15.3 - Integrais duplas em coordenadas polares

Calcule a integral dada, colocando-a em coordenadas polares.

1.
$$\iint_D x^2 y \, dA$$
, D é a metade superior do disco com centro na origem e raio 5 Resposta: $\frac{1250}{3}$

2.
$$\iint_R (2x-y) dA$$
, R é a região do primeiro quadrante limitada pelo círculo $x^2 + y^2 = 4$ e pelas retas $x = 0$ e $y = x$

Resposta: $\frac{4(4-3\sqrt{2})}{3}$

3.
$$\iint_R \sin(x^2 + y^2) dA$$
, R é a região do primeiro quadrante entre os círculos com centros na origem e raios 1 e 3

Resposta: $\frac{[\cos(1)-\cos(9)]\pi}{4}$

4.
$$\iint\limits_R \frac{y^2}{x^2 + y^2} \, dA, \quad R \text{ \'e a região que fica entre os c\'irculos} \quad x^2 + y^2 = a^2 \quad \text{e} \quad x^2 + y^2 = b^2, \quad \text{com} \\ 0 < a < b \qquad \qquad \text{Resposta: } \frac{(b^2 - a^2)\pi}{2}$$

5.
$$\iint_D e^{-x^2-y^2} dA, \quad D \text{ \'e a região limitada pelo semic\'irculo } x = \sqrt{4-y^2} \text{ e pelo eixo } y$$
Resposta:
$$\frac{(1-e^{-4})\pi}{2}$$

6.
$$\iint_{D} \cos(\sqrt{x^2 + y^2}) dA, \quad D \text{ \'e o disco com centro na origem e raio 2}$$
Resposta: $2\pi [2\sin(2) + \cos(2) - 1]$

7.
$$\iint_{R} \arctan\left(\frac{y}{x}\right) dA$$
, $R = \{(x,y) \mid 1 \le x^2 + y^2 \le 4, \ 0 \le y \le x\}$ Resposta: $\frac{3\pi^2}{64}$

8.
$$\iint_D x \, dA$$
, D é a região no primeiro quadrante que se encontra entre os círculos $x^2 + y^2 = 4$ e $x^2 + y^2 = 2x$ Resposta: $\frac{16-3\pi}{6}$

Utilize a integral dupla para determinar a área da região.

9. Um laço da rosácea
$$r=\cos(3\theta)$$
 Resposta: $\frac{\pi}{12}$

10. A região limitada por ambos os cardioides
$$r = 1 + \cos \theta$$
 e $r = 1 - \cos \theta$ Resposta: $\frac{3\pi - 8}{2}$

11. A região dentro do círculo
$$(x-1)^2+y^2=1$$
 e fora do círculo $x^2+y^2=1$ Resposta: $\frac{2\pi+3\sqrt{3}}{6}$

12. A região dentro do cardioide
$$r=1+\cos\theta$$
 e fora do círculo $r=3\cos\theta$ Resposta: $\frac{\pi}{4}$

Utilize coordenadas polares para determinar o volume do sólido dado.

13. Sob o paraboloide
$$z=x^2+y^2$$
 e acima do disco $x^2+y^2\leq 25$ Resposta: $\frac{625\pi}{2}$

- 14. Abaixo do cone $z=\sqrt{x^2+y^2}$ e acima do anel $1\leq x^2+y^2\leq 4$ Resposta: $\frac{14\pi}{3}$
- 15. Abaixo do plano 2x+y+z=4 e acima do disco $x^2+y^2\leq 1$
- 16. Abaixo do paraboloide $z=18-2x^2-2y^2$ e acima do plano xy Resposta: 81π
- 17. Uma esfera de raio a Resposta: $\frac{4\pi a^3}{3}$
- 18. Limitado pelo parabolo
ide $z=1+2x^2+2y^2$ e pelo plano z=7no primeiro octante Resposta
: $\frac{9\pi}{4}$
- 19. Acima do cone $z = \sqrt{x^2 + y^2}$ e abaixo da esfera $x^2 + y^2 + z^2 = 1$ Resposta: $\frac{(2-\sqrt{2})\pi}{3}$
- 20. Limitado pelos paraboloides $z=6-x^2-y^2$ e $z=2x^2+2y^2$ Resposta: 6π
- 21. Dentro tanto do cilindro $x^2+y^2=4$ quanto do elipsoide $4x^2+4y^2+z^2=64$ Resposta: $\frac{64\pi(8-3\sqrt{3})}{3}$

Referência

STEWART, James. Cálculo: volume 2. 8ª ed. São Paulo, SP: Cengage Learning, 2016. ISBN 9788522125845.