A11100 988630

NBS PUBLICATIONS A11100988630

/NBS monograph
QC100 .U556 V25-13;1976 C.1 NBS-PUB-C 19



# NBS MONOGRAPH 25 - SECTION 13

U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards

Standard X-ray Diffraction Powder Patterns

QC 100 U556 No.25-13 1976 c.2

# NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, the Office of Radiation Measurement and the following Center and divisions:

Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Center for Radiation Research: Nuclear Sciences; Applied Radiation — Laboratory Astrophysics <sup>2</sup> — Cryogenics <sup>2</sup> — Electromagnetics <sup>2</sup> — Time and Frequency <sup>2</sup>.

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials, the Office of Air and Water Measurement, and the following divisions:

Analytical Chemistry — Polymers — Metallurgy — Inorganic Materials — Reactor Radiation — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government: cooperates with public and private organizations leading to the development of technological standards (including mandatory safety standards), codes and methods of test; and provides technical advice and services to Government agencies upon request. The Institute consists of the following divisions and Centers:

Standards Application and Analysis — Electronic Technology — Center for Consumer Product Technology: Product Systems Analysis; Product Engineering — Center for Building Technology: Structures, Materials, and Life Safety: Building Environment; Technical Evaluation and Application — Center for Fire Research: Fire Science; Fire Safety Engineering.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Institute consists of the following divisions:

Computer Services — Systems and Software — Computer Systems Engineering — Information Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government: promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

Office of Standard Reference Data — Office of Information Activities — Office of Technical Publications — Library — Office of International Relations — Office of International Standards.

<sup>&</sup>lt;sup>1</sup> Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.

<sup>2</sup> Located at Boulder, Colorado 80302.

COT 7 1977

# Standard X-ray Diffraction Powder Patterns

Section 13—Data for 58 Substances

Montograph 10, 25-13

Marlene C. Morris, Howard F. McMurdie, Eloise H. Evans, Boris Paretzkin, Johan H. de Groot, Camden R. Hubbard and Simon J. Carmel

Institute for Materials Research National Bureau of Standards Washington, D.C. 20234



U.S. DEPARTMENT OF COMMERCE, Elliot L. Richardson, Secretary

Dr. Betsy Ancker-Johnson, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

Issued June 1976

Library of Congress Catalog Card Number: 53-61386

National Bureau of Standards Monograph 25

Section 13—Data for 58 Substances

Nat. Bur. Stand. (U.S.), Monogr. 25—Sec. 13, 114 pages (June 1976)

CODEN: NBSMA6

U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1976

# CONTENTS

|                                                                                                                       | Page             |                                                                                            | Page     |
|-----------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------|----------|
| Introduction                                                                                                          | 1                | Cobalt gallium tantalum, Co <sub>2</sub> GaTa                                              | 76       |
| Experimental patterns:                                                                                                |                  | Cobalt gallium titanium, Co <sub>2</sub> GaTi Cobalt gallium vanadium, Co <sub>2</sub> GaV | 77<br>78 |
| Experimental passerns:                                                                                                |                  | Cobalt germanium manganese,                                                                |          |
| Arsenic iodide, AsI3                                                                                                  | 7                | Co <sub>2</sub> GeMn                                                                       | 79       |
| Barium silicate, β-BaSiO <sub>3</sub>                                                                                 | 8                | Cobalt germanium titanium, Co <sub>2</sub> GeTi.                                           | 80       |
| Barium silicate, (sanbornite),                                                                                        |                  | Cobalt indium, CoIng                                                                       | 81       |
| β-BaSi <sub>2</sub> O <sub>5</sub>                                                                                    | 10               | Cobalt lutatium Co.Iv                                                                      | 83<br>86 |
| Barium silicate, Ba <sub>2</sub> SiO <sub>4</sub>                                                                     | 12               | Cobalt lutetium, Co <sub>2</sub> Lu<br>Cobalt neodymium, Co <sub>2</sub> Nd                | 87       |
| Barium silicate, Ba <sub>2</sub> Si <sub>3</sub> O <sub>8</sub>                                                       | 13<br>15         | Cobalt nickel tin,                                                                         | 0,       |
| Barium silicate, Ba <sub>3</sub> SiO <sub>5</sub><br>Barium silicate, Ba <sub>3</sub> Si <sub>5</sub> O <sub>13</sub> | 17               | Co.75Ni.75Sn.75                                                                            | 88       |
| Cadmium silicate, Cd <sub>2</sub> SiO <sub>4</sub>                                                                    | 19               | Cobalt samarium, Co <sub>5</sub> Sm                                                        | 90       |
| Cadmium silicate, Cd <sub>3</sub> SiO <sub>5</sub>                                                                    | 20               | Cobalt tin, Co <sub>3</sub> Sn <sub>2</sub>                                                | 92       |
| Calcium hydrogen phosphate hydrate,                                                                                   | 20               | , <b>, , , , , , , , , , , , , , , , , , </b>                                              |          |
| Ca <sub>8</sub> H <sub>2</sub> (PO <sub>4</sub> ) <sub>6</sub> •5H <sub>2</sub> O                                     | 21               | Cumulative indices                                                                         |          |
| Cobalt phosphate, Co(PO <sub>3</sub> ) <sub>2</sub>                                                                   | 23               | (Circular 539, Volumes 1-10 and                                                            |          |
| Copper imidazole nitrate,                                                                                             |                  | Monograph 25, Sections 1-13 inclusive)                                                     |          |
| Cu (C <sub>3</sub> H <sub>4</sub> N <sub>2</sub> ) <sub>4</sub> (NO <sub>3</sub> ) <sub>2</sub>                       | 24               | nonograph 23, beccions 1 13 inclusive,                                                     |          |
| Lead chloride fluoride (matlockite),                                                                                  |                  | 1. Inorganic                                                                               | 94       |
| PbClF                                                                                                                 | 25               | 2. Organic                                                                                 | 107      |
| Magnesium phosphate, Mg(PO <sub>3</sub> ) <sub>2</sub>                                                                | 26               | 3. Mineral                                                                                 | 108      |
| Magnesium tungsten oxide, MgWO4                                                                                       | 27               |                                                                                            |          |
| Mercury chloride, HgCl <sub>2</sub>                                                                                   | 29               |                                                                                            |          |
| Mercury chloride (calomel), Hg <sub>2</sub> Cl <sub>2</sub> .                                                         | 30               |                                                                                            |          |
| Nickel acetate hydrate,                                                                                               | 21               |                                                                                            |          |
| Ni (C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> ) <sub>2</sub> ·4H <sub>2</sub> O······                              | , 31             |                                                                                            |          |
| Potassium platinum chloride                                                                                           | 33               |                                                                                            |          |
| Potassium platinum chloride,  K <sub>2</sub> PtCl <sub>6</sub>                                                        | 34               |                                                                                            |          |
| Silicon, Si                                                                                                           | 35               |                                                                                            |          |
| Silver carbonate, Ag <sub>2</sub> CO <sub>3</sub>                                                                     | 36               |                                                                                            |          |
| Silver sulfate, Ag <sub>2</sub> SO <sub>4</sub>                                                                       | 37               |                                                                                            |          |
| Sodium phosphate hydrate,                                                                                             |                  |                                                                                            |          |
| α-Na <sub>4</sub> P <sub>4</sub> O <sub>12</sub> •4H <sub>2</sub> O                                                   | 39               |                                                                                            |          |
| Strontium hydroxide, Sr(OH)2                                                                                          | 41               |                                                                                            |          |
| Strontium hydroxide hydrate,                                                                                          |                  |                                                                                            |          |
| Sr(OH) <sub>2</sub> •H <sub>2</sub> O                                                                                 | 42               |                                                                                            |          |
| Strontium hydroxide hydrate,                                                                                          |                  |                                                                                            |          |
| Sr(OH) <sub>2</sub> •8H <sub>2</sub> O                                                                                | 43               |                                                                                            |          |
| Strontium silicate, Sr <sub>3</sub> SiO <sub>5</sub>                                                                  | 44               |                                                                                            |          |
| Tin hydrogen phosphate, SnHPO4                                                                                        | 46               |                                                                                            |          |
| Zinc borate, Zn <sub>4</sub> B <sub>6</sub> O <sub>13</sub>                                                           | 48<br>49         |                                                                                            |          |
| Zinc titanium oxide, ZnTiO3                                                                                           | 49               |                                                                                            |          |
| Calculated patterns:                                                                                                  |                  |                                                                                            |          |
| Cerium cobalt, CeCo <sub>2</sub>                                                                                      | 50               |                                                                                            |          |
| Cerium cobalt, Ce <sub>24</sub> Co <sub>11</sub>                                                                      | 51               |                                                                                            |          |
| Cerium gallium, CeGa2                                                                                                 | 54               |                                                                                            |          |
| Cerium magnesium, CeMg3                                                                                               | 56               |                                                                                            |          |
| Cerium nickel, CeNi2                                                                                                  | 58               |                                                                                            |          |
| Cerium thallium, CeTl                                                                                                 | 59               |                                                                                            |          |
| Cerium thallium, CeTl <sub>3</sub>                                                                                    | 60               |                                                                                            |          |
| Cerium thallium, Ce <sub>3</sub> Tl                                                                                   | 61               |                                                                                            |          |
| Cobalt dysprosium, Co <sub>2</sub> Dy                                                                                 | 63               |                                                                                            |          |
| Cobalt erbium, Co <sub>2</sub> Er                                                                                     | 64               |                                                                                            |          |
| Cobalt gadalinium Cockd                                                                                               | 65<br>60         |                                                                                            |          |
| Cobalt gadolinium, CoGdg                                                                                              | 68<br>71         |                                                                                            |          |
| Cobalt gadolinium, Co <sub>2</sub> Gd<br>Cobalt gadolinium, Co <sub>7</sub> Gd <sub>2</sub>                           | 71<br><b>7</b> 2 |                                                                                            |          |
| Cobalt gallium manganese, Co <sub>2</sub> GaMn                                                                        | 72<br>75         |                                                                                            |          |

# STANDARD X-RAY DIFFRACTION POWDER PATTERNS

The following copies may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia, 22161. Where these publications are identified with a number, it must be used in ordering. They are available in hardcopy or microfiche; the price is not fixed and will be furnished on request.

Also, until the present supply is exhausted, the publication numbers marked by an asterisk are for sale from the Superintendent of Documents, U. S. Government Printing Office, Washington, D. C. 20402. Order respectively by SD catalog No. Cl3.44:25/Sec. 11, Price \$1.55 or SD catalog No. Cl3.44:25/Sec. 12, Price \$1.50.

| NBS Publication | on                                   |                    | Numl                            | ber                             | NBS Publication | on                                        |   | Numb                 | er                   |
|-----------------|--------------------------------------|--------------------|---------------------------------|---------------------------------|-----------------|-------------------------------------------|---|----------------------|----------------------|
| Circular 539,   | Volume<br>Volume<br>Volume<br>Volume | 1                  | 178<br>178<br>178<br>178<br>178 | 903<br>904<br>905<br>906<br>907 | Monograph 25,   | Section                                   | 5 | 178                  | 430                  |
|                 | Volume<br>Volume                     | 8PB<br>9PB<br>10PB | 178<br>178                      | 909<br>910                      |                 | Section<br>Section<br>Section<br>*Section | 8 | 72-5<br>72-5<br>74-5 | 0002<br>1079<br>0183 |

# STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Section 13. --- Data for 58 Substances

by

Marlene C. Morris, Howard F. McMurdie, Eloise H. Evans, Boris Paretzkin, and Johan H. de Groot Joint Committee on Powder Diffraction Standards

and

Camden R. Hubbard and Simon J. Carmel
National Bureau of Standards

Standard x-ray diffraction patterns are presented for 58 substances. Thirty-one of these patterns represent experimental data and 27 are calculated. The experimental x-ray powder diffraction patterns were obtained with an x-ray diffractometer. All d-values were assigned Miller indices determined by comparison with computed interplanar spacings consistent with space group extinctions. The densities and lattice constants were calculated and the refractive indices were measured whenever possible. The calculated x-ray powder diffraction patterns were computed from published crystal structure data. Both peak height and integrated intensities are reported for the calculated patterns.

Key words: Crystal structure; integrated intensities; lattice constants; peak intensities; powder patterns; reference intensities; standard; x-ray diffraction.

# INTRODUCTION

The Powder Diffraction File is a continuing compilation of diffraction patterns gathered from many sources. Produced and published by the Joint Committee on Powder Diffraction Standards, 1 the File is used for identification of crystalline materials by matching d-spacings and diffraction intensity measurements. Under the partial sponsorship of the Joint Committee, the program at the National Bureau of Standards contributes new data to this File. Our work also aids in the evaluation and revision of published x-ray data and in the development of diffraction techniques. This report presents information for 58 compounds (31 experimental and 27 calculated patterns), and is the twenty-third of the series of "Standard X-ray Diffraction Powder Patterns."2

# EXPERIMENTAL POWDER PATTERNS

Sample. The samples used to make NBS patterns were obtained from a variety of sources or were prepared in small quantities in our laboratory. Appropriate annealing or recrystallization of the sample improved the quality of most of the patterns. A check of phase purity was provided by indexing the x-ray pattern. Unless otherwise noted, the spectrographic analyses were done at NBS after preparation of the sample was completed; the limit of detection for the alkali elements was 0.05 weight percent.

Optical data, color. A microscopic inspection for phase purity was also made on the non-opaque materials during the refractive index determination. The latter was done by grain-immersion methods in white light, using oils standardized in sodium light, in the refractive index range 1.40 to 2.1 [Hartshorne and Stuart, 1970].

The names of the sample colors were selected from the ISCC-NBS Centroid Color Charts [1965].

Interplanar spacings. For spacing determinations, a shallow holder was packed with a sample mixed with an internal standard (approximately 5 wt. percent tungsten powder). If tungsten lines were found to interfere with sample lines, silver or silicon was used in place of tungsten. If the internal standard correction varied along the length of the pattern, linear interpolations were used. To avoid errors associated with aberrations at the very top of peaks, the readings of 20 were taken at positions about 20 percent of the way down from the top, and in the center of the peak width. The internal standard correction for each region was then applied to the measured value of 20. We have reported all data as Kal peaks because the internal standard corrections for all regions were established in terms of the Kal wavelength.

<sup>1</sup> Joint Committee on Powder Diffraction Standards, 1601 Park Lane, Swarthmore, PA. 19081. This Pennsylvania non-profit corporation functions in cooperation with the American Ceramic Society, the American Crystallographic Association, the American Society for Testing and Materials, The Clay Minerals Society, The Institute of Physics, the Mineralogical Association of Canada, the Mineralogical Society of America, The Mineralogical Society of Great Britain and Ireland, the National Association of Corrosion Engineers, and the Société Française de Minéralogie et de Cristallographie.

<sup>&</sup>lt;sup>2</sup>See previous page for other published volumes.

The internal standards used were of high purity (99.99%). The lattice constants used for them at 25 °C are given in the table below; the 20 angles were computed using cell dimensions uncorrected for index of refraction.

|      | Calculated 20              | Angles, $CuKa_1$            | $\lambda = 1.540598 \mathring{A}$ |
|------|----------------------------|-----------------------------|-----------------------------------|
| hkl  | W<br>a=3.16524A<br>±.00004 | Ag<br>a=4.08651Å<br>±.00002 | Si<br>a=5.43088Å<br>±.00004       |
| 110  | 40.262                     |                             |                                   |
| 111  |                            | 38.112                      | 28.443                            |
| 200  | 58.251                     | 44.295                      |                                   |
| 211  | 73.184                     |                             |                                   |
| 220  | 86.996                     | 64.437                      | 47.303                            |
| 310  | 100.632                    |                             |                                   |
| 311  |                            | 77.390                      | 56.123                            |
| 222  | 114.923                    | 81.533                      |                                   |
| 321  | 131.171                    |                             |                                   |
| 400  | 153.535                    | 97.875                      | 69.131                            |
| 331  |                            | 110.499                     | 76.377                            |
| 420  |                            | 114.914                     |                                   |
| 422  |                            | 134.871                     | 88.032                            |
| 511/ | '333                       | 156.737                     | 94.954                            |
| 440  |                            |                             | 106.710                           |
| 531  |                            |                             | 114.094                           |
| 620  |                            |                             | 127.547                           |
| 533  |                            |                             | 136.897                           |
| 444  |                            |                             | 158.638                           |

The new internal standard Si powder is available as Standard Reference Material 640 [1974]. The lattice constant for the Si was refined from multiple powder data measurements made with tungsten as an internal standard [Swanson et al., 1966]. Cell parameter data were also collected for a single crystal from the boules ground to prepare the powder. The lattice parameters from the two methods agreed within 3 parts in 10<sup>5</sup> [Hubbard et al. 1975]. D-spacing results using SRM 640 will be in agreement with patterns recorded in this series of monographs since 1966.

All of our spacing measurements were recorded at 25  $\pm$  1 °C on a diffractometer equipped with a focusing graphite or lithium fluoride crystal monochromator located between the sample and the scintillation counter. Pulse height discrimination was used as well. All measurements were performed using copper radiation:  $\lambda \, (\text{CuK}\alpha_1 \,,\, \text{peak}) = 1.540598 \mbox{\sc A} \, [\text{Deslattes} \, \text{and} \, \text{Henins}, \, 1973] \,.$ 

Structure, lattice constants. The space groups were listed with short Hermann-Maugin symbols as well as the space group numbers given in the International Tables for X-ray Crystallography, Vol. I [1952].

Orthorhombic cell dimensions were arranged according to the Dana convention b>a>c [Palache et al., 1944]. Monoclinic and triclinic lattice constants were transformed if necessary in order to follow the convention of Crystal Data [1973]. For primitive cells, the transformed cell axes are an alternate labelling of the reduced cell

axes. For centered monoclinic cells, the transformed cell is the centered cell with the three shortest non-coplanar vectors.

A computer program [Evans et al., 1963] assigned hkl's and refined the lattice constants. Cell refinement was based only upon  $2\theta_{\rm obs}$  values which could be indexed without ambiguity. program minimized the value  $\Sigma(\theta_{obs}-\theta_{calc})^2$ . The estimated standard deviations (e.s.d.'s) of the reciprocal cell parameters were determined from the inverse matrix of the normal equations: program calculated the e.s.d.'s of the direct cell constants by the method of propagation of errors. Since 1973, the e.s.d.'s derived by the computer program have been increased by 50% in order to reflect more truly the uncertainty in the lattice constants. A similar increase should also be applied to all lattice constants in earlier publications of this series. In indexing cubic patterns, multiple hkl's were not utilized in the refinement or reported. Instead, the single appropriate index having the largest h was listed. The number of significant figures reported for d-values varied with the symmetry and crystallinity of each sample.

<u>Densities</u>. These were calculated from the specified lattice constants, the Avogadro number  $6.0220943 \times 10^{23}$  [Deslattes et al., 1974] and atomic weights based on carbon 12 [International Union, 1961].

Intensity measurements. It was found that samples which gave satisfactory intensity patterns usually had an average particle size smaller than 10  $\mu m$ , as recommended by Alexander et al. [1948]. In order to avoid the orientation effects which occur when powdered samples are packed or pressed, a sample holder was made that had in its top face a rectangular cavity which extended to one end of the holder. To prepare the sample, a glass slide was clamped over the top face to form a temporary cavity wall (see Figure 1), and the powdered sample was allowed to drift into the end opening while the holder was held in a vertical





position. With the sample holder returned to a horizontal position, the glass slide was carefully removed so that the sample could be exposed to the x-ray beam (as shown in Figure 2). If the sample powder did not flow readily, or was prone to orient excessively, approximately 50 volume percent of finely ground silica-gel was added as a diluent. The intensities of the diffraction lines were measured as peak heights above background and were expressed in percentages of the strongest line. At least three patterns for intensity measurements were prepared for each sample to check reproducibility.

Reference Intensity Ratio,  $I/I_{corundum}$ . For reference intensity measurements,  $\alpha-Al_2O_3$  (corundum) was chosen as an internal standard to be mixed 1:1 by weight with the sample. This mixture of two components was mounted in our regular intensity sample holder (see Figures 1 & 2), and the pattern was taken. The reference intensity was then calculated as the direct ratio of the strongest line of the sample to the strongest line of corundum (hexagonal reflection (113)). In a few instances, the strongest line of one of the components coincided with a line of the other. In that case, the second strongest line was measured, and the value for the strongest line was then calculated.

# CALCULATED POWDER PATTERNS

Since some substances of interest are not readily available for experimental work, powder patterns were calculated from published crystal structure data. The FORTRAN program used for the computations was developed by Clark, Smith and Johnson [1973] and modified at NBS.

Lattice parameters. Before the computations of the patterns, any necessary changes were made in the lattice constants in order to make them consistent with the revised value of  $\lambda (\text{CuK}\alpha_1) = 1.540598 \text{Å}$  [Deslattes and Henins, 1973]. Both the altered and the original published values are given. Monoclinic and triclinic lattice constants

were transformed if necessary, to follow the convention of Crystal Data [1973]. For primitive cells, the transformed cell axes are an alternate labelling of the reduced cell axes. For centered monoclinic cells, the transformed cell is the centered cell with the three shortest noncoplanar vectors.

Scattering factors. Whenever possible, the same scattering factors were used which the author of the reference article specified. Otherwise, the factors were taken directly from the International Tables for X-ray Crystallography, Vol. III, [1962]. The factors were corrected for dispersion if the author had done so.

Thermal parameters. The computer program used thermal parameter data of only two forms, the isotropic B's or the anisotropic  $\beta_{ij}$ 's in the following expressions:

$$e^{(-B \sin^2\theta)/\lambda^2}$$

or

$$e^{-(h^2\beta_{11}+k^2\beta_{22}+\ell^2\beta_{33}+2hk\beta_{12}+2h\ell\beta_{13}+2k\ell\beta_{23})}.$$

Other thermal parameters were converted to one of these two forms. The isotropic parameters were used directly, if given by the structure reference. In a few of our patterns, anisotropic parameters were also used directly as given by the structure reference; in other work, instead of using given anisotropic parameters, approximately equivalent isotropic values were substituted as defined by:

$$B = 4 \left[ \frac{\beta_{11}\beta_{22}\beta_{33}}{a^{*2}b^{*2}c^{*2}} \right]^{\frac{1}{3}}$$

Structural information. The atom positions used in these calculated patterns varied somewhat in the degree of reliability. When the expression "the structure was determined by..." was used, the atomic parameters in the reference cited had been calculated from refinement of single crystal data. When only the space group and structure type were given, the atomic positions had been derived by analogy with similar compounds whose structure was known. In cases where isostructural relationships were used, the atoms were in fixed special positions or the ionic radii were closely related to the corresponding radii of the atoms in the known structure.

Integrated intensities. The theoretical integrated intensity of reflection i on the "absolute/relative" scale is computed from the right hand side of the equation:

$$\frac{I_{i}^{abs}}{K} = \frac{M_{i} L p_{i} |F_{i} T_{i}|^{2}}{2 u V^{2}}$$

where:

F is the structure factor T is the thermal correction

 $Lp = \frac{1 + \cos^2 2\theta}{\sin^2 \theta \cos \theta}$  is the Lorentz-polarization term

 $\ensuremath{\mathtt{M}}$  is the multiplicity for the reflection i

 $\mu$  is the linear absorption coefficient

V is the volume of the unit cell

When the largest integrated intensity was assigned a relative value of 100 and all other reflections were scaled relative to it, the intensities were placed on the relative intensity scale (I<sup>rel</sup>). Relative intensities were rounded to the nearest integer value before being listed, and reflections with I<sup>rel</sup> less than 0.7 were omitted.

Scale factor (integrated intensities). The scale factor, γ, was defined to convert the tabulated I<sup>rel</sup> to the "absolute/relative" scale [Hubbard, Evans and Smith]. That is:

$$\gamma = \frac{\text{M'Lp'}|\text{F'T'}|^2}{200\mu\text{V}^2}$$

and

$$\frac{I^{abs}}{K} = \gamma I^{rel}$$

The primes denoted the values for the largest integrated intensity. In earlier Monographs (1969-1975), a different scale factor,  $k_{\mbox{\scriptsize NBS}}$ , was reported which is related to  $\gamma\colon$ 

$$\frac{\gamma}{k_{NBS}} = \frac{1}{2\mu V^2}$$

From  $\gamma$ , the theoretical value of the Reference Intensity Ratio, I/I, was calculated:

$$I/I_{C} = \frac{\mu \gamma \rho_{C}}{\mu_{C} \gamma_{C} \rho}$$

where  $\rho$  is the density and the subscript c represents corundum  $(\alpha\text{-Al}_2\text{O}_3)\,.$ 

Peak intensities. The purpose of calculating peak intensities was to provide a tabulated pattern similar to what might be obtained from experimental diffractometer measurements. For each predicted reflection, Cauchy profiles centered at both the  $\alpha_1$  and the  $\alpha_2$  peak positions were calculated and summed, forming a simulated

powder pattern. The full width at half-maximum (FWHM) was allowed to vary to represent the changing FWHM as a function of  $2\theta$ . [The values of the FWHM vs  $2\theta$  are given in the table below]. The resultant simulated powder pattern was then analyzed for peaks. In the regions of the predicted reflections several reflections could have identical or similar 2θ angles and produce only one composite peak in the simulated pattern. The 20 angle of the composite peak was assigned the hkl of the reflection having the greatest contribution to the peak intensity. If any other peak contributed more than 10% of the intensity toward the composite peak intensity, a plus sign (+) was appended to the hkl. Peaks due solely to a2 lines were omitted. If an  $\alpha_1$  peak and an  $\alpha_2$  peak overlapped, the  $\alpha_1$  reflection was listed only when it contributed a significant intensity (>10%) at the peak  $2\theta$ .

The peak search routine located peaks only at  $2\theta$  angles which were a multiple of 0.02°.

| 2θ             |       | 2θ           |       |
|----------------|-------|--------------|-------|
| CuK $\alpha_1$ | FWHM  | CuK $lpha_1$ | FWHM  |
| 0°             | 0.12° | 140          | 0.230 |
| 20             | .12   | 145          | .255  |
| 40             | .12   | 150          | .285  |
| 60             | .125  | 155          | .315  |
| 80             | .130  | 160          | .360  |
| 100            | .135  | 162.5        | .410  |
| 120            | .155  | 165          | .500  |
| 130            | .185  |              |       |

# REFERENCES

Alexander, L., Klug, H. P. and Kummer, E. (1948). J. Appl. Phys., 19, No. 8, 742.

Clark, C.M., Smith, D.K., and Johnson, G.G., Jr. (1973). A FORTRAN IV Program for Calculating X-ray Powder Diffraction Patterns, Version 5, Dept. of Geosciences, Pennsylvania State Univ., PA 16802.

Crystal Data (1973). (3rd. Ed. Published jointly by the U. S. Department of Commerce, National Bureau of Standards, Washington, D. C. 20234, and the Joint Committee on Powder Diffraction Standards, Swarthmore, PA 19081).

Deslattes, R.D. and Henins, A. (1973). Phys. Rev. Lett. 31, 972.

Deslattes, R. D., Henins, A., Bowman, H. A., Schoonover, R.M., Carroll, C.L., Barnes, I.L., Machlan, L.A., Moore, L. J., and Shields, W.R. (1974). Phys. Rev. Lett. 33, 463.

Evans, H.T., Jr., Appleman, D. E. and Handwerker, D.S. (1963), Report #PB 216188, U. S. Dept. of Commerce, National Technical Information Center 5285 Port Royal Rd., Springfield, VA 22161, \$3.50.

Hartshorne, N.H. and Stuart, A. (1970). Crystals and the Polarizing Microscope (Edward Arnold and Co., London, 4th Ed.)

Hubbard, C. R., Evans, E. H., and Smith, D. K., J. Appl. Cryst. (to be published).

- Hubbard, C. R., Swanson, H. E., and Mauer, F. A. (1975). J. Appl. Cryst. 8, 45.
- International Tables for X-ray Crystallography, I
   (1952). (The Kynoch Press, Birmingham, Eng.),
   Ibid. III (1962). Pgs. 202, 210, 213, 214.
- International Union of Pure and Applied Chemistry (1961). Chem. Eng. News 39 (4), Nov. 20, 42.
- ISCC-NBS Centroid Color Charts, SRM 2106 (1965), obtainable from the Office of Standard Reference Materials, Room B311, Chemistry Building, National Bureau of Standards, Washington, D.C. 20234. \$5.00 per set.
- Palache, C., Berman, H. and Frondel, C. (1944).

  Dana's System of Mineralogy (John Wiley and Sons, New York, 7th Ed.), I, 6.
- Standard Reference Material 640, Silicon Powder, X-ray Diffraction Standard, obtainable from the Office of Standard Reference Materials, Room B311, Chemistry Building, National Bureau of Standards, Washington, D.C. 20234. \$52.00 per 10 gram unit.
- Swanson, H. E., Morris, M. C., and Evans, E. H. (1966). Nat'l Bur. Std. U.S. Monograph 25, Sec. 4, 3.



The sample was obtained from the City Chemical Company of New York.

Major impurities

0.001 to 0.01% each Bi, Sb 0.0001 to 0.001% each Fe, Si

Color

Bright orange

Structure

Hexagonal, R3(148), Z = 6 [Braekken, 1930].

NBS lattice constants of this sample:

$$a = 7.2093(8)$$
A
 $c = 21.449(3)$ 

Density

(calculated) 4.702 g/cm<sup>3</sup>

Reference intensity  $I/I_{corundum} = 1.3$ 

Additional patterns

- 1. PDF card 7-272 [Swanson et al., 1956].
- 2. Hanawalt et al. [1938].
- 3. Heyworth [1931].

References

Braekken, H. (1930). Z. Kristallogr. 74, 67. Hanawalt, J. D., Rinn, H. W., and Frevel, L. K.

(1938). Ind. Eng. Chem. Anal. Ed. 10, 457.

Heyworth, D. (1931). Phys. Rev. 38, 351.

Swanson, H. E., Gilfrich, N. T., and Cook, M. I. (1956). Nat. Bur. Stand. (U.S.) Circ. 539, 6,

17.

| $CuK\alpha_1 \lambda = 1.540598 \text{ Å; temp. } 25\pm1 \text{ °C}$ |         |            |                  |        |  |  |  |
|----------------------------------------------------------------------|---------|------------|------------------|--------|--|--|--|
|                                                                      | Inter   | nal standa | rd W, a = 3.1652 | 4 Å    |  |  |  |
|                                                                      | d(Å)    | I          | hkl              | 20 (°) |  |  |  |
|                                                                      | 7.14    | 4          | 003              | 12.39  |  |  |  |
|                                                                      | 5.39    | 9          | 012              | 16.43  |  |  |  |
|                                                                      | 3.573   | 50         | 006              | 24.90  |  |  |  |
|                                                                      | 3.218   | 100        | 113              | 27.70  |  |  |  |
|                                                                      | 2.752   | 2          | 107              | 32.51  |  |  |  |
|                                                                      | 2.539   | 20         | 116              | 35.32  |  |  |  |
|                                                                      | 2.464   | 2          | 018              | 36.43  |  |  |  |
|                                                                      | 2.384   | 1          | 009              | 37.71  |  |  |  |
|                                                                      | 2.081   | 25         | 300              | 43.46  |  |  |  |
|                                                                      | 2.028   | 3          | 1.0.10           | 44.65  |  |  |  |
|                                                                      |         |            |                  |        |  |  |  |
|                                                                      | 1.9882  | 20         | 119              | 45.59  |  |  |  |
|                                                                      | 1.8611  | 2          | 0.1.11           | 48.90  |  |  |  |
|                                                                      | 1.7982  | 16         | 306              | 50.73  |  |  |  |
|                                                                      | 1.7873  | 8          | 0.0.12           | 51.06  |  |  |  |
|                                                                      | 1.7680  | 2          | 0.2.10           | 51.66  |  |  |  |
|                                                                      | 1.7472. | 10         | 223              | 52.32  |  |  |  |
|                                                                      | 1.6097  | 5          | 226              | 57.18  |  |  |  |
|                                                                      | 1.6012  | 6          | 1.1.12           | 57.51  |  |  |  |
|                                                                      | 1.4378  | 4          | 229              | 64.79  |  |  |  |
|                                                                      | 1.4295  | 3          | 0.0.15,321       | 65.21  |  |  |  |
|                                                                      |         | _          |                  |        |  |  |  |
|                                                                      | 1.3560  | 4          | 3.0.12           | 69.23  |  |  |  |
|                                                                      | 1.3388  | 6          | 413              | 70.25  |  |  |  |
|                                                                      | 1.3291  | 5          | 1.1.15           | 70.84  |  |  |  |
|                                                                      | 1.2730  | 3          | 416              | 74.47  |  |  |  |
|                                                                      | 1.2693  | 3          | 2.2.12           | 74.73  |  |  |  |
|                                                                      | 1.1914  | 3          | 0.0.18,3.2.10    | 80.56  |  |  |  |
|                                                                      | 1.1825  | 4          | 419              | 81.30  |  |  |  |
|                                                                      | 1.0337  | 1          | 2.4.10           | 96.35  |  |  |  |
|                                                                      |         |            |                  |        |  |  |  |

The sample was prepared by repeated grindings and heatings at about 1100 °C of a 1:1 molar mixture of Ba(OH)<sub>2</sub> and silica gel.

Color

Colorless

#### Structure

Orthorhombic, Pmmm(47), Z=4, isostructural with BaGeO<sub>3</sub> and NH<sub>4</sub>BeF<sub>3</sub> [Liebau, 1957; Toropov and Grebenshchikov, 1956].

NBS lattice constants of this sample:

a = 5.6182(5)A b = 12.445(1)c = 4.5816(5)

Density

(calculated) 4.421 g/cm<sup>3</sup>

Reference intensity

I/I corundum = 2.6

Polymorphism

Funk [1958] reports a second form below about 990°. Grebenshchikov et al. [1967] confirm this and report that the transformation is irreversible. They also suggest a third form  $(\beta')$ .

# Additional patterns

- 1. PDF card 6-247 [Levin and Ugrinic, 1953].
- 2. PDF card 12-651 [Funk, 1958].
- 3. PDF card 21-83 [Grebenshchikov et al.,1967].
- 4. Austin [1947].
- 5. Toropov and Grebenshchikov [1956].

# References

Austin, A. E. (1947). J. Amer. Ceram. Soc. 30, 218.

Funk, H. (1958). Z. Anorg. Allg. Chem. 296, 46. Grebenshchikov, R.G., Shitova, V.I., and Toropov, N.A. (1967). Inorg. Mater. (USSR) 3, 1410.

Levin, E. M. and Ugrinic, G. M. (1953). J. Res.
Nat. Bur. Stand. 51, 37.

Liebau, F. (1957). Acta. Crystallogr. 10, 290. Toropov, N. A. and Grebenshchikov, R. G. (1956).

J. Inorg. Chem. (USSR) 1, [12], 41.

 $CuK\alpha_1$   $\lambda$  = 1.540598 Å; temp. 25±1 °C Internal standard Si, a = 5.43088 Å

| Internal | standard | Si, a = 5.43088 | A              |
|----------|----------|-----------------|----------------|
| d(A)     | I        | hkl             | 2Θ (°)         |
| 6.23     | 2        | 020             | 14.20          |
| 5.12     | 14       | 110             | 17.30          |
| 4.174    | 11       | 120             | 21.27          |
| 3.693    | 35       | 021             | 24.08          |
| 3.552    | 15       | 101             | 25.05          |
| 3.332    | 10       | 101             | 23.03          |
| 3.418    | 100      | 111             | 26.05          |
| 3.339    | 65       | 130             | 26.68          |
| 3.112    | 55       | 040             | 28.66          |
| 2.808    | 25       | 200             | 31.84          |
| 2.740    | 10       | 210             | 32.65          |
|          |          |                 |                |
| 2.723    | 10       | 140             | 32.86          |
| 2.699    | 14       | 131             | 33.17          |
| 2.574    | 8        | 041             | 34.82          |
| 2.353    | 17       | 211             | 38.22          |
| 2.342    | 11       | 141             | 38.41          |
|          |          |                 |                |
| 2.325    | 4        | 230             | 38.69          |
| 2.293    | 17       | 002             | 39.26          |
| 2.235    | 25       | 221             | 40.32          |
| 2.186    | 2        | 051             | 41.26          |
| 2.123    | <1       | 102             | 42.55          |
|          |          |                 |                |
| 2.085    | 12       | 240             | 43.37          |
| 2.075    | 20       | 231,060         | 43.59          |
| 2.039    | 30       | 151             | 44.39          |
| 2.007    | 5        | 032             | 45.13          |
| 1.946    | 2        | 160             | 46.63          |
|          |          |                 |                |
| 1.897    | 8        | 241             | 47.91          |
| 1.889    | 20       | 132,061         | 48.12          |
| 1.8629   | 4        | 250             | 48.85          |
| 1.8459   | 10       | 042             | 49.33          |
| 1.7932   | 6        | 320             | 50.88          |
| . 1_     |          |                 |                |
| 1.7766   | 6        | 070,202         | 51.39          |
| 1.7588   | 5        | 212             | 51.95          |
| 1.7541   | 4        | 142             | 52.10          |
| 1.7337   | 7        | 301             | 52.76          |
| 1.7174   | 4        | 311             | 53.30          |
| 1 7067   | 5        | 330             | 53.66          |
| 1.7067   |          |                 |                |
| 1.6950   | 15       | 170             | 54.06<br>54.99 |
| 1.6685   | 2<br>2   | 260             | 56.30          |
| 1.6328   |          | 232             | 56.97          |
| 1.6151   | 1        | 152             | 30.97          |
| 1.6046   | 4        | 340             | 57.38          |
| 1.6002   | 4        | 331             | 57.55          |
| 1.5682   | 4        | 261             | 58.84          |
| 1.5554   | i        | 080             | 59.37          |
| 1.5427   | 4        | 242             | 59.91          |
|          |          |                 |                |
| 1.5387   | 4        | 062             | 60.08          |
| 1.5144   | 7        | 341             | 61.15          |
| 1.4989   | 2        | 180             | 61.85          |
| 1.4836   | 4        | 162             | 62.56          |
| 1.4734   | 6        | 081             | 63.04          |
|          |          |                 |                |

Barium silicate,  $\beta\text{-BaSiO}_3$  - continued

| ď(Å)   | I        | hkl       | 2Θ (°) |
|--------|----------|-----------|--------|
| u(A)   | <u> </u> | TIKE.     | 20()   |
| 1.4649 | 4        | 113       | 63.45  |
| 1.4458 | 3        | 252       | 64.39  |
| 1.4350 | 3        | 123,033   | 64.93  |
| 1.4280 | 6        | 271       | 65.29  |
| 1.4247 | 3        | 181       | 65.46  |
| 1.4126 | 4        | 322       | 66.09  |
| 1.3958 | 4        | 410       | 66.99  |
| 1.3901 | 5        | 360,133   | 67.30  |
| 1.3690 | 3        | 332       | 68.48  |
| 1.3629 | 6        | 172       | 68.83  |
| 1.3490 | 1        | 262       | 69.64  |
| 1.3433 | <1       | 401,203 + | 69.98  |
| 1.3347 | 4        | 411,213   | 70.50  |
| 1.3304 | 5        | 430,361   | 70.76  |
| 1.3145 | 4        | 342       | 71.75  |
| 1.3126 | 4        | 421,223   | 71.87  |
| 1.3046 | 4        | 281       | 72.38  |
| 1.2886 | 4        | 191       | 73.42  |
| 1.2775 | 5        | 431,233   | 74.17  |
| 1.2688 | 3        | 153       | 74.76  |
| 1.2548 | 2        | 182       | 75.74  |
| 1.2444 | 2        | 0.10.0    | 76.49  |
| 1.2409 | 2        | 371,290   | 76.74  |
| 1.2304 | 2        | 063       | 77.52  |
| 1.2231 | 2        | 450       | 78.07  |
| 1.2009 | 1        | 0.10.1    | 79.80  |
|        |          |           |        |

The sample was prepared by melting a 1:2 molar mixture of BaCO $_3$  and silica gel (at about 1430 °C) and annealing for 15 hours at 1325 °C. Because of the presence of a small amount of the high ( $\alpha$ ) form, the intensities are subject to a slight uncertainty.

# Color

Colorless

# Structure

Orthorhombic, Pmnb(62), Z=4. The structure has been determined by Douglass [1958].

NBS lattice constants of this sample:

a = 7.6922(8)A b = 13.525(1) c = 4.6336(5)

# Density

(calculated) 3.769 g/cm<sup>3</sup>

# Polymorphism

There is a high  $(\alpha)$  form stable above 1350 °C [Roth and Levin, 1959]. This is given on PDF card 10-45 [Klasens et al., 1957].

# Additional patterns

- 1. PDF card 10-46 [Klasens et al., 1957].
- PDF card 11-170 (natural mineral) [Douglass, 1958].
- 3. Levin and Ugrinic [1953].
- 4. Oehlschlegel [1971].
- 5. Roth and Levin [1959].

# References

Douglass, R. M. (1958). Amer. Mineral. 43, 517. Klasens, H. A., Hockstra, A. H., and Cox, A. P.M. (1957). J. Electrochem. Soc. 104, 93.

(1957). J. Electrochem. Soc. <u>104</u>, 93. Levin, E. M. and Ugrinic, G. M. (1953). J. Res Nat. Bur. Stand. 51, 37.

Nat. Bur. Stand. <u>51</u>, 37. Oehlschlegel, G. (1971). Glastechm. Ber. <u>44</u>, 194. Roth, R.S. and Levin, E.M. (1959). J. Res. Nat. Bur. Stand. <u>62</u>, 193.

| CuKα <sub>1</sub> λ : | = 1.540598 Å; | temp.  | 25±1 ° | ,c |
|-----------------------|---------------|--------|--------|----|
| Internal              | standard Si,  | a = 5. | 43088  | Å  |
|                       |               |        |        |    |

| 6.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20(°)  13.06 17.43 22.36 23.12 23.34  26.00 26.33 26.64 27.56 28.80  29.95 30.90 32.75 33.00 34.81  35.32 37.46 38.49 38.83 39.40                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.08       25       120         3.973       85       101         3.844       6       200         3.808       9       111         3.424       50       121         3.382       16       040         3.343       70       220         3.234       30       031         3.097       100       140         2.981       4       131         2.892       5       211         2.732       35       041         2.712       40       221         2.575       18       141         2.539       6       240         2.399       4       320         2.317       13       002         2.317       13       002         2.317       13       002         2.285       3       012         2.244       11       301         2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059 <td< th=""><th>17.43<br/>22.36<br/>23.12<br/>23.34<br/>26.00<br/>26.33<br/>26.64<br/>27.56<br/>28.80<br/>29.95<br/>30.90<br/>32.75<br/>33.00<br/>34.81<br/>35.32<br/>37.46<br/>38.49<br/>38.83</th></td<> | 17.43<br>22.36<br>23.12<br>23.34<br>26.00<br>26.33<br>26.64<br>27.56<br>28.80<br>29.95<br>30.90<br>32.75<br>33.00<br>34.81<br>35.32<br>37.46<br>38.49<br>38.83 |
| 5.08       25       120         3.973       85       101         3.844       6       200         3.808       9       111         3.424       50       121         3.382       16       040         3.343       70       220         3.234       30       031         3.097       100       140         2.981       4       131         2.892       5       211         2.732       35       041         2.712       40       221         2.575       18       141         2.539       6       240         2.399       4       320         2.317       13       002         2.317       13       002         2.317       13       002         2.285       3       012         2.244       11       301         2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059 <td< th=""><td>17.43<br/>22.36<br/>23.12<br/>23.34<br/>26.00<br/>26.33<br/>26.64<br/>27.56<br/>28.80<br/>29.95<br/>30.90<br/>32.75<br/>33.00<br/>34.81<br/>35.32<br/>37.46<br/>38.49<br/>38.83</td></td<> | 17.43<br>22.36<br>23.12<br>23.34<br>26.00<br>26.33<br>26.64<br>27.56<br>28.80<br>29.95<br>30.90<br>32.75<br>33.00<br>34.81<br>35.32<br>37.46<br>38.49<br>38.83 |
| 3.973       85       101         3.844       6       200         3.808       9       111         3.424       50       121         3.382       16       040         3.343       70       220         3.234       30       031         3.097       100       140         2.981       4       131         2.892       5       211         2.732       35       041         2.712       40       221         2.575       18       141         2.539       6       240         2.399       4       320         2.317       13       002         2.317       13       002         2.285       3       012         2.244       11       301         2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027                                                                                                                                                                                                            | 22.36<br>23.12<br>23.34<br>26.00<br>26.33<br>26.64<br>27.56<br>28.80<br>29.95<br>30.90<br>32.75<br>33.00<br>34.81<br>35.32<br>37.46<br>38.49<br>38.83          |
| 3.844       6       200         3.808       9       111         3.424       50       121         3.382       16       040         3.343       70       220         3.234       30       031         3.097       100       140         2.981       4       131         2.892       5       211         2.732       35       041         2.712       40       221         2.575       18       141         2.539       6       240         2.399       4       320         2.317       13       002         2.317       13       002         2.317       13       002         2.285       3       012         2.244       11       301         2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027                                                                                                                                                                                                            | 23.12<br>23.34<br>26.00<br>26.33<br>26.64<br>27.56<br>28.80<br>29.95<br>30.90<br>32.75<br>33.00<br>34.81<br>35.32<br>37.46<br>38.49<br>38.83                   |
| 3.808       9       111         3.424       50       121         3.382       16       040         3.343       70       220         3.234       30       031         3.097       100       140         2.981       4       131         2.892       5       211         2.732       35       041         2.712       40       221         2.575       18       141         2.539       6       240         2.399       4       320         2.317       13       002         2.317       13       002         2.317       13       002         2.285       3       012         2.244       11       301         2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996 <td< th=""><td>23.34<br/>26.00<br/>26.33<br/>26.64<br/>27.56<br/>28.80<br/>29.95<br/>30.90<br/>32.75<br/>33.00<br/>34.81<br/>35.32<br/>37.46<br/>38.49<br/>38.83</td></td<>                               | 23.34<br>26.00<br>26.33<br>26.64<br>27.56<br>28.80<br>29.95<br>30.90<br>32.75<br>33.00<br>34.81<br>35.32<br>37.46<br>38.49<br>38.83                            |
| 3.424       50       121         3.382       16       040         3.343       70       220         3.234       30       031         3.097       100       140         2.981       4       131         2.892       5       211         2.732       35       041         2.712       40       221         2.575       18       141         2.539       6       240         2.399       4       320         2.317       13       002         2.317       13       002         2.285       3       012         2.244       11       301         2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.9907       8       132         1.9845 <t< th=""><td>26.00<br/>26.33<br/>26.64<br/>27.56<br/>28.80<br/>29.95<br/>30.90<br/>32.75<br/>33.00<br/>34.81<br/>35.32<br/>37.46<br/>38.49<br/>38.83</td></t<>                                          | 26.00<br>26.33<br>26.64<br>27.56<br>28.80<br>29.95<br>30.90<br>32.75<br>33.00<br>34.81<br>35.32<br>37.46<br>38.49<br>38.83                                     |
| 3.382       16       040         3.343       70       220         3.234       30       031         3.097       100       140         2.981       4       131         2.892       5       211         2.732       35       041         2.712       40       221         2.575       18       141         2.539       6       240         2.399       4       320         2.337       8       051         2.317       13       002         2.285       3       012         2.244       11       301         2.236       13       151         2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.99845       6       202         1.9233 <t< th=""><td>26.33<br/>26.64<br/>27.56<br/>28.80<br/>29.95<br/>30.90<br/>32.75<br/>33.00<br/>34.81<br/>35.32<br/>37.46<br/>38.49<br/>38.83</td></t<>                                                    | 26.33<br>26.64<br>27.56<br>28.80<br>29.95<br>30.90<br>32.75<br>33.00<br>34.81<br>35.32<br>37.46<br>38.49<br>38.83                                              |
| 3.382       16       040         3.343       70       220         3.234       30       031         3.097       100       140         2.981       4       131         2.892       5       211         2.732       35       041         2.712       40       221         2.575       18       141         2.539       6       240         2.399       4       320         2.337       8       051         2.317       13       002         2.285       3       012         2.244       11       301         2.236       13       151         2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.99845       6       202         1.9233 <t< th=""><td>26.33<br/>26.64<br/>27.56<br/>28.80<br/>29.95<br/>30.90<br/>32.75<br/>33.00<br/>34.81<br/>35.32<br/>37.46<br/>38.49<br/>38.83</td></t<>                                                    | 26.33<br>26.64<br>27.56<br>28.80<br>29.95<br>30.90<br>32.75<br>33.00<br>34.81<br>35.32<br>37.46<br>38.49<br>38.83                                              |
| 3.343       70       220         3.234       30       031         3.097       100       140         2.981       4       131         2.892       5       211         2.732       35       041         2.712       40       221         2.575       18       141         2.539       6       240         2.399       4       320         2.317       13       002         2.317       13       002         2.285       3       012         2.244       11       301         2.236       13       151         2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.9907       8       132         1.9845       6       202         1.9233 <t< th=""><td>26.64<br/>27.56<br/>28.80<br/>29.95<br/>30.90<br/>32.75<br/>33.00<br/>34.81<br/>35.32<br/>37.46<br/>38.49<br/>38.83</td></t<>                                                              | 26.64<br>27.56<br>28.80<br>29.95<br>30.90<br>32.75<br>33.00<br>34.81<br>35.32<br>37.46<br>38.49<br>38.83                                                       |
| 3.234       30       031         3.097       100       140         2.981       4       131         2.892       5       211         2.732       35       041         2.712       40       221         2.575       18       141         2.539       6       240         2.399       4       320         2.317       13       002         2.317       13       002         2.285       3       012         2.244       11       301         2.236       13       151         2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047 <t< th=""><td>27.56<br/>28.80<br/>29.95<br/>30.90<br/>32.75<br/>33.00<br/>34.81<br/>35.32<br/>37.46<br/>38.49<br/>38.83</td></t<>                                                                        | 27.56<br>28.80<br>29.95<br>30.90<br>32.75<br>33.00<br>34.81<br>35.32<br>37.46<br>38.49<br>38.83                                                                |
| 3.097       100       140         2.981       4       131         2.892       5       211         2.732       35       041         2.712       40       221         2.575       18       141         2.539       6       240         2.399       4       320         2.317       13       002         2.317       13       002         2.285       3       012         2.244       11       301         2.236       13       151         2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047       11       222                                                                                                                                                                                                                        | 28.80<br>29.95<br>30.90<br>32.75<br>33.00<br>34.81<br>35.32<br>37.46<br>38.49<br>38.83                                                                         |
| 2.981       4       131         2.892       5       211         2.732       35       041         2.712       40       221         2.575       18       141         2.539       6       240         2.399       4       320         2.317       13       002         2.317       13       002         2.285       3       012         2.244       11       301         2.236       13       151         2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047       11       222                                                                                                                                                                                                                                                          | 29.95<br>30.90<br>32.75<br>33.00<br>34.81<br>35.32<br>37.46<br>38.49<br>38.83                                                                                  |
| 2.892       5       211         2.732       35       041         2.712       40       221         2.575       18       141         2.539       6       240         2.399       4       320         2.317       13       002         2.317       13       002         2.285       3       012         2.244       11       301         2.236       13       151         2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047       11       222                                                                                                                                                                                                                                                                                          | 30.90<br>32.75<br>33.00<br>34.81<br>35.32<br>37.46<br>38.49<br>38.83                                                                                           |
| 2.732       35       041         2.712       40       221         2.575       18       141         2.539       6       240         2.399       4       320         2.317       13       002         2.317       13       002         2.285       3       012         2.285       3       012         2.244       11       301         2.236       13       151         2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047       11       222                                                                                                                                                                                                                                                                                          | 32.75<br>33.00<br>34.81<br>35.32<br>37.46<br>38.49<br>38.83                                                                                                    |
| 2.712       40       221         2.575       18       141         2.539       6       240         2.399       4       320         2.317       13       002         2.21       13       002         2.285       3       012         2.244       11       301         2.236       13       151         2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047       11       222                                                                                                                                                                                                                                                                                                                                                            | 33.00<br>34.81<br>35.32<br>37.46<br>38.49<br>38.83                                                                                                             |
| 2.575       18       141         2.539       6       240         2.399       4       320         2.337       8       051         2.317       13       002         2.285       3       012         2.244       11       301         2.236       13       151         2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047       11       222                                                                                                                                                                                                                                                                                                                                                                                             | 34.81<br>35.32<br>37.46<br>38.49<br>38.83                                                                                                                      |
| 2.539       6       240         2.399       4       320         2.317       13       002         2.285       3       012         2.244       11       301         2.236       13       151         2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047       11       222                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35.32<br>37.46<br>38.49<br>38.83                                                                                                                               |
| 2.399       4       320         2.337       8       051         2.317       13       002         2.285       3       012         2.244       11       301         2.236       13       151         2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047       11       222                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37.46<br>38.49<br>38.83                                                                                                                                        |
| 2.399       4       320         2.337       8       051         2.317       13       002         2.285       3       012         2.244       11       301         2.236       13       151         2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047       11       222                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37.46<br>38.49<br>38.83                                                                                                                                        |
| 2.337       8       051         2.317       13       002         2.285       3       012         2.244       11       301         2.236       13       151         2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047       11       222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38.49<br>38.83                                                                                                                                                 |
| 2.317       13       002         2.285       3       012         2.244       11       301         2.236       13       151         2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047       11       222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38.83                                                                                                                                                          |
| 2.285       3       012         2.244       11       301         2.236       13       151         2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047       11       222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |
| 2.244       11       301         2.236       13       151         2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047       11       222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39.40                                                                                                                                                          |
| 2.236       13       151         2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047       11       222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                |
| 2.236       13       151         2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047       11       222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                |
| 2.227       35       241         2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047       11       222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40.16                                                                                                                                                          |
| 2.192       14       022         2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047       11       222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.30                                                                                                                                                          |
| 2.164       25       160         2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047       11       222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40.47                                                                                                                                                          |
| 2.130       35       321         2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047       11       222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41.15                                                                                                                                                          |
| 2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047       11       222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41.70                                                                                                                                                          |
| 2.108       10       122         2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047       11       222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                |
| 2.059       4       032         2.043       9       340         2.027       20       061         1.996       5       251         1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047       11       222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42.41                                                                                                                                                          |
| 2.043 9 340<br>2.027 20 061<br>1.996 5 251<br>1.9907 8 132<br>1.9845 6 202<br>1.9233 9 400<br>1.9047 11 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42.86                                                                                                                                                          |
| 2.027       20       061         1.996       5       251         1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047       11       222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 43.93                                                                                                                                                          |
| 1.996 5 251<br>1.9907 8 132<br>1.9845 6 202<br>1.9233 9 400<br>1.9047 11 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44.31                                                                                                                                                          |
| 1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047       11       222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44.66                                                                                                                                                          |
| 1.9907       8       132         1.9845       6       202         1.9233       9       400         1.9047       11       222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45.40                                                                                                                                                          |
| 1.9845 6 202<br>1.9233 9 400<br>1.9047 11 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45.53                                                                                                                                                          |
| 1.9233 9 400<br>1.9047 11 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                |
| 1.9047 11 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45.68<br>47.22                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                |
| 1.8693 3 341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 47.71                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48.67                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49.08                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49.21                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50.18                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50.88                                                                                                                                                          |
| 117.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                |
| 1.7367 3 171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52.66                                                                                                                                                          |
| 1.7114 5 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 53.50                                                                                                                                                          |
| 1.7049 5 312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53.72                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53.72                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53.72<br>54.17<br>54.88                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53.72<br>54.17<br>54.88<br>55.07                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53.72<br>54.17<br>54.88<br>55.07<br>55.60                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53.72<br>54.17<br>54.88<br>55.07<br>55.60<br>56.88                                                                                                             |
| 1.5881 6 081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 53.72<br>54.17<br>54.88<br>55.07<br>55.60<br>56.88<br>57.56                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53.72<br>54.17<br>54.88<br>55.07<br>55.60<br>56.88                                                                                                             |

| d (Å)   | I  | hkl        | 20 (°) |
|---------|----|------------|--------|
| 1.5812  | 10 | 162        | 58.31  |
| 1.5723  | 8  | 441        | 58.67  |
| 1.5552  | 6  | 181        | 59.38  |
| 1.5327  | 4  | 342        | 60.34  |
| 1.5144  | 2  | 103        | 61.15  |
| 1.51.1  | -  | 103        | 01.15  |
| 1.5057  | 2  | 023,113    | 61.54  |
| 1.4840  | 5  | 451,072    | 62.54  |
| 1.4797  | 7  | 402        | 62.74  |
| 1.4676  | 8  | 281        | 63.32  |
| 1.4597  | 7  | 501        | 63.70  |
| 11.132. | ·  | 301        | 031.70 |
| 1.4508  | 4  | 511,352    | 64.14  |
| 1.4452  | 4  | 422        | 64.42  |
| 1.4352  | 2  | 133        | 64.92  |
| 1.4255  | 3  | 213        | 65.42  |
| 1.4115  | 4  | 380        | 66.15  |
|         |    |            |        |
| 1.4004  | 7  | 540        | 66.74  |
| 1.3953  | 8  | 461        | 67.02  |
| 1.3666  | 5  | 362,233    | 68.62  |
| 1.3555  | 3  | 442        | 69.26  |
| 1.3506  | 3  | 381        | 69.55  |
| 1.3300  | 3  | 301        | 03.33  |
| 1.3443  | 4  | 182        | 69.92  |
| 1.3410  | 5  | 053,541    | 70.12  |
| 1.3319  | 2  | 1.10.0     | 70.67  |
| 1.3228  | 6  | 303        | 71.23  |
| 1.3196  | 5  | 243        | 71.43  |
|         |    |            |        |
| 1.2982  | 5  | 0.10.1,452 | 72.79  |
| 1.2801  | 8  | 1.10.1     | 73.99  |
| 1.2758  | 9  | 2.10.0,512 | 74.28  |
| 1.2696  | 5  | 480,333    | 74.71  |
| 1.2594  | 3  | 620,522    | 75.42  |
|         | _  | , , ,      |        |
| 1.2328  | 3  | 532        | 77.34  |
| 1.2321  | 2  | 343        | 77.39  |
| 1.2244  | 3  | 481        | 77.97  |
| 1.2054  | 4  | 382        | 79.44  |
|         |    |            |        |

The sample was prepared by heating a 2:1 molar mixture of BaCO<sub>3</sub> and silicic acid at 1000 °C overnight, grinding and reheating at 1400 °C for 2 hours.

Color

Colorless

#### Structure

Orthorhombic, Pnam(62), Z=4, isostructural with  $\alpha$ -K<sub>2</sub>SO<sub>4</sub> [O'Daniel and Tscheischwili, 1942].

NBS lattice constants of this sample:

a = 7.508(1)Ab = 10.214(1)

c = 5.8091(8)

Density

(calculated) 5.468 g/cm<sup>3</sup>

Reference intensity

I/I corundum = 1.8

# Additional patterns

- 1. PDF card 6-366 [Levin and Ugrinic, 1953].
- 2. Austin [1947].
- 3. Budnikov and Kulikova [1966].
- 4. Glushkova and Keler [1957].
- 5. Grebenshchikov et al. [1956].
- 6. O'Daniel and Tscheischwili [1942].
- 7. Shitova and Grebenshchikov [1972].
- 8. Toropov and Grebenshchikov [1956].

# References

Austin, A.E. (1947). J. Amer. Ceram. Soc. 30, 218.
Budnikov, P.P. and Kulikova, N. V. (1966). Inorg.
Mater. (USSR) 2, 1717.

Glushkova, V.B. and Keler, E.K. (1957). J. Inorg. Chem. (USSR) 2 [6], 63.

Grebenshchikov, R.G., Toropov, N. A. and Shitova, V. I. (1965). Inorg. Mater. (USSR) 1, 105.

Levin, E. M. and Ugrinic, G. (1953). J. Res. Nat. Bur. Stand. <u>51</u>, 37.

O'Daniel, H. and Tscheischwili, L. (1942). Z. Kristallogr. 104, 348.

Shitova, V. I. and Grebenshchikov, R. G. (1972). J. Appl. Chem. USSR 45, 187.

Toropov, N. A. and Grebenshchikov, R. G. (1956). J. Inorg. Chem. (USSR)  $\underline{1}$  [12], 41.

|                                        |                            |                                 | 0                                         |
|----------------------------------------|----------------------------|---------------------------------|-------------------------------------------|
| d (A)                                  | I                          | hkl                             | 20 (°)                                    |
| 5.11<br>4.22<br>4.20<br>3.524<br>3.415 | 10<br>16<br>25<br>14<br>80 | 020<br>120<br>111<br>210<br>121 | 17.34<br>21.02<br>21.16<br>25.25<br>26.07 |

| đ (Å)            | I       | hkl        | 20 (°)         |
|------------------|---------|------------|----------------|
| 3.153            | 25      | 201        | 28.28          |
| 3.098            | 20      | 130        | 28.79          |
| 3.022            | 70      | 220        | 29.53          |
| 3.017            | 100     | 211        | 29.59          |
| 2.938            | 95      | 031        | 30.40          |
|                  |         |            |                |
| 2.905<br>2.683   | 70      | 002<br>221 | 30.75          |
| 2.554            | 13<br>9 | 040        | 33.37<br>35.11 |
| 2.525            | 20      | 022        | 35.11          |
| 2.431            | 40      | 310        | 36.95          |
| 2.431            | 40      | 310        | 30.33          |
| 2.393            | 20      | 122        | 37.55          |
| 2.297            | 5       | 202        | 39.18          |
| 2.242            | 20      | 212        | 40.19          |
| 2.233            | 19      | 141        | 40.35          |
| 2.120            | 20      | 132        | 42.62          |
| 2.095            | 30      | 222        | 43.14          |
| 2.017            | 12      | 330        | 44.91          |
| 1.984            | 6       | 241        | 45.69          |
| 1.971            | 16      | 150        | 46.00          |
| 1.928            | 4       | 051        | 47.11          |
| 1.918            | 2       | 042        | 47 37          |
| 1.904            | 17      | 232        | 47.37<br>47.72 |
| 1.877            | 3.      | 400        | 48.47          |
| 1.864            | 25      | 312        | 48.82          |
| 1.844            | 4       | 113        | 49.38          |
| 2,01,            | •       | -10        |                |
| 1.795            | 3       | 250        | 50.84          |
| 1.788            | 6       | 340        | 51.04          |
| 1.786            | 5       | 401        | 51.11          |
| 1.7594           | 25      | 411        | 51.93          |
| 1.7203           | 5       | 203        | 53.20          |
| 1.7084           | 35      | 341        | 53.60          |
| 1.6970           | 14      | 213        | 53.99          |
| 1.6832           | 14      | 033        | 54.47          |
| 1.6566           | 6       | 332        | 55.42          |
| 1.6438           | 6       | 430        | 55.89          |
| 1.6309           | 16      | 223        | 56.37          |
| 1.5967           | 5       | 161        | 57.69          |
| 1.5767           | 2       | 402        | 58.49          |
| 1.5507           | 4       | 260        | 59.57          |
| 1.5115           | 6       | 143        | 61.28          |
| 1.5066           | 6       | 422        | 61.50          |
| 1.4976           | 6       | 261        | 61.91          |
| 1.4684           | 4       | 062        | 63.28          |
| 1.4639           | 2       | 441        | 63.50          |
| 1.4524           | 9       | 004        | 64.06          |
| 1 4206           |         | 523        | 64.70          |
| 1.4396           | 8       | 511        | 64.70          |
| 1.4301           | 7       | 432        | 65.18<br>65.96 |
| 1.4151<br>1.3822 | 6<br>2  | 071<br>450 | 67.74          |
| 1.3680           | 11      | 361        | 68.54          |
| 1.5000           | 11      | 301        | 00.54          |
| 1.3479           | 3       | 403        | 69.71          |
| 1.3367           | 5       | 531        | 70.38          |
|                  |         |            |                |

The sample was prepared by repeated grinding and heating at about 1400 °C of a 2:3 molar mixture of BaCO3 and silica gel.

Color

Colorless

# Structure

Monoclinic,  $P2_1/a$  (14), Z = 4 [Kalscher and Liebau, 1965; Oehlschlegel, 1971]. Ba<sub>2</sub>Si<sub>3</sub>O<sub>8</sub> had earlier been reported with a similar cell with a/2 [Roth and Levin, 1959].

NBS lattice constants of this sample:

a = 13.960(3)Ab = 4.6895(9)c = 12.486(2)

 $\beta = 93.54(1)^{\circ}$ 

Density

(calculated) 3.964 g/cm<sup>3</sup>

Reference intensity

I/I corundum = 1.8

# Polymorphism

Oehlschlegel [1971] reports a reversible transformation of Ba<sub>2</sub>Si<sub>3</sub>O<sub>8</sub> at 1009 °C.

# Additional patterns

- 1. PDF card 12-694 [Roth and Levin, 1959].
- 2. Austin [1947].

# References

Austin, A.E. (1947). J. Am. Ceram. Soc. 30, 218. Kalscher, H. and Liebau, F. (1965). Naturwiss. 52, 512.

Oehlschlegel, G. (1971). Glastech. Ber. 44, 194. Roth, R.S. and Levin, E.M. (1959). J. Res. Nat. Bur. Stand. 62, 193.

| •            | = 1.540598<br>standard |      | _ | 0    |
|--------------|------------------------|------|---|------|
| <br>Internat | Beamagra               | 1197 | u | <br> |

| Internal                                  | standard A        | Ag, a = 4.08651                         | A                                         |
|-------------------------------------------|-------------------|-----------------------------------------|-------------------------------------------|
| d (A)                                     | I                 | hkl                                     | 20 (°)                                    |
| 12.51                                     | 10                | 001                                     | 7.06                                      |
| 6.965                                     | 20                | 200                                     | 12.70                                     |
| 6.245                                     | 5                 | 201                                     | 14.17                                     |
| 5.929                                     | 16                | 201                                     | 14.93                                     |
| 4.512                                     | 2                 | 202                                     | 19.66                                     |
| 4.390<br>4.162<br>3.890<br>3.746<br>3.669 | 2<br>2<br>4<br>55 | 011<br>111,003<br>210<br>211,012<br>203 | 20.21<br>21.33<br>22.84<br>23.73<br>24.24 |
| 3.478                                     | 5                 | 400,203                                 | 25.59                                     |
| 3.415                                     | 5                 | 401                                     | 26.07                                     |
| 3.301                                     | 70                | 401,310                                 | 26.99                                     |
| 3.250                                     | 30                | 212                                     | 27.42                                     |
| 3.121                                     | 40                | 402                                     | 28.58                                     |
| 3.114                                     | 40                | 004                                     | 28.64                                     |
| 2.864                                     | 1                 | 312                                     | 31.21                                     |
| 2.792                                     | 13                | 213                                     | 32.03                                     |
| 2.782                                     | 60                | 204                                     | 32.15                                     |
| 2.756                                     | 30                | 411,403                                 | 32.46                                     |
| 2.701                                     | 2                 | 411                                     | 33.14                                     |
| 2.598                                     | 3                 | 412                                     | 34.49                                     |
| 2.493                                     | 4                 | 005                                     | 36.00                                     |
| 2.475                                     | 1                 | 214                                     | 36.26                                     |
| 2.398                                     | 5                 | 404,510                                 | 37.48                                     |
| 2.393                                     | 5                 | 205,214                                 | 37.55                                     |
| 2.376                                     | 2                 | 511,413                                 | 37.84                                     |
| 2.346                                     | 10                | 020                                     | 38.34                                     |
| 2.310                                     | 3                 | 601                                     | 38.96                                     |
| 2.301                                     | 3                 | 205                                     | 39.11                                     |
| 2.268                                     | 19                | 121,413                                 | 39.71                                     |
| 2.221                                     | 13                | 220,602                                 | 40.58                                     |
| 2.201                                     | 9                 | 015                                     | 40.98                                     |
| 2.180                                     | 2                 | 221                                     | 41.38                                     |
| 2.133                                     | 30                | 602,215 +                               | 42.34                                     |
| 2.080                                     | 8                 | 610,222                                 | 43.48                                     |
| 2.074                                     | 6                 | 321                                     | 43.60                                     |
| 2.042                                     | 2                 | 023                                     | 44.33                                     |
| 2.032                                     | 5                 | 315,414                                 | 44.55                                     |
| 1.975                                     | 9                 | 223,603                                 | 45.90                                     |
| 1.971                                     | 11                | 405                                     | 46.02                                     |
| 1.911                                     | 6                 | 421                                     | 47.53                                     |
| 1.908                                     | 4                 | 415                                     | 47.62                                     |
| 1.900                                     | 2                 | 016                                     | 47.83                                     |
| 1.875                                     | 4                 | 422,024                                 | 48.52                                     |
| 1.834                                     | 4                 | 406                                     | 49.66                                     |
| 1.820                                     | 9                 | 613                                     | 50.07                                     |
| 1.807                                     | 10                | 216                                     | 50.46                                     |
| 1.793                                     | 6                 | 316,224                                 | 50.90                                     |
| 1.785                                     | 7                 | 712,423                                 | 51.12                                     |
|                                           |                   |                                         |                                           |

Barium silicate,  $\mathrm{Ba_2Si_30_8}$  - continued

|        |    | 2 3 6                            |        |
|--------|----|----------------------------------|--------|
| d (Å)  | I  | hkl                              | 20 (°) |
| 1.780  | 19 | 007                              | 51.28  |
| 1.776  | 13 | 614,515                          | 51.42  |
| 1.753  | 6  | <u>6</u> 05                      | 52.12  |
| 1.751  | 6  | 207                              | 52.20  |
| 1.738  | 5  | 423,406                          | 52.63  |
| 1.705  | 2  | 802,125                          | 53.73  |
| 1.649  | 8  | 620,605                          | 55.69  |
| 1.645  | 5  | <u>-</u> 621                     | 55.85  |
| 1.631  | 4  | 811                              | 56.36  |
| 1.628  | 6  | 416                              | 56.46  |
| 1.612  | 3  | <del>6</del> 22, <del>5</del> 16 | 57.09  |
| 1.608  | 3  | 811                              | 57.26  |
| 1.598  | 3  | 217,606                          | 57.65  |
| 1.578  | 1  | 622                              | 58.45  |
| 1.556  | 2  | 623,615                          | 59.34  |
| 1.550  | 4  | 031,813                          | 59.59  |
| 1.515  | 2  | 032,721                          | 61.10  |
| 1.508  | 2  | 425                              | 61.42  |
| 1.500  | 5  | 208                              | 61.79  |
| 1.476  | 2  | 232,331                          | 62.93  |
| 1.4697 | 3  | 910,911 +                        | 63.22  |
| 1.4636 | i  | 218,033                          | 63.51  |
| 1.4448 | ī  | 426                              | 64.44  |
| 1.4208 | 3  | 431                              | 65.66  |
| 1.4180 | 3  | $027,\overline{1}27$             | 65.81  |
| 1.4038 | 2  | 127                              | 66.56  |
| 1.3914 | 10 | 617                              | 67.23  |
| 1.3485 | 3  | 625, 334                         | 69.67  |
|        |    |                                  |        |

E.O.

| c | am  | m1 | 0 |
|---|-----|----|---|
| 0 | auu | РΤ | _ |
|   |     |    |   |

The sample was prepared by repeated grindings and heatings at about 1400 °C of a 3:1 molar mixture of  $BaCO_3$  and silica gel.

# Color

Colorless

# Structure

Tetragonal, I4/mcm (140), Z = 4, isostructural with  $Cs_3CoCl_5$  and other similar compounds [Mansmann, 1965].

NBS lattice constants of this sample:

a = 7.3068(2)A c = 11.2275(6)

# Density

(calculated) 5.763 g/cm<sup>3</sup>

# Reference Intensity

I/I corundum = 2.4

# Polymorphism

Since Glushkova and Keler [1957] and Budnikov and Kulikova [1966] report patterns which differ considerably from the present study, the possibility of polymorphism cannot be ruled out.

# Additional patterns

- 1. PDF card 19-175 [Budnikov and Kulikova, 1966].
- PDF card 23-1027 [Brisi and Appendino, 1966].
- 3. Glushkova and Keler [1957].
- 4. Eysel [1970].

# References

Brisi, C. and Appendino, P. (1966). Ric. Sci. <u>36</u>, 369.

Budnikov, P.P. and Kulikova, N.V. (1966). Inorg. Mater. (USSR), 2, 1717.

Eysel, W. (1970). Neues Jahrb. Mineral. Monatsh. 1970, 534.

Glushkova, V.B. and Keler, E.K. (1957). J. Inorg. Chem. (USSR) 2 [6], 63.

Mansmann, M. (1965). Z. Anorg. Allg. Chem. 339, 52.

| $CuK\alpha_1 \lambda =$ | = 1.540598 Å; | temp. | 25±1 ° | С      |
|-------------------------|---------------|-------|--------|--------|
| Internal                | standard W,   | a = 3 | .16524 | o<br>A |

| <br>THECH | ar standard W | , a - 5.10524 | - FX   |
|-----------|---------------|---------------|--------|
| d(Å)      | I             | hkl           | 20 (°) |
| 5.619     | 7             | 002           | 15.76  |
| 5.169     | 4             | 110           | 17.14  |
| 3.802     | 20            | 112           | 23.38  |
| 3.138     | 55            | 211           | 28.42  |
| 3.062     | 100           | 202           | 29.14  |
| 3.002     | 100           | 202           | 29.14  |
| 2.808     | 25            | 004           | 31.84  |
| 2.584     | 30            | 220           | 34.69  |
| 2.462     | 60            | 213           | 36.47  |
| 2.311     | 30            | 310           | 38.94  |
| 1.994     | 4             | 321           | 45.44  |
| 1.901     | 20            | 224           | 47.82  |
| 1.872     | 2             | 006           | 48.60  |
| 1.851     | 12            | 215           | 49.19  |
| 1.827     | 1             | 400           | 49.87  |
| 1.784     | 16            | 314           | 51.17  |
| 1.704     | 10            | 314           | 31.17  |
| 1.760     | 7             | 116           | 51.92  |
| 1.751     | 20            | 411           | 52.20  |
| 1.738     | 5             | 402           | 52.61  |
| 1.7224    | 2             | 330           | 53.13  |
| 1.6657    | 14            | 206           | 55.09  |
| 1 6465    | 16            | 222           | EE 70  |
| 1.6465    | 16            | 332           | 55.79  |
| 1.6338    | 6             | 420           | 56.26  |
| 1.6018    | 16            | 413           | 57.49  |
| 1.5687    | 4             | 422           | 58.82  |
| 1.5311    | 3             | 404           | 60.41  |
| 1.5041    | 1             | 325           | 61.61  |
| 1.4676    | 1             | 334           | 63.32  |
| 1.4492    | 1             | 431           | 64.22  |
| 1.4402    | 4             | 217           | 64.67  |
| 1.4120    | 6             | 424           | 66.12  |
|           |               |               |        |
| 1.4034    | 3             | 008           | 66.58  |
| 1.3912    | 11            | 415           | 67.24  |
| 1.3881    | 10            | 512           | 67.41  |
| 1.3614    | 1             | 433           | 68.92  |
| 1.3473    | 1             | 521           | 69.74  |
| 1.3074    | 3             | 406           | 72.20  |
| 1.2917    | 2             | 440           | 73.22  |
| 1.2757    | 2             | 523           | 74.29  |
| 1.2677    | 6             | 336           | 74.84  |
| 1.2584    | 2             | 442           | 75.49  |
|           | _             |               |        |
| 1.2534    | 5             | 530           | 75.84  |
| 1.2335    | 4             | 228           | 77.29  |
| 1.2307    | 3             | 426           | 77.50  |
| 1.2231    | 3             | 532           | 78.07  |
| 1.2179    | 4             | 600           | 78.47  |
| 1.1994    | 3             | 318           | 79.92  |
| 1.1944    | 3             | 611           | 80.32  |
| 1.1892    | 5             | 417           | 80.74  |
| 1.1737    | 1             | 444           | 82.04  |
| 1.1655    | 3             | 219           | 82.74  |
|           |               |               |        |
|           |               |               |        |

 ${\tt Barium\ silicate,\ Ba}_3{\tt Si0}_5\ -\ {\tt continued}$ 

| d (Å)  | I      | hkl      | 20 (°) |     |
|--------|--------|----------|--------|-----|
| 1.1615 | 2      | 525      | 83.09  |     |
| 1.1442 | 8      | 534      | 84.63  | ĺ   |
| 1.1376 | 2      | 516      | 85.24  |     |
| 1.1350 | 2      | 541      | 85.48  | - 1 |
| 1.1317 | 6      | 622      | 85.79  |     |
| 1.1172 | 5      | 604      | 87.18  |     |
| 1.1129 | 2      | 408      | 87.60  |     |
| 1.0916 | 1      | 543      | 89.77  |     |
| 1.0802 | 1      | 437      | 90.97  |     |
| 1.0732 | 3      | 2.0.10   | 91.74  |     |
| 1.0646 | 3      | 428      | 92.70  |     |
| 1.0591 | 2      | 615      | 93.32  |     |
| 1.0412 | 2      | 536      | 95.43  |     |
| 1.0335 | 1      | 710      | 96.38  | - 1 |
| 1.0201 | 4      | 419      | 98.07  |     |
| 1.0174 | 3      | 545      | 98.42  |     |
| 1.0163 | 5      | 712      | 98.57  | - 1 |
| 0.9997 | 2      | 721      | 100.80 |     |
| .9972  | 4      | 642      | 101.15 |     |
| .9830  | 5      | 626      | 103.19 | Ì   |
| .9742  | 1      | 2•1•11   | 104.51 |     |
| .9695  | 3      | 554,723. | 105.22 | - 1 |
| .9615  | 2      | 617      | 106.48 | - 1 |
| .9565  | 1      | 4.0.10   | 107.28 |     |
| .9530  | 2      | 644      | 107.85 |     |
| .9504  | 1      | 448      | 108.29 | ŀ   |
| .9457  | 2      | 732      | 109.09 |     |
| .9405  | 2      | 3•3•10   | 109.97 | l   |
| .9347  | 6      | 538      | 111.00 |     |
| .9298  | 1      | 547      | 111.88 |     |
| .9252  | <1     | 4•2•10   | 112.73 |     |
| .9198  | 3      | 608      | 113.75 |     |
| .9162  | 3      | 725      | 114.43 |     |
| .9044  |        | 716      | 116.79 |     |
| .9033  | 4<br>5 | 741      | 117.02 |     |
|        |        |          |        |     |
| .9013  | 5      | 802,637  | 117.45 |     |
| .8909  | 2      | 646      | 119.67 |     |
| .8860  | 3      | 820      | 120.78 |     |
| .8838  | 4      | 5•1•10   | 121.29 |     |
| .8808  | 4      | 743      | 121.99 |     |
|        |        |          |        |     |

| Sample |
|--------|
|--------|

The sample was prepared by heating a 3:5 molar mixture of BaCO<sub>3</sub> and silica gel at about 1400°C with repeated grindings and reheatings. Because of problems related to orientation, the intensities are subject to some uncertainty.

# Color

Colorless

Optical data

Biaxial(+),  $N_{\alpha}$  = 1.612,  $N_{\beta}$  = 1.616,  $N_{\gamma}$  = 1.636. 2V is about 35° [Oehlschlegel, 1971].

# Structure

Monoclinic,  $P2_1/c$  (14), Z = 4 [Roth, 1966; Oehlschlegel, 1971].

NBS lattice constants of this sample:

a = 20.208(3) A b = 4.7106(5) c = 13.854(2) $\beta = 98.62(1)^{\circ}$ 

# Density

(calculated) 3.874 g/cm<sup>3</sup>

# Additional patterns

- 1. PDF card 12-547 [Roth and Levin, 1959].
- 2. Oehlschlegel [1971].

# References

Oehlschlegel, G. (1971). Glastechn. Ber. 44, 194. Roth, R. (1966). Private comm. to Crystal Data (3rd Ed., published jointly by the U.S. Dept. of Commerce, National Bureau of Standards, Washington, D.C. 20234, and the Joint Committee on Powder Diffraction Standards, Swarthmore, Pa., 19081).

