AER210F VECTOR CALCULUS AND FLUID MECHANICS

Quiz 2

20 October 2014

8:45 am - 9:45 am

Closed Book, No aid sheets, No calculators

Instructor: J. W. Davis

Last Name:	
Given Name:	
Student #:	
Tutorial/TA:	

FOR MARKER USE ONLY					
Question	Marks	Earned			
1	10				
2	12				
3	8				
4	8				
5	14				
TOTAL	52	/ 48			

Note: The following integrals may be useful.

$$\int \cos^2\theta \, d\theta = \frac{1}{2}\theta + \frac{1}{4}\sin 2\theta + C; \qquad \int \sin^2\theta \, d\theta = \frac{1}{2}\theta - \frac{1}{4}\sin 2\theta + C$$

$$\oint_{C} P dx + Q dy = \iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dR; \qquad \oiint_{S} \vec{F} \cdot \hat{n} dS = \iiint_{V} \nabla \cdot \vec{F} dV; \qquad \oint_{C} \vec{F} \cdot d\vec{r} = \iint_{S} \nabla \times \vec{F} \cdot d\vec{S}$$

1) Use the coordinate transformation: $x = \frac{u}{v}\cos\theta$, $y = \frac{u}{v}\sin\theta$, $z = u^2$, to evaluate the triple integral $I = \int_V \frac{dV}{x^2 + y^2}$, where V is the volume that lies between the parabaloids $z = x^2 + y^2$, $z = 4(x^2 + y^2)$ and between the planes z = 1, z = 4. Provide a sketch of the volume.

Hint: While the limits for θ and u are easily found, the bounds for v are not so obvious. Consider the traces of the parabaloids in the z = 1 or z = 4 planes to help determine the limits on v.

(10 marks)

2) Evaluate the line integrals:

- a) $\int_C x^2 dx + y^2 dy + z^2 dz$, where C consists of the line segment from (1,2,-1) to (3,2,0).
- b) $\int_{C} \vec{F} \cdot d\vec{r}$ where $\vec{F} = \sin x \hat{i} + \cos y \hat{j} + xz \hat{k}$ and $C: \vec{r}(t) = t^{3} \hat{i} t^{2} \hat{j} + t \hat{k}$, $0 \le t \le 1$.
- c) $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = e^y \hat{i} + xe^y \hat{j} + (z+1)e^z \hat{k}$ and $C: \vec{r}(t) = t \hat{i} + t^2 \hat{j} + t^3 \hat{k}$, $0 \le t \le 1$.

(12 marks)

3) Given a surface defined parametrically by $\vec{r}(u,v) = x(u,v)\hat{i} + y(u,v)\hat{j} + z(u,v)\hat{k}$, show that the surface area can be found from: $\int_{S} dS = \iint |\vec{r}_{u} \times \vec{r}_{v}| |du \, dv|.$

(8 marks)

4) Use a parametric representation of the surface to find the surface area of the cylinder $x^2 + y^2 = 16$ between the planes z = 0 and z = 16 - 2x. Provide a sketch of the area.

(8 marks)

5) Verify the divergence theorem for the vector field $\vec{F}(x,y,z) = xyz\hat{i} + x^2y\hat{j} + x^2z\hat{k}$ and S is the surface formed by the cylinder $x^2 + y^2 = 1$ and the planes z = -1 and z = 1.

(14 marks)