Examples: Sentiment

- Input: reviews
- Output: positive, negative, neutral
- Use: business intelligence, market analysis

Examples: Hate Speech

- Input: tweets, blog posts, etc.
- Output: presence (binary) or type of hate speech
- Use: platform health, public policy

Examples: Mental Health

- Input: social media
- Output: presence of risk for mental health condition
- Use: psychologist support, risk screening

Examples: Geolocation

AUTHOR ATTRIBUTE PREDICTION

- Input: tweet history
- Output: coordinates or predefined region
- Use: social media analysis, targeting

Types of Text Classification

	Fixed length output	Variable length output
Fixed length	Logistic Regression, Perceptron, Feed-Forward Network, Random Forest, Naive Bayes, SVM,	STRUCTURED Multitask Learning, Decoder
Variable length	Convolutional Neural Networks (CNN)	Recurrent Neural Networks (RNN), Hidden Markov Models (HMM), Conditional Random Fields

Goals for Today

- Understand how to robustly evaluate results
- Learn how to **improve** performance

Text Classification

Fitting

Predicting

Evaluating Performance

Performance Problems

	predicted		
g		1	0
O 	1	TP	FN
d	0	FP	TN

True and False

```
TARGET = ANIMAL
  frog 1
  deer 1 1
  wolf 1 1 true positive
  dog
  bear 1 1
  fish
  bird 1
            false negative
  cat
  stone 0 1 false positive
  tree 0
        0 true negative
```

```
accuracy = (TP+TN) / (P + N)

precision = TP / (TP + FP)

recall = TP / (TP + FN)

F1 = 2 (prec x rec) / (prec + rec)
```

```
ACCURACY = 7110 = 0.7

PRECISION = 617 = 0.86

RECALL = 618 = 0.75

FI = 0.81
```

	predicted		
g		1	0
0	1	TP	FN
d	O	FP	TN

Changing Target

```
TARGET = THING
  frog
  deer 0 0
  wolf 0 0 true negative
  dog
       0 0
  bear 0 0
  fish
  bird 0 1
            false positive
  cat
  stone 1 0 false negative
  tree 1 1 true positive
```

```
accuracy = (TP+TN) / (P + N)
  precision = TP / (TP + FP)
  recall = TP / (TP + FN)
  \mathbf{F1} = 2 \text{ (prec x rec)} / \text{ (prec + rec)}
ACCURACY = 7110 = 0.7
 PRECISION = 113 = 0.33
```

predicted

g 1 0

o 1 TP FN
d 0 FP TN

o micro Averaging

WEIGH BY CLASS SIZE

```
ANIMAL THING
```

```
        x
        y
        ŷ
        x
        y
        ŷ

        frog
        1
        1
        frog
        0
        0

        deer
        1
        1
        deer
        0
        0

        wolf
        1
        1
        wolf
        0
        0
```

```
accuracy = (TP+TN) / (P + N)

precision = TP / (TP + FP)

recall = TP / (TP + FN)

F1 = 2 (prec x rec) / (prec + rec)
```

```
Wolf
dog 1 1
            dog
            bear 0
bear 1 1
                     \mathsf{O}
            fish 0 0
fish
            bird
bird 1 1
                  0 0
                     1
                  O
         O
cat
            cat
stone 0
            stone 1
                     O
         O
      O
tree
            tree
```

0
$$ACC = (7+7)I(10+10) = 14I20 = 0.7$$

0 $PREC = (6+1)I(7+3) = 7I10 = 0.7$
0 $REC = (6+1)I(8+2) = 7I10 = 0.7$
1 $FI = 0.7$

predicted MACROAVERAGING TP FN

g FP TN

WEIGH ALL CLASSES EQUALLY

ANIMAL THING

```
X
             frog
                      O
frog 1 1
deer 1 1
             deer 0
                     0
             wolf
                   O
                     \mathsf{O}
```

accuracy = (TP+TN)/(P+N)precision = TP / (TP + FP)recall = TP / (TP + FN) $\mathbf{F1} = 2 \text{ (prec x rec) / (prec + rec)}$

```
Wolf
             dog 0
dog 1 1
bear 1 1
             bear 0
fish
             fish
                       0
bird
             bird
                    \mathsf{O}
                       0
                      1
                    O
         O
cat
             cat
stone 0
             stone 1
      O
         \bigcirc
tree
             tree
```

$$0 \quad ACC = (0.7 + 0.7) / 2 = 0.7$$

$$0 PREC = (0.86 + 0.33) / 2 = 0.6$$

$$0 REC = (0.5 + 0.75) / 2 = 0.63$$

$$0 \quad FI = 0.6I$$

Metrics Overview

- accuracy can be too general
- precision and recall are per-class measures
- precision = how many of instances labeled as target class are actually in target class?
- recall = how many of all target class instances in data identified correctly?
- **F1** = symmetric mean of precision and recall

