

U.S. Army Environmental Center Report No. SFIM-AEC-ET-CR-95077 FINAL REPORT Volume 3 of 4

Project Summary Report for Pilot-Scale Demonstration of Red Water Treatment by Wet Air Oxidation and Circulating Bed Combustion

October 1995 Contract No. DACA31-91-D-0074 Task Order No. 0005

Prepared by:

IT Corporation 11499 Chester Road Cincinnati, OH 45246 Approved for public releases

Distribution Unlimited

DTIC QUALITY INSPECTED 8

Prepared for:

U.S. Army Environmental Center Aberdeen Proving Ground, MD 21010-5401

9970820 149

The views, opinions, and/or findings contained in this report should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

The use of trade names in this report does not constitute an official endorsement or approval of the use of such commercial products. This report may not be cited for purposes of advertisement.

FINAL

PROJECT SUMMARY REPORT

FOR

PILOT SCALE DEMONSTRATION OF RED WATER TREATMENT BY WET AIR OXIDATION AND CIRCULATING BED COMBUSTION

VOLUME 3 OF 4

USAEC Contract No. DACA 31-91-D-0074 Task Order No. 5

Prepared by

IT Corporation Cincinnati, Ohio

October 1995

UMENTATION PAGE				0188		
	1b. Restrictive Markings					
	3. Distribution/Availability of Report					
	Uniimited					
(s)			ber(s)			
6b. Office Symbol (if applicable) Cincinnati			enter			
	7b. Address (City, State, Zip Code) SFIM-AEC-ETD Aberdeen Proving Ground, MD 21010					
8b. Office Symbol (if applicable) SEIM-AEC-ETD						
0111117120210						
010	Program Element No.	Project No.	Task No.	Work Unit Accession No.		
11. Title (Include Security Classification) Final Project Summary Report for Pilot Scale Demonstration of Red Water Treatment by Wet Air Oxidation and Circulating Bed Combustion						
12. Personal Author(s) W. Scoville, R. Hoye, P. Acharya, J. Martin						
10/95	14. Date of Report (Year, Mon 1995, October 11	th, Day)		age Count Volumes		
18. Subject Terms (0	Continue on reverse if necessary and	l identify by	block nu	mber)		
Red Water Circulating E		oxidation				
19. Abstract (Continue on reverse if necessary and identify by block number) As part of the Army's ongoing research and development program related to red water (KO47) treatment, the U.S. Army Environmental Center (USAEC) contracted IT Corporation to prepare conceptual designs and plans for pilot scale demonstrations of two treatment technologies: wet air oxidation (WAO) and circulating bed combustion (CBC). The project objectives included development of a Test Plan and a Health and Safety Plan for these demonstrations. The Project Summary Report presents the conceptual designs. This Project Summary Report and the Test Plan and Health and Safety Plan are intended to serve as guides for development of complete project plans when the technology demonstration program is implemented. Because red water is not currently available for testing and the test site (host facility) where the demonstrations will be conducted has not been identified, these documents are intended to be generic in nature.						
IC Users	21. Abstract Security Classif Unclassified	fication				
	22b. Telephone (Include Area (410) 612-6861	Code)		Office Symbol		
	8b. Office Symbol (if applicable) Cincinnati 8b. Office Symbol (if applicable) SFIM-AEC-ETD 010 Pilot Scale Demonst 7 J. Martin 10/95 18. Subject Terms (Carculating Each of a Test Plan and the conceptual designs are concept	1b. Restrictive Markings 3. Distribution/Availability of Unlimited 5. Monitoring Organization R SFIM-AEC-ET-CR-9 6b. Office Symbol (if applicable) Cincinnati 7b. Address (City, State, Zip Construct No. DACA SFIM-AEC-ETD Aberdeen Proving Gont (if applicable) SFIM-AEC-ETD Aberdeen Proving Gontract No. DACA 10. Source of Funding Numb Program Element No. 7b. Pilot Scale Demonstration of Red Water Treatment No. 7contract No. DACA 10. Source of Funding Numb Program Element No. 7contract No. DACA 10. Source of Funding Numb Program Element No. 7contract No. DACA 10. Source of Funding Numb Program Element No. 7contract No. DACA 10. Source of Funding Numb Program Element No. 7contract No. DACA 10. Source of Funding Numb Program Element No. 7contract No. DACA 10. Source of Funding Numb Program Element No. 8contract No. DACA 10. Source of Funding Numb Program Element No. 8contract No. DACA 10. Source of Funding Numb Program Element No. 14. Date of Report (Year, Mon 1995, October 11 No. 1995, October	1b. Restrictive Markings 3. Distribution/Availability of Report Unlimited 5. Monitoring Organization Report Num SFIM-AEC-ET-CR-95077 6b. Office Symbol (if applicable) Cincinnati 7b. Address (City, State, Zip Code) SFIM-AEC-ETD Aberdeen Proving Ground, MI 8b. Office Symbol (if applicable) SFIM-AEC-ETD Aberdeen Proving Ground, MI 8b. Office Symbol (if applicable) Contract No. DACA 31-91-E 10. Source of Funding Numbers Program Element No. Project No. Pilot Scale Demonstration of Red Water Treatment by We 7, J. Martin 14. Date of Report (Year, Month, Day) 1995, October 11 18. Subject Terms (Continue on reverse if necessary and identify by Red Water Wet Air Oxidation Circulating Bed Combustion 19 Red Water Wet Air Oxidation Martinet of a Test Plan and a Health and Safety Plan for these econceptual designs. This Project Summary Report and the erve as guides for development of complete project plans plemented. Because red water is not currently available for strations will be conducted has not been identified, these of the conducted in the conducted in the project plans strations will be conducted has not been identified, these of the conducted in the conducted in the conducted in the project plans strations will be conducted has not been identified, these of the conducted in the conducted in the project plans strations will be conducted has not been identified, these of the conducted in the project plans strations will be conducted has not been identified, these of the conducted in the project plans in the pr	1b. Restrictive Markings 3. Distribution/Availability of Report Unlimited 5. Monitoring Organization Report Number(s) SFIM-AEC-ET-CR-95077 7a. Name of Monitoring Organization U.S. Army Environmental Center 7b. Address (City, State, Zip Code) SFIM-AEC-ETD Aberdeen Proving Ground, MD 2101 8b. Office Symbol (if applicable) 9. Procurement Instrument Identification Number 7c. Name of Funding Numbers 7c. Name of Monitoring Organization 7c. Name of Monitoring Organization		

nclassified

Preface

As part of the U.S. Army's ongoing program related to the research and development of red water treatment technologies, the U.S. Army Environmental Center (USAEC) contracted IT Corporation to prepare conceptual designs and plans for pilot-scale demonstrations of two treatment technologies: wet air oxidation (WAO) and circulating bed combustion (CBC). The project objectives also included development of a Test Plan and Health and Safety Plan for these demonstrations, and preparation of a Project Report. This Project Report is intended to summarize the conceptual designs, Test Plan, and Health and Safety Plan and to serve as a guide for activities when the next phase of this program (i.e., conducting the demonstrations) is implemented.

Red water is not currently generated by the U.S. Army or any other part of the U.S. Department of Defense nor has it been generated in the recent past. An accurate and complete database does not exist in regard to the chemical and physical nature of red water. Due to this lack of waste characterization data, it was not possible to complete an accurate analysis of the associated testing and treatment requirements. Additionally, the source of red water for testing and the location where the tests will be conducted (i.e., the host facility) have not been identified. Therefore, waste- and site-specific concerns and requirements cannot be accurately or completely addressed at this time. As a result, this phase of the investigation included completion of plans and conceptual designs. Completion of system designs and finalization of test and safety plans must be completed in the future prior to initiation of the demonstration program.

This Project Report outlines the current project status and identifies the steps which must be completed prior to conducting the demonstrations. These include: selecting a host facility, obtaining red water for the demonstrations, characterizing the red water, preparing final process and equipment designs, finalizing Health and Safety and Test Plans, and acquiring the test equipment. Because of the unique and largely undocumented nature of red water, once a source has been identified, a critical initial objective will be characterization of the physical and chemical nature of the waste and a review of the associated treatment requirements.

Table of Contents

Preface			ii
List of	Figures		$\dots \dots \dots v$
1.0	Introdu	ction .	1-1
	1.1	Backg	round 1-2
	1.2	Scope	and Objectives
	1.3	-	t Schedule
2.0	Regula	tory Re	eview
	2.1	RCRA	Facility Requirements
	2.2	Liquid	Effluents
		2.2.1	TSDF Disposal of WAO Effluent 2-4
		2.2.2	POTW Disposal of WAO Effluent
		2.2.3	NPDES Discharge of WAO Effluent 2-7
	2.3	Air En	nissions
	2.4	Solid F	Residuals
3.0	Results	of Ver	ndor Evaluations
	3.1	Wet A	ir Oxidation 3-1
	3.2	Circula	ating Bed Combustion
4.0	Concep	otual De	esign
	4.1	Wet A	ir Oxidation Demonstration Unit
		4.1.1	Feed Preparation and Preheat 4-2
		4.1.2	Reaction and Separation
		4.1.3	Compressed Air 4-4
		4.1.4	Facilities Support/Utility Requirements
		4.1.5	Scale-Up Factors for Full-Scale Units 4-4
		4.1.6	WAO Treatability Test Program 4-5
	4.2	Circula	ating Bed Combustion Demonstration Unit
		4.2.1	Feed System
		4.2.2	Combustion System
		4.2.3	Ash Handling System
		4.2.4	Air Pollution Control System (APCS) 4-10
		4.2.5	Facilities Support/Utility Requirements

		.2.6 Scale-Up Factors for Full-Scale CBC Units 4-10
		.2.7 CBC Treatability Test Program 4-11
5.0	Implen	ntation Plan for Demonstrations 5-1
	5.1	Review Technologies 5-1
		.1.1 Technology Identification and Screening 5-2
		.1.2 Technology Evaluation 5-3
	5.2	dentify a Host Facility or Facilities
	5.3	dentify a Source of Red Water
	5.4	Characterize the Red Water 5-4
	5.5	Update the Regulatory Review 5-4
	5.6	Obtain the Necessary Permits 5-5
	5.7	repare Final Designs for WAO and CBC Systems 5-6
	5.8	Revise Test and Health and Safety Plans
	5.9	Confirm Site Support Requirements 5-7
	5.10	Sabricate, Deliver, and Install the WAO and CBC Systems 5-8
	5.11	Complete Shake-Down Testing and Train Equipment Operators 5-8
	5.12	Conduct the Pilot-Scale Demonstrations
	5.13	reat/Dispose Project Residuals 5-9
	5.14	Evaluate Data and Document Results 5-9
6.0	Referen	res 6-1
Appen	dix A -	Regulatory Overview for Pilot-Scale Demonstration and Full-Scale Treatment of Red
		Water (K047)
Appen	dix B -	Wet Air Oxidation Conceptual Design Report
Appen	dix C -	Circulating Bed Combustion Conceptual Design Report
Appen	dix D -	Wet Air Oxidation Vendor Summary
Appen	dix E -	Wet Air Oxidation Treatability Study Report
Appen	dix F -	Circulating Bed Combustion Treatability Study Report

Appendix A is in Volume 1; Appendix B is in Volume 2; Appendix C is in Volume 3; and Appendices D, E, and F are in Volume 4.

List of Figures___

Figure	I	Page
4-1	WAO Block Flow Diagram	4-3
4-2	CBC Test Unit Block Flow Diagram	4-7
4-3	CBC Test Unit Process Flow Diagram	4-9

RED WATER INCINERATION PILOT PLANT (CIRCULATING BED COMBUSTION SYSTEM)

Prepared for:

U.S. Army Environmental Center (USAEC)
Aberdeen Proving Ground, Maryland

Prepared by:

IT Engineering Services Division 312 Directors Drive Knoxville, Tennessee

IT Project Number 322243
Contract No. DACA 31-91-D-0074
Delivery Order No. 5

February 1995

Tab Index

Tab Number

Package

Conceptual Design Documents

1.0	Introduction
2.0	Waste Characterization
3.0	Waste Feed Chemistry and Selection of Circulating Media
4.0	Block Flow Diagram
5.0	Conceptual Design Basis
6.0	Process Description
7.0	PFDs and P&IDs Package
8.0	Equipment List
9.0	Equipment Specifications
10.0	General Arrangement Drawings
11.0	Electrical One-Line Drawing
12.0	Mass and Energy Balance Outputs
13.0	Pilot Plant Cost Estimate
14.0	Recommended Tests and Analyses

Related Documents

15.0	Operations and Safety Considerations
16.0	Operations Manual
17.0	Performance Test Plan
18.0	Bench-Scale Testing
19.0	HAZOP Analysis

List of Tables

	F	ollows
Table	Title	Tab
2-1	Composition of Red Water Solids	2.0
2-2	Design Basis: Red Water Profile	2.0
3-1	Melting Point of Selected Inorganic Salts	3.0
3-2	Melting Point of Mixture of Fluidized Bed Material and Inorganic Salts	3.0
5-1	Conceptual Design Basis for the TNT Red Water Incineration Pilot Plant	t 5.0
13-1	Summary of CBC Pilot Plant Price	13.0
17-1	Start-Up and Interim Operating Conditions	17.0
17-2	Performance Test Sample Collection Locations, Equipment, and Methods	s 17.0
17-3	Summary of Analytical Procedures and Methods	17.0
17-4	Summary of Semivolatile Compounds for Analysis	17.0
17-5	Summary of Volatile Compounds for Analysis	17.0
17-6	Composition of Red Water Solids	17.0
17-7	Red Water Elemental Composition	17.0
17-8	Performance Test Operating Conditions	17.0
17-9	Surrogate Red Water Composition	17.0
17-10	Proposed Permit Operating Conditions	17.0
17-11	Air Pollution Control System Operating Ranges	17.0
18-1	Anticipated Composition of Two Surrogate Red Water Matrices	18.0
18-2	Anticipated Elemental Composition of the 15 and 20 Percent Solids Surrogate Red Water Matrix	18.0
18-3	Sample Analysis Procedures	18.0
18-4	Model Numbers and Ranges of Continuous Emissions Monitors	18.0
18-5	Summary of Bench-Scale Fluid Bed Testing	18.0
18-6	Summary of Bench-Scale Fluid Bed Testing (Alumina)	18.0
18-7	Summary of Surrogate Red Water Test Results	18.0
19-1	HAZOP Analysis Recommendations	19.0
19-2	HAZOP Analysis	19.0

List of Drawings_

Drawing	Title	Follows Tab
D-00-00-001	Block Flow Diagram - Incineration System	4.0
D-00-00-002	Circulating Bed Combustor Incineration System - Schematic	4.0
D-00-10-001	Process Flow Diagram - Incineration System	7.0
D-00-11-001	P&ID - Instrument Identification	7.0
D-00-11-002	P&ID - Control System Standards	7.0
D-00-11-003	P&ID - Control Loop Standards	7.0
D-00-11-004	P&ID - Equipment Identification	7.0
D-20-11-001	P&ID - CBC Burner System	7.0
D-20-11-002	P&ID - Circulating Bed Combustor	7.0
D-50-11-001	P&ID - Air Pollution Control System	7.0
D-10-02-001	General Arrangement - Plan and Elevation	10.0
D-10-02-002	Shipping Arrangement	10.0
D-10-60-001	Electrical One-Line Drawing	11.0
D-00-00-03	4-inch Fluid Bed Reactor System	18.0

List of Acronyms.

acfm actual cubic feet per minute

ACGIH American Conference of Governmental Industrial Hygienists

ANSI American National Standards Institute

APCS air pollution control system

AWFCO automatic waste feed cutoff

Btu/lb British thermal units per pound

CBC circulating bed combustors

CCS central control system

CEM continuous emissions monitoring

CFR Code of Federal Regulations

CGV combustion gas velocity

Cl₂ chlorine dBa decibel

DHHS Department of Health and Human Services

DP differential pressure

DRE destruction/removal efficiency

EPA U.S. Environmental Protection Agency

feet/sec feet per second

gpm gallons per minute

gr/dscf grains per dry standard cubic feet

HASP health and safety plan

HAZOP hazardous and operability study

HCl hydrochloric acid

hp horsepower

H&S health and safety

I.D. induced draft

in. w.c. inches water column

List of Acronyms (Continued)_

IT IT Corporation

lb/hr pounds per hour

M&EB mass and energy balance

MM5 Modified Method 5 (sampling train)

MMT multi-metals train mph miles per hour

MSDS Material Safety Data Sheet

MSHA Mine Safety and Health Administration

ng/L nanogram per liter

NIOSH National Institute of Occupation Safety and Health

OSHA Occupational Safety and Health Administration

PFD process flow diagram

PIC product of incomplete combustion
P&ID piping and instrumentation diagram
PLC Programmable Logic Controller

POHC principal organic hazardous constituent

PPE personal protective equipment

ppm parts per million

ppmdv parts per million dry volume

PSD particle size distribution

P&ID piping and instrumentation diagrams

QAPP quality assurance project plan
QA/QC quality assurance/quality control
RAAP Radford Army Ammunition Plant

RATA relative accuracy test audit

RCRA Resource Conservation and Recovery Act

SOP standard operating procedure

THC total hydrocarbons

List of Acronyms (Continued)___

TLV Threshold Limit Value

TNT trinitrotoluene

TWA time-weighted average

UPS uninterrupted power supply

USAEC U.S. Army Environmental Center

VOST volatile organic sampling train

WAO wet air oxidation

1.0 INTRODUCTION

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.: WP: WP1585.1

1.0 Introduction

The red water incineration conceptual design project was awarded to IT Corporation (IT) by the U.S. Army Environmental Center (USAEC), located in Aberdeen Proving Ground, Maryland. This project was awarded to IT's Cincinnati office and the design documents were prepared by IT's Knoxville office.

Red water is the aqueous effluent generated during sellite purification of crude trinitrotoluene (TNT). Red water is a reactive hazardous waste, U.S. Environmental Protection Agency (EPA) Hazardous Waste number K047. In a previous project, 30 technologies were evaluated for their effectiveness in treating red water. That project determined that wet air oxidation (WAO) and circulating bed combustors (CBC) merited further study. This document presents the conceptual design and the layout of a pilot CBC, along with a test plan and a safety plan.

This CBC conceptual design is prepared as part of a task entitled "Red Water Treatment Technology Test Plan and Site Preparation" for the USAEC. The objectives of the task are to prepare test and safety plans, determine the best conceptual designs, and prepare layouts for pilot-scale CBC and WAO treatment systems. Because of the uncertainty of the pilot-scale demonstration location, the units are designed to be transportable. The conceptual design develops the CBC design to approximately the 10 percent stage; further process engineering and detailed design engineering are necessary prior to construction of the pilot-scale units.

The purposes of this document are to:

- Provide CBC process information in support of other project documents (e.g., Test Plan, Health and Safety Plan, and Project Report
- Provide a conceptual-level design and cost estimate for a pilot-scale CBC unit.
- Identify areas that should be investigated during subsequent design and pilotscale testing activities.

As previously indicated, other documents prepared for this task include a Test Plan, Health and Safety Plan, and Project Report; these documents are provided under separate cover.

By: PO Checked: PA Approved: PA Date: 02/06/95 Introduction
IT PCE
Knoxville, Tennessee
Rev. No. (0) (1)

Area No.: Area Name: All Areas

Page: 1 of 3

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243 SPEC. NO.: WP: WP1585.1

The pilot CBC presented herein is a transportable incineration system consisting of a combustion chamber, a hot cyclone, a loop-seal, a partial quench, a baghouse, an induced draft (I.D.) fan, and the stack. The CBC operating temperature of 1600°F is maintained by adding auxiliary fuel (natural gas) directly to the combustion chamber. The red water and the bed material are fed directly to the loop-seal. Ash and bed material are removed from the combustion chamber and cooled by the ash cooler conveyor. The design basis for the CBC, as directed by USAEC, is a thermal treatment capacity of 1.5 gallons per minute (gpm) of red water.

This document contains the following major chapters:

- 1.0 Introduction Brief introduction to the project and contents.
- 2.0 Waste Profile Presents a description of red water including the assumptions made about the waste profile during the design of the CBC.
- 3.0 Waste Feed Chemistry and Selection of Circulating Media Describes the chemical and physical considerations that were studied to determine the optimum circulating media.
- 4.0 Block Flow Diagram Presents the CBC block flow diagram.
- 5.0 Conceptual Design Basis Presents the conceptual design basis for the red water incineration pilot plant.
- 6.0 Process Description Presents an overview of the combustion system and a description of each key system component.
- 7.0 PFDs and P&IDs Package Presents the process flow diagrams (PFD) and the piping and instrumentation diagrams (P&ID) for the CBC.
- 8.0 Equipment List Presents a list of the key pieces of equipment.
- **9.0 Equipment Specifications** Presents the specification sheets for each key CBC component.
- 10.0 General Arrangement Drawings Presents the general arrangement plan and the shipping arrangement for the CBC.

By: PO Checked: PA Approved: PA

Date: 02/06/95

Introduction
IT PCE
Knoxville, Tennessee
Rev. No. (0) (1)

Area No.:

Area Name: All Areas

Page: 2 of 3

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243 SPEC. NO.:

SPEC. NO.: WP: WP1585.1

- 11.0 Electrical One-Line Drawings Presents the electrical one-line drawings for the CBC.
- 12.0 Mass and Energy Balance Outputs Presents the results of mass and energy balances conducted for the normal, start-up, and hot idle operating scenarios.
- 13.0 Pilot Plant Cost Estimate Presents the estimated cost for the CBC pilot plant.
- 14.0 Recommended Tests and Analyses Presents a list of the recommend tests and analyses to be conducted during the pilot test.
- 15.0 Operations and Safety Considerations Presents the CBC operations and safety considerations.
- 16.0 Operations Manual Presents a draft CBC operations manual.
- 17.0 Performance Test Plan Presents a draft performance test plan to test CBC's ability to meet regulatory and warranty performance requirements.
- 18.0 Bench-Scale Testing Presents the test plan and the results of a bench-scale CBC system testing for agglomeration tendencies while incinerating surrogate red water.
- 19.0 HAZOP Analysis A hazard and operability study was performed to
 assess potential failures in the circulating bed combustor and recommend
 additional safeguards to prevent or mitigate the consequences of these failures.

By: PO Checked: PA Approved: PA Date: 02/06/95 Introduction IT PCE Knoxville, Tennessee Rev. No. (0) (1)

Area No.:

Area Name: All Areas

Page: 3 of 3

2.0 WASTE CHARACTERIZATION

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.2

2.0 Waste Characterization

Red water is the aqueous effluent generated during sellite purification of crude TNT. Red water has a deep red, or sometimes black color, and is a complex and somewhat variable mixture. Depending on the TNT production process and degree of water recycle used, red water generally contains 15 to 30 percent solids, has a pH of 7 to 9.7 and a specific gravity of 1.1. Roughly half of the solids are inorganic salts and the rest are nitrobodies. This information was gathered from a document titled "Review of Canadian industries limited's Boloeil facility as a candidate for a SRP pilot test" (RAAP, 1988).

The CBC pilot plant is designed to process a maximum of 1.5 gpm of red water containing 15 weight percent solids. The solids have a heat value of 3,200 British thermal units per pound (Btu/lb).

The red water can contain up to 30 percent of solids. Typically, the solid content in the red water is 15 percent, and therefore, a solid content of 15 percent was selected as the basis. Even if the solid content in the red water is 30 percent occasionally, there may be concern regarding agglomeration tendencies. The agglomeration of solids is primarily a function of temperature and not the concentration. The increase in solid content will impact the bed material feed rate and ash discharge rate. The associated equipment is designed to handle additional capacities, if required.

For waste characterization purposes, it is assumed that 45 percent of the solids are inorganic salts and the rest are nitrobodies (Table 2-1). The inorganic components are primarily sodium sulfites/sulfates and sodium nitrites. The nitrobodies are primarily sodium sulfonate of 2,4,5-TNT and TNT-sellite complex (Table 2-1). The information contained in Tables 2-1 and 2-2 are gathered from the reference cited in the first paragraph of this chapter.

Table 2-2 presents the elemental composition of the red water used in the mass and energy balance (M&EB) program. The overall heating value for the red water is 487 Btu/lb, which equates to a thermal release of 0.4 MMBtu/hr.

Table 2-1

Composition of Red Water Solids

Parameter	Weight (nercent)
Frorganic Salis	,
Na ₂ SO ₃ -Na ₂ SO ₄	32.3
NaNO	11.2
NaNO3	1.5
SUBTOTAL	45
Nirobodies	
Sodium suffonate of 2,4,5-TNT	22.7
TNT-sellite complex	16.2
Sodium suffonate of 2,3,4-TNT	7.6
Sodium sulfonate of 2,3,5-TNT	2.0
2,4,6-TNBA	1.0
White compound sodium salt	1.0
TNBAL	1.0
TNBOH	1.0
Sodium nitroformats	2.5
SUBTOTAL	55.0

Table 2-2

Design Basis: Red Water Profile

						땶	mental	Elemental Composition (Wt. %)	ion (Wt.	(%				
Description	Physical Form	System Thermal Capacity (MMBtu/hr)	Feed Rate (GPMflb/hr])	ပ	£	ဝိ	zγ	Н2О	ວິ	S	Ash	Inert	Heating Value (Btu/lb)	Heat Release (MMBtu/hr)
Red Water	Liquid	4.5	1.5/[826]	3.00	0.10	3.15	0.95	3.00 0.10 3.15 0.95 85.00 0.00 0.65 0.00 7.15	0.00	0.65	0.00	7.15	487	0.4

NOTE: Table 2-2 is derived from Table 2-1.

3.0 WASTE FEED CHEMISTRY AND SELECTION OF CIRCULATING MEDIA

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.3

3.0 Waste Feed Chemistry and Selection of Circulating Media

3.1 Waste Feed Chemistry

3.1.1 Introduction

CBCs are noted for their high combustion efficiency. This combustion efficiency is due to the turbulence of the combustion gas in the combustion chamber, the abrasive effect of the bed material, and the long solids residence time of typically more than 20 minutes (Brunner, 1991). Because of the high combustion efficiency of CBCs, they typically operate at 1600°F, which is lower than the operating temperature of most other types of incinerators.

One of the problems associated with the operation of CBCs is the formation of low melting point eutectic mixtures in the combustion chambers. These mixtures lead to the agglomeration of the bed into large agglomerates of crude glass. Agglomeration is caused when eutectic mixtures are formed in the combustion chamber with a melting point lower than the CBC operating temperature. When this happens, the CBC has to be shut down and the operators have to manually remove this material from the combustor; therefore, the high melting point bed material is desirable. Additional problems include oxides of nitrogen (NO_x) and sulfur oxides (SO_x) emissions.

3.1.2 Waste Feed Composition

The CBC proposed for this project is designed to burn red water. As indicated in Chapter 2.0, red water comprises 15 to 30 percent solids, which contain about 45 percent inorganic salts. Tables 2-1 and 2-2 present the composition of red water.

Sodium. In the oxidative environment of the CBC, the sodium in the sodium chloride (NaCl) present in the red water solids will combine with oxidized sulfur to form Na₂SO₄ and with carbon dioxide to form Na₂CO₃. Pure Na₂SO₄ has a melting point of 1623°F and pure Na₂CO₃ has a melting point of 1569°F. A mixture of Na₂SO₄ and Na₂CO₃ has a melting point of 1522°F. Additionally, the chlorine in the red water may lead to the formation of

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO .: WP: WP1585.3

compounds with melting points as low as 1134°F. Table 3-1 presents a list of the compounds of concern and the melting points of their pure forms.

The CBC bed material is typically sand (SiO₂). If present, NaCl can react with the sand to form a viscous sodium-silicate (Na₂O•3SiO₂), which has a melting point of 1175°F:

$$3SiO_2 + 2NaCl + H_2O - Na_2O - 3SiO_2 + 2HCl$$
 (1)

The sodium nitrate and sodium nitrate will oxidize into NO_x and Na₂O. In the presence of moisture, the Na₂O will form sodium hydroxide (NaOH), which has a melting point of 612°F. NaOH will contribute to the alkalinity of the ash.

If bed materials are silica-sand, or if there is SiO₂ in the red water, the Na₂SO₂ present in red water will react with the silica to form Na₂O•3SiO₂, which is formed in Equation 1:

$$Na_2SO_4 + 3SiO_2 - Na_2O \cdot 3SiO_2 + SO_2 + 0.5O_2$$
 (2)

The addition of lime, iron oxide, or aluminum to the bed will raise the melting point of the bed, as indicated below.

Lime Addition. Lime (CaO) addition and SiO₂ will produce devitrite, which melts at 1885°F.

$$Na_2O \cdot 3SiO_2 + 3SiO_2 + 3CaO - Na_2O \cdot 3CaO \cdot 6SiO_2$$
 (3)

In the absence of silica, calcium oxide reacts with sodium-silicate to produce a product that melts at 2343°F.

$$Na_2O \cdot 3SiO_2 + CaO - Na_2O \cdot 2CaO \cdot 3SiO_2$$
 (4)

Iron Oxide Addition. Iron oxide (Fe₂O₃) addition to sodium-silicate will produce acmite, which melts at 1751°F. However, for this reaction to occur the iron oxide and silica must be available in very fine particles.

By: SKZ Checked: PA/PO Approved: PA Date: 02/06/95

Waste Feed Chemistry and Selection of Circulating Media IT PCE

Knoxville, Tennessee Rev. No. (0) (1)

Area No.: 10 Area Name: Feed

Page: 2 of 11

Table 3-1

Melting Point of Selected Inorganic Salts

Compound	Chemical Formula	Melting Point (°F) ^a	Remarks
Sodium	Na	208	
Sodium Nitrite	NaNO ₂	520	Decomposes at 608°F
Sodium Nitrate	NaNO ₃	586	Decomposes at 716°F
Sodium Hydroxide	NaOH	612	
Sodium Chloride	NaCl	1472	
Sodium Carbonate	Na ₂ CO ₃	1569	
Sodium Sulfate	Na ₂ SO ₄	1623	
Sodium Sulfite	Na ₂ SO ₃		Decomposes
Sodium Sulfide	Na ₂ S	1688	

^a Source: Shackelford and Alexander, 1992.

Table 3-2

Melting Point of Mixture of Fluidized Bed Material and Inorganic Salts

Compound	Chemical Formula	Melting Point (°F)
Addition of Silica (SiO ₂)	Na ₂ O•3SiO ₂	1175
Addition of Iron Oxide (Fe ₂ O ₃) Acmite	Na ₂ O•Fe ₂ O ₃ •4SiO ₂	[′] 1751
Addition of Lime (CaO) Devitrite	Na ₂ O•3CaO•6SiO ₂ Na ₂ O•2CaO•3SiO ₂	1885 2343
Addition of Aluminum Oxide (Al ₂ O ₃)		
Albite Nepheline Albite+Nepheline	Na ₂ O•Al ₂ O ₃ •6SiO ₂ Na ₂ O•Al ₂ O ₃ •2SiO ₂	2026 1600 1954

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.3

$$Na_2O \cdot 3SiO_2 + Fe_2O_3 + SiO_2 - Na_2O \cdot Fe_2O_3 \cdot 4SiO_2$$
 (5)

Aluminum-Silicate Addition. Kaolin clay is a natural mixture of hydrous aluminum silicates, SiO₂/Al₂O₃, in a ratio of 2:1 to 3:1.

$$Na_2O \cdot 3SiO_2 + 3SiO_2 + Al_2O_3 - Na_2O \cdot Al_2O_3 \cdot 6SiO_2$$
 (6)

Aluminum-silicates react with sodium-silicate to form albite. Albite, a sodium-aluminum-silicate, has a melting point of 2026°F. In the absence of silica, aluminum-oxide reacts with sodium-silicate to form nepheline (Wall et al., 1975).

$$Na_2O \cdot 3SiO_2 + Al_2O_3 - Na_2O \cdot Al_2O_3 \cdot 2SiO_2 + SiO_2$$
 (7)

Albite and nepheline will form eutectic point at 1954°F. The advantage kaolin clay provides over other clays is its ability to react with NaCl directly to form nepheline.

$$Al_2O_3 \cdot 2SiO_2 + 2NaCl + H_2O - 2HCl + Na_2O \cdot Al_2O_3 \cdot 2SiO_2$$
 (8)

3.1.3 NO, Emissions

There are several different sources of NO_x formation in a combustion process, the burning of nitrogen containing organics and high temperature combustion in air being two major sources. The actual NO_x emissions from burning nitrated materials is less than the theoretical potential of all NO components remaining as NO_x, but the emissions are higher for processes in which the burning materials are well mixed with air or oxygen than when mixing is poor. By design, the CBC is a well mixed combustion process, so NO_x emissions from NO components are expected to be relatively high. At 15 percent solids in red water (design case), if 100 percent of the NO components in the red water organics remained as NO_x, over 38 lb/hr of NO_x emissions would result.

NO_x formation increases significantly at combustion temperatures in excess of 2400°F, but only about 0.38 lb/hr is expected to be formed at the relatively low temperature of operation in the CBC. Another source of NO_x emissions from the processing of red water is the decomposition of the sodium nitrite and nitrate salts which account for over 12 percent of the

By: SKZ Checked: PA/PO Approved: PA Date: 02/06/95 Waste Feed Chemistry and Selection of Circulating Media
IT PCE
Knoxville, Tennessee
Rev. No. (0) (1)

Area No.: 10 Area Name: Feed

Page: 3 of 11

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.3

solids content in the red water. This decomposition could add over 10 lb/hr of NO_x emissions.

The emissions of NO_x would be 170 tons per year (at 15 percent solids in red water) if 100 percent of all the potential formation occurred. This rate is below the 250 ton per year PSD limit for new sources, but the limit is site specific. Typically 100 percent of theoretical formation of NO_x does not occur. Pilot testing of a solid nitrogenated waste in a rotary kiln indicated that 6 to 12 percent of the nitrogenated group remained as NO_x. The percentage decreased as the feed rate of solid waste was increased, which increased the depth of the solids bed and decreased the exposure of the solids to combustion air. The solids bed in a rotary kiln is not very well mixed with combustion air, so the NO_x conversion is expected to be lower than in the CBC.

Liquid testing with a mono-nitrated aromatic compound indicated that 13 to 33 percent of the nitrogenated bodies remained as NO_x . The liquid was fired through an atomized nozzle, and the NO_x emissions could be modified by the degree of atomization. The lower feed rates which were more highly atomized had the highest percentage retention or formation of NO_x . During one test when the feed rate was held constant and the degree of atomization was increased, the NO_x emissions increased by 25 percent.

If the NO_x emissions were 25 percent of maximum theoretical, the emissions would be 42.5 tons per year, and the stack concentration would be 1,535 parts per million (ppm) on a dry basis. One of the goals of the pilot testing will be to evaluate the percentage of theoretical NO_x emissions formed. The stack off-gases during the pilot testing will also have to be observed for the reddish-brown visual emissions of high concentrations of NO_x .

NO_x emissions control options include:

- Thermal deNO_x systems
- Catalytic reactor deNO_x systems
- DeNO_x scrubbers.

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.3

Thermal deNO_x systems inject urea solution or ammonia into the gas stream at 1600 to 1800°F. NO_x emission reductions of up to 50 percent can be achieved by thermal deNO_x

systems.

Catalytic reactor $deNO_x$ systems inject ammonia into a reactor located upstream of the I.D. fan. The ammonia converts the NO_x into N_2 and water. NO_x emission reductions of up to 80 percent can be achieved by catalytic reactor $deNO_x$ systems.

DeNO_x scrubbers convert NO into NO₂ in an oxidizing scrubber. The NO₂ is then converted to N₂ in a reducing scrubber. NO_x emission reductions of up to 90 percent can be achieved by $deNO_x$ scrubbers.

Thermal deNO_x systems are relatively inexpensive compared to catalytic reactor deNO_x systems and deNO_x scrubbers. All units can be retrofitted to the CBC if required.

3.1.4 Sulfur Dioxide Emissions

Based on the waste profile composition, sulfur dioxide (SO₂) will be generated from two sources. The first source is the organic sulfur present in the nitrobodies; the second is from the reaction of sodium sulfate with sand. (See Equation 2.) Estimated SO₂ emissions from the incineration of red water is 28.8 lb/hr, which equals 3,292 parts per million dry volume (ppmdv) in the stack gas. Maximum SO₂ emissions from the incineration of red water at 30 percent solids is 58 lb/hr, which equals 6,584 ppmdv in the stack gas.

To reduce SO₂ emissions, lime or limestone may be injected on top of the bed. Lime consumption is expected to be approximately 25 lb/hr. Maximum lime consumption is 50 lb/hr, when processing red water at 30 percent solids. SO₂ emissions and lime consumption calculations are included in this chapter.

3.1.5 Hydrocarbon Emissions

The emissions of total hydrocarbons (THC) or products of incomplete combustion (PIC) from an incineration process vary with the types of wastes being burned, as well as with the type of incineration system and the combustion parameters. The EPA "Guidance on PIC Controls

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.:

WP: WP1585.3

for Hazardous Waste Incinerators" (EPA/530-SW-90-040, April 1990) states that when CO emissions are less than 100 ppm, the PIC emissions will be low levels of concern relative to health risk. The combustion efficiency of the CBC should be such that the CO emissions will be well below 100 ppm.

Methane and other light hydrocarbons are typical PICs. The referenced guidance document lists commonly detected carcinogenic and noncarcinogenic PIC emissions, with C1 and C2 hydrocarbons being by far the largest quantities listed (9,600 and 17,000 nanograms per liter [ng/L], respectively). Other significant quantities of hydrocarbons listed include benzene (4,500 ng/L), chloroform (1,40 ng/L), methylene chloride (2,800 ng/L), formaldehyde (780 ng/L), and toluene (550 ng/L). The guidance listing is a compilation of data from many different combustion processes.

IT has evaluated PIC emissions from several different systems and trial burns. When operating a rotary kiln/secondary combustion chamber system at a relatively low temperature in the SCC of 1730°F, the only significant quantities of carcinogenic and noncarcinogenic PICs detected were benzene (71 ng/L), carbon tetrachloride (1.2 ng/L), chloroform (74 ng/L), chloromethane (170 ng/L), toluene (3.8 ng/L), bromoform (366 ng/L), and dibromochloromethane (25 ng/L). Benzene, carbon tetrachloride, chloroform, and toluene were all two orders of magnitude less than the average levels cited in the guidance document. The source of PICs cannot always be defined. For instance, in the test cited, the chlorinated PICs were probably the result of feeding a chlorinated POHC as part of the test, but the source of the bromine that resulted in the brominated PICs has not been determined.

As an indication of good combustion, the measurement of THC levels should be one of the goals of the CBC pilot testing.

3.2 Bed Material Selection

In a CBC, the auxiliary fuel and red water are burned in the bed material. Therefore, the properties of the bed material are critically important to the performance of the CBC. It is the chemical property of material (i.e., high melting point) that will prevent agglomeration, and not the concentration of the bed material. Therefore, bed material that forms a high

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.3

melting point eutectics is desirable in preventing agglomeration in the CBC. The following bed materials were considered for this application:

- Aluminum oxide (Al₂O₃)
- · Ceramic material
- Dolomite [CaMg(CO₃)₂]
- Gabbro
- Granite
- Kaolin clay (Al₂O₃•2SiO₂•2H₂O)
- Lime (CaO)
- Quartz (SiO₂)
- Silica sand (SiO₂)
- Zirconium (IV) oxide (ZrO₂)
- Mixtures of these materials.

These materials were compared on the basis of:

- Chemical properties
- Physical properties
- · Price and availability.

3.2.1 Chemical Properties

As mentioned previously in Section 3.1, Waste Feed Chemistry, agglomeration is a major concern when operating a CBC. The proper bed material will not combine with one of the components of the red water to form a low melting point eutectic mixture. For example, SiO₂ will combine with the sodium in the red water to form eutectic materials (Table 3-2); however, the formation of the eutectic mixtures may be prevented with the addition of Fe₂O₃, CaO, or aluminum silicate. These additives have to be continuously added in the correct proportions to the CBC when thermally treating red water. If the quantity of the Fe₂O₃, CaO, or aluminum silicate was not correct, if the additive was not evenly blended with the bed material, or if other chemicals combined with the additive before the additive reacted with the sodium silicate, agglomeration will occur, leading to CBC shutdown and maintenance. Therefore, for ease of operation, it was decided to initially consider bed materials that do not contain SiO₂. However, if the evaluation indicated that the other materials were not suitable, then SiO₂-containing bed materials would be reconsidered. Therefore, gabbro, granite, kaolin clay (Al₂O₃*2SiO₂*2H₂O), quartz (SiO₂), and silica sand (SiO₂) were initially eliminated from

By: SKZ Checked: PA/PO Approved: PA Date: 02/06/95

Waste Feed Chemistry and Selection of Circulating Media
IT PCE
Knoxville, Tennessee
Rev. No. (0) (1)

Area No.: 10 Area Name: Feed

Page: 7 of 11

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.3

the list of possible bed materials. Additionally, dolomite and zirconium oxide were removed from consideration because dolomite typically contains SiO_2 and zirconium oxide is purchased as zircon sand, which is a mixture of zirconium oxide (typically less than 2 percent) and SiO_2 .

The following materials remain for further consideration:

- Al₂O₃
- · Ceramic material
- CaO.

3.2.2 Physical Properties

Agglomeration can be delayed or eliminated by maintaining good combustion circulation and by carefully selecting the bed materials. A CBC with poor circulation will develop localized hot spots where agglomeration of the bed material will start. By maintaining the proper air flow rates and selecting a bed material with the proper physical properties, good circulation can be maintained and hot spots prevented.

Consistent physical properties are required for CBC bed material. Variations in physical properties, including particle size and resistance to breakage, can lead to unwanted operational changes. Consistent bed material properties and CBC operation is particularly important in the pilot-scale CBC. Red water from different sources may be tested in the CBC and, if the bed material varies from batch to batch, the results of the pilot tests may be obscured.

Properly sized bed material will properly circulate in the CBC, with only small quantities of bed material escaping the combustion system through the cyclone. If the size of the bed material particles is too large, the particles will not be entrained in the combustion gases, not be separated from the combustion gases in the cyclone, and not be returned through the loop-seal to the combustion chamber. This process can lead to localized hot spots and poor combustor performance. If the size of the particle is too small, the particles will be entrained in the combustion gases but will not be separated from the combustion gases by the cyclone. This result will increase the operational requirements of the gas cleaning system. The optimum size of the bed particles is about 250 microns.

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO .: WP: WP1585.3

The abrasive action of the bed material and the combustion gases will continually degrade the bed material particles and reduce their size. Friable particles will degrade rapidly in this environment, resulting in increased particulate loading to the gas cleaning system and frequent addition of material to the CBC to maintain the pressure drop across the bed. Therefore, the ability of the bed material to maintain particle size is important.

CaO can be purchased in the desired particle size. CaO is very friable, which will necessitate the continual addition of CaO to the bed and will increase the particulate removal requirements of the gas cleaning system. Therefore, CaO was eliminated from further consideration as the primary bed material.

Ceramic materials are mixtures of aluminum, calcium, and magnesium. The composition of these mixtures can change from region to region and from batch to batch. Depending on the chemical composition of the ceramic material such as CaO and Fe₂O₃, it is possible that some of the sticky sodium compounds such as Na₂SO₄, Na₂SO₄-NaCl mixture, and Na₂O•SiO₂ will form. Therefore, ceramic materials were eliminated from further consideration.

The only material remaining for further consideration is Al₂O₃. Per Section 3.1, aluminum oxide will form a high melting point mixture with inorganic solids present in red water. It is this superior quality along with its heat transfer characteristics that distinguishes it from other candidates.

3.2.3 Price and Availability

To prevent a buildup of sodium and eutectic mixtures with a low melting point in the bed, bed material will be continuously added to the CBC, and ash and bed material continuously removed from the combustion chamber by the ash cooler conveyor. Initially, a feed rate of 1.5 times the molar quantity of sodium in the waste feed is recommended, with optimization of the feed rate during CBC operation (Dorr-Oliver, 1994). The recommended initial Al₂O₃ feed rate is 43.5 lb/hr. Calculations are included in this section.

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.3

Al₂O₃ is widely available and costs approximately \$790 per ton. With a recommended Al₂O₃ feed rate (after start-up) of less than 50 lb/hr, Al₂O₃ is an economically acceptable bed material.

3.2.4 Selected Bed Material

Based on chemical, physical, and price considerations, Al₂O₃ is the selected bed material. Al₂O₃ is available in the desired particle size, about 250 microns. Al₂O₃ will slowly decrease in size, resulting in a long bed life.

Agglomeration is not expected when using Al₂O₃ as the bed material. In the presence of sodium, Al₂O₃ forms sodium-aluminum silicates that have melting points in the 1600 to 2025°F temperature range. These melting points are hot enough to prevent agglomeration during the combustion of red water, provided the CBC is operated in the 1500 to 1600°F-temperature range. However, to prevent a buildup of eutectic materials in the bed, the continuous addition of bed material to the CBC and the continuous removal of ash and bed material from the combustion chamber, is recommended (Mullen, 1988; Zakkey et al., 1984; Goblirsch et al., 1983).

Al₂O₃ meets the chemical, physical, and cost requirements for bed materials when burning red water; therefore, Al₂O₃ is the recommended bed material.

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.3

Literature Cited

Brunner, C. R., 1991, *Handbook of Incineration Systems*, McGraw Hill, New York, New York, Chap. 5.

Dorr-Oliver, September 13, 1994, IT Telephone Report.

Goblirsch, G. M. et al., 1983, "AFBC Bed Material Performance with Low-Rank Coals," presented at the Twelfth Biennial Lignite Symposium, Grand Forks, North Dakota, May 18-19, 1983.

Lewis, R. J., 1992, *Hawley's Condensed Chemical Dictionary*, 12th Ed., Van Nostrand Reinhold Company, New York, New York.

Mullen, J. F., 1988, "Fluid Bed Combustion and Its Application to the Incineration of Hazardous Waste," presented at the Engineering Foundation Conference on Hazardous Waste Management Technologies, Mercersburg Academy, Mercersburg, Pennsylvania, August 7 to 12, 1988.

Shackelford, J. and W. Alexander, 1992, CRC Material Science and Engineering Handbook, CRC Press, Boca Raton, Florida.

Wall, C. J. et al., 1975, "How to Burn Salty Sludges," *Chemical Engineering*, McGraw Hill, Inc., New York, New York, April 14, 1975, pp. 77-82.

Zakky, V. et al., 1984, Combustion of North Dakota Lignite in a Pressurized Fluidized-Bed Combustor, "Fluidized Bed Combustion and Applied Technology," presented at The First International Symposium, New York University, New York, New York.

Date: 02/06/95

1

By SKZ Date 1/3 95 Subject CBC Sheet No. 1 of 1

Chkd By Date Determine Burner NOx Emission Proj. No. 322243

Objective:

Determine NOx emission from CBC Burner, for she incineration of Red Water

Assumptions:

1- NOx buck from burner is 60 ppm

Calculation Basis

CBC Flue Gres Flow = 528.6 16/hr @ 1600 F & 406.8" W.C. = 201.1 115 mole/hr = 136.7 16mole/hr (Dry)

Methodology:

Total NO_X = Red water + thermal (NO_X) from Burner

Thermal NO_X from Burner = $\frac{60 \times 10^{-6}}{\text{ln}} \frac{136.7 \text{ lbm}}{\text{lm}} \frac{46.1 \text{lb}}{\text{lm}}$ NO_X = 0.38 lb/hr

 By
 CP
 Date
 12/29/94
 Subject
 USAEC
 CBC Emissions
 Sheet No.
 1
 of
 2

 Chkd. By
 Date
 Proj. No.
 223343

Food	wt %	Assumed Community	Adr Wi
Na, 502 - Na, 504	32,3	(50-50)	268
Na NO,	11,2		62
N=NO3 2,4 K	1,5		25
Sodium sulfarete DE, TNT	22.7	Cyting N3 09 Nos	330
TNT-sellite complex	16.2	C7 45 N3 0 - N3 503	343
Sodium sulforiste of 2,3,4-TNT	7.6	C7 4 11,09 N25	330
100 un 5 Prote of 2,3,5-707	2.0	Coto NoDa NoS	330
2,4,6-TNTA (No 2014)	1.0	CA to NOCE NO	£93
White compound socious sold	1.0		
TNERL	1.0	C8 Hz N3 07	255
- NBOL	7.0	C7 HS N3 O7	243
loi un miliotarnile	2.5	C7 44 113 07 112	265

Table: 826.16/hr and water food at 15% solids (124 16/hr)

Flue gas 522.6 16/hr, 136.7 16ms//hr day (slightly of Simil)

Totalist No emissions

1/2 NO2	11,2%	' ×	124 1/4.	, ×	46 WIG	=	7.26
No NO,	1.5%		124	×	4 :	-	1.01
Nacharan	227		124		350	2	11.77
11-176 12	14.2	<	17 3		3×46 353	-	7,85
11.2 2 3,7 2 - 4	7.6	~	124	*	3445	:	3.94
NOT BE ENGLISHE	2,0	83	چه خ و	×	330	Ξ	1.04
TNBA	1.0	×	124	٧.	293	•	0.58
TNBAL	1, 0	*	104	×	255	-	0,67
77502	1.0	*	124	V	243		0.70
Mr missing water	2.5	*	124	¥	215	τ	1.61
							38.43 13/1- N

Burner No, contribution (For IKE 1/22/44) 0.38 12/1.

38.21 +46 = 0.74 -1/4.

By _____ Date 12/29/94 Subject ______ Subject ______ Sheet No. 2 of 2 ______ Sheet No. 2 of 2 ______ Proj. No. 222243 ______

Annual No, emissions 32.21 1/2 × 8760 h/gr = 340,000 h/gr = 170 to 1/9r

Marine renew testion 0.24 molh + 136.7 molh = 6140 ppm (dig)

Noise: These are maximum, values award on 100 serient removed on of all notes bodies to NOx. A much have converse or rate is dypically experienced.

By_SK2	_ Date	CBC	Sheet No of _3_
Chkd. By			CEC Proj. No. 322243.002.03.01

ORJECT INE

Determine 502 emission from CBC and Determine quantity of line required for metalization.

A 502 from organic surfur:
From HMB sulid 9/9/194 by: SLM Datafile: U3AC. DAT

502 = 10.719 16/hr = 0.167 16m/h

B Assume all Na2 SO3-Na SO4 is in Na2 SO4 form at 32.3%.

of Solids.

Assume shat Na2 SO4 will react wish SiO2 according to shis PXIV

Na,504 + 3 SiC2 ---> Na20.3SiO2 + SO29+ =.502

Na2504 in she feed = 32.3 nt. / + 123.9 1b = 40.02 1b

. Petential SO, formed from the above RXM

 $SO_2 = 40.02 \text{ lb} \text{ lbm Na}_2 SO_4 \text{ lbm SO}_2 \frac{64.06 \text{ lb}}{\text{lbm Na}_2 SO_4} = \frac{18.05 \text{ lb}}{\text{lbm Na}_2 SO_4}$

502 emission = 10.719 16 + 18.05 16 = 28.8 16/h

Summary SO2 emission from CBC = 28.8 14/hr

SO2 COUC. = 28.8 16 15m SO2 hr = 3,292 ppmv dry

	_	\
(0	
\	_	•

By_SKZ	Date	Subject	CBC		Sheet No. 2	_ of3_
Jhkd. By_	Date	SO2 Emission	from CRC		Proj. No. <u>322</u> .	243.002.03.00
	Summary	(continued)				
	2. A+ 30%	solids in re	ed water,			
	Maxi		isside from CB			
		Wax. 502	concentration	= 658	14 ppmv	(dry)

	INTERNATIONAL TECHNOLOGY CORPORATION
--	--

	$\overline{}$	
(2	
/	_	

By SK2 Date 9/22/94 Subject CBC
Chkd. By Date Calling a Slition to CBC _____ Sheet No.____ of _____ Proj. No. 3222, 43, 002.07,00 DEJECTIVE:
Determine quantity of line ablition required for nuclealization of 502 visulting from the incinevation of Red Water. _______ Ca(OH)_2 502 + Ca(OH)2 - Ca SO3 + H2O

RXNO Calculato vatro CaO/SO_2 :

= 115 CaO 15m CaO 15m CaO 15m Ca(OH)₂ $\frac{74}{15}$ Ca(OH)₂ $\frac{15Ca(OH)_2}{15m}$ = 1.32 $\frac{15Ca(OH)_2}{CaO}$

= 1 15 502 15m 502 15m Ca (OH)2 74 15 Ca(OH)2 = 1.16 15 Ca(OH)2 15m = 1.16 15 Ca(OH)2

 $\frac{1.16 \ 15 \ Ca(6H)_2}{11 \ SO_7} \times \frac{15 \ Ca(0H)}{15 \ Ga(0H)} = 0.88 \frac{15 \ Ga(0H)}{15 \ SO_2}$

(ine for motorliging SO2 = 28.8 1500, 0.88 16 CO)

lime = 25. 15/ CaO | at 15% solids

Mx. line at 20% Solids = 50 16/hn CaO

By <u>SICZ</u> Date <u>9/22/94</u> Subject <u>CBC</u> Sheet No. 1 of <u>2</u>

Chkd. By Date Proj. No. <u>392943.003.03.01</u>

OBJECTIVE & Octermine quantity of Alminum Silicale required

Cale. Basis:
Based on recommendations of Dove-Oliver to add
aluminum silicate at 1.5 times molar grantity of Na
Trescut in she waste.

Na2 SO4 + 3 SiO2 - Na2 0.35iO2 + SO2 + 0.502 Ran D

 $Na_2O.3SiO_2 + 3SiO_2 + Al_2O_3 \longrightarrow Na_2O.Al_2O_3.6SiO_2$ RXN (2)

Calculate the ratio of Al_2O_3 Na_2SC_U

From let RXN, Na2 SOU 15m Na2 SO4 Na2 0.3 Si O2 242.2 16

142.06 16 1 15m Na2 SO4 15m Na2 0.3 Si O2

= 1.71 Na2 0.3 Si O2

Na2 SO4

From 2nd RXN, 16 NA2O, 3 SiO2 Haw Na2O·3SiO2 16m Al2O3 101.96 Al2O2 $\frac{242.216}{242.216} = 0.42 \frac{16 \text{ Al2O2}}{16 \text{ Na2O·3 SiO2}} = 0.72 \frac{16 \text{ Al2O3}}{16 \text{ Na2O·3 SiO2}}$ $\frac{Al2O3}{16 \text{ Na2O·3 SiO2}} = 0.42 \frac{16 \text{ Al2O2}}{16 \text{ Na2O·3 SiO2}} = 0.72 \frac{16 \text{ Al2O3}}{16 \text{ Na SO4}}$

By SK^2 Date $\frac{9/2^2/94}{}$ Subject CBC Sheet No. $\frac{2}{}$ of $\frac{2}{}$ Proj. No. 322243.002.03.01 Chkd. By____Date. Quantity of Al2O2 required = 0.72 15 Al2O2 1.5 Al2O3 101.96 MWALO3
15 Na,SQ4 15m Na,SQ4 142.06 MW (N6SQ4 = 0.78 16 Al2O3 Quantity of Naz SO4 presentiusle Red Water = 323 Assume all inorganic salt present in Red when is Naz SO4. ohen Na2 SO4 = 45 wt. Y. T-tal Naz SO4 = 0.45 X 123.9 15 = 55.8 16 Naz SQ4 Total Al2O3 required = 55.8 15 Na2SO4 0.78 16 Al2O2

Total Al2C3 = 43.5 15/m of Al2O3 6 CBC/

INTERNATIONAL TECHNOLOGY CORPORATION	312 Directors Drive Knoxville, Tennessee	RECORD OF Telecon Meeting				
CORPORATION	37923 Telephone: 615-690-3211 FAX: 615-690-3626	Project Number Phase Task				Subtask
Project Name: US Army Environmental	Center	322243		002	03	001
September 13, 1994	Time: 9:43	Call From Call To X	Name:	Luke Cla	rk	
Other Participants - Name/Location/Representing:	Title:					
		Telephone Number: 203/876-5534				
		Company Name:	DORR-0	DLIVER		
		Address:				
Topic: Fluidized Bed Material	City Zip Code					
		State CT		Zip Code		
Summary (Decisions & Specific Actions Required by Na	armed Persons):					
Q. What is your recommendation	for the bed material for	the incineration of	f red water	er?		
A. Neutral agent such as Kaolin C point salt.	Clay, which has aluminu	m silicate compor	ent. Na-	Al forms	a high me	elting
Q. What is the quantity of kaolin	clay to be added to the	bed?				
A. Usually start with 1.5 x Na pre	sent, then operation will	optimize the qua	ntity.			
Q. What do you recombed for SC	removal, and NOx rem	noval/reduction?				
A. Ammonia & Urea injections in that is sold with the fluidized bed	the gas will get 80% reconly will result is 60-709	duction. However % reduction.	, Dorr-Oliv	ver has a	proprieta	ıry system
Q. What is the recommended ope	erating temperature of the	ne fluidized bed w	hen incine	erating re	d water?	
A. 1500- 1600 F.						
Required Action:						
None						
		Prepared by (Print/Signat	ure):	Saleem K	. Zwayye	d
Distribution: Original to Project File: A2 Project Manager: Preparer	✓ Other Distribution (By	Preparer):			Page <u>1</u> of	

CONCEPTUAL DESIGN AND RELATED DOCUMENTS

4.0 BLOCK FLOW DIAGRAM

U.S. Army Environmental Center Red Water Treatment Technology Test Plan and Site Preparation Aberdeen Proving Ground, Maryland

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.: WP: WP1585.4

4.0 Block Flow Diagram

The block flow diagram (Drawing D-00-00-001) presented in this chapter is a conceptual representation of the incineration system. A schematic (Drawing D-00-00-002) of the incineration system is also presented. The system consists of a CBC, the combustion chamber, hot cyclone, loop-seal, and an air pollution control system (APCS), which includes partial quench, baghouse, I.D. fan, and a stack.

Red water is incinerated in the combustion chamber. The hot cyclone separates the hot gases from the bed material. The bed material is recycled to the combustion chamber via the loop-seal. The 1600°F combustion gas is cooled to approximately 450°F by spraying water into the incoming hot gas. The partially cooled gas at 450°F then enters the baghouse for particulate removal. The I.D. fan then exhausts the cleaned gases to the atmosphere through the stack.

10 13 12 11 16 15 14 WATER NATURAL GAS -CIRCULATING BED COMBUSTOR COMBUSTION AIR -PARTIAL QUENCH HOT CYCLONE LIMESTONE -THT RED WATER CIRCULATING MEDIA (ALUMINUM OXIDE) RECYCLED SOLIDS PURGE AIR LOOP SEAL HOT ASH TO WATER-COOLED SCREW CONVEYOR 32224308 12/07/94 2 50em JMH NOTES

12 11 10 9 4 8 7 1 6 5 4

AIR POLLUTION CONTROL SYSTEM WATER HOT CYCLONE PARTIAL QUENCH BACHOUSE BACHOUSE INDUCED DRAFT FAN STACK SOLIDS SEAL SOLIDS

Knoxville, Tennessee

This diversing and the Internation contented therein use properted by and in the property of IT Comparation. It was properted solary for use on the specific project referenced. It was not betonice or respectative to be suitible or adequate for any other purpose or resused by the aware or others not any other propert or backs. The drewing shall not be used occurs for the purpose which is was supplied and is subject to return an demand. All rights of visuations or resources.

Drawing No. CIRCULATING BED COMBU

Drawing No. D-00-002 CULATING BED COMBUSTOR SYSTEM SCHEMATIC

(2

TEM SCHEMATIC

CONCEPTUAL DESIGN AND RELATED DOCUMENTS

5.0 CONCEPTUAL DESIGN BASIS

U.S. Army Environmental Center Red Water Treatment Technology Test Plan and Site Preparation Aberdeen Proving Ground, Maryland

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.: WP: WP1585.5

5.0 Conceptual Design Basis

Table 5-1 presents the conceptual design basis for the TNT red water incineration pilot plant. This table includes the gas flow rate, temperature, and gas composition exiting each of the major pieces of equipment in the system. These parameters are presented for the cyclone exit gas, partial quench exit gas, baghouse exit gas, and stack exit gas. The information presented is for the normal operational case and for the start-up case. The design gas flow and temperature in this table are used for sizing each piece of the major equipment in the system.

The gas flow rate, temperature, and gas composition information presented in Table 5-1 are gathered from the M&EB outputs for the normal case and start-up case included in Chapter 12.0. The PFDs and P&IDs presented in Chapter 7.0 provide more detailed information on design basis.

By: PA Checked: PO Approved: PA Date: 01/12/95 Conceptual Design Basis IT PCE Knoxville, Tennessee Rev. No. (0) (1) Area No.:

Area Name: All Areas

Page: 1 of 1

Table 5-1

Conceptual Design Basis for the TNT Red Water Incineration Pilot Plant^a

Components	Units	Cyclone Exit Gas (Normal/Start-Up)	Partial Quench Exit Gas (Normal/Start-Up)	Baghouse Exit Gas (Normal/Start-Up)	Stack Exit Gas ^b (Normal/Start-Up)
Water Vapor	lb/hr	1150/151	2706/477	2706/477	2706/477
200	lb/hr	584/168	584/168	584/168	584/168
N ₂	lb/hr	3261/1218	3851/1342	3851/1342	3851/1342
02	lb/hr	219/126	397/164	397/164	397/164
HCI	lb/hr	0/0	0/0	0/0	0/0
SO ₂	lb/hr	11/0	11/0	11/0	11/0
Inert/Salt	lb/hr	29/0	59/0	0/9:0	0/9:0
TOTAL	lb/hr	5285/1663	7608/2150	7550/2150	7550/2150
Gas Flow	acfm ^a	5027/1277	3439/903	3617/950	3444/905
Design Gas Flow	acfm	5027 @ 1600°F	3439 @ 439°F	3617 @ 439°F	3444 @ 461°F

^aThis information is gathered from the mass and energy balances performed for the normal and start-up case included in Chapter 12.0. The red water feed rate and the natural gas flow rates for the normal case are 826 lb/hr and 182 lb/hr, respectively.

^bStack exit gas hotter than baghouse exit gas due to flue gas reheat caused by the I.D. fan. NOx concentration in the gas will be determined based on the pilot-plant study.

CONCEPTUAL DESIGN AND RELATED DOCUMENTS

6.0 PROCESS DESCRIPTION

U.S. Army Environmental Center Red Water Treatment Technology Test Plan and Site Preparation Aberdeen Proving Ground, Maryland

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.6

6.0 Process Description

6.1 General Process Overview

The CBC is responsible for the thermal destruction of wastes fed from the waste receiving, storage, and handling areas. Red water is pumped from a waste storage area (by others) to the CBC where it is volatilized and oxidized. The resulting off-gases, which include circulating media comprising aluminum oxide and limestone, enter a hot cyclone (to recover the circulating media from the gases) before they are sent to the APCS. The circulating media is then returned to the bottom of the CBC through a loop-seal that connects the bottom of the cyclone to the CBC bed. The ash from the CBC bed is continuously purged through the ash cooler conveyor and dropped into an ash bin. The gases from the cyclone pass through a partial quench for cooling in preparation for particulate removal in a baghouse. The baghouse removes more than 99 percent of the particulate entrained in the gas. The gas then enters an I.D. fan and exits through a stack.

The CBC is designed to process 1.5 gpm of red water (heating value, 487 British thermal units per pound [Btu/lb]) with a heat release of 0.4 MMBtu/hr. The total thermal input (due to red water and auxiliary fuel) to the system is 4.5 MMBtu/hr, which equates to a gas velocity of 20 feet per second (feet/sec) through the combustion chamber and an overall gas residence time of 2.2 seconds in the combustion system.

The following sections describe the feed system, combustion system, ash handling system, and air pollution control system. The discussion reference equipment is presented in Chapters 7.0 and 8.0.

6.2 Feed System

The CBC unit has three separate feed streams: limestone, Al₂O₃, and red water. These streams are shown in Drawing D-00-10-001 in Chapter 7.0.

6.2.1 Limestone

The limestone, in the form of granules and chunks, is fed into the CBC above the main mass of the circulating bed. The bags of limestone are elevated to the feed platform by a rail

By: SM Checked: PA/PO Approved: PA Date: 01/12/95 Process Description IT PCE Knoxville, Tennessee Rev. No. (0) (1) Area No.: 20 Area Name: CBC

Page: 1 of 9

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243 SPEC. NO.:

SPEC. NO.: WP: WP1585.6

mounted hoist (H-2006). The bags are broken with a bag breaker (H-2007) allowing the limestone to flow into the limestone feed hopper (H-2002). The limestone is metered out of the hopper and into the CBC via a variable speed screw conveyor (H-2003).

