomotive forces in windings of the type illustrated in Figs. 419 and 420, on pages 384 and 385, and the more customary windings of the type illustrated in Figs. 153 and 154, on pages 149 and 150.

One of the chief advantages of polyphase over single-phase working lies in the more complete use which can be made of the armature surface by polyphase windings. In single-phase alternators the armature copper cannot be uniformly distributed over the entire armature surface, since this would introduce counter electromotive forces. But the angular spread of the conductors of any one phase of a uniformly-distributed three-phase winding is only $33\frac{1}{3}$ per cent. of the polar pitch; consequently the turns of any one

Fig. 556. Curves for Combination of Armature Magnetomotive Force

phase are periodically all simultaneously linked with the magnetic flux from the pole-pieces, and as a result are all effectively employed in the production of useful electromotive forces. If the pole-face has a spread of from 60 per cent. to 70 per cent., as will generally be the case, such a uniformly distributed three-phase winding will have about 4.44 for the value of K in the formula—

$$V = KTNM \times 10^{-8},$$

and the electromotive-force curve will be about equivalent to a sine wave, the form factor being about 1.11.

We may, in the case of three-phase dynamos, load the periphery of the armature with 50 per cent. more ampere turns per pole-piece for a given maximum resultant armature strength, than we could in the case of a single-phase machine. It is not usually deemed desirable to take ful advantage of this; not only would it involve a larger armature C²R loss, but it is often well to design the machine with a smaller armature strength, as expressed in terms of the resultant armature ampere turns per pole-piece, i.e., twice the armature ampere turns per pole-piece per phase. Good polyphase alternators are characterised, amongst other properties, by the small increase in the field excitation necessary at full load to maintain constant terminal voltage, i.e., by excellent excitation regulation.

While the design of a polyphase alternator, to obtain the best results, will follow along somewhat different lines from that of a single-phase alternator, especially as regards the relative dimensions of armature and field, it may be said in a general way that the expenditure of 100 for active material will give a better result electro-magnetically and thermally in a polyphase alternator than would the expenditure of 120 to 130 in a single-phase alternator.

In a paper read by Mr. M. B. Field before the International Engineering Congress, at Glasgow, on September 5th, 1901, the following very interesting results (see Table LXXXIII.) were given, comprising quotations of cost and weight of three-phase and single-phase generators. The quotations were obtained by Mr. Field from three different makers, especially for the purposes of his paper, and all relate to generators which should comply with the specification accompanying the Table.

TABLE LXXXIII.—COST AND WEIGHT OF 2500-KILOWATT THREE-PHASE AND SINGLE-PHASE GENERATORS; AND THE CORRESPONDING SPECIFICATION TO WHICH THEY COMPLY

	Three-I	Phase.	Single-Phase.		
	Weight in Tons.	Cost.	Weight in Tons.	Cost.	
1	123	£6000	184	£8900	
2	120	5400	140	6200	
3	110	4600	125	5200	

Output, 2500 kilowatts. Voltage, 6500. Efficiency full load, 96 per cent.

Speed, 75 revolutions. Cycles, 25.

Fall of pressure between full load and no load at constant speed and excitation, and power-factor unity, to be not more than 7 per cent. Generator to be supplied without outboard bearing or shaft, but with bedplate rheostat, &c.

three-quarter load, 95 per cent.
half load, 93 per cent.

With regard to transmitting the current at a given electromotive force between lines and for a given percentage line loss, three-phase transmission effects a saving of 25 per cent. in line copper over that required for single-phase working. This advantage is not possessed by the quarter-phase (commonly called two-phase in this country) system.

It is of special importance in polyphase generators to keep the armature strength and the inductance low, particularly when part or the whole of the load is to consist of lamps on the various branches. For, if in the case of a three-phase generator, for instance, the lamps are unequally distributed on the three branches, there will be an unbalancing of the voltage on these three branches, due to the relative displacement of the phases caused by the different reactance voltages in the three circuits. The most loaded branch will have a voltage intermediate between the voltages of the other two branches.

Having now obtained an insight into the leading points wherein the design of polyphase machines differs from the design of those for single

Fig. 557. Poles and Slots of 150-Kilowatt Alternator. Scale 1:6

phase, it is proposed to give some curves which were experimentally observed on a three-phase generator; and then to give, for comparison, the corresponding curves which would have been obtained by calculation from the leading dimensions of the machine.

The machine was of the internal revolving field type. The following brief tabulation includes all the data required for analysing the test results which will be given:—

Rated output	•••				•••	150 kilowatts at unity power factor
Connection of	the wind	lings	•••	•••		"Delta"
Terminal volts	ge	•••	•••	•••		3300
Voltage per pl	1880		•••	•••		3300
Current per pl	ase at fu	ll load a	nd unity	power fac	tor	$\frac{150}{3} \times \frac{1}{3300} = 15.2 \text{amps.}$
Speed			•••	•••		500 revolutions per minute
Frequency	•••	•••	•••	•••		50
No. of poles		•••	•••	•••		12

The armature had six slots per pole-piece, and thirty-five conductors in series per slot. The slots were straight-sided and open, with a width of

0.68 in. and a depth of 1.7 ins. A development of the gap and a pair of poles, and the corresponding armature slots, is given in Fig. 557, drawn to scale of 1:6.

Depth of air gap				(inches)	0.2
Diameter of armature at gap face		•••		,	40.5
Laminated magnet core and pole-sh-	oe:				
Axial length				,,	11.8
Circumferential width				••	6.6
Circumferential polar pitch at air g	ар			••	10.6
Axial length of armature between				1,	12.2
Effective length				,,	10,0
Mean length of one armature turn				٠,	48.5
Armature turns in series per pole-p	iece per	phase			35
(Distributed in two slo	ots per p	ole-piece p	er pha	se)	

Fig. 558. SATURATION CURVE

Root mean square armature ampere turns per pole-piece per phase,	
at full load and unity power factor	530
Maximum armature magnetomotive force per pole-piece per phase,	
ampere turns	750
Maximum resultant armature magnetomotive force per pole-piece,	
ampere turns	1500

The observed no-load saturation curve is given in Fig. 558.

On an identical armature, except that it was wound for 2150 volts at 500 revolutions per minute, and Y-connected with 14 turns in series per pole-piece per phase, the reactance curves shown in Fig. 559 were taken. These curves show the average reactance per phase to be about 7 ohms. The diagrams of connections are given in Figs. 560 and 561.

Figs. 559 to 561.

EXCITATION REGULATION CURVES. 3300 VOLTS 08SERVED VALUES.

Fig. 562.

EXCITATION REGULATION CURVES. 3800 VOLTS CALCULATED VALUES.

Fig. 563.

For the Δ -connected 3300-volt armsture, the reactance per phase would consequently be $\frac{35^2}{14^2} \times 7 = 43.5$ ohms. Hence, for the full-load current of 15.2 amperes, the reactance voltage is 15.2 \times 43.5 = 660 volts.

In Figs. 562 and 563 are given the observed excitation regulation curves for 3300 volts and various power factors, and corresponding values estimated on the basis of the method already described in these articles.

In Fig. 564 are plotted for full-load and half-load currents, curves representing the required excitation for different power factors of the external circuit. The dotted lines represent the observed and the full

Fig. 564. Excitation and Power-Factor Curves for 150-Kilowatt Alternator

lines the calculated values, the two sets of curves being derived from Figs. 562 and 563 respectively.

From Fig. 564 it is easy to see that the observed values, while at low power factors distinctly higher than the calculated values, are nevertheless very irregular; and that for all practical purposes the estimated values bear evidence of being a very reliable guide.

Danielson's Inductance Tests

In Table LXXX., on page 478, were given values for estimating the inductance in straight-sided slots, and in completely closed-over tunnels. Some very interesting tests, for which the authors are indebted to

Mr. Ernst Danielson, have been made upon partly closed-over slots of two machines of the Allmanna Svenska Aktiebolaget, of Westeras, Sweden.

Fig. 565. Danielson's Inductance Tests

The test results are set forth in the curves of Figs. 565 to 570.

The average values confirm in the main the values given in Table LXXX., when analysed as intermediary on the one hand between wide

open slots and completely closed-over tunnels; and, on the other hand, as intermediary between concentrated and thoroughly-distributed windings.

A brief analysis will now be given for the average results to be derived from the observations recorded in the curves of these six figures.

Curves of Fig. 565.—For the three curves here given, the reactance was in each case measured from the volts and amperes of one phase, there being for the three cases, current in that phase, in that and another phase, and in all three phases respectively. A reactance of 0.08 ohm is, however, a fair representative value for the results in all three cases. The presence of current in the other phases had but slight effect on the magnitude of the mean result, its principal effect being to shift the position of maximum reactance.

Length of laminations = 324 millimetres (= 12.8 ins.). Consider the winding as made up of six coils of three turns each per phase.

Reactance per three-turn coil = $\frac{0.08}{6}$ = 0.0133 ohm; inductance per three-turn coil = $\frac{0.0133}{2 \pi \times 50}$ = 0.0000424; lines per ampere turn per inch length of laminations = $\frac{4240}{9 \times 12.8}$ = 36.8 C.G.S. lines.

Curves of Fig. 566.—These were taken on the same machine. Although the reactance was measured across phases 2 and 3, there were three-phasially related currents in the three windings. Hence, the reactance of one phase is equal to the mean reactance 0.135 ohm divided by $\sqrt{3}$; hence, mean reactance per phase = 0.078 ohm.

This is in close agreement with the result for the curves of Fig. 565. Curve of Fig. 567.—In this case, again on the same machine, a single current was sent through phases 2 and 3 in series; hence the reactance for one phase equals one-half of the mean reactance, or $\frac{0.168}{2} = 0.084$ ohm, also in close agreement with the results for Figs. 565 and 566.

Curve of Fig. 568.—Here the tests were made upon a machine with 6 coils per phase and 12 turns per coil; length of laminations = 380 millimetres = 15 in.; mean reactance per phase = 1.20 ohms; reactance per 12-turn coil = 0.200 ohm; inductance per 12-turn coil = $\frac{0.200}{2 \pi \times 50}$ = 0.000635; lines per ampere turn per inch length of laminations = $\frac{63,500}{144 \times 12.8}$ = 34.5 C.G.S. lines.

Fig. 567. Danielson's Inductance Tests

Fig. 568. Danielson's Inductance Tests

Curve of Fig. 569.—For this curve, which was made on the same machine, measurements were made across two phases, but with three-phasially related currents in the three windings: mean reactance across

two phases = 2.02 ohms; mean reactance per phase = $\frac{2.02}{3}$ = 1.17 ohms, practically the same result as for the preceding figure.

Curve of Fig. 570.—In this case, again on the same machine, a single current was sent through the windings of two of the phases in series, and the corresponding voltage measured: mean reactance across two phases = 2.18 ohms; mean reactance per phase = 1.09 ohms, this being 8 per cent. less than the mean results from the tests of Figs. 568 and 569.

The result should be less, since this last case is practically that of a four-slot single-phase winding, the four slots being distributed over two-thirds of the circumferential pitch.

Herein is to be noted a slight lack of consistency with the results of the tests on the other machines recorded in Figs. 565 to 567, and for which the curve of Fig. 567 should have shown a corresponding decreased reactance per phase as compared with the results from the curves of Figs. 565 and 566. However, it is only a matter of a few per cent.; the results of this whole group of tests are, in the main, remarkably uniform. It is important to notice that both of these machines had cast-iron polepieces, since this construction exerts a marked influence to cause the position of maximum inductance to tend to approach that where the slots containing the windings on which the inductance is measured are directly under the pole-face. The effect of the currents in the neighbouring phases in shifting this position of maximum inductance, is one of the most interesting features of these two sets of tests.

In Table LXXX. the following approximate values were given for the "lines per ampere turn per inch of gross length of armature core, corresponding to the average inductance."

Uni-coil windings in open straig	ht-sided s	slots	•••		20 to 40
Mean value	•••	•••	•••	• • •	30
Uni-coil windings in completely	closed-ove	er tunnels		•••	48 to 96
Mean value	•••	•••		•••	72
Hence, uni-coil winding in partl	y closed-c	over slots =	$=\frac{30+}{2}$	72 =	51
Thoroughly distributed windings	in open	straight-sid	led slots		10 to 20
Mean value					15
Thoroughly distributed winding	s in comp	letely close	d over t	unnels	20 to 40
Mean value	•••	•••	•••	•••	30
Hence, thoroughly distributed w	indings i	n <i>partly</i> clo	sed-ove	r slots	
$=\frac{15+30}{2}=\cdots$		•••	•••	•••	22.5

Fig. 569. Danielson's Inductance Tests

Fig. 570. Danielson's Inductance Tests

Hence, for partly distributed windings in partly closed-over slots could be given the rough representative value of $\frac{51 + 30}{2} = 40.5$ lines.

As a matter of fact, the tests just analysed for two such machines gave the values of 36.6 and 34.5. But, of course, such close agreement is largely chance. The range of values might be usefully taken as from 30 to 50 lines for partly-distributed windings in partly-closed-over slots.

A few more thoroughly careful sets of tests on machines of varied proportions and style of construction would go far towards obtaining a good working basis for these inductance values.

DESCRIPTION OF A 40-POLE, 2500-KILOWATT, THREE-PHASE, 25-CYCLE, 6,500-VOLT, 75 REVOLUTIONS PER MINUTE REVOLVING FIELD ALTERNATOR

Four of these alternators, coupled, two of them to Allis and two to Musgrave engines, are employed in the power-house of the Glasgow Corporation Tramways, a view of which is given in Fig. 571, Plate VI. They were built at the Schenectady Works of the General Electric Company of America. The construction and the leading dimensions are shown in the drawings in Figs. 572 to 579, page 499, and Figs. 580 to 582, page 501. A technical specification is given in Table LXXXIV.

				_		
TARLE LXXXIV.	-Glasgow	2500-Kilowatt	GENERATORS	/REVOLVING	FIRLD	TYPE

•••	•••	•••	•••		2500 kilowatts
•••	•••		•••	•••	3
•••	•••	•••	•••	• • • •	Y
r second	•••	•••	•••	•••	25
r minute	•••	•••	•••		75
nals	•••	•••	•••	•••	6500
•••	•••		•••	•••	3750
•••	•••	•••	•••	•••	222
•••		•••	•••		40
rmature la	minatio	ns	•••		220 in.
n of the slo	ots	•••	•••		2071,,
n or the sid mature la			•••	•••	2071,, 200,
	minatio			•••	000
mature la	minatio			•••	200 "
mature la tween flan	mination			•••	200 " 22 "
mature la tween flan ducts	mination				200 ,, 22 ,, 7
mature land tween fland ducts ing duct	mination	 		•••	200 ,, 22 ,, 7 , <u>1</u> in.
mature land tween fland ducts ing duct core plate	mination	 			200 ,, 22 ,, 7 ½ in. 10
	r second r minute nals	r second r minute nals	r second r minute nals	r second r minute nals	r second

FIG. 571. 2500-KILOWATT ALTERNATORS AT THE GLASGOW TRAMWAYS POWER HOUSE

	•			
· !				
				į
		•		
				!
				1

Width slot plus	s tooth a	t bottom o	f slot	•••		•••	2.70 in.
,,	"	armature	face		•••	• • •	2.62 ,,
Depth of slot	•••	•••	• • •	•••	•••	•••	3 5 ,,
Width of slot1	•••	•••	•••		•••	•••	1.55 ,,
" tooth	at arma	ture face	•••		•••	•••	1 07 ,,
,, ,,	root		•••		•••	•••	1.15 "
Net weight of	armature	e laminatio	ns after d	leducting a	lots	•••	25,000 lb.
nensional Data	for Revo	olving Field	d:				
Radial depth of	the air	gap at the	middle o	f the pole	arc	•••	16 in.
Average radial	depth of	f air gap	•••		•••	•••	0.4 "
Pole-face diame	eter	•••		••		•••	199 3 "
Diameter at bo	ttom of	magnet cor	e			•••	1785,
Total radial len	gth of r	nagnet core	e, includi	ng pole-sho	e		$10\frac{3}{8}$,,
Radial length a						•••	8 3 ,,
Material of ma		-					Laminations
Material of yol	_		• • •				Cast iron
Polar pitch at		•••	•••	•••	•••		15 3 in.
Length of pole				•••			10 ,
Ratio of pole as					•••	•••	0.64
Length pole-she	_			•••			22 in.
Cross-sectional	_						22 in. \times 7.3 in.
Internal diame		_		•••			158§ in.
Cross-sectional	•			•••			29 in. × 5 in.
Weight of mag		•			•••		19,200 lb.
Weight of yoke							23,000 ,,
a of Armature	Copper :	•	·				
Number of con			in paralle	ol)			18
	te	•		,			240
Total number of			•••			•••	4320
Turns in series			•••				360
Arrangement of							2×9
Material of cor						•••	Pressed cable
Qiro	1440001			•••	•••		$.485 \text{in.} \times 0.275 \text{in.}$
Dimensions wh	on incul	utod	•••	•••	•••		$.505 \text{in.} \times 0.295 \text{in.}$
Insulation from			•••	•••	•••	0	0.28 in.
Apparent cross			ductors i	 n narallal			0.266 square inch
Apparent cross					noment e		0.200 square men
True cross soci	non one	conductor	(15 per c	enc. or ap	parent c		0.200
True cross-sect							1 4411
section)		•••	•••	•••	•••		•
section) Mean length o	 f one tui			•••	•••		97 in.
section) Mean length o "Effective" le	 f one tui						97 in. 33.2 ,,
section) Mean length o "Effective" le "Free"	f one turngth per	turn "					97 in. 33.2 ,, 63.8 ,,
section) Mean length o "Effective" le	f one turngth per	turn ,, winding p	 oer phase	 at 60 deg.		•••	97 in. 33.2 ,,

¹ The slot is wide open, i.e., it is the same width from bottom to armature face.

 $^{^2}$ The winding consists of 120 coils (40 per phase) in 240 slots. Each coil contains 9 turns, and each turn consists of two conductors, each conductor measuring 0.485 in. wide \times 0.275 in. deep.

Data of the Magnet Copper:

Number of turns per spool	•••				42.5
Size of conductor				1	$\frac{5}{8}$ in. × 0.17 in.
Total resistance at 60 deg. Cent.					0.29 ohm.
Number of spools in series					40
Resistance per spool at 60 deg. Ce	nt.	•••	•••		0.0073
Exciter voltage	• • •	•••			100
Mean length of one field turn	• • •				64 in.
Total weight of copper in 40 spool	8.				10,000 lb.

The ampere turns at no-load are shown in the no-load saturation curve of Fig. 583.

Fig. 583. No-Load Saturation Curve

The terminal voltage is 6,500. The volts per phase are 3750 volts. Letting M = magnetic flux at no-load and 3750 volts per phase, then—

$$3750 = 4.00 \times f^* \times 360 \times 25 \times M \times 10^{-8}$$

For this machine f = 1.25, and

$$\mathbf{M} = \frac{3,750,000,000,000}{4 \times 1.25 \times 360 \times 25} = 8,350,000.$$

The leakage coefficient = 1.3. The flux in magnet frame = 1.3×8.35 = 10.8 megalines.

