

逆元

inverse element

模意义下的乘法逆元

模9的世界

	0	
\Rightarrow	1	
7	2	
	3	
	4	K
1	5	
	6	
	7	/
\Rightarrow	8	

1*1 模9为1	在模9意义下,1的乘法逆元是1
2*5 模9为1	在模9意义下,2的乘法逆元是5

4*7 模9为1	在模9意义下,4的乘法逆元是7
5*2 模9为1	在模9意义下,5的乘法逆元是2

7*4 模9为1	在模9意义下,7的乘法逆元是4
8*8 模9为1	在模9意义下,8的乘法逆元是8

在模9意义下,为什么3和6都没有乘法逆元?

不互质

模9的世界

1*1	模9为1
2*5	模9为1

$$20/4 \equiv 20*7 \pmod{9}$$

$$20/5\equiv 20*2 \pmod{9}$$

模意义下 逆元可以将除法变乘法

计算逆元的算法

问题描述

已知a和p,且a和p互质, 对于同余方程 a*x≡1(mod p), 求a的逆元x

有时a的逆元记作a⁻¹, 满足a*a⁻¹≡1(mod p)

问题描述

已知a和p,且a和p互质, 对于同余方程 a*x≡1(mod p), 求a的逆元x

存在整数y满足 a*x+p*y=1

求解二元一次不定方程 使用扩展欧几里得算法exgcd

模MOD意义下 求a的乘法逆元

满足 a*x+MOD*y=1

```
辗转相除 (a,b) -> (b,a%b)
  bx'+(a-a/b*b)y'=gcd(a,b)
 8
  根据a,b分类整理
                                         复习exgcd
  ay'+b(x'-a/b*y')=gcd(a,b)
  所以x=y',y=x'-a/b*y'
                                        O(\log(\max(a,b))
12
13 | ll exgcd(ll a,ll b,ll&x,ll&y){
       if(b==0){
14 
                                     ax+by=gcd(a,b)
15
           x=1; y=0;
16
            return a;
17
18
          xp,yp;
19
       11 g=exgcd(
20
       X =
21
       y=
22
       return g;
23
```

时间复杂度

求解

快快编程2384

模p意义下同余 关系推导

$$C(n,m) \equiv \frac{n!}{m! (n-m)!} \equiv n! \times (m!)^{-1} \times ((n-m)!)^{-1}$$

$$\equiv (n! \%p) \times (m! \%p)^{-1} \times ((n-m)! \%p)^{-1}$$

$$\equiv f[n] \times f[m]^{-1} \times f[n-m]^{-1}$$

$$\equiv f[n] \times inverse(f[m], p) \times inverse(f[n-m], p)$$

f[x]表示x!%p

inverse(x,p)表示在模p意义下x的乘法逆元


```
32 = 11 C(11 n, 11 m, 11 p){
33
        f[0]=1;
34
        for(11 x=1; x<=n; ++x) f[x]=f[x-1]*x%p;
35
        11 res=f[n];
        res=res*inverse(f[m],p)%p;
36
        res=res*inverse(f[n-m],p)%p;
37
38
        return res;
39<sup>1</sup>}
```

f[x]表示x!%p inv

inverse(x,p)表示在模p意义下x的乘法逆元

讨论题

输入n和质数p,求第n项卡特兰数模p

$$C_1 = 1$$

$$C_2 = 2$$

$$C_3 = 5$$

$$C_4 = 14$$

$$C_5 = 42$$

$$C_6 = 132$$

$$C_n = \frac{1}{n+1}C(2n,n)$$

类似组合数取模 利用乘法逆元

$$C_n = \frac{4n-2}{n+1}C_{n-1}$$

现场挑战 快快编程273

请同学写出题目大意已知什么求什么

限时2分钟

辅	前入1	L5	输出	出几	?	45											
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	总
	1	√															1
	2	√	\								思约	维角	度報	持			2
	3	√		V							i是		2				
	4	√	\		V						j 是		3				
	5	√				V					i 1	11人	个约	数			2
	6	√	\	\			V						个倍				4
	7	√						V									2
	8	V	V		V				V								4
	9	V		V						V							3
	10	V	V			V					V						4
	11	√										V					2
	12	√	\	V	V		V						√				6
	13	√												√		15E	2
	14	V	√					V							V	Was.	4
Ī	15	√		V		V								14%	1	V	4
	总	15	7	5	3	3	2	2	1	1	1	1	1	1	1	1	45

