Basis of the Electroencefalography (EEG) Signal

Summary

Intro to EEG

Basics of the EEG-signal

EEG frequency spectrum

...brief intro to ERP's

Intro to EEG

- Electrodes on the scalp measure electrical activity generated by thousands of synchronised neurons
- Direct non-invasive measure of neuronal activity!
- Really good temporal resolution: sampling rates of 1024hz – 4096hz with modern systems

Electroencephalogram (EEG)

https://www.brightbraincentre.co.uk/electroencephalogram-eeg-brainwaves/

Some physics...

- Electric potentials generated by neurons can be modeled with dipoles
- Dipole: a separation of electrical charges. Quantified by dipole moment (µ)
- Electric current flows from the negative pole to the positive
- Happens in neurons all the time: action potentials
- Primary vs. secondary current
- However, single current is too small to measure...

https://en.wikipedia.org/wiki/Dipole

Some neuroanatomy...

- Neocortex consists of six distinct layers.
- Distinct (messy!) neuronal organisation and connections across layers.
- Luckily giant pyramidal cells projecting from layer 5 are lined perpendicular to the surface!

https://www.brightbraincentre.co.uk/electroencephalogram-eeg-brainwaves/

Some physics + neuroanatomy...

- How does the organisation of the pyramidal neurons help us?
- As noted, one dipole generated by one action potential is too small to measure...
- ...the summation of tens of thousands is not
- Since pyramidal neurons point to the same direction, charges don't cancel out
- We can measure the summed diapoles!

Jackson and Bolger, (2014)

Pre- vs. post-synaptic potentials

 Pre and post-synaptic potentials differ in characteristics pre-synaptic potential

post-synaptic potential

Pre-synaptic: Short and biphasic

Post-synaptic: Longer and monophasic

~ 2 ms

So we are measuring:

- The summed dipoles generated (mostly) by the sychnorised post-synaptic potentials of tens of thousands of pyramidal neurons in Layer 5
- ... plus noise
- What does this correspond to? Can we localise the source?

https://www.brightbraincentre.co.uk/electroencephalogram-eeg-brainwaves/eeg-dipoles/

How do we measure it?

- Electrodes placed on scalp, standardised placement: 10-20 system (More recent 10-5)
- EEG uses differential amplifiers to produce each channel
- The way the electrodes are connected to the amplifiers are referred to as a montage

Ueda, Sakai and Yanagisawa, (2019)

Standard recording derivations

- Common reference derivation: a reference electrode is substracted from the scalp electrode. The same reference electrode is used for every amplifier
- Average reference derivation: Activity from all electrodes is summed, averaged and passed through a high value resistor. The resulting signal is used as the 'reference electrode'
- Bipolar derivation: electrodes are sequentially linked together. E.g. from the back to the front.

So what do we get from recording EEG?

EEG frequency spectrum as a classification system

- Beta: Seen in a symmetrical distribution on both sides. Dominant when alert/anxious/eyes are open
- Alpha: Seen in posterior regions.
 Higher amplitude on the dominant hemisphere. Appears with relaxing/closed eyes
- Theta: 'slow activity'. Seen in sleep and children under 13 years old
- Delta: Lowest frequency/highest amplitude. Appears in stages 3 and 4 of sleep.

Some applications

- Sleeping disorders (Friedman, 1986)
- Main tool for diagnosing epilepsy. Current research is looking at automated ways using machine learning. (Tiwari et al., 2017)
- Brain-Computer interfaces (Spüler, 2017)

https://emedicine.medscape.com/article/1138154-overview

ERP's (briefly)

- ERP = Event related potential
- An EEG waveform associated with a certain action or mental event
- Remember that EEG-data is noisy!
- How can we examine small waveforms associated with specific events?
- By a lot of repetition: random noise should cancel itself out, but systematic variance should remain!

https://medium.com/@mindpass2050/the-stimulus-reaction-challenge-d86cd57e22fe

Basis of the MEG Signal

Overview

MEG basics EEG vs. MEG Advantages & Disadvantages Summary

MEG: introduction

http://www.admin.ox.ac.uk/estates/capitalprojects/previouscapitalprojects/megscanner/

- Magnetoencephalography
- Direct external recordings of magnetic fields created by electrical currents in cortex
- Measured in fT to pT
- Role of MEG in neuroimaging:
 - Neural correlates of cognitive/perceptual processes
 - Localise affected regions before surgery(?), determine regional and network functionality

MEG: basis of the signal

- EEG and MEG both measure the neuronal activities but EEG detects synchronised electrical activity of large groups of neurons, whereas MEG detects the tiny changes in magnetic fields
- Recall: large pyramidal neurons in layer V of cortex, arranged in parallel, similarlyoriented, perpendicular to surface, fire synchronously
- Dipolar current flow generates a magnetic field.

TRY IT: 'Right hand grip'!

