

СООБЩВИНЯ ОБЪВДИНВИНОГО ИНСТИТУТА ЯДВРИЫХ ИССЛЕДОВАНИЯ ДУБНА

P10-88-381

А.Георгиев, И.Н.Чурин

КОНТРОЛЛЕР КРЕЙТА КАМАК КК009 ДЛЯ ПЕРСОНАЛЬНОГО КОМПЬЮТЕРА ТИПА ПРАВЕЦ 16 И ІВМ РС/ХТ

В Объединенном институте ядерных исследований экспериментальное оборудование физических установок подключено к ЭВМ различной вычислительной мошности. Кроме больших и мини-ЭВМ, в настоящее время в ОИЯИ находятся в эксплуатации персональные компьютеры типа Правец-16, IBM PC/XT^{/1,2} к их аналоги. Для многих задач необподключение персональных компьютеров ОМИПОХ ĸ КАМАК'3 /, широко респрострененной в ОИЯИ. С этой целью в Лаборатории ядерных проблем разработан контроллер крейта КАМАК для компьютеров типа ІВМ РС/ХТ. Чтобы удовлетворить требованиям по быстродействию, числу подключаемых крейтов и долговременной надежности, контроллер имеет следующие особенности: а) работа по программному каналу: б) доступ к регистрам КАМАК как к ячейкам памяти, соответствующим данным N, A и F; аппаратные средства для быстрой обработки сигналов LAM и выполнения многокрейтных операций; г) обслуживание системы до 7 крейтов; д) встроенные средства для тестирования контроллера магистрали крейта.

Назначение контроллера: выполнение управляющих операций, чтение и запись 16-разрядных слов по программному каналу под управлением ПЭВМ Правец 16, IBM PC/XT или их аналогов.

Контроллер обеспечивает работу в составе многокрейтной системы КАМАК с числом крейтов до 7. Максимально допустимое удаление последнего крейта от $\Pi \ni BM - 10$ м.

Связь блока с компьютером осуществляется через отдельную плату связи ПК009, устанавливаемую в один из разъемов расширения вводавывода, которые находятся на основной плате компьютера (рис.1).

На плате расположены 8-разрядный двунаправленный буфер данных, собранный на ИС К589АП16 и К589АП26, 15-разрядный однонаправленный буфер адреса на ИС К155ЛА13, буферы управляющих сигналов, схема обработки ответа крейта, 5-разрядный селектор адресного окна системы крейтов, дающий разрешение на выдачу в кабель сигналов чтения и записи и коммутирующий направление работы буфера данных при чтении, а также схема обработки ответа крейта. Последняя контролирует время прихода сигнала ответа крейта CRDY и, в случае его отсутствия в течение 8 тактов ПК, сама генерирует сигнал IOCHRDY в шину ПК, предотвращая останов компьютера.

Плата связи многожильным кабелем соединяется с контроллерами крейтов через разъем РП15-50ГВ, расположенный на передней панели.

Рис.1. Блок-схема платы связи ПКООЭ.

Разводка (табл.1) выбрана с учетом удобства обслуживания, линии разбиты на группы по адресам, управляющим сигналам и данным. Каждый сигнальный провод имеет соответствующий скрученный с ним экранный провод. Сигнальные провода распаиваются на боковые ряды контактов разъема, а экранные на центральный ряд по два на каждый контакт.

Система крейтов занимает на карте памяти ПК 32 К байт. С помощью установленного на плате связи 8-разрядного переключателя можно задавать базовый адрес системы крейтов, начиная от 80000 и выше. Установка разрядов переключателя

