

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Уральский федеральный университет имени первого Президента России Б. Н. Ельцина»

ПОСТРОЕНИЕ ТИПОВЫХ МОДЕЛЕЙ АРПСС (ARIMA)

Методические указания к выполнению лабораторной работы № 4

Екатеринбург 2019

Содержание

Вве	едение	3
1	Do voyave we reference who meters	7
1.	Задание на лабораторную работу	3
2.	Требования к оформлению отчета	. 11

Введение

Напомним, что в общем виде модель авторегрессии — скользящего среднего порядка (p, q) АРПСС (ARIMA) выглядит как:

$$\tilde{z}_{t} = \phi_{1}\tilde{z}_{t-1} + \phi_{2}\tilde{z}_{t-2} + \dots + \phi_{p}\tilde{z}_{t-p} + a_{t} - \theta_{1}a_{t-1} - \theta_{2}a_{t-2} - \dots - \theta_{q}a_{t-q}.$$

Эта модель временных рядов имеет целый ряд преимуществ в сравнении с другими моделями, одно из которых — это возможность их оперативного прогноза по построенной модели. В связи с этим ни одна методика анализа и изучения временных рядов не может обойтись без рассмотрения подобного класса задач.

1. Задание на лабораторную работу

Результатом выполнения лабораторной работы является оформленный отчет в виде *Jupyter*-тетради, в котором должны быть представлены и отражены все нижеперечисленные пункты:

1) Сначала импортируйте в свой код нужные библиотеки, функции и т.д. import numpy as np import numpy.random as rand import matplotlib.pyplot as plt import h5py from statsmodels.tsa import api as tsa from statsmodels.graphics.tsaplots import plot_acf from statsmodels.tsa.arima_model import ARIMA

%matplotlib inline

- 2) Для начала попробуем создать собственные АРПСС ряды первого и второго порядков и изучить их автокорреляционные функции.
- 3) Создадим два AP(1) процесса первого порядка:

$$z_t = 0.8z_{t-1} + a_t$$
 $z_t = -0.8z_{t-1} + a_t$

где a_t — случайная нормально распределенная величина малой амплитуды (порядка 0.2), z_0 =1.

```
z1 = np.zeros(100)

z2 = np.zeros(100)

z1[0] = 1

z2[0] = 1

for i in range(1,100):

z1[i] = 0.8 * z1[i - 1] + 0.2 * np.random.randn()

z2[i] = -0.8 * z2[i - 1] + 0.2 * np.random.randn()

plt.figure(figsize = (10, 5))

plt.plot(z1, 'b')

plt.plot(z2, 'r')

plt.show()
```

4) Постройте для этих рядов функции автокорреляции с помощью функции **plot_acf**:

```
plt.figure(figsize = (10, 5))
plot_acf(z1, lags=50)
plot_acf(z2, lags=50)
plt.show()
```

5) Сравните эти графики между собой: найдите их сходства и различия, а также характерные особенности, которые позволяют отнести их к модели AP первого порядка.

- 6) Оцените весовой параметр этих процессов (как если бы Вы не знали о них) с помощью формулы $\phi = \rho_l$, на основе функции автокорреляции. Также удостоверьтесь, что для модели AP(1) коэффициенты автокорреляции изменяются по степенному закону $\rho(l) = \phi^l$.
- 7) Аналогичным образом постройте два CC(1) процесса среднегоскользящего первого порядка:

$$z_{t} = a_{t} - 0.8a_{t-1}$$
 u $z_{t} = a_{t} - (-0.8)a_{t-1}$

где $a_{\scriptscriptstyle t}$ – случайная нормально распределенная величина

```
z3 = np.zeros(100)

z4 = np.zeros(100)

ar = 0.2 * np.random.randn(100)

for i in range(1, 100):

z3[i] = ar[i] - 0.8 * ar[i - 1]

z4[i] = ar[i] + 0.8 * ar[i - 1]

plt.figure(figsize = (10, 5))

plt.plot(z3, 'b')

plt.plot(z4, 'r')

plt.show()
```

- 8) Постройте для этих рядов функции автокорреляции, достаточно взять 25 лагов (четверть от длины ряда).
- 9) Сравните эти графики между собой: найдите их сходства и различия, а также характерные особенности, которые позволяют отнести их к модели СС первого порядка.

