PROJECT REPORT

1. Introduction

1.1 Project Overview:

This Project analyzes housing market trends using Tableau. By leveraging data visualization, it aims to simplify complex data and promote better decision-making by utilities and policy-makers.

1.2 Purpose:

To Visualize housing market trends and analyzing the sale price and features.

2. Ideation Phase

2.1 Problem Statement:

Problem Statemen t (PS)	I am (Custome r)	I'm trying to	But	Because	Which makes me feel
PS-1	A customer who wants to understand market trends before making a decision.	Explore and interpret housing sale data to identify patterns in pricing and sales trends over time.	The raw data is complex, unstructure d, and difficult to visualize without technical skills.	It lacks interactive visual elements and is spread across many variables like location, year, and condition.	Frustrated and uncertain about relying on the data for making confident housing or investment decisions.
PS-2	A customer who is interested in predicting house prices accurately.	Use historica l data and key features to build a reliable model for predictin g house prices.	It's difficult to identify which factors have the most influence and to visualize their impact clearly.	The relationships between variables (like size, year built, neighborhoo d) are not obvious without deep analysis or visualization .	Overwhelme d by the data complexity and uncertain about the reliability of predictions without proper tools.

2.2 Empathy Map Canvas:

2.3 BrainStorming

3. Requirement Analysis

3.1 Customer Journey Map:

Visualizing Housing Market Trends: An Analysis of sale and price prediction using Tableau	Steps	Interactions	Things Touchpoints/Objects)	Places	People	Positive Moments	Negative Moments	Areas of Opportunity	Goals & Motivations
Entice	A consumer or mail estate analysis is of fermed its measure or web title should no instruction distributed on heavy consistent destinated on heavy consistent transfer transfer.	Click on email, link in article, or internal company pertal.	Email, Tableau Riblic page, shared dashboard tink.	Office, home, mobile.	Colleague, analyst team, supervisor.	Curiosity about data trends.	Not sure what the dashboard Covers.	Add a clear title and purpose description.	Help me see useful data quickly.
Enter	They open the deshboard and scan the layest. Nay click on some filters or battom.	Meuseover, click dropdowns, explore views.	Filters, dispdawns, buttens on dashbeard.	Office desk, phone screen.	Nine directly, maybe sechnical support.	Clean layout with regional map canches interest.	Overwhelmed by too many filters at once.	Group filters by category, add guided populps.	Help me know where to look first.
Engage	They begin filtering by year, state, region, and comparing charts.	Scroll, drill down, haver to stew data details.	Interactive graphs, bar charts, maps, KPNs.	Same as above.	Possibly discussing with a teammate.	Seeing patterns like posit usage or lockdown timpact.	Slow loading or unresponsive dashboard.	Optimize data source or reduce chart load.	Help me find insights without delays.
Exit	User decides to download insights or close the dashboard after viewing.	Use export/download or simply close browner tab.	Describated as image, PDF, or share tink.	Office/home computer.	None directly.	Easy export of charts.	Unsure how to save their filter state.	Add "Save current view," seasure or guide,	Help me take this data into my report.
Extend **	Over returns later or recommends in to a college, Cert follow up easily or facilities to bookerseled.	Bookmarking, sharing links, referencing previous filters.	Email reminder, dashboard history (if saved).	Anywhere with internet.	Supervisor, project team.	Sharing meaningful insights with others.	Easts the Bhik or forgets have to reach key views.	Enable legin-based Custom views or history.	Help me come back to what mattered before.

3.2 Solution Requirements:

\mathbf{FR}	Functional Requirement	Sub Requirement (Story / Sub-Task)		
No.	(Epic)			
FR-1	User Registration	Registration through Form		
		Registration through Gmail		
		Registration through LinkedIN		
FR-2	User Confirmation	Confirmation via Email		
		Confirmation via OTP		
FR-3	Data Ingestion	Import property data via API		
		Upload CSV datasets for offline analysis		
FR-4	Data Preprocessing	Remove the unwanted or unnecessary data		
FR-5	Visualization Dashboard	Display time-series price trends by region/type Filter and compare data by zip code, year, property type		
FR-6	User Interaction & Alerts	Let users set preferences for location/type Notify users when price changes exceed threshold (via email/SNS)		

FR	Non-Functional Requirement	Description
No.	_	
NFR-1	Usability	The platform will have an intuitive UI with interactive charts and filters
NFR-2	Security	Secure user preferences and data with IAM roles
		and encrypted storage (KMS)
NFR-3	Reliability	The system must provide consistent predictions
		and dashboards without failure
NFR-4	Performance	Dashboards should load and update in under 3
		seconds
NFR-5	Availability	System will be available 99.9% of the time via
	-	AWS-managed services
NFR-6	Scalability	Solution should scale to accommodate new
		cities, property types, or regions

