Architektura i Organizacja Komputerów II

Lab 7-8

Zadania

Sposób wystawienia oceny

Ocena jest wystawiana na podstawie:

- poprawności wykonanych zadań,
- jakości kodu,
- zrozumienia kodu,
- czytelności kodu,
- samodzielności pracy,
- wykonania wszystkich poleceń w zadaniu.

Pytania do prowadzącego nie są traktowane jako praca niesamodzielna.

Dane do zadań

ns: numer stanowiska (na monitorze)

np: numer podany przez prowadzącego na zajęciach

grupa: $g = (ns + np) \mod 35$, gdzie mod oznacza działanie modulo

Tabela 1.1. Definicja tabeli A.

Grupa	Wzór tworzenia elementów tabeli A	Rozmiar tabeli A
0	A[i] = 63+89+g+72+ns*i+ns*np*(68+ns)	n = 98
1	A[i] = (np+np+49-78+(i*ns*(np+ns)-79-78))	n = 81
2	A[i] = (i-78+88+68)+32*ns*51-12-3+53	n = 108
3	A[i] = 19+32+(ns*71*ns+31+62+g*i+91)	n = 87
4	A[i] = np*90*np+ns+(98-21)-np-np+(65*i)	n = 84
5	A[i] = g*g*61+g+75+76+(i*np+ns+50)	n = 111
6	A[i] = 91-g+g-ns+75*g*(54+i*np+29)	n = 101
7	A[i] = 40*12*(np+62*i+53-1+g-g+np)	n = 112
8	A[i] = np+i+24-56+(64+i-40+g+41*i)	n = 111
9	A[i] = 6-5+np*61*(ns+57+i*5*(4*g))	n = 93
10	A[i] = i*51*67-37-ns+i+(ns+i)+(11-ns)	n = 81
11	A[i] = ns*44*ns+19+ns*i*48+77+(np+62)	n = 81
12	A[i] = (g+75)+72*27*(60+84)+ns+1+43*i	n = 119
13	A[i] = (i+2+(69+56)+g-i+91*i)*66-7	n = 84
14	A[i] = (ns+ns+33*i-77-34)+(11*55)*(23+53)	n = 81
15	A[i] = (ns*np*(61+89+72+73)-ns*i)-94+np	n = 99
16	A[i] = i*np+(np*32)*19+98-43-41+(76+g)	n = 100
17	A[i] = i*10*np+76+38+5+ns-95-(65-g)	n = 104
18	A[i] = (g-g+18*i*ns-np)+(65*i*i-36)	n = 80
19	A[i] = (i-84) + (np+np+i*2*(49+i+(np-26)))	n = 97
20	A[i] = (68+i+(i-36-g-g+(47*69)*28-26))	n = 112
21	A[i] = ns*g*np-38-(ns-1)-57-73-i*ns	n = 100
22	A[i] = 48-np+i*ns*45-33+64-g+(54*np)	n = 84
23	A[i] = (70*i)*68+ns+(77+85+79-50+(np-np))	n = 88
24	A[i] = 18*i*(28-20)+(58-np+(g+81+(83-ns)))	n = 108

25	A[i] = i*g*g+21+(40*54)*g+ns+59-np	n = 99
26	A[i] = (54*9*np+88)+13-33-np+66+(i*9)	n = 93
27	A[i] = ns*i*69-54-np+65+72-34-(18+86)	n = 107
28	A[i] = (64*59-31+i*73+80)+(25+11+np-1)	n = 109
29	A[i] = 75+21+i-27-(16-12)+30*8*i*ns	n = 104
30	A[i] = (62+42+1+i)+57*np*i-ns+(86*71)	n = 106
31	A[i] = i+90+37*ns+(17+62+7*np*i*65)	n = 99
32	A[i] = 41*ns*4-ns-37+40+ns*i+(25+ns)	n = 113
33	A[i] = 51-46-i-g+(30*72)*(54-g)-np+g	n = 92
34	A[i] = np-37+(i*g*(ns-ns-12+i+g+ns))	n = 86

Tabela 1.2. Własności statystyczne do zadań.

Grupa	Własności statystyczne
0	różnica, średnia, max, min
1	suma, różnica, mediana, średnia
2	średnia, min, mediana, różnica
3	suma, średnia, min, różnica
4	mediana, min, suma, różnica
5	różnica, średnia, mediana, max
6	min, różnica, suma, mediana
7	różnica, min, mediana, max
8	suma, min, max, średnia
9	mediana, średnia, min, różnica
10	różnica, min, mediana, max
11	suma, średnia, mediana, różnica
12	różnica, mediana, średnia, max
13	różnica, mediana, max, min
14	średnia, różnica, min, max
15	max, suma, mediana, min
16	min, suma, mediana, średnia
17	max, różnica, średnia, mediana
18	suma, max, średnia, min
19	różnica, max, min, mediana
20	min, max, suma, mediana
21	różnica, min, mediana, max
22	różnica, mediana, max, min
23	suma, średnia, różnica, min
24	max, suma, różnica, min
25	max, min, mediana, suma
26	mediana, suma, max, min
27	różnica, max, suma, mediana
28	max, mediana, min, suma
29	różnica, min, max, średnia

30	mediana, max, min, suma
31	min, max, suma, mediana
32	średnia, min, różnica, mediana
33	mediana, max, średnia, suma
34	min, mediana, suma, średnia

Zadanie 5 – pętle, tablica

Napisać program, którego zadaniem będzie utworzenie tablicy o wartościach ze wzoru oraz obliczenie własności statystycznych tej tablicy.

