Laboratorio 4 - Inferencia Estadística Convergencia y Teorema Central del Límite

Laboratorista: Héctor Lira Talancón

Ago-Dic 2017

- 1. Suponga que $X_1, X_2, ...$ es una sucesión de variables aleatorias con $E(X_i) = \mu$, $Var(X_i) = \sigma^2 < \infty$ y $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Demuestra que $\bar{X}_n \stackrel{P}{\to} \mu$ (Ley débil de los grandes números).
- 2. Suponga que $X_1,...,X_n$ es una muestra aleatoria de $U(0,\theta)$. Sea $Y=X_{(n)}=\max\{X_1,...,X_n\}$.

 a) Demuestra que $X_{(n)} \stackrel{P}{\to} \theta$.
 - b) Demuestra que $W = n(\theta X_{(n)}) \stackrel{d}{\to} Exp(\theta)$.
- 3. Sea $X_1,...,X_n$ una muestra aleatoria con densidad común f_X , tales que $E(X_i)$ y $Var(X_i) = \sigma^2 < \infty$. Entonces el Teorema Central del Límite dice:

a)
$$\lim_{n\to\infty}P\Biggl(\frac{\sum\limits_{i=1}^{n}X_{i}-n\mu}{\sigma\sqrt{n}}\leq x\Biggr)=\int\limits_{-\infty}^{x}\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-t^{2}}{2\sigma^{2}}}dt,\,\text{para toda}\,\,x\in\mathbb{R}$$

b)
$$\bar{X} = \frac{\sum\limits_{i=1}^n X_i}{n} \sim N(\mu, \frac{\sigma^2}{n})$$
 si $n \geq 1000$.

- c) $\sum_{i=1}^{n} X_i$ tiene una distribución normal para n muy grande.
- d) Si $W_n = \sqrt{n}(\frac{\bar{X}_n \mu}{\sigma})$ con $\bar{X}_n = \frac{\sum\limits_{i=1}^n X_i}{n}$, entonces $\lim_{n \to \infty} P(W_n > w) = 1 P(Z \le w)$, para toda $w \in \mathbb{R}$, donde $Z \sim N(0,1)$.

4. Sea $Y_1, ..., Y_n$ una muestra aleatoria de una población cuya distribución de frecuencias es f_Y tal que E(Y) = 0 y $Var(Y) = \sigma^2$. El Teorema Central del Límite dice que:

A: Si
$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$
, entonces $\lim_{n \to \infty} P\left(\frac{\bar{Y}}{\sigma/\sqrt{n}} \le z\right) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{\frac{-t^2}{2}} dt$

B: Cuando n es grande, Y_n es aproximadamente normal.

Entonces,

- a) A y B son falsas.
- b) A es falsa pero B no.
- c) B es falsa pero A no.
- d) Ninguna de las anteriores.
- 5. Considera Y_1, Y_2, \ldots una sucesión de variables aleatorias independientes e idénticamente distribuidas con varianza finita y $E(Y_i) = \mu$. Sea $\bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$. Considera el siguiente límite $\lim_{n \to \infty} P(\bar{Y}_n < y)$ con $y > \mu$. ¿Cuál de las siguientes afirmaciones es verdadera?
 - a) El límite es cero.
 - b) El límite es uno.
 - c) El límite está estrictamente entre cero y uno.
 - d) El límite no existe.
- 6. Considera Y_1, Y_2, \dots una sucesión de variables aleatorias tales que $Y_n \stackrel{P}{\to} c$ cuando $n \to \infty$ y c una constante. Considera las siguientes afirmaciones:

A:
$$F_{Y_n}(c+0.01) \to 1$$
 cuando $n \to \infty$.

B:
$$F_{Y_n}(c-0.01) \to 1$$
 cuando $n \to \infty$.

