日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 8月19日

出 願 番 号 Application Number:

特願2003-295025

[ST. 10/C]:

10 (A) 1 10 (A) 1 [JP2003-295025]

REC'D 1 8 FE3 2004
WIPO PCT

出願人 Applicant(s):

JSR株式会社 デーエスエム

デーエスエム アイピー アセット ビー ヴィ

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 1月 8日

今 井 康

【書類名】 特許願 【整理番号】 P03641508 【あて先】 特許庁長官 殿 【発明者】 【住所又は居所】 東京都中央区築地二丁目11番24号 ジェイエスアール株式会 社内 【氏名】 山本 圭一 【発明者】 【住所又は居所】 東京都中央区築地二丁目11番24号 ジェイエスアール株式会 社内 【氏名】 小宮 全 【特許出願人】 【識別番号】 000004178 【氏名又は名称】 JSR株式会社 【特許出願人】 【識別番号】 592222639 【氏名又は名称】 コニンクラッケ デーエスエム エヌ ヴィ 【代理人】 【識別番号】 110000084 【氏名又は名称】 特許業務法人アルガ特許事務所 【代表者】 中嶋 俊夫 【選任した代理人】 【識別番号】 100068700 【弁理十】 【氏名又は名称】 有賀 三幸 【選任した代理人】 【識別番号】 100077562 【弁理十】 【氏名又は名称】 高野 登志雄 【選任した代理人】 【識別番号】 100096736 【弁理士】 【氏名又は名称】 中嶋 俊夫 【選任した代理人】 【識別番号】 100101317 【弁理士】 【氏名又は名称】 的場 ひろみ 【先の出願に基づく優先権主張】 【出願番号】 特願2002-363908 【出願日】 平成14年12月16日 【手数料の表示】 【予納台帳番号】 164232 【納付金額】 21,000円 【提出物件の目録】 【物件名】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 要約書 1 【包括委任状番号】 0201217 【包括委任状番号】 9810289

【包括委任状番号】

0204607

【包括委任状番号】 9810626

【書類名】特許請求の範囲

【請求項1】

(A) 亜リン酸エステル基とフェノール性水酸基を有する化合物を $0.1\sim10$ 重量%含有することを特徴とする放射線硬化性樹脂組成物。

【請求項2】

さらに、(B) ウレタン (メタ) アクリレート35~85重量%、及び (C) (B) 成分と共重合可能な反応性希釈剤1~60重量%を含有する請求項1記載の放射線硬化性樹脂組成物。

【請求項3】

(A) 亜リン酸エステル基とフェノール性水酸基を有する化合物が下記式(1)の化合物である請求項1または2記載の放射線硬化性樹脂組成物。

【化1】

【請求項4】

光ファイバ被覆用である請求項1~3のいずれか1項記載の放射線硬化性樹脂組成物。

【書類名】明細書

【発明の名称】放射線硬化性樹脂組成物

【技術分野】

[0001]

本発明は、組成物自体の保存安定性が良く、また耐久性、特に耐熱性に優れ、水素ガス 発生量の少ない硬化物を与える放射線硬化性樹脂組成物に関する。

【背景技術】

[0002]

光ファイバは、ガラスを熱溶融紡糸して得たガラスファイバ素線に、保護補強等を目的 として樹脂を被覆して製造されている。この樹脂被覆としては、ガラスファイバ素線に接 してまず柔軟な第一次の被覆層を設け、その外側に剛性の高い第二次の被覆層を設けた構 造が知られている。そうした第一次、第二次の被覆層を設けた光ファイバを光ファイバ素 線と称している。またこれらの樹脂被覆を施された光ファイバ素線を平面上に複数並べて 結束材料で固めたテープ状ファイバもよく知られている。光ファイバ素線の第一次の被覆 層を形成するための樹脂組成物をプライマリ材、第二次の被覆層を形成するための樹脂組 成物をセカンダリ材、テープ状ファイバの結束材として用いられる樹脂組成物をテープ材 と称している。これらの樹脂被覆方法としては、放射線硬化性樹脂組成物を塗布し、熱ま たは光、特に紫外線により硬化させる方法が広く用いられている。

[0003]

光ファイバの被覆層からは、経時的に水素ガスが発生し、その水素ガスにより光伝送損 失が発生する問題があった。また従来の放射線硬化性樹脂組成物では、光ファイバを高熱 に長時間晒すと被覆層の劣化に由来して、光ファイバの強度が低下する問題もあった。

[0004]

光ファイバ被覆層からの水素ガス発生の抑制手法としては、特定構造のエチレン性不飽 和基を有する原料を用いる方法が知られている(特許文献1)。しかしながら、この方法 では、光ファイバ被覆材料自体の原料が制限されるため、材料設計の自由度が制約を受け る欠点があった。

[0005]

また、樹脂組成物中にジフェニルイソデシルホスファイトやトリス (ノニルフェニル) ホスファイト等のリン系化合物を添加する方法も知られている(特許文献2参照)。しか しながら、この方法によって得られた放射線硬化性樹脂組成物は、保存安定性が悪く、放 射線硬化性樹脂組成物を長期保存した場合、その硬化物の水素ガス発生量が増加するとい う欠点を有していた。また、これらの方法によって得られた放射線硬化性樹脂組成物の硬 化物は、耐久性、特に耐熱性に劣り、長時間高温に晒されると、硬化物の重量変化が見ら れるという問題を有していた。

【特許文献1】特開平9-143233号公報

【特許文献2】特開昭63-72740号公報

【発明の開示】

【発明が解決しようとする課題】

[0006]

本発明の目的は、組成物自体の保存安定性が良く、また耐久性に優れ、水素ガス発生量 の少ない硬化物を与え、光ファイバ被覆に有用な放射線硬化性樹脂組成物を提供すること にある。

【課題を解決するための手段】

[0007]

本発明者は、この様な状況に鑑みて鋭意研究した結果、放射線硬化性樹脂組成物に、亜 リン酸エステル基とフェノール性水酸基を有する化合物を添加することにより、保存安定 性が良く、硬化物の耐久性、特に耐熱性に優れ、硬化物からの水素ガス発生量の少ない放 射線硬化性樹脂組成物、特に長期間保存してもその硬化物からの水素ガス発生量の少ない 放射線硬化性樹脂組成物が得られることを見い出し、本発明を完成するに至った。

[0008]

