

(i) Publication number:

O O43 562 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication of patent specification: 13.06.84
- (f) Int. Cl.³: **C 01 B 25/36**, B 01 J 27/16, B 01 J 29/04
- (1) Application number: 81105146.5
- (2) Date of filing: 02.07.81

- (54) Crystalline metallophosphate compositions.
- 39 Priority: 07.07.80 US 166333
- (3) Date of publication of application: 13.01.82 Bulletin 82/2
- (5) Publication of the grant of the patent: 13.06.84 Bulletin 84/24
- Designated Contracting States: AT BE CH DE FR GB IT LI NL SE
- (58) References cited:

8

- EP A 0 022 620
- DE A 2 403 707
- DE A 2 542 230 DE - A - 2 730 228
- US A 3 227 519
- US A 3 386 801
- US A 3 947 482

CHEMICAL SOCIETY REVIEWS, Vol. 6, 1977, London J.H. MORRIS et al. "The Chemistry and Binding Properties of Aluminium Phosphates" pages 173 to 194

- (3) Proprietor: UNION CARBIDE CORPORATION Old Ridgebury Road Danbury Connecticut 06817 (US)
- (2) Inventor: Wilson, Stephen Thomas 1024 East Main Street Shrub Oak, N.Y. (US) Inventor: Lok, Brent Meitak 17A Deerwood Drive New City (10956) (US) Inventor: Flanigen, Edith Marie 502 Woodland Hills Road White Plains, N.Y. (US)
- (4) Representative: Eggert, Hans-Gunther, Dr. Räderscheidtstrasse 1
 D-5000 Köln 41 (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).

Description

The present invention relates in general to a novel family of crystalline compositions and to the method for their synthesis. More particularly it relates to crystalline microporous aluminophosphate compositions and to hydrothermal processes for preparing same.

Molecular sieves of the crystalline zeolite type are well known in the art and now comprise over 150 species of both naturally occurring and synthetic compositions. In general the crystalline zeolites are aluminosilicates whose frameworks are formed from AlO₄- and SiO₄ tetrahedra joined by the sharing of oxygen atoms and characterized by having pore openings of uniform dimensions, having a significant ion-exchange capacity and being capable of reversibly desorbing an adsorbed phase which is dispersed through the internal volds of the crystal without displacing any atoms which make up the permanent crystal structure.

Other crystalline microporous phases which are not zeolitic, i.e. do not contain AIO₄-tetrahedra as essential framework constituents, but which exhibit the lon exchange and/or adsorption characteristics of the zeolitic phases are also known. Metallorganosilicates which are said to possess ion-exchange properties, have uniform pores and are capable of reversibly adsorbing molecules having molecular diameters of about 0.6 nm or less are reported in U.S.—A.—3,941,871 issued March 2, 1976 to Dwyer et al. Also a pure silica polymorph having molecular sieving properties and a neutral framework containing no cations or cation saites is defined in U.S.—A.—4,061,724 issued December 6, 1977 to R. W. Grose et al.

We have now discovered a new class of molecular sieve materials which are microporous threedimensional crystalline aluminophosphate phases having uniform pore dimensions ranging from 0.3 to 1.0 nm and capable of making size selective separations of molecular species.

The chemistry of aluminum phosphates has been reviewed by J. H. Morris et al. (Chem. Soc. Rev., 6, 173 (1977)). The phosphates with an Al₂O₃:P₂O₅ molar ratio of 1:1 are the most common, and have been the most widely studied. Anhydrous AIPO₄ is isoelectronic and isostructural with silica and exists in quartz (as berlinite), tridymite, and cristobalite forms possessing frameworks of alternating AIO₄ and PO₄ tetrahedra. In addition to these, F. D'Yvoire [Bull. Soc. Chim. France, 1762 (1961)] has described five anhydrous crystalline AIPO₄ forms which have no silica analogs.

Two hydrates of AIPO₄ with the stoichiometry AIPO₄. 2 H₂O, metavariscite and variscite, occur in natural and synthetic forms. Their structures were determined by Kniep and coworkers (Acta Crysta., B29, 2292 (1973); *ibid.*, B33 263 (1977), and both can be described as frameworks of alternating octahedral AIO₄(H₂O)₂ and tetrahedral PO₄ units. In both the metavariscite and variscite structures the H₂O is chemically bound to the AI and, although small amounts of this water can be removed reversibly, complete dehydration is irreversible and leads to significant structural changes and the formation of anhydrous AIPO₄ phases.

In addition to these, six crystallographically unique, metastable hydrates have been synthesized by F. D'Yvoire (*ibid*). Of these, four are reported to be reversibly dehydrated under mild conditions to yield anhydrous phases, but in each case significant changes in framework topology occurred. These changes were reported to be reversible by rehydration. It is possible therefore that the interaction between water and these aluminophosphate phases results in chemical bonding, such as the formation of AlO₄(H₂O)₇ octahedra, rather than physisorption.

The hydrothermal synthesis of aluminosphosphates in the presence of various alkali metal, alkaline earth, and NH₄ cations has been reported by Haseman and coworkers (Soil Sci. Soc. Proceed., 76 (1950); Soil Sci., 70, 257—271 (1950)), by Cole and Jackson (J. Phys. Chem.), 54, 128—142 (1950)), and by Golub and Boldog (Russ. Jour., Inorg., Chem., 21, 45 (1976)). A variety of known minerals (e.g. palmierite, taranakite, wavellite, variscite) and many novel crystalline materials were obtained. Virtually all of these materials had Al/P ratios different from 1.0. Although most of the products had appreciable H₂O content only one product was examined by X-ray powder diffraction after dehydration. This product, taranakite, became amorphous at 125°C. The stability of the other phases is

R. M. Barrer and D. J. Marshall (J. Chem. Soc., 6616 (1965)) attempted to substitute P for Si during hydrothermal crystallization of mixed frameworks analogous to aluminosilicates. The crystalline products obtained from synthesis mixtures containing sources of Al, SI, and P were predominately aluminosilicates (e.g. montmorillonite, analcite, and cancrinite) and phosphates (e.g. hydroxyapatite). Several unidentified crystalline solids were observed, characterized solely by their X-ray powder diffraction patterns. Evidence for phosphorus incorporation in the aluminosilicate structures or silicon incorporation in the hydroxyapatites was not obtained, however.

G. Kuehl has used phosphate as a complexing ion for aluminum in the hydrothermal synthesis of certain zeolites (Proceedings of the London Conf. on Molecular Sieves, April 1967, p. 85; Inorg. Chem., 10, 2488 (1971)). Presumably the phosphate complexes some of the aluminum, lowering the effective concentration of the more reactive hydroxoaluminate species in the reaction mixture and, thereby, increases the ratio of silicate to hydroxoaluminate. The zeolite products had a higher Si/Al ratio than normal and presumably no incorporation of P into the zeolite frameworks was observed. In one case, a high-silica form of zeolite A contained phosphate intercalated in the sodalite cages.

In an attempt to isolate the aluminophosphate species formed when phosphate is added to a zeolite synthesis mixture, G. Kuehl prepared the crystalline compounds $[(CH_3)_4N]_3[Al(PO_4)_2] \cdot X H_2O$ where X=10, 4, and 1.5. They were characterized by X-ray powder diffraction, thermal, and elemental analysis, and were described as salts containing isolated $Al(PO_4)_2(OH_2)_3^{-1}$ units. Rem val of all the H₂O caused the decomposition of these compounds (U.S. Patent No. 3,386,801 (1968); J. Inorg. Nucl. Chem., 31, 1943 (1969)).

The novel generic class of aluminophosphates of the present invention having an essential crystalline framework structure whose chemical composition expressed in terms of molar ratios of oxides is:

Al₂O₃:1.0±0.2 P₂O₅

and is characterized in that said framework structure being microporous in which the pores are uniform and in each species have nominal diameters within the range of from 0.3 to 1.0 nm; an intracrystalline adsorption capacity for water at 6.13 mbar and 24°C of at least 3.5 weight percent, the adsorption of water being completely reversible while retaining the same esential framework topology in both the hydrated and dehydrated state. By the term "essential framework topology" is meant the spatial arrangement of the primary Al—O and P—O bond linkages. No change in the framework topology indicates that there is no disruption of these primary bond linkages.

The present aluminophosphates are prepared by hydrothermal crystallization of a reaction mixture prepared by combining a reactive source of phosphate, alumina and water and at least one structure-directing or templating agent which can include an organic amine and a quaternary ammonium salt. In the as-synthesized form the structure-directing agent is contained within the framework structure of the aluminophosphate in amounts which vary from species to species but usually does not exceed one mole per mole of Al₂O₃ thereof. This structure-directing agent is readily removed by water washing or calcination and does not appear to be an essential constituent of the product aluminophosphate as evidenced by essentially complete absence of ion-exchangeability of as-synthesized compositions and also the absence of any internally-contained organic molecules in the as-synthesized form of at least one species of the generic class. Evidence that a structure-directing agent is a critical constituent is contained in certain of the illustrative examples appearing hereinafter, wherein reaction mixtures otherwise identical to those which yield products of the present invention except for the presence of templating agents, yield instead the previously known aluminophosphate phases AIPO₄ · 1.1—1.3 H₂O, AIPO₄-tridymite, AIPO₄-quartz and AIPO₄-cristobalite:

Broadly the preparative process comprises forming a reaction mixture which in terms of molar ratios of oxides is

and containing from about 0.2 to 2.0 moles of templating agent per mole of Al₂O₃. The reaction mixture is placed in a reaction vessel inert toward the reaction system and heated under autogeneous pressure at a temperature of at least about 100°C, preferably between 100°C and 300°C, until crystallized, usually a period from 2 hours to 2 weeks. The solid crystalline reaction product is then recovered by any convenient method, such as filtration or centrifugation, washed with water and dried at a temperature between ambient and 110°C in air.

In a preferred crystellization method the source of phosphate is phosphoric acid, and source of alumina is a pseudo-boehmite hydrated aluminum oxide, the temperature is 125°C to 200°C, and the crystallization time is from one to seven days. The preferred ratio of oxides in the reaction mixture is

In general the most preferred reaction mixture contains per mole of Al_2O_3 from about 0.5—1.5 moles of templating agent, from 40—50 moles of water and about 1.0 mole of P_2O_5 .

Not all templating agents suitably employed in the preparation of certain species of aluminophosphates of this invention are suitable for the preparation of all members of the generic class. The relationship of specific templating agents to the individual product species is apparent from the illustrative Examples set forth hereinafter.

The method of preparation and the physical and chemical properties of the various members of the present class of novel aluminophosphates are illustrated and characterized, respectively, in the following examples. The species compounds are denominated as AIPO₄-n wherein "n" is a number specific to each individual member:

Example 1

50

10

Preparation of AIPO₄-5

A reaction mixture was prepared by combining 46.1 grams of 85% orthophosphoric acid (H₃PO₄) and 100.0 grams of water, to which was added 27.5 grams of a hydrated aluminum oxide (a pseudo-

boehmite phase, 74.2 wt. % Al₂O₃, 25.8 wt. % H₂O, a commercial product available under the trademark Catapal SB of the Conoco Chemicals Division of Continental Oil Company, USA) and stirred until homogeneous. T this mixture was added 176.8 grams of an aqueous solution of 23 wt. % tetrapropylammonium hydroxide (TPAOH), and the mixture stirred until homogeneous. The composition of the final reaction mixture in molar oxide ratios was:

0.5 (TPA)₂O:Al₂O₃:P₂O₅:73 H₂O

The reaction mixture was sealed in a stainless steel pressure vessel lined with polytetrafluoroethylene and heated in an oven at 150°C at autogenous pressure for 43 hours. The solid reaction product was recovered by filtration, washed with water, and dried in air at room temperature. The major phase in the product had an X-ray powder diffraction pattern characterized by the following data wherein "!" is the intensity and "d" the interplanar spacing. The product also contained a minor amount of another crystalline impurity.

<i>15</i>	2θ	d	100×1/1 ₀	
,	7.50	11.8	100	
	12.95	6.84	11	
20	14.95	5.93	28	
	19.75	4.50	66	
	20.95	4.24	63	
	22.4	3.97	94	
	24.65	3.61	5	
25	26.00	3.43	37	
	28.95	3.08	21	
	30.05	2.97	22	
	33.50	2.67	5	
	34.50	2.60	19	
30	36.95	2.43	5	
	37.50	2.40	13	
	40.75	2.21	1	
	41.60	2.17	4	
	42.45	2.13	4	
35	43.65	2.07	3	
	44.95	2.02	· 2	
	47.70	1.91	6	

This X-ray pattern and all other X-ray patterns appearing hereinafter were obtained using standard X-ray powder diffraction techniques. The radation source was a high-intensity, copper target, X-ray tube operated at 50 kV and 40 mA. The diffraction pattern from the copper $K\alpha$ radiation and graphite monochromator is suitably recorded by an X-ray spectrometer scintillation counter, pulse height analyzer and strip chart recorder. Flat compressed powder samples are scanned at 2° (2 theta) per minute, using a two second time constant. Interplanar spacings (d) are obtained from the position of the diffraction peaks expressed as 2θ where θ is the Bragg angle as observed on the strip chart. Intensities are determined from the heights of diffraction peaks after subtracting background.

Example 2

50

55

65

Preparation of AIPO₄-5

(a) A reaction mixture was prepared by combining 23.1 grams of 85% orthophosphoric acid (H₃PO₄) and 44.0 grams of water, to which was added 13.7 grams of the same hydrated aluminum oxide employed in Example 1, and stirred until homogeneous. To this mixture was added 35.1 grams of an aqueous solution of 58 wt. % tetrapropylammonium hydroxide (TPAOH), and the mixture stirred until homogeneous. The composition of the final reaction mixture in molar oxide ratios was:

0.5 (TPA)2O:AI2O3:P2O5:40 H2O

The reaction mixture was sealed in a stainless steel pressure vessel lined with polytetrafluoroethylene and heated in an oven at 150°C at autogenous pressure for 65 hours. The solid reaction product was recovered by filtration, washed with water, and dried in air at room temperature. A portion of the solids was submitted for X-ray analysis and chemical analysis.

A portion of the solids was submitted for X-ray analysis and chemical analysis.

Chemical analysis showed 7.5 wt. % C, 0.67 wt. % N, 34.2 wt. % Al₂O₃, 46.5 wt. % P₂O₅, 17.7 wt. % LOI (Loss on Ignition at 1000°C for 4 hr.) giving a product composition in molar oxide ratios of:

0.08 (TPA)20:1.00 Al2O3:0.98 P2O5:1.3 H2O

The above product had an X-ray powder diffraction pattern essentially identical to that of the major phase in Example 1, and contained n crystalline impurities. This product was designated AIPO₄-5.

(b) A portion of the solid crystalline product obtained from a similar procedure as in part (a) above and exhibiting an X-ray powder diffraction pattern essentially identical to that in Example 1 was calcined in air at about 500°C for 2 hours. The calcined product had an X-ray powder diffraction pattern essentially identical to that in Example 1.

Example 3

Preparation of AIPO4-5

(a) A reaction mixture was prepared by combining 46.1 grams of 85% orthophosphoric acid (H_3PO_4) and 118.6 grams of water, to which was added 27.5 grams of a pseudo-boehmite phase (74.2 wt. % AI_2O_3 , 25.8 wt. % H_2O), and stirred until homogeneous. To this mixture was added 29.2 grams of tripropylamine (Pr_3N) and the mixture stirred until homogeneous. The composition of the final reaction mixture in molar oxide ratios was:

1.0 Pr3N:Al2O3:P2O5:40 H2O

The reaction mixture was sealed in a stainless steel pressure vessel lined with polytetrafluoroethylene and heated in an oven at 150°C at autogenous pressure for 70 hours. The solld reaction product was recovered by filtration, washed with water, and dried in air at room temperature. Chemical analysis showed 5.7 wt. % C, 0.72 wt. % N, 34.0 wt. % Al₂O₃, 48.1 wt. % P₂O₅, 16.4 wt. % LOI, glvlng a product composition in molar oxide ratios of:

0.16 Pr₃N:1.00 Al₂O₃:1.02 P₂O₅:1.5 H₂O

The above product had an X-ray powder diffraction pattern virtually identical to that of the major phase set forth in Example 1 and contained no crystalline Impurities.

(b) A portion of the solid crystalline product obtained above was calcined in air at about 600°C for 2 hours. The calcined product had an X-ray powder diffraction pattern essentially the same as that of the as-synthesized product of part (a) above.

Example 4

25

Preparation of AIPO₄-5

A reaction mixture was prepared by combining 23.1 grams of 85% orthophosphoric acid (H_3PO_4) and 59.6 grams of water, to which was added 13.7 grams of a hydrated aluminum oxide, (74.2 wt. % Al_2O_3 , 25.8 wt. % H_2O), and stirred until homogeneous. To this mixture was added 8.6 grams of tripropylamine (Pr_3N) and the mixture stirred until homogeneous. The composition of the final reaction mixture in molar oxide ratios was:

0.6 Pr₃N:Al₂O₃:P₂O₅:40 H₂O

The reaction mixture was sealed in a stainless steel pressure vessel lined with an inert plastic material and heated in an oven at 150°C at autogenous pressure for 4 hours. The solid reaction product was recovered by filtration, washed with water, and dried in air at room temperature. The X-ray powder diffraction pattern of this product showed the crystalline AIPO₃-5 product of example 3 as the major phase, with a minor amount of a crystalline impurity being also present.

Example 5

65

Preparation of AIPO₄-5

A reaction mixture was prepared by combining 46.1 grams of 85% orthophosphoric acid (H₂PO₄) and 119.2 grams of water, to which was added 27.5 grams of a hydrated aluminum oxide (74.2 wt. % Al₂O₃, 25.8 wt. % H₂O), and stirred until homogeneous. To this mixture was added 30.4 grams of triethylamine (Et₃N), and the mixture stirred until homogeneous. The composition of the final reaction mixture in molar oxide ratios was:

1.5 EtaN:Al2O3:P2O8:40 H2O

The reaction mixture was sealed in a stainless steel pressure vessel lined with polytetrafluoroethylene and heated in an oven at 200°C at autogenous pressure for 27 hours. The solid reaction product was recovered by filtration, washed with water, and dried in air at room temperature. Chemical analysis of the product indicated the presence of 4.8 wt. % C, 0.97 wt. % N, 35.3 wt. % Al₂O₃, 49.7 wt. % P₂O₅ and 13.6 wt. % LOI, giving a product composition in molar oxide ratios of:

0.19 EtaN:1.00 AlaOa:1.01 PaOs:1.1 HaO

The above product had an X-ray powder diffraction pattern essentially identical to that of the . AIPO₄-5 product of example 1 and contained no crystalline impurities.

Example 6

5 Preparation of AiPO₄-5

(a) A reaction mixture was prepared by combining 18.5 grams of 85% orthophosphoric acid (H₃PO₄) and 45.9 grams of water, to which was added 13.7 grams of a pseudo-boehmite phase (74.2 wt. % Al₂O₃, 25.8 wt. % H₂O), and stirred until homogeneous. To this mixture was added 25.9 grams of an aqueous solution of 57 wt. % tetrapropylammonium hydroxide (TPAOH), and the mixture in molar oxide ratios was:

0.5 (TPA)20:AI2O3:0.8 P2O5:40 H2O

The reaction mixture was placed in a stainless steel pressure vessel lined with an inert plastic material and heated in an oven at 150°C at autogenous pressure for 72 hours. The solid reaction product was recovered by repeated centrifugation and washing with water, followed by filtration, washing, and drying in air at room temperature. The X-ray powder diffraction pattern of the dried product showed the major phase to be identical to AIPO₄-5 of example 1.

(b) A reaction mixture free of a structure-directing agent was prepared by combining 46.1 grams of 85% orthophosphoric acid (H₂PO₄) and 120 grams of water, to which was added 27.5 grams of the same hydrated aluminum oxide as in part (a) above, and stirred until homogeneous. The composition of the final reaction mixture in molar oxide ratios was:

Al₂O₃:P₂O₅:40 H₂O

The reaction mixture was sealed in a stainless steel pressure vessel lined with polytetrafluoroethylene and heated in an oven at 150°C at autogenous pressure for 72 hours. The solid reaction product was recovered by filtration, washed with water, and dried in air at 110°C. The resulting product had an X-ray powder diffraction pattern indicating a mixture of known AIPO₄ phases: 30 AIPO₄ 1.1—1.3 H₂O, and two structural analogs of crystalline silica, namely AIPO₄ (quartz) and AIPO₄ (tridymite). An identical reaction mixture heated at 200° for 24 hours produced a mixture of the same known AIPO₄ phases, the major products being AIPO₄ (quartz) and AIPO₄ (tridymite). No microporous AIPO₄ phases of the present invention were observed.

