

# Cambridge International AS & A Level

| CANDIDATE<br>NAME | fuz | il |  |                   |  |  |
|-------------------|-----|----|--|-------------------|--|--|
| CENTRE<br>NUMBER  |     |    |  | ANDIDATE<br>JMBER |  |  |

MATHEMATICS

9709/31

Paper 3 Pure Mathematics 3

May/June 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

#### **INSTRUCTIONS**

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

### **INFORMATION**

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [ ].



This document has 20 pages. Blank pages are indicated.

| Find the set of values of x for which $2(3^{1-2x}) < 5^x$ . Give your answer in a simplified exact form. [4] |
|--------------------------------------------------------------------------------------------------------------|
| $\log 2 + \log 3^{1-2\alpha} < \log 5^{\alpha}$                                                              |
| (og 2 + (1-2x)log3 < x log 5                                                                                 |
| $(-2x)\log 3 - x\log 5 < -\log 2$                                                                            |
| $(1-1)^{1-1}$                                                                                                |
| log 3-2xlog 3-xlog 5 2-log 2                                                                                 |
| log 3 + log 2 < 2x log 3+ x log 5                                                                            |
| log 3 + log 2 < 2x log 3+ x log 5<br>log 3 + log 2 < x (2 log 3+ log 5)                                      |
|                                                                                                              |
|                                                                                                              |
| 27 <u>log 6</u><br>log 45                                                                                    |
| log 45                                                                                                       |
|                                                                                                              |
|                                                                                                              |
|                                                                                                              |
|                                                                                                              |
|                                                                                                              |
|                                                                                                              |
|                                                                                                              |
|                                                                                                              |
|                                                                                                              |
|                                                                                                              |
|                                                                                                              |
|                                                                                                              |
|                                                                                                              |
|                                                                                                              |
|                                                                                                              |
|                                                                                                              |
|                                                                                                              |
|                                                                                                              |

| 2 | (a) | Expand $(2-3x)^{-2}$ in ascend | ing powers of x, up to and including the term in $x^2$ , simplifying the |
|---|-----|--------------------------------|--------------------------------------------------------------------------|
|   |     | coefficients.                  | [4]                                                                      |

$$2^{-2}(1-3x)^{-2}$$

$$\frac{1}{4} \left(1 - \frac{3x}{2}\right)^{-2}$$

$$\frac{1}{4} \left[ 1 + (-2)(-\frac{3}{2}x) + \frac{(-2)(-3)(-\frac{3}{2}x)^{\frac{1}{2}}}{2!} \right]$$



|        | <u>_</u> + | 321 | 282 <sup>2</sup> |
|--------|------------|-----|------------------|
|        | 4          | 4   | (6               |
|        |            |     |                  |
| •••••• | ••••••     |     |                  |

| ••••• |                                         |                                         |                                         |
|-------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
| ••••• |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
| ••••• | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
|       |                                         |                                         |                                         |
| ••••• | • • • • • • • • • • • • • • • • • • • • | •••••                                   | • • • • • • • • • • • • • • • • • • • • |

(b) State the set of values of x for which the expansion is valid. [1]



|                     | uation $\tan(\theta + 60)$<br>r $0^{\circ} \le \theta \le 180^{\circ}$ . |                    | $-\theta$ ) as a quadration | c equation in tan 6   | $\theta$ , and hence solve [6] |
|---------------------|--------------------------------------------------------------------------|--------------------|-----------------------------|-----------------------|--------------------------------|
| <u>ton Q</u>        | ± \( \frac{3}{2} =                                                       | 2 + 13-            | -tano                       |                       |                                |
| 1- 13               | ,ton0                                                                    | 141                | 3ton0                       |                       |                                |
| (ton a              | + (3) (                                                                  | J3-tona)           | _ 2                         |                       |                                |
| (1-13t              | on 0) (1                                                                 | + 13 tona          | )                           |                       |                                |
| (ton o              | + 13)(1+13                                                               | ton(0) - (13       | -tano)(1- F                 | 3 tano]_              | 2                              |
|                     | 1 - 3                                                                    | tan <sup>2</sup> 0 |                             |                       |                                |
| don O               | + 13 to                                                                  |                    |                             | <u>3 - 3, tan Q -</u> | ton 0+13tan                    |
|                     |                                                                          | 1 - 3 ta           | 1 0                         |                       |                                |
| 9tm0                | -5.tm0                                                                   | +13-15             | + 4-tan 0                   | - 13 ton2             | v -2-6.ta                      |
| 6tan <sup>2</sup> 0 | + 8 tano                                                                 | -2 =               | 0                           |                       |                                |
|                     |                                                                          |                    |                             |                       |                                |
|                     |                                                                          |                    |                             |                       |                                |
|                     |                                                                          |                    |                             |                       |                                |
|                     |                                                                          |                    |                             |                       |                                |
| •••••               |                                                                          |                    |                             |                       |                                |
|                     |                                                                          |                    | •••••                       |                       |                                |
|                     |                                                                          |                    |                             |                       |                                |

