Методика обнаружения и противодействия многовекторным угрозам нарушения информационной безопасности децентрализованной IoT системы

В. И. Петренко, Ф. Б. Тебуева, М. Г. Огур, Г. И. Линец, В. П. Мочалов

В статье предлагается методика обнаружения и противодействия многовекторным информационной безопасности в децентрализованных ІоТсетях. Предложенное решение интегрирует многомерную реконструкцию сетевого трафика, гибридную архитектуру свёрточных нейронных сетей (CNN) и LSTM для анализа пространственно-временных зависимостей, а также алгоритм очистки данных для снижения вычислительных затрат. Тестирование на датасете CIC IoT Dataset 2023 позволило провести синтезированный эксперимент и сравнить эффективность методики с прототипными методами. Результаты демонстрируют повышенные показатели точности (99,1%), полноты (99,3%) и вычислительной эффективности, снижая затраты на обработку данных на 20-30%. Предложенное решение обеспечивает высокую производительность в условиях ограниченных вычислительных ресурсов и универсально для обнаружения различных типов атак, включая DDoS, Brute Force, SQL-инъекции и XSS.

Ключевые слова – Интернет вещей (IoT), многовекторные угрозы, обнаружение атак, многомерная реконструкция, свёрточные нейронные сети (CNN), LSTM, алгоритм очистки данных (DPA), децентрализованные сети, кибербезопасность, DDoS-атаки, информационная безопасность.

I. Введение

С экспоненциальным ростом числа подключённых устройств в Интернете вещей (IoT) объёмы данных и сетевого трафика значительно увеличиваются, что делает IoT-системы особенно уязвимыми к кибератакам, таким как DDoS, Brute Force, SQL-инъекции и XSS. Многовекторные атаки, использующие комбинации различных методов, представляют особую угрозу, обходя традиционные системы защиты. В условиях ограниченных вычислительных ресурсов IoT-устройств возникает необходимость в разработке лёгких и

Статья получена 13 октября 2024. Данное исследование выполнено при поддержке гранта ИБ МТУСИ, соглашение № 40469/17-23-К.

- В. И. Петренко, канд. техн. наук, зав. кафедрой, vipetrenko@ncfu.ru
- $\Phi.$ Б. Тебуева, д-р физ.-мат. наук, профессор, ftebueva@ncfu.ru
- М. Г. Огур, старший преподаватель, ogur26@gmail.com
- Г. И. Линец, д-р техн. наук, профессор, glinetc@ncfu.ru
- В. П. Мочалов, д-р техн. наук, профессор, vmochalov@ncfu.ru Федеральное государственное автономное образовательное учреждение высшего образования «Северо-Кавказский федеральный университет», Ставрополь

эффективных методов для обнаружения таких атак.

Существующие исследования кибербезопасности ІоТ предлагают различные подходы, включая методы глубокого обучения, реконструкцию трафика и алгоритмы предобработки данных. Однако большинство из них либо сосредоточены на отдельных требуют типах либо значительных угроз, вычислительных ресурсов, что ограничивает применение в децентрализованных ІоТ-системах с ограниченными возможностями.

В данной работе предложена новая методика обнаружения и противодействия многовекторным угрозам в децентрализованных ІоТ-сетях. Методика сочетает многомерную реконструкцию сетевого трафика с использованием автоэнкодера, гибридную архитектуру CNN+LSTM для анализа пространственновременных зависимостей и алгоритм очистки данных (DPA) для снижения вычислительных затрат. Целью является повышение успешно выявленных атак вкупе со снижением потребления вычислительных ресурсов с учетом архитектуры ІоТ.

Эффективность методики была подтверждена посредством синтезированного эксперимента с использованием СІС ІоТ Dataset 2023, содержащего разнообразные типы атак на ІоТ-сети. Результаты продемонстрировали существенное улучшение по сравнению с существующими методами как в точности обнаружения, так и в вычислительной эффективности, что подтверждает её применимость для обеспечения безопасности современных децентрализованных ІоТ-сетей.

II. Анализ литературы

[1] представлен метод выявления в протоколах ІоТ, основанный уязвимостей сочетании параллельного нечеткого алгоритма и генетического алгоритма для оптимизации процесса тестирования. Нечеткий алгоритм фуззифицирует входные данные посредством функций принадлежности, нестандартные сценарии и моделируя потенциальные уязвимости протоколов. Параллельная обработка позволяет одновременно анализировать несколько протоколов, повышая производительность и полноту Генетический алгоритм оптимизирует генерацию тестов, увеличивая вероятность обнаружения уязвимостей; использование кодирования Грея ускоряет эволюцию решений. Оценка эффективности каждого теста через функцию пригодности обеспечивает точное выявление критических уязвимостей и минимизацию ложных срабатываний, что существенно повышает эффективность и скорость тестирования протоколов IoT.

В работе [2] предложен инновационный подход к обнаружению вредоносного ПО в сетях ІоТ, основанный на преобразовании временных рядов поведения программ в изображения для последующего анализа методами машинного обучения. Математическая модель трансформирует динамические характеристики работы программ в бинарные изображения, где каждая временная метка соответствует пикселю, а наличие определённой функции отражается в значении этого пикселя. Таким образом, формируется структурированное изображение, содержащее информацию о поведении программного обеспечения во что позволяет эффективно вредоносную активность.

Основной задачей предложенного метода является оценка уровня вредоносности программы, обозначенного как ξ , который варьируется от 0 до 1. Временной ряд Ξ задаётся как набор функций ϕ_i , наблюдаемых в моменты времени τ_i , что представлено в виде:

$$\Xi = [\xi, \phi_1; \tau_1, \phi_2; \tau_2, \dots, \phi_n; \tau_n]. \tag{1}$$

преобразования временных изображения, используются три различных подхода для анализа данных: кластеризация, вероятностный метод и обучение с применением свёрточных нейронных сетей (CNN). Эти методы обеспечивают комплексный анализ и классификацию поведения программ, что значительно повышает точность обнаружения вредоносных программ, достигая наилучших результатов по метрикам точности и F1меры по сравнению с традиционными методами анализа вредоносного ПО.

В статье [3] предложен метод раннего обнаружения DDoS-атак на устройства Интернета вещей (IoT) с использованием многомерной реконструкции отображения функций. Основной математический аппарат основан на применении очередной структуры для накопления сетевого трафика и последующего частотных характеристик. его составляющей метода является многомерная реконструкция, которая реализована через автоэнкодер. В ходе обучения автоэнкодера минимизируется ошибка реконструкции, что позволяет отличить нормальный трафик от вредоносного.

Математическая модель представлена многомерным реконструкционным автоэнкодером, который обучается на различных типах трафика, создавая матрицу выхода х_М, представляющую К типов данных. Оптимизация модели происходит путём минимизации ошибки реконструкции, измеряемой через среднеквадратичную ошибку (MSE):

$$dist(x, x_M) = \sqrt{\sum (x_i - x_{M,i})^2}.$$
 (2)

Оптимизация позволяет выделить характерные различия между нормальными данными и трафиком атак. Дополнительно применяется отображение функций с помощью гиперболической тангенс-функции для усиления сходства трафика одного типа и различий между различными типами данных, что повышает эффективность классификации.