35 Example 7

25

Preparation of AIPO4-5

A reaction mixture was prepared by combining 37.8 grams of 85% orthophosphoric acid (H₃PO₄) and 177 grams of water, to which was added 67 grams of aluminum isopropoxide and stirred until homogeneous. The mixture was filtered and washed with water. To this mixture was added 145 grams of an aqueous solution of 23 wt. % tetrapropylammonium hydroxide (TPAOH), and the mixture stirred until homogeneous. The composition of the final reaction mixture in molar oxide ratios was:

0.5 (TPA)20:Al2O3:P2O5:×H2O

The reaction mixture was placed in a stainless steel pressure vessel lined with polytetrafluoroethylene and heated in an oven at 150°C at autogenous pressure for 276 hours. The solid reaction product was recovered by filtration, washed with water, and dried in air at 110°C. The dried product was AIPO₄-5 as indicated by an X-ray powder diffraction pattern which was essentially the same as the AIPO₄-5 in example 1.

Examples 8-26

Preparation of AIPO4-5

A procedure similar to that in example 3 was followed except where indicated in Table A below. The composition of each final mixture in molar oxide ratios was:

1.0 R:AI,O3:P2O8:40 H2O

except where noted in Table A. A portion of the solid product from each reaction was examined by X-ray analysis and in each case a phase characterized by an X-ray powder diffraction pattern essentially the same as the AIPO₄-5 phase in example 1 was observed alone or in admixture with other products.

TABLE A

		IADLE A		
	Example #	R	Reaction time (hrs.)	Reaction temp. (°C)
5	8	(C ₂ H ₅) ₄ NOH (tetraethylammonium hydroxide)	24	200
	9	N(CH ₂ CH ₂ OH) ₃ (triethanolamine)	72	150
	10	piperidine	24	150
	11	2-methylpyridine	168	150
	12	cyclohexylamine *	168	150
10	13	N,N-dimethylbenzylamine	168	150
	14	N,N-diethylethanolamine	24	200
	15	dicyclohexylamine	24	150
	16	N,N-dimethylethanolamine	24	150
	17	((CH ₃) ₃ NCH ₂ CH ₂ OH)OH ¹	52	150
15	18	N,N-dimethylpiperazine ¹	24	200
	· 19	1,4-diazabicyclo(2,2,2)octane DABCO ²	192	200
	20	N-methyl-diethanolamine ¹	24	200
	21	N-methyl-ethanolamine ¹	24	200
	22	N-methylpiperidine	24	200
20	23	3-methylpiperidine	168	150
	24	N-methylcyclohexylamine	24	200
	25	3-methylpyridine	24	150
	26	4-methylpyridine	168	150

The species $AIPO_4$ -5 as herein referred to is a crystalline metallophosphate whose essential framework structure has a chemical composition, expressed in terms of molar ratios of oxides, is 30

and having a characteristic X-ray powder diffraction pattern which contains at least the d-spacings set forth in Table 2, below:

35	2 <i>θ</i>	TABLE 2 d	100×i/ìo
40	7.4— 7.6	11.9—11.8	100
	14.8—15.3	5.97— 5.83	13—43
	19.7—20.1	4.51— 4.42	39—92
	20.8—21.2	4.27— 4.19	37—87
	22.3—22.7	3.99— 3.93	62—118
	25.9—26.3	3.44— 3.39	22—35

All of the AIPO₄-5 compositions for which the X-ray powder diffraction data has presently been obtained have patterns that are within the generalized pattern of Table 3, below:

	2θ	TABLE 3 d	100×l/lo
50	7.4 — 7.6	11.9 —11.6	100
	12.9 —13.15	6.86— 6.73	9—12
	14.85—15.2	5.97 5.83	13—43
	19.7 —20.1	4.51— 4.42	39—92
55	20.8 —21.2	4.27— 4.19	37—87
38	22.3 —22.7	3.99 3.92	62—118
	24.55—24.9	3.63 3.58	4—8
	25.926.25	3.44— 3.39	22—32
	28.9 —29.2	3.09 3.06	11—18
60	30.0 <i>—</i> 30.4	2.98 2.94	12—23
	33.533.85	2.67 2.65	4—9
	34.535.1	2.60— 2.56	11—17
	36.937.2	2.44— 2.42	35
	37.5 <i>—</i> 37.8	2.40— 2.38	7—16
65	40.8 —40.85	2.21— 2.21	0—1
05	41.5 —42.0	2.18— 2.15	2—3

¹ The final reaction mixture contains 50 H₂O.
² The final reaction mixture contains 0.5 DABCO.

	2θ	TABLE 3 (contd.) d	100×I/lo
5	42.25—42.5 42.7 —42.8 43.6 —44.0	2.14— 2.13 2.12— 2.11 2.08— 2.06	04 03 02
	45.045.4 46.2 47.8	2.01— 2.00 1.96 1.90	0-2 0-1 · 0-4
10	48.0 —48.4 51.5 —51.6 52.0	1.90— 1.87 1.77— 1.77 1.76 1.65— 1.64	0—5 0—2 0—2 0—2
	55.8 56.0	1.00-1.04	02

Example 27

15 Preparation of AIPO₄-8

(a) A reaction mixture was prepared by combining 8.9 grams of 85% orthophosphoric acid (H₃PO₄) and 6 grams of water, to which was added 5.3 grams of a hydrated aluminum oxide (a pseudoboehmite phase, 74.2 wt. % Al₂O₃, 25.8 wt. % H₂O), and 6.0 grams of water, and stirred until homogeneous. To this mixture was added 27.2 grams of an aqueous solution of 37 wt. % tetrabutylammonium hydroxide (TBAOH), and 2.0 grams of water and the mixture stirred until homogeneous. The composition of the final reaction mixture in molar oxide ratio was:

0.5 (TBA)20:Al2O3:P2O5:52 H2O

The reaction mixture was sealed in a stainless steel pressure vessel lined with an inert plastic material and heated in an oven at 150°C at autogenous pressure for 145 hours. The solid reaction product was recovered by filtration, washed with water, and dried in air at 115°C. Chemical analysis showed the product to contain 0.2 wt. % C, <0.05 wt. % N, 34.7 wt. % Al₂O₃, 46.6 wt. % P₂O₅, 18.4 wt. % LOI, giving a product composition in molar oxide ratios of:

1.00 Al₂O₃:0.97 P₂O₅:3.00 H₂O

The major phase in the above product had an X-ray powder diffraction pattern characterized by the following data wherein "I" is the intensity and "d" the interplanar spacing; the product also contained a minor amount of a crystalline impurity.

35	2θ	d	100×I/lo
	5.3	16.7	80
	6.5	13.6	100
40	10.0	8.84	17
	10.8	8.19	2 4
	14.6	6.07	4
	16.1	5.56	16
	18.8	4:72	2
45	19.8	4.48	2 8
	20.2	4.40	12
	21.25	4.19	82
	21.9	4.06	18
	22.4	3.97	39
50	22.7	3.92	(sh)*
	23.55	3.77	3
	24.15	3.68	11
	24.9	3.58	11
	27.1	3.29	
<i>55</i>	28.2	3.16	2 5 4 3 1 3 9
	31.35	2.853	· 4
	32.9	2.722	3
	34.2	2.622	ī
	35.6	2.522	á
6 0	38.0	2.368	9
	38.4	2.344	3 (sh)*
	43.2	2.094	2
	46.9	1.937	2 1
	49.5	1.841	3
65 *sh=shoulder	 0.0	,,,,,,,	• .

This product was designated AIPO₄-8. It is to be noted that only trace amounts of the tetrabutylammonium templating compound were present in the reaction product solids. This may indicate that a templating mechanism different from that in most other species of this invention is involved.

(b) A portion of the solid crystalline product obtained above was calcined in air at about 600°C for 2 hours. The calcined product had an X-ray powder diffraction pattern essentially the same as that of the product of part (a) above.

Examples 28-30

15

20

25

10 Preparation of AIPO_-8-

A procedure similar to that in example 27 was followed except where indicated in Table B. The composition of each final reaction mixture in molar oxide ratios was:

where R is indicated in Table B. In each case a product phase characterized by an X-ray powder diffraction pattern essentially the same as that in example 27 was observed. Some extraneous phases were also present.

	TABLE B.				
	Example #	Organic used (R)	Digestion time (hrs.)	Temp (°C)	
:	28	(n-C ₅ H ₁₁) ₄ NOH	24	150	
	29	(n-C ₄ H ₀) ₂ NH	72	- 150	
	30	(n-C ₅ H, 1) ₂ NH*	24	150	

^{*} Small amount of acetone used to wash solid product.

• The species AIPO₄-8 as herein referred to is a crystalline metallophosphate whose essential framework structure has a chemical composition, expressed in terms of molar ratios of oxides, is

35 and having a characteristic X-ray powder diffraction pattern which contains at least the d-spacings set forth in Table 4 below:

		TABLE 4	400.4/1-
	2θ	<u>a</u>	100xl/lo
40	5.3 5.4	16.7 —16.4	80-100
	6.5 6.65	13.6 —13.3	30—100
	19.719.8	4.51— 4.48	829
	21.2-21.3	4.19— 4.17	46—82
	21.821.9	4.08 4.06	14—56
45	22.422.9	3.97 3.88	35—39

All of the AIPO₄-8 compositions for which the X-ray powder diffraction data has presently been obtained have patterns that are within the generalized pattern of Table 5 below:

50	TABLE 5			
	20	d	100×I/lo	
	5.3 — 5.4	16.7 —17.4	80—100	
	6.5 — 6.65	13.6 <i>—</i> 13.3	30—100	
55	9.9 —10.1	8.9 — 8.8	1520	
	10.75—10.8	8.23— 8.19	2—9	
	14.6 —14.8	6.07 5.99	417	
	16.1 16.2	5.50 5.47	7—16	
	18.8 —18.9	4.72-4.70	2-12	
60	19.7. —19.8	4.51-4.48	8—29	
	20.1 —20.2	4.42-4.40	9—12	
	21.2 —21.3	4.19-4.17	46-82	
	21.8 —21.9	4.08 4.06	1456	
	22.4 —22.5	3.97— 3.95)		
65	22.7 —22.9	3.92— 3.88	35—39	

043 562

	2θ	TABLE 5 (contd.)	100×1/io
5	23.55—23.65	3.77— 3.76	3—7
	24.1 —24.2	3.69— 3.68	9—11
	24.9 —25.1	3.58— 3.55	11—15
	27.1 —27.2	3.29— 3.28	2—16
. 10	28.2 —28.3	3.16— 3.15	4—8
	31.35—31.4	2.853—2.849	4—6
	32.9	2.722	3—8
	34.2 —34.3	2.622—2.614	1—2
	35.6	2.522	0—3
15	38.0 —38.2	2.368—2.356	9—16
	38.4 —38.6	2.344—2.332	3—18
	43.2 —43.3	2.094—2.090	2—4
	46.9 —47.0	1.937—1.933	1—2
	49.4 —49.5	1.845—1.841	2—4

Example 31

Preparation of AIPO4-9

(a) A reaction mixture was prepared by combining 27.6 grams of 85% orthophosphoric acid (H₃PO₄) and 36.0 grams of water, to which was added 16.5 grams of a hydrated aluminum oxide (a pseudo-boehmite phase, 74.2 wt. % Al₂O₃, 25.8 wt. % H₂O), and stirred until homogeneous. To this mixture was added 13.5 grams of 1,4-diazabicyclo(2.2.2)octane (DABCO) dissolved in 24.0 grams of water, then 11.7 grams of water, and the mixture stirred until homogeneous. The composition of the final reaction mixture in molar oxide ratios was:

1.0 DABCO:Al2O3:P2O5:40 H2O

The reaction mixture was sealed in a stainless steel pressure vessel lined with inert plastic and heated in an oven at 200°C at autogenous pressure for 336 hours. The solid reaction product was recovered and washed by repeated centrifugation with water, and dried in air at 110°C. A portion of the solids was subjected to X-ray analysis and chemical analysis. Chemical analysis showed 10.6 wt. % C, 3.9 wt. % N, 32.5 wt. % Al₂O₃, 46.5 wt. % P₂O₅, 19.0 wt. % LOI, giving a product composition in molar oxide ratios of:

0.46 DABCO:1.00 Al₂O₃:1.03 P₂O₅:0.44 H₂O

The above product, denominated AIPO₄-9, had an X-ray powder diffraction pattern characterized by the following data, wherein "I" is the intensity and "d" the interplanar spacing:

	2θ	d	100×l/lo
	8.4	10.5	12
45	· 11.1	7.97	43
•	12.5	7.08	18
	14.0	6.33	6
	15.1	5.87	. 5
	16.8	5.28	6 5 11
50 .	18.3	4.85	29
	19.3	4.60	11
	21.0	4.23	100
	21.9	4.06	30
	22.3	3.99	18 ·
55	22.8	3.90	30
	25.4	3.51	38
	25.7	3.47	79
	26.5	3.36	13
	27.7	3.22	21
60	28.5	3.13	29 5
•	30.6	2.92	5
	31.45	2.843	10
	31.8	2.814	27
	32.4	2.763	<1
65	33.15	2.702	12

043 562

	2θ	d	100×I/Io
	33.7 34.3	2.660 2.614	18 5 3 4 1
5	34.8	2.578	3
•	35.5	2.529	4
	36.4	2.468	1
	37.8	2.380	4
	38.35	2.347	10
10	38.45	2.341	(sh)*
	38. 9	2.315	10
	41.3	2.186	2
	42.15	2.144	2 6 4
	42.6	2.122	4
15	44.55	2.034 }	3
	44.65	2.029 🕽	
	46.5	1.953	2 3 1 7 9
	48.0	1.895	3
	48.4	1.881	1
20	49.75	1.833	7
	50.2	1.817	9
	51.0	1.791	
	51.7	1.768	(sh)* } 11
	51.9	1.762	11 ∫''
25	53.65	1.708 }	4
	53.8	1.704 }	
	55.35	1.660	7

*sh=shoulder

35

(b) The procedure and gel composition of part (a) above were repeated except that the reaction mixture was heated for 168 hours. AIPO₄-9 was produced.

The species AIPO₄-9 as herein referred to is a crystalline metallophosphate whose essential framework structure has a chemical composition, expressed in terms of molar ratios of oxides, is

and having a characteristic X-ray powder diffraction pattern which contains at least the d-spacings set forth in Table 6 below:

40	20	TABLE 6	100×I/lo	
4 5	11.1 —11.15 12.5 —12.65 18.25—18.35 21.0 —21.1 25.4 —25.6 25.7 —25.8	7.97—7.94 7.08—7.00 4.86—4.83 4.23—4.21 3.51—3.48 3.47—3.45	43—68 12—100 19—47 41—100 38—82 0—79	-

All of the $AIPO_4$ -9 compositions for which the X-ray powder diffraction data has presently been obtained have patterns that are within the generalized pattern of Table 7 below:

	TABLE 7				
55	20	d	100×l/lo		
	8.4 — 8.5	10.5 —10.4	<122		
	10.8	8.19	(sh)		
	11.1 —11.15	7.97 — 7.94	43—68		
	12.5 —12.65	7.08 — 7.00	12100		
60	14.014.2	6.33 6.24	28		
	15.115.25	5.87 — 5.81	4—6		
	16.8 16.85	5.28 — 5.26	3 13		
	18.25—18.35	4.86 — 4.83	1 9—4 7		
	19.3 —19.5	4.60 — 4.55	2—15		
65	2 <u>1.0</u> —21.1	4.23 — 4.21	41—100		

0 43 562

	. 2θ	TABLE 7 (contd.) d	100×I/Io
5	21.9 —22.05	4.06 — 4.03	11—39
	22.2 —22.3	4.00 — 3.99	(sh)—20
	22.7 —22.8	3.92 — 3.90	30—39
	25.4 —25.6	3.51 — 3.48	38—82
10	25.7 —25.8	3.47 — 3.45	0—79
	26.5 —26.7	3.36 — 3.34	13—16
	27.7 —27.9	3.22 — 3.20	4—21
	28.2	3.16	0—(sh)
	28.45—28.55	3.136— 3.126	16—36
15	30.3 —30.7	2.950— 2.912	5—21
	31.45—31.6	2.844— 2.831	(sh)
	31.8 —31.85	2.814— 2.810	14—30
	33.15—33.3	2.702— 2.691	5—16
	33.6 —33.7	2.667— 2.660	12—18
20	34.0	2.637	06
	34.3 —34.5	2.614— 2.600	56
	34.8 —34.9	2.578— 2.571	03
	35.5 —35.7	2.529— 2.515	46
25	36.1 —36.4 37.8 —38.0 38.35—38.5 38.9 —39.1 41.1 —41.3	2.488— 2.468 2.380— 2.368 2.347— 2.338 2.315— 2.304 2.196— 2.186	1—3 2—7 4—10 8—10 0—2
30	42.1 —42.2	2.146 2.141	3—6
	42.6 —42.7	2.122 2.118	2—4
	44.55—44.85	2.034 2.021	1—3
	46.3 —46.7	1.961 1.945	2—4
	48.0 —48.05	1.895 1.893	3—4
35 -	48.4 —48.7 49.75—50.0 50.2 —50.3 51.0 —51.1 61.7 —51.8	1.881— 1.870 1.833— 1.824 1.817— 1.814 1.791— 1.787 1.768— 1.765	<1—3 0—14 0—14 <1—2 (sh)—12
40	51.9 —52.1	1.762— 1.755	7—11 ·
	53.65—54.0	1.708— 1.698	3—4
	55.3 —55.5	1.661— 1.656	6—8

Example 32 Preparation of AIPO₄-11

50

• 65

(a) A reaction mixture was prepared by combining 46.0 grams of 85% orthophosphoric acid (H₃PO₄) and 119.2 grams of water, to which was added 27.5 grams of the same hydrated aluminum oxide as in Example 1, and stirred until homogeneous. To this mixture was added 20.3 grams of di-(n-propyl)amine(Pr₂NH), and the mixture stirred until homogeneous. The composition of the final reaction mixture in molar oxide ratios was:

1.0 Pr2NH:Al2O3:P2O5:40 H2O

The reaction mixture was sealed in a stainless steel pressure vessel lined with polytetrafluoroethylene and heated in an oven at 200°C at autogenous pressure for 24 hours. The solid reaction product was recovered by filtration, washed with water, and dried in air at room temperature. Chemical analysis of the reaction solids showed 5.1 wt. % C, 1.00 wt. % N, 37.6 wt. % Al₂O₃, 51.6 wt. % P₂O₅, 10.4 wt. % LOI, giving a product composition in molar oxide ratios of:

0.19 Pr₂NH:1.00 Al₂O₃:0.98 P₂O₅:0.48 H₂O .

The above product, denominated AIPO₄-11, had an X-ray powder diffraction pattern characterized by the following data, wherein "I" is the intensity and "d" the interplanar spacing.

	20	d	100×l/lo
•	8.15	10.85	34
	9.5	9.31	49
5	13.3	6.66	16
	15.7	5.64	30
	16.35	5.42	5 6
	19.0	4.67	6
	20.55	4.32	50
10	21.0	4.23	100
•	22.2	4.00	58
	22.65	3.93	75
	23.25	3.83	67 ·
	24.6	3.62	10
15	24.8	3.59	. 11
	26.4	3.38	13 [.]
•	26.7	3.34	17
	28.5 (sh)*	່3.13 ໄ	15
	28.7	3.11∫	
20	29.2	3.06	6
	29.6	3.02	9 10
	31.5	.2.84	10
	33.0	2.71	15
	34.3	2.61	11
25	35.8	2.51	3 6
	36.6	2.46	6
	37.6 (sh)*	2.39	14
	37.9	2.37	
	39.6	2.28	4
30	40.5	2.23	· 2
	42.9	2.11	5
	44.8	2.02	2
	45.2	2.01	4
	46.1	1.99	6 ·
35	48.1	1.89	4 2 5 2 4 6 2 4 3 4
	49.0	1.86	4
**	·· · · 50.6	1.80	3
	54.8	1.68	4

40 *sh=shoulder

(b) A portion of a solid crystalline product exhibiting an X-ray powder diffraction pattern essentially identical to that above was calcined in air at about 200°C for 2 hours, then at 600°C overnight. The calcined product had an X-ray powder diffraction pattern characterized by the following data:

	2θ	ď	100× <i>l/</i> lo
	8.0	11.1	14
50	9.8	9.03	40
	. 11.7	7.56	3
	12.75	6.94	20
	13.65	6.49	6
	14.7	6.03	6 5
<i>55</i> · · .	16.1	5.50	. 54
		5.05	2
	19.5 (sh)	4.55	17
	19.85	4.47	23
	20.7	4.29	8
60	21.9	4.06	100
	22.1 (sh)	4.02	44
	22.5 (sh)	3.95	48
	23.5	3.79	54
	24.0 (sh)	3.71	16
65	24.2 (sh)	3.68	10

0 43 562

	2θ	d	100×I/I
	25.7	3.47	20
	25.9 (sh)	3.44	9
5	26.7	3.34	13
	27.3 (sh)	3.27	14
	27.65	3.23	20
	28.5	3.13	8
	29.6	3.02	29
10	30.3	2.95	16
	31.75	2.82	8
	32.6	2.75	22
	33.95	2.64	
	34.4 (sh)	2.61	7 5 9 8 6
15	35.5	2.53	g
	37.2	2.42	8
	38.2 (sh)	2.36	6
	38.8	2.32	14
	39.4	2.29	2
20	39.7	2.27	<u> </u>
	41.0	2.20	Ř
•	41.4 (sh)	2.18	2 2 8 5 3 5
	43.6	2.08	š
<u>:</u>	44.6	· 2.03	Ĕ
25	45.3	2.00	ě.
	49.2 }	1.85	
	49.6	1.84	8
	50.4	1.81	2
	50.4 52.4	1.75	3 1
30			,
5	53.6	1.71	5 2
•	54.6	1.68	4.

