Expectation: $\mathbb{E}[g(Y)] = \sum_{y} g(y)p(y)$ discrete, $\int_{-\infty}^{\infty} g(y)f(y)dy$ continuous; $\mathbb{E}[\overline{Y}^2] = \mu^2 + \frac{\sigma^2}{\eta}$

 $\mathbb{V}[Y] = \mathbb{E}[(Y - \mathbb{E}[Y])^2] = \mathbb{E}[Y^2] - \mathbb{E}[Y]^2, \ \mathbb{V}[c] = 0, \ \mathbb{V}[Y + c] = \mathbb{V}[Y], \ \mathbb{V}[cY] = c^2\mathbb{V}[Y], \ \mathbb{V}[X + Y] = \mathbb{V}[X] + 2\mathrm{Cov}[X, Y] + \mathbb{V}[Y] = \mathbb{V}[X] + \mathbb{V}[Y] \text{ if } X \text{ and } Y \text{ indep}, \ \mathbb{V}[aX + bY + c] = a^2\mathbb{V}[X] + 2ab\mathrm{Cov}[X, Y] + b^2\mathbb{V}[Y]$

 $\mathbb{V}\left[\overline{Y}\right] = 1/n^2 \mathbb{V}\left[\sum Y_i\right] = 1/n^2 \left(\sum \mathbb{V}\left[Y_i\right] + 2\sum \sum_{1 < i < j < n} \operatorname{Cov}(Y_i, Y_j)\right) = 1/n^2 \sum \mathbb{V}\left[Y_i\right] = n\sigma^2/n^2 = \sigma^2/n^2$

Covariance: $\operatorname{Cov}[Y_1, Y_2] = \mathbb{E}[(Y_1 - \mathbb{E}[Y_1])(Y_2 - \mathbb{E}[Y_2])] = \mathbb{E}[Y_1Y_2] - \mathbb{E}[Y_1]\mathbb{E}[Y_2], \operatorname{Cov}[aY_1, bY_2] = ab\operatorname{Cov}[Y_1, Y_2]. \ Z \sim N(0, 1) \Rightarrow \operatorname{Cov}[Z, Z^2] = 0$ Correlation: $\operatorname{Corr}[Y_1, Y_2] = \frac{\operatorname{Cov}[Y_1, Y_2]}{\sqrt{\mathbb{V}[Y_1]\mathbb{V}[Y_2]}}.$ Joint pdf symmetric on Y_1 and $Y_2 \Rightarrow$ same marginal distribs & $\mathbb{E} \Rightarrow$ no correlation.

Standard deviation: $\sigma = \sqrt{\mathbb{Y}[Y]}$. Sample std deviation: $s = \sqrt{s^2} = \sqrt{\sum (Y - \overline{Y})^2/(n-1)}$; sample variance s^2 unbiased estimator of σ^2

 $\mathbf{MSE}(\hat{\theta})$: $\mathbb{E}[(\hat{\theta} - \theta)^2] = \mathbb{E}[\hat{\theta}^2] - 2\theta \mathbb{E}[\hat{\theta}] + \theta^2$; $\mathbb{V}[\hat{\theta}] = \mathrm{MSE}[\hat{\theta}]$ if $\hat{\theta}$ unbiased estimator of θ

Expected vals and std errors of some common point estimators:

-	A CONTRACTOR OF THE CONTRACTOR			
$arget param \theta$	sample size(s)	point estimator $\hat{\theta}$	$\mathbb{E}[\hat{ heta}]$	std error $\sigma_{\hat{\theta}}$
μ	n	\overline{Y}	μ	$\frac{\sigma}{\sqrt{n}}$
p	n	$\hat{p} = Y/n$	p	$\sqrt{\frac{pq}{n}}$
$\mu_1 - \mu_2$	n_1 and n_2	$\overline{Y}_1 - \overline{Y}_2$	$\mu_1 - \mu_2$	$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
$p_1 - p_2$	n_1 and n_2	$\hat{p}_1 - \hat{p}_2$	$p_1 - p_2$	$\sqrt{\frac{p_1q_1}{n_1} + \frac{p_2q_2}{n_2}}$

2-standard-error: $2\sigma_{\hat{\theta}}$

CI ($100(1-\alpha)\%$ confidence interval):

 $P(a \le U \le b) = 1 - \alpha$, $P(U \le a) = \int_0^a f_U(u) du = P(U \ge b) = \int_b^\infty f_U(u) du = \alpha/2$. In large samples, estimators have normal sampling distributions:

