Problema 1

Elías López Rivera ¹, Adolfo Ángel Cardoso Vásquez ²

^{1 2} Universidad Nacional Autónoma de México

Facultada de ciencias

26 de enero de 2025

1. Enunciado

Dado un espacio vectorial V de dimensión $n \in \mathbb{N}$, demostrar que para todo subespacio W, existe un subespacio X tal que $V = W \oplus X$

2. Solución

Como W es subespacio de V, se sigue que $k = dim(W) \le dim(V)$, sea $\mathfrak{B} := \{b_1, b_2,, b_k\}$ una base de W, sabemos que podemos extender esta a una base de V,tomando $\mathfrak{B}' := \{b_1, b_2,, b_k, a_{k+1}..., a_n\}$ como la base extendida, definimos $\mathfrak{A} := \{a_{k+1},, a_n\}$, sea $X := < \mathfrak{A} >$, demostraremos que X < V:

Tomamos $\epsilon \in \mathbb{F}$, $\alpha, \beta \in X$, se sigue :

$$\epsilon \alpha + \beta = \epsilon \sum_{i=k+1}^{n} \lambda_i a_i + \sum_{i=k+1}^{n} \psi_i a_i = \sum_{i=k+1}^{n} (\epsilon \lambda_i + \psi_i) a_i \in X$$

Por tanto X es un subespacio de V

i) Ahora tomemos $z \in V$, como \mathfrak{B}' es una base de V se sigue que:

Problema 1 2 SOLUCIÓN

$$z = \sum_{i=1}^k \phi_i b_i + \sum_{l=k+1}^n \upsilon_l a_l$$

Definimos:

$$p = \sum_{i=1}^{k} \phi_i b_i \quad j = \sum_{l=k+1}^{n} \upsilon_l a_l$$

Es claro que $p \in W$, $j \in X$, por tanto:

$$\forall z \in V \exists p \in W, j \in X : z = p + j$$

ii) Ahora sea $t \in W \cap X$, se sigue que:

$$t = \sum_{l=k+1}^{n} \zeta_l a_l = \sum_{i=i}^{k+1} \mu_i b_i \implies \sum_{i=i}^{k+1} \mu_i b_i + \sum_{l=k+1}^{n} (-\zeta_l) a_l = 0$$

Como \mathfrak{B}' es l.i se concluye que $\mu_1=\mu_2=\ldots=\zeta_{k+1}=\ldots=\zeta_n=0$, por tanto t=0, se obtiene que $W\cap X=\{0\}$

De i) y ii) se concluye que $V = W \oplus X$