HW 6 — Due May 2	4, 2016
Problem 4 1 9	

Page 1 of 8

Box #______Math 65

Find the first- and second-order Taylor polynomials for

$$f(x,y) = \frac{1}{x^2 + y^2 + 1}$$

at
$$a = (1, -1)$$
.

HW 6 —	Due	May	24,	2016
Problem	4.1.1	0		

Page 2 of 8

Box #______Math 65

Find the first- and second-order Taylor polynomials for

$$f(x,y) = e^{2x+y}$$

at
$$\mathbf{a} = (0, 0)$$
.

HW 6 —	Due May	7 24,	2016
Problem	4.1.20		

Page 3 of 8

Box #______Math 65

Calculate the Hessian matrix $Hf(\mathbf{a})$ for

$$f(x,y,z) = e^{2x-3y}\sin(5z)$$

at
$$\mathbf{a} = (0, 0, 0)$$
.

HW 6 —	Due May	24,	2016
Problem	4.1.28		

Page 4 of 8

Box #	
	Math 65

Determine the total differential of

$$f(x,y) = x^2 y^3$$

Page 5 of 8

Box #______Math 65

Near the point (1,-2,1), is the function $g(x,y,z) = x^3 - 2xy + x^2z + 7z$ is most sensitive to changes in x, y, or z?

HW 6 —	Due Ma	ay 24,	2016
Problem	4.2.6	-	

Page 6 of 8

Box #______Math 65

Identify and determine the nature of the critical points of

$$f(x,y) = y^4 - 2xy^2 + x^3 - x$$

HW 6 — Due May 24,	2016
Problem 4.2.12	

Page 7 of 8

Box #______Math 65

Identify and determine the nature of the critical points of

$$f(x,y) = e^{-x}(x^2 + 3y^2)$$

HW 6 —	Due Ma	y 24,	2016
Problem	4.2.22a	•	

Page 8 of 8

Box #______Math 65

Under what conditions on the constant k will the function

$$f(x,y) = kx^2 - 2xy + ky^2$$

have a nondegenerate local minimum at (0,0)? What about a local maximum?