Лекция 4. Матрицы и действия с ними

Оглавление

Лекция 4. Матрицы и действия с ними	1
Матрицы	
Сложение матриц и умножение на число	2
Линейные пространства	2
Умножение квадратных матриц	3
Умножение неквадратных матриц	4
Кольцо матриц $2 imes 2$	5
Множество матриц $2 imes 2$ как кольцо	5
Транспонирование матрицы	8
Обратная матрица	9
Матричное уравнение AX=E	9
Матричное уравнение YA=E	11
Обратная матрица	12
Теоремы об определителях	12
Вычисление обратной матрицы	14
Матрицы 2 на 2	14
Матрицы 3 на 3	14
Решение систем линейных уравнений	16
Домашнее задание	17
Вопросы	17
Задачи	17

Матрицы

Определение. Прямоугольную таблицу

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix},$$

содержащую m строкиnстолбцов, называют mаmрицей размера mнаn. Квадратные таблицы (m=n) называют квадратными матрицами; таблицы, состоящие из одного столбца (n=1), называют столбцами.

Пример. Таблица

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

является матрицей с двумя строками и тремя столбцами или матрицей размера 2×3 .

Традиционно матрицы обозначают заглавными буквами, а элементы произвольного кольца, напротив, строчными. При этом элементы матрицы обозначают той же буквой, но строчной и с индексами. Напр.,

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

Задача. Дана матрица

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 4 & 1 \end{pmatrix}$$

Чему равен элемент a_{12} ? — Ответ: $a_{12}=2$. Имеем ли эта матрица равные элементы? — Да, $a_{11}=a_{23}$.

Замечание. MS Math умеет работать с матрицами небольших размеров, хотя работа в MS Word ограничена матрицами небольших размеров. Для задания матрицы следует перейти в пункт меню «Математика», затем «Уравнение» и выбрать блок «Матрицы», см. рис. 1.

Сложение матриц и умножение на число

Определение. Под суммой двух матриц одинакового размера понимают матрицу, элементы которой равны сумме элементов этих матриц:

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} + \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mn} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & \cdots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \cdots & a_{mn} + b_{mn} \end{pmatrix}$$

Под произведением матрицы на число понимают матрицу того же размера, элементами которой служат элементы исходной матрицы, умноженные на это число:

$$\alpha \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} = \begin{pmatrix} \alpha a_{11} & \cdots & \alpha a_{1n} \\ \vdots & \ddots & \vdots \\ \alpha a_{m1} & \cdots & \alpha a_{mn} \end{pmatrix}$$

Пример.

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} + 2 \begin{pmatrix} 1 & 0 & -1 \\ 3 & 1 & 6 \end{pmatrix} = \begin{pmatrix} 3 & 2 & 1 \\ 10 & 7 & 18 \end{pmatrix}$$

Линейные пространства

Множество матриц одного размера образуют линейное пространство.

Определение. Множество, в котором введено два действия: сложение элементов и их умножение на число, называют *линейным пространством*. При этом предполагают, что при упрощении выражений с элементами линейного пространства можно обращаться как с обычными числами. Иными словами:

1	x + y = y + x
2	x + (y+z) = (x+y) + z
3	Существует такой элемент 0, что $x + 0 = x$
4	Существует такой элемент – x , что $x + (-x) = 0$
5	$\alpha(\beta x) = (\alpha \beta) x$
6	1x = x
7	$(\alpha + \beta)x = \alpha x + \beta x$
8	$\alpha(x+y) = \alpha x + \alpha y$

Здесь x,y,z– элементы линейного пространства, а α,β – числа. Эти свойства называют аксиомами линейного пространства.

Доказательство формул

$$0x = 0$$
, $-x = (-1)x$

как следствия аксиом является популярным теоретическим упражнением.

Пример. Столбцы длины 2 образуют линейное пространство. Его элементами будут

$$x=\begin{pmatrix} x_1\\ x_2 \end{pmatrix}, \qquad y=\begin{pmatrix} y_1\\ y_2 \end{pmatrix}, \qquad z=\begin{pmatrix} z_1\\ z_2 \end{pmatrix}, \dots$$

Проверим выполнение аксиом.

