Chapitre 1

La topologie quotient

Dans tout ce chapitre X dénote un espace topologique, q une surjection. Sauf mention du contraire lorsqu'il est question d'espaces topologiques une application est considérée continue.

Notation. Nous introduisons les notations élémentaires qui suivront dans tout le chapitre.

- o Le singleton est l'espace ⋆ il s'agit de l'ensemble à un seul point munit de la topologie discrète.
- o L'espace D^n est la boule unité fermée (disque) dans \mathbf{R}^n pour la métrique euclidienne usuelle. On notera parfois e^n pour ce même espace. L'intérieur \mathring{D}^n ou \mathring{e}^n est donc la boule ouverte.
- \circ Le bord ∂D^n de D^n est la sphère unité $S^{n-1}.$
- \circ On utilise le symbole \cong pour les isomorphismes et les homéomorphismes sans plus de précision tant que le contexte est clair et \simeq pour les homotopies.
- o Les vecteurs sont notés en gras.

1.1 Théorie générale

Définition 1.1.1 (Topologie quotient). Étant donné une application q, la topologie quotient sur Y relativement à q a pour ouverts les sous ensembles $U \subset Y$ tels que $q^{-1}(U)$ est ouvert dans X.

Remarque. Une caractérisation équivalente de cette topologie peut se faire en définissant les fermés de Y par les fermés de X.

Définition 1.1.2 (Quotient). On dit qu'une application $q: X \longmapsto Y$ est un quotient si elle est surjective, continue et que la topologie quotient induite par q coïncide avec la topologie de Y.

Proposition 1.1.3. Si $q: X \longmapsto Y$ est une application surjective continue et ouverte alors q est un quotient et Y est muni de la topologie quotient définie par q.

Démonstration. Si U est ouvert dans Y alors $q^{-1}(U)$ est ouvert dans X par continuité de q. Réciproquement si $U \subset Y$ et $q^{-1}(U)$ est ouvert dans X alors par surjectivité de q

$$q(q^{-1}(U)) = U$$

et on en conclut que U est ouvert dans Y puisque q est ouverte.

Remarque. Ce critère reste valable si q est une application fermée, la preuve est identique en remplaçant les ouverts par des fermés.

Exemple 1.1.4. Il est cependant important de noter que ce critère bien que suffisant n'est pas nécessaire. Définissons l'application

$$q:[0,3]\longmapsto [0,2]$$

$$t\longmapsto \begin{cases} t & \text{si } t\leq 1\\ 1 & \text{si } 1\leq t\leq 2\\ t-1 & \text{sinon} \end{cases}$$

q est une application continue, c'est un quotient pour la topologie euclidienne sur [0,3], [0,2] mais elle n'est pas ouverte, (1,2) est envoyé sur $\{1\}$.

Proposition 1.1.5. La composition de deux quotients est également un quotient.

Proposition 1.1.6 (Propriété universelle). La topologie quotient est la plus fine telle que l'application q soit continue. De plus, $g: Y \longmapsto Z$ est une application continue si et seulement si $g \circ q: X \longmapsto Z$ est continue.

Démonstration. Soit U un ouvert d'une topologie sur Y telle que q soit continue. Par continuité $q^{-1}(U)$ est ouvert dans X et donc U est ouvert dans Y pour la topologie quotient. Si g est continue, $g \circ q$ est continue en tant que composition d'applications continues. Réciproquement, si $g \circ q$ est continue prenons $V \subset Z$ un ouvert, $(g \circ q)^{-1}(V)$ est ouvert dans X par continuité de la composée et de plus

$$q^{-1}(g^{-1}(V)) = (g \circ q)^{-1}(V)$$

est ouvert. Ainsi par définition de la topologie quotient $g^{-1}(V)$ est ouvert dans Y ce qui conclut quant à la continuité de g.

Exemple 1.1.7. Considérons le cercle unité

$$C := \{(x, y) \in \mathbf{R}^2 \mid x^2 + y^2 = 1\}.$$

On définit q une application surjective comme suit

Il s'agit d'une application continue surjective et ouverte pour la topologie euclidienne, c'est donc un quotient.

Proposition 1.1.8. Si q est un quotient $X \mapsto Y$ et que X est compact alors Y est aussi compact.

Démonstration. L'image d'un compact par une fonction continue est un compact. \Box

1.2 Quotient par une relation

Étant donné une relation d'équivalence \sim on note [x] la classe d'équivalence de $x \in X$.

Définition 1.2.1 (Espace quotient). On définit une application

$$q: X \longmapsto^{X}/_{\sim}$$
$$x \longmapsto [x]$$

alors l'espace quotient de X par \sim est l'ensemble $X/_{\sim}$ munit de la topologie quotient induite par q.

