# 1.【和式】

### :【推导结论】

## 2.【下降幂、上升幂】 ≔

### 【基本性质、定理】

$$\begin{array}{l} \bullet \ x^{\underline{n}} = (x-1)^{\underline{n-1}} x = \frac{(x)!}{(x-n)!} = \prod_{i=x-n+\frac{i}{2}}^{x} (x^{\underline{0}} = 1) \\ \bullet \ x^{\overline{n}} = (x+1)^{\overline{n-1}} x = \frac{(x+n-1)!}{(x-1)!} = \prod_{i=x}^{x+n-1} i \ (x^{\overline{0}} = 1) \end{array}$$

## :【推导结论】

• 
$$x^{\underline{n}} = (-1)^n (-x)^{\overline{n}}$$

• 
$$x^{\overline{n}} = (-1)^n (-x)^{\underline{n}}$$

• 
$$x^{\underline{n}} = A_x^n$$

• 
$$x^{\overline{n}} = A_{x+n-1}^n$$

# 3. 【三角函数】

# · 【基本性质、定理】

# # (1).【函数基本关系】

• 
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$
  
•  $\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$ 

• 
$$\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$

• 
$$\sin \alpha \csc \alpha = 1$$

• 
$$\cos \alpha \sec \alpha = 1$$

• 
$$\tan \alpha \cot \alpha = 1$$

• 
$$\sin^2 \alpha + \cos^2 \alpha = 1$$

• 
$$\sec^2 \alpha - \tan^2 \alpha = 1$$

• 
$$\csc^2 \alpha - \cot^2 \alpha = 1$$

# **# (2).**【秀导公式】

• 
$$\sin(-\alpha) = -\sin\alpha$$

• 
$$\cos(-\alpha) = \cos \alpha$$

• 
$$\tan(-\alpha) = -\tan\alpha$$

• 
$$\cot(-\alpha) = -\cot \alpha$$

• 
$$\sin(\pi + \alpha) = -\sin\alpha$$

• 
$$\cos(\pi + \alpha) = -\cos\alpha$$

• 
$$\tan(\pi + \alpha) = \tan \alpha$$

• 
$$\cot(\pi + \alpha) = \cot \alpha$$

• 
$$\sin(\pi - \alpha) = \sin \alpha$$

• 
$$\cos(\pi - \alpha) = -\cos\alpha$$

• 
$$\tan(\pi - \alpha) = -\tan \alpha$$

• 
$$\cot(\pi - \alpha) = -\cot\alpha$$

• 
$$\sin(\frac{1}{2}\pi - \alpha) = \cos\alpha$$

• 
$$\cos(\frac{1}{2}\pi - \alpha) = \sin\alpha$$

• 
$$\tan(\frac{1}{2}\pi - \alpha) = \cot \alpha$$

• 
$$\cot(\frac{1}{2}\pi - \alpha) = \tan\alpha$$

# ⊭ (3).【和角公式】

• 
$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

• 
$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

• 
$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

• 
$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

• 
$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

• 
$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$
  
•  $\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$ 

#### ## (4).【积化和差】

(同 cos 异 sin, sin sin 负负)

$$\begin{aligned} \bullet & \cos\alpha\cos\beta = \frac{1}{2}[\cos(\alpha+\beta) + \cos(\alpha-\beta)] \\ \bullet & \sin\alpha\sin\beta = -\frac{1}{2}[\cos(\alpha+\beta) - \cos(\alpha-\beta)] \\ \bullet & \sin\alpha\cos\beta = \frac{1}{2}[\sin(\alpha+\beta) + \sin(\alpha-\beta)] \\ \bullet & \cos\alpha\sin\beta = \frac{1}{2}[\sin(\alpha+\beta) - \sin(\alpha-\beta)] \end{aligned}$$

• 
$$\sin \alpha \sin \beta = -\frac{1}{2} [\cos(\alpha + \beta) - \cos(\alpha - \beta)]$$

• 
$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

• 
$$\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$$

#### ## (5).【和差化积】

$$\begin{split} \bullet & \sin\alpha + \sin\beta = 2\sin(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2}) \\ \bullet & \cos\alpha + \cos\beta = 2\cos(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2}) \\ \bullet & \sin\alpha - \sin\beta = 2\cos(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2}) \\ \bullet & \cos\alpha - \cos\beta = -2\sin(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2}) \\ \bullet & \tan\alpha + \tan\beta = \frac{\sin(\alpha+\beta)}{\cos\alpha\cos\beta} \end{split}$$

• 
$$\cos \alpha + \cos \beta = 2\cos(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})$$

• 
$$\sin \alpha - \sin \beta = 2\cos(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2})$$

• 
$$\cos \alpha - \cos \beta = -2\sin(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2})$$

• 
$$\tan \alpha + \tan \beta = \frac{\sin(\alpha + \beta)}{\cos \alpha \cos \beta}$$

#### ## (6).【倍角公式】

• 
$$\sin 2\alpha = 2\sin \alpha\cos \alpha$$

• 
$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

• 
$$\tan 2\alpha = \frac{2\tan\alpha}{1-\tan^2\alpha}$$

#### ## (7).【半角公式】

• 
$$\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1-\cos \alpha}{2}}$$

• 
$$\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1+\cos \alpha}{2}}$$

• 
$$\tan \frac{\alpha}{2} = \pm \sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}$$

