Biçimsel Diller ve Otomata Teorisi

Hafta 7: Düzenli İfadeler (II. Bölüm)

Hafta 7 Plan

- 1. Düzenli İfadeler ve Sonlu Otomatanın Birbirine Denkliği
- 2. Düzenli İfadelerden Sonlu Otomataya Geçiş
- 3. Sonlu Otomatadan Düzenli İfadeye Geçiş
 - 1. Genelleştirilmiş Nondeterministik Sonlu Otomata (GNFA)
- 4. GNFA'nın Formal Gosterimi
- 5. Dönüştür Algoritması

Düzenli İfadeler ve Sonlu Otomatanın Denkliği

Düzenli İfade ≡ Sonlu Otomata

- 1. Bir düzenli ifade tarafından tanınan her dil aynı zamanda bir sonlu otomata tarafından da tanımlanır.
- 2. Bir sonlu otomata tarafından tanınan her dil aynı zamanda bir düzenli ifade tarafından da tanımlanır.
- 1. durumu düzenli ifadelerden sonlu otomataya geçiş; 2. durumu sonlu otomatadan düzenli ifadeye geçiş başlığında işleyeceğiz.

Düzenli İfadelerde üç temel operatör vardı: birleşim, bitiştirme ve yılıdız operatörü. Bunların NFA'da gösterimi şöyledir.

R ve S iki düzenli ifade olsun.

R'nin başlangıç ve kabul durumunu sırasıyla q_0^R ve q_f^R olsun. S'nin başlangıç ve kabul durumunu sırasıyla q_0^S ve q_f^S olsun.

1. Birleşim

Yeni bir başlangıç ve yeni bir final durumu oluşturuyoruz. Ve bu durumları ε okları ile R'nin ve S'nin başlangıç ve final durumlarına bağlıyoruz.

 \ddot{o} r. R=a∪ b

2. Bitiştirme

İlk sonlu otomatanın başlangıç durumu tamamın başlangıç durumu, ikinci otomatanın kabul durumu tamamın kabul durumu olur. İki otomat birbirine ε ile bağlanır.

 \ddot{o} r. R=db

i. Yeni başlangıç ve kabul durumları oluşturulur ve bunlar ε okları ile önceki başlangıç ve kabul durumlarına bağlanır.

ii. Yeni başlangıç durumundan yeni kabul durumuna bir ε oku eklenerek yıldız operatörünün ε (boş kelimeyi) kabul etmesi sağlanır. ($a^*=\{\varepsilon, a, aa, aaa, ...\}$)

iii. Eski kabul durumundan eski başlangıç durumuna bir ε oku eklenerek düzenli ifadenin tekrarlarının kabulu sağlanır. ör.

ör. $R = (d \cup a)^*$ düzenli ifadesinin denk olduğu sonlu otomatayı tasarlayınız.

$$R_1 = a$$
, $R_2 = b$, $R_3 = R_1R_2$, $R_4 = a$, $R_5 = R_3 \cup R_4$, $R_6 = R_5^*$

$$R_1 = a \longrightarrow a \longrightarrow R_2 = b \longrightarrow b \longrightarrow B$$

$$R_3 = R_1 R_2 \longrightarrow a \longrightarrow b \longrightarrow B$$

$$R_4 = a$$

 $R_5 = R_3 \cup R_4$ $E \longrightarrow C$ $E \longrightarrow C$ $E \longrightarrow C$ $E \longrightarrow C$

 \ddot{o} r. R₆=R*₅=R=(ab ∪a)*

 $\ddot{o}r. R = b^*a \cup a^*$

Sonlu Otomatadan Düzenli İfadelere Geçiş

Verilen bir sonlu otomaya denk bir düzenli ifade bulmak için öncelikle *Genelleştirilmiş Nondeterministik Sonlu Otomata* (GNFA) kavramını bilmemiz gerekir.

