*** Q-3, Location of Neutral point ***

Problem

Find the location of Neutral Point from nose of the projectile.

PROCEDURE

- Step 1: Find the values of C_{My} for different values of x (center of gravity).
- Step 2: Plot C_{My} v/s α for different values of x.
- Step 3: The location of x for which the plot has zero slope is the location of Neutral point.
- Step 4: Considering SM = +15% find CG of bomb.
- Step 5: Use the value of x (location of cg) to find the plots of question-01.

MATLAB code

(1) Body alone case

```
%% Neutral Point estimation for Body alone configuration
clc
clear all
close all
% Geometrical data (constant)
q = 974.329545;
                    % for 1st vaelocity
S = 0.009677;
1 = 0.884;
Q1 = 1/q/S;
Q2 = 1/q/S/l;
% Balance center location(m)
% x = -0.465;
y = 0;
z = 0;
% Measured Voltage signal
CM = [63.080043]
                    0.144499
                                  -0.206795
                                                1.354260
                                                              1.630051
                                                                            4.275882
-0.123649
             150.309342
                           0.592082
                                         -0.725847
                                                       0.030856
                                                                     0.393628
             -0.689773
0.024098
                           151.831777
                                         0.096597
                                                       -0.571799
                                                                     -4.414537
```

0.152944	-2.334107	0.037781	77.595997	0.445712	5.841784
-0.006030	0.114642	-0.574072	-0.065800	79.176337	0.322466
0.047415	0.466131	0.099431	0.208017	0.190935	44.877349];

% No wind data

 $\% \ NW = [-0.001023; \, 0.001298; \, 0.001474; \, -0.000501; \, -0.000191; \, -0.000147];$

 $NW = [-0.001023\ 0.001298\ 0.001474\ -0.000501\ -0.000191\ -0.000147];$

NW = NW';

