

A Variant of Azuma's Inequality for Martingales with Subgaussian Tails

Ohad Shamir
 Microsoft Research New England
 ohadsh@microsoft.com

A sequence of random variables Z_1, Z_2, \dots is called a *martingale difference sequence* with respect to another sequence of random variables X_1, X_2, \dots , if for any t , Z_{t+1} is a function of X_1, \dots, X_t , and $\mathbb{E}[Z_{t+1}|X_1, \dots, X_t] = 0$ with probability 1.

Azuma's inequality is a useful concentration bound for martingales. Here is one possible formulation of it:

Theorem 1 (Azuma's Inequality). *Let Z_1, Z_2, \dots be a martingale difference sequence with respect to X_1, X_2, \dots , and suppose there is a constant b such that for any t ,*

$$\Pr(|Z_t| \leq b) = 1.$$

Then for any positive integer T and any $\delta > 0$, it holds with probability at least $1 - \delta$ that

$$\frac{1}{T} \sum_{t=1}^T Z_t \leq b \sqrt{\frac{2 \log(1/\delta)}{T}}.$$

Sometimes, for the martingale we have at hand, Z_t is not bounded, but rather bounded with high probability. In particular, suppose we can show that the probability of Z_t being larger than a (and smaller than $-a$), conditioned on any X_1, \dots, X_{t-1} , is on the order of $\exp(-\Omega(a^2))$. Random variables with this behavior are referred to as having subgaussian tails (since their tails decay at least as fast as a Gaussian random variable).

Intuitively, a variant of Azuma's inequality for these ‘almost-bounded’ martingales should still hold, and is probably known. However, we weren't able to find a convenient reference for it, and the goal of this technical report is to formally provide such a result:

Theorem 2 (Azuma's Inequality for Martingales with Subgaussian Tails). *Let Z_1, Z_2, \dots, Z_T be a martingale difference sequence with respect to a sequence X_1, X_2, \dots, X_T , and suppose there are constants $b > 1$, $c > 0$ such that for any t and any $a > 0$, it holds that*

$$\max \{ \Pr(Z_t > a | X_1, \dots, X_{t-1}), \Pr(Z_t < -a | X_1, \dots, X_{t-1}) \} \leq b \exp(-ca^2).$$

*Then for any $\delta > 0$, it holds with probability at least $1 - \delta$ that*¹

$$\frac{1}{T} \sum_{t=1}^T Z_t \leq \sqrt{\frac{28b \log(1/\delta)}{cT}}.$$

Proof of Thm. 2

We begin by proving the following lemma, which bounds the moment generating function of subgaussian random variables.

¹It is quite likely that the numerical constant in the bound can be improved.

Lemma 1. Let X be a random variable with $\mathbb{E}[X] = 0$, and suppose there exist a constant $b \geq 1$ and a constant c such that for all $t > 0$, it holds that

$$\max\{\Pr(X \geq t), \Pr(X \leq -t)\} \leq b \exp(-ca^2).$$

Then for any $s > 0$,

$$\mathbb{E}[e^{sX}] \leq e^{7bs^2/c}.$$

Proof. We begin by noting that

$$\mathbb{E}[X^2] = \int_{t=0}^{\infty} \Pr(X^2 \geq t) dt \leq \int_{t=0}^{\infty} \Pr(X \geq \sqrt{t}) dt + \int_{t=0}^{\infty} \Pr(X \leq -\sqrt{t}) dt \leq 2b \int_{t=0}^{\infty} \exp(-ct) dt = \frac{2b}{c}$$

Using this, the fact that $\mathbb{E}[X] = 0$, and the fact that $e^a \leq 1 + a + a^2$ for all $a \leq 1$, we have that

$$\begin{aligned} \mathbb{E}[e^{sX}] &= \mathbb{E}\left[e^{sX} \middle| X \leq \frac{1}{s}\right] \Pr\left(X \leq \frac{1}{s}\right) + \sum_{j=1}^{\infty} \mathbb{E}[e^{sX} | j < sX \leq j+1] \Pr(j < sX \leq j+1) \\ &\leq \mathbb{E}[1 + sX + s^2X^2 | sX \leq 1] \Pr(sX \leq 1) + \sum_{j=1}^{\infty} e^{j+1} \Pr\left(X > \frac{j}{s}\right) \\ &\leq \left(1 + \frac{2bs^2}{c}\right) + b \sum_{j=1}^{\infty} e^{2j - cj^2/s^2}. \end{aligned} \tag{1}$$