10) Оцените весовой параметр этих процессов (как если бы Вы не знали о них) с помощью формулы ниже, на основе функции автокорреляции.

$$\theta_1^2 + \theta_1 / \rho_1 + 1 = 0, |\theta_1| < 1$$

11) Также удостоверьтесь, что для модели CC(1) коэффициенты автокорреляции соответствуют формуле

$$\rho_k = \begin{cases} \frac{-\theta_1}{1 + \theta_1^2}, & k = 1\\ 0, & k \ge 2 \end{cases}$$

12) Наконец, создайте временной ряд процесса АРСС(1, 1):

$$z_t = 0.8z_{t-1} + a_t - 0.3a_{t-1}$$
 и $z_t = -0.8z_{t-1} + a_t - 0.3a_{t-1}$

где a_t — случайная нормально распределенная величина, $z_0 = 1$.

Напишите код *Python* самостоятельно на основе комбинации предыдущих примеров.

- 13) Постройте графики этих рядов и графики их автокорреляционных функций.
- 14) Есть и другой, более высокоуровневый способ генерации рядов АРПСС. Используем следующую функцию для создания АРСС (2, 2):

from statsmodels.tsa.arima_process import arma_generate_sample ar = np.array([0.75, -0.25]) # задаем коэффициенты AP ma = np.array([0.65, 0.35]) # задаем коэффициенты CC y = arma_generate_sample(np.r_[1, -ar], np.r_[1, ma], 100) # создаем BP для APCC (2, 2) = APПCC (2, 0, 2) из 100 отсчетов

- 15) Теперь проведем анализ неизвестного ряда на типовом примере, а затем каждый из студентов проводит анализ собственного ВР по вариантам (номер варианта = последние две цифры студенческого билета).
- Значения исходного ряда (всего их 24) приведены ниже:
 TEST = [0.00, 9.99, 12.89, 10.70, 5.12, -1.21, -6.50, -7.96, -4.30, 0.42, 3.41,
 4.50, 3.57, 2.24, 1.78, 0.89, -1.20, -3.43, -2.35, -0.85, -0.21, -0.08, 0.95,
 0.45]
- 17) Постройте график ВР и его автокорреляционную функцию.
- 18) По ним можно судить, что BP, в достаточной степени, **стационарен**, а, так как, эта функция является **знакопеременной**, то один из членов AP модели имеет отрицательный вес.
- 19) Создадим три пробные модели АРПСС для проверки ряда на $AP(1) = AP\Pi CC(1, 0, 0), AP(2), AP(3),$ без тренда (trend = 'nc'):

```
arima1 = ARIMA(TEST, order = (1, 0, 0)) # создаем модель
model_fit1 = arima1.fit(disp = False, trend='nc') # подгоняем под BP
print(model_fit1.summary()) # выводим таблицу результатов
arima2 = ARIMA(TEST, order = (2, 0, 0))
model_fit2 = arima2.fit(disp = False, trend='nc')
print(model_fit2.summary())
arima3 = ARIMA(TEST, order = (3, 0, 0))
model_fit3 = arima3.fit(disp = False, trend='nc')
print(model_fit3.summary())
```


20) Будут выведены три таблицы со всевозможной информацией, например, как ниже:

ARMA Model Results									
Dep. Variable Model: Method: Date: Time: Sample:		ARMA(2, 0 css-ml , 10 Mar 201 23:50:3) Log L: e S.D. (bservations: ikelihood of innovations		24 -41.543 1.201 89.086 92.620 90.024			
	coef	std err	Z	P> z	[0.025	0.975]			
•		0.035		0.000 0.000					
	Real	Imag	inary	Modulus		Frequency			
			_	1.0185 1.0185					