(sh=shoulder)

 25 Examples 33—36
 Preparation of AIPO₄-11
 A procedure similar to that in example 32 was followed except where indicated in Table C below. The composition of each final reaction mixture in molar oxide ratios was:

1.0 R:Al₂O₃:P₂O₅:40 H₂O

The solid product from each reaction contained in each case a phase characterized by an X-ray powder diffraction pattern essentially the same as that of the uncalcined product of example 32.

45		TABLE C			
	Example #	R	Reaction time (hrs.)	Reaction	
	33	(i-C ₃ H ₇) ₂ NH	24	200	
50	34	(C₂H̃₅) (n̂-C₄H₅)NH	24	200	
	35	(n-C,H,),NH	48	· 200	
	36	(n-C ₅ H ₁₁) ₂ NH	24	200	
	37	(n-C ₅ H ₁₁) ₂ NH	24	150	

55 The species $AIPO_4$ -11 as herein referred to is a crystalline metallophosphate whose essential framework structure has a chemical composition, expressed in terms of molar ratios of oxides, is

Al₂O₃:1.0±0.2 P₂O₅

and having a characteristic X-ray powder diffraction pattern which contains at least the d-spacings set forth in Table 8 below:

43 562

2 <i>θ</i>	TABLE 8	100×I/lo	
9.4 — 9.5	9.41—9.31	31-49	
20.5 —20.6	4.33-4.31	3453	
21.0 —21.25	4.234.19	100	
22.15-22.25	4.01—4.00	12—58	
22.5 22.7	3.953.92	47—75	
23.1523.5	3.843.79	10—68	
	9.4 — 9.5 20.5 —20.6 21.0 —21.25 22.15—22.25 22.5 —22.7	9.4 — 9.5 9.41—9.31 20.5 —20.6 4.33—4.31 21.0 —21.25 4.23—4.19 22.15—22.25 4.01—4.00 22.5 —22.7 3.95—3.92	2θ d 100×l/lo 9.4 — 9.5 9.41—9.31 31—49 20.5 —20.6 4.33—4.31 34—53 21.0 —21.25 4.23—4.19 100 22.15—22.25 4.01—4.00 12—58 22.5 —22.7 3.95—3.92 47—75

All of the AIPO₄-11 compositions for which the X-ray powder diffraction data has presently been obtained have patterns that are within the generalized pattern of Table 9 below:

15	2θ	TABLE 9	100×l/lo
20	8.1 — 8.2	10.9 —10.8	19—34
	8.5 — 8.5	10.4	(sh)
	9.4 — 9.5	9.41— 9.31	49—31
	13.2 —13.3	6.71— 6.66	11—16
	15.7 —15.8	5.64— 5.61	16—30
	16.3 —16.4	5.44— 5.40	3—5
25	19.0 —19.2	4.67— 4.62	4—7
	20.5 —20.6	4.33— 4.31	34—53
	21.0 —21.25	4.23— 4.19	100
	22.15—22.25	4.01— 4.00	12—58
	22.5 —22.7	3.95— 3.92	47—75
	23.15—23.5	3.84— 3.79	10—68
30	24.6 —24.8	3.62 3.59	4—10
	24.8 —25.0	3.59 3.56	4—11
	26.3 —26.4	3.39 3.38	11—18
	26.6 —26.8	3.35 3.33	11—18
	28.3 —28.5	3.15 3.13	(sh)
35	28.7 —28.9	3.11— 3.09	11—15
	29.1 —29.25	3.07— 3.05	5—7
	29.5 —29.6	3.03— 3.02	5—9
	31.5 —31.6	2.84— 2.83	5—10
	32.8 —33.0	2.73— 2.71	6—15
	34.0 —34.4	2.64— 2.61	4—13
40	35.6 —35.9	2.52— 2.50	2—3
	36.6 —36.65	2.46— 2.45	4—6
	37.6	2.39	12
	37.8 —38.0	2.38— 2.37	8—15
45	39.4 —39.7	2.29— 2.27	2—4
	40.5 —40.8	2.23— 2.21	2
	42.2 —42.5	2.14— 2.13	2—3
	42.7 —43.2	2.12— 2.09	4—5
	44.8 —45.0	2.02— 2.01	2—4
	45.2 —45.5	2.01— 1.99	2—4
50	46.0 —46.2	1.97— 1.96	2—6
	47.9 —48.1	1.90— 1.89	2
	48.9 —49.1	1.86— 1.86	2—4
	50.6 —51.0	1.80— 1.79	2—3
	54.8 —54.85	1.68— 1.67	2—4
55	55.5 — 55.6	1.66 1.65	2

Example 37

65

Preparation of AIPO₄-12

A reaction mixture was prepared by combining 46.0 grams of 85% orthophosphoric acid (H₃PO₄)

and 119.2 grams of water, to which was added 27.5 grams of the same hydrated aluminum oxide as in Example 1 (a pseudo-boehmite phase, 74.2 wt. % Al₂O₃, 25.8 wt. % H₂O), and stirred until homogeneous. To this mixture was added 6.0 grams of ethylenediamine (C₂H₈N₂), and the mixture stirred until homogeneous. The composition of the final reaction mixture in molar oxide ratios was:

0.5 C2H8N2:AI2O3:P2O5:40 H2O

043 562

The reaction mixture was sealed in a stainless steel pressure vessel lined with p lytetra-flu roethylene and heated in an oven at 200°C at autogenous pressure for 24 hours. The solid reaction product was recovered by filtration, washed with water, and dried in air at room temperature. Chemical analysis showed 4.3 wt. % C, 4.3 wt. % N, 35.0 wt. % Al₂O₃, 49.5 wt. % P₂O₅, 15.4 wt. % LOI, giving a product composition in molar oxide ratios of:

The crystalline $AIPO_4$ -12 phase had an X-ray powder diffraction pattern characterized by the following data, wherein "I" is the intensity and "d" the interplanar spacing:

	20	d	100×l/lo
	6.15	14.37	25
15	11.2	7.90	7
	12.3	7.20	22
	13.3	6.66	56
	14.1	6.28	5
	15.2	5.83	4
20	17.2	5.16	20
	18.5	4.80	27
	18.9	4.70	13
	19.9 (sh)	4.46	
	20.9	4.25	100
25	22.3	3.99	44
	23.05	3.86	<u>31</u>
	23.85	3.73	55
	25.05	3.55	35
	26.5	3.36	31
30	26.7 (sh) 5	3.34	
	27.95 (sh) }	3.19	. 20
	28.2 (sh) } 28.95	3.16	11
		3.08.	
35	29.8 30.4 (sh)]	3.00 2.94	25
33	30.85 (sh) }	2.90	44
	31.15 (sh)	2.87	**
	32.55	2.75	7
	33.0 (sh) }	2.71	
40	33.2 (sh)	2.70	5
	34.0	2.64	18
	34.8	2.58	18
	37.8	2.38	4
	38.6	2.33	11
45 ·	39.3	2.29	
	40.0	2.25	7
	40.7	2.22	9 7 9 7
	41.8	2.16	7
	42.7 (sh)	2.12	_
50	43.6	2.08	5
	44.5	2.04	5
	45.6	1.99	4
	46.6	1.95	7
55	48.15	1.89	9
55	48.6	1.87	. 5
	50.0	1.82	5
	51.8 52.7	1.76	5 5 4 7 9 5 5 7 4
	52.7 54.6	1.74 1.68	4
60	54.6 55.5	1.66	9 2
	55.5	1.00	2
	•		_

(sh=shoulder)

Example 38

10

Preparation of AIPO4-12

A reaction mixture was prepared by combining 76.8 grams of 85% orth phosph ric acid (H₃PO₄) and 183.7 grams of water, to which was added 45.8 grams of the same hydrated aluminum oxide as in Example 38, and stirred until homogeneous. To this mixture was added 28.7 grams of 2-imidazolidone [(CH₂NH)₂CO] dissolved in 75 grams of H₂O, and the mixture stirred until homogeneous. The composition of the final reaction mixture in molar oxide ratios was:

The reaction mixture was placed in a stainless steel pressure vessel having an inert liner and heated in an oven at 200°C at autogenous pressure for 169 hours. The solid reaction product was recovered by filtration, washed with water, and dried in air at 110°C. Chemical analysis showed 5.2 wt. % C, 6.2 wt. % N, 33.2 wt. % Al₂O₃, 48.2 wt. % P₂O₅, 18.1 wt. % LOI, giving a product composition in molar oxide ratios of:

The above product was AIPO₄-12 as indicated by having an X-ray powder diffraction pattern essentially identical to that in Example 37.

The species AIPO₄-12 as herein referred to is a crystalline metallophosphate whose essential framework structure has a chemical composition, expressed in terms of molar ratios of oxides, is

and having a characteristic X-ray powder diffraction pattern which contains at least the d-spacings set forth in Table 10 below:

30	20	TABLE 10	100×I/lo	
35	6.15— 6.2 13.3 —13.35 20.9 —21.0 22.3 —22.4 23.85—24.0 30.85—30.95	14.37—14.26 6.66—' 6.63 4.25— 4.44 3.99— 3.97 3.73— 3.71 2.90— 2.89	25—48 56—63 100 33—45 46—61 34—44	

All of the AIPO₄-12 compositions for which the X-ray powder diffraction data has presently been obtained have patterns that are within the generalized pattern of Table 11 below:

	20	TABLE 11	l/lo×100	
45	6.15— 6.2	14.37—14.26	48—25 15—7	
	11.2 —11.3 12.3 —12.35	7.90— 7.83 . 7.20— 7.17	34—22	
	13.3 —13.35	6.66— 6.63	6356	
	14.1 —14.15	6.28— 6.26	8—5	
50	15.2	5.83	4—1	
:	17.2 —17.3	5.16— 5.13	2 9 —20	
	18.4 —18.6	4.82 4.77	37—27	
	18.9	4.70	1613	
	19.9	4.46	SH	
55	20.9 —21.0	4.25— 4.23	100	
	21.65-21.85	4.10 4.07	14—13	
	22.3 —22.4	3.99 3.97	45—33	
	22.6 SH	3.93	14	
	23.0 —23.05	3.87— 3.86	319	
60	23.85—24.0	3.73- 3.71	61—46	
	25.0525.2	3.55— 3.53	35—25	
•	26.5 — 26.6	3.36 3.35	3531	
	26.7 —26.8	3.34— 3.33	SH	
	27.9528.0	3.19— 3.19	6—5	
65	28.2 28.3	3.16— 3.15	SH	

0 043 562

	2θ	TABLE 11 (contd.)	l/l ×100
5	28.95—29.0	3.08— 3.08	13—10
	29.8 —30.0	3.00— 2.98	25—20
	30.4	2.94	SH
10	30.85—30.95	2.90— 2.89	· 44—34
	31.1 —31.2	2.88— 2.87	SH
	32.55—32.6	2.75— 2.75	7—6
	33.0 —33.1	2.71— 2.71	6—5
	33.2 —33.4	2.70— 2.68	SH
	34.0 —34.1	2.64— 2.63	18—17
	34.8 —34.95	2.58— 2.57	19—18
15	35.435.5	2.54— 2.53	SH
	36.2	2.48	4—1
	37.0	2.43	1—0
	37.4	2.40	4—0
20	37.6 —37.8	2.39— 2.38	40
	37.9	2.37	SH
	38.3	2.35	SH
	38.6 —38.65	2.33— 2.33	11—8
	39.3 —39.4	2.29— 2.29	9—7
	40.0	2.25	8—7
	40.7 —40.8	2.22— 2.21	9—7
25	41.8 —41.9	2.16— 2.16	7—5
	42.6 —42.7	2.12— 2.12	SH
	43.6 —43.8	2.08— 2.07	7—5
30	44.5 —44.7	2.04— 2.03	5—3
	45.6 —45.7	1.99— 1.99	4—2
	46.5 —46.6	1.95— 1.95	7—2
	48.0 —48.15	1.90— 1.89	9—4
	48.6 —48.7	1.87— 1.87	54
	50.0 —50.2	1.82— 1.82	85
	51.8	1.76	87
35	52.7 — 5.29	1.74— 1.73	4—2
	54.6	1.68	9—8
	55.5	1.66	2

Example 39

Preparation of AIPO₄-14

(a) A reaction mixture was prepared by combining 57.7 grams of 85% orthophosphoric acid (H₃PO₄) and 100 grams of water, to which was added 34.4 grams of a hydrated aluminum oxide (74.2 wt. % Al₂O₃, 25.8 wt. % H₂O), and stirred until homogeneous. To this mixture was added 18.3 grams of t-butylamine (t-BuNH₂) and then 49.1 grams of water, and the mixture stirred until homogeneous. The composition of the final reaction mixture in molar oxide ratios was:

1.0 t-BuNH₂:Al₂O₃:P₂O₅:40 H₂O

The reaction mixture was sealed in a stainless steel pressure vessel having an inert plastic lining and heated in an oven at 150°C at autogenous pressure for 96 hours. The solid reaction product was recovered by filtration, washed with water, and dried in air at 110°C. Chemical analysis indicated the product contained 7.2 wt. % C, 2.6 wt. % N, 34.3 wt. % Al₂O₃, 47.7 wt. % P₂O₅, 17.5 wt. % LOI, giving a product composition in molar oxide ratios of:

The above product had an X-ray powder diffraction pattern characterized by the following data, wherein "I" is the intensity and "d" the interplanar spacing:

55

60

043 562

		-	
	2θ	đ	100×l/lo
·	9.2	9.61	100
	9.4	9.41	(sh)
_	. 11.2	7.90	18
5	13.1	6.76	17
	13.4	6.61	(sh)
	14.8	5.98	3
	15.8	5.61	23
10	18.0	4.93	12
70	18.8	4.72	<u>'ī</u>
	19.2	4.62	i
	20.9	4.25	5
	21.6	4.11	10
15	22.2	4.00	22
7.5	22.7	3.92	36
	23.4	3.80	1
	23.7	3.75	i
	25.2	3.54	2
20	26.1	3.41	20
20	27.1	3.29	
	27.7	3.22	. 2
	28.5	3.13	. 2 5
	29.5	3.03	12
25	. 30.2	2.96	8
	30.5	2.93	(sh)
	30.9	2.89	4
	31.2	2.87	(sh)
	32.0	2.80	1
30	32.4	2.76	. 1
	33.2	2.70	(sh)
	33.5	2.67	6
	34.1	2.63	1
	35.0	2.56	. 1
35	35.5	2.53	2 3 3 · 5
	36.4	2.47	3
	38.1	2.36	3
	38.8	2.32	5
	39.5	2.28	1
40	40.4	2.23	5 1
	40.8	· 2.21	1
	42.0	2.15	2 2 1
	42.4	2.13	2
	43.6	2.08	1
45	44.0	2.06	3
	44.8 .	2.02	. 3
	45.9	1.98	2
	46.3	1.96	2
•	47.8	1.90	3 . 3 . 2 2 2 2 1 2
50	48.5	1.88	2
	49.8	1.83	1
	51.6	1.77	2
	52.7	1.74	1
<u>.</u>	53.5	1.71	4
55	55.7	1.65	2
	•		

(sh=shoulder)

The product was designated AIPO_a-14.

(b) A portion of the solid crystalline product obtained above was calcined in air at about 550°C for 2 hours. The calcined product had an X-ray powder diffraction pattern characterized by the following data:

43 562

	2θ	d	100×l/lo
5	9.0 9.6 11.5 12.0 13.2	9.83 9.21 7.69 7.38 6.71	100 (sh) 29 9 45
. 10	13.3 13.6 14.3 14.8 16.0	6.66 6.51 6.19 5.99 5.54	(sh) 32 10 5 10
15	16.2 16.8 18.2 18.6 18.9 19.9	5.47 5.28 4.87 4.77 4.70 4.46	(sh) 2 35 38 (sh)
20	20.7 20.9 21.6 22.0 22.5	4.29 4.25 4.11 4.04 3.95	5 9 9 (sh) 23 29
25	22.8 23.2 23.5 24.2 24.8	3.90 3.83 3.79 3.68 3.59	(sh) 7 6 3 (sh)
30	25.1 25.9 26.6 27.0 27.4 27.8	3.55 3.44 3.35 3.30 3.25 3.21	6 3 12 20 16 11
35	28.0 28.6 29.2 29.7 30.4	3.19 3.12 3.06 3.01 2.94	11 (sh) 11 20 14
40	31.0 32.3 33.0 33.9 34.8	2.88 2.77 2.71 2.64 2.58	. 9 4 6 4
45	35.6 36.8 37.7 38.4 39.1	2.52 2.44 2.39 2.34 2.30	4 2 5 3 2 3 3
50 55	40.1 40.6 41.8 42.6 43.0 44.2	2.25 2.22 2.16 2.12 2.10 2.05	1
· 6a	45.3 46.2 47.4 48.6 50.0	2.05 2.00 1.95 1.92 1.87 1.82	3 2 6 1 2 2 3 3 3
•	52.1 54.1	1.76 1.70	3 4

Example 40

Preparation of AIPO₄-14

A reaction mixture was prepared by combining 46.1 grams of 85% orthophosph ric acid (H_3PO_4) and 119.2 grams of water, to which was added 27.5 grams of the same hydrated aluminum oxide as in Example 27 and stirred until homogeneous. To this mixture was added 11.8 grams of isopropylamine (i-PrNH₂), and the mixture stirred until homogeneous. The composition of the final reaction mixture in molar oxide ratios was:

10

The reaction mixture was sealed in a stainless steel pressure vessel lined with an inert plastic material (polytetrafluoroethylene) and heated in an oven at 200°C at autogenous pressure for 24 hours. The solid reaction product was recovered by filtration, washed with water, and dried in air at room temperature. Chemical analysis of the product showed 6.0 wt. % C, 2.4 wt. % N, 34.8 wt. % Al_2O_5 , 48.6 wt. % P_2O_6 , 16.1 wt. % LOI, giving a product composition in molar oxide ratios of:

The above product was established to be AIPO₄-14 by virtue of having an X-ray powder diffraction pattern essentially identical to that of the uncalcined product in Example 39.