3.3 Data Flow Diagram:

3.4 Technology Stack:

4. Project Design

4.1 Problem Solution Fit:

4.2 Proposed Solution:

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	The real estate market is complex and often difficult to understand for buyers, investors, and agents due to fragmented, outdated, or hard-to-interpret data.
2.	Idea / Solution description	The project aims to develop an intuitive platform that visualizes housing market trends using historical data and predictive analytics. It will allow users to: • Track property sale patterns over time • Predict future price trends using machine learning models
3.	Novelty / Uniqueness	Unlike existing static reports or property websites, this solution combines: Dynamic, real-time visualizations Predictive pricing powered by machine learning
4.	Social Impact / Customer Satisfaction	Empowers buyers and investors with data-driven insights, reducing risk and stress. Increases transparency in real estate transactions.
5.	Business Model (Revenue Model)	Freemium Model: Basic visualizations free; advanced analytics and predictions behind a subscription.
6.	Scalability of the Solution	Technically scalable: Can integrate more cities, countries, or property types over time.

4.3 Solution Architecture:

5. Project Planning and Scheduling

5.1 Project Planning:

Spr int	Epic	User Story No.	User Story / Task	Poi nts	Priori ty	Assigned To
Sprint -1	Registration	USN-1	As a user, I can register with my name and email	2	High	T. Nikhitha Reddy
Sprint -1	Upload CSV	USN-2	As a user, I can upload housing market trends data in CSV format	3	High	K. Tejaswini
Sprint -1	Data Cleaning	USN-3	As a developer, I can clean and preprocess uploaded data using Python	4	High	Y. Mahidhar Reddy
Sprint -1	Database Storage	USN-4	As a developer, I can store cleaned data into MySQL	2	Low	P. Arshiya
Sprint -2	Tableau Dashboard	USN-5	As a user, I can view dashboards generated using Tableau	5	High	T. Nikhitha Reddy
Sprint -2	Web Integration	USN-6	As a user, I can access the dashboard via Flask UI	3	High	K. Tejaswini
Sprint -2	Add Filters	USN-7	As a user, I can filter the data by region, year, and quarter	2	Mediu m	Y. Mahidhar Reddy
Sprint -3	Data Story	USN-8	As a user, I can view a Tableau Story with key market trends insights	2	Low	P. Arshiya
Sprint -3	Forecasting	USN-9	As a developer, I can forecast usage using Prophet	3	Low	T. Nikhitha Reddy
Sprint -3	Documentatio n	USN- 10	As a team, we can prepare final project documentation	2	Mediu m	K. Tejaswini
Sprint -4	Deployment	USN- 11	As a developer, I can deploy the Flask app and publish the Tableau dashboard online	3	High	Y. Mahidhar Reddy
Sprint -4	Demo Prep	USN- 12	As a team, we can prepare a live demo walkthrough for stakeholders	2	Mediu m	P. Arshiya
Sprint -4	Bug Fixing	USN- 13	As a developer, I can test and fix UI/visual bugs from user feedback	2	Mediu m	T. Nikhitha Reddy

6. Performance Testing

6.1 Tableau:

7. Results

7.1 Output Screenshots:

Dashboard:

https://public.tableau.com/app/profile/takkoli.nikhitha.reddy/viz/dashboard _17508515361180/Dashboard1?publish=yes

Story:

https://public.tableau.com/app/profile/takkoli.nikhitha.reddy/viz/dashboard _17508515361180/Story1?publish=yes

8. Advantages and Disadvantages

Advantages	Disadvantages		
Free, open-source technology stack	Depends on Tableau Public hosting		
Visually rich dashboards with no coding	Manual data upload (not automated)		
Easy to scale and reuse with other datasets	Limited customization in Tableau Public		
Interactive filters and storytelling	Requires stable internet for live dashboards		

9. Conclusion

The project successfully demonstrated how data visualization can transform housing market trends data into actionable insights.

10. Future Scope

- Extend the platform to cover more cities or countries, integrating diverse housing markets globally.
- Add support for rental price trends and predictions to attract tenants, landlords, and rental investors.
- Launch a mobile-friendly version for real-time, location-based insights and alerts on the go.
- Integrate deep learning models (e.g., LSTM, transformers) for more accurate and dynamic price predictions.

• Notify users of significant market changes and provide personalized recommendations based on their preferences.

11. Appendix

Source Code: NIL

Dataset Link:

 $\underline{https://www.kaggle.com/datasets/rituparnaghosh18/transformed-housing-data-2}$

Github Link:

https://github.com/NikhithaReddy-2224/Visualizing-Housing-Market-Trends-An-Analysis-of-Sale-Prices-and-Features-using-Tableau.git