While Stability Lasts: A Stochastic Model of Stablecoins

Ariah Klages-Mundt, Andreea Minca

INFORMs, Oct. 2021

Intro to Cryptocurrency

- ➤ Blockchain: new way for mistrusting agents to cooperate w/o trusted third parties
- >Cryptocurrency: an asset native to a blockchain
 - > Price usually volatile: network effects, technical progress, regulatory hurdles etc
- >Smart contracts: programs that run on the blockchain computer
- >Stablecoins: cryptocurrency with added economic structure that
 - ➤ Aim: stabilize price/purchasing power
 - ➤ Constructed using smart contracts

Stablecoins: A Growing DeFi Foundation

Over past year, many new types of stablecoins...

This Paper

Stablecoins = complex on-chain currencies

- Many similarities with traditional finance
- Also new risks that lack suitable models
- Our focus: leverage-based stablecoins
- I. Conceptually, what is a stablecoin?
- II. Model w/ Endogenous Price
- III. Stochastic Analysis Results
- IV. Design Insights

---Stablecoins---

Risk-based Overview

Stablecoin

Custodial

Non-Custodial

Risks

- Counterparty credit risk
- Censorship risk
- Traditional financial risks

Well understood!

New Risks and attacks

- Deleveraging risks
- Price feeds, governance
- Miner extractable value
- Smart contract bugs

Not well understood

Anatomy of Non-custodial Stablecoins

Non-custodial Stablecoins in 3D

Exogenous = asset price independent of protocol

Endogenous = asset price self-referential with protocol

Agent = speculative agents decide, as applicable, risk exposure or issuance

Issuance Agent Algorithmic

Non-custodial Stablecoins in 3D

Exogenous = asset price independent of protocol

Endogenous = asset price self-referential with protocol

Agent = speculative agents decide, as applicable, risk exposure or issuance

! = recent problems observed, X = broken

uance Agent

Algorithmic

Black Thursday in Dai, March 2020

Black Thursday for MakerDAO: \$8.32 million was liquidated for 0 DAI

Mempool Manipulation Enabled Theft of \$8M in MakerDAO Collateral on Black Thursday: Report

Jul 22, 2020 at 18:41 UTC Updated Jul 28, 2020 at 19:04 UTC

CDO Structure

A portfolio of underlying assets

CDO Structure

Split into 2 tranches

Junior tranche = more risky

Senior tranche = less risky

CDO Structure

Losses that occur are first borne by junior tranche

Senior tranche protected

Stablecoin CDO-like Structure

~ Risk Absorbers

~ Stablecoin Holders

Stablecoin CDO-like Structure

Parallels & Differences

---Model----

Modeling Price Dynamics

- Currency peg models: gov issuer mechanically committed to stability
- Debt securities: an asset that is assumed stable is borrowed against collateral, feedback effects on collateral asset liquidity
- Dai-style stablecoins: supply determined in leverage market
 - Created by speculator choosing to borrow against ETH (risky!)
 - Endogenous price, participation: supply needn't = demand at \$1
 - Hope protocol well-designed and peg maintained through incentives
- Our work: stochastic model of endogenous stablecoin price
 - Deleveraging feedback effects → short squeeze effect, collateral drawdown
 - 'Stable' and 'unstable' regimes for stablecoins

Model

Agents

- >Stablecoin Holders want stability, have imperfectly elastic demand
- >Speculator decides supply of stablecoins secured by its collateral position

Assets

- >ETH: risky asset with exogenous price
- >STBL stablecoin with endogenous price over-collateralized in ETH

Stablecoin market clears by setting demand = supply in USD (target) terms

Model: Speculator

Collateral constraint: protocol requires over-collateralization

Model: Speculator

Decision: Change stablecoin supply to maximize next period expected returns subject to constraints (intended behavior)

$$\max_{\Delta_t} \quad \mathbb{E}[Y_{t+1}|\mathcal{F}_t]$$
s.t.
$$\bar{N}_t X_t \ge \beta L_t$$

$$Y_t = N_{t-1}X_t - L_{t-1} -$$
liquidation effect

Protocol can liquidate: costs and market effect

Model Details

We formalize the model as follows. We define the following parameters:

- \mathcal{D} = STBL demand in dollar value (equivalent to constant unit price-elasticity)
- β = STBL collateral factor
- $\alpha \ge 1$ liquidation fee (representing 1+% fee)

The system is composed of the following processes:

- $(X_t)_{t\geq 0}$ = exogenous ETH price process
- \mathcal{L}_t = stablecoin supply at time t that obeys

$$\mathcal{L}_t = \zeta + L_{t-1} + \Delta_t$$

where $L_{t-1} > 0$ is the speculator's STBL liabilities from the previous period, Δ_t is the speculator's change in liabilities at time t (such that $L_t = L_{t-1} + \Delta_t$), and and ζ is a real number that modifies circulating supply