• 
$$\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1-\cos \alpha}{2}}$$
  
•  $\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1+\cos \alpha}{2}}$   
•  $\tan \frac{\alpha}{2} = \pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}$   
•  $\tan \frac{\alpha}{2} = \frac{1-\cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1+\cos \alpha}$ 

#### ## (8).【万能公式】

• 
$$\sin \alpha = \frac{2 \tan \frac{\alpha}{2}}{1 + \frac{\alpha}{2}}$$

• 
$$\tan \alpha = \frac{2 \tan \frac{\alpha}{2}}{1 - \tan^2 \frac{\alpha}{2}}$$

### ## (9).【正弦定理、余弦定理】

• 
$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$$
 (其中  $R$  为  $\Delta ABC$  外接圆半径)
•  $\cos A=\frac{b^2+c^2-a^2}{2bc}$ 
•  $\cos B=\frac{a^2+c^2-b^2}{2ac}$ 
•  $\cos C=\frac{a^2+b^2-c^2}{2ab}$ 

• 
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

• 
$$\cos B = \frac{a^2 + c^2 - b^2}{a^2 + c^2}$$

• 
$$\cos C = \frac{2ac}{2ab}$$

# ## (10).【常见反三角函数】

•  $\arcsin \alpha + \arccos \alpha = \frac{\pi}{2}$ 

## ## (11).【辅助角公式】

•  $a\sin\alpha + b\cos\alpha = \sqrt{a^2 + b^2}\sin(\alpha + \arctan\frac{b}{a}) \ (a > 0)$ 

# *⁴ 4.*【单位根】

# #【基本性质、定理】

 $\begin{array}{l} \bullet \ \omega_n^k = \cos(\frac{2\pi k}{n}) + \sin(\frac{2\pi k}{n})i \\ \bullet \ \omega_n^k = g^{\frac{k(P-1)}{n}} \bmod P \ (P=k2^t+1, P \in \{Prime\}) \end{array}$ 

# #【推导结论】

- $\omega_n^k = (\omega_n^1)^k$   $\omega_n^j \omega_n^k = \omega_n^{j+k}$   $\omega_{2n}^{2k} = \omega_n^k$   $\omega_n^{(k+n/2)} = -\omega_n^k (n$  为偶数)
- $\sum_{i=1}^{n-1} \omega_n^i = 0$

# 一: 【基本数论、数学知识】

# # 1. 【斐波那契数列 (Fibonacci) 】

## ## 【基本性质、定理】

• 
$$fib_n=\left\{egin{array}{ll} 0 & n=0 \\ 1 & n=1 \\ fib_{n-1}+fib_{n-2} & n>1 \end{array}
ight.$$

## ## 【推导结论】

• 
$$\sum_{i=1}^{n} f_i = f_{n+2} - 1$$

• 
$$\sum_{i=1}^{n} f_{2i-1} = f_{2n}$$

• 
$$\sum_{i=1}^{n} f_i = f_{n+2} - 1$$
  
•  $\sum_{i=1}^{n} f_{2i-1} = f_{2n}$   
•  $\sum_{i=1}^{n} f_{2i} = f_{2n+1} - 1$   
•  $\sum_{i=1}^{n} (f_i)^2 = f_i f_{i+1}$ 

• 
$$\sum_{i=1}^{n} (f_i)^2 = f_i f_{i+1}$$

• 
$$f_{n+m} = f_{n-1}f_{m-1} + f_nf_m$$

• 
$$(f_n)^2 = (-1)^{(n-1)} + f_{n-1}f_{n+1}$$

• 
$$f_{2n-1}=(f_n)^2-(f_{n-2})^2$$

• 
$$f_n = \frac{f_{n+2} \cdot f_{n-2}}{3}$$

• 
$$f_n = \frac{f_{n+2}f_{n-2}}{3}$$
  
•  $\frac{f_n}{f_{i-1}} \approx \frac{\sqrt{5}-1}{2} \approx 0.618$ 

• 
$$f_n=rac{\left(rac{1+\sqrt{5}}{2}
ight)^n-\left(rac{1-\sqrt{5}}{2}
ight)^n}{\sqrt{5}}$$
【证明】

# 2.【最大公约数 (GCD) 和最小公倍数 (LCM) 】

## # 【基本性质、定理】

• 
$$gcd(a,b) = gcd(b,a-b) (a > b)$$

• 
$$gcd(a,b) = gcd(b,a \mod b)$$

• 
$$gcd(a, b) lcm(a, b) = ab$$

### 【推导结论】

• 
$$k|\gcd(a,b) \iff k|a \boxtimes k|b$$

• 
$$gcd(k, ab) = 1 \iff gcd(k, a) = 1 \sqsubseteq gcd(k, b) = 1$$

• 
$$(a+b) \mid ab \Longrightarrow \gcd(a,b) \neq 1$$
 【例题】

• 在 Fibonacc 数列中求相邻两项的 gcd 时,辗转相减次数等于辗转相除次数。

• 
$$gcd(fib_n, fib_m) = fib_{gcd(n,m)}$$
【证明】

### 3.【裴蜀 (Bézout) 定理】

#### **⊭ 【基本性质、定理】**

- 设 a,b 是不全为零的整数,则存在整数 x,y , 使得  $ax+by=\gcd(a,b)$
- $gcd(a,b)|d \iff \exists x,y \in \mathbb{Z}, ax+by=d$

