

乱数シミュレーションによるフィッティングモデル評価 Applicability of Random Simulation to the Evaluation of Interpolation

Yuji Sode (IEP at North Carolina State Univ.)
Email: ysode@ncsu.edu

Email: yuji.sode@gmail.com

Figure 1. Schematic diagram

showing three interpolations

Quality and quantity of paleontological samples vary depending on materials to investigate (e.g. Wani, 2003; Hammer and Harper, 2006; Mustoe and Smith, 2023). Sample data is occasionally accompanied with discreteness while continuity is a prerequisite for the interpolation in paleontological studies. Therefore, an approach that has tolerance of both discreteness and continuity is required to evaluate the sample-model interpolation.

Materials and Method

I. Error model *Q* was expressed using a random variable *u*

$$Q(p) = 1 + p(2u-1)$$
, where $u = [0, 1]$ (1)

A model with deviation F was simulated as a product of predetermined function f and Q

$$F(x) = f(x)Q(p)$$
... (2)

II. A sample data model was expressed by 20 percent of deviation

$$F(x) = f(x)Q(0.2)$$
, where $f(x) = (3x-2)^2$ (3)

A sample data set was generated as 100 sets of discrete samples through the sample data model.

III. Four fitting models $f(x)^n$ against the generated sample data set were estimated using the least squares method with gnuplot version 5.2 (Williams, Kelley, *et al.* 1986-1993, 1998, 2004, 2007-2019)

squares method with griupiot version
$$f(x)^n = (Ax+B)^n$$
, ... (4) where $n = 1, 2, 3, \text{ and } -1$.

IV. A value dL/dx that could distinguish the given fitting models was selected for the random simulation. This value for the evaluation was defined based on the partial curve length with length L between two points

$$dL = \Sigma L - \max(L) \qquad ... (5)$$
and the horizontal range
$$dx = \max(x) - \min(x). \qquad ... (6)$$

Table 1. Results of the least squares method.

		■	
Fitting models	A	В	Variance of residuals (reduced chisquares)
$(Ax+B)^{-1}$	-08.97E-02	45.23E-02	5612.88
$(Ax+B)^1$	50.97E+00	-98.81E+00	156.49
$(Ax+B)^2$	02.99E+00	-01.92E+00	119.89
$(Ax+B)^3$	95.01E-02	81.96E-02	125.26

Figure 3. Schematic diagram of dL/dx.

This diagram shows vector relations of dL/dx between three points. A length L_i is expressed as a norm of a vector; $L_i = |L_i|$, where i = 1, 2, and 3.

Figure 2. Graphs showing sample data and result of evaluation.

A. Graphs showing sample data and results of curve fitting.

Every point is plot of the generated data set from a model, which is $(3x-2)^2$ with 20 percent of deviation. Every line is result of curve fitting using the least squares method.

B. Graphs showing frequency distributions of $\ln (1+dL/dx)$.

This graph shows frequency distributions of $\ln(1+dL/dx)$, which are defined using 3 random points on a given function f(x) or generated sample data. Every line is result of given function f(x). Every point is result of generated sample data. Each graph represents average of a 100 sets of results from random simulation. Filled areas or error bars represent standard deviations.

The random simulation could evaluate the sample-model interpolations that were based on the least squares method.

References cited

Hammer, Ø. and Harper, D., A., T., 2006: *Paleontological Data Analysis*. Oxford, Blackwell Publishing.

Mustoe, G., E. and Smith, E., T., 2023: Timing of Opalization at Lightning Ridge, Australia: New Evidence from Opalized Fossils. *Minerals*, vol. 13, (12), 1471. https://doi.org/10.3390/min13121471

Wani, R., 2003: Taphofacies models for Upper Cretaceous Ammonoids from the Kotanbetsu area, northwestern Hokkaido, Japan. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, vol. 199, p. 71-82.

Williams, T., Kelley, C., et al., 1986-1993, 1998, 2004, and 2007-2019: Gnuplot 5.2: An Interactive Plotting Program. http://www.gnuplot.info/ (last accessed on 2023 Dec. 09).