 ${
m CI}=\hat{ heta}\pm z_{lpha/2}\sigma_{\hat{ heta}},\quad z_{lpha/2}$ critical value Small-sample CIs:

for μ : CI = $\overline{Y} \pm t_{\alpha/2}(S/\sqrt{n})$, $\nu = df = n - 1$

 $\text{for } \mu_1 - \mu_2 \text{: CI} = \overline{Y}_1 - \overline{Y}_2 \pm t_{\alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \ \nu = n_1 + n_2 - 2 \text{ and pooled sample estimator/variance } S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$

 S_p^2 unbiased and consistent est. of σ^2 , $\mathbb{E}[S_p^2] = \sigma^2$, $\mathbb{V}\left[S_p^2\right] = \frac{2\sigma^4}{n_1 + n_2 - 2} = \frac{\sigma^4}{n-1}$

CI for σ^2 : $\left(\frac{(n-1)S^2}{\chi^2_{\alpha/2}}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}}\right), \nu = n$

Choosing sample size: Solve $z_{\alpha/2}\sigma_{\hat{\theta}} = B$ for n, with B = desired bound

Show U pivotal qty: Show $F_U(u)$ indep of θ , e.g. $U = Y/\theta$, $F_U(u) = P(U \le u) = P(Y \le \theta u) = 2u - u^2$ 0 < u < 1, indep of θ

Cdf to pdf: $F_Y(y) = \int_0^y f_Y(t) dt$

Order statistics: $f_{(n)}(y) = nF(y)^{n-1}f(y)$

Efficiency: eff $(\hat{\theta}_1, \hat{\theta}_2) = \mathbb{V}\left[\hat{\theta}_2\right] / \mathbb{V}\left[\hat{\theta}_1\right]$

Consistency: $\hat{\theta}$ unbiased and $\lim_{n\to\infty} \mathbb{V} \left| \hat{\theta} \right| = 0$. Law of Large Numbers (LLN): sample vals converges to pop. vals e.g. $\overline{Y} \to \mathbb{E}[Y]$. From LLN, sample vals are **consistent** ests. of pop. vals. $\hat{\theta}$ (op) $\hat{\theta}'$ **consistent** est. of θ (op) θ' . $\hat{\theta} \to \theta$ and $\hat{\theta}' \to \theta' \Rightarrow \hat{\theta} \pm \hat{\theta}' \to \theta \pm \theta', \hat{\theta} \times \hat{\theta}' \to \theta \times \theta', \hat{\theta}/\hat{\theta}' \to \theta/\theta'$ if $\theta' \neq 0$, $f(\hat{\theta}) \rightarrow f(\theta)$ if f real-valued fn continuous at θ .

Central Limit Theorem: $U_n = \frac{\sum_i^n Y - n\mathbb{E}[Y]}{\sqrt{\mathbb{V}[Y]n}} = \frac{\overline{Y} - \mathbb{E}[Y]}{\sigma\sqrt{n}} = \frac{\overline{Y} - \mathbb{E}[Y]}{\sqrt{\mathbb{V}[Y]/n}} \to \frac{(\overline{Y} - \mu)\sqrt{n}}{\sqrt{\sigma^2}}$ std Normal distr. $W_n \to 1 \Rightarrow U_n/W_n \to 1$ std Normal distr. Sufficiency: U sufficient for θ if $P(Y_1 = y_1, ..., Y_n = y_n | U = u) = P(Y_1 = y_1, ..., Y_n = y_n, U = u)/P(U = u)$ indep of θ Factorization Criterion proving sufficiency: $L(\theta) = f$ or $p(y_1, ..., y_n | \theta) = \prod_i^n f(y_i | \theta)$ if $iid = g(u, \theta) \times h(y_1, ..., y_n)$, g fin of only u and θ , h not fin of θ

Rao-Blackwell Theorem: $\hat{\theta}$ unbiased est. of θ and $\mathbb{V}\left[\hat{\theta}\right]<\infty$ and U sufficient stat. for $\theta\Rightarrow\hat{\theta}^*=\mathbb{E}[\hat{\theta}|U],\,\mathbb{E}[\hat{\theta}^*]=\theta,\mathbb{V}\left[\hat{\theta}^*\right]<\mathbb{V}\left[\hat{\theta}\right]$

MVUE (minimum variance unbiased estimation): Some fn of sufficient U, h(U), $\mathbb{E}[h(U)] = \theta \Rightarrow h(U)$ MVUE of θ

MLE: Solve $\frac{\partial L(\theta)}{\partial \theta} = 0$ for θ . \overline{Y} , $\sum (Y_i - \overline{Y})^2/n$ are MLEs of μ , σ^2 Elements of a Statistical Test: Type I err: accept H_a when H_a false or reject H_0 when H_0true ; type II err: reject H_a when true or accept H_a when H_a false or reject H_a when H_a false or H_a fals

Elements of a Statistical Test: Type I en. accept H_a which H_a raise of reject H_0 which H_a raise of reject H_0 which H_a raise of reject H_0 which H_0 true) = α , P (type II err) = β = $1 - \alpha$.