#### ⊭ 【推导结论】

• 设不定方程  $ax+by=\gcd(a,b)$  的一组特解为  $\left\{egin{array}{l} x=x_0 \\ y=y_0 \end{array}
ight.$  则  $ax+by=c\left(\gcd(a,b)|c\right)$  的通解为  $\begin{cases} x = \frac{c}{\gcd(a,b)} x_0 + k \frac{b}{\gcd(a,b)} \\ y = \frac{c}{\gcd(a,b)} y_0 - k \frac{a}{\gcd(a,b)} \end{cases} (k \in \mathbb{Z}) . [模板]$ •  $orall a,b,z\in \mathbb{N}^*,\gcd(a,b)=1,$   $\exists x,y\in \mathbb{N},$  ax+by=ab-a-b+z 【例题】

# 4.【欧拉函数】

## # 【基本性质、定理】

- $\varphi(x)=x\prod_{i=1}^n(1-\frac{1}{p_i})$ , 其中  $p_i$  为 x 的质因子,n 为 x 的质因子个数  $\gcd(a,b)=1\Longrightarrow \varphi(ab)=\varphi(a)\varphi(b)$  (欧拉函数是积性函数)

#### # 【推导结论】

•  $p > 2 \Longrightarrow [\varphi(p) \mod 2 = 0]$ •  $p \in \{Prime\} \Longrightarrow \varphi(p^k) = p^k - p^{k-1}$ •  $\sum_{i=1}^n i[\gcd(i,n) = 1] = \frac{n\varphi(n) + [n=1]}{2}$  [例题] •  $f(n) = \sum_{i=1}^n [\gcd(i,k) = 1] = \frac{n}{k}\varphi(k) + f(n \mod k)$ 

## 5.【同余运算】

#### \* 【基本性质、定理】

- $\begin{cases} a \equiv b \pmod{m} \Longrightarrow a + c \equiv b + d \pmod{m} \\ c \equiv d \pmod{m} \Longrightarrow a + c \equiv b + d \pmod{m} \end{cases}$   $\begin{cases} a \equiv b \pmod{m} \Longrightarrow a c \equiv b d \pmod{m} \end{cases}$ •  $a \equiv b \pmod{m} \Longrightarrow ak \equiv bk \pmod{m}$
- $ka \equiv kb \pmod{m}$ ,  $\gcd(k, m) = 1 \Longrightarrow a \equiv b \pmod{m}$

### 6.【费马小定理及其扩展】

## ≠【基本性质、定理】

•  $P \in \{Prime\}, P \nmid a \Longrightarrow a^{P-1} = 1 \pmod{P}$ 

## **⊭ 【推导结论】**

• 对于任意多项式  $F(x)=\sum_{i=0}^\infty a_i x^i \ (a_i$  对一个质数 P 取模),若满足  $a_0\equiv 1 \pmod{P}$ ,则  $\forall n\leqslant P, F^P(x)\equiv 1 \pmod{x^n}$  。

#### 7.【欧拉定理及其扩展】

#### : 【基本性质、定理】

- $gcd(a, m) = 1 \Longrightarrow a^{\varphi(m)} \equiv 1 \pmod{m}$ •  $gcd(a, m) = 1 \Longrightarrow a^b \equiv a^b \mod \varphi(m) \mod m$ •  $b > \varphi(m) \Longrightarrow a^b \equiv a^b \mod \varphi(m) + \varphi(m) \mod m$  【例题】
- [推导结论】
- $\exists x \in N^*, a^x = 1 \pmod{m} \iff \gcd(a,m) = 1$  【证明】 【例题】

#### 8.【孙子定理/中国剩余定理 (CRT) 及其扩展】

### 【基本性质、定理】

・ 若 
$$m_1,m_2\dots m_k$$
 两两互素,则同余方程组  $\begin{cases} x\equiv a_1 \pmod{m_1} \\ x\equiv a_2 \pmod{m_2} \end{cases}$  有唯一解为:  $x=\sum_{i=1}^k a_i M_i M_i^{-1}$ ,其中  $M_i=\prod_{j\neq i} m_j$  。 【模 板】

### 9. 【佩尔 (Pell) 方程】

### □【基本性质、定理】

- 形如  $x^2-Dy^2=1$   $(D\in\mathbb{N}^*$ 且为非平方数) 的方程被称为第一类佩尔方程。设它的一组最小正整数解为  $\left\{egin{array}{c} x=x_0 \\ y=y_0 \end{array}, 
  ight.$ 则其第 n 个解满 足: $x_n + \sqrt{D}y_n = (x_0 + \sqrt{D}y_0)^{n+1}$ ,递推式为  $\begin{cases} x_n = x_0x_{n-1} + Dy_0y_{n-1} \\ y_n = x_0y_{n-1} + y_0x_{n-1} \end{cases}$ 。 【例题】 • 形如  $x^2 - Dy^2 = -1$   $(D \in \mathbb{N}^*$ 且为非平方数)的方程被称为第二类佩尔方程。设它的一组最小正整数解为  $\begin{cases} x = x_0 \\ y = y_0 \end{cases}$ ,则其第 n 个解满
- 足:  $x_n + \sqrt{D}y_n = (x_0 + \sqrt{D}y_0)^{2n+1}$ 。 递推式略。