Таблица ! Разводка кабеля между платой связи и контроллером

1-CA00 2-CA02 3-CA04 4-CA06 5-CA08 6-CA10 7-CA12 8-CA14 9-CCLK 10-CRD 11-CRDY 13-CD0 14-CD2 15-CD4	(выбор байта) (F2) (F8) (A1) (A4) (N1) (N4) (N16) (такт) (чтение) (ответ крейта) (данные) (данные)	18—экран для 19—экран для 20—экран для 21—экран для 22—экран для 23—экран для 24—экран для 26—экран для 27—экран для 30—экран для 31—экран для 31—экран для	11,44 13,46 14,47	34-CA01 35-CA03 36-CA05 37-CA07 38-CA09 39-CA11 40-CA13 41-CRES 42-He MCII. 43-CWT 44-CSRQ 46-CD1 47-CD3 48-CD5	(F1) (F4) (F16) (A2) (A8) (N2) (N8) (сброс) (запись) (прерыв.) (данные) (данные) (данные)
			15,48		

				Адреса системы крейтов			
				при ОЗУ 512К и менее	при ОЗУ 640К		
S1 -4	S1-3	S1 -2	S1-1				
1	1	1	1	80000	Занято ОЗУ ПЭВМ		
1	1	1	0	88000	Занито ОЗУ ПЭВМ		
1	1	0	1	90000	Занято ОЗУ ПЭВМ		
1	1	0	0	98000	Занято ОЗУ ПЭВМ		
1	0	1	1	A0000	A0000		
1	0	1	0	A8000	A8000		
1	0	0	1	Занято устройствам	и ввода-вывода		
1	0	0	0	Занято устройствам	ин ввода-вывода		
0	1	1	1	C0000	C0000		
0	1	1	0	Занято устройствам	и ввода-вывода		
0	1	0	1	D0000	D0000		
0	1	0	0	D8000	D8000		
0	0	1	1	E0000	E0000		
0	0	1	0	E8000	E8000		
0	0	0	1	Занято сист	емным ПЗУ		
0	0	0	0	Занято сист	емным ПЗУ		

Таблица 3 Установка уровня прерывания на плате связи

S1-7	S1-6	S1-5	
0	0	1	Уровень прерывания IRQ2
0	1	0	Уровень прерывания IRQ3
1	0	0	Уровень прерывания IRQ4

производится в соответствии с табл.2. Здесь и ниже все адреса даются в шестнадцатиричном представлении. Установка базового адреса системы возможна только на те места карты памяти ПК, которые не заняты ОЗУ, системным ПЗУ или устройствами ввода-вывода. Кроме того, тем же переключателем можно выбрать уровень прерывания системы (табл.3).

Программное обеспечение контроллера КК009 предусматривает адрес системы E0000 и уровень прерывания 2 как стандартные.

На передней панели контроллера размещены коаксиальный разъем типа МК-50 (LEMO) для ввода сигнала "Внешний LAM" с логическим

уровнем NIM, светоднодный индикатор "Крейт выбрен", а также два разъема типа РП15-50ГВ для подключения к плате связи и другим крейтам системы с распределением контектов, совпадающим с соответствующим разъемом платы связи. Если в системе используется один крейт, то ко второму разъконтроллера подключается emv терминатор. Если система многокрейтная, то ко второму разъему подключается другой кабель, идуший к следующему контроллеру. и так далее. Ко второму разъему последнего контроллера подключается терминатор (рис.2).

Контроллер крейта КК009 содержит: входные буферы сигналов CRES, CA, CRD, CWR, CLK; двунаправленный буфер данных; выходные буферы сигналов CRDY и CSRQ; дешифратор адреса крейта; дешифратор сигналов чтения шин R и записи на шины W; дешифратор сигналов чтения и записи регистров управления и статуса; дешифратор номера станции N; буферы субадреса A и функции F; узел генерации управляющих сигналов Z, C, и I; генератор цикла КАМАК; расположенные на плате

Рис.2. Схема подключения крейтов к ПК.

данных (станция 24) регистры данных R и W с буферами магистрали крейта; регистр выбора флага с триггером разрешения/запрета прерывания; селектор флага; схему выработки сигнала прерывания; схему контроля временных соотношений сигналов В, S1, S2; триггер индикации пропажи и восстановления питания; регистр статуса источкиков прерывания; три байтовых буфера статуса сигналов LAM крейта; регистр состояния сигналов X, Q, I и CRE (крейт выбран) во время последнего цикла КАМАК; тестовый регистр состояния сигналов Z, N, A, F и C в последнем цикле КАМАК с шифратором N; тестовый регистр состояния шин W в последнем цикле КАМАК (рис.3).