Remarque. On peut munir une partition X^* de X de la topologie quotient en définissant une relation d'équivalence \sim sur X^* comme suit

$$x \sim y \iff \exists A \in X^* \text{ tel que } x, y \in A.$$

Exemple 1.2.2. Le cercle C définit précédemment peut être vu comme espace quotient de [0,1] par la relation

$$x \sim y \iff \begin{cases} x = y \\ x, y \in \{0, 1\} \end{cases}$$
.

Proposition 1.2.3 (Propriété universelle). Soit \sim une relation d'équivalence sur un espace X, pour toute application $f: X \longmapsto Y$ vérifiant $x \sim x' \Longrightarrow f(x) = f(x')$ il existe une unique application $\hat{f}: X /_{\sim} \longmapsto Y$ telle que $\hat{f} \circ q = f$. On dit que f passe au quotient et induit une application \hat{f} .

Le diagramme suivant résume cette propriété, \hat{f} est l'unique fonction le faisant commuter.

Démonstration. Comme on veut $\hat{f} \circ q = f$ on doit avoir $\hat{f}([x]) = \hat{f}(q(x)) = f(x)$ et l'unicité est garantie. Cette application est bien définie puisqu'on a imposé que f soit compatible avec \sim . Pour vérifier la continuité de \hat{f} il suffit de réaliser que la composition $\hat{f} \circ q$ est continue puisqu'il s'agit de f et d'appliquer la **Proposition 1.1.6**.

Soit $A \subset X$ un sous espace.

Définition 1.2.4 (Collapse). Le collapse de X par A est le quotient $X/_{\sim}$ où

$$x \sim x' \iff \begin{cases} x = x' \\ x, x' \in A \end{cases}$$
.

On le note $X/_A$.

Exemple 1.2.5. Le cercle unité définit précédemment s'écrit comme le collapse $C = [0,1]/\{0,1\}$.

Exemple 1.2.6. On cherche à montrer ici que le collapse D^n/S^{n-1} est homéomorphe à la sphère unité S^n . Le cas n=2 est très visuel. On exhibe à présent l'homéomorphisme dans le cas général

$$f: D^n \longmapsto S^n$$

$$\mathbf{x} \longmapsto \begin{cases} (2\mathbf{x}, \sqrt{1 - \|2\mathbf{x}\|^2}) & \text{si } \|\mathbf{x}\| \le \frac{1}{2} \\ ([4 - 4\|\mathbf{x}\|]\mathbf{x}, -\sqrt{1 - [4 - 4\|\mathbf{x}\|]^2\|\mathbf{x}\|^2}) & \text{si } \frac{1}{2} \le \|\mathbf{x}\| \le 1 \end{cases}.$$

FIGURE 1.1 – Illustration de ce quotient dans le cas n = 2.

Tout point du bord de D^n , donc de norme 1, est envoyé sur (0, -1), cette application passe donc au quotient et induit une application $\hat{f}: D^n/_{S^{n-1}} \longmapsto S^n$. Puisque c'est une bijection continue d'un espace compact vers un espace séparé il s'agit d'un homéomorphisme.

Définition 1.2.7 (Union disjointe). Étant donné une famille d'ensembles $\{X_i \mid i \in I\}$ indexés par un ensemble d'indices I, l'union disjointe est l'ensemble

$$\coprod_{i \in I} X_i := \bigcup_{i \in I} \{(x, i) \mid x \in X_i\}.$$

On définit une topologie sur cet ensemble telle que les inclusions canoniques

$$\varphi_i: X_i \longmapsto \coprod X_i$$

$$x \longmapsto (x,i)$$

soient continues. De façon explicite un sous ensemble $U \subset \coprod X_i$ est ouvert si et seulement si sa préimage $\varphi_i^{-1}(U) \subset X_i$ est ouverte pour tout $i \in I$. Cette topologie est appelée topologie coproduit.

Proposition 1.2.8 (Propriété universelle). L'union disjointe d'une famille d'ensembles munie des injections canoniques est caractérisée par la propriété universelle suivante.

Pour tout espace Y et toute application continue $f_i: X_i \longmapsto Y$ pour $i \in I$, il existe une unique application continue

$$f: \coprod X_i \longmapsto Y$$

telle que $f \circ \varphi_i = f_i$. Cette propriété est résumée par le diagramme suivant.

Proposition 1.2.9. La topologie coproduit est la moins fine telle que les projections canoniques soient continues.

Définition 1.2.10 (Wedge). Si (X_i, x_i) est un espace épointé pour $i \in I$ un ensemble d'indices non vide, alors le wedge ou bouquet en français, noté $\bigvee_{i \in I} X_i$, est le quotient de l'union disjointe des X_i par la relation

$$x \sim x' \iff \begin{cases} x = x' \\ x, x' \in \{x_i \mid i \in I\} \end{cases}$$
.

