A Book of High School and Engineering Common Core Mathematical Formulae

Agnij Mallick

December, 2020

Contents

1	Al	gebra	7
1	Log	arithm	8
	1.1	Basic Formulae	8
	1.2	Series	8
2	Cor	mplex Numbers	9
	2.1	Basic Formulae	9
	2.2	Arithmetic Operation of Complex Number	9
	2.3	Euler's Formula	9
	2.4	Trigonometric Ratios in Complex Form	10
	2.5		10
	2.6	Application of Euler's and De Moivre's Formula	10
	2.7	Roots of Unity	10
	2.8	1	10
		3.1.2 Important Relation	11
	3.2		11
		3.2.1 The Value of 'r'	11
		3.2.2 Sum of a G.P. Series	11
		3.5.1 Riemann Zeta Function	12
		3.5.2 Riemann's Infinite Series as an Integration	12
4	Tes	t of Convergence of Infinite Series	13
	4.1	Definition	13
	4.2	Tests of Convergence	13
		4.2.1 Comparison Test	13
		4.2.2 Limit Form	13
		4.2.3 Integral Test or Maclaurin-Cauchy Test	13
		4.2.4 Ratio Test	14
		4.2.5 D'Alembert's Ratio Test	14
		4.2.6 Rabbe's Test	14
		4.2.7 Cauchy's Root Test	14
		4.2.8 Logarithmic Test	15
		5.1.1 Minor and Cofactor	16
	5.2	Properties of Determinants	16

	5.3 6.2	Cramer's Rule	
	6.3 6.4 7.4	6.2.1 Multiplicative Properties Adjoint of a Matrix	18 18 18 19 20
8	Boo	lean Algebra	21
9	Rem 9.1 9.2 9.3	Remainder Theorems Remainder Theorem	22 22 22 22 23
II	C	o-ordinate Geometry	25
10	10.1	Co-ordinate Geometry Distance between Two Points	26 26 26 26
11	11.1 11.2 11.3	Centroid of a Traiangle Area of Triangle 11.2.1 Determinant Method 11.2.2 Heron's Formula Incircle of a Triangle Circumcircle of a Triangle	27 27 27 27 27 28 28
12	12.1 12.2 12.3	Aight Line Equation of Straight Line Passing Through (x_0, y_0) and Slope m Distance Between Two Points on a Line Angle Between Two Lines Distance of a Point from a Line	29 29 29 29
		Angle Bisector of a Line	30
		Relative Position of Points w.r.t. a Line	30 30 30
13	Gen	eral Theory of Second Degree Equation	31

14	Con	ics	32
	14.1	Parametric Form of Conics	32
		14.1.1 Hyperbola	32
		14.1.2 Ellipse	32
		14.1.3 Parabola	32
	14.2	Equation form of Conics	32
		14.2.1 Parabola	32
		14.2.2 Ellipse and Hyperbola	33
		The Employ and Try persona	00
15	Circ	eles	34
	15.1	Locus Form	34
		Diameter Form	34
		General Form	34
		Important Relations	34
		Common for Two Circles	35
	10.0	Common for Two Choices	00
16	Vect	tors	36
	16.1	Modulus of a Vector	36
		Sum of Vectors	36
		Product of Vectors	36
	10.0	16.3.1 Dot Product	36
		16.3.2 Cross Product	36
	16.4	Test of Co-planarity	37
	10.4	1650 of Co-planarity	91
17	3D -	- Space	38
		Line segments in 3D - Space	38
		17.1.1 Distance between Two Points	38
		17.1.2 Section Formula of a Line Segment Divided in the ratio $m:n$	38
	17 2	Line in 3D - Space	38
	11.2	17.2.1 Angle between Two Lines	38
		17.2.2 Skew and Co-planar Lines	39
		17.2.3 Distance between Lines	39
	179		39
	17.3	Triangular Plane	
		17.3.1 Centroid of a Triangle	39
1 &	3D -	- Plane	40
			40
			40
	10.2	18.2.1 Catesian Form	40
		18.2.2 Vector Form	40
		18.2.2 Vector Form	41
ΙIJ		Statistics	42
111		oratistics .	14
19	Desc	criptive Statistics	43
		Measure of Location	43
	10.1	19.1.1 Mean	43
		19.1.2 Median	43
		19.1.3 Mode	43

19.1.4 Quartile 19.2 Measure of Spread 19.2.1 Variance 19.2.2 Sample Variance 19.2.3 Standard Deviation and Sample Standard 19.2.4 Co-efficient of Variance 19.3 Skewness 19.3.1 Types of Skewness 19.3.2 Measure of Skewness		 					
19.2.1 Variance	 	 					
19.2.2 Sample Variance		 					
19.2.3 Standard Deviation and Sample Standard 19.2.4 Co-efficient of Variance	· ·				•	 	
19.2.3 Standard Deviation and Sample Standard 19.2.4 Co-efficient of Variance	· ·					 	
19.2.4 Co-efficient of Variance							
19.3 Skewness							
19.3.1 Types of Skewness							
10.0.2 Micabare of Discources							
19.4 Kurtosis							
19.4.1 Type of Kurtosis							
19.4.1 Type of Kurtosis		 •	 •	•	•	 •	•
0 Hypothesis Testing							
20.1 T-Test		 				 	
$20.2 \chi^2 \text{ Test}$		 				 	
•							
1 Research and Survey Design							
21.1 Population Covariance							
21.2 Sample Covariance							
21.3 Bravais-Pearson Correlation Co-efficient							
21.4 Spearman's Rank Correlation Co-efficient		 					
2 Estimation of Doggossian Function							
2 Estimation of Regression Function 22.1 Sum of Squares Error							
22.1.1 R^2 : Coefficient of Determination							
22.1.2 \bar{R}^2 : Coefficient of Determination							
22.2 T-Test							
22.3 F-Test							
22.4 Test for Heteroskedasticity							
22.4.1 Definition							
00 4 0 D1: W-+ T+		 		•			
22.4.2 Durbin-Watson Test							
3 Dummy Variables							
3 Dummy Variables 23.1 Dummy Variable							
3 Dummy Variables 23.1 Dummy Variable		 				 	
3 Dummy Variables 23.1 Dummy Variable		 				 	
3 Dummy Variables 23.1 Dummy Variable		 				 	
23.1 Dummy Variable		 				 	
3 Dummy Variables 23.1 Dummy Variable		 				 	
3 Dummy Variables 23.1 Dummy Variable		 				 	
3 Dummy Variables 23.1 Dummy Variable		 	 		•	 	
3 Dummy Variables 23.1 Dummy Variable		 	 		•	 	
3 Dummy Variables 23.1 Dummy Variable		 	 			 	
3 Dummy Variables 23.1 Dummy Variable		 	 		•		
3 Dummy Variables 23.1 Dummy Variable		 			•		
3 Dummy Variables 23.1 Dummy Variable		 			•		

	$\Omega(\pi, (\pi + 0), \Pi_{mod})$	F0
	$25.7 \left(\frac{\pi}{4} \pm \theta\right)$ Formula	58
	25.8 Trigonometric Identities	58
	25.9 Double Angle Formula	59
	25.10Triple Angle Formula	59
	25.11Sum and Product of Two Ratios	59
	25.12General Solutions	60
	25.13 Taylor Series Expansion of Trigonometric Ratios	60
26	Inverse Circular Trigonometric Function	61
40	26.1 Definition of Inverse Circular Trigonometric Function	61
	26.1.1 For sin <i>x</i>	61
	26.1.2 For $\cos x$	61
	20.1.2 For $\cos x$	61
		62
	26.1.4 For cot x	
	$26.1.5 \text{For } \csc x \dots \dots$	62
	26.2 Negative Arguments	62
	26.3 Reciprocal Relations	63
	26.4 I.T.F. Identities	63
	26.5 Sum of Two Angles	63
	26.6 Difference of Two Angles	63
	26.7 Interconversion of Ratios	63
	26.8 Miscellaneous Relations	64
97	Hamanhalia Thiganamatuia Dunationa	65
41	Hyperbolic Trigonometric Functions 27.1 Definition	65
	27.1 Definition	65
		66
	27.3 Inverse Hyperbolic Function	66
	27.4 Relation to Circular Trigonometric Functions	00
\mathbf{V}	Calculus	67
28	Limits	68
	28.1 L'Hospital Rule	68
ഹ	Differentiation	70
4 9	29.1 Differentiation by First Principle	
	29.2 Standard Differentiation Formulae	70
	29.2.1 Circular Trigonometric Functions	71
	29.2.2 Inverse Circular Trigonometric Functions	71
	29.2.3 Hyperbolic Trigonometric Function	71
	29.2.4 Inverse Hyperbolic Trigonometric Function	72
	29.3 Rules of Differentiation	72
	29.4 Chain Rule	72
გი	Successive Differentiation	73
งบ	20.1 Leibnitz's Theorem	73 73

31	Parti	ial Derivative	4
	31.1	Chain Rule	74
	31.2	Euler's Theorem	74
32	Appl	lication of Differential	' 5
			- 75
			75
		The state of the s	75
			76
			76
			76
			76
			76
		32.5.2 Conditions for Validity of Expansion	77
			77
	32.6	Maclaurin's Series	77
			77
			77
			78
			78
			78
			78
			10 79
	,	32.8.1 Asymptote of Algebraic Curves	9
33	Integ	gration	80
	33.1	General Formulae	30
			31
		· ·	31
			32
		· · · · · · · · · · · · · · · · · · ·	32
			32
	,	33.5.1 Integration by Part	52
34	Defir	nite Integration 8	33
			33
			33
			33
35	Redu	action Formula 8	34
	35.1	Circular Trigonometric Functions	34
		· · · · · · · · · · · · · · · · · · ·	34
			35
			-
36	β and	d Γ Functions	86
	36.1	Important Relations between $\beta(m,n)$ and $\Gamma(n)$ Functions	36
27	N/114	siple Integrals	37
υí			
			37
	31.2	Three Variables	37

—Part I— Algebra

Logarithm

1.1 Basic Formulae

For $a^x = b$:

$$\log_a x, \forall x \le 0 \text{ is undefined}$$
 (1.1)

$$\log_a b = x, bax \neq 1, a \neq 1 \tag{1.2}$$

$$\log_b a^m = m \log_b a, \text{ for } a^m = b \tag{1.3}$$

$$a^{\log_a x} = x \tag{1.4}$$

$$a^{\log_b c} = c^{\log_b a} \tag{1.5}$$

$$\frac{1}{\log_a b} = \log_b a \tag{1.6}$$

$$\log_c(ab) = \log_c a + \log_c b \tag{1.7}$$

$$\log_c\left(\frac{a}{b}\right) = \log_c a - \log_c b \tag{1.8}$$

$$|\log_a x| = \begin{cases} -\log_a x, & \text{if } 0 < x < 1\\ \log_a x, & \text{if } 1 \le x < \infty \end{cases}$$
 (1.9)

1.2 Series

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \infty$$
 (1.10)

$$=\lim_{n\to\infty}\sum_{i=0}^{n}\frac{x^{i}}{i!}\tag{1.11}$$

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \infty$$
 (1.12)

$$= \lim_{n \to \infty} \sum_{i=1}^{n} (-1)^{(i-1)} \frac{x^{i}}{i}$$
 (1.13)

-Chapter 2-

Complex Numbers

2.1 Basic Formulae

For z = x + iy,

$$|z| = \sqrt{x^2 + y^2} \tag{2.1}$$

$$an \theta = \frac{y}{x} \tag{2.2}$$

$$\bar{z} = x - iy \tag{2.3}$$

2.2 Arithmetic Operation of Complex Number

For two complex numbers $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$:

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$$
(2.4)

$$z_1 z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1)$$
(2.5)

$$|z_1 z_2| = |z_1| \cdot |z_2| \tag{2.6}$$

$$\frac{z_1}{z_2} = \frac{(x_1 x_2 + y_1 y_2) + i(x_2 y_1 - x_1 y_2)}{a_2^2 + b_2^2}$$
(2.7)

$$\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}\tag{2.8}$$

2.3 Euler's Formula

$$z = re^{i\theta}$$
, where (2.9)

$$r = |z| \tag{2.10}$$

$$e^{i\theta} = \cos\theta + i\sin\theta \tag{2.11}$$

$$\theta = \arctan\left(\frac{y}{x}\right) \tag{2.12}$$

2.4 Trigonometric Ratios in Complex Form

$$e^{i\theta} + e^{-i\theta} = 2\cos\theta \tag{2.13}$$

$$\Rightarrow \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \tag{2.14}$$

$$e^{i\theta} - e^{-i\theta} = 2\sin\theta \tag{2.15}$$

$$\Rightarrow \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2} \tag{2.16}$$

2.5 De Moivre's Formula

According to DeMoivre's Formula:

$$(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta) \tag{2.17}$$

Proof

$$\cos \theta + i \sin \theta = e^{i\theta}$$

$$\Rightarrow (\cos \theta + i \sin \theta)^n = e^{n(i\theta)}$$

$$= \cos(n\theta) + i \sin(n\theta)$$
Q.E.D.