3

|              | $\frac{dy}{dx} = e^{2\pi} (\cos x - 3\sin x) + 2e^{2\pi} (\sin x + 3\cos x)$ | ••••• |
|--------------|------------------------------------------------------------------------------|-------|
|              | $e^{2x}(8x - 3e^{2x})\sin x + 2e^{2x}\sin x + 6e^{2x}(8x)$                   | )۔ ر  |
|              | $e^{21}\left(2\left(\cos\alpha-\sin\alpha\right)=0\right)$                   |       |
|              | 7 (os 2 - Simx=0                                                             | ••••• |
|              | $7 - \tan \alpha = 0$                                                        |       |
|              | tonx = 7 $x = 1.43$                                                          |       |
|              |                                                                              |       |
|              |                                                                              |       |
| ( <b>b</b> ) | Determine whether the stationary point is a maximum or a minimum.            | [2    |
| •            | 24-e <sup>2-2</sup> (-75imx-cosx) + 2e <sup>2-x</sup> (-75imx-cosx)          | ••••  |

| Find the quotient and remainder when $2x^3 - x^2 + 6x + 3$ is divided by $x^2 + 3$ . [3] |
|------------------------------------------------------------------------------------------|
| 0x2+2x-1                                                                                 |
| $\frac{\chi^2+3}{2^3-\chi^2+6\chi+3}$                                                    |
| 0 + 2x3 + 62                                                                             |
| 0 -x2-6x46x+3                                                                            |
| x <sup>2</sup> - 3                                                                       |
| 0 + 6                                                                                    |
| quotient = 22-1                                                                          |
| quotient = 22-1<br>remainder = 6                                                         |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |

5

(a)

