헬스케어데이터사이언스 IC-PBL 과제 설명서

건강검진 데이터 분석을 통한 질병 예측 모델 개발

문제상황 시나리오 (1)

- 디지털 헬스케어는 최근 CES(Consumer Technology Association) 2024에서 중요한 키워드로 포함될 만큼 관심이 높아지고 있음
- 또한 개인 맞춤형 건강 정보 및 상품을 추천받고 싶어하는 수요가 증가하고 있음
- 건강기능식품 쇼핑몰을 운영하고 있는 ㈜글로잇은 개인의 고유한 건강 상태 등에 따라 자사의 상품을 개인에게 추천하고자 함
- 현재 기업에서 보유하고 있는 데이터는 국가건강검진 데이터로 해당 건강검진 정보를 통해 예측할 수 있는 질병을 발굴하고, 예측 모델 및 알고리즘을 개발하고자 함

문제상황 시나리오 (2)

- 요구사항
 - 국가 건강검진 데이터를 통해 도출 할 수 있는 질병 및 특정 의학적 상태에 대한 발굴
 예) 공복혈당 수치를 통한 당뇨병 단계별 진단
 - 예측 모델 및 알고리즘 개발을 통해 가능성 있는 질병에 대해 위험도 제시
 - 시중에 유통되고 있는 건강보조식품과 연계하여 사용자의 의학적 상태를 개선해 줄 수 있는 상품 연결
- 참여자의 역할:
 - 주식회사 글로잇의 데이터사이언티스트로 이번 프로젝트를 수행함

문제상황 시나리오 (3)

• 기업 정보

https://www.drugstore.kr/

데이터 소개

- •국가 건강검진 데이터
 - 1,000,000건

데이터 소개

• 국가 건강검진 데이터 사용 가이드

]	제공항목						속성?	정보	
NO	표준 항목명	영문명	설명				<i>표</i> 현형식 /단위	예시	비고 ◎ <u>요단백 판정 기준?</u> - 성인인 경우 하루 500;
4	연령대 코드(5세 단윈)	AGE_ GROUP	그룹화(범	연령대 20~24세 25~29세 30~34세 35~39세 40~44세 45~49세 50~54세	한 코드			11	이상, 소아는 1시간 동속 체표면의 1세급면의 당 4mc이상이 단배마이 배설립: 명배한 단배마 이 보다 : 경우(하루 30~300ms): 단배이 배설되는 경우 미세단배마 - 시험지검사법(dipstick method)으로 시험제에 소 적신 후 00조 이내에 초록색으로 변색하는 정: 판정하여 음성(~), 약상성 30mc/dL은 +1, 100mc/dL은 경우 +2, 300mc/dL은 +4로 함
5	시도코드	SIDO	- 2012년부터 지의 데이 코드명 11 서울 26 부산 27 대구 28 인천 29 광주	자 거주지의 시 세종특별자치시가 터에는 해당 항목 시도명 코드 특별시 42 광역시 43 광역시 45 광역시 45 광역시 46 광역시 46	신규로 편입됨 - - - - - - - - - - - - - - - - - - -		N	26	 ○ 시력 측정 방식? - 물체의 형태나 그 존재를 구분하는 눈의 기능을 형태각이라 하고 그 경달나타내는 저이 시력. - 2점을 2점으로서 식별힘

건강검진데이터 사용 가이드 샘플

학습내용

- 대규모의 건강검진 정보를 통해 데이터를 분석하고 예측 모델을 개발하는 방법에 대해 학습한다
- 완성된 모델을 실제 건강기능식품 추천까지 연결하여 인공지능 프로젝트의 전 과정에 대해 학습한다

핵심 학습 목표

- 의료 데이터 분석 및 모델링 능력 향상
- 의료 인공지능 모델의 활용 방법 학습