1. Utworzyć arkusz kalkulacyjny zawierający obliczone wartości elementów dla tablicy *A* zdefiniowanej w <u>Tabeli 1.1</u> i własności statystycznych zdefiniowanych w <u>Tabeli 1.2</u>.

Wszystkie działania mają zostać przeprowadzone jawnie.

Nie dopuszcza się upraszczania wzoru.

- 2. Napisać program, który:
 - 2.1. Zadeklaruje w pamięci tablicę o rozmiarze n i etykiecie A, a następnie dynamicznie zapisze w niej wartości określone wzorem z <u>Tabeli 1.1</u>.

Wszystkie działania mają zostać przeprowadzone jawnie.

Nie dopuszcza się upraszczania wzoru.

Typ danych tablicy: word.

Należy adresować tablicę od zera do n-1, zatem w pierwszej iteracji i=0.

Wartości ns, np, g mają zostać załadowane z pamięci.

2.2. Obliczy i zapisze w pamięci własności statystyczne A określone w <u>Tabeli 1.2</u>.

Nazwy etykiet miejsc w pamięci mają odpowiadać nazwom statystycznym w Tabeli 1.2. Operacja dzielenia ma zostać wykonana na liczbach całkowitych.

Wartości statystyczne mają się znajdować w rejestrach r28, r29, r30, r31 w kolejności takiej jak w Tabeli 1.2.

- 3. Uruchomić program.
- 4. Porównać otrzymane wyniki z wartościami z arkusza kalkulacyjnego.
- 5. Utworzyć nowy dokument tekstowy. Dokument ma zawierać kolejno:
 - 5.1. Obliczony numer grupy (g).
 - 5.2. Przydzielone wyrażenie z <u>Tabeli 1.1</u>.
 - 5.3. Zrzut ekranu przedstawiającego rejestry: r28, r29, r30, r31.
 - 5.4. Zrzut(y) ekranu okna pamięci operacyjnej przedstawiający wszystkie wartości tablicy *A* oraz wartości zmiennych statycznych.

Wartości mają się znajdować w pojedynczej kolumnie (zmniejszyć szerokość okna pamięci).

- 6. Ustawić okna:
 - 6.1. W lewym górnym rogu ekranu ma znajdować się program WinDlx.
 - 6.2. W lewym dolnym rogu ekranu ma znajdować się kod programu.
 - 6.3. W prawym górnym rogu ekranu ma znajdować się przygotowany dokument.
 - 6.4. W prawym dolnym rogu ekranu ma znajdować się przygotowany arkusz kalkulacyjny.
- 7. Wpisać się na listę: https://goo.gl/7Y17lh i czekać na podejście prowadzącego.

Zadanie 6 – forwarding, hazardy

1. Utworzyć arkusz kalkulacyjny zawierający obliczone wartości elementów tablicy dla wzoru z Tabeli 1.1.

Można wykorzystać arkusz wykonany w zadaniu poprzednim.

2. Napisać program, który utworzy tablicę w pamięci o etykiecie *A* i o wartościach określonych wzorem z <u>Tabeli 1.1</u>.

Można wykorzystać część kodu z zadania poprzedniego.

- 3. Utworzyć nowy dokument tekstowy. Dokument ma zawierać kolejno:
 - 3.1. Obliczony numer grupy (g).
 - 3.2. Przydzielone wyrażenie z <u>Tabeli 1.1</u>.
- 4. Forwarding:
 - 4.1. Uruchomić program.
 - 4.2. Zrobić zrzut ekranu okna statystyk.
 - 4.3. Wyłączyć forwarding.
 - 4.4. Uruchomić program.
 - 4.5. Zrobić zrzut ekranu okna statystyk.
 - 4.6. W dokumencie tekstowym zawrzeć:
 - 4.6.1. Tabelę porównującą wartości z okna statystyk z włączonym i wyłączonym forwardingiem. Tabela ma zawierać porównanie liczby cykli, instrukcji, liczbę hazardów RAW, oraz procent hazardów RAW w stosunku do liczby cykli.
 - 4.6.2. Dwa zrzuty ekranu.
 - 4.6.3. Wnioski, podsumowanie oraz ocenę zasadności (bądź jej brak) stosowania forwardingu.
- 5. Właczyć forwarding!
- 6. Hazardy:

Podczas wykonywania tej sekcji należy używać przycisku F7. Umożliwia on wykonanie pojedynczego cyklu, nie zaś całego programu.

- 6.1. Wykonać zrzut(y) ekranu *okna diagramu cykli zegarowych* przedstawiającego pojedynczą iterację wypełniania *A*.
- 6.2. W dokumencie tekstowym wskazać co najmniej 3 różne występujące hazardy. Dla każdego z hazardów:
 - 6.2.1. Wskazać klasę hazardu i typ (jeśli dotyczy).
 - 6.2.2. Napisać instrukcje, które dotyczą hazardu.
 - 6.2.3. Zawrzeć zrzut ekranu okna diagramu cylków z widocznymi nazwami instrukcji.
 - 6.2.4. Opisać jaki jest powód występowania hazardu.
- 7. Ustawić okna:
 - 7.1. W lewym górnym rogu ekranu ma znajdować się program WinDlx.
 - 7.2. W lewym dolnym rogu ekranu ma znajdować się kod programu.

- 7.3. W prawym górnym rogu ekranu ma znajdować się przygotowany dokument.
- 7.4. W prawym dolnym rogu ekranu ma znajdować się przygotowany arkusz kalkulacyjny.
- 8. Wpisać się na listę: https://goo.gl/7Y17lh i czekać na podejście prowadzącego.