% k = [Pitch	af n1	n2 s1	s2 rm]			
% Data for 40						
k = [-9.94791]	170.002673	-0.006420	0.005058	-0.001114	0.000491	-
0.000003						
-8.052083	0.002539	-0.004903	0.004606	-0.000981	0.000274	-
0.000041						
-6.052083	0.002434	-0.003329	0.003960	-0.000981	0.000253	-
0.000068						
-4.062500	0.002377	-0.001724	0.003177	-0.000968	0.000107	-
0.000071	0.00000	0.0004.70	0.000045	0.00000	0.0001.70	
-2.052083	0.002325	-0.000170	0.002245	-0.000885	0.000153	-
0.000090	0.002240	0.001222	0.001240	0.000021	0.000072	
-0.052083	0.002249	0.001322	0.001340	-0.000831	0.000072	-
0.000128	0.002201	0.001224	0.001244	0.000064	0.000120	
0.052083	0.002201	0.001334	0.001344	-0.000864	0.000120	-
0.000131	0.002224	0.002770	0.000400	0.000702	0.000100	
1.947917	0.002324	0.002779	0.000499	-0.000783	0.000108	-
0.000153 3.947917	0.002385	0.004320	-0.000380	-0.000745	-0.000003	
0.000158	0.002383	0.004320	-0.000380	-0.000743	-0.000003	-
5.947917	0.002458	0.005940	-0.001250	-0.000692	-0.000010	
0.000191	0.002436	0.003340	-0.001230	-0.000092	-0.000010	_
7.947917	0.002611	0.007523	-0.001939	-0.000602	-0.000087	_
0.000206	0.002011	0.007323	0.001737	0.000002	0.000007	
9.947917	0.002765	0.009013	-0.002427	-0.000612	-0.000136	_
0.000233	0.002703	0.007013	0.002127	0.000012	0.000120	
11.947917	0.002850	0.010588	-0.002839	-0.000578	-0.000102	_
0.000257			3733_327			
13.947917	0.002862	0.012207	-0.003176	-0.000626	-0.000078	_
0.000250						
15.937500	0.002895	0.013871	-0.003436	-0.000631	-0.000056	_
0.000280						
17.937500	0.002860	0.015556	-0.003610	-0.000583	-0.000413	-
0.000303						
19.947917	0.002808	0.017221	-0.003662	-0.000535	-0.000676	-
0.000332						
21.947917	0.002689	0.018903	-0.003702	-0.000579	-0.000642	-
0.000360						
23.947917	0.002521	0.020650	-0.003677	-0.000634	-0.000730	-
0.000392						

```
25.947917
                 0.002294
                                   0.022447
                                                     -0.003645
                                                                      -0.000538
                                                                                        -0.001077
0.000409];
a = transpose(k);
v = [a(2,:); a(3,:); a(4,:); a(5,:); a(6,:); a(7,:)];
                                                         % a = [af; n1;
                                                                               n2;
                                                                                        s1;
                                                                                                 s2;
                                                                                                          rm]
(6x20)
alpha_dummy = [];
Cmy_dummy1=[];
Cmy dummy2=[];
Cmy_dummy3=[];
Cmy_dummy4=[];
Cmy_dummy5=[];
Cmy dummy6=[];
Cmy_dummy7=[];
Cmy_dummy8=[];
Cmy_dummy9=[];
Cmy_dummy10=[];
x = [-0.465:0.093:(0.465-0.093)];
                                            % The CG is varied from 0.45 to -0.45 to find NP of
configuration
     y1 = [-1\ 0\ 0\ 0\ 0\ 0; 0\ 1\ 0\ 0\ 0; 0\ 0\ -1\ 0\ 0\ 0; 0\ -z\ y\ 1\ 0\ 0; z\ 0\ -x(1)\ 0\ 1\ 0; -y\ x(1)\ 0\ 0\ 0\ 1];
     y2 = [-1\ 0\ 0\ 0\ 0\ 0; 0\ 1\ 0\ 0\ 0; 0\ 0\ -1\ 0\ 0\ 0; 0\ -z\ y\ 1\ 0\ 0; z\ 0\ -x(2)\ 0\ 1\ 0; -y\ x(2)\ 0\ 0\ 0\ 1];
     y3 = [-1\ 0\ 0\ 0\ 0\ 0; 0\ 1\ 0\ 0\ 0; 0\ 0\ -1\ 0\ 0\ 0; 0\ -z\ y\ 1\ 0\ 0; z\ 0\ -x(3)\ 0\ 1\ 0; -y\ x(3)\ 0\ 0\ 0\ 1];
     y4 = [-1\ 0\ 0\ 0\ 0\ 0; 0\ 1\ 0\ 0\ 0; 0\ 0\ -1\ 0\ 0\ 0; 0\ -z\ y\ 1\ 0\ 0; z\ 0\ -x(4)\ 0\ 1\ 0; -y\ x(4)\ 0\ 0\ 0\ 1];
     y5 = [-1\ 0\ 0\ 0\ 0\ 0; 0\ 1\ 0\ 0\ 0; 0\ 0\ -1\ 0\ 0\ 0; 0\ -z\ y\ 1\ 0\ 0; z\ 0\ -x(5)\ 0\ 1\ 0; -y\ x(5)\ 0\ 0\ 0\ 1];
