

Poisson boundary of the discrete quantum group $\widehat{A_u(F)}$

BY STEFAAN VAES AND NIKOLAS VANDER VENNET

Abstract

We identify the Poisson boundary of the dual of the universal compact quantum group $A_u(F)$ with a measurable field of ITPFI factors.

1 Introduction and statement of main result

Poisson boundaries of discrete quantum groups were introduced by Izumi [5] in his study of infinite tensor product actions of $SU_q(2)$. Izumi was able to identify the Poisson boundary of the dual of $SU_q(2)$ with the quantum homogeneous space $L^\infty(SU_q(2)/S^1)$, called the Podleś sphere. The generalization to $SU_q(n)$ was established by Izumi, Neshveyev and Tuset [6], yielding $L^\infty(SU_q(n)/S^{n-1})$ as the Poisson boundary. A more systematic approach was given by Tomatsu [10] who proved the following very general result: if \mathbb{G} is a compact quantum group with commutative fusion rules and amenable dual $\widehat{\mathbb{G}}$, the Poisson boundary of $\widehat{\mathbb{G}}$ can be identified with the quantum homogeneous space $L^\infty(\mathbb{G}/\mathbb{K})$, where \mathbb{K} is the maximal closed quantum subgroup of Kac type inside \mathbb{G} . Tomatsu's result provides the Poisson boundary for the duals of all q -deformations of classical compact groups.

All examples discussed in the previous paragraph concern amenable discrete quantum groups. In [12], we identified the Poisson boundary for the (non-amenable) dual of the compact quantum group $A_o(F)$ with a higher dimensional Podleś sphere. Although the dual of $A_o(F)$ is non-amenable, the representation category of $A_o(F)$ is monoidally equivalent with the representation category of $SU_q(2)$ for the appropriate value of q . The second author and De Rijdt provided in [4] a general result explaining the behavior of the Poisson boundary under the passage to monoidally equivalent quantum groups. In particular, a combination of the results of [4] and [5] give a more conceptual approach to our identification in [12].

The quantum random walks studied on a discrete quantum group $\widehat{\mathbb{G}}$ have a semi-classical counterpart, being a Markov chain on the (countable) set $\text{Irred}(\mathbb{G})$ of irreducible representations of \mathbb{G} (modulo unitary equivalence). All the examples above, share the feature that the semi-classical random walk on $\text{Irred}(\mathbb{G})$ has trivial Poisson boundary.

In this paper, we identify the Poisson boundary for the dual of $\mathbb{G} = A_u(F)$. In that case, $\text{Irred}(\mathbb{G})$ can be identified with the Cayley tree of the monoid $\mathbb{N} * \mathbb{N}$ and, by results of [9], has a non-trivial Poisson boundary: the end compactification of the tree with the appropriate harmonic measure. Before discussing in more detail our main result, we introduce some terminology and notations. For a more complete introduction to Poisson boundaries of discrete quantum groups, we refer to [15, Chapter 4].

Compact quantum groups were originally introduced by Woronowicz in [17] and their definition finally took the following form.

Department of Mathematics; K.U.Leuven; Celestijnenlaan 200B; B-3001 Leuven (Belgium)

E-mail: stefaan.vaes@wis.kuleuven.be and nikolas.vandervennet@wis.kuleuven.be

Research partially supported by ERC Starting Grant VNALG-200749 and Research Programme G.0231.07 of the Research Foundation – Flanders (FWO)

Definition 1.1 (Woronowicz [18, Definition 1.1]). A *compact quantum group* \mathbb{G} is a pair consisting of a unital C^* -algebra $C(\mathbb{G})$ and a unital $*$ -homomorphism $\Delta : C(\mathbb{G}) \rightarrow C(\mathbb{G}) \otimes C(\mathbb{G})$, called *comultiplication*, satisfying the following two conditions.

- *Co-associativity*: $(\Delta \otimes \text{id})\Delta = (\text{id} \otimes \Delta)\Delta$.
- $\text{span } \Delta(C(\mathbb{G}))(1 \otimes C(\mathbb{G}))$ and $\text{span } \Delta(C(\mathbb{G}))(C(\mathbb{G}) \otimes 1)$ are dense in $C(\mathbb{G}) \otimes C(\mathbb{G})$.

In the above definition, the symbol \otimes denotes the minimal (i.e. spatial) tensor product of C^* -algebras.

Let \mathbb{G} be a compact quantum group. By [18, Theorem 1.3], there is a unique state h on $C(\mathbb{G})$ satisfying $(\text{id} \otimes h)\Delta(a) = h(a)1 = (h \otimes \text{id})\Delta(a)$ for all $a \in C(\mathbb{G})$. We call h the *Haar state* of \mathbb{G} .

A *unitary representation* of \mathbb{G} on the finite dimensional Hilbert space H is a unitary operator $U \in \mathcal{L}(H) \otimes C(\mathbb{G})$ satisfying $(\text{id} \otimes \Delta)(U) = U_{12}U_{13}$. Given unitary representations U_1, U_2 on H_1, H_2 , we put

$$\text{Mor}(U_2, U_1) := \{S \in \mathcal{L}(H_1, H_2) \mid (S \otimes 1)U_1 = U_2(S \otimes 1)\}.$$

Let U be a unitary representation of \mathbb{G} on the finite dimensional Hilbert space H . The elements $(\xi^* \otimes 1)U(\eta \otimes 1) \in C(\mathbb{G})$ are called the coefficients of U . The linear span of all coefficients of all finite dimensional unitary representations of \mathbb{G} forms a dense $*$ -subalgebra of $C(\mathbb{G})$ (see [18, Theorem 1.2]). We call U *irreducible* if $\text{Mor}(U, U) = \mathbb{C}1$. We call U_1 and U_2 *unitarily equivalent* if $\text{Mor}(U_2, U_1)$ contains a unitary operator.

Let U be an irreducible unitary representation of \mathbb{G} on the finite dimensional Hilbert space H . By [18, Proposition 5.2], there exists an anti-linear invertible map $j : H \rightarrow \overline{H}$ such that the operator $U^c \in \mathcal{L}(\overline{H}) \otimes C(\mathbb{G})$ defined by the formula $(j(\xi)^* \otimes 1)U^c(j(\eta) \otimes 1) = (\eta^* \otimes 1)U^*(\xi \otimes 1)$ is unitary. One calls U^c the *contragredient* of U . Since U is irreducible, the map j is uniquely determined up to multiplication by a non-zero scalar. We normalize in such a way that $Q := j^*j$ satisfies $\text{Tr}(Q) = \text{Tr}(Q^{-1})$. Then, j is determined up to multiplication by $\lambda \in S^1$ and Q is uniquely determined. We call $\text{Tr}(Q)$ the *quantum dimension* of U and denote it by $\dim_q(U)$. Note that $\dim_q(U) \geq \dim(H)$ with equality holding iff $Q = 1$.

The *tensor product* $U \circledast V$ of two unitary representations is defined as $U_{13}V_{23}$.

Given a compact quantum group \mathbb{G} , we denote by $\text{Irred}(\mathbb{G})$ the set of irreducible unitary representations of \mathbb{G} modulo unitary conjugacy. For every $x \in \text{Irred}(\mathbb{G})$, we choose a representative U^x on the Hilbert space H_x . We denote by $Q_x \in \mathcal{L}(H_x)$ the associated positive invertible operator and define the state ψ_x on $\mathcal{L}(H_x)$ by the formula

$$\psi_x(A) := \frac{\text{Tr}(Q_x A)}{\text{Tr}(Q_x)}.$$

The dual, *discrete quantum group* $\widehat{\mathbb{G}}$ is defined as the ℓ^∞ -direct sum of matrix algebras

$$\ell^\infty(\widehat{\mathbb{G}}) := \prod_{x \in \text{Irred}(\mathbb{G})} \mathcal{L}(H_x).$$

We denote by $p_x, x \in \text{Irred}(\mathbb{G})$, the minimal central projections in $\ell^\infty(\widehat{\mathbb{G}})$. Denote by $\epsilon \in \text{Irred}(\mathbb{G})$ the trivial representation and by $\widehat{\epsilon} : \ell^\infty(\widehat{\mathbb{G}}) \rightarrow \mathbb{C}$ the co-unit given by $ap_\epsilon = \widehat{\epsilon}(a)p_\epsilon$.

Whenever $x, y, z \in I$, we use the short-hand notation $\text{Mor}(x \otimes y, z) := \text{Mor}(U^x \circledast U^y, U^z)$ and we write $z \subset x \otimes y$ if $\text{Mor}(x \otimes y, z) \neq \{0\}$.

The von Neumann algebra $\ell^\infty(\widehat{\mathbb{G}})$ carries a comultiplication $\hat{\Delta} : \ell^\infty(\widehat{\mathbb{G}}) \rightarrow \ell^\infty(\widehat{\mathbb{G}}) \overline{\otimes} \ell^\infty(\widehat{\mathbb{G}})$, uniquely characterized by the formula

$$\hat{\Delta}(a)(p_x \otimes p_y)S = Sap_z \quad \text{for all } x, y, z \in \text{Irred}(\mathbb{G}) \text{ and } S \in \text{Mor}(x \otimes y, z) .$$

Denote by $L^\infty(\mathbb{G})$ the weak closure of $C(\mathbb{G})$ in the GNS representation of the Haar state h . One defines the unitary $\mathbb{V} \in \ell^\infty(\widehat{\mathbb{G}}) \overline{\otimes} L^\infty(\mathbb{G})$ by the formula

$$\mathbb{V} := \bigoplus_{x \in \text{Irred}(\mathbb{G})} U^x .$$

The unitary \mathbb{V} implements the duality between \mathbb{G} and $\widehat{\mathbb{G}}$, in the sense that it satisfies

$$(\hat{\Delta} \otimes \text{id})(\mathbb{V}) = \mathbb{V}_{13}\mathbb{V}_{23} \quad \text{and} \quad (\text{id} \otimes \Delta)(\mathbb{V}) = \mathbb{V}_{12}\mathbb{V}_{13} .$$

Discrete quantum groups can also be defined intrinsically, see [13].

Whenever $\omega \in \ell^\infty(\widehat{\mathbb{G}})_*$ is a normal state, we consider the Markov operator

$$P_\omega : \ell^\infty(\widehat{\mathbb{G}}) \rightarrow \ell^\infty(\widehat{\mathbb{G}}) : P_\omega(a) = (\text{id} \otimes \omega)\hat{\Delta}(a) .$$

By [7, Proposition 2.1], the Markov operator P_ω leaves globally invariant the center $\mathcal{Z}(\ell^\infty(\widehat{\mathbb{G}}))$ of $\ell^\infty(\widehat{\mathbb{G}})$ if and only if

$$\omega = \psi_\mu := \sum_{x \in \text{Irred}(\mathbb{G})} \mu(x)\psi_x \quad \text{where } \mu \text{ is a probability measure on } \text{Irred}(\mathbb{G}) .$$

We only consider states ω of the form ψ_μ and denote by P_μ the corresponding Markov operator. Note that we can define a convolution product on the probability measures on $\text{Irred}(\mathbb{G})$ by the formula

$$P_{\mu * \eta} = P_\mu \circ P_\eta .$$

Considering the restriction of P_μ to $\ell^\infty(\text{Irred}(\widehat{\mathbb{G}})) = \mathcal{Z}(\ell^\infty(\widehat{\mathbb{G}}))$, every probability measure μ on $\text{Irred}(\mathbb{G})$ defines a Markov chain on the countable set $\text{Irred}(\mathbb{G})$ with n -step transition probabilities given by

$$p_x p_n(x, y) = p_x P_\mu^n(p_y) .$$

The probability measure μ is called *generating* if for every $x, y \in \text{Irred}(\mathbb{G})$, there exists an $n \in \mathbb{N} \setminus \{0\}$ such that $p_n(x, y) > 0$.

