

Output Analysis

The simulation results

- The simulation
 - receives as inputs parameters represented by random variables
 - produces as outputs observations of the random variables we are interested in
- For each random variable we are interested in computing
 - an estimation of the mean value for the variable
 - an estimation of the error committed providing that mean value for the variable

Types of simulations

- Steady-state simulation:
 - The system runs continuously (or at least over a very long period of time)
 - We want to study long-run, or steady-state, properties of the system
- Terminating simulation:
 - The system under study evolves from time 0 to a well defined ending time, either known in advance or related to a specific event
 - It depends on the initial conditions

Steady-state simulation

- A system continuously running can be studied estimating its performance parameters over long time intervals
 - X is the metric under study (the average of a random quantity)
 - Being x₁, x₂, ... x_i, ... independent istances of X collected observing the running system over long periods, by the LLN it holds that

$$X = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

Steady-state simulation

"Law of large numbers: [...] as the number of identically distributed, randomly generated variables increases, their sample mean (average) approaches their theoretical mean."

Steady-state simulation

- Each estimate of X, x_i, is obtained by collecting during the simulation several instances of the observed quantity
- For example
 - During a simulation run we observe N_i packets
 - For each packet j, we measure the delay d_i
 - We compute the average delay

$$x_i = \frac{1}{N_i} \sum_{j=1}^{N_i} d_j$$

- A confidence interval is an estimation of the error we make when we estimate the average value X of a random quantity using an averaging process over a limited number of samples and replications (e.g., X is the average delay, the average throughput,...)
- Assumptions:
 - The observed process is stationary
 - X has average m and variance s²
 - The *n* observations of X $(x_1, x_2, ..., x_i, ..., x_n)$ are independent, i.e., they are iid variables

The average estimation of X, m, is given from the arithmetic mean of the observations

$$\hat{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

- E[\hat{x}]=m, Var(\hat{x})=s²/n
- From central limit theorem, for large n, the estimate can be approximated by a normally distributed RV $\hat{x} \approx \mathcal{N}(m,s/\sqrt{n})$

- The variance of the estimation decreases with n
- From the estimate distribution we can evaluate the error in the estimate itself
- Derive the variable z distributed like N(0,1) with the transformation

$$z = \frac{\hat{x} - m}{s / \sqrt{n}}$$

- We use the variable z to evaluate the error in the estimation
- The probability that z is in the interval $[-z_{1-\alpha/2}, z_{1-\alpha/2}]$ is $(1-\alpha)$

$$\begin{aligned}
& P\left\{-z_{1-\alpha/2} \le z \le z_{1-\alpha/2}\right\} = 1 - \alpha \\
& P\left\{-z_{1-\alpha/2} \le \frac{\hat{x} - m}{s / \sqrt{n}} \le z_{1-\alpha/2}\right\} = 1 - \alpha \\
& P\left\{-z_{1-\alpha/2} \le / \sqrt{n} \le \hat{x} - m \le z_{1-\alpha/2} \le / \sqrt{n}\right\} = 1 - \alpha
\end{aligned}$$

$$P\left\{\hat{x} - z_{1-\alpha/2} s / \sqrt{n} \le m \le \hat{x} + z_{1-\alpha/2} s / \sqrt{n}\right\} = 1 - \alpha$$

Confidence intervals

The interval

$$I = [\hat{x} - z_{1-\alpha/2} s / \sqrt{n}, \hat{x} + z_{1-\alpha/2} s / \sqrt{n}]$$

is called confidence interval

- lacksquare 1-lpha is the confidence level
- ullet Commonly used values for lpha are:
 - Confidence 90% (α =0.1)
 - Confidence 95% (α =0.05)
 - Confidence 99% (α =0.01)

The confidence interval I with confidence level $1-\alpha$ means that

if we repeat the procedure many times, $(1-\alpha)$ intervals "I" will actually contain the value m we are trying to estimate

 Given an experiment, a higher level of confidence corresponds to a wider confidence interval

 Given an experiment, a higher level of confidence corresponds to a wider confidence interval

Fixing the level of confidence 1-α, to shrink the confidence interval we must add new samples, incrementing n