The flow of limestone to the CBC is manually controlled. The rate of limestone can be increased or decreased by adjusting the local speed controller SC-201 on screw conveyor H-2003. Before being installed, the limestone screw conveyor should be calibrated (using limestone) to determine the limestone flow rate versus the speed controller setting. This will allow the operator to estimate the limestone usage rate during operation of the CBC.

The limestone usage rate will be determined by feeding red water to the CBC and measuring SO₂ and HCl emissions in the flue gas. Limestone can then be added to the CBC bed to achieve the desired acid gas concentrations. This will accomplish two things; 1) it will define the correct limestone addition rate as a function of the red water feed rate, and 2) determine the efficiency and utilization of limestone for scrubbing acid gases in a CBC combustor. Both of these data points will be important for future system scale-up design. Note that the ratio of limestone versus red water feed rate is an approximation and is specific to the red water feed during acid gases testing. Changes in the red water composition may require increasing or decreasing the limestone feed rate.

6.2.2 Aluminum Oxide (Al₂O₃)

The Al_2O_3 consists of particles with a diameter of approximately 0.03 inch. The bags of Al_2O_3 are elevated by the hoist (H-2006) to the loop-seal platform. The bags are manually removed from the hoist and broken on the bag breaker (H-2008). The Al_2O_3 then flows into the feed hopper (H-2004). The Al_2O_3 feed screw conveyor (H-2005) is a variable speed type which transfers the Al_2O_3 from the hopper into the loop-seal. This loop-seal feed location is directly beneath the cyclone cone discharge.

The flow of Al₂O₃ to the CBC is manually controlled. The rate of Al₂O₃ can be increased or decreased by adjusting the local speed controller SC-202 on screw conveyor H-2005. As discussed above for the limestone screw conveyor, the Al₂O₃ screw conveyor should be

By: SM Checked: PA/PO Approved: PA Date: 01/12/95 Process Description IT PCE Knoxville, Tennessee Rev. No. (0) (1) Area No.: 20 Area Name: CBC

Page: 2 of 9

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243 SPEC. NO.: WP: WP1585.6

calibrated (using Al_2O_3) to determine the Al_2O_3 flow rate versus the speed controller setting. This will allow the operator to estimate the Al_2O_3 usage rate during operation of the CBC.

A differential pressure of 20 to 45 inches water column (in. w.c.) will be maintained across the bed. This pressure drop is an indication of the amount of bed material inside the CBC. The pressure drop across the chamber is measured by the pressure differential indicating transmitter PDIT-206 and is indicated by PDI-206.

The differential pressure across the circulating bed is controlled by both adding Al_2O_3 and withdrawing the bed material through the ash system. As salts build up in the CBC, the bed material must be taken out to keep the salt concentration at minimum level. The rate at which bed material is withdrawn will depend on the red water composition and operating experience. As the bed material is taken out, Al_2O_3 is added to the CBC until the desired differential pressure across the circulating bed is reached. The operator should also view the circulating behavior of the bed material through the sight ports. Again, through operating experience with the red water, salts buildup, and visual bed inspections, the operator will determine the proper Al_2O_3 feed rate to maintain the CBC differential pressure.

6.2.3 Red Water

The red water feed is fed into the loop-seal through a nozzle which is mounted on the Al₂O₃ inlet feed line from feed screw conveyor H-2005 to the loop-seal. The red water mixes with the aluminum oxide and then enters the loop-seal coming into contact with the circulating bed material.

All of the waste feed permissive interlocks must be satisfied before the red water block valve YV-205 can be opened. The flow of red water is measured by the flow meter and transmitter FE/FIT-205. Flow controller FIC-205 modulates the red water flow valve FV-205 to reach the desired flow rate.

When the CBC is ready to accept red water, the oxygen concentration at the stack is typically 10 to 12 percent, dry volume. This is due to the high rate of secondary air to the CBC in order to maintain the desired CBC off-gas flow rate (or velocity) for bed circulation. When

By: SM Checked: PA/PO Approved: PA Date: 01/12/95 Process Description IT PCE Knoxville, Tennessee Rev. No. (0) (1) Area No.: 20 Area Name: CBC

Page: 3 of 9

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243 SPEC. NO.:

SPEC. NO.: WP: WP1585.6

the red water is added to the CBC, the natural gas firing rate will increase thereby increasing CBC off-gas flow rate. In response to the increased CBC off-gas flow rate, the secondary air flow rate will decrease in order to maintain the desired, fixed CBC off-gas flow rate.

Lowering the secondary air rate also lowers the stack oxygen concentration. In effect, increasing the red water feed rate will decrease the stack oxygen concentration. Therefore, the flow of red water to the CBC can be increased until the design red water rate is reached or the stack oxygen concentration decreases to about 6 percent, which ever comes first.

6.3 Combustion System

The combustion system comprises five regions: the wind box/distributor assembly, combustion chamber, bed, hot cyclone, and loop-seal. The system functions are described in the following sections.

6.3.1 Wind Box/Distributor Assembly

Located in the lower portion of the CBC, the wind box is made of refractory-lined carbon steel. The wind box receives combustion and circulating (secondary) air from the combustion air blower (B-2001). Under normal operating conditions, air at ambient temperature is blown into the wind box to serve as combustion air and circulating air. Under start-up conditions, the air is heated by the start-up burner (G-2001). The start-up burner is a 5 MMBtu/hr Vortex burner, which is located in the wind box. The primary combustion air is supplied at the burner and the secondary air enters the burner housing. The system will be heated by the start-up burner off-gases during start-up and hot idle. During start-up, the system is slowly heated to 1300°F. When the system attains 1300°F, the system slowly transfers to the primary fuel for normal operation. When there is no waste feed, the CBC system is placed on hot idle at 600°F to prevent the system from completely cooling down.

At the top of the wind box, a Hastelloy distributor plate with tuyeres is used to equalize air flow up through the bed region. During normal operation natural gas will bleed through tuyeres to combust and maintain temperature. The natural gas flow will begin flowing to the tuyeres after the start-up burner has brought the system up to 1300° F. At this temperature, the fuel will spontaneously combust when it enters the bottom of the combustion chamber. The fuel flow to the tuyeres is controlled as a function of the CBC the temperature.

By: SM Checked: PA/PO Approved: PA Date: 01/12/95 Process Description IT PCE Knoxville, Tennessee Rev. No. (0) (1) Area No.: 20 Area Name: CBC

Page: 4 of 9

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243 SPEC, NO.:

SPEC. NO.: WP: WP1585.6

6.3.2 Combustion Chamber

The combustion chamber located just above the distributor plate is a vertical cylindrical chamber made of refractory-lined carbon steel. The chamber has a 28-inch inside diameter and a 40.5-inch outside diameter. The carbon steel shell is 0.25 inch thick and is lined with 6 inches of castable refractory. The chamber has a height of 34 feet from the distributor plate to the top of the combustor and 4 feet from the distributor plate to the bottom of the wind box.

Turbulence, adequate residence time, and oxygen concentration in the gas at the required incineration temperature are essential for complete destruction of the nitrobodies. The gas velocity through the CBC unit is maintained at 20 feet/sec, which provides more than adequate turbulence. An approximate gas residence time of 2.2 seconds is maintained in the combustion module, which includes 1.7 seconds in the upper section of the CBC unit, 0.1 second in the duct between the CBC and the cyclone, 0.3 second in the cyclone, and 0.1 second in the duct between the cyclone and the partial quench. The combustion chamber temperature is maintained at approximately 1600°F, which is adequate for the destruction of the nitrobodies or any other organic compounds based on IT's experience. The cyclone exit off-gas contains about 6 percent oxygen (by volume), which is needed to achieve the required destruction. An oxygen content of 6 percent can be maintained based on IT's experience in operating CBCs.

6.3.3 Bed

Located above the wind box assembly, the bed comprises circulating media, which act as a large thermal flywheel for efficient heat transfer to the high moisture red water waste streams. Normal operating temperature in the CBC is 1600° F. The red water is pumped into the loop-seal, which returns bed media from the bottom of the cyclone to the bottom of the CBC.

The circulating bed consists of 64 percent Al₂O₃ and 36 percent limestone. The Al₂O₃ will be used to prevent agglomeration that could be caused by the high levels of sodium in the red water feed (Chapter 3.0). The limestone will be used to neutralize HCl and SO₂ in the combustion gas.

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.6

6.3.4 Hot Cyclone

The CBC off-gas will enter the hot cyclone (F-2002). The cyclone is made of refractory-lined carbon steel with a Hastelloy Vortex finder. The shell is 0.25 inch thick with 6 inches of castable refractory, with an outside diameter of 38 inches and a length of 120 inches. The cyclone is designed to remove the circulating media that have been carried over from the CBC by use of centrifugal forces to separate the heavier particles from the off-gas. The separated particles then flow out of the bottom of the cyclone, into the loop seal, and then back into the CBC bed.

6.3.5 Loop-Seal

The circulating media removed from the combustion off-gas are returned to the bed through a loop-seal. The loop-seal is a refractory-lined carbon steel duct that connects from the bottom of the cyclone cone to the CBC. The loop-seal has a 3-inch inside diameter and a 15-inch outside diameter. The make-up circulating media (aluminum oxide) are added to the loop-seal through a screw conveyor (H-2005), which are fed by a hopper (H-2004). Purge air is injected into the loop-seal by the purge air blower (B-2002) and maintains the circulating media in a fluidized state. The red water waste feed is injected into the circulating media inlet line.

6.3.6 Combustion System Process Control Description

During the start-up of the CBC, the start-up burner slowly heats the system to ensure even refractory heatup. During this start-up, the temperature is measured by thermocouples TE-207A and TE-207B in the wind box. This temperature is controlled by temperature indicating controller TIC-207 which sets the fuel flow rate to the start-up burner by cascading the temperature requirement to the fuel flow indicating controller FIC-209. FIC-209 modulates the fuel valve FV-209 until the flow demand is satisfied.

Primary combustion air is supplied to the start-up burner for stoichiometric combustion of any fuel fired. The primary combustion air is controlled by the ratio controller FFIC-204 which receives a set point from the fuel flow indicating transmitter (FIT-209). FFIC-204 adjusts the primary air flow valve (FV-204) according to the set ratio.

By: SM Checked: PA/PO Approved: PA Date: 01/12/95 Process Description IT PCE Knoxville, Tennessee Rev. No. (0) (1) Area No.: 20 Area Name: CBC

Page: 6 of 9

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243 SPEC. NO.:

WP: WP1585.6

The normal operating temperature in the CBC is measured by thermocouples TE-206A and 206B. This temperature is controlled by a temperature indicating controller (TIC-206). TIC-206 sets the fuel flow to the tuyeres by cascading the temperature requirement to the fuel flow indicating controller FIC-219. FIC-219 modulates flow valve FV-219 until the flow demand is achieved.

Maintaining the CBC off-gas flow rate to obtain a velocity between 15 to 20 ft/sec is required in order to continuously circulate the bed material. The CBC off-gas flow rate (or velocity) is maintained by adjusting the flow of secondary air to the CBC. The CBC calculated off-gas flow rate is indicated by flow indicating controller FIC-201. FIC-201 modulates the secondary air flow valve FV-201 until the desired CBC off-gas flow is obtained.

The CBC vacuum is maintained by modulating the I.D. Fan inlet vane damper PV-501. The CBC vacuum is measured by pressure transmitter PIT-210 and is located on the loop seal. The pressure indicating controller PIC-210 varies the position of PV-501 in order to maintain the desired vacuum set point.

6.4 Ash Handling

The ash and the circulating media are continuously removed by the ash cooler conveyor (H-2001). The ash cooler conveyor is a variable speed, water-jacketed screw conveyor made of carbon steel, with a 5-horsepower (hp) drive motor. The ash cooler conveyor extracts the ash/circulating media from the bottom portion of the bed. The ash/circulating media are transferred through the screw conveyor, where it is cooled to about 600°F and then dropped into the ash bin (T-2001). The ash/used circulating media are transferred from the bin to storage or disposal.

The ash cooler conveyor will be controlled manually. Based on operating experience in other CBCs, the flow rate is adjusted based on maintaining 2 percent salt in the bed.

6.5 Air Pollution Control System

The APCS consists of a partial quench, baghouse, I.D. fan, and a stack.

By: SM Checked: PA/PO Approved: PA Date: 01/12/95 Process Description IT PCE Knoxville, Tennessee Rev. No. (0) (1) Area No.: 20 Area Name: CBC

Page: 7 of 9

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.6

6.5.1 Partial Quench. Incinerator off-gas from the CBC is routed to the partial quench spray chamber (T-5001) through a refractory-lined duct. The partial quench reduces the temperature from 1600°F to an operating temperature of 400°F (450°F maximum). The size of the carbon steel quench chamber is 40 inches outside diameter and 33 feet in length, with a 3-second gas residence time. The dry-bottom quench chamber is equipped with two atomizing nozzles for introducing cooling water. An airtight motor-driven rotary valve (H-5001) is used to discharge collected dust to the dust collection drum (T-5002A). The quench chamber is constructed of painted carbon steel.

Quench temperature is measured by a thermocouple (TE-501) at the quench chamber outlet. This temperature is controlled by a temperature indicating controller (TIC-501) that sets the water flow to the quench chamber by controlling the flow valve (TV-501) in accordance with the water demand. The partial quench has two water sources with one for normal operation and the other for emergencies only.

6.5.2 Baghouse

Quenched off-gas will be routed from the quench chamber to the baghouse (S-5001). The four-module baghouse has dimensions of 13 by 17 feet with a 26-foot overall height (including supports). The baghouse has an air-to-cloth ratio of 3:1. It will have a bottom with sides sloped at a 60-degree horizontal angle and will be equipped with a vibrating bottom. An airtight, motor-driven rotary valve (H-5002) will be used to discharge dust from the bag filter to the dust collection drum (T-5002B). The baghouse body will be constructed of 0.5-inch steel lined with 2 inches of insulation. An on-line pulse-jet type cleaning mechanism will be included in the bag filter to automatically remove collected dust from the bags. The bags will be precoated with lime to prevent the bags from clogging and to react with any fugitive SO₂ or HCl that may be in the quench off-gas.

A key issue that should be considered during the process/detail engineering phase of this project is transportability. One objective is that the entire unit be mobile/transportable; the proposed baghouse is based on a conventional design with relatively lengthy bags that make the unit taller. During the detail engineering phase, a shorter baghouse design should be considered for mobility.

By: SM Checked: PA/PO Approved: PA Date: 01/12/95 Process Description IT PCE Knoxville, Tennessee Rev. No. (0) (1) Area No.: 20 Area Name: CBC

Page: 8 of 9

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243 SPEC. NO.:

WP: WP1585.6

Due to the high-pressure drop across the system, the I.D. fan is specified to produce 60 in. w.c. static pressure. The infiltration air through the rotary valves in each of the four modules could be significant. To minimize the infiltration air into the system, a solenoid-operated knife gate valve is installed upstream of the rotary valve(s).

Pressure drop across the baghouse is measured by a pressure differential-indicating transmitter (PDIT-504). The differential pressure measurement is used to control the cycle initiation for the pulse-jet type cleaning mechanism. Configured from PDIT-504 is the pressure differential indicator (PDI-504) and high differential pressure switch PDSH-504. When the differential pressure exceeds the set point of PDSH-504, the bags are air pulsed for cleaning.

6.5.3 Induced Draft Fan

The prime mover of the CBC system is the I.D. fan (B-5001). The fan draws gas from the baghouse exit. The flow rate is set by an inlet vane damper (PV-501) in the duct before the I.D. fan. The inlet damper is an electrically actuated damper that is controlled to maintain the CBC pressure at a desired vacuum. The I.D. fan is a centrifugal type blower with a capacity of 5,000 acfm and a static pressure of 60 in. w.c.

6.5.4 Stack

The I.D. fan discharges flue gas through the stack (Z-5001). The stack is 12 inches in diameter with a 62-foot height. The stack height of 62 feet is based on housing the entire system in a building 50 feet high. If the system is installed in an open area, the minimum stack height should be 45 feet. The stack is equipped with a continuous emission monitoring (CEM) system for oxygen (O₂) and CO. The NO_x and SO_x is measured during the performance testing. The CEM system includes alarm points in the control system for all of the above parameters. The stack is also equipped with nozzles and platforms necessary to allow sampling during the performance test.

CONCEPTUAL DESIGN AND RELATED DOCUMENTS

7.0 PFD AND P&IDs PACKAGE

U.S. Army Environmental Center Red Water Treatment Technology Test Plan and Site Preparation Aberdeen Proving Ground, Maryland

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.7

7.0 PFDs & P&IDs (Revision A) Drawing Index

Type	Title	Area Number	Drawing Number
PFD	Incineration System	00	D-00-10-001
P&ID	Instrumentation Identification	00	D-00-11-001
P&ID	Control System Standards	00	D-00-11-002
P&ID	Control Loop Standards	00	D-00-11-003
P&ID	Equipment Identification	00	D-00-11-004
P&ID	CBC Burner System	20	D-20-11-001
P&ID	Circulating Bed Combustor	20	D-20-11-002
P&ID	APC System	50	D-50-11-001

By: PA Checked: SM Approved: PA Date: 01/12/95 PFDs and P&IDs IT PCE Knoxville, Tennessee Rev. No. (0) (1) Area No.:

Area Name: All Areas

Page: 1 of 1

INSTRUMENT IDENTIFICATION

THIS INFORMATION IS BASED UPON ISA-55 1 1984 INSTRUMENTATION SYMBOLS AND IDENTIFICATION. REPRINTED BY PERMISSION COPYRIGHT © INSTRUMENT SOCIETY OF AMERICA 1984. FROM ISA-55.1.—
INSTRUMENT. SOURDLS AND IDENTIFICATION.

NOTES FOR TABLE

MOTE.

- THIS TABLE IS NOT ALL-INCLUSIVE.
 A ALARM, THE ANNUNCLATING DEVICE MAY BE USED IN THE SAME FASHION AS S. SWITCH. THE ACTUATING DEVICE.
- THE LETTERS H AND L MAY BE OMITTED IN THE UNDERFINED CASE.

DIHER POSSIBLE COMBINATIONS

BLE COMBINATIONS
(RESTRICTION ORBIFCE)
(CONTROL STATIONS)
(ACCESSORE)
(SCAMBING RECORDER)
(RED)

- A "USER"S CHOICI" LETTER IS INTENDED TO COVER UNAISTED MEANINGS THAT WILL BE USED REPETITIVELY IN A PARTICULAR PROJECT, IF USED INTER MAY HAVE ONE MEANING AS A FIRST-LETTER MAY DAIOTHER MEANING AS A SUCCEEDING LETTER THE MEANINGS HELD TO BE DEFINED ONLY ONCE IN A LEGEND, OR OTHER PLACE, FOR THAT PROJECT, FOR EXAMPLE, THE LETTER IN MAY BE DEFINED AS "MODULUS OF ELASITY" AS A FIRST-LETTER AND "OSCILOSCOPE" AS A SUCCEEDING-LETTER.
- -THE UNCLASSIFIED LETTER X IS INTENDED TO COMER UNLISTED INFAMINGS THAT WILL BE USED ONLY ONCE OR USED TO A LIMITED EXTENT Y USED. THE LETTER MAD ANY MANBER OF MEANINGS AS A FIST-LETTER AND ANY MANBER OF MEANINGS AS A SUCCEEDING LETTER, EXCEPT FOR ITS USE WITH DISTINCTIVE SYMBOLS IT IS EXPECTED THAT THE MEANINGS WILL BE DEFINED OUTSIDE A TAGGING BUBBLE ON A FLOW DIAGRAM, FOR EXAMPLE, XP-2 MAY, BE A STRESS RECORDER AND XX-4 MAY BE A STRESS OSCILLOSCOPE
- THE GRAMMATICAL FORM OF THE SUCCEEDING-LETTER MEANINGS MAY BE MODIFED AS REQUIRED FOR EXAMPLE, "INDICATE MAY BE APPLED AS "INDICATOR" OR "INDICATING". TRANSMIT AS "TRANSMITTER" OR "TRANSMITTER", ETC.
- ANY FIRST-LETTER, IF USED IN COMBINATION WITH MODIFYING LETTERS D(DIFFERENTIAL), FIRATIO), MIMOMENTARY), KITALE OF CHANGE), O(INTEGRATE OR TOTALIZE), OR ANY COMBINATION OF THESE IS INTENDED TO REPRESENT A REW AND SPANATE MEASURED WARMER, AND THE COMBINATION IS TREATED AS A FIRST-LETTER ENTITY. HUSE, INSTRUMENTS TO IN AND TI INDICATE TWO DIFFERENT WARMERS. MAMELY, DIFFERENTIAL—TEMPERATURE AND TEMPERATURE, MODIFYING LETTERS ARE USED AS APPLICABLE.

FIRST-LETTER A(ANALYSIS) COMERS ALL ANALYSES NOT DESCRIBED BY A "USER'S CHOICE" LETTER IT IS EMPECTED THAT THE TYPE OF ANALYSIS WILL BE DEFINED OUTSIDE A TACCIMIC BUBBLE. SOME EXAMPLES ARE:

-DISSOLVED DXYGEN -GASEOUS DXYGEN - ph - gaseous chlorine - smoke density - sulphur dioxide - turbidity

- USE A FIRST-LETTER U FOR "MULTMARABLE" IN LIEU OF A COMMINATION OF FIRST-LETTERS IS OPTIONAL. IT IS RECOMMENDED THAT NONSPECIFIC WARMBLE DESIGNATORS SUCH AS U BE USED SPARNICLY.
- THE USE OF MODIFYING TERMS "HIGH", "LOW", "MIDDLE", OR "INTERMEDIATE", AND "SCAIL" IS OPTIONAL.
- THE TERM "SAFETY APPLIES TO EMERGENCY PROTECTIVE PRIMARY LLEWENTS AND EMERGENCY PROTECTIVE FINAL CONTROL ELEMENTS ORLY. THUS, A SELF-ACTUATED VALVE THAT PROVINCIA PRESSURE BY BREEDING FILLO SYSTEM AT A RIGHER-THAN-DESIRED PRESSURE BY BREEDING FILLO FROM THE SYSTEM IS A BACK-PRESSURE-TYPE PCY, EVEN BY THE WALVE IS NOT INTENDED TO BE USED MORMALLY. HOWEVER, THIS WALVE IS DESIGNATED AS A PSY BY IT'S INTENDED TO PROTECT AGAINST EMERGENCY CONDITIONS THE CONDITIONS THAT ARE HAZARDOUS TO PERSONNEL AND/OR EQUIPMENT AND THAT ARE NOT EXPECTED TO ARISE MORMALLY.
- THE PASSIVE FUNCTION G APPLIES TO INSTRUMENTS OR DEVICES THAT PROVIDE AN UNCALIBRATED VIEW, SUCH AS SIGHT GLASSES AND TELEVISION MONITORS
- "INDICATE" NORMALLY APPLIES TO THE READOUT-AMALOG OR DICTAL-OF AM ACTUAL MEASUREMENT IN THE CASE OF A MANUAL LOADER, IT MAY BE USED FOR THE DIAL OR SETTING INDICATION, LE, FOR THE VALUE OF THE INITIATING WARMBLE
- A PRIOT LICHT THAT IS PART OF AN INSTRUMENT LOOP SHOULD BE DESIGNATED BY A FIRST-LETTER FOLLOWED BY THE SUCCEEDING-LETTER 1. FOR EXAMPLE, A PRIOT LICHT THAT IS DESIRED TO TAG A PRIOT LICHT THAT IS NOT PART OF AN INSTRUMENT LOOP. THE LICHT IS DESIRED TO TAG A PRIOT LICHT THAT IS NOT PART OF MAY BE TRACED IN THE SAME WAY. FOR EXAMPLE, A RUNNING LIGHT FOR AN ELECTRIC MOTOR MAY BE TRACED EL, ASSUMING VOIL LOCE TO BE THE APPROPRIATE BESURED WARRABLE, OR YI, ASSUMING THE OPERATING STATUS IS BIGHING MONTONED. THE UNCLUSINGED WARRABLE X SHOULD BE USED ONLY FOR APPLICATIONS WHICH ARE LIMITED IN EXTENT THE DESIGNATION XE SHOULD NOT BE USED FOR MOTOR RUNNING LIGHTS, AS THESE AND COMMONY MARKROUS IT IS PERMASSIBLE TO USE THE USER'S CHOICE LETTERS MIN OR O FOR A MOTOR RUNNING LIGHT WHEN THE MEANING IS
 PREVIOUSLY DEFINED. IS MIS SURPLY HEAD OF THE WORD "MOTOR", BUT FOR A MONITORED STATE.
- USE OF A SUCCEEDING-LETTER U FOR "MULTFUNCTION" INSTEAD OF A COMBINATION OF OTHER FUNCTIONAL LETTERS IS OPTIONAL. THIS NONSPECIFIC FUNCTION DESIGNATOR SHOULD BE USED SPARRICLY.
- A DEVICE THAT CONNECTS, DISCONNECTS, OR TRANSFERS ONE OR MORE CIRCUITS MAY BE EITHER A SWITCH, A RELAY, AN ON-OFF CONTROLLER, OR A CONTROL VALVE, DEPENDING ON THE APPLICATION.

IF THE DEVICE MANIPULATES A FLUID PROCESS STENDED AMADIO-ACTUATED ON-OFF BLOCK VALVE 11 AS A CONTROL VALVE 11 IS INCORRECT 10 USE 11 SUCCEEDING—LETTERS CV FOR ANYTHING DIT-BER THACTUALTED CONTROL VALVE FOR ALL APPLICATIONS FLUID PROCESS STREAMS. THE DEVICE IS DESIGNAL

10

- A SWITCH, IF IT IS ACTIVATED BY HAND
 A SWITCH OR AN ON-OFF CONTROLLER IF IT IS
 AUTOMATIC AND IS THE FIRST SUCH DOVICE IN
 LOOP. THE TERM "SWITCH" IS GENERALLY USED
 IF THE DOVICE IS LISED FOR ALARM, PROT LIGH
 SELECTION, INTERLOCK, OR SAFETY.
- THE TERM "CONTROLLER" IS GENERALLY USED IT THE DEVICE IS USED FOR NORMAL OPERATING (A RELAY, IF IT IS AUTOMATIC AND IS NOT THE SUCH DEVICE IN A LOOP, I.E., IT IS ACTUATED A SWITCH OR AN ON-OFF CONTROLLER
- IT IS EXPECTED THAT THE FUNCTIONS ASSOCIATED OF SUCCEEDING-LETTER Y WILL BE DEFINED OUTSING ON A DIAGRAM WHICH INTRIPHER DEFINITION IS CONNICESSARY THIS DEFINITION NEED NOT BE MADE Y FUNCTION IS SELF-ENDENI. AS FOR A SOLENOID VELLED SIGNAL LINE
- THE MODITYING TERMS "HIGHT AND "LOW" AND "MIN "INITERNACIDATE" CORRESPOND TO VALUES OF THE L WARNABLE, NOT TO VALUES OF THE SCIPAL, "MISE NOTED, FOR EXAMPLE, A HIGH-LEVEL ALARM DERN' A REVERS—ACTING LEVEL TRANSMITTER SIGNAL SHI LAM, EVEN THOUGH THE ALARM IS ACTUATED WHEN FALLS TO A LOW VALUE THE TERMS MAY BE USED COMBINATION AS APPROPRIATE
- THE TERMS "HIGH" AND "LOW" WHEN APPLED TO I WALKES AND OTHER OPEN-CLOSS DEVICES. APE DI FOLLOWS: "HIGH" DENDITS THAT THE VALVE IS NO APPROACHING THE FULLY OPEN POSITION, AND "LOT THAT IT IS NO OR APPROACHING THE FULLY CO
- THE WORD "RECORD" APPLIES TO ANY FORM OF P STORAGE OF INFORMATION THAT PERMITS RETRIEVAL MEANS.
- FOR USE OF THE TERM "TRANSMITTER" VERSUS "CO SEE DEFINITIONS IN SECTION 3 OF REFERENCE DOC
- FIRST-LETTER V. "VIBRATION OR MECHANICAL AMALY INTENDED TO PERFORM THE DUTIES IN MACHINERY THAT THE LETTER A PERFORMS IN MORE GENERAL EXCEPT FOR VIBRATION, IT IS EXPECTED THAT THE OF INTEREST WILL BE DEFINED OUTSIDE THE TAGGI
- FIRST-LETTER Y IS INTENDED FOR USE WHEN CON-MONITORING RESPONSES ARE EVENT-DRIVEN AS OF THATE OR THAT SCHEDULE-DRIVEN. THE LETTER Y, IP POSITION, CAN ALSO SIGNITY PRESENCE OR STATE
- MODIFYING-LETTER K, IN COMBINATION WITH A FIRS SUCH AS L, T, OR W, SIGNIFIES A TIME RATE OF C THE MEASURED OR INITIATING VARIABLE. THE VARIAL FOR INSTANCE, MAY REPRESENT A RATE-OF-WEIGH COMTROLLER.

413/94 948an ARI

NOTES

THE PURPOSE OF THIS SHEET IS TO PRESENT A BASIC DETINITION OF THE SYSTEM USED FOR INSTRUMENT DENTRICATION THIS SHEET SHOULD PROVIDE SUFFICIENT INFORMATION TO ALLOW MOST USERS TO UNDERSTAND THE INSTRUMENT REPRESENTATION USED ON THE ASSOCIATED P & IDS

A 10/13/94 DATE

11 10 TYPICAL LETTER COMBINATIONS SUCCEEDING-LETTERS (3) CONTROLLERS SWITCHES AND ALARM DEVICES .. SOLENOIDS RELAYS. SELF-ACTUATED CONTROL VALVES READOUT DEVICES
RECORDING INDICATING TRANSMITTERS PRIM DUTPUT FUNCTION RECORDING INDICATING BLIND COMPUTIN HIGHees LOW RECORDING INDICATING COME BLWID AR ASHL USER'S CHOICE (1) USER'S CHOICE (1) BR B BSH BSL BSHL. BRI Bil BT CONTROL (13) ELEMENT) ERC FRC FORC FFRC FOV FICE FE FE FOY FFC ICE (9) HICH (7,15,16) HK HC HS ISHL IRC JE KE JSH KSH JSL JSHL JRT JIT. KY CONTROL STATION (22) KRO KR LOW (7,15,16) MIDDLE, INTERMEDIATE (7,15) LR LRC LK LC LCV LSH LAT 111 11 LY LE USER'S CHOICE (1) USER'S CHOICE (1) CTION (23) PR PRC PDRC DRC PIC PC Pi POI PSH PSL PDSI POY ORT QE RE OR RR **05H** QSI OIT BIT OY BY RR RSH SRO 5Y TORC TSH TIC TDIC TC TDC TCV TDCV TR TDR TI TDI TSH TDSH TSL TRT TORT TIT TDIT IDI TY IDY MULTIFUNCTION (12 MULTIFUNCTION (12) VALVE, DAMPER, LOWER (13,24) WE WE VSL WRC WR WDR WDIC WC WC WD: W5H WD5H WSL WDSL WR1 WDR1 WIT WDIT WT WD? WY WDY UNCLASSFED (2)
RELAY, COMPUTE, CONVERT (13,14,18)
DRIVER, ACTUATOR UNCLASSFED
FINAL CONTROL ELEMENT UNCLASSIFIED (2) YP ₹C ZC ZDC ZSH ZIT ŽI ŽDI ZI ZDI ZE IF THE DEVICE MANIPULATES A FLUID PROCESS STREAM AND IS NOT A HAND-ACTUATED ON-OFF BLOCK VALVE IT IS DESIGNATED AS A CONTROL VALVE IT IS INCORRECT TO USE THE SUCCEEDING-LETTERS CY FOR ANYTHING OTHER THAN A SELF-ACTUATED CONTROL VALVE FOR ALL APPLICATIONS OTHER THAN FUND PROCESS STREAMS. THE DEVICE IS DESIGNATED AS FOLLIES. 'OVERS ALL ANALYSES NOT HOICE' LETTER IT IS EXPECTED ... WILL BE DEFINED OUTSIDE A MPLES ARE. SUCCEEDING-LETTER K IS A USER'S OPTION FOR DESIGNATING A CONTROL STATION, WHILE THE SUCCEEDING-LETTER C IS USED FOR DESCRIBING AUTOMATIC OR MARIUAL CONTROLLERS A TEST CONNECTION IS A PROCESS CONNECTION TO WHICH NO INSTRUMENT IS PRIMAMENTLY CONNECTED, BUT WHICH IS HIENDED FOR TEMPORARY, INTERMITTENT, OR FUTURE CONNECTION OF AN INSTRUMENT ЭE -DISSOLVED OXYGEN -GASEOUS OXYGEN OGEN GEN SMOKE SO2 TRB -ph -gaseous chlorine -smoke density -sulphur dioxide -turbioity ALWS
A SWITCH, IF IT IS ACTINATED BY HAND
A SWITCH OR AN ON-OFF CONTROLLER, IF IT IS
AUTOMATIC AND IS THE FIRST SUCH DEVICE IN A
LOOP THE TERM "SWITCH" IS GENERALLY USED
IF THE DEVICE IS USED FOR ALARM, PR.DT LIGHT,
SELECTION, INTERLOCK, OR SAFETY. PP -DESIGNATES A POINT FOR PRESSURE MEASUREMENT TW -DESIGNATES EMPTY THERMOMELL FP -DESIGNATES FLOW POINT WITH UNINSTALLED ELEMENT (ORFACE FLANGES WITH NO PLATE) "MULTINARIABLE" IN LIEU OF A ERS IS OPTIONAL IT IS CIFIC WARRABLE DESIGNATORS SUCH AP - DESIGNATES A FABRICATED CONNECTION DEDICATED TO AN AMALYSIS SUCH AS A VALVED SAMPLE NOZZLE THE TERM "CONTROLLER" IS GENERALLY USED IF THE DEVICE IS USED FOR NORMAL OPERATING CONTROL A RELAY, IF IT IS AUTOMATIC AND IS NOT THE FIRST BUCH DEVICE IN A LOOP, I.E., IT IS ACTUATED BY A SWITCH OR AN ON-OFF CONTROLLER. VALVES US "HIGH", "LOW", "MIDDLE", DR - IF A DEVICE MANIPULATES A FLUID PROCESS STREAM AND IS NOT A MANUALLY ACTUATED ON-OFF BLOCK VALVE, IT SHALL BE DESIGNATED AS A CONTROL VALVE. TO EMERGENCY PROTECTIVE REENCY PROTECTIVE FINAL PURS. A SELF-ACTUATED VALVE OF A FLUO SYSTEM AT A NICHER-FORLEDING FLUO FROM THE E-TYPE PCV, EVEN OF THE VALVE D HORMALLY. HONEVER, THIS SAYS OF IT SHITCHOOL TO CONDITIONS THE CONDITIONS THAT VALL AND/OR EQUIPMENT AND THAT INDRIBALLY. IT IS EXPECTED THAT THE FUNCTIONS ASSOCIATED WITH THE USE OF SUCCEEDING-LETTER Y WILL BE DEFINED OUTSIDE A BURBLE ON A DISAGRAM WHEN THEINTHER DEFINITION IS CONSIDERED NECESSARY. THIS DEFINITION NEED NOT BE MADE WHEN THE FUNCTION IS SELF-EVIDENT. AS FOR A SOLENOID VALVE IN A FILID SIGNAL LINE. A MAND CONTROL VALVE HCV IS A MANUALLY ACTUATED VALVE THAT MODULATES (THROTTLES) A PROCESS STREAM. SOLENDID VALVES IN PINEUMATIC SMITCHING SERVICE SHALL BE DESIGNATED AS Y, I.E., PY, HY, JY, ETC SOLENDID VALVES IN PROCESS STREAMS SHALL BE DESIGNATED V, IE. TY, MY, UY, ETC. -MOTORIZED VALVES ARE DESIGNATED THE SAME AS OTHER CONTROL VALVES, E.G., FV, PV, HV, ETC

PLIES TO INSTRUMENTS OR DEVICES TED VIEW, SUCH AS SIGHT GLASSES

3 TO THE READOUT—ANALOG OR JREMENT IN THE CASE OF A USED FOR THE DIAL OR SETTING LUE OF THE INITIATING WARNELE

OF THE BRITAINC WARRAUL

OF AM INSTRUMENT LOOP SHOULD

LETTER FOLLOWED BY THE

EXAMPLE, A PLOT LICHT THAT

PERDOS SHOULD BE TACCED KOL.

"LOT LICHT THAT IS NOT PART OF

KOTH IS DESIGNATED IN THE SAME

OF UNCLUGET OR THE THE MOTOR

OF VOLUGET OR THE APPROPMENT

ASSUMENCE THE OPERATING STATUS

SCLASSIFED WARRAUL IS SHOULD

IONIS WHICH ARE LIMITED IN

SHOULD NOT BE USED FOR MOTOR

ARE COMMONLY MAKEROUS. IT IS

ETTS CHOCK LETTERS MY OR OF

I WHICH THE MEXICAN OR

I SEED, IT MUST BE CLEAR THAT

> FOR THE WORD "MOTOR", BUT

R U FOR "MULTIFUNCTION" INSTEAD Frunctional Letters is optional. Designator should be used

SCONNECTS, OR TRANSFERS ONE OR R A SWITCH, A RELAY, AN ON-OFF WALVE, DEPENDING ON THE

- THE MODIFYING TERMS "HICH" AND "LOW" AND "MIDDLE" OR "INTERMEDIATE" CORRESPOND TO VALUES OF THE MEASURED MARABLE, NOT TO VALUES OF THE SIGNAL, "MALESS OTHERMISE MOTED. FOR EXAMPLE, A HIGH-LEVEL ALARM DERNYLD FROM A REVERS—ACTING LEVEL TRANSMITTER SIGNAL SHOULD BE AN LAM, EVEN THOUGHT THE ALARM IS ACTUATED WHEN THE SIGNAL FALLS TO A LOW WALLE THE TERMS MAY BE USED IN COMBINATION AS APPROPRIATE.
- THE TERMS "HIGH" AND "LOW" WHEN APPLED TO POSITIONS OF WALVES AND OTHER OPEN-CLOSE DEVICES, ARE DEFINED AS FOLLOWS; "NIGH" DENDIES THAT THE VALVE IS IN OR APPROACHING THE FULLY OPEN POSITION, AND "LOW" DENDIES THAT IT IS IN OR APPROACHING THE FULLY CLOSED POSITION
- FOR USE OF THE TERM "TRANSMITTER" VERSUS "CONVERTER", SEE DEFINITIONS IN SECTION 3 OF REFERENCE DOCUMENT.
- FIRST-LETTER V. "VIBRATION OR MECHANICAL ANALYSIS", IS INTENDED TO PERFORM THE DUTIES IN MACHINERY MONITORI THAT THE LETTER A PERFORM'S IN MORE GENERAL ANALYSES EXCEPT FOR VIBRATION, IT IS EXPECTED THAT THE VARIABLE OF INTEREST WILL BE DEFINED OUTSIDE THE TAGGING BUBBL
- FIRST-LETTER Y IS INTENDED FOR USE WHEN CONTROL OR MOMINDRING RESPONSES ARE EVENT-DRIVEN AS OPPOSED TO TIME OR TIME SCHEDULE-DRIVEN. THE LETTER Y, IN THIS POSITION, CAN ALSO SIGNIFY PRESENCE OR STATE.
- MODEYING-LETTER K, IN COMBINATION WITH A FRST-LETTER SUCH AS L. T, OR W. SIGNWIES A TIME RATE OF CHANGE OF THE MEASURED OR BRINING VARIABLE. THE VARIABLE WICK. FOR INSTANCE, MAY REPRESENT A RATE-OF-WEIGHT-LOSS CONTROLLER.

AN ON-OFF VALVE REMOTELY CONTROLLED BY A HAND-SWITCH IS DESIGNATED AS A HAND VALVE HV.

HAND ELECTRIC SWITCH DESIGNATIONS

- -EMERGENCY STOP E
- E/J EMERGENCY STOP/JOG
 - -2 PUSH BUTTONS (ON-OFF) MOMENTARY WITH BACK LIGHT(S)
- 2PB -2 MOMENTARY PUSH BUTTONS (ON-OFF)
- S/3/R -STOP/JOG/RUN
- 5w -SELECTOR SWITCH
- HOA -HAND, OFF, AUTO

USER'S CHOICE DESIGNATIONS

- G -
- 0 -

INTERNATIONAL TECHNOLOGY CORPORATION

Knoxville, Tennessee

This drawing and the behaviorables contained shorth one property of 11 Compression to may property only for one or the special property of the special

A 10/13/94 FOR FINAL SLEMITTAL TO USAEC 10 DATE REVISION JMH PA PA PA PA 81 CHES CHES PROJ APR STARTING DATE 9/12/94 PA CHILD PA ACHARY

PR 3

This drawing and the Information contained therein one proposed by the law property of IT Composition. It was propored salely for use on the specific principle containment of the small bisended or represented to an authority or represented to a suitable or adopted for any other purpose or roused by the amore or others and dry other project or labels. The decemp shall not be used to capit for the purpose shick in was bagaland one in subject to return an amount. If anythis of invasions are response.

PIPING & INSTRUMENTATION DIAGRAM INSTRUMENT IDENTIFICATION

PROJ. NO.	DRAWING NO.	REV
322243	D-00-11-001	A

I VALVE-BODY PORTS THAT ARE CLOSED IN NORMAL OPERATION ARE BLACKENED THE OPERATING CONDITION SHOWN FOR MAIN VALVE BODGES CORRESPONDS TO FULL-LOAD OR NORMAL OPERATION PECAPOLISS OF THE TYPE OF ACTUATOR SOLENOID PILOT VALVE SHALL BE SHOWN IN THEIR DEENERGIZED POSITION

- 2 IDENTIFY BOTH THE ACTUAL ELEMENT WHICH IS PLACED IN THE LINE AND THE INSTRUMENT UNLESS THE DEVICE IS ONE UNIT
 - FE ORNICE PLATE FT TRANSMITTER
 FT MAGNETIC FLOWMETER WITH INTEGRAL TRANSMITTER

- 3 THE TYPE OF FLOW INSTRUMENT IS USUALLY NAMED OUTSIDE THE INSTRUMENT CIRCLE EG MAGNETIC FLOWMETER, DISPLACEMENT METER MASS FLOWMETER
- 4. TAG THE THERMORELL SEPARATELY IF IT IS REMOTE MOUNTED FROM THE INSTRUMENT

TW. TIC REMOTE CAPILLARY
TO DIAL THERMOMETER
TI, IT THERMOCOUPLE AND TRANSMITTER
TIT TRANSMITTER BUILT-IN TO THERMOCOUPLE HEAD.

(L

A 10/13/ STARTING DATE 9

9/12/94

6.30 1

CONCEPTUAL DESIGN AND RELATED DOCUMENTS

8.0 EQUIPMENT LIST

U.S. Army Environmental Center Red Water Treatment Technology Test Plan and Site Preparation Aberdeen Proving Ground, Maryland COMPANY NAME: IT Corporation

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.: WP: WP1585.8

8.0 Equipment List Circulating Bed Combustor System

Equipment Number	Equipment Name
B-2001	Combustion Air Blower
B-2002	Loop-Seal Purge Air Blower
B-5001	Induced Draft Fan
F-2001	Circulating Bed Combustor (CBC)
G-2001	Start-Up Burner
H-2001	Ash Cooler Conveyor
H-2002	Limestone Feed Hopper
H-2003	Limestone Feed Screw Conveyor
H-2004	Al ₂ O ₃ Feed Hopper
H-2005	Al ₂ O ₃ Feed Screw Conveyor
H-2006	Hoist
H-2007	Limestone Bag Breaker
H-2008	Al ₂ O ₃ Bag Breaker
H-5001	Rotary Air Lock
H-5002	Rotary Air Lock
P-2001	Cooling Water Recirculating Pump
S-2001	Cyclone Separator
S-5001	Baghouse
T-2001	Ash Bin
T-5001	Partial Quench
T-5002 A, B	Dust Collection Drum
X-2001	Distributor Plate
Z-5001	Stack

By: SM Checked: PA Approved: PA Date: 01/12/95 Equipment List IT PCE Knoxville, Tennessee Rev. No. (0) (1) Area No.:

Area Name: All Areas

Page: 1 of 1

CONCEPTUAL DESIGN AND RELATED DOCUMENTS

9.0 EQUIPMENT SPECIFICATIONS

U.S. Army Environmental Center Red Water Treatment Technology Test Plan and Site Preparation Aberdeen Proving Ground, Maryland COMPANY NAME: IT Corporation

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.9

9.0 Equipment Specifications

The equipment specifications are provided for the following major equipment in the following order:

Equipment Number	Equipment Name	Area Name
F-2001	Circulating Bed Combustor	Combustion Module (Area 20)
B-2001	Combustion Air Fan	Combustion Module (Area 20)
G-2001	Start-up Burner	Combustion Module (Area 20)
F-2002	Cyclone Separator	Combustion Module (Area 20)
B-2002	Loop-Seal Purge Air Blower	Combustion Module (Area 20)
H-2004/H-2008	Al ₂ O ₃ Feed Hopper and Bag Breaker	Combustion Module (Area 20)
H-2002/H-2007	Limestone Feed Hopper and Bag Breaker	Combustion Module (Area 20)
H-2006	Hoist	Combustion Module (Area 20)
H-2005	Al ₂ O ₂ Feed Screw Conveyor	Combustion Module (Area 20)
H-2003	Limestone feed screw combustor	Combustion Module (Area 20)
P-2001	Cooling Water Recirculation Pump	Combustion Module (Area 20)
H-2001	Ash Cooler Conveyor	Combustion Module (Area 30)
T-2001	Ash Bin	Combustion Module (Area 30)
T-5001	Partial Quench	Air Pollution Control (APC) Module (Area 50)
S-5001	Baghouse	APC Module (Area 50)
H-5001	Rotary air lock	APC Module (Area 50)
H-5002	Rotary air lock	APC Module (Area 50)
B-5001	Induced Draft Fan	APC Module (Area 50)
Z-5001	Stack	APC Module (Area 50)
T-5002 A/B	Dust Collection Drums	APC Module (Area 50)

By: PA Checked: PA Approved: PA Date: 01/12/95 Equipment Specifications IT PCE Knoxville, Tennessee Rev. No. (0) (1) Area No.: 20/30/50 Area Name: All Areas

Page: 1 of 1

Γ		TT CODDODATIO	NT	F	AN SE	PECIE	ICATIO	N	II CORP S	PEC. NO).
		I.T. CORPORATIO	1	NO BY	DATE	LOII	REVISION		SHEET 1	OF	1
		300 11011 0011 1100 2									
				1					PROJECT	USAE	С
		A NO: 20		2					JOB NO.	32224	9
		A NAME: CBC NO.: B-2001							LOCATION		-
		JIPMENT NAME: COMBUS	STION	3	-						
•	_	AIR FAN								APPR	DATE
					ļ		*		WMS	PA	11/30/94
1		Manufacturer:			Model No	D.:					
2 3 4 5		No. of Units: ONE Description of Gas and Materials H	-landled:	AMBIENT AIR							
4	ì	Flow: 6000 SCFM			W.G. Tem	p.: -20	/+110 de	g. F Gas	Density:	0.077	Lb/Cu.Ft.
	G	Hours per day operation: 24									
6	E	Noise Rating Per Attached Noise L	evel Spec. No	o. * je and Material	of Dime:	*		Blad	es: *		
7	N E	WHEEL: Diameter: * In HOUSING GAGE & MATERIALS:		C.S.	Side		C.S.		Tube (Axial)	*	
8	R	Performance Curves: YES Curve			Mfr. Size	& Type:	*		Weight:	*	Lbs.
10	Α	R.P.M.: * B.H.P. Re		*	Mech. Ef	ficiency:	*	Outlet Ve	locity.	* .	ft/sec
11	L	BEARINGS: Type:	*	Mak		neter at W			urers No.: nches		-
12		SHAFT: Diameter at Bearings: Distance Between Bearings:		inche	s Diai	neter at W	Distance from				*
13		Maximum Shaft Speed:	•								
14 15		THE STATE OF									
16	С	Arrangement: *		Rotation:		CCW	let? YES	Discharge	e: TH Double Inlet?		
17	N	Single Width? YES SPECIAL FEATURES REQUIRED:	Double Width		YES	Single In	let? YES	Drain in H		ES	
18 19	T R	Clean Out in Housing? YES	rianged inlet	Split Housing					cketed Bearing		NO
20	F	Shaft Seals? YES		inlet or Outlet		NO		Other:	GUARDS & S	CREE	NS
21	G										
22	L										
23		Vertically or Horizontally Mounted Tubeaxial?	? Vaneaxial?		.,	Arranger	nent:		Rotation:		
24 25	X	TYPE OF INLET AND OUTLET:		ilet?		Inlet Con			Outlet Cone?		
26	î	SPECIAL FEATURES REQUIREDA	Access Doors'	?		Support		Motor Hood?			
27	Α	inlet or Outlet Guard?	Outside Belt (Guard?		Flanged	Inlet & Outlet?		Other:		
28 29	L										
30	Р	Horizontally or Vertically Mounted	?								
31		Direct Drive?					pacity Static Co	onducting			
32	Р	SPECIAL FEATURES REQUIRED:	Safety Guard	s?		Shutters'	?		Other:		
33	L R	Description of Guard & Shutter: Adjustable Pitch?				Automati	c Variable Pitc	h?			
34 35	_	Adjustable Fitch:				7.0.0					
36			Elec or Steam	n Turbine?	ELEC		ear, Belt or V-	Rope?	BELT		
37			Mfr.: *				TURBINE:	(40) 44	Mfr.: Model:		
38 39	_		Enclosure: Service Facto	TEFC or: 1.4		Mounted Horsepo		HP	Water Rates:		Lbs/Hr
40	D R		Temp. Rise:			Speed			Vacuum (if ar	ıy):	
41	1		Insulation:				am Press.:		Inlet Steam T	emp.:	
42	٧		Frame:	*		Norn		psig	Normal:		deg. F
43	E		Est. BHP Req Mfr.:	rd: 28.4	HP	Max. Backpre		psig psig	Max.:		ueg r
44 45	R	0. 222	Model:			Nozzles	Size	Ratir	ng Facir	ng l	Location
46			Class:	.,		Inlet					
47						Exhaust					-
48		SEE DRIVER SPECIFICATION NO.	DERATE RE	TWEEN SEA	LEVEL AN	ID 6000 I	FEET EI EVAT	ION	,		
49 50	N	1. FAR SHALL BE SIZED TO	. LIMIE DE	TILLIT OLA		5550 1					
51	0										
52	T										
53	E										
54	į	VENDOR TO COMPLETE INFO	DRMATION A	MARKED * * *							

IT CORP SPEC. NO. I.T. CORPORATION AIR BURNER POLLUTION CONTROL ENGINEERING NO BY DATE SHEET 1 OF 1 PROJECT NAME 1 **USAEC** AREA NO: 20 2 JOB NO 322243 AREA NAME: CBC G-2001 TAG NO.: LOCATION **EQUIPMENT NAME:** START-UP 3 APPR BURNER BY DATE 11/30/94 WMS PA DESCRIPTION QUANTITY 2 **Operating Conditions:** 3 1 Off-gas Temperature 1,300 deg. F 4 0 - 30" W.C. Vacuum Combustor Pressure 5 Combustion Gases Media 6 7 8 **Design Conditions** Off-gas Temperature 2,200 deg. F 9 10 Combustor Pressure -2 to +2 psig Wind Load 110 mph 11 Zone 3 12 Earthquake Load -20 to 110 deg. F 13 **Ambient Temperature** Sea Level to 6000 ft Elevation 14 15 Heat Release 16 Minimum 500,000 Btu/hr 17 Maximum 5,000,000 Btu/hr 18 Operating 4,000,000 Btu/hr 19 20 Fuel Gas Natural gas 21 22 23 No. of Burners and Type One, vortex type air burner side Burner 24 mounted on the CBC wind box; 25 burner shall extend approximately 26 5" into the wind box. Turndown 27 shall be 10:1. 28 29 Burner to be ignited by a spark Ignitor 30 ignitor utilizing an electric spark. 31 32 Material of Construction Portion of burner in CBC to be 304 33 SS, or 309 SS, or equal. 34 35 36 37 38 39

IT CORP SPEC. NO. I.T. CORPORATION CYCLONE SEPARATOR POLLUTION CONTROL ENGINEERING 1 OF 1 NO SHEET PROJECT NAME 1 USAEC AREA NO: 20 JOB NO 2 **CBC** 322243 AREA NAME: TAG NO .: F-2002 LOCATION CYCLONE **EQUIPMENT NAME:** 3 SEPARATOR BY APPR DATE 9/13/94 ONE YES No. Units: Total Volume: Gal. Field Erected? 1 30" W.C. VACUUM 2 Operating Pressure, psig Operating Temperature, deg F 1,600 3 Operating Shell Temperature, deg.F 350 4 60" W.C. VACUUM Design Pressure, psig 5 Design Temperature, deg F 2,200 6 Design Shell Temperature, deg.F 500 7 D 5000 ACFM E Operating Gas Flow 8 Operating/Maximum Inlet Velocity 50 / 70 FT PER SECOND s 9 13 GR/DSCF Grain Loading 10 1 Differential Pressure 3" to 5" W.C. G 11 95% MIN. N Removal Efficiency 12 B 13 D 14 Type Supports: 15 Α REFRACTORY LINED INTERIOR 16 Т Insulation: 17 Fireprooofing: Α Sandblast: NONE Paint: 18 MANHOLE: Hinged? Davited? Other: 19 20 Platform Clips: Ladder Clips: Insul. Rings: 21 Pipe Supports: Wind Load: 110 MPH mph Seismic: ZONE 3 22 lbs. Weight Full of Water: N/A 23 Weight Empty: Thicknes Mat'l Cls Mat'l - Minimum Quality 24 Item A-36 1/4" C.S. 25 Shell Vortex Finder HASTELLOY 276-C 1/4" HAST. 26 М 6" RFRAC CASTABLE 27 Lining O.D. 38" 28 Т 29 Ε Length 120" A-36 Nozzle Necks C.S. 30 R A-36 31 Flanges C.S. 1 32 Α 33 M.H. Cover L Supports 34 35 Bolts/Studs 36 Nuts **HIGH TEMPERATURE** 37 Gaskets Rating Face 38 Service Mark No. Size Type 28" OFF-GAS 39 N Α 1 B 28" OFF-GAS 1 40 0 Z SOLIDS OUTLET C 1 16" 41 POKE-HOLES D 2 4. 42 Z Ε 43 L Ε F 44 G 45 46 S Н 47 С 48 н J 49 Ε K 50 D L М 51 U N 52 L 0 53 Ε P 54 For Further Details, See Sheet No.: Nozzle to be Plugged or Blinded * 55

		TT CODDODATIO	7 X T	ì		_	AN C	DECIE	FICATIO	N		IT CORP SPEC	. NO.	
	PO.	I.T. CORPORATION CONTROL ENGINE			NO	BY	DATE	LOII	REVISION	14		SHEET 1	OF 1	
					110					· · · · · · · · · · · · · · · · · · ·	_			
	, i.				1							PROJECT NAM	AEC	
		A NO: 20			2							JOB NO.	040	
		A NAME: CBC A NO.: B-2002	1								-	LOCATION	2243	
	FOL	B-2002 SIPMENT NAME: LOOP-			3							LOOKHON		
		PURGE BLOWE	AIR								Γ,	BY APPI		
1		Manufacturer: *					Model No	0.:	•					
2		No. of Units: ONE												
3		Description of Gas and Materials			AMB	IENT AI					D	'h 0.0	77. 1 h /O.: FA	
4	_	Flow: 200 SCFM	S.P.	30		Inches	W.G. Terr	p.: -20	/+110 de	g. F Gas	Dens	ity: 0.0	77 Lb/Cu.Ft.	
5 6	G	Hours per day operation: 24 Noise Rating Per Attached Noise	Level Spe	o No										
7	N		Inches	Gage	and	Material c	f Rims:	•		Blac	es:	•		
8	E	HOUSING GAGE & MATERIALS:				c.s.	Side	es	C.S.		Tube	(Axial)	•	
9	R	Performance Curves: YES Cur	/e No.:	*				& Type:				Weight: 1	LDS.	
10	Α	R.P.M.: * B.H.P. Re			*		Mech. Ef	ficiency:	*	Outlet Ve			. ft/sec	
11	L	BEARINGS: Type:	*			Make				Manufact			-	
12		SHAFT: Diameter at Bearings:		*		inches	Diar	neter at W	neel: Distance from		nche			
13		Distance Between Bearings: Maximum Shaft Speed:							Distance nom	bearing t	O Faii	Wileel.		
14 15		Maximum Shall Speed.												
16	С	Arrangement:	*		Rota	tion:		CCW		Discharg	e:	TH		
17	N	Single Width? YES	Double V					Single Inl	et? YES			ole Inlet?		
18	Т	SPECIAL FEATURES REQUIRED	: Flanged	inlet a			YES			Drain in h				
19	R	Clean Out in Housing? YES				Housing						d Bearings?	NO	
20	F	Shaft Seals? YES			Inlet	or Outlet	Dampers	? NO		Other:	GUA	RDS & SCR	EENS	
21	G													
22	L	Vertically or Horizontally Mounted	12											
24	Α	Tubeaxial?	Vaneaxia	1?				Arrangen	nent:		Rotat	tion:		
25	Х	TYPE OF INLET AND OUTLET:	Streamlin	ed Inle	t?			Inlet Cone? Out				tlet Cone?		
26	. 1	SPECIAL FEATURES REQUIRED										Motor Hood?		
27	Α	Inlet or Outlet Guard?	Outside l	Belt Gu	uard?			Flanged	nlet & Outlet?		Othe	r:		
28 29	L													
30	P	Horizontally or Vertically Mounted	1?											
31		Direct Drive?						High Cap	acity Static Co	nducting	V-Be	elt Drive?		
32		SPECIAL FEATURES REQUIRED	: Safety G	iuards'	?			Shutters?			Othe			
33	L	Description of Guard & Shutter:												
34	R	Adjustable Pitch?						Automati	c Variable Pitc	h?				
35		Furnished By: FAN MFG'R	Elec or S	toam	Lurbir	192 F	LEC	Direct G	ear, Belt or V-	Rone?		BELT		
36		ELECTRIC MOTOR:	Mfr.:	*	i di bii	10. L		STEAM T			Mfr.:			
38		Mounted By: FAN MFG'R	Enclosur	e:		TEFC		Mounted	Ву:		Mode	el:		
39	D		Service F	actor:		1		Horsepov	wer:			r Rates:	Lbs/Hr	
40	R	Volts: 460 -	Temp. Ri					Speed		rpm		um (if any):		
41	1	Phase: 3	Insulation	n:					m Press.:			Steam Temp		
42	٧	Cycles: 60 Nominal Size: 3 HP	Frame:	Dec's	1. (0.9	HP	Norm Max.:		psig psig		Normal: Max.:	deg. F deg F	
43	E	Nominal Size: 3 HP SPEED REDUCERS:	Est. BHP Mfr.:	nequ	'	J. J	111	Backpres		psig	- 10	nax	ueg i	
45		Ratio:	Model:					Nozzies	Size	Ratin	g	Facing	Location	
46		Integral or Separate?	Class:					inlet						
47								Exhaust					•	
48		SEE DRIVER SPECIFICATION NO			=		F) (F)	D 4445		101				
49		1. FAN SHALL BE SIZED TO	JPERATE	BET	WEE	N SEA L	EVEL AN	D 6000 F	EEI ELEVAI	ION.				
50 51	N O													
52	-													
53	4													
54	1													
55		VENDOR TO COMPLETE INFO	ORMATIC	ON MA	RKE	D * * *.								

FEED HOPPER IT CORP SPEC. NO. I.T. CORPORATION SPECIFICATION POLLUTION CONTROL ENGINEERING DATE NO BY SHEET 1 OF 1 PROJECT NAME USAEC 20 AREA NO: JOB NO. 322243 CBC AREA NAME: 2 H-2004 / H-2008 EXISTING OR NEW? TAG NO .: Al2O3 FEED NEW EQUIPMENT NAME: HOPPER AND BY APPR DATE 3 **BAG BREAKER** PA 10/1/94 1 2 **FUNCTIONAL DATA** 3 Application: Feeding Aluminum Oxide 4 5 Material Handled: Al203 6 Density: 70 - 80 pcf 7 Material Temperature: **Ambient** 8 Normal -**Ambient** 9 Maximum -110 deg. F. Capacity: 10 Normal -50 lb/hr Particle Size: 1/32" 11 Moisture: 12 Range -10 to 150 lb/hr none Discharge To: H-2005 Al2O3 Feed Conveyor Manually (bags broken) 13 Fed By: Days/Year: 365 Operations, Hrs/Day: 12 - 2414 Location: Outdoors or in temperary bldg. 15 16 17 18 **SPECIFICATIONS** 19 150 lbs/hr 20 21 3' x 3' x 3' 22 23 sloped walls. 24 Material of Construction, 1/4" A-36 steel. 25 26 Support, structural steel for independent supporting Feed Hopper & Mass Flow Feeder. 27 28 Vendor to include Bag Breaker System (H-2008) and fugative emissions collection system. 29 30 31 32 33 34 35 36 37 38 39

FEED HOPPER IT CORP SPEC. NO. **SPECIFICATION** I.T. CORPORATION POLLUTION CONTROL ENGINEERING NO BY DATE REV SHEET PROJECT NAME USAEC AREA NO: 20 JOB NO. 322243 AREA NAME: CBC 2 TAG NO .: H-2002 / H-2007 EXISTING OR NEW? NEW **EQUIPMENT NAME:** LIMESTONE FEED HOPPER AND BY APPR DATE 3 **BAG BREAKER** SLM PA 11/30/94 1 **FUNCTIONAL DATA** 2 3 Feeding Limestone 4 Application: 5 Limestone Material Handled: 6 85 - 95 pcf Density: 7 Material Temperature: **Ambient** 8 Normal -**Ambient** Maximum -110 deg. F. 9 10 Capacity: 1/4" Particle Size: 11 Normal -30 lb/hr 10 to 150 lb/hr Moisture: none 12 Range -Manually (bags broken) Discharge To: H-2003 Limestone Feed Conveyor Fed By: 13 Days/Year: 365 Operations, Hrs/Day: 12 - 2414 Outdoors or in temperary bldg. 15 Location: 16 17 **SPECIFICATIONS** 18 19 20 150 lbs/hr 21 3' x 3' x 3' 22 23 sloped walls. 24 Material of Construction, 1/4" A-36 steel. 25 26 Support, structural steel for independent supporting Feed Hopper & Mass Flow Feeder. 27 28 Vendor to include Bag Breaker System (H-2007) and fugative emissions collection system. 29 30 31 32 33 34 35 36 37 38 39

I.T. CORPORATION			SP	IT CORP SPEC. NO.			
POLLUTION CONTROL ENGINEERING	NO	BY	DATE	REV.	SHEET	1 OF	1
	1				PROJECT	NAME USAEC	;
AREA NO: 20 AREA NAME: CBC	2				JOB NO.	322243	3
TAG NO.: H-2006 EQUIPMENT NAME: HOIST					EXISTING	OR NEW?	
	3				BY	APPR	DATE
					SLM	PA	10/1/94

FUNCTIONAL DATA

Application:

3

4

6

7

8

9

10

11

12

13

14 15

23 24

25 26

27 28

29 30

Lifting Feed Bags and Misc. Jobs

Material Handled:

Limestone and Al2O3

Material Temperature:

Ambient Ambient

Normal – Maximum –

110 deg. F.

Capacity:

Normal -

Varies

Range -

Up to 5 Tons

Loaded By:

Manually

Discharge To: Platforms Days/Year:

Operations, Hrs/Day:

Location:

Outdoors or in temperary bldg.

Cable: 38 ft. steel

SPECIFICATIONS

5 Ton Hoist

Hoist Moves in the x,y, and z plains.

Support, structural steel for independently supporting Hoist.

