HOUSING PRICE REGRESSION ANALYSIS

MICHELLE (QIN) PENG

GitHub:

Username: misseuro

URL: https://github.com/misseuro/housingprice/blob/master/FinalProject_StatisticLearning.ipynb

DATASET OVERVIEW

Data Source:

Kaggle's Ames Housing dataset

Programming Language: Python

Number of Observations: 1460

Response Variable: SalePrice

Features: 81

Numerical Variables: 38

Categorical Variables: 43

DATA PREPROCESSING

IMPUTE – STEP1 MISSING VALUES:

- 1) Delete the columns with over 90% missing values
- Assign 0 to Missing values of Ordinal variables eg: Fence, FireplaceQu
- Assign group medians to missing values:eg: LotFrontage

ENCODING – STEP2 CATEGORICAL VARIABLES

FEATURE – STEP3 ENGINEERING

OverallQual: [Ordinal]

Rates of the overall material and finish of the house from 1 to 10

GrLivArea: [Numeric]

Above ground Living Area

GarageCars: [Numeric]

Size of garage in car capacity

GarageArea: [Numeric]

Size of garage in square feet

TotalBsmtSF: [Numeric]

Total Square Feet of Basement

MULTICOLLINEARITY

VIF	FEATURES
5.290448	Fireplaces
5.481232	FireplaceQu
5.769224	BsmtQual
6.085164	TotRmsAbvGr d
6.259153	GarageYrBlt
7.244331	GarageCars
7.303996	GarageArea
16.606101	YearBuilt
19.048027	GarageQual
20.162878	GarageCond
20.220397	BldgType

1) Construct 2 new variables:

Total Square Feet = GrLivArea + TotalBsmtArea

Porch =
OpenPorchSF+EnclosedPorch+3
SsnPorch+ScreenPorch

2) Pick between Quality and Condition variables

OUTLIERS – STEP4

1.0

OUTLIERS – STEP4

REGRESSION AND MODEL SELECTION

Blue: 5KCV Orange: LOOCV

CONCLUSION:

R square:

- 1. LOOCV method has more variation than the 5 Fold method
- 2. Increasing sample size increases the testing R square but reduces training R square

Parameter Tuning:

- 1.LOOCV method leads to the lower CV error
- 2.Increasing sample size leads to lower CV error

Coefficients:

- 1. 5 Fold method shrinks more aggressively
- 2. Increasing sample size mitigate effect of regularizations

Top variables:

- 1.TotalSF: Total Square Feet
- 2.OverallQuality
- 3. Neighborhood_NridgHt (Northridge Heights)
- 4. Total Rooms Above Ground
- 5.GarageArea

THANKS FOR WATCHING

MICHELLE (QIN) PENG

