

Play Tennis Example

Outlook	Temperature	Humidity	Windy	PlayTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Constructing DTs

- O How do we choose the attributes and the order in which they appear in a DT?
 - Recursive partitioning of the original data table
 - Heuristic each generated partition has to be "less random" (entropy reduction) than previously generated partitions

Entropy

S is a sample of training examples p^+ is the proportion of positive examples in S p^- is the proportion of negative examples in S Entropy measures the impurity (randomness) of S

	Outlook	Temperature	Humidity	Windy	PlaxTennis
	Sunny	Hot	High	False	No
	Sunny	Hot	High	True	No
	Overcast	Hot	High	False	Yes
	Rainy	Mild	High	False	Yes
	Rainy	Cool	Normal	False	Yes
_	Rainy	Cool	Normal	True	No
S	Overcast	Cool	Normal	True	Yes
	Sunny	Mild	High	False	No
	Sunny	Cool	Normal	False	Yes
	Rainy	Mild	Normal	False	Yes
	Sunny	Mild	Normal	True	Yes
	Overcast	Mild	High	True	Yes
	Overcast	Hot	Normal	False	Yes
	Rainy	Mild	High	True	No

$$Entropy(S) = Entropy([9+,5-]) = .94$$

$$Entropy(S) = -p^+ \log_2 p^+ - p^- \log_2 p^-$$

Recursive Partitioning – ID3

```
ID3(\mathbf{D}, \mathbf{X}) =
   Let T be a new tree
   If all instances in D have same class c
      Label(T) = c; Return T
   If X = \emptyset or no attribute has positive information gain
      Label(T) = most common class in D; return T
   X \leftarrow attribute with highest information gain
   Label(T) = X
   For each value x of X
      \mathbf{D}_{x} \leftarrow \text{instances in } \mathbf{D} \text{ with } X = x
      If D<sub>x</sub> is empty
         Let T_{\nu} be a new tree
         Label(T_x) = most common class in D
      Else
         T_x = ID3(\mathbf{D}_x, \mathbf{X} - \{X\})
      Add a branch from T to T_x labeled by x
   Return T
```


Partition(Examples, TargetAttribute, Attributes)

Examples are the training examples. TargetAttribute is a binary (+/-) categorical dependent variable and Attributes is the list of independent variables which are available for testing at this point. This function returns a decision tree.

- Create a *Root* node for the tree.
- If all *Examples* are positive then return *Root* as a leaf node with label = +.
- Else if all *Examples* are negative then return *Root* as a leaf node with label = -.
- Else if *Attributes* is empty then return *Root* as a leaf node with label = most common value of TargetAttribute in Examples.
- Otherwise
 - \circ A := the attribute from Attributes that reduces entropy the most on the Examples.
 - $\circ Root := A$
 - \circ F or each $v \in values(A)$
 - Add a new branch below the *Root* node with value A = v
 - L et Examples, be the subset of Examples where A = v
 - If *Examples*_v is empty then add new leaf node to branch with label = most common value of *TargetAttribute* in *Examples*.
 - Else add new subtree to branch
 Partition(*Examples_v*, *TargetAttribute*, *Attributes* {*A*})
- Return Root

Decision Tree Learning

Interpreting a DT

DT = Decision Tree

- \Rightarrow A DT uses the <u>attributes</u> of an observation table as nodes and the <u>attribute values</u> as links.
- \Rightarrow <u>All</u> attribute values of a particular attribute need to be represented as links.
- ⇒ The target attribute is special its values show up as leaf nodes in the DT.

Interpreting a DT

Each <u>path</u> from the root of the DT to a leaf can be interpreted as a <u>decision rule</u>.

IF Outlook = Sunny AND Humidity = Normal THEN Playtennis = Yes

IF Outlook = Overcast THEN Playtennis = Yes

IF Outlook = Rain AND Wind = Strong THEN Playtennis = No

DT: Explanation & Prediction

Outlook	Temperature	Humidity	Windy	PlaxTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Explanation: the DT summarizes (explains) all the observations in the table perfectly \Rightarrow 100% Accuracy

<u>Prediction</u>: once we have a DT (or model) we can use it to make predictions on observations that are not in the original training table, consider:

Outlook = Sunny, Temperature = Mild, Humidity = Normal, Windy = False, Playtennis = ?