Exemple 1.2.11. Le wedge $S^1 \bigvee S^1$ est un huit, par abus de notation on admet de mentionner le point de base lorsque le choix de ce dernier n'a pas d'importance.

Définition 1.2.12 (Cylindre et cône de base X). Pour un espace X, le cylindre de base X est $X \times I$ avec le plus souvent I = [0,1]. Le cône de base X est le quotient $X \times I/X \times 0$, on le note CX.

FIGURE 1.2 – Illustration du cylindre et du cône de base X.

Définition 1.2.13 (Suspension). La suspension d'un espace X s'obtient à partir du cylindre $X \times I$ en collapsant $X \times 0$ ce qui donne le cône de base X puis en collapsant $X \times 1$. On la note

$$\Sigma X := {^CX}/_{X \times 1}.$$

Définition 1.2.14 (Homotopie). Deux fonctions $f, g: X \longmapsto Y$ sont dites homotopes et on note $f \simeq g$ s'il existe une application $H: X \times I \longmapsto Y$ telle que pour tout x dans X

$$H(x,0) = f(x)$$

$$H(x,1) = g(x).$$

On dit alors que H est une homotopie de f vers g.

Définition 1.2.15 (Type d'homotopie). On dit que deux espaces X et Y ont le même type d'homotopie s'il existe des applications $f: X \longmapsto Y$ et $g: Y \longmapsto X$ telles que $f \circ g \simeq id_Y$ et $g \circ f \simeq id_X$. On note alors $X \simeq Y$ et on appelle f et g des équivalences d'homotopie.

Proposition 1.2.16. Le cône CX est toujours contractile, c'est à dire qu'il a le même type d'homotopie qu'un singleton.

Démonstration. On définit

$$H: X \times I \times I \longmapsto X \times I$$

 $(x, s, t) \longmapsto (x, st).$

Cette application est clairement continue, elle passe au quotient et induit une application

$$\overline{H}: CX \times I \longmapsto CX$$

 $([x, s], t) \longmapsto [x, st].$

Cette dernière application est bien définie puisque H(x,0,t)=(x,0). Cette application \overline{H} est une homotopie entre $\overline{H}|_{CX\times 0}$ qui est l'application constante sur [x,0] et $\overline{H}|_{CX\times 1}=id_{CX}$. Ainsi \overline{H} est une contraction du cône sur un point.

1.3 Quotient et séparabilité

Dans toute cette section séparé et Hausdorff sont synonymes. En général le quotient d'un espace Hausdorff n'est pas nécessairement Hausdorff. On se demande sous quelle condition sur X le quotient $X/_{\sim}$ est séparé.

Exemple 1.3.1. L'exemple classique est la droite avec deux origines D obtenue comme quotient de $\mathbb{R} \times \{0,1\}$ par la relation

$$(x,s) \sim (y,t) \iff \begin{cases} (x,s) = (y,t) \\ x = y \neq 0 \end{cases}$$

On ne peut pas séparer ces deux origines par des ouverts. On peut s'intéresser au graphe de cette relation définit comme

$$\Gamma := \{ (d, d') \in (\mathbf{R} \times \{0, 1\})^2 \mid d \sim d' \}.$$

L'origine n'est pas inclue pour le graphe de la classe (0,1) et celui de la classe (1,0).

Proposition 1.3.2. Si $^X/_{\sim}$ est séparé, alors le graphe de la relation \sim est fermé.

Pour arriver à ce résultat nous aurons besoin du Lemme suivant.

Définition 1.3.3 (Diagonale). La diagonale d'un espace X est définie comme le sous ensemble du produit cartésien

$$\Delta := \{(x, x) \in X \times X\}$$

Lemme 1.3.4. Un espace est Hausdorff si et seulement si sa diagonale est fermée.

Démonstration. Soient $x \neq y \in X$ et $x \in U, y \in V$ des voisinages distincts. Alors $U \times V$ est un voisinage ouvert de $(x,y) \in X \times Y$ munit de la topologie produit. On observe que $U \cap V \neq \emptyset \iff (U \times V) \cap \Delta = \emptyset$. On peut séparer x et y par des ouverts si et seulement si Δ^c est ouvert.

Démonstration de la proposition. Si le quotient $X/_{\sim}$ est séparé, la diagonale $\Delta \subset (X/_{\sim})^2$ est fermée par le **Lemme** 1.3.4. On considère $q \times q : X \times X \longmapsto (X/_{\sim}) \times (X/_{\sim})$ le quotient et on identifie

$$(q \times q)^{-1}(\Delta) = \{(x, y) \in X \times X \mid [x] = [y]\} = \Gamma$$

qui est donc fermé.

