Design flow of Implementation of Transceiver System for UHF/VHF in Rayleigh Fading

G V V Sharma*

Contents

1 Equalizer 1

1. Equalizer

$$\hat{x}_m[v] = \mathcal{F}(u_m[v]) = \frac{1}{\sqrt{2}} \{ sgn(Re\{u_m[v]\}) + j.sgn(Im\{u_m[v]\}) \}$$

with the signum function $sgn\{a\} = \pm 1$ for $\mathbb{R} \ni a \ge 0$.

$$\mathbf{w}_{m,i}[v] = \mathbf{w}_{m,i}^{(CM)}[v] + \mathbf{w}_{m,i}^{(DD)}[v]$$

CM Algorithm - Concurrent Constant ModulusAlgorithm

DD Algorithm – Decision Directed Algorithm

where $\mathbf{w}_{m,i}^{(CM)}[v]$ will be updated by a CM algorithm $\mathbf{w}_{m,i}^{(DD)}[v]$ is adjusted in DD mode, with $m \in \{1, 2, ...40\}$ being the subcarrier index

$$v_m[v] = \sum_{i=0}^{2} \mathbf{w}_{m,i}^{H}[v] \mathbf{y}_{m,i}[v]$$

where $\mathbf{y}_{m,i}[v]$ is a tap-delay-line vector containing a data window of the polyphase signal $\mathbf{y}_{m,i}[v]$ in Fig.8, such that

$$\mathbf{y}_{m,i}[v] = \begin{pmatrix} y_{m,i}[v] \\ y_{m,i}[v-1] \\ \vdots \\ y_{m,i}[v-L_{m,i}+1] \end{pmatrix}$$

If we neglect carrier frequency and phase offsets, then the subcarrier output is given by

$$\hat{\mathbf{x}}_{m}[v] = \mathcal{F}(u_{m}[v])$$

$$\mathbf{w}_{m,i}^{(CM)}[v+1] = \mathbf{w}_{m,i}^{(CM)}[v] + \Delta \mathbf{w}_{m,i}^{(CM)}[v] \mathbf{y}_{m,i}[v]$$

$$\Delta \mathbf{w}_{m,i}^{(CM)}[v] = \mu_{CM}(1 - |v_{m}[v]^{2})v_{m}^{*}[v] \mathbf{y}_{m,i}[v]$$

$$v_{m}^{(CM)}[v] = \sum_{i=0}^{2} (\mathbf{w}_{m,i}^{(CM)}[v] + \Delta \mathbf{w}_{m,i}^{(CM)}[v])^{H} \mathbf{y}_{m,i}[v]$$

*The authors are with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in.

$$\begin{aligned} \mathbf{w}_{m,i}^{(DD)}[v+1] &= \\ \mathbf{w}_{m,i}^{(DD)}[v] + \mu_{DD}.\delta(\hat{x}_{m}[v] - \mathcal{F}(u_{m}[v])).(\mathcal{F}(u_{m}[v]) - \nu_{m}[v])^{*}\mathbf{y}_{m,i}[v] \end{aligned}$$

where,

$$\delta(a) = \begin{cases} 1 & a = 0 \\ 0 & a \neq 0 \end{cases}$$