Roth, R. and Levin, E. M. (1959). J. Res. Nat. Bur. Stand. 62, 193.

| CuKa  | $\lambda = 1.5405$ | 98 A; temp. 2 | 5±1 °C |
|-------|--------------------|---------------|--------|
| Inte  | rnal standar       | d Si, a = 5.4 | 3088 Å |
| d (Å) | I                  | hkl           | 20 (°) |
| 9.96  | 4                  | 200           | 8.87   |
| 6.80  | 16                 | 102           | 13.00  |
| 6.202 | 6                  | 102           | 14.27  |
| 6.091 | 15                 | 202           | 14.53  |
| 5.181 | 3                  | 302           | 17.10  |
|       |                    |               |        |
|       |                    |               |        |

| d (Å) | I          |   | hkl                    | 20 (°) |  |
|-------|------------|---|------------------------|--------|--|
| 4.996 | 2          |   | 400                    | 17.74  |  |
| 4.263 | 5          |   | 210                    | 20.82  |  |
| 3.998 | 3          |   | 211,500                | 22.22  |  |
| 3.870 | 11         |   | 112                    | 22.96  |  |
| 3.844 | 55         |   | 310                    | 23.12  |  |
| 3.044 | 55         |   | 310                    | 23.12  |  |
| 3.773 | 100        |   | 402                    | 23.56  |  |
| 3.729 | 10         |   | 212                    | 23.84  |  |
| 3.622 | 2          |   | 311                    | 24.56  |  |
| 3.484 | 3          |   | 312                    | 25.55  |  |
| 3.424 | 7          |   | 410,004                | 26.00  |  |
| 3.424 | •          |   | 410,004                | 20.00  |  |
| 3.328 | 20         |   | 600                    | 26.77  |  |
| 3.249 | 85         |   | $\overline{3}04,411 +$ | 27.43  |  |
| 3.199 | 40         |   | 412                    | 27.87  |  |
| 3.100 | 20         |   | 204                    | 28.78  |  |
| 3.045 | 2          |   | 510,404                | 29.31  |  |
| 3.043 | 2          |   | 310,404                | 29.31  |  |
| 2.909 | 6          |   | 512                    | 30.71  |  |
| 2.875 | 13         |   | 304                    | 31.08  |  |
| 2.855 | 5          |   | 700                    | 31.31  |  |
| 2.788 | <b>7</b> 5 |   | 114 <b>,</b> 702       | 32.08  |  |
| 2.769 |            |   |                        |        |  |
| 2.769 | 25         |   | 014                    | 32.30  |  |
| 2.718 | 2          |   | 610                    | 32.93  |  |
| 2.698 | 3          |   | 114                    | 33.18  |  |
|       | 3          |   |                        |        |  |
| 2.644 | 2          |   | 404                    | 33.87  |  |
| 2.607 |            |   | 611                    | 34.37  |  |
| 2.589 | 2          |   | 214,604                | 34.62  |  |
| 2.558 | 1          |   | 414                    | 35.05  |  |
|       | 1          |   |                        |        |  |
| 2.497 | 1          |   | 800                    | 35.93  |  |
| 2.469 | 3          |   | 802                    | 36.36  |  |
| 2.443 | 2          |   | 710                    | 36.76  |  |
| 2.429 | 4          |   | 612,504                | 36.98  |  |
| 2.356 | 14         |   | 020                    | 38.17  |  |
| 2.283 | 6          |   | 006                    | 39.44  |  |
|       |            |   | 221                    |        |  |
| 2.273 | 25         |   |                        | 39.61  |  |
| 2.269 | 13         |   | 614                    | 39.69  |  |
| 2.241 | 5          |   | 802,215                | 40.21  |  |
| 2.230 | 18         |   | 106                    | 40.41  |  |
| 2.224 | 15         |   | 122,811                | 40.53  |  |
| 2.224 | 35         |   | 712,902                | 40.77  |  |
| 2.206 |            |   |                        |        |  |
| 2.175 | 30         |   | 810,406                | 40.87  |  |
| 2.175 | 4          |   | 321                    | 41.49  |  |
| 2.158 | 9          |   | 514,206                | 41.82  |  |
| 2.124 | 5          |   | 421,506                | 42.53  |  |
| 2.124 |            |   | 216,123 +              | 42.53  |  |
|       | 11         |   | 316                    |        |  |
| 2.043 | 3<br>7     |   |                        | 44.31  |  |
| 2.023 | ′          |   | 902,812                | 44.72  |  |
| 2.008 | 8          |   | 910                    | 45.11  |  |
| 2.004 | 16         |   | 904                    | 45.20  |  |
| 1.999 | 15         | , | 122,10.0.0 +           | 45.33  |  |
| 1.980 | 2          |   | 423                    |        |  |
|       | , 2        |   |                        | 45.79  |  |
| 1.923 | . 2        |   | 620                    | 47.22  |  |
|       |            |   |                        |        |  |

Barium silicate,  $\mathrm{Ba_3Si_50_{13}}$  - continued

| d(Å)             | I  | hkl                      | 20(°) |
|------------------|----|--------------------------|-------|
| 1.908            | 8  | 523,324                  | 47.61 |
| 1.888            | 5  | 804                      | 48.15 |
| 1.8755           | 4  | 224                      | 48.50 |
| 1.8504           | 4  | 10.0.4                   | 49.20 |
| 1.8445           |    | 10.0.2,914               |       |
| 1.8445           | 12 | 10.0.2,914               | 49.37 |
| 1.8410           | 15 | 10.1.2,10.1.0            | 49.47 |
| 1.8223           | 8  | Ī17,324 +                | 50.01 |
| 1.8162           | 35 | 11.0.0,416 +             | 50.19 |
| 1.7988           | 8  | 722                      | 50.71 |
| 1.7854           | 11 | 025,716                  | 51.12 |
| 1.7635           | 4  | 125 606                  | E1 00 |
|                  |    | 125,606                  | 51.80 |
| 1.7276           | 6  | <u>1</u> 08, <u>9</u> 06 | 52.96 |
| 1.7040           | 2  | 822,816                  | 53.75 |
| 1.6657           | 2  | 706,12.0.0 +             | 55.09 |
| 1.6386           | 3  | 026,914                  | 56.08 |
| 1.6296           | 12 | 10.1.3, 10.0.6           | 56.42 |
| 1.6253           | 8  | 921,218 +                | 56.58 |
|                  |    |                          |       |
| 1.6209           | 8  | _ 916                    | 56.75 |
| 1.6167           | 8  | 31 <u>8,</u> 815 +       | 56.91 |
| 1.6118           | 7  | 922,11.1.4               | 57.10 |
| 1.5984           | 3  | 418                      | 57.62 |
| 1.5782           | 2  | 923,526                  |       |
|                  |    |                          | 58.43 |
| 1.5547           | 6  | <u>21</u> 8              | 59.40 |
| 1.5509           | 9  | 230,13.0.2               | 59.56 |
| 1.5360           | 2  | 618,922                  | 60.20 |
| 1.5284           | 4  | 330                      | 60.53 |
| 1.5141           | 2  | $\bar{2}27,\bar{1}27 +$  | 61.16 |
|                  |    | 12.1.4,426               |       |
| 1.5103           | 1  |                          | 61.33 |
| 1.4948           | 2  | 508,718 +                | 62.04 |
| 1.4859           | 4  | 133,12.1.2               | 62.45 |
| 1.4770           | 2  | 432                      | 62.87 |
| 1.4732           | 2  | 923,824 +                | 63.05 |
| 1.4616           | 3  | 531,530 +                |       |
|                  |    |                          | 63.61 |
| 1.4526           | 2  | 12.0.6,10.2.2 +          | 64.05 |
| 1.4498           | 2  | 432                      | 64.19 |
| 1.4418           | 7  | 11.2.2, 14.0.2           | 64.59 |
| 1.4386           | 7  | 11.2.0,10.1.5            | 64.75 |
| 1.4272           | 2  | 034,14.0.0               | 65.33 |
|                  |    | •                        |       |
| 1.4155           | 4  | 12.0.4,916 +             | 65.94 |
| 1.4117           | 4  | 626                      | 66.14 |
| 1.4003           | 3  | 918,727                  | 66.75 |
| 1.3936           | 8  | 14.0.4,128               | 67.11 |
| 1.3852           | 2  | 2.0.10,028               | 67.57 |
| 1.3782           | 2  | 428,334                  | 67.96 |
|                  |    |                          |       |
| 1.3662<br>1.3583 | 4  | 135,12.2.2 +             | 68.64 |
|                  | 1  | 11.1.5,527               | 69.10 |

| Sampl | .e |
|-------|----|
|-------|----|

The sample was prepared by heating at 1200 °C, for several hours, a 2:1 molar mixture of CdO and silica gel. The sample was ground and reheated several times at 1000 °C for one hour each time. A small amount of  $Cd_3 \dot{s}iO_5$  was present and this may slightly distort the intensity measurements.

# Color

Colorless

#### Structure

Orthorhombic, Fddd(70), Z=8. Isostructural with  $Na_2SO_4$  (V). The structure was studied by Glasser and Glasser [1964].

NBS lattice constants of this sample:

a = 9.805(1)A b = 11.807(2) c = 6.013(1)

# Density

(calculated) 6.047 g/cm<sup>3</sup>

Reference intensity

I/I corundum = 2.1

# Additional pattern

1. PDF card 17-258 [Glasser and Glasser, 1964].

# References

Glasser, L.S.D. and Glasser, F.P. (1964). Inorg. Chem.  $\underline{3}$ , 1228.

| Internal standard W, a = 3.16524 A |   |
|------------------------------------|---|
|                                    |   |
| d(Å) I hkl 20(°                    | ) |
| 4.704 15 111 18.8                  |   |
| 3.770 45 220 23.5                  |   |
| 2.951 65 040 30.2                  | 6 |
| 2.790 100 311 32.0                 |   |
| 2.678 90 022 33.4                  | 3 |
| 2.563 25 202 34.9                  | 8 |
| 2.449 3 400 36.6                   | 6 |
| 2.352 6 222 38.2                   | 4 |
| 2.320 35 331 38.7                  | В |
| 2.145 8 151 42.1                   | 0 |
| 1.936 20 113,242 46.9              | 0 |
| 1.841 20 511 49.4                  |   |
| 1.824 35 260,351 49.9              |   |
| 1.758 3 133 51.9                   |   |
| 1.691 20 313 54.1                  | 9 |
| 1.685 13 531 54.3                  | 9 |
| 1.647 20 062 55.7                  |   |
| 1.603 2 171 57.4                   |   |
| 1.575 7 620 58.5                   |   |
| 1.567 14 333 58.8                  |   |
| 1.504 5 004 61.6                   | 3 |
| 1.476 4 080 62.9                   |   |
| 1.454 10 371 63.9                  | 1 |
| 1.436 6 602 64.9                   |   |
| 1.396 5 224 66.9                   |   |
| 1 202 5 512 67.1                   | , |
| 1.393 5 513 67.1                   |   |
| 1.3843 6 353 67.6                  |   |
| 1.3396 8 044 70.2                  |   |
| 1.3199 2 533 71.4                  |   |
| 1.2909 5 642 73.2                  | / |
| 1.2789 3 282 74.0                  |   |
| 1.2571 3 660 75.5                  |   |
| 1.2259 1 800 77.8                  |   |
| 1.2052 3 553 79.4                  |   |
| 1.2003 4 373 79.8                  |   |
| 1.1932 3 391 80.4                  | 2 |

The sample was made by heating a 3:1 molar mixture of CdO and silica gel at 1100 °C for 2 hours. The product was then ground and reheated at 700 °C for 20 hours. The sample showed some hydration products after standing in air and also contained a very slight percentage of  $\rm Cd_2SiO_4$ ; therefore, the intensities may be slightly in error.

#### Color

Greenish yellow.

#### Structure

Tetragonal, P4/nmm (129), Z = 2 [Eysel, 1970]. Eysel (1970) suggested also a possible monoclinic cell. The broadening of some lines in patterns from this sample indicates that it probably is of lower symmetry.

NBS lattice constants of this sample:

$$a = 6.842(2)A$$
  
 $c = 4.952(2)$ 

# Density

(calculated) 6.379 g/cm<sup>3</sup>

# Reference intensity I/I = 5.4

# Additional patterns

- PDF card 17-257 [Dent Glasser and Glasser, 1964].
- 2. Eysel [1970].

# References

Dent Glasser, L. S. and Glasser, F. P. (1964). Inorg. Chem. 3, 1228.

Eysel, W. (1970). Neues Jahrb. Mineral. Monatsh. 1970, 534.

| $CuK\alpha_1 \lambda = 1.540598 \text{ A}; \text{ temp. } 25\pm1 \text{ °C}$ |                                    |     |                |  |  |
|------------------------------------------------------------------------------|------------------------------------|-----|----------------|--|--|
| Inter                                                                        | Internal standard W, a = 3.16524 Å |     |                |  |  |
| d(A)                                                                         | I                                  | hkl | 20 (°)         |  |  |
| 4.96                                                                         | 5                                  | 001 | 17.88          |  |  |
| 4.85                                                                         | 8                                  | 110 | 18.29          |  |  |
| 4.015                                                                        | 3                                  | 101 | 22.12          |  |  |
| 3.462                                                                        | 5                                  | 111 | 25.71          |  |  |
| 3.420                                                                        | 2                                  | 200 | 26.03          |  |  |
| 2.814                                                                        | 100                                | 201 | 31.77          |  |  |
| 2.604                                                                        | <1                                 | 211 | 34.41          |  |  |
| 2.476                                                                        | 11                                 | 002 | 36.25          |  |  |
| , 2.419                                                                      | 20                                 | 220 | 37.14          |  |  |
| 2.327                                                                        | 4                                  | 102 | 38.66          |  |  |
| 2.206                                                                        | 3                                  | 112 | 40.88          |  |  |
| 2.173                                                                        | 5                                  | 221 | 41.53          |  |  |
| 2.165                                                                        | 5                                  | 310 | 41.68          |  |  |
| 2.071                                                                        | 2                                  | 301 | 43.68          |  |  |
| 2.006                                                                        | 3                                  | 202 | 45.16          |  |  |
| 1.982                                                                        | 3                                  | 311 | 45.70          |  |  |
| 1.924                                                                        | 1                                  | 212 | 47.20          |  |  |
| 1.730                                                                        | 20                                 | 222 | 52.87          |  |  |
| 1.710                                                                        | 10                                 | 400 | 53.55          |  |  |
| 1.677                                                                        | 1                                  | 302 | 54.68          |  |  |
| 1.629                                                                        | 1                                  | 312 | 56.44          |  |  |
| 1.616                                                                        | 1                                  | 401 | 56.94          |  |  |
| 1.613                                                                        | 2                                  | 330 | 57.04          |  |  |
| 1.562                                                                        | 1                                  | 113 | 59.08          |  |  |
| 1.530                                                                        | 1                                  | 420 | 60.44          |  |  |
| 1 5066                                                                       | 2                                  | 222 | 61.50          |  |  |
| 1.5066                                                                       | 1                                  | 322 | 61.50          |  |  |
| 1.4861                                                                       | 7                                  | 203 | 62.44          |  |  |
| 1.4616                                                                       | 14                                 | 421 | 63.61          |  |  |
| 1.4072                                                                       | 6                                  | 402 | 66.38          |  |  |
| 1.3782                                                                       | 1                                  | 412 | 67 <b>.</b> 96 |  |  |

| Sar |  |  |
|-----|--|--|
|     |  |  |

The sample was obtained from B. Dickens at NBS. Brown et al. [1962] prepared the sample. The intensity of the strongest line was very high compared to the other reflections. Therefore, the intensity of the second strongest line (d=2.833) was assigned the value of 100 and all other reflections were scaled to it. On that scale the strongest line at d=18.67 has I  $\sim$ 300.

#### Color

Colorless

#### Optical data

Biaxial(-),  $N_{\alpha} = 1.576$ ,  $N_{\beta} = 1.583$ ,  $N_{\gamma} = 1.585$ . 2V is  $^{\circ}50^{\circ}$  [Brown et al, 1962].

#### Structure

Triclinic, Z = 2. The structure was determined by Brown et al.[1962] and refined by Dickens et al. [1973].

NBS lattice constants of this sample:

a = 9.529(3)A b = 18.994(4)

c = 6.855(3)

 $\alpha = 92.33(3)^{\circ}$ 

 $\beta = 90.13(3)$ 

 $\gamma = 79.93(2)$ 

# Density

(calculated) 2.673 g/cm<sup>3</sup>.

# Reference intensity

 $I/I_{corundum} = 0.5.$  This measurement is based on the line at 2.833A (designated as 100).

# Additional patterns

- 1. PDF card 11-184 [Bjerrum, 1958].
- 2. PDF card 13-391 [Hayek et al, 1960].
- 3. Lehr et al. [1967].

#### References

Bjerrum, N. (1958). Kgl. Dan. Vidensk. Selsk. Mat. Fys. Medd. 31, Nr. 7, 22.

Brown, W.E., Smith, J.P., Lehr, J.R., and Frazier, A. W. (1962). Nature (London) 196, 1050.

Dickens, B., Schroeder, L. W., and Brown, W. E. (1973). Am. Crys. Assoc. (Abs.-Winter Meeting) B2, 26.

Hayek, E., Newesely, H., Hassenteufel, W., and Krismer, B. (1960). Monatsh. Chem. 91, 249.

Lehr, J. R., Brown, E. H., Frazier, A. W., Smith, J.P., and Thrasher, R.D. (1967). Tenn. Val. Auth. (Chem. Eng. Bull.) No. 6.

| $CuK\alpha_{1}$ , $\lambda = 1.540598$ A; | temp. 25±1 °C |
|-------------------------------------------|---------------|
| Internal standard W,                      | a = 3.16524 A |

| d(A)           | I        | hkl                                        | 20 (°) |
|----------------|----------|--------------------------------------------|--------|
|                |          | 0.3.0                                      |        |
| 18.67          | 300      | 010                                        | 4.73   |
| 9.36           | 45       | 100,020                                    | 9.44   |
| 9.05           | 40       | 110                                        | 9.77   |
| 6.10           | 6        | 120                                        | 14.51  |
| 5.52           | 25       | 101                                        | 16.04  |
| 5.417          | 7        | 111 <u>,</u> 021                           | 16.35  |
| 5.211          | 4        | 111                                        | 17.00  |
| 5.101          | 12       | Ī11                                        | 17.37  |
| 4.815          | 6        | <b>1</b> 30                                | 18.41  |
| 4.706          | 5        | 031                                        | 18.84  |
| 4.670          | 4        | 040                                        | 18.99  |
| 4.514          | 10       | 031,140 +                                  | 19.65  |
| 4.492          | 10       | 121                                        | 19.75  |
|                |          |                                            |        |
| 4.294          | 7        | 131                                        | 20.67  |
| 4.111          | 5        | 230                                        | 21.60  |
| 3.919          | 16       | 220 <b>,</b> 140 +                         | 22.67  |
| 3.879          | 12       | 201, 131                                   | 22.91  |
| 3.862          | 10       | <del>2</del> 01                            | 23.01  |
| 3.786          | 10       | 041                                        | 23.48  |
| 3.745          | 14       | 221                                        | 23.74  |
|                |          |                                            |        |
| 3.660          | 30       | <del>2</del> 11                            | 24.30  |
| 3.492          | 25       | 231                                        | 25.49  |
| 3.441          | 50       | $2\overline{2}1$                           | 25.87  |
| 3.424          | 60       | 002                                        | 26.00  |
| 3.378          | 18       | <del>2</del> 21                            | 26.36  |
| 2 211          | 20       | <u>1</u> 51                                | 26 01  |
| 3.311          | 20       |                                            | 26.91  |
| 3.278          | 18       | 150                                        | 27.18  |
| 3.209          | 25       | 102,250 +                                  | 27.78  |
| 3.180          | 25       | <u>24</u> 1,310                            | 28.04  |
| 3.132          | 10       | 122,300 +                                  | 28.48  |
| 3.117          | 7        | 112,060                                    | 28,62  |
| 3.055          | 14       | 032,240                                    | 29.21  |
| 3.015          | 8        | 330                                        | 29.61  |
| 2.946          | 14       | $\overline{1}22,\overline{2}\overline{5}1$ | 30.31  |
| 2.914          | 12       | 151                                        | 30.66  |
| 2,22,          |          | 101                                        | 30.00  |
| 2.873          | 30       | 251                                        | 31.10  |
| 2.833          | 100      | 260_                                       | 31.55  |
| 2.820          | 95       | 320,241                                    | 31.70  |
| 2.779          | 45       | 142,331                                    | 32.18  |
| 2.745          | 35       | Ī32,331                                    | 32.59  |
| 2 707          | 25       | 222 042                                    | 32.06  |
| 2.707<br>2.671 | 25<br>50 | 222 <b>,</b> 042<br>070                    | 33.06  |
|                |          |                                            | 33.53  |
| 2.637          | 35       | 161,350                                    | 33.97  |
| 2.617          | 20       | 330                                        | 34.23  |
| 2.606          | 20       | 222,341                                    | 34.38  |
| 2.567          | 16       | 161,152                                    | 34.93  |
| 2.544          | 12       | 171,251                                    | 35.25  |
| 2.486          | 5        | <u>2</u> 51                                | 36.10  |
| 2.475          | 8        | 052,171                                    | 36.27  |
| 2.458          | 5        | Ī70                                        | 36.52  |
|                |          |                                            |        |

Calcium hydrogen phosphate hydrate,  $\text{Ca}_8\text{H}_2(\text{PO}_4)_6 \cdot 5\text{H}_20$  - continued

| d(Å)  | I  | hkl                               | 20(°)          |
|-------|----|-----------------------------------|----------------|
| 2.365 | 7  | 180                               | 38.01          |
| 2.335 | 8  | 080,271 +                         | 38.52          |
| 2.304 | 7  | $252,\overline{3}02 +$            | 39.06          |
| 2.271 | 5  | 361,312                           | 39.66          |
| 2.265 | 6  | 181,162                           | 39.77          |
| 2.258 | 7  | 062,341                           | 39.89          |
| 2.215 | 16 | 162,350                           | 40.71          |
| 2.158 | 5  | 322,441                           | 41.83          |
| 2.136 | 7  | 441                               | 42.27          |
| 2.106 | 9  | 190                               | 42.90          |
| 2.088 | 7  |                                   | 43.20          |
|       | 6  | 272,213 +                         | 43.29          |
| 2.063 |    |                                   | 43.85          |
| 2.036 | 5  | 133 <u>,</u> 360 +                | 44.46<br>45.25 |
| 2.002 | 8  | 2 <u>6</u> 2<br>4 <u>3</u> 1      |                |
| 1.998 | 9  | 431                               | 45.35          |
| 1.990 | 10 | 191                               | 45.55          |
| 1.957 | 7  | $\frac{1}{2}$ 2, $\frac{1}{1}$ 90 | 46.36          |
| 1.948 | 17 | 342,381 +                         | 46.58          |
| 1.936 | 18 | 361_                              | 46.88          |
| 1.929 | 11 | 291,233                           | 47.06          |
| 1.914 | 11 | 053                               | 47.46          |
| 1.897 | 10 | 1.10.0,372 +                      | 47.92          |
| 1.891 | 10 | 530                               | 48.07          |
| 1.848 | 20 | 303, 1.10.1                       | 49.27          |
| 1.837 | 20 | 352,391 +                         | 49.59          |
| 1.832 | 18 | 253,511 +                         | 49.72          |
| 1.804 | 15 | 391,2.10.1                        | 50.54          |
| 1.745 | 8  | 291,462                           | 52.39          |
| 1.743 | 8  | 551                               | 52.47          |
| 1.725 | 10 | 1.11.0                            | 53.05          |
| 1.710 | 25 | 490                               | 53.55          |
| 1.,10 | 20 | .50                               | 55.55          |

The sample was prepared by heating a 1:2 molar mixture of  $CoCO_3$  and  $H_3PO_4$  to about 640 °C for 15 hours.

# Color

Deep purplish red.

# Structure

Monoclinic, I2/a(15) or Ia(9), Z=8 [Beucher and Grenier, 1968]. These authors gave the cell in the settings C2/c(15) or Cc(9).

# NBS lattice constants of this sample:

a = 11.189(3)A b = 8.287(2)c = 9.926(4) $\beta = 112.42(3)$ °

# Density

(calculated) 3.386 g/cm<sup>3</sup>

Reference intensity
I/I = 1.4

# Additional pattern

1. PDF card 19-351 (Sarver, 1966).

#### References

Beucher, M. and Grenier, J.-C. (1968). Mater. Res. Bull. 3, 643.

Sarver, J.F. (1966). Trans. Brit. Ceram. Soc. <u>65</u>, 191.

|   | CuKα <sub>1</sub> λ = | = 1.540598 | A; temp. 25±1    | °C     |
|---|-----------------------|------------|------------------|--------|
|   |                       | standard W | N, a = 3.16524   | 4 A    |
|   | d (A)                 | I          | hkl              | 20 (°) |
|   | 6.45                  | 6          | 110              | 13.71  |
|   | 6.146                 | 40         | 011              | 14.40  |
|   | 4.576                 | 20         | <u>2</u> 11      | 19.38  |
|   | 4.251                 | 35         | <u>1</u> 12      | 20.88  |
|   | 3.742                 | 6          | 121              | 23.76  |
|   | 3.538                 | 20         | 211              | 25.15  |
|   | 3.378                 | 30         | 112,121          | 26.36  |
|   | 3.232                 | 12         | 220              | 27.58  |
|   | 3.184                 | 30         | 310              | 28.00  |
|   | 3.001                 | 100        | 222              | 29.75  |
|   | 2.868                 | 20         | 013              | 31.16  |
|   | 2.670                 | 3          | 130              | 33.54  |
|   | 2.635                 | 4          | 411              | 34.00  |
| : | 2.586                 | 20         | 400              | 34.66  |
|   | 2.466                 | 4          | 231              | 36.40  |
|   | 2.389                 | 20         | 222              | 37.62  |
|   | 2.378                 | 9          | 323              | 37.80  |
|   | 2.279                 | 6          | 314              | 39.51  |
|   | 2.193                 | 7          | 420,411          | 41.13  |
|   | 2.177                 | 7          | 404              | 41.45  |
|   | 2.156                 | 3          | 330,512          | 41.86  |
|   | 2.099                 | 20         | 233              | 43.07  |
|   | 2.071                 | 4          | 040              | 43.68  |
|   | 2.016                 | 8          | 114,141          | 44.93  |
|   | 1.956                 | 6          | 402              | 46.38  |
|   | 1.928                 | 4          | <u>4</u> 24      | 47.10  |
|   | 1.895                 | 2          | 523              | 47.96  |
|   | 1.872                 | 3          | 242              | 48.61  |
|   | 1.854                 | 3          | 433              | 49.10  |
|   | 1.824                 | 2          | 415              | 49.97  |
|   | 1.799                 | 5          | 334              | 50.71  |
|   | 1.757                 | 8          | 233              | 52.00  |
|   | 1.754                 | 6          | 431,143          | 52.09  |
|   | 1.735                 | 6          | 532              | 52.70  |
|   | 1.701                 | 7          | 622              | 53.85  |
|   | 1.6314                | 10         | 051,512          | 56.35  |
|   | 1.6167                | 7          | _ 440            | 56.91  |
|   | 1.6115                | 7          | 235,314          | 57.11  |
|   | 1.5376                | 6          | 044              | 60.13  |
|   | 1.5295                | 6          | 006              | 60.48  |
|   | 1.5250                | 7          | <del>-</del> 633 | 60.68  |
|   | 1.5009                | 4          | 444              | 61.76  |
|   |                       |            |                  |        |

The sample was prepared at NBS by C. W. Reimann by evaporating an aqueous solution of Cu(NO3)2 and imidazole (C3H4N2) at room temperature. It was difficult to obtain intensities because the sample deteriorated somewhat when exposed to x-rays.

Color

Unground: deep blue

Optical Data

Biaxial (-),  $N_{\alpha}$  =1.584,  $N_{\beta}$  = 1.610,  $N_{\gamma}$  = 1.645.  $2V \approx 40^{\circ}$ . The sample shows pleochroism.

Structure

Orthorhombic, Pmnb(62), Z=4, [Mighell, Santoro, and Reimann, private comm.].

NBS lattice constants of this sample:

a = 13.396(3)Ab = 13.858(3)

c = 9.825(2)

Density

(calculated) 1.675 g/cm<sup>3</sup>

Reference intensity I/I corundum = 1.0

 $CuK\alpha_1 \lambda = 1.540598 \text{ A; temp. } 25\pm1 \text{ °C}$ Internal standard Aq. a = 4.08651 A

| inte  | rnal standar | ra Ag, $a = 4.08$ | 3031 A  |
|-------|--------------|-------------------|---------|
| d(Å)  | I            | hkl               | 20(°)   |
| 8.01  | 8            | 011               | 11.04   |
| 6.87  | 19           | 111               | 12.87   |
| 6.697 | 6            | 200               | 13.21   |
| 6.159 | 25           | 120               | 14.37   |
| 5.142 | 25           | 211               | 17.23   |
|       |              |                   |         |
| 4.911 | 5            | 002               | 18.05   |
| 4.629 | 3            | 012               | 19.16   |
| 4.375 | 16           | 112               | 20.28   |
| 4.182 | 4            | 031               | 21.23   |
| 4.066 | 10           | 301               | 21.84   |
|       |              |                   |         |
| 3.962 | 100          | 202               | . 22.42 |
| 3.906 | 25           | 311               | 22.75   |
| 3.839 | 18           | 122               | 23.15   |
| 3.807 | 18           | 212               | 23.35   |
| 3.756 | 40           | 320               | 23.67   |
|       |              |                   |         |
|       |              |                   |         |
|       |              |                   |         |

| d(A)  | I   | hkl       | 20 (°) |
|-------|-----|-----------|--------|
| 3.548 | 8   | 231       | 25.08  |
| 3.464 | 85  | 040       | 25.70  |
| 3.352 | 8   | 140,400   | 26.57  |
| 3.264 | 9   |           |        |
|       |     | 041,132   | 27.30  |
| 3.179 | 7   | 103,141   | 28.05  |
| 3.092 | 25  | 411       | 28.85  |
| 3.051 | 7   | 331       | 29.25  |
| 3.009 | 10  | 232       | 29.67  |
| 2.984 | 10  | 322       | 29.92  |
| 2.938 | 3   | 241       | 30.40  |
|       |     |           |        |
| 2.883 | 8   | 421       | 30.99  |
| 2.832 | 1   | 042       | 31.57  |
| 2.768 | 16  | 142,402   | 32.32  |
| 2.736 | 6   | 340       | 32.70  |
| 2.707 | 8   | 223       | 33.06  |
| 2.666 | 5   | 051       | 33.59  |
| 2.638 |     | 341       |        |
|       | 14  |           | 33.96  |
| 2.615 | 25  | 151,431   | 34.26  |
| 2.608 | 16  | 242       | 34.36  |
| 2.541 | 2   | 511       | 35.30  |
| 2.498 | 4   | 520       | 35.92  |
| 2.477 | - 4 | 251       | 36.23  |
| 2.456 | 5   | 004       | 36,56  |
| 2.379 | 4   | 114,043 + | 37.79  |
|       |     |           |        |
| 2.338 | 4   | 441       | 38.47  |
| 2.306 | 13  | 204       | 39.03  |
| 2.277 | 20  | 160,214   | 39.55  |
| 2.243 | 6   | 243       | 40.18  |
| 2.228 | 11  | 522       | 40.46  |
| 2.183 | 2   | 260       | 41.32  |
| 0 161 |     | 440       | 41.76  |
| 2.161 | 6   | 442       | 41.76  |
| 2.119 | 2   | 540       | 42.63  |
| 2.087 | 5   | 433,451   | 43.31  |
| 2.065 | 6   | 162       | 43.80  |
| 2.050 | 10  | 360,513   | 44.14  |
| 2.033 | 5   | 602       | 44.53  |
| 2.004 | 2   | 044       | 45.20  |
| 1.980 | 4   | 144,404   | 45.79  |
|       |     |           |        |
| 1.958 | 1   | 452       | 46.33  |
| 1.941 | 3   | 071,443   | 46.77  |
| 1.921 | 6   | 171,244   | 47.29  |
| 1.891 | 8   | 025,551 + | 48.08  |
| 1.866 | 4   | 461       | 48.75  |
| 1.861 | 5   | 711,632   | 48.89  |
| 1.845 | 2   | 720,641   | 49.36  |
| 1 000 |     | 612.24    | 40.05  |
| 1.828 | 4   | 613,344   | 49.85  |
| 1.780 | 7   | 371,543   | 51.28  |
| 1.752 | 3   | 642,524   | 52.16  |
| 1.749 | 2   | 560       | 52.26  |
| 1.733 | 3   | 080       | 52.78  |
| 1.727 | 3   | 722       | 52.99  |
| 1.710 | 2   | 045       | 53.56  |
|       |     |           |        |

| Sample     |                                                         |
|------------|---------------------------------------------------------|
| The sample | was prepared by melting a 1:1 molar                     |
| mixture of | PbCl <sub>2</sub> and PbF <sub>2</sub> at about 600 °C. |

Color

Yellowish gray

Structure

Tetragonal, P4/nmm (129), Z = 2, isostructural with BaClF and other similar double halides. The structure of PbClF was determined by Bannister [1934].

NBS lattice constants of this sample:

a = 4.1104(2)Ac = 7.2325(5)

Density

(calculated) 7.111 g/cm<sup>3</sup>

Reference intensity I/I corundum = 6.2

Additional patterns

- 1. PDF card 4-460 [Swanson et al., 1953].
  2. Nieuwenkamp and Bijvoet [1932].

References

Bahnister, F.A. (1934). Mineral. Mag. 23, 587. Nieuwenkamp, W. and Bijvoet, J. M. (1932). Z. Krist. 81, 469.

Swanson, H. E. and Tatge, E. (1953). Nat. Bur. Stand. (U.S.) Circ. 539, 1, 76.

| $CuK\alpha_1 \lambda = 1.540598 \text{ Å; temp. } 25\pm1 \text{ °C}$ |              |              |        |  |
|----------------------------------------------------------------------|--------------|--------------|--------|--|
|                                                                      | nal standard | W, $a = 3.1$ | 6524 Å |  |
| d(A)                                                                 | I            | hkl          | 20(°)  |  |
| 7.22                                                                 | 13           | 001          | 12.25  |  |
| 3.617                                                                | 40           | 002          | 24.59  |  |
| 3.574                                                                | 100          | 101          | 24.89  |  |
| 2.906                                                                | 45           | 110          | 30.74  |  |
| 2.715                                                                | 35           | 102          | 32.96  |  |
| 2.412                                                                | 4            | 003          | 37.25  |  |
| 2.265                                                                | 40           | 112          | 39.76  |  |
| 2.079                                                                | 16           | 103          | 43.49  |  |
| 2.055                                                                | 20           | 200          | 44.04  |  |
| 1.976                                                                | 2            | 201          | 45.88  |  |
| 1.855                                                                | 9            | 113          | 49.06  |  |
| 1.808                                                                | 1            | 004          | 50.43  |  |
| 1.786                                                                | 17           | 202          | 51.10  |  |
| 1.781                                                                | 25           | 211          | 51.26  |  |
| 1.6552                                                               | 11           | 104          | 55.47  |  |
| 1.6386                                                               | 9            | 212          | 56.08  |  |
| 1.5636                                                               | 2            | 203          | 59.03  |  |
| 1.5350                                                               | 1            | 114          | 60.24  |  |
| 1.4618                                                               | 7            | 213          | 63.60  |  |
| 1.4528                                                               | 5            | 220          | 64.04  |  |
| 1 4466                                                               | 2            | 225          | 64.25  |  |
| 1.4466                                                               | 3            | 005          | 64.35  |  |
| 1.4249                                                               | 1            | 221          | 65.45  |  |
| 1.3645                                                               | 1            | 105          | 68.74  |  |
| 1.3478                                                               | 5            | 222          | 69.71  |  |
| 1.3458                                                               | 4            | 301          | 69.83  |  |
| 1.3001                                                               | 5            | 310          | 72.67  |  |
| 1.2952                                                               | 6            | 115          | 72.99  |  |
| 1.2891                                                               | 8            | 214          | 73.39  |  |
| 1.2814                                                               | 2            | 302          | 73.90  |  |
| 1.2232                                                               | 5            | 312          | 78.06  |  |
| 1.1910                                                               | 1            | 303          | 80.60  |  |
| 1.1831                                                               | 3            | 205          | 81.25  |  |
| 1.1567                                                               | 2            | 106          | 83.51  |  |
| 1.1440                                                               | 2            | 313          | 84.65  |  |
| 1.1368                                                               | 1            | 215          | 85.31  |  |
| 1.1259                                                               | 2            | 321          | 86.34  |  |
| 1.0920                                                               | 2            | 304          | 89.72  |  |
| 1.0873                                                               | 2            | 322          | 90.22  |  |
| 1.0331                                                               | 1            | 007          | 96.43  |  |
| 1.0252                                                               | 2            | 225          | 97.42  |  |
| 1.0079                                                               | 1            | 216          | 99.68  |  |
| 0.9878                                                               | 2            | 411          | 102.49 |  |
| .9736                                                                | 1            | 117          | 104.59 |  |
| .9669                                                                | 2            | 315          | 105.63 |  |
| .9645                                                                | 3            | 324          | 106.01 |  |
|                                                                      |              |              |        |  |

The sample was prepared by heating a 1:2 molar mixture of MgCO $_3$  and H $_3$ PO $_4$  to 710 °C. It was then reground and reheated at 710 °C several times.

#### Color

Colorless

# Structure

Monoclinic, I2/a(15) or Ia(9), Z=8 [Beucher and Grenier, 1968]. Those authors gave the cell in the settings C2/c(15) or Cc(9).

NBS lattice constants of this sample:

a = 11.119(3)A b = 8.268(2) c = 9.920(3) β = 112.44(3)°

# Density

(calculated) 2.872 g/cm<sup>3</sup>

Reference intensity
I/I = 1.4

# Additional pattern

1. PDF card 11-41 [Sarver and Hummel, 1959].

# References

Beucher, M. and Grenier, J.-C. (1968). Mater. Res. Bull. 3, 643.

Sarver, J. F. and Hummel, F. A. (1959). J. Electrochem. Soc. 106, 500.

| CuKa <sub>1</sub> | λ = | = 1.540598 | 3 A; | temp. | 25±1   | °C |  |
|-------------------|-----|------------|------|-------|--------|----|--|
| Intern            | nal | standard   | W,   | a = 3 | .16524 | A  |  |

| d(Å)         I         hkl         20(°)           6.44         2         110         13.75           6.14         16         011         14.42           5.13         4         200         17.26           4.59         60         002         19.34           4.34         4         202         20.47           4.243         35         112         20.92           3.731         1         121         23.83           3.519         20         211         25.29           3.121         23.83         220         27.69           3.181         30         312         28.03           3.164         30         310         28.18           3.070         2         022         29.06           2.993         100         222         29.83           2.865         16         013         31.19           2.728         6         402         32.80           2.576         20         123         34.80           2.377         2.333         34.80           2.277         6         422,314         39.55           2.242         3 |   | Internal | standard W | a = 3.16524     | A      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------|------------|-----------------|--------|
| 6.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | d (A)    | I          | hkl             | 20 (°) |
| 5.13       4       200       17.26         4.59       60       002       19.34         4.34       4       202       20.47         4.243       35       112       20.92         3.731       1       121       23.83         3.519       20       211       25.29         3.371       25       112,121       26.42         3.219       50       220       27.69         3.181       30       312       28.03         3.164       30       310       28.18         3.070       2       022       29.06         2.993       100       222       29.83         2.865       16       013       31.19         2.728       6       402       32.80         2.662       1       130       33.64         2.576       20       123       34.80         2.576       20       123       34.80         2.358       6       321       38.14         2.277       6       422,314       39.55         2.248       4       231       40.07         2.181       8       420,411       <                                                                            |   |          | 2          |                 | 13.75  |
| 4.59       60       002       19.34         4.34       4       202       20.47         4.243       35       112       20.92         3.731       1       121       23.83         3.519       20       211       25.29         3.371       25       112,121       26.42         3.219       50       220       27.69         3.181       30       312       28.03         3.164       30       310       28.18         3.070       2       022       29.06         2.993       100       222       29.83         2.865       16       013       31.19         2.728       6       402       32.80         2.662       1       130       33.64         2.576       20       123       34.80         2.380       16       222       37.77         2.373       12       323       37.89         2.358       6       321       38.14         2.277       6       422,314       39.55         2.248       4       231       40.07         2.242       3       123 <td< td=""><th></th><td></td><td>16</td><td></td><td>14.42</td></td<>                |   |          | 16         |                 | 14.42  |
| 4.34       4       202       20.47         4.243       35       112       20.92         3.731       1       121       23.83         3.519       20       211       25.29         3.371       25       112,121       26.42         3.219       50       220       27.69         3.181       30       312       28.03         3.164       30       310       28.18         3.070       2       022       29.06         2.993       100       222       29.83         2.865       16       013       31.19         2.728       6       402       32.80         2.662       1       130       33.64         2.576       20       123       34.80         2.380       16       222       37.77         2.373       12       323       37.89         2.358       6       321       38.14         2.277       6       422,314       39.55         2.248       4       231       40.07         2.242       3       123       40.19         2.181       8       420,411                                                                                  |   |          | 4          | 200             | 17.26  |
| 4. 243       35       112       20.92         3. 731       1       121       23.83         3. 519       20       211       25.29         3. 371       25       112,121       26.42         3. 219       50       220       27.69         3. 181       30       312       28.03         3. 164       30       310       28.18         3. 070       2       222       29.06         2. 993       100       222       29.83         2. 865       16       013       31.19         2. 728       6       402       32.80         2. 662       1       130       33.64         2. 576       20       123       34.80         2. 380       16       222       37.77         2. 373       12       323       37.89         2. 358       6       321       38.14         2. 277       6       422,314       39.55         2. 248       4       231       40.07         2. 242       3       123       40.19         2. 181       8       420,411       41.37         2. 147       2                                                                      |   | 4.59     | 60         |                 | 19.34  |
| 3.731       1       121       23.83         3.519       20       211       25.29         3.371       25       112,121       26.42         3.219       50       220       27.69         3.181       30       312       28.03         3.164       30       310       28.18         3.070       2       022       29.06         2.993       100       222       29.83         2.865       16       013       31.19         2.728       6       402       32.80         2.662       1       130       33.64         2.576       20       123       34.80         2.380       16       222       37.77         2.373       12       323       37.89         2.358       6       321       38.14         2.277       6       422,314       39.55         2.248       4       231       40.07         2.242       3       123       40.19         2.147       2       330       42.05         2.094       17       233       43.16         2.068       2       040 <t< td=""><th></th><td>4.34</td><td>4</td><td>202</td><td>20.47</td></t<>           |   | 4.34     | 4          | 202             | 20.47  |
| 3.731       1       121       23.83         3.519       20       211       25.29         3.371       25       112,121       26.42         3.219       50       220       27.69         3.181       30       312       28.03         3.164       30       310       28.18         3.070       2       022       29.06         2.993       100       222       29.83         2.865       16       013       31.19         2.728       6       402       32.80         2.662       1       130       33.64         2.576       20       123       34.80         2.380       16       222       37.77         2.373       12       323       37.89         2.358       6       321       38.14         2.277       6       422,314       39.55         2.248       4       231       40.07         2.242       3       123       40.19         2.147       2       330       42.05         2.094       17       233       43.16         2.068       2       040 <t< td=""><th></th><td></td><td></td><td>_</td><td></td></t<>                       |   |          |            | _               |        |
| 3.519       20       211       25.29         3.371       25       112,121       26.42         3.219       50       220       27.69         3.181       30       312       28.03         3.164       30       310       28.18         3.070       2       022       29.06         2.993       100       222       29.83         2.865       16       013       31.19         2.728       6       402       32.80         2.662       1       130       33.64         2.576       20       123       34.80         2.380       16       222       37.77         2.373       12       323       37.89         2.358       6       321       38.14         2.277       6       422,314       39.55         2.248       4       231       40.07         2.242       3       123       40.19         2.147       2       330       42.05         2.094       17       233       43.16         2.068       2       040       43.74         1.946       3       141,402                                                                                 |   |          |            |                 |        |
| 3.371     25     112,121     26.42       3.219     50     220     27.69       3.181     30     312     28.03       3.164     30     310     28.18       3.070     2     022     29.06       2.993     100     222     29.83       2.865     16     013     31.19       2.728     6     402     32.80       2.662     1     130     33.64       2.576     20     123     34.80       2.380     16     222     37.77       2.373     12     323     37.89       2.358     6     321     38.14       2.277     6     422,314     39.55       2.248     4     231     40.07       2.242     3     123     40.19       2.181     8     420,411     41.37       2.104     17     233     43.16       2.094     17     233     43.16       2.094     17     233     43.16       2.068     2     040     43.74       1.946     3     141,402     46.63       1.938     3     521     46.85       1.895     3     042                                                                                                                                    |   |          |            |                 |        |
| 3.219     50     220     27.69       3.181     30     312     28.03       3.164     30     310     28.18       3.070     2     022     29.06       2.993     100     222     29.83       2.865     16     013     31.19       2.728     6     402     32.80       2.662     1     130     33.64       2.576     20     123     34.80       2.380     16     222     37.77       2.373     12     323     37.89       2.358     6     321     38.14       2.277     6     422,314     39.55       2.248     4     231     40.07       2.242     3     123     40.19       2.181     8     420,411     41.37       2.147     2     330     42.05       2.094     17     233     43.16       2.094     17     233     43.16       2.068     2     040     43.74       1.946     3     141,402     46.63       1.938     3     521     46.85       1.929     4     215     47.07       1.885     3     042                                                                                                                                          |   |          |            |                 |        |
| 3.181       30       312       28.03         3.164       30       310       28.18         3.070       2       022       29.06         2.993       100       222       29.83         2.865       16       013       31.19         2.728       6       402       32.80         2.662       1       130       33.64         2.576       20       123       34.80         2.380       16       222       37.77         2.373       12       323       37.89         2.358       6       321       38.14         2.277       6       422,314       39.55         2.248       4       231       40.07         2.242       3       123       40.19         2.181       8       420,411       41.37         2.147       2       330       42.05         2.094       17       233       43.16         2.094       17       233       43.16         2.068       2       040       43.74         1.946       3       141,402       46.63         1.929       4       215                                                                                   |   |          |            |                 |        |
| 3.164       30       310       28.18         3.070       2       022       29.06         2.993       100       222       29.83         2.865       16       013       31.19         2.728       6       402       32.80         2.662       1       130       33.64         2.576       20       123       34.80         2.380       16       222       37.77         2.373       12       323       37.89         2.358       6       321       38.14         2.277       6       422,314       39.55         2.248       4       231       40.07         2.242       3       123       40.19         2.181       8       420,411       41.37         2.147       2       330       42.05         2.094       17       233       43.16         2.068       2       040       43.74         1.946       3       141,402       46.63         1.938       3       521       46.85         1.829       4       215       47.07         1.885       3       042 <t< td=""><th></th><td>3.219</td><td>50</td><td>220</td><td>27.69</td></t<>         |   | 3.219    | 50         | 220             | 27.69  |
| 3.164       30       310       28.18         3.070       2       022       29.06         2.993       100       222       29.83         2.865       16       013       31.19         2.728       6       402       32.80         2.662       1       130       33.64         2.576       20       123       34.80         2.380       16       222       37.77         2.373       12       323       37.89         2.358       6       321       38.14         2.277       6       422,314       39.55         2.248       4       231       40.07         2.242       3       123       40.19         2.181       8       420,411       41.37         2.147       2       330       42.05         2.094       17       233       43.16         2.068       2       040       43.74         1.946       3       141,402       46.63         1.938       3       521       46.85         1.829       4       215       47.07         1.885       3       042 <t< td=""><th></th><td>3, 181</td><td>30</td><td>312</td><td>28.03</td></t<>        |   | 3, 181   | 30         | 312             | 28.03  |
| 3.070       2       022       29.06         2.993       100       222       29.83         2.865       16       013       31.19         2.728       6       402       32.80         2.662       1       130       33.64         2.576       20       123       34.80         2.380       16       222       37.77         2.373       12       323       37.89         2.358       6       321       38.14         2.277       6       422,514       39.55         2.248       4       231       40.07         2.242       3       123       40.19         2.181       8       420,411       41.37         2.147       2       330       42.05         2.094       17       233       43.16         2.068       2       040       43.74         1.946       3       141,402       46.63         1.938       3       521       46.85         1.929       4       215       47.07         1.885       3       042       48.23         1.865       2       242 <td< td=""><th></th><td></td><td></td><td></td><td></td></td<>                       |   |          |            |                 |        |
| 2.993       100       222       29.83         2.865       16       013       31.19         2.728       6       402       32.80         2.662       1       130       33.64         2.576       20       123       34.80         2.380       16       222       37.77         2.373       12       323       37.89         2.358       6       321       38.14         2.277       6       422,314       39.55         2.248       4       231       40.07         2.242       3       123       40.19         2.181       8       420,411       41.37         2.147       2       330       42.05         2.094       17       233       43.16         2.068       2       040       43.74         1.946       3       141,402       46.63         1.938       3       521       46.85         1.929       4       215       47.07         1.885       3       042       48.23         1.865       2       242       48.78         1.848       2       433,204                                                                                  |   |          |            |                 |        |
| 2.865       16       013       31.19         2.728       6       402       32.80         2.662       1       130       33.64         2.576       20       123       34.80         2.380       16       222       37.77         2.373       12       323       37.89         2.358       6       321       38.14         2.277       6       422,514       39.55         2.248       4       231       40.07         2.242       3       123       40.19         2.181       8       420,411       41.37         2.147       2       330       42.05         2.094       17       233       43.16         2.068       2       040       43.74         1.946       3       141,402       46.63         1.938       3       521       46.85         1.929       4       215       47.07         1.885       3       042       48.23         1.865       2       242       48.78         1.848       2       433,204       49.27         1.828       2       134       <                                                                            |   |          |            |                 |        |
| 2.728 6 402 32.80 2.662 1 130 33.64 2.576 20 123 34.80 2.380 16 222 37.77 2.373 12 323 37.89  2.358 6 321 38.14 2.277 6 422,314 39.55 2.248 4 231 40.07 2.242 3 123 40.19 2.181 8 420,411 41.37  2.147 2 330 42.05 2.094 17 233 43.16 2.068 2 040 43.74 1.946 3 141,402 46.63 1.938 3 521 46.85  1.929 4 215 47.07 1.885 3 042 48.23 1.865 2 242 48.78 1.848 2 433,204 49.27 1.828 2 134 49.83  1.805 4 341 50.53 1.796 6 334 50.81 1.796 6 334 50.81 1.796 6 334 50.81 1.755 6 125 52.06 1.754 6 233 52.10 1.755 6 125 52.06 1.754 6 233 52.10 1.755 6 125 52.06 1.754 6 233 52.10 1.755 6 125 52.06 1.754 6 233 52.10 1.755 6 125 52.06 1.754 6 233 52.10 1.755 6 125 52.06 1.754 6 233 52.10 1.755 6 125 52.06 1.754 6 233 52.10 1.755 6 125 52.06 1.754 6 233 52.10 1.755 6 125 52.06 1.754 6 233 52.10 1.755 6 52.55 1.6627 7 051 56.51 1.623 8 512 56.67                                                                                                                                                                                  |   |          |            |                 |        |
| 2.662       1       130       33.64         2.576       20       123       34.80         2.380       16       222       37.77         2.373       12       323       37.89         2.358       6       321       38.14         2.277       6       422,314       39.55         2.248       4       231       40.07         2.242       3       123       40.19         2.181       8       420,411       41.37         2.147       2       330       42.05         2.094       17       233       43.16         2.068       2       040       43.74         1.946       3       141,402       46.63         1.938       3       521       46.85         1.929       4       215       47.07         1.885       3       042       48.23         1.865       2       242       48.78         1.848       2       433,204       49.27         1.828       2       134       50.53         1.796       6       334       50.81         1.755       6       233 <t< td=""><th></th><td>2.003</td><td>10</td><td>013</td><td>31.13</td></t<>         |   | 2.003    | 10         | 013             | 31.13  |
| 2.576       20       123       34.80         2.380       16       222       37.77         2.373       12       323       37.89         2.358       6       321       38.14         2.277       6       422,314       39.55         2.248       4       231       40.07         2.242       3       123       40.19         2.181       8       420,411       41.37         2.147       2       330       42.05         2.094       17       233       43.16         2.068       2       040       43.74         1.946       3       141,402       46.63         1.938       3       521       46.85         1.929       4       215       47.07         1.885       3       042       48.23         1.865       2       242       48.78         1.848       2       433,204       49.27         1.828       2       134       50.53         1.796       6       334       50.81         1.755       6       125       52.06         1.754       6       233 <t< td=""><th></th><td>2.728</td><td>6</td><td>402</td><td>32.80</td></t<>          |   | 2.728    | 6          | 402             | 32.80  |
| 2.380       16       222       37.77         2.373       12       323       37.89         2.358       6       321       38.14         2.277       6       422,314       39.55         2.248       4       231       40.07         2.242       3       123       40.19         2.181       8       420,411       41.37         2.147       2       330       42.05         2.094       17       233       43.16         2.068       2       040       43.74         1.946       3       141,402       46.63         1.938       3       521       46.85         1.929       4       215       47.07         1.885       3       042       48.23         1.865       2       242       48.78         1.848       2       433,204       49.27         1.828       2       134       50.81         1.755       6       334       50.81         1.751       4       341       50.53         1.754       6       233       52.10         1.751       4       143 <td< td=""><th></th><td>2.662</td><td>1</td><td></td><td>33.64</td></td<>            |   | 2.662    | 1          |                 | 33.64  |
| 2.373       12       323       37.89         2.358       6       321       38.14         2.277       6       422,314       39.55         2.248       4       231       40.07         2.242       3       123       40.19         2.181       8       420,411       41.37         2.147       2       330       42.05         2.094       17       233       43.16         2.068       2       040       43.74         1.946       3       141,402       46.63         1.938       3       521       46.63         1.938       3       042       48.23         1.885       3       042       48.23         1.885       3       042       48.23         1.848       2       433,204       49.27         1.828       2       134       49.83         1.796       6       334       50.81         1.755       6       233       52.10         1.751       4       143       52.19         1.728       6       532       52.96         1.648       4       442,530                                                                                   | 1 | 2.576    | 20         | 123             | 34.80  |
| 2.358       6       321       38.14         2.277       6       422,314       39.55         2.248       4       231       40.07         2.242       3       123       40.19         2.181       8       420,411       41.37         2.147       2       330       42.05         2.094       17       233       43.16         2.068       2       040       43.74         1.946       3       141,402       46.63         1.938       3       521       46.63         1.938       3       042       48.23         1.865       2       242       48.78         1.848       2       433,204       49.27         1.828       2       134       49.83         1.805       4       341       50.53         1.796       6       334       50.81         1.755       6       233       52.10         1.751       4       143       52.19         1.728       6       532       52.96         1.692       7       622       54.18         1.648       4       442,530       <                                                                            | 1 | 2.380    | 16         | 222             | 37.77  |
| 2.277       6       422,314       39.55         2.248       4       231       40.07         2.242       3       123       40.19         2.181       8       420,411       41.37         2.147       2       330       42.05         2.094       17       233       43.16         2.068       2       040       43.74         1.946       3       141,402       46.63         1.938       3       521       46.85         1.929       4       215       47.07         1.885       3       042       48.23         1.865       2       242       48.78         1.848       2       433,204       49.27         1.828       2       134       49.83         1.805       4       341       50.53         1.796       6       334       50.81         1.755       6       125       52.06         1.754       6       233       52.10         1.751       4       143       52.19         1.648       4       442,530       55.74         1.627       7       051       <                                                                            |   | 2.373    | 12         | 323             | 37.89  |
| 2.277       6       422,314       39.55         2.248       4       231       40.07         2.242       3       123       40.19         2.181       8       420,411       41.37         2.147       2       330       42.05         2.094       17       233       43.16         2.068       2       040       43.74         1.946       3       141,402       46.63         1.938       3       521       46.85         1.929       4       215       47.07         1.885       3       042       48.23         1.865       2       242       48.78         1.848       2       433,204       49.27         1.828       2       134       49.83         1.805       4       341       50.53         1.796       6       334       50.81         1.755       6       125       52.06         1.754       6       233       52.10         1.751       4       143       52.19         1.648       4       442,530       55.74         1.627       7       051       <                                                                            |   | 2.250    | 6          | 221             | 20 14  |
| 2.248       4       231       40.07         2.242       3       123       40.19         2.181       8       420,411       41.37         2.147       2       330       42.05         2.094       17       233       43.16         2.068       2       040       43.74         1.946       3       141,402       46.63         1.938       3       521       46.85         1.929       4       215       47.07         1.885       3       042       48.23         1.865       2       242       48.78         1.848       2       433,204       49.27         1.828       2       134       49.83         1.805       4       341       50.53         1.796       6       334       50.81         1.755       6       125       52.06         1.754       6       233       52.10         1.751       4       143       52.19         1.692       7       622       54.18         1.627       7       051       56.51         1.623       8       512       56.67                                                                                |   |          |            |                 |        |
| 2.242       3       123       40.19         2.181       8       420,411       41.37         2.147       2       330       42.05         2.094       17       233       43.16         2.068       2       040       43.74         1.946       3       141,402       46.63         1.938       3       521       46.85         1.929       4       215       47.07         1.885       3       042       48.23         1.865       2       242       48.78         1.848       2       433,204       49.27         1.828       2       134       49.83         1.805       4       341       50.53         1.796       6       334       50.81         1.755       6       125       52.06         1.754       6       233       52.10         1.751       4       143       52.19         1.629       7       622       54.18         1.648       4       442,530       55.74         1.627       7       051       56.51         1.623       8       512       5                                                                                |   |          |            |                 |        |
| 2.181       8       420,411       41.37         2.147       2       330       42.05         2.094       17       233       43.16         2.068       2       040       43.74         1.946       3       141,402       46.63         1.938       3       521       46.85         1.929       4       215       47.07         1.885       3       042       48.23         1.865       2       242       48.78         1.848       2       433,204       49.27         1.828       2       134       49.83         1.805       4       341       50.53         1.796       6       334       50.81         1.755       6       125       52.06         1.754       6       233       52.10         1.751       4       143       52.19         1.692       7       622       54.18         1.648       4       442,530       55.74         1.627       7       051       56.51         1.623       8       512       56.67         1.6102       10       440 <td< td=""><th>ŀ</th><td></td><td></td><td></td><td></td></td<>                      | ŀ |          |            |                 |        |
| 2.147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |          |            |                 |        |
| 2.094       17       233       43.16         2.068       2       040       43.74         1.946       3       141,402       46.63         1.938       3       521       46.85         1.929       4       215       47.07         1.885       3       042       48.23         1.865       2       242       48.78         1.848       2       433,204       49.27         1.828       2       134       49.83         1.805       4       341       50.53         1.796       6       334       50.81         1.755       6       125       52.06         1.754       6       233       52.10         1.751       4       143       52.19         1.692       7       622       54.18         1.648       4       442,530       55.74         1.627       7       051       56.51         1.623       8       512       56.67         1.6102       10       440       57.16         1.5353       8       044       60.23         1.5148       6       633       6                                                                                |   | 2.101    | 8          | 420,411         | 41.37  |
| 2.068       2       040       43.74         1.946       3       141,402       46.63         1.938       3       521       46.85         1.929       4       215       47.07         1.885       3       042       48.23         1.865       2       242       48.78         1.848       2       433,204       49.27         1.828       2       134       49.83         1.805       4       341       50.53         1.796       6       334       50.81         1.755       6       125       52.06         1.754       6       233       52.10         1.751       4       143       52.19         1.728       6       532       52.96         1.692       7       622       54.18         1.648       4       442,530       55.74         1.627       7       051       56.51         1.623       8       512       56.67         1.5184       6       633       60.97         1.5148       6       631       61.13                                                                                                                           |   | 2.147    | 2          | 330             | 42.05  |
| 2.068       2       040       43.74         1.946       3       141,402       46.63         1.938       3       521       46.85         1.929       4       215       47.07         1.885       3       042       48.23         1.865       2       242       48.78         1.848       2       433,204       49.27         1.828       2       134       49.83         1.805       4       341       50.53         1.796       6       334       50.81         1.755       6       125       52.06         1.754       6       233       52.10         1.751       4       143       52.19         1.728       6       532       52.96         1.692       7       622       54.18         1.648       4       442,530       55.74         1.627       7       051       56.51         1.623       8       512       56.67         1.5184       6       633       60.97         1.5148       6       631       61.13                                                                                                                           |   | 2.094    | 17         | <del>2</del> 33 | 43.16  |
| 1.946       3       141,402       46.63         1.938       3       521       46.85         1.929       4       215       47.07         1.885       3       042       48.23         1.865       2       242       48.78         1.848       2       433,204       49.27         1.828       2       134       49.83         1.805       4       341       50.53         1.796       6       334       50.81         1.755       6       125       52.06         1.754       6       233       52.10         1.751       4       143       52.19         1.728       6       532       52.96         1.692       7       622       54.18         1.648       4       442,530       55.74         1.627       7       051       56.51         1.623       8       512       56.67         1.6102       10       440       57.16         1.5353       8       044       60.23         1.5184       6       633       60.97         1.5148       6       631       6                                                                                |   | 2.068    | 2          |                 |        |
| 1.929       4       215       47.07         1.885       3       042       48.23         1.865       2       242       48.78         1.848       2       433,204       49.27         1.828       2       134       49.83         1.805       4       341       50.53         1.796       6       334       50.81         1.755       6       125       52.06         1.754       6       233       52.10         1.751       4       143       52.19         1.728       6       532       52.96         1.692       7       622       54.18         1.648       4       442,530       55.74         1.627       7       051       56.51         1.623       8       512       56.67         1.6102       10       440       57.16         1.5353       8       044       60.23         1.5184       6       633       60.97         1.5148       6       631       61.13                                                                                                                                                                        |   | 1.946    | 3          | 141,402         | 46.63  |
| 1.929       4       215       47.07         1.885       3       042       48.23         1.865       2       242       48.78         1.848       2       433,204       49.27         1.828       2       134       49.83         1.805       4       341       50.53         1.796       6       334       50.81         1.755       6       125       52.06         1.754       6       233       52.10         1.751       4       143       52.19         1.728       6       532       52.96         1.692       7       622       54.18         1.648       4       442,530       55.74         1.627       7       051       56.51         1.623       8       512       56.67         1.6102       10       440       57.16         1.5353       8       044       60.23         1.5184       6       633       60.97         1.5148       6       631       61.13                                                                                                                                                                        |   |          | 3          | 521             |        |
| 1.885       3       042       48.23         1.865       2       242       48.78         1.848       2       433,204       49.27         1.828       2       134       49.83         1.805       4       341       50.53         1.796       6       334       50.81         1.755       6       125       52.06         1.754       6       233       52.10         1.751       4       143       52.19         1.728       6       532       52.96         1.692       7       622       54.18         1.648       4       442,530       55.74         1.627       7       051       56.51         1.623       8       512       56.67         1.6102       10       440       57.16         1.5353       8       044       60.23         1.5184       6       633       60.97         1.5148       6       631       61.13                                                                                                                                                                                                                    |   |          |            | _               |        |
| 1.865       2       242       48.78         1.848       2       433,204       49.27         1.828       2       134       49.83         1.805       4       341       50.53         1.796       6       334       50.81         1.755       6       125       52.06         1.754       6       233       52.10         1.751       4       143       52.19         1.728       6       532       52.96         1.692       7       622       54.18         1.648       4       442,530       55.74         1.627       7       051       56.51         1.623       8       512       56.67         1.6102       10       440       57.16         1.5353       8       044       60.23         1.5184       6       633       60.97         1.5148       6       631       61.13                                                                                                                                                                                                                                                                |   |          |            |                 |        |
| 1.848       2       433,204       49.27         1.828       2       134       49.83         1.805       4       341       50.53         1.796       6       334       50.81         1.755       6       125       52.06         1.754       6       233       52.10         1.751       4       143       52.19         1.728       6       532       52.96         1.692       7       622       54.18         1.648       4       442,530       55.74         1.627       7       051       56.51         1.623       8       512       56.67         1.6102       10       440       57.16         1.5353       8       044       60.23         1.5184       6       633       60.97         1.5148       6       631       61.13                                                                                                                                                                                                                                                                                                            |   | 1.885    |            | 042             | 48.23  |
| 1.828       2       134       49.83         1.805       4       341       50.53         1.796       6       334       50.81         1.755       6       125       52.06         1.754       6       233       52.10         1.751       4       143       52.19         1.728       6       532       52.96         1.692       7       622       54.18         1.648       4       442,530       55.74         1.627       7       051       56.51         1.623       8       512       56.67         1.6102       10       440       57.16         1.5353       8       044       60.23         1.5184       6       633       60.97         1.5148       6       631       61.13                                                                                                                                                                                                                                                                                                                                                            |   | 1.865    |            |                 |        |
| 1.805       4       341       50.53         1.796       6       334       50.81         1.755       6       125       52.06         1.754       6       233       52.10         1.751       4       143       52.19         1.728       6       532       52.96         1.692       7       622       54.18         1.648       4       442,530       55.74         1.627       7       051       56.51         1.623       8       512       56.67         1.6102       10       440       57.16         1.5353       8       044       60.23         1.5184       6       633       60.97         1.5148       6       631       61.13                                                                                                                                                                                                                                                                                                                                                                                                        |   |          |            |                 |        |
| 1.796       6       334       50.81         1.755       6       125       52.06         1.754       6       233       52.10         1.751       4       143       52.19         1.728       6       532       52.96         1.692       7       622       54.18         1.648       4       442,530       55.74         1.627       7       051       56.51         1.623       8       512       56.67         1.6102       10       440       57.16         1.5353       8       044       60.23         1.5184       6       633       60.97         1.5148       6       631       61.13                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | 1.828    | 2          | 134             | 49.83  |
| 1.796       6       334       50.81         1.755       6       125       52.06         1.754       6       233       52.10         1.751       4       143       52.19         1.728       6       532       52.96         1.692       7       622       54.18         1.648       4       442,530       55.74         1.627       7       051       56.51         1.623       8       512       56.67         1.6102       10       440       57.16         1.5353       8       044       60.23         1.5184       6       633       60.97         1.5148       6       631       61.13                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | 1.805    | 4          | 341             | 50.53  |
| 1.755       6       125       52.06         1.754       6       233       52.10         1.751       4       143       52.19         1.728       6       532       52.96         1.692       7       622       54.18         1.648       4       442,530       55.74         1.627       7       051       56.51         1.623       8       512       56.67         1.6102       10       440       57.16         1.5353       8       044       60.23         1.5184       6       633       60.97         1.5148       6       631       61.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |          |            | _               |        |
| 1.754       6       233       52.10         1.751       4       143       52.19         1.728       6       532       52.96         1.692       7       622       54.18         1.648       4       442,530       55.74         1.627       7       051       56.51         1.623       8       512       56.67         1.6102       10       440       57.16         1.5353       8       044       60.23         1.5184       6       633       60.97         1.5148       6       631       61.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |          |            |                 |        |
| 1.751     4     143     52.19       1.728     6     532     52.96       1.692     7     622     54.18       1.648     4     442,530     55.74       1.627     7     051     56.51       1.623     8     512     56.67       1.6102     10     440     57.16       1.5353     8     044     60.23       1.5184     6     633     60.97       1.5148     6     631     61.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |          |            |                 |        |
| 1.692     7     622     54.18       1.648     4     442,530     55.74       1.627     7     051     56.51       1.623     8     512     56.67       1.6102     10     440     57.16       1.5353     8     044     60.23       1.5184     6     633     60.97       1.5148     6     631     61.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |          |            | _               |        |
| 1.692     7     622     54.18       1.648     4     442,530     55.74       1.627     7     051     56.51       1.623     8     512     56.67       1.6102     10     440     57.16       1.5353     8     044     60.23       1.5184     6     633     60.97       1.5148     6     631     61.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |          |            | _               |        |
| 1.648     4     442,530     55.74       1.627     7     051     56.51       1.623     8     512     56.67       1.6102     10     440     57.16       1.5353     8     044     60.23       1.5184     6     633     60.97       1.5148     6     631     61.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |          |            |                 |        |
| 1.627     7     051     56.51       1.623     8     512     56.67       1.6102     10     440     57.16       1.5353     8     044     60.23       1.5184     6     633     60.97       1.5148     6     631     61.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |          |            |                 |        |
| 1.623     8     512     56.67       1.6102     10     440     57.16       1.5353     8     044     60.23       1.5184     6     633     60.97       1.5148     6     631     61.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |          |            |                 |        |
| 1.6102     10     440     57.16       1.5353     8     044     60.23       1.5184     6     633     60.97       1.5148     6     631     61.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |          |            |                 |        |
| 1.5353       8       044       60.23         1.5184       6       633       60.97         1.5148       6       631       61.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | 1.023    | 8          | 217             | 30.07  |
| 1.5353       8       044       60.23         1.5184       6       633       60.97         1.5148       6       631       61.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | 1.6102   | 10         | 440             | 57.16  |
| 1.51846 $\overline{6}33$ 60.971.51486 $\overline{6}31$ 61.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |          |            |                 |        |
| 1.5148 6 631 61.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |          |            | <del>6</del> 33 |        |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |          | 6          |                 | 61.13  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |          | 4          | _               |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L |          |            |                 |        |

| Magnesium tur                                                                                                                                                                                                                                                                                                     | ıgs      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Sample The sample was prepared by treating an aqueous solution of Na <sub>2</sub> WO <sub>4</sub> with concentrated MgCl <sub>2</sub> a                                                                                                                                                                           |          |
| 80°C. The precipitate was filtered, washed wit alcohol and heated at 850°C for 30 minutes.                                                                                                                                                                                                                        |          |
| Color<br>Colorless                                                                                                                                                                                                                                                                                                |          |
| Structure  Monoclinic, P2/a (13), Z=2, isostructural with wolframite, (Fe,Mn)WO4 [Broch, 1929].                                                                                                                                                                                                                   | :h       |
| NBS lattice constants of this sample:                                                                                                                                                                                                                                                                             |          |
| a = 4.9288(6)A                                                                                                                                                                                                                                                                                                    |          |
| b = 5.6751(8) $c = 4.6879(5)$                                                                                                                                                                                                                                                                                     |          |
| $\beta = 90.70(1)^{\circ}$                                                                                                                                                                                                                                                                                        |          |
| Density (calculated) 6.893 g/cm <sup>3</sup>                                                                                                                                                                                                                                                                      |          |
| Reference intensity I/I = 3.0 corundum                                                                                                                                                                                                                                                                            |          |
| Polymorphism  The monoclinic, wolframite type reported here is stable below 1165°C. Chang et al.[1966] reported a high temperature modification stable above 1165°C. Their data are given on PDF card 19-776 Dunning et al., [1947] reported the existence of a cubic modification, formed between 90° are 300°C. | ed<br>re |
| Additional patterns 1. PDF card 7-190 [Swanson et al. 1953]. 2. Broch [1929].                                                                                                                                                                                                                                     |          |
| <ol> <li>Dunning and Megaw [1946].</li> <li>Fonda [1944].</li> </ol>                                                                                                                                                                                                                                              |          |
| References Broch, E. (1929). Skrifter Norske Videns Akad. Oslo I. Mat. Nat. Klasse 1929, No. 8. Chang, L. L. Y., Scroger, M. G., and Phillips, E. (1966). J. Amer. Ceram. Soc. 49, 385. Dunning, N. J. and Megaw, H. D., (1946). Transferaday Soc. 42, 705. Forda G. R. (1944). J. Phys. Chem. 48, 203            | 3.       |
| Fonda, G. R. (1944). J. Phys. Chem. <u>48</u> , 303<br>Swanson, H. E. and Tatge, E. (1953). Nat. Bur<br>Stand., U.S. Circ. 539, Vol. I, 84.                                                                                                                                                                       |          |

| CuKα <sub>1</sub> | λ = 1.54059 | 8 A; temp. 25±  |                |
|-------------------|-------------|-----------------|----------------|
| Intern            | al standard | W, $a = 3.165$  | 24 A           |
| d (Å)             | I           | hkl             | 20 (°)         |
| 5.67<br>4.68      | 20<br>95    | 010<br>001      | 15.63<br>18.94 |
| 3.719             | 100         | 110             | 23.91          |
| 3.610             | 45          | 011             | 24.64          |
| 2.929             | 100         | Ĩ11             | 30.50          |
| 2.901             | 95          | 111             | 30.80          |
| 2.836             | 25          | 020             | 31.52          |
| 2.463             | 40          | 200             | 36.45          |
| 2.459             | 40          | 120             | 36.51          |
| 2.427             | 18          | 021             | 37.01          |
| 2.343             | 20          | 002             | 38.39          |
| 2.261             | 3           | 210             | 39.84          |
| 2.191             | 25          | 201             | 41.16          |
| 2.185             | 14          | 121             | 41.28          |
| 2.172             | 40          | 121,201         | 41.55          |
| 2.044             | 6           | <del>2</del> 11 | 44.28          |
| 2.027             | 11          | 211             | 44.68          |
| 1.9919            | 13          | <b>1</b> 12     | 45.50          |
| 1.9751            | 18          | 112             | 45.91          |
| 1.8913            | 8           | 030             | 48.07          |
| 1.8600            | 13          | 220             | 48.93          |
| 1.8068            | 12          | 022             | 50.47          |
| 1.7660            | 3           | 130             | 51.72          |
| 1.7540            | 25          | 031             | 52.10          |
| 1.7346            | 6           | 221             | 52.73          |
| 1.7243            | 7           | <u>2</u> 21     | 53.07          |
| 1.7087            | 15          | 202             | 53.59          |
| 1.7020            | 17          | 122             | 53.82          |
| 1.6909            | 20          | 122             | 54.20          |
| 1.6881            | 25          | 202             | 54.30          |
| 1.6552            | 2           | 131             | 55.47          |
| 1.6508            | 2           | 131             | 55.63          |
| 1.6360            | 2<br>2      | 212             | 56.18          |
| 1.6180<br>1.5782  | 7           | 212<br>310      | 56.86<br>58.43 |
|                   | ·           |                 |                |
| 1.5626            | 4           | 003             | 59.07          |
| 1.5061            | 3           | _ 013           | 61.52          |
| 1.5011            | 18          | 311,230         | 61.75          |
| 1.4904            | 10          | 311             | 62.24          |
| 1.4720            | 7           | 032             | 63.11          |
| 1.4643            | 6           | 222             | 63.48          |
| 1.4508            | 6           | 222             | 64.14          |
| 1.4458            | 11          | 113             | 64.39          |
| 1.4360            | 14          | 113             | 64.88          |
| 1.4327            | 17          | 231             | 65.05          |
| 1.4264            | 12          | 231             | 65.37          |
| 1.4222            | 15          | 320             | 65.59          |
| 1.3690            | 3           | 023             | 68.48          |
| 1.3641            | 13          | 321,140         | 68.76          |
| 1.3565            | 4           | 321             | 69.20          |

 ${\it Magnesium tungsten oxide, MgWO}_4$ 

| 0      |   |             |        |
|--------|---|-------------|--------|
| d(A)   | I | hkl         | 20 (°) |
| 1.3271 | 2 | 203         | 70.96  |
| 1.3224 | 6 | <u>1</u> 23 | 71.25  |
| 1.3160 | 4 | 312         | 71.65  |
| 1.3121 | 7 | 203         | 71.90  |
| 1.3102 | 8 | Ī41         | 72.02  |
|        |   |             |        |
| 1.3019 | 4 | 312         | 72.55  |
| 1.2923 | 2 | 213         | 73.17  |
| 1.2786 | 2 | 213         | 74.09  |
| 1.2681 | 4 | 232         | 74.81  |
|        |   |             |        |
|        |   |             |        |

| Sample     |     |              |          |          |
|------------|-----|--------------|----------|----------|
| The sample | was | commercially | prepared | mercuric |
| chloride.  |     |              |          |          |

Color

Colorless

Optical data

Biaxial(-),  $N_{\alpha}$  = 1.725,  $N_{\beta}$  = 1.859,  $N_{\gamma}$  = 1.965, 2V = 85° [Merwin, 1920].

Structure

Orthorhombic, Pmnb (62), Z = 4. The structure was determined by Braekken and Scholten [1934].

NBS lattice constants of this sample:

a = 5.9756(8)A b = 12.768(2) c = 4.3347(6)

Density

(calculated) 5.453 g/cm<sup>3</sup>

Reference intensity
I/I = 3.2

Additional pattern

1. PDF card 4-331 [Swanson and Tatge, 1953].

References

Braekken, H. and Scholten, W. (1934). Z. Krist. 89, 448.

Merwin, H.E. (1920). J. Am. Chem. Soc. 42, 2432. Swanson, H. E. and Tatge, E. (1953). Nat. Bur. Stand. (U.S.) Circ. 539, 1, 73.

| $\text{CuK}\alpha_1 \lambda = 1.540598 \text{ A; temp. } 25\pm1 \text{ °C}$ |     |         |        |  |  |  |
|-----------------------------------------------------------------------------|-----|---------|--------|--|--|--|
| Internal standard W, a = 3.16524 A                                          |     |         |        |  |  |  |
| d(Å)                                                                        | I   | hkl     | 20 (°) |  |  |  |
| 4.365                                                                       | 100 | 120     | 20.33  |  |  |  |
| 4.107                                                                       | 40  | 011     | 21.62  |  |  |  |
| 3.587                                                                       | 7   | 021     | 24.80  |  |  |  |
| 3.511                                                                       | 5   | 101     | 25.35  |  |  |  |
| 3.386                                                                       | 10  | 111     | 26.30  |  |  |  |
|                                                                             |     |         |        |  |  |  |
| 3.192                                                                       | 12  | 040     | 27.93  |  |  |  |
| 3.075                                                                       | 12  | 121     | 29.01  |  |  |  |
| 3.038                                                                       | 30  | 031     | 29.38  |  |  |  |
| 2.989                                                                       | 50  | 200     | 29.87  |  |  |  |
| 2.708                                                                       | 40  | 131,220 | 33.05  |  |  |  |

| d (Å)  | I   | hkl            | 20 (°) |
|--------|-----|----------------|--------|
| 2.418  | 20  | 211            | 37.16  |
| 2.361  | 4   | 141            | 38.08  |
| 2.295  | 3   | 221            | 39.22  |
| 2.199  | 8   | 051            | 41.01  |
| 2.181  | 6   | 240            | 41.36  |
|        |     |                |        |
| 2.130  | 14  | 231,060        | 42.41  |
| 2.065  | 16  | 151            | 43.81  |
| 2.012  | 10  | 112            | 45.01  |
| 2.006  | 16  | 160            | 45.16  |
| 1.941  | 13  | 122            | 46.76  |
| 1 000  | -   | 200            | 47. 70 |
| 1.902  | 7   | 320            | 47.78  |
| 1.838  | 2   | 132            | 49.55  |
| 1.820  | 1   | 161            | 50.09  |
| 1.810  | 1   | 301            | 50.38  |
| 1.793  | 10  | 042,311        | 50.90  |
| 1 771  | 4   | 253            | E3 E6  |
| 1.771  | 4   | 251            | 51.56  |
| 1.754  | 3   | 202            | 52.09  |
| 1.740  | 2   | 321            | 52.54  |
| 1.738  | 2   | 212            | 52.61  |
| 1.681  | 3   | 071            | 54.55  |
| 1.666  | 5   | 331            | 55.09  |
| 1.653  | 2   | 052            | 55.55  |
|        | 4   |                | 56.73  |
| 1.621  |     | 232            |        |
| 1.618  | 3   | 171            | 56.85  |
| 1.595  | 4   | 080            | 57.74  |
| 1.574  | 1   | 341            | 58.61  |
| 1.537  | 5   | 242            | 60.15  |
| 1.493  | 3   | 400            | 62.10  |
| 1.477  | 3   | 351            | 62.87  |
| 1.472  | 4   | 162            | 63.09  |
|        |     |                |        |
| 1.454  | 4   | 420,360        | 63.98  |
| 1.436  | 1   | 013            | 64.89  |
| 1.429  | 4   | 322            | 65.22  |
| 1.408  | 3   | 280            | 66.32  |
| 1.4043 | 5   | 103,411        | 66.53  |
|        |     |                |        |
| 1.3958 | 2   | 113,072        | 66.99  |
| 1.3788 | <1  | 421,361        | 67.93  |
| 1.3538 | 1   | 262            | 69.36  |
| 1.3406 | 2   | 431            | 70.14  |
| 1.3151 | 1   | 191            | 71.71  |
| 1.2939 | 1   | 213            | 73.07  |
| 1.2850 | 2   | 082,371        | 73.66  |
| 1.2745 | 1   | 223            | 74.37  |
| 1.2360 | 1   |                |        |
| 1.2304 | 2   | 451<br>153,402 | 77.10  |
| 1.2304 | 2   | 133,402        | 77.52  |
| 1.1805 | · 1 | 282            | 81.46  |
| 1.1748 | 1   | 520            | 81.94  |
| 1.1694 | 1   | 303            | 82.40  |
| 1.1648 | 1   | 313            | 82.80  |
| 1.1478 | 2   | 442,511        | 84.31  |
|        |     |                |        |

The sample was obtained from British Drug House,

# Optical data

Uniaxia1(+),  $N_0 = 2.6559$ ,  $N_e = 1.97325$  [Groth, 1904].

# Structure

Tetragonal, I4/mmm (139), Z = 2, isostructural with  $Hg_2Br_2$ ,  $Hg_2F_2$ , and  $Hg_2I_2$  [Havighurst, 1925 and Mark and Steinback, 1926].

# NBS lattice constants of this sample:

a = 4.4801(2)Ac = 10.9060(6)

#### Density

(calculated) 7.162 g/cm<sup>3</sup>

# Reference intensity

I/I corundum = 5.0

# Additional patterns

- 1. PDF card 4-581 [Swanson and Tatge, 1953].
- 2. Havighurst [1925].
- 3. Hylleraas [1926].
- 4. Ruff et al. [1928].
- 5. Hanawalt et al. [1938].

#### References

Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457.

