

Fig. 1

to become to







Fig. 4

mar Jilyera i i

HEATING MRAM CELLS OF AN ARRAY OF MRAM CELLS SWITCHABLE BETWEEN TWO STATES UNDER THE INFLUENCE OF A MAGNETIC FIELD, EACH MRAM CELL COMPRISING A REFERENCE LAYER AND A DATA LAYER, THE REFERENCE LAYER HAVING A LOWER COERCIVITY THAN THE DATA LAYER

502

UTILIZING THE GENERATED HEAT TO REDUCE THE COERCIVITY OF THE REFERENCE LAYER AND FACILITATE SWITCHING OF THE REFERENCE LAYER

504

Fig. 5