Analysis 3

Lev Leontev

February 8, 2023

Contents

1. Measure		asure	1
	1.1	Introduction	1
	1.2	Lebesgue Outer Measure	2
	1.3	The σ -algebra of Lebesgue-measurable sets.	4

1. Measure

1.1 Introduction

We want to generalize the notion of the *length* towards all the subsets of \mathbb{R} . Such a generalized function is usually called *measure*. But, unfortunately, such a function does not exist.

Theorem 1.1. There exist no such function $\mu: 2^{[0,1]} \to [0,+\infty)$ that satisfies the following properties:

- 1. The function is non-negative;
- 2. It's countably additive;
- 3. It's monotonic: the measure of a subset is not greater than the entire set;
- 4. Translation does not change the measure;
- 5. The measure of the unit interval is 1.

Proof. First, several definitions:

- Step 1. Let's define the following equivalence relation: if x, y are from the unit interval, we'll say that $x \sim y$ if $x y \in \mathbb{Q}$.
- Step 2. Let's choose $N \subset [0, 1/3]$ such that it contains *precisely one* element from each equivalence class. (Such an N exists if the axiom of choice holds true).
- Step 3. For all $r \in \mathbb{Q}$ define $N_r = N + r$.
- Claim 1. The sets N_R are congruent to N and are pairwise disjoint.
 - Proof. The sets are congruent by definition. Let's prove that they are pairwise disjoint.

Assume that $x \in N_{r_1} \cap N_{r_2}$ for some $r_1, r_2 \in \mathbb{Q}$. Then $x - r_1 \in N$, $x - r_2 \in N$, but $(x - r_1) \sim (x - r_2) \implies r_1 = r_2$.

Claim 2.

$$\left[\frac{1}{3}, \frac{2}{3}\right] \in \bigcup_{r \in \mathbb{Q} \cap [0, 2/3]} N_r$$

Proof. If $x \in [1/3, 2/3]$, then $\exists ! y \in N$ such that x = y + q for some $q \in \mathbb{Q}$, as N contains exactly one representative from each of the equivalence classes. It is easy to see that such $q \in [0, 2/3]$.

We arrive at the following conclusion:

$$\frac{1}{3} = \mu([1/3, 2/3]) \leqslant \mu(\bigcup_{r \in \mathbb{Q} \cap [0, 2/3]} N_r) = \sum_{r \in \mathbb{Q} \cap [0, 2/3]} \mu(N_r) \leqslant 1$$

What is $\mu(N)$ then? If $\mu(N) = 0$, then

$$\mu\Big(\bigcup_{r\in\mathbb{Q}\cap[0,2/3]} N_r\Big) = \sum 0 = 0$$

If $\mu(N) = \varepsilon > 0$, then the sum is $+\infty$. But it's supposed to be in [1/3, 1]?!

Consequence. We cannot generalize the notion of length to all subsets of real numbers.

1.2 Lebesgue Outer Measure

Definition 1.1. If $I \subset \mathbb{R}$ is an interval, then l(I) = the length of I. If I is unbounded, then $l(I) = \infty$.

Definition 1.2 (Outer Measure).

$$m^*: 2^{\mathbb{R}} \to [0, +\infty]$$

$$m^*(A) = \inf \left\{ \sum_{j=1}^{\infty} l(I_j) \mid I_j \text{ — open intervals, } A \subseteq \bigcup_{j=1}^{\infty} I_j \right\}$$

In words, it's the infimum of all countable covers of A. (A countable sum either converges or diverges to infinity).

Remark. This is certainly not a measure — otherwise, it would contradict Theorem 1.1.

Example. If A is countable, then $m^*(A) = 0$.

Proof. Let's choose an arbitrary $\varepsilon > 0$ and prove that $m^*(A) \leq 2\varepsilon$. Let's choose a cover of the points with segments of lengths ε , $\varepsilon/2$, $\varepsilon/2^2$, and so on. Then

$$m^*(A) = \inf\{\dots\} \leqslant \varepsilon + \frac{\varepsilon}{2} + \frac{\varepsilon}{2^2} + \dots = 2\varepsilon$$

Proposition 1.2. If A is an interval, then $m^*(A) = l(A)$.

Proof. a) A is a closed interval, A = [a, b].

1. $m^*(A) \leq b - a$. To prove this, we can cover A with a single interval:

$$(a-\varepsilon,b+\varepsilon) \implies \sum l(I_j) = b-a+2\varepsilon$$

Now take $\varepsilon \to 0$.