Common Large Sample Tests: Test μ : $Z = \frac{\hat{\mu} - \mu}{\sigma_{\hat{\mu}}} = \frac{\overline{Y} - \mu}{S/\sqrt{n}} > z_{\alpha}$ or $z_{\alpha/2}$ if 2-tailed. Test diff of μ s: $Z = \frac{\overline{Y}_1 - \overline{Y}_2 - (\mu_1 - \mu_2)_{H_0}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} > z_{\alpha}$ or $z_{\alpha/2}$ if 2-tailed.

 $\mathbf{CI} = \hat{\mu} \pm z_{\alpha} (S/\sqrt{n}).$

p-Values (Attained Significance Levels): Minimum threshold for RR. z test statistic, p-value = $P(Z \le z)$, reject H_0 if $\alpha >$ p-value. Do the opposite sign for opposite RR.

Testing Statistics Concerning Variances: $H_0: \sigma_1^2 = \sigma_2^2, H_a: \sigma_1^2 >, <, \neq \sigma_2^2, F = S_1^2/S_2^2 \sim F(n_1 - 1, n_2 - 1), \text{ test } >, < F_{\alpha} \text{ or } F_{\alpha/2} \text{ if 2-tailed.}$ Most powerful test: $H_0: \theta = \theta_0, H_a: \theta = \theta_a$. RR is given by $\frac{L(\theta_0)}{L(\theta_a)} < k$ from Neyman-Pearson Lemma.

Likelihood Ratio test: Likelihood ratio $\lambda = \frac{L(\hat{\Omega_0})}{L(\hat{\Omega})}$, Ω_0 params under H_0 , Ω params in unrestricted space, $\hat{\Omega_0}$, $\hat{\Omega}$ MLEs of $L(\Omega_0)$, $L(\Omega)$. $-2 \ln \lambda \sim 10^{-2}$ $\chi^2(r_0-r)$, r_0 # free vars that are fixed in Ω_0 e.g. $H_0: p_1=p_2=p_3=p_4 \Rightarrow r_0=3, r$ # free vars fixed in unrestricted space i.e. often 0. Reject $H_0: p_1=p_2=p_3=p_4 \Rightarrow r_0=3, r$ # free vars fixed in unrestricted space i.e. often 0. $-2 \ln \lambda > \chi_{\alpha}^2$ crit. val., generally reject if $\lambda < k$

Linear models (least squares): Line $\hat{y} = \hat{\beta_0} + \hat{\beta_1}x$, $\hat{\beta_1} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{S_{xy}}{S_{xx}} = \frac{\sum (x_i - \overline{x})y_i - \overline{y}\sum (x_i - \overline{x})}{S_{xx}} = \frac{\sum (x_i - \overline{x})y_i}{S_{xx}}$, $\hat{\beta_0} = \overline{y} - \hat{\beta_1}\overline{x}$. $Y = \beta_0 + \beta_1 + \epsilon$, $\mathbb{V}[\epsilon] = \sigma^2$, $\mathbb{E}[\epsilon] = 0$, $\mathbb{V}[Y] = \mathbb{V}[\epsilon] = \sigma^2$. More properties: 1) $\hat{\beta_0}$, $\hat{\beta_1}$ unbiased for $\mathbb{E}[\beta_0]$, $\mathbb{E}[\beta_1]$ 2) $\mathbb{V}\left[\hat{\beta_0}\right] = c_{00}\sigma^2$, $c_{00} = \sum x_i^2/(nS_{xx})$ 3) $\mathbb{V}\left[\hat{\beta_1}\right] = c_{00}\sigma^2$

 $c_{11}\sigma^2 \Rightarrow S_{xx} = S^2/\mathbb{V}\left[\hat{\beta}_1\right], c_{11} = 1/S_{xx}$ 4) $Cov[\hat{\beta}_0, \hat{\beta}_1] = c_{01}\sigma^2, c_{01} = -\overline{x}/S_{xx}$ 5) SSE/(n-2) unbiased for σ^2 , $SSE = S_{yy} - \hat{\beta}_1 S_{xy}, S_{yy} = \sum (y_i - \overline{y})^2$.

If $\epsilon_i \sim N$: 6) $\hat{\beta_0}, \hat{\beta_1} \sim N$ 7) $\frac{(n-2)S^2}{\sigma^2} \sim \chi^2(n-2)$ 8) S^2 indep of $\hat{\beta_0}$ and $\hat{\beta_1}$.

