

JSC Viterbi

Ming Hsieh Department of

Jie Wang[†], Talha Bozkus[‡], Yao Xie[†], Urbashi Mitra[‡]

H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology

Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California

Introduction

Networks with Packet Loss

A file transmission problem

- # packets = K
- E.g., 2MB file \approx 2,000 packets
- Single source node
- One/multiple destination nodes
- Non-negligible packet loss rate

A practical solution

- low computational and storage costs
- high transmission rate
- small protocol overhead

Line Networks of n Hops [yang2021capacity]

All links have a packet loss rate ϵ .

Intermediate Operation	Maximum Rate
forwarding	$(1-\epsilon)^n \to 0$
network coding	$1-\epsilon$

- [yang2021capacity]: Yang S, Wang J, Dong Y, et al. Capacity Scalability of Line Networks with Batched Codes. arXiv preprint arXiv:2105.07669, 2021.
- [yin2021unified]: Yin, H. H., Tang, B., Ng, K. H., Yang, S., Wang, X., & Zhou, Q. (2021). A unified adaptive recoding framework for batched network coding. IEEE Journal on Selected Areas in Information Theory.
- [wang2021small]: **Wang, J**., Jia, Z., Yin, H. H., & Yang, S. (2021). Small-sample inferred adaptive recoding for batched network coding. In 2021 IEEE International Symposium on Information Theory.

Random Linear Recoding

Pros:

 Nearly optimal expected rank.

Highest recoding computation cost.

Waiting for packets for recoding.

Adaptive Recoding [yin2021unified, wang2021small]

Cons:

Idea: generate different number of received packets for batches of different ranks.

MDP Formulation

- ullet Stage: The index of node, denoted as $\ell \in [L]$.
- State: The rank of the received batch, denoted as $s_{\ell} \in [M]$.
- ullet Action: Number of recoded packets sent to the outcoming link, denoted as N_{ℓ} . Policy: $\pi_{\ell}(\cdot|s_{\ell})$.
- ullet Reward Function: At stage $\ell \in [L-1]$, the reward $r_\ell(s_\ell,N_\ell) = -\eta \cdot N_\ell$. At the final stage L, the reward $r_L(s_L) = s_L$.
- ullet Batch-wise packet loss model: for $\ell \in [L-1]$, the probability that node ℓ transmits spackets while node $\ell+1$ receives s' packets equals $q_{\ell}(s'\mid s)$
- Transition dynamics:

$$P_\ell(s|s_\ell,N_\ell) = \left\{ \sum_{k=s}^{0, \quad ext{if } s_\ell < s, top q_\ell(k|N_\ell)\zeta_s^{s_\ell,k}, \quad ext{if } s_\ell \geq s.
ight.$$

Here $\zeta_i^{i,k}$ is the probability that $i \times k$ size matrix with independent entries uniformly distributed over the field of size \mathfrak{q} has rank j.

Uncertainty Quantification of Channel Parameters

Unknown: Channel parameters $\theta := (p_G, p_B, p_{GB}, p_{BG})$.

Ground Truth Data: $\mathcal{D} = \{(X_j^i, Y_j^i)\}_{j \in [n], i \in [1:m]}$.

The *i*-th trajectory: $((X_0^i, Y_0^i), (X_1^i, Y_1^i), \dots, (X_n^i, Y_n^i))$.

Here X_i^i is a latent variable, indicating whether the channel state is good $(X_i^i=1)$ or bad $(X_i^i=0)$, and Y_i^i is a observation variable indicating whether the j-th packet from i-th trajectory is successfully transmitted or not.

Observation: $\mathcal{D}_o = \{Y_j^i\}_{j \in [n], i \in [1:m]}$.

Point Estimation: Let $\hat{\theta}_i$ be the EM algorithm estimator based on i-th trajectory.

Confidence Set Estimation: Since $n^{1/2}(\widehat{\theta}_i - \theta^*) \to \text{Normal}$, we take $(1 - \alpha)$ -coverage confidence set

$$\Xi = \left\{ \theta : (\theta - \overline{\theta})\widehat{\Sigma}^{-1}(\theta - \overline{\theta}) \le \frac{T_{4,m-4}^2(1 - \alpha)}{m} \right\}.$$

Numerical Study

True Parameter

- (a)-(d): Estimation for parameters p_G, p_B, p_{BG}, p_{GB} .
- Sample size: m = $20, n \in [1e4, 1e6].$
- Coverage probability: 95%