The cross-sections and densities at no load and 3750 volts per phase are as follows:—

^{*} f = form factor. For Tables of values of f, and for general discussion of the subject of the calculation of the no-load electromotive force of alternators, see pages 82 to 93.

Armature core				Cross-Section in Square Centi- metre. 1,370		Density in Lines per Square Centimetre. 6,100
Armature core	•••	•••	•••	1,370	•••	0,100
,, teeth	•••	•••	•••	500		16,700
Pole-face	٠	•••	•••	1,420	•••	5,900
Magnet core	•••	•••		1,040	•••	10,400
Yoke	•••	•••	•••	1,870		5,800

The full-load output per phase = $\frac{2,500,000}{3}$ = 833,000 watts, and the full-load current per phase = $\frac{833,000}{3750}$ = 222 amperes.

Fig. 584. No-Load and Full-Load Saturation Curves

To send 222 amperes through the short-circuited armature, it was found by test that an excitation of 5100 ampere turns per field spool was necessary. On the armature there are 360 turns in series per phase, or 9 turns per pole per phase, and at 222 amperes there are $9 \times 222 \times \sqrt{2} = 2830$ ampere turns. The resultant for the three phases is $2 \times 2830 = 5660$ ampere turns, or 11 per cent. higher than the observed field excitation necessary for 222 amperes per phase on short circuit.

DETERMINATION OF THE INDUCTANCE FROM THE SATURATION CURVES

The inductance of this machine was not measured. Saturation curves were, however, taken at no-load, and at 222 amperes per phase and unity power-factor. These two curves are given in Fig. 584, plotted in terms of

the volts per phase. From them we may derive the inductance. We shall make independent calculations of the inductance, working from three points on the no-load saturation curve of Fig. 584, namely, 1200, 2400, and 3600 volts per phase. The I R drop per phase is, for 222 amperes, $0.14 \times 222 = 31$ volts.

Therefore, the corresponding voltages on the full-load saturation curves of Fig. 584 are:

```
Voltage per phase ... ... 1200 ... 2400 ... 3600 
Excitation at no-load (ampere turns) ... 2000 ... 4050 ... 7400 
,, 222 amperes and \cos \phi = 1 ... 5500 ... 6500 ... 8909
```

The difference between these two excitation values equals the ampere turns required for overcoming armature demagnetisation.

```
Ampere turns required for overcoming armature demagnetisation ... ... 3500 ... 2450 ... 1500
```

The total armature strength, by calculation, is equal to $9 \times 222 \times \sqrt{2} \times 2 = 5660$ ampere turns. But from the 222-ampere saturation curve, it is seen that the test value is 5100 ampere turns. Let $\theta =$ angle of displacement of maximum current behind mid-pole face position, then we have for the three cases:—

Tan θ is the ratio of the reactance voltage per phase to the main voltage per phase; hence in these three cases is respectively equal to:—

$$\frac{\mathbf{R.V.}}{1200}, \frac{\mathbf{R.V.}}{2400} \text{ and } \frac{\mathbf{R.V.}}{3600}.$$

Therefore, R.V. at 222 amperes equals 1130, 1320, and 1170. From this point we shall work from the mean value of the reactance voltage thus deduced. Reactance voltage per phase at 222 amperes equals

$$\frac{1130 + 1320 + 1170}{3} = 1210$$
 volts.

Reactance = $\frac{1210}{222}$ = 5.50 ohms. 5.50 = 2 × π × 25 × l. Where l equals the inductance of one phase in henrys, l = 0.0350 henry.

The winding of each phase consists of twenty 18-turn coils in series-

... Inductance of one 18-turn coil =
$$\frac{0.0350}{20}$$
 = 0.00175 henry.

Lines per ampere turn =
$$\frac{175,000}{18^2}$$
 = 540.

Lines per ampere turn per inch gross length of armature lamination = $\frac{540}{22}$ = 24.6

From the value of the reactance per phase (5.50 ohms), and the no-load saturation curve, we may—as we have already shown for other cases—calculate the performance of this machine under all circumstances.

Fig. 585. Excitation Regulation Curves

Fig. 586. Inherent Regulation Curves

Curves of its excitation regulation for 6500 terminal volts, and for unity and zero power-factor, are given in Fig. 585. Curves of the inherent regulation for 9750 ampere turns per field spool are given in Fig. 586. The variation of the excitation with the power-factor is shown in Fig. 587. Curves of losses and efficiency are given in Figs. 588 and 589 (page 507).

Figs. 594 and 596. 3750-Kilowatt Westinghouse Quarter-Phase Generator

Fig. 590. 3750-Kilowatt, 20-Pole, 30 Cycle, 2200-Volt Westinghouse Generator

Fig. 591. Upper Half of Armature of the Westinghouse Generator

·		
		1
· ·		

Fig. 593. Portion of Armature Core and Winding of the Westinghouse Generator

Fig. 592. Rotating Field of the Westinghouse Generator

·				

of the armature core and winding. Drawings of the machine are given in Figs. 594 to 610 (see pages 511 to 518). Table LXXXVI. contains its leading dimensions.

TABLE LXXXVI.—3750-KILOWATT QUARTER-PHASE GENERATOR

Rated output	•••	•••	•••	•••	3750 kilowatts
Number of phases				•••	2
Periodicity in cycles per seco	nd	•••	•••	• · •	30
Speed in revolutions per min	ute			•••	180
Voltage per phase	•••	•••	•••		2200
Number of poles	•••	•••			20

Fig. 595. 3750-Kilowatt Westinghouse Quarter-Phase Generator

Data for Armature Iron:

External diameter of armature laminat	ions			154 in.
Diameter at the bottom of the slots			•••	140 15 in.
Internal diameter of armature laminati	ons (i.e., at	air gap)		$137\frac{1}{3}$,
Gross length of core between flanges	•••	•••	•••	25 ,,
Number of ventilating ducts	•••	•••		6
Width of each ventilating duct		• • •		<u>\$</u> in.
Per cent. insulation on core plates		•••		10 per cent.
Effective length of armature core		•••	• · •	20½ in.
Number of slots	•••			360
" per pole per phase		•••		9
Width slot + tooth at bottom of slot				1.23 in.
" " armature face				1.2 "

Depth of slot	•••						1 33 in.	
Width "	•••				***		1.5	
Width of slot o				•••	•••		32 " 3 16 "	
Thickness of th		ne slot one		,	•••	•••	16 " 3 32 "	
Width of tooth	_	o mov op.		,	•••	•••	0.76	
		est point		•••	•••	•••	0.72	
,,	gap		•••		•••		1.01	
**	8-r	•••	•••	•••	•••	•••	1.01 ,,	
ata for Rotating .	Iron:							
Radial depth of	air gap a	t the mid	dle o	f the pole	arc		3 in.	
Average radial	depth	•••		•••	•		13 16 ,,	
Pole-face diame	ter				•••		136 ,,	
Diameter at bot	tom of me	agnet core	Э	•••	•••		1137 ,,	
Total radial len		,,			•••		$11\frac{1}{16}$ ",	
Material of mag	~						Laminated stee	el
,, yok	-	•••						
Polar pitch at a		•••					" 21.3 in.	
Length of pole				,,,			14 "	
Ratio of pole ar			• • •		•••		65.7 per c	ent
Length of magn		-		••	•••	•••		OII V.
•			•••	••		•••	23½ in. 6	
Number of wort	maning au	CUB	• • •	•••	•••	•••	=	
Number of vent	ating dust							
Width of ventile	_		•••	•••	•••	•••	8 in.	
Width of ventile Cross-section of	magnet co	ore		•••			$\frac{5}{8}$ in. 280 square inc	ches
Width of ventile Cross-section of The field is punc	magnet o	ore segments	 , eacl	 h covering	 one full p	 ole and		ches
Width of ventile Cross-section of	magnet o	ore segments	 , eacl	 h covering	 one full p	 ole and		ches
Width of ventile Cross-section of The field is punc	magnet con hed in ten at half-pole	ore segments	 , eacl	 h covering	 one full p	 ole and		ches
Width of ventile Cross-section of The field is punch two adjacen ata of Armature (magnet con hed in ten at half-pole	ore segments s. The sh	 , eacl	 h covering	 one full p	 ole and		ches
Width of ventile Cross-section of The field is punch two adjacen ata of Armature (Number of cond	magnet of hed in ten at half-pole Copper:	ore segments s. The sh	 , eacl	 h covering teel is buil	 one full p t up overle	ole and apping.	280 square inc	ches
Width of ventile Cross-section of The field is punch two adjacen uta of Armature (Number of cond ,, slots	magnet on the hed in ten at half-pole Copper:	ore segments es. The sh	 , eacl	 h covering teel is buil	 one full p t up overle 	ole and apping.	280 square inc 1 360	ches
Width of ventile Cross-section of The field is punch two adjacen ta of Armature (Number of cond ,, slots ,, cond	magnet of hed in ten that half-pole Copper:	segments s. The sh slot	 eet s	 h covering teel is build 	one full p t up overle	ole and apping.	280 square inc 1 360 360	ches
Width of ventile Cross-section of The field is punch two adjacen ta of Armature (Number of cond ,, slots ,, cond ,, turn	magnet of hed in ten at half-pole Copper: luctors per uctors	segments s. The sh slot	eet s	 h covering teel is build 	one full p t up overla 	ole and apping.	280 square inc 1 360 360 180	ches
Width of ventile Cross-section of The field is punch two adjacen uta of Armature (Number of cond ,,,,, cond ,,, turn ,,, phas	magnet of hed in ten to half-pole Copper: ductors per ductors sees	segments se. The sh slot	eet s	h covering teel is build	one full p t up overle 	ole and apping	280 square inc 1 360 360	ches
Width of ventile Cross-section of The field is punch two adjacen ta of Armature (Number of cond ,,,,, cond ,,,, turn ,,, phas (The ventile)	magnet of hed in ten at half-pole Copper: luctors per luctors sees winding is	segments s. The sh slot arranged	eet s	h covering teel is built two indepe	one full p t up overle endent cir	ole and apping cuits.)	280 square inc 1 360 360 180 2	ches
Width of ventile Cross-section of The field is punch two adjacen ta of Armature (Number of cond ,,, slots ,, cond ,, turn ,, phas (The v	magnet of hed in ten at half-pole Copper: luctors per luctors sees winding is seer phas	segments s. The sh slot arranged	eet s	h covering teel is built two indepe	one full p t up overle endent cir	ole and apping cuits.)	280 square inc 1 360 360 180 2 90	ches
Width of ventile Cross-section of The field is punch two adjacen ta of Armature (Number of cond ,,,,, cond ,,, turn ,, phas (The ventile)	magnet of hed in ten at half-pole Copper: luctors per luctors sees winding is see phas	segments ss. The sh slot arranged	eet s	h covering teel is built two indepe	one full p t up overle endent cir	ole and apping cuits.)	280 square ind 1 360 360 180 2 90 20	ches
Width of ventile Cross-section of The field is punch two adjacen ta of Armature (Number of cond ,, slots ,, cond ,, turn ,, phas (The v Number of turn ,, coils ,, ', ',	magnet of hed in ten that half-pole copper: luctors per luctors ses winding is sper phas	segments ss. The sh slot arranged e	eet s	h covering teel is built two indepe	one full p t up overle endent cir	ole and apping cuits.)	280 square inc 1 360 360 180 2 90 20 1	
Width of ventile Cross-section of The field is punch two adjacen ta of Armature (Number of cond ,, slots ,, cond ,, turn ,, phas (The v Number of turn ,, coils	magnet of hed in ten at half-pole Copper: luctors per luctors sees winding is see per phas per pole per (in slot)	segments ses. The sh slot arranged e	eacl seet s	h covering teel is built two indepe	one full p t up overle endent cir	ole and apping cuits.)	280 square inc 1 360 360 180 2 90 20 1 14 in. × 1½ in	·•
Width of ventile Cross-section of The field is punch two adjacen t	magnet of hed in ten at half-pole Copper: luctors per luctors sees winding is see per phas per pole per (in slot) (end con	segments ses. The sh slot arranged e per phase nection)	eacl seet s	h covering teel is built two indepe	one full p t up overle endent cir	ole and apping cuits.)	280 square inc 1 360 360 180 2 90 20 1 $\frac{1}{4}$ in. × $1\frac{1}{2}$ in $\frac{3}{8}$ in. × $1\frac{1}{2}$ in	le.
Width of ventile Cross-section of The field is punch two adjacen ta of Armature (Number of cond ,, slots ,, cond ,, turn ,, phas (The ventile) Number of turn ,, coils ,, coils	magnet of hed in ten at half-pole Copper: luctors per luctors sees winding is see per phas per pole per (in slot) (end con	segments ses. The sh slot arranged e per phase nection)	eacl seet s	h covering teel is built two indepe	one full p t up overle endent cir	ole and apping cuits.)	280 square inc 1 360 360 180 2 90 20 1 $\frac{1}{4}$ in. \times $1\frac{1}{2}$ in 0.375 sq. in	le.
Width of ventile Cross-section of The field is punch two adjacen uta of Armature (Number of cond ,,, cond ,, turn ,, phas (The v Number of turn ,, coils ,,, Size of conducto ,, Cross-section of	magnet of hed in ten at half-pole Copper: luctors per luctors sees winding is see per phas per pole per (in slot) (end con	segments ses. The sh slot arranged e oer phase nection) in slot	eacl seet s	h covering teel is built two indepe	one full p t up overle endent cir	ole and apping.	280 square inc 1 360 360 180 2 90 20 1 $\frac{1}{4}$ in. × $1\frac{1}{2}$ in $\frac{3}{8}$ in. × $1\frac{1}{2}$ in	le.
Width of ventile Cross-section of The field is punch two adjacen ata of Armature (Number of cond ,,, cond ,, turn ,, phas (The v Number of turn ,, coils ,,, Size of conducto ,, Cross-section of	magnet of hed in ten at half-pole of the conductors per second of the conductor end connect the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end conductor end connect half-pole of the conductor end condu	segments ses. The sh slot arranged e oer phase nection) in slot ction	eacl seet s	h covering teel is built two indepe	one full p t up overle endent cir	oole and apping.	280 square ind 1 360 360 180 2 90 20 1 \[\frac{1}{4} \text{ in. } \times 1\frac{1}{2} \text{ in} \\ 0.375 \text{ sq. in} \\ 0.56 \[\text{,} \\ 80 \text{ in.} \]	le.
Width of ventile Cross-section of The field is punch two adjacen two adjacen two of Armature Number of cond ,,, slots ,, cond ,, turn ,, phas (The v Number of turn ,, coils ,, Size of conducto ,, Cross-section of Length of two-f	magnet of hed in ten at half-pole of the conductors per second of the conductor end connect the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end connect half-pole of the conductor end conductor end connect half-pole of the conductor end condu	segments ses. The sh sis. The	, eacl	h covering teel is built two indepe	one full p t up overle endent cir	oole and apping.	280 square ind 1 360 360 180 2 90 20 1 $\frac{1}{4}$ in. \times $1\frac{1}{2}$ in 0.375 sq. in 0.56 ,,	le.
Width of ventile Cross-section of The field is punch two adjacen t	magnet of hed in ten to hed in ten to hed in ten to hed in ten to hed in ten to hed in ten to hed in ten to hed in ten to hed in ten to hed in ten to hed in ten ten to hed in ten ten ten ten ten ten ten ten ten te	segments segments	, eacl	h covering teel is built two indepe	one full p t up overle endent cir	ole and apping.	280 square ind 1 360 360 180 2 90 20 1 \[\frac{1}{4} \text{ in. } \times 1\frac{1}{2} \text{ in} \\ 0.375 \text{ sq. in} \\ 0.56 \[\text{,} \\ 80 \text{ in.} \]	le.
Width of ventile Cross-section of The field is punch two adjacen ta of Armature (Number of cond ,, slots ,, cond ,, turn ,, phas (The vanishment of turn ,, coils ,, cond ,, turn ,, coils ,, cond ,, turn ,, turn ,, coils ,, cond ,, turn ,, coils ,, cond ,, turn ,, coils ,, cond ,, turn ,, coils ,, cond ,, turn ,, coils ,, cond ,, two-ex ,, two-ex	magnet of hed in ten thalf-pole to the din ten ten thalf-pole corrections as the search of the searc	segments ses. The sh slot arranged e oer phase nection in slot ction ctors tions 80 + 375	, eacl	teel is built	one full p t up overle endent cir	ole and apping.	280 square ind 1 360 360 180 2 90 20 1 \[\frac{1}{4} \text{ in. } \times 1\frac{1}{2} \text{ in} \] 0.375 sq. in 0.56 80 in. 37\frac{3}{4},	le.
Width of ventile Cross-section of The field is punch two adjacen ta of Armature (Number of cond ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	magnet of hed in ten at half-pole of the corper : luctors per luctors sees winding is see per pole per (in slot) (end conconductor end connector end connector turn (armature	segments ses. The sh slot arranged e oer phase nection in slot ction ctors tions 80 + 375	, eacl	teel is built two indeper	one full p t up overle endent cir 60 deg.	ole and apping.	280 square ind 1 360 360 180 2 90 20 1 \[\frac{1}{4} \text{ in. } \times 1\frac{1}{2} \text{ in} \] 0.375 sq. in 0.56 80 in. 37\frac{3}{4},	le.
Width of ventile Cross-section of The field is punch two adjacen two adjacen two adjacen two adjacen two adjacen two adjacen nua of Armature (Number of cond ,,,,,,, cond ,,,,,,, phas (The v Number of turn ,,,,,, coils ,,,,,, Size of conducto ,,,,, Cross-section of ,,,,,, two-ex Mean length of two-f Resistance of a (calculated)	magnet of hed in ten at half-pole of the corper: luctors per luctors sees winding is see phase per pole per (in slot) (end conconductor end connector end connector turn (larmature)	segments seg	, eacl	two indepe	one full p t up overle endent cir 60 deg.	cuits.) Cent.	280 square inc 1 360 360 180 2 90 20 1 $\frac{1}{4}$ in. \times $1\frac{1}{2}$ in 0.375 sq. in 0.56 , 80 in. 37 $\frac{3}{4}$, 117 $\frac{3}{4}$,,	le.
Width of ventile Cross-section of The field is punch two adjacen ata of Armature (Number of cond ,, slots ,, cond ,, turn ,, phas (The v Number of turn ,, coils ,, size of conducto Cross-section of ,, two-ex Mean length of of Resistance of a (calculated) Resistance of a	magnet of hed in ten at half-pole in the half-pole in ten at the half-pole in the half-pole	segments segments ses. The sh slot slot arranged e cer phase nection in slot etion ctors tions 80 + 375 winding winding	, eacl	two indepe	one full p t up overle endent cir 60 deg.	cuits.) Cent.	280 square inc 1 360 360 180 2 90 20 1 $\frac{1}{4}$ in. \times $1\frac{1}{2}$ in 0.375 sq. in 0.56 , 80 in. 37 $\frac{3}{4}$, 117 $\frac{3}{4}$,,	le.
Width of ventile Cross-section of The field is punch two adjacen t	magnet of hed in ten at half-pole in the	segments segments ses. The sh slot slot arranged e cer phase nection in slot etion ctors tions 80 + 375 winding winding	, eacl	two indepe	one full p t up overle endent cir 60 deg.	cuits.) Cent. Cent.	280 square ind 1 360 360 180 2 90 20 1 ½ in. × ½ in 0.375 sq. in 0.56 , 80 in. 37½, 117½, 0.0196	le.

