بسمه تعالى

طراحي الگوريتم ها

٣ (نظرى) (مان درس: شنبه ها و دوشنبه ها ١٥ الى ١۶:٣٠	تعداد واحد:
اصلی (محمندسی کامپیوتر) ساختان داده ها زمان کلاس تمرین: سه شنبه ها ۱۳:۳۰ الی ۱۵	نوع درس:
ساختان داده ها ۱۳:۳۰ الی ۱۵	پیش نیاز:
کارشناسی	مقطع:
هدف اصلی این درس آموزش روش های تحلیل و طراحی الگوریتم ها است. در این درس، دانشجویان می آموزند که چگونه یک	اهداف درس:
مسئله را تجزیه و تحلیل نموده و انواع ممکن الگوریتمها برای حل آن را پیدا نمایند. سپس راه حل های الگوریتمی مبتنی بر هر نوع را از	
نظر پیچیدگی محاسباتی تحلیل و مقایسه نموده و بر اساس اندازه و ویژگی های نمونه ورودی مسئله و نیز ویژگی های کاربرد مورد نظر،	
تحترین آنحا را تشخیص دهند. در این درس، الگوریتم های پایه برای حل مسائل کاربردی و رایج نیز ارائه خواهد شد.	
The main objective of this course is to teach algorithm design and analysis techniques. In this course,	
students will learn how to investigate and analyze a problem and determine possible algorithmic	
methods. Then, they analyze and compare candidate algorithm types with respect to their	
computational complexities to decide the best one based on the characteristics of the input instance. In	
this course, basic algorithms for common applied problems will also be presented.	
انتظار می رود دانشجویانی که این درس را با موفقیت بگذرانند قادر باشند:	نتایج درس:
۱- یک درک کلمی از روش های حل مسائل الگوریتمی داشته باشند.	
۲- با مسائل NP-complete آشنا شده و NP-complete بودن تعدادی از مسائل را ثابت کنند.	
۳- با الگوریتم های پایه ای گراف آشنا شوند.	
۴- پیچیدگی زمانی یک الگوریتم را تعیین کنند.	
۵- درکی از الگوریتم های رایج و محم داشته و ضمن مقایسه پیچیدگی آنها، برخی موارد استفاده آنها را تشخیص دهند.	
۶- از توابع کتابخا نه ای موجود برای الگوریتم های رایج استفاده نمایند.	
1. Foundations of Algorithms by Neapolitan and Naimipour	مراجع اصلي:
2. Introduction to Algorithms by Cormen et al. (CLRS)	
امکان حضور و غیاب در کلاس وجود داشته، حضور نمره مثبت اماسیاست برخورد با غایبین مطابق با مقررات آموزشی است.	حضور و غیاب:
	,
حدود ۴ کوییز بدون اطلاع قبلی	کوییزها:
حدود ۱۰ تکلیف	تكاليف:
۳ الی ۴ پروژه- موعد تحویل پروژه در زمان ارائه پروژه مشخص می گردد.	پروژه ها:
تكاليف و پروژه ها ۲۰%	نحوه ارزيابي:
کوبیزها ۵%	
میان ترم ۳۵%	
پایان ترم ۴۰% (بخش مربوط به میان ترم در آزمون پایان ترم حدف خواهد شد.)	
کلیه مطالب کلاس شامل کلاس تدریس یار و نیز کلیه تکالیف و پروژه ها بخشی از مفاد امتحانها خواهد بود.	

