

DOM HELDER ESCOLA SUPERIOR

Hugo Oliveira Soares

Comunicação por luz visível: Construindo um protótipo usando SBC e explorando o potencial da tecnologia VLC

Hugo Oliveira Soares

Comunicação por luz visível: Construindo um protótipo usando SBC e explorando o potencial da tecnologia VLC

Projeto de Pesquisa apresentado à Dom Helder Escola Superior como requisito parcial para obtenção do título de Cientista da Computação.

Orientador de conteúdo: Prof. Marden Cicarelli Pinheiro

Orientador de metodologia: Prof. Ricardo Luiz de Freitas

1 Introdução

Com o aumento da popularidade da internet em todo o mundo, é notável que as redes *wifi* têm crescido significativamente, juntamente com o número de usuários e de dispositivos loT (Internet Of Things) (MATHEUS et al., 2017). De acordo com o relatório Digital 2023: Global Overview Report, publicado pelo site Datareportal, há cerca de 5,16 bilhões de usuários na internet. No entanto, esse aumento na demanda por *wifi* tem causado um problema, que é a congestão das faixas do espectro eletromagnético reservadas para essas redes, assim afetando a sua eficiência.

Figura 1 – Indicadores de uso da Internet

Fonte: Kemp (2023)

As redes *wireless* utilizam ondas eletromagnéticas para a transmissão de dados e informações, o que inviabiliza ou dificulta a sua utilização em alguns lugares, como em hospitais e aeronaves, por exemplo, por interferir com equipamentos hospitalares e com a antena de transmissão no caso dos voos.

Diante desses cenários, o Visible Light Communication (VLC) se mostra como um forte candidato para a solução destes problemas. Verifica-se que o espectro da luz visível, possui 10 mil vezes mais faixas de frequência se comparado com as ondas de rádio (CONCEIÇÃO, 2015, p. 14). Ou seja, é possível que um único "roteador" se comunique com mais dispositivos ao mesmo tempo.

Para o problema de interferência o VLC também é uma solução, visto que utiliza a luz visível como forma de transmitir as informações, assim não gerando interferências eletromagnéticas em outros aparelhos eletrônicos ou em redes *wifi*.

O estudo objetiva verificar a viabilidade de implementação do sistema VLC com um SBC (Single Board Computer), através da construção de um protótipo. A pesquisa experimental surgiu da necessidade de uma nova forma de transmissão de dados com pouca interferência e de baixo custo, abrindo uma possibilidade de levar comunicação em locais onde não era possível recorrer a uma rede wireless.

2 Objetivos

2.1 Objetivo geral

O propósito desta pesquisa é a construção de um protótipo de um sistema de comunicação VLC, baseado no projeto *OpenVLC*, utilizando exemplar de *SBC*. O objetivo principal é que o sistema seja capaz de transmitir e receber um pequeno pacote de dados.

2.2 Objetivos específicos

- Explicar o que é VLC
 - Explicar o funcionamento do VLC
 - Analisar as vantagens, desvantagens e desafios.
- Implementar um protótipo
- · Avaliar o desempenho do protótipo
 - Comparar o desempenho entre as SBCs selecionadas

3 Justificativa

Devido a faixa de 2,4GHz ser internacionalmente regulamentada ela não necessita de licença para a sua utilização e com a popularidade das redes sem fio a faixa tem concentrado grande parte da demanda por frequência. Assim o seu compartilhamento tem se tornado bastante denso fazendo com que os receptores lidem constantemente com interferências (BARROS, 2014). Segundo Genachowski (2013) o problema do congestionamento do espectro é crescente e está cada vez mais comum nas residências.

Outro problema enfrentado pelas redes sem fio é a interferência eletromagnética gerada por dispositivos elétricos que pode afetar o funcionamento da comunicação e vice-versa, como por exemplo um forno de microondas que operam na faixa de 2,45GHz, assim provocando um aumento nas taxas de erro nos dados que trafegam nas redes (BARROS, 2014). Já no caso contrário as redes móveis podem provocar alterações no funcionamento de dispositivos hospitalares e colocar em risco a vida dos pacientes (CABRAL, 2001).

