Examen partiel A2000

Problème no. 1 (20 points)

a) Une source de tension v_s alimente une résistance R et une inductance L connectées en série. La tension aux bornes de l'inductance L est donnée dans la figure suivante.

Tracer en fonction du temps le courant i_R , la tension v_R , la puissance p_R et l'énergie w_R dans la résistance R. *(10 points)*

b) Soit le circuit résistif suivant:

Calculer le courant i_x en appliquant le principe de superposition. *(10 points)*

Problème no. 2 (20 points)

Soit le circuit suivant:

- a) Déterminer l'équivalent Thévenin de la partie gauche du circuit (vu aux bornes a-b).
- b) Utilisant le résultat de (a), calculer la tension v_x.

Problème no. 3 (20 points)

Soit le circuit suivant:

- a) Établir les équations d'équilibre du circuit en utilisant la méthode des mailles. (7 points)
- b) Établir les équations d'équilibre du circuit en utilisant la méthode des noeuds. (7 points)
- c) À l'aide du résultat de (a) ou (b), déterminer la tension v₂ en fonction de v_s. *(6 points)*

Problème no. 4 (20 points)

a) Exprimer la fonction v(t) suivante sous forme d'une somme de fonctions singulières. (7 points)

b) Soit le circuit suivant.

- Écrire directement sous forme matricielle les équations d'équilibre du circuit en utilisant la méthode des noeuds.
- À partir du résultat obtenu, **établir** l'équation différentielle qui relie la tension v_2 à la source v_s .

(13 points)