Integrali

Integrale doppio su un rettangolo

■ Definizione

 $f:A\subset\mathbb{R}^2 o\mathbb{R}$, A=[a,b] imes[c,d], f limitata (e non negativa) II trapezoide sotteso al grafico di f in A è l'insieme dei punti $T_f(A):=\{(x,y,z)\in\mathbb{R}^3:0\leq z\leq f(x,y)\wedge(x,y)\in A\}$

Suddivisione

Definizione

Si chiama suddivisione di [a,b] un insieme finito $\{x_0,x_1,\ldots,x_n\}: a=x_0 < x_1 < \ldots < x_n=b$ Si chiama suddivisione di A l'insieme $\mathcal{D}:=\mathcal{D}_1 \times \mathcal{D}_2 = \{x_0,\ldots,x_n\} \times \{y_0,\ldots,y_m\} = \{(x_i,y_j): i=0,\ldots,n \land j=0,\ldots,m\}$ A resta suddiviso in $n \times m$ rettangoli $A_{ij}:=[x_{i-1},x_i] \times [y_{j-1},y_j]$ di area

 $area(A_{ij}) = (x_i - x_{i-1}) \cdot (y_j - y_{j-1})$

Somma superiore e inferiore

Definizione

 $egin{aligned} M_{ij} &:= \sup_{A_{ij}} \{f\} \ m_{ij} &:= \inf_{A} \{f\} \end{aligned}$

Si chiamano somma superiore e inferiore

$$S(f,\mathcal{D}) := \sum_{i=1}^n \sum_{j=1}^m M_{ij} \cdot area(A_{ij})$$

$$s(f,\mathcal{D}) := \sum_{i=1}^n \sum_{j=1}^m m_{ij} \cdot \operatorname{area}(A_{ij})$$

Proprietà:

- Se $f \ge 0$, $M_{ij} \cdot \text{area}(A_{ij})$ e $m_{ij} \cdot \text{area}(A_{ij})$ rappresentano il volume di un parallelepipedo che approssima il grafico per eccesso e per difetto
- $\operatorname{area}(A_{ij}) \cdot \inf_A \{f\} \le s(f, \mathcal{D}) \le s(f, \mathcal{D}) \le \operatorname{area}(A_{ij}) \cdot \sup_A \{f\}$
- $\mathcal{D}', \mathcal{D}''$ suddivisioni qualunque, $s(f, \mathcal{D}') \leq S(f, \mathcal{D}'')$

Funzione integrabile secondo Riemann

Definizione

Se $\sup\{s(f,\mathcal{D})\}=\inf\{S(f,\mathcal{D})\}=L\in\mathbb{R}\implies f\in\mathcal{R}(A)$ e si denota

$$L = \iint_A f = \operatorname{vol}(T_f(A))$$

Teoremi

Esistenza dell'integrale

$$f\in\mathrm{C}^0(A)\implies f\in\mathcal{R}(A)$$

Linearità

$$\iint_A (lpha f + eta g) = lpha \iint_A f + eta \iint_A g$$

Monotonia

$$g \leq f \implies \iint_A g \leq \iint_A f$$

Valore assoluto

$$|\iint_A f| \leq \iint_A |f|$$

■ Teorema della media integrale

$$f:A\subset\mathbb{R}^2 o\mathbb{R},\,f\in\mathcal{R}(A)$$

$$\inf_A\{f\} \leq rac{1}{\mathrm{area}(\mathrm{A})} \iint_A f = z_0 \leq \sup_A\{f\}$$

Inoltre se
$$f \in \mathrm{C}^0(A) \implies \exists p_0: f(p_0) = z_0$$

Formula di riduzione sui rettangoli

F Formula

Se $\forall y \in [c,d] \ x \in [a,b] o f(x,y)$ è integrabile $\implies \forall x \in [a,b] \ y \in [c,d] o f(x,y)$ è integrabile e

$$\iint_A f = \int_c^d \int_a^b f(x, y) \, dx \, dy$$

Viceversa in modo analogo

In particolare se $f\in \mathrm{C}^0(A)$ valgono entrambe e

$$\int_c^d \int_a^b f(x,y)\,dx\,dy = \int_a^b \int_c^d f(x,y)\,dy\,dx$$

Integrale doppio su un insieme generale

Definizione

Se $A\subset\mathbb{R}^2$ è limitato ma non rettangolare è possibile definire una nuova funzione

$$A\subset Q=[a,b] imes [c,d],\, ilde f:Q o \mathbb{R}$$

$$ilde{f}(x,y) = egin{cases} f(x,y), & (x,y) \in A \ 0, & (x,y) \in Q \setminus A \end{cases}$$

Di conseguenza $ilde{f} \in \mathcal{R}(Q) \implies f \in \mathcal{R}(A)$ e

$$\iint_A f = \iint_Q \tilde{f} = \operatorname{vol}(T_{\tilde{f}}(Q))$$

Q Osservazione >

 $ilde{f}$ non è continua su ∂A

 $T_{ ilde{f}}(Q) = P \cup T_f(A)$ dove P è una parte limitata del piano z=0 e $\mathrm{vol}(\mathrm{P}) = 0$

