			Probabilités	aque proposition sera représentée par: un diagra	amme, une écriture e	nsembliste, du code _l	python, un tableau,	un arbre
Proposition (« Français »)	Diagramme de Venn	Notation ensembliste	Python (console ipython)	Probabilités		Tableau		Arbre
Evénements élémentaires équiprobables: ex : Dans l'ensemble des cinq premières lettres de l'alphabet, quelle est la probabilité de piocher la lettre a ou d? On note $A=$ « Obtenir la lettre a ou d » L'événement contraire de A , se note \overline{A} (A barre)	$\frac{A}{\Omega}$	• $\Omega=\{a,b,c,d,e\}$ • $A=\{a,d\}$ • $\overline{A}=\{b,c,e\}$	In [1]: U = {'a','b','c','d','e'}: A = {'a','d'}: A.issubset(U) Out[1]: True # A est une partie de U In [2]: U.difference(A) Out[2]: {'b', 'c', 'e'}	$P(\Omega)=1$ $P(A)=\frac{2}{5}$ $P(\overline{A})=1-P(A)=1-\frac{2}{5}=\frac{3}{5}$ Une probabilité ${\pmb p}$ est toujours : $0\leq p\leq 1$	Evénement Probabilité	2	A 3 5	$\frac{2}{5}$ A $\frac{3}{5}$ \overline{A}
Deux événements incompatibles : En jouant au dé, notons : • A= « Obtenir un nombre pair » • B= « Obtenir un nombre impair » Peut-on obtenir un nombre pair ET impair ?	A	$\cap ("inter") \Leftrightarrow ET$ • $A = \{2, 4, 6\}$ • $B = \{1, 3, 5\}$ • $A \cap B = \emptyset$	In [1]: A={2, 4, 6} In [2]: B={1, 3, 5} In [3]: B.intersection(A) Out[3]: set()	$P(A \cap B) = 0$		$1 - \frac{3}{6}$	A $B = \overline{A}$	
Réunion de deux événements incompatibles Aux cartes, notons • A= « obtenir une trêfle :♣»			thon3 ci-dessous correspond A et B ne sont pas	A et B incompatibles donc : $P(A \cup B) = P(A) + P(B)$	Le tableau suivan $\cap : ET$	t est untableaud'ef A :trêfle	fectif à double en \overline{A} :non trêfle	total
• B= « obtenir un coeur :♥»		from itertool	ls import product	donc:	B: coeur	0	3	3

Quelles sont les issues de :

« Piocher un trêfle OU un coeur»?

$$\cup ("Union") \Leftrightarrow OU$$

Remarque:

Les événements A et B sont incompatibles :

|figures={**'J'**, **'Q'**, **'K'**}

trêfle ="\u2663"

coeur = "\u2665"

carreau = "\u2666"

B|pic = " u2660"

rouge = {coeur, carreau}

enseignes = {trêfle, carreau, coeur, pic}

#Définissons un univers et des événements:

 $\Omega = \{u \text{ for } u \text{ in } product(figures, enseignes)\}$

 $A = \{k \text{ for } k \text{ in } product('K', enseignes)\}$

 $B = \{r \text{ for } r \text{ in } product(figures, rouge)\}$

A appartient à Ω

 $print(A.issubset(\Omega))$

#A ET B

print("A ET B", A.intersection(B))

#A OU B

print("A OU B", A.union(B))

$$P(A \cup B) = \frac{3}{12} + \frac{3}{12}$$

Il se trouve que dans cette situation

$$P(A) = P(B) = \frac{3}{12}$$
, ce n'est pas

toujours le cas. Comme A et B

incompatibles, bien sûr :

 $P(A \cap B) = \frac{0}{12} = 0$

be more a survaint est unanouad cricetii a double critice.					
$\cap: ET$	A :trêfle	\overline{A} :non trêfle	total		
B: coeur	0	3	3		
\overline{B} : non coeur	3	6	9		
total	3	9	12		