2.6 Application of Euler's and De Moivre's Formula

For $z_1 = |r_1| e^{i\theta_1}$ and $z_2 = |r_2| e^{i\theta_2}$

$$z_1 z_2 = (r_1 r_2) e^{i(\theta_1 + \theta_2)}$$
(2.18)

$$\frac{z_1}{z_2} = \left(\frac{r_1}{r_2}\right) e^{i(\theta_1 - \theta_2)} \tag{2.19}$$

2.7 Roots of Unity

$$\sqrt[n]{1} = e^{i\frac{2k\pi}{n}}$$
, where $k \in [0, n-1]$ (2.20)

2.8 Important Relations of Complex Numbers

$$|z_1 + z_2| \le |z_1| + |z_2| \tag{2.21}$$

$$|z_1 - z_2| < |z_1| + |z_2| \tag{2.22}$$

$$|z_1 - z_2| \ge |z_1| - |z_2| \tag{2.23}$$

$$|z_1 + z_2| \ge ||z_1| - |z_2|| \tag{2.24}$$

$$|z_1 + z_2|^2 = 2(|z_1|^2 + |z_2|^2)$$
 (2.25)

3.1.2 Important Relation

If the three terms a, b, c are in A.P., then

$$2b = a + c \tag{3.2}$$

3.2 Geometric Progression (G.P.)

An geometric sequence is $a, ar, ar^2, ... \infty$ or $t_n = ar^{n-1}$, where a is the first term, r is the common ratio, and n is the n^{th} -term. An geometric series is $a + ar + ar^2 + ... \infty$.

3.2.1 The Value of 'r'

$$r = \frac{t_2}{t_1} = \frac{t_3}{t_2} = \dots = \frac{t_n}{t_{n-1}}$$
 (3.3)

3.2.2 Sum of a G.P. Series

For a definite G.P. series, where there are n terms in the series, the sum of the series is:

$$S_n = \frac{a|r^n - 1|}{|r - 1|} \tag{3.4}$$

For an infite G.P. series the sum of the series is defined for r < 1. Sum of such a series is:

$$S_{\infty} = \frac{a}{1 - r} \tag{3.5}$$

3.5.1 Riemann Zeta Function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \tag{3.13}$$

3.5.2 Riemann's Infinite Series as an Integration

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=r_1}^{r_2} f(\frac{i}{n}) = \int_{\frac{r_1}{n}}^{\frac{r_2}{n}} f(x) dx$$
 (3.14)

Test of Convergence of Infinite Series

If $a_1, a_2, a_3, ..., a_n$ is a sequence by a_n and their sum of series is S_n , then the following apply.

4.1 Definition

If

$$\lim_{n\to\infty} S_n = l$$

where l is a finite value, the series S_n is said to converge. A non-convergent series is called a divergent series.

4.2 Tests of Convergence

4.2.1 Comparison Test

If u_n and v_n are two positive series, then:

- 1. (a) v_n converges
 - (b) $u_n \leq v_n \forall n$ Then u_n converges.
- 2. (a) v_n diverges
 - (b) $u_n \ge v_n \forall n$ Then u_n diverges.

4.2.2 Limit Form

If

$$\lim_{x \to \infty} \frac{u_n}{v_n} = l$$

where l is a finite quantity $\neq 0$, then u_n and v_n converge and diverge together.

4.2.3 Integral Test or Maclaurin-Cauchy Test

For a series

$$\sum_{i=N}^{\infty} f(x), \text{ where } N \in \mathbb{Z}$$
 (4.1)

will only converge if the improper integral

$$\int_{N}^{\infty} f(x)dx \tag{4.2}$$

is finite.

If the improper integral is finite, the upper and lower limit of the infinite series is given by:

$$\int_{N}^{\infty} f(x)dx \le \sum_{i=N}^{\infty} f(x) \le f(N) + \int_{N}^{\infty} f(x)dx \tag{4.3}$$

4.2.4 Ratio Test

If, for two series $\sum u_n$ and $\sum v_n$:

- 1. (a) $\sum v_n$ converges
 - (b) from or after a particular term $\frac{u_n}{u_{n+1}} > \frac{v_n}{v_{n+1}}$, then u_n converges.
- 2. (a) $\sum v_n$ diverges
 - (b) from or after a particular term $\frac{u_n}{u_{n+1}} < \frac{v_n}{v_{n+1}}$, then u_n diverges.

4.2.5 D'Alembert's Ratio Test

$$\lim_{n \to \infty} \frac{u_n}{u_{n+1}} = \lambda \tag{4.4}$$

- series converges if $\lambda < 1$
- series diverges if $\lambda > 1$
- fails if $\lambda = 1$

4.2.6 Rabbe's Test

$$\lim_{n \to \infty} n \left[\frac{u_n}{u_{n+1}} - 1 \right] = \kappa \tag{4.5}$$

- series converges if $\kappa < 1$
- series diverges if $\kappa > 1$
- fails if $\kappa = 1$

4.2.7 Cauchy's Root Test

$$\lim_{n \to \infty} |u_n| = \lambda \tag{4.6}$$

- series converges for $\lambda < 1$
- series diverges for $\lambda > 1$
- test fails for $\lambda = 1$

4.2.8 Logarithmic Test

$$\lim_{n \to \infty} n \log \left(\frac{u_n}{u_{n+1}} \right) = \kappa \tag{4.7}$$

- series converges for $\kappa < 1$
- series diverges for $\kappa > 1$
- test fails for $\kappa = 1$

5.1.1 Minor and Cofactor

For a third order determinant

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

Minor

$$M(a_{11}) = M_{11} = \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix}$$
 (5.2)

i.e., all the terms of determinant expect those in the same row and columns as the one of which the minor is being calculated.

Cofactor

$$C_{ij} = (-1)^{i+j} M_{ij} (5.3)$$

5.2 Properties of Determinants

1. Transposing a determinant does not alter its value.

$$\Delta = \Delta^T \tag{5.4}$$

2. If rows and columns are interchanges m times, the value of the new determinant is

$$\Delta' = (-1)^m \Delta \tag{5.5}$$

3. If two parallel lines are equal, then $\Delta = 0$

4. For
$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 and $\Delta_1 = \begin{vmatrix} ka_1 & kb_1 & kc_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$, then $\Delta_1 = k\Delta$

5. For
$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 and $\Delta_1 = \begin{vmatrix} ka_1 & b_1 & c_1 \\ ka_2 & b_2 & c_2 \\ ka_3 & b_3 & c_3 \end{vmatrix}$, then $\Delta_1 = k\Delta$

6. For
$$C_n \to k_1 C_l + k_2 C_m + k_3 C_n$$
 or $R_n \to k_1 R_l + k_2 R_m + k_3 R_n$, $\Delta' = \Delta$

5.3 Cramer's Rule

For a system of equations:

$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$
 $a_3x + b_3y + c_3z = d_3$

the following determinants are defined:

$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$D_x = \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}$$

$$D_y = \begin{vmatrix} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix}$$

$$D_z = \begin{vmatrix} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{vmatrix}$$

The solution for the system of equations is:

$$x = \frac{D_x}{D} \tag{5.6}$$

$$y = \frac{D_y}{D} \tag{5.7}$$

$$z = \frac{D_z}{D} \tag{5.8}$$

5.3.1 Consistency Test

- 1. If $D \neq 0$, the system is consistent and has unique solutions.
- 2. If $D = D_x = D_y = D_z = 0$, the system may or may not be consisten and it will have infinite solutions and the system will be dependent.
- 3. If D=0 and at least one of D_x, D_y, D_z is non zero, the system is inconsistent

6.2 Multiplication of Two Matrices

If

$$C_{m \times p} = A_{m \times n} \cdot B_{n \times p} \tag{6.2}$$

then,

$$c_{ik} = \sum_{j=1}^{n} a_{ij} \cdot b_{jk} \tag{6.3}$$

6.2.1 Multiplicative Properties

- 1. Multiplication of matrices is associative, hence (AB)C = A(BC).
- 2. AI = A
- 3. $A \cdot A^{-1} = I$
- 4. $A \cdot (adjA) = (adjA) \cdot A = |A|I$
- 5. $A^{-1} = \frac{1}{|A|} (adjA)^t$
- 6. $(AB)^t = B^t A^t$

6.3 Adjoint of a Matrix

$$adjA = \begin{bmatrix} M_{11} & M_{12} & \cdots & M_{1n} \\ M_{21} & M_{22} & \cdots & M_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ M_{m1} & M_{m2} & \cdots & M_{mn} \end{bmatrix}^{t}, \text{ where } M_{ij} \text{ is the minor of } a_{ij}$$
(6.4)

6.4 Martin's Rule

For a system of equation,

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_n$$

The system can be written as:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

$$(6.5)$$

$$\Rightarrow AX = B \tag{6.6}$$

$$\Rightarrow X = A^{-1}B \tag{6.7}$$

7.4 Pascal's Rule

For $1 \le k \le n$ and $k, n \in \mathbb{N}$:

$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k} \tag{7.7}$$

-Chapter 8-

Boolean Algebra

Let B be a set of a, b, c with operations sum (+) and product (\cdot) . Then B is said to belong to the Boolean Structure if the following conditions are satisfied:

Table 8.1: Properties of Boolean Algebraic Structure

Property	Name of Property
$a+b \in B$	
$a \cdot b \in B$	Closure Property
a+b=b+a	
$a \cdot b = b \cdot a$	Associative Law
a(b+c) = ab + ac	
a + bc = (a+b)(a+c)	Commutative Law
$\{0,1\} \in B$	
a + 0 = a	
a + 1 = 1	
$a \cdot 0 = 0$	
$a \cdot 1 = a$	Laws of 1 and 0
a + ab = a	
a(a+b) = a	Absorption Law
(a+b)' = (a'b')	De'Morgan's Law

Remainder Theorems

9.1 Remainder Theorem

If a function f(x) is divided by a binomial x - a, then the remainder is provided by f(a).

$$\frac{f(x)}{x-a} \equiv f(a) \mod (x-a) \tag{9.1}$$

Worked Example

Find the remainder when $f(x) = x^3 - 4x^2 - 7x + 10$ is divided by (x - 2). The remainder:

$$R = (x^3 - 4x^2 - 7x + 10) \mod (x - 2)$$

is given by:

$$R = f(2) = (2)^3 - 4(2)^2 - 7(2) + 10$$
$$= 8 - 16 - 14 + 10 = -12$$

9.2 Euler's Remainder Theorem

According to Euler's Remainder Theorem, if x and n are two co-prime numbers:

$$x^{\varphi(n)} \equiv 1 \mod n, x, n \in \mathbb{Z}^+ \tag{9.2}$$

where, $\varphi(n)$ is Euler's totient function.

