SEÑALES Y SISTEMAS

Primer Parcial (G3), curso 2017-18.

Grado en Ingeniería Multimedia.

Fecha: 8 de Noviembre de 2017 Duración: 1:00 h

Problema 1 (5,5 PUNTOS) Sea la secuencia

$$x[n] = -\frac{1}{2} + \cos\left(\frac{2\pi n}{3} - \frac{\pi}{4}\right) + 2\sin\left(\frac{7\pi n}{3}\right) + 3\cos\left(\frac{17\pi n}{9}\right)$$

- a) (1,0 P) Calcula el periodo N_0 .
- b) (3,5 P) Calcula los coeficientes c_k de su desarrollo en serie de Fourier discreto.
- c) (1,0 P) Representa el espectro de amplitud y de fase de los coeficientes c_k en función de la frecuencia discreta.

Problema 2 (4,5 PUNTOS) Se dispone de un cuantificador de 5 bits cuya zona granular está comprendida entre los valores $x_{max} = 1$ y $x_{min} = -1$ Voltios. La función característica del cuantificador Q(x) es la siguiente

$$x_{q} = Q(x) = \begin{cases} \left(E\left[\frac{|x|}{\Delta}\right] + \frac{1}{2} \right) \cdot \Delta \cdot sign(x), & |x| < x_{max} \\ \frac{L-1}{2} \cdot \Delta \cdot sign(x), & |x| \ge x_{max} \end{cases}$$

Donde L es el número de niveles y Δ es el escalón de cuantificación. A cada valor de x_q se le asigna una palabra de código binaria de acuerdo con una codificación signo-magnitud, con el bit de signo 1 para valores de tensión negativos y viceversa.

- a) (3,0 P) Considera las muestras $x_1 = 0,90$ V, $x_2 = -0,50$ V que se han obtenido muestreando la señal $x(t) = \cos(0.1\pi t + \frac{\pi}{4})$, y la muestra $x_3 = -1,50$ V. Calcula su valor cuantificado, su palabra de código y el error relativo de cuantificación en tanto por ciento.
- b) (1,0 P) Considera ahora estos dos otros cuantificadores uniformes, cuyas características son
 - 2) $bits = 4, 2X_m = 2.$
 - 3) $bits = 6, 2X_m = 1.$

Entre las tres opciones (la primera y estos últimos dos), cuál es la que cuantificaría mejor la señal x(t)? Justifica tu elección.

c) (0.5 P) Suponiendo que el margen dinámico del cuantificador sea $2X_m = 8\sigma_x$, es decir 8 veces el valor cuadrático medio de la señal. ¿Cuántos bits de cuantificación habría que utilizar para asegurar una relación señal a ruido de cuantificación de al menos 75 dB? ¿Cuál sería el número de niveles total necesario?

Emplea la fórmula:

$$\left(\frac{S}{N}\right)_q = 6,02 \cdot (b-1) + 10,8 - 20 \cdot \log\left(\frac{2X_m}{2\sigma_x}\right) \quad dB$$

SEÑALES Y SISTEMAS

Primer Parcial (G3)

Grado en Ingeniería Multimedia.

Fecha: 8 de Noviembre de 2017 Duración: 1:00 h

SOLUCIÓN

Problema 1 (5,5 PUNTOS)

a)
$$N_0 = M.C.M\{3, 6, 18\} = 18 \text{ u.t.d}$$

b)
$$c_0 = \frac{1}{2}e^{j\pi}$$
, $c_6 = \left(\frac{1}{2}\right)e^{-j\frac{\pi}{4}}$, $c_{12} = \left(\frac{1}{2}\right)e^{j\frac{\pi}{4}}$, $c_{17} = \frac{3}{2}$, $c_1 = \frac{3}{2}$, $c_3 = e^{-j\frac{\pi}{2}}$, $c_{15} = e^{j\frac{\pi}{2}}$

c) Espectro de amplitud y fase de los c_k aquí no se muestra.

Problema 2 (4,5 PUNTOS)

a)
$$\Delta_1 = \frac{1}{32} = 0,0625$$
 $V, x_{q1} = 0,90625$ V $palabra$ $binaria = 01110,$ $e_{q1} = 0,69\%$ $x_{q2} = -0,53125$ V $palabra$ $binaria = 11000,$ $e_{q2} = 6,25\%$ $x_{q3} = -0,96875$ V $palabra$ $binaria = 11111,$ $e_{q3} = 35,41\%$

- b) $\Delta_2 > \Delta_1$, y $\Delta_3 < \Delta_1$ pero la mejor opción es la primera ya que se ajusta mejor a las características de x(t), en el tercer cuantificador la señal entra en saturación ya que $2X_m = 1$.
- c) b > 13,66 = 14 bits, el número de niveles es $L = 2^{14} = 16384$.