$$\sum_{i=1}^{n} \left\lfloor \frac{n}{i} \right\rfloor$$

复杂度O(n)

能否再加速?

$$\sum_{i=1}^{n} \left\lfloor \frac{n}{i} \right\rfloor$$

n=15

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\left[\frac{n}{i}\right]$	15	7	5	3	3	2	2	1	1	1	1	1	1	1	1

n=20

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$\left[\frac{n}{i}\right]$	20	10	6	5	4	3	2	2	2	2	1	1	1	1	1	1	1	1	1	1
						整逐格	块计									Riti	CCO.	dir	9.1	et

$$\sum_{i=1}^{n} \left\lfloor \frac{n}{i} \right\rfloor$$

n=15

j	_	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	$\frac{\imath}{i}$	15	7	5	3	3	2	2	1	1	1	1	1	1	1	1

```
↑ ↑
1 r
```

易错点:分母 有可能为0吗?

复杂度?

复杂度 $O(\sqrt{n})$

$$\sum_{i=1}^{n} \left\lfloor \frac{n}{i} \right\rfloor = \sum_{i=1}^{\left\lfloor \sqrt{n} \right\rfloor} \left\lfloor \frac{n}{i} \right\rfloor + \sum_{i=\left\lfloor \sqrt{n} \right\rfloor + 1}^{n} \left\lfloor \frac{n}{i} \right\rfloor$$

左侧**i**的个数 $O(\sqrt{n})$

右侧 $\left[\frac{n}{i}\right]$ 的
种类 $O(\sqrt{n})$

快快编程73


```
合并同类项 分块
```


$$\sum_{i=1}^{n} i \times \left\lfloor \frac{n}{i} \right\rfloor$$

n=15

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\left\lfloor \frac{n}{i} \right\rfloor$	15	7	5	3	3	2	2	1	1	1	1	1	1	1	1

1 r

快快编程77

$$\sum_{i=1}^{n} k\%i = \sum_{i=1}^{n} \left(k - \left\lfloor \frac{k}{i} \right\rfloor \times i \right) = \sum_{i=1}^{n} k - \sum_{i=1}^{n} \left\lfloor \frac{k}{i} \right\rfloor \times i$$

$$n \times k - solve(n, k)$$

$$\sum_{i=1}^{n} k\%i = \sum_{i=1}^{n} \left(k - \left\lfloor \frac{k}{i} \right\rfloor \times i \right) = \sum_{i=1}^{n} k - \sum_{i=1}^{n} \left\lfloor \frac{k}{i} \right\rfloor \times i$$

 $n \times k - solve(n, k)$

```
9 \neq 11 solve(11 n,11 k){
10
         ll res=0;
         for(ll l=1,r;l<=n;l=r+1){</pre>
11 |
12
              11 val=k/1;
13
              if(val)
14
              else
15
              res+=
16
17
         return res;
18<sup>1</sup>}
```

讨论题

n - 15

分块 相同数值val 所在区间[1,r]

$$\sum_{i=1}^{n} \left[\frac{n}{i} \right]$$

														11-13						
i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15					
$\lceil \frac{n}{i} \rceil$	15	8	5	4	3	3	3	2	2	2	2	2	2	2	1					

$$\left|\frac{n}{i}\right| = val$$

$$val - 1 < \frac{n}{i} \le val \qquad \qquad i < \frac{n}{val - 1}$$

tttttimft

快快编程作业