

Chapter 8 Design for Reliability

- 8.1 Reliability Specification
- 8.2 Reliability Allocation
- 8.3 Design Methods

8.1 Reliability Specification The Reliability Design Process

Reliability Activities & Product Life Cycle

Development	Conceptual &	Detailed Design,	Production &	Product Use &
Phase	Preliminary	Development &	Manufacture	Support
	Design	Prototyping		
	Specification	Design Methods	Acceptance test	Preventive &
	Allocation	Failure Analysis	Quality Control	Predictive
	Design Methods	Growth Testing	Burn-in & Screen	Maintenance
		Safety Analysis	Testing	Modifications
				Parts Replacement

System Effectiveness

Life Cycle Cost Categories

Acquisition Costs	Operations and Support Costs	Phase-out
Research and Development	Operations	Salvage value
Management	Facilities	Disposal Costs
Engineering	Operators	
Design and Prototyping	Consumables (energy & fuel)	
Engineering Design	Unavailable time or downtime	
Fabrication	Support	
Testing & evaluation	Repair resources	^
Production	Supply resources	
Manufacturing	repairables	(25) 27
Plant facilities & overhead	expendables	
Marketing & Distribution	tools, test & spt equip	
	Failure Costs	
	Training	
	Technical Data	

Life Cycle Cost

LCC = Acquisition Costs + Operations Costs + Failure Cost + Support Costs - Net Salvage Value

where Net Salvage Value = Salvage Value - Disposal Cost

Discount Monetary Values

8.2 Reliability Allocation

In general:
$$h(R_1(t), R_2(t), ..., R_n(t)) \ge R^*(t)$$

where R_i(t) is the reliability at time t of the ith component,

and $R^*(t)$ is the system reliability goal at time t.

or
$$g(MTTF_1, MTTF_2, ..., MTTF_n) \ge MTTF^*$$

For series related components:

$$\prod_{i=1}^{n} R_i(t) \ge R^*(t)$$

Exponential Case

$$\prod_{i=1}^n e^{-\lambda_i t} \ge R * (t)$$

$$\sum_{i=1}^{n} \lambda_i \le \lambda_s$$

ARINC Method

Assume components are in series, are independent, and have constant failure rates.

$$\text{new } \lambda_i = w_i \lambda^*$$

$$w_i = \frac{\lambda_i}{\sum_{i=1}^n \lambda_i} \quad i = 1, 2, ..., n \; ; \text{ since}$$

$$\sum_{i=1}^{n} \text{new } \lambda_{i} = \sum_{i=1}^{n} w_{i} \lambda^{*} = \sum_{i=1}^{n} \frac{\lambda_{i} \lambda^{*}}{\sum_{i=1}^{n} \lambda_{i}} = \frac{\lambda^{*}}{\sum_{i=1}^{n} \lambda_{i}} \sum_{i=1}^{n} \lambda_{i} = \lambda^{*}$$

AGREE Method

t = system operating time

 $R^*(t)$ = system reliability goal at time t

n = number of components

 n_i = the number of modules within component i

 $N = total number of modules in system = \sum n_i$

 t_i = the operating time of the ith component, $t_i \le t$

 λ_i = the failure rate of the ith component

 w_i = the probability the system will fail given component i has failed

Allocating an equal share of the reliability to each module results in component i's contribution to the system reliability being $[R*(t)]^{\frac{n_i}{N}}$

AGREE Method

$$w_i(1-e^{-\lambda_i t_i}) = 1 - [R*(t)]^{\frac{n_i}{N}}$$

$$\lambda_i = -\frac{1}{t_i} \ln(1 - \frac{1 - R * (t)^{n_i/N}}{w_i})$$

note that
$$\prod_{i=1}^n e^{-\lambda_i t_i} \leq R^*(t)$$

AGREE Method - Example

Component	Import Index (w _i)	Oper hrs (t_i)	Nbr of modules -n _i
Receiver	.8	1000	25
Antenna	1	1000	15
Transmitter	.7	500	23
Power Supply	1	1000	70

The total module count is 133. If the system reliability goal is .99, then the reliability to be allocated to the ith component is $.99^{ni/133}$.

Component	Failure Rate	MTTF	Reliabilit	y System Rel
Receiver	2.362 x 10-6	423,369	.99764	.99811
Antenna	1.1335 x 10-6	882,227	.99887	.99887
Transmitter	4.9676 x 10-6	201,303	.99752	.99826
Power Supply	5.2896 x 10-6	189,048	.99472	.99472
System	1.3753 x 10-5	72,713	.98879	.99

From the above table, the probability of a component failure is 1-.98879 while the probability of a system failure is 1-.99.

Redundancy

$$R^* = R1 \times R' \times R4$$

$$R' = 1 - (1 - R2) (1 - R3) = R2 + R3 - R2 R3$$

$$R_2 = \frac{R' - R_3}{1 - R_3}$$

or
$$R' = 2 R - R^2$$

with solution $R = 1 - (1 - R')^{.5}$

Parts and Material Selection

Derating

Stress-Strength Analysis

Complexity

Choice of Technology

Redundancy

Material Selection

Structure

atomic bonding crystal structure defect structure microstructure

MATERIALS SCIENCE

Material

Properties

yield strength hardness fatigue life creep

MATERIALS ENGINEERING

Service Performance

Stresses corrosion temperature radiation vibration

Manufacturing
Process
casting
machining (cutting)
joining
heat treatment
assembly

Design Methods Parts and Material Selection

Tensile Strength
Hardness
Impact Value
Fatigue Life
Creep

Ceramics

Material Selection

Metals	Ceramics	Polymers
strong	strong	weak
stiff	stiff	compliant
tough	brittle	durable
electrically conducting high thermal conductivity	electrically insulating low thermal conductivity	electrically insulating temperature sensitive

Tensile strength measures the force required to pull something such as rope, wire, or a structural beam to the point where it breaks.