Partitioning the Data Set

E = .97

Outlook Overcast

Sunny

Outlook	Temperature	Humidity	Windy	PlayTennis
Overcast	Hot	High	False	Yes
Overcast	Cool	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes

E = 0

Average Entropy = .64

(weighted .69)

Rain	ıy

Outlook	Temperature	Humidity	Windy	PlayTennis
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Rainy	Mild	Normal	False	Yes
Rainy	Mild	High	True	No

E = .97

Partitioning in Action

Outlook	Temperature	Humidity	Windy	PlaxTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Sunny	Hot	High	False	No
Party		High	True	No
Overtas	IM	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Sunny	Mild	Normal	True	Yes

Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Rainy	Mild	Normal	False	Yes
Rainy	Mild	High	True	No

Overcast	Hot	High	False	Yes
Overcast	Cool	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes

Outlook

Outlook

Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Sunny	Mild	Normal	True	Yes

Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Rainy	Mild	Normal	False	Yes
Rainy	Mild	High	True	No

Overcast	Hot	High	False	Yes	
Overcast	Cool	Normal	True	Yes	
Overcast	Mild	High	True	Yes	
Overcast	Hot	Normal	False	Yes	

Outlook

Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Sunny	Mild	Normal	True	Yes

Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Rainy	Mild	Normal	False	Yes
Rainy	Mild	High	True	No

	Overcast	Hot	High	False	Yes
Humidity	Overcast	Cool	Normal	True	Yes
	Overcast	Mild	High	True	Yes
	Overcast	Hot	Normal	False	Yes
				-	

Sunny	Cool	Normal	False	Yes
Sunny	Mild	Normal	True	Yes

Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Sunny	Mild	High	False	No

Continuous-Valued Attributes

Consider:

- Sort instances according to the attribute values
- Find "Splits" where the classes change
- Select the split that gives you the highest gain

Highest Gain: Temperature > 54

Overfitting

Accuracy

Training effort

Patterns in Data

- True pattern in domain
 - present in large amounts of data
 - generalizes to unseen instances
- Spurious pattern in training set
 - "noise in the data"
 - present in small amounts of data
 - does not generalize

ID3 Learning Process

- Beginning
 - lots of data
 - discovers true patterns in data
- Later
 - small amount of data
 - likely to learn spurious patterns

Pruning

- Remove a subtree
- Replace with a leaf
- Class of leaf is most common class of data in subtree

Pruning Example

X 1	X ₂	X ₃	X ₄	C
F	F	F	F	Ը
F	F	Т	Т	Ը
F	Т	F	Т	Ը
Т	Т	Т	F	Р
Т	F	F	F	Ν
Т	Т	Т	Т	Ν
Т	Т	Т	F	Z

When to Prune

- Pre-pruning
 - prune the tree before you grow it
 - adds a termination condition to ID3
 - saves computation time
- Post-pruning
 - grow complete tree and prune it afterward
 - takes into account more information

Pruning Methods

- Minimum number of instances in leaves
- (quasi) Statistical approaches

Minimum Instances

- Each leaf has to have a minimum number of instances
- Don't split if the required number is too low
- Instead return majority label

Deviation

- Before splitting, ask:
 - Is the pattern found in the data after splitting statistically significant?
- Pre-pruning method
 - only need distribution of classes at node

Deviation

Prune if deviation is small

Proposed Split

- Given instances D
- Propose split on X_i
- Notation
 - N_c = number of instances with class c
 - D_x = data set with value x for attribute X_i
 - N_x = number of instances in D_x
 - N_{xc} = number of instances in D_x with class c

Absence of Pattern

- Null hypothesis: X_i is irrelevant
- In D, proportion with class c: N_c/N
- If null hypothesis is true, we expect on average the number of instances in D_x with class c to be:

$$\mathbf{\hat{N}}_{xc} = \frac{\mathbf{N}_c}{\mathbf{N}} |\mathbf{D}_x|$$

Deviation

- We don't expect to see exactly that many, even if null hypothesis is true
- We expect some deviation due to random chance
- Measure the deviation from total absence of pattern:

Dev =
$$\sum_{x} \sum_{c} \frac{(N_{xc} - \hat{N}_{xc})^{2}}{\hat{N}_{xc}}$$

→ Don't split if Dev is small