Application No.: 10/658,298 Amdt dated: January 5, 2005 Reply to OA dated: October 5, 2004

PATENT APPLICATION

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Claim 1. (original): A compound of formula

$$R^3$$
 N
 R^4
 N
 R^2
 R^4
 N
 R^2
 R^4
 N
 R^2
 R^2

or a pharmaceutically acceptable salt thereof, wherein

 R^1 is H or C_{1-8} alkyl;

R² is C₁₋₈alkyl, phenyl, benzyl, R^c, R^f, C₁₋₄alkylR^c, C₁₋₄alkylR^f or R^g;

 R^3 is phenyl, naphthyl, or a saturated or unsaturated 5- or 6-membered ring heterocycle containing 1-4 heteroatoms selected from N, O and S, wherein no more than 2 of the heteroatoms are O or S, and the heterocycle is substituted by 0, 1 or 2 oxo groups and is optionally fused with a benzo group, any of which are substituted by 0, 1, 2 or 3 substituents selected from C_{1-8} alkyl, C_{1-4} haloalkyl, halo, cyano, nitro, $-C(=O)R^b$, $-C(=O)OR^b$, $-C(=O)NR^aR^a$, $-C(=NR^a)NR^aR^a$, $-OR^a$, $-OC(=O)R^b$, $-OC(=O)NR^aR^a$, $-OC(=O)N(R^a)S(=O)_2R^b$, $-OC_{2-6}$ alkyl NR^aR^a , $-OC_{2-6}$ alkyl NR^aR^a , $-OC_{2-6}$ alkyl NR^aR^a , $-S(=O)_2N(R^a)C(=O)R^b$, $-S(=O)_2N(R^a)C(=O)R^b$, $-S(=O)_2N(R^a)C(=O)R^aR^a$, $-N(R^a)C(=O)R^aR^a$, $-N(R^a)C(=O)R^a$

 R^4 is phenyl, naphthyl, or a saturated or unsaturated 5- or 6-membered ring heterocycle containing 1-4 heteroatoms selected from N, O and S, wherein no more than 2 of the heteroatoms are O or S, and the heterocycle is substituted by 0, 1 or 2 oxo groups and is optionally fused with a benzo group, any of which are substituted by 0, 1, 2 or 3 substituents selected from C_{1-8} alkyl, C_{1-4} haloalkyl, halo, cyano, nitro, $-C(=O)R^b$, $-C(=O)OR^b$, $-C(=O)NR^aR^a$, $-C(=NR^a)NR^aR^a$, $-OR^a$, $-OC(=O)R^b$, $-OC(=O)NR^aR^a$, $-OC(=O)N(R^a)S(=O)_2R^b$, $-OC_{2-6}$ alkyl NR^aR^a , $-OC_{2-6}$ alkyl NR^a , $-OC_{2-6}$ alkyl

Reply to OA dated: October 5, 2004 PATENT APPLICATION

 $-N(R^a)C(=NR^a)NR^aR^a, -N(R^a)S(=O)_2R^b, -N(R^a)S(=O)_2NR^aR^a, -NR^aC_{2-6}alkylNR^aR^a \ and -NR^aC_{2-6}alkylOR^a;$

R^a is independently at each instance H or R^b;

R^b is independently at each instance C₁₋₈alkyl, phenyl or benzyl;

R^c is independently at each instance a saturated or unsaturated 5-, 6- or 7-membered monocyclic or 6-, 7-, 8-, 9-, 10- or 11-membered bicyclic ring containing 1, 2 or 3 atoms selected from N, O and S, wherein the ring is fused with 0 or 1 benzo groups and 0 or 1 saturated or unsaturated 5-, 6- or 7-membered heterocyclic ring containing 1, 2 or 3 atoms selected from N, O and S; wherein the carbon atoms of the ring are substituted by 0, 1 or 2 oxo groups;

