Video 12: Arguments in Predicate Logic

- Inference Rules for Quantifiers
- Building valid arguments

Handling Quantified Statements

- Valid arguments for quantified statements are a sequence of statements.
- Each statement is either a premise or follows from previous statements by rules of inference which include:
 - Rules of Inference for Propositional Logic
 - Rules of Inference for Quantified Statements

Universal Instantiation (UI)

$$\frac{\forall x P(x)}{\therefore P(c)}$$

Example: The domain consists of all Men and Socrates is a Man

Premise:

"All men are mortal."

Conclusion:

"Therefore, Socrates is mortal."

Vx Mordal (x)

Mahal (Socrates)

Solution for Socrates Example

If we choose a more general domain, e.g. all beings, including gods and spirits, we need a more elaborate proof to build a valid argument

Both rules for propositional logic and quantifiers

Step

- 1. $\forall x(Man(x) \rightarrow Mortal(x))$
- 2. $Man(Socrates) \rightarrow Mortal(Socrates)$
- 3. Man(Socrates)
- 4. Mortal(Socrates)

Reason

Premise

UI from (1)

Premise

MP from (2)

and (3)

Universal Generalization (UG)

$$P(c)$$
 for an arbitrary c
 $\therefore \forall x P(x)$

Used often implicitly in Mathematical Proofs.

Attention: you must not make any assumptions about c

Existential Instantiation (EI)

$$\exists x P(x)$$

 $\therefore P(c)$ for some element c

Example:

"There is someone who knows Java in the class." "Let's call her a and say that a knows Java"

Note: we do not senow who is "a"!

Existential Generalization (EG)

$$P(c)$$
 for some element c
 $\therefore \exists x P(x)$

Example:

"Michelle knows Java in the class."

"Therefore, someone knows Java in the class."

Universal Modus Ponens

$$\forall x(P(x) \to Q(x))$$
 $P(a)$, where a is a particular element in the domain
 $\therefore Q(a)$

Universal Modus Ponens combines universal instantiation and modus ponens into one rule.

This rule could be used in the Socrates example.

Summary

- Inference Rules for Quantifiers
 - Universal Instantiation
 - Universal Generalization
 - Existential Instantiation
 - Existential Generalization
 - Universal Modus Ponens

Define predicates: Use the rules of inference to construct a valid argument showing that the conclusion C(x) := x in a soludent in the class "Someone who passed the first exam has not read the book." follows from the premises "A student in this class has not read the book." B(x): = x read the book "Everyone in this class passed the first exam." E(x): = x passed the exam Premises: 1 Jx (C(x) 1 7 B(x)) Conclusion $\exists x (E(x) \land \neg B(x))$ ② ∀x (C(x) → E(x)) 3 C(a) -> E(a), all a UI (a) A 7 B (â), some â El (from 1) (a) Simplification (from 3, since true for all a in particular also for â) modus ponens (from 4,5) 6 E(à) (from 4)
(8) E(2) A TB(2) Conjunction (pom 6,7) 9 3x(E(x) x 7B(x)) EG (from 8)