Pstat 150 Lab D

Kendall Brown

November 26, 2017

```
drugt=read.table("C:/Users/kebro/Desktop/PSTAT 105/Drug Treatment.txt",header=T)
library(survival)
```

Q1a. Looking at the data in R, I see that after day 519 most of the observations became censored with only a few outliers being observed in the 600+ day range.

Q1b.

```
dtc=Surv(drugt$Days,drugt$Censor)
dsf=survfit(dtc~1)
dsfs=summary(dsf)
dsfs$surv
```

```
##
     [1] 0.9984076 0.9936306 0.9872611 0.9808917 0.9761146 0.9697452 0.9665605
##
     [8] 0.9633758 0.9570064 0.9522293 0.9490446 0.9474522 0.9410828 0.9363057
##
    [15] 0.9347134 0.9331210 0.9299363 0.9267516 0.9219745 0.9187898 0.9108280
##
    [22] 0.9076433 0.9060510 0.8996815 0.8980892 0.8949045 0.8917197 0.8885350
    [29] 0.8837580 0.8821656 0.8805732 0.8757962 0.8710191 0.8662420 0.8630573
##
##
    [36] 0.8614650 0.8598726 0.8535032 0.8487261 0.8439490 0.8391720 0.8375796
##
    [43] 0.8359873 0.8280255 0.8264331 0.8232484 0.8184713 0.8168790 0.8121019
    [50] 0.8073248 0.8041401 0.7993631 0.7977707 0.7961783 0.7945860 0.7882166
##
##
    [57] 0.7850318 0.7818471 0.7770701 0.7738854 0.7707006 0.7691083 0.7659236
    [64] 0.7611465 0.7595541 0.7563694 0.7515924 0.7436306 0.7404459 0.7340764
##
##
    [71] 0.7292994 0.7245223 0.7197452 0.7149682 0.7054140 0.7022293 0.6958599
    [78] 0.6926752 0.6878981 0.6863057 0.6815287 0.6783439 0.6751592 0.6735669
    [85] 0.6703822 0.6656051 0.6624204 0.6608280 0.6544586 0.6512739 0.6480892
##
    [92] 0.6449045 0.6369427 0.6337580 0.6305732 0.6289809 0.6257962 0.6162420
   [99] 0.6130573 0.6114650 0.6050955 0.6003185 0.5955414 0.5891720 0.5843949
## [106] 0.5812102 0.5796178 0.5780255 0.5748408 0.5732484 0.5684713 0.5668790
## [113] 0.5652866 0.5636943 0.5621019 0.5589172 0.5573248 0.5557325 0.5541401
## [120] 0.5525478 0.5477707 0.5445860 0.5398089 0.5382166 0.5350318 0.5334395
## [127] 0.5318471 0.5302548 0.5286624 0.5270701 0.5254777 0.5207006 0.5191083
## [134] 0.5127389 0.5095541 0.5063694 0.5015924 0.4984076 0.4952229 0.4888535
## [141] 0.4872611 0.4824841 0.4808917 0.4792994 0.4745223 0.4713376 0.4697452
## [148] 0.4665605 0.4633758 0.4617834 0.4601911 0.4554140 0.4522293 0.4506369
## [155] 0.4474522 0.4458599 0.4426752 0.4410828 0.4378981 0.4363057 0.4331210
## [162] 0.4315287 0.4283439 0.4267516 0.4251592 0.4219745 0.4203822 0.4187898
## [169] 0.4171975 0.4156051 0.4124204 0.4092357 0.4076433 0.4060510 0.4044586
## [176] 0.4028662 0.4012739 0.3949045 0.3933121 0.3885350 0.3869427 0.3805732
## [183] 0.3773885 0.3742038 0.3694268 0.3662420 0.3630573 0.3614650 0.3598726
## [190] 0.3582803 0.3550955 0.3519108 0.3503185 0.3471338 0.3455414 0.3423567
## [197] 0.3407643 0.3391720 0.3359873 0.3343949 0.3312102 0.3280255 0.3264331
## [204] 0.3232484 0.3216561 0.3200637 0.3152866 0.3136943 0.3121019 0.3105096
## [211] 0.3089172 0.3041401 0.3025478 0.3009554 0.2977707 0.2961783 0.2945860
## [218] 0.2929936 0.2914013 0.2898089 0.2866242 0.2834395 0.2818471 0.2802548
## [225] 0.2786624 0.2770701 0.2754777 0.2738854 0.2722930 0.2707006 0.2691083
## [232] 0.2675159 0.2659236 0.2643312 0.2627389 0.2579618 0.2563694 0.2547771
## [239] 0.2531847 0.2515924 0.2500000 0.2484076 0.2468153 0.2452229 0.2436306
```

```
## [246] 0.2420382 0.2404459 0.2388535 0.2372611 0.2356688 0.2340764 0.2324841
## [253] 0.2308917 0.2292994 0.2277070 0.2261146 0.2245223 0.2229299 0.2213376
## [260] 0.2197452 0.2181529 0.2165605 0.2149682 0.2117834 0.2101911 0.2085987
## [267] 0.2070064 0.2054140 0.2038217 0.2022293 0.2006369 0.1990318 0.1973732
## [274] 0.1957146 0.1920903 0.1870353 0.1662536

plot(dsf,main="KM Estimator per Day",xlab="Days",ylab="KM Est.")
```