Definition 1.2. Let \mathbb{G} be a compact quantum group and μ a generating probability measure on $\text{Irred}(\mathbb{G})$. The *Poisson boundary* of $\widehat{\mathbb{G}}$ with respect to μ is defined as the space of P_μ -harmonic elements in $\ell^\infty(\widehat{\mathbb{G}})$.

$$H^\infty(\widehat{\mathbb{G}}, \mu) := \{a \in \ell^\infty(\widehat{\mathbb{G}}) \mid P_\mu(a) = a\} .$$

The weakly closed vector subspace $H^\infty(\widehat{\mathbb{G}}, \mu)$ of $\ell^\infty(\widehat{\mathbb{G}})$ is turned into a von Neumann algebra using the product (cf. [5, Theorem 3.6])

$$a \cdot b := \lim_{n \rightarrow \infty} P_\mu^n(ab)$$

and where the sequence at the right hand side is strongly* convergent.

- The restriction of $\hat{\epsilon}$ to $H^\infty(\widehat{\mathbb{G}}, \mu)$ is a faithful normal state on $H^\infty(\widehat{\mathbb{G}}, \mu)$.

- The restriction of $\hat{\Delta}$ to $H^\infty(\widehat{\mathbb{G}}, \mu)$ defines a left action

$$\alpha_{\widehat{\mathbb{G}}} : H^\infty(\widehat{\mathbb{G}}, \mu) \rightarrow \ell^\infty(\widehat{\mathbb{G}}) \overline{\otimes} H^\infty(\widehat{\mathbb{G}}, \mu) : a \mapsto \hat{\Delta}(a)$$

of $\widehat{\mathbb{G}}$ on $H^\infty(\widehat{\mathbb{G}}, \mu)$.

- The restriction of the adjoint action to $H^\infty(\widehat{\mathbb{G}}, \mu)$ defines an action

$$\alpha_{\mathbb{G}} : H^\infty(\widehat{\mathbb{G}}, \mu) \rightarrow H^\infty(\widehat{\mathbb{G}}, \mu) \overline{\otimes} L^\infty(\mathbb{G}) : a \mapsto \mathbb{V}(a \otimes 1)\mathbb{V}.$$

We denote by $H_{\text{centr}}^\infty(\widehat{\mathbb{G}}, \mu) := H^\infty(\widehat{\mathbb{G}}, \mu) \cap \mathcal{Z}(\ell^\infty(\widehat{\mathbb{G}}))$ the space of bounded P_μ -harmonic functions on $\text{Irred}(\mathbb{G})$. Defining the conditional expectation

$$\mathcal{E} : \ell^\infty(\widehat{\mathbb{G}}) \rightarrow \ell^\infty(\text{Irred}(\widehat{\mathbb{G}})) : \mathcal{E}(a)p_x = \psi_x(a)p_x,$$

we observe that \mathcal{E} also provides a faithful conditional expectation of $H^\infty(\widehat{\mathbb{G}}, \mu)$ onto the von Neumann subalgebra $H_{\text{centr}}^\infty(\widehat{\mathbb{G}}, \mu)$.

We now turn to the concrete family of compact quantum groups studied in this paper and introduced by Van Daele and Wang in [14]. Let $n \in \mathbb{N} \setminus \{0, 1\}$ and let $F \in \text{GL}(n, \mathbb{C})$. One defines the compact quantum group $\mathbb{G} = A_u(F)$ such that $C(\mathbb{G})$ is the universal unital C^* -algebra generated by the entries of an $n \times n$ matrix U satisfying the relations

$$U \quad \text{and} \quad F\overline{U}F^{-1} \quad \text{are unitary, with} \quad (\overline{U})_{ij} = (U_{ij})^*$$

and such that $\Delta(U_{ij}) = \sum_{k=1}^n U_{ik} \otimes U_{kj}$. By definition, U is an n -dimensional unitary representation of $A_u(F)$, called the *fundamental representation*.

Fix $F \in \text{GL}(n, \mathbb{C})$ and put $\mathbb{G} = A_u(F)$. For reasons to become clear later, we assume that F is not a scalar multiple of a unitary 2×2 matrix.

By [2, Théorème 1], the irreducible unitary representations of \mathbb{G} can be labeled by the elements of the free monoid $I := \mathbb{N} * \mathbb{N}$ generated by α and β . We represent the elements of I as words in α and β . The empty word is denoted by ϵ and corresponds to the trivial representation of \mathbb{G} , while α corresponds to the fundamental representation and β to the contragredient of α . We denote by $x \mapsto \overline{x}$ the unique antimultiplicative and involutive map on I satisfying $\overline{\alpha} = \beta$. This involution corresponds to the contragredient on the level of representations. The fusion rules of \mathbb{G} are given by

$$x \otimes y \cong \bigoplus_{z \in I, x=x_0z, y=\overline{z}y_0} x_0 y_0.$$

So, if the last letter of x equals the first letter of y , the tensor product $x \otimes y$ is irreducible and given by xy . We denote this as $xy = x \otimes y$.

Denote by ∂I the compact space of infinite words in α and β . For $x \in \partial I$, the expression

$$x = x_1 \otimes x_2 \otimes \cdots \tag{1}$$

means that the infinite word x is the concatenation of the finite words $x_1 x_2 \cdots$ and that the last letter of x_n equals the first letter of x_{n+1} for all $n \in \mathbb{N}$. All elements x of ∂I can be decomposed as in (1), except the countable number of elements of the form $x = y\alpha\beta\alpha\beta\cdots$ for some $y \in I$.

Below, we will only deal with non-atomic measures on ∂I , so that almost every point of ∂I has a decomposition as in (1). We denote by $\partial_0 I$ the subset of ∂I consisting of the infinite words that have a decomposition of the form (1).

The following is the main result of the paper.

Theorem 1.3. *Let $F \in \mathrm{GL}(n, \mathbb{C})$ such that F is not a scalar multiple of a unitary 2×2 matrix. Write $\mathbb{G} = A_u(F)$ and suppose that μ is a finitely supported, generating probability measure on $I = \mathrm{Irred}(\mathbb{G})$. Denote by ∂I the compact space of infinite words in the letters α, β . There exists*

- a non-atomic probability measure ν_ϵ on ∂I ,
- a measurable field M of ITPFI factors over $(\partial I, \nu_\epsilon)$ with fibers

$$(M_x, \omega_x) = \bigotimes_{k=1}^{\infty} (\mathcal{L}(H_{x_k}), \psi_{x_k})$$

whenever $x \in \partial_0 I$ is of the form $x = x_1 x_2 x_3 \cdots = x_1 \otimes x_2 \otimes x_3 \otimes \cdots$,

- an action $\beta_{\widehat{\mathbb{G}}}$ of $\widehat{\mathbb{G}}$ on M concretely given by (2) below,

such that, with $\omega_\infty = \int^\oplus \omega_x \, d\nu_\epsilon(x)$, the Poisson integral formula

$$\Theta_\mu : M \rightarrow \mathrm{H}^\infty(\widehat{\mathbb{G}}, \mu) : \Theta_\mu(a) = (\mathrm{id} \otimes \omega_\infty) \beta_{\widehat{\mathbb{G}}}(a)$$

defines a $*$ -isomorphism of M onto $\mathrm{H}^\infty(\widehat{\mathbb{G}}, \mu)$, intertwining the action $\beta_{\widehat{\mathbb{G}}}$ on M with the action $\alpha_{\widehat{\mathbb{G}}}$ on $\mathrm{H}^\infty(\widehat{\mathbb{G}}, \mu)$.

Moreover, defining the action $\beta_{\mathbb{G}}^x$ of \mathbb{G} on M_x as the infinite tensor product of the inner actions $a \mapsto U^{x_k}(a \otimes 1)(U^{x_k})^*$, we obtain the action $\beta_{\mathbb{G}}$ of \mathbb{G} on M . The $*$ -isomorphism Θ_μ intertwines $\beta_{\mathbb{G}}$ with $\alpha_{\mathbb{G}}$.

The comultiplication $\hat{\Delta} : \ell^\infty(\widehat{\mathbb{G}}) \rightarrow \ell^\infty(\widehat{\mathbb{G}}) \overline{\otimes} \ell^\infty(\widehat{\mathbb{G}})$ can be uniquely cut down into completely positive maps $\hat{\Delta}_{x \otimes y, z} : \mathcal{L}(H_z) \rightarrow \mathcal{L}(H_x) \otimes \mathcal{L}(H_y)$ in such a way that

$$\hat{\Delta}(a)(p_x \otimes p_y) = \sum_{z \subset x \otimes y} \hat{\Delta}_{x \otimes y, z}(ap_z)$$

for all $a \in \ell^\infty(\widehat{\mathbb{G}})$.

We denote by $|x|$ the length of a word $x \in I$.

If now $x, y \in I, z \in \partial I$ with $yz = y \otimes z$ and $|y| > |x|$, we define for all $s \subset x \otimes y$,

$$\hat{\Delta}_{x \otimes y, sz} : M_{sz} \rightarrow \mathcal{L}(H_x) \otimes M_{yz}$$

by composing $\hat{\Delta}_{x \otimes y, s} \otimes \mathrm{id}$ with the identifications $M_{sz} \cong \mathcal{L}(H_s) \otimes M_z$ and $M_{yz} \cong \mathcal{L}(H_y) \otimes M_z$. The action $\beta_{\widehat{\mathbb{G}}} : M \rightarrow \ell^\infty(\widehat{\mathbb{G}}) \overline{\otimes} M$ of $\widehat{\mathbb{G}}$ on M is now given by

$$\beta_{\widehat{\mathbb{G}}}(a)_{x, yz} = \sum_{s \subset x \otimes y} \hat{\Delta}_{x \otimes y, sz}(ap_{sz}) \tag{2}$$

whenever $a \in M, x, y \in I, z \in \partial I, |y| > |x|$ and $yz = y \otimes z$. Note that we identified $\ell^\infty(\widehat{\mathbb{G}}) \overline{\otimes} M$ with a measurable field over $I \times \partial I$ with fiber in (x, z) given by $\mathcal{L}(H_x) \otimes M_z$.

Further notations and terminology

Fix $F \in \mathrm{GL}(n, \mathbb{C})$ and put $\mathbb{G} = A_u(F)$. We identify $\mathrm{Irred}(\mathbb{G})$ with $I := \mathbb{N} * \mathbb{N}$. We assume that F is not a multiple of a unitary 2×2 matrix. Equivalently, $\dim_q(\alpha) > 2$. The first reason to do so, is that under this assumption, the random walk defined by any non-trivial probability measure μ on I (i.e. $\mu(\epsilon) < 1$), is automatically *transient*, which means that

$$\sum_{n=1}^{\infty} p_n(x, y) < \infty$$

for all $x, y \in I$. This statement can be proven in the same was as [7, Theorem 2.6]. For the convenience of the reader, we give the argument. Denote by $\dim_{\min}(y)$ the dimension of the carrier Hilbert space of y , when y is viewed as an irreducible representation of $A_u(I_2)$. Since F is not a multiple of a unitary 2×2 matrix, it follows that $\dim_q(y) > \dim_{\min}(y)$ for all $y \in I \setminus \{\epsilon\}$. Denote by $\mathrm{mult}(z; y_1 \otimes \cdots \otimes y_n)$ the multiplicity of the irreducible representation $z \in I$ in the tensor product of the irreducible representations y_1, \dots, y_n . Since the fusion rules of $A_u(F)$ and $A_u(I_2)$ are identical, it follows that

$$\mathrm{mult}(z; y_1 \otimes \cdots \otimes y_n) \leq \dim_{\min}(y_1) \cdots \dim_{\min}(y_n).$$

One then computes for all $x, y \in I$, $n \in \mathbb{N}$,

$$\begin{aligned} p_n(x, y) &= \sum_{z \subset \bar{x} \otimes y} \mu^{*n}(z) \frac{\dim_q(y)}{\dim_q(x) \dim_q(z)} \\ &= \frac{\dim_q(y)}{\dim_q(x)} \sum_{z \subset \bar{x} \otimes y} \sum_{y_1, \dots, y_n \in I} \mathrm{mult}(z; y_1 \otimes \cdots \otimes y_n) \frac{\mu(y_1) \cdots \mu(y_n)}{\dim_q(y_1) \cdots \dim_q(y_n)} \\ &\leq \frac{\dim_q(y)}{\dim_q(x)} \dim(\bar{x} \otimes y) \rho^n \end{aligned}$$

where $\rho = \sum_{y \in I} \mu(y) \frac{\dim_{\min}(y)}{\dim_q(y)}$. Since μ is non-trivial and F is not a multiple of a 2×2 unitary matrix, we have $0 < \rho < 1$. Transience of the random walk follows immediately.

