CSEN 1003: Compilers

Tutorial 2 - Lexical Analysis

9/2/2020 - 12/2/2020

- Regular Definitions
- Pallback DFA with Actions

Recap

Function of a Lexical Analyzer

- 1 Partition the input stream into lexemes.
- ② Generate a token for each lexeme. There are two types of tokens.
 - $\langle L, A \rangle$ where L is a lexical category and A is an attribute.
 - $\langle L \rangle$ where L is a lexical category.
- **3** Auxiliary function: ignore irrelevant substrings.

- Regular Definitions
- Pallback DFA with Actions

3 Recap

Regular Languages

 A set of lexemes for a programming language makes up a regular language which can be represented by regular expressions.

Extensions to regular expressions:

- **1** $R_1 \mid R_2 \equiv R_1 \cup R_2$.
- $R? \equiv R \mid \varepsilon$
- **3** $[a_1 a_2 ... a_n] \equiv a_1 \mid a_2 \mid ... \mid a_n \text{ where } a_i \in \Sigma.$
- $\{a_1 a_n\} \equiv [a_1, a_2, ..., a_n]$ where $a_1...a_n$ is a natural order.

Regular Definitions

Definition

A regular definition is a finite sequence of pairs $P_i = \langle D_i, R_i \rangle$:

$$D_1 \longrightarrow R_1$$

 $D_i \longrightarrow R_i$

where R_1 is a regular expression over Σ and R_i is a regular expression over Σ and $D_1, ..., D_{i-1}$.

Example (Java Identifiers)

Write a regular definition to represent Java Identifiers.

Action-Augmented Regular Definitions

Example

Give a regular definition for non-negative numbers without leading zeros.

Action-Augmented Regular Definitions

Example

Give a regular definition for non-negative numbers without leading zeros.

Example

Augment your regular definition with actions to generate tokens. For integers a token $\langle int, num \rangle$ should be generated, and for floats a token $\langle float, num \rangle$ where num is the recognized lexeme.

1 Regular Definitions

Pallback DFA with Actions

3 Recap

How to Build a Lexical Analyser in 5 steps?

- Write an action-augmented regular definition where for each category there is a pair $\langle D_i, R_i \rangle$.
- **2** For each D_i , compile a regular expression by unrolling.
- **3** Construct $R = R_1 | R_2 | ... | R_n$.
- **4** Construct an NFA N_i for each R_i . Make sure each N_i has a unique accept state labelled by D_i . Construct NFA N to be the union of all the NFAs.
- **6** Construct a fallback DFA with actions equivalent to N.

Operation of a Fallback DFA with Actions

Example

Consider the input string aaabaabb and the action-augmented regular definition:

Draw the state diagram of an equivalent fallback DFA with actions. What will be printed when the DFA is run of the provided input?

More Regular Definitions

Example

Write a regular definition to generate tokens for strings without the enclosing quotes or escape characters.

The following methods are predefined:

- table.open(): opens a new entry.
- table.close(): closes the last opened entry.
- table.isOpen(): returns true if there is a current open entry.
- table.last(): returns the content of the last closed entry.
- table.add(char): appends a character to the last open entry.

1 Regular Definitions

- 2 Fallback DFA with Actions
- Recap

Points to Take Home

- 1 Action-Augmented Regular Definitions.
- 2 Fallback DFA with Actions.

Next Week: Context Free Grammars!