MATH 1014 Tutorial Notes

Week 2

1 Average Value of a Function

Definition 1. The average value of f on the interval [a, b] is defined as

$$f_{ave} = \frac{1}{b-a} \int_a^b f(x) dx.$$

2 Mean Value Theorem for Integral

Theorem 1. If f is continuous on [a,b], then there exists a number c in [a,b] such that

$$f(c) = f_{ave} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

that is,

$$\int_{a}^{b} f(x) dx = f(c)(b - a).$$

3 Arc Length

Theorem 2 (Arc Length for y = f(x)). Let f have a continuous first derivative on the interval [a, b]. The length of the curve from (a, f1(a)) to (b, f(b)) is .

$$L = \int_a^b \sqrt{1 + f'(x)^2} dx$$

Theorem 3 (Arc Length for x = g(y)). Let x = g(y) have a continuous first derivative on the interval [c, d]. The length of the curve from (g(c), c) to (g(d), d) is

$$L = \int_{c}^{d} \sqrt{1 + g'(y)^2} dy$$

4 Surface Area

Theorem 4 (Area of a Surface of Revolution). Let f be differentiable and positive on the interval [a, b]. The area of the surface generated when the graph of f on the interval [a, b] is revolved about the x-axis is

$$S = \int_{a}^{b} 2\pi f(x) \sqrt{1 + f'(x)^{2}} dx$$

Theorem 5 (Area of a Surface of Revolution). Let x = g(y) be differentiable and positive on the interval [c,d]. The area of the surface generated when the graph on the interval [c,d] is revolved about the y-axis is

$$S = \int_{c}^{d} 2\pi g(y) \sqrt{1 + g'(y)^{2}} dy$$

5 Physical Applications: Mass, Density and Work

Theorem 6 (Mass-Density Relation of a One-Dimensional Object). Suppose a thin bar or wire is represented by a line segment on the interval $a \le x \le b$ with a density function $\rho(x)$ (with units of mass per length). The mass of the object is

$$m = \int_{a}^{b} \rho(x) dx$$

Theorem 7 (Work Done by a Variable Force). The work done by a variable force F(x) in moving an object along a line from x = a to x = b in the direction of the force is

$$W = \int_{a}^{b} F(x)dx$$

6 Steps for Solving Lifting Problems

- 1. Draw a y-axis in the vertical direction (parallel to gravity) and choose a convenient origin. Assume the interval [a, b] corresponds to the vertical extent of the fluid.
- 2. For $a \leq y \leq b$, find the cross-sectional area A(y) of the horizontal slices and the distance D(y) the slices must be lifted.
- 3. The work required to lift the water is

$$W = \int_{a}^{b} \rho g A(y) D(y) dy$$

Example 1 (Length of Curves). Find the arc length of the function $y = f(x) = \frac{2}{3}(x-1)^{\frac{3}{2}}$ over [1, 2].

Example 2 (Surface area of a torus). When the circle $x^2 + (y - a)^2 = r^2$ on the interval [-r, r] is revolved about the x-axis, the result is the surface of a torus, where 0 < r < a. Show that the surface area of the torus is $S = 4\pi^2 ar$.

Example 3 (Mass of Two Bars). Two bars of length L have densities $\rho_A(x) = 4e^{-x}$ and $\rho_B(x) = 6e^{-2x}$ respectively. For what values of L is the bar A heavier than bar B

Example 4 (A Nonlinear Spring). Consider a spring whose restoring force is given by $F(x) = 16x - 0.1x^3$ for $7 \le x \le 7$, where it is compressed or stretched x units from the equilibrium position. How much work is done in stretching the spring from its equilibrium position x = 0 to x = 2?