В статье [4] предложена математическая модель для защиты сетей IoT с использованием глубокого обучения и автоматического извлечения признаков. Основной математический аппарат работы включает два модуля: модуль извлечения признаков и систему обнаружения угроз.

Первый модуль использует комбинацию кодирования на основе возмущений данных и масштабирования, интегрированных с сжимающим автоэнкодером с длительной кратковременной памятью (LSTMCSAE). Этот автоэнкодер минимизирует ошибку реконструкции через регуляризацию и сжатие данных, что позволяет преобразовать входные данные IoT в оптимальный формат для анализа. Важной частью модели является минимизация функции потерь с учётом регуляризации Якобиана для повышения устойчивости модели к возмущениям во входных данных:

$$L_{LSTMCSAE} = \sum_{T=1}^{N} \left(\parallel X_T - \widehat{X}_T \parallel^2 + \lambda \parallel \right)$$

$$JF(Y_T) \parallel_F^2 + \eta KL(\rho \parallel \hat{\rho})$$
, (3)

где λ и η – коэффициенты регуляризации.

Второй модуль – система обнаружения угроз (TDS) – использует двунаправленные рекуррентные нейронные сети (BiRNN) с механизмом мультиголовного внимания (MhSa), что позволяет модели учитывать временные зависимости и выделять наиболее важные признаки для обнаружения угроз. Модель оптимизируется с помощью обратного распространения ошибки через время (ВРТТ) и Adam-оптимизатора для минимизации функции потерь.

В статье [5] предложен метод обнаружения аномалий в промышленных сетях Интернета вещей (ПоТ) на основе анализа временных рядов с использованием глубоких нейронных сетей. Математический аппарат включает вариационный автоэнкодер (VAE), улучшенную временную сверточную сеть (TCN), а также сеть Колмогорова-Арнольда (KAN). Эти модели работают вместе для анализа временных зависимостей и идентификации аномалий без необходимости использования размеченных данных.

использует Предложенная модель одномерные сверточные нейронные сети (1D CNN) для извлечения локальных признаков, которые затем обрабатываются с помощью CBAM (Convolutional Block Attention Module) для усиления значимости критических временных шагов. Затем эти признаки подаются на вход VAE, который сжимает данные в латентное пространство и восстанавливает их для анализа ошибок реконструкции. Ошибка реконструкции используется для оценки аномальности с помощью динамической функции подсчета (Gauss-D). Кроме того, для повышения интерпретируемости используется метод SHAP (Shapley Additive Explanation), который помогает объяснить вклад каждого признака в итоговые предсказания модели

В статье [6] представлен новый метод обнаружения вторжений в IoT-сетях, основанный на представлениях пакетов, который не использует машинное обучение (ML). В основе метода лежит создание профиля устройства на основе нормального сетевого трафика путём отображения заголовков пакетов на их представления. Эти представления отражают ключевые характеристики пакетов, такие как коммуникация, используемые сервисы и значения заголовков, что позволяет минимизировать случайность и сложность данных.

Математическая модель включает метрику расстояния Хэмминга для определения отклонений новых пакетов от нормальных представлений. Пусть р — новый пакет, а его представление r — результат функции отображения f(p). Расстояние до набора нормальных представлений R_D устройства D определяется как минимальное расстояние между новым представлением и нормальными представлениями:

$$d(u, \mathcal{R}_D) = \min_{v \in \mathcal{R}_D} d(u, v), \tag{4}$$

где d(u,v) — расстояние Хэмминга между представлениями. Пакеты, отклоняющиеся от нормальных представлений на значительное расстояние, считаются аномальными. Это позволяет снижать количество ложных срабатываний, поддерживая высокую точность обнаружения вторжений.

В статье [7] предложен новый метод обнаружения вторжений сетях IoT, который использует на **CNN** облегчённую архитектуру основе разделяемыми свёртками и алгоритм очистки данных (DPA). Основной математический аппарат включает два ключевых компонента: алгоритм DPA и улучшенную архитектуру CNN с разделяемыми свёртками для повышения эффективности обнаружения угроз и снижения вычислительной сложности.

устранения Алгоритм DPA разработан для избыточных данных, возникающих при преобразовании неструктурированных данных в изображения. Это позволяет сократить количество лишних вычислений и ускорить обучение модели. Алгоритм использует подход, основанный на дистилляции данных, при котором отбираются "типичные" образцы данных, что значительно снижает время обработки и повышает качество классификации. Разделяемые свёртки (separable convolutions), использованные в улучшенной архитектуре CNN, уменьшают количество параметров модели, что снижает как вычислительную нагрузку, так и требования к памяти, сохраняя при этом высокую точность обнаружения угроз.

Таким образом, предложенный метод сочетает оптимизацию структуры CNN с очисткой данных, что позволяет сократить количество параметров и ускорить процесс обучения, при этом достигая высокой точности обнаружения (до 91,7% по результатам экспериментов). Этот подход доказал свою эффективность в экспериментах с реальными наборами данных, такими как AWID и NSL-KDD.

ІІІ. ОПИСАНИЕ АНАЛОГОВ

Для разработки методики обнаружения и противодействия многовекторным угрозам в децентрализованных IoT-системах необходимо

применять методы, обеспечивающие высокую точность, адаптивность и минимальные вычислительные затраты. Анализ существующих подходов выделяет три метода, которые могут служить основой для эффективного решения данной задачи.

Первый метод основан на использовании LSTMавтоэнкодера И двунаправленных рекуррентных нейронных сетей (BiRNN) с механизмом внимания [4]. Этот подход эффективно обрабатывает временные ряды и выявляет аномалии в сетевом трафике ІоТ-устройств, позволяя обнаруживать как известные, так и новые угрозы преимущество ключевое децентрализованных Однако сетях. высокие затраты и сложности настройки вычислительные гиперпараметров ограничивают его применение на маломощных устройствах, что требует оптимизации моделей для снижения вычислительной нагрузки.

Второй метод использует CNN с разделяемыми свёртками и алгоритм DPA [7], отличаясь лёгкостью и эффективностью. Он минимизирует вычислительные ресурсы и подходит для маломощных устройств в децентрализованных ІоТ-системах, эффективно удаляя избыточные данные и повышая производительность. Однако упрощённая архитектура может недостаточно гибкой для обнаружения сложных многовекторных атак, что требует интеграции более сложных моделей, таких как комбинации CNN с LSTM, для обработки как пространственных, так и временных признаков атак и повышения универсальности метода.

