Claims

- 1.) A polymerizable composition comprising
 - a) an ethylenically unsaturated monomer;
 - b) a radical polymerization initiator; and
 - c) a hydroxylamine, a nitrone or an alkyl N-oxid having a molecular weight of more than 250 g/mol.
- 2. A polymerizable composition according to claim 1 wherein the ethylenically unsaturated monomer is selected from the group consisting of ethylene, propylene, n-butylene, i-butylene, styrene, substituted styrene, conjugated dienes, acrolein, vinyl acetate, vinylpyrrolidone, vinylimidazole, maleic anhydride, (alkyl)acrylic acidanhydrides, (alkyl)acrylic acid salts, (alkyl)acrylic esters, (alkyl)acrylonitriles, (alkyl)acrylamides, vinyl halides or vinylidene halides.

15

20

5

- 3. A polymerizable composition according to claim 1 wherein the ethylenically unsaturated monomer is a compound of formula $CH_2=C(R_a)-(C=Z)-R_b$, wherein Z is O or S; R_a is hydrogen or C_1-C_2 alkvi:
- R_b is NH_2 , $O^-(Me^+)$, glycidyl, unsubstituted C_1 - C_{18} alkoxy, C_2 - C_{100} alkoxy interrupted by at least one N and/or O atom, or hydroxy-substituted C_1 - C_{18} alkoxy, unsubstituted C_1 - C_{18} alkyl)amino, hydroxy-substituted C_1 - C_{18} alkyl)amino, hydroxy-substituted C_1 - C_{18} alkyl)amino, -O- CH_2 - CH_2 - $N(CH_3)_2$ or -O- CH_2 - CH_2 - $N^+H(CH_3)_2$ An $^-$;

An is a anion of a monovalent organic or inorganic acid;

Me is a monovalent metal atom or the ammonium ion.

25

- 4. A polymerizable composition according to claim 2 wherein the ethylenically unsaturated monomer is styrene, n-butylacrylate, tert-butylacrylate, methylacrylate, ethylacrylate, propylacrylate, hexylacrylate or hydroxyethylacrylate.
- 30 5. A polymerizable composition according to claim 1 wherein the radical polymerization initiator is a azo compound, a peroxide, a perester or a hydroperoxide.
 - 6. A polymerizable composition according to claim 5 wherein the radical polymerization initiator is a azo compound or a peroxide.

7. A polymerizable composition according to claim 1 wherein in component c) the hydroxylamine, the nitrone or the alkyl N-oxid having a molecular weight of more than 250 are of formulae (I), II) or (III)

5

10

15

 $R_1,\,R_2,\,R_3$ and R_4 are independently hydrogen, phenyl or $C_1\text{-}C_4\text{alkyl};$

 R_5 and R_6 are independently C_7 - C_{35} alkyl, C_7 - C_{35} alkenyl or C_7 - C_{35} alkinyl, which may be unsubstituted or substituted by phenyl, halogen, NH_2 , $N(R_{21})_2$, -OH, -CN, -NO₂, or -COOR₂₁; or which may be interrupted by -O- or -C(O)-; or

 R_5 and R_6 together are an alkylene bridge, which may be interrupted by a -O-, -C(O)- or a - N(C₁-C₁₈alkyl)- group to form a heterocyclic 5, 6, 7 or 8 membered ring, which may be further substituted by a -O-C(O)-]_nR₂₀, NR₂₁-C(O)-]_nR₂₀ or a ketal group;

n is 1 or 2; wherein, when n is 1, R_{20} is hydrogen or C_1 - C_{18} alkyl and, when n is 2, R_{20} is C_1 - C_{18} alkylene; R_{21} is hydrogen or C_1 - C_{18} alkyl;

 R_7 and R_8 are independently $C_8\text{-}C_{38}\text{alkyl};$ and R_9 is $C_1\text{-}C_4\text{alkyl}.$

- 8. A polymerizable composition according to claim 7 wherein the hydroxylamine is of 20 formula (I).
 - 9. A polymerizable composition according to claim 7 wherein the compound of formula (I) is of formula A', A", B' or O'

wherein

m is 1,

5

R is hydrogen, C₁-C₁₈alkyl which is uninterrupted or interrupted by one or more oxygen atoms, cyanoethyl, benzoyl, glycidyl, a monovalent radical of an aliphatic carboxylic acid having 2 to 18 carbon atoms, of a cycloaliphatic carboxylic acid having 7 to 15 carbon atoms, or an α,β -unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms; p is 1;

10

 $R_{101} \text{ is } C_1-C_{12} \text{alkyl, } C_5-C_7 \text{cycloalkyl, } C_7-C_8 \text{aralkyl, } C_2-C_{18} \text{alkanoyl, } C_3-C_5 \text{alkenoyl or benzoyl; } C_7-C_8 \text{aralkyl, } C_8-C_8 \text{aralkyl, } C_8-C_8 \text{alkanoyl, } C_8-C_8 \text{aralkyl, } C_8-C_8 \text{ar$ R_{102} is C_1 - C_{18} alkyl, C_5 - C_7 cycloalkyl, C_2 - C_8 alkenyl unsubstituted or substituted by a cyano, carbonyl or carbamide group, or is glycidyl, a group of the formula -CH₂CH(OH)-Z or of the formula -CO-Z or -CONH-Z wherein Z is hydrogen, methyl or phenyl;