Bien que nécessaire, notons que cette condition n'est pas suffisante. Le critère suivant fournit quant à lui une condition suffisante, bien que non nécessaire.

Définition 1.3.5 (Saturé). On appelle saturé de A l'ensemble $q^{-1}(q(A))$ pour $A \subset X$.

Proposition 1.3.6. Si X est un espace séparé tel que $q^{-1}(q(x))$ est compact pour tout $x \in X$ et $q^{-1}(q(F))$ est fermé dans X pour tout F fermé dans X, alors $X/_{\sim} = q(X)$ est séparé

Démonstration. Prenons deux classes disjointes du quotient $[x] \neq [y]$. Puisque X est séparé on peut trouver deux ouverts disjoints de X, U et V, avec $q^{-1}(x) \in U$ et $q^{-1}(y) \in V$ puisque $q^{-1}([x])$ et $q^{-1}([y])$ sont compacts. En regardant les complémentaires fermés on a que

$$U^c \subset q^{-1}(q(U^c))$$
 et $V^c \subset q^{-1}(q(V^c))$.

Soient donc

$$U' := X \setminus (q^{-1}(q(U^c))) \subset U \text{ et } V' := X \setminus (q^{-1}(q(V^c))) \subset V.$$

On va prouver que q(U') et q(V') sont des voisinages ouverts et disjoints de [x] et [y] respectivement. D'abord $[x] \in q(U')$ car $x \notin q^{-1}(q(U^c))$ et de même $[y] \in q(V')$. Pour montrer que q(U') est ouvert, on montre que $U' = q^{-1}(q(U'))$. La première inclusion est toujours vérifiée, montrons la seconde. Soit $u \in q^{-1}(q(U'))$, alors $q(u) \in q(U')$ et donc $q(u) \notin q(U^c)$. Ainsi $u \notin q^{-1}(q(U^c))$, donc $u \in U'$ par construction de U', de même pour V'. Pour terminer la preuve, montrons que q(U') et q(V') sont disjoints. Supposons par l'absurde que ce ne soit pas le cas. Soit $[z] \in q(U') \cap q(V')$, il existe donc $u' \in U'$ tel que $[z] = q(u') \in q(V')$. Ainsi $u' \in q^{-1}(q(V')) = V'$ mais U' et V' sont disjoints, contradiction. \square

Corollaire 1.3.7. Si $A \subset X$ est un sous espace compact et X séparé, alors X / A est séparé.

Démonstration. Le critère précédent est vérifié puisque la saturation d'un point

$$q^{-1}(q(x)) = \begin{cases} A & \text{si } x \in A \\ \{x\} & \text{sinon} \end{cases}.$$

Dans les deux cas ce sont des compacts. Si $F \subset X$ est fermé alors

$$q^{-1}(q(F)) = \begin{cases} F \text{ si } A \cap F = \emptyset \\ F \bigcup A \text{ sinon} \end{cases}$$
.

Notons que A est fermé puisque compact dans un espace séparé, ce qui implique que $F \bigcup A$ l'est également.

Exemple 1.3.8. On montre à travers cet exemple que cette proposition n'est pas nécessaire. On définit sur \mathbb{R}^2 la relation

$$\mathbf{x} \sim \mathbf{y} \iff \exists \mathbf{a} \in \mathbf{Z}^2 \mid \mathbf{x} + \mathbf{a} = \mathbf{y}.$$

Alors $\mathbf{R}^2/_{\sim}$ est compact et séparé mais $q^{-1}(q(\mathbf{0})) = \mathbf{Z}^2$ n'est pas compact.

Proposition 1.3.9. L'espace $X/_{\sim}$ est T1, ou de Fréchet, si et seulement si chaque classe d'équivalence de \sim est fermée dans X.

Dans le cas où X est un espace compact on a des équivalences plus satisfaisantes.

Proposition 1.3.10. Soit X un espace compact, alors $X/_{\sim}$ est séparé si et seulement si le graphe de la relation \sim est fermé.

Définition 1.3.11 (Espace projectif réel). Soit $S^n \subset \mathbf{R}^{n+1}$ la sphère unité et \sim la relation définie par $x \sim y \iff x = \pm y$ pour $x, y \in S^n$. L'espace projectif réel \mathbf{RP}^n est le quotient $S^n/_{\sim}$.

Proposition 1.3.12. \mathbb{RP}^n est compact et séparé.

Démonstration. S^n est compact le quotient l'est aussi. De plus $q^{-1}(q(x)) = \{\pm x\}$ est compact et $q^{-1}(q(F)) = F \bigcup -F$ est fermé comme union de deux fermés et donc par la proposition précédente le quotient est séparé.