### 10.【勾股方程/勾股数组】

#### \*【基本性质、定理】

• 方程 
$$x^2+y^2=z^2$$
 的正整数通解为 
$$\begin{cases} x=k(u^2-v^2) \\ y=2kuv \\ z=k(u^2+v^2) \end{cases} (u,v\in\{Prime\},k\in\mathbb{N}^*),$$
 且均满足  $\gcd(x,y,z)=k$  。

# - 二: 【组合数学】

# # 1.【排列与组合数】

## ## 【基本性质、定理】

- ・  $A_n^m = \frac{n!}{(n-m)!}$  【排列】
  ・  $C_n^m = \frac{A_n^m}{m!} = \frac{n!}{m!(n-m)!}$  【组合】
- $C_n^m = C_n^{n-m}$  【对称公式】

- $C_n^m = C_n^{m-m}$  【对称公式】
    $C_n^m = C_{n-1}^m + C_{n-1}^{m-1}$  【加法公式】
    $C_n^m = \frac{n}{m} C_{n-1}^{m-1}$  【吸收公式】
    $C_n^m = (-1)^m C_{m-n-1}^m$  【上指标反转】
    $\sum_{i=0}^m C_{n+i}^i = C_{n+m+1}^m$  【平移求和】
    $\sum_{i=0}^k C_n^i C_n^{k-i} = C_{n+m}^k$  【范德蒙德卷积】
    $C_n^k C_k^m = C_n^m C_{n-m}^{k-m}$

### ## 【推导结论】

- $ij = C_{i+j}^2 C_i^2 C_j^2$

- ・  $\sum_{i=0}^{n} C_{n-i}^{i} = fib_{n+1}$ ・  $\sum_{i=0}^{n} C_{i}^{m} = C_{n+1}^{m+1}$  (平移求和)
  ・  $\sum_{i=0}^{n} (C_{n}^{i})^{2} = C_{2n}^{m}$  (范德蒙德卷积)
  ・  $\sum_{i=0}^{n} (-1)^{n-i} C_{i}^{i} C_{i}^{m} = [m=n]$  (可用其证明二项式反演)
- $\sum_{i=0}^{n} (-1)^{i-m} C_n^i C_i^m = [m=n]$  (可用其证明二项式反演)

#### ₺ 2.【卢卡斯定理】

#### #【基本性质、定理】

• 
$$C_n^m = C_{\lfloor \frac{n}{p} \rfloor}^{\lfloor \frac{m}{p} \rfloor} C_n^m \mod p (p \in \{Prime\})$$
 【模板】

## ₺ 3.【库默尔定理】

#### # 【基本性质、定理】

•  $\forall m,n\in\{\mathbb{Z}\},P\in\{Prime\},C^m_{m+n}$ 含 P 的幂次等于 m+n 在 P 进制下的进位次数。 【例 题】

### *4.*【牛顿二项式定理】

## #【基本性质、定理】

• 
$$(x+y)^n = \sum_{i=0}^n C_n^i x^{n-i} y^i$$

#### # 【推导结论】

- $$\begin{split} & \bullet \ \sum_{i=0}^{n} C_n^i = 2^n \\ & \bullet \ \sum_{i=0}^{n} i C_n^i = n 2^{n-1} \\ & \bullet \ \sum_{i=0}^{n} i^2 C_n^i = n(n+1) 2^{n-1} \end{split}$$

## # 5.【广义牛顿二项式定理】

#### ## 【基本性质、定理】

$$\begin{split} \bullet \ C_r^n &= \begin{cases} 0 & n < 0, r \in \mathbb{R} \\ 1 & n = 0, r \in \mathbb{R} \\ \frac{r(r-1)\cdots(r-n+1)}{n!} & n > 0, r \in \mathbb{R} \end{cases} \\ \bullet \ (1+x)^{-n} &= \sum_{i=0}^{\infty} C_{-n}^{i} x^i = \sum_{i=0}^{\infty} (-1)^i C_{n+i-}^i x^i \\ \bullet \ (x+y)^{\alpha} &= \sum_{i=0}^{\infty} C_{\alpha}^{i} x^{\alpha-i} y^i \ (x,y,\alpha \in \mathbb{R} \ \mathbb{H} \ |\frac{x}{y}| < 1) \end{cases}$$
 [证明]

### # 6. 【卡特兰数 (Catalan)】

#### ## 【基本性质、定理】

• 
$$cat_n=\left\{egin{array}{ll} 1 & n=0 \\ \sum_{i=0}^{n-1} cat_i cat_{n-i-1} & n>0 \end{array} 
ight.$$
 【模板 1】 【模板 2】

#### ## 【推导结论】

• 
$$cat_n=C^n_{2n}-C^{n+1}_{2n}=rac{C^n_{2n}}{n+1}$$
 【感性理解】 【生成函数严格证明】

# : 7.【斯特林数 (Stirling)】

#### # 【基本性质、定理】

• 
$$s_n^m = s_{n-1}^{m-1} + (n-1)s_{n-1}^m (s_n^n = 1, s_n^0 = 0^n)$$
 【第一类斯特林数】 •  $S_n^m = S_{n-1}^{m-1} + mS_{n-1}^m (S_n^n = 1, S_n^0 = 0^n)$  【第二类斯特林数】 【模板】 【例题】 •  $S_n^m = \frac{\sum_{i=0}^m (-1)^m - in_i^{in_i}}{m!} = \sum_{i=0}^m \frac{(-1)^m - in_i^{in_i}}{(m-i)!}$  【模板】

