ECOLE POLYTECHNIQUE DE MONTREAL

Département de génie informatique et génie logiciel

Cours INF8480: Systèmes répartis et infonuagique (Automne 2018) 3 crédits (3-1.5-4.5)

Contrôle périodique

DATE: Lundi le 22 octobre 2018

HEURE: 13h45 à 15h35

DUREE: 1H50

NOTE: Aucune documentation permise sauf un aide-mémoire, préparé par l'étudiant, qui consiste en une feuille de format lettre manuscrite recto verso, calculatrice non programmable permise

Ce questionnaire comprend 4 questions pour 20 points

Question 1 (5 points)

- a) Un service de message de groupe relie *n* ordinateurs. Quel est le nombre de messages envoyés (précisez pour chaque message s'il est en multi-diffusion ou à un seul destinataire) pour réaliser un message de groupe i) non fiable, ii) fiable, iii) atomique, iv) totalement ordonnancé. (2 points)
- b) Un client effectue une requête auprès d'un serveur. Le client prépare sa requête en 25ms, la requête transite sur le réseau en 1ms, elle est traitée en 8ms par le serveur qui ne fait que des calculs sur le CPU pendant ce temps et n'utilise aucun périphérique, la réponse transite sur le réseau en 1ms et elle est traitée sur le client en 15ms. Le client est alors prêt pour envoyer sa prochaine requête. Le serveur sert les requêtes avec un seul thread. Combien de requêtes par seconde est-ce qu'un client seul peut faire? Combien de clients ce serveur pourrait-il supporter avant de devenir saturé? (2 points)
- c) Vous êtes en train de concevoir un service de multi-diffusion fiable. Vous avez le choix entre des accusés de réception positifs (accuser réception de chaque paquet reçu) ou négatifs (envoyer un message pour signifier chaque paquet manquant). Le meilleur choix dépend de la probabilité p qu'un client ne reçoive pas un paquet. Pour quelles valeurs de p est-ce que chacune des deux options sera préférable? (1 point)

Question 2 (5 points)

a) Un service d'interrogation de la base de donnée des employés utilise gRPC avec les définitions données plus bas. Un employé est embauché et ses coordonnées sont: id = 12, nom = "Haddock", prenom = "Archibald", adresse = "Chateau de Moulinsart", numero = 7654321. Quelle est la longueur du message de type EmployeFiche correspondant, étant donné l'encodage utilisé par protobuf dans gRPC? L'entreprise grossit et commence à embaucher des employés à l'international. Il faut donc ajouter le pays pour ceux dont l'adresse n'est pas au Canada. Comment peut-on ajouter ceci aux définitions actuelles? Est-ce que cela va demander de mettre à jour tous les logiciels client et serveur qui utilisaient ces définitions? (2 points)

```
service EmployeInfo {
   rpc EmployeEmbauche (EmployeFiche) returns (EmployeId);
   rpc EmployeNumero (EmployeId) returns (NumeroTelephone);
}
message EmployeId {
   int32 id = 1;
}
message NumeroTelephone {
   int32 numero = 1;
}
message EmployeFiche {
   int32 id = 1;
```

```
string nom = 2;
string prenom = 3;
string adresse = 4;
int32 numero = 5;
}
```

b) Une application de serveur de dessin est créée. Deux processus, P1 et P2, interagissent via Java RMI en utilisant les interfaces *Shape* et *ShapeList* définies ci-après. La méthode *allShapes* retourne un vecteur de *Shape*. Le processus P1 crée 4 formes, S1, S2, S3 et S4, du type *ShapeServant* qui est défini comme suit *ShapeServant extends UnicastRemoteObject implements Shape*. Ensuite P1 crée un dessin, SL1, du type *ShapeListServant* qui est défini comme suit *ShapeListServant extends UnicastRemoteObject implements ShapeList*. P1 ajoute S1, S2, S3 et S4 dans le dessin SL1 avec la méthode *addShape*. Avec le service *Naming*, P2 obtient une référence réseau (un proxy) à l'objet SL1, dénotée rrSL1. P2 crée alors un dessin, SL2, du type *ShapeListServant*. Il obtient avec la méthode *allShapes* de rrSL1 un vecteur et ajoute les 4 *Shape* du vecteur à l'objet SL2 avec la méthode addShape. Avec le service *Naming*, P1 obtient une référence réseau à SL2 dénotée rrSL2. Il obtient avec la méthode *allShapes* de rrSL2 un vecteur. Suite à ces opérations, dites quels objets réels et quelles références réseau sont contenus dans P1 et P2 pour les formes et les dessins (par exemple S1 pour l'objet réel et rrS1 pour une référence réseau à S1). (2 points)

```
public interface Shape extends Remote {
    GraphicalObject getAllState() throws RemoteException;
}

public interface ShapeList extends Remote {
    void addShape(Shape s) throws RemoteException;
    Vector allShapes() throws RemoteException;
}
```

c) Dans le cadre du premier travail pratique, la consigne suivante était spécifiée: "comme le serveur sera en mesure d'accepter des appels de plusieurs clients de façon simultanée, vous devez prendre les précautions nécessaires pour assurer la cohérence des données dans les structures partagées au sein du serveur". Expliquez comment il fallait implémenter ces précautions dans votre programme. (1 point)