 10,000 to 50,000 active neurons required for detectable signal

Scalp topography:

- Influx maxima 'source'
- Efflux maxima 'sink'

MEG: tangential vs. radial

- MEG magnetic field not distorted by conductive properties of scalp/head
- MEG coil not sensitive to perfectly radial sources
- But in practice, only a small proportion (<1%) of cell populations are perfectly radial – i.e. on top of gyri

MEG: scale of magnetic field

Figure 1.3: Comparison of field strengths

- MEG signal is tiny!
- Interference from electrical equipment, traffic, the earth, participant's heartbeat etc.
- Requires magnetically shield rooms and supersensitive magnetometers

MEG: magnetically shielded room (MSR)

Brock & Sowman (2014)

 3, 5 or 6 layers with different magnetic properties to protect from different frequencies of magnetic interference

MEG is super-cool

SQUID

- Superconducting QUantum
 Interference Device, immersed
 in super-cool liquid helium
- Sensitive to field changes in order of femto-Tesla (10⁻¹⁵)
- Superconductive ring with two Josephson junctions
- Flux transformers (coils)
 - Magnetometers
 - Gradiometers (planar/axial)

MEG: flux transformers

Axial magnetometer

Single superconducting coil – highly sensitive but affected by environmental noise

Axial/planar gradiometers (1st order)

Two oppositely-wound coils – environmental noise affects both electrodes : **no net noise**. Sources from cortex affect coils **differentially**

MEG: applications

- Excellent spatial resolution
 good for functional mapping of specific
 cortex (M1, V1) during behavioural,
 cognitive, perceptive tasks
- Surgical planning (?) in patients with brain tumours or intractable epilepsy
- Research into whole-brain network connectivity
 Millisecond temporal resolution

EEG vs. MEG

	EEG	MEG
Signal magnitude	10 mV (easily detectable)	10 fT (magnetic shielding required)
Measurement	Secondary currents	Primary currents
Signal purity	Distortion by skull/scalp	Little effect by skull/scalp
Temporal resolution	~1ms	~1ms
Spatial resolution	~1cm	<1cm
Experimental flexibility	Moves with subject	Subject must remain stationary
Dipole orientation	Tangential and radial	Tangential better

EEG/MEG advantages

- ✓ Non-invasive
- ✓ Direct measurements of neuronal function (unlike fMRI)
- ✓ High temporal resolution (1ms or less, 1000x better than fMRI)
- ✓ Easy to use clinically (adults, children)
- Quiet! (can study auditory processing)
- ✓ Affordable, EEG is portable
- Subjects can perform tasks sitting up (more natural than MRI scanner)

EEG/MEG disadvantages

Not as good spatial localisation as fMRI, MRI, CT

- Sensitivity depth only ~4cm (c.f. whole brain sensitivity of fMRI)
 - Sensitivity loss proportional to square of distance from sensor
- 3D Source reconstruction is ill-posed? forward and inverse problems

Forward & inverse problems

https://www.youtube.com/wat h?v=AogBOXtXk1s

→ SOLUTION: Use forward models for inverse problem. Source localisation

models and algorithms; iterative source reconstruction

Summary

Direct, non-invasive measures of cortical electrical activity

EEG: secondary currents,

MEG: magnetic fields

Good spatial & temporal resolution

Depth sensitivity?

Add thalamus, hippocampus, amygdala to MEG source reconstruction models (!)

Spontaneous or evoked neural activity;

Applications in epilepsy, sleep, Alzheimer's disease biomarkers(?), schizophrenia(?), autism(?), whole-brain functional networks

Sources

Images from:

https://en.wikipedia.org/wiki/Dipole

https://www.brightbraincentre.co.uk/electroencephalogram-eeg-brainwaves/

https://www.brightbraincentre.co.uk/electroencephalogram-eeg-brainwaves/

https://www.brightbraincentre.co.uk/electroencephalogram-eeg-brainwaves/eeg-dipoles

https://www.ebme.co.uk/articles/clinical-engineering/introduction-to-eeg

https://raphaelvallat.com/bandpower.html

https://www.britannica.com/science/electroencephalography

https://emedicine.medscape.com/article/1138154-overview

https://medium.com/@mindpass2050/the-stimulus-reaction-challenge-d86cd57e22fe

http://opencc.co.uk/blog/out-of-touch-manual-keypads-and-controllers-face-competition-from-new-hands-free-computer-interfaces/

http://www.gensat.org/imagenavigator.jsp?imageID=29099

http://www.lucid.ac.uk/news-and-events/blogs/how-to-study-language-why-do-we-put-electrodes-on-people-s-heads/

http://www.admin.ox.ac.uk/estates/capitalprojects/previouscapitalprojects/megscanner/

http://www.youtube.com/watch?v=CPj4jJACels

http://www.csiro.au/~/media/CSIROau/Images/Maps%20%20Graphs/SQUID_CESRE_ind/High_Resolution.gif

https://www.colbertnewshub.com/2013/04/05/april-4-2013-dr-francis-collins/

https://medicalxpress.com/news/2015-02-brain-imaging-links-language-chromosome.html

https://www.youtube.com/watch?v=AogBOXtXk1s