### # 【推导结论】

• 
$$n! = \sum_{i=0}^{n} s_n^i$$
  
•  $x^n = \sum_{i=0}^{n} s_n^i x^i$   
•  $x^n = \sum_{i=0}^{n} s_n^i x^i (-1)^{n-i}$   
•  $x^n = \sum_{i=0}^{x,n} S_n^i x^i$ 

• 
$$x^{\underline{n}} = \sum_{i=0}^{n} s_n^i x^i (-1)^{n-i}$$

• 
$$x^n = \sum_{i=0}^{x,n} S_n^i x_{\underline{i}}^i$$

• 
$$x^n = \sum_{i=0}^{x,n} S_n^i x^{\bar{i}} (-1)^{n-i}$$

• 
$$\sum_{i=1}^{n} S_{n}^{i} s_{i}^{m} = \sum_{i=0}^{n} s_{n}^{i} S_{i}^{m}$$

• 
$$\sum_{i=0}^{n} i^k = \sum_{i=0}^{n} j! S_k^j C_{n+1}^{j+1}$$

• 
$$x^n = \sum_{i=0}^{n} S_n^i x^i (-1)^{n-i}$$
  
•  $x^n = \sum_{i=0}^{n} S_n^i x^i (-1)^{n-i}$   
•  $\sum_{i=1}^{n} S_n^i s_i^m = \sum_{i=0}^{n} s_n^i S_n^m$   
•  $\sum_{i=0}^{n} i^k = \sum_{j=0}^{n} j! S_k^j C_{n+1}^{j+1}$   
•  $\sum_{i=1}^{n} C_n^i i^k = \sum_{j=0}^{k} S_k^j 2^{n-j} \frac{n!}{(n-j)!}$  [例题]

# · 8.【贝尔数 (Bell)】

### # 【基本性质、定理】

・ 
$$B_n = \sum_{i=0}^{n} S_n^i (B_0 = 1)$$
 【模板】  
・  $B_n = \sum_{i=0}^{n-1} C_{n-1}^i B_i$  【模板】

• 
$$B_n = \sum_{i=0}^{n-1} C_{n-1}^i B_i$$
 【模板】

## # 9. 【Polya 定理】

## 【基本性质、定理】

• 
$$ans = \frac{\sum_{i=1}^{n} m^{k_i}}{n}$$
 【理解】

## # 10.【经典容斥原理】

## 【推导结论】

•  $f(i) = \sum\limits_{j=i}^n (-1)^{j-i} C_j^i g(j) = g(i) - \sum\limits_{j=i+1} C_j^i f(j)$  (f(i) 为恰好 i 个满足"balabala"的方案数,g(i) 为钦定 i 个满足"balabala"其他随意的方案数)【例题】【例题】【例题】【例题】

## 二项式反演

$$f_n = \sum_{i=0}^n C_n^i imes g_i \Longleftrightarrow g_n = \sum_{i=0}^n (-1)^{n-i} imes C_n^i imes f_i$$

设 $f_i$ 表示恰好的方案数,  $g_i$ 表示至多的方案数, 则有

$$g_n = \sum_{i=0}^n C_n^i imes f_i$$

根据二项式反演有

$$f_n = \sum_{i=0}^n (-1)^{n-i} imes C_n^i imes g_i$$

# *□ 11.*【生成函数】

# # 【推导结论】

# ## (1).【常用普通生成函数 (OGF) 收敛性式】

• 
$$\sum_{i=0}^{\infty} x^i = \frac{1}{1-x}$$

• 
$$\sum_{i=0}^{\infty} x^i = \frac{1}{1-x}$$
  
•  $\sum_{i=0}^{\infty} a^i x^i = \frac{1}{1-ax}$   
•  $\sum_{i=0}^{\infty} (i+1)x^i = \frac{1}{(1-x)^2}$ 

• 
$$\sum_{i=0}^{\infty} C_n^i x^i = (1+x)^n$$

• 
$$\sum_{i=0}^{\infty} C_n^i x^i = (1+x)^n$$
  
•  $\sum_{i=0}^{\infty} C_{n+i-1}^i x^i = \frac{1}{(1-x)^n}$ 

• 
$$\sum_{i=0}^{\infty} fib_i x^i = \frac{x}{1-x-x^2}$$
 (斐波那契数)

• 
$$\sum_{i=0}^{\infty} (\sum_{j=0}^{i} fib_j) x^i = \frac{x}{(1-x)(1-x-x^2)}$$
(斐波那契数列前缀和)

• 
$$\sum_{i=0}^{\infty} cat_i x^i = \frac{1-\sqrt{1-4x}}{2x}$$
 (卡特兰数)