An element $x \in I$ is said to be *indecomposable* if $x = y \otimes z$ implies $y = \epsilon$ or $z = \epsilon$. Equivalently, x is an alternating product of the letters α and β .

For every $x \in I$, we denote by $\dim_q(x)$ the *quantum dimension* of the irreducible representation labeled by x . Since $\dim_q(\alpha) > 2$, take $0 < q < 1$ such that $\dim_q(\alpha) = \dim_q(\beta) = q + 1/q$. An important part of the proof of Theorem 1.3 is based on the technical estimates provided by Lemma 6.1 and they require $q < 1$, i.e. $\dim_q(\alpha) > 2$.

Denote the q -factorials

$$[n]_q := \frac{q^n - q^{-n}}{q - q^{-1}} = q^{n-1} + q^{n-3} + \cdots + q^{-n+3} + q^{-n+1}.$$

Writing $x = x_1 \otimes \cdots \otimes x_n$ where the words x_1, \dots, x_n are indecomposable, we have

$$\dim_q(x) = [|x_1| + 1]_q \cdots [|x_n| + 1]_q. \quad (3)$$

For later use, note that it follows that

$$\dim_q(xy) \geq q^{-|y|} \dim_q(x) \quad (4)$$

for all $x, y \in I$.

Whenever $x \in I \cup \partial I$, we denote by $[x]_n$ the word consisting of the first n letters of x and by $[x]^n$ the word that arises by removing the first n letters from x . So, by definition, $x = [x]_n[x]^n$.

2 Poisson boundary of the classical random walk on $\text{Irred}(\mathbb{G})$

Given a probability measure μ on $I := \text{Irred}(\mathbb{G})$, the Markov operator $P_\mu : \ell^\infty(\widehat{\mathbb{G}}) \rightarrow \ell^\infty(\widehat{\mathbb{G}})$ preserves the center $\mathcal{Z}(\ell^\infty(\widehat{\mathbb{G}})) = \ell^\infty(I)$ and hence, defines an ordinary random walk on the countable set I with n -step transition probabilities

$$p_x p_n(x, y) = p_x P_\mu^n(p_y). \quad (5)$$

As shown above, this random walk is transient whenever $\mu(\epsilon) < 1$. Denote by $H_{\text{centr}}^\infty(\widehat{\mathbb{G}}, \mu)$ the commutative von Neumann algebra of bounded P_μ -harmonic functions in $\ell^\infty(I)$, with product given by $a \cdot b = \lim_n P_\mu^n(ab)$ and the sequence being strongly*-convergent. Write $p(x, y) = p_1(x, y)$.

The set I becomes in a natural way a tree, the Cayley tree of the semi-group $\mathbb{N} * \mathbb{N}$. Whenever μ is a generating probability measure with finite support, the following properties of the random walk on I can be checked easily.

- Uniform irreducibility: there exists an integer M such that, for any pair $x, y \in I$ of neighboring edges of the tree, there exists an integer $k \leq M$, such that $p_k(x, y) > 0$.
- Bounded step-length: there exists an integer N such that $p(x, y) > 0$ implies that $d(x, y) \leq N$ where $d(x, y)$ equals the length of the unique geodesic path from x to y .
- There exists a $\delta > 0$ such that $p(x, y) > 0$ implies that $p(x, y) \geq \delta$.

So, we can apply [9, Theorem 2] and identify the Poisson boundary of the random walk on I , with the boundary ∂I of infinite words in α, β , equipped with a probability measure in the following way.

Theorem 2.1 (Picardello and Woess, [9, Theorem 2]). *Let μ be a finitely supported generating measure on $I = \text{Irred}(A_u(F))$, where F is not a scalar multiple of a 2×2 unitary matrix. Consider the associated random walk on I with transition probabilities given by (5) and the compactification $I \cup \partial I$ of I .*

- *The random walk converges almost surely to a point in ∂I .*
- *Denote, for every $x \in I$, by ν_x the hitting probability measure on ∂I , where $\nu_x(\mathcal{U})$ is defined as the probability that the random walk starting in x converges to a point in \mathcal{U} . Then, the formula*

$$\Upsilon(F)(x) = \int_{\partial I} F(z) d\nu_x(z) \quad (6)$$

defines a $$ -isomorphism $\Upsilon : L^\infty(\partial I, \nu_\epsilon) \rightarrow H_{\text{centr}}^\infty(\widehat{\mathbb{G}}, \mu)$.*

In fact, Theorem 2 in [9], identifies ∂I with the *Martin compactification* of the given random walk on I . It is a general fact (see [16, Theorem 24.10]), that a transient random walk converges almost surely to a point of the minimal Martin boundary and that the hitting probability measures provide a realization of the Poisson boundary through the Poisson integral formula (6), see [16, Theorem 24.12].

The rest of this section is devoted to the proof of the non-atomicity of the harmonic measures ν_x .

Lemma 2.2. For all $x, y \in I$ and $z \in \partial I$, the sequence

$$\left(\frac{\dim_q(x[z]_n)}{\dim_q(y[z]_n)} \right)_n$$

converges. By a slight abuse of notation, we denote the limit by $\dim_q(\frac{xz}{yz})$. The map $\partial I \rightarrow \mathbb{R}_+$: $z \mapsto \dim_q(\frac{xz}{yz})$ is continuous.

Proof. Fix $x, y \in I$. Whenever $z \in \partial I$ and $n \in \mathbb{N}$, denote

$$f_n(z) = \frac{\dim_q(x[z]_n)}{\dim_q(y[z]_n)}.$$

If $z \notin \{\alpha\beta\alpha\cdots, \beta\alpha\beta\cdots\}$, write $z = z_1 \otimes z_2$ for some $z_1 \in I$, $z_1 \neq \epsilon$ and some $z_2 \in \partial I$. Denote by \mathcal{U} the neighborhood of z consisting of words of the form $z_1 z' = z_1 \otimes z'$. For all $s \in \mathcal{U}$ and all $n \geq |z_1|$, we have

$$f_n(s) = \frac{\dim_q(xz_1)}{\dim_q(yz_1)}.$$

Hence, for all $s \in \mathcal{U}$, the sequence $n \mapsto f_n(s)$ is eventually constant and converges to a limit that is constant on \mathcal{U} .

Also for $z \in \{\alpha\beta\alpha\cdots, \beta\alpha\beta\cdots\}$, the sequence $f_n(z)$ is convergent. Take $z = \alpha\beta\alpha\cdots$. Write $x = x_0 \otimes x_1$ where x_1 is the longest possible (and maybe empty) indecomposable word ending with β . Write $y = y_0 \otimes y_1$ similarly. It follows that

$$f_n(z) = \frac{\dim_q(x_0)}{\dim_q(y_0)} \frac{[n + |x_1| + 1]_q}{[n + |y_1| + 1]_q} \rightarrow \frac{\dim_q(x_0)}{\dim_q(y_0)} q^{|y_1| - |x_1|}.$$

The convergence of $f_n(z)$ for $z = \beta\alpha\beta\cdots$ is proven analogously.

Write $f(z) = \lim_n f_n(z)$. It remains to prove that f is continuous in $z = \alpha\beta\alpha\cdots$ and in $z = \beta\alpha\beta\cdots$. In both cases, define for every $n \in \mathbb{N}$, the neighborhood \mathcal{U}_n of z consisting of all $s \in \partial I$ with $[s]_n = [z]_n$. For every $s \in \mathcal{U}$, $s \neq z$, there exists $m \geq n$ such that $f(s) = f_m(z)$. The continuity of f in z follows. \square

Whenever $x, y \in I \cup \partial I$, define $(x|y) := \max\{n \mid [x]_n = [y]_n\}$.

Lemma 2.3. For all $x \in I$ and all $w \in \partial I$, we have

$$\nu_x(w) = \frac{1}{\dim_q(x)} \sum_{k=0}^{(x|w)} \dim_q \left(\frac{[w]_k [w]^k}{[x]^k [w]^k} \right) \nu_\epsilon(\overline{[x]^k} [w]^k).$$

Proof. By Theorem 2.1, our random walk converges almost surely to a point of ∂I and we denoted by ν_x the hitting probability measure. So, $(\psi_x \otimes \psi_{\mu^{*n}}) \hat{\Delta} \rightarrow \nu_x$ weakly* in $C(I \cup \partial I)^*$.

Recall that $\mathcal{E} : \ell^\infty(\widehat{\mathbb{G}}) \rightarrow \ell^\infty(I)$ denotes the conditional expectation defined by $\mathcal{E}(b)p_y = \psi_y(b)p_y$. Whenever $|z| > |x|$, we have

$$\mathcal{E}((\psi_x \otimes \text{id}) \hat{\Delta}(p_z)) = \sum_{k=0}^{(x|z)} \frac{\dim_q(z)}{\dim_q(x) \dim_q([x]^k [z]^k)} p_{\overline{[x]^k} [z]^k}.$$

Denote $q_z = \sum_{s \in I} p_{zs}$ and observe that $q_z \in C(I \cup \partial I)$. It follows that for all $|z| > |x|$,

$$\mathcal{E}((\psi_x \otimes \text{id})\hat{\Delta}(q_z)) = \sum_{k=0}^{(x|z)} f_k$$

where $f_k \in \ell^\infty(I)$ is defined by $f_k(y) = 0$ if y does not start with $\overline{[x]^k}[z]^k$ and

$$f_k(\overline{[x]^k}[z]^k y) = \frac{1}{\dim_q(x)} \frac{\dim_q(zy)}{\dim_q(\overline{[x]^k}[z]^k y)}.$$

By Lemma 2.2, we have $f_k \in C(I \cup \partial I)$.

Defining \mathcal{U}_z as the subset of ∂I consisting of infinite words starting with z , it follows that, for $|z| > |x|$

$$\nu_x(\mathcal{U}_z) = \sum_{k=0}^{(x|z)} \int_{\partial I} f_k(y) d\nu_\epsilon(y). \quad (7)$$

The lemma follows by letting $z \rightarrow w$. \square

Proposition 2.4. *The support of the harmonic measure ν_ϵ is the whole of ∂I . The harmonic measure ν_ϵ has no atoms in words ending with $\alpha\beta\alpha\beta\cdots$*

Remark 2.5. The same methods as in the proof of Proposition 2.4 given below, but involving more tedious computations, show in fact that ν_ϵ is non-atomic. To prove our main theorem, it is only crucial that ν_ϵ has no atoms in words ending with $\alpha\beta\alpha\beta\cdots$. We believe that it should be possible to give a more conceptual proof of the non-atomicity of ν_ϵ and refer to [15, Proposition 8.3.10] for an ad hoc proof along the lines of the proof of Proposition 2.4.

Proof of Proposition 2.4. Because of Lemma 2.3 and the equality

$$\nu_\epsilon = \sum_{x \in I} \mu^{*k}(x) \nu_x$$

for all $k \geq 1$, we observe that if w is an atom for ν_ϵ , then all w' with the same tail as w are atoms for all ν_x , $x \in I$. Denote by $\mathcal{U}_z \subset \partial I$ the open subset of ∂I consisting of infinite words that start with z . A similar argument, using (7), shows that if $\nu_\epsilon(\mathcal{U}_z) = 0$, then $\nu_x(\mathcal{U}_y) = 0$ for all $x, y \in I$, which is absurd because ν_x is a probability measure. So, the support of ν_ϵ is the whole of ∂I .