9.2.1 Euler's Totient Function

For a number defined as:

$$n = \prod_{i=1}^{r} a_r^{b_r} \tag{9.3}$$

then Euler's totient function is defined as:

$$\varphi(n) = n \cdot \left[\left(1 - \frac{1}{a_1} \right) \cdot \left(1 - \frac{1}{a_2} \right) \cdot \left(1 - \frac{1}{a_3} \right) \cdots \right]$$

$$= n \prod_{i=1}^r \left(1 - \frac{1}{a_r} \right)$$
(9.4)

Worked Example

Find the remainder if 3^{76} is divided by 35. Since:

$$35 = 5^1 \times 7^1$$

Hence the totient quotient of 35 is:

$$\varphi(35) = 35 \cdot \left(1 - \frac{1}{5}\right) \cdot \left(1 - \frac{1}{7}\right)$$
$$= 35 \times \frac{4}{5} \times \frac{6}{7}$$
$$= 24$$

Hence Euler's Theorem yields:

$$3^{24} \equiv 1 \mod 35$$

$$3^{76} \equiv 3^{24 \times 3 + 4}$$

$$\equiv (3^{24})^3 \times 3^4 \mod 35$$

$$\equiv (1)^3 \times 3^4 \mod 35$$

$$\equiv 81 \mod 35$$

$$\equiv 11 \mod 35$$

The remainder when 3^{76} is divided by 35 is 11.

9.3 Wilson Theorem

According to Wilson Theorem:

$$(n-1)! \equiv -1 \mod n \tag{9.5}$$

Worked Example

Find the remainder when 28! is divided by 31. By Wilson's Theorem:

$$30! = -1 \mod 31$$

$$\Rightarrow 30 \cdot 29 \cdot 28! = -1 \mod 31$$
Let 28! mod 31
$$= x$$

$$\Rightarrow (-1) \cdot (-2) \cdot x = 30 \mod 31$$

$$\Rightarrow 2x = 30$$

$$\Rightarrow x = 15$$

The remainder when 28! is divided by 31 is 15.

——Part II———Co-ordinate Geometry

2-D Co-ordinate Geometry

For the ordered pairs, $A(x_1, y_1)$ and $B(x_2, y_2)$:

10.1 Distance between Two Points

$$AB = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$
 (10.1)

(10.2)

10.2 Section Formula

If point C divides AB in the ratio m:n:

$$C = \left(\frac{nx_1 + mx_2}{m+n}, \frac{ny_1 + my_2}{m+n}\right) \tag{10.3}$$

10.2.1 Corollary: Mid - Point Formula

If C is the mid-point of AB, and m: n = 1:1:

$$C = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \tag{10.4}$$

(10.5)

Triangles

For a triangle defined with three vertices $A(x_1, y_1), B(x_2, y_2), C(x_3, y_3)$ and corresponding sides of length a, b, c, then:

11.1 Centroid of a Trainagle

Centroid of
$$\triangle ABC = (\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3})$$
 (11.1)

(11.2)

11.2 Area of Triangle

11.2.1 Determinant Method

Area of
$$\triangle ABC = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$
 (11.3)

11.2.2 Heron's Formula

For a triangle, the semi-perimeter, s, is defined as:

$$s=\frac{a+b+c}{2}$$

The area of the triangle can be defined as:

Area of
$$\triangle ABC = \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)}$$
 (11.4)

11.3 Incircle of a Triangle

The radius, r, and centre of incircle, o, is:

$$o = \left(\frac{ax_1 + bx_2 + cx_3}{a + b + c}, \frac{ay_1 + by_2 + cy_3}{a + b + c}\right)$$
(11.5)

$$r = \sqrt{\frac{(s-a)\cdot(s-b)\cdot(s-c)}{s}}$$
(11.6)

(11.7)

11.4 Circumcircle of a Triangle

The radius, R, and centre, O, of circumcircle is defined as:

$$O = \left(\frac{x_1 \sin 2A + x_2 \sin 2B + x_3 \sin 2C}{\sin 2A + \sin 2B + \sin 2C}, \frac{y_1 \sin 2A + y_2 \sin 2B + y_3 \sin 2C}{\sin 2A + \sin 2B + \sin 2C}\right)$$
(11.8)

$$2R = \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \tag{11.9}$$

Straight Line

A straight line can be defined as:

$$y = mx + c \tag{12.1}$$

$$\frac{x}{a} + \frac{y}{b} = 1$$
, where a and b are the intercepts at x and y axes respectively (12.2)

$$x\cos\alpha + y\sin\alpha = p \text{ (Normal Form)}$$
 (12.3)

$$Ax + By + C = 0$$
 (General Form) (12.4)

12.1 Equation of Straight Line Passing Through (x_0, y_0) and Slope m

$$(y - y_0) = m(x - x_0) (12.5)$$

12.2 Distance Between Two Points on a Line

$$\frac{y_1 - y_2}{\sin \theta} = \frac{x_1 - x_2}{\cos \theta} = \gamma \tag{12.6}$$

$$\theta = \tan^{-1} m \tag{12.7}$$

12.3 Angle Between Two Lines

For two lines with slopes m_1, m_2 , the angle between them, θ :

$$\theta = \arctan\left(\frac{m_1 - m_2}{1 + m_1 m_2}\right) \tag{12.8}$$

12.4 Distance of a Point from a Line

Line: ax + by + c = 0 Point: (g, h)

$$S = \frac{ag + bh + c}{\sqrt{a^2 + b^2}} \tag{12.9}$$

12.5 Angle Bisector of a Line

For the two lines: $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$, the angle bisector is:

$$\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = \frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}}$$
(12.10)

If the sign of c_1 and c_2 is the same, then the equation obtained is the internal bisector.

12.6 Equation of a Straight Line Passing through the Intersection of Two Lines

$$(a_1x + b_1y + c_1) + k(a_2x + b_2y + c_2) = 0 \ \forall k \in \mathbb{R}$$
(12.11)

12.7 Relative Position of Points w.r.t. a Line

For the points (x_1, y_1) and (x_2, y_2) :

$$k_1 = ax_1 + by_1 + c$$

$$k_2 = ax_2 + by_2 + c$$

If k_1 and k_2 have the same sign, they are on the same side of a line, otherwise on opposite sides.

12.8 Ratio of Division of Line Segment

For any line, f(x,y) = 0, the ratio in which it divides (x_1,y_1) and (x_2,y_2) is given by:

$$r = -\frac{f(x_1, y_1)}{f(x_2, y_2)} \tag{12.12}$$

If $\begin{cases} r > 0$, then division is internal r < 0, then division is external .

-Chapter 13-

General Theory of Second Degree Equation

For any general equation of the form:

$$ax^{2} + by^{2} + 2gx + 2fy + 2hxy + c = 0 (13.1)$$

 Δ is defined as:

$$\Delta = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix}$$
 (13.2)

If $\Delta=0$ then the equation is a pair of straight lines. If a+b=0 then the lines are \bot . If the $\Delta\neq 0$:

- 1. $a = b, h = 0 \rightarrow \text{circle}$
- 2. $h^2 = ab \rightarrow parabola$
- 3. $h^2 < ab \rightarrow \text{ellipse}$
- 4. $h^2 > ab \rightarrow \text{hyperbola}$

The four conic sections are: circle, parabola, ellipse, and hyperbola. Circle has been done separately in the next chapter.

14.1 Parametric Form of Conics

14.1.1 Hyperbola

$$x = a \sec \theta \tag{14.1}$$

$$y = b = \tan \theta \tag{14.2}$$

14.1.2 Ellipse

$$x = a\cos\phi\tag{14.3}$$

$$y = b\sin\phi\tag{14.4}$$

14.1.3 Parabola

$$x = at^2 (14.5)$$

$$y = 2at (14.6)$$

14.2 Equation form of Conics

14.2.1 Parabola

Table 14.1: Properties of a Parabola

Property	$y^2 = 4ax$	$x^2 = 4ay$
Axis	y = 0	x = 0
Eccentricity	1	1
Directrix	x + a = 0	y + a = 0
Focus	(a, 0)	(0, a)
Vertex	(0,0)	(0,0)
Length of latus rectum	4a	4a
Equation of latus rectum	x - a = 0	y-a=0

14.2.2 Ellipse and Hyperbola

For a > b:

Table 14.2: Properties of Ellipse and Hyperbola

Property	$\frac{x^2}{a} + \frac{y^2}{b} = 1$ Ellipse	$\begin{vmatrix} \frac{x^2}{a} - \frac{y^2}{b} = 1\\ \text{Hyperbola} \end{vmatrix}$
Length of Major Axis	2a	2a
Length of Minor Axis	2b	2b
Equation of Major Axis	x = 0	x = 0
Equation of Minor Axis	y = 0	y = 0
Eccentricity e	$\sqrt{1 - \frac{b^2}{a^2}}$	$\sqrt{1 + \frac{b^2}{a^2}}$
Vertices	$(\pm a,0)$	$(\pm a,0)$
Foci	$(\pm ae,0)$	$(\pm ae,0)$
Equation of Directrix	$x \pm \frac{a}{c} = 0$	$x=\pm \frac{a}{c}$
Length of latus rectum Equation of latus rectum	$\frac{2b^2}{a}$ $x \pm ae = 0$	$\frac{2b^2}{a}^e$
Centre	(0,0)	(0,0)

Circles

15.1 Locus Form

$$(x-g)^2 + (y-h)^2 = r^2 (15.1)$$

where the centre is (g,h) and the radius is r.

15.2 Diameter Form

$$(x-a)(x-c) + (y-b)(y-d) = 0 (15.2)$$

where (a, b) and (c, d) are the two ends of the diamter.

15.3 General Form

If the equation of a circle is in the form:

$$x^{2} + y^{2} + 2gx + 2fy + c = 0 (15.3)$$

Then the following is true about the circle:

- 1. centre of the circle is (-g, -f)
- 2. radius of circle is $\sqrt{g^2 + f^2 c}$

15.4 Important Relations

- 1. If the circle passes through the origin, g=0, f=0.
- 2. If the circle touches the x-axis $c = g^2$.
- 3. If the circle touches the y-axis $c = f^2$.

15.5 Common for Two Circles

1. The common chord passing between two circles \mathcal{S}_1 and \mathcal{S}_2 are:

$$S_1 - S_2 = 0 (15.4)$$

2. Circles passing through the intersection of two circles is:

$$S_2 + k(S_1 - S_2) = 0 \ \forall k \in \mathbb{R}$$
 (15.5)

Vectors

Let two vectors be $\vec{a} = a\hat{i} + b\hat{j} + c\hat{k}$ and $\vec{b} = x\hat{i} + y\hat{j} + z\hat{k}$:

16.1 Modulus of a Vector

For a vector \vec{a} , the modulus of the vector is:

$$|\vec{a}| = \sqrt{a^2 + b^2 + c^2} \tag{16.1}$$

16.2 Sum of Vectors

The sum of two vectors is:

$$|\vec{a} + \vec{b}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}||\vec{a}|\cos\theta}$$
 (16.2)

$$\vec{a} + \vec{b} = (a+x)\hat{i} + (b+y)\hat{j} + (c+z)\hat{k}$$
 (16.3)

The direction of the resultant vector is:

$$\tan \alpha = \frac{b \sin \theta}{a + b \cos \theta} \tag{16.4}$$

where, θ is the angle between the two vectors.

16.3 Product of Vectors

16.3.1 Dot Product

$$\vec{a} \cdot \vec{b} = |a||b|\cos\theta \tag{16.5}$$

$$\vec{a} \cdot \vec{b} = ax + by + cz \tag{16.6}$$

16.3.2 Cross Product

$$\vec{a} \times \vec{b} = |a||b|\sin\theta\hat{n} \tag{16.7}$$

(16.8)

where \hat{n} is a vector $\perp \vec{a}, \vec{b}$.

