Preface

I-optimal Design of Experiments Using R

- 1. Preface
- 2. A Short Introduction to R
 - 1. R, R Studio, and user-written libraries
 - 2. Data types
 - 3. Reading and writing data
 - 4. Operations with vectors and matrices
 - 5. Logical operators
 - 6. Base R graphics
 - 7. Selected R libraries (plot3D, mix.DOE, and the optimization one)
- 3. Response Surface Models
 - 1. Amount models (Cartesian space)
 - 2. Mixture models (Simplex space)
 - 3. Mixture-amount models (Combined space)
 - 4. Mixture-process models (Combined space)
 - 5. Mixture-amount-process models (Combined space)
- 4. Constructing I-optimal Designs
 - 1. Point optimization
 - 1. Weighting matrix construction
 - 2. Space matrix construction
 - 3. Point selection and optimization
 - 2. Pick-and-exchange algorithms

- 3. Design visualization using R
- 5. Experiments in 2-D Cartesian Space
 - 1. Unconstrained spaces
 - 2. Constrained spaces
- 6. Experiments in 3-D Cartesian Space
 - 1. Unconstrained spaces
 - 2. Constrained spaces
- 7. Experiments in 4-D and Higher Cartesian Spaces
 - 1. Unconstrained spaces
 - 2. Constrained spaces
- 8. 3-Component Mixtures
 - 1. Unconstrained spaces
 - 2. Constrained spaces
- 9. 4-Component Mixtures
 - 1. Unconstrained spaces
 - 2. Constrained spaces
- 10. 5-Component and Higher Mixtures
 - 1. Unconstrained spaces
 - 2. Constrained spaces
- 11. Mixture Experiments in the Complete Simplex
 - 1. 3-component mixtures
 - 2. 4-component mixtures
 - 3. 5- and higher component mixtures
- 12. Mixture Experiments in the Constrained Simplex
 - 1. 3-component mixtures
 - 2. 4-component mixtures

- 3. 5- and higher component mixtures
- 4. Design construction using R
 - 1. Point optimization
 - 2. Pick-and-exchange
- 5. Design visualization using R
- 13. Mixture-Amount Experiments
 - 1. 3-component mixture-amount experiments
 - 2. 4-component mixture-amount experiments
 - 3. 5- and higher component mixture-amount experiments
 - 4. Design construction using R
 - 1. Point optimization
 - 2. Pick-and-exchange
 - 5. Design visualization using R
- 14. Constrained Mixture-Amount Experiments
- 15. Mixture-Processing Experiments
- 16. Mixture-Amount-Processing Experiments
- 17. Designs using Non-linear Response Surface Models

Appendix 1 – Design Visualization Using ggplot