Havighurst, R.J. (1925). Amer. J. Sci. <u>10</u>, 15. Hylleraas, E. (1926). Z. Phys. <u>36</u>, 859.

Groth, H. (1904). Chemische Krystallographie,

Vol. 1, 124, Engelmann, Leipzig.
Mark, H. and Steinbach, J. (1926). Z. Krist. 64,

79.

Ruff, O., Ebert, F., and Luft, F. (1928). Z. Anorg. Allg. Chem. 170, 49.

Swanson, H.E. and Tatge, E. (1953). NBS Circular 539, 1, 72.

| CuKα <sub>1</sub> | $\lambda = 1.540$ | 0598 A; temp. 25 | ±1 °C  |
|-------------------|-------------------|------------------|--------|
| Inter             | nal standa        | rd Ag, a = 4.08  | 651 A  |
| d(A)              | I                 | hkl              | 20 (°) |
| 4.147             | 75                | 101              | 21.41  |
| 3.170             | 100               | 110              | 28.13  |
| 2.824             | 12                | 103              | 31.66  |
| 2.727             | 30                | 004              | 32.81  |
| 2.240             | 15                | 200              | 40.22  |
| 2.067             | 40                | 114              | 43.76  |
| 1.970             | 17                | 211              | 46.03  |
| 1.962             | 30                | 105              | 46.24  |
| 1.818             | <1                | 006              | 50.14  |
| 1.756             | 4                 | 213              | 52.05  |
| 1.732             | 12                | 204              | 52.83  |
| 1.5841            | 6                 | 220              | 58.19  |
| 1.4755            | 11                | 215              | 62.94  |
| 1.4164            | 3                 | 310              | 65.89  |
| 1.3815            | 1                 | 303              | 67.78  |
| 1.3696            | 6                 | 224              | 68.45  |
| 1.3633            | 3                 | 800              | 68.81  |
| 1.2569            | 4                 | 314              | 75.59  |
| 1.2522            | 5                 | 118              | 75.93  |
|                   | 2                 |                  |        |
| 1.2343            | 2                 | 321              | 77.23  |
| 1.2319            | 2                 | 305              | 77.41  |
| 1.1756            | 1                 | 323              | 81.88  |
| 1.1697            | 5                 | 109              | 82.38  |
| 1.1648            | 3                 | 208              | 82.80  |
| 1.1202            | <1                | 400              | 86.89  |
|                   | `1                |                  |        |
| 1.0908            | <1                | 0.0.10           | 89.85  |
| 1.0800            | 2                 | 325              | 91.00  |
| 1.0563            | 1                 | 330              | 93.65  |
| 1.0410            | 1                 | 413              | 95.46  |
| 1.0370            | 3                 | 219,332          | 95.95  |
| 1.0312            | 2                 | 1.1.10           | 96.66  |
| 1.0018            | 1                 | 420              | 100.52 |
| 0.9846            | 2                 | 334              | 102.95 |
| .9823             | 2                 | 318              | 103.29 |
| .9728             | 2                 | 415              | 104.72 |
| .9405             | 1                 | 424              | 109.97 |
| .9089             | 1                 | 0.0.12           | 115.89 |
| .8930             | <1                | 431              | 119.22 |
| .8736             | 1                 | 1.1.12           | 123.72 |
| .8675             | 2                 | 329              | 125.23 |
| .0075             | 2                 | 525              |        |
| .8287             | 1                 | 435              | 136.71 |
| .8246             | 2                 | 1.0.13           | 138.20 |
|                   |                   |                  |        |

 $C_{11}K\alpha_{1}$   $\lambda = 1.540598 \ A \cdot temp 25+1 °C$ 

The sample was prepared by slow evaporation at room temperature of an aqueous solution of  $\text{Ni}(C_2H_3O_2)_2$ .

Color

Brilliant bluish green.

Optical data

Biaxial (-).  $N_{\alpha}$  = 1.441,  $N_{\gamma}$  = 1.560. 2V is very small.

Structure

Monoclinic  $P2_1/c(14)$ , Z = 2, isostructural with  $Co(C_2H_3O_2)_2 \cdot 4H_2O$ . The structure was determined by van Niekerk and Schoening [1953] and refined by Downie et al. [1971].

NBS lattice constants of this sample:

a = 4.7749(9)A b = 11.772(2) c = 8.435(1) β = 93.86(1)°

Density

(calculated) 1.747 g/cm<sup>3</sup>

Reference intensity

I/I = 4.6

Additional patterns

- 1. PDF card 14-721 [Hanawalt et al., 1938].
- PDF card 24-1360. This is data from card 14-721 indexed by University College, Cardiff, Wales.

References

Downie, T. C., Harrison, W., Rafer, E. S., and Hepworth, M. A. (1971). Acta Crystallogr. <u>B27</u>, 706.

Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457.

van Niekerk, J. N. and Schoening, F. R. (1953).
Acta Crystallogr. 6, 609.

|                                           | rnal standa      | J598 A; temp. 251 ard W, a = 3.165  | 0                                         |
|-------------------------------------------|------------------|-------------------------------------|-------------------------------------------|
| d(Å)                                      | I                | hkl                                 | 20 (°)                                    |
| 6.84                                      | 100              | 011                                 | 12.94                                     |
| 5.886                                     | 4                | 020                                 | 15.04                                     |
| 4.828                                     | 6                | 021                                 | 18.36                                     |
| 4.762                                     | 30               | 100                                 | 18.62                                     |
| 4.416                                     | 2                | 110                                 | 20.09                                     |
| 4.209                                     | 13               | 002                                 | 21.09                                     |
| 4.014                                     | 19               | 111                                 | 22.13                                     |
| 3.962                                     | 5                | 012                                 | 22.42                                     |
| 3.811                                     | 7                | 111                                 | 23.32                                     |
| 3.702                                     | <1               | 120                                 | 24.02                                     |
| 3.555                                     | 11               | 031                                 | 25.03                                     |
| 3.454                                     | <1               | 121                                 | 25.77                                     |
| 3.326                                     | 2                | 121                                 | 26.78                                     |
| 3.265                                     | 2                | 102                                 | 27.29                                     |
| 3.147                                     | 20               | 112                                 | 28.34                                     |
| 3.053                                     | 3                | 102                                 | 29.23                                     |
| 3.029                                     | 2                | 130                                 | 29.47                                     |
| 2.956                                     | 4                | 112                                 | 30.21                                     |
| 2.946                                     | 2                | 040                                 | 30.32                                     |
| 2.890                                     | 8                | 131                                 | 30.92                                     |
| 2.869                                     | 7                | 032                                 | 31.15                                     |
| 2.813                                     | 1                | 131                                 | 31.79                                     |
| 2.711                                     | 5                | 122                                 | 33.02                                     |
| 2.531                                     | 1                | 023                                 | 35.44                                     |
| 2.504                                     | 8                | 140                                 | 35.83                                     |
| 2.438                                     | 2                | 113                                 | 36.83                                     |
| 2.410                                     | 3                | 042,132                             | 37.28                                     |
| 2.383                                     | 2                | 200                                 | 37.72                                     |
| 2.378                                     | 4                | 141                                 | 37.80                                     |
| 2.304                                     | 7                | 113                                 | 39.07                                     |
| 2.294<br>2.281<br>2.267<br>2.186<br>2.136 | 7<br>2<br>1<br>5 | 123<br>033<br>051<br>142,123<br>202 | 39.24<br>39.47<br>39.70<br>41.27<br>42.27 |
| 2.111                                     | 5                | 150                                 | 42.81                                     |
| 2.104                                     | 4                | 004,221,133                         | 42.95                                     |
| 2.063                                     | 3                | 151                                 | 43.85                                     |
| 2.055                                     | 2                | 052                                 | 44.04                                     |
| 2.032                                     | 1                | 151,043                             | 44.56                                     |
| 2.016                                     | 3                | 202,133                             | 44.92                                     |
| 2.007                                     | 4                | 222                                 | 45.13                                     |
| 1.982                                     | 1                | 024                                 | 45.75                                     |
| 1.953                                     | 1                | 231                                 | 46.46                                     |
| 1.948                                     | 2                | 114                                 | 46.59                                     |
| 1.907                                     | 3                | 222                                 | 47.64                                     |
| 1.879                                     | 2                | 104                                 | 48.41                                     |
| 1.875                                     | 2                | 232                                 | 48.51                                     |
| 1.872                                     | 2                | 124                                 | 48.61                                     |
| 1.855                                     | 6                | 213,114,034                         | 49.06                                     |

 $CuK\alpha_1 \lambda = 1.540598 A; temp. 25±1 °C$ 

Nickel acetate hydrate,  $Ni(C_2H_3O_2)_2 \cdot 4H_2O$  - continued

| đ(Å)   | I  | hkl         | 20(°) |
|--------|----|-------------|-------|
| 1.852  | 5  | 240         | 49.16 |
| 1.836  | 1  | 143         | 49.61 |
| 1.803  | 2  | 053         | 50.57 |
| 1.791  | 3  | 223         | 50.95 |
| 1.789  | 2  | 124,241     | 51.01 |
| 1.778  | 3  | 062         | 51.36 |
| 1.7645 | <1 | 161,134     | 51.77 |
| 1.7392 | 2  | 213         | 52.58 |
| 1.7282 | 1  | $\bar{2}42$ | 52.94 |
| 1.7108 | <1 | 044,153     | 53.52 |
| 1.6944 | 2  | 233,134     | 54.08 |
| 1.6812 | <1 | Ī62         | 54.54 |
| 1.6660 | 2  | 015         | 55.08 |
| 1.6629 | 2  | 242,153     | 55.19 |
| 1.6272 | 1  | 251         | 56.51 |
| 1.6074 | 2  | 063,115     | 57.27 |
| 1.6043 | 1  | 233         | 57.39 |
|        |    |             |       |

The sample was prepared by melting a 1:2 molar mixture of KCl and PbCl $_2$  at 480 °C and cooling in air.

Color

Colorless

Structure

Orthorhombic, Z=4, isostructural with RbPb<sub>2</sub>Cl<sub>5</sub> and other similar compounds [Jansen, 1968].

NBS lattice constants of this sample:

a = 8.865(2) A b = 12.498(2)

c = 7.934(1)

Density

(calculated) 4.767 g/cm<sup>3</sup>

Additional pattern

1. PDF card 23-484 [Jansen, 1968].

Reference

Jansen, P. W. J. (1968). Rec. Trav. Chim. Pays-Bas, <u>87</u>, 1021.

| CuKa  | $_{1} \lambda = 1.540$ | 598 A; temp. 25 | ±1 °C  |
|-------|------------------------|-----------------|--------|
| Inte  | rnal standa            | rd Ag, a = 4.08 | 651 Å  |
| d(A)  | I                      | hkl             | 20 (°) |
| 8.83  | 25                     | 100             | 10.01  |
| 6.69  | 11                     | 011             | 13.22  |
| 6.25  | 5                      | 020             | 14.16  |
| 5.90  | 7                      | 101             | 15.00  |
| 5.34  | 11                     | 111             | 16.58  |
| 5.10  | 10                     | 120             | 17.37  |
| 4.292 | 7                      | 121             |        |
| 3.968 | 25                     | 002             | 20.68  |
| 3.693 | 100                    |                 | 22.39  |
| 3.693 | 40                     | 211,031         | 24.08  |
| 2.010 | 40                     | 102,220         | 24.60  |
| 3.478 | 8                      | 112             | 25.59  |
| 3.406 | 9                      | 131             | 26.14  |
| 3.350 | 2                      | 022             | 26.59  |
| 3.290 | 3                      | 221             | 27.08  |
| 3.129 | 5                      | 122             | 28.50  |
| 3.478 | 8                      | 112             | 25.59  |
| 3.406 | 9                      | 131             | 26.14  |
| 3.350 | 2                      | 022             | 26.59  |
| 3.290 | 3                      | 221             | 27.08  |
| 3.129 | 5                      | 122             | 28.50  |
| 3.123 | ,                      | 122             | 20.50  |
|       |                        |                 |        |
|       |                        |                 |        |

| d(Å)   | I      | hkl     | 20 (°) |
|--------|--------|---------|--------|
| 3.123  | 3      | 040     | 28.56  |
| 2.952  | 4      | 202,300 | 30.25  |
| 2.907  | 4      | 041     | 30.73  |
| 2.876  | 11     | 310,032 | 31.07  |
| 2.836  | 6      | 231     | 31.52  |
| 2.764  | 9      | 141     | 32.36  |
| 2.733  | 9      | 132     | 32.74  |
| 2.703  | <2     | 311     | 33.11  |
| 2.671  | 50     | 222,320 | 33.52  |
| 2.587  | 5      | 013     | 34.65  |
| 2.553  | 20     | 240     | 35.12  |
| 2.534  | 9      | 103     | 35.39  |
| 2.483  | 2      | 113     | 36.14  |
| 2.454  | 2      | 042     | 36.59  |
| 2.371  | 4      | 302     | 37.91  |
| 2.350  | 14     | 123     | 38.27  |
| 2.328  | 7      | 312     | 38.65  |
| 2.303  | 10     | 151     | 39.09  |
| 2.232  | 18     | 033     | 40.38  |
| 2.216  | 16     | 400,322 | 40.68  |
| 2.166  | 6      | 133     | 41.67  |
| 2.148  | 8      | 242,340 | 42.04  |
| 2.101  | 19     | 251     | 43.02  |
| 2.083  | 7      | 060     | 43.41  |
| 2.059  | 5      | 332     | 43.94  |
| 2.027  | 3      | 160     | 44.66  |
| 1.994  | 3      | 233     | 45.44  |
| 1.968  | 7      | 143     | 46.08  |
| 1.935  | ,<br>9 | 104,402 | 46.92  |
| 1.912  | 5      | 114,412 | 47.51  |
| 1.900  | 13     | 431     | 47.84  |
| 1.879  | 6      | 323     | 48.40  |
| 1.856  | <2     | 351     | 49.04  |
| 1.848  | 5      | 422     | 49.27  |
| 1.845  | 9      | 062     | 49.36  |
| 1.817  | <2     | 053     | 50.18  |
| 1.810  | 5      | 204     | 50.38  |
| 1.805  | 3      | 162     | 50.51  |
| 1.781  | 4      | 333     | 51.24  |
| 1.762  | <2     | 441     | 51.84  |
| 1.756  | 3      | 510,134 | 52.04  |
| 1.740  | 3      | 224     | 52.56  |
| 1.680  | 2      | 253     | 54.58  |
| 1.6679 | 3      | 521     | 55.01  |
| 1.6467 | 2      | 304     | 55.78  |
| 1.6330 | <2     | 314     | 56.29  |
| 1.6232 | 2      | 451 ·   | 56.66  |
| 1.6190 | 2      | 502     | 56.82  |
| 1.6092 | 3      | 163     | 57.20  |
| 1.5730 | 5      | 433     | 58.64  |
| 1.5624 | 2      | 080,105 | 59.08  |
| 1.5314 | 3      | 334     | 60.40  |
| 1.5177 | 4      | 460     | 61.00  |
| 1.5155 | 5      | 125     | 61.10  |
|        |        |         |        |

| Sample     |     |          |    |          |    |     |     |
|------------|-----|----------|----|----------|----|-----|-----|
| The sample | was | prepared | by | reaction | of | KC1 | and |
| HaPtCle.   |     |          |    |          |    |     |     |

| Major | impuri | ties |
|-------|--------|------|
|-------|--------|------|

0.01 to 0.1% Na and Ba 0.001 to 0.01% Al, Ca, Cr, and Si 0.0001 to 0.001% Ag, Fe, Mg, and Mn

# Color

Bright yellow

# Optical data Isotropic, N = 1.823

#### Structure

Cubic, Fm3m (225) Z=4, isostructural with other similar alkali platinum halides. The structure of  $K_2PtCl_6$  was determined by Ewing and Pauling [1928].

NBS lattice constant of this sample:

$$a = 9.7560(1) A$$

# Density (calculated) 3.478 g/cm<sup>3</sup>

# Reference intensity I/I = 5.7

#### Additional patterns

- 1. PDF card 7-199 [Swanson et al., 1955].
- 2. Hanawalt et al. [1938].

#### References

Ewing, F.J. and Pauling, L. (1928). Z. Krist. <u>68</u>, 223.

Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457.

Swanson, H. E., Gilfrich, N.T., and Ugrinic, G.M. (1955). Nat. Bur. Stand. (U.S.) Circ. 539, 5, 49.

| CuKa <sub>1</sub> | λ = 1.540  | 0598 A; temp. 25 | 5 <b>±1 °</b> C |
|-------------------|------------|------------------|-----------------|
|                   | nal standa | ard Ag, a = 4.08 | 3651 Å          |
| d(Å)              | I          | hkl              | 20(°)           |
| 5.633             | 100        | 111              | 15.72           |
| 4.878             | 40         | 200              | 18.17           |
| 3.4491            | 45         | 220              | 25.81           |
| 2.9417            | 45         | 311              | 30.36           |
| 2.8160            | 5          | 222              | 31.75           |
| 2.4391            | 40         | 400              | 36.82           |
| 2.2383            | 13         | 331              | 40.26           |
| 2.1817            | 15         | 420              | 41.35           |
| 1.9915            | 14         | 422              | 45.51           |
| 1.8773            | 14         | 511              | 48.45           |
| 1.7246            | 18         | 440              | 53.06           |
| 1.6492            | 13         | 531              | 55.69           |
| 1.6259            | 6          | 600              | 56.56           |
| 1.5425            | 5          | 620              | 59.92           |
| 1.4878            | 4          | 533              | 62.36           |
| 1.4083            | 4          | 444              | 66.32           |
| 1.3659            | 6          | 711              | 68.66           |
| 1.3531            | 3          | 640              | 69.40           |
| 1.3035            | 4          | 642              | 72.45           |
| 1.2700            | 4          | 731              | 74.68           |
| 1.2194            | 1          | 800              | 78.35           |
| 1.1918            | ī          | 733              | 80.53           |
| 1.1829            | 2          | 820              | 81.26           |
| 1.1496            | 1          | 660              | 84.14           |
| 1.1264            | 2          | 751              | 86.29           |
| 1.0907            | 3          | 840              | 89.86           |
| 1.0708            | 2          | 911              | 92.00           |
| 1.0645            | 2          | 842              | 92.71           |
| 1.0401            | 1          | 664              | 95.57           |
| 1.0226            | 2          | 931              | 97.75           |
| 0.9957            | 2          | 844              | 101.36          |
| . 9805            | 2          | 933              | 103.56          |
| .9757             | 1          | 10.0.0           | 104.28          |
| .9567             | 2          | 10.2.0           | 107.25          |
| .9431             | 2          | 951              | 109.49          |
| . 9098            | 1          | 953              | 115.71          |
| .9059             | 2          | 10.4.0           | 116.50          |
| .8905             | 1          | 10.4.2           | 119.76          |
| .8796             | 1          | 11.1.1           | 122.26          |
| .8624             | 1          | 880              | 126.57          |
| .8525             | 1          | 11.3.1           | 129.28          |
| .8492             | 1          | 10.4.4           | 130.22          |
| .8366             | 1          | 10.6.0           | 134.08          |
| .8275             | ī          | 11.3.3           | 137.14          |
| .8130             | 1          | 12.0.0           | 142.69          |
| .8064             | 1          | 11.5.1           | 146.40          |
| .7912             | 1          | 12.2.2           | 153.60          |
| .7835             | <1         | 11.5.3           | 158.90          |
|                   |            |                  |                 |

The sample was very pure vacuum floated, zone refined silicon. This sample is NBS Standard Reference Material # 640, Silicon Powder, X-Ray Diffraction Standard.\*

Major impurities (after grinding of the sample):

0.001-0.0001% each of Ca, Cu.

Color

Gray

Structure

Cubic, Fd3m (227), Z = 8 [Debye and Scherrer, 1916].

NBS lattice constant of this sample:

a = 5.43088(4)A

Density

(calculated) 2.329 g/cm<sup>3</sup>

Reference intensity

I/I corundum = 4.7

#### Polymorphism

Kasper and Richards [1964] reported that a second, dense form with space group Ia3(206) is formed under pressure.

#### Additional pattern

1. PDF card 5-565 [Swanson and Fuyat, 1953]. The Swanson and Fuyat [1953] reference lists a large number of early powder patterns.

#### References

Debye, P. and Scherrer, P. (1916). Phys. Z.  $\underline{17}$ , 277.

Kasper, J. S. and Richards, S. M. (1964). Acta Crystallogr. 17, 752.

Swanson, H. E. and Fuyat, R. K. (1953). Nat. Bur. Stand. (U.S.) Circ. 539, 2, 6.

Samples may be obtained from the Office of Standard Reference Materials, Room B311, Chemistry Building, National Bureau of Standards, Washington, D. C. 20234, \$52 per 10 gram unit.

| CuKa <sub>1</sub> | $\lambda = 1.5405$ | 598 A; temp. 25 | 5±1 °C  |
|-------------------|--------------------|-----------------|---------|
| Intern            | al standar         | d W, a = 3.16   | 5524 A  |
| d(A)              | I                  | hkl             | 20(°)   |
| 3.13552           | 100                | 111             | 28.443  |
| 1.92011           | 55                 | 220             | 47.303  |
| 1.63747           | 30                 | 311             | 56.123  |
| 1.35772           | 6                  | 400             | 69.131  |
| 1.24593           | 11                 | 331             | 76.377  |
| 1.10857           | 12                 | 422             | 88.032  |
| 1.04517           | 6                  | 511             | 94.954  |
| 0.96005           | 3                  | 440             | 106.710 |
| .91799            | 7                  | 531             | 114.094 |
| .85870            | 8                  | 620             | 127.547 |
| .82820            | 3                  | 533             | 136.897 |

The sample was prepared by precipitation, adding K2CO3 to AgNO3 solution.

#### Major impurities

0.001 to 0.01%, Al and Si 0.0001 to 0.001%, Ca, Cu, Fe, and Mg

#### Color

Greenish yellow

#### Structure

Monoclinic, P2<sub>1</sub>(4), Z=2 [Donahue and Helmholz, 1944].

NBS lattice constants of this sample:

a = 4.8510(7)Ab = 9.544(2) c = 3.2533(6)

 $\beta = 91.96^{\circ}(2)$ 

#### Density

(calculated) 6.084 g/cm<sup>3</sup>

#### Additional patterns

- 1. PDF card 12-766 [Swanson et al., 1962].
- 2. Hanawalt et al [1938].

#### References

Donahue, J. and Helmholz, L. (1944). J. Am. Chem. Soc. 66, 295.

Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457.

Swanson, H. E., Morris, M.C., Stinchfield, R. P., and Evans, E.H. (1962). Nat. Bur. Stand. (U.S.) Monogr. 25, Sec. 1, 44.

| CuKa <sub>1</sub> | $\lambda = 1.5405$ | 398 Å; temp. 25  | ±1 °C |
|-------------------|--------------------|------------------|-------|
| Inter             | nal standar        | d W, a = 3.16    | 524 Å |
| d(Å)              | I                  | hkl              | 20(°) |
| 4.85              | 15                 | 100              | 18.29 |
| 4.78              | 35                 | 020              | 18.56 |
| 4.32              | 30                 | 110              | 20.52 |
| 3.41              | 2                  | 120              | 26.14 |
| 3.252             | 3                  | 001              | 27.40 |
| 3.078             | 8                  | <u>0</u> 11      | 28.99 |
| 2.745             | 60                 | 101              | 32.60 |
| 2.660             | 100                | 130,101          | 33.66 |
| 2.561             | 6                  | 111              | 35.01 |
| 2.423             | 2                  | 200              | 37.07 |
| 2.385             | 11                 | 040              | 37.68 |
| 2.381             | 13                 | Ī21              | 37.76 |
| 2.351             | 8                  | 210              | 38.26 |
| 2.322             | 14                 | 121              | 38.75 |
| 2.275             | 35                 | 031              | 39.59 |
| 2.161             | 11                 | 220              | 41.76 |
| 2.041             | 10                 | 131              | 44.35 |
| 1.976             | 2                  | 201              | 45.89 |
| 1.935             | 6                  | 211              | 46.92 |
| 1.929             | 9                  | 230              | 47.08 |
| 1.912             | 4                  | 201              | 47.51 |
| 1.875             | 6                  | 211              | 48.52 |
| 1.801             | 3                  | $\overline{1}41$ | 50.65 |
| 1.777             | 13                 | 150,141          | 51.39 |
| 1.701             | 3                  | 240              | 53.87 |
| 1.678             | 9                  | <del>2</del> 31  | 54.65 |
| 1.646             | 6                  | 051              | 55.82 |
| 1.639             | 10                 | 231              | 56.07 |
| 1.626             | 6                  | 002              | 56.56 |
| 1.616             | 1                  | 300              | 56.92 |
| 1.591             | 9                  | 060              | 57.93 |
| 1.538             | 2                  | 022,112          | 60.11 |
| 1.530             | 3                  | 320              | 60.44 |
| 1.526             | 3                  | 102              | 60.64 |
| 1.511             | 2                  | 160              | 61.29 |
| 1.507             | 3                  | 112              | 61.47 |
| 1.4676            | <1                 | 301              | 63.32 |
| 1.4526            | <1                 | 122              | 64.05 |
| 1.4500            | 1                  | 311              | 64.18 |
| 1.4412            | 2                  | 330              | 64.62 |
| 1.4278            | 1                  | 301              | 65.30 |
| 1.4115            | 1                  | 311              | 66.15 |
| 1.3987            | 5                  | 132              | 66.83 |
| 1.5507            |                    |                  |       |

| Sample         |          |        |      |       |       |
|----------------|----------|--------|------|-------|-------|
| The sample was | obtained | from J | . т. | Baker | Chem- |
| ical Company.  |          |        |      |       |       |

| Mai   | or | imp           | uri      | ties |
|-------|----|---------------|----------|------|
| ria j | O. | <b>T</b> 1111 | <u>u</u> |      |

0.001 to 0.01% each of Al, Fe, Mg, and Si. 0.0001 to 0.001% each of Ca and Pb.

#### Color

Colorless

Optical data Biaxial (-),  $N_{\alpha}=1.756$ ,  $N_{\beta}=1.775$ , and  $N_{\gamma}=$  1.782.

#### Structure

Orthorhombic, Fddd(70), Z=8, Na<sub>2</sub>SO<sub>4</sub> type structure [Herrmann and Ilge, 1931].

NBS lattice constants of this sample:

a = 10.2699(5)A b = 12.7069(7) c = 5.8181(3)

Density

(calculated) 5.455 g/cm<sup>3</sup>

Reference intensity
I/I = 2.2

#### Additional patterns

- 1. PDF card 7-203 [Swanson et al., 1957].
- 2. Hanawalt et al. [1938].

#### References

Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem., Anal. Ed. 10, 457.

Herrmann, K. and Ilge, W. (1931). Z. Krist. <u>80</u>, 402.

Swanson, H. E., Gilfrich, N. T., and Cook, M. I. (1957). Nat. Bur. Stand. (U.S.) Circ. 539, 7, 46.

| $CuK\alpha_1 \lambda =$ | = 1.540598 | A; temp. 25±1 | . °C           |
|-------------------------|------------|---------------|----------------|
| Internal                | standard W | 1, a = 3.1652 | 24 Å           |
| d(A)                    | I          | hkl           | 20(°)          |
| 4.699                   | 10         | 111           | 18.87          |
| 3.994                   | 25         | 220           | 22.24          |
| 3.249                   | 3          | 131           | 27.43          |
| 3.177                   | 70         | 040           | 28.06          |
| 2.873                   | 100        | 311           | 31.10          |
| 2.644                   | 90         | 022           | 33.87          |
| 2.568                   | 1          | 400           | 34.91          |
| 2.530                   | 17         | 202           | 35.45          |
| 2.421                   | 30         | 331           | 37.10          |
| 2.352                   | 3          | 222           | 38.24          |
| 2.272                   | 8          | 151           | 39.64          |
| 1.980                   | 11         | 242           | 45.78          |
| 1.957                   | 8          | 260           | 46.35          |
| 1.926                   | 30         | 351           | 47.15          |
| 1.915                   | 12         | 511           | 47.44          |
| 1 004                   | -          | 112           | 40.00          |
| 1.884<br>1.762          | 5<br>3     | 113<br>531    | 48.26<br>51.85 |
| 1.7376                  | 3          | 133           | 52.63          |
| 1.7123                  | 3<br>17    | 062           | 53.47          |
| 1.6730                  | 12         | 313           | 54.83          |
| 1.0750                  | 12         | 313           | 34.03          |
| 1.6527                  | 4          | 620           | 55.56          |
| 1.6243                  | 1          | 262           | 56.62          |
| 1.5881                  | 3          | 080           | 58.03          |
| 1.5675                  | 13         | 333           | 58.87          |
| 1.5462                  | 8          | 371           | 59.76          |
| 1.5404                  | 6          | 551           | 60.01          |
| 1.4751                  | 4          | 602           | 62.96          |
| 1.4542                  | 3          | 004           | 63.97          |
| 1.4057                  | 6          | 353           | 66.46          |
| 1.3668                  | 3          | 224           | 68.61          |
| 1.3598                  | 1          | 191           | 69.01          |
| 1.3457                  | 2          | 282           | 69.84          |
| 1.3380                  | 6          | 642,533       | 70.30          |
| 1.3312                  | 6          | 660           | 70.71          |
| 1.3225                  | 6          | 044           | 71.25          |
| 1.2837                  | 1          | 800           | 73.75          |
| 1.2736                  | 3          | 391           | 74.43          |
| 1.2359                  | 3          | 373           | 77.11          |
| 1.2331                  |            | 2.10.0,553    | 77.32          |
| 1.1905                  | 1          | 840           | 80.64          |
|                         | _          |               |                |
| 1.1678                  | 1<br>3     | 264           | 82.54          |
| 1.1645                  | 1          | 0·10·2<br>822 | 82.83<br>83.67 |
| 1.1408                  | 1          | 591           | 84.94          |
| 1.1154                  | î          | 911,135       | 87.36          |
|                         |            |               | _,,,,,,        |
| 1.1136                  | 1          | 573           | 87.53          |
| 1.0975                  | 2          | 315           | 89.15          |
| 1.0919                  | 3          | 624           | 89.73          |
| 1.0829                  | 4          | 393,931       | 90.69          |
| 1.0809                  | 3          | 682           | 90.90          |
|                         |            |               |                |

Silver sulfate,  ${\rm Ag_2SO_4}$  - continued

| d (Å)  | I | hkl           | 20 (°) |
|--------|---|---------------|--------|
| 1.0758 | 3 | 3.11.1        | 91.46  |
| 1.0727 | 3 | 084           | 91.80  |
| 1.0663 | 2 | 335           | 92.51  |
| 1.0589 | 1 | 0.12.0        | 93.34  |
| 1.0272 | 1 | 862           | 97.17  |
|        |   |               |        |
| 1.0246 | 1 | 951           | 97.49  |
| 1.0203 | 1 | 6.10.0        | 98.05  |
| 1.0138 | 1 | 10.2.0        | 98.89  |
| 1.0109 | 1 | 355           | 99.28  |
| 0.9976 | 1 | 593           | 101.10 |
|        |   |               |        |
| .9920  | 1 | 5.11.1        | 101.88 |
| .9820  | 2 | 664           | 103.33 |
| .9586  | 1 | 026           | 106.95 |
| .9531  | 1 | 3.11.3,971    | 107.84 |
| .9419  | 1 | 375           | 109.74 |
|        |   |               |        |
| .9407  | 1 | 2.10.4,555    | 109.94 |
| .9279  | 1 | 3.13.1,4.12.2 | 112.23 |
| .9210  | 1 | 844           | 113.51 |
|        |   |               |        |

| S | ample |  |
|---|-------|--|
|   |       |  |

The sample was prepared by H.M. Ondik by hydrolytic cleavage of the a form of P2O5 below 15 °C. The material was neutralized by NaOH, then purified by salting out with NaCl, followed by repeated recrystallizations with H<sub>2</sub>O and ethanol.

#### Major impurities

0.001 to 0.01% each of Ba, Ca, Si, and Sr.

#### Color

Colorless

#### Optical data

Biaxial(+),  $N_g = 1.440$ ,  $N_g = 1.458$ ,  $N_{\chi} = 1.476$ .

#### Structure

Monoclinic, P21/a (14), Z=2. The structure of α-Na<sub>4</sub>P<sub>4</sub>O<sub>12</sub>·4H<sub>2</sub>O was determined by Ondik et al.

#### NBS lattice constants of this sample:

a = 9.691(2)Ab = 12.342(2)c = 6.187(2) $\beta = 92.58(1)^{\circ}$ 

#### Density

(calculated) 2.156 g/cm<sup>3</sup>

# Polymorphism

Thilo and Ratz [1949] reported a β, high temperature form of Na<sub>4</sub>P<sub>4</sub>O<sub>12</sub>·4H<sub>2</sub>O.

#### Additional patterns

- 1. PDF card 11-15 [Swanson et al., 1960].
- 2. Bell et al. [1952].
- 3. Thilo and Ratz [1949].

#### References

Bell, R.N., Audrieth, L.F., and Hill, O.F. (1952). Ind. Eng. Chem. 44, 568.

Ondik, H. M., MacGillavry, C.H., and Block, S.

(1961). Acta Crystallogr. 14, 555.

Swanson, H. E., Cook, M. I., Evans, E. H., and de Groot, J.H. (1960). Nat. Bur. Stand. (U.S.) Circ. 539, 10, 52.

Thilo, E. and Ratz, R. (1949). Z. Anorg. Allg. Chem. 260, 255.

|      | Cura <sub>1</sub> x - | 1.540550      | , r, cemp.           | 2311  |                |  |
|------|-----------------------|---------------|----------------------|-------|----------------|--|
|      |                       | standard      | W, $a = 3$ .         | 16524 | Ä              |  |
| d (1 | A)                    | I             | hkl                  |       | 20 (°)         |  |
| 7.6  |                       | 75            | 110                  |       | 11.58          |  |
| 6.3  | 17                    | 90            | 001,020              |       | 14.34          |  |
| 5.2  |                       | 5             | 120                  |       | 17.00          |  |
|      | 844                   | 65            | 200                  |       | 18.30          |  |
| 4.   | 719                   | 60            | 111                  |       | 18.79          |  |
| 4.   | 510                   | 3             | 210                  |       | 19.67          |  |
| 4.   | 369                   | 17            | 021                  |       | 20.31          |  |
| 3.9  | 933                   | 20            | 121                  |       | 22.59          |  |
| 3.8  | 894                   | 2             | 201                  |       | 22.82          |  |
| 3.8  | 805                   | 95            | 220                  |       | 23.36          |  |
| 3.   | 728                   | 25            | 201                  |       | 23.85          |  |
|      | 572                   | 8             | 211                  |       | 24.91          |  |
|      | 424                   | 10            | 031                  |       | 26.00          |  |
| 3.3  | 295                   | 100           | 221                  |       | 27.04          |  |
| 3.2  | 2 <b>5</b> 5          | 70            | <b>1</b> 31          |       | 27.38          |  |
| , .  | 194                   | 20            | 221                  |       | 27.91          |  |
|      | 133                   | 19            | 230                  |       | 28.47          |  |
|      | 122                   | 19            | 310                  |       | 28.57          |  |
|      | 089                   | 25            | 002,040              |       | 28.88          |  |
|      | 938                   | 9             | 140                  |       | 30.40          |  |
| 2.   | 936                   | 9             | 140                  |       | 30.40          |  |
| 2.8  | 827                   | 70            | $\bar{2}31,112$      |       | 31.62          |  |
| 2.   | 760                   | 19            | 022,041              | +     | 32.41          |  |
|      | 739                   | 20            | 311                  |       | 32.67          |  |
| 2.6  | 685                   | 18            | ī22                  |       | 33.34          |  |
| 2.6  | 669                   | 7             | 141                  |       | 33.55          |  |
| 2.6  | 638                   | 14            | 141                  |       | 33.95          |  |
|      | 633                   | 15            | 321                  |       | 34.02          |  |
| 2.6  | 602                   | 7             | $240,\overline{2}12$ |       | 34.44          |  |
| 2.5  | 554                   | 14            | 202                  |       | 35.11          |  |
| 2.5  | 539                   | 35            | 330                  |       | 35.32          |  |
| 2.4  | 418                   | 18            | 241,132              |       | 37.16          |  |
|      | 392                   | 8             | 150                  |       | 37.57          |  |
|      | 375                   | 8             | 410,132              |       | 37.85          |  |
|      | 360                   | 5             | 222                  |       | 38.10          |  |
|      | 293                   | 5             | 051                  |       | 39.26          |  |
| 2 .  | 253                   | 40            | 420                  |       | 39.98          |  |
|      | 247                   | 25            | 312                  |       | 40.10          |  |
|      | 222                   | 16            | 151                  |       | 40.56          |  |
|      | 199                   | 11            | 250                  |       | 41.01          |  |
|      | 185                   | 16            | 411,042              |       | 41.29          |  |
|      |                       | _             |                      |       |                |  |
|      | 170                   | 5             | 232                  |       | 41.59          |  |
|      | 148                   | 5             | 312                  |       | 42.02          |  |
|      | 146                   | 3             | 421,142              |       | 42.08          |  |
|      | 120<br>115            | <b>4</b><br>5 | 341<br>142           |       | 42.62<br>42.71 |  |
|      |                       |               |                      |       |                |  |
|      | 087                   | 4             | 430,251              |       | 43.32          |  |
|      | 060                   | 2             | 003,251              |       | 43.92          |  |
|      | 015                   | 8             | 242                  |       | 44.94          |  |
|      | 001                   | 6             | 431                  |       | 45.29          |  |
| 1.9  | 996                   | 1             | 332                  |       | 45.40          |  |
|      |                       |               |                      |       |                |  |

 $CuK\alpha_1$   $\lambda = 1.540598$  Å; temp. 25±1 °C

Sodium phosphate hydrate,  $\alpha$ -Na $_4$ P $_4$ 0 $_{12}\cdot 4H_2$ 0 - continued

| d(Å)   | I  | hkl                  | 20(°) |
|--------|----|----------------------|-------|
| 1.968  | 8  | 242                  | 46.08 |
| 1.961  | 10 | 350                  | 46.25 |
| 1.955  | 8  | 023,431              | 46.40 |
| 1.949  | 8  | 402                  | 46.56 |
| 1.928  | 10 | 332,052 +            | 47.09 |
| 1.924  | 7  | 412                  | 47.19 |
| 1.913  | 6  | 510                  | 47.49 |
| 1.907  | 10 | 161                  | 47.65 |
| 1.903  | 14 | 213 <b>,</b> 152 +   | 47.75 |
| 1.895  | 9  | 260                  | 47.97 |
| 1.854  | 18 | 351                  | 49.11 |
| 1.850  | 18 | 511                  | 49.20 |
| 1.842  | 9  | 033                  | 49.44 |
| 1.837  | 9  | $\overline{441,342}$ | 49.58 |
| 1.823  | 10 | 133                  | 50.00 |
| 1.786  | 8  | 223,422              | 51.11 |
| 1.776  | 8  | 252                  | 51.42 |
| 1.7547 | 6  | 313                  | 52.08 |
| 1.7500 | 5  | 521                  | 52.23 |
| 1.7456 | 6  | 233                  | 52.37 |
| 1.7349 | 5  | 360,170              | 52.72 |
| 1.7123 | 3  | 043,062              | 53.47 |
| 1.6991 | 6  | 233,432 +            | 53.92 |
| 1.6806 | 12 | 361                  | 54.56 |
| 1.6761 | 16 | 143,352              | 54.72 |

The sample was prepared by heating  $Sr(OH)_2 \cdot 8H_2O$  for 24 hours at about 200 °C.

#### Color

Colorless

#### Structure

Orthorhombic, Pbnm (62), Z=4, [Bärnighausen and Weidlein, 1965]. The structure was determined by Grueninger and Bärnighausen [1969].

NBS lattice constants of this sample:

a = 6.1201(6)A b = 9.892(1) c = 3.9193(5)

#### Density

(calculated) 3.405 g/cm<sup>3</sup>

# Reference intensity

I/I corundum = 2.7

## Additional patterns

- PDF card 18-1273 [Bärnighausen and Weidlein, 1965].
- 2. PDF card 19-1276 [Mercer and Miller, 1966]. This pattern is labeled as anhydrous but is for Sr(OH)<sub>2</sub>·H<sub>2</sub>O.
- 3. Berggren and Brown [1971].

#### References

Bärnighausen, H. and Weidlein, J. (1965). Acta Crystallogr. 19, 1048.

Berggren, G. and Brown, A. (1971). Acta Chem. Scand. 25, 1377.

Grueninger, H. W. and Bärnighausen, H (1969). Z. Anorg. Allgem. Chem. 368, 53.

Mercer, R. A. and Miller, R.P. (1966). J. Inorg.
Nucl. Chem. 28, 61.

| СиКа  | $\lambda_1 \lambda = 1.54059$ | 08 A; temp. 25 | 5±1 °C |
|-------|-------------------------------|----------------|--------|
| Inte  | rnal standard                 | l W, a = 3.16  | 5524 Å |
| d(Å)  | I                             | hkl            | 20(°)  |
| 5.19  | 55                            | 110            | 17.06  |
| 4.94  | 25                            | 020            | 17.94  |
| 3.846 | 40                            | 120            | 23.11  |
| 3.300 | 40                            | 101            | 27.00  |
| 3.130 | 100                           | 111            | 28.49  |
|       |                               |                |        |

|        |     |         | *         |
|--------|-----|---------|-----------|
| d(A)   | I   | hkl     | 20 (°)    |
| 3.068  | 25  | 021,200 | 29.08     |
| 2.922  | 25  | 210     | 30.57     |
| 2.903  | 45  | 130     | 30.78     |
| 2.745  | 5   | 121     | 32.59     |
| 2.602  | 2   | 220     | 34.44     |
| 2.002  | 2   | 220     | 24.44     |
| 2.473  | 25  | 040     | 36.30     |
| 2.343  | 45  | 211     | 38.38     |
| 2.293  | 10  | 140     | 39.26     |
| 2.244  | 2   | 230     | 40.16     |
| 2.168  | 10  | 221     | 41.62     |
| 2.091  | 25  | 041     | 43.23     |
| 1.998  | 3   | 310     | 45.36     |
| 1.979  | 6   | 141     | 45.81     |
| 1.959  | 20  | 002     | 46.31     |
| 1.947  | 50  | 231     | 46.62     |
|        |     |         |           |
| 1.886  | 17  | 320     | 48.21     |
| 1.834  | 6   | 112     | 49.68     |
| 1.822  | 3   | 022     | 50.03     |
| 1.810  | 15  | 301     | 50.38     |
| 1.780  | 1   | 311     | 51.29     |
| 1.746  | 6   | 122     | 52.35     |
| 1.735  | i   | 330     | 52.73     |
| 1.727  | 2   | 241     | 52.97     |
| 1.6970 | 17  | 151     | 53.99     |
| 1.6615 | 6   | 250     | 55.24     |
| 1.0015 | O   | 230     | 33.24     |
| 1.6486 | 6   | 060     | 55.71     |
| 1.6280 | 11  | 212     | 56.48     |
| 1.6245 | 16  | 132     | 56.61     |
| 1.5735 | 5   | 340     | 58.62     |
| 1.5360 | 7   | 042     | 60.20     |
| 1.5304 | 6   | 400,251 | 60.44     |
| 1.5126 | 3   | 410     | 61.23     |
| 1.4898 | 4   | 142     | 62.27     |
| 1.4751 | 3   | 232,161 | 62.96     |
| 1.4608 | 5   | 341     | 63.65     |
| 1.4518 | 1   | 260     | 64.09     |
| 1.4109 | 1   | 411     | 66.18     |
| 1.3874 | 1   | 430     | 67.45     |
| 1.3768 | 2   | 170     | 68.04     |
| 1.3696 | 2   | 421     | 68.45     |
| 2.0000 | _   |         | 005       |
| 1.3589 | 8   | 322     | 69.06     |
| 1.3353 | 1   | 351     | 70.46     |
| 1.3080 | 3   | 431     | 72.16     |
| 1.3012 | 4   | 440     | 72.60     |
| 1.2992 | 4   | 171,332 | 72.73     |
| 1.2829 | 4   | 270     | 73.80     |
| 1.2672 | , 8 | 252,113 | 74.87     |
| 1.2618 | 5   | 062     | 75.25     |
| 2.220  | _   | 002     | , 3 , 2 3 |

The sample was prepared by heating  $Sr(OH)_2$  in a partly closed tube with about 1 ml H<sub>2</sub>O at 100°C for 24 hours. The sample contained a small amount of  $SrCO_3$ . Because of this and the tendency to lose H<sub>2</sub>O when exposed to air, the intensities may be slightly in error.

#### Color

Colorless

#### Structure

Orthorhombic,  $Pb2_1m$  (26), Z = 2. Isostructural with  $Eu(OH)_2 \cdot H_2O$  and  $Ba(OH)_2 \cdot H_2O$  [Bärnighausen, 1966]. The structure of  $Sr(OH)_2 \cdot H_2O$  was determined by Bärnighausen and Weidlein [1967].

NBS lattice constants of this sample:

a = 6.201(1)A b = 6.716(1) c = 3.6483(6)

#### Density

(calculated) 3.053 g/cm<sup>3</sup>

Reference intensity
I/I = 0.8

#### Additional patterns

- 1. PDF card 19-1276 [Mercer and Miller, 1966]. This pattern was labeled as  $Sr(OH)_2$
- 2. Bärnighausen [1966].
- 3. Berggren and Brown [1971].
- 4. Carlson [1954].
- 5. Lutz [1965].

#### References

Bärnighausen, H. (1966). Z. Anorg. Allgem. Chem. 342, 233.

Bärnighausen, H., and Weidlein, J. (1967). Acta. Crystallogr. 22, 252.

Berggren, G., and Brown, A. (1971). Acta. Chem. Scand. 25, 1377.

Carlson, E. T. (1954). J. Res. Nat. Bur. Stand. 53, 371.

Lutz, H. D. (1965). Z. Naturforsch. 20b, 61.
Mercer, R. A., and Miller, R. P., (1966). J. Inorg.
Nucl. Chem 28, 61.

| CuKα <sub>1</sub> λ | = 1.540598 Å; | temp. 25±1 °C |
|---------------------|---------------|---------------|
| Internal            | standard Ag,  | a = 4.08651 Å |

| d (Å)  | I   | hkl     | 20 (°) |
|--------|-----|---------|--------|
| 6.20   | 65  | 100     | 14.28  |
| 4.556  | 80  | 110     | 19.47  |
| 3.651  | 40  | 001     | 24.36  |
| 3.360  | 55  | 020     | 26.51  |
| 3.147  | 45  | 101     | 28.34  |
| 2.954  | 15  | 120     | 30.23  |
| 2.848  | 60  | 111     | 31.39  |
| 2.814  | 100 | 210     | 31.77  |
| 2.472  | 50  | 021     | 36.31  |
| 2.363  | 10  | 201     | 38.05  |
| 2.296  | 70  | 121     | 39.21  |
| 2.230  | 85  | 211     | 40.42  |
| 2.106  | 25  | 130     |        |
| 2.067  | 10  |         | 42.91  |
|        |     | 300     | 43.77  |
| 1.977  | 18  | 310     | 45.87  |
| 1.825  | 35  | 002,131 | 49.94  |
| 1.816  | 25  | 230     | 50.21  |
| 1.798  | 7   | 301     | 50.72  |
| 1.760  | 11  | 320     | 51.90  |
| 1.750  | 7   | 102     | 52.24  |
| 10,30  | ·   | 102     | 32.21  |
| 1.738  | 12  | 311     | 52.63  |
| 1.6938 | 11  | 112     | 54.10  |
| 1.6792 | 7   | 040     | 54.61  |
| 1.6248 | 25  | 231     | 56.60  |
| 1.6033 | 9   | 022     | 57.43  |
| 1.5854 | 8   | 321     | 58.14  |
| 1.5515 | 5   | 122     | 59.53  |
| 1.5500 | 7   | 400     | 59.60  |
| 1.5311 | 13  | 212     | 60.41  |
| 1.5186 | 6   | 330     | 60.96  |
| 1.5100 |     | 330     |        |
| 1.4808 | 9   | 141     | 62.69  |
| 1.4266 | 7   | 401     | 65.36  |
| 1.4073 | 7   | 420     | 66.37  |
| 1.4024 | 8   | 331     | 66.62  |
| 1.3784 | 7   | 132     | 67.95  |
| 1.3678 | 3   | 302     | 68.55  |
| 1.3398 | 7   | 312     | 70.19  |
| 1.3124 | 11  | 150     | 71.88  |
| 1.3324 | 5   | 340     | 72.49  |
| 1.2862 | 8   | 232     | 73.58  |
| 1.2002 | 8   | 232     | 73.56  |
| 1.2664 | 6   | 322     | 74.93  |
| 1.2396 | 4   | 500     | 76.83  |
| 1.2350 | 9   | 042,151 | 77.18  |
|        |     |         |        |

The sample was prepared by treating  $SrCO_3$  with HCl followed by NaOH at boiling temperatures. On cooling, the first crystals formed were removed, redissolved and reprecipitated by slow evaporation at room temperature.

Color

Colorless

Optical Data

Uniaxial (-),  $N_{e} = 1.497$ ,  $N_{e} = 1.475$ 

Structure

Tetragonal, P4/ncc (130), Z = 4. The structure was determined by Smith [1953].

NBS lattice constants of this sample:

a = 9.019(2)Ac = 11.614(2)

Density

(calculated) 1.868 g/cm<sup>3</sup>

Reference intensity

I/I corundum = 1.3

Additional patterns

- 1. PDF card 1-1263 [Hanawalt et al, 1938].
- 2. PDF card 2-1262 [Natta, 1928].
- 3. Berggren and Brown [1971].

References

Berggren, G., and Brown, A. (1971). Acta. Chem. Scand. 25, 1377.

Hanawalt, J.D., Rinn, R.W., and Frevel, L.K. (1938).

Ind. Eng. Chem. Anal. Ed. 10, 457.
Natta, G. (1928). Gazz. Chim. Ital. 58, 870.

Smith, H. G. (1953). Acta. Crystallogr. 6, 604.

| CuKa <sub>1</sub> | λ = 1.540598 | A; temp. 25      | ±1 °C          |
|-------------------|--------------|------------------|----------------|
| Interna           | al standard  | $W_{i}$ a = 3.16 | 524 Å          |
| d (Å)             | I            | hkl              | 20 (°)         |
| 6.37              | 50           | 110              | 13.89          |
| 5.81              | 45           | 002              | 15.25          |
| 4.50              | 45           | 200              | 19.70          |
| 4.292             | 100          | 112              | 20.68          |
| 3.559             | 80           | 202              | 25.00          |
| 3.190             | 19           | 220              | 27.95          |
| 2.904             | 14           | 004              | 30.76          |
| 2.795             | 45           | 222,213          | 31.99          |
| 2.768             | 60           | 311              | 32.32          |
| 2.640             | 40           | 114              | 33.93          |
| 2.560             | 55           | 312              | 35.02          |
| 2.442             | 40           | 204              | 36.78          |
| 2.357             | 6            | 214              | 38.15          |
| 2.296             | 25           | 322,313          | 39.21          |
| 2.253             | 20           | 400              | 39.99          |
| 2.233             | 20           | 400              | 39.99          |
| 2.147             | 30           | 224              | 42.06          |
| 2.102             | 18           | 402,323          | 42.99          |
| 2.035             | 65           | 314              | 44.48          |
| 2.017             | 55           | 420              | 44.91          |
| 1.997             | 15           | 332              | 45.36          |
| 1.935             | 6            | 006              | 46.92          |
| 1.905             | 20           | 422,413          | 47.70          |
| 1.852             | 12           | 116              | 49.15          |
| 1.801             | 11           | 315              | 50.63          |
| 1.780             | 7            | 404              | 51.28          |
| 1.779             | 15           | 206              | 51.33          |
| 1.715             | 9            | 334              | 53.37          |
| 1.692             | 15           | 512              | 54.15          |
| 1.655             | 8            | 424,226          | 55.46          |
| 1.6020            | 13           | 316              | 57.48          |
| 1.5106            | 9            | 514              | 61.32          |
| 1.4950            | 8            | 532              | 62.03          |
| 1.4690            | 6            | 406              | 63.25          |
| 1.4518            | 10           | 008              | 64.09          |
| 1.4331            | 8            | 108              | 65.03          |
| 1.4263            | 12           | 620              | 65 27          |
| 1.4263            | 7            |                  | 65.37          |
| 1.4157            | 10           | 118              | 65.93          |
| 1.3964            |              | 426              | 66.96          |
| 1.3648            | 8<br>7       | 208<br>534       | 67.76<br>68.72 |
| 1.3048            |              | 534              | 08.72          |

The sample was prepared by repeated grindings and heatings of a 3:1 molar mixture of SrCO<sub>3</sub> and silica gel. The temperature was about 1350 °C.

#### Color

Colorless

#### Structure

Tetragonal, P4/ncc (130), Z=4 [Mansmann, 1965]. The structure of  $Sr_3SiO_5$  was studied by Dent Glasser and Glasser [1965].

NBS lattice constants for this sample:

a = 6.9476(3)A c = 10.7534(6)

#### Density

(calculated) 4.747 g/cm<sup>3</sup>

Reference intensity
I/I = 3.6

#### Additional patterns

- PDF card 18-1282[Dear, Bull. Mat. Eng. Exp. Sta., 1957].
- 2. Eysel [1970].
- 3. Nurse [1952].

## References

Dent Glasser, L.S. and Glasser, R.P. (1965). Acta Crystallogr. <u>18</u>, 453.

Eysel, W. (1970). Neues Jahrb. Mineral. Montash. 1970, 534.

Mansmann, M. (1965). Z. Anorg. Allg. Chem. 339,52. Nurse, R. W. (1952). J. Appl. Chem. (London) 2,

| $CuK\alpha_1 \lambda = 1.5$ | 40598 Å; t | emp. 25±1 | °C     |
|-----------------------------|------------|-----------|--------|
| Internal stan               | dard W, a  | = 3.16524 | o<br>A |

| Internal         | standard | W, $a = 3.16524$ | A      |
|------------------|----------|------------------|--------|
| d (A)            | I        | hkl              | 20 (°) |
| 5.38             | 4        | 002              | 16.46  |
| 4.92             | i        | 110              | 18.02  |
| 4.249            | 1        | 102              | 20.89  |
| 3.629            | 10       | 112              | 24.51  |
| 2.984            | 30       |                  |        |
| 2.904            | 30       | 211              | 29.92  |
| 2.919            | 100      | 202              | 30.60  |
| 2.690            | 30       | 212,004          | 33.29  |
| 2.508            | 2        | 104              | 35.78  |
| 2.458            | 30       | 220              | 36.53  |
| 2.348            | 55       | 213              | 38.30  |
|                  |          |                  |        |
| 2.198            | 25       | 310              | 41.04  |
| 2.035            | 1        | 312,214          | 44.49  |
| 1.897            | 4        | 321              | 47.92  |
| 1.814            | 20       | 322,224          | 50.27  |
| 1.793            | 2        | 006              | 50.89  |
|                  |          |                  |        |
| 1.7683           | 9        | 215              | 51.65  |
| 1.7550           | 1        | 304              | 52.07  |
| 1.7370           | 1        | 400              | 52.65  |
| 1.7014           | 9        | 314              | 53.84  |
| 1.6840           | 3        | 116              | 54.44  |
|                  |          |                  |        |
| 1.6646           | 17       | 411              | 55.13  |
| 1.6530           | 3        | 402              | 55.55  |
| 1.6376           | 2        | 330              | 56.12  |
| 1.5926           | 16       | 206              | 57.85  |
| 1.5662           | 10       | 332,324          | 58.92  |
|                  |          |                  |        |
| 1.5535           | 4        | 420              | 59.45  |
| 1.5366           | 1        | 421,315          | 60.17  |
| 1.5250           | 12       | 413              | 60.68  |
| 1.4926           | 4        | 422              | 62.14  |
| 1.4589           | 4        | 404              | 63.74  |
| 1.4352           | 2        | 325              | 64.92  |
| 1.3982           | 1        |                  | 66.86  |
| 1.3889           | 1        | 334<br>316       | 67.37  |
|                  | _        | 217              |        |
| 1.3772<br>1.3446 | 4        |                  | 68.02  |
| 1.3440           | 7        | 424,008          | 69.90  |
| 1.3262           | 7        | 415              | 71.02  |
| 1.3208           | 5        | 512              | 71.35  |
| 1.2961           | 1        | 118,433          | 72.93  |
| 1.2810           | 1        | 521              | 73.93  |
| 1.2571           | 2        | 406              | 76.29  |
|                  |          |                  |        |
| 1.2338           | 1        | 218              | 77.27  |
| 1.2279           | 1        | 440,416          | 77.71  |
| 1.2140           | 3        | 523              | 78.77  |
| 1.2090           | 3        | 336              | 79.16  |
| 1.2012           | 1        | 327              | 79.77  |
| 1 1074           | 2        | 442              | 90.00  |
| 1.1974           | 2        | 442              | 80.08  |
| 1.1913           | 3        | 530              | 80.57  |
| 1.1790           | 4        | 228              | 81.59  |
| 1.1739           | 2        | 426              | 82.02  |
| 1.1674           | 2        | 435              | 82.58  |
|                  |          |                  |        |

Strontium silicate,  $\mathrm{Sr_3SiO}_5$  - continued

| d(A)   | I  | hkl          | 20(°)  |
|--------|----|--------------|--------|
| 1.1632 | 3  | 532,524 +    | 82.94  |
| 1.1579 | 2  | 600          | 83.40  |
| 1.1468 | 1  | 318          | 84.40  |
| 1.1352 | 6  | 417          | 85.46  |
| 1.1154 | 3  | 219          | 87.36  |
| 1.0891 | 7  | 534          | 90.03  |
| 1.0846 | 4  | 516          | 90.51  |
| 1.0761 | 4  | 622          | 91.42  |
| 1.0632 | 5  | 604,408      | 92.85  |
| 1.0504 | <1 | 1.1.10,623 + | 94.33  |
| 1.0388 | 1  | 338          | 95.72  |
| 1.0305 | 1  | 437          | 96.75  |
| 1.0272 | 3  | 2.0.10       | 97.16  |
| 1.0161 | 2  | 428,2.1.10   | 98.59  |
| 1.0133 | 1  | 446          | 98.96  |
| 1.0088 | 2  | 615          | 99.56  |
| 0.9922 | 1  | 536          | 101.85 |
| .9747  | 2  | 419          | 104.43 |
| .9686  | 1  | 545          | 105.36 |
| .9662  | 2  | 438,3.1.10 + | 105.74 |
| .9597  | <1 | 641          | 106.77 |
| .9506  | 1  | 721          | 108.26 |
| .9484  | 2  | 642          | 108.63 |
| .9364  | 2  | 626          | 110.69 |
| .9324  | 2  | 2 • 1 • 11   | 111.40 |
| .9305  | ī  | 643          | 111.75 |
|        |    |              |        |

| Sample |          |       |                    |      |      |      |        |       |      |
|--------|----------|-------|--------------------|------|------|------|--------|-------|------|
| The    | sample   | was   | made               | by   | T.   | Η.   | Jorda  | an of | the  |
| Amer   | ican De  | ntal  | Associ             | atio | n He | ealt | th Fou | undat | ion. |
| Tin 1  | Fluoride | , Sn  | F <sub>2</sub> , w | as t | reat | ted  | with   | Н3РО  | 4 at |
| a pH   | of 2, f  | ollow | ed by              | slig | ht l | neat | ting.  |       |      |

| Color     |
|-----------|
| Colorless |

Monoclinic,  $P2_1/a(14)$ , Z = 4. The structure was determined by Berndt and Lamberg [1971].

NBS lattice constants of this sample:

a = 5.8307(8)A b = 13.617(1) c = 4.6145(6) $\beta = 98.73(1)^{\circ}$ 

Density (calculated) 3.937 g/cm<sup>3</sup>

Crystallogr. B27, 1092.

Reference Intensity
I/I = 2.0.

## Reference Berndt, A. F. and Lamberg, R. (1971).

CuK $\alpha_1$   $\lambda$  = 1.540598 Å; temp. 25±1 °C

Internal standard Ag, a = 4.08651 Å

| 1111  | Lernar Standar | u Ag, a - 4.00      | 0031 A         |
|-------|----------------|---------------------|----------------|
| d(A)  | I              | hkl                 | 20 (°)         |
| 6.80  | 100            | 020                 | 13.01          |
| 5.311 | 2              | 110                 | 16.68          |
| 4.562 | 12             | 001                 | 19.44          |
| 4.401 | 11             | 120                 | 20.16          |
| 4.327 | 1              | 011                 | 20.51          |
| 4.327 | 1              | 011                 | 20.51          |
| 3.792 | 12             | 021                 | 23.44          |
| 3.731 | 16             | 111                 | 23.83          |
| 3.566 | 6              | 130                 | 24.95          |
| 3.404 | 35             | 040                 | 26.16          |
| 3.367 | 4              | 121                 | 26.45          |
| 3.241 | 8              | 7 7 7               | 27.50          |
| 2.997 | 30             | 111<br>121          | 29.79          |
|       |                |                     |                |
| 2.946 | 40             | 131                 | 30.31          |
| 2.882 | 1              | 200                 | 31.01          |
| 2.820 | 14             | 210                 | 31.71          |
| 2.729 | 4              | 041                 | 32.79          |
| 2.689 | 7              | 131                 | 33.29          |
| 2.654 | 1              | 220                 | 33.75          |
| 2.623 | 1              | 201                 | 34.16          |
| 2.574 | 4              | 211                 | 34.82          |
| 2 550 | 1              | <b>1</b> 41         | 35.04          |
| 2.559 |                | 221                 | 35.04          |
| 2.448 | 1              |                     | 36.68          |
| 2.384 | 3              | 141                 | 37.71          |
| 2.338 | 1              | 051                 | 38.47          |
| 2.279 | 6              | 002                 | 39.51          |
| 2.269 | 11             | <del>2</del> 31,060 | 39.69          |
| 2.251 | 10             | 211,012             | 40.02          |
| 2.228 | 3              | Ī51                 | 40.45          |
| 2.210 | 4              | <u>1</u> 12         | 40.79          |
| 2.163 | <1             | 022                 | 41.72          |
| 2 111 | 1              | 160 151             | 42.00          |
| 2.111 | 1              | 160,151             | 42.80          |
| 2.077 | 1              | 241                 | 43.53          |
| 2.032 | 10             | <u>0</u> 61         | 44.55          |
| 2.008 | 6              | 132                 | 45.11          |
| 1.979 | 9              | 250                 | 45.82          |
| 1.936 | 3              | 202,122             | 46.90          |
| 1.918 | 2              | 212                 | 47.36          |
| 1.894 | 6              | 042                 | 47.99          |
| 1.889 | 6              | <del>2</del> 51     | 48.12          |
| 1.878 | 2              | 161                 | 48.44          |
| 1 062 | 1              | 222                 | 48.84          |
| 1.863 | 1              | 320                 | 49.28          |
| 1.848 | 3<br>4         |                     | 49.28          |
| 1.843 |                | 132,170             |                |
| 1.808 | 4              | 321                 | 50.43<br>51.01 |
| 1.789 | 1              | 071                 | 21.01          |
| 1.783 | 1              | 260                 | 51.19          |
| 1.769 | 2              | 330                 | 51.62          |
| 1.748 | 5              | 052                 | 52.28          |
| 1.737 | 6              | Ī71                 | 52.64          |
| 1.681 | 2              | 171                 | 54.53          |
|       |                |                     |                |

Tin hydrogen phosphate,  ${\rm SnHPO}_4$  - continued

|   | d (A)  | I | hkl             | 2Θ (°) |
|---|--------|---|-----------------|--------|
|   | 1.669  | 1 | 202,311         | 54.96  |
|   | 1.657  | 2 | 212             | 55.42  |
|   | 1.643  | 3 | 341             | 55.93  |
|   | 1.632  | 3 | 180,321         | 56.32  |
|   | 1.609  | 3 | 062             | 57.22  |
|   | 1.578  | 2 | <del>2</del> 52 | 58.44  |
|   | 1.5585 | 1 | ī81             | 59.24  |
|   | 1.5514 | 1 | 322             | 59.54  |
|   | 1.5166 | 4 | 181             | 61.05  |
|   | 1.5081 | 2 | 162,341         | 61.43  |
|   | 1.4989 | 1 | 242             | 61.85  |
| 1 | 1.4802 | 1 | 072             | 62.72  |
|   | 1.4730 | 2 | 262             | 63.06  |
|   | 1.4634 | 1 | 190             | 63.52  |
|   | 1.4486 | 2 | 133             | 64.25  |
|   |        |   | _               |        |
|   | 1.4432 | 1 | 342             | 64.52  |
|   | 1.4384 | 2 | 401,203         | 64.76  |
|   | 1.4303 | 1 | 351,411 +       | 65.17  |
|   | 1.4231 | 2 | 252             | 65.54  |
|   | 1.4092 | 2 | 420,191         | 66.27  |
|   | 1.3943 | 1 | <b>1</b> 43     | 67.07  |
| 1 | 1.3878 | 3 | 043,123         | 67.43  |
|   | 1.3781 | 1 | 19 <u>1</u>     | 67.97  |
|   | 1.3738 | 1 | 430,272         | 68.21  |
|   | 1.3670 | 1 | 370             | 68.59  |
|   | 1.3615 | 1 | 0.10.0          | 68.91  |
|   |        |   |                 |        |

Sample
The sample was a phosphor preparation obtained from the Radio Corporation of America [Leverenz, 1944].

Colorless

Structure

Cubic,  $\overline{14}3m(217)$ , Z=2. The structure was determined by Smith et al. [1961], who found the formula to be  $Zn_4O(BO_2)_6$ .

NBS lattice constant of this sample:

a = 7.4734(2)A

Density (calculated) 4.252 g/cm<sup>3</sup>

Additional pattern

1. PDF card 14-2 [Swanson and Tatge, 1953]. The formula at that time was mistakenly given as  ${\rm ZnB_2O_4}$ .

References

Leverenz, H.W. (1944). Proc. I.R.E. 32, 256.
Smith, P., García-Blanco, S., and Rivoir, L. (1961). An. Reál Soc. Españ. Fis. Quim. Madrid, A57, 263.

Swanson, H. E. and Tatge, E. (1953). Nat. Bur. Stand. (U.S.) Circ. 539, 1, 83.

| $CuK\alpha_1 \lambda = 1.540598 \text{ Å; temp. } 25\pm1 \text{ °C}$ |               |              |                     |  |  |  |
|----------------------------------------------------------------------|---------------|--------------|---------------------|--|--|--|
|                                                                      | al standard W | a, a = 3.16  | 5524 Å              |  |  |  |
| d(Å)                                                                 | I             | hkl          | 20 (°)              |  |  |  |
| 5.29                                                                 | 6             | 110          | 16.74               |  |  |  |
| 3.74                                                                 | 4             | 200          | 23.77               |  |  |  |
| 3.05                                                                 | 100           | 211          | 29.28               |  |  |  |
| 2.364                                                                | 25            | 310          | 38.03               |  |  |  |
| 2.158                                                                | 2             | 2 <b>2</b> 2 | 41.82               |  |  |  |
| 1.997                                                                | 20            | 321          | 45.37               |  |  |  |
| 1.869                                                                | 14            | 400          | 48.68               |  |  |  |
| 1.761                                                                | 40            | 330          | 51.88               |  |  |  |
| 1.672                                                                | 2             | 420          | 54.86               |  |  |  |
| 1.594                                                                | 4             | 332          | 57.79               |  |  |  |
| 1.526                                                                | 25            | 422          | 60.63 <sup>ქზ</sup> |  |  |  |
| 1.466                                                                | 6             | 510          | 63.39               |  |  |  |
| 1.364                                                                | 8             | 521          | 68.76               |  |  |  |
| 1.321                                                                | 4             | 440          | 71.34               |  |  |  |
| 1.282                                                                | 4             | 530          | 73.86               |  |  |  |
| 1.246                                                                | 2             | 600          | 76.37               |  |  |  |
| 1.213                                                                | 2             | 611          | 78.84               |  |  |  |
| 1.1818                                                               | 2             | 620          | 81.36               |  |  |  |
| 1.1532                                                               | 4             | 541          | 83.82               |  |  |  |
| 1.1026                                                               | 2             | 631          | 88.64               |  |  |  |
| 1.0789                                                               | . 2           | 444          | 91.12               |  |  |  |
| 1.0569                                                               | 2             | 710          | 93.58               |  |  |  |
| 1.0366                                                               | 2             | 640          | 96.00               |  |  |  |
| 1.0170                                                               | 4             | 721          | 98.48 →Я            |  |  |  |
| 0.9992                                                               | 2             | 642          | 100.88              |  |  |  |
| .9813                                                                | 2             | 730          | 103.44              |  |  |  |
| .9491                                                                | 2             | 732          | 108.51              |  |  |  |
| .9199                                                                | 4             | 811          | 113.74              |  |  |  |
| .9063                                                                | 2             | 820          | 116.42              |  |  |  |
| .8933                                                                | 2             | 653          | 119.16              |  |  |  |
| .8808                                                                | 2             | 822          | 121.99              |  |  |  |
| .8688                                                                | 4             | 831          | 124.92              |  |  |  |
| .8574                                                                | 2             | 662          | 127.91              |  |  |  |
| .8463                                                                | 2             | 752          | 131.08              |  |  |  |
| .8253                                                                | 2             | 910          | 137.95              |  |  |  |
| .8154                                                                | 2             | 842          | 141.73              |  |  |  |
| .8059                                                                | 2             | 921          | 145.83              |  |  |  |
| .7967                                                                | 2             | 664          | 150.44              |  |  |  |
| .7878                                                                | 2             | 930          | 155.83              |  |  |  |
| · · · · · · · · · · · · · · · · · · ·                                |               |              |                     |  |  |  |

The sample was prepared by heating an equimolar mixture of  ${\rm Zn\,(NO_3)_2}$  and  ${\rm TiO_2}$  (anatase) for about two weeks at 900° with several remixings and regrindings. Because of the lack of thermal stability above 943° [Dulin and Rase, 1960], it was impossible to obtain complete reaction and the sample contained small amounts of rutile ( ${\rm TiO_2}$ ) and  ${\rm Zn_2TiO_4}$ ; therefore there may be a slight error in some intensities. Intensities calculated from the structure were in good agreement with the experimental values.

Color

Colorless

Structure

Hexagonal,  $R\bar{3}$  (148), Z=6. ZnTiO<sub>3</sub> is isostructural with FeTiO<sub>3</sub> (ilmenite) and other similar titanates [Bartram and Slepetys, 1961].

NBS lattice constants of this sample:

a = 5.0787(3)Ac = 13.927(1)

Density

(calculated) 5.165 g/cm<sup>3</sup>

Reference intensity
I/I = 2.5

Additional patterns

- 1. Bartram and Slepetys [1961].
- 2. Kubo and Kato [1963].

References

Bartram, S.F. and Slepetys, R.A. (1961). J. Amer. Ceram. Soc. 44, 493.

Dulin, F.H. and Rase, D.E.(1960). J. Amer. Ceram. Soc. 43, 125.

Kubo, T. and Kato, M. (1963). Kogyo Kagaku Zasshi 66, 404.

| $CuKlpha_1$ $\lambda$ | = 1.54059  | 8 A; temp. 25±1 | L °C   |
|-----------------------|------------|-----------------|--------|
| Interna               | l standard | Ag, a = 4.0865  | 51 Å   |
| đ (Å)                 | I          | hkl             | 20(°)  |
| 4.63                  | 1          | 003             | 19.14  |
| 4.191                 | 3          | 101             | 21.18  |
| 3.717                 | 20         | 012             | 23.92  |
| 2.729                 | 100        | 104             | 32.79  |
| 2.540                 | 75         | 110             | 35.31  |
| 2.355                 | 1          | 015             | 38.18  |
| 2.321                 | 1          | 006             | 38.76  |
| 2.228                 | 20         | 113             | 40.45  |
| 2.173                 | 3          | 021             | 41.52  |
| 2.097                 | 1          | 202             | 43.10  |
| 1.860                 | 35         | 024             | 48.94  |
| 1.813                 | 1          | 107             | 50.29  |
| 1.713                 | 35         | 116             | 53.43  |
| 1.651                 | 1          | 211             | 55.64  |
| 1.619                 | 11         | 018             | 56.83  |
| 1.500                 | 25         | 214             | 61.80  |
| 1.466                 | 25         | 300             | 63.41  |
|                       |            |                 |        |
| 1.428                 | 1          | 125             | 65.31  |
| 1.399                 | 1          | 303             | 66.84  |
| 1.3650                | 4          | 208             | 68.71  |
| 1.3276                | 8          | 1.0.10          | 70.93  |
| 1.3218                | 4          | 119             | 71.29  |
| 1.2760                | 1          | 217             | 74.27  |
| 1.2696                | 6          | 220             | 74.71  |
| 1.2396                | 2          | 306             | 76.84  |
| 1.2166                | 1          | 0.1.11          | 78.57  |
| 1.2020                | 6          | 128,312         | 79.71  |
| 1.1766                | 3          | 0.2.10          | 81.79  |
| 1.1512                | 7          | 134             | 84.00  |
| 1.1139                | 5          | 226             | 87.50  |
| 1.0862                | 1          | 042             | 90.33  |
| 1.0674                | 5          | 2.1.10          | 92.38  |
| 1.0558                | 2          | 1.1.12          | 93.71  |
| 1.0485                | 3          | 404             | 94.56  |
| 1.0069                | <1         | 1.2.11          | 99.82  |
| 0.9990                | 3          | 318             | 100.90 |
| .9816                 | <1         | 229             | 103.39 |
| .9702                 | 4          | 0.1.14          | 105.12 |
| .9692                 | 7          | 324             | 105.12 |
|                       | 5          |                 |        |
| .9599                 | 5          | 410             | 106.74 |
| .9296                 | 2          | 048             | 111.92 |
| .9175                 | 3          | 1.3.10          | 114.19 |
| .9064                 | 2          | 2.0.14          | 116.39 |
| .8868                 | 5          | 416             | 120.59 |
|                       |            |                 |        |

Cubic, Fd3m(227), Z=8, C15 type, isostructural with  $Cu_2Mg$  [Fülling et al., 1942].

Lattice constant: [Wernick and Geller, 1960]

a = 7.161(5)A

Density

(calculated) 9.333 g/cm<sup>3</sup>

Thermal parameters

Overall isotropic B = 1.0

Scattering factors

Ce<sup>0</sup> and Co<sup>0</sup> [Thomas and Umeda, 1957], corrected for dispersion [Dauben and Templeton, 1955].

Scale factors (integrated intensities)

 $\gamma = 0.501 \times 10^{-3}$ 

 $I/I_{c}$  (calculated) = 10.3

Additional pattern

1. Fülling, Moeller and Vogel [1942].

#### References

Dauben, C. H. and Templeton, D. H. (1955). Acta Crystallogr. 8, 841.

Fülling, W., Moeller, K., and Vogel, R. (1942).
Z. Metallk. 34, 253.

Z. Metalik. <u>34</u>, 253.

Thomas, L.H. and Umeda, K. (1957). J. Chem. Phys.

26, 293.
Wernick, J.H. and Geller, S. (1960). Trans. AIME
218, 866.

|                                           | Calculated    | Pattern               | (Pe                   | ak l                  | neig  | ghts)                                          |
|-------------------------------------------|---------------|-----------------------|-----------------------|-----------------------|-------|------------------------------------------------|
| d(A)                                      | I             |                       | hkl                   |                       | λ     | 20(°)<br>= 1.540598A                           |
| 4.13<br>2.532<br>2.159                    | 100           | 1 2 3                 | 1 2 1                 | 1 0 1                 |       | 21.48<br>35.42<br>41.80                        |
| 2.067<br>1.643                            |               | 2                     | 2                     | 2                     |       | 43.76<br>55.92                                 |
| 1.462<br>1.378<br>1.266<br>1.211<br>1.132 | 20<br>13<br>1 | 4<br>5<br>4<br>5<br>6 | 2<br>1<br>4<br>3<br>2 | 2<br>1<br>0<br>1<br>0 | +     | 63.60<br>67.96<br>74.96<br>79.04<br>85.74      |
| 1.092<br>1.080<br>1.003<br>.957<br>.932   | 2<br>1<br>6   | 5<br>6<br>7<br>6<br>7 | 3<br>2<br>1<br>4<br>3 | 3<br>2<br>1<br>2<br>1 | + +   | 89.72<br>91.04<br>100.38<br>107.22<br>111.44   |
| .895<br>.844<br>.827<br>.821              | 6 1           | 8<br>8<br>7<br>6<br>7 | 0<br>2<br>5<br>6<br>5 | 0<br>2<br>1<br>2<br>3 | + + + | 118.76<br>131.78<br>137.36<br>139.36<br>157.04 |

|                                           | Calculated                 | Pattern                 | (Int                  | egr                   | ated)                                          |
|-------------------------------------------|----------------------------|-------------------------|-----------------------|-----------------------|------------------------------------------------|
| d (A)                                     | I                          |                         | hkl                   |                       | 20 (°) ο<br>λ = 1.540598A                      |
| 4.13<br>2.532<br>2.159<br>2.067<br>1.643  | 12<br>66<br>100<br>15<br>3 | 1<br>2<br>3<br>2<br>3   | 1<br>2<br>1<br>2<br>3 | 1<br>0<br>1<br>2<br>1 | 21.48<br>35.43<br>41.80<br>43.76<br>55.92      |
| 1.462<br>1.378<br>1.378<br>1.266<br>1.210 | 19<br>6                    | . 4<br>5<br>3<br>4<br>5 | 2<br>1<br>3<br>4<br>3 | 2<br>1<br>3<br>0<br>1 | 63.60<br>67.97<br>67.97<br>74.96<br>79.05      |
| 1.132<br>1.092<br>1.080<br>.957<br>.932   | 8<br>4<br>10               | 6<br>5<br>6<br>6<br>7   | 2 3 2 4 3             | 0<br>3<br>2<br>2<br>1 | 85.74<br>89.72<br>91.05<br>107.21<br>111.43    |
| .932<br>.895<br>.844<br>.844              | 3                          | 5<br>8<br>6<br>8<br>7   | 5<br>0<br>6<br>2<br>5 | 3<br>0<br>0<br>2<br>1 | 111.43<br>118.76<br>131.78<br>131.78<br>137.36 |
| .827<br>.821<br>.786                      | 3<br>3                     | 5<br>6<br>7<br>9        | 5<br>6<br>5<br>1      | 5<br>2<br>3<br>1      | 137.36<br>139.36<br>157.04<br>157.04           |

Hexagonal, P63mc (186), Z = 2. The structure was determined by Larson and Cromer [1962].

Lattice constants:

a = 9.588 Ac = 21.827

(published values: a = 9.587, c = 21.825 A [ibid.]).

Density

(calculated) 7.666 g/cm<sup>3</sup>

Thermal parameters

Isotropic [Larson and Cromer, 1962].

Scattering factors
Ce<sup>0</sup>, Co<sup>0</sup> [International Tables, 1962].

Scale factors (integrated intensities)

 $\gamma = 0.170 \times 10^{-3}$ 

 $I/I_{c}$  (calculated) = 3.63

References

International Tables for X-ray Crystallography

III (1962), 210, 211.