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a & b & c \\ x & y & z \end{vmatrix}$$
 (16.9)

16.4 Test of Co-planarity

Three vectors are called co-planar if:

$$\lambda \vec{a} + \mu \vec{b} = \vec{c} \tag{16.10}$$

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = 0 \tag{16.11}$$

-Chapter 17-

3D - Space

17.1 Line segments in 3D - Space

For points defined in a 3D space as $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$:

17.1.1 Distance between Two Points

$$AB = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$
(17.1)

17.1.2 Section Formula of a Line Segment Divided in the ratio m:n

$$P = \left(\frac{nx_1 + mx_2}{m+n}, \frac{ny_1 + my_2}{m+n}, \frac{nz_1 + mz_2}{m+n}\right)$$
(17.2)

17.2 Line in 3D - Space

For a line which is defined as $\vec{a} = a\hat{i} + b\hat{j} + c\hat{k}$:

1. Line numbers of the line is

$$\langle a, b, c \rangle \tag{17.3}$$

2. The line cosines are:

$$<\frac{a}{\sqrt{a^2+b^2+c^2}}, \frac{b}{\sqrt{a^2+b^2+c^2}}, \frac{c}{\sqrt{a^2+b^2+c^2}}>$$
 (17.4)

$$= \langle l, m, n \rangle \tag{17.5}$$

17.2.1 Angle between Two Lines

$$\cos \theta = \frac{a_1 a_2 + b_1 b_2 + b_1 b_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$
(17.6)

$$\Rightarrow \cos \theta = l_1 l_2 + m_1 m_2 + n_1 n_2 \tag{17.7}$$

When two lines are $\perp l_1 l_2 + m_1 m_2 + n_1 n_2 = 0$.

When two lines are $\| \frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2} = 1.$

17.2.2 Skew and Co-planar Lines

Let there be two lines $\vec{r_1}$ and $\vec{r_2}$,

$$\vec{r_1} = \vec{a_1} + \mu \vec{b_1} \vec{r_2} = \vec{a_2} + \lambda \vec{b_2} \tag{17.8}$$

17.2.3 Distance between Lines

The shortest distance between r_1 and r_2

$$S = \left| \frac{(\vec{a_1} - \vec{a_2}) \cdot (\vec{b_1} \times \vec{b_2})}{|\vec{b_1} \times \vec{b_2}|} \right|$$
(17.9)

If S = 0, the lines intersect.

Cartesian Form

For two lines defined as $\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1}$ and $\frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2}$: $S = \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$ (17.10)

Distance Between Parallel Lines

$$S = \left| \frac{\vec{b} \cdot (\vec{a_2} - \vec{a_1})}{|\vec{b}|} \right| \tag{17.11}$$

Distance of a Point to a Line

For a point, (x_1, y_1, z_1) the distance to a line $\frac{x - \alpha}{l} = \frac{y - \beta}{m} = \frac{z - \gamma}{n}$:

$$S = \left(\begin{vmatrix} x_1 - \alpha & y_1 - \beta \\ l & m \end{vmatrix} + \begin{vmatrix} y_1 - \beta & z_1 - \gamma \\ m & n \end{vmatrix} + \begin{vmatrix} z_1 - \gamma & x_1 - \alpha \\ n & l \end{vmatrix} \right)^{\frac{1}{2}}$$
(17.12)

17.3 Triangular Plane

17.3.1 Centroid of a Triangle

$$G = \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3}\right)$$
 (17.13)

3D - Plane

A plane in 3-D space can be defined as:

1. Cartesian Form:

$$ax + by + cz + d = 0$$
 (18.1)

2. Vectorial Form:

$$\vec{r} \cdot \vec{n} = p \tag{18.2}$$

, where \vec{r} is a line on the plane, \vec{n} is a normal to the plane, and p is perpendicular distance to the plane from the origin.

18.1 Angle Between Two Planes

For two planes, $\vec{r_1} \cdot \vec{n_1} = p_1$ and $\vec{r_2} \cdot \vec{n_2} = p_2$, the angle between the planes, θ is:

$$\cos \theta = \frac{\vec{n_1} \cdot \vec{n_2}}{|\vec{n_1}||\vec{n_2}|} \tag{18.3}$$

In the Cartesian Form:

$$\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$
(18.4)

18.2 Distance of a Point from a Plane

18.2.1 Catesian Form

For the point (p, q, r) and the plane, ax + by + cz + d = 0:

$$S = \frac{ap + bq + cr + d}{\sqrt{a^2 + b^2 + c^2}} \tag{18.5}$$

18.2.2 **Vector Form**

For the point $\vec{g}=p\hat{i}+q\hat{j}+r\hat{k}$ and the plane $\vec{r}\cdot(a\hat{i}+b\hat{j}+c\hat{k})+d=0$:

$$S = \frac{\left(a\hat{i} + b\hat{j} + c\hat{k}\right) \cdot \left(p\hat{i} + q\hat{j} + r\hat{k}\right)}{\sqrt{a^2 + b^2 + c^2}}$$
(18.6)

$$S = \frac{\left(a\hat{i} + b\hat{j} + c\hat{k}\right) \cdot \left(p\hat{i} + q\hat{j} + r\hat{k}\right)}{\sqrt{a^2 + b^2 + c^2}}$$

$$\Rightarrow S = \frac{\left(a\hat{i} + b\hat{j} + c\hat{k}\right) \cdot \vec{g}}{|a\hat{i} + b\hat{j} + c\hat{k}|}$$
(18.6)

-Part III-Statistics

Descriptive Statistics

19.1 Measure of Location

19.1.1 Mean

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{19.1}$$

19.1.2 Median

For odd number of elements in a dataset:

$$\tilde{x} = x_{\frac{n+1}{2}} \tag{19.2}$$

For even number of elements in a dataset:

$$\tilde{x} = \frac{x_{\frac{n}{2}} + x_{\left(\frac{n}{2} + 1\right)}}{2} \tag{19.3}$$

19.1.3 Mode

$$Mo(x) = \max(f(x_i)) \tag{19.4}$$

19.1.4 Quartile

Measure of percentage of elements less than or equal to a term

19.2 Measure of Spread

19.2.1 Variance

Variance measured on the whole population

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$
 (19.5)

19.2.2 Sample Variance

Variance measured on a sample population

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$
(19.6)

19.2.3 Standard Deviation and Sample Standard

$$\sigma = \sqrt{\sigma^2} \tag{19.7}$$

$$s = \sqrt{s^2} \tag{19.8}$$

19.2.4 Co-efficient of Variance

$$v = \frac{s}{\bar{x}} \tag{19.9}$$

19.3 Skewness

19.3.1 Types of Skewness

Name	Other Name	Characteristic	
Right Skew	Positive Skew	Data concentrated on the lower side	
Symmetric Distribution	Normal Distribution	Data distributed evenly	
Left Skew	Negative Skew	Data concentrated on the higher side	

19.3.2 Measure of Skewness

Skewness is measured by the Moment Co-efficient of Skewness.

$$g_m = \frac{m_3}{s^3}$$
, where (19.10)

$$m_3 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3$$
 (19.11)

Type of Skewness

The type of skewness from the value is g_m is:

Value of g_m	Type	
$g_m = 0$	Symmetric	
$g_m > 0$	Positive Skew	
$g_m < 0$	Negative Skew	

Value of g_m	Degree	
$ g_m > 1$	High Skewness	
$0.5 < g_m \ge 1$	Moderate Skewness	
$ g_m \le 0.5$	Low Skewness	

Degree of Skewness

The degree of skewness from the value is g_m is:

19.4 Kurtosis

Kurtosis is the measure of peakedness of data. Fisher's kurtosis measure is defined as:

$$\gamma = \frac{m_4}{s^4}, \text{ where} \tag{19.12}$$

$$m_4 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^4 \tag{19.13}$$

19.4.1 Type of Kurtosis

The types of kurtosis from the value of γ are:

Value of γ	Type	
$\gamma = 0$	Normal Distribution or Mesokurtic	
$\gamma < 0$	Flattened or Platykurtic	
$\gamma > 0$	Peaked or Lepokurtic	

Hypothesis Testing

20.1 T-Test

$$T = \frac{\bar{X} - \mu}{\frac{s}{\sqrt{n}}} \tag{20.1}$$

where:

 $\bar{X} = \text{Sample Mean}$

 $\mu = Assumed Mean$

s =Number of Samples

n =Number of observations

If $T < t_c$ the H_0 is not rejected. t_c is a functions of level of significance (α) and degrees of freedom (v = n - 1).

20.2 χ^2 Test

$$\chi^2 = \sum_{i} \sum_{j} \frac{(h_{ij}^o - h_{ij}^e)^2}{h_{ij}^e}$$
 (20.2)

where:

 $h_e = \text{Expected Value}$

 $h_o = \text{Actual Value}$

If $\chi^2 < \chi_c^2$ then H_0 is not rejected. χ_c is a functions of level of significance (α) and degrees of freedom (v = (i-1)(j-1)).

Research and Survey Design

21.1 Population Covariance

$$Cov(x,y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)$$
(21.1)

21.2 Sample Covariance

$$Cov(x,y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$
(21.2)

21.3 Bravais-Pearson Correlation Co-efficient

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \cdot \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$
(21.3)

$$= \frac{\operatorname{Cov}(x,y)}{\sqrt{\operatorname{Var}(x) \cdot \operatorname{Var}(y)}}$$
 (21.4)

$$=\frac{\operatorname{Cov}(x,y)}{\sigma_x \cdot \sigma_y} \tag{21.5}$$

21.4 Spearman's Rank Correlation Co-efficient

$$r_s = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)} \tag{21.6}$$

$$d_i = R(X_i) - R(Y_i) (21.7)$$

Estimation of Regression Function

For the regression functions:

$$Y_i = \beta_0 + \beta_1 X_1 \tag{22.1}$$

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_1 \tag{22.2}$$

(22.3)

where Y_i is the observed dependent variable (DV), \hat{Y}_i is the estimated DV, and X_i is the independent variable (IV).

$$u_i = Y_i - \hat{Y}_i \tag{22.4}$$

$$\Rightarrow Y_i = \hat{Y}_i + u_i \tag{22.5}$$

$$\Rightarrow Y_i = \hat{\beta_0} + \hat{\beta_1} X_1 + u_i \tag{22.6}$$

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \tag{22.7}$$

The objective function is:

$$\begin{aligned} & \underset{u_i}{\min} \sum u_i = \min \sum_i \left[Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i \right]^2 \\ & \text{Since the regression function passes through: } \left(\bar{X}, \bar{Y} \right) \\ & \beta_0 = \bar{Y} - \hat{\beta}_1 \bar{X} \\ & \underset{u_i}{\min} \sum u_i = \min \sum_i \left[Y_i - \bar{Y} + \hat{\beta}_1 \bar{X} - \hat{\beta}_1 X_i \right]^2 \\ & = \min \sum_i \left[\left(Y_i - \bar{Y} \right) - \hat{\beta}_1 \left(X_i - \bar{X} \right) \right]^2 \\ & = \min \sum_i \left[\left(Y_i - \bar{Y} \right)^2 - 2 \cdot \left(Y_i - \bar{Y} \right) \cdot \hat{\beta}_1 \left(X_i - \bar{X} \right) + \hat{\beta}_1^2 \left(X_i - \bar{X} \right)^2 \right] \\ & = \min \left[\sum_i \left(Y_i - \bar{Y} \right)^2 - 2 \cdot \hat{\beta}_1 \sum_i \left(Y_i - \bar{Y} \right) \cdot \left(X_i - \bar{X} \right) + \hat{\beta}_1^2 \sum_i \left(X_i - \bar{X} \right)^2 \right] \\ & \Rightarrow u_i^{\beta_1} = -2 \sum_i \left(Y_i - \bar{Y} \right) + 2 \hat{\beta}_1 \left(X_i - \bar{X} \right)^2 = 0 \end{aligned} \qquad \text{(For optima Conditions)} \\ & \Rightarrow \hat{\beta}_1 = \left[\frac{\sum_i (Y_i - \bar{Y})(X_i - \bar{X})}{\sum_i (X_i - \bar{X})^2} \right] \\ & \Rightarrow \hat{\beta}_0 = \left[\bar{Y} - \hat{\beta}_1 \bar{X} \right] \end{aligned}$$

22.1 Sum of Squares Error

$$TSS = \sum_{i} (Y_i - \bar{Y})^2$$
 (22.8)

$$= \sum_{i} (\hat{Y}_i - \bar{Y}) + \sum_{i} u_i^2 \tag{22.9}$$

Explained Sum of Square Error (ESS) Residual Sum of Squares Error (RSS)

22.1.1 R^2 : Coefficient of Determination

$$R^2 = \frac{\text{ESS}}{\text{TSS}} \tag{22.10}$$

$$=1 - \frac{RSS}{TSS} \tag{22.11}$$

$$=1-\frac{\sum_{i}u_{i}^{2}}{\sum_{i}(Y_{i}-\bar{Y})^{2}}$$
(22.12)

For a regression analysis with single IV:

$$\sqrt{R^2} = v$$

22.1.2 \bar{R}^2 : Coefficient of Determination

$$\bar{R}^2 = 1 - \frac{\frac{\sum_i u_i^2}{(N - K - 1)}}{\frac{\sum_i (Y_i - \bar{Y})^2}{(N - 1)}}$$
(22.13)

where, N is the number of observations and K is the number of independent variables.

