V K-Veb

(hox

Seminar W4 - 917

• :
$$K \times V \rightarrow V$$
 external operation $(k, v) \mapsto kv$

3. Let K be a field, $A \neq \emptyset$ and denote $K^A = \{f \mid f : A \to K\}$. Show that K^A is a K-vector space, where the addition and the scalar multiplication are defined as follows: $\forall f,g \in K^A, \, \forall k \in K, \, f+g \in K^A, \, kf \in K^A,$

$$(f+g)(x) = f(x) + g(x) \,, \quad (k \cdot f)(x) = k \cdot f(x) \,, \forall x \in A \,.$$

Permark: $K^{+} = \{ f: A \rightarrow K \}$ if |A| = n, then $K^{+} \approx K^{n}$ $A = \{ a_{1}, a_{2}, \dots, a_{n} \}$, $f \in K^{+}$ $\begin{cases} f: A \rightarrow K \\ a_{1} \mapsto H_{1} \\ a_{2} \mapsto h_{2} \end{cases}$ $\begin{cases} f = (H_{1}, H_{2}, \dots, H_{n}) \\ \vdots \\ f = (H_{n}, H_{n}, \dots, H_{n}) \end{cases}$ if A is countable infinite, A = N $\Rightarrow f \in K^{+} \iff A = M$ $\Rightarrow f \in K^{+} \iff A = M$

1 = 1(1), 1(2), /(3), ...

Diff. V k-veiler space,
$$S \subseteq V$$

$$S = \{ (i) \mid S \neq \emptyset \}$$

$$S = \{ (i) \mid S \neq \emptyset \}$$

$$S = \{ (ii) \mid S \neq \emptyset \}$$

$$S = \{ (ii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S = \{ (iii) \mid S \neq \emptyset \}$$

$$S$$

B= [(*5)=) = [R3 | x=0 or 2=0]

$$(0,1,3) \in B, (5,6,0) \in B$$

$$(0,1,3) - (5,6,0) = (-5,-5,3) \notin B$$

$$(0,1,3) - (5,6,0) = (-5,-5,3) \notin B$$

$$(1,2,3) \in C, \text{ bt} (1.02) (1.65) = (1.02,201,3.04) \notin C$$

$$=) C \notin (\mathbb{R}^{3})$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) (1.65) = (1.02,201,3.04) \notin C$$

$$=) C \notin (\mathbb{R}^{3})$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) (1.65) = (1.02,201,3.04) \notin C$$

$$=) C \notin (\mathbb{R}^{3})$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$=) C \notin (\mathbb{R}^{3})$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \notin C$$

$$(1,2,3) \in \mathbb{C}, \text{ bt} (1.02,201) \in \mathbb{C}, \text{ bt} (1.02) = (1.02,201) \in \mathbb{C}, \text{ bt} (1.02,201) \in \mathbb{C}, \text{ bt} (1.02,201) \in \mathbb{C}, \text$$

=) ku = D = R3

(u)
$$E = \{(h_{1})_{1}\}$$
 $\{\{|2^{3}|\} + ry + 2 = 1\}$
 $(-1, 2, 0) \in E$, $(-2, 9, -1) \in E$
 $(-1, 2, 0) = (-2, 1, -1) = (1, -2, 1) \notin E$
 $\Rightarrow E \leq (R^{3})$
((e) $F = \{(n_{1})_{1}\} + (R^{3}) + n = y = 2\}$
 $(0,0,0) \in F$, so $F \neq \emptyset$
Let $(\alpha_{1} = (n_{1}, n_{1})_{1})$, $(\alpha_{2} = (n_{2}, n_{2})_{2}) \in F$ and $(\alpha_{1})_{1} \in E$
 $(n_{1})_{1} + (n_{2})_{2} \in F$
 $(n_{1})_{1} + (n_{2})_{2} = (n_{2})_{1} + (n_{2})_{2} = (n_{2})_{2} = n_{2}$
 $(n_{1})_{2} \in F = (n_{2})_{3} + (n_{2})_{4} = n_{3} = n_{4} + (n_{2})_{4} = n_{4} =$

=) < ln + Buz (F =) F = (123