| Us   | sing yo                                 | our an | iswer to     | o part        | ( <b>a</b> ), fi | ind the e                               | exact valu    | $e 	ext{ of } \int_{0}^{3}$           | $\frac{2x^3 - x^2}{x^2}$ | +6x + 3                    | $\frac{3}{dx}$ . |             |
|------|-----------------------------------------|--------|--------------|---------------|------------------|-----------------------------------------|---------------|---------------------------------------|--------------------------|----------------------------|------------------|-------------|
|      | (                                       | ,      |              |               |                  |                                         |               | _                                     | <i>50</i>                |                            |                  |             |
| •••• |                                         | د.بر   | l.           | <del></del>   | ~ 4              | 2, 2                                    | <u>dx</u>     |                                       | •••••                    | ••••••                     |                  |             |
|      |                                         | )<br>I |              | •••••         |                  | t                                       | ,<br>         |                                       |                          |                            |                  |             |
|      |                                         |        | <sub>3</sub> | •••••         | •••••            |                                         |               | <b>3</b>                              |                          |                            |                  |             |
| •••• |                                         |        | (            | <br>L X -     |                  |                                         |               | , , , , , , , , , , , , , , , , , , , | ·····                    |                            |                  |             |
|      |                                         |        | ) 2          | L X -         | - (<br>          |                                         | + 6           | 3+2                                   | 2 dt                     |                            |                  |             |
|      |                                         |        | (            |               |                  |                                         |               |                                       |                          |                            |                  |             |
| •••• | . <b></b>                               | •••••• |              | ²- x          | 3                | •                                       | <br>          |                                       | to                       | m(_                        | 26 \             | 3           |
| •••• |                                         |        | <b>X</b> .   | X             | :                | <u>†</u>                                | 6             | 1/2                                   | X_/\^!                   | !!)[-                      | <u></u>          |             |
| •••• |                                         |        |              |               |                  | •••••                                   | •••••         |                                       | _                        | •••••                      |                  |             |
|      |                                         |        | (9           | 3)            | <b>D</b>         |                                         | 6             |                                       | tan-1/13                 | <u>)</u> <u>.</u> <u>.</u> | <u>ton-1((</u>   | <u>343)</u> |
|      |                                         |        |              | ,<br>)        |                  |                                         |               | (                                     | V3                       |                            | V3               | , )         |
| •••• |                                         |        |              |               |                  | +                                       | 6             | ſ                                     | T                        |                            | 1 \              |             |
| •••• | ••••••                                  | •••••  |              | <b>0</b>      | •••••            | <del>.T.</del>                          | <mark></mark> | ـــــــــــــــــــــــــــــــــــــ | <u>5</u>                 |                            | . <u></u>        | ·····       |
| •••• | · • • • • • • • • • • • • • • • • • • • | •••••• | •••••        | •••••         | •••••            | •••••                                   |               |                                       | <b>1 5</b>               |                            | 605/             |             |
| •••• |                                         |        | (            | ,<br><b>3</b> | •••••            |                                         | <u>2.</u>     | <u>C</u>                              |                          |                            |                  |             |
|      |                                         |        |              |               |                  | •••••                                   | 1.            | <b>り</b>                              | <b>J</b> 3               |                            |                  |             |
|      |                                         |        | (            |               | <u>.</u>         | I                                       |               |                                       |                          |                            |                  |             |
| •••• |                                         |        |              |               |                  | V3                                      |               |                                       |                          |                            |                  |             |
| •••• | ••••••                                  | •••••  |              |               |                  |                                         |               | •••••                                 | •••••                    | •••••                      | •••••            |             |
| •••• |                                         |        |              | •••••         | •••••            | •••••                                   | •••••         | •••••                                 | •••••                    |                            | •••••            |             |
|      |                                         |        |              |               | •••••            | • • • • • • • • • • • • • • • • • • • • | •••••         |                                       | •••••                    |                            |                  |             |
|      |                                         |        |              |               |                  |                                         |               |                                       |                          |                            |                  |             |
|      |                                         |        |              |               |                  |                                         |               |                                       |                          |                            |                  |             |
| •••• |                                         |        |              |               |                  |                                         |               |                                       |                          |                            |                  |             |
| •••• |                                         | •••••  | •••••        | •••••         | •••••            | •••••                                   | •••••         | ••••••                                | ••••••                   | •••••                      | •••••            |             |
|      |                                         |        |              |               | •••••            | •••••                                   | •••••         | •••••                                 | •••••                    |                            | •••••            |             |
|      |                                         |        |              |               |                  |                                         |               |                                       |                          |                            |                  |             |



The diagram shows a circle with centre O and radius r. The tangents to the circle at the points A and B meet at T, and angle AOB is 2x radians. The shaded region is bounded by the tangents AT and BT, and by the minor arc AB. The area of the shaded region is equal to the area of the circle.

| 1) | Show that x satisfies the equation $\tan x = \pi + x$ .                 |
|----|-------------------------------------------------------------------------|
|    | shaded region = (AIXI) - 1 v2(2x) Ionx = AI  AT = rtanx - r2tanx - r2/x |
|    | At=ranx - r2/x                                                          |
|    | 7                                                                       |
|    | Area of circle = In2                                                    |
|    |                                                                         |
|    | to (ton 2 - x) = L per                                                  |
|    | tan x = x + x                                                           |
|    |                                                                         |
|    |                                                                         |
|    |                                                                         |
|    |                                                                         |
|    |                                                                         |
|    |                                                                         |
|    |                                                                         |
|    |                                                                         |
|    |                                                                         |
|    |                                                                         |
|    |                                                                         |