## ## (2).【常用指数生成函数 (EGF) 收敛性式】

• 
$$\sum_{i=0}^{\infty} \frac{x^i}{i!} = e^x$$

• 
$$\sum_{i=0}^{\infty} \frac{x^{2i}}{(2i)!} = \frac{e^{x} + e^{-x}}{2}$$

• 
$$\sum_{i=0}^{\infty} \frac{x^i}{i!} = e^x$$
  
•  $\sum_{i=0}^{\infty} \frac{x^{2i}}{(2i)!} = \frac{e^x + e^{-x}}{2}$   
•  $\sum_{i=0}^{\infty} \frac{x^{2i+1}}{(2i+1)!} = \frac{e^x - e^{-x}}{2}$   
•  $\sum_{i=0}^{\infty} B_i \frac{x_i}{i!} = e^{e^x - 1}$  (贝尔数)

• 
$$\sum_{i=0}^{\infty} B_i \frac{\dot{x_i}}{i!} = e^{e^x-1}$$
 (贝尔数)

#### 【各种反演】 ≡:

# # 1.【欧拉反演】

## ## 【基本性质、定理】

• 
$$\sum_{d|n} \varphi(d) = n$$
 (即  $\varphi * 1 = \mathrm{id}$ ) 【证明】

# ## 【推导结论】

• 
$$gcd(i,j) = \sum_{d|i,d|j} \varphi(d)$$

• 
$$\sum_{i=1}^n \sum_{j=1}^n \gcd(i,j) = \sum_{d=1}^n d\left(2\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} \varphi(i) - 1\right)$$
 【例题(9 倍经验)】

• 
$$\sum_{i=1}^n \sum_{j=1}^m \gcd(i,j) = \sum_{d=1}^n \varphi(d) \lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor$$
 【例题】

• 
$$\sum_{i=1}^{n} \sum_{j=1}^{m} \gcd(i,j) = \sum_{d=1}^{n} \varphi(d) \lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor$$
 【例题】
•  $\prod_{i=1}^{n} \prod_{j=1}^{n} \left( \frac{\operatorname{lcm}(i,j)}{\gcd(i,j)} \right) = \frac{(n!)^{2n}}{\left(\prod_{d=1}^{n} d^{\left(2S_{\rho}(\lfloor \frac{n}{d} \rfloor) - 1\right)}\right)}$  【例题】

# 2.【狄利克雷卷积 (Dirichlet) 与莫比乌斯反演 (Mobius)】

### # 【基本性质、定理】

• 
$$(f * g)(n) = \sum_{d|n} f(d)g(\frac{n}{d}) =$$

• 
$$\sum_{d|n} \mu(d) = \epsilon(n)$$
 ( $\mathbb{R} \mu * 1 = \epsilon$ )

• 
$$f(n) = \sum_{d|n} g(d) \Longrightarrow g(n) = \sum_{d|n} \mu(\frac{n}{d}) f(d)$$
 ( $\mathbb{R} f = g * 1 \Longrightarrow g = f * \mu$ )
•  $f(n) = \sum_{n|d} g(d) \Longrightarrow g(n) = \sum_{n|d} \mu(\frac{d}{n}) f(d)$ 
•  $f(k) = \sum_{d=1}^{\lfloor \frac{n}{k} \rfloor} g(dk) \Longrightarrow g(k) = \sum_{d=1}^{\lfloor \frac{n}{k} \rfloor} \mu(d) f(dk)$ 

• 
$$f(n) = \sum_{n|d} g(d) \Longrightarrow g(n) = \sum_{n|d} \mu(\frac{d}{n}) f(d)$$

• 
$$f(k) = \sum_{d=1}^{\lfloor \frac{n}{d} \rfloor} g(dk) \Longrightarrow g(k) = \sum_{d=1}^{\lfloor \frac{n}{d} \rfloor} \mu(d) f(dk)$$

#### # 【推导结论】

#### # (1). [GCD 和 LCM]

• 
$$[\gcd(i,j) = 1] = \sum_{d|i,d|} \mu(d)$$

• 
$$\sum_{i=1}^{n}\sum_{i=1}^{m}[\gcd(i,j)=k]=\sum_{d=1}^{\lfloor\frac{n}{k}\rfloor}\mu(d)\lfloor\frac{n}{dk}\rfloor\lfloor\frac{m}{dk}\rfloor$$
 【例题】

• 
$$\sum_{i=1}^n \sum_{i=1}^m [\gcd(i,j) \in \{Prime\}] = \sum_{d=1}^n \left( \lfloor \frac{m}{d} \rfloor \lfloor \frac{m}{d} \rfloor \sum_{p \mid d \ \& \ p \in \{Prime\}} \left( \frac{d}{p} \right) \right)$$
 [例题]

• 
$$\sum_{i=1}^{n} \sum_{i=1}^{m} [\gcd(i,j) \in \{Prime\}] = \sum_{d=1}^{n} \left( \lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor \sum_{p|d \& p \in \{Prime\}} \left( \frac{d}{p} \right) \right)$$
 [例题]
•  $\sum_{i=1}^{n} \sum_{j=1}^{m} lcm(i,j) = \sum_{d=1}^{n} d \left( \sum_{x=1}^{\lfloor \frac{n}{d} \rfloor} x^{2} \mu(x) \sum_{i=1}^{\lfloor \frac{n}{dx} \rfloor} i \sum_{i=1}^{\lfloor \frac{m}{dx} \rfloor} j \right)$  [例题]