即ち、本発明は、(A) 亜リン酸エステル基とフェノール性水酸基を有する化合物を 0 . $1\sim 1$ 0 重量%含有することを特徴とする放射線硬化性樹脂組成物を提供するものである。

【発明の効果】

[0009]

本発明の放射線硬化性樹脂組成物は、組成物自体の保存安定性に優れ、またその硬化物を優れた耐久性、特に耐熱性を有し、樹脂組成物を長期間保存しても水素ガス発生量が少ないので、光ファイバ用被覆材料、特に光ファイバ被覆層のプライマリ材、セカンダリ材あるいはテープ材として有用である。

【発明を実施するための最良の形態】

[0010]

本発明の放射線硬化性樹脂組成物に用いられる (A) 成分は、亜リン酸エステル基とフェノール性水酸基を有する化合物であれば特に限定されないが、例えば下記一般式 (2) で表わすことができる。

[0011]

【化2】

$(R^1O)_nP(OR^2)_{3-n}$ (2)

[0012]

(式 (2) 中、n は $1 \sim 3$ の整数を示し、 R^1 はフェノール性水酸基を有する有機基を示し、 R^2 はリン原子を含んでいてもよい有機基を示す。)

 R^1 及び R^2 は炭素以外の元素を有しても良く、当該炭素以外の元素としては例えば、窒素、硫黄、酸素、ハロゲン、リンが挙げられる。また、二以上の R^1 及び R^2 が連結して環状の有機基になっても良い。

[0013]

 R^1 で示されるフェノール性水酸基を有する有機基の例としては、ベンゼン又はナフタレン環上に $1 \sim 3$ 個のアルキル基、アルコキシ基又はハロゲン原子が置換していてもよいヒドロキシフェニル、ヒドロキシナフチル又はヒドロキシフェニルアルキル基が挙げられる。また R^2 で示される有機基としては、アルキル基、アリール基、アラルキル基等が挙げられる。ここでアリール基としては、アルキル基、アルコキシ基、ハロゲン原子等が置換していてもよいフェニル又はナフチル基が挙げられる。アリールアルキル基としては、アルキル基、アルコキシ基、ハロゲン原子等が置換していてもよいフェニルアルキル基が挙げられる。また、 R^1 及び R^2 は連結していてもよい。 R^2 がリン原子を含む場合としては、2~4 価のアルカン残基又は $2 \sim 4$ 価の芳香族炭化水素残基等にフェノール性水酸基を有する亜リン酸エステルが $2 \sim 4$ 個結合している場合が挙げられる。

[0014]

(A) 亜リン酸エステル基とフェノール性水酸基を有する化合物の具体例としては、2-x+v-4-y+v+3 フェニルジエチルホスファイト、2-t-y+v+4-y+3 エールジエチルホスファイト、2 カージー 2 カーン 2 カーン

[0015]

【化3】

$$C_4H_9$$
 OH HO C_4H_9 C_4H_9 OH C_4H_9 OH HO C_4H_9 OH HO C_4H_9

[0016]

【化4】

【化5】

[0018]

これら(A) 亜リン酸エステル基とフェノール性水酸基を有する化合物は、Polymer Degradation and Stability 77 (2002) p 29に記載されている方法で合成することが出来る。これら亜リン酸エステル基とフェノール性水酸基を有する化合物の市販品としてはSumilizerGP (住友化学) が挙げられる。

[0019]

特に好ましい(A)亜リン酸エステル基とフェノール性水酸基を有する化合物としては、下記構造式(1)又は(3)で表される化合物が挙げられる。

[0020]

【化6】

$$C_4H_9$$
 OH HO C_4H_9 C_4H_9

[0021]

(A)成分は、前記安定性、耐久性及び水素ガス発生量低減効果の点から、本発明の放射線硬化性樹脂組成物中に0.1~10重量%含有することが好ましく、0.1~5重量%がさらに好ましく、0.1~3重量%が特に好ましい。

[0022]

本発明の放射線硬化性樹脂組成物には、さらに(B)ウレタン(メタ)アクリレート及び(C)(B)成分を共重合可能な反応性希釈剤を含有させるのが好ましい。(B)ウレタン(メタ)アクリレートは、特に限定されないが、例えば、(a)ポリオール化合物、(b)ポリイソシアネート化合物、および(c)水酸基含有(メタ)アクリレート化合物を反応させて得られる。

[0023]

この(B) ウレタン(メタ) アクリレートを製造する具体的方法としては、例えば(a) ポリオール、(b) ポリイソシアネート化合物および(c) 水酸基含有(メタ) アクリレートを一括して仕込んで反応させる方法;(a) ポリオールおよび(b) ポリイソシアネート化合物を反応させ、次いで(c) 水酸基含有(メタ) アクリレートを反応させる方法;(b) ポリイソシアネート化合物および(c) 水酸基含有(メタ) アクリレートを反応させ、次いで(a) ポリオールを反応させる方法;(b) ポリイソシアネート化合物および(c) 水酸基含有(メタ) アクリレートを反応させ、次いで(a) ポリオールを反応させ、最後にまた(c) 水酸基含有(メタ) アクリレートを反応させる方法などが挙げられる。

[0024]

ここで用いる(a)ポリオールとしては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリヘキサメチレングリコール、ポリヘプタメチレングリコール、ポリデカメチレングリコールのような一種のイオン重合性環状化合物を開環重合させて得られるポリエーテルジオール、または二種以上のイオン重合性環状

