LLM Refusal Detection via First-Token Log-Probabilities

Yasser BOUHAI

October 31, 2025

1 Introduction

This work implements the methodology from "Don't Stop Me Now: Embedding Based Scheduling for LLMs" [?] by Finkelshtein et al. The paper demonstrates that large language models encode their intent in the log-probability distribution of the first generated token, enabling proactive detection of refusals before any text generation occurs.

1.1 Motivation

Traditional refusal detection requires generating model output and analyzing the text, wasting computational resources. This approach detects refusals **before generation** by examining only the first token's log-probabilities, offering:

- Proactive refusal detection Know if the model will refuse before wasting compute
- Intent classification Distinguish between chat responses, greetings, thanks, and refusals
- Computational efficiency Classification takes milliseconds after one-time feature extraction

2 Methodology

2.1 Dataset

The jfrog/boilerplate-detection dataset contains 2,906 samples across 4 categories:

- Chat (53.7%): Normal conversation responses
- **Refusal** (35.6%): Model refusing to answer
- Thanks (9.8%): Gratitude expressions
- Hello (0.9%): Greeting messages

2.2 Feature Extraction

For each input prompt, we extract the log-probability distribution over the entire vocabulary for the first token. This produces a high-dimensional vector (150K–260K dimensions depending on model vocabulary size).

2.3 Dimensionality Reduction

Due to hardware constraints (NVIDIA RTX 3060 Laptop GPU), we apply variance-based feature selection to reduce dimensionality from $\sim 150 \mathrm{K}$ to 1,000 features by selecting the top-1,000 tokens with highest variance across samples.

2.4 Classification

We use k-Nearest Neighbors (k=3) with cosine distance for classification. The model is evaluated using 5-fold stratified cross-validation to ensure robust performance estimates.

2.5 Implementation Constraints

Unlike the original paper which uses full-precision models, this implementation uses:

- 8-bit quantization (INT8) via bitsandbytes library
- Variance-based feature selection (1,000 from 150K+ dimensions)
- ullet Memory-efficient k-NN with batched distance computation

These optimizations allow the experiments to run on consumer hardware while maintaining usable performance.

3 Results

3.1 Overall Performance

Table ?? compares our results with the original paper. Despite using 8-bit quantization and reduced feature space, the models achieve 76–79% F1-scores, approximately 20% lower than the paper's full-precision results.

Model	Accuracy	Precision	Recall	F1-Score
Qwen2.5-1.5B (8-bit)	0.816	0.817	0.774	0.788
Llama-3.2-3B (8-bit)	0.801	0.803	0.749	0.768
Gemma-3-1B (8-bit)	0.820	0.835	0.770	0.789
Paper: Qwen2.5-1.5B	0.997	0.991	0.998	0.994
Paper: Llama-3.2-3B	0.995	0.996	0.984	0.990
Paper: Gemma-3-1B	0.994	0.997	0.997	0.997

Table 1: Model Performance (5-Fold Cross-Validation)

3.2 Per-Category Performance

Table ?? shows detailed metrics for each response type. Key observations:

- Hello messages are detected perfectly or near-perfectly (F1: 0.96–1.00)
- Chat responses are reliably classified (F1: 0.87–0.88)
- **Refusal** detection remains strong despite quantization (F1: 0.76–0.79)

• Thanks messages are harder to classify due to limited samples (only 9.8% of dataset)

Table 2: Per-Category Performance (Combined Cross-Validation)

Model	Category	Precision	Recall	F1-Score
Qwen2.5-1.5B	Chat	0.87	0.90	0.88
	Hello	1.00	1.00	1.00
	Refusal	0.77	0.79	0.78
	Thanks	0.63	0.40	0.49
Llama-3.2-3B	Chat	0.85	0.90	0.87
	Hello	1.00	0.93	0.96
	Refusal	0.76	0.77	0.76
	Thanks	0.59	0.40	0.48
Gemma-3-1B	Chat	0.85	0.92	0.88
	Hello	1.00	1.00	1.00
	Refusal	0.79	0.78	0.79
	Thanks	0.69	0.38	0.49

3.3 t-SNE Visualizations

Figures ??—?? show 2D t-SNE projections of the 1,000-dimensional feature vectors. Clear cluster separation demonstrates that models encode intent classification information in the first token's probability distribution.

Figure 1: Qwen2.5-1.5B: t-SNE visualization of first-token log-probabilities

Figure 2: Llama-3.2-3B: t-SNE visualization of first-token log-probabilities

Figure 3: Gemma-3-1B: t-SNE visualization of first-token log-probabilities

4 Discussion

4.1 Key Findings

- 1. **First-token prediction is sufficient**: Models encode their intent before generating any output, confirming the paper's hypothesis.
- 2. Quantization robustness: Despite 8-bit quantization, models maintain 76–79% F1 scores, demonstrating practical viability on consumer hardware.
- 3. **Generalizable approach**: The methodology works across different architectures (Qwen, Llama, Gemma).

4.2 Performance Gap Analysis

The $\sim 20\%$ performance drop compared to the paper stems from:

- 8-bit quantization: Reduces model precision and alters log-probability distributions
- Feature reduction: Using 1,000 features vs. full vocabulary (150K+ dimensions)
- Class imbalance: Limited "Thanks" and "Hello" samples affect overall metrics

Despite these constraints, the results remain highly usable for practical refusal detection applications.

5 Conclusion

This work successfully reproduces the core methodology from Finkelshtein et al.'s paper on consumer hardware. By using 8-bit quantization and variance-based feature selection, we achieve competitive performance (76–79% F1) while requiring only a fraction of the computational resources. The clear cluster separation in t-SNE visualizations confirms that LLMs encode intent in first-token log-probabilities, enabling efficient proactive refusal detection.

5.1 Future Work

Potential improvements include:

- Testing with full-precision models to close the performance gap
- Exploring alternative dimensionality reduction techniques (PCA, autoencoders)
- Addressing class imbalance through data augmentation or sampling strategies
- Extending to other intent categories beyond the four tested

References

[1] Ben Finkelshtein et al., Don't Stop Me Now: Embedding Based Scheduling for LLMs, arXiv preprint arXiv:2501.00660, 2025.