KM Estimator per Day

Q1b.

```
dsfecdf=1-dsfs$surv
dsqt=quantile(dsfs$time,c(.25,.5,.75))
dsqe=quantile(dsfs$surv,c(.25,.5,.75))
plot(dsfs$time,dsfecdf,type="s",xlab="Days",ylab="ECDF",col="red")
abline(h=dsqe,col=c("blue","yellow","green3"))
```


dsqe

```
##
         25%
                   50%
                              75%
## 0.3136943 0.4952229 0.7340764
dsqt
## 25% 50% 75%
## 81 167 276
We have the .25, .5, and .75 quantiles of days to be 81, 167, and 276 respectively.
Q1d.
drugpre=subset(drugt,IVDrug=="Previous",data=drugt)
drugrec=subset(drugt,IVDrug=="Recent",data=drugt)
drugnev=subset(drugt,IVDrug=="Never",data=drugt)
dtpc=Surv(drugpre$Days,drugpre$Censor)
dtrc=Surv(drugrec$Days,drugrec$Censor)
dtnc=Surv(drugnev$Days,drugnev$Censor)
dspf=survfit(dtpc~1)
dsrf=survfit(dtrc~1)
dsnf=survfit(dtnc~1)
dspfs=summary(dspf)
dsrfs=summary(dsrf)
dsnfs=summary(dsnf)
dspqt=quantile(dspfs$time,c(.25,.5,.75))
dsrqt=quantile(dsrfs$time,c(.25,.5,.75))
dsnqt=quantile(dsnfs$time,c(.25,.5,.75))
```

```
##.25,.5,.75 Quantiles for the previous, recent, and never observations in terms of time
dspqt
             50%
##
      25%
                    75%
## 60.75 124.50 231.50
dsrqt
## 25% 50% 75%
## 70 136 246
dsnqt
##
      25%
             50%
                    75%
## 83.75 156.50 244.25
Q1e.
dspqe=quantile(dspfs$surv,c(.25,.5,.75))
dsrqe=quantile(dsrfs$surv,c(.25,.5,.75))
dsnqe=quantile(dsnfs$surv,c(.25,.5,.75))
dspqe[1]
##
         25%
## 0.3869565
dsrqe[1]
         25%
## 0.3091603
dsrqe[1]
##
         25%
## 0.3091603
##95% Conf int for KM estimator for previous IV users after 75% mark
c(.295,.474)
## [1] 0.295 0.474
\#\#95\% Conf int for KM estimator for recent IV users after 75% mark
c(.2508,.363)
## [1] 0.2508 0.3630
##95% Conf int for KM estimator for people that have never had an IV after 75% mark
c(.255,.374)
## [1] 0.255 0.374
From these confidence intervals, It can be said that there does not exist a significant difference between
groups. Q2.
lungt=read.table("C:/Users/kebro/Desktop/PSTAT 105/lung.txt",header=T)
library(survival)
Q2a.
lungsurv=Surv(lungt$time,abs(-1*lungt$status+1))
lsf=survfit(lungsurv~1)
```

```
lsfs=summary(lsf)
plot(lsf,main="KM Estimation Per Day",xlab = "Days",ylab="KM Est.")
```