Larson, A. C. and Cromer, D. T. (1962). Crystallogr. <u>15</u>, 1224.

|                                           | Calculated                | Pattern               | (Pea                  | k heig                    | ghts)                                     |
|-------------------------------------------|---------------------------|-----------------------|-----------------------|---------------------------|-------------------------------------------|
| d(A)                                      | I                         |                       | hkl                   | λ                         | 20(°) 。<br>= 1.540598A                    |
| 10.91<br>8.29<br>6.60<br>4.79<br>3.88     | 2<br>1<br>3<br>1          | 0<br>1<br>1<br>1<br>2 | 0<br>0<br>0<br>1      | 2<br>0<br>2<br>0<br>2     | 8.10<br>10.66<br>13.40<br>18.50<br>22.90  |
| 3.60<br>3.33<br>3.30<br>3.14<br>3.11      | 2<br>10<br>28<br>32<br>28 | 2<br>1<br>2<br>2<br>2 | 0<br>0<br>0<br>1<br>1 | 3 +<br>6<br>4<br>0        | 24.70<br>26.74<br>26.96<br>28.42<br>28.72 |
| 3.02<br>3.01<br>2.919<br>2.899<br>2.882   | 12                        | 2<br>2<br>1<br>1<br>2 | 1<br>0<br>0<br>1<br>1 | 2<br>5<br>7<br>6<br>3     | 29.60<br>29.66<br>30.60<br>30.82<br>31.00 |
| 2.768<br>2.745<br>2.736<br>2.720<br>2.587 | 8<br>22<br>100            | 3<br>3<br>2<br>2<br>3 | 0<br>0<br>0<br>1<br>0 | 0<br>1<br>6<br>4 +<br>3 + | 32.32<br>32.60<br>32.70<br>32.90<br>34.64 |
| 2.548<br>2.493<br>2.396<br>2.377<br>2.338 | 56<br>56<br>5             | 2<br>2<br>2<br>2<br>3 | 1<br>0<br>2<br>1<br>0 | 5<br>7<br>0<br>6<br>5     | 35.20<br>36.00<br>37.50<br>37.82<br>38.48 |

|                |             |        |            |     | <del> </del>   | 7      |
|----------------|-------------|--------|------------|-----|----------------|--------|
| d(A)           | r           |        | hkl        | λ = |                | o<br>A |
| 2.280          | 18          | 2      | 0 8        |     | 39.50          |        |
| 2.253          | 1           | 3      | 1 2        |     | 39.98          |        |
| 2.212<br>2.203 | 2<br>4      | 2<br>3 | 1 7 0 6    |     | 40.76<br>40.94 | 1      |
| 2.196          | 3           | 3      | 1 3        |     | 41.06          |        |
|                |             |        |            |     |                |        |
| 2.122<br>2.111 | 8           | 3      | 1 4        |     | 42.58          |        |
| 2.094          | 2           | 1 2    | 0 10       |     | 42.80<br>43.16 |        |
| 2.066          | 2<br>2<br>3 | 4      | o i        |     | 43.78          |        |
| 2.059          | 4           | 2      | 1 8        |     | 43.94          | ,      |
| 2.039          | 1           | 4      | 0 2        |     | 44.40          |        |
| 1.996          | 1           | 4      | 0 3        |     | 45.40          |        |
| 1.946<br>1.940 | 1<br>2<br>3 | 3<br>4 | 1 6        | _   | 46.64          |        |
| 1.932          | 2           | 2      | 0 10       |     | 46.78<br>47.00 |        |
|                |             |        |            |     |                |        |
| 1.919<br>1.905 | 3<br>1      | 2      | 1 9<br>2 0 |     | 47.34<br>47.70 |        |
| 1.876          | 3           | 3      |            | +   | 48.48          |        |
| 1.843          | 1           | 3      | 2 3        |     | 49.42          |        |
| 1.824          | 2           | 3      | 0 9        |     | 49.96          |        |
| 1.812          | 1           | 4      | 1 0        |     | 50.32          |        |
| 1.800          | 5           | 2      | 2 8        | +   | 50.66          |        |
| 1.798<br>1.791 | 6<br>6      | 3 2    | 2 4 0 11   | +   | 50.72<br>50.96 |        |
| 1.777          | 2           | 1      | 0 12       | •   | 51.38          |        |
| 1.758          | 9           | 4      | 1 2        | +   | 51•96          |        |
| 1.746          | 1           | 3      | 1 3<br>2 5 | •   | 52.36          |        |
| 1.728          | 5           | 4      | 0 7        |     | 52.94          |        |
| 1.701          | 1           | 1      | 1 12       |     | 53.86          |        |
| 1.687          | 2           | 3      | 2 6        |     | 54.32          |        |
| 1.677          | 1           | 2      | 1 11       |     | 54.68          |        |
| 1.673          | 1           | 4      | 1 5        |     | 54 • 82        |        |
| 1.666<br>1.661 | 4<br>5      | 2<br>5 | 0 12       |     | 55.08<br>55.26 |        |
| 1.656          | 5           | 5      | 0 1        |     | 55.44          |        |
| 1.652          | 4           | 4      | 0 8        |     | 55.58          |        |
| 1.646          | 2           | i      | 0 13       |     | 55.82          |        |
| 1.642          | 4           | 5      | 0 2        |     | 55.96          |        |
| 1.625          | 27<br>18    | 3<br>5 | 2 7 0 3    | _   | 56.58          |        |
| 1.621          |             |        |            |     | 56.74          |        |
| 1.613          | 25          | 3      | 0 11       |     | 57.06          |        |
| 1.598<br>1.589 | 17<br>17    | 3<br>5 | 3 0        |     | 57•64<br>58•00 |        |
| 1.577          | 1           | 4      | 0 9        |     | 58.48          |        |
| 1.562          | 3           | 3      | 2 8        |     | 59.10          |        |
| 1.559          | 5           | 0      | 0 14       |     | 59.22          |        |
| 1.555          | 4           | 2      | 0 13       |     | 59.38          |        |
| 1.552          | 5           | 5      | 0 5        |     | 59.50          |        |
| 1.532<br>1.520 | 1           | 1      | 0 14       |     | 60.36<br>60.90 |        |
| 20020          | •           |        | - 12       |     |                |        |
|                |             |        |            |     |                |        |

| d(Å)                                      | I                | hkl                                          | 2Θ(°)<br>λ = 1.540598A                    |
|-------------------------------------------|------------------|----------------------------------------------|-------------------------------------------|
| 1.511<br>1.504<br>1.477<br>1.463<br>1.449 | 1<br>1<br>1<br>1 | 5 0 6<br>4 0 10<br>5 1 2<br>3 3 6<br>2 2 12  | 61.32<br>61.60<br>62.86<br>63.54<br>64.24 |
| 1.441                                     | 1                | 3 1 12                                       | 64.64                                     |
| 1.438                                     | 2                |                                              | 64.76                                     |
| 1.435                                     | 3                |                                              | 64.92                                     |
| 1.427                                     | 1                |                                              | 65.32                                     |
| 1.379                                     | 3                |                                              | 67.92                                     |
| 1.375                                     | 2                | 3 2 11                                       | 68.14                                     |
| 1.373                                     | 2                | 2 0 15                                       | 68.24                                     |
| 1.370                                     | 1                | 5 0 9                                        | 68.42                                     |
| 1.365                                     | 1                | 4 3 0                                        | 68.70                                     |
| 1.359                                     | 3                | 6 0 3                                        | 69.04                                     |
| 1.345                                     | 3                | 5 1 7                                        | 69.86                                     |
| 1.338                                     | 5                | 4 1 11                                       | 70.30                                     |
| 1.330                                     | 2                | 5 2 0                                        | 70.80                                     |
| 1.324                                     | 4                | 4 3 4                                        | 71.14                                     |
| 1.320                                     | 3                | 2 1 15                                       | + 71.38                                   |
| 1.316                                     | 2                | 3 2 12                                       | 71.68                                     |
| 1.308                                     | 7                | 5 2 3                                        | + 72.16                                   |
| 1.274                                     | 1                | 4 2 10                                       | 74.40                                     |
| 1.272                                     | 1                | 5 2 5                                        | 74.54                                     |
| 1.260                                     | 2                | 3 2 13                                       | 75.40                                     |
| 1.251<br>1.249<br>1.206<br>1.192<br>1.164 | 1<br>1<br>2<br>1 | 4 3 7<br>5 2 6<br>3 2 14<br>5 1 11<br>2 0 18 | 76.04<br>76.18<br>79.36<br>80.50<br>82.86 |
| 1.159                                     | 3                | 5 3 4                                        | 83.30                                     |
| 1.156                                     | 3                | 3 2 15                                       | 83.54                                     |
| 1.153                                     | 2                | 5 1 12                                       | 83.80                                     |
| 1.151                                     | 1                | 6 2 0                                        | 83.98                                     |
| 1.150                                     | 2                | 6 2 1                                        | 84.12                                     |
| 1.137                                     | 1                | 6 2 3                                        | 85.28                                     |
| 1.135                                     | 3                | 6 0 11                                       | 85.48                                     |
| 1.131                                     | 4                | 2 1 18                                       | 85.84                                     |
| 1.128                                     | 3                | 5 3 6                                        | 86.16                                     |
| 1.127                                     | 4                | 6 2 4                                        | 86.26                                     |
| 1.116                                     | 2                | 6 2 5                                        | + 87.30                                   |
| 1.113                                     | 2                |                                              | 87.56                                     |
| 1.109                                     | 5                |                                              | + 88.02                                   |
| 1.105                                     | 5                |                                              | 88.44                                     |
| 1.100                                     | 3                |                                              | 88.92                                     |
| 1.095                                     | 1                | 5 0 15                                       | 89.46                                     |
| 1.088                                     | 2                | 5 3 8                                        | 90.16                                     |
| 1.079                                     | 1                | 2 1 19                                       | 91.12                                     |
| 1.042                                     | 1                | 5 3 10                                       | 95.32                                     |

|                                                               | Calculated              | Pattern               | (Int                  | egra                    | ated)                                     |
|---------------------------------------------------------------|-------------------------|-----------------------|-----------------------|-------------------------|-------------------------------------------|
| d(A)                                                          | I                       |                       | hkl                   |                         | 20 (°) °<br>λ = 1.540598A                 |
| 10.91<br>8.30<br>6.61<br>4.79<br>3.88                         | 1<br>1<br>2<br>1        | 0<br>1<br>1<br>1<br>2 | 0 0 0 1               | 2<br>0<br>2<br>0<br>2   | 8.09<br>10.65<br>13.39<br>18.49<br>22.90  |
| 3.61<br>3.60<br>3.33<br>3.30<br>3.14                          | 1<br>1<br>9<br>28<br>32 | 2<br>1<br>1<br>2<br>2 | 0<br>1<br>0<br>0      | 3<br>4<br>6<br>4<br>0   | 24.67<br>24.70<br>26.73<br>26.96<br>28.42 |
| 3 • 1 1<br>3 • 0 2<br>3 • 0 1<br>2 • 9 1 9<br>2 • 8 9 8       |                         | 2<br>2<br>2<br>1<br>1 | 1<br>0<br>0           | 1<br>2<br>5<br>7<br>6   | 28.71<br>29.59<br>29.67<br>30.60<br>30.83 |
| 2 • 8 8 2<br>2 • 7 6 8<br>2 • 7 4 6<br>2 • 7 3 6<br>2 • 7 2 8 | 23                      | 2<br>3<br>3<br>2<br>0 | 1<br>0<br>0<br>0      | 3<br>0<br>1<br>6<br>8   | 31.01<br>32.32<br>32.58<br>32.70<br>32.80 |
| 2 • 7 2 1<br>2 • 5 9 2<br>2 • 5 8 7<br>2 • 5 4 8<br>2 • 4 9 3 | ? 1<br>7 70<br>3 24     | 2<br>1<br>3<br>2<br>2 | 1<br>0<br>0<br>1<br>0 | 4<br>8<br>3<br>5<br>7   | 32.90<br>34.58<br>34.65<br>35.19<br>35.99 |
| 2 · 3 9 7<br>2 · 3 7 6<br>2 · 3 3 8<br>2 · 2 8 0<br>2 · 2 5 3 | 4<br>3 4<br>0 21        | 2<br>2<br>3<br>2<br>3 | 2<br>1<br>0<br>0<br>1 | 5<br>8<br>2             | 37.49<br>37.83<br>38.48<br>39.49<br>39.98 |
| 2 • 2 1 2<br>2 • 2 0 3<br>2 • 1 9 6<br>2 • 1 2 2<br>2 • 1 1 1 | 5 5 2 10                | 2<br>3<br>3<br>3<br>1 | 1<br>0<br>1<br>1<br>0 | 7<br>6<br>3<br>4<br>1 D | 40.76<br>40.94<br>41.08<br>42.58<br>42.80 |
| 2 • 0 9 4<br>2 • 0 6 7<br>2 • 0 5 9<br>2 • 0 3 9<br>1 • 9 9 6 | 3 4                     | 2<br>4<br>2<br>4      | 0<br>0<br>1<br>0<br>0 | 9<br>1<br>8<br>2<br>3   | 43.16<br>43.77<br>43.94<br>44.39<br>45.40 |
| 1 • 9 4 6<br>1 • 9 4 6<br>1 • 9 3 2<br>1 • 9 3 6              | 2 2 2                   | 3<br>3<br>4<br>2<br>! | 0<br>0<br>0<br>0      | 6<br>8<br>4<br>10<br>11 | 46.64<br>46.71<br>46.78<br>47.00<br>47.05 |
| 1.919<br>1.909<br>1.879<br>1.879                              | 2<br>7 3<br>5 1         | 2 3 3 4 3             | 1<br>2<br>2<br>9<br>2 | 9<br>0<br>2<br>5<br>3   | 47.33<br>47.70<br>48.47<br>48.52<br>49.42 |

| 1 |           |    |   |      |                          |
|---|-----------|----|---|------|--------------------------|
|   | d(A)      | I  |   | hkl  | 20(°) 。<br>λ = 1.540598A |
|   | 1.824     | 3  | 3 | 0 9  | 49.96                    |
| Ì | 1.812     | 1  | 4 | 1 0  | 50.32                    |
| ı | 1.806     | i  | 4 | 1 1  | 50.50                    |
| I | 1.803     | 1  | 4 | 0 6  | 50.58                    |
| ı | 1.801     | 4  | 2 |      |                          |
| ı | 1.001     | 7  | 2 | 2 8  | 50.65                    |
| ı | 1.799     | 5  | 3 | 2 4  | 50.72                    |
| ı | 1.792     | 3  | 2 | 1 10 | 50.92                    |
| ı |           |    |   | -    |                          |
| ı | 1.790     | 5  | 2 | 0 11 | 50.97                    |
| ı | 1 • 777   | 2  | 1 | 0 12 | 51.38                    |
| ı | 1 • 769   | 3  | 3 | 1 8  | 51.92                    |
| I | 1.758     | 10 | 4 | 1 3  | 51.97                    |
| ı |           |    |   |      |                          |
| ı | 1 • 746   | 1  | 3 | 2 5  | 52.36                    |
| l | 1.728     | 7  | 4 | 0 7  | 52.95                    |
| ĺ | 1.701     | 1  | 1 | 1 12 | 53.87                    |
| l | 1.688     | 3  | 3 | 2 6  | 54.32                    |
| 1 | 1 / 7 7   |    | _ |      | 5.0.4.2                  |
| ļ | 1 • 6 7 7 | 1  | 2 | 1 11 | 54.68                    |
| ١ | 1.674     | 1  | 4 | 1 5  | 54.81                    |
| ١ | 1.666     | 5  | 2 | 0 12 | 55.08                    |
| ۱ | 1.661     | 4  | 5 | 0 0  | 55 • 27                  |
| ١ | 1.656     | 4  | 5 | 0 1  | 55.44                    |
| l |           |    |   |      |                          |
| l | 1.652     | 3  | 4 | ŋ 8  | 55.58                    |
| ļ | 1 • 6 4 6 | 2  | 1 | c 13 | 55.82                    |
| l | 1.642     | 3  | 5 | 0 2  | 55.96                    |
| ĺ | 1.626     | 37 | 3 | 2 7  | 56.57                    |
| l | 1.622     | 2  | 4 | 1 6  | 56.71                    |
| l |           | _  | _ | _    |                          |
| ı | 1 • 6 1 9 | 3  | 5 | ŋ 3  | 56.82                    |
| ı | 1.613     | 32 | 3 | 0 11 | 57.06                    |
| ı | 1.598     | 22 | 3 | 3 0  | 57.64                    |
| l | 1.589     | 22 | 5 | 0 4  | 58.01                    |
| I | 1.577     | 1  | 4 | 0 9  | 58.48                    |
| l |           |    |   |      |                          |
| ŀ | 1.562     | 2  | 3 | 2 8  | 59.10                    |
| l | 1.559     | 6  | 0 | 0 14 | 59.22                    |
| ı | 1 • 5 5 7 | 2  | 2 | 0 13 | 59.32                    |
| ŀ | 1.552     | 5  | 5 | 0 5  | 59.51                    |
| ı | 1.532     | 2  | 1 | 0 14 | 60.36                    |
| l |           |    |   |      |                          |
| ı | 1.520     | 1  | 3 | 0 12 | 60.90                    |
| I | 1 • 5 1 1 | 2  | 5 | 0 6  | 61.31                    |
| ı | 1.504     | i  | 4 | 0 10 | 61.61                    |
| ı | 1 • 478   | 1  | 5 | 1 2  | 62.84                    |
| ŀ | 1.463     | 1  | 3 | 3 6  | 63.54                    |
| l |           |    | _ | _    |                          |
| I | 1 • 4 4 9 | 1  | 2 | 2 12 | 64.23                    |
| 1 | 1 • 4 4 1 | 1  | 4 | 2 6  | 64.63                    |
| I | 1.439     | 2  | 5 | 1 4  | 64.75                    |
| I | 1 • 435   | 2  | 3 | 2 10 | 64.92                    |
| I | 1.433     | 1  | 1 | 0 15 | 65.02                    |
| ١ |           |    | _ |      |                          |
| I | 1 • 427   | 1  | 3 | 1 12 | 65.32                    |
| 1 | 1.402     | 1  | 4 | 2 7  | 66.67                    |
| I | 1 • 379   | 4  | 3 | 3 8  | 67.92                    |
| I | 1 • 374   | 1  | 3 | 2 11 | 68.19                    |
| ١ | 1 • 373   | 1  | 2 | 0 15 | 68 • 24                  |
| l |           |    |   |      |                          |
|   |           |    |   |      |                          |

| d(Å)                                                | I                |                       | hkl                                | 2Θ(°)<br>λ = 1.540598A                    |
|-----------------------------------------------------|------------------|-----------------------|------------------------------------|-------------------------------------------|
| 1.370                                               | 1                | 5                     | 0 9                                | 68.41                                     |
| 1.365                                               | 1                | 4                     | 3 0                                | 68.71                                     |
| 1.360                                               | 3                | 6                     | 0 3                                | 69.03                                     |
| 1 • 3 5 8<br>1 • 3 4 5                              | 2                | 3                     | D 14                               | 69.09<br>69.86                            |
| 1.338                                               | 7                | 4                     | 1 11                               | 70•30                                     |
| 1.330                                               | 2                | 5                     | 2 9                                | 70•81                                     |
| 1.324                                               | 5                | 4                     | 3 4                                | 71•14                                     |
| 1.322                                               | 1                | 5                     | 0 10                               | 71•30                                     |
| 1.320                                               | 2                | 3                     | 1 15                               | 71.39                                     |
| 1.309                                               | 3                | 5                     | 1 8                                | 72.12                                     |
| 1.308                                               | 7                | 5                     | 2 3                                | 72.16                                     |
| 1.307                                               | 4                | 2                     | 2 14                               | 72.23                                     |
| 1.303                                               | 1                | 4                     | 3 5                                | 72.49                                     |
| 1 • 29 6                                            | 1                | 2                     | 0 16                               | 72.93                                     |
| 1 • 27 8                                            | 1                | 4                     | 3 6                                | 74.13                                     |
| 1 • 27 4                                            | 1                | 4                     | 2 10                               | 74.40                                     |
| 1 • 27 2                                            | 1                | 5                     | 2 5                                | 74.55                                     |
| 1 • 26 0                                            | 3                | 3                     | 2 13                               | 75.40                                     |
| 1 • 250<br>1 • 249<br>1 • 207<br>1 • 192<br>1 • 164 | 1<br>1<br>3<br>1 | 4<br>5<br>3<br>5<br>2 | 3 7<br>2 6<br>2 14<br>1 11<br>0 18 | 76.05<br>76.17<br>79.35<br>80.50<br>82.87 |
| 1 • 1 5 9                                           | 4                | 5                     | 3 4                                | 83.30                                     |
| 1 • 1 5 6                                           | 3                | 3                     | 2 15                               | 83.54                                     |
| 1 • 1 5 3                                           | 2                | 5                     | 1 12                               | 83.82                                     |
| 1 • 1 5 1                                           | 1                | 6                     | 2 0                                | 83.97                                     |
| 1 • 1 5 0                                           | 2                | 6                     | 2 1                                | 84.12                                     |
| 1 • 1 3 7                                           | 2                | 6                     | 2 3                                | 85.26                                     |
| 1 • 1 3 5                                           | 4                | 6                     | 0 11                               | 85.47                                     |
| 1 • 1 3 1                                           | 5                | 2                     | 1 18                               | 85.84                                     |
| 1 • 1 2 8                                           | 2                | 5                     | 3 6                                | 86.16                                     |
| 1 • 1 2 7                                           | 7                | 6                     | 2 4                                | 86.27                                     |
| 1 • 1 1 6                                           | 4                | 3                     | 3 14                               | 87.30                                     |
| 1 • 1 1 5                                           | 1                | 5                     | 1 13                               | 87.39                                     |
| 1 • 1 1 3                                           | 1                | 6                     | 2 5                                | 87.55                                     |
| 1 • 1 0 9                                           | 2                | 3                     | 2 16                               | 87.98                                     |
| 1 • 1 0 9                                           | 2                | 7                     | 0 7                                | 88.02                                     |
| 1 • 1 0 9                                           | 6                | 5                     | 3 7                                | 88.02                                     |
| 1 • 1 0 7                                           | 1                | 2                     | 0 19                               | 88.17                                     |
| 1 • 1 0 5                                           | 7                | 5                     | 2 11                               | 88.43                                     |
| 1 • 1 0 0                                           | 6                | 7                     | 1 0                                | 88.92                                     |
| 1 • 0 9 4                                           | 1                | 5                     | 0 15                               | 89.47                                     |
| 1 • 0 8 8                                           | 3                | 5                     | 3 8                                | 90 • 16                                   |
| 1 • 0 7 9                                           | 2                | 2                     | 1 19                               | 91 • 13                                   |
| 1 • 0 4 2                                           | 1                | 5                     | 3 10                               | 95 • 31                                   |
| 1 • 0 4 2                                           | 1                | 5                     | 1 15                               | 95 • 40                                   |

# Cerium gallium, CeGa

Structure

Hexagonal, P6/mmm(191), Z=1, isostructural with AlB<sub>2</sub> [Laves, 1943].

Lattice constants: Haszko [1961]

a = 4.32Ac = 4.34

Density

(calculated) 6.62 g/cm<sup>3</sup>

Thermal parameters

Overall isotropic B = 1.0

Scattering factors  ${\rm Ce}^{\,0}$  and  ${\rm Ga}^{\,0}$  [Thomas and Umeda, 1957], corrected for dispersion [Dauben and Templeton, 1955].

Scale factors (integrated intensities)

 $\gamma = 0.388 \times 10^{-3}$ 

I/I (calculated = 12.8

References

Dauben, C. H. and Templeton, D. H. (1955). Acta

Crystallogr. 8, 841.

Haszko, S. E. (1961). Trans. AIME 221, 201.

Laves, F. (1943). Naturwissenschaften 31, 145. Thomas, L.H. and Umeda, K. (1957). J. Chem. Phys. 26, 293.

|                                           | Calculated    | Pattern               | (Pea                  | ık h                  | eights)                                        |
|-------------------------------------------|---------------|-----------------------|-----------------------|-----------------------|------------------------------------------------|
| d (Å)                                     | I             |                       | hkl                   |                       | 2Θ(°) °<br>λ = 1.540598A                       |
| 3.74<br>2.834<br>2.170<br>2.160<br>1.877  | 14 37         | 1<br>1<br>0<br>1      | 0<br>0<br>0<br>1<br>0 | 0<br>1<br>2<br>0<br>2 | 23.76<br>31.54<br>41.58<br>41.78<br>48.46      |
| 1.871<br>1.718<br>1.531<br>1.417          | 17<br>18<br>1 | 2<br>2<br>1<br>2<br>2 | 0<br>0<br>1<br>0      | 0<br>1<br>2<br>2<br>0 | 48.62<br>53.28<br>60.42<br>65.86<br>66.02      |
| 1.349<br>1.345<br>1.247<br>1.185<br>1.144 | 12<br>3<br>1  | 1<br>2<br>3<br>2<br>2 | 0<br>1<br>0<br>1<br>0 | 3<br>1<br>0<br>2<br>3 | 69.62<br>69.90<br>76.30<br>81.12<br>84.62      |
| 1.085<br>1.081<br>1.080<br>1.011<br>1.009 | 3 3           | 0<br>3<br>2<br>2<br>3 | 0<br>0<br>2<br>1<br>1 | 4<br>2<br>0<br>3<br>1 | 90.46<br>90.86<br>91.00<br>99.24<br>99.52      |
| •970<br>•967<br>•914<br>•846<br>•843      | 3<br>1<br>1   | 1<br>2<br>4<br>1<br>3 | 1<br>2<br>0<br>0<br>1 | 4<br>2<br>1<br>5<br>3 | 105.22<br>105.62<br>114.80<br>131.30<br>132.00 |
| .842<br>.819<br>.816<br>.787              | 2 3           | 3<br>3<br>4<br>2<br>4 | 2<br>0<br>1<br>0<br>0 | 1<br>4<br>0<br>5<br>3 | 132.38<br>140.46<br>141.30<br>156.10<br>157.46 |

Cerium gallium, Ce $\operatorname{Ga}_2$  - continued

| Ca.   | culated Pat | tern        | (Int | egr | ated)                    |
|-------|-------------|-------------|------|-----|--------------------------|
| d (Å) | I           |             | hkl  |     | 20(°) °<br>λ = 1.540598A |
| 3.74  | 11          | 1           | 0    | 0   | 23.76                    |
| 2.834 | 100         | 1           | 0    | 1   | 31.55                    |
| 2.170 | 13          | 0           | 0    | 2   | 41.58                    |
| 2.160 | 38          | 1           | 1    | 0   | 41.79                    |
| 1.877 | 3           | 1           | 0    | 2   | 48.46                    |
| 1.871 | 2           | 2           | 0    | 0   | 48.63                    |
| 1.718 | 20          | 2           | 0    | 1   | 53.28                    |
| 1.531 | 22          | 1           | 1    | 2   | 60.42                    |
| 1.417 | 1           | 2           | 0    |     | 65.87                    |
| 1.414 | 1           | 2           | 1    | 0   | 66•01                    |
| 1.349 | 8           | 1           | 0    | 3   | 69.62                    |
| 1.344 | 15          | 2           | 1    | 1   | 69.91                    |
| 1.247 | 5           | 2           | 0    | 0   | 76.29                    |
| 1.185 | 1           | 2           | 1    | 2   | 81.11                    |
| 1.144 | 4           | 2           | 0    | 3   | 84.62                    |
| 1.085 | 1           | 0           | 0    | 4   | 90.46                    |
| 1.081 | 6           | 3           | 0    | 2   | 90•86                    |
| 1.080 | 3           | 3<br>2<br>2 | 2    | 0   | 91.00                    |
| 1.011 | 6           | 2           | 1    | 3   | 99.24                    |
| 1.009 | 6           | 3           | 1    | 1   | 99.51                    |
| .970  | 5           | 1           | 1    | 4   | 105•21                   |
| .967  | 5           | 2           | 2    | 2   | 105.63                   |
| .936  | 1           | 3           | 1    | 2   | 110.75                   |
| •914  | 3           | 4           | 0    | 1   | 114.81                   |
| - 861 | 1           | 2           | 1    | 4   | 126.98                   |
| -846  | 3           | 1           | 0    | 5   | 131.29                   |
| .843  | 6           | 3           | 1    | 3   | 132.01                   |
| -842  | 6           | 3           | 2    | 1   | 132.37                   |
| .819  | 6           | 3           | 0    | 4   | 140.46                   |
| •816  | 6           | 4           | 1    | 0   | 141.31                   |
| .798  | 1           | 3           | 2    | 2   | 149.65                   |
| •787  | 5           | 2           | 0    | 5   | 156.10                   |
| .785  | 5           | 4           | 0    | 3   | 157.46                   |

Structure
Cubic, face centered, Z=4. [Rossi and Iandelli, 1934]. Their atomic positions indicate Fm3m; other references include Fd3m as a possibility.

Lattice constant: [Vogel and Heumann, 1947]

a = 7.438 A

Density (calculated) 3.439 g/cm<sup>3</sup>

Thermal parameters
Overall isotropic B = 1.0

Scattering factors Ce<sup>0</sup>, Mg<sup>0</sup> [International Tables, 1962].

Atom positions
Rossi and Iandelli [1934].

Scale factors (integrated intensities)  $\gamma = 0.716 \times 10^{-3}$ I/I (calculated) = 10.8

References

International Tables for X-ray Crystallography III (1962), 202, 211.

Rossi, A. and Iandelli, A. (1934). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Ser. 6, V.19, 415.

Vogel, R. and Heumann, Th. (1947). Z. Metallk. 38, 1 (1947).

|                                                                            | Calculated                 | Pattern                              | (Pe                                       | ak :                                      | nei | ghts)                                                                         |
|----------------------------------------------------------------------------|----------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|-----|-------------------------------------------------------------------------------|
| d(A)                                                                       | I                          |                                      | hkl                                       |                                           | λ   | 20(°) 。<br>= 1.540598A                                                        |
| 4.30<br>3.72<br>2.63<br>2.243<br>2.148<br>1.860<br>1.706<br>1.663<br>1.518 | 9<br>15<br>11<br>10<br>25  | 1<br>2<br>2<br>3<br>2<br>4<br>3<br>4 | 1<br>0<br>2<br>1<br>2<br>0<br>3<br>2<br>2 | 1<br>0<br>0<br>1<br>2<br>0<br>1<br>0<br>2 |     | 20.66<br>23.92<br>34.06<br>40.18<br>42.04<br>48.94<br>53.68<br>55.18<br>60.98 |
| 1.431<br>1.315<br>1.257<br>1.240<br>1.176<br>1.134                         | 7<br>6<br>6<br>3<br>7<br>2 | 5<br>4<br>5<br>4<br>6<br>5           | 1 4 3 4 2 3                               | 1<br>0<br>1<br>2<br>0<br>3                | +   | 65.12<br>71.72<br>75.56<br>76.84<br>81.84<br>85.54                            |
| 1.121<br>1.074<br>1.041<br>1.032<br>.994                                   | 2<br>2<br>3<br>1<br>7      | 6<br>4<br>7<br>6<br>6                | 2 4 1 4 4                                 | 2 4 1 0 2                                 | +   | 86.78<br>91.70<br>95.40<br>96.62<br>101.60                                    |
| .930<br>.909<br>.902<br>.877                                               | 1<br>1<br>2<br>4           | 8<br>7<br>8<br>8                     | 3 0 3 2 2                                 | 1 0 3 0 2                                 | +   | 105.40<br>111.90<br>115.92<br>117.30<br>122.98                                |
| .859<br>.853<br>.832<br>.816<br>.812                                       | 2<br>1<br>3<br>3<br>2      | 7<br>6<br>8<br>7<br>8                | 5<br>6<br>4<br>5<br>4                     | 1 2 0 3 2 4                               | +   | 127.50<br>129.06<br>135.72<br>141.30<br>143.30                                |

| 4.29     66     1     1     1     2       3.72     35     2     0     0     2       2.63     100     2     2     0     3       2.243     34     3     1     1     4 | 20(°)<br>540598A<br>0.67<br>3.91<br>4.07<br>0.18<br>2.05 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 3.72 35 2 0 0 2<br>2.63 100 2 2 0 3<br>2.243 34 3 1 1 4                                                                                                             | 3.91<br>4.07<br>0.18                                     |
| 3.72 35 2 0 0 2<br>2.63 100 2 2 0 3<br>2.243 34 3 1 1 4                                                                                                             | 3.91<br>4.07<br>0.18                                     |
| 2.243 34 3 1 1 4                                                                                                                                                    | 0.18                                                     |
|                                                                                                                                                                     |                                                          |
| 2.147 10 2 2 2 4                                                                                                                                                    | 2.05                                                     |
|                                                                                                                                                                     |                                                          |
| 1.860 16 4 0 0 4                                                                                                                                                    | 8.94                                                     |
| 1.706 14 3 3 1 5                                                                                                                                                    | 3.67                                                     |
| 1.663 12 4 2 0 5                                                                                                                                                    | 5.18                                                     |
| 1.518 31 4 2 2 6                                                                                                                                                    | 0.98                                                     |
| 1.431 7 5 1 1 6                                                                                                                                                     | 5 • 1 1                                                  |
| 1.431 2 3 3 3 6                                                                                                                                                     | 5 • 1 1                                                  |
| 1.315 9 4 4 0 7                                                                                                                                                     | 1.72                                                     |
| 1.257 9 5 3 1 7                                                                                                                                                     | 5.57                                                     |
|                                                                                                                                                                     | 6.83                                                     |
| 1.240 4 4 4 2 7                                                                                                                                                     | 6.83                                                     |
| 1.176 11 6 2 0 8                                                                                                                                                    | 1.84                                                     |
| 1.134 3 5 3 3 8                                                                                                                                                     | 5.55                                                     |
| 1.121 3 6 2 2 8                                                                                                                                                     | 6.78                                                     |
|                                                                                                                                                                     | 1 • 70                                                   |
| 1.042 2 5 5 1 9                                                                                                                                                     | 5.39                                                     |
| 1.042 2 7 1 1 9                                                                                                                                                     | 5.39                                                     |
| *                                                                                                                                                                   | 6.63                                                     |
|                                                                                                                                                                     | 1.61                                                     |
|                                                                                                                                                                     | 5.40                                                     |
| .968 2 5 5 3 10                                                                                                                                                     | 5 • 40                                                   |
| .930 2 8 0 0 11                                                                                                                                                     | 1.89                                                     |
| .909 2 7 3 3 11                                                                                                                                                     | 5.92                                                     |
|                                                                                                                                                                     | 7.30                                                     |
|                                                                                                                                                                     | 7.30                                                     |
| .877 3 6 6 D 12                                                                                                                                                     | 2.99                                                     |
|                                                                                                                                                                     | 2.99                                                     |
|                                                                                                                                                                     | 27.50                                                    |
|                                                                                                                                                                     | .7•5∪                                                    |
|                                                                                                                                                                     | 9.07                                                     |
| .832 7 8 4 0 13                                                                                                                                                     | 5.73                                                     |
|                                                                                                                                                                     | 11.30                                                    |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                               | 11.30                                                    |
|                                                                                                                                                                     | 13.31                                                    |
| .793 10 6 6 4 15                                                                                                                                                    | 52.58                                                    |

Cubic, Fd3m(227), Z=8, Cl5 type, isostructural with  $Cu_2Mg$  [Fülling et al., 1942].

#### Lattice constant: [Wernick and Geller, 1960]

a = 7.202(5)A

## Density

(calculated) 9.158 g/cm<sup>3</sup>

#### Thermal parameters

Overall isotropic B = 1.0

#### Scattering factors

Ce<sup>0</sup> and Ni<sup>0</sup> [Thomas and Umeda, 1957], corrected for dispersion [Dauben and Templeton, 1955].

# Scale factors (integrated intensities)

 $\gamma = 0.774 \times 10^{-3}$ 

I/I (calculated) = 10.1

#### Additional patterns

- 1. Fülling, Moeller, and Vogel [1942].
- 2. Nowotny [1942].

#### References

Dauben, C. H. and Templeton, D. H. (1955). Acta Crystallogr. 8, 841.

Fülling W., Moeller, K., and Vogel, R. (1942).

Z. Metallk. <u>34</u>, 253.

Nowotny, H. (1942). Z. Metallk. 34 #11, 247.

Thomas, L.H. and Umeda, K. (1957). J. Chem. Phys. 26, 293.

Wernick, J.H. and Geller, S. (1960). Trans. AIME 218, 866.

|                                                                                                                          | Calculated                                             | Pattern                                        | (Pea                                                                    | ak l                                                                    | neic    | jhts)                                                                                                                       |         |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------|---------|
| d (A)                                                                                                                    | I                                                      |                                                | hkl                                                                     |                                                                         | λ       | 20(°)<br>= 1.540598                                                                                                         | °<br>BA |
| 4.16<br>2.546<br>2.171<br>2.079<br>1.652<br>1.470<br>1.386<br>1.273<br>1.217<br>1.139<br>1.098<br>1.086<br>1.009<br>.962 | 16<br>72<br>100<br>14<br>3<br>17<br>20<br>13<br>2<br>5 | 1<br>2<br>3<br>2<br>3<br>4<br>5<br>4<br>5<br>6 | 1<br>2<br>1<br>2<br>3<br>2<br>1<br>4<br>3<br>2<br>1<br>4<br>3<br>2<br>1 | 1<br>0<br>1<br>2<br>1<br>2<br>1<br>0<br>1<br>0<br>3<br>2<br>1<br>2<br>1 | +       | 21.36<br>35.22<br>41.56<br>43.50<br>55.58<br>63.20<br>67.52<br>74.46<br>78.50<br>85.14<br>89.08<br>90.38<br>99.60<br>106.34 |         |
| .900<br>.849<br>.832<br>.826                                                                                             | 2<br>4<br>6<br>1                                       | 8<br>8<br>7<br>6<br>7                          | 0 2 5 6 5                                                               | 0 2 1 2 3                                                               | + + + + | 110.48<br>117.66<br>130.34<br>135.72<br>137.64<br>154.02                                                                    |         |

|                                           | Calculated    | Pattern               | (In                   | tegr                  | ated)                                          |
|-------------------------------------------|---------------|-----------------------|-----------------------|-----------------------|------------------------------------------------|
| d (Å)                                     | I             |                       | hkl                   |                       | 20 (°)<br>λ = 1.540598A                        |
| 4.16<br>2.546<br>2.171<br>2.079<br>1.652  | 100<br>15     | 1<br>2<br>3<br>2<br>3 | 1<br>2<br>1<br>2<br>3 | 1<br>0<br>1<br>2<br>1 | 21.35<br>35.22<br>41.55<br>43.49<br>55.58      |
| 1.470<br>1.386<br>1.386<br>1.273<br>1.217 | 19<br>6<br>18 | 4<br>5<br>3<br>4<br>5 | 2<br>1<br>3<br>4<br>3 | 2<br>1<br>3<br>0<br>1 | 63.20<br>67.53<br>67.53<br>74.46<br>78.51      |
| 1.139<br>1.098<br>1.086<br>1.008          | 8<br>3<br>1   | 6<br>5<br>6<br>7<br>5 | 2<br>3<br>2<br>1<br>5 | 0<br>3<br>2<br>1<br>1 | 85.13<br>89.07<br>90.38<br>99.60<br>99.60      |
| •962<br>•938<br>•938<br>•900<br>•880      | 11<br>6<br>3  | 6<br>7<br>5<br>8<br>7 | 4<br>3<br>5<br>0<br>3 | 2<br>1<br>3<br>0<br>3 | 106.33<br>110.48<br>110.48<br>117.66<br>122.20 |
| .849<br>.849<br>.832<br>.832              | 6 13          | 6<br>8<br>7<br>5<br>6 | 6<br>2<br>5<br>5<br>6 | 0<br>2<br>1<br>5<br>2 | 130.34<br>130.34<br>135.72<br>135.72<br>137.63 |
| .805<br>.791<br>.791                      | . 3           | 8<br>7<br>9           | 4<br>5<br>1           | 0<br>3<br>1           | 146.13<br>154.02<br>154.02                     |

Cubic, Pm3m (221), Z = 1, CsCl type [Bruzzone and Ferro Ruggiero, 1962].

Lattice constant: [ibid.]

a = 3.893 A

Density

(calculated) 9.695 g/cm<sup>3</sup>

Thermal parameters

Overall isotropic B = 1.0

Scattering factors Ce<sup>0</sup>, Tl<sup>0</sup> [International Tables, 1962].

Scale factors (integrated intensities)

 $\gamma = 1.90 \times 10^{-3}$ 

 $I/I_c$  (calculated) = 32.3

References

International Tables for X-ray Crystallography

III (1962), 211, 212.

Bruzzone, G. and Ferro Ruggiero, A. (1962). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. 33, 465.

|                                           | Calculated Pat      | tern                  | (Pea                  | ak h                  | neights)                                         |
|-------------------------------------------|---------------------|-----------------------|-----------------------|-----------------------|--------------------------------------------------|
| d(Å)                                      | I                   |                       | hkl                   |                       | 2Θ(°)<br>λ = 1.540598A                           |
| 3.89<br>2.753<br>2.248<br>1.947<br>1.741  | 100<br>1<br>15<br>1 | 1<br>1<br>1<br>2<br>2 | 0<br>1<br>1<br>0<br>1 | 0<br>0<br>1<br>0      | 22.82<br>32.50<br>40.08<br>46.62<br>52.52        |
| 1.589<br>1.376<br>1.231<br>1.124<br>1.040 |                     | 2<br>2<br>3<br>2<br>3 | 1<br>2<br>1<br>2<br>2 | 1<br>0<br>0<br>2<br>1 | 57.98<br>68.06<br>77.46<br>86.54<br>95.52        |
| .973<br>.918<br>.870<br>.830              | 4<br>3<br>3         | 4<br>4<br>4<br>3<br>4 | 0<br>1<br>2<br>3<br>2 | 0<br>1<br>0<br>2<br>2 | 104.64<br>+ 114.18<br>124.48<br>136.28<br>151.56 |

|       |     | Calculated | Pattern | (In | tegr | ated)                    |
|-------|-----|------------|---------|-----|------|--------------------------|
| d (F  |     | I          |         | hkl |      | 2Θ(°) °<br>λ = 1.540598A |
| 3 • 8 | 8 9 | 4          | 1       | ũ   | 0    | 22.82                    |
| 2 • 7 | 753 | 100        | 1       | 1   | O    | 32.50                    |
| 2 . : | 248 | 1          | 1       | 1   | 1    | 40.08                    |
| 1 • 1 | 947 | 17         | 2       | 0   | 0    | 46.62                    |
| 1 • 7 | 741 | 2          | 2       | 1   | 0    | 52.52                    |
| 1 • 9 | 589 | 34         | 2       | 1   | 1    | 57.98                    |
| 1 • : | 376 | 10         | 2       | 2   | 0    | 68.06                    |
| 1 • 3 | 231 | 13         | 3       | 1   | 0    | 77.47                    |
| 1 •   | 124 | 3          | 2       | 2   | 2    | 86.54                    |
| 1 • ( | 040 | 15         | 3       | 2   | 1    | 95.52                    |
| • '   | 973 | 2          | 4       | 0   | 0    | 104.65                   |
| • "   | 918 | 3          | 3       | 3   | O    | 114.17                   |
| • '   | 918 | 6          | 4       | 1   | 1    | 114.17                   |
| • 1   | 871 | 7          | 4       | 2   | 0    | 124.48                   |
| • 1   | 830 | 8          | 3       | 3   | 2    | 136.28                   |
| , •   | 795 | 1 1        | 4       | 2   | 2    | 151.56                   |

Cubic, Pm3m (221), Z = 1, AuCu<sub>3</sub> type [Bruzzone and Ferro Ruggiero, 1962].

Lattice constant: [ibid.]

a = 4.767 A

Density

(calculated) 11.55 g/cm<sup>3</sup>

Thermal parameters

Overall isotropic B = 1.0

Scattering factors
Ce<sup>0</sup>, Tl<sup>0</sup> [International Tables, 1962].

Scale factors (integrated intensities)

 $\gamma = 1.66 \times 10^{-3}$ 

 $I/I_{C}$  (calculated) = 25.4

References

International Tables for X-ray Crystallography III (1962), 211, 212.

Bruzzone, G. and Ferro Ruggiero, A. (1962). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur.

Rend. 33, 465.

|       | Calculated | Pattern | (Pea | k l | heigh | ts)                  |
|-------|------------|---------|------|-----|-------|----------------------|
| d(A)  | I          |         | hkl  |     | λ =   | 20(°) .<br>1.540598A |
| 4.77  | 2          | 1       | 0    | 0   |       | 18.60                |
| 3.37  | 2          | 1       | 1    | 0   |       | 26.42                |
| 2.753 | 100        | 1       | 1    | 1   |       | 32.50                |
| 2.383 | 47         | 2       | 0    | 0   |       | 37.72                |
| 2.132 | 1          | 2       | 1    | 0   |       | 42.36                |
| 1.685 | 26         | 2       | 2    | 0   |       | 54.40                |
| 1.437 |            | 3       | 1    | 1   |       | 64.82                |
| 1.376 |            | 2       | 2    | 2   |       | 68.08                |
| 1.192 |            | 4       | . 0  | 0   |       | 80.54                |
| 1.094 |            | 3       | 3    | 1   |       | 89.56                |
| 1.066 | 7          | 4       | 2    | 0   |       | 92.54                |
| .973  |            | 4       | 2    | 2   | 1     | 04.68                |
| .917  |            | 5       | ī    | ī   |       | 14.20                |
| 843   |            | 4       | 4    | ō   |       | 32.16                |
| -806  |            | 5       | 3    | 1   |       | 45.88                |
| •795  | 6          | 4       | 4    | 2   | + ]   | 51.64                |

| Ca     | lculated | Pattern | (Int | egr | ated)                           |
|--------|----------|---------|------|-----|---------------------------------|
| d(Å)   | I        |         | hkl  |     | $20$ (°) $\lambda = 1.540598$ A |
| 4.77   | 2        | 1       | n    | 0   | 18.60                           |
| 3.37   | 2        | 1       | 1    | 0   | 26.42                           |
| 2.752  | 100      | 1       | 1.   | 1   | 32.51                           |
| 2.384  | 49       | 2       | n    | 0   | 37.71                           |
| 2.132  | 1        | 2       | 1    | 0   | 42.36                           |
| 1.046  | 1        | 2       | 1.   | 1   | 46.63                           |
| 1.685  | 32       | 2       | 2    | ŋ   | 54.39                           |
| 1.437  | 35       | 3       | 1    | 1   | 64.81                           |
| 1.376  | 10       | 2       | 2    | 2   | 68.08                           |
| 1.102  | 4        | 4       | n    | 0   | 80.54                           |
| 1.004  | 13       | 3       | 3    | 1   | 89.55                           |
| 1.066  | 12       | 4       | 2    | 0   | 92.55                           |
| .073   | 10       | 4       | 2    | 2   | 104.68                          |
| •917   | 10       | 5       | 1    | 1   | 114.21                          |
| •917   | 3        | 3       | 3    | 3   | 114.21                          |
| •843   | 6        | 4       | 4    | 0   | 132.15                          |
| •806   | 29       | 5       | 3    | 1   | 145.87                          |
| •795   | 17       | 4       | 4    | 2   | 151.64                          |
| .795   | 4        | 6       | n    | 0   | 151.64                          |
| • 7 .5 | _        |         |      |     |                                 |

Cubic, Pm3m (221), Z = 1,  $AuCu_3$  type [Jeitschko et al., 1964].

Lattice constant: [ibid.]

a = 5.011 Å

Density

(calculated) 8.245 g/cm<sup>3</sup>

Thermal parameters

Overall isotropic B = 1.0

Scattering factors
Ce<sup>0</sup>, Tl<sup>0</sup> [International Tables, 1962].

Scale factors (integrated intensities)  $\gamma = 2.09 \times 10^{-3}$ 

 $I/I_{c}$  (calculated) = 37.2

References

International Tables for X-ray Crystallography III (1962), 211, 212.

Jeitschko, W., Nowotny, H., and Benesovsky, F.

(1964). Monatsh. Chem. 95, 1040.

|                                           | Calculated       | Pattern               | (Pea                  | ık hei                        | ights)                                         |
|-------------------------------------------|------------------|-----------------------|-----------------------|-------------------------------|------------------------------------------------|
| d(A)                                      | I                |                       | hkl                   | )                             | 20(°) °<br>A = 1.540598A                       |
| 5.01<br>3.54<br>2.893<br>2.505<br>2.241   | 46               | 1<br>1<br>1<br>2<br>2 | 0<br>1<br>1<br>0      | 0<br>0<br>1<br>0              | 17.68<br>25.12<br>30.88<br>35.82<br>40.20      |
| 2.046<br>1.772<br>1.670<br>1.584<br>1.511 | 27 5 3           | 2<br>2<br>2<br>3<br>3 | 1<br>2<br>2<br>1<br>1 | 1<br>0<br>1 +<br>0            | 44.24<br>51.54<br>54.92<br>58.18<br>61.30      |
| 1.446<br>1.390<br>1.339<br>1.253<br>1.215 | 2 3 3            | 2<br>3<br>3<br>4<br>4 | 2<br>2<br>2<br>0<br>1 | 2<br>0<br>1<br>0<br>0 +       | 64.36<br>67.32<br>70.22<br>75.88<br>78.66      |
| 1.181<br>1.150<br>1.120<br>1.094<br>1.023 | 8<br>7<br>1      | 4<br>3<br>4<br>4<br>4 | 1<br>3<br>2<br>2<br>2 | 1 +<br>1 0<br>1 2             | 81.42<br>84.14<br>86.86<br>89.56<br>97.72      |
| .983<br>.964<br>.930<br>.915              | 6 1 1            | 4<br>5<br>4<br>5<br>4 | 3<br>1<br>3<br>2<br>4 | 1 +<br>1 +<br>2 +<br>1        | 103.22<br>106.02<br>111.76<br>114.70<br>120.82 |
| .872<br>.859<br>.847<br>.835<br>.813      | 1<br>7<br>4<br>1 | 5<br>5<br>5<br>4<br>5 | 2 3 3 4 3             | 2 +<br>0 +<br>1<br>2 +<br>2 + | 124.02<br>127.36<br>130.86<br>134.54<br>142.74 |
| •792<br>•783                              |                  | 6                     | 2                     | 0 +                           | 152.92<br>159.66                               |

Cerium thallium,  $Ce_3TI$  - continued

|                                                     | Calculated              | Pattern               | (Integ                          | rated)                                         |
|-----------------------------------------------------|-------------------------|-----------------------|---------------------------------|------------------------------------------------|
| d (Å)                                               | I                       |                       | hkl                             | 2θ(°)<br>λ = 1.540598A                         |
| 5.01<br>3.54                                        | 30<br>26                | 1                     | n 0<br>1 0                      |                                                |
| 2.893<br>2.505<br>2.241                             | 50                      | 1<br>2<br>2           | 1 1<br>0 0<br>1 0               | 35.81                                          |
| 2.046<br>1.772<br>1.670                             | 33                      | 2<br>2<br>3           | 1 1<br>2 0<br>0 0               | 44.24<br>51.54<br>54.92                        |
| 1.670<br>1.585                                      | 5                       | 3                     | 2 1 1 0                         | 54.92<br>58.17                                 |
| 1.511<br>1.447<br>1.390<br>1.339                    | 10<br>3<br>5            | 3<br>2<br>3<br>3      | 1 1<br>2 2<br>2 0<br>2 1<br>0 0 | 61.31<br>64.35<br>67.32<br>70.22<br>75.89      |
| 1.215<br>1.215<br>1.215<br>1.191                    | 2<br>2<br>1             | 4<br>3<br>3<br>4      | 1 0<br>2 2<br>3 0<br>1 1        | 78.66<br>78.66<br>81.41<br>81.41               |
| 1.150<br>1.120                                      | 13<br>12                | 3                     | 3 1<br>2 0                      | 84 <b>.</b> 14<br>86.86                        |
| 1.093<br>1.068<br>1.023<br>1.002                    | 1 9                     | 4<br>3<br>4<br>4      | 2 1 2 2 3 0                     | 89.57<br>92.28<br>97.72<br>100.46              |
| . 0 1 3<br>. 0 8 3<br>. 0 6 4<br>. 0 5 1<br>. 0 7 1 |                         | 4<br>5<br>5<br>3<br>5 | 3 1<br>1 0<br>1 1<br>3 3<br>2 0 | 103.23<br>103.23<br>106.02<br>106.02<br>111.75 |
| .93 <u>1</u><br>.915<br>.876<br>.872                | 2<br>4<br>1<br>1        | 4<br>5<br>4<br>4<br>5 | 2 1<br>4 0<br>4 1<br>2 2        | 111.75<br>114.70<br>120.82<br>124.03           |
| . 259<br>. 247<br>. 235<br>. 235                    | 1<br>1<br>18<br>2<br>10 | 5<br>4<br>5<br>6<br>4 | 3 0<br>3 3<br>3 1<br>0 0<br>4 2 | 127.36<br>127.36<br>130.85<br>134.54           |
| .924<br>.913<br>.913<br>.792                        | 1 2                     | 6<br>5<br>6<br>5<br>5 | 1 0<br>3 2<br>1 1<br>2 0<br>4 0 | 138.47<br>142.74<br>142.74<br>152.93<br>159.67 |
| . 783<br>. 783                                      | u<br>2                  | 6<br>4                | 2 1<br>4 3                      | 159.67<br>159.67                               |

Cubic, Fd3m(227), Z=8, C15 type, isostructural with  $Cu_2Mg$  [Wernick and Geller, 1960].

Lattice constant: [ibid.]

a = 7.187(5)A

Density

(calculated) 10.033 g/cm<sup>3</sup>

Thermal parameters

Overall isotropic B = 1.0

Scattering factors

Co<sup>0</sup> and Dy<sup>0</sup> [Thomas and Umeda, 1957], corrected for dispersion [Dauben and Templeton, 1955].

Scale factors (integrated intensities) '

 $\gamma = 0.510 \times 10^{-3}$ 

 $I/I_{C}$  (calculated) = 9.35

References

Dauben, C. H. and Templeton, D. H. (1955). Acta Crystallogr. 8, 841.

Thomas, L.H. and Umeda, K. (1957). J. Chem. Phys. 26, 293.

Wernick, J.H. and Geller, S. (1960). Trans. AIME 218, 866.

|                                           | Calculated        | Pattern               | (Pea                  | ık h                  | eig | hts)                                         |
|-------------------------------------------|-------------------|-----------------------|-----------------------|-----------------------|-----|----------------------------------------------|
| d(Å)                                      | I                 |                       | hkl                   |                       | λ   | 20(°) 。<br>= 1.540598A                       |
| 4.15<br>2.541<br>2.167<br>2.075<br>1.649  | 100               | 1<br>2<br>3<br>2<br>3 | 1<br>2<br>1<br>2<br>3 | 1<br>0<br>1<br>2      |     | 21.40<br>35.30<br>41.64<br>43.58<br>55.70    |
| 1.467<br>1.383<br>1.271<br>1.215<br>1.136 | 19<br>1 13<br>5 1 | 4<br>5<br>4<br>5<br>6 | 2<br>1<br>4<br>3<br>2 | 2<br>1<br>0<br>1<br>0 | +   | 63.34<br>67.68<br>74.64<br>78.70<br>85.36    |
| 1.096<br>1.084<br>.960<br>.936            | 2<br>5<br>5<br>8  | 5<br>6<br>6<br>7<br>8 | 3<br>2<br>4<br>3<br>0 | 3<br>2<br>2<br>1<br>0 | +   | 89.30<br>90.62<br>106.66<br>110.82<br>118.06 |
| •847<br>•830<br>•824                      | 5                 | 8<br>7<br>6           | 2<br>5<br>6           | 2<br>1<br>2           | ++  | 130.86<br>136.32<br>138.26                   |

|                                           | Calculated                 | Pattern               | (Int                  | egr                   | ated)                                          |
|-------------------------------------------|----------------------------|-----------------------|-----------------------|-----------------------|------------------------------------------------|
| d (Å)                                     | I                          |                       | hkl                   |                       | 2Θ(°)<br>λ = 1.540598A                         |
| 4.15<br>2.541<br>2.167<br>2.075<br>1.649  | 13<br>66<br>100<br>16<br>3 | 1<br>2<br>3<br>2<br>3 | 1<br>2<br>1<br>2<br>3 | 1<br>0<br>1<br>2      | 21.40<br>35.29<br>41.65<br>43.59<br>55.70      |
| 1.467<br>1.383<br>1.383<br>1.270<br>1.215 | 19<br>19<br>6<br>17<br>2   | 4<br>5<br>3<br>4<br>5 | 2<br>1<br>3<br>4<br>3 | 2<br>1<br>3<br>0<br>1 | 63.35<br>67.69<br>67.69<br>74.64<br>78.70      |
| 1.136<br>1.096<br>1.083<br>.960           | 7<br>8<br>4<br>9<br>11     | 6<br>5<br>6<br>6<br>7 | 2<br>3<br>2<br>4<br>3 | 0<br>3<br>2<br>2<br>1 | 85.35<br>89.31<br>90.62<br>106.65<br>110.83    |
| .936<br>.898<br>.847<br>.847              | 5<br>3<br>2<br>· 5         | 5<br>8<br>6<br>8<br>7 | 5<br>0<br>6<br>2<br>5 | 3<br>0<br>0<br>2<br>1 | 110.83<br>118.06<br>130.86<br>130.86<br>136.31 |
| .830<br>.824<br>.789                      | 2<br>3<br>2<br>1           | 5<br>6<br>7<br>9      | 5<br>6<br>5<br>1      | 5<br>2<br>3<br>1      | 136.31<br>138.25<br>155.08<br>155.08           |

Cubic, Fd3m(227), Z=8, C15 type, isostructural with Cu<sub>2</sub>Mg [Wernick and Geller, 1960].

Lattice constant: [ibid.]

a = 7.144(5)A

Density

(calculated) 10.388 g/cm<sup>3</sup>

Thermal parameters

Overall isotropic B = 1.0

Scattering factors  ${\rm Co}^0$  and  ${\rm Er}^0$  [Thomas and Umeda, 1957], corrected for dispersion [Dauben and Templeton, 1955].

Scale factors (integrated intensities)

 $\gamma = 0.762 \times 10^{-3}$ 

 $I/I_c$  (calculated) = 9.76

References

Dauben, C. H. and Templeton, D. H. (1955). Acta Crystallogr. 8, 841.

Thomas, L.H. and Umeda, K. (1957). J. Chem. Phys. <u>26</u>, 293.

Wernick, J.H. and Geller, S. (1960). Trans. AIME 218, 866.

|                                           | Calculated     | Pattern               | (Pea                  | ık l                  | heights)                                       |
|-------------------------------------------|----------------|-----------------------|-----------------------|-----------------------|------------------------------------------------|
| c<br>(A)                                  | I              |                       | hkl                   |                       | 2Θ(°) °<br>λ = 1.540598A                       |
| 4.12<br>2.525<br>2.154<br>2.063<br>1.639  | 100<br>15      | 1<br>2<br>3<br>2<br>3 | 1<br>2<br>1<br>2<br>3 | 1<br>0<br>1<br>2<br>1 | 21.54<br>35.52<br>41.90<br>43.86<br>56.06      |
| 1.458<br>1.375<br>1.263<br>1.207<br>1.129 | 16<br>19<br>13 | 4<br>5<br>4<br>5<br>6 | 2<br>1<br>4<br>3<br>2 | 2<br>1<br>0<br>1<br>0 | 63.78<br>+ 68.14<br>75.18<br>79.28<br>86.00    |
| 1.089<br>1.077<br>.955<br>.930            | 2<br>5<br>8    | 5<br>6<br>6<br>7<br>8 | 3<br>2<br>4<br>3<br>0 | 3<br>2<br>2<br>1<br>0 | 90.00<br>91.32<br>107.58<br>+ 111.84<br>119.22 |
| .842<br>.825<br>.819                      | 6              | 8<br>7<br>6           | 2<br>5<br>6           | 2<br>1<br>2           | + 132.38<br>+ 138.06<br>140.10                 |

|                                                                     | Calculated                                  | Pattern                              | (Tr                                       | tear                                      | (beter                                                                        |
|---------------------------------------------------------------------|---------------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------|
|                                                                     | Carcaracca                                  | Taccern                              | ( 11                                      | ccgi                                      | aceu                                                                          |
| d(A)                                                                | I                                           |                                      | hkl                                       |                                           | 2Θ(°)<br>λ = 1.540598A                                                        |
| 4.12<br>2.526<br>2.154<br>2.062<br>1.639<br>1.458<br>1.375<br>1.375 | 15<br>68<br>100<br>15<br>3<br>20<br>19<br>6 | 1<br>2<br>3<br>2<br>3<br>4<br>5<br>3 | 1<br>2<br>1<br>2<br>3<br>2<br>1<br>3<br>4 | 1<br>0<br>1<br>2<br>1<br>2<br>1<br>3<br>0 | 21.53<br>35.51<br>41.91<br>43.87<br>56.07<br>63.77<br>68.15<br>68.15<br>75.17 |
| 1.208<br>1.130<br>1.089<br>1.077<br>.955                            | 7<br>8<br>4<br>9                            | 5<br>6<br>5<br>6<br>7                | 3<br>2<br>3<br>2<br>4<br>3                | 1<br>0<br>3<br>2<br>2<br>1                | 79.27<br>85.99<br>89.99<br>91.32<br>107.59<br>111.83                          |
| .930<br>.893<br>.842<br>.842<br>.825                                | 5<br>13                                     | 5<br>8<br>6<br>8<br>7<br>5<br>6      | 5<br>0<br>6<br>2<br>5<br>5<br>6           | 3<br>0<br>0<br>2<br>1<br>5<br>2<br>3<br>1 | 111.83<br>119.22<br>132.39<br>132.39<br>138.07                                |
| .784<br>.784                                                        | 2                                           | 7                                    | 5<br>1                                    | 3                                         | 158•43<br>158•43                                                              |

Structure Hexagonal,  $R\overline{3}m(166)$ , Z = 6. The structure was determined by Ostertag [1967].

Lattice constants: [ibid.]

a = 4.973Ac = 36.11

Density

(measured) 9.620 g/cm<sup>3</sup> [ibid.] (calculated) 9.624 g/cm<sup>3</sup>

Thermal parameters

Isotropic [Ostertag, op. cit.]

Scattering factors
Co<sup>0</sup>, Er<sup>0</sup> [International Tables, 1962].

Scale factors (integrated intensities)

 $\gamma = 0.467 \times 10^{-3}$ 

I/I (calculated) 6.70

References

International Tables for X-ray Crystallography III (1962), 204, 212.

Ostertag, W. (1967). J. Less-Common Metals, 13, 385.

|       | Calculated | Pattern | (Pe | eak : | heights)              |
|-------|------------|---------|-----|-------|-----------------------|
| d(A)  | I          |         | hk  | e -   | 20(°)                 |
|       |            |         |     |       | $\lambda = 1.540598A$ |
| 12.04 | 5          | 0       | 0   | 3     | 7.34                  |
| 6.02  | 1          | 0       | 0   | 6     | 14.72                 |
| 4.28  | 12         | 1       | 0   | 1     | 20.76                 |
| 4.19  | 2 5        | ŋ       | 1   | 2     | 21.20                 |
| 4.01  | 5          | 0       | 0   | 9     | 22.14                 |
| 3.89  | 4          | 1       | 0   | 4     | 22.86                 |
| 3.116 | 2          | 0       |     | 8     | 28.64                 |
| 3.009 | 5          | 0       | 0   | 12    | 29.68                 |
| 2.767 | 49         | 1       |     | 10    | 32.34                 |
| 2.611 | 39         | 0       | 1   | 11    | 34.32                 |
| 2.487 | 58         | 1       | 1   | 0     | 36.10                 |
| 2.407 | 2          | 0       | 0   | 15    | 37.32                 |
| 2.334 | 2          | 1       | 0   | 13    | 38.54                 |
| 2.213 | 9          | 0       | 1   | 14    | 40.74                 |
| 2.150 | 40         | 0       | 2   | 1     | 42.00                 |
| 2.114 | 100        | 1       | 1   | 9     | 42.76                 |
| 2.095 | 10         | ņ       | 2   | 4     | 43.14                 |
| 2.064 | 4          | 2       | 0   | 5     | 43.84                 |
| 2.006 | 14         | Õ       | ŋ   | 18    | 45.16                 |
| 1.999 | 10         | 1       | 0   | 16    | 45.26                 |

| d (Å)          | I       | hkl               | 20 (°)         |
|----------------|---------|-------------------|----------------|
| u(A)           | 1       |                   | = 1.540598A    |
| 1.987<br>1.944 | 8<br>12 | 0 2 7 2 0 8       | 45.62<br>46.70 |
| 1.917          | 8       | 1 1 12            | 47.40          |
| 1.905<br>1.801 | 7<br>3  | 0 1 17<br>2 0 11  | 47.70<br>50.66 |
| 1.730          | 3       | 1 1 15            | 52.90          |
| 1.720<br>1.665 | 4<br>6  | 0 0 21 0 1 20     | 53.22<br>55.12 |
| 1.653          | 1       | 2 0 14            | 55.54          |
| 1.626          | 2       |                   | 56.56          |
| 1.561<br>1.558 | 2<br>2  | 1 1 18<br>0 2 16  | 59.12<br>59.28 |
| 1.534          | 3       | 1 0 22            | 60.30          |
| 1.512<br>1.505 | 1       | 2 0 17<br>0 0 24  | 61.24<br>61.58 |
| 1.484          | 13      | 2 1 10            | 62.54          |
| 1.458<br>1.436 | 11<br>9 | 1 2 11 3 0 0      | 63.76<br>64.90 |
| 1.425          | 6       | 0 2 19            | 65.44          |
| 1.414          | 12      | 1 1 21            | 66.00          |
| 1.384          | 8<br>4  | 2 0 20 1 2 14     | 67.66<br>68.06 |
| 1.369          | 2       | 1 0 25            | 68.46          |
| 1.352<br>1.296 | 20<br>2 | 3 0 9+<br>3 0 12+ | 69.48<br>72.96 |
| 1.292          | 4       | 1 2 17            | 73.20          |
| 1.287<br>1.269 | 3<br>1  | 1 1 24 2 0 23     | 73.50<br>74.78 |
| 1.243          | 19      | 2 2 0 3 0 15+     | 76.58<br>77.32 |
| 1.233          | 1       | _                 | 79.16          |
| 1.209<br>1.204 | 4<br>2  | 0 0 30            | 79.58          |
| 1.196<br>1.194 | 1       | 0 1 29<br>1 3 1   | 80.18<br>80.39 |
| 1.188          | ī       | 2 2 9             | 80.88          |
| 1.178          | 3       | 1 1 27            | 81.68          |
| 1.167<br>1.156 | 2       | 2 0 26+ 2 1 22    | 82.60<br>83.60 |
| 1.149<br>1.134 | 1<br>5  | 2 2 12 1 3 10     | 84.20<br>85.58 |
|                |         |                   |                |
| 1.124<br>1.122 | 3<br>5  | 1 0 31<br>3 1 11  | 86.48<br>86.68 |
| 1.106          | 2<br>6  | 0 2 28<br>0 3 21+ | 88.26<br>88.70 |
| 1.083          | 6       | 1 1 30+           | 90.62          |
| 1.080          | 4       | 2 1 25            | 90.92          |
| 1.076<br>1.057 | 4<br>8  | 4 0 1<br>2 2 18   | 91.42<br>93.60 |
| 1.047          | 1       | 0 4 8             | 94.70          |
| 1.041          | 2       | 3 1 17            | 95.44          |
|                |         |                   |                |

| d(Å)           | I      |        | hkl          | 2Θ(°)<br>λ = 1.540598 |
|----------------|--------|--------|--------------|-----------------------|
| 1.039          | 2      | 0      | 3 24+        | 95.74                 |
| 1.025          | 3      | 0      | 2 31         | 97.50                 |
| 1.007          | 4      | 2      | 2 21         | 99.74                 |
| 1.003          | 2      | 0      | 0 36         | 100.34                |
| 9995           | ĩ      | 2      | 0 32         | 100.82                |
| •9962          | 3      | 3      | 1 20         | 101.30                |
| • 9890         | 1      | 1      | 2 29         | 102.32                |
| .9786          | 1      | 3      | 0 27+        | 103.84                |
| • 9658         | 1      | 1      | 3 22         | 105.80                |
| •9584          | 1      | 2      | 2 24         | 106.98                |
| •9530          | 5      | 3      | 2 10+        | 107.86                |
| .9473          | 3      | 2      | 1 31         | 108.82                |
| •9461          | 4      | ž      | 3 11         | 109.02                |
| •9398          | 6      | 14     | 1 0          | 110.10                |
| •9368          | 3      | 4      | 0 19         | 110.52                |
| •9304          | 3      | 2      | 0 35+        | 111.78                |
| .9247          | 3      | ŋ      | 4 20         | 112.82                |
| .9224          | 6      | 3      | 0 30+        | 113.26                |
| •9205          | 3      | 1      | 3 25         | 113.66                |
| •9150          | 14     | 1      | 4 9+         | 114.66                |
| •9106          | 1      | 2      | 2 27         | 115.54                |
| .8971          | 2      | 1      | 4 12+        | 118.34                |
| .8959          | 1      | 2      | 3 17         | 118.60                |
| .8895          | 1      | 2      | 1 34+        | 120.00                |
| •8835          | 1      | 1      | 0 40         | 121.34                |
| .8755          | 1      | 1      | 4 15+        | 123.26                |
| .8677          | 1      | 1      | 1 39         | 125.20                |
| .8667          | 3      | 2      | 3 20         | 125.42                |
| .8648          | 5      | 2      | 2 30         | 125.94                |
| .8629          | 3      | 0      | 1 41         | 126.49                |
| .8509<br>.8465 | 1      | 0      | 4 26+        | 129.70                |
| .83 <b>7</b> 8 | 1<br>2 | 3      | 2 22         | 131.00                |
| .8370          |        | n      | 5 10         | 133.69                |
| .8339          | 1<br>3 | 2<br>1 | 1 37<br>3 31 | 133.92<br>134.94      |
| •8331          | 2      | 5      | 0 11         | 135.20                |
| .8288          | 3      | 3      | 3 0          | 136.68                |
| .8265          | 2      | 4      | 0 28         | 137.44                |
| .8247          | 8      | 4      | 1 21+        | 138.16                |
| .8203          | 1      | 3      | 1 32         | 139.80                |
| .8170          | 1      | 5      | 0 14         | 141.08                |
| ·8155          | 2      | 3      | 2 25+        | 141.70                |
| .8137          | 6      | 2      | 4 1          | 142.42                |
| .8126          | 3      | 1      | 1 42         | 142.90                |
| .8117          | 10     | 3      | 3 9          | 143.24                |
| .8106          | 2      | 2      | 4 4          | 143.70                |
| .8088          | 1      | 4      | 2 5          | 144.52                |
| .8062          | 1      | 0      | 1 44         | 145.68                |
| . R040         | 1      | 2      | 4 7          | 146.72                |
| .8010          | 2      | 4      | 2 8          | 148.19                |

| 0              | Calculated                            | Pattern | (In | tegr     | ated) | )                  |
|----------------|---------------------------------------|---------|-----|----------|-------|--------------------|
| d(A)           | I                                     |         | hkl |          | λ =   | 20(°)<br>1.540598A |
| 12.04          | 4                                     | 0       | 0   | 3        |       | 7.34               |
| 6.02<br>4.28   | 1<br>10                               | 0<br>1  | 0   | 6        |       | 14.71              |
| 4.19           | 10                                    | 0       | 1   | 5        |       | 20.75              |
| 4.01           | 4                                     | 0       | 0   | Q C      |       | 22.14              |
| 3.89           |                                       | 1       | 0   | 4        |       | 22.86              |
| 3.116          |                                       | 0       | 1   | 8        |       | 28.63              |
| 3.009<br>2.76  |                                       | 0       | 0   | 12       |       | 29.66              |
| 2.61           |                                       | 0       | 0   | 10       |       | 32.33              |
| 2.487          |                                       | 1       | 1   | 0        |       | 36.09              |
| 2.40           |                                       | 0       | 0   | 15       |       | 37.32              |
| 2.334          |                                       | 1       | 0   | 13       |       | 38.54              |
| 2.213<br>2.150 |                                       | 0       | 1   | 14       |       | 40.74              |
|                |                                       | n       | 2   | 1        |       | 42.00              |
| 2.138          | •                                     | 2       | 0   | 2        |       | 42.23              |
| 2.005          |                                       | 1       | 1   | 9        |       | 42.75              |
| 2.064          |                                       | 5       | 2   | 4<br>5   |       | 43.15<br>43.84     |
| 2.006          |                                       | 0       | 0   | 18       |       | 45.16              |
| 1.900          |                                       |         |     |          |       |                    |
| 1.987          |                                       | 1 0     | 2   | 16<br>7  |       | 45.33<br>45.61     |
| 1.944          |                                       | 2       |     | 2        |       | 46.70              |
| 1.917          |                                       | 1       | 1   | 12       |       | 47.39              |
| 1.905          |                                       | 0       | i   | 17       |       | 47.70              |
| 1.801          |                                       | 2       | 0   | 11       |       | 50.66              |
| 1.730          | 3                                     | 1       | 1   | 15       |       | 52.89              |
| 1.720          |                                       | 0       | 0   | 21       |       | 53.23              |
| 1.665<br>1.653 |                                       | 0       | 1   | 20       |       | 55.11              |
|                |                                       | 2       | 0   | 14       |       | 55.55              |
| 1.626          | · · · · · · · · · · · · · · · · · · · | 2       | 1   |          |       | 56.55              |
| 1.561<br>1.558 |                                       | 1       | 1   | 18       |       | 59.12              |
| 1.534          |                                       | . 0     | 2   | 16<br>22 |       | 59.26<br>60.30     |
| 1.512          |                                       | 2       | 0   | 17       |       | 61.25              |
| 1.505          | 1                                     | ŋ       | ŋ   | 24       |       | 61.59              |
| 1.484          | 14                                    | ź       | 1   | 10       |       | 62.54              |
| 1.458          | 12                                    | 1       | 2   | 11       |       | 63.77              |
| 1.436          | 10                                    | 3       | 0   | 0        |       | 64.90              |
| 1.425          |                                       | 0       | 2   | 19       |       | 65.45              |
| 1.414          |                                       | 1       | 1   | 21       |       | 66.00              |
| 1.384          |                                       | 2       | 5   | 20<br>14 |       | 67.66<br>68.05     |
| 1.369          |                                       | 1       | 9   | 25       |       | 68.46              |
| 1.352          |                                       | 3       | 0   | 9        |       | 69.49              |
| 1.352          |                                       | 0       | 3   | 9        |       | 69.49              |
| 1.296          |                                       | 3       | 0   | 12       |       | 72.96              |
| 1.296          |                                       | 0       | 3   | 12       |       | 72.96              |
| 1.292<br>1.287 |                                       | 1       | 2   | 17       |       | 73.20              |
| 1.00           | 3                                     | 1       | Т   | 24       |       | 73.51              |

| d (Å)  | I           | hkl     | 2Θ(°) 。<br>λ = 1.540598A |
|--------|-------------|---------|--------------------------|
| 1.269  | 1           | 2 0 23  | 74.77                    |
| 1.243  | 21          | 2 2 0   | 76.57                    |
|        |             | 1 2 20  | 79.16                    |
| 1.209  | 5           |         | 79.58                    |
| 1.204  | 1           | .0 0 30 |                          |
| 1.196  | 1           | 0 1 29  | 80.18                    |
| 1.194  | 1           | 1 3 1   | 80.37                    |
| 1.188  | 1           | 2 2 9   | 80.88                    |
| 1.178  | 3           | 1 1 27  | 81.69                    |
| 1.167  | 2           | 2 0 26  | 82.60                    |
| 1.156  | 2           | 2 1 22  | 83.59                    |
| 1.149  | 2           | 2 2 12  | 84.19                    |
| 1.134  | 6           | 1 3 10  | 85.57                    |
| 1.124  | 2           | 1 0 31  | 86.48                    |
| 1.122  | 5           | 3 1 11  | 86.67                    |
| 1.106  | 2           | 0 2 28  | 88.25                    |
| 1.105  | 1           | 2 2 15  | 88.43                    |
| 1.102  | 1 3         | 3 0 21  | 88.69                    |
| 1.102  | ž           | 0 3 21  | 88.69                    |
| 1.084  | 3<br>2<br>5 | 3 1 14  | 90.58                    |
| 1.083  | <u> </u>    | 1 1 30  | 90.63                    |
|        |             |         |                          |
| 1.080  | 2           | 2 1 25  | 90.96                    |
| 1.076  | 4           | 4 0 1   | 91.41                    |
| 1.075  | 1           | 0 4 2   | 91.57                    |
| 1.057  | 9           | 2 2 18  | 93.50                    |
| 1.054  | 1           | 4 0 7   | 93.92                    |
| 1.047  | 1           | 0 4 8   | 94.70                    |
| 1.041, | 2           | 3 1 17  | 95.44                    |
| 1.039  | 1           | 3 0 24  | 95.74                    |
| 1.039  | 1           | 0 3 24  | 95.74                    |
| 1.025  | 4           | 0 2 31  | 97.50                    |
| 1.007  | 5           | 2 2 21  | 99.74                    |
| 1.003  | 2           | 0 0 36  | 1.00.34                  |
| .9995  | 1           |         | 100.83                   |
| 9962   |             |         | 101.20                   |
|        | 3           |         | 102.31                   |
| 0,680  | 1           | 1 2 29  | 102.51                   |
| •9786  | 1           | 0 3 27  | 103.85                   |
| •9786  | 1           | 3 0 27  | 103.85                   |
| •9658  | 2           | 1 3 22  | 105.80                   |
| .9584  | 1           | 2 2 24  | 106.98                   |
| •9530  | 5           | 3 2 10  | 107.86                   |
| •9525  | 2           | 0 2 34  | 107.94                   |
| .9473  | 4           | 2 1 31  | 108.81                   |
| .9461  | 4           | 2 3 11  | 109.01                   |
| 9398   | 7           | 4 1 0   | 110.10                   |
| •9368  | 2           | 4 0 19  | 110.62                   |
| •9304  | 3           | 2 0 35  | 111.77                   |
| .9302  | 1           | 1 1 36  | 111.80                   |
| .9274  | 1           | 1 2 32  | 112.32                   |
| .9247  | 4           | 0 4 20  | 112.81                   |
| .9227  | 2           | 2 3 14  | 113.20                   |
|        |             |         |                          |

| d (Å)                                     | I                       | hkl                                            | 2Θ(°)<br>λ = 1.540598A                         |
|-------------------------------------------|-------------------------|------------------------------------------------|------------------------------------------------|
| .9224<br>.9224<br>.9205<br>.9150          | 2<br>2<br>2<br>10<br>10 | 3 0 30<br>0 3 30<br>1 3 25<br>4 1 9<br>1 4 9   | 113.26<br>113.26<br>113.61<br>114.67<br>114.67 |
| .9106                                     | 1                       | 2 2 27                                         | 115.55                                         |
| .8971                                     | 1                       | 4 1 12                                         | 118.34                                         |
| .8971                                     | 1                       | 1 4 12                                         | 118.34                                         |
| .8959                                     | 2                       | 2 3 17                                         | 118.60                                         |
| .8895                                     | 1                       | 2 1 34                                         | 120.00                                         |
| .8835                                     | 2                       | 1 0 40                                         | 121.34                                         |
| .8677                                     | 1                       | 1 1 39                                         | 125.19                                         |
| .8667                                     | 4                       | 2 3 20                                         | 125.43                                         |
| .8648                                     | 6                       | 2 2 30                                         | 125.94                                         |
| .8629                                     | 2                       | 0 1 41                                         | 126.43                                         |
| .8620                                     | 1                       | 3 1 29                                         | 126.67                                         |
| .8509                                     | 1                       | 0 4 26                                         | 129.71                                         |
| .8465                                     | 2                       | 3 2 22                                         | 131.01                                         |
| .8378                                     | 3                       | 0 5 10                                         | 133.67                                         |
| .8370                                     | 1                       | 2 1 37                                         | 133.93                                         |
| .8339                                     | · 5 3 1 5 2             | 1 3 31                                         | 134.94                                         |
| .8331                                     |                         | 5 0 11                                         | 135.21                                         |
| .8325                                     |                         | 0 2 40                                         | 135.41                                         |
| .8288                                     |                         | 3 3 0                                          | 136.68                                         |
| .8265                                     |                         | 4 0 28                                         | 137.50                                         |
| .8247<br>.8247<br>.8222<br>.8222<br>.8203 | 8<br>8<br>1<br>1        | 4 1 21<br>1 4 21<br>0 3 36<br>3 0 36<br>3 1 32 | 138.16<br>138.16<br>139.05<br>139.05<br>139.79 |
| .8170<br>.8155<br>.8152<br>.8137          | 1<br>2<br>2<br>11<br>2  | 5 0 14<br>3 2 25<br>2 0 41<br>2 4 1<br>4 2 2   | 141.07<br>141.67<br>141.80<br>142.41<br>142.67 |
| .8126                                     | 2                       | 1 1 42                                         | 142.88                                         |
| .8117                                     | 15                      | 3 3 9                                          | 143.25                                         |
| .8106                                     | 2                       | 2 4 4                                          | 143.71                                         |
| .8088                                     | 1                       | 4 2 5                                          | 144.51                                         |
| .8062                                     | 2                       | 9 1 44                                         | 145.69                                         |
| .8040                                     | 3                       | 2 4 7                                          | 146.73                                         |
| .8010                                     | 4                       | 4 2 8                                          | 148.18                                         |
| .7991                                     | 2                       | 3 3 12                                         | 149.15                                         |
| .7982                                     | 2                       | 5 0 17                                         | 149.60                                         |
| .7971                                     | 3                       | 4 1 24                                         | 150.21                                         |
| .7971                                     | 3                       | 1 4 24                                         | 150.21                                         |
| .7937                                     | 2                       | 1 3 34                                         | 152.11                                         |
| .7907                                     | 8                       | 4 0 31                                         | 153.94                                         |
| .7900                                     | 3                       | 4 2 11                                         | 154.37                                         |
| .7895                                     | 9                       | 2 1 40                                         | 154.69                                         |

Orthorhombic, Pnma(62), Z=4, isostructural with CFe<sub>3</sub>, type  $DO_{11}$ . The structure was determined by Strydom and Alberts [1970].

Lattice constants: [ibid.]

a = 7.05A

b = 9.54c = 6.32

Density

(calculated) 8.29 g/cm<sup>3</sup>

Thermal parameters

Isotropic [Strydom and Alberts, op. cit.].

Scattering factors

Co<sup>0</sup>, Gd<sup>0</sup> [Cromer and Mann, 1968].

