Зимний коллоквиум курса «Теория вероятностей» ФКН НИУ ВШЭ, 2-й курс ОП ПМИ, 2-й модуль, 2020 учебный год

Сергей Пилипенко

Атаев Азнарур

Аня «10 за коллок» Смирнова

Дата последнего обновления: 29/06/2021 14:47.

Спасибо Васильеву Демиду за исходники своих ответов на вопросы и Косову Е. Д. за исходники лекций.

Содержание

Билет 1	3
Теорема Пуассона	. 3
Задача про булочки с изюмом	. 3
Билет 2	4
Модель Эрдеша-Реньи случайного графа	
Теорема о надежности сети	. 4
Билет 3	5
Вероятностное пространство в общем случае: алгебра и σ -алгебра подмножеств	. 5
Примеры σ -алгебр, σ -алгебра, порожденная системой подмножеств, борелевская σ -алгебра	. 5
Билет 4	6
Аддитивные и счетно аддитивные функции множества на алгебрах и σ -алгебрах	. 6
Вероятностная мера и определение вероятностного пространства	. 6
множества на алгебре	. 6
Свойства непрерывности вероятностной меры	. 7
Билет 5	8
Случайные величины на общих вероятностных пространствах	. 8
Билет 6	9
Распределение случайной величины и функция распределения	
Три основных свойства функции распределения	
рожденную исходной алгеброй	
Идея построения меры Лебега равномерного распределения на отрезке с борелевской σ -алгебой	
Формулировка теоремы об однозначности задания распределения функцией распределения и о существовании	
распределения с заданой функцией распределения	. 10
Билет 7	11
Функция распределения дискретной случайной величины.	
Определение абсолютно непрерывного распределения случайной величины и определение плотности распре-	
деления	
Основные свойства плотности и связь с функцией распределения	
Примеры абсолютно непрерывных случайных величин.	
Равномерное распределение	. 12 . 12
Нормальное распределение	
Билет 8	13
Совместное распределение случайных величин, корректность определения	
Функция совместного распределения и четыре ее основных свойства	
Формулировка теоремы об однозначности задания совместного распределения функцией совместного распре-	
деления и о существовании распределения с заданой функцией совместного распределения	
Неоднозначность задания совместного распределения распределениями компонент	. 14

Билет 9	15
Случайные векторы с абсолютно непрерывным распределением и плотность совместного распределения	15
Связь с функцией совместного распределения	15
Вычисление плотности компонент по совместной плотности	
Плотность случайного вектора, являющегося функцией от другого случайного вектора	15
Равномерное распределение на многомерных областях	
Билет 10	17
Независимые случайные величины: характеризация в терминах функций распределения, в терминах совмест-	
ного распределения, в терминах плотностей	17
Независимость функций от независимых случайных величин	17
Формула свертки для плотности суммы независимых случайных величин, заданных плотностями	
Билет 11	19
Математическое ожидание в общем случае	19
Корректность определений и основные свойства	
Билет 12	22
Математическое ожидание функции от случайной величины с абсолютно непрерывным распределением	22
Математическое ожидание произведения независимых случайных величин	
Дисперсия, ковариация, коэффициент корреляции и их свойства	
Нараданетра Чабуннара	23

Теорема Пуассона. Задача про булочки с изюмом.

Теорема Пуассона

Рассмотрим серию испытаний по схеме Бернулли, причем пусть N-я серия состоит из N испытаний и вероятность успеха в этой серии равна p_N . Потребуем, чтобы произведение $N \cdot p_N = \lambda$ не зависело от N. Нас интересует вероятность $P(S_N = k)$ наступления ровно k успехов в N-ой серии.

Теорема. Пусть $N \cdot p_N = \lambda$ — не зависит от N. Тогда

$$P(S_N = k) = C_N^k p_N^k (1 - p_N)^{N-k} \to \frac{\lambda^k}{k!} e^{-\lambda}, \quad N \to +\infty.$$

Доказательство. Пусть $N\cdot p_N=\lambda$ — не зависит от N. Тогда

$$P(S_N = k) = C_N^k p_N^k (1 - p_N)^{N-k}.$$

Распишем вероятность $P(S_N = k)$ в следующем виде:

$$P(S_N = k) = \frac{N!}{k!(N-k)!} \cdot \frac{\lambda^k}{N^k} \cdot \left(1 - \frac{\lambda}{N}\right)^{N-k} = \frac{\lambda^k}{k!} \cdot \frac{N \cdot (N-1) \cdot \dots \cdot (N-k+1)}{N^k} \cdot \left(1 - \frac{\lambda}{N}\right)^{-k} \cdot \left(1 - \frac{\lambda}{N}\right)^{N}.$$

Заметим следующие вещи:

- $\frac{N \cdot (N-1) \cdot \dots \cdot (N-k+1)}{N^k} = \frac{N^k + o(N^k)}{N^k} \underset{N \to +\infty}{\to} 1;$
- $\left(1-\frac{\lambda}{N}\right)^{-k} \to 1$;
- $(1 \frac{\lambda}{N})^N \underset{N \to +\infty}{\longrightarrow} e^{-\lambda}$.

Учитывая, что λ и k не меняются, устремляем $N \to \infty$ и получаем

$$P(S_N = k) \underset{N \to +\infty}{\longrightarrow} e^{-\lambda} \frac{\lambda^k}{k!}.$$

Задача про булочки с изюмом

Формулировка Какое в среднем количество изюма должны содержать булочки, для того чтобы вероятность иметь хотя бы одну изюминку в булочке была не меньше 0.99?

Решение Предположим, что уже изготовлено тесто на некоторое количество булочек. В это тесто добавлено N изюминок так, что отношение числа изюминок к количеству булочек равно λ . Значит количество булочек $b = \frac{N}{\lambda}$.

Выделим в тесте кусок, из которого будет изготовлена данная булочка. Вероятность попадания одной изюминки в эту булочку равна $\frac{1}{b}=\frac{\lambda}{N}$, а вероятность того, что хотя бы одна изюминка попала в булку, равна 1-P(булочка без изюма) и равна

$$1-\left(1-\frac{\lambda}{N}\right)^N$$
.

Поскольку мы рассматриваем серийное производство булочек, то можно предполагать, что $N \to +\infty$, т. е. растет объем теста и количество изюма, но не меняется плотность λ . Как и выше, получаем $\left(1-\frac{\lambda}{N}\right)^N \to e^{-\lambda}$. Для решения задачи надо найти λ такое, что $e^{-\lambda} < 0.01$. Подходит $\lambda = 5$, т. е. плотность изюма должна быть не менее пяти изюминок на булочку.

Модель Эрдеша-Реньи случайного графа. Теорема о надежности сети.

Модель Эрдеша-Реньи случайного графа

Определение (модель Эрдеша-Реньи). Пусть V_n — конечное множество $\{1,2,\ldots,n\}$, элементы которого мы называем вершинами. Будем проводить между двумя различными вершинами ребро (только одно) с вероятностью p независимо от остальных пар вершин. Получающийся граф будем называть случайным графом в модели Эрдеша-Реньи.

Множество элементарных исходов Ω состоит из C_n^2 ребер. Событием называется любое подмножество ребер в клике на n вершинах $E\subseteq \Omega$. Вероятность E задается формулой

$$P(E) = p^{|E|} (1 - p)^{C_n^2 - |E|}.$$

Теорема о надежности сети

Теорема (о надежности сети в общем случае). Если $p = \frac{c \ln n}{n}$, то при c > 1 вероятность того, что граф связен, стремится к 1 (граф почти всегда связен), а при c < 1 вероятность того, что граф связен, стремится к 0 (граф почти всегда не связен).

Теорема (о надежности сети в частном случае). Если $p = \frac{c \ln n}{n}$ и c > 2, то граф почти всегда связен.

Доказательство. Пусть случайная величина X_n — число компонент связности в случайном графе G, если граф не является связным, и $X_n=0$ в случае связности G. Нам надо доказать, что $P(X_n>1)\to 0$ при $n\to\infty$. По неравенству Чебышева

$$P(X_n > 1) \leqslant \mathbb{E}X_n$$
.

