

TD électronique série 1 (Polytech Nancy 2A)

Exercice 1

On donne : AN : R_1 = R_2 = $2k\Omega$, R_C = $1k\Omega$ et V_O =5V

- 1) En appliquant le théorème de Millman, calculer la tension $v_{AM}(t)$ en fonction de $e_1(t)$ et $e_2(t)$.
- 2) Même question en utilisant le théorème de superposition.
- 3) Tracer alors le signal $v_{AM}(t)$.

Exercice 2:

On donne : AN : $R_1 = R_2 = 2.2 \text{ k}\Omega$, $Rc=10 \text{ k}\Omega$.

- 1) En utilisant un générateur de Thévenin équivalent, calculer en fonction de e(t), la tension v_c aux bornes de la charge Rc et le courant i(t) la traversant.
- 2) Reprendre cet exercice en utilisant un diviseur de tension.

Exercice 3: lois de Kirchhoff

On donne : E1=8V, E2= 12V, E3=6V, E4=2V ; $R_1=R_2=5\Omega$, $R_3=R_4=R_5=10\Omega$,

En utilisant les lois de mailles et de nœuds, calculer l'intensité dans chacune des branches de ce circuit :