Рис.З. Блок-схема контроллера крейта КК009.

Поле адресов, занимаемых крейтами, состоит из зоны управляющих и статусных регистров всех контроллеров системы и зоны регистров модулей КАМАК выбранного крейта. Доступ к управляющим и статусным регистрам возможен аналогично обращению к ячейкам памяти путем

обычных операций записи или чтения байта или слова. Регистры управления и статуса разных крейтов занимают неперекрывающиеся поля адресов и всегда напримую доступны для программиста. Номер крейта "К" в системе задается с помощью 7-разридного переключателя \$1, размещенного на правой печатной плате контроллера в соответствии с табл. 4.

Теблице 4

Установка номера крейта в контроллере

S1-7	S1-6	S1-5	S1-4	S1-3	S1-2	S1-1		К
0	0	0	0	0	0	1	Номер крейта	0
0	0	0	0	0	1	0	Номер крейта	1
0	0	0	0	1	0	0	Номер крейта	2
0	0	0	1	0	0	0	Номер крейта	3
0	0	1	0	0	0	0	Номер крейта	4
0	1	0	0	0	0	0	Номер крейта	
1	0	0	0	0	0	0	Номер крейта	

Таблица 5 Относительные адреса команд NAF, регистров управления и статуса

6000 — 7FFF	не используется
5C00 — 5FFF	N(23)A(15-0)F(31-0)
5800 5BFF	N(22)A(15-0)F(31-0)
5400 — 57FF	N(21)A(15-0)F(31-0)
5000 - 53FF	N(20)A(15-0)F(31-0)
4C00 - 4FFF	N(19)A(15-0)F(31-0)
4800 - 4BFF	N(18)A(15-0)F(31-0)
4400 — 47FF	N(17)A(15-0)F(31-0)
4000 — 43FF	N(16)A(15-0)F(31-0)
3C00 - 3FFF	N(15)A(15-0)F(31-0)
3800 — 3BFF	N(14)A(15-0)F(31-0)
3400 — 37FF	N(13)A(15-0)F(31-0)
3000 - 33FF	N(12)A(15-0)F(31-0)
2C00 - 2FFF	N(11)A(15-0)F(31-0)
2800 - 2BFF	N(10)A(15-0)F(31-0)
2400 — 27FF	N(09)A(15-0)F(31-0)
2000 — 23FF	N(08)A(15-0)F(31-0)
1C00 - 1FFF	N(07)A(15-0)F(31-0)
1800 — 1BFF	N(06)A(15-0)F(31-0)
1400 - 17FF	N(05)A(15-0)F(31-0)
1000 - 13FF	N(04)A(15-0)F(31-0)
0C00 - 0FFF	N(03)A(15-0)F(31-0)
0800 - 0BFF	N(02)A(15-0)F(31-0)
0400 - 07FF	N(01)A(15-0)F(31-0)
0000 - 007F	Зона РУС контроллеров системы
	• •

Отсчет адресов РУС и регистров КАМАК в системе крейтов ведется относительно базового адреса, установленного на плате связи (табл.5,6).

Теблице 6

Распределе	Распределение адресной зоны РУС по крейтам			
70 - 7F	Многокрейтные команды Z,C,1			
60 - 6F	Рег. упр. и статуса крейта 6			
50 — 5F	Рег. упр. и статуса крейта 5			
40 - 4F	Рег. упр. и статуса крейта 4			
30 - 3F	Рег. упр. и статуса крейта 3			
20 - 2F	Рег. упр. и статуса крейта 2			
10 - 1F	Рег. упр. и статуса крейта 1			
00 - 0F	Рег. упр. и статуса крейта 0			

Адрес РУС складывается из номера крейта, умноженного на 10 плюс порядковый номер РУС. Таким образом, адресу 32 отвечает РУС номер 2 третьего крейта. Зона регистров модулей КАМАК общая для всех крейтов. В каждый данный момент к ней подключены регистры модулей только выбранного крейта. Крейт считается выбранным, когда установлен триггер выбора крейта, при этом на передней панели контроллера включен индикатор "Крейт выбран" и в статусном регистре 5 бит СRE равен 1. Выбор крейта происходит при считывании статусных регистров с относительным адресом от КО до К5, а также при записи в управляющие регистры КО, К2. При этом к зоне регистров модулей КАМАК подключаются регистры выбранного крейта, а регистры остальных крейтов отключаются.