The species AIPO₄-14 as herein referred to is a crystalline metallophosphate whose essential framework structure has a chemical composition, expressed in terms of molar ratios of oxides, is

and having a characteristic X-ray powder diffraction pattern which contains at least the d-spacings set forth in Table 12 below:

<i>30</i>	- 2θ	TABLE 12 d	100×I/lo
	8.9 — 9.2	9.949.61	100>100
	11.1 —11.2 13.05—13.1	7.97—7.90 6.78—6.76	18—28 17—23
35	15.8 —15.85	5.61—5.59	21—23
	22.2 —22.3	4.00-3.99	22-28
	22.7	3.92	3649
	26.1 26.2	3.443.40	2025

All of the AIPO₄-14 compositions for which the X-ray powder diffraction data has presently been obtained have patterns that are within the generalized pattern of Table 12(a) below:

45	20	TABLE 12(a) d	100×l/lo
	8.9— 9.2	9.94—9.61	100—<100
	9.4	9.41	(sh)
	11.1—11.2	7.97—7.90	18—28
50	13.1	6.76	17—23
	13.4	6.61	(sh)—9
	14.8	5.98	3
	15.8—15.85	5.61—5.59	21—23
	18.0	4.93	12—20
55	18.8	4.72	1—2
	19.2	4.62	1
	20.9	4.25	5—10
	21.6—21.9	4.11—4.06	5—10
	22.2—22.3	4.00—3:99	22—28
	22.7	3.92	36—49
60	23.4	3.80	1
	23.7—23.85	3.75—3.73	12
	25.2—25.45	3.54—3.50	24
	26.1—26.2	3.413.40	20-25
65	27.1—27.2	3.29—3.28	6—9
	27.7	3.22	2—4

0 043 562

	2θ	TABLE 12(a) (contd.) d	100×I/I
5	28.5—28.85 29.5—29.6 30.2—30.3 30.5 30.9	3.13—3.09 3.03—3.02 2.96—2.95 2.93 2.89	(sh)—5 12—20 8—11 (sh) 4—18
10	31.2—31.3 32.0—32.2 32.4—32.6 33.2—33.3 33.5—33.8	2.87—2.86 2.80—2.78 2.76—2.75 2.70—2.69 2.67—2.65	(sh) 1—3 1—3 (sh)—3 6—8
15	34.1 35.0—35.2 35.5—35.7 36.4—36.6 37.3	2.63 2.56—2.55 2.53—2.51 2.47—2.46 2.41	1 1—3 2—5 3—4
20	38.0—38.1 38.5—38.8 39.1—39.5 40.4—40.5	2.37—2.36 2.34—2.32 2.30—2.28 2.23—2.23	1—3 2—5 (sh)—4 4—5 2—4
25	40.8—41.0 42.4 42.8 43.6 44.0—44.2 44.6—44.8	2.21—2.20 2.13 2.11 2.08 2.06—2.05 2.03—2.02	2—3 2 1
30	45.0 45.9 46.2—46.3 46.6 47.8—48.0	2.01 1.98 1.96—1.96 1.95 1.90—1.90	3 3 2 2 2 3 2—3
35	48.5—48.7 49.8—50.0 51.6—52.0 52.7—52.8 53.5—54.1	1.88—1.87 1.83—1.82 1.77—1.76 1.73—1.74 1.71—1.70	2—3 1—2 2—3 1—2 4
40	55.2—55.7	1.66—1.65	12

(sh=shoulder)

Example 41

Preparation of AIPO₄-16

(a) A reaction mixture was prepared by combining 57.7 grams of 85% orthophosphoric acid (H₃PO₄) and 69.6 grams of water, to which was added 34.4 grams of a hydrated aluminum oxide (a pseudo-boehmite phase, 74.2 wt. % Al₂O₃, 25.8 wt. % H₂O), and stirred until homogeneous. To this mixture was added 27.8 grams of quinuclidine (C₇H₁₃N) dissolved in 50.4 grams of water, and then 29.1 grams of water and the mixture stirred until homogeneous. The composition of the final reaction mixture in molar oxide ratios was:

1.0 C,H,3N:Al2O3:P2O5:40 H2O

The reaction mixture was sealed in a stainless steel pressure vessel lined with an inert plastic material and heated in an oven at 150°C at autogenous pressure for 48 hours. The solid reaction product was recovered by filtration, washed with water, and dried in air at 110°C. Chemical analysis of the product indicated the presence of 7.6 wt. % C, 1.33 wt. % N, 32.4 wt. % Al₂O₃, 43.4 wt. % P₂O₅, 24.1 wt. % LOI, giving a product composition in molar oxide ratios of:

0.28 C7H13N:1.00 Al2O3:0.96 P2O6:2.45 H2O

The above product had an X-ray powder diffraction pattern characterized by the following data wherein "1" is the intensity and "d" the interplanar spacing:

65

043 562

	2θ	d	100×1/10
	11.3	7.83	62
	· 15.5	5.72	2
5	17.3	5.13	2
	18.7	4.75	50
	21.9 .	4.06	100
	22.95	3.875	9 (sh)
	26.55	3.357	27
10	27.6	3.23	2
	28.0	3.19	2 2
	29.0	3.08	12
	29.75	3.00	28
	32.7	2.739	
15	34.7	2.585	5
	37.9	2.374	8
	39.6	2.276	2
	44.2	2.049	2
	48.5	1.877	6
20	52.4	1.746	3
	54.8	1.675	4 5 8 2 2 6 3 3

The product was designated AIPO₄-16.

55

60

(b) Using the same procedure and reaction mixture composition as in part (a) except that the proportion of quinuclidine was decreased by 50 percent and the mixture was heated at 200°C for 24 hours, AIPO₄-16 was again produced. A small amount of AIPO₄-17 was also present as an impurity.

(c) The procedure and gel composition of part (a) were followed except that the reaction mixture was heated for 16 hours. A portion of the solids was submitted for X-ray analysis. The above product was established to be AIPO₄-16 by virtue of having a powder diffraction pattern essentially identical with that in part (a).

(d) A portion of the solid crystalline product obtained above was calcined in air from 200°C to 500°C during 1 hour and then at about 500°C for 2 hours. The calcined product had an X-ray powder diffraction pattern essentially identical to that in part (c).

The species AIPO₄-16 as herein referred to is a crystalline metallophosphate whose essential framework structure has a chemical composition, expressed in terms of molar ratios of oxides, is

Al₂O₃:1.0±0.2 P₂O₅

and having a characteristic X-ray powder diffraction pattern which contains at least the d-spacings set forth in Table 13 below:

	2θ	TABLE 13 d	100×i/lo	
45	11.3 —11.5	7.83—7.69	59—63	_
	18.7 —18.85 21.9 —22.2	4.75—4.71 4.06—4.00	48—54 100	
60	26.55—26.75 29.75—29.95	3.363.33 3.002.98	23—27 26—30	
50	25.75-25.55	J.00 2.30	2000	

All of the $AIPO_4$ -16 compositions for which the X-ray powder diffraction data has presently been . obtained have patterns that are within the generalized pattern of Table 14 below:

043 562

	2θ	TABLE 14	100×I/1o
5	11.3 —11.5	7.83 —7.69	59—63
	15.5 —15.9	5.72 —5.57	0—2
	17.3 —17.4	5.13 —5.10	0—2
	18.7 —18.85	4.75 —4.71	48—54
10	21.9 —22.2	4.06 —4.00	100
	22.95—23.1	3.875—3.850	9—11
	26.55—26.75	3.357—3.332	23—27
	27.4 —27.6	3.255—3.232	0—2
	28.0 —28.2	3.187—3.164	0—2
15	29.0 —29.1	3.079—3.058	8—15
	29.75—29.95	3.003—2.983	26—30
	32.7 —32.9	2.739—2.722	4—5
	34.7 —34.95	2.585—2.567	5—7
	37.9 —38.1	2.374—2.362	8—10
20	39.6 —40.0	2.276—2.254	0—2
	44.2 —44.5	2.049—2.036	2—3
	48.5 —48.7	1.877—1.870	6—8
	52.4 —52.6	1.746—1.740	2—3
	54.8 —55.0	1.675—1.670	2—3

Example 42

50

55

60

65

25 Preparation of AIPO_-17

(a) A reaction mixture was prepared by combining 56.7 grams of 85% orthophosphoric acid (H₃PO₄) and 69.6 grams of water, to which was added 34.4 grams of a hydrated aluminum oxide (a pseudo-boehmite phase, 74.2 wt. % Al₂O₃, 35.8 wt. % H₂O), and stirred until homogeneous. To this mixture was added 27.8 grams of quinuclidine (C₇H₁₃N) dissolved in 50.4 grams of water, and then 29.1 grams of water, and the mixture stirred until homogeneous. The composition of the final reaction mixture in molar oxide ratios was:

1.0 C7H13N:AI2O3:P2O5:40 H2O

The reaction mixture was placed in a sealed stainless steel pressure vessel lined with an inert plastic material (polytetrafluoroethylene) and heated in an oven at 200°C at autogenous pressure for 96 hours. The solid reaction product was recovered and washed by repeated centrifugation with water, and dried in air at 110°C. Chemical analysis showed 12.4 wt. % C, 2.2 wt. % N, 32.5 wt. % Al₂O₃, 45.9 wt. % P₂O₅, 21.4 wt. % LOI, giving a product composition in molar oxide ratios of:

0.46 C7H13N:1.00 Al2O4:0.99 P2O5:0.87 H2O

The above product, denominated AIPO₄-17 had an X-ray powder diffraction pattern characterized by the following data, wherein "I" is the intensity and "d" the interplanar spacing:

0 43 562

		2 <i>θ</i>	d	100×I/I	
	-	7.65	11.55	100	•
		9.7	9.12	41	
5		11.35	7.79	2 ·	
•		11.9	7.44	3	
		13.35	6.63	39	
		14.2	6.24	13	
		14.7	6.03	2	
10		15.4	5.75	62	•
• •		16.6	5.34	. 33	
		18.0	4.93	20	
		18.8	4.72	2	
		19.6	4.53	2 67	
15		20.5	4.33	93	
		21.4	4.15	50 ⁻	
		22.1	4.02	. 2	
_		22.5	3.95	15	
•		23.3	3.82	34	
20		23.8	3.74	39	
	·	24.2	3.68	3	
		25.3	3.52	3 55	
		26.95	3.38	35	
		27.4	3.26	20	
25		28.05	3.18	5	
		28.7	3.11	20	
•		30.6	2.92	17 · ·	
		31.2	2.87	29	
		31.8	2.81	68	
30		32.4	2.76	2	
		33.5	2.67	18	
		34.0	. 2.64	2	
	•	34.6	2.59	2	
		35.15	2.55	. 2	
35		35.9	2.50	7	
		36.4	2.47	9	
		36.8	2.44	. 2	
		37.3	2.41	2	
45		38.0	2.37	3	
40 '		39.4	2.29	7	
		39.8	2.26 2.23	/ A	
		40.4 41.2	2.23 2.19	3	
		42.2	2.19	3	
45		42.2 42.8	2.14	282227622327433192514328121	
~		43.6	2.08	ģ	
		44.45	2.04	2	
		45.75	1.98	5	
		46.2	1.96	ī	
50		46.6	1.95	4	
		47.8	1.90	3	
	•	48.6	1.87	2	
		49.25	1.85	8	
		49.65	1.84	11	
<i>55</i> '		50.2	1.82	2	
		51.25	1.78	1	
		52.0	1.76	11	
		53.2	1.72	1	
		53.85	1.70	5	
60		55.45	1.66	8	
			•		

(b) A portion of the solid crystalline product obtained after continuing the digestion of the above reaction mixture to 168 hours exhibited an X-ray powder diffraction pattern essentially identical to that above.
65

0 043 562

(c) A portion of the product from part (b) calcined in air at about 550°C for 2 hours. The calcined product had an X-ray powder diffraction pattern characterized by the following data:

	2θ(°)	d(A)	100×1/10
5	7.7	11.5	77
	9.7	9.1	46
	11.6	7.63 }	13
	11.85	7.47 \$	
10	13.45	6.58	100
	14.0	6.33	21
	14.2	6.24	28
	14.8	5.99 5.68	2 16
4.5	15.6 16.8	5.28	10
15	18.0	5.22	3
	19.2	4.62	6 3 5
	19.65	4.52	· 12
	20.5	4.33}	•
20	20.8	4.27	42
	21.6	4.11	22
	22.2	4.00	2 2
	22.6	3.93 ੑ	2
	23.65	3.76	29
25	23.95	3.72 }	20
	24.4	3.65	22
	24.6 25.0	3.63 } 3.56	7
	25.0 25.3	3.50 3.52	12
30	26.2	3.40	7
30	27.3	3.26	20
	28.2	3.16	15
	28.8	3.10	10
	29.4	3.038}	7
35	-29.6	3.018∫	
	30.1	2.969	7
	30.8	2.903	7
	31.4	2.849	24
	31.9	2.805	15
40	32.1 33.7	2.788 J 2.660	11
	35.7 35.2	2.550	'i
	36.1	2.488)	
	36.35	2.471	7
45	39.6	2.281	2
	41.3	2.186	3
•	42.0	2.151	2 3 2 4 1
	42.7	2.118	4
	43.8	2.067	1
<i>50</i> .	44.9	2.019	
	46.1 46.6	1.973 1.953	3
	40.6 47.4	1.972	2
	48.0	1.895	1 2 3 2 2 7 7 2 1
55	49.2	1.852	2
	50.2	1.817	7
	51.3	1.781	7
	52.8	1.734	2
	54.0	1.698	1
60	55.3	1.661	2

Example 43
Preparation of AIPO₄-17
A reaction mixture was prepared by combining 115.3 grams of 85% orthophosphoric acid (H₃PO₄)
and 256 grams of water, to which was added 68.7 grams of a hydrated aluminum oxide (a pseudo-

43 562

boehmite phase, 74.2 wt. % Al_2O_3 , 25.8 wt. % H_2O), and stirred until homogeneous. To this mixture was added 43.6 grams of neopentylamine ($C_5H_{13}N$) and then 44.1 grams of water, and the mixture stirred until hom geneous. The compositi n of the final reaction mixture in molar oxide ratios was:

The reaction mixture was placed in a stainless steel pressure vessel lined with an inert plastic material (polytetrafluoroethylene) and heated in an oven at 150°C at autogenous pressure for 168 hours. The solid reaction product was recovered and washed by repeated centrifugation with water, and dried in air at 110°C. Chemical analysis showed 9.9 wt. % C, 2.5 wt. % N, 32.6 wt. % Al₂O₃, 44.2 wt. % P₂O₅, 21.8 wt. % LOI, giving a product composition in molar oxide ratios of:

The major phase in the above product had an X-ray powder diffraction pattern very similar to that 15 of the product in Example 42(a). The product was designated AIPO4-17.

Examples 44-45 Preparation of AIPO_-17

5

20

35

55

60

A procedure similar to that in Example 42 was followed except where indicated in Table D. The composition of each final reaction mixture in molar-oxide ratios was:

25 where R is indicated in Table D. A portion of the solid product from each reaction was subjected to Xray analysis and in each case a phase characterised by an X-ray powder diffraction pattern essentially the same as that of the product of Example 42(a) was observed.

		TABLE D				
30	Example #	R		Reaction time (hrs)	Reaction temp (°C)	•
	44 45	Cyclohexylamine Piperidine	•	168 168	200 200	,

The species AIPO₄-17 as herein referred to is a crystalline metallophosphate whose essential framework structure has a chemical composition, expressed in terms of molar ratios of oxides, is

and having a characteristic X-ray powder diffraction pattern which contains at least the d-spacings set forth in Table 15 below:

2θ ·	TABLE 15 d	100×I/lo	
7.6 — 7.8	11.6 —11.33	100	
13.25—13.5	6.68— 6.56	39—54	
15.35—15.6	5.77— 5.68	26—62	
19.55—19.75	4.54 4.50	1467	
20.3520.65	4.36 4.30	4593	
21.25-21.5	4.18 4.13	2050	
25.325.45	3.52— 3.50	1255	
31.65—31.85	2.83— 2.81	1968	
	7.6 — 7.8 13.25—13.5 15.35—15.6 19.55—19.75 20.35—20.65 21.25—21.5 25.3 —25.45	2θ d 7.6 — 7.8 11.6 — 11.33 13.25—13.5 6.68— 6.56 15.35—15.6 5.77— 5.68 19.55—19.75 4.54— 4.50 20.35—20.65 4.36— 4.30 21.25—21.5 4.18— 4.13 25.3 —25.45 3.52— 3.50	2θ d 100×I/lo 7.6 — 7.8 11.6 —11.33 100 13.25—13.5 6.68— 6.56 39—54 15.35—15.6 5.77— 5.68 26—62 19.55—19.75 4.54— 4.50 14—67 20.35—20.65 4.36— 4.30 45—93 21.25—21.5 4.18— 4.13 20—50 25.3 —25.45 3.52— 3.50 12—55

All of the AIPO4-17 compositions for which the X-ray powder diffraction data has presently been obtained have patterns that are within the generalized pattern of Table 16 below:

43 562

			•
		TABLE 16	
	2θ	ď	100xi/lo
	7.6 — 7.8	11.6 —11.33	100
5 .	9.7 — 9.9	9.12- 8.93	15-41
•	11.3511.9	7.80— 7.44	45
	13.25—13.5	6.68 6.56	39—54
	14.2 —14.4	6.24— 6.15	2-13
10	15.35—15.6 16.5 —16.7	5.77— 5.68 5.37— 5.31	26—62 10—33
••	17.9 —18.15	4.96— 4.89	420
	19.5519.75	4.54 4.50	1467
	20.3520.65	4.36 4.30	45—93
15	21.25-21.5	4.18— 4.13	2050
	21.7 —21.8 22.5 —22.65	4.10— 4.08 3.95— 3.93	(sh) 3—15
	23.1 —23.45	3.85— 3.79	17—34
	23.7 —23.95	3.75— 3.72	1439
	24.1 —24.2	3.69— 3.68	(sh)
20	25.3 —25.45 26.75—27.0	3.52— 3.50 3.33— 3.30	1255
	27.35—27.5	3.26— 3.24	14—35 5—20
	27.85—28.2	3.20— 3.16	2—5
	28.6 —28.8	3.12— 3.10	520
25	29.4529.8	3.03 3.00	2—1
	30.45—30.7 31.0 —31.3	2.94— 2.91 2.88— 2.86	4—17 13—29
	31.65—31.85	2.83— 2.81	19—68
	32.3 —32.4	2.77 2.76	12
30	33.4 33.6	2.68— 2.67	18—8
	34.0 34.6	2.64 2.59	2 2
	35.15	2.55	2
	35.7 —36.0	2.51— 2.49	47
35	36.3 — 36.6	2.47 2.45	1—6
	36.8 37.3	2.44 2.41	2 2
	37.8 38.0	2.38	1—3
	39.2 -39.4	2.30	2
40	39.6539.9	2.27— 2.26	2—7
	40.3 —40.5 41.0 —41.2	2.24— 2.23 2.20— 2.19	1 4 13
	41.9 -42.2	2.16 2.14	1—3 1—3
	42.8	2.11	1
45	43.6 —43.8	2.08 2.07	2—9
	44.45 45.5 —45.8	2.04 1.99— 1.98	2 1 5
	46.2	1.97	1
	46.546.7	1.95 1.95	1—4
50	47.3547.8	1.92— 1.90	13
	48.5548.8 49.25	1.88— 1.87 1.85	1 2 .
	49.45—49.7	1.84— 1.83	4—11
1	50.2 —50.25	1.82 1.82	1-2
55	51.25	1.78	1
	52.0 —52.2 53.1 —53.2	1.76— 1.75	3—11
	53.75—53.2 53.75—54.0	1.72— 1.72 1.71— 1.70	1 1—5
	55.2 55.5	1.66— 1.66	3—8
60 (sh=shoulder)			•

Example 46
Preparation of AIPO₄-18
A reaction mixture was prepared by combining 46.1 grams of 85% orthophosphoric acid (H₃PO₄)
and 53.8 grams of water, to which was added 27.5 grams of a pseudo-boehmite phase, (74.2 wt. %

 ${\rm Al}_2{\rm O}_3$, 25.8 wt. % ${\rm H}_2{\rm O}$), and stirred until hom gene us. T this mixture was added an aqueous solution prepared by combining 6.5 grams of 37 wt. % HCl and 98.0 grams of 40 wt. % tetraethylammonium hydroxide (TEAOH), and the mixture stirred until hom gene us. The composition of the final reaction mixture in molar oxide ratios was:

0.33 HCI:0.67 (TEA)20:AI2O3:P2O5:40 H2O

The reaction mixture was placed in a sealed stainless steel pressure vessel lined with an inert plastic material (polytetrafluoroethylene) and heated in an oven at 150°C at autogenous pressure for 336 hours. The solid reaction product was recovered by filtration, washed with water, and dried in air at room temperature. Chemical analysis showed 8.9 wt. % C, 1.28 wt. % N, 33.5 wt. % Al_2O_3 , 38.9 wt. % P_2O_5 , 26.4 wt. % LOI, giving a product composition in molar oxide ratios of:

The above product contained a minor amount of crystalline impurity but the major phase, denominated AIPO₆-18, had an X-ray powder diffraction pattern characterized by the following data, wherein "I" is the intensity and "d" the interplanar spacing:

	Wildiem I is sic	intensity and a are	michigana, opeomig	
		2θ	d	100×l/lo
20		9.60	9.21	100
		10.45	· 8.47	8
		11.0	8.04	8 9
		13.1	6.76	6
		14.0	6.33	8
25		14.8	5.99	10
		15.5	5.72	27
		16.9 }	5.25	
		17.0}	5.22	61
		17.9	4.96	20
		17.5 19.3 l	4.60	
30			4.55	·· 17
		19.5 ∫	4.55	35
		20.15 20.95	4.41	35 45
		20.95	4.24	45
		22.1]	4.02	17
35		22.3	3.99	
		23.3	. 3.82	5
		23.85	3.73	6
		24.4	3.65	14
		24.9	3.58	9
40		25.4	3.51	6
		. 26.1	3.41	13
		26.45	3.37	12
		26.8 ∫	3.33	
		28.0	3.19	16 [°]
45		29.0	3.08	7
		30.0	2.98	20
		30.75	2.91	. 14
		31.3	2.86	14
	•	31.8]	2.81	24
50	*	32.4	2.76	24
		33.4	2.68	6
		34.5	2.60	3
		35.81	2.51	
		35.8 } 36.2 }	2.48	3
55		38.2	2.36	2
•-		40.2	2.24.	ī
		41.7	2.17	à
		42.9	2.11	5
		47.8	1.90	ž
60		48.6	1.87	ž
00		. 49.6	1.84	ā
		51.0	1.79	Ž
		52.0	1.76	7
		54.U 54.3	1.70	4
	•	54.2	1.69	2 1 3 5 3 2 4 4 2 4 2
65		55.1	1.67	2

