

M.Tech Digital Manufacturing

BITS Pilani
Pilani Campus

Jayakrishnan J Guest Faculty

DMZG521- Design for Additive Manufacturing Session 13 & Lecture 25-26

Stereolithography File

- CAD data can be converted to the Stereolithography (.STL) file format.
- The .STL file is an industry standard interface.
- Developed by the Albert Consulting Group for the 3DSystems, Inc., StereoLithography Apparatus (SLA).
- Consists of triangles that describe the shape of a closed model.
- Faceted surface must be completely bound.
- Many CAD packages export files in the .STL format

3D Models

A solid model is exported as Stereolithography (.STL) file

Triangulated Surfaces

- Any 3D form (polyhedral or curved) can be approximated by a triangulated surface.
- Polygons of 4 or more sides can be divided into triangles.
- On a computer these are represented by listing the three corners for each triangle.
- A corner (a vertex) is described by XYZ coordinates

Polygons Divide into Triangles

An *n*-gon is represented as *n*-2 triangles

Triangles in Space

- Each vertex has (X, Y,
 Z) coordinates
- List vertices starting with (0, 0, 1)
 any of the three
- List counter-clockwise as seen from outside
- "Normal vector" points out from object
- Use "Right-handed" XYZ axes

Triangle: (0,0,0) (0,1,0) (0,0,1)

Or: (0,1,0) (0,0,1) (0,0,0)

Or: (0,0,1) (0,0,0) (0,1,0)

Example Tetrahedron

STL file formats

ASCII stl File Format

Triangles can be listed in any order.

stl File Format

- For each triangle give 7 lines:
- facet normal 0 0 0 outer loop vertex X Y Z vertex X Y Z vertex X Y Z vertex X Y Z

endfacet

- Only the X Y Z parts need to change for each triangle
- (Some programs need the "normal")

Binary STL file

The binary STL file starts with a 80 character header.

```
UINT8[80] - Header
UINT32 - Number of triangles
foreach triangle
REAL32[3] - Normal vector
REAL32[3] - Vertex 1
REAL32[3] - Vertex 2
REAL32[3] - Vertex 3
UINT16 - Attribute byte count
end
```

sample STL file

```
solid print
facet normal 0.00000e+00 1.00000e+00 0.00000e+00
  outer loop
   vertex 0.00000e+00 0.00000e+00 2.00000e+01
   vertex 0.00000e+00 0.00000e+00 0.00000e+00
   vertex 1.00000e+01 0.00000e+00 2.00000e+01
  endloop
endfacet
facet normal 0.00000e+00 1.00000e+00 0.00000e+00
  outer loop
   vertex 1.00000e+01 0.00000e+00 2.00000e+01
   vertex 0.00000e+00 0.00000e+00 0.00000e+00
   vertex 1.00000e+01 0.00000e+00 0.00000e+00
  endloop
 endfacet
```


Information flow

AM process

Resolution of an STL file

Exporting STL file

Chordal deviation

Angle tolerence

Original CAD file

Fine resolution

Coarse resolution

STL file in very fine ASCII

Rules for STL file

- 1. Vertex rule
- 2. Orientation rule
- 3. Water tight rule

$$\frac{\text{No. of faces}}{\text{No. of edges}} = \frac{3}{2}$$

No. of faces - No. of edges + No. of vertices $= 2 \times$ No. of bodies

STL File Problems

- (1) Gaps (cracks, holes, punctures) that is, missing facets.
- (2) Degenerate facets (where all its edges are collinear).
- (3) Overlapping facets.
- (4) Non-manifold topology conditions.

Missing Facets or Gaps

- Tessellation of large curvature can result in these type of errors.
- It creates gaps and holes along edges

Degenerate Facets

 Degeneracy of a facet occurs when all of the facets' edges are collinear even though all its vertices are distinct

True Mating Curve

Figure 6.4(a): Shell punctures created by unequal tessellation of two adjacent surface patches along their common mating curve

Figure 6.4(b): Shell punctures eliminated at the expense of adding degenerate facet

Overlapping Facets

 Overlapping facets may be generated due to numerical round-off errors occurring during tessellation

Non-manifold Conditions

Three types of Non-manifold conditions

- (1) A non-manifold edge.
- (2) A non-manifold point.
- (3) A non-manifold face.

(1)

Valid STL file

A valid 3D model

A 3D model sliced into 2D planar layers

Conversion of 2D layers into 1D scan lines

Invalid STL File

An invalid tessellated model

STL file repairing

- Its a time consuming and tedious job
- Design intent has to be kept in mind while repairing the bad STL files
- Repairing software
 - Materialise magics
 - Autodesk netfabb
 - Meshmixer

STL file error fixing using Magics

STL file error fixing using Magics

Normal fixing

Stitching

Noise Shells

Holes and Triangles

STL File fixing using Magics

https://www.youtube.com/watch?v=x1mrpvEmmA8

STL file correction using Netfabb

Fixing error while loading

Alternate for STL files

- OBJ- stores colour and texture profiles
- PLY used for storing 3D scanned objects
- 3MF new file type launched by 3MF consortium
- VRML
- AMF

Challenges in CAD for AM

- Geometric complexity—need to support models with tens and hundreds of thousands of features.
- Physically based material representations—material compositions and distributions must be represented and must be physically meaningful.
- Physically based property representations—desired distributions of physical and mechanical properties must be represented and tested for their physical basis.

CAD needs

 Process—structure—property relationships for materials must be integrated into geometric representations of CAD models.

End of Session 13