- 2. $m^*(A) \ge b a$. Suppose we an infinite cover of A by open intervals. Since A is a compact set, we can choose a finite subcover. The case of a finite cover with open intervals is simple. We can prove it as follows: if we have two intersecting open intervals, we can replace them with a single interval of a lesser length. Then we can continue this process using induction.
- b) If A is unbounded, then all of the covers would have infinite sum, and thus the infimum will be infinite as well.
- c) If A is an open or semiclosed interval, we can approximate it from both sides by closed intervals. Let's denote the closure of A by \bar{A} . Since we're adding points, the Outer Measure will not decrease:

$$A \subset \overline{A} \implies m^*(A) \leqslant m^*(\overline{A}) = l(a)$$

Chapter #1 2 of 4 Author: Lev Leontev

Now suppose we have a closed interval B strictly inside A. Then we get

$$m^*(A) \geqslant m^*(B) = l(B) = l(A) - \varepsilon$$

Now take $\varepsilon \to 0 \implies m^*(A) \geqslant l(A)$.

Lemma. m^* is translation-invariant.

Proof. If we translate the set, we can translate all of its covers as well. Since translating an interval does not change its length, the lengths of the covers won't change either. \Box

Proposition 1.3 (Countable subadditivity). For any countable collection of sets $\{E_k\}_{k=1}^{\infty}$ we have

$$m^* \Big(\bigcup_{k=1}^{\infty} E_k\Big) \leqslant \sum_{k=1}^{\infty} m^*(E_k)$$

Remark. We don't ask for the sets E_k to be disjoint. If we proved that we have an equality sign for the disjoint case, we would have proved that m^* is a measure, which we proved does not exist in Theorem 1.1.

Proof. Choose open intervals $I_{k,i}$, such that

$$E_k \subset \bigcup_{i=1}^{\infty} E_{k,i} \ (E_{k,i} \text{ are a cover of } E_k)$$

and

$$\sum_{i=1}^{\infty} l(I_{k,i}) < m^*(E_k) + \frac{\varepsilon}{2^k}$$

Such intervals exist from the definition of the infimum.

On the other hand, $\{I_{k,i} \mid 1 \leqslant k, i < \infty\}$ covers each of the E_k , and thus it's a cover of $\bigcup_{k=1}^{\infty} E_k$. Then

$$m^* \Big(\bigcup_{k=1}^{\infty} E_k\Big) \overset{\text{it's a cover}}{\leqslant} \sum_{1 \leqslant k, i < \infty} l(I_{k,i}) < \sum_{k=1}^{\infty} m^*(E_k) + \varepsilon \Big(\frac{1}{2} + \frac{1}{4} + \dots\Big) = \sum_{k=1}^{\infty} m^*(E_k) + \varepsilon$$

Now take $\varepsilon \to 0$.

Remark. Here we assume that all of the E_k have finite outer measures. Otherwise, both of the sides of the inequality would diverge to infinity, and we get $\infty \leq \infty$ which is "true".

Chapter #1 3 of 4 Author: Lev Leontev

1.3 The σ -algebra of Lebesgue-measurable sets.

Definition 1.3. A set E is (Lebesgue) measurable if for any set A,

$$m^*(A) = m^*(A \cap E) + m^*(A \cap E^C)$$
 $E^C = \mathbb{R} \setminus E$

Figure 1: The set E "splits" A into two parts

Remark. We already have the \leq sign from countable subadditivity.

Remark. Motivation: If $A \cap B = \emptyset$ and A (or B) is measurable, then

$$m^*(A \cup B) = m^*((A \cup B) \cap A) + m^*((A \cup B) \cap A^C) = m^*(A) + m^*(B)$$

Proposition 1.4. If $m^*(E) = 0$, then E is measurable.

Proof. For all A we have:

$$m^*(A \cap E) \leqslant m^*(E) = 0 \implies m^*(A \cap E) = 0$$

$$m^*(A) \geqslant m^*(A \cap E^C) = m^*(A \cap E) + m^*(A \cap E^C)$$

As we noted earlier, the inequality in the other side follows from countable subadditivity.

Proposition 1.5. If E_1, \ldots, E_n are measurable, then $\bigcup_{1}^{n} E_k$ is measurable.

Proof. Case n = 2: for all A we have

$$m^*(A) = m^*(A \cap E_1) + m^*(A \cap E_1^C) =$$

$$= m^*(A \cap E_1) + m^*((A \cap E_1^C) \cap E_2) + m^*((A \cap E_1^C) \cap E_2^C) = (*)$$

$$X := A \cap E_1, \ Y := (A \cap E_1^C) \cap E_2, \ Z := (A \cap E_1^C) \cap E_2^C$$

With Venn diagrams it's possible to prove that $Z = A \cap (E_1 \cup E_2)^C$, $X \cup Y = A \cap (E_1 \cup E_2)$. Now let's apply countable subadditivity to X and Y. Then we get:

$$(*) \ge m^* (A \cap (E_1 \cup E_2)) + m^* (A \cap (E_1 \cup E_2)^C)$$

Yet again, the inequality in the other side follows from countable subadditivity.

Induction step: Apply case n=2 to the sets $\bigcup_{1}^{n-1} E_k$, E_n .

Chapter #1 4 of 4 Author: Lev Leontev