

Lógica de Programação

Operações Lógicas

com Proposições

Operações Lógicas

Podemos realizar as seguintes operações lógicas com proposições:

- 1. Negação
- 2. Conjunção
- 3. Disjunção Inclusiva
- 4. Disjunção Exclusiva
- 5. Condicional
- 6. Bicondicional

1. Negação (')

Chama-se negação da proposição p, e representamos por p', a proposição que tem o valor lógico oposto de p.

p	p'
1	0
0	1

2. Conjunção (.)

Chama-se conjunção de duas proposições " p e q ", e representamos por "p.q" a proposição composta que será verdadeira apenas quando as proposições p e q forem ambas verdadeiras e falsa em todos os demais casos.

p	q	p.q
1	1	1
1	0	0
0	1	0
0	0	0

3. Disjunção Inclusiva (+)

Chama-se disjunção inclusiva (ou somente disjunção) de duas proposições p e q a proposição, representada por "p ou q", e indicada por "p+q", que será falsa somente quando as proposições p e q forem ambas falsas e verdadeira em todas as demais situações.

р	a	p + q
1	1	1
1	0	1
0	1	1
0	0	0

Disjunção Exclusiva (⊕)

Chama-se disjunção exclusiva de duas proposições p e q a proposição, representada por "p ou q, mas não ambas", e indicada por "p ⊕ q", cujo valor lógico será verdadeiro somente se uma das proposições p ou q for verdadeira e a outra necessariamente for falsa.

р	q	p⊕q
1	1	0
1	0	1
0	1	1
0	0	0

Complete:

р	Arlete é rica.
q	Arlete é feliz.

p'	
q'	

p.q	
p + q	
p⊕ q	

р	Arlete é rica.
q	Arlete é feliz.

p'	Arlete é pobre
q'	Arlete é infeliz

p.q	Arlete é rica e feliz
p + q	Arlete é rica ou é feliz
p⊕ q	Arlete é rica ou feliz, mas não ambos

Complete:

р	Arlete é rica.
q	Arlete é feliz.

p'. q	
p + q'	

p . q'	
p' + q	

р	Arlete é rica.	
q	Arlete é feliz.	
p'. q	Arlete é pobre e feliz.	
p + q'	Arlete é rica ou infeliz.	
p.q'	Arlete é rica e infeliz.	

Arlete é pobre ou feliz.

5. Condicional (\rightarrow)

Chama-se proposição condicional (e representa-se por →) uma proposição representada por "se p então q", cujo valor lógico é a falsidade (0) no caso em que p é verdadeira e q é falsa e a verdade (1) nos demais casos.

p	q	$p \rightarrow q$
1	1	1
1	0	0
0	1	1
0	0	1

6. Bicondicional (\leftrightarrow)

Chama-se proposição bicondicional (e representa-se por \iff) uma proposição representada por "**p se e somente se q**", cujo valor lógico é a verdade (1) quando p e q são ambas verdadeiras ou ambas falsa, e a falsidade (0) nos demais casos.

р	q	$p \leftrightarrow q$
1	1	1
1	0	0
0	1	0
0	0	1

Complete:

р	Arlete é rica.
q	Arlete é feliz.

p→q	
q→p	

p′ → q	
q′ → p′	
p′ → q′	

р	Arlete é rica.
q	Arlete é feliz.

p→q	Se Arlete é rica então ela é feliz.
q→p	Se Arlete é feliz então ela é rica.

p′ → q	Se Arlete é pobre então ela é feliz.
q′→p′	Se Arlete é infeliz então ela é pobre.
p'→q'	Se Arlete é pobre então ela é infeliz.

Complete:

р	Arlete é rica.
q	Arlete é feliz.

p↔q	
q'↔p'	

р	Arlete é rica.	
q	Arlete é feliz.	

p↔q	Arlete é rica se e somente se ela é feliz.
q′⇔p′	Arlete é infeliz se e somente se ela é pobre.

Complete:

р	Arlete é alta. Arlete é elegante.	
q		

p.q	
p.q'	
(p'+q)'	
p'.q'	
(p'+q')'	

р	Arlete é alta.
q	Arlete é elegante.

p.q	Arlete é alta e elegante.	
p.q'	Arlete é alta, mas não é elegante.	
(p'+q)'	Não é verdade que Arlete é baixa ou elegante.	
p'.q'	Arlete não é nem alta nem elegante.	
(p'+q')'	É falso que Arlete é baixa ou que não é elegante.	

Complete informando o Valor lógico das proposições (1 ou 0):

3+2=7 e 5+5=10	
√5 <0 ou Londres é a capital do Brasil.	
Não é verdade que 12 é um número ímpar.	
3+4=7 se e somente se 5 ³ =125	
Se 0<1 então √3 é irracional	
Se 3+2=5 então 4+4=9	
Se Tiradentes morreu afogado então Fortaleza é a capital do Rio.	

3+2=7 e 5+5=10	0
√5 <0 ou Londres é a capital do Brasil.	0
Não é verdade que 12 é um número ímpar.	1
3+4=7 se e somente se 5 ³ =125	1
Se 0<1 então √3 é irracional	1
Se 3+2=5 então 4+4=9	0
Se Tiradentes morreu afogado então Fortaleza é a capital do Rio.	1

Exercício:

Proposições	Desenvolvimentos	Respostas
p . q'		
p' . q		
p + q'		
p' + q		

Proposições	Desenvolvimentos	Respostas
p . q'	1.1	1
p' . q	0.0	0
p + q'	1 + 1	1
p' + q	0 + 0	0

Exercício:

Proposições	Desenvolvimentos	Respostas
$p \rightarrow q$		
$q \rightarrow p$		
p' → q		
q′ → p		

Proposições	Desenvolvimentos	Respostas
$p \rightarrow q$	$1 \rightarrow 0$	0
$q \rightarrow p$	0 -> 1	1
p' → q	$0 \rightarrow 0$	1
q′ → p	1 -> 1	1

Exercício:

Proposições	Desenvolvimento	Respostas
$p \leftrightarrow q$		
p' ↔ q'		
p′ ↔ q		
q' ↔ p		

Proposições	Desenvolvimento	Respostas
$p \leftrightarrow q$	$1 \leftrightarrow 0$	0
p' ↔ q'	$0 \leftrightarrow 1$	0
$p' \leftrightarrow q$	$0 \leftrightarrow 0$	1
q' ↔ p	$1 \leftrightarrow 1$	1

Exercício:

Determinar V(p):

Valor lógico de q	Valor lógico da proposição composta	V(p)
V(q)=0	V(p.q)=0	
V(q)=0	V(p+q)=0	
V(q)=0	V(p→q)=0	
V(q)=0	V(p.q)=1	
V(q)=1	V(p↔q)=0	
V(q)=0	V(p↔q)=1	

Determinar V(p):

Valor lógico de q	Valor lógico da proposição composta	V(p)
V(q)=0	V(p.q)=0	1 ou 0
V(q)=0	V(p+q)=0	0
V(q)=0	V(p→q)=0	1
V(q)=0	V(p.q)=1	não
V(q)=1	V(p↔q)=0	0
V(q)=0	V(p↔q)=1	0

Dúvidas?

Bibliografia

Lógica e Álgebra de Boole Jacob Daghlian Ed. Atlas