- N_t = speculator's ETH position at time t, including collateral
- \bar{N}_t = speculator's locked ETH collateral at time t (and start of time t+1)
- $(Y_t)_{t>0}$ = speculator's value process
- $Z_t = \frac{\mathcal{D}}{\mathcal{L}_t}$ defines the STBL price process

$$\begin{split} X_{t} \\ Y_{t+1} &= \frac{\Delta_{t} \mathcal{D} X_{t+1}}{\mathcal{L}_{t} X_{t}} + (\bar{N}_{t} X_{t+1} - L_{t}) \, \mathbb{1}_{A_{t} \cup B_{t}} + \mathbb{1}_{B_{t}} (3L_{t} - 2\bar{N}_{t} X_{t+1}) \left(1 - \frac{\alpha \mathcal{D}}{2\bar{N}_{t} X_{t+1} - 2L_{t}}\right) \\ \Delta_{t}^{*} &= \begin{cases} \min\left(\arg\max_{\Delta_{t}} \mathbb{E}\left[Y_{t+1} \middle| \mathcal{F}_{t}\right], \frac{\bar{N}_{t-1} X_{t}}{\beta} - L_{t-1}\right) & \text{if } X_{t} \geq \frac{\beta L_{t-1}}{\bar{N}_{t-1}} \\ \min\left(\arg\max_{\Delta_{t}} \mathbb{E}\left[Y_{t+1} \middle| \mathcal{F}_{t}\right], -(3\mathcal{L}_{t-1} - 2\bar{N}_{t-1} X_{t})\right) & \text{if } X_{t} < \frac{\beta L_{t-1}}{\bar{N}_{t-1}} \end{cases} \\ \mathcal{L}_{t} &= \mathcal{L}_{t-1} + \Delta_{t}^{*} \\ N_{t} &= \begin{cases} N_{t-1} + \Delta_{t}^{*} \frac{Z_{t}}{X_{t}} & \text{if } X_{t} \geq \frac{\beta L_{t-1}}{\bar{N}_{t-1}} \\ N_{t-1} + \frac{Z_{t}}{X_{t}} (\Delta_{t} + (1 - \alpha)(3\mathcal{L}_{t-1} - 2\bar{N}_{t-1} X_{t})) & \text{if } X_{t} < \frac{\beta L_{t-1}}{\bar{N}_{t-1}} \end{cases} \\ \bar{N}_{t} &= \begin{cases} N_{t-1} & \text{if } X_{t} \geq \frac{\beta L_{t-1}}{\bar{N}_{t-1}} \\ N_{t-1} - \alpha(3\mathcal{L}_{t-1} - 2\bar{N}_{t-1} X_{t}) & \text{if } X_{t} < \frac{\beta L_{t-1}}{\bar{N}_{t-1}} \end{cases} \\ Z_{t} &= \frac{\mathcal{D}}{C}. \end{cases} \end{split}$$

Worth recalling:

 X_t = collateral price

 Z_t = stablecoin price

 \mathcal{L}_t = stablecoin supply

---Results---

Model

Assumptions

- X_t is a submartingale (we'll see what happens when relaxed)
- Distributions appropriately nice, bounded moments
- Stablecoin demand has unit price elasticity (can be generalized somewhat)
- Ensure speculator's objective is concave (not much stronger than above, avoids model artifact)
- Simple form for liquidations: protocol specifies amount to deleverage fulfilled on endogenous market

Regions of Stability

Result: Bound large deviations in certain stopped process

THEOREM 1. For $m \geq Z_0$ and $\epsilon > 0$,

$$\mathbb{P}\left(\max_{n \le \tau \land T_m} Z_n' > \epsilon\right) \le 2\epsilon^{-1} \left(m - \frac{1}{\kappa r}\right)$$

where $Z_t' := |m - Z_t|$ with m=1, this is deviation from target

 τ is the hitting time of $\mathbb{E}\left[\frac{1}{\mathcal{L}_{t+1}}|\mathcal{F}_t\right] > \frac{1}{\mathcal{L}_t}$,

 T_m is the hitting time of $Z_t > m$, for $m \ge Z_0$,

Proof: Doob's inequality

Regions of Stability

Result: bounds probability of large quadratic variation (QV) in certain stopped process

Theorem 2. Suppose $m \geq Z_0$ and $\epsilon > 0$. Then

$$\mathbb{P}\left(\sqrt{[Z']_{\tau \wedge T_m}} > \epsilon\right) \le 6\epsilon^{-1} \left(m - \frac{1}{\kappa r}\right)$$

where
$$[Z']_t := \sum_{k=1}^t (Z'_k - Z'_{k-1})^2$$
 is QV τ is the hitting time of $\mathbb{E}\left[\frac{1}{\mathcal{L}_{t+1}}|\mathcal{F}_t\right] > \frac{1}{\mathcal{L}_t},$ T_m is the hitting time of $Z_t > m$, for $m \geq Z_0$,

Proof: Burkholder's inequality

Regions of Instability

Result: Subject to different stopping conditions, stablecoin behaves as submartingale, depicting deleveraging spiral, akin to a short squeeze.