Следовательно, достаточно доказать стремление к нулю $\mathbb{E}X_n$. Пусть $K_1, \ldots, K_{C_n^k}$ — все k-элементные подмножества V_n . Через $X_{n,k,i}$ обозначим случайную величину, которая равна единице в случае, когда K_i является компонентой связности, и равна нулю в случае, когда это не так. Ясно, что

$$\mathbb{E}X_n = \sum_{k=1}^{n-1} \sum_{i=1}^{C_n^k} \mathbb{E}X_{n,k,i}.$$

Заметим, что $\mathbb{E}X_{n,k,i} = P(X_{n,k,i} = 1)$, а эта вероятность оценивается через вероятность того, что вершины из множества K_i не соединены ребрами с вершинами из $V_n \setminus K_i$. Пусть q = 1 - p, тогда имеет место оценка

$$\mathbb{E}X_n \leqslant \sum_{k=1}^{n-1} C_n^k q^{k(n-k)}.$$

Эта сумма симметрична и, удваивая ее, можно считать, что суммирование идет по $k\leqslant \frac{n}{2}$. При таких k имеет место неравенство $k(n-k)\geqslant k(n-\frac{n}{2})=\frac{kn}{2}$. Добавим и вычтем $1+q^{n^2/2}$, чтобы можно было свернуть по формуле бинома Ньютона

$$\sum_{k=1}^{n-1} C_n^k q^{k(n-k)} \leqslant 2 \sum_{k=1}^{n-1} C_n^k (q^{n/2})^k = 2(1 + q^{n/2})^n - 2 - 2q^{n^2/2}.$$

По условию, $q=1-p=\frac{2a\ln n}{n},$ где a>1. Имеем

$$q^{n/2} = e^{2^{-1}n\ln\left(1 - \frac{2a\ln n}{n}\right)} = e^{-a\ln n + \beta_n} = \frac{1}{n^a}e^{\beta_n}, \quad \beta_n \to 0.$$

Следовательно,

$$(1+q^{n/2})^n = \left(1 + \frac{1}{n^a}e^{\beta_n}\right)^n \to 1,$$

И

$$2(1+q^{n/2})^n - 2 - 2q^{n^2/2} \to 0.$$

Таким образом, $\mathbb{E}X_n \to 0$ и теорема доказана.

 $^{^{1}}$ Мы говорим, что любая компонента связности на k вершинах никак не соединена с оставшимися n-k вершинами, однако не все графы, для которых это верно, являются компонентами связности.

 $^{^{2}}$ Выбрали вершину (всего k штук) и удалили ребра из нее в оставшиеся n-k вершин.

Вероятностное пространство в общем случае: алгебра и σ-алгебра подмножеств. Примеры σ-алгебр, σ-алгебра, порожденная системой подмножеств, борелевская σ-алгебра.

Вероятностное пространство в общем случае: алгебра и σ -алгебра подмножеств

Определение. Класс \mathcal{A}_0 подмножеств пространства Ω называется алгеброй, если

- 1. $\Omega, \emptyset \in \mathcal{A}_0$;
- 2. $A \in \mathcal{A}_0 \implies \Omega \setminus A \in \mathcal{A}_0$;
- 3. $A, B \in \mathcal{A}_0 \implies A \cap B, A \cup B \in \mathcal{A}_0$.

Определение. Класс \mathcal{A} подмножеств пространства Ω называется σ -алгеброй, если

- 1. $\Omega, \emptyset \in \mathcal{A}$;
- 2. $A \in \mathcal{A} \implies \Omega \setminus A \in \mathcal{A}$;

3.
$$A_n \in \mathcal{A}, \ \forall n \in \mathbb{N} \implies \bigcap_{n=1}^{\infty} A_n, \bigcup_{n=1}^{\infty} A_n \in \mathcal{A}.$$

Отметим, что в силу формул

$$\Omega \setminus \bigcup_{\alpha} A_{\alpha} = \bigcap_{\alpha} (\Omega \setminus A_{\alpha})$$

И

$$\Omega \setminus \bigcap_{\alpha} A_{\alpha} = \bigcup_{\alpha} (\Omega \setminus A_{\alpha}),$$

в пункте 3 каждого определения достаточно проверять включение либо только для объединений, либо только для пересечений.

Примеры σ -алгебра, порожденная системой подмножеств, борелевская σ -алгебра

Примеры σ -алгебр Множество всех подмножеств 2^{Ω} , $\{\emptyset, \Omega\}$, $\{\emptyset, B, \Omega \setminus B, \Omega\}$ являются σ алгебрами.

Примеры алгебр Множество всех конечных объединений попарно непересекающихся промежутков (a,b] на $\mathbb R$ является алгеброй, но не является σ алгеброй, поскольку она не содержит одноточечные множества — пересечения счетного числа полуинтервалов.

Определение. Говорят, что σ алгебра *порождена набором множеств* S, если эта σ алгебра является наименьшей по включению среди всех σ -алгебр, которые содержат данный набор множеств S. Такую σ -алгебру обозначают $\sigma(S)$.

Определение. σ -алгебра называется *борелевской* σ -алгеброй $\mathcal{B}(\mathbb{R})$ подмножеств прямой \mathbb{R} , если она порождена всеми промежутками (отрезками, интервалами, лучами).

Несложно показать, что в определении не обязательно в качестве порождающего множества брать все промежутки. Например, можно ограничиться только отрезками или только интервалами или только лучами $(-\infty,c]$. Например, проверим, что $\mathcal{B}(\mathbb{R})$ порождена всеми лучами вида $(-\infty,c]$. Действительно, $(-\infty,c] \in \mathcal{B}(\mathbb{R})$, как счетное объединение промежутков вида (-n,c], поэтому $\sigma(\{(-\infty,c]\}) \subset \mathcal{B}(\mathbb{R})$. С другой стороны $(a,b] = (-\infty,b] \setminus (-\infty,a]$, отрезки получаются счетным пересечением промежутков вида $(a-\frac{1}{n},b]$, интервалы получаются счетным объединением промежутков вида $(a,b-\frac{1}{n}]$, а получнтервалы вида [a,b) получаются объединением уже полученных отрезков вида $[a,b-\frac{1}{n}]$. Тем самым, все промежутки принадлежат $\sigma(\{(-\infty,c]\})$, а значит имеет место и включение $\mathcal{B}(\mathbb{R}) \subset \sigma(\{(-\infty,c]\})$.

Аддитивные и счетно аддитивные функции множества на алгебрах и σ -алгебрах. Вероятностная мера и определение вероятностного пространства. Эквивалентность счетной аддитивности и непрерывности в нуле для неотрицательной аддитивной функции множества на алгебре. Свойства непрерывности вероятностной меры.

Аддитивные и счетно аддитивные функции множества на алгебрах и σ -алгебрах

Определение 0.1. Пусть \mathcal{A}_0 — алгебра множеств. Функция $P \colon \mathcal{A}_0 \to [0,1]$ называется аддитивной, если для произвольных $A, B \in \mathcal{A}_0, A \cap B = \emptyset$ выполнено

$$P(A \cup B) = P(A) + P(B).$$

Определение 0.2. Функция $P \colon \mathcal{A}_0 \to [0,1]$ называется *счетно аддитивной*, если для всякого не более чем счетного набора попарно непересекающихся событий $A_n \in \mathcal{A}_0$, для которых $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}_0$ выполняется

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n).$$

Вероятностная мера и определение вероятностного пространства

Определение 0.3. Пусть $\mathcal{A} - \sigma$ алгебра. Функция $P \colon \mathcal{A} \to [0,1]$ называется вероятностной мерой на \mathcal{A} , если $P(\Omega) = 1$ и P — счетно аддитивна на \mathcal{A} .

Определение 0.4. Пусть $\mathcal{A}-\sigma$ -алгебра подмножеств Ω , тогда тройку (Ω,\mathcal{A},P) называют вероятностным пространством.

Эквивалентность счетной аддитивности и непрерывности в нуле для неотрицательной аддитивной функции множества на алгебре

Предложение. Пусть $P: \mathcal{A}_0 \to [0,1]$ — аддитивная функция множества на алгебре \mathcal{A}_0 . Функция P счетно аддитивная на \mathcal{A}_0 тогда и только тогда, когда для произвольного набора $A_n \in \mathcal{A}_0$, $A_{n+1} \subset A_n$, $\bigcap_{n=1}^{\infty} A_n = \emptyset$ выполнено

$$\lim_{n \to \infty} P(A_n) = 0.$$

Доказательство.

 \implies Пусть P счетно аддитивна на \mathcal{A}_0 . Рассмотрим множества $C_n = A_n \setminus A_{n+1}$. Тогда

$$A_1 = \bigcup_{n=1}^{\infty} C_n, \dots, A_{N+1} = \bigcup_{k=N+1}^{\infty} C_k,$$

И

$$P(A_1) = \sum_{n=1}^{N} P(C_n) + P(A_{N+1}).$$

Если P счетно аддитивна, то $\sum\limits_{n=1}^{N}P(C_{n})\to P(A_{1}),$ а $P(A_{N+1})\to 0.$

 \longleftarrow Пусть $C_n \in \mathcal{A}_0$ — набор попарно непересекающихся множеств, причем известно, что $\bigcup_{n=1}^{\infty} C_n = A_1 \in \mathcal{A}_0$. Пусть

$$A_{N+1} = \bigcup_{k=N+1}^{\infty} C_k,$$

тогда $A_{N+1}\subset A_N$, причем $\bigcap_{N=1}^\infty A_N=\varnothing$. Если $P(A_{N+1})\to 0$, то $P(A_1)=\sum_{n=1}^N P(C_n)+P(A_{N+1})$ и переходя к пределу, получаем

$$P(A_1) = \sum_{n=1}^{\infty} P(C_n).$$

Свойства непрерывности вероятностной меры

Следствие (непрерывность вероятностной меры). Пусть (Ω, \mathcal{A}, P) — вероятностное пространство. Тогда