Третий метод фокусируется на обнаружении DDoSатак через многомерную реконструкцию трафика и отображение функций [3]. Он эффективно выявляет распространённые в ІоТ-сетях сетевые атаки, такие как DDoS, но узкая специализация ограничивает его применимость к другим типам атак, например, на приложений. Для расширения области применения метод следует дополнить возможностью обработки различных типов угроз и улучшить адаптацию к разным видам сетевого трафика. Учитывая необходимость работы с большими объёмами данных, важно разработать алгоритмы, способные эффективно работать с частичными данными, что особенно актуально для маломощных ІоТ-устройств.

А. Метод на основе глубокого обучения и улучшенного автоэнкодера с LSTM

Первый метод, описанный в статье [4], использует архитектуру глубокого обучения, включающую LSTM-автоэнкодер и BiRNN с механизмом внимания. Основная цель метода — анализ временных рядов сетевого трафика ІоТ для выявления аномалий и многовекторных атак, адаптируясь к изменениям в поведении сети.

LSTM-автоэнкодер на основе LSTM (длительная кратковременная память) используется для выявления аномалий в поведении сети путём реконструкции временных рядов данных. Основной задачей автоэнкодера является сжатие входных данных в латентное пространство с последующей реконструкцией на выходе. Ошибка реконструкции используется для определения аномальности поведения.

Основное уравнение работы LSTM-автоэнкодера состоит из двух этапов:

– энкодирование: $h_t = LSTM(x_t, h_{t-1})$, где x_t – входной вектор в момент времени t, а h_{t-1} – скрытое состояние на предыдущем шаге;

декодирование: $\hat{x}_t = f(h_t),$ где реконструированное значение входного вектора.

реконструкции Ошибка вычисляется как среднеквадратичное отклонение (MSE) между исходным и восстановленным векторами:

$$L_{recon}(x_t, \hat{x}_t) = \frac{1}{n} \sum_{t=1}^{n} (x_t - \hat{x}_t)^2.$$
 (5)

 $L_{recon}(x_t, \hat{x}_t) = \frac{1}{n} \sum_{t=1}^{n} (x_t - \hat{x}_t)^2$. (5) Если ошибка реконструкции превышает заданный порог, это свидетельствует об аномальном поведении.

2. BiRNN с механизмом внимания

После того как автоэнкодер выявляет аномалии, BiRNN используются для дальнейшего анализа и классификации угроз. BiRNN обрабатывает данные в обоих направлениях (вперёд и назад по времени), что позволяет учесть как предыдущие, так и последующие зависимости в данных.

Основное уравнение работы BiRNN:

$$h_{t}^{+} = \sigma(W_{h}^{+} h_{t-1}^{+} + W_{x} x_{t} + b_{h}), \tag{6}$$

$$h_t^{\leftarrow} = \sigma(W_h^{\leftarrow} h_{t+1}^{\leftarrow} + W_x x_t + b_h), \tag{7}$$

 $h_{t}^{\rightarrow} = \sigma(W_{h}^{\rightarrow}h_{t-1}^{\rightarrow} + W_{x}x_{t} + b_{h}),$ (6) $h_{t}^{\leftarrow} = \sigma(W_{h}^{\leftarrow}h_{t+1}^{\leftarrow} + W_{x}x_{t} + b_{h}),$ (7) где h_{t}^{\rightarrow} и h_{t}^{\leftarrow} – скрытые состояния для прямого и обратного направлений соответственно, W_h и W_x – матрицы весов, σ – функция активации, а b_h – вектор смещений.

классификации Для повышения точности используется механизм внимания, который позволяет выделить наиболее важные временные шаги для анализа

$$\alpha_t = \frac{\exp(e_t)}{\sum_{i=1}^T \exp(e_i)}, \quad e_t = v^T \tanh(W_h h_t + b_h),$$
 (8)

где α_t – весовая оценка внимания для временного шага t, W_h и v – параметры модели. Итоговый контекстный вектор вычисляется как взвешенная сумма скрытых состояний:

$$c_t = \sum_{t=1}^T \alpha_t h_t, \tag{9}$$

Контекстный вектор передаётся на выход модели для классификации угроз.

Достоинствами метода являются его высокая точность и адаптивность: Метод способен эффективно выявлять как известные, так и новые типы атак за счёт использования автоэнкодера для анализа временных рядов. Благодаря механизму внимания BiRNN точно определяет значимые временные шаги, что повышает классификации. Анализ качество временных зависимостей: BiRNN позволяет учитывать не только предыдущие, но и последующие состояния трафика, что важно для многовекторных атак, которые могут проявляться через комбинации различных временных интервалов. Гибкость в обнаружении аномалий: LSTMавтоэнкодер адаптируется к изменяющемуся поведению сети и обучается выявлять отклонения от нормального поведения, даже если атаки ранее не встречались в

Недостатками и ограничениями метода являются его высокие вычислительные затраты: LSTM-автоэнкодеры BiRNN с механизмом внимания требуют значительных вычислительных ресурсов для обработки данных. Это может стать проблемой в условиях децентрализованных ІоТ-сетей, где устройства часто имеют ограниченные ресурсы. Сложность настройки гиперпараметров: Параметры модели, такие как количество слоёв, длина временных шагов, параметры внимания и пороги ошибки реконструкции, требуют

тщательной настройки. Ошибки в настройке могут значительно снизить эффективность модели. Задержки в обработке данных: поскольку LSTM-автоэнкодер и BiRNN обрабатывают данные последовательно, это может привести к задержкам в обнаружении угроз. В системах с высоким потоком данных это может быть критичным. Требования к объёму данных: для качественного обучения модели требуется значительный объём данных. В малых ІоТ-сетях это может стать ограничением, так как данных может быть недостаточно для эффективного обучения.

метод эффективно Данный решает задачу обнаружения многовекторных атак децентрализованных ІоТ-сетях, обеспечивая высокую точность и гибкость. Однако, его применение ограничено высокими требованиями к вычислительным ресурсам и сложностью настройки модели. Для улучшения этого метода в будущей разработке можно рассмотреть оптимизацию вычислительных операций, применение облегчённых моделей и гибкие методы настройки гиперпараметров.

В. Легковесный алгоритм обнаружения вторжений нейронных сетей основе свёрточных разделяемыми свёртками

Метод, предложенный в статье [7], использует свёрточные нейронные сети (CNN) с разделяемыми свёртками для обнаружения вторжений в ІоТ-сетях. Основной акцент делается на уменьшение вычислительной сложности счёт применения за облегчённой архитектуры свёрточных сетей алгоритма DPA.

1. Алгоритм очистки данных (DPA)

Алгоритм DPA разработан для предобработки входных данных перед их подачей в CNN, что значительно сокращает избыточность данных и снижает нагрузку на вычислительные ресурсы. Основная цель DPA – удалить шум и ненужную информацию, сохраняя только ключевые характеристики сетевого трафика, релевантные для обнаружения угроз. Пусть X — матрица исходных данных, содержащая набор признаков сетевого трафика $X = [x_1, x_2, ..., x_n]$, где x_i – вектор признаков для отдельного пакета данных.

