Comparison of Gradient Descent, Heavy Ball GD & NAGD algorithms for binary classification.

A . Suresh Varma - 21848 I . B . V . Lakshmana Raju - 21190

Introduction

Problem Statement: The objective of this project is to compare convergence rates of various gradient based optimization methods for a binary classification problem.

Dataset Used: Diabetes.csv 750 Samples with 8 Features

Algorithms Used: Gradient Descent, Heavy Ball Gradient Descent, Nesterov Accelerated GD

Loss Function is L₂ regularized cross entropy loss

$$f(w) = 1/m \sum_{i=1}^{m} y_i x^T_i w - \log(1 + \exp(x^T_i w)) + \lambda/2 ||w||^2$$
.

Here f(w) is L - Smooth function with L = λ + max $||x_i||^2/4$, i = 1,...,m(#samples) and μ - strongly convex with μ = λ

From the given data set we obtained $L = 18.1 \& \mu = \lambda = 0.1$.

Updated Equations & Convergence Rates

1. Gradient Descent

$$w_{t+1} = w_t - \eta . \nabla w_t$$

2. Heavy Ball (Momentum Based) Gradient Descent

$$Update_t = eta * Update_{t-1} + \eta * \nabla W_t \ W_{t+1} = W_t - Update_t$$

3. Nesterov Accelerated Gradient Descent

$$egin{aligned} y_{t+1} &= w_t - \eta_t
abla f(w_t) \ z_{t+1} &= z_t - \eta_t ((t+1)/2). \, \Delta f(w_t) \ w_{t+1} &= ((t+1)/(t+3)) y_{t+1} - (2/(t+3)) z_{t+1} \end{aligned}$$

Method	Convergence k.O(log(1/ε))	
Gradient Descent		
Heavy Ball GD	$\sqrt{\text{k.O(log(1/\epsilon))}}$	
Nestro GD	√ k .O(log(1/ε))	

Intuitive Implementation of NAGD

1. Implemented simple NAGD with the following update equations

$$egin{aligned} w_{look_ahead} &= w_t - eta.update_{t-1} \ update_t &= eta.update_{t-1} + \eta
abla w_{look_ahead} \ w_{t+1} &= w_t - update_t \end{aligned}$$

Observations

- 1. As expected Nestro accelerated Gradient Descent having better convergence rate than other 2 methods.
- 2. The practical convergence rates of these algorithms are found to differ from theoretical analysis which may be due to imbalance in data set.

Ref - 1: Section 7.2 phd thesis http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf

Results

E	GD	Heavy Ball GD	NAGD	Simple NAGD
	Iterations	Iterations	Iterations	Iterations
1E-03	209	47	13	36
1E-4	326	58	15	54

Method	Step Size(α)	Momentum(β)
Gradient Descent	1/L	(- 1)
Heavy Ball GD	1/L	0.9
NAGD	0.3	-
Simple NAGD	1/L	0.8

Thank You