So, we assume now that $w := \alpha\beta\alpha\beta\cdots$ is an atom for ν_ϵ and derive a contradiction.

Denote by δ_w the function on ∂I that is equal to 1 in w and 0 elsewhere. Using the $*$ -isomorphism in Theorem 2.1, it follows that the bounded function

$$\xi \in \ell^\infty(\widehat{\mathbb{G}}) : \xi(x) := \nu_x(w) = \int_{\partial I} \delta_w d\nu_x$$

is harmonic.

We will prove that ξ attains its maximum and apply the maximum principle for irreducible random walks (see e.g. [16, Theorem 1.15]) to deduce that ξ must be constant. This will lead to a contradiction.

Denote

$$w_n^\alpha := \underbrace{\alpha\beta\alpha\cdots}_{n \text{ letters}} \quad \text{and} \quad w_n^\beta := \underbrace{\beta\alpha\beta\cdots}_{n \text{ letters}}.$$

Note that all elements of I are either of the form

$$w_{2n+1}^\alpha x \quad \text{where } n \in \mathbb{N} \text{ and } x \in \{\epsilon\} \cup \alpha I$$

or of the form

$$w_{2n}^\alpha x \quad \text{where } n \in \mathbb{N} \text{ and } x \in \{\epsilon\} \cup \beta I.$$

By Lemma 2.3 and formula (3), we get that for $n \in \mathbb{N}$ and $x \in \{\epsilon\} \cup \alpha I$,

$$\begin{aligned} \xi(w_{2n+1}^\alpha x) &= \sum_{k=0}^{2n+1} \frac{1}{[2(n+1)]_q \dim_q(x)^2} \dim_q\left(\frac{w_k^\alpha}{w_{2n+1-k}^\beta} \frac{[w]^k}{[w]^k}\right) \nu_\epsilon(\bar{x}\beta\alpha\beta\cdots) \\ &= \sum_{k=0}^{2n+1} \frac{1}{[2(n+1)]_q \dim_q(x)^2} q^{2(n-k)+1} \nu_\epsilon(\bar{x}\beta\alpha\beta\cdots) = \frac{\nu_\epsilon(\bar{x}\beta\alpha\beta\cdots)}{\dim_q(x)^2}. \end{aligned}$$

Since ν_ϵ is a probability measure, it follows that $x \mapsto \xi(w_{2n+1}^\alpha x)$ is independent of n and summable over the set $\{\epsilon\} \cup \alpha I$. Analogously, it follows that $x \mapsto \xi(w_{2n}^\alpha x)$ is independent of n and summable over the set $\{\epsilon\} \cup \beta I$. As a result, ξ attains its maximum on I . By the maximum principle, ξ is constant. Since $\xi(\epsilon) \neq 0$, this constant is non-zero and we arrive at a contradiction with the summability of $x \mapsto \xi(w_{2n+1}^\alpha x)$ over the infinite set $\{\epsilon\} \cup \alpha I$. \square

3 Topological boundary and boundary action for the dual of $A_u(F)$

Before proving Theorem 1.3, we construct a compactification for $\widehat{\mathbb{G}}$, i.e. a unital C^* -algebra \mathcal{B} lying between $c_0(\widehat{\mathbb{G}})$ and $\ell^\infty(\widehat{\mathbb{G}})$. This C^* -algebra \mathcal{B} is a non-commutative version of $C(I \cup \partial I)$. The construction of \mathcal{B} follows word by word the analogous construction given in [11, Section 3] for $\mathbb{G} = A_o(F)$. So, we only indicate the necessary modifications.

For all $x, y \in I$ and $z \subset x \otimes y$, we choose an isometry $V(x \otimes y, z) \in \text{Mor}(x \otimes y, z)$. Since z appears with multiplicity one in $x \otimes y$, the isometry $V(x \otimes y, z)$ is uniquely determined up to multiplication by a scalar $\lambda \in S^1$. Therefore, the following unital completely positive maps are uniquely defined (cf. [11, Definition 3.1]).

Definition 3.1. Let $x, y \in I$. We define unital completely positive maps

$$\psi_{xy,x} : \mathcal{L}(H_x) \rightarrow \mathcal{L}(H_{xy}) : \psi_{xy,x}(A) = V(x \otimes y, xy)^*(A \otimes 1)V(x \otimes y, xy).$$

Theorem 3.2. The maps $\psi_{xy,x}$ form an inductive system of completely positive maps. Defining

$$\begin{aligned} \mathcal{B} = \{a \in \ell^\infty(\widehat{\mathbb{G}}) \mid \forall \varepsilon > 0, \exists n \in \mathbb{N} \text{ such that } \|ap_{xy} - \psi_{xy,x}(ap_x)\| < \varepsilon \\ \text{for all } x, y \in I \text{ with } |x| \geq n\}, \end{aligned}$$

we get that \mathcal{B} is a unital C^* -subalgebra of $\ell^\infty(\widehat{\mathbb{G}})$ containing $c_0(\widehat{\mathbb{G}})$.

- The restriction of the comultiplication $\hat{\Delta}$ yields a left action $\beta_{\widehat{\mathbb{G}}}$ of $\widehat{\mathbb{G}}$ on \mathcal{B} :

$$\beta_{\widehat{\mathbb{G}}} : \mathcal{B} \rightarrow M(c_0(\widehat{\mathbb{G}}) \otimes \mathcal{B}) : a \mapsto \hat{\Delta}(a).$$

- The restriction of the adjoint action of \mathbb{G} on $\ell^\infty(\widehat{\mathbb{G}})$ yields a right action of \mathbb{G} on \mathcal{B} :

$$\beta_{\mathbb{G}} : \mathcal{B} \rightarrow \mathcal{B} \otimes C(\mathbb{G}) : a \mapsto V(a \otimes 1)V^* .$$

Here, $V \in \ell^\infty(\widehat{\mathbb{G}}) \overline{\otimes} L^\infty(\mathbb{G})$ is defined as $V = \sum_{x \in I} U^x$. The action $\beta_{\mathbb{G}}$ is continuous in the sense that $\text{span } \beta_{\mathbb{G}}(\mathcal{B})(1 \otimes C(\mathbb{G}))$ is dense in $\mathcal{B} \otimes C(\mathbb{G})$.

Proof. One can repeat word by word the proofs of [11, Propositions 3.4 and 3.6]. The crucial ingredients of these proofs are the approximate commutation formulae provided by [11, Lemmas A.1 and A.2] and they have to be replaced by the inequalities provided by Lemma 6.1. \square

We denote $\mathcal{B}_\infty := \mathcal{B}/c_0(\widehat{\mathbb{G}})$ and call it the topological boundary of $\widehat{\mathbb{G}}$. Both actions $\beta_{\mathbb{G}}$ and $\beta_{\widehat{\mathbb{G}}}$ preserve the ideal $c_0(\widehat{\mathbb{G}})$ and hence yield actions on \mathcal{B}_∞ that we still denote by $\beta_{\mathbb{G}}$ and $\beta_{\widehat{\mathbb{G}}}$.

We identify $C(I \cup \partial I)$ with $\mathcal{B} \cap \mathcal{Z}(\ell^\infty(\widehat{\mathbb{G}})) = \mathcal{B} \cap \ell^\infty(I)$. Similarly, $C(\partial I) \subset \mathcal{B}_\infty$.

We partially order I by writing $x \leq y$ if $y = xz$ for some $z \in I$. Define

$$\psi_{\infty,x} : \mathcal{L}(H_x) \rightarrow \mathcal{B} : \psi_{\infty,x}(A)p_y = \begin{cases} \psi_{y,x}(A) & \text{if } y \geq x \\ 0 & \text{else} \end{cases} .$$

We use the same notation for the composition of $\psi_{\infty,x}$ with the quotient map $\mathcal{B} \rightarrow \mathcal{B}_\infty$, yielding the map $\psi_{\infty,x} : \mathcal{L}(H_x) \rightarrow \mathcal{B}_\infty$.

Lemma 3.3. *The inclusion $C(\partial I) \subset \mathcal{B}_\infty$ defines a continuous field of unital C^* -algebras. Denote, for every $x \in \partial I$, by J_x the closed two-sided ideal of \mathcal{B}_∞ generated by the functions in $C(\partial I)$ vanishing in x .*

For every $x = x_1 \otimes x_2 \otimes \dots$ in $\partial_0 I$, there exists a unique surjective $*$ -homomorphism

$$\pi_x : \mathcal{B}_\infty \rightarrow \bigotimes_{k=1}^{\infty} \mathcal{L}(H_{x_k})$$

satisfying $\text{Ker } \pi_x = J_x$ and $\pi_x(\psi_{\infty,x_1 \dots x_n}(A)) = A \otimes 1$ for all $A \in \bigotimes_{k=1}^n \mathcal{L}(H_{x_k}) = \mathcal{L}(H_{x_1 \dots x_n})$.

Proof. Given $x \in \partial I$, define the decreasing sequence of projections $e_n \in \mathcal{B}$ given by

$$e_n := \sum_{y \in I} p_{[x]_n y} .$$

Denote by $\pi : \mathcal{B} \rightarrow \mathcal{B}_\infty$ the quotient map. It follows that

$$\|\pi(a) + J_x\| = \lim_n \|ae_n\| \tag{8}$$

for all $a \in \mathcal{B}$.

To prove that $C(\partial I) \subset \mathcal{B}_\infty$ is a continuous field, let $y \in I$, $A \in \mathcal{L}(H_y)$ and define $a \in \mathcal{B}$ by $a := \psi_{\infty,y}(A)$. Put $f : \partial I \rightarrow \mathbb{R}_+ : f(x) = \|\pi(a) + J_x\|$. We have to prove that f is a continuous function. Define $\mathcal{U} \subset \partial I$ consisting of infinite words starting with y . Then, \mathcal{U} is open and closed and f is zero, in particular continuous, on the complement of \mathcal{U} . Assume that the last letter of y is α (the other case, of course, being analogous). If $x \in \mathcal{U}$ and $x \neq y\beta\alpha\beta\alpha\dots$, write $x = yz \otimes u$ for some $z \in I$, $u \in \partial I$. Define \mathcal{V} as the neighborhood of x consisting of infinite words of the form

yzu' where $u' \in \partial I$ and $yzu' = yz \otimes u'$. Then, f is constantly equal to $\|\psi_{yz,y}(A)\|$ on \mathcal{V} . It remains to prove that f is continuous in $x := y\beta\alpha\beta\alpha\cdots$. Let

$$w_n = \underbrace{\beta\alpha\beta\cdots}_{n \text{ letters}}.$$

Then, the sequence $\|\psi_{yw_n,y}(A)\|$ is decreasing and converges to $f(x)$. If \mathcal{U}_n is the neighborhood of x consisting of words starting with yw_n , it follows that

$$f(x) \leq f(u) \leq \|\psi_{yw_n,y}(A)\|$$

for all $u \in \mathcal{U}_n$. This proves the continuity of f in x . So, $C(\partial I) \subset \mathcal{B}_\infty$ is a continuous field of C^* -algebras.