     y6 = [-1\ 0\ 0\ 0\ 0; 0\ 1\ 0\ 0\ 0; 0\ -1\ 0\ 0\ 0; 0\ -z\ y\ 1\ 0\ 0; z\ 0\ -x(6)\ 0\ 1\ 0; -y\ x(6)\ 0\ 0\ 0\ 1];
     y7 = [-1\ 0\ 0\ 0\ 0\ 0; 0\ 1\ 0\ 0\ 0; 0\ 0\ -1\ 0\ 0\ 0; 0\ -z\ y\ 1\ 0\ 0; z\ 0\ -x(7)\ 0\ 1\ 0; -y\ x(7)\ 0\ 0\ 0\ 1];
      y8 = [-1\ 0\ 0\ 0\ 0\ 0; 0\ 1\ 0\ 0\ 0; 0\ 0\ -1\ 0\ 0\ 0; 0\ -z\ v\ 1\ 0\ 0; z\ 0\ -x(8)\ 0\ 1\ 0; -y\ x(8)\ 0\ 0\ 0\ 1];
     y9 = [-1\ 0\ 0\ 0\ 0\ 0; 0\ 1\ 0\ 0\ 0; 0\ 0\ -1\ 0\ 0\ 0; 0\ -z\ y\ 1\ 0\ 0; z\ 0\ -x(9)\ 0\ 1\ 0; -y\ x(9)\ 0\ 0\ 0\ 1];
     y10 = [-1\ 0\ 0\ 0\ 0; 0\ 1\ 0\ 0\ 0; 0\ 0\ -1\ 0\ 0; 0; 0\ -z\ y\ 1\ 0\ 0; z\ 0\ -x(10)\ 0\ 1\ 0; -y\ x(10)\ 0\ 0\ 0]
1];
for i = 1:1:20
  af = v(1,i);
  n1 = v(2,i);
  n2 = v(3,i);
  s1 = v(4,i);
  s2 = v(5.i):
  rm = v(6,i);
  a = [af; n1; n2; s1; s2; rm];
  alpha = k(:,1);
  A = CM*[a - NW];
                            % A=[Ax;N1;N2;S1;S2;Rm] in kg and kg-m
  Af = A(1);
  N1 = A(2);
  N2 = A(3);
```

```
S1 = A(4);
S2 = A(5);
Rm = A(6);
% Transform the forces and moments to the body axis
% FM = [fx; fy; fz; mx; my; mz]
FM = [Af; (S1+S2); (N1+N2); Rm; (N1-N2)*0.065; (S1-S2)*0.065]*9.81;
% Transform the forces and moments to the C.G the flight vehicle
\% CG = [Fx Fy Fz Mx My Mz] @cg
CG1 = y1*FM;
CG2 = y2*FM;
CG3 = y3*FM;
CG4 = y4*FM;
CG5 = y5*FM;
CG6 = y6*FM;
CG7 = y7*FM;
CG8 = v8*FM;
CG9 = y9*FM;
CG10 = y10*FM;
% Mxyz = [Mx My Mz]
Mxyz1 = CG1(4:6,1);
Mxyz2 = CG2(4:6,1);
Mxyz3 = CG3(4:6,1);
Mxyz4 = CG4(4:6,1);
Mxyz5 = CG5(4:6,1);
Mxyz6 = CG6(4:6,1);
Mxyz7 = CG7(4:6,1);
Mxyz8 = CG8(4:6,1);
Mxyz9 = CG9(4:6,1);
Mxyz10 = CG10(4:6,1);
% Cmxyz = [Cmx Cmy Cmz]
Cmxyz1 = (1/(q*S*l))*Mxyz1;
Cmxyz2 = (1/(q*S*l))*Mxyz2;
Cmxyz3 = (1/(q*S*l))*Mxyz3;
Cmxyz4 = (1/(q*S*l))*Mxyz4;
Cmxyz5 = (1/(q*S*l))*Mxyz5;
Cmxyz6 = (1/(q*S*l))*Mxyz6;
Cmxyz7 = (1/(q*S*l))*Mxyz7;
Cmxyz8 = (1/(q*S*l))*Mxyz8;
Cmxyz9 = (1/(q*S*l))*Mxyz9;
Cmxyz10 = (1/(q*S*l))*Mxyz10;
Cmy1 = Cmxyz1(2);
Cmy2 = Cmxyz2(2);
Cmy3 = Cmxyz3(2);
Cmy4 = Cmxyz4(2);
Cmy5 = Cmxyz5(2);
```

```
Cmy6 = Cmxyz6(2);
  Cmy7 = Cmxyz7(2);
  Cmv8 = Cmxvz8(2);
  Cmy9 = Cmxyz9(2);
  Cmy10 = Cmxyz10(2);
  Cmy dummy1 = [Cmy dummy1, Cmy1];
  Cmy_dummy2 = [Cmy_dummy2, Cmy2];
  Cmy_dummy3 = [Cmy_dummy3, Cmy3];
  Cmy dummy4 = [Cmy dummy4, Cmy4];
  Cmy_dummy5 = [Cmy_dummy5, Cmy5];
  Cmy_dummy6 = [Cmy_dummy6, Cmy6];
  Cmy_dummy7 = [Cmy_dummy7, Cmy7];
  Cmy dummy8 = [Cmy dummy8, Cmy8];
  Cmy_dummy9 = [Cmy_dummy9, Cmy9];
  Cmy_dummy10 = [Cmy_dummy10, Cmy10];
  alpha_dummy = [alpha_dummy, alpha];
end
figure('Name', 'Neutral Point estimation for Bomb Model-II Body Alone', 'Number Title', 'off')
plot(alpha_dummy,Cmy_dummy1)
hold on
plot(alpha_dummy,Cmy_dummy2)
hold on
plot(alpha dummy, Cmy dummy3)
hold on
plot(alpha dummy, Cmy dummy4)
hold on
plot(alpha_dummy,Cmy_dummy5)
hold on
plot(alpha_dummy,Cmy_dummy6)
hold on
plot(alpha_dummy,Cmy_dummy7)
hold on
plot(alpha dummy, Cmy dummy8)
hold on
plot(alpha_dummy,Cmy_dummy9)
hold on
plot(alpha dummy, Cmy dummy10)
hold off
title('Neutral point estimation for (6680 Bomb Model-II Body Alone) using C m y v/s α')
grid on
xlabel('\alpha (deg)')
ylabel('C_M_y')
legend({'x1','x2','x3','x4','x5','x6','x7','x8','x9','x10'},'Location','northwest','NumColumns',2)
y_text_location = [Cmy_dummy1(20), Cmy_dummy2(20), Cmy_dummy3(20),
Cmy_dummy4(20), Cmy_dummy5(20),...
```

```
Cmy\_dummy6(20), Cmy\_dummy7(20), Cmy\_dummy8(20), Cmy\_dummy9(20), Cmy\_dummy10(20)]
```

```
for i=1:10 j=i-1; \\ x(i)=-0.465+i*0.093 \\ textString=sprintf('x=\%.4f',x(i)); \\ text(26.5,y_text_location(i),textString,'FontSize',10); \\ hold on; \\ end
```

