Raport - Zadanie numeryczne 8

Grzegorz Janysek

22 stycznia 2022

1 Wstęp teoretyczny

Celem całkowania numerycznego jest obliczenie zadanej istniejącej całki w efektywny sposób i ze znanym określonym błędem. Aby to osiągnąć można przyjąć strategie przybliżania fragmentów funkcji całkowanej f za pomocą funkcji g, tj. interpolować f za pomocą g. Funkcje interpolującą g dobiera się tak aby jej całkę dało się łatwo wyznaczyć analitycznie.

1.1

Całkę na każdym przedział całkowania $[a; x_1], [x_1; x_2] \cdots [x_n; b]$ można przybliżyć całką z wielomianu interpolacyjnego Lagrange'a na tym przedziałe. Sum ich wartości będzie całkowita wartość przybliżenia numerycznego całki $\int_a^b f(x)dx$. Uzyskujemy w ten sposób metodę kwadratur Newtona-Cotesa. W zależności od doboru stopnia wielomianów interpolacyjnych otrzymujemy następujące kwadratury, odpowiadające kolejno stopniom wielomianów od 1 do 4:

Metoda trapezów:
$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2} (f_0 + f_1)$$
 (1)

Metoda Simpsona:
$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{6} (f_0 + 4f_1 + f_2)$$
 (2)

Metoda 3/8:
$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{8} (f_0 + 3f_1 + 3f_2 + f_3)$$
 (3)

Metoda Milne'a
$$\int_a^b f(x) dx \approx \frac{b-a}{90} (7f_0 + 32f_1 + 12f_2 + 32f_3 + 7f_4)$$
 (4)

2 Wyniki

3 Podsumowanie