 $R^{d} \text{ is independently at each instance $C_{1-8}alkyl$, $C_{1-4}haloalkyl$, halo, cyano, nitro, $-C(=O)R^{b}$, $-C(=O)NR^{a}R^{a}$, $-C(=NR^{a})NR^{a}R^{a}$, $-OR^{a}$, $-OC(=O)R^{b}$, $-OC(=O)NR^{a}R^{a}$, $-OC(=O)N(R^{a})S(=O)_{2}R^{b}$, $-OC_{2-6}alkylNR^{a}R^{a}$, $-OC_{2-6}alkylOR^{a}$, $-SR^{a}$, $-S(=O)R^{b}$, $-S(=O)_{2}R^{b}$, $-S(=O)_{2}NR^{a}R^{a}$, $-S(=O)_{2}N(R^{a})C(=O)R^{b}$, $-S(=O)_{2}N(R^{a})C(=O)NR^{a}R^{a}$, $-NR^{a}R^{a}$, $-N(R^{a})C(=O)R^{b}$, $-N(R^{a})C(=O)NR^{a}R^{a}$, $-N(R^{a})C(=O)R^{b}$, $-N(R^{a})C(=O)R^{b}$, $-N(R^{a})C(=O)R^{a}R^{a}$, $-N(R^{a})C(=O)R^{a}R^{a}R^{a}$, $-N(R^{a})C(=O)R^{a}R^{a}R^{a}$, $-N(R^{a})C(=O)R^{a}R^{a}R^{a}$, $-N(R^{a})C(=O)R^{a}R^{a}R^{a}$, $-N(R^{a})C(=O)R^{$

 R^e is independently at each instance C_{1-6} alkyl substituted by 1, 2 or 3 substituents independently selected from R^d ;

 R^{f} is independently at each instance R^{c} substituted by 1, 2 or 3 substituents independently selected from R^{d} ; and

 R^g is independently at each instance R^b substituted by 1, 2 or 3 substituents independently selected from R^c , R^f and R^d .

- Claim 2. (original): The compound of Claim 1 or a pharmaceutically acceptable salt thereof, wherein R¹ is H.
- Claim 3. (original): The compound of Claim 1 or a pharmaceutically acceptable salt thereof, wherein R^1 is $C_{1.8}$ alkyl.
- Claim 4. (original): The compound of Claim 1 or a pharmaceutically acceptable salt thereof, wherein R² is R^c, R^f, C₁₋₄alkylR^c, C₁₋₄alkylR^f or R^g.

Reply to OA dated: October 5, 2004 PATENT APPLICATION

Claim 5. (original): The compound of Claim 1 or a pharmaceutically acceptable salt thereof, wherein R^2 is C_{1-8} alkyl, phenyl or benzyl.

Claim 6. (original): The compound of Claim 1 or a pharmaceutically acceptable salt thereof, wherein R^3 is phenyl or naphthyl both of which are substituted by 0, 1, 2 or 3 substituents selected from C_{1-8} alkyl, C_{1-4} haloalkyl, halo, cyano, nitro, $-C(=O)R^b$, $-C(=O)OR^b$, $-C(=O)NR^aR^a$, $-C(=NR^a)NR^aR^a$, $-OR^a$, $-OC(=O)R^b$, $-OC(=O)NR^aR^a$, $-OC(=O)N(R^a)S(=O)_2R^b$, $-OC_{2-6}$ alkyl NR^aR^a , $-OC_{2-6}$ alkyl NR^aR^a , $-S(=O)_2N(R^a)C(=O)R^b$, $-S(=O)_2N(R^a)C(=O)NR^aR^a$, $-NR^aR^a$, $-N(R^a)C(=O)R^b$, $-N(R^a)C(=O)R^b$, $-N(R^a)C(=O)R^b$, $-N(R^a)C(=O)R^a$, $-N(R^a)C(=O)R$

Claim 7. (original): The compound of Claim 1 or a pharmaceutically acceptable salt thereof, wherein R^3 is unsubstituted naphthyl or phenyl substituted by 1, 2 or 3 substituents selected from C_{1-8} alkyl, C_{1-4} haloalkyl, halo, cyano, nitro, $-C(=O)R^b$, $-C(=O)OR^b$, $-C(=O)NR^aR^a$, $-C(=NR^a)NR^aR^a$, $-OR^a$, $-OC(=O)R^b$, $-OC(=O)NR^aR^a$, $-OC(=O)N(R^a)S(=O)_2R^b$, $-OC_{2-6}$ alkyl NR^aR^a , $-OC_{2-6}$ alkyl NR^aR^a , $-S(=O)_2N(R^a)$, $-S(=O)_2N(R^a)$, $-S(=O)_2N(R^a)$, $-S(=O)_2N(R^a)$, $-S(=O)_2N(R^a)$, $-N(R^a)C(=O)R^b$, $-N(R^a)C(=O)R^b$, $-N(R^a)C(=O)R^a$,