Let now $x = x_1 \otimes x_2 \otimes \cdots$ be an element of $\partial_0 I$. Put $y_n = x_1 \otimes \cdots \otimes x_n$ and

$$f_n := \sum_{z \in I} p_{y_n z}.$$

The map $A \mapsto f_{n+1}\psi_{\infty,y_n}(A)$ defines a unital $*$ -homomorphism from $\mathcal{L}(H_{y_n})$ to $f_{n+1}\mathcal{B}$. Since $1 - f_{n+1} \in J_x$, we obtain the unital $*$ -homomorphism $\theta_n : \mathcal{L}(H_{y_n}) \rightarrow \mathcal{B}/J_x$. The $*$ -homomorphisms θ_n are compatible and combine into the unital $*$ -homomorphism

$$\theta : \bigotimes_{k=1}^{\infty} \mathcal{L}(H_{x_k}) \rightarrow \mathcal{B}/J_x.$$

By (8), θ is isometric. Since the union of all $\psi_{\infty,y_n}(\mathcal{L}(H_{y_n})) + J_x$, $n \in \mathbb{N}$, is dense in \mathcal{B} , it follows that θ is surjective. The composition of the quotient map $\mathcal{B} \rightarrow \mathcal{B}/J_x$ and the inverse of θ provides the required $*$ -homomorphism π_x . \square

4 Proof of Theorem 1.3

We prove Theorem 1.3 by performing the following steps.

- Construct on the boundary \mathcal{B}_∞ of $\widehat{\mathbb{G}}$, a faithful KMS state ω_∞ , to be considered as the harmonic state and satisfying $(\psi_\mu \otimes \omega_\infty)\beta_{\widehat{\mathbb{G}}} = \omega_\infty$. Extend $\beta_{\widehat{\mathbb{G}}}$ to an action

$$\beta_{\widehat{\mathbb{G}}} : (\mathcal{B}_\infty, \omega_\infty)'' \rightarrow \ell^\infty(\widehat{\mathbb{G}}) \overline{\otimes} (\mathcal{B}_\infty, \omega_\infty)''$$

and denote by $\Theta_\mu := (\text{id} \otimes \omega_\infty)\beta_{\widehat{\mathbb{G}}}$ the *Poisson integral*.

- Prove a quantum *Dirichlet property* : for all $a \in \mathcal{B}$, we have $\Theta_\mu(a) - a \in c_0(\widehat{\mathbb{G}})$. It will follow that Θ_μ is a normal and faithful $*$ -homomorphism of $(\mathcal{B}_\infty, \omega_\infty)''$ onto a von Neumann subalgebra of $H^\infty(\widehat{\mathbb{G}}, \mu)$.
- By Theorem 2.1, Θ_μ is a $*$ -isomorphism of $L^\infty(\partial I, \nu_\epsilon) \subset (\mathcal{B}_\infty, \omega_\infty)''$ onto $H_{\text{centr}}^\infty(\widehat{\mathbb{G}}, \mu)$. Deduce that the image of Θ_μ is the whole of $H^\infty(\widehat{\mathbb{G}}, \mu)$.
- Use Lemma 3.3 to identify $(\mathcal{B}_\infty, \omega_\infty)''$ with a field of ITPFI factors.

Proposition 4.1. *The sequence $\psi_{\mu^{*n}}$ of states on \mathcal{B} converges weakly* to a KMS state ω_∞ on \mathcal{B} . The state ω_∞ vanishes on $c_0(\widehat{\mathbb{G}})$. We still denote by ω_∞ the resulting KMS state on \mathcal{B}_∞ . Then, ω_∞ is faithful on \mathcal{B}_∞ .*

We have $(\psi_\mu \otimes \omega_\infty)\beta_{\widehat{\mathbb{G}}} = \omega_\infty$, so that we can uniquely extend $\beta_{\widehat{\mathbb{G}}}$ to an action

$$\beta_{\widehat{\mathbb{G}}} : (\mathcal{B}_\infty, \omega_\infty)'' \rightarrow \ell^\infty(\widehat{\mathbb{G}}) \overline{\otimes} (\mathcal{B}_\infty, \omega_\infty)''$$

that we still denote by $\beta_{\widehat{\mathbb{G}}}$.

The state ω_∞ is invariant under the action $\beta_{\mathbb{G}}$ of \mathbb{G} on \mathcal{B}_∞ . We extend $\beta_{\mathbb{G}}$ to an action on $(\mathcal{B}_\infty, \omega_\infty)''$ that we still denote by $\beta_{\mathbb{G}}$.

The normal, completely positive map

$$\Theta_\mu : (\mathcal{B}_\infty, \omega_\infty)'' \rightarrow H^\infty(\widehat{\mathbb{G}}, \mu) : \Theta_\mu = (\text{id} \otimes \omega_\infty)\beta_{\widehat{\mathbb{G}}} \quad (9)$$

is called the Poisson integral. It satisfies the following properties (recall that $\alpha_{\widehat{\mathbb{G}}}$ and $\alpha_{\mathbb{G}}$ were introduced in Definition 1.2).

- $\widehat{\epsilon} \circ \Theta_\mu = \omega_\infty$.
- $(\Theta_\mu \otimes \text{id}) \circ \beta_{\mathbb{G}} = \alpha_{\mathbb{G}} \circ \Theta_\mu$.
- $(\text{id} \otimes \Theta_\mu) \circ \beta_{\widehat{\mathbb{G}}} = \alpha_{\widehat{\mathbb{G}}} \circ \Theta_\mu$.

For every $x = x_1 \otimes x_2 \otimes \dots$ in $\partial_0 I$, denote by ω_x the infinite tensor product state on $\bigotimes_{k=1}^\infty \mathcal{L}(H_{x_k})$, of the states ψ_{x_k} on $\mathcal{L}(H_{x_k})$. Using the notation π_x of Lemma 3.3, we have

$$\omega_\infty(a) = \int_{\partial_0 I} \omega_x(\pi_x(a)) \, d\nu_\epsilon(x) \quad (10)$$

for all $a \in \mathcal{B}_\infty$.

Proof. Define the 1-parameter group of automorphisms $(\sigma_t)_{t \in \mathbb{R}}$ of $\ell^\infty(\widehat{\mathbb{G}})$ given by

$$\sigma_t(a)p_x = Q_x^{it} a p_x Q_x^{-it}.$$

Since $\sigma_t(\psi_{\infty,x}(A)) = \psi_{\infty,x}(Q_x^{it} A Q_x^{-it})$, it follows that (σ_t) is norm-continuous on the C*-algebra \mathcal{B} .

By Theorem 2.1, the sequence of probability measures μ^{*n} on $I \cup \partial I$ converges weakly* to ν_ϵ . It follows that $\psi_{\mu^{*n}}(a) \rightarrow 0$ whenever $a \in c_0(\widehat{\mathbb{G}})$. Given $x \in I$ and $A \in \mathcal{L}(H_x)$, put $a := \psi_{\infty,x}(A)$. Denote by $\partial(xI)$ the set of infinite words starting with x and by $\partial_0(xI)$ its intersection with $\partial_0(I)$. We get, using Proposition 2.4,

$$\begin{aligned} \psi_{\mu^{*n}}(a) &= \sum_{y \in I} \mu^{*n}(y) \psi_y(\psi_{\infty,x}(A)) = \sum_{y \in xI} \mu^{*n}(y) \psi_x(A) \\ &\rightarrow \psi_x(A) \nu_\epsilon(\partial(xI)) = \psi_x(A) \nu_\epsilon(\partial_0(xI)) = \int_{\partial_0 I} \omega_y(\pi_y(a)) \, d\nu_\epsilon(y). \end{aligned}$$

So, the sequence $\psi_{\mu^{*n}}$ of states on \mathcal{B} converges weakly* to a state on \mathcal{B} that we denote by ω_∞ and that satisfies (10). Since all $\psi_{\mu^{*n}}$ satisfy the KMS condition w.r.t. (σ_t) , also ω_∞ is a KMS state. If $a \in \mathcal{B}_\infty^+$ and $\omega_\infty(a) = 0$, it follows from (10) that $\omega_x(\pi_x(a)) = 0$ for ν_ϵ -almost every $x \in \partial_0 I$. Since

ω_x is faithful, it follows that $\|\pi(a) + J_x\| = 0$ for ν_ϵ -almost every $x \in \partial I$. By Proposition 2.4, the support of ν_ϵ is the whole of ∂I and by Lemma 3.3, $x \mapsto \|\pi(a) + J_x\|$ is a continuous function. It follows that $\|\pi(a) + J_x\| = 0$ for all $x \in \partial I$ and hence, $a = 0$. So, ω_∞ is faithful.

Since $(\psi_\mu \otimes \psi_{\mu^{*n}})\beta_{\widehat{\mathbb{G}}} = \psi_{\mu^{*(n+1)}}$, it follows that $(\psi_\mu \otimes \omega_\infty)\beta_{\widehat{\mathbb{G}}} = \omega_\infty$. So, $(\psi_{\mu^{*k}} \otimes \omega_\infty)\beta_{\widehat{\mathbb{G}}} = \omega_\infty$ for all $k \in \mathbb{N}$. Since μ is generating, there exists for every $x \in I$, a $C_x > 0$ such that $(\psi_x \otimes \omega_\infty)\beta_{\widehat{\mathbb{G}}} \leq C_x \omega_\infty$. As a result, we can uniquely extend $\beta_{\widehat{\mathbb{G}}}$ to a normal $*$ -homomorphism

$$(\mathcal{B}_\infty, \omega_\infty)'' \rightarrow \ell^\infty(\widehat{\mathbb{G}}) \overline{\otimes} (\mathcal{B}_\infty, \omega_\infty)''.$$

Since $\beta_{\widehat{\mathbb{G}}}$ is an action, the same holds for the extension to the von Neumann algebra $(\mathcal{B}_\infty, \omega_\infty)''$.

Because $(\psi_\mu \otimes \omega_\infty)\beta_{\widehat{\mathbb{G}}} = \beta_{\widehat{\mathbb{G}}}$ and because $\beta_{\widehat{\mathbb{G}}}$ is an action, the Poisson integral defined by (9) takes values in $H^\infty(\widehat{\mathbb{G}}, \mu)$. It is straightforward to check that Θ_μ intertwines $\beta_{\mathbb{G}}$ with $\alpha_{\mathbb{G}}$ and $\beta_{\widehat{\mathbb{G}}}$ with $\alpha_{\widehat{\mathbb{G}}}$. \square

Theorem 4.2. *The compactification \mathcal{B} of $\widehat{\mathbb{G}}$ satisfies the quantum Dirichlet property, meaning that, for all $a \in \mathcal{B}$,*

$$\|(\Theta_\mu(a) - a)p_x\| \rightarrow 0$$

if $|x| \rightarrow \infty$.

In particular, the Poisson integral Θ_μ is a normal and faithful $*$ -homomorphism of $(\mathcal{B}_\infty, \omega_\infty)''$ onto a von Neumann subalgebra of $H^\infty(\widehat{\mathbb{G}}, \mu)$.

We will deduce Theorem 4.2 from the following lemma.

Lemma 4.3. *For every $a \in \mathcal{B}$ we have that*

$$\sup_{y \in I} \|(\text{id} \otimes \psi_y)\hat{\Delta}(a)p_x - ap_x\| \rightarrow 0 \quad (11)$$

when $|x| \rightarrow \infty$.

Proof. Fix $a \in \mathcal{B}$ with $\|a\| \leq 1$. Choose $\varepsilon > 0$. Take n such that $\|ap_{x_0 x_1} - \psi_{x_0 x_1, x_0}(ap_{x_0})\| < \varepsilon$ for all $x_0, x_1 \in I$ with $|x_0| = n$.

Denote $d_{S^1}(V, W) = \inf\{\|V - \lambda W\| \mid \lambda \in S^1\}$. By (16) below, take k such that

$$\begin{aligned} d_{S^1}((V(x_0 \otimes x_1 x_2, x_0 x_1 x_2) \otimes 1)V(x_0 x_1 x_2 \otimes \overline{x_2}u, x_0 x_1 u), \\ (1 \otimes V(x_1 x_2 \otimes \overline{x_2}u, x_1 u))V(x_0 \otimes x_1 u, x_0 x_1 u)) < \frac{\varepsilon}{2} \end{aligned} \quad (12)$$

whenever $|x_1| \geq k$.