The species AIPO₄-18 as herein referred to is a crystalline metallophosphate whose essential framework structure has a chemical composition, expressed in terms of molar ratios of oxides, is

and having a characteristic X-ray powder diffraction pattern which contains at least the d-spacings set forth in Table 17 below:

10	2 <i>0</i>	TABLE 17 d	100×i∕lo
	9.60— 9.65	9.21—9.	100
•	15.5 —15.55 16.9 —17.1	5.72—5.70 5.25—5.19	27—34 61—70
15	17.9 20.15—20.25	4.96 4.41—4.39	20—25 35—43
	20.95—21.05	4.24-4.22	4552
	30.0 —30.1 31.8 —32.5	2.98—2.97 2.81—2.75	20—25 24—27
20	31.0 -32.0	2.01-2.75	4- 21

All of the AIPO₄-18 compositions for which the X-ray powder diffraction data has presently been obtained have patterns that are within the generalized pattern of Table 18 below:

25	2θ	TABLE 18 d	100×I/lo
30	9.60— 9.65	9.21—9.17	100
	10.45—10.50	8.47—8.42	8
	11.0 —11.05	8.04—8.01	9—12
	13.1 —13.2	6.76—6.71	6—7
	14.0	6.33	8
35	14.8 —14.85	5.99—5.97	10—11
	15.5 —15.55	5.72—5.70	27—34
	16.9 —17.1	5.25—5.19	61—70
	17.9	4.96	20—25
	19.35—19.6	4.59—4.53	8—17
	20.15—20.25	4.41—4.39	35—43
40	20.95—21.05	4,27—4,22	45—52
	22.1 —22.3	4,02—3,99	· 17—19
	·23.3 —23.4	3,82—3,80	5—7
	23.85—24.0	3,73—3,71	6—8
	24.4 —24.5	3,65—3,63	14
45	24.9 —25.0	3.58—3.56	9—11
	25.4 —25.55	3.51—3.49	6—7
	26.1 —26.2	3.41—3.40	13—15
	26.45—26.9	3.37—3.31	12
	28.0 —28.2	3.19—3.16	16—17
	30.0 —30.1	3.98—3.97	20—25
50	30.75—30.9	2.91—2.87	14—17
	31.3 —31.4	2.86—2.85	14—15
	31.8 —32.5	2.81—2.75	24—27
	33.3 —33.55	2.69—2.67	6
	34.5 —34.6	2.60—2.59	3—4
55	35.8 —36.2	2.51—2.48	3—4
	40.0 —40.2	2.25—2.24	1—2
	41.7 —41.8	2.17—2.16	2—3
	42.9 —43.0	2.11—2.10	· 5
	47.8	1.90	3—4
60	49.6	1.84	4—5
	51.0	1.79	4—7
	52.0	1.76	2—4
	54.2 —54.4	1.69—1.69	3—4

⁽b) A portion of the solid crystalline product obtained from a similar preparation and exhibiting an 65 X-ray powder diffraction pattern essentially identical to that of part (a) was calcined stepwise in 100°

increments from 100° to 600°C, being held at each temperature for one hour before the next increment. The calcined product had an X-ray p wder diffraction pattern characterized by the following

5	. 2θ	đ	100×l/lo	
	9.5	9.31	100	
	10.0 10.4	8.85 8.51	sh sh	
10	10.6	8.35	14	
•	11.3	7.83	4	
	12.95	6.83		
	13.5	6.56	· 9 8 4	
	14.5	6.11	4	
15	16.1	5.50	11	
	17.0	5.22	18	
	17.2	5.16	17	
	19.1 19.7	4.65 4.51	5	
20	20.0	4.51 4.44	5 7 6	
	20.7	4.29	12	
•	21.3	4.17	12 15 5 8 9 12	
•	21.9	4.06	5	
	22.5	3.95	8	
25	22.9	3.88	9	
	23.9	3.72	12	
	24.3	3.66	sh	
	24.9	3.58	3	
	25.2	3.53	3	
30	25.7	3.47	sh	
	26.0 26.3	3.43	8 7	
	26.3 27.1	3.39 3.29	,	
	27.8	3.21	4 7 7	•
35	29.1	3.07	Ź	
	30.0	2.98	8	
	30.4	2.94	sh	
	31.0	2.88	13	
	31.6	2.83	5 7	
40	32.2	2.78	7	
	32.6	2.75	sh	
	33.0	2.71	sh	
	33.7	2.66	4	
45	.34.7 .37.0	2.59 2.43	3	
	37.0 38.8	2.43 2.32	2	
	43.2	2.09	2	
	49.0	1.86	4	
	55.2	· 1.66	4 3 2 2 2 4 3 2	
50	55.8	1.65	2	

Example 47

Example 47
Preparation of AIPO₄-20

(a) A reaction mixture was prepared by combining 23.1 grams of 85% orthophosphonic acid

55 (H₃PO₄) and 34.6 grams of water, to which was added 13.8 grams of a hydrated aluminum oxide (a pseudo-boehmite phase, 74.2 wt. % Al₂O₃, 25.8 wt. % H₂O), and stirred until homogeneous. To this mixture was added 36.2 grams of tetramethylammonium hydroxide pentahydrate (TMAOH · 5H₂O) dissolved in 50 grams of H₂O and the mixture stirred until homogeneous. The composition of the final most on mixture is molar oxide ratios was: reaction mixture in molar oxide ratios was:

0.5 (TMA)20:Al2O3:P2O8:43 H2O

The reaction mixture was sealed in a stainless steel pressure vessel lined with polytetra-fluoroethylene and heated in an oven at 150°C at autogenous pressure for 71 hours. The solid reaction 65 product was recovered by repeated centrifugation and washing with water, and dried in air at room

0 43 562

temperature. Chemical analysis of the product showed 6.0 wt. % C, 1.76 wt. % N, 32.7 wt. % Al₂O₃, 44.8 wt. % P₂O₅, 22.8 wt. % LOI, giving a product composition in molar oxide ratios of:

0.20 (TMA)₂0:1.00 Al₂O₃:0.98 P₂O₈:2.17 H₂O

The AIPO₄-20 product contained a minor amount of crystalline impurity, but the major phase had an X-ray powder diffraction pattern characterized by the following data, wherein "I" is the intensity and "d" the interplanar spacing:

10	2θ	ď	100×1/10
	14.0	6.326	51
	19.9	4.462	44
	22.3	3.986	16
15	24.5	3.633	100
	28.2	3.164	25
	31.6	2.831	18
•	34.7	2.585	18
	40.3	2.238	4
20	43.1	2.099	5
	47.8	1.903	4
	52.2	1.752	10

(b) A portion of the solid crystalline product obtained from a similar preparation and exhibiting an X-ray powder diffraction pattern essentially identical to that of part (a) was calcined in air at about 100°C for 1 hour, 200°C for 1 hour, 400°C for 1 hour and finally at 620°C for 1 hour. The calcined product had an X-ray powder diffraction pattern characterized by the following data:

30	20	d	100×I/lo
	14.3	6.19	100
	20.3	4.37	27
	22.7	3.92	9 ·
	24.8	3.59	57
35	28.4	3.14	20
	32.1	2.79	19
	35.1	2.56	13
	40.9 -	2.21	4
	52.7	1.74	· 6
•			-

AIPO₄-20 appears to be a structural analogue of the aluminosilicate sodalite.

Example 48

Preparation of AIPO -20

A reaction mixture was prepared by combining 57.6 grams of 85% orthophosphoric acid (H₃PO₄) and 90.5 grams of water, to which was added 37.8 grams of the same hydrated aluminum oxide as in Example 47 and stirred until homogeneous. To this mixture was added 36.2 grams of tetramethylammonium hydroxide pentahydrate (TMAOH · 5H₂O) and 2.0 grams of sodium hydroxide dissolved in 50 grams of H₂O, and the mixture stirred until homogeneous. The composition of the final reaction mixture in molar oxide ratios was:

0.1 Na₂O:0.4 (TMA)₂O:1.1 Al₂O₃:P₂O₅:43 H₂O

The reaction mixture was placed in a sealed stainless steel pressure vessel lined with an Inert plastic material and heated in an oven at 150°C at autogenous pressure for 72 hours. The solid reaction product was recovered by centrifuging and washing with water, and dried in air at 110°C. A portion of the solids was subjected to X-ray analysis. The AIPO₄-20 product had an X-ray powder diffraction pattern essentially identical to that of the uncalcined product in Example 47(a).

60 Example 49

Preparation of AIPO₄-20

A reaction mixture was prepared by combining 92.1 grams of 85% orthophosphoric acid (H₃PO₄) and 220.9 grams of water, to which was added 55.0 grams of a hydrated aluminum oxide (Catapal SB, a pseudo-boehmite phase, 74.2 wt. % Al₂O₃, 25.8 wt. % H₂O), and stirred until homogeneous. To this mixture was added 72.5 grams of tetramethylammonium hydroxide pentahydrate (TMAOH · 5 H₂O)

dissolved in 50 grams H_2O and the mixture stirred until homogeneous. To this mixture 13.0 grams of NaA zeolite were added and the mixture homogenized. Exclusive of the NaA zeolite, the composition of the final reaction mixture in molar oxide ratios was:

The reaction mixture was placed in a stainless steel pressure vessel having an Inert plastic lining and heated in an oven at 125°C at autogenous pressure for 53 hours. The solid reaction product was recovered by centrifuging and washing with water, and dried in air at 110°C. The AIPO₄-20 product had an X-ray powder diffraction pattern essentially identical to that of the product in Example 47(a).

The species AIPO₄-20 as herein referred to is a crystalline metallophosphate whose essential framework structure has a chemical composition, expressed in terms of molar ratios of oxides, is

and having a characteristic X-ray powder diffraction pattern which contains at least the d-spacings set forth in Table 19 below:

20	2 <i>0</i>	TABLE 19 d	100xi/lo	
20	13.914.1	6.37—6.28	40—55	_
	19.8—20.0 24.3—24.5	4.48—4.44 3.66—3.63	40—48 100	
25	28.2—28.3 31.4—31.7	3.16—3.15 2.85—2.82	12—25 11—18	
	34.6-34.8	2.59-2.58	1518	

All of the $AIPO_4$ -20 compositions for which the X-ray powder diffraction data has presently been obtained have patterns that are within the generalized pattern of Table 20 below:

	2θ	TABLE 20 d.	100×l/lo
	13.9—14.1	6.37—6.28	40—55
35	19.820.0	4.484.44	4048
	22.2-22.4	4.003.97	516
	24.324.5	3.663.63	, 1 0 0
	28.2-28.3	3.16—3.15	1225
	31.4—31.7	2.852.82	11—18
40	34.6—34.8	2.592.58	1518
	40.2—40.5	2.24-2.23	45
	42.7—43.1	2.12-2.01	5—8
	47.5—47.8	1.91—1.90	4—7
	51.9-52.2	1.76—1.75	10—11

Example 50

55

Preparation of AiPO₄-22

(a) A reaction mixture was prepared by combining 57.7 grams of 85% orthophosphoric acid (H₃PO₄) and 80.4 grams of water, to which was added 34.4 grams of a hydrated aluminum oxide (a pseudo-boehmite phase, 74.2 wt. % Al₂O₃, 25.8 wt. % H₂O), and stirred until homogeneous. To this mixture was added 110.6 grams of an aqueous solution of 68.2 wt. % N,N'-dimethyl-1,1,4-diaza-bicyclo(2,2,2)octane dihydroxide (DDO), and the mixture stirred until homogeneous. The composition of the final reaction mixture in molar oxide ratios was:

The reaction mixture was sealed in a lined stainless steel pressure vessel and heated in an oven at 200°C at autogeneous pressure for 72 hours. The solid reaction product was recovered by filtration, washed with water, and dried in air at 110°C. Chemical analysis showed 9.6 wt. % C, 2.9 wt. % N, 33.2 wt. % Al_2O_3 , 47.6 wt. % P_2O_5 , 19.4 wt. % LOI, giving a product composition in molar oxide ratios of:

The above product, denominated AIPO $_4$ -22, had an X-ray powder diffraction pattern characterized by the following data, wherein "l" is the intensity and "d" the interplanar spacing:

0 043 562

	0 040 302			
	2θ	d	100×l/l	
	8.55	10.34	25	
	9.0	9.83	_2 (sh)	
5	9.1	9.72	57	
	11.4	7.76	. 1	
	12.7	6.97	(sh)	
	13.0	6.81	9	
	14.6 15.6	6.07 5.68	4 6	
10	17.3	5.13	26	
	18.5	4.80	100	
	20.65	4.30	43	
	21.4	4.15	1 (sh)	
15	21.75	4.08	19	
	22.6	3.93 .	6	
	23.7	3.75	- 22	
	23.85	3.7	23	
	24.2	3.68	8	
20	24.8	3.59	24	
	26.2	3.40	36	
	27.0	3.30	(sh)	
	27.3 ·	3.27	20	
	27.8	3.21	8	
25	28.6	3.12	10	
	29.3	3.05	30	
	30.1	2.969	8	
	31.55	2.835	16	
30	32.2 33.0	2.780	2 2	
30	33.2	2.714 2.698	2	
	34.15	2.625	2	
	. 34.9	2.571	11	
	35.55	2.525	5	
35	37.4	2.404	(sh)	
•	37.6	2.392	9	
	39.1	2.304	1	
	39.25	2.295	1	
	39.75	2.268	2	
40	40.35	2.235	4	
	41.2	2.191	2 4 2 2 1 4 2	
	42.1 43.7	2.146	2	
	43.7 44.3	2.071 2.045	1	
45	44.7	2.045	7	
~	45.2	2.006	. 4	
	46.4	1.957	1	
	47.0	1.933	2 4	
	48.4 (sh)	1.881	4	
50	48.75	1.868	13	
·	49.7	1.834	5	
•	50.2	1.817	2	
	51.4	1.778	<1	
	53.2	1.722	3	
55	54.0	1.698	13 5 2 <1 3 5	
	54.4	1.687	2	

(sh=shoulder)

(b) A portion of the solid crystalline product obtained above was calcined in air at about 600°C for 2 hours. The calcined AIPO₄-22 had an X-ray powder diffraction pattern characterized by the following data:

43 562

	2θ	d	100×I/lo
	8.6	10.28	(sh)
5	9.15	9.65	100
5	12.6	ر 7.03	40
	12.9	6.86 }	42
	13.0 .	6.81 J	
	14.4	6.15 }	21
40	14.7	6.03 ∫	
10	17.3	5.13	50
•	18.5	4.80	92
	20.4	4.35	64
	21.00	4.12	23
15	22.5	3.95	11
10	23.9	3.72	34
	24.8	3.59	18
	25.9	3.44 }	32
	26.1	3.41 5	(sh)
20	27.3	3.27	24
20	27.5	3.24∫	(sh)
	28.4	3.14	12
	29.1	3.07	31
	31.2	2.867	19
25	31.4	2.849∫	
25	32.9	2.722	4
	34.55	2.596	15
	34.9	2.571	14
	35.5	2.529	5
30	37.3 39.6	2.411 2.275	3
30	40.8		1
	40.8 41.5	2.212 2.176	3
	44.4	2.040	1
	44.9	2.019	3
35	46.7	1.945	2
••	47.2	1.926	3
	47.2 47.8	1.903	2
	48.2	1.888	. 3
	49.0	1.859	2
40	52.7	1.737	2
	53.4	1.716	14 5 3 1 3 1 4 2 3 2 3 2 2 4
	33.4	1.710	~

The species AIPO₄-22 as herein referred to is a crystalline metallophosphate whose essential framework structure has a chemical composition, expressed in terms of molar ratios of oxides, is

Al₂O₃:1.0±0.2 P₂O₅

and having a characteristic X-ray powder diffraction pattern which contains at least the d-spacings set forth in Table 21 below:

-	. 20	TABLE 21 d	100×l/lo
<i>55</i>	9.1 — 9.15 18.45—18.5	9.72—9.66 4.81—4.80	57—100 66—100
55	20.5520.65	4.32—4.30	4370
	26.1 —26.2 29.3	3.41—3.40 3.05	36—44 30—32
	31.55	2.835	16—29

All of the AIPO $_4$ -22 compositions for which the X-ray powder diffraction data has presently been obtained have patterns that are within the generalized pattern of Table 22 below:

65

43 562

		TABLE 22	
	2θ	d ·	100×I/lo
5	8.55	10.34	15-25
•	9.0 . 9.1 — 9.15	9.83 9.72 —9.66	(sh) 57—100
	11.4 12.7	7.76 6.97	0—1 (sh)
	12.9513.0	6.83 —6.81	9—14
10	14.5 —14.6 15.55—15.6	6.11 —6.07 5.70 —5.68	3—5 4—6
	17.25-17.3	5.14 —5.13	22-26
	18.45—18.5 20.55—20.65	4.814.80 4.324.30	66—100 43—70
15	21.65-21.75	4.10 -4.09	12-19
	22.6 23.6 —23.7	3.93 3.77 <i>—</i> 3.75	6 7 22
	23.8 —23.85	3.74 3.73	1823
20	24.2 24.7 —24.8	3.68 3.60 —3.59	8—14 10—24
	26.126.2	3.41 -3.40	3644
	27.0 27.2 —27.3	3.30 3.28 —3.27	(sh) 17—20
	. 27.7 —27.8	3.22 -3.21	8-23
25	28.6 29.3	3.12 3.05	10—14 30—32
	30.1	2.969	68
•	31.55 32.2	2.835 2.780	16—29 0—2
30	32.9 —33.0	2.722-2.714	2—3 2—3
	33.2 —33.3 34.1 —34.15	2.698—2.691 2.629—2.625	2-3
	34.9 35.55	2.571 2.525	5—11 5—8
35	37.4	2.404	(sh)
	37.5 —37.6 39.0 —39.25	2.3982.392 2.3092.295	6—9 1—2
	39.75	2.267	02
40	40.30—40.35 41.0 —41.2	2.238—2.235 2.201—2.191	2—3 1—2
	41.9 -42.1	2.1562.146	23
	43.7 44.2 —44.3	2.071 2.049—2.045	1—5 3—4
45	44.7 —44.9	2.027—2.019 2.006—2.002	1—2 <1—4
	45.2 —45.3 46.2 —46.4	1.965—1.957	<1—4 <1—1
	46.8 —47.0 48.1 —48.4	1.941—1.933 1.892—1.881	<1—2 (sh)—6
	48.6 -48.75	1.873—1.868	1319
50	- 49.6 —49.7 50.1 —50.2	1.838—1.834 1.821—1.817	4—5 1—2
	51.4	1.778	<1
	53.0 —53.2 53.8 —54.0	1.728—1.722 1.704—1.698	2—3 5—6
55	54.3. —54.4	1.689—1.687	2
•		•	

Example 51

Preparation of AIPO₄-25

The crystalline metallophosphate denominated AIPO₄-25 is preferably prepared by the thermally induced structural conversion of a less stable crystalline intermediate which is synthesized by hydrothermal crystallization from a reaction gel in a manner similar to that employed to obtain most of the AIPO₄-n species of the present invention. This intermediate, identified as AIPO₄-21 is readily synthesized using a considerable variety of organic templating agents which are removed from the structure during calcination to produce the stable AIPO₄-25.

(a) Preparation of AIPO₄-21

A reaction mixture was prepared by combining 7.7 grams of 85% orthophosphoric acid (H_3PO_4) and 25.9 grams of water, to which was added 4.6 grams of a pseudo-boehmite phase (74.2 wt. % Al_2O_3 , 25.8 wt. % $H_2O)$, and stirred until homogeneous. To this mixture was added 2.4 grams of $(CH_2)_4$:NH, (pyrrolidine), and the mixture stirred until homogeneous. The composition of the final reaction mixture in molar oxide ratios was:

1.0 (CH₂)₄:NH:Al₂O₃:P₂O₅:40 H₂O

The reaction mixture was sealed in a stainless steel pressure vessel lined with polytetrafluoro-10 ethylene and heated in an oven at 150°C at autogenous pressure for 150 hours. The solid reaction product was recovered by filtration, washed with water, and dried in air at 110°C. Chemical analysis of the product showed 10.2 wt-% C, 3.2 wt-% N, 32.1 wt. % Al_2O_3 , 47.1 wt. % P_2O_8 , 19.8 wt. % LOI, giving a product composition in molar oxide ratios of:

0.67 (CH2)4NH:1.00 Al2O3:1.05 P2O5:0.83 H2O

The product was designated AIPO $_4$ -21, and had an X-ray powder diffraction pattern characterized by the following data, wherein "I" is the intensity and "d" the interplanar spacing:

	2θ	d	100×I/lo
	10.0	8.845	51
	10.5	8.425	7
	11.3	7.830	14
	11.8	7.500	. 13
25	12.2	7.255	36
	13.2	6.707	6
	14.2	6.237	36
	14.6	6.067	27
	15.9	5.574	31
<i>30</i> .	16.8	5.277	6 ·
	18.5	4.796	6 · 4
	19.6	4.529	11
	20.4	4.353	25
	21.1	4.210	25
35	21.3	4.171	30
	22.6	3.934	97
	22.8	3.900	· 88
	23.7	3.754	.23
	25.1	. 3.548	100
40	25.8	3.453	6
	· 26.2	3.401	19
	26.6	3.3 51	53
	27.6	3.232	47
	28.2	3.164	21
45	29.0	3.079	11
	29.4	3.038	3
	30.6	2.921	3 5 8 35
	31.0	2.885	8
	32.0	2.797	35
50	32.6	2.747	23
	32.9	2.722	38
	34.0	· 2.637	15
	35.2	2.550	2
55	· 35.9	2.501	12
55	37.2	2.417 2.380	12
	37.8	2.321	
	38.8 40.2	2.321 2.243	7
•	44.4	2.243	7
60 -	47.6	1.910	· á
	50.8	1.797	7
•	52.0	1.759	á
	52.6	1.740	15 2 6 12 3 5 7 7 8 7 9
	53.2	1.722	Ŕ
65	54.0	1.698	8 7
	54.0	1.000	•

(b) A procedure similar to that in part (a) above was foll wed except where indicated in Table E. A portion of the solid product from each reaction was subjected to X-ray analysis and in each case a phase characterized by an X-ray powder diffraction pattern essentially the same as that in part (a) was observed alone or in admixture.