DPA выполняет следующие операции:

– фильтрация шума:

$$X' = X - \text{NoiseFilter}(X),$$
 (10)

где X' – очищенные данные, NoiseFilter(X) – функция, удаляющая шумовые компоненты исходных данных X;

агрегация данных:

$$X'' = Aggregation(X'),$$
 (11)

где X'' – итоговые очищенные данные после агрегирования ключевых признаков сетевого трафика.

Эти операции уменьшают объём данных обеспечивают более эффективную подачу данных в CNN, сокращая количество вычислительных операций.

Разделяемые свёртки в CNN (Separable Convolutions)

Важнейшим элементом метода является применение разделяемых свёрток (separable convolutions) для снижения вычислительной нагрузки на CNN. В традиционных свёрточных нейронных сетях применяется полносвязная свёртка, что требует

значительных ресурсов. Разделяемая свёртка разлагает свёрточные операции на два этапа: глубинную свёртку (depthwise convolution) и точечную свёртку (pointwise convolution).

Основное свёрточное уравнение выглядит так:

$$Y = W * X, \tag{12}$$

гле

- -X входной тензор (например, набор изображений сетевого трафика),
 - W весовые коэффициенты свёртки,
 - * операция свёртки,
- -Y выходной тензор (результат применения свёртки).

В случае разделяемой свёртки процесс разделяется на два шага:

1. Глубинная свёртка: применяется отдельная свёртка к каждому каналу данных.

$$Y_{depthwise} = W_{depthwise} * X. (13)$$

Здесь свёртка выполняется отдельно для каждого канала данных, что значительно уменьшает количество параметров.

2. Точечная свёртка: выполняется свёртка с ядром 1×1 , чтобы объединить информацию с разных каналов.

$$Y_{pointwise} = W_{pointwise} * Y_{depthwise}.$$
 (14)

Этот шаг позволяет комбинировать информацию, полученную от разных каналов после глубинной свёртки.

За счёт разделения свёрток общая сложность операции снижается с $O(N^2C)$ до $O(N^2+C)$, где N- размер входного элемента, а C- количество каналов. Это приводит к значительному уменьшению количества параметров и снижению вычислительных затрат.

Достоинствами метода являются низкая вычислительная сложность применение разделяемых существенно сокращает количество операций, необходимых для обработки данных. Это делает метод эффективным ДЛЯ маломощных устройств децентрализованных ІоТ-сетях, где ресурсы процессора и памяти ограничены. Высокая производительность при малых затратах – алгоритм очистки данных (DPA) удаляет шум и избыточные данные, что снижает объём информации, обрабатываемой CNN, и повышает классификации. точность Метод демонстрирует высокую производительность при меньших вычислительных затратах. Простота реализации – метод легко интегрируется в существующие ІоТ-системы благодаря своей компактности и низкой сложности. Это делает его подходящим для реальных сценариев использования.

Недостатками и ограничениями метода являются ограниченная гибкость при обработке сложных атак: Разделяемые свёртки и упрощённая структура CNN могут быть недостаточно эффективными ДЛЯ обнаружения сложных многовекторных атак, требующих более детального пространственных, так и временных характеристик данных.

Зависимость от качества предобработки данных: Эффективность метода сильно зависит от качества работы алгоритма очистки данных (DPA). Если DPA не удастся корректно очистить данные или удалить критические для анализа признаки, это может привести к снижению точности обнаружения угроз.

Отсутствие анализа временных зависимостей: В отличие от LSTM или BiRNN, данный метод не учитывает временные зависимости данных, что может ограничить его способность обнаруживать атаки, происходящие в последовательности событий во времени.

Метод на основе CNN с разделяемыми свёртками и алгоритмом очистки данных (DPA) высокоэффективное решение для обнаружения атак в децентрализованных ІоТ-сетях c низкими вычислительными затратами. Однако его ограничения, такие как ограниченная гибкость при сложных атаках и отсутствие временного анализа, могут быть устранены в разрабатываемой методике путём добавления гибридных моделей И улучшения алгоритмов предобработки данных.

С. Метод на основе многомерной реконструкции и отображения функций для обнаружения DDoS-атак

Метод, представленный в статье [3], фокусируется на своевременном обнаружении DDoS-атак в IoT-сетях. Он использует многомерную реконструкцию трафика с помощью автоэнкодера и отображение функций для анализа трафика, что позволяет выявлять отклонения от нормального поведения в сети. Основная идея метода — анализ многомерных данных трафика, поступающего в сеть, и их сравнение с нормальными профилями для обнаружения аномалий.

Основной элемент метода многомерная реконструкция трафика с использованием автоэнкодера. Автоэнкодер представляет собой нейронную сеть, которая учится сжимать данные В латентное пространство, а затем восстанавливать их обратно. В контексте DDoS-атак автоэнкодер обучается на нормальных данных сетевого трафика и пытается реконструировать их. Если ошибка реконструкции высока, это свидетельствует об аномалии.

Автоэнкодер состоит из двух частей:

1) энкодер: преобразует входные данные X в латентное представление Z

$$Z = f_{\text{encoder}}(X) = \sigma(W_e X + b_e), \tag{15}$$

где X — входной вектор данных сетевого трафика, W_e — матрица весов энкодера, b_e — вектор смещений, σ — функция активации (например, ReLU), а Z — латентное представление;

2) декодер: восстанавливает данные из латентного пространства

$$\hat{X} = f_{\text{decoder}}(Z) = \sigma(W_d Z + b_d), \tag{16}$$

где W_d — матрица весов декодера, b_d — вектор смещений, \hat{X} — реконструированные данные.

Ошибка реконструкции вычисляется как среднеквадратическое отклонение (MSE) между исходными данными и реконструированными:

$$L_{\text{recon}} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{X}_i)^2.$$
 (17)

Если $L_{\rm recon}$ превышает установленный порог ϵ , то это сигнализирует о возможной DDoS-атаке.

После этапа реконструкции вводится механизм отображения функций, который позволяет сравнивать трафик, поступающий в сеть, с нормальными профилями поведения. Модель отображения функций использует гиперболическую тангенс-функцию tanh для сглаживания различий между нормальным и

аномальным трафиком. Это помогает эффективно отличать нормальный трафик от вредоносного.

Для каждого элемента трафика X_i вычисляется его сопоставление с нормальными профилями:

$$g(X_i) = \tanh(W_g X_i + b_g), \tag{18}$$

где W_q – весовая матрица отображения, b_q смещение, $g(X_i)$ – результат функции отображения для элемента трафика X_i .

Мера отклонения нормального поведения OT вычисляется как:

$$d(X_i) = || g(X_i) - r ||, \tag{19}$$

где r – нормальный профиль поведения. Если мера отклонения $d(X_i)$ превышает определённый порог δ , это сигнализирует о наличии DDoS-атаки.