Finally, take l such that $q^{2l} < \varepsilon$. We prove that

$$\|(\text{id} \otimes \psi_y)\hat{\Delta}(a)p_x - ap_x\| < 5\varepsilon \quad (13)$$

for all $x, y \in I$ with $|x| \geq n + k + l$.

Choose $x, y \in I$ with $|x| \geq n + k + l$ and write $x = x_0 x_1 x_2$ with $|x_0| = n$, $|x_1| = k$ and hence, $|x_2| \geq l$. We get

$$\begin{aligned}
(\text{id} \otimes \psi_y) \hat{\Delta}(a) p_x &= \sum_{z \subset x \otimes y} (\text{id} \otimes \psi_y) (V(x \otimes y, z) a p_z V(x \otimes y, z)^*) \\
&= \sum_{z \subset x \otimes y} \frac{\dim_q(z)}{\dim_q(x) \dim_q(y)} V(z \otimes \bar{y}, x)^* (a p_z \otimes 1) V(z \otimes \bar{y}, x) \\
&= \sum_{z \subset x_2 \otimes y} \frac{\dim_q(x_0 x_1 z)}{\dim_q(x) \dim_q(y)} V(x_0 x_1 z \otimes \bar{y}, x)^* (a p_{x_0 x_1 z} \otimes 1) V(x_0 x_1 z \otimes \bar{y}, x) \\
&\quad + \sum \text{remaining terms} .
\end{aligned}$$

In order to have remaining terms, y should be of the form $y = \bar{x}_2 y_0$ and then, using (4) and the assumption $\|a\| \leq 1$,

$$\begin{aligned}
\sum \|\text{remaining terms}\| &= \sum_{z \subset x_0 x_1 \otimes y_0} \frac{\dim_q(z)}{\dim_q(x_0 x_1 x_2) \dim_q(\bar{x}_2 y_0)} \\
&\leq \sum_{z \subset x_0 x_1 \otimes y_0} q^{2|x_2|} \frac{\dim_q(z)}{\dim_q(x_0 x_1) \dim_q(y_0)} = q^{2|x_2|} < \varepsilon .
\end{aligned}$$

Combining this estimate with the fact that $\|a p_{x_0 x_1 z} - \psi_{x_0 x_1 z, x_0}(a p_{x_0})\| < \varepsilon$, it follows that

$$\begin{aligned}
&\|(\text{id} \otimes \psi_y) \hat{\Delta}(a) p_x - a p_x\| \\
&\leq 2\varepsilon + \left\| a p_x - \sum_{z \subset x_2 \otimes y} \frac{\dim_q(x_0 x_1 z)}{\dim_q(x) \dim_q(y)} V(x_0 x_1 z \otimes \bar{y}, x)^* (\psi_{x_0 x_1 z, x_0}(a p_{x_0}) \otimes 1) V(x_0 x_1 z \otimes \bar{y}, x) \right\| .
\end{aligned}$$

But now, (12) implies that

$$\|(\text{id} \otimes \psi_y) \hat{\Delta}(a) p_x - a p_x\| \leq 3\varepsilon + \left\| a p_x - \sum_{z \subset x_2 \otimes y} \frac{\dim_q(x_0 x_1 z)}{\dim_q(x) \dim_q(y)} \psi_{x, x_0}(a p_{x_0}) \right\| .$$

Since $\|\psi_{x, x_0}(a p_{x_0}) - a p_x\| < \varepsilon$ and $\|a\| \leq 1$, we get

$$\|(\text{id} \otimes \psi_y) \hat{\Delta}(a) p_x\| \leq 4\varepsilon + \left(1 - \sum_{z \subset x_2 \otimes y} \frac{\dim_q(x_0 x_1 z)}{\dim_q(x) \dim_q(y)}\right) .$$

The second term on the right hand side is zero, unless $y = \bar{x}_2 y_0$, in which case, it equals

$$\sum_{z \subset x_0 x_1 \otimes y_0} \frac{\dim_q(z)}{\dim_q(x_0 x_1 x_2) \dim_q(\bar{x}_2 y_0)} \leq \sum_{z \subset x_0 x_1 \otimes y_0} q^{2|x_2|} \frac{\dim_q(z)}{\dim_q(x_0 x_1) \dim_q(y_0)} \leq \varepsilon$$

because of (4). Finally, (13) follows and the lemma is proven. \square

Proof of Theorem 4.2. Let $a \in \mathbb{B}$. Given $\varepsilon > 0$, Lemma 4.3 provides k such that

$$\|(\text{id} \otimes \psi_{\mu^{*n}}) \hat{\Delta}(a) p_x - a p_x\| \leq \varepsilon$$

for all $n \in \mathbb{N}$ and all x with $|x| \geq k$. Since $\psi_{\mu^{*n}} \rightarrow \omega_\infty$ weakly*, it follows that

$$\|(\Theta_\mu(a) - a) p_x\| \leq \varepsilon$$

whenever $|x| \geq k$. This proves (11).

It remains to prove the multiplicativity of Θ_μ . We know that $\Theta_\mu : \mathcal{B}_\infty \rightarrow \mathrm{H}^\infty(\widehat{\mathbb{G}}, \mu)$ is a unital, completely positive map. Since $\widehat{\epsilon} \circ \Theta_\mu = \omega_\infty$, Θ_μ is faithful. Denote by $\pi : \mathrm{H}^\infty(\widehat{\mathbb{G}}, \mu) \rightarrow \frac{\ell^\infty(\widehat{\mathbb{G}})}{c_0(\widehat{\mathbb{G}})}$ the quotient map, which is also a unital, completely positive map. By (11), we have $\pi \circ \Theta_\mu = \mathrm{id}$. So, for all $a \in \mathcal{B}_\infty$, we find

$$\pi(\Theta_\mu(a)^* \cdot \Theta_\mu(a)) \leq \pi(\Theta_\mu(a^* a)) = a^* a = \pi(\Theta_\mu(a))^* \pi(\Theta_\mu(a)) \leq \pi(\Theta_\mu(a)^* \cdot \Theta_\mu(a))$$

We claim that π is faithful. If $a \in \mathrm{H}^\infty(\widehat{\mathbb{G}}, \mu)^+ \cap c_0(\widehat{\mathbb{G}})$, we have $\widehat{\epsilon}(a) = \psi_{\mu^{*n}}(a)$ for all n and the transience of μ combined with the assumption $a \in c_0(\widehat{\mathbb{G}})$, implies that $\widehat{\epsilon}(a) = 0$ and hence, $a = 0$. So, we conclude that $\Theta_\mu(a)^* \cdot \Theta_\mu(a) = \Theta_\mu(a^* a)$ for all $a \in \mathcal{B}_\infty$. Hence, Θ_μ is multiplicative on \mathcal{B}_∞ and also on $(\mathcal{B}_\infty, \omega_\infty)''$ by normality. \square

Remark 4.4. We now give a reinterpretation of Theorem 2.1. Denote by $\Omega = I^{\mathbb{N}}$ the path space of the random walk with transition probabilities (5). Elements of Ω are denoted by $\underline{x}, \underline{y}$, etc. For every $x \in I$, one defines the probability measure \mathbb{P}_x on Ω such that $\mathbb{P}_x(\{x\} \times I \times I \times \dots) = 1$ and

$$\mathbb{P}_x(\{(x, x_1, x_2, \dots, x_n)\} \times I \times I \times \dots) = p(x, x_1) p(x_1, x_2) \dots p(x_{n-1}, x_n).$$

Choose a probability measure η on I with $I = \mathrm{supp} \eta$. Write $\mathbb{P} = \sum_{x \in I} \eta(x) \mathbb{P}_x$.

Define on Ω the following equivalence relation: $\underline{x} \sim \underline{y}$ iff there exist $k, l \in \mathbb{N}$ such that $x_{n+k} = y_{n+l}$ for all $n \in \mathbb{N}$. Whenever $F \in \mathrm{H}_{\mathrm{centr}}^\infty(\widehat{\mathbb{G}}, \mu)$, the martingale convergence theorem implies that the sequence of measurable functions $\Omega \rightarrow \mathbb{C} : \underline{x} \mapsto F(x_n)$ converges \mathbb{P} -almost everywhere to a \sim -invariant bounded measurable function on Ω , that we denote by $\pi_\infty(F)$. Denote by $\mathrm{L}^\infty(\Omega/\sim, \mathbb{P})$ the von Neumann subalgebra of \sim -invariant functions in $\mathrm{L}^\infty(\Omega, \mathbb{P})$. As such, $\pi_\infty : \mathrm{H}_{\mathrm{centr}}^\infty(\widehat{\mathbb{G}}, \mu) \rightarrow \mathrm{L}^\infty(\Omega/\sim, \mathbb{P})$ is a $*$ -isomorphism.

By Theorem 4.2, we can define the measurable function $\mathrm{bnd} : \Omega \rightarrow \partial I$ such that $\mathrm{bnd} \underline{x} = \lim_n x_n$ for \mathbb{P} -almost every $\underline{x} \in \Omega$ and where the convergence is understood in the compact space $I \cup \partial I$. Recall that we denote, for $x \in I$, by ν_x the hitting probability measure on ∂I . So, $\nu_x(A) = \mathbb{P}_x(\mathrm{bnd}^{-1}(A))$ for all measurable $A \subset \partial I$ and all $x \in I$.

Again by Theorem 4.2, $\pi_\infty \circ \Upsilon$ is a $*$ -isomorphism of $\mathrm{L}^\infty(\partial I, \nu_\epsilon)$ onto $\mathrm{L}^\infty(\Omega/\sim, \mathbb{P})$. We claim that for all $F \in \mathrm{L}^\infty(\partial I, \nu_\epsilon)$, we have

$$((\pi_\infty \circ \Upsilon)(F))(\underline{x}) = F(\mathrm{bnd} \underline{x}) \quad \text{for } \mathbb{P}\text{-almost every } \underline{x} \in \Omega.$$

Let $A \subset \partial I$ be measurable. Define $F_n : \Omega \rightarrow \mathbb{R} : F_n(\underline{x}) = \nu_{x_n}(A)$. Then, F_n converges almost everywhere with limit equal to $(\pi_\infty \circ \Upsilon)(\chi_A)$. If the measurable function $G : \Omega \rightarrow \mathbb{C}$ only depends on x_0, \dots, x_k , one checks that

$$\int_{\Omega} F_n(\underline{x}) G(\underline{x}) d\mathbb{P}(\underline{x}) = \int_{\mathrm{bnd}^{-1}(A)} G(\underline{x}) d\mathbb{P}(\underline{x}) \quad \text{for all } n > k.$$

From this, the claim follows.

Since the $*$ -isomorphism $\pi_\infty \circ \Upsilon$ is given by bnd , it follows that for every \sim -invariant bounded measurable function F on Ω , there exists a bounded measurable function F_1 on ∂I such that $F(\underline{x}) = F_1(\mathrm{bnd} \underline{x})$ for \mathbb{P} -almost every path $\underline{x} \in \Omega$.

We are now ready to prove the main Theorem 1.3.

Proof of Theorem 1.3. Because of Theorem 4.2 and Lemma 3.3, it remains to show that

$$\Theta_\mu : (\mathcal{B}_\infty, \omega_\infty)'' \rightarrow \mathrm{H}^\infty(\widehat{\mathbb{G}}, \mu)$$

is surjective.

Whenever $\gamma : N \rightarrow N \overline{\otimes} \mathrm{L}^\infty(\mathbb{G})$ is an action of \mathbb{G} on the von Neumann algebra N , we denote, for $x \in I$, by $N^x \subset N$ the *spectral subspace* of the irreducible representation x . By definition, N^x is the linear span of all $S(H_x)$, where S ranges over the linear maps $S : H_x \rightarrow N$ satisfying $\gamma(S(\xi)) = (S \otimes \mathrm{id})(U_x(\xi \otimes 1))$. The linear span of all N^x , $x \in I$, is a weakly dense $*$ -subalgebra of N , called the spectral subalgebra of N . For $n \in \mathbb{N}$, we denote by N^n the linear span of all N^x , $|x| \leq n$.