Motorized for every direction

	 ,	I.T. CODDODATION			CONVEYOR	IT CORP S	IT CORP SPEC. NO.						
	me	I.T. CORPORATION OLLUTION CONTROL ENGINEERING	NO BY	DA	SPECIFICATION REV.	N	SHEET	1 OF 1					
1 11	PC	ollution control engineering	NO BY	UA	IE REV.		SHEET	1 OF 1					
			1				PROJECT	NAME USAEC					
		NO: 20	2			JOB NO.							
1	REA NG N	NAME: CBC NO.: H-2005					LOCATION	322243					
		PMENT NAME: AI2O3 FEED	3				LOCATION	•					
		SCREW CONVEYOR					BY	APPR DATE					
<u>_</u>		ONE					WMS	PA 11/30/94					
2	Qua	Intity: ONE S Material Conveyed: ALUMINUM OXIDE (A	1203)		Material Form: Sludge	Solid X	Other:						
3		E Density: 70 - 80 lb/ft3 Temperature: AMB		Viscosity:									
5	00	R Moisture Content: Dry X Wet V Material Reactions: NONE Harde	ne .	Calci	% Free fies Other:	Liquid: Yes	No X	%_					
6	N	Corrosion or Erossion Factors: MODERATEL	Y EROSS		ies Other.								
7	D	C Vapor Formation: Yes No X Vapor Colle	ection: Yes	No	X Vapors Formed:								
8	+	E Service Location: Indoors X Outdoors X Location Description:											
10	i	O Capacity: Normal: 50 lb/hr; Maximum:	150	ib/hr	Elevation Gain: 0	ft. Horiz	zontal Conveyance	: * ft.					
11	0	P Operating Factor: hrs/day,	days/yr		Disabassa tau CIDO	CULATING BE	O COMPLICT	OR E-2001					
12	N S	R Fed by: Al2O3 FEED HOPPER H-2004 T Equipment Operation: Continuous X Interm				Reversing		RIABLE SPEED					
14		N Past Experience:											
15		G			Day Filmby Other	SCREW	TVDE						
16 17		Conveyor Type: Belt Roller Pan Width:	Apron	Inches	Drag Flight Other: Length: 4	SCREW	ITFE	ft.					
18	C	Speed: *		ft./min.	Incline /Decline	;	Degre	es from Horizontal					
19	20	Weight: * Enclosure: Open Covered X Sealed	X Inert	lbs Atmospher	Loaded Weight: #			lbs					
20	S	Enclosure: Open Covered X Sealed Enclosure Seal: HIGH TEMPERATURE GAS		Amospher	e Other.								
22	Т			CON	VEYOR								
23	R		Flat Plate		Other:			Domes					
24	U	U Idler/Plate Arrangement: Flat Troughed Trough Incline: Degrees											
25		Roller Size: Inches Roller Spacing:	Inches	Impact Ro		Impact Roller Sp	acing:	Inches					
25 26	Ċ	Roller Size: Inches Roller Spacing: Head Pulley Length:	Inches	Impact Ro Inches		impact Roller Sp	acing:	Inches Inches					
25 26 27	CTI	Head Pulley Length: Tail Pulley Length:	Inches		ller Size: Inches Head Pulley Diameter: Tail Pulley Diameter:		acing:	Inches					
25 26 27 28		Head Pulley Length: Tail Pulley Length: Belt Type:	Inches	Inches Inches	ller Size: Inches Head Pulley Diameter: Tail Pulley Diameter:	Impact Roller Sp	acing:	Inches Inches					
25 26 27 28 29 30	C0Z	Head Pulley Length: Tail Pulley Length: Belt Type: Belt Cleaner: Type: Scraper Skirt Plate: Yes No Skirt Depth:	Brush	Inches Inches	ller Size: Inches Head Pulley Diameter: Tail Pulley Diameter: Belt Chevrons: Wire Other: Inches Skirt Width:		acing:	Inches Inches					
25 26 27 28 29 30 31	O02 D	Head Pulley Length: Tail Pulley Length: Belt Type: Belt Cleaner: Type: Scraper E Skirt Plate: Yes No Skirt Depth:	Brush	Inches Inches	ller Size: Inches Head Pulley Diameter: Tail Pulley Diameter: Belt Chevrons: Wire Other: Inches Skirt Width: O W C O N V E Y O R		acing:	inches Inches Inches Inches					
25 26 27 28 29 30 31 32 33	C0Z	Head Pulley Length: Tail Pulley Length: Belt Type: Belt Cleaner: Type: Scraper Skirt Plate: Yes No Skirt Depth:	Brush	Inches Inches	Head Pulley Diameter: Tail Pulley Diameter: Belt Chevrons: Wire Other: Inches Skirt Width: O W C O N V E Y O R Chain Pitch:		acing:	Inches Inches Inches					
25 26 27 28 29 30 31 32 33 34	O02 DH-4	Head Pulley Length: Tail Pulley Length: Belt Type: Belt Cleaner: Type: Scraper Skirt Plate: Yes No Skirt Depth: C O N T Chain Type: Pan Type: Bearing Spacing: *	Brush	Inches Inches	Head Pulley Diameter: Tail Pulley Diameter: Belt Chevrons: Wire Other: Inches Skirt Width: O W C O N V E Y O R Chain Pitch:	Type:	acing:	inches Inches Inches Inches					
25 26 27 28 29 30 31 32 33 34 35	OF-02 DWF	Head Pulley Length: Tail Pulley Length: Belt Type: Belt Cleaner: Type: Scraper E Skirt Plate: Yes No Skirt Depth: Chain Type: Pan Type: Bearing Spacing: * Pan Width: Inches Pan Depth:	Brush	Inches Inches	Head Pulley Diameter: Tail Pulley Diameter: Belt Chevrons: Wire Other: Inches Skirt Width: O W C O N V E Y O R Chain Pitch:		acing:	inches Inches Inches Inches					
25 26 27 28 29 30 31 32 33 34 35 36 37	O02 DH-4	Head Pulley Length: Tail Pulley Length: Belt Type: Belt Cleaner: Type: Scraper Skirt Plate: Yes No Skirt Depth: C O N T Chain Type: Pan Type: Bearing Spacing: *	Brush	Inches Inches	Her Size: Inches Head Pulley Diameter: Tail Pulley Diameter: Belt Chevrons: Wire Other: Inches Skirt Width: O W C O N V E Y O R Chain Pitch: Bearing Type: *	Type:	acing:	inches Inches Inches Inches					
25 26 27 28 29 30 31 32 33 34 35 36 37	O02 DH-4	Head Pulley Length: Tail Pulley Length: Belt Type: Belt Cleaner: Type: Scraper E Skirt Plate: Yes No Skirt Depth: C O N T Chain Type: Pan Type: Bearing Spacing: * Pan Width: Inches Pan Depth: Attachment to Chain: Roller Diameter: Headshaft Diameter:	Brush	Inches	ller Size: Inches Head Pulley Diameter: Tail Pulley Diameter: Belt Chevrons: Wire Other: Inches Skirt Width: O W C O N V E Y O R Chain Pitch: Bearing Type: Pan Thickness: Roller Type: Type Sprocket:	Type:	acing:	inches Inches Inches Inches					
25 26 27 28 29 30 31 32 33 34 35 36 37 38	O02 DH-4	Head Pulley Length: Tail Pulley Length: Belt Type: Belt Cleaner: Type: Scraper E Skirt Plate: Yes No Skirt Depth: C O N T Chain Type: Pan Type: Bearing Spacing: * Pan Width: Inches Pan Depth: Attachment to Chain: Roller Diameter: Headshaft Diameter: Tailshaft Diameter:	Brush	inches inches	ller Size: Inches Head Pulley Diameter: Tail Pulley Diameter: Belt Chevrons: Wire Other: Inches Skirt Width: O W C O N V E Y O R Chain Pitch: Bearing Type: Pan Thickness:	Type:	acing:	inches Inches Inches Inches					
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	O02 DH-4-10 Z	Head Pulley Length: Tail Pulley Length: Belt Type: Belt Cleaner: Type: Scraper E Skirt Plate: Yes No Skirt Depth: C O N T Chain Type: Pan Type: Bearing Spacing: * Pan Width: Inches Pan Depth: Attachment to Chain: Roller Diameter: Headshaft Diameter: Tailshaft Diameter: Flite Pitch: * Belt/Pan:	Brush	Inches	ller Size: Inches Head Pulley Diameter: Tail Pulley Diameter: Belt Chevrons: Wire Other: Inches Skirt Width: OWCONVEYOR Chain Pitch: Bearing Type: Pan Thickness: Roller Type: Type Sprocket Type Sprocket Rollers:	Type:	acing:	inches Inches Inches Inches					
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	OF-02 DMF4-10	Head Pulley Length: Tail Pulley Length: Belt Type: Belt Cleaner: Type: Scraper E Skirt Plate: Yes No Skirt Depth: C O N T Chain Type: Pan Type: Bearing Spacing: Pan Width: Inches Pan Depth: Attachment to Chain: Roller Diameter: Headshaft Diameter: Tailshaft Diameter: Flite Pitch: Pan: Idlers:	Brush	Inches	ller Size: Inches Head Pulley Diameter: Tail Pulley Diameter: Belt Chevrons: Wire Other: Inches Skirt Width: OWCONVEYOR Chain Pitch: Bearing Type: Pan Thickness: Roller Type: Type Sprocket Type Sprocket Rollers: Scraper:	Type:	acing:	inches Inches Inches Inches					
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	O02 DH-4-10 Z	Head Pulley Length: Tail Pulley Length: Belt Type: Belt Cleaner: Type: Scraper E Skirt Plate: Yes No Skirt Depth: C O N T Chain Type: Pan Type: Bearing Spacing: * Pan Width: Inches Pan Depth: Attachment to Chain: Roller Diameter: Headshaft Diameter: Tailshaft Diameter: Flite Pitch: * Belt/Pan:	Brush	Inches	ller Size: Inches Head Pulley Diameter: Tail Pulley Diameter: Belt Chevrons: Wire Other: Inches Skirt Width: OWCONVEYOR Chain Pitch: Bearing Type: Pan Thickness: Roller Type: Type Sprocket Type Sprocket Rollers:	Type:	acing:	inches Inches Inches Inches					
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	O02 DH-4-10 Z	Head Pulley Length: Tail Pulley Length: Belt Type: Belt Cleaner: Type: Scraper E Skirt Plate: Yes No Skirt Depth: C O N T Chain Type: Pan Type: Bearing Spacing: * Pan Width: Inches Pan Depth: Attachment to Chain: Roller Diameter: Tailshaft Diameter: Tile Pitch: * Belt/Pan: Idders: Flites: CARBON STEEL Shaft: SCH. 80 PIPE, CARBON STEEL Screw: CARBON STEEL	Brush	Inches Inches Inches Inches Inches Inches Inches Inches	ller Size: Inches Head Pulley Diameter: Tail Pulley Diameter: Belt Chevrons: Wire Other: Inches Skirt Width: OWCONVEYOR Chain Pitch: Bearing Type: Pan Thickness: Roller Type: Type Sprocket: Type Sprocket: Rollers: Scraper: Enclosure: CARBON	Inches STEEL		inches Inches Inches Inches					
25 26 27 28 29 30 31 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	CH-OZ DMH4-10 Z4H, 1	Head Pulley Length: Tail Pulley Length: Belt Type: Belt Cleaner: Type: Scraper E Skirt Plate: Yes No Skirt Depth: C O N T Chain Type: Pan Type: Bearing Spacing: * Pan Width: Inches Pan Depth: Attachment to Chain: Roller Diameter: Tailshaft Diameter: Tailshaft Diameter: Flite Pitch: * Belt/Pan: Idlers: Flites: CARBON STEEL Screw: CARBON STEEL Type: Direct Gear V-Belt	Brush FINUOU	Inches In	ller Size: Inches Head Pulley Diameter: Tail Pulley Diameter: Belt Chevrons: Wire Other: Inches Skirt Width: O W C O N V E Y O R Chain Pitch: Bearing Type: Pan Thickness: Roller Type: Type Sprocket: Type Sprocket: Rollers: Scraper: Enclosure: CARBON Sprocket: Trough: CARBON	Inches STEEL Fran	ne: *	Inches Inches Inches Inches					
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	O02 DH-4-10 Z	Head Pulley Length: Tail Pulley Length: Belt Type: Belt Cleaner: Type: Scraper E Skirt Plate: Yes No Skirt Depth: C O N T Chain Type: Pan Type: Bearing Spacing: * Pan Width: Inches Pan Depth: Attachment to Chain: Roller Diameter: Tailshaft Diameter: Tile Pitch: * Belt/Pan: Idders: Flites: CARBON STEEL Shaft: SCH. 80 PIPE, CARBON STEEL Screw: CARBON STEEL	Brush FINUOU	inches in	Iller Size: Inches Head Pulley Diameter: Tail Pulley Diameter: Belt Chevrons: Wire Other: Inches Skirt Width: OWCONVEYOR Chain Pitch: Bearing Type: * Pan Thickness: Roller Type: Type Sprocket: Type Sprocket: Scraper: Enclosure: CARBON Sprocket: Trough: CARBON	Inches STEEL Fran	ne: * osure: TEF	Inches Inches Inches Inches					
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 44 45 46 47 48 49	CH-OZ DHHA-LO BAH, L DR-	Head Pulley Length: Tail Pulley Length: Belt Type: Belt Cleaner: Type: Scraper E Skirt Plate: Yes No Skirt Depth: C O N T Chain Type: Pan Type: Bearing Spacing: * Pan Width: Inches Pan Depth: Attachment to Chain: Roller Diameter: Headshaft Diameter: Tailshaft Diameter: Flite Pitch: * Belt/Pan: Idlers: Flites: CARBON STEEL Screw: CARBON STEEL Type: Direct Gear V-Belt Electric Motor Make: * Insulation: Temp. Rise: Estimated BHP Required: * hp Nominal Metals	X O deg F otor Size:	inches inches inches inches inches inches inches votes inches inc	ller Size: Inches Head Pulley Diameter: Tail Pulley Diameter: Belt Chevrons: Wire Other: Inches Skirt Width: OWCONVEYOR Chain Pitch: Bearing Type: * Pan Thickness: Roller Type: Type Sprocket: Type Sprocket: Rollers: Scraper: Enclosure: CARBON Sprocket: Trough: CARBON Y: VENDOR 460 Phase: hp Speed: 180	Inches Inches ISTEEL ISTEEL Frant Enclided 3 Cycle:	ne: * osure: TEF	Inches Inches Inches Inches					
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	CH-OZ DHHA-LO MAH, L DR->	Head Pulley Length: Tail Pulley Length: Belt Type: Belt Cleaner: Type: Scraper E Skirt Plate: Yes No Skirt Depth: C O N T Chain Type: Pan Type: Bearing Spacing: * Pan Width: Inches Pan Depth: Attachment to Chain: Roller Diameter: Headshaft Diameter: Tailshaft Diameter: Tailshaft Diameter: Flite Pitch: * Belt/Pan: Idlers: Flites: CARBON STEEL Shaft: SCH. 80 PIPE, CARBON STEEL Screw: CARBON STEEL Type: Direct Gear V-Belt Electric Motor Make: * Insulation: Temp. Rise: Estimated BHP Required: * hp Nominal Me Speed Reducer: Integral Separate *	Brush FINUOU X O deg F	inches inches inches inches inches inches inches votes inches inc	ller Size: Inches Head Pulley Diameter: Tail Pulley Diameter: Belt Chevrons: Wire Other: Inches Skirt Width: OWCONVEYOR Chain Pitch: Bearing Type: * Pan Thickness: Roller Type: Type Sprocket: Type Sprocket: Rollers: Scraper: Enclosure: CARBON Sprocket: Trough: CARBON Y: VENDOR 460 Phase: hp Speed: 180 Mfr: *	Inches STEEL I STEEL Fram Encle 3 Cycle:	ne: * osure: TEF	Inches Inches Inches Inches					
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	CH-OZ DHHA-LO BAH, L DR-	Head Pulley Length: Tail Pulley Length: Belt Type: Belt Cleaner: Type: Scraper E Skirt Plate: Yes No Skirt Depth: C O N T Chain Type: Pan Type: Bearing Spacing: * Pan Width: Inches Pan Depth: Attachment to Chain: Roller Diameter: Headshaft Diameter: Tailshaft Diameter: Tailshaft Diameter: Flite Pitch: * Belt/Pan: Idlers: Flites: CARBON STEEL Shaft: SCH. 80 PIPE, CARBON STEEL Screw: CARBON STEEL Type: Direct Gear V-Belt Electric Motor Make: * Insulation: Temp. Rise: Estimated BHP Required: * hp Nominal Model: * Model: *	X O A deg F otor Size:	Inches In	ller Size: Inches Head Pulley Diameter: Tail Pulley Diameter: Belt Chevrons: Wire Other: Inches Skirt Width: OWCONVEYOR Chain Pitch: Bearing Type: Pan Thickness: Roller Type: Type Sprocket: Type Sprocket: Type Sprocket: Trough: CARBON Sprocket: Trough: CARBON y: VENDOR 460 Phase: hp Speed: 180 Mfr: * Class:	Inches STEEL I STEEL Fram Encle 3 Cycle:	ne: * osure: TEF	Inches Inches Inches Inches					
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 47 48 49 50 51 52 53	CH-OZ DHHA-LO MAH, L DR->HR	Head Pulley Length: Tail Pulley Length: Belt Type: Belt Cleaner: Type: Scraper E Skirt Plate: Yes No Skirt Depth: C O N T Chain Type: Pan Type: Bearing Spacing: * Pan Width: Inches Pan Depth: Attachment to Chain: Roller Diameter: Headshaft Diameter: Tailshaft Diameter: Tailshaft Diameter: Flite Pitch: * Belt/Pan: Idlers: Flites: CARBON STEEL Shaft: SCH. 80 PIPE, CARBON STEEL Screw: CARBON STEEL Type: Direct Gear V-Belt Electric Motor Make: * Insulation: Temp. Rise: Estimated BHP Required: * hp Nominal Misspeed Reducer: Integral Separate * Model: * CONVEYOR TO BE EQUIPPED WITH A VAR	X O A deg F otor Size:	Inches In	ller Size: Inches Head Pulley Diameter: Tail Pulley Diameter: Belt Chevrons: Wire Other: Inches Skirt Width: OWCONVEYOR Chain Pitch: Bearing Type: Pan Thickness: Roller Type: Type Sprocket: Type Sprocket: Type Sprocket: Trough: CARBON Sprocket: Trough: CARBON y: VENDOR 460 Phase: hp Speed: 180 Mfr: * Class:	Inches STEEL I STEEL Fram Encle 3 Cycle:	ne: * osure: TEF	Inches Inches Inches Inches					
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 50 51 52 53 54	CH-OZ DHH4-10 Z4H, T DE->H	Head Pulley Length: Tail Pulley Length: Belt Type: Belt Cleaner: Type: Scraper E Skirt Plate: Yes No Skirt Depth: C O N T Chain Type: Pan Type: Bearing Spacing: * Pan Width: Inches Pan Depth: Attachment to Chain: Roller Diameter: Headshaft Diameter: Tailshaft Diameter: Tailshaft Diameter: Flite Pitch: * Belt/Pan: Idlers: Flites: CARBON STEEL Shaft: SCH. 80 PIPE, CARBON STEEL Screw: CARBON STEEL Type: Direct Gear V-Belt Electric Motor Make: * Insulation: Temp. Rise: Estimated BHP Required: * hp Nominal Missioned: * Model: * CONVEYOR TO BE EQUIPPED WITH A VAR Shop Tests Required: *	X O A deg F otor Size:	Inches In	ller Size: Inches Head Pulley Diameter: Tail Pulley Diameter: Belt Chevrons: Wire Other: Inches Skirt Width: OWCONVEYOR Chain Pitch: Bearing Type: Pan Thickness: Roller Type: Type Sprocket: Type Sprocket: Type Sprocket: Trough: CARBON Sprocket: Trough: CARBON y: VENDOR 460 Phase: hp Speed: 180 Mfr: * Class:	Inches STEEL I STEEL Fram Encle 3 Cycle:	ne: * osure: TEF	Inches Inches Inches Inches					
25 26 27 28 29 30 31 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 55 56	CH-OZ DHH4-10 Z4H, T DE->HE Z-0	Head Pulley Length: Tail Pulley Length: Belt Type: Belt Cleaner: Type: Scraper E Skirt Plate: Yes No Skirt Depth: C O N T Chain Type: Pan Type: Bearing Spacing: * Pan Width: Inches Pan Depth: Attachment to Chain: Roller Diameter: Headshaft Diameter: Tailshaft Diameter: Tailshaft Diameter: Flite Pitch: * Belt/Pan: Idlers: Flites: CARBON STEEL Shaft: SCH. 80 PIPE, CARBON STEEL Screw: CARBON STEEL Type: Direct Gear V-Belt Electric Motor Make: * Insulation: Temp. Rise: Estimated BHP Required: Separate * Speed Reducer: Integral Separate CONVEYOR TO BE EQUIPPED WITH A VAN Shop Tests Required: *	X O A deg F otor Size:	Inches In	ller Size: Inches Head Pulley Diameter: Tail Pulley Diameter: Belt Chevrons: Wire Other: Inches Skirt Width: OWCONVEYOR Chain Pitch: Bearing Type: Pan Thickness: Roller Type: Type Sprocket: Type Sprocket: Type Sprocket: Trough: CARBON Sprocket: Trough: CARBON y: VENDOR 460 Phase: hp Speed: 180 Mfr: * Class:	Inches STEEL I STEEL Fram Encle 3 Cycle:	ne: * osure: TEF	Inches Inches Inches Inches					
25 26 27 28 29 30 31 31 32 33 34 35 36 37 38 39 40 41 42 44 45 46 47 48 49 50 51 52 55 55 56 57	CH-OZ DHF4-10 Z4F.1 DR->HR Z-	Head Pulley Length: Tail Pulley Length: Belt Type: Belt Cleaner: Type: Scraper E Skirt Plate: Yes No Skirt Depth: C O N T Chain Type: Pan Type: Bearing Spacing: * Pan Width: Inches Pan Depth: Attachment to Chain: Roller Diameter: Headshaft Diameter: Tailshaft Diameter: Tailshaft Diameter: Flite Pitch: * Belt/Pan: Idlers: Flites: CARBON STEEL Shaft: SCH. 80 PIPE, CARBON STEEL Screw: CARBON STEEL Type: Direct Gear V-Belt Electric Motor Make: * Insulation: Temp. Rise: Estimated BHP Required: * hp Nominal M Speed Reducer: Integral Separate * CONVEYOR TO BE EQUIPPED WITH A VAF Shop Tests Required: *	X O A deg F otor Size:	Inches In	ller Size: Inches Head Pulley Diameter: Tail Pulley Diameter: Belt Chevrons: Wire Other: Inches Skirt Width: OWCONVEYOR Chain Pitch: Bearing Type: Pan Thickness: Roller Type: Type Sprocket: Type Sprocket: Type Sprocket: Trough: CARBON Sprocket: Trough: CARBON y: VENDOR 460 Phase: hp Speed: 180 Mfr: * Class:	Inches STEEL I STEEL Fram Encle 3 Cycle:	ne: * osure: TEF	Inches Inches Inches Inches					
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 55 56 57 58	CH-OZ DHH4-10 Z4H, T DE->HE Z-0	Head Pulley Length: Tail Pulley Length: Belt Type: Belt Cleaner: Type: Scraper E Skirt Plate: Yes No Skirt Depth: C O N T Chain Type: Pan Type: Bearing Spacing: * Pan Width: Inches Pan Depth: Attachment to Chain: Roller Diameter: Headshaft Diameter: Tailshaft Diameter: Tailshaft Diameter: Flite Pitch: * Belt/Pan: Idlers: Flites: CARBON STEEL Shaft: SCH. 80 PIPE, CARBON STEEL Screw: CARBON STEEL Type: Direct Gear V-Belt Electric Motor Make: * Insulation: Temp. Rise: Estimated BHP Required: * hp Nominal M Speed Reducer: Integral Separate * CONVEYOR TO BE EQUIPPED WITH A VAF Shop Tests Required: *	X O A deg F otor Size:	Inches In	ller Size: Inches Head Pulley Diameter: Tail Pulley Diameter: Belt Chevrons: Wire Other: Inches Skirt Width: OWCONVEYOR Chain Pitch: Bearing Type: Pan Thickness: Roller Type: Type Sprocket: Type Sprocket: Type Sprocket: Trough: CARBON Sprocket: Trough: CARBON y: VENDOR 460 Phase: hp Speed: 180 Mfr: * Class:	Inches STEEL I STEEL Fram Encle 3 Cycle:	ne: * osure: TEF	Inches Inches Inches Inches					
25 26 27 28 29 30 31 31 32 33 34 35 36 37 38 39 40 41 42 44 45 46 47 48 49 50 51 52 55 55 56 57	CH-OZ DHHA-LO BAH, L DR->HR B-OC	Head Pulley Length: Tail Pulley Length: Belt Type: Belt Cleaner: Type: Scraper E Skirt Plate: Yes No Skirt Depth: C O N T Chain Type: Pan Type: Bearing Spacing: * Pan Width: Inches Pan Depth: Attachment to Chain: Roller Diameter: Headshaft Diameter: Tailshaft Diameter: Tailshaft Diameter: Flite Pitch: * Belt/Pan: Idlers: Flites: CARBON STEEL Shaft: SCH. 80 PIPE, CARBON STEEL Screw: CARBON STEEL Type: Direct Gear V-Belt Electric Motor Make: * Insulation: Temp. Rise: Estimated BHP Required: * hp Nominal M Speed Reducer: Integral Separate * CONVEYOR TO BE EQUIPPED WITH A VAF Shop Tests Required: *	X O deg F otor Size: RIABLE SI	Inches In	ller Size: Inches Head Pulley Diameter: Tail Pulley Diameter: Belt Chevrons: Wire Other: Inches Skirt Width: OWCONVEYOR Chain Pitch: Bearing Type: Pan Thickness: Roller Type: Type Sprocket: Type Sprocket: Type Sprocket: Trough: CARBON Sprocket: Trough: CARBON y: VENDOR 460 Phase: hp Speed: 180 Mfr: * Class:	Inches STEEL I STEEL Fram Encle 3 Cycle:	ne: * osure: TEF	Inches Inches Inches Inches					

100						CONVEYOR	IT CORP SPEC. NO.
ा		I.T. CORPORATION			SI	PECIFICATION	
		LLUTION CONTROL ENGINEERING	NO	BY	DATE	REV.	SHEET 1 OF 1
1			1				PROJECT NAME USAEC
A E	ΕΛ	NO: 20	2				JOB NO.
		NO: 20 NAME: CBC	2	:			322243
TA	GN	O.: H-2003					LOCATION
EC	UIP	MENT NAME: LIMESTONE FEED	3				
		SCREW CONVEYOR	1				BY APPR DATE WMS PA 11/30/94
		- ONE	<u> </u>		1		WMS PA 11/30/94
2	Quar	ntity: ONE S Material Conveyed: LIMESTONE			Ma	aterial Form: Sludge Solid X Other	
3		E Density: 85 - 95 lb/ft3 Temperature: AMI	3.	deg F Visc	osity:	cp Particle Size: Max. 1/32	Inches – Min. Inches
4	C	R Moisture Content: Dry X Wet			Calcifies	% Free Liquid: Yes Other:	No X %
5 6	0	V Material Reactions: NONE Hard Corrosion or Erossion Factors: MODERATE		ROSSIVE		Otter.	
7	D	C Vapor Formation: Yes No X Vapor Coll			No X	Vapors Formed:	
8		E Service Location: Indoors X Outdoors X					
9	T	Location Description: O Capacity: Normal: 50 lb/hr; Maximum:	-	150	lb/hr Ele	evation Gain: 0 ft. Horizontal	Conveyance: # ft.
10	0	O Capacity: Normal: 50 lb/hr; Maximum: P Operating Factor: hrs/day.		vs/vr	ID/III EIG		
12	N	R Fed by: LIMESTONE FEED HOPPER H				Discharge to: CIRCULATING BED C	COMBUSTOR F-2001
13	S	T Equipment Operation: Continuous X Intern	nittent		On	Demand Reversing	Other: VARIABLE SPEED
14 15		N Past Experience:					
16	-	Conveyor Type: Belt Roller Pan		Apron	Dra	g Flight Other: SCREW TYP	E
17	İ	Width: *				ength: 4	ft.
18	C	Speed: *			-	cline /Decline ;	Degrees from Horizontal
19	0 N	Weight: * Enclosure: Open Covered X Sealed	Х	Inert Atmo		eaded Weight: * Other:	1,50
20 21	S	Enclosure: Open Covered X Sealed Enclosure Seal: HIGH TEMPERATURE GA	SKE	T			
22	S		E	BELT C			
23	R	Support Type: Idler Roller	Flat P	late	Oth		Degrees
24 25	UC	Idler/Plate Arrangement: Flat Troughed Roller Size: Inches Roller Spacing:	in	ches Imp	act Roller \$	ough Incline: Size: Inches Impact Roller Spacing	
26	Ť	Head Pulley Length:				ead Pulley Diameter:	Inches
27	1	Tail Pulley Length:		In		il Pulley Diameter:	Inches
28	0	Belt Type:	Brush		Wire	elt Chevrons: Type:	
29 30	IN	Belt Cleaner: Type: Scraper Skirt Plate: Yes No Skirt Depth:				Inches Skirt Width:	Inches
31	D	CON	TIN	uous		V CONVEYOR	
32	E	Chain Type:			Ct	nain Pitch:	inches
33	A	Pan Type: Bearing Spacing:		In	ches Be	earing Type:	
35	î	Pan Width: Inches Pan Depth:				an Thickness: Inches	
36	L	Attachment to Chain:					
37	S	Roller Diameter:				oller Type: rpe Sprocket:	
38 39		Headshaft Diameter: Tailshaft Diameter:				rpe Sprocket:	
40		Flite Pitch:					
41	M	Belt/Pan:				illers:	
42	A	Idlers: Flites: CARBON STEEL				craper: croclosure: CARBON STEEL	
44	٠,	Shaft: SCH. 80 PIPE, CARBON STEEL				procket:	
45	L	Screw: CARBON STEEL				ough: CARBON STEEL	*
46	ר	Type: Direct Gear V-Belt	_X	Othe	r: inted By:	VENDOR Enclosure	
47 48	D R	Electric Motor Make: Insulation: Temp. Rise:		deg F Volt			60
49	i	Estimated BHP Required: * hp Nominal			*	hp Speed: 1800 rpm	
50	V	Speed Reducer: Integral Separate		Ratio:	± C	Mfr:	
51 52	R	Model: *			C	lass:	
53	4.1	CONVEYOR TO BE EQUIPPED WITH A VA	RIA	BLE SPE	ED DRIV	VE.	
54	М	Shop Tests Required:					
55	-	Mechanical Drawing No's:					
56 57	S	Other:					
58							
59							
60		NDOR TO COMPLETE INFORMATION MARKE	1 +				
61		NUMBER OF THE INFORMATION MARKET	, -				

		TT CO	DDO	D A TTC	ואר	DIIM	IP SPECIFICATION				IT COR	P SPEC. NO.		
	-	I.T. CO				NO	BY DA		FLUI	REV.	OI	SHEET	1 OF	1
	PO	LLUTION C	ONTRO	LENGIN	EEKING	NO	BY DA	IE.		nev.		SHEET		•
			in te ^{rkit} i.			1						PROJE	CT NAME	
						1							USAE	С
1 .	ARE	A NO:		20								JOB N		
		A NAME:		CBC		2							32224	3
		NO.:		P-2001								EXISTIN	G OR NEW?	,
	EQl	JIPMENT NA	AME:		G WATER								NEW	
					ULATION	3						BY WMS	APPR PA	11/30/94
				PUMP_				Man	el No.:	*		W MS		11/30/3-4
1		Manufacturer No. of Units:	ONE	=				IVIOU	ei No		····			
3	O N	Liquid Pumpe						Max.	Capacity	at P.T.: 50	gpm Di	scharge Press	.: 10:	3 ft.
4	D	Pumping Ten			Sp. Gr. @ P.T	.:	1.0		ion Press			scosity @ P.T.		сР
5	Т	Differential Pr			Differential He	ad:	Ft.	Vapo	or Pressu	re @ P.T.:		PSH Available:		ft.
6	N	Corrosion or	Errosion f	actors:							NF	PSH Required:	*	ft.
7	S			·				To:	la as Davi	ble Suction?	SINGLE	=		
8		Horizontal or CW OR CCW	Vertical A	rrangemer	TO HORIZO	NIA	upling: CW		Design I			ax. Allow. W.P.	. *	psig
10	0	Number of St			Speed:	*	rpm		off Pres			l. Eff. @ Ratin		%
11	N	Barrel:	ages.		Split?		.,,,,,			HORIZONTA		rtical?	9	
12	s	Impeller:			Type:				Diamete			n. Diameter:	*	Inches
13	Т	Actual Imp. D	ia.: *	Inch	Vent and Drai	n Taj	oped?		st Bearing		Ra	idial Bearing T	ype:	
14	R	Nozzles	Size	Rating		g	Location		ing Lub.	Гуре:			*	
15	U	Suction	*	150#			END	Oiler				ler Type:		
16	C	Discharge	*	150#	FF		ТОР		oling Mfr.: eplate?	YES		Coupling Model: Type Baseplate: INTEG		RAI
17	T	Vents	*	UNC			воттом		Water Cooling: Csng, Stffg Bx, Brgs,					*
18 19	0	Drains Cooling H2O		UNC			BOTTOM		Water Re			nothering Glar		
20	N	Stuffing Box L		n: Oil. Grea	ase or None?	*			Packing			al Oil Connec		
21		MECHANICA			Furnished By	:	*	Man	ufacturer:	*	Ту	pe:		
22	D	Single or Do	uble?	*	Inside or Outs	ide?		Bala	nced or L	Inbalanced?				
23	Ε	Rotary Unit:			Seal Ring Mtr	l:						aft Packing:	*	
24	T	Insert:			Reversible?	-10	, 4	Face Material:						
25	A	Insert Mount Gland:	ting: Clam		ing or Press F Plain?	it?		Carb	on Thrott	le Bushing?				
26 27		Gland Stuffir	na Box Ma					Carbon Throttle Bushing? Dead End Lub.? Circulat			rculating Lub.	,		
28	s				rge Bypass?	-		Quer	nching?		Ve	t & Drain?		
29		Flushing Sea								ing Box Requ				
30		Weight of Pur	mp: *	lbs.	Weight of Bas	e:	* lbs.		ht of Driv			nipping Weight naft Sleeves:		
		Casing & Cov	ers: CAS	TIRON	Shaft: Lantern Rings		*		ng wear F eller Wear	migs.		uffing Box Bus	hinas:	
32	T	Impeller: Glands:	•		Gaskets:	••		impe	ilei Weai	rungs.	, 0.	uning box bus	ings.	
34		Furnished By	PUMP	MGFR	Elec. or Stear	n Tur	bine? ELE	С	Direct, G	ear, V-Belt o	r Rope?	V-BELT		
35		ELECTRIC M			Mfr.: *				STEAM T	URBINE:		Mfr.:		
36		Mounted By	PUMP		Enclosure:		TEFC		Mounte			Model:		
37	D		1800		Service Facto	r:	1.15		Horsepo	ower:		Water Rates		Lbs/Hr
38	R		460		Temp. Rise:				Speed Inlet Ste	am Press.:	rpn	n Vacuum (if		
39 40	V		3 60		Insulation: Frame:		*		Norm		psi			deg. F
41	E	Nominal Siz		HP	Est. BHP Req	'd:	4.0	HP	Max.		psi			deg F
42	R	SPEED REDU			Mfr.:				Backpre		psi	g		
43		Ratio:			Model:				Nozzles	Size	Ra	ting Fa	cing	Location
44		Integral or S	eparate?		Class:				Inlet					
45		Can Dalassa C		- No					Exhaust					
46	T	See Driver Sp Performance			Certified?			Ī	M Seri	al Number:	*	·		
48	Ė	Curve No.:	*		Continue:					ine Drawing I	Number:	1		
49	s	Hydrotest?	YES	3	Pressure:		psig			ss Section Dr		ımber:		
50	T	Witness Testi			Shop Inspect	ion?	NO		С					
51														
52														
53 54														
55		VENDOR TO	COMPL F	TE INFOR	MATION MARI	KED	*					·		

		TT. CORPORATION		CONVEYOR SPECIFICATION						IT CORP SPEC. NO.		
		I.T. CORPORATION	NO D)	(543		RE			SHEET	1 OF	1	
	PO	LLUTION CONTROL ENGINEERING	NO BY	DAT	ie i	NE.	<u>v.</u>		SHEET	1 04	,	
	.155		1						PROJECT	NAME USAEC	;	
		NO: 30	2						JOB NO.			
		NAME: CBC							LOCATIO	322243		
		IO.: H-2001 PMENT NAME: ASH COOLER	3						LOCATIO	N		
	ZOII	CONVEYOR							BY	APPR	DATE	
									WMS	PA	11/30/94	
1	Qua	ntity: ONE			Material Form	Studeo	Solid	X Other:				
3		S Material Conveyed: BED MATERIAL, ASH E Density: 20 - 50 lb/ft3 Temperature: 1,600) deg F	Viscosity:			Size: Max.	1/4 Inches			Inches	
4	Ç	R Moisture Content: Dry X Wet					ree Liquid:	Yes	No X		%	
5	O	V Material Reactions: NONE Harden Corresion or Eression Factors: MODERATELY		Calcif	fies	Other:						
6 7	Ď	I Corrosion or Erossion Factors: MODERATELY C Vapor Formation: Yes No X Vapor Collect	_		X Vapors F	ormed:						
8	1	E Service Location: Indoors X Outdoors X										
10	Ţ	Location Description: O Capacity: Normal: 0.30 ton/hr; Maximum:	0.50	ton/hr	Elevation Gai	in: 4	l ft	. Horizontal (Convevance	2: *	ft.	
11	Ó	P Operating Factor: hrs/day,	days/yr		, 2.012.101.							
12	Ň	R Fed by: CIRCULATING BED COMBUSTO		2001	Discharg	e to: AS	H BIN T-		Other V/	RIABLE	SPEED	
13 14	S	T Equipment Operation: Continuous X Intermit N Past Experience:	tent		On Demand		Reversing		Other: V	MINDLE	SFEED	
15		G SCREW TO SERVE AS CONVEYOR AS	WELL A	S HEAT	EXCHANGE			ET TEMP.	200 deg	. F.		
16		Conveyor Type: Belt Roller Pan	Apror	Inches	Drag Flight Length:	Oth	er: WA	TER COO	LED SCI	REW	ft.	
17 18	С	Width: * Speed: *		ft./min.		/Decline		; *	Degre	es from Ho		
19	0	Weight:			Loaded Weigh						Ibs	
20	N S			t Atmospher	re C	other:						
21 22	T	Enclosure Seal: HIGH TEMPERATURE GAS		TCON	VEYOR							
23	R		iat Plate		Other:							
24 25	U	Idler/Plate Arrangement: Flat Troughed Roller Size: Inches Roller Spacing:	Inches	Impact Ro	Trough Incline	: Inche:	s Impact R	oller Spacing:			Degrees Inches	
26	Ť	Head Pulley Length:	inches.	inches			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Inches	
27	ļ	Tail Pulley Length:		Inches			Tunai				inches	
28 29	N	Belt Type: Belt Cleaner: Type: Scraper B	rush		Belt Chevrons: Wire	Other:	Type:					
30	_	Skirt Plate: Yes No Skirt Depth:			Inches Sk						Inches	
31 32	D E	CONT Chain Type:	INUO	US FL	OW CON	VEYOR					Inches	
33	Ť	Pan Type:			Oram racon.						11101100	
34		Bearing Spacing: *			Bearing Type:							
35 36	1	Pan Width: Inches Pan Depth: Attachment to Chain:		inches	Pan Thickness	:	Inches					
37	Š	Roller Diameter:		Inches	Roller Type:							
38		Headshaft Diameter:		Inches	Type Sprocket							
39 40		Tailshaft Diameter:		Inches	Type Sprocket							
41	M	Belt/Pan:			Rollers:							
42	A	Idlers: Flites: CARBON STEEL			Scraper: Enclosure:	CARBO	ON STEEL					
44	٠,	Shaft: SCH. 80 PIPE, CARBON STEEL			Sprocket:							
45	L	Screw: CARBON STEEL		Other	Trough:	CARBO	ON STEEL		*			
46 47	D	Type: Direct X Gear V-Belt Electric Motor Make:		Other: Mounted E	y: VENDO	R		Frame: Enclosure:		C		
48	R	Insulation: Temp. Rise:		Volts:	460	Phase:	3		60			
49	V	Estimated BHP Required: hp Nominal Mo	tor Size:	5	hp Sp Mi		300 rpr	1				
50 51	Ě	Speed Reducer: Integral Separate	nati	J.	Class:							
52	R		145.									
53 54	М	CONVEYOR TO BE EQUIPPED WITH A VAR Shop Tests Required:	IABLE :	SPEED D	HIVE.							
55	- 1	Mechanical Drawing No's:										
56	S	Other:	25 D+/	lb-des 1	-				 			
57 58	U	1. MATERIAL HEAT CAPACITY = 0. 2. COOLING WATER: FLOW = *		ET TEM		OUTL	ET TEMP.	= *				
59		INLET PRESSURE = *			DROP = *							
60 61	\/E	NDOR TO COMPLETE INFORMATION MARKED	*									
	V 1											

HOPPER IT CORP SPEC. NO. I.T. CORPORATION SPECIFICATION NO DATE SHEET POLLUTION CONTROL ENGINEERING BY PROJECT NAME 1 **USAEC** AREA NO: 30 JOB NO. 322243 CBC AREA NAME: 2 EXISTING OR NEW? T-2001 TAG NO .: **NEW** EQUIPMENT NAME: ASH BIN BY APPR DATE 3 11/30/94 SLM PA 1 **FUNCTIONAL DATA** 2 3 Receiving Hot Ash Application: 4 CBC Bed Material, Ash 5 Material Handled: 20 - 50 pcf 6 Density: 7 Material Temperature: Normal -200 deg. F 8 Maximum -600 deg. F. 9 Capacity: 10 Particle Size: 1" max. Normal -30 lb/hr 11 Moisture: None 10 to 150 lb/hr 12 Range -13 365 Days/Year: Operations, Hrs/Day: 12 - 2414 Outdoors or in temperary bldg. Location: 15 16 17 **SPECIFICATIONS** 18 19 1. Bin capacity to be 1 cubic yard. 20 21 2. Bin to include tote lugs for transportation. 22 23 3. Bin to include hinged inspection lid with entrance port for ash inlet. 24 25 4. Materials of construction to be carbon steel. 26 27 28 29 30 31 32 33 34 35 36 37 38 39

IT CORP SPEC. NO. IT CORPORATION VERTICAL VESSEL POLLUTION CONTROL ENGINEERING NO BY SHEET 1 OF 1 PROJECT NAME USAEC 50 JOB NO. AREA NO: 2 322243 APC AREA NAME: LOCATION T-5001 TAG NO.: **EQUIPMENT NAME:** PARTIAL 3 DATE QUENCH BY APPR WMS 11/30/94 YES No. Units: Gal. Field Erected? Total Volume: 1 30" W.C. VACUUM 2 Operating Pressure, psig 3 Inlet Operating Temperature, deg F 1,600 Outlet Operating Temperature, deg F 400 4 60° W.C. VACUUM 5 Design Pressure, psig Design Operating Temperature, deg F 2,200 6 Operating Gas Flow 5000 ACFM 7 D 10 FT PER SECOND Operating Velocity 8 E Residence Time 3 SECONDS B 9 S No. of Water Guns 10 1 COCURRENT, UP-FLOW G Configuration 11 12 N 13 14 D 15 Α Type Supports: T **EXTERIOR INSULATION** 16 Insulation: NONE 17 Fireprooofing: Sandblast: NONE Paint: 18 Other: MANHOLE: Hinged? X Davited? 19 Ladder Clips: Insul. Rings: 20 Platform Clips: 21 Pipe Supports: Wind Load: 110 MPH mph Seismic: ZONE 3 22 lbs. Weight Full of Water: N/A 23 Weight Empty: Mat'l - Minimum Quality Thicknss Mat'l Cls Item 24 1/4" C.S. A-36 25 Shell 26 M Heads 27 Α Lining 40" 28 Т O.D. 33 ft 29 Ε Length H D A-36 30 R Nozzle Necks C.S. A-36 C.S. 31 1 Flanges 32 Α A M.H. Cover 33 L 34 Supports S 35 Bolts/Studs 36 Nuts 37 HIGH TEMPERATURE Gaskets 38 Service Mark No. Size Rating Face Type 28" 39 Ν INLET OFF-GAS 1 40 В 18" 0 OUTLET OFF-GAS 1 41 Z SOLIDS OUTLET C 4. 1 42 Z NOZZLES D 4. 2 43 POKE-HOLES L E 2 4" 44 E MANWAY F 1 18" 45 G 46 S Н 47 С 1 48 Н J 49 Ε K 50 D L U 51 М 52 L N 53 Ε 0 54 Р 55 Nozzle to be Plugged or Blinded * For Further Details, See Sheet No.:

IT CORP SPEC. NO. I.T. CORPORATION MISC. SPECIFICATION POLLUTION CONTROL ENGINEERING NO DATE SHEET 1 1 PROJECT NAME **USAEC** AREA NO: JOB NO. 2 APC 322243 AREA NAME: S-5001 TAG NO.: LOCATION **EQUIPMENT NAME: BAGHOUSE** 3 BY APPR DATE WMS PA 11/30/94 1 QUANTITY DESCRIPTION 2 3 **Process Conditions** 1 4 5 Application: Gas Cleaning System 6 Material Handled: Fine Particulate Flue gas Flow: 3500 ACFM 7 8 Flue Gas Pressure: Operating: 35" W.C. vacuum; Design: 60" W.C. vacuum Flue Gas Temperature: 400 to 450 deg. F 9 10 Flue Gas Moisture: 50% by volume Inlet Particulate Loading: 79 lb per hour 11 12 Outlet Particulate Loading: Less than or equal to 0.01 gr/dscf @ 7% oxygen 13 Specifications: 14 15 16 Air/cloth Ratio: 3:1 17 Number of Modules: Four 18 Cleaning Method: Pulse jet (on-line cleaning) Maximum Pressure Drop: 6" W.C. 19 Materials of Construction: A-36 carbon steel housing/reinforcement supports 20 - Galvanized steel mesh bag cages 21 Woven fiberglass bags. 22 23 Approximate Dimensions: 13 ft x 17ft x 26 ft high (includes 4 ft bottom clearance) 24 Miscellaneous 25 26 - System including module main housing, top lid assemply with tube sheet for 27 28 bag support, structural support and access platform, manifolds and inlet dampers between modules. 29 30 - Include C.S. hoppers, inlet vane baffle, access doors, level indicators, poke 31 holes, vibrators, hopper heaters, and strike plates. 32 33 - Baghouse to be fully insulated (2 inches minimum). 34 35 36 37 38 39

40

. (***						IT CORP SPEC. NO.			
		RPORATION		M	ISC. S				
	POLLUTION CO	NTROL ENGINEERING	NO	BY	DATE	REVISION	SHEET	1 OF	1
							PROJECT	NAME	
								USAEC	
	AREA NO:	50	2				JOB NO.		
	AREA NAME:	APC H-5001					LOCATIO	32224	3
	TAG NO.: EQUIPMENT NA		3				LOCATIO		
		AIRLOCK					BY	APPR	DATE
				<u> </u>			WMS	PA	11/30/94
1	QUANTITY	DESCRIPTION							
2	•								
3	1	FUNCTION DATA							
4									
5		Application:				Processing Gas Cleaning Syste	em Dust		
6		Material Handl	ed:			Fine Particulate			į
7		Density:				20 to 50 lb per cubic foot			
8		Material Temp	eratur	re:		500 to 700 deg. F			ĺ
9		Moisture:				No Moisture			
10		Capacity:				Average: 10 lb/hr; Design: 100	lb/hr		
11		Fed By:				Partial Quench T-5001			
12		Operation:				24 hours per day			
13		Location:				Outdoors or Indoors			ļ
14									
15									
16		Specifications:							
		Opposition to the same of the							
17		_ 1/3 HP	moto	r 1 15 s	afety fac	tor, 460V, 3 phase, 60 hz			
18		- Cast iro			-	1001, 1001, 0 pilase, 00112			
19				•		on steel construction			
20						rge connections			
21		, , ,	_		-	peed switch			
22					-	facilitate cleanout with compres	eed air		
23		- body a	iu sic	ie plate	ports to	racintate cleanout with compres	sea an		
24									
25									
26									
27									
28									
29						•			
30									
31									
32									
33									
34									
35									
36									
37									
38									
39									

40

IT CORP SPEC. NO. I.T. CORPORATION MISC. SPECIFICATION POLLUTION CONTROL ENGINEERING NO BY DATE REVISION SHEET PROJECT NAME **USAEC** AREA NO: 50 JOB NO. 2 APC 322243 AREA NAME: H-5002 LOCATION TAG NO .: **EQUIPMENT NAME:** ROTARY 3 APPR **AIRLOCK** BY DATE 11/30/94 WMS 1 QUANTITY DESCRIPTION 2 3 1 **FUNCTION DATA** 4 Processing Gas Cleaning System Dust Application: 5 Fine Particulate Material Handled: 6 7 20 to 50 lb per cubic foot Density: Material Temperature: 300 to 500 deg. F 8 No Moisture 9 Moisture: Average: 70 lb/hr; Maximum: 100 lb/hr Capacity: 10 Baghouse S-5001 Fed By: 11 24 hours per day Operation: 12 Outdoors or Indoors Location: 13 14 15 Specifications: 16 17 - 1/3 HP motor, 1.15 safety factor, 460V, 3 phase, 60 hz 18 - Cast iron body construction 19 - Closed end rotor, A-36 carbon steel construction 20 - Supply with plant air shaft purge connections 21 - To be supplied with a zero speed switch 22 - Body and side plate ports to facilitate cleanout with compressed air 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

40

1, 1,	dog									n	CORPS	PEC. NO.	
		I.T. CORPORATION	ON		F#	AN SF	PECIF	ICATIO	N				
		LLUTION CONTROL ENGIN	475.6	NO	BY	DATE		REVISION		s	HEET 1	OF	1
				1						Р	ROJECT	NAME	
	ΔRF	A NO: 50		2						J	OB NO.		
		A NAME: APC		_			•				3	2224	3
•	TAG NO.: B-5001									CATION			
1	EQL		D DRAFT	3						В		NEW PPR	DATE
		FAN									MS	PA	11/30/94
1		Manufacturer: *				Model N	n.:	*		1			
2		No. of Units: ONE											
3		Description of Gas and Materials	Handled:	COM	IBUSTION								
4		Flow: 6000 ACFM	S.P. 60		Inches V	V.G. Tem	p.: 60 –	450 de	g. F Gas	Density	y: N C	OTE 2	Lb/Cu.Ft.
5	G	Hours per day operation: 24 Noise Rating Per Attached Noise	Lavel Chan N		*								
7	E N		Inches Gag	e and	d Material o	f Rims:	*		Blad	es: *			
8	E	HOUSING GAGE & MATERIALS:		-	C.S.	Side	s	C.S.		Tube (Axial)	*	
9	R	Performance Curves: YES Cur	ve No.: *				& Type:				eight:	*	Lbs.
10	Α	R.P.M.: * B.H.P. Re	equired:		*	Mech. Ef	ficiency:	*	Outlet Ve		*		ft/sec
11	L	BEARINGS: Type: SHAFT: Diameter at Bearings:			Make		neter at W	heel:	Manufact	urers in	10.:		
12 13		Distance Between Bearings:		*	Inches	Diai		Distance from	-		Vheel:		*
14		Maximum Shaft Speed:	*							_			
15													
16	С	Arrangement:	D - L I - YAZI dabi		ition:		CW Single Inl	et? YES	Discharge		BAU inlet?		
17 18	N	Single Width? YES SPECIAL FEATURES REQUIRED	Double Width		Outlet?	YES	Single ini	el: TES	Drain in H			S	
19	R	Clean Out in Housing? YES			Housing?	NO			Water Jac				NO
20	F	Shaft Seals? YES		Inlet	or Outlet D	ampers?	INLE	T	Other: (GUARI)S & S(CREEN	IS
21	G												
22	L	Vertically or Horizontally Mounted	12										
24	Α	Tubeaxial?	Vaneaxial?				Arranger	nent:	1	Rotatio	n:		
25	х	TYPE OF INLET AND OUTLET:	Streamlined In	let?			Inlet Con			Outlet	Cone?		
26	ı	SPECIAL FEATURES REQUIRED					Support I			Motor			
27	Α	Inlet or Outlet Guard?	Outside Belt C	iuard	!?		Flanged I	nlet & Outlet?		Other:			
28 29	L												
30	Р	Horizontally or Vertically Mounted	1?										
31	R	Direct Drive?						acity Static Co	onducting '				
32	P	SPECIAL FEATURES REQUIRED	: Safety Guard	s?			Shutters?			Other:			
33 34	R	Description of Guard & Shutter: Adjustable Pitch?					Automatic	c Variable Pitc	h?				
35	'`	Adjustable / Itoli.											
36		Furnished By: FAN MFG'R	Elec or Steam	Turb	oine? E	LEC		ear, Belt or V-			DIRECT		
37		ELECTRIC MOTOR:	Mfr.: * Enclosure:		TEFC		STEAM T Mounted	URBINE:		Mfr.: Model:			
38 39	D	Mounted By:FAN MFG'R Speed: * rpm	Service Factor		1.15		Horsepov			Water			Lbs/Hr
40	R	Volts: 460	Temp. Rise:				Speed		rpm	Vacuu	m (if any	<i>i</i>):	
41	ı	Phase: 3	Insulation:					m Press.:			team Te		
42	٧	Cycles: 60	Frame:	1-1-	*	110	Norm		psig		rmal:		deg. F
44	E R	Nominal Size: 75 HP SPEED REDUCERS:	Est. BHP Req Mfr.:	a: :	56.7	HP	Max.: Backpres		psig psig	IVIE	ex.:		deg F
45	11	Ratio:	Model:				Nozzies	Size	Ratin	g	Facing	3 L	ocation
46		Integral or Separate?	Class:				Inlet						
47		OFF DRIVED OFFOISION TICK	<u> </u>				Exhaust			L			
48		SEE DRIVER SPECIFICATION NO 1. FAN SHALL BE SIZED TO		TWF	EN SEA LI	EVEL AN	D 6000 F	FET FI FVAT	ION				
49 50	N	2. GAS DENSITY MAY RANGE						LLL VAI					
51	0	3. VENDOR TO SUPPLY REM						DAMPER.					
52	Т												
53	E												
54 55	S	VENDOR TO COMPLETE INFO	DRMATION M	ARK	ED * * *								
			_ ,										

IT CORP SPEC. NO. STACK I.T. CORPORATION POLLUTION CONTROL ENGINEERING SHEET 1 OF 1 NO DATE BY PROJECT NAME USAEC 50 2 JOB NO. AREA NO: 322243 APC AREA NAME: LOCATION Z - 5001TAG NO.: STACK **EQUIPMENT NAME:** 3 DATE APPR BY WMS 11/30/94 YES No. Units: ONE Gal. Field Erected? Total Volume: 2-3" W.C. PRESSURE Operating Pressure, psig 2 400 Operating Temperature, deg F 3 500 Design Temperature, deg F 4 3,200 ACFM 5 Operating Gas Flow 5.000 ACFM 6 Design Gas Flow Design/Operating Velocity **50 FT PER SECOND** 7 D 8 Ε 9 S 10 ı G 11 N 12 13 D 14 SELF STANDING 15 Α Type Supports: NONE 16 T Insulation: NONE 17 Fireprooofing: ΗA BH Paint: NONE 18 Sandblast: Other: Davited? MANHOLE: Hinged? 19 Ladder Clips: Insul. Rings: Platform Clips: 20 Pipe Supports: 21 Wind Load: 110 MPH mph Seismic: ZONE 3 22 Ibs. Weight Full of Water: N/A 23 Weight Empty: Thicknes Mat'l Cis Mat'l - Minimum Quality 24 Item Shell 1/4" C.S. A-36 25 М Heads 26 27 Α Lining 18" 28 Т O.D. 62 ft 29 Ε Length C.S. A-36 30 R Nozzle Necks C.S. A-36 31 1 Flanges 32 Α M.H. Cover 33 L 34 S Supports Bolts/Studs 35 36 Nuts 37 Gaskets 38 Service Mark No. Size Rating Face Type 39 N SAMPLE PORT 2 4" 2* SAMPLE PORT В 2 40 0 -1 D 18" C 41 Z OFF-GAS 1 2. D 1 42 Z DRAIN E 43 F Ε 44 45 G Н 46 S 47 С ī J 48 Н 49 E 50 D М 51 U N 52 L $\overline{\circ}$ 53 Ε 54 P 55 Nozzle to be Plugged or Blinded * For Further Details, See Sheet No.:

HOPPER IT CORP SPEC. NO. I.T. CORPORATION SPECIFICATION POLLUTION CONTROL ENGINEERING DATE NO BY SHEET PROJECT NAME 1 **USAEC** 50 JOB NO AREA NO: APC 322243 AREA NAME: 2 EXISTING OR NEW? TAG NO .: T-5002A,B NEW DUST COLLECTION **EQUIPMENT NAME:** APPR DATE BY DRUMS 3 11/30/94 SLM PA 1 2 **FUNCTIONAL DATA** 3 4 Application: Receiving Hot Ash Ash, dust Material Handled: 5 6 20 - 50 pcf Density: 7 Material Temperature: Normal -400 deg. F 8 500 deg. F. 9 Maximum -Capacity: 10 Normal -Particle Size: < 1/32" 1 lb/hr 11 0 to 10 lb/hr Moisture: None Range -12 13 Days/Year: 365 14 Operations, Hrs/Day: 12 - 24Location: Outdoors or in temperary bldg. 15 16 17 **SPECIFICATIONS** 18 19 20 1. Drum capacity to be 55 gallons. 21 2. Drum to include hinged inspection lid with entrance port for ash inlet. 22 23 3. Materials of construction to be carbon steel. 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

CONCEPTUAL DESIGN AND RELATED DOCUMENTS

10.0 GENERAL ARRANGEMENT DRAWINGS

U.S. Army Environmental Center Red Water Treatment Technology Test Plan and Site Preparation Aberdeen Proving Ground, Maryland

IRAILER #2

NOTES

¹ PLAN AND ELEVATION SHOWN FOR EACH OF THE FOUR STANDARD SIZE TRACERS
2 THIS LAYOUT IS FOR REFERRICE ONLY AND HOT TO BE USED FOR CONSTRUCTION PURPOSES
3 EQUIPMENT BOT SHOWN ON THE TRACERS WILL BE TRANSPORTED IN A SEPARATE STANDARD SIZED TRACER.

CONCEPTUAL DESIGN AND RELATED DOCUMENTS

11.0 ELECTRICAL ONE-LINE DRAWING

U.S. Army Environmental Center Red Water Treatment Technology Test Plan and Site Preparation Aberdeen Proving Ground, Maryland

Knozwile, Tennessee

Not drawing and the Internation contained therein mer ple property of IT Corporation. It was propered below project returned. It can not intended an ingression of adequate for any other purpose air zoused by the demand other propert or lockly. The decomp dath and be used purpose which as one supplied on a subject to return english of invariance are reserved.

AREA 100
ELECTRICAL ONE-LINE
CIRCULATING BED COMBUSTOR SYSTEM

0		
PROJ. NO.	DRAWING NO.	REV
322243	D-100-60-001	Ā

CONCEPTUAL DESIGN AND RELATED DOCUMENTS

12.0 MASS AND ENERGY BALANCE OUTPUTS (Normal Case, Start-Up Case, and Hot Idle Case)

U.S. Army Environmental Center Red Water Treatment Technology Test Plan and Site Preparation Aberdeen Proving Ground, Maryland COMPANY NAME: IT Corporation

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.: WP: WP1585.12

12.0 Mass and Energy Balance Outputs (Normal Case, Start-Up Case, and Hot Idle Case)

Mass and Energy Balance Process Strategy. An M&EB was performed on the red water feed (heating value = 487 Btu/lb) consisting of 15 percent solids and the balance water. A total of three M&EBs were performed for the conceptual design. They are:

- · Normal case
- · Start-up case
- · Hot idle case.

During the normal case, 1.5 gpm of red water is processed in the incinerator with a cyclone exit gas temperature of 1600°F. The gases are then processed in the APCS. The data from this output are used to generate the table that formed the conceptual design basis and also used in the preparation of the PFD.

During the start-up case, there is no red water feed and a natural gas-fired start-up burner is used to preheat the combustion air. This burner in turn heats up and circulates the bed material. During this case, the cyclone exit gas temperature is maintained at approximately 1300° F, which is above the auto ignition temperature of natural gas. The data from this output are used to determine the turn down ratio of the system. These data are presented in Chapter 5.0.

During the hot idle case with no feed to the CBC, the cyclone exit gas is maintained at 600°F using the start-up burner. The hot gases at 600°F are adequate for keeping the CBC and the APCS warm when the system is idle.

