Pymaceuticals Inc.

Analysis

In [7]: # Observations.

```
### 1. The Capomulin and Ramicane drug regimens result in lower tumor volum
        ### 2. The correlation between mouse weight and tumor volume for the Capomu
        ### 3. Ketapril is the least effective drug regimen as it has both the high
        ### 4. The relationship between timepoint and tumor volume varies, starting
In [8]: # Dependencies and Setup
        import matplotlib.pyplot as plt
        import pandas as pd
        import scipy.stats as st
        # Study data files
        mouse metadata path = "data/Mouse metadata.csv"
        study_results_path = "data/Study_results.csv"
        # Read the mouse data and the study results
        mouse metadata = pd.read csv(mouse metadata path)
        study results = pd.read csv(study results path)
        # Combine the data into a single dataset
        merge df = pd.merge(mouse metadata, study results, on = "Mouse ID")
        # Display the data table for preview
        merge df
```

Out[8]:

	Mouse ID	Drug Regimen	Sex	Age_months	Weight (g)	Timepoint	Tumor Volume (mm3)	Metastatic Sites
0	k403	Ramicane	Male	21	16	0	45.000000	0
1	k403	Ramicane	Male	21	16	5	38.825898	0
2	k403	Ramicane	Male	21	16	10	35.014271	1
3	k403	Ramicane	Male	21	16	15	34.223992	1
4	k403	Ramicane	Male	21	16	20	32.997729	1
1888	z969	Naftisol	Male	9	30	25	63.145652	2
1889	z969	Naftisol	Male	9	30	30	65.841013	3
1890	z969	Naftisol	Male	9	30	35	69.176246	4
1891	z969	Naftisol	Male	9	30	40	70.314904	4

```
In [9]: # Checking the number of mice.
unique = merge_df["Mouse ID"].value_counts()
len(unique)
```

Out[9]: 249

```
In [10]: # Getting the duplicate mice by ID number that shows up for Mouse ID and Ti
truths = merge_df["Mouse ID"].value_counts() > 10
truths
```

#g989 has more than 10 timepoints so it is the duplicate Mouse ID - Tom.

```
Out[10]: g989
                   True
          z581
                  False
          i901
                  False
          c402
                  False
         k862
                  False
                  . . .
         u153
                  False
          1872
                  False
         v199
                  False
         x336
                  False
          f932
                  False
         Name: Mouse ID, Length: 249, dtype: bool
```

```
In [11]: # Optional: Get all the data for the duplicate mouse ID.
merge_df.loc[merge_df["Mouse ID"] == "g989",:]
```

Out[11]:

	Mouse ID	Drug Regimen	Sex	Age_months	Weight (g)	Timepoint	Tumor Volume (mm3)	Metastatic Sites
908	g989	Propriva	Female	21	26	0	45.000000	0
909	g989	Propriva	Female	21	26	0	45.000000	0
910	g989	Propriva	Female	21	26	5	48.786801	0
911	g989	Propriva	Female	21	26	5	47.570392	0
912	g989	Propriva	Female	21	26	10	51.745156	0
913	g989	Propriva	Female	21	26	10	49.880528	0
914	g989	Propriva	Female	21	26	15	51.325852	1
915	g989	Propriva	Female	21	26	15	53.442020	0
916	g989	Propriva	Female	21	26	20	55.326122	1
917	g989	Propriva	Female	21	26	20	54.657650	1
918	g989	Propriva	Female	21	26	25	56.045564	1
919	g989	Propriva	Female	21	26	30	59.082294	1
920	g989	Propriva	Female	21	26	35	62.570880	2

```
In [12]: # Create a clean DataFrame by dropping the duplicate mouse by its ID.

merge_df = merge_df[merge_df["Mouse ID"] != "g989"]
merge_df
```

Out[12]:

	Mouse ID	Drug Regimen	Sex	Age_months	Weight (g)	Timepoint	Tumor Volume (mm3)	Metastatic Sites
0	k403	Ramicane	Male	21	16	0	45.000000	0
1	k403	Ramicane	Male	21	16	5	38.825898	0
2	k403	Ramicane	Male	21	16	10	35.014271	1
3	k403	Ramicane	Male	21	16	15	34.223992	1
4	k403	Ramicane	Male	21	16	20	32.997729	1
1888	z969	Naftisol	Male	9	30	25	63.145652	2
1889	z969	Naftisol	Male	9	30	30	65.841013	3
1890	z969	Naftisol	Male	9	30	35	69.176246	4
1891	z969	Naftisol	Male	9	30	40	70.314904	4
1892	z969	Naftisol	Male	9	30	45	73.867845	4

1880 rows × 8 columns

```
In [13]: # Checking the number of mice in the clean DataFrame.
unique = merge_df["Mouse ID"].value_counts()
len(unique)
```