Fixing $x, y \in I$, consider the adjoint action $\gamma : \mathcal{L}(H_{xy}) \rightarrow \mathcal{L}(H_{xy}) \otimes \mathrm{C}(\mathbb{G})$ given by $\gamma(A) = U_{xy}(A \otimes 1)U_{xy}^*$. The fusion rules of $\mathbb{G} = A_u(F)$ imply that $\mathcal{L}(H_{xy})^{2|x|} = \psi_{xy,x}(\mathcal{L}(H_x))$.

For the rest of the proof, put $M := (\mathcal{B}_\infty, \omega_\infty)''$. We use the action $\beta_{\mathbb{G}}$ of \mathbb{G} on M and the action $\alpha_{\mathbb{G}}$ of \mathbb{G} on $\mathrm{H}^\infty(\widehat{\mathbb{G}}, \mu)$. Fix $k \in \mathbb{N}$. It suffices to prove that $\mathrm{H}^\infty(\widehat{\mathbb{G}}, \mu)^k \subset \Theta_\mu(M)$.

Define, for all $y \in I$, the subset

$$V_y := \{yz \mid z \in I \text{ and } yz = y \otimes z\}.$$

Define the projections

$$q_y = \sum_{z \in V_y} p_z \in \mathcal{B}$$

and consider q_y also as an element of the von Neumann algebra M . Define $W_y \subset \partial I$ as the subset of infinite words of the form yu , where $u \in \partial I$ and $yu = y \otimes u$.

Define the unital $*$ -homomorphism

$$\zeta : \mathrm{C}(W_y) \otimes \mathcal{L}(H_y) \rightarrow Mq_y : \begin{cases} \zeta(F)p_{yz} = \psi_{yz,y}(F(yz)) & \text{when } y \otimes z = yz \\ 0 & \text{else} \end{cases}.$$

Claim. For all $y \in I$, there exists a linear map

$$T_y : \mathrm{H}^\infty(\widehat{\mathbb{G}}, \mu)^{2|y|} \cdot \Theta_\mu(q_y) \subset \mathrm{H}^\infty(\widehat{\mathbb{G}}, \mu) \rightarrow \mathrm{L}^\infty(W_y) \otimes \mathcal{L}(H_y)$$

satisfying the following conditions.

- T_y is isometric for the 2-norm on $\mathrm{H}^\infty(\widehat{\mathbb{G}}, \mu)$ given by the state $\widehat{\epsilon}$ and the 2-norm on $\mathrm{L}^\infty(W_y) \otimes \mathcal{L}(H_y)^k$ given by the state $\nu_\varepsilon \otimes \psi_y$.
- $(T_y \circ \Theta_\mu \circ \zeta)(F) = F$ for all $F \in \mathrm{C}(W_y) \otimes \mathcal{L}(H_y)$.

To prove this claim, we use the notations and results introduced in Remark 4.4. Fix $y \in I$. Consider $a \in \mathrm{H}^\infty(\widehat{\mathbb{G}}, \mu)^{2|y|} \cdot \Theta_\mu(q_y)$. If $\underline{x} \in \Omega$ is such that $\mathrm{bnd}(\underline{x}) \in W_y$, then, for n big enough, x_n will be of the form $x_n = y \otimes z_n$. By definition of $\alpha_{\mathbb{G}}$, we have that $ap_{x_n} \in \mathcal{L}(H_{x_n})^{2|y|}$. So, we can take elements $a_{\underline{x},n} \in \mathcal{L}(H_y)$ such that $ap_{x_n} = \psi_{x_n,y}(a_{\underline{x},n})$. We prove that, for \mathbb{P} -almost every path \underline{x} with $\mathrm{bnd} \underline{x} \in W_y$, the sequence $(a_{\underline{x},n})_n$ is convergent. We then define $T_y(a) \in \mathrm{L}^\infty(W_y) \otimes \mathcal{L}(H_y)$ such that $T_y(a)(\mathrm{bnd} \underline{x}) = \lim_n a_{\underline{x},n}$ for \mathbb{P} -almost every path \underline{x} with $\mathrm{bnd} \underline{x} \in W_y$.

Take $d \in \mathcal{L}(H_y)$. Then, for \mathbb{P} -almost every path \underline{x} such that $\text{bnd } \underline{x} \in W_y$ and n big enough, we get that

$$\psi_y(da_{\underline{x},n}) = \psi_{x_n}(\psi_{x_n,y}(da_{\underline{x},n})) = \psi_{x_n}(\psi_{x_n,y}(d)\psi_{x_n,y}(a_{\underline{x},n})) = \psi_{x_n}(\psi_{x_n,y}(d)ap_{x_n})$$

In the second step, we used the multiplicativity of $\psi_{x_n,y} : \mathcal{L}(H_y) \rightarrow \mathcal{L}(H_{x_n})$ which follows because $x_n = y \otimes z_n$. Also note that $\|a_{\underline{x},n}\| \leq \|a\|$. From Theorem 4.2, it follows that

$$\|\Theta_\mu(\zeta(1 \otimes d))p_{x_n} - \psi_{x_n,y}(d)p_{x_n}\| \rightarrow 0$$

whenever x_n converges to a point in W_y . This implies that

$$|\psi_y(da_{\underline{x},n}) - \psi_{x_n}(\Theta_\mu(\zeta(1 \otimes d))ap_{x_n})| \rightarrow 0$$

for \mathbb{P} -almost every path \underline{x} with $\text{bnd } \underline{x} \in W_y$.

From [6, Proposition 3.3], we know that for \mathbb{P} -almost every path \underline{x} ,

$$|\psi_{x_n}(\Theta_\mu(\zeta(1 \otimes d))ap_{x_n})p_{x_n} - \mathcal{E}(\Theta_\mu(\zeta(1 \otimes d)) \cdot a)p_{x_n}| \rightarrow 0.$$

As before, $\mathcal{E}(b)p_x = \psi_x(b)p_x$. It follows that

$$|\psi_y(da_{\underline{x},n})p_{x_n} - \mathcal{E}(\Theta_\mu(\zeta(1 \otimes d)) \cdot a)p_{x_n}| \rightarrow 0.$$

Note that \mathcal{E} maps $H^\infty(\widehat{\mathbb{G}}, \mu)$ onto $H_{\text{centr}}^\infty(\widehat{\mathbb{G}}, \mu)$. Whenever $F \in H_{\text{centr}}^\infty(\widehat{\mathbb{G}}, \mu)$, the sequence $F(x_n)$ converges for \mathbb{P} -almost every path \underline{x} . We conclude that for every $d \in \mathcal{L}(H_y)$, the sequence $\psi_y(da_{\underline{x},n})$ is convergent for \mathbb{P} -almost every path \underline{x} with $\text{bnd } \underline{x} \in W_y$. Since $\mathcal{L}(H_y)$ is finite dimensional, it follows that the sequence $(a_{\underline{x},n})_n$ in $\mathcal{L}(H_y)$ is convergent for \mathbb{P} -almost every path \underline{x} with $\text{bnd } \underline{x} \in W_y$.

By Remark 4.4, we get $T_y(a) \in L^\infty(W_y) \otimes \mathcal{L}(H_y)$ such that $T_y(a)(\text{bnd } \underline{x}) = \lim_n a_{\underline{x},n}$ for \mathbb{P} -almost every path \underline{x} with $\text{bnd } \underline{x} \in W_y$. From the definition of $a_{\underline{x},n}$, we get that

$$\|\psi_{x_n,y}(T_y(a)(\text{bnd } \underline{x})) - ap_{x_n}\| \rightarrow 0 \quad (14)$$

for \mathbb{P} -almost every path \underline{x} such that $\text{bnd } \underline{x} \in W_y$.

The map T_y is isometric. Indeed, by the defining property (14) and again by [6, Proposition 3.3], we have, for \mathbb{P} -almost every path \underline{x} with $\text{bnd } \underline{x} \in W_y$,

$$\psi_y(T_y(a)(\text{bnd } \underline{x})^*T_y(a)(\text{bnd } \underline{x})) = \lim_{n \rightarrow \infty} \psi_{x_n}(a^*ap_{x_n}) = (\pi_\infty \circ \mathcal{E})(a^* \cdot a)(\underline{x}).$$

Here, π_∞ denotes the $*$ -isomorphism $H_{\text{centr}}^\infty(\widehat{\mathbb{G}}, \mu) \rightarrow L^\infty(\Omega_{\sim}, \mathbb{P})$ introduced in Remark 4.4. On the other hand, by Remark 4.4, $((\pi_\infty \circ \Theta_\mu)(q_y))(\underline{x}) = 0$ for \mathbb{P} -almost every path \underline{x} with $\text{bnd } \underline{x} \notin W_y$. Since

$$\int_{\Omega} ((\pi_\infty \circ \mathcal{E})(b))(\underline{x}) d\mathbb{P}_\epsilon(\underline{x}) = \widehat{\epsilon}(b)$$

for all $b \in H^\infty(\widehat{\mathbb{G}}, \mu)$, it follows that T_y is an isometry in 2-norm.

We next prove that $(T_y \circ \Theta_\mu \circ \zeta)(F) = F$ for all $F \in C(W_y) \otimes \mathcal{L}(H_y)$. Let $\tilde{a} \in C(I \cup \partial I) \subset \ell^\infty(I)$ and let a be the restriction of \tilde{a} to ∂I . Take $A \in \mathcal{L}(H_y)$. It suffices to take $F = a \otimes A$. Theorem 4.2 implies that

$$\|\tilde{a}p_{x_n}\psi_{x_n,y}(A) - (\Theta_\mu \circ \zeta)(a \otimes A)p_{x_n}\| \rightarrow 0$$

for \mathbb{P} -almost every path \underline{x} . On the other hand, for \mathbb{P} -almost every path \underline{x} with $\text{bnd } \underline{x} \in W_y$, the scalar $\tilde{a}p_{x_n}$ converges to $a(\text{bnd } \underline{x})$. In combination with (14), it follows that $(T_y \circ \Theta_\mu \circ \zeta)(a \otimes A) = a \otimes A$, concluding the proof of the claim.

Having proven the claim, we now show that for all $y \in I$, $H^\infty(\widehat{\mathbb{G}}, \mu)^{2|y|} \cdot \Theta_\mu(q_y) \subset \Theta_\mu(M)$. Take $a \in H^\infty(\widehat{\mathbb{G}}, \mu)^{2|y|} \cdot \Theta_\mu(q_y)$. Let d_n be a bounded sequence in the C^* -algebra $C(W_y) \otimes \mathcal{L}(H_y)$ converging to $T_y(a)$ in 2-norm. Since $T_y \circ \Theta_\mu$ is an isometry in 2-norm, it follows that $\zeta(d_n)$ is a bounded sequence in M that converges in 2-norm. Denoting by $c \in M$ the limit of $\zeta(d_n)$, we conclude that $T_y(\Theta_\mu(c)) = T_y(a)$ and hence, $\Theta_\mu(c) = a$.

Fix $k \in \mathbb{N}$. A fortiori, $H^\infty(\widehat{\mathbb{G}}, \mu)^k \cdot \Theta_\mu(q_y) \subset \Theta_\mu(M)$ for all $y \in I$ with $2|y| \geq k$. By Proposition 2.4, the harmonic measure ν_ϵ has no atoms in infinite words ending with $\alpha\beta\alpha\beta\dots$. As a result, 1 is the smallest projection in M that dominates all q_y , $y \in I$, $2|y| \geq k$. So, $H^\infty(\widehat{\mathbb{G}}, \mu)^k \subset \Theta_\mu(M)$ for all $k \in \mathbb{N}$. This finally implies that Θ_μ is surjective. \square

5 Solidity and the Akemann-Ostrand property

In Section 3, we followed the approach of [11] to construct the compactification \mathcal{B} of $\widehat{\mathbb{G}}$. In fact, more of the constructions and results of [11] carry over immediately to the case $\mathbb{G} = A_u(F)$. We continue to assume that F is not a multiple of a 2×2 unitary matrix.