 $|ex:\overline{A}\cap B:$ Il y a bien 3 cartes qui sont des coeurs ET pas des trêfles. Remarque, es cases colorées du tableau représentent :

Evénements non incompatibles :

roi:K (King), reine:Q (Queen), valet:J (Jack) Paquet de 12 cartes (figures:K, Q, J)

- A= « La carte est un roi:K»
- B= « La carte est rouge (♦,♥)

Quelles sont les issues possibles des événements :

- « piocher un roi **ET** une carte rouge »?
- « piocher un roi OU une carte rouge »

 $A \cup B = \{K_{\bullet}, K_{\bullet}, K_{\bullet}, K_{\bullet}, K_{\bullet}, Q_{\bullet}, Q_{\bullet}, J_{\bullet}, J_{\bullet}\}$

Vérifier que :

$$P(A \cap B) = \frac{2}{12}$$

Calculons $P(A \cup B)$ en comptant les issues:

$$P(A \cup B) = \frac{8}{12}$$

Calculons $P(A \cup B)$ avec la relation:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B) = \frac{4}{12} + \frac{6}{12} - \frac{2}{12}$$
 donc:

$$P(A \cup B) = \frac{4+6-2}{12} = \frac{8}{12}$$

On note les probabilités sur les branches :					
$\cap: ET$	A	\overline{A}	total		
B	2	4	6		
\overline{B}	2	4	6		
total	4	8	12		

Probabilités conditionnelles

Proposition et événements

On a deux événements A et B. La question que l'on se pose sera typiquement : A est réalisé (« On sait que A s'est produit »), quelle est la probabilité que B se

réalise ? C'est l'événement B sachant A.

Représentation (tableau à double entrée, arbre)

 $B = (A \cap B) \cup (\overline{A} \cap B)$

Les événements $A \cap B$ et $\overline{A} \cap B$ sont incompatibles. Il y a deux façons d'obtenir B: avoir réalisé A et B ou avoir réalisé le contraire de A et B.

$\cap: ET$	A	\overline{A}	total
B	$A \cap B$	$A \cap \overline{B}$	$B = (A \cap B) \cup (\overline{A} \cap B)$
\overline{B}	$\overline{A} \cap B$	$\overline{A} \cap \overline{B}$	$\overline{B} = (A \cap \overline{B}) \cup (\overline{A} \cap \overline{B})$
total	$A = (A \cap B) \cup (A \cup \overline{B})$	$\overline{A} = (\overline{A} \cap B) \cup (\overline{A} \cap \overline{B})$	Ω

Evénements indépendants :

Deux événements sont indépendants quand savoir que l'un s'est réalisé n'apporte aucune connaissance sur la probabilité de l'autre.

Exemple:

On lance un dé deux fois (ou deux dés) et :

- A=on obtient une face paire au premier lancé (2, 4, 6)
- B= on obtient un nombre premier (2, 3, 5) au second lancé

Remarque:

$$\overline{A \sqcup B} - \overline{A} \cap \overline{B}$$

donc la probabilité de réaliser ${\it mi\,A\,mi\,B}$ est :

$$P(\overline{A} \cap \overline{B}) = P(\overline{A \cup B}) = 1 - P(A \cup B)$$

Probabilité

Théorème des probabilités conditionnelles :

$$P(A \cap B) = P(A) \times P_{A}(B)$$

« La proba d'une feuille, c'est le produit des probas des branches »

Donc:

$$P_{A}(B) = \frac{P(A \cap B)}{P(A)}$$

La probabilité $P_{_A}(B)$ se dit : probabilité de B sachant A.

Théorème des probabilités totales :

$$P(B) = P(A \cap B) + P(\overline{A} \cap B)$$

car $A \cap B$ et $A \cap \overline{B}$ sont incompatibles.

Deux événements A et B sont indépendants si :

$$P(B) = P_{A}(B)$$

Conséquence :

$$P(A) \times P(B) = P(A \cap B)$$

C'est en général, cette propriété que l'on utilise pour vérifier l'indépendance de deux événements.