Data of Magnet Copper:

Number of turns per spool (wou	nd on edge	e)	• • •		60
Size of conductor		•••			$\frac{1}{8}$ in. $\times 1\frac{5}{8}$ in.
Number of spools in series	•••	•••	•••	•••	20
Total resistance at 20 deg. Cent	. (observed)			0.3307

CHARACTERISTIC DATA

The flux per pole M at no-load is 20 megalines, which corresponds to the following densities at no-load:—

						Sq.	.G.S. Lines per uare Centimetre.
Density	in armature core	·	•••	•••	•••	•••	11,500
,,	teeth				•••	•••	16,500
"	pole-face			•••	•••		8,900
,,	magnet core (leakag	ge factor =	= 1.3)	•••	•••	14,400
"	yoke		•••	•••			13,300

The full-load current per phase is $\frac{3750}{2 \times 2200} = 850$ amperes, and the corresponding current density in the armature conductor is 2280 amperes per square inch for conductor in slot, and 1500 amperes per square inch for end connection.

Armature Demagnetisation:

Turns per phase						90	
" pole per phase	•••	•••		•••	•••	4.5	
Current in conductor	•••	•••	•••	•••		850 amperes	
Armature ampere turns	per pole p	er phase	•••	•••	•••	3820	
The demagnetising amp	ere turns	of a tv	vo-phase	winding	are		
$\sqrt{2}$ times the maximum ampere turns of one phase, therefore							
demagnetising ampe	re turns p	er pole	•••	3820	$\times \sqrt{2}$	$\times \sqrt{2} = 7640$	

The field ampere turns necessary to produce the full-load current at short circuit were observed to be 5800. This is 30 per cent. lower than the above value; the difference is to be explained by the large percentage which the width of a coil constitutes of the pole-pitch (50 per cent.), and by the deep air-gap employed.

Let us take for the calculation of the armature reaction the observed value, 5800.

A suitable value for the lines per ampere turn per inch gross length would be 20.

It has been shown that the Glasgow generator had 24.6 lines per ampere turn per inch gross length of armature, and the Central London Railway generator 33.5 lines. In the present alternator the inductance

expressed in lines per inch gross length would be smaller, because (1) the coil is spread out more than in the previous cases, (2) because the air-gap of this machine is exceedingly large (\frac{13}{16}\) in.), and (3) because two coils per pair of poles per phase are employed, thereby reducing the inductance of the end connections, which constitute a great part of the total inductance. (See paper entitled "A Contribution to the Theory of the Regulation of Alternators," read before the American Institute of Electrical Engineers, April 22nd, 1904.) The value chosen corresponds well with the values

Fig. 604. Details of Terminal Connections

given in this paper for partly-closed slots and well-distributed windings. Observed data of the actual inductance was not available.

The calculation of the reactance of the armature winding has been worked out as follows:—

Lines per ampere turn per inch gross lengtl	h of arn	nature		20
Gross length of armature	•••	•••	•••	25 in.
Lines per ampere turn = 25×20		•••		500
Number of coils per phase				10
" turns per coil	•••	•••		9
Inductance of one coil $(500 \times (9)^2 \cdot 10^{-8})$	•••	•••		0.000405 henry
,, per phase (10×0.000405)		•••		0.00405 ,,

Reactance $(2 \pi \times 30 \times 0.00405) \dots$	•••	•••	 0.76 ohm
,, voltage at full load (850 \times 0.70	6)		 645 volts
Terminal voltage per phase	•••		 2,200 ,,
Tan ϕ at unity power factor $\left(\frac{645}{2200}\right)$	•••		 0.294
Sin ϕ at unity power factor	•••	•••	 0.282
Armature demagnetisation (5800 × 0.282))	•••	 1,630
Field ampere turns at no-load (observed)	•••		 13,500

Fig. 605. FIELD MAGNET STAMPINGS

Drop through ohmic resistance (16 volts)	•••		 0.74 per cent.
Field ampere turns for saturation at full load	d	•••	 13,650
Armature demagnetising ampere turns	•••	•••	 1,630
Total ampere turns per field spool	•••	•••	 15,280

The same calculation has been repeated for other voltages, and the results have been plotted in Figs. 611 to 613, pages 519 and 520, in curves showing the influence of various power-factors, and of lagging and leading currents. All curves have been calculated, as shown in the earlier part of this Chapter.

Figs. 606 and 608. Details of 3750-Kilowatt, 20-Pole, 30-Cycle, 2200-Volt Westinghouse Generator

Fig. 607. Details of 3700-Kilowatt, 20-Pole, 30-Cycle, 2200-Volt Westinghouse Generator

Fig. 609. Details of 3700-Kilowatt, 20-Pole, 30-Cycle, 2200-Volt Westinghouse Generator

Losses:

1.	Armature C ² R loss:					
	Amperes per phase			•••		850
	Resistance at 60 deg. Cent.		••	•••		0.0196
	C ² R loss per phase					14,100
	Total C ² R loss of armature					28,200 watts
2.	Armature iron loss (observed)	•••			•••	45,000 ,,
	Total armeture loss					73,200 ,,

Fig. 610. Details of 3700-Kilowatt, 20-Pole, 30-Cycle, 2200-Volt Westinghouse Generator

3. C ² R loss in field winding at fo	all load	and $\cos \varphi$	= 1		
Ampere turns at full load		•••	•••		15,820
Amperes at full load	•••	•••			255
Resistance of field winding	at 60 de	g. Cent.		•••	0.37 ohm
C2R loss in field winding	•••	•			24,000 watts
Bearing friction and windage (av	erage of	two mach	ines tes t	ed)	19,000 ,,
Total loss at full load and $\cos \phi$	-	•••	•••		116,200 ,,
Efficiency at ,, ,,		•••		•••	0.970

HEATING

The generator was tested with 0 ampere and 2500 volts for twelve hours, and showed after that time the following thermometrically determined temperature increase above the surrounding air:—

Armature iron	 ••		•••		•••	Deg. Cent. 29.5
,, copper	•				•••	22.5
Magnet core	 ••	•••	•••	•••		13.5
Field spool	 					32.5
Collector	 					23.5

Fig. 611. No-Load and Full-Load Saturation Curves

Fig. 612. Excitation Regulation Curves

The armature loss during this test was 54 kilowatts, and, making the approximate assumption of proportionality between losses and temperature rise, the temperature rise at full-load will be $\frac{73,200}{54,000} = 1.35$ times higher

than the mean temperature of armsture copper and iron observed during the no-load test, that is—1.35 \times $\frac{29.5}{2}$ + $\frac{22.5}{2}$ = 35 deg. Cent.

Fig. 613. Excitation Curve

Fig. 614. Core-Loss Curve

Fig. 615. No-Load Saturation Curve

The field loss during the test was 28,000 watts; the temperature rise of the field spools would, therefore, at full-load be 28 deg. Cent. above the surrounding air.

In Fig. 614 is given a core-loss curve for one of the machines tested,

and in Fig. 615 is given its no-load saturation curve. The amperes per phase on short-circuit are shown in Fig. 616.

The weights of the machine are as follows:—

Stationary Part:

						Lb.
•••	•••	•••			•••	73,340
armature	and yoke			•••		34,420
99	,,	•••	•••			37,720
•••	•••	•••	•••	•••	•••	6,320
Total weight of stationary part						151,800
	armature	armature and yoke """	armature and yoke " "	**************************************	**************************************	**************************************

FIG. 616. SHORT-CIRCUIT CURVE

Rotating Part:

Coils		•••	•••		•••	• • • •	6,600
Coil supports				•••		•••	2,480
Spider and field	core				•••		47,800
Shaft		•••		•••		•••	14,980
Details		•••		•••			2,420
One-half couplir	n g		•••	•••	•••	•••	5,390
Total weight of	_	-	•••	•••	•••		79,670
"	machine	(including	one-half	coupling)	•••	•••	231,470

Two of these machines were built, and the test curves are for the second machine. The first machine showed very closely the same characteristics throughout, the windage and friction being about 2 kilowatts lower, and the iron loss about 2 kilowatts higher than on the second machine.

DESCRIPTION OF A THREE-PHASE, 850-KILOWATT, 5000-VOLT, 25-CYCLE, 32-Pole Alternator

This machine is one of six supplied by the British Thomson-Houston Company for the Central London Railway, and installed in the Shepherd's Bush power-house in 1898. The generators are direct-coupled to horizontal, cross-compound, Corliss type engines, built by the E. P. Allis Company, of Milwaukee. The engines run at 94 revolutions per minute at full-load, and are provided with a 50-ton flywheel of 18 ft. outside diameter, the weight of the rim being 30 tons.

Fig. 617. Section Through Slot

The alternators are of the internal revolving field type, the field having 32 laminated pole-pieces, bolted on to a cast-steel ring carried on a cast-iron spider pressed on the engine crankshaft.

The armature core is built up of wrought-iron laminations 0.014 in. thick, secured by dovetails and clamps to a cast-iron frame. The armature slots are 192 in number, corresponding to two per pole per phase. They are open at the core face to admit of former wound coils being used, which latter are secured by wooden wedges held in dovetail grooves at the head of the slots. Fig. 617 shows a section through the slot.

The armature conductor consists of 36 strands of No. 17 B.W.G. pressed cable, whose outside dimensions are 0.35 in. by 0.35 in. The current density at full-load current is 1040 amperes per square inch.

There are 16 coils in series per phase, of 28 turns each coil, making 896 active conductors per phase, or 2688 conductors for the three phases,

FIG. 618. THREE-PHASE, 850-KILOWATT, 5000-VOLT, 25-CYCLE, 32-POLE ALTERNATORS FOR THE CENTRAL LONDON RAILWAY

the three phases being star-connected, and the neutral point earthed. The coils are arranged in two layers at the ends, so that any one coil can be removed without disturbing any of the others; for this purpose and for inspection the complete armature is capable of being removed bodily sideways, clear of the magnet wheel.

The field winding consists of copper strip wound on edge, of section 1.5 by 0.08 in. There are $79\frac{1}{2}$ turns on each pole, the coils being wound on formers slipped on to the cores and held in place by wooden flanges. By adding the half-turn, the terminals are brought out to opposite sides of the wheel, so that by joining adjacent terminals a simple and efficient system of coupling is obtained. The field current at full-load and unity power-factor is 109 amperes, giving a current density of 920 amperes per square inch. The exciter voltage is 125, and the current is conveyed to the field by two rings, each having two copper brushes. The magnet wheel complete weighs 34,000 lb.; and the complete armature 48,600 lb.

Fig. 618, Plate IX., is a view of these machines.

Fig. 619 is an outline drawing giving the leading dimensions of one of them.

Table LXXXVII. is a general specification for the machine, in which has also been incorporated a very comprehensive amount of data from the test results on one of the alternators.

TABLE LXXXVII.—SPECIFICATION FOR 3-PHASE, 850-KILOWATT ALTERNATOR

Rated output at unity power factor	•••	•••		850 kilowatts
Number of phases	•••	•••	•••	3
Periodicity in cycles per second	•••	•••	•••	25
Speed in revolutions per minute		•••	•••	94
Number of poles	•••			32
Terminal voltage	•••	•••		5000
Current per terminal at full load	•••	•••	•••	98
Connection of armature	•••	•••		\mathbf{Y}
Voltage per phase	•••	•••	•••	2880
Data for Armature Iron:				
External diameter of laminations	•••		•••	162 in.
Internal ", ", …	•••	•••	•••	144 "
Diameter at bottom of slots	•••	•••	•••	151¼,,
Gross length of core between flanges	•••	•••	•••	$14\frac{1}{2}$,,
Number of ventilating ducts	•••	•••	•••	5
Width of each duct	•••		•••	½ in.
Effective length of armsture core (iron	ı)	•••	•••	$10\frac{3}{4}$,,
Ratio of effective length to gross length	th	•••	•••	0.745
Per cent. insulation on core plates	•••	•••	•••	10 per cent.

Thickness of laminat	ions		•••	•••		0.014 in.
Number of slots	•••	•••	•••			192
" per	pole per phas	e	•••	•••	•••	2
Depth of slot		•••	•••	•••	•••	3∯ in.
•	inding space		•••	•••	•••	A 52
Width of slot		•••	•••	•••	•••	1 212
Pitch of slots at arm		•••		•••	•••	0.26
Ratio of slot width t		•••	• • •	•••	•••	2.50 ,, 0.557
Width of tooth at ar	-	•••	•••	•••		1.047 in.
Ratio of tooth width		•••	•••	•••		0.443
Pitch of slots at bott	•		•••	•••		2.48 in.
Width of tooth at ro			•••	•••	•••	1.167 in.
***************************************		•••	•••		•••	1.101 111.
Data for Rotating Field	Magnets :			·		
Number of poles	•••	•••				32
Diameter over field				•••		143 ₈ in.
Radial length of air	•			•••	•••	0.3125 ,,
•	(effective	•				0.001
Polar pitch at air ga	•	•	•••	•••	•••	14.1
Circumferential leng	_	•••	•••;	•••	•••	a "
Ratio of pole arc to	_		•••	•••	•••	64.3 per cent.
Length of pole-piece	-	 a f t	•••	•••	•••	14½ in.
Radial length of pole	-		•••	•••	••	075
Breadth of pole acro	-	•••	•••	•••	•••	6 K
Peripheral speed per		la face	•••	•••		59 ft. per second
- co-paramapana pa					•••	oo ta poi socoau
Data for Armature Copp	per:					
Number of conducto	ors per slot	•••	•••	•••		14
Total number of con	ductors	• • •	•••			26 88
Number of conducto	rs per phase	•••	•••	•••		896
" turns	,,		•••	•••		448
" coils	"		•••	•••		16
" turns pei	'	•••		•••		28
•	pole per phas	e	•••			2
Each conductor cons			No. 17 B	.W.G.		
Effective cross-section	on		•••	•••		0.095 sq. in.
Current density		•••				1040 amperes per
•						square inch
Arrangement of con	ductors in slo	t		•••		7×2
Dimensions of condu			ble)	•••		0.35×0.35 in.
" "	insulate					0.39×0.39 ,
Thickness of insulat		•••				0.266 in.
"Free" length per t						71.5 ,,
"Effective" length		•••	•••	•••		21.5 ,,
Mean length of one			•••	•••	•••	93 ,,
Resistance per phase			• • •	• • •		0.294 ohms
	55		•••			0.332 ,,
Space factor in slot	,,				•••	0.275
Space lactor in site	•••	•••	•••	•••	•••	

Data for Field Copper.	•				
Number of turns pe		•••		•••	79 1
Size of conductor		•••	•••	•••	1.5 in. \times 0.08 in
Internal periphery					15 ,, × 7 ,,
73	_	•••	•••	•••	
,,	**	•••	•••	•••	
Depth of winding	 babbi- d.		•••	•••	1.5 in.
Axial length between			•••	•••	7.25 ,,
Thickness of insula			• • • •	•••	0.011 in.
Total cross-section		bobbin	•••	•••	9.5 sq. in.
Length of mean tu		•••	• • •	• • •	50 in.
Weight of copper p	er spool	•••	• • •	•••	153 lb.
Number of spools		•••	• • •	•••	32
Total weight of cop			• • •	•••	4900 lb.
Resistance per spoo		Jent.	• • •	•••	0.0226 ohms
" of 32 sp	ools in series	•••		•••	0.722 ,,
Exciter voltage	•••	•••	• • • •	•••	125
Excitation for Full Loc	ed at United	Porner Fac	tor ·		
Ampere turns per	•	1 00001 1 000			8650
Current in field		•••	•••	•••	100
Current density in		•••	•••	•••	
Current density in	nera copper	•••	•••	•••	920 amperes pe
337.44	. 4 /4 . 4 . 1\				square inch
Watts lost in excit	` ,	•••	•••	•••	8600
" per spool …		•••	•••	•••	269
External surface of	_	•••	•••	•••	406
Watts per square in	nch of surface	·	•••	•••	0.66
Magnetic Data :					
Flux in armature p	er pole at ful	l load		•••	5.82 megalines
Corresponding dens	sities :				C.G.S. Lines per Sq. I
Armature core	·	•••		•••	50,200
Teeth	•••	•••		•••	102,500
Pole-face		•••		•••	46,200
Magnet core (•••	•••	86,000
Yoke				•••	51,400
Leakage factor :	•••	•••	•••	•••	. 02,200
Calculated at	no-load				1.2
	full-load	•••	•••	•••	1.97
Weights:	tuii-ioaa	•••	•••	•••	
					Lb. 6,800
Magnet cores	•••	•••	•••	•••	•
"yoke	•••	•••	•••	•••	7,800
Armature laminati		•••	•••	•••	10,300
Effective iron (tota		•••	•••	•••	24,900
Armature copper	•••	•••	•••	•••	3,800
Field "	•••	•••	···	•••	4,900
••	(total)	•••	•••	•••	8,700
Total weight of eff				•••	33,600
Weight of effective	material in	p <mark>ounds pe</mark> r	kilowa	tt output	40
" magnet	wheel comple	te	. • • •	•••	34,000
,, armatur	е,	•••	•••	•••	48,600
	• • •				-

Data from Tests:						
Field-ampere t	urns for 5000 volts	, no-load	•••	•••	•••	7650
"	"	full-load				8650
"	" at full inducti	ve load (90	deg.)			11250
Voltage on fiel	ld, no load	•••		•••		77.1
" "	full non-inductiv	re load			•••	87.3
"	full inductive lo	ad	•••	•••	•••	113.5
Regulation :						
Inherent regul	ation at full non-in	iductive lo	d excit	ation		5 per cent.
Excitation reg	ulation		•••			13 "
Amperes on sh	ort circuit at full r	on-inducti	ve load	excitatio	n	228
Ratio to full-lo	oad current	•••	•••	•••	•••	2.32
Zo sses :						
Core loss:						Watts.
Iron loss	at 5000 volts no-los	ad				19,000
,,	full-load			•••		19,380
••	C2R armature					9,600
,	excitation watts					9,500
••	total losses	•••		•••		38,480
No-load,	,,	•••	•••	•••	•••	26,520
Efficiency:						
•	5000 volts no load	and 5000	volts fu	ll load.		
		Including 1			T2 . 1 . 32	g Field Losse

			Incl	uding Field Los Per Cent.	Excluding Field Losses. Per Cent.	
11 load	•••	•••	•••	96.0	•••	96. 8
Full "			•••	95.7	.:.	96.6
3 ,,	•••	•••		95.0		96.2
<u>1</u>			•••	93.4		95.0
1				88.5		91.3

Heating:

Rise in temperature after $11\frac{1}{2}$ hours' run at 5200 volts and 125 amperes (= 1120 kilowatts).