KM Estimation Per Day

Q2b.

summary(lsf)

```
## Call: survfit(formula = lungsurv ~ 1)
##
    time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
##
       5
             228
                            0.9956 0.00438
                                                   0.9871
                                                                   1.000
                        1
##
      11
             227
                            0.9825 0.00869
                                                   0.9656
                                                                   1.000
##
             224
                            0.9781 0.00970
                                                   0.9592
                                                                  0.997
      12
                        1
##
      13
             223
                            0.9693 0.01142
                                                   0.9472
                                                                  0.992
##
             221
                            0.9649 0.01219
                                                   0.9413
      15
                                                                  0.989
##
      26
             220
                            0.9605 0.01290
                                                   0.9356
                                                                   0.986
##
      30
             219
                        1
                            0.9561 0.01356
                                                   0.9299
                                                                  0.983
##
      31
             218
                        1
                            0.9518 0.01419
                                                   0.9243
                                                                  0.980
             217
                        2
                            0.9430 0.01536
##
      53
                                                   0.9134
                                                                  0.974
##
      54
             215
                        1
                            0.9386 0.01590
                                                   0.9079
                                                                  0.970
##
      59
             214
                            0.9342 0.01642
                                                   0.9026
                                                                  0.967
                        1
##
             213
                        2
                            0.9254 0.01740
                                                   0.8920
                                                                  0.960
      60
##
             211
                        1
                            0.9211 0.01786
                                                   0.8867
                                                                  0.957
      61
##
                            0.9167 0.01830
      62
             210
                        1
                                                   0.8815
                                                                  0.953
##
      65
             209
                            0.9079 0.01915
                                                   0.8711
                                                                  0.946
##
      71
             207
                        1
                            0.9035 0.01955
                                                   0.8660
                                                                  0.943
                            0.8991 0.01995
                                                   0.8609
##
      79
             206
                                                                  0.939
```