#### *□ (2).*【除数函数】

$$\sigma_k = \sum_{d|n} d^k \quad (\text{即 } \sigma_k = \mathrm{id}_k * 1)$$

$$\sigma_0(xy) = \sum_{i|x} \sum_{j|y} [\gcd(i,j) = 1] \quad (\text{其中 } \sigma_0(x) \text{ 表示 } x \text{ 的约数个数})$$

$$\sum_{i=1}^n \sigma_0(i) = \sum_{i=1}^n \lfloor \frac{n}{i} \rfloor \quad [\text{例题}]$$

$$\sum_{i=1}^n \sum_{j=1}^m \sigma_0(ij) = \sum_{k=1}^n \mu(k) \left( \sum_{i=1}^{\lfloor \frac{n}{k} \rfloor} \lfloor \frac{n}{ik} \rfloor \right) \left( \sum_{i=1}^{\lfloor \frac{m}{k} \rfloor} \lfloor \frac{m}{ik} \rfloor \right) \quad [\text{例题}]$$

$$\sigma_1(xy) = \sum_{i|x} \sum_{j|y} \frac{iy}{j} [\gcd(i,j) = 1] \quad (\text{其中 } \sigma_0(x) \text{ 表示 } x \text{ 的约数和})$$

$$\sum_{i=1}^n \sum_{j=1}^n \sigma_1(ij) = \sum_{d=1}^n \mu(d) d \left( \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} \sigma_1(i) \right)^2 \quad [\text{MD}]$$

$$\sum_{i=1}^n \sum_{j=1}^m \sigma_1(\gcd(i,j)) = \sum_{d=1}^n \lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor \left( \sum_{i|d} \mu(\frac{d}{i}) \sigma_1(i) \right) \quad [\text{MD}]$$

### 1(3).【莫比乌斯函数】

$$\sum_{k=1}^n \mu^2(k) = \sum_{d=1}^{\sqrt{n}} \mu(d) \lfloor \frac{n}{d^2} \rfloor$$
 【例题】 
$$\sum_{i=1}^n \mu^2(i) \sqrt{\frac{n}{i}} = n$$
 【证明】

## 3.【二项式反演】

#### : 【基本性质、定理】

• 
$$f(n) = \sum_{i=0}^{n} C_n^i g(i) \iff g(n) = \sum_{i=0}^{n} (-1)^{n-i} C_n^i f(i)$$
  
•  $f(n) = \sum_{i=0}^{n} (-1)^i C_n^i g(i) \iff g(n) = \sum_{i=0}^{n} (-1)^i C_n^i f(i)$   
•  $f(n) = \sum_{i=n}^{?} C_n^n g(i) \iff g(n) = \sum_{i=n}^{?} (-1)^{i-n} C_n^n f(i)$  [例题] [例题]  
•  $f(n) = \sum_{i=n}^{?} (-1)^i C_n^n g(i) \iff g(n) = \sum_{i=n}^{?} (-1)^i C_n^n f(i)$   
•  $f(n,m) = \sum_{i=0}^{n} \sum_{j=0}^{m} C_n^i C_m^j g(i,j) \iff g(n,m) = \sum_{i=0}^{n} \sum_{j=0}^{m} (-1)^{n+m-i-j} C_n^i C_m^j f(i,j)$   
•  $f(n,m) = \sum_{i=0}^{n} \sum_{j=0}^{m} (-1)^{i+j} C_n^i C_m^j g(i,j) \iff g(n,m) = \sum_{i=0}^{n} \sum_{j=0}^{m} (-1)^{i+j} C_n^i C_m^j f(i,j)$   
•  $f(n,m) = \sum_{i=n}^{?} \sum_{j=0}^{?} C_n^i C_j^m g(i,j) \iff g(n,m) = \sum_{i=n}^{?} \sum_{j=m}^{?} (-1)^{i+j-n-j} C_n^m f(i,j)$  [例题]

### 4.【斯特林反演】

### 【基本性质、定理】

$$\begin{array}{l} \bullet \ f(n) = \sum_{i=0}^n S_n^i g(i) \Longleftrightarrow g(n) = \sum_{i=0}^n (-1)^{n-i} s_n^i g(i) \\ \bullet \ f(n) = \sum_{i=0}^n s_n^i g(i) \Longleftrightarrow g(n) = \sum_{i=0}^n (-1)^{n-i} S_n^i f(i) \\ \bullet \ f(n) = \sum_{i=n}^n S_i^n g(i) \Longleftrightarrow g(n) = \sum_{i=n}^n (-1)^{i-n} s_i^n g(i) \\ \bullet \ f(n) = \sum_{i=n}^n s_i^n g(i) \Longleftrightarrow g(n) = \sum_{i=n}^n (-1)^{i-n} S_i^n f(i) \end{array}$$

## 6.【子集反演】

#### 【基本性质、定理】

- $f(S) = \sum_{T \subset S} g(T) \Longleftrightarrow g(S) = \sum_{T \subset S} (-1)^{|S| |T|} f(T)$  【模板】
- $f(S) = \sum_{T \supseteq S} g(T) \iff g(S) = \sum_{T \supseteq S} (-1)^{|T| |S|} f(T)$
- $f(S) = \sum_{T \subseteq S} g(T) \Longleftrightarrow g(S) = \sum_{T \subseteq S} \mu(|S| |T|) f(T)$  ( $\mu(S)$  在 S 有重复元素时为 0,否则为  $(-1)^{|S|}$ )
- $f(S) = \sum_{T\supseteq S} g(T) \Longleftrightarrow g(S) = \sum_{T\supseteq S} \mu(|T|-|S|) f(T)$  ( $\mu(S)$  在 S 有重复元素时为 0,否则为  $(-1)^{|S|}$ )

