МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра ТВ

ОТЧЁТ

по лабораторной работе № 1 по дисциплине «Цифровая обработка изображений»

Тема: РАЗРАБОТКА ПРОГРАММЫ ДЛЯ КВАНТОВАНИЯ ИЗОБРАЖЕНИЙ

Студенты гр. 9105	 Шаривзянов Д. Р.
	 Басманов А. А.
Преподаватель	 Поздеев А. А.

Санкт-Петербург

КВАНТОВАНИЕ ИЗОБРАЖЕНИЙ

Цели работы: знакомство с гистограммой и методом квантования изображений.

Теоретические сведения

Формула среднеквадратической ошибки квантования:

$$\sigma_e = \sqrt{\frac{1}{mn} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} (I(i,j) - K(i,j))^2},$$

где I(i,j) — значение яркости пикселя с координатами (i,j) в исходном полутоновом изображении (с числом уровней квантования 256), K(i,j) — значение яркости пикселя с координатами (i,j) в квантованном изображении с меньшим числом уровней квантования (q_level), m и n — число строк и столбцов изображения.

Оценку среднеквадратической ошибки квантования можно получить, используя значение величины интервала между уровнями квантования:

$$\hat{\sigma}_e = \text{inter} / \sqrt{12}$$
.

1. Код программы

```
\label{eq:matter} $$\operatorname{Mat getHist}(\operatorname{const Mat \&image})$$ \{$$ & \operatorname{int hist\_h} = 400, \operatorname{hist\_w} = 256*3; \\ & \operatorname{Mat hist} = \operatorname{Mat::zeros}(1, 256, \operatorname{CV\_64FC1}); \\ & \operatorname{for (int } i = 0; \ i < \operatorname{image.cols}; \ i++) \\ & \operatorname{for (int } j = 0; \ j < \operatorname{image.rows}; \ j++) \ \{$$ & \operatorname{int } r = \operatorname{image.at} < \operatorname{unsigned char} > (j, \ i); \\ & \operatorname{hist.at} < \operatorname{double} > (0, \ r) = \operatorname{hist.at} < \operatorname{double} > (0, \ r) + 1.0; \\ & \operatorname{double m} = 0, \ M = 0; \\ & \operatorname{minMaxLoc(hist, \&m, \&M)}; \\ & \operatorname{hist} = \operatorname{hist} / M; \\ & \operatorname{Mat hist\_img} = \operatorname{Mat::zeros}(100, 256, \operatorname{CV\_8U}); \\ & \operatorname{for (int } i = 0; \ i < 256; \ i++) \\ & \operatorname{for (int } j = 0; \ j < 100; \ j++) \ \{$} \\ & \operatorname{if (hist.at} < \operatorname{double} > (0, \ i) * 100 > j) \ \{$} \\ & \operatorname{hist\_img.at} < \operatorname{unsigned char} > (99 - j, \ i) = 255; \\ & \operatorname{hist\_img.at} < \operatorname{unsigned char} > (99 - j, \ i) = 255; \\ & \operatorname{hist\_img.at} < \operatorname{unsigned char} > (99 - j, \ i) = 255; \\ & \operatorname{hist\_img.at} < \operatorname{unsigned char} > (99 - j, \ i) = 255; \\ & \operatorname{hist\_img.at} < \operatorname{unsigned char} > (99 - j, \ i) = 255; \\ & \operatorname{hist\_img.at} < \operatorname{unsigned char} > (99 - j, \ i) = 255; \\ & \operatorname{hist\_img.at} < \operatorname{unsigned char} > (99 - j, \ i) = 255; \\ & \operatorname{hist\_img.at} < \operatorname{unsigned char} > (99 - j, \ i) = 255; \\ & \operatorname{hist\_img.at} < \operatorname{unsigned char} > (99 - j, \ i) = 255; \\ & \operatorname{hist\_img.at} < \operatorname{unsigned char} > (99 - j, \ i) = 255; \\ & \operatorname{hist\_img.at} < \operatorname{unsigned char} > (99 - j, \ i) = 255; \\ & \operatorname{hist\_img.at} < \operatorname{unsigned char} > (99 - j, \ i) = 255; \\ & \operatorname{hist\_img.at} < \operatorname{unsigned char} > (99 - j, \ i) = 255; \\ & \operatorname{hist\_img.at} < \operatorname{unsigned char} > (99 - j, \ i) = 255; \\ & \operatorname{unsigned char} > (99 - j, \ i) = 255; \\ & \operatorname{unsigned char} > (99 - j, \ i) = 255; \\ & \operatorname{unsigned char} > (99 - j, \ i) = 255; \\ & \operatorname{unsigned char} > (99 - j, \ i) = 255; \\ & \operatorname{unsigned char} > (99 - j, \ i) = 255; \\ & \operatorname{unsigned char} > (99 - j, \ i) = 255; \\ & \operatorname{unsigned char} > (99 - j, \ i) = 255; \\ & \operatorname{unsigned char} > (99 - j, \ i) = 255; \\ & \operatorname{unsigned char} > (99 - j, \ i) = 255; \\ & \operatorname{unsigned char} > (99 - j, \ i) = 255; \\ & \operatorname{unsigned char} > (99 - j, \ i) = 255; \\ & \operatorname
```

```
bitwise not(hist img, hist img);
        resize(hist img, hist img, Size(hist w, hist h), 0, 0, INTER NEAREST);
        return hist img;
Mat getQuant(const Mat &image, int q level)
        double sko = 0.0;
        int inter = 255 / (q \text{ level - 1});
        Mat img_quant = Mat::zeros(image.rows, image.cols, CV_8UC1);
        for (int row = 0; row < image.rows; row++){
                 for (int col = 0; col < image.cols; col++) {
       int Y = image.at<uchar>(row, col);
                          for (int k = 0; k < q level; k++){
                                   if ((Y > inter * k) && (Y \le inter * k + inter / 2))
                                                                                                Y = inter * k;
                                   if ((Y > inter * k + inter / 2) && (Y <= inter * (k + 1))) Y = inter * (k + 1);
       img quant.at<uchar>(row, col) = Y;
       sko += (image.at<uchar>(row, col) - img quant.at<uchar>(row, col)) * (image.at<uchar>(row, col) -
img quant.at<uchar>(row, col));
  sko /= (image.rows*image.cols);
        sko = sqrt(sko);
        cout << "\tsko = " << sko << " \t" << "ass sko = " << inter / sqrt(12) << endl;
        return img quant;
void lab1(const Mat &img bgr){
  Mat img gray;
  cvtColor(img bgr, img gray, COLOR BGR2GRAY);
  imshow("image bgr", img bgr);
  imshow("image gray", img gray);
  cout << "for origin: ";</pre>
  Mat quant = getQuant(img_gray, 256);
  imshow("Quantization with " + to string(256) + " levels", quant);
  Mat hist = getHist(img gray);
  imshow("histogram origin", hist);
  for (int q = 2; q < 65; q*=2) {
  cout << "for q = " << q << ": ";
  Mat quant = getQuant(img_gray, q);
  imshow("Quantization with " + to_string(q) + " levels", quant);
  Mat hist = getHist(quant);
  imshow("histogram with " + to string(q) + " levels", hist);
  }
  waitKey();
```