22.2 T-Test

Test for statistical significance of a single IV.

$$T = \frac{\hat{\beta}_1 - 0}{S_e(\hat{\beta}_1)} \tag{22.14}$$

22.3 F-Test

Test for statistical significance of all IVs together.

$$F = \frac{\frac{\text{ESS}}{(K-1)}}{\frac{\text{RSS}}{(N-K)}}$$
 ($F \ge F_c, H_0$ is rejected)

22.4 Test for Heteroskedasticity

22.4.1 Definition

$$\sigma_{\epsilon_i} \forall \epsilon_i \in [X_a, X_b] = \sigma_{\epsilon_i} \forall \epsilon_i \in [X_{b+1}, X_c]$$

22.4.2 Durbin-Watson Test

$$d_e = \frac{\sum_{t=2}^{n} (\hat{u_t} - \hat{u_{t-1}})^2}{\sum_{t=2}^{n} \hat{u_t}^2}$$
 (22.15)

For the H_0 : No autocorrelation:

Dummy Variables

23.1 Dummy Variable

$$P_i = \beta_0 + \beta_1 S_1 + \beta_2 D_i + \epsilon_i \tag{23.1}$$

$$E(P_i) = \begin{cases} (\hat{\beta}_0 + \hat{\beta}_2) + \hat{\beta}_1 S_i, & D_i = 1\\ \hat{\beta}_0 + \hat{\beta}_1 S_i, & D_i = 0 \end{cases}$$
 (23.2)

23.2 Slope Dummy Variable

$$P_{i} = \beta_{0} + \beta_{1} S_{1} + \beta_{2} (S_{i} \cdot D_{i}) + \epsilon_{i}$$
(23.3)

$$E(P_i) = \begin{cases} \hat{\beta_0} + (\hat{\beta_1} + \hat{\beta_2}) S_i, & D_i = 1\\ \hat{\beta_0} + \hat{\beta_1} S_i, & D_i = 0 \end{cases}$$
 (23.4)

23.3 Slope & Dummy Variable

$$P_i = \beta_0 + \beta_1 S_1 + \beta_2 D_i + \beta_3 S_i D_i + \epsilon_i \tag{23.5}$$

$$E(P_i) = \begin{cases} (\hat{\beta}_0 + \hat{\beta}_1) + (\hat{\beta}_1 + \hat{\beta}_3) S_i, & D_i = 1\\ \hat{\beta}_0 + \hat{\beta}_1 S_i, & D_i = 0 \end{cases}$$
(23.6)

$$\frac{\beta_0 + \beta_1 S_i}{(\beta_0 + \beta_2) + (\beta_1 + \beta_3) S_i}$$

23.4 Multi-Categories Dummy Variable

$$P_{0} = b_{0} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + b_{1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + b_{2} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + b_{3} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$(23.7)$$

Alternatives

• B_n captures the mean of each category, but F-Test is impossible

$$y = \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 D_{3i} \tag{23.8}$$

• Computer drops automatically drops a variable

$$y = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 D_{3i}$$
 (23.9)

• Manually dropping a variable

$$y = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} \tag{23.10}$$

Logistic Regression

For $Y_i \in \{0, 1\}$:

$$z_k = \beta_0 + \sum_{j=1}^n \beta_{jk} x_j + \epsilon_k, \beta_j \to \text{Logit Coefficient}$$
 (24.1)

$$p = \frac{\exp^k}{1 + \exp^k} = \frac{1}{1 + \exp^{-k}} \tag{24.2}$$

where p is the probability of y = 1.

—Part IV— Trigonometry

Circular Trigonometric Functions

25.1 Trigonometric Ratios of Standard Angles

Table 25.1: Trigonometric Ratios of Standard Angles

θ	$\sin \theta$	$\cos \theta$	an heta
0°	0	1	0
15°	$\frac{1}{4}$	$\frac{1}{4(2-\sqrt{3})}$	$2-\sqrt{3}$
18°	$\frac{\sqrt{5}-1}{4}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{5}-1}{\sqrt{10+2\sqrt{5}}}$
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
36°	$\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{5}+1}{\sqrt{10-2\sqrt{5}}}$
45°	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60°	$\frac{1}{\sqrt{3}}$	$\frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}}$	$\sqrt{3}$
72°	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{5}-1}{4}$	$\frac{\sqrt{10+2\sqrt{5}}}{\sqrt{5}-1}$
90°	1	0	∞

For any given triangle:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R \tag{25.1}$$

, where R is the radius of circumcircle. Refer to 11.4.

25.2 Negative Angle Formula

$$\sin(-\theta) = -\sin\theta\tag{25.2}$$

$$\cos(-\theta) = \cos\theta \tag{25.3}$$

$$\tan(-\theta) = -\tan\theta \tag{25.4}$$

$$\csc(-\theta) = -\csc\theta \tag{25.5}$$

$$\sec(-\theta) = \sec\theta \tag{25.6}$$

$$\cot(-\theta) = -\cot\theta \tag{25.7}$$

25.3 Sum of Angles Formula

$$\sin(A+B) = \sin A \cos B + \cos A \sin B \tag{25.8}$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B \tag{25.9}$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \tag{25.10}$$

25.4 Difference of Angles Formula

$$\sin(A - B) = \sin A \cos B - \cos A \sin B \tag{25.11}$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B \tag{25.12}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \tag{25.13}$$

25.5 Multiples and Sub-multiples of π and $\frac{\pi}{2}$

$$\forall k \in \mathbb{Z}$$

$$\sin\left[(4k+1)\frac{\pi}{2}\right] = 1\tag{25.14}$$

$$\sin\left[(4k-1)\frac{\pi}{2}\right] = -1\tag{25.15}$$

$$\sin k\pi = 0 \tag{25.16}$$

$$\sin\left[(2k+1)\frac{\pi}{2}\right] = 0\tag{25.17}$$

$$\sin\left[(2k-1)\frac{\pi}{2}\right] = 0\tag{25.18}$$

$$\sin k\pi = (-1)^k \tag{25.19}$$

25.6 $\left(\frac{\pi}{2} \pm \theta\right)$ Formula

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta \tag{25.20}$$

$$\sin\left(\frac{\pi}{2} + \theta\right) = \cos\theta\tag{25.21}$$

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta \tag{25.22}$$

$$\cos\left(\frac{\pi}{2} + \theta\right) = -\sin\theta\tag{25.23}$$

$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta\tag{25.24}$$

$$\tan\left(\frac{\pi}{2} + \theta\right) = -\cot\theta\tag{25.25}$$

$$\cot\left(\frac{\pi}{2} - \theta\right) = \tan\theta\tag{25.26}$$

$$\cot\left(\frac{\pi}{2} + \theta\right) = -\tan\theta\tag{25.27}$$

$$\csc\left(\frac{\pi}{2} - \theta\right) = \sec\theta\tag{25.28}$$

$$\csc\left(\frac{\pi}{2} + \theta\right) = \sec\theta\tag{25.29}$$

$$\sec\left(\frac{\pi}{2} - \theta\right) = \csc\theta\tag{25.30}$$

$$\sec\left(\frac{\pi}{2} + \theta\right) = -\csc\theta\tag{25.31}$$

25.7 $\left(\frac{\pi}{4} \pm \theta\right)$ Formula

$$\tan\left(\frac{\pi}{4} + \theta\right) = \frac{1 + \tan\theta}{1 - \tan\theta} \tag{25.32}$$

$$\tan\left(\frac{\pi}{4} - \theta\right) = \frac{1 - \tan\theta}{1 + \tan\theta} \tag{25.33}$$

25.8 Trigonometric Identities

$$\sin^2 \theta + \cos^2 \theta = 1 \tag{25.34}$$

$$\tan^2 \theta + 1 = \sec^2 \theta \tag{25.35}$$

$$\cot^2 \theta + 1 = \csc^2 \theta \tag{25.36}$$

25.9 Double Angle Formula

$$\sin 2\theta = 2\sin\theta\cos\theta\tag{25.37}$$

$$=\frac{2\tan\theta}{1+\tan^2\theta}\tag{25.38}$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta \tag{25.39}$$

$$=2\cos^2\theta-1\tag{25.40}$$

$$=1-2\sin^2\theta\tag{25.41}$$

$$=\frac{1-\tan^2\theta}{1+\tan^2\theta}\tag{25.42}$$

$$\tan 2\theta = \frac{2\tan\theta}{1 - \tan^2\theta} \tag{25.43}$$

25.10 Triple Angle Formula

$$\sin 3\theta = 3\sin\theta - 4\sin^3\theta \tag{25.44}$$

$$\cos 3\theta = 4\cos^3 \theta - 3\cos\theta \tag{25.45}$$

$$\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^3\theta} \tag{25.46}$$

25.11 Sum and Product of Two Ratios

For A > B:

$$\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) \tag{25.47}$$

$$\sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right) \tag{25.48}$$

$$2\sin A\cos B = \sin(A+B) + \sin(A-B)$$
 (25.49)

$$2\cos A \sin B = \sin(A+B) - \sin(A-B)$$
 (25.50)

$$\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) \tag{25.51}$$

$$\cos A - \cos B = -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right) \tag{25.52}$$

$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$
 (25.53)

$$2\cos A \sin B = \cos(A+B) - \cos(A-B)$$
 (25.54)

$$\sin(A - B)\sin(A + B) = \sin^2 A - \sin^2 B \tag{25.55}$$

$$\cos(A - B)\cos(A + B) = \cos^2 A - \sin^2 B \tag{25.56}$$

$$\tan(A-B)\tan(A+B) = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}$$
 (25.57)

25.12 General Solutions

If $\sin \theta = \sin \alpha$:

$$\theta = n\pi + (-1)^n \alpha \tag{25.58}$$

 $n \in \mathbb{Z}$

If $\cos \theta = \cos \alpha$:

$$\theta = 2n\pi \pm \alpha \tag{25.59}$$

 $n \in \mathbb{Z}$

If $\tan \theta = \tan \alpha$:

$$\theta = n\pi \pm \alpha \tag{25.60}$$

 $n \in \mathbb{Z}$

25.13 Taylor Series Expansion of Trigonometric Ratios

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \infty = \sum_{i=1}^{\infty} (-1)^{i+1} \frac{x^{2i-1}}{(2i-1)!}$$
 (25.61)

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i}}{(2i)!}$$
 (25.62)

Inverse Circular Trigonometric Function

26.1 Definition of Inverse Circular Trigonometric Function

26.1.1 For $\sin x$

 $y = \arcsin x$ iff $x = \sin y$, then:

- 1. $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- 2. domain of $x \in [-1, 1]$
- 3. $\sin(\arcsin x) = x, \forall x \in [-1, 1]$
- 4. $\arcsin(\sin y) = y, \forall y \in [-\frac{\pi}{2}, \frac{\pi}{2}]$
- 5. $\sin x$ is a strictly increasing in the domain $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ and one-one.

26.1.2 For $\cos x$

 $y = \arccos x$ iff $x = \cos y$, then:

- $1.\ y\in [0,\pi]$
- 2. domain of $x \in [-1, 1]$
- 3. $\cos(\arccos x) = x, \forall x \in [-1, 1]$
- 4. $\arccos(\cos y) = y, \forall y \in [0, \pi]$
- 5. $\cos x$ is a strictly decreasing in the domain $[0,\pi]$ and one-one.