GNFA'da şimdiye dek gördüğümüz NFA'ların aksine iki durum arasındaki geçiş bir harfle değil; bir düzenli ifade ile olur. Böylece verilen bir kelimeyi teker teker, harf harf değil 'blok' olarak okuruz.

Burada p durumuna vardığımızda, verilen kelimenin kalan kısmının herhangi bir uzunluktaki öneki ab ile eşleşiyorsa q durumuna geçeriz.

örneğin diyelim ki pye vardığımızda okuduğumuz kelimenin kalan kısmı aaaabccc olsun. Bu durumda aaaab bloğunu harcayarak q ya geçeriz ve elimizde kelimenin ccc kısmı kalır.

Sonlu Otomatayı Düzenli İfadeye Çevirme

Verilen bir sonlu otomata bir düzenli ifadeye çevrilirken:

- 1. Önce genelleştirilmiş sonlu otomataya,
- 2. Ardından düzenli ifadeye çevrilir.

Sonlu otomata genelleştirilmiş sonlu otomataya çevrilirken:

Yeni bir başlangıç ve yeni bir kabul durumu eklenir. Bu yeni başlangıç durumu eski başlangıç durumuna $\,arepsilon\,$ ile eklenir.

Önceki kabul durumları ise (ki bunlar 1 den fazla olabilir) yeni kabul durumuna ε ile eklenir.

Sonlu Otomatayı Düzenli İfadeye Çevirme

Durum Eleme Yöntemi ile GNSO'yu R'ye Çevirme:

Diyelimki q_k 'yı elemek istiyoruz:

or.

q_2 'yi eliyelim:

q_0 'i eliyelim:

or. Sondan üçüncü yada sondan ikinci harfi 1 olan kelimeleri kabul eden NFA:

Bir GNFA'nun Formal Tanımı:

Bir GNFA 5-li sıradır ve G = (Q, Q, Σ , δ , q_{start} , q_{final}) gösterilir.

- 1. Q tüm durumları içeren sonlu bir kümedir,
- 2. Σ kullandığımız harfleri (inputları) içeren alfabedir,
- 3. $\delta: (Q \{q_{final}\}) \times (Q \{q_{start}\}) \rightarrow R$ geçiş fonksiyonudur
- 4. $q_{start} \in Q$ baslangıç durumudur,
- 5. $q_{final} \in Q$ final/kabul durumudur.

Not 1. Geçiş fonksiyonu bir duruma degil, bir duzenli ifadeye döner.

Not 2. Final ve start durumları arasında geçiş fonksiyonu tanımlı degildir.

Not 3. Yalnızca I tane final durumu var.

Dönüştür (G) algoritması:

```
giriş: G = (Q, \Sigma, \delta, q_{start}, q_{final})
çıkış: R düzenli ifadesi
```

1. k := |Q| // durum sayısı

2. while k > 2:

$$\begin{split} & \operatorname{seç} \, q_{\"{o}l\"{u}} \in Q - \left\{q_{start}, q_{final}\right\} \\ & Q \coloneqq Q - \left\{q_{\"{o}l\~{u}}\right\} \, / / \, Q \text{'yu g\"{u}ncelle} \\ & \operatorname{her} \, q_i \in Q - \left\{q_{final}\right\} \text{ ve her } q_j \in Q - \left\{q_{start}\right\} \text{ için} \\ & \delta \left(q_i, q_j\right) \coloneqq (R_1)(R_2)^*(R_3) \cup (R_4) \\ & \ddot{o} \text{yleki} \\ & R_1 = \delta (q_i, q_{\"{o}l\~{u}}), R_2 = \delta (q_{\"{o}l\~{u}}, q_{\"{o}l\~{u}}), R_3 = \delta \left(q_{\"{o}l\~{u}}, q_j\right), R_4 = \delta \left(q_i, q_j\right) \\ & k \coloneqq k - 1 \, / / \, \text{k'yı g\"{u}ncelle} \end{split}$$

end while

$$3. R = \delta(q_{start}, q_{final})$$

4. return R