WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF ELECTRONICS

FIELD: Computer Science

SPECIALIZATION: Internet Engineering (INE)

MASTER OF SCIENCE THESIS

Research on methods of changing objects in images using Deepfake technology

Badania metod zmiany obiektów na obrazach z wykorzystaniem technologii Deepfake

AUTHOR:
Michał Zendran

SUPERVISOR:

Dr inż. Andrzej Rusiecki

GRADE:

Contents

1	Introduction	2
	1.1 Abstract	2
	1.2 Objective and assumptions	2
	1.3 Naming conventions and terminology	2
2	Theoretical background	3
	2.1 Artificial neural network	3
	2.2 Convolutional neural networks	3
3	Deepfake methods	4
	3.1 Variational auto encoder	4
	3.2 Convolutional variational auto encoder	4
	3.3 VAE-GAN	4
	3.4 CycleGAN	4
4	Datasets	5
	4.1 Datasets description	5
	4.2 Data pre-processing	5
5	Technologies	6
	5.1 Software and Libraries	6
	5.2 Hardware	6
6	Networks implementation	7
	6.1 Variational auto encoder	7
	6.2 Convolutional variational auto encoder	7
	6.3 VAE-GAN	7
	6.4 CycleGAN	7
7	Results	8
8	Conclusions	9
Bibliography 1		10
List of Figures		11
	st of Tables	12
111	of Tables	14

Introduction

1.1 Abstract

About problem: what is deepfake, why it's impactful in these days, possible use-cases, risks. What is this paper about?

1.2 Objective and assumptions

Initial assumptions, what is my expected outcome, how I am going to compare results.

1.3 Naming conventions and terminology

Explain all names like CNN, VAE, Deepfake, itp.

Theoretical background

2.1 Artificial neural network

Explain what are ANN, main idea, training process and so on.

2.2 Convolutional neural networks

Explain how it works, what are main use-cases and so on.

Deepfake methods

3.1 Variational auto encoder

Idea behind deepfake generated by VAE without CNN

3.2 Convolutional variational auto encoder

Idea behind deepfake generated by VAE with CNN

3.3 VAE-GAN

Idea behind deepfake generated by GAN actually "VAE-GAN".

3.4 CycleGAN

Describe what is it, what it consists of, what are its applications, why I thought it should work for deepfake. Explain how it works exactly. Show learning process and results (good ones: horses to zebras and bad ones: face to face). Idea behind deepfake generated by CycleGAN. Explain why I'm assuming it should it work?

Datasets

4.1 Datasets description

How dataset for deepfake learning should look like Used Datasets: VoxCeleb (description)

4.2 Data pre-processing

how I prepared my own datasets. All operations from videos to npz files

Technologies

5.1 Software and Libraries

As in title...

5.2 Hardware

As in title ... (My hardware, Google colab, Google cloud?)

Networks implementation

Detailed description of implementation of each method. What are the topologies, what callbacks were used, why those parameter, why those batches itp

- 6.1 Variational auto encoder
- 6.2 Convolutional variational auto encoder
- 6.3 VAE-GAN
- 6.4 CycleGAN

Results

Presentation and discussion of results for each method

Conclusions

Bibliography

[1] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX Companion. Addison-Wesley, Reading, Massachusetts, 1993.

List of Figures

List of Tables