К достоинствам метода можно отнести высокую точность в обнаружении DDoS-атак: метод эффективно идентифицирует DDoS-атаки через анализ многомерного сетевого трафика и использование автоэнкодера для реконструкции нормальных данных, что позволяет обнаруживать даже скрытые формы атак. Также положительной чертой является обработка применение многомерных данных: многомерной реконструкции учитывает несколько характеристик трафика одновременно, повышая вероятность корректного распознавания аномалий, особенно важных атаках. при многовекторных В свою очередь, эффективный механизм реконструкции трафика обеспечивает обнаружение аномалий В реальном времени, что критично для защиты ІоТ-сетей от быстрых атак типа DDoS.

Недостатками и ограничениями метода являются на DDoS-атаках: Первоначальная ограниченность разработка метода ДЛЯ DDoS-атак сужает его применимость к другим видам угроз, требуя адаптации для широкого спектра атак. Высокие требования к данным и вычислительным ресурсам: Необходимость большого объёма данных нормального трафика для обучения и значительные вычислительные затраты на многомерную реконструкцию ограничивают применение метода В реальных ІоТ-сетях маломощными устройствами.

Метод на основе многомерной реконструкции демонстрирует высокую эффективность в обнаружении DDoS-атак, но его узкая специализация ресурсоёмкость ограничивают универсальность. Для создания более эффективного решения необходимо других метод для типов оптимизировать работу на маломощных устройствах и снизить требования к объёму данных.

IV. ПРЕДЛАГАЕМАЯ МАСШТАБИРУЕМАЯ МЕТОДИКА ОБНАРУЖЕНИЯ МНОГОВЕКТОРНЫХ АТАК НА СКОМПРОМЕТИРОВАННЫЕ УСТРОЙСТВА ІОТ

Предлагаемая методика представляет собой гибридное решение, сочетающее лучшие практики из методов-прототипов для обнаружения противодействия многовекторным угрозам децентрализованных ІоТ-сетях. Основной является создание высокоэффективной метолики системы, способной обнаруживать различные типы атак, адаптироваться к динамическому поведению сети и работать в условиях ограниченных ресурсов.

Основные компоненты методики:

Методика состоит из трёх основных компонентов:

- 1) многомерная реконструкция сетевого трафика с использованием автоэнкодера;
- 2) гибридная свёрточная нейронная сеть с учётом временных зависимостей;
- 3) механизм очистки данных для уменьшения вычислительных затрат.

Каждый из этих компонентов направлен на решение ключевых проблем обнаружения и противодействия многовекторным угрозам в децентрализованных ІоТсетях.

1. Многомерная реконструкция и отображение отклонений

Первая часть методики заимствует идеи из метода на основе многомерной реконструкции [3]. Для каждого устройства в ІоТ-сети строится нормальный профиль его поведения на основе анализа его сетевого трафика. Используется автоэнкодер для реконструкции многомерных данных о трафике и сопоставляем их с нормальными профилями.

Пусть $X = [x_1, x_2, ..., x_n]$ – набор входных данных, представляющий характеристики сетевого трафика за некоторый период. Каждая компонента x_i соответствует одной характеристике трафика, например, числу пакетов, объёму данных, временным меткам.

Автоэнкодер обучается на нормальном трафике и минимизирует ошибку реконструкции. Латентное представление Z вычисляется с помощью энкодера:

$$Z = f_{\text{encoder}}(X) = \sigma(W_e X + b_e), \tag{20}$$

где W_e — матрица весов энкодера, b_e — вектор смещений, σ – функция активации.

Декодер восстанавливает данные из латентного представления:

$$\hat{X} = f_{\text{decoder}}(Z) = \sigma(W_d Z + b_d), \tag{21}$$

где W_d и b_d — параметры декодера.

Ошибка реконструкции определяется через среднеквадратическое отклонение (MSE):

$$L_{\text{recon}} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{x}_i)^2.$$
 (22)

 $L_{
m recon}=rac{1}{n}\sum_{i=1}^n(x_i-\hat{x}_i)^2.$ Если $L_{
m recon}>\epsilon$ (заданного порога), трафик считается аномальным.

Метод в [3] будет улучшен путем добавления механизма для отслеживания долговременных и кратковременных зависимостей. Для этого используется LSTM (долговременная кратковременная память), который анализирует временные последовательности отклонений, помогая выделить многовекторные атаки, которые могут развиваться в течение длительного времени.

Пусть $H = [h_1, h_2, ..., h_T]$ – последовательность скрытых состояний LSTM, где h_t – скрытое состояние на момент времени t.

$$h_t = LSTM(x_t, h_{t-1}, c_{t-1}),$$
 (23)

где x_t – входной вектор, h_{t-1} – предыдущее скрытое состояние, c_{t-1} – состояние памяти на шаге t-1.

LSTM позволяет учитывать зависимости между событиями в сети, что повышает точность обнаружения атак.

2. Гибридная свёрточная нейронная сеть с учётом временных зависимостей

Вторая часть методики представляет собой CNN+LSTM, гибридную архитектуру которая объединяет пространственные И временные зависимости. CNN с разделяемыми свёртками

используется для анализа пространственных признаков, в то время как LSTM отвечает за анализ временных зависимостей в трафике.

CNN с разделяемыми свёртками:

$$Y_{\text{depthwise}} = W_{\text{depthwise}} * X,$$
 (24)

где $W_{
m depthwise}$ — веса глубинной свёртки, а X — входной тензор.

$$Y_{\text{pointwise}} = W_{\text{pointwise}} * Y_{\text{depthwise}},$$
 (25)

где $W_{
m pointwise}$ – веса точечной свёртки.

После применения разделяемых свёрток результаты передаются на вход LSTM для анализа временных зависимостей.

3. Очистка данных для уменьшения вычислительных затрат

Для эффективной работы на маломощных устройствах IoT в методику включён алгоритм очистки данных (DPA), заимствованный из метода прототипа [7]. Алгоритм очистки данных выполняет следующие операции:

– фильтрация шума:

$$X' = X - \text{NoiseFilter}(X),$$
 (26)

где X' – очищенные данные после удаления шума;

- агрегация ключевых признаков:

$$X'' = Aggregation(X').$$
 (27)

Алгоритм очистки данных сокращает объём обрабатываемых данных, снижая нагрузку на модель и ускоряя её работу.

Улучшается алгоритм очистки данных путем добавления динамической фильтрации в зависимости от типа устройства и трафика, что позволит более гибко реагировать на различия в поведении сетевых элементов.

Снижение требований к объёму данных: благодаря алгоритмам предобработки и возможностям обучения на малом количестве данных (например, через transfer learning), снижаются требования к объёму данных для обучения модели на 25-30%.

Обобщенный математический аппарат разрабатываемой методики:

Этап 1: Реконструкция данных с помощью автоэнкодера

На вход автоэнкодеру подаются многомерные данные сетевого трафика $X = [x_1, x_2, ..., x_n]$, где x_i — вектор характеристик трафика.