Scale factors (integrated intensities)

 $\gamma = 0.168 \times 10^{-3}$ 

I/I (calculated) 4.41

References

Cromer, D. T. and Mann, J. B. (1968). Acta

Crystallogr.  $\underline{A24}$ , 321. Strydom, O.A.W. and Alberts, L. (1970). J. Less-

Common Metals, 22, 511.

| Ca    | alculated Pat | ttern | (Pe | ak h | eights)                  |
|-------|---------------|-------|-----|------|--------------------------|
| d(A)  | I             |       | hkl |      | 2Θ(°) .<br>λ = 1.540598A |
| 4.22  | 1             | 1     | 1   | 1    | 21.04                    |
| 3.525 | 1             | S     | 0   | 0    | 25.26                    |
| 3.350 | 18            | 1     | 2   | 1    | 26.60                    |
| 3.307 | 13            | 2     | 1   | ŋ    | 26.96                    |
| 3.160 | 9             | Û     | 0   | S    | 28.22                    |
| 3.079 | 15            | 2     | 0   | 1    | 28.98                    |
| 2.930 | 35            | 2     | 1   | 1    | 30.50                    |
| 2.884 | 38            | 2 2 1 | 0   | 2    | 31.00                    |
| 2.841 | 100           | 0     | 3   | 1+   | 31.52                    |
| 2.760 | 51            | 1     | 1   | 2    | 32.42                    |
| 2.635 | 40            | 1     | 3   | 1+   | 34.00                    |
| 2.587 | 44            | 2     |     | 1    | 34.66                    |
| 2.468 | 14            | 1     | 2   | 2    | 36.38                    |
| 2.385 | 6             | ō     | 4   | 0    | 37.70                    |
| 2.361 | 15            | 2     | 3   | 0    | 38.08                    |
| 2.284 | 8             | 2     | 1   | 2    | 39.42                    |
| 2.203 | 15            | 3     | ō   | 1    | 40.94                    |
| 2.146 | 8             | 3     | 1   | î    | 42.09                    |
| 2.136 | 6             | 1     | 3   | 2    | 42.16                    |
| 2.127 | 2             | 1     | 4   | 1    | 42.44                    |
|       |               |       |     | -    |                          |

| d (Å)                                     | I                      | hkl<br>λ                                    | 20(°) °<br>= 1.540598A                    |
|-------------------------------------------|------------------------|---------------------------------------------|-------------------------------------------|
| 2.110<br>1.975<br>1.891<br>1.885<br>1.859 | 3<br>7<br>2<br>3<br>16 | 2 2 2<br>2 4 0+<br>2 3 2<br>2 4 1<br>1 2 3  | 42.82<br>45.92<br>48.08<br>48.22<br>48.96 |
| 1.827<br>1.811<br>1.777<br>1.768<br>1.754 | 3<br>3<br>1<br>1<br>3  | 0 5 1<br>3 3 1+<br>2 1 3<br>1 5 1<br>3 2 2  | 49.88<br>50.40<br>51.40<br>51.66<br>52.12 |
| 1.704<br>1.698<br>1.678<br>1.671<br>1.653 | 14<br>16<br>5<br>4     | 1 3 3<br>4 0 1<br>2 5 0<br>4 1 1<br>4 2 0   | 53.74<br>53.96<br>54.66<br>54.80<br>55.54 |
| 1.622<br>1.599<br>1.591<br>1.580<br>1.569 | 24<br>2<br>15<br>3     | 3 3 2+<br>4 2 1<br>1 5 2+<br>0 0 4<br>3 0 3 | 56.72<br>57.60<br>57.92<br>58.36<br>58.82 |
| 1.542<br>1.490<br>1.482<br>1.479<br>1.467 | 17<br>2<br>3<br>2<br>2 | 4 3 0+<br>3 2 3<br>2 5 2<br>3 4 2<br>1 2 4  | 59.96<br>62.26<br>62.64<br>62.80<br>63.36 |
| 1.465<br>1.442<br>1.426<br>1.420<br>1.413 | 2<br>2<br>1<br>1       | 4 2 2<br>3 5 1+<br>2 1 4<br>0 6 2<br>2 6 1+ | 63.44<br>64.58<br>65.42<br>65.60<br>66.08 |
| 1.392<br>1.387<br>1.380<br>1.362<br>1.341 | 3<br>6<br>3<br>1       | 1 6 2<br>1 5 3+<br>2 2 4<br>5 1 1<br>3 5 2  | 67.18<br>67.50<br>67.84<br>68.88<br>70.10 |
| 1.332<br>1.322<br>1.317<br>1.301<br>1.295 | 1<br>1<br>1<br>1       | 0 7 1<br>5 2 1<br>0 4 4+<br>4 2 3<br>4 5 0+ | 70.64<br>71.26<br>71.56<br>72.64<br>73.02 |
| 1.289<br>1.268<br>1.264<br>1.243<br>1.234 | 2<br>1<br>1<br>4       | 3 6 1<br>4 5 1<br>3 2 4<br>5 2 2+<br>2 4 4+ | 73.38<br>74.80<br>75.04<br>76.58<br>77.28 |
| 1.232<br>1.212<br>1.199<br>1.198<br>1.194 | 1<br>4<br>1<br>1       | 1 7 2<br>3 3 4<br>1 5 4<br>4 5 2<br>5 3 2+  | 77.39<br>78.92<br>79.94<br>80.02<br>80.38 |
|                                           |                        |                                             |                                           |

| đ (Å)                                     | I                     | h                     | kl                     | λ                       | 20(°) °<br>= 1.540598A                         |
|-------------------------------------------|-----------------------|-----------------------|------------------------|-------------------------|------------------------------------------------|
| 1.190<br>1.181<br>1.175<br>1.172<br>1.166 | 1<br>1<br>3<br>3<br>1 | 2<br>2<br>0<br>5<br>6 | 0<br>1<br>3<br>0       | 5<br>5<br>5+<br>3<br>0  | 80.64<br>81.46<br>81.96<br>82.20<br>82.68      |
| 1.163<br>1.161<br>1.159<br>1.156<br>1.154 | 2<br>2<br>2<br>1      | 5<br>4<br>1<br>1<br>2 | 1<br>6<br>3<br>8<br>2  | 3<br>1<br>5<br>1<br>5   | 82.96<br>83.18<br>83.34<br>83.58<br>83.70      |
| 1.150<br>1.141<br>1.138<br>1.133<br>1.130 | 1<br>1<br>1<br>1<br>2 | 2<br>6<br>5<br>5<br>2 | 5 2 2 4 8              | 4<br>0+<br>3<br>2<br>0  | 84.08<br>84.94<br>85.20<br>85.66<br>85.98      |
| 1.123<br>1.121<br>1.117<br>1.112<br>1.107 | 1<br>1<br>3<br>3<br>2 | 6<br>0<br>3<br>2      | 2 6 6 8 6              | 1<br>4<br>3+<br>1<br>4  | 86.64<br>86.84<br>87.24<br>87.69<br>88.20      |
| 1.103<br>1.102<br>1.086<br>1.084<br>1.081 | 2<br>2<br>2<br>1<br>1 | 4<br>1<br>6<br>3<br>3 | 3<br>8<br>3<br>2<br>5  | 4+<br>2+<br>1<br>5<br>4 | 88.54<br>88.70<br>90.39<br>90.56<br>90.92      |
| 1.078<br>1.067<br>1.053<br>1.045<br>1.042 | 1<br>1<br>1<br>1      | 4<br>5<br>0<br>0      | 7<br>5<br>0<br>9<br>5  | 0<br>2<br>6<br>1+<br>5  | 91.20<br>92.40<br>94.00<br>94.92<br>95.30      |
| 1.027<br>1.010<br>1.001<br>.9985<br>.9882 | 3<br>1<br>1<br>2<br>1 | 1<br>2<br>6<br>5<br>6 | 85555                  | 3+<br>5<br>0<br>3+<br>1 | 97.20<br>99.46<br>100.70<br>100.96<br>102.44   |
| .9874<br>.9596<br>.9540<br>.9493<br>.9433 | 1<br>2<br>1<br>1      | 2<br>7<br>0<br>3<br>1 | 2<br>0<br>10<br>8<br>8 | 6<br>2<br>0<br>3+<br>4+ | 102.52<br>106.78<br>107.70<br>108.48<br>109.50 |
| .9240<br>.9213<br>.9189<br>.8921<br>.8906 | 1<br>1<br>1<br>1      | 3<br>5<br>2<br>2<br>4 | 9<br>5<br>8<br>5<br>7  | 2<br>4<br>4<br>6<br>4+  | 112.94<br>113.46<br>113.92<br>119.42<br>119.88 |
| .8781<br>.8749<br>.8737<br>.8697          | 1<br>2<br>2<br>1<br>1 | 0<br>5<br>7<br>4      | 6<br>8<br>3<br>3<br>6  | 6<br>2+<br>3<br>6<br>5  | 122.64<br>123.38<br>123.70<br>124.68<br>126.46 |
| •8586                                     | 1                     | 8                     | 2                      | 1+                      | 127.60                                         |

|                                           | Calculated         | Pattern               | (Integ                                  | grated)                        |
|-------------------------------------------|--------------------|-----------------------|-----------------------------------------|--------------------------------|
| đ (Å)                                     | I                  |                       | hkl                                     | $20$ (°) $\lambda = 1.540598A$ |
| 4.22<br>3.525<br>3.350<br>3.307<br>3.160  | 23                 | 1<br>2<br>1<br>2<br>0 | 1 1<br>0 0<br>2 1<br>1 0                | 25.24<br>1 26.59<br>1 26.94    |
| 3.079<br>2.930<br>2.884<br>2.841<br>2.835 | 46<br>48<br>100    | 2<br>2<br>1<br>0<br>2 | 0 1<br>1 1<br>0 2<br>3 1<br>2 0         | 1 30.49<br>2 30.99<br>1 31.47  |
| 2.760<br>2.635<br>2.634<br>2.587<br>2.468 | 5 42<br>1 14<br>61 | 1<br>1<br>0<br>2<br>1 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1 34.00<br>2 34.00<br>1 34.65  |
| 2.385<br>2.361<br>2.353<br>2.284<br>2.212 | 21<br>3<br>4<br>11 | 0<br>2<br>2<br>2<br>2 | 4 0<br>3 0<br>0 2<br>1 2<br>3 1         | 38.08<br>38.22<br>39.41        |
| 2.203<br>2.146<br>2.136<br>2.127<br>2.110 | 11 3               | 3<br>3<br>1<br>1<br>2 | 0 1<br>1 1<br>3 2<br>4 1<br>2 2         | 42.07<br>42.27<br>42.46        |
| 2.057<br>1.975<br>1.975<br>1.891<br>1.885 | 5 6<br>5 5         | 0<br>2<br>1<br>2<br>2 | 1 3<br>4 0<br>1 3<br>3 2<br>4 1         | 45.90<br>45.92                 |
| 1.859<br>1.827<br>1.811<br>1.808<br>1.777 | 3 2                | 1<br>0<br>3<br>2<br>2 | 2 3<br>5 1<br>3 1<br>0 3<br>1 3         | L 49.89<br>L 50.35<br>5 50.42  |
| 1.768<br>1.754<br>1.704<br>1.698          | 20<br>19           | 1<br>3<br>1<br>4<br>2 | 5 1<br>2 2<br>3 3<br>0 1<br>2 3         | 52.11<br>53.75                 |
| 1.678<br>1.671<br>1.653<br>1.622<br>1.622 | 3<br>3 1<br>2 24   | 2<br>4<br>4<br>3<br>2 | 5 0<br>1 1<br>2 0<br>3 2<br>5 1         | L 54.88<br>D 55.54<br>2 56.71  |
| 1.618<br>1.599<br>1.591<br>1.590<br>1.580 | 1<br>15<br>10      | 3<br>4<br>1<br>0      | 4 1<br>2 1<br>5 2<br>6 0<br>0 4         | 57.58<br>57.91<br>57.95        |

| ·             |             |     |     |    |                       |
|---------------|-------------|-----|-----|----|-----------------------|
| d(A)          | I           |     | hkl |    | 20(°)                 |
|               |             |     |     |    | $\lambda = 1.540598A$ |
| 4 570         | <del></del> |     |     |    | E0 (0                 |
| . 1.572       | 1           | 2 3 | 3   | 3  | 58.68                 |
| 1.569         | 14          |     | 0   | 3  | 58.82                 |
| 1.548         | 1           | 3   | 1   | 3  | 59.69                 |
| 1.542         | 8           | 1   | ŋ   | 4  | 59.95                 |
| 1.542         | 14          | 4   | 3   | 0  | 59.96                 |
|               |             |     |     |    |                       |
| 1.541         | 5           | 1   | 4   | 3  | 59.99                 |
| 1.490         | 3           | 3   | 2   | 3  | 62.25                 |
| 1.482         | 5           | 2   | 5   | 2  | 62.63                 |
| 1.479         | 1           | 3   | 4   | 2  | 62.77                 |
| 1.467         | 3           | 1   | 2   | 4  | 63.35                 |
| 1.401         | 3           | 1   | 2.  | 7  | 00.0                  |
| 1.465         | 1           | 4   | 2   | 2  | 63.45                 |
|               |             |     |     |    |                       |
| 1.442         | 2           | 3   | 5   | 1  | 64.57                 |
| 1.441         | 1           | 5   | 4   | 3  | 64.63                 |
| 1.426         | 2           | 5   | 1   | 4  | 65.41                 |
| 1.420         | 1           | 0   | 6   | 2  | 65.60                 |
|               |             |     |     |    |                       |
| 1.413         | 1           | 2   | 6   | 1  | 66.09                 |
| 1.392         | 4           | 1   | 6   | 2  | 67.18                 |
| 1.387         | 2           | 1   | 3   | 4  | 67.46                 |
| 1.387         | 6           | 1   | 5   | 3  | 67.50                 |
| 1.385         | 4           | 4   | 3   | 2  | 67.56                 |
| 1.000         | <b>T</b>    |     | J   | 6. | 01.50                 |
| 1.383         | 1           | 4   | 4   | 1  | 67.69                 |
|               |             |     |     | 4  | 67.85                 |
| 1.380         | 3           | 2 5 | 2   |    |                       |
| 1.362         | 1           | 7   | 1   | 1  | 68.88                 |
| 1.341         | 2           | 3   | 5   | 5  | 70.11                 |
| 1.332         | 2           | 0   | 7   | 1  | 70.65                 |
| _             |             |     |     |    |                       |
| 1.322         | 2           | 5   | 2   | 1  | 71.26                 |
| 1.309         | 1           | 1   | 7   | 1  | 72.09                 |
| 1.301         | 1           | 4   | 2   | 3  | 72.64                 |
| 1.295         | 1           | 4   | 5   | 0  | 73.02                 |
| 1.289         | 3           | 3   | 6   | 1  | 73.3A                 |
| - •           | •           |     |     |    |                       |
| 1.268         | 2           | 14  | 5   | 1  | 74.79                 |
| 1.264         | 2<br>1      | 3   | 2   | 4  | 75.07                 |
|               | 1           |     |     |    | 76.51                 |
| 1.244         |             | 1   | 0   | 5  |                       |
| 1.243         | 5           | 5   | 2   | 2  | 76.58                 |
| 1.234         | 1           | 2   | 4   | 4  | 77.26                 |
|               |             |     | _   |    | == =0                 |
| 1.232         | 1           | 1   | 7   | 2  | 77.39                 |
| 1.212         | 7           | 3   | 3   | 4  | 78.91                 |
| 1.212         | 1           | 3   | 5   | 3  | 78.95                 |
| 1.199         | 1           | 1   | 5   | 4  | 79.93                 |
| 1.198         | ī           | 4   | 5   | 2  | 80.03                 |
|               | _           |     |     |    |                       |
| 1.194         | 1           | 5   | 3   | 2  | 80.39                 |
| 1.190         | 1           | 2   | 0   | 5  | 80.69                 |
| 1.181         | 2           | 2   | 1   | 5  | 81.45                 |
| 1.175         | 1           | 6   | 0   | Ô  | 81.93                 |
| 1.175         |             | 0   | 3   | 5  | 81.96                 |
| T+1/0         | 4           | 1,  | .)  | ,  | 01.00                 |
| 1.172         | 1           | 5   | 0   | 3  | 82.20                 |
| 1.166         | 1           | 6   | 1   | 0  | 82.68                 |
| 1.163         | 3           | 5   | 1   | 3  | 82.95                 |
| 1.161         | 5           | 4   | 6   | 1  | 83.17                 |
| 1.159         | í           | 1   | 3   | 5  | 83.34                 |
| T • 1 · 1 · 2 | 1           | 1   | J   |    | ,                     |
|               |             |     |     |    |                       |

| đ (Å)                                     | I                     | hkl                                        | 20(°) °<br>λ = 1.540598A                       |
|-------------------------------------------|-----------------------|--------------------------------------------|------------------------------------------------|
| 1.156<br>1.154<br>1.150<br>1.141<br>1.138 | 1<br>1<br>1<br>1      | 1 8 1<br>2 2 5<br>2 5 4<br>6 2 0<br>5 2 3  | 83.58<br>83.71<br>84.08<br>84.93<br>85.21      |
| 1.133<br>1.130<br>1.123<br>1.121<br>1.117 | 1<br>2<br>1<br>1<br>4 | 5 4 2<br>2 8 0<br>6 2 1<br>0 6 4<br>3 6 3  | 85.66<br>85.99<br>86.64<br>86.83<br>87.23      |
| 1.116<br>1.116<br>1.112<br>1.107<br>1.105 | 1<br>1<br>4<br>2<br>1 | 5 5 1<br>0 8 2<br>2 8 1<br>1 6 4<br>3 7 2  | 87.28<br>87.33<br>87.69<br>88.20<br>88.43      |
| 1.103<br>1.102<br>1.101<br>1.086<br>1.084 | 2<br>2<br>1<br>2<br>1 | 4 3 4<br>1 8 2<br>6 0 2<br>6 3 1<br>3 2 5  | 88.55<br>88.70<br>88.76<br>90.38<br>90.56      |
| 1.081<br>1.078<br>1.067<br>1.053<br>1.045 | 2<br>1<br>1<br>1      | 3 5 4<br>4 7 0<br>5 5 2<br>0 0 6<br>0 9 1  | 90.93<br>91.20<br>92.39<br>93.99<br>94.93      |
| 1.042<br>1.027<br>1.027<br>1.027<br>1.027 | 1<br>1<br>2<br>3<br>2 | 1 5 5<br>5 2 4<br>4 0 5<br>1 8 3<br>2 5 5  | 95.31<br>97.15<br>97.17<br>97.23<br>99.45      |
| 1.001<br>.9985<br>.9882<br>.9874<br>.9620 | 1<br>3<br>1<br>1      | 6 5 0<br>5 5 3<br>6 5 1<br>2 2 6<br>2 3 6  | 100.69<br>100.97<br>102.43<br>102.55<br>106.41 |
| .9596<br>.9540<br>.9493<br>.9492<br>.9433 | 2<br>1<br>1<br>1      | 7 0 2<br>0 10 0<br>3 8 3<br>7 3 1<br>1 8 4 | 106.79<br>107.69<br>108.47<br>108.48<br>109.50 |
| .9268<br>.9240<br>.9213<br>.9189<br>.9084 | 1<br>1<br>1<br>1      | 0 7 5<br>3 9 2<br>5 5 4<br>2 8 4<br>4 9 0  | 112.44<br>112.95<br>113.47<br>113.92<br>115.90 |
| .9025<br>.8921<br>.8802<br>.8781<br>.8749 | 1<br>2<br>1<br>1<br>3 | 5 3 5<br>2 5 6<br>1 2 7<br>0 6 6<br>5 8 2  | 117.20<br>119.41<br>122.13<br>122.62<br>123.39 |

Cubic, Fd3m(227), Z=8, Cl5 type, isostructural with Cu<sub>2</sub>Mg [Wernick and Geller, 1960].

Lattice constant: [ibid.]

a = 7.255(5)A.

Density

(calculated) 9.571 g/cm<sup>3</sup>

Thermal parameters

Overall isotropic B = 1.0

Scattering factors
Co<sup>0</sup> and Gd<sup>0</sup> [Thomas and Umeda, 1957], corrected for dispersion [Dauben and Templeton, 1955].

Scale factors (integrated intensities)

 $\gamma = 0.372 \times 10^{-3}$ 

I/I<sub>c</sub> (calculated = 8.83

References

Dauben, C. H. and Templeton, D. H. (1955). Acta

Crystallogr. 8, 841.

Thomas, L.H. and Umeda, K. (1957). J. Chem. Phys. 26, 293.

Wernick, J.H. and Geller, S. (1960). Trans. AIME 218, 866.

|                                           | Calculated                 | Pattern               | (Pe                   | ak h                  | neights)                                       |
|-------------------------------------------|----------------------------|-----------------------|-----------------------|-----------------------|------------------------------------------------|
| d(Å)                                      | I                          |                       | hkl                   |                       | 20 (°)<br>λ = 1.540598A                        |
| 4.19<br>2.564<br>2.187<br>2.094<br>1.664  | 12<br>64<br>100<br>17<br>2 | 1<br>2<br>3<br>2<br>3 | 1<br>2<br>1<br>2<br>3 | 1<br>0<br>1<br>2<br>1 | 21.20<br>34.96<br>41.24<br>43.16<br>55.14      |
| 1.481<br>1.396<br>1.283<br>1.226<br>1.147 | 15<br>19<br>13<br>1<br>4   | 4<br>5<br>4<br>5<br>6 | 2<br>1<br>4<br>3<br>2 | 2<br>1<br>0<br>1<br>0 | 62.68<br>+ 66.96<br>73.82<br>77.82<br>84.36    |
| 1.106<br>1.094<br>.970<br>.945            | 5<br>3<br>5<br>8<br>2      | 5<br>6<br>6<br>7<br>8 | 3<br>2<br>4<br>3<br>0 | 3<br>2<br>2<br>1<br>0 | 88.26<br>89.54<br>105.22<br>+ 109.28<br>116.30 |
| .855<br>.838<br>.832                      | 3<br>5<br>1                | 8<br>7<br>6           | 2<br>5<br>6           | _                     | + 128.56<br>+ 133.70<br>135.52                 |

|                                                                     | Calculated                                  | Pattern                              | (In                                       | tegr                                      | ated)                                                                         |
|---------------------------------------------------------------------|---------------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------|
| d(A)                                                                | I                                           |                                      | hkl                                       |                                           | 2Θ (°)<br>λ = 1.540598Å                                                       |
| 4.19<br>2.565<br>2.187<br>2.094<br>1.664<br>1.481<br>1.396<br>1.396 | 10<br>63<br>100<br>17<br>2<br>18<br>19<br>6 | 1<br>2<br>3<br>2<br>3<br>4<br>5<br>3 | 1<br>2<br>1<br>2<br>3<br>2<br>1<br>3<br>4 | 1<br>0<br>1<br>2<br>1<br>2<br>1<br>3<br>0 | 21.19<br>34.95<br>41.24<br>43.16<br>55.14<br>62.68<br>66.97<br>66.97<br>73.83 |
| 1.226<br>1.147<br>1.106<br>1.094<br>.969                            | 1<br>7<br>8<br>4<br>9<br>10                 | 5<br>6<br>5<br>6<br>6<br>7           | 3 2 3 2 4 3                               | 1<br>0<br>3<br>2<br>2<br>1                | 77.83<br>84.37<br>88.25<br>89.54<br>105.22<br>109.28                          |
| .945<br>.907<br>.855<br>.855                                        | 5<br>3<br>2<br>4<br>11                      | 5<br>8<br>6<br>8<br>7                | 5<br>0<br>6<br>2<br>5                     | 3<br>0<br>0<br>2<br>1                     | 109.28<br>116.29<br>128.56<br>128.56<br>133.71                                |
| .838<br>.832<br>.796                                                | 2<br>3<br>1                                 | 5<br>6<br>7                          | 5<br>6<br>5                               | 5<br>2<br>3                               | 133.71<br>135.52<br>150.61                                                    |

Hexagonal, R3m(166), Z = 6. The structure was determined by Bertaut et al. [1965].

Lattice constants: [Ostertag, 1967]

a = 5.023A

c = 36.29

Density

(calculated) 9.135 g/cm<sup>3</sup>

Thermal parameters

Isotropic [Bertaut et al., op. cit.]

Scattering factors

 $Co^0$ ,  $Gd^{\bar{0}}$  [Cromer and Mann, 1968].

Scale factors (integrated intensities)

 $\gamma = 0.302 \times 10^{-3}$ 

I/I (calculated) = 6.84

References

Bertaut, E. F., Lemaire, F. G. R., and Schweizer,

J. (1965). C. R. Acad. Sci. 260, 3595.
Cromer, D. T. and Mann, J. B. (1968).
Crystallogr. A24, 321.

Ostertag, W. (1967). J. Less-Common Metals, 13, 385.

|                                           | Calculated Pa         | attern                | (Pe       | eak h                     | neights)                                  |
|-------------------------------------------|-----------------------|-----------------------|-----------|---------------------------|-------------------------------------------|
| d(A)                                      | I                     |                       | hks       | ι                         | 2Θ(°)<br>λ = 1.540598Å                    |
| 12.10<br>4.319<br>4.032<br>3.922<br>3.140 | 7<br>7<br>6<br>3<br>4 | 0<br>1<br>0<br>1      | 0 0 0 1   | 3<br>1<br>9<br>4<br>8     | 7.30<br>20.56<br>22.04<br>22.66<br>28.42  |
| 3.024<br>2.787<br>2.629<br>2.512<br>2.459 | 43                    | 0<br>1<br>0<br>1<br>1 | 1         | 12<br>10<br>11<br>0<br>3  | 29.52<br>32.10<br>34.08<br>35.72<br>36.52 |
| 2.419<br>2.349<br>2.227<br>2.171<br>2.132 | 35                    | 0<br>1<br>0<br>0      | 0 0 1 2 1 | 15<br>13<br>14<br>1.<br>9 | 37.14<br>38.28<br>40.48<br>41.56<br>42.36 |
| 2.115<br>2.083<br>2.016<br>2.006<br>1.961 | 4<br>16               | 0<br>0<br>2           | 20020     | 4<br>5<br>18<br>7<br>8    | 42.70<br>43.40<br>44.92<br>45.16<br>46.26 |

| d(Å)                        | I        | hkl               | 20 (°) °                         |
|-----------------------------|----------|-------------------|----------------------------------|
|                             |          |                   | $\lambda = 1.540598A$            |
| 1.932<br>1.916              | 2<br>5   | 1 1 12<br>0 1 17  | 47.00<br>47.40                   |
| 1.816                       | 1        | 2 0 11            | 50.20                            |
| 1.742<br>1.728              | 3<br>2   | 1 1 15<br>0 0 21  | 52.48<br>52.94                   |
| 1.675<br>1.666              | 4<br>1   | 0 1 20<br>2 0 14  | 54.78<br>55.06                   |
| 1.642                       | 1        | 2 1 1             | 55.94                            |
| 1.572<br>1.546              | 4<br>1   | 1 1 18            | 58.68<br>59.78                   |
| 1.524<br>1.512              | 1        | 2 0 17<br>0 0 24  | 60.74                            |
| 1.498                       | 10       | 0 0 24<br>2 1 10  | 61.26<br>61.90                   |
| 1.483<br>1.472              | 2<br>7   | 0 1 23 1 2 11     | 62.58<br>63.14                   |
| 1.450                       | 7        | 3 0 0             | 64.18                            |
| 1.435                       | 7<br>5   | 0 2 19            | 64 <b>.</b> 92<br>65 <b>.</b> 52 |
| 1.417                       | 2 7      | 2 1 13            | 65.86                            |
| 1.393                       |          | 2 0 20            | 67.12                            |
| 1.388<br>1.377              | 5<br>1   | 1 2 14 1 0 25     | 67.38<br>68.04                   |
| 1.364                       | 18       | 0 3 9+            | 68.74                            |
| 1.303<br>1.295              | 2<br>4 · | 1 2 17<br>1 1 24  | 72.50<br>72.98                   |
| 1.277                       | 2        | 2 0 23            | 74.19                            |
| 1.256<br>1.244              | 15<br>1  | 2 2 0 3 0 15+     | 75.68<br>76.54                   |
| 1.218                       | 3        | 1 2 20            | 78.44                            |
| 1.210                       | 1        | 0 0 30            | 79.10                            |
| 1.203                       | 1        | 0 1 20 2 9        | 79.65<br>79.94                   |
| 1.185                       | 2        | 1 1 27            | A1.0P                            |
| 1.177<br>1.175              | 1 2      | 3 N 18+<br>2 N 26 | 81.74<br>81.96                   |
| 1.145                       | 4        | 1 3 10            | 84.59                            |
| 1.138                       | 1.       | 1 2 23            | 85.16                            |
| 1.133<br>1.113              | 3<br>1   | 3 1 11<br>0 2 28+ | 85.66<br>87.56                   |
| 1.111                       | 3        | 0 3 21+           | 87.82                            |
| 1.094                       | 2        | 3 1 14            | 89.54                            |
| 1.090<br>1.087              | 3<br>4   | 1 1 30            | 89.96<br>90.24                   |
| 1.066                       | 8        | 2 2 1A            | 92.56                            |
| 1.058                       | 1        | 0 4 8             | 93.50                            |
| 1.050<br>1.047              | 1<br>2   | 3 1 17<br>0 3 24+ | 94.78                            |
| 1.037                       | 1        | 1 0 34            | 96.00                            |
| 1.0 <sup>2</sup> 1<br>1.016 | 1<br>2   | 0 2 31 2 21       | 96.70<br>98.62                   |
|                             |          |                   |                                  |

| d(Å)    | I   | hkl      | 20(°)<br>λ = 1.540598A |
|---------|-----|----------|------------------------|
| 1.007   | 2   | 1 1 33+  | 99.74                  |
|         | 2   |          |                        |
| 1.005   | 2   | 3 1 20   | 100.12                 |
| •9958   | 1   | 1 2 29   | 101.36                 |
| .9857   | 1   | 0 3 27+  | 102.78                 |
| .9660   | 1   | 2 2 24   | 1.05.76                |
|         |     |          |                        |
| .9622   | 3   | 3 2 10   | 106.36                 |
| 9582    | 2   | 0 2 34+  | 107.00                 |
| 9552    | 5   |          | 107.48                 |
|         |     |          |                        |
| • 9536  | 1   | 2 1 31   | 107.76                 |
| .9493   | 4   | 4 1 0    | 108.48                 |
|         |     |          |                        |
| .9451   | 2   | 4 0 19   | 109.19                 |
| 9359    | 1   | 2 n 35+  | 110.78                 |
| 9328    | ē   | 1 4 20   | 111.34                 |
| 9313    | 2   | 2 3 14   | 111.60                 |
|         |     |          |                        |
| •9289   | 3   | 3 0 30+  | 112.04                 |
| 0070    |     | 4 7 65   | 110.00                 |
| .9278   | 1   | 1 3 25   | 112.22                 |
| • 35πυ  | 1.1 | 1 4 9+   | 112.96                 |
| .8953   | 2   | 2 1 34+  | 118.72                 |
| .8881   | 1   | 1 0 40   | 120.30                 |
| .8762   | 1.  | 3 n 33+  | 123.08                 |
|         |     |          |                        |
| .8744   | 2   | 2 3 20   | 123.52                 |
| .8726   | Ž.  | 1 1 39   | 124.00                 |
| .8712   |     |          |                        |
|         | 2   | 2 2 30   | 124.30                 |
| •8686   | 2   | 3 1 29   | 124.96                 |
| •8588   | 1   | 1 4 18+  | 127.52                 |
| 0570    |     |          | 4.0-                   |
| •8579   | 1   | 0 4 26   | 127.79                 |
| •8460   | 1   | 0 5 10   | 131.14                 |
| .8434   | 1   | 2 3 23   | 131.92                 |
| .8412   | 1   | 5 0 11   | 132.60                 |
| 8402    | 1   | 1 3 31   | 132.94                 |
|         | _   |          |                        |
| .8372   | 2   | 3 3 0+   | 133.88                 |
| .8320   | 2   | 4 1 21+  | 135.6 <sup>0</sup>     |
| 8285    | 1   | 1 0 43   | 136.80                 |
|         |     | 2 2 33   | 137.20                 |
| .8273   | 1   | 2 4 1    | 139.18                 |
| .8219   | 3   | 5 4 I    | 1 T                    |
|         |     | 3 3 0    | 140.00                 |
| .8197   | 6   |          |                        |
| .B103   | 1   | n 1 44   | 143.84                 |
| .8089   | 1   | 4 2 8    | 144.46                 |
| .8040   | 3   | 4 1 24+  | 146.72                 |
| .7994   | 1   | 1 3 34   | 148.9 <sup>2</sup>     |
|         |     |          |                        |
| .7977   | 1   | 4 2 11   | 150.00                 |
| .7968   | 1   | 4 0 31   | 150.38                 |
| 7943    | 1   | 2 1 40   | 151.74                 |
| .7851   | 4   | 2 2 36   | 156.98                 |
| .7831   | 1   | 0 3 39+  | 159.22                 |
| • / ~31 | 1   | (, (, )) |                        |
|         |     |          |                        |

|                                           | Calculated         | Pattern                 | (In                   | tegr                      | ated)                                     |
|-------------------------------------------|--------------------|-------------------------|-----------------------|---------------------------|-------------------------------------------|
| d(A)                                      | I                  |                         | hkl                   |                           | 20 (°) °<br>λ = 1.540598A                 |
| 12.10<br>4.319<br>4.032<br>3.922<br>3.140 | 5<br>3             | 0<br>1<br>0<br>1        | 0<br>0<br>0<br>0      | 3<br>1<br>9<br>4<br>8     | 7.30<br>20.55<br>22.03<br>22.65<br>28.40  |
| 3.024<br>2.787<br>2.629<br>2.512<br>2.459 | 40<br>24<br>48     | n<br>1<br>0<br>1        | 0<br>1<br>1           | 12<br>10<br>11<br>0<br>3  | 29.51<br>32.09<br>34.08<br>35.72<br>36.51 |
| 2.419<br>2.349<br>2.227<br>2.171<br>2.160 | 1<br>4<br>10<br>33 | n<br>1<br>n<br>0<br>2   | 0<br>n<br>1<br>2      | 15<br>13<br>14<br>1<br>2  | 37.13<br>38.29<br>40.49<br>41.56<br>41.79 |
| 2.132<br>2.115<br>2.083<br>2.016<br>2.006 | 5<br>3<br>16       | 1<br>0<br>2<br>0<br>0   | 1<br>2<br>0<br>0      | 9<br>4<br>5<br>18<br>7    | 42.36<br>42.72<br>43.40<br>44.92<br>45.17 |
| 1.961<br>1.932<br>1.916<br>1.816          | 2<br>5<br>1        | 2<br>1<br>0<br>2<br>1   | 0<br>1<br>1<br>0<br>1 | 8<br>12<br>17<br>11<br>15 | 46.25<br>46.99<br>47.40<br>50.20<br>52.47 |
| 1.728<br>1.675<br>1.666<br>1.642<br>1.572 | 5 1 1              | n<br>0<br>2<br>2<br>1   | 0<br>1<br>0<br>1<br>1 | 21<br>20<br>14<br>1       | 52.94<br>54.77<br>55.07<br>55.94<br>58.67 |
| 1.570<br>1.546<br>1.524<br>1.512<br>1.498 | 1 1                | 0<br>1<br>2<br>0<br>2   | 2 0 0 1               | 16<br>8<br>17<br>24<br>10 | 58.77<br>59.78<br>60.74<br>61.25<br>61.91 |
| 1.483<br>1.472<br>1.450<br>1.435<br>1.424 | 7<br>8<br>5 7      | , 0<br>1<br>3<br>0<br>1 | 1<br>2<br>0<br>2<br>1 | 23<br>11<br>0<br>19<br>21 | 62.57<br>63.13<br>64.18<br>64.92<br>65.51 |
| 1.417<br>1.393<br>1.398<br>1.377<br>1.364 | 7<br>3<br>4        | 2<br>2<br>1<br>1<br>3   | 1<br>n<br>2<br>0<br>n | 13<br>20<br>14<br>25<br>9 | 65.88<br>67.13<br>67.39<br>68.03<br>68.74 |
| 1.364<br>1.303<br>1.295<br>1.277<br>1.256 | 2 4 2              | 0<br>1<br>1<br>2        | 3 2 1 0 2             | 9<br>17<br>24<br>23<br>0  | 68.74<br>72.51<br>72.97<br>74.19<br>75.67 |

| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                       |                                                |                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------|------------------------------------------------|------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d(A)                                      | ī                     | hkl                                            | 2Θ(°) 。<br>λ = 1.540598A                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.218<br>1.210<br>1.203<br>1.199<br>1.185 | 3<br>1<br>1<br>1<br>3 | 1 2 20<br>0 0 30<br>0 1 29<br>2 2 9<br>1 1 27  | 78.43<br>79.11<br>79.66<br>79.95<br>81.09      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.175<br>1.145<br>1.138<br>1.133<br>1.113 | 2<br>4<br>1<br>3      | 2 0 26<br>1 3 10<br>1 2 23<br>3 1 11<br>0 2 28 | 81.95<br>84.57<br>85.16<br>85.66<br>87.55      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.111<br>1.111<br>1.094<br>1.090          | 1<br>1<br>2<br>4<br>1 | 0 3 21<br>3 0 21<br>3 1 14<br>1 1 30<br>2 1 25 | A7.81<br>A7.81<br>A9.54<br>A9.95               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.097<br>1.066<br>1.058<br>1.050<br>1.047 | 3<br>9<br>1<br>1      | 4 0 1<br>2 2 18<br>0 4 8<br>3 1 17<br>3 0 24   | 90.25<br>92.55<br>93.50<br>94.34               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.047<br>1.037<br>1.031<br>1.016<br>1.008 | 1<br>1<br>1<br>2      | 0 3 24<br>1 0 34<br>0 2 31<br>2 2 21<br>0 0 36 | 94.79<br>95.99<br>96.71<br>98.62<br>99.66      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.007<br>1.005<br>.905p<br>.9857          | 2<br>2<br>2<br>1<br>1 | 1 1 33<br>3 1 20<br>1 2 29<br>3 0 27<br>0 3 27 | 99.76<br>100.12<br>101.35<br>102.79            |
| The state of the s | .9660<br>.9622<br>.9584<br>.9582<br>.9552 | 2<br>3<br>1<br>2<br>2 | 2 2 24<br>3 2 10<br>3 1 23<br>0 2 34<br>2 3 11 | 105.76<br>106.36<br>106.98<br>107.01           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .9536<br>.9493<br>.9451<br>.9359          | 1<br>5<br>2<br>1<br>2 | 2 1 31<br>4 1 0<br>4 0 19<br>2 0 35<br>0 4 20  | 107.76<br>108.49<br>109.10<br>110.78<br>111.34 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .9313<br>.9289<br>.9289<br>.9278<br>.9240 | 1<br>1<br>1<br>1<br>7 | 2 3 14<br>3 0 30<br>0 3 30<br>1 3 25<br>4 1 9  | 111.60<br>112.05<br>112.05<br>112.24<br>112.95 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .9240<br>.9041<br>.8954<br>.8953<br>.8881 | 7<br>1<br>1<br>2<br>1 | 1 4 9<br>2 3 17<br>0 4 23<br>2 1 34<br>1 0 40  | 112.95<br>116.87<br>118.69<br>118.73<br>120.30 |

| - |               |           |          |                        |
|---|---------------|-----------|----------|------------------------|
|   | d(A)          | I         | hkl      | 2Θ(°)<br>λ = 1.540598A |
| _ |               |           |          |                        |
|   | .8762         | 1         | 0 3 33   | 123.07                 |
|   | .8762         | 1         | 3 0 33   | 123.07                 |
|   | · 2744        | 2         | 2 3 20   | 123.50                 |
|   | .8726         | 1         | 1 1 39   | 123.97                 |
|   | .8712         | .3        | 2 2 30   | 124.30                 |
|   | .8586         | 2         | 3 1 29   | 124.97                 |
|   | • 858R        | 1         | 4 1 18   | 127.51                 |
|   | .8588         | 1         | 1 4 18   | 127.51                 |
|   | .8579         | 1         | 9 4 26   | 127.78                 |
|   | ·8460         | 2         | 0 5 10   | 131.14                 |
|   | .R434         | 1         | 2 3 23   | 131.93                 |
|   | .8423         | 1         | 2 1 37   | 132.27                 |
|   | .8412         | 1         | 5 0 11   | 132.60                 |
|   | .8402         | 1         | 1 3 31   | 132.94                 |
|   | .8372         | 3         | 3 3 0    | 133.89                 |
|   | • (1) / 2     | J         | , , ()   | 133.09                 |
|   | •P331         | 1         | 4 0 28   | 135.23                 |
|   | ·8320         | 2         | 4 1 21   | 135.59                 |
|   | .8320         | 2         | 1 4 21   | 135.59                 |
|   | 8285          | 5         | 1 0 43   | 136.79                 |
|   | 8273          | 2         | 2 2 33   | 137.21                 |
|   | •0513         | <i>c.</i> | 2 7 3 1  | 107.51                 |
|   | · P24A        | 1         | 5 0 14   | 138.11                 |
|   | .8224         | 1         | 3 2 25   | 139.00                 |
|   | .8219         | 6         | 2 4 1    | 139.19                 |
|   | .8212         | ĩ         | 4 2 2    | 139.43                 |
|   | .8197         | 9         | 3 3 9    | 140.02                 |
|   | .8187         | 1         | 2 4 4    | 140.30                 |
|   |               |           |          |                        |
|   | .8119         | 1         |          | 143.14                 |
|   | .8103         | 2         | 0 1 44   | 143.83                 |
|   | .8089         | 1         | 4 2 8    | 144.45                 |
|   | . 2040        | 3         | 1 4 24   | 146.72                 |
|   | • <u>8040</u> | 3         | 4 1 24   | 146.72                 |
|   | .7004         | 3         | 1 3 34   | 148.99                 |
|   | .7977         | 1         | 4 2 11   | 149.89                 |
|   | .7968         | 2         | 4 0 31   | 150.39                 |
|   | 7943          | 4         | 2 1 40   | 151.73                 |
|   |               | •         | Z 1 14.5 | 1-71 • 7 '             |
|   | •7911         | 1         | 3 3 15   | 153.64                 |
|   | .7868         | 1         | 0 2 43   | 156.49                 |
|   | .7861         | 12        | 2 2 36   | 156.98                 |
|   | .7845         | 2         | 5 0 20   | 158.17                 |
|   | • 7º36        | 1         | 4 2 14   | 158.84                 |
|   | .7931         | 2         | 0 3 30   | 159.23                 |
|   | .7931         | 5         | 3 0 39   | 159.23                 |
|   | • (-,51       | 6         | ) 11 39  | 1 77 6 6 1             |
| _ |               |           |          |                        |

# Cobalt gallium manganese, Co<sub>2</sub>GaMn

Structure

Cubic, Fm3m(225), Z=4, Heusler alloy, type L21, from powder data (x-ray and neutron) [Webster, 1971].

Lattice constant: [ibid.]

a = 5.770A

Density

(calculated) 8.383 g/cm<sup>3</sup>

Thermal parameters

Isotropic: overall B = 1.0

Scattering factors
Co<sup>0</sup>, Ga<sup>0</sup>, Mn<sup>0</sup> [Cromer and Mann, 1968].

Scale factors (integrated intensities)

 $\gamma = 0.851 \times 10^{-3}$ 

 $I/I_{C}$  (calculated) = 12.4

References

Cromer, D. T. and Webster, J. B. (1968). Acta

Crystallogr. A24, 321.

Webster, P.J. (1971). J. Phys. Chem. Solids, 32,

| Calculated Pattern (Peak heights)            |                           |                  |           |                  |                                           |  |  |  |
|----------------------------------------------|---------------------------|------------------|-----------|------------------|-------------------------------------------|--|--|--|
| d (Å)                                        | I                         |                  | hkl       |                  | 2Θ(°)<br>λ = 1.540598A                    |  |  |  |
| 3.331<br>2.040<br>1.4425<br>1.1778<br>1.0200 | 1<br>100<br>12<br>20<br>6 | 1<br>2<br>4<br>4 | 1 2 0 2 4 | 1<br>0<br>0<br>2 | 26.74<br>44.38<br>64.56<br>81.70<br>98.08 |  |  |  |
| .9123<br>.8328                               | 8<br>8                    | 6<br>4           | 2 4       | 0<br>4           | 115.20<br>135.32                          |  |  |  |

| Calculated Pattern (Integrated)                                |                                      |                            |                       |                       |                                                               |  |  |  |
|----------------------------------------------------------------|--------------------------------------|----------------------------|-----------------------|-----------------------|---------------------------------------------------------------|--|--|--|
| d(Å)                                                           | I                                    | hkl                        |                       |                       | 20(°) °,<br>λ = 1.540598A                                     |  |  |  |
| 3.331<br>2.040<br>1.4425<br>1.1778<br>1.0200<br>.9123<br>.8328 | 1<br>100<br>13<br>23<br>7<br>11<br>4 | 1<br>2<br>4<br>4<br>4<br>4 | 1<br>2<br>0<br>2<br>4 | 1<br>0<br>0<br>2<br>0 | 26.74<br>44.37<br>64.55<br>81.69<br>98.08<br>115.20<br>135.31 |  |  |  |

Cubic, Fm3m(225), Z=4, Heusler alloy, type L21, from powder data [Markiv et al., 1965].

Lattice constant: [ibid.]

a = 5.923A

Density

(calculated) 11.780 g/cm<sup>3</sup>

Thermal parameters

Isotropic: overall B = 1.0

Scattering factors  $Co^0$ ,  $Ga^0$ ,  $Ta^0$  [Cromer and Mann, 1968].

Scale factors (integrated intensities)

 $\gamma = 1.56 \times 10^{-3}$ 

 $I/I_c$  (calculated) = 18.7

#### References

Cromer, D. T. and Mann, J. B. (1968).

Crystallogr. A24, 321.

Markiv, V. Ya., Voroshilov, Yu.V., Kripyakevich, P.I., and Cherkashin, E. E. (1965). Sov. Phys. Crystallogr. 9, 619.

|                                  | Calculated            | Pattern          | (Pe              | ak h              | eights)                          |
|----------------------------------|-----------------------|------------------|------------------|-------------------|----------------------------------|
| d (Å)                            | I                     |                  | hkl              |                   | 2Θ(°)<br>λ = 1.540598A           |
| 3.420<br>2.961<br>2.094<br>1.786 | 24<br>18<br>100<br>10 | 1<br>2<br>2<br>3 | 1<br>0<br>2<br>1 | 1<br>0<br>0       | 26.04<br>30.16<br>43.16<br>51.10 |
| 1.710                            | 4<br>13               | ?<br>4           | 2                | 2                 | 53.56<br>62.70                   |
| 1.359<br>1.324<br>1.209          | 22                    | 3<br>4<br>4<br>5 | 3 2 2 1          | 1<br>0<br>2<br>1+ | 69.05<br>71.12<br>79.16<br>85.02 |
| 1.047                            | 2<br>6<br>3           | 7<br>14<br>5     | 4 3              | n<br>1            | 94.74<br>100.60                  |
| .987<br>.936<br>.903             | 5 10                  | 4<br>6<br>5      | 4 2 3            | 2+<br>0<br>3      | 102.58<br>110.68<br>117.04       |
| .892<br>.854<br>.829             | 9 3 4 2               | 6 4 7            | 2.4              | 2<br>4<br>1+      | 119.24<br>128.58<br>136.48       |
| .821<br>.791                     |                       | 6<br>6           | 4                | 2                 | 139.38<br>153.42                 |

|                                           | Calculated              | Pattern               | (In              | tegr                  | ated)                                        |
|-------------------------------------------|-------------------------|-----------------------|------------------|-----------------------|----------------------------------------------|
| d(A)                                      | I                       |                       | hkl              |                       | 20(°)<br>λ = 1.540598A                       |
| 3.420<br>2.961<br>2.094                   | 21<br>16<br>100<br>10   | 1<br>2<br>2<br>3      | 1<br>0<br>2<br>1 | 1 0 0 1               | 26.04<br>30.15<br>43.17<br>51.10             |
| 1.786<br>1.710                            | 4                       | 5                     | 2                | 2                     | 53.55                                        |
| 1.481<br>1.359<br>1.324<br>1.209<br>1.140 | 14<br>4<br>5<br>26<br>2 | 4<br>3<br>4<br>4<br>5 | 0 3 2 2 1        | 0<br>1<br>0<br>2<br>1 | 62.69<br>69.07<br>71.13<br>79.16<br>85.03    |
| 1.140<br>1.047<br>1.001<br>.987<br>.936   | 2 2                     | 3<br>4<br>5<br>4<br>6 | 3 4 3 4 2        | 3<br>0<br>1<br>2<br>0 | 85.03<br>94.73<br>100.60<br>102.58<br>110.68 |
| .903<br>.892<br>.854<br>.829<br>.829      | 9 2<br>9 4<br>4 2       | 5<br>6<br>4<br>5<br>7 | 3<br>2<br>4<br>5 | 3 2 4 1 1             | 117.04<br>119.24<br>128.59<br>136.49         |
| .821<br>.791                              |                         | 6<br>6                | 4                | 5<br>U                | 139.38<br>153.42                             |

# Cobalt gallium titanium, Co<sub>2</sub>GaTi

#### Structure

Cubic, Fm3m, Z=4, Heusler alloy, type L21, from powder data (x-ray and neutron) [Webster and Ziebeck, 1973].

Lattice constant: [ibid.]

a = 5.848A

Density

(calculated) 7.818 g/cm<sup>3</sup>

Thermal parameters

Isotropic: overall B = 1.0

Scattering factors  $Co^0$ ,  $Ga^0$ ,  $Ti^0$  [Cromer and Mann, 1968].

Scale factors (integrated intensities)  $\gamma = 0.885 \times 10^{-3}$ 

I/I (calculated) = 11.9

#### References

Cromer, D. T. and Mann, J. B. (1968). Acta

Crystallogr. A24, 321.
Webster, P. J. and Ziebeck, K. R. A. (1973). J. Phys. Chem. Solids, 34, 1647.

| Calculated Pattern (Peak heights) |     |    |     |   |                          |  |  |  |
|-----------------------------------|-----|----|-----|---|--------------------------|--|--|--|
| d(Å)                              | I   | _  | hkl |   | 20(°) °<br>λ = 1.540598A |  |  |  |
| 3.376                             | 3   | 1. | 1.  | 1 | 26.38                    |  |  |  |
| 2.068                             | 190 | 5  | 2   | 0 | 43.76                    |  |  |  |
| 1.7632                            | 1   | 3  | 1.  | 1 | 51.82                    |  |  |  |
| 1.4620                            | 12  | 4  | 0   | ŋ | 63.60                    |  |  |  |
| 1.1937                            | 20  | 4  | 5   | 2 | 80.38                    |  |  |  |
| 1.0338                            | 6   | 14 | 4   | n | 96.34                    |  |  |  |
| .0246                             | 8   | 6  | 2   | Ú | 112.84                   |  |  |  |
| .8441                             | 2   | 4  | 4   | 4 | 131.72                   |  |  |  |

|                                                    | Calculated                                | Pattern                         | (·In                            | tegr                            | ated)                                                                  |
|----------------------------------------------------|-------------------------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------------------------------------------------------|
| d(Å)                                               | I                                         |                                 | hkl                             |                                 | 2Θ(°)<br>λ = 1.540598A                                                 |
| 3.376<br>2.068<br>1.763<br>1.462<br>1.193<br>1.033 | 100<br>2 2<br>0 13<br>7 23<br>8 7<br>6 11 | 1<br>2<br>3<br>4<br>4<br>4<br>6 | 1<br>2<br>1<br>0<br>2<br>4<br>2 | 1<br>0<br>1<br>0<br>2<br>0<br>0 | 26.3°<br>43.75<br>51.81<br>63.5°<br>80.38<br>96.34<br>112.83<br>131.73 |

# Cobalt gallium vanadium, ${\rm Co_2GaV}$

Structure

Cubic, Fm3m(225), Z=4, Heusler alloy, type L21, from powder data (x-ray and neutron) [Ziebeck and Webster, 1974].

Lattice constant: [ibid.]

a = 5.786A

Density

(measured) 8.15 g/cm<sup>3</sup> [ibid.] (calculated) 8.177 g/cm<sup>3</sup>

Thermal parameters

Isotropic: overall B = 1.0

Scattering factors  $Co^0$ ,  $Ga^0$ ,  $V^0$  [Cromer and Mann, 1968].

Scale factors (integrated intensities)

 $\gamma = 0.893 \times 10^{-3}$ 

 $I/I_{C}$  (calculated) = 12.0

References

Cromer, D. T. and Mann, J. B. (1968). Acta

Crystallogr. A24, 321.

Ziebeck, K. R. A. and Webster, P. J. (1974). J. Phys. Chem. Solids, 35, 1.

| Ca]                                          | culated Pa                | ttern       | (Pe       | ak l                  | neights)                                  |
|----------------------------------------------|---------------------------|-------------|-----------|-----------------------|-------------------------------------------|
| d(A)                                         | I                         |             | hkl       |                       | 2Θ(°) 。<br>λ = 1.540598A                  |
| 3.341<br>2.046<br>1.7445<br>1.4465<br>1.1811 | 3<br>100<br>1<br>12<br>20 | 1 2 3 4 4   | 1 2 1 0 2 | 1<br>0<br>1<br>0<br>2 | 26.68<br>44.24<br>52.40<br>64.36<br>81.42 |
| 1.0228<br>.9148<br>.8351                     | 6<br>8<br>2               | 4<br>5<br>4 | 4 2 4     | 0<br>0<br>4           | 97.72<br>114.70<br>134.54                 |

| Calculated Pattern (Integrated)                                 |                                      |          |                                 |                                      |                                                                        |  |  |  |
|-----------------------------------------------------------------|--------------------------------------|----------|---------------------------------|--------------------------------------|------------------------------------------------------------------------|--|--|--|
| d(A)                                                            | I                                    |          | hkl                             |                                      | 2Θ(°)<br>λ = 1.540598A                                                 |  |  |  |
| 3.341<br>2.046<br>1.7445<br>1.4465<br>1.1811<br>1.0228<br>.9148 | 2<br>100<br>1<br>13<br>23<br>7<br>11 | 12344464 | 1<br>2<br>1<br>0<br>2<br>4<br>2 | 1<br>0<br>1<br>0<br>2<br>0<br>0<br>4 | 26.66<br>44.24<br>52.41<br>64.35<br>81.42<br>97.72<br>114.70<br>134.55 |  |  |  |

# Cobalt germanium manganese, Co<sub>2</sub>GeMn

Structure

Cubic, Fm3m(225), Z=4, Heusler alloy, type L2<sub>1</sub>, from powder data (x-ray and neutron) [Webster, 1971].

Lattice constant: [ibid.]

a = 5.743A

Density (calculated) 8.594 g/cm<sup>3</sup>

Thermal parameters

Isotropic: overall B = 1.0

Scattering factors  $Co^0$ ,  $Ge^0$ ,  $Mn^0$  [Cromer and Mann, 1968].

Scale factors (integrated intensities)  $\gamma = 0.851 \times 10^{-3}$  I/I (calculated) = 12.4

References

Cromer, D. T. and Mann, J. B. (1968). Acta Crystallogr. <u>A24</u>, 321. Webster, P.J. (1971). J. Phys. Chem. Solids, <u>32</u>, 1221.

| Calculated Pattern (Peak heights)                                         |                                     |               |                 |                                 |                                                                        |  |
|---------------------------------------------------------------------------|-------------------------------------|---------------|-----------------|---------------------------------|------------------------------------------------------------------------|--|
| d(A)                                                                      | I                                   | 1             | nkl             |                                 | 2Θ(°)<br>λ = 1.540598A                                                 |  |
| 3.316<br>2.0305<br>1.7316<br>1.4357<br>1.1723<br>1.0152<br>.9080<br>.8289 | 2<br>100<br>1<br>12<br>20<br>6<br>9 | 1 2 3 4 4 6 4 | 1 2 1 0 2 4 2 4 | 1<br>0<br>1<br>0<br>2<br>0<br>4 | 26.88<br>44.60<br>52.82<br>64.90<br>82.16<br>98.70<br>116.06<br>136.64 |  |

| Calculated Pattern (Integrated)                                           |                                           |                                                      |                  |                                                                        |  |  |  |
|---------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------|------------------|------------------------------------------------------------------------|--|--|--|
| d(A)                                                                      | I                                         | hkl                                                  |                  | 2Θ(°) .<br>λ = 1.540598A                                               |  |  |  |
| 3.316<br>2.0305<br>1.7316<br>1.4357<br>1.1723<br>1.0152<br>.9080<br>.8289 | 2<br>100<br>1<br>13<br>23<br>7<br>12<br>4 | 1 1<br>2 2<br>3 1<br>4 0<br>4 2<br>4 4<br>6 2<br>4 4 | 1<br>0<br>2<br>0 | 26.87<br>44.59<br>52.83<br>64.89<br>82.16<br>98.71<br>116.05<br>136.64 |  |  |  |

# Cobalt germanium titanium, Co<sub>2</sub>GeTi

Structure

Cubic, Fm3m(225), Z=4, Heusler alloy, type L21, from powder data (Gladyshevskii et al., 1963].

Lattice constant: [ibid.]

a = 5.823A

Density

(calculated) 8.018 g/cm<sup>3</sup>

Thermal parameters

Isotropic: overall B = 1.0

Scattering factors  $\text{Co}^0$ ,  $\text{Ge}^0$ ,  $\text{Ti}^0$  [Cromer and Mann, 1968].

Scale factors (integrated intensities)

 $\gamma = 0.884 \times 10^{-3}$ 

 $I/I_{C}$  (calculated) = 12.0

References

Cromer, D. T. and Mann, J. B. (1968). Acta

Crystallogr. A24, 321.

Gladyshevskii, E. I., Markiv, V. Ya., Kuz'ma, Yu. B. and Cherkashin, E. E. (1963). Titan Ego Splavy, No. 10, 71.

| Ca                                        | lculated Pa               | ttern       | (Pea        | ak h      | eights)                                   |
|-------------------------------------------|---------------------------|-------------|-------------|-----------|-------------------------------------------|
| d(A)                                      | I                         |             | hkl         |           | 20(°) °<br>λ = 1.540598A                  |
| 3.362<br>2.059<br>1.756<br>1.456<br>1.189 | 4<br>100<br>2<br>12<br>20 | 1 2 3 4 4   | 1 2 1 0 2   | 1 0 1 0 2 | 26.50<br>43.94<br>52.04<br>63.90<br>80.80 |
| 1.029<br>.921<br>.840                     | 6<br>9<br>2               | 4<br>6<br>4 | 4<br>2<br>4 | 0 0 4     | 96.91<br>113.59<br>132.84                 |

| Calculated Pattern (Integrated)           |                                |             |               |                       |                                                    |  |  |
|-------------------------------------------|--------------------------------|-------------|---------------|-----------------------|----------------------------------------------------|--|--|
| d (A)                                     | I                              |             | hkl           |                       | 2Θ(°) °<br>λ = 1.540598A                           |  |  |
| 3.362<br>2.059<br>1.756<br>1.456<br>1.189 | 3<br>100<br>2<br>13<br>23<br>7 | 1 2 3 4 4 6 | 1 2 1 0 2 4 2 | 1<br>0<br>1<br>0<br>2 | 26.49<br>43.94<br>52.05<br>63.90<br>80.79<br>96.89 |  |  |
| 840                                       | 4                              | 4           | 4             | 4                     | 132.84                                             |  |  |

Tetragonal, P4/mbm(127), Z=2. The structure was determined by Stadelmaier et al. [1973].

Lattice constants: [ibid.]

a = 6.830A

c = 3.547

Density

(measured) 8.09 g/cm<sup>3</sup> [ibid.] (calculated) 8.097 g/cm<sup>3</sup>

Thermal parameters

Isotropic [Stadelmaier et al., op. cit.].

Scattering factors

 $Co^0$ ,  $In^0$  [Cromer and Mann, 1968].

Scale factors (integrated intensities)

 $\gamma = 0.451 \times 10^{-3}$ 

 $I/I_c$  (calculated) = 7.04

References

Cromer, D. T. and Mann, J. B. (1968).

Crystallogr. A24, 321.

Stadelmaier, H. H., Schöbel, J. D., Jones, R. A., and Shumaker, C. A. (1973). Acta Crystallogr. B29, 2926.

|                                           | Calculated               | Pattern               | (Pe                   | eak 1                 | heights)                                  |
|-------------------------------------------|--------------------------|-----------------------|-----------------------|-----------------------|-------------------------------------------|
| d(Å)                                      | I                        |                       | hk                    | e .                   | 2Θ(°)<br>λ = 1.540598A                    |
| 4.830<br>3.547<br>3.054<br>2.859<br>2.460 | 2<br>2<br>39<br>53<br>38 | 1<br>0<br>2<br>1<br>2 | 1<br>0<br>1<br>1      | 0<br>1<br>0<br>1      | 18.36<br>25.10<br>29.22<br>31.26<br>36.50 |
| 2.415<br>2.315<br>2.160<br>1.996<br>1.773 | 59<br>5                  | 2<br>3<br>2<br>0      | 2 1 1 2 0             | 0<br>1<br>0<br>1<br>2 | 37.20<br>38.88<br>41.80<br>45.40<br>51.48 |
| 1.707<br>1.671<br>1.657<br>1.610<br>1.539 | 2<br>3<br>3<br>3<br>12   | 4<br>3<br>4<br>3<br>4 | 0<br>2<br>1<br>3<br>0 | 0<br>1<br>0<br>0<br>1 | 53.64<br>54.90<br>55.42<br>57.19<br>60.10 |
| 1.534<br>1.527<br>1.501<br>1.466<br>1.429 | 9<br>9<br>13             | 2<br>4<br>4<br>3<br>2 | 1<br>2<br>1<br>3<br>2 | 2 0 1 1 2             | 60.28<br>60.58<br>61.76<br>63.40<br>65.22 |

| d (A) | I      |     | hkl  |    | 20 (°)                |
|-------|--------|-----|------|----|-----------------------|
| u(A)  | •      |     | 121~ |    | $\lambda = 1.540598A$ |
| 1.403 | 1      | 4   | 2    | 1  | 66.62                 |
| 1.371 | 19     | 3   | 1    | 2  | 68.38                 |
| 1.339 | 1      | 5   | 1    | 0  | 70.22                 |
| 1.268 | 2      | 5   | 2    | 0  | 74.80                 |
| 1.253 | 3      | 5   | 1    | 1  | 75.86                 |
| 1.230 | 1      | 4   | ŋ    | 2  | 77.54                 |
| 1.211 | 2      | 4   | 1    | 2  | 79.04                 |
| 1.207 | 4      | 4   | 4    | 0  | 79.28                 |
| 1.194 | 11     | 5   | 2.   | 1  | 80.34                 |
| 1.192 | 7      | 3   | 3    | 2  | 80.56                 |
| 1.171 | 1      | 5   | 3    | 0  | 82.24                 |
| 1.157 | 4      | 4   | 2    | 2  | 83.46                 |
| 1.148 | 2      | 1   | 1    | 3  | 84.24                 |
| 1.138 | 4      | 6   | 0    | 0  | 85.18                 |
| 1.117 | 2      | 2   | 0    | 3  | 87.19                 |
| 1.112 | 1      | 5   | 3    | 1  | 87.66                 |
| 1.103 | 5      | 2   | 1    | 3  | 88.64                 |
| 1.070 | 1      | 6   | 1    | 1  | 92.04                 |
| 1.069 | 1      | 5   | 1.   | 2  | 92.22                 |
| 1.067 | 1      | 5   | 4    | 0  | 92.4A                 |
| 1.033 | 3      | 6   | 2    | 1  | 96.42                 |
| 1.032 | 2      | 5   | 3    | 2  | 96.60                 |
| 1.021 | 3      | 5   | 4    | 1  | 97.90                 |
| •9981 | 3      | 4   | 4    | 2  | 101.04                |
| .9774 | 1      | 5   | 3    | Š  | 104.02                |
| .9720 | 2      | 4   | 0    | 3  | 104.84                |
| .9623 | 2<br>2 | 4   | 1    | 3  | 106.34                |
| •9580 | 5      | 6   | 0    | 2  | 1.07.04               |
| 9520  | 2<br>3 | 3   | 3    | 3  | 107.85                |
| •9320 | 3      | 7   | 1    | 1+ | 111.48                |
| .9151 | 3      | . 6 | 4    | 1  | 114.66                |
| .9141 | 1      | 5   | 4    | 2  | 114.84                |
| •9070 | 1      | 7   | 2    | 1  | 116.28                |
| .8968 | 4      | 7   | 3    | 0  | 118.40                |
| .8867 | 2      | 0   | 0    | 4+ | 120.64                |
| .8648 | 4      | 5   | 2    | 3  | 125.92                |
| .8516 | 1      | 2   | 1    | 4  | 129.52                |
| .8491 | î      | 5   | 5    | 1  | 130.24                |
| .8472 | 1      | 8   | 1    | Ō  | 130.84                |
| .8324 | ĩ      | 5   | 2    | 4+ | 135.48                |
| .8240 | 3      | 8   | 1    | 1  | 138.40                |
| .8203 | 4      | 3   | i    | 4  | 139.78                |
| .8049 | 2      | 6   | 6    | Ó  | 146.28                |
| .8003 | 2<br>7 | 7   | 3    | 2  | 148.52                |
| •7974 | 2      | 6   | 2    | 3  | 150.04                |
| •7920 | 2      | 5   | 4    | 3  | 153.12                |
|       | -      |     |      |    | <del></del>           |

# Cobalt indium, $CoIn_3$ - continued

|                                           | Calculated                 | Pattern               | (Int                  | egr                   | rated)                                         |
|-------------------------------------------|----------------------------|-----------------------|-----------------------|-----------------------|------------------------------------------------|
| d (Å)                                     | I                          |                       | hkl                   |                       | 2Θ(°) °<br>λ = 1.540598A                       |
| 4.830<br>3.547<br>3.054<br>2.859<br>2.460 | 1<br>2<br>37<br>52<br>38   | 1<br>n<br>2<br>1      | 1<br>0<br>1<br>1<br>0 | 0<br>1<br>0<br>1<br>1 | 18.36<br>25.09<br>29.21<br>31.26<br>36.49      |
| 2.415<br>2.315<br>2.160<br>1.996<br>1.773 | 13<br>100<br>60<br>5<br>16 | 2<br>2<br>3<br>2<br>0 | 2 1 1 2 0             | 0<br>1<br>0<br>1<br>2 | 37.20<br>38.88<br>41.79<br>45.40<br>51.49      |
| 1.707<br>1.671<br>1.657<br>1.610<br>1.539 | 2<br>3<br>3<br>4<br>12     | 4<br>3<br>4<br>3      | 0 2 1 3 0             | 0 1 0 0 1             | 53.63<br>54.90<br>55.42<br>57.17<br>60.09      |
| 1.534<br>1.527<br>1.501<br>1.466<br>1.429 | 7<br>8<br>10<br>14<br>4    | 2 4 4 3 2             | 1 2 1 3 2             | 2 0 1 1 2             | 60.30<br>60.59<br>61.76<br>63.40<br>65.22      |
| 1.403<br>1.371<br>1.339<br>1.268<br>1.253 | 2<br>22<br>1<br>2<br>3     | 4<br>3<br>5<br>5<br>5 | 2<br>1<br>1<br>2<br>1 | 1<br>2<br>0<br>0<br>1 | 66.62<br>68.39<br>70.21<br>74.80<br>75.86      |
| 1.230<br>1.211<br>1.207<br>1.194<br>1.192 | 1<br>2<br>3<br>12<br>2     | 4<br>4<br>4<br>5<br>3 | 0 1 4 2 3             | 2 0 1 2               | 77.55<br>79.03<br>79.28<br>80.33<br>80.51      |
| 1.171<br>1.157<br>1.148<br>1.138<br>1.117 | 2<br>5<br>2<br>5<br>2      | 5<br>4<br>1<br>6<br>2 | 3<br>2<br>1<br>0<br>0 | 0 2 3 0 3             | 82.24<br>83.46<br>84.25<br>85.17<br>87.17      |
| 1.112<br>1.103<br>1.070<br>1.069<br>1.067 | 1<br>6<br>2<br>1<br>1      | 5<br>2<br>6<br>5<br>5 | 3<br>1<br>1<br>1<br>4 | 1 3 1 2 0             | 87.67<br>88.63<br>92.04<br>92.22<br>92.47      |
| 1.033<br>1.032<br>1.021<br>.998           |                            | 6<br>5<br>5<br>4<br>5 | 2 2 4 4 3             | 1 2 1 2 2             | 96.42<br>96.61<br>97.89<br>101.03<br>104.02    |
| .972<br>.962<br>.958<br>.952              | 3 2<br>0 6<br>9 3          | 4<br>6<br>3<br>7      | 0<br>1<br>0<br>3<br>1 | 3<br>3<br>2<br>3<br>1 | 104.83<br>106.34<br>107.04<br>107.87<br>111.49 |

| đ   | (A)                | I       |   | hkl |   | 2Θ(°)<br>λ = 1.540598A |
|-----|--------------------|---------|---|-----|---|------------------------|
|     | 9151               | 4       | 6 | 4   | 1 | 114.66                 |
| } , | 9141               | 1       | 5 | 4   | 2 | 114.85                 |
| 1 . | 9070               | 1       | 7 | 2   | 1 | 116.27                 |
|     | 8968               | 6       | 7 | 3   | 0 | 118.39                 |
|     | 8867               | 2       | 0 | 0   | 4 | 120.61                 |
|     | 8864               | 1       | 5 | 1   | 3 | 120.69                 |
| 1   | 8648               |         | 5 | 2   | 3 | 125.92                 |
|     | 8516               | 7<br>1. | 2 | 1   | 4 | 129.52                 |
|     | 8401               |         | 6 | 5   | 1 | 130.25                 |
|     | 8472               | 2<br>1  | 8 | 1   | Õ | 130.81                 |
|     | .8324              | 1       | 2 | 2   | 4 | 135.46                 |
| 1   | 8240               | 6       | 8 | 1   | 1 | 138.41                 |
|     | 8240               | ĭ       | 7 | 4   | 1 | 1.38.41                |
|     | 8203               | 8       | 3 | 1   | 4 | 139.78                 |
|     | 8142               | ĺ       | 6 | 1   | 3 | 142.20                 |
|     | .8066              | 2       | 8 | 2   | 1 | 145.51                 |
|     | .e049              | 3       | 6 | 6   | ó | 146.27                 |
|     | 8003               | 17      | 7 | 3   | 2 | 148.52                 |
|     | .7974              | 4       | 6 | 2   | 3 | 150.05                 |
|     | 7920               | 5       | 5 | 4   | 3 | 153.12                 |
|     | •7 <del>8</del> 70 | 1       | 4 | 0   | 4 | 156.3ª                 |

Orthorhombic, Pnma(62), Z=4, isostructural with  ${\tt CFe_3}$ , type  ${\tt DO_{11}}$ . The structure was determined by Cromer and Larson [1961].

Lattice constants: [ibid.]

a = 7.279A

b = 10.089

c = 6.578

(published value b = 10.088)

Density

(measured) 6.48 g/cm<sup>3</sup> [ibid.] (calculated) 6.539 g/cm<sup>3</sup>

Thermal parameters

Isotropic (Cromer and Larson, op. cit.].

Scattering factors
Co<sup>0</sup>, La<sup>0</sup> [Forsyth and Wells, 1959].

Scale factors (integrated intensities)

 $\gamma = 0.200 \times 10^{-3}$ 

 $I/I_{c}$  (calculated) = 4.15

References

Cromer, D. T. and Larson, A. C. (1961). Acta

Crystallogr. 14, 1226.

Forsyth, J.B. and Wells, M. (1959). Acta Crystallogr. 12, 412.

|                                           | Calculated              | Pattern               | (Pe                   | ak h                  | eights)                                   |
|-------------------------------------------|-------------------------|-----------------------|-----------------------|-----------------------|-------------------------------------------|
| d(A)                                      | I                       |                       | hkl                   |                       | 2Θ(°)<br>λ = 1.540598A                    |
| 5.51<br>4.88<br>4.39<br>3.508<br>3.424    | 1<br>2<br>1<br>15<br>14 | 0<br>1<br>1<br>1<br>2 | 1<br>0<br>1<br>2<br>1 | 1<br>1<br>1<br>1      | 16.08<br>18.18<br>20.20<br>25.38<br>26.02 |
| 3.289<br>3.185<br>3.037<br>2.994<br>2.952 | 14<br>31<br>100         | 0<br>2<br>0<br>2      | 0 0 1 3 2             | 2 1 1 1 + 0           | 27.10<br>28.00<br>29.40<br>29.82<br>30.26 |
| 2.873<br>2.769<br>2.693<br>2.577<br>2.522 | 32<br>45<br>12          | 1<br>1<br>2<br>1<br>0 | 1 3 2 2 4             | 2 1 1 2 0             | 31.19<br>32.30<br>33.24<br>34.80<br>35.56 |
| 2.440<br>2.440<br>2.372<br>2.312<br>2.276 | 2<br>8<br>1             | 2<br>2<br>2<br>3      | 3<br>0<br>1<br>3<br>0 | 0<br>2<br>2<br>1<br>1 | 36.34<br>36.80<br>37.90<br>38.92<br>39.56 |

| d(A)                                           | I                      | h1.0                             |                         |                                           |
|------------------------------------------------|------------------------|----------------------------------|-------------------------|-------------------------------------------|
|                                                |                        | hkl                              |                         | 20(°)<br>= 1.540598A                      |
| 2.241<br>2.221<br>2.197<br>2.073<br>2.055      | 3<br>6<br>3<br>4<br>3  | 1 4<br>3 1<br>2 2<br>2 4<br>1 1  | 1+<br>1<br>2<br>0<br>3  | 40.26<br>40.60<br>41.06<br>43.62<br>44.02 |
| 1.977<br>1.953<br>1.938<br>1.885<br>1.878      | 5<br>1<br>15<br>3<br>3 | 2 4<br>3 0<br>1 2<br>3 3<br>2 0  | 1+<br>2<br>3<br>1<br>3  | 45.88<br>46.48<br>46.84<br>48.24<br>48.38 |
| 1.821<br>1.781<br>1.765<br>1.760<br>1.754      | 2<br>14<br>6<br>5      | 3 2<br>1 3<br>2 5<br>2 2<br>4 0  | 2+<br>3<br>0<br>3       | 50.06<br>51.26<br>51.76<br>51.90<br>52.10 |
| 1.728<br>1.712<br>1.704<br>1.689<br>1.681      | 2<br>1<br>7<br>15      | 4 1<br>4 2<br>2. 5<br>3 3<br>0 6 | 1<br>0<br>1<br>2        | 52.94<br>53.50<br>53.74<br>54.28<br>54.52 |
| 1.674<br>1.645<br>1.640<br>1.627<br>1.614      | 12<br>2<br>2<br>9      | 1 5<br>0 0<br>2 3<br>3 0<br>1 4  | 2<br>4<br>3<br>3<br>3   | 54.80<br>55.86<br>56.02<br>56.52<br>57.02 |
| 1.604<br>1.600<br>1.584<br>1.555               | 8<br>12<br>1<br>4      | 1 0<br>4 3<br>1 1<br>2 5<br>3 2  | 4<br>0<br>4<br>2<br>3   | 57.40<br>57.54<br>58.18<br>59.38<br>59.66 |
| 1.544<br>1.529<br>1.518<br>1.510<br>1.506      | ?<br>1<br>1<br>1       | 3 4<br>1 2<br>4 2<br>3 5<br>2 4  | 2<br>4<br>2<br>1<br>3   | 59.84<br>60.52<br>60.96<br>61.34<br>61.50 |
| 1.4972<br>1.4869<br>1.4924<br>1.4665<br>1.4548 | 1<br>1<br>2<br>3<br>3  | 0 6<br>2 6<br>2 1<br>1 6<br>1 5  | 2<br>1<br>4<br>2<br>3   | 61.92<br>62.40<br>62.60<br>63.39<br>63.94 |
| 1.4478<br>1.4391<br>1.4366<br>1.4075<br>1.4032 | 1<br>3<br>3<br>1<br>2  | 1 3<br>4 3<br>2 2<br>5 1<br>3 5  | 4<br>2+<br>4<br>1+<br>2 | 64.29<br>64.72<br>64.86<br>66.36<br>66.59 |
| 1.3681<br>1.3525<br>1.3493<br>1.3237<br>1.3143 | 1<br>3<br>2<br>1       | 5 2<br>3 6<br>4 2<br>4 5<br>3 2  | 1<br>1<br>3+<br>1<br>4+ | 68.54<br>69.44<br>69.62<br>71.18<br>71.78 |

| d (Å)                                          | I                     | hkl                             | 20(°)<br>λ = 1.540598A                                 |
|------------------------------------------------|-----------------------|---------------------------------|--------------------------------------------------------|
| 1.2989<br>1.2872<br>1.2618<br>1.2557<br>1.2528 | 1<br>4<br>5<br>1<br>1 | 1 7<br>5 2<br>3 3<br>1 5<br>2 6 | 2 72.74<br>2 73.52<br>4 75.24<br>4 75.68<br>3 75.90    |
| 1.2378<br>1.2280<br>1.2252<br>1.2177<br>1.2138 | 1<br>1<br>4<br>1      | 5 3<br>2 1<br>0 3<br>3 7<br>4 6 | 2+ 76.98<br>5 77.70<br>5 77.92<br>1 78.48<br>1+ 78.80  |
| 1.2082<br>1.2042<br>1.2016<br>1.1916<br>1.1848 | 1<br>3<br>3<br>1<br>1 | 1 3<br>5 1<br>2 2<br>2 8<br>6 1 | 5 79.22<br>3+ 79.54<br>5 79.76<br>0 80.54<br>1+ 81.10  |
| 1.1795<br>1.1773<br>1.1725<br>1.1692<br>1.1624 | 2<br>2<br>3<br>4<br>2 | 5 2<br>5 4<br>2 8<br>3 6<br>1 8 | 0+ 81.56<br>2+ 81.74<br>1 82.14<br>3 82.42<br>2+ 83.04 |
| 1.1607<br>1.1470<br>1.1412<br>1.1382<br>1.1285 | 3<br>1<br>1<br>1<br>1 | 1 6<br>4 3<br>6 3<br>6 0<br>3 5 | 4+ 83.16<br>4 84.38<br>0+ 84.92<br>2 85.18<br>4 86.10  |
| 1.1273<br>1.1244<br>1.1051<br>1.0963<br>1.0896 | 1<br>2<br>1<br>1      | 3 2<br>6 3<br>0 9<br>0 0<br>1 5 | 5 86.20<br>1 86.48<br>1 88.38<br>6 89.28<br>5+ 89.96   |
| 1.0811<br>1.0785<br>1.0662<br>1.0548<br>1.0441 | 2<br>1<br>1<br>1      | 1 8<br>6 4<br>4 0<br>2 5<br>2 1 | 3 90.88<br>1+ 91.16<br>5+ 92.54<br>5 93.82<br>6 95.08  |
| 1.0395                                         | 3                     | 5 5                             | 3+ 95.64                                               |

|                                           | Calculated                 | Pattern               | (Int                  | egr                   | ated)                                     |
|-------------------------------------------|----------------------------|-----------------------|-----------------------|-----------------------|-------------------------------------------|
| d(A)                                      | I                          |                       | hkl                   |                       | 2Θ(°) °<br>λ = 1.540598A                  |
| - 5.51<br>5.04<br>4.88<br>4.39<br>3.508   | 1<br>1<br>2<br>1<br>20     | 0<br>0<br>1<br>1<br>1 | 1<br>2<br>0<br>1<br>2 | 1<br>0<br>1<br>1      | 16.07<br>17.57<br>18.16<br>20.20<br>25.37 |
| 3.424<br>3.289<br>3.185<br>3.037<br>2.997 | 18<br>13<br>19<br>41<br>43 | 2<br>0<br>2<br>2      | 1<br>0<br>0<br>1      | 0<br>2<br>1<br>1<br>2 | 26.01<br>27.09<br>28.00<br>29.39<br>29.78 |
| 2.994<br>2.952<br>2.873<br>2.769<br>2.755 | 44                         | 0<br>2<br>1<br>1<br>0 | 3<br>2<br>1<br>3<br>2 | 1<br>0<br>2<br>1<br>2 | 29.81<br>30.26<br>31.10<br>32.30<br>32.47 |
| 2.693<br>2.577<br>2.522<br>2.470<br>2.440 | 66<br>17<br>7<br>23<br>2   | 2 1 0 2 2             | 2 2 4 3 0             | 1 2 0 0 2             | 33.24<br>34.79<br>35.56<br>36.34<br>36.80 |
| 2.372<br>2.312<br>2.276<br>2.241<br>2.238 | 19<br>2                    | 2<br>2<br>3<br>1<br>1 | 1<br>3<br>0<br>4<br>3 | 2 1 1 1 2             | 37.90<br>38.92<br>39.56<br>40.21<br>40.27 |
| 2.221<br>2.197<br>2.073<br>2.055<br>1.977 | 6<br>4                     | 3<br>2<br>2<br>1<br>2 | 1<br>2<br>4<br>1<br>4 | 1<br>2<br>0<br>3<br>1 | 40.59<br>41.06<br>43.63<br>44.02<br>45.86 |
| 1.975<br>1.953<br>1.938<br>1.929<br>1.885 | 1<br>23<br>3               | 2<br>3<br>1<br>0<br>3 | 3<br>0<br>2<br>5<br>3 | 2 2 3 1 1             | 45.91<br>46.47<br>46.83<br>47.07<br>48.24 |
| 1.878<br>1.821<br>1.820<br>1.781<br>1.765 | 2<br>1<br>21               | 2<br>3<br>4<br>1<br>2 | 0 2 0 3 5             | 32030                 | 48.43<br>50.05<br>50.09<br>51.26<br>51.76 |
| 1.760<br>1.754<br>1.728<br>1.712<br>1.704 | 16<br>4<br>1               | 2 4 4 4 2             | 2 0 1 2 5             | 3<br>1<br>1<br>0<br>1 | 51.91<br>52.11<br>52.95<br>53.49<br>53.74 |
| 1.690<br>1.689<br>1.681<br>1.674<br>1.645 | 22<br>12<br>17             | 3<br>0<br>1<br>0      | 4<br>3<br>6<br>5<br>0 | 1<br>2<br>0<br>2<br>4 | 54.24<br>54.28<br>54.53<br>54.80<br>55.36 |

Cobalt lanthanum,  $CoLa_3$  - continued

|   | d (A)  | I      |     | hkl |    | 20(°) °<br>λ = 1.540598A |
|---|--------|--------|-----|-----|----|--------------------------|
| _ | 1 640  | •      |     | 7   | 3  | 56.04                    |
|   | 1.640  | 1      | 2   | 3   |    |                          |
|   | 1.627  | 14     |     | 0   | 3  | 56.52                    |
|   | 1.614  | 6      | 1   | 4   | 3  | 57.03                    |
|   | 1.606  | 2      | 3   | 1   | 3  | 57.32                    |
|   | 1.604  | 9      | 1   | 0   | 4  | 57.40                    |
|   | 1.600  | 14     | 4   | 3   | 0  | 57.54                    |
|   | 1.584  | 1      | 1   | 1   | 4  | 58.19                    |
|   | 1.555  | 6      | 5   | 5   | 2  | 59.39                    |
|   | 1.548  | 2      | 3   | 2   | 3  | 59.67                    |
|   | 1.544  | 1      | 7   | 4   | 2  | 59.86                    |
|   | 1.529  | 2      | 1   | 2   | 4  | 60.52                    |
|   | 1.518  | 2<br>2 | 4   | 2   | 2  | 60.97                    |
|   | 1.510  | 2.     | 3   | 5   | 1  | 61.35                    |
|   | 1.506  | 1      | 2   | 4   | 3  | 61.51                    |
|   | 1.4972 | i      | 0   | 6   | S  | 61.93                    |
|   | 1.4912 | 1      | O   |     | ε, |                          |
|   | 1.4869 | 2      | Š   | 6   | 1  | 62.40                    |
|   | 1.4824 | 2      | 5   | 1   | 4  | 62.62                    |
|   | 1.4665 | 5      | 1   | 6   | 2  | 63.37                    |
|   | 1.4548 | 5      | 1.  | 5   | 3  | 63.94                    |
|   | 1.4478 | 2      | 1   | 3   | 4  | 64.29                    |
|   | 1.4391 | 4      | 4   | 3   | 2  | 64.72                    |
|   | 1.4366 | 3      | 2   | 2   | 4  | 64.85                    |
|   | 1.4079 | 1      | 0   | 7   | 1  | 66.34                    |
|   | 1.4079 | 1      | 5   | 1   | 1  | 66.36                    |
|   |        | 2      | 3   | 5   | 2  | 66.59                    |
|   | 1.4032 | 2      |     | J   | ۲, |                          |
|   | 1.3681 | 1      | - 5 | 2   | 1  | 68.53                    |
|   | 1.3525 | 4      | - 3 | 6   | 1  | 69.43                    |
|   | 1.3493 | 1      | 4   | 5   | 3  | 69.62                    |
|   | 1.3237 | 2      | 4   | 5   | 1  | 71.17                    |
|   | 1.3143 | 1      | 3   | 2   | 4  | 71.76                    |
|   | 1.2989 | 2      | 1   | 7   | 2  | 72.75                    |
|   | 1.2884 | 1      | 2   | 4   | 4  | 73.44                    |
|   | 1.2872 | 7      | 5   | 2   | 2  | 73.52                    |
|   | 1.2618 | 8      | 3   | 3   | 4  | 75.25                    |
|   | 1.2557 | ĭ      | 1   | 5   | 4  | 75.6ª                    |
|   |        |        |     |     |    |                          |
|   | 1.2528 | 1      | 5   | 6   | 3  | 75.89                    |
|   | 1.2378 | 1      | 5   | 3   | 2  | 76.97                    |
|   | 1.2372 | 1      | 2   | 0   | 5  | 77.01                    |
|   | 1.2280 | 2      | 2   | 1   | 5  | 77.70                    |
|   | 1.2252 | 5      | 0   | 3   | 5  | 77.91                    |
|   | 1.2210 | 1      | 1   | 8   | 1  | 78.23                    |
|   | 1.2177 | 1      | 3   | 7   | 1  | 78.48                    |
|   | 1.2138 | 6      | 4   | 6   | 1  | 78.78                    |
|   | 1.2132 | 1      | 6   | n   | ō  | 78.83                    |
|   | 1.2128 | î      | 5   | Ô   | 3  | 78.86                    |
|   |        |        |     |     |    |                          |
|   | 1.2082 | 1      | 1   | 3   | 5  | 79.22                    |
|   | 1.2045 | 1      | 6   | 1.  | 0  | 79.51                    |
|   | 1.2042 | 4      | 5   | 1   | 3  | 79.54                    |
| 1 | 1.2031 | 1      | Š   | 5   | 4  | 79.62                    |
|   | 1.2016 | 1      | 2   | 2   | 5  | 79.74                    |
|   |        |        |     |     |    |                          |

| d(A)   | I   |        | hkl    |    | 20(°)<br>λ = 1.540598A |
|--------|-----|--------|--------|----|------------------------|
| 1.1016 | 2   | 2      | 8      | 0  | 80.55                  |
| 1.1848 | ĩ   | 6      | 1      | 1  | 81.11                  |
| 1.1795 | ī   | 6      | 2      | Ō  | 81.54                  |
| 1.1775 | î   | ñ      | 8      | 2  | 81.71                  |
| 1.1773 | ž   | 5      | 4      | 2  | 81.73                  |
| 1.1773 | Koa |        | -      | -  | 31,1                   |
| 1.1757 | 1   | 0      | 6      | 4  | 81.87                  |
| 1.1725 | 5   | 2      | 8      | 1  | 82.14                  |
| 1.1692 | 6   | 3      | 6      | 3  | 82.42                  |
|        |     | ĩ      | 8      | 2  | 83.01                  |
| 1.1624 | 2   | 5      | 5      | 1  | 83.04                  |
| 1.1620 | 1.  | 5      | Э      | 1  | 00.04                  |
| 1 1607 | 7   | 1      | _      | 4  | 83.16                  |
| 1.1607 | 3   | 4      | 6<br>3 | 4  | 84.38                  |
| 1.1470 | 2   |        |        | 0  | 84.91                  |
| 1.1412 | 1   | 6<br>6 | 3<br>0 | 5  | 85.1 <sup>8</sup>      |
| 1.1382 | 1   |        |        | 4  |                        |
| 1.1285 | 1   | 3      | 5      | 4  | 86.09                  |
| 4 4077 |     | 7      | _      | _  | 06 01                  |
| 1.1273 | 1   | 3      | 2      | 5  | 86.21                  |
| 1.1244 | 3   | 6      | 3      | 1  | 86.48                  |
| 1.1051 | 2   | 0      | 9      | 1  | 88.38                  |
| 1.0963 | 1   | 0      | 0      | 6  | 89.27                  |
| 1.0925 | 1   | 1      | 9      | 1. | R9.67                  |
|        |     |        |        |    |                        |
| 1.0900 | 1   | 5      | 0      | 4  | 89,93                  |
| 1.0896 | 1   | 1      | 5      | 5  | 89.97                  |
| 1.0811 | 3   | 1      | А      | 3  | 90.88                  |
| 1.0662 | 2   | 4      | 0      | 5  | 92.5?                  |
| 1.0655 | 1   | 5      | 2      | 4  | 92.60                  |
| 1.0548 | 2   | 2      | 5      | 5  | 93.82                  |
| 1.0441 | 1   | 2      | 1      | 6  | 95.09                  |
| 1.0397 | 1   | 6      | 5      | 0  | 95.61                  |
| 1.0397 | 4   | 5      | 5      | 3  | 95.64                  |
| 1.0395 | 4   | ,      | 5      | J  | .5.04                  |

Cubic, Fd3m(227), Z=8, isostructural with  $Cu_2Mg$ , type C15, from powder data [Lemaire, 1971].

