Lec3 Note of Algebra

Xuxuayame

日期: 2024年9月14日

1.1.5 外直和与内直和

定义 1.9. 固定 R, 考虑 R-模 S, T, 定义其 (外) 直和为:

$$S \oplus T = S \times T = \{(s,t) \mid s \in S, \ t \in T\},\$$

 $(s,t) + (s',t') = (s+s',t+t'),\$
 $\forall \ r \in R, \ r \cdot (s,t) = (rs,rt).$

我们可以有一些自然的嵌入或投影:

$$S \stackrel{i_1}{\hookrightarrow} S \oplus T \stackrel{\pi_1}{\twoheadrightarrow} S,$$

$$s \mapsto (s, 0_T), \ (s, t) \mapsto s,$$

$$T \stackrel{i_2}{\hookrightarrow} S \oplus T \stackrel{\pi_2}{\twoheadrightarrow} T,$$

$$t \mapsto (0_S, t), \ (s, t) \mapsto t.$$

命题 1.11. $(S \oplus T, i_1, i_2)$ 的泛性质: $\forall R$ -模 $M, f: S \to M, g: T \to M, \exists! \varphi: S \oplus T \to M$ s.t.

$$\varphi \circ i_1 = f, \ \varphi \circ i_2 = g.$$

也即如下交换图成立

证明. 先证明至多唯一性: 由图表交换, $\varphi \circ i_1 = f$, $\varphi \circ i_2 = g$, $\forall s \in S$, $t \in T$, $\varphi(s, 0_T) = f(s)$, $\varphi(0_S, t) = g(t)$. 那么 $\forall (s, t) \in S \oplus T$, $(s, t) = (s, 0_T) + (0_S, t)$, 若有 $\varphi \colon S \oplus T \to M$, 则必然有

$$\varphi(s,t) = \varphi(s,0_T) + \varphi(0_S,t) = f(s) + g(t).$$

可见 φ 唯一地被 f,g 构造出来 (因此存在性也被给出). 于是我们可记 φ 为 (f,g):

$$(f,g) = \varphi \colon S \oplus T \to M,$$

$$\begin{pmatrix} s \\ t \end{pmatrix} \mapsto (f, g) \begin{pmatrix} s \\ t \end{pmatrix} = f(s) + g(t).$$

命题 1.12. $(S \oplus T, \pi_1, \pi_2)$ 的泛性质: $\forall R$ -模 N, $p: N \to S$, $q: N \to T$, 则 $\exists ! \psi: N \to S \oplus T$ s.t.

$$\pi_1 \circ \psi = p, \ \pi_2 \circ \psi = q.$$

也即如下交换图成立

证明. 同样先证明 ψ 的至多唯一性: 设 ψ : $N \to S \oplus T$, $x \mapsto (a,b)$, 那么由图表交换, $\forall x, \pi_1 \circ \psi(x) = p(x) \Rightarrow a = p(x)$, 同理 b = q(x). 因此 ψ 唯一地被 p,q 构造 (从而存在性 也成立).

定义 1.10. 设 R-模 S, T 为 M 的子模, 若 S + T = M 且 $S \cap T = \{0_M\}$, 则称 M 为 S, T 的内直和, S, T 互称为补, S, T 为 M 的直和项.

对 $S,T \subset M$, 我们有典范映射:

can:
$$S \oplus T \to M$$
,
 $(s,t) \mapsto s + t$.

命题 1.13. R-模 $S,T \subset M$, 则 $M \to S,T$ 的内直和 \Leftrightarrow can: $S \oplus T \to M$ 是同构. 故此时可以写 $M = S \oplus T$.

证明.
$$\Rightarrow$$
: Im(can) = $S + T$, Ker(can) = $\{(s,t) \in S \oplus T \mid s+t=0\} = (0_M, 0_M)$. \Leftarrow : 显然.

评论. (1) 补不一定存在 $(R = \mathbb{Z}, \mathbb{Z}_4 \supset \{\overline{0}, \overline{2}\}$ 子模无补).

(2) 补不唯一,但同构下唯一.

命题 1.14. R-模 $S \subset M$, 则 S 为直和项 $\Leftrightarrow \exists p \colon M \to S$ s.t. $p|_S = \mathrm{Id}_S$, 我们称此 p 为收缩 (Retraction).

证明. \Leftrightarrow : p: $M \to S$, $p|_S = \mathrm{Id}_S$, 记 $K = \mathrm{Ker} p = \{m \in M \mid p(m) = 0\}$, 我们宣称 M 为 K, S 内直和.

首先对 $\forall x \in M, \ x = (x - p(x)) + p(x), \ p(x) \in S, \ \overline{m} \ p(x - p(x)) = p(x) - p(p(x)) = p(x) - p(x) = 0 \Rightarrow x - p(x) \in K, \ \overline{n} \ \mathcal{D} \ M = K + S. \ \overline{m} \ \mathcal{T} \ y \in K \cap S, \ 0 = p(y) = y, \ \overline{u} \ K \cap S = \{0_M\}.$

 \Rightarrow : 设 S 的补为 $T, \forall x \in M, \exists ! x = x_S + x_T.$ 定义

$$p: M \to S,$$

$$x \mapsto x_s.$$

可以验证 p 为同态, 且 $p|_S = \mathrm{Id}_S$.

评论. p 依赖于 T.

推论. $S \subset M$ 为直和项, $S \subset A \subset M$, 则 S 也为 A 的直和项.

证明.

方法 1 $p: M \to S$, $p|_S = \mathrm{Id}_S$, 则 $p \circ \mathrm{inc}_A = p': A \to S$, 可以发现 $p'|_S = \mathrm{Id}_S$.

