Data Structures and Algorithms Homework 8

Due Wednesday Oct 23; Joseph Sepich (jps6444)

Collaborators: None

1 Problem 1

This problem requires matching classes to fulfill requirements. You could solve this problem by setting up a bipartite graph, where a set A has vertices S_i where S is a class requirement set, and i is the ith class requirement in that set. The other set, set B, has classes as the vertices. For the simple example in the problem with x = 2, and $S = \{B, C, D, F\}$, A would have S_1 and S_2 which are both connected to every class in set $B = \{B, C, D, F\}$. From here you can run the Ford-Fulkerson algorithm by phrasing this maximum cardinality problem as a flow problem to find the maximum matches. I included an example graph below with more than one set, where it is clear that this can be solved through maximum cardinality matching. (The example graph requires x=2 from $S=\{A,B,C\}$ and x=3 from $R=\{B,D,F\}$).

2 Problem 2

The maximum flow in the graph below from s to t is 13. The corresponding cut from the is $A = \{S, C F\}$ and V not in A. Below is my iteration through Ford-Fulkerson.

3 Problem 3

4 Problem 4

- 5 Problem 5
- 5.1 Part a

5.2 Part b

5.3 Part c