Out[13]: 248

Summary Statistics

```
In [14]: # Generate a summary statistics table of mean, median, variance, standard d
         # Use groupby and summary statistical methods to calculate the following pr
         # mean, median, variance, standard deviation, and SEM of the tumor volume.
         # Assemble the resulting series into a single summary dataframe.
         drug = merge_df.groupby(["Drug Regimen"])
         drug mean = drug.mean()
         drug df = pd.DataFrame(drug mean["Tumor Volume (mm3)"])
         drug_df = drug_df.rename(columns = {"Tumor Volume (mm3)":"Mean Tumor Volume
         drug median = drug.median()
         drug variance = drug.var()
         drug_std = drug.std()
         drug sem = drug.sem()
         drug_df["Median Tumor Volume"] = drug_median["Tumor Volume (mm3)"]
         drug_df["Tumor Volume Variance"] = drug_variance["Tumor Volume (mm3)"]
         drug_df["Tumor Volume Standard Deviation"] = drug_std["Tumor Volume (mm3)"]
         drug df["Tumor Volume Std. Error"] = drug sem["Tumor Volume (mm3)"]
         drug df
```

Out[14]:

	Mean Tumor Volume	Median Tumor Volume	Tumor Volume Variance	Tumor Volume Standard Deviation	Tumor Volume Std. Error
Drug Regimen					
Capomulin	40.675741	41.557809	24.947764	4.994774	0.329346
Ceftamin	52.591172	51.776157	39.290177	6.268188	0.469821
Infubinol	52.884795	51.820584	43.128684	6.567243	0.492236
Ketapril	55.235638	53.698743	68.553577	8.279709	0.603860
Naftisol	54.331565	52.509285	66.173479	8.134708	0.596466
Placebo	54.033581	52.288934	61.168083	7.821003	0.581331
Propriva	52.320930	50.446266	43.852013	6.622085	0.544332
Ramicane	40.216745	40.673236	23.486704	4.846308	0.320955
Stelasyn	54.233149	52.431737	59.450562	7.710419	0.573111
Zoniferol	53.236507	51.818479	48.533355	6.966589	0.516398

```
In [15]: # Generate a summary statistics table of mean, median, variance, standard d
# Using the aggregation method, produce the same summary statistics in a si
drug["Tumor Volume (mm3)"].agg(['mean','median','var','std','sem'])
```

Out[15]:

	mean	median	var	std	sem
Drug Regimen					
Capomulin	40.675741	41.557809	24.947764	4.994774	0.329346
Ceftamin	52.591172	51.776157	39.290177	6.268188	0.469821
Infubinol	52.884795	51.820584	43.128684	6.567243	0.492236
Ketapril	55.235638	53.698743	68.553577	8.279709	0.603860
Naftisol	54.331565	52.509285	66.173479	8.134708	0.596466
Placebo	54.033581	52.288934	61.168083	7.821003	0.581331
Propriva	52.320930	50.446266	43.852013	6.622085	0.544332
Ramicane	40.216745	40.673236	23.486704	4.846308	0.320955
Stelasyn	54.233149	52.431737	59.450562	7.710419	0.573111
Zoniferol	53.236507	51.818479	48.533355	6.966589	0.516398

Bar and Pie Charts

```
In [16]: # Generate a bar plot showing the total number of unique mice tested on eac
drug_count = merge_df["Drug Regimen"].value_counts()

drug_count.plot(kind="bar", figsize=(10,5), title="Total Mice per Drug Regi
plt.xlabel("Drug Regimen")
plt.ylabel("Number of Unique Mice Tested")
plt.tight_layout()
plt.show()
```



```
In [17]: # Generate a bar plot showing the total number of unquie mice tested on each
         import numpy as np
         x_axis = np.arange(0, len(drug_count))
         count = drug_count
         drugs = ["Capomulin", "Ramicane", "Ketapril", "Naftisol", "Zoniferol", "Stelasyn
         tick_locations = []
         for x in x axis:
             tick_locations.append(x)
         plt.figure(figsize=(10,5))
         plt.title("Total Mice per Drug Regimen")
         plt.xlabel("Drug Regimen")
         plt.ylabel("Number of Unique Mice Tested")
         plt.xlim(-0.75, len(drugs)-.25)
         plt.ylim(0, max(count) + 10)
         plt.bar(x_axis, count, facecolor="blue", alpha=1, align="center")
         plt.xticks(tick_locations, drugs, rotation="vertical")
         plt.tight layout()
         plt.show()
```



```
In [18]: # Generate a pie plot showing the distribution of female versus male mice u
sex_count = merge_df["Sex"].value_counts()
sex_count

sex_pie = sex_count.plot(kind="pie", autopct="%1.1f%%", subplots=True)
plt.tight_layout()
plt.axis("equal")
plt.show()
```