|     | between 1 and 1.4.                                                                                                                                                                 |                                                                |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|     | X > (                                                                                                                                                                              | χ =  .4                                                        |
|     |                                                                                                                                                                                    |                                                                |
|     | 1.557 C 4.142                                                                                                                                                                      | LHS RHS<br>5.798 7 4.942                                       |
|     | : since he has<br>betneen 2=                                                                                                                                                       | re sigh change, a line 1, x=1-4                                |
| (c) | Use the iterative formula                                                                                                                                                          | $= \tan^{-1}(\pi + x_n)$                                       |
|     | $x_{n+1}$ –                                                                                                                                                                        | - tall $(n + \lambda_n)$                                       |
|     |                                                                                                                                                                                    | mal places. Give the result of each iteration to 4 decimal     |
|     | places.                                                                                                                                                                            | mal places. Give the result of each iteration to 4 decimal [3] |
|     |                                                                                                                                                                                    | mal places. Give the result of each iteration to 4 decimal [3] |
|     | places.                                                                                                                                                                            | mal places. Give the result of each iteration to 4 decimal [3] |
|     | places.  X h + 1 = ton                                                                                                                                                             | mal places. Give the result of each iteration to 4 decimal [3] |
|     | places. $x_{n+1} = t_{00}$ | mal places. Give the result of each iteration to 4 decimal [3] |
|     | places. $x_{4+1} = t_{00}$ $x_{5} = 1 - 2$ $x_{1} = 1 - 3 + 4$ $x_{2} = 1 - 3 + 9$ $x_{3} = 1 - 3 + 9$                                                                             | mal places. Give the result of each iteration to 4 decimal [3] |
|     | places. $x_{n+1} = t_{00}$ | mal places. Give the result of each iteration to 4 decimal [3] |

| 7 | Let $f(x) = \frac{1}{x}$ | $\cos x$             |
|---|--------------------------|----------------------|
| , | Let $I(x) =$             | $\frac{1+\sin x}{1}$ |

| Show that $f'(x) < 0$ f | for all $x$ in the                            | 2             | <i>x</i> \ <i>x</i> \ 2 <i>x</i> .                 |                |          | [4   |
|-------------------------|-----------------------------------------------|---------------|----------------------------------------------------|----------------|----------|------|
| f(x) =                  | <u>( ( )                                 </u> | V             |                                                    |                |          | <br> |
|                         | 1+Sinol                                       |               |                                                    |                |          | <br> |
| <u> </u>                | (1+Sinz                                       | )(- Ginz      | - (62x)                                            | ( los          | $\chi$ ) | <br> |
|                         |                                               |               | L)(1+2i                                            |                |          | <br> |
| 2                       | - Sinz                                        |               |                                                    |                |          | <br> |
|                         | (+                                            | 25mz+         | Sin a L                                            | _              |          |      |
| _                       | سَمَا ١ -                                     |               | _                                                  |                |          |      |
| _                       |                                               | Sinx)2        |                                                    |                |          |      |
| =(x) <sup>1</sup> 2     |                                               |               | ,                                                  |                |          |      |
|                         | l+ Sin                                        |               | با -                                               | <u>.</u> I     |          | 3/2  |
|                         |                                               | 1.00          |                                                    |                |          | \    |
|                         | • • • • • • • • • • • • • • • • • • • •       |               |                                                    | <mark>/</mark> |          | <br> |
| ((())                   | 10 =: 1                                       | ۰. (ا یــ د : | -\_O                                               |                |          |      |
| · f'(x)                 | 40 sin                                        | ce (1+si      | 0 < 0                                              | ر<br>ا-        |          |      |
| · f'(x)                 | 40 sim                                        | ce (1+si      | no) > 0 -                                          | ر<br>-۱        |          |      |
| f'(x)                   | 40 sim                                        | ce (1+si      | - 0 < (co                                          | <i>-</i> 1     |          |      |
| f'(x)                   | 40 sim                                        | ce (1+si      | no) > 0 -                                          | ر<br>-۱        |          |      |
| : f'(x)                 | 40 sim                                        | ce (1+si      | nou) > 0 -                                         | <i>-</i> 1 −1  |          |      |
| f'(x)                   | 40 sim                                        | ce (1+si      | no) > 0 -                                          | -1             |          |      |
| . f'(x)                 | 40 sim                                        | ce (1+si      | nou) > 0 -                                         | -1             |          |      |
| \$ (oc)                 | 40 sim                                        | ce (1+si      | n) > 0 -                                           | -1             |          |      |
| \$ (x)                  | 40 sim                                        | ce (1+si      | nou) > 0 -                                         | -1             |          |      |
| \$ (oc)                 | 40 sim                                        | ce (1+si      | <u>100) &gt; 0                                </u> | -1             |          |      |
| f'(x)                   | 40 sim                                        | ce (1+si      | (D) > 0 -                                          | -1             |          |      |
| \$ (oc)                 | 40 sim                                        | ce (1+si      | 100) > 0 -                                         | -1             |          |      |