Hypotheses for β_i : $H_0: \beta_i = \beta_{i0}$; $H_a: \beta_i >, <, \neq \beta_{i0}$; test statistic $T = \frac{\hat{\beta}_i - \beta_{i0}}{S\sqrt{c_i i}}$ or $\frac{\hat{\beta}_i - \beta_{i0}}{\sqrt{\mathbb{V}[\hat{\beta}_i]}}$, RR: $t > t_{\alpha}, < -t_{\alpha}, |t| > t_{\alpha/2}$ to based on n-2 df, $100(1-\alpha)\% \text{ CI for } \beta_i = \hat{\beta_i} \pm t_{\alpha/2} S \sqrt{c_{ii}}. \text{ DEF: } Z \sim N(0,1), W \sim \chi^2(\nu), \text{ both indep} \Rightarrow T = \frac{Z}{\sqrt{W/\nu}} \sim t(\nu).$

 $\textbf{Hypotheses for } \theta = a_o\beta_0 + a_1\beta_1 \textbf{: } H_0 : \theta = \theta_0 \textbf{: } H_a : \theta >, <, \neq \theta_0 \textbf{: test stat } T = \frac{\hat{\theta} - \theta_0}{S\sqrt{\mathbb{V}[\hat{\theta}]/\sigma^2}}, \mathbb{V}\left[\hat{\theta}\right] = \left(\frac{a_0^2\frac{\sum x_i^2}{n} + a_1^2 - 2a_0a_1\overline{x}}{S_{xx}}\right)\sigma^2 \textbf{: RR: } t > t_\alpha, < -t_\alpha, |t| > t_\alpha$

 $t_{\alpha/2}$, based on n-2 df, CI for $\theta: \hat{\theta} \pm t_{\alpha/2} S \sqrt{\mathbb{V}\left[\hat{\theta}\right]}/\sigma^2$, and for (mean of Y when $x=x^*$) $\mathbb{E}[Y] = \beta_0 + \beta_1 x^* : \hat{\beta}_0 + \hat{\beta}_1 x^* \pm t_{\alpha/2} S \sqrt{\frac{1}{n} + \frac{(x^* - \overline{x})^2}{S_{xx}}}$. PI for

 $Y \text{ when } x = x^* \text{ is: } \hat{\beta}_0 + \hat{\beta}_1 x^* \pm t_{\alpha/2} S \sqrt{1 + \frac{1}{n} + \frac{(x^* - \overline{x})^2}{S_{xx}}}.$ $\text{Correlation: Correl coef } r = \frac{S_{xy}}{\sqrt{S_{xx}S_{xy}}} = \hat{\beta}_1 \sqrt{\frac{S_{xx}}{S_{yy}}}. \text{ Coef of determination } r^2 = \frac{\hat{\beta}_1 S_{xx}}{S_{yy}} = \frac{S_{yy} - SSE}{S_{yy}} = 1 - SSE/S_{yy} = \frac{SST}{SST + SSE}$

ANOVA: Table for one-way layout:

	df	SS	MS	\mathbf{F}
		$SST = SS_{Reg} = \sum_{i=1}^{k} n_i (\overline{Y}_i - \overline{Y})^2 = \sum_{i=1}^{k} \overline{Y}_i^2 / n_i - CM$		$\frac{MST}{MSE}$
Error	n-k	$SSE = SS_{Res} = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_i)^2 = \sum_{i=1}^{k} (n_i - 1)S_i^2$	$MSE = MS_{Res} = \frac{SSE}{n-k}$	
Total	n-1	$TSS = \sum_{i}^{k} \sum_{j}^{n_i} (Y_i - \overline{Y})^2 = \sum_{i}^{k} \sum_{j}^{n_i} Y_{ij}^2 - CM$		

For lin reg, add 1 to k: $k-1 \rightarrow k, n-k \rightarrow n-(k+1)$.

 $TSS = SST + SSE; \text{ correction for the mean } CM = \frac{(\text{sum of all obs})^2}{n} = \frac{1}{n} \left(\sum_{i}^{k} \sum_{j}^{n_i} Y_{ij} \right)^2 = \overline{n} \overline{Y}^2; \ S_i^2 = \frac{1}{n_i - 1} \sum_{j}^{n_i} (Y_{ij} - \overline{Y}); \ S^2 = MSE = \frac{1}{n_i} \left(\sum_{j}^{n_i} Y_{ij} \right)^2$ $\frac{SSE}{(n_1-1)+\ldots+(n_k-1)} = \frac{SSE}{n-k}$ (same as pooled sample var).