化合物を開環共重合させて得られるポリエーテルジオールが挙げられる。イオン重合性環 状化合物としては、エチレンオキシド、プロピレンオキシド、プテンー1ーオキシド、イ ソプテンオキシド、オキセタン、3,3-ジメチルオキセタン、3,3-ビスクロロメチ ルオキセタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、3-メチルテトラ ヒドロフラン、ジオキサン、トリオキサン、テトラオキサン、シクロヘキセンオキシド、 スチレンオキシド、エピクロルヒドリン、グリシジルメタクリレート、アリルグリシジル エーテル、アリルグリシジルカーボネート、ブタジエンモノオキシド、イソプレンモノオ キシド、ビニルオキセタン、ビニルテトラヒドロフラン、ビニルシクロヘキセンオキシド 、フェニルグリシジルエーテル、ブチルグリシジルエーテル、安息香酸グリシジルエステ ル等の環状エーテル類が挙げられる。また、上記イオン重合性環状化合物と、エチレンイ ミン等の環状イミン類、γープロピオラクトン、グリコール酸ラクチド等の環状ラクトン 酸、あるいはジメチルシクロポリシロキサン類とを開環共重合させたポリエーテルジオー ルを使用することもできる。上記二種以上のイオン重合性環状化合物の具体的な組み合わ せとしては、テトラヒドロフランとプロピレンオキシド、テトラヒドロフランと2ーメチ ルテトラヒドロフラン、テトラヒドロフランと3-メチルテトラヒドロフラン、テトラヒ ドロフランとエチレンオキシド、プロピレンオキシドとエチレンオキシド、ブテン-1-オキシドとエチレンオキシド、テトラヒドロフラン、プテンー1ーオキシド、エチレンオ キシドの3元重合体等を挙げることができる。これらのイオン重合性環状化合物の開環共 重合体はランダムに結合していてもよいし、ブロック状の結合をしていてもよい。本発明 の硬化物に耐ジェリー性および耐水性を付与する点から、これらのポリエーテルジオール のうち、ポリプロピレングリコールがより好ましく、ゲルパーミエーションクロマトグラ フ法(GPC法)によるポリスチレン換算の数平均分子量で1000~7000のポリプ ロピレングリコールが特に好ましい。

[0025]

これらのポリエーテルジオールは、例えばPTMG650、PTMG1000、PTMG2000 (以上、三菱化学 (株) 製)、エクセノール 1020、2020、3020、プレミノール PML-4002、PML-5005 (以上、旭硝子 (株) 製)、ユニセーフ DC1100、DC1800、DCB1000 (以上、日本油脂 (株) 製)、PTG1000、PTG2000、PTG4000、PTG400、PTG650、PTG1000、PGT2000、PTG-L1000、PTG-L2000 (以上、保土谷化学工業 (株) 製)、Z-3001-4、Z-3001-5、PBG2000 (以上、第一工業製薬 (株) 製)、Acclaim 2200、2220、3201、3205、4200、4220、8200、12000 (以上、ライオンデール社製)等の市販品として入手することができる。

[0026]

ポリオールとしては、上記ポリエーテルジオールが好ましいが、この他にポリエステルジオール、ポリカーボネートジオール、ポリカプロラクトンジオール等も用いることができ、これらのジオールをポリエーテルジオールと併用することもできる。これらの構造単位の重合様式は特に制限されず、ランダム重合、プロック重合、グラフト重合のいずれであってもよい。

[0027]

(B) ウレタン (メタ) アクリレートの合成に用いられる (b) ポリイソシアネートとしては、芳香族ジイソシアネート、脂環族ジイソシアネート、脂肪族ジイソシアネート等が挙げられる。具体的化合物としては、光ファイバ用樹脂組成物として使用できるものであれば特に制限はないが、好ましい例としては芳香族ジイソシアネートおよび脂環式ジイソシアネート、より好ましくは、2,4ートリレンジイソシアネートおよびイソホロンジイソシアネートが挙げられる。これらのジイソシアネート化合物は単独で用いても、2種以上併用しても良い。

[0028]

(B) ウレタン (メタ) アクリレートの合成に用いられる (c) 水酸基含有 (メタ) ア 出証特2003-3109776 クリレートとしては、ポリイソシアネートのイソシアネート基との反応性の点から、水酸 基が第一級炭素原子に結合した水酸基含有(メタ)アクリレート(第一水酸基含有(メタ)アクリレートという)および水酸基が第二級炭素原子に結合した水酸基含有(メタ)ア クリレート(第二水酸基含有(メタ)アクリレートという)が好ましい。

[0029]

第一水酸基含有(メタ)アクリレートとして、例えば、2ーヒドロキシエチル(メタ)アクリレート、4ーヒドロキシブチル(メタ)アクリレート、1,6ーヘキサンジオールモノ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールエタンジ(メタ)アクリレート等が挙げられる。

[0030]

第二水酸基含有(メタ)アクリレートとして、例えば、2ーヒドロキシプロピル(メタ)アクリレート、2ーヒドロキシブチル(メタ)アクリレート、2ーヒドロキシー3ーフェニルオキシプロピル(メタ)アクリレート、4ーヒドロキシシクロヘキシル(メタ)アクリレート等が挙げられ、さらに、アルキルグリシジルエーテル、アリルグリシジルエーテル、グリシジル(メタ)アクリレート等のグリシジル基含有化合物と、(メタ)アクリル酸との付加反応により得られる化合物が挙げられる。これら水酸基含有(メタ)アクリレート化合物は1種単独で、あるいは2種以上組み合わせて使用できる。

[0031]

(B) ウレタン(メタ)アクリレートの合成に用いる(a) ポリオール、(b) ポリイソシアネート化合物および水酸基含有(メタ)アクリレートの使用割合は、ポリオールに含まれる水酸基1当量に対してポリイソシアネート化合物に含まれるイソシアネート基が1. $1\sim2$ 当量、水酸基含有(メタ)アクリレートの水酸基が0. $1\sim1$ 当量となるようにするのが好ましい。

[0032]

また(B) ウレタン (メタ) アクリレートの合成においてポリオールとともにジアミンを併用することも可能であり、このようなジアミンとしてはエチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、パラフェニレンジアミン、4, 4′ージアミノジフェニルメタン等のジアミンやヘテロ原子を含むジアミン、ポリエーテルジアミン等が挙げられる。

[0033]

水酸基含有(メタ)アクリレートの一部をイソシアネート基に付加しうる官能基を持った化合物、又はアルコール類に置き換えて用いることもできる。イソシアネート基に付加しうる官能基を持った化合物としては、例えば、 γ -アミノプロピルトリエトキシシラン、 γ -メルカプトプロピルトリメトキシシラン、などを挙げることができる。これらの化合物を使用することにより、ガラス等の基材への密着性をさらに高めることができる。アルコール類としては、例えば、メタノール、エタノール、イソプロピルアルコール、 γ -ブチルアルコール、 γ -ブチルアルコール、などを挙げることができる。これらの化合物を使用することにより、樹脂のヤング率を調節することができる。

[0034]

[0035]

(B) ウレタン (メタ) アクリレートの好ましい分子量は、硬化物の良好な破断伸びおよび放射線硬化性樹脂組成物の適度な粘度を得る観点から、GPC法によるポリスチレン