1. Если
$$A_n \in \mathcal{A}, A_{n+1} \subset A_n$$
 и $A = \bigcap_{n=1}^{\infty} A_n$, то $\lim_{n \to \infty} P(A_n) = P(A)$;

Доказательство. Рассмотрим
$$A'_n=A_n\setminus A$$
. Очевидно, $\bigcap\limits_{i=1}^\infty A'_i=\varnothing\implies \lim\limits_{n\to\infty}P(A'_n)=0$. В то же время $P(A_n)=P(A'_n\cup A)=P(A'_n\cup A)=P(A'_n)=P(A'_n)=P(A)$

2. Если
$$A_n \in \mathcal{A}, \, A_n \subset A_{n+1}$$
 и $A = \bigcup\limits_{n=1}^{\infty} A_n, \, \mathrm{To} \, \lim\limits_{n \to \infty} P(A_n) = P(A).$

Доказательство. Рассмотрим $A_n'=\Omega\setminus A_n$. Тогда $\bigcap_{i=1}^\infty A_n'=\Omega\setminus A$. По п. 1:

$$1 - P(A) = P(\Omega \setminus A) = P\left(\bigcap_{i=1}^{\infty} A_n'\right) = \lim_{n \to \infty} P(A_n') = \lim_{n \to \infty} P(\Omega \setminus A_n) = 1 - \lim_{n \to \infty} P(A_n)$$

В частности,

$$P\Big(\bigcup_{n=1}^{\infty} A_n\Big) = \lim_{N \to \infty} P\Big(\bigcup_{n=1}^{N} A_n\Big) \leqslant \sum_{n=1}^{\infty} P(A_n).$$

Случайные величины на общих вероятностных пространствах: определение и основные свойства (прообраз борелевских лежит в σ-алгебре, сумма и произведение случайных величин — случайная, предел случайных — случайная)

Случайные величины на общих вероятностных пространствах

Определение 0.5. Пусть задано вероятностное пространство (Ω, \mathcal{A}, P) . Функция $X \colon \Omega \to \mathbb{R}$ называется *случайной* величиной, если для всякого числа $t \in \mathbb{R}$ выполнено

$$X^{-1}((-\infty, t]) = \{ \omega \in \Omega \mid X(\omega) \leq t \} \in \mathcal{A}.$$

Предложение. Если X случайная величина, то $\{\omega \mid X(\omega) \in B\} = X^{-1}(B) \in \mathcal{A}$ для всякого $B \in \mathcal{B}(\mathbb{R})$.

Доказательство. Напомним следующие соотношения для прообраза функции:

$$X^{-1}\Big(\bigcap_{n=1}^{\infty} A_n\Big) = \bigcap_{n=1}^{\infty} X^{-1}(A_n), \quad X^{-1}\Big(\bigcup_{n=1}^{\infty} A_n\Big) = \bigcup_{n=1}^{\infty} X^{-1}(A_n), \quad X^{-1}(\mathbb{R} \setminus B) = \Omega \setminus X^{-1}(B).$$

Рассмотрим систему множеств

$$\mathcal{C} := \{ B \subset \mathbb{R} \mid X^{-1}(B) \in \mathcal{A} \}.$$

Эта система образует σ -алгебру. Действительно, $X^{-1}(\varnothing)=\varnothing\in\mathcal{A}$ и $X^{-1}(\mathbb{R})=\Omega\in\mathcal{A}$. Если $B\in\mathcal{C}$, то $X^{-1}(\mathbb{R}\setminus B)=\Omega\setminus X^{-1}(B)\in\mathcal{A}$. Наконец, если $B_n\in\mathcal{C}$, то

$$X^{-1}\Big(\bigcap_{n=1}^{\infty} B_n\Big) = \bigcap_{n=1}^{\infty} X^{-1}(B_n) \in \mathcal{A}.$$

По условию σ -алгебра $\mathcal C$ содержит все лучи вида $(-\infty,t]$. Мы знаем, что $\mathcal B(\mathbb R)$ — наименьшая по включению σ алгебра, содержащая все лучи такого вида, поэтому $\mathcal B(\mathbb R)\subset \mathcal C$, что и требовалось.

Замечание. Т. к. $\{X^2 \leqslant t\} = \{-\sqrt{t} \leqslant x \leqslant \sqrt{t}\}$ (при $t \ge 0$) и отрезок $[-\sqrt{t}, \sqrt{t}]$ — борелевское множество, получаем, что X^2 — также случайная величина. Можно проверить, что для случайной величины X и для любой «разумной» функции $f \colon \mathbb{R} \to \mathbb{R}$ (например, если f непрерывная), f(X) также будет случайной величиной.

Предложение. Пусть X, Y — случайные величины. Тогда случайными величинами будут $\alpha X + \beta Y, X \cdot Y$.

 \mathcal{Q} оказательство. Ясно, что αX и $\beta Y-$ случайные величины. Проверим, что X+Y- случайная величина:

$$\{X + Y > t\} = \{X > t - Y\} = \bigcup_{r_n \in \mathbb{Q}} (\{\omega \mid X(\omega) > r_n\} \cap \{\omega \mid r_n > t - Y(\omega)\}) \in \mathcal{A}.$$

В последнем переходе мы воспользовались тем, что $\mathbb Q$ всюду плотно в $\mathbb R$, поэтому между любыми двумя вещественными числами есть рациональное число. Поэтому и $\{X+Y\leqslant t\}\in\mathcal A$, а значит X+Y — случайная величина. Для произведения заметим, что $X\cdot Y=\frac{1}{2}\big((X+Y)^2-X^2-Y^2\big)$, и утверждение следует из уже доказанных. \square

Предложение. Пусть X_n — случайные величины и для всякого ω существует предел $\lim_{n\to\infty} X_n(\omega) = X(\omega)$. Тогда X является случайной величиной.

Доказательство. Рассмотрим множество $\{\omega\colon X(\omega)\leqslant t\}$. Заметим, что $X(\omega)\leqslant t$ тогда и только тогда, когда для каждого натурального числа k найдётся такой номер N, что для всех n>N верно неравенство $X_n(\omega)\leqslant t+\frac{1}{k}$. На языке теории множеств эту формулу фразу можно записать так

$$\{\omega\colon\ X(\omega)\leqslant t\}=\bigcap_k\bigcup_N\bigcap_{n>N}\{\omega\colon\ X(\omega)\leqslant t+\frac{1}{k}\}$$

Остаётся заметить, что $\{\omega\colon X(\omega)\leqslant t+\frac{1}{k}\}\in\mathcal{A}$

Таким образом, со случайными величинами можно выполнять арифметические операции и переходить к пределу.

Распределение случайной величины и функция распределения. Три основных свойства функции распределения. Формулировка теоремы о продолжении счетно аддитивной функции множества с алгебры на σ -алгебру, порожденную исходной алгеброй. Идея построения меры Лебега равномерного распределения на отрезке с борелевской σ -алгебой. Формулировка теоремы об однозначности задания распределения функцией распределения и о существовании распределения с заданой функцией распределения (т.е. с функцией, удовлетворяющей трем свойствам). Идея доказательства.

Распределение случайной величины и функция распределения

Определение 0.6. *Распределением* случайной величины X называется вероятностная мера μ_X на $\mathcal{B}(\mathbb{R})$, определяемая равенством

$$\mu_X(B) = P(\{\omega \mid X(\omega) \in B\}) = P(X^{-1}(B)).$$

Обратим внимание, что, как и в дискретном случае, распределение случайной величины это мера на значениях случайной величины, т. е. мера μ_X показывает с какой вероятностью принимаются те или иные значения X.

Определение 0.7. Функция

$$F_X(t) = \mu_X((-\infty, t]) = P(\{\omega \mid X(\omega) \leqslant t\}).$$

называется ϕ ункцией распределения случайной величины X.

Из определения F_X следует, что $P(a < X \leq b) = \mu_X((a,b]) = F(b) - F(a)$.

Три основных свойства функции распределения

Предложение. Функция F_X удовлетворяет следующим свойствам:

- 1. $F_X: \mathbb{R} \to [0,1]$ не убывает;
- 2. F_X непрерывна справа;
- 3. $\lim_{t\to -\infty} F_X(t) = 0$ и $\lim_{t\to +\infty} F_X(t) = 1$.

Доказательство. Т.к. $\{\omega \mid X(\omega) \leqslant t\} \subset \{\omega \mid X(\omega) \leqslant s\}$ при $t \leqslant s$, то получаем свойство 1. Обоснуем пункт 2. Пусть $t_n \to t, \, t_n \geqslant t$. Заметим, что

$$\{X \leqslant t\} = \bigcap_{k=1}^{\infty} \{X \leqslant t + \frac{1}{k}\}.$$

В силу непрерывности вероятностной меры P получаем

$$\lim_{k \to \infty} F_X(t + \frac{1}{k}) = \lim_{k \to \infty} P(X \leqslant t + \frac{1}{k}) = P(X \leqslant t) = F_X(t).$$

Значит для каждого $\varepsilon > 0$ найдется k, для которого

$$F_X(t) \leqslant F_X(t + \frac{1}{h}) \leqslant F_X(t) + \varepsilon.$$

Т.к. $t_n \to t$, $t_n \geqslant t$, то найдется номер n_0 , начиная с которого $t \leqslant t_n < t + \frac{1}{k}$. В силу монотонности $F_x(t) \leqslant F_X(t_n) \leqslant F_X(t + \frac{1}{k}) \leqslant F_X(t) + \varepsilon$ при $n \geqslant n_0$. Это и означает, что $\lim_{n \to \infty} F_X(t_n) = F(t)$.