Denote by $L^2(\mathbb{G})$ the GNS Hilbert space defined by the Haar state h on $C(\mathbb{G})$. Denote by $\lambda : C(\mathbb{G}) \rightarrow \mathcal{L}(L^2(\mathbb{G}))$ the corresponding GNS representation and define $C_{\text{red}}(\mathbb{G}) := \lambda(C(\mathbb{G}))$. We can view λ as the left-regular representation. We also have a right-regular representation ρ and the operators $\lambda(a)$ and $\rho(b)$ commute for all $a, b \in C(\mathbb{G})$ (see [11, Formulae (1.3)]).

Repeating the proofs of [11, Proposition 3.8 and Theorem 4.5], we arrive at the following result.

Theorem 5.1. *The boundary action $\beta_{\widehat{\mathbb{G}}}$ of $\widehat{\mathbb{G}}$ on \mathcal{B} defined in Theorem 3.2 is*

- amenable in the sense of [11, Definition 4.1];
- small at infinity in the following sense: the comultiplication $\hat{\Delta}$ restricts as well to a right action of $\widehat{\mathbb{G}}$ on \mathcal{B} ; this action leaves $c_0(\widehat{\mathbb{G}})$ globally invariant and becomes the trivial action on the quotient \mathcal{B}_∞ .

By construction, \mathcal{B} is a nuclear C^* -algebra and hence, as in [11, Corollary 4.7], we get that

- \mathbb{G} satisfies the Akemann-Ostrand property: the homomorphism

$$C_{\text{red}}(\mathbb{G}) \otimes_{\text{alg}} C_{\text{red}}(\mathbb{G}) \rightarrow \frac{\mathcal{L}(L^2(\mathbb{G}))}{\mathcal{K}(L^2(\mathbb{G}))} : a \otimes b \mapsto \lambda(a)\rho(b) + \mathcal{K}(L^2(\mathbb{G}))$$

is continuous for the minimal C^* -tensor product \otimes_{min} .

- $C_{\text{red}}(\mathbb{G})$ is an exact C^* -algebra.

As before, we denote by $L^\infty(\mathbb{G})$ the von Neumann algebra acting on $L^2(\mathbb{G})$ generated by $\lambda(C(\mathbb{G}))$. From [2, Théorème 3], it follows that $L^\infty(\mathbb{G})$ is a factor, of type II_1 if F is a multiple of an $n \times n$ unitary matrix and of type III in the other cases.

Applying [8, Theorem 6] (in fact, its slight generalization provided by [11, Theorem 2.5]), we get the following corollary of Theorem 5.1. Recall that a II_1 factor M is called *solid* if for every diffuse von Neumann subalgebra $A \subset M$, the relative commutant $M \cap A'$ is injective. An arbitrary von Neumann algebra M is called *generalized solid* if the same holds for every diffuse von Neumann subalgebra $A \subset M$ which is the image of a faithful normal conditional expectation.

Corollary 5.2. *When $n \geq 3$ and $\mathbb{G} = A_u(I_n)$, the II_1 factor $L^\infty(\mathbb{G})$ is solid. When $n \geq 2$, $F \in \text{GL}(n, \mathbb{C})$ is not a multiple of an $n \times n$ unitary matrix and $\mathbb{G} = A_u(F)$, the type III factor $L^\infty(\mathbb{G})$ is generalized solid.*

6 Appendix: approximate intertwining relations

We fix an invertible matrix F and assume that F is not a scalar multiple of a unitary 2×2 matrix. Define $\mathbb{G} = A_u(F)$ and label the irreducible representations of \mathbb{G} by the monoid $\mathbb{N} * \mathbb{N}$, freely generated by α and β . The representation labeled by α is the fundamental representation of \mathbb{G} and β is its contragredient. Define $0 < q < 1$ such that $\dim_q(\alpha) = \dim_q(\beta) = q + \frac{1}{q}$. Recall from Section 3 that whenever $z \subset x \otimes y$, we choose an isometry $V(x \otimes y, z) \in \text{Mor}(x \otimes y, z)$. Observe that $V(x \otimes y, z)$ is uniquely determined up to multiplication by a scalar $\lambda \in S^1$. We denote by $p_z^{x \otimes y}$ the projection $V(x \otimes y, z)V(x \otimes y, z)^*$.

Lemma 6.1. *There exists a constant $C > 0$ that only depends on q such that*

$$\begin{aligned} & \| (V(xr \otimes \bar{r}y, xy) \otimes 1_z) p_{xyz}^{xy \otimes z} - (1_{xr} \otimes p_{\bar{r}yz}^{\bar{r}y \otimes z}) (V(xr \otimes \bar{r}y, xy) \otimes 1_z) \| \leq Cq^{|y|}, \\ & \| (1_x \otimes V(yr \otimes \bar{r}z, yz)) p_{xyz}^{x \otimes yz} - (p_{xyr}^{x \otimes yr} \otimes 1_{\bar{r}z}) (1_x \otimes V(yr \otimes \bar{r}z, yz)) \| \leq Cq^{|y|} \end{aligned} \quad (15)$$

for all $x, y, z, r \in I$.

One way of proving Lemma 6.1 consists in repeating step by step the proof of [11, Lemma A.1]. But, as we explain now, Lemma 6.1 can also be deduced more directly from [11, Lemma A.1].

Sketch of proof. Whenever $y = y_1 \otimes y_2$ with $y_1 \neq \epsilon \neq y_2$, the expressions above are easily seen to be 0. Denote

$$v_n = \underbrace{\alpha \otimes \beta \otimes \alpha \otimes \cdots}_{n \text{ tensor factors}} \quad \text{and} \quad w_n = \underbrace{\beta \otimes \alpha \otimes \beta \otimes \cdots}_{n \text{ tensor factors}}.$$

The remaining estimates that have to be proven, reduce to estimates of norms of operators in $\text{Mor}(v_n, v_m)$ and $\text{Mor}(w_n, w_m)$. Putting these spaces together in an infinite matrix, one defines the C^* -algebras

$$A := (\text{Mor}(v_n, v_m))_{n,m} \quad \text{and} \quad B := (\text{Mor}(w_n, w_m))_{n,m}$$

generated by the subspaces $\text{Mor}(v_n, v_m)$ and $\text{Mor}(w_n, w_m)$, respectively. Choose unit vectors $t \in \text{Mor}(\alpha \otimes \beta, \epsilon)$ and $s \in \text{Mor}(\beta \otimes \alpha, \epsilon)$ such that $(t^* \otimes 1)(1 \otimes s) = (q + 1/q)^{-1}$. By [2, Lemme 5], the C^* -algebra A is generated by the elements $1^{\otimes 2k} \otimes t \otimes 1^{\otimes l}$, $1^{\otimes (2k+1)} \otimes s \otimes 1^{\otimes l}$. A similar statement holds for B .

Denote by U the fundamental representation of the quantum group $\text{SU}_{-q}(2)$ and let $t_0 \in \text{Mor}(U \otimes U, \epsilon)$ be a unit vector. The proofs of [3, Theorems 5.3 and 6.2] (which heavily rely on results in [1, 2]), imply the existence of $*$ -isomorphisms

$$\pi_A : (\text{Mor}(U^{\otimes n}, U^{\otimes m}))_{n,m} \rightarrow A \quad \text{and} \quad \pi_B : (\text{Mor}(U^{\otimes n}, U^{\otimes m}))_{n,m} \rightarrow B$$

satisfying

$$\pi_A(1^{\otimes 2k} \otimes t_0 \otimes 1^{\otimes l}) = 1^{\otimes 2k} \otimes t \otimes 1^{\otimes l} \quad \text{and} \quad \pi_A(1^{\otimes(2k+1)} \otimes t_0 \otimes 1^{\otimes l}) = 1^{\otimes(2k+1)} \otimes s \otimes 1^{\otimes l}$$

and similarly for π_B .

As a result, the estimates to be proven, follow directly from the corresponding estimates for $SU_{-q}(2)$ proven in [11, Lemma A.1]. \square

Using the notation

$$d_{S^1}(V, W) = \inf\{\|V - \lambda W\| \mid \lambda \in S^1\},$$

several approximate commutation relations can be deduced from Lemma 6.1. For instance, after a possible increase of the constant C , (15) implies that

$$d_{S^1}\left(\left(1_x \otimes V(yr \otimes \bar{r}z, yz)\right)V(x \otimes yz, xyz), \left(V(x \otimes yr, xyr) \otimes 1_{\bar{r}z}\right)V(xyr \otimes \bar{r}z, xyz)\right) \leq Cq^{|y|} \quad (16)$$

for all $x, y, z, r \in I$. We again refer to [11, Lemma A.1] for a full list of approximate intertwining relations.

References

- [1] T. BANICA, Théorie des représentations du groupe quantique compact libre $O(n)$. *C. R. Acad. Sci. Paris Sér. I Math.* **322** (1996), 241–244.
- [2] T. BANICA, Le groupe quantique compact libre $U(n)$. *Commun. Math. Phys.* **190** (1997), 143–172.
- [3] J. BICHON, A. DE RIJDT AND S. VAES, Ergodic coactions with large quantum multiplicity and monoidal equivalence of quantum groups. *Comm. Math. Phys.* **262** (2006), 703–728.
- [4] A. DE RIJDT AND N. VANDER VENNET Actions of monoidally equivalent quantum groups and applications to probabilistic boundaries. To appear in *Ann. Inst. Fourier (Grenoble)*. [math/0611175](https://arxiv.org/abs/math/0611175)
- [5] M. IZUMI, Non-commutative Poisson boundaries and compact quantum group actions. *Adv. Math.* **169** (2002), 1–57.
- [6] M. IZUMI, S. NESHVEYEV AND L. TUSET, Poisson boundary of the dual of $SU_q(n)$. *Comm. Math. Phys.* **262** (2006), 505–531.
- [7] S. NESHVEYEV AND L. TUSET, The Martin boundary of a discrete quantum group. *J. Reine Angew. Math.* **568** (2004), 23–70.
- [8] N. OZAWA, Solid von Neumann algebras. *Acta Math.* **192** (2004), 111–117.
- [9] M. PICARDELLO AND W. WOESS, Martin boundaries of random walks: ends of trees and groups. *Trans. Amer. Math. Soc.* **302** (1987), 185–205.
- [10] R. TOMATSU, A characterization of right coideals of quotient type and its application to classification of Poisson Boundaries. *Comm. Math. Phys.* **275** (2007), 271–296.
- [11] S. VAES AND R. VERGNIOUX, The boundary of universal discrete quantum groups, exactness, and factoriality. *Duke Math. J.* **140** (2007), 35–84.
- [12] S. VAES AND N. VANDER VENNET, Identification of the Poisson and Martin boundaries of orthogonal discrete quantum groups. *J. Inst. Math. Jussieu* **7** (2008), 391–412.
- [13] A. VAN DAELE, Discrete quantum groups. *J. Algebra* **180** (1996), 431–444.
- [14] A. VAN DAELE AND S. WANG, Universal quantum groups. *Internat. J. Math.* **7** (1996), 255–263.
- [15] N. VANDER VENNET, Probabilistic boundaries of discrete quantum groups. *Ph.D. thesis*, K.U.Leuven, 2008. Available at <http://hdl.handle.net/1979/1864>
- [16] W. WOESS, Random walks on infinite graphs and groups. *Cambridge Tracts in Mathematics* **138**. Cambridge University Press, Cambridge, 2000.
- [17] S.L. WORONOWICZ, Compact matrix pseudogroups. *Comm. Math. Phys.* **111** (1987), 613–665.
- [18] S.L. WORONOWICZ, Compact quantum groups. In *Symétries quantiques (Les Houches, 1995)*, North-Holland, Amsterdam, 1998, pp. 845–884.