Output Plot

 C_{My} v/s α for different locations of CG (Body alone)

(2) Body + Tail fin

- The MATLAB code is similar as shown for Body alone configuration, Only No wind data, Wind tunnel data and dynamic head will change.

Output Plot

 $C_{My} \, v/s \; \alpha$ for different locations of CG (Body alone + TF)

(3) Body + Nose fin + Tail fin

- The MATLAB code is similar as shown for Body alone configuration, Only No wind data, Wind tunnel data and dynamic head will change.

Output Plot

 $C_{My} \, v/s \, \alpha$ for different locations of CG (Body alone + NF + TF)

Observations

- 1. 6680_Bomb Model-II_Body Alone
- ==> CMy v/s α curve is fairly flat (i.e Slope is zero) within range of NP [0.186, 0.279].

 Approximate location of NP from balance load center is 0.2325m. (i.e 0.465-0.2325 = 0.2325 behind nose).
- ==> Considering SM of +15%, the CG shold lie at 0.01665 m ahead of NP. (i.e. 0.24915 m from balance load center and 0.21585 m behind nose) x = -0.24915 m
- 2. 6682_Bomb Model-II_Body_TF_0
- ==> Cmy v/s alpha curve is fairly flat (i.e Slope is zero) within range of NP [-0.093, 0].

 Approximate location of **NP** from balance load center is -0.0465m

 (i.e 0.465-(-0.0465) = **0.5115 behind nose**).
- ==> Considering SM of +15%, the CG shold lie at 0.01665 m ahead of NP. (i.e. -0.02985 m from balance load center and 0.49485 m behind nose) x = 0.02985 m
- 3. 6694_Bomb Model-II_Body_NF_TF_0
- ==> Cmy v/s alpha curve is fairly flat (i.e Slope is zero) at NP location of 0.093.

 Approximate location of **NP** from balance load center is 0.093m

 (i.e 0.465-0.093 = **0.372 m behind nose**).
- ==> Considering SM of +15%, the CG shold lie at 0.01665 m ahead of NP. (i.e. 0.10965 m from balance load center and 0.35535 m behind nose)