Claim 8. (original): The compound of Claim 1 or a pharmaceutically acceptable salt thereof, wherein R³ is a saturated or unsaturated 5- or 6-membered ring heterocycle containing 1-4 heteroatoms selected from N, O and S, wherein no more than 2 of the heteroatoms are O or S, and the heterocycle is substituted by 0, 1 or 2 oxo groups and is optionally fused with a benzo group, any of which are substituted by 0, 1, 2 or 3 C₁₋₈alkyl, C₁₋₄haloalkyl, halo, cyano, nitro, -C(=O)R^b, -C(=O)OR^b, -C(=O)NR^aR^a, -C(=NR^a)NR^aR^a, -OR^a, -OC(=O)R^b, -OC(=O)NR^aR^a, -OC(=O)N(R^a)S(=O)₂R^b, -OC₂₋₆alkylNR^aR^a, -OC₂₋₆alkylOR^a, -SR^a, -S(=O)₂N(R^a)C(=O)NR^aR^a, -S(=O)₂N(R^a)C(=O)NR^aR^a, -N(R^a)C(=O)R^b, -N(R^a)C(=O)OR^b, -N(R^a)C(=O)NR^aR^a, -N(R^a)C(=NR^a)NR^aR^a, -N(R^a)C(=NR^a)NR^aR^a, -N(R^a)S(=O)₂R^b, -N(R^a)S(=O)₂NR^aR^a, -NR^aC₂₋₆alkylNR^aR^a or -NR^aC₂₋₆alkylOR^a.

Application No.: 10/658,298 Amdt dated: January 5, 2005 Reply to OA dated: October 5, 2004

PATENT APPLICATION

Claim 9. (original): The compound of Claim 1 or a pharmaceutically acceptable salt thereof, wherein R⁴ is a saturated or unsaturated 5- or 6-membered ring heterocycle containing 1-4 heteroatoms selected from N, O and S, wherein no more than 2 of the heteroatoms are O or S, and the heterocycle is substituted by 0, 1 or 2 oxo groups and is optionally fused with a benzo group, any of which are substituted by 0, 1, 2 or 3 substituents selected from C₁₋₈alkyl, C₁.

4haloalkyl, halo, cyano, nitro, -C(=O)R^b, -C(=O)OR^b, -C(=O)NR^aR^a, -C(=NR^a)NR^aR^a, -OR^a, -OC(=O)R^b, -OC(=O)NR^aR^a, -OC(=O)N(R^a)S(=O)₂R^b, -OC₂₋₆alkylNR^aR^a, -OC₂₋₆alkylOR^a, -SR^a, -S(=O)₂N(R^a)C(=O)R^b, -S(=O)₂N(R^a)C(=O)OR^b, -S(=O)₂N(R^a)C(=O)OR^b, -N(R^a)C(=O)OR^b, -N(R^a)C(=O)NR^aR^a, -N(R^a)C(=O)NR^aR^a, -N(R^a)C(=O)R^b, -N(R^a)C(=O)NR^aR^a, -N(R^a)C(=O)R^aR^a, -N(R^a)C(=O)R^a

Claim 10. (original): The compound of Claim 1 or a pharmaceutically acceptable salt thereof, wherein R^4 is phenyl or naphthyl, both of which are substituted by 0, 1, 2 or 3 substituents selected from C_{1-8} alkyl, C_{1-4} haloalkyl, halo, cyano, nitro, $-C(=O)R^b$, $-C(=O)OR^b$, $-C(=O)NR^aR^a$, $-C(=NR^a)NR^aR^a$, $-OR^a$, $-OC(=O)R^b$, $-OC(=O)NR^aR^a$, $-OC(=O)N(R^a)S(=O)_2R^b$, $-OC_{2-6}$ alkyl NR^aR^a , $-OC_{2-6}$ alkyl NR^aR^a , $-S(=O)_2N(R^a)C(=O)R^b$, $-S(=O)_2N(R^a)C(=O)NR^aR^a$, $-NR^aR^a$, $-N(R^a)C(=O)R^b$, $-S(=O)_2N(R^a)C(=O)NR^aR^a$, $-N(R^a)C(=O)R^b$, $-N(R^a)C(=O)R^b$, $-N(R^a)C(=O)NR^aR^a$, $-N(R^a)C(=NR^a)NR^aR^a$, $-N(R^a)S(=O)_2NR^aR^a$, $-N(R^a)S(=O)_2NR^a$