##	81	205	2	0.8904	0.02069	0.8507	0.932
##	88	203	2	0.8816	0.02140	0.8406	0.925
##	92	201	1	0.8772	0.02174	0.8356	0.921
##	93	199	1	0.8728	0.02207	0.8306	
##	95	198	2	0.8640	0.02271	0.8206	
##	105	196	1	0.8596	0.02302	0.8156	0.906
##	107	194	2	0.8507	0.02362	0.8056	0.898
##	110	192	1	0.8463	0.02391	0.8007	0.894
##	116	191	1	0.8418	0.02419	0.7957	0.891
##	118	190	1	0.8374	0.02446	0.7908	0.887
##	122	189	1	0.8330	0.02473	0.7859	0.883
##	131	188	1	0.8285	0.02500	0.7810	0.879
##	132	187	2	0.8197	0.02550	0.7712	0.871
##	135	185	1	0.8153	0.02575	0.7663	0.867
##	142	184	1	0.8108	0.02598	0.7615	0.863
##	144	183	1	0.8064	0.02622	0.7566	0.859
##	145	182	2	0.7975	0.02667	0.7469	0.852
##	147	180	1	0.7931	0.02688	0.7421	0.848
##	153	179	1		0.02710	0.7373	
##	156	178	2		0.02751	0.7277	
##	163	176	3		0.02809	0.7134	
##	166	173	2		0.02845	0.7039	
##	167	171	1		0.02863	0.6991	
##	170	170	1		0.02880	0.6944	
##	175	167	1		0.02898	0.6896	
##	176	165	1		0.02915	0.6848	
##	177	164	1		0.02932	0.6800	
##	179	162	2		0.02965	0.6704	
##	180	160	1		0.02981	0.6655	
##	181	159	2		0.03012	0.6559	
##	182	157	1		0.03027	0.6511	
##	183	156	1		0.03041	0.6464	
##	186	154	1		0.03056	0.6416	
##	189	152	1		0.03070	0.6367	
##	194	149	1		0.03085	0.6318	
##	197	147	1		0.03099	0.6269	
##	199	145	1		0.03113	0.6219	
##	201	144	2		0.03141	0.6120	
##	202	142	1		0.03154	0.6071	
##	207	139	1		0.03168	0.6020	
##	208	138	1		0.03181	0.5970	
##	210	137 135	1		0.03194	0.5920 0.5870	
## ##	212 218	134	1 1		0.03206 0.03218	0.5820	
##	222	134	1		0.03218	0.5620	
##	223	132	1		0.03231	0.5709	
## ##	226 229	126 125	1 1		0.03256 0.03268	0.5666 0.5614	
##	230	125	1		0.03280	0.5514	
##	239	124	2		0.03260	0.5362	
##	245	117	1		0.03304	0.5402	
##	246	116	1		0.03310	0.5402	
##	267	112	1		0.03341	0.5294	
##	268	111	1		0.03353	0.5239	
., π	200		1	3.0000	3.00000	0.0203	0.000