 R_6 and R'_6 together are both hydrogen, a group =0 or =N-O- R_{120} wherein

 R_{120} is H, straight or branched C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl or C_3 - C_{18} alkinyl, which may be 15 unsubstituted or substitued, by one or more OH, C₁-C₈alkoxy, carboxy, C₁-C₈alkoxycarbonyl; C₅-C₁₂cycloalkyl or C₅-C₁₂cycloalkenyl;

phenyl, C7-C9phenylalkyl or naphthyl which may be unsubstituted or substituted by one or more C₁-C₈alkyl, halogen, OH, C₁-C₈alkoxy, carboxy, C₁-C₈alkoxycarbonyl;

-C(O)-C₁-C₃₆alkyl, or an acyl moiety of a α,β -unsaturated carboxylic acid having 3 to 5 20 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms;

 $-SO_3^-Q^+$, $-PO(O^-Q^+)_2$, $-P(O)(OR_2)_2$, $-SO_2^-R_2$, $-CO^-NH^-R_2$, $-CONH_2$, $COOR_2$, or $Si(Me)_3$, wherein \mathbf{Q}^{+} is \mathbf{H}^{+} , ammnonium or an alkali metal cation; or

 R_{105} and R'_{108} are independently $-O-C_1-C_{12}$ alkyl, $-O-C_3-C_{12}$ alkenyl, $-O-C_3-C_{12}$ alkinyl, $-O-C_5-C_{12}$ alkenyl, $-O-C_3-C_{12}$ alkinyl, $-O-C_5-C_{12}$

 C_8 cycloalkyl, -O-phenyl, -O-naphthyl, -O- C_7 - C_9 phenylalkyl; or 25 R_{108} and R'_{108} together form one of the bivalent groups -O-C(R_{121})(R_{122})-CH(R_{123})-O-, -O- $CH(R_{121})-CH_{122}-C(R_{122})(R_{123})-O-, \quad -O-CH(R_{122})-CH_2-C(R_{121})(R_{123})-O-, \quad -O-CH_2-C(R_{121})(R_{122})-CH_2-C(R_{121})-CH_2-C($ CH(R₁₂₃)-O-, -O-o-phenylene-O-, -O-1,2-cyclohexyliden-O-,

-O-CH₂-CH=CH-CH₂-O-,
$$C_{17}H_{32}$$
 or $C_{17}H_{32}$; wherein

R₁₂₁ is hydrogen, C₁-C₁₂alkyl, COOH, COO-(C₁-C₁₂)alkyl or CH₂OR₁₂₄;

R₁₂₂ and R₁₂₃ are independently hydrogen, methyl ethyl, COOH or COO-(C₁-C₁₂)alkyl;

R₁₂₄ is hydrogen, C₁-C₁₂alkyl, benzyl, or a monovalent acyl residue derived from an aliphatic, cycloaliphatic or aromatic monocarboxylic acid having up to 18 carbon atoms;

G₆ is hydrogen and G₅ is hydrogen or C₁-C₄alkyl, and

G₁, G₂, G₃ and G₄ are methyl; or

 G_1 and G_3 are methyl and G_2 and G_4 are ethyl or propyl or G_1 and G_2 are methyl and G_3 and G_4 are ethyl or propyl.

10

5

- 10. A polymerizable composition according to claim 7 wherein in the hydroxylamine of formula (I)
- R₁, R₂, R₃ and R₄ are hydrogen; and

R₅ and R₆ independently are C₇-C₃₅alkyl or C₇-C₃₅alkenyl.

15

20

- 11. A process for preparing an oligomer, a cooligomer, a polymer or a copolymer (block, random or graft) by free radical polymerization of at least one ethylenically unsaturated monomer or oligomer, which comprises (co)polymerizing the monomer or monomers/oligomers in the presence of
- b) a free radical initiator and
 - c) a hydroxylamine, a nitrone or an alkyl N-oxid having a molecular weight of more than 250 g/mol.
- 12 A process according to claim 11 wherein the polymer obtained has a polydispersity of between 1.1 and 2.5.
 - 13 A process according to claim 11 wherein the polymerization is carried out by heating and takes place at a temperature of between 70°C and 160°C.
- 30 14. A process according to claim 11 wherein the hydroxylamine, the nitrone or the alkyl Noxid having a molecular weight of more than 250 g/mol is present in an amount of 0.001 to 10 mol % based on the monomer or monomers.

WO 2005/021630 PCT/EP2004/051817

- 20 -

15. A process according to claim 11 wherein the weight ratio between the radical polymerization initiator and the hydroxylamine, the nitrone or the alkyl N-oxid having a molecular weight of more than 250 g/mol is from 1:5 to 5:1.

5

16. A polymer or copolymer obtainable by a process according to claim 11.

17. Use of a hydroxylamine, a nitrone or an alkyl N-oxid having a molecular weight of more than 250 for the controlled polymerization of ethylenically unsaturated monomers.

10