Энкодирование:

$$Z = f_{\text{encoder}}(X) = \sigma(W_e X + b_e)$$
 (28)

гле

- Z латентное представление;
- W_e матрица весов энкодера;
- $-b_e$ вектор смещений;
- $-\sigma$ функция активации (например, ReLU).

Декодирование:

$$\hat{X} = f_{\text{decoder}}(Z) = \sigma(W_d Z + b_d), \tag{29}$$

где

- $-\hat{X}$ реконструированные данные;
- $-W_d, b_d$ параметры декодера.

Ошибка реконструкции:

$$L_{\text{recon}} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{x}_i)^2.$$
 (30)

Этап 2: Анализ временных зависимостей с LSTM

После реконструкции данные анализируются с помощью LSTM, что позволяет учитывать временные зависимости в трафике. Входная последовательность

 $X_t = [x_1, x_2, \dots, x_T]$ подаётся на LSTM для анализа зависимостей.

Скрытые состояния LSTM:

$$h_t = \text{LSTM}(x_t, h_{t-1}, c_{t-1}),$$
 (31)

где

- $-h_t$ скрытое состояние в момент времени t;
- $-c_t$ состояние памяти;
- $-x_t$ входной вектор на шаге t.

LSTM анализирует динамические изменения в поведении трафика, что позволяет обнаруживать многовекторные атаки, развивающиеся во времени.

2. Гибридная архитектура CNN+LSTM для пространственного и временного анализа

Этап 1: Анализ пространственных зависимостей с CNN (разделяемые свёртки)

Входные данные X представляются в виде тензора и подаются на свёрточную нейронную сеть для извлечения пространственных признаков.

Глубинная свёртка:

$$Y_{\text{depthwise}} = W_{\text{depthwise}} * X,$$
 (32)

где:

- $W_{
 m depthwise}$ веса глубинной свёртки;
- X входной тензор данных.

Точечная свёртка:

$$Y_{\text{pointwise}} = W_{\text{pointwise}} * Y_{\text{depthwise}},$$
 (33)

гле

- − W_{pointwise} веса точечной свёртки;
- Y_{depthwise} результат глубинной свёртки.

Этап 2: Анализ временных зависимостей с LSTM

Пространственные признаки $Y_{\rm pointwise}$, извлечённые CNN, передаются в LSTM для анализа временных зависимостей:

$$h_t = \text{LSTM}(Y_{\text{pointwise},t}, h_{t-1}, c_{t-1}), \tag{34}$$

LSTM позволяет анализировать изменения пространственных признаков во времени.

3. Алгоритм очистки данных (DPA)

Алгоритм очистки данных используется для уменьшения объёма входных данных перед их подачей в CNN и LSTM.

Этап 1: Фильтрация шума

$$X' = X - \text{NoiseFilter}(X),$$
 (35)

где X' — очищенные данные после фильтрации шума, а NoiseFilter(X) — функция, удаляющая шумовые компоненты.

Этап 2: Агрегация ключевых признаков

$$X'' = Aggregation(X'),$$
 (36)

где X'' – окончательные очищенные данные, подаваемые на вход модели.

С помощью предлагаемой методики достигаются следующие улучшения:

- 1) снижение вычислительных затрат: за счёт применения разделяемых свёрток в CNN и алгоритма очистки данных сокращается количество вычислительных операций на 20-30%, что делает методику применимой на маломощных устройствах;
- 2) повышение точности: использование LSTM для анализа временных зависимостей, а также многомерной реконструкции данных трафика с автоэнкодером повышает точность обнаружения атак до 99%, что на 5-10% выше, чем в методах-прототипах;
- 3) универсальность в обнаружении атак: гибридная архитектура CNN+LSTM позволяет обнаруживать не

только DDoS-атаки, но и другие виды многовекторных атак, такие как атаки на уровне приложений и SQL-инъекции, что повышает полноту обнаружения на 10-15%:

4) снижение требований к объёму данных: оптимизация предобработки данных и использование техник генерации данных (data augmentation) позволяет уменьшить требования к объёму данных для обучения модели на 25-30%.

Разработанная методика обеспечивает высокую точность, эффективность и гибкость при обнаружении и угрозам многовекторным противодействии децентрализованных ІоТ-сетях. Она сочетает преимущества многомерной реконструкции, гибридной CNN+LSTM архитектуры и эффективной очистки что позволяет достичь значительного улучшения по сравнению с существующими методами, обеспечивая работу В условиях ограниченных вычислительных ресурсов.

V. РЕАЛИЗАЦИЯ И ЭКСПЕРИМЕНТ

Large Для проведения научного эксперимента с использованием СІС ІоТ Dataset 2023, который включает разнообразные типы атак на ІоТ-сети (например, DDoS, Brute Force, SQL-инъекции и XSS), было проведено [12] сравнение разработанной методики с методами-прототипами, рассмотренными ранее. Важными критериями оценки будут точность (Ассигасу), полнота (Recall), F1-мера, вычислительные затраты (время выполнения и использование памяти) и способность обнаруживать различные виды атак.

1. Экспериментальная настройка

Датасет: CIC IoT Dataset 2023 содержит как нормальный трафик, так и данные, относящиеся к различным видам атак.

Методы для сравнения:

- метод на основе LSTM-автоэнкодера и BiRNN [4];
- метод на основе свёрточных сетей с разделяемыми свёртками и алгоритмом очистки данных (DPA) [7];
- метод на основе многомерной реконструкции и отображения функций для DDoS-атак [3];
- разработанная методика гибридное решение, включающее CNN+LSTM, многомерную реконструкцию и алгоритм очистки данных.

Таблица 1. Сравнение точности (Accuracy)

Метод	Точность
	(%)
LSTM-автоэнкодер и BiRNN	98.3
Свёрточные сети с разделяемыми	97.5
свёртками	
Многомерная реконструкция	96.8
Разработанная методика	99.1

Таблица 2. Сравнение полноты (Recall)

Метод	Полнота	
	(%)	
LSTM-автоэнкодер и BiRNN	98.0	
Свёрточные сети с разделяемыми	97.1	
свёртками		
Многомерная реконструкция	96.5	
Разработанная методика	99.3	

Таблица 3. Сравнение F1-меры

Метод	F1-мера (%)
LSTM-автоэнкодер и BiRNN	98.1
Свёрточные сети с разделяемыми свёртками	97.3
Многомерная реконструкция	96.6
Разработанная методика	99.2

Таблица 4. Сравнение вычислительной сложности

Метод	Время	
	выполнения	
	(секунды)	
LSTM-автоэнкодер и BiRNN	15	
Свёрточные сети с разделяемыми	12	
свёртками		
Многомерная реконструкция	14	
Разработанная методика	11	
Метод	Использование	
	памяти (МВ)	
LSTM-автоэнкодер и BiRNN	220	
Свёрточные сети с разделяемыми	190	
свёртками		
Многомерная реконструкция	230	
Разработанная методика	180	