| Find $\int_{\frac{1}{6}\pi}^{\frac{1}{2}\pi} f(x) dx$ . Give your answer in a simplif |                  |
|---------------------------------------------------------------------------------------|------------------|
| T(E) - COEX                                                                           |                  |
| 1+5mx                                                                                 | u= 1+sinx        |
| ) (+Sin)L                                                                             | du = Cosx        |
|                                                                                       | dz               |
| = ( Carr v da)                                                                        | de = du<br>Cosal |
| ) le loss                                                                             | when x= 17 u     |
| . 1 1                                                                                 |                  |
| 1.5                                                                                   | メージエリ            |
| In 2 In 4                                                                             |                  |
| 1.5                                                                                   |                  |
|                                                                                       |                  |
|                                                                                       |                  |
|                                                                                       |                  |
|                                                                                       |                  |
|                                                                                       |                  |
|                                                                                       |                  |
|                                                                                       |                  |
|                                                                                       |                  |

- A certain curve is such that its gradient at a point (x, y) is proportional to  $\frac{y}{x\sqrt{x}}$ . The curve passes through the points with coordinates (1, 1) and (4, e).
  - (a) By setting up and solving a differential equation, find the equation of the curve, expressing y in terms of x.

| <u>dy</u> ~       | <u>.</u>        |                                                       |
|-------------------|-----------------|-------------------------------------------------------|
| dy x              | aJa             |                                                       |
| dy =              | <u> </u>        |                                                       |
| <u></u>           | 1/2             |                                                       |
|                   | <u>k ( 1</u> bc |                                                       |
|                   | )zā             | 2. r 10. 5                                            |
|                   | ( -3 de         | æ <sub>ዶ</sub> ኒ <sup>o. 5</sup><br>ኢ <sup>ነ. 5</sup> |
| (w.cy = k         | ) ~             |                                                       |
|                   |                 |                                                       |
| (n y = k _        | <u>ير</u><br>را |                                                       |
|                   | 2               |                                                       |
| 1 0.50            | -1              |                                                       |
| 1ny 5-2k 2        | *4(;            |                                                       |
| whe (I, I)        |                 |                                                       |
|                   |                 |                                                       |
| 2k                |                 |                                                       |
| when (4, e)       |                 |                                                       |
| 1 = -2 R (1) +2 R | 1865            | $\left(-\frac{2}{\sqrt{2}}+2\right)$                  |
| 2 + 1             |                 |                                                       |
|                   |                 |                                                       |
| <u>5</u>          |                 |                                                       |
|                   |                 |                                                       |

|                                                                                     | F43               |
|-------------------------------------------------------------------------------------|-------------------|
| Describe what happens to $y$ as $x$ tends to infinity. $-\frac{2}{x} + \frac{2}{x}$ | [1]               |
| y=e-13x+2 y=e2                                                                      |                   |
| y=e*                                                                                |                   |
|                                                                                     | 1 0               |
| : Value of y vill approa                                                            | ch e <sup>z</sup> |
| V                                                                                   |                   |

**(b)** 

**9** With respect to the origin O, the vertices of a triangle ABC have position vectors

$$\overrightarrow{OA} = 2\mathbf{i} + 5\mathbf{k}$$
,  $\overrightarrow{OB} = 3\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$  and  $\overrightarrow{OC} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ .

(a) Using a scalar product, show that angle ABC is a right angle.

AB = OB - OA  $BA = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$ 

[3]