On passe de ${\bf R}$ à ${\bf C}$ et on remplace les nombre réels de valeur absolue 1 par $S^1\subset {\bf C}$ les nombres complexes de module 1.

Définition 1.3.13 (Espace projectif complexe). Soit $S^{2n+1} \subset \mathbf{C}^{n+1}$ la sphère unité et la relation \sim définie par $x \sim y \iff x = a \cdot y$ pour un $a \in S^1$. Le quotient \mathbf{CP}^n est l'espace projectif complexe de dimension n.

1.4 Quotient par des actions de groupe

Définition 1.4.1 (Groupe topologique). Un groupe topologique (G, \star) est un groupe munit d'une topologie pour laquelle les applications de multiplication et d'inversion

$$G^2 \longmapsto G: (x,y) \longmapsto x \star y$$
 et $G \longmapsto G: x \longmapsto x^{-1}$

soient continues. Il est bon de noter qu'ici G^2 est munit de ma topologie produit.

Proposition 1.4.2. Un groupe (G, \star) munit d'une topologie est un groupe topologique si et seulement si l'application

$$G^2 \longmapsto G: (x,y) \longmapsto x \star y^{-1}$$

est continue.

Afin d'alléger les notations, dans la suite de cette section lorsque cela ne prête pas à confusion on omettra de noter explicitement la loi de G.

Exemple 1.4.3. On donne quelques exemples de base de groupes topologiques

- 1. Tout groupe munit de la topologie discrète est un groupe topologique, il est parfois noté G^{δ} .
- 2. $(\mathbf{R}^n, +)$ est un groupe topologique pour la topologie euclidienne.
- 3. $(GL_n(\mathbf{R}), \cdot)$ est un groupe topologique muni de la topologie de sous espace de $M_n(\mathbf{R}) \cong \mathbf{R}^{n^2}$. La multiplication et l'inversion de matrices sont des applications continues.

Lemme 1.4.4. Tout sous groupe d'un groupe topologique est encore un groupe topologique.

Définition 1.4.5. Une action d'un groupe topologique G à droite sur un espace X est donnée par une application continue

$$X \times G \longmapsto X$$

 $(x,g) \longmapsto x \cdot g$

satisfaisant

1.
$$x \cdot 1_G = x$$

$$2. \ x \cdot (gh) = (x \cdot g) \cdot h$$

Définition 1.4.6 (Espace des orbites). Soit X un espace sur lequel G agit. L'espace des orbites X/G est le quotient de X par la relation $x \sim y \iff \exists g \in G \mid x = y \cdot g$.

Exemple 1.4.7. 1. Le groupe C_2 agit sur $S^n \subset \mathbf{R}^{n+1}$ par l'action antipodale, le générateur $g \in C_2$ agit par $x \cdot g = -x$. Alors $S^n / C_2 \cong \mathbf{RP}^n$.

- 2. Le groupe $S^1 := \{z \in \mathbf{C} \mid |z| = 1\}$ agit par multiplication à droite sur les coordonnées de $S^{2n+1} \subset \mathbf{C}^{n+1}$. Pour $z \in S^1$ et $a = (a_0, \dots, a_n) \in S^{2n+1}$, $a \cdot z = (a_0z, \dots, a_nz)$. Le quotient $S^{2n+1}/S^1 \cong \mathbf{CP}^n$.
- 3. Le groupe (discret) (\mathbf{Z}^2 , +) agit par translation sur le plan \mathbf{R}^2 , le quotient $\mathbf{R}^2/\mathbf{Z}^2$ est un tore.
- 4. Le groupe S^1 agit par rotations d'axe vertical sur S^2 , les orbites sont les parallèles et les pôles. Le quotient $S^2/S^1\cong I$, les classes des pôles sont les extrémités de l'intervalle.

Remarque. Étant donne un groupe G et un sous groupe H < G, H agit naturellement sur G par multiplication

$$G \times H \longmapsto G$$

 $(g,h) \longmapsto gh.$

L'espace quotient G/H est l'espace des orbites gH. En particulier ces dernières ont toutes le même cardinal. Lorsque $H \triangleleft G$, l'espace quotient G/H hérite d'une structure de groupe.

Proposition 1.4.8. Soit G un groupe topologique agissant sur un espace X, alors

- 1. Le quotient $q: X \longmapsto X/G$ est une application ouverte.
- 2. Si X est compact alors le quotient l'est aussi.
- 3. Si X et G sont compact et séparés alors le quotient l'est aussi.

Démonstration. 1. Puisque la multiplication par q est un homéomorphisme

$$X \longmapsto X$$
$$x \longmapsto x \cdot q$$

si $U \subset X$ est ouvert alors $U \cdot g$ l'est aussi. Pour montrer que q(U) est ouvert dans le quotient on doit montrer par définition de la topologie quotient que la primage est ouverte dans X. Or $q^{-1}(q(U)) = \bigcup_{g \in G} U \cdot g$, est ouvert comme union d'ouverts.

