Computability via Recursive Functions

Justin Pumford

March 2020

1 Effective Calcubility and Computability

2 Primitive Recursive Functions

2.1 Functions

For this paper, \mathbb{N} refers to the set $\{0, 1, 2, 3, ...\}$

Definition. The following functions from $\mathbb{N} \oplus ... \oplus \mathbb{N}$ to \mathbb{N} are primitive recursive functions:

1. The unary constant function c:

$$c(x) = 0$$

2. The unary successor function s:

$$s(x) = x + 1$$

3. The n-ary projection function p:

$$1 \le i \le n$$
$$p(x_1, ..., x_n) = x_i$$

4. Function composition

Let f be an n-ary primitive recursive function and $g_1, g_2, ..., g_n$ all be m-ary primitive recursive functions. Then the m-ary composition h of f and $g_1, g_2, ..., g_n$ given by

$$h(x_1, x_2, ..., x_m) = f(g_1(x_1, x_2, ..., x_m), ..., g_n(x_1, x_2, ..., x_m))$$

is a primitive recursive function

5. Primitive recursion Let g be an n-ary primitive recursive function and f be an (n+2)-ary primitive recursive function. Then the (n+1)-ary primitive recursion h of f and g given by

$$h(0, x_1, ..., x_n) = g(x_1, ..., x_n)$$

$$h(s(x), x_1, ..., x_n) = f(x, h(x, x_1, ..., x_n), x_1, ..., x_n)$$

is a primitive recursive function

2.2

3 The Ackermann Function

Definition (The Ackermann Function). Let $n, m \in \mathbb{N}$. Then define A(n, m) as follows:

$$A(m,n) = \begin{cases} n+1 & m=0\\ A(m-1,1) & m>0 \land n=0\\ A(m-1,A(m,n-1)) & m>0 \land n>0 \end{cases}$$

Lemma 1. For any $m, n \in \mathbb{N}$, $A(m, n) \in \mathbb{N}$

Theorem 1. A(m, n) is a total function

Proof. We will proceed inductively to show that A(m, n) is defined for all $m, n \in \mathbb{N}$.

Clearly A(0, n) is defined for all $n \in \mathbb{N}$. Assume A(k, n) is defined for some $k \in \mathbb{N}$ and every $n \in \mathbb{N}$. Since k + 1 > 0, A(k + 1, 0) = A(k, 1), which is defined.

Now we assume A(k+1,j) is defined for some $j \in \mathbb{N}$. By Lemma 1, A(k+1,j) = a for some $a \in \mathbb{N}$. Then since j+1>0, A(k+1,j+1) = A(k,A(k+1,j)) = A(k,a). Since A(k,n) is defined for every $n \in \mathbb{N}$ by our inductive hypothesis, A(k,a) = A(k+1,j+1) is defined.

Theorem 2. For any $m, n, s \in \mathbb{N}$ where s > n, A(m, n) < A(m, s)

Theorem 3. For any $m, n, s \in \mathbb{N}$, A(m, A(s, n)) < A(m + s + 2, n)*Proof.* Proof here **Definition.** Let P be the set of all primitive recursive functions so that if $f(x_1, x_2, ..., x_n) \in P$ and $m = max\{x_1, x_2, ..., x_n\}$, then there exists $t \in \mathbb{N}$ so that $f(x_1, x_2, ..., x_n) < A(t, m)$ **Theorem 4.** c(x), s(x), $p_i(x_1, x_2, ..., x_n) \in P$ Proof. c(x) = 0 < x + 1 = A(0, x)s(x) = x + 1 < x + 2 = A(1, x) $p_i(x_1, x_2, ..., x_n) = x_i < m < m + 1 = A(0, m)$ To verify x + 2 = A(1, x), we proceed by induction. A(1,0) = A(1-1,1) = A(0,1) = 2 = 0+2. Now assume A(1,k) = k+2 for some $k \in \mathbb{N}$. Then A(1, k+1) = A(1-1, A(1, k+1-1)) = A(0, A(1, k)) =A(0, k + 2) = k + 3 = (k + 1) + 2.**Theorem 5.** P is closed under composition *Proof.* Let $f, g_1, g_2, ..., g_k \in P$, where f is k-ary and each g_i is j-ary. Let $x_1, x_2, ..., x_j \in \mathbb{N}$. Let $m = max\{x_1, x_2, ..., x_j\}$. Let h be the j-ary primitive recursive function that results from function composition of f with $g_1, g_2, ..., g_k$. Let g_{max} be the g_i giving the maximum value in $max\{g_1(x_1, ..., x_j), ..., g_k(x_1, ..., x_j)\}$. Let $m_g = g_{max}(x_1,...,x_j)$ Since $g_{max} \in P$, there exists some $t_g \in \mathbb{N}$ so that $m_g < A(t_g, m)$. Similarly since $f \in P$, there exists some $t_f \in \mathbb{N}$ so that $h(x_1,...,x_j) = f(g_1(x_1,...,x_j),...,g_k(x_1,...,x_j)) < A(t_f,m_g)$. But since $m_q < A(t_q, m)$, by Theorem 2 $A(t_f, m_q) < A(t_f, A(t_q, m))$. By Theorem 3, $A(t_f, A(t_g, m)) < A(t_f + t_g + 2, m)$. Let $t = t_f + t_g + 2 \in \mathbb{N}$. Then $h(x_1,..,x_i) < A(t,m)$. So $h \in P$. **Theorem 6.** P is closed under primitive recursion Proof. **Theorem 7.** P is precisely the primitive recursive functions Proof. **Theorem 8.** A(m,n) is not a primitive recursive function *Proof.* Proof Here

Proof. Use the proof of A(m, n); A(m, n + 1)

- 4 General Recursive Functions
- 4.1 Partial Functions
- 4.2 Definition of General Recursive Functions