2. Исходное изображение и его гистограмма

Рис 1. Исходное полутоновое изображение и его гистограмма.

Значение среднеквадратического отклонения отчетов исходного полутонового изображения равно 0, так как квантования и ошибок не происходит (по формуле ошибки получается вычитание значения исходного пиксела от самого себя).

3. Изображения, квантованные по 2, 4, 8, 16, 32 и 64 уровням, а также их гистограммы.

Рис. 2. Квантование по 2 уровням и гистограмма

Рис. 3. Квантование по 4 уровням и гистограмма

Рис. 4. Квантование по 8 уровням и гистограмма

4. Таблица с полученными значениями среднеквадратической ошибки квантования.

q_level	2	4	8	16	32	64	256
σ_e	100.163	26.6323	12.1912	5.04383	2.4747	1.23085	0
$\hat{\sigma}_e$	73.6122	24.5374	10.3923	4.90748	2.3094	1.1547	0.288675

Выводы: в ходе выполнения программы из цветного изображения получается полутоновое путем преобразования значений RGB к яркостному значению с последующим его квантованием. Квантование представляет собой процесс разделения диапазона возможных значений яркости на фиксированное количество уровней, что позволяет уменьшить количество информации, необходимое для представления изображения, с возможностью сохранить при этом его визуальное качество на приемлемом уровне.

Гистограмма распределения уровней яркости визуализирует, как часто каждый уровень яркости встречается в изображении, что является полезным инструментом для анализа изображений, в частности, для оценки контрастности и распределения яркости.

Среднеквадратическое отклонение и среднеквадратическая ошибка квантования позволяют количественно оценить потерю качества изображения в результате его квантования. Эти метрики важны для понимания компромисса между сокращением объема данных изображения и сохранением его качества.

Из результатов лабораторной работы следует, что с увеличением числа уровней квантования повышается качество воспроизведения изображения, также уменьшается значение среднеквадратической ошибки квантования и ведет к увеличению объема данных. В свою очередь, уменьшение числа уровней квантования сокращает объем данных, но может приводить к ухудшению визуального качества изображения, в том числе к появлению ложных контуров и потере деталей.

Отличие фактического значения ошибки квантования от оценки по величине интервала для используемого изображения незначительно, однако в случае высокодетализированного изображения (рис.8) при некоторых случаях квантования данные значения могут отличаться в несколько раз. Кажется, это ошибка в коде.

Результаты расчёта ошибок квантования для высокодетализированного изображения:

Jancini.		
for origin:	sko = 0	ass sko = 0.288675
for $q = 2$:	sko = 70.1599	ass sko = 73.6122
for $q = 4$:	sko = 24.0162	ass sko = 24.5374
for $q = 8$:	sko = 10.4034	ass sko = 10.3923
for $q = 16$:	sko = 4.94135	ass sko = 4.90748
for $q = 32$:	sko = 17.2642	ass sko = 2.3094
for $q = 64$:	sko = 5.27716	$ass\ sko = 1.1547$
for $q = 128$:	sko = 0.704901	ass sko = 0.57735