

Správna odpoveď: A,C

Správna odpoveď: B

Správna odpoveď: A

Správna odpoveď: A,C

60"42" – číslo 42 v osmičkovej sústave (octal – O) vyjadrené na 6 bitoch

 $(42)_8 = 4 \times 8^1 + 2 \times 8^0 = 34$

6D"34" – číslo 34 v desiatkovej = 34

číslo 34 v binárnej sústave vyjadrené na 6 bitoch je 100010

4D"34" nemôže byť lebo číslo 34 nevieme vyjadriť v binárnej sústave na 4 bitoch 6X"23" X je hexadecimálna (16) 23 v šestnáskovej sústave je 35 to sa nerovná 34

Správna odpoveď: A,C,D

Otázka 11

Otázka 11

Odpoved bola uložena sw \$10,0(\$0)

Ib \$50,1(\$0)

Označte jednu odpoveď:

Označte

Správna odpoveď:

45238967 pôvodne slovo takže 45 23 89 67 je veľký endián takže malý endián bude 67 89 23 45 a keďže posun o 1 tak to bude pozícia 1 čo je 89

Správna odpoveď: C

Správna odpoveď: C,D

Správna odpoveď: 5,29 (1/(75 + 2*32 + 50)) * 1000

Hlavný dekodér riadiacej časti procesora

MIPS Procesor

Nech je daná podmnožina MIPS inštrukčnej sady:

- Inštrukcie typu R: and, or, add, sub, slt
- Inštrukcie pre prácu s pamäťou: lw, sw
- Inštrukcia vetvenia: beq

Správna odpoveď (podľa tabuľky):

	Instruction	Op _{5:0}	RegWrite	RegDst	AluSrc	Branch	MemWrite	MemtoReg	ALUOp _{1:0}
İ	R-type	000000	1	1	0	0	0	0	10
	lw	100011	1	0	1	0	0	0	00
	sw	101011	0	X	1	0	1	X	00
	beq	000100	0	X	0	1	0	X	01

B (110)

Správna odpoveď: 57 570ns = 0,00000057 s

čas odozvy = počet inštrukcii * cpi * Tc = 100 000 000 * 1 * 0,00000057 = 57s

v prípade jednocyklového sa cpi rovná 1

odpoveď podľa tabuľky

F _{2:0}	Funkcia
000	A & B
001	A B
010	A+B
011	not used
100	A & ∼B
101	A ~B
110	A - B
111	SLT

```
správna odpoveď:

57

570ns = 0,00000057 s
čas odozvy = počet inštrukcii * cpi * Tc = 100 000 000 * 1 * 0,00000057 = 57s v prípade jednocyklového sa cpi rovná 1
```

Preklápací obvod typu D je asynchronný bistabilný preklápací obvod s vstupom D a hodinovým vstupom

Preklápací obvod typu <i>D</i> je asynchrónny bistabilný PO so vstupom D a hodinovým vstupom C.
Vyberte jednu:
Pravda
O Nepravda

správna odpoveď:

Pravda

Nech je daná nasledujúca postupnosť inštrukcií: addi \$s0, \$0, 4

```
Nech je daná nasledujúca postupnosť inštrukcií:
    addi $s0, $0, 4
    addi $s1, $0, 1
    sll $s1, $s1, 2
    beq $s0, $s1, target
    addi $s1, $s1, 1
target:
    addi $s1, $s1, 2
Akú hodnotu má $s1?
Označte jednu odpoveď:
0 1
 0 2
 0 3
 0 4
 0 5
 0 6
 0 7
 0 8
```

správna odpoveď: 6

Prvá inštrukcia "addi \$s0, \$0, 4" nastaví hodnotu registra \$s0 na 4.

Druhá inštrukcia "addi \$s1, \$0, 1" nastaví hodnotu registra \$s1 na 1.

Tretia inštrukcia "sll \$s1, \$s1, 2" posunie binárne číslo v registri \$s1 o dva bity doľava, čím sa hodnota registra \$s1 zmení na 4.

Štvrtá inštrukcia "beq \$s0, \$s1, target" skontroluje, či hodnoty registrov \$s0 a \$s1 sú rovnaké. Ak sú rovnaké, skočí na inštrukciu označenú "target", ak nie, pokračuje v ďalšej inštrukcii. V tomto prípade sa skočí na inštrukciu označenú "target"

Piata inštrukcia "addi \$s1, \$s1, 1" sa nevykoná, pretože sa skočilo na inštrukciu "target"

Šiesta inštrukcia "addi \$s1, \$s1, 2" pridá 2 k hodnote registra \$s1, čím sa hodnota registra \$s1 zmení na 6.

