Linear Regression Example

The example below uses a marketing dataset, in order to illustrate a linear regression activity.

Workflow:

- 1. Preparation
 - A. Load the dataset from a .csv file and show a short description
 - B. Show the two dimensional scatter plots for all the predicting variables with respect to the target
 - C. Split the data into *predicting variables* X and *target* y
 - a. here we set the random_state variable to make the experiment repeatable
- 2. First experiment: compute the regression on a single predicting variable
 - A. Consider a reduced dataset containing the chosen variable and the target
 - B. Fit the LinearRegression estimator on the training set
 - C. Show the statistical significance of the fitted model
 - D. Predict the target for the test set using the *fitted* estimator
 - E. Compute the regression coefficients and the quality measures: Root Mean Squared Error (RMSE) and coefficient of determination (r2)
- 3. Second experiment: compute the regression considering all the predicting variables
 - A. Repeat the steps from 2.2 to 2.5
- 4. Third experiment: use the DecisionTreeRegressor with the entire dataset
 - A. Fit the tree using the default hyperparameters, in order to find the maximum depth of the unconstrained tree
 - B. Use cross-validation to find the optimal maximum depth of the tree
 - C. Fit the tree with the optmal max_depth
 - D. Predict and show the root mean squared error
- 5. Fourth experiment: use the RandomForestRegressor
 - A. Repeat steps from 4.2 to 4.4 (for simplicity, we use the maximum max depth found in 4.1)

```
In [ ]: # Code source: Claudio Sartori
# License: BSD 3 clause
```

```
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score
import pandas as pd
from sklearn.model_selection import train_test_split

random_state = 94922767 # this will be used to guarantee the repeatability of the experiment
```

Load the dataset from a .xlsx file and show a short description

```
In [ ]: # This cell allows full compatibility between execution in Google Colab and in local
try:
    import google.colab.files
    IN_COLAB = True
    except:
    IN_COLAB = False
    # from google.colab import files
    if IN_COLAB:
        uploaded = files.upload()
In [ ]: # The file must be available in the same directory,
# or uploaded in the Colab environment
# in the execution of the previous cell
data_fn = 'FoodUK2014.xlsx'
df0 = pd.read_excel(data_fn)
```

Data Exploration and preparation

Show a short description of the columns

```
In []:
```

Out[]:		hhsize	quarter	adults_n	children_n	totalexp	SexHRP	month	Gorx	Year	income	AgeHRP	qmeat	c
	count	5114.000000	5114	5114.000000	5114.000000	5114.000000	5114	5114	5114	5114.0	5114.000000	5114.000000	4873.000000	3542.000
	unique	NaN	4	NaN	NaN	NaN	2	12	12	NaN	NaN	NaN	NaN	
	top	NaN	April to June	NaN	NaN	NaN	Male	February	South East	NaN	NaN	NaN	NaN	
	freq	NaN	1341	NaN	NaN	NaN	3050	445	736	NaN	NaN	NaN	NaN	
	mean	2.363707	NaN	1.841807	0.521901	519.898868	NaN	NaN	NaN	2014.0	679.542002	53.802698	10.475023	2.146
	std	1.244704	NaN	0.743052	0.945622	411.543093	NaN	NaN	NaN	0.0	499.596175	16.187912	8.798118	2.034
	min	1.000000	NaN	0.000000	0.000000	-246.916821	NaN	NaN	NaN	2014.0	0.000000	17.000000	0.086667	0.108
	25%	1.000000	NaN	1.000000	0.000000	260.598783	NaN	NaN	NaN	2014.0	306.954000	41.000000	4.452500	0.866
	50%	2.000000	NaN	2.000000	0.000000	426.977227	NaN	NaN	NaN	2014.0	548.086000	54.000000	8.374167	1.62!
	75%	3.000000	NaN	2.000000	1.000000	651.003763	NaN	NaN	NaN	2014.0	925.652500	67.000000	14.005333	2.816
	max	9.000000	NaN	7.000000	7.000000	5859.877186	NaN	NaN	NaN	2014.0	2134.090000	80.000000	104.589333	41.34
														•

Show the number of rows with nulls

It is computed subtracting the number of rows in the dataset without nulls from the original number of rows

In []: 0ut[]: 1668

Drop rows with nulls

In []:

After dropping rows with nulls the dataset has 3446 rows

Data transormation

• Convert the alphanumeric SexHRP into numeric 0 and 1

- the sklearn machine learning procedures work only with numeric predicting attributes
- Generate two new columns as ratio of other columns
 - this is suggested by background information

In []:

Use only the columns that the experts consider interesting

1

This is suggested by background information

0

```
In [ ]:
            adults_n children_n SexHRP AgeHRP qmeat_hhsize_ratio income_hhsize_ratio
Out[ ]:
                              2
          1
                                               38
                                                             1.511250
                                                                              206.130000 8.813621
         2
                   2
                              0
                                       1
                                               54
                                                             5.890083
                                                                               135.962500 7.965790
                   3
                              0
                                       1
                                               64
                                                             4.285667
                                                                               165.346667 5.726323
                                                             8.968250
                                                                                66.632500 8.451528
```