換算の数平均分子量で通常 500~40, 000であり、より好ましくは 700~30, 000である。

[0036]

(B) ウレタン (メタ) アクリレートは、硬化物のヤング率、破断伸び等の良好な力学特性および放射線硬化性樹脂組成物の適度な粘度を得る観点から、本発明の放射線硬化性樹脂組成物中に、35~85重量%、特に55~65重量%含有することが好ましい。85重量%を超えると硬化物のヤング率が2.0MPaを超えてしまうため光ファイバ被覆用樹脂としては好ましくなく、また放射線硬化性樹脂組成物の粘度が6.0Pa·sを超えてしまうため作業性も低下し、また硬化物の耐水性も悪化する。35重量%を下回ると破断強度が悪化してしまう。光ファイバプライマリ層としての硬化物のヤング率は0.1~2.0MPaが好ましい。放射線硬化性樹脂組成物の粘度は1.0~6.0Pa·sが好ましい。

[0037]

本発明の放射線硬化性樹脂組成物に使用される(C)成分は、(B)成分と共重合可能 な反応性希釈剤である。(C)成分としては、例えば(C1)重合性単官能化合物、また は(C2) 重合性多官能化合物が挙げられる。このような、(C1) 重合性単官能性化合 物としては、N-ビニルピロリドン、N-ビニルカプロラクタム等のビニル基含有ラクタ ム、イソボルニル(メタ) アクリレート、ボルニル (メタ) アクリレート、トリシクロデ カニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等の脂環式構造 含有(メタ)アクリレート、ベンジル(メタ)アクリレート、4ーブチルシクロヘキシル (メタ) アクリレート、アクリロイルモルホリン、ビニルイミダゾール、ビニルピリジン 等が挙げられる。さらに、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシ プロピル (メタ) アクリレート、2ーヒドロキシブチル (メタ) アクリレート、メチル (メタ) アクリレート、エチル (メタ) アクリレート、プロピル (メタ) アクリレート、イ ソプロピル (メタ) アクリレート、ブチル (メタ) アクリレート、アミル (メタ) アクリ レート、イソブチル (メタ) アクリレート、 t ーブチル (メタ) アクリレート、ペンチル (メタ) アクリレート、イソアミル (メタ) アクリレート、ヘキシル (メタ) アクリレー ト、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メ タ) アクリレート、2 - エチルヘキシル (メタ) アクリレート、ノニル (メタ) アクリレ ート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メ タ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ス テアリル (メタ) アクリレート、イソステアリル (メタ) アクリレート、テトラヒドロフ ルフリル (メタ) アクリレート、ブトキシエチル (メタ) アクリレート、エトキシジエチ レングリコール (メタ) アクリレート、ベンジル (メタ) アクリレート、フェノキシエチ ル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロ ピレングリコールモノ (メタ) アクリレート、メトキシエチレングリコール (メタ) アク リレート、エトキシエチル(メタ)アクリレート、メトキシポリエチレングリコール (メ タ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ジアセト ン (メタ) アクリルアミド、イソプトキシメチル (メタ) アクリルアミド、N, N-ジメ チル (メタ) アクリルアミド、 t ーオクチル (メタ) アクリルアミド、ジメチルアミノエ チル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、7ーアミノー 3, 7 - ジメチルオクチル (メタ) アクリレート、N, N - ジエチル (メタ) アクリルア ミド、N, N-ジメチルアミノプロピル (メタ) アクリルアミド、ヒドロキシブチルビニ ルエーテル、ラウリルビニルエーテル、セチルビニルエーテル、2-エチルヘキシルビニ ルエーテル、2-ヒドロキシー3-フェノキシプロピルアクリレート及び下記一般式で表 される化合物等が挙げられる。

 $C H_2 = C (R^3) - C O O (R^4 O)_p - C_6 H_4 - R^5$

(式中、 R^3 は水素原子又はメチル基を示し、 R^4 は炭素数 $2 \sim 6$ 、好ましくは $2 \sim 4$ のアルキレン基を示し、 R^5 は水素原子又は炭素数 $1 \sim 1$ 2、好ましくは $1 \sim 9$ のアルキル基を示し、p は $0 \sim 1$ 2、好ましくは $1 \sim 8$ の自然数を示す。)

[0038]

[0039]

また(C 2)重合性多官能性化合物としては、光ファイバ用樹脂組成物として使用できるものであれば特に制限はないが、好ましい例としてはポリエチレングリコールジアクリレート、トリシクロデカンジイルジメチレンジ(メタ)アクリレート、トリス(2ーヒドロキシエドを付加させたビスフェノールAのジ(メタ)アクリレート、トリス(2ーヒドロキシエチル)イアオシアヌレートトリ(メタ)アクリレート、ヘキサンジオールジアクリレート(HDDA)等が挙げられる。これら(C 2)重合性多官能性化合物の市販品として例えば、ライトアクリレート9 E G - A、および、ライトアクリレート4 E G - A(共栄社化学(株)製)、ユピマーUV、SA1002(以上、三菱化学(株)製)、アロニックスM-215、M-315、M-325(以上東亞合成(株)製)が挙げられる。

[0040]

これらの (C1) 重合性単官能化合物と (C2) 重合性多官能化合物を併用して用いることもできる。

[0041]

これらの(C)成分は、本発明の放射線硬化性樹脂組成物中に $1\sim60$ 重量%含有することが好ましく、 $2\sim45$ 重量%含有することがさらに好ましい。 1 重量%未満であると硬化性を損ねる可能性があり、 60 重量%を超えると低粘度による塗布形状の変化が起き、塗布が安定しない。

[0042]

本発明の放射線硬化性樹脂組成物は、放射線によって硬化される。ここで放射線とは、赤外線、可視光線、紫外線、X線、 α 線、 β 線、 γ 線、電子線等であるが、特に紫外線が好ましい。

[0043]

本発明の放射線硬化性樹脂組成物には、必要に応じて (D) 重合開始剤を添加することができる。 (D) 成分としては、 (D1) 通常光重合開始剤を用いるが、必要に応じて (D2) 熱重合開始剤を (D1) 光重合開始剤と併用しても良い。

[0044]