1		
2	$x + (y + z) = {\begin{pmatrix} x_1 + y_1 + z_1 \\ x_2 + y_2 + z_2 \end{pmatrix}} = (x + y) + z$	
3	Для $0={0\choose 0}$ верно, что ${x_1\choose x_2}+0={x_1\choose x_2}$	
4	Для – $\binom{x_1}{x_2} = \binom{-x_1}{-x_2}$, что $x + (-x) = 0$	
5	$\alpha(\beta x) = \begin{pmatrix} \alpha \beta x_1 \\ \alpha \beta x_2 \end{pmatrix} = (\alpha \beta) x$	
6	$1x = \begin{pmatrix} 1 \cdot x_1 \\ 1 \cdot x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x$	
7	$(\alpha + \beta)x = \begin{pmatrix} (\alpha + \beta)x_1 \\ (\alpha + \beta)x_2 \end{pmatrix} = \begin{pmatrix} \alpha x_1 + \beta x_1 \\ \alpha x_2 + \beta x_2 \end{pmatrix} = \begin{pmatrix} \alpha x_1 \\ \alpha x_2 \end{pmatrix} + \begin{pmatrix} \beta x_1 \\ \beta x_2 \end{pmatrix} = \alpha x + \beta x$	
8	$\alpha(x+y) = \begin{pmatrix} \alpha(x_1+y_1) \\ \alpha(x_2+y_2) \end{pmatrix} = \alpha x + \alpha y$	

Умножение квадратных матриц

Для квадратных матриц вводят еще и умножение.

Определение. Произведением двух квадратных матриц A и B одного размера называют матрицу C того же размера, элементы которой вычислены по формуле

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Словами: чтобы найти элемент произведения двух матриц, стоящей в i-ой стоке и j-ом столбце, следует умножить первый элемент i-ой строки матрицы Aна первый элемент j-го столбца матрицы B, второй элемент той же строки на второй элемент того же столбца и так далее, а потом все сложить.

Пример.

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 5 & 6 \end{pmatrix} = \begin{pmatrix} 12 & 15 \\ 26 & 33 \end{pmatrix}$$

в частности,

$$c_{12} = 1 \cdot 3 + 2 \cdot 6 = 15.$$

Умножение матриц ассоциативно, но некоммутативно, то есть A(BC) = (AB)C, но $AB \neq BA$.

Пример.

$$\binom{1}{3} \ \ \, \binom{2}{7} \ \ \, \binom{6}{7} \ \ \, \binom{4}{6} \ \ \, \stackrel{5}{7}) = \binom{212}{508} \ \ \, \stackrel{255}{611}), \ \ \, \left(\binom{1}{3} \ \ \, \binom{2}{4} \ \ \, \binom{9}{7} \ \ \, 8 \right) \binom{4}{6} \ \ \, \stackrel{5}{7} = \binom{212}{508} \ \ \, \stackrel{255}{611}),$$

но

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 9 & 8 \\ 7 & 6 \end{pmatrix} = \begin{pmatrix} 23 & 20 \\ 55 & 48 \end{pmatrix}, \qquad \begin{pmatrix} 9 & 8 \\ 7 & 6 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 33 & 50 \\ 25 & 38 \end{pmatrix}.$$

Умножение неквадратных матриц

Формула

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

все еще сохраняет смысл, если число столбцов в первом сомножителе равно числу строк во втором. Напр.,

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 4 \\ 3 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 14 & 17 & 24 \\ 32 & 38 & 54 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} = \begin{pmatrix} 1+6+15 & 2+8+18 \\ 4+15+30 & 8+20+36 \end{pmatrix} = \begin{pmatrix} 22 & 28 \\ 49 & 64 \end{pmatrix}$$

Но произведение

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

неопределенно, попытка его вычислить средствами MS Math приводит к ошибке:

Рис. 2. Ошибка, возникающая при попытке умножения матриц, размеры которых не поддерживают операцию умножения.

Всякую систему линейных уравнений можно записать в матричном виде. Напр., система 2 уравнений с 3-мя неизвестными

$$\begin{cases} 2x + 3y + 8z = 1\\ 4x + 5y - z = 2 \end{cases}$$

может быть записана в виде

$$\begin{pmatrix} 2 & 3 & 8 \\ 4 & 5 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Вообще, система линейных уравнений с матрицей A и столбцом правых частей b всегда может быть записана как

$$Ax = b$$

Здесь x — столбец, элементами которого являются неизвестные.

Кольцо матриц 2×2

Множество матриц 2 × 2 как кольцо

Кратко описать свойства так введенных действий с матрицами можно, сказав, что матрицы $n \times n$ образуют кольцо.

