Sampling (ch.7)

- ☐ Representation of a Continuous-Time Signal by Its Samples: The Sampling Theorem
- ☐ Reconstruction of a Signal from Its Samples Using Interpolation
- ☐ The Effect of Undersampling: Aliasing
- ☐ Discrete-Time Processing of Continuous-Time Signals
- ☐ Sampling of Discrete-Time

☐ What is sampling?

Converting continuous-time signals to discrete-time signals

☐ Why sampling?

To use the well-developed digital technology

☐ But, a signal could not always be uniquely specified by equally-spaced samples

Figure 7.1 Three continuous-time signals with identical values at integer multiples of T.

☐ The sampling theorem should be satisfied

Impulse-Train Sampling

$$x_p(t) = x(t) \cdot p(t)$$

☐ Time domain

$$p(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT)$$

$$x_p(t) = \sum_{n = -\infty}^{\infty} x(nT) \cdot \delta(t - nT)$$

Impulse-Train Sampling

☐ Frequency domain

$$X_p(j\omega) = \frac{1}{2\pi}X(j\omega) * P(j\omega)$$

$$P(j\omega) = \frac{2\pi}{T} \sum_{K=-\infty}^{\infty} \delta(\omega - k\omega_s) = \frac{2\pi}{T} \sum_{K=-\infty}^{\infty} \delta\left(\omega - k\frac{2\pi}{T}\right)$$

$$X_p(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\theta) P(j(\omega - \theta)) d\theta = \frac{1}{T} \sum_{K = -\infty}^{\infty} X(j(\omega - k \cdot \omega_s))$$

Sampling Theorem

Sampling Theorem:

Let x(t) be a band-limited signal with $X(j\omega) = 0$ for $|\omega| > \omega_M$. Then x(t) is uniquely determined by its samples x(nT), $n = 0, \pm 1, \pm 2, \ldots$, if

$$\omega_s > 2\omega_M$$

where

$$\omega_s = \frac{2\pi}{T}.$$

Given these samples, we can reconstruct x(t) by generating a periodic impulse train in which successive impulses have amplitudes that are successive sample values. This impulse train is then processed through an ideal lowpass filter with gain T and cutoff frequency greater than ω_M and less than $\omega_S - \omega_M$. The resulting output signal will exactly equal x(t).

Recovery of the CT signal

☐ Ideal low-pass filtering

Sampling with a Zero-order Hold

- ☐ Why: Impulse-train is difficult to generate
- \square Principle: Samples x(t) at a given instant and holds that value until the next instant

Sampling with a Zero-order Hold

□ Equivalent: Impulse-train sampling + an LTI system with a rectangular impulse response

$$x_0(t) = x_p(t) * h(t) \Rightarrow$$

 $x_0(t)$

Sampling with a Zero-order Hold

☐ Compensation filter

$$H_0(j\omega) = e^{-j\omega T/2} \left[\frac{2\sin\omega T}{\omega} \right]$$

Let $H_0(j\omega)H_r(j\omega) = H(j\omega)$

$$H_r(j\omega) = \begin{cases} e^{-j\omega T/2} / \left[\frac{2\sin \omega T}{\omega} \right], |\omega| \le \frac{\omega_s}{2} \\ 0, & |\omega| > \frac{\omega_s}{2} \end{cases}$$

Sampling (ch.7)

- ☐ Representation of a Continuous-Time Signal by Its Samples: The Sampling Theorem
- ☐ Reconstruction of a Signal from Its Samples Using Interpolation
- ☐ The Effect of Undersampling: Aliasing
- ☐ Discrete-Time Processing of Continuous-Time Signals
- ☐ Sampling of Discrete-Time

Band-limited interpolation: (ideal low-pass filter)

$$h(t) = \frac{T\omega_c}{\pi} \frac{\sin \omega_c t}{\omega_c t}$$

$$=\sum_{n=-\infty}^{\infty}x(nT)[\delta(t-nT)*h(t)]$$

$$=\sum_{n=-\infty}^{\infty}x(nT)h(t-nT)$$

$$= \sum_{n=-\infty}^{\infty} x(nT) \frac{T\omega_c}{\pi} \frac{\sin \omega_c(t-nT)}{\omega_c(t-nT)}$$

10

Band-limited interpolation: (ideal low-pass filter)

$$h(t) = \frac{T\omega_c}{\pi} \frac{\sin \omega_c t}{\omega_c t}$$

$$x_r(t) = \sum_{n=-\infty}^{\infty} x(nT) \frac{T\omega_c}{\pi} \frac{\sin \omega_c(t - nT)}{\omega_c(t - nT)}$$

Zero-order hold

Time domain

☐ Frequency domain

$$H_0(j\omega) = e^{-j\omega T/2} \left[\frac{2\sin \omega T}{\omega} \right]$$

First-order hold: Impulse-train sampling + an LTI system with a tri angular impulse response

Т

-Т

☐ Frequency domain

$$H_0(j\omega) = \frac{1}{T} \left[\frac{\sin(\omega T/2)}{\omega/2} \right]^2$$

Sampling (ch.7)

- ☐ Representation of a Continuous-Time Signal by Its Samples: The Sampling Theorem
- ☐ Reconstruction of a Signal from Its Samples Using Interpolation
- ☐ The Effect of Undersampling: Aliasing
- ☐ Discrete-Time Processing of Continuous-Time Signals
- ☐ Sampling of Discrete-Time

Aliasing

 \square When $\omega_S < 2\omega_M$, the individual spectrums overlap

- \square Consider original signal is $x(t) = \cos \omega_0 t$, with different ω_0 but sampled at same ω_s
 - When aliasing occurs, the original frequency ω_0 takes on the identity of lower frequency $(\omega_s \omega_0)$.

Aliasing

$x(t) = \cos \omega_0 t$ Time domain

Aliasing

- \square $\omega_S = 2\omega_M$ is not sufficient to avoid aliasing
 - Consider a signal $x(t)=\cos(\omega_0 t+\emptyset)$ is sampled using impulse sampling with $\omega_s=2\omega_0$
 - The reconstructed signal using ideal low-pass filter is

$$x_r(t) = \cos(\emptyset)\cos(\omega_0 t) = x(t)$$
 only if $\emptyset = 2k\pi$

• Particularly, if $\emptyset = -\pi/2$, then $x(t) = \sin \omega_0 t$ and $x_r(t) = 0$

Aliasing

 \square For signal with $f_c > B/2$, where $f_c = (f_h + f_l)/2$ and $B = f_h - f_l$

$$f_l = 800 \text{ Hz}, f_h = 1000 \text{ Hz}$$

Determine the lowest f_S with no aliasing

Q: What about $f_l = 850 \text{ Hz}$?

Aliasing

☐ For harmonic related signal, e.g., a square wave

- $\omega_s > 2K\omega_0$, with K the kth harmonics you want to include
- Low-pass filtering before sampling