						D	eg. Cent.
Armature core surface			•••		•••		23
"	.,, ventila	ting ducts	•••	•••	•••		22.3
,,	conductors,	top coil	•••	•••	•••		18.8
,,,	,,	side coil	•••	•••	•••		27
"	,,	by rise in r	esistance		•••		35
Collector	rings	•••	•••	•••	•••		20
Pole-tip,	leading	•••	•••		•••		11.5
,,	trailing	•••	•••				12
Separatel	y-excited field	d (at 109 an	peres)		•••		25.7
Frame	="	•	- ,				Q

Alternators

Heating Constants:

Radiating	surface, ar	mature, for	core loss	only		 6,580 sq. in.
,,	• •	eld	•••	•••	•••	13,000 ,,
Watts per	square inc	h of armati	ıre radiati	ng surface		 2.95
,,	"	field	,,,	"	•••	 0.66
Deg. Cent.	rise per w	vatt per squ	are inch,	armature	• • •	 78
••	,,	••	f	ield		 39

Fig. 620. Efficiency and Loss Curves

Fig. 621. Loss Curve

FIG. 622. OUTPUT CURVE AT UNITY POWER FACTOR

Resistances:	Cold.	Warm.
Armature between rings	 0.588 (20 deg. Cent.)	0.664 (55 deg. Cent.)
Field	 0.722 (20 deg. Cent.)	0.802 (50 deg. Cent.)

Fig. 620 shows the observed curves for losses and efficiency; including and excluding excitation losses.

In Fig. 621 is given a curve for the observed core loss at various voltages, corresponding to various flux density values in the armature.

Fig. 622 is a characteristic output curve connecting amperes output and kilowatts output at unity power factor for a constant field excitation of 8740 ampere turns per field spool.

A number of other characteristic curves for this machine have already been given in Figs. 488 and 489, page 451; Fig. 491, page 453; Figs. 494 and 495, page 456; and Figs. 502 to 504, pages 460 and 461; the subject of armature reactions and regulation, and the calculation of these curves having also been dealt with at some length.

OUTPUT COEFFICIENT

It has been alleged—and to a certain extent rightly—that the rated output of a machine is proportional to $(gap\ diameter)^2 \times gross\ length$ of armature \times revolutions per minute, and the ratio

Output in watts $\overline{\text{(Gap diameter in cms.)}^2 \times \text{(gross length of armsture in cms.)}} \times R.P.M.$

has been designated the "output coefficient." As a matter of interest, this output coefficient has been calculated for the three large alternators described in this Chapter, and has been arranged in Table LXXXVIII.:—

TABLE LXXXVIII.

Type of Alternator.	Output in Watts.	Speed.	Periodicity.	Gsp Dismeter in Cms.	Gross Length of Armature Core in Cms.	D ² L	Output Co- efficient.
Central London Railway	850,000	94	25	366	37	4.95	0.00183
Shawinigan Power Company	3,750,000	180	30	349	63.5	7.75	0.0027
Glasgow Tramways	2,500,000	75	25	508	56	14.4	0.00232
Yorkshire Electric Power Company	1,500,000	1000	50	122	58.4	8.69	0.00173

The last machine in the above Table is a 1500-kilowatt, three-phase alternator of the Yorkshire Electric Power Company, described in Part V., "Alternators for Steam Turbine Speeds."

All the designs in Table LXXXVIII. are very liberal. One finds, especially in the case of the alternators of Continental manufacturers, considerably higher output co-efficients. These are obtained by working the magnetic circuits at much higher saturations, and by much thinner slot insulations. Neither of these practices should be carried to extremes, as both magnetic and insulating materials are of very variable quality. In the case, however, of some of the alternators in Table LXXXVIII., the thickness of the slot insulation is much greater than is necessary to withstand an insulation test at from two to three times normal voltage from copper to iron.

PART V

ALTERNATORS FOR STEAM-TURBINE SPEEDS

i					
	•				•
1					
					1
			•		
			•		

ALTERNATORS FOR STEAM-TURBINE SPEEDS

DESCRIPTION OF A 3-PHASE TURBINE GENERATOR 1500-KILOWATT, 11,000-Volt, 6-Pole, 50-Cycle, 1000 Revolutions per Minute Alternator

THIS machine is one of eight built for the Lancashire and Yorkshire Power Companies, and forms part of a Curtis steam-turbine set, the complete sets being built by the British Thomson-Houston Company, through whose courtesy we are enabled to publish this description of the generator.

The generators are mounted on top of the turbine, the rotating field magnets being carried on the upper end of the vertical shaft which runs on a hydraulic footstep-bearing supplied with water at 400 lb. per square inch. Fig. 623, page 534, illustrates one of these machines, half in section and half in elevation.

The stator casing consists of an outer perforated shell of cast iron, 1 in. thick, provided with 18 radial ribs, against which bed the armature laminations, these radial ribs being webbed together with three circumferential ribs of the same thickness.

The laminations are secured by feather keys fitting into dovetail slots in the punchings and parallel slots milled in these longitudinal ribs, and are clamped between two end-plates, the bottom one resting on the casing, and the top one being bolted thereto.

The armature is punched in nine sections, from sheet iron 0.02 in. thick. The slots are wide open, with **V** grooves in the sides of the teeth to admit of wooden dovetail wedges for securing the armature winding.

¹ For articles relating to these Companies and description of Power Station, see *Electrical Review*, vol. 57, p. 342, 1905; *Electrical Engineer*, vol. 36, p. 330, 1905.

² For articles relating to the Curtis Turbine, see *Electrical Review*, vol. 54, p. 330, 1904; and vol. 57, p. 21, 1905.

Fig. 623. ELEVATION AND SECTION OF 1500-KILOWATT TURBINE GENERATOR

The armature winding consists of 27 former wound coils, of shape shown in Fig. 624, Plate X.

The winding is carried out as indicated in Figs. 625 and 626, Plate X., there thus being nine coils of 18 turns each per phase, making 162 turns per phase. The ends of the coils are held against the stator casing by special clamps, embracing the coils and bolted on to the armature end-plates.

The connections from coil to coil are brought round at the back of these clamping blocks, and the terminal cables emerge through bushed holes at the bottom corner of the casing.

The rotor construction is designed to meet the high mechanical stresses set up in the pole-pieces and field windings when rotating at high speeds.

The magnet system is a definite pole construction, having six salient poles, as shown in Figs. 627, page 536, and 633, Plate XII. The whole structure is built up of sheet-iron stampings, constituting a hexagonal hub having two axial T grooves in each of its faces, into which fit correspondingly-shaped projections on the pole-piece stampings, the latter being secured by keys driven in from each end. This arrangement forms a good method of attaching and securing pole-pieces.

The field winding consists of two coils on each pole with a ventilating space $\frac{1}{2}$ in. wide between them, thus increasing the cooling possibilities and allowing higher current densities to be employed.

Each coil is wound with copper strip on edge of section, 1 in. by 0.035 in., with 0.007 in. of insulation between turns.

For convenience in connecting up the coils they are wound alternately right hand and left hand, the beginning of one coil and the end of the next being thus brought out near one another at the same end of the rotor.

The coils are thoroughly secured against any tendency to shift or fly out, in the following manner:—

The coils are clamped between two perforated bobbin flanges, one bedding on the hub and the other on the underside of the pole tip, the overhanging pole tip thus taking up the axial component of the centrifugal force of the sides of the coil.

The lateral component of the centrifugal force of the sides of the coil (i.e., across the pole at right angles to its axis) is taken up by special supporting brackets placed between the poles, and secured

Fig. 627. Revolving Field Magnet System, and Arrangement and Connection of Firld Coils

on to the hub by bolts whose heads engage in grooves formed in the stampings at the corners of the hexagonal hub.

The end portions of the field coils are secured against radial forces by a wrought-iron strap dropped over the coil, and secured at its lower end by projections fitting into the T grooves below the pole seat. The wedges which hold the pole pieces also serve for these straps. In this way the field windings are firmly secured against any tendency to shift or bulge, which is most important at these high speeds. The diameter at the pole faces is $47\frac{1}{8}$ in., giving a peripheral speed of 12,500 ft. per minute (63 m. per second).

FIG. 628. STATOR FRAME

In Figs. 628 to 631 (see pages 538 to 540) are given drawings of further details of various parts of the machine. Fig. 632, Plate XI., illustrates one of these machines erected, and Figs. 633 and 634, Plate XII., are views of the rotor and stator respectively.

SPECIFICATION FOR 3-PHASE, 1500-KILOWATT ALTERNATOR

Rated output at unity p	or	•••		•••	1500 kilowatts	
Number of phases	•••			•••		3
Periodicity in cycles per	second	•••		•••		50
Speed in revolutions per	r minute		•••	•••	• • • •	1000
Number of poles			•••	•••		6
Terminal voltage	•••	•••	•••	•••		11,000
Current per terminal at	full load	•••		•••		79.5
Connection of armature						Y
Voltage per phase	•••		•••		•••	6350
. .						_

Data for Armature Iron:

External di	ameter c	f laminati	ions	•••	•••	•••	75 in.
Internal	31	,,	(at air-g	ар)	•••		48 "
Gross length	h of core	between :	flanges	•••	•••	•••	23 in.
Number of	slots						54

Fig. 631. Collector

Data for Rotating Field:

Number of poles		•••	•••	• • • •	6
Diameter at pole face					47.125 in.
Circumferential length of pole arc					16.6 ,,
Length of pole piece parallel to she	aft	•••	•••		21.75 in.

Data for Armature Winding:

Number of conductors per slot	•••		 18
Total number of face conductors	•••	•••	 972
Number of conductors per phase]	•••		 324
,, turns in series per phase			 162
" slots per pole "	•••	•••	 3
Nature of conductor			Pressed cable

FIG. 632. 1500-KILOWATT, 6-Pole, 11,000-Volt, 50-Cycle, 1000 Revolutions per Minute, 3-Phase, British Thomson-Houston Alternator

Fig. 633. Rotating Field Construction for British Thomson-Houston 1500-Kilowatt Alternator

Fig. 634. Stator of British Thomson-Houston 500-Kilowatt Alternator

	·		

Dimensions of conductor, bare	•••	•••	•••		in. × 0.344 in.
Effective cross-section of conducto	r	•••	•••		square inch
Current density	• • •	•••	•••		$\mathbf{amperes}\ \mathbf{per}$
				squ	are inch
Arrangement of conductors in slot		•••	•••	•••	9×2
Resistance per phase at 20 deg. C	ent.	•••	•••	•••	0.338 ohm
Data for Field Winding:					
Total number of field coils		•••	•••	•••	12
Number of field coils per pole					2
Turns in series per coil		•••			150
", ", pole		•••	••	•••	300
Dimensions of conductor, bare					5 in. × 1.0 in.
Resistance of inner coil at 60 deg.					.23 ohm
					07
,, outer ,, ,, ,, inner, plus outer		•••	•••		, K
Total resistance of field		•••			3.0 ,,
Magnetic Data :					
Flux in armature				18.4	megalines
Corresponding flux densities in C.		es per sau	are inch		
Armature core		por oqe			1,000
insth		•••			6,000
,, teeth Air-gap		•••	•••		2,00 0
3.0	•••				2,000
17.1.		• • •	•••		31,500
T - 1	•••	•••	•••		1.15
Learage coemcient	•••	•••	•••	•••	1.10
Weights:					lb.
Effective iron, total				1	7,700
Effective copper, total		•••	•••	•••	2,560
Total weight of effective material					20,260

DATA FROM TEST REPORT

The no-load saturation curve taken with increasing and decreasing excitation is shown in Fig. 635, on Plate X., the excitation for normal voltage at no load being 11,000 ampere turns per pole, corresponding to 37 amperes in the field circuit.

The exciting power for 1375 kilowatts non-inductive load at 11,000 terminal volts was 4.5 kilowatts, the exciter voltage being 220.

The machine was run on quarter-load for $1\frac{1}{2}$ hours, half-load for 2 hours, and full load for 3 hours, successively.

After this run the final temperatures observed at various parts of the machine were as follows:—

Rotor spools	•••	•••			•••		35 deg. Cent.
Pole tips				•••	•••		35 ,,
Stator winding	g (back)	•••	•••	•••		• • • •	39 ,,
" "	(front)	•••	•••	• • •	•••		36 "
Core ducts	•••		•••	•••			45 ,,
Teeth	•••		•••	•••	•••		44 ,,

The temperature of the atmosphere was 21 deg., Cent., and the temperature rises were therefore:—

Rotor spools	•••		•••	•••	•••		14 de	g. Cent.
Pole tips	•••	•••	•••	•••			14	,,
Stator winding	(back)	•••	•••		•••	•••	18	,,
" "	(front)	•••	•••	•••	•••	•••	15	"
Core ducts			•••	•••	•••	•••	24	"
Teeth	•••	•••		•••	•••		23	,,

The relatively low rises observed after the run point to the results of allowing for a liberal ventilating scheme.

The guaranteed temperature rise in any part of the generator after running on full load at 100 per cent. power factor was not to exceed 30 deg. Cent.

ARMATURE DEMAGNETISATION

Number of turns p	er phase	•••	•••	•••		162
Full-load current	,,	•••	•••	•••		79.5 amperes
Ampere turns	1)	••	•••	•••	•••	12,900
"	" ре	r pole	•••	•••	•••	2,150
Resultant ampere turns per pole for three phases					2	$\sqrt{2} \times 2150 = 6100$

CALCULATION OF ARMATURE INDUCTANCE

For the slot proportions of this machine we may choose a value of 30 C. G. S. lines, linked with the coil per ampere turn per inch of gross core length.

Number of turns per c	oil	•••	•••	•••	•••	18
Gross core length	•••		•••	•••	•••	23 in.
Inductance per coil	•••		18° × 0.00	000030	$\times 23 = 0.0$	0224 henrys
Reactance per coil	•••		2	≖ × 50 ɔ	< 0.00224 s	= 0.71 ohms
" of 9 coils in	series		•••	•••	•••	6.4 "
voltage				7	9.5 × 6.4	= 510 volts

EXCITATION FOR FULL LOAD AND UNITY POWER FACTOR In Fig. 636, Plate X., we have

Tan
$$\theta = \frac{510}{6350} = 0.082$$

 $\theta = 4 \text{ deg. } 42 \text{ min.}$
Sin $\theta = 0.082$

Armsture demagnetisation = $6100 \sin \theta = 6100 \times 0.082 = 500$ No-load ampere-turns = 11,100

... Field ampere-turns for full load at $\cos \phi = 1 = 11,600$

From the saturation curve, Fig. 635, on the same plate, we find this excitation corresponds to a voltage of 11,650 at no load. Hence inherent regulation =

650 volts =
$$\frac{650}{11000} \times 100 = 6$$
 per cent.

EXCITATION FOR FULL LOAD AT POWER FACTOR = 0.8

In Fig. 637, Plate X., we have $\phi = \cos^{-1}0.8 = 37$ deg. Setting out OV = 6350 volts at 37 deg. to OC, we obtain graphically the value of $\theta = 41$ deg., whence $\sin \theta = 0.656$. Hence armsture demagnetisation

$$= 6100 \times 0.656$$

= 4000 ampere-turns

No load ampere-turns = 11,000

 \therefore Field ampere-turns for full load at $\cos \phi = 0.8 = 15,000$

From the saturation curve, Fig. 635, we see that this excitation at no load would give a voltage of 13,000. Hence inherent regulation =

2000 volts =
$$\frac{2000}{11,000} \times 100 = 18 \text{ per cent.}$$

Figs. 638 to 641, Plate XIII., illustrate the construction employed by the Allgemeine Elektricitäts Gesellschaft for the rotors of their turboalternator. Fig. 638 is a longitudinal section through the unwound core and end-shields of a 500-kilowatt 3-phase bipolar machine. A cross-section at right angles to the shaft is shown in Fig. 639, from which one sees that shaft and core are constructed from a single casting, into which teeth are dovetailed. The field spools, as may be seen from Fig. 640, are placed in position before the teeth are secured in the dovetailed grooves. Each tooth has two main parts, which are forced laterally into the sides of the dovetails by the insertion of a radial strip, which in turn is retained by a wedge at the surface. Larger

wedges, directly at the upper part of the slots thus formed, assist in securing the windings in place, and in preserving the continuous surface, which is an essential to running at the high speeds employed. In Fig. 641 the end-shields are in place, concealing the winding.

We are indebted to the courtesy of Herrn Geheimrath Rathenau, General Director of the Allgemeine Elektricitäts Gesellschaft of Berlin, for permission to publish these photographs, as well as Figs. 644 to 648, in Part VI., and to Herrn Direktor O. Lasche, the designer of the machines, for supplying them.

PLATE XIII

Figs. 638 and 639. Section through Rotor of A. E. G. Turbo-Alternator

Fig. 640. Rotor of A. E. G. Turbo-Alternator, showing Field Coils in Place

Fig. 641. Complete Rotor of A. E. G. Turbo-Alternator

1				
			·	
				1

PART VI

CONTINUOUS CURRENT DYNAMOS FOR STEAM TURBINE SPEEDS

	•		
	-		
		I	
		•	
		·	
		İ	

CONTINUOUS - CURRENT DYNAMOS FOR STEAM TURBINE SPEEDS

IN the design of large continuous-current dynamos for steam turbine speeds, it becomes necessary to introduce auxiliary windings in order to obtain satisfactory commutation. Without these provisions it becomes impossible, with fixed brush position for all loads, even with carbon brushes, to avoid proportions leading to reactance voltages which would occasion sparking.

The most satisfactory solution, from the commercial standpoint, consists in the employment of auxiliary poles intermediate between the main poles. These auxiliary poles are furnished with windings carrying the main current, the windings being proportioned to provide a magnetomotive force at any and every load, not only sufficient to neutralise the armature magnetomotive force, but to provide a field of sufficient intensity and extent, and of suitable direction, to approximately neutralise the reactance voltage set up in the armature coils while short-circuited under the brushes.

Such designs afford the best means yet available for securing good commutation in large steam turbine-driven, continuous-current dynamos. The principle is also coming to be widely used in small continuous-current dynamos and motors, not only for high but also for moderate speeds. In cases where heating is the limit of output, and not sparking, such designs are more expensive, and less efficient, and their use is not in accordance with sound engineering practice.

Auxiliary commutating poles are the more suitable the higher the speed, voltage, and output. When all three of these factors are high, a design with such auxiliary poles will alone permit of a satisfactory result. When all three factors are low, a design with commutating poles would be more expensive, and no better as regards commutation, or in any other respect, than a correct design without them. For

OUTLINE OF GENERAL ARRANGEMENT OF 750-KILOWAIT, 250-VOLT, 6-POLE, 1500 REVOLUTIONS PER MINUTE, CONTINUOUS-CURRENT GENERATOR Fig. 642.

intermediate cases a careful preliminary comparison of alternative designs is often necessary.

For a 750-kilowatt, 250-volt, 1000-revolutions per minute design, auxiliary poles should be employed, as an ordinary design with good commutation is impossible. For 250-kilowatt machines for 250 volts and 1000 revolutions per minute, while designs with commutating poles are much cheaper and more satisfactory, good designs without them are still practicable.