Определение. Множество, в котором введено сложение и умножение элементов, называют кольцом. При этом предполагают, что при упрощении выражений с элементами кольца можно обращаться как с обычными числами. Иными словами:

1	x + y = y + x
2	x + (y+z) = (x+y) + z
3	Существует такой элемент 0, что $x + 0 = x$
4	Существует такой элемент – x , что $x + (-x) = 0$
5	x(yz) = (xy)z
6	Существует такой элемент e , что $ex = xe = x$
7	(x+y)z = xz + yz
8	z(x+y) = zx + zy

Здесь x, y, z— элементы кольца.

Матрицы 2×2 образуют кольцо, в котором матрица

$$0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

служит нулевым элементом, а матрица

$$E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

служит единичным элементам, ее называют единичной матрицей. Чтобы доказать это, следует проверить выполнение аксиом.

1. Левая часть равенства X + Y = Y + X равна

$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} + \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} = \begin{pmatrix} x_{11} + y_{11} & x_{12} + y_{12} \\ x_{21} + y_{21} & x_{22} + y_{22} \end{pmatrix}$$

Правая часть этого равенства равна

$$\begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} + \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = \begin{pmatrix} x_{11} + y_{11} & x_{12} + y_{12} \\ x_{21} + y_{21} & x_{22} + y_{22} \end{pmatrix}$$

2. Левая часть равенства X + (Y + Z) = (X + Y) + Z равна

$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} + \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} + \begin{pmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{pmatrix} = \begin{pmatrix} x_{11} + y_{11} + z_{11} & x_{12} + y_{12} + z_{12} \\ x_{21} + y_{21} + z_{21} & x_{22} + y_{22} + z_{22} \end{pmatrix},$$

правая часть

$$\begin{pmatrix} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} + \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} \end{pmatrix} + \begin{pmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{pmatrix} = \begin{pmatrix} x_{11} + y_{11} + z_{11} & x_{12} + y_{12} + z_{12} \\ x_{21} + y_{21} + z_{21} & x_{22} + y_{22} + z_{22} \end{pmatrix}$$

3. Поскольку

$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$$

равенство X + 0 = X будет выполнено, если принять, что

$$0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

4. Поскольку

$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} + \begin{pmatrix} -x_{11} & -x_{12} \\ -x_{21} & -x_{22} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

равенство X + (-X) = 0 будет выполнено, если принять, что

$$-X = \begin{pmatrix} -x_{11} & -x_{12} \\ -x_{21} & -x_{22} \end{pmatrix}$$

5. Левая часть равенства X(YZ) = (XY)Zравна

$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} \begin{pmatrix} z_{11} & z_{12} \\ z_{21} & y_{22} \end{pmatrix} =$$

$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \begin{pmatrix} y_{11}z_{11} + y_{12}z_{21} & y_{11}z_{12} + y_{12}y_{22} \\ y_{21}z_{11} + y_{22}z_{21} & y_{21}z_{12} + y_{22}^2 \end{pmatrix} =$$

$$\begin{pmatrix} x_{11}(y_{11}z_{11} + y_{12}z_{21}) + x_{12}(y_{21}z_{11} + y_{22}z_{21}) & x_{11}(y_{11}z_{12} + y_{12}y_{22}) + x_{12}(y_{21}z_{12} + y_{22}^{2}) \\ x_{21}(y_{11}z_{11} + y_{12}z_{21}) + x_{22}(y_{21}z_{11} + y_{22}z_{21}) & x_{21}(y_{11}z_{12} + y_{12}y_{22}) + x_{22}(y_{21}z_{12} + y_{22}^{2}) \end{pmatrix}$$

Правая часть равна

$$\begin{pmatrix} \binom{x_{11}}{x_{21}} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} \end{pmatrix} \begin{pmatrix} z_{11} & z_{12} \\ z_{21} & y_{22} \end{pmatrix} =$$

$$\begin{pmatrix} x_{11}y_{11} + x_{12}y_{21} & x_{11}y_{12} + x_{12}y_{22} \\ x_{21}y_{11} + x_{22}y_{21} & x_{21}y_{12} + x_{22}y_{22} \end{pmatrix} \begin{pmatrix} z_{11} & z_{12} \\ z_{21} & y_{22} \end{pmatrix} =$$

$$\begin{pmatrix} z_{11}(x_{11}y_{11} + x_{12}y_{21}) + z_{21}(x_{11}y_{12} + x_{12}y_{22}) & y_{22}(x_{11}y_{12} + x_{12}y_{22}) + z_{12}(x_{11}y_{11} + x_{12}y_{21}) \\ z_{11}(x_{21}y_{11} + x_{22}y_{21}) + z_{21}(x_{21}y_{12} + x_{22}y_{22}) & y_{22}(x_{21}y_{12} + x_{22}y_{22}) + z_{12}(x_{21}y_{11} + x_{22}y_{21}) \end{pmatrix}$$