Baselines

predicted Baseline: Total Recall

1 TP FN PREDICT MAJORITY CLASS FOR ALL FP TN

TARGET = ANIMAL

```
frog 1 1
deer 1 1
wolf 1 1
```

dog 1 1

bear 1 1

fish 1 1

bird 1 1

cat 1 1

stone 0 1

tree 0 1

```
precision = TP / (TP + FP)
recall = TP / (TP + FN)
```

 $\mathbf{F1} = 2 \text{ (prec x rec) / (prec + rec)}$

accuracy = (TP+TN) / (P + N)

true positive ACCURACY = 8/10 = 0.8

$$FI = 0.9$$

false positive

The Hulk

(dumb but powerful)

- Character 2–6 grams
- TFIDF weights
- L2-regularized Logistic Regression with balanced classes
- Can be further improved with dimensionality reduction

Regularization

Regularization

Regularization Norms

LI NORM

$$||W||_1 = \sum_{i=1}^{N} |w_i|$$

SPARSE

LZ NORM

$$||W||_2 = \sqrt{\sum_{i=1}^N w_i^2}$$
EVENLY DISTRIBUTED

Regularization Norms

Feature Selection

Chi-Squared Selection

Dimensionality Reduction

Randomized Logistic Regression

Significance Testing

What does a p-Value Tell Us?

THIS CLASSIFIER IS 70%.

ACCURATE! (ON MY DATA SET)

... AND ON MINE?

Bootstrap Sampling

COMPARE ON SUBSETS

1
1
0

Bootstrap Sampling SAMPLED DIFFERENCES FOLLOW NORMAL DISTRO.

CENTRAL LIMIT THEOREM

Bootstrap Sampling

	System 1	System 2	Difference(1-2)
full	82.13	81.89	0.24
1	81.96	82.03	-0.07
2	81.86	82.61	-0.75
3	81.70	81.44	0.26
4	82.42	82.77	-0.35
5	81.89	81.06	0.83
6	81.39	81.24	0.15
7	81.96	81.58	0.37
8	82.57	81.65	0.92
9	82.50	82.67	-0.17
10	83.07	81.84	1.23

p-value

Note: Significance is Binary!

Cut-offs: 0.1 (meh), 0.05 (standard), 0.01 (strict)

(barely) not statistically significant (p=0.052) a barely detectable statistically significant difference (p=0.073) a borderline significant trend (p=0.09)a certain trend toward significance (p=0.08) a clear tendency to significance (p=0.052) a clear trend (p<0.09) a clear, strong trend (p=0.09) a considerable trend toward significance (p=0.069) a decreasing trend (p=0.09) a definite trend (p=0.08) a distinct trend toward significance (p=0.07) \borderline conventional significance (p=0.051) borderline level of statistical significance (p=0.053)

borderline significant (p=0.09) did not quite reach conventional levels of statistical significance (p=0.079)did not quite reach statistical significance (p=0.063) did not reach the traditional level of significance (p=0.10) did not reach the usually accepted level of clinical significance (p=0.07) difference was apparent (p=0.07)direction heading towards significance (p=0.10) does not appear to be sufficiently significant (p > 0.05)does not narrowly reach statistical significance (p=0.06)

does not reach the conventional significance level (p=0.098) effectively significant (p=0.051)equivocal significance (p=0.06)essentially significant (p=0.10)extremely close to significance (p=0.07) failed to reach significance on this occasion (p=0.09) failed to reach statistical significance (p=0.06) fairly close to significance (p=0.065)fairly significant (p=0.09) falls just short of standard levels of statistical significance (p=0.06)

(p=0.08)

fell barely short of significance (p=0.08) scarcely significant (0.05 0.1)significant at the .07 level significant tendency (p=0.09) significant to some degree (0 1)significant, or close to significant effects (p=0.08, p=0.05) significantly better overall (p=0.051)significantly significant (p=0.065)similar but not nonsignificant trends (p>0.05) slight evidence of significance (0.1>p>0.05)slight non-significance (p=0.06)fell (just) short of significance | slight significance (p=0.128)

Evaluation Don'ts

Don't choose among metrics

metric	þ
	0,0899
preion	0,062
re	0,179
accuracy	0,0014

REPORT!

Don't choose sample sizes

"We observed significant results at sample size of 26" ...but not with smaller or larger samples!

Don't Choose Subsets

"Young, lefthanded, vegetarian atheists are significantly less likely to get X" ...but population a whole isn't!

Wrapping Up

Take-home points

- Choose the appropriate performance metric
- Choose an informative baseline
- Regularize, regularize, regularize
- Feature selection can improve performance and provide insights
- Measure significance of improvement