- 2. L'image d'un compact par une fonction continue est compact.
- 3. Comme X est séparé, la diagonale Δ est fermée dans $X \times X$ par le **Lemme** 1.3.4 donc compacte. On pose

$$X \times X \times G \longmapsto X \times X$$

 $(x, y, g) \longmapsto (x, yg).$

L'image de $\Delta \times G$, compact, est le graphe Γ de la relation, qui est compact. X étant séparé Γ est fermé. Soient $x,y \in X$ avec $xG \neq yG$. Comme $(x,y) \not\in \Gamma$, il existe un voisinage dans $X \times X$ de (x,y) disjoint de Γ . On peut choisir ce dernier par définition de la topologie produit comme $U \times V$ avec $U, V \subset X$ des ouverts.

On affirme que les ouverts q(U) et q(V) (ouverts par le premier point de la proposition) séparent les orbites xG et yG. Si $zG \in q(U) \cap q(V)$ alors $z = ug_1 = vg_2$ avec $u \in U, v \in V, g_1, g_2 \in G$. Mais alors $(u, v) = (u, ug_1g_2^{-1}) \in U \times V \cap \Gamma$, contradiction.

Exemple 1.4.9. \mathbb{RP}^n et \mathbb{CP}^n sont compacts et séparés.

1.5 Les espaces projectifs

Définition 1.5.1 (Stabilisateur). Le stabilisateur de $x \in X$ est l'ensemble

$$G_x := \{ g \in G \mid g \cdot x = x \}.$$

Proposition 1.5.2. Soit G un groupe topologique compact qui agit à gauche transitivement sur un espace X séparé, alors pour tout point $x \in X$ on a un homéomorphisme

$$G/_{G_x} \cong X$$
.

Démonstration. On pose l'application

$$\varphi_x: G \longmapsto X$$
$$g \longmapsto g \cdot x.$$

Puisque l'action est transitive on obtient que φ_x est surjective. De plus

$$\varphi_x(g) = \varphi_x(g') \iff g \cdot x = g' \cdot x \iff g^{-1}g' \in G_x$$

. Ainsi φ_x passe au quotient $\overline{\varphi_x}: {}^G/_{G_x} \longmapsto X$ et on a vu que cette application est surjective et injective. Puisque ${}^G/_{G_x}$ est compact et X est séparé c'est un homéomorphisme. \square

Exemple 1.5.3. Pour $n \geq 2$, le groupe $\mathcal{SO}(n)$ agit transitivement sur $S^{n-1} \subset \mathbf{R}^n$ par multiplication matricielle à gauche sur les vecteurs colonnes de norme 1. Le stabilisateur de e_n est isomorphe à $\mathcal{SO}(n-1)$. Par abus de notation on considère $\mathcal{SO}(n-1)$ comme un sous groupe de $\mathcal{SO}(n)$. On a $\mathcal{SO}(n)/\mathcal{SO}(n-1) \cong S^{n-1}$.

En petites dimensions on a $\mathcal{SO}(1) = \{(1)\}$. Puis $\mathcal{SO}(2) \cong S^1$, enfin $\mathcal{SO}(3)/\mathcal{SO}(2) \cong S^2$.

Remarque.
$$\mathbf{RP}^0 \cong \{\pm 1\}/_{-1} \sim 1$$
, $\mathbf{RP}^1 \cong S^1$, $\mathbf{RP}^2 \cong D^2/_{\sim}$

Proposition 1.5.4. On a un homéomorphisme $\mathcal{RP}^3 \cong \mathcal{SO}(3)$.

1.6 Recoller des espaces

Soient $f:A\longmapsto X$ et $g:A\longmapsto Y$ deux applications continues. On aimerait construire un nouvel espace à partir de X et Y en identifiant leur 'partie commune' A.

Définition 1.6.1 (Recollement). Le recollement $X \bigcup_A Y$ est l'espace quotient $X \coprod Y /_{\sim}$ où \sim est la relation d'équivalence engendrée par $f(a) \sim g(a) \ \forall a \in A$, autrement dit la relation d'équivalence la plus fine avec cette propriété. On appelle cet espace le **pushout** de X et Y.