### Lattice constant: [ibid.]

a = 7.102A

#### Density

(calculated) 10.860 g/cm<sup>3</sup>

#### Thermal parameters

Isotropic: overall B = 1.0

Scattering factors
Co<sup>0</sup>, Lu<sup>0</sup> [Cromer and Mann, 1968].

# Scale factors (integrated intensities)

 $\gamma = 1.08 \times 10^{-3}$ 

 $I/I_{c}$  (calculated) = 14.5

#### References

Cromer, D. T. and Mann, J. B. (1968). Acta Crystallogr. A24, 321.

Lemaire, F. G. R. (1971). Solid State Commun. 9,

|                                            |                          |                       |           |                          | <del></del>                                    |
|--------------------------------------------|--------------------------|-----------------------|-----------|--------------------------|------------------------------------------------|
|                                            | Calculated               | Pattern               | (Pe       | ak h                     | eights)                                        |
| d (A)                                      | I                        |                       | hkl       |                          | 2Θ(°)<br>λ = 1.540598A                         |
| 4.100<br>2.511<br>2.141<br>2.050<br>1.775  | 24<br>77<br>100<br>13    | 1<br>2<br>3<br>2      | 1 2 1 2 0 | 1<br>0<br>1<br>2         | 21.66<br>35.70<br>42.18<br>44.14<br>51.42      |
| 1.629<br>1.450<br>1.367<br>1.255<br>1.200  | 5<br>21<br>23<br>16<br>3 | 3<br>4<br>5<br>4      | 3 2 1 4 3 | 1<br>2<br>1+<br>0        | 56.44<br>64.20<br>68.60<br>75.70               |
| 1.123<br>1.083<br>1.071<br>.004            |                          | 6<br>5<br>6<br>7<br>6 | 2 3 2 1 4 | 0<br>3<br>2<br>1+<br>2   | 86.62<br>90.69<br>92.02<br>101.54<br>108.52    |
| . 924,<br>. 887<br>. 867<br>. 837<br>. 820 | 7 3<br>6 1<br>0 6        | 7<br>8<br>7<br>8<br>7 | 30325     | 1+<br>0<br>3<br>2+<br>1+ | 112.84<br>120.38<br>125.20<br>133.94<br>139.88 |
| .814<br>.704                               | _                        | <u>۾</u><br>ع         | б<br>4    | 0<br>5                   | 142.02<br>151.92                               |

|                                  | Calculated            | Pattern               | (Ir              | ntegr                 | rated)                                          |
|----------------------------------|-----------------------|-----------------------|------------------|-----------------------|-------------------------------------------------|
| d(Å)                             | I                     |                       | hk®              | 2                     | $20(^{\circ})$ $_{\circ}$ $\lambda = 1.540598A$ |
| 4.100<br>2.511<br>2.141<br>2.050 | 20<br>73<br>100<br>12 | 1<br>2<br>3<br>2      | 1<br>2<br>1<br>2 | 1 0 1 2               | 21.66<br>35.73<br>42.17<br>44.14                |
| 1.775<br>1.629<br>1.450          | 1<br>5<br>23          | 4<br>3<br>4           | 0 3 2            | n<br>1<br>2           | 51.42<br>56.43<br>64.19                         |
| 1.367<br>1.367<br>1.255          | 20<br>7<br>18         | 5 3 4                 | 1 3 4            | 1 3 0                 | 68.61<br>68.61<br>75.69                         |
| 1.200<br>1.123<br>1.083<br>1.071 | 4<br>9<br>8<br>3      | 5<br>6<br>5<br>6      | 3 2 3 2          | 1<br>0<br>3<br>2      | 79.83<br>86.62<br>90.67<br>92.02                |
| .9945<br>.9945<br>.949(          | 5 1<br>5 1            | 5<br>7<br>6           | 5 1 4            | 1 2                   | 101.53<br>101.53<br>108.52 ⊃€                   |
| .9246<br>.9246<br>.887           | 6 6<br>6 12           | 5<br>7<br>8           | 5 3 0            | 3<br>1<br>0           | 112.84<br>112.84<br>120.38                      |
| .8676<br>.8376<br>.8376<br>.8201 | 7<br>1 3<br>1 15      | 7<br>8<br>6<br>7<br>5 | 32655            | 3<br>2<br>0<br>1<br>5 | 125.20<br>133.95<br>133.95<br>139.87<br>139.87  |
| .814 <sup>-</sup><br>.7941       | 7 2                   | 6<br>8                | 6 4              | 2                     | 142.01<br>151.92                                |

Cubic, Fd3m (227), Z=8, isostructural with  ${\rm Cu}_2{\rm Mg}$ , type Cl5, from powder data [Harris et al., 1965].

Lattice constant: [ibid.]

a = 7.2986A(published value 7.2834 kX)

Density (calculated) 8.955 g/cm<sup>3</sup>

Thermal parameters Isotropic: overall B = 1.0

Scattering factors
Co<sup>0</sup>, Nd<sup>0</sup> [Cromer and Mann, 1968].

Scale factors (integrated intensities)  $\gamma = 0.571 \times 10^{-3}$  $I/I_{c}$  (calculated) = 12.2

References

Cromer, D. T. and Mann, J. B. (1968). Acta Crystallogr. A24, 321.
Harris, I. R., Mansey, R. C., and Raynor, G. V.

(1965). J. Less-Common Metals, 9, 270.

|        | Calculated | Pattern | (Pe | eak h   | eights)               |
|--------|------------|---------|-----|---------|-----------------------|
| d(A)   | I          |         | hkl | ı       | 20(°) 。               |
|        |            |         |     |         | $\lambda = 1.540598A$ |
|        |            |         |     |         | 04 00                 |
| 4.214  | 12         | 1       | 1   | 1.      | 21.08                 |
| 2.5904 |            | 2       | 2   | Ö       | 34.74                 |
| 2.2006 |            | 3       | 1   | 1       | 40.98                 |
| 2.1069 |            | 2       | 2   | 2       | 42.91                 |
| 1.6744 | 2          | 3       | 3   | 1       | 54.78                 |
| 1.4898 | 17         | 4       | 2   | 2       | 62.26                 |
| 1.4046 |            | 5       | 1   | 1+      | 66.52                 |
| 1.2902 | 16         | 4       | 4   | 0       | 73.32                 |
| 1.2337 |            | 5       | 3   | 1       | 77.29                 |
| 1.1540 |            | 6       | 2   | ñ       | 83.74                 |
| 1.1130 | 6          | 5       | 3   | 3       | 8 <b>7.</b> 58        |
| 1.1003 |            | Ŕ       | ž   | ź       | 88.86                 |
| 1.0220 | -          | 7       | 1   | 1+      | 97.82                 |
| 9753   |            | 6       | 4   |         | 104.34                |
| .9502  |            | 7       | 3   | 2<br>1+ | 108.32                |
|        |            |         |     |         |                       |
| •9123  |            | 8       | 0   | U       | 115.20                |
| •8601  |            | 8       | 2   | 2+      | 127.16                |
| .8428  | . 7        | 7       | 5   | 1+      | 132.14                |
| .8372  | 1          | 5       | 6   | 2       | 133.88                |
| .8011  | 1          | 7       | 5   | 3+      | 148.10                |
| .7780  | 3          | 6       | 6   | 4       | 163.82                |

|                                                                                                          | Calculated                                                         | Pattern                                                       | (Int                  | egra                                                          | ated)                                                                                                             |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|-----------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| d(Å)                                                                                                     | Ι                                                                  |                                                               | hkl                   |                                                               | 2Θ(°) °<br>λ = 1.540598A                                                                                          |
| 4.214<br>2.580<br>2.200<br>2.106<br>1.674<br>1.489<br>1.404<br>1.290<br>1.233<br>1.154<br>1.113<br>1.100 | 4 63<br>6 100<br>9 17<br>4 2<br>8 19<br>6 19<br>6 6<br>2 18<br>7 2 | 1<br>2<br>3<br>2<br>3<br>4<br>5<br>3<br>4<br>5<br>6<br>6<br>6 | 12123 21343 232       | 1<br>0<br>1<br>2<br>1<br>2<br>1<br>3<br>0<br>1<br>0<br>3<br>2 | 21.07<br>34.74<br>40.98<br>42.89<br>54.78<br>62.27<br>66.52<br>66.52<br>73.31<br>77.27<br>83.75<br>87.59<br>88.87 |
| •975<br>•950                                                                                             | 3 10                                                               | 6<br>7                                                        | 4 3                   | 2                                                             | 104.33<br>108.32                                                                                                  |
| .950<br>.912<br>.860<br>.860                                                                             | 3 3<br>1 2<br>1 5                                                  | 5<br>8<br>6<br>8<br>7                                         | 5<br>0<br>6<br>2<br>5 | 3<br>0<br>0<br>2<br>1                                         | 108.32<br>115.20<br>127.16<br>127.16<br>132.13                                                                    |
| .842<br>.837<br>.801<br>.801<br>.778                                                                     | 2 3<br>1 2<br>1 1                                                  | 5<br>6<br>7<br>9<br>6                                         | 5<br>6<br>5<br>1<br>6 | 5<br>2<br>3<br>1<br>4                                         | 132.13<br>133.88<br>148.11<br>148.11<br>163.83                                                                    |

Hexagonal, P6<sub>3</sub>/mmc (194), Z=2, from powder data. The atoms were assigned these positions: 1.5 Co plus 0.5 Ni in 2a; 1.5 Sn plus 0.5 Ni in 2c; and only 0.5 Ni in 2d. [Castelliz, 1953].

Lattice constants: [ibid.]

a = 4.095Ac = 5.209

Density (calculated) 7.781  $g/cm^3$ 

Thermal parameters
Isotropic: overall B = 1.0

Scattering factors  $Co^0$ ,  $Ni^0$ ,  $Sn^0$  [Cromer and Mann, 1968].

Scale factors (integrated intensities)  $\gamma = 0.453 \times 10^{-3}$ I/I (calculated) = 6.08

References

Castelliz, L. (1953). Monatsh. Chem. <u>84</u>, 49. Cromer, D. T. and Mann, J. B. (1968). Acta Crystallogr. A24, 321.

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Calculated | Pattern | (Pea | ak h | eights) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|---------|------|------|---------|
| 2.604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d (Å) | I          |         | hkl  |      |         |
| 2.099       87       1       0       2       43.06         2.048       88       1       1       0       44.20         1.679       14       2       0       1       54.64         1.679       14       2       0       1       54.64         1.610       7       1       1       2       57.18         1.559       11       1       0       3       59.20         1.466       20       2       0       2       63.40         1.302       5       0       0       4       72.54         1.298       11       2       1       7       72.80         1.241       4       2       0       3       76.76         1.192       16       2       1       2       80.52         1.182       9       3       0       0       81.32         1.099       14       1       1       4       89.02         1.076       2       3       0       2       97.60         1.004       5       2       2       0       97.60         1.000       2       1       0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<> |       |            |         |      |      |         |
| 2.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |            |         |      |      |         |
| 1.679       14       2       0       1       54.64         1.610       7       1       1       2       57.18         1.559       11       1       0       3       59.20         1.466       20       2       0       2       63.40         1.302       5       0       0       4       72.54         1.298       11       2       1       1       72.80         1.241       4       2       0       3       76.76         1.192       16       2       1       2       80.52         1.182       9       3       0       0       81.32         1.099       14       1       1       4       89.02         1.076       2       3       0       2       91.39         1.061       5       2       1       3       93.10         1.024       5       2       2       0       97.60         1.000       2       1       0       5       100.82         .953       1       2       2       107.90         .920       7       3       1       2       13                                                                   |       |            |         |      |      |         |
| 1.610       7       1       1       2       57.18         1.559       11       1       0       3       59.20         1.466       20       2       0       2       63.40         1.302       5       0       0       4       72.54         1.298       11       2       1       1       72.80         1.241       4       2       0       3       76.76         1.192       16       2       1       2       80.52         1.182       9       3       0       0       81.32         1.099       14       1       1       4       89.02         1.076       2       3       0       2       91.39         1.061       5       2       1       3       93.10         1.024       5       2       2       0       97.60         1.000       2       1       0       5       100.82         .953       1       2       2       0       97.60         1.000       2       1       0       5       113.68         .875       7       3       1       2 </td <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td>  |       |            | _       | _    |      |         |
| 1.559       11       1 0 3 59.20         1.466       20       2 0 2 63.40         1.302       5 0 0 4 72.54         1.298       11       2 1 1 72.80         1.241       4 2 0 3 76.76         1.192       16 2 1 2 80.52         1.182       9 3 0 0 81.32         1.099       14 1 4 89.02         1.076       2 3 0 2 91.38         1.061       5 2 1 3 93.10         1.024       5 2 2 0 97.60         1.000       2 1 0 5 100.82         .967       3 1 1 105.68         .953       1 2 2 113.68         .878       2 2 0 5 118.08         .875       7 3 0 4 123.30         .874       2 4 0 1 123.60         .856       3 1 3 128.34         .843       3 1 0 6 131.98         .879       3 4 0 2 133.22         .823       3 2 1 5 138.94         .805       7 2 2 4 146.32         .804       3 2 1 146.78          .799       1 1 6 149.04                                                                                                                                                                 | 1.679 | 14         | 3       | U    | 1    | 54.64   |
| 1.466       20       2 0 2 0 4 72.54         1.302       5 0 0 4 72.54         1.298       11       2 1 1 72.80         1.241       4 2 0 3 76.76         1.192       16 2 1 2 80.52         1.182       9 3 0 0 81.32         1.099       14 1 1 4 89.02         1.076       2 3 0 2 91.38         1.061       5 2 1 3 93.10         1.024       5 2 2 0 97.60         1.000       2 1 0 5 100.82         .967       3 1 1 105.68         .953       1 2 2 113.68         .878       2 2 0 5 118.08         .875       7 3 0 4 123.30         .874       2 4 0 1 123.60         .856       3 1 0 6 131.98         .839       3 4 0 2 133.22         .823       3 2 1 5 138.94         .805       7 2 2 4 146.32         .804       3 2 1 146.78          .799       1 1 6 149.04                                                                                                                                                                                                                                    |       |            | 1       | 1    |      | 57.18   |
| 1.302       5       0       0       4       72.54         1.298       11       2       1       1       72.80         1.241       4       2       0       3       76.76         1.192       16       2       1       2       80.52         1.182       9       3       0       0       81.32         1.099       14       1       1       4       89.02         1.076       2       3       0       2       91.38         1.061       5       2       1       3       93.10         1.024       5       2       2       0       97.60         1.000       2       1       0       5       100.82         .967       3       3       1       1       105.68         .953       1       2       2       107.90         .920       7       3       1       2       133.68         .875       7       3       0       4       123.30         .874       2       4       0       1       123.60         .856       3       3       1       3       128.3                                                                   | 1.559 |            |         | ŋ    |      |         |
| 1.298       11       2       1       1       72.80         1.241       4       2       0       3       76.76         1.192       16       2       1       2       80.52         1.182       9       3       0       0       81.32         1.099       14       1       1       4       89.02         1.076       2       3       0       2       91.38         1.061       5       2       1       3       93.10         1.024       5       2       2       0       97.60         1.000       2       1       0       5       100.82         .967       3       3       1       1       105.68         .953       1       2       2       107.90         .920       7       3       1       2       133.68         .875       7       3       0       4       123.30         .874       2       4       0       1       123.60         .856       3       3       1       3       128.34         .843       3       4       0       2       133.2                                                                   |       |            | 5       |      |      |         |
| 1.241       4       2       0       3       76.76         1.192       16       2       1       2       80.52         1.182       9       3       0       0       81.32         1.099       14       1       1       4       89.02         1.076       2       3       0       2       91.39         1.061       5       2       1       3       93.10         1.024       5       2       2       0       97.60         1.000       2       1       0       5       100.82         .967       3       3       1       1       105.68         .953       1       2       2       107.90         .920       7       3       1       2       113.68         .875       7       3       0       4       123.30         .874       2       4       0       1       123.60         .856       3       3       1       3       128.34         .843       3       4       0       2       133.22         .823       3       2       1       146.32                                                                           |       |            |         | -    |      |         |
| 1.192       16       2       1       2       80.52         1.182       9       3       0       0       81.32         1.099       14       1       1       4       89.02         1.076       2       3       0       2       91.39         1.076       2       3       0       2       91.39         1.061       5       2       1       3       93.10         1.024       5       2       2       0       97.60         1.000       2       1       0       5       100.82         .967       3       3       1       1       105.68         .953       1       2       2       107.90         .920       7       3       1       2       113.68         .875       7       3       0       4       123.30         .874       2       4       0       1       123.60         .856       3       3       1       3       128.34         .843       3       4       0       2       133.22         .823       3       2       1       5       138.94                                                                   | 1.298 | 11         | 2       | 1    | 1    | 72.80   |
| 1.182       9       3       0       0       81.32         1.099       14       1       1       4       89.02         1.076       2       3       0       2       91.39         1.076       2       3       0       2       91.39         1.061       5       2       1       3       93.10         1.024       5       2       2       0       97.60         1.000       2       1       0       5       100.82         .967       3       3       1       1       105.68         .953       1       2       2       107.90         .920       7       3       1       2       113.68         .878       2       2       0       5       118.08         .875       7       3       0       4       123.30         .874       2       4       0       1       123.60         .856       3       3       1       3       128.34         .843       3       4       0       2       133.22         .823       3       2       1       5       138.94<                                                                   | 1.241 | 4          | 2       | 0    | 3    | 76.76   |
| 1.099       14       1       1       4       89.02         1.076       2       3       0       2       91.38         1.061       5       2       1       3       93.10         1.024       5       2       2       0       97.60         1.000       2       1       0       5       100.82         .967       3       3       1       1       105.68         .953       1       2       2       107.90         .920       7       3       1       2       113.68         .898       2       2       0       5       118.08         .875       7       3       0       4       123.30         .874       2       4       0       1       123.60         .856       3       3       1       3       128.34         .843       3       1       0       6       131.98         .879       3       4       0       2       133.22         .823       3       2       1       5       1.78.94         .804       3       2       2       4       146.32                                                                   | 1.192 | 16         | 2       | 1    | 2    | 80.52   |
| 1.076       2       3       0       2       91.38         1.061       5       2       1       3       93.10         1.024       5       2       2       0       97.60         1.000       2       1       0       5       100.82         .967       3       3       1       1       105.68         .953       1       2       2       107.90         .920       7       3       1       2       113.68         .878       2       2       0       5       118.08         .875       7       3       0       4       123.30         .874       2       4       0       1       123.60         .856       3       3       1       3       128.34         .843       3       1       0       6       131.98         .823       3       2       1       5       138.94         .805       7       2       2       4       146.32         .804       3       3       2       1       146.78                                                                                                                               | 1.182 | 9          |         | C    | O    |         |
| 1.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.099 | 14         | 1       | 1    | 4    |         |
| 1.024     5     2     2     0     97.60       1.000     2     1     0     5     100.82       .967     3     3     1     1     105.68       .953     1     2     2     107.90       .920     7     3     1     2     113.68       .898     2     2     0     5     118.08       .875     7     3     0     4     123.30       .874     2     4     0     1     123.60       .856     3     3     1     3     128.34       .843     3     1     0     6     131.98       .879     3     4     0     2     133.22       .823     3     2     1     5     1.38.94       .805     7     2     2     4     146.32       .804     3     3     2     1     146.78       .799     1     1     1     6     149.04                                                                                                                                                                                                                                                                                                              | 1.076 | 2          | 3       | ŋ    | 2    | 91.39   |
| 1.024       5       2       2       0       97.60         1.000       2       1       0       5       100.82         .967       3       3       1       1       105.68         .953       1       2       2       107.90         .920       7       3       1       2       113.68         .898       2       2       0       5       118.08         .875       7       3       0       4       123.30         .874       2       4       0       1       123.60         .856       3       3       1       3       128.34         .843       3       1       0       6       131.98         .823       3       2       1       5       138.94         .805       7       2       2       4       146.32         .804       3       3       2       1       146.78          .799       1       1       1       6       149.04                                                                                                                                                                                        | 1.061 | 5          | 2       | 1    | 3    | 93.10   |
| .967 .953 1 2 2 107.90  .920 7 3 1 2 113.68 .898 2 2 0 5 118.08 .875 7 3 0 4 123.30 .874 2 4 0 1 123.60 .856 3 1 1 0 6 131.98 .839 3 4 0 2 133.22 .823 3 2 1 5 138.94 .805 7 2 2 4 146.32 .804 3 3 1 1 6 149.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.024 |            | 2       | 2    |      | 97.60   |
| .953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 2          |         | 0    | 5    |         |
| .920 7 3 1 2 113.68<br>.898 2 2 0 5 118.08<br>.875 7 3 0 4 123.30<br>.874 2 4 0 1 123.60<br>.856 3 3 1 3 128.34<br>.843 3 1 0 6 131.98<br>.839 3 4 0 2 133.22<br>.823 3 2 1 5 138.94<br>.805 7 2 2 4 146.32<br>.804 3 3 2 1 146.78<br>.799 1 1 1 6 149.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 3          |         | 1.   | 1.   |         |
| .898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •953  | 1          | 5       | 2    | 5    | 107.90  |
| .875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •920  | 7          | 3       | 1    | 2    | 113.68  |
| .843 3 1 0 6 131.98<br>.839 3 4 0 2 133.22<br>.823 3 2 1 5 138.94<br>.805 7 2 2 4 146.32<br>.804 3 3 2 1 146.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • KOE | 2          | 2       | O    | 5    | 118.08  |
| .843 3 1 0 6 131.98<br>.839 3 4 0 2 133.22<br>.823 3 2 1 5 138.94<br>.805 7 2 2 4 146.32<br>.804 3 3 2 1 146.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 7          |         | 0    | 4    |         |
| .843 3 1 0 6 131.98<br>.839 3 4 0 2 133.22<br>.823 3 2 1 5 138.94<br>.805 7 2 2 4 146.32<br>.804 3 3 2 1 146.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .874  | 2          |         | 0    |      | 123.60  |
| .839 3 4 0 2 133.22<br>.823 3 2 1 5 138.94<br>.805 7 2 2 4 146.32<br>.804 3 3 2 1 146.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •856  | 3          | 3       | 1    | 3    | 128.34  |
| .839 3 4 0 2 133.22<br>.823 3 2 1 5 138.94<br>.805 7 2 2 4 146.32<br>.804 3 3 2 1 146.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . B43 | 3          | 1       | 0    | 6    | 131.98  |
| .823 3 2 1 5 1.38.94<br>.805 7 2 2 4 146.32<br>.804 3 3 2 1 146.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 3          | 4       | 0    | 2    |         |
| .805 7 2 2 4 146.32<br>.804 3 3 2 1 146.78<br>.799 1 1 1 6 149.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .823  | 3          | 2.      |      | 5    |         |
| .799 1 1 1 6 149.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .805  | 7          | 2       | 5    | 4    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .804  | 3          | 3       | 2    | 1    | 146.78  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .790  | 1          | 1       | 1    | 6    | 149.04  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _     |            |         |      |      |         |

| Cal    | culated Pat | tern | (Int | tegr | ated)                  |
|--------|-------------|------|------|------|------------------------|
| d(A)   | I           |      | hkl  |      | 2Θ(°)<br>λ = 1.540598A |
|        | ·           |      |      |      |                        |
| 2.931  | 100         | 1    | 0    | 1    | 30.47                  |
| 2.604  | 7           | 0    | 0    | 2    | 34.41                  |
| 2.099  | 93          | 1    | 0    | 2    | 43.06                  |
| 2.048  | 95          | 1    | 1    | Ú    | 44.20                  |
| 1.679  | 17          | 5    | 0    | 1    | 54.63                  |
| 1.610  | 9           | 1.   | 1.   | 2    | 57.18                  |
| 1.559  | 13          | 1    | ()   | 3    | 59.20                  |
| 1.466  | 24          | 2    | n    | 5    | 63.41                  |
| 1.302  | 6           | 0    | 0    | 4    | 72.53                  |
| 1.298  | 12          | Ś    | 1.   | 1    | 72.89                  |
| 1.241  | 5           | 2    | n    | 3    | 76.77                  |
| 1.192  | 21          | 5    | 1    | 2    | 80.53                  |
| 1.182  | 11          | 3    | ñ    | 0    | 81.33                  |
| 1.099  | 17          | 1    | 1    | 4    | 89.02                  |
| 1.076  | 2           | 3    | Ó    | 2    | 91.38                  |
| 1.061  | 6           | 2    | 1    | 3    | 93.10                  |
| 1.024  | 7           | 2    | 5    | 0    | 97.60                  |
|        |             | 1    | n    | 5    | 100.82                 |
| 1.000  | 3           |      |      |      |                        |
| •967   | 5           | 3    | 1    | 1    | 105.60                 |
| •953   | 2           | 2    | 5    | Š.   | 107.89                 |
| •920   | 10          | 3    | 1    | 2    | 113.6º                 |
| , A0A  | 2           | 5    | 0    | -5   | 118.09                 |
| .875   | 12          | 3    | Ú    | 4    | 123.30                 |
| .874   | 2           | 4    | 0    | 1    | 123.61                 |
| •856   | 5           | 3    | 1    | 3    | 128.34                 |
| .843   | 6           | 1    | 0    | 6    | 131.99                 |
| .839   | 6           | 4    | Ô    | 2    | 133.21                 |
| .823   | 6           | 2    | 1    | 5    | 138.93                 |
| 805    | 17          | 2    | 2    | 4    | 146.31                 |
| .804   | 7           | 3    | 2    | 1    | 146.78                 |
| .799   | 2           | 1    | 1    | 6    | 149.05                 |
| .790   | 4           | 4    | n    | 3    | 154.60                 |
| • / () | 4           | 4    | IJ   | _1   | T 14 * O11             |

Hexagonal, P6/mmm(191), Z=1, isostructural with  $CaCu_5$ , type  $D2_d$ , from powder data [Khan and Feldmann, 1973].

Lattice constants: [ibid.]

a = 4.997Ac = 3.978

Density

(measured) 8.58 g/cm<sup>3</sup> [ibid.] (calculated) 8.590 g/cm<sup>3</sup>

Thermal parameters

Isotropic: overall B = 2.0

Scattering factors  $\text{Co}^{\,0}$ ,  $\text{Sm}^{\,0}$  [Cromer and Mann, 1968].

Scale factors (integrated intensities)

 $\gamma = 0.320 \times 10^{-3}$  $I/I_c$  (calculated) = 6.73

References

Cromer, D. T. and Mann, J. B. (1968). Crystallogr. A24, 321.

Khan, Y. and Feldmann, D. (1973). J. Less-Common Metals, 31, 111.

|       | Calculated | Pattern | (Pea | ak h | eights)               |
|-------|------------|---------|------|------|-----------------------|
| d(Å)  | I          |         | hkl  |      | 20(°)                 |
|       |            |         |      |      | $\lambda = 1.540598A$ |
| . 700 |            |         |      |      | 00.50                 |
| 4.328 | 2          | 1       | 0    | n    | 20.52                 |
| 3.978 | 8          | ŋ       | Ü    | 1    | 22.34                 |
| 2,929 |            | 1       | 0    | 1    | 30.50                 |
| 2.498 |            | 1       | 1    | 0    | 35.92                 |
| 2.164 | 36         | 2       | ŋ    | Û    | 41.72                 |
| 2.116 | 100        | 1       | 1    | 1    | 42.70                 |
| 1,989 |            | n       | ŋ    | 2    | 45.5A                 |
| 1.901 |            | 2       | ĝ    | 1    | 47.82                 |
| 1.556 |            | 1       | 1    | â    | 59.3/4                |
| 1.513 |            | 2       | 1    | 1    | 61.22                 |
| 1.010 | 10         |         | 1    | 1    | D1 • %                |
| 1.464 | 14         | 2       | n    | 2    | 63.48                 |
| 1.443 | 4          | 3       | ŋ    | 0    | 64.56                 |
| 1.356 | 14         | 3       | n    | 1    | 69.22                 |
| 1.268 | 2          | 1       | 0    | 3    | 74.84                 |
| 1.240 |            | 2       | 2    | n    | 76.14                 |
| 1 171 | 7          | •       | 1    | 7    | 00.04                 |
| 1.171 |            | 1       |      | 3    | 82.24                 |
| 1.168 |            | 3       | 0    | 2    | 82.5?                 |
| 1.149 |            | 3       | 1_   | 1    | 84.20                 |
| 1.082 |            | 4       | Û    | 0    | 00.80                 |
| 1.058 | 8          | 5       | 5    | 2    | 93.46                 |
| 1.030 | 2          | 2       | 1    | 3    | 96.80                 |
| 004   |            | n       | 0    | 4    | 101.54                |
| . 976 |            | 3       | ń    | 3    | 104.20                |
| 963   | _          | 3       | 2    | 1    | 106.20                |
| 950   |            | 4       | n    | 2    | 108.30                |
| •     | L          | ·       | • •  |      | 2007                  |
| , 944 | 1          | 4       | 1    | 0    | 109.32                |
| .924  | 1          | 1       | 1    | 4    | 112.96                |
| .919  | 5          | /1      | 1    | 1    | 113.94                |
| . 904 |            | 2       | n    | 4    | 116.96                |
| 800   |            | 3       | 1    | 3    | 119.92                |
| 05-   |            |         |      | ^    | 100 10                |
| .853  |            | 4       | 1    | 5    | 129.10                |
| •819  |            | .3      | U    | 14   | 140.38                |
| •918  | _          | 4       | 2    | Û    | 140.74                |
| .A15  |            | 3       | 3    | 1    | 141.80                |
| •795  | 1          | 3       | ?    | 3    | 151.52                |
|       |            |         |      |      |                       |

Cobalt samarium,  ${\rm Co_5Sm}$  - continued

|                                      | Calculated          | Pattern               | (Int                  | egra                  | ited)                                          |
|--------------------------------------|---------------------|-----------------------|-----------------------|-----------------------|------------------------------------------------|
| d (Å)                                | I                   |                       | hkl                   |                       | 2Θ(°)<br>λ = 1.540598A                         |
| 4.32<br>3.97<br>2.92<br>2.49<br>2.16 | 8 7<br>9 56<br>8 35 | 1<br>0<br>1<br>1<br>2 | 0<br>0<br>0<br>1      | 0<br>1<br>1<br>0<br>0 | 20.51<br>22.33<br>30.50<br>35.91<br>41.71      |
| 2.11<br>1.98<br>1.90<br>1.55         | 9 25<br>1 5<br>6 12 | 1<br>0<br>2<br>1<br>2 | 1<br>0<br>0<br>1      | 1<br>2<br>1<br>2      | 42.70<br>45.57<br>47.81<br>59.34<br>61.22      |
| 1.46<br>1.44<br>1.35<br>1.26         | 3 4<br>6 16<br>8 3  | 2<br>3<br>3<br>1<br>2 | 0 0 0 0 2             | 2<br>0<br>1<br>3<br>0 | 63.48<br>64.55<br>69.23<br>74.83<br>76.14      |
| 1.19<br>1.17<br>1.16<br>1.14         | 1 8<br>8 3<br>9 3   | 2<br>1<br>3<br>3      | 2<br>1<br>0<br>1<br>0 | 1 3 2 1 0             | 80.53<br>82.24<br>82.55<br>84.19<br>90.80      |
| 1.05<br>1.03<br>.00<br>.97           | 0 2<br>4 1<br>6 4   | 2<br>0<br>3<br>3      | 2 1 0 0 0 2           | 2 3 4 3 1             | 93.46<br>96.81<br>101.53<br>104.20<br>106.20   |
| .95<br>.94<br>.92<br>.91             | 4 2<br>4 2<br>9 7   | 4<br>1<br>4<br>2      | n<br>1<br>1           | 2 0 4 1 4             | 108.29<br>109.31<br>112.95<br>113.94<br>116.96 |
| . 89<br>. 84<br>. 84<br>. 83<br>. 81 | 3 3<br>6 1<br>3 1   | 3<br>4<br>5<br>3      | 1<br>1<br>0<br>3<br>0 | 3<br>2<br>1<br>0<br>4 | 119.92<br>129.10<br>131.24<br>135.31<br>140.37 |
| .81<br>.70<br>.78                    | 5 4<br>5 2          | 4<br>3<br>1           | ?<br>?<br>0           | 0<br>1<br>3<br>5      | 140.74<br>141.81<br>151.51<br>159.75           |

Hexagonal,  $P6_3/mmc$  (194), Z = 1, isostructural with Ni<sub>3</sub>Sn<sub>2</sub>, type B8<sub>2</sub>, from powder data [Rajeswari and Manohar, 1970].

Lattice constants: [ibid.]

a = 4.109Ac = 5.180

Density

(calculated) 9.080 g/cm<sup>3</sup>

Thermal parameters

Isotropic: overall B = 1.0

Polymorphism

This phase was annealed above 550 °C, and quenched to room temperature. A low-temperature, more ordered modification also exists [Rajeswari and Manohar, op. cit.].

Scattering factors
Co<sup>0</sup>, Sn<sup>0</sup> [Cromer and Mann, 1968].

Scale factors (integrated intensities)

 $\gamma = 0.383 \times 10^{-3}$  $I/I_{C}$  (calculated) = 6.62

References

Cromer, D. T. and Mann, J. B. (1968). Acta Crystallogr. A24, 321.

Rajeswari, H. and Manohar, H. (1970). Indian J. Pure Appl. Phys. 8, 363.

|        | C-1- | 111 at ad | Datte | ~~  | /Pos        | h h   | oights)                |
|--------|------|-----------|-------|-----|-------------|-------|------------------------|
|        | Caic | ulated    | Patte | τn  | (Pea        | ık fi | eights)                |
| d (A)  |      | I         |       |     | hkl         |       | 2Θ(°)<br>λ = 1.540598A |
| 3.5    | 5.0  | 2         |       | 1   | 0           | n     | 25.02                  |
| 2.9    |      | 82        |       | 1   | 0           | 1     | 30.46                  |
| 2.5    |      | 12        |       | Û   | 0           | 5     | 34.60                  |
| 2.0    |      | 88        |       | 1   | ő           | ã     | 43.16                  |
| 2.0    |      | 100       |       | î   | 1           | 0     | 44.04                  |
| 2_ • 0 | .,   | 100       |       |     | •           | U     | 44 6 0 4               |
| 1.6    | _    | 12        |       | 5   | 0           | 1     | 54.48                  |
| 1.6    |      | 14        |       | 1   | 1.          | 2     | 57.19                  |
| 1.5    |      | 9         |       | 1   | 0           | 3     | 59.46                  |
| 1.4    |      | 21        |       | 2   | 0           | 2     | 63.38                  |
| 1.3    | υS   | 9         |       | 2   | 1           | 1.    | 72.56                  |
| 1.2    | 95   | 6         |       | n   | n           | 4     | 73.00                  |
| 1.2    |      | 4         |       | 2   | 0           | 3     | 76.8°                  |
| 1.1    |      | 18        |       | 2   | 1           | 2     | 80.38                  |
| 1.1    |      | ii        |       | 3   | ń           | ō     | 81.00                  |
| 1.0    |      | 15        |       | 1   | 1           | 4     | 89.36                  |
|        |      |           |       |     |             |       |                        |
| 1.0    |      | 3         |       | 3   | 0           | 2     | 91.16                  |
| 1.0    |      | 4         |       | Ś   | 1           | 3     | 93.10                  |
| 1.0    |      | 6         |       | 2   | 2           | 0     | 97.16                  |
| • 9    |      | 2         |       | 1.  | 0           | 5     | 101.50                 |
| • 9    | 70   | 3         |       | 3   | 1           | 1     | 105.22                 |
| • 01   | 55   | 2         |       | ž   | 2           | 2     | 107.54                 |
| .9     |      | 7         |       | 3   | 1           | 2     | 113.28                 |
| . 8    |      | 1         |       | 2   | 0           | 5     | 118.72                 |
| .8     |      | 2         |       | 4   | 0           | 1     | 122.94                 |
| . B    | 75   | 9         |       | 3   | 0           | 4     | 123.44                 |
| . A    | 57   | 3         |       | 3   | 1           | 3     | 128.06                 |
| .8     |      | 3         |       | 4   | U .         | 5     | 132.56                 |
| . A:   |      | 4         |       | 1   | 0           | 6     | 133.28                 |
| . A:   |      | 2         |       | 2   | 1           | 5     | 139.62                 |
| A      |      | 3         |       | 3   | 5           | 1     | 145.58                 |
| • ^ '  | 96)  | J         |       | ,   | <i>C.</i> . | ,     | 140.00                 |
| . ۸    | 05   | 8         |       | 3   | 2           | 4     | 146.34                 |
| .7     |      | 2         |       | 1.  | 1           | 6     | 150.84                 |
| .7     | 91   | 1         |       | ts. | û           | 7     | 153.84                 |
|        |      |           |       |     |             |       |                        |

Cobalt tin,  ${\rm Co}_3{\rm Sn}_2$  - continued

|                                                                                        | Calculated                                               | Pattern                                             | (In                                  | teg:                  | rated)                                                                                 |
|----------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|--------------------------------------|-----------------------|----------------------------------------------------------------------------------------|
| d(Å)                                                                                   | I                                                        |                                                     | hkl                                  |                       | 2Θ(°)<br>λ = 1.540598A                                                                 |
| 3.558<br>2.933<br>2.590<br>2.094<br>2.055<br>1.683<br>1.610<br>1.553<br>1.467<br>1.302 | 2<br>76<br>12<br>89<br>100<br>13<br>15<br>10<br>24<br>10 | 1<br>1<br>0<br>1<br>1<br>1<br>2<br>1<br>1<br>2<br>2 | 0<br>0<br>0<br>1<br>0<br>1<br>0<br>1 | 0 1 2 2 0 1 2 3 2 1   | 25.00<br>30.45<br>34.60<br>43.17<br>44.04<br>54.49<br>57.18<br>59.45<br>63.37<br>72.56 |
| 1.295<br>1.239<br>1.194<br>1.186<br>1.096                                              | 6<br>4<br>20<br>12<br>18                                 | 0<br>2<br>2<br>3<br>1                               | 0<br>1<br>0<br>1                     | 4<br>3<br>2<br>0<br>4 | 73.01<br>76.87<br>80.38<br>80.99<br>89.36                                              |
| 1.078<br>1.061<br>1.027<br>.995                                                        | 3<br>5<br>7<br>2<br>4                                    | 3<br>2<br>2<br>1<br>3                               | 0<br>1<br>2<br>0<br>1                | 2<br>3<br>0<br>5<br>1 | 91.17<br>93.10<br>97.16<br>101.50<br>105.22                                            |
| .955<br>.922<br>.805<br>.877<br>.875                                                   | 3<br>10<br>2<br>2<br>13                                  | 2<br>3<br>2<br>4<br>3                               | 2 1 0 0 0                            | 2 5 1 4               | 107.55<br>113.29<br>118.72<br>122.94<br>123.44                                         |
| .857<br>.841<br>.839<br>.821<br>.806                                                   | 4<br>5<br>6<br>5<br>6                                    | 3<br>4<br>1<br>2<br>3                               | 1<br>0<br>0<br>1<br>2                | 3<br>2<br>6<br>5<br>1 | 128.05<br>132.56<br>133.31<br>139.61<br>145.57                                         |
| .805<br>.796<br>.791                                                                   | 18<br>4<br>4                                             | 2<br>1<br>4                                         | 2<br>1<br>0                          | 4<br>6<br>3           | 146.33<br>150.85<br>153.83                                                             |

# CUMULATIVE INORGANIC INDEX

| V                                                                                     | ol. or  |         |                                                                                                          | Vol. or |      |
|---------------------------------------------------------------------------------------|---------|---------|----------------------------------------------------------------------------------------------------------|---------|------|
|                                                                                       | Sec.    | Page    |                                                                                                          | Sec.    | Page |
| Aluminum, Al                                                                          | 1       | 11      | Ammonium copper bromide hydrate,                                                                         |         |      |
| Aluminum antimony, AlSb                                                               | 4       | 72      | (NH <sub>4</sub> ) <sub>2</sub> CuBr <sub>4</sub> •2H <sub>2</sub> O                                     | 10m     | 6    |
| Aluminum bismuth oxide, Al <sub>4</sub> Bi <sub>2</sub> O <sub>9</sub>                | 11m     | 5       | Ammonium copper chloride, NH <sub>4</sub> CuCl <sub>3</sub>                                              | 7m      | 7    |
| Aluminum chloride, AlCl <sub>3</sub>                                                  | 9m      | 61      | Ammonium copper chloride hydrate,                                                                        |         |      |
| Aluminum chloride hydrate                                                             |         |         | (NH <sub>4</sub> ) <sub>2</sub> CuCl <sub>4</sub> •2H <sub>2</sub> O                                     | 12m     | 6    |
| (chloraluminite), AlCl <sub>3</sub> ·6H <sub>2</sub> O                                | 7       | 3       | Ammonium copper fluoride, NH4CuF3                                                                        | 11m     | 8    |
| Aluminum fluoride hydroxide silicate,                                                 |         |         | Ammonium gallium sulfate hydrate,                                                                        |         |      |
| topaz, Al <sub>2</sub> (F,OH) <sub>2</sub> SiO <sub>4</sub>                           | lm      | 4       | $NH_{4}Ga(SO_{4})_{2} \cdot 12H_{2}O$                                                                    | 6       | 9    |
| Aluminum nitride, AlN                                                                 | 12m     | 5       | Ammonium germanium fluoride,                                                                             |         |      |
| Aluminum nitrate hydrate,                                                             |         |         | (NH <sub>4</sub> ) <sub>2</sub> GeF <sub>6</sub>                                                         | 6       | 8    |
| Al $(NO_3)_3 \cdot 9H_2O$                                                             | 11m     | 6       | Ammonium hydrogen carbonate                                                                              |         |      |
| Aluminum oxide (corundum), $\alpha$ -Al <sub>2</sub> O <sub>3</sub>                   | 9       | 3       | (teschemacherite), (NH <sub>4</sub> )HCO <sub>3</sub>                                                    | 9       | 5    |
| Aluminum oxide hydrate (boehmite),                                                    |         |         | Ammonium hydrogen phosphate,                                                                             |         |      |
| α-Al <sub>2</sub> O <sub>3</sub> ·H <sub>2</sub> O                                    | 3       | 38      | NH <sub>4</sub> H <sub>2</sub> PO <sub>4</sub>                                                           | 4       | 64   |
| Aluminum oxide hydrate, diaspore,                                                     |         |         | Ammonium iodate, NH <sub>4</sub> IO <sub>3</sub>                                                         | 10m     | 7    |
| β-Al <sub>2</sub> O <sub>3</sub> ·H <sub>2</sub> O                                    | 3       | 41      | Ammonium iodide, NH <sub>4</sub> I                                                                       | 4       | 56   |
| Aluminum phosphate, Al(PO <sub>3</sub> ) <sub>3</sub>                                 | 2m      | 3       | Ammonium iridium chloride,                                                                               |         | _    |
| Aluminum phosphate (berlinite),                                                       | 10      | 2       | (NH <sub>4</sub> ) <sub>2</sub> IrCl <sub>6</sub>                                                        | 8       | 6    |
| AlPO <sub>4</sub> (trigonal)                                                          | 10      | 3       | Ammonium iron fluoride, (NH <sub>4</sub> ) <sub>3</sub> FeF <sub>6</sub>                                 | 9m      | 9    |
| Aluminum phosphate, AlPO <sub>4</sub>                                                 | 10      | 4       | Ammonium iron sulfate, NH <sub>4</sub> Fe(SO <sub>4</sub> ) <sub>2</sub>                                 | 10m     | 8    |
| (orthorhombic)                                                                        | 10      | 4       | Ammonium iron sulfate hydrate,                                                                           | c       | 10   |
| Aluminum silicate (mullite),                                                          | 2m      | 2       | $NH_4Fe(SO_4)_2 \cdot 12H_2O$                                                                            | 6       | 10   |
| Al <sub>6</sub> Si <sub>2</sub> O <sub>13</sub>                                       | 3m      | 3       | Ammonium lead chloride, (NH <sub>4</sub> ) <sub>2</sub> PbCl <sub>6</sub>                                | 11m     | 10   |
| Aluminum tungsten oxide, Al <sub>2</sub> (WO <sub>4</sub> ) <sub>3</sub>              | 11m     | 7       | Ammonium magnesium aluminum fluoride,                                                                    |         | 0    |
| Ammonium aluminum fluoride,                                                           | Om      | 5       | NH <sub>4</sub> MgAlF <sub>6</sub>                                                                       | 10m     | 9    |
| (NH <sub>4</sub> ) <sub>3</sub> AlF <sub>6</sub>                                      | 9m      | 5       | Ammonium magnesium chromium oxide                                                                        | Om      | 10   |
| Ammonium aluminum selenate hydrate,                                                   | 9m      | 6       | hydrate, (NH <sub>4</sub> ) <sub>2</sub> Mg(CrO <sub>4</sub> ) <sub>2</sub> ·6H <sub>2</sub> O           | 8m      | 10   |
| NH <sub>4</sub> Al (SeO <sub>4</sub> ) <sub>2</sub> ·12H <sub>2</sub> O               | Jiii    | Ü       | Ammonium manganese chloride hydrate,                                                                     | 11m     | 11   |
| Ammonium aluminum sulfate,<br>NH <sub>L</sub> Al(SO <sub>L</sub> ) <sub>2</sub>       | 10m     | 5       | (NH <sub>4</sub> ) <sub>2</sub> MnCl <sub>4</sub> •2H <sub>2</sub> O<br>Ammonium manganese(II) fluoride, | 11m     | 11   |
| Ammonium aluminum sulfate hydrate                                                     | 101.1   | 3       | NH <sub>4</sub> MnF <sub>3</sub>                                                                         | 5m      | 8    |
| (tschermigite), NH <sub>4</sub> Al(SO <sub>4</sub> ) <sub>2</sub> ·12H <sub>2</sub> O | 6       | 3       | Ammonium manganese sulfate,                                                                              | J       | Ŭ    |
| Ammonium azide, NH <sub>4</sub> N <sub>3</sub>                                        | 9       | 4       | (NH <sub>4</sub> ) <sub>2</sub> Mn <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub>                          | 7m      | 8    |
| Ammonium beryllium fluoride,                                                          | _       | -       | Ammonium manganese sulfate hydrate,                                                                      | ,       |      |
| (NH <sub>4</sub> ) <sub>2</sub> BeF <sub>4</sub>                                      | 3m      | 5       | (NH <sub>4</sub> ) <sub>2</sub> Mn(SO <sub>4</sub> ) <sub>2</sub> •6H <sub>2</sub> O                     | 8m      | 12   |
| Ammonium boron fluoride, NH <sub>4</sub> BF <sub>4</sub>                              | 3m      | 6       | Ammonium mercury chloride, NH <sub>4</sub> HgCl <sub>3</sub>                                             | 8m      | 14   |
| Ammonium bromide, NH <sub>4</sub> Br                                                  | 2       | 49      | Ammonium molybdenum oxide phosphate                                                                      |         |      |
| Ammonium cadmium chloride, NH4CdCl3                                                   | 5m      | 6       | hydrate, $(NH_4)_3 (MoO_3)_{12} PO_4 \cdot 4H_2O$                                                        | 8       | 10   |
| Ammonium cadmium sulfate,                                                             |         |         | Ammonium nickel(II) chloride,                                                                            |         |      |
| $(NH_4)_2Cd_2(SO_4)_3$                                                                | 7m      | 5       | NH <sub>4</sub> NiCl <sub>3</sub>                                                                        | 6m      | 6    |
| Ammonium cadmium sulfate hydrate,                                                     |         |         | Ammonium nickel chromium oxide                                                                           |         |      |
| $(NH_4)_2Cd(SO_4)_2 \cdot 6H_2O$                                                      | 8m      | 5       | hydrate, $(NH_4)_2Ni(CrO_4)_2 \cdot 6H_2O \dots$                                                         | 8m      | 16   |
| Ammonium calcium sulfate,                                                             |         |         | Ammonium nitrate (nitrammite),                                                                           |         |      |
| $(NH_4)_2Ca_2(SO_4)_3$                                                                | 8m      | 7       | NH <sub>4</sub> NO <sub>3</sub>                                                                          | 7       | 4    |
| Ammonium chlorate, NH <sub>4</sub> ClO <sub>4</sub>                                   |         |         | Ammonium osmium bromide, (NH <sub>4</sub> ) <sub>2</sub> OsBr <sub>6</sub>                               | 3       | 71   |
| (orthorhombic)                                                                        | 7       | 6       | Ammonium osmium chloride,                                                                                |         |      |
| Ammonium chloride (sal-ammoniac),                                                     |         |         | $(NH_4)_2OsCl_6$                                                                                         | lm      | 6    |
| NH <sub>4</sub> Cl                                                                    | 1       | 59      | Ammonium palladium chloride,                                                                             | _       | _    |
| Ammonium chromium sulfate hydrate,                                                    | _       | _       | (NH <sub>4</sub> ) <sub>2</sub> PdCl <sub>4</sub>                                                        | 6       | 6    |
| $NH_4Cr(SO_4)_2 \cdot 12H_2O$                                                         | 6       | 7       | Ammonium palladium chloride,                                                                             |         | _    |
| Ammonium cobalt (II) chloride,                                                        | _       | -       | (NH <sub>4</sub> ) <sub>2</sub> PdCl <sub>6</sub>                                                        | 8       | 7    |
| NH <sub>4</sub> CoCl <sub>3</sub>                                                     | 6m      | 5       | Ammonium platinum bromide,                                                                               | 0       | _    |
| Ammonium cobalt fluoride, NH <sub>4</sub> CoF <sub>3</sub>                            | 8m      | 9       | (NH <sub>4</sub> ) <sub>2</sub> PtBr <sub>6</sub>                                                        | 9       | 6    |
|                                                                                       |         |         | Ammonium platinum chloride,                                                                              | 5       | 3    |
|                                                                                       |         |         | (NH <sub>4</sub> ) <sub>2</sub> PtCl <sub>6</sub>                                                        | 9       | 7    |
|                                                                                       |         |         | Ammonium rhenium oxide, NH <sub>4</sub> ReO <sub>4</sub>                                                 | ,       | ,    |
| Further work on this program is                                                       | s in pr | ogress, | Ammonium selenium bromide,                                                                               | 8       | 4    |
| and it is anticipated that addit:                                                     | ional s | ections | (NH <sub>4</sub> ) <sub>2</sub> SeBr <sub>6</sub><br>Ammonium silicon fluoride                           | J       | •    |
| will be issued. Therefore, the accur                                                  | nulativ | e index | (cryptohalite), (NH <sub>4</sub> ) <sub>2</sub> SiF <sub>6</sub>                                         | 5       | 5    |
| here is not necessarily the conclud                                                   | ding in | dex for | Ammonium sulfate (mascagnite),                                                                           |         |      |
| the project.                                                                          |         |         | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub>                                                          | . 9     | 8    |
| m - Monograph 25.                                                                     |         |         | Ammonium tellurium bromide,                                                                              |         |      |
| A mineral name in () indicate                                                         | es a sy | nthetic | (NH <sub>4</sub> ) <sub>2</sub> TeBr <sub>6</sub>                                                        | 8       | 5    |
| sample.                                                                               |         |         | , 2                                                                                                      |         |      |

|                                                                                                                                   | Vol. or    |          |                                                                                                                                                | Vol. or    |          |
|-----------------------------------------------------------------------------------------------------------------------------------|------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|
|                                                                                                                                   | Sec.       | Page     |                                                                                                                                                | Sec.       | Page     |
| Ammonium tellurium chloride,                                                                                                      |            |          | Barium lead nitrate,                                                                                                                           |            |          |
| (NH <sub>4</sub> ) <sub>2</sub> TeCl <sub>6</sub>                                                                                 | 8          | 8        | Ba <sub>33</sub> Pb <sub>67</sub> (NO <sub>3</sub> ) <sub>2</sub>                                                                              | 12m        | 40       |
| Ammonium tin chloride, (NH <sub>4</sub> ) <sub>2</sub> SnCl <sub>6</sub> Ammonium vanadium oxide, NH <sub>4</sub> VO <sub>3</sub> | 5<br>8     | 4<br>9   | Barium lead nitrate,                                                                                                                           | 12m        | 40       |
| Ammonium zinc fluoride, NH <sub>4</sub> ZnF <sub>3</sub>                                                                          | 8m         | 18       | Ba <sub>.67</sub> Pb <sub>.33</sub> (NO <sub>3</sub> ) <sub>2</sub><br>Barium molybdenum oxide, BaMoO <sub>4</sub>                             | 7          | 7        |
| Ammonium zirconium fluoride,                                                                                                      |            |          | Barium molybdenum oxide, Ba <sub>2</sub> MoO <sub>5</sub>                                                                                      | 12m        | 10       |
| (NH <sub>4</sub> ) <sub>3</sub> ZrF <sub>7</sub>                                                                                  | 6          | 14       | Barium nitrate (nitrobarite),                                                                                                                  |            |          |
| Antimony, Sb                                                                                                                      | 3<br>2m    | 14<br>4  | Ba (NO <sub>3</sub> ) <sub>2</sub>                                                                                                             | 11m        | 14       |
| Antimony(III) fluoride, SbF <sub>3</sub><br>Antimony(III) iodide, SbI <sub>3</sub>                                                | 6          | 16       | Barium oxide, BaO                                                                                                                              | 9m<br>6    | 63<br>18 |
| Antimony(III) oxide (senarmontite),                                                                                               |            |          | Barium phosphate, Ba <sub>3</sub> (PO <sub>4</sub> ) <sub>2</sub>                                                                              | 12m        | 12       |
| Sb <sub>2</sub> O <sub>3</sub> (cubic)                                                                                            | 3          | 31       | Barium selenide, BaSe                                                                                                                          | 5m         | 61       |
| Antimony(III) oxide, valentinite,                                                                                                 | 10         | _        | Barium silicate, β-BaSiO <sub>3</sub>                                                                                                          | 13m        | 8        |
| Sb <sub>2</sub> O <sub>3</sub> (orthorhombic)                                                                                     | 10         | 6        | Barium silicate (sanbornite),                                                                                                                  | 1.2        | 10       |
| Sb <sub>2</sub> O <sub>4</sub>                                                                                                    | 10         | 8        | β-BaSi <sub>2</sub> O <sub>5</sub><br>Barium silicate, Ba <sub>2</sub> SiO <sub>4</sub>                                                        | 13m<br>13m | 10<br>12 |
| Antimony(V) oxide, Sb <sub>2</sub> O <sub>5</sub>                                                                                 | 10         | 10       | Barium silicate, Ba <sub>2</sub> Si <sub>3</sub> O <sub>8</sub>                                                                                | 13m        | 13       |
| Antimony selenide, Sb <sub>2</sub> Se <sub>3</sub>                                                                                | 3m         | 7        | Barium silicate, Ba <sub>3</sub> SiO <sub>5</sub>                                                                                              | 13m        | 15       |
| Antimony(III) sulfide (stibnite),                                                                                                 | _          | _        | Barium silicate, Ba <sub>3</sub> Si <sub>5</sub> O <sub>13</sub>                                                                               | 13m        | 17       |
| Sb <sub>2</sub> S <sub>3</sub> Sb To                                                                                              | 5<br>3m    | 6        | Barium silicon fluoride, BaSiF <sub>6</sub>                                                                                                    | 4m         | 7        |
| Antimony telluride, Sb <sub>2</sub> Te <sub>3</sub> Arsenic, As                                                                   | 3m<br>3    | 8<br>6   | Barium strontium nitrate,                                                                                                                      | 12m        | 42       |
| Arsenic(III) iodide, AsI <sub>3</sub>                                                                                             | 13m        | 7        | Ba <sub>25</sub> Sr <sub>75</sub> (NO <sub>3</sub> ) <sub>2</sub><br>Barium strontium nitrate,                                                 | 12111      | 42       |
| Arsenic oxide (arsenolite),                                                                                                       |            |          | Ba <sub>.50</sub> Sr <sub>.50</sub> (NO <sub>3</sub> ) <sub>2</sub>                                                                            | 12m        | 42       |
| As <sub>2</sub> O <sub>3</sub> (cubic)                                                                                            | 1          | 51       | Barium strontium nitrate,                                                                                                                      |            |          |
| Arsenic oxide, claudetite, As <sub>2</sub> O <sub>3</sub>                                                                         | 2m         | 0        | Ba.75Sr.25(NO <sub>3</sub> )2                                                                                                                  | 12m        | 42       |
| (monoclinic)                                                                                                                      | 3m<br>4    | 9<br>7   | Barium sulfate (baryte), BaSO <sub>4</sub>                                                                                                     | 10m<br>7   | 12<br>8  |
| Barium aluminum oxide, BaAl <sub>2</sub> O <sub>4</sub>                                                                           | 5m         | 11       | Barium sulfide, BaS                                                                                                                            | 3m         | 11       |
| Barium aluminum oxide, Ba <sub>3</sub> Al <sub>2</sub> O <sub>6</sub>                                                             | 12m        | 7        | Barium titanium oxide, BaTiO <sub>3</sub>                                                                                                      | 3          | 45       |
| Barium arsenate, Ba <sub>3</sub> (AsO <sub>4</sub> ) <sub>2</sub>                                                                 | 2m         | 6        | Barium titanium silicate (fresnoite),                                                                                                          |            |          |
| Barium borate, BaB <sub>4</sub> O <sub>7</sub>                                                                                    | 4m         | 6        | Ba <sub>2</sub> TiSi <sub>2</sub> O <sub>8</sub>                                                                                               | 9m         | 14       |
| Barium borate, high form, BaB <sub>2</sub> O <sub>4</sub><br>Barium borate, BaB <sub>8</sub> O <sub>13</sub>                      | 4m<br>7m   | 4<br>10  | Barium tungsten oxide, BaWO <sub>4</sub>                                                                                                       | 7          | 9        |
| Barium bromate hydrate,                                                                                                           | 7111       | 10       | Barium tungsten oxide, Ba <sub>2</sub> WO <sub>5</sub><br>Barium zirconium oxide, BaZrO <sub>3</sub>                                           | 12m<br>5   | 14<br>8  |
| Ba(BrO <sub>3</sub> ) <sub>2</sub> •H <sub>2</sub> O                                                                              | 8m         | 19       | Beryllium, alpha, Be                                                                                                                           | 9m         | 64       |
| Barium bromide, BaBr <sub>2</sub>                                                                                                 | 10m        | 63       | Beryllium aluminum oxide                                                                                                                       |            |          |
| Barium bromide fluoride, BaBrF                                                                                                    | 10m        | 10       | (chrysoberyl), BeAl <sub>2</sub> O <sub>4</sub>                                                                                                | 9          | 10       |
| Barium bromide hydrate, BaBr <sub>2</sub> ·H <sub>2</sub> O Barium calcium nitrate,                                               | 3m         | 10       | Beryllium aluminum silicate, beryl,                                                                                                            | 9          | 12       |
| Ba <sub>.25</sub> Ca <sub>.75</sub> (NO <sub>3</sub> ) <sub>2</sub>                                                               | 12m        | 38       | Be <sub>3</sub> Al <sub>2</sub> (SiO <sub>3</sub> ) <sub>6</sub><br>Beryllium calcium oxide, Be <sub>17</sub> Ca <sub>12</sub> O <sub>29</sub> | 7m         | 13<br>89 |
| Barium calcium nitrate,                                                                                                           |            |          | Beryllium chromium oxide, BeCr <sub>2</sub> O <sub>4</sub>                                                                                     | 10         | 12       |
| Ba <sub>.50</sub> Ca <sub>.50</sub> (NO <sub>3</sub> ) <sub>2</sub>                                                               | 12m        | 38       | Beryllium cobalt, BeCo                                                                                                                         | 5m         | 62       |
| Barium calcium nitrate,                                                                                                           | 1.2        | 20       | Beryllium germanium oxide, Be <sub>2</sub> GeO <sub>4</sub>                                                                                    | 10         | 13       |
| Ba.75 <sup>Ca</sup> .25 (NO <sub>3</sub> ) <sub>2</sub><br>Barium calcium tungsten oxide,                                         | 12m        | 38       | Beryllium lanthanum oxide, Be <sub>2</sub> La <sub>2</sub> O <sub>5</sub>                                                                      | 9m         | 65       |
| Ba <sub>2</sub> CaWO <sub>6</sub>                                                                                                 | 9m         | 10       | Beryllium niobium, Be <sub>2</sub> Nb<br>Beryllium oxide (bromellite), BeO                                                                     | 7m<br>1    | 92<br>36 |
| Barium carbonate (witherite), BaCO3                                                                                               |            |          | Beryllium palladium, BePd                                                                                                                      | 5m         | 62       |
| (orthorhombic)                                                                                                                    | 2          | 54       | Beryllium silicate, phenacite,                                                                                                                 |            |          |
| Barium carbonate, BaCO <sub>3</sub> (cubic)                                                                                       | 10         | 1.7      | BeSi <sub>2</sub> O <sub>4</sub>                                                                                                               | 8          | 11       |
| at 1075 °C                                                                                                                        | 10         | 11       | Bismuth, Bi                                                                                                                                    | 3          | 20       |
| Ba (ClO <sub>4</sub> ) 2 · 3H <sub>2</sub> O · · · · · · · · · · · · · · · · · · ·                                                | 2m         | 7        | Bismuth fluoride, BiF <sub>3</sub>                                                                                                             | 1m<br>6    | 7<br>20  |
| Barium chlorate hydrate,                                                                                                          |            |          | Bismuth oxide (bismite), $\alpha$ -Bi <sub>2</sub> O <sub>3</sub>                                                                              | 3m         | 16       |
| Ba(ClO <sub>3</sub> ) <sub>2</sub> •H <sub>2</sub> O                                                                              | 8m         | 21       | Bismuth oxide bromide, BiOBr                                                                                                                   | 8          | 14       |
| Barium chloride, BaCl <sub>2</sub> , (cubic)                                                                                      | 9m         | 13       | Bismuth oxide chloride (bismoclite),                                                                                                           |            |          |
| Barium chloride, BaCl <sub>2</sub> , (orthorhombic)                                                                               | 9m         | 11       | BiOC1                                                                                                                                          | 4          | 54       |
| Barium chloride fluoride, BaClF                                                                                                   | 10m        | 11       | Bismuth oxide iodide, BiOI Bismuth phosphate, BiPO4 (monoclinic)                                                                               | 9<br>3m    | 16<br>11 |
| Barium chloride hydrate, BaCl <sub>2</sub> ·2H <sub>2</sub> O                                                                     | 12m        | 9        | Bismuth phosphate, BiPO <sub>4</sub> (trigonal)                                                                                                | 3m         | 13       |
| Barium fluoride, BaF <sub>2</sub>                                                                                                 | 1          | 70       | Bismuth sulfide (bismuthinite),                                                                                                                |            |          |
| Barium hydroxide phosphate,                                                                                                       | 11         | 1.2      | Bi <sub>2</sub> S <sub>3</sub>                                                                                                                 | 5m         | 13       |
| $Ba_5$ (OH) ( $PO_4$ ) $_3$                                                                                                       | 11m<br>10m | 12<br>66 | Bismuth telluride, BiTe                                                                                                                        | 4m         | 50       |
| Barium lead chloride, BaPbCl <sub>4</sub>                                                                                         | 11m        | 13       | Bismuth telluride (tellurobis-muthite), Bi <sub>2</sub> Te <sub>3</sub>                                                                        | 3m         | 16       |
|                                                                                                                                   |            |          | 95                                                                                                                                             |            |          |

|                                                                                                        | Vol. or<br>Sec. | Page       |                                                                                                   | Vol. or<br>Sec. | Page     |
|--------------------------------------------------------------------------------------------------------|-----------------|------------|---------------------------------------------------------------------------------------------------|-----------------|----------|
| Bismuth vanadium oxide, low form,                                                                      |                 |            | Coloium fluorida nhoonbata                                                                        |                 |          |
| BiVO <sub>4</sub> (tetragonal)                                                                         | 3m              | 14         | Calcium fluoride phosphate (fluorapatite), Ca <sub>5</sub> F(PO <sub>4</sub> ) <sub>3</sub>       | 3m              | 22       |
| Bismuth vanadium oxide, high form,                                                                     |                 |            | Calcium gallium germanium oxide,                                                                  | 2111            | 22       |
| BiVO <sub>4</sub> (monoclinic)                                                                         | 3m              | 14         | $Ca_3Ga_2(GeO_4)_3$                                                                               | 10              | 18       |
| Boron oxide, $B_2O_3$ , phase 1                                                                        | 10m             | <b>7</b> 0 | Calcium hydrogen phosphate hydrate,                                                               |                 |          |
| Cadmium, Cd                                                                                            | 3               | 10         | Ca <sub>8</sub> H <sub>2</sub> (PO <sub>4</sub> ) <sub>6</sub> •5H <sub>2</sub> O                 | 13m             | 21       |
| Cadmium ammine chloride,                                                                               | 10m             | 14         | Calcium hydroxide (portlandite),                                                                  |                 |          |
| $\operatorname{Cd}(\operatorname{NH}_3)_2\operatorname{Cl}_2$ Cadmium bromide, $\operatorname{CdBr}_2$ | 9               | 17         | Calgium i non normanium ani da                                                                    | 1               | 58       |
| Cadmium bromide chloride, CdBrCl                                                                       | 11m             | 15         | Calcium iron germanium oxide,<br>Ca <sub>3</sub> Fe <sub>2</sub> (GeO <sub>4</sub> ) <sub>3</sub> | 10              | 19       |
| Cadmium carbonate (otavite), CdCO3                                                                     | 7               | 11         | Calcium iron silicate (andradite),                                                                | 10              | 10       |
| Cadmium chlorate hydrate,                                                                              |                 |            | Ca <sub>3</sub> Fe <sub>2</sub> Si <sub>3</sub> O <sub>12</sub>                                   | 9               | 22       |
| Cd(ClO <sub>4</sub> ) <sub>2</sub> •6H <sub>2</sub> O                                                  | 3m              | 19         | Calcium iron silicate hydroxide, jul-                                                             | -               |          |
| Cadmium chloride, CdCl <sub>2</sub>                                                                    | 9               | 18         | goldite, $Ca_2Fe_3Si_3O_{10}(OH,O)_2(OH)_2$                                                       | 10m             | 72       |
| Cadmium chromium oxide, CdCr <sub>2</sub> O <sub>4</sub>                                               | 5m              | 16         | Calcium lead nitrate,                                                                             |                 |          |
| Cadmium cyanide, Cd(CN) <sub>2</sub><br>Cadmium fluoride, CdF <sub>2</sub>                             | 2m<br>10m       | 8<br>15    | Calaium laad nitrata                                                                              | 12m             | 44       |
| Cadmium iron oxide, CdFe <sub>2</sub> O <sub>4</sub>                                                   | 9m              | 16         | Calcium lead nitrate,                                                                             | 12m             | 44       |
| Cadmium manganese oxide, CdMn <sub>2</sub> O <sub>4</sub>                                              | 10m             | 16         | Ca <sub>67</sub> Pb <sub>33</sub> (NO <sub>3</sub> ) <sub>2</sub><br>Calcium magnesium silicate   | 12111           | 44       |
| Cadmium molybdenum oxide, CdMoO4                                                                       | 6               | 21         | (diopside), CaMg(SiO <sub>3</sub> ) <sub>2</sub>                                                  | 5m              | 17       |
| Cadmium nitrate hydrate,                                                                               |                 |            | Calcium molybdenum oxide                                                                          |                 |          |
| $Cd(NO_3)_2 \cdot 4H_2O$                                                                               | 7m              | 93         | (powellite), CaMoO <sub>4</sub>                                                                   | 6               | 22       |
| Cadmium oxide, CdO                                                                                     | 2               | 27         | Calcium nitrate, Ca(NO <sub>3</sub> ) <sub>2</sub>                                                | 7               | 14       |
| Cadmium oxide, CdO (ref. standard)                                                                     | 8m              | 2          | Calcium oxide, CaO                                                                                | 1               | 43       |
| Cadmium selenide, (cadmoselite),                                                                       | 7               |            | Calcium oxide phosphate, Ca <sub>4</sub> O(PO <sub>4</sub> ) <sub>2</sub>                         | 12m             | 17       |
| CdSe (hexagonal)<br>Cadmium silicate, Cd <sub>2</sub> SiO <sub>4</sub>                                 | 7               | 12         | Calcium phosphate, $\beta$ -Ca <sub>2</sub> P <sub>2</sub> O <sub>7</sub>                         | 7m              | 95       |
| Cadmium silicate, Cd <sub>2</sub> SiO <sub>4</sub>                                                     | 13m<br>13m      | 19<br>20   | Calcium platinum oxide, Ca <sub>4</sub> PtO <sub>6</sub>                                          | 10m             | 18       |
| Cadmium sulfate, CdSO <sub>4</sub>                                                                     | 3m              | 20         | Calcium selenide, CaSe                                                                            | 5m              | 64       |
| Cadmium sulfate hydrate,                                                                               | -               |            | Ca <sub>.33</sub> Sr <sub>.67</sub> (NO <sub>3</sub> ) <sub>2</sub>                               | 12m             | 46       |
| 3CdSO <sub>4</sub> • 8H <sub>2</sub> O                                                                 | 6m              | 8          | Calcium strontium nitrate,                                                                        |                 | 40       |
| Cadmium sulfate hydrate, CdSO <sub>4</sub> •H <sub>2</sub> O                                           | 6m              | 10         | Ca <sub>.67</sub> Sr <sub>.33</sub> (NO <sub>3</sub> ) <sub>2</sub>                               | 12m             | 46       |
| Cadmium sulfide (greenockite), CdS                                                                     | 4               | 15         | Calcium sulfate (anhydrite), CaSOu                                                                | 4               | 65       |
| Cadmium telluride, CdTe                                                                                | 3m              | 21         | Calcium sulfide (oldhamite), CaS                                                                  | 7               | 15       |
| Cadmium tungsten oxide, CdWO <sub>4</sub>                                                              | 2m              | 8          | Calcium telluride, CaTe                                                                           | 4m              | 50       |
| Calcium, Ca                                                                                            | 9m              | 68         | Calcium titanium oxide                                                                            |                 |          |
| Calcium aluminum germanium oxide, $Ca_3Al_2(GeO_4)_3$                                                  | 10              | 15         | (perovskite), CaTiO <sub>3</sub>                                                                  | 9m              | 17<br>19 |
| Calcium aluminum hydroxide,                                                                            | 10              | 13         | Calcium tungsten oxide, Ca <sub>3</sub> WO <sub>6</sub>                                           | 9m              | 19       |
| Ca <sub>3</sub> Al <sub>2</sub> (OH) <sub>12</sub>                                                     | 11m             | 16         | Calcium tungsten oxide, scheelite, CaWO <sub>4</sub>                                              | 6               | 23       |
| Calcium aluminum oxide, Ca <sub>3</sub> Al <sub>2</sub> O <sub>6</sub>                                 | 5               | 10         | Carbon, diamond, C                                                                                | 2               | 5        |
| Calcium aluminum oxide, (mayenite),                                                                    |                 |            | Cerium antimony, CeSb                                                                             | 4m              | 40       |
| Ca <sub>12</sub> Al <sub>14</sub> O <sub>33</sub>                                                      | 9               | 20         | Cerium arsenate, CeAsO <sub>4</sub>                                                               | 4m              | 8        |
| Calcium aluminum sulfate hydrate                                                                       |                 |            | Cerium arsenide, CeAs                                                                             | 4m              | 51       |
| (ettringite), Ca <sub>6</sub> Al <sub>2</sub> S <sub>3</sub> O <sub>18</sub> ·31H <sub>2</sub> O       | 17              | 3          | Cerium bismuth, CeBi                                                                              | 4m              | 46       |
| Calcium bromide, CaBr <sub>2</sub><br>Calcium bromide hydrate, CaBr <sub>2</sub> ·6H <sub>2</sub> O    | 11m<br>8        | 70<br>15   | Cerium cadmium, CeCd                                                                              | 5m              | 63       |
| Calcium carbonate (aragonite),                                                                         | 0               | 13         | Cerium (III) chloride, CeCl <sub>3</sub>                                                          | 1m              | 8<br>50  |
| CaCO <sub>3</sub> (orthorhombic)                                                                       | 3               | 53         | Cerium cobalt, CeCo <sub>2</sub><br>Cerium cobalt, Ce <sub>24</sub> Co <sub>11</sub>              | 13m<br>13m      | 51       |
| Calcium carbonate (calcite),                                                                           |                 |            | Cerium copper, CeCu <sub>6</sub>                                                                  | 7m              | 99       |
| CaCO <sub>3</sub> (hexagonal)                                                                          | 2               | 51         | Cerium(III) fluoride, CeF <sub>3</sub>                                                            | 8               | 17       |
| Calcium chloride (hydrophilite),                                                                       |                 |            | Cerium gallium, CeGa2                                                                             | 13m             | 54       |
| CaCl <sub>2</sub>                                                                                      | 11m             | 18         | Cerium magnesium, CeMg3                                                                           | 13m             | 56       |
| Calcium chloride fluoride, CaClF                                                                       | 10m             | 17         | Cerium nickel, CeNi <sub>2</sub>                                                                  | 13m             | 58       |
| Calcium chloride hydrate,                                                                              | 11              | 72         | Cerium niobium titanium oxide                                                                     | _               | 2.4      |
| CaCl <sub>2</sub> •4H <sub>2</sub> O<br>Calcium chloride hydrate                                       | 11m             | 73         | (aeschynite), CeNbTiO <sub>6</sub>                                                                | 3m              | 24       |
| (antarcticite), CaCl <sub>2</sub> ·6H <sub>2</sub> O                                                   | 12m             | 16         | Cerium nitride, CeN                                                                               | 4m<br>1         | 51<br>56 |
| Calcium chromium germanium oxide,                                                                      |                 |            | Cerium phosphide, CeP                                                                             | 4m              | 52       |
| Ca <sub>3</sub> Cr <sub>2</sub> (GeO <sub>4</sub> ) <sub>3</sub>                                       | 10              | 16         | Cerium thallium, CeTl                                                                             | 13m             | 59       |
| Calcium chromium oxide, CaCrO4                                                                         | 7               | 13         | Cerium thallium, CeTl3                                                                            | 13m             | 60       |
| Calcium chromium silicate (uvarovite                                                                   | ,               |            | Cerium thallium, Ce <sub>3</sub> Tl                                                               | 13m             | 61       |
| Ca <sub>3</sub> Cr <sub>2</sub> (SiO <sub>4</sub> ) <sub>3</sub>                                       | 10              | 17         | Cerium(III) vanadium oxide, CeVO <sub>4</sub>                                                     | lm              | 9        |
| Calcium fluoride (fluorite), CaF <sub>2</sub>                                                          | 1               | 69         | Cerium zinc, CeZn                                                                                 | 5m              | 65       |