26.1.3 For $\tan x$

 $y = \arctan x \text{ iff } x = \tan y, \text{ then:}$

- 1. $y \in [-\frac{\pi}{2}, \frac{\pi}{2}]$
- 2. domain of $x \in \mathbb{R}$
- 3. $\tan(\arctan x) = x, \forall x \in \mathbb{R}$

- 4. $\arctan(\tan y) = y, \forall y \in [-\frac{\pi}{2}, \frac{\pi}{2}]$
- 5. $\tan x$ is a strictly increasing in the domain $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ and one-one.

26.1.4 For $\cot x$

 $y = \cot^{-1} x$ iff $x = \cot y$, then:

- 1. $y \in (0, \pi)$
- 2. domain of $x \in \mathbb{R}$
- 3. $\cot(\cot^{-1} x) = x, \forall x \in \mathbb{R}$
- 4. $\cot^{-1}(\cot y) = y, \forall y \in (0, \pi)$
- 5. $\cot x$ is a strictly decreasing in the domain $(0,\pi)$ and one-one.

For $\sec x$

 $y = \sec^{-1} x$ iff $x = \sec y$

- 1. $y \in \{[0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]\}$
- 2. $x \in \{(-\infty, -1] \cup [1, \infty)\}$
- 3. $\sec(\sec^{-1} x) = x, \forall |x| \ge 1$
- 4. $\sec^{-1}(\sec y) = y, \forall y \in \left\{ [0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi] \right\}$

26.1.5 For $\csc x$

 $y = \csc^{-1} x$ iff $x = \csc y$

- 1. $y \in \left\{ \left[-\frac{\pi}{2}, 0 \right) \cup \left(0, \frac{\pi}{2} \right] \right\}$
- 2. $x \in \{(-\infty, -1] \cup [1, \infty)\}$
- 3. $\csc(\csc^{-1} x) = x, \forall |x| \ge 1$
- 4. $\csc^{-1}(\csc y) = y, \forall y \in \{[-\frac{\pi}{2}, 0) \cup (0, \frac{\pi}{2}]\}$

26.2 Negative Arguments

$$\arcsin(-x) = -\arcsin x \tag{26.1}$$

$$\arctan(-x) = -\arctan x \tag{26.2}$$

$$\csc^{-1}(-x) = -\csc^{-1}x\tag{26.3}$$

$$\arccos(-x) = \pi - \arccos x \tag{26.4}$$

$$\cot^{-1}(-x) = \pi - \cot^{-1}x \tag{26.5}$$

$$\sec^{-1}(-x) = \pi - \sec^{-1}x\tag{26.6}$$

26.3 Reciprocal Relations

$$\csc^{-1} x = \arcsin \frac{1}{x} \tag{26.7}$$

$$\sec^{-1} x = \arccos\frac{1}{x} \tag{26.8}$$

$$\sec^{-1} x = \begin{cases} \arctan\frac{1}{x}, x > 0\\ \pi + \arctan\frac{1}{x}, x < 0 \end{cases}$$

$$(26.9)$$

26.4 I.T.F. Identities

$$\arcsin x + \arccos x = \frac{\pi}{2} \qquad , |x| \le 1$$
 (26.10)

$$\arctan x + \cot^{-1} x = \frac{\pi}{2} \qquad , x \in \mathbb{R}$$
 (26.11)

$$\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}$$
 , $|x| \ge 1$ (26.12)

26.5 Sum of Two Angles

$$\arctan x + \arctan y = \arctan\left(\frac{x+y}{1-xy}\right) \tag{26.13}$$

$$\arcsin x + \arcsin y = \arcsin \left(y\sqrt{1 - x^2} + x \ sqrt1 - y^2 \right) \tag{26.14}$$

$$\arccos x + \arccos y = \arccos\left(xy - \sqrt{1 - x^2}\sqrt{1 - y^2}\right) \tag{26.15}$$

26.6 Difference of Two Angles

$$\arctan x - \arctan y = \arctan\left(\frac{x-y}{1+xy}\right)$$
 (26.16)

$$\arcsin x - \arcsin y = \arcsin \left(x\sqrt{1 - y^2} - y\sqrt{1 - x^2}\right) \tag{26.17}$$

$$\arccos x - \arccos y = \arccos\left(xy + \sqrt{1 - x^2}\sqrt{1 - y^2}\right) \tag{26.18}$$

26.7 Interconversion of Ratios

$$\arcsin x = \arccos\sqrt{1 - x^2} \tag{26.19}$$

$$=\arctan\left(\frac{x}{\sqrt{1-x^2}}\right) \tag{26.20}$$

$$\arccos x = \arcsin \sqrt{1 - x^2} \tag{26.21}$$

$$=\arctan\left(\frac{\sqrt{1-x^2}}{x}\right) \tag{26.22}$$

$$2\arctan x = \arcsin\left(\frac{2x}{1+x^2}\right) \tag{26.23}$$

$$=\arccos\left(\frac{1-x^2}{1+x^2}\right) \tag{26.24}$$

$$=\arctan\left(\frac{2x}{1-x^2}\right) \tag{26.25}$$

26.8 Miscellaneous Relations

$$\cos(\arcsin x) = \sin(\arccos x) = \sqrt{1 - x^2}$$
 (26.26)

$$\arctan x = \frac{\pi}{2} - \arctan\left(\frac{1}{x}\right), x > 1 \tag{26.27}$$

Hyperbolic Trigonometric Functions

27.1 Definition

Hyperbolic trigonometric functions are defined such that $(\cosh t, \sinh t)$ form the right half of an equilateral hyperbola. The functions are defined as follows:

$$\sinh x = \frac{\exp(x) - \exp(-x)}{2} \tag{27.1}$$

$$\cosh x = \frac{\exp(x) + \exp(-x)}{2} \tag{27.2}$$

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)}$$
(27.3)

$$coth x = \frac{1}{\tanh x} = \frac{\exp(x) + \exp(-x)}{\exp(x) - \exp(-x)}$$
(27.4)

$$\operatorname{csch} x = \frac{1}{\sinh x} = \frac{2}{\exp(x) - \exp(-x)}$$
 (27.5)

$$\operatorname{sech} x = \frac{1}{\cosh x} = \frac{2}{\exp(x) + \exp(-x)}$$
 (27.6)

27.2 Identities

$$\coth^2 x - \sinh^2 x = 1 \tag{27.7}$$

$$\tanh^2 x + \operatorname{sech}^2 x = 1 \tag{27.8}$$

$$\coth^2 x - csch^2 x = 1 \tag{27.9}$$

27.3 Inverse Hyperbolic Function

$$\sinh^{-1} z = \ln(z + \sqrt{z^2 + 1}) \tag{27.10}$$

$$\cosh^{-1} z = \ln(z \pm \sqrt{z^2 - 1}) \tag{27.11}$$

$$\tanh^{-1} z = \frac{1}{2} \ln \left(\frac{1+z}{1-z} \right) \tag{27.12}$$

$$\coth^{-1} z = \frac{1}{2} \ln \left(\frac{z+1}{z-1} \right) \tag{27.13}$$

$$csch^{-1}z = \ln\left(\frac{1 \pm \sqrt{z^2 + 1}}{z}\right) \tag{27.14}$$

$$sech^{-1}z = \ln\left(\frac{1 \pm \sqrt{1 - z^2}}{2}\right)$$
 (27.15)

27.4 Relation to Circular Trigonometric Functions

$$\sinh(z) = -i\sin(iz) \tag{27.16}$$

$$\coth(z) = \cos(iz) \tag{27.17}$$

$$\tanh(z) = -i\tan(iz) \tag{27.18}$$

$$csch(z) = i\csc(iz) \tag{27.19}$$

$$sech(z) = sec(iz)$$
 (27.20)

$$coth(z) = i \cot(iz) \tag{27.21}$$

—Part V— Calculus

Limits

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \tag{28.1}$$

$$\lim_{x \to 0} \frac{\tan x}{x} = 1 \tag{28.2}$$

$$\lim_{x \to 0} \cos x = 1 \tag{28.3}$$

$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1} \tag{28.4}$$

$$\lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$
 (28.5)

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \lim_{x \to a} g(x) \neq 0$$

$$(28.6)$$

$$\lim_{x \to 0} \exp(x) = 1 \tag{28.7}$$

$$\lim_{x \to a} \exp(x) = \exp(c) \tag{28.8}$$

$$\lim_{x \to 0} \frac{\exp(x) - 1}{x} = 1 \tag{28.9}$$

$$\lim_{x \to a} c^x = c^a \tag{28.10}$$

$$\lim_{x \to a} \ln x = \ln a \tag{28.11}$$

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e \tag{28.12}$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1 \tag{28.13}$$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a \tag{28.14}$$

$$\lim_{n \to \infty} \frac{x^n}{n!} = 0, \forall x \in \mathbb{R}$$
 (28.15)

28.1 L'Hospital Rule

If:

$$L = \lim_{x \to a} \frac{f(x)}{g(x)}$$

is such that f(a)=0 and g(a)=0, or $f(a)=\infty$ and $g(a)=\infty,$ then:

$$L = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Differentiation

Differentiation by First Principle 29.1

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 (29.1)

Standard Differentiation Formulae 29.2

$$\frac{dk}{dx} = 0\tag{29.2}$$

$$\frac{dx^n}{dx} = nx^{n-1} \tag{29.3}$$

$$\frac{da^x}{dx} = \ln a \cdot a^x \tag{29.4}$$

$$\frac{dx}{dx} = nx^{n-1}$$

$$\frac{da^x}{dx} = \ln a \cdot a^x$$

$$\frac{d \exp(x)}{dx} = \exp(x)$$
(29.3)
$$\frac{d \exp(x)}{dx} = 1$$
(29.5)

$$\frac{d \ln x}{dx} = \frac{1}{x}$$

$$\frac{d\sqrt{x}}{dx} = \frac{1}{2\sqrt{2}}$$

$$(29.6)$$

$$(29.7)$$

$$\frac{d\sqrt{x}}{dx} = \frac{1}{2\sqrt{2}}\tag{29.7}$$

(29.8)

29.2.1 Circular Trigonometric Functions

$$\frac{d\sin x}{dx} = \cos x\tag{29.9}$$

$$\frac{d\cos x}{dx} = -\sin x\tag{29.10}$$

$$\frac{d\tan x}{dx} = \sec^2 x \tag{29.11}$$

$$\frac{d\sec x}{dx} = \sec x \cdot \tan x \tag{29.12}$$

$$\frac{d\csc x}{dx} = -\csc x \cdot \cot x \tag{29.13}$$

$$\frac{d\cot x}{dx} = -\csc^2 x\tag{29.14}$$

29.2.2 Inverse Circular Trigonometric Functions

$$\frac{d\arcsin x}{dx} = \frac{1}{\sqrt{1-x^2}}, |x| \le 1 \tag{29.15}$$

$$\frac{d\arccos x}{dx} = -\frac{1}{\sqrt{1-x^2}}, |x| \le 1$$
 (29.16)

$$\frac{d\arctan x}{dx} = \frac{1}{1+x^2} \tag{29.17}$$

$$\frac{d\cot^{-1}x}{dx} = -\frac{1}{1+x^2} \tag{29.18}$$

$$\frac{d\sec^{-1}x}{dx} = \frac{1}{x \cdot \sqrt{x^2 - 1}}, |x| \ge 1$$
 (29.19)

$$\frac{d\csc^{-1}x}{dx} = -\frac{1}{x\cdot\sqrt{x^2 - 1}}, |x| \ge 1$$
 (29.20)