(D1) 光重合開始剤としては、例えば1-ヒドロキシシクロヘキシルフェニルケトン、2, 2-ジメトキシー2-フェニルアセトフェノン、キサントン、フルオレノン、ベンズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、3-メチルアセトフェノン、4-クロロベンゾフェノン、4, 4' -ジメトキシベンゾフェノン、4, 4' -ジアミノベンゾフェノン、ミヒラーケトン、ベンゾインプロピルエーテル、ベンゾインエチルエーテル、ベンジルジメチルケタール、1-(4-1)プロピルフェニル) -2-ヒドロキシー2-メチルプロパン-1-オン、2-ヒドロキシー2-メチルー1ーフェニルプロパン-1-オン、チオキサントン、2-メチルチオキサントン、2-メチルチオ)フェニル] -2-モルホリノープロパン-1-オン、2, 4, 6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス-(2, 6-ジメトキシベンゾイル)-2, 4, 4-トリメチルペンチルホスフィンオキシド等が挙げられる。その市販品として

は、イルガキュア184、369、651、500、907、819、CGI1700、 CGI1750、CGI1850、CGI1870、CG2461、ダロキュア1116 、1173 (以上、チバ・スペシャルティ・ケミカルズ社製); LUCIRIN TPO (BASF社製);ユベクリルP36 (UCB社製)等が挙げられる。

[0045]

(D2) 熱重合開始剤としては、過酸化物、アゾ化合物等が挙げられ、具体的には、例 えばベンゾイルパーオキサイド、tープチルーオキシベンゾエート、アゾビスイソブチロ ニトリル等が挙げられる。

[0046]

また、本発明の硬化性樹脂組成物を光硬化させる場合には、光重合開始剤に加えて必要 に応じて光増感剤を添加することができる。光増感剤としては、例えばトリエチルアミン 、ジエチルアミン、N-メチルジエタノールアミン、エタノールアミン、4-ジメチルア ミノ安息香酸、4-ジメチルアミノ安息香酸メチル、4-ジメチルアミノ安息香酸エチル 、4-ジメチルアミノ安息香酸イソアミル等が挙げられる。その市販品としては、ユベク リルP102、103、104、105 (以上、UCB社製) 等が挙げられる。

[0047]

(D) 重合開始剤は、本発明の放射線硬化性樹脂組成物中に0.1~10重量%、特に 0.5~5重量%配合することが好ましい。

[0048]

また、本発明の放射線硬化性樹脂組成物には上記成分以外に各種添加剤、例えば着色剤 、光安定剤、シランカップリング剤、酸化防止剤、熱重合禁止剤、レベリング剤、界面活 性剤、保存安定剤、可塑剤、滑剤、溶媒、フィラー、老化防止剤、濡れ性改良剤、塗面改 良剤等を必要に応じて配合することができる。ここで光安定剤としては、例えばチヌビン 292、144、622LD (以上、チバ・スペシャルティ・ケミカルズ社製)、サノ ールLS770(三共(株)製)、TM-061(住友化学工業(株)製)、SEESO RB101、SEESORB103、SEESORB709 (以上、シプロ化成 (株) 製)、Sumisorb130(住友化学(株)製)等が挙げられる。シランカップリング 剤としては、例えばγーアミノプロピルトリエトキシシラン、γーメルカプトプロピルト リメトキシシラン、γーメタアクリロキシプロピルトリメトキシシラン、市販品として、 SH6062、SZ6030 (以上、東レ・ダウコーニングシリコーン社製)、КВЕ9 03、603、403 (以上、信越化学工業(株)製)等が挙げられる。酸化防止剤とし ては、例えばSumilizer GA-80 (住友化学 (株) 製)、Irganox1 010、Irganox1035 (チバ・スペシャリティ・ケミカルズ (株) 製) が挙げ られる。

【実施例】

[0049]

以下に本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定される ものではない。

[0050]

ウレタン(メタ)アクリレートの合成例1

撹拌機を備えた反応容器に、数平均分子量が2000のポリプロピレングリコール83 1. 0g、イソホロンジイソシアネート129.3g、2,6-ジーt-プチルーp-ク レゾール0.24g、フェノチアジン0.08gを仕込み、これらを撹拌しながら液温度 が15℃となるまで冷却した。ジブチル錫ジラウレート0.8gを添加した後、撹拌しな がら液温度を1時間かけて35℃まで徐々に上げた。その後、液温度を50℃に上げて反 応させた。残留イソシアネート基濃度が1.26重量%(仕込量に対する割合;以下同じ)以下となった後、2ーヒドロキシエチルアクリレート38.6gを添加し、液温度約6 0℃にて撹拌し、反応させた。残留イソシアネート基濃度が0.1重量%以下になった時 を反応終了とし、ウレタン (メタ) アクリレートを得た (これをUA-1とする)。

[0051]

ウレタン (メタ) アクリレートの合成例 2

撹拌機を備えた反応容器に、数平均分子量が4000のポリプロピレングリコール907.2g、イソホロンジイソシアネート70.6g、2,6ージーtーブチルーpークレゾール0.24g、フェノチアジン0.08gを仕込み、これらを撹拌しながら液温度が15℃となるまで冷却した。ジブチル錫ジラウレート0.8gを添加した後、撹拌しながら液温度を1時間かけて35℃まで徐々に上げた。その後、液温度を50℃に上げて反応させた。残留イソシアネート基濃度が0.6重量%(仕込量に対する割合;以下同じ)以下となった後、2ーヒドロキシエチルアクリレート21.1gを添加し、液温度約60℃にて撹拌し、反応させた。残留イソシアネート基濃度が0.1重量%以下になった時を反応終了とし、ウレタン(メタ)アクリレートを得た(これをUA-2とする)。

[0052]

ウレタン (メタ) アクリレートの合成例3

[0053]

ウレタン (メタ) アクリレートの合成例 4

撹拌機を備えた反応容器に、イソホロンジイソシアネート96.4g、2,6ージー t-ブチルーp-クレゾール0.024g、フェノチアジン0.08g、ジブチル錫ジラウレート0.8gを仕込み、これらを撹拌しながら液温度が15 \mathbb{C} となるまで冷却した。2ーヒドロキシエチルアクリレート86.9gを滴下ロートを使用し1時間かけて滴下した。撹拌しながら液温度を1時間かけて35 \mathbb{C} まで徐々に上げた。その後、数平均分子量が2000 \mathbb{C} ののテトラヒドロフランと2ーメチルテトラヒドロフランの共重合体(PTGL2000 (保土谷化学工業(株)製))815.6g添加し、液温度を60 \mathbb{C} に上げて反応させた。残留イソシアネート基濃度が \mathbb{C} 0.1重量%以下になった時を反応了とし、ウレタン(メタ)アクリレートを得た(これを \mathbb{C} 1 \mathbb{C} 1 \mathbb{C} 2 \mathbb{C} 3 \mathbb{C} 4 \mathbb{C} 4 \mathbb{C} 3 \mathbb{C} 3 \mathbb{C} 4 \mathbb{C} 4 \mathbb{C} 3 \mathbb{C} 5 \mathbb{C} 6 \mathbb{C} 6 \mathbb{C} 6 \mathbb{C} 6 \mathbb{C} 6 \mathbb{C} 6 \mathbb{C} 5 \mathbb{C} 6 $\mathbb{$