Coming down to 100-kilowatt machines for 250 volts at 1000 revolutions per minute, the advantage which commutating-pole designs have over ordinary designs is but slight. At a somewhat lower output or

Fig. 643. Winding Scheme for Auxiliary Poles

speed there would, for 250-volt designs, be no choice. For still lower outputs and speed—for 250 volts—the commutating-pole design becomes the more expensive. For a 100-revolutions per minute machine for 250 or even 500 volts, the preferable design would be without commutating poles, even in large capacities. At 200 revolutions per minute and 500 volts, commutating poles are desirable from, say, 400 kilowatts upwards; and for 200 revolutions per minute and 250 volts, from, say, 600 kilowatts upwards.

Of course, such statements can only be general, and the preferable design depends very greatly upon the precise conditions for which the machine is to be used. In general, however, when heating and not commutation is the limiting consideration, the cheapest and best design

will be without commutating poles, and vice versa when commutation is the limit. Commutating poles are generally preferable to Déri windings, on the score of the mechanical superiority and lower labour cost associated with the windings of the former type.

In the following specification, and in the diagrammatic sketches in Figs. 642 and 643, pages 548 and 549, are given the rough outlines for the electromagnetic design for a 750-kilowatt, 250-volt continuous-current generator, for a speed of 1500 revolutions per minute.

Specification of 750-Kilowatt, 250-Volt, 1500 Revolutions per Minute Continuous-Current Generator

Armature:

The core-plates are stamped in one piece from plates not more than 0.5 millimetres thick, and are assembled directly upon the shaft, as the required shaft diameter does not permit of an intermediate armature spider. The slot conductors are kept in place by wedges, which in turn are retained by recesses in the sides of the slot, and by binding bands. The end connections are carried on a specially-shaped end-plate, which is curved on its surface, and permits of heaping towards the centre the binding wire holding the end connections.

Commutator:

The construction of the commutator differs rather radically from that customarily employed for slow and moderate speed designs.

The segments are built up with the intervening layers of mica and clamped together. Circumferential mica bands are then placed at the middle and at the two ends, and three steel rings are shrunk on over the mica. The interior contour is then machined, and the commutator is secured in place on its sleeve by cones forced in by end-rings. The external surface is then turned. Ventilation of the inside of the commutator is provided for by three channels inside the spider, through which air can be driven by cup-shaped fans at the outer end of each channel.

Brushes:

The brushes are of carbon, or preferably of graphite, of low contact and radial resistance, and high transverse resistance. They are carried in holders of such type as to prevent vibration and chattering at the high peripheral speed employed.

Magnet Frame:

The yoke is made from cast iron. This is employed chiefly on account of the greater rigidity and stability thereby obtained, as compared with a cast-steel yoke of equivalent magnetic capacity.

Auxiliary Commutating Poles:

The main current of this machine is equal to 3000 amperes. Taking 1000 amperes through a diverting shunt leaves 2000 amperes, which, if carried through the coils of the six auxiliary poles in a single series, would require about five turns per pole, and each turn would be of inconveniently large cross-section. It is also

objectionable to use many turns in parallel, owing to the difficulty of obtaining good contact at the connections. An alternative would be to put the spools in parallel, but unless very carefully adjusted, the different windings would be of unequal resistance, resulting in varying strengths of current in different spools. To overcome these difficulties the following arrangement of winding has been adopted: Each spool is subdivided into four sections, each wound with $5\frac{1}{2}$ turns of copper strip. The details of the winding scheme are shown diagrammatically in Fig. 643.

The winding is arranged in four parallel circuits with 500 amperes per circuit. Each circuit contains one section of winding on each pole, or 33 turns in series. By this arrangement, the convenience of parallel winding is obtained, without incurring the liability of having varying strengths of field on the different commutating poles, since any inequality in the current in one section is shared by all the poles.

DESIGNING DATA FOR 750-KILOWATT 250-VOLT, 1500 REVOLUTIONS PER MINUTE, CONTINUOUS-CURRENT GENERATOR

	DESC	RIPTION			
Number of poles		••.			6
Kilowatts output at rated load					750
Speed in revolutions per minute			•••		1500
Frequency in cycles per second					75
Terminal voltage		•••	•••		250
Amperes output at full rated load	•••		•••		3000
Genera Armature:	L Dim	ENSIONS			
External diameter of laminations	•••	•••	•••	•••	30 in.
Diameter at bottom of slots	•••	•••	•••	•••	26.8 ,,
Internal diameter of laminations	•••	•••	•••	•••	15.75 ,,
Gross length of core between flang	es	•••	•••	•••	13.4 "
Number of ventilating ducts	•••	•••	•••	•••	8
Width of each duct	•••	•••	•••	•••	0.395 in.
Percentage insulation on core plat	es	•••	•••	•••	10 per cent.
Effective length of core	•••	•••	•••	• • • •	9.2 in.
Number of slots	•••	•••	•••	• • •	162
Depth of slot	• • •	•••	•••		1.58 in.
Width of slot, stamped	•••	•••	• • •		0.256 "
" " assembled	• • •	•••	• • •	•••	0.244 ,,
Average width of tooth	•••	•••	•••	•••	0.29 "
Magnet Core:					
Length of pole face parallel to sha	ft		•••		13.4 ,,
Mean length of pole arc		•••			9.4 ,,
Width of magnet core parallel to s	haft				13.4 ,,
", " at right ang		shaft	•••		7.9 ,,
Thickness of pole shoe at centre of		•••			0.394 "
Radial length of magnet core		•••	•••		11.0 ,,
" depth of air gap	•••	•••			0.236 "

	High-S	peed	Dynamos				
Yoke:							
External diameter	•••				•••	68.5	in.
Internal "	•••		•••			54.5	,,
Thickness of yoke						7.1	"
Axial width	•••	•••	•••		•••	19.7	,,
Reversing Pole Core:							
Length of pole face para	allel to sha	eft	•••	•••	•••	9.5	,,
,, ,, arc	•••					2.9	1,
Radial depth of air gap		•••	•••	•••	•••	0.275	,,
Width of core parallel t		•••	•••	•••		5.7	,,
	angles to s	haft	•••	•••		2.56	,,
Cross section of core	•••	•••	•••		•••	13.2 s	q. in.
Electrical Data:							
Number of face conduct	tors				•••	3	24
" slots			•••			1	62
" conductors	per slot				•••		2
Style of winding						6-circ	doub
Number of circuits thro	ugh armai	ture			•••		12
Total amperes from con	mutator	•••			•••	30	00
Amperes per circuit	• • •	•••	•••			2	50
Mean length of one tur	n		•••			74	in.
Turns in series between	brushes		• • •			13.5	,,
Total length of conduct	ing path b	etween	brushes			995	,,
Height of bare conducte	or	•••		• • •		0.59	••
Width ", "	•••	• • •	•••	•••		0.157	
Cross section of one con	ductor	•••	•••	•••	•••	0.093	,,
,, ,, of all para	llel condu	ctors	•••			1.12 s	q. in.
Resistance of armature	winding f	rom po	sitive to neg	ative b	rushes		
at 60 deg. Cent.	•••	• • •	•••	•••	•••	.0007	ohm
Commutator Calculations:							
Commutator diameter	•••		•••			17.75	in.
Number of segments	•••		•••			1	62
Thickness of segment +	insulatio	n at pe	eripher y			0.344	in.
Total length of commut	ator					27.5	,,
Number of sets of brush	es						6
" brushes per	set	•••					12
Width of brush	•••	• • •	•••	•••		1.34	in.
Length of arc of contact		• • •				1.025	,,
Contact surface per bru	sh	•••				1.37 sq	į. in.
Amperes per square incl				•••			61
Peripheral speed of com	mutator ir	ı feet p	er second	•••	•••		16
Reactance voltage	•••	•••	•••	•••	•••	15	5.5
Magnetic Data :							
Terminal voltage at rate	ed output			•••		250	volts
Total induced voltage a	_	tput	•••			256	"
Flux entering armature	per pole a	t rated	l full load me	egalines	• • • •	6.	.32
Leakage factor for main				•••		1.	35
Flux generated per pole	_					8.	5

AMPERE TURNS REQUIRED FOR FULL LOAD VOLTAGE AT NO LOAD

		Den per	sity in Lines Square Inch.	Total	Ampere Turns
Armature core	•••		62,000		
" teeth		1	-		2200
Air-gap	•••	•••	50,500		37 60
Magnet core	•••	•••	92,000		1050
"yoke …	•••	•••			
-		_	no load	•••	
			•••	•••	
" " " by	series v	vinding	•••	•••	2400
Magnet	rising V	Vinding	Calculation	78	
Shunt Spool:					
Axial length of winding					7.1 in.
Depth of winding			•••		2.36 ,,
Gauge number of conducto	r				B.W.G. 12
Amperes in the winding					8.2
Current density in ampere	s per sq	uare inch			870 sq. in.
Watts lost per spool	•••	•••			242
Weight of copper per shur	at spool	•••	•••		131 lb.
Series Spool:					
Dimensions of conductor					1.57×0.197 in.
Number in parallel					6
					1.86 sq. in.
		•••			1.5
			•••		1600
_	es per se				
	ol				45 lb.
Reversing Pole Winding:					
Number of sections of win	ding				4
	•	•••			51
<u>-</u>					-
					2
-				,	0.42 sq. in.
					_
-			ns) .		GE 1L
## teeth					
Copper Loss:	Per Square Inch. Foot and State State				
Total amperes from comm	utator	•••			3000
Resistance of winding fr	om posi	itive to n	egative at 60	deg. Cent.	
=	inding				COEO
	_	•••			365 lb.
					4 B

Iron Loss:						
Total weight of laminations	•••	•••			114	2 lb.
Flux density in core (kilolines p						32
Periodicity in cycles per second			•••			75
Total core loss, watts	•••				12,0	
Friction and windage losses, was		•••			300	
Filewon and windage losses, was	· · · · · · · · · · · · · · · · · · ·	•••	•••	•••		
Heating:						
Armature watts lost per square	inch				8.	.0
Commutator watts lost per squa		•••			7.	4
Shunt spool ,, ,,					0.	66
Series spool ,, ,,		••			0.	62
Reversing pole spool watts lost ;	per squar				0.	81
	F1	-				
Total Losses:						
Total constant losses			22,782	watts		
,, variable losses	•••	•••	16,442	,,		
				,,		
Total		•••	39,224	,,		
Commercial efficiency at full loa	d		•••	•••	95.2 per	cent.
•					-	
WEIGHTS OF					925	16
Armature copper	•••	•••	•••	•••	365	
Commutator copper	•••	•••	•••	•••	1210	••
Shunt spool copper	•••	•••	•••	•••	790	
Series spool copper	•••	•••	•••	•••	258	
Reversing pole spool copper	•••		•••	• • •	352	
Armature laminations	•••	•••	•••	• • •	1150	
Magnet cores, cast steel	•••	••	•••	•••	1760	
Reversing pole cores, cast steel	•••	•••	•••	• • •	187	
Yoke, cast iron	•••	•••	•••	•••	6500	"
Total weight of effective ma	aterial	•••		•••	12,572	 2 lb.
Costs of	EFFECTIV	E MATERI	AL			
Total cost of effective copper	•••	•••			2700 s	hillings
", " iron	•••	•••	•••		1164	,,
" all effective materi	al	•••	•••	•••	3864	,,
,, effective material p		tt output			5.15	"
The output coefficient for this		-				••
-	Watts	output				
(Armature diameter in centimetres	$(s)^2 \times \overline{Cor}$	e length in	centimet	res x	speed in	R.P.M.
750 000						
$= \frac{100,000}{(30 \times 2.54)^2 \times 13.4 \times 1500} = 0$).00252.					

Note.—This design was worked out in metric units which have been converted into inches to preserve uniformity throughout the book. This will explain the unevenness of some of the dimensions.

As will be seen from an examination of the design, a high periodicity (in this case 75 cycles per second) is unavoidable. As a fairly high-core density is also necessary, in order, in spite of the restricted diameter, to provide access for sufficient air to the interior of the core, thence to flow radially outward through the ventilating ducts, a rather high core loss per pound of armature laminations must necessarily be permitted. Liberal provision of radial ventilating ducts must therefore be made, as the total rate of generation of heat in the armature per square inch of peripheral radiating surface will be much higher than is otherwise permissible.

The main problem, however, relates to the design of the commutator. Notwithstanding recent very encouraging progress in the development of improved carbon and graphite brushes, and in improved brush-holders, a peripheral speed of 35 meters (115 ft.) per second is as high as it is yet desirable to go. In order to get sufficient radiating surface to prevent excessive temperature rise, the commutator, as will be seen from the example, is of great length, and correspondingly awkward as regards mechanical design, the more especially so with respect to providing internal ducts for the circulation of air. As a compromise between the mechanical and electrical difficulties, a much higher temperature rise than would be preferred has been allowed in this design. temperature rise will be some 60 deg. Cent. Some designers would have shortened the commutator by resorting to copper brushes. in the writers' opinion, is not advisable. The newer types of graphite brushes indicate very encouraging progress toward lower friction coefficients, and I'R contact losses; and this progress, when thoroughly verified by time tests, can gradually be followed up by decreased commutator lengths.

The design above set forth will serve to illustrate certain important points arising in connection with the calculation of machines of this type.

The leakage coefficient must be taken much higher than in the calculation of ordinary designs, without reversing poles. Obviously, this applies to a greater degree to the magnetic circuit of the reversing poles than to the main magnetic circuit. In the design which we have illustrated, the leakage coefficient has been taken equal to 1.35 for the main magnetic circuit, and to 1.45 for the auxiliary circuit; for while the leakage flux from the auxiliary circuit has available the large surfaces

of the main circuit, the leakage flux from the main circuit is only increased by the small extent caused by the comparatively limited surfaces of the auxiliary poles.

As the exciting coils on the auxiliary poles are mainly required for overcoming the armature magnetomotive force of 6550 ampere turns per armature pole, one cannot save much copper by employing low densities or short air-gaps in the auxiliary circuits. In this design the air-gap (0.275 in.) accounts for 3800 ampere-turns, and the pole core saturated to 98,000 lines per square inch, for 1200. The total ampereturns are 11,600, of which the armature magnetomotive force is 56 per A deep air-gap will tend to reduce the core loss, and also the noise. Of less, but still of considerable importance, is the fact that a deep air-gap, under the reversing poles will, by reason of the magnetic material of the pole shoe being further removed from the armature conductors, increase the magnetic reluctance of the inductive iron paths round the shortcircuited armature coils, and will thus slightly reduce the reactance voltage, and in turn the dimensions of the reversing pole.

The calculation of the necessary flux entering the armature from the auxiliary pole is derived in the following way:—

Let l = the length of embedded conductor lying within the region of the flux issuing from the pole, *i.e.*, the length of conductor which actually cuts the auxiliary field.

This length will be equal to the breadth of the pole shoe, parallel to the shaft b, multiplied by 1.1 to allow for fringing of the field at pole tips, and by 0.7, because, of the total length of a face conductor, only about 0.7 of it is "active" or "embedded" in armature iron, the remaining 0.3 being taken up by air ducts and core insulation. Hence, $l = 1.1 \times 0.7 \times b = 0.77 \ b$. If S = the peripheral speed of armature in centimetres per second, and B the average density in the air-gap of the auxiliary pole in C.G.S. lines per square centimetre, then the rate of cutting of flux by one conductor is equal to

 $\mathbf{B} \times l \times \mathbf{S} = \mathbf{C.G.S.}$ lines per second, and the electromotive force generated in this conductor is

$$\frac{\mathbf{B} \times \mathbf{l} \times \mathbf{S}}{10^8}.$$

Since we have two conductors in the short-circuited turn, the electromotive force generated in this turn is equal to

$$\frac{2 B l S}{10^{\circ}}$$
.

This electromotive force must be sufficient to neutralise the reactance voltage.

If v = the mean reactance voltage

$$\left(=\frac{\text{Reactance voltage}}{\frac{\pi}{2}}\right)$$

Then we have

$$v = \frac{2 B l S}{10^s}.$$

Whence

$$B = \frac{v \times 10^8}{2 l S},$$

which determines the requisite flux density at the pole-face.

The length of the pole-arc of the auxiliary pole is chosen such that during the whole period of commutation a coil shall be moving in the auxiliary field.

It is important that the coil shall be moving in a sufficient field at the moment when its commutator segments are leaving the brushes. The pole-arc should cover as many slots as are carrying conductors simultaneously short-circuited by the brush, and it is safer to have a slightly larger pole-arc than this to allow for any distortion of the auxiliary field, which may occur with varying load. An additional allowance is also necessary when there are several segments per slot, as the true diameter of commutation is then constantly swinging back and forth through a small arc.

The total flux crossing the gap per auxiliary pole may now be deduced from the dimensions of the pole-face. The total flux generated in the pole is this quantity multiplied by the leakage coefficient of the auxiliary circuit, referred to above. The total ampere turns required on the auxiliary pole are made up of a number equivalent to the magnetomotive force of the armature, and a number of ampere turns sufficient to send the flux across the auxiliary air-gap and round the auxiliary magnetic circuit—i.e., through the pole core and teeth immediately under the pole-face. As this saturation component of the ampere turns, in the design here given, at any rate, is comparatively small compared with the armature reaction component, the total ampere turns on the pole will not be much increased by saturating the pole core to a fairly high value, thus reducing the cross-section of pole to a minimum, and consequently the peripheral length of the winding, and obtaining

a minimum weight of copper. Such high saturation has, of course, the objection that since the reactance voltage increases directly with the output, so should also the reversing field from the auxiliary pole; but it must be remembered that exact equality need not be maintained at all loads, since a range of residual voltage from one or two volts negative to one or two volts positive—i.e., a total range of, say, three volts—will not suffice to occasion sparking.

The resistance of the diverting shunt is finally adjusted during actual test, to such a value as to obtain good commutation at all loads.

There has been a tendency to envelope in mystery these very simple calculations, and the clear exposition of Dr. Breslauer ("Elektrotechn. Zeitschr.", Heft 28, July 13th, 1905, page 640) is, therefore, all the more welcome.

As pointed out by Dr. Breslauer in the article just referred to, the principle involved is very old, and is due to Menges, Swinburne, Fischer-Hinnen, and others. Dr. Breslauer points out that Menges' patent was granted in 1884, and that Fischer-Hinnen's descriptions date from 1891.

The Allgemeine Elektricitäts Gesellschaft of Berlin prefer the so-called Deri winding to the use of auxiliary poles as above described. The field of a 4-pole, 300-kilowatt, 230-volt, continuous-current turbo-dynamo of their standard construction, employing the Déri winding, is reproduced from a photograph in Fig. 644, Plate XIV., which represents the stage of manufacture at which the compensating winding has been completed. This compensating winding is connected in series with the armature. Were it distributed over the entire periphery, it would completely neutralise all armature interference with the magnetic field set up by the four main field coils, three of which are shown in place in Fig. 645, Plate XIV. As a matter of fact, the compensating winding is proportioned for a slightly greater magnetomotive force than that exerted by the armature winding. The excess magnetomotive force impels a magnetic flux through so-called "reversing" lugs, which are shown in place in Figs. 645 and 646, Plate XIV., being retained in dovetailed grooves seen in Fig. 644. The magnetic flux entering the armature by the reversing lugs is proportioned to neutralise the reactance voltage, which would otherwise be set up in the short-circuited armature coils.

