Computational Microelectronics Lecture 14 Poisson Equation

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Nonlinear Poisson Equation

Nonlinear Poisson equation

- In the last lectures,
 - Laplace equation
 - Source-free Poisson equation
 - Poisson equation with fixed charges
 - We are now ready to solve the nonlinear Poisson equation:

$$\nabla \cdot [\epsilon(\mathbf{r})\nabla\phi] + qn_{int}(\mathbf{r}) \exp\left(-\frac{\phi(\mathbf{r})}{V_T}\right) - qn_{int}(\mathbf{r}) \exp\left(\frac{\phi(\mathbf{r})}{V_T}\right) + qN_{dop}^+(\mathbf{r}) = 0$$

Discretization

- When the nonlinear Poisson equation is considered,
 - We have additional terms:

$$\epsilon(x_{i+0.5}) \frac{\phi(x_{i+1}) - \phi(x_i)}{x_{i+1} - x_i} - \epsilon(x_{i-0.5}) \frac{\phi(x_i) - \phi(x_{i-1})}{x_i - x_{i-1}} + q \left(n_{int} \exp\left(-\frac{\phi(x_i)}{V_T}\right) - n_{int} \exp\left(\frac{\phi(x_i)}{V_T}\right) + N_{dop}^+(x_i) \right) (x_{i+0.5})$$

Double-gate example

- Electrostatic potential
 - Even when V_G = 0 V, the boundary values of ϕ are not 0 V. (0.33374 V in this example)

~ 4.63 eV in silicon

Its solution

- Electron density at $V_G = 0 \text{ V}$
 - Change the number of grid points.

Bias ramping

- Ramp up the gate voltage, V_G
 - -Simply add an outermost loop.

-The boundary values of ϕ are given as $\phi = \phi_0 + V_C$

Its solution

• Inversion charge as a function of V_G

-It can be written as $qN_{inv} = C_{ox}(V_G - V_{TH})$

Thank you!