29.2.3 Hyperbolic Trigonometric Function

$$\frac{d\sinh x}{dx} = \cosh x \tag{29.21}$$

$$\frac{d\cosh x}{dx} = \sinh x \tag{29.22}$$

$$\frac{d\tanh x}{dx} = 1 - \tanh^2 x = \operatorname{sech}^2(x) \tag{29.23}$$

$$\frac{d\coth x}{dx} = 1 - \coth^2 x = -\operatorname{csch}^2(x) \tag{29.24}$$

$$\frac{d[sech(x)]}{dx} = -\tanh x \operatorname{sech} x \tag{29.25}$$

$$\frac{d[csch(x)]}{dx} = -\coth x \operatorname{csch} x \tag{29.26}$$

29.2.4 Inverse Hyperbolic Trigonometric Function

$$\frac{d\sinh x}{dx} = \frac{1}{\sqrt{x^2 + 1}}\tag{29.27}$$

$$\frac{d\cosh x}{dx} = \frac{1}{\sqrt{x^2 - 1}}\tag{29.28}$$

$$\frac{d\tanh x}{dx} = \frac{1}{1 - x^2} \tag{29.29}$$

$$\frac{d\coth x}{dx} = \frac{1}{1 - x^2} \tag{29.30}$$

$$\frac{dx}{d[\operatorname{sech}(x)]} = \frac{1}{x\sqrt{1-x^2}}$$
 (29.31)

$$\frac{d[\operatorname{csch}(x)]}{dx} = \frac{1}{|x|\sqrt{1+x^2}}$$
 (29.32)

Rules of Differentiation 29.3

$$\frac{d[c \cdot f(x)]}{dx} = c \cdot \frac{df(x)}{dx} \tag{29.33}$$

$$\frac{d[f_1(x) + f_2(x)]}{dx} = \frac{d[f_1(x)]}{dx} + \frac{d[f_2(x)]}{dx}$$
(29.34)

$$\frac{d[f_1 \cdot f_2]}{dx} = f_1 \cdot f_2' + f_2 \cdot f_1' \tag{29.35}$$

$$\frac{d[f_1 \cdot f_2]}{dx} = f_1 \cdot f_2' + f_2 \cdot f_1' \qquad (29.35)$$

$$\frac{d\left(\frac{f_1}{f_2}\right)}{dx} = \frac{f_2 \cdot f_1' - f_1 \cdot f_2'}{f_2^2} \qquad (29.36)$$

Chain Rule 29.4

If two functions are defined as z = f(y) and y = g(x):

$$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx} \tag{29.37}$$

If two functions are defined as $x = f(\theta)$ and $y = g(\theta)$:

$$\frac{d^2y}{dx^2} = \left[\frac{d}{d\theta} \left(\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}\right)\right] \frac{d\theta}{dx} \tag{29.38}$$

Successive Differentiation

$$D^{n}(ax+b)^{m} = m(m-1)\cdots(m-n+1)a^{n}(ax+b)^{m-n}$$
(30.1)

$$D^{n}\left(\frac{1}{ax+b}\right) = \frac{(-1)^{n} \cdot n! \cdot a^{n}}{(ax+b)^{n+1}}$$
(30.2)

$$D^{n}\ln(ax+b) = \frac{(-1)^{n-1} \cdot (n-1)! \cdot a^{n}}{(ax+b)^{n}}, n \ge 2$$
(30.3)

$$D^n(a^{mx}) = m^n(\ln a)^n \cdot a^{mx}$$
(30.4)

$$D^n(e^{mx}) = m^n e^{mx} (30.5)$$

$$D^{n}\sin(ax+b) = a^{n}\sin(ax+b+n\frac{\pi}{2})$$
(30.6)

$$D^{n}\cos(ax+b) = a^{n}\cos(ax+b+n\frac{\pi}{2})$$
(30.7)

$$D^{n}[e^{ax}\sin(bx+c)] = (a^{2} + b^{2})^{\frac{n}{2}}e^{ax}\sin(bx+c+n\arctan\frac{b}{a})$$
(30.8)

$$D^{n}[e^{ax}\cos(bx+c)] = (a^{2} + b^{2})^{\frac{n}{2}}e^{ax}\cos(bx+c+n\arctan\frac{b}{a})$$
(30.9)

30.1 Leibnitz's Theorem

For two functions u and v of x, the successive differentiation of their product is defined as:

$$(uv)_n = {}^{n}C_0u_nv + {}^{n}C_1u_{n-1}v_1 + \dots + {}^{n}C_0uv_n$$
(30.10)

$$=\sum_{i=0}^{n} {}^{n}C_{i}u_{n-i}v_{i} \tag{30.11}$$

Partial Derivative

If f(x,y) is a function of (x,y), then $\frac{\partial f(x,y)}{\partial x}$ is the differentiation of f(x,y) w.r.t. x, keeping all other parameters constant.

31.1 Chain Rule

If f is a function of u and v, which are functions of x and y, then:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial x}$$
(31.1)

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial u}\frac{\partial u}{\partial y} + \frac{\partial f}{\partial v}\frac{\partial v}{\partial y}$$
(31.2)

(31.3)

If f is a function of x and y, which are functions of t, then:

$$\frac{df}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$
 (31.4)

31.2 Euler's Theorem

For a homogeneous function 1 , $f(x_i)$ of degree n:

$$\sum x_i \frac{\partial f}{\partial x_i} = nf(x_i) \tag{31.5}$$

Homogeneous functions are defined as $f(ax, ay) = a^{\kappa} f(x, y)$, where κ is the degree of homogeneity. E.g. $f(x,y) = x^2 + y^2$, then $f(tx,ty) = t^2(x^2 + y^2)$, and the degree of homogeneity is 2.

Application of Differential

32.1 Rolle's Theorem

For a function f(x):

- 1. is continuous in [a, b]
- 2. is differentiable in (a, b)
- $3. \ f(a) = f(b),$

then there exists a point x = c such that f'(c) = 0, $c \in (a, b)$

32.2 Mean Value Theorem or LaGrange's Theorem

For a function f(x):

- 1. is continuous in [a, b]
- 2. is differentiable in (a, b),

then there exists a point x = c such that $f'(c) = \frac{f(b) - f(a)}{b - a}$, $c \in (a, b)$, i.e., the tangent is parallel to the line joining the points (a, f(a)) and (b, f(b)).

32.3 Cauchy's Mean Value Theorem

For a function f(x) and g(x):

- 1. are continuous in [a, b]
- 2. are differentiable in (a, b)
- 3. $g'(x) \neq 0$ in (a, b),

then there exists a point $c \in (a, b)$, such that $\frac{f(x)}{g(x)} = \frac{f(b) - f(a)}{g(b) - g(a)}$.

32.4 Maxima and Minima

32.4.1 Maxima

For the local maxima of a function f(x):

1. f'(c) = 0 and

$$\lim_{\epsilon \to c^{-}} f'(\epsilon) > 0$$

$$\lim_{\epsilon \to c^{+}} f'(\epsilon) < 0$$
OR

2. f'(c) = 0 and f''(x) < 0,

then f(c) is the local maxima point of the function f(x).

32.4.2 Minima

For the local minima of a function f(x):

1. f'(c) = 0 and

$$\lim_{\epsilon \to c^{-}} f'(\epsilon) < 0$$

$$\lim_{\epsilon \to c^{+}} f'(\epsilon) > 0$$
OR

2.
$$f'(c) = 0$$
 and $f''(x) > 0$,

then f(c) is the local minima point of the function f(x).

32.5 Taylor's Theorem

For a function which is differentiable n times:

$$f(a+h) = f(a) + h \cdot f'(a) + \frac{h^2}{2!} \cdot f''(a) + \dots + \frac{h^{n-1}}{(n-1)!} \cdot f^{n-1}(a) + \frac{h^n}{x!} \cdot R_n$$
 (32.1)

where R_n is the remainder term.

32.5.1 Remainder Term

LeGrange's Form

$$R_n = f^n(a + \theta h), \theta \in (0, 1)$$
(32.2)

Cauchy's Form

$$R_n = n(1 - \theta)^{n-1} f^n(a + \theta h), \theta \in (0, 1)$$
(32.3)

32.5.2 Conditions for Validity of Expansion

For validity of Taylor Expansion, the condition

$$\lim_{n \to \infty} R_n = 0 \tag{32.4}$$

needs to be satisfied either where R_n is the remainder term in either LeGrange's Form or Cauchy's Form. If the condition is satisfied in a certain domain, then the expansion is valid within that domain only.

32.5.3 Taylor's Theorem for Two Variables

$$f(a+x,b+y) = f(x,y) + \left(a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y}\right) f(x,y) + \frac{1}{2!} \left(a^2 \frac{\partial^2}{\partial x^2} + b^2 \frac{\partial^2}{\partial y^2}\right) f(x,y) + \dots + \frac{1}{n!} \left(a^n \frac{\partial^n}{\partial x^n} + b^n \frac{\partial^n}{\partial y^n}\right) f(x+\theta a, y+\theta b), \theta \in (0,1)$$
(32.5)

32.6 Maclaurin's Series

$$f(x) = f(0) + xf'(0) + \frac{1}{2!}x^2f''(0) + \frac{1}{3!}x^3f'''(0) + \dots \infty$$
 (32.6)

$$=\sum_{i=0}^{\infty} \frac{1}{i!} x^i f^i(0) \tag{32.7}$$

32.6.1 Maclaurin's Series with Two Variables

$$f(a,b) = f(0,0) + \left(a\frac{\delta}{\delta x} + b\frac{\delta}{\delta x}\right)f(0,0) + \frac{1}{2!}\left(a^2\frac{\delta^2}{\delta x^2} + b^2\frac{\delta^2}{\delta x^2}\right)f(0,0) + \dots \infty$$
 (32.8)

$$= \sum_{i=0}^{\infty} \frac{1}{n!} \left(a^i \frac{\delta^i}{\delta x^i} + b^i \frac{\delta^i}{\delta x^i} \right) f(0,0)$$
 (32.9)

32.7 Curvature

Curvature is the rate of change of direction w.r.t. arc. Mathematically:

$$Curvature = \frac{d(direction)}{d(arc)}$$
 (32.10)

$$\lim_{\Delta s \to 0} \frac{\Delta \psi}{\Delta s} = \frac{d\psi}{ds} \tag{32.11}$$

32.7.1Radius of Curvature

Cartesian Form

For a curve y = f(x):

$$\rho = \frac{(1+y'^2)^{\frac{3}{2}}}{y''} \tag{32.12}$$

However, this formula fails for $y' \to \infty$.

Parametric Form

For a curve defined as $x = \phi(t)$ and $y = \psi(t)$:

$$\rho = \frac{(\ddot{x}^2 + \ddot{y}^2)^{\frac{3}{2}}}{x\ddot{y} - y\ddot{x}} \tag{32.13}$$

32.7.2Newton's Formula

1. If the curve passes through origin, and the tangent at origin is the x-axis:

$$\rho = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2}{2y} \tag{32.14}$$

2. If the curve passes through origin, and the tangent at origin is the y-axis:

$$\rho = \lim_{\substack{x \to 0 \\ x \to 0}} \frac{y^2}{2x} \tag{32.15}$$

3. If the curve passes through origin and ax + by + c = 0 is the tangent at origin:

$$\rho(0,0) = \frac{1}{2} \sqrt{a^2 + b^2} \lim_{\substack{x \to 0 \\ y \to 0}} \frac{a^2 + y^2}{ax + by}$$
 (32.16)

32.7.3Tangent at Origin

For a curve

$$\sum c_i x^j y^k = 0, i \in \mathbb{N} \text{ and } j, k \in \mathbb{Z} - \{0\}$$
(32.17)

The curve passes through origin c = 0. Then the lowest degree term equated to x gives the tangent at origin.

32.8 Asymptotes

If the distance between a line P and a curve f(x), s is such that $s \to 0$, as $x \to \infty$, then P is the asymptote of f(x). For asymptotes not parallel to x-axis:

Let y = mx + c be the asymptote of the function y = f(x), then:

$$m = \lim_{x \to \infty} \frac{y}{x} \tag{32.18}$$

$$m = \lim_{x \to \infty} \frac{y}{x}$$

$$c = \lim_{x \to \infty} (y - mx)$$
(32.18)

32.8.1 Asymptote of Algebraic Curves

For an algebraic curve, passing through origin, defined as:

$$(a_0x^n + a_1x^{n-1}y^1 + \dots + a_{n-1}xy^{n-1} + a_ny^n)$$

$$+ (b_0x^{n-1} + b_1x^{n-2}y^1 + \dots + b_{n-1}xy^{n-2} + b_ny^{n-1}) + \dots = 0$$

$$\Rightarrow x^n\phi_n\left(\frac{y}{x}\right) + x^{n-1}\phi_{n-1}\left(\frac{y}{x}\right) + \dots + x\phi_1\left(\frac{y}{x}\right) = 0$$
(32.20)

The asymptote(s) defined as y = mx + c,

1. m is the solution for the equation

$$\phi_n(m) = 0 \tag{32.21}$$

2.

$$c = -\frac{\phi_{n-1}(m)}{\phi_n(m)} \tag{32.22}$$

where c is a finite value.