Контроллер использует прямую адресацию регистров КАМАК. По линии адреса АО выбирается младший или старший байт слова, по линиям А5-А1 передается функция КАМАК F, по линиям А9-А6 — субадрес A, а по линиям А14-А10 — номер станции N. Передача информации между платой связи и контроллером осуществляется словами по линиям данных побайтно в два приема или отдельными байтами. Выполнение цикла чтения или записи данных регистров КАМАК производится как одна простая операция обращения к зоне регистров КАМАК в виде чтения или записи 16-разрядного слова аналогично обращению к памяти. Чтение регистров КАМАК возможно байтами или словами по четным адресам. Запись в регистры КАМАК возможна только словами. Управляющие операции (с F8=1) выполняются как чтение байта из зоны регистров КАМАК, при этом по линиям данных в разряде 0 передается X, а в разряде 1 передается Q, полученные в цикле КАМАК.

Формула вычисления адреса, отвечающего команде NAF:

NAF_ADDRESS=BASE_ADDRESS+N*400+A*40+F*2.

Например, команде N(20)A(8)F(1) соответствует чтение слова из ячейки памяти с адресом 5202, команде N(20)A(8)F(8) — чтение байта из ячейки 5210, а команде N(20)A(8)F(17) — запись слова в ячейку 5222.

При обращении к зоне регистров КАМАК автоматически запускается цикл магистрали, то есть генерируются В, S1, S2 и заданные N, A, F. Кроме того, цикл КАМАК генерируется также при считывании РУС с адресами К8 и К9, а также при записи в РУС с адресами К9, КВ, КD, КF. В диапазоне К0—КF допустимы операции чтения и записи байтов и слов. При записи по адресам 79—7F операции генерации Z и C, установки и сброса I выполняются во всех крейтах.

Аппаратно пересылка отдельного слова данных выполняется за 2,1 мкс. Пересылка данных при работе на ассемблере и генерации команд КАМАК по заранее заданному списку занимает от 4,8 до 6 мкс на 16-разрядное слово в зависимости от использованного способа адресации. Например:

```
MOV AX,Mem_Data ; загрузка данных в аккумулятор MOV ES:NAF_Address,AX ; запись данных в регистр КАМАК.
```

Быстродействие в режиме передачи массива — от 15 до 30 мкс на слово в зависимости от наличия в цикле проверок на ожидание LAM, на окончание цикла по счетчику слов и по сигналу Q=0.

Зона регистров управления и статуса каждого крейта занимает по 16 байтов для записи и для чтения. Использование адресов и разрядов при записи в регистры управления см. в табл.7.

При записи в младший байт управляющего регистра 0 в разряды FS16—FS1 записывается номер флага, выбираемого в соответствии с табл.8.

Выбранный флаг появляется в статусном регистре 4 в разряде 1. Он доступен для программной проверки и может быть источником прерывания, если оно разрешено. При инициализации контроллера устанавливается FS=31. При записи лог."1" в разряд ІЕ управляющего регистра 0 происходит разрешение прерывания ПЭВМ при появлении флага, нарушении питания или ошибке генератора цикла КАМАК. Запрет прерывания происходит при записи в разряд ІЕ лог."0" или после инициализации контроллера.