Свойство 3 обосновывается аналогично.

Формулировка теоремы о продолжении счетно аддитивной функции множества с алгебры на σ -алгебру, порожденную исходной алгеброй

Теорема 0.1 (6/д). Пусть A_0 есть некоторая алгебра подмножеств пространства Ω и пусть $P_0: A_0 \to [0,1]$ счетно аддитивная функция множества на алгебре A_0 . Тогда существует единственная вероятностная мера P на $\sigma(A_0)$, продолжающая функцию P_0 , т.е. $P(A) = P_0(A)$ для произвольного множества $A \in A_0$.

Идея построения меры Лебега равномерного распределения на отрезке с борелевской σ -алгебой

Мера Лебега — обычная длина, т. е. $\lambda([a,b]) = b - a$.

Схема построения меры Лебега Рассмотрим алгебру \mathcal{A}_0 конечных объединений попарно непересекающихся промежутков вида $(a,b]\subset [0,1]$ и возможно одноточечного множества $\{0\}$. Для множества $A=\bigsqcup_{j=1}^m (a_j,b_j]$ с попарно непересекающимися $(a_j,b_j]$ зададим меру Лебега равенством

$$\lambda(A) := \sum_{j=1}^{m} (b_j - a_j).$$

Нетрудно проверить, что это корректно определенная аддитивная функция множества на \mathcal{A}_0 . Если теперь проверить, что она оказывается счетно аддитивной на этой алгебре (что верно), то по теореме о продолжении меры существует единственная вероятностная мера на $\mathcal{B}([0,1])$, совпадающая с λ на \mathcal{A}_0 .

Формулировка теоремы об однозначности задания распределения функцией распределения с заданой функцией распределения

Теорема 0.2. Распределение μ_X однозначно определяется функцией распределения F_X . Кроме того, если задана функция F, удовлетворяющая свойствам 1, 2, 3, то существует вероятностное пространство (Ω, \mathcal{A}, P) и случайная величина X с функцией распределения F.

Эта теорема позволяет говорить о распределении случайной величины без уточнения, на каком вероятностном пространстве задана случайная величина и как именно она задана.

Идея доказательства Наметим основные идеи доказательства. Первая часть является прямым следствием теоремы о продолжении меры. Пусть $A = \bigcup_{i=1}^{n} (a_j, b_j]$, причем $(a_j, b_j] \cap (a_k, b_k] = \emptyset$ при $j \neq k$. Тогда

$$\mu_X(A) = \sum_j F_X(b_j) - F_X(a_j).$$

Кроме того, множества A указанного вида образуют алгебру \mathcal{A}_0 подмножеств \mathbb{R} . Поэтому, если есть две случайные величины с одной и той же функцией распределения, то по теореме о продолжении меры (часть о единственности продолжения) их распределения также совпадают на всех множествах из $\sigma(\mathcal{A}_0) = \mathbb{B}(\mathbb{R})$.

Доказательство второй части аналогично рассуждению о построении меры Лебега. Будем строить вероятностную меру P на $\Omega = \mathbb{R}$ с $\mathcal{A} = \mathcal{B}(\mathbb{R})$. Рассмотрим алгебру \mathcal{A}_0 множеств вида $A = \bigcup_{j=1}^n (a_j, b_j]$, где $(a_j, b_j] \cap (a_k, b_k] = \emptyset$ при $j \neq k$. Для такого множества A положим $P(A) := \sum_{j=1}^n F(b_j) - F(a_j)$. Нетрудно видеть, что корректно определена (т.е. для разных представлений A равенство дает одно и тоже число) аддитивная функция множества на алгебре \mathcal{A}_0 . Если теперь суметь проверить счетную аддитивность P на \mathcal{A}_0 , то P продолжается до счетно аддитивной меры на $\sigma(\mathcal{A}_0) = \mathcal{B}(\mathbb{R})$. Если теперь рассмотреть случайную величину $X(\omega) = \omega$, то $F_X(t) = F(t)$ при $t \in \mathbb{R}$ в силу того, что $P((-\infty,t])$, являясь продолжением, стовпадает с $F(t) - F(-\infty) = F(t)$.

Дискретные и абсолютно непрерывные распределения случайных величин. Функция распределения дискретной случайной величины. Определение абсолютно непрерывного распределения случайной величины и определение плотности распределения. Основные свойства плотности и связь с функцией распределения. Примеры абсолютно непрерывных случайных величин.

Еще будут пояснения для таких как Аня Смирнова чтобы осознать.

Функция распределения дискретной случайной величины.

Определение 0.8. Случайная величина ξ называется $\partial uc\kappa pemhoй$, если множество ее значений конечно или счетно. Если x_1,\ldots,x_N,\ldots — различные значения ξ , то множества $A_i=\xi^{-1}\{x_i\}$ попарно не пересекаются. Пусть $p_i=P(A_i)$. Тогда распределение μ_{ξ} имеет вид

$$\mu_{\xi} = p_1 \delta_{x_i} + \ldots + p_N \delta_{x_N} + \ldots$$

и полностью определяется значениями x_i и p_i . В этой формуле $\delta_{x_i}(A) := 1$, если $x_i \in A$ и $\delta_{x_i}(A) = 0$, если $x_i \notin A$ для каждого $A \in \mathcal{B}(\mathbb{R})$.

Вот это (мю кси) μ_{ξ} — вероятностная мера, а $\mathcal{B}(\mathbb{R})$ — борелевская сигма-алгебра.

Определение абсолютно непрерывного распределения случайной величины и определение плотности распределения

Определение 0.9. Говорят, что случайная величина X имеет *абсолютно непрерывное* распределение (или является абсолютно непрерывной), если существует такая неотрицательная (и интегрируемая) функция ρ_X , что

$$F_X(t) = \int_{-\infty}^t \rho_X(x) \mathrm{d}x,$$

Функция ρ_X называется *плотностью* случайной величины X.

 $F_X(t)$ — это функция распределения случ. величины, и она абсолютно непрерывна, если ее можно задать какойто функцией ρ_X и бахнуть интеграл, а так обычно определение другое.

Факты Отметим, что в данном случае

$$\mu_X((a,b]) = F_X(b) - F_X(a) = \int_a^b \rho_X(x) dx,$$

кроме того

$$P(X = a) = \lim_{n \to \infty} [F_X(a) - F_X(a - 1/n)] = 0$$
 (непрерывность интеграла с переменным пределом).

На самом деле можно доказать, что

$$\mu_X(A) = \int_A \rho_X(x) \mathrm{d}x$$

для всякого множества A, для которого имеет смысл интеграл в правой части, т. е. функция $I_A \rho_X$ интегрируема по Риману, где $I_A(x) = 1$ при $x \in A$ и $I_A(x) = 0$ при $x \notin A$.

Основные свойства плотности и связь с функцией распределения.

Предложение. Отметим несколько свойств плотности распределения:

1. $\rho_X \ge 0$;

$$2. \int_{-\infty}^{+\infty} \rho_X(x) \mathrm{d}x = 1;$$

3. $F_X'(x) = \rho_X(x)$ для любой точки непрерывности функции ρ_X .

Последнее свойство следует из теоремы о дифференцируемости интеграла с переменным верхнем пределом. Конечно же мы ее не помним: Пусть функция интегрируема на [a,b] и непрерывна в точке $x_0 \in [a,b]$. Тогда функция F дифференцируема в точке x_0 и $F'(x_0) = f(x_0)$.

Примеры абсолютно непрерывных случайных величин.

Равномерное распределение

Случайная величина имеет равномерное распределение на отрезке [a,b], если ее распределение задано плотностью

$$\rho(x) = \begin{cases} \frac{1}{b-a} & x \in (a,b], \\ 0 & x \notin (a,b]. \end{cases}$$

Такая случайная величина описывает случайное бросание точки в отрезок [a,b]. Вероятность того, что точка попадёт в отрезок $[c,d] \subset [a,b]$ равна $\frac{d-c}{b-a}$.

Нормальное распределение

Случайная величина имеет *нормальное распределение* с параметрами a и σ^2 , если ее распределение задано плотностью

$$\rho(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-a)^2}{2\sigma^2}}.$$

В случае a=0 и $\sigma=1$ эта плотность появлялась в теореме Муавра-Лапласа. Помним этот гроб билет первого коллока.

Экспоненциальное (показательное) распределение

Случайная величина имеет экспоненциальное распределение (которое еще иногда называется показательным) с параметром $\lambda > 0$, если ее распределение задано плотностью

$$\rho(x) = \begin{cases} \lambda e^{-\lambda x}, & x \geqslant 0, \\ 0, & x < 0. \end{cases}$$

Функция распределения такой случайной величины имеет вид $F(t) = 1 - e^{-\lambda x}$.

