Networking and Cloud Computing Guide

Part 1: Networking Fundamentals

Internet Protocol (IP)

- Foundation of the internet.
- Responsible for addressing and routing data packets.
- Two versions: IPv4 and IPv6.

Open Systems Interconnection (OSI) Model

- Conceptual framework with seven layers.
- Each layer serves a specific purpose, ensuring interoperability.

OSI Model Layers

Physical Layer: Deals with raw bit transmission.

Data Link Layer: Manages access and error detection.

Network Layer: Focuses on addressing and routing.

Transport Layer: Ensures end-to-end communication.

Session Layer: Manages connections between applications.

Presentation Layer: Translates data, handles encryption.

Application Layer: Provides network services to end-users.

IPv4 and IPv6

- IPv4: 32-bit addressing scheme.
- IPv6: 128-bit addressing scheme, addressing IPv4 limitations.

Public and Private IP Addresses

- Public IPs: Globally unique, routable on the internet.
- Private IPs: Reserved for internal networks, with NAT for security.

Classless Inter-Domain Routing (CIDR)

Flexible IP addressing method compared to class-based addressing.

TCP and UDP

- TCP: Reliable, connection-oriented communication.
- UDP: Faster, connectionless alternative for real-time applications.

HTTP, HTTPS, DNS, SSH

- HTTP: Communication between clients and servers.
- HTTPS: Secured version with data encryption.
- DNS: Resolves domain names to IP addresses.
- SSH: Secure remote access with encrypted communication.

Part 2: Virtual Private Cloud (VPC) on Google Cloud

Overview of Virtual Private Cloud (VPC)

Virtual network for connecting and isolating cloud resources.

Google Cloud Platform (GCP) VPC Concepts

Default VPC

• Automatically created for each project for quick resource deployment.

Custom VPC

Tailor network settings to specific requirements.

Subnets

Segments IP space, enhancing security and performance.

Reserved IP Addresses in GCP

Ensures stability by preventing dynamic allocation changes.

Routing in Google Cloud

Routing Types

- Default Route: Directs traffic to the internet.
- Static Route: Manually defined routes for control.
- Dynamic Route: Utilizes BGP for automatic updates.

Creating Static Routes (Command)

gcloud compute routes create [ROUTE_NAME] --destination-range [DESTINATION_IP_RANGE] --next-hop-address [NEXT_HOP_IP]

Dynamic Routing

GCP supports dynamic routing through BGP.

Routing Order

• Decisions follow a specific order, directing traffic within the network.

Special Return Paths in GCP

Some scenarios require special considerations, like asymmetric routing.

Private Google Access

 Allows VMs in a VPC to access Google Cloud services without external IP addresses.

VPC Creation on GCP (Short Guide)

Access Google Cloud Console

• Open your browser and go to the Google Cloud Console.

Select Project

• Ensure the correct GCP project is selected.

Navigate to VPC Networks

• In the left navigation, select "Networking," then "VPC Networks."

Create a New VPC

Click "Create VPC Network."

Provide VPC Details

- Name: Unique name for VPC.
- Region: Choose desired region.
- Subnet creation mode: Keep default as "Automatic."
- Routing mode: Choose "Regional" for default VPC.

Configure Firewall Rules

• Optional, based on requirements.

Click "Create"

• After entering information, click the "Create" button.

Verify VPC Creation

Confirm VPC status is "Ready" on the "VPC Networks" page.

Check_Out_Detailed_Blog:-https://medium.com/@srivastavayushmaan1347/a-comprehensive-guide-to-networking-and-cloud-computing-unveiling-the-depths-cd816d659449