Fig. 644 represents, as stated, the frame of a 230-volt, 300-kilowatt

Fig. 644. A. E. G. 300-Kilowatt, 230-Volt Dynamo, with Déri Winding in Place

FIG. 645. A. E. G. 100-KILOWAIT, 550-VOLT DYNAMO, WITH 3 OF 4 FIRLD COILS IN PLACE

FIG. 647. A. E. G. CONTINUOUS-CURRENT TURBO-DYNAMO

Fig. 646. Complete Wound Stator of A. E. G. 100-Kilowatt, 550-Volt Dynamo, with Déri Windings

-								
				·				
								•
						•		
							•	
•								
				•				
•								
		•						
	•							
·								
·								
·								
·								
·								
·								
·								

65-KILOWATT DIRECT-CURRENT TURBO-DYNAMO, SPECIAL TYPE FOR GERMAN IMPERIAL NAVY Fig. 648.

·			
	·		

machine. In this case the compensating winding is constructed with a single rectangular conductor per slot, since the main current at full load amounts to 1300 amperes. But Figs. 645 and 646 relate to a 550-volt, 100-kilowatt machine, with a full load current of only 182 amperes. In this case the compensating winding consists of coils, each comprising several turns of round wire. The Allgemeine Elektricitäts Gesellschaft recommends separate excitation for their continuous-current turbo-dynamos, as satisfactory regulation is not practicable with self-excitation, owing to their particular magnetic properties. Fig. 647, Plate XIV., is a view of a machine of this type with the commutator in place.

A 65-kilowatt continuous-current turbo-generating set of special type, as supplied by the Allgemeine Elektricitäts Gesellschaft to the German Imperial Navy, is shown in Fig. 648, Plate XV.

·			
-			
		·	
		·	

APPENDIX

1						
1						
		· .	`			
:		•				
	• .			•		•
					•	
1						
1 1			•			
\$						
				•		
 	•					
!						
			·			

APPENDIX

TABLE LXXXIX.—PROPERTIES OF COMMERCIAL COPPER WIRE

BROWN AND SHARPE WIRE GAUGE (B. AND S.)

,											
	Pounds per	1000 Ft. (Bare.)	25 55 88 25 85 88 26 85 88	25.8 201 15.6 12.6 10.0	79.5 63.0 50.0 89.6 31.4	24.9 19.8 15.7 19.4	7. 2. 4. 8. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	2.1.1.95 1.54 1.54 1.54 5.79	967. 1610. 184. 188. 188.	142 191 192 193 199 199 199	7070. 0080. 04740. 7780.
	Feet per	Pound.	2.1.97 84.28 81.28	8. 4. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	31.59 90.09 31.83 31.83 81.83	40.1 50.6 63.8 80.4	128 161 257 257 323	408 514 648 818 1030	1300 1640 2070 2810 3290	4150 5230 6590 8310 10600	13200 16700 21000 26500 33400
	Pounds per Ohm at		18100 8230 5180 8260	2060 1290 810 609 520	202 127 79.7 50.1 81.5	19.8 12.5 7.84 \$.10	1.98 1.23 .772 .866 .806	.192 .121 .0759 .0477	.0189 .0119 .00747 .00470	.00198 .00117 .000785 .000462	.000183 .000115 .0000721 .0000455
	Feet per Ohn at	20 deg. C.	20400 16200 12900 10900	8080 6410 5080 4030 3200	2540 2010 1600 1270 1000	796 631 897 818	249 196 157 124 98.7	77.5 62.1 49.2 88.6 90.8	24.6 19.6 15.4 12.2 9.71	7.70 6.11 8.84 8.88 8.08	2.41 1.62 1.20 1.20
	Gauge	Number.	888°	H 20 ST 10	စုက္ဆဏ္	11 12 13 14	20 20 20 20 20 20 20	ឧងឧងឧ	88888	1 88888	£88848
		100 deg. C.	.0843 .0812 .139	. 162 . 258 . 325 . 410	.616 .655 .828 1.04	+ (s) (s) 4 80 88 88 18 82 88	2.3 × 6.25 2.3 × 6.25 2.4 × 6.25 4.4 × 6.25	16.8 21.2 26.7 33.6	67.5 67.5 85.0 107 136	272 272 242 431	545 686 865 1090 1380
		80 deg. C.	.0606 .0764 .0963 .221	.153 .182 .244 .307		1.56 1.96 1.96 3.913 4.04	4.3.1.9.51 88.88.8 88.88.8	15.8 20.0 31.7 60.0	50.5 63.6 101 128	407 88 8 8 8 10 10 10 10 10 10 10 10 10 10 10 10 10	518 647 815 1090 1300
	Ohms per 1000 Ft.	60 deg. C.	.0505 .0713 .0900 .113	141 180 180 180 180 180 180 180 180 180 18	.456 .576 .728 .915	11.0000	5.87 7.38 9.30 11.7	14.8 11.9 8.06 8.72 8.73 8.74	47.2 59.4 75.0 94.5	151 180 302 380	480 605 762 965 1210
	Ohms pe	40 deg. C.	.0626 .0863 .0837	.134 .168 .212 .268 .387	.425 .535 .677 .852	11.29.8 11.29.8 11.64	4.33 6.87 8.86 10.9	13.7 17.6 21.9 27.6 34.8	44.0 55.3 69.7 88.0 112	140 228 282 354	445 564 710 886 1180
		20 deg. C0480	.0480 .0617 .080	.124 .156 .197 .248 .313	88. 1.05. 1.05. 1.05.	2119998 8200981 81529	8.01 8.05 8.04 10.1	12.8 16.3 20.3 32.6 32.8	40.8 51.4 64.7 81.7 108	130 164 207 328	414 522 659 830 1060
		0 deg. C.	.0462 .0670 .0720	1115 182 182 182 182 182	.865 .582 .782 .924	1.17 1.85 2.83 2.94	3.72 5.90 7.45 9.39	11.8 15.1 18.8 29.9	87.8 47.5 60.0 75.6 86.5	120 152 191 242 304	383 484 610 770 970
	Gauge	Number.	888°	H 31 33 ≠ 10	8 % 8 % OI	118 18 16 16	81118 8128	ឌន្តនង្គ	882838	28888	£8848
	Cross Section.	(Sq. In.)	.186 .132 .106 .0629	.0657 .0621 .0413 .0828 .0899	.0206 .0168 .0129 .0108	.00647 .00613 .00407 .00323	.00208 .01181 .00108 .00109	.000639 .000602 .000402 .000317	.000198 .000168 .000125 .000100	.0000626 .0000496 .0000394 .0000312	.0000196 .0000128 .0000979 .0000979
		T. C. O.	.480 .885 .843	.907 .276 .247 .290	.178 .160 .144 .130	.106 .086 .078 .078	.062 .062 .047	040. 080. 080. 080.	:::::	:::::	:::::
	Diameter (Inches).	D.C.C.	::::::	.308 .272 .243 .216	174 156 140 128 112	101. 100. 1080. 107. 1080.	99999999999999999999999999999999999999	086 083 083 083 083 083		:::::	10: : : :
	Diameter	S. C. C.	::::	:::::	::::88	780 7870 870 830	86.9.9.9.88. 88.88.88	989. 989. 789. 789.	.020 .018 .017 .016	.0126 .0116 .0098 .0098	
	-	Bare.	86.0 88.8 88.8 88.8	882 852 800 108 108 108	162 114 1128 114 102	.0808 .0808 .0720 .0641	.0608 .0463 .0858 .0899	.0286 .0288 .0290 .0201 .0710	.0156 .0126 .0128 .0100	.00796 .00708 .00681 .00682	.00500 .00446 .00897 .00853 .00815
	Gauge	Number.	888°	₩818 ¥16	5 78 0 0	12221	8222	ង នួន ងូន	*****	23 28 28 28	\$ 58 88 48

TABLE XC.—PROPERTIES OF COMMERCIAL COPPER WIRE BIRMINGHAM WIRE GAUGE (B. W. G.)

1	Pounds per	(Bare).	624 647 487 360	272 244 208 172 147	25 88 88 85 12 11 4 8 5 4 4	43.6 27.3 20.9 15.7	8 101.7.3.8. 72.3.4.7.7.1.7.1.7.1.7.1.7.1.7.1.7.1.7.1.7.1	11.58	981 883 163 163 184	.308 .245 .194 .148 .0757	
	Feet per	round.	1.00 1.83 1.83 1.83 1.83 1.83	24.4.7.2 20.00 20.	8.02 10.2 12.1 15.1 18.4	8.72 8.68 8.08 7.00 7.00	78.2 96.2 138 187 270	888 888 888 898	1020 1290 1990 2290	8300 4080 5160 6740 13200 20700	
	Pounds per Ohm at	20 deg. C.	12400 9640 6100 8910	2370 · 1900 · 1320 938 685	497 307 217 140 94.3	60.6 28.8 7.89 7.86	6.22 8.31 1.69 .910 .439	.807 .114 .068 .068	.0307 .0101 .0112 .00635	20200. 20100. 20100. 207000. 30000. 8470000.	
	Feet per Ohm at	30 deg. C.	19900 17500 14000 11200	8690 7790 6480 5470 4680	3960 3180 2180 2120 1730	1890 1150 872 865 501	805 825 170 110 111	88.25.88 8.30.88 8.00.88	31.0 24.7 18.9 18.9	9.06 7.82 6.18 7.41 1.55	
	Gauge	Number.	0000	H 84 80 4 10	50.890	1222	114 118 19 19	ឌ ន្ទន ន្ទ	88888	232233	
		100 deg. C.	.0660 .0761 .0943 .118	251: 169: 108: 240: 288:	88. 124. 003. 126. 005.	.945 1.15 1.58 1.98 2.03	8.88 6.68 7.72 11.1	13.5 17.4 21.9 28.2 34.0	98.00 99.25 94.55	186 168 214 278 545 846	
		80 deg. C.	.0622 .0710 .0688 .111	1425 150 191 226 365	12.88.17. 12.88.17.	.890 1.08 1.86 1.86 7.47	3.03 3.81 5.34 7.27 10.5	12.5 16.4 20.5 28.5 32.0	39.6 50.1 75.9 89.0	128 1158 200 262 518 801	
	. 1000 Ft.	00 deg. C.	.0683 .0665 .0633 .104	.183 .148 .179 .212 .248	8 14 14 18 18 18 18 18 18 18 18 18 18 18 18 18	.88. 1.01 1.74 28.2	98.55.98 88.88	11.7 15.3 19.2 24.8 30.0	87.0 61.8 71.1 83.4	1118 148 188 188 188 188 188 188 188 188	
	Ohms per 1000 Ft.	40 deg. C.	.0542 .0619 .0775	121: 188: 198: 197: 182:	72: 848: 113: 113: 128:	. 942 1.24 1.62 1.62 1.62	9 8 4 8 9 9 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	10.9 17.9 28.1	84.5 48.7 67.0 77.8	1138 1176 1176 1176 1176 1176 1176	
		90 deg. C.	.0602 .0673 .0717 .0896	115 128 154 183 183 183	282 280 280 274: 773:	.719 .872 1.16 1.50	24.83.89.89.89.75.89.75.89.75.89.75.89.75.89.75.89.75.89.75.89.75.89.75.89.75.89.75.89.75.89.75.89.75.89.75.89	10.1 18.8 16.6 25.8	32.0 40.5 52.8 61.3 71.9	108 1128 1162 211 414 645	
		0 deg. C.	.0464 .0529 .0880 .0880	.107 .143 .148 .198 .198	232 296 352 352 437 483	. 808 1.07 1.89 1.89	448.5.7. 28.88.89 48.89	9.35 12.2 15.4 19.8 24.0	20.6 4.88 56.6 4.0 4.0	96.6 118 150 195 388 596	
	Gauge	Number.	000 000 000	₩01 00 4 FC		12879	20 20 20 20 20 20 20 20 20 20 20 20 20 2	232223	82888	22222	
	Cross Section.	(Sq. In.)	.162 .142 .113 .0008	.0707 .0683 .0527 .0448	.0824 .0254 .0214 .0172	.0113 .00983 .00709 .00641	.00832 .00264 .00189 .00189	.000806 .000491 .000490 .000880	.000256 .000201 .000164 .000182	.0000787 .0000638 .00000. .000088 .00000. .000098	
		T.C.C.	.474 .445 .400 .368	318 302 772 568 882	. 198 1.181 1.181 1.150	.219 .186 .164 .160	136 124 100 100 100 100 100	070 070 190 190 190 190	4.050 4.050	86. 86. : : : :	:::::
	Diameter (Inches).	D.C.C.	::::	. 273 . 252 . 234	.215 .192 .177 .160	. 132 . 116 . 106 . 983 . 982	370. 380. 590. 690. 840.	9.9.9.9.9.9. 9.8.8.9.9.9.	86.28.28.28.28.28.28.28.28.28.28.28.28.28.	.: ::0. ::0:	
	Diameter	S.C.C.		:::::	:::::	: :101 .080 .078	250 250 250 250 250 250 250 250 250 250	880. 880. 880. 880. 880. 880.	280. 080. 110. 710.	.0126 .0116 .0110 .0080	
		Bare	4 5 8 9	08. 28. 28. 28. 28. 28. 28. 28. 28. 28. 2	.208 .180 .148 .134	.120 .109 .0850 .0830 .0720	.0650 .0450 .0450 .0450 .0650	.0820 .0280 .0250 .0220 .0220	0810. 0810. 0810. 0810. 0810.	.0100 .00900 .00800 .00700 .00500	
	Gauge	Number.	998°	ii γ α 4 κα	8 4 01 10 8 8 01	11 18 14 15	118 118 118 118	ឧននេះ	88888	2333333	

TABLE XCI.—PROPERTIES OF COMMERCIAL COPPER WIRE STANDARD WIRE GAUGH (S. W. G.)

	Pounds per	(Bare)	756 651 564 119 366 318	55 56 56 58 58 58 58 58 58 58 58 58 58 58 58 58	112 88.7 77.4 88.7 49.6	15.7 15.4 15.4	지명 및 수 원 4 4 8 8 8 8 4 10 2 8 8	8 9 1 1 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	980 868 868 869 869	+0+ 838 838 838 813	.175 .140 .109 .0818	0556 4840. 1680. 16310.	.0174 .0021 .00774 .00436
	Feet per	round.	11119998 84158853	8.4.7.4.7. 2.2.1.2.1.2.2.1.2.2.1.2.2.1.2.2.1.2.2.1.2.2.1.2.2.1.2.2.1.2.2.1.2.2.1.2.2.1.2.2.1.2.2.1.2.2.1.2.2.1.2.2.1.2.2.2	8.97 10.7 16.9 20.2	24.6 30.6 39.1 51.6 63.8	80.7 106 148 207 258	2122 222 223 223 223 223 223 223 223 223	1020 1230 1510 1790 2150	2460 2830 3310 3910 4680	6720 7116 9118 12200 14300		57400 82600 128000 230000 331000
	Pounds per Ohm at	20 deg. C.	18300 13600 7500 5600 4300 3220	2380 1700 1180 846 692	396 290 192 127 78.5	88.0 81.2 181 7.90	1.2.2.1.2.2.1.2.2.2.2.2.2.2.2.2.2.2.2.2		.0212 .0212 .010. .0100	.00630 .00890 .00894 .00210	.000975 .000926 .000879 .000214	.0000110 .0000760 .0000492 .0000306	.00000468 .00000468 .00000198 .000000608
	Feet per Ohm at	20 deg. C.	24200 20900 18100 15600 13400 11800	8730 7370 61150 5210 4350	3580 3000 2480 1580	1300 1060 1060 130 508	28.00 20.00	00 17 33 4 88 0 67 7 7 8 8 8 8 8 8	31.0 26.1 21.2 17.9	11.8 9.70 8.80 8.80 8.80	5.4% 9.448 3.483	1.88 1.65 1.25 1.25 0.90 7.75	. 248 . 248 . 139 . 0970
	Gauge	A umoer.	555580 555580	₩01 00 4 10		11222	81128 8198 8198	ឧនឧឧ	88828	28823	22222	23323	3 2333
		no deg. C.	.0645 .0631 .0723 .0860 .0863 .112	3.5.1.2.2.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	8 5 8 5 8 8 8 8 8 8 8 8 8 8 8 8	11144 2865 2865 2865 2865 2865 2865 2865 2865	8. 4. 3. 8. 9. 10. 8. 50 10. 5.	8,17,13,28,28,28,28,28,28,28,28,28,28,28,28,28,	88 78 50 50 50 50 50 50 50 50 50 50 50 50 50	101 117 198 198	50 50 50 50 50 50 50 50 50 50 50 50 50 5	701 850 1060 1139 1740	2360 3400 5310 9450 13500
)		90 deg. C. 100 deg. C.	.0615 .0697 .0657 .0672 .0672 .106	202 202 383 383 383	848. 503. 719. 709.		8.13 6.58 9.01 9.00						
	per 1000 Ft.	60 deg. C.	.0430 .0656 .0641 .0747 .0865	138 169 189 189 189	28. 28. 38. 38. 38. 38. 38. 38.	11.11 1.41 1.87 1.87	92444 8288 148	11.7 15.8 24.8 30.0	2444 0.50 x x	88.8 1119 141 160 161	258 332 14 519	618 747 922 1170 1580	2070 2084 4680 1900
	Ohms per	40 deg. C.	.0446 .0613 .0697 .0696 .0605 .0605	.124 .147 .176 .207	308 384 383 779	.827 1.31 1.75 1.72	9. 84 4 8 8 57 58 58 58 50 58 58 58	10.9 14.2 19.8 18.3 10.8 10.8	34.5 50.9 72.5 50.8				-
		20 deg. C.	.0414 .0563 .0563 .0645 .0746	311. 381. 382. 383.	8 4 4 6 8	85.5.3.5.3.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	25.82 4.43 6.44 5.80 5.80	10.1 18.2 17.9 25.8	32.0 38.4 47.1 65.1	76.8 88.5 103 14.0 14.0	222 223 284 44 888 84	583 645 796 1010 1820	1730 2580 7170 10300
		0 deg. C.	.0883 .0445 .0612 .0697 .0690 .0789	91. 121. 121. 121.	988 988 478 988 988	07. 28. 11. 28. 13. 13.	98.4.2.7. 20.2.2.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7						1660 2380 3740 6640 9630
	(Ange	Number.	0,4 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0		8 ~ 8 9 C	12279	80 80 80 80 80 80 80 80 80 80 80 80 80 8	ឧងនង្គង	26223	8888	82883	23328	34333
	Oross Section.	(8q. In.)	.196 .147 .128 .109 .0951	.0498 .0698 .0499 .0489 .0488	.0290 .0243 .0201 .0163	.0106 .00849 .00665 .00508	.00828 .00246 .00181 .00126	.000806 .000618 .000468 .000880	.000255 .000211 .000172 .000145	.000106 .0000918 .0000787 .0000665	.0000464 .0000863 .0000283 .0000212	.0000152 .0000126 .0000102 .00000604	.00000462 .00000814 .00000201 .00000118
		T.C.C.	. 580 . 484 . 482 . 892 . 898 . 898	818 42 068 088 088	. 192 192 176 160	1811 100 100 100 100 100 100 100 100 100	8.0.00.00 8.0.00.00 8.0.00.00	9 9 9 9 8 8 8 8 8	8 ::::	:::::	:::::	:::::	::
	Nameter (Inches)	D.C.C.	::::::	:838.33	204 172 172 156 140	11. 100. 1080. 1080.	569 849 849	9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00	8 2 8 8 8	080. 010. 810. : :	:::i0:	:::::	:::::
	Diamete	8.C.C.	::::::	:::::	:: :::	: :00. 086. 070.	0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	86.85.85.95 88.85.85 88.85.85	900 900 800 800 710	9 9 9 9 9 9 9 9 9 9 9	0.00 0.00 0.00 0.00 0.00 0.00 0.00		:::::
		Bare.	500 1464 1466 1400 1878 1848 1878	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	198 144 128	.116 .0920 .0800 0720	.0640 .0400 .0400 .0400	0820 0820 0820 0820 0920	.0180 .0164 .0188 .0136	.0116 .0108 .00920 .00840	00760 00680 00680 00680 00480	.00440 .00400 .00880 .00880	.00240 .00200 .00160 .00120
	Gauge	Number.	5.88498°°°	H 81 83 4 75	8 7 8 8 0 0	######################################	8118 88 88 88	ឌ ន្ធន ុខ	88888	2222	88833	44444	27333

The following Table gives some physical and electrical properties of various metals and alloys. In nearly every case the name of the observer is stated. No attempt has been made to reconcile divergent measurements, it being left to the reader to follow whichever guide he prefers. The merit of the Table is that it presents in compact form recent information previously scattered through a large number of publications and technical journals. TABLE XOII.—PHYSICAL AND ELECTRICAL PROPERTIES OF VARIOUS METALS AND ALLOYS.