# 四: 【数论筛法】

## **1.【杜教筛】**

#### #【基本性质、定理】

• 
$$g(1)S(n)=\sum_{i=1}^n (f*g)(i)-\sum_{d=2}^n g(d)S\left(\lfloor \frac{n}{d}\rfloor\right)$$
 (其中  $S(n)=\sum_{i=1}^n f(i)$ )

#### # 【推导结论】

- $S_{\mu(x)}(n) = 1 \sum_{d=2}^{n} S(\lfloor \frac{n}{d} \rfloor)$  【模板】
- $S_{arphi(x)}(n) = \sum_{i=1}^n i \sum_{d=2}^n S(\lfloor \frac{n}{d} \rfloor)$ 【模板】
- $S_{(n^2\varphi(n))} = \sum_{i=1}^n i^3 \sum_{d=2}^n d^2S\left(\left\lfloor \frac{n}{d}\right\rfloor\right)$  【例题】

# # 【基本积分公式】

- $\int k \, \mathrm{d}x = kx + C (C)$  为常数)
- $\int x^a dx = \frac{x^{a+1}}{a+1} + C (a \neq -1)$
- $\int \frac{\mathrm{d}x}{x} = \ln|x| + C$
- $\int a^x \, \mathrm{d}x = \frac{a^x}{\ln a} + C$
- $\int \frac{\mathrm{d}x}{1+x^2} = \arctan(x) + C$
- $\int \frac{\mathrm{d}x}{\sqrt{1-x^2}} = \arcsin(x) + C$
- $\int \cos(x) \, \mathrm{d}x = \sin(x) + C$
- $\int sin(x) dx = -cos(x) + C$
- $\int \frac{\mathrm{d}x}{\cos^2(x)} \mathrm{d}x = \int \sec^2(x) \, \mathrm{d}x = \tan(x) + \cot(x)$
- $\int \frac{dx}{\sin^2(x)} dx = \int \csc^2(x) dx = -\cot(x)$
- $\int sec(x)tan(x) dx = sec(x) + C$
- $\int csc(x)cot(x) dx = -csc(x) + C$

- 遇到当前决策受未来影响的时候,我们可以通过多记录状态预知未来的状态,从而把影响一直传递
- 区间DP中合并与未来有关的时候,可以多记录一维表示未来的状态,如dp[i][j][k]表示未来j和右边k个一起消除
- 1D/1D dp模型形如当前转移点是下面上方不相交的这种,取min/max的时候,常可以考虑维护前后缀最值

下方有相交的, 若能拆开两个变量, 则考虑单调队列优化



- dp计数中,未来的贡献未知但对当前决策有影响,这时候我们可以通过提前增加维度记录未来贡献的办法使得dp合理
- 树上(u,v)不互为祖先说明在树中dfs序不相交,树上dfs序区间要么内含,要么不交
- 1D/1D的dp可以尝试对方程转化,dp[i]由dp[i-1]转移过来做不了的时候,可以观察由前面某个;转移过来是否等价目能做形如dp[i][j]由dp[k][j-1]转移过来的时候,可以尝试先枚举第二维递推阶段,然后下面一维变成正常的线性转移尝试优化
- 枚举最后一个xxx来划分dp
- 形如 $dp[i] = dp[j] + xx \ j < i$ 的时候,可以尝试枚举前面顺序转移到后面
- 需要枚举子集时,如果是单位贡献的转移,可以考虑SOSDP 优化到 $O(n2^n)$
- 插入或删除其中之一难以完成,另一个很简单可以考虑回滚莫队只删或只增,注意回滚顺序最好用栈序
- 问某个被匹配子串是否在某串的区间中,可以SAM parent树上线段树合并维护Endpos查询
- 平面点的锐钝角的总数 可以用极角排序+尺取解决
- 对反串建SAM, 可以重建parent树,通过遍历SAM parents树,相当于对于子串字典序排序(前缀和数组上二分)
- 线性dp中,状态就是阶段,在状态的推导中阶段自然随着递推
- 考虑先往一个维度加再减的线性dp,可以考虑先减再加,同时考虑,覆盖过的位置只用更新一次的问题,这样可以贪心加。
- 一棵点权非负且总和为正的树的所有带权重心位于一条链上,而其中深度最小的点是满足子树和严格大于总和一半取这棵树的一个 DFS 序,因为其子树和大于一半,因此 DFS 序的带权中位数一定在子树内。找到这个点(>=sum/2+1的第一个位置)后在链上倍增即可。
- 高斯消元取模判行列式正负

#### 错误

- 字符串匹配的时候,注意多组数据在字符串长度以内的才考虑,剩余的要记得清零
- FWT没有模数的时候,即便答案没有爆int,也要考虑要不要开long long,因为变换后的乘积可能爆。即FWT中间的过程也全部弄成long long保险