A construção de um protótipo de um sistema VLC se dá pelo seu grande potencial de solucionar os problemas citados acima. Como o VLC utiliza uma faixa de comprimento de onda que vai de cerca de 380nm até 780nm, permite que a tecnologia ofereça uma faixa de frequências cerca de 10 mil vezes maior do que a radiofrequência, permitindo que mais dispositivos se conectem no mesmo ponto de acesso assim solucionando o problema do congestionamento do espectro (CONCEIÇÃO, 2015).

Como a luz visível não interfere em equipamentos eletrônicos, o VLC tem a possibilidade de operar em locais onde a RF não é desejada, como por exemplo em hospitais, evitando o mau funcionamento dos dispositivos.

3.1 Referencial teórico

3.1.1 Padrão IEEE 802.11

Quando os computadores receberam transmissores e receptores de rádio varias empresas começaram a comercializar LANs sem fios, porém não havia uma padronização para a comunicação, ou seja, um computador equipado com um rádio da marca X não era compatível com o computador equipado com o rádio da marca Y. Diante deste problema surgiu a necessidade de se criar um padrão para as LANs sem fios, assim o comitê do IEEE criou o padrão 802.11 mais conhecido como *wifi* (TANENBAUM, 2011).

3.1.1.1 Faixas 2.4Ghz e 5Ghz

As faixas de radio que o *wifi* utiliza são as faixas de 2,4GHz e 5GHz, as duas bandas não necessitam de licença para a sua utilização contudo os aparelhos devem limitar a sua potência para permitir que diferentes dispositivos coexistam. Como a utilização da faixa é livre é muito provável que os equipamentos de *wifi* tenham que lidar constantemente com interferências (TANENBAUM, 2011).

3.1.2 Interferência eletromagnética

3.1.3 OpenVLC

O OpenVLC é uma plataforma *open source* baseada em Linux e na plataforma Beagle Bone Black (BBB), projetada para ser de baixo custo e ser utilizada em pesquisas de redes VLC. O projeto consiste em um *hardware* para a transmissão e recepção e sua implementação de *software* atua na camada de enlace (WANG et al., 2015).

Figura 2 – Diagrama do hardware do OpenVLC

Fonte: Wang et al. (2015)

Figura 3 – Foto do hardware do OpenVLC

Fonte: Wang et al. (2015)

3.2 Metodologia

3.2.1 Single Board Computer (SBC)

Single Board Computer (SBC) é um computador onde todas os componentes necessários estão em uma mesma placa de circuito impresso. Esse tipo de dispositivo é muito utilizado para fins educacionais, para desenvolvimento de sistemas, datacenters (centros de processamento de dados) e clusters portáteis. Alguns exemplos são o *OrangePI*, *RockPI*, *BeagleBone* e *RaspberryPI*, sendo este um dos mais populares (NETO et al., 2021).

- O porque da escolha (Custo)

3.2.1.1 RaspberryPI

A *Raspberry Pi Foundation* foi fundada em 2008 sediada no Reino Unido com o objetivo de promover o avanço na educação no campo da computação. (FOUNDATION, 2018)