6. Свойство EX = XE = X получается легко

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$$

7. Левая часть равенства X(Y + Z) = XY + XZ равна

Правая часть:

$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} + \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \begin{pmatrix} z_{11} & z_{12} \\ z_{21} & y_{22} \end{pmatrix} =$$

$$\begin{pmatrix} x_{11}y_{11} + x_{11}z_{11} + x_{12}y_{21} + x_{12}z_{21} & x_{11}y_{12} + x_{11}z_{12} + 2x_{12}y_{22} \\ x_{21}y_{11} + x_{21}z_{11} + x_{22}y_{21} + x_{22}z_{21} & x_{21}y_{12} + x_{21}z_{12} + 2x_{22}y_{22} \end{pmatrix}$$

8-ое проверяется аналогично.

Нетрудно заметить, что умножение матриц не удовлетворяет одному свойству, присущему умножению чисел: не всегда XY = YX, напр.,

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 9 & 8 \\ 7 & 6 \end{pmatrix} = \begin{pmatrix} 23 & 20 \\ 55 & 48 \end{pmatrix}, \qquad \begin{pmatrix} 9 & 8 \\ 7 & 6 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 33 & 50 \\ 25 & 38 \end{pmatrix}.$$

Кольца, в которых не выполняется это равенство, называются некоммутативными. Упрощая матричные выражения, следует внимательно следить за порядком сомножителей.

Задача. Вычислите матрицу

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} 9 & 8 \\ 7 & 6 \end{pmatrix} + 3 \begin{pmatrix} 9 & 0 \\ 1 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.$$

Ответ:

$$\binom{224}{508} \quad \frac{336}{776}$$
.

В общем случае справедливо след. утверждение.

Теорема. Множество матриц размера $n \times n$ образует некоммутативное кольцо, нулем в котором служит нулевая матрица, все элементы которой равны нулю, а единице — матрица

$$E = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix},$$

словами: матрица, на главной диагонали которой, стоят 1, а в прочих положения – нули.

Замечание. Множество матриц 2×2 является не только кольцом, но и линейным пространством. При этом умножение на число согласовано с умножением на матрицу так

$$\alpha X = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} X,$$

поскольку

$$\begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = \begin{pmatrix} \alpha x_{11} & \alpha x_{12} \\ \alpha x_{21} & \alpha x_{22} \end{pmatrix}.$$

Транспонирование матрицы

Операция, которая превращает матрицу с элементами a_{ij} в матрицу с элементами a_{ji} , называется mpанспонированием. Напр., транспонирование превращает матрицу

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \quad \text{B} \quad A^T = \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix},$$

а матрицу

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 4 & 5 & 3 \end{pmatrix} \mathbf{B} \ A^T = \begin{pmatrix} 1 & 0 & 4 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{pmatrix}.$$

При транспонировании элементы отражаются относительно главной диагонали.

Эта операция согласована с арифметическими действиями:

$$(A + B)^T = A^T + B^T,$$
 $(AB)^T = B^T A^T.$

Пример. Пусть

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 4 & 5 & 3 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 4 & -2 & 3 \end{pmatrix}$$

тогда

$$C = AB = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 4 & 5 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 4 & -2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 4 & 2 \\ 16 & 8 & 14 \end{pmatrix}$$

И

$$C^T = \begin{pmatrix} 1 & 0 & 16 \\ 1 & 4 & 8 \\ 0 & 2 & 14 \end{pmatrix},$$

$$B^T A^T = \begin{pmatrix} 1 & 0 & 4 \\ 1 & 2 & -2 \\ 0 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 4 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 16 \\ 1 & 4 & 8 \\ 0 & 2 & 14 \end{pmatrix}.$$

Док-во $(AB)^T = B^T A^T$ для матриц 2 на 2.

