Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-227. Вариант 17

- 1. Пусть $z=1+\sqrt{3}i$. Вычислить значение $\sqrt[6]{z^2}$, для которого число $\frac{\sqrt[6]{z^2}}{\frac{\sqrt{3}}{2}+\frac{i}{2}}$ имеет аргумент $-\frac{\pi}{18}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(-4-7i) + y(2-15i) = -199 - 246i \\ x(5+5i) + y(12+7i) = 227 - 20i \end{cases}$$

- 3. Найти корни многочлена $3x^6 24x^5 + 126x^4 108x^3 777x^2 + 4716x + 8700$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = 2 5i$, $x_2 = 4 3i$, $x_3 = -2$.
- 4. Даны 3 комплексных числа: 28-21i, 19-21i, -20-11i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -\sqrt{3} + i$, $z_2 = -\sqrt{3} i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+2-3i| < 3\\ |arg(z+5i)| < \frac{2\pi}{3} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-5, 6, 2), b = (0, -2, 1), c = (3, -7, 1). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(1,6,-10) и плоскость P:28x+6y-48z+1018=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-11,3,13), $M_1(-2,2,14)$, $M_2(-7,-3,14)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 18x + 21y + 8z + 537 = 0 \\ 8x + 16y - 6z + 226 = 0 \end{cases} \qquad L_2: \begin{cases} 10x + 5y + 14z + 1916 = 0 \\ -7x - 20y - 4z - 1477 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.