##	269	110	1	0.5807	0.03364	0.5184	0.651
##	270	108	1		0.03376	0.5128	0.645
##	283	104	1		0.03388	0.5071	0.640
##	284	103	1		0.03400	0.5014	0.635
##	285	101	2		0.03424	0.4899	0.624
##	286	99	1	0.5475	0.03434	0.4841	0.619
##	288	98	1	0.5419	0.03444	0.4784	0.614
##	291	97	1		0.03454	0.4727	0.608
##	293	94	1		0.03464	0.4669	0.603
##	301	91	1		0.03475	0.4609	0.597
##	303	89	1		0.03485	0.4549	0.592
##	305	87	1		0.03496	0.4488	0.586
##	306	86	1		0.03506	0.4427	0.581
##	310	85	2		0.03523	0.4306	0.569
##	320	82	1		0.03532	0.4244	0.563
##	329	81	1		0.03539	0.4183	0.558
##	337	79	1		0.03547	0.4121	0.552
##	340	78	1		0.03554	0.4060	0.546
##	345	77	1		0.03560	0.3998	0.540
##	348	76	1		0.03565	0.3937	0.534
##	350	75	1		0.03569	0.3876	0.528
##	351	74	1		0.03573	0.3815	0.522
##	353	73	2		0.03578	0.3693	0.510
##	361	70	1		0.03581	0.3631	0.504
##	363	69	2		0.03583	0.3508	0.492
##	364	67	1		0.03582	0.3447	0.486
##	371	65	2		0.03581	0.3323	0.473
##	387	60	1		0.03582	0.3258	0.467
##	390	59	1		0.03582	0.3193	0.460
##	394	58	1		0.03580	0.3128	0.454
##	426	55	1		0.03580	0.3060	0.447
##	428	54	1		0.03579	0.2993	0.440
##	429	53	1		0.03576	0.2926	0.434
##	433	52	1		0.03573	0.2860	0.427
##	442	51	1		0.03568	0.2793	0.420
##	444	50	1		0.03561	0.2727	0.413
##	450	48	1		0.03555	0.2659	0.406
##	455	47	1		0.03548	0.2592	0.399
##	457	46	1		0.03539	0.2525	0.392
##	460	44	1		0.03530	0.2456	0.385
##	473	43	1		0.03520	0.2388	0.378
##	477	42	1		0.03508	0.2320	0.371
##	519	39	1		0.03498	0.2248	0.363
##	520 524	38	1		0.03485	0.2177	0.356
##	524	37	2		0.03455	0.2035	0.340
##	533	34	1		0.03439	0.1962	0.333
##	550 550	32	1		0.03423	0.1887	0.325
##	558 567	30	1			0.1810	0.316
##	567	28	1		0.03391	0.1729	0.308
##	574	27 26	1		0.03371	0.1650	0.299
##	583	26 24	1		0.03348	0.1571	0.290
##	613	24	1		0.03325	0.1489	0.281
##	624	23	1		0.03297	0.1407	0.272
##	641	22	1	0.1009	0.03265	0.1327	0.263

```
643
             21
                           0.1780 0.03229
                                                 0.1247
                                                               0.254
##
                           0.1691 0.03188
                                                               0.245
##
     654
             20
                       1
                                                 0.1169
             19
                           0.1602 0.03142
                                                               0.235
##
     655
                                                 0.1091
##
     687
             18
                           0.1513 0.03090
                                                 0.1014
                                                               0.226
                       1
##
     689
             17
                       1
                           0.1424 0.03034
                                                 0.0938
                                                               0.216
##
     705
             16
                       1
                          0.1335 0.02972
                                                0.0863
                                                               0.207
##
     707
             15
                       1
                           0.1246 0.02904
                                                 0.0789
                                                               0.197
                           0.1157 0.02830
##
     728
             14
                                                0.0716
                                                               0.187
                       1
##
     731
             13
                       1
                           0.1068 0.02749
                                                 0.0645
                                                               0.177
##
             12
                          0.0979 0.02660
                                                0.0575
                                                               0.167
     735
                       1
##
     765
             10
                       1
                           0.0881 0.02568
                                                 0.0498
                                                               0.156
##
     791
              9
                           0.0783 0.02462
                                                               0.145
                       1
                                                 0.0423
##
              7
                           0.0671 0.02351
                                                 0.0338
                                                               0.133
     814
                       1
                           0.0503 0.02285
##
     883
              4
                       1
                                                 0.0207
                                                               0.123
##95% conf int of KM estimator for 150 days
c(.7421,.848)
## [1] 0.7421 0.8480
Q2c.
##95% conf int of median survival time
## Call: survfit(formula = lungsurv ~ 1)
##
##
         n events median 0.95LCL 0.95UCL
##
       228
               165
                        310
                                285
                                        363
we have a 95\% conf int of \{285,363\} Q2d.
lungmale=subset(lungt,lungt$sex==1)
lungfemale=subset(lungt,lungt$sex==2)
lungmalesf=Surv(lungmale$time,abs(-1*lungmale$status+1))
lungfemalesf=Surv(lungfemale$time,abs(-1*lungfemale$status+1))
lungmfs=survfit(lungmalesf~1)
lungffs=survfit(lungfemalesf~1)
plot(lungffs,main="Female KM Estimation Per Day",xlab = "Days",ylab="KM Est.")
```

Female KM Estimation Per Day

plot(lungmfs,main="Male KM Estimation Per Day",xlab = "Days",ylab="KM Est.")

Male KM Estimation Per Day

From these plot it appears that women have higher survival rates seemingly along the entire

Q2e. MvF median surv times

```
lungmfs
## Call: survfit(formula = lungmalesf ~ 1)
##
##
                     median 0.95LCL 0.95UCL
             events
##
       138
                112
                        270
                                 212
                                         310
lungffs
## Call: survfit(formula = lungfemalesf ~ 1)
##
##
                     median 0.95LCL 0.95UCL
         n
             events
##
        90
                 53
                        426
                                 348
                                         550
```