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}$$

$$\begin{pmatrix} b_{11} & b_{21} \\ b_{12} & b_{22} \end{pmatrix} \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{21}b_{11} + a_{22}b_{21} \\ a_{11}b_{12} + a_{12}b_{22} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}$$

В общем случае: ij-ый элемент матрицы $(AB)^T$ равен

$$\sum_{k=1}^{n} a_{jk} b_{ki},$$

а тот же элемент матрицы $B^T A^T$ равен

$$\sum_{k=1}^{n} b_{ki} \, a_{jk}.$$

Обратная матрица

Матричное уравнение АХ=Е

В кольце целых чисел число х называют обратным к числу а, если

$$ax = 1$$

В кольце квадратных матриц размера n на n матрица E имеет смысле единицы.

Задача. Найти матицу

$$X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix},$$

удовлетворяющую матричному уравнению

$$\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Решение. Уравнение AX = E можно записать как

$$\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = \begin{pmatrix} x_{11} + 2 x_{21} & x_{12} + 2 x_{22} \\ 3 x_{11} + x_{21} & 3 x_{12} + x_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Две матрицы равны в том и только в том случае, когда равны их коэффициенты. Поэтому для отыскания четырех неизвестных $x_{11}, x_{12}, x_{21}, x_{22}$ получается четыре линейных уравнения, которые можно разбить на две несвязанные системы. Для отыскания первого столбца матрицы X получается система двух уравнений

$$\begin{cases} x_{11} + 2 x_{21} = 1, \\ 3 x_{11} + x_{21} = 0, \end{cases}$$

или в матричной форме

$$\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x_{11} \\ x_{21} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Эта система имеет одно решение

$$x_{11} = -\frac{1}{5}, \qquad x_{21} = \frac{3}{5}.$$

Аналогично, второй столбец матрицы X можно найти из системы

$$\begin{cases} x_{12} + 2 x_{22} = 0 \\ 3 x_{12} + x_{22} = 1 \end{cases}$$

или

$$\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x_{12} \\ x_{22} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Ее решением будет

$$x_{12} = \frac{2}{5}, \qquad x_{22} = -\frac{1}{5}.$$

Ответ:

$$X = \begin{pmatrix} -\frac{1}{5} & \frac{2}{5} \\ \frac{3}{5} & -\frac{1}{5} \end{pmatrix}$$

Задача. По заданной матрице A размера nxn отыскать матрицу X того же размера, удовлетворяющую уравнению

$$AX = E$$
.

Решение. Первый столбец X_1 матрицы X удовлетворяет уравнению

$$AX_1 = E_1$$
,

где

$$E_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Это уравнение можно рассматривать как систему ${\bf n}$ линейных уравнений, матрицей которой служит матрица ${\bf A}$. Если ее определитель не равен нулю, то элементы X_1 можно найти по формулам Крамера. Аналогично, k-ый столбец матрицы ${\bf X}$ можно найти по формулам Крамера из системы

$$AX_k = E_k$$
,

где E_k – столбец, все элементы которого кроме k-го равны нулю, а k-ый равен единице.

Лемма 1. Если определитель матрицы А не равен нулю, то уравнение

$$AX = E$$

имеет единственное решение; его можно представить так

$$X = \frac{1}{\det A}B,$$

где B — матрица, элементами которой служат многочлены относительно $a_{ij}.$

Пример. При n=2 верно

$$X = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}.$$

Матричное уравнение YA=E

Рассмотрим задачу об отыскании матрицы Y размера nxn, удовлетворяющей уравнению

$$YA = E$$
.

Протранспонировав уравнение, получим

$$A^{\mathrm{T}}Y^{\mathrm{T}}=E$$

ведь $E^T = E$. Из леммы 1 сразу имеем:

Лемма 2. Если определитель матрицы $A^{\rm T}$ не равен нулю, то уравнение

$$YA = E$$

имеет единственное решение; его можно представить так

$$Y = \frac{1}{\det A^T} C,$$

где C – матрица, элементами которой служат многочлены относительно a_{ij} .

Задача. Найти матицу

$$Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix},$$

удовлетворяющую матричному уравнению

$$Y\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Ответ:

$$Y = \begin{pmatrix} -\frac{1}{5} & \frac{2}{5} \\ \frac{3}{5} & -\frac{1}{5} \end{pmatrix}.$$

Обратная матрица

В примерах решения уравнений

$$\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{if } Y \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

совпадают.

Лемма 3. Если уравнения

$$AX = E$$
 и $YA = E$

имеют хотя бы по одному решению, то эти решения единственные и X = Y.