При записи в управляющий регистр 2 происходит установка в лог. "1" триггера выбора крейта, что обеспечивает выполнение операции

				Запис				
				Разрады б	айта			
	7	6	5	4	3	2	1	0
F				Сброс с	игнала I			
E	_	-	·		_	_		-
D				Установка	сигнала	1		
C		_			_	_	_	
В			Генера	шия сигна	олов С, В	, S1, S2		
A	_	_	_		_	_	_	-
9			Генера	виля сигна	илов Z, В	, S1, S2		
8	_	_		-	-	_	_	_
7	_	_	-	-	_	_		_
6			Tec	товая уста	ановка Х	иQ		
5	_	_	_	-	_	_	-	_
4			Ини	идализаци	я контро	ллера		
3	_	-	_	-	_	_	_	_
2				Выбор	крейта			
1	_	_	_	-	_	_	_	_
0	ΙE	_	_	FS16	FS8	FS4	FS2	FS1

Таблица 8

Значения флагов, выбираемых с помощью регистра FS

EG(O)		TAM (TOTAGOO)
FS(0)	_	внешний сигнал LAM (передняя панель КК009)
FS(1)	_	LAM1
FS(2)	-	LAM2
	_	••••
	_	****
FS(23)	_	LAM23
FS(24)	_	лог. "ИЛИ" LAM0—LAM7
FS(25)	-	лог. "ИЛИ" LAM8-LAM15
FS(26)	_	лог. "ИЛИ" LAM16—LAM23
FS(27)	_	лог. "ИЛИ" LAM0—LAM23
FS(28)		питание -6 В нормально.
FS(29)		питание +12 В и -12 В нормально.
FS(30)	_	питание +24 В и -24 В нормально.
FS(31)	-	логический "0". Используется для запрета линии FL.

явного выбора крейта (в дополнение к операциям считывания статусных регистров и операциям записи в управляющие регистры, при которых также происходит выбор крейта). При этом бит CRE в регистре 5 устанавливается в "1".

При записи в управляющий регистр 4 выполняется инициализация выбранного контроллера: в регистре флага устанавливается FS=31, прерывание запрещается, сбрасываются тритгеры выбора крейта, ошибки питания и ошибки генератора цикла КАМАК, снимается сигнал I. Инициализация контроллера происходит также при поступлении сигнала RESET из ПЭВМ. Инициализация должна быть сделана после включения питания крейта.

При записи в РУС 6 триггеры X и Q устанавливаются в состояние лог. "1", что используется при тестах контроллера. Информация на линиях данных при записи в регистры управления 2—F не имеет значения. При записи в управляющие регистры с адресами 8—E генерируются цикл КАМАК и выбранная общекрейтная команда.

Использование адресов и разрядов при чтении регистров статуса дано в табл.9.

Таблица 9 Распределение разрядоз регистров статуса

				Чтени				
				Разряды (Байта			
	7	6	5	4	3	2	1	0
F	_	_		-	_		_	-
E	_	_		_	_	-	-	
D		-		-	-		-	_
C		_	-	-		_		
В	_	-		_	-	-	_	_
Α		_	_	_			_	-
9	W16	W15	W14	W13	W12	W11	W10	W 9
8	W8	W7	W6	W 5	W4	W3	W2	W1
7	Z	N16	N8	N4	N2	N1	A8	A4
6	A2	A1•	F16	F8	F4	F2	F1	C
5		-	_		Q	X	I	CRE
4		-	_	-	CCF	PF	FL	ITS
3	L23	L22	L21	L20	L19	L18	L17	L16
2	L15	L14	L13	L12	L11	L10	L9	L8
1	L7	L6	L5	L4	L3	L2	L1 .	LO
0	ΙE	_		FS16	FS8	FS4	FS2	FS1

При чтении РУС 0 получается информация об установленных битах выбора флага и резрешения прерывания. Из РУС 1,2,3 считываются состояния в данный момент немаскированных сигналов L0—L7, L8—L15 и L16—23 соответственно. При чтении РУС 4 из контроллера передается состояние источников прерывания. Бит ССГ указывает на наличие ошибки генератора цикла КАМАК, он устанавливается после ошибки и сбрасывается во время инициализации контроллера при записи в РУС 4. Бит РГ устанавливается, если основное напряжение +6 В исчезло и вновь восстановилось. Он сбрасывается при инициализации контроллера или считывании РУС 4. Бит FL показывает состояние флага, выбранного при записи разридов FS в РУС 0. Бит ITS равен лог. "1", если отсутствуют сигналы ССГ, РГ и FL, и равен лог. "0", если присутствует любой из них. При чтении РУС 5 передается информация о состоянии сигналов X и Q после последнего цикла магистрали, а также о состоянии сигнала I и тоиггера выбора крейта (бит СПЕ).