F test: $W_1 \sim \chi^2(\nu_1), W_2 \sim \chi^2(\nu_2), W_1 \perp W_2 \Rightarrow F = \frac{W_1/\nu_1}{W_2/\nu_2} \sim F(\nu_1, \nu_2)$. Test $H_0: \mu_1 = ... = \mu_k$, RR: $F = \frac{MST}{MSE} > F_\alpha$.

Analysis of categorical data: χ^2 test: $X^2 = \sum_i^k \frac{(n_i - \mathbb{E}[n_i])^2}{\mathbb{E}[n_i]} = \sum_i^k \frac{(n_i - np_i)^2}{np_i} > \chi^2_\alpha(df = k - 1), k \#$ categories e.g. types of peas.

Contingency Table: n_{ij} observed freq row i col j, p_{ij} prob of obs falling into cell ij; MLEs $\hat{p}_{ij} = n_{ij}/n$, $\hat{p}_i = r_i/n$ ($r_i \#$ obs in row i), $\hat{p}_j = c_j/n$, $\hat{\mathbb{E}}[n_{ij}] = n_{ij}/n$ $n(\hat{p}_i\hat{p}_j) = (r_ic_j)/n$; test $X^2 = \sum_{ij} \frac{n_{ij} - \hat{\mathbb{E}}[n_{ij}]}{\hat{\mathbb{E}}[n_{ij}]} > \chi^2_{\alpha}(df = (r-1)(c-1))$ with r, c nums rows and cols, then reject independence of the 2 classifications.

Distributions

 $\begin{array}{l} \mathbf{Bernoulli}(p) \colon p(y) = p^y (1-p)^{1-y}, \ \mathbb{E}[Y] = p, \ \mathbb{V}[Y] = p(1-p) \qquad y = 0, 1 \\ \mathbf{Binomial}(n,p) \colon \ (a+b)^n = \sum_{j=0}^n \binom{n}{j} a^j b^{n-j}, \ p(y) = \binom{n}{y} p^y (1-p)^{n-y}, \ \mathbb{E}[Y] = np, \ \mathbb{V}[Y] = np(1-p) \qquad y = 0: n \end{array}$

Multinomial(n): $p(y) = \frac{n!}{x_1! \dots x_n!} p_1^{x_1} \dots p_n^{x_n}$

 $\mathbf{Poisson}(\lambda)\text{: }p(y) = \frac{\lambda^y}{y!}e^{-\lambda}, \ \mathbb{E}[Y] = \mathbb{V}[Y] = \lambda \qquad y = 0, 1, ...; \quad m(t) = \exp\left\{\lambda(e^t - 1)\right\}$

 $\sum_{i=1}^{n} Y_{i} \sim \text{Poisson}(n\lambda)$

Power family (α, θ) : $f(y) = \alpha y^{\alpha - 1}/\theta^{\alpha}$ $0 \le y \le \theta$, 0 otherwise, $F(y) = \frac{y^{\alpha}}{\theta^{\alpha}}$, $\mathbb{E}[Y] = \alpha \theta/(\alpha + 1)$

Uniform (θ_1, θ_2) : $f(y) = \frac{1}{\theta_2 - \theta_1}$ $y \in (\theta_1, \theta_2)$, 0 otherwise, $F(y) = \frac{y - \theta_1}{\theta_2 - \theta_1}$, $\mathbb{E}[Y] = \frac{\theta_1 + \theta_2}{12}$, $\mathbb{V}[Y] = \frac{(\theta_2 + \theta_1)^2}{12}$ Gamma (α, β) : $f(y) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} y^{\alpha - 1} e^{-y/\beta}$ if $y \ge 0$, 0 otherwise. $X \sim \Gamma(\alpha_1, \beta)$ and $Y \sim \Gamma(\alpha_2, \beta) \Rightarrow X + Y \sim \Gamma(\alpha_1 + \alpha_2, \beta)$. $X \sim \Gamma(\alpha, \beta) \Rightarrow 2X/\beta \sim \chi^2(2\alpha)$

 $\Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-t} dt$, $\Gamma(n) = (n - 1)\Gamma(n - 1) = (n - 1)!$, $\Gamma(1/2) = \sqrt{\pi}$

 $\mathbb{E}[Y] = \alpha\beta, \qquad \mathbb{V}[Y] = \alpha\beta^2, \qquad \mathbb{E}[Y^2] = \alpha(\alpha+1)\beta^2, \ \mathbb{E}[Y^3] = \alpha(\alpha+1)(\alpha+2)\beta^2, \dots \qquad m(t) = \left(\frac{1}{1-\beta t}\right)^{\alpha}$

