Complex Numbers $z = re^{j\theta}$ where $r = \sqrt{x^2 + y^2}$ and $\theta = \tan^{-1}(\frac{y}{x})$ Avg Power $p_{avg} = V_m I_m \cos(\theta_v - \theta_i)$

Time-domain: $v(t) = V_{max}\cos(\omega t + \theta_v)$, Phasor: $V = V_m \angle \theta_v$ where $V_m = \frac{V_{max}}{\sqrt{2}}$

Time-domain: $i(t) = I_{max}\cos(\omega t + \theta_i)$, Phasor: $I = I_m \angle \theta_i$ where $I_m = \frac{I_{max}}{\sqrt{2}}$

Power

$$p(t) = V_m I_m [\cos(2\omega t + \theta_v + \theta_i) + \cos(\theta_v - \theta_i)]$$

Purely resistive load

$$p(t) = v(t)i_R(t) = V_{max}I_{max}^R\cos^2(\omega t + \theta_v) = VI_R(1 + \cos(2[\omega t + \theta_v]))$$

Purely inductive load

Power Factor

PF is lagging if $\theta_i < \theta_v$ (e.g. inductive loads)

PF is leading if $\theta_i > \theta_v$ (e.g. capacitive loads)

$$p(t) = v(t)i_R(t) = V_{max}I_{max}^L\cos(\omega t + \theta_v)\cos(\omega t + \theta_v - 90^\circ) = VI_L(\sin(2[\omega t + \theta_v]))$$

General RLC load

Let $I_m \cos(\theta_v - \theta_i) = I_R$ and $I_m \cos(\theta_v - \theta_i) = I_X$ $p(t) = V_m I_R (1 + \cos[2(\omega t + \theta_v)]) + V_m I_X \sin[2(\omega t + \theta_v)]$

Complex Power

$$S = VI^* = V_m I_m \angle (\theta_v - \theta_i) = V_m I_m \cos(\theta_v - \theta_i) + j V_m I_m \sin(\theta_v - \theta_i)$$
Real power (WAR)

Real power (W) $P = V_m I_m \cos(\theta_v - \theta_i)$

$$Q = V_m I_m \sin(\theta_v - \theta_i)$$

3 Phase Circuits

line-to-line voltages between the phases

$$E_{ab} = E_{an} - E_{bn}$$
, Let $E_{an} = |E| \angle 0^{\circ}$ $E_{bc} = E_{bn} - E_{cn}$
 $E_{ab} = |E| \angle 0^{\circ} - |E| \angle -120^{\circ}$ $E_{bc} = |E| \sqrt{3} \angle -90^{\circ}$
 $E_{ab} = |E| - |E| \frac{\left(-1 - j\sqrt{3}\right)}{2}$ $E_{bc} = E_{bn} - E_{cn}$
 $E_{bc} = |E| \sqrt{3} \angle 150^{\circ}$

$$E_{ab} = |E|\sqrt{3}\angle 30^{\circ}$$

Line currents for the Y - Y

$$I_{a} = E_{an}/Z_{y} = E_{an}/(|Z_{y}|\angle\theta_{z}) = E_{an}/|Z_{y}|\angle-\theta_{z}$$

$$I_{b} = E_{bn}/Z_{y} = E_{bn}/(|Z_{y}|\angle\theta_{z}) = E_{bn}/|Z_{y}|\angle(-120^{\circ} - \theta_{z})$$

$$I_{c} = E_{cn}/Z_{y} = E_{bn}/(|Z_{y}|\angle\theta_{z}) = E_{bn}/|Z_{y}|\angle(120^{\circ} - \theta_{z})$$

Load current for Y-Delta

$$I_{AB}=E_{ab}/Z_{\Delta}=\sqrt{3}|E|/|Z_{\Delta}|\angle(30^{\circ}-\theta_z)$$

$$I_{BC} = E_{bc}/Z_{\Delta} = \sqrt{3}|E|/|Z_{\Delta}|\angle(30^{\circ} - \theta_z - 120^{\circ}) = \sqrt{3}|E|/|Z_{\Delta}|\angle(-90^{\circ} - \theta_z)$$

$$I_{CA}=E_{ca}/Z_{\Delta}=\sqrt{3}|E|/|Z_{\Delta}|\angle(30^{\circ}-\theta_z+120^{\circ})=\sqrt{3}|E|/|Z_{\Delta}|\angle(150^{\circ}-\theta_z)$$

Line current for Y- Delta

 $E_{ab} = \sqrt{3}E_{an}\angle 30^{\circ}$

 $E_{bc} = \sqrt{3}E_{bn}\angle 30^{\circ}$

 $E_{ca} = \sqrt{3}E_{ca}\angle 30^{\circ}$

$$I_a = I_{AB} - I_{CA} = \sqrt{3}I_{AB} \angle -30^{\circ}$$

$$I_b = I_{BC} - I_{AB} = \sqrt{3}I_{BC} \angle -30^\circ$$

$$I_c = I_{CA} - I_{BC} = \sqrt{3}I_{CA} \angle -30^\circ$$

Convert Y - Delta

 $Z_Y = Z_{\Delta}/3$

Instantaneous Power: Balanced

In terms of Line to line

Recall: $V_{LN} = V_{LL}/\sqrt{3}$

$$p_{3\phi}(t) = p_a(t) + p_b(t) + p_c(t)$$

$$= V_{LN}I_L\cos(\delta - \beta) + V_{LN}I_L\cos(2\omega t + \delta + \beta)$$

$$+ V_{LN}I_L\cos(\delta - \beta) + V_{LN}I_L\cos(2\omega t + \delta + \beta - 2)$$

$$= V_{LN}I_{L}\cos(\delta - \beta) + V_{LN}I_{L}\cos(2\omega t + \delta + \beta)$$

$$+ V_{LN}I_{L}\cos(\delta - \beta) + V_{LN}I_{L}\cos(2\omega t + \delta + \beta - 240^{\circ}) \quad p_{3\phi}(t) = \sqrt{3}V_{LL}I_{L}\cos(\delta - \beta)$$

$$+ V_{LN} I_L \cos(\delta - \beta) + V_{LN} I_L \cos(2\omega t + \delta + \beta + 240^{\circ})$$

 $=3V_{LN}I_{L}\cos(\delta-\beta)$

$$p_{3\phi}(t) = \sqrt{3}V_{LL}I_L\cos(\delta - \beta)$$

Complex power 3 phase

$$S_{3\phi} = 3V_{LN}I_L\cos(\delta - \beta) + j3V_{LN}I_L\sin(\delta - \beta)$$

$$P_{3\phi} = \sqrt{3V_{LL}I_L\cos(\delta - \beta)} V$$

Complex power 3 phase
$$S_{3\phi} = 3V_{LN}I_L\cos(\delta - \beta) + j3V_{LN}I_L\sin(\delta - \beta) \quad P_{3\phi} = \sqrt{3}V_{LL}I_L\cos(\delta - \beta) \quad W \quad Q_{3\phi} = \sqrt{3}V_{LL}I_L\sin(\delta - \beta) \quad \text{var}$$

$$|S_{3\phi}| = 3V_{LN}I_L = \sqrt{3}V_{LL}I_L \text{ VA}$$

