radii polynomial approach における無限次元ガウスの消去法

(指導教員 関根 晃汰 准教授) 関根研究室 2131701 齋藤 悠希

1はじめに

radii polynomial approach における無限 次元ガウスの消去法

定義 2.0【 σ -加法族】 Ω の部分集合族 \mathcal{F} が以下の性質を満たすとき, Ω を σ -加法族という.

- (1) $\Omega \in \mathcal{F}$
- $(2) \ A \in \mathcal{F} \Longrightarrow A^c \in \mathcal{F}$
- (3) $A_1, A_2, ... \in \mathcal{F}$ に対して以下のことが成り立つ $(\sigma$ -加法性,完全加法性,加算加法性):

$$\bigcup_{i=1}^{\infty}A_{i}\in\mathcal{F}\tag{1}$$

 $A \subset \Omega$ に「確率」を定めたい. 矛盾なく「確率」 が定まる集合をあらかじめ決めておきたい. それが σ -加法族である. Ω と \mathcal{F} の組 (Ω, \mathcal{F}) を**可測空間**という. また, \mathcal{F} の元を**可測集合** (または事象, Event) という.

定義 2.1【確率測度】 (Ω, \mathcal{F}) を可測空間とする. \mathcal{F} 上の関数 P が次を満たすとき,これを**確率測度**という.

- $0 \le P(A) \le 1 \ (\forall A \in \mathcal{F})$
- $P(\Omega) = 1$
- ・ $A_1,A_2,...$ \in \mathcal{F} が $A_i\cap A_j=\emptyset$ $(\forall i\neq j)$ の とき,次が成り立つ(σ -加法性,完全加 法性):

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i) \tag{2}$$

P が (Ω, \mathcal{F}) の確率測度のとき, (Ω, \mathcal{F}, P) を**確率空間**という.

例 2.2 【一定時間に到着するメールの数】 $\Omega = \{0, 1, 2, ...\}$ で、

$$P(A) = \sum_{\omega \in A} \frac{\lambda^{\omega}}{\omega!} e^{-\lambda} \tag{3}$$

とすると、これも確率測度になっている (A は強度 λ の Poisson 過程に従うという).

 Ω が加算無限の場合, $\mathcal{F}=2^{\Omega}$ を考えておけば問題ない. $0 \leq h(\omega) \leq 1$, $\sum_{\omega \in \Omega} h(\omega) = 1$ となるような h を用いて $P(A) = \sum_{\omega \in A} h(\omega)$ とおけば, P は確率測度となる. この $h(\omega)$ のことを,確率質量関数という.