Math 3410 Assignment #2 University of Lethbridge, Spring 2015

Sean Fitzpatrick

February 3, 2015

Due date: Wednesday, February 11, by 5 pm.

Please provide solutions to the problems below, using the same guidelines as for Assignment #1:

1. Let U be a subspace of a vector space V, and let $S:U\to W$ be a non-zero linear transformation. That is, we assume that there exists some $u\in U$ such that $Su\neq 0$. Prove that the function $T:V\to W$ given by

$$Tv = \begin{cases} Sv, & \text{if } v \in U \\ 0, & \text{if } v \notin U \end{cases}$$

is **not** a linear transformation.

Hint: if $u \in U$ and $v \notin U$, can u + v be an element of U? What about -v?

2. Suppose V is a finite-dimensional vector space, and let $U \subseteq V$ be a subspace. Prove that any linear transformation $S: U \to W$ can be extended to a linear transformation $T: V \to W$.

Hint: any basis of U can be extended to a basis for V.

- 3. Suppose that V is a finite-dimensional vector space, and $T:V\to W$ is a linear transformation. Prove that there exists a subspace $U\subseteq V$ such that:
 - (a) $U \cap \text{null } T = \{0\}$, and
 - (b) range $T = \{Tu : u \in U\}.$
- 4. Suppose V and W are finite-dimensional vector spaces.
 - (a) Prove that there exists an injective (one-to-one) linear transformation $T: V \to W$ if and only if dim $V < \dim W$.
 - (b) Prove that there exists a surjective (onto) linear transformation $T:V\to W$ if and only if $\dim V\geq \dim W$.