

"Learning GIS with ice-cream parlors"

Open Source in GIS conference • June 9th, 2021

Amit Levinson • �� ♀ in

About me

- Sociology MA Graduate, BGU
- Been using R Programming language for < 2 years
- Had no idea what is GIS prior to using R
- Enjoy:
 - Open source tools (R, Linux, Git, MySQL)
 - Blogging
 - Learning new things
 - · 🕙 & 🖣

"Regular" data

How I first encountered and learn to work with data:

```
head(iris)
```

```
##
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
             5.1
                        3.5
                                                 0.2 setosa
                                     1.4
             4.9
                                                 0.2 setosa
## 2
                        3.0
                                     1.4
## 3
             4.7
                        3.2
                                     1.3
                                                 0.2 setosa
             4.6
                        3.1
                                     1.5
## 4
                                                 0.2 setosa
             5.0
                        3.6
                                     1.4
                                                 0.2 setosa
## 5
             5.4
                                     1.7
## 6
                        3.9
                                                 0.4 setosa
```

Spatial data*

How I encountered spatial data (e.g. .shp):

```
head(shelters[,2])
## Simple feature collection with 6 features and 0 fields
## Geometry type: POINT
## Dimension:
              XY
## Bounding box: xmin: 181680.1 ymin: 574027.4 xmax: 181972.9 ymax: 574304
## Projected CRS: Israel 1993 / Israeli TM Grid
## # A tibble: 6 x 1
##
               geometry
            <POINT [m]>
##
## 1 (181710.6 574217.8)
## 2 (181680.1 574304)
## 3 (181820.6 574243)
## 4 (181819.3 574027.4)
## 5 (181972.9 574046.2)
## 6 (181912.3 574151.1)
```

^{*} To reflect my learning process, I address spatial data here as in a vector format (and not, e.g., raster)

Returning to my comfort zone

Used a .csv file instead:

Exploring distances to the nearest ice-cream parlors

Background

- Fiddled around but never really knew what I was doing
- Participated in several days of the #30Daysmapchallenge
- Realized it's time to learn some spatial analysis

Inspiration

Dominic Royé's blog post about distances to the sea in Iceland

Serendipitous resource

Michael Dorman's Spatial data analysis workshop at Israel's CBS

Data

Where do you find ice-cream locations data?

Data collection

• Scrape the data from the website

```
## [1] "אור עקיבאח\nכשרח\nהשקמים n8השקמים n04-646-0705
```

- Clean it
- Geocode the data to get lat & long from addresses
- Reverse geocode the long & lat and verify each address.

Final output looked like this (total of 79 addresses):

city	street	number	location	lon	lat	google_address
אור עקיבא	'	04-646- 0705	השקמים 8, אור עקיבא	34.91794	32.50436	Ha-Shikmim St 8, Or Akiva, Israel

Discrepancies were manually verified (though I probably verified everything anyway).

The worst day of your life so far.

How does our data look?

If you can't see the iframe, please refresh the page.

Some spatial manipulations

Transforming

We might want to be more explicit with our spatial data:

Geographic

```
## Simple feature collection with 1 feature and 0 fields
## Geometry type: POINT
## Dimension: XY
## Bounding box: xmin: 34.86002 ymin: 32.02051 xmax: 34.86002 ymax: 32.02051
## Geodetic CRS: WGS 84
## # A tibble: 1 x 1
## geometry
## <POINT [°]>
## 1 (34.86002 32.02051)
```

Projected

```
## Simple feature collection with 1 feature and 0 fields
## Geometry type: POINT
## Dimension: XY
## Bounding box: xmin: 186911.1 ymin: 658636.9 xmax: 186911.1 ymax: 658636.9
## Projected CRS: Israel 1993 / Israeli TM Grid
## # A tibble: 1 x 1
## geometry
## <POINT [m]>
```

Grids

We want to calculate distances to Golda, but from where?

Distances

We have our grid cells, how do we identify the nearest ice-cream location?

Example for 1 grid cell to several Goldas:

```
example_distances <- st_distance()
# Print 10:
head(set_units(example_distances,</pre>
```

```
## Units: [km]
## [1,] 218.88346
## [2,] 272.69260
## [3,] 57.20938
## [4,] 194.03313
## [5,] 182.41663
## [6,] 209.48198
## [7,] 131.61719
## [8,] 256.71129
## [9,] 218.63946
## [10,] 225.91495
```


Distances

Cosmetics **

<div style='text-align:right;'> אילת אילת הספירל, אילת /div

##

```
## Rows: 7.375
## Columns: 7
## $ geometry.x <POLYGON [°]> POLYGON ((34.90188 29.49693..., POLYGON ((34.91
## $ distance km <dbl> 7.871391, 7.332709, 6.613721, 7.363470, 6.918497, 5.722
<chr> "א" , "אילת" , "אילת" , "אילת" , "אילת" , "אילת" , "אילת" ~
## $ city
create label distances <- function(km, street, city){</pre>
  glue("
  <div style='text-align:left:'>
  You are <span style='font-size:13px;'><b>{round(km, 1)}</b></span> km
  <div style='text-align:right;'>
      {street}, {city}</div>") %>%
   HTML()}
## [[1]]
## <div style='text-align:left;'>
## You are <span style='font-size:13px;'><b>7.9</b></span> km from the nearest
```

Et Voila

If you can't see the iframe, please refresh the page.

How does this relate to open source

Feedback

- **♥** Don't I have anything better to blog about?
 - Someone will always have what to say about your work

Positive

- \bigtriangleup Someone asking for technical assistance about using the code in another country.
- Micha Silver emailing me with complete code on how to do the same thing with rasters.

Personal reasons

- GIS was available in an already used OS platform (R)
- Free
- Can use/change others' code freely
- Pushes to high standards knowing others see/read your code
- Get to contribute back
- The community!

Thank you!