Remarque. Pour les applications suivantes le diagramme de droite commute.

$$i: X \xrightarrow{i_1} X \coprod Y \xrightarrow{q} X \bigcup_A Y$$

$$j: Y \xrightarrow{i_2} X \coprod Y \xrightarrow{q} X \bigcup_A Y$$

$$X \xrightarrow{q} X \bigcup_A Y$$

Proposition 1.6.2 (Propriété universelle). Pour toutes applications $\alpha: X \longmapsto Z$ et $\beta: Y \longmapsto Z$ telles que $\alpha \circ f = \beta \circ g$ il existe une unique application $\gamma: X \bigcup_A Y \longmapsto Z$ telle que $\gamma \circ i = \alpha$ et $\gamma \circ j = \beta$.

Le diagramme suivant résume cette propriété, γ est l'unique application le faisant commuter.

 $D\acute{e}monstration$. Pour définir γ on pose

$$H: X \coprod Y \longmapsto Z$$
$$x \longmapsto \alpha(x)$$
$$y \longmapsto \beta(x).$$

Ce choix passe au quotient car $H(f(a)) = \alpha(f(a)) = \beta(g(a)) = H(g(a))$. On pose $\gamma := \overline{H}$ l'unicité est quant à elle claire.

Lemme 1.6.3. Soient X, Y des espaces séparés, $A \subset Y$ fermé, $f : A \longmapsto X$ continue. Si $C \subset X$, alors $q^{-1}(q(C)) = C \coprod f^{-1}(C)$.

Lemme 1.6.4. Soient X, Y des espaces séparés, $A \subset Y$ fermé. Si $C \subset Y$, alors

$$q^{-1}(q(C)) = f(A \cap C) \coprod (C \cup f^{-1}(f(A \cap C))).$$

Démonstration. Soit $y \in C$. Si $y \in C \setminus A$, $[y] = \{y\}$. Sinon $[y] = f(y) \coprod f^{-1}(f(y))$. Donc $q^{-1}(q(C)) = (C \setminus A) \cup (C \cap A) \cup f(C \cap A) \cup f^{-1}(f(C \cap A))$

FIGURE 1.3 – Illustration du pushout de X, Y par leur 'partie commune' A.

Proposition 1.6.5. Soient X, Y des espaces séparés, $A \subset Y$ compact, alors $X \cup_A Y$ est séparé.

Démonstration. On vérifie le critère de séparation. Les deux lemmes nous permettent de décrire la saturation d'un fermé arbitraire de $X \coprod Y$. Un fermé de $X \coprod Y$ est une réunion disjointe de fermés, il suffit donc de vérifier ce qui se passe pour $C \subset X$ fermé et pour C fermé de Y.

Dans le premier cas, le **Lemme** 1.6.3 montre que $q^{-1}(q(C)) = C \coprod f^{-1}(C)$ est fermé. Dans le second le **Lemme** 1.6.4 montre que $q^{-1}(q(C)) = f(C \cap A) \coprod f^{-1}(f(A \cap C))$. Ici $C \cap A$ est fermé dans A, donc compact. L'image par f est donc un compact dans X qui est séparé, elle est donc fermée. On conclut ensuite que $f^{-1}(f(A \cap C))$ est fermé aussi.

On vérifie finalement que la saturation d'un point est compacte, par exemple si

$$y \in A, \ q^{-1}(q(y)) = f(y) \coprod f^{-1}(f(y))$$

qui est une union disjointe de compacts donc un compact.

Corollaire 1.6.6. Soit X un espace séparé, A compact et séparé, $f:A \longmapsto X$. Alors $X \cup_f CA$ est séparé et compact si X est compact.

Démonstration. Comme A est séparé, CA est séparé, on applique la **Proposition 1.6.5**. \square

Un cas particulier et important de la construction du pushout $X \cup_A Y$ est celui où $g: A \hookrightarrow CA$ est l'inclusion de la base du cône.

Définition 1.6.7 (Attachement de cellule). Étant donné une application $f: A \longmapsto X$ on dit que le pushout $X \cup_A CA$ aussi noté $X \cup_f CA$ est obtenu de X en attachant une A-cellule le long de X.

Lorsque $A = S^{n-1}$ on dit que $X \cup_f e^n$ est obtenu en attachant une n-cellule le long de f. L'application f est appelée application d'attachement.

Proposition 1.6.8. Soient $f, f': A \longmapsto X$ homotopes. Alors

$$X \cup_f CA \simeq X \cup_{f'} CA$$
.