JOB NO: 322243

JOB DESC: CIRC BED COMBUSTOR, 1.5 GPM RED WATER FLOW, NORMAL CASE 10/20/94 15:32

PAGE 1

CLIENT: USAC

ENGINEER: SLM

DATA FILE: USAC.DAT

HEAT AND MATERIAL BALANCE PROGRAM VERSION 6.0

			SPE	CIFIC HEAT	MOLECULAR WEIGHT
UNIT NO COMBUSTION DEVICE	BASE CONDITIONS		(8	TU/LB-F)	(LB/LB-MOLE)

1 CIRC. BED/CYCLONE	ATM PRES (IN. H2O):	406.800	ASH	.270	100.000
	BASE TEMP (F):	60.000	MSALT	.270	100.000
	TOTAL NUMBER OF FUELS:	5	ASALT	.270	100.000
			FIXED CARBO	N .220	12.011
			INERT	.270	100.000
			PYRO GAS	.500	100.000
COMBUSTION MODULE					
OPERATING CONDITIONS	UNIT 1				
EXIT GAS TEMPERATURE (F)	1600.000				
EXIT SOLID TEMPERATURE (F)	1600.000				
PRESSURE DROP (IN.W.C.)	2.000				

OPERATING CONDITIONS	UNIT 1
EXIT GAS TEMPERATURE (F)	1600.000
EXIT SOLID TEMPERATURE (F)	1600.000
PRESSURE DROP (IN.W.C.)	2.000
OUT PRESSURE (IN. W.C.)	404.800
RADIATION HEAT LOSS	.630
HEAT LOSS UNIT	MM BTU/HR
HEAT INPUT (MM BTU/HR)	.000
EXCESS AIR (%) FOR OXIDIZED WASTE	28.664
MINIMUM XS AIR (%) FOR OXIDIZED WASTE	.000
MINIMUM O2 (%) IN EXIT GAS	5.000
AIR TEMPERATURE TO BURNER (F)	60.000
AIR HUMIDITY (LB H2O/LB DRY AIR)	.010
EXCESS AIR FOR AUX FUEL (%)	.000
NAME OF AUXILIARY FUEL	NAT GAS
QUENCH CODE (1 AIR,2 H2O)	1
QUENCH H20 TEMPERATURE TO BURNER (F)	.000
ASH IN EXIT (%)	6.000
MSALT IN EXIT (%)	100.000
ASALT IN EXIT (%)	100.000
FIXED CARBON IN EXIT (%)	.000
CO/CO2 COMBUSTION EFFICIENCY (%)	99.990
FUEL NO2 EFFICIENCY (%)	2.500

ASH MODULE CONDITIONS

EXIT STEAM DESTINATION	ATMOSPHERE
HEAT LOSS (MM BTU/HR)	.000
SOLID EXIT TEMPERATURE (F)	.000
QUENCH WATER (GPM)	.000
MOISTURE IN WET ASH (%)	.000
QUENCH H20 MAKEUP TEMPERATURE (F)	60.000
QUENCH H20 TSS (mg/l)	.000
QUENCH H2O TDS (mg/l)	.000

JOB NO: 322243 CLIENT: USAC

JOB DESC: CIRC BED COMBUSTOR, 1.5 GPM RED WATER FLOW, NORMAL CASE 10/20/94 15:32 PAGE 2

ENGINEER: SLM

DATA FILE: USAC.DAT

FUEL TO: CIRC. BED/CYCLONE (PER HOUR)

	FUEL NAME	**********		COMPONENT	FLOW TO FURNACE	******	************		
		С	H2	02	N2	H20	CL2	s	P
250	NAT GAS								
	PERCENT	73.928	24.431	.891	.750	.000	.000	.000	.000
	POUNDS	83.704	27.662	1.009	.849	.000	.000	.000	.000
	LB-MOLE	6.969	13.721	.032	.030	.000	.000	.000	.000
251	NAT GAS								
	PERCENT	73.928	24.431	.891	.7 50	.000	.000	.000	.000
	POUNDS	51.010	16.857	.615	.518	.000	.000	.000	.000
	LB-MOLE	4.247	8.362	.019	.018	.000	.000	.000	.000
252	REDSOLID								
	PERCENT	20.000	.670	21.000	6.330	.000	.000	4.330	.000
	POUNDS	24.780	.830	26.019	7.843	.000	.000	5.365	.000
	LB-MOLE	2.063	.412	.813	.280	.000	.000	.167	.000
253	REDWATER								
	PERCENT	.000	.000	.000	.000	100.000	.000	.000	.000
	POUNDS	.000	.000	.000	.000	702.100	.000	.000	.000
	LB-MOLE	.000	.000	.000	.000	38.971	.000	-000	.000
	-								
	TOT FUEL								
	POUNDS	159.494	45.349	27.643	9.210	702.100	.000	5.365	.000
	LB-MOLE	13.279	22.495	-864	.329	38.971	.000	.167	.000

CLIENT: USAC

JOB NO: 322243 JOB DESC: CIRC BED COMBUSTOR, 1.5 GPM RED WATER FLOW, NORMAL CASE 10/20/94 15:32 PAGE 3

ENGINEER: SLM

DATA FILE: USAC.DAT

FUEL TO: CIRC. BED/CYCLONE (PER HOUR) (CONTINUED)

FUEL NAME	**********		COMPONENT	COMPONENT FLOW TO FURNACE *		************		
	SI	BR2	F2	ASH	MSALT	ASALT	F.CARB	INERTS
NAT GAS								
PERCENT	.000	.000	.000	.000	-000	.000	.000	.000
POUNDS	.000	.000	.000	.000	.000	.000	.000	.000
LB-MOLE	.000	.000	.000	.000	.000	.000	.000	.000
NAT GAS								
PERCENT	.000	.000	.000	.000	.000	.000	.000	.000
POUNDS	.000	.000	.000	.000	.000	.000	.000	.000
LB-MOLE	-000	.000	.000	.000	.000	.000	.000	.000
REDSOLID								
PERCENT	.000	.000	.000	.000	2.670	45.000	.000	-000
POUNDS	.000	.000	.000	.000	3.308	55.755	.000	.000
LB-MOLE	.000	.000	.000	.000	.033	.558	.000	.000
REDWATER	-							
PERCENT	.000	.000	.000	-000	.000	.000	.000	.000
POUNDS	.000	.000	.000	.000	.000	.000	.000	.000
LB-MOLE	.000	.000	.000	.000	.000	.000	.000	.000
-								
TOT FUEL								
POUNDS	.000	.000	.000	.000	3.308	55.755	.000	.000
LB-MOLE	.000	.000	.000	.000	-033	.558	.000	.000
	NAT GAS PERCENT POUNDS LB-MOLE NAT GAS PERCENT POUNDS LB-MOLE REDSOLID PERCENT POUNDS LB-MOLE REDWATER PERCENT POUNDS LB-MOLE TOT FUEL POUNDS	NAT GAS PERCENT .000 POUNDS .000 LB-MOLE .000 NAT GAS PERCENT .000 POUNDS .000 LB-MOLE .000 REDSOLID PERCENT .000 POUNDS .000 LB-MOLE .000 REDWATER PERCENT .000 POUNDS .000 LB-MOLE .000 TOT FUEL POUNDS .000	NAT GAS PERCENT .000 .000 POUNDS .000 .000 LB-MOLE .000 .000 NAT GAS PERCENT .000 .000 POUNDS .000 .000 LB-MOLE .000 .000 REDSOLID PERCENT .000 .000 POUNDS .000 .000 REDWATER PERCENT .000 .000 REDWATER PERCENT .000 .000 TOUNDS .000 .000 REDWATER PERCENT .000 .000 REDWATER PERCENT .000 .000 TOUNDS .000 .000 LB-MOLE .000 .000 TOUNDS .000 .000 LB-MOLE .000 .000 TOUNDS .000 .000 TOT FUEL POUNDS .000 .000	NAT GAS PERCENT .000 .000 .000 POUNDS .000 .000 .000 LB-MOLE .000 .000 .000 NAT GAS PERCENT .000 .000 .000 POUNDS .000 .000 .000 LB-MOLE .000 .000 .000 REDSOLID PERCENT .000 .000 .000 REDSOLID PERCENT .000 .000 .000 REDWATER PERCENT .000 .000 .000 REDWATER PERCENT .000 .000 .000 REDWATER PERCENT .000 .000 .000 TOT FUEL POUNDS .000 .000 .000	NAT GAS PERCENT .000 .000 .000 .000 POUNDS .000 .000 .000 .000 LB-MOLE .000 .000 .000 .000 NAT GAS PERCENT .000 .000 .000 .000 POUNDS .000 .000 .000 .000 LB-MOLE .000 .000 .000 .000 REDSOLID PERCENT .000 .000 .000 .000 POUNDS .000 .000 .000 .000 REDSOLID PERCENT .000 .000 .000 .000 REDWATER PERCENT .000 .000 .000 .000 REDWATER PERCENT .000 .000 .000 .000 REDWATER PERCENT .000 .000 .000 .000 TOT FUEL POUNDS .000 .000 .000 .000	NAT GAS PERCENT .000 .000 .000 .000 .000 .000 LB-MOLE .000 .000 .000 .000 .000 .000 NAT GAS PERCENT .000 .000 .000 .000 .000 .000 NAT GAS PERCENT .000 .000 .000 .000 .000 .000 POUNDS .000 .000 .000 .000 .000 .000 LB-MOLE .000 .000 .000 .000 .000 .000 REDSOLID PERCENT .000 .000 .000 .000 .000 .000 REDSOLID PERCENT .000 .000 .000 .000 .000 .000 .000 REDSOLID PERCENT .000 .000 .000 .000 .000 .000 .000 REDWATER PERCENT .000 .000 .000 .000 .000 .000 LB-MOLE .000 .000 .000 .000 .000 .000 TOT FUEL POUNDS .000 .000 .000 .000 .000 .000	NAT GAS PERCENT	NAT GAS PERCENT .000 .000 .000 .000 .000 .000 .000 .0

JOB NO: 322243 JOB DESC: CIRC BED COMBUSTOR, 1.5 GPM RED WATER FLOW, NORMAL CASE 10/20/94 15:32 PAGE 4

CLIENT: USAC ENGINEER: SLM DATA FILE: USAC.DAT

UNIT 1 CIRC. BED/CYCLONE

	UNIT I UTKUT D							
	*** MASS AND ENERG	Y IN ***	·				% OF TOTAL	
		E CODE	TEMP DEG F	LB/HR	BTU/LB	MM BTU/HR	HEAT DUTY	
250	NAT GAS	OXD	60.00	113.224	21800.000	2.468	55.921419	
251	NAT GAS	OXD	60.00	69.000	21800.000	1.504	34.079197	
252	REDSOL ID	OXD	60.00	123.900	3200.000	.396	8.982662	
253	REDWATER	OXD	60.00	702.100	.000	.000	.000000	
351	COMBUSTION AIR		40.00	004 705	000	000	000000	
	02		60.00	981.785	.000	.000	.000000	
	N2		60.00	3252.238	.000	.000	.000000	
	H20		60.00	42.340	1059.900	.045	1.016721	
				520/ 500			100 00000	
	OVERALL TOTAL			5284.588		4.414	100.000000	
	*** MASS AND ENERG	Y OUT **	rsk					
350	COMBUSTION GAS OUT	1600	.00 DEG F , 404	.8 IN. W.C.				
			LB-MOLES/HR	LB/HR	BTU/LB	MM BTU/HR	CONCENTR	ATION
	H20		63.816	1149.704	1833.457	2.108	- 282	LB H2O/LB DRY GAS
	CO2		13.278	584.365	407.805	.238	9.713	% GAS VOL (DRY)
	CO		.001	.037	411.485	.000	9.714	PPMV (DRY)
	N2		116.406	3261.218	406.902	1.327	85.152	% GAS VOL (DRY)
	NO2		.016	.756	376.359	.000	120.233	PPMV (DRY)
	02		6.835	218.726	377.212	.083	5.000	% GAS VOL (DRY)
	S02		.167	10.719	286.955	.003	1223.945	PPMV (DRY)
	MSALT		.033	3.308	415.800	.001	.385	GR/DSCF @ 7% 02
	ASALT		.558	55.755	415.800	.023	6.483	GR/DSCF @ 7% 02
	TOTAL COMBUSTION GAS	5	201.110	5284.588	715.983	3.784		
353	HEAT LOSS					.630		
333	HEAT EGGG							
	TOTAL HEAT RELEASED					4.414		
354	CO Hc AVAILABLE				4343.600	.000		
JJ4	TO NO MINIEMPER		========	========		======	_	
	OVERALL TOTAL		201.110	5284.588		4.414		
	OTENALE TOTAL			322				

136.704

TOTAL DRY GAS

4075.821

1.651

JOB NO: 322243 JOB DESC: CIRC BED COMBUSTOR, 1.5 GPM RED WATER FLOW, NORMAL CASE 10/20/94 15:32 PAGE 5
CLIENT: USAC DATA FILE: USAC.DAT

2527.693

724.545

COMBUSTION AIR SUMMARY OPERATING CONDITIONS UNIT 1 ----------60.000 TEMPERATURE (F) PRESSURE (IN. W.C.) 406.800 928.285 FLOW (ACFM) AIR (DRY) TOTAL (LB/HR) 4234.024 AIR (DRY) THEORETICAL (LB/HR) 3290.753 943.271 AIR (DRY) TOT-THEO (LB/HR) EXCESS AIR (%) 28.664 981.785 TOTAL 02 (LB/HR) 763.060 THEO. 02 (LB/HR) 218.726 TOT-THEO. 02 (LB/HR) 3252.238 TOTAL N2 (LB/HR)

COMBUSTION GAS SUMMARY	UNIT 1
TEMPERATURE (F)	1600.000
PRESSURE (IN. W.C.)	404.800
FLOW (ACFM)	5051.309

THEO. N2 (LB/HR)
TOT-THEO. N2 (LB/HR)

JOB NO: 322243 JOB DESC: CIRC BED COMBUSTOR, 1.5 GPM RED WATER FLOW, NORMAL CASE 10/20/94 15:32 PAGE 6

PARTICULATE STANDARD INFORMATION

CLIENT: USAC

ENGINEER: SLM

DATA FILE: USAC.DAT

APC HEAT AND MATERIAL BALANCE PROGRAM VERSION 6.0

BASE CONDITIONS AND INCOMING GAS CONDITIONS

5,102 5 5 1 1 1 1 1 1 1 1 1 1									
		-							
ATMOSPHERIC PRESSURE (IN. H20)					ANDARD BASIS	O			
BASE TEMPERATURE (DEG F)	60.0		PART	PARTICULATE STANDARD BASIS CONCENTRATION (%) 7.0					
INLET GAS PRESSURE (IN. H2O)			PART	ICULATE STA	ANDARD BASIS CONDITION	DSC			
INLET GAS TEMPERATURE (DEG F)	1600.0	0	PART	ICULATE STA	ANDARD TEMPERATURE (DEG F)	68.00			
UNIT NO APC DEVICE			RECE	IVER					
1 PART. QUENCH			QUEN	CH SUMP					
2 BAGHOUSE			DUST	COLLECT					
3 ID FAN									
4 STACK			•						
APC DEVICE INFORMATION	UNIT 1								
RECYCLE FLOW (GPM)	.00	.00							
RECYCLE FLOW (LB/HR) OUTLET PRESSURE (IN. H20)									
APC HEAT LOSS (MM BTU/HR)		.00							
PERCENT REMOVAL DATA	UNIT 1	UNIT 2	UNIT 3	UNIT 4					
ASH		99.00							
METAL SALTS		99.00							
ALKALI SALTS	.00	99.00	.00	.00					
RECEIVER DATA	UNIT 1	UNIT 2	UNIT 3	UNIT 4					
REC. EXISTENCE			NO	NO					
REC. PURGE DESTINATION		O DIS							
REC. PURGE TARGET	.00				·				
			.00		•				
REC. HEAT LOSS (MM BTU/HR)	.00	.00	.00	.00					
	UNIT 1	UNIT 2	UNIT 3	UNIT 4					
		ADC		DEC					
MAKEUP OPTION	APC	APC	REC	REC					
MAKEUP OPTION MAKEUP FLOW (GPM)	APC 3.10	APC	REC	.00					
MAKEUP OPTION	APC	APC	REC						
MAKEUP STREAM DATA									

JOB DESC: CIRC BED COMBUSTOR, 1.5 GPM RED WATER FLOW, NORMAL CASE 10/20/94 15:32 PAGE 7
ENGINEER: SLM DATA FILE: USAC.DAT

NEUTRALIZATION STREAM DATA	UNIT 1	UNIT 2	UNIT 3	UNIT 4
NEUT. OPTION	APC	APC	REC	REC
NEUT. REAGENT NAME	NAOH	NAOH	NAOH	NACH
NEUT. REAG. TEMP. (DEG F)	60.00	60.00	60.00	60.00
NEUT. REAG. CONC. (%)	23.00	23.00	20.00	20.00
STOICHIOMETRIC RATIO	1.00	1.00	1.00	1.00
OPERATIONAL LIMITS DATA	UNIT 1	UNIT 2	UNIT 3	UNIT 4
MIN. GAS OUT. TEMP. (DEG F)	0.	0.	0.	0.
PURGE TDS CONCENTRATION (%)	0.	0.	0.	0.
PURGE TSS CONCENTRATION (%)	0.	0.	0.	0.
PURGE ACID CONCENTRATION (%)	0.	0.	0.	0.

OTHER GAS DATA	GAS 1
NAME OF OTHER GAS	ATM AIR
FEED RATE (LB/HR)	775.00
TEMPERATURE (DEG F)	60.00
INPUT CODE	2.
DESTINATION UNIT NUMBER	1.

JOB NO: 322243 CLIENT: USAC

OTHER GAS COMP. DATA (LB/HR)	GAS 1
H2O	7.75
N2	589.39
02	177.86

JOB DESC: CIRC BED COMBUSTOR, 1.5 GPM RED WATER FLOW, NORMAL CASE 10/20/94 15:32

PAGE 8

CLIENT: USAC ENGINEER: SLM DATA FILE: USAC.DAT

JOB NO: 322243

UNIT 1 PART. QUENCH

** MASS AND ENERGY IN ** LB-MOLES/NR LBS/NR BTU/LB MM BTU/JR CONCENTRATION 350 GAS FROM CIRC. BED/CYCLONE: 1600.0 DEG F, 404.8 IN. W.C. R20 63.816 1149.704 1833.457 2.108 .282 LB H20/LB DRY GAS CO2 13.278 584.365 407.805 .238 9.773 % DRY GAS VOL CO001037 411.485000 9.771 PPM DRY GAS VOL N2 116.406 3261.218 405.902 13.327 85.152 % DRY GAS VOL N2 116.406 3261.218 405.902 13.327 85.152 % DRY GAS VOL O2016756 376.359000 12.233 PPM DRY GAS VOL O2016756 377.212083 5.000 % DRY GAS VOL SO2167 10.719 286.955003 1223.945 PPM DRY GAS VOL SO2167 10.719 286.955003 1223.945 PPM DRY GAS VOL ALKALI SALTS033 3.308 415.800001385 GR DSCF a 7.0 % O2 ALKALI SALTS558 55.755 415.800023 6.483 GR DSCF a 7.0 % O2 ALKALI SALTS588 55.755 415.800023 6.483 GR DSCF a 7.0 % O2 TOTAL FLUE GAS201.110 5284.5883784 6.868 GR DSCF a 7.0 % O2 738 ATM AIR: 60.0 DEG F R20	UNII I PARI. GUENCH						
## MASS AND ENERGY OUT ** LB -MOLES/HR	** MASS AND ENERGY IN **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENT	RATION
CO2 13.278 584.365 407.805 .238 9.713 % DRY GAS VOL CO .001 .037 411.485 .000 9.714 PPH DRY GAS VOL N2 116.406 3261.218 406.902 1.327 85.152 % DRY GAS VOL N02 .016 .756 376.359 .000 120.233 PPH DRY GAS VOL O2 .6.855 218.726 377.212 .083 5.000 % DRY GAS VOL O2 .6.855 218.726 377.212 .083 5.000 % DRY GAS VOL METAL SALTS .033 3.308 415.800 .001 .385 GR DSCF a 7.0 % O2 ALKALI SALTS .558 55.755 415.800 .001 .385 GR DSCF a 7.0 % O2 ALKALI SALTS .558 55.755 415.800 .003 6.483 GR DSCF a 7.0 % O2 TOTAL FLUE GAS .201.110 5284.588 3.784 6.868 GR DSCF a 7.0 % O2 TOTAL FLUE GAS .201.110 5284.588 .000 .000 79.101 % DRY GAS VOL O2 .5.558 177.865 .000 .000 79.101 % DRY GAS VOL O2 .5.558 177.865 .000 .000 79.101 % DRY GAS VOL O2 .5.558 177.865 .000 .000 .000 79.101 % DRY GAS VOL TOTAL GAS .27.026 775.000 .000 .000 79.101 % DRY GAS VOL O2 .5.558 176.853 .000 .000 .000 GR DSCF a 7.0 % O2 651 MAKEUP MATER: 60.0 DEG F H2O .85.985 1549.361 .000 .000 TOTAL MAKEUP ALKEUP .85.985 1549.361 .000 .000 TOTAL MAKEUP ALKEUP .85.985 1549.361 .000 .000 OVERALL TOTAL .314.121 7608.949 .37.792 *** MASS AND ENERGY OUT ** LB-MOLES/HR LBS/HR BTU/LB MM BTU/HR CONCENTRATION 650 GAS TO BAGHOUSE: 439.2 DEG F, 403.8 IN. N.C. H2O .5.544.33 18.0 N.C. H2O .5.544.33 18.0 N.C. H2O .5.544.33 18.0 N.C. H2O .5.544.33 18.0 N.C. H2O .5.544.343 18.0 N.C. H2O .5.544.345 18.0	350 GAS FROM CIRC. BED/CYCLONE:	: 1600.0 DEG F, 4	04.8 IN. W.C.				
CO .001 .037 411.485 .000 9.714 PPM DRY GAS VOL N2 116.406 3261.218 406.902 1.327 85.152 % DRY GAS VOL N02 .016 .756 376.359 .000 120.233 5.000 % DRY GAS VOL O2 6.855 218.726 377.212 .083 5.000 % DRY GAS VOL SOZ .167 10.719 286.955 .003 5.000 % DRY GAS VOL SOZ .167 10.719 286.955 .003 5.000 % DRY GAS VOL METAL SALTS .033 3.308 415.800 .001 3.385 GR DSCF a 7.0 % O2 ALKALI SALTS .558 55.755 415.800 .023 6.483 GR DSCF a 7.0 % O2 ALKALI SALTS .558 55.755 415.800 .023 6.483 GR DSCF a 7.0 % O2 TOTAL FLUE GAS .201.110 5284.588 .03.784 6.868 GR DSCF a 7.0 % O2 TOTAL FLUE GAS .201.110 5284.588 .000 .000 79.101 % DRY GAS VOL O2 2.1.038 589.387 .000 .000 79.101 % DRY GAS VOL O2 5.558 177.863 .000 .000 79.101 % DRY GAS VOL O2 5.558 177.863 .000 .000 79.101 % DRY GAS VOL O2 5.558 177.863 .000 .000 20.899 % DRY GAS VOL O2 5.558 177.863 .000 .000 GR DSCF a 7.0 % O2 651 MAKEUP MATER: 60.0 DEG F H2O 85.982 1549.361 .000 .000 GR DSCF a 7.0 % O2 651 MAKEUP MATER: 60.0 DEG F 120.000 .000 .000 GR DSCF a 7.0 % O2 651 MAKEUP MATER: 60.0 DEG F 120.000 .000 .000 GR DSCF a 7.0 % O2 651 MAKEUP MATER: 60.0 DEG F 120.000 .000 .000 GR DSCF a 7.0 % O2 651 MAKEUP MATER: 60.0 DEG F 120.000 .000 .000 .000 .000 GR DSCF a 7.0 % O2 651 MAKEUP MATER: 60.0 DEG F 120.000 .000 .000 .000 .000 .000 .000 .	H20	63.816	1149.704	1833.457	2.108	.282	LB H2O/LB DRY GAS
N2	CO2	13.278	584.365	407.805	.238	9.713	% DRY GAS VOL
NO2	CO	.001	.037	411.485	.000	9.714	PPM DRY GAS VOL
02 6.835 218.726 377.212 .083 5.000 % DRY GAS VOL SO2 .167 10.719 286.955 .003 1223.945 PPM DRY GAS VOL METAL SALTS .033 3.308 415.800 .001 .385 GR DSCF a 7.0 % OZ ALKALI SALTS .558 55.755 415.800 .023 6.483 GR DSCF a 7.0 % OZ TOTAL FLUE GAS 201.110 5284.588 3.784 6.868 GR DSCF a 7.0 % OZ 738 ATM AIR: 60.0 DEG F H20 .430 7.750 1059.900 .008 .010 LB H20/LB DRY GAS VOL OZ 5.558 177.863 .000 .000 79.101 % DRY GAS VOL TOTAL GAS 27.026 775.000 .008 .000 GR DSCF a 7.0 % OZ 651 MAKEUP MATER: 60.0 DEG F H20 85.982 1549.051 .000 .000 GR DSCF a 7.0 % OZ 652 ASS	N2	116.406	3261.218	406.902	1.327	85.152	% DRY GAS VOL
SO2	NO2	.016	.756	376.359	.000	120.233	PPM DRY GAS VOL
METAL SALTS	02	6.835	218.726	377.212	.083	5.000	% DRY GAS VOL
ALKALI SALTS	so2	.167	10.719	286.955	.003	1223.945	PPM DRY GAS VOL
ALKALI SALTS	METAL SALTS	.033	3.308	415.800	.001	.385	GR DSCF a 7.0 % 02
TOTAL FLUE GAS 201.110 5284.588 3.784 6.868 GR DSCF a 7.0 % OZ 738 ATM AIR: 60.0 DEG F H20	ALKALI SALTS		55.755	415.800	.023	6.483	GR DSCF a 7.0 % 02
H2O			5284.588		3.784	6.868	GR DSCF @ 7.0 % 02
H2O	738 ATM AIR: 60.0 DEG F						
N2 21.038 589.387 .000 .000 79.101 % DRY GAS VOL 02 5.558 177.863 .000 .000 20.899 % DRY GAS VOL TOTAL GAS 27.026 775.000 .008 .000 GR DSCF @ 7.0 % O2 651 MAKEUP WATER: 60.0 DEG F H20 85.982 1549.051 .000 .000 TDS .003 .310 36.000 .000 TOTAL MAKEUP 85.985 1549.361 .000 OVERALL TOTAL 314.121 7608.949 3.792 ** MASS AND ENERGY OUT ** LB-MOLES/HR LBS/HR BTU/LB MM BTU/HR CONCENTRATION 650 GAS TO BAGHOUSE: 439.2 DEG F, 403.8 IN. W.C. H20 150.228 2706.505 1233.052 3.337 .559 LB H20/LB DRY GAS CO2 13.278 584.365 84.275 .049 8.131 % DRY GAS VOL CO .001 .037 95.078 .000 8.132 PPM DRY GAS VOL N2 137.443 3850.605 94.716 .365 84.166 % DRY GAS VOL N2 137.443 3850.605 94.716 .365 84.166 % DRY GAS VOL N2 12.393 396.588 85.425 .034 7.589 & DRY GAS VOL D2 12.393 396.588 85.425 .034 7.589 & DRY GAS VOL SO2 .167 10.719 61.120 .001 1024.607 PPM DRY GAS VOL HETAL SALTS .033 3.308 102.384 .000 .384 GR DSCF @ 7.0 % O2 ALKALI SALTS .0558 55.755 102.384 .006 6.475 GR DSCF @ 7.0 % O2		.430	7.750	1059.900	.008	.010	LB H2O/LB DRY GAS
O2	N2	21.038	589.387	.000	.000	79.101	
## MASS AND ENERGY OUT ** LB-MOLES/HR LBS/HR BTU/LB MM BTU/HR CONCENTRATION H20		5.558	177.863	.000	.000	20.899	% DRY GAS VOL
H20 85.982 1549.051 .000 .000 TDS .003 .310 36.000 .000 TOTAL MAKEUP 85.985 1549.361 .000 OVERALL TOTAL 314.121 7608.949 3.792 *** MASS AND ENERGY OUT *** LB-MOLES/HR LBS/HR BTU/LB MM BTU/HR CONCENTRATION 650 GAS TO BAGHOUSE: 439.2 DEG F, 403.8 IN. W.C. H20 150.228 2706.505 1233.052 3.337 .559 LB H20/LB DRY GAS CO2 13.278 584.365 84.275 .049 8.131 % DRY GAS VOL CO .001 .037 95.078 .000 8.132 PPM DRY GAS VOL N2 137.443 3850.605 94.716 .365 84.166 % DRY GAS VOL N2 137.443 3850.605 94.716 .365 84.166 % DRY GAS VOL O2 .016 .756 78.743 .000 100.651 PPM DRY GAS VOL O2 .12.393 396.588 85.425 .034 7.589 % DRY GAS VOL SO2 .167 10.719 61.120 .001 1024.607 PPM DRY GAS VOL METAL SALTS .033 3.308 102.384 .000 .384 GR DSCF @ 7.0 % O2 ALKALI SALTS .558 55.755 102.384 .006 6.475 GR DSCF @ 7.0 % O2			775.000		.008	.000	
H20 85.982 1549.051 .000 .000 TDS .003 .310 36.000 .000 TOTAL MAKEUP 85.985 1549.361 .000 OVERALL TOTAL 314.121 7608.949 3.792 *** MASS AND ENERGY OUT *** LB-MOLES/HR LBS/HR BTU/LB MM BTU/HR CONCENTRATION 650 GAS TO BAGHOUSE: 439.2 DEG F, 403.8 IN. W.C. H20 150.228 2706.505 1233.052 3.337 .559 LB H20/LB DRY GAS CO2 13.278 584.365 84.275 .049 8.131 % DRY GAS VOL CO .001 .037 95.078 .000 8.132 PPM DRY GAS VOL N2 137.443 3850.605 94.716 .365 84.166 % DRY GAS VOL N2 137.443 3850.605 94.716 .365 84.166 % DRY GAS VOL O2 .016 .756 78.743 .000 100.651 PPM DRY GAS VOL O2 .12.393 396.588 85.425 .034 7.589 % DRY GAS VOL SO2 .167 10.719 61.120 .001 1024.607 PPM DRY GAS VOL METAL SALTS .033 3.308 102.384 .000 .384 GR DSCF @ 7.0 % O2 ALKALI SALTS .558 55.755 102.384 .006 6.475 GR DSCF @ 7.0 % O2	451 MAYELID WATER. 60 0 DEC E						
TDS TOTAL MAKEUP 85.985 1549.361 OVERALL TOTAL 314.121 7608.949 3.792 ** MASS AND ENERGY OUT ** LB-MOLES/HR LBS/HR BTU/LB MM BTU/HR CONCENTRATION 650 GAS TO BAGHOUSE: 439.2 DEG F, 403.8 IN. W.C. H20 150.228 2706.505 1233.052 3.337 .559 LB H20/LB DRY GAS CO2 13.278 584.365 84.275 .049 8.131 % DRY GAS VOL CO .001 .037 95.078 .000 8.132 PPM DRY GAS VOL N2 137.443 3850.605 94.716 .365 84.166 % DRY GAS VOL N02 .016 .756 78.743 .000 100.651 PPM DRY GAS VOL O2 12.393 396.588 85.425 .034 7.589 % DRY GAS VOL SO2 .167 10.719 61.120 .001 1024.607 PPM DRY GAS VOL METAL SALTS .033 3.308 102.384 .000 .384 GR DSCF @ 7.0 % O2 ALKALI SALTS .558 55.755 102.384 .006 6.475 GR DSCF @ 7.0 % O2		95 092	15/0 051	000	000		
TOTAL MAKEUP 85.985 1549.361 .000 OVERALL TOTAL 314.121 7608.949 3.792 ** MASS AND ENERGY OUT ** LB-MOLES/HR LBS/HR BTU/LB MM BTU/HR CONCENTRATION 650 GAS TO BAGHOUSE: 439.2 DEG F, 403.8 IN. W.C. H20 150.228 2706.505 1233.052 3.337 .559 LB H20/LB DRY GAS CO2 13.278 584.365 84.275 .049 8.131 % DRY GAS VOL CO .001 .037 95.078 .000 8.132 PPM DRY GAS VOL N2 137.443 3850.605 94.716 .365 84.166 % DRY GAS VOL N02 .016 .756 78.743 .000 100.651 PPM DRY GAS VOL N02 .016 .756 78.743 .000 100.651 PPM DRY GAS VOL SO2 .12.393 396.588 85.425 .034 7.589 % DRY GAS VOL SO2 .167 10.719 61.120 .001 1024.607 PPM DRY GAS VOL METAL SALTS .033 3.308 102.384 .000 .384 GR DSCF @ 7.0 % O2 ALKALI SALTS .558 55.755 102.384 .006 6.475 GR DSCF @ 7.0 % O2							
** MASS AND ENERGY OUT ** LB-MOLES/HR LBS/HR BTU/LB MM BTU/HR CONCENTRATION 650 GAS TO BAGHOUSE: 439.2 DEG F, 403.8 IN. W.C. H20 150.228 2706.505 1233.052 3.337 .559 LB H20/LB DRY GAS C02 13.278 584.365 84.275 .049 8.131 % DRY GAS VOL C0 .001 .037 95.078 .000 8.132 PPM DRY GAS VOL N2 137.443 3850.605 94.716 .365 84.166 % DRY GAS VOL N02 .016 .756 78.743 .000 100.651 PPM DRY GAS VOL O2 12.393 396.588 85.425 .034 7.589 % DRY GAS VOL S02 .167 10.719 61.120 .001 1024.607 PPM DRY GAS VOL METAL SALTS .033 3.308 102.384 .000 .384 GR DSCF @ 7.0 % O2 ALKALI SALTS .558 55.755 102.384 .006 6.475 GR DSCF @ 7.0 % O2				30.000			
** MASS AND ENERGY OUT ** LB-MOLES/HR LBS/HR BTU/LB MM BTU/HR CONCENTRATION 650 GAS TO BAGHOUSE: 439.2 DEG F, 403.8 IN. W.C. H20 150.228 2706.505 1233.052 3.337 .559 LB H20/LB DRY GAS C02 13.278 584.365 84.275 .049 8.131 % DRY GAS VOL C0 .001 .037 95.078 .000 8.132 PPM DRY GAS VOL N2 137.443 3850.605 94.716 .365 84.166 % DRY GAS VOL N02 .016 .756 78.743 .000 100.651 PPM DRY GAS VOL O2 12.393 396.588 85.425 .034 7.589 % DRY GAS VOL S02 .167 10.719 61.120 .001 1024.607 PPM DRY GAS VOL METAL SALTS .033 3.308 102.384 .000 .384 GR DSCF @ 7.0 % O2 ALKALI SALTS .558 55.755 102.384 .006 6.475 GR DSCF @ 7.0 % O2		74/ 424	7/08 0/0		7 700		
650 GAS TO BAGHOUSE: 439.2 DEG F, 403.8 IN. W.C. H20 150.228 2706.505 1233.052 3.337 .559 LB H2O/LB DRY GAS CO2 13.278 584.365 84.275 .049 8.131 % DRY GAS VOL CO .001 .037 95.078 .000 8.132 PPM DRY GAS VOL N2 137.443 3850.605 94.716 .365 84.166 % DRY GAS VOL NO2 .016 .756 78.743 .000 100.651 PPM DRY GAS VOL O2 .12.393 396.588 85.425 .034 7.589 % DRY GAS VOL SO2 .167 10.719 61.120 .001 1024.607 PPM DRY GAS VOL METAL SALTS .033 3.308 102.384 .000 .384 GR DSCF @ 7.0 % O2 ALKALI SALTS .558 55.755 102.384 .006 6.475 GR DSCF @ 7.0 % O2	OVERALL TOTAL	314.121	7608.949		3.192		
H2O 150.228 2706.505 1233.052 3.337 .559 LB H2O/LB DRY GAS CO2 13.278 584.365 84.275 .049 8.131 % DRY GAS VOL CO .001 .037 95.078 .000 8.132 PPM DRY GAS VOL N2 137.443 3850.605 94.716 .365 84.166 % DRY GAS VOL NO2 .016 .756 78.743 .000 100.651 PPM DRY GAS VOL O2 12.393 396.588 85.425 .034 7.589 % DRY GAS VOL SO2 .167 10.719 61.120 .001 1024.607 PPM DRY GAS VOL METAL SALTS .033 3.308 102.384 .000 .384 GR DSCF @ 7.0 % O2 ALKALI SALTS .558 55.755 102.384 .006 6.475 GR DSCF @ 7.0 % O2	** MASS AND ENERGY OUT **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENT	RATION
CO2 13.278 584.365 84.275 .049 8.131 % DRY GAS VOL CO .001 .037 95.078 .000 8.132 PPM DRY GAS VOL N2 137.443 3850.605 94.716 .365 84.166 % DRY GAS VOL NO2 .016 .756 78.743 .000 100.651 PPM DRY GAS VOL O2 12.393 396.588 85.425 .034 7.589 % DRY GAS VOL SO2 12.393 396.588 85.425 .034 7.589 % DRY GAS VOL METAL SALTS .033 3.308 102.384 .000 .384 GR DSCF @ 7.0 % O2 ALKALI SALTS .558 55.755 102.384 .006 6.475 GR DSCF @ 7.0 % O2	650 GAS TO BAGHOUSE: 439.2 DEG	F, 403.8 IN. W.I	с.				
CO .001 .037 95.078 .000 8.132 PPM DRY GAS VOL N2 137.443 3850.605 94.716 .365 84.166 % DRY GAS VOL N02 .016 .756 78.743 .000 100.651 PPM DRY GAS VOL 02 12.393 396.588 85.425 .034 7.589 % DRY GAS VOL SO2 .167 10.719 61.120 .001 1024.607 PPM DRY GAS VOL METAL SALTS .033 3.308 102.384 .000 .384 GR DSCF @ 7.0 % 02 ALKALI SALTS .558 55.755 102.384 .006 6.475 GR DSCF @ 7.0 % 02	H20	150.228	2706.505	1233.052	3.337	.559	LB H2O/LB DRY GAS
N2 137.443 3850.605 94.716 .365 84.166 % DRY GAS VOL NO2 .016 .756 78.743 .000 100.651 PPM DRY GAS VOL O2 12.393 396.588 85.425 .034 7.589 % DRY GAS VOL SO2 .167 10.719 61.120 .001 1024.607 PPM DRY GAS VOL METAL SALTS .033 3.308 102.384 .000 .384 GR DSCF @ 7.0 % O2 ALKALI SALTS .558 55.755 102.384 .006 6.475 GR DSCF @ 7.0 % O2	CO2	13.278	584.365	84.275	.049	8.131	% DRY GAS VOL
NO2 .016 .756 78.743 .000 100.651 PPM DRY GAS VOL O2 12.393 396.588 85.425 .034 7.589 % DRY GAS VOL SO2 .167 10.719 61.120 .001 1024.607 PPM DRY GAS VOL METAL SALTS .033 3.308 102.384 .000 .384 GR DSCF @ 7.0 % OZ ALKALI SALTS .558 55.755 102.384 .006 6.475 GR DSCF @ 7.0 % OZ	со	.001	.037	95.078	.000	8.132	PPM DRY GAS VOL
02 12.393 396.588 85.425 .034 7.589 % DRY GAS VOL SO2 .167 10.719 61.120 .001 1024.607 PPM DRY GAS VOL METAL SALTS .033 3.308 102.384 .000 .384 GR DSCF @ 7.0 % 02 ALKALI SALTS .558 55.755 102.384 .006 6.475 GR DSCF @ 7.0 % 02	N2	137.443	3850.605	94.716	.365	84.166	% DRY GAS VOL
SO2 .167 10.719 61.120 .001 1024.607 PPM DRY GAS VOL METAL SALTS .033 3.308 102.384 .000 .384 GR DSCF @ 7.0 % 02 ALKALI SALTS .558 55.755 102.384 .006 6.475 GR DSCF @ 7.0 % 02	NO2	.016	.756	78.743	.000	100.651	PPM DRY GAS VOL
METAL SALTS .033 3.308 102.384 .000 .384 GR DSCF @ 7.0 % 02 ALKALI SALTS .558 55.755 102.384 .006 6.475 GR DSCF @ 7.0 % 02	02	12.393	396.588	85.425	.034	7.589	% DRY GAS VOL
ALKALI SALTS .558 55.755 102.384 .006 6.475 GR DSCF @ 7.0 % 02	S02	.167	10.719	61.120	.001	1024.607	PPM DRY GAS VOL
	METAL SALTS	.033	3.308	102.384	.000	.384	GR DSCF @ 7.0 % 02
TOTAL FILIT CAR 74/ 119 7409 470 7 703 4 0E0 00 0005 0 7 0 9 00	ALKALI SALTS	.558	55.755	102.384	.006	6.475	GR DSCF @ 7.0 % 02
101AL FLUE UAS 514.110 /000.037 5./92 0.039 GR DSCF @ /.U % U2	TOTAL FLUE GAS	314.118	7608.639		3.792	6.859	GR DSCF @ 7.0 % 02
655 PURGE FROM PART. QUENCH: 439.2 DEG F	655 PURGE FROM PART. QUENCH: 4	39.2 DEG F					
ALKALI SALTS .003 .310 102.384 .000 100.00000 WT %	ALKALI SALTS	.003	.310	102.384	.000	100.00000	WT %
TOTAL PURGE .003 .310 .000 .00000 WT % TSS	TOTAL PURGE	.003	.310		.000	.00000	WT % TSS
OVERALL TOTAL 314.121 7608.949 3.792	OVERALL TOTAL	314.121	7608.949		3.792		
DRY GAS TOTAL 163.890 4902.134 .455		163.890	4902.134		.455		

JOB NO: 322243

JOB DESC: CIRC BED COMBUSTOR, 1.5 GPM RED WATER FLOW, NORMAL CASE 10/20/94 15:32 PAGE 9

CLIENT: USAC

ENGINEER: SLM

DATA FILE: USAC.DAT

UNIT	2	BAGHOUSE
------	---	----------

** MASS AND ENERGY IN **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENT	RATION
650 GAS FROM PART. QUENCH: 439	.2 DEG F, 403.8 I	N. W.C.				
H20	150.228	2706.505	1233.052	3.337	.559	LB H2O/LB DRY GAS
CO2	13.278	584.365	84.275	.049	8.131	% DRY GAS VOL
co	.001	.037	95.078	.000	8.132	PPM DRY GAS VOL
N2	137.443	3850.605	94.716	.365	84.166	% DRY GAS VOL
NO2	.016	.7 56	78.743	.000	100.651	PPM DRY GAS VOL
02	12.393	396.588	85.425	.034	7.589	% DRY GAS VOL
\$02	.167	10.719	61.120	.001	1024.607	PPM DRY GAS VOL
METAL SALTS	.033	3.308	102.384	.000	.384	GR DSCF @ 7.0 % 02
ALKALI SALTS	.558	55.755	102.384	.006	6.475	GR DSCF @ 7.0 % 02
TOTAL FLUE GAS	314.118	7608.639		3.792	6.859	GR DSCF @ 7.0 % 02
OVERALL TOTAL	314.118	7608.639		3.792		
** MASS AND ENERGY OUT **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENT	RATION
661 GAS TO ID FAN: 439.2 DEG F	, 383.8 IN. W.C.					
H2O	150.228	2706.505	1233.052	3.337	.559	LB H2O/LB DRY GAS
CO2	13.278	584.365	84.275	.049	8.131	% DRY GAS VOL
co	.001	.037	95.078	.000	8.132	PPM DRY GAS VOL
N2	137.443	3850.605	94.716	.365	84.166	% DRY GAS VOL
NO2	.016	.756	78.743	.000	100.651	PPM DRY GAS VOL
02	12.393	396.588	85.425	-034	7.589	% DRY GAS VOL
SO2	.167	10.719	61.120	.001	1024.607	PPM DRY GAS VOL
METAL SALTS	.000	.033	102.384	.000	-004	GR DSCF @ 7.0 % 02
ALKALI SALTS	.006	.558	102.384	.000	.065	GR DSCF @ 7.0 % 02
TOTAL FLUE GAS	313.533	7550.166		3.786	.069	GR DSCF @ 7.0 % 02
TOTAL FLUE GAS OVERALL TOTAL		7550.166 7550.166		3.786 3.786	.069	GR DSCF @ 7.0 % 02

JOB NO: 322243 CLIENT: USAC

JOB DESC: CIRC BED COMBUSTOR, 1.5 GPM RED WATER FLOW, NORMAL CASE 10/20/94 15:32

ENGINEER: SLM

DATA FILE: USAC.DAT

PAGE 10

UNIT 2 DUSTCOLLECT

** MASS AND ENERGY IN **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENT	RATION
OVERALL TOTAL	.000	.000		.000		
** MASS AND ENERGY OUT **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENT	RATION
666 PURGE FROM DUSTCOLLECT: 439	.2 DEG F					
METAL SALTS	.033	3.275	102.384	.000	5.60101	WT % SS
ALKALI SALTS	.552	55.197	102.384	.006	94.39899	WT %
TOTAL PURGE	-585	58.472		.006	5.60101	WT % TSS
OVERALL TOTAL	. 585	58.472		.006		

JOB DESC: CIRC BED COMBUSTOR, 1.5 GPM RED WATER FLOW, NORMAL CASE 10/20/94 15:32 JOB NO: 322243

313.533

163.305

7550,166

4843.661

UNIT 3 ID FAN

OVERALL TOTAL

DRY GAS TOTAL

3.829

.469

PAGE 11

CLIENT: USAC ENGINEER: SLM DATA FILE: USAC.DAT

** MASS AND ENERGY IN ** LB-MOLES/HR BTU/LB LBS/HR MM BTU/HR CONCENTRATION 661 GAS FROM BAGHOUSE: 439.2 DEG F, 383.8 IN. W.C. .559 H20 150,228 2706.505 1233.052 3.337 LB H2O/LB DRY GAS CO2 13.278 584.365 84.275 .049 8.131 % DRY GAS VOL .037 CO 95.078 .000 .001 8.132 PPM DRY GAS VOL N2 137.443 3850.605 94.716 .365 84.166 % DRY GAS VOL NO2 78.743 .000 .016 .756 100.651 PPM DRY GAS VOL 02 12.393 396.588 85.425 .034 7.589 % DRY GAS VOL 1024.607 S02 .167 10.719 61.120 .001 PPM DRY GAS VOL .000 .033 102.384 .000 METAL SALTS -004 GR DSCF @ 7.0 % 02 .558 .006 102.384 .000 .065 GR DSCF @ 7.0 % 02 ALKALI SALTS TOTAL FLUE GAS 313.533 7550.166 3.786 .069 GR DSCF @ 7.0 % 02 .043 682 HEAT OF COMPRESSION 313.533 7550.166 OVERALL TOTAL 3.829 ** MASS AND ENERGY OUT ** BTU/LB MM BTU/HR LB-MOLES/HR LBS/HR CONCENTRATION 672 GAS TO STACK: 456.4 DEG F, 407.8 IN. W.C. **H20** 150.228 2706.505 1241.152 3.359 .559 LB H2O/LB DRY GAS · CO2 13.278 584.365 88.465 .052 8.131 % DRY GAS VOL 99.467 .000 CO .001 .037 8.132 PPM DRY GAS VOL N2 137.443 3850.605 99.071 .381 84.166 % DRY GAS VOL .756 82.624 .000 NO2 .016 100.651 PPM DRY GAS VOL 02 12.393 396.588 89,437 -035 7.589 % DRY GAS VOL S02 .167 10.719 64.123 .001 1024.607 PPM DRY GAS VOL METAL SALTS .000 .033 107.040 .000 .004 GR DSCF @ 7.0 % 02 107.040 .006 .558 -000 GR DSCF @ 7.0 % 02 ALKALI SALTS .065 TOTAL FLUE GAS 313.533 7550.166 3.829 .069 GR DSCF @ 7.0 % 02

JOB DESC: CIRC BED COMBUSTOR, 1.5 GPM RED WATER FLOW, NORMAL CASE 10/20/94 15:32 JOB NO: 322243

ENGINEER: SLM

DATA FILE: USAC.DAT

PAGE 12

UNIT 4 STACK

CLIENT: USAC

** MASS AND ENERGY IN **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENT	RATION
672 GAS FROM ID FAN: 456.4 DEG	F, 407.8 IN. W.O	.				
H20	150.228	2706.505	1241.152	3.359	.559	LB H2O/LB DRY GAS
CO2	13.278	584.365	88.465	.052	8.131	% DRY GAS VOL
co	.001	.037	99.467	.000	8.132	PPM DRY GAS VOL
N2	137.443	3850.605	99.071	.381	84.166	% DRY GAS VOL
NO2	.016	.756	82.624	.000	100.651	PPM DRY GAS VOL
02	12.393	396.588	89.437	.035	7.589	% DRY GAS VOL
so2	.167	10.719	64.123	.001	1024.607	PPM DRY GAS VOL
METAL SALTS	.000	.033	107.040	.000	.004	GR DSCF @ 7.0 % 02
ALKALI SALTS	.006	.558	107.040	.000	.065	GR DSCF a 7.0 % 02
TOTAL FLUE GAS	313.533	7550.166		3.829	.069	GR DSCF @ 7.0 % 02
OVERALL TOTAL	313.533	7550.166		3.829		
** MASS AND ENERGY OUT **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENT	RATION
683 GAS TO ATMOSPHERE: 456.4 DE	G F, 406.8 IN. W	.c.				
H20	150.228	2706.505	1241.152	3.359	.559	LB H2O/LB DRY GAS
CO2	13.278	584.365	88.465	.052	8.131	% DRY GAS VOL
co	.001	.037	99.467	.000	8.132	PPM DRY GAS VOL
N2	137.443	3850.605	99.071	.381	84.166	% DRY GAS VOL
NO2	.016	.756	82.624	.000	100.651	PPM DRY GAS VOL
02	12.393	396.588	89.437	.035	7.589	% DRY GAS VOL
so2	.167	10.719	64.123	.001	1024.607	PPM DRY GAS VOL
METAL SALTS	.000	.033	107.040	.000	.004	GR DSCF a 7.0 % 02
ALKALI SALTS	.006	.558	107.040	.000	.065	GR DSCF a 7.0 % 02
TOTAL FLUE GAS	313.533	7550.166		3.829	.069	GR DSCF a 7.0 % 02
OVERALL TOTAL	313.533	7550.166		3.829		

JOB NO: 322243 CLIENT: USAC JOB DESC: CIRC BED COMBUSTOR, 1.5 GPM RED WATER FLOW, NORMAL CASE 10/20/94 15:32

ENGINEER: SLM

DATA FILE: USAC.DAT

PAGE 13

GAS FLOW SUMMARY AT APC DEVICE OUTLET

			TEMPERATURE	PRESSURE	FLOW	DRY GAS
U	INIT NO	STREAM	(DEG F)	(IN. W.C.)	(ACFM)	(SCFM)
-					*****	
	1	PART. QUENCH	439.2	403.8	3455.493	1048.758
	2	BAGHOUSE	439.2	383.8	3635.560	1048.758
	3	ID FAN	456.4	407.8	3487.233	1048.758
	4	STACK	456.4	406.8	3495.805	1048.758

JOB NO: 322243 JOB DESC: CIRC BED COMBUSTOR, 1.5 GPM RED WATER FLOW, NORMAL CASE 10/20/94 15:32 PAGE 14
CLIENT: USAC DATA FILE: USAC.DAT

LIQUID FLOW SUMMARY

MAKEUP STREAMS TO:	FLOW	H20	TEMP	D.S.	s.s.	
	(GAL/MIN)	(LB/HR)	(DEG F)	(LB/HR)	(LB/HR)	
PART. QUENCH	3.100	1549.051	60.000	.310	.000	
TOTAL	3.100	1549.051		.310	.000	
DISCHARGE PURGE:	TEMP	н20	ORGANIC	D.S.	s.s.	ACIDS
ORIGINATION SUMP	(DEG F)	(LB/HR)	(LB/HR)	(LB/HR)	(LB/HR)	(LB/HR)

PART. QUENCH	439.201	.000	.000	.310	.000	.000
BAGHOUSE	439.201	.000	.000	55.197	3.275	.000
TOTAL PURGE	.000	.000	_000	55.507	3.275	.000

QUENCH H20 TDS (mg/l)

JOB NO: 322243 JOB DESC: CIRCULATING BED COMBUSTOR, 1300 F, START-UP CASE 9/ 9/94 11:30 PAGE 1

CLIENT: USAC

ENGINEER: SLM

DATA FILE: 1300.DAT

HEAT AND MATERIAL BALANCE PROGRAM VERSION 6.0

UNIT NO COMBUSTION DEVICE	BASE CONDITIONS		(B	CIFIC HEAT	
1 CIRC. BED/CYCLONE	ATM PRES (IN. H2O):	404 900			
200,00000	BASE TEMP (F):	60.000	ASH	.270	
	TOTAL NUMBER OF FUELS:				100.000
	TOTAL HOUDER OF FOLLS.	,	ASALT		100.000
			FIXED CARBO		
			PYRO GAS	-270	
COMBUSTION MODULE			PIRO GAS	.500	100.000
OPERATING CONDITIONS	UNIT 1				
EXIT GAS TEMPERATURE (F)	1300.000				
EXIT SOLID TEMPERATURE (F)	1300.000				•
PRESSURE DROP (IN.W.C.)	.050				
OUT PRESSURE (IN. W.C.)	406.750				
RADIATION HEAT LOSS	.630				
HEAT LOSS UNIT	MM BTU/HR				
HEAT INPUT (MM BTU/HR)	.000				
EXCESS AIR (%) FOR OXIDIZED WASTE	52.307				
MINIMUM XS AIR (%) FOR OXIDIZED WASTE	.000				
MINIMUM 02 (%) IN EXIT GAS	7.700				
AIR TEMPERATURE TO BURNER (F)	60.000				
AIR HUMIDITY (LB H2O/LB DRY AIR)	.010				
EXCESS AIR FOR AUX FUEL (%)	.000				
NAME OF AUXILIARY FUEL	NAT GAS				
QUENCH CODE (1 AIR,2 H2O)	1				
QUENCH H20 TEMPERATURE TO BURNER (F)	.000				
ASH IN EXIT (%)	6.000				
MSALT IN EXIT (%)	100.000				
ASALT IN EXIT (%)	100.000				
FIXED CARBON IN EXIT (%)	.000				
CO/CO2 COMBUSTION EFFICIENCY (%)	99.990				
FUEL NO2 EFFICIENCY (%)	2.500				
ASH MODULE CONDITIONS					
EXIT STEAM DESTINATION	ATMOSPHERE				
HEAT LOSS (MM BTU/HR)	ATMOSPHERE _000				
SOLID EXIT TEMPERATURE (F)	-000			-	
QUENCH WATER (GPM)	.000				
MOISTURE IN WET ASH (%)	.000				
QUENCH H20 MAKEUP TEMPERATURE (F)	60.000				
QUENCH H20 TSS (mg/l)	.000				
	.000				

.000

CLIENT: USAC

JOB NO: 322243 JOB DESC: CIRCULATING BED COMBUSTOR, 1300 F, START-UP CASE 9/ 9/94 11:30 PAGE 2 ENGINEER: SLM

DATA FILE: 1300.DAT

FUEL TO: CIRC. BED/CYCLONE (PER HOUR)

	FUEL NAME	*****	******	*******	COMPONENT	FLOW TO FURNACE	*****	****	*****
		С	H2	02	N2	H20	CL2	S	P
250	NAT GAS								
	PERCENT	73.928	24.431	.891	.750	.000	.000	.000	.000
	POUNDS	30.956	10.230	.373	.314	.000	.000	.000	.000
	LB-MOLE	2.577	5.074	.012	.011	.000	.000	.000	.000
251	NAT GAS								
	PERCENT	73.928	24.431	.891	.750	.000	.000	-000	.000
	POUNDS	14.786	4.886	.178	.150	.000	-000	.000	.000
	LB-MOLE	1.231	2.424	.006	.005	.000	.000	.000	.000
	TOT FUEL								
	POUNDS	45.741	15.116	.551	.464	.000	.000	.000	.000
	LB-MOLE	3.808	7.498	.017	-017	.000	.000	.000	.000

JOB NO: 322243 CLIENT: USAC

JOB DESC: CIRCULATING BED COMBUSTOR, 1300 F, START-UP CASE 9/ 9/94 11:30

PAGE 3

ENGINEER: SLM

DATA FILE: 1300.DAT

FUEL TO: CIRC. BED/CYCLONE

(PER HOUR) (CONTINUED)

	FUEL NAME ***********************			COMPONENT	FLOW TO FURNACE	*********			
		SI	BR2	F2	ASH	MSALT	ASALT	F.CARB	INERTS
250	NAT GAS								
	PERCENT	.000	.000	.000	.000	.000	.000	.000	.000
	POUNDS	.000	.000	.000	.000	.000	.000	.000	.000
	LB-MOLE	.000	.000	.000	.000	.000	.000	.000	.000
251	NAT GAS								
	PERCENT	.000	_000	.000	.000	.000	.000	.000	.000
	POUNDS	.000	.000	.000	.000	.000	.000	.000	.000
	LB-MOLE	.000	.000	.000	.000	.000	.000	.000	.000
	TOT FUEL								
	POUNDS	.000	.000	.000	.000	.000	.000	.000	.000
	LB-MOLE	.000	.000	.000	.000	-000	.000	.000	.000

CLIENT: USAC

UNIT 1 CIRC. BED/CYCLONE

JOB NO: 322243 JOB DESC: CIRCULATING BED COMBUSTOR, 1300 F, START-UP CASE 9/ 9/94 11:30 PAGE 4

ENGINEER: SLM

DATA FILE: 1300.DAT

	*** MASS AND ENERGY	IN ***				% OF TOTAL	
	FUELS: USE	CODE TEMP DEG F	LB/HR	BTU/LB	MM BTU/HR	HEAT DUTY	
250	NAT GAS	0.00 OXD	41.873	21800.000	.913	66.843081	
251	NAT GAS	00.00 dxD	20.000	21800.000	-436	31.926784	•
351	COMBUSTION AIR						
	02	60.00	367.521	.000	.000	.000000	
	N2	60.00	1217.442	-000	.000	.000000	
	H20	60.00	15.850	1059.900	.017	1.230135	
	OVERALL TOTAL		1662.686		1.366	100.000000	
	*** MASS AND ENERGY	OUT ***					
350	COMBUSTION GAS OUT	1300.00 DEG F , 40	6.8 IN. W.C.				
		LB-MOLES/HR	LB/HR	BTU/LB	MM BTU/HR	CONCENT	RATION
	н20	8.378	150.935	1666.941	.252	.100	LB H2O/LB DRY GAS
	CO2	3.808	167.590	318.044	.053	7.434	% GAS VOL (DRY)
	CO	.000	.011	326.009	.000	7.434	PPMV (DRY)
	N2	43.471	1217.895	322.641	.393	84.864	% GAS VOL (DRY)
	NO2	.001	.038	294.719	.000	16.168	PPMV (DRY)
	02	3.944	126.218	298.849	.038	7.700	% GAS VOL (DRY)
	TOTAL COMBUSTION GAS	59.603	1662.686	442.404	.736		
353	HEAT LOSS				.630		
	TOTAL HEAT RELEASED				1.366		
354	CO Hc AVAILABLE			4343.600	.000		
					======		
	OVERALL TOTAL	59.603	1662.686		1.366		
	TOTAL DRY GAS	51.225	1511.751		.484		

JOB DESC: CIRCULATING BED COMBUSTOR, 1300 F, START-UP CASE 9/ 9/94 11:30

PAGE 5

CLIENT: USAC

ENGINEER: SLM

DATA FILE: 1300.DAT

COMBUSTION AIR SUMMARY	
OPERATING CONDITIONS	UNIT 1
TEMPERATURE (F)	60.000
PRESSURE (IN. W.C.)	406.800
FLOW (ACFM)	347.494
AIR (DRY) TOTAL (LB/HR)	1584.964
AIR (DRY) THEORETICAL (LB/HR)	1040.639
AIR (DRY) TOT-THEO (LB/HR)	544.324
EXCESS AIR (%)	52.307
TOTAL 02 (LB/HR)	367.521
THEO. 02 (LB/HR)	241.303
TOT-THEO. O2 (LB/HR)	126.218
TOTAL N2 (LB/HR)	1217.442
THEO. N2 (LB/HR)	799.336
TOT-THEO. N2 (LB/HR)	418.106

COMBUSTION GAS SUMMARY	UNIT 1
TEMPERATURE (F)	1300.000
PRESSURE (IN. W.C.)	406.750
FLOW (ACFM)	1276.618

JOB DESC: CIRCULATING BED COMBUSTOR, 1300 F, START-UP CASE 9/ 9/94 11:32 PAGE 6 CLIENT: USAC ENGINEER: SLM DATA FILE: 1300.DAT

APC HEAT AND MATERIAL BALANCE PROGRAM VERSION 6.0

	S AND INCOMING GAS			PART	ICULATE STANDAR		
	ESSURE (IN. H20)			PART	ICULATE STANDAR	D BASIS	02
	RE (DEG F)			PART	ICULATE STANDAR	D BASIS CONCENTRATION (%)	7.00
INLET GAS PRESS	SURE (IN. H2O)	406.75		PART	ICULATE STANDAR	D BASIS CONDITION	DSCF
	PERATURE (DEG F)			PART	ICULATE STANDAR	D TEMPERATURE (DEG F)	68.00
UNIT NO APC DEV	/ICE			RECE	IVER		
1 PART. 0	QUENCH .			QUEN	CH SUMP		
2 BAGHOUS	SE			DUST	COLLECT		
3 ID FAN							
4 STACK							
APC DEVICE INFO	DPMATION	UNIT 1	UNIT 2	UNIT 3	UNIT 4		
	OW (GPM)	.00	-00	.00	.00		
	OW (LB/HR)			.00			
	SSURE (IN. H20)						
	SS (MM BTU/HR)						
PERCENT REMOVAL		UNIT 1	UNIT 2			·	
ASH			99.00		.00		
METAL SALTS			99.00		.00		
ALKALI SALT		.00			.00		
7,2,0,0	Ī						
RECEIVER DATA		UNIT 1					
REC. EXISTE		NO	YES	NO			
	DESTINATION	0	0		0		
REC. PURGE		DIS			DIS		
	OVAL EFFICIENCY		.00	.00	.00	•	
REC. HEAT L	OSS (MM BTU/HR)	.00	.00	.00	.00		
MAKEUP STREAM D	ATA	UNIT 1	UNIT 2	UNIT 3	UNIT 4		
MAKEUP OPTI	ON	APC	APC	REC	REC		
MAKEUP FLOW	(GPM)	.65	.00	.00	.00		
MAKEUP TDS	(MG/L)	200.00	.00	.00	.00		
MAKEUP TSS	(MG/L)	.00	.00	.00	.00		
MAKEUP TEMP	. (DEG F)	60.00	60.00	60.00	60.00		

JOB NO: 322243 CLIENT: USAC

JOB DESC: CIRCULATING BED COMBUSTOR, 1300 F, START-UP CASE 9/ 9/94 11:32 PAGE 7

ENGINEER: SLM

DATA FILE: 1300.DAT

NEUTRALIZATION STREAM DATA	UNIT 1	UNIT 2	UNIT 3	UNIT 4
NEUT. OPTION	APC	APC	REC	REC
NEUT. REAGENT NAME	NAOH	NAOH	NAOH	NAOH
NEUT. REAG. TEMP. (DEG F)	60.00	60.00	60.00	60.00
NEUT. REAG. CONC. (%)	23.00	23.00	20.00	20.00
STOICHIOMETRIC RATIO	1.00	1.00	1.00	1.00
OPERATIONAL LIMITS DATA	UNIT 1	UNIT 2	UNIT 3	UNIT 4
MIN. GAS OUT. TEMP. (DEG F)	0.	0.	0.	0.
PURGE TDS CONCENTRATION (%)	0.	0.	0.	0.
PURGE TSS CONCENTRATION (%)	0.	0.	0.	0.
PURGE ACID CONCENTRATION (%)	0.	0.	.0.	0.

OTHER GAS DATA	GAS 1
NAME OF OTHER GAS	ATM AIR
FEED RATE (LB/HR)	163.00
TEMPERATURE (DEG F)	60.00
INPUT CODE	2.
DESTINATION UNIT NUMBER	1.