Совместное распределение случайных величин, корректность определения. Функция совместного распределения и четыре ее основных свойства. Формулировка теоремы об однозначности задания совместного распределения функцией совместного распределения и о существовании распределения с заданой функцией совместного распределения (т.е. с функцией, удовлетворяющей четырем свойствам). Неоднозначность задания совместного распределения распределениями компонент (пример).

Совместное распределение случайных величин, корректность определения

Определение 0.10. Пусть X и Y — случайные величины. Совместным распределением случайных величин X,Y называется вероятностная мера $\mu_{X,Y}$ на $\mathcal{B}(\mathbb{R}^2)$, определяемая следующим образом:

$$\mu_{X,Y}(B) = P(\{\omega \mid (X(\omega), Y(\omega)) \in B\}).$$

Предложение. Определение выше корректно в том смысле, что для $B \in \mathcal{B}(\mathbb{R}^2)$

$$\{\omega \mid (X(\omega), Y(\omega)) \in B\} \in \mathcal{A}.$$

Доказательство. Рассмотрим отображение $g: \Omega \to \mathbb{R}^2, g(\omega) = (X(\omega), Y(\omega))$. Аналогично тому, как мы уже делали, проверяется, что система множеств

$$\mathcal{C} := \{ B \subset \mathbb{R}^2 \mid g^{-1}(B) \in \mathcal{A} \}$$

является σ -алгеброй. Заметим, что параллеленинеды $[a,b] \times [c,d] \in \mathcal{C}$, т.к.

$$g^{-1}([a,b] \times [c,d]) = \{\omega \mid X(\omega) \in [a,b], Y(\omega) \in [c,d]\} = \{\omega \mid X(\omega) \in [a,b]\} \cap \{\omega \mid Y(\omega) \in [c,d]\}.$$

Тем самым, \mathcal{C} — некотрая σ -алгебра, содержащая все параллеленинеды, а $\mathcal{B}(\mathbb{R}^2)$ — это наименьшая по включению σ -алгебра, содержащая все параллеленинеды.

Функция совместного распределения и четыре ее основных свойства.

Определение 0.11. Функцию

$$F_{X,Y}(x,y) = P(\{\omega \mid X(\omega) \leqslant x, Y(\omega) \leqslant y\}) = \mu_{X,Y}((-\infty,x] \times (-\infty,y]).$$

называют функцией совместного распределения случайных величин X и Y или функцией распределения случайного вектора (X,Y).

Предложение. Функция F совместного распределения пары случайных величин удовлетворяет следующим свойствам:

- 1. $F: \mathbb{R}^2 \to [0,1]$ и $F(b,d) F(a,d) F(b,c) + F(a,c) \ge 0$ для всякого прямоугольника $(a,b] \times (c,d]$;
- 2. F непрерывна справа по совокупности переменных;
- 3. $\lim_{(x,y)\to(u,v)} F(x,y) = 0$ если хотя бы одна из переменных u или v равна $-\infty$;
- 4. $\lim_{(x,y)\to(+\infty,+\infty)} F(x,y) = 1.$

Доказательство. Доказательство повторяет рассуждения одномерного случая. Например, докажем (2). Заметим, что

$$\bigcap_{k\in\mathbb{N}} \{\omega \mid X(\omega) \leqslant x + \frac{1}{k}, Y(\omega) \leqslant y + \frac{1}{k}\} = \{\omega \mid X(\omega) \leqslant x, Y(\omega) \leqslant y\}.$$

Поэтому $P(X\leqslant x+\frac{1}{k},Y\leqslant y+\frac{1}{k})\to P(X\leqslant x,Y\leqslant y)$ и для каждого ε найдется такое k, что

$$P(X \leqslant x + \frac{1}{k}, Y \leqslant y + \frac{1}{k}) < P(X \leqslant x, Y \leqslant y) + \varepsilon.$$

Если теперь $x_n \to x, \ x_n \geqslant x, \ y_n \to y, \ y_n \geqslant y,$ то для произвольного k найдется номер n_0 , начиная с которого выполняется

$$x \leqslant x_n < x + \frac{1}{k}, \ y \leqslant y_n < y + \frac{1}{k}.$$

Поэтому при $n > n_0$

$$P(X \leqslant x, Y \leqslant y) \leqslant P(X \leqslant x_n, Y \leqslant y_n) \leqslant P(X \leqslant x + \frac{1}{k}, Y \leqslant y + \frac{1}{k}) < P(X \leqslant x, Y \leqslant y) + \varepsilon.$$

Утверждения (3) и (4) обосновываются аналогично.

Формулировка теоремы об однозначности задания совместного распределения функцией совместного распределения и о существовании распределения с заданой функцией совместного распределения

Теорема 0.3. Совместное распределение пары случайных величин $\mu_{X,Y}$ однозначно задается функцией совместного распределения $F_{X,Y}$. Кроме того, для всякой функции F, удовлетворяющей свойствам (1),(2),(3),(4), существует вероятностное пространство (Ω,\mathcal{A},P) и пара случайных величин X,Y с функцией совместного распределения F.

Неоднозначность задания совместного распределения распределениями компонент

Пример Пусть в квадрате $[0,1] \times [0,1]$ случайно выбирается точка (x,y). Случайные величины X(x,y) = x и Y(x,y) = y имеют равномерное распределение на [0,1] и их совместное распределение является равномерным на $[0,1] \times [0,1]$, т. е. вероятность попадания в множество B равна площади этого множества. Будем теперь выбирать точку (x,y) случайным образом на диагонали квадрата $[0,1] \times [0,1]$, а случайные величины останутся прежними. Для всякого отрезка $[a,b] \subset [0,1]$ вероятность того, что $(x,y) \in [a,b] \times \mathbb{R}$ равна вероятности попасть в отрезок длины $(b-a)\sqrt{2}$ при бросании точки на отрезок длины $\sqrt{2}$, т. е. равна b-a. Таким образом, X и Y опять имеют равномерное распределение на [0,1], но совместное распределение у них совсем другое.

Случайные векторы с абсолютно непрерывным распределением и плотность совместного распределения. Связь с функцией совместного распределения. Вычисление плотности компонент по совместной плотности. Плотность случайного вектора, являющегося функцией от другого случайного вектора. Равномерное распределение на многомерных областях.

Случайные векторы с абсолютно непрерывным распределением и плотность совместного распределения

Определение 0.12. Если существует такая интегрируемая и неотрицательная функция $\rho_{X,Y}(x,y)$, что

$$F_{X,Y}(x,y) = \iint_{(-\infty,x]\times(-\infty,y]} \rho_{X,Y}(x,y) dxdy,$$

то говорят, что совместное распределение случайных величин X,Y абсолютно непрерывно. Функцию $\rho_{X,Y}$ называют плотностью совместного распределения случайных величин X,Y (случайного вектора).

Связь с функцией совместного распределения

Ясно, что

$$P(a < X \leqslant b, \ c < Y \leqslant d) = \mu_{X,Y}((a,b] \times (c,d]) = \iint_{(a,b] \times (c,d]} \rho_{X,Y}(x,y) \mathrm{d}x \mathrm{d}y.$$

Можно доказать, что

$$P((X,Y) \in B) = \mu_{X,Y}(B) = \iint_{\mathcal{D}} \rho_{X,Y}(x,y) dxdy.$$

для всякого множества A, для которого имеет смысл интеграл Римана в правой части. В каждой точке непрерывности плотности $\rho_{X,Y}$ выполнено равенство

$$\frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y) = \rho_{X,Y}(x,y).$$

Вычисление плотности компонент по совместной плотности

Если известна плотность $\rho_{X,Y}$ совместного распределения X и Y, то можно найти плотности распределения каждой из случайных величин. Например, для случайной величины X:

$$F_X(t) = P(X \le t, Y \in \mathbb{R}) = \int_{-\infty}^t \left(\int_{-\infty}^{+\infty} \rho_{X,Y}(x,y) dy \right) dx.$$

и, следовательно,

$$\rho_X(x) = \int_{-\infty}^{+\infty} \rho_{X,Y}(x,y) dy.$$

Если распределение каждой из случайных величин задается плотностью, то совместное распределение может не иметь плотность.

Плотность случайного вектора, являющегося функцией от другого случайного вектора

Теорема 0.4. Пусть распределение X,Y задано плотностью $\rho_{X,Y}$. Рассмотрим две случайные величины $\xi = f(X,Y), \eta = g(X,Y)$ и предположим, что отображение $T \colon (x,y) \mapsto (f(x,y),g(x,y))$ удовлетворяет условиям теоремы о замене переменных в кратном интеграле Римана (например непрерывно дифференцируемо с невырожденным якобианом). Тогда

$$\rho_{\xi,\eta}(u,v) = \rho_{X,Y}(T^{-1}(u,v)) \cdot |J(T^{-1}(u,v))|^{-1},$$

r de J - якобиан отображения <math>T.