Weight of I Cubic Inch. Pounds.	2	1 1	15. 15.	<u> </u>	75. 126.		88	33	8	8	33	128.	72. 			5	818
Specific Gravity.	0 0	5 6	a d	ල න්	r V		30	8:7	30	8:1	×.	13.6 8.9	ž o			or or	9 30 5 00
Ultimate Tensile Strength, Pounds per Square Inch.	:	:	:	:	:		:	:	:	: 000	000,000	::	:				::
Specific Heat, Mean,		:	:	:	:		:	:	:	:		935	5				: :
Melting Point, Deg. Cent.	İ	:	:	:	:		1280	1260	1280	1280	200	1500	8				::
Per Cent. Increase of Resistance per Deg. Cent.	8	3 8	3.	0. 6		٥.	:	:	127	136	8 8	\$ 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	. 10g	38.	.138	86.50	:8
Resistance of Wire I Ft. Long and .001 In. Dia. Ohms at 0 Deg. Cent.	8	3 5	š	3 8	3	88	98	888	\$	414	3 8	88 % ;	17	81.1 1.1	146	186	28 SE
Micro-ohms per Cubic Inch at 0 Deg. Cent.	18.4	2	0.01	8.6	- 61	8.8	8.4°	25.8	26.4	27.1	0.00	8.1.3 8.1.3 8.1.3 8.1.3	11.6	15.8 4.02	9,54	12.2	13.0
Specific Resistance at 0 Deg. Cent. (Micro- ohms per Cent. Cube).	1,				•	65.5	83.3	6.5	67.1	0.0				10.0	24.2		43.6 88.0
	Copper, 84 per cent.; manganese, 12 per cent.; N, 4 per cent. (manganine) Dewar and Fleming	Copper 73 per cent.; manganese, 24 per cent.; nickel, 3 per cent. Feusener	ceni kel,3	Copper, 83.4 per cent.; Mn. 15.2 per		d), C, 1.298	\$.038; SI, 204; P,	Manganese steel (Hadfield), 12 per cent. Mn. Dewar and Fleming.	8 · ·	e`.	Mercury, Matthiesen		Lange and Co., Berlin (pure). Dewar and Flemin	loy). Matthiesen	 S: ::	Platinoid-martino. Dewar and Fleming Platinoid-martino
Weight of I Cubic	ğ	# # # # # # # # # # # # # # # # # # #		107	1	827	3 8	388	321	-	321		327	35.5	126		
Specific Gravity.	8.9	8 8				7.7	•	8.8	- -		S		90.6	16.8	>		
Ultimate Tensile Strength. Pounds per Square Inch.	;	::		:	:	:		: : :	64,000	000'201	000,061		:	:	:		
Specific Heat. Mean.	55	ដូត		:	:	3:	1 2	8 :	:	:	:		98	٠.	:		
Melting Point Deg. Cent.	8	88		:	:	: 4	1	: 8	:	:	:		1060	1060	3		
Per Cent, Increase of Resistance per Deg. Cent.	.423	.139	.381	:	: 🕺	106	8	. 2 6	:	:	:		.445	8	8		
Resistance of Wire I Fr. Long and .001 In. Dia. Ohms at 0 Deg. Cent.	15.4	16.0	17.4	18.7	27.8	75.5	68.0	26.0 0.0	9.84	33 53 53 53 53 53 53 53 54 54 54 54 54 54 54 54 54 54 54 54 54	50.3	108	117 9.25			1.1	
Micro ohns per Cubic Inch at 0 Deg. Cent.	1.01	1.05	1.14	3. S	1.88	800	4 14	88 88	.645	28.	% %	2.06	8. 8.	.614	8 7	3 8	1.16
Specific Resistance at 0 Deg. Cent. (Micro-	2.56	2.5 88	2.90	811	. 1	12.6	10.5	130	1.64	4.71	3	17.9	19.4	55.		5 7	9
	Aluminum (Neuhausen), 99 per cent. Al. Dewar and Fleming.	Al. Dewar and Fleming Aluminium (annealed). Matthiesen		Aluminium, 94 per cent.; copper, 6 per	Aluminium, 94 per cent.; silver, 6 per cent. Dewar and Fleming	Aluminium Bronze, Cu (90 per cent.); Al (10 per cent.), C. Limb	Bessemer soft steel, C (0.65): Mn (200) S (0.00): SI (0): P (0.00)		Chrome Bronze, copper, tin, and chro- mium. Hospitalier	mium Chrome bronze, copper, un, and chro-	Chrome steel (annealed) C687 : Mn,	Hopkinson Si, 103, F, 1135, Cf,	kinson Electrolytic copper (annealed), Lagarde	klectrolytic copper (annealed). Dewar	Copper (annealed, Assumeden Copper, 50 per cent.; silver, 50 per cent.	Copper, 36 per cent.; silicon, 4 per cent.	Copper, 88 per cent.; silicon, 12 per cent.

74	Weight of 1 Onbic Inch. Pounds.	\$5. 85.	.321	378 379	.821	.321	<u>8</u> 8 8	88.33.3	÷
inuea	Specific Oravity.	22 2 24 2 24 2	ය ය න් න්	10.5	8.0	8.8	8.8 7.8 8.7	7.3	7.1
—Continued	Ultimate Tensile Strength. Pounds per Square inch.	:: :	64,000 117,000	::	64,000	98,000	143,000	::	
	Specific Heat, Mean,	1775.032 1775.032 1776.082	: :	96. 88.	:	: :	: 88.88	71.08	
λoʻ	Melting Point. Deg. Cent.	1775 1775 1776	:::	988	<u>:</u>	_: :_	: និនិ	:45	41
ALLOYS.	Per Cent, Increase of Resistance per Deg. Cent.	.247 .35 .143	8 8	94. 778.	.0243	: :	: 88.48	: 9498 .408	<u>8</u>
AND	Resistance of Wire I Ft. Long and .001 In. Dia. Ohms at 0 Deg. Cent.	49.5 53.9 66.0 127 130			10.0	34.0	46.8 106 78.5 78.5	135 84.8 8.65	ž.
	Micro-ohms per Cubic Inch at 0 Deg. Cent.	88 4 × × × 5 5 8 × 6 5 ×	.630 2.20 9.60		5.90 12.4 .667	1.06	3.07 24.3 6.94 5.16 5.16	8. 86 2.25 3.26	
ALS	Specific Resistance at 0 Deg. Cent, (Micro- ohns per Cent. Cube).	8.25 8.88 8.98 11.0 21.1 21.6	5.6		31.6 1.67	5.76	7.80 61.9 17.6 13.1 13.1	10.8 5.75	2.8
PROPERTIES OF VARIOUS METALS	!	Platinum (soft annealed, pure) Platinum (annealed) Matthiesen Dwar and Fluming, 0.0250 cm. in dian. Platinum, 90 per cent.; Rodium, 10 per cent.; Rodium, 10 per cent.; Indium, 10 per cent.; Indium, 10 per cent.; Indium, 10 per cent. (alloy). Matthiesen Phopsphor-bronze, with 9 per cent. phosphory.			r and Fleming cent.; platinum r and Fleming (copper, tin, and	Silicon-bronze (copper, tin, and silicon). Hospitalier Silicon-bronze (copper, tin, and silicon). Hospitalier Silicon-bronze (copper, tin, and silicon).	nnealed) 44; P. 1). Dewn ewar and d). Mati	tung C	Zinc (compressed)
ER	Weight of 1 Cabic Inch. Pounds.	922.		.695	.095	282 282	.260	282 282 410 410 983	9
ROF	Specific Gravity.	7.1		19.3	19.3	2; 8; 8;	7.20	7.20 11.4 11.4 1.74	<i>J</i> .
	Ultimate Tensile Strength, Pounds per Square Inch.	:		:	:	: :	:	:::::	
ZIC.	Specific Heat. Mean.	98.		380	.082	113	:	: :88.83	
CTE	Melting Point, Deg. Cent.	:		1100	1800.	: :	1130	35 :88 : 88 :	1990
ELECTRICAL	Per Cent, Increase of Resistance per Deg. Cent.	.878. 204. 388.	.080	610. 886.	7.8. 481.	8.8. ¥	:	. :837 	
AND E	Resistance of Wire 1 Pt. Long and 101 In. Dia. Ohma at 0 Deg. Cent.	21.8 21.8 35.3 37.9	31.7 53.0 89.5	106 1180 1123	83 .73 . 2	2.4. 88 3.6. 0	3 70	884 882.8 1117 1123 26.2	986
A	Micro-ohma per Cubic Inch at 0 Deg. Cent.	. 720 1.43 2.31 2.48 2.83	2.08 3.48 5.87	6.94 13.5 11.8 .803	2.47	3.57 4.14	22.3	4.9 7.68 8.04 1.72	16.5
CAL	Specific Resistance at 0 Deg. Cent. (Micro-ohma per Cent. Cube).	8. 3. 3. 3. 4. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	8.84 14.9	3.7.8 3.0.9 2.0.9	6.28	9.07 10.5	5 6. 6	114 13.8 19.5 20.4 4.36	8
TABLE XOII.—PHYSICA		(opper, 99, 29)per cent, i tinc, 71 per cent. R. Haas Zinc, 94 per cent.; zinc, 9.1 per cent. Zinc, 96.5 per cent.; copper, 5 per cent. R. Haas Copper, 68.8 per cent.; zinc, 34.2 per cent. R. Haas Copper, 68.8 per cent.; zinc, 34.2 per cent. R. Haas Cost copper.	About Oopper, 37 per cent, a luminium, 30 per cent. Dewar and Freming Oopper, 87 per cent. Ni & 65 per cent. Al, 65 per cent. Dewar and Freming Oopper, 90 per cent. arsento, 10 per	cent. Abbodi. Pouper, 75 per cent.; nickel, 25 per cent. Feusener and Lindeck. (ferman ailver, Vu (60); Zn (25); Ni (15). Feusener and Lindeck. Gold (annealed). Matthiesen	Gold, MAP per cent. (Dure). Dewar and Fleming. Gold, 30 per cent. silver, 10 per cent. Dewar and Fleming. Gold, 67 per cent. silver, 38 per cent.	(alloy, Matthesen (alloy, Matthesen Iron (very pure, Dewar and Fleming Iron, with .25 per cent. Mn and 0.1 per cent. S. Dewar and Fleming White cast from. 0. 2.04: graphite. 0.	1, 51, 764; P. 468, Hop- 4.6 per cent.; Mn, 7.97 Aces, 15.502 per cent. Hopkinson 3.46; graphite, 2.06;		Mn. 4.73; S023; Sl608; P078.

ERRATA.

FOLDING TABLE.—PROPERTIES OF COPPER WIRES, &c.

The wire B. & S. 29 is given as of diameter 0.3 mm., or 0.0118 in.; but the true diameter of B. & S. 29 is 0.0113 in.; the figures in this line therefore refer only to a wire of 0.0118 in. (0.3 mm.) diameter and not to B. & S. 29.

S. W. G. 40, diameter S. C. C., should read 0.0080 in., instead of 0.0090 in.

						-					
kent) deg.		Gauge Stand.	Gauge Number.	Metres per Ohm at 20 deg. Cent.	Feet per Ohm at 20 deg. Cent.	Kilograms per Ohm at 20 deg. Cent.	Pounds per Ohm at 20 deg. Cent.	Metres per Kilogram.	Feet per Pound.	Kilograms per Kilometre (Bare).	Pounds per 1000 Ft. (Bare).
9.0	1000 Ft. 8.85			45.5	149	.320	.706	142	212	7.0	4.78
9-48	10.5	8 W G	20	38.4	126	.222	.491	171	258	5.84	3.92
9.8	10.6	B&8	19	87.8	124	.220	.486	178	257	5.81	3.90
10.4	10.9	B W G	20	37.0 36.0	118	.199	.480	182	263 270	5.6	8.79 8.71
12.80 12.8 12.0	13.3 13.5 13.4	8 W G B W G B & S	21 21 20	30.2 30.2 30.2	99.0 98.9 98.7	.139 .139 .138	.307 .307 .306	217 217 217	328 823 823	4.62 4.62 4.62	8.10 8.10 3.10
18.2	13.8			29.1	96.0	.130	.285	223	882	4.48	8.0
15.8 16.4 16.4	16.8 17.4 17.8	B&S BWG SWG	21 22 22	23.7 23.0 23.0	77.5 75.5 75.8	.0870 .0816 .0816	.192 .180 .180	274 283 284	408 421 422	8.65 8.58 8.58	2.45 2.87 2.87
117.0	17.8			22.5	78.5	.077	.169	290	434	8.42	2.8
20.0 20.5 22.2	21.2 21.9 23.5	B&8 BWG SWG	22 23 28	18.9 18.4 17.0	62.1 60.0 55.5	.0648 .0616 .0442	.121 .114 .0975	346 356 386	514 529 570	2.90 2.82 2.59	1.95 1.89 1.74
23.2	24.5			16.4	58.5	.041	.090	898	593	2.5	1.68
25.2 26.5 26.6 31.7 82.0 32.0	26.7 28.2 28.2 33.6 34.0 34.0	B&S BWG SWG B&S BWG SWG	28 24 24 24 25 25	15.0 14.2 14.2 11.8 11.8	49.2 46.8 46.8 38.6 38.6	.0348 .0308 .0808 .0216 .0216	.0759 .068 .0685 .0477 .0468	485 460 460 555 555 555	648 683 683 818 826 826	2.29 2.19 2.18 1.82 1.80 1.80	1.54 1.47 1.46 1.22 1.21 1.21
88.2	35.5			11.4	87.2	.0198	.0485	580	850	1.74	1.17
39.6 39.6 40.0 47.7 50.1 50.5	42.0 42.0 42.0 50.5 53.2 58.5	B W G 8 W G B & 8 8 W G B W G B & 8	26 26 25 27 27 27	9.5 9.5 9.45 7.96 7.58 7.46	81.0 81.0 30.8 26.1 24.7 24.5	.0139 .0139 .0136 .00900 .00865 .00857	.0307 .0308 .0300 .0212 .0191 .0189	696 696 698 827 868 875	1020 1020 1080 1230 1290 1300	1.46 1.46 1.45 1.21 1.15 1.14	.981 .980 .97 .814 .775 .769
52.2	55.4			7.3	24	.00815	.0178	894	1350	1.12	.740
58.6 63.6 65.4 69.5 75.9 80.2 1 83.5 89.0	62.0 67.5 69.4 73.5 80.5 85.0 88.5 94.5	SWG B&S BWG SWG BWG B&S SWG	28 27 28 29 29 28 30	6.46 5.94 5.76 5.46 4.97 4.69 4.54 4.24	21.2 19.5 18.9 17.9 16.3 15.4 14.9	.00639 .00539 .00508 .00454 .00378 .00337 .00314 .00275	.0141 .0119 .0112 .0100 .00835 .00747 .00684 .00606	1015 1100 1135 1203 1319 1390 1444 1540	1510 1640 1690 1790 1960 2070 2150 2290	.966 .908 .882 .834 .762 .720 .692	.663 .610 .593 .560 .512 .484 .465
98	98	B & S	29	4.1	13.4	.00258	.00670	1580	2360	.625	.41
95.8 110 128 128 128 151 151 161 191 200 203	101 117 136 136 136 160 168 171 192 214 216	SWG SWG B&S BWG SWG BWG B&S SWG B&S	31 32 30 81 83 34 32 31 36 33 32	3.96 3.45 2.96 2.95 2.96 2.50 2.36 2.34 2.09 1.89 1.86	13.0 11.3 9.71 9.66 9.70 8.20 7.82 7.70 6.85 6.18 6.11	.00240 .00181 .00134 .00132 .00133 .000962 .000870 .000844 .000606 .000544	.00530 .00399 .00295 .00292 .00294 .00210 .00192 .00186 .00147 .00120 .00117	1653 1900 2210 2218 2224 2628 2741 2790 8145 3470 3515	2460 2880 3290 3800 3810 3910 4060 4150 4680 5160 5230	.606 .525 .452 .445 .451 .381 .365 .359 .318 .289 .284	.407 .353 .804 .308 .308 .256 .245 .241 .213 .194 .191
207	220			1.82	6.0	.000505	.00111	3600	5400	.277	.185
222 266 262 277 328 356 407 476 513 513 557 647 668 801 801 815	235 272 278 294 342 378 431 504 545 560 686 701 846 850 865	SWG B&WG B&WG B&WG B&WG B&WG B&WG B&WG B&	36 33 34 37 34 38 35 36 36 36 40 37 41 36 42 38	1.71 1.48 1.44 1.37 1.17 1.06 .980 .708 .735 .735 .683 .586 .674 .472 .472 .463	5.60 4.84 4.73 4.49 3.84 3.05 2.62 2.41 2.24 1.92 1.55 1.55	.000442 .000338 .000318 .000210 .000210 .000172 .000182 .0000830 .000630 .000630 .000630 .000340 .000339 .000340	.000975 .000735 .000702 .000625 .000462 .000879 .000879 .000814 .000183 .000156 .000115 .000110 .0000748	8840 4430 4525 4820 5580 6170 7060 8200 8875 8875 9610 10220 11500 13900 13900	5720 6690 6740 7150 8310 9180 10500 12200 13200 13200 14800 16700 17100 20700 20700 21000	.261 .226 .220 .208 .179 .162 .142 .113 .113 .104 .0894 .0874 .0720 .0720	.175 .152 .148 .140 .120 .109 .0964 .0818 .0757 .0767 .0807 .0800 .0484 .0484 .0476
990	1050			.455	1.49	.000032	.0000705	17190	21200	.07	.0478
1030 1250 1250 1800 1640 2200 3200 5020 8920 12800	1060 1090 1380 1380 1740 2360 3400 5310 9450 13600	8 W G B & 8 8 W G B & 8 S W G S W G S W G S W G S W G	43 89 44 40 45 46 47 48 49	.382 .366 .302 .291 .231 .171 .118 .0756 .0424	1.25 1.20 .990 .955 .758 .560 .388 .248 .139	.0000228 .0000206 .0000139 .0000130 .00000442 .00000213 .000000875 .000000274	.0000492 .0000455 .0000306 .0000286 .0010180 .0000975 .001000469 .0000198 .000000605 .000000298	17130 17800 21700 22440 28400 38600 55500 86750 154800 218600	25500 28500 82800 38400 42200 57400 82600 126000 230000 831000	.0584 .0561 .0462 .0445 .0353 .0259 .0180 .0115 .00560	.0392 .0377 .0810 .0299 .0237 .0174 .0121 .00774 .00436 .00308