OTHER GAS COMP. DATA (LB/HR)	GAS 1
H20	1.63
N2	123.96
02	37.41

CLIENT: USAC

JOB NO: 322243 JOB DESC: CIRCULATING BED COMBUSTOR, 1300 F, START-UP CASE 9/ 9/94 11:32 PAGE 8

ENGINEER: SLM DATA FILE: 1300.DAT

UNIT 1 PART. QUENCH

** MASS AND ENERGY IN **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENT	RATION
350 GAS FROM CIRC. BED/CYCLONE:	: 1300.0 DEG F, 40	06.8 IN. W.C.				
H2O	8.378	150.935	1666.941	.252	.100	LB H2O/LB DRY GAS
CO2	3.808	167.590	318.044	.053	7.434	% DRY GAS VOL
со	.000	.011	326.009	.000	7.434	PPM DRY GAS VOL
N2	43.471	1217.895	322.641	.393	84.864	% DRY GAS VOL
NO2	.001	.038	294.719	.000	16.168	PPM DRY GAS VOL
02	3.944	126.218	298.849	.038	7.700	% DRY GAS VOL
TOTAL FLUE GAS	59.603	1662.686		.736	.000	GR DSCF a 7.0 % 02
738 ATM AIR: 60.0 DEG F						
H2O	.090	1.630	1059.900	.002	.010	LB H2O/LB DRY GAS
N2	4.425	123.962	.000	.000	79.101	% DRY GAS VOL
02	1.169	37.409	.000	.000	20.899	% DRY GAS VOL
TOTAL GAS	5.684	163.000		.002	.000	GR DSCF @ 7.0 % 02
651 MAKEUP WATER: 60.0 DEG F						
H20	18.028	324.801	.000	.000		
TDS	.001	.065	36.000	.000		
TOTAL MAKEUP	18.029	324.866		.000		
OVERALL TOTAL	83.316	2150.552		.737		
** MASS AND ENERGY OUT **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENT	RATION
650 GAS TO BAGHOUSE: 429.0 DEG	F, 405.8 IN. W.C					
H2O	26.497	477.366	1228.285	.586	.285	LB H2O/LB DRY GAS
CO2	3.808	167.590	81.816	.014	6.702	% DRY GAS VOL
co	.000	.011	92.493	.000	6.703	PPM DRY GAS VOL
N2	47.896	1341.856	92.151	.124	84.297	% DRY GAS VOL
NO2	.001	.038	76.465	.000	14.576	PPM DRY GAS VOL
02	5.113	163.626	83.064	-014	8.999	% DRY GAS VOL
TOTAL FLUE GAS	83.315	2150.487		.737	.000	GR DSCF @ 7.0 % 02
655 PURGE FROM PART. QUENCH: _4	29.0 DEG F				-	
ALKALI SALTS	.001	.065	99.639	.000	100.00000	WT %
TOTAL PURGE	.001	.065		.000	.00000	WT % TSS
OVERALL TOTAL	83.316	2150.552		.737		
DRY GAS TOTAL	56.819	1673.121		.151		

JOB NO: 322243 JOB DESC: CIRCULATING BED COMBUSTOR, 1300 F, START-UP CASE 9/ 9/94 11:32

ENGINEER: SLM

DATA FILE: 1300.DAT

PAGE 9

UNIT 2 BAGHOUSE

CLIENT: USAC

** MASS AND ENERGY IN **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENT	RATION
650 GAS FROM PART. QUENCH: 429.	O DEG F, 405.8 I	N. W.C.				
H20	26.497	477.366	1228.285	.586	.285	LB H2O/LB DRY GAS
CO2	3.808	167.590	81.816	.014	6.702	% DRY GAS VOL
co	.000	.011	92.493	.000	6.703	PPM DRY GAS VOL
N2	47.896	1341.856	92.151	.124	84.297	% DRY GAS VOL
NO2	.001	.038	76.465	.000	14.576	PPM DRY GAS VOL
02	5.113	163.626	83.064	.014	8.999	% DRY GAS VOL
TOTAL FLUE GAS	83.315	2150.487		.737	.000	GR DSCF a 7.0 % 02
OVERALL TOTAL	83.315	2150.487		.737		,
** MASS AND ENERGY OUT **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENT	RATION
** MASS AND ENERGY OUT ** 661 GAS TO ID FAN: 429.0 DEG F,		LBS/HR	BTU/LB	MM BTU/HR	CONCENT	RATION
	385.8 IN. W.C.	LBS/HR 477.366	BTU/LB 1228.285		CONCENTE	
661 GAS TO ID FAN: 429.0 DEG F,	385.8 IN. W.C. 26.497					
661 GAS TO ID FAN: 429.0 DEG F, H20	385.8 IN. W.C. 26.497	477.366	1228.285	.586	.285	LB H2O/LB DRY GAS
661 GAS TO ID FAN: 429.0 DEG F, H20 CO2	385.8 IN. W.C. 26.497 3.808	477.366 167.590	1228.285 81.816	.586 .014	.285 6.702	LB H2O/LB DRY GAS % DRY GAS VOL
661 GAS TO ID FAN: 429.0 DEG F, H20 CO2 CO	385.8 IN. W.C. 26.497 3.808 .000	477.366 167.590 .011	1228.285 81.816 92.493	.586 .014 .000	.285 6.702 6.703	LB H2O/LB DRY GAS % DRY GAS VOL PPM DRY GAS VOL
661 GAS TO ID FAN: 429.0 DEG F, H20 CO2 CO N2	385.8 IN. W.C. 26.497 3.808 .000 47.896 .001	477.366 167.590 .011 1341.856	1228.285 81.816 92.493 92.151	.586 .014 .000	.285 6.702 6.703 84.297	LB H2O/LB DRY GAS % DRY GAS VOL PPM DRY GAS VOL % DRY GAS VOL
661 GAS TO ID FAN: 429.0 DEG F, H20 CO2 CO N2 NO2	385.8 IN. W.C. 26.497 3.808 .000 47.896 .001	477.366 167.590 .011 1341.856 .038	1228.285 81.816 92.493 92.151 76.465	.586 .014 .000 .124 .000	.285 6.702 6.703 84.297 14.576	LB H2O/LB DRY GAS % DRY GAS VOL PPM DRY GAS VOL % DRY GAS VOL PPM DRY GAS VOL
661 GAS TO ID FAN: 429.0 DEG F, H20 CO2 CO N2 N02 O2	385.8 IN. W.C. 26.497 3.808 .000 47.896 .001 5.113	477.366 167.590 .011 1341.856 .038 163.626 2150.487	1228.285 81.816 92.493 92.151 76.465	.586 .014 .000 .124 .000	.285 6.702 6.703 84.297 14.576 8.999	LB H2O/LB DRY GAS % DRY GAS VOL PPM DRY GAS VOL % DRY GAS VOL PPM DRY GAS VOL % DRY GAS VOL

JOB DESC: CIRCULATING BED COMBUSTOR, 1300 F, START-UP CASE 9/ 9/94 11:32

PAGE 10

CLIENT: USAC

ENGINEER: SLM

DATA FILE: 1300.DAT

UNIT 2 DUSTCOLLECT

** MASS AND ENERGY IN ** LB-MOLES/HR LBS/HR BTU/LB MM BTU/HR CONCENTRATION

OVERALL TOTAL .000 .000 .000

** MASS AND ENERGY OUT ** LBS/HR BTU/LB CONCENTRATION LB-MOLES/HR MM BTU/HR

OVERALL TOTAL .000 .000 .000

JOB DESC: CIRCULATING BED COMBUSTOR, 1300 F, START-UP CASE 9/ 9/94 11:32 PAGE 11

CLIENT: USAC

ENGINEER: SLM

DATA FILE: 1300.DAT

T TALL	T 3	 D :	e.	4 4	ı
UNI		 11	-	21	

** MASS AND ENERGY IN **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENT	RATION
661 GAS FROM BAGHOUSE: 429.0 DEG	F, 385.8 IN. W	I.C.				
H2O	26.497	477.366	1228.285	.586	.285	LB H2O/LB DRY GAS
CO2	3.808	167.590	81.816	.014	6.702	% DRY GAS VOL
co	.000	.011	92.493	.000	6.703	PPM DRY GAS VOL
N2	47.896	1341.856	92.151	.124	84.297	% DRY GAS VOL
NO2	.001	.038	76.465	.000	14.576	PPM DRY GAS VOL
02	5.113	163.626	83.064	.014	8.999	% DRY GAS VOL
TOTAL FLUE GAS	83.315	2150.487		<u>-73</u> 7	.000	GR DSCF a 7.0 % 02
682 HEAT OF COMPRESSION				.014		
OVERALL TOTAL	83.315	2150.487		.751		
** MASS AND ENERGY OUT **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENT	RATION
672 GAS TO STACK: 450.7 DEG F,	415.8 IN. W.C.					
H20	26.497	477.366	1238.474	.591	.285	LB H2O/LB DRY GAS
CO2	3.808	167.590	87.078	.015	6.702	% DRY GAS VOL
СО	.000	.011	98.016	.000	6.703	PPM DRY GAS VOL
N2	47.896	1341.856	97.632	.131	84.297	% DRY GAS VOL
NO2	.001	.038	81.339	.000	14.576	PPM DRY GAS VOL
02	5.113	163.626	88.110	.014	8.999	% DRY GAS VOL
V L						
TOTAL FLUE GAS	83.315	2150.487		.751	.000	GR DSCF @ 7.0 % 02
·-	83.315 83.315	2150.487 2150.487		.751 .751	.000	GR DSCF @ 7.0 % 02

CLIENT: USAC

JOB NO: 322243 JOB DESC: CIRCULATING BED COMBUSTOR, 1300 F, START-UP CASE 9/ 9/94 11:32 PAGE 12

ENGINEER: SLM

DATA FILE: 1300.DAT

UNIT 4 STACK

** MASS AND ENERGY IN **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENT	TRATION
672 GAS FROM ID FAN: 450.7 DEG	F, 415.8 IN. W.O	: .				
H2O	26.497	477.366	1238.474	.591	.285	LB H2O/LB DRY GAS
CO2	3.808	167.590	87.078	.015	6.702	% DRY GAS VOL
CO	.000	.011	98.016	.000	6.703	PPM DRY GAS VOL
N2	47.896	1341.856	97.632	.131	84.297	% DRY GAS VOL
NO2	.001	.038	81.339	.000	14.576	PPM DRY GAS VOL
02	5.113	163.626	88.110	-014	8.999	% DRY GAS VOL
TOTAL FLUE GAS	83.315	2150.487		.751	.000	GR DSCF @ 7.0 % 02
OVERALL TOTAL	83.315	2150.487		.751		
** MASS AND ENERGY OUT **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENT	RATION
683 GAS TO ATMOSPHERE: 450.7 DE	G F, 414.8 IN. W	.c.				
H2O	26.497	477.366	1238.474	.591	-285	LB H2O/LB DRY GAS
CO2	3.808	167.590	87.078	.015	6.702	% DRY GAS VOL
CO	.000	-011	98.016	-000	6.703	PPM DRY GAS VOL
N2	47.896	1341.856	97.632		84,297	% DRY GAS VOL
NO2	.001	.038	81.339	.000	14.576	PPM DRY GAS VOL
02	5.113	163.626	88.110	-014	8.999	% DRY GAS VOL
TOTAL FLUE GAS	83.315	2150.487		.751	.000	GR DSCF @ 7.0 % 02
OVERALL TOTAL	83.315	2150.487		.751		

JOB DESC: CIRCULATING BED COMBUSTOR, 1300 F, START-UP CASE 9/ 9/94 11:32

PAGE 13

CLIENT: USAC

ENGINEER: SLM

DATA FILE: 1300.DAT

GAS FLOW SUMMARY AT APC DEVICE OUTLET

UNIT NO	STREAM	TEMPERATURE (DEG F)	PRESSURE (IN. W.C.)	FLOW (ACFM)	DRY GAS (SCFM)
1	PART. QUENCH	429.0	405.8	903.496	364.906
2	BAGHOUSE	429.0	385.8	950.339	364.906
3	ID FAN	450.7	415.8	903.201	364.906
4	STACK	450.7	414.8	905.379	364.906

JOB DESC: CIRCULATING BED COMBUSTOR, 1300 F, START-UP CASE 9/ 9/94 11:32

PAGE 14

CLIENT: USAC

ENGINEER: SLM

DATA FILE: 1300.DAT

LIQUID FLOW SUMMARY

MAKEUP STREAMS TO:	FLOW	H20	TEMP	D.S.	s.s.	
	(GAL/MIN)	(LB/HR)	(DEG F)	(LB/HR)	(LB/HR)	
PART. QUENCH	.650	324.801	60.000	.065	.000	
TOTAL	.650	324.801		.065	.000	
DISCHARGE PURGE:	TEMP	H20	ORGANIC	D.S.	s.s.	ACIDS
ORIGINATION SUMP	(DEG F)	(LB/HR)	(LB/HR)	(LB/HR)	(LB/HR)	(LB/HR)
PART. QUENCH	429.032	.000	.000	.065	.000	.000
TOTAL PURGE	.000	.000	.000	.065	.000	.000

PAGE 1

CLIENT: USAC-

ENGINEER: SLM

DATA FILE: IDLE.DAT

HEAT AND MATERIAL BALANCE PROGRAM VERSION 6.0

			SPECI	FIC HEAT	MOLECULAR WEIGHT
UNIT NO COMBUSTION DEVICE	BASE CONDITIONS		(BTU	/LB-F)	(LB/LB-MOLE)

1 CIRC. BED/CYCLONE	ATM PRES (IN. H2O):	406.800	ASH	.270	100.000
	BASE TEMP (F):	60.000	MSALT	.270	100.000
	TOTAL NUMBER OF FUELS:	5	ASALT	.270	100.000
			FIXED CARBON	.220	12.011
			INERT	.270	100.000
			PYRO GAS	.500	100.000
COMBUSTION MODULE					
OPERATING CONDITIONS	UNIT 1				
EXIT GAS TEMPERATURE (F)	600.000				
EXIT SOLID TEMPERATURE (F)	600.000				

COMBOSTION MODULE	
OPERATING CONDITIONS	UNIT 1
EXIT GAS TEMPERATURE (F)	600.000
EXIT SOLID TEMPERATURE (F)	600.000
PRESSURE DROP (IN.W.C.)	.050
OUT PRESSURE (IN. W.C.)	406.750
RADIATION HEAT LOSS -	.630
HEAT LOSS UNIT	MM BTU/HR
HEAT INPUT (MM BTU/HR)	.000
EXCESS AIR (%) FOR OXIDIZED WASTE	216.376
MINIMUM XS AIR (%) FOR OXIDIZED WASTE	.000
MINIMUM O2 (%) IN EXIT GAS	50.000
AIR TEMPERATURE TO BURNER (F)	60.000
AIR HUMIDITY (LB H2O/LB DRY AIR)	.010
EXCESS AIR FOR AUX FUEL (%)	.000
NAME OF AUXILIARY FUEL	NAT GAS
QUENCH CODE (1 AIR,2 H20)	1
QUENCH H20 TEMPERATURE TO BURNER (F)	.000
ASH IN EXIT (%)	6.000
MSALT IN EXIT (%)	100.000
ASALT IN EXIT (%)	100.000
FIXED CARBON IN EXIT (%)	.000
CO/CO2 COMBUSTION EFFICIENCY (%)	99.990
FUEL NOZ EFFICIENCY (%)	2.500
··	

ASH MODULE CONDITIONS

EXIT STEAM DESTINATION	ATMOSPHERE
HEAT LOSS (MM BTU/HR)	.000
SOLID EXIT TEMPERATURE (F)	.000
QUENCH WATER (GPM)	.000
MOISTURE IN WET ASH (%)	.000
QUENCH H20 MAKEUP TEMPERATURE (F)	60.000
QUENCH H20 TSS (mg/l)	.000
QUENCH H20 TDS (mg/l)	.000

CLIENT: USAC

JOB NO: 322243 JOB DESC: CIRCULATING BED COMBUSTOR, 600 F, HOT IDLE CASE 9/ 9/94 11:38 PAGE 2

ENGINEER: SLM DATA FILE: IDLE.DAT

FUEL TO: CIRC. BED/CYCLONE (PER HOUR)

	FUEL NAME ******************			COMPONENT	FLOW TO FURNAC	E ******	********		
		С	H2	02	N2	H20	CL2	s	P
250	NAT GAS								
	PERCENT	73.928	24.431	.891	.750	.000	.000	.000	.000
	POUNDS	.000	.000	.000	.000	.000	.000	.000	.000
	LB-MOLE	.000	.000	.000	.000	.000	.000	.000	.000
251	NAT GAS								
	PERCENT	73.928	24.431	.891	.750	.000	.000	.000	.000
	POUNDS	39.182	12.948	.472	.398	.000	.000	.000	.000
	LB-MOLE	3.262	6.423	.015	.014	.000	.000	-000	.000
	-								
	TOT FUEL								
	POUNDS	39.182	12.948	.472	.398	.000	.000	.000	.000
	LB-MOLE	3.262	6.423	.015	-014	.000	.000	.000	.000

CLIENT: USAC-

JOB NO: 322243 JOB DESC: CIRCULATING BED COMBUSTOR, 600 F, HOT IDLE CASE 9/ 9/94 11:38 PAGE 3

ENGINEER: SLM

DATA FILE: IDLE.DAT

FUEL TO: CIRC. BED/CYCLONE (PER HOUR) (CONTINUED)

	FUEL NAME	*****	****	*****	COMPONENT	FLOW TO FURNACE	*********		
		SI	BR2	F2	ASH	MSALT	ASALT	F.CARB	INERTS
250	NAT GAS								
	PERCENT	.000	.000	.000	.000	.000	.000	.000	.000
	POUNDS	.000	.000	-000	.000	.000	.000	.000	.000
	LB-MOLE	.000	.000	.000	.000	.000	.000	.000	.000
251	NAT GAS								
	PERCENT	.000	.000	.000	.000	.000	.000	.000	.000
	POUNDS	.000	.000	.000	.000	.000	.000	.000	.000
	LB-MOLE	.000	.000	.000	.000	.000	.000	.000	.000
	-								
	TOT FUEL								
	POUNDS	.000	.000	.000	.000	.000	.000	.000	.000
	LB-MOLE	.000	.000	-000	.000	.000	.000	.000	.000

JOB NO: 322243 JOB DESC: CIRCULATING BED COMBUSTOR, 600 F, HOT IDLE CASE 9/ 9/94 11:38 PAGE 4
CLIENT: USAC ENGINEER: SLM DATA FILE: IDLE.DAT

UNIT 1 CIRC. BED/CYCLONE

	*** MASS AND ENER	RGY IN **	*				% OF TOTAL	
	FUELS:	JSE CODE	TEMP DEG F	LB/HR	BTU/LB	MM BTU/HR	HEAT DUTY	
251	NAT GAS	OXD	60.00	53.000	21800.000	1.155	97.478146	
351	COMBUSTION AIR							
-	02		60.00	653.948	.000	.000	.000000	
	N2		60.00	2166.253	.000	.000	.000000	
	H20		60.00	28.202	1059.900	.030	2.521854	
						=======		
	OVERALL TOTAL			2901.404		1.185	100.000000	
	*** MASS AND ENER	RGY OUT *	**					
350	COMBUSTION GAS OUT	60	0.00 DEG F , 406	.8 IN. W.C.				
		-	LB-MOLES/HR	LB/HR	BTU/LB	MM BTU/HR	CONCENTR	ATION
	H2O		7.988	143.916	1309.449	.188	.052	LB H2O/LB DRY GAS
	CO2		3.262	143.557	124.339	.018	3.449	% GAS VOL (DRY)
	CO		.000	.009	136.334	.000	3.449	PPMV (DRY)
	N2		77.336	2166.641	135.602	.294	81.772	% GAS VOL (DRY)
	NO2		.001	.033	115.821	.000	7.501	· · · · · · · · · · · · · · · · · · ·
	02		13.977	447.249	123.298	.055	14.778	% GAS VOL (DRY)
	TOTAL COMBUSTION	GAS	102.563	2901.404	191.373	.555		
353	HEAT LOSS					.630		
	TOTAL HEAT RELEASE	ED				1.185		
354	CO Hc AVAILABLE				4343.600	.000		
			========			======		
	OVERALL TOTAL		102.563	2901.404		1.185		
	TOTAL DRY GAS	•-	94.575	2757.488		.367		

ENGINEER: SLM

DATA FILE: IDLE.DAT

PAGE 5

COMBUSTION AIR SUMMARY OPERATING CONDITIONS UNIT 1 ------60.000 TEMPERATURE (F) 406.800 PRESSURE (IN. W.C.) 618.312 FLOW (ACFM) AIR (DRY) TOTAL (LB/HR) 2820.202 891.408 AIR (DRY) THEORETICAL (LB/HR) 1928.793 AIR (DRY) TOT-THEO (LB/HR) EXCESS AIR (%) 216.376 653.948 TOTAL 02 (LB/HR) 206.700 THEO. 02 (LB/HR) 447.249 TOT-THEO. 02 (LB/HR) 2166.253 TOTAL N2 (LB/HR) 684.709 THEO. N2 (LB/HR) 1481.545

CLIENT: USAC-

COMBUSTION GAS SUMMARY	UNIT 1
TEMPERATURE (F)	600.000
PRESSURE (IN. W.C.)	406.750
FLOW (ACFM)	1322.916

TOT-THEO. N2 (LB/HR)

JOB DESC: CIRCULATING BED COMBUSTOR, 600 F, HOT IDLE CASE 9/ 9/94 11:39 PAGE 6

CLIENT: USAC-

ENGINEER: SLM DATA FILE: IDLE.DAT

APC HEAT AND MATERIAL BALANCE PROGRAM VERSION 6.0

BASE CONDITIONS AND INCOMING GAS					DARD INFORMATION	
ATMOSPHERIC PRESSURE (IN. H2O) BASE TEMPERATURE (DEG F)		0	PART	ICULATE STAN	DARD BASIS DARD BASIS CONCENTRATION (%)	02
INLET GAS PRESSURE (IN. H2O)					DARD BASIS CONDITION	DSCF
INLET GAS TEMPERATURE (DEG F)			PART	ICULATE STAN	DARD TEMPERATURE (DEG F)	68.00
UNIT NO APC DEVICE			RECE	IVER		
1 PART. QUENCH 2 BAGHOUSE				CH SUMP COLLECT		
3 ID FAN			0031	COLLECT		
4 STACK						
			•			
APC DEVICE INFORMATION	UNIT 1	UNIT 2	UNIT 3	UNIT 4		
RECYCLE FLOW (GPM)			.00			
	.00					
OUTLET PRESSURE (IN. H20)						
APC HEAT LOSS (MM BTU/HR)	.00	.00	.00	.00		
PERCENT REMOVAL DATA	UNIT 1					
ASH	.00	99 00	.00	00		
METAL SALTS			.00			
ALKALI SALTS			.00			
RECEIVER DATA	UNIT 1	UNIT 2	UNIT 3	UNIT 4		
REC. EXISTENCE	NO	YES	NO	NO		
REC. PURGE DESTINATION	0	0	0	0		
REC. PURGE TARGET	DIS		DIS			
REC. SS REMOVAL EFFICIENCY REC. HEAT LOSS (MM BTU/HR)	.00 .00	.00	.00	.00 .00	•	
REG. REAL EGGS (MM BTO/TRA)	.00	.00	.00	.00		
MAKEUP STREAM DATA	UNIT 1	UNIT 2	UNIT 3	UNIT 4		
MAKEUP OPTION	APC	APC	REC	REC		
MAKEUP FLOW (GPM)	.20	.00	.00	.00		-
MAKEUP TDS (MG/L)	200.00	.00	.00	.00		
MAKEUP TSS (MG/L)	.00	.00	.00	.00		
MAKEUP TEMP. (DEG F)	60.00	60.00	60.00	60.00		

CLIENT: USAC ENGINEER: SLM DATA FILE: IDLE.DAT

NEUTRALIZATION STREAM DATA	UNIT 1	UNIT 2	UNIT 3	UNIT 4
NEUT. OPTION	APC	APC	REC	REC
NEUT. REAGENT NAME	NAOH	NAOH	NAOH	NAOH
NEUT. REAG. TEMP. (DEG F)	60.00	60.00	60.00	60.00
NEUT. REAG. CONC. (%)	23.00	23.00	20.00	20.00
STOICHIOMETRIC RATIO	1.00	1.00	1.00	1.00
OPERATIONAL LIMITS DATA	UNIT 1	UNIT 2	UNIT 3	UNIT 4
MIN. GAS OUT. TEMP. (DEG F)	0.	0.	0.	0.
PURGE TDS CONCENTRATION (%)	0.	0.	0.	0.
PURGE TSS CONCENTRATION (%)	0.	0.	0.	0.
PURGE ACID CONCENTRATION (%)	0.	0.	. 0.	0.

OTHER GAS DATA	GAS 1
NAME OF OTHER GAS	ATM AIR
FEED RATE (LB/HR)	50.00
TEMPERATURE (DEG F)	60.00
INPUT CODE	2.
DESTINATION UNIT NUMBER	1.

OTHER GAS COMP. DATA (LB/HR)	GAS 1
н20	.50
N2	38.03
02	11.48

ENGINEER: SLM DATA FILE: IDLE.DAT

UNIT 1 PART. QUENCH

CLIENT: USAC

** MASS AND ENERGY IN **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENT	RATION
350 GAS FROM CIRC. BED/CYCLONE:	600.0 DEG F, 40	6.8 IN. W.C.				
H20	7.988	143.916	1309.449	.188	.052	LB H2O/LB DRY GAS
CO2	3.262	143.557	124.339	.018	3.449	% DRY GAS VOL
со	.000	.009	136.334	.000	3.449	PPM DRY GAS VOL
N2	77.336	2166.641	135.602	.294	81.772	% DRY GAS VOL
NO2	.001	.033	115.821	.000	7.501	PPM DRY GAS VOL
02	13.977	447.249	123.298	.055	14.778	% DRY GAS VOL
TOTAL FLUE GAS	102.563	2901.404		.555	.000	GR DSCF @ 7.0 % 02
738 ATM AIR: 60.0 DEG F						
H20	.028	.500	1059.900	.001	-010	LB H2O/LB DRY GAS
N2	1.357	38.025	.000	.000	79.101	% DRY GAS VOL
02	.359	11.475	.000	.000	20.899	% DRY GAS VOL
TOTAL GAS	1.744	50.000		.001	.000	GR DSCF @ 7.0 % 02
651 MAKEUP WATER: 60.0 DEG F						
H2O	5.547	99.939	.000	.000		
TDS	.000	.020	36.000	.000		
TOTAL MAKEUP	5.547	99.959		.000		
OVERALL TOTAL	109.854	3051.362		.556		
** MASS AND ENERGY OUT **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENT	RATION
650 GAS TO BAGHOUSE: 432.3 DEG	F, 405.8 IN. W.C					
н20	13.563	244.355	1229.803	.301	.087	LB H2O/LB DRY GAS
CO2	3.262	143.557	82.599	.012	3.387	% DRY GAS VOL
co	.000	.009	93.316	.000	3.388	PPM DRY GAS VOL
N2	78.693	2204.666	92.968	.205	81.724	% DRY GAS VOL
NO2	.001	.033	77.190	.000	7.367	PPM DRY GAS VOL
02	14.335	458.724	83.815	.038	14.887	% DRY GAS VOL
TOTAL FLUE GAS	109.854	3051.342		.556	.000	GR DSCF a 7.0 % 02
655 PURGE FROM PART. QUENCH: 43	32.3 DEG F				·	
ALKALI SALTS	-000	.020	100.513	.000	100.00000	WT %
TOTAL PURGE	.000	.020		.000	.00000	WT % TSS
OVERALL TOTAL	109.854	3051.362		.556		
DRY GAS TOTAL	96.291	2806.988		.255		

CLIENT: USAC

ENGINEER: SLM DATA FILE: IDLE.DAT

UNIT 2 BAGHOUSE

** MASS AND ENERGY IN **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENT	RATION
650 GAS FROM PART. QUENCH: 432.3	DEG F, 405.8 I	N. W.C.				
H20	13.563	244.355	1229.803	.301	.087	LB H2O/LB DRY GAS
co2	3.262	143.557	82.599	.012	3.387	% DRY GAS VOL
со	.000	.009	93.316	.000	3.388	PPM DRY GAS VOL
N2	78.693	2204.666	92.968	.205	81.724	% DRY GAS VOL
NO2	.001	.033	77.190	.000	7.367	PPM DRY GAS VOL
02	14.335	458.724	83.815	.038	14.887	% DRY GAS VOL
TOTAL FLUE GAS	109.854	3051.342		.556	.000	GR DSCF @ 7.0 % 02
OVERALL TOTAL	109.854	3051.342		.556		
** MASS AND ENERGY OUT **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENT	RATION
661 GAS TO ID FAN: 432.3 DEG F.	385.8 IN. W.C.					
H20	13.563	244.355	1229.803	.301	.087	LB H2O/LB DRY GAS
CO2	3.262	143.557	82.599	.012	3.387	% DRY GAS VOL
CO	.000	.009	93.316	.000	3.388	PPM DRY GAS VOL
N2	78.693	2204.666	92.968	.205	81.724	% DRY GAS VOL
NO2	.001	.033	77.190	.000	7.367	PPM DRY GAS VOL
02	14.335	458.724	83.815	.038	14.887	% DRY GAS VOL
TOTAL FLUE GAS	109.854	3051.342		.556	.000	GR DSCF @ 7.0 % 02
OVERALL TOTAL	109.854	3051.342		.556		

CLIENT: USAC

ENGINEER: SLM

DATA FILE: IDLE.DAT

UNIT 2 DUSTCOLLECT

** MASS AND ENERGY IN **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENTRATION
OVERALL TOTAL	.000	.000		_000	
** MASS AND ENERGY OUT **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENTRATION
OVERALL TOTAL	.000	-000		.000	

ENGINEER: SLM

PAGE 11

CLIENT: USAC-

DATA FILE: IDLE.DAT

UNI	Т	3	ID	FAN

** MASS AND ENERGY IN **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENT	RATION
661 GAS FROM BAGHOUSE: 432.3 DE	G F, 385.8 IN. W	ı.c.				
H20	13.563	244.355	1229.803	.301	.087	LB H2O/LB DRY GAS
CO2	3.262	143.557	82.599	.012	3.387	% DRY GAS VOL
co	.000	.009	93.316	.000	3.388	PPM DRY GAS VOL
N2	78.693	2204.666	92.968	.205	81.724	% DRY GAS VOL
NO2	.001	.033	77.190	.000	7.367	PPM DRY GAS VOL
02	14.335	458.724	83.815	.038	14.887	% DRY GAS VOL
TOTAL FLUE GAS	109.854	3051.342		.556	.000	GR DSCF @ 7.0 % 02
682 HEAT OF COMPRESSION				.018		•
OVERALL TOTAL	109.854	3051.342		.574		
** MASS AND ENERGY OUT **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENT	RATION
672 GAS TO STACK: 455.0 DEG F,	415.8 IN. W.C.					
H20	13.563	244.355	1240.451	.303	.087	LB H2O/LB DRY GAS
CO2	3.262	143.557	88.102	.013	3.387	% DRY GAS VOL
со	.000	.009	99.086	.000	3.388	PPM DRY GAS VOL
N2	78.693	2204.666	98.694	.218	81.724	% DRY GAS VOL
NO2	-001	.033	82.288	-000	7.367	PPM DRY GAS VOL
02	14.335	458.724	89.089	.041	14.887	% DRY GAS VOL
TOTAL FLUE GAS	109.854	3051.342		.574	.000	GR DSCF @ 7.0 % 02
OVERALL TOTAL	109.854	3051.342		.574		
DRY GAS TOTAL	96.291	2806.988		.271		

JOB DESC: CIRCULATING BED COMBUSTOR, 600 F, HOT IDLE CASE 9/ 9/94 11:39

PAGE 12

CLIENT: USAC

ENGINEER: SLM

DATA FILE: IDLE.DAT

UNIT 4	STACK
--------	-------

** MASS AND ENERGY IN **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENT	RATION
672 GAS FROM ID FAN: 455.0 DEG F	, 415.8 IN. W.C					
H2O	13.563	244.355	1240.451	.303	.087	LB H2O/LB DRY GAS
CO2	3.262	143.557	88.102	.013	3.387	% DRY GAS VOL
со	.000	.009	99.086	.000	3.388	PPM DRY GAS VOL
N2	78.693	2204.666	98.694	.218	81.724	% DRY GAS VOL
NO2	.001	.033	82.288	.000	7.367	PPM DRY GAS VOL
02	14.335	458.724	89.089	.041	14.887	% DRY GAS VOL
TOTAL FLUE GAS	109.854	3051.342		.574	-000	GR DSCF @ 7.0 % 02
OVERALL TOTAL	109.854	3051.342		.574		·
** MASS AND ENERGY OUT **	LB-MOLES/HR	LBS/HR	BTU/LB	MM BTU/HR	CONCENT	RATION
683 GAS TO ATMOSPHERE: 455.0 DEG	F, 414.8 IN. W	.c.				
H2O	13.563	244.355	1240.451	.303	.087	LB H2O/LB DRY GAS
CO2	3.262	143.557	88.102	.013	3.387	% DRY GAS VOL
CO	.000	.009	99.086	.000	3.388	PPM DRY GAS VOL
N2	78.693	2204.666	98.694	.218	81.724	% DRY GAS VOL
NO2	.001	.033	82.288	.000	7.367	PPM DRY GAS VOL
02	14.335	458.724	89.089	.041	14.887	% DRY GAS VOL
TOTAL FLUE GAS	109.854	3051.342		.574	.000	GR DSCF a 7.0 % 02
OVERALL TOTAL	109.854	3051.342		.574		
DRY GAS TOTAL	96.291	2806.988		.271		

JOB NO: 322243 CLIENT: USAC

JOB DESC: CIRCULATING BED COMBUSTOR, 600 F, HOT IDLE CASE 9/ 9/94 11:39 PAGE 13 ENGINEER: SLM

DATA FILE: IDLE.DAT

GAS FLOW SUMMARY AT APC DEVICE OUTLET

UNIT NO	STREAM	TEMPERATURE (DEG F)	PRESSURE	FLOW (ACFM)	DRY GAS
1	PART. QUENCH	432.3	405.8	1195.635	618.411
2	BAGHOUSE	432.3	385.8	1257.625	618.411
3	ID FAN	455.0	415.8	1196.404	618.411
4	STACK	455.0	414.8	1199.288	618.411

CLIENT: USAC

ENGINEER: SLM

DATA FILE: IDLE.DAT

LIQUID FLOW SUMMARY

MAKEUP STREAMS TO:	FLOW	H20	TEMP	D.S.	s.s.	
	(GAL/MIN)	(LB/HR)	(DEG F)	(LB/HR)	(LB/HR)	

PART. QUENCH	.200	99.939	60.000	.020	.000	
TOTAL	.200	99.939		.020	.000	
DISCHARGE PURGE:	TEMP	H20	ORGANIC	D.S.	s.s.	ACIDS
ORIGINATION SUMP	(DEG F)	(LB/HR)	(LB/HR)	(LB/HR)	(LB/HR)	(LB/HR)

PART. QUENCH	432.272	.000	.000	.020	.000	.000
TOTAL PURGE	.000	.000	.000	.020	.000	.000

CONCEPTUAL DESIGN AND RELATED DOCUMENTS

13.0 PILOT PLANT COST ESTIMATE

U.S. Army Environmental Center Red Water Treatment Technology Test Plan and Site Preparation Aberdeen Proving Ground, Maryland COMPANY NAME: IT Corporation

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.: WP: WP1585.13

13.0 Pilot Plant Cost Estimate

The pilot plant cost estimate includes the equipment purchase costs, integration costs, installation costs, process and detail engineering costs, and construction advice costs (Table 13-1). The summary cost sheets for each of these items are attached. Vendor quotations for major equipment are included in this chapter.

This cost estimate has an accuracy of plus or minus 20 percent. More accurate costs can be gathered during the detail design phase.

By: PA Checked: PO Approved: PA Date: 01/12/95 Pilot Plant Cost Estimate IT PCE Knoxville, Tennessee Rev. No. (0) (1) Area No.:

Area Name: All Areas

Page: 1 of 1

Table 13-1
Summary of CBC Pilot Plant Price

Item(s)	Total Price (\$)
Total Equipment	\$805,222
Trailers	\$220,800
Infrastructure	\$676,370
Process Engineering	\$51,875
Detail Design Engineering	\$206,587
Project Management	\$144,855
Construction Advice	\$51,757
TOTAL BASE PRICE	\$2,157,466
Optional Building Price	
Building	\$122,400
TOTAL	\$2,279,866

USAEC Pilot Plant Cost Estimate

			Cost						Price	90		
	Labor	Equipment,	Travel	Indirect	Subcon.	Subtotal	Labor	Equipment	Travel	Indirects	Subcon.	Total
	Cost	Material,	& Misc.	Cost	OH & P	Cost	Price	Mat & Sub	Price		OH & P	Price
	-	& Subcont.					3.2	1,2	1,2	1.2	~	
Total Equipment		\$506,612		\$103,905	\$60,501	\$671,018		\$607,934		\$124,686	\$72,601	\$805,222
Trailers	-	\$184,000				\$184,000		\$220,800				\$220,800
Infrastructure		\$425,544		\$87,278	\$50,820	\$563,642		\$510,653		\$104,734	\$60,984	\$676,370
Process engineering	\$16,211					\$16,211	\$51,875					\$51,875
Detail Design Engineering	\$63,447		\$2,964			\$66,411	\$203,030		\$3,557			\$206,587
Project Management	\$39,560		\$15,219			\$54,779	\$126,592		\$18,263			\$144,855
Construction Advice	\$12,124		\$10,800			\$22,924	\$38,797		\$12,960			\$51,757
Total Base Cost	\$131,342	\$1,116,156	\$28,983	\$191,183	\$111,321	\$111,321 \$1,578,985	\$420,294	\$420,294 \$1,339,387	\$34,780	\$229,420	L	\$133,585 \$2,157,466
Optional Building		\$102,000				\$102,000		\$122,400				\$122,400

2,279,866
\$133,585 \$2,279,866
\$229,420
461,787 \$34,780 \$229,420
1,461,787
\$420,294 \$1,46
1,680,985
\$111,321
3 \$191,183 \$111,321 \$1,680,985
\$28,983
\$1,218,156
\$131,342
THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.
otal

USACE/CBC PROJECT # 322423.002.03.005 ESTIMATOR: FHG CHECKED: PCL SCOPE /PFD's & P& ID's

SCOPE /PFD's & P& ID's						11/09/94		
ITEM	aTY.	UNIT	MATERIAL	LABOR HRS	LABOR	OTHER COSTS & SUBCONTR.	TOTAL	
3-2001- COMBUSTION AIR BLOWER		EA	\$5,048	32	\$1,355	\$5,000	\$11,403	
3-2002-PURGE AIR BLOWER	_	EA	\$1,488	32	\$1,355		\$2,843	
3-5001-ID FAN	_	EA	\$15,600	120	\$5,082		\$20,682	
F-2001- COMBUSTOR	_	EA	\$65,000	8	\$3,388		\$68,388	
=-2002- CYCLONE SEPARATOR	_	EA	\$15,745	40	\$1,694		\$17,439	
3-2001- STARTUP BURNER	_	EA	\$25,000	24	\$1,016		\$26,016	
H-2001- ASH CONVEYOR-WATER COOLED	-	EA	\$50,000	9	\$2,541		\$52,541	
4-2002-HOPPER FOR LIMESTONE	_	EA	\$1,200	80	\$339		\$1,539	
4-2003-SCREW CONVEYOR-FOR LIMESTONE	_	EA	\$12,500	48	\$2,033		\$14,533	
4-2004-HOPPER FOR ALUMINUM OXIDE		EA	\$1,200	80	\$339		\$1,539	
4-2005-SCREW CONVEYOR-FOR ALUMINUM OXIDE	-	EA	\$12,500	48	\$2,033		\$14,533	
4-2006- HOIST -5 TON FOR MOVEMENT IN THREE PLANES	-	EA	\$30,000	09	\$2,541		\$32,541	
	_	EA	\$3,500	24	\$1,016		\$4,516	
4-2008-BAG BREAKER w/ DUST ENCLOSURE FOR ALUMINUM OXIDE		EA	\$3,500	24	\$1,016		\$4,516	
2-2001- PUMP RECIRCULATING-10 GPM-5' HEAD	-	E	\$225	80	\$339		\$564	
T-5001- PARTIAL QUENCH	_	EA	\$30,000	120	\$5,082		\$35,082	
H-5001-ROTARY AIRLOCK	_	EA	\$7,000	16	\$678		\$7,678	
S-5001- BAGHOUSE	_	EA	\$105,000	80	\$3,388		\$108,388	
H-5002 ROTARY AIRLOCK	-	Ę	\$6,000	16	\$678		\$6,678	
Z-5001-STACK	_	EA	\$25,000	09	\$2,541		\$27,541	
ASH DRUM (TAG DUPLICATED AS T-2001)-ALLOWANCE	-	EA	\$5,000	8	\$339		\$5,339	
SUBTOTAL EQUIPMENT	-	rs	\$420,506	916	\$38,793	\$5,000	\$464,299	
ALLOWANCE UNIDENTIFIED EQUIPMENT (2% OF EQUIPMENT COST)	_	Ā				\$9,286	\$9,286	
ALLOWANCE OFF LOAD/SETTING.(2% OF EQUIPMENT COST)	_	EA		221		\$9,286	\$9,286	
FREIGHT ALLOWANCE (5% OF EQUIPMENT COST)	_	Ę				\$21,025	\$21,025	
NORKMEN'S COMPENSATION(7% OF LABOR COSTS)	-	Ā				\$2,716	\$2,716	
TOTAL ADJUSTED PURCHASED EQUPMENT COSTS	-	rs	\$420,506	1,137	\$38,793	\$47,313	\$506,612	

USACE/CBC PROJECT # 322423.002.03.005 ESTIMATOR: FHG CHECKED: PCL SCOPE /PFD's & P& ID's

SCOPE /PFD's & P& ID's						11/09/94	
			MATERIAL	LABOR	LABOR	OTHER COSTS	TOTAL
ITEM	ΩTζ.	L N N	COST	HRS	COST	& SUBCONTR.	COST
ADJUSTED PURCHASED EQUIPMENT COST	-	rs	\$420,506	1,137	\$38,793	\$47,313	\$506,612
INFRASTRUCTURE COSTS		., .,					
SITE PREPARATION & SITE IMPROVEMENT	\$ \$	S .				\$50,661	\$50,661
CONCRETE: 3% OF ADJUSTED PURCH.EQPT.COSTS STRUCTURAL STEEL- 4% OF ADJUSTED PURCH.EQPT.COSTS		ა ა	\$8,106	263	\$11.145	\$25,331	\$25,331
ABOVEGROUND PIPING -15% OF ADJUSTED PURCH.EQPT.COSTS		S	\$45,595	628	\$26,597	\$3,800	\$75,992
ABOVEGROUND ELECTRICAL: 10% OF ADJUSTED FUNCH, EQFT. COSTS	_	ر ا	\$32,930	359	\$15,198	\$2,533	\$50,661
INSTRUMENTATION		r S	\$90,860	1,306	\$35,915	\$10,000	\$136,775
INSULATION- 4% OF ADJUSTED PURCH.EQUPT.COSTS		က္ခ	\$12,159	191	\$8,106		\$20,265
SIBTOTAL INFRASTRICTIBE COSTS	-	20	\$0,079	2 178	\$9,119	\$0.4 OE	\$15,198
	-	3	797'017¢	3,1/8	\$1.10,189	\$84,838	\$425,544
TOTAL DIRECT COSTS. INDIRECT COSTS		S S	\$635,993	4,315	\$153,992	\$142,171	\$932,156
SPARES-2% OF TOTAL ADJUSTED PUR.EQUPT.COSTS	-	r _S	\$8,410	·			\$8,410
CHERRY PICKER (2 WEEKS RENTAL)	-	S :		80	\$3,388	\$1,200	\$4,588
I RUCK 8 WEEKS KEN I AL MISCELLANEOLIS EQUIPMENT PENTAL - 8 WEEKS & CONSUMMADIFS		ა <u>ი</u>		320	\$13,552	\$2,800	\$16,352
CONSTIMMARI ES.2% OF ADJITISTED PURCH FOLIDT COSTS		ე <u>"</u>	CB 410		£776	009,14	009,13
SALARY OF INDIRECT PERSONNEL(8 WEEKS DURATION)-4 PEOPLE	_	. S	1		\$44.800	\$6.720	\$51,520
CONSTRUCTION FACILITIES (8 WEEKS RENTAL)	_	S				\$8,000	\$8,000
OTHER INDIRECTS (1/2% OF TOTAL DIRECT COSTS)	_	ട	\$3,180		\$770	\$711	\$4,661
BONDING (3% OF TOTAL DIRECT COSTS)	-	S :	1			\$27,965	\$27,965
IAXES(5% OF ADJ. PURCH EQUIPMENT COSTS)	-	ഗ	\$21,025				\$21,025
HEALTH & SAFETY(FIGURE 20 CRAFTSMEN - 8WEEKS & ONE INSTRUCTOR FOR 8 WEEKS					\$23,100	\$5,775	\$28,875
WARRANTY COSTS(2% OF ADJ. PURCH. EQUPT. COSTS)	-	က	\$8,410				\$8,410
SUBTOTAL INDIRECT COSTS.	-	ട	\$49,435	400	\$86,386	\$55,717	\$191,538
TOTAL CONTRACT COSTS.	-	rs	\$685,428	4,715	\$240,378	\$197,888	\$1,123,694
PROFIT & OVERHEAD OF CONSTRUCTION CONTRACTOR-10% ON TOTAL	1	rs	\$68,543		\$24,038	\$19,789	\$112,370
TOTAL CONSTRUCTION PRICE	_	LS LS	\$753,971	4,715	\$264,416	\$217,677	\$1,236,064

USACE/CBC PROJECT # 322423.002.03.005 ESTIMATOR: FHG CHECKED: PCL SCOPE /PFD's & P& ID's

SCOPE /PFD's & P& ID's						11/09/94	
ITEM	ATY. UNIT	LNO	MATERIAL COST	LABOR	LABOR	LABOR OTHER COSTS COST & SUBCONTR.	TOTAL
TOTAL CONSTRUCTION PRICE PROJ. MGT., ENGINEERING & CONSTRUCTION ADVICE		s s	\$753,971	4,715	\$264,416	\$217,677	\$1,236,064
PROCESS ENGINEERING(BARE COSTS) DETAIL DESIGN ENGINEERING(BARE COSTS) PROJECT MANAGEMENT(BARE COSTS) CONSTRUCTION ADVICE(BARE COSTS) TOTAL PROJ. MGT, ENGINEERING & CONSTRUCTION ADVICE TRAILER COSTS-8' WIDE X40 FT. LONG(FURNISH ONLY)	®	1 LS 1 LS 1 LS 1 LS 8 EACH	\$184,000		\$16,211 \$63,447 \$39,560 \$12,124 \$131,342	\$2,964 \$15,219 \$10,800 \$28,983	\$16,211 \$66,411 \$54,779 \$22,924 \$160,325 \$184,000

TOTAL DECLECATION TO	0	11000	444 4444		
ICIAL PROJECT COSTS.	2	\$937,971	\$385,758	\$246,660	\$1,580,389
OPTION-BUILDING PREFABRICATED BUTLER TYPE-120'LONG X50' W X 50' H	1 LS	\$102.000			\$102 000
w/WINDOW HVAC UNIT, ONE PERSONNEL DOOR & ONE 24' X 20' MOTORIZED					2001
EQUIPMENT DOOR NO FLOOR IN SCOPE (PRAKASH(SUBCONTRACTED)					

IT CORPORATION - ES/SE DIVISION ENGINEERING ESTIMATE SUMMARY

									l		
PROJECT NAME: US-AEC						PER D	PER DOCUMENT	SES		TOTAL	
JOB NUMBER: 322243		PLANT AREAS	REAS		\$13.50	(@ BA	(@ BARE COST OF :)	OF:)	00 85	COST	COMMENTS
	FEED	THERMAL	SOS	TOTAL	SPD	E5	_	-	E11		
PROCESS DESIGN PHASE									T		
ANALYTICAL TESTING OF WASTE STREAMS OTHER MATERIAL TESTING (handling, develoring, e								+			
TECHNICAL BASELINE DOCUMENT INTERFACE SPECIFICATION					© ©		88		20		
WASTE CHARACTERIZATION (# of streams) HMB's		-		.,	6		2 6	- 12	~-	\$1,192	HOURS ARE PER WASTE STREAM HOURS ARE PER RUN
10 PFDs 11 P&ID's					8 8		22	22	~~	\$6,255	
PROCESS DESCRIPTION PROCESS CONTROL DESCRIPTION					eo eo			æ 54	- 2	\$3.400	ONE P.D. PER AREA
INSTRUMENT LIST EQUIPMENT LIST									1		
EQUIPMENT DUTY SPEC'S MAJOR EQUIPMENT BID SPEC'S		10	70	2	- 4		8	2 9	-	\$10,098	CUT-SHEET FORMAT 1-FEED-1-THERMAL 1-9CS 1-CEM
SUBTOTAL PROCESS DESIGN										\$56,739	
DETAIL DESIGN PHASE											
01 DRAWING INDEX 02 PLOT PLAN & EQUIPMENT LOCATION					5 20		24	\$		\$29,659	1-PLAN VIEW, 4 - ELEVATIONS
							4		-		_
					- E		44				BY VENDOR BY VENDOR
40 QUOTE DWGS. 50 PIPING PLANS & ELEVATIONS		2	4		9 5		œ •			\$9.38	
					4.8	18	-	2	-	\$1,829	LET FAB SHOP GENERATE THESE IF POSSIBLE
62 SWITCHRACK ASSY 63 MOTOR STARTER SCHEDULE						1 1					NOT REQ'D IF USE MFG. STD.
64 MOTOR CONTROL SCHEMATICS 65 PANELBOARD SCHEMATIC/SCHEDULE					6	3 2		2	-		
66 CONDIUT ROUTING 67 HEAT TRACE ROUTING					- 4						
68 CABLE SCHEDULES 69 CONDUIT DETAILS					-	3 2		-	-	\$518	MAINTAIN DATABASE ONLY ONE TYPICAL DRAWING OR PUT INTO SPEC'S
71 ALARM & SHUTDOWN SCHEDULE 72 CONTROL PANEL ASSY								7 7	~-	\$12.039	GENERATE ONLY FOR WITTE & TRVE
73 PANEL WARING SCHEMATICS 74 INTERCONNECT WARING DIAGRAMS				-	15 16	16		4 2	0.0	\$35,223 \$18,748	
75 LOOP DIAGRAMS 76 PROCESS LOGICS OR EQUAL		-	4	2				- 60	+	\$1,968	GENERATE IF CAD SOFTWARE IS AUTOMATED
77 ANALOG FUNCTIONAL DIAGRAMS 78 INSTRUMENT INSTALLATION DETAILS					4 12	8 8		4-		\$6,649	ONE TYPICAL DRAWING OR PUT INTO SPEC'S
80 CIVIL 81 FOUNDATION DETAILS								2	-		-
90 STRUCTURAL V VENDOR DRAWINGS			9		13				-	\$3,787	ANCHOR BOLTS, LADDERS, PLATFORMS,ETC
SUBTOTAL DETAIL DESIGN DRAWINGS					1					\$136,873	
OTHER DETAIL DESIGN PRODUCTS											
INSTRUMENT SPEC'S EQUIPMENT SPEC'S					98	2.5		0.5		\$21,484	
MISCELLANEOUS SPECS		25 25	50		40	7 7		7 7		\$19,384	
MMI & ALARMS PROGRAMMING (# of screens)											
START-UP & CHERATIONS MANUAL MECHANICAL DATA BOOKS					98	8 8		24		\$16,525 \$9,380	
SUBTOTAL OTHER DESIGN PRODUCTS				\downarrow	1				1	\$85,189	
TOTAL ENGINEERING		_								\$278,801	

U.S. Army Environmentàl Center - CBC Estimate PROJECT MANAGEMENT COST

CLIENT: USAEC PROPOSAL: 322423.002.03.005

MANPOWER	ESTIMATED HOURS	DIRECT RATE	DIRECT COST
PROJECT MGMT - CMC	40	\$41.00	\$1,640
PROJECT MANAGEMENT	320	\$35.00	\$11,200
COST & SCHEDULING	40	\$33.00	\$1,320
PROJECT ADMINISTRATOR	100	\$30.00	\$3,000
PROJECT ENGINEER	160	\$30.00	\$4,800
PROCUREMENT / EXPEDITING	160	\$30.00	\$4,800
PROJECT COORDINATOR	160	\$24.00	\$3,840
DOCUMENT CONTROL/PRODUCTION	80	\$24.00	\$1,920
ADMINISTRATION / SECRETARIAL	160	\$8.00	\$1,280
PRODUCE OPERATING MANUALS	80	\$24.00	\$1,920
AS-BUILT DRAWINGS	160	\$24.00	\$3,840
Subtotal	1,460	303	\$39,560

COMPUTER USAGE			
COMPUTER USAGE CHARGES	365	\$6.08	\$2,219

EXPENSES		DIRECT COST
TRAVEL & EXP-PROJ MGMT & ENG (5 TRIPS)	LUMP SUM @ 1,000/TRIP	\$5,000
SOURCE INSPECTION - DOMESTIC (5 TRIPS)	LUMP SUM @ \$1,000 / TRIP	\$5,000
OFFICE EXPENSES	ESTIMATE	\$3,000
PROJECT MANAGEMENT EXPENSES		\$13,000

TOTAL PROJECT MANAGEMENT COST	\$54,779
· · · · · · · · · · · · · · · · · · ·	407,773

DATE: 11/09/94

U.S. Army Environmental Center - CBC Estimate CONSTRUCTION / INSTALLATION ADVICE

CLIENT: USAEC

PROPOSAL: 322423.002.03.005

Installation & Construction Advice

	0000000							
	Men	Hrs/Wk	Wks/Mo	Units		Unit Cost	Total Labor	Total Other
LABOR	1	40	4.33	2	mos	\$35	\$12,124	
MEALS	1			2	mos	\$1,050		.\$2,100
AIRFARE	1			2	trips	\$1,800		\$3,600
LODGING	. 1			2	mos	\$1,800		\$3,600
MISC.	-1			2	mos	\$750		\$1,500
							\$12,124	\$10,800

USACE-CBC PROJECT PROJECT # 322243.002.03.005 EQUIPMENT COSTS

SCOPE PER P &ID DWG 322243-20-11-001 REV A, 322243-20-11-002 REV A, & 322243-50-11-001 REV A

	PER P &ID DVVG 322243-	20-11-00	IKLV	A, 322243-2	0-11-0021	CLV A, G OZZ	2-70-00-11-00	1112071
ITEM		077/		MATERIAL	LABOR	LABOR	OTHER	TOTAL
NO.	ITEM.	QTY.	UNIT	MATERIAL	LABOR	LABOR	OTHER	COSTS
				COSTS	HOURS	COSTS	COSTS	
	TAHH-PANEL MOUNT	3	EA	\$795	12	\$300		\$1,095
	TSHH-PANEL MOUNT	3	EA	\$795	12	\$300		\$1,095
		4	EA	\$1,060	16	\$400		\$1,460
	FAL-PANEL MOUNT	2	EA	\$530	8	\$200		\$730
	FSL-PANEL MOUNT	1	EA	\$265	4	\$100		\$365
	PAL-PANEL MOUNT	2	EA	\$530	8	\$200		\$730
	PAHH-PANEL MOUNT	3	EA	\$795	12	\$300		\$1,095
	PSHH-PANEL MOUNT	1	EA	\$265	4	\$100		\$365
61	BALL-PANEL MOUNT	1	EA	\$285	4	\$100		\$385
62	BSLL-PANEL MOUNT	1	EA	\$285	4	\$100		\$385
63	TALL-PANEL MOUNT'	2	EA	\$590	8	\$200		\$790
64	TSLL-PANEL MOUNT	2	EA	\$590	8	\$200		\$790
65	TY-PANEL MOUNT	3	EA	\$885	12	\$300		\$1,185
66	TI'S-PANEL MOUNT	5	EA	\$1,275	20	\$500		\$1,775
	ISHH-PANEL MOUNT	1	EA	\$255	4	\$100		\$355
	IAHH-PANEL MOUNT	1	EA	\$265	4	\$100		\$365
	II-PANEL MOUNT	1	EA	\$235	4	\$100		\$335
70	PSLL-PANEL MOUNT	2	EA	\$510	8	\$200		\$710
71	PDIC-PANEL MOUNT	1	EA	\$255	4	\$100		\$355
	FIC-PANEL MOUNT	1	EA	\$255	4	\$100		\$355
	FY-PANEL MOUNT	1	EA	\$255	4	\$100		\$355
	PDI-PANEL MOUNT	1	EA	\$255	4	\$100		\$355
	FALL-PANELMOUNT	4	EA	\$1,020	16	\$400		\$1,420
	FSLL-PANEL MOUNT	3	EΑ	\$765	12	\$300		\$1,065
	FR-PANEL MOUNT	3	EA	\$765	12	\$300		\$1,065
	PAH-PANEL MOUNT	1	EA	\$255	4	\$100		\$355
	TOTAL-INSTRUMENTS	242	EA	\$49,825	822	\$20,550	\$10,000	\$80,375
	WIRING & CABLE TRAY	1	LS	\$15,150	202	\$5,050		\$20,200
	TUBING ALLOWANCE	1	LS	\$17,625	282	\$7,050		\$24,675
	TOTAL COSTS	1	LS	\$82,600	1,306	\$32,650	\$10,000	\$125,250
	OVERHEAD & PROFIT			\$8,260		\$3,265		\$11,525
	@ 10% OF LB'R & MAT'L			, , , , , ,				
	TOTAL PRICE			\$90,860		\$35,915	\$10,000	\$136,775
1	* DANEL METO INCEDIM	ENT DD	OEC E		OT OF DA			PORTIONED)

^{*:-} PANEL MTD INSTRUMENT PRICES REFLECT COST OF PANEL IN THEIR PRICE (APPORTIONED)

DEN SER SEGRECTION TO THE PROPERTY OF SEVERAL OF THE SOUTH THE SOUTH SECURITY SECURI

CHARLES F. SEXTON COMPANY

Manufacturers' Representatives - Mechanical Equipment
SUITE A, 6426 BAUM DR.
ENOXVILLE, TENNESSEE 37919
Surving the Tennessee Valley Since 1930*

POST OFFICE BOX 10707 ZIP 37939-0707

TELEPHONE 615-588-9691 FACSIMILE 615-588-9692

FACSIMILE TRANSMISSION

Attn: Firoze Gaslightwala

Company: IT

From: Charlie Sexton

Date: 9/13/94

Page 1 of 1 (including this page)

Reference: Your 9/13 Fax

Firoze, on this fax I'm quoting Spencer, because the ratings fit them better than Buffalo.

B-2001 - 6000 CPM @ 30" at std. density, Spencer Size 1550SS with 60 HP motor (actually rated 40" but can be dampered - \$5048

B-2002 - 200 CFM @ 30" at std. density, Spencer Sise 1002SS with 3 HP motor (actually rated 29.9") - \$1488

B-5001 - 6000 CPM @ -60" at std. density, Spencer Size 45-4RB with 75 HP motor (may be able to use <75 HP motor, but can't check it out in less than about 2 days) - \$15600 (this price should be okay regardless of what we have to do).

(90-3626 SUSANDE

Alloy Fabrications

121 Peaks Station Rd. Clinton, Tennessee 37716

(6B) 457-2717 FAX (6B) 457-2568

SEPTEMBER 14, 1994

IT CORPORATION
312 DIRECTORS DRIVE
KNOXVILLE, IN 37923
ATTN: MR. FIROTE

GENTLEMEN:

THIS QUOTATION COVERS LABOR AND MATERIAL TO FABRICATE COMBUSTOR FROM CARBON STEEL WITH A HASTELLOY C-276 TUBE SHEET.

2. HASTELLOY C-276 2 1/2" THICK X 41" OD WITH HOLES. LABOR NOT INCLUDED IN THIS ITEM. NUMBER OF HOLES UNKNOWN.

PRICE - FOB CLINTON, TN (MATERIAL ONLY) -----\$ 16,800.00

3. 3" THICK HASTELLOY C-276 NOT AVAILABLE EXCEPT IN A FORGING. PRICE NOT AVAILABLE AT THIS TIME.

IF THERE ARE ANY QUESTIONS, PLEASE CONTACT ME AT THE ABOVE NUMBER.

SINCERELY.

Jim Diens

9/14/94

GOT REFIRACTOR QUOTE (VERBAL - SENT FAX & MIZ CURTIS GILMAN @ BRYANT INDISTRIAL _918-546-1313) Price

- 1) GUNNIA \$ 7,000 6
- 2) Hand Tamped \$ 5500

(AFCO)

F112024 H. Gaslightwala XZ417

INTERNA	LOGY	RECORD	OF A	I TELE	CON	4
CORPORA	ATION	NECORD	Or [J MEE	TING	à.
		Project Name	Number	Phase	Task	Subtas
		US ACE CBC PROFECT	322243	CO2	03	005
Date 9/13/94	Time 11.154 m	CALLEDOMPI NAME:	-H Gas		il.	
Other Participants — Name/Loca	ation/Representing:	ICALI EROMIA NAME:	3 PiAN			
		Telephone Number:	02-7			
		Company Name:	HEIZ			
	NONE	Address:	LOUIS,	11/6 -	164	′
Topic		City				
·	PRICING	State	Zip Cod	е		
Summary (Decisions & Specific A	actions Required by Named Persons):					
-	F-200	02- CYCLO	NE .	SE PAI	2A7	~
	MODEL	X10-4165- 21	- W/	64 12	EFIL	N TOWN
	# 15,	745= pach	1		· 157	1007
						
	-			· · · · · · · · · · · · · · · · · · ·		
equired Action:						
		·				
						•
V.7		Prepare	d by (Signature):		
			F1120 ZE	_		
stribution: iginal to Project File py to Project Manager py to Preparer	☐ Other Distribution (By Preparer)			AGE	of _	,

Other Participants — Name/Location/Representing:

Date

Topic

Summary (Decisions & Specific Actions Required by Named Persons):

RECORD OF A TELECON

CORPORATION	MECUND OF MEETING					
•	Project Name	Number	Phase	Task	Subtask	
	US ACE CBC PROFICE	322243	002	03		
13/94 Time 11.15am	CALL EDOMP NAME	F-H Gas				
- Name/Location/Representing:	CALL FROM NAME:	ZAN BA	•			
	Telephone Number:	918-2	34-	1500		
	Company Name:	John				
NONE	Address:	TU	SA-	OK		
	City					
PRICING	State	Zip Code	ө			
ns & Specific Actions Required by Named Persons):						
6-2001- 500 HI	BTU/+12- VC	RIEX. T	YPE			
BUILNEIL	NATURAL G	AS- AI	12			
W/5F	PAIR IGNI	TE12				
		1000 P	ach			
					,	
				,		
		· - · ·				
-						
n:						
	Prep	ared by (Signatur	e):			
		J=1,720 ZE				
		1 11 00 00				

istribution: riginal to Project File opy to Project Manager opy to Preparer

equired Action:

☐ Other Distribution (By Preparer)

PAGE ____OF ___

MANUFACTURERS' REPRESENTATIVES MATERIAL HANDLING SYSTEMS SUPPLIERS

CORPORATE OFFICE: P.O. BOX 7508, PADUCAH, KY 42002

3503 CLINTON ROAD 502-554-9653 FAX: 502-554-9657

P.O. BOX 1954 BAENTWOOD, TN 37027 615-377-3719

812 LYNDON LANE SUITE 7 LOUISVILLE, KY 40222 502-426-4141

FAX # 502-426-8348

SOUTHLAND BLDG 244 PETERS ROAD, NORTH SUITE #207-208 KNOXVILLE. TN 37923 615-694-6150

FAX # 615-693-5931

P.O. BOX 381285 MEMPHIS, TN 38183 901-754-4600 FAX # 901-754-4573

FAI. LETTER

Froze

FROM: Charles W. Reeves

IT CORS COMPANY:

DATE:

MOXVILLE

SUBJECT: COOLINK

SALES OFFICES:

615-690-3626 PAGES: /

> screw conveyor, ESTUMBER COOLING

8 \$ X 14 OAL HOLLOW FLIGHT

\$ 50,000

CC + MIKE CLARK

INTERNATIONAL TECHNOLOGY CORPORATION	RECORD	OF A TELECON
CORPORATION	TILOUTID	□ MEETING
·	Project Name	Number Phase Task Subtask
	US ACE CBC PROFECT	322243 002 03 005
Date 9/13/94 Time 11.154m	CALL FROM NAME:	-H Gaslighting
Other Participants — Name/Location/Representing:	CALL FROM NAME:	RANK RETCCH
	Telephone Number:	800 - 882 - 2877
	Company Name: SONI	
NONE	Address: NE	WYORK
Торіс	City	- <u> </u>
PRICING.	State	Zip Code
Summary (Decisions & Specific Actions Required by Named Persons):		
		-5.000 A(FM
INLE	T. @ 1600°	F- 400F
OUTLET- 3	SECONDS 12	ETENTION TIME
· CARBON	STEEL CE	U STILLICTION!
	# 30	coc pach
		· · · · · · · · · · · · · · · · · · ·
-		
equired Action:		
edance sensin		

stribution: riginal to Project File ppy to Project Manager ppy to Preparer ☐ Other Distribution (By Preparer)

PAGE ____OF ___

FIRE

Prepared by (Signature):

Other Participants - Name/Location/Representing:

Date

opic

Time

ummary (Decisions & Specific Actions Required by Named Persons):

4 RUTARY

DOUBLE

It has

11.15am

H-5401-

RECORD OF TELECON

	HEOOM	D 01		MEE	TING	; .
	Project Name		nber	Phase	Task	Subtask
	US ACE CBC PROJECT	- 322	2243	C02	03	005
1.15am	CALL FROME NAME	F-H	-			-
		MRC				,
	Telephone Number:	502				
	Company Name:	LECOR		9- 12	<u>0 2</u>	
-	Address:			PAD	LY AH	
	City				<i><u><u></u></u></i>	<i>y</i>
	State	Z	ip Code	-		
Named Persons):						
-5401-	ROTARY,	4/12/	\$C10	- V6	V YE	<u> </u>
	1112 - 100					
	#					!
5002-	D					•
	ROTARY AGIZ					
cul/yn -	-500°F. F	or	50L	IDS		
	# 6,000	2	Ca	rhon St	es [:
AIRLO	VALYE NO	F C. A	- //-			
• •		I SUM	rance			
pe c	Temperature. Reg.	-its (mar	7000	c)	
	E IS MOS					
OR THIS				-000		
	1,000 each	./				
		_				
Zchambers	- ORIVEN	Flap	' <i>in 1</i>	7)		
Preuma	tic on Ele	CIRIC	_ oi	2 gra	vity	
	perutor)					

Prepared by (Signature): F11202E

ibution: nal to Project File to Project Manager to Preparer

uired Action:

Other Distribution (By Preparer)

PAGE ____OF ___

SENT BY: I.T. CORP. KNOXVILLE ; 9-14-94 ; 4:33PM : I.T. CORP KNOXVILLE-

615 524 1100:# 1/ 2

Refor

IT CORPORATION
312 DIRECTORS DRIVE
ENOXVILLE, IN 37923
(615) 690-3211

MECOPY REQUEST 575-2305 ECOPY NOWED MR GEORGE Bishop 524-1100, F11202E 9/14/44 NUMBER OF PAGES: Dear Mr Bishop REMARKS DDC BUGGET OVERALL = 26' (INCLUDES HOPPER + CLEARANCE UNDER HOPPER) DISCARD WHEN SENT W=07+ = 12/6" LENG 1+= 17' PLEASE RETURN

IF ALL PAGES ARE NOT RECEIVED, PLEASE ASK FOR EXTENSION 2223 AT THE ABOVE NUMBER. THANK YOU.

