Importing necessary libraries

```
import pandas as pd
In [2]:
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
```

In [3]: df=pd.read_csv(r"C:\Users\Chandrika\Downloads\titanic\train.csv") #loading dataset

In [4]: df.info() #total information of dataset

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns): Column Non-Null Count Dtype PassengerId 891 non-null Survived 891 non-null int64 Pclass 891 non-null int64 891 non-null object Sex 891 non-null object 714 non-null float64 5 Age 891 non-null SibSp int64 891 non-null 7 Parch int64 8 Ticket 891 non-null object 891 non-null float64 9 Fare 204 non-null Cabin object 10 889 non-null Embarked object dtypes: float64(2), int64(5), object(5)

df.head() #first 5 rows of dataset

memory usage: 83.7+ KB

5]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

df.isnull().sum() PassengerId Out[6]: Survived 0 Pclass 0 Name 0 0 Sex Age 177 SibSp 0 0 Parch Ticket 0 Fare 0 687 Cabin Embarked dtype: int64

Out[5]

df.describe()

Out[7]:		Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Data Cleaning

```
In [8]: # Handling missing values
        df['Age'].fillna(df['Age'].median(), inplace=True)
        df['Embarked'].fillna(df['Embarked'].mode()[0], inplace=True)
        df.drop(columns=['Cabin'], inplace=True)
In [9]: # Verifying no missing values
```

df.isnull().sum() PassengerId

Survived Pclass Name Sex Age SibSp Parch Ticket Fare Embarked dtype: int64

1)What factors influenced the survival rate of passengers on the Titanic?

Research questions:

0

0

0 0

0

2) How did age and gender affect survival chances?

3) What was the survival rate across different passenger classes?

Visualization and Analysis

In [10]: # 1. Survival rate based on gender plt.figure(figsize=(8, 6))

plt.title('Survival Rate by Gender') plt.show() Survival Rate by Gender

sns.countplot(x='Survived', hue='Sex', data=df)

sns.histplot(df[df['Survived'] == 0]['Age'], kde=True, color='orange', label='Not Survive') plt.title('Age Distribution of Survivors vs Non-Survivors') plt.show() Age Distribution of Survivors vs Non-Survivors 175 Survived Not Survive

plt.title('Survival Rate by Passenger Class') plt.show() Survival Rate by Passenger Class

plt.suptitle('Survival Rate by Passenger Class and Gender')

<Figure size 720x432 with 0 Axes> Survival Rate by Passenger Class and Gender Survived = 1 Survived = 0300

sns.catplot(x='Pclass', hue='Sex', col='Survived', data=df, kind='count', height=4, aspect=1.5)

conclusion

Based on the analysis of the Titanic dataset, we can draw the following conclusions: 1. **Gender Influence:** Females had a significantly higher survival rate compared to males.

- 2. **Age Influence:** There is a noticeable difference in the age distribution between survivors and non-survivors, with younger passengers having slightly higher survival rates.
- 3. Passenger Class Influence: Passengers in higher classes (First and Second) had a higher survival rate compared to those in Third class. 4. Combined Factors: The survival rate varies significantly when considering the combination of passenger class and gender, indicating that first-class females had the highest
- survival rate. These insights help us understand the key factors that influenced survival rates during the Titanic disaster.