- 21) В этой таблице значения коэффициентов модели авторегрессии AP(2) написаны в столбце **coef**. СКВО их расчета в следующем столбце.
- 22) Как по этим таблицам выбрать наилучшую модель? Вопервых, **AIC** стоит обратить внимание на значение информационный критерий Акаике, который показывает правдоподобие максимальное модели при штрафовании избыточные параметры системы. Считается, что наилучшей будет модель с наименьшим значением критерия AIC.
- 23) Аналогично есть **BIC** Байесовский информационный критерий, модификация AIC. Данный критерий налагает больший штраф на увеличение количества параметров по сравнению с AIC.
- 24) Аналогично есть **HQIC** –информационный критерий Ханнана-Куинна (Hannan-Quinn), который асимптотически более точный метод чем ВІС для дискретных параметров.

- 25) В любом случае, лучшей моделью будет та, что имеет наименьшее значение информационного критерия среди множества других. Рекомендуется, в первую очередь, выбирать по критерию **BIC**, так как он сильнее штрафует за переобучение модели и увеличение числа параметров по сравнению с другими. В нашем случае для тестового ВР, для любых информационных критериев, это модель AP(2).
- 26) Другим методом выбора модели может служить построение моделей АРПСС выбранного порядка и с найденными коэффициентам на графиках совмещенно.

plt.plot(model_fit.fittedvalues)

27) Например, для приведенного примера:

Модель AP(1) совсем слабо подходит к BP, AP(2) и AP(3) близки, AP(3) почти не отличается от AP(2), но избыточен по числе параметров (3>2), а значит AP(2) является наиболее оптимальной моделью BP.

- 28) Теперь попробуйте найти весовые коэффициенты для AP моделей только 1 и 2 порядка самостоятельно. Для этого Вам потребуется построить автокорреляционную функцию этого ряда.
- 29) Для нахождения весового коэффициента AP(1) используйте следующую формулу:

$$\phi = \rho_1$$
.

где $\rho_1 - r(1)$ оценка автокорреляционной функции.

30) Для AP(2) используйте следующие формулы аналогичным образом:

$$\phi_1 = \frac{\rho_1(1-\rho_2)}{1-\rho_1^2}, \quad \phi_2 = \frac{\rho_2-\rho_1^2}{1-\rho_1^2}.$$

- 31) Убедитесь, что полученные веса будут близки к тем, что были получены с помощью функций *Python*.
- 32) Теперь в зависимости от своего варианта, который определяется по последним двум цифрам студ. билета, выберите из выданных преподавателей *mat-файлов* тот, который имеет номер Вашего варианта и загрузите из него временной ряд **Z**, например:

data = file.get('z12')

Z = np.array(data)

33) Постройте график ВР и его автокорреляционную функцию.

- 34) Оцените порядок АРСС модели с помощью класса ARIMA. Для упрощения задачи выбора модели используйте только чистые АР или СС модели, то есть класс ARIMA с order = (p, 0, 0) или order = (0, 0, q).
- 35) Выберите модель с наиболее подходящей структурой и вычислите для нее коэффициенты. Предоставьте их для проверки Вашему преподавателю с пояснениями в выборе модели.
- 36) В дальнейшем попробуйте подобрать такую модель АРПСС (ARIMA) со всевозможными параметрами order = (p, d, q), которая будет наилучшей для данного ВР среди всех других по одному из информационных критериев.
- 37) Не забудьте в отчет-тетрадь добавить необходимые рисунки и таблицы результатов.

2. Требования к оформлению отчета

Отчет в Jupyter-тетради должен обязательно содержать: номер лабораторной работы, ФИО студента, номер варианта (либо студенческий номер), номер группы, результаты выполнения работы с комментариями студента (комментарии пишутся после #) и изображениями.