Claim 11. (original): The compound of Claim 1 or a pharmaceutically acceptable salt thereof, wherein R^4 is pyridine or pyrimidine, both of which are substituted by 0, 1, 2 or 3 substituents selected from C_{1-8} alkyl, C_{1-4} haloalkyl, halo, cyano, nitro, $-C(=O)R^b$, $-C(=O)OR^b$, $-C(=O)NR^aR^a$, $-C(=NR^a)NR^aR^a$, $-OR^a$, $-OC(=O)R^b$, $-OC(=O)NR^aR^a$, $-OC(=O)N(R^a)S(=O)_2R^b$, $-OC_{2-6}$ alkyl NR^aR^a , $-OC_{2-6}$ alkyl NR^aR^a , $-S(=O)_2N(R^a)C(=O)R^b$, $-S(=O)_2N(R^a)C(=O)NR^aR^a$, $-NR^aR^a$, $-N(R^a)C(=O)R^b$, $-N(R^a)C(=O)R^b$, $-N(R^a)C(=O)R^b$, $-N(R^a)C(=O)R^b$, $-N(R^a)C(=O)R^aR^a$, $-N(R^a)C(=O)R^a$

Reply to OA dated: October 5, 2004 PATENT APPLICATION

Claim 12. (original): The compound of Claim 1 or a pharmaceutically acceptable salt thereof, provided that R⁴ is not pyridine or phenyl.

Claim 13. (original): The compound of Claim 1 or a pharmaceutically acceptable salt thereof, wherein the compound is:

4-(4-chloro-phenyl)-5-pyridin-4-yl-1,2-dihydro-pyrazol-3-one;

4-(4-chloro-phenyl)-1-piperidin-4-yl-5-pyridin-4-yl-1,2-dihydro-pyrazol-3-one;

4-(4-chloro-phenyl)-1-piperidin-3-yl-5-pyridin-4-yl-1,2-dihydro-pyrazol-3-one;

4-(4-chloro-phenyl)-1-piperidin-4-ylmethyl-5-pyridin-4-yl-1,2-dihydro-pyrazol-3-one;

4-(4-chloro-phenyl)-1-methyl-5-pyridin-4-yl-1,2-dihydro-pyrazol-3-one;

4-(3, 4-dichlorophenyl)-1-piperidin-4-yl-5-pyridin-4-yl-1,2-dihydro-pyrazol-3-one;

4-(4-chlorophenyl)-1-(1-methyl-piperidin-4-yl)-5-pyridin-4-yl-1,2-dihydro-pyrazol-3-one;

4-(4-chlorophenyl)-1-(1-methyl-piperidin-3-yl)-5-pyridin-4-yl-1,2-dihydro-pyrazol-3-one;

4-(4-chlorophenyl)-1-(1-isopropyl-piperidin-4-yl)-5-pyridin-4-yl-1,2-dihydro-pyrazol-3-one;

4-[4-(4-chlorophenyl)-3-methoxy-5-pyridin-4-yl-pyrazol-1-yl]-piperidine;

4-(3,4-dichloro-phenyl)-5-pyridin-4-yl-1,2-dihydro-pyrazol-3-one;

4-(3,4-dichloro-phenyl)-1-isopropyl-5-pyridin-4-yl-1,2-dihydro-pyrazol-3-one;

4-(3,4-dichloro-phenyl)-1-isopropyl-2-methyl-5-pyridin-4-yl-1,2-dihydro-pyrazol-3-one;

4-(3,4-dichloro-phenyl)-2-methyl-5-pyridin-4-yl-1-pyridin-3-ylmethyl-1,2-dihydro-pyrazol-3-one;

1-cyclohexylmethyl-4-(3,4-dichloro-phenyl)-2-methyl-5-pyridin-4-yl-1,2-dihydro-pyrazol-3-one;

1-(4-aminocyclohexyl)-4-(4-chlorophenyl)-5-pyridin-4-yl-1,2-dihydropyrazol-3-one;

1-(4-aminocyclohexyl)-4-napthalen-2-yl-5-pyridin-4-yl-1,2-dihydropyrazol-3-one; or

4-naphthalen-2-yl-1-(3-phenylpropyl)-5-pyridin-4-1,2-dihydropyrazol-3-one.

Claim 14. (original): A pharmaceutical composition comprising a compound according to Claim 1 and a pharmaceutically acceptable carrier or diluent.

Claims 15-22 (cancelled)

Claim 23. (original): A method of making a compound according to Claim 1, comprising the steps of:

Reply to OA dated: October 5, 2004 PATENT APPLICATION

reacting R^3 -CO₂H with R^4 -C(=O)H in the presence of trialkylamine and acetic anhydride; protecting the resulting acid with a protecting group; and reacting the protected acid with hydrazine to form