 $\begin{array}{l} \textbf{Chi-squared}(\nu) \textbf{:} \ \ \alpha = \nu/2, \ \beta = 2, \ \nu = 1, 2, \ \ \mathbb{E}[Y] = \nu, \mathbb{V}\left[Y\right] = 2\nu. \ \ X \sim \chi^2(a), Y \sim \chi^2(b) \Rightarrow X + Y \sim \chi^2(a+b), X - Y \sim \chi^2(a-b) \\ \textbf{Exponential}(\beta) \textbf{:} \ \ \alpha = 1, \ \text{standard} \ \ \beta = 1, \ f(y) = \frac{1}{\beta} e^{y/\beta}, \ F(y) = 1 - e^{-y/\beta}, \ \mathbb{E}[Y] = \beta, \mathbb{V}\left[Y\right] = \beta^2 \end{array}$

 $\mathbf{Normal}(\mu, \sigma^2) \colon \ f(y) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2} (y - \mu)^2\right\}, \ F(y) = \int_{-\infty}^y f(t) \mathrm{d}t, \ \mathbb{E}[Y] = \mu, \ \mathbb{V}[Y] = \sigma^2. \ Y_i \sim N(\mu, \sigma^2) \Rightarrow \frac{\overline{Y} - \mu}{\sigma} \sim N(0, 1) \ (\text{std normal}), \\ (n - 1)S^2/\sigma^2 = \sum (Y_i - \overline{Y})^2/\sigma^2 \sim \chi^2(n - 1)$

 $\textbf{Standard Normal}(\mu=0,\sigma^2=1)\textbf{:}\ f(y)=\frac{1}{\sqrt{2\pi}}\exp\left\{-\frac{y^2}{2}\right\}.\ Y\sim N(0,1)\Rightarrow Y^2\sim\chi^2(1)$

Beta: $f(y) = \frac{1}{B(\alpha,\beta)} y^{\alpha-1} (1-y)^{\beta-1}, y \in [0,1], 0 \text{ otherwise};$ $B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} = \int_0^1 y^{\alpha-1} (1-y)^{\beta-1} dy$ $\alpha = \beta = 1 \Rightarrow Y \sim \text{Uniform}(0, 1)$

 $\textbf{Weibull}(\alpha,\beta) \text{: } f(y) = \alpha\beta y^{\alpha-1} e^{-\beta y^{\alpha}} \quad y \geq 0, \quad 0 \text{ otherwise, } F(y) = 1 - e^{-\beta y^{\alpha}}, \\ \mathbb{E}[Y] = \frac{\Gamma(1+1/\alpha)}{\beta^{1/\alpha}}, \\ \mathbb{V}[Y] = \frac{\Gamma(1+2/\alpha) - \Gamma(1+1/\alpha)^2}{\beta^{2/\alpha}} = \frac{\Gamma(1+1/\alpha) - \Gamma(1+1/\alpha)^2}{\beta^{1/\alpha}} = \frac{\Gamma(1+1/\alpha) - \Gamma(1+1/$