Démonstration. On doit trouver deux applications

$$h: Y \longmapsto Y'$$

 $h': Y' \longmapsto Y$

telles que $h \circ h' \simeq id_Y$ et $h' \circ h \simeq id_{Y'}$. On construit h par passage au quotient d'une application

$$X \coprod CA \longmapsto Y'$$

$$x \longmapsto x$$

$$[a,t] \longmapsto \begin{cases} [a,2(t-\frac{1}{2})] & \text{si } \frac{1}{2} \le t \le 1 \\ H(a,2t) & \text{si } 0 \le t \le \frac{1}{2} \end{cases}$$

où $H: A \times I \longrightarrow X$ est une homotopie de $f \longmapsto f'$. La moitié supérieure du cône CA dans Y est envoyée sur tout le cône de Y. On vérifie que pour $t = \frac{1}{2}$,

$$[a, 2(t - \frac{1}{2})] = [a, 0] = [f'(a)] = [H(a, 1)] = [H(a, 2 \cdot \frac{1}{2})].$$

Pour t = 0, H(a, 0) = f(a) si bien qu'elle passe au quotient. On procède de même pour h' avec $H(\cdot, 1 - t)$, homotopie de $f' \longmapsto f$.

Calculons $h' \circ h$. On observe que $(h' \circ h)|_X$ est l'identité, puis que sur CA on a

$$(h' \circ h)[a, t] = \begin{cases} [a, 2t - 1] \stackrel{h'}{\mapsto} [a, 4t - 3] & \text{si } \frac{3}{4} \le t \le 1 \\ [a, 2t - 1] \stackrel{h'}{\mapsto} H(a, 3 - 4t) & \text{si } \frac{1}{2} \le t \le \frac{3}{4} \\ H(a, 2t) \stackrel{h'}{\mapsto} H(a, 2t) & \text{si } 0 \le t \le \frac{1}{2} \end{cases}$$

On parcourt le cône CA de Y quatre fois plus rapidement sur le quart supérieur, ensuite on utilise H pour faire le lien entre f et f', puis on revient en arrière avec l'homotopie inverse. On doit enfin construire une homotopie

$$h' \circ h \times I \longmapsto id_Y$$
.

L'idée est de définir $K: Y \times I \longrightarrow Y$ de sorte qu'au temps s on commence par l'homotopie H mais seulement jusqu'au temps t = s, puis on revient en arrière et on termine avec l'identité. On pose $K|_{X \times I}$ comme étant la projection sur X puis on pose

$$K([a,t],s) = \begin{cases} [a, \frac{4}{4-3s}t - \frac{3s}{4-3s}] & \text{si } \frac{3}{4}s \le t \le 1\\ H(a, 3s - 4t) & \text{si } \frac{s}{2} \le t \le \frac{3}{4}s \\ H(a, 2t) & \text{si } 0 \le t \le \frac{s}{2} \end{cases}$$

On vérifie que

$$K([a,t],0) = [a,t] = id_{CA}[a,t]$$
$$K([a,t],1) = (h' \circ h)([a,t]).$$

De même on définit K' une homotopie de $id_{Y'} \longmapsto h \circ h'$.

Corollaire 1.6.9. Si $f \simeq f' : S^{n-1} \longmapsto X$, alors $X \cup_f e^n \cong X \cup_{f'} e^n$. En particulier si f est homotope à une fonction constante, alors $X \cup_f e^n \cong X \bigvee S^n$.

Proposition 1.6.10. $D^n \cong CS^{n-1}$.

Exemple 1.6.11. Le même espace topologique peut admettre des descriptions distinctes comme recollement de cellules. Par exemple $S^1 \cong \star \cup e^1$ où $f: S^0 \longmapsto \star$ est constante, mais on a aussi $S^1 \cong S^0 \cup_f e^1 \cup_g e'^1$. La deuxième description est compatible avec l'action antipodale de C_2 tandis que la première ne l'est pas, au sens que si g engendre C_2 , $g \cdot g$ transforme une cellule en cellule, si bien que $\mathbf{RP}^1 \cong \star \cup e^1 \cong S^1$.

1.7 Quelques surfaces

Définition 1.7.1 (Surface). Une surface est un espace séparé où tout point admet un voisinage ouvert homéomorphe à un disque ouvert.

Exemple 1.7.2. $S^2, T^2, \mathbf{RP}^2, K$ sont des surfaces.

Définition 1.7.3 (Somme connexe). La somme connexe S#T de deux surfaces S et T est obtenue en choisissant deux points $s \in S, t \in T$ puis deux ouverts contenant chacun un de ces points $U, V \cong D^2, s \in U, t \in V$ et en construisant le quotient

$$(S \setminus U) \coprod (T \setminus V)/_{x \sim f(x)}$$

où $f: \partial U \xrightarrow{\cong} S^1 \xrightarrow{\cong} \partial V$.

On peut construire de nouvelles surfaces à l'aide de vielles surfaces grâce à l'opération de somme connexe.

Exemple 1.7.4. $S \# S^2 \cong S$ par le théorème du disque de Palais (1960), cette construction est bien définie à homéomorphisme près.

Exemple 1.7.5. $T^2 \# T^2$ est homéomorphe à un tore à deux trous.

FIGURE 1.4 – Illustration de la somme connexe de deux 2-Tores.