

Discrete Mathematics

#5 Induction and Recursion

By Adha Imam Cahyadi, D.Eng

When I was young ...

Why study mathematics?

- It is foundation of science
- It has been used in so many areas: economics, engineering, life science, social science, modern physics etc
- Example?

simple drill: read aloud!

On Thomas Calculus we have this

THEOREM 4—The Sandwich Theorem Suppose that $g(x) \le f(x) \le h(x)$ for all x in some open interval containing c, except possibly at x = c itself. Suppose also that

$$\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L.$$

Then $\lim_{x\to c} f(x) = L$.

Another drillA

 On a technical book there is a passage like this

- **5.1. Theorem.** Suppose that $f \in \mathcal{F}$ is bounded below by some constant c, and f_{α} is defined as above with $\alpha > 0$. Then f_{α} is bounded below by c, and is Lipschitz on each bounded subset of X (and in particular is finite-valued). Furthermore, suppose $x \in X$ is such that $\partial_P f_{\alpha}(x)$ is nonempty. Then there exists a point $\bar{y} \in X$ satisfying the following:
 - (a) If {y_i} ⊂ X is a minimizing sequence for the infimum in (1), then lim_{i→∞} y_i = ȳ.
 - (b) The infimum in (1) is attained uniquely at \(\bar{y}\).
 - (c) The Fréchet derivative f'_a(x) exists and equals 2α(x − ȳ). Thus the proximal subgradient ∂_Pf_α(x) is the singleton {2α(x − ȳ)}.
 - (d) $2\alpha(x \bar{y}) \in \partial_P f(\bar{y})$.

Proof. Suppose we are given f and $\alpha > 0$ as above. It is clear from the definition that f_{α} is bounded below by c. We now show that f_{α} is Lipschitz on any bounded set $S \subset X$.

For any fixed $x_0 \in \text{dom } f \neq \emptyset$, note that $f_{\alpha}(x) \leq f(x_0) + \alpha ||x - x_0||^2$ for all $x \in X$, and thus in particular $m := \sup\{f_{\alpha}(x) : x \in S\} < \infty$. Since $\alpha > 0$, and f is bounded below, we have that for any $\varepsilon > 0$ the set

$$C := \{z : \exists y \in S \text{ so that } f(z) + \alpha ||y - z||^2 \le m + \varepsilon\}$$

is bounded in X.

One more

Theorem 4.1 Let x=0 be an equilibrium point for (4.1) and $D \subset \mathbb{R}^n$ be a domain containing x=0. Let $V:D\to\mathbb{R}$ be a continuously differentiable function such that

$$V(0) = 0$$
 and $V(x) > 0$ in $D - \{0\}$ (4.2)

$$\dot{V}(x) \le 0 \text{ in } D$$
 (4.3)

Then, x = 0 is stable. Moreover, if

$$\dot{V}(x) < 0 \text{ in } D - \{0\}$$
 (4.4)

then x = 0 is asymptotically stable.

 A very famous theorem called Lyapunov Theorem **Proof:** Given $\varepsilon > 0$, choose $r \in (0, \varepsilon]$ such that

$$B_r = \{x \in R^n \mid ||x|| \le r\} \subset D$$

Let $\alpha = \min_{\|x\|=r} V(x)$. Then, $\alpha > 0$ by (4.2). Take $\beta \in (0, \alpha)$ and let

$$\Omega_{\beta} = \{x \in B_r \mid V(x) \le \beta\}$$

Then, Ω_{β} is in the interior of B_{τ} .² (See Figure 4.1.) The set Ω_{β} has the property that any trajectory starting in Ω_{β} at t=0 stays in Ω_{β} for all $t\geq 0$. This follows from (4.3) since

$$\dot{V}(x(t)) \le 0 \implies V(x(t)) \le V(x(0)) \le \beta, \ \forall \ t \ge 0$$

Because Ω_{β} is a compact set,³ we conclude from Theorem 3.3 that (4.1) has a unique solution defined for all $t \geq 0$ whenever $x(0) \in \Omega_{\beta}$. As V(x) is continuous and V(0) = 0, there is $\delta > 0$ such that

$$||x|| \le \delta \implies V(x) < \beta$$

Then,

$$B_{\delta} \subset \Omega_{\beta} \subset B_r$$

and

$$x(0) \in B_{\delta} \Rightarrow x(0) \in \Omega_{\beta} \Rightarrow x(t) \in \Omega_{\beta} \Rightarrow x(t) \in B_r$$

Therefore,

$$\|x(0)\| < \delta \Rightarrow \|x(t)\| < r \leq \varepsilon, \ \forall \ t \geq 0$$

What can you conclude?

• It is indeed important to open many doors!

Refresher (set and number)

Number

- Set of number
 - **Z**=the set of integers={0,1,-1,2,-1,3,-3,...}
 - **N**=the set of nonnegative integers or natural numbers
 - **Z**⁺=the set of positive integers
 - **Q**=the set of rational numbers= $\{a/b \mid a,b \text{ is integer, } b \text{ not zero}\}$
 - Q⁺=the set of positive rational numbers
 - **Q***=the set of nonzero rational numbers
 - **R**=the set of real numbers
 - R⁺=the set of positive real numbers
 - R*=the set of nonzero real numbers
 - C=the set of complex numbers
- Infinite sets come in different sizes!

Induction and Recursion

Chapter 4

Take a look at this video, today we are going to talk about this!