Док-во. Умножая YA = E на X справа, получим

$$YAX = EX$$

Левую часть можно преобразовать, группируя сомножители,

$$Y(AX) = YE = Y$$
.

Это означает, что X=Y. Если бы уравнение AX=Eимело два решения, то оба совпадали бы Y, хто невозможно. Если бы уравнение YA=Eимело два решения, то оба совпадали бы X, хто невозможно.

Определение. Решение матричного уравнения

$$AX = XA = E$$

называют матрицей, обратной к A. Пишут $X = A^{-1}$. Если одно из этих уравнений не имеет решения, то говорят, что матрица необратима.

Умения решать системы линейных уравнений достаточно для отыскания обратной матрицы.

Теоремы об определителях

Последняя лемма имеет ряд важных следствий. Определитель матрицы A с буквенными элементами — это знаменатель решения уравнения

$$AX = E$$

определитель матрицы A^T – это знаменатель решения уравнения

$$YA = E$$

Теорема 1: $\det A^T = \det A$.

Замечание. Приведенное краткое доказательство следствия требует уточнения, связанного с тем, что знаменатель определен с точностью до мультипликативной константы. Мы не будем на нем останавливаться.

Доказанная теорема позволяет избавить формулировку леммы 2 от упоминая о $\det A^T$ и представить ее содержание в следующем виде.

Теорема 2. Если определитель матрицы A не равен нулю, то она имеет обратную матрицу; ее можно записать в виде дроби

$$A^{-1} = \frac{1}{\det A} B,$$

где B – матрица, элементами которой служат многочлены относительно a_{ij} .

Обратимся теперь к уравнению

$$ABX = E$$

где A и B — матрицы с буквенными элементами. Определитель матрицы AB — это знаменатель решения этого уравнения. Это решение можно найти, умножив слева уравнение сначала на A^{-1} , а потом на B^{-1} . Поэтому знаменателем BXслужит $\det A$, а знаменателем X— произведение $\det A \det B$.

Теорема 3:

$$\det AB = \det A \det B$$
.

Пример.

$$\det\begin{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 6 \\ 2 & 3 \end{pmatrix} \end{pmatrix} = 18,$$

$$\det\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = -2, \quad \det\begin{pmatrix} 1 & 6 \\ 2 & 3 \end{pmatrix} = -9,$$

$$(-2)(-9) = 18.$$

Эта формула означает, что определитель как операция отображает кольца матриц nxn на вещественную прямую, причем это отображение согласовано с умножением, и не согласовано со сложением:

$$\det AB = \det A \det B$$
, $\det(A + B) \neq \det A + \det B$.

Пусть A— какая-угодно матрица, определитель которой равен нулю. Мы не можем найти для нее решение уравнения

$$AX = E$$

по формулам Крамера, но это, вообще говоря, не значит, что уравнение не имеет решения. Но в данном случае существование решения дает

$$\det A \det X = \det E = 1.$$

Поэтому $\det A = 0$ влечет 0 = 1.

Теорема 4. Если определитель матрицы A равен нулю, то она не обратима.

Пример. Матрица

$$\begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$$

имеет нулевой определитель, попытка найти обратную матицу силами MS Math выдает ошибку.

Вычисление обратной матрицы

Матрицы 2 на 2

При n=2 можно выписать явную формулу для обратной матрицы:

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}^{-1} = \frac{1}{\det A} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix} = \frac{1}{\det A} \begin{pmatrix} a_{22} & -a_{21} \\ -a_{12} & a_{11} \end{pmatrix}^{T}.$$

Напр.,

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{-1} = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}.$$

Матрицы 3 на 3

Имеем

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Для отыскания элементов первого столбца имеем систему

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x_{11} \\ x_{21} \\ x_{31} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

или

$$\begin{cases} a_{11}x_{11} + a_{12}x_{21} + a_{13}x_{31} = 1 \\ a_{21}x_{11} + a_{22}x_{21} + a_{23}x_{31} = 0 \\ a_{31}x_{11} + a_{32}x_{21} + a_{33}x_{31} = 0 \end{cases}$$

По правилу Крамера

$$x_{11} = \det\begin{pmatrix} 1 & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{23} & a_{22} \end{pmatrix} : \det\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \det\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} : \det\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix},$$

$$x_{21} = \det \begin{pmatrix} a_{11} & 1 & a_{13} \\ a_{21} & 0 & a_{23} \\ a_{31} & 0 & a_{33} \end{pmatrix} : \det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = -\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} : \det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix},$$

$$x_{31} = \det \begin{pmatrix} a_{11} & a_{12} & 1 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & 0 \end{pmatrix} : \det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} : \det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Тем же путем вычисляются остальные столбцы обратной матрицы.