Nech A[n-1:0], B[n-1:0], Q[n-1:0], C[1] a PC sú registre. Nech PC slúži ako počitadlo cyklov. Aplikujte algoritmus celočíselného delenia pre dekadické čísla .A = (+21), B = (+6). Na začiatku algoritmu, tieto vstupné číselné hodnoty sú uložené v rovnako pomenovaných registroch.

Nech A[n-1:0], B[n-1:0], Q[n-1:0], C[1] a PC sú registre. Nech PC slúži ako počítadlo cyklov. Aplikujte algoritmus celočíselného delenia pre dekadické čísla .A = (+21), B = (+6). Na začiatku algoritmu, tieto vstupné číselné hodnoty sú uložené v rovnako pomenovaných registroch.

Určte hodnotu registra, ktorý obsahuje celočíselný zvyšok po vykonaní štvrtej (a pred vykonaním piatej) iterácie while cyklu v algoritme.

Pozn. Hodnota čísla sa uvádza v dekadickej číselnej sústave.

správna odpoveď:

4!! až na konci bude 3, ale v tej iteracii medzi 4.-5, je 4

Na obrázku 1 je znázornený logický obvod pozostávajúci z preklápacích obvodov typu flip-flop a dvojvstupových hradiel. Technická dokumentácia k obvodu uvádza tieto hodnoty:

správna odpoveď:

4,60 (GHz) -> vzhladom na modernost vam vzdy musi vyjst aspon >4 GHz

Fc = 1 / (83 + 2*39 + 56) = 0,0046082 THz * 1000 = 4,60 GHz

Aká je reprezenácia číselnej hodnoty -7 v priamom kóde?

správna odpoveď: 10111

Priamy kod je vacsinou reprezentovany na 5, 8, 16 bitov.

Najprv prevod 7 do binarnej -> 111 vyplnime ho na n-1 (5-1) bity -> 0111

Ked je to zaporne cislo pridame 1 na zaciatok, ked kladne, tak 0 -> 10111 (lebo je zaporne)

Aká bude hodnota čísla 6,75₁₀ vo formáte Q4.6?

Aká bude hodnota čísla 6,75₁₀ vo formáte Q4.6 ?

Označte jednu odpoveď:

000110,1100_B

110,11000_B

0110,110000_B

0110,101000_B

správna odpoveď: 0110,110000

0110,110000 v Q4.6 reprezentuje číslo 6.75.

Q4.6 znamená že cislo je reprezentovane 4bitovym integerom a 6 bitovou desatinnou castou.

2² + 2¹ + 2¹ + 2² = 6,75 32 16 8 4 2 1 , 0.5 0.25 0.125 0.0625 atd...

Na obrázku 1 je znázornený logický obvod pozostávajúci z preklápacích obvodov typu flip-flop a dvojvstupových hradiel. Technická dokumentácia k obvodu uvádza tieto hodnoty:

Otázka **21** Ešte nezodpovedané Max. hodnotenie 6,00 P Označiť otázku

Na obrázku 1 je znázornený logický obvod pozostávajúci z preklápacích obvodov typu flip-flop a dvojvstupových hradiel. Technická dokumentácia k obvodu uvádza tieto hodnoty:

- Propagačné oneskorenie hodinového signálu vstupujúceho do preklápacích obvodov je 77ps.
- Kontaminačné oneskorenie hodinového signálu vstupujúceho do preklápacích obvodov je 27ps.
- Doba nastavenia signálu vstupujúceho do preklápacích obvodov je 51ps.
- Doba presahu signálu vstupujúceho do preklápacích obvodov je 61ps.
- Propagačné oneskorenie logických hradiel je 44ps.
- · Kontaminačné oneskorenie logických hradiel je 32ps.

Určte maximálnu taktovaciu frekvenciu hodinového signálu v GHz s presnosťou na 2 číslice za desatinnou čiarkou.

Obrázok 1 Logický obvod určený pre časovú analýzu

Odpoveď: 99,99

správna odpoveď: = 4,62 GHz 4,62 (GHz) -> vzhladom na modernost vam vzdy musi vyjst aspon >4 GHz

Fc = 1 / (77 + 2*44 + 51) = 0,0046296 THz * 1000 = 4,62 GHz

Nech je daná 32-bitová RAM s dvoma adresnými vstupmi (angl. dual-port RAM).

Nech je daná 32-bitová RAM s dvoma adresnými vstupmi (angl. dual-port RAM).

Adresný vstup wAddr je 32-bitový. Adresný vstup rAddr je 8-bitový.

Na vstup wAddr je zapísané slovo (42)₁₀.

Aká hodnota má byť prezentovaná na rAddr, ak chceme získať prístup k tomu istému dátovému slovu uloženému v tejto pamäti?

Pri odpovedi použite decimálnu sústavu!