|                                                                                                                                                                                | Vol. or     |          |                                                                                                         | Vol. or    |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|---------------------------------------------------------------------------------------------------------|------------|----------|
|                                                                                                                                                                                | Sec.        | Page     |                                                                                                         | Sec.       | Page     |
| Cesium aluminum sulfate hydrate,                                                                                                                                               |             |          | Cesium selenium bromide, Cs <sub>2</sub> SeBr <sub>6</sub>                                              | 8          | 20       |
| CsA1(SO <sub>4</sub> ) <sub>2</sub> •12H <sub>2</sub> O                                                                                                                        | 6           | 25       | Cesium silicon fluoride, Cs <sub>2</sub> SiF <sub>6</sub>                                               | 5          | 19       |
| Cesium antimony fluoride, CsSbF6                                                                                                                                               |             | 9        | Cesium strontium chloride, CsSrCl <sub>3</sub>                                                          | 6m         | 13       |
| Cesium beryllium fluoride, CsBeF3                                                                                                                                              |             | 69       | Cesium sulfate, Cs <sub>2</sub> SO <sub>4</sub>                                                         | 7          | 17       |
| Cesium boron fluoride, CsBF4                                                                                                                                                   | 8           | 22       | Cesium tellurium bromide, Cs <sub>2</sub> TeBr <sub>6</sub>                                             | 9          | 24       |
| Cesium bromate, CsBrO <sub>3</sub>                                                                                                                                             | . 8         | 18       | Cesium tin chloride, Cs <sub>2</sub> SnCl <sub>6</sub>                                                  | 5          | 16       |
| Cesium bromide, CsBr                                                                                                                                                           | 3           | 49       | Cesium vanadium sulfate hydrate,                                                                        | 1          | 11       |
| Cesium cadmium bromide, CsCdBr <sub>3</sub>                                                                                                                                    | 10          | 20       | CsV(SO <sub>4</sub> ) <sub>2</sub> ·12H <sub>2</sub> O<br>Cesium zinc sulfate hydrate,                  | Ιm         | 11       |
| (hexagonal)                                                                                                                                                                    | 10m         | 20       | Cs <sub>2</sub> Zn(SO <sub>4</sub> ) <sub>2</sub> •6H <sub>2</sub> O                                    | 7m         | 25       |
| Cesium cadmium chloride, CsCdCl <sub>3</sub>                                                                                                                                   | 5           | 19       | Chromium, Cr                                                                                            | 5          | 20       |
| (hexagonal)                                                                                                                                                                    |             | 21       | Chromium chloride, CrCl <sub>2</sub>                                                                    | 11m        | 77       |
| Cesium calcium chloride, CsCaCl <sub>3</sub> Cesium calcium fluoride, CsCaF <sub>3</sub>                                                                                       |             | 25       | Chromium fluoride, Cr <sub>2</sub> F <sub>5</sub>                                                       | 7m         | 108      |
| Cesium calcium sulfate,                                                                                                                                                        | O.I.I       |          | Chromium fluoride, CrF <sub>2</sub>                                                                     | 10m        | 81       |
| Cs <sub>2</sub> Ca <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub>                                                                                                                | 7m          | 12       | Chromium(III) fluoride hydrate,                                                                         |            |          |
| Cesium cerium chloride, Cs <sub>2</sub> CeCl <sub>6</sub>                                                                                                                      | _           | 101      | CrF <sub>3</sub> •3H <sub>2</sub> O                                                                     | 5m         | 25       |
| Cesium chlorate, CsClO <sub>3</sub>                                                                                                                                            |             | 20       | Chromium iridium 3:1, Cr <sub>3</sub> Ir                                                                | 6m         | 14       |
| Cesium chlorate, CsClO4,                                                                                                                                                       |             |          | Chromium(III) oxide, Cr <sub>2</sub> O <sub>3</sub>                                                     | 5          | 22       |
| (orthorhombic)                                                                                                                                                                 | 1m          | 10       | Chromium phosphate, α-CrPO <sub>4</sub>                                                                 | 2m         | 12       |
| Cesium chloride, CsCl                                                                                                                                                          |             | 44       | Chromium phosphate, β-CrPO <sub>4</sub>                                                                 | 9          | 26       |
| Cesium chromium oxide, Cs <sub>2</sub> CrO <sub>4</sub>                                                                                                                        | . 3m        | 25       | Chromium rhodium 3:1, Cr <sub>3</sub> Rh                                                                | 6m         | 15<br>29 |
| Cesium chromium sulfate hydrate,                                                                                                                                               |             | 21       | Chromium silicide, Cr <sub>3</sub> Si                                                                   | 6<br>4m    | 10       |
| Cscr(SO <sub>4</sub> ) <sub>2</sub> ·12H <sub>2</sub> O                                                                                                                        | _           | 21       | Cobalt, Co (cubic)                                                                                      | 9          | 27       |
| Cesium cobalt (II) chloride, CsCoCl <sub>3</sub>                                                                                                                               | 6m<br>. 11m | 11<br>19 | Cobalt ammine iodide, $Co(NH_3)_6I_3$                                                                   | 10m        | 83       |
| Cesium cobalt chloride, Cs <sub>2</sub> CoCl <sub>4</sub><br>Cesium copper(II) chloride, CsCuCl <sub>3</sub>                                                                   | 5m          | 22       | Cobalt antimony oxide, CoSb <sub>2</sub> O <sub>6</sub>                                                 | 5m         | 26       |
| Cesium copper chloride, Cs <sub>2</sub> CuCl <sub>4</sub>                                                                                                                      |             | 20       | Cobalt arsenide, CoAs <sub>2</sub>                                                                      | 4m         | 10       |
| Cesium copper sulfate hydrate,                                                                                                                                                 |             |          | Cobalt arsenide (skutterudite),                                                                         |            |          |
| Cs <sub>2</sub> Cu(SO <sub>4</sub> ) <sub>2</sub> •6H <sub>2</sub> O                                                                                                           | . 7m        | 14       | CoAs <sub>3</sub>                                                                                       | 10         | 21       |
| Cesium fluoride, CsF                                                                                                                                                           |             | 26       | Cobalt borate, Co <sub>3</sub> (BO <sub>3</sub> ) <sub>2</sub>                                          | 12m        | 20       |
| Cesium gallium sulfate hydrate,                                                                                                                                                |             |          | Cobalt bromide hydrate, CoBr <sub>2</sub> ·6H <sub>2</sub> O                                            | 12m        | 21       |
| CsGa(SO <sub>4</sub> ) <sub>2</sub> •12H <sub>2</sub> O                                                                                                                        | . 8         | 23       | Cobalt(II) carbonate (sphero-                                                                           |            |          |
| Cesium germanium fluoride, Cs <sub>2</sub> GeF <sub>6</sub>                                                                                                                    | 5           | 17       | cobaltite), CoCO <sub>3</sub>                                                                           | 10         | 24       |
| Cesium iodide, CsI                                                                                                                                                             |             | 47       | Cobalt chlorate hydrate,                                                                                | 2m         | 20       |
| Cesium iodine bromide, CsI <sub>2</sub> Br                                                                                                                                     |             | 103      | Co $(C10_{4})_{2} \cdot 6H_{2}O$                                                                        | 3m<br>11m  | 28<br>22 |
| Cesium iron sulfata hydrata                                                                                                                                                    | 3           | 50       | Cobalt chloride hydrate, CoCl <sub>2</sub> ·2H <sub>2</sub> O                                           | 11m        | 23       |
| Cesium iron sulfate hydrate,<br>$Cs_2Fe(SO_4)_2 \cdot 6H_2O \cdot \cdot$ | 7m          | 16       | Cobalt chromium oxide, CoCr <sub>2</sub> O <sub>4</sub>                                                 | 9m         | 21       |
| Cesium iron sulfate hydrate,                                                                                                                                                   | 7111        | 10       | Cobalt dysprosium, Co <sub>2</sub> Dy                                                                   | 13m        | 63       |
| CsFe(SO <sub>4</sub> ) <sub>2</sub> •12H <sub>2</sub> O                                                                                                                        | . 6         | 28       | Cobalt erbium, Co <sub>2</sub> Er                                                                       | 13m        | 64       |
| Cesium lead(II) chloride, CsPbCl <sub>3</sub>                                                                                                                                  |             |          | Cobalt erbium, Co <sub>7</sub> Er <sub>2</sub>                                                          | 13m        | 65       |
| (tetragonal)                                                                                                                                                                   | . 5m        | 24       | Cobalt fluoride, CoF <sub>2</sub>                                                                       | 10m        | 85       |
| Cesium lead fluoride, CsPbF3                                                                                                                                                   | . 8m        | 26       | Cobalt fluoride hydrate, CoF <sub>2</sub> •4H <sub>2</sub> O                                            | 11m        | 24       |
| Cesium lithium cobalt cyanide,                                                                                                                                                 |             |          | Cobalt gadolinium, CoGd <sub>3</sub>                                                                    | 13m        | 68       |
| CsLiCo(CN) <sub>6</sub>                                                                                                                                                        |             | 79       | Cobalt gadolinium, Co <sub>2</sub> Gd                                                                   | 13m        | 71<br>72 |
| Cesium lithium fluoride, CsLiF <sub>2</sub>                                                                                                                                    | . 7m        | 105      | Cobalt gadolinium, Co <sub>7</sub> Gd <sub>2</sub>                                                      | 13m        | 75       |
| Cesium magnesium chromium oxide,                                                                                                                                               | 0           | 27       | Cobalt gallium manganese, Co <sub>2</sub> GaMn                                                          | 13m<br>10  | 27       |
| Cs <sub>2</sub> Mg <sub>2</sub> (CrO <sub>4</sub> ) <sub>3</sub>                                                                                                               | . 8m        | 27       | Cobalt gallium oxide, CoGa <sub>2</sub> O <sub>4</sub><br>Cobalt gallium tantalum, Co <sub>2</sub> GaTa | 13m        | 76       |
| Cesium magnesium chromium oxide hydrate, Cs <sub>2</sub> Mg(CrO <sub>4</sub> ) <sub>2</sub> •6H <sub>2</sub> O                                                                 | . 8m        | 29       | Cobalt gallium titanium, Co <sub>2</sub> GaTi                                                           | 13m        | 77       |
| Cesium magnesium sulfate hydrate,                                                                                                                                              | . OIII      | 23       | Cobalt gallium vanadium, Co <sub>2</sub> GaV                                                            | 13m        | 78       |
| $Cs_2Mg(SO_4)_2 \cdot 6H_2O$                                                                                                                                                   | . 7m        | 18       | Cobalt germanium manganese, Co <sub>2</sub> GeMn.                                                       | 13m        | 79       |
| Cesium manganese fluoride, CsMnF <sub>3</sub>                                                                                                                                  |             | 21       | Cobalt germanium oxide, Co <sub>2</sub> GeO <sub>4</sub>                                                | 10         | 27       |
| Cesium manganese sulfate hydrate,                                                                                                                                              |             |          | Cobalt germanium titanium, Co <sub>2</sub> GeTi                                                         | 13m        | 80       |
| $Cs_2Mn(SO_4)_2 \cdot 6H_2O$                                                                                                                                                   | . 7m        | 20       | Cobalt indium, CoIn <sub>3</sub>                                                                        | 13m        | 81       |
| Cesium mercury chloride, CsHgCl3                                                                                                                                               | . 7m        | 22       | Cobalt iodide, CoI <sub>2</sub>                                                                         | 4m         | 52       |
| Cesium nickel(II) chloride, CsNiCl <sub>3</sub>                                                                                                                                | бm          | 12       | Cobalt iron arsenide (safflorite),                                                                      | 1.0        | 0.0      |
| Cesium nickel sulfate hydrate,                                                                                                                                                 | _           | 0.0      | Cohelt iron oxide CoFe-O                                                                                | 10<br>9m   | 28       |
| Cs <sub>2</sub> Ni(SO <sub>4</sub> ) <sub>2</sub> •6H <sub>2</sub> O                                                                                                           |             | 23       | Cobalt lanthanum Colar                                                                                  | 9m<br>13m  | 22<br>83 |
| Cesium osmium(IV) bromide Cs-OsBr-                                                                                                                                             | _           | 25<br>10 | Cobalt lanthanum, CoLa3                                                                                 | 13m<br>13m | 86       |
| Cesium osmium(IV) bromide, Cs <sub>2</sub> OsBr <sub>6</sub><br>Cesium osmium chloride, Cs <sub>2</sub> OsCl <sub>6</sub>                                                      | 2m<br>. 2m  | 11       | Cobalt mercury thiocyanate,                                                                             | 13111      |          |
| Cesium platinum bromide, Cs <sub>2</sub> Osc <sub>16</sub>                                                                                                                     |             | 19       | Co[Hg(CNS) <sub>4</sub> ]                                                                               | 2m         | 13       |
| Cesium platinum chloride, Cs <sub>2</sub> PtCl <sub>6</sub>                                                                                                                    | 5           | 14       | Cobalt neodymium, Co <sub>2</sub> Nd                                                                    | 13m        | 87       |
| Cesium platinum fluoride, Cs2PtF6                                                                                                                                              |             | 27       | Cobalt nickel tin, Co.75Ni.75Sn.75                                                                      | 13m        | 88       |

|                                                                                                | Vol. or   |          |                                                                                          | Vol. or   |          |
|------------------------------------------------------------------------------------------------|-----------|----------|------------------------------------------------------------------------------------------|-----------|----------|
|                                                                                                | Sec.      | Page     |                                                                                          | Sec.      | Page     |
| Cobalt nitrate hydrate,                                                                        |           |          | Erbium vanadium oxide, ErVO <sub>4</sub>                                                 | 5m        | 29       |
| $\alpha$ -Co(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O                                 | 12m       | 22       | Europium arsenate, EuAsO4                                                                | 3m        | 32       |
| Cobalt(II) oxide, CoO                                                                          | 9         | 28       | Europium(III) chloride, EuCl <sub>3</sub>                                                | lm        | 13       |
| Cobalt(II,III) oxide, Co <sub>3</sub> O <sub>4</sub>                                           | 9         | 29<br>23 | Europium gallium oxide,                                                                  |           |          |
| Cobalt comprise Co Sm                                                                          | 13m       | 90       | Eu <sub>3</sub> Ga <sub>5</sub> O <sub>12</sub>                                          | 2m        | 17       |
| Cobalt samarium, Co <sub>5</sub> Sm                                                            | 13m       | 50       | Europium nitride, EuN                                                                    | 4m        | 56       |
| (orthorhombic)                                                                                 | 4m        | 11       | Europium oxide, EuO                                                                      | 4m        | 56       |
| Cobalt silicon fluoride hydrate,                                                               |           |          | Europium oxychloride, EuOCl                                                              | lm<br>llm | 13<br>26 |
| CoSiF <sub>6</sub> ·6H <sub>2</sub> O                                                          | 3m        | 27       | Europium phosphate, EuPO <sub>4</sub><br>Europium(III) vanadium oxide, EuVO <sub>4</sub> | 4m        | 16       |
| Cobalt sulfate, β-CoSO <sub>4</sub>                                                            | 2m        | 14       | Gadolinium antimony, GdSb                                                                | 4m        | 42       |
| Cobalt tin, Co <sub>3</sub> Sn <sub>2</sub>                                                    | 13m       | 92       | Gadolinium arsenate, GdAsO4                                                              | 4m        | 17       |
| Cobalt titanium oxide, CoTiO <sub>3</sub>                                                      | 4m        | 13       | Gadolinium arsenide, GdAs                                                                | 4m        | 57       |
| Cobalt tungsten oxide, CoWO4                                                                   | 4m        | 13       | Gadolinium chloride hydrate,                                                             |           |          |
| Copper, Cu                                                                                     | 1         | 15       | GdCl <sub>3</sub> •6H <sub>2</sub> O                                                     | 7m        | 118      |
| Copper aluminum, Cu <sub>9</sub> Al <sub>4</sub>                                               | 11m       | 79       | Gadolinium fluoride, GdF <sub>3</sub>                                                    | 1m        | 14       |
| Copper ammine selenate,                                                                        | 1 Om      | 07       | Gadolinium gallium oxide,                                                                |           |          |
| Cu(NH <sub>3</sub> ) <sub>4</sub> SeO <sub>4</sub>                                             | 10m       | 87       | Gd <sub>3</sub> Ga <sub>5</sub> O <sub>12</sub>                                          | 2m        | 18       |
| Cu(NH <sub>3</sub> ) <sub>4</sub> SO <sub>4</sub> ·H <sub>2</sub> O                            | 10m       | 90       | Gadolinium indium, GdIn                                                                  | 5m        | 67       |
| Copper antimony oxide, CuSb <sub>2</sub> O <sub>6</sub>                                        | 5m        | 27       | Gadolinium nitride, GdN                                                                  | 4m        | 57<br>16 |
| Copper(I) bromide, CuBr                                                                        | 4         | 36       | Gadolinium oxide, Gd <sub>2</sub> O <sub>3</sub>                                         | lm<br>lm  | 17       |
| Copper cadmium, Cu <sub>5</sub> Cd <sub>8</sub>                                                | 11m       | 81       | Gadolinium silver, GdAg                                                                  | 6m        | 87       |
| Copper(I) chloride (nantokite),                                                                |           |          | Gadolinium titanium oxide, Gd <sub>2</sub> TiO <sub>5</sub>                              | 8m        | 32       |
| CuCl                                                                                           | 4         | 35       | Gadolinium vanadium oxide, GdVO4                                                         | 5m        | 30       |
| Copper fluoride hydrate, CuF <sub>2</sub> ·2H <sub>2</sub> O                                   | 11m       | 25       | Gallium, Ga                                                                              | 2         | 9        |
| Copper hydrogen phosphite hydrate,                                                             |           |          | Gallium antimony, GaSb                                                                   | 6         | 30       |
| CuHPO <sub>3</sub> ·2H <sub>2</sub> O                                                          | 11m       | 83       | Gallium arsenide, GaAs                                                                   | 3m        | 33       |
| Copper hydroxide carbonate,                                                                    | 10        | 20       | Gallium magnesium, Ga <sub>2</sub> Mg                                                    | 12m       | 48       |
| azurite, Cu <sub>3</sub> (OH) <sub>2</sub> (CO <sub>3</sub> ) <sub>2</sub>                     | 10        | 30       | Gallium magnesium, Ga <sub>5</sub> Mg <sub>2</sub>                                       | 12m       | 51       |
| Copper hydroxide carbonate (malachite), Cu <sub>2</sub> (OH) <sub>2</sub> CO <sub>3</sub>      | 10        | 31       | Gallium oxide, $\alpha$ -Ga <sub>2</sub> O <sub>3</sub>                                  | 4         | 25       |
| Copper imidazole nitrate,                                                                      | 10        | 31       | Gallium phosphate (α-quartz type),                                                       | 8         | 27       |
| Cu(C <sub>3</sub> H <sub>4</sub> N <sub>2</sub> ) <sub>4</sub> (NO <sub>3</sub> ) <sub>2</sub> | 13m       | 24       | GaPO <sub>4</sub><br>Gallium phosphate hydrate,                                          | 0         | 21       |
| Copper(I) iodide (marchite), CuI                                                               | 4         | 38       | GaPO <sub>4</sub> • 2H <sub>2</sub> O                                                    | 8m        | 34       |
| Copper(I) oxide (cuprite), Cu <sub>2</sub> O                                                   | 2         | 23       | Germanium, Ge                                                                            | 1         | 18       |
| Copper(II) oxide (tenorite), CuO                                                               | 1         | 49       | Germanium iodide, GeI <sub>2</sub>                                                       | 4m        | 58       |
| Copper phosphate, $\alpha$ -Cu <sub>2</sub> P <sub>2</sub> O <sub>7</sub>                      | 7m        | 113      | Germanium(IV) iodide, GeI4                                                               | 5         | 25       |
| Copper sulfate (chalcocyanite),                                                                |           |          | Germanium oxide, GeO <sub>2</sub> (hexagonal)                                            |           |          |
| Cuso <sub>4</sub>                                                                              | 3m        | 29       | (low form)                                                                               | 1         | 51       |
| Copper (II) sulfide (covellite), Cus                                                           | 4<br>10m  | 13<br>93 | Germanium oxide, GeO <sub>2</sub>                                                        |           |          |
| Copper uranium oxide, CuUO <sub>4</sub> Dysprosium antimony, DySb                              | 10m<br>4m | 41       | (tetragonal) (high form)                                                                 | 8         | 28       |
| Dysprosium arsenate, DyAsO4                                                                    | 3m        | 30       | Gold antimony 1.2 (aurostibite)                                                          | 1         | 33       |
| Dysprosium arsenide, DyAs                                                                      | 4m        | 53       | Gold antimony 1:2 (aurostibite), AuSb <sub>2</sub>                                       | 7         | 18       |
| Dysprosium bismuth, DyBi                                                                       | 4m        | 47       | Gold(I) cyanide, AuCN                                                                    | 10        | 33       |
| Dysprosium gallium oxide,                                                                      |           |          | Gold potassium cyanide, AuK(CN)2                                                         | 8m        | 36       |
| Dy <sub>3</sub> Ga <sub>5</sub> O <sub>12</sub>                                                | 2m        | 15       | Gold tin 1:1, AuSn                                                                       | 7         | 19       |
| Dysprosium gold, DyAu                                                                          | 5m        | 66       | Gold titanium 1:3, AuTi <sub>3</sub>                                                     | 6m        | 17       |
| Dysprosium nitride, DyN                                                                        | 4m        | 53       | Hafnium, Hf                                                                              | 3         | 18       |
| Dysprosium oxide, Dy <sub>2</sub> O <sub>3</sub>                                               | 9         | 30       | Holmium arsenate, HoAsO <sub>4</sub>                                                     | 3m        | 34       |
| Dysprosium silver, DyAg                                                                        | 5m        | 66<br>54 | Holmium bismuth, HoBi                                                                    | 4m        | 48       |
| Dysprosium vanadium ovide DyVO                                                                 | 4m<br>4m  | 54<br>15 | Holmium fluoride, HoF <sub>3</sub>                                                       | 10m       | 23       |
| Dysprosium vanadium oxide, DyVO <sub>4</sub><br>Erbium antimony, ErSb                          | 4m        | 41       | Holmium gold, HoAu                                                                       | 5m        | 68<br>50 |
| Erbium arsenate, ErAsO <sub>4</sub>                                                            | 3m        | 31       | Holmium nitride, HoN                                                                     | 4m<br>9   | 58<br>32 |
| Erbium arsenide, ErAs                                                                          | 4m        | 54       | Holmium selenide, HoSe                                                                   | 4m        | 59       |
| Erbium bismuth, ErBi                                                                           | 4m        | 47       | Holmium silver, HoAg                                                                     | 5m        | 68       |
| Erbium gallium oxide, Er <sub>3</sub> Ga <sub>5</sub> O <sub>12</sub>                          | 1m        | 12       | Holmium vanadium oxide, HoVO4                                                            | 4m        | 18       |
| Erbium manganese oxide, ErMnO <sub>3</sub>                                                     | 2m        | 16       | Hydrogen amidosulfate, H <sub>2</sub> NSO <sub>3</sub> H                                 | 7         | 54       |
| Erbium nitride, ErN                                                                            | 4m        | 55       | Hydrogen arsenate, H <sub>5</sub> As <sub>3</sub> O <sub>10</sub>                        | 7m        | 84       |
| Erbium oxide, Er <sub>2</sub> O <sub>3</sub>                                                   | 8         | 25       | Hydrogen borate, β-HBO <sub>2</sub>                                                      | 9m        | 71       |
| Erbium phosphate, ErPO <sub>4</sub>                                                            | 9         | 31       | Hydrogen borate (metaborite),                                                            |           |          |
| Erbium silver, ErAg                                                                            | 5m<br>4m  | 67<br>55 | HBO <sub>2</sub> (cubic)                                                                 | 4m        | 27       |
| Erbium telluride, ErTe                                                                         | 4m        | 55       | Hydrogen iodate, HIO <sub>3</sub>                                                        | 5         | 28       |

|                                                                                 | Vol. or<br>Sec. | Page     |                                                                                                                               | Vol. or<br>Sec. | Page      |
|---------------------------------------------------------------------------------|-----------------|----------|-------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|
| Hydrogen iodate, HI <sub>3</sub> O <sub>8</sub>                                 | . 8m            | 104      | Lead oxide (litharge), PbO (red,                                                                                              |                 |           |
| Hydrogen phosphate hydrate,                                                     | ,               |          | tetragonal)                                                                                                                   | 2               | 30        |
| Н <sub>3</sub> РО <sub>4</sub> • ½Н <sub>2</sub> О                              | 12m             | 56       | Lead oxide (massicot), PbO (yellow,                                                                                           |                 |           |
| Hydrogen tellurate, H <sub>6</sub> TeO <sub>6</sub>                             | 12m             | 34       | orthorhombic)                                                                                                                 | 2               | 32        |
| Indium, In                                                                      | 3               | 12       | Lead(II,III) oxide (minium), Pb <sub>3</sub> O <sub>4</sub>                                                                   | 8               | 32        |
| Indium antimony, InSb Indium arsenide, InAs                                     | 4<br>3m         | 73<br>35 | Lead oxide sulfate, Pb <sub>5</sub> O <sub>4</sub> SO <sub>4</sub>                                                            | 10m             | 27        |
| Indium oxide, In <sub>2</sub> O <sub>3</sub>                                    | 5               | 26       | Lead oxybromide, Pb <sub>3</sub> O <sub>2</sub> Br <sub>2</sub><br>Lead selenide (clausthalite), PbSe                         | 5m<br>5         | 32<br>38  |
| Indium phosphate, InPO <sub>4</sub>                                             | 8               | 29       | Lead strontium nitrate,                                                                                                       | 3               | 30        |
| Indium sulfide, In <sub>2</sub> S <sub>3</sub>                                  | 11m             | 30       | Pb <sub>33</sub> Sr <sub>67</sub> (NO <sub>3</sub> ) <sub>2</sub>                                                             | 12m             | 53        |
| Iodine, I <sub>2</sub>                                                          | 3               | 16       | Lead strontium nitrate,                                                                                                       |                 |           |
| Iridium, Ir                                                                     | 4               | 9        | Pb <sub>.67</sub> Sr <sub>.33</sub> (NO <sub>3</sub> ) <sub>2</sub>                                                           | 12m             | 53        |
| Iridium oxide, IrO <sub>2</sub>                                                 | 4m              | 19       | Lead sulfate (anglesite), PbSO4                                                                                               | 3               | 67        |
| Iridium titanium 1:3, $IrTi_3$<br>Iron, $\alpha$ -Fe                            | 6m<br>4         | 20<br>3  | Lead sulfide (galena), PbS                                                                                                    | 2               | 18        |
| Iron arsenide, FeAs                                                             | 1m              | 19       | Lead tin oxide, Pb <sub>2</sub> SnO <sub>4</sub><br>Lead titanium oxide, PbTiO <sub>3</sub>                                   | 10m<br>5        | 29<br>39  |
| Iron arsenide (loellingite), FeAs <sub>2</sub>                                  | 10              | 34       | Lead tungsten oxide (stolzite),                                                                                               | 5               | 33        |
| Iron bromide, FeBr <sub>2</sub>                                                 | 4m              | 59       | PbWO <sub>4</sub>                                                                                                             | 5m              | 34        |
| Iron chloride hydrate, FeCl <sub>2</sub> •2H <sub>2</sub> O                     | 11m             | 32       | Lead uranium oxide, Pb <sub>3</sub> UO <sub>6</sub>                                                                           | 8m              | 109       |
| Iron fluoride hydrate, FeF <sub>2</sub> ·4H <sub>2</sub> O                      | 11m             | 90       | Lithium aluminum, LigAl4                                                                                                      | 10m             | 98        |
| Iron hydroxide sulfate hydrate,                                                 |                 |          | Lithium aluminum fluoride,                                                                                                    |                 |           |
| butlerite, Fe (OH) SO <sub>4</sub> • 2H <sub>2</sub> O                          | 10m             | 95       | $\alpha$ -Li <sub>3</sub> AlF <sub>6</sub>                                                                                    | 8m              | 111       |
| Iron iodide, FeI <sub>2</sub>                                                   | 4m              | 60       | Lithium arsenate, Li <sub>3</sub> AsO <sub>4</sub>                                                                            | 2m              | 19        |
| Iron(II,III) oxide (magnetite),<br>Fe <sub>3</sub> O <sub>4</sub>               | 5m              | 31       | Lithium azide, LiN <sub>3</sub>                                                                                               | 8m              | 113       |
| Iron sulfate hydrate (melanterite),                                             | Jan .           | 31       | Lithium barium fluoride, LiBaF <sub>3</sub>                                                                                   | 5m<br>7m        | 35<br>126 |
| FeSO <sub>4</sub> • 7H <sub>2</sub> O                                           | 8m              | 38       | Lithium beryllium fluoride, Li <sub>2</sub> BeF <sub>4</sub><br>Lithium borate, Li <sub>2</sub> B <sub>4</sub> O <sub>7</sub> | 8m              | 114       |
| Iron sulfide (pyrite), FeS <sub>2</sub>                                         | 5               | 29       | Lithium bromide, LiBr                                                                                                         | 4               | 30        |
| Lanthanum antimony, LaSb                                                        | 4m              | 42       | Lithium carbonate, Li <sub>2</sub> CO <sub>3</sub>                                                                            | 8m              | 42        |
| Lanthanum arsenate, LaAsO4                                                      | 3m              | 36       | Lithium chlorate hydrate,                                                                                                     |                 |           |
| Lanthanum arsenide, LaAs                                                        | 4m              | 60       | LiClO <sub>4</sub> •3H <sub>2</sub> O                                                                                         | 8               | 34        |
| Lanthanum bismuth, LaBi                                                         | 4m              | 48       | Lithium chloride, LiCl                                                                                                        | 1               | 62        |
| Lanthanum borate, LaBO <sub>3</sub>                                             | 1m<br>5m        | 20<br>63 | Lithium fluoride, LiF                                                                                                         | 1               | 61        |
| Lanthanum cadmium, LaCd<br>Lanthanum chloride, LaCl <sub>3</sub>                | lm              | 20       | Lithium gallium oxide, LiGaO <sub>2</sub>                                                                                     | LOm             | 31<br>92  |
| Lanthanum fluoride, LaF <sub>3</sub>                                            | 7               | 21       | Lithium hydroxide hydrate, LiOH•H <sub>2</sub> O<br>Lithium iodate, LiIO <sub>3</sub> (hexagonal)                             | 11m<br>7        | 26        |
| Lanthanum niobium titanium oxide,                                               |                 |          | Lithium iodate, LiIO <sub>3</sub> (tetragonal)                                                                                | 10m             | 33        |
| LaNbTiO <sub>6</sub>                                                            | 3m              | 37       | Lithium molybdenum oxide, Li <sub>2</sub> MoO <sub>4</sub>                                                                    |                 |           |
| Lanthanum nitrate hydrate,                                                      |                 |          | (trigonal)                                                                                                                    | 1m              | 23        |
| La(NO <sub>3</sub> ) <sub>3</sub> ·6H <sub>2</sub> O                            | 8m              | 40       | Lithium niobium oxide, LiNbO <sub>3</sub>                                                                                     | 6m              | 22        |
| Lanthanum nitride, LaN                                                          | 4m              | 61       | Lithium nitrate, LiNO <sub>3</sub>                                                                                            | 7               | 27        |
| Lanthanum oxide, La <sub>2</sub> O <sub>3</sub><br>Lanthanum oxychloride, LaOCl | 3<br>7          | 33<br>22 | Lithium oxide, Li <sub>2</sub> O                                                                                              | 1m              | 25        |
| Lanthanum phosphide, LaP                                                        | 5m              | 69       | Lithium phosphate hydrate,                                                                                                    | 2m              | 20        |
| Lanthanum selenide, LaSe                                                        | 4m              | 61       | Li <sub>3</sub> P <sub>3</sub> O <sub>9</sub> •3H <sub>2</sub> O<br>Lithium phosphate, low form (lithio-                      | 2111            | 20        |
| Lanthanum zinc, LaZn                                                            | 5m              | 70       | phosphate), Li <sub>3</sub> PO <sub>4</sub>                                                                                   | 4m              | 21        |
| Lead, Pb                                                                        | 1               | 34       | Lithium phosphate, high form,                                                                                                 |                 |           |
| Lead borate, PbB <sub>4</sub> O <sub>7</sub>                                    | 4m              | 19       | Li <sub>3</sub> PO <sub>4</sub>                                                                                               | 3m              | 39        |
| Lead bromide, PbBr <sub>2</sub>                                                 | 2               | 47       | Lithium rubidium fluoride, LiRbF <sub>2</sub>                                                                                 | 7m              | 128       |
| Lead bromide chloride, PbBrCl                                                   | 11m             | 33<br>25 | Lithium selenide, Li <sub>2</sub> Se                                                                                          | 10m             | 100       |
| Lead bromide fluoride, PbBrF<br>Lead chloride (cotunnite), PbCl <sub>2</sub>    | 10m<br>12m      | 23       | Lithium silver bromide,                                                                                                       | 1 2             | 55        |
| Lead carbonate (cerussite), PbCO <sub>3</sub>                                   | 2               | 56       | Li <sub>2</sub> Ag <sub>8</sub> Br<br>Lithium silver bromide,                                                                 | 12m             | 55        |
| Lead chloride fluoride (matlockite),                                            |                 |          | Li_4Ag_6Br                                                                                                                    | 12m             | 55        |
| PbClF                                                                           | 13m             | 25       | Lithium silver bromide,                                                                                                       |                 |           |
| Lead fluoride, α-PbF <sub>2</sub>                                               |                 |          | Li <sub>.6</sub> Ag <sub>.4</sub> Br                                                                                          | 12m             | 55        |
| (orthorhombic)                                                                  |                 | 31       | Lithium silver bromide,                                                                                                       |                 |           |
| Lead fluoride, $\beta$ -PbF <sub>2</sub> (cubic)                                | _               | 33       | Li <sub>8</sub> Ag <sub>2</sub> Br                                                                                            | 12m             | 55        |
| Lead fluoride iodide, PbFI  Lead hydroxide phosphate,                           | 10m             | 26       | Lithium sodium aluminum fluoride,                                                                                             | 0               |           |
| Pb <sub>5</sub> (PO <sub>4</sub> ) <sub>3</sub> OH                              | 8               | 33       | cryolithionite, Li <sub>3</sub> Na <sub>3</sub> Al <sub>2</sub> F <sub>12</sub>                                               | 9m<br>6m        | 23        |
| Lead(II) iodide, PbI <sub>2</sub>                                               |                 | 34       | Lithium sodium sulfate, LiNaSO <sub>4</sub><br>Lithium sulfate, Li <sub>2</sub> SO <sub>4</sub>                               | 6m<br>6m        | 24<br>26  |
| Lead molybdenum oxide (wulfenite),                                              |                 |          | Lithium sulfate hydrate,                                                                                                      | Ont             | 23        |
| PbMoO <sub>4</sub>                                                              |                 | 23       | Li <sub>2</sub> SO <sub>4</sub> •H <sub>2</sub> O                                                                             | 4m              | 22        |
| Lead nitrate, Pb(NO <sub>3</sub> ) <sub>2</sub>                                 | 5               | 36       | Lithium sulfide, Li <sub>2</sub> S                                                                                            | 10m             | 101       |

|                                                                                                                                       | Vol. or<br>Sec. | Page     |                                                                                                                         | Vol. or<br>Sec. | Page      |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|-------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|
| Lithium telluride, Li <sub>2</sub> Te<br>Lithium tungsten oxide, Li <sub>2</sub> WO <sub>4</sub>                                      | 10m             | 102      | Magnesium lanthanum, MgLa Magnesium lanthanum nitrate                                                                   | 5m              | 69        |
| (trigonal)                                                                                                                            | 1m              | 25       | hydrate, Mg 3La 2 (NO 3) 12 • 24H 2O<br>Magnesium manganese oxide, MgMn 2O 4                                            | lm<br>10m       | 22<br>35  |
| Li 2MO 4 · ½H 2O · · · · · · · · · · · · · · · · · ·                                                                                  | 2m              | 20       | Magnesium mercury, MgHg                                                                                                 | 6m              | 84        |
| Lithium uranium fluoride, LiUF <sub>5</sub>                                                                                           | 7m              | 131      | Magnesium molybdenum oxide, MgMoO4                                                                                      | 7m              | 28        |
| Lutetium arsenate, LuAsO <sub>4</sub><br>Lutetium gallium oxide,                                                                      | 5m              | 36       | Magnesium nickel oxide, MgNiO <sub>2</sub><br>Magnesium oxide (periclase), MgO                                          | 10m<br>1        | 36<br>37  |
| Lu <sub>3</sub> Ga <sub>5</sub> O <sub>12</sub>                                                                                       | 2m              | 22       | Magnesium phosphate, Mg(PO <sub>3</sub> ) <sub>2</sub>                                                                  | 13m             | 26        |
| Lutetium manganese oxide, LuMnO <sub>3</sub>                                                                                          | 2m              | 23       | Magnesium phosphate, $\alpha$ -Mg <sub>2</sub> P <sub>2</sub> O <sub>7</sub>                                            | 9m              | 73        |
| Lutetium nitride, LuN                                                                                                                 | 4m              | 62       | Magnesium selenide, MgSe                                                                                                | 5m              | 70        |
| Lutetium oxide, Lu <sub>2</sub> O <sub>3</sub><br>Lutetium vanadium oxide, LuVO <sub>4</sub>                                          | 1m<br>5m        | 27<br>37 | Magnesium selenite hydrate,                                                                                             | Om              | 116       |
| Magnesium aluminum oxide (spinel),                                                                                                    | 1               | 10       | MgSeO <sub>3</sub> ·6H <sub>2</sub> O                                                                                   | 8m              |           |
| MgAl <sub>2</sub> O <sub>4</sub>                                                                                                      | 9m              | 25       | MgSiO <sub>3</sub>                                                                                                      | 6               | 32        |
| Magnesium aluminum silicate                                                                                                           |                 |          | Mg <sub>2</sub> SiO <sub>4</sub>                                                                                        | 1               | 83        |
| (pyrope), Mg 3Al 2 (SiO 4) 3                                                                                                          | 4m              | 24       | Magnesium sulfate hydrate                                                                                               |                 |           |
| Magnesium aluminum silicate (low                                                                                                      |                 |          | (epsomite), MgSO <sub>4</sub> .7H <sub>2</sub> O                                                                        | 7               | 30        |
| cordierite), Mg <sub>2</sub> Al <sub>4</sub> Si <sub>5</sub> O <sub>18</sub>                                                          |                 |          | Magnesium sulfide, MgŚ                                                                                                  | 7               | 31        |
| (orthorhombic)                                                                                                                        | 1m              | 28       | Magnesium sulfite hydrate,                                                                                              |                 |           |
| Magnesium aluminum silicate                                                                                                           |                 |          | MgSO <sub>3</sub> ·6H <sub>2</sub> O                                                                                    | 9m              | 26        |
| (indialite) Mg <sub>2</sub> Al <sub>4</sub> Si <sub>5</sub> O <sub>18</sub>                                                           | 1 m             | 29       | Magnesium tin, Mg_Sn                                                                                                    | 5               | 41        |
| (hexagonal)                                                                                                                           | 1m              | 29       | Magnesium tin oxide, Mg <sub>2</sub> SnO <sub>4</sub><br>Magnesium titanium oxide                                       | 10m             | 37        |
| (struvite), MgNH <sub>4</sub> PO <sub>4</sub> •6H <sub>2</sub> O                                                                      | 3m              | 41       | (geikielite), MgTiO <sub>3</sub>                                                                                        | 5               | 43        |
| Magnesium borate, Mg <sub>2</sub> B <sub>2</sub> O <sub>5</sub>                                                                       |                 |          | Magnesium titanium oxide, Mg, TiQ,                                                                                      | 12m             | 25        |
| (triclinic)                                                                                                                           | 4m              | 25       | Magnesium tungsten oxide, MgWO,                                                                                         | 13m             | 27        |
| Magnesium bromide, MgBr <sub>2</sub>                                                                                                  | 4m              | 62       | Manganese, α-Mn                                                                                                         | 7m              | 142       |
| Magnesium bromide hydrate,                                                                                                            |                 |          | Manganese aluminum oxide (galaxite),                                                                                    |                 |           |
| MgBr <sub>2</sub> ·6H <sub>2</sub> O                                                                                                  | 11m             | , 35     | MnAl <sub>2</sub> O <sub>4</sub>                                                                                        | 9               | 35        |
| Magnesium carbonate (magnesite),                                                                                                      | 7               | 20       | Manganese bromide, MnBr <sub>2</sub>                                                                                    | 4m              | 63        |
| MgCO <sub>3</sub> Magnesium cerium MgCe                                                                                               | 7<br>5m         | 28<br>65 | Manganese (II) carbonate                                                                                                | 7               | 32        |
| Magnesium cerium nitrate hydrate,                                                                                                     | Jii             | 03       | (rhodochrosite), MnCO <sub>3</sub> Manganese chloride (scacchite),                                                      | <u>'</u>        | 32        |
| Mg <sub>3</sub> Ce <sub>2</sub> (NO <sub>3</sub> ) <sub>12</sub> ·24H <sub>2</sub> O                                                  | 10              | 20       | MnCl <sub>2</sub>                                                                                                       | 8m              | 43        |
| Magnesium chlorate hydrate,                                                                                                           |                 |          | Manganese chloride hydrate,                                                                                             |                 |           |
| Mg(C1O <sub>4</sub> ) <sub>2</sub> •6H <sub>2</sub> O                                                                                 | 7m              | 30       | MnCl <sub>2</sub> • 2H <sub>2</sub> O                                                                                   | 11m             | 38        |
| Magnesium chloride (chloro-                                                                                                           |                 |          | Manganese chloride hydrate,                                                                                             |                 |           |
| magnesite), MgCl <sub>2</sub>                                                                                                         | 11m             | 94       | MnCl <sub>2</sub> ·4H <sub>2</sub> O                                                                                    | 9m              | 28        |
| Magnesium chloride hydrate,                                                                                                           | 7m              | 135      | Manganese cobalt oxide, MnCo <sub>2</sub> O <sub>4</sub>                                                                | 9m<br>10m       | 30<br>105 |
| MgCl <sub>2</sub> •12H <sub>2</sub> O                                                                                                 | 7m              | 133      | Manganese fluoride, MnF <sub>2</sub>                                                                                    | 10m<br>4m       | 63        |
| (bischofite), MgCl <sub>2</sub> ·6H <sub>2</sub> O                                                                                    | 11m             | 37       | Manganese iron oxide (jacobsite),                                                                                       | -2111           | 05        |
| Magnesium chromium oxide                                                                                                              |                 |          | MnFe <sub>2</sub> O <sub>4</sub>                                                                                        | 9               | 36        |
| (magnesiochromite), MgCr <sub>2</sub> O <sub>4</sub>                                                                                  | 9               | 34       | Manganese (II) oxide (manganosite),                                                                                     |                 |           |
| Magnesium fluoride (sellaite), MgF <sub>2</sub>                                                                                       | 4               | 33       | MnO                                                                                                                     | 5               | 45        |
| Magnesium fluoride silicate                                                                                                           |                 |          | Manganese oxide (hausmannite), Mn <sub>3</sub> O <sub>4</sub>                                                           | 10m             | 38        |
| (humite), Mg <sub>7</sub> F <sub>2</sub> (SiO <sub>4</sub> ) <sub>3</sub>                                                             | 1m              | 30       | Manganese oxide (bixbyite),                                                                                             | 11              | 05        |
| Magnesium fluoride silicate                                                                                                           | 10              | 20       | α-Mn <sub>2</sub> O <sub>3</sub>                                                                                        | 11m             | 95        |
| (norbergite), Mg <sub>3</sub> F <sub>2</sub> SiO <sub>4</sub>                                                                         | 10<br>10        | 39<br>36 | Manganese oxide (pyrolusite),<br>β-MnO <sub>2</sub>                                                                     | 10m             | 39        |
| Magnesium germanium oxide,                                                                                                            | 10              | 30       | Manganese oxide hydroxide, groutite,                                                                                    | 10111           | 33        |
| Mg <sub>2</sub> GeO <sub>4</sub> (cubic)                                                                                              | 10              | 37       | α-MnOOH                                                                                                                 | 11m             | 97        |
| Magnesium germanium oxide, Mg <sub>2</sub> GeO <sub>4</sub>                                                                           |                 |          | Manganese selenide, MnSe                                                                                                | 10              | 41        |
| (orthorhombic)                                                                                                                        | 10              | 38       | Manganese sulfide (alabandite),                                                                                         |                 |           |
| Magnesium gold, MgAu                                                                                                                  | 6m              | 83       | α-MnS                                                                                                                   | 4               | 11        |
| Magnesium hydrogen phosphate                                                                                                          | 7               | 120      | Manganese (II) tungsten oxide                                                                                           | 2               | 24        |
| hydrate, newberyite, MgHPO <sub>4</sub> · 3H <sub>2</sub> O                                                                           | 7m              | 139      | (huebnerite), MnWO <sub>4</sub>                                                                                         | 2m<br>9m        | 24<br>75  |
| Magnesium hydroxide (brucite),                                                                                                        | 6               | 30       | Manganese vanadium oxide, Mn <sub>2</sub> V <sub>2</sub> O <sub>7</sub><br>Mercury amide chloride, HgNH <sub>2</sub> Cl | 10m             | 40        |
| Mg(OH) <sub>2</sub> Magnesium iron hydroxide carbonate                                                                                | J               |          | Mercury ammine chloride,                                                                                                |                 | 39        |
| hydrate, pyroaurite,                                                                                                                  | 10m             | 104      | Hg(NH <sub>3</sub> ) <sub>2</sub> Cl <sub>2</sub>                                                                       | 11m<br>10m      | 107       |
| Mg <sub>6</sub> Fe <sub>2</sub> (OH) <sub>16</sub> CO <sub>3</sub> •4H <sub>2</sub> O, phase II<br>Magnesium iron hydroxide carbonate | TOIL            | 104      | Mercury bromate, Hg(BrO <sub>3</sub> ) <sub>2</sub><br>Mercury(II) bromide, HgBr <sub>2</sub>                           | 10m             | 110       |
| hydrate, sjögrenite,                                                                                                                  |                 |          | Mercury (I) bromide, Hg2Br2                                                                                             | 7               | 33        |
| $Mg_6Fe_2(OH)_{16}CO_3 \cdot 4H_2O$ , phase I                                                                                         | 10m             | 103      |                                                                                                                         |                 |           |

|                                                                                                              | Vol. or    |           |                                                                                                    | Vol. or  | _        |
|--------------------------------------------------------------------------------------------------------------|------------|-----------|----------------------------------------------------------------------------------------------------|----------|----------|
|                                                                                                              | Sec.       | Page      |                                                                                                    | Sec.     | Page     |
| Mercury(I) chloride (calomel)                                                                                |            |           | Nickel sulfate hydrate(retgersite),                                                                | _        | 26       |
| Hg <sub>2</sub> Cl <sub>2</sub>                                                                              | 13m        | 30        | NisO <sub>4</sub> ·6H <sub>2</sub> O<br>Nickel sulfide, millerite, Nis                             | 7<br>1m  | 36<br>37 |
| Mercury(II) chloride, HgCl <sub>2</sub>                                                                      | 13m        | 29        | Nickel tungsten oxide, NiWO4                                                                       | 1m<br>2m | 27       |
| Mercury chloride sulfide,                                                                                    | 8m         | 118       | Niobium gold 3:1, Nb <sub>3</sub> Au                                                               | 6m       | 16       |
| α-Hg <sub>3</sub> Cl <sub>2</sub> S <sub>2</sub>                                                             | 6          | 35        | Niobium iridium 3:1, Nb <sub>3</sub> Ir                                                            | 6m       | 19       |
| Mercury(II) fluoride, HgF <sub>2</sub>                                                                       | 2m         | 25        | Niobium osmium 3:1, Nb <sub>3</sub> Os                                                             | 6m       | 30       |
| Mercury(I) iodide, HgI                                                                                       | 4          | 49        | Niobium oxychloride, NbOCl <sub>3</sub>                                                            | 7m       | 148      |
| Mercury(II) iodide, HgI <sub>2</sub> (tetragonal)                                                            | 7m         | 32        | Niobium platinum 3:1, Nb <sub>3</sub> Pt                                                           | 6m<br>8  | 31<br>39 |
| Mercury(II) oxide (montroydite), HgO                                                                         | 9          | 39        | Niobium silicide, NbSi <sub>2</sub>                                                                | 4        | 8        |
| Mercury(II) selenide (tiemannite), HgSe                                                                      | 7          | 35        | Osmium titanium, OsTi                                                                              | 6m       | 85       |
| Mercury(II) sulfide (cinnabar),                                                                              | ,          | 33        | Palladium, Pd                                                                                      | 1        | 21       |
| HgS (hexagonal)                                                                                              | 4          | 17        | Palladium hydride, PdH <sub>0.706</sub>                                                            | 5m       | 72       |
| Mercury(II) sulfide (metacinnabar),                                                                          |            |           | Palladium oxide, PdO                                                                               | 4        | 27       |
| HgS (cubic)                                                                                                  | 4          | 21        | Phosphorus bromide, PBr <sub>7</sub><br>Phosphorus oxide (stable form I),                          | 7m       | 150      |
| Molybdenum, Mo                                                                                               | 1          | 20        | P <sub>2</sub> O <sub>5</sub> (orthorhombic)                                                       | 9m       | 86       |
| Molybdenum arsenide, Mo <sub>2</sub> As <sub>3</sub><br>Molybdenum osmium 3:1, Mo <sub>3</sub> Os            | 10m<br>6m  | 115<br>28 | Phosphorus oxide (stable form II),                                                                 |          |          |
| Molybdenum oxide (molybdite), MoO <sub>3</sub>                                                               | 3          | 30        | P <sub>2</sub> O <sub>5</sub> (orthorhombic)                                                       | 9m       | 88       |
| Molybdenum sulfide (molybdenite),                                                                            |            |           | Phosphorus oxide (metastable form),                                                                |          |          |
| MoS <sub>2</sub>                                                                                             | 5          | 47        | P <sub>4</sub> O <sub>10</sub> (rhombohedral)                                                      | 9m       | 91       |
| Neodymium antimony, NdSb                                                                                     | 4m         | 43        | Platinum, Pt                                                                                       | 1<br>6m  | 31<br>33 |
| Neodymium arsenate, NdAsO <sub>4</sub>                                                                       | 4m         | 28        | Platinum titanium 1:3, PtTi <sub>3</sub> Plutonium arsenide, PuAs                                  | 4m       | 65       |
| Neodymium arsenide, NdAs                                                                                     | 4m<br>4m   | 64<br>49  | Plutonium phosphide, PuP                                                                           | 4m       | 65       |
| Neodymium bismuth, NdBi Neodymium borate, NdBO <sub>3</sub>                                                  | 1m         | 32        | Plutonium telluride, PuTe                                                                          | 4m       | 66       |
| Neodymium chloride, NdCl <sub>3</sub>                                                                        | 1m         | 33        | Potassium aluminum sulfate,                                                                        |          |          |
| Neodymium fluoride, NdF <sub>3</sub>                                                                         | 8          | 36        | KA1 (SO <sub>4</sub> ) <sub>2</sub>                                                                | 9m       | 31       |
| Neodymium gallium oxide, Nd <sub>3</sub> Ga <sub>5</sub> O <sub>12</sub>                                     | lm         | 34        | Potassium aluminum sulfate hydrate,                                                                | 6        | 36       |
| Neodymium oxide, Nd <sub>2</sub> O <sub>3</sub>                                                              | 4          | 26        | (alum), KAl(SO <sub>4</sub> ) <sub>2</sub> ·12H <sub>2</sub> O<br>Potassium barium nickel nitrite, | 6        | 36       |
| Neodymium oxychloride, NdOCl                                                                                 | 8<br>11m   | 37<br>40  | K <sub>2</sub> BaNi (NO <sub>2</sub> ) <sub>6</sub>                                                | 9m       | 32       |
| Neodymium phosphate, NdPO <sub>4</sub><br>Neodymium selenide, NdSe                                           | 11m<br>5m  | 71        | Potassium borohydride, KBH4                                                                        | 9        | 44       |
| Neodymium silver, NdAg                                                                                       | 5m         | 71        | Potassium bromate, KBrO3                                                                           | 7        | 38       |
| Neodymium vanadium oxide, NdVO4                                                                              | 4m         | 30        | Potassium bromide, KBr                                                                             | 1        | 66       |
| Neptunium nitride, NpN                                                                                       | 4m         | 64        | Potassium bromide chloride,                                                                        | 0        | 46       |
| Nickel, Ni                                                                                                   | 1          | 13        | KBr <sub>0.5</sub> Cl <sub>0.5</sub>                                                               | 8m       | 46       |
| Nickel acetate hydrate,<br>Ni(C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> ) <sub>2</sub> ·4H <sub>2</sub> O | 13m        | 31        | KBr <sub>.33</sub> I <sub>.67</sub>                                                                | 11m      | 44       |
| Nickel aluminum, NiAl                                                                                        | 6m         | 82        | Potassium bromide iodide,                                                                          |          |          |
| Nickel aluminum oxide, NiAl <sub>2</sub> O <sub>4</sub>                                                      | 9          | 42        | KBr <sub>.67</sub> I <sub>.33</sub>                                                                | 11m      | 45       |
| Nickel arsenide 1:2 (rammelsbergite),                                                                        |            |           | Potassium cadmium fluoride, KCdF <sub>3</sub>                                                      | 8m       | 47       |
| NiAs <sub>2</sub>                                                                                            | 10         | 42        | Potassium cadmium sulfate,                                                                         | 7        | 2.4      |
| Nickel arsenic sulfide                                                                                       | 7          | 25        | $K_2Cd_2$ (SO <sub>4</sub> ) <sub>3</sub><br>Potassium calcium carbonate                           | 7m       | 34       |
| (gersdorffite), NiAsS                                                                                        | 1m<br>10m  | 35<br>119 | (fairchildite), K <sub>2</sub> Ca(CO <sub>3</sub> ) <sub>2</sub>                                   | 8m       | 48       |
| Nickel(II) carbonate, NiCO <sub>3</sub>                                                                      | 10111      | 113       | Potassium calcium chloride, KCaCl3                                                                 | 7m       | 36       |
| (trigonal)                                                                                                   | 1m         | 36        | Potassium calcium fluoride, KCaF3                                                                  | 8m       | 49       |
| Nickel chloride, NiCl <sub>2</sub>                                                                           | 9m         | 81        | Potassium calcium magnesium sulfate,                                                               | _        |          |
| Nickel chloride hydrate,                                                                                     |            |           | $K_2$ CaMg(SO <sub>4</sub> ) <sub>3</sub><br>Potassium calcium nickel nitrite,                     | 7m       | 37       |
| NiCl <sub>2</sub> •6H <sub>2</sub> O                                                                         | 11m        | 42        | K <sub>2</sub> CaNi(NO <sub>2</sub> ) <sub>6</sub>                                                 | 9m       | 33       |
| Nickel fluoride, NiF <sub>2</sub><br>Nickel fluoride hydrate, NiF <sub>2</sub> •4H <sub>2</sub> O            | 10m<br>11m | 121<br>43 | Potassium calcium sulfate,                                                                         | 5411     | 33       |
| Nickel gallium oxide, NiGa <sub>2</sub> O <sub>4</sub>                                                       | 10         | 45        | $K_2Ca_2(SO_4)_3$                                                                                  | 7m       | 39       |
| Nickel germanium oxide, Ni <sub>2</sub> GeO <sub>4</sub>                                                     | 9          | 43        | Potassium cerium fluoride, β-KCeF <sub>4</sub>                                                     | 12m      | 59       |
| Nickel iron oxide (trevorite),                                                                               |            |           | Potassium chlorate, KClO <sub>3</sub>                                                              | 3m       | 42       |
| NiFe <sub>2</sub> O <sub>4</sub>                                                                             | 10         | 44        | Potassium chloride (sylvite) VCl                                                                   | 6        | 43       |
| Nickel nitrate hydrate,                                                                                      | 1.0        | 26        | Potassium chloride (sylvite), KCl Potassium chromium oxide, $K_3CrO_8$                             | 1<br>3m  | 65<br>44 |
| Ni(NO <sub>3</sub> ) <sub>2</sub> •6H <sub>2</sub> O                                                         | 12m<br>1   | 26<br>47  | Potassium chromium oxide sulfate,                                                                  | Jan      | -1-1     |
| Nickel(II) oxide (bunsenite), NiO Nickel phosphide, Ni <sub>12</sub> P <sub>5</sub>                          | 9m         | 83        | $K_2 (CrO_4)_{.33} (SO_4)_{.67} \dots$                                                             | 12m      | 28       |
| Nickel silicon fluoride hydrate,                                                                             |            |           | Potassium chromium oxide sulfate,                                                                  |          |          |
| NiSiF <sub>6</sub> ·6H <sub>2</sub> O                                                                        | 8          | 38        | $K_2 (CrO_4)_{.67} (SO_4)_{.33} \dots$                                                             | 12m      | 27       |
| Nickel sulfate, NiSO <sub>4</sub>                                                                            | 2m         | 26        |                                                                                                    |          |          |

|                                                                                                                      | Vol. or<br>Sec. | Page     |                                                                                            | Vol. or<br>Sec. | Page      |
|----------------------------------------------------------------------------------------------------------------------|-----------------|----------|--------------------------------------------------------------------------------------------|-----------------|-----------|
| Potassium chromium sulfate hydrate,                                                                                  |                 |          | Potassium rhenium chloride,                                                                |                 |           |
| KCr(SO <sub>4</sub> ) <sub>2</sub> •12H <sub>2</sub> O                                                               | 6               | 39       | K <sub>2</sub> ReCl <sub>6</sub>                                                           | 2m              | 28        |
| Potassium cobalt(II) fluoride,                                                                                       |                 |          | Potassium rhenium oxide, KReO <sub>4</sub>                                                 | 8               | 41        |
| KCoF <sub>3</sub>                                                                                                    | 6m              | 37       | Potassium rubidium chloride,                                                               |                 |           |
| Potassium cobalt fluoride, K <sub>2</sub> CoF <sub>4</sub>                                                           | 11m             | 46       | K <sub>0.5</sub> Rb <sub>0.5</sub> C1                                                      | 8m              | 76        |
| Potassium cobalt nitrite,                                                                                            | •               | 4.5      | Potassium rubidium chromium oxide,                                                         |                 |           |
| $K_3Co(NO_2)_6$<br>Potassium cobalt(II) sulfate,                                                                     | 9               | 45       | Potassium ruthenium chloride,                                                              | 12m             | 29        |
| $K_2Co_2(SO_4)_3$                                                                                                    | 6m              | 35       | K <sub>2</sub> RuCl <sub>6</sub>                                                           | 10              | 46        |
| Potassium copper chloride, KCuCl <sub>3</sub>                                                                        | 7m              | 41       | Potassium ruthenium oxide chloride                                                         | 10              | 47        |
| Potassium copper chloride hydrate (mitscherlichite), K <sub>2</sub> CuCl <sub>4</sub> ·2H <sub>2</sub> O             | 9m              | 34       | hydrate, $K_4Ru_2OC1_{10} \cdot H_2O$<br>Potassium selenate, $K_2SeO_4$                    | 10<br>9m        | 47<br>41  |
| Potassium copper(II) fluoride,                                                                                       | 51              | 3.       | Potassium selenide, K <sub>2</sub> Se                                                      | 10m             | 126       |
| KCuF <sub>3</sub>                                                                                                    | 6m              | 38       | Potassium selenium bromide, K <sub>2</sub> SeBr <sub>6</sub>                               | 8               | 41        |
| Potassium cyanate, KCNO                                                                                              | 7               | 39       | Potassium silicon fluoride                                                                 |                 |           |
| Potassium cyanide, KCN                                                                                               | 1               | 77       | (hieratite), K <sub>2</sub> SiF <sub>6</sub>                                               | 5               | 50        |
| Potassium fluoride, KF                                                                                               | 1               | 64       | Potassium silver cyanide, KAg(CN) <sub>2</sub>                                             | 8m              | 78        |
| Potassium germanium fluoride, K <sub>2</sub> GeF <sub>6</sub>                                                        | 6               | 41       | Potassium sodium aluminum fluoride                                                         |                 |           |
| Potassium hydrogen arsenate,                                                                                         | ,               |          | (elpasolite), K <sub>2</sub> NaAlF <sub>6</sub>                                            | 9m              | 43        |
| KH <sub>2</sub> AsO <sub>4</sub>                                                                                     | 1m              | 38       | Potassium sodium bromide,                                                                  | 1.0             | 60        |
| Potassium hydrogen phosphate,                                                                                        | 3               | 69       | K <sub>2</sub> Na <sub>8</sub> Br<br>Potassium sodium bromide,                             | 12m             | 62        |
| KH <sub>2</sub> PO <sub>4</sub><br>Potassium hydroxide, KOH at 300 °C                                                | 4m              | 66       | K <sub>4</sub> Na <sub>6</sub> Br                                                          | 12m             | 62        |
| Potassium iodate, KIO <sub>4</sub>                                                                                   | 7               | 41       | Potassium sodium bromide,                                                                  | 12111           | 02        |
| Potassium iodide, KI                                                                                                 | 1               | 68       | K <sub>6</sub> Na <sub>4</sub> Br                                                          | 12m             | 62        |
| Potassium iron cyanide, K <sub>3</sub> Fe(CN) <sub>6</sub>                                                           | 9m              | 35       | Potassium sodium bromide,                                                                  |                 |           |
| Potassium iron(II) fluoride, KFeF <sub>3</sub>                                                                       | 6m              | 39       | K <sub>.8</sub> Na <sub>.2</sub> Br                                                        | 12m             | 62        |
| Potassium iron fluoride, K <sub>3</sub> FeF <sub>6</sub>                                                             | 9m              | 37       | Potassium sodium chloride,                                                                 |                 |           |
| Potassium lead chloride, KPb <sub>2</sub> Cl <sub>5</sub>                                                            | 13m             | 33       | K <sub>2</sub> Na <sub>8</sub> Cl                                                          | 12m             | 63        |
| Potassium lithium sulfate, KLiSo4                                                                                    | 3m              | 43       | Potassium sodium chloride,                                                                 | 10              | 60        |
| Potassium magnesium chloride hydrate                                                                                 | Om              | EO       | K. 4Na 6Cl                                                                                 | 12m             | 63        |
| (carnallite), KMgCl <sub>3</sub> ·6H <sub>2</sub> O Potassium magnesium chromium oxide,                              | 8m              | 50       | Potassium sodium chloride,<br>K <sub>.6</sub> Na <sub>.4</sub> Cl                          | 12m             | 63        |
| $K_2Mg_2$ (CrO <sub>4</sub> ) 3                                                                                      | 8m              | 52       | Potassium sodium chloride,                                                                 | 1 2111          | 0.5       |
| Potassium magnesium fluoride,                                                                                        | -               |          | K <sub>.8</sub> Na <sub>.2</sub> C1                                                        | 12m             | 63        |
| KMgF <sub>3</sub>                                                                                                    | 6m              | 42       | Potassium sodium sulfate,                                                                  |                 |           |
| Potassium magnesium fluoride,                                                                                        |                 |          | K <sub>.67</sub> Na <sub>1.33</sub> SO <sub>4</sub>                                        | 6m              | 48        |
| K <sub>2</sub> MgF <sub>4</sub>                                                                                      | 10m             | 42       | Potassium sodium sulfate, KNaSO4                                                           | 6m              | 50        |
| Potassium magnesium selenate hydrate                                                                                 | ,               |          | Potassium sodium sulfate                                                                   |                 |           |
| $K_2Mg(SeO_4)_2 \cdot 6H_2O \dots$                                                                                   | 10m             | 43       | (aphthitalite), K <sub>3</sub> Na(SO <sub>4</sub> ) <sub>2</sub>                           | 6m              | 52        |
| Potassium magnesium sulfate                                                                                          | C               | 40       | Potassium sulfate, K <sub>2</sub> S <sub>2</sub> O <sub>7</sub>                            | 9m              | 99        |
| (langbeinite), K <sub>2</sub> Mg <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub><br>Potassium magnesium sulfate hydrate | 6m              | 40       | Potassium sulfate (arcanite), $K_2SO_4$<br>Potassium sulfide, $K_2S$                       | 3<br>10m        | 62<br>127 |
| (picromerite), $K_2Mg(SO_4)_2 \cdot 6H_2O$                                                                           | 8m              | 54       | Potassium telluride, K <sub>2</sub> Te                                                     | 10m<br>10m      | 128       |
| Potassium manganese(II) fluoride,                                                                                    | On              | 34       | Potassium thiocyanate, KCNS                                                                | 8               | 44        |
| KMnF <sub>3</sub>                                                                                                    | 6m              | 45       | Potassium tin chloride, K <sub>2</sub> SnCl <sub>6</sub>                                   | 6               | 38        |
| Potassium manganese oxide, KMnO4                                                                                     | 7               | 42       | Potassium titanium fluoride, K2TiF6                                                        | 7               | 40        |
| Potassium manganese(II) sulfate                                                                                      |                 |          | Potassium tungsten oxide, K <sub>2</sub> WO <sub>4</sub>                                   | 11m             | 47        |
| (manganolangbeinite), $K_2Mn_2$ (SO <sub>4</sub> ) <sub>3</sub>                                                      | 6m              | 43       | Potassium vanadium oxide, KV <sub>3</sub> O <sub>8</sub>                                   | 8m              | 56        |
| Potassium molybdenum oxide phosphate                                                                                 |                 |          | Potassium zinc bromide hydrate,                                                            |                 |           |
| hydrate, K <sub>2</sub> (MoO <sub>3</sub> ) <sub>12</sub> PO <sub>4</sub> •4H <sub>2</sub> O                         | . 8             | 43       | KZnBc <sub>3</sub> 2H <sub>2</sub> O                                                       | 11m             | 104       |
| Potassium nickel fluoride, KNiF <sub>3</sub>                                                                         | 7m              | 42       | Potassium zinc fluoride, KZnF <sub>3</sub>                                                 | 5               | 51        |
| Potassium nickel fluoride, K <sub>2</sub> NiF <sub>4</sub>                                                           | 10m             | 45       | Potassium zinc fluoride, K <sub>2</sub> ZnF <sub>4</sub><br>Potassium zinc iodide hydrate, | 10m             | 46        |
| Potassium nickel(II) sulfate, $K_2Ni_2(SO_4)_3$                                                                      | 6m              | 46       | KZnI <sub>3</sub> ·2H <sub>2</sub> O                                                       | 11m             | 107       |
| Potassium niobium fluoride, K <sub>2</sub> NbF <sub>7</sub>                                                          | 8m              | 120      | Potassium zinc sulfate, K <sub>2</sub> Zn <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub>     | 6m              | 54        |
| Potassium nitrate (niter), KNO <sub>3</sub>                                                                          | 3               | 58       | Potassium zinc sulfate hydrate,                                                            |                 |           |
| Potassium nitrite, KNO <sub>2</sub>                                                                                  | 9m              | 38       | $K_2$ Zn (SO <sub>4</sub> ) <sub>2</sub> •6H <sub>2</sub> O                                | 7m              | 43.       |
| Potassium nitroso ruthenium chloride                                                                                 |                 |          | Potassium zinc vanadium oxide hydrate                                                      | ,               |           |
| K <sub>2</sub> (NO) RuCl <sub>5</sub>                                                                                | 2m              | 29       | K <sub>2</sub> Zn <sub>2</sub> V <sub>10</sub> O <sub>28</sub> •16H <sub>2</sub> O         | 3m              | 45        |
| Potassium oxide, K <sub>2</sub> O                                                                                    | 10m             | 125      | Potassium zirconium fluoride,                                                              |                 |           |
| Potassium platinum bromide, K <sub>2</sub> PtBr <sub>6</sub>                                                         | 8               | 40       | K <sub>3</sub> ZrF <sub>7</sub>                                                            | 9               | 46        |
| Potassium platinum chloride,                                                                                         | 1 2             | 2/       | Praseodymium arcenato Praco                                                                | 4m              | 43        |
| $K_2$ PtCl <sub>6</sub> Potassium platinum fluoride, $K_2$ PtF <sub>6</sub>                                          | 13m<br>6        | 34<br>42 | Praseodymium arsenate, PrAsO <sub>4</sub><br>Praseodymium arsenide, PrAs                   | 4m<br>4m        | 32<br>67  |
| 1000001 mm pracrimm ridoride, north                                                                                  |                 | -12      |                                                                                            | 7111            | 0,        |

|                                                                                                          | Vol. or  |          | V                                                                                 | /ol. or    |          |
|----------------------------------------------------------------------------------------------------------|----------|----------|-----------------------------------------------------------------------------------|------------|----------|
|                                                                                                          | Sec.     | Page     |                                                                                   | Sec.       | Page     |
| Praseodymium bismuth, PrBi                                                                               | 4m       | 49       | Rubidium nitrate, RbNO3 (trigonal)                                                | 5m         | 45       |
| Praseodymium cadmium, PrCd                                                                               | 5m       | 64       | Rubidium platinum chloride,                                                       |            |          |
| Praseodymium chloride, PrCl <sub>3</sub>                                                                 | 1m       | 39       | Rb <sub>2</sub> PtCl <sub>6</sub>                                                 | 5          | 53       |
| Praseodymium fluoride, PrF <sub>3</sub>                                                                  | 5        | 52       | Rubidium platinum fluoride,                                                       | _          | 40       |
| Praseodymium oxychloride, ProCl                                                                          | 9<br>4m  | 47<br>67 | Rb <sub>2</sub> PtF <sub>6</sub> Ph SoO                                           | 6          | 48<br>44 |
| Praseodymium sulfide, PrS<br>Praseodymium vanadium oxide, PrVO <sub>4</sub>                              | 4m<br>5m | 40       | Rubidium selenate, Rb <sub>2</sub> SeO <sub>4</sub><br>Rubidium silicon fluoride, | 9m         | 44       |
| Praseodymium zinc, PrZn                                                                                  | 5m       | 72       | Rb <sub>2</sub> SiF <sub>6</sub>                                                  | 6          | 49       |
| Rhenium, Re                                                                                              | 2        | 13       | Rubidium strontium chloride,                                                      | Ŭ          | -13      |
| Rhodium, Rh                                                                                              | 3        | 9        | RbSrCl <sub>3</sub>                                                               | 7m         | 54       |
| Rubidium aluminum sulfate hydrate,                                                                       |          |          | Rubidium sulfate, Rb <sub>2</sub> SO <sub>4</sub>                                 | 8          | 48       |
| RbA1(SO <sub>4</sub> ) <sub>2</sub> •12H <sub>2</sub> O                                                  | 6        | 44       | Rubidium tellurium bromide,                                                       |            |          |
| Rubidium amide, RbNH <sub>2</sub>                                                                        | 5m       | 73       | Rb <sub>2</sub> TeBr <sub>6</sub>                                                 | 8          | 46       |
| Rubidium bromate, RbBrO <sub>3</sub>                                                                     | 8        | 45       | Rubidium tellurium chloride,                                                      |            |          |
| Rubidium bromide, RbBr                                                                                   | 7        | 43       | Rb <sub>2</sub> TeCl <sub>6</sub>                                                 | 8          | 48       |
| Rubidium cadmium chloride, high                                                                          | _        | 4.0      | Rubidium tin chloride, Rb <sub>2</sub> SnCl <sub>6</sub>                          | 6          | 46       |
| form, RbCdCl <sub>3</sub> (tetragonal)                                                                   | 5m       | 43       | Rubidium zinc fluoride, RbZnF <sub>3</sub>                                        | 7m         | 57       |
| Rubidium cadmium chloride, low form, RbCdCl <sub>3</sub> (orthorhombic)                                  | 5 m      | 41       | Rubidium zinc sulfate hydrate,                                                    | 7m         | 5.5      |
| Rubidium cadmium sulfate,                                                                                | 5m       | 41       | $Rb_2Zn(SO_4)_2 \cdot 6H_2O$ Ruthenium, Ru                                        | 7m<br>4    | 55<br>5  |
| Rb <sub>2</sub> Cd <sub>2</sub> (SO <sub>4</sub> ) 3                                                     | 7m       | 45       | Ruthenium titanium, RuTi                                                          | 6m         | 86       |
| Rubidium calcium chloride,                                                                               | - 211    |          | Samarium arsenate, SmAsO4                                                         | 4m         | 33       |
| RbCaCl <sub>3</sub>                                                                                      | 7m       | 47       | Samarium arsenide, SmAs                                                           | 4m         | 68       |
| Rubidium calcium fluoride,                                                                               |          |          | Samarium chloride, SmCl <sub>3</sub>                                              | 1m         | 40       |
| RbCaF <sub>3</sub>                                                                                       | 8m       | 57       | Samarium fluoride, SmF <sub>3</sub>                                               | 1m         | 41       |
| Rubidium calcium sulfate,                                                                                |          |          | Samarium gallium oxide, Sm <sub>3</sub> Ga <sub>5</sub> O <sub>12</sub>           | 1m         | 42       |
| Rb <sub>2</sub> Ca <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub>                                          | 7m       | 48       | Samarium oxide, Sm <sub>2</sub> O <sub>3</sub> (cubic)                            | 4m         | 34       |
| Rubidium chlorate, RbClO <sub>3</sub>                                                                    | 8        | 47       | Samarium oxychloride, SmOCl                                                       | 1m         | 43       |
| Rubidium chlorate, RbClO <sub>4</sub>                                                                    | 2m       | 30       | Samarium silver, SmAg                                                             | 5m         | 73       |
| Rubidium chloride, RbCl                                                                                  | 4<br>3m  | 41<br>46 | Samarium tin oxide, $Sm_2Sn_2O_7$<br>Samarium vanadium oxide, $SmVO_4$            | 8m<br>5m   | 77<br>47 |
| Rubidium chromium sulfate hydrate,                                                                       | Jill     | 40       | Scandium antimony, ScSb                                                           | 4m         | 44       |
| RbCr (SO <sub>4</sub> ) 2·12H <sub>2</sub> O                                                             | 6        | 47       | Scandium arsenate, ScAsO <sub>4</sub>                                             | 4m         | 35       |
| Rubidium cobalt(II) chloride,                                                                            |          |          | Scandium arsenide, ScAs                                                           | 4m         | 68       |
| RbCoCl <sub>3</sub>                                                                                      | 6m       | 57       | Scandium oxide, Sc <sub>2</sub> O <sub>3</sub>                                    | 3          | 27       |
| Rubidium cobalt fluoride, RbCoF <sub>3</sub>                                                             | 8m       | 58       | Scandium phosphate, ScPO4                                                         | 8          | 50       |
| Rubidium cobalt sulfate,                                                                                 |          |          | Scandium silicate (thortveitite),                                                 |            |          |
| Rb <sub>2</sub> Co <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub>                                          | 8m       | 59       | Sc <sub>2</sub> Si <sub>2</sub> O <sub>7</sub>                                    | 7m         | 58       |
| Rubidium copper chloride hydrate,                                                                        | 10       | 47       | Selenium, Se                                                                      | 5          | 54       |
| Rb <sub>2</sub> CuCl <sub>4</sub> • 2H <sub>2</sub> O                                                    | 10m      | 47       | Selenium oxide (selenolite), SeO <sub>2</sub> Silicon, Si                         | 7m         | 60       |
| Rubidium copper sulfate hydrate,<br>Rb <sub>2</sub> Cu(SO <sub>4</sub> ) <sub>2</sub> •6H <sub>2</sub> O | 8m       | 61       | Silicon, Si (reference standard)                                                  | 13m<br>12m | 35<br>2  |
| Rubidium fluoride, RbF                                                                                   | 8m       | 63       | Silicon oxide ( $\alpha$ or low cristobalite),                                    |            | 2        |
| Rubidium iodate, RbIO <sub>4</sub>                                                                       | 2m       | 31       | SiO <sub>2</sub> (tetragonal)                                                     | 10         | 48       |
| Rubidium iodide, RbI                                                                                     | 4        | 43       | Silicon oxide (α or low quartz),                                                  |            |          |
| Rubidium iron sulfate hydrate,                                                                           |          |          | SiO <sub>2</sub> (hexagonal)                                                      | 3          | 24       |
| $Rb_2Fe(SO_4)_2 \cdot 6H_2O$                                                                             | 8m       | 64       | Silicon oxide (ß or high cristobalite)                                            | ,          |          |
| Rubidium magnesium chromium oxide,                                                                       |          |          | SiO <sub>2</sub> (cubic)                                                          | 1          | 42       |
| Rb <sub>2</sub> Mg <sub>2</sub> (CrO <sub>4</sub> ) <sub>3</sub>                                         | 8m       | 66       | Silver, Ag                                                                        | 1          | 23       |
| Rubidium magnesium chromium oxide                                                                        | 0        | 60       | Silver, Ag (reference standard)                                                   | 8m         | 2        |
| hydrate, Rb <sub>2</sub> Mg(CrO <sub>4</sub> ) <sub>2</sub> •6H <sub>2</sub> O                           | 8m       | 68       | Silver antimony sulfide, AgSbS <sub>2</sub>                                       | F          | 40       |
| Rubidium magnesium sulfate,<br>Rb <sub>2</sub> Mg <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub>           | 7m       | 50       | (cubic)                                                                           | 5m         | 48       |
| Rubidium magnesium sulfate hydrate,                                                                      | 7111     | 30       | AgSbS <sub>2</sub> (monoclinic)                                                   | 5m         | 49       |
| Rb <sub>2</sub> Mg (SO <sub>4</sub> ) <sub>2</sub> •6H <sub>2</sub> O                                    | 8m       | 70       | Silver antimony sulfide (pyrargyrite),                                            | Jiii       | 40       |
| Rubidium manganese(II) fluoride,                                                                         |          |          | Ag <sub>3</sub> SbS <sub>3</sub> (trigonal)                                       | 5m         | 51       |
| RbMnF <sub>3</sub>                                                                                       | 5m       | 44       | Silver antimony telluride, AgSbTe <sub>2</sub>                                    | 3m         | 47       |
| Rubidium manganese sulfate,                                                                              |          |          | Silver arsenate, Ag <sub>3</sub> AsO <sub>4</sub>                                 | 5          | 56       |
| Rb <sub>2</sub> Mn <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub>                                          | 7m       | 52       | Silver arsenic sulfide, xanthoconite,                                             |            |          |
| Rubidium nickel(II) chloride,                                                                            |          |          | Ag <sub>3</sub> AsS <sub>3</sub>                                                  | 8m         | 126      |
| RbNiCl <sub>3</sub>                                                                                      | 6m       | 58       | Silver bromate, AgBrO <sub>3</sub>                                                | 5          | 57       |
| Rubidium nickel sulfate,                                                                                 | _        | 70       | Silver bromide (bromargyrite), AgBr                                               | 4          | 46       |
| Rb2Ni2(SO <sub>4</sub> )3                                                                                | 8m       | 72       | Silver chlorate, Ag2CO3                                                           | 13m        | 36       |
| Rubidium nickel sulfate hydrate,<br>Rb <sub>2</sub> Ni(SO <sub>4</sub> ) <sub>2</sub> •6H <sub>2</sub> O | 8m       | 74       | Silver chlorate, AgClO <sub>3</sub>                                               | 7<br>4     | 44       |
|                                                                                                          | OIII     | / +      | billion children (childrengylite), Agel                                           | 4          | 44       |