Specifically, the maximum amount of stress that it can be subjected to before failure

Yield strength - The stress a material can withstand without permanent deformation.

Ultimate strength - The maximum stress a material can withstand.

Breaking strength - The stress coordinate on the stress-strain curve at the point of rupture.

Compressive strength is the capacity of a material to withstand axially directed **pushing** forces. When the limit of compressive strength is reached, materials are crushed. Concrete can be made to have high compressive strength.

Parts and Material Selection Tensile Strength

Chapter 8 20

Another Stress-Strain Curve

Chapter 8 21

Hardness

MINERAL	HARDNESS	COMMON TESTS
Talc	1	Scratched by fingernail
Gypsum	2	
Calcite	3	Scratched by copper coin
Fluorite	4	Scratched by a knife blade
Apatite	5	or window glass
Feldspar	6	Scratches a knife blade or
Quartz	7	window glass
Topaz	8	
Corundum	9	
Diamond	10	Scratches all common materials

resistance of material to the penetration of an indenter - used in analyzing service wear.

Brinell - B_{hn} (kg/mm₂)

Rockwell - R

Vickers - V_{hn}

- The progressive, localized, and permanent structural damage that occurs when a material is subjected to cyclic or fluctuating strains at nominal stresses that have maximum values less than the static yield strength of the material.
 - The resulting stress may be below the ultimate tensile stress, or even the yield stress of the material, yet still cause catastrophic failure.
- In high-cycle fatigue situations, materials performance is commonly characterized by an S-N curve. This is a graph of the magnitude of a cyclical stress (S) against the cycles to failure (N).

Chapter 8 23

Parts and Material Selection Fatigue Life

S-N Curve: $N = c S^{-m}$ where c, m > 0

Creep

- The tendency of a material to move or to deform permanently to relieve stresses.
- Material deformation occurs as a result of long term exposure to levels of stress that are below the yield or ultimate strength of the material.
- Creep is more severe in materials that are subjected to heat for long periods and near melting point.
- The rate of damage is a function of the material properties and the exposure time, exposure temperature and the applied load (stress).

Parts and Material Selection - Creep

Failure modes

Failure Mode

- gross yielding
- buckling
- creep
- brittle fracture
- Low cycle fatigue
- high cycle fatigue ————
- corrosion
- wear
- thermal fatigue

Material Property

- yield strength
- compressive strength
- creep rate
- impact energy
- ductility
- fatigue properties
- electrochemical potential
- hardness
- coefficient of expansion

Material Failure Mechanisms

Overstress Failures

- brittle fracture
- ductile fracture
- yield
- buckling
- large elastic deformation
- thermal breakdown

Wear-out Failures

- corrosion
- dendritic growth (electrolytic process)
- interdiffusion
- fatigue crack propagation
- diffusion (molecular migration)
- radiation
- creep
- adhesive wear

Derating

Derating Curve

Ambient Temperature (degrees cent.)

(applied voltage) / (rated voltage)

More Derating

Failure Rate of a gear:
$$\lambda = \lambda_b \left(\frac{s}{s_d}\right)^{.7} \left(\frac{L}{L_d}\right)^{4.69} \left(\frac{v_s}{v}\right)^{.54} \left(\frac{c}{c_s}\right)^{.67} \left(\frac{T}{T_s}\right)^{3}$$

 λ_b = base failure rate specified by the manufacturer

s = operating speed

 $s_d = design speed$

L = operating load

 $L_d = design load$

v = viscosity of lubricant used

 v_s = viscosity of specification lubricant

c = concentration of contaminants

 c_s =standard contamination level

T = operating temperature

 T_s = specification temperature

Stress-Strength Analysis

- Concerned when abnormal loads are possible
- Probabilistic compare the magnitude of the stress with the design strength.
- Use physical models
- Major categories of stress
 - electrical
 - thermal
 - mechanical
 - chemical
- Two design approaches
 - select parts with sufficient strength against max load
 - protect part against excessive stresses

Looking for strength to cope with the stress!

Stress - Strength Analysis

$$R = \Phi\left(\frac{\ln SF}{\sqrt{{s_y}^2 + {s_x}^2}}\right) \text{ where } SF = \frac{m_y}{m_x}$$

Stress Protection

Electronic Circuit Boards

Stress	Failure Mode	Design activity
high temperature	insulation deteriorates	dissipate heat, use fans, increase conductor size
thermal shock	mechanical damage	shielding
mechanical shock	component and connector damage	mechanical design - use of mountings
vibration	early wearout, connector failure	mechanical design
humidity	corrosion	sealing, use of silica gel
dust	increased contact resistance	sealing
biological effects	decayed insulation material	chemical protection

Chapter 8 33

Redundancy

Redundancy

Combined Active/Standby

Redundancy

<u>Advantages</u>

- Quickest way to improve reliability
- May be cheapest vs. cost of redesign
- May be the only solution if specified reliability is beyond the state of the art

<u>Disadvantages</u>

- Sensors and switching may increase cost and reduce reliability
- May exceed size, weight or power constraints
- Increases maintainability requirements

Conclusion

As an engineer, I can assure you that these design methods work.