- The central limit theorem is valid only for large n (larger than 30)
- When n <30, we must substitute the normal distribution with the Student's t distribution with n-1 degrees of freedom</p>
- We define the variable t

$$t = \frac{\hat{x} - m}{s / \sqrt{n}}$$

Student's t distribution

If W is a r.v. with normal distribution N(0,1) and V is chi-square distributed with k degrees of freedom, the ratio

$$\frac{W}{\sqrt{V/k}}$$

is t distributed with k degrees of freedom

 The t distribution is also called Student distribution or Student's t

Student's t distribution

The pdf for the t distribution is

$$f(x) = \frac{1}{B(1/2, k/2)\sqrt{k}} \left(1 + \frac{x^2}{k}\right)^{-\left(\frac{k+1}{2}\right)}$$

where $B(\alpha,\beta)$ is the Beta function

$$B(\alpha,\beta)=\int_0^1 t^{\alpha-1}(1-t)^{\beta-1}dt$$

The Student's t distribution has mean 0 and variance k/(k-2)

Student's t distribution

Student's t distribution

Besides the estimate of the mean, to apply the variable transform providing z or t, we need the estimate of the standard deviation s

$$\hat{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \hat{x})^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{i}^{2} - n\hat{x}^{2} \right)$$

A simulation experiment runs 9 times to measure the quantity X and provides the following results:

$$\hat{x} = \frac{1}{9} \sum_{i=1}^{9} x_i = 65$$
 and $\sum_{i=1}^{9} (x_i - \hat{x})^2 = 3560$

- Estimate the variance of X
- Compute the 90% and 99% confidence intervals

Estimator of the variance:

$$s^{2} = \frac{1}{9-1} \sum_{i=1}^{9} (x_{i} - \hat{x})^{2} = \frac{3560}{8} = 445$$

- 90% confidence interval:
 - Use the Student's t with 8 degrees of freedom
 - 1- α =0.9, then α =0.1, α /2=0.05
 - Use the value $t_{8,0.05}$ = 1.86

$$\mathbf{I} = [\hat{\mathbf{x}} - t_{n-1,\alpha/2} s / \sqrt{n}, \hat{\mathbf{x}} + t_{n-1,\alpha/2} s / \sqrt{n}]$$

t-student table

Table of the Student's t-distribution

The table gives the values of $t_{\alpha; \nu}$ where $Pr(T_{\nu} > t_{\alpha; \nu}) = \alpha$, with ν degrees of freedom

va	0.1	0.05	0.025	0.01	0.005	0.001	0.0005
1	3.078	6.314	12.076	31.821	63.657	318.310	636.620
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587

$$I = [\hat{x} - t_{n-1,\alpha/2} s / \sqrt{n}, \hat{x} + t_{\alpha/2} s / \sqrt{n}]$$

$$I_{0.9} = [\hat{x} - t_{8,0.05} * s / \sqrt{9}, \hat{x} + t_{8,0.05} * s / \sqrt{9}]$$

$$I_{0.9} = [\hat{x} - t_{8,0.05} * \sqrt{445} / 3, \hat{x} + t_{8,0.05} * \sqrt{445} / 3]$$

$$I_{0.9} = [51.92,78.08]$$

- 99% confidence interval:
 - Use the Student's t with 8 degrees of freedom
 - α =0.01, α /2=0.005
 - Use the value t_{8,0.005}=3.36

$$\begin{split} &\mathbf{I}_{0.99} = [\ 65 - 3.36 * \sqrt{445} \ / \ 3 \ , 65 + 3.36 * \sqrt{445} \ / \ 3 \] \\ &\mathbf{I}_{0.99} = [\ 41.37,88.63 \] \end{split}$$

Increasing the level of confidence 1- α , the interval becomes wider

Exa

Example

```
from scipy.stats import timport math
```

```
t.interval(0.99,

8,

65,

math.sqrt(445/9))
```

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.t.html

Probability of rare events

In this case:

$$\hat{p} = \frac{\sum 1_{A \cap B}}{\sum 1_B}$$

■ Typically $\sum 1_B = n$

- Note that \hat{p} is a $\frac{1}{n}$ Bin(n,p), which for n large tends to a Gaussian.
- The standard deviation of $\frac{1}{n}$ Bin(n,p), is:

$$s = \sqrt{\frac{p(1-p)}{n}}$$
, therefore we can approximate it

with:
$$\hat{s} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$
 and obtain :

$$I = [\widehat{p} - z_{\alpha/2} \hat{s}, \widehat{p} + z_{\alpha/2} \hat{s}]$$

