Sterowanie procesami dyskretnymi

Symulowane wyżarzanie

1 Cel ćwiczenia:

- implementacja symulowanego wyżarzania dla problemu przepływowego
- porównanie wpływu parametrów na jakość funkcji celu

2 Przegieg ćwiczenia

2.1 Wybór między Insert a Swap

Testy wykonano 3 razy dla 10000 różnych zestawów danych. Wyżarzanie za pomocą Swap'a zwracało lepsze wyniki w ok. 68 % przypadkach.

2.2 Wpływ parametru μ

$$T_0 = 1000 \quad T_{END} = 1$$

Rysunek 1: Wpływ współczynnika wychładzania

2.3 Wpływ parametrów T_0 i T_{END}

 $\mu = 0.8$

Rysunek 2: Wpływ parametru T_0

Rysunek 3: Wpływ parametru T_{END}

2.4 Badanie dotyczące modyfikacji z prawdopodobieństwem

Po wyciągnięciu średniej ze 100 zestawów danych wyniki dla algorytmu z modyfikacją oraz bez były zbieżne. Badanie zostało wykonane dla kolejności neutralnej.

2.5 Badanie modyfikacji, w której rozważamy tylko C_{max} różne od wartości obecnego rozwiązania

Rysunek 4: Badanie modyfikacji

Zastosowanie modyfikacji zazwyczaj zwracało lepszy wynik. Badanie zostało wykonane dla kolejności neutralnej.

Modyfikacja odrzucania identycznych Cmax

Rysunek 5: Badanie modyfikacji

2.6 Porównanie wyboru rozwiązania początkowego

Średnia 10 wyników dla różnych zestawów danych:

• Neutralna: 30264

• Neh: 27249

Wygenerowanie rozwiązania początkowego rozwiązania za pomocą algorytmu NEH daje zdecydowanie lepsze wyniki.

2.7 Porównanie najlepszego doboru parametrów i NEH'a

Wyżarzanie średnio zwracało C_{max} =26745, natomiast NEH C_{max} =26726.