Se non fosse definita $\operatorname{area}(A)$ non sarebbe possibile calcolare l'integrale doppio

Insieme misurabile

E Definizione

 $A\subset\mathbb{R}^2$ limitato, $f:A o\mathbb{R},\,f(x,y):=1$ se $(x,y)\in A$

A si dice misurabile secondo Peano-Jordan se $f \in \mathcal{R}(A)$ e $\operatorname{area}(A) = |A|_2 = \iint_A f$

Q Osservazione >

$$Q = [a,b] imes [c,d]$$
 è misurabile e $|Q|_2 = (b-a) \cdot (d-c)$

Teorema

 $A\subset \mathbb{R}^2$ limitato

A è misurabile $\iff \partial A$ è misurabile e $|\partial A|_2 = 0$

Definizione

$$g:[a,b] o \mathbb{R}$$
 integrabile $\implies G_g:=\{(x,g(x)):x\in [a,b]\}$ è misurabile e $|G_g|_2=0$

Q Osservazione >

 $A\subset \mathbb{R}^2$ limitato, $g_i:[a_i,b_i] o \mathbb{R}$ continua (e quindi integrabile) ($i=1,\ldots,k$)

 $\partial A = igcup_{i=1}^k G_{g_i} = G_{g_1} \cup \ldots \cup G_{g_k} \implies A$ è misurabile

Integrale doppio su un insieme misurabile

Teorema

 $f:A o\mathbb{R},\,f\in\mathrm{C}^0(A)$ limitata, $A\subset\mathbb{R}^2$ limitato e misurabile $\implies f\in\mathcal{R}(A)$

Q Osservazione >

Se A è chiuso e limitato, allora se f è continua è sicuramente anche limitata e quindi $f \in \mathcal{R}(A)$

Teorema

 $A\subset \mathbb{R}^2$ limitato e misurabile, $A=B\cup C$ misurabili, $|C|_2=0$, $f\in \mathcal{R}(A)$

$$\implies \iint_A f = \iint_B f$$

Q Osservazione >

 $A\subset \mathbb{R}^2$ limitato e misurabile, $f\in \mathcal{R}(A)$

$$\implies \iint_A f = \iint_{\mathring{A}} f$$

Integrale doppio su un dominio semplice e formula di riduzione

Definizione

 $A\subset\mathbb{R}^2$ si dice semplice o normale rispetto all'asse y se

$$ullet$$
 $\exists g_1,g_2\in\mathrm{C}^0([a,b]):g_1\leq g_2$ SU $[a,b]$

$$ullet A=\{(x,y)\in \mathbb{R}^2: x\in [a,b]\wedge g_1(x)\leq y\leq g_2(x)\}$$

Analogamente rispetto all'asse x

Un dominio semplice è limitato e misurabile

Formule

 $A\subset \mathbb{R}^2$ semplice rispetto a $y,\,f\in \mathrm{C}^0(A)\implies f\in \mathcal{R}(A)$ e

$$|A|_2 = \iint_A 1 = \int_a^b (g_2(x) - g_1(x)) \, dx$$

$$\iint_A f = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y)\,dy\,dx$$

Analogamente per \boldsymbol{x}

Additività dell'integrale doppio

Teorema

 $A_1,\ldots,A_m\subset\mathbb{R}^2$ insiemi semplici tali che $A_i\cap A_j\subset\partial A_i\cap\partial A_j\ \ \forall i,j=1,\ldots,m\land i\neq j,$ $B=A_1\cup\ldots\cup A_m,\ f:B\to\mathbb{R}$ tale che $f\in\mathcal{R}(A_i)\ \ \forall i=1,\ldots,m$ $\Longrightarrow f\in\mathcal{R}(B)$ e

$$\iint_B f = \sum_{i=1}^m \iint_{A_i} f$$

Sostituzione di variabili

Definizione

 $D,D^*\subset\mathbb{R}^2$ aperti, limitati e misurabili, $\psi:D^*\to D$, $\psi(u,v)=(\psi_1(u,v),\psi_2(u,v))$ La mappa ψ si dice cambiamento o sostituzione di variabili se:

- è biiettiva
- $\psi_i\in\mathrm{C}^1(D^*)$ e $\psi_i,rac{\partial\psi_i}{\partial u},rac{\partial\psi_i}{\partial v}:D^* o\mathbb{R}$ sono limitate (i=1,2)
- $ullet \det(J_{\psi}(u,v))
 eq 0 \ \ orall (u,v) \in D^*$

Per definizione $dD^*=du\,dv,\,dD=dx\,dy$ e per la sostituzione $dD=|\det(J_{\psi}(u,v))|dD^*$

Teorema

 $D,D^*\subset\mathbb{R}^2$ aperti, limitati e misurabili, $\psi:D^* o D$ cambiamento di variabili

$$\iint_D f(x,y)\,dx\,dy = \iint_{D^*} f(\psi(u,v)) \cdot |\det(J_\psi(u,v))|\,du\,dv.$$