[0054]

ウレタン (メタ) アクリレートの合成例 5

撹拌機を備えた反応容器に、数平均分子量が2000のポリプロピレングリコール845.9g、2,4ートリレンジイソシアネート112.4g、2,6ージーtーブチルー p-クレゾール0.24g、フェノチアジン0.08gを仕込み、これらを撹拌しなが i 液温度が15℃となるまで冷却した。ジブチル錫ジラウレート0.8gを添加した後、撹拌しながら液温度を1時間かけて35℃まで徐々に上げた。その後、液温度を50℃に上げて反応させた。残留イソシアネート基濃度が1.26重量%(仕込量に対する割合;以下同じ)以下となった後、SH6062を2.5g滴下し、液温度約60℃にて撹拌し、反応させた。次に、2ーヒドロキシエチルアクリレート33.5gを添加し、液温度約60℃にて撹拌し、反応させた。次に、メタノール4.6g滴下し、液温度約60℃にて撹拌し、反応させた。次に、メタノール4.6g滴下し、液温度約60℃にて撹拌し、反応させた。次に、メタノール4.6g滴下し、液温度約60℃にて撹拌し、反応させた。次に、メタノール4.6g滴下し、液温度約60℃にて撹拌し、反応させた。次に、メタノール4.6g滴下し、液温度約60℃にで撹拌し、反応させた。次に、メタノール4.6g滴下し、液温度約60℃にで撹拌し、反応させた。次に、メタノール4.6g滴下し、液温度約60℃にで撹拌し、反応させた。次に、メタノール4.6g滴下し、液温度約60℃にで撹拌し、反応させた。残留イソシアネート基濃度が0.1重量%以下になった時を反応終了とし、ウレタン(メタ)アクリレートを得た(これをUA-5とする)。

[0055]

ウレタン(メタ)アクリレートの合成例6

撹拌機を備えた反応容器に、数平均分子量が2000のポリプロピレングリコール854.1g、トリレンジイソシアネート106.7g、2,6-ジーt-プチルーp-クレゾール0.24g、フェノチアジン0.08gを仕込み、これらを撹拌しながら液温度が

15℃となるまで冷却した。ジブチル錫ジラウレート0.8gを添加した後、撹拌しながら液温度を1時間かけて35℃まで徐々に上げた。その後、液温度を50℃に上げて反応させた。残留イソシアネート基濃度が1.4重量%(仕込量に対する割合;以下同じ)以下となった後、SH6062を2.5g滴下し、液温度約60℃にて撹拌し、反応させた。次に、2-ヒドロキシエチルアクリレート33.5gを添加し、液温度約60℃にて撹拌し、反応させた。次に、メタノール2.3g滴下し、液温度約60℃にて撹拌し、反応させた。残留イソシアネート基濃度が0.1重量%以下になった時を反応終了とし、ウレタン(メタ)アクリレートを得た(これをUA-6とする)。

[0056]

ウレタン (メタ) アクリレートの合成例7

撹拌機を備えた反応容器に、数平均分子量が2000のポリプロピレングリコール832.2g、イソホロンジイソシアネート129.5g、2,6ージーtーブチルーpークレゾール0.24g、フェノチアジン0.08gを仕込み、これらを撹拌しながら液温度が15℃となるまで冷却した。ジブチル錫ジラウレート0.8gを添加した後、撹拌しながら液温度を1時間かけて35℃まで徐々に上げた。その後、液温度を50℃に上げて反応させた。残留イソシアネート基濃度が1.44重量%(仕込量に対する割合;以下同じ)以下となった後、2ーヒドロキシエチルアクリレート36.7gを添加し、液温度約60℃にて撹拌し、反応させた。次に、メタノール0.5gを滴下し、液温度約60℃にて撹拌し、反応させた。次に、メタノール0.5gを滴下し、液温度約60℃にて撹拌し、反応させた。次に、メタノール0.5gを滴下し、液温度約60℃にて撹拌し、反応させた。次に、メタノール0.5gを滴下し、液温度約60℃に不

[0057]

実施例1~9および比較例1~7

撹拌機を備えた反応容器に表1及び表2に示す配合比(重量部)で化合物を仕込み、均一な溶液になるまで液温度50℃で撹拌し、実施例および比較例の組成物を得た。

[0058]

合成例 8 (テトラキス(2, 5-ジ-t-ブチルー4-ヒドロキシフェニル)-2, 5-ジ-t-ブチルーヒドロキシキノンジイルーホスファイトの合成)

Polymer Degradation and Stability <u>77</u> (2002) p29に記載の方法で合成した。

[0059]

測定方法

(硬化物の水素ガス発生量の測定方法)

液状組成物を 381μ mのアプリケーターを用いてガラス上に塗布し、3.5k W メタルハライドランプ(オーク社製 S M X -3500 / F -0 S)を用いて空気雰囲気下で 1 J / c m^2 の紫外線を照射し、厚さ約 200μ mの硬化膜を得た。この硬化物を室温 $23\mathbb{C}$ 、相対湿度 50% 雰囲気下で 12 時間以上状態調節した。その後、硬化物をガラスアンプルに 1g 充填し、ガラスアンプルを封管した。硬化物が入ったガラスアンプルを $100\mathbb{C}$ で 7 日間加熱エージングし、ガラスアンプル中の水素ガス量をガスクロマトフィーにより測定した。

[0060]

表1及び表2に、製造直後の液状組成物を硬化させた場合の水素ガス発生量(初期値) と、製造後、室温で1年間保管した液状組成物を硬化させた場合の水素ガス発生量(1年 保管後)を記載した。

[0061]

(硬化フィルムの重量変化)

液状組成物を 381μ mのアプリケーターを用いてガラス上に塗布し、3.5kWメタルハライドランプ(オーク社製 SMX-3500/F-OS)を用いて空気雰囲気下で $1/cm^2$ の紫外線を照射し、厚さ約 200μ mの硬化膜を得た。硬化膜の重量を測定し、その硬化膜を120 $\mathbb C$ 、1 カ月間加熱エージングした後の重量を測定し、下の式により重量変化を求めた。

【0062】 重量変化(%) = (エージング前の重量-エージング後の重量) / (エージング前の重量)×100 【0063】 【表1】

成分		集 施 例									
		1	2	3	4	5	6	7	8	9	
(A)成分	GP	0.5	1.0	0.5	T =	0.5	1.0	1.0	1.0	1.0	
	2P5B			T —	0.5				-	-	
(B)ウレタ	UA-1	60	60				1	 -			
ンアクリレー	UA-2			60		_	<u> </u>			 	
	UA-3	_	_		40	-	-	<u> </u>		 	
1	UA-4	_				80	<u> </u>	_			
	UA-5	_					60				
1	UA-6			_	=			55		55	
	UA-7	_ =		_				T = -	55		
(D)	LUCIRIN	1.0	0.5	5.0	1.0	1.0	1.0	1.0	1.0	1.0	
重合開始剤	TPO				1	ļ				1	
(C)	M110	10	10	10	10	_	 	11	11	11	
反応性希釈剤	M113	20		18. 5	11	18	32	18.5	18.5	15	
İ	IBXA	-	17.5	_	30	_	· _				
	N-ピニルカプ	7.5	10	5	7.5		6	7. 5	7.5	7.5	
l	ロラクタム						-				
	HDDA	1	_	_		_	1		_		
	M600A	1	-		_	_				9, 2	
	ACMO		_	_	_	_	_	6	6		
その他	DPDP		_	_		_	_				
	TNP-O		_		_	_	_				
	SZ6030	_	_	_			0.5	1.0	1.0	1.0	
	SH6062	1.0	1.0	1.0	_	_	_				
	SEESORB	0.1	0.1	0. 1	0.1	0.1	0.1	0.1	0.1	0.1	
	101			i						· · ·	
	GA-80	_			_	0.5	0.6	0.6	0.6	0.6	
水素ガス発生	初期	0.5	0.5	0.6	0.5	0.5	0.5	0.5	0.5	0.5	
量(μ1/g)	1年保管後	0.5	0.5	0.6	0.5	0.5	0.5	0.5	0.5	0.5	
硬化フィルムの重量変化(%)		98	99	95	97	98	98	99	98	98	

[0064]

【表2】

成分		比 較 例								
		1	2	3	$\frac{7}{4}$	5	6	7		
(A)成分	GP			 	 	+	+ -			
	2P5B	_	 	 	+	+	+=	 -		
(B) ウレタ	UA-1	60	60	60	+	+	+=	 -		
ンアクリレー	UA-2	 -	 	+==	 	+	+=	 -		
}	UA-3	 	 - -	 	+	+	+=	↓		
	UA-4		 	 	+	 _	╁			
	UA-5	 		 	60	 	+	 		
	UA-6		 	 		55	↓	 		
	UA-7			 	 	- 55	-	55		
(D)	LUCIRIN	1.0	1.0	1.0	1.0	1.0	55	 -		
重合開始剤	TPO				1	1.0	1.0	1.0		
(C)	M110	10	10	10	 	11	11	 ,, _		
反応性希釈剤	M113	20.5	19.5	20. 5	32	18.5	18.5	11		
1	IBXA	_				10.0	10. 0	15		
	Nーピニルカプ	7.5	7.5	7.5	6	7.5	7.5			
1	ロラクタム					'."	1.3	7. 5		
	HDDA	_			1	 	 			
į į	M600A	_			 - -		 	9. 2		
	ACMO					6	6	9. 2		
その他	DPDP	1.0		0. 5		<u> </u>				
<u>[</u>	TNP-0		1.0							
[SZ6030	_			0.5	1.0	1.0	10		
	SH6062	_	1.0	-			1.0	1.0		
	SEESORB	0.1	0.1	0.1	0.1	0.1	0.1	0.1		
_	101				J. 1	0.1	U. 1	0.1		
	GA-80			0.5	0.6	0, 6	0.6	0, 6		
水素ガス発生	初期	0.6	0.6	0.6	2.0	2.0	2, 6	2.0		
量 (μ l/g)	1年保管後	2.7	2.8	3.0	3.5	3.0	4.0	$\frac{2.0}{3.0}$		
硬化フィルムの重量変化(%)		68	70	96	95	95	96	92		

[0065]

LUCIRIN TPO: 2, 4, 6-トリメチルベンゾイルジフェニルホスフィンオキサイド (BASF社製)

IBXA:イソボルニルアクリレート (大阪有機化学工業 (株) 製)

M110:フェニルEO変性アクリレート (東亞合成 (株) 製)

M113:ノニルフェニルEO変性アクリレート (東亞合成 (株) 製)

SH6062:γメルカプトトリメトキシシラン (東レ・ダウコーニングシリコーン社製)

GP:Sumilizer GP (住友化学工業 (株) 製)

GA-80:Sumilizer GA-80 (住友化学工業 (株) 製)

DPDP:ジフェニルイソデシルホスファイト (三光化学 (株) 製)

TNP-〇:トリス (ノニルフェニル) ホスファイト (三光化学 (株) 製)

HDDA: ヘキサンジオールジアクリレート

M600A:2-ヒドロキシー3-フェノキシプロピルアクリレート

ACMO:アクリロイルモルホリン

SZ6030: γメタクリロキシプロピルトリメトキシシラン

[0066]

表1及び表2から明らかに、本発明の放射線硬化性樹脂組成物は優れた保存安定性を有し、またこの硬化物は耐久性、特に耐熱性を有し、水素ガス発生量が少ないことが判る。

【書類名】要約書

【要約】

【課題】 組成物自体の保存安定性が良く、また耐久性に優れ、水素ガス発生量の少ない 硬化物を与え、光ファイバ被覆に有用な放射線硬化性樹脂組成物を提供する。

【解決手段】 (A) 亜リン酸エステル基とフェノール性水酸基を有する化合物を 0.1 ~10 重量%含有することを特徴とする放射線硬化性樹脂組成物。

【選択図】 なし

認定・付加情報

特許出願の番号 特願2003-295025

受付番号 50301361122

書類名 特許願

担当官 古田島 千恵子 7288

作成日 平成15年 8月26日

<認定情報・付加情報>

【提出日】 平成15年 8月19日

【特許出願人】

【識別番号】 000004178

【住所又は居所】 東京都中央区築地五丁目6番10号

【氏名又は名称】 JSR株式会社

【特許出願人】

【識別番号】 592222639

【住所又は居所】 オランダ国 6411 テーエー ヘールレン

ヘット オーフェルローン 1

【氏名又は名称】 コニンクラッケ デーエスエム エヌ ヴィ

【代理人】

申請人

【識別番号】 110000084

【住所又は居所】 東京都中央区日本橋人形町1丁目3番6号 共同

ビル

【氏名又は名称】 特許業務法人アルガ特許事務所

【選任した代理人】

【識別番号】 100068700

【住所又は居所】 東京都中央区日本橋人形町1丁目3番6号 共同

ビル 特許業務法人 アルガ特許事務所

【氏名又は名称】 有賀 三幸

【選任した代理人】

【識別番号】 100077562

【住所又は居所】 東京都中央区日本橋人形町1丁目3番6号 共同

ビル 特許業務法人 アルガ特許事務所

【氏名又は名称】 高野 登志雄

【選任した代理人】

【識別番号】 100096736

【住所又は居所】 東京都中央区日本橋人形町1丁目3番6号 共同

ビル 特許業務法人 アルガ特許事務所

出証特2003-3109776

ページ: 2/E

【氏名又は名称】

中嶋 俊夫

【選任した代理人】

【識別番号】

100101317

【住所又は居所】

東京都中央区日本橋人形町1丁目3番6号 共同

ビル 特許業務法人 アルガ特許事務所

【氏名又は名称】

的場 ひろみ

ページ: 1/E

【書類名】 出願人名義変更届 【提出日】 平成15年10月 9日 【あて先】 特許庁長官 殿

【事件の表示】

【出願番号】 特願2003-295025

【承継人】

【識別番号】 303043450

【氏名又は名称】 デーエスエム アイピー アセット ビー ヴィ

【承継人代理人】

【識別番号】 110000084

【氏名又は名称】 特許業務法人アルガ特許事務所

.【代表者】 高野 登志雄

【手数料の表示】

【納付金額】 12,600円

【提出物件の目録】

【物件名】 持分譲渡証書及び訳文 1

 【物件名】

持分譲渡証書

【添付書類】

DEED OF ASSIGNMENT

To Assignee:

Name: DSM IP Assets B. V. (Nationality: Netherlands)

Address: Het Overloon 1 6411 TE Heerlen,

The Netherlands

We hereby declare that we have assigned our share of the right to obtain a patent in Japanese Patent Application No.2003-295025, No.2003-326601 and No.2003-323908 to you.

Assignor:

Name : Koninklijke DSM N. V. (Nationality: Netherlands)

Address: Het Overloon 1, 6411 TE Heerlen,

The Netherlands

Dated this 3 day of October 2003.

Representative:

(Signature)

Name

: J.H.J. den Hartog

7

持分 譲渡 証 書(訳文)

護 受 人:

名 称:デーエスエム アイピー アセット ビー ヴイ(国籍:オランダ国) 殿

住 所:オランダ国 6411 テーエー ヘールレン ヘット

オーフェルローン 1

下記の発明に関する特許を受ける権利中、私の持分を貴社に譲渡したことに相違ありません。

記

- 1. 特願2003-295025
- 2. 特願2003-326601
- 3. 特願2003-323908

譲 渡 人:

名 称:コニンクラッケ デーエスエム エヌ ヴィ (国籍:オランダ国)

住 所:オランダ国 6411 テーエー ヘールレン ヘット

オーフェルローン 1

2003年10月3日

代 表 者 (署 名)

氏 名 ジェイ エイチ ジェイ デン ハルトイ

【物件名】

同意書

【添付書類】 / 【【【】】】 , @ 9

同意 書

平成/5年/0月 /日

住所 オランダ国 6411 テーエー ヘールレン ヘット オーフェルローン 1名称 コニンクラッケ デーエスエム エヌ ヴィ 殿

> 住 所 東京都中央区築地五丁目6番10号名 称 **JSR**株式会社 代表者 取締役社長 吉田 淑則

下記の発明に関する特許を受ける権利の貴殿の持分を、デーエスエム アイピー アセット ピー ヴイ(オランダ国 6411 テーエー ヘールレン ヘット オーフェルローン 1) に譲渡することに同意 します。

記

- 1. 特顧2003-295025
- 2. 特願2003-326601
- 3. 特願2003-323908

認定・付加情報

特許出願の番号

特願2003-295025

受付番号

20301920189

書類名

出願人名義変更届

担当官

古田島 千恵子 7288

作成日

平成15年12月 3日

<認定情報・付加情報>

【手数料の表示】

【納付金額】

4,200円

【提出された物件の記事】

【提出物件名】 同意書 1

【提出物件名】

持分譲渡証書 1

特願2003-295025

出願人履歷情報

識別番号

[000004178]

1. 変更年月日 [変更理由] 住 所

氏 名

2003年 5月 6日

里由] 住所変更

東京都中央区築地五丁目6番10号

ジェイエスアール株式会社

2. 変更年月日 [変更理由]

2003年 9月 1日

変更理由] 名称変更 住 所 東京都中

東京都中央区築地五丁目6番10号

氏 名 JSR株式会社

特願2003-295025

出願人履歷情報

識別番号

[592222639]

1. 変更年月日 2000年11月20日

[変更理由] 名称変更

住 所 オランダ国 6411 テーエー ヘールレン ヘット オー

フェルローン 1

氏 名 デーエスエム ナムローゼ フェンノートシャップ

2. 変更年月日 2003年 7月31日

[変更理由] 名称変更

住 所 オランダ国 6411 テーエー ヘールレン ヘット オー

フェルローン 1

氏 名 コニンクラッケ デーエスエム エヌ ヴィ

特願2003-295025

出願人履歴情報

識別番号

[303043450]

1. 変更年月日

2003年 7月31日

[変更理由]

新規登録

住 所

オランダ国 6411 テーエー ヘールレン ヘット オー

フェルローン 1

, 氏名

デーエスエム アイピー アセット ビー ヴィ