Figura 4 – Raspberry Pi 3

Fonte: RASPBERRYPI

- Criação
- Usos

3.2.1.2 OrangePI

Variante chinesa do RaspberryPI

Figura 5 – Orange Pi 3 LTS

Fonte: ORANGEPI

Referências

- BARROS, J. J. R. Efeitos da interferência gerada por fornos de micro-ondas nas redes sem fio IEEE 802.11b/g/n. Dissertação (Mestrado) Instituto Federal de Educação, Ciência e Tecnologia da Paraíba, João Pessoa, Oct 2014.
- CABRAL, S. C. B. Interferência eletromagnética em equipamento eletromédico ocasionada por telefonia móvel celular. Dissertação (Mestrado) Universidade Estadual de Campinas, Campinas, Jun 2001.
- CONCEIÇÃO, M. L. **Comunicação por Luz Visível**. Monografia (TCC) Universidade de Brasília, Brasília, 2015.
- FOUNDATION, R. P. **Strategy 2018–2020**. Raspberry Pi. Raspberry Pi Foundation, 2018. Disponível em: https://static.raspberrypi.org/files/about/RaspberryPiFoundationStrategy2018%E2%80%932020.pdf. Acesso em: 22 abr. 2023.
- GALISTEO, A. et al. Research in visible light communication systems with openvlc1.3. **The Institute of Electrical and Electronics Engineers, Inc.(IEEE) Conference Proceedings**, 2019. Disponível em: ">https://dspace.networks.imdea.org/bitstream/handle/20.500.12761/685/Final.pdf?sequence=1&isAllowed=y>">https://dspace.networks.imdea.org/bitstream/handle/20.500.12761/685/Final.pdf?sequence=1&isAllowed=y>">https://dspace.networks.imdea.org/bitstream/handle/20.500.12761/685/Final.pdf?sequence=1&isAllowed=y>">https://dspace.networks.imdea.org/bitstream/handle/20.500.12761/685/Final.pdf?sequence=1&isAllowed=y>">https://dspace.networks.imdea.org/bitstream/handle/20.500.12761/685/Final.pdf?sequence=1&isAllowed=y>">https://dspace.networks.imdea.org/bitstream/handle/20.500.12761/685/Final.pdf?sequence=1&isAllowed=y>">https://dspace.networks.imdea.org/bitstream/handle/20.500.12761/685/Final.pdf?sequence=1&isAllowed=y>">https://dspace.networks.imdea.org/bitstream/handle/20.500.12761/685/Final.pdf?sequence=1&isAllowed=y>">https://dspace.networks.imdea.org/bitstream/handle/20.500.12761/685/Final.pdf?sequence=1&isAllowed=y>">https://dspace.networks.imdea.org/bitstream/handle/20.500.12761/685/Final.pdf?sequence=1&isAllowed=y>">https://dspace.networks.imdea.org/bitstream/handle/20.500.12761/685/Final.pdf?sequence=1&isAllowed=y>">https://dspace.networks.imdea.org/bitstream/handle/20.500.12761/685/Final.pdf?sequence=1&isAllowed=y>">https://dspace.networks.imdea.org/bitstream/handle/y>">https://dspace.networks.imdea.org/bitstream/handle/y>">https://dspace.networks.imdea.org/bitstream/handle/y>">https://dspace.networks.imdea.org/bitstream/handle/y>">https://dspace.networks.imdea.org/bitstream/handle/y>">https://dspace.networks.imdea.org/bitstream/handle/y>">https://dspace.networks.imdea.org/bitstream/handle/y>">https://dspace.networks.imdea.org/bitstream/handle/y>">https://dspace.networks.imdea.org/bitstream/handle/y>">https
- GENACHOWSKI. Revision of Part 15 of the Commission's Rules to Permit Unlicensed National Information Infrastructure (U-NII) Devices in the 5 GHz Band. FCC Federal Communications Commission, 2013. Disponível em: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii. Acesso em: 17 abr. 2023.
- KEMP, S. Digital 2023: Global Overview Report DataReportal Global Digital Insights. DataReportal Global Digital Insights, 2023. Disponível em: https://datareportal.com/reports/digital-2023-global-overview-report. Acesso em: 15 mar. 2023.
- MATHEUS, L. et al. Comunicação por luz visível: conceito, aplicações e desafios. In: **Livro de Minicursos SBRC**. Minas Gerais: Sociedade Brasileira de Computação, 2017. cap. 6, p. 247–296.
- NETO, J. V. C. et al. Single-board computers na educação: Uma revisão sistemática da literatura. **Research, Society and Development**, v. 10, n. 7, Jun 2021.
- OLIVEIRA, N. F. de. Física Ondas. São Paulo: Sistema COC de ensino, 2017.
- ORANGEPI. **Products**. Disponível em: http://www.orangepi.org/html/hardWare/computerAndMicrocontrollers/index.html. Acesso em: 22 abr. 2023.
- RASPBERRYPI. **Buy A raspberry pi**. Disponível em: https://www.raspberrypi.com/products/>. Acesso em: 22 abr. 2023.
- TANENBAUM, S. **Redes de computadores**. Upper Saddle River, NJ, USA: Pearson, 2011. ISBN 9788576059240.

Referências 9

WANG, Q. et al. Low-cost, flexible and open platform for visible light communication networks. **ACM HotWireless 2015**, 2015. Disponível em: https://dl.acm.org/doi/pdf/10.1145/2799650.2799655>.