We now need to bound the series $\sum_{j=1}^{\infty} e^{j(2-cj/s^2)}$. If $s \leq \sqrt{c}/2$, we have

$$2 - \frac{cj}{s^2} \leq -\frac{c}{2s^2} \leq -2$$

for all j . Therefore, the series can be upper bounded by the convergent geometric series

$$\sum_{j=1}^{\infty} \left(e^{-c/(2s^2)}\right)^j = \frac{e^{-c/(2s^2)}}{1 - e^{-c/(2s^2)}} < 2e^{-c/(2s^2)} \leq 4s^2/c,$$

where we used the upper bound $e^{-c/(2s^2)} \leq e^{-2} < 1/2$ in the second transition, and the last transition is by the inequality $e^{-x} \leq \frac{1}{x}$ for all $x > 0$. Overall, we get that if $s \leq \sqrt{c}/2$, then

$$\mathbb{E}[e^{sX}] \leq 1 + \frac{2bs^2}{c} + b \frac{4s^2}{c} \leq e^{6bs^2/c}. \tag{2}$$

We will now deal with the case $s > \sqrt{c}/2$. For all $j > 3s^2/c$, we have $2 - jc/s^2 < -1$, so the tail of the series satisfies

$$\sum_{j>3s^2/c} e^{j(2-jc/s^2)} \leq \sum_{j=0}^{\infty} e^{-j} < 2 < \frac{8s^2}{c}.$$

Moreover, the function $j \mapsto j(2 - jc/s^2)$ is maximized at $j = s^2/c$, and therefore $e^{j(2-jc/s^2)} \leq e^{s^2/c}$ for all j . Therefore, the initial part of the series is at most

$$\sum_{j=1}^{\lfloor 3s^2/c \rfloor} e^{j(2-jc/s^2)} \leq \frac{3s^2}{c} e^{s^2/c} \leq e^{s^2/ec} e^{s^2/c} \leq e^{(1+1/e)s^2/c},$$

where the second to last transition is from the fact that $a \leq e^{a/e}$ for all a .

Overall, we get that if $s > \sqrt{c}/2$, then

$$\mathbb{E}[e^{sX}] \leq 1 + \frac{10bs^2}{c} + be^{(1+1/e)s^2/c} \leq e^{7bs^2/c}, \quad (3)$$

where the last transition follows from the easily verified fact that $1 + 10ba + e^{(1+1/e)ba} \leq e^{7ba}$ for any $a \geq 1/4$, and indeed $bs^2/c \geq 1/4$ by the assumption on s and the assumption that $b \geq 1$. Combining Eq. (2) and Eq. (3) to handle the different cases of s , the result follows. \square

After proving the lemma, we turn to the proof of Thm. 2.

Proof of Thm. 2. We proceed by the standard Chernoff method. Using Markov's inequality and Lemma 1, we have for any $s > 0$ that

$$\begin{aligned} \Pr\left(\frac{1}{T} \sum_{t=1}^T Z_t > \epsilon\right) &= \Pr\left(e^{\sum_{t=1}^T Z_t} > e^{sT\epsilon}\right) \leq e^{-sT\epsilon} \mathbb{E}\left[e^{s \sum_t Z_t}\right] \\ &= e^{-sT\epsilon} \mathbb{E}\left[\mathbb{E}\left[\prod_{t=1}^T e^{sZ_t} \middle| X_1, \dots, X_T\right]\right] = e^{-sT\epsilon} \mathbb{E}\left[\mathbb{E}\left[e^{sZ_T} \prod_{t=1}^{T-1} e^{sZ_t} \middle| X_1, \dots, X_{T-1}\right]\right] \\ &= e^{-sT\epsilon} \mathbb{E}\left[\mathbb{E}\left[e^{sZ_T} \middle| X_1, \dots, X_{T-1}\right] \mathbb{E}\left[\prod_{t=1}^{T-1} e^{sZ_t} \middle| X_1, \dots, X_{T-1}\right]\right] \leq e^{-sT\epsilon} e^{7bs^2/c} \mathbb{E}\left[\prod_{t=1}^{T-1} e^{sZ_t} \middle| X_1, \dots, X_{T-1}\right] \\ &\dots \leq e^{-sT\epsilon+7Tbs^2/c}. \end{aligned}$$

Choosing $s = c\epsilon/14b$, the expression above equals $e^{-cT\epsilon^2/28}$, and we get that

$$\Pr\left(\frac{1}{T} \sum_{t=1}^T Z_t > \epsilon\right) \leq e^{-cT\epsilon^2/28b},$$

setting the r.h.s. to δ and solving for ϵ , the theorem follows. \square

Acknowledgements

We thank Sébastien Bubeck for pointing out a bug in a previous version of this manuscript.