Quartiles, Outliers and Boxplots

```
In [20]: # Calculate the final tumor volume of each mouse across four of the treatme
# Capomulin, Ramicane, Infubinol, and Ceftamin

# Start by getting the last (greatest) timepoint for each mouse
final_vol = merge_df.groupby(["Mouse ID"])
final_vol_df = pd.DataFrame(final_vol["Timepoint"].max())
final_vol_df

# Merge this group df with the original dataframe to get the tumor volume a

merge5_df = pd.merge(final_vol_df, merge_df, on = "Mouse ID", how = "inner"
merge5_df = merge5_df.loc[(merge5_df["Timepoint_x"] == merge5_df["Timepoint_merge5_df = merge5_df.loc[(merge5_df["Drug Regimen"] == "Capomulin") | (mermerge5_df = merge5_df[["Drug Regimen", "Tumor Volume (mm3)"]]
merge5_df
```

Out[20]:

	Drug Regimen	Tumor Volume (mm3)
9	Infubinol	67.973419
19	Infubinol	65.525743
39	Ceftamin	62.999356
66	Ramicane	38.407618
76	Ramicane	43.047543
1812	Ceftamin	68.594745
1822	Capomulin	31.896238
1832	Ceftamin	64.729837
1849	Ramicane	30.638696
1859	Infubinol	62.754451

100 rows × 2 columns

```
In [21]: # Put treatments into a list for for loop (and later for plot labels)
         treatments = ["Capomulin", "Ramicane", "Infubinol", "Ceftamin"]
         # Create empty list to fill with tumor vol data (for plotting)
         tumor vol = []
         # Calculate the IQR and quantitatively determine if there are any potential
         for drug in treatments:
             # Locate the rows which contain mice on each drug and get the tumor vol
             abc = merge5_df.loc[(merge5_df["Drug Regimen"] == drug), :]
             efg = abc["Tumor Volume (mm3)"].quantile([.25,.5,.75])
             tumor vol.append(efg)
             outliers = []
             lowerq = []
             upperq = []
             iqr = []
             lower_bound = []
             upper bound = []
             # add subset
             # Determine outliers using upper and lower bounds
             for tumor in tumor vol:
                 lowerq = (efg[0.25])
                 upperq = (efg[0.75])
                 iqr = upperq-lowerq
                 lower bound = lowerq - (1.5*iqr)
                 upper bound = upperq + (1.5*iqr)
                 outliers = abc.loc[(abc["Tumor Volume (mm3)"] < lower bound) | (abc
             print(f"{drug}'s potential outliers: {outliers}")
         Capomulin's potential outliers: Empty DataFrame
         Columns: [Drug Regimen, Tumor Volume (mm3)]
         Index: []
         Ramicane's potential outliers: Empty DataFrame
         Columns: [Drug Regimen, Tumor Volume (mm3)]
         Index: []
         Infubinol's potential outliers:
                                             Drug Regimen Tumor Volume (mm3)
```

Ceftamin's potential outliers: Empty DataFrame Columns: [Drug Regimen, Tumor Volume (mm3)]

36.321346

Infubinol

Index: []

```
In [22]: # Generate a box plot of the final tumor volume of each mouse across four r
plots = tumor_vol
    fig1, ax1 = plt.subplots()
    ax1.set_title('Tumor Size vs Drug Regimen')
    ax1.set_ylabel('Tumor Size')
    ax1.boxplot(plots)
    x_axis = [1,2,3,4]
    tick_locations = [value for value in x_axis]
    plt.xticks(tick_locations, treatments)
    plt.show()
```


Line and Scatter Plots

```
In [23]: # Generate a line plot of tumor volume vs. time point for a mouse treated w

merge_df6 = merge_df[["Mouse ID","Timepoint","Tumor Volume (mm3)","Drug Reg
merge_df6 = merge_df6.loc[(merge_df6["Drug Regimen"] == "Capomulin"),:]
merge_df6 = merge_df6.loc[(merge_df6["Mouse ID"] == "1509"),:]
merge_df6
x = merge_df6["Timepoint"]
y = merge_df6["Tumor Volume (mm3)"]
plt.plot(x,y)
plt.title("Capomulin Treatment of Mouse 1509")
plt.xlabel("Timepoint")
plt.ylabel("Tumor Volume (mm3)")
plt.show()
```



```
In [24]: # Generate a scatter plot of average tumor volume vs. mouse weight for the
    cap = merge_df.loc[(merge_df["Drug Regimen"] == "Capomulin"),:]
    avg_vol = cap.groupby("Mouse ID").mean()
    avg_vol

    x2 = avg_vol["Weight (g)"]
    y2 = avg_vol["Tumor Volume (mm3)"]
    plt.scatter(x2,y2)
    plt.xlabel("Weight (g)")
    plt.ylabel("Average Tumor Volume (mm3)")
    plt.show()
```


Correlation and Regression

```
In [24]: # Calculate the correlation coefficient and linear regression model
# for mouse weight and average tumor volume for the Capomulin regimen

from scipy.stats import linregress

(slope, intercept, rvalue, pvalue, stderr) = linregress(x2, y2)
    regress_values = x2 * slope + intercept
    plt.scatter(x2,y2)
    plt.xlabel("Weight (g)")
    plt.ylabel("Average Tumor Volume (mm3)")
    plt.plot(x2,regress_values,"r-")
    plt.show()
```


The correlation between mouse weight and the average tumor volume is 0.8

In []: