Differential Privacy

Privacy Preserving Information Access: Homework 2

Reza Ghasemi

Context

Diabetes Dataset

```
In [2]: diabetes_ds = pd.read_csv("diabetes.csv")
# display dataset
diabetes_ds
```

ロロエレノ	
outjz	

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
	0 6	148	72	35	0	33.6	0.627	50	1
	1 1	85	66	29	0	26.6	0.351	31	0
	2 8	183	64	0	0	23.3	0.672	32	1
	3 1	89	66	23	94	28.1	0.167	21	0
	4 0	137	40	35	168	43.1	2.288	33	1
76	3 10	101	76	48	180	32.9	0.171	63	0
76	4 2	122	70	27	0	36.8	0.340	27	0
76	5 5	121	72	23	112	26.2	0.245	30	0
76	6 1	126	60	0	0	30.1	0.349	47	1
76	7 1	93	70	31	0	30.4	0.315	23	0

Context

- Used to predict whether a patient has diabetes or not.
- The dataset contains the following information regarding patients:
- Pregnancy: number of pregnancies
- BMI: body mass index (weight in kg/(height in m)^2)
- Age: years
- Glucose : glucose concentration
- BloodPressure: Diastolic blood pressure (mm Hg)
- output: diagnosis of diabetes (0 or 1)
- >
- Identifiers have been removed (e.g., name, SSN), making this dataset "anonymized."

Fake Data Generation

Fake information was added to make the dataset more interesting: name, SSN, and job.

```
In [4]: name_list = []
        ssn_list = []
        job_list = []
        # use italian locale
        fake = Faker('it IT')
        # generate fake data for all entries
        for _ in range(768):
            name_list.append(fake.name_female())
            ssn_list.append(fake.ssn())
            job_list.append(fake.job())
        # add new columns to csv file
        diabetes ds['Name'] = name list
        diabetes_ds['SSN'] = ssn_list
        diabetes_ds['Job'] = job_list
        diabetes_ds = diabetes_ds[['Name', 'SSN', 'Age', 'Job', 'Pregnancies',
                                    'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
                                    'BMI', 'DiabetesPedigreeFunction', 'Outcome']]
        # save the dataset
        diabetes_ds.to_csv('output.csv')
```


Dataset with PII


```
In [5]: # read new dataset
diabetes_dataset = pd.read_csv("output.csv")
diabetes_dataset.head()
```

Out[5]:

	Name	SSN	Age	Job	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Outcome
	/irginia Benigni	PVNLLT00E15I692J	50	Surveyor, planning and development	6	148	72	35	0	33.6	0.627	1
Lu	Sig.ra Idovica Ostanzi	SLTGDI16C14G909X	31	Editor, magazine features	1	85	66	29	0	26.6	0.351	0
	ermana iiavone	LZUGBL37H03C463U	32	Hospital doctor	8	183	64	0	0	23.3	0.672	1
7	Sig.ra Tiziana Alboni	MSTRNL72S25E539D	21	Programme researcher, broadcasting/film /video	1	89	66	23	94	28.1	0.167	0
	Sig.ra Licia enchini	NTTVCR69A12I928V	33	Geographical information systems officer	0	137	40	35	168	43.1	2.288	1

Histograms

175

150

125

Count 100 75

50

25

30

Age:

In [6]: sns.histplot(data=diabetes_dataset, x='Age', bins=20) <AxesSubplot:xlabel='Age', ylabel='Count'>

80

60

70

Pregnancies:

0.0

2.5

5.0

7.5

Pregnancies

17.5

12.5

15.0

10.0

K-anonymity

Definition: A property of a dataset indicating its level of anonymity.

We say a dataset is k-anonymous when we have <u>k-1 individuals with the same</u> <u>quasi-identifiers.</u>

What is the best k value? Well, it depends...

```
In [9]: diabetes_ds = pd.read_csv("diabetes.csv")
    is_kanonymous(dataset=diabetes_ds, k_value=1)
Out[9]: True
```

For k-anonymity, two values **must be avoided**: k = 1 and k = n (table dimension).

```
In [14]: is_kanonymous(diabetes_ds, k_value=50)
```


We do not have 50-anonymity

Generalization

Suppression and generalization can be used to achieve k-anonymity.

In the following example, the generalization function is used to remove the second digit:

In [17]: generalization_function(diabetes_ds, generalization_degree)

17]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome	
	0	_ 0	140	70	30	0	30	0	50	0	
	1	0	80	60	20	0	20	0	30	0	
	2	0	180	60	0	0	20	0	30	0	
	3	0	80	60	20	90	20	0	20	0	
	4	0	130	40	30	160	40	0	30	0	
	763	10	100	70	40	180	30	0	60	0	
	764	0	120	70	20	0	30	0	20	0	
	765	0	120	70	20	110	20	0	30	0	Value is completely lost!
	766	0	120	60	0	0	30	0	40	0	
	767	0	90	70	30	0	30	0	20	0	
	768 rd	ows × 9 colur	nns								

Generalization (cont.)

Did we achieve the desired level of privacy?

In [19]: is_kanonymous(generalization_function(diabetes_ds, generalization_degree), 2)

Out[19]: False

Keep on generalizing until we reach it...

generalization_function(diabetes_ds, generalization_degree)

Out[20]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0
763	0	0	0	0	0	0	0	0	0
764	0	0	0	0	0	0	0	0	0
765	0	0	0	0	0	0	0	0	0
766	0	0	0	0	0	0	0	0	0
767	0	0	0	0	0	0	0	0	0

768 rows × 9 columns

In [21]: is_kanonymous(generalization_function(diabetes_ds, generalization_degree), 2)

We achieved it, but at what cost?

Distributional Queries

If we wanted to understand how many individuals in the dataset have a BMI over 50, we could do the following:

```
In [22]: diabetes_ds[diabetes_ds["Age"] >= 60].shape[0]
Out[22]: 32

Raw Results
```

How many individuals have been pregnant more than five times?

```
In [23]: diabetes_ds[diabetes_ds["Pregnancies"] > 5].shape[0]
Out[23]: 219
```

How can we protect patients?

Possible solution: Differential Privacy

DP: Laplace Mechanism

$$F(x) = f(x) + \operatorname{Lap}\left(\frac{s}{\epsilon}\right)$$
 Raw Results Added noise to achieve privacy

ε: Privacy Budget

S: Sensitivity

DP: Laplace Mechanism (cont.)

A query that looks for users with a BMI greater than or equal to 60.

```
In [26]: diabetes_ds[diabetes_ds["BMI"] >= 60].shape[0]
Out[26]: 1
Only one person
```

If the value for epsilon is **large**, we will not be able to protect the privacy of individuals, and **the value will be close to original value**:

```
In [27]: # Laplace mechanism definition:
# F(x) = f(x) + Lap(s/eps)
# s: sensitivity
# eps: privacy budget

sensitivity = 1
eps = 0.8

diabetes_ds[diabetes_ds["BMI"] >= 60].shape[0] + npr.laplace(scale=sensitivity/eps)
```

Out[27]: 0.325684438035028

DP: Laplace Mechanism (cont.)

If the value for epsilon is **small**, we will **focus more on protecting the privacy of the user**, and **the returned value will be far from the original value**:

```
In [28]: sensitivity = 1
    eps = 0.001
    diabetes_ds[diabetes_ds["BMI"] >= 60].shape[0] + npr.laplace(scale=sensitivity/eps)
Out[28]: -220.89136497917102
```

Raw result + Laplace noise

Laplace Mechanism on Histograms

We create a histogram based on blood pressure, with the number of individuals as the count (e.g., 57 individuals with blood pressure equal to 70).

Out[99]:

	bioodPressure
70	57
74	52
78	45
68	45
72	44
64	43
80	40
76	39
60	37
0	35
62	34

RloadPressure

Laplace Mechanism on Histograms (cont.)

Laplace noise can be applied to histograms:

```
In [55]:
         sensitivity = 1
         eps = 0.03
         lap_noise = lambda x: x + npr.laplace(scale=sensitivity/eps)
         hist_noise_added = hist_diabetes.apply(lap_noise)
         # noisy table
         hist_noise_added.to_frame().head()
Out[55]:
             BloodPressure
          70
                 30.907527
          74
                 27.433998
                                            Values have been perturbed according to the privacy budget that we
                 48.338123
          78
                                            defined.
          68
                 40.342932
          72
                 59.949283
```


Laplace Mechanism on Contingency Tables

Laplace noise can be applied to <u>contingency tables</u> as well. Using **pd.crosstab()**, multiple columns are joined to build the following table:

```
In [87]: contingency_table = pd.crosstab([diab_ds["Job"], diab_ds["Age"]], diab_ds['Outcome'])
         # display contingency table
         contingency_table
Out[87]:
```

	Outcome	0	1
Job	Age		
Academic librarian	22	0	1
	36	0	1
	41	1	0
Accommodation manager	28	1	0
	70	0	1
Web designer	50	1	0
	60	0	1
Writer	21	1	0
	25	1	0
Youth worker	24	0	1

The outcome determines whether or not a person has diabetes. (1 indicates diabetes; 0 indicates no diabetes).

748 rows x 2 columns

Laplace Mechanism on Contingency Tables (cont.)

Similar to what we encountered before, if the privacy budget is large, the final outcome will not be drastically different from the original value:

```
In [93]: # define privacy budget which is large
    eps = 50

noisy_contingency_table = contingency_table.apply(lap_noise)

# display
noisy_contingency_table
```

Out[93]:

	Outcome	0	1
Job	Age		
Academic librarian	22	0.008824	1.004068
	36	0.008824	1.004068
	41	1.008824	0.004068
Accommodation manager	28	1.008824	0.004068
	70	0.008824	1.004068
•••			
Web designer	50	1.008824	0.004068
	60	0.008824	1.004068
Writer	21	1.008824	0.004068
	25	1.008824	0.004068
Youth worker	24	0.008824	1.004068

748 rows × 2 columns

Laplace Mechanism on Contingency Tables (cont.)

If the privacy budget is small, the end result will be distant from the original value:

```
In [94]: # privacy budget chosen to be small
eps = 0.0005

noisy_contingency_table = contingency_table.apply(lap_noise)

# display
noisy_contingency_table
```

Out[94]:

	Outcome	0	1
Job	Age		
Academic librarian	22	-624.156473	1646.68496
	36	-624.156473	1646.68496
	41	-623.156473	1645.68496
Accommodation manager	28	-623.156473	1645.68496
	70	-624.156473	1646.68496
Web designer	50	-623.156473	1645.68496
	60	-624.156473	1646.68496
Writer	21	-623.156473	1645.68496
	25	-623.156473	1645.68496
Youth worker	24	-624.156473	1646.68496

748 rows x 2 columns

Final Remarks

- Resistant to record linkage attacks
- Bugs in implementation are possible (due to incorrect sensitivity calculation or adding the incorrect amount of noise).

Differential Privacy Bugs and Why They're Hard to Find

May 25, 2021

By: <u>Joseph Near</u> and <u>David Darais</u>

Not suitable for every scenario (e.g., medical data is sensitive; a small privacy budget is needed. Simultaneously, too much noise will make diagnosis difficult for doctors.)