Правило для запоминания. Чтобы найти матрицу, обратную к матрице A, нужно

- 1. оставить матрицу, на пересечении i-ой строки и j-того столбца которой стоит определитель матрицы, полученной из матрицы A путем вычеркивания i-ой строки и j-ого столбца,
- 2. изменить знаки в шахматном порядке (элемент первой строки и первого столбца +)
- 3. протраспонировать эту матрицу,
- 4. разделить получившуюся матрицу на определитель матрицы $\it A$.

Задача. Составить матрицу, обратную к

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 6 & 2 \\ 3 & 4 & 1 \end{pmatrix}$$

Решение.

Шаг 1.

$$\begin{pmatrix}
\det\begin{pmatrix} 6 & 2 \\ 4 & 1 \end{pmatrix} & \det\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} & \det\begin{pmatrix} 1 & 6 \\ 3 & 4 \end{pmatrix} \\
\det\begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} & \det\begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix} & \det\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \\
\det\begin{pmatrix} 2 & 3 \\ 6 & 2 \end{pmatrix} & \det\begin{pmatrix} 1 & 3 \\ 1 & 2 \end{pmatrix} & \det\begin{pmatrix} 1 & 2 \\ 1 & 6 \end{pmatrix}
\end{pmatrix}$$

$$\begin{pmatrix}
-2 & -5 & -14 \\
-10 & -8 & -2 \\
-14 & -1 & 4
\end{pmatrix}$$

Шаг 2. Меняем знаки в шахматном порядке:

$$\begin{pmatrix} -2 & 5 & -14 \\ 10 & -8 & 2 \\ -14 & 1 & 4 \end{pmatrix}$$

Шаг 3. Транспонируем эту матрицу:

$$\begin{pmatrix} -2 & 10 & -14 \\ 5 & -8 & 1 \\ -14 & 2 & 4 \end{pmatrix}$$

Шаг 4. Делим на определитель:

$$\begin{pmatrix} -2 & 10 & -14 \\ 5 & -8 & 1 \\ -14 & 2 & 4 \end{pmatrix} / \det \begin{pmatrix} 1 & 2 & 3 \\ 1 & 6 & 2 \\ 3 & 4 & 1 \end{pmatrix}$$
$$\begin{pmatrix} \frac{1}{17} & -\frac{5}{17} & \frac{7}{17} \\ -\frac{5}{34} & \frac{4}{17} & -\frac{1}{34} \\ \frac{7}{17} & -\frac{1}{17} & -\frac{2}{17} \end{pmatrix}$$

Проверка.

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 6 & 2 \\ 3 & 4 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{17} & -\frac{5}{17} & \frac{7}{17} \\ -\frac{5}{34} & \frac{4}{17} & -\frac{1}{34} \\ \frac{7}{17} & -\frac{1}{17} & -\frac{2}{17} \end{pmatrix}$$

$$\begin{pmatrix} \frac{1}{17} & -\frac{5}{17} & \frac{7}{17} \\ -\frac{5}{34} & \frac{4}{17} & -\frac{1}{34} \\ \frac{7}{17} & -\frac{1}{17} & -\frac{2}{17} \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 6 & 2 \\ 3 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Выписанное правило можно применять к матрицам любого размера.

Решение систем линейных уравнений

Систему п линейных уравнений с п неизвестными можно записать в виде

$$Ax = b$$

Умножим это равенство слева на A^{-1}

$$A^{-1}(Ax) = A^{-1}b$$

Используя ассоциативность умножения матриц, мы можем переписать это равенство как

$$(A^{-1}A)x = A^{-1}b$$

На основании определения обратной матрицы это равенство означает, что

$$x = A^{-1}b$$

Теорема. Если определитель системы Ax = b не равен нулю, то ее решение можно записать как $x = A^{-1}b$.