IT KNOXVILLE FAX NO. (615) 690-3626 OR (615) 690-4652

susquentinia Concrete	roaucts, Inc.	42 Fort Hoyle Road, Alagnolia Maryland 21101
10-676-3600	410-679-4242	FAX 410-676-7163
DATE:	SENI	PAGES: / DER: / Aff Leck M FAX #: 410-676-7163
MESSAGE: FR	!	\$25,000 (FOS MANNELD NO.)
- SC-	KG-RACTORY	(1800° F ts 7,000° F)
- I	closes: (1) The	, (1) clean-out,
- () - v/	SAFETY POLE.	, (30') LADDER

If there is a problem with this transmission, please call 410-676-3600

Underwriters Laboratories Listed

25:32 46' E1 932

282 601

4106767163 SUSCON STACKS

M'TELECON

TECHNOLOGY CORPORATION	RECORD	OF MEETING
	Project Name	Number Phase Task Subtask
		322243 002 03 005
ate (3/-d) Time	CALL FROM NAME:	H Gaslightnelen
are 9/18/94 11-154m	CALL TO D /-	71 Charling that
ther Participants — Name/Location/Representing:	CALL TO B	412 C -
	Telephone Number:	27-9038
	Company Name:	lidenour Const
	Address:	,xv1/4
opic	City	
PRICING Springs	State	Zip Code
ummary (Decisions & Specific Actions Required by Named Persons):		
-		
Dunier Block	1201 /200 x	50 wide x50 High.
	NOTORIZED ED	
	Deso17	or mem
one Porsonnel		ENT HYAC.
$\frac{\partial ne - \partial ve TUN}{(L - 3/x 3)}$		7-01-11-13
		iva l
(no lighting) on	o Ther election	744
# 17/SQFT		
		1/02 000
120 x 50 = 6,00	0 x17= \$	102,000
-		•
Land Andrew		
equired Action:	,	
	Prepa	red by (Signature):

istribution: riginal to Project File opy to Project Manager opy to Preparer ☐ Other Distribution (By Preparer)

F112028 (x 21154)
PAGE / OF /

TELECON

TECHNOLOGY CORPORATION			RECORD OF MEETING					
			Project Name	Number	Phase	Task	Subtask	
			USACE	32224	002	03	005	
ate 9/22/44	Time	11.00 am		H Gas	slight	wede		
ther Participants — Name/Locatio	n/Represent	ing:	CALL FROM NAME:	2/ S/XYK	emar	1		
				-916-				
				ming Ler				
			Address: Birmi	sham, A	la			
pic			City	, , , , , , , , , , , , , , , , , , , ,				
P	Price	-	State	Zip Cod	ie			
immary (Decisions & Specific Acti	ions Require	ed by Named Persons):						
-		HOIST S	TOH- 3WAY.		-			
		56	1 x 75' × 48'					
		MOTUR	1 204					
			# 30,000					
				<u> </u>				
	-							
							· · · · ·	
	-			-				
equired Action:								
			I Dave	pared by /Signati	nto).	. :		
			Pres	pared by (Signation	(FIRM	126/		
stribution: iginal to Project File py to Project Manager	☐ Other	Distribution (By Preparer)		/ 114	PAGE_			
py to Preparer								

RECORD OF

☑ TELECON

☐ MEETING

		Project Name	Number	Phase	Task	Subtask
		US ACE/CBC.	32224	02	03	005
Pate 9/26/94	Time 4.00pm	CALL FROM NAME:	H Ga	sligh	Wala	
Other Participants — Name/Location	n/Representing:	CALL FROM NAME:	2. Ree	ves		
			202-250			
		Company Name:	ecorp			
	hone.		educah			
opic		City	ky			
PI	licing	State	Zip Cod	е		
iummary (Decisions & Specific Acti	ons Required by Named Persons):					
				-		•
H-2007 (Bag Breaker	# 3,500 = 0	ch			
4-1008						
· ·						
	Integral	Dust Pickup IUAL SHAKER				
		ROP IT ON ICN	IFE /			
	-		-			
lequired Action:						
ledanea venem						
		Prepa	ared by (Signatu	ıre):		
			FH	4		
istribution: Priginal to Project File Popy to Project Manager	Other Distribution (By Prepare	er)		PAGE_	Lof	
opy to Preparer						

RECORD OF TELECON □ MEETING

Project Name	Number	Phase	Task	Subtask
US ACE CBC PROJECT	322243	C02	03	005

		110,00011481110		tumber Thase	iusk	Odbiask .
		US ACE CBC PRO	-, 3	22243 602	03	005
9/26/9U	Time 11.15am	CALL TO	F-H	Golf of	tiel.	
ther Participants — Name/Loc		CALL FROM NAME	7	NO DO	116-	
		Telephone Number:	1	46-492	104	
		Company Name:			. /	
		Company Name.	SPAT	10		
	NONE	Address:	tnoxx	ille		
pic		City	Tu			
	PRICING	State		Zip Code		
mmary (Decisions & Specific	Actions Required by Named Persons):					
		110 6	2.14	-14- C		
F- 20	1/10HP - 100	10 0	-ma	Tread	7125	
	1/1041 - 100	ling water	CENT	ILIPHGAC	TYPE	
	4	# 225°			· · · · · · ·	
	·					
						!
				· · · · · · · · · · · · · · · · · · ·		
						!
				•		
				 		
				-		
						<u> </u>
quired Action:						
			Prepared by	(Signature):		
			F	112020		
ribution: ginal to Project File by to Project Manager by to Preparer	☐ Other Distribution (By Prepare	r)	-	PAGE_	OF	<u></u>
			. l			

9/9/1/911

ate

ppic

RECORD OF A TELECON

	LI MEETING					
Project Name	Number	Phase	Task	Subtask		
US A CÉ CBC PROJECT	322243	002	03	005		
CALL FROM NAME:	-H Gus	light	ite/c			
CALL FROM NAME:	R sle	x S	alib	4		
	-554-		3			

ite	9/26/94	11.15am	
her Pa	nticipants — Name/Location	ion/Representing:	

Time

Company Name: Address:

Le CORP Paducah

NONE

City State

Screw CONVEYORS- 150#/+112
Screw CONVEYORS- 150#/+112 variable speed Drive
FOR aluminum exide- (/32")
FOIZ (imedone - (Chunks)
ength assumed - carbon steel const.
12,500 each
Hopper conval 31x3'
mount on TOPOF
reyor
1,200 each
<u>.</u>

equired Action: Prepared by (Signature):

FIIWEL

tribution: ginal to Project File py to Project Manager py to Preparer

☐ Other Distribution (By Preparer)

PAGE ____OF ___

INTERNATIONAL TECHNOLOGY CORPORATION

By WMS Date 9/12/94 Subject <u>FOUTP 1-57</u> Sheet No.___ of ____ Chkd. By ___ Date ____ USACE - CBC PROSECT Proj. No._____

- (1) B-2001 COMB. AFR BLOWER 6000 SCFM @ 30"W.C., AIR@AMB. CAR-BON STECL, ? HP
- @ B-2002 LOOP-SEAL PURSE AIR BLOWER 200 SCFM @ 30"W.C.,
 AIR @ AMB. TEMP., CARBON STEEL, ?HP
- 3 B-5001 I.D. FAN 6000 ACFM @ 60"W.C. VACUUM, CAMBON STEEL, MAX TEMP = 450°F
- (1) E-2001 CBC CARDON STEEL W/ 6" CASTABLE REFLACTORY, (SEE ATTACHED SKETCH)
- B =-2002 CYCLONE SEPARATOR FISHER-KLOSTERMAN SIZE 21, MODEL XQ-465, 6" OF CASTABLE REFRACTORY (502) 776-1505
- 6 G-2001- START-UP BURNER NATURAL GAS-AIR BURNER, 5.0 MMBtw/Hr CAPACITY W/ SPARK IGNITER
- 9) T- SOU! PARTIAL QUENCH SOOD ACEM INLET @ 1600°F, 400°F OUTLET TEMP., CARBON STEEL, (SONIC ENVIRONMENTAL SYSTEMS - 800-882-2877)
- 1000°F TEMP. SOLEDS
- 9) 5-5001 BAGHOUSE (Affected)
- 9 H-5002 ROTALY AIRLOCK CARBON STEEL, 243/NV CAPACETY, 500°F TEMP SOLIDS
- DZ-5001- STACK- 50' TALL, 16"\$, CARBON STEFL

OJECT = USACE - CBC PROJECT 322243,002,03.005

By WMS Date 9/14/94S	Subject BAG House	Sheet No of
	USBEC- eBC	Proj. No. 3 222.43
BACHOWE		
-Flow- 7200		
- Air/cloth	ratio: 3:1	
, , , , ,	s (on-line cleaning)	<u>u</u> , = =
- 1067 frz	fil firing orea	
	A. C.	
- Figur glass	6080	
- Max aray	8 = -60"WC	
·	/- 0	:
C 0 1307(SG	cel construction	
- Hopper he	cturse vibratus neede	al
		and the second s
119/2		
A		
I mled		The state of the s
	<u> </u>	
a data and a management of the state of the		
		the state of the s
		to be a second or the second of the second o

	7/25/94 Subject EQUI SPECS	Sheet No of.
By Date_	Neu Additions.	Proj. No
nda di didunda o um majang e i mpir e um Sidrigha dimigr		
2 Screc	Convigns	
- H - 2007	1- Feed Alzoz perhales	(asout 1/32")
	Voriobe speed or	
	150 Isther capacity	\$ 23 12 5000
	Corbon steel	
H-72 00 2	: 2- Feed line stone	gronules
. <u></u>	Voricke speed d	
Mark 1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	150 15/ hr cerps at	7 23 (
7 Hz 1-1-		
- Coppe	(3 (31x01) Conicct	
	1- Lime som hoppen C	4-2002)
	1 - Aluminian oxide hopy	~ (H-2014)
er valendade i igne e minimi en e an embrest agligables tica	2- Bog breckers (1+-	
	0	
-14013	J	
		
4-2006	5 don capacity	
	38 test of steel cake	
Approximation of the state of t	Googantel rail moun	, fed
	Waterised for parisante	novement
-PUMP	P-200 10 cmm colling	
	Co Jpm, cooling	water pom (contrit

Pollution Control Systems

312 Directors Drive Knoxville, Tennessee 37923 Telephone: 615-690-3211 FAX: 615-690-3626

	RE	CORE	OF
--	----	------	----

X	TEL	.EC	ON
,	ME		

Project Name	Number	Phase	Task	Subtask
USAEC	32243			

8/25/94	Time	CALL FROM NAME: SHE VE	will
Participants - Name/Location/F	Representing:	CALL FROM NAME: P 4	tcharya
P. Echonga	_		19-4501
5. Will.	•	Company Name: He zcn	Resecoch-
		Address:	
CBC bilst-	- plant configuration	City Denvi	
at Hazen Re		State Co	Zip Code
nary (Decisions & Specific Actio	ns Required by Named Persons):		
Steve wi	ll told me tted	f Hazen has a	n operational
CBC bilst	plant Considering	of a 6 EDX	241 tell, externally
heata ccc,	hot cyclone, water	-cooled HE, Baghou	se, ventari
scrubber.	ED for and a	stack.	
The	receder shell is	made of SS 3	09. The Windfox
and to Ja	cketed hot gas	chimney is mad	e of refractors-
Lived Conson	steel . The conit	her a loop-	seal beforento
cyclone and	the combbutur, six	niler to Often	dusion.
The c	mit DCI estima	lly designed for	coal ambasism
broundly we	ed to bern so	leas, Sludges and	o lip 40s.
Tho	cac can operate	cf 1800 F. Fleo	1 rate=468 ggoh red
			- Safe v
	-		
	4		
uired Action:			·
		Prepared to	oy (Signature):
		P.A	change
bution: nal to Project File to Project Manager to Preparer	Other Distribution (By Preparer)	rd	PAGE 1 OF 1

1	IT	
	ic G i	11:
Pollut	ion Co	ontrol

ution:

I to Project File

₹ Manager

☐ Other Distribution (By Preparer)

· stolet

RECORD OF	TELECOM
-----------	---------

IT		RECORD	OF 2	MEE	CON TING	
McGill		Project Name	Number	Phase	Task	Subtask
Pollution Control	312 Directors Drive Knoxville, Tennessee 37923 Telephone: 615-690-3211	32242				
Systems	FAX: 615-690-3626					
П	ime	CALL FROM NAME: M	the w	ime Ka		
Participants - Name/Location/Repre	senting:	CALL FROM X NAME: F	· ACKE	RYA	_	
M. Weimeche		Telephone Number: 44	798	- 63	! 3	
P. Achory	a_	Company Name: Police	len-All	اک		
		Address:				
Pilst_Plant c	ontig ration	City				
	to burn red water	State	Zip Co	de		
ary (Decisions & Specific Actions Re						
	neke told me -	that the bild	7 plan	+ 0	ms (5/2
	red bed reach		/	Soral	a cen	ch,
Laghouse 2	fen and a	stack.	V			
	existing fluido	nd bed rea	cofor (1	5" ED	x 25	
tall can be	continued as	a cre	& Mai	Eing		
necessor ch	ages in the	ident.	· .	<u> </u>		
The	red water feet	o rade to the	Teacts	٧ =	3 2	pm
at	1650°F Sporchin	& temporate	re			
	V	<u> </u>				
•						

rad Action						
red Action:					-	
			pared by (Signa			

PAGE OF

CONCEPTUAL DESIGN AND RELATED DOCUMENTS

14.0 RECOMMENDED TESTS AND ANALYSES

U.S. Army Environmental Center Red Water Treatment Technology Test Plan and Site Preparation Aberdeen Proving Ground, Maryland

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.: WP: WP1585.14

14.0 Recommended Tests and Analyses

This chapter identified tests and analyses recommended for the pilot plant test.

14.1 Circulating Bed Combustor Unit

The following tests should be conducted in the CBC unit to optimize, select, and evaluate various parameters.

- Optimize the Bed Depth. The bed depth should be varied from 4 to 8 feet in the unit and the differential pressure (DP) across the CBC measured at each bed depth. The bed depth should then be optimized based on the CBC performance (e.g., destruction/removal efficiency [DRE], thermal efficiency) and the differential pressure across the CBC.
- Select the Appropriate Bed Material. Several bed materials were evaluated
 in Chapter 3.0 primarily from the agglomeration and heat transfer point of view.
 Different materials of different particle size distribution (PSD) should be tested
 in the CBC unit for agglomeration potential and heat transfer. Based on these
 tests, the final bed material and its PSD selection should be made.
- Evaluate the Use of Limestone as a Neutralizing Media. SO_x generation for the red water combustion at $1600^{\circ}F$ has been estimated in Chapter 3.0. However, the SO_x generation rate should be measured at full load, and the effectiveness of limestone to neutralize SO_x (and, if necessary HCl) should be evaluated. If limestone performs inadequately, lime slurry injection at the partial quench should be considered and evaluated.
- Evaluate Impact of Steam in Circulating Bed. At a peak red water feed
 rate of 1.5 gpm, large quantities of steam will be generated. The steam will
 travel upwards with the circulating media through the cyclone and then to the
 APCS. The impact of steam on the circulating media should be assessed, with
 special attention to particle stickiness and agglomeration.
- Evaluate System Turn Down Capability. The ability of the system to operate at a steady state should be evaluated at different red water feed rates.
- Evaluate System Performance. At maximum red water feed rate, the stack gases should be sampled and analyzed to determine the DRE of the nitrobodies;

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243 SPEC. NO.: WP: WP1585.14

particulate HCl, SO_x , and NO_x emissions; and the emission rates of the ten Resource Conservation and Recovery Act (RCRA) metals. In addition, the cooled ash should be analyzed for nitrobodies, salts, and the ten RCRA metals.

- Finalize Start-Up Burner Location. Currently, a Vortex-type start-up burner is located at the bottom of the CBC to preheat the combustion air entering the bed. However, if any problems arise due to the location of the burner, the burner can be located above the bed. The burner location should be finalized during the tests based on the burner performance at the proposed location.
- Determine the Optimum Gas Velocity in the CBC. The gas velocity in
 the CBC is key for proper recirculation of the bed material and optimum
 performance of the cyclone. The CBC should be operated at different velocities
 (10 to 25 feet/sec), and the CBC/cyclone performance (e.g., carryover and
 particulate separation) evaluated. Based on these results, the optimum gas
 velocity for the CBC unit can be determined.

14.2 Hot Cyclone Unit. This section discusses issues relating to cyclone/loop-seal performance.

• Evaluate Cyclone/Loop-Seal Performance:

- The particulate slip from the cyclone should be measured at various inlet gas velocities (30 to 60 feet/sec) and DPs to determine the optimum DP across the cyclone; the objective is to minimize particulate slip.
- The loop-seal should be operated at various loop-seal purge air flow rates to determine the optimum purge rate for the reliable and efficient transfer of bed material back to the CBC.
- Percentage of theoretical NO_x emissions formed is determined at peak red water feed rate. Also, the stack gases are observed for the reddish-brown visual emissions of high concentration of NO_x.
- If the uncontrolled NO_x emissions are unacceptable, and depending on the magnitude of the emissions and the required removal efficiencies, a deNO_x system should be tested. Based on the NO_x emission requirements, a thermal deNO_x system may be adequate. Such a system can be retrofitted at the duct exiting the hot cyclone. NO_x removal efficiency using the thermal deNO_x system should be determined at the peak red water feed rate.

By: PA Checked: PO Approved: PA Date: 01/12/95

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.: WP: WP1585.14

14.3 Air Pollution Control System

The APCS consists of a partial quench, baghouse, I.D. fan, stack, and CEM system. The mechanical and process performance of each piece of the equipment at peak and turn down conditions should be determined.

- Determine the Optimum Air/Cloth Ratio in the Baghouse. The system is designed for an air-to-cloth ratio of 3:1 at full load conditions. The baghouse performance for particulate removal should be determined at various air-to-cloth ratios ranging from 1 to 3.
- Precoating of Bags with Lime. The baghouse is sized and designed to remove friable particulates and fine salt particles because the salts can be sticky, especially in the presence of high moisture in the flue gas. An evaluation should be made whether a lime precoat on the bags will improve the operational reliability.

By: PA Checked: PO Approved: PA Date: 01/12/95 Recommended Tests and Analyses
IT PCE
Knoxville, Temnessee
Rev. No. (0) (1)

Area No.:

Area Name: All Areas

Page: 3 of 3

CONCEPTUAL DESIGN AND RELATED DOCUMENTS

15.0 OPERATIONS AND SAFETY CONSIDERATIONS

U.S. Army Environmental Center Red Water Treatment Technology Test Plan and Site Preparation Aberdeen Proving Ground, Maryland

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.: WP: WP1585.15

15.0 Operations and Safety Considerations

15.1 Introduction

The protection of workers and environmental health and safety (H&S) are major concerns during project implementation and cannot be compromised. This document presents a description of special H&S precautions related to operating and sampling a CBC for the destruction of red water for USAEC. This document is not intended to serve as the site health and safety plan (HASP).

15.2 Regulations and Guidelines

All activities conducted during the incineration of red water must be in compliance with applicable requirements of the following publications:

- 29 Code of Federal Regulations (CFR) 1926, Construction Industry, Occupational Safety and Health Administration (OSHA) Safety and Health Standards
- 29 CFR 1910, General Industry OSHA Safety and Health Standards
- 29 CFR 1910.120, OSHA Final Rule dated March 6, 1989, "Hazardous Waste Operations and Emergency Response"
- National Institute of Occupational Safety and Health (NIOSH)/OSHA/USCG/U.S Environmental Protection Agency (EPA), "Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities," October 1985
- American Conference of Governmental Industrial Hygienists (ACGIH), "Threshold Limit Values and Biological Exposure Indices," 1989-1990, or most current version
- U.S. Department of Health and Human Services (DHHS), "NIOSH Sampling and Analytical Methods," DHHS (NIOSH) Publication 84-100
- American National Standards Institute (ANSI), Practice for Respiratory Protection, Z88.2, 1980
- ANSI, Emergency Eyewash and Shower Equipment, Z41.1, 1983
- ANSI, Protective Footwear, Z358.1, 1981

By: PO Checked: PA Approved: PA Date: 01/12/95 Operations and Safety Considerations IT PCE Knoxville, Tennessee Rev. No. (0) (1) Area No.:

Area Name: All areas

Page: 1 of 13

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.: WP: WP1585.15

ANSI Physical Qualifications for Respirator Use, Z88.6, 1984

 ANSI, Practice for Occupational and Educational Eye and Face Protection, Z87.1, 1968.

15.3 Hazard Assessment

This section discusses the hazards that are anticipated to be encountered during operation of the CBC to burn red water. The potential hazards associated with operation of the CBC include chemical and physical hazards.

15.3.1 Chemical Hazards

Potential exists for personnel to come into contact with the following types of materials:

- · Reactive and toxic feed materials
- · Flammable solvents used in the sampling trains
- Toxic and corrosive combustion products.

15.3.1.1 Feed Materials

The feed materials during routine operations is red water. Red water is the aqueous effluent generated during sellite purification of crude TNT. The characteristics of red water are presented at the end of this chapter.

Explosion Potential. The red water has a solids heat content of 3,200 Btu/lb. The solids are in a solution that is 85 percent water, which makes the red water endothermic.

CBCs were originally designed to manage materials with high heat content for energy production. The level of energy in the red water will not be dangerous for the CBC. Additionally, the large internal volume of the CBC will dissipate any pressure shocks that could occur from uneven combustion of the red water.

Contaminated Surfaces. The red water will be pumped directly to the CBC feed port. In the unlikely event that red water is spilled, it should be cleaned up using wet methods and not allowed to dry. Dry TNT or related materials can explode due to friction or spark.

By: PO Checked: PA

Approved: PA Date: 01/12/95 Operations and Safety Considerations
IT PCE
Knoxville, Tennessee

Rev. No. (0) (1)

Area No.:

Area Name: All areas

Page: 2 of 13

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.: WP: WP1585.15

15.3.1.2 Ash

The ash from the CBC will be a fine particulate that may be toxic. It is unlikely that explosive materials will be found in the ash to present a physical or chemical hazard. Toxicity of the ash will be due to the presence of metals. The fine particulate will be a respiratory hazard.

Respiratory Protection. The following rules will be adhered to by all site personnel when respiratory protection is in use:

- Only properly cleaned, maintained, NIOSH/Mine Safety and Health Administration (MSHA)-approved respirators will be used on site.
- Selection of respirators, as well as any decisions regarding upgrading or downgrading of respiratory protection, will be made by the site H&S officer upon consultation with a senior health and safety professional.
- Used air-purifying cartridges will be replaced at the end of each shift or when load-up or breakthrough occurs.
- Only employees who have had pre-issued qualitative fit tests and annual fit tests thereafter will be allowed to work in atmospheres where respirators are required.
- If an employee has demonstrated difficulty in breathing during the fit test or during use, he/she will be given a physical examination to determine whether a respirator can be worn while performing the required duty.
- No employee will be assigned tasks requiring the use of respirators, if based upon the most recent examination, a physician determines that the employee will be unable to function normally wearing a respirator or that the health of the employee will be impaired by use of a respirator.
- Contact lenses are not to be worn while using any type of respiratory protection.
- Excessive facial hair (beards) prohibits proper face fit and effectiveness of
 respirators; therefore, persons required to wear full-face or half-face respirators
 must not have beards, wide mustaches, goatees, extended sideburns, or Fu
 Manchu mustaches. All personnel wearing full-face or half-face respirators will
 be required to be clean shaven prior to each day's shift.

By: PO Checked: PA Approved: PA Date: 01/12/95 Operations and Safety Considerations IT PCE Knoxville, Termessee Rev. No. (0) (1) Area No.:

Area Name: All areas

Page: 3 of 13

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.: WP: WP1585.15

• Each respirator will be individually assigned and not interchanged among employees without cleaning and sanitizing.

- Regular eyeglasses cannot be worn with full-face respirators because they
 interfere with the face-piece seal. Inserts must be utilized.
- The respiratory protection used on site will be in compliance with OSHA,
 29 CFR 1910.134.

15.3.1.3 Sampling Trains

During testing programs, flammable solvents may be used in the sampling trains. Material Safety Data Sheets (MSDS) will be provided by the test team for these substances.

15.3.1.4 Spiking Materials

During testing programs, the feed stream may be spiked with materials that are toxic, reactive, flammable, and/or corrosive. It will be incumbent upon the test team to properly store and handle the spiking materials, and to provide MSDSs for these materials.

15.3.2 Physical Hazards

Several physical hazards are expected to be encountered during field activities. These hazards are similar to those associated with any mechanical project. These hazards include those due to poor housekeeping, equipment operation, the use of hand and power tools, handling and storage of fuels, and use of electrical power.

15.3.2.1 Noise

Noise is a potential hazard associated with the operation of mechanical equipment including the fans, blowers, power tools, pumps, and generators.

All on-site personnel will wear hearing protection in areas where noise levels exceed a time-weighted average (TWA) of 85 decibels (dBA). Hearing protection will be worn during activities if levels are suspected or shown to exceed 85 dBA. The site H&S officer will continuously identify areas with high noise levels. High noise areas will initially be monitored with a sound level meter or dosimeter. Areas with consistently high noise levels will have

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.: WP: WP1585.15

signs posted notifying personnel that hearing protection is required. All employees working on or near the CBC will receive annual hearing conservation refresher training.

15.3.2.2 Heat Stress

Heat stress is a significant potential hazard associated with the use of protective equipment in hot weather environments. The signs and symptoms of heat stress and the physiological monitoring requirements are discussed below.

Heat Stress Monitoring. Heat stress is caused by a number of interacting factors, including environmental conditions, clothing, workload, and individual characteristics. Extreme hot weather can cause physical discomfort, loss of efficiency, or personal injury.

Individuals vary in their susceptibility to heat stress. Factors that may predispose individuals to heat stress include:

- · Lack of physical fitness
- Insufficient acclimation
- Age
- Dehydration
- Obesity
- · Alcohol and/or drug use
- Medical conditions
- Infection
- Sunburn
- Diarrhea
- · Chronic disease.

Reduced work tolerance and the increased risk of heat stress are directly influenced by the amount and type of personal protective equipment (PPE) worn. PPE adds weight and bulk, severely reduces the body's normal heat exchange mechanisms (evaporation, convection, and radiation), and increases energy expenditure.

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243 SPEC. NO.:

WP: WP1585.15

Signs and Symptoms of Heat Stress. If normal body temperature fails to be maintained because of excessive heat, a number of physical reactions can occur ranging from mild to fatal. Heat-related problems include:

- Heat Rash. Caused by continuous exposure to heat and humidity and aggravated by chafing clothes. Heat rash decreases the body's ability to tolerate heat, as well as being a nuisance.
- Heat Cramps. Caused by profuse perspiration with inadequate fluid intake.
 Heat cramps cause painful muscle spasms and pain in the extremities and abdomen.
- Heat Exhaustion. Caused by increased stress on various organs to meet increased demand to cool the body. Heat exhaustion causes shallow breathing; pale, cool, moist skin; profuse sweating; and dizziness. Heat exhaustion can be alleviated by promptly moving the affected individual to a cool place to lie down and providing cool fluids to drink.
- Heat Stroke. The most severe form of heat stress. Heat stroke symptoms include hot, dry skin; no perspiration; nausea; dizziness; confusion; strong, rapid pulse; and coma. The body must be cooled immediately to prevent severe injury or death. Relief is possible only by emergency measures that quickly reduce body temperature to avoid irreparable damage to the body.

Heat Stress Prevention. One or more of the following practices will help reduce the probability of succumbing to heat stress:

- Provide plenty of liquids to replace the body fluids lost by perspiration. Fluid
 intake must be forced because, under conditions of heat stress, the normal thirst
 mechanism is not adequate to bring about a voluntary replacement of lost fluids.
- Provide cooling devices to aid natural body ventilation; however, these devices add weight and should be balanced against worker comfort.
- If possible, install mobile showers or hose-down facilities to reduce body temperature.
- If possible, provide cool protective clothing.
- If possible, conduct field operations in the early morning.

By: PO Checked: PA Approved: PA Date: 01/12/95 Operations and Safety Considerations IT PCE Knoxville, Tennessee Rev. No. (0) (1)

Area No.: Area Name: All areas

Page: 6 of 13

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.: WP: WP1585.15

 Acclimate workers to heat conditions when field operations are conducted during hot weather.

- Train personnel to recognize the signs and symptoms of heat stress and its treatment.
- · Rotate personnel to various job duties if possible.
- Provide shade or shelter to relieve personnel of exposure to the sun during rest periods.

Individuals succumbing to the symptoms of heat stress will notify the site H&S officer. Early detection and treatment of heat stress will prevent further serious illness or injury and lost work-time. Proper and effective heat stress treatment can prevent the onset of more serious heat stroke or exhaustion conditions. Individuals having progressed to heat exhaustion or heat stroke become more sensitive and predisposed to additional heat stress situations.

Physiological Monitoring. Ambient temperature and other environmental factors provide basic guidelines to implement work/rest periods. However, because individuals vary in their susceptibility to heat stress, physiological monitoring will be used to regulate each individual's response to heat stress when ambient temperatures exceed 70°F. Monitoring frequency will increase as ambient temperature increases. The three physiological parameters that each individual will monitor are:

- **Heart Rate.** Each individual will count his/her radial (wrist) pulse for 30 seconds as early as possible in the first rest period. If the heart rate of any individual on the sampling team exceeds 100 beats per minute at the beginning of the rest period, then the work cycle will be decreased by one-third. The rest period will remain the same.
- Oral Temperature. Each individual will measure his/her oral temperature with a single-use clinical thermometer for 1 minute as early as possible in the first rest period. If the oral temperature exceeds 98.6°F at the beginning of the rest period, then the work cycle will be decreased by one-third. The rest period will remain the same.
- **Body Water Loss.** Each individual will weigh his/her self before starting work and at the end of each work shift.

By: PO Checked: PA Approved: PA Date: 01/12/95

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.: WP: WP1585.15

An individual is not permitted to return to work if his/her oral temperature exceeds 100.6°F.

Physiological monitoring information will be recorded on the Employee Record for Heat Stress. All monitoring will be performed by persons with a minimum of current Red Cross first-aid certification and individualized training to recognize the symptoms of heat stress. The site H&S officer will specify the work cycle period and the rest cycle period based on heat stress monitoring as per 1991-1992 ACGIH Threshold Limit Values (TLV).

15.3.2.3 Cold Stress

At certain times of the year, workers may be exposed to the hazards of working in cold environments. Potential hazards in cold environments include frostbite and hypothermia, as well as slippery working surfaces, brittle equipment, and poor judgement.

To minimize the risk of the hazards of working in cold environments, workers will be trained to recognize the physiologic responses of the body to cold stress.

Physiologic Response to Cold Stress. Personnel who are exposed to temperatures below -10°F with wind speeds of greater than 5 miles per hour (mph) will be medically certified as suitable for such exposure. Employees will be protected from exposure to cold so that their body core temperature does not fall below 98.6°F. Lower body temperatures result in reduced alertness and a reduction in thought processes or loss of consciousness.

Pain in the extremities (i.e, fingers, toes, ears, and nose) may be the first signs of cold stress, because these areas have high surface area-to-volume ratios. Uncontrollable shivering occurs during exposure to cold when the body core temperature falls below 95°F. This symptom should be taken as a sign of danger, and work terminated with workers moving to a warm environment.

Ambient air temperature and the velocity of the wind influence the development of a cold injury. Wind chill is used to describe the chilling effect of moving air in combination with low temperature. As a general rule, the greatest incremental increase in wind chill occurs when a 5-mph wind increases to 10 mph. Additionally, water conducts heat 240 times faster

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.: WP: WP1585.15

than air. Thus, the body cools suddenly when chemical protective clothing is removed and clothing beneath is soaked with perspiration.

Signs and Symptoms of Cold Stress. Local injury resulting from cold is included in the generic term "frostbite;" however, there are several degrees of damage. Cold-related injuries include:

- Frost nip or incipient frostbite is characterized by sudden whitening or blanching of the skin.
- Superficial frostbite gives the skin a waxy appearance and is firm to the touch, but the tissue beneath is resilient. Superficial frostbite can be treated by covering the cheeks with warm hands, placing frostbitten fingers beneath the armpit next to the skin, or placing frostbitten feet beneath the clothing against the skin of a companion.
- Deep frostbite is characterized by cold, pale, and solid tissues. Deep frostbite is an extremely serious injury and affected individuals will seek medical attention.
- Systemic hypothermia is caused by exposure to freezing and rapidly dropping temperatures. Hypothermia symptoms are visually exhibited in five stages:
 - Shivering
 - Apathy, listlessness, sleepiness, and sometimes rapid cooling of the body to less than 95.5°F
 - Unconsciousness, glassy stare, slow pulse, and slow respiratory rate
 - Freezing of the extremities
 - Death.

Cold Stress Prevention. Prevention of frostbite is a function of whole-body protection:

- Adequate insulated clothing should be worn when the air temperature is below 40°F. Insulated coveralls, thermal socks, long underwear, hard hat liners, and other cold-weather gear aid in the prevention of hypothermia.
- Warm break areas and drinks (no caffeinated coffee) aid in warming the body.

By: PO Checked: PA Approved: PA Date: 01/12/95

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.:

WP: WP1585.15

 Train personnel to recognize the signs and symptoms of cold-related injuries and their treatment.

Personnel will try to keep from getting their bodies and clothing wet, as this will
only accelerate the effects of cold stress. However, if personnel should get wet,
they will be allowed to dry off and change clothes.

 In addition, reduced work periods may be necessary in extreme conditions to allow rest in a warm area.

15.3.2.4 Burn Hazards

The surface of the CBC will be more than 300°F. Therefore, there is a real burn hazard. Other hot spots may be the ash, the baghouse, the fans, the stack, and all duct work. Burns can be prevented by avoiding contact with hot surfaces and by using the proper protective equipment when working on or near hot surfaces.

15.3.2.5 Explosion Hazard

The auxiliary fuel for the CBC will be natural gas. To prevent an explosive buildup of natural gas in the CBC the following will be observed:

- · All auxiliary fuel valves will be installed in a double block and bleed manner
- · CBC will be purged with air before the burner is started
- CBC temperature will be above 1300°F before auxiliary fuel is fed directly to the CBC
- Flame sensor will monitor the flame whenever a burner is in operation.

15.3.2.6 Fire Hazard

High temperature in the baghouse could cause the bags to catch fire. To prevent this problem, the temperature of the gases before the baghouse will be continuously monitored and if the temperature exceeds the manufacturer's recommended maximum temperature, the auxiliary fuel will be cut off.

Date: 01/12/95

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.: WP: WP1585.15

15.3.2.7 Confined Space Entry

The CBC shall be evaluated to determine if any spaces are permit-required confined space. A permit-required confined space is a space that:

- · Contains or has the potential to contain a hazardous atmosphere
- Contains a material that has a potential for engulfing an entrant
- · Is configured such that an entrant could be trapped or asphyxiated
- · Contains any other safety or health hazard.

A sign reading "DANGER--PERMIT-REQUIRED CONFINED SPACE, DO NOT ENTER" will be posted at the entrance to any confined space.

Before entry into a permit-required confined space, a permit must be obtained from the site H&S officer. Only properly trained, authorized entrants may enter a confined space. A properly trained attendant must monitor the entrant from outside of the confined space. The appropriate PPE must be worn by the entrant and available for the rescue service.

15.3.3 Activity Hazard Analysis

This section provides an analysis of the likelihood of exposure to chemical and physical hazards and the risks associated with those exposures.

15.3.3.1 CBC Erection

The likelihood of exposure to chemical hazards is low, and the associated risk is low.

The likelihood of exposure to physical hazards is low to moderate. Heavy equipment operation and working at elevated locations pose moderate hazards during CBC erection. Other anticipated physical hazards include noise, electrical hazards, pinch points, heavy lifting, fuel handling, and heat stress. Control measures that will be employed to reduce the potential risk of exposure include properly maintained heavy equipment, employee training to recognize physical hazards, and adherence to the heat and cold stress guidelines contained in the HASP.

By: PO Checked: PA Approved: PA

Date: 01/12/95

Operations and Safety Considerations IT PCE Knoxville, Tennessee Rev. No. (0) (1) Area No.:

Area Name: All areas

Page: 11 of 13

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.: WP: WP1585.15

15.3.3.2 Performance Testing

During the performance test, samples of the red water will be analyzed. The red water may be spiked with organic chemicals and heavy metals, which present potential inhalation and skin contact hazards during the addition and subsequent sample handling activities. Control measures that can be employed to significantly reduce the potential risk of exposure include enclosed mixing and the use of PPE.

The likelihood of exposure to physical hazards is low to moderate. Equipment operation and material handling activities pose low hazards during trial burn preparation activities. Other physical hazards include heavy lifting, noise, electrical hazards, fire, and elevated work areas. Control measures that will be used to reduce the potential risk of exposure include proper equipment maintenance, trained operators, grounding and bonding during liquid transfer, adherence to lock-out/tag-out procedures, and utilization of proper tie-off procedures.

15.3.3.3 Maintenance Operations

The likelihood of exposure to chemical hazards during maintenance activities is low. The area of concern for this analysis is from the feed port to the stack. All red water that enters the CBC will be combusted, so red water (and its constituents) will not be present in the CBC during maintenance operations. A separate analysis of maintenance of the waste feed system should be considered, but this is beyond the scope of this document.

The likelihood of exposure to physical hazards is low to moderate. The risk associated with exposure to these agents is moderate, based upon the potential for serious injury from electrical hazards, pinch points, and moving equipment. Control measures that will be employed to reduce the potential risk of exposure include employee training and the preparation of site-specific standard operating procedures (SOP). Examples of these procedures include:

- · Lockout/tagout procedure
- Confined space industrial
- · Welding, cutting, and other hot work in hazardous locations
- Isolation of and entry into the CBC.

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.: WP: WP1585.15

15.3.3.4 Operation of the CBC

A variety of chemical and physical hazards are associated with the operation of the CBC. The primary control measures include good engineering design, employee training, and the preparation of site-specific SOPs.

The likelihood of exposure to chemical hazards during routine operations is low and should be limited to exposure during sampling of the waste feed and the ash.

The likelihood of exposure to physical hazards is low to moderate. Hazards addressed in the SOPs will include noise, electrical hazards, work at elevations, slip/trip hazards, pinch points, and hot surfaces.

Either a task-specific hazard analysis or an SOP will be developed prior to starting a particular task.

MUNITIONS CHEMICALS IN DRINKING WATER

WELFORD C. ROBERTS. Ph.D.
MAJOR. US ARMY
DETAILED TO THE USEPA
OFFICE OF WATER

RISK ASSESSMENT OF MUNITIONS CHEMICALS TO DEVELOP DRINKING WATER HEALTH ADVISORIES

The US Army and the US Environmental Protection Agency established a Memorandum of Understanding to cooperate in developing Health Advisories (HA) for munitions chemicals that may occur in drinking water. Health Advisories, developed by the Office of Drinking Water, describe nonregulatory concentrations of drinking water contaminants at which adverse health effects are not expected to occur over specific exposure durations. provide informal technical guidance that assist public health officials when contaminations occur. Advisories (HA) are developed for One-day, Ten-day, Longerterm (7 years or 10% lifetime) and Lifetime exposures based on systemic, noncarcinogenic toxicity. threshold dose-response relationship is assumed. HAs are not recommended for known or probable human carcinogens (EPA classes A and B, respectively). A potency value (unit risk), derived from the linearized multistage model with 95% upper confidence limits, is used to calculate risk for a lifetime exposure to carcinogens in drinking water.

Health Advisory Values

General formula used for 1-day (based on toxicity studies with 1 to 5 days exposure), 10-day (based on toxicity studies with 7 to 14 days exposure), or longer term (up to 7 years; based on toxicity studies with 90 days to 1 year exposure) advisory limits.

(NOAEL or LOAEL) (BW)

HA

= mg/l

where:

(UF) (L/day)

NOAEL OF LOAEL =

No- or Lowest-Observed-Adverse-Effect Level in (mg/kg bw/day)

SW = assumed body weight of a child (10 kg)

or an adult (70 kg)

UF = uncertainty factor (10, 100, 1000) in accordance with NAS/ODW guidelines

L/day = assumed water consumption of a child (1 L/day) or an adult (2 L/day)

Lifetime Health Advisory

Three-step process for calculating lifetime HA value:

Step 1: Determination of Reference Dose (RfD)
An estimation of daily human exposure likely to be without appreciable risk of deleterious (non-carcinogenic) health effects in the human population (including sensitive subgroups) over a lifetime.

Step 2: Determination of Drinking Water Equivalent Level (DWEL)

 $DWEL = \frac{(Rfd)(BW)}{(2 L/day)}$

where: RfD = Reference Dose
BW = assumed adult body weight (70 kg)
2 L/day = assumed water consumption of adult

Step 3: Determination of Lifetime HA value

HA = (DWEL)(RSC) = mg/L

where: DWEL = Drinking Water Equivalent Level RSC = Relative Source Contribution;

Relative Source Contribution; assumed percentage of daily exposure contributed by ingesting drinking water.

Carcinogenic Risk Categories

Drinking water contaminants are categorized according to their carcinogenic potential:

Group A Human Carcinogen

Group B Probable Human Carcinogen

Group C Possible Human Carcinogen

Group D Not Classifiable

Group E No Evidence of Carcinogenicity for

Humane

Group A and B Carcinogens:

Upper-bound excess cancer risk estimated by the Linearized Multistage (LMS) mathematical model. The LMS model fits linear dose-response curves to low doses and is consistent with a no-threshold model of careinogenesis.

Group C Contaminants:

Health risk based on a noncarcinogenic endpoint with an additional uncertainty factor (of from 2 to 10) applied to the Lifetime Health Advisory. The extra factor provides an additional safety margin to account for possible cancer effects.

2,4,6-Trinitrotoluene (TNT)

Health Advisory Values

One-Day (Child)

Ten-Day (Child)

Longer-Term (Child)

Lorger-Term (Adult)

Lifetime

0.02 mg/L

0.02 mg/L

0.02 mg/L

Basis of Longer-Term (Child and Adult) and Lifetime HAs: Levine et al. (1983); Lowest-Observed-Adverse-Effect Level (0.5 mg/kg/day) for liver effect (hepatocytomegalia) in dogs exposed for 26 weeks via diet.

"No data president to develop characters FIA values. Value shown is an estimate based on longer-term FIA for 10 kg shild.

Genotoxicity

Selmonella: Positive
In vivo Bone Marrow (Rat): Negative
In vitro UDS Human Diploid Fibroblasts: Negative
Bone Marrow Micronucleus Assay: Negative
In vivo/In vitro UDS Hepatocytes (Rat): Negative

Two-Year Bioassays

Mice Negative Rate: Positive for urinary bladder papillomes and carcinomes in females

Potency: SF = 3x10-2 (mg/kg/day)-1

Cancer Model for 104 Risk

Linearized Multistage
One-Hit
Probit
Logit
Weibuil

1 µg/L
20µg/L
20µg/L
10µg/L

Cancer Classification

EPA Group C, Possible Human Carcinogen

Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)

Health Advisory Values

One-Day (Child) 5mg/L*
Ten-Day (Child) 5mg/L*
Longer-Term (Child) 5mg/L
Longer-Term (Adult) 20mg/L
Lifetime 0.4mg/L

Basis of Longer-Term (Child and Adult) and Lifetime HA: Everett et al. (1985); No-Observed-Adverse-Effect Level (50 mg/kg/day) for liver lesions in male rats fed HMX in the diet for 90 days.

"No data armighis to adoquately develop short-term PIA values. Value shown is an attitude immed on imper-term HA for 19 kg child.

Genotoxicity*

Salmonella: Negative

Saccharomyces cerevisiae: Negative

"Results are insunctivitive because of the low consequences annique or lock of data in the reports.

Two-Year Bioassays

No studies found in the literature

Cancer Classification

EPA Group D, Not Classifiable as to Human Carcinogenicity

HUU-31-1224 14.12

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)

Health Advisory Values

One-Day (Child)
Ten-Day (Child)
Longer-Term (Child)
Uning/L*
Longer-Term (Adult)
Unifetime
0.002mg/L

Basis of Lifetime HA: Levine et al. (1983); No-Observed-Adverse-Effect Level (0.3 mg/kg/day) for prostate effects (suppurative inflammation) in rats exposed via diet for 24 months.

Basis of Longer-Term HA: Martin and Hart (1974); No-Observed-Adverse-Effect Level (1 mg/kg/day) for neurological effects (convulsions) in cynomologus monkeys exposed via diet for 90 days.

The data available to develop thest-tarte the values. Value thours is an estimate based on longer-seen the for 10 kg calld.

Genotoxicity

Salmonella: Negative
Dominant Lethal (Rats): Negative
In vitro UDS Human Fibroblasts: Negative

Two-Year Bioassays

Rats (Two Strains): Negative Mice: Positive for hepatocellular carcinomas and adenomas in females

Potency: SF =1.1x10-1 (mg/kg/day)-1

Cancer Model for 10° Risk

Cancer Classification

EPA Group C, Possible Human Carcinogen

HUU-01-1224 15.12

Diisopropyl methylphosphonate (DIMP)

Health Advisory Values

One-Day (Child) Smg/L*
Ten-Day (Child) Smg/L*
Longer-Term (Child) Smg/L
Longer-Term (Adult) 30mg/L
Lifetime 0.6mg/L

Basis of Longer-Term (Child and Adult) and Lifetime HA: Hart (1980); Developed NOAEL of 75 my/kg/day based on 90-day dietary study in dogs. **No data available for developing store-term MA relices, Value steam in an enimate based on importure that for 10 ag adult.

Genotoxicity

Salmonella: Negative Saccharomyces cerevisiae: Negative

Two-Year Bioassays No studies found in the literature

Cancer Classification EPA Group D, Not Classifiable as to Human Carcinogenicity

Nitroguanidine

$$NH_2$$
 $C = N-NO_2$ NH_2

Health Advisory Values

One-Day (Child) 11 mg/L*
Ten-Day (Child) 11 mg/L
Longer-Term (Child) 11 mg/L
Longer-Term (Adult) 37 mg/L
Lifetime 0.74 mg/L

Basis of Lifetime HA Value: Morgan et al. (1988b); Body and organ weight changes in female rats exposed for 90 days via diet.

Basis of Ten-Day HA Value: Morgan et al. (1988a); Increased water consumption, decreased electrolytes, and decreased heart weights in rats exposed for 14 days.

Basis of longer-term HA value: Morgan et al. (1988b); Decreased body weight, increased brain/body weight ratio, and increased water consumption in rats exposed for 90 days via diet.

"No data continuis to develop constay HA value. Value shows to an estimate funed an tax-day HA.

Genotoxicity

Salmonelia: Negative
Mouse Lymphoma Cells: Negative
In vitro Chinese Hamster Ovary: Negative
Dominant Lethal (Rat, Mice): Negative

Two-Year Bioassays

No studies found in the literature

Cancer Classification

EPA Group D, Not Classifiable as to Human Carcinogenicity

1,3-Dinitrobenzene (DNB)

Health Advisory Values

One-Day (Child)

Ten-Day (Child)

Longer-Term (Child)

Longer-Term (Adult)

Lifetime

0.4 mg/L

0.4 mg/L

0.4 mg/L

0.001 mg/L

Basis of Lifetime and Longer-Term (Child and Adult)
HAs: Cody et al. (1981); No-Observed-Adverse-Effect
Level (1.3 mg/kg/dsy) for effects on spicen
(hemosiderin deposition) and testes (reduced weight
and decreased spermatogenesis) in rats given 1,3-ONB
in drinking water for 16 weeks.
No data a smilable to denote produce and tender MAs. Value above are
entirents based on the larger-term MA for a 10 kg child.

Genotoxicity

Salmonella: Mixed results (positive & negative in same strain)
Saccharomyces cerevisiae: Negative

Escherichia coli: Negative In vitro UDS in rat hepatocytes: Negative

Two-Year Bioassays
No studies found in the literature

Cancer Classification

EPA Group D, Not Classifiable as to Human Carcinogenicity

Health Advisory Values

One-Day (Child) 5 mg/L*
Ten-Day (Child) 5 mg/L
Longer-Term (Child) 0.1 mg/L
Longer-Term (Adult) 0.45 mg/L
Lifetime 0.001 mg/L

Basis of Lifetime and Longer-Term (Child and Adult) HAs: Gorzinski et al. (1980); No-Observed-Adverse-Effect Level (1.3 mg/kg/day) for liver (hepatocytomeglia) and kidney (renal tubular atrophy and degeneration) lesions in rats fed hexachloroethane in the diet for 16 weeks.

Basis of Ten-Day HA: Gorzinski et al. (1980); No-Observed-Adverse-Effect Level (50 mg/kg/day) for liver hepatic necrosis and decrease in body weight gain in rats fed hexachioroethane in the diet for 16 days.

"No data archibits to develop eno-day HA. Value absum is an uninete based on the sen-day HA.

Genotoxicity

Salmoneile: Negative Saccharomyces cerevisiae: Negative

Two-Year Bioassays

Rate: Positive for renal carcinomas and adenomas in males Mice: Positive for hapatocellular carcinoms in males and females

Potency: SF = 1.4x10-2 (mg/kg/day)-1

Cancer Model for 104 Risk

 Linearized Multistage
 3 μg/L

 One-Hit
 1 μg/L

 Probit
 5000 μg/L

 Logit
 50 μg/L

 Weibull
 2 μg/L

Cancer Classification

EPA Group C, Possible Human Carcinogen

White Phosphorus

Health Advisory Values

One-Day (Child)
Ten-Day (Child)
Longer-Term (Child)
Not recommended*
Longer-Term (Adult)
Not recommended*
Lifetime
0.0001 mg/L

Basis of Lifetime HA: Condray (1985); No-Observed-Adverse-Effect Level (0.015 mg/kg/day) for parturition mortality in female rats fed White Phosphorus in the diet for 4 to 6 months.

This recommended due to the extreme tradity of White Physicans following and inguises.

Genotoxicity Salmonella: Negative

Two-Year Bioassays
No studies found in the literature

Cancer Classification

EPA Group D, Not Classifiable as to Human Carcinogenicity

Nitrocellulose

Health Advisory Values

Nitroceilulose was non-toxic at all doses studied, and failed to be digested and absorbed in all species (rats, dogs, and mice) tested.

Health Advisory values appear to be unnecessary.

Genotoxicity

Salmonella: Negative In vivo Kidney Cells and Lymphocytes (Rat): In vivo Bone Marrow and Kidney Cell (Rat): Negative

Two-Year Bioassays

Dogs: Negative Rats: Negative Mice Negative

Cancer Classification

Not Classified by EPA

HUU-31-1224 14.41

Trinitroglycerol (ING)

Health Advisory Values

Basis of HA values: Human No-Effect-Level for vasodilation. Animals were generally less sensitive to the effects of TNG.

Genotoxicity

Salmonella: Negative to Weak
In vivo Bone Marrow and Kidney Cell (Rat): Negative
Dominant Lethai (Rat): Negative
In vivo Kidney Cells and Lymphocytes (Dog. Rat):
Negative
In vitro Chinese Hamster Ovary: Negative

Two-Year Bioassays

Dogs: Negative Mice: Negative Rats: Positive for hepatocellular carcinoma (males and females)

Potency: SF = 1.66x107 (mg/kg/day)7

Cancer Model for 10° Risk

Linearized Multistage

One-Hit

Probit

Logit

Veibull

2µg/L

2µg/L

2µg/L

2µg/L

2µg/L

2µg/L

Cancer Classification

Not Classified by EPA

TRINITROTOLUENE

Health Advisory

Office of Drinking Water
U.S. Environmental Protection Agency
Washington, DC 20460

GENERAL INFORMATION AND PROPERTIES

II.

Trinitrotoluene (TNT) or, more specifically, n=TNT is the common designation for 2,4,6-trinitrotoluene, the most widely used military high-explosive (Castorina, 1980). For purposes of this HA, the synonym, TNT, will be used throughout to refer to 2,4,6-trinitrotoluene. Along with TNT, the symmetrical isomer, five meta or unsymmetrical trinitrotoluene isomers are found in the crude product resulting from the nitration of toluene with nitric acid in the presence of sulfuric acid. The nitration occurs in a step-wise fashion by a batch or continuous process.

The continuous process as employed at the Radford Army Ammunition Plant (RAAP), a prototype for Army Ammunition Plants (AAPs), utilizes 99% nitric acid and 44% oleum (109% sulfuric acid, a solution of sulfur trioxide in anhydrous sulfuric acid; Small and Rosenblatt, 1974) to nitrate toluene in six stages to crude TNT which is then subjected to purification with aqueous sodium sulfite (sellite) (Ryon et al., 1984). This process has been further modified to employ eight nitrator vessels fitted with dynamic (centrifugal) separators, thereby ensuring a greater degree of safety and efficiency. The purification process consists of two acid washes, three sellite washes and two post-sellite washes.

The crude TNT contains approximately 5% of the meta-isomers. These are reduced to about 0.6% by the sellite purification. Crude TNT also contains approximately 1% of the six dinitrotoluene (DNT) isomers, which are not removed during purification, and slightly more than 1% oxidation products, which are reduced to <1% by purification. Three additional impurities, amounting to <1%, are introduced by the sellite process (Ryon et al., 1984). Total impurities constitute not more than 3.24% of the finished TNT (Pal and Ryon, 1986).

The resulting monoclinic rhombohedric crystals, as described in Rosenblatt et al. (1971), when very pure, melt at 80.99°C, although a melting point as high as 81.6°C has been reported and 80.65°C is a commonly accepted figure (80.1 - 81.6°C). The color is usually pale yellow, but a chromatographically purified sample has been described as faintly yellow to pure white. A boiling point of 210° to 212°C at 10 to 12 mm Hg has been determined. The specific gravity has been variously reported over the range of 1.3 to 1.6 gm/cc. Although the solubility of TNT in water at 20°C is only 0.013Z (130 mg/L), this is significant for pollution and health issues. Its solubility in organic solvents runs much higher, e.g., 109 gm/100 g of acetons at 20°C.

Two grades of TNT are used for military purposes and their purities are measured by the solidification point (also termed freezing point or setting point), which is considered more reproducible than a melting point. Grade III, the more highly purified grade, has a solidification point of 80.4°C. minimum, and exists as a fine crystalline form (Department of the Army, 1967).

HUU-01-1224 16.44

General chemical and physical characteristics of TNT are presented in Table II-1.

Trinitrotoluene is among the least impact- and friction-sensitive of the high explosives and the impurities formed during its production (except for tetranitromethane) do not affect its sensitivity. It can be further desensitized, however, by adding certain stabilizing substances in small quantity (12 to 22) (Rosenblatt et al., 1971).

The chemical stability of TNT is such that, even at 150°C, it undergoes no great decomposition in 40 hours. Molten TNT can be stored at 85°C for 2 years without any decrease in purity. TNT has been found to withstand storage at magazine temperatures for 20 years without any measurable deterioration. Furthermore, moisture has no effect on the stability of TNT, which is unaffected by immersion in sea water (Department of the Army, 1967).

TABLE II-1

HOG_31 1234 15.55

1 -7-3

GENERAL CHEMICAL AND PHYSICAL PROPERTIES OF 2,4,6-TRINITROTOLUENE

CAS Number	118-96-7
Names	TNT, a-trinitrotoluol, 1-methyl-2,4, 6-trinitrobenzene, trotyl, tolite, triton, tritol, trilite, a-TNT
Molecular weight	227.13
Empirical formula	C7H5N3O6
Structure	O ₂ N CR ₃ NO ₂
Color	Yellow to white
Physical state	Monoclinic rhombohedral crystals
Specific gravity	1.654
Liquid density	1.465 g/cm ³
Vapor pressure	0.053 mm (85°C); 0.106 mm (100°C)
Solubility characteristics	Water: 0.013 g/100 g (20°C) Carbon tetrachloride: 0.65 g/100 g (20°C) Toluene: 55 g/100 g (20°C) Acetone: 109 g/100 g (20°C)
Melcing point	80.1 - 81.6°C
Boiling point	210°C (10 mm) - 212°C (12 mm)
Freezing point	80.75 ± 0.05°C
Flash point	240°C (explodes)
Conversion factor	1 ppm = 9.28 mg/m ³ (25°C; 760 mmHg) 1 mg/m ³ = 0.108 ppm (25°C; 760 mmHg)

A/References: Clayton and Clayton (1981); Rosenblatt et al. (1973);
Department of the Army (1967); Windholz (1976); Zakhari and Villaume
(1978)

TII. OCCURRENCE

Trinitrotoluene was produced and used on an enormous scale during World War I and World War II and may be considered the most important military bursting charge explosive. It has found wide application in shells, bombs, grenades, demolition explosives and propellant compositions (Department of the Army, 1967).

Trinitrotoluene is manufactured primarily by the continuous process, as described above, in Army Ammunition Plants (AAPs). Production from 1969-1971 was reported as 45 million pounds/month with a capacity of 85 million pounds/month (Ryon et al., 1984). It has been reported that as much as one half million gallons of wastewater have been generated per day by a single plant involved in the production of TNT (Hartley et al., 1981).

Trinitrotoluene wastes have a unique terminology as described in Rosenblatt et al. (1973). "Nitrobodies" include TNT, other TNT isomers, products from the sellite purification process and by-products from the production process. The spent sellite washings are high in solids content and are called "red water". Ryon et al. (1984) have reported that "TNT is the largest single non-polar component". The major organic components identified are 2,4-dimitrotoluene-3-sulfonate and 2,4-dimitrotoluene-5-sulfonate, which make up approximately one-third of the polar organic fraction. Such water is intensely rad-colored and either is sold to paper mills for sulfur content or is concentrated by evaporation and incinerated. It is not amenable to purification and, because it is classified by EPA as a hazardous waste, it cannot be discharged into streams.

"Pink water" comes from both manufacturing plants and from load, assemble and pack (LAP) facilities. That from manufacturing plants can arise from Mahon fog filter affluents and nitrator fume scrubber discharges and is known to consist of the DNTs. While not positively identified, these two sources of "pink water" are also believed to contain all TNT isomers, monomitrotoluenes (MNTs) and possibly dimitro-m-cresols arising from the displacement of a nitro group on TNT isomers. Additionally, "pink water" from manufacturing plants arises from "red water" distillates (evaporator condensate from concentration process) and consists of DNTs, while those from finishing building hood scrubber and wash-down effluents are also believed to contain primarily DNTs. Spent said recovery wastes may be an additional source of "pink water" generated during the manufacturing process (Dacre and Rosenblatz, 1974). On the other hand, "pink water" from LAP facilities, resulting primarily from shell washout operations, contains essentially pure THT, usually contaminated with hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) or other additives. The pink color -- pale straw to brick red -- arises under neutral or basic conditions, especially when the wastes are exposed to sunlight (Rosenblatt et al., 1973).

A number of photodegradation products of TNT have been identified in organic solvent extracts of "pink water". Those degradation products that are water soluble (but not extractable by organic solvents) have not been fully characterized; however, as many as thirty components of condensate wastewater (i.e. steam distillates arising from the concentration of "red water" by evaporation) obtained from the Volunteer AAP have been identified and quantified (Table III-1). Other constituents not derived from TNT degradation include the toxicologically significant DNT isomers, particularly 2,4- and 2,6-DNT (Dacre and Rosenblatt, 1974).

VI. HEALTH EFFECTS

Health effects data from human occupational exposure to TNT and from laboratory experiments with animals administered TNT are summarized in this section. Lesions have been observed in many tissues and organ systems including brain, liver, blood, reproductive organs, kidneys, urinary bladder and eyes. Evidence is presented that TNT is both mutagenic and carcinogenic in bacterial and animal tests, respectively.

A. Health Effects in Humans

With the advent of the large scale manufacture of TNT during World War 1, many munitions workers reportedly died of TNT intoxication. During one 7 month period, 475 deaths (2.8%) occurred among 17,000 cases of TNT poisoning. In one munitions plant alone, 105 fatalities (1.5%) occurred among 7,000 cases of TNT intoxication during a 20 month period (Zakhari and Villaume, 1978). TNT intoxication during a 20 month period (Zakhari and Villaume, 1978). Overall, in the four year period between 1914 and 1918, 580 deaths (2.4%) were reported in the United States out of 24,000 cases of known TNT poisonings (Rosenblatt, 1980). In British ammunition plants, 125 deaths (26.3%) over a 25 year period were reported among 475 cases of toxic jaundice resulting from exposure to TNT (Zakhari and Villaume, 1978).

With the increased awareness of the hazards of TNT exposure, the number of fatalities significantly decreased during World War II, despite a dramatic increase in the production of this explosive. Only 22 fatalities were reported in the period between June, 1941 and September, 1945 among all government-owned ordnance explosives plants. Eight (36%) were due to toxic hepatitis and 13 (59%) were due to aplastic anemia (Zakhari and Villaume, 1978). Only gne-third of the 22 were exposed to TNT at average concentrations over 1.5 mg/m, the existing workplace standard (OSHA, 1981). Among these cases, hepatitis was reported to occur more frequently among younger persons (average age, 30 years), with aplastic anemia being the cause of death among older persons (average age, 45 years). The pathologic findings in the clinical hepatitis cases invariably included degenerative damage to the liver, usually accompanied by a great reduction in size and weight (NRC, 1982).

Since World War II, only occasional deaths due to TNT exposure have been reported and very few problems related to TNT use have been found in the English-language literature (Morton et al., 1976).

In an extensive review of the literature, Zakhari and Villauma (1978) reported on the various signs and symptoms of TNT toxicity and provided detailed descriptions of the more specific effects of TNT on individual body systems. The following is a summary of this report.

Initial exposure to TNT in the atmosphere may result in mild irritation of the respiratory passages (masal discomfort, sneezing, epistaxis and rhinitis

possibly associated with headache and skin (erythema and papular eruptions progressing to desquamation and exfoliation). Gastrointestinal disorders, to include nausea, anorexia and constipation, sometimes associated with tightening of the chest, are among the first signs of possible intoxication. Epigastric pain not associated with food intake is a cardinal symptom.

Absorption of sufficient amounts of TNT through the skin or lungs can produce signs of cyanosis (due to methemoglobin formation), toxic jaundice (due to severe liver damage), aplastic anemia (due to damage to the erythropoietic system), cataract formation (possibly a direct effect of TNT vapor or dust; may be first and only clinical manifestation), menstrual disorders (hypo- or hypermenorrhea), neurological manifestations (neurasthenia, mystagmus, irregularities of tendon reflexes and adiadochokinesia; only 2.2% of the cases in one study manifestad diffuse brain lesions; 50% of the persons examined in another study showed irregularities in their thermoregulating reaction to heat and cold (Kaganov et al., 1970 as cited in Zakhari and Villaume, 1978)) and nephrotoxicity (as evidenced by a significant rise in glomerular filtration rate, sodium retention, urgency, frequent micturition and lumbar pain).

Upon physical examination, the findings may include a yellow discoloration of the skin, nails and hair. This is usually due solely to staining with TNT and is not to be confused with the jaundice associated with liver toxicity. More significant would be a bluish discoloration of the mucosa indicative of developing cyanosis. Other physical findings might include dermstitis with or without rash (early appearing rashes may clear), epigastric pain, tenderness and/or spasm, enlarged and palpable liver and changes to the electrocardiogram (bradycardia, decreased amplitude of QRS complex, flattened T-wave) and electroencephalogram (decreased amplitude of biopotentials, slowed activity, poor reaction to stimuli), functional in nature, and apparently due to vascular disturbances in the brain (Ermskov et al., 1969 as cited in Zakhari and Villaume, 1978).