При чтении слова по адресу РУС 6 передается информация о появлении на магистрали крейта сигналов Z, N, A, F и C во время последнего цикла КАМАК, а при чтении слова по адресу РУС 8 — сигналов на линиях W1—W16. Статусные регистры 6 и 8 предназначены для тестирования контроллера и магистрали крейта и не являются необходимыми для нормальной работы с модулями КАМАК.

Конструктивно контроллер выполнен на двух печатных платах с применением интегральных схем средней степени интеграции серий К555, К155 и К589. Межплатный жгут содержит 12 линий и для удобства настройки соединяет платы через разъем типа МРН, установленный на правой плате. Левая плата с направляющими крепится четырьмя винтами и легко снимается.

Программное обеспечение контроллера КК009 включает реализованные на языке макроассемблера пакеты процедур по стандарту ESONE 14, предназначенные для работы с модулями КАМАК через контроллер КК009 с помощью программ на языках TurboPascal, Microsoft C, Microsoft Fortran, и RM Fortran. Кроме того, прилагаются демонстрационные программы, тест контроллера КК009 с расширенной диагностикой, полуавтоматический тест прохождения сигналов LAM, подробное описание контроллера, схема подключения и другая документация.

Авторы глубоко признательны А.Н.Синаеву за руководство работой, А.Г.Петрову (университет г.Пловдива, НРБ) за участие на начальной стадии работы и А.И.Гилеву за участие в разработке программного обеспечения.

ЛИТЕРАТУРА

- Персональный компьютар "Правен 16", техническое описание. Комбинат микропроиссорной техники, Правен, НРБ, 1986.
- IBM Personal Computer Hardware Reference Library, Technical Reference, IBM Corp., 6025008, USA, 1983.
- 3. Система КАМАК, ГОСТ 26,201-80. Изд.стандартов, М., 1980.
- Subroutines for CAMAC, ESONE Committee and U.S.NIM Committee Commission, ESONE SR/01, Geel, Belgium, 1978.

Георгиев А., Чурин И.Н. Контроллер крейта КАМАК КК009 для персонального компьютера типа Правец 16 и IBM PC/XT P10-88-381

Описаны контроллер крейта КАМАК и плата связи для персонального компьютера типа Правец 16 и IBM РС/ХТ. Контроллер имеет следующие особенности: а) работа по программному каналу; б) доступ к регистрам КАМАК как к ячейкам памяти, соответствующим данным N, A и F; в) аппаратные средства для быстрой обработки сигналов LAM и выполнения многокрейтных операций; г) обслуживание системы до 7 крейтов; д) встроенные средства для тестирования контроллера и магистрали крейта.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1988

Перевод авторов

Georgiev A., Churin I.N. A CAMAC Crate Controller KK009 for the Pravetz-16 and IBM PC/XT Personal Computers P10-88-381

A CAMAC crate controller and a computer bus adapter for the Pravetz 16 and IBM PC/XT personal computers are described. The following features are included in the controller: a) operation under program control; b) access to CAMAC registers treated as memory locations corresponding to given N, A, F; c) hardware for fast LAM processing and execution of multi-crate commands; d) up to 7 crates in one CAMAC system; e) built-in hardware for controller and crate dataway test.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Communication of the Joint Institute for Nuclear Research, Dubna 1988

Редактор Б.Б.Колесова. Макет Т.Е.Попеко. Набор И.Г.Андреевой.

Подписано в печать 17.06.88. Формат 60х90/16. Офестная печать. Уч.-изд.листов 1,13. Тираж 450. Заказ 40698.

Издательский отдел Объединенного института ядерных исследований. Дубна Московской области.