Доказательство. Заметим, что

$$P((\xi, \eta) \in A) = P((X, Y) \in T^{-1}(A)) = \iint_{T^{-1}(A)} \rho_{X,Y}(x, y) dxdy.$$

Сделаем замену в интеграле u=f(x,y), v=g(x,y), т.е. $(x,y)=T^{-1}(u,v).$ Тогда последний интеграл равен

$$\iint\limits_{A} \rho_{X,Y} (T^{-1}(u,v)) \cdot |J(T^{-1}(u,v))|^{-1} du dv,$$

что завершает доказательство.

Равномерное распределение на многомерных областях

Говорят, что вектор (ξ, η) равномерно распределен на множестве B, имеющем положительную площадь, если его распределение задано плотностью

 $\rho(x,y) = \begin{cases} \frac{1}{|B|}, & (x,y) \in B, \\ 0, & (x,y) \notin B. \end{cases}$

Аналогичным образом определяется равномерно распределенный вектор с любым конечным числом координат.

Независимые случайные величины: характеризация в терминах функций распределения, в терминах совместного распределения, в терминах плотностей. Независимость функций от независимых случайных величин. Формула свертки для плотности суммы независимых случайных величин, заданных плотностями.

Независимые случайные величины: характеризация в терминах функций распределения, в терминах совместного распределения, в терминах плотностей

Напоминание Пусть задано вероятностное пространство (Ω, \mathcal{A}, P) . Функция $X: \Omega \to \mathbb{R}$ называется случайной величиной, если для всякого числа $t \in \mathbb{R}$ выполнено

$$X^{-1}((-\infty, t]) = \{\omega \in \Omega : X(\omega) \le t\} \in A$$

Определение. Случайные величины X и Y называются *независимыми*, если:

$$F_{X,Y}(x,y) = F_X(x)F_Y(y).$$

Предложение. Случайные величины X и Y независимы тогда и только тогда, когда для произвольных $U, V \in \mathcal{B}(\mathbb{R})$ выполнено:

$$P(\{\omega\colon X(\omega)\in U,\,Y(\omega)\in V\})=P(\{\omega\colon X(\omega)\in U\})\cdot P(\{\omega\colon Y(\omega)\in V\}.$$

Доказательство. Если $V=(-\infty,y]$, то две меры $U\to \frac{\mu_{X,Y}(U\times V)}{\mu_Y(V)}$ и $U\to \mu_X(U)$ совпадают на всех лучах $(-\infty,x]$, т.е. имеют одинаковые функции распределения, а значит совпадают на всех борелевских множествах U. Теперь для произвольного борелевского множества U меры $V\to \frac{\mu_{X,Y}(U\times V)}{\mu_X(U)}$ и $V\to \mu_Y(V)$ совпадают на всех лучах $(-\infty,y]$, а значит и на всех борелевских множествах V.

Предложение. Пусть распределения X и Y заданы плотностями. Тогда независимость X и Y равносильна тому, что совместное распределение задано плотностью и эта плотность имеет вид:

$$\rho_{X,Y}(x,y) = \rho_X(x)\rho_Y(y).$$

$$F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y) = \int_{-\infty}^x \rho_X(t) dt \cdot \int_{-\infty}^y \rho_Y(s) ds = \iint_{(-\infty,x] \times (-\infty,y]} \rho_X(t) \rho_Y(s) dt ds.$$

Обратно,

$$F_{X,Y}(x,y) = \iint_{(-\infty,x]\times(-\infty,y]} \rho_X(t)\rho_Y(s) dtds = \int_{-\infty}^x \rho_X(t) dt \cdot \int_{-\infty}^y \rho_Y(s) ds = F_X(x) \cdot F_Y(y).$$

Независимость функций от независимых случайных величин

Определение. Функция $f: \mathbb{R} \to \mathbb{R}$ называется борелевской, если $f^{-1}((-\infty, t]) \in \mathcal{B}(\mathbb{R})$ для каждого $t \in \mathbb{R}$.

Например, такими функциями будут все монотонные функции или все непрерывные.

Следствие. Пусть X и Y независимы, а f, g — борелевские функции. Тогда f(X) и g(Y) также независимы.

Формула свертки для плотности суммы независимых случайных величин, заданных плотностями

Теорема (Формула свертки). Предположим, что X и Y независимы и их распределения заданы плотностями ρ_X и ρ_Y . Тогда распределение суммы Z = X + Y задано плотностью

$$\rho_Z(z) = \int_{-\infty}^{+\infty} \rho_X(t) \rho_Y(z-t) dt.$$

Доказательство. По определению $F_Z(t) = P(\{\omega \mid X(\omega) + Y(\omega) \leq t\})$. С другой стороны, эта вероятность выражается через интеграл:

$$F_Z(t) = P(\{\omega \mid X(\omega) + Y(\omega) \le t\}) = \iint_{x+y \le t} \rho_X(x)\rho_Y(y) dxdy.$$

Переходя к новым переменным u = x + y, v = x, и, применяя теорему Фубини³, преобразуем этот интеграл:

$$F_Z(t) = \int_{-\infty}^t \left(\int_{-\infty}^{+\infty} \rho_X(v) \rho_Y(u - v) dv \right) du.$$

Следовательно, распределение Z имеет плотность требуемого вида.

 $^{^{3} {\}rm Takже}$ известная, как сведение двойного интеграла к повторному.

Математическое ожидание в общем случае: построение математического ожидания для ограниченных, неотрицательных и общих случайных величин. Корректность определений и основные свойства (линейность, монотонность, равенство нулю неотрицательной случайной величины с нулевым ожиданием, ожидание модуля случайной величины).

Математическое ожидание в общем случае

Определение. Случайные величины с конечным числом значений будем называть простыми.

Определение. Пусть X — простая случайная величина на (Ω, \mathcal{A}, P) , принимающая конечное число значений $\{x_1, \dots, x_N\}$. Тогда по определению полагаем, что $\mathbb{E}X := \sum_{j=1}^N x_j P(X=x_j)$.

Определение. Пусть X — ограниченная случайная величина, тогда ее математическим ожиданием называют предел $\lim_{n\to\infty} \mathbb{E} X_n$ математических ожиданий произвольной последовательности простых случайных величин X_n , равномерно сходящейся к X.

Определение. Пусть $X \geqslant 0$ — неотрицательная случайная величина. Скажем, что у нее есть конечное математическое ожидание, если конечен следующий супремум

$$\mathbb{E}X := \sup\{\mathbb{E}U \mid 0 \leqslant U \leqslant X; \ U$$
— ограниченная $\}.$

Определение. Пусть X — случайная величина и пусть $X^+ := \max\{X,0\} \geqslant 0$, $X^- := \max\{-X,0\} \geqslant 0$ (в частности, $X = X^+ - X^-$). Скажем, что X обладает математическим ожиданием, если X^+ и X^- имеют конечные математические ожидания. В этом случае определим математическое ожидание X равенством:

$$\mathbb{E}X := \mathbb{E}X^+ - \mathbb{E}X^-.$$

Корректность определений и основные свойства

Пемма. Пусть X — ограниченная случайная величина. Тогда найдется последовательность простых случайных величин X_n , равномерно сходящаяся κ X.

Доказательство. Пусть $|X(\omega)| < R$ для каждого $\omega \in \Omega$. Рассмотрим случайную величину⁴

$$X_n(\omega) := \sum_{j=1}^n (-R + \frac{2R}{n}(k-1)) I_{\{\omega \mid -R + \frac{2R}{n}(k-1) \leqslant X(\omega) < -R + \frac{2R}{n}k\}}.$$

Возьмем теперь произвольный элемент $\omega_0 \in \Omega$. Тогда, т.к. $|X(\omega_0)| < R$, то найдется число $k_0 \in \{1,\dots,n\}$, для которого $-R + \frac{2R}{n}(k_0-1) \leqslant X(\omega_0) < -R + \frac{2R}{n}k_0$. Таким образом

$$|X(\omega_0) - X_n(\omega_0)| \leqslant \frac{2R}{n} = \varepsilon.$$

Предложение. Определение матожидания неотрицательной случайной величины корректно в том смысле, что для произвольной ограниченной случайной величины X и для произвольной последовательности простых случайных величин X_n , равномерно сходящейся к X, существует предел $\lim_{n\to\infty} \mathbb{E} X_n$. Кроме того, для произвольной другой последовательности простых случайных величин Y_n , равномерно сходящейся к X, выполнено

$$\lim_{n\to\infty} \mathbb{E}Y_n = \lim_{n\to\infty} \mathbb{E}X_n.$$

Доказательство. Заметим что,

$$|\mathbb{E}X_n - \mathbb{E}X_k| \leqslant \mathbb{E}|X_n - X_k| \leqslant \sup_{\omega \in \Omega} |X_n(\omega) - X_k(\omega)| \leqslant \sup_{\omega \in \Omega} |X_n(\omega) - X(\omega)| + \sup_{\omega \in \Omega} |X(\omega) - X_k(\omega)|.$$

Тем самым, последовательность $\{\mathbb{E}X_n\}$ фундаментальна, а значит сходится. Если Y_n другая последовательность простых случайных величин, равномерно сходящаяся к X, то последовательность Z_m , для которой $Z_{2k-1}:=X_k, Z_{2k}:=Y_k$, также образует последовательность простых случайных величин, равномерно сходящуюся к X. Тогда последовательность чисел $\mathbb{E}Z_m$ сходится, а значит $\lim_{n\to\infty} \mathbb{E}Y_n = \lim_{n\to\infty} \mathbb{E}X_n$, как пределы двух подпоследователностей сходящейся последовательности чисел.