From these confidence intervals and medians, I believe it is rather clear that women tend to survive longer than men. However, i do not believe that this tells the whole story as other factors not measured in this data set could be rather impactful to survival time. Q3.1,000,000 sims

```
simexp=rexp(10^6)
cossim=cos(simexp)
cossim.7=(cossim>.7)/1
cossim.7h=hist(cossim.7,breaks=c(0,.5,1))
```

Histogram of cossim.7


```
cossim.7p=cossim.7h$counts[2]/(10^6)
cossim.7p ##Probability Cos(x)>.7
## [1] 0.552281
##95% conf int for P(\cos(x)>.7)
c(cossim.7p-1.96*sqrt(cossim.7p*(1-cossim.7p)/(10^6)),
  cossim.7p+1.96*sqrt(cossim.7p*(1-cossim.7p)/(10^6)))
## [1] 0.5513064 0.5532556
Q4a.1000 \text{ runs of } 50 \text{ sims}
n=50
m=1000
ex.test=rep(999,m)
rnd.x=matrix(rep(999,50000),1000,50)
for(j in 1:m){
  rnd.x[j,]=c(rexp(n))
  ex.test[j]=mean(rnd.x[j,])
hist(ex.test,breaks=30,col="red2",main="Hist from Simulation",xlab="Calculated Means")
```

Hist from Simulation

Q4b. KS-test of samples

```
kssim=rep(999,1000)
for(j in 1:m){
  ksdj=ks.test(rnd.x[j,],pexp)
   kssim[j]=ksdj$statistic
}
histks=hist(kssim,breaks=30,main="Simulated KS-test Statistics",xlab="D Statistics",col="blue")
```

Simulated KS-test Statistics


```
Q4c.
```

```
quantile(kssim, .95)
##
         95%
## 0.1936762
Q4d.
#computer ran a single batch in .16 seconds
#7200 secs in 2hrs means 45000 batches
#to avoid time issues when knitting this block will be ## out
\#kssim2h=rep(999,m)
#rnd2h.x=matrix(rep(999,50000),1000,50)
#batch=matrix(rep(999,4.5e+07),45000,1000)
#for(j in 1:45000){
#for(k in 1:m){
  \#rnd2h.x[k,]=c(rexp(n))
  \#ex.test[k]=mean(rnd2h.x[k,])
  \#ksdj2h=ks.test(rnd2h.x[k,],pexp)
  \#kssim2h[k] = ksdj2h\$statistic
  #batch[j,]=kssim2h
\#sim2h = quantile(batch, .95)
#sim2h
```

To avoid problems during knitting, I am stating the calculated simulation .95 quantile to be .1884515.

```
Q4e.Crit value from Stephens table 1.4
(.1884515 - .2/50)*(sqrt(50) + .26 + .5/sqrt(50))
## [1] 1.365269
From this calculation we get a T value that corresponds to the <1\% level.
Q5a.
library(MASS)
ofsd=sd(geyser$waiting)
ofsd ##sample standard deviation of geyser data set
## [1] 13.89032
Q5b.
geysermat=rep(999,1000)
for(j in 1:1000){
sampof=sample(geyser$waiting,299,replace = T)
geysermat[j]=sd(sampof)
(sd(geysermat))^2
## [1] 0.1501207
Q5c.
geyseriqr=rep(999,1000)
for(j in 1:1000){
sampofiqr=sample(geyser$waiting,299,replace = T)
geyseriqr[j]=IQR(sampofiqr)
(sd(geyseriqr))^2
## [1] 2.863103
Q5d.
geysermad=rep(999,1000)
for(j in 1:1000){
sampofmad=sample(geyser$waiting,299,replace = T)
geysermad[j]=mad(sampofmad)
(sd(geysermad))^2
## [1] 2.965954
hist(geysermat,breaks=100)
```

Histogram of geysermat

hist(geyseriqr,breaks=100)

Histogram of geyseriqr

hist(geysermad,breaks=100)

Histogram of geysermad

Based on the histograms of the standard deviation estimates, the SD function has the most normaly distributed data. As such, personally, i prefer the sd function over the other two estimation functions.