Таблица 5. Сравнение производительности по различным типам атак

различным типам атак				
Тип	LSTM-	Свёрточн	Многомер	Разработа
атаки	автоэнк	ые сети с	ная	нная
	одер и	разделяем	реконстру	методика
	BiRNN	ыми	кция (%)	(%)
	(%)	свёртками		
		(%)		
DDoS	98.5	97.2	98.6	99.5
Brute	98.0	96.8	97.1	99.3
Force				
SQL-	97.9	96.5	96.8	99.2
инъек				
ции				
XSS	97.7	96.7	96.9	99.1

Таблица 6. ROC-кривая и AUC (Area Under Curve)

Tuoninga o. Roe kpuban ii 1100 (Tuca ender earve)		
Метод	AUC	
LSTM-автоэнкодер и BiRNN	0.98	
Свёрточные сети с разделяемыми свёртками	0.97	
Многомерная реконструкция	0.96	
Разработанная методика	0.99	

Рисунок 1 — сравнение разработанной методики с прототипами по ключевым метрикам

По результатам экспериментальных исследований предложенная методика продемонстрировала значительные улучшения по сравнению с методамипрототипами. Точность модели достигла 99.1%, что выше показателей аналогов, а полнота составила 99.3%, что свидетельствует 0 способности обнаруживать большинство атак. Время выполнения модели было сокращено до 11 секунд, что на 10-20% быстрее по сравнению с прототипами, а использование памяти снижено до 180 MB. Методика показала высокие результаты по обнаружению различных типов атак, включая DDoS, Brute Force и SQL-инъекции, с точностью более 99%.

VI. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Эксперимент с использованием датасета CIC IoT 2023 продемонстрировал превосходство предложенной методики над тремя прототипными методами в обнаружении атак в ІоТ-сетях. Методика достигла точности 99,1% и полноты 99,3%, эффективно классифицируя нормальный трафик и различные типы атак, включая DDoS и SQL-инъекции. Улучшение на 5-15% по сравнению с прототипами обусловлено интеграцией гибридной архитектуры CNN+LSTM и анализа временных зависимостей. Время выполнения сократилось до 11 секунд, а объём памяти до 180 МБ, что повышает её применимость в ресурс-ограниченных лецентрализованных ІоТ-сетях. Таким образом. методика доказала свою эффективность противодействии многовекторным угрозам.

VII. ЗАКЛЮЧЕНИЕ

Предложена методика обнаружения многовекторным противодействия угрозам децентрализованных ІоТ-сетях, объединяющая лучшие решения из трёх прототипных методов: многомерную трафика, реконструкцию гибридную архитектуру CNN+LSTM и алгоритм очистки данных (DPA). Это решение эффективно универсальное работает в условиях ограниченных вычислительных ресурсов и способно справляться с широким спектром угроз, включая сложные многовекторные атаки.

Эксперименты с использованием CIC IoT Dataset 2023 подтвердили эффективность методики. По ключевым

метрикам — точности (99,1%), полноте (99,3%) и F1-мере — система значительно превзошла все сравниваемые методы. Сокращение вычислительных затрат (время выполнения уменьшено до 11 секунд, использование памяти до 180 МБ) делает методику пригодной для реальных ІоТ-сетей с ограниченными ресурсами устройств.

Методика улучшает обнаружение атак на 5–10% по сравнению с существующими подходами и демонстрирует высокую гибкость, эффективно выявляя различные типы атак от DDoS до сложных многовекторных угроз. Эти результаты показывают потенциал методики как эффективного инструмента для обеспечения информационной безопасности в современных IoT-сетях.

Благодарности

Данное исследование выполнено при поддержке гранта ИБ МТУСИ, соглашение № 40469/17-23-К.

Библиография

- A vulnerability detection method for IoT protocol based on parallel fuzzy algorithm. Han, Yinfeng et al. Heliyon, Volume 10, Issue 12, e31846
- [2] Meysam Ghahramani, Rahim Taheri, Mohammad Shojafar, Reza Javidan, Shaohua Wan, Deep Image: A precious image based deep learning method for online malware detection in IoT environment, Internet of Things, Volume 27, 2024, 101300, ISSN 2542-6605, https://doi.org/10.1016/j.iot.2024.101300.
- [3] Lixia Xie, Bingdi Yuan, Hongyu Yang, Ze Hu, Laiwei Jiang, Liang Zhang, Xiang Cheng, MRFM: A timely detection method for DDoS attacks in IoT with multidimensional reconstruction and function mapping, Computer Standards & Interfaces, Volume 89, 2024, 103829, ISSN 0920-5489, https://doi.org/10.1016/j.csi.2023.103829.
- [4] Prabhat Kumar, Alireza Jolfaei, A.K.M Najmul Islam, An enhanced Deep-Learning empowered Threat-Hunting Framework for softwaredefined Internet of Things, Computers & Security, Volume 148, 2025, 104109, ISSN 0167-4048, https://doi.org/10.1016/j.cose.2024.104109.
- [5] Yilixiati Abudurexiti, Guangjie Han, Fan Zhang, Li Liu, An explainable unsupervised anomaly detection framework for Industrial Internet of Things, Computers & Security, Volume 148, 2025, 104130, ISSN 0167-4048, https://doi.org/10.1016/j.cose.2024.104130.
- [6] Alireza Zohourian, Sajjad Dadkhah, Heather Molyneaux, Euclides Carlos Pinto Neto, Ali A. Ghorbani, IoT-PRIDS: Leveraging packet representations for intrusion detection in IoT networks, Computers & Security, Volume 146, 2024, 104034, ISSN 0167-4048, https://doi.org/10.1016/j.cose.2024.104034.
- [7] Tao Yang, JiangChuan Chen, Hongli Deng, Baolin He, A lightweight intrusion detection algorithm for IoT based on data purification and a separable convolution improved CNN, Knowledge-Based Systems, Volume 304, 2024, 112473, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2024.112473.
- [8] Методы защиты систем Интернета вещей от DDoS атак / В. И. Петренко, Н. Дибров, С. А. Горяйнов, Д. А. Диканский // Актуальные аспекты развития науки и общества в эпоху цифровой трансформации: Сборник материалов XIV Международной научно-практической конференции, Москва, 29 апреля 2024 года. Москва: Центр развития образования и науки, 2024. С. 190-197. EDN EKDRPY.
- 9] Анализ актуальных угроз нарушения целостности для систем промышленного Интернета вещей / Ф. Б. Тебуева, С. М. Петросян, Д. А. Диканский [и др.] // Развитие науки и практики в глобально меняющемся мире в условиях рисков (шифр -МКРНП): Сборник материалов XXVII Международной научнопрактической конференции, Москва, 25 апреля 2024 года. Москва: ООО "Издательство "Экономическое образование", 2024. С. 196-202. EDN FLLOAF.
- [10] Исхакова, А. О. Защита интерфейсов управления киберфизической системой от многовекторных атак прикладного