 $^{^4}$ Мы поделили $[-R,R-rac{2R}{n}]$ на n частей и представили X в виде взвешенной суммы индикаторов попадания в подотрезки.

 $^{^5{}m Tyr}$ мы пользуемся «взвешеностью» с.в., чтобы получить ограничение на область ее значений.

Предложение. Определение матожидания произвольной сулчайной величины корректно в слудющем смысле. Предположим, что $U\geqslant 0, V\geqslant 0$ — случайные величины с конечными математическими ожиданиеми, причём X=U-V. Тогда $\mathbb{E} X=\mathbb{E} U-\mathbb{E} V$.

Доказательство. Действительно, в этом случае $X^+ - X^- = U - V$, т.е. $X^+ + V = U + X^-$, откуда $\mathbb{E}(X^+ + V) = \mathbb{E}(U + X^-)$. В силу того, что все функции U, V, X^+, X^- неотрицательны, получаем, что $\mathbb{E}X^+ + \mathbb{E}V = \mathbb{E}U + \mathbb{E}X^-$, т.е. $\mathbb{E}X^+ - \mathbb{E}X^- = \mathbb{E}U - \mathbb{E}V$.

Из определения в частности следует, что для случайной величины X, обладающей математическим ожиданием, $|X| = X^+ + X^-$ также будет иметь конечное математическое ожидание. Наоборот, если |X| обладает конечным математическим ожиданием, то $X^+ \leqslant |X|, X^- \leqslant |X|$, поэтому X^+ и X^- имеют конечные математические ожидания, а значит и у X определено математическое ожидание.

Предложение. Для ограниченных случайных величин X,Y выполнены свойства:

- 1. $\mathbb{E}(\alpha X + \beta Y) = \alpha \mathbb{E}X + \beta \mathbb{E}Y$;
- 2. Если $X\geqslant 0$ п.н., то $\mathbb{E} X\geqslant 0$, в частности, если $X\geqslant Y$ п.н., то $\mathbb{E} X\geqslant \mathbb{E} Y$.

Доказательство.

1. Если $X_n \rightrightarrows X$, $Y_n \rightrightarrows Y$, X_n, Y_n — простые, то $\alpha X_n + \beta Y_n \rightrightarrows \alpha X + \beta Y$. Отсюда

$$\mathbb{E}(\alpha X + \beta Y) = \lim_{n \to \infty} \mathbb{E}(\alpha X_n + \beta Y_n) = \lim_{n \to \infty} (\alpha \mathbb{E} X_n + \beta \mathbb{E} Y_n) = \alpha \mathbb{E} X + \beta \mathbb{E} Y.$$

2. Пусть сначала $X_n(\omega)\geqslant 0$ для каждой $\omega\in\Omega$. Пусть X_n — последовательность простых случайных величн, равномерно сходящаяся к \sqrt{X} . Тогда $X_n^2\rightrightarrows X$, откуда $\mathbb{E} X=\lim_{n\to\infty}\mathbb{E} X_n^2\geqslant 0$. Теперь, для произвольного $X\geqslant 0$ п.н., выполнено $\mathbb{E} X=\mathbb{E}[XI_{\{x\geqslant 0\}}]+\mathbb{E}[XI_{\{X<0\}}]$. Покажем, что $\mathbb{E}[XI_{\{X<0\}}]=0$. По доказанному $\mathbb{E}[-XI_{\{X<0\}}]\geqslant 0$ и $\mathbb{E}[(M+X)I_{\{X<0\}}]\geqslant 0$, где $M=\sup_{\omega\in\Omega}|X(\omega)|$. Таким образом, $0\leqslant\mathbb{E}[-XI_{\{X<0\}}]\leqslant MP(X<0)=0$. В случае, когда $X\geqslant Y$ п.н., получаем, что $X-Y\geqslant 0$ п.н. и $\mathbb{E} X-\mathbb{E} Y=\mathbb{E}(X-Y)\geqslant 0$.

Предложение. Для неотрицательных случайных величин X,Y выполнены свойства:

- 1. $\mathbb{E}(\alpha X + \beta Y) = \alpha \mathbb{E}X + \beta \mathbb{E}Y$, если $\alpha, \beta \geqslant 0$;
- 2. Если $X\geqslant Y\geqslant 0$, то $\mathbb{E} X\geqslant \mathbb{E} Y$, в частности, если X имеет конечное математическое ожидание, то и Y также имеет конечное математическое ожидание;
- 3. Если X = 0 п.н., то $\mathbb{E}X = 0$.

Доказательство.

- 1. Достаточно доказать утверждение при $\alpha = \beta = 1$. Если $0 \leqslant U \leqslant X$, $0 \leqslant V \leqslant Y$, U,V ограниченные, то $U+V \leqslant X+Y$, откуда $\mathbb{E}X + \mathbb{E}Y \leqslant \mathbb{E}(X+Y)$. Наоборот, пусть $0 \leqslant Z \leqslant X+Y$, Z ограниченная случайная величина. Пусть $U := \min(X,Z), \ V := Z-U$. Тогда $0 \leqslant U \leqslant X, \ U$ ограниченная, $V = (Z-X)I_{\{X < Z\}} \leqslant X+Y-X=Y, \ V$ ограниченная. Таким образом, $\mathbb{E}Z = \mathbb{E}(U+V) = \mathbb{E}U + \mathbb{E}V \leqslant \mathbb{E}X + \mathbb{E}Y$. А значит аналогичная оценка верна и для $\mathbb{E}(X+Y)$.
- 2. Следует из определния;
- 3. Произвольная ограниченная случайная величина $U, 0 \le U \le X$, также обращается в нуль п.н. Поэтому $\mathbb{E}U = \mathbb{E}[UI_{\{U \ne 0\}}] \le [\sup U]P(U \ne 0) = 0$.

Предложение. Для случайных величин X, Y, обладающих математическим ожиданием, выполнены свойства:

- 1. $\mathbb{E}(\alpha X + \beta Y) = \alpha \mathbb{E}X + \beta \mathbb{E}Y$;
- 2. Если $X \geqslant 0$ почти наверное, то $\mathbb{E}X \ge 0$, в частности, если $X \geqslant Y$, то $\mathbb{E}X \geqslant \mathbb{E}Y$;
- 3. Если $X \geqslant 0$ почти наверное и $\mathbb{E}X = 0$, то X = 0 почти наверное;
- 4. $|\mathbb{E}X| \leq \mathbb{E}|X|$.

Доказательство.

1. Заметим, что $\mathbb{E}[-X] = -\mathbb{E}X$, т.к. для произвольного представления X = U - V, $U, V \geqslant 0$, выполнено -X = V - U, откуда $\mathbb{E}[-X] = \mathbb{E}V - \mathbb{E}U = -(\mathbb{E}U - \mathbb{E}V) = -\mathbb{E}X$. Тогда достаточно доказать линейность только в случае $\alpha, \beta \geqslant 0$. В этом случае $\alpha X + \beta Y = \alpha X^+ + \beta Y^+ - (\alpha X^- + \beta Y^-)$, причем $\alpha X^+ + \beta Y^+ \geqslant 0$ и $\alpha X^- + \beta Y^- \geqslant 0$. Поэтому

$$\mathbb{E}(\alpha X + \beta Y) = \mathbb{E}(\alpha X^+ + \beta Y^+) - \mathbb{E}(\alpha X^- + \beta Y^-) = \alpha \mathbb{E}X^+ + \beta \mathbb{E}Y^+ - \alpha \mathbb{E}X^- - \beta \mathbb{E}Y^-$$
$$= \alpha(\mathbb{E}X^+ - \mathbb{E}X^-) + \beta(\mathbb{E}Y^+ - \mathbb{E}\beta Y^-) = \alpha \mathbb{E}X + \beta \mathbb{E}Y.$$

- 2. В этом случае $X^-=0$ п.в., а значит и $\mathbb{E} X^-=0$. Таким образом, $\mathbb{E} X=\mathbb{E} X^+\geqslant 0$.
- 3. Заметим, что $k^{-1}P(X\geqslant k^{-1})=\mathbb{E}[k^{-1}I_{\{X\geqslant k^{-1}\}}]\leqslant \mathbb{E}X=0,$ откуда получаем, что $P(X>0)=P(\bigcup\limits_{k=1}^{\infty}\{X\geqslant k^{-1}\})\leqslant \sum\limits_{k=1}^{\infty}P(X\geqslant k^{-1})=0.$

4. Заметим, что $-|X|\leqslant X\leqslant |X|$, откуда по свойствам (2) и (1) получаем, неравенства $-\mathbb{E}|X|\leqslant \mathbb{E}X\leqslant \mathbb{E}|X|$.