سرفصل درس:

1. Introduction including common problem solving methods	۱. مقدمه شامل انواع متداول روش های حل مسئله
2. Divide and conquer	۲. روش تقسیم و غلبه
3. Dynamic programming	۳. روش برنامه نویسی پویا
4. Greedy method	۴. روش حریصانه
5. Tree search, including backtracking and branch & bound	۵. روش جستجوی درختی شامل عقب گرد و شاخه و حد
6. Amortized analysis	ع. تحلیل سرشکن
7. Advanced data structures	۷. ساختمان های داده ای پیشرفته
8. Disjoint sets	۸. مجموعه های مجزا
9. Maximum flow	۹. بیشترین جریان
10. String matching	١٠. انطباق رشته ها
11. Introduction to NP-completeness theory	۱۱. مقدمهای بر نظریه NP-completeness

زمانبندی ان شاءالله:

تاريخ	عنوان	
شنبه ۱۸ بحمن	مقدمه شامل انواع متداول روش های حل مسئله (۱ جلسه)	.1
	روش تقسیم و غلبه (۲ جلسه)	۲.
دوشنبه ۲۰ بحمن	- ایده روش و مرور mergesort و quicksort	
شنبه ۲۵ بحمن	- روش Strassen برای ضرب ماترسها و موارد استفاده روش تقسیم و غلبه	
	روش برنامه نویسی پویا (۴ جلسه)	۳.
دوشنبه ۲۷ بهمن	 ایده روش و مشکل روش تقسیم و غابه با مثالهای سری فیبوناچی و ضرایب بسط دوجملهای 	
شنبه ۲ اسفند	- الگوريتم Floyd براى All-pair shortest paths	
دوشنبه ۴ اسفند	- معرفی مسائل تحینهسازی و درخت جستجوی دودویی تحیینه	
شنبه ۹ اسفند	Sequence Alignment -	
	روش حریصانه ($lpha$ جلسه)	۴.
دوشنبه ۱۱ اسفند	- ایده روش و الگوریتم پریم برای درخت پوشای کمینه (MST)	
شنبه ۱۶ اسفند	- الگوریتم کراسکال و مقایسه با الگوریتم پریم برای MST	
دوشنبه ۱۸ اسفند	- الگوريتم دايكسترا براي Single-source shortest path	
شنبه ۲۳ اسفند	- مسائل زمانبندی	
دوشنبه ۲۵ اسفند	- مسئله کوله پشتی	
	روش جستجوی درختی شامل عقب گرد و شاخه و حد (۳ جلسه)	۵.
شنبه ۱۵ فروردین	- ایده روش و روش عقب گرد برای مسئله n-queen	
دوشنبه ۱۷ فروردین	- روش عقب گرد برای مسئله sum of subsets	
شنبه ۲۲ فروردین	- روش شاخه و حد برای مسئله کوله پشتی (knapsack)	
	تحلیل سرشکن (۲ جلسه)	۶.
دوشنبه ۲۴ فروردین	- دلیل نیاز به این نوع تحلیل، ایده آن و روش aggregate analysis	
شنبه ۲۹ فروردین	- روشهای accounting و potential	
	ساختان های داده ای پیشرفته شامل درخت های B، پشته های باینومیال و پشته های فیبوناچی (۳ جلسه)	.٧
دوشنبه ۳۱ فروردین	- درختهای B	

شنبه ۵ اردیبهشت	- پشتههای باینومیال
دوشنبه ۷ اردیبهشت	- پشتههای فیبونا چی
دوشنبه ۱۴ ارديبهشت	۸. مجموعه های مجزا (۱ جلسه)
	۹. بیشترین جریان (۳ جلسه)
شنبه ۱۹ اردیبهشت	- شبکههای جریان و روش Ford-Fulkerson
دوشنبه ۲۱ اردیبهشت	- Maximum bipartite matching و روش Push-relabel
	١٠. انطباق رشته ها (٢ جلسه)
دوشنبه ۲۸ اردیبهشت	- روشهای ساده و Rabin-Karp
شنبه ۲ خرداد	- روش KMP
	۱۱. مقدمهای بر نظریه NP-completeness (۳ جلسه)
دوشنبه ۴ خرداد	- مقدمه و کلاسهای P , NP
شنبه ۹ خرداد	ruducibility و NP-complete, NP-hard, coNP-complete, coNP-hard و
دوشنبه ۱۱ خرداد	- اثبات NP-complete بودن برخی مسائل و جمعبندی