SOLUZIONE DELLA PROVA DEL 29/1/2019

Esercizio 1

Introduciamo delle lettere enunciative per indicare le proposizioni atomiche:

A: "La verdura è trasportata"

B: "La verdura è venduta"

C: "La verdura è immagazzinata"

Allora le premesse si traducono nel seguente modo:

- (a) $A \Rightarrow B$
- (b) $\sim A \Rightarrow B \lor C$
- (c) $C \Rightarrow B$

mentre la negazione di (d) corrisponde a ~ B. Scriviamo le formule in forma a clausole:

- (a) $A \Rightarrow B \equiv A \vee B$
- (b) $\sim A \Rightarrow B \lor C \equiv A \lor B \lor C$
- (c) $C \Rightarrow B \equiv \sim C \vee B$

pertanto si ottengono le clausole $C_1 = \{ \sim A, B \}, C_2 = \{ A, B, C \}, C_3 = \{ \sim C, B \}, C_4 = \{ \sim B \}.$ Dalla teoria è noto che dalle premesse (a), (b), (c) si deduce la tesi (d) se e solo se l'insieme $\{A \Rightarrow B, \sim A \Rightarrow B \lor C, C \Rightarrow B, \sim B\}$ è insoddisfacibile e quindi se e solo se $\{C_1, C_2, C_3, C_4\}|_{-R} \Box$.

Una derivazione per risoluzione della clausola vuota è la seguente:

- $C_1 = \{ \sim A, B \}$ (clausola di input) (I)
- (II) $C_4 = \{ \sim B \}$ (clausola di input)
- (III) $C_5 = \{ \sim A \}$ (risolvente di C_1 e C_4)
- (IV) $C_2 = \{A, B, C\}$ (clausola di input)
- (V) $C_6 = \{ B, C \}$ (risolvente di C_5 e C_2)
- (VI) $C_7 = \{C\}$ (risolvente di C_4 e C_6)
- (clausola di input)
- (VII) $C_3 = \{ \sim C, B \}$
- (VIII) $C_8 = \{B\}$ (risolvente di C_7 e C_3) (IX) (risolvente di C₄ e C₃)

Avendo ottenuto la clausola vuota si può concludere che (d) si deduce dalle premesse (a), (b), (c).

Esercizio 2

(a) R non è seriale in quanto non esiste alcun elemento $y \in X$ tale che $(3, y) \in R$.

R non è riflessiva in quanto, ad esempio, $(1, 1) \notin R$.

R non è simmetrica in quanto, ad esempio, $(1, 4) \in R$ ma $(4, 1) \notin R$.

R è antisimmetrica in quanto, per ogni y, $z \in X$, se $(y, z) \in R$ allora $(z, y) \notin R$.

R non è transitiva in quanto, ad esempio, $(1, 4) \in \mathbb{R}$, $(4, 5) \in \mathbb{R}$ ma $(1, 5) \notin \mathbb{R}$.

(b) Poiché R è antisimmetrica, potrebbe esistere la chiusura d'ordine di R. La chiusura riflessiva e transitiva T di R è T = R \cup {(1,1), (3,3), (1,5), (4,3)} ed essendo T ancora una relazione antisimmetrica si ha che T coincide con la chiusura d'ordine \le di R. T ha come diagramma di Hasse quello rappresentato a lato.

Esiste un unico elemento massimale, 3, che quindi è anche massimo ed un unico elemento minimale, 1, che quindi è anche minimo.

Risulta che $Inf{2, 5} = 1 e Sup{2, 3} = 3.$

"Per ogni $x, y \in X$, se $(x, y) \in R$ allora esiste $z \in X$ tale che $(x, z) \in R$ e $(z, y) \in R$ ".

La formula è vera in questa interpretazione infatti:

- $(1, 3) \in R$, ed esiste $2 \in X$ tale che $(1, 2) \in R$ e $(2, 3) \in R$;
- $(1, 2) \in \mathbb{R}$, ed esiste $2 \in \mathbb{X}$ tale che $(1, 2) \in \mathbb{R}$ e $(2, 2) \in \mathbb{R}$;
- $(1, 4) \in R$, ed esiste $4 \in X$ tale che $(1, 4) \in R$ e $(4, 4) \in R$;
- $(2, 3) \in R$, ed esiste $2 \in X$ tale che $(2, 2) \in R$ e $(2, 3) \in R$;
- $(4, 5) \in R$, ed esiste $4 \in X$ tale che $(4, 4) \in R$ e $(4, 5) \in R$;
- $(5, 3) \in R$, ed esiste $5 \in X$ tale che $(5, 5) \in R$ e $(5, 3) \in R$.
- (d) Una formula che sia vera se A_1^2 è interpretata da \leq ma sia falsa se A_1^2 è interpretata da R per esempio è la seguente: $\forall x A_1^2(x, x)$. Infatti R non è riflessiva mentre \leq lo è.

Esercizio 3

- (a) Per mostrare che (Y, *) è un gruppo occorre provare le seguenti proprietà:
 - * interna: già specificato nel testo;

* associativa: già specificato nel testo;

Esistenza dell'elemento neutro: l'elemento neutro rispetto a * è la coppia $(0, 0) \in \mathbb{Z} \times \mathbb{R}$, infatti (x, a) * (0, 0) = (0, 0) * (x, a) = (x, a), per ogni $(x, a) \in \mathbb{Z} \times \mathbb{R}$.

