Critical $(P_4 + P_1, K_3 + P_1, 2P_2)$ -free graphs

Ben Cameron
Department of Computing Science
The King's University
Edmonton, AB Canada
ben.cameron@kingsu.ca

Thaler Knodel
Department of Computing Science
The King's University
Edmonton, AB Canada

Christopher Bury
Department of Computing Science
The King's University
Edmonton, AB Canada

July 18, 2023

Abstract

1 Structure

Throughout this section, assume G is a k-vertex-critical non-complete $(P_4 + P_1, K_3 + P_1, 2P_2)$ -free graph.

For any $v \in V(G)$, G partitions into $\{v\}$, N(v), and $\overline{N[v]}$. N(v) further partitions into N_1, N_1', N_2 . $\exists u_1 \in \overline{N[v]}$ such that $u_1 \sim N_1$, and $\exists u_2 \in \overline{N[v]}$ such that $u_2 \sim N_2$.

Lemma 1.1. For every vertex $v \in V(G)$, $G[\overline{N[v]}]$ is $(P4, K_3)$ -free.

Proof. If $S \subseteq \overline{N[v]}$ induces P_4 or K_3 , then $\{v\} \cup S$ induces a $P_4 + P_1$ or $K_3 + P_1$, a contradiction. \square

Lemma 1.2. For every vertex $v \in V(G)$, $\overline{N[v]}$ induces $K_{n,m}$ some $n, m \ge 1$.

Proof. By Lemma 1.1, $\overline{N[v]}$ is P_4 -free and therefore either a join of disjoint union of graphs (since P_4 -free graphs are co-graphs). Thus, every component is K_1 or a join. Further, since $\overline{N[v]}$ is K_3 -free, each component must be a complete bipartite graph, since if it were the join of any graph with an edge, a triangle would be induced, contradicting Lemma 1.1. Now, if some component of $\overline{N[v]}$ is K_1 , then the neighbourhood of this component is contained in the neighbourhood of v which makes comparable vertices and therefore contradicts G being vertex-critical. Thus, every component of $\overline{N[v]}$ contains at least one edge. If there are two components, then take any two vertices that are adjacent from two different components and these four vertices will induce a $2P_2$, contradicting G being $2P_2$ -free. Thus, $\overline{N[v]}$ induces $K_{n,m}$ some $n, m \geq 1$.

Lemma 1.3. $N_1 - N'_1$ is complete to N_2 .

Proof. If $N_1 - N_1'$ is not complete to N_2 , then $n_1 \in N_1, n_2 \in N_2, \{n_1, u_2, n_2, u_1\}$ induces a $2K_2$. \square

Lemma 1.4. N_2 is an independent set.

Proof. By 1.2, the non-neighbours of N_1 are a complete bipartite graph.

Now let S be the maximum independent set of G, and $v \in S$. Let $S - v = \{u_1, u_2, \ldots, u_l\}$. Also, let $V(G) - S - N(v) = \{Y_1, Y_2, \ldots, Y_j\}$. Suppose that l is greater than some arbitrary constant, and that $j \geq 2$. If Y_1 is complete to N(v), then Y_1, v are comparable, which contradicts the k-vertex criticality of the graph. So let $N' \subseteq N(v)$ such that Y_1 is anticomplete to N'.

Lemma 1.5. Y_i is anticomplete to $N' \forall i \in \{1, ..., j\}$.

Proof. If $\exists Y_i \in V(G) - S - N(v)$ such that $Y_i \sim n$, then $\{u_1, Y_i, n\} \subseteq \overline{N(Y_1)}$ contradicting that the non-neighbours are a complete biparite graph.

Lemma 1.6. S-v is complete to N'.

Proof. If $\exists v_i \in S - v$ such that $u_i \not\sim n$ for some $n \in N'$, then $\{u_i, Y_1, v, n\}$ induces a $2K_2$, which contradicts our graph characterization.

So $N(Y_i) \subseteq N(Y_1) \forall i \in \{2, ..., j\}$, so Y_i, Y_1 are comparable vertices, making this not vertex critical and thus a contradiction. Further, since this applies for all $i \geq 2$, then the $|Y| \leq 1$. We also know (somehow) that this applies to the set of $\{u_1, ..., u_l\}$ so they are limited to ≤ 1 . Now we can use Ramsay's Theorem to identify that since there is a maximum independent set, there is a finite amount of graphs.

2 $claw + P_1, K_3 + P_1, 2P_2$ -free

We can use a similar technique to find a finite amount of these graphs. Assume we have a $claw + P_1, K_3 + P_1, 2K_2$ -free graph. Then we have the maximum independent set S. Let $v \in S$. We will reuse our definition of $\overline{N[v]}$.

Lemma 2.1. $\forall v \in \overline{N[v]}$,

3 $(2P_2, P_4 + P_1, chair, bull)$ -free

Let G be a $(2P_2, P_4 + P_1, chair, bull)$ -free k-vertex-critical graph. Let us have a vertex v and N(v) and $\overline{N[v]}$. Let S be the maximum independent set of G where $v \in S$. Let A be $\overline{N[v]} - S$. Let s_1 and s_2 be any two separate vertices in S not equal to v.

Lemma 3.1. For $u \in A$, $u \not\sim u'$ where $u' \in N(v)$.

Proof. Assume $u \sim u'$. This means that $\{u', u, v, u_2\}$ creates an induced P_4 where $u_2 \in N(v)$. Thus u' must be complete to S in order to not create an induced $P_4 + P_1$. This creates an induced chair with the vertex set $\{u', u, v, s_1, s_2\}$ unless $s_2 \sim u$. With this edge in place, $\{u', u, v, s_1, s_2\}$ is an induced bull. ¡This somehow covers every case; fill this in;

Lemma 3.2. The length of S is bounded to a maximum of 2 vertices.

Proof. With $u \not\sim u'$, $\{s_1, u'\}$ and $\{v, u\}$ form an induced $2P_2$ where $s_1 \in S$ unless $s_1 \sim u$. With this edge present, $\{s_1, u', s_2, u\}$ creates an induced P_4 , meaning u must be complete to S to avoid creating an induced $P_4 + P_1$. However, this makes every vertex in S comparable to each other, contradicting the assumption that G is k-vertex-critical. This means that S must have a maximum length of 2 in order for G to exist, containing at most v and s_1 .

The length of the maximum independent set of G is bounded to some constant value, meaning that there are finitely many k-vertex-critical graphs that meet the criteria of G. Results $P_4 + \ell_1 P_1, 2P_2, \ell_2 squid$ s $claw + P_1, K_3 + P_1, 2P_2$ $2P_2, P_4 + P_1, chair, raging bull$