	Example	Organic used (R)	Read R	TABLE E	•		Digestion	To (9C)
	# #	Organic used (h)	<u> </u>	~12V3	P ₂ O ₅	H₂O	time (hrs)	Temp (°C)
10	(b) 1	(CH ₂) _e N trimethylamine	1	1	1	50	94	150
	(b) 2	(CH ₃) ₄ :NH pyrrolidine	1	1	1	50	166	150
	(p) 3	C ₆ H ₁₄ N ₂ 1,4-dimethyl piperazine	1	1	1	50	168	200
15	(b) 4	C ₁₁ H ₂₈ N ₂ 3-(di-n-butyl- amino)-propylamine	1	1	1	40	168	200
	(b) 5	C ₇ H ₁₀ N ₂ N,N,N',N'-tetra- methyl-1,3-propane- diamine	1	1	1	40	168	200
20	(b) 6	C ₄ H ₁₁ NO N,N-dimethyl- ethanolamine	1.	1	1	40	336	200
	(b) 7	n-C ₃ H ₇ NH ₂ n-propylamine	1	1	1	50	334	200
	(b) 8	C ₄ H _{1e} N ₂ N,N,N',N'-tetra- methyl-ethylene- diamine	1	1	1	50	168	200
25	(b) 9	C ₃ H ₈ NO N-methyl- ethanolamine	1	1	1	50	168	200

Preparation of AIPO₄-25

(c) A portion of the AlPO₄-21 crystalline product obtained in part (a) was calcined in air at about 30 600°C for 2 hours. The calcined product had an X-ray powder diffraction pattern quite different from the starting AlPO₄-21 and is a new and novel microporous aluminophosphate species denominated AlPO₄-25. The X-ray pattern of this species is characterized by the following data:

35	2₿	d .	100×1/10
33	7.6	11.632	3
	9.6 10.6	9.213 8.346	83 1
40	11.8 12.6	7.500 7.025	14 3
	15.2 19.1	5.829 4.647	· 100 71
	21.3 22.7	4.171 3.917	84 17
45	23.6 24.6	3.770 3.619	8 6 43
	25.5 26.1	3.490 3.414	43 14
50	28.6 29.9	3.121 2.988	10
	31.0 33.2	2.885 2.698	23
	35.7	2.515	3 23 8 7 8 8 8 3 3
55	37.4 37.9	2.404 2.374	8:
	· 43.2 53.3	2.094 1.719	3 3

(d) Five AIPO₄-21 samples crystallized in parts (b)1, (b)3, (b)5, (b)7 and (b)9, respectively, were calcined at 500—600°C in air and found to convert to the crystal structure characteristic of AIPO₄-25. It is believed all AIPO₄-21 compositions can be converted to AIPO₄-25 in a similar manner.

The species AIPO₄-25 as herein referred to is a crystalline metallophosphate whose essential framework structure has a chemical composition, expressed in terms of molar oxides, is

Al₂O₃:1.0±0.2 P₂O₅

043 562

and having a characteristic X-ray p wder diffraction pattern which contains at least the d-spacings set forth in Table 23 below:

		TABLE 23		
5	2 <i>0</i> ·	d	100×1∕1o	
	9.4	9.41	32—96	
	15.0	5.91	3576	
	18.8—18.9	4.72-4.70	35—100	
10	21.1	4.21	28—100	
	22.5	3.95	1632	
	25.3	3.52	1437	
	30.8—30.9	2.902.89	2031	

15 Example 52

10

25

30

Preparation of AIPO₄-26

A solution of 200 grams 1,4-dibromobutane in 500°cc of a 4:1 volume mixture of dimethylformamide:methanol (DMF/MeOH) was prepared and cooled to 0° in an ice/water bath. To this was added a solution of 159.4 grams N,N,N',N'-tetramethyl-1,6-hexanediamine in 500 cm³ 4:1 DMF/MeOH. This mixture was stirred for three days, gradually warming to ambient temperature. The product mass was slurried in diethylether, filtered, washed with ether and dried in air at ambient temperature. The product was a polymeric quaternary ammonium salt, [(C₁₄H₃₂N₂)Br₂]_x:

In order to obtain the hydroxide form, 200 grams of the above polymer was dissolved in 800 grams of H₂O and added dropwise over 6 hours to a stirred suspension of 131.4 grams Ag₂O in 1000 grams H₂O. The resulting mixture was stirred overnight and filtered. Chemical analysis of the filtrate showed 1.9 wt. % C, 0.32 wt. % N, and 0.0.4 wt. % Br, corresponding to an aqueous solution containing 3.0 wt. % of the polymer [(C₁₄H₃₂N₂)(OH)₂]_x. The concentration of the polymer in a portion of the filtrate was increased to 12.9 wt. % by removing H₂O at reduced pressure.

A reaction mixture was prepared by combining 101.6 grams of the above aqueous solution containing 12.9 wt. % of the polymeric quaternary ammonium hydroxide with 6.9 grams of a hydrated aluminum oxide (a pseudo-boehmite phase, 74.2 wt. % Al₂O₃, 25.8 wt. % H₂O). This mixture was stirred until homogeneous. To this mixture was added 11.5 grams 85 wt. % orthophosphoric acid and the mixture stirred until homogeneous. The composition of the final reaction mixture in molar oxide ratios

1.0 (C₁₄H₃₂N₂)(OH)₂:Al₂O₃:P₂O₅:105 H₂O

The reaction mixture was placed in a sealed stainless steel pressure vessel having an inert liner and heated in an oven at 200°C at autogenous pressure for 24 hours. The solid reaction product was recovered by filtration, washed with water, and dried in air at 110°C. The resulting AIPO₄-26 product had an X-ray powder diffraction pattern characterized by the following data, wherein "i" is the intensity and "d" the interplanar spacing:

⊅ U .				
,	20	TABLE 24	100×l/lo	
	8.35	10.59	100	_
<i>55</i>	9.85	8.98	14	
	10.2	8.67	(sh)	
	10.55	8.38	68	
	. 11.8	7.50	1	
	13.5	6.56	8	
60	14.5	6.11	6	•
	15.45	5.73	3 .	
	16.8	5.28	10	
	17.65	5.02	15	
	18.05	4.91	18	
65	19.0	4.67	1	

0 043 562

	20	TABLE 24 (contd.)	100×I/Io
5 ·	19.9 20.3	4.46 4.37	11
	21.65 22.25 23.05	4.10 3.99 3.86)	4 31
10	22.9 24.7	3.88) 3.60	74 6
	25.25 25.85 27.2	3.527 3.446 3.278	10 2 10
15	27.45 27.95 29.2	3.249 3.192 3.058	6 6 4 1
	29.7 30.45	3.008 3.936	1 9
20	30.9 31.1 31.6	2.8938 } 2.875 } 2.83	12 2
	32.25 32.7	2.776 2.739	2 8 1
25	33.8 34.3 35.0	2.652 2.614 2.564	1 6 1
	35.4 36.15 36.4	2.536 2.485 2.468	1 <1 ·
30	37.45 38.6	2.401 2:332	<1 2 <1
	39.0 39.4 40.0	2.309 2.287 . 2.254	<1 1 <1
35	40.5 41.3 42.4	2.227 2.186 2.132	<1 2 2 2 2 4
	43.1 44.2	2.099 2.049	<1
40	45.7 46.1 47.8	1.985 1.969 1.903	<1 1 1
45	48.15 49.1 49.7	1.890 1.855 1.834	2 2 <1
	50.7 51.4	1.801 1.778	<1 2
50	52.5 52.9 53.7	1.743 1.731 1.707	1 <1 2
	54.4 55.2	1.687 1.664	2 3 1

The species $AIPO_4$ -26 as herein referred to is a crystalline metallophosphate whose essential framework structure has a chemical composition, expressed in terms of molar ratios of oxides is:

Al₂O₃:1±0.2 P₂O₅

and having an X-ray powder diffraction pattern essentially as set forth in Table 24.

Example 53

Preparation of AIPO₄-28

The crystalline metallophosphate denominated AIPO₄-28 is preferably prepared by the thermally induced structural conversion of a less stable crystalline intermediate which is synthesized by hydrothermal crystallization from a reaction gel in a manner similar to that employed to obtain most of

the AIPO₄-n species of the present invention. This intermediate, identified as AIPO₄-23 is readily synthesized using pyrrolidine as the templating agent which is removed from the structure during calcination to produce the stable AIPO₄-28.

5 (a) Preparation of AIPO₄-23

20

A reaction mixture was prepared by combining 23.1 grams of 85% orthophosphoric acid (H₃PO₄) and 77.6 grams of water, to which was added 13.8 grams of a hydrated aluminum oxide (a pseudoboehmite phase, 74.2 wt. % Al₂O₃, 25.8 wt. % H₂O), and stirred until homogeneous. To this mixture was added 7.1 grams of (CH₂)₄:NH (pyrrolidine), and the mixture stirred until homogeneous. The composition of the final reaction mixture in molar oxide ratios was:

1.0 (CH₂)₄NH:AI₂O₃:P₂O₅:50 H₂O

The reaction mixture was placed in a sealed stainless steel pressure vessel lined with an inert plastic material and heated in an oven at 200°C at autogenous pressure for 91 hours. The solid reaction product was recovered by filtration, washed with water, and dried in air at 110°C. Chemical analysis showed 9.9 wt. % C, 31. wt. % N, 32.8 wt. % Al₂O₃, 47.5 wt. % P₂O₅, 19.3 wt. % LOI, giving a product composition in molar oxide ratios of:

The product denominated AIPO $_4$ -23 had an X-ray powder diffraction pattern characterized by the following data, wherein "I" is the intensity and "d" the interplanar spacing:

25	2θ	d	100×l/lo
	7.4 ·	11.946	47
	10.3	8.588	24
30	10.7	8.268	64
	11.6	7.628	54
	11.9	7.437	43 (sh)
	13.4	6.607	4
35	14.7	6.026	4
	15.0	5.906	6
	16.8	5.277	6
•	19.0	4.671	21
	20.4	4.353	28
40	21.3	4.171	100
	23.2	3.834 .	65
	24.0	3.708	9
	24.5	3.633	6 (sh)
	26.2	3.401	16
45	26.2 27.2 27.8	3.278 3.209	11 12
	28.6	3.121	36
	29.6	3.018	30
	30.8	2.903	11
	32.2	2.780	74
60	33.8 34.9 36.2	2.652 2.571 2.481	2. 7
	37.4	2.404	4
	39.2	2.298	2
<i>55</i>	40.7 · 43.3	2.217 2.090	7
•	48.2 49.8	1.888 1.831	8 4 2 7 4 8 4 2 5
60	51.8	1.765	2
	52.8	1.734	5

(b) Preparation of AIPO₄-28

A portion of the AiPO₄-23 composition prepared in part (a), supra, was calcined in air at about 600°C for 2 hours. The calcined product was crystalline but had an X-ray powder diffraction pattern substantially different from the precursor material. It is apparent that the calcination procedure

converted the original AIPO₄-23 t a new microporous aluminophosphate species of the present invention, namely AIPO₄-28. The X-ray powder diffraction pattern of the AIPO₄-28 product is as follows:

5	2θ	- d	100×l/io
	7.9	11.191	41
	9.9	8.934	7
	12.2	7.255	100
10	13.3 (sh)	6.657	22
	15.7	5.644	7
	18.6	4.770	47
	19.2 (sh)	4.623	25
	21.0	4.230	9
15	21.9	4.058	30
•	~23.5	3.786	7
•	25.4	3.507	20
	26.1	3.414	13
	27.0	3.302	16
20	29.7	3.008	13
	30.9	2.894	13
	32.1	2.788	11
	35.4	2.536	Ġ
	36.4	2.468	6 2
25	30.4	2.400	4

The species AIPO₄-28 as herein referred to is a crystalline metallophosphate whose essential framework structure has a chemical composition, expressed in terms of molar ratios of oxides, is

Al₂O₃:1.0±0.2 P₂O₅

and having a characteristic X-ray powder diffraction pattern which contains at least the d-spacings set forth in Table 25 below:

35		2θ	100×1/io	100×l/lo	
	~~	7.9	11.19	41	_
		12.2	7.26	100	
		18.6	4.77	47	
40		21.9	4.06	30	
		25.4	3.51	20	
		27.0	3.30	16	

Example 54

30

Preparation of AIPO4-31

(a) A reaction mixture was prepared by dispersing 164.8 grams of a pseudo-boehmite phase (74.2 wt. % Al₂O₃, 25.8 wt. % H₂O) in 715.2 grams of water, to which was added 276.7 grams of 85% orthophosphoric acid, and stirred until homogeneous. To this mixture was added 121.4 grams of di-(n-propyl)amine (Pr₂NH), and the mixture stirred until homogeneous. The composition of the final reaction mixture in molar oxide ratios was:

1.0 Pr2NH:Al2O3:P2O5:40 H2O

The reaction mixture was sealed in a stainless steel pressure vessel lined with polytetrafluoro-ethylene and heated in an oven at 200°C at autogeneous pressure for 46 hours. The solid reaction product was recovered by repeated centrifugation and washing with H₂O, and dried in air at room temperature. Chemical analysis of the reaction product showed 4.7 wt. % C, 0.85 wt. % N, 37.4 wt. % Al₂O₃, 51.6 wt. % P₂O₅, 10.3 wt. % LOI, giving a product composition expressed in molar oxide ratios of

0.18 Pr2NH:1.00 Al2O3:0.99 P2O5:0.56 H2O

The above product, denominated AlPO $_4$ -31, had an X-ray powder diffraction pattern characterized by the following data, wherein "I" is the intensity and "d" the interplanar spacing:

	2θ	TABLE 26 d	100×l/l
	8.5	10.40	85,
5	9.5	9.31	12
	13.35	6.63	6
	13.8	6.42	2
	14.8	5.99	2
,	15.7	5.64	6
10	17.1	5.19	7
	18.3	4.85	12 6 2 2 6 7 7
	20.0 (sh)	4.44	<u> </u>
	20.3	4.37	48 .
	21.1	4.21	28
15	21.8	4.08	26 .
	22.6	3.93	100
	23.2 (sh)	3.83	• -
:	24.8	3.59	7
	25.6	3.48	7 8 11 7 9
20	27.7	3.22 ·	11
	28.3	3.15	7
	29.6	3.02	9
	29.9	2.99	9
	31.4 (sh)	2.85	•
25 .	31.6	2.83	14
	35.2	2.55	10
	35.8	2.51	6
	38.0	2.37	ă
	40.0	2.25	6 8 4
30			•

(b) A portion of the solid crystalline product obtained above was calcined to a temperature of 1000°C. This calcined material had an X-ray powder diffraction pattern essentially identical to that of part (a).

(a) Adsorption capacities of AIPO₄-5 (prepared in Ex. 3(b) supra) were measured using a standard McBain-Bakr gravimetric adsorption apparatus. The following data were obtained on a sample activated at 350°C:

40		Kinetic diameter, nm	Pressure, mbar	Temp., °C	Wt. % adsorbed
45	O ₂ O ₂ Neopentane	0.346 0.346 0.62	129 999 136	-183 -183 24	12.6 17.0 5.5
70	(C ₄ F ₉) ₃ N (after 4 hours)	1.0 0.265	0.097 6.13	24 24 24	1.2 4.6
	H ₂ O H ₂ O	0.265	24.6	23	26.4

The pore size of the calcined product is greater than 0.6 and less than 1.0 nm as shown by adsorption of neopentane, kinetic diameter of 0.62 nm, and nil adsorption of $(C_4F_9)_3N$, kinetic diameter

(b) Adsorption capacitles of AIPO₄-5 (prepared in Example 2(b) supra) were measured using a standard McBain-Bakr gravimetric adsorption apparatus. The following data were obtained on a sample 55 activated at 350°C:

			Kinetic diameter, nm	Pressure, mbar	Temp., °C	Wt. % adsorbed
60	O ₂		0.346 0.346	132 973	-183 -183	13.3 18.3
	Cyclohexane Neopentane		0.60 0.62	72 136	24 24	9.5 4.8
65	H₂O H₂O	·. ·	0.265 0.265	6.1 28	24 24	3.9 29.8

43 562

The pore size of the calcined product is greater than 0.62 nm, as shown by adsorption of neopentane, kinetic diameter of 0.62 nm.

(c) Adsorption capacities of AIPO₄-5 (prepared in a manner similar to that of Example 2(b) supra) were measured using a standard McBain-Bakr gravimetric adsorption apparatus. The following data were obtained on a sample activated at 350°C:

		Kinetic diameter nm	Pressure, mbar	Temp., °C	Wt. % adsorbed
10	0,	0.346	140	-183	14.6
	0,	0.346	940	-183	21.3
	Neopentane	0.62	137	25 ·	6.5
	H ₂ O	0.265	6.1	25	6.5
	H ₂ O	0.265	27.6	25	32.6
15	-				

Example 56

Adsorption capacities of AIPO₄-28 (prepared in Example 53(b), supra) were measured using a standard McBain-Bakr gravimetric adsorption apparatus. The following data were obtained on a sample activated at 350°C:

20		Kinetic diameter, nm	Pressure, mbar	Temp., °C	Wt. % adsorbed
25	O ₂	0.346 0.346	137 1014	-183 -183	1.0 2.5
	n-Hexane	0.43	37	24	0.4
	Neopentane H₂O	0.62 0.265	413 6.1	24 24	0.5 11.1
30	H₂O	0.265	26.7	24	21.4

The pore size of the calcined product is >0.265 nm and <0.346 nm as shown by adsorption of H_2O , kinetic diameter of 0.265 nm, and nil adsorption of O_2 , kinetic diameter of 0.346 nm.

Example 57

35

Adsorption capacities of AIPO₄-25 (prepared in Ex. 52(c), supra) were measured using a standard McBain Bakr gravimetric adsorption apparatus. The following data were obtained on a sample activated at 350°C:

40		Kinetic diameter, nm	Pressure, mbar	Temp., °C	Wt. % adsorbed
	O ₂ O ₂	0.346	137	-183	4.9
	O₂ n-Hexane	· 0.346 0.43	101 <i>4</i> 37.3	-183 25	5.9 0.3
45	Neopentane H₂O	0.62 0.265	413 6.1	25 25	· 0.4 4.4
	H ₂ O	0.265	26.7	25	16.6

The pore size of the calcined product is >0.34 nm and <0.43 nm as shown by adsorption of O₂, so kinetic diameter of 0.346 nm, and nil adsorption of n-hexane, kinetic diameter of 0.43 nm.

Example 58

Adsorption capacities of AIPO₄-20 (prepared as in Example 47(b) supra) were measured using a standard McBain-Bakr gravimetric adsorption apparatus. The following data were obtained on a sample activated at 350°C:

55		Kinetic diameter; nm	Pressure, mbar	Temp., °C	Wt. % adsorbed
	0,	0.346	129	-183	2.7
60	0,	0.346	1000	-183	11.5
	n-Ĥexane	0.43	60	24	1.7
	Neopentane	0.62	404	24	1.5
	Cyclohexane	0.60	14.7	24	1.3
	H ₂ O	0.265	6.1	24	22.6
65	H ₂ O	0.265	24.7	24	37.2

043 562

The pore size of the calcined product is ca. 0.3 nm, as shown by adsorpti n of H₂O, kinetic diameter of 0.265 nm, and low adsorption at I w partial pressure of O₂, kinetic dlameter of 0.346 nm.