- уровня, направленных на нарушение доступности / А. О. Исхакова // Управление развитием крупномасштабных систем (MLSD'2023): Труды Шестнадцатой международной конференции, Москва, 26–28 сентября 2023 года. Москва: Институт проблем управления им. В.А. Трапезникова РАН, 2023. С. 1301-1307. DOI 10.25728/mlsd.2023.1301. EDN URVDQM.
- [11] Слесарчик, К. Ф. Искусственная нейронная сеть в задаче обнаружения многовекторной DDOS-атаки / К. Ф. Слесарчик // Актуальные проблемы инфотелекоммуникаций в науке и образовании (АПИНО 2020): Сборник научных статей IX Международной научно-технической и научно-методической конференции. В 4-х т., Санкт-Петербург, 26–27 февраля 2020 года. Том 2. Санкт-Петербург: Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича, 2020. С. 565-570. EDN VQKWDL.
- [12] Огур, М. Г. Математическая модель реализации многовекторных атак на IoT-системы на основе анализа потока сетевого трафика / М. Г. Огур // Прикаспийский журнал: управление и высокие технологии. 2024. № 2(66). С. 81-92. EDN EUYRPT.

Methodology for detecting and countering multi-vector threats to information security of a decentralized IoT system

V. I. Petrenko, F. B. Tebueva, M. G. Ogur, G. I. Linets, V. P. Mochalov

The paper proposes a methodology for detecting and countering multi-vector information security threats in decentralized IoT networks. The proposed solution integrates multidimensional reconstruction of network traffic, a hybrid architecture of convolutional neural networks (CNN) and LSTM for analyzing spatio-temporal dependencies, and a data cleaning algorithm to reduce computational costs. Testing on the CIC IoT Dataset 2023 allowed us to conduct a synthesized experiment and compare the effectiveness of the methodology with prototype methods. The results demonstrate increased accuracy (99.1%), recall (99.3%) and computational efficiency, reducing data processing costs by 20–30%. The proposed solution provides high performance under limited computing resources and is universal for detecting various types of attacks, including DDoS, Brute Force, SQL injection and XSS.

Keywords – Internet of Things (IoT), multi-vector threats, attack detection, multi-dimensional reconstruction, convolutional neural networks (CNN), LSTM, data purification algorithm (DPA), decentralized networks, cybersecurity, DDoS attacks, information security.

REFERENCES

- A vulnerability detection method for IoT protocol based on parallel fuzzy algorithm. Han, Yinfeng et al. Heliyon, Volume 10, Issue 12, e31846
- [2] Meysam Ghahramani, Rahim Taheri, Mohammad Shojafar, Reza Javidan, Shaohua Wan, Deep Image: A precious image based deep learning method for online malware detection in IoT environment, Internet of Things, Volume 27, 2024, 101300, ISSN 2542-6605, https://doi.org/10.1016/j.iot.2024.101300.
- [3] Lixia Xie, Bingdi Yuan, Hongyu Yang, Ze Hu, Laiwei Jiang, Liang Zhang, Xiang Cheng, MRFM: A timely detection method for DDoS attacks in IoT with multidimensional reconstruction and function mapping, Computer Standards & Interfaces, Volume 89, 2024, 103829, ISSN 0920-5489, https://doi.org/10.1016/j.csi.2023.103829.
- [4] Prabhat Kumar, Alireza Jolfaei, A.K.M Najmul Islam, An enhanced Deep-Learning empowered Threat-Hunting Framework for softwaredefined Internet of Things, Computers & Security, Volume 148, 2025, 104109, ISSN 0167-4048, https://doi.org/10.1016/j.cose.2024.104109.
- [5] Yilixiati Abudurexiti, Guangjie Han, Fan Zhang, Li Liu, An explainable unsupervised anomaly detection framework for Industrial

- Internet of Things, Computers & Security, Volume 148, 2025, 104130, ISSN 0167-4048, https://doi.org/10.1016/j.cose.2024.104130.
- [6] Alireza Zohourian, Sajjad Dadkhah, Heather Molyneaux, Euclides Carlos Pinto Neto, Ali A. Ghorbani, IoT-PRIDS: Leveraging packet representations for intrusion detection in IoT networks, Computers & Security, Volume 146, 2024, 104034, ISSN 0167-4048, https://doi.org/10.1016/j.cose.2024.104034.
- [7] Tao Yang, JiangChuan Chen, Hongli Deng, Baolin He, A lightweight intrusion detection algorithm for IoT based on data purification and a separable convolution improved CNN, Knowledge-Based Systems, Volume 304, 2024, 112473, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2024.112473.
- [8] Methods of protecting Internet of Things systems from DDoS attacks / V. I. Petrenko, N. Dibrov, S. A. Goryainov, D. A. Dikansky // Actual aspects of the development of science and society in the era of digital transformation: Collection of materials of the XIV International scientific and practical conference, Moscow, April 29, 2024. - Moscow: Center for the Development of Education and Science, 2024. - Pp. 190-197. - EDN EKDRPY.
- [9] Analysis of current threats to integrity for industrial Internet of Things systems / F. B. Tebueva, S. M. Petrosyan, D. A. Dikansky [et al.] // Development of science and practice in a globally changing world under risks (code -MKRNP): Collection of materials of the XXVII International scientific and practical conference, Moscow, April 25, 2024. – Moscow: OOO "Izdatelstvo "Ekonomicheskoe obrazovanie", 2024. – P. 196-202. – EDN FLLOAF.
- [10] Iskhakova, A. O. Protection of cyber-physical system control interfaces from multi-vector application-level attacks aimed at disrupting availability / A. O. Iskhakova // Management of Large-Scale Systems Development (MLSD'2023): Proceedings of the Sixteenth International Conference, Moscow, September 26-28, 2023. Moscow: V.A. Trapeznikov Institute of Control Sciences of the Russian Academy of Sciences, 2023. P. 1301-1307. DOI 10.25728/mlsd.2023.1301. EDN URVDQM.
- [11] Slesarchik, K. F. Artificial neural network in the problem of detecting a multi-vector DDOS attack / K. F. Slesarchik // Actual problems of infotelecommunications in science and education (APINO 2020): Collection of scientific articles of the IX International scientifictechnical and scientific-methodical conference. In 4 volumes, St. Petersburg, February 26-27, 2020. Volume 2. - St. Petersburg: St. Petersburg State University of Telecommunications named after prof. M.A. Bonch-Bruevich, 2020. - P. 565-570. - EDN VQKWDL.
- [12] Ogur, M. G. Mathematical model for the implementation of multi-vector attacks on IoT systems based on the analysis of network traffic flow / M. G. Ogur // Caspian Journal: Management and High Technologies. 2024. No. 2 (66). P. 81-92. EDN EUYRPT.