Question 3 (5 points)

a) Une machine virtuelle exécute une tâche urgente qui nécessite 1000 secondes de CPU sur un coeur (disponible à 100%) et le transfert par réseau de 200GiO de données (.2GiO par seconde de CPU à 100%); le transfert peut s'effectuer en parallèle avec les calculs sur le CPU. Cette machine virtuelle dispose sur le noeud physique actuel de 50% d'un coeur et d'une bande passante pour le réseau de 0.5GiO/s. Elle pourrait migrer vers un noeud physique moins occupé où elle

bénéficierait d'un coeur à 100% et de 1.0GiO/s de bande passante de réseau. Toutefois, il faut qu'il reste de la bande passante disponible pour que la migration s'effectue (la migration est en plus basse priorité que l'aplication). De plus, la machine virtuelle subirait un délai associé à la migration, pendant l'arrêt total afin de finaliser la migration. L'image de la machine virtuelle à migrer occupe 8GiO. La migration prend un volume de bande passante correspondant mais ne consomme pratiquement aucun CPU. La machine virtuelle, pendant son exécution, modifie 0.2GiO de son image par seconde de CPU à 100%. La copie de l'image à migrer se fait en plusieurs itérations, jusqu'à ce que les modifications à transférer constituent moins de 0.5GiO; à ce moment, la machine est arrêtée et les dernières modifications sont transférées. Combien de temps prends la migration? Est-ce que la tâche urgente sera terminée plus tôt avec la migration? En combien de temps? (2 points)

- b) Trois machines virtuelles, A, B et C, s'exécutent sur un même noeud physique. Le noeud physique contient 4 coeurs et 4 disques. Chaque disque supporte 100 opérations d'entrée/sortie (IOP) par seconde. Chaque machine virtuelle sert des requêtes et répartit sa charge entre 4 coeurs virtuels et 4 disques virtuels. Les requêtes à la machine A prennent 50ms et 4 IOP, celle à la machine B 10ms et 8 IOP et celles à la machine C 100ms et 2 IOP. L'opérateur de la machine A a payé pour avoir une priorité absolue (même performance que si seul sur le noeud physique), celui de la machine B a payé pour une certaine priorité, et celui de la machine C a payé le minimum (la machine ne roule que si A et B ne font rien). Si A et B ne reçoivent aucune requête, combien de requêtes par seconde C peut-elle soutenir? Si A reçoit 40 requêtes par seconde et B 30 requêtes par seconde, combien de requêtes par seconde C peut-elle soutenir? (2 points)
- c) OpenStack (avec virtualisation par KVM) et Kubernetes sont deux technologies très utilisées pour déployer des applications parallèles réparties. Peut-on rouler efficacement OpenStack au-dessus de Kubernetes? Kubernetes au-dessus de OpenStack? Kubernetes sur Kubernetes? OpenStack sur OpenStack? (1 point)

Question 4 (5 points)

- a) Un service de fichiers CODA est répliqué sur 3 serveurs (i.e. chaque fichier se retrouve en 3 copies). Chaque serveur possède 4 disques. Chaque disque peut effectuer 100 accès (lecture ou écriture) par seconde. Les clients, lors des ouvertures ou fermetures de fichiers, font des accès en lecture ou en écriture au serveur. Quel est le nombre maximal de lectures (s'il n'y a que des lectures) par seconde que pourrait soutenir ce service répliqué sur 3 serveurs, en supposant que la charge est répartie uniformément sur les serveurs et les disques, et que les disques constituent le facteur limitant? Quel est le nombre maximal d'écritures (s'il n'y a que des écritures)? Si on change pour un système avec 3 serveurs mais sans réplication, avec la charge uniformément répartie entre les 3, que devient le nombre maximal de lectures? Le nombre maximal d'écritures? (2 points)
- b) Une expérience a lieu au laboratoire du CERN. Pendant l'expérience, de nombreux noeuds reçoivent des données venant de nombreux capteurs et stockent cette information sur un système de fichiers réparti avec réplication en 3 copies. Tous les fichiers sont ouverts avant le début de la capture des données et chaque noeud sait donc déjà sur quels serveurs de fichiers il doit

envoyer ses 3 copies. L'information générée sur chaque noeud est de 1GiO/s, et doit être stockée de manière répliquée sur les serveurs. Le service de fichiers est réparti sur 20 serveurs. Chaque serveur a une connexion au réseau de 20GiO/s et contient 4 contrôleurs de disque. Chaque contrôleur de disque est alimenté par un canal PCIe de 5GiO/s et est connecté à 8 disques. Chaque disque est capable de soutenir des écritures à un rythme de 2GiO/s. On suppose que la charge est parfaitement répartie entre les serveurs, les contrôleurs et les disques. Combien de noeuds est-ce que cette infrastructure est capable de supporter? (2 points)

c) Pour chacun de ces systèmes de fichiers répartis, NFS, AFS, CODA et CEPH, dites i) s'ils permettent la réplication en écriture, ii) s'ils permettent la mise à l'échelle à un vraiment très grand nombre de clients. (1 point)

Le professeur: Michel Dagenais