CS1231-Midterm 1, 2017

Name:

Matric Number:

Tutorial Group:

Seat Number:

1. [3 marks] Using a truth table, determine if the following is a contradiction.

$$\neg (p \lor q \lor \neg r) \land ((r \to p) \lor (r \to q))$$

$p \mid q \mid r \mid$	$\neg (p \lor q \lor \neg r)$	$r \rightarrow p$	$r \rightarrow q$	$ \neg (p \lor q \lor \neg r) \land ((r \to p) \lor (r \to q)) $
T T T				
T T F				
T F T				
T F F				
F T T				
F T F				
F F T				
$F F F \parallel$				

Ans: yes / no

2. [2 marks] Use theorem of logical equivalence laws to show that

$$\neg (p \land (q \lor r)) \equiv (\neg p \lor \neg q) \land (\neg p \lor \neg r).$$

Proof using theorem:

3. [2 marks] Simplify $\neg p \rightarrow q$ to an expression without \rightarrow .

4. [4 marks] Let C(x) be "x is a student in CS1231", G(x) be "x can speak German", F(x) be "x can speak French". Translate the following into logical expression with domain (i) all students in CS1231; (ii) all students in the university.

(a) Some students in CS1231 can speak both German and French.

Answer: (i)

(ii)

(b) No student in CS1231 can speak both German and French.

Answer: (i)

(ii)

$\forall x \in \mathbb{R} \exists y \in \mathbb{R}, xy = 1.$				
Truth Value:				
Justification:				
6. [2 marks] In the specification of a system for booking theatre seats, $B(p,s)$ denotes the predicate "person p has booked seat s ". Let X be the domain of all persons p . Let Y be the domain of all seats s in the theatre. Translate the following into logical expressions using quantifiers \forall , \exists , and logical connectives.				
(i) All seats are booked.				
Answer:				
(ii) No seat is booked by more than one person.				
Answer:				
7. [2 marks] Translate the following into a logical expression using quantifiers \forall , \exists , and logical connectives. Use C , the set of all students in CS1231, and H , the set of all help sheets as domains. Let $E(s)$ be "Student s has a test". Let $R(s,k)$ be "Student s brings help sheet k ". Let $W(k)$ be "Help sheet k is handwritten".				
"Every CS1231 student having a test brings exactly one help sheet which has to be handwritten."				
Answer:				
8. [3 marks] Derive the conclusion p from the following given hypotheses:				
(i) $a \wedge q \to m$, (ii) $(f \to q) \wedge (\neg p \to a)$, (iii) $\neg m$, (iv) f .				
Answer:				

5. [2 marks] Determine, with justification, the truth values of the following expression.