Пример. Решением системы

$$\begin{cases} x + 2y = 2 \\ x - y = 3 \end{cases}$$

будет

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} \frac{8}{3} \\ -\frac{1}{3} \end{pmatrix}$$

Домашнее задание

Вопросы

- 1. Что такое линейное пространство? Почему множество всех матриц одной и той же размерности является линейным пространством?
- 2. Что такое кольцо? Почему множество всех матриц 2 на 2 является кольцом?
- 3. Почему решения матричных уравнений AX = E и XA = E совпадают? При каких условиях эти уравнения разрешимы?
- 4. Что такое обратная матрица?
- 5. Что такое транспонирование матрицы? Чему равны $(AB)^T$ и $\det A^T$?
- 6. Сформулируйте необходимые и достаточные условия, при которых квадратная матрица А имеет обратную.

Задачи

1. Вычислите, если все операции определены,

a.)
$$3\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} - 4\begin{pmatrix} 1 & 1 & 3 \\ 4 & 0 & 2 \end{pmatrix}$$

b.) $\begin{pmatrix} 1 & 4 \\ -2 & 1 \end{pmatrix}\begin{pmatrix} 4 & -3 \\ -1 & 0 \end{pmatrix}^T$,

b.)
$$\begin{pmatrix} 1 & 4 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 4 & -3 \\ -1 & 0 \end{pmatrix}^T$$

c.)
$$\begin{pmatrix} -2 & 3 & 5 \\ 1 & 3 & 3 \\ 2 & 2 & 8 \end{pmatrix}^{T} \begin{pmatrix} -2 & 3 & 5 \\ 1 & 4 & 7 \\ 2 & 3 & 8 \end{pmatrix}$$
, d.) $\begin{pmatrix} 1 & 4 \\ -2 & 1 \end{pmatrix}^{2}$

d.)
$$\begin{pmatrix} 1 & 4 \\ -2 & 1 \end{pmatrix}^2$$

e.)
$$\begin{pmatrix} 1 & 4 \\ -2 & 1 \end{pmatrix}^3$$

f.)
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

g.)
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

h.)
$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}^T \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

i.)
$$(1 \ 2 \ 3)\begin{pmatrix} 1 \ -1 \ 0 \ 1 \ 3 \ 1 \ 5 \ 2 \end{pmatrix}\begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix}$$

2. Прямым вычислением проверьте, что

$$\begin{pmatrix} 1 & 4 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 4 & -3 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 4 \\ -2 & 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 1 & 4 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 4 & -3 \\ -1 & 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & 4 \\ -2 & 1 \end{pmatrix}$$

3. Прямым вычислением проверьте, что

$$\begin{pmatrix} 1 & 4 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 4 & -3 \\ -1 & 0 \end{pmatrix} \neq \begin{pmatrix} 4 & -3 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 4 \\ -2 & 1 \end{pmatrix}$$

4. Найдите матрицы, обратные к след

a.)
$$\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$

b.)
$$\begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$$

c.)
$$\begin{pmatrix} -1 & 2 \\ 3 & 3 \end{pmatrix}$$

5. Найдите матрицы, обратные к матрицам

a.)
$$\begin{pmatrix} -2 & 3 & 0 \\ 1 & 3 & 1 \\ 2 & 2 & 0 \end{pmatrix}$$

b.)
$$\begin{pmatrix} 2 & 3 & 2 \\ -1 & 0 & 1 \\ 2 & 2 & 0 \end{pmatrix}$$

c.)
$$\begin{pmatrix} 2 & 3 & 2 \\ -1 & 0 & 1 \\ 2 & 2 & 0 \end{pmatrix}$$

Найдите матрицы, об
$$\begin{pmatrix} -2 & 3 & 0 \\ 1 & 3 & 1 \\ 2 & 2 & 0 \end{pmatrix}$$
 b.) $\begin{pmatrix} 2 & 3 & 2 \\ -1 & 0 & 1 \\ 2 & 2 & 0 \end{pmatrix}$ c.) $\begin{pmatrix} 2 & 3 & 2 \\ -1 & 0 & 1 \\ 2 & 2 & 0 \end{pmatrix}$ d.) $\begin{pmatrix} -2 & 3 & 1 \\ 1 & 3 & 4 \\ 2 & 2 & 4 \end{pmatrix}$

Для какой из этих матриц указать обратную невозможно?

6. Найдите решение системы линейных уравнений

$$\begin{cases}
-2x + 3y = 1 \\
x + 3y + z = 2 \\
2x + 2y = 3
\end{cases}$$

используя обратную матрицу, найденную в п. а пред. номера.