Examples

1.a. $Y_i \sim N(\mu, \sigma = 1)$. Show MVUE of μ^2 is $\hat{\mu}^2 = \overline{Y}^2 - 1/n$: $L(\mu, \sigma^2) = (2\pi)^{-n/2} \exp\left\{-\sum (Y_i - \mu)^2/2\right\} = (2\pi)^{-n/2} \exp\left\{-\sum (Y_i - \overline{Y} + \overline{Y} - \mu)^2/2\right\} = (2\pi)^{-n/2} \exp\left\{-\sum (Y_i - \overline{Y} + \overline{Y} - \mu)^2/2\right\} = (2\pi)^{-n/2} \exp\left\{-\sum (Y_i - \overline{Y} + \overline{Y} - \mu)^2/2\right\} = (2\pi)^{-n/2} \exp\left\{-\sum (Y_i - \overline{Y} + \overline{Y} - \mu)^2/2\right\} = (2\pi)^{-n/2} \exp\left\{-\sum (Y_i - \overline{Y} + \overline{Y} - \mu)^2/2\right\} = (2\pi)^{-n/2} \exp\left\{-\sum (Y_i - \overline{Y} + \overline{Y} - \mu)^2/2\right\} = (2\pi)^{-n/2} \exp\left\{-\sum (Y_i - \overline{Y} + \overline{Y} - \mu)^2/2\right\} = (2\pi)^{-n/2} \exp\left\{-\sum (Y_i - \overline{Y} + \overline{Y} - \mu)^2/2\right\} = (2\pi)^{-n/2} \exp\left\{-\sum (Y_i - \overline{Y} + \overline{Y} - \mu)^2/2\right\} = (2\pi)^{-n/2} \exp\left\{-\sum (Y_i - \overline{Y} + \overline{Y} - \mu)^2/2\right\} = (2\pi)^{-n/2} \exp\left\{-\sum (Y_i - \overline{Y} + \overline{Y} - \mu)^2/2\right\} = (2\pi)^{-n/2} \exp\left\{-\sum (Y_i - \overline{Y} + \overline{Y} - \mu)^2/2\right\} = (2\pi)^{-n/2} \exp\left\{-\sum (Y_i - \overline{Y} + \overline{Y} - \mu)^2/2\right\} = (2\pi)^{-n/2} \exp\left\{-\sum (Y_i - \overline{Y} + \overline{Y} - \mu)^2/2\right\} = (2\pi)^{-n/2} \exp\left\{-\sum (Y_i - \overline{Y} + \overline{Y} - \mu)^2/2\right\} = (2\pi)^{-n/2} \exp\left\{-\sum (Y_i - \overline{Y} + \overline{Y} - \mu)^2/2\right\} = (2\pi)^{-n/2} \exp\left\{-\sum (Y_i - \overline{Y} + \overline{Y} - \mu)^2/2\right\} = (2\pi)^{-n/2} \exp\left\{-\sum (Y_i - \overline{Y} + \overline{Y} - \mu)^2/2\right\} = (2\pi)^{-n/2} \exp\left\{-\sum (Y_i - \overline{Y} + \overline{Y} - \mu)^2/2\right\} = (2\pi)^{-n/2} \exp\left\{-\sum (Y_i - \overline{Y} + \overline{Y} - \mu)^2/2\right\} = (2\pi)^{-n/2} \exp\left\{-\sum (Y_i - \overline{Y} + \overline{Y} - \mu)^2/2\right\} = (2\pi)^{-n/2} \exp\left\{-\sum (Y_i - \overline{Y} + \overline{Y} - \mu)^2/2\right\} = (2\pi)^{-n/2} \exp\left\{-\sum (Y_i - \overline{Y} + \overline{Y} - \mu)^2/2\right\} = (2\pi)^{-n/2} \exp\left\{-\sum (Y_i - \overline{Y} + \overline{Y} - \mu)^2/2\right\}$ $(2\pi)^{-n/2} \exp\left\{-\frac{1}{2}\left[\sum (Y_i - \overline{Y})^2 - 2(\overline{Y} - \mu)\sum (Y_i - \overline{Y}) + \sum (\overline{Y} - \mu)^2\right]\right\} = (2\pi)^{-n/2} \exp\left\{-\frac{1}{2}\left[\sum (Y_i - \overline{Y})^2 + n(\overline{Y} - \mu)^2\right]\right\}$ $= \left[\exp\left\{n(\overline{Y} - \mu)^2\right\}\right]\left[(2\pi)^{-n/2} \exp\left\{\sum (Y_i - \overline{Y})^2/2\right\}\right] = g(\overline{Y}, \mu)h(Y_i). \text{ From fact. crit., } \overline{Y} \text{ sufficient for } \mu. \text{ Want fn of } \overline{Y} \text{ st } \mathbb{E}[f(\overline{Y})] = \mu^2 \text{ (i.e. unbiased)}.$

 $\mathbb{E}[\overline{Y}^2] = \mu + \sigma^2/n = \mu^2 + 1/n \Rightarrow \mathbb{E}[\overline{Y}^2 - 1/n] = \mu^2 \Rightarrow \overline{Y}^2 - 1/n \text{ MVUE of } \mu^2.$ **1.b.** Find variance of $\hat{\mu}^2$: $\mathbb{V}\left[\overline{Y}^2 - 1/n\right] = \mathbb{V}\left[\overline{Y}^2\right] = \mathbb{V}\left[\frac{1}{n}\left[\sqrt{n}(\overline{Y} - \mu + \mu)\right]^2\right] = \frac{1}{n^2}\mathbb{V}\left[(\sqrt{n}(\overline{Y} - \mu) + \mu\sqrt{n})^2\right] = \frac{1}{n^2}\mathbb{V}\left[Z^2 + 2Z\mu\sqrt{n} + n\mu^2\right] = \frac{1}{n^2}\mathbb{V}\left[Z^2 + 2Z\mu\sqrt{n} + n\mu^2\right] = \frac{1}{n^2}\mathbb{V}\left[Z^2 + 2Z\mu\sqrt{n} + n\mu^2\right]$