|                                                                                           | Vol. or<br>Sec. | Page      |                                                                                                                             | Vol. or<br>Sec. | Page      |
|-------------------------------------------------------------------------------------------|-----------------|-----------|-----------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|
| Silver chromium oxide, Ag <sub>2</sub> CrO <sub>4</sub>                                   | 12m             | 30        | Sodium chromium oxide sulfate,                                                                                              |                 |           |
| Silver cyanide, AgCN                                                                      | 9m              | 48        | Na <sub>4</sub> (CrO <sub>4</sub> ) (SO <sub>4</sub> )                                                                      | 11m             | 55        |
| Silver fluoride, Ag <sub>2</sub> F                                                        | 5m              | 53        | Sodium cobalt(II) sulfate hydrate,                                                                                          |                 |           |
| Silver iodate, AgIO <sub>4</sub>                                                          | 9               | 49        | Na <sub>2</sub> Co(SO <sub>4</sub> ) <sub>2</sub> ·4H <sub>2</sub> O                                                        | 6m              | 61        |
| Silver iodide (iodargyrite), AgI                                                          |                 |           | Sodium cyanate, NaCNO                                                                                                       | 2m              | 33        |
| (hexagonal)                                                                               | 8<br>9          | 51<br>48  | Sodium cyanide, NaCN (cubic) Sodium cyanide, NaCN (orthorhombic)                                                            | 1               | 78        |
| Silver manganese oxide, AgMnO <sub>4</sub>                                                | 7m              | 155       | at 6 °C                                                                                                                     | 1               | 79        |
| Silver molybdenum oxide, Ag <sub>2</sub> MoO <sub>4</sub>                                 | 7               | 45        | Sodium fluoride (villiaumite), NaF                                                                                          | 1               | 63        |
| Silver nitrate, AgNO <sub>3</sub>                                                         | 5               | 59        | Sodium hydrogen fluoride, NaHF 2                                                                                            | 5               | 63        |
| Silver nitrite, AgNO <sub>2</sub>                                                         | 5               | 60        | Sodium hydrogen phosphate, Na <sub>3</sub> H(PO <sub>3</sub> )                                                              | 10m             | 130       |
| Silver oxidé, Ag <sub>2</sub> O                                                           | 1m              | 45        | Sodium hydrogen silicate hydrate,                                                                                           | _               | 1.60      |
| Silver phosphate Ag PO                                                                    | 4<br>5          | 61<br>62  | Na <sub>2</sub> H <sub>2</sub> SiO <sub>4</sub> •4H <sub>2</sub> O<br>Sodium hydrogen sulfate hydrate,                      | 7m              | 163       |
| Silver phosphate, Ag <sub>3</sub> PO <sub>4</sub>                                         | 8               | 53        | NaHSO <sub>4</sub> •H <sub>2</sub> O                                                                                        | 9m              | 52        |
| Silver selenate, Ag <sub>2</sub> SeO <sub>4</sub>                                         | 2m              | 32        | Sodium hydroxide, NaOH at 300 °C                                                                                            | 4m              | 69        |
| Silver sodium chloride, Ag <sub>0.5</sub> Na <sub>0.5</sub> Cl                            | 8m              | 79        | Sodium iodate, NaIO <sub>3</sub>                                                                                            | 7               | 47        |
| Silver sulfate, Ag <sub>2</sub> SO <sub>4</sub>                                           | 13m             | 37        | Sodium iodate, NaIO <sub>4</sub>                                                                                            | 7               | 48        |
| Silver sulfide (acanthite), Ag <sub>2</sub> S                                             | 10              | 51        | Sodium iodide, NaI                                                                                                          | 4               | 31        |
| Sodium, Na                                                                                | 9m              | 105       | Sodium iron fluoride, Na <sub>3</sub> FeF <sub>6</sub>                                                                      | 9m              | 54        |
| Sodium aluminum chloride silicate,                                                        | 7m              | 158       | Sodium lanthanum fluoride silicate,<br>(Na <sub>2</sub> La <sub>8</sub> )F <sub>2</sub> (SiO <sub>4</sub> ) <sub>6</sub>    | 7m              | 64        |
| sodalite, $Na_8Al_6Cl_2(SiO_4)_6$<br>Sodium azide, $\alpha$ -NaN <sub>3</sub> , at -90 to | 7111            | 130       | Sodium lanthanum molybdenum oxide,                                                                                          | 7111            | 04        |
| -100 °C                                                                                   | 8m ·            | 129       | NaLa (MoO <sub>4</sub> ) 2                                                                                                  | 10m             | 49        |
| Sodium azide, β-NaN <sub>3</sub>                                                          | 8m              | 130       | Sodium magnesium aluminum boron                                                                                             |                 |           |
| Sodium beryllium calcium fluoride                                                         |                 |           | hydroxide silicate, dravite,                                                                                                |                 |           |
| silicate, leucophanite,                                                                   |                 |           | NaMg <sub>3</sub> Al <sub>6</sub> B <sub>3</sub> (OH) <sub>4</sub> Si <sub>6</sub> O <sub>27</sub>                          | 3m              | 47        |
| NaBeCaFSi <sub>2</sub> O <sub>6</sub>                                                     | 8m              | 138       | Sodium magnesium carbonate (eitelite)                                                                                       |                 | 5.0       |
| Sodium borate, Na <sub>2</sub> B <sub>8</sub> O <sub>13</sub>                             | 7m<br>9         | 160<br>51 | Na <sub>2</sub> Mg(CO <sub>3</sub> ) <sub>2</sub><br>Sodium magnesium sulfate hydrate,                                      | 11m             | 56        |
| Sodium bromate, NaBrO <sub>3</sub>                                                        | 5               | 65        | bloedite, Na <sub>2</sub> Mg(SO <sub>4</sub> ) <sub>2</sub> ·4H <sub>2</sub> O ······                                       | 6m              | 63        |
| Sodium bromide, NaBr                                                                      | 3               | 47        | Sodium manganese(II) fluoride,                                                                                              |                 |           |
| Sodium bromide chloride,                                                                  |                 |           | NaMnF <sub>3</sub>                                                                                                          | 6m              | 65        |
| NaBr <sub>.33</sub> Cl <sub>.67</sub>                                                     | 11m             | 49        | Sodium mercury(II) chloride hydrate,                                                                                        |                 |           |
| Sodium bromide chloride,                                                                  |                 |           | NaHgCl <sub>3</sub> •2H <sub>2</sub> O                                                                                      | 6m              | 66        |
| NaBr <sub>67</sub> Cl <sub>33</sub>                                                       | 11m             | 50        | Sodium molybdenum oxide, Na <sub>2</sub> MoO <sub>4</sub>                                                                   | 1m<br>9m        | 46<br>110 |
| hydrate, thomsenolite, NaCaAlF <sub>6</sub> ·H <sub>2</sub> O                             | 8m              | 132       | Sodium molybdenum oxide, Na <sub>2</sub> Mo <sub>2</sub> O <sub>7</sub> Sodium neodymium fluoride silicate,                 | Jii             | 110       |
| Sodium calcium beryllium aluminum                                                         | Ç               | 132       | (Na <sub>2</sub> Nd <sub>8</sub> )F <sub>2</sub> (SiO <sub>4</sub> ) <sub>6</sub>                                           | 7m              | 66        |
| fluorosilicate, meliphanite,                                                              |                 |           | Sodium nickel(II) sulfate hydrate,                                                                                          |                 |           |
| $(Na_{0.63}Ca_{1.37})Be(Al_{0.13}Si_{1.87})$                                              |                 |           | Na <sub>2</sub> Ni(SO <sub>4</sub> ) <sub>2</sub> •4H <sub>2</sub> O                                                        | 6m              | 68        |
| $(O_{6,25}F_{0,75})$                                                                      | 8m              | 135       | Sodium nitrate (soda-niter), NaNO <sub>3</sub>                                                                              | 6               | 50        |
| Sodium calcium carbonate hydrate,                                                         | 0               | 100       | Sodium nitrite, NaNO <sub>2</sub>                                                                                           | 10              | 62        |
| pirssonite, $Na_2Ca(CO_3)_2 \cdot 2H_2O$<br>Sodium calcium silicate, $Na_2CasiO_4$        | 9m<br>10m       | 106<br>48 | Sodium oxide, Na <sub>2</sub> O                                                                                             | 10m<br>3m       | 134<br>49 |
| Sodium calcium sulfate (glauberite),                                                      | 10111           | 40        | Sodium phosphate hydrate,                                                                                                   | J.11            | 4,0       |
| Na <sub>2</sub> Ca(SO <sub>4</sub> ) <sub>2</sub>                                         | 6m              | 59        | Na <sub>3</sub> P <sub>3</sub> O <sub>9</sub> •H <sub>2</sub> O                                                             | 3m              | 50        |
| Sodium carbonate hydrate (thermo-                                                         |                 |           | Sodium phosphate hydrate,                                                                                                   |                 |           |
| natrite), Na <sub>2</sub> CO <sub>3</sub> ·H <sub>2</sub> O                               | 8               | 54        | $\alpha$ -Na <sub>4</sub> P <sub>4</sub> O <sub>12</sub> ·4H <sub>2</sub> O (monoclinic)                                    | 13m             | 39        |
| Sodium carbonate sulfate, Na <sub>4</sub> CO <sub>3</sub> SO <sub>4</sub>                 | 11m             | 51        | Sodium phosphate hydrate,                                                                                                   | 2               | 25        |
| Sodium carbonate sulfate (burkeite),                                                      | 1 1m            | 52        | $\beta$ -Na <sub>4</sub> P <sub>4</sub> O <sub>12</sub> ·4H <sub>2</sub> O (triclinic)<br>Sodium phosphate hydrate,         | 2m              | 35        |
| $Na_6CO_3(SO_4)_2$                                                                        | 11m             | 32        | Na <sub>6</sub> P <sub>6</sub> O <sub>18</sub> •6H <sub>2</sub> O                                                           | 5m              | 54        |
| Na <sub>6</sub> CO <sub>3</sub> (SO <sub>4</sub> ) <sub>2</sub>                           | 11m             | 53        | Sodium praseodymium fluoride                                                                                                | -               |           |
| Sodium carbonate sulfate,                                                                 |                 |           | silicate, (Na <sub>2</sub> Pr <sub>8</sub> )F <sub>2</sub> (SiO <sub>4</sub> ) <sub>6</sub>                                 | 7m              | 68        |
| Na <sub>6</sub> (CO <sub>3</sub> ) <sub>2</sub> SO <sub>4</sub>                           | 11m             | 54        | Sodium selenate, Na <sub>2</sub> SeO <sub>4</sub>                                                                           | 9m              | 55        |
| Sodium chlorate, NaClO <sub>3</sub>                                                       | 3               | 51        | Sodium selenide, Na <sub>2</sub> Se                                                                                         | 10m             | 135       |
| Sodium chlorate, NaClO <sub>4</sub>                                                       | 7               | 40        | Sodium silicate, $\alpha(III)$ , $Na_2Si_2O_5$                                                                              | 8m              | 141       |
| (orthorhombic)                                                                            | 7<br>2          | 49<br>41  | Sodium silicate, $\beta$ -Na <sub>2</sub> Si <sub>2</sub> O <sub>5</sub><br>Sodium sulfate, Na <sub>2</sub> SO <sub>4</sub> | 10m<br>11m      | 136<br>57 |
| Sodium chromium oxide, Na <sub>2</sub> CrO <sub>4</sub>                                   | 9m              | 48        | Sodium sulfate (thenardite), Na <sub>2</sub> SO <sub>4</sub>                                                                | 2               | 59        |
| Sodium chromium oxide hydrate,                                                            |                 |           | Sodium sulfide, Na <sub>2</sub> S                                                                                           | 10m             | 140       |
| Na <sub>2</sub> CrO <sub>4</sub> ·4H <sub>2</sub> O ····································  | 9m              | 50        | Sodium sulfite, Na <sub>2</sub> SO <sub>3</sub>                                                                             | 3               | 60        |
| Sodium chromium oxide hydrate,                                                            | -               | 60        | Sodium telluride, Na <sub>2</sub> Te                                                                                        | 10m             | 141       |
| $Na_2Cr_2O_7 \cdot 2H_2O \cdot \cdot \cdot \cdot$                                         | 7m              | 62        | Sodium tin fluoride, NaSn <sub>2</sub> F <sub>5</sub>                                                                       | 7m              | 166       |

|                                                                                                  | Vol. or<br>Sec. | Page     |                                                                                                                           | Vol. or<br>Sec. | Page     |
|--------------------------------------------------------------------------------------------------|-----------------|----------|---------------------------------------------------------------------------------------------------------------------------|-----------------|----------|
| Sodium tungsten ovide Na-WO.                                                                     | lm              | 47       | Tellurium, Te                                                                                                             | 1               | 26       |
| Sodium tungsten oxide, Na <sub>2</sub> WO <sub>4</sub><br>Sodium tungsten(VI) oxide hydrate,     | <b>1</b> 10     | 4,       | Tellurium(IV) oxide (paratellurite),                                                                                      | _               | 20       |
| Na <sub>2</sub> WO <sub>4</sub> • 2H <sub>2</sub> O                                              | 2m              | 33       | TeO <sub>2</sub> (tetragonal)                                                                                             | 7               | 56       |
| Sodium zinc fluoride, NaZnF3                                                                     | 6m              | 74       | Tellurium(IV) oxide, paratellurite,                                                                                       |                 |          |
| Sodium zinc sulfate hydrate,                                                                     |                 |          | TeO <sub>2</sub> (tetragonal)                                                                                             | 10              | 55       |
| Na <sub>2</sub> Zn (SO <sub>4</sub> ) <sub>2</sub> •4H <sub>2</sub> O                            | 6m              | 72       | Tellurium(IV) oxide, tellurite,                                                                                           | 0               | - 7      |
| Sodium zirconium fluoride,                                                                       | Ωm              | 144      | Terbium antimony, TbSb                                                                                                    | 9<br>5m         | 57<br>61 |
| Na <sub>7</sub> Zr <sub>6</sub> F <sub>31</sub> Strontium aluminum hydroxide,                    | 8m              | 144      | Terbium arsenate, TbAsO <sub>4</sub>                                                                                      | 3m              | 54       |
| Sr <sub>3</sub> Al <sub>2</sub> (OH) <sub>12</sub>                                               | 10m             | 50       | Terbium arsenide, TbAs                                                                                                    | 5m              | 75       |
| Strontium aluminum oxide, Sr <sub>3</sub> Al <sub>2</sub> O <sub>6</sub>                         | 10m             | 52       | Terbium nitride, TbN                                                                                                      | 4m              | 70       |
| Strontium arsenate, Sr <sub>3</sub> (AsO <sub>4</sub> ) <sub>2</sub>                             | 2m              | 36       | Terbium phosphide, TbP                                                                                                    | 5m              | 76       |
| Strontium azide, Sr(N <sub>3</sub> ) <sub>2</sub>                                                | 8m              | 146      | Terbium selenide, TbSe                                                                                                    | 5m              | 76       |
| Strontium borate, SrB <sub>2</sub> O <sub>4</sub>                                                | 3m              | 53       | Terbium silver, TbAg                                                                                                      | 5m              | 74       |
| Strontium borate, SrB <sub>4</sub> O <sub>7</sub>                                                | 4m              | 36<br>54 | Terbium sulfide, TbS  Terbium telluride, TbTe                                                                             | 5m<br>5m        | 77<br>77 |
| Strontium bromide fluoride, SrBrF Strontium bromide hydrate,                                     | 10m             | 24       | Terbium vanadium oxide, TbVO <sub>4</sub>                                                                                 | 5m              | 56       |
| SrBr <sub>2</sub> ·6H <sub>2</sub> O                                                             | 4               | 60       | Thallium aluminum sulfate hydrate,                                                                                        |                 |          |
| Strontium carbonate (strontianite),                                                              |                 |          | TlA1(SO <sub>4</sub> ) <sub>2</sub> •12H <sub>2</sub> O                                                                   | 6               | 53       |
| srco <sub>3</sub>                                                                                | 3               | 56       | Thallium(I) arsenate, Tl <sub>3</sub> AsO <sub>4</sub>                                                                    | 2m              | 37       |
| Strontium chloride, SrCl <sub>2</sub>                                                            | 4               | 40       | Thallium azide, TlN <sub>3</sub>                                                                                          | 8m              | 82       |
| Strontium chloride fluoride, SrClF                                                               | 10m             | 55       | Thallium(I) bromate, TlBrO <sub>3</sub>                                                                                   | 8               | 60       |
| Strontium chloride hydrate,                                                                      |                 |          | Thallium bromide, TlBr                                                                                                    | 7               | 57       |
| SrCl <sub>2</sub> •2H <sub>2</sub> O                                                             | 11m             | 58       | Thallium cadmium sulfate,                                                                                                 | Om              | 03       |
| Strontium chloride hydrate,<br>SrCl <sub>2</sub> •6H <sub>2</sub> O                              | 4               | 58       | $Tl_2Cd_2(SO_4)_3$                                                                                                        | 8m<br>2m        | 83<br>38 |
| Strontium chloride hydroxide                                                                     | -               | 30       | Thallium(I) chlorate, TlClO <sub>3</sub>                                                                                  | 8               | 61       |
| phosphate, Sr <sub>5</sub> Cl <sub>.65</sub> (OH) <sub>.35</sub> (PO <sub>4</sub> ) <sub>3</sub> | 11m             | 60       | Thallium(I) chloride, TlCl                                                                                                | 4               | 51       |
| Strontium fluoride, SrF <sub>2</sub>                                                             | 5               | 67       | Thallium chromium oxide, Tl <sub>2</sub> CrO <sub>4</sub>                                                                 | 3m              | 54       |
| Strontium hydroxide, Sr(OH) <sub>2</sub>                                                         | 13m             | 41       | Thallium chromium sulfate hydrate,                                                                                        |                 |          |
| Strontium hydroxide hydrate,                                                                     |                 |          | TlCr (SO <sub>4</sub> ) <sub>2</sub> •12H <sub>2</sub> O                                                                  | 6               | 55       |
| Sr (OH) 2 • H2O                                                                                  | 13m             | 42       | Thallium cobalt sulfate,                                                                                                  | 0               | 0.5      |
| Strontium hydroxide hydrate,<br>Sr(OH) <sub>2</sub> •8H <sub>2</sub> O                           | 13m             | 43       | $Tl_2Co_2(SO_4)_3$                                                                                                        | 8m              | 85       |
| Strontium indium hydroxide,                                                                      | 1311            | 43       | T1 <sub>2</sub> Co(SO <sub>4</sub> ) <sub>2</sub> •6H <sub>2</sub> O                                                      | 7m              | 70       |
| Sr <sub>3</sub> In <sub>2</sub> (OH) <sub>12</sub>                                               | 6m              | 76       | Thallium copper sulfate hydrate,                                                                                          |                 |          |
| Strontium iodide hydrate,                                                                        |                 |          | Tl <sub>2</sub> Cu(SO <sub>4</sub> ) <sub>2</sub> •6H <sub>2</sub> O                                                      | 7m              | 72       |
| SrI <sub>2</sub> •6H <sub>2</sub> O                                                              | 8               | 58       | Thallium gallium sulfate hydrate,                                                                                         |                 |          |
| Strontium manganese oxide, SrMnO <sub>3</sub>                                                    |                 |          | T1Ga (SO <sub>4</sub> ) <sub>2</sub> ·12H <sub>2</sub> O                                                                  | 6               | 57       |
| (cubic)                                                                                          | 10m             | 56       | Thallium(I) iodate, TlIO <sub>3</sub>                                                                                     | 8               | 62       |
| Strontium manganese oxide, SrMnO <sub>3</sub> (hexagonal)                                        | 1 Om            | 58       | Thallium(I) iodide, TlI (orthorhombic)                                                                                    | 4               | 53       |
| Strontium molybdenum oxide, SrMoO <sub>4</sub>                                                   | 10m<br>7        | 50       | Thallium iron sulfate hydrate,                                                                                            | 4               | 23       |
| Strontium nitrate, Sr(NO <sub>3</sub> ) <sub>2</sub>                                             | 12m             | 31       | Tl <sub>2</sub> Fe(SO <sub>4</sub> ) <sub>2</sub> •6H <sub>2</sub> O                                                      | 8m              | 87       |
| Strontium oxide, SrO                                                                             | 5               | 68       | Thallium magnesium chromium oxide,                                                                                        |                 |          |
| Strontium oxide, SrO <sub>2</sub>                                                                | 6               | 52       | $Tl_2Mg_2(CrO_4)_3$                                                                                                       | 8m              | 89       |
| Strontium oxide hydrate, SrO <sub>2</sub> ·8H <sub>2</sub> O                                     | 11m             | 61       | Thallium magnesium sulfate hydrate,                                                                                       |                 |          |
| Strontium phosphate, $\alpha$ -Sr <sub>2</sub> P <sub>2</sub> O <sub>7</sub>                     | 11m             | 62       | Tl <sub>2</sub> Mg(SO <sub>4</sub> ) <sub>2</sub> •6H <sub>2</sub> O                                                      | 7m              | 74       |
| Strontium phosphate, $\alpha-Sr_3(PO_4)_2$ Strontium scandium oxide hydrate,                     | 11m             | 64       | Thallium manganese sulfate, Tl <sub>2</sub> Mn <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub>                               | 7m              | 76       |
| Sr <sub>3</sub> Sc <sub>2</sub> O <sub>6</sub> ·6H <sub>2</sub> O                                | 6m              | 78       | Thallium nickel sulfate hydrate,                                                                                          | 7111            | ,0       |
| Strontium silicate, Sr <sub>3</sub> SiO <sub>5</sub>                                             | 13m             | 44       | Tl <sub>2</sub> Ni (SO <sub>4</sub> ) <sub>2</sub> •6H <sub>2</sub> O                                                     | 7m              | 78       |
| Strontium sulfate (celestite),                                                                   |                 |          | Thallium(I) nitrate, TlNO3                                                                                                | 6               | 58       |
| Srso <sub>4</sub>                                                                                | 2               | 61       | Thallium(III) oxide, Tl <sub>2</sub> O <sub>3</sub>                                                                       | 2               | 28       |
| Strontium sulfide, SrS                                                                           | 7               | 52       | Thallium(I) phosphate, Tl <sub>3</sub> PO <sub>4</sub>                                                                    | 7               | 58       |
| Strontium telluride, SrTe                                                                        | 4m              | 69       | Thallium (III) phosphate, TlPO <sub>4</sub>                                                                               | 7               | 59       |
| Strontium tin oxide, $SrSnO_3$<br>Strontium titanium oxide, $SrTiO_3$                            | m8              | 80       | Thallium platinum chloride, Tl <sub>2</sub> PtCl <sub>6</sub> Thallium silicon fluoride, Tl <sub>2</sub> SiF <sub>6</sub> | 5<br>6          | 70<br>56 |
| Strontium tungsten oxide, SrWO <sub>4</sub>                                                      | 3<br>7          | 44<br>53 | Thallium (I) sulfate, Tl <sub>2</sub> SO <sub>4</sub>                                                                     | 6               | 56<br>59 |
| Strontium tungsten oxide, Sr <sub>2</sub> WO <sub>5</sub>                                        | 12m             | 32       | Thallium(I) thiocyanate, TlCNS                                                                                            | 8               | 63       |
| Strontium zirconium oxide, SrZrO3                                                                | 9               | 51       | Thallium tin chloride, Tl <sub>2</sub> SnCl <sub>6</sub>                                                                  | 6               | 54       |
| Sulfamic acid, H <sub>2</sub> NSO <sub>3</sub> H                                                 | 7               | 54       | Thallium(I) tungsten oxide, Tl <sub>2</sub> WO <sub>4</sub>                                                               | 1m              | 48       |
| Sulfur, S (orthorhombic)                                                                         | 9               | 54       | Thallium zinc sulfate hydrate,                                                                                            |                 |          |
| Tantalum, Ta                                                                                     | 1               | 29       | T1 <sub>2</sub> Zn (SO <sub>4</sub> ) <sub>2</sub> •6H <sub>2</sub> O                                                     | 7m              | 80       |
| Tantalum silicide, TaSi <sub>2</sub>                                                             | 8               | 59       | Thorium antimony, ThSb                                                                                                    | 4m              | 44       |

|                                                                          | Vol. or<br>Sec. | Page     |                                                                                                        | Vol. or<br>Sec. | Page       |
|--------------------------------------------------------------------------|-----------------|----------|--------------------------------------------------------------------------------------------------------|-----------------|------------|
|                                                                          | J.C.            | 1 age    |                                                                                                        | JCC.            | i age      |
| Thorium arsenide, ThAs                                                   | 4m              | 70       | Yttrium titanium oxide, Y2TiO5                                                                         | 11m             | 113        |
| Thorium cobalt, Th <sub>2</sub> Co <sub>17</sub>                         | 12m             | 64       | Yttrium vanadium oxide, YVO4                                                                           | 5m              | 59         |
| Thorium iron, Th <sub>2</sub> Fe <sub>17</sub>                           | 12m             | 67       | Zinc, Zn                                                                                               | 1               | 16         |
| Thorium oxide (thorianite), ThO <sub>2</sub>                             | 1               | 57       | Zinc aluminum oxide (gahnite),                                                                         |                 | 1.7        |
| Thulium antimony, TmSb                                                   | 4m              | 45       | ZnAl <sub>2</sub> O <sub>4</sub>                                                                       | 2               | 38         |
| Thulium arsenate, TmAsO <sub>4</sub>                                     | 3m              | 56       | Zinc ammine bromide, Zn(NH <sub>3</sub> ) <sub>2</sub> Br <sub>2</sub>                                 | 11m             | 68         |
| Thulium arsenide, TmAs Thulium nitride, TmN                              | 4m              | 71       | Zinc ammine chloride, Zn(NH <sub>3</sub> ) <sub>2</sub> Cl <sub>2</sub>                                | 10m             | 59         |
| Thulium oxide, Tm <sub>2</sub> O <sub>3</sub>                            | 4m<br>9         | 71<br>58 | Zinc antimony oxide, ZnSb <sub>2</sub> O <sub>4</sub><br>Zinc borate, ZnB <sub>2</sub> O <sub>4</sub>  | 4m<br>1         | 39<br>83   |
| Thulium silver, TmAg                                                     | 5m              | 74       | Zinc borate, $Zn_4B_6O_{13}$                                                                           | 13m             | 48         |
| Thulium telluride, TmTe                                                  | 4m              | 72       | Zinc carbonate, smithsonite, ZnCO <sub>3</sub>                                                         | 8               | 69         |
| Thulium vanadium oxide, TmVO4                                            | 5m              | 57       | Zinc chromium oxide, ZnCr <sub>2</sub> O <sub>4</sub>                                                  | 9m              | 59         |
| Tin, $\alpha$ -Sn (cubic)                                                | 2               | 12       | Zinc cobalt oxide, ZnCo <sub>2</sub> O <sub>4</sub>                                                    | 10m             | 60         |
| Tin, $\beta$ -Sn (tetragonal)                                            | 1               | 24       | Zinc cyanide, Zn(CN) <sub>2</sub>                                                                      | 5               | 73         |
| Tin arsenide, SnAs                                                       | 4m              | 37       | Zinc fluoride, ZnF <sub>2</sub>                                                                        | 6               | 60         |
| Tin(II) fluoride, SnF <sub>2</sub>                                       | 3m              | 51       | Zinc fluoride hydrate,                                                                                 |                 |            |
| Tin hydrogen phosphate, SnHPO4                                           | 13m             | 46       | ZnF <sub>2</sub> •4H <sub>2</sub> O                                                                    | 11m             | 69         |
| Tin(IV) iodide, SnI <sub>4</sub>                                         | 5               | 71       | Zinc germanium oxide, Zn <sub>2</sub> GeO <sub>4</sub>                                                 | 10              | 56         |
| Tin(II) oxide, (romarchite), SnO                                         | 4               | 28       | Zinc hydroxide silicate hydrate,                                                                       |                 | ,          |
| Tin(IV) oxide (cassiterite), SnO <sub>2</sub>                            | _1              | 54       | hemimorphite, Zn <sub>4</sub> (OH) <sub>2</sub> Si <sub>2</sub> O <sub>7</sub> •H <sub>2</sub> O       | 2               | 62         |
| Tin sulfide (berndtite), $\beta$ -SnS <sub>2</sub>                       | 9m              | 57       | Zinc iodide, ZnI <sub>2</sub>                                                                          | 9               | 60         |
| Tin(II) telluride, SnTe                                                  | 7               | 61       | Zinc iron oxide (franklinite),                                                                         | 0               | 60         |
| Titanium, Ti                                                             | 3               | 1        | ZnFe <sub>2</sub> O <sub>4</sub>                                                                       | 9m              | 60         |
| Titanium oxide (anatase), TiO <sub>2</sub>                               | 7m              | 82       | Zinc manganese oxide (hetaerolite),                                                                    | 1.0             | 63         |
| Titanium oxide, brookite, TiO <sub>2</sub> (orthorhombic)                | 3m              | 57       | ZnMn <sub>2</sub> O <sub>4</sub> Zinc molybdenum oxide, Zn <sub>2</sub> Mo <sub>3</sub> O <sub>8</sub> | 10m<br>7m       | 61<br>173  |
| Titanium oxide (rutile), TiO <sub>2</sub>                                | 7m              | 83       | Zinc nitrate hydrate,                                                                                  | 7111            | į          |
| Titanium(III) oxide, TiO <sub>1.515</sub>                                | 9               | 59       | α-Zn (NO <sub>3</sub> ) <sub>2</sub> •6H <sub>2</sub> O                                                | 12m             | 36         |
| Titanium silicide, Ti <sub>5</sub> Si <sub>3</sub>                       | 8               | 64       | Zinc oxide (zincite), ZnO                                                                              | 2               | 25         |
| Titanium sulfide, TiS <sub>2</sub>                                       | 4m              | 72       | Zinc selenide, ZnSe                                                                                    | 3               | 23         |
| Titanium sulfide, Ti <sub>2</sub> S                                      | 8m              | 149      | Zinc silicate (willemite), Zn <sub>2</sub> SiO <sub>4</sub>                                            | 7               | 62         |
| Tungsten, W                                                              | 1               | 28       | Zinc silicon fluoride hydrate,                                                                         |                 |            |
| Tungsten, W (reference standard)                                         | 8m              | 2        | ZnSiF <sub>6</sub> ·6H <sub>2</sub> O                                                                  | 8               | 70         |
| Tungsten sulfide (tungstenite), WS2                                      | 8               | 65       | Zinc sulfate (zinkosite), ZnSO4                                                                        | 7               | 64         |
| Uranium oxide, UO                                                        | 5m              | 78       | Zinc sulfate hydrate (goslarite),                                                                      |                 | · ·        |
| Uranium oxide (uraninite), UO <sub>2</sub>                               | 2               | 33       | ZnSO <sub>4</sub> •7H <sub>2</sub> O                                                                   | 8               | 71         |
| Uranium selenide, USe                                                    | 5m              | 78       | Zinc sulfide (wurtzite), α-ZnS                                                                         | _               | 7.4        |
| Uranium telluride, UTe                                                   | 4m              | 73       | (hexagonal)                                                                                            | 2               | 14         |
| Vanadium, V<br>Vanadium gold 3:1, V <sub>3</sub> Au                      | 9m              | 58       | Zinc sulfide (sphaelerite), $\beta$ -ZnS (cubic)                                                       | 2               | 16         |
| Vanadium iridium 3:1, V <sub>3</sub> Ir                                  | 6m              | 18<br>21 | Zinc telluride, ZnTe                                                                                   | 3m              | 58         |
| Vanadium(V) oxide, V <sub>2</sub> O <sub>5</sub>                         | 6m<br>8         | 66       | Zinc tin oxide, Zn <sub>2</sub> SnO <sub>4</sub>                                                       | 10m             | 62         |
| Vanadium palladium 3:1, V <sub>3</sub> Pd                                | 6m              | 32       | Zinc titanium oxide, ZnTiO3                                                                            | 13m             | 49         |
| Vanadium platinum 3:1, V <sub>3</sub> Pt                                 | 6m              | 34       | Zinc titanium oxide, Zn <sub>2</sub> TiO <sub>4</sub>                                                  | 12m             | 37         |
| Vanadium rhodium 3:1, V <sub>3</sub> Rh                                  | 6m              | 56       | Zinc tungsten oxide (sanmartinite),                                                                    |                 |            |
| Ytterbium antimony, YbSb                                                 | 4m              | 45       | ZnWO4                                                                                                  | 2m              | 40         |
| Ytterbium arsenate, YbAsO <sub>4</sub>                                   | 4m              | 38       | Zirconium, α-Zr                                                                                        | 2               | 11         |
| Ytterbium arsenide, YbAs                                                 | 4m              | 73       | Zirconium hydride, ZrH <sub>2</sub>                                                                    | 5m              | 6 <b>0</b> |
| Ytterbium gallium oxide, Yb <sub>3</sub> Ga <sub>5</sub> O <sub>12</sub> | 1m              | 49       | Zirconium iodate, Zr(IO <sub>3</sub> ) <sub>4</sub>                                                    | lm              | 51         |
| Ytterbium nitride, YbN                                                   | 4m              | 74       | Zirconium nitride, ZrN                                                                                 | 5m              | 80         |
| Ytterbium oxide, Yb <sub>2</sub> O <sub>3</sub>                          | 6m              | 80       | Zirconium oxide, ZrO                                                                                   | 5m              | 81         |
| Ytterbium selenide, YbSe                                                 | 5m              | 79       | Zirconium phosphide, ZrP                                                                               | 4m              | 75         |
| Ytterbium telluride, YbTe                                                | 5m              | 79       | Zirconium silicate, zircon, ZrSiO4                                                                     | 4               | 68         |
| Ytterbium(III) vanadium oxide, YbVO <sub>4</sub>                         | 5m              | 58<br>46 | Zirconium sulfate hydrate                                                                              | 7               | 66         |
| Yttrium antimony, YSb<br>Yttrium arsenate, YAsO <sub>4</sub>             | 4m<br>2m        | 46<br>39 | (zircosulfate), Zr(SO <sub>4</sub> ) <sub>2</sub> ·4H <sub>2</sub> O                                   | 7               | 66         |
| Yttrium arsenide, YAs                                                    | 2m<br>4m        | 39<br>74 |                                                                                                        |                 |            |
| Yttrium gallium oxide, Y <sub>3</sub> Ga <sub>5</sub> O <sub>12</sub>    | 1m              | 50       |                                                                                                        |                 |            |
| Yttrium nickel, YNi <sub>3</sub>                                         | 10m             | 123      |                                                                                                        |                 |            |
| Yttrium oxide, Y <sub>2</sub> O <sub>3</sub>                             | 3               | 28       |                                                                                                        |                 |            |
| Yttrium oxychloride, YOCl                                                | lm              | 51       |                                                                                                        |                 |            |
| Yttrium phosphate (xenotime), YPO4                                       | 8               | 67       |                                                                                                        |                 |            |
| Yttrium silver, YAg                                                      | 5m              | 75       |                                                                                                        |                 |            |
| Yttrium sulfide, YS                                                      | 5m              | 80       |                                                                                                        |                 |            |
| Yttrium telluride, YTe                                                   | 4m              | 75       |                                                                                                        |                 |            |
|                                                                          |                 |          |                                                                                                        |                 |            |

#### CUMULATIVE ORGANIC INDEX

| ે પ્                                                                                                                                                                          | Vol. or |      |                                                                                              | Vol. or |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|----------------------------------------------------------------------------------------------|---------|------|
|                                                                                                                                                                               | Sec.    | Page |                                                                                              | Sec.    | Page |
| F                                                                                                                                                                             |         |      |                                                                                              |         |      |
| 4-Acetyl-2'-fluorodiphenyl,                                                                                                                                                   |         |      | Nickel acetate hydrate,                                                                      |         | 2.7  |
| ુC <sub>14</sub> H <sub>11</sub> FO                                                                                                                                           | 8m      | 91   | $Ni (C_2H_3O_2)_2 \cdot 4H_2O$                                                               | 13m     | 31   |
| Alanine, L, CH3CHNH2CO2H                                                                                                                                                      |         | 93   | Nickel hexaimidazole nitrate,                                                                |         |      |
| Ammonium acetate, NH4 CH3CO2                                                                                                                                                  | 8m      | 95   | $Ni(C_3H_4N_2)_6(NO_3)_2$                                                                    | 7m      | 27   |
| Ammonium formate, NH4HCO2                                                                                                                                                     |         | 9    | Nickel tetrapyrazole chloride,                                                               |         |      |
| Ammonium oxalate hydrate (oxammite),                                                                                                                                          |         |      | $Ni(C_3H_4N_2)_4Cl_2$                                                                        | 8m      | 44   |
| (NH <sub>4</sub> ) <sub>2</sub> C <sub>2</sub> O <sub>4</sub> • H <sub>2</sub> O                                                                                              | 7       | 5    | Octahydro-1,3,5,7-tetranitro-                                                                |         |      |
| Ammonium yttrium oxalate hydrate,                                                                                                                                             |         |      | 1,3,5,7-tetrazocine $(\alpha-HMX)$ ,                                                         |         |      |
| NH <sub>4</sub> Y (C <sub>2</sub> O <sub>4</sub> ) <sub>2</sub> ·H <sub>2</sub> O                                                                                             | 8m      | 97   | C <sub>4</sub> H <sub>8</sub> N <sub>8</sub> O <sub>8</sub>                                  | 11m     | 100  |
| Ascorbic acid, L-C <sub>6</sub> H <sub>8</sub> O <sub>6</sub>                                                                                                                 | 8m      | 99   | Octahydro-1,3,5,7-tetranitro-                                                                |         |      |
| Azobenzene, C <sub>6</sub> H <sub>5</sub> NNC <sub>6</sub> H <sub>5</sub>                                                                                                     | 7m      | 86   | 1,3,5,7-tetrazocine $(\beta-HMX)$ ,                                                          |         |      |
| Cadmium hexaimidazole nitrate,                                                                                                                                                |         |      | C4H8N8O8                                                                                     | 11m     | 102  |
| $Cd(C_3H_4N_2)_6(NO_3)_2$                                                                                                                                                     | 8m      | 23   | Palladium bis-(N-isopropyl-3-ethyl-                                                          |         |      |
| Calcium formate, Ca(HCO <sub>2</sub> ) <sub>2</sub>                                                                                                                           |         | 16   | salicylaldiminate), Pd(C <sub>12</sub> H <sub>16</sub> NO) <sub>2</sub>                      | 7m      | 144  |
| Calcium malate hydrate,                                                                                                                                                       |         |      | Pimelic acid, (CH <sub>2</sub> ) <sub>5</sub> (CO <sub>2</sub> H) <sub>2</sub>               | 7m      | 153  |
| Ca (O <sub>2</sub> C) <sub>2</sub> (CH <sub>2</sub> CHOH) • 2H <sub>2</sub> O                                                                                                 | 10m     | 76   | Potassium formate-formic acid                                                                |         |      |
| Cobalt acetate hydrate,                                                                                                                                                       |         |      | complex, KO <sub>2</sub> CH·HO <sub>2</sub> CH                                               | 9m      | 93   |
| Co(C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> ) <sub>2</sub> *4H <sub>2</sub> O                                                                                             | 12m     | 19   | Potassium hydrogen o-phthalate,                                                              |         |      |
| Copper glutamate hydrate,                                                                                                                                                     |         |      | С6H4 (СООН) (СООК)                                                                           | 4m      | 30   |
| Cu(O <sub>2</sub> C) <sub>2</sub> (H <sub>2</sub> NCHCH <sub>2</sub> CH <sub>2</sub> ) • 2H <sub>2</sub> O                                                                    | 7m      | 110  | Potassium oxalate hydrate,                                                                   |         |      |
| Copper imidazole nitrate,                                                                                                                                                     |         |      | K <sub>2</sub> C <sub>2</sub> O <sub>4</sub> •H <sub>2</sub> O                               | 9m      | 39   |
| Cu (C <sub>3</sub> H <sub>4</sub> N <sub>2</sub> ) <sub>4</sub> (NO <sub>3</sub> ) <sub>2</sub>                                                                               | 1.3m    | 24   | Potassium oxalate perhydrate,                                                                |         |      |
| Copper tetrapyrazole chloride,                                                                                                                                                |         |      | K <sub>2</sub> C <sub>2</sub> O <sub>4</sub> •H <sub>2</sub> O <sub>2</sub>                  | 9m      | 96   |
| Cu (C <sub>3</sub> H <sub>4</sub> N <sub>2</sub> ) <sub>4</sub> Cl <sub>2</sub>                                                                                               | 8m      | 31   | Reserpine, C <sub>33</sub> H <sub>40</sub> N <sub>2</sub> O <sub>9</sub>                     | 8m      | 123  |
| Cysteine, L, HSCH2 *CH(NH2) *COOH                                                                                                                                             |         | 86   | Rubidium oxalate perhydrate,                                                                 | <b></b> |      |
| Dibenzoylmethane, (C6H5CO) <sub>2</sub> CH <sub>2</sub>                                                                                                                       | 7m      | 115  | Rb <sub>2</sub> C <sub>2</sub> O <sub>4</sub> •H <sub>2</sub> O <sub>2</sub>                 | 9m      | 102  |
| bis-(o-Dodecacarborane), C <sub>4</sub> B <sub>2</sub> OH <sub>2</sub> 2                                                                                                      | 6m      | 7    | Silver oxalate, Ag <sub>2</sub> C <sub>2</sub> O <sub>4</sub>                                | 9m      | 47   |
| Glucose, D, $\alpha$ , (dextrose), C <sub>6</sub> H <sub>12</sub> O <sub>6</sub>                                                                                              | 11m     | 28   | Sodium D-tartrate hydrate,                                                                   | 2       |      |
| Glyoxime, $H_2C_2$ (NOH) 2                                                                                                                                                    |         | 102  | (CHOH-CO <sub>2</sub> Na) <sub>2</sub> •2H <sub>2</sub> O                                    | 11m     | 110  |
| Hexamethylenediammonium adipate,                                                                                                                                              | 0       |      | Sodium oxalate, Na <sub>2</sub> C <sub>2</sub> O <sub>4</sub>                                | 6m      | 70   |
| (CH <sub>2</sub> ) 4 (CO <sub>2</sub> H <sub>3</sub> N) <sub>2</sub> (CH <sub>2</sub> ) <sub>6</sub>                                                                          | 7m      | 121  | Strontium formate, Sr(CHO <sub>2</sub> ) <sub>2</sub>                                        | 8       | 55   |
| Holmium ethylsulfate hydrate,                                                                                                                                                 | 7111    |      | Strontium formate hydrate,                                                                   | Ü       | 33   |
| Ho[(C <sub>2</sub> H <sub>5</sub> )SO <sub>4</sub> ] <sub>3</sub> •9H <sub>2</sub> O                                                                                          | lm      | 18   | Sr(CHO <sub>2</sub> ) <sub>2</sub> ·2H <sub>2</sub> O (orthorhombic)                         | 8       | 56   |
| Hydroquinone, Y-HOC <sub>6</sub> H <sub>4</sub> OH                                                                                                                            |         | 107  | Sucrose, $C_{12}H_{22}O_{11}$                                                                | 11m     | 66   |
| Iron oxalate hydrate (humboldtine),                                                                                                                                           | Om      | 10,  | Tartaric acid, D, (CHOHCO <sub>2</sub> H) <sub>2</sub>                                       | 7m      | 168  |
| FeC <sub>2</sub> O <sub>4</sub> •2H <sub>2</sub> O                                                                                                                            | 10m     | 24   | Trimethylammonium chloride,                                                                  | 710     | 100  |
| Lead formate, Pb(HCO <sub>2</sub> ) <sub>2</sub>                                                                                                                              |         | 30   |                                                                                              | 9m      | 113  |
|                                                                                                                                                                               |         | 34   | (CH <sub>3</sub> ) <sub>3</sub> NHC1                                                         | 9III    | 113  |
| Lithium oxalate, Li <sub>2</sub> C <sub>2</sub> O <sub>4</sub>                                                                                                                |         | 113  | 2,4,6-Trinitrophenetole,                                                                     | Om      | 152  |
| Mercury o-phthalate, C <sub>6</sub> H <sub>4</sub> (CO <sub>2</sub> Hg) <sub>2</sub><br>Methyl sulfonanilide, C <sub>6</sub> H <sub>5</sub> NHSO <sub>2</sub> CH <sub>3</sub> | 9m      | 78   | C <sub>2</sub> H <sub>5</sub> OC <sub>6</sub> H <sub>2</sub> (NO <sub>2</sub> ) <sub>3</sub> | 8m<br>7 |      |
|                                                                                                                                                                               | 9111    | 76   | Urea, CO(NH <sub>2</sub> ) <sub>2</sub>                                                      |         | 61   |
| N-Methylphenazinium-7,7,8,8-tetra-                                                                                                                                            | 7       | 1.46 | Uric acid, C <sub>5</sub> H <sub>4</sub> N <sub>4</sub> O <sub>3</sub>                       | 8m      | 154  |
| cyanoquinodimethanide, C <sub>25</sub> H <sub>15</sub> N <sub>6</sub>                                                                                                         | 7m      | 146  | Zinc diimidazole chloride,                                                                   | 7       | 100  |
| 2-Naphthylamine, N-phenyl-,                                                                                                                                                   | C       | 20   | Zn(C <sub>3</sub> H <sub>4</sub> N <sub>2</sub> ) <sub>2</sub> Cl <sub>2</sub>               | 7m      | 123  |
| C <sub>10</sub> H <sub>7</sub> NHC <sub>6</sub> H <sub>5</sub>                                                                                                                | 6m      | 29   | Zinc glutamate hydrate,                                                                      |         | 1.70 |
| Neodymium ethylsulfate hydrate,                                                                                                                                               | _       | 4.7  | $Zn (O_2CCHNH_2CH_2CH_2CO_2) \cdot 2H_2O \dots$                                              | 7m      | 170  |
| Nd[(C <sub>2</sub> H <sub>5</sub> )SO <sub>4</sub> ] <sub>3</sub> •9H <sub>2</sub> O                                                                                          | 9       | 41   |                                                                                              |         |      |

|                                                                                                                               | Vol. or         |          |                                                                                                                                                                  | Vol. or   |                 |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------|
|                                                                                                                               | Sec.            | Page     |                                                                                                                                                                  | Sec.      | Page            |
| Acanthite, Ag <sub>2</sub> S (monoclinic)                                                                                     | 10              | 51       | Cryptohalite, (NH <sub>4</sub> ) <sub>2</sub> SiF <sub>6</sub>                                                                                                   | 5         | 5               |
| Aeschynite CeNbTiO <sub>6</sub>                                                                                               | 3m              | 24       | Cuprite, Cu <sub>2</sub> O                                                                                                                                       | 2         | 23              |
| Alabandite, MnS                                                                                                               | 4               | 11       | *Diamond, C                                                                                                                                                      | 2         | 5               |
| Alum, $KAl(SO_4)_2 \cdot 12H_2O$                                                                                              | 6<br><b>7</b> m | 36<br>82 | *Diaspore, Al <sub>2</sub> O <sub>3</sub> ·H <sub>2</sub> O<br>Diopside, CaMg(SiO <sub>3</sub> ) <sub>2</sub>                                                    | 3<br>5m   | 141<br>17       |
| Andradite, Ca <sub>3</sub> Fe <sub>2</sub> Si <sub>3</sub> O <sub>12</sub>                                                    | 9               | 22       | *Dravite, NaMg <sub>3</sub> Al <sub>6</sub> B <sub>3</sub> Si <sub>6</sub> O <sub>27</sub> (OH) <sub>4</sub>                                                     | 3m        | 47              |
| Anglesite, PbSO <sub>4</sub>                                                                                                  | 3               | 67       | Eitelite, Na <sub>2</sub> Mg (CO <sub>3</sub> ) <sub>2</sub>                                                                                                     | 11m       | 56              |
| Anhydrite, CaSO <sub>4</sub>                                                                                                  | 4               | 65       | Elpasolite, K <sub>2</sub> NaAlF <sub>6</sub>                                                                                                                    | 9m        | 43              |
| Antarcticite, CaCl <sub>2</sub> ·6H <sub>2</sub> O                                                                            | 12m             | 16       | *Enstatite, MgSiO <sub>3</sub>                                                                                                                                   | 6         | 32              |
| Antimony, Sb                                                                                                                  | 3               | 14       | Epsomite, MgSO <sub>4</sub> ·7H <sub>2</sub> O                                                                                                                   | 7         | , 30            |
| Aphthitalite, K <sub>3</sub> Na(SO <sub>4</sub> ) <sub>2</sub>                                                                | 6m              | 52       | Eskolaite, Cr <sub>2</sub> O <sub>3</sub>                                                                                                                        | 5         | <sub>1</sub> 22 |
| Aragonite, $CaCO_3$                                                                                                           | 3               | 53<br>62 | Ettringite, Ca <sub>6</sub> Al <sub>2</sub> S <sub>3</sub> O <sub>18</sub> ·3lH <sub>2</sub> O<br>Fairchildite, K <sub>2</sub> Ca(CO <sub>3</sub> ) <sub>2</sub> | 8         | 3<br>48         |
| Arsenic, As                                                                                                                   | 3               | 6        | Fluorapatite, Ca <sub>5</sub> F(PO <sub>4</sub> ) <sub>3</sub>                                                                                                   | 8m<br>3m  | 22              |
| Arsenolite, As <sub>2</sub> O <sub>3</sub>                                                                                    | 1               | 51       | Fluorite, CaF <sub>2</sub>                                                                                                                                       | 1         | 69              |
| Aurostibite, AuSb <sub>2</sub>                                                                                                | 7               | 18       | Forsterite, Mg <sub>2</sub> SiO <sub>4</sub>                                                                                                                     | 1         | 83              |
| *Azurite, Cu <sub>3</sub> (OH) <sub>2</sub> (CO <sub>3</sub> ) <sub>2</sub>                                                   | 10              | 30       | Franklinite, ZnFe <sub>2</sub> O <sub>4</sub>                                                                                                                    | 9m        | 60              |
| Baryte, BaSO <sub>4</sub>                                                                                                     | 10m             | 12       | Fresnoite, Ba <sub>2</sub> TiSi <sub>2</sub> O <sub>8</sub>                                                                                                      | 9m        | 14              |
| Berlinite, AlPO <sub>4</sub>                                                                                                  | 10              | 3        | Gahnite, ZnAl <sub>2</sub> O <sub>4</sub>                                                                                                                        | 2         | 38              |
| Berndtite, SnS <sub>2</sub>                                                                                                   | 9m              | 57       | Galaxite, MnAl <sub>2</sub> O <sub>4</sub><br>Galena, PbS                                                                                                        | 9         | 35              |
| *Beryl, $Be_3Al_2Si_6O_{18}$<br>Bischofite, $MgCl_2 \cdot 6H_2O$                                                              | 9<br>11m        | 13<br>37 | Geikielite, MgTiO <sub>3</sub>                                                                                                                                   | 2<br>5    | 18<br>43        |
| Bismite, $\alpha$ -Bi <sub>2</sub> O <sub>3</sub>                                                                             | 3m              | 17       | Gersdorffite, NiAsS                                                                                                                                              | lm        | 35              |
| Bismoclite, BiOCl                                                                                                             | 4               | 54       | Glauberite, Na <sub>2</sub> Ca(SO <sub>4</sub> ) <sub>2</sub>                                                                                                    | 6m        | 59              |
| Bismuth, Bi                                                                                                                   | 3               | 20       | Gold, Au                                                                                                                                                         | 1         | 33              |
| Bismuthinite, Bi <sub>2</sub> S <sub>3</sub>                                                                                  | 5m              | 13       | Goslarite, ZnSO <sub>4</sub> •7H <sub>2</sub> O                                                                                                                  | 8         | 71              |
| Bixbyite, $\alpha-Mn_2O_3$                                                                                                    | 11m             | 95       | Greenockite, CdS                                                                                                                                                 | 4         | 15              |
| *Bloedite, Na <sub>2</sub> Mg(SO <sub>4</sub> ) <sub>2</sub> ·4H <sub>2</sub> O                                               | 6m              | 63       | *Groutite, MnO(OH)                                                                                                                                               | 11m       | <sub>3</sub> 97 |
| Boehmite, Al <sub>2</sub> O <sub>3</sub> ·H <sub>2</sub> O                                                                    | 3<br>4          | 38<br>46 | Halite, NaCl<br>Hausmannite, Mn <sub>3</sub> O <sub>4</sub>                                                                                                      | 2<br>10m  | : 41<br>38      |
| Bromellite, BeO                                                                                                               | 1               | 36       | *Hemimorphite, Zn <sub>4</sub> (OH) <sub>2</sub> Si <sub>2</sub> O <sub>7</sub> •H <sub>2</sub> O                                                                | 2         | 62              |
| *Brookite, TiO <sub>2</sub>                                                                                                   | 3m              | 57       | Hetaerolite, ZnMn <sub>2</sub> O <sub>4</sub>                                                                                                                    | 10m       | 61              |
| Brucite, Mg(OH) <sub>2</sub>                                                                                                  | 6               | 30       | Hieratite, K <sub>2</sub> SiF <sub>6</sub>                                                                                                                       | 5         | 50              |
| Bunsenite, NiO                                                                                                                | 1               | 47       | Huebnerite, MnWO4                                                                                                                                                | 2m        | 24              |
| Burkeite, Na <sub>6</sub> CO <sub>3</sub> (SO <sub>4</sub> ) <sub>2</sub>                                                     | 11m             | 52       | Humboldtine, FeC <sub>2</sub> O <sub>4</sub> •2H <sub>2</sub> O                                                                                                  | 10m       | 24              |
| *Butlerite, Fe (OH) SO <sub>4</sub> • 2H <sub>2</sub> O                                                                       | 10m             | 95       | Humite, 3Mg <sub>2</sub> SiO <sub>4</sub> ·MgF <sub>2</sub>                                                                                                      | 1m        | 30              |
| Cadmoselite, CdSe                                                                                                             | 7<br>2          | 12<br>51 | Hydrophilite, CaCl <sub>2</sub><br>Indialite, Mg <sub>2</sub> Al <sub>4</sub> Si <sub>5</sub> O <sub>18</sub> (hexagonal)                                        | 11m<br>1m | ₹18<br>29       |
| Calomel, Hg <sub>2</sub> Cl <sub>2</sub>                                                                                      | 13m             | 30       | Iodargyrite, AgI                                                                                                                                                 | 8         | 51              |
| Carnallite, KMgCl <sub>3</sub> ·6H <sub>2</sub> O                                                                             | 8m              | 50       | Iron, α-Fe                                                                                                                                                       | 4         | 3               |
| Cassiterite, SnO <sub>2</sub>                                                                                                 | 1               | 54       | Jacobsite, MnFe <sub>2</sub> O <sub>4</sub>                                                                                                                      | 9         | 36              |
| Celestite, SrSO <sub>4</sub>                                                                                                  | 2               | 61       | *Julgoldite, $Ca_2Fe_3Si_3O_{10}(OH,O)_2(OH)_2$                                                                                                                  | 10m       | 72              |
| Cerianite, CeO <sub>2</sub>                                                                                                   | 1               | 56       | Langbeinite, K <sub>2</sub> Mg <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub>                                                                                      | 6m        | 40              |
| Cerussite, PbCO <sub>3</sub>                                                                                                  | 2               | 56       | Lead, Pb                                                                                                                                                         | 1         | 34              |
| Cervantite, Sb <sub>2</sub> O <sub>4</sub>                                                                                    | 10<br>3m        | 8<br>29  | *Leucophanite, NaCaBeFSi <sub>2</sub> O <sub>6</sub><br>Litharge, PbO (red)                                                                                      | 8m<br>2   | 138<br>30       |
| Chloraluminite, AlCl <sub>3</sub> ·6H <sub>2</sub> O                                                                          | 7               | 3        | Lithiophosphate, Li <sub>3</sub> Po <sub>4</sub>                                                                                                                 | 4m        | 21              |
| Chlorargyrite, AgCl                                                                                                           | 4               | 44       | Loellingite, FeAs <sub>2</sub>                                                                                                                                   | 10        | 34              |
| Chloromagnesite, MgCl <sub>2</sub>                                                                                            | 11m             | 94       | Macedonite, PbTiO3                                                                                                                                               | 5         | 39              |
| Chromatite, CaCrO <sub>4</sub>                                                                                                | 7               | 13       | Magnesiochromite, MgCr <sub>2</sub> O <sub>4</sub>                                                                                                               | 9         | 34              |
| Chrysoberyl, BeAl <sub>2</sub> O <sub>4</sub>                                                                                 | 9               | 10       | Magnesite, MgCO <sub>3</sub>                                                                                                                                     | 7         | 28              |
| Cinnabar, HgS                                                                                                                 | 4               | 17       | Malachite Cu (OH) CO                                                                                                                                             | 5m        | 31              |
| *Claudetite, As <sub>2</sub> O <sub>3</sub><br>Clausthalite, PbSe                                                             | 3m<br>5         | 9<br>38  | Malachite, $Cu_2$ (OH) $_2CO_3$<br>Manganolangbeinite, $K_2Mn_2$ (SO <sub>4</sub> ) $_3$                                                                         | 10<br>6m  | 31<br>43        |
| Copper, Cu                                                                                                                    | 1               | 15       | Manganosite, MnO                                                                                                                                                 | 5         | 45              |
| Cordierite, Mg <sub>2</sub> Al <sub>4</sub> Si <sub>5</sub> O <sub>18</sub>                                                   | _               |          | Marshite, CuI                                                                                                                                                    | 4         | 38              |
| (orthorhombic)                                                                                                                | 1m              | 28       | Mascagnite, (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub>                                                                                                      | 9         | 8               |
| Corundum, Al <sub>2</sub> O <sub>3</sub>                                                                                      | 9               | 3        | Massicot, PbO (yellow)                                                                                                                                           | 2         | 32              |
| Cotunnite, PbCl <sub>2</sub>                                                                                                  | 12m             | 23       | Matlockite, PbFC1                                                                                                                                                | 13m       | 25              |
| Covellite, CuS                                                                                                                | 4               | 13       | Mayenite, Ca <sub>12</sub> Al <sub>14</sub> O <sub>33</sub>                                                                                                      | 9         | 20              |
| Cristobalite (a or low) SiO <sub>2</sub>                                                                                      | 10              | 48       | Melanterite, FeSO <sub>4</sub> • 7H <sub>2</sub> O* *Meliphanite,                                                                                                | 8m        | 38              |
| Cristobalite (β or high) SiO <sub>2</sub><br>*Cryolithionite, Li <sub>3</sub> Na <sub>3</sub> Al <sub>2</sub> F <sub>12</sub> | 1<br>9m         | 42<br>23 | Na <sub>.63</sub> Ca <sub>1.37</sub> BeAl <sub>.13</sub> Si <sub>1.87</sub> O <sub>6.25</sub> F <sub>.75</sub>                                                   | 8m        | 135             |
|                                                                                                                               | JII             |          | Metaborite, HBO <sub>2</sub> (cubic)                                                                                                                             | 4m        | 27              |
|                                                                                                                               |                 |          | Metacinnabar, HgS                                                                                                                                                | 4         | 21              |
| *Natural mineral.                                                                                                             |                 |          | Miargyrite, AgSbS <sub>2</sub>                                                                                                                                   | 5m        | 49              |
|                                                                                                                               |                 |          | *Millerite, NiS                                                                                                                                                  | 1m        | 37              |

#### CUMULATIVE MINERAL INDEX - Continued

|    |                                                                                                     | Vol. or   |      |                                                                                            | Vol. or |      |
|----|-----------------------------------------------------------------------------------------------------|-----------|------|--------------------------------------------------------------------------------------------|---------|------|
|    |                                                                                                     | Sec.      | Page |                                                                                            | Sec.    | Page |
|    | Minium, Pb <sub>3</sub> O <sub>4</sub>                                                              | 8         | 32   | Silver, Ag (reference standard)                                                            | 8m      | 2    |
|    | Mitscherlichite, K <sub>2</sub> CuCl <sub>4</sub> ·2H <sub>2</sub> O                                | 9m        | 34   | *Sjögrenite, Mg6Fe2CO3 (OH) 16 • 4H2O,                                                     | O.I.I   | -    |
|    | Molybdenite, MoS <sub>2</sub>                                                                       | 5         | 47   | phase I                                                                                    | 10m     | 103  |
|    | Molybdite, MoO <sub>3</sub>                                                                         | 3         | 30   | Skutterudite, CoAs <sub>3</sub>                                                            | 10      | 21   |
|    | Montroydite, HgO                                                                                    | 9         | 39   | *Smithsonite, ZnCO <sub>3</sub>                                                            | 8       | 69   |
|    | Mullite, Al <sub>6</sub> Si <sub>2</sub> O <sub>1</sub> 3                                           | 3m        | 3    | *Sodalite, Na <sub>8</sub> Si <sub>6</sub> Al <sub>6</sub> O <sub>2</sub> 4Cl <sub>2</sub> | 7m      | 158  |
|    | Nantokite, CuCl                                                                                     | 4         | 35   | Soda-niter, NaNO <sub>3</sub>                                                              | 6       | 50   |
|    | *Newberyite, MgHPO <sub>4</sub> • 3H <sub>2</sub> O                                                 | 7m        | 139  | Sphaerocobaltite, CoCO3                                                                    | 10      | 24   |
|    | Niter, KNO <sub>3</sub>                                                                             | 3         | 58   | Sphalerite, ZnS                                                                            | 2       | 16   |
|    | Nitrammite, NH <sub>4</sub> NO <sub>3</sub>                                                         | 7         | 4    | Spinel, MgAl <sub>2</sub> O <sub>4</sub>                                                   | 9m      | 25   |
|    | Nitrobarite, Ba(NO <sub>3</sub> ) <sub>2</sub>                                                      | 11m       | 14   | Stibnite, Sb <sub>2</sub> S <sub>3</sub>                                                   | 5       | 6    |
|    | Norbergite, Mg2SiO4 MgF2                                                                            | 10        | 39   | Stolzite, PbWO <sub>4</sub>                                                                | 5m      | 34   |
| ς. | Oldhamite, CaS                                                                                      | 7         | 15   | Strontianite, SrCO <sub>3</sub>                                                            | 3       | 56   |
|    | Otavite, CdCO <sub>3</sub>                                                                          | 7         | 11   | Struvite, MgNH <sub>4</sub> PO <sub>4</sub> ·6H <sub>2</sub> O                             | 3m      | 41   |
|    | Oxammite, (NH <sub>4</sub> ) <sub>2</sub> C <sub>2</sub> O <sub>4</sub> • H <sub>2</sub> O          | 7         | 5    | Sulfur, S (orthorhombic)                                                                   | 9       | 54   |
|    | Palladium, Pd                                                                                       | í         | 21   | Sylvite, KCl                                                                               | í       | 65   |
|    | *Paratellurite, TeO <sub>2</sub>                                                                    | 10        | 55   | *Tellurite, TeO <sub>2</sub>                                                               | 9       | 57   |
|    | Paratellurite, TeO <sub>2</sub>                                                                     | 7         | 56   | Tellurium, Te                                                                              | 1       | 26   |
|    | Periclase, MgO                                                                                      | í         | 37   | Tellurobismuthite, Bi <sub>2</sub> Te <sub>3</sub>                                         | 3m      | 16   |
|    | Perovskite, CaTiO <sub>3</sub>                                                                      | 9m        | 17   | Tenorite, CuO                                                                              | 1       | 49   |
|    | *Phenakite, Be <sub>2</sub> SiO <sub>4</sub>                                                        | 8         | 11   | Teschemacherite, NH <sub>4</sub> HCO <sub>3</sub>                                          | 9       | 5    |
|    | Picromerite, $K_2Mg(SO_4)_2 \cdot 6H_2O$                                                            | 8m        | 54   | Thenardite, Na <sub>2</sub> SO <sub>4</sub>                                                | 2       | 59   |
|    | *Pirssonite, Na <sub>2</sub> Ca(CO <sub>3</sub> ) <sub>2</sub> ·2H <sub>2</sub> O                   | 9m        | 106  | Thermonatrite, Na <sub>2</sub> CO <sub>3</sub> •H <sub>2</sub> O                           | 8       | 54   |
|    | Platinum, Pt                                                                                        | 1         | 31   | *Thomsenolite, NaCaAlF6*H2O                                                                | 8m      | 132  |
|    | Portlandite, Ca(OH) <sub>2</sub>                                                                    | 1         | 58   | Thorianite, ThO <sub>2</sub>                                                               | 1       | 57   |
|    | Powellite, CaMoO <sub>4</sub>                                                                       | 6         | 22   | Thortveitite, Sc <sub>2</sub> Si <sub>2</sub> O <sub>7</sub>                               | 7m      | 58   |
|    | Pyrargyrite, Ag <sub>3</sub> SbS <sub>3</sub>                                                       | 5m        | -51  | Tiemannite, HgSe                                                                           | 7       | 35   |
|    | Pyrite, FeS <sub>2</sub>                                                                            | 5         | 29   | Tin, α-Sn (cubic)                                                                          | 2       | 12   |
|    | *Pyroaurite, Mg <sub>6</sub> Fe <sub>2</sub> CO <sub>3</sub> (OH) <sub>16</sub> ·4H <sub>2</sub> O, | 3         | 23   | Tin, β-Sn (tetragonal)                                                                     | 1       | 24   |
|    | phase II                                                                                            | 10m       | 104  | *Topaz, Al <sub>2</sub> SiO <sub>4</sub> (F,OH) <sub>2</sub>                               | lm      | 4    |
|    | Pyrolusite, β-MnO <sub>2</sub>                                                                      | 10m       | 39   | Trevorite, NiFe <sub>2</sub> O <sub>4</sub>                                                | 10      | 44   |
|    | Pyrope, Mg <sub>3</sub> Al <sub>2</sub> (SiO <sub>4</sub> ) <sub>3</sub>                            | 4m        | 24   | Tschermigite, NH <sub>4</sub> Al(SO <sub>4</sub> ) <sub>2</sub> ·12H <sub>2</sub> O        | 6       | 3    |
|    | *Quartz, SiO <sub>2</sub> (\alpha or low)                                                           | 3         | 24   | Tungstenite, WS <sub>2</sub>                                                               | 8       | 65   |
|    | Rammelsbergite, NiAs <sub>2</sub>                                                                   | 10        | 42   | Uraninite, UO <sub>2</sub>                                                                 | 2       | 33   |
|    | Retgersite, NiSO <sub>4</sub> •6H <sub>2</sub> O                                                    | 7         | 36   | Uvarovite, Ca <sub>3</sub> Cr <sub>2</sub> (SiO <sub>4</sub> ) <sub>3</sub>                | 10      | 17   |
|    | Rhodochrosite, MnCO <sub>3</sub>                                                                    | 7         | 32   | *Valentinite, Sb <sub>2</sub> O <sub>3</sub>                                               | 10      | 6    |
|    | Romarchite, SnO                                                                                     | 4         | 28   | Valentinite, Sb <sub>2</sub> O <sub>3</sub>                                                | 10      | 6    |
|    | Rutile, TiO <sub>2</sub>                                                                            | 7m        | 83   | Villiaumite, NaF                                                                           | 10      | 63   |
|    | Safflorite, CoFeAs <sub>4</sub>                                                                     | 10        | 28   | Willemite, Zn <sub>2</sub> SiO <sub>4</sub>                                                | 7       | 62   |
|    | Sal-ammoniac, NH <sub>4</sub> Cl                                                                    | 1         | 59   | Witherite, BaCO <sub>3</sub>                                                               | 2       | 54   |
|    | Sanbornite, β-BaSi <sub>2</sub> O <sub>5</sub>                                                      | 13m       | 10   | Wulfenite, PbMoO <sub>4</sub>                                                              | 7       | 23   |
|    | Sanmartinite, ZnWO <sub>4</sub>                                                                     | 2m        | 40   | Wurtzite, ZnS                                                                              | 2       | 14   |
|    | Scacchite, MnCl <sub>2</sub>                                                                        |           | 43   | *Xanthoconite, Ag3AsS3                                                                     | 8m      | 126  |
|    | *Scheelite, CaWO <sub>4</sub>                                                                       | 8m<br>6   | 23   | Xenotime, YPO4                                                                             | 8       | 67   |
|    | Selenium, Se                                                                                        | 5         | 54   | Zinc, Zn                                                                                   | 1       | 16   |
|    | Selenolite, SeO <sub>2</sub>                                                                        | 7m        | 60   | Zincite, ZnO                                                                               | 2       | 25   |
|    | Sellaite, MgF <sub>2</sub>                                                                          | 7111<br>4 | 33   | Zinkosite, ZnSO <sub>4</sub>                                                               | 7       | 64   |
|    | Senarmontite, Sb <sub>2</sub> O <sub>3</sub>                                                        | 3         | 33   | *Zircon, ZrSiO <sub>4</sub>                                                                | 4       | 68   |
|    | Shcherbinaite, V <sub>2</sub> O <sub>5</sub>                                                        | 8         | 66   | Zircosulfate, Zr(SO <sub>4</sub> ) <sub>2</sub> ·4H <sub>2</sub> O                         | 7       | 66   |
|    | Silver, Ag                                                                                          | 1         | 23   | 222000011000, 22 (004) 2 41120                                                             |         |      |
|    | ~                                                                                                   |           | 23   |                                                                                            |         |      |

| ND3-114A (REV. /-/3)                                                                                                                          |                                                                                                                                                                                                                                                            |                                                                                                  |                                                            |                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------|
| U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET                                                                                                  | 1. PUBLICATION OR REPORT NO.<br>NBS-MN25, Section 13                                                                                                                                                                                                       | 2. Gov't Accession<br>No.                                                                        | 3. Recipient'                                              | 's Accession No.                                                               |
| 4. TITLE AND SUBTITLE                                                                                                                         |                                                                                                                                                                                                                                                            |                                                                                                  | 5. Publicatio                                              | n Date                                                                         |
| Standard X-ray D:                                                                                                                             | Tun                                                                                                                                                                                                                                                        | ie 1976                                                                                          |                                                            |                                                                                |
|                                                                                                                                               | a for 58 Substances                                                                                                                                                                                                                                        |                                                                                                  |                                                            |                                                                                |
| Section 13 Succ                                                                                                                               | 7 101 00 Substances                                                                                                                                                                                                                                        |                                                                                                  | 6. Performing                                              | g Organization Code                                                            |
| 7. AUTHOR(S) Marlene C.                                                                                                                       | Morris, Howard F. McMurdie,                                                                                                                                                                                                                                | . Eloise H. Evans                                                                                | S. R. Performing                                           | Organ Report No.                                                               |
| Boris Paretzkin Joh                                                                                                                           | an H. de Groot, Camden R. Hi                                                                                                                                                                                                                               | ubbard and Simon                                                                                 | J. Carmel                                                  | . Organi. Report 110.                                                          |
| 9. PERFORMING ORGANIZAT                                                                                                                       |                                                                                                                                                                                                                                                            |                                                                                                  |                                                            | Task/Work Unit No.                                                             |
|                                                                                                                                               |                                                                                                                                                                                                                                                            |                                                                                                  | 31301                                                      |                                                                                |
| DEPARTMEN                                                                                                                                     | BUREAU OF STANDARDS<br>NT OF COMMERCE<br>N, D.C. 20234                                                                                                                                                                                                     |                                                                                                  | 11. Contract/Grant No.                                     |                                                                                |
|                                                                                                                                               |                                                                                                                                                                                                                                                            |                                                                                                  |                                                            |                                                                                |
| 12. Sponsoring Organization Nam                                                                                                               | me and Complete Address (Street, City, S                                                                                                                                                                                                                   | tate, ZIP)                                                                                       | 13. Type of I                                              | Report & Period                                                                |
|                                                                                                                                               |                                                                                                                                                                                                                                                            |                                                                                                  | Covered                                                    |                                                                                |
| Same as Item 9                                                                                                                                | 9.                                                                                                                                                                                                                                                         |                                                                                                  | Inter                                                      | im                                                                             |
|                                                                                                                                               |                                                                                                                                                                                                                                                            |                                                                                                  | 14. Sponsorin                                              | ng Agency Code                                                                 |
|                                                                                                                                               |                                                                                                                                                                                                                                                            |                                                                                                  | , 4. oponsorn                                              | ig Agency Code                                                                 |
| 15. SUPPLEMENTARY NOTES                                                                                                                       |                                                                                                                                                                                                                                                            |                                                                                                  | 1                                                          |                                                                                |
| 13. SUPI LEMENTARI NOTES                                                                                                                      |                                                                                                                                                                                                                                                            |                                                                                                  |                                                            |                                                                                |
| Library of Congres                                                                                                                            | ss Catalog Card Number: 53-                                                                                                                                                                                                                                | -61386                                                                                           |                                                            |                                                                                |
| Elbiary of congre                                                                                                                             |                                                                                                                                                                                                                                                            |                                                                                                  |                                                            |                                                                                |
| these patterns repre-<br>x-ray powder diffrac<br>d-values were assign<br>planar spacings cons<br>constants were calcu<br>The calculated x-ray | action patterns are present<br>sent experimental data and a<br>tion patterns were obtained<br>ed Miller indices determined<br>istent with space group exti-<br>lated, and the refractive in<br>powder diffraction patterns<br>h peak height and integrated | 27 are calculate d with an x-ray ed by comparison inctions. The d ndices were meas were computed | d. The exdiffractom with compensities sured whe from publi | sperimental meter. All outed inter- and lattice enever possible. ished crystal |
|                                                                                                                                               |                                                                                                                                                                                                                                                            |                                                                                                  |                                                            |                                                                                |
| name; separated by semicolo<br>Crystal structure; i                                                                                           | entries; alphabetical order; capitalize on<br>ons)<br>.ntegrated intensities; latt<br>ference intensities; standar                                                                                                                                         | ice constants; p                                                                                 | eak intens                                                 |                                                                                |
|                                                                                                                                               |                                                                                                                                                                                                                                                            | 110 00000                                                                                        | V CL 100                                                   | 121 NO OF DACES                                                                |
| 18. AVAILABILITY                                                                                                                              | X Unlimited                                                                                                                                                                                                                                                | 19. SECURIT                                                                                      |                                                            | 21. NO. OF PAGES                                                               |
|                                                                                                                                               |                                                                                                                                                                                                                                                            | , , , , , , , , , , , , , , , , , , ,                                                            |                                                            | 17.4                                                                           |
| For Official Distribution                                                                                                                     | n. Do Not Release to NTIS                                                                                                                                                                                                                                  | UNCL ASS                                                                                         | SIFIED                                                     | 114                                                                            |
| No. 1 F                                                                                                                                       | H.S. Comp. D. C. Com.                                                                                                                                                                                                                                      |                                                                                                  |                                                            | 22. Price                                                                      |
| Washington, D.C. 20407                                                                                                                        | ., U.S. Government Printing Office<br>2, SD Cat. No. C13. 44:25/Sec. 13                                                                                                                                                                                    | 20. SECURIT                                                                                      | ,                                                          | 22. Filee                                                                      |
|                                                                                                                                               |                                                                                                                                                                                                                                                            | (THIST /                                                                                         | .02,                                                       | \$1.80                                                                         |
| Order From National Te<br>Springfield, Virginia 22                                                                                            | chnical Information Service (NTIS)                                                                                                                                                                                                                         | UNCLASS                                                                                          | IFIED                                                      |                                                                                |

# SINGLE CRYSTAL DATA

### **REVISED! UPDATED!**

In 1954, the first edition of CRYS-TAL DATA (Determinative Tables and Systematic Tables) was published as Memoir 60 of the Geological Society of America. In 1960, the second edition of the Determinative Tables was issued as Monograph 5 of the American Crystallographic Association, and in 1967, the Systematic Tables were issued as Monograph 6. These editions proved extremely valuable to crystallographers throughout the world. Recognizing the need for updated crystallographic information, the National Bureau of Standards Office of Standard Reference Data has sponsored the issuance of a new edition.

This, the THIRD EDITION, should be of particular interest not only to crystallographers but also to chemists, mineralogists, physicists and individuals in related fields of study. The current edition, which comprises two volumes, Organic and Inorganic, is a thoroughly revised and updated work, containing over 25,000 entries.

The entries are listed, within each crystal system, according to increasing values of a determinative number: a/b ratio in trimetric systems, c/a ratio in dimetric systems, and cubic cell edge a, in the isometric system. In addition, the following information is given:

CRYSTAL DATA

CRYSTAL DATA

DETERMINATIVE TABLES

COMPOUNDS

COMPO

INORGANIC VOLUME \$50.00
ORGANIC VOLUME \$30.00

axial ratio(s) and interaxial angles not fixed by symmetry, cell dimensions, space group or diffraction aspect, number of formula units per unit cell, crystal structure, (whether determined), measured density and x-ray calculated density. Also listed is the name of the compound and synonym(s), chemical formula, literature refand transformation erence matrix. When available, the crystal structure type, crystal habit, cleavages, twinning, color, optical properties, indices of refraction, optical orientation, melting point and transition point are also listed.

THIS EDITION culminates years of effort by J. D. H. Donnay, Johns Hopkins University, Helen M. Ondik, National Bureau of Standards, Sten Samson, California Institute of Technology, Quintin Johnson, Lawrence Radiation Laboratory, Melvin H. Mueller, Argonne National Laboratory, Gerard M. Wolten, Aerospace Corporation, Mary E. Mrose, U.S. Geological Survey, Olga Kennard and David G. Watson, Cambridge University, England and Murray Vernon King, Massachusetts General Hospital.

Plus shipping and handling

Shipments are made via insured parcel post. Additional charges for shipments by air or commercial carrier. TERMS: Domestic—30 days Foreign—prepayment required. Address all orders to: JOINT COMMITTEE ON POWDER DIFFRACTION STANDARDS 1601 Park Lane, Swarthmore, Pennsylvania 19081

| Please accept my order for CRYSTAL DATA, DETERMINATIVE TABLES, Third Edition, Donnay/Ondik. | THE STATE OF        |
|---------------------------------------------------------------------------------------------|---------------------|
| □ Organic Volume                                                                            | NSRDS               |
| ☐ Inorganic Volume                                                                          | CHEDERCE DATA STSTE |
| Ship to:                                                                                    |                     |
|                                                                                             | 100h                |
| Signature                                                                                   | JLTUS               |
| a.Our.a.a                                                                                   |                     |







#### NBS TECHNICAL PUBLICATIONS

#### PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, and chemistry. It is published in two sections, available separately:

#### Physics and Chemistry (Section A)

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$17.00; Foreign, \$21.25.

#### • Mathematical Sciences (Section B)

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$9.00; Foreign, \$11.25.

DIMENSIONS/NBS (formerly Technical News Bulletin)—This monthly magazine is published to inform scientists, engineers, businessmen, industry, teachers, students, and consumers of the latest advances in science and technology, with primary emphasis on the work at NBS. The magazine highlights and reviews such issues as energy research, fire protection, building technology, metric conversion, pollution abatement, health and safety, and consumer product performance. In addition, it reports the results of Bureau programs in measurement standards and techniques, properties of matter and materials, engineering standards and services, instrumentation, and automatic data processing.

Annual subscription: Domestic, \$9.45; Foreign, \$11.85.

#### **NONPERIODICALS**

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a world-wide

program coordinated by NBS. Program under authority of National Standard Data Act (Public Law 90-396).

NOTE: At present the principal publication outlet for these data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St. N. W., Wash. D. C. 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The purpose of the standards is to establish nationally recognized requirements for products, and to provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Federal Information Processing Standards Publications (FIPS PUBS)—Publications in this series collectively constitute the Federal Information Processing Standards Register. Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Service (Springfield, Va. 22161) in paper copy or microfiche form.

Order NBS publications (except NBSIR's and Bibliographic Subscription Services) from: Superintendent of Documents, Government Printing Office, Washington, D.C. 20402.

#### BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibliographies are issued periodically by the Bureau: Cryogenic Data Center Current Awareness Service

A literature survey issued biweekly. Annual subscription: Domestic, \$20.00; foreign, \$25.00.

Liquefied Natural Gas. A literature survey issued quarterly. Annual subscription: \$20.00.

Superconducting Devices and Materials. A literature

survey issued quarterly. Annual subscription: \$20.00. Send subscription orders and remittances for the preceding bibliographic services to National Bureau of Standards, Cryogenic Data Center (275.02) Boulder, Colorado 80302.

Electromagnetic Metrology Current Awareness Service Issued monthly. Annual subscription: \$24.00. Send subscription order and remittance to Electromagnetics Division, National Bureau of Standards, Boulder, Colo. 80302.

## U.S. DÉPARTMENT OF COMMERCE National Bureau of Standards Washington, D.C. 20234

OFFICIAL BUSINESS

Penalty for Private Use, \$300

POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE COM-215



SPECIAL FOURTH-CLASS RATE BOOK