THEOREM 3. Restarting the process at S_1 , we have $(\mathcal{L}_{t \wedge S_2})$ is a supermartingale and $(Z_{t \wedge S_2})$ is a submartingale.

where S_1 is the hitting time of $\mathbb{E}[\mathcal{L}_{t+1}|\mathcal{F}_t] < \mathcal{L}_t$, S_2 is the hitting time of $\mathbb{E}[\mathcal{L}_{t+1}|\mathcal{F}_t] \geq \mathcal{L}_t$ such that $S_2 > S_1$.

Deleveraging Spiral – Round 2

Deleveraging Spiral – Round 2

Deleveraging Spiral – Round 2

Regions of Instability

Remark 2. (Estimating variances) Taylor approximations can be applied to estimate the variances of the stablecoin process. Consider $X_t = X_{t-1}R_t$ for return $R_t \ge 0$. For notational clarity, define¹⁰

$$h(\rho, n) := \arg \max_{\mathcal{L}_t} \mathbb{E}[Y_{t+1}|\mathcal{F}_t] = \mathcal{L}_t,$$

where ρ , n are realizations of R_t , \bar{N}_t . Variance in stablecoin supply follows

$$Var(\mathcal{L}_t|\mathcal{F}_{t-1}) \approx h' \left(\mathbb{E}[R_t|\mathcal{F}_{t-1}], \bar{N}_t\right)^2 Var(R_t|\mathcal{F}_{t-1})$$

And the stablecoin price variance approximation is

$$Var(Z_t|\mathcal{F}_{t-1}) \approx \frac{\mathcal{D}h'(\mathbb{E}[R_t|\mathcal{F}_{t-1}], \bar{N}_t)^2}{\mathbb{E}[\mathcal{L}_t|\mathcal{F}_{t-1}]^4} Var(R_t|\mathcal{F}_{t-1})$$
(1)

Result 4: Variance approx. in Eq. (1) increases by order of $\frac{1}{R_t^2}$ in an ETH return shock and

 $\frac{1}{N_t^2}$ with different initial collateralization

Proof: Implicit Function Theorem

Regions of Instability

Result: Starting in the unstable regime, the stablecoin will always have higher forward-looking variance than in stable regime.

> 'Stable' and 'unstable' regimes well-interpreted

Theorem 5. In addition to the previous assumptions, suppose $X_t \ge b(L_{t-1}) + \epsilon$ for some $\epsilon > 0$ (the pre-decision collateral constraint is exceeded by ϵ , which restricts the ranges of both X_t and \bar{N}_{t-1}). Consider two possible states s and u of the stablecoin at time t that differ only in collateral amounts $\bar{N}_{t-1}^s > N_{t-1}^u$ and evolve driven by the common price process (X_t) . Then the forward-looking price variances satisfy

$$Var(Z_t^s | \mathcal{F}_{t-1}) < Var(Z_t^u | \mathcal{F}_{t-1}).$$

Proof: inequalities on variances of convex functions of RVs

Black Thursday in Dai, March 2020

~50% ETH price crash

Liquidation price effect on Dai DEX trades

More detailed empirical analysis further validates results (Kjäer et al. 2021)

Model Extensions

Idealized settings

- > Perfectly elastic demand or unlimited speculator supply -> perfect stability
- ➤ But still no stability if not submartingale

Model extensions

- > Generalized STBL demand parameterized by price elasticity
- > Endogeneity of collateral prices defined by price impact function

----Design Insights---

- No stable region when X_t is not \sim submartingale (positive expectations)
- Seeming contradiction: goal to make decentralized stablecoin, but can only be fully stabilized by adding uncorrelated assets, which are currently custodial
- Patching this has been major topic since Black Thursday

Solutions:

- Maker: Since Black Thursday has tethered to USDC (+ custodial risks)
 - ➤ Maintaining exchangeability via USDC reserve ("PSM")

Solutions:

- Maker: Since Black Thursday has tethered to USDC (+ custodial risks)
 - Maintaining exchangeability via USDC reserve ("PSM")
- Rai: negative rates during crises (equilibrium participation, liquidity?)
- Liquity (and proposed in this paper): Dedicated liquidity pools for crises

Solutions:

- Maker: Since Black Thursday has tethered to USDC (+ custodial risks)
 - Maintaining exchangeability via USDC reserve ("PSM")
- Rai: negative rates during crises (equilibrium participation, liquidity?)
- Liquity (and proposed in this paper): Dedicated liquidity pools for crises
- Reserve-backed primary markets: anchors price to \$1 worth of assets

Conclusion: Paper available on arXiv

Stablecoins = complex on-chain currencies

- Many similarities with traditional finance
- Also new risks that lack suitable models

Key takeaways

- Stochastic analysis results in endogenous price model:
 - > Stable and unstable regimes
 - Deleveraging spirals as submartingale
- Design insights, new mechanisms now in use