Laboratory findings include an amber to deep red coloration of the urine and various effects on the hematological parameters and blood chemistries. In several cases where THT exposure resulted in death, specific post-mortem findings included facty changes in the liver and kidneys. Foulerton (1918) as cited in Zakheri and Villaume (1978) reported that in 3 specific cases of death due to THT intoxication (exposure level and duration not specified), the liver showed signs of advanced degeneration, disintegration of parenchyms, fibrosis and advanced interlobular round-cell infiltration. Fat was distributed in both parenchyms and fibrotic tissue. The kidney also showed signs of fat accumulation along with cloudy degeneration of the epithelium of the convoluted tubules. The glomeruli were, however, free of fat globules. Numerous fat granules were scattered throughout the interalveolar tissues of the lungs. Masses of brownish material were found in all three organ systems.

While there have been only limited reports in the English literature of

cataract formation resulting from industrial exposure to TNT, Zakhari and Villaume (1978) described several studies that reported the finding of cataracts among European and Russian dynamice workers. The cataracts have been reported to often occur without other toxic manifestations (Manoilova, 1968) while Tyukina (1967) described changes in the crystalline lens as occurring in four stages and being characteristic of TNT-induced opacities, easily distinguishable from those of different origins. Hassman and Juran (1968) reported the occurrence of cataracts in 26/61 (42.6%) workers, average age of 44.5 years, exposed to TNT for an average of 8.4 years. The cataracts were described as V-shaped or luner, white-grey in color and located in the area of the lens equator. In some cases, the opacities had merged to form an irregular ring. While atmospheric levels were not reported, the authors indicated that cataract formation was not associated with other toxic effects, and that repeated examinations indicated no other health effects in 26.9% of the workers with TNT-related cataracts. In 1978, Hassman et al. confirmed the occurrence of cataracts characteristic of TNT exposure in 87% of a group of 54 TNT workers with previously diagnosed or suspected TNT cataracts. Control subjects were not included in this study. Average exposure duration was approximately 14 years. Other TNT-related effects were minimal, confirmed in only 9% of the exposed group and reported as chronic TNT intoxication.

More recently, Harkonen et al. (1983) reported on the occurrence of equatorial lens opscities in 6 of 12 occupationally exposed workers in Finland. The opacities were described as bilateral and symmetrical. They had no effect on visual acuity or visual fields. They were detectable only in the periphery of the lens, being either continuous or discontinuous. Exposure duration was 3 approximately 6.8 years with workgoom air concentrations averaging 0.3 mg/m with a range of 0.14 to 0.58 mg/m . Physical examination as well as several blood chemistry parameters were normal. The average age for the 12 workers was 39.5 years with the subgroup having positive cataract findings averaging 43.8 years vs 35.2 years in those without cataracts. In 1984, Makitie et al. reported that 15/21 (85%) workers exposed to THT for a mean of 12.3 years in the processing and packing of explosives had detectable equatorial lens opacities, most frequently in the anterior cortex of the lens with decreasing density toward central areas. The mean age of the exposed workers was 41.1 years while atmospheric levels ranged from 0.1 to 0.4 mg/m . Ten workers showed varying degrees of central opacity, from minute spots to small rosettes, but these opecities were so slight that no effect was detectable on visual acuity. In 50% of those with the peripheral lens opacities, the density was so slight that no shadow was seen in fundus reflex photography. There have been no reports in the literature nor in occupational health surveys on the occurrence of cataracts in munitions workers in the United States.

The mechanism of INT-cataract formation is not clearly defined. While more recent studies (Harkonen et al., 1983) have investigated radical formation, based upon the vulnerability of the peripheral lens fibers to effects of

peroxidation, as a possible cause of TNT-related cataracts, no definitive conclusions could be drawn from this investigation. Several studies implicate direct contact and local absorption as the probable cause (Kroll and Kolevatykh, 1965; Manoilova, 1967 as cited in Zakhari and Villaume, 1978), based upon the absence of systemic effects in the majority of the exposed individuals with the positive cataract findings. The weak polarity of TNT also supports its ability to directly penetrate the lens.

It has also been found that individuals deficient in glucose-6-phosphate dehydrogenese (G6ED) may be particularly susceptible to TNT intoxication. In one report (Djerassi and Vitany, 1975 as cited in Zakhari and Villaume, 1978), onset of hemolytic episodes occurred in 3 individuals within 2 to 4 days after initial exposure to TNT. Based on these and similar findings, it was recommended that determination of G6PD activity be made a pre-employment requirement for TNT workers.

Effects on the white blood cells (WBCs), as evidenced by an increase in the large mononuclear leukocyte count, may also be an early indicator of TNT poisoning. Hamilton (1946) reported that increases in these cells usually preceded symptoms of illness and levels remained elevated for 2 to 3 months following initial occurrence (cited in Zakhari and Villaume, 1978).

Toxic hepatitis and aplastic anemia have been reported as the principal cause of death following TNT intoxication. Zakhari and Villaums (1978) reported that several fatal cases of aplastic anemia were associated with earlier episodes of non-fatal toxic jaundice or hepatitis. They further indicated that aplastic anemia can occur after a latent period of several years following an attack of toxic jaundice. Hyperplasia of the bone marrow is the first reaction of the hemapoietic tissues to TNT poisoning.

In a report prepared by the Department of the Army, as guidance standards in industrial medicine and hygiene (DARCOM, 1976), gastrointestinal symptoms were reported as often the first indication of toxicity. This report also indicated the lack of a clear relationship between the occurrence of the dermatitis often associated with exposure to TNT and the development of systemic effects; either may exist in the absence of the other.

Older reports on the adverse health effects associated with exposure to TNT generally did not include information on workplace concentrations. In one uncontrolled study, Ermakov et al. (1969) as cited in NRC (1982), reported that 122 (21%) of 574 employees exposed to an average TNT concentration of 1 mg/m were chronically poisoned; work exposures ranged from 6 to 25 years. Most of those affected had functional disorders of the central nervous system, with 22% (27) having chronic anemia and leukopenia, 20% (24) with cataracts, and 12% (15) with symptoms of hepatitis. No comparisons were made with unexposed control populations.

Several reports of controlled studies have provided some information on the early and subclinical effects of TNT exposure (Stewart et al., 1945, El Ghawabi et al., 1974, and Hathaway, 1974 as cited in NRC, 1982; Morton et al., 1976). A significant finding in these epidemiologic studies is the occurrence of hematologic and hepatic shnormalities at TNT concentrations well below the Permissible Exposure Limit (PEL) of 1.5 mg/m² (OSHA, 1981). Among the most persistent findings were mild reductions in hematocrit (Hct), hemoglobin (Hgb) concentrations and red blood cell (RBC) counts of exposed persons. These findings have been attributed mostly to the destruction of red cells by hemolysis due to exposure to TNT or to its metabolites (Voegtlin et al., 1922, Cone; 1944, as cited in NRC, 1982; Hathaway, 1977).

In one study cited by Zakhari and Villauma (1978), a group of 62 undergraduate students were exposed to atmospheric concentrations of TNT ranging from 0.3 to 1.3 mg/m for approximately 33 days (Stewart et al., 1945). Observed changes in 20% or more of the subjects included a decrease in Hgb and circulating blood cells, an increase in the number of reticulocytes, a small but significant decrease in plasms proteins and a significant increase in bilirubin. The authors indicated that males were more susceptible to the hemolytic effects of TNT than were females.

Goodwin (1972) reported that, in a 1951 study at the Lone Star Army Ammunition Plant (LSAAP) in Texarkana, Texas, mean atmospheric contaminant levels for TNT (dust and fumes) were 2.38 mg/m², with no exhaust ventilation systems in use. In a series of tests conducted under a Physical Recheck Examination Program, the Thymol Turbidity test, indicative of liver cell irritation, was used to evaluate liver impairment. From a total of 1,537 tests run during one screening period, 87.5% of the workers were within the selected normal range (to 2.9 MacLagen units) with no signs of liver toxicity. Of the remaining workers with liver function tests above the normal range, from 2.9 to >5 MacLagen units, 36 (<2.5%) showed classical symptoms of liver damage. Liver function values in the affected workers, initially >5 MacLagen units, returned to normal limits within three weeks of their removal from the contaminated environment.

In an occupational health study conducted by the U.S. Army Environmental Hygiene Agency (USAEHA) at a TNT washout facility at Letterkenny Army Depot in Pennsylvania, Friedlander et al. (1974) reported that employees exposed for 6 months to TNT at various work locations in the facility and at atmospheric levels ranging from <0.02 to 3.00+ mg/m displayed clinically and statistically significant decreases in Hgb and Hct levels when compared to pre-exposure values. Furthermore, a statistical comparison of these post-exposure values with those of matched controls (non-exposed individuals) at the same facility indicated a higher rate of abnormalities in the exposed individuals and mean value differences between the two groups.

In addition to significant differences in the Hgb and Hct values (0.005 \leq p \leq

0.01), significant differences were also found in RBC count and blood urea nitrogen (BUN) $(0.005 \le p \le 0.01)$ and in reticulocytes, assimphils and glucose $(0.01 \le p \le 0.05)$. No significant differences could be demonstrated in several other laboratory parameters including serum glutamic-oxaloacetic transaminase (SGOT), lactic dehydrogenase (LDH), serum alkaline phosphatase (SAP), cholesterol and total bilitubin, among others. It could not be determined from this report if the positive clinical findings were dose dependent.

In another occupational health survey (Morton and Ranadive, 1974) conducted by USAFHA at the Newport Army Ammunition Plant (NAAP), Indiana, the distribution of abnormal values among workers correlated closely with both an increased production rate (from 75% to >100% capacity) and an increase in INT dust levels (from 0.3 mg/m to 0.8 mg/m). Various parameters were tested including Hgb, SGOT and LDH. Based on the measured values, 62.8% of the INT exposed individuals demonstrated abnormal findings. The detection rate (ability to identify abnormal results) ranged from approximately 26% when only Hgb values were evaluated to 100% when the values for all 3 parameters (Egb, SGOT and LDH) were assessed. Recovery to normal levels occurred upon removal of the individual from sources of exposure but the time required for recovery differences could be found in the available data. No statistically significant compared as to sex, age or race, but sampling size may not have been sufficient.

Further statistical analysis of these clinical parameters as measured prior to the time of increased TNT production (atmospheric levels of 0.3 mg/m²) paired with those one month after production was increased (atmospheric levels of 0.8 mg/m²) indicated a statistically significant increase in LDH levels (P <0.005) and SGOT levels (P <0.01) following the increase in production rate. No such correlation was seen in hemoglobin levels (Morton et al., 1976). This increase in both the number of individuals with abnormal test results and the degree of the abnormality were correlated with the higher atmospheric levels of TNT, leading the authors to question the suitability of the Threshold Limit Value (TLV) of 1.5 mg/m² recommended at that time (ACGIH, 1971).

In a follow-up to the two previously cited occupational health surveys at Army facilities, USAEHA performed a cross-sectional epidemiological study involving 626 employees exposed to one or more munition compounds (TNI, RDX, HMX) and 865 non-exposed employees from 5 Army Ammunition Plants (Buck and Wilson, 1975). All individuals were evaluated for liver function (SAP, SGOT, serum glutamic-pyruvic transaminase (SGPT) and bilirubin) and hematological

b/cyclotrimethylenetrinitramine (1 hexahydro-1,3,5-trinstro-1,3,5-triatine) cyclotetramethylenetetramitramine (octahydro-1,3,5,7-tetramitro-1,3,5,7-tetramitro-1,3,5,7-

Joliet, lows, Milan, Volunteer and Holston

ingb. Het and reticulocyte count) abnormalities. No evidence of liver toxicity was indicated by the parameters studied. This result appears to be in contrast to the positive findings of liver toxicity in the NAAP study. However, exposure levels in this cross-sectional study were generally <0.5 mg/m with only approximately 12% of the TNT workers exposed at levels >0.5 mg/m while at NAAP, exposure levels rose to approximately 0.8 mg/m. Accordingly, the authors indicated that 0.5 mg/m may be considered a reasonable no effect level for hepatotoxicity.

On the other hand, a significant hematological effect was observed among TNT workers exposed in this cross-sectional study to atmospheric levels of <0.5 mg/m. This positive effect was evidenced by a dose response relationship for all three parameters and occurred more readily among males. These results suggested to the authors that low level TNT exposure (<0.5 mg/m) may induce a low grade hemolysis with a compensatory mild reticulocytosis. It was not possible to determine a no effect level for hematological effects from the study. As a result of this study, USAEHA recommended that the TLV for TNT in the work, place be lowered from the existing level of 1.5 mg/m to a level of 0.5 mg/m and that the U.S. Army adopt 0.5 mg/m as their sirborne exposure standard for TNT.

B. Health Effects in Animal Experiments

1. Short-Term Exposure

As indicated by studies in rats, mice and dogs for periods up to four weeks, dietary intake of TNT resulted in early but not persistent decreases in body weight and food intake while the red pigmentation in the urine persisted throughout. Some anemia was evident but somewhat inconsistent while hemosiderosis of the splash was seen in all three species. Rats developed testicular atrophy. Table VI-1 summarizes these toxicity studies.

Lee et al. (1975) determined the scute oral toxicity of TNT in Charles River CD rate and albino Swiss mice. Rate and mice were fasted for at least 16 hours prior to dosing by intragastric intubation with a 4.12% saturated solution of TNT in peanut oil. After treatment, the survivors were observed daily for 14 days for delayed mortality or toxic signs. The LD was calculated by a computer program based on the method of maximum likelihood of Finnsy (1971).

The acute ID values in male and female rate were 1,010 and \$20 mg/kg, respectively; in male and female mice they were 1,014 and 1,009 mg/kg. respectively. Symmetrical coordinated convulsions associated with respiratory inhibition occurred within 5 to 15 minutes after dosing and continued for 1 to 2 hours. Death, when it occurred, was usually due to respiratory paralysis while survivors appeared cyanotic and exhibited ataxis. Recovery was complete in 24 to 48 hours. No gross pathology attributable to treatment was noted.

CONCEPTUAL DESIGN AND RELATED DOCUMENTS

16.0 OPERATIONS MANUAL

U.S. Army Environmental Center Red Water Treatment Technology Test Plan and Site Preparation Aberdeen Proving Ground, Maryland

ICN\1585\WP1585\02-06-95\D12\E1

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.:

WP: WP1585.16

16.0 Operations Manual

16.1 Process Description

Red water is fed to the CBC where it is thermally treated. Combustion by-products (ash) and bed material are indirectly cooled with water in the ash cooler conveyor. The combustion gas is cooled in the partial quench and cleaned in the baghouse.

The feed system conveys red water to the CBC. The red water enters the CBC at the loop-seal. Mixing and blending occur inside the CBC because of the turbulence of the combustion air and the circulating media.

The auxiliary fuel is natural gas, which can be fired in the start-up burner or fed directly to the CBC. The start-up burner is mounted in the CBC wind box and has a maximum capacity of 5 MMBtu/hour.

At temperatures greater than 1300°F, auxiliary fuel is fed directly to the CBC, where 4 MMBtu/hour of auxiliary fuel can be fed directly to the CBC.

Primary air is provided to the start-up burner by the combustion air blower. Fluidizing air (secondary air) is fed directly to the CBC wind box by the combustion air blower. The quantities of fuel and air fed to the CBC are carefully monitored and controlled to maintain the CBC combustion chamber flow rate and temperature.

Ash and bed material are discharged from the CBC by the ash cooler conveyor. The CBC off-gases are ducted to the partial quench where they are cooled to about 400°F. The cooled combustion gases pass through the baghouse where more than 99 percent of the particulate is removed. The cleaned combustion gases then pass through the I.D. fan and exit at the stack.

The components of the CBC system are illustrated on the PFD D-00-10-001. This drawing includes a typical M&EB for the CBC system and the design flows and conditions. The

By: PO Checked: PA Approved: PA Date: 02/06/95

Operations Manual IT PCE Knoxville, Tennessee Rev. No. (0) (1) Area No.:

Area Name: All Areas

Page: 1 of 9

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.:

WP: WP1585.16

piping, instrumentation, and controls associated with the CBC are shown in the following P&IDs:

- D-20-11-001
- D-20-11-002
- D-50-11-001.

16.2 Process Control Description

16.2.1 Process Control Overview

The CBC thermally treats red water and produces ash. The CBC operates with a constant flow rate of combustion gases in the CBC combustion chamber. Ash and bed material is discharged into the ash cooler conveyor for cooling and storing. Ash from the baghouse is discharged through four rotary valves into a storage bin.

Combustion gases from the combustion chamber pass through a cyclone that separates the entrained bed material from the combustion gases. The bed material is returned to the combustion chamber through the loop-seal. The CBC off-gases exit the CBC by a refractory-lined duct that connects the CBC to the partial quench. The partial quench cools the combustion gases to approximately 400°F. The cooled combustion gases go to the baghouse where more than 99 percent of the particulate is removed. The cleaned combustion gases then pass through the I.D. fan and exit from the stack.

A negative pressure is maintained in the CBC by adjusting the inlet vane damper to the I.D. fan. The combustion gas flow rate in the combustion chamber is maintained by adjusting the damper on the combustion air blower. The dP across the bed is maintained by adding or removing bed material from the CBC.

The CBC uses natural gas as the auxiliary fuel. Combustion chamber temperature is controlled by adjusting the auxiliary fuel firing rate. The partial quench exit gas temperature is controlled by varying the quench water flow rate.

By: PO Checked: PA Approved: PA

Date: 02/06/95

Operations Manual IT PCE Knoxville, Tennessee Rev. No. (0) (1) Area No.: Area Name: All Areas

Page: 2 of 9

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.:

WP: WP1585.16

The red water feed rate to the CBC is controlled by a control valve in the feed line. The red water feed rate is limited by the concentration of oxygen in the stack.

16.2.2 CBC Start-Up Burner System Controls

The air-to-fuel ratio in a burner is critical to the safe operation of a combustor. The air-to-fuel ratio for the CBC start-up burner is strictly based on the flow rate of natural gas to the main burner. The combustion air is provided by the combustion air blower. The fuel flow signal is transmitted to the air-to-fuel ratio controller (FFIC-204) in the central control system (CCS). Based on the ratio set by the operator, the FFIC-204 (ratio controller) modulates the damper (FV-204) on the combustion air blower discharge, modulating the primary air flow.

Start-Up Burner Flameout. A flame scanner (BE-209) scans the start-up burner. When flame scanner BE-209 detects that the CBC start-up burner flame is extinguished, the following results occur:

- Fuel gas (natural gas) is isolated from the CBC via double block and bleed Maxon valves YV-209A, B, and C.
- · Primary combustion air control valve (FV-204) goes to its low fire position.

16.2.3 CBC Primary Fuel System Controls

At temperatures greater than 1300°F, the auxiliary fuel will be fed directly to the CBC. At these temperatures, the auxiliary fuel, natural gas, will autoignite; therefore, standard burner management practices are not practical or required.

Primary Fuel Air-to-Fuel Ratio Control. The air flow rate to the CBC is adjusted to control the combustion gas velocity in the combustion chamber. The only adjustment of the primary fuel air-to-fuel ratio is the minimum oxygen limit at the stack.

Primary Fuel Flameout. The primary fuel will be fed directly to the CBC at temperatures greater than 1300°F, which is more than the autoignition temperature of natural gas.

By: PO Checked: PA Approved: PA

Date: 02/06/95

Operations Manual IT PCE Knoxville, Tennessee Rev. No. (0) (1) Area No.:

Area Name: All Areas

Page: 3 of 9

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO .:

WP: WP1585.16

Therefore, a primary fuel flameout is impossible and there are no flame detection devices used or required.

16.2.4 CBC Combustion Chamber Temperature

The CBC combustion chamber temperature is controlled by modulating the amount of auxiliary fuel added to the combustion chamber. Because of the long solids retention time (typically more than 20 minutes), the ash temperature is equal to the combustion chamber temperature.

The CBC combustion chamber temperature is sensed by two redundant thermocouples (TE-203A and B) located in the CBC combustion chamber. During routine operation, the circulation of the bed media tend to equalize the temperature throughout the CBC. The temperature will be relatively constant in the combustion chamber, the cyclone, and the loop-seal.

During routine operation, the CBC combustion chamber temperature is controlled by modulating the flow of auxiliary fuel to the CBC. If the gas temperature falls, temperature controller TIC-203 will increase the flow of auxiliary fuel to the CBC by flow controller FIC-219, which controls the auxiliary fuel valve (FV-219).

16.2.5 CBC Combustion Chamber Pressure Control

The pressure inside the CBC is maintained slightly below atmospheric pressure. CBC pressure is sensed by PIT-210 located in the loop-seal. The pressure is controlled by PIC-210, which adjusts the pressure control valve (PY-501).

16.2.6 Differential Pressure Across the Bed

For proper operation of the CBC, it is necessary to maintain the appropriate dP across the bed and to routinely provide fresh material to the bed. The dP across the bed is measured by PDIT-206. The dP across the bed is increased by adding bed material and is decreased by operating the ash cooler conveyor (H-2001).

By: PO Checked: PA Approved: PA Date: 02/06/95 Operations Manual IT PCE Knoxville, Tennessee Rev. No. (0) (1)

Area No.:

Area Name: All Areas

Page: 4 of 9

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.:

WP: WP1585.16

16.2.7 Combustion Gas Velocity

The combustion gas velocity is maintained at a constant 5,030 acfm. This velocity is measured by a portable pilot-tube at the exit of the cyclone. Flow controller (FFIC-204) adjusts the flow valve (FV-204) to control the combustion gas velocity.

16.3 CBC System Start-Up

16.3.1 Introduction

The procedures provided in this section are supplements to the procedures that will be described in the equipment vendors' manual. The procedures in the vendors' manual should be consulted and followed as appropriate.

The following utilities must be available before attempting to start this area of the plant:

- Electrical power normal and uninterrupted power supply (UPS)
- · Instrument air
- · Plant air
- Auxiliary fuel natural gas.

16.3.2 Start-Up Procedure Summary

16.3.2.1 Cold Start Procedure Summary

The following summary procedure assumes that the CBC refractory does not require curing:

- 1. Check that the ash system is operational.
- 2. Start the combustion air blower (B-2001) by pushing the start button (HS-204).
- 3. Start the I.D. fan (B-5001) by pushing the start button (HS-501).
- 4. Start the loop-seal blower (B-2002) by pushing the start button (HS-207).
- 5. Add the bed material to the CBC until the dP across the bed is more than 20 in. w.c. on PDIT-206.

By: PO Checked: PA Approved: PA Date: 02/06/95 Operations Manual IT PCE Knoxville, Tennessee Rev. No. (0) (1)

Area No.:

Area Name: All Areas

Page: 5 of 9

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.:

WP: WP1585.16

6. Check that water is available to the quench.

- 7. Check that process air is available to the baghouse.
- 8. Light the start-up burner by pressing the start button.
- 9. Gradually increase natural gas flow manually to the start-up burner according to the recommended refractory heat up schedule.
- 10. When the CBC reaches 1300°F, put the start-up burner in manual (FIC-209).
- 11. Initiate the flow of primary fuel to the CBC by pressing HS-219.
- 12. Gradually increase the flow of primary fuel (FIC-219) to the CBC until the start-up burner is at low-fire.
- 13. Shut off the start-up burner.
- 14. Increase primary fuel firing rate manually until all normal operating set points are met (e.g., 1600°F in the CBC combustion chamber temperature).
- 15. After all set points are met, start the red water feed at a reduced rate. Monitor CBC combustion chamber temperature manually by adjusting the primary auxiliary fuel firing rate using FIC-219. Watch for slagging and overheating of the CBC.
- 16. Gradually increase the red water feed rate while monitoring the stack gas oxygen concentration. The maximum red water feed rate will be obtained when the feed rate is equal to the permit feed limit or the stack oxygen/concentration is equal to 3 percent oxygen.
- 17. Adjust TIC-203 output to agree with FIC-219 set point, and switch FIC-219 to automatic/cascade control. Switch TIC-203 to automatic/local with its set point agreeing with the exit gas temperature. TIC-203 will then modulate the set point to FIC-219 to increase or decrease the firing rate to the start-up burner to maintain CBC off-gas temperature at the set point.

By: PO Checked: PA Approved: PA Date: 02/06/95 Operations Manual IT PCE Knoxville, Tennessee Rev. No. (0) (1)

Area No.:

Area Name: All Areas

Page: 6 of 9

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO .:

WP: WP1585.16

16.3.2.2 Hot Start Procedure Summary

After an emergency shutdown, the CBC can be restarted as follows:

- 1. Check that all combustion air blowers are operating.
- 2. Check that the CBC ancillary equipment is operating.
- 3. Re-light the start-up burner.
- 4. Re-establish CBC temperature and waste feed rate by following the last eight steps in Section 16.3.2.1, Cold Start Procedure Summary.

16.3.2.3 Start-Up During Hot Idle

To start-up from hot idle, follow Steps 10 through 17 of Section 16.3.2.1, Cold Start Procedure Summary.

16.3.2.4 Refractory Curing

General Information. The main purpose for drying out a CBC or any other piece of refractory-lined process equipment before making it operational is to remove the residual moisture in the brick, mortar, and castable. This moisture must be removed slowly enough to ensure that steam is not generated within the lining. Such steam generation can rupture the lining and cause the refractory to fracture.

The general and recommended practice is to heat the refractory-lined equipment slowly, bringing the temperature up gradually and in specific increments. As the temperature is raised, it is also kept at certain levels for specified lengths of time.

When the drying out process is completed, it is desirable for the plant to be in a position to raise temperature to process levels and to go into production.

The entire drying out process has to be coordinated and a close check kept on all of the temperature-indicating devices in the system to ensure that temperatures at any point do not exceed equipment capabilities.

By: PO

Checked: PA Approved: PA Date: 02/06/95 Operations Manual IT PCE Knoxville, Tennessee

Rev. No. (0) (1)

Area No.:

Area Name: All Areas

Page: 7 of 9

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.:

WP: WP1585.16

Equipment to be Dried Out. The following pieces of equipment are refractory-lined and will require various degrees of drying out:

- CBC including combustion chamber, cyclone, and loop-seal
- Discharge duct
- Quench.

Drying Out. All of the equipment can be dried out by introducing heat through the start-up burner. Follow system start-up procedure provided in Section 16.3.2.1, Cold Start Procedure Summary, to light the burner. The CBC, the discharge duct, and the quench can be cured simultaneously.

The following drying schedule is to be followed unless the supplier's recommendations are more stringent:

- 1. After all refractory work has been completed, let it air dry for at least 24 hours. If there is any visible moisture on the refractory surface, such as wet grout, continue air drying.
- Using the start-up burner at a very low setting, hold the CBC combustion chamber temperature at 150°F as shown on the CBC exit thermocouple for 12 hours. Combustion air flow rate can be used to help keep the temperature down.
- 3. With the start-up burner, raise the temperature approximately 50°F per hour to 300°F (3 hours).
- 4. Hold the temperature at 300°F for 12 hours.
- 5. Increase the temperature 50°F per hour to 600°F (6 hours).
- 6. Hold the temperature at 600°F for 12 hours.
- 7. Increase the temperature 50°F per hour to 1000°F (8 hours).
- 8. Raise the CBC combustion chamber temperature (now at 1000°F) approximately 50°F per hour to 1250°F (5 hours) and hold at 1250°F for 6 hours.

By: PO Checked: PA Approved: PA Date: 02/06/95

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.:

WP: WP1585.16

9. Raise the CBC combustion chamber temperature approximately 50°F per hour to 1500°F (5 hours). The refractory should now be dry and the equipment should be ready to be put into operation. It is recommended that the equipment be put into operation without cooling the refractory. If the equipment is not going to be put into operation, begin cool down at a rate of 50°F per hour.

Cautions:

- During dryout, be especially careful not to exceed temperature limitations of other equipment in the system (fan, scrubber, etc.).
- If steam is noticed during the dryout, hold at that temperature until the steaming stops.
- If the dryout is interrupted, restart the dryout at the last fully completed portion of the dryout schedule.
- Do not shock refractory with either heat or cold; gradually heat up or cool down refractory at approximately 50°F per hour.
- If installed refractory material gets wet, gradually heat it up and dry it out at approximately 50°F per hour. If steam is noticed during heat-up/dryout, hold at that temperature until the steaming stops.

CONCEPTUAL DESIGN AND RELATED DOCUMENTS

17.0 PERFORMANCE TEST PLAN

U.S. Army Environmental Center Red Water Treatment Technology Test Plan and Site Preparation Aberdeen Proving Ground, Maryland

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.17

17.0 Performance Test Plan

17.1 Introduction

Red water is the aqueous effluent generated during sellite purification of crude TNT. Red water is a reactive hazardous waste, EPA Hazardous Waste number K047. To destroy red water, a CBC is being designed.

After construction of the CBC is completed, the unit will be started and operational defects identified and corrected. When the CBC is operationally ready, the test program will commence. The test program is designed to optimize the performance of the CBC and to demonstrate the ability of the CBC to meet regulatory and warranty performance limits.

The test program will consist of three distinct test phases:

- Start-up test
- Shakedown test
- Performance test.

17.1.1 Start-Up Test

After construction of the CBC is completed, the unit will be started on auxiliary fuel and the mechanical, electrical, instrumentation, and control system will be checked out.

17.1.2 Shakedown Test

After the completion of the start-up test, the shakedown test will begin. During the shakedown test, the optimum CBC operational parameters and the performance limits will be determined. The shakedown test will have two separate segments:

- Tests that can be conducted when operating on only auxiliary fuel
- Tests that require the CBC to be combusting auxiliary fuel and red water.

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.17

17.1.3 Performance Test

The performance test will be conducted on the CBC after the completion of the shakedown test. During the performance test, the CBC will be tested for its ability to meet regulatory and warranty performance requirements.

This document presents the basic outline for the start-up, shakedown, and performance tests, and is not intended to serve as the Trial Burn Plan. A separate Trial Burn Plan must be prepared during the RCRA permitting process.

17.2 CBC Process Description

17.2.1 Type of Incinerator

The CBC incinerator consists of a combustion chamber, a hot cyclone, and a loop-seal. Bed material is fluidized with air in the combustion chamber. The bed material is blown out of the combustion chamber to the hot cyclone. The hot cyclone separates the combustion gases and the bed material. The bed material is sent to the loop-seal and returned to the combustion chamber. The combustion gases exit the cyclone to the APCS.

17.2.2 Description of the Auxiliary Fuel System

The start-up burner is a 5 MBtu/hr burner mounted in a duct attached to the wind box. This burner uses natural gas as the auxiliary fuel to heat the combustion air. At temperatures above 1300°F, the auxiliary fuel (natural gas) is fed directly to the tuyeres.

17.2.3 Capacity of the Prime Mover

The CBC prime mover is an induced draft fan rated at 5,000 acfm at 50 inches water column.

17.2.4 Description of the Waste Feed System

The CBC is designed to thermally treat red water. The red water is fed by a pump to the feed port located on the loop-seal.

By: PO Checked: PA

Approved: PA Date: 02/06/95 Performance Test Plan IT PCE Knoxville, Tennessee Rev. No. (0) (1)

Area No.:

Area Name: All Areas

Page: 2 of 16

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.17

17.2.5 Treated Material Handling System

Treated material (ash and spent bed material) from the CBC drops into the ash cooler conveyor. The ash cooler conveyor is a screw conveyor that cools the ash and places the ash in the ash bin.

17.2.6 Description of the Automatic Waste Feed Cutoff System

The primary function of the automatic waste feed cutoff (AWFCO) system is to prevent the feeding of red water if the CBC process conditions are outside of the permitted operating limits. During the start-up and shutdown of the incinerator or during process upsets, the interlocks automatically stop all waste feed systems and prevent their restart until the CBC is within the required operating limits.

When waste feeds are stopped due to an AWFCO interlock, auxiliary fuel (natural gas) will continue to be fired to maintain operating temperatures. With the exception of the waste feed components, the system will remain entirely operational. Waste feeds will not be restarted until the problem that caused the AWFCO condition has been resolved and all operating permissives are achieved (as with a normal start-up).

A discussion of the proposed AWFCO parameters follows. The actual values for each of these parameters may vary during the detailed design of the CBC.

- Combustion Chamber Temperature The combustion chamber temperature is measured by a shielded thermocouple located in the CBC bed material. When the combustion chamber temperature falls below 1500 °F or rises above 1700°F, the red water feed to the CBC will be automatically stopped.
- Maximum Combustion Chamber Pressure To prevent fugitive emissions, if the
 pressure in the CBC exceeds minus 0.08 in. w.c., as measured at the feed port in
 the loop-seal, all waste feeds will be automatically stopped.
- Combustion Gas Temperature After the Quench The quench cools and saturates
 the hot gases exiting the CBC. This prevents damaging the bags in the baghouse
 with hot combustion gases. If the gases leaving the quench chamber exceed
 450 °F or the filter bag manufacturer's recommended temperature limit, the
 waste feeds will be automatically stopped.

By: PO Checked: PA

Approved: PA
Date: 02/06/95

Performance Test Plan IT PCE Knoxville, Tennessee Rev. No. (0) (1)

Area No.:

Area Name: All Areas

Page: 3 of 16

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.17

• Combustion Gas Velocity (CGV) - A flow sensor located in the stack after the I.D. fan will measure the CGV. All waste feeds will be automatically stopped if the CGV exceeds 3,500 acfm on a 10-minute rolling average basis.

- Carbon Monoxide CO concentrations are measured in the stack. All waste feeds will be automatically stopped if the CO concentration exceeds 100 ppm on a 1-hour rolling average, corrected to 7 percent O₂, dry basis.
- Additional parameters determined during detailed design and/or preparation of the trial burn plan.

17.2.7 Combustion Gas Monitoring and Air Pollution Control System

Combustion Gas Monitoring. The combustion gas is continuously monitored for CO and O_2 in the stack.

Air Pollution Control System. In the APCS, the combustion gases are partially quenched and filtered to remove particulates. An I.D. fan maintains sub-atmospheric pressures throughout the incineration system and provides the motive force for the scrubber system.

The major equipment components that comprise the air pollution control system include the:

- Partial quench
- Baghouse
- · I.D. fan
- Stack

The quench column uses water to cool the combustion gas from the combustion chamber temperature to approximately 400°F. The particulate in the cooled combustion gases are then removed in the baghouse. The I.D. fan provides a negative draft on the CBC system and pulls the combustion gas through the APCS.

17.3 Start-Up Test

After completion of the construction of the CBC, the incinerator will be started on auxiliary fuel. The CBC start-up operating conditions are presented in Table 17-1. These values may be modified during the detailed design of the CBC.

By: PO Checked: PA Approved: PA

Date: 02/06/95

Performance Test Plan IT PCE Knoxville, Tennessee Rev. No. (0) (1)

Area No.:

Area Name: All Areas

Page: 4 of 16

Table 17-1 Start-Up and Interim Operating Conditions

Parameter	Operating Conditiona
Group A Parameters	
Minimum CBC temperature	1500°F
Maximum CBC temperature	1800°F
Maximum CBC pressure	-0.08 in. w.c.
Maximum red water feed rate	1.5 gpm
Maximum combustion gas velocity (10-minute rolling average)	3,450 acfm
Maximum stack gas CO concentration (1-hour rolling average, dry basis, corrected to 7% oxygen)	100 ppm
Group B Parameters	
POHC incinerability limits	To Be Determined ^b
Maximum chlorine feed rate	To Be Determined ^b
Maximum antimony feed rate	To Be Determined ^b
Maximum arsenic feed rate	To Be Determined ^b
Maximum barium feed rate	To Be Determined ^b
Maximum beryllium feed rate	To Be Determined ^b
Maximum cadmium feed rate	To Be Determined ^b
Maximum chromium feed rate	To Be Determined ^b
Maximum lead feed rate	To Be Determined ^b
Maximum mercury feed rate	To Be Determined ^b
Maximum silver feed rate	To Be Determined ^b
Maximum thallium feed rate	To Be Determined ^b
Group C Parameters	
Maximum combustion gas temperature after the quench	450°F

^aThe values given in this table are estimates that may vary during the actual trial burn. ^bTo be determined during the preparation of the Trial Burn Plan.

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.:

WP: WP1585.17

During the start-up of the CBC, all of the mechanical, electrical, instrumentation, and control systems will be checked for conformance with the design and warranty specifications. The specific requirements of the start-up test program will be determined during the CBC detailed design.

17.4 Shakedown Testing

After the completion of the start-up testing, the shakedown testing will occur. RCRA regulations stipulate that the CBC may be operated on red water for up to 720 hours before the trial burn. Therefore, the shakedown testing will be divided into two types of tests: tests that can be conducted on auxiliary fuel only and tests that require the combustion of the waste stream (red water) in addition to the auxiliary fuel.

17.4.1 Tests to be Conducted When Operating on Auxiliary Fuel Only

All of the shakedown testing to be conducted while operating on only auxiliary fuel should be completed before red water is fed to the CBC. The following operational parameters will be studied while only operating on auxiliary fuel:

- Optimal Bed Depth The bed depth is measured as the pressure drop across the combustion chamber. The greater the pressure drop, typically measured in in. w.c., the greater the bed depth. If the bed depth is too low, the CBC bed material will not circulate properly. If the bed depth is too high, greater quantities of bed materials will be carried over to the APCS, increasing the particulate burden to the APCS and requiring frequent addition of fresh bed material to the combustion chamber. During the shakedown testing, the impact of variations in the bed depth to the performance of the CBC and the APCS will be studied and the optimum operational ranges determined.
- Optimum Gas Velocity in the CBC The gas velocity in the combustion chamber of the CBC will be studied. If the gas velocity is too low, the CBC bed material will not circulate properly. If the gas velocity is too high, greater quantities of bed materials will be carried over to the APCS, increasing the particulate burden to the APCS and requiring frequent addition of fresh bed material to the combustion chamber. During the shakedown testing, the impact of variations in the gas velocity to the performance of the CBC and the APCS will be studied and the optimum operational ranges determined.

By: PO Checked: PA Approved: PA Date: 02/06/95 Performance Test Plan IT PCE Knoxville, Tennessee Rev. No. (0) (1)

Area No.:

Area Name: All Areas

Page: 5 of 16

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.17

• Loop-Seal Performance - The performance of the loop-seal at varying loop-seal fluidizing are flow rates will be assessed.

 Optimum Air to Cloth Ratio in the Baghouse - By closing off baghouse bags or a baghouse module, the air to cloth ratio in the baghouse will be varied. The impact of the variations in the air to cloth ratio on baghouse performance will be determined.

17.4.2 Tests to be Conducted When Operating on Auxiliary Fuel and Red Water

The following parameters will be studied during the shakedown testing while combusting red water and auxiliary fuel:

- CEM Performance A relative accuracy test audit (RATA) will be conducted on the CEMs. The RATA will follow the procedures presented in 40 CFE 60 Appendix B and Methods Manual for Compliance with the BIF Regulations, EPA/530-SW-91-010.
- Appropriate Bed Material Selection The optimum bed material is resistant to abrasion and chemically neutral. Bed materials that are not resistant to abrasion will increase the particulate burden to the APCS and require frequent additions of bed material to the CBC. Bed materials that are not chemically inert will chemically combine with components in the waste feed to form low melting point materials. These low melting point materials will lead to the solidification of the bed material, and the resulting shutdown of the CBC for removal of the aggregate solid bed material. During the shakedown testing, the selected bed material will be tested for resistance to abrasion and the formation of eutectic mixtures.
- Use of Limestone to Reduce sulfur dioxide (SO₂) Emissions During the start-up testing, the SO₂ emissions will be measured and compared to regulatory criteria. If the SO₂ emissions are greater than the regulatory criteria, then the impact of limestone addition to the SO₂ emissions will be studied and a decision made on whether to add limestone to the bed material or to inject lime slurry into the quench. The quantity of limestone or lime slurry to use will also be determined.
- System Turndown Capability During the shakedown testing, the ability of the CBC to operate in a stable manner at varying waste feed rates will be studied.
 From this study, the minimum waste feed rate will be determined.
- Evaluate System Performance The ability of the CBC to operate and the trial burn operational limits will be studied before the start of the formal trial burn

By: PO Checked: PA

Approved: PA Date: 02/06/95 Performance Test Plan IT PCE Knoxville, Tennessee Rev. No. (0) (1)

Area No.:

Area Name: All Areas

Page: 6 of 16

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.17

 Evaluate System Performance - The ability of the CBC to operate and the trial burn operational limits will be studied before the start of the formal trial burn program. During the trial burn, the operational performance of the CBC will be compared to regulatory and warranted performance criteria. From this test, the maximum waste feed rate will be determined.

Precoating the Baghouse Bags With Lime - The high moisture of the combustion
gases may cause poor baghouse operational reliability. A test will be conducted
to determine if precoating the baghouse bags with lime will increase the
operational reliability of the baghouse.

After completion of the shakedown testing, the optimum operating conditions and the performance limits will be known.

17.5 Performance Testing

The performance test will be conducted on the CBC after start-up and shakedown testing are completed. During the performance test, the CBC will be tested for its ability to meet regulatory and warranty performance requirements. The objective of the performance test is to obtain data that will:

- Demonstrate greater than 99.99 percent of POHCs.
- Confirm the fate of POHCs fed to the CBC; they are either destroyed by thermal oxidation or emitted in the stack gases, ash residues, or scrubber water purge stream.
- Demonstrate that the emissions of carbon monoxide (CO) are less than 100 parts per million, volume, (ppmv) corrected to 7 percent oxygen (O₂) or, if the stack gas CO is greater than 100 ppmv corrected to 7 percent O₂, the stack gas concentrations of THC do not exceed 20 ppmv.
- Demonstrate control of particulate emissions to less than 0.015 grains per dry standard cubic foot (gr/dscf) corrected to 7 percent O₂.
- Demonstrate compliance with the hydrochloric acid gas (HCl), chlorine (Cl₂), and SO₂ emission standards.
- Determine the emission rates of speciated volatile and semivolatile organics.

By: PO Checked: PA Approved: PA Date: 02/06/95 Performance Test Plan IT PCE Knoxville, Tennessee Rev. No. (0) (1)

Area No.:

Area Name: All Areas

Page: 7 of 16

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.:

WP: WP1585.17

· Demonstrate compliance with the metals emissions criteria.

- Determine the emission rate of NO_x.
- Determine the stack concentrations of O₂, CO, and THC.
- Provide process information necessary to determine the suitability of the CBC in the destruction of red water.
- Demonstrate compliance with RCRA and other regulatory performance requirements.

17.5.1 Sampling Locations and Procedures

The locations where liquid and gaseous samples are collected are described in Table 17-2.

The sampling equipment, procedures, frequency, and methods for collecting samples at each point are summarized in Table 17-2. Process and stack gas sampling procedures are further described in the following section.

During the performance test, the stack gases will be sampled for the constituents listed below with the indicated sampling trains:

- Metals emissions using a multi-metals train (MMT)
- POHCs and PICs using a Modified Method 5 (MM5) sampling train and a volatile organic sampling train (VOST)
- HCl/Cl₂/particulate using an EPA Method 0050 (M0050) sampling train.

The CO, O_2 , NO_x , and SO_2 concentrations in the combustion gas will be continuously monitored using process CEMs. The stack gas will also be analyzed for CO_2 and O_2 by Orsat analysis during each run.

Performance Test Sample Collection Locations, Equipment, and Methods

Location	Description	Access	Equipment	General Procedure/Frequency ^a	Reference Methods ^b
Liquid Waste Feed Line	Red Water	Тар	Glass bottle	Grab sample at 30 minute intervals of each run, and composite by run	S004, SW846
Ash Discharge Chute	CBC Ash	Discharge Chute	Glass bottle, scoop	Grab sample at 30 minute intervals of each run, and composite by run	S004, SW846
Baghouse	Baghouse Ash	Baghouse Discharge	Glass bottle, scoop	Grab sample at 30 minute intervals of each run, and composite by run	S004, SW846
Stack	Combustion Gas	Port	MMT	Collect integrated samples for metals and moisture; measure stack gas velocity, pressure, and temperature; collect bag samples for Orsat oxygen (O ₂) and carbon dioxide (CO ₂)	EPA Method SW0010, EPA Method 0012, EPA Methods 1-5, EPA Guldance
Stack	Combustion Gas	Port	MM-5	Collect integrated samples for PICs, moisture, and dioxins and furans; measure stack gas velocity, pressure, and temperature; collect bag samples for Orsat oxygen (O ₂) and carbon dioxide (CO ₂)	SW0010, EPA Method 23, EPA Methods 1-5, EPA Guldance
Stack	Combustion Gas	Port	VOST	Four pairs of sorbent cartridges collected for volatile PICs	Method SW0030
Stack	Combustion Gas	Port	HCI sampling train	Collect integrated samples for particulates, HCI, CI ₂ and moisture, measure stack gas velocity, pressure, and temperature, collect bag samples for Orsat oxygen (O ₂) and carbon dioxide (CO ₂)	EPA Method 0050, EPA Methods 1-5
Stack	Combustion Gas	Port	Instrument sensor	Continuously monitor carbon monoxide and oxygen	Continuous nondispersive Infrared; continuous paramagnetic

*All samples from aborted runs will be archived.

*Prefix "S" refers to <u>Sampling and Analysis Methods for Hazardous Waste Combustion, EPA-600/8-84-002.</u> "SW" refers to <u>Test Methods for Evaluating Solid Waste,</u> SW 846, Third edition, September 1986.

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.:

WP: WP1585.17

17.5.2 Analytical Procedures

The analyses planned for each performance test sample are listed in Table 17-3. The samples from the MMT will be analyzed for antimony, arsenic, barium, beryllium, cadmium, chromium, lead, mercury, silver, and thallium.

The samples from the MM5 train will be analyzed for the compounds listed in Table 17-4 and the samples from the VOST will be analyzed for the compounds listed in Table 17-5.

17.5.3 Performance Test Protocol

17.5.3.1 Waste Characterization

Red water is the aqueous effluent generated during sellite purification of crude TNT. Red water has a deep red, or sometimes black, color and is a complex and somewhat variable mixture of solid inorganic salts and nitrobodies in water. Depending on the TNT production process and the degree of water recycle use, red water generally contains 15 to 30 percent solids, has a pH of 7 to 9.7, a heat content of 487 Btu/lb, and a specific gravity of 1.1. Approximately one-half of the solids are inorganic salts and the rest are nitrobodies. The typical chemical composition of the red water solids is presented in Table 17-6. The elemental composition of the red water is presented in Table 17-7.

17.5.3.2 Target Operating Conditions

The target operating conditions during the performance test are presented in Table 17-8 and described below.

CBC Temperature. The target CBC temperature is presented in Table 17-8.

Combustion Chamber Pressure. The maximum combustion chamber pressure is presented in Table 17-8.

Red Water Waste Feed Rate. The target liquid waste feed rates for the performance test are presented in Table 17-8. If red water is not available during the performance test, a

By: PO

Checked: PA

Approved: PA Date: 02/06/95 Performance Test Plan IT PCE Knoxville, Tennessee

noxville, Tennessee Rev. No. (0) (1) Area No.:

Area Name: All Areas

Page: 9 of 16

Table 17-3

Summary of Analytical Procedures and Methods

(Page 1 of 2)

Analysis	Sample Name	Test Sample Matrix	No. of Samples	Procedure Description	Reference Method ^b
Density	Red Water	Water	8	Gravimetric/volumetric	ASTM D-1429
Heat Content	Red Water	Water	3	Bomb Calorimeter	ASTM D-2015
Ash Content	Red Water	Water	က	Combustion in muffle furnace	ASTM D-482
Total Chlorine	Red Water	Water	ဇာ	Ion chromatography of residue	ASTM D-808/E-442
Moisture	Multi-Metals/Particulate	Stack condensate	က	Volumetric/gravimetric	EPA Method 4
	Chromium (Vł)	Stack condensate	3	Volumetric/gravimetric	EPA Method 4
	MM-5	Stack condensate	8	Volumetric/gravimetric	EPA Method 4
	M0050 Train	Stack condensate	8	Volumetric/gravimetric	EPA Method 4
Semivolatile Organics ^c	Red Water	Water	8	Extraction, GC/MS	SW 8270
	CBC Ash	Combustion Residue	၉	Extraction, GC/MS	SW 8270
	Baghouse Ash	Solid	ဧ	Extraction, GC/MS	SW 8270
	MM-5 Semivolatile	Stack condensate, impinger catches, XAD-2, filter, probe rinses	8	Extraction, GC/MS	SW 8270
Dioxins/Furans	MM-5 Semivolatile	XAD-2, probe rinses	စ	Extraction, concentration, GC/high resolution mass spectrometry	EPA Method 23, SW 8290, SW 3540
Metals	Red Water ^d	Water	3	Digestion, ICAP	SW3010/6010, SW 7470
	Metals Spike Solutions ^d	Water	6	Digestion, ICAP	SW3010/6010
	CBC Ash	Combustion Residue	8	Digestion, ICAP	SW3010/6010, SW 7470
	Baghouse Ash	Solid	3	Digestion, ICAP	SW3010/6010
	Multi-Metals/Particulated	Impinger catches, probe rinses, filter	8	Digestion, ICAP	SW3010/3050/6010, SW 7470
HCVCI ₂ Gas	M0050 Train	Impinger catches	8	Ion Chromatography	SW 846, EPA Method SW-9056
Particulates	Multi-Metals/Particulate	Probe rinse, filter	E	Gravimetric	EPA Method 5
o ₂ , co ₂	ORSAT sample	Stack gas	6	Integrated bag sample for. Orsat analysis	EPA Method 3

Table 17-3

(Page 2 of 2)

Analysis	Sample Name	Test Sample Matrix	No. of Samples	Procedure Description	Reference Method ^b
02	CEMs	Stack Gas	•	Continuous Monitor	Paramagnetic•
00	CEMs	Stack Gas	•	Continuous Monitor	Nondispersive infrared®

"QC samples are not included in the total.

The following abbreviations were used:

"ASTM" refers to American Society for Testing Material Standards.

"ASTM" refers to New Source Performance Standards, Test Methods and Procedures, Appendix A, 40 CFR 60.

"EPA" refers to New Source Performance Standards, Test Methods and Procedures, Appendix A, 40 CFR 60.

"SW" refers to New Source Performance Standards, Test Methods and Procedures, Appendix A, 40 CFR 60.

"SW" refers to Test Methods for Evaluating Solid Waste, SW 846, Third Edition, November 1986.

"SW" refers to Test Methods for Evaluating Solid Waste, SW 846, Third Edition, November 1986.

"The red water, CBC ash, and baghouse ash will be analyzed for POHCs; the MM5 semivolatile train samples will be analyzed for POHCs; the MM5 semivolatile train samples will be analyzed for POHCs.

in Table 17-4.

Metals limited to: Sb, As, Ba, Be, Cd, Cr, Pb, Hg, Ag, and TI

Metals limited to: Sb, As, Ba, Be, Cd, Cr, Pb, Hg, Ag, and TI

The CEM methods are found in 40 CFR 60, Appendix B, Federal Register, Volume 54 No. 206, October, 1989, and the Methods Manual for Compliance with the BIF Regulations Burning Hazandous Waste in Boilers and Industrial Furnaces, USEPA, December, 1990.

Table 17-4
Summary of Semivolatile Compounds for Analysis^a

Phenol	bis(2-Chloroethyl)ether	2-Chlorophenol
1,3-Dichlorobenzene	1,4-Dichlorobenzene	Benzyl alcohol
1,2-Dichlorobenzene	2-Methylphenol	4-Methylphenol
Hexachloroethane	bis(2-Chloroisopropyl)ether	N-Nitroso-di-n-propylamine
Nitrobenzene	isophorone	2-Nitrophenol
2,4-Dimethylphenol	Benzoic acid	bis(2-Chloroethoxy)methane
2.4-Dichlorophenol	1,2,4-Trichlorobenzene	Naphthalene
4-Chloroaniline	Hexachlorobutadiene	4-Chloro-3-methylphenol
2-Methylnaphthalene	Hexachlorocyclopentadiene	2,4,6-Trichlorophenol
2,4,5-Trichlorophenol	2-Chloronaphthalene	2-Nitroaniline
Dimethyl phthalate	Acenaphthylene	2,6-Dinitrotoluene
3-Nitroaniline	Acenaphthene	2,4-Dinitrophenol
4-Nitrophenol	Dibenzofuran	2,4-Dinitrotoluene
Diethyl phthalate	4-Chlorophenyl-phenylether	Fluorene
4-Nitroaniline	4,6-Dinitro-2-methylphenol	N-Nitrosodiphenylamine (1)
Benzo(g,h,i)perylene	Hexachlorobenzene	Pentachiorophenoi
Phenanthrene	Anthracene	Di-n-butylphthalate
Fluoranthene	Pyrene	Butyl benzyl phthalate
3,3'-Dichlorobenzidine	Benzo(a)anthracene	Chrysene
bis(2-Ethylhexyl)phthalate	Di-n-octylphthalate	Benzo(b)fluoranthene
Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene
Dibenzo(a,h)anthracene	4-Bromophenyl-phenylether	

^aThis list is the Semivolatile Target Compound List (TCL) for EPA's Contracts Laboratory Program.

Table 17-5

Summary of Volatile Compounds for Analysis^a

Chloromethane	Bromomethane	Vinyl chloride
Chloroethane	Methylene chloride	Acetone
Carbon disulfide	1,1-Dichloroethene	1,2-Dichloroethene (total)
1,1-Dichloroethane	Chloroform	1,2-Dichloroethane
2-Butanone	1,1,1-Trichloroethane	Carbon tetrachloride
Vinyl acetate	Bromodichloromethane	1,2-Dichloropropane
cis-1,3-Dichloropropene	Trichloroethene	Dibromochloromethane
1,1,2-Trichloroethane	Benzene	trans-1,3-Dichloropropene
Bromoform	4-Methyl-2-Pentanone	2-Hexanone
Tetrachloroethane	1,1,2,2-Tetrachloroethane	Toluene
Chlorobenzene	Ethyl benzene	Styrene
Xylene (total)	•	•

^aThis list is the Volatile Target Compound List (TCL) for EPA's Contracts Laboratory Program.

Table 17-6
Composition of Red Water Solids

Parameter	Weight Percent
Inorganic Salts	
Na ₂ SO ₃ - Na ₂ SO ₄	32.3
NaNO ₂	11.2
NaNO ₃	1.5
SUBTOTAL	55
Nitrobodies	
Sodium sulfate of 2,4,5-TNT	22.7
TNT-sellite complex	16.2
Sodium sulfonate of 2,4,3-TNT	7.6
Sodium sulfonate of 2,3,4-TNT	2.0
2,4,6-TNBA	1.0
White compound sodium salt	1.0
TNBAL	1.0
TNBOH	1.0
Sodium nitroformats	2.5
SUBTOTAL	55.0

Table 17-7
Red Water Elemental Composition

Parameter	Value
Carbon	3 Percent
Hydrogen	0.1 Percent
Oxygen	3.15 Percent
Nitrogen	0.95 Percent
Water	85 Percent
Chlorine	0.00 Percent
Sulfur	0.65 Percent
Ash	7.15 Percent

Table 17-8

Performance Test Operating Conditions

	Operating Conditiona	
Parameter	Test 1	Test 2
CBC temperature	1,500°F	1,700°F
Combustion chamber pressure	≤ -0.08 in. w.c.	≤ -0.08 in. w.c.
Red water feed rate	1.5 gpm	1.5 gpm
CBC auxiliary fuel flow	180 lb/hr	180 lb/hr
Combustion gas velocity (10 minute rolling average)	3,500 acfm	3,500 acfm

^a The values given in this table are estimates that may vary during the actual performance test. Test 1 is the low temperature DRE and organic PIC emissions tests. Test 2 is the high temperature metals test.

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.17

surrogate waste will be used. The composition of the proposed surrogate waste stream is presented in Table 17-9.

CBC Auxiliary Fuel Flow. Auxiliary fuel will be used as required to maintain the CBC temperature. No permit limits for auxiliary fuel are anticipated.

Combustion Gas Velocity. The target combustion gas velocity is presented in Table 17-8.

POHC, Metals, and Chlorine Feed Rate. The target organic chlorine, POHC, and EPA regulated metals feed rates will be determined during the preparation of the trial burn plan.

Performance Test Results. A performance test report will be prepared and submitted within 90 days of completion of the performance test. The performance test report will address each of the following topics:

- Quantitative analysis of POHCs in the waste feed The total POHCs in the waste feeds will be calculated and reported for each performance test run.
- Quantitative analysis of POHCs, HCl/Cl₂, metals, and PICs in the exhaust gas The concentrations and mass emission rates of POHCs, HCl/Cl₂, metals, and
 PICs in the exhaust gas will be calculated and reported for each performance test
 run.
- Computation of DRE DRE will be calculated and reported for each designated POHC based on the total POHC in the waste feeds and the POHC mass emission measured in the stack gas.
- Computation of HCl removal efficiency HCl removal efficiency, based on the
 total organic chlorine in the waste feeds and the HCl mass emission measured in
 the stack gas, will be calculated and reported for each performance test run.
- Computation of particulate emissions The concentration of particulate in the
 exhaust gas, corrected to 7 percent O₂, dry basis, will be calculated and reported
 for each performance test run.
- Identification of fugitive emissions The performance test report will include a discussion of fugitive emissions observed during the performance test. If

By: PO Checked: PA Approved: PA Date: 02/06/95 Performance Test Plan IT PCE Knoxville, Tennessee Rev. No. (0) (1)

Area No.:

Area Name: All Areas

Page: 10 of 16

Table 17-9
Surrogate Red Water Composition (15 percent solids in red water)

Paramater	Weight Percent
3,5-Dinitrobenzoic acid	7.8 Percent
Water	85 Percent
Na ₂ SO ₃	2.6 Percent
Na ₂ SO ₄	2.6 Percent
NaNO ₂	1.8 Percent
NaNO ₃	0.2 Percent

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.17

fugitive emissions are observed, how the fugitive emissions were brought under control or will be controlled in the future will be discussed.

- Temperatures and combustion gas velocity The performance test report will
 include a process parameter summary of the performance test operating conditions, including operating temperatures for the combustion chambers and the
 stack gas combustion gas velocity.
- CEM measurement of CO, O₂, and THC CEM measurements of CO, CO₂, O₂, THC, and NO_x concentrations in the stack gas will be provided in the performance test report. Calibration records for the CEM monitors will also be included.
- Other relevant performance test data The performance test report will include an incineration system process parameters summary and other relevant data required by 40 CFR 264.102 and to demonstrate compliance with performance warranties.

17.5.3.3 Proposed Permit Operating Conditions

The proposed permit operating conditions are presented in Table 17-10. These values may be modified during the detailed design of the CBC or the performance test.

Group A Parameters. The Group A parameters will be continuously monitored and interlocked with the AWFCO. These parameters, except for the ones indicated, will be demonstrated during the performance test and, therefore, will be disconnected during the performance test.

- Minimum CBC Temperature The proposed minimum CBC temperature is presented in Table 17-10. This value will be the average value demonstrated during Test 1, the low temperature DRE and PIC demonstration tests.
- Maximum CBC Temperature The proposed maximum CBC temperature is presented in Table 17-10. This value will be the average value demonstrated during Test 2, the high temperature metals emissions test.
- Combustion Chamber Pressure To prevent fugitive emissions, the CBC will be maintained at a lower pressure than the value listed in Table 17-10. This value is based upon engineering judgement and will not be demonstrated during the performance test.

By: PO

Checked: PA Approved: PA Date: 02/06/95

Table 17-10 **Proposed Permit Operating Conditions**

Parameter	Operating Condition ^a
Group A Parameters	
Minimum CBC temperature	1,500°F
Maximum CBC temperature	1,700°F
Maximum CBC pressure	-0.08 in. w.c.
Maximum red water feed rate	1.5 gpm
Maximum combustion gas velocity (10-minute rolling average)	3,450 acfm
Maximum stack gas CO concentration (1-hour rolling average, dry basis, corrected to 7% oxygen)	100 ppm
Group B Parameters	
POHC incinerability limits	To Be Determined ^b
Maximum chlorine feed rate	To Be Determined ^b
Maximum antimony feed rate	To Be Determined ^b
Maximum arsenic feed rate	To Be Determined ^b
Maximum barium feed rate	To Be Determined ^b
Maximum beryllium feed rate	To Be Determined ^b
Maximum cadmium feed rate	To Be Determined ^b
Maximum chromium feed rate	To Be Determined ^b
Maximum lead feed rate	To Be Determined ^b
Maximum mercury feed rate	To Be Determined ^b
Maximum silver feed rate	To Be Determined ^b
Maximum thallium feed rate	To Be Determined ^b
Group C Parameters	
Maximum combustion gas temperature after the quench	450°F

^aThe values given in this table are estimates that may vary during the actual trial burn. ^bTo be determined during the preparation of the Trial Burn Plan.

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.17

• Red Water Feed Rate - The maximum red water feed rate is presented in Table 17-10 and will be the maximum average value demonstrated during Test 1.

- Combustion Gas Velocity The proposed maximum combustion gas velocity is
 presented in Table 17-10. The combustion gas velocity is an indication of
 residence time in the CBC, which is related to DRE. Therefore, the maximum
 combustion gas velocity will be the maximum average value demonstrated
 during Test 1 of the performance test. A 10-minute rolling average is proposed
 for this value, to prevent spurious AWFCOs.
- Stack Gas CO Concentration The proposed maximum stack gas CO concentration is presented in Table 17-10. This permit limit will be a 1-hour rolling average, dry basis, and corrected to 7 percent O₂. The maximum stack gas CO concentration will not be demonstrated during the performance test.

Group B Parameters. The Group B parameters will not be continuously monitored and will not be interlocked with the AWFCO system. Operating records will be maintained to demonstrate compliance with these permit limits.

- POHC Incinerability Limits The POHC incinerability limit will be based on the POHCs selected during the trial burn plan preparation.
- Maximum Chlorine Feed Rate The maximum feed rate of chlorine will be the average value demonstrated during Test 1, the low temperature DRE and PIC demonstration tests.
- Metals Feed Rate The maximum feed rate for antimony, arsenic, barium, beryllium, cadmium, chromium, lead, mercury, silver, and thallium will be determined during the preparation of the trial burn plan.

Group C Parameters. The limits on Group C parameters are based on manufacturers' design and operating specifications. Group C parameters do not have to be continuously monitored and do not have to be connected to the AWFCO system.

• Combustion Gas Temperature After the Quench - To protect the equipment after the quench, the maximum gas temperature after the quench will be limited to the value presented in Table 17-10.

By: PO Checked: PA Approved: PA Date: 02/06/95

Performance Test Plan
IT PCE
Knoxville, Tennessee
Rev. No. (0) (1)

Area No.:

Area Name: All Areas

Page: 12 of 16

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.17

17.5.3.4 POHC Selection Rationale

During the preparation the trial burn plan, the POHCs will be selected.

17.5.3.5 Approach to Compliance with Metals Emission Limits

During the preparation of the trial burn plan, the approach to demonstrating compliance with the metals emission limits will be prepared.

17.5.4 Performance Test Organization and Responsibilities

The performance test will be conducted by personnel who are experienced in testing hazardous waste incinerators.

17.5.4.1 Incinerator Project Manager

The incinerator project manager will be responsible for all operational aspects of the test. His responsibilities include:

- · Preparing the CBC for the performance test
- · Preparing waste feed materials for the performance test
- Operating the CBC at planned test conditions
- Providing all CBC process data as required by the performance test
- Coordinating incinerator operation with the test team activities through communication with the performance test project manager
- Acting as a liaison between the regulatory observers and the performance test manager.

17.5.4.2 Performance Test Project Manager

The performance test project manager will be responsible for implementing and coordinating all aspects of the performance test. His responsibilities during the project will include:

- Implementing the performance test plan
- Implementing the quality assurance project plan (QAPP)

By: PO Checked: PA Approved: PA Date: 02/06/95 Performance Test Plan IT PCE Knoxville, Tennessee Rev. No. (0) (1) Area No.:

Area Name: All Areas

Page: 13 of 16

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.17

· Preparing and implementing a site H&S plan

 Coordinating incinerator operations and test activities with facility operators and the sampling team

- Monitoring incinerator operations to verify conformance with the performance test objectives.
- Acting as the focal point for communications between the sampling team, CBC operating team, and regulatory observers during the execution of the performance test program
- Deciding when a sampling run will be started, interrupted, or completed.