 $\frac{1}{n^2} \left(\mathbb{V} \left[Z^2 \right] + 4n\mu^2 \mathbb{V} \left[Z \right] + 2\mu\sqrt{n} \text{Cov}[Z^2, Z] \right). \quad Z^2 \sim \chi^2(1) \Rightarrow \mathbb{V} \left[Z^2 \right] = 2\nu = 2, \quad \mathbb{V} \left[Z \right] = 1, \quad \text{Cov}[Z^2, Z] = 0. \quad \text{Therefore, } \mathbb{V} \left[\overline{Y}^2 - 1/n \right] = \frac{2+4n\mu^2}{n^2}.$ $\textbf{2. Rewrite test stat: } T = \frac{\hat{\beta}_1 - 0}{S/\sqrt{S_{xx}}} = \frac{\hat{\beta}_1 \sqrt{n-2}}{\sqrt{S_{yy} - \hat{\beta}_1 S_{xy}}/\sqrt{S_{xx}}} = \frac{\hat{\beta}\sqrt{n-2}\sqrt{S_{xx}}}{\sqrt{S_{yy} - \hat{\beta}_1 S_{xy}}} = \frac{r\sqrt{n-2}}{\sqrt{1-\hat{\beta}_1 \frac{S_{xy}}{S_{yy}}}} = \frac{r\sqrt{n-2}}{\sqrt{1-\frac{S_{xy}}{S_{xx}} \frac{S_{xy}}{S_{yy}}}} = \frac{r\sqrt{n-2}}{1-\frac{\sqrt{S_{xy}}}{S_{xx}S_{yy}}} = \frac{r\sqrt{n-2}}{1-\frac{\sqrt{S_{xy}}}{S_{xx}S_{yy}}} = \frac{r\sqrt{n-2}}{1-\frac{\sqrt{S_{xy}}}{S_{xx}S_{yy}}} = \frac{r\sqrt{n-2}}{1-\frac{\sqrt{S_{xy}}}{S_{xx}S_{yy}}} = \frac{r\sqrt{n-2}}{1-\frac{\sqrt{S_{xy}}}{S_{xx}S_{yy}}} = \frac{r\sqrt{n-2}}{1-\frac{\sqrt{S_{xy}}}{S_{xx}S_{yy}}} = \frac{r\sqrt{n-2}}{1-\frac{\sqrt{S_{xy}}}{S_{xy}S_{yy}}} = \frac{r\sqrt{n-$

3.a. Prove $SSE/\sigma^2 \sim \chi^2((n_1-1)+...+(n_k-1)=n-k)$: $\frac{(n_i-1)S_i^2}{\sigma^2} \sim \chi^2(n_i-1) \Rightarrow \sum_i \frac{SSE}{\sigma^2} \sim \chi^2(n-k)$.

3.b. Prove $TSS/\sigma^2 \sim \chi^2(n-1)$ under $H_0: \mu_1 = ... = \mu_k$: $TSS = \sum_{i}^k \sum_{j}^{n_i} (Y_{ij} - \overline{Y})^2 = \sum_{ij} (Y_{ij} - \overline{Y})^2$, $\frac{TSS}{\sigma^2} = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$.

3.c. Prove $SST/\sigma^2 \sim \chi^2(k-1)$ under $H_0: \frac{TSS}{\sigma^2} \sim \chi^2(n-1)$, $\frac{SSE}{\sigma^2} \sim \chi^2(n-k)$, $SST = TSS - SSE \Rightarrow \frac{SST}{\sigma^2} = \frac{TSS}{\sigma^2} - \frac{SSE}{\sigma^2} \sim \chi^2(n-1-(n-k)) = k-1$.

3.d. Prove $F = MST/MSE \sim F(k-1,n-k)$ under H_0 : $SST/\sigma^2 \sim \chi^2(k-1)$, $SSE/\sigma^2 \sim \chi^2(n-k) \Rightarrow F = \frac{(SST/\sigma^2)/(k-1)}{(SSE/\sigma^2)/(n-k)} = \frac{SST/(k-1)}{SSE/(n-k)} = \frac{MST}{MSE} \sim \frac{(SST/\sigma^2)/(k-1)}{(SSE/\sigma^2)/(n-k)} = \frac{(ST/\sigma^2)/(k-1)}{(SSE/\sigma^2)/(n-k)} = \frac{(ST/\sigma^2)/(k-1)}{(SSE/\sigma^2)/(n-k)} = \frac{(ST/\sigma^2)/(k-1)}{(SSE/\sigma^2)/(n-k)} = \frac{(ST/\sigma^2)/(k-1)}{(SSE/\sigma^2)/(n-k)} = \frac{(ST/\sigma^2)/(k-1)}{(SSE/\sigma^2)/(n-k)} = \frac{(ST/\sigma^2)/$

4. Get S^2 from std err of mean: std err = $S/\sqrt{n} \Rightarrow S^2 = n(\text{std err})^2$