

Chapitre VI - Les primitives de fonctions continues

Bacomathiques — https://bacomathiqu.es

Table des matières I - Définition 1 II - Primitive de fonctions usuelles 2 III - Opérations sur les primitives 2

I - Définition

Soit f un fonction définie sur un intervalle I, on appelle **primitive** de f, tout fonction F définie sur I et qui vérifie pour tout $x \in I$:

$$F'(x) = f(x)$$

Note: Une primitive est toujours définie à une constante près.

En effet. Si on considère la fonction définie pour $x \in R$: f(x) = 2x. Alors, $F_1(x) = x^2 + 1$ est primitive de la fonction f (car F'(x) = 2x = f(x)).

Mais $F_1(x)$ n'est pas la seule primitive de f!

On peut citer par exemple $F_2(x) = x^2 + 10$ et $F_3(x) = x^2 + 3$ qui sont également des primitives de f.

C'est pour cette raison que l'ont dit que les primitives sont définies à une constante près (lorsque l'on dérive, la constante devient nulle).

Ainsi, toute fonction continue sur un intervalle I admet une infinité de primitives sur I de la forme suivante :

 $x\mapsto F(x)+k$ avec $k\in\mathbb{R}$ (voir l'encadré précédent pour plus de détails)

II - Primitive de fonctions usuelles

Le tableau suivant est à connaître (mais il peut être obtenu en prenant celui des dérivées usuelles à l'envers) :

Domaine de définition	Fonction	Primitive
$x \in \mathbb{R}$	$f(x) = k, \ k \in \mathbb{R}$	F(x) = kx
$x \in \mathbb{R}$	$g(x) = e^x$	$G(x) = e^x$
$x \in \mathbb{R}_+^*$	$h(x) = \frac{1}{x}$	H(x) = ln(x)
$x \in \mathbb{R}_+^*$	$i(x) = \frac{1}{\sqrt{x}}$	$I(x) = 2\sqrt{x}$
$x \in \mathbb{R}_+^*$		$J(x) = \frac{1}{a+1}x^{a+1}$
$x \in \mathbb{R}$	$k(x) = \sin(x)$	$K(x) = -\cos(x)$
$x \in \mathbb{R}$	l(x) = cos(x)	$L(x) = \sin(x)$

III - Opérations sur les primitives

Le tableau suivant est également à connaître (mais il peut être obtenu en prenant celui des dérivées usuelles à l'envers) :

Notes	Fonction	Primitive
	$f(x) = u'(x)e^{u(x)}$	$F(x) = e^{u(x)}$
On peut retirer la valeur		
absolue si $u(x) > 0$ sur	$\int f(x) = u'(x)$	F(x) = ln(u(x))
son intervalle de défini-	$f(x) = \frac{u'(x)}{u(x)}$	$\Gamma(x) = in(u(x))$
tion.		
$a \in \mathbb{R}$, $a \neq -1$	$f(x) = u'(x)(u(x))^a$	$F(x) = \frac{1}{a+1}(u(x))^{a+1}$
	f(x) = u'(x)sin(u(x))	$F(x) = -\cos(u(x))$
$x \in \mathbb{R}_+^*$	$j(x) = x^a$, $a \in \mathbb{R}$ et $a \neq a$	$J(x) = \frac{1}{a+1}x^{a+1}$
x ∈ 112+	-1	s(x) = a+1x
	f(x) = u'(x)cos(u(x))	$F(x) = \sin(u(x))$