17.5.4.3 Quality Assurance Officer

The quality assurance officer's responsibilities during the performance test program will include:

- Assisting in preparation and implementation of the QAPP
- · Providing independent data review, both operational and analytical
- Making recommendations to the performance test project manager if problems are encountered
- Verifying that appropriate corrective actions are taken if any problems occur
- Reporting, and discussing quality assurance/quality control (QA/QC) activities, data, and results for inclusion in the performance test report.

17.5.4.4 Field Analytical Coordinator

The field analytical coordinator reports to the performance test project manager with lines of communication to the QA officer. The field analytical coordinator's responsibilities will include:

- Preparing and shipping sampling equipment, chemicals reagents, and containers to the test site
- Assigning and recording sample numbers

By: PO Checked: PA Approved: PA Date: 02/06/95 Performance Test Plan IT PCE Knoxville, Tennessee Rev. No. (0) (1)

Area No.:

Area Name: All Areas

Page: 14 of 16

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.17

- · Directing and/or participating in sampling activities
- · Overseeing sample preservation in the field
- Documenting sampling activities in a field logbook
- Preparing samples for shipment to the laboratory
- Carrying out assigned QA/QC duties
- Preparing a complete sampling report for inclusion in the performance test report.

17.5.4.5 Laboratory Analysis Coordinator

The laboratory analysis coordinator reports to the performance test project manager with lines of communication to the QA officer. His responsibilities will include:

- Coordinating specialized field sampling documentation (request for analysis forms, sample collection sheets, etc.)
- · Initiating chain-of-custody records
- Receiving, verifying, and documenting that incoming field samples correspond to the chain-of-custody records
- Maintaining records of incoming samples
- Tracking samples through processing, analysis, and disposal
- · Preparing project-specific QC samples for analysis during the project
- Verifying that laboratory QC and analytical procedures are being followed as specified in the QAPP
- Reviewing QC and sample data and determining if additional samples or repeat analyses are needed
- Submitting certified quality control and sample analysis results to the performance test project manager for all analyses requested for this test program
- · Archiving storage of analytical data

By: PO Checked: PA Approved: PA Date: 02/06/95 Performance Test Plan IT PCE Knoxville, Tennessee Rev. No. (0) (1)

Area No.:

Area Name: All Areas

Page: 15 of 16

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.17

 Preparing a complete analytical report for inclusion in the performance test final report.

17.5.4.6 Stack Sampling Coordinator

The stack sampling coordinator duties will report to the performance test project manager and have lines of communication to the QA officer. The stack sampling coordinator's responsibilities will include:

- Working with site personnel to obtain sampling locations and platform facilities that are appropriate for the planned stack sampling activities
- · Directing stack sampling activities
- Coordinating stack sample beginning and ending times with the performance test project manager
- Notifying the performance test project manager of any interruptions in the sampling activities and recommending corrective actions if necessary
- · Recording field test data required by the performance test plan
- Recording and transferring all performance test and QC samples to the laboratory analysis coordinator or his designee
- Preparing a thoroughly documented stack sampling report for inclusion into the final performance test report.

17.6 Air Pollution Control Equipment Operation

A complete description of the APCS equipment operation is presented in Section 2.7. The anticipated operating conditions during routine operation of the CBC are summarized in Table 17-11. The system temperatures, flow rates, and pressure drops will vary over a normal range during routine operation, and these fluctuations are expected to occur during the performance test.

By: PO Checked: PA

Approved: PA Date: 02/06/95 Performance Test Plan IT PCE Knoxville, Tennessee Rev. No. (0) (1)

Area No.:

Area Name: All Areas

Page: 16 of 16

Table 17-11

Air Pollution Control System Operating Ranges

Typical Operating Range
400-450°F
2.0-3.1 gpm
100-170 acfm
2,500-3,450 acfm

CONCEPTUAL DESIGN AND RELATED DOCUMENTS

18.0 BENCH-SCALE TESTING

U.S. Army Environmental Center Red Water Treatment Technology Test Plan and Site Preparation Aberdeen Proving Ground, Maryland

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.18

18.0 Bench-Scale Testing

18.1 Overview and Summary of Key Findings

Red water, a waste stream from the manufacture of TNT, contains between 15 and 30 percent solids, of which about 45 percent are sodium salts and 55 percent are sulfonated derivatives of TNT isomers. It is anticipated that treatment of red water in circulating or fluid-bed combustors will result in a buildup of molten sodium on the bed material. This buildup will have a tendency to cause common bed materials such as silica sand to agglomerate. Molten sodium causes bed particles to agglomerate, which increases the effective particle size and decreases the fluidization and dampening of effectiveness of incineration, resulting ultimately in failure of system.

This document presents the results of an initial treatability study using a surrogate red water solution, to further evaluate this potential problem. Actual red water, which is a RCRA-regulated hazardous waste, was not available for testing. Therefore, a laboratory prepared surrogate, which is not RCRA regulated, was used.

The testing utilized a bench-scale, 4-inch fluid bed system. The tests focused on agglomeration tendencies of two bed materials using surrogate red water was prepared to simulate concentrations of 15 and 30 percent solids. In addition, the test data may be used to evaluate the combustion efficiency and the nitrogen oxide (NO_x) and sulfur oxide (SO_x) levels generated.

The key findings of the tests are that the fluid bed agglomerated at a bed temperature of 745 to 804°C (1373 to 1840°F) irrespective of the bed material; the bed material purge rate was maintained high to minimize salt concentration in the fluid bed; NO_x generation indeed was high primarily due to the salt (sodium nitrate and sodium nitrite) present in the red water, limestone addition to the bed was not required due to the generation of low levels (sulfur dioxide (SO₂); carbon monoxide (CO) and total hydrocarbon (THC) concentrations reduced as the bed temperatures increased; and salt precipitation in the surrogate red water solution was a challenge.

By: PA

Checked: BS/SKZ Approved: PA Date: 07/07/95 Bench-Scale Test Plan IT PCE Knoxville, Tennessee Rev. No. (0) (1)

Area No.:

Area Name: All Areas

Page: 1 of 8

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.: WP: WP1585.18

18.2 Test Procedures and Observations

18.2.1 Test Objectives

The objective of these tests was to evaluate bed agglomeration associated with circulating bed incineration of red water. Due to the presence of salts in the red water, a tendency for bed material to agglomerate may exist. Based on the study presented in Chapter 3.0, several materials were evaluated for their use in fluidized beds. These materials include alumina, zircon, clay, limestone, dolomite, gypsum, coal ash, and blast furnace slag. At this time, the two most promising bed materials are alumina and zircon sand with limestone as an additive for acid gas absorption. The test program evaluated agglomeration of sodium salts on these materials.

18.2.2 Waste Characteristics

Because actual red water was not available for testing, a surrogate material was used for the test program. Several surrogate materials such as nitrobenzene, dinitrobenzene, and 3,5-dinitrobenzoic acid were considered as potential candidates. The primary criteria for the selection of the surrogate material are the toxicity of the material itself and the carbon to nitrogen dioxide (NO₂) (C:NO₂) ratio to be as close to 2,4,6-TNT, the primary component of the actual red water. 3,5-Dinitrobenzoic acid substituted for the 2,4,6-TNT because this material is the least toxic of all the materials considered and this compound has a C:NO₂ ratio of 2.3, which is the same for the 2,4,6-TNT. The components that were used to prepare the surrogate red water are listed in Table 18-1. The anticipated elemental composition of the surrogate red water is presented in Table 18-2. The average heating value of the red water and for the surrogate red water is 487 Btu/lb and 479 Btu/lb, respectively.

A sufficient quantity of surrogate red water was prepared to allow 2 days of testing (8 hours/day) at a feed rate of approximately 1.0 liter/hour. Two tests were conducted using surrogate red water with 15 percent solids, and two tests were to be conducted using surrogate red water with 30 percent solids. The 15 percent solids test case is the design basis for the pilot-scale unit and the 30 percent solids test case is the worst-case concentration from a salt concentration and thermal input view point.

By: PA

Checked: BS/SKZ

Approved: PA Date: 07/07/95 Bench-Scale Test Plan IT PCE Knoxville, Tennessee Rev. No. (0) (1)

Area No.:

Area Name: All Areas

Page: 2 of 8

Table 18-1

Anticipated Composition of Two Surrogate Red Water Matrices

	Solids Co	ncentration ^a
Component	15% Solids Matrix	30% Solids Matrix
Water	85	70
3,5-Dinitrobenzoic acid	7.8	15.7
Sodium Sulfite	2.6	5.1
Sodium Sulfate	2.6	5.1
Sodium Nitrite	1.8	3.6
Sodium Nitrate	0.2	0.5
Total	100	100

^aPercent by weight.

Table 18-2

Anticipated Elemental Composition of the 15% and 30% Solids Surrogate Red Water Matrix

	3,5-Dinitrobenzolo Acid	Water	Na ₂ SO ₃	Na ₂ SO ₄	. NaNO ₂	NaNO3	Surrogate Mkture
%C	39.63	0.00	00.00	0.00	0.00	0.00	3.12
% H ₂	1.90	0.00	0.00	0.00	00.0	0.00	0.15
% 0 ²	45.26	0.00	0.00	0.00	00'0	00:0	3.58
% N ₂	13.21	0.00	00'0	00.00	0.00	0.0	1.04
% Water	0.00	100.00	0.00	00.0	00.00	0.00	85.00
% CL	0.00	0.00	00'0	0.00	0.00	00:0	0.00
s %	0.00	0.00	0.00	0.00	00.00	0.00	0.00
% BR	0.00	0.00	0.00	00'0	00.00	00'0	0.00
%Р	0.00	0.00	00.0	0.00	0.00	0.00	0.00
% SALT	0.00	0.00	00'0	00.00	00.0	0.00	0.00
% Ash	0.00	0.00	0.00	0.00	00.00	0.00	0.00
% inert	0.00	0.00	100.00	100.00	100.00	100.00	7.14
Total	100	100	100	100	100	100	100
lb/hr	65.0	702.1	21.1	21.1	14.7	2.0	826
Btu/lb	6,084.4	0.0	0.0	0.0	0.0	0.0	478.5
Surrogate Weight (%)*	7.86	85	2.6	2.6	1.78	0.24	100
Surrogate Weight (%)**	15.73	70	5.1	5.1	9.6	0.5	100

Assumptions:

3,5-Dinitrobenzoic acid is spiked to provide the NO₂ in the surrogate mixture.
• - 15 percent solid content in the surrogate mixture
• - 30 percent solid content in the surrogate mixture

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.18

Of the 15 percent solids, sodium salts accounted for 7.2 percent and the balance of 7.8 percent was the surrogate compound, 3,5-dinitrobenzoic acid. Initially, a salt solution was prepared by dissolving known quantities of salts (refer to Tables 18-1 and 18-2 of test plan) in water.

When the dinitrobenzoic acid was slowly added to the salt solution, in a stirred container, brownish colored fumes were generated. The brownish colored fumes are due to the formation of NO₂ due to the following reaction:

$$NO_3^- + e^- \rightarrow NO_2 \uparrow (brown) + H_2O$$

To avoid fuming, dinitrobenzoic acid was neutralized externally by one normal caustic solution and the resultant solution was mixed with the salt solution. Neutralization of the benzoic acid solution prior to its blending with the salt solution produced the reaction below as evidenced by the lack of brown fumes:

$$R$$
-COOH + NaOH $\rightarrow R$ -COO $\overline{}$ Na $\overline{}$ + H_2O

Although fuming was avoided, some undissolved salts precipitated at the bottom of the feed container. As the testing continued, the feed solution changed its color (from deep red to brown) upon exposure to ambient air and more salt precipitation occurred. Due to the challenges discussed above, a solution containing 30 percent dissolved solids was not prepared.

Red water is thought to derive its color from sulfonate adducts of the various trinitrotoluene isomers that are formed when sodium sulfite is added to the TNT during the purification processes. The sulfite reacts with the isomers of TNT (but not 2,4,6-TNT) and forms the sulfonate adducts that are easily separated from the process during product crystallization. The sulfonate compounds are sufficiently soluble to allow separation of them from 2,4,6-TNT with washings. Solutions of these washings are the sodium salts of the organic sulfonates and are characteristically red in color. This same red color is observed in the surrogate red water mixture used in the test. The color is apparently due to the formation of benzoic acid sulfonate. However, the red color formed initially upon mixing the components of the red water surrogate slowly degrades to a brown colored solution. The disappearance of the

By: PA

Checked: BS/SKZ

Approved: PA Date: 07/07/95 Bench-Scale Test Plan IT PCE Knoxville, Tennessee Rev. No. (0) (1) Area No.:

Area Name: All Areas

Page: 3 of 8

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.18

characteristic red color indicates that the nitrosulfonate derivative has probably further reacted to form a sulfone and can probably be abated with the use of an elevated pH;

$$R-SO_3^- - Na \xrightarrow{+} R-SO_2 \downarrow (brown or yellow) + NaOH$$

This reaction scheme should be regarded as tentative, but will be useful in the continuing consideration of the testing of this mixture as an appropriate surrogate for red water.

Because the presence of undissolved salts in the feed solution caused plugging problems in the feed tubing and increased agglomeration potential during testing, it is recommended that the actual red water containing no suspended salts be used during pilot-scale testing.

18.2.3 Test Equipment

The test unit (Drawing No. D-00-00-03) was a 4-inch-diameter, bench-scale, fluid-bed reactor which approximately simulates a CBC. The tests were conducted at Hazen Research facility at Golden, Colorado on February 22 and 23, 1995. The bench-scale combustor was an existing unit that has been used in several similar research efforts. This fluid bed combustor has been shown to be a reasonable simulation of a CBC unit. The exhaust gas passed through a cyclone and a bag house for particulate collection and into a caustic scrubber for acid gas capture. A slip stream of the exhaust gas was sent to a CEM unit for analysis of gas composition. Concentrations of O₂, CO₂, CO, SO_x, NO_x, and THC were measured by the CEM.

18.2.4 Feed/Ash/Stack Gas Sampling and Analysis Plan

The surrogate red water was prepared using commercial-grade materials per the recipe presented in Table 18-1. Bed overflow (ash) samples were collected for particle size distribution and sodium analyses. The bed material from each test was sampled and analyzed for mineralogy. The sample analysis and analysis procedures for the tests are presented in Table 18-3. The stack gas was analyzed for O_2 , CO_2 , CO, NO_x , SO_x , and THCs. Based on discussions in Chapter 3.0, NO_x emissions may be high due to the conversion of "nitro" molecules into NO_x . During the testing, the stack gas was observed for visible (brown to red color) NO_x emissions. Table 18-4 presents the model numbers and ranges for the CEM analyzers.

By: PA Checked: BS/SKZ Approved: PA Date: 07/07/95 Bench-Scale Test Plan IT PCE Knoxville, Tennessee Rev. No. (0) (1)

Area No.:

Area Name: All Areas

Page: 4 of 8

Drawing No. D-00-00-03 4-Inch Fluid Bed Reactor System

Table 18-3
Sample Analysis Procedures

Sample Matrix	Determination	Procedure
Surrogate Red Water	Elemental Composition	Mathematical Calculation ⁶
Fluid Bed Overflow Material	Particle Size Distribution	Sieve Screen Analysis
Fluid Bed Overflow Material	Sodium Content	Flame Atomic Absorption
Final Bed Material	Mineralogy	X-Ray Deffraction
Offgas	0 ₂ , CO ₂ , CO SO ₂ NOx	EPA Method 3A EPA Method 6C EPA Method 7E
	THC	EPA Method 25A

^aNote: The surrogate composition was calculated based on the recipe used for formulation.

Table 18-4

Model Numbers and Ranges of Continuous Emissions Monitors

Parameter	Model Number	Range (%) [ppm]
Oxygen	Infrared Industries Model 2000	0 to 1
		0 to 10 0 to 25
Carbon Dioxide	Infrared Industries	0 to 20
		0 to 100
Carbon Monoxide	Beckman Model 864	[0 to 500]
		[0 to 5,000]
Sulfur Dioxide	Thermo Electron Pulsed Fluorescence	[0 to 50]
	Model 40	[0 to 100]
		[0 to 500]
		[0 to 1,000]
		[0 to 5,000]
Nitrogen Oxides	Beckman Model 951A	[0 to 10]
		[0 to 25]
		[0 to 100]
		[0 to 250]
		[0 to 1,000]
		[0 to 2,500]
		[0 to 10,000]
Total Hydrocarbon	Thermo Environmental	[0 to 100]
		[0 to 1,000]
		[0 to 10,000]

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO: 322243

SPEC. NO.: WP: WP1585.18

18.2.5 Test Plan and Test Discussion

The tests were conducted at a solids concentration of 15 percent on each of the two selected bed materials. Aluminum oxide and zircon silicate were used as primary bed materials.

After some initial testing, it was evident that the fluid bed incinerator could not be operated at 870°C (1600°F) due to bed material agglomeration. The SO₂ generation was so low that the lime injection to the bed became unnecessary.

During the first day of tests, all the tests were conducted using zirconia sand as the bed material. Base Case 1 (Table 18-5) was conducted at a bed temperature of 645°C (1193°F) using salt solution alone. Base Case 2 was conducted at test conditions same as in Base Case 1, except surrogate solution was used. The NO_x concentration for these cases were about the same while the CO, THC, and CO₂ concentrations were higher for Base Case 2 due to the combustion of the surrogate compound. The remaining tests were conducted using surrogate solution at increasing bed temperatures. the system operated well at bed temperature of 692°C (1278°F) and 745°C (1373°F). During these testings, the bed purge rate was maintained approximately the same as the bed feed rate to maintain a low salt concentration in the bed. The test results for the aforementioned tests are presented in Table 18-5.

During the second day of tests, the tests were repeated using alumina as the bed material. The results were similar to ones with zirconia sand as the bed material. Defluidization did not occur even at a bed temperature of 804°C (1480°F). The CO and THC concentrations were lower for alumina compared with zirconia sand as the bed material. Because alumina is lighter than zirconia sand, more bed material entrained causing better mixing of the solids with gases improving combustion conditions. The test results for these tests are presented in Table 18-6.

18.3 Summary of the Test Results and Potential Impact on Conceptual Pilot-Plant Design

18.3.1 Mass Balance Across the System

The objective of the mass balance applied on the fluid bed was to reproduce test conditions and ascertain the accuracy of the test data. In addition, the mass balance allows the calcula-

By: PA

Checked: BS/SKZ

Approved: PA

Date: 07/07/95

Bench-Scale Test Plan IT PCE Knoxville, Tennessee

Rev. No. (0) (1)

Area No.:

Area Name: All Areas

Page: 5 of 8

Table 18-5

Summary of Bench-Scale Fluid Bed Testing (Zirconia sand as bed material) Testing on February 22, 1995

									-	Gas Con	Gas Composition		
Bed Material	Test Number	Feed Materiat	Feed Rate (g/min)	Bed Temp.	Test Time (hrs.)	Bed Feed Rate (g/min)	Bed Product (g/min)	(_R udd)	SO ₂ (pbm ^d)	CO (bmdd)	THC (ppm*)	°(%)	°20 (%)
Zirconia Sand	Base Case 1	Saft Only	8.0	645	5:1	51.0	51.7	1840	6	ဗ	0	20.5	0.0
Zirconia Sand	Base Case 2	Surrogate	8.8	652	6.	63.0	53.3*	1768	6	464	ro.	19.8	6:0
Zirconia Sand	Test 1	Surrogate	0.6	692	1.0	51.9	51.3	1773	60	407	0	19.7	1.0
Zirconia Sand	Test 2	Surrogate	6.8	745	9.5	54.7	34.2	2040	. 60	258	0	19.7	1.0
Zirconia Sand	Test 3	Surrogate	8.4	277	0.5	ŀ	,	•	Deflu	Defluidization Occurred	urred	•	•
Average Value	'alue"		8.8			53.2	46.2	1860	8	376	1.7	19.7	1.0

Notes: "visible carbon in ash, surrogate - 15% dissolved solids, no limestone added to the fluid-bed incinerator. "Average of Base Case 2, Test 1 and Test 2 values.

Table 18-6

Summary of Bench-Scale Fluid Bed Testing Testing on February 23, 1995 (Alumina as bed material)

										Gas Composition	rposition		
Bed Material	Test Number	Feed Material	Feed Rate (g/mln)	Bed Temp., (°C)	Test Time, (hrs.)	Bed Feed Rate, (g/mln)	Bed Product (g/mln)	(mdd)	SO ₂	(pudd)	THC (ppm")	%%	°%)
Alumina	Base Case 1	Salt Only	8.7	645	1.5	36.3	33.4	1746	8	9	0	20.5	0.0
Alumina	Base Case 2	Surrogate	7.5	920	ē.	40.3	33.2**	1500	81	290	-	19.0	0.8
Alumina	Test 1	Surrogate	8.9	697	1.0	43.0	38.5	1894	2	347	-	10.7	1.0
Alumina	Test 2	Surrogate	7.7	745	6.0	43.5	68.0	1633	2	189	0	19.0	0.7
Alumina	Test 3	Surrogate	7.9	804	9.0	47.8	48.3	1628	8	26	0	20.0	0.8
Average Value ^b	alue		8.1			42.2	42.3	1680	2	171	9.0	20.0	0.7

Notes: **No carbon visible in ash, surrogate with 15 percent dissolved solids used; no limestone added to the Incinerator. Average of Base Case 2, Test 1, 2 and 3 values.

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.18

tion of nonmeasured values, i.e., percent particle entrained in the combustion off-gas. Mass balance values for the steady-state operation are presented in Table 18-7. The operational data presented in Tables 18-5 and 18-6 were used in the mass balance. Among other parameters, the input of surrogate red water solution feed rate and composition, fluidization air rate were the starting point of the mass balance.

The feed rates and the composition were used in the mass balance, and CEM values such as NO_x, SO₂, CO, CO₂, and O₂ were duplicated. Based on the values presented in Table 18-7, the calculated values agreed very closely with the CEM-measured values indicating a good mass balance closure for a short test. With a good mass balance, the values discussed in this report are considered reliable.

18.3.2 Bed Agglomeration and Bed Material Purge

Defluidization due to bed material agglomeration occurred for zirconia sand at a bed temperature of 772°C (1420°F) and for alumina at a bed temperature of greater than 804°C (1480°F), respectively. The premature agglomeration of the fluid bed was primarily due to the low melting point of salts. These molten salts provided a glue for the bed material particles to stick together forming balls of bed material causing defluidization. The agglomeration potential greatly increased due to the precipitation of additional salt in the surrogate red water solution upon its exposure to the ambient air. This observation was made during the 2-day testing.

The actual red water does not contain suspended salt particles. Therefore, it is recommended that the actual red water instead of surrogate red water solution be used during the pilot-scale testing to minimize agglomeration potential. Also, even if the balls of bed material are formed, a full-scale CBC will provide greater opportunity for additional break up of large agglomerates compared to a bench-scale fluid bed incinerator.

The bed material purge rate was maintained approximately equal to the bed material feed rate to maintain a low (1 percent) salt concentration in the fluid bed to minimize agglomeration potential. This mode of operation may be uneconomical unless the purged solids are processed to remove salts and then recycled.

By: PA

Checked: BS/SKZ

Approved: PA

Date: 07/07/95

Table 18-7

Summary of Surrogate Redwater Test Results

		8	w/Zirconia Sand	pue				W/W	w/Ahrmina		
Parameter (measured/calculated)	Base Case 1	Base Case 2	Test 1	Test 2	Average*	Base**	Base Case 2	Tact 1	Tool	Total	
Theoretical Oxygen Demand (g/min)	00.00	0.50	0.52	0.52	0.54	000	****		1001	2 1691	Average
Porcent Combustion Efficiency (personal)	0.007			700	5	0.00	0.44	0.52	0.45	0.46	0.47
Talcall Compositori Elikierky (percent)	100.0	95.6	9.96	97.8	96.7	100.0	6.96	97.1	98.2	99.7	98.0
Percent Organic N ₂ to NO ₂	0.0	19.6	13.0	21.5	18.0	0.0	17.9	17.2	16.9	28.0	40 5
Percent Oxidation	100.0	99.6	100.0	100.0	100	100.0	6.66	1000	1000	100	0.04
Combustion Air Flow (g/min)	76.09	58.70	54.35	54.35	55.80	82.61	58.70	54.35	54 35	0.00	200
Percent Inorganic SO2 to Off-Gas	0.25	0.20	0.20	0.20	0.20	0.20	0.15	0.14	41.0	0 44	20.13
Percent of Bed Material Entrained in Off-Gas	0.00	0.55	2.40	38.50	13.82	9.50	18.80	11.90	000	5 6	7.7
Percent Salts Entrained in Oil-Gas	0	0	0	0	0	0	0	0	-	6	: -
CEM O ₂ (% dry volume) Calculated O ₂ (% dry volume)	20.5	19.8	19.7	19.7 19.7	19.7	20.5	19.9	19.7	19.9	20.0	19.9
CEM CO ₂ (% dry volume) Cakculated CO ₂ (% dry volume)	0.0	0.9 0.0	1.0	1.0	0.1	0.0	8.0	0.5	0.7	0.8	0.8
CEM NO, (ppm dry volume) Calculated NO, (ppm dry volume)	1,840	1,768 1,768	1,773	2,040	1,860	1,746	1,500	1,894	1,633	1,626	1.663
CEM SO ₂ (ppm dry volume) Cakculated SO ₂ (ppm dry volume)	ოო	ဗဗ	၉၉	ဗဗ	ကက	22	00	00	200	2 2	200,
CEM CO (ppm dry volume) Calculated CO (ppm dry volume)	90	464	407	258 258	376 377	90	290 290	347	189 189	នន	213
CEM THC (ppm wet volume) Calculated THC (ppm wet volume)	00	လလ	00	00	88	00			00	00	

Notes:

*The average does not include Base Case 1. *Base Case 1 contains Salt Solution only. CEM - Continuous Emission Monitoring.

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.18

If the circulating bed operating temperature cannot be increased greater than 1480°F to avoid agglomeration of the bed, the solids and gas residence time in the CBC may have to be increased to more than 2 seconds to meet the DRE requirement of 99.99 for the surrogate material.

18.3.3 NO, Generation

The two sources of NO_x during the tests were a) thermal decomposition of $NaNO_2$ $NaNO_3$ and b) organic N_2 present in the surrogate red water solution. The NO_x formation was approximately the same when salt solution alone and surrogate solutions were incinerated. This result indicates that primarily the Na salts thermally decomposed to NO_x and molten sodium while a fraction of 18 to 19.5 percent of the organic-nitrogen converted to NO_x . based on the test results, the emission of NO_x for the pilot unit will be 69 tons per year (refer to attached calculations), which is well below the 250 tons per year PSD limit for new sources; however, the limit is site-specific.

18.3.4 SO, Generation

Because the surrogate red water and bed material did not contain any elemental S, SO₂ generation was due to the thermal decomposition of Na salts. At the incineration temperatures, during testing, NA sulfites and Na sulfates did not decompose to SO₂ significantly. The SO₂ formation was in the range of 2 to 3 parts per million (ppm), and therefore, limestone as an additive for acid gas absorption was not injected to the incinerator during testing. Based on the test results, the emission of SO₂ for the pilot unit will be 62 tons per year (refer to attached calculations).

18.3.5 CO, CO, and THC Concentrations in the Incinerator Off-Gases

The only source of carbon in the surrogate red water solution was 3,5-dinitrobenzoic acid, the surrogate compound; no other feed material introduced to the fluid bed contained carbon source. The measured THC value and the presence of carbon in the bed and cyclone product (B&CP) indicate incomplete combustion of the carbon in the surrogate compound. For all the tests, the combustion efficiency was in the range of 98 to 99 percent. The presence of fixed carbon in the B&CP may be due to the presence of molten sodium in the B&CP; localized pockets or balls of bed material coated with molten sodium may have produced inadequate

By: PA Checked: BS/SKZ

Approved: PA Date: 07/07/95 Bench-Scale Test Plan IT PCE Knoxville, Tennessee Rev. No. (0) (1)

Area No.:

Area Name: All Areas

Page: 7 of 8

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.18

mixing in the fluid bed. Additionally, the absence of the dynamics of a very well mixed bed as present in a full-scale CBC also contributes to inefficient combustion.

18.4 Conclusions

The following conclusions were drawn based on the bench-scale fluid bed incineration testing using the surrogate red water:

- Defluidization occurred due to agglomeration at a fluid bed temperature of 645 to 804°C using zirconia sand and alumina as bed materials. The premature agglomeration of the fluid bed was primarily due to the melting of the low melting salts in the feed solution. Therefore, the importance of the bed material was not realized in the tests. An average salt concentration of less than 1 percent should be maintained in the purged solids to avoid agglomeration.
- Actual red water containing minimal to none salts precipitate be used instead of surrogate red water solution for the CBC pilot tests.
- NO_x generation was primarily due to the thermal decomposition of Na nitrites and nitrates while a small fraction of NO_x was formed due to the surrogate compound. Based on the test results, the estimated emission of NO_x for the pilot unit is 69 tons per year, which is well below the 250 tons per year PSD limit for new sources, but the limit is site specific. Percent organic N₂ converted to NO_x was in the range of 18 to 19.5 percent.
- SO₂ formation was minimal at 2 to 3 ppm. At the incineration temperatures tested, Na sulfites and Na sulphates did not decompose into SO₂ significantly. Limestone injection as an additive for acid gas absorption was not required during testing. Based on the test results, the estimated emission of the SO₂ for the pilot unit will be 62 tons per year.
- Despite the poor mixing of the bed solids and the incinerator off-gases due to agglomeration, the combustion efficiency for all the tests were in the range of 98 to 99 percent.

By: PA Checked: BS/SKZ

Approved: PA Date: 07/07/95

Area No.:

Area Name: All Areas

Page: 8 of 8

	oject <u>USAEC</u> -CBL NO _X Emission	Sheet No of Proj. No322243
OBJECTIVE: Petermine	NOX emission from CBC based	L Redwater Survegate Test.
REFERENCE: (1) Calculation	Set#1 Fages 1 of 1 1/3/95 wrogate Test.	
METHODOLOGY:	urrogate Test.	
NOX emiscion nitrogen in the m	in CBC is from three sources raste, and G In-Dragan & nitroge NOx = 0.38 16/hr/	Set #1 Pag Aufi)
	$VaNO_3$) = 1.26+1.01 = 10 itrogen in the waste. / nitroge	
ledwater	feed vate to CBC = 826. 16/hr Vitrogen Feedvate = 826 16/hr 7	
Maximum to NOx Conversion	n NOx is when 100% of or. However, ohe redustre test de	roganic nitures is converted emonstrated that 19.5%. NO2
	$6n = \frac{7.8515N_2}{hr} = \frac{2 \times 96}{28} + \frac{1}{28}$	 /
	/hr + 10.27 15/hr + 5.03 15/1 1.68 15/hr * 8760 hr/yr = 137,3	

L

By SKZ Date 4/3/1995 Subject USAEC - CBC	Sheet No. 1 of 2
Chkd. ByDate	Proj. No. <u>322243</u>
<u> </u>	
DAICTIVE.	
OBJECTIVE:	incineration & reduct
Determine SOz omission from the based on Survogate Redwater Test.	Themevalled of reasons,
REFERENCES:	7 - 7
- SOZ Emission from CBC by s	KZ 1/22/14 Set#3
- SOZ Emission from CBC by s - Surrogate Redwater Test.	<u> </u>
Mesho do logy:	
- 502 emission is formed from 2 so	urus, organic & in-organiz
- SO2 emission is formed from 2 se sulfur.	, 0
- 502 from organiz sulfur = 10.	117 13 (Nr.)
- SOzfrom in-organiz sulfur = 10.	516 , 224 3 41 16/14
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	+ 2121
Total 502 formed = 10.719 14hr + 3.6	51 19hr = /14.33 15/hr/
$= \frac{14.38 \text{ls}}{\text{hr}} = \frac{15 \text{mole}}{64 \text{ls}} = \frac{\text{hr}}{136.7 \text{lsm}}$	= 1638 ppm dry
0 1 54 51 do 1 136.7 15m	+
the above is for 15%. Solids in Redwa	icu
B) SQ emission for 30% Solids	
	116 - 287 16/hr
502 emission = 14.33 14hr * 30% 5	olids
	@ 3276 ppm dry td.

	\
(11	•
4	
	_

_ Date Subject USAEC _ Date Lime Cons	c-cBC sumption	Sheet No. 2 of 2 Proj. No. 3222 43
 Lime Consumption	-	
From Set #3 Page 3 of.	3, 1, 5 KZ = 1/22/93	5 - 88 H CaO
Normal line consumption = 14.	3316 502 0.88 16 C	$\frac{15 \text{ SO}_2}{\delta_2} = \frac{12.6 \text{ 15/hr}}{15}$

CONCEPTUAL DESIGN AND RELATED DOCUMENTS

19.0 HAZOP ANALYSIS

U.S. Army Environmental Center Red Water Treatment Technology Test Plan and Site Preparation Aberdeen Proving Ground, Maryland

KN\1585\WP1585\02-06-95\D12\E1

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.19

19.0 HAZOP Analysis

Introduction

A hazard and operability study (HAZOP) was conducted of the proposed circulating bed combustor pilot facility to be initially installed at the RAAP facility in Radford, Virginia. The study was based on information depicted on process flow diagram D-00-10-001 REV.A and preliminary process and instrument drawings (P&IDs) D-20-11-001,002 REV. A and D-50-11-001 REV. A. Additional information in this conceptual design report pertaining to the process operating procedures and controls were reviewed and used to develop recommendations for the study. Material and chemical hazards from red water and other feeds and byproducts were evaluated based on material safety data sheet information for 2,4,6-trinitrotoluene, sodium nitrite and sodium nitrate salt solutions, and aluminum oxide.

Methodology

A conventional HAZOP technique was used to identify potential modes of failure, describe the consequences of these failures, and determine existing design safeguards to prevent or mitigate the consequences. Additional safeguards are proposed where potential failures have a relatively likely chance to occur and few existing safeguards are present. These proposed recommendations are listed as action items in Table 19-1 of this report. Immediately following the action table, Table 19-2 is a detailed listing of the potential failure modes (such as high temperature) and potential consequences (i.e., damage to refractory) for each flow stream of the system. Safeguards, such as high temperature alarms that are interlocked to shut down the system, are listed in Table 19-2 for each failure mode.

Study Recommendations

There are 40 recommendations to eliminate or mitigate the consequences of potential failures due to control system failures, wear and tear, human error, malfunctioning equipment, and natural events such as freezing weather. Control system failures amounted to 24 recommendations to consider providing additional monitoring of control parameters for system temperatures, flows, bed depth, and pH control. Maintenance items accounted for nine recommendations to consider programs and procedures to inspect for leaks, develop added emergency plans and regulate operations of heavy equipment. Equipment failures accounted for three

By: JL Checked: JF Approved: PA

Date: 02/06/95

HAZOP Analysis IT PCE Knoxville, Tennessee Rev. No. (0) (1) Area No.:

Area Name: All Areas

Page: 1 of 2

Table 19-1

HAZOP Analysis Recommendations

(Page 1 of 3)

Reference Number	Priority	Action	Responsibility	Status
001		Consider adding low temperature alarm to TIT-206A&B (Item 1.1)	11	TSL-206 and TAL-206 to be added to alarm on low temperature
002		Check consequence of auxillary fuel increase to keep up with drop in temperature. Consider adding maximum flow rate alarm (tem 1.1)	Į.	FSL-205 and FAL-205 add to alarm on high flow
800		Consider adding precedure to lock open block valves except for maintenance (Item 1.2)	IT/USAEC	
004		Consider adding low flow alarm to FE-205 (Item 1.2)	П	Alarms sufficient to determine source of malfunction
005		Consider use of 316 stainless steel piping (Item 1.4)	IT/USAEC	
900		Consider heat trace for this line (Item 1.5)	IT/USAEC	
200		Consider procedure to test feed stream composition (Item 1.8)	IT/USAEC	
800		Consider active inspection program and preventive maintenance of feed lines (Item 1.9)	IT/USAEC	
600		Consider specifying drip pans for drain valve (Item 1.9)	IT/USAEC	
010		Consider restricting heavy equipment from areas near pipeline (Item 1.10)	IT/USAEC	
011		Consider adding redundant level controls for bed (Item 2.1)	ΤI	No action. Current controls indicate bed condition
012		Consider adding controls to allow CCS operator to regulate feed rates of bed materials and limestone (Item 2.1)	F	Operator to adjust during shakedown and start-up
013		Consider speed alarm for motor on H-2005 (Item 2.2)	Ħ	No action. Alarm will not identify all sources of malfunction
		See 2.1 (Item 2.3)		

Table 19-1

(Page 2 of 3)

Reference Number	Priority	Action	Responsibility	Status
014		Consider regular Inspection and preventive maintenance program (Item 2.8)	IT/USAEC	
		See 1.8 (Item 2.9)		
		See 2.1 (Item 2.10)		
015		Consider adding speed control monitor for H-2001 in CCS (flem 2.10)	E	Same as 013
		See 2.1 and 2.2 (flem 2.11)		
016		Consider pH monitoring for acid gases (Item 2.14)	IT/USAEC	HCI monitoring should be considered
017		Consider monitoring of salt in ash variation with flow (Item 2.14)	IT/USAEC .	
018		Consider check of gas supply quality (Item 3.5)	IT/USAEC	
019		Consider specifying filter for natural gas supply (Item 3.8)	IT/USAEC	
020		Consider developing preventive maintenance procedure (Item 3.9)	IT/USAEC	
		See 1.10 (Item 3.10)		
021		Consider regular maintenance procedure for filter (Item 5.8)	IT/USAEC	
022		Consider review of control method for this stream (Item 6.1)	IT	Change signal source to TY-206. Add explanatory note
023		Consider review of control method for this stream (Item 6.2)	IT	See 022
024		Consider GCS indication of speed control for H-2001 (Item 7.1)	. 11	Add temperature alarm. See 025
		See 2.1 (Item 7.2)		
025		Consider temperature sensor on H-2001 body or water jacket (Item 7.4)	ŢI	Add high temperature alarm to TIT-210
026		Consider special procedures for handling ash to avoid worker exposure (Item 7.8)	IT/USAEC	

Table 19-1

(Page 3 of 3)

Reference Number	Priority	Action	Responsibility	Obabir
027		Consider regular Inspections and preventive maintenance of conveyor housing (Item 7.9)	IT/USAEC	Ciaro
		See 2.8 (Item 8.9)		
028		Consider adding TSLL-501 (Item 9.1)	⊨	Add TAL-501 to alarm on low temperature
029		Consider adding FAH-501 (Item 9.1)	Ħ	Low temperature alarm sufficient
030		Consider making TV-501 fall closed (Item 9.1)	П	Make TV-501 fail open
031		Consider heat tracing this line (Item 9.3)	IT/USAEC	
		See 1.10 (Item 9.10)		
032		Consider monitoring pH of acid gas (Item 11.9)	F	Same as 016
		See 1.9 (Item 11.10)		
033		Consider inspection of bags for premature wear (Item 12.6)	IT/USAEC	
034		Check on specification for air dryer; consider moisture atarm on air system (Item 12.8)	11	Cover in specification for air drying system
035		Consider review of emergency fire safety equipment and procedures (Item 13.4)	IT/USAEC	
036		consider redundant flow indication (Item 15.1)	IT	Not recommended practice. High flow not a definience
037		Consider low flow alarm (Item 15.2)	L	Differential pressure measurement in bed is sufficient
		See 15.2 (Item 15.7)		
038		Consider pH monitoring for acid gases (Item 15.8)	F	Same as 016
039		Consider speed control monitor (Item 17.1)	Ŀ	Same as 013
040		Consider monitoring pH in ash (Item 17.2)	IT/USAEC	See 017

Table 19-2

HAZOP Analysis

(Page 1 of 16)

Item Number	Deviation	Causes	Consequences	Safeguards	Actions
1.0 Line	1.0 Line - Red Water Feed (Drawing: D-20-11-001)	ving: D-20-11-001)			
Ξ	High flow	Supply source produces high output	High flow of red water resulting in lower heat release	Flow control valve FV-205 regulates flow	100
		FY-205 high output	Reduced treatment effectiveness	TALL-206 alarms and shuts off flow	
		FE-205 fails low or low output		Al-502 alarms on high CO	
		FIT-205 fails low or low output			
1.2	Low/no flow	FV-205 fails closed	TAHH-206 alarms on high temperature	ZLL-205 alams on closure of FV-205	003
		YV-fails dosed	High temperature in combustor	ZLL-205A alarms on closure of YV-205	904
		Low source output	Potential slagging	Flow control valve FV-205 regulates flow	
		Block valve inadvertently left closed	Potential refractory damage		
		FE-205 high output			
		FIT-205 high output			
		FY-205 low output			
1.3	Reverse/misdirected flow	No credible cause (NCC)			
1.4	High temperature	High ambient temperature	High corrosivity at temperatures oer 100 degrees F	None	900
	High flow of solids in feed				
1.5	Low temperature	Freezing water	Pipe rupture and red water release; potential for dry feed to explode	None	900
1.6	High pressure	Block valve inadvertently closed	See 1.1	See 1.1	
1.7	Low pressure	See 1.2	See 1.2		

Table 19-2

(Page 2 of 16)

Item Number	Deviation	Causes	Consequences	Safeguards	Actions
1.0 Une	- Red Water Feed (Drav	1.0 Line - Red Water Feed (Drawing: D-20-11-001) (Continued)			
1.8	High concentration of contaminants	Feed source concentration of solids out of specified limits	Higher corrosivity of feed stream	None	007
1.9	Leak	High corrosive wear of pipe	Exposure of maintenance workers to toxic material	None	800
		Loose fitting	Potential for dry feed material to explode		
		Sample drain valve left open			
1.10	Rupture	Impact by operations or maintenance heavy equipment	See 1.9	None	010
2.0 Heat	er - Circulation Bed Con	2.0 Heater - Circulation Bed Combustor (Drawing: D-20-11-002)			
2.1	High flow	See 1.1	See 1.1	See 1.1	011
		High flow in purge gas (see 16.1)	Potential carryover of particulate	PDI-206 alarms high	
		Low flow of bed material	Bed depths falls low	Flow rate in stack alarms high	
		High flow of combustion air (see 6.1)	Potential for erosion of refractory		
2.2	Low/no flow	Blockage in bed material in feed chute	Excess liquid in combustor; potential dousing of burner flame	PDI-206 alarms on low differential pressure	013
		Failure of motor on H-2005	Low fluidization of bed		
		Low flow of purge gas (see 16.2)			
2.3	Reverse/misdirected flow	Loss of bed material feed	Loss of bed depth; reverse flow through CBC	PDI-206 alarms on low differential pressure	
2.4	High temperature	Low flow of combustion material (see 1.1)	Damage to refractory	TE-209 alarms high	
		High fuel flow (see 3.1 and 4.1)	High off-gas temperature; fire in baghouse	TE-206A & B alarms high	
		TY-206 low output	Slagging	Ti-207A & B alarm high	
		TIC-206 fails low			

Table 19-2

(Page 3 of 16)

Item Number	Deviation	Causes	Consequences	Safeguards	Actions
2.0 Heate	er - Circulation Bed Cor	2.0 Heater - Circulation Bed Combustor (Drawing: D-20-11-002) (Continued)			
2.5	Low temperature	TY-206 high output	Incomplete combustion	Al-502 alarms high CO reading	
		Low fuel flow (see 3.2 and 4.2)			
		High flow red water feed			
5.6	High pressure	Blockage in feed duct	Failure of feed and circulation	PIT-210 alarms high	
		High pressure purge gas (see 16.6)	Excess carryover of particulate	PDI-206 alarms high or low	
-		PIC-210 fails low		PIC-210 controls ID fan inlet pressure and system pressure	
		PV-510 fails closed			
		High secondary air flow (see 6.1)			
2.7	Low pressure	Blockage in feed duct	Ѕөө 2.2	See 2.2	
		Low pressure in purge gas (see 16.7)			
		Low secondary combination air flow			
89	Leak	Corrosive action of feed material	In leakage of air; small reduction in temperature	None	014
		Erosive action of bed material			
		Loose fitting			
2.9	Rupture	Over pressure due to high concentration of solids in red water feed materials	Release of off-gas to the atmosphere	None	See 007
2.10	High level	H-2004 high speed	Bed depth too high	PDI-206 alarms high	
		H-2001 failure low flow			015
2.11	Low level	H-2005 failure	Low fluidization of bed	PDI-206 alarms on low differential pressure	
		H-2001 high pressure			
2.12	High interface	NCC			
2.13	Low interface	NCC			

Table 19-2

(Page 4 of 16)

Item Number	Deviation	Causes	Consequences	Safeguards	Actions
2.0 Heat	er - Circulation Bed Con	2.0 Heater - Circulation Bed Combustor (Drawing: D-20-11-002) (Continued)			
2.14	High concentration of contaminants	High level of acid gas	Refractory damage	Limestone addition to neutralize acid gases	016 017
		Failure of limestone feed	Damage to gas cleaning system		
		High salt level in feed	Slagging potential		
			High salt levels		
3.0 Line	Line - Fuel to CBC (Drawing: D-20-11-001)	: D-20-11-001)			
3.1	High flow	Failure of TIC 206 low	High temperature in the combustor; possible refractory damage	TI-209 alarms high	
		Failure of FIC 219 to high output	Potential release of fuel gas	Block valves YV-219A and C interlocked to dose if YV-219B opens	
		Failure of FE-219 low			
		YV-219B fails open			
3.2	Low/now flow	PCV-209 regulator fails	Low combustion temperature with incomplete combination	TSLL-206 alarm low	
		FV-219 fails closed		ASHH-502 alarms high CO	
		YV-219A or B fail closed			
		TiC-206 falls high			
		FIC-219 fails low			
		TY-206 fails high			
3.3	Reverse/misdirected flow	NCC			
3.4	High temperature		No significant consequences (NSC)		
3.5	Low temperature	Freezing temperature	Potential condensation; poor combustion	Al-502 alarms high	018
3.6	High pressure	High pressure from source	Poor combustion	PSHH-209 alarms high	
		PCV-209 fails to regulate pressure		FV-219 adjusts flow	

Table 19-2

(Page 5 of 16)

Item Number	Deviation	Causes	Consequences	Safeguards	Actions
3.0 Line	- Fuel to CBC (Drawing	3.0 Line - Fuel to CBC (Drawing: D-20-11-001) (Continued)			
3.7	Low pressure	PCV-209 regulator malfunctions	Poor combustion	PSL-209 alarms low	
		Low source pressure		PSLL-209 alarms low low	•
3.8	High concentration of contaminants	Excess contaminants in fuel source	Blocked flow; poor combustion	None	019
3.9	Leak	Corrosion	Release of gas to atmosphere	None	020
		Crack in lie	High fuel consumption		
		Loose fittings			
3.10	Rupture	Impact line by heavy equipment	Large release to atmosphere	None	
			Potential for explosion		
4.0 Line	4.0 Line - Fuel to Burner (Drawing: D-20-11-001)	ng: D-20-11-001)			
4.1	High flow	Failure of FE-209 low	High temperature in the combustor; possible refractory damage	TI-209 alarms high	
		Failure of TIC 207 low		PSHH-209 alarms high	
		Failure of FIC 209 to high output			
4.2	Low/no flow	FIC-209 fails low	Low combustion temperature with incomplete combination	TSLL-207 registers temperature; alarms low	
		PCV-209 regulator fails		ASHH-502 alarms high	
		FV-209 fails closed			
		YV-209A or B fail dosed			
		TIC-207 fails high			
		TY-207 fails high			
4.3	Reverse/misdirected flow	NCC			
4.4	High temperature	See 3.4			

Table 19-2

(Page 6 of 16)

Item Number	Deviation	Causes	Consequences	Safeguards	Actions
4.0 Une	- Fuel to Burner (Drawl	4.0 Line - Fuel to Burner (Drawing: D-20-11-001) (Continued)			
4.5	Low temperature	See 3.5			
4.6	High pressure	High pressure from source	Poor combustion	PSHH-209 alarms high	
		PCV-209 fails to regulate pressure			
4.7	Low pressure	PCV-209 regulator malfunctions	Poor combustion	PSL-209 alarms low	
		Low source pressure		PSLL-209 alarms low low	
4.8	High concentration of contaminants	See 3.8			
4.9	See 3.9				Ī
4.10	Rupture	See 3.10	•		
5.0 Line .	- Primary Combustion	5.0 Line - Primary Combustion Air (Drawing: D-20-11-001)			
5.1	High flow	FIT-209 high output	Decreased temperature during start-up	TSLL-207 alarms low temperature	
		FFIC-204 fails to properly ratio flow	Incomplete combustion		
		FE-204 fails low			
		FIT-204 low output			
5.2	Low/no flow	FIT-209 low output	Increased temperature during start-up	TSHH-207 alarms high temperature	
		FFIC-204 fails to properly ratio flow	Incomplete combustion	FSLL-204 alarms low flow	
		FE-204 fails high	Flameout	FSLLL-204 alarms fow fow flow	******
		FE-204 fails closed		PSLL-204 alarms low pressure	
		B-2001 fails.		BE-204 alarms on loss of flame	
		PV-201 fails open			
5.3	Reverse/misdirected flow	NCC			
5.4	High temperature	See 5.2			
5.5	Low temperature	See 5.1			
					1

Table 19-2

(Page 7 of 16)

Item Number	Deviation	Causes	Consequences	Safeguards	Actions
5.0 Une	- Primery Combustion	5.0 Line - Primery Combustion Air (Drawing: D-20-11-001) (Continued)			
5.6	High pressure	PIC-201 fails low	Poor combustion	Al-502 alarms high; PV-201 opens	
		PV-201 fails closed			
		FFIC fails to ratio flow			
		FE-204 fails low			
5.7	Low pressure	PIC-201 fails high	Poor combustion	Al-502 atarms high	
		FFIC fails to ratio flow	Temperature decrease	PSLL-204 alarms low	
		FE-204 fails high	Flameout	TSLL-207 alarms low	
		FV-204 fails closed		BE-209 alarms on loss of flame	
		PV-201 fails open	-		
5.8	High concentration of contaminants	Inlet valve filter fails	Erosion of line	None	021
5.9	Leak	Loose fitting downstream of flow meter	Poor combustion	TSHH-207 alarms high	
			Increased temperature	Al-502 alarms on high CO	
5.10	Rupture	See 1.10			
6.0 Line	- Secondary Combustic	6.0 Line - Secondary Combustion Air (Drawing: D-20-11-001)			
6.1	High flow	FIC-201 fails low	Low temperature	TSLL-207 alarms high	022
		FY-201 fails low	Poor combustion	TE-206 and 209 alarm high	
		TIC-206 fails high	High particulate carry over	Al-502 alarms high	
		PV-201 fails closed		PIC-201 controls pressure	
		PIC-201 fails low			
-		FV-201 fails open			
		FIT-501 fails low			

Table 19-2

(Page 8 of 16)

ltem					
Number	Deviation	Causes	Consequences	Safeguards	Actions
6.0 Line	- Secondary Combustic	6.0 Line - Secondary Combustion Air (Drawing: D-20-11-001) (Continued)			
6.2	Low/now flow	FIC-201 high output	Poor combustion	FSLL-201 alarms low	023
		PV-201 fails open	Increased temperature	TSHH-207 alarms high	
		B-2001 fails	Loss of bed fluidization	Al-502 alarms high	
		PIC-201 fails high			
		FIT-501 fails high			
		TIC-206 fails high or low?			
6.3	Reverse/misdirected flow	NCC			
6.4	High temperature	Ѕее 6.2			
6.5	Low temperature	See 5.1			
6.6	High pressure	See 6.1			
6.7	Low pressure	Ѕее 6.2			
8.8	High concentration of contaminants	See 5.8			
6.9	Leak	See 5.9			
6.10	Rupture	See 5.10			
7.0 Une	7.0 Line - Ash to Ash Bin (Drawing: D-20-11-002)	ilng: D-20-11-002)			
7.1	High flow	High speed in H-2001	Overheat conveyor	PDI-206 alarms low	024
		-	Empty CBC of solids	Ti-210 alarms on high temperature	
			Overheat conveyor drive motor	ISHH-208 alarms on high motor current	
7.2	Low/no flow	Plugging of chute	Fill CBC with solids	ISHH-208 alarms on high motor current	
		Failure of H-2001 speed control or motor	Prevent bed fluidization	HL-208A indicates motor status	
		Excessive vacuum in CBC			

Table 19-2

(Page 9 of 16)

Item Number	Deviation	Causes	Consequences	Safequards	Actions
7.0 Une	- Ash to Ash Bin (Drawi	7.0 Line - Ash to Ash Bin (Drawing: D-20-11-002) (Continued)			
7.3	Reverse/misdirected flow	NGC			
7.4	High temperature	Failure of P-2001	Damage to ash cooler conveyor system	None	025
		Closed block vaive			
		Failure of cooling water supply			
7.5	Low temperature	Freezing temperature	NSC		
7.6	High pressure	NCC			
7.7	Low pressure		NSC		
7.8	High concentration of contaminants	Incomplete combustion of solids	Potential explosive or toxic contaminants	Testing of ash quality	026
7.9	Leak	Erosive or corrosive action on conveyor housing	Spill of contaminated materials	None	027
7.10	Rupture	NCC			
8.0 Line	Off-Gas to Partial Que	8.0 Line - Off-Gas to Partial Quench (Drawing: D-20-11-002)			
8.1	High flow	See 2.1	NSC		
8.2	Low/now flow		NSC		
8.3	Reverse/misdirected flow	NCC			
8.4	High temperature		NSC		
8.5	Low temperature		NSC		
8.6	High pressure		NSC		
8.7	Low pressure		NSC		
8.8	High concentration of contaminants		NSC		

Table 19-2

(Page 10 of 16)

Item Number	Deviation	Causes	Consequences	Safeguards	Actions
8.0 Line	- Off-Gas to Partial Que	8.0 Line - Off-Gas to Partial Quench (Drawing: D-20-11-002) (Continued)			
8.8	Leak	Erosion or corrosion of pipeline	Infiltration of air	None	See 014
8.10	Rupture	NCC			
9.0 Line	9.0 Line - Process Water (Drawing: D-50-11-001)	ng: D-50-11-001)			
9.1	High flow	TV-501 fails open	Water in T-5002A	None	028
		TIT-501 or TIC-501 fails high	Plugging of baghouse		020
			Low quenched gas temperature		030
			Corrosion of downstream equipment		
9.5	Low/no flow	TV-501 fails closed	Temperature in T-5001 too high; potential damage to vessel	TSHH-501 alarms high	
		TIT-501 fails low		FSL-501 alarms low	
		Supply pump failure		Emergency water supply available	
9.3	Reverse/misdirected flow	NCC			
9.4	High temperature	See 9.2			
9.5	Low temperature	Freezing temperature	Potential freeze of emergency water line	None	031
9.6	High pressure	NCC			
9.7	Low pressure	TV-501 fails closed	See 9.2	See 9.2	
		Source feed pump fails			
9.8	High concentration of contaminants	NGC			
8.8	Leak		See 9.2		
9.10	Rupture	High stress in pipe due to outside force	Loss of cooling water	Emergency water supply	

Table 19-2

(Page 11 of 16)

Item Number	Deviation	Causes	Consequences	Safeguards	Actions
10.0 Line	10.0 Line - Plant Air (Drawing: D-50-11-001)	D-50-11-001)			
10.1	High flow	,	NSC		
10.2	Low/now flow	Plant air compressor fails	Loss of cooling spray jet; high temperatures	FSL-502 alarms low flow	
		PCV-502 fails closed		Emergency water system	
				TAHH-501 alarms on high temperature	
10.3	Reverse/misdirected flow	NGC			
10.4	High temperature	NCC			
10.5	Low temperature		NSC		
10.6	High pressure		NSC		
10.7	Low pressure	See 10.2			
10.8	High concentration of contaminants	Failure of plant air filter	NSC		
10.9	Leak		NSC		
10.10	Rupture	NCC			
11.0 Ves	11.0 Vessel - Partial Quench (Drawing: D-50-11-001)	awing: D-50-11-001)			
11.1	High level	NCC			
11.2	Low level		NSC		
11.3	High interface	NCC			
11.4	Low interface	NCC			
11.5	High temperature	See 9.2			
11.6	Low temperature	See 9.1	See 9.1		
11.7	High pressure	Loss of ID Fan	Possible leakage of off-gas	PDSH-504 alarms high	
		Pluggage of baghouse		ID fan loss results in system shutdown	

Table 19-2

(Page 12 of 16)

Item Number	Deviation	Causes	Consequences	Saleguards	Actions
11.0 Ves	sei - Partial Quench (Dr	11.0 Vessel - Partial Quench (Drawing: D-50-11-001) (Continued)			
11.8	Low pressure	-	NBC		
11.9	High concentration of contaminants	High level of acid gas	Damage to vessel interior	Limestone addition to CBC	032
		High salt levels	Pluggage of H-5001		
11.10	Leak	Lack of seal at vessel inflow and outflow points	Release of gas to atmosphere	None	See 014
11.11	Rupture	NCC			
12.0 Unc	12.0 Line - Compressed Air (Drawing: D-50-11-001)	awing: D-50-11-001)			
12.1	High flow		NSC		
12.2	Low/no flow	Loss of plant air compressor	Baghouse system failure	PDSL-504 alarms high	
		PCV-508 fails closed			
12.3	Reverse/misdirected flow	NCC			
12.4	High temperature		NSC		
12.5	Low temperature		NSC		
12.6	High pressure	PCV-508 fails to regulate pressure	Excessive wear on bags; possible leakage from bags	None	033
		PCV-507 fails to regulate pressure			
12.7	Low pressure	Inadequate plant air supply pressure	See 12.2		
12.8	High concentration of contaminants	Inadequate filtration of plant air supply	Baghouse system failure due to moisture sealing bags	None	034
		High moisture level in air supply			
12.9	Leak		NSC		
12.10	Rupture	NCC			

Table 19-2

(Page 13 of 16)

item Number	Deviation	Causes	Consequences	Safeguards	Actions
13.0 Line	13.0 Line - Baghouse (Drawing: D-50-11-001)	D-50-11-001)			
13.1	High flow	See 2.1	Reduced particulate removal	PDAH-504 alams high	
13.2	Low/now flow	See 2.2	NSC		
13.3	Reverse/misdirected flow	NCC			
13.4	High temperature	See 2.4	Potential for ignition of bags	TE-502 and TAHH-501 alarm on high temperature	035
13.5	Low temperature	Excessive water in T-5001	Plugging bag house	TAL-503 alarms low	
13.6	High pressure	Bags become laden with dust; cleaning system ineffective	Higher system drop; excessive load on ID fan	PDSH-504 alarms on high pressure drop	
13.7	Low pressure	Tear in bag filters	Inefficient cleaning or lack of gas cleaning	PDSL-504 alarms on low pressure drop	
13.8	High concentration of contaminants	Excessive carryover from CBC	Baghouse overloaded	PDSH-504 alarms on high pressure drop	
13.9	Leak	See 1.9			
13.10	Rupture	NCC			
14.0 Line	14.0 Line - Baghouse Discharge (Drawing:	(Drawing: D-50-11-001)			
14.1	High flow		NSC		
14.2	Low/no flow	Plugged cone	Shutdown for cleaning; loss of utilization	Vibrator on cone	
14.3	Reverse/misdirected flow	NCC			
14.4	High temperature	See 13.4			
14.5	Low temperature	See 13.5	See 13.5		
14.6	High pressure	NCC			
14.7	Low pressure	NCC			
14.8	High concentration of contaminants	Inefficient or incomplete combustion	Recycle contents through the CBC; reduced utilization	See 2.6	

Table 19-2

(Page 14 of 16)

Item					
Jegwin	Deviation	Causes	Consequences	Safeguards	Actions
14.0 Llns	- Baghouse Discharge	14.0 Line - Baghouse Discharge (Drawing: D-50-11-001) (Continued)			
14.9	Leak	NCC			
14.10	Rupture	NCC			
15.0 Line	15.0 Line - Stack (Drawing: D-50-11-001)	0-11-001)			
15.1	High flow	See 2.1 and 6.1	Reduced treatment effectiveness	FAHH-503 alarms high	980
		FIT-503 fails low		FIC-201 indicates flow	
		FE-503 fails			
		PV-501 fails open			
15.2	Low/no flow	See 2.2 and 6.2	Low system throughput	FIC-201 indicates flow	780
		ID fan fails			
		PV-501 fails closed			
15.3	Reverse/misdirected flow	NCC			
15.4	High temperature	See 11.5			
15.5	Low temperature	See 11.6			
15.6	High pressure	PV-501 fails open	Stack flow will increase resulting in lower secondary air and loss of bed fluidization	FSHH-503 alarms high	
		B-5001 high output		ASLL-501 alarm on low oxygen	
		PIC-210 fails low			
15.7	Low pressure	PV-501 fails closed	Stack flow will decrease resulting in higher secondary air and increased carryover of particulate	Failure of ID fan will shut down system	
		B-5001 fails or low output			
		PIC-210 fails high			

Table 19-2

(Page 15 of 16)

Item					
Number	Deviation	Саиѕеѕ	Consequences	Safeguards	Actions
15.0 Line	15.0 Line - Stack (Drawing: D-50-11-001) (Continued)	0-11-001) (Continued)			
15.8	High concentration of contaminants	Breakthrough in baghouse	Exceed emission limits	PDSL-504 alarms low differential pressure	980
		High acid gas levels			
15.9	Leak		NSC		
15.10	Rupture	NCC			
16.0 Line	16.0 Line - CBC Purge Air (Drawing: D-201-11-002)	ılıg: D-201-11-002)			
16.1	High flow	High flow due to failure of damper valve	High flow in CBC; potential excessive carryover of particulate	PDI-206 alarms on high pressure drop	
16.2	Low/now flow	B-2002 fails	Bed fluidization not maintained	PDI-206 alarms on low pressure differential	
		Damper valve fails closed			
16.3	Reverse/misdirected flow	NCC			
16.4	High temperature		NSC		
16.5	Low temperature		NSC		
16.6	High pressure	See 16.1			
16.7	Low pressure	See 16.2			
16.8	High concentration of contaminants		NSC		
16.9	Leak		NSC		
16.10	Rupture	NCC			
17.0 Line	17.0 Line - Limestone Feed (Drawing: D-20-11-002)	wing: D-20-11-002)			
17.1	High flow	High H-2002 motor speed	Fills CBC with limestone	None	680
17.2	Low/no flow	Motor fails	Decreased neutralization of aid gases	HL-201A indicates motor run status	040
		Plugged inlet		,	-
		Feed material not available			

Table 19-2

(Page 16 of 16)

item Number	Deviation	Causes	Consequences	Safeguards	Actions
17.0 Line	- Limestone Feed (Dra	17.0 Line - Limestone Feed (Drawing: D-20-11-002) (Continued)			
17.3	Reverse/misdirected flow	NCC '			
17.4	High temperature		NSC		
17.5	Low temperature		NSC		
17.6	High pressure	NCC			
17.7	Low pressure	NCC			
17.8	High concentration of contaminants		NSC		
17.9	Leak		NSC		
17.10	Rupture	NCC			
18.0 Line	- Ash Cooler Conveyo	18.0 Line - Ash Cooler Conveyor (Drawing: D-20-11-002)			
18.1	High flow	See 7.1			
18.2	Low/no flow	See 7.2			
18.3	Reverse/misdirected flow	See 7.3			
18.4	High temperature	See 7.4			
18.5	Low temperature	See 7.5			
18.6	High pressure	See 7.6			
18.7	Low pressure	See 7.7			
18.8	High concentration of contaminants	See 7.8			
18.9	Leak	See 7.9			
18.10	Rupture	See 7.10			

PROJECT NAME: USAEC

LOCATION: Aberdeen Proving Ground, Maryland

PROJECT NO.: 322243

SPEC. NO.: WP: WP1585.19

recommendations, and human error and natural occurrences each accounted for two recommendations.

The action items are to be reviewed by IT engineers and USAEC personnel to determine what changes in the design and operating procedures (if any) are required to satisfy the concerns or recommendations. The results of this study are incomplete until all of the 40 recommendations have been addressed. Twenty of the recommendations are designated to be resolved by IT engineers and 20 are the joint responsibility of IT and USAEC personnel. To complete the HAZOP, all resulting decisions are to be entered in the status column of the action report. Because the project design is at a conceptual stage, completion of all action items will be deferred later in the project in the process design or detailed design stages.

By: JL Checked: JF Approved: PA Date: 02/06/95

HAZOP Analysis IT PCE Knoxville, Tennessee Rev. No. (0) (1)

Area Name: All Areas

Page: 2 of 2