Example 59

Adsorption capacities of AIPO₄-17 (prepared in Ex. 42(c) supra) using a standard McBain-Bakr gravimetric adsorption apparatus. The following data were obtained on a sample activated at 350°C:

10		Kinetic diameter, nm	Pressure, mbar	Temp., °C	Wt. % adsorbed
,,,	02	0.346	136	-183 -183	22.2
	O₂ n-Hexane	0.346 0.43	965 60	-183 23	23.1 7.7
	Isobutane	0.50	135	22	0.2
15	Neopentane	0.62	410	23	0.3
	H ₂ O	0.265	6.1	22	24.9
	H₂O	0.265	24	22	27.8

The pore size of the calcined product is 0.43 nm and 0.5 nm, as shown by adsorption of n-hexane, winetic diameter of 0.43 nm, and nil adsorption of isobutane, kinetic diameter of 0.5 nm.

Example 60

Adsorption capacities of AIPO₄-16 (prepared in Example 41(d) supra) were measured using a standard McBain-Bakr gravimetric adsorption apparatus. The following data were obtained on a sample activated at 350°C:

30		Kinetic diameter, nm	Pressure, mbar	Temp., °C	Wt. % adsorbed
	02	0.346	135	-183	1.2
	O ₂ n-Butane	0.346 0.43	. 1006 1024	-183 24	11.6 2.0
35	Neopentane H ₂ O	0.62 0.265	401 6.1	25 24	1.4 19.0
	H ₂ O	0.265	26.7	24	36.3

The pore size of the calcined product is >0.265 nm and <0.346 nm, as shown by adsorption of H₂O, kinetic diameter of 0.265 nm, and low adsorption of O₂ at low partial pressures kinetic diameter of 0.346 nm.

Example 61

Adsorption capacities of AIPO₄-14 (prepared in Ex. 39(b) supra) using a standard McBain-Bakr gravimetric adsorption apparatus. The following data were obtained on a sample activated at 350°C.

A	dsorbate	Kinetic diameter, nm	Pressure, mbar	Ţemp., °C	Wt. % adsorbed
50 O.		0.346	136	· - 183	15.53
0		0.346	• 1017	-183	21.56
n-	Hexane	0.43	60	26	0.25
No	eopentane	0.62	655	24	0.37
Η,	.0	.0.265	6.1	24	21.46
55 H		0.265	28	24	28.66
N		0.364	133	-196	11.28
N.		0.364	996	-196	14.99

The pore size of the calcined product is >0.364 nm and <0.43 nm as shown by adsorption of N_2 , for kinetic diameter of 0.364 nm, and nll adsorption of n-hexane, kinetic diameter of 0.43 nm.

Example 62-A

Adsorption capacities of AlPO $_4$ -8 (prepared as in Example 29, supra) using a standard McBain-Bakr gravimetric adsorption apparatus. The following data were obtained on a sample activated at 350° C:

		Kinetic diameter, nm	Pressure, mbar	Temp., °C	Wt. % adsorbed
	0,	0.346	135	-183	8.9
5		0.346	1006	-183	18.6
	n-Butane	0.43	1024	24	5.0
	Neopentane	0.62	668	24 ·	4.5
	(C ₄ F ₉) ₃ N (after 4 hours)	0.10	0.1	25	8.2
	H ₂ O	0.265	61	24	18.5
10		0.265	267	24	31.9

The pore size of the calcined product is greater than 0.62 nm as shown by adsorption of neopentane, kinetic diameter of 0.62 nm.

15 Example 62-B

Adsorption capacities of AIPO4-31 (prepared as in Example 54(b) supra except that product was calcined to a temperature of 600°C) were measured using a standard McBain-Bakr gravimetric adsorption apparatus. The following data were obtained on a sample activated at 350°C:

20		Kinetic diameter, nm	Pressure, mbar	Temp., °C	Wt. % adsorbed
	02 .	0.348 0.346	132 948	-183 -183	8.1 · 11.5
25	Butane	0.43	143	24	4.0
	Cyclohexane Neopentane	0.60 0.62	72 145	24 24	5.3 3.1
	H ₂ O H ₂ O	0.265	6.1	24	5.3
	H₂O	0.265	18.7	24	13.9

The pore size is larger than 0.62 nm as shown by the adsorption of neopentane.

A portion of the crystalline AlPO₄-11 product of Example 32(a) supra was calcined in air from 35 200°C to 500°C over a period of 1 hour, followed by heating at 500°C for 2 hours.

Adsorption capacities were measured on this calcined product using a standard McBain-Bakr gravimetric adsorption apparatus. The following data were obtained on a sample activated at 350°C.

40	Adsorbate	Kinetic diameter, nm	Pressure mbar	Temp., °C	Wt. % adsorbed
	02	0.346	135	-183	9.22
	02	0.346	1006	-183	10.7
	N-butane	0.43	405	24	4.35
45	Isobutane	0.50	66 9	24	4.71
	Neopentane	0.62	401	24	1.22
	Cyclohexane	0.60	40	24	5.30
	H ₂ O	0.265	6.1	24	11.8
	H ₂ O	0.265	· 26.7	24	16.4

The pore size of the calcined product is greater than 0.6 nm and less than 0.62 nm, as shown by adsorption of cyclohexane, kinetic diameter of 0.6 nm and nil adsorption of neopentane, kinetic diameter of 0.62 nm.

55 Example 64

Adsorption capacities of AIPO₄-18 (prepared in Example 46(b) supra) were measured using a standard McBain-Bakr gravimetric adsorption apparatus. The following data were obtained on a sample activated at 350°C:

0 043 562

		Kinetic diameter, nm	Pressure, mbar	Temp., °C	Wt. % adsorbed
	0,	0.346	173	-183	23.0
5	0,	0.346	929	-183	27.9
	n-Butane	0.43	.957	24	16.2
	iso-Butane	0.50	135	24	0.1
	H₂O	0.265	6.1	24	30.3
	H,0	0.265	28	24	36.9
10		-			

The pore size of the calcined product is 0.43 and 0.5 nm, as shown by adsorption of n-butane and nil adsorption of iso-butane at low partial pressure.

Somewhat surprisingly the aluminophosphate compositions of the present invention are found to be strongly hydrophilic. All species are observed to adsorb water preferentially over common 15 hydrocarbon molecules such as paraffins, olefins and benzenoid aromatic species, e.g., benzene, xylenes and cumene. Thus the present aluminophosphates as a class are useful as desiccants in such adsorption separation/purification processes as natural gas drying, cracked gas drying. Water is also preferentially adsorbed over the so-called permanent gases such as carbon dioxide, nitrogen, oxygen and hydrogen. These aluminophosphates are therefore suitably employed in the drying of reformer 20 hydrogen streams and in the drying of oxygen, nitrogen or air prior to liquefaction. In this respect the adsorptive properties of the present aluminophosphates appeares to be quite similar to those of the low silica aluminosilicate zeolites, despite the fact that they exhibit essentially no ion-exchange capacity—a quintessential property of zeolites.

The adsorptive properties of the present AIPO4-n compositions are illustrated by the data set forth 25 in Table F and Table G below.

TABLE F Static drying of moist air at room temperature % Humidity

30		% Humidity		0
30	Sample	Initial	Final	Contact time, hours
	Zeolite 4A	60	21	3
35	Zeolite 5A	54	5	16
	Silica gel	56	18	16
	AIPO ₄ -5	55	29	4
	AIPO ₄ -8	60	21	3.5
	AIPO ₄ -8	61	19	18
40	AIPO ₄ -11	57	29	5.5
	AIPO ₃ -14	56	19	3.0
	AIPO ₄ -16	70	22	3.0
	AIPO ₄ -16	56 ·	14	72
	AIPO ₄ -17	63	24	18.5
45	AIPO ₄ -20	60	17	16
	AIPO ₄ -28	56	7	17.5
÷	AIPO ₄ -25	56	25	18.5
	AIPO ₄ -9	51	29	23
50	AIPO ₄ -18	56	19	24
	AIPO ₄ -31	51	24	19

To illustrate the hydrophilic character of the AIPO₄-n compositions in contact with an aqueous organic solution, dehydrated samples of AIPO₄ compounds and prior known comparison adsorbent, each weighing 0.5 grams were placed in 2 grams of a solution of 4 vol.-% H₂O and 96 vol.-% 2butanone at ambient room temperature and agitated moderately for 2 hours. Thereafter the residual solution and the adsorbent were analyzed for water content. The results appear below:

TABLE	G	

	Adsorbent	% Water removal from solution	% Loading**
5	AIPO ₄ -5	55	23
	AIPO₄-8	. 74	45
	AIPO ₄ -11	21	23
	AIPO ₄ -14	>80	>45
	AIPO ₄ -16	>80	>45
10.	AIPO-17	77	41
	. AIPO-20	87	58
	Zeolite NaY	80	37
	Silica gel	28	
	Silicalite*	_ 5	

* U.S.--A---4,061,724

The present AIPO₄-n compositions exhibit novel surface selectivity characteristics which render them useful as catalyst or catalyst bases in a number of hydrocarbon conversion and oxidative combustion reactions. They can be impregnated or otherwise loaded with catalytically active metals by methods well known in the art and used, for example, in fabricating catalysts compositions having silicalite or alumina bases. Of the general class, those species having pores larger than about 5A are preferred.

Among the hydrocarbon conversion reactions catalyzed by AIPO--n compositions are cracking.

Among the hydrocarbon conversion reactions catalyzed by AIPO₄-n compositions are cracking, hydrocracking, alkylation of both the aromatic and isoparaffin types, isomerization including xylene isomerization, polymerization, reforming, hydrogenation, dehydrogenation, transalkylation, dealkylation and hydration.

Using AIPO₄-n catalysts compositions which contain a hydrogenation promoter such as platinum or palladium, heavy petroleum residual stocks, cyclic stocks and other hydrocrackable charge stocks can be hydrocracked at temperatures in the range of 204°C to 441°C using molar ratios of hydrogen to hydrocarbon in the range of between 2 and 80, pressures between 1.67 and 242 bar, and a liquid hourly space velocity (LHSV) of from 0.1 to 20, preferably 1.0 to 10.

The AIPO₄-n catalyst compositions employed in hydrocracking are also suitable for use in reforming processes in which the hydrocarbon feedstocks contact the catalyst at temperatures of from about 371°C to 538°C, hydrogen pressures of from 7.9 to 35.4 bar, LHSV values in the range of 0.1 to 10 and hydrogen to hydrocarbon molar ratios in the range of 1 to 20, preferably between 4 and 12.

These same catalysts, i.e. those containing hydrogenation promoters, are also useful in hydroisomerization processes in which feedstocks such as normal paraffins are converted to saturated branched chain isomers. Hydroisomerization is carried out at a temperature of from about 93°C to 316°C preferably 149°C to 287°C with an LHSV value of from about 0.2 to 1.0. Hydrogen is supplied to the reactor in admixture with the hydrocarbon feedstock in molar proportions (H/Hc) of between 1 and 5.

At somewhat higher temperatures, i.e. from about 344°C to 538°C, preferably 455°C to 510°C and usually at somewhat lower pressures within the range of about 2.0 to 4.43 bar, the same catalyst compositions are used to hydroisomerize normal paraffins. Preferably the paraffin feedstock comprises normal paraffins having a carbon number range of C₇—C₂₀. Contact time between the feedstock and the catalyst is generally relatively short to avoid undesirable side reactions such as olefin polymerization and paraffin cracking. LHSV values in the range of 0.1 to 10, preferably 1.0 to 6.0 are suitable.

The unique crystal structure of the present AIPO₄ catalysts and their total lack of alkali metal content favor their use in the conversion of alkylaromatic compounds, particularly the catalytic disproportionation of toluene, ethylene, trimethyl benzenes, tetramethyl benzenes and the like. In the disproportionation process isomerization and transalkylation can also occur. Group VIII noble metal adjuvents alone or in conjunction with Group VI—B metals such as tungsten, molybdenum and chromium are preferably included in the catalyst composition in amounts of from about 3 to 15 weight-% of the overall composition. Extraneous hydrogen can, but need not be present in the reaction zone which is maintained at a temperature of from about 204°C to 399°C pressures in the range of 7.9 to 139 bar and LHSV values in the range of 0.1 to 15.

Catalytic cracking processes are preferably carried out with AIPO₄-n compositions using feedstocks such as gas oils, heavy naphthas, deasphalted crude oil residua etc. with gasoline being the principal desired product. Temperature conditions of 455°C to 593°C, LHSV values of 0.5 to 10 and pressure conditions of from about 0.98 to 4.43 bar are suitable.

Dehydrocyclization reactions employing paraffinic hydrocarbon feedstocks, preferably normal paraffins having more than 6 carb n at ms, to f rm benzene, xylenes, t luene and the like are carried ut using essentially the same reaction conditions as f r catalytic cracking. For these reactions it is

^{**} Percent of maximum theoretical capacity.

preferred to use the AIPO4-n catalyst in conjunction with a Group VIII non-noble metal cation such as cobalt and nickel.

In catalytic dealkylation wherein it is desired to cleave paraffinic side chains from aromatic nuclei without substantially hydrogenating the ring structure, relatively high temperatures in the range of about 427°C-538°C are employed at moderate hydrogen pressures of about 21.7-69.9 bar, other conditions being similar to those described above for catalytic hydrocracking. Preferred catalysts are of the same type described above in connection with catalytic dehydrocyclization. Particularly desirable dealkylation reactions contemplated herein include the conversion of methylnaphthalene to naphthalene and toluene and/or xylenes to benzene.

In catalytic hydrofining, the primary objective is to promote the selective hydrodecomposition of organic sulfur and/or nitrogen compounds in the feed, without substantially affecting hydrocarbon molecules therein. For this purpose it is preferred to employ the same general conditions described above for catalytic hydrocracking, and catalysts of the same general nature described in connection with dehydrocyclization operations. Feedstocks include gasoline fractions, kerosenes, jet fuel fractions, 15 diesel fractions, light and heavy gas oils, deasphalted crude oil residua and the like any of which may contain up to about 5 weight-percent of sulfur and up to about 3 weight-percent of nitrogen.

Similar conditions can be employed to effect hydrofining, i.e., denitrogenation and desulfurization, of hydrocarbon feeds containing substantial proportions of organonitrogen and organosulfur compounds. It is generally recognized that the presence of substantial amounts of such constituents zo markedly inhibits the activity of catalysts for hydrocracking. Consequently, it is necessary to operate at more extreme conditions when it is desired to obtain the same degree of hydrocracking conversion per pass on a relatively nitrogenous feed than are required with a feed containing less organonitrogen compounds. Consequently, the conditions under which denitrogenation, desulfurization and/or hydrocracking can be most expeditiously accomplished in any given situation are necessarily determined in view of the characteristics of the feedstocks in particular the concentration of organonitrogen compounds in the feedstock. As a result of the effect of organonitrogen compounds on the hydro-cracking activity of these compositions it is not at all unlikely that the conditions most suitable for denitrogenation of a given feedstock having a relatively high organonitrogen content with minimal hydrocracking, e.g., less than 20 volume percent of fresh feed per pass, might be the same as those preferred for hydrocracking another feedstock having a lower concentration of hydrocracking inhibiting constituents e.g., organonitrogen compounds. Consequently, it has become the practice in this art to establish the conditions under which a certain feed is to be contacted on the basis of preliminary screening tests with the specific catalyst and feedstock.

Isomerization reactions are carried out under conditions similar to those described above for 35 reforming, using somewhat more acidic catalysts. Olefins are preferably isomerized at temperatures of 260°—482°C, while paraffins, naphthenes and alkyl aromatics are isomerized at temperatures of 371°—538°C. Particularly desirable isomerization reactions contemplated herein include the conversion of n-heptane and/or n-octane to isoheptanes, iso-octanes, butane to iso-butane, methylcyclopentane to cyclohexane, meta-xylene and/or ortho-xylene to paraxylene, 1-butene to 2butene and/or isobutene, n-hexene to isohexene, cyclohexene to methylcyclopentene etc. The preferred cation form is a combination of the AIPO4-n with polyvalent metal compounds (such as sulfides) of metals of Group II-A, Group II-B and rare earth metals. For alkylation and dealkylation processes the AIPO₄-n compositions having pores of at least 0.5 nm are preferred. When employed for dealkylation of alkyl aromatics, the temperature is usually at least 177°C and ranges up to a temperature at which 45 substantial cracking of the feedstock or conversion products occurs, generally up to about 371°C. The temperature is preferably at least 232°C and not greater than the critical temperature of the compound undergoing dealkylation. Pressure conditions are applied to retain at least the aromatic feed in the liquid state. For alkylation the temperature can be as low as 121°C but is preferably at least 177°C. In alkylation benzene, toluene and xylene, the preferred alkylating agent are olefins such as ethylene and 50 propylene.

Claims

10

1. Crystalline aluminophosphates each having a framework structure whose chemical 55 composition expressed in terms of mole, ratios of oxides is

Al₂O₃:1.0±0.2 P₂O₅;

characterized in that each of said framework structures being microporous in which the pores are 60 uniform and have nominal diameters within the range of 0.3 to 1.0 nm, an intracrystalline adsorption capacity for water at 6.13 mbar and 24°C of at least 3.5 weight percent, the adsorption and desorption of water being completely reversible while retaining the same essential framework topology in both the hydrated and dehydrated state.

2. Crystalline aluminophosphate according to claim 1 which has an X-ray powder diffraction 65 pattern which contains at least the d-spacings set forth in Table 2.

- 3. Crystalline aluminophopshate according to claim 1 which has an X-ray powder diffraction pattern which contains at least the d-spacings set forth in Table 4.
- Crystalline aluminophosphate according to claim 1 which has an X-ray powder diffraction pattern which contains at least the d-spacings set forth in Table 6.
- 5. Crystalline aluminophosphate according to claim 1 which has an X-ray powder diffraction pattern which contains at least the d-spacings set forth in Table 8.
- 6. Crystalline aluminophosphate according to claim 1 which has, an X-ray powder diffraction pattern which contains at least the d-spacings set forth in Table 10.
- Crystalline aluminophosphate according to claim 1 which has an X-ray powder diffraction pattern which contains at least the d-spacings set forth in Table 12.
 - 8. Crystalline aluminophosphate according to claim 1 which has an X-ray powder diffraction pattern which contains at least the d-spacings set forth in Table 13.
 - Crystalline aluminophosphate according to claim 1 which has an X-ray powder diffraction pattern which contains at least the d-spacings set forth in Table 15.
 - Crystalline aluminophosphate according to claim 1 which has an X-ray powder diffraction pattern which contains at least the d-spacings set forth in Table 17.
 - 11. Crystalline aluminophosphate according to claim 1 which has an X-ray powder diffraction pattern which contains at least the d-spacings set forth in Table 19.
- 12. Crystalline aluminophosphate according to claim 1 which has an X-ray powder diffraction pattern which contains at least the d-spacings set forth in Table 21.
 - 13. Crystalline aluminophosphate according to claim 1 which has an X-ray powder diffraction pattern which contains at least the d-spacings set forth in Table 23.
 - 14. Crystalline aluminophosphate according to claim 1 which has an X-ray powder diffraction pattern essentially as set forth in Table 24.
- 25 15. Crystalline aluminophosphate according to claim 1 which has an X-ray powder diffraction pattern which contains at least the d-spacings set forth in Table 25.
 - 16. Crystalline aluminophosphate according to claim 1 which has an X-ray powder diffraction pattern essentially as set forth in Table 26.
- 17. Process for preparing a microporous crystalline aluminophosphate having a chemical composition expressed in terms of mole ratios of oxides of

characterized by forming a reaction mixture having a composition expressed in terms of mole ratios of oxides of

and containing from about 0.2 to 2.0 moles of an organic templating agent per mole of Al₂O₃, and heating said reaction mixture at a temperature of at least 100°C until crystals of said aluminophosphate are produced.

- 18. Process according to claim 17 wherein the reaction mixture is heated at a temperature of from 100°C to 300°C under autogeneous pressure.
- Process according to claim 18 wherein the reaction mixture has a composition expressed in terms of mole ratios of oxides of

Al₂O₃:0.8-1.2 P₂O₅:25-75 H₂O

and is heated at a temperature of from 125°C to 200°C.

