UNL - FICH - Departamento de Informática - Ingeniería Informática

Procesamiento digital de señales

Guía de trabajos prácticos: Unidad II

Sistemas y Convolución

1. Objetivos

- Comprender el concepto de sistema.
- Interpretar correctamente las propiedades de un sistema.
- Comprender la importancia de los sistemas LTI.
- Manejar el concepto de ecuaciones en diferencias.
- Entender el concepto de convolución lineal en tiempo discreto.
- Entender el concepto de convolucion circular.

2. Trabajos prácticos

2.1. Sistemas

Ejercicio 1: Para cada uno de los siguientes sistemas determine si son causales, lineales, invariantes en el tiempo y si poseen memoria. En cada caso grafique la salida del sistema y[n] para una entrada dada.

- 1. $y[n]=g[n]x[n], \ \ {\rm donde}\ g[n]=A\sin(\omega nT)$ siendo A constante, $\omega=2\pi f$ y T el período de muestreo.
- 2. $y[n] = \sum_{k=n-no}^{n+no} x[k]$
- 3. y[n] = x[n] + 2
- $4. \ y[n] = nx[n]$

Ejercicio 2: Considere el diagrama en bloques de la Figura 1 y encuentre la ecuación en diferencias para la señal de salida y[n] en función de la señal de entrada x[n].

Figura 1: Diagrama en bloques para el Ejercicio 5.

V

Ejercicio 3: Considere el sistema LTI dado por la ecuación en diferencias y[n] - 0.5y[n-1] + 0.25y[n-2] = x[n] inicialmente en reposo. Encuentre el diagrama en bloques que lo representa.

Ejercicio 4: (*) Encuentre la respuesta al impulso de los sistemas LTI causales descriptos por las siguientes ecuaciones en diferencias y clasifíquelos en función de ésta. Utilice condiciones iniciales nulas.

1.
$$y[n] - y[n-2] = x[n]$$

2.
$$y[n] = x[n] + 0.5x[n-1]$$

3.
$$y[n] - 0.5y[n-1] + 0.25y[n-2] = x[n]$$

2.2. Convolución

Ejercicio 1: Implemente la convolución lineal mediante una sumatoria de convolución. Pruébela para convolucionar dos señales cualesquiera de longitud N muestras. Compare los resultados con los obtenidos mediante la función conv(x,y) y con la función filter.

La función Y = filter(B,A,X) implementa la ecuación en diferencias, para los coeficientes dados en los vectores A y B y la señal de entrada X, según:

$$a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + ... - a(2)*y(n-1) - ...$$

A partir de esto, determine los valores a ingresar en los vectores A y B para obtener la salida esperada.

Ejercicio 2: Escriba una función que realice la convolución circular discreta (tambien llamada convolución periódica) entre dos señales x[n] y h[n], ambas de longitud longitud N muestras, utilizando ciclos for. En ésta se debe considerar a x[n] periódica, pero h[n] debe ser nula fuera de su rango de definición. La convolución circular se puede expresar mediante la siguiente ecuación:

$$y[k] = \sum_{l=1}^{N} h[l]x[((N+k-l) \bmod N) + 1],$$

Figura 2: Sistemas en cascada.

para $1 \le k \le N$, donde mod es la operación módulo entero (resto de la división entera).

Ejercicio 3: Considere dos sistemas LTI conectados en cascada (Figura 2), con respuestas al impulso dadas por $h_A[n] = \sin(8n)$ y $h_B[n] = a^n$, donde $a \in \mathbb{R}$, |a| < 1 y $0 \le n \le N-1$, con N el número de muestras distintas de cero. Obtenga N muestras de las respuestas al impulso, h_A y h_B , según las definiciones dadas, y determine la salida y[n] para una entrada $x[n] = \delta[n] - a\delta[n-1]$, siendo $\delta[n]$ es la función de impulso unitario. Luego invierta el orden de conexión de los sistemas y vuelva a calcular la salida. Compare con la salida obtenida originalmente.