•			
		· ,	

INDEX

ADJUSTING voltage ratio in rotary-converter Alternator "Short-circuit" curve, 430, 458 Three-phase, 850-K.W., 5000-volt, 25-cycle, systems, 372 32-pole, 522, 529 A. E. G. high-speed dynamo construction, 558 Rotor construction for turbo-alternators, Three-phase, 40-pole, 2500-K.W., 25-cycle, 543 6500-volt, 75 revolutions, 498, 529 "Ageing" of iron, 32 Three-phase, turbine generator, 1500-K.W., Chemical composition of a good low ageing 11,000-volt, 6-pole, 50-cycle, 1000 revolusheet steel, 36 tions, 533 Air-cooling of transformers, 95 225 - K.W. single - phase, characteristic Air-gap reluctance, 132 curves, 420 Alternating-current dynamos, E.M.F. in, 84 Volt-ampere curves, 431, 458 Windings, 76 Windings, 76 Alternating and rotating fields, hysteresis loss Aluminium in steel, 26 in, 10 Annealing of sheet iron, 32 Alternators, 397 Armature-coil insulation, tape for, 61 Alternator Armature tested for inductance, 189 Conductor loss, rotary converters, 311 Considerations on maximum inductance, Core reluctance, 130 Cores, loss of hysteresis in, 111 Excitation regulation curves, 428 Current, demagnetising effect of, 419 Experiments with, 437 Current losses, 39 For steam-turbine speeds, 533 Demagnetisation and volt-ampere curve, Inductance of coils free in air, 462 482 Inductance of coils on surface, 463 Interference, 161 Magnetomotive force, 126 Inductance of embedded portions of windings, 465 Radiating surface of, 96 Influence of magnet frame and pole-Reaction, 156 pieces, 472 Strength, its influence, 165 Windings, 64 Load-saturation curve, 424 Output coefficient, 529 Windings and cores, temperature rise in, 95 Asbestos, insulating property of, 46 Output curves, 436 Polyphase windings, 480 3750 - K.W. Quarter - phase, 20 - pole, Westinghouse, 507, 529 BAR and yoke method of tests, 5 Regulation calculation for an 850-K.W., Barrel type of winding, ventilation of, 96 Bearing friction, 125 Saturation curves for various power-Belt friction, 125 factors, 427, 460 Bessemer steel for dynamos, 22

570 Index

Binding wire, proportioning the six-phase Constant-current arc dynamos, 122 rotary, 348 Potential commutating dynamos, 194 Bipolar windings, 67 Potential, continuous-current dynamos, 154 Bond-paper, oiled, insulating property of, 42 Potential dynamos, 123 British Thomson-Houston alternators, Central Constants for drum winding, 84 London Railway, 522, 529 Continuous-current armature windings, 64 Turbo-alternators, 533 Dynamos, E.M.F. in, 82 Brush - gear and commutators of traction Dynamos for steam-turbine speeds, 547 motors, 296 Railway generators, 190 Brushes and commutator heating, 123 Converter connections, 331 Starting, 366 Synchronising, 366, 371 CALCULATION of curve of excitation regulation, Windings, 74 Converters, rotary, 309 Reactance voltage, 190 Static transformers, interconnection of, Saturation curve, 455 330 Carbon in cast iron, 19 Windings of, 88 In cast steel, 22, 24, 26 Cooling of transformers, 94 Influence of, in steel, 41 Copper, specific rate of generation of heat in, 120 Core losses in continuous-current dynamos and Cast iron in dynamo construction, 19 Cast steel, 22 motors, 111 Analyses, 24, 26 Projections, reluctance of, 134 Cost of cast iron and steel in dynamo construc-In dynamo construction, 19 Magnetic properties, 24, 26 tion, 19 Tests by ring method, 3 Cotton tape for armature coil insulation, 61 Current densities in armatures and trans-Central London Railway, British Thomsonformers, 120 Houston alternators, 522, 529 Chemical composition of iron and steel, 17 Values in windings of rotary converters, Composition of materials, 1 Curtis turbo-alternator, Lancashire and York-Chromium in steel, 27 shire Power Company, 533 Coefficients, designing, 252 Of output, 252 Coil insulation and treatment, 61 Danielson's inductance tests, 492 Temperature, internal and surface, 97 Coils free in air, inductance of, 462 Demagnetising effect of armature current, 419 Laid on surface, inductance of, 463 Density constants and resistance of metals, 39 Combined carbon in cast iron, 20 Current, in armatures and transformers, 120 Commutating dynamos, constant potential, 194 Designing coefficients, 252 Commutator heating, 123 Deterioration of sheet iron, 32 Determination of hysteresis loss, 9 Segment voltage, and inductance, 171 Commutators and brush-gear of traction motors, Dewar and Fleming investigations, 2 Direct-connected railway motor, 281 Compensator in starting of rotaries, 367 Doubly re-entrant double windings, 70 Composition of metals, its effect on magnetic Re-entrant sextuple windings, 70 Drum-winding constants, 84 properties, 18 Windings, 66 Compound-wound rotaries, 390 Conductivity tests, 2 Dr. Drysdale's tests, 30

Dublin 550-K.W. continuous-current dynamos,

Conductor losses, 105

Connections of rotary converters, 331

Dynamo, continuous - current, 1500 - K.W., Formula for two-circuit windings, 73 description of, 194 Formulæ for E.M.F., 82 50-K.W., 241 Foucault currents, 107 550-K.W., 205 Four-phase rotary converters, 332 For steam-turbine speeds, 547 Friction loss, 125 1000-K.W., 215 750-Kilowatt, 250-volt, 6-pole, 1500 revolu-GAP reluctance, estimation of, 133 tions, 548 Geared railway motor, 258, 267 250-K.W., 227 Generators for railways, calculations of, 190 Construction, materials for, 1 Glasgow Corporation Tramways alternators, Proportioning, 164 498, 529 Gramme windings, 64 EDDY-current losses, 38 Graphite in cast iron, 20 Currents, 107 Effect of composition of metals on magnetic HEAT and insulation resistance, 121 properties, 18 Losses, 105 Of pressure on magnetic property, 37 Tests of coils, 97 Eickemeyer bridge, 5 Heating of commutators, 123 Electric traction motors, 257 Of railway motors, 122 Electrical resistance of different quality steel, 41 High-speed dynamos, 547 Electromotive force, alternating - current Holden's hysteresis tester, 11 dynamos, 84 Permeability tests, 5 Continuous-current dynamos, 82 Holman on electrical measurements, 2 Flux in transformers, 92 Hopkinson's bar and yoke tests, 5 Formulæ, 82 Hysteresis loss, 9 Polyphase machines, 91 In alternating and rotating fields, 10 Rotary converters, 88 In cores, 111 Embedded portions of windings, inductance Steel and iron, 38 of, 465 Energy losses in sheet iron, 31 Esterline and Reid's core-loss observations, 117 INCREASE of temperature from resistance Estimation of armature-current losses, 39 measurements, 94 Ewing's hysteresis tester, 14 Inductance of coils free in air, 462 Testing apparatus, 5 Coils laid on the surface, 463 Excitation regulation, 401 Considerations on maximum, 478 Ourves, 428 Constants, 173 Tests, 455 Of embedded portions of windings, 465 Of polyphase windings, 480 FACE windings, 77 Practical definition of, 175 Fibres, vulcanised, insulating properties of, 43 Tests, 175 Field-magnet coils, temperature rise in, 95 Tests, alternators, 413 Field-spool insulation and treatment, 62 Tests, Danielson's, 492 Winding calculation, 144 Values and inter-action of the phases, 481 Winding formula, 139 Voltage per commutator segment, 171 Winding, rotary without, 392 Windings of alternators, 403 Fleming and Dewar investigations, 2 Induction motor magnetic circuit, 148 Flux in transformers, 92 Motor windings, 79 Forged ingot metal, 30 Influence of magnet frame and pole-pieces Forgings in dynamo construction, 27 alternators, 472

Inherent regulation, 399
Regulation for 0 power factor, 400
Insulating materials, list and tests, 42
Insulation resistance and rise in temperature, 121
Resistance and temperature, 46
Testing, methods for, 47
Tests of composite, 45
Tests of mica-canvas, 51
Tests of red paper, 59
Tests of shellac'd paper, 57
Treatment of coils, &c., 62

Inter-action of phases as affecting inductance values, 481

Internal and surface temperature of coils, 97
Iron and steel in dynamo construction, 17
And steel magnetisation, 19
For transformers, 40
Sheets tested whole for hysteresis, 15
Tests by ring method, 3

LANCASHIRE and Yorkshire Power Company's turbo-alternators, 529, 533

Leakage factor, 130

Magnetic, of alternators, 415

Leatheroid, insulating properties of, 43

Limit of output, thermal, 94

Line currents, rotary converters, 313

Linen, insulating properties of, 42

Linseed oil, its use for insulation, 43

Load saturation curve, 424, 460

Loss in armature conductors of rotary converters, 311

Losses, energy, in sheet iron, 31 Lowmoor iron properties, 30

Magnet frame and pole-pieces, influence of, alternators, 472

Magnets, radiating surface of, 96

Magnetic circuit, design of the, 126

Circuit of dynamo, calculations for, 138

Circuit of induction motor, 148

Circuit and maximum inductance, 478

Circuit of transformer, 146

Flux distribution in gap, 86

Leakage, alternators, 415

Permeability of steel for dynamos, 1

Properties of cast steel, 24

Properties of mitis iron, 2

Magnetic properties of iron and steel, 17 Properties of nickel steel, 27 Tests, 9 Magnetisation of iron and steel, 19 Magnetomotive force of armature, 126 Malleable cast iron, 20 Manganese in cast iron, 20 In cast steel, 22, 24, 26 Influence of, in steel, 41 Maple, insulating properties of, 44 Marble, insulating properties of, 44 Materials for dynamo construction, 1 Properties of, 17 Maximum inductance, considerations on, 478 Measuring permeability, 5 Hysteresis loss, 11 Mechanical treatment materials of for dynamos, 1 Methods of insulating coils, 62 Measuring hysteresis loss, 11 Measuring permeability, 5 Mica, canvas, insulation tests of, 51 Insulating properties of, 42 Longcloth, insulation tests of, 55 Mitis iron, 26 Motor generators and rotary converters compared, 393 Motors, electric traction, 257 Multi-coil construction, 77 Multiple-circuit drum windings, 67 Circuit-windings, 168 Windings, 169

NICKEL steel, 27

Oil-cooling of transformers, 94
Oiled bond-paper, insulating properties of, 42
Output coefficient of continuous - current
dynamos, 252
Of alternators, 529
Curves, 436
Number of poles, 167
Rotary converters, 310
Specific, 253
Thermal limit of, 94

Paper, insulation tests of, 59
Parasitic currents, 107
Peripheral speed and temperature rise, 101

Permeability measuring methods, 5	Rise in temperature of insulation resistance, 121
Tests, 2	Rotary-converter connections, 331
Phase characteristic, running of rotaries, 377	Synchronising, 366, 371
Phosphorus in cast iron, 20	Windings, 74, 88
In cast steel, 22, 24, 26	Rotary converters, 309
Pole-pieces and magnet frame, influence of,	And static transformers, interconnection
alternators, 472	of, 330
Poles for a given output, number of, 167	And motor generators compared, 393
Polyphase and single-phase rotaries compared,	Compensator, 367
323	Compound-wound, 390
Machines, E.M.F. in, 91	Phase characteristics, 377
Windings, 480	Running conditions, 377
Power-factor curve alternators, 455	Series-wound, 392
Press-board, insulating properties of, 42	Single-phase, 321
Pressure effect on magnetic properties, 37	Starting, 366
Properties of insulating materials, 43	Voltage ratio, 372
Of materials, 12	Without field excitation, 392
	Rotating and alternating fields, hysteresis loss
QUARTER-phase converters, E.M.F. in, 89	in, 10
3750-K.W. Westinghouse alternator, 507,	Rotor construction for turbo-alternators, the
529	A. E. G., 543
	Rubber, insulating properties of, 44
Radiating surface of armatures, 96	Running conditions for rotary converters, 377
Surface of magnets, 96	
Railway generators, calculations of, 190	SATURATION-curve calculations, 455
Motor, direct-connected, 281	Curves, 427, 460
Motor, geared, 258, 267	Series-wound rotaries, 392
Motors, core losses in, 116	Sextuply re-entrant sextuple windings, 70
Motors, their heating, 122	Shawinigan Water and Power Company's
Ratio of voltage in rotary-converter systems,	Westinghouse quarter-phase alternators,
372	507, 529
Reactance voltage calculation, 190	Sheet-iron annealing, 32
Re-annealing of iron, 37	Deterioration, 32
Red paper, insulation tests of, 59	Energy losses in, 31
Regulation calculation for an 850 - K.W.	Specific rate of generation of heat in, 120
alternator, 449	Sheffield 1000 - K.W. continuous - current
Excitation, 401	dynamos, 215
Inherent, 399	Shellac'd paper, insulation tests of, 57
Reluctance of air gap, 132	"Short-circuit" curve, 430, 458
Of armature core, 130	Shunt-wound dynamo, spool-winding, 144
Of complete magnetic circuit, 132	Siemens and Halske hysteresis tests, 15
Of core projections, 134	Siemens-Martin steel for dynamos, 22
Resistance and density constants of metals, 39	Silicon in cast iron, 20
Factors for various temperatures, 106	In cast steel, 22, 24, 26
Measurements for determining tempera-	1
ture rise, 94	Single phase alternator windings, 77
Ring method tests, 3	And polyphase rotaries compared, 323
Windings, 64	Converters. E.M.F. in, 89
Rise in temperature, 94	Rotaries, 321

Singly re-entrant double windings, 70 Re-entrant sextuple windings, 70 Six-circuit double windings, 69 Six-phase, 400-K.W. converter design, 337 Rotary converters, 329 Rotary windings, 326 Slate, insulating properties of, 44 Slot and magnetic inductance, 478 Inductance, alternators, 402 Windings, 77 Smooth-core windings, 77 Space factor, six-phase rotary, 347 Sparking limit, 132 Sparkless commutation, essential conditions to, 166 Specific output, 253 Speed and temperature rise, 101 Spool winding for shunt-wound dynamo, 144 Starting rotary converters, 366 Static transformers and rotary converters, interconnection of, 330 Step-by-step method, hysteresis loss test, 9 Step-up transformer for insulation tests, 49 Steel castings in dynamo construction, 19 Steel, influence of varying per cent. of carbon, etc., 41 Steel and iron in dynamo construction, 17 Steel tests by ring method, 3 Sulphur in cast iron, 20 Cast steel, 22, 24, 26 Surface and internal temperature of coils, 97 Surging effect, 378, 389 In operating rotary converters, 310 Swedish iron properties, 30 Switchboard connection for converters, 333 Synchronising of rotary converters, 366, 371

Tape for armature coil insulation, 61
Temperature of annealing sheet iron, 32
Armature windings and cores, 95
Coils, internal and surface, 97
Effect of, upon insulation resistance, 46
Field-magnet cores, 95
Insulation resistance, 121
Rise, 94
Testing of castings and forgings, 30
Methods for insulation, 47
Materials, 1
Whole sheets for hysteresis, 15

Tests of coils, heat, 97 Hysteresis loss, 9 Inductance, 175 Insulating material, 44 Thermal limit of output, 94 Tests of coils, 97 Three-phase alternators, 498 et seq. Converter, two-circuit double-winding, 75 Converter, E.M.F. in, 89 900-K.W. converter design, 355 Rotary converters, 326 Rotary windings, 323 Traction-motor commutators and brush gear, 296 Motors, electric, 257 Transformer for insulation tests, 49 Iron, 40 Magnetic circuit, 146 Transformers, E.M.F., and flux in, 92 Rotary converters, interconnection of, Triply re-entrant sextuple windings, 70 Turbo-alternator, 553 Rotor construction, The A. E. G., 543 Turbo-dynamos, continuous-current, 547 Twelve-phase rotary converters, 335 Two-circuit "coil windings," 170 Double windings, 72 Drum windings, 70 Winding formula, 73 Windings, 168 Tungsten in steel, 27

Unforged steel castings, 30 Unicoil windings, 77

Varnishes for insulating purposes, 44
Varnishing coils and spools, 62
Ventilation of electric machines, 94
Voltage, calculation of reactance, 190
Per commutator segment, and inductance, 171
Ratio, in rotary-converter systems, 372
Volt-ampere curve and armature demagnetisation, 482
Curves, 431, 458
Vulcabeston for insulating, 44
Vulcanised fibres, insulating properties of, 43

WATER-cooling of transformers, 95 Watts dissipated in conductors, 105 Waves of E.M.F., 86 Of magnetic flux distribution in gap, 86 Westinghouse quarter-phase, 20-pole, 3750-K.W. alternator, 507, 529 Windage friction, 125 Winding currents, rotary converters, 313 Field, formula, 139 Maximum inductance, 478 Windings for alternating currents, 76 Alternators, inductance of the, 403 Armatures, 64 Different types of, 78 Four-phase rotaries, 334 Inductance of embedded portions of, 465 Induction motors, 79 Multiple, 169

Windings, multiple circuit, 168
Polyphase, 480
Polyphase rotaries, 323
Rotary converter, 74
Rotary converters, 88
Scheme for auxiliary poles of high-speed dynamos, 549
Single-phase rotaries, 321
Six-phase rotaries, 326
Two-circuit, 168
Two-circuit "coil," 170
Wire, proportioning the binding, six-phase rotary, 348
Wrought-iron forgings in dynamo construction, 27

		i
•		

	,	
·		
	,	
		•
	•	
	·	

pr. Es mer

•

89089711154

B89089711154A

89089711154 b89089711154a