Esistenza dell'inverso: per ogni $(x,a) \in Z \times R$, l'inverso è $(-x,-a) \in Z \times R$, infatti:

$$(x,a)*(-x,-a)=(-x,-a)*(x,a)=(0,0).$$

* commutativa: siano $x, y \in \mathbb{Z}$ e $a, b \in \mathbb{R}$. Allora:

$$(x,a)*(y,b) = (x+y,a+b) = (y+x,b+a) = (y,b)*(x,a)$$

Poiché (x, a) * (y, b) = (y, b) * (x, a), dalla genericità degli elementi $x, y \in \mathbb{Z}$ e $a, b \in \mathbb{R}$ segue che vale la proprietà commutativa.

(b) Per dimostrare che ρ è una relazione di congruenza occorre provare che ρ è una relazione d'equivalenza e che è compatibile con l'operazione *:

<u>p riflessiva</u>: sia $(x, a) \in \mathbb{Z} \times \mathbb{R}$, allora $n \mid 0$ quindi $n \mid x - x$ e $n \mid a - a$ e pertanto (x, a) p (x, a). Dalla genericità di $(x, a) \in \mathbb{Z} \times \mathbb{R}$ segue che vale la proprietà riflessiva.

<u>ρ simmetrica</u>: siano (x,a), (y,b) ∈ Z × R tali che (x,a) ρ(y,b), allora n | x - y ∈ n | a - b quindi n | y - x ∈ n | b - a e pertanto (y,b) ρ(x,a). Dalla genericità di (x,a), (y,b) ∈ Z × R segue che vale la proprietà simmetrica.

<u>o</u> transitiva: siano (x,a), (y,b), $(z,c) \in \mathbb{Z} \times \mathbb{R}$ tali che $(x,a) \rho(y,b)$ e $(y,b) \rho(z,c)$ allora $n \mid x-y$, $n \mid a-b$ e $n \mid y-z$, $n \mid b-c$. Pertanto esistono h, k, r, $s \in \mathbb{Z}$ tali che $n \cdot h = x-y$, $n \cdot k = a-b$ e $n \cdot r = y-z$, $n \cdot s = b-c$ da cui seguono le seguenti relazioni:

$$x - z = x - y + y - z = n \cdot h + n \cdot r = n \cdot (h + r) \Rightarrow n \mid x - z$$
$$a - c = a - b + b - c = n \cdot k + n \cdot s = n \cdot (k + s) \Rightarrow n \mid a - c$$

Poiché $n \mid x-z \in n \mid a-c$ si ha che $(x,a) \rho(z,c)$. Dalla genericità di (x,a), $(z,c) \in \mathbb{Z} \times \mathbb{R}$ segue che vale la proprietà transitiva.

<u>o</u> compatibile con *: siano (x,a), (y,b), (z,c), $(t,d) \in \mathbb{Z} \times \mathbb{R}$ tali che $(x,a) \rho(y,b)$ e $(z,c) \rho(t,d)$ allora $n \mid x-y$, $n \mid a-b$ e $n \mid z-t$, $n \mid c-d$. Pertanto esistono $h, k, r, s \in \mathbb{Z}$ tali che $n \cdot h = x-y$, $n \cdot k = a-b$ e $n \cdot r = z-t$, $n \cdot s = c-d$ da cui seguono le seguenti relazioni:

$$(x+z)-(y+t) = (x-y)+(z-t) = n \cdot h + n \cdot r = n \cdot (h+r) \Rightarrow n \mid (x+z)-(y+t)$$

$$(a+c)-(b+d) = (a-b)+(c-d) = n \cdot k + n \cdot s = n \cdot (k+s) \Rightarrow n \mid (a+c)-(b+d)$$

Poiché $n \mid (x+z) - (y+t)$ e $n \mid (a+c) - (b+d)$ si ha che $(x+z,a+c) \rho (y+t,b+d)$ e quindi $((x,a)*(z,c)) \rho ((y,b)*(t,d))$. Dalla genericità di (x,a), (y,b), (z,c), $(t,d) \in \mathbb{Z} \times \mathbb{R}$ segue che ρ è compatibile con *.

(c) La f.b.f. data si traduce nel seguente modo nell'interpretazione assegnata:

"Per ogni
$$(x,a)$$
, (y,b) , (z,c) , $(t,d) \in \mathbb{Z} \times \mathbb{R}$, se $(x,a) \rho(y,b)$ e $(z,c) \rho(t,d)$ allora $((x,a)*(z,c))\rho((y,b)*(t,d))$ ".

Pertanto essa risulta essere vera in questa interpretazione in quanto traduce la proprietà di ρ di essere compatibile con l'operazione *.

Non è una formula logicamente valida perché, ad esempio, non è vera nell'interpretazione in cui il dominio è Z e in cui R interpreta la relazione di minore ed f l'operazione di moltiplicazione. In tal caso infatti, per esempio, -2 < 3, -5 < 1 ma $(-2) \cdot (-5) = 10 > 3 \cdot 1$.