**(b)** Show that triangle *ABC* is isosceles. [2]



| (c) | Find the exact length of the perpendicular from $O$ to the line through $B$ and $C$ .                                                        | [4]   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|-------|
|     | <u> </u>                                                                                                                                     |       |
|     | B (.                                                                                                                                         | ••••• |
|     |                                                                                                                                              | ••••• |
|     | 0                                                                                                                                            | ••••• |
|     |                                                                                                                                              | ••••• |
|     | ON = OB + BN                                                                                                                                 | ••••• |
|     | $= \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}$                                          | ••••• |
|     | $\binom{2}{3}$ $\binom{4}{-2}$                                                                                                               | ••••• |
|     |                                                                                                                                              | ••••• |
|     | $ \begin{array}{c} = \begin{pmatrix} 2 - 2 \\ 2 - 1 \end{pmatrix} \times \begin{pmatrix} -2 \\ -1 \end{pmatrix} = 0 \\ 2 - 2 \end{pmatrix} $ |       |
|     | $(2-k)\times(-1)=0$                                                                                                                          | ••••• |
|     | \3-2L/\-\-1/                                                                                                                                 |       |
|     |                                                                                                                                              | ••••• |
|     | -6+12-2+1-6+91=0                                                                                                                             | ••••• |
|     | 9L = 14                                                                                                                                      |       |
|     | $\lambda = \mu$                                                                                                                              |       |
|     | 9                                                                                                                                            |       |
|     |                                                                                                                                              | ••••• |
|     | $\frac{\partial N = (-1/9)}{4/9} \qquad \sqrt{\frac{(1)^2 + (4)^2 + (1)^2}{9} + (\frac{1}{9})^2} = \frac{\sqrt{2}}{3}$                       |       |
|     | 4/9 (1) (4) 3                                                                                                                                |       |
|     | \-\ <u>\-\\9\</u>                                                                                                                            |       |
|     |                                                                                                                                              | ••••• |
|     |                                                                                                                                              | ••••• |
|     |                                                                                                                                              | ••••• |
|     |                                                                                                                                              |       |

| <b>10</b> (a) The complex number u is defined by $u = \frac{3i}{a+2i}$ , | , where $a$ is real. |
|--------------------------------------------------------------------------|----------------------|
|--------------------------------------------------------------------------|----------------------|

| 1) | Express $u$ in the Cartesian form $x + iy$ , where $x$ and $y$ are in terms of $a$ . | [3] |
|----|--------------------------------------------------------------------------------------|-----|
|    | 3i ~ a-2i                                                                            |     |
|    | a+2i a-2i                                                                            |     |



| (ii) Find the exact value of a for which are $u^* = \frac{1}{2}\pi$ | [3] |
|---------------------------------------------------------------------|-----|



| $tan^{-1}(-1a) = \sqrt{1}$                  | = -3a (a2 +4) |
|---------------------------------------------|---------------|
| $\left(\begin{array}{c}2\end{array}\right)$ | 600 +4)xb     |
| La= ton L T                                 | =1a           |
|                                             |               |





(b) (i) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities  $|z-2i| \le |z-1-i|$  and  $|z-2-i| \le 2$ . [4]



(ii) Calculate the least value of arg z for points in this region. [2]

| $ang.2 = tan^{-1} \left(\frac{3}{2}\right) = 0.983 \text{ nadians}$ | 2+3i                                           |                 |
|---------------------------------------------------------------------|------------------------------------------------|-----------------|
|                                                                     | $m_{2} = t_{m_{1}} - \left(\frac{3}{2}\right)$ | = 0.983 nadians |
|                                                                     |                                                |                 |
|                                                                     |                                                |                 |
|                                                                     |                                                |                 |
|                                                                     |                                                |                 |
|                                                                     |                                                |                 |
|                                                                     |                                                |                 |
|                                                                     |                                                |                 |
|                                                                     |                                                |                 |
|                                                                     |                                                |                 |

© UCLES 2020 9709/31/M/J/20

# **Additional Page**

| If you use the following lined page to complete the answer(s) to any question(s), the question numerous be clearly shown. | mber(s) |
|---------------------------------------------------------------------------------------------------------------------------|---------|
|                                                                                                                           |         |
|                                                                                                                           |         |
|                                                                                                                           |         |
|                                                                                                                           | •••••   |
|                                                                                                                           |         |
|                                                                                                                           |         |
|                                                                                                                           |         |
|                                                                                                                           |         |
|                                                                                                                           |         |
|                                                                                                                           |         |
|                                                                                                                           |         |
|                                                                                                                           |         |
|                                                                                                                           |         |
|                                                                                                                           |         |
|                                                                                                                           |         |
|                                                                                                                           |         |
|                                                                                                                           |         |
|                                                                                                                           |         |
|                                                                                                                           |         |
|                                                                                                                           |         |
|                                                                                                                           |         |
|                                                                                                                           |         |
|                                                                                                                           |         |

## **BLANK PAGE**

© UCLES 2020 9709/31/M/J/20

### **BLANK PAGE**

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2020 9709/31/M/J/20