- 20. Process according to claim 19 wherein the source of P₂O₅ is phosphoric acid, the source of \$\omega_2\$O₃ is pseudo-boehmite hydrated aluminum oxide and the reaction mixture contains per mole of Al₂O₃, from 0.5 to 1.5 moles of organic templating agent, from 40 to 50 moles H₂O and about 1.0 mole P₂O₅.
- 21. Process according to claim 19 wherein the templating agent is selected from the group consisting of tetrapropylammonium hydroxide; tetraethylammonium hydroxide; tripropylamine; triethylamine; triethanolamine; piperidine; cyclohexylamine; 2-methyl pyridine; N,N-dimethyl-benzylamine; N,N-diethylethanolamine; dicyclohexylamine; N,N-dimethylethanolamine; choline; N,N-dimethylpiperazine; 1,4-diazabicyclo(2,2,2)octane; N-methyldiethanolamine; N-methylpiperidine; 3-methylpiperidine; N-methylcyclohexylamine; 3-methylpiperidine; 4-methylpiperidine; quinuclidine; and N,N'-dimethyl-1,4-diazabicyclo(2,2,2)octane dihydroxide.
 - 22. Process according to claim 19 wherein the templating agent is selected from the group consisting of tetramethylammonium hydroxide; tetraethylammonium hydroxide; tetrabutylammonium hydroxide; tetrapentylammonium hydroxide; di-(n-butyl)-amine; neopentylamine; di-(n-pentyl)-amine; isopropylamine and t-butylamine.
- 23. Process according to claim 19 wherein the templating agent is an alkyl amine in which the ss alkyl molety contains from 2 to 7 carbon atoms.

- 24. Process according t claim 19 wherein the templating agent is selected fr m the group consisting of ethylenediamine and 2-imidazolidone.
 - 25. Process according to claim 23 wherein the alkylamine is di-(n-propyl) amine.
- 26. Process according to claims 19 wherein the templating agent is a polymeric quaternary ammonium salt [(C₁₄H₃₂N₂)(OH)₂]_x wherein X is a value of at least 2
- 27. Process for separating polar molecular species having effective molecular diameter of less than about 1.0 nm from admixture with less polar molecular species by contacting said mixture with at least one aluminophosphate of claim 1, said aluminophosphate being at least partially dehydrated at the initiation of contact and have a pore diameter large enough to adsorb the more polar molecular
 - 28. Process according to claim 27 wherein the more polar molecular species is water.
 - 29. Process for converting a hydrocarbon which comprises contacting said hydrocarbon under hydrocarbon converting conditions with an aluminophosphate of claim 1.
 - 30. Process according to claim 29 wherein the hydrocarbon conversion process is cracking.
 - 31. Process according to claim 29 wherein the hydrocarbon conversion process is hydrocracking.
 - 32. Process according to claim 29 wherein the hydrocarbon conversion process is hydrogenation.
 - 33. Process according to claim 29 wherein the hydrocarbon conversion process is polymerization.
 - 34. Process according to claim 29 wherein the hydrocarbon conversion process is alkylation.
 35. Process according to claim 29 wherein the hydrocarbon conversion process is reforming.

 - 36. Process according to claim 29 wherein the hydrocarbon conversion process is hydrotreating.
 - 37. Process according to claim 29 wherein the hydrocarbon conversion process is isomerization.
 - 38. Process according to claim 37 wherein the isomerization is xylene isomerization.

Patentansprüche

15

20

25

1. Kristalline Aluminophosphate mit Gitterstruktur und der als Molverhältnis der Oxide ausgedrückten Zusammensetzung

Al₂O₃:1,0±0,2 P₂O₅

dadurch gekennzeichnet, daß jede der Gitterstrukturen mikroporös ist, wobei die Poren gleichmäßig sind und Nenndurchmesser im Bereich von 0,3 bis 1 nm, eine interkristalline Adsorptionskapazität für Wasser bei 6,13 mber und 24°C von wenigstens 3,5% haben und die Wasseradsorption und desorption vollständig reversibel ist und im wesentlichen die gleiche Gitterstruktur-Topologie sowohl im hydratisierten als auch im dehydratisierten Zustand beibehalten wird.

- 2. Kristallines Aluminophosphat nach Anspruch 1, das ein Röntgen-Pulverbeugungsbild hat, das wenigstens die d-Abstände gemäß der Tabelle 2 besitzt.
- 3. Kristallines Aluminophosphat gemäß Anspruch 1, das ein Röntgen-Pulverbeugungsbild hat, das wenigstens die in der Tabelle 4 wiedergegebenen d-Abstände besitzt.
- 4. Kristallines Aluminophosphat nach Anspruch 1, das ein Röntgen-Pulverbeugungsbild hat, das wenigstens die in Tabelle 6 wiedergegebenen d-Abstände besitzt.
- 5. Kristallines Aluminophosphat nach Anspruch 1, das ein Röntgen-Pulverbeugungsbild hat, welches wenigstens die in Tabelle 8 wiedergegebenen d-Abstände aufweist.
- 6. Kristallines Aluminophosphat nach Anspruch 1, das ein Röntgen-Pulverbeugungsbild hat, welches wenigstens die in Tabelle 10 wiedergegebenen d-Abstände aufweist.
- 7. Kristallines Aluminophosphat nach Anspruch 1, das ein Röntgen-Pulverbeugungsbild hat, welches wenigstens die in Tabelle 12 wiedergegebenen d-Abstände aufweist.
- 8. Kristallines Aluminophosphat nach Anspruch 1, das ein Röntgen-Pulverbeugungsbild hat, welches wenigstens die in Tabelle 13 wiedergegebenen d-Abstände aufweist.
- 9. Kristallines Aluminophosphat nach Anspruch 1, das ein Röntgen-Pulverbeugungsbild hat, welches wenigstens die in Tabelle 15 wiedergegebenen d-Abstände aufweist.
- 10. Kristallines Aluminophosphat nach Anspruch 1, das ein Röntgen-Pulverbeugungsbild hat, welches wenigstens die in Tabelle 17 wiedergegebenen d-Abstände aufweist.
- 11. Kristallines Aluminophosphat nach Anspruch 1, das ein Röntgen-Pulverbeugungsbild hat, welches wenigstens die in Tabelle 19 wiedergegebenen d-Abstände aufweist.
- 12. Kristallines Aluminophosphat nach Anspruch 1, das ein Röntgen-Pulverbeugungsbild hat, welches wenigstens die in Tabelle 21 wiedergegebenen d-Abstände aufweist.
- 13. Kristallines Aluminophosphat nach Anspruch 1, das ein Röntgen-Pulverbeugungsbild hat,
- welches wenigstens die in Tabelle 23 wiedergegebenen d-Abstände aufweist.

 14. Kristallines Aluminophosphat nach Anspruch 1, das ein Röntgen-Pulverbeugungsbild hat, welches wenigstens die in Tabelle 24 wiedergegebenen d-Abstände aufweist.
- 15. Kristallines Aluminophosphat nach Anspruch 1, das ein Röntgen-Pulverbeugungsbild hat, welches wenigstens die in Tabelle 25 wiedergegebenen d-Abstände aufweist.
- 16. Kristallines Aluminophosphat nach Änspruch 1, das ein Röntgen-Pulverbeugungsbild hat, welches wenigstens die in Tabelle 26 wiedergegebenen d-Abstände aufweist.

17. Verfahren zur Herstellung eines mikroporösen kristallinen Aluminophosphats der im Molverhältnis der Oxide ausgedrückten Zusammensetzung

Al2O3:1,0±0,2 P2O5,

dadurch gekennzeichnet, daß man ein Reaktionsgemisch bildet, das eine im Molverhältnis der Oxide ausgedrückte Zusammensetzung von

"

hat und etwa 0,2 bis 2,0 Mol eines organischen strukturgebenden Mittels pro Mol Al_2O_3 enthält, und das Reaktionsgemisch auf eine Temperatur von wenigstens 100°C bis zur Bildung von Kristallen des genannten Aluminophosphats, erhitzt.

18. Verfahren nach Anspruch 17, wobei das Reaktionsgemisch auf eine Temperatur von 100 bis

15 300°C unter Eigendruck erhitzt wird.

19. Verfahren nach Anspruch 18, wobei das Reaktionsgemisch eine im Molverhältnis der Oxide ausgedrückte Zusammensetzung von

20

besitzt und auf eine Temperatur von 125 bis 200°C erhitzt wird.

20. Verfahren nach Anspruch 19, wobei die Quelle für das P_2O_5 Phosphorsäure, die Quelle für Al $_2O_3$ hydratisiertes Aluminiumoxid, genannt Pseudoboehmit, ist und das Reaktionsgemisch pro Mol Al $_2O_3$ 0,5 bis 1,5 Mol des organischen Strukturbildners, 40 bis 50 Mol H_2O und etwa 1 Mol P_2O_5 enthält.

21. Verfahren nach Anspruch 19, wobei der Strukturbildner aus der Gruppe der folgenden Verbindungen gewählt ist: Tetrapropylammoniumhydroxid; Tetraäthylammoniumhydroxid; Tripropylamin; Triäthylamin; Triäthanolamin; Pyridin; Cyclohexylamin; 2-Methylpyridin; N,N-Dimethylbenzylamin; N,N-Dimethylathanolamin; Dicyclohexylamin; N,N-Dimethylathanolamin; Cholin; N,N-Dimethylpiperazin; 1,4-Diazabicyclo-(2,2,2)-octan; N-Methyldiäthanolamin; N-Methylpiperidin; N-Methylpiperidin; N-Methylpiperidin; 3-Methylpiperidin; N-Methylpiperidin; Ouinuclidin; und N,N'-Dimethyl-1,4-diazabicyclo-(2,2,2)-octan-dihydroxid.

22. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß der Strukturbildner aus der folgenden Gruppe gewählt ist; Tetramethylammoniumhydroxid; Tetrathylammoniumhydroxid; Tetrabutylammoniumhydroxid; Tetrapentylammoniumhydroxid; Di-(n-butyl)-amin; Neopentylamin; Di-(n-butyl)-amin; Di-(n-butyl)-am

pentyl)amin; Isopropylamin und Tertiobutylamin.

23. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß der Strukturbildner ein Alkylamin ist, in dem die Alkylkette 2 bis 7 Kohlenstoffatome enthält.

24. Verfahren nach Anspruch 19, wobei der Strukturbildner aus der Gruppe von Äthylendiamin 40 und 2-Imidazolidon gewählt ist.

25. Verfahren nach Anspruch 23, wobei das Alkylamin Di-(n-propyl)amin ist.

26. Verfahren nach Anspruch 19, wobei der Strukturbildner ein polymeres quaternäres Ammoniumsalz [(C₁₄H₃₂N₂)(OH)₂]_x ist, in dem X wenigstens den Wert 2 hat.

27. Verfahren zur Abtrennung von polaren Molekülarten mit einem effektiven Moleküldurchmesser von weniger als etwa 1,0 nm aus einem Gemisch mit weniger polaren Molekülarten durch Inberührungsbringen dieses Gemisches mit wenigstens einem Aluminophosphat nach Anspruch 1, wobei das genannte Aluminophosphat bei Kontaktbeginn wenigstens teilweise dehydratisiert ist und einen genügend großen Porendurchmesser hat, um die stärker polare Molekülart zu adsorbieren.

28. Verfahren nach Anspruch 27, wobei die stärker polare Molekülart Wasser ist.

- 29. Verfahren zum Umwandlung eines Kohlenwasserstoffes, bei dem der Kohlenwasserstoff unter Kohlenwasserstoffumwandlungsbedingungen mit einem Aluminophosphat nach Anspruch 1 in Berührung gebracht wird.
 - 30. Verfahren nach Anspruch 29, worin der Kohlenwasserstoffumwandlungsprozess Kracken ist.
- 31. Verfahren nach Anspruch 29, wobel der Kohlenwasserstoffumwandlungsprozess Hydro-55 kracken ist.
 - 32. Verfahren nach Anspruch 29, wobei der Kohlenwasserstoffumwandlungsprozess eine Hydrierung ist.
 - Verfahren nach Anspruch 29, wobei der Kohlenwasserstoffumwandlungsprozess eine Polymerisation ist.
 - 34. Verfahren nach Anspruch 29, wobei der Kohlenwasserstoffumwandlungsprozess eine Alkylierung ist.
 - 35. Verfahren nach Anspruch 29, wobei der Kohlenwasserstoffumwandlungsprozess eine Reformierung ist.
- 36. Verfahren nach Anspruch 29, wobei der Kohlenwasserstoffumwandlungsprozess eine Hy-

- 37. Verfahren nach Anspruch 29, w bei der Kohlenwasserstoffumwandlungsprozess eine Isomerisierung ist.
 - 38. Verfahren nach Anspruch 37, wobei die Isomerisierung die Xylol-Isomerisierung ist.

5 Revendications

10

1. Aluminophosphates cristallins ayant chacun une ossature structurale dont la composition chimique exprimée d'après les rapports molaires d'oxydes, est la suivante:

Al₂O₃:1,0±0,2 P₂O₅;

caractérisés en ce que chacune desdites ossatures structurales est microporeuse, les pores étant uniformes et ayant des diamètres nominaux compris dans l'intervalle de 0,3 à 1,0 nm, avec une capacité d'adsorption intracristalline pour l'eau sous pression de 6,13 mbars et à 24°C d'au moins 3,5% en poids, l'adsorption et la désorption de l'eau étant entièrement réversibles cependant que la même topologie essentielle d'ossature est conservée tant à l'état hydraté qu'à l'état déshydraté.

- 2. Aluminophosphate cristallin suivant la revendication 1, qui a un diagramme de diffraction des rayons X à l'état de poudre présentant au moins les espacements d indiqués sur le tableau 2.
- 3. Aluminophosphate cristallin suivant la revendication 1, qui a un diagramme de diffraction de 20 rayons X à l'état de poudre présentant au moins les espacements d indiqués sur le tableau 4.
 - 4. Aluminophosphate cristallin suivant la revendication 1, qui a un diagramme de diffraction des rayons X à l'état de poudre présentant au moins les espacements d indiqués sur le tableau 6.
 - 5. Aluminophosphate cristallin suivant la revendication 1, qui a un diagramme de diffraction des rayons X à l'état de poudre présentant au moins les espacements d indiqués sur le tableau 8.
 - 6. Aluminophosphate cristallin suivant la revendication 1, qui a un diagramme de diffraction des
 - rayons X à l'état de poudre présentant au moins les espacements d indiqués sur le tableau 10.

 7. Aluminophosphate cristallin suivant la revendication 1, qui a un diagramme de diffraction des
- rayons X à l'état de poudre présentant au moins les espacements d indiqués sur le tableau 12. 8. Aluminophosphate cristallin suivant la revendication 1, qui a un diagramme de diffraction des 30 rayons X à l'état de poudre présentant au moins les espacements d indiqués sur le tableau 13.
 - 9. Aluminophosphate cristallin suivant la revendication 1, qui a un diagramme de diffraction des rayons X à l'état de poudre présentant au moins les espacaments d indiqués sur le tableau 15.
 - 10. Aluminophosphate cristallin suivant la revendication 1, qui a un diagramme de diffraction des rayons X à l'état de poudre présentant au moins les espacements d indiqués sur le tableau 17.
 - 11. Aluminophosphate cristallin suivant la revendication 1, qui a un diagramme de diffraction des rayons X à l'état de poudre présentant au moins les espacements d indiqués sur le tableau 19.
 - 12. Aluminophosphate cristallin suivant la revendication 1, qui a un diagramme de diffraction des rayons X à l'état de poudre présentant au moins les espacements d indiqués sur le tableau 21.
- 13. Aluminophosphate cristallin suivant la revendication 1, qui a un diagramme de diffraction des 40 rayons X à l'état de oudre présentant au moins les espacements d indiqués sur le tableau 23.
 - 14. Aluminophosphate cristallin suivant la revendication 1, qui a un diagramme de diffraction des rayons X à l'état de poudre correspondant essentiellement au tableau 24.
 - 15. Aluminophosphate cristallin suivant la revendication 1, qui a un diagramme de diffraction des rayons X à l'état de poudre présentant au moins les espacements d indiqués sur le tableau 25.
 - 16. Aluminophosphate cristallin suivant la revendication 1, qui présente un diagramme de diffraction des rayons X à l'état de poudre correspondant essentiellement au tableau 26.
 - 17. Procédé de préparation d'un aluminophosphate cristallin microporeux ayant une composition chimique exprimée, d'après les rapports molaires des oxydes, par la formule

Al₂O₂:1,0±0,2 P₂O₅,

caractérisé par la formation d'un mélange réactionnel dont la composition, d'après les rapports molaires des oxydes, s'exprime par

- 55 et contenant environ 0,2 à 2,0 moles d'un agent organique formant matrice, par mole de Al₂O₃, et le chauffage dudit mélange réactionnel à une température d'au moins 100°C jusqu'à ce que des cristaux dudit aluminophosphate soient produits.
 - 18. Procédé suivant la revendication 17, dans lequel le mélange réactionnel est chauffé à une température de 100 à 300°C sous pression autogène.
- 19. Procédé suivant la revendication 18, dans lequel le mélange réactionnel a pour composition, exprimée d'après les rapports molaires d'oxydes,

Al₂O₃:0,8—1,2 P₂O₅:25—75 H₂O

65 et est chauffé à une température de 125 à 200°C.

20. Procédé suivant la revendicati n 19, dans lequel la source de P₂O5 est l'acide phosphorique, la source de Al₂O₃ est l'oxyde d'aluminium hydraté appelé pseudoboehmite et le mélange réactionnel contient par m le de Al₂O₃ 0,5 à 1,5 mole d'un agent organique formant matrice, 40 à 50 moles de H₂O et environ 1,0 mole de P₂O₅.

21. Procédé suivant la revendication 19, dans lequel l'agent formant matrice est choisi dans le

groupe comprenant l'hydroxyde de tétrapropylammonium; l'hydroxyde de tétraéthylammonium; la tripropylamine; la triéthylamine; la triéthanolamine; la pipéridine; la cyclohexylamine; la 2-méthylpyridine; la N,N-diméthylbenzylamine; la N,N-diéthyléthanolamine; la dicyclohexylamine; la N,Ndiméthyléthanolamine; la choline; la N,N-diméthylpipérazine; le 1,4-diazabicyclo(2,2,2)octane; la N-10 méthyldiéthanolamine; la N-méthyléthanolamine; la N-méthylpipéridine; la 3-méthylpipéridine; la Nméthylcyclohexylamine; la 3-méthylpyridine; la 4-méthylpyridine; la quinuclidine; et le dihydroxyde de N,N'-diméthyl-1,4-diazabicyclo(2,2,2)-octane.

22. Procédé suivant la revendication 19, dans lequel l'agent formant matrice est choisi dans le groupe comprenant l'hydroxyde de tétraméthylammonium; l'hydroxyde de tétraéthylammonium; l'hydroxyde de tétrabutylammonium; l'hydroxyde de tétrapentylammonium; la di-(n-butyl)-amine; la

néopentylamine; la di-(n-pentyl)-amine; l'isopropylamine et la tertio-butylamine.

23. Procédé suivant la revendication 19, dans lequel l'agent formant matrice est une alkylamine dont le groupe alkyle contient 2 à 7 atomes de carbone.

- 24. Procédé suivant la revendication 19, dans lequel l'agent formant matrice est choisi entre 20 l'éthylènediamine et la 2-imidazolidone.
 - 25. Procédé suivant la revendication 23, dans lequel l'alkylamine est la di-(n-propyl)amine.

26. Procédé suivant la revendication 19, dans lequel l'agent formant matrice est un sel polymérique d'ammonium quaternaire $[(C_{14}H_{32}N_2)(OH)_2]_x$ où X a une valeur d'au moins 2.

27. Procédé pour séparer une espèce moléculaire polaire ayant un diamètre moléculaire efficace 25 de moins d'environ 1,0 nm d'un mélange avec une espèce moléculaire moins polaire par mise en contact dudit mélange avec au moins un aluminophosphate suivant la revendication 1, ledit aluminophosphate étant au moins partiellement déshydraté au début de la mise en contact et ayant un diamètre de pore assez grand pour adsorber l'espèce moléculaire plus polaire.

28. Procédé suivant la revendication 27, dans lequel l'espèce moléculaire plus polaire est l'eau.

- 29. Procédé pour convertir un hydrocarbure qui consiste à faire entrer ledit hydrocarbure en contact dans des conditions de transformation d'un hydrocarbure avec un aluminophosphate suivant la revendication 1.
- 30. Procédé suivant la revendication 29, dans lequel le processus de transformation d'un hydrocarbure est un craquage.
- 31. Procédé suivant la revendication 29, dans lequel le processus de transformation d'un hydrocarbure est un hydrocraquage.
- 32. Procédé suivant la revendication 29, dans lequel le processus de transformation d'un hydrocarbure est une hydrogénation.
- 33. Procédé suivant la revendication 29, dans lequel le processus de transformation d'un 40 hydrocarbure est une polymérisation.
 - 34. Procédé suivant la revendication 29, dans lequel le processus de transformation d'un hydrocarbure est une alkylation.
 - 35. Procédé suivant la revendication 29, dans lequel le processus de transformation d'un hydrocarbure est un reformage.
 - 36. Procédé suivant la revendication 29, dans lequel le processus de transformation d'un hydrocarbure est un hydrotraitement.
 - 37. Procédé suivant la revendication 29, dans lequel le processus de transformation d'un hydrocarbura est une isomérisation.
- 38. Procédé suivant la revendication 37, dans lequel l'isomérisation est une isomérisation du 50 xvlène.

55

35

65 .