Entonces,

- a) A y B son falsas.
- b) A es verdadera y B falsa.
- c) A y B son verdaderas.
- d) Ninguna de las anteriores.
- 7. Considera $Y_1, Y_2, ...$ una sucesión de variables aleatorias independientes e idénticamente distribuidas con varianza finita y $E(Y_i) = \mu$. Sea $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$. Considera el siguiente límite $\lim_{n \to \infty} P(\bar{Y}_n < \mu + \frac{y}{\sqrt{n}})$ con y < 0. ¿Cuál de las siguientes afirmaciones es verdadera?

- b) El límite es mayor a 0.5.
- c) El límite es menor a 0.5.
- d) El límite es uno.

- 8. Sea $X_1,...,X_n$ una muestra aleatoria de una densidad $Exp(\beta)$. Sea $\hat{\beta} = \bar{X}$, el estimador de máxima verosimilitud.
 - a) Demuestra que $\frac{\hat{\beta}-\beta}{\beta/\sqrt{n}} \stackrel{d}{\to} N(0,1)$ cuando $n \to \infty$.
 - b) Demuestra que $\frac{\hat{\beta}-\beta}{\hat{\beta}/\sqrt{n}}\stackrel{d}{\to} N(0,1)$ cuando $n\to\infty.$
- 9. Suponga que $X_1, ..., X_{100}$ son variables aleatorias independientes e idénticamente distribuidas Poisson con valor esperado igual a 1. Encuentre una aproximación para la probabilidad de que la suma sea mayor a 85.
- 10. a) Sea $Y_n = \frac{\sum\limits_{i=1}^n X_i}{n+5}$, para n=1,2,...; con X_i 's \sim i.i.d. Bernoulli(p). Demuestra que Y_n converge en probabilidad y/o en media cuadrática a p.
 - b) Sea $\{X_n\}$ una sucesión de variables aleatorias idependientes e idénticamente distribuidas tales que $X_n \sim \operatorname{Poisson}(\lambda)$. Demuestra que $Y_n = e^{-\bar{X}_n}$ converge en probabilidad a $P(X=0) = e^{-\lambda}$.

11. Analice las siguientes afirmaciones:

A: Sea $X_1,...,X_n$ una muestra aleatoria con densidad común f_X tales que $E(X_i)=\mu$ y $Var(X_i)=\sigma^2<\infty$. Defina $W_n=\frac{\sum\limits_{i=1}^n X_i-n\mu}{\sqrt{n\sigma}}$. Si $F_n(w)$ es la función de distribución de la variable aleatoria W_n , entonces $\lim\limits_{n\to\infty}\frac{F_n(w)}{\phi(w)}=1$ donde $\phi(w)=\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^w e^{\frac{-t^2}{2}}dt$.

B: Sea $X_1,...,X_n$ una muestra aleatoria tales que $X_i \sim U(0,1)$. Sea $Y_n = \sum_{i=1}^n X_i$, entonces $Y_n \stackrel{.}{\sim} N(\frac{n}{2},\frac{n}{12})$, donde el símbolo $\stackrel{.}{\sim}$ significa distribución asintótica.

C: Si X es una varible aleatoria discreta tal que $X \sim Bin(n,p)$, entonces $P(X \leq x) \sim \phi\left(\frac{x-np}{\sqrt{np(1-p)}}\right)$, con $\phi(\cdot)$ y \sim igual que en A y B, respectivamente.

Entonces,

- a) Solo A y C son verdaderas.
- b) Solo A es verdadera.
- c) A, B y C son verdaderas.
- d) Solo C es verdadera.

12. Sean Z_n y Y_n dos sucesiones de variables aleatorias tales que $Z_n \stackrel{d}{\to} N(0,1)$ y $Y_n \stackrel{P}{\to} c, c \neq 0$. a) Sea $W_n = Y_n Z_n$. Diga cuál es la distribución de W_n .

b) ¿Cuál es la distribución límite de $\frac{Z_n}{Y_n}?$

c) Si $X_n \sim F_n(x)$ para cada $n=1,2,\dots$ con $F_n(x)=(1+\frac{e^{-x}}{n})^{-n}$. Diga cuál es la distribución límite de X_n .