Odpoveď:	
----------	--

správna odpoveď:

42

Ak chceme ziskat pristup k datovemu slovu s adresou 42 (10) na vstupe wAddr, musime na vstupe rAddr zadat hodnotu 42 (10) modulo 2^8 (256 (10)) = 42 (10).

Ktoré tvrdenie, resp. tvrdenia je/sú o príkaze wait pravdivé?

Ktoré tvrdenie, resp. tvrdenia je/sú o príkaze wait pravdivé?
Označte jednu alebo viac odpovedí:
 Príkaz wait má viacero foriem, ktoré ale nie je možné vzájomne kombinovať.
 Príkaz wait je plne syntetizovateľným príkazom.
 Príkaz wait slúži k úplnému zastaveniu behu procesu.
 Príkaz wait slúži len na účely simulácie.

správna odpoveď:

Prikaz wait ma viacero foriem, ktore ale nie je mozne vzajomne kombinovat
Prikaz wait je plne sytetizovatelnym prikazom Prikaz wait sluzi k uplnemu zastaveniu behu procesu

Na obrázku 1 je znázornený logický obvod pozostávajúci z preklapacích obvodov typu flip-flop a dvojvstupových hradiel. Technická dokumentácia k obvodu uvádza tieto hodnoty:

správna odpoveď:

4,97 (GHz)-> vzhladom na modernost vam vzdy musi vyjst aspon >4 GHz

Fc = 1 / (88 + 2*31 + 51) = 0,0049751 THz * 1000 = 4,97 GHz

Pre logické úrovne platí:

Otázka 1 Ukončené	Pre logické úrovne platí:
Max. hodnotenie 3,50 P Označiť otázku	Označte jednu alebo viac odpovedí: Číslicové signály majú konečný počet analógových hodnôt. Číslicové signály majú konečný počet diskrétnych hodnôt, väčšinou dve; 1 a 0. Číslicové signály majú nekonečný počet diskrétnych hodnôt. Číslicové signály majú konečný počet diskrétnych hodnôt, väčšinou desať; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

správna odpoveď :

Cislicove signaly maju konecny pocet diskretnych hodnot, vacsinou dve : 1 a 0

Pri práci s K-mapou platí:

správna odpoveď:

Preferovane su pravidelne konfiguracie s minimalnym stupnom k. Pravidelnou konfiguraciu stupna k sa nazyva 2 konfiguracia 2^k stvorcekov, z ktorych kazdy ma v nej prave k susedov.

Kazda O (nulovy bod) musi byt zaradena aspon do jednej pravidelnej konfiguracie, ak cielom je tvorba disjunktivnej normalnej formy.

Kazda 1 (jednickovy bod) musi byt zaradena aspon do jednej pravidelnej konfiguracie, ak cielom je tvorba disjunktívnej normálnej formy

Čo je to pretečenie?

správna odpoveď:

ak vysledok operacie nie je mozne reprezentovat na K bitoch, pricom K je pocet zobrazovacich radov

KNF je súčet implicentov.

Read Only Memory je volatilným typom pamäte.

správna odpoveď:

Nepravda

Pri rýchlej asociatívnej pamäti s priamym mapovaním platí:

správna odpoveď:

S = B, kde S definuje rám bloku cache a B je blok v HP.

Čo je charakteristické pri uplatnení časového paralelizmu v procese spracovania prúdu inštrukcií? Čo je

správna odpoveď:

Delenie instrukcie na dielcie kroky, ktore sa vykonavaju subezne

Na obrázku 1 je znázornený logický obvod pozostávajúci z preklápacích obvodov typu flip-flop a dvojvstupových hradiel. Technická dokumentácia k obvodu uvádza tieto hodnoty:

správna odpoveď:

5,29 (GHz)-> vzhladom na modernost vam vzdy musi vyjst aspon >4 GHz

Fc = 1 / (80 + 2*33 + 43) = 0.0052910 THz * 1000 = 5.29 GHz

Majme kód v jazyku C a jeho ekvivalent v architektúre MIPS:

```
C kód: if \ (i==j)\{f=g+h\}; \\ f=f-i; \\ MIPS kód: \\ \# \$s0 = f, \$s1 = g, \$s2 = h \\ \# \$s3 = i, \$s4 = j \\ bne \$s3, \$s4, L1 \\ add \$s0, \$s1, \$s2 \\ L1: sub \$s0, \$s0, \$s3
```

 $Vysvetlite\ pre\'co\ sa\ v\ asembleri\ testuje\ podmienka\ (i!=j)\ na\ rozdiel\ od\ C\ k\'odu\ (i==j)?$

správna odpoveď : pri testovaní podmienky (i!=j) sa vyžaduje príkaz j (jump) a návesť naviac vysvetlenie: