SISTEMAS NUMERICOS

"Un sistema numérico tiene como objetivo el permitir el conteo de los elementos de un conjunto. El sistema se conforma por n unidades en orden sucesivo que aumentan de n en n. De acuerdo a n se define el número de unidades que se necesitan para pasar de un orden a otro."

Ejercicio:

1. Explica:

Sistema decimal.

Sistema binario

Sistema Octal

Sistema Hexadecimal

¿Qué otros sistemas numéricos conoces?

2. Contesta:

¿Por qué el sistema decimal es un sistema posicional? ¿Es el sistema binario posicional?

Observa el siguiente video:

 $\frac{https://www.canalipe.tv/noticias/television/mundo-matematico-para-que-sirven-los-sistemas-denumeracion-y-valor-posicional$

3. Convierte a base 2 los siguientes valores en base 10. (Presentar el procedimiento)

1010	99910	1270_{10}	1333110	2043210
123455 ₁₀	33333 ₁₀	146100010	1209_{10}	122_{10}

4. Convierte a base 10 los siguientes valores en base 2. (Presentar el procedimiento).

1010_{2}	101011011001110_2	1100001101001111112
11010110111111001102	11010110111111001112	11110100001001000000_2
11000000101000001001_2	00000012	11110111010_2

5. Convierte a base 10 los siguientes valores de base en base 8 . (Presentar el procedimiento).

1238	12348	7776548
23456127768	2345618	66718
128	200008	118

6. Convierte a base 16 los siguientes valores en base 10. (Presentar el procedimiento).

1270_{10}	1333110	2043210
1461000_{10}	1209_{10}	122_{10}

7. Convierte a base 10 los siguientes valores de base en base 16. (Presentar el procedimiento).

309316	12F98E ₁₆	12CD27 ₁₆
--------	----------------------	----------------------

8. Conforma grupos de hasta 4 integrantes y prepara una exposición de los siguientes temas:

Suma de binarios

Resta de binarios

Multiplicación de binarios

División de binarios

Números binarios con signo

9.

- a. Consulta que es y para que se utiliza la tabla ASCII.
- b. ¿Como represento en binario una palabra utilizando el código **ASCII?**
- c. Convierte a binario las siguientes palabras

papa	aprendiz	SENA
PAPA	aPRendiz	sena

https://www.youtube.com/watch?v=gVNYEQFyt-M

d. Convierte tu nombre a binario.

Sistema Decimal

Conjuntos numéricos

10. Interpreta y explica con tus palabras los siguientes diagramas

I

II

Define:

Números naturales

Números enteros

Número racionales

Número Irracionales

Números reales

Números imaginarios

Números complejos

CONJUNTO DE NUMEROS ENTEROS1

1- Números enteros

En la vida se nos presentan muchas veces situaciones que no pueden expresarse mediante los números naturales. En este caso se necesitan otro tipo de números, que son **los números enteros**.

Los números enteros son:

- \rightarrow **Positivos:** +1, +2, +3, +4, +5,
- → **Negativos: -**1, -2, -3, -4, -5,
- → **El cero:** 0. (El cero es el único número que no es ni positivo ni negativo).

Su utilidad:

Valores de temperaturas (-7°, siete grados por debajo de cero; +3°, tres grados por encima de cero).

Plantas de edificios (-1, planta por debajo de la calle; +5, cinco plantas por encima). **Los años en las líneas del tiempo** (-1.500 = 1.500 años a.C.). **Deudas**.

Profundidades bajo el nivel del mar

Los números positivos expresan situaciones relacionadas con 'sumar', 'tener', 'estar por encima de', etc. En cambio, los negativos se relacionan con situaciones de 'restar', 'deber', 'estar por debajo de', 'gastar', etc.

Los números enteros positivos (+2, +6...) se pueden escribir sin usar el signo (2, 6...).

2- Representación gráfica y ordenación de números enteros

Los números enteros se representan, de forma ordenada, sobre una recta llamada la **recta numérica**:

¹ Tomado de: https://www.portaleducativo.net/octavo-basico/158/Numeros-enteros-positivos-y-negativos

Como vemos en el diagrama, se sitúa el cero en la mitad de la recta. Los positivos se representan a la derecha del cero y los negativos a su izquierda.

Esta representación en la recta numérica nos sirve para poder comparar números enteros:

Es mayor el número colocado más a la derecha de la recta numérica. Por ejemplo +2 es mayor que -1. -2 es mayor que -3.

Ahora veamos otros ejemplos para que quede más claro:

¿Qué número está más a la izquierda en la recta numérica? ¿Cuál es menor?

Valor Absoluto

El **valor absoluto** de un número es **su distancia** desde cero en una recta numérica. Por ejemplo, 4 y –4 tienen el mismo valor absoluto (4).

Así, el valor absoluto de un número positivo es justo el mismo número, y el valor absoluto de un número negativo es su opuesto. El valor absoluto de 0 es 0.

Representación:

El conjunto de los números enteros se representa por **Z**.

$$Z = \{0, 1, -1, 2, -2, 3, -3, 4, -4, ...\}$$

Opuesto de un número entero

El opuesto de un número entero es otro número entero de igual valor absoluto y distinto signo.

Lo opuesto de "deber" es "tener". Lo opuesto de 5 m de altura es 5 m bajo el nivel del mar. Lo opuesto de 4º C es 4º C bajo cero, etc.

Se escribe: Op(+a) = -a, Op(-a) = +a o bien: -(+a) = -a, -(-a) = +a

Números racionales

Los números racionales son las fracciones que pueden formarse a partir de números enteros y pertenecen a la recta real.

En otras palabras, los números racionales son números reales que pueden reescribirse como la fracción de dos números enteros porque se conocen tanto el numerador como el denominador.

El nombre de racionales es la traducción del inglés, rationals, que hace referencia a ratio, es decir fracción. Entonces, sabiendo que los números racionales se asocian a una ratio, será más fácil recordarlos.

Racional = Ratio = Fracción => Sí podemos expresarlos como fracción de dos números enteros.

Los números enteros se identifican con la letra Z y los números racionales se identifican con la letra Q, entonces, si los números racionales son fracciones de números enteros, puede verse como:

$$\mathbb{Q} = \frac{\mathbb{Z}}{\mathbb{Z}}$$

Tipos de números racionales

Los números reales se dividen entre **números irracionales** y números racionales, los cuales pueden reducirse a números enteros y estos a **números naturales**. Es decir, que existen dos grandes tipos de números racionales: los enteros y los naturales.

Por ejemplo,

• ¿ 8,75 es un número racional?

Sí, porque podemos expresarlo como una fracción:

$$8,75 = \frac{35}{4}$$
 Racional

• ¿ 2,71828182845904523536028747135... es un número racional?

No, porque no podemos expresarlo como una fracción:

$$2,71828182845904523536028747135 \dots = \frac{?}{?}$$
 Racional

Ejemplos:

$$\sqrt[2]{4} = 2 = \frac{2}{1}$$
 Racional $\sqrt[2]{93} = 9,643650761 ... = \frac{?}{?}$ Racional = Irracional

Ejemplo de un número racional y un número irracional

Ejercicios:

Números Enteros, racionales e irracionales

Teniendo en cuenta la jerarquía de las operaciones

Resuelva:

$$2) -12 + (-64) + (-17) + 8 =$$

3)
$$3 + 5 * (-7 - 13) =$$

4)
$$3-5*(-3+12) =$$

5)
$$(8-14) \div (-2) - 1 =$$

6)
$$4 + 2 * [(3 + 2) - 4 - 2] =$$

7)
$$3*[-3+(-3)]-14÷(-7)=$$

8)
$$5*(12-9)+3*(19-16)=$$

9)
$$7 - [2 * 9 - (4 + 13) + 4] =$$

10)
$$(42 + 20) \div 4 - 2 * (9 \div 3) - 2 * [18 + 3 * (13 - 9) - 5] =$$

11)
$$-8 * [5 - (-2)] - 48 \div [6 + (-14)] - 11 * [10 + (-7)] + 36 \div [(-1) - (-10)] =$$

12)
$$12 \div 32 + 12 * 23 \div 43 - \{[(20 - 13) + 12] * [-(10 + 11)] - 2\} =$$

13)
$$\{\sqrt{25} [(7+5*2)+3*(3*3)-(20\div5)]\}*(9-2) =$$

14)
$$\{2 * [(2+3-5) + \sqrt{25} + (2 * 2 \div 1) - (5 * 8 \div 2) * (9+5)]\} * (2^2 + 1) =$$

15)
$$\{(\sqrt{4} \times 3) [(10 + 15) \times (5 \times 12)^2 + \sqrt{16} - (16 - 4 \times 3)]\} \div 6 =$$

Resuelva las siguientes operaciones de números enteros

a)
$$(-5)$$
 - (-4) - $(+3)$ - (-7) + $(+42)$ =

c)
$$(-2)$$
 - $(+8)$ - $(+6)$ - (-3) _ (-5) - (-7) =

d)
$$(+7)$$
 - (-5) - (-4) - $(+3)$ - (-5) - (-8) =

e)
$$(-8)$$
 - (-6) - (-7) - $(+2)$ - (-4) - $(+6)$ =

f)
$$(+4)$$
 - (-6) - (-8) - (-3) - $(+6)$ - (-9) - $(+2)$ - (-5) - $(+8)$ - (-11) =

g)
$$(+3)$$
 - $(+1)$ - (-9) - (-7) - $(+5)$ - $(+4)$ - (0) - $(+8)$ - (-6) - (-4) =

h)
$$(+1)$$
 - $(+2)$ - (-3) - (-4) - (-5) - (-6) - $(+7)$ - $(+8)$ - $(+9)$ - 0 =

$$j)$$
 (+2) - (+12) - (-1) - (-11) - 0 - (+10) - (-3) - (+13) - (-4) - (-14) =

Completa la siguiente tabla

	Suma				
Propiedad	Expresión simbólica	Descripción	Ejemplo		
Conmutativa	a+b=b+a	No importa el orden en que tomemos los sumandos, el resultado de la suma no cambiará.	2 + 4 = 4 + 2		
Asociativa					
Neutro					
Distributiva					

	Resta				
Propiedad	Expresión simbólica	Descripción	Ejemplo		

Multiplicación			
Propiedad	Expresión simbólica	Descripción	Ejemplo

	División				
Propiedad	Expresión simbólica	Descripción	Ejemplo		

Liste los elementos del conjunto según sean: números naturales, enteros, racionales o irracionales.

1)	$\{0, -10, 50, \frac{5}{4},$	$0.538, \frac{8}{4}, 1.2$	$23, -\frac{1}{3}$		
			12	12	

2)
$$\{1.001, 0.3333..., -\Pi, -11, 11, \frac{13}{15}, \sqrt{16}, 3.14, \frac{13}{15}\}$$

3) {1, 3, -4, -5, 1000, 10, 2, 200}

Establezca la propiedad de los números reales que se está usando,

1)
$$7 + 10 = 10 + 7$$

2)
$$2(3+5) = (3+5)2$$

3)
$$(x +2y) + 3z = x + (2y + 3z)$$

4)
$$2(A + B) = 2A + 2B$$

5)
$$(5x + 1)3 = 15x + 3$$

6)
$$2x(3 + y) = (3 + y)2x$$

8)
$$(a + b) + c = a + (b + c)$$

7) 7(a + b + c) = 7(a + b) + 7c

Escriba de nuevo la expresión aplicando la propiedad dada de los números reales

Aplique las propiedades de los números reales para escribir las expresiones sin paréntesis,

1)
$$15(x + y)$$

3)
$$-\frac{5}{2}(2x-4y)$$

4)
$$(a - b)4$$

5)
$$\frac{8}{3}$$
(-6y)

6)
$$(3a)(b + c - 2d)$$

Fraccionarios

Efectúe las operaciones indicadas.

a)
$$\frac{5}{10} + \frac{5}{15}$$

b)
$$\frac{1}{6} + \frac{1}{5}$$

c)
$$\frac{2}{3} + \frac{3}{5}$$

d) 1 +
$$\frac{5}{8}$$
 - $\frac{1}{6}$

$$e)\frac{2}{3}(6-\frac{5}{15})$$

f) 0.25
$$(\frac{8}{9} + \frac{1}{2})$$

g)
$$(3 + \frac{1}{4}) (1 - \frac{4}{5})$$

h)
$$(\frac{1}{2} - \frac{1}{3}) (\frac{1}{2} + \frac{1}{3})$$

i)
$$\frac{2}{\frac{2}{3}} - \frac{\frac{2}{3}}{2}$$

$$j) \ \frac{\frac{1}{12}}{\frac{1}{10} - \frac{1}{9}}$$

$$k)\frac{\frac{2}{5} + \frac{1}{2}}{\frac{1}{10} - \frac{2}{9}}$$

$$\left. \begin{array}{c} \frac{4}{5} + \frac{1}{8} \\ \frac{1}{5} - \frac{2}{9} \end{array} \right.$$

Números mixtos

Pasa los siguientes números mixtos a fracciones, simplificando si es necesario

1)
$$4\frac{2}{9}$$
 =

2)
$$3\frac{2}{5}$$
 =

5)
$$6^{\frac{2}{3}} =$$

3)
$$2\frac{3}{7}$$
 =

4)
$$14\frac{2}{5}$$
 =

6)
$$14\frac{2}{19}$$
 =

Escribe las siguientes fracciones como números mixtos:

$$1)\frac{9}{4} =$$

4)
$$\frac{22}{5}$$
 =

2)
$$\frac{12}{5}$$
 =

5)
$$\frac{10}{3}$$
 =

3)
$$\frac{23}{7}$$
 =

6)
$$\frac{62}{19}$$
 =

Igualdades y desigualdades

Escriba el símbolo correcto (<, > o =) en el espacio,

3)
$$0.75$$
 $\frac{3}{4}$

4) 3.5
$$\frac{7}{2}$$
 =

5)
$$\frac{2}{9}$$
 0.67

7) 3.33
$$\frac{1}{3}$$

8)
$$\frac{100}{3}$$
 3.3

9)
$$\frac{1}{2}$$
 $\frac{100}{200}$

10) 9
$$\frac{1}{9}$$
 =

Diga de cada desigualdad si es verdadera o falsa

2)
$$\sqrt{5} > 2.345$$

3)
$$\sqrt{2} > 1.41$$

4)
$$-\frac{1}{2}$$
 < -1

5)
$$\pi > 3.1416$$

6)
$$\frac{30}{7} > \frac{7}{30}$$

Escriba cada enunciado en términos de desigualdades

- 1) X1 es positiva
- 2) m es menor que 4
- 3) y es mayor que o igual a π
- 4) j es menor que $\frac{1}{3}$ y es mayor que -5
- 5) y es negativa
- 6) z es mayor que 0.1
- 7) m es mayor que x, y menor que 2
- 8) la raíz cuadrada de 4 es mayor o igual que 1.5

Potenciación

Completa la siguiente tabla según las leyes de los exponentes

Leyes de la potenciación					
Propiedad	Expresión simbólica	Descripción	Ejemplo		
Potencia del exponente cero					
Potencia del exponente uno					
Multiplicación de potencias de igual base					
División de potencias de igual base					
Potencia de una potencia					
Multiplicación de potencias con base diferente					
División de potencias con base diferente					
Exponente negativo a fracción					
Exponente positivo a fracción					
División de exponente negativo con diferente base					
Exponente fraccionario					

Expresa los siguientes productos usando solo una potencia

a.
$$3^4 \cdot 3^{-2} \cdot 3^6$$

a.
$$3^4 \cdot 3^{-2} \cdot 3^6$$
 i. $a^4 \cdot a^{-3} \cdot a^{-1}$

b.
$$(-2)^{-5} \cdot (-2)^{-7}$$
 j. $x^2 \cdot x^{-4} \cdot x^2$

$$x^2 \cdot x^{-4} \cdot x^2$$

c.
$$a^2 \cdot a^{-3} \cdot a$$

c.
$$a^2 \cdot a^{-3} \cdot a$$
 k. $2^a \cdot 2^b \cdot 2^{-c}$

d.
$$7^5 \cdot 7^2 \cdot 49$$
 I. $\left(\frac{1}{2}\right)^{-4} \cdot \left(\frac{1}{2}\right)^{-4} \cdot 2^2$

e.
$$2^5 \cdot 32 \cdot 2^{-3}$$
 m. $(-4)^5 \cdot (0,25)^{-5}$

f.
$$5 \cdot 125 \cdot 0,008$$
 n. $(-3)^4 \cdot (-0,\overline{3})^4$

g.
$$6^3 \cdot (-6)^4$$
 o. $2^x \cdot (-2)^x$

Completa con el número que falta para que la igualdad se cumpla

a.
$$5^{\square} = \frac{5^4}{25}$$

a.
$$5^{\square} = \frac{5^4}{25}$$
 e. $\frac{1}{32} = 2^7 : 2^{\square}$

b.
$$2^5 \cdot \square^5 = 6^5$$

b.
$$2^5 \cdot \square^5 = 6^5$$
 f. $\frac{2^5 \cdot 2^{\square}}{2^6} = \frac{1}{8}$

c.
$$45 = 3^{\square} \cdot 5$$
 g. $\left(\frac{2}{3}\right)^{\square} = \frac{2^7 \cdot 3^5}{2^9 \cdot 3^3}$

d.
$$(3)^6 = (3)^2 (3)^{-1}$$
 h. $\frac{2^{-1} \cdot 3^4}{2 \cdot 3^6} = \frac{4}{9}$

Bibliografía

 $\underline{http://www3.uacj.mx/CGTI/CDTE/,JPM/Documents/IIT/sistemas_numericos/conversiones/sistemas_numericos.html}$

 $\underline{https://www.canalipe.tv/noticias/television/mundo-matematico-para-que-sirven-los-sistemas-denumeracion-y-valor-posicional}$

 $\underline{https://www.youtube.com/watch?v=IVdiK3h6deA}$

 $\frac{https://www.youtube.com/watch?v=BObOmvmX5DM\&list=PL46-}{B5QR6sHleyaafOF3Vp1ZpiUEtHJ40\&index=58}$

https://www.youtube.com/watch?v=2WtqivPA4tk

 $\underline{https://economipedia.com/definiciones/conjuntos-numericos.html}$

https://www.gaussianos.com/el-diagrama-definitivo-de-los-conjuntos-numericos/

 $\underline{https://www.portaleducativo.net/octavo-basico/158/Numeros-enteros-positivos-y-negativos}$

 $\underline{http://www.apuntesmareaverde.org.es/grupos/mat/1ESO/1\%2004\%20Numeros\%20enteros.pdf}$

 $\underline{https://economipedia.com/definiciones/numeros-racionales.html}$

https://google.com