方法 2 设 $M=S\oplus T$ 为内直和, 我们宣称 $A=S\oplus (A\cap T)$. 首先 $S\cap (A\cap T)=\{0_A\}$ 显然.

那么更复杂地,对于 $\forall f_{11} \in \operatorname{Hom}_R(S, S'), f_{12} \in \operatorname{Hom}_R(T, S'), f_{21} \in \operatorname{Hom}_R(S, T'), f_{22} \in \operatorname{Hom}_R(T, T'),$ 我们宣称存在 $F: S \oplus T \to S' \oplus T'$ 使得如下图表交换:

也即:

$$\pi_1 \circ F \circ i_1 = f_{11},$$
 $\pi_1 \circ F \circ i_2 = f_{12},$
 $\pi_2 \circ F \circ i_1 = f_{21},$
 $\pi_2 \circ F \circ i_2 = f_{22}.$

利用泛性质即可. 可记
$$F = \begin{pmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{pmatrix}, \begin{pmatrix} s \\ t \end{pmatrix} \mapsto \begin{pmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{pmatrix} \begin{pmatrix} s \\ t \end{pmatrix} = \begin{pmatrix} f_{11}(s) + f_{12}(t) \\ f_{21}(s) + f_{22}(t) \end{pmatrix}.$$

评论. 对于 R-模 S_1, \dots, S_n , 可以定义外直和

$$\bigoplus_{i=1}^{n} S_i = S_1 \oplus \cdots \oplus S_n = S_1 \times \cdots \times S_n.$$

伴有 $S_l \stackrel{i_l}{\hookrightarrow} \bigoplus_{i=1}^n S_i \stackrel{\pi_l}{\to} S_l$. 类似可以有泛性质.

若 S_1, \dots, S_n 为 M 子模, 则称 M 为 S_1, \dots, S_n 的内直和, 若

- $S_1 + \cdots + S_n = M$;
- $\forall l, S_l \cap (S_1 + \dots + S_{l-1} + S_{l+1} + \dots + S_n) = \{0_M\}.$

这等价于 can: $\bigoplus_{i=1}^n S_i \to M$, $(s_1, \dots, s_n) \mapsto s_1 + \dots + s_n$ 为同构.

而对于无限的情况,如下:

定义 1.11. 设 $\{S_{\alpha}\}_{\alpha\in\Lambda}$ 为一族 R-模, Λ 为指标集. 称直积 (Product) 为

$$\prod_{\alpha \in \Lambda} S_{\alpha} = \{ (s_{\alpha})_{\alpha \in \Lambda} \mid s_{\alpha} \in S_{\alpha} \}.$$

 $\forall \alpha \in \Lambda, 伴有 \pi_{\alpha} : \prod_{\alpha \in \Lambda} S_{\alpha} \twoheadrightarrow S_{\alpha}.$ 并且我们要求 $(\prod_{\alpha \in \Lambda} S_{\alpha}, p_{\alpha}, \alpha \in \Lambda)$ 满足泛性质: $\forall R-模 M, f_{\alpha} : M \to S, \forall \alpha \in \Lambda, \exists ! \varphi : M \to \prod_{\alpha \in \Lambda} S_{\alpha} \text{ s.t. } \pi_{\alpha} \circ \varphi = f_{\alpha}.$

定义 1.12. 我们称

$$\prod_{\alpha \in \Lambda} S_{\alpha} = \bigoplus_{\alpha \in \Lambda} S_{\alpha}$$

$$= \left\{ (s_{\alpha})_{\alpha \in \Lambda} \in \prod_{\alpha \in \Lambda} S_{\alpha} \middle| s_{\alpha} \neq 0 \, \text{只对有限} \alpha \in \Lambda 成立 \right\}$$

为**直和 (Direct sum)** 或**余积 (Coproduct)**. 它是 $\prod_{\alpha \in \Lambda} S_{\alpha}$ 的子模. $\forall \alpha \in \Lambda$ 有 i_{α} : $S_{\alpha} \hookrightarrow \coprod_{\alpha \in \Lambda} S_{\alpha}$, 且我们要求 ($\coprod_{\alpha \in \Lambda} S_{\alpha}$, i_{α} , $\alpha \in \Lambda$) 有类似嵌入的泛性质.

命题 1.15. 设有一族 R-模 $\{S_{\alpha}\}_{{\alpha}\in\Lambda}$, M, 则有 R-模同构:

(1)

$$\prod_{\alpha \in \Lambda} \operatorname{Hom}_{R}(M, S_{\alpha}) \xrightarrow{\sim} \operatorname{Hom}_{R} \left(M, \prod_{\alpha \in \Lambda} S_{\alpha} \right),$$
$$(f_{\alpha})_{\alpha \in \Lambda} \mapsto F, \ F(m) = (f_{\alpha}(m))_{\alpha \in \Lambda}.$$

(2)

$$\prod_{\alpha \in \Lambda} \operatorname{Hom}_{R}(S_{\alpha}, M) \xrightarrow{\sim} \operatorname{Hom}_{R} \left(\coprod_{\alpha \in \Lambda} S_{\alpha}, M \right),$$

$$(g_{\alpha})_{\alpha \in \Lambda} \mapsto G.$$

这里 $G: \coprod_{\alpha \in \Lambda} S_{\alpha} \to M, (s_{\alpha})_{\alpha \in \Lambda} \mapsto \sum_{\alpha \in \Lambda} g_{\alpha}(s_{\alpha}).$