Математическое ожидание функции от случайной величины с абсолютно непрерывным распределением. Математическое ожидание произведения независимых случайных величин. Дисперсия, ковариация, коэффициент корреляции и их свойства. Неравенство Чебышева.

Математическое ожидание функции от случайной величины с абсолютно непрерывным распределением

Лемма 0.1. Пусть случайная величина $X \geqslant 0$ и пусть $A_n \subset A_{n+1}, A_n \in \mathcal{A}$, причем $\bigcup_{n=1}^{\infty} A_n = \Omega$. Тогда X имеет конечное математическое ожидание тогда и только тогда, когда

$$\sup_{n} \mathbb{E}[XI_{A_n}] := M < \infty.$$

 Πpu этом $\mathbb{E}X = \lim_{n \to \infty} \mathbb{E}[XI_{A_n}] = M.$

Доказательство. Пусть U — произвольная ограниченная случайная величина, причем $0 \leqslant U \leqslant X$. Тогда $P(\Omega \backslash A_n) \to 0$ (из-за свойства непрерывности вероятностной меры) и $\mathbb{E}[UI_{\Omega \backslash A_n}] \leqslant [\max U]P(\Omega \backslash A_n) \to 0$. Отсюда

$$\mathbb{E}U = \lim_{n \to \infty} \mathbb{E}[UI_{A_n}] \leqslant M,$$

т. к. имеет место оценка $\mathbb{E}[UI_{A_n}]\leqslant \mathbb{E}[XI_{A_n}]\leqslant M$. Значит $\mathbb{E}X\leqslant M$. С другой стороны $X\geqslant XI_{A_n}$, откуда $\mathbb{E}X\geqslant \mathbb{E}[XI_{A_n}]$.

Предложение. Пусть X — случайная величина, распределение которой имеет плотность ρ_X . Пусть задана непрерывная функция f. Тогда математическое ожидание $\mathbb{E} f(X)$ существует тогда и только тогда, когда сходится несобственный интеграл

$$\int_{-\infty}^{+\infty} |f(x)| \rho_X(x) \mathrm{d}x.$$

Более того, в случае сходимости

$$\mathbb{E}f(X) = \int_{-\infty}^{+\infty} f(x)\rho_X(x) dx.$$

Доказательство. Пусть R>0. Для непрерывной функции f на отрезке [-R,R] найдется последовательность ступенчатых функций g_n , равномерно сходящаяся к f на [-R,R]. Функции g_n имеют вид $g_n=\sum\limits_{j=1}^{N_n}c_jI_{[a_j,b_j]},$ где $\{[a_j,b_j]\}$ — разбиение отрезка [-R,R]. Заметим, что

$$\mathbb{E}g_n(X) = \sum_{j=1}^{N_n} c_j \mathbb{E}I_{\{a_j \leqslant X \leqslant b_j\}} = \sum_{j=1}^{N_n} c_j P(X \in [a_j, b_j]) = \sum_{j=1}^{N_n} c_j \int_{a_j}^{b_j} \rho_X(x) dx = \int_{-R}^{R} g_n(x) \rho_X(x) dx.$$

Заметим, что

$$\left| \mathbb{E}[f(X)I_{\{-R\leqslant X\leqslant R\}}] - \mathbb{E}g_n(X) \right| \leqslant \mathbb{E}[|f(X) - g_n(X)|I_{\{-R\leqslant X\leqslant R\}}] \leqslant \sup_{x\in [-R,R]} |f(x) - g_n(x)| \to 0.$$

Аналогично $\int_{-R}^R g_n(x) \rho_X(x) \mathrm{d}x \to \int_{-R}^R f(x) \rho_X(x) \mathrm{d}x$, откуда получаем равенство

$$\mathbb{E}[f(X)I_{\{-R\leqslant X\leqslant R\}}] = \int_{-R}^{R} f(x)\rho_X(x)\mathrm{d}x.$$

Достаточно доказать исходное утверждение для неотрицательных функций f, для которых оно теперь следует из леммы 0.1.

Математическое ожидание произведения независимых случайных величин

Предложение. Пусть X,Y — независимые случайные величины, имеющие математическое ожидание. Тогда $X \cdot Y$ также обладает математическим ожиданием и

$$\mathbb{E}[X \cdot Y] = [\mathbb{E}X] \cdot [\mathbb{E}Y].$$

$$X \cdot Y = (X^{+} - X^{-})(Y^{+} - Y^{-}) = X^{+}Y^{+} + X^{-}Y^{-} - X^{+}Y^{-} - X^{-}Y^{+}.$$

Таким образом, достаточно доказать утверждение только для неотрицательных X, Y. Если X, Y ограничены, |X| < R, |Y| < R, то рассмотрим

$$X_n(\omega) := \sum_{j=1}^n (-R + \frac{2R}{n}(k-1)) I_{\{\omega \mid -R + \frac{2R}{n}(k-1) \leqslant X(\omega) < -R + \frac{2R}{n}k\}},$$

$$Y_n(\omega) := \sum_{i=1}^n (-R + \frac{2R}{n}(k-1)) I_{\{\omega \mid -R + \frac{2R}{n}(k-1) \leqslant Y(\omega) < -R + \frac{2R}{n}k\}}.$$

Т.к. X_n имеет вид $f_n(X)$, а Y_n имеет вид $f_n(Y)$ для некоторой функции f_n , то X_n и Y_n также независимы. Кроме того, $X_n \rightrightarrows X$, $Y_n \rightrightarrows Y$. Поэтому

$$[\mathbb{E}X] \cdot [\mathbb{E}Y] = \lim_{n \to \infty} [\mathbb{E}X_n] \cdot [\mathbb{E}Y_n] = \lim_{n \to \infty} \mathbb{E}[X_n \cdot Y_n] = \mathbb{E}[X \cdot Y].$$

Для общих неотрицательных независимых X и Y, рассмотрим независимые ограниченные случайные величины $XI_{\{|X|< R\}}$ и $YI_{\{|Y|< R\}}$. Тогда

$$\mathbb{E}[XI_{\{|X| < R\}} \cdot YI_{\{|Y| < R\}}] = \mathbb{E}[XI_{\{|X| < R\}}] \cdot \mathbb{E}[YI_{\{|Y| < R\}}].$$

Утверждение теперь следует из леммы 0.1.

Дисперсия, ковариация, коэффициент корреляции и их свойства

Определение. Дисперсией случайной величины X называется число $\mathbb{D}X = \mathbb{E}(X - \mathbb{E}X)^2$.

Определение. Ковариацией пары случайных величин X,Y называется число $\mathrm{cov}(X,Y) = \mathbb{E}\left((X-\mathbb{E}X)(Y-\mathbb{E}Y)\right)$.

Определение. Коэффициентом корреляции называется величина $\rho(X,Y) = \frac{\text{cov}(X,Y)}{\sqrt{\mathbb{D}X}\sqrt{\mathbb{D}Y}}$.

Теорема (Свойства дисперсии).

- 1. Если $\mathbb{D}X = 0$, то $X = \mathbb{E}X$ почти наверное;
- 2. Для произвольных чисел α, β верно $\mathbb{D}(\alpha X + \beta) = \alpha^2 \mathbb{D} X$;
- 3. Если X и Y независимы, то cov(X,Y)=0 и $\mathbb{D}(X+Y)=\mathbb{D}X+\mathbb{D}Y$.

Доказательство.

- 1. Исходя из свойства (3) мат. ожидания неотрицательной случайной величины с нулевым мат. ожиданием, $(X \mathbb{E}X)^2 = 0 \implies X = \mathbb{E}X$ почти наверное;
- 2. Исходит из линейности математического ожидания;
- 3. Так как $\operatorname{cov}(X,Y) = \mathbb{E}(XY) (\mathbb{E}X)(\mathbb{E}Y)$, то из независимости X и Y следует $\operatorname{cov}(X,Y) = (\mathbb{E}X)(\mathbb{E}Y) (\mathbb{E}X)(\mathbb{E}Y) = 0$. Поэтому, $\mathbb{D}(X+Y) = \mathbb{D}X + 2\operatorname{cov}(X,Y) + \mathbb{D}Y = \mathbb{D}X + \mathbb{D}Y$.

Неравенство Чебышева

Предложение. Пусть у неотрицательной случайной величины X определено математическое ожидание. Тогда $P(X \geqslant t) \leqslant \frac{\mathbb{E} X}{t}$ для каждого t > 0. Пусть у случайной величины X конечный второй момент, т.е. $\mathbb{E} X^2 < \infty$. Тогда

$$P(|X - \mathbb{E}X| \geqslant \varepsilon) \leqslant \varepsilon^{-2} \mathbb{D}X.$$

Доказательство. Заметим, что $t \cdot I_{\{X \geqslant t\}} \leqslant X$, поэтому

$$tP(X \geqslant t) = \mathbb{E}[t \cdot I_{\{X > t\}}] \leqslant \mathbb{E}X.$$

Второе неравенство обосновывается рассмотрением случайной величины $\left|X-\mathbb{E}X\right|^2$ и применением первого неравенства. \square