

العناوين المنطقية وتقسيم الشبكات

المحاضرة الثانية

إعداد: م. ياسين يوسف

المحتويات:

- العناوين المنطقية IP
- تصنيف الشبكات حسب عدد العقد
 - أمثلة وتمارين
 - تقسيم الشبكات Subnetting.

إعداد: م. ياسين يوسف

العناوين المنطقية ١٦

- البروتوكول IP (Internet Protocol) يهدف الإعطاء كل جهاز على الشبكة, عنواناً محدداً مميزاً وبترتيب محدد.
 - العناوين ضرورية, لأنها تسمح بالمراسلة, وحساب الطرق الأقصر.
- يقسم العنوان الأربع أرقام, كل منها مكون من 8 خانات ثنائية وبالتالي مجالها [255-0]:
- العنوان يقسم لجزأين أحدهما للشبكة, والآخر للمضيف, بتحديد عدد بتات لاحداهما والباقي للآخر, وهما:
 - 1. معرف الشبكة Network ID : يبدأ من اليسار.
 - 2. معرف المضيف Host ID : ويكون مميزاً لكل جهاز موصول على الشبكة.

العناوين المنطقية ١٦

• وهذا التقسيم ضروري لحالة ربط عدة شبكات معاً (بموجه router) كما هو الحال في الأنترنت, فلكل شبكة عنوانها, وعدد محدد من البتات تناسب عدد الحواسيب لكل منها (قسم المضيف).

• لاحظ الشكل:

) 1	3 1 I	6 2	4 32
Binary	11100011	01010010	10011101	10110001
Dotted Decimal	227	82	157	177

IP Address: 227.82.157.177
Split Into 8-Bit Network ID and 24-Bit Host ID

```
• 8 : Class A بتات للشبكة , والبت الأكثر أهمية هو 0 [126 - 1](عدد عقد كبير)
```

• 16 : Class B بت للشبكة (افتراضياً), والبتين الاثقل 10 [121 - 128] (عدد عقد أقل)

• 24 : Class C بت للشبكة (افتراضياً) , والبتات الأثقل 110 [223-192] (عدد أقل)

ABC ... Easy as 123

Class B ... First 2 bits fixed 10xxxxxx Network Host Host

Class C ... First 3 bits fixed 110xxxxx . Network . Network . Host

م حسناء وسوف

• قناع الشبكة Mask:

• صيغته مشابهة لعنوان ال IP, ويستخدم لتمييز عنوان الشبكة (بواحدات), عن عناوين العقد (أصفار), مثال:

IP Address	192	168	48	247
Subnet Mask (binary)	1111 1111	1111 1111	1111 1111	0000 0000
Subnet Mask (dotted decimal)	255.	255.	255.	0

192.168.48.247

inary bit is 1, the corresponding

'41- - -- 4--- - 1TD - -- - 4--- - 4 TT/1- - --

Network ID

Host ID

• وقد نستخدم رقماً يدل على عدد خانات الشبكة, إلى جانب ال IP كترميز بديل, مثلاً للسابق:

192.168.48.247/24 •

• في حال عدم ذكر القناع, قد يتم استنتاجه من تصنيف الشبكات(Class A, B, or C) حسب نمط البتات الأثقل ويسمى القناع الافتراضي

- عنوان النشر Broadcast Address:
- لا يتم عملياً استخدام كل العناوين المتاحة، في قسم ال host, فهناك عنوانين محجوزين دائماً
 - الأول عنوان الشبكة , حيث تملأ كل الخانات بأصفار
 - والآخر عنوان النشر, حيث تملأ جميع خانات المضيف بواحدات
 - والباقي يمكن اسناده كعناوين للأجهزة
- لأجل ذلك , لا يمكن أن يقل عدد بتات المضيف عن 2 (شبكة من جهازين) , أي 30 خانة للشبكة

أمثلة وتمارين

• لعناوين الP التالية, المطلوب إيجاد عنوان الشبكة وعنوان النشر, وكذلك مجال عناوين الأجهزة المتاحة (للشبكة المحتوية لهذا العنوان):

220.123.56.10/24 •

160.129.34.67/24 •

172.16.10.2/16 •

إعداد: م. ياسين يوسف

أمثلة وتمارين

• الحل للمثال الأول:

- 220.123.56.10/24
 - عنوان الشبكة: 220.123.56.0
 - عنوان النشر: 220.123.56.255
 - أول عنوان متاح: 220.123.56.1
 - آخر عنوان متاح: 220.123.56.254

العناوين الخاصة

- هي مجموعة عناوين مجانية, متاحة لأي شخص أو مؤسسة للاستخدام دون أذن مسبق
 موجهات الانترنت تهمل الرسائل التي تحوي هذه العناوين كعنوان هدف, وتتخلص من الرزم المتعلقة بها
 - الحل لهذا الامر هو استخدام تقنية NAT Network Addressing Translating
 - وهي تبدل العنوان المحلي (الخاص للشبكة المحلية) بعنوان عام global عند ارسال الحزمة , وبالعكس (العام بالمحلي) عند الاستقبال من الانترنت للشبكة

Range				
10.0.0.0	to	10.255.255.255		
172.16.0.0	to	172.31.255.255		
192.168.0.0	to	192.168.255.255		

- أحياناً يلزم تقسيم الشبكة لشبكات فرعية, وبالتالي يتم أخذ جزء من بتات المضيف الأثقل, والحاقها ببتات الشبكة
 - التقسيم يفيد:
 - لدعم سرعة الحركة, وتقليل الاختناقات بسبب عدد الأجهزة
 - لتحسين أداء الشبكة وتسهيل إدارتها
 - التقسيم يتم بتحديد عدد الشبكات الفرعية, ومن ثم أخذ قوة العدد 2 الأكبر منها, وبالتالي عدد الخانات c المطلوب أخذها لعنونة تلك الشبكات
 - بهذا نحصل على قناع جديد Subnet Mask , يعطي عدداً محدداً للعناوين المتاحة لكل شبكة

• مثال: فلنفرض العنوان: 14.0.0.0 ونحتاج 4 شبكات فرعية, أي بتين للمضيف يضافان لعنوان الشبكة, كالتالي:

IP	00001110.00000000.00000000.000000000				
	14 .	0 .	0		0
Default Mask	11111111.	00.00000000	000000	.0000	0000
	255 .	0 .	0	•	0
Subnet Mask	11111111.	11000000.00	000000	.0000	0000
	255 .	192 .	0		0

م حسناء وسوف

• وعناوين الشبكات الأربعة ستكون:

- 14.0.0.0/10 •
- 14.64.0.0/10
- 14.128.0.0/10 •
- 14.192.0.0/10 •

م. حسناء و سوف

- أمثلة غير محلولة: لكل من العناوين التالية, قسمها للرقم المعطى من الشبكات الفرعية, مع تحديد عنوان الشبكة الفرعية وعنوان النشر, ومجال العناوين لكل من العقد عليها:
 - 8 -211.77.20.0/24 شبكات
 - 30 -166.113.0.0/16 شبكة
 - 4 -211.77.20.32/27 شبكات
 - 130.4.102.1/22 أوجد عنوان الشبكة الفرعية المحتوية, وعناوين أجهزتها.
 - 8 172.16.0.0/16 شبكات
 - 4 -10.64.0.0/10 شبكات