64

Choose the target and split the data into predicting variables X and target y

134.393333 5.904745

4.079111

In []:

7

3

Show the two dimensional scatter plots for all the predicting variables with respect to the target

```
In [ ]: ncols=3
   import math
   nrows = math.ceil((df.shape[1]-1)/ncols)
   figwidth = ncols * 7
   figheigth = nrows*5
```

In []:

Show the *p-values* of the target with respect to the variables

In []: from sklearn.feature_selection import f_regression
Your code here

Out[]:		Variable	p-value
	0	adults_n	1.415945e-05
	1	children_n	1.077386e-30
	2	SexHRP	8.429827e-02
	3	AgeHRP	1.710126e-21
	4	income_hhsize_ratio	1.211099e-03
	5	uvmeat	4.789746e-52

Split the data into train and test and show the sizes of the two parts

Here we set the random_state variable to make the experiment repeatable

In []:

Training set and test set have 2412 and 1034 elements respectively

Consider a reduced dataset containing the chosen variable and the target

In []:

Fit the linear_model estimator on the training set and predict the target for the test set using the *fitted* estimator

In []:

Compute the regression coefficients and the quality measures

Create a function to compute the F-statistic and p-value of the regression model

In []: # Computation of F-statistic and p-value for the regression
http://facweb.cs.depaul.edu/sjost/csc423/documents/f-test-req.htm

Compute the statistical significance of the model

In []:		
Out[]:		Univariate Linear - Value
	Intercept for "adults_n"	5.646984
	Coefficient for "adults_n"	-0.326893
	rmse	3.886323
	r2	0.007595
	f-statistic	9.841162
	p-value	0.001727

Second experiment: compute the regression considering all the predicting variables

Now we use the entire data in X_train and X_test for fitting and predicting

In []:

Fit, predict and show the results

Now we see the regression coefficients resulting from the fitting.

In particular, positive coefficients indicate that the target increases with the variable, negative coefficients indicate a decreasing trend.

The absolute values of the coefficient cannot be considered directly a measure of importance, due to the possibly different orders of magnitude of the data in the different columns (observe above the outputs of describe).

In []:

Out[]:		Variable	Coefficient
	0	adults_n	-0.318682
	1	children_n	-0.650924
	2	SexHRP	0.383162
	3	AgeHRP	0.014913
	4	income_hhsize_ratio	0.000989
	5	uvmeat	-0.392620

Compute the statistical significance

In []:

Out[]:		Variable	p-value
	0	adults_n	4.812836e-19
	1	children_n	1.384315e-188
	2	SexHRP	5.806116e-10
	3	AgeHRP	3.199609e-119
	4	income_hhsize_ratio	6.460728e-08
	5	uvmeat	0.000000e+00

Compute the quality measures

In []:

Out[]	•	Univariate Linear - Value
	rmse	3.6651
	r2	0.1173
	f-statistic	57.4179
	p-value	0.0000

Decision Tree Multivariate Regresson

```
In [ ]: # Create Decision Tree regression object
from sklearn.tree import DecisionTreeRegressor
```

Fit the tree with default hyperparameters, and find the maximum depth of the unconstrained tree

```
In [ ]:
```

The maximum depth of the full Decision Tree Regressor is 34

Find the optimal value of the hyperparameter max_depth with cross-validation

The optimization searches for the *maximum tree depth* guaranteing the smallest mean squared error At the end, this operation returns also the *fitted best tree* best_estimator_

```
In [ ]:
The optimal maximum depth for the decision tree is 2
```

Decision Tree Regression - RMSE = 3.79

Show the tree

In []:

In []: from sklearn.tree import plot_tree
 from matplotlib.pyplot import figure
Your code here

Random Forest Multivariate Regresson

Create a Random forest regressor and fit it on the complete dataset.

For simplicity use the max_depth found in the Decision tree regressor to perform a cross validation and find the best depth for this model.

```
In [ ]:
    The optimal maximum depth for the trees in the random forest is 4
In [ ]:
    Random Forest Regression - RMSE = 3.58
```

Final observations

Linear regression

The multivariate regression with all the predicting variables available with respect to the univariate regression has

- lower RMSE
- higher coefficient of determination
- the p-value suggests the acceptance of both models ### Decision Tree and Random Forest regression
- Decistion Tree has an RMSE slightly higher than multivariate linear regression
- Random Forest has an RMSE slightly lower than multivariate linear regression

Control questions

- 1. observing the multi-variate experiment, what variable has the higher effect on the target?
- 2. is there a variable having an almost negligible effect on the target?
- 3. try to repeat the univariate experiment with the other two columns and comment the results