Integration

General Formulae 33.1

$$\int nx^{n-1}dx = x^n + A \tag{33.1}$$

$$\int nx^{n-1}dx = x^n + A$$

$$\int x^n dx = \frac{1}{n+1}x^{n+1} + A$$
(33.1)

$$\int e^x dx = e^x + A \tag{33.3}$$

$$\int \frac{1}{x} dx = \ln x + A \tag{33.4}$$

$$\int \ln x dx = x(\ln x - 1) + A \tag{33.5}$$

33.2 Circular Trigonometric Functions

$$\int \sin x dx = -\cos x + A \tag{33.6}$$

$$\int \cos x dx = \sin x + A \tag{33.7}$$

$$\int \sec^2 x dx = \tan x + A \tag{33.8}$$

$$\int \csc^2 x dx = -\cot x + A \tag{33.9}$$

$$\int \sec x \tan x dx = \sec x + A \tag{33.10}$$

$$\int \csc x \cot x dx = -\csc x + A \tag{33.11}$$

$$\int \sec x dx = \ln(\sec x + \tan x) + A \tag{33.12}$$

$$\int \csc x dx = -\ln(\csc x + \cot x) + A \tag{33.13}$$

$$\int \tan x dx = -\ln(\cos x) + A \tag{33.14}$$

$$= \ln(\sec x) + A \tag{33.15}$$

$$\int \cot x dx = \ln(\sin x) + A \tag{33.16}$$

33.3 Inverse Circular Trigonometric Function

$$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + A \tag{33.17}$$

$$\int \frac{-1}{\sqrt{1-x^2}} dx = \cos^{-1} x + A \tag{33.18}$$

$$\int \frac{1}{1+x^2} dx = \tan^{-1} x + A \tag{33.19}$$

$$\int \frac{-1}{1+x^2} dx = \cot^{-1} x + A = -\tan^{-1} x + A \tag{33.20}$$

$$\int \frac{1}{x\sqrt{x^2 - 1}} dx = \sec^{-1} x + A = -\csc^{-1} x + A \tag{33.21}$$

$$\int \frac{-1}{x\sqrt{x^2 - 1}} dx = \csc^{-1} x + A = -\sec^{-1} x + A \tag{33.22}$$

33.4 Standard Integrals

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a} + A \tag{33.23}$$

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln(x + \sqrt{x^2 + a^2}) + A \tag{33.24}$$

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + A \tag{33.25}$$

$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln(x + \sqrt{x^2 - a^2}) + A \tag{33.26}$$

$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a}\sec^{-1}\frac{x}{a} + A \tag{33.27}$$

$$\int \sqrt{a^2 - x^2} dx = \frac{x\sqrt{a^2 - x^2}}{2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + A$$
 (33.28)

$$\int \sqrt{a^2 + x^2} dx = \frac{x\sqrt{a^2 + x^2}}{2} + \frac{a^2}{2} \ln(x + \sqrt{x^2 + a^2}) + A$$
 (33.29)

$$\int \sqrt{x^2 - a^2} dx = \frac{x\sqrt{x^2 - a^2}}{2} - \frac{a^2}{2} \ln(x + \sqrt{a^2 - x^2}) + A$$
 (33.30)

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + A \tag{33.31}$$

$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a+x}{a-x} \right| + A \tag{33.32}$$

33.5 Special Forms

For a function f(x):

1

$$\int [f(x)]^n f'(x) dx = \begin{cases} \frac{[f(x)]^{n+1}}{n+1} + A, n \neq 1\\ \ln|f(x)| + A, n = 1 \end{cases}$$
(33.33)

33.5.1 Integration by Part

For two functions u(x) and v(x):

$$\int u(x)v(x)dx = u(x)\left[\int v(x)dx\right] - \int \left[\frac{du(x)}{dx}\left(\int v(x)dx\right)dx\right]$$
(33.34)

 $^{^{1}}a$ is a constant $\in \mathbb{R}$

Definite Integration

For a function f(x) for which $\int f(x)dx = F(x) + A$,

$$\int_{a}^{b} f(x)dx = F(b) - F(a) \tag{34.1}$$

34.1 Properties of Definite Integration

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt \tag{34.2}$$

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx \tag{34.3}$$

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$
 (34.4)

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx$$
 (34.5)

$$\int_0^a f(x)dx = \int_0^a f(a-x)dx$$
 (34.6)

$$\int_0^{2a} f(x)dx = \begin{cases} 2\int_0^a f(x)dx, & f(2a-x) = f(x) \\ 0, & f(2a-x) = f(x) \end{cases}$$
(34.7)

$$\int_{-a}^{a} f(x)dx = \begin{cases} 2 \int_{0}^{a} f(x)dx, \ f(x) \text{ is even} \\ 0, \ f(x) \text{ is odd} \end{cases}$$
 (34.8)

34.2 Approximation

$$f(a)(b-a) \le \int_{a}^{b} f(x)dx \le f(b)(b-a)$$
 (34.9)

34.3 Sum of Infinite Series as a Definite Integral

Refer to 3.5.2.

Reduction Formula

Circular Trigonometric Functions 35.1

$$\int \sin^n x dx = -\frac{1}{n} \sin^{n-1} x \cos x dx + \frac{n-1}{n} \int \sin^{n-2} x dx$$
 (35.1)

$$\int \cos^n x dx = -\frac{1}{n} \cos^{n-1} x \sin x dx + \frac{n-1}{n} \int \cos^{n-2} x dx$$
 (35.2)

$$\int_0^{\frac{\pi}{2}} \sin^n x dx = \int_0^{\frac{\pi}{2}} \cos^n x dx = \begin{cases} \frac{(n-1) \cdot (n-3) \cdots 3 \cdot 1}{n \cdot (n-2) \cdots 4 \cdot 2} \left(\frac{\pi}{2}\right), n \to \text{even} \\ \frac{(n-1) \cdot (n-3) \cdots 4 \cdot 2}{n \cdot (n-2) \cdots 3 \cdot 1}, n \to \text{odd} \end{cases}$$
(35.3)

$$\int \sin^m x \cos^n x dx = \frac{-\sin^{m-1} x \cos^{n+1} x}{m+n} + \frac{m-1}{m+n} \int \sin^{m-2} x \cos^n x dx$$
 (35.4)

Special Definite Integrations

For $I(m,n) = \int_0^{\frac{\pi}{2}} \sin^m x \cos^n x dx$:

$$I(m,n) = \frac{[(m-1)\cdot(m-3)\cdots3\cdot1][(n-1)\cdot(n-3)\cdots3\cdot1]}{(m+n)\cdot(m+n-1)\cdots(4)\cdot(2)} \cdot \frac{\pi}{2} \to m, n \text{ are even}$$
(35.5)
$$I(m,n) = \frac{[(m-1)\cdot(m-3)\cdots(2 \text{ or } 1)][(n-1)\cdot(n-3)\cdots(2 \text{ or } 1)]}{(m+n)\cdot(m+n-1)\cdots(2 \text{ or } 1)} \to \text{ all other cases}$$

$$I(m,n) = \frac{[(m-1)\cdot(m-3)\cdots(2 \text{ or } 1)][(n-1)\cdot(n-3)\cdots(2 \text{ or } 1)]}{(m+n)\cdot(m+n-1)\cdots(2 \text{ or } 1)} \to \text{ all other cases}$$
(35.6)

(35.7)

Recursive Forms in Circular Trigonometric Functions 35.3

$$I_{n} = \int \tan^{n} x dx$$

$$\Rightarrow I_{n} = \frac{\tan^{n-2} x}{n-1} - I_{n-2}$$

$$I_{n} = \int \cot^{n} x dx$$

$$\Rightarrow I_{n} = -\frac{\cot^{n-2} x}{n-1} - I_{n-2}$$

$$I_{n} = \int \sec^{n} x dx$$

$$\Rightarrow I_{n} = \frac{\sec^{n-2} x \tan x}{n-1} + \frac{n-2}{n-1} I_{n-2}$$

$$I_{n} = \int \csc^{n} x dx$$

$$\Rightarrow I_{n} = -\frac{\csc^{n-2} x \cot x}{n-1} + \frac{n-2}{n-1} I_{n-2}$$

$$\exists I_{n} = \int x^{n} e^{ax} dx$$

$$(35.11)$$

$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} I_{n-2}$$

$$I(m,n) = \int x^m (\ln x)^n dx$$
(35.13)

$$I(m,n) = \int x^m (\ln x)^n dx \tag{35.14}$$

$$\int x^m (\ln x)^n dx = \frac{x^{m+1}}{m+1} (\ln x)^n - \frac{n}{m+1} I_{m,n-1}$$
(35.15)

β and Γ Functions

For m, n > 0:

$$\beta(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx \tag{36.1}$$

$$=2\int_{0}^{\frac{\pi}{2}}\sin^{2m-1}x\cos^{2n-1}xdx\Gamma(n) \qquad \qquad =\int_{0}^{\infty}e^{-1}x^{n-1}dx \qquad (36.2)$$

36.1 Important Relations between $\beta(m,n)$ and $\Gamma(n)$ Functions

$$\Gamma(n) = \frac{\Gamma(n+1)}{n} \tag{36.3}$$

$$\Gamma(1) = 1 \tag{36.4}$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \approx 1.772\tag{36.5}$$

$$\Gamma(n+1) = n!, n \in \mathbb{N} \tag{36.6}$$

$$\Gamma(m)\Gamma\left(m + \frac{1}{2}\right) = \sqrt{\pi}\Gamma(2m) \tag{36.7}$$

$$\Gamma(m)\Gamma(m-1) = \pi \csc(m\pi) \tag{36.8}$$

$$\beta(m,n) = \beta(n,m) \tag{36.9}$$

$$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$
(36.10)

$$\beta\left(\frac{1}{2}, \frac{1}{2}\right) = \pi \tag{36.11}$$

$$\int_0^{\frac{\pi}{2}} \sin^p x \cos^q x = \frac{1}{2} \frac{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{q+1}{2}\right)}{\Gamma\left(\frac{p+2}{2}\right)}$$
(36.12)

(36.13)

Multiple Integrals

37.1 Two Variables

For

$$I = \iint_{R} f(x, y) dx dy \tag{37.1}$$

The following substitution are made:

$$x = g(r, \theta) \tag{37.2}$$

$$y = h(r, \theta) \tag{37.3}$$

$$\Rightarrow dxdy = |J|drd\theta \tag{37.4}$$

Where J is the Jacobian, defined as:

$$J = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\ \frac{\partial x}{\partial \theta} & \frac{\partial y}{\partial \theta} \end{vmatrix}$$
 (37.5)

The equivalent integral is:

$$I = \iint_{R_1} f(g(r,\theta), h(r,\theta)) |J| dr d\theta$$
(37.6)

37.2 Three Variables

For

$$I = \iiint_{R} f(x, y, z) dx dy dz$$
(37.7)

The following substitution are made:

$$x = g(r, \theta, \phi) \tag{37.8}$$

$$y = h(r, \theta, \phi) \tag{37.9}$$

$$z = k(r, \theta, \phi) dx dy dz = |J| dr d\theta d\phi \tag{37.10}$$

Where J is the Jacobian, defined as:

$$J = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} & \frac{\partial z}{\partial r} \\ \frac{\partial x}{\partial \theta} & \frac{\partial y}{\partial \theta} & \frac{\partial z}{\partial \theta} \\ \frac{\partial x}{\partial \phi} & \frac{\partial y}{\partial \phi} & \frac{\partial z}{\partial \phi} \end{vmatrix}$$
(37.11)

The equivalent integral is:

$$I = \iiint_{R_1} f(g(r, \theta, \phi), h(r, \theta, \phi), k(r, \theta, \phi)) |J| dr d\theta d\phi$$
(37.12)