Royaume du Maroc Ministère de l'Éducation nationale, du Préscolaire et des Sports

année scolaire 2021-2022Professeur : $Zakaria\ Haouzan$

Établissement : Lycée SKHOR qualifiant

Devoir Surveillé N°2 Filière 1Bac Sciences Mathématiques Durée 2h00

Chimie 7pts/42min
Partie 1 :Grenaille Métallique de Zinc(3.5pts)
Une grenaille métallique de zinc de masse $m=0,56g$ réagit avec une solution d'acide chlorhydrique de concentration C=5mol/L.
1. Ecrire les formules des couples mis en jeux. et les demi équations correspondantes (0.5pt)
2. Etablir l'équation de la réaction d'oxydoré duction
3. Quel est le volume nécessaire de la solution d'acide chlorhydrique pour faire disparaitre complètement la grenaille de zinc?
4. Quel est le gaz formé au cours de cette transformation?(0.5pt)
5. Quel est le volume du gaz dégagé à la fin de la réaction , sachant que le volume molaire $V_M=25L/mol$ (1pt)
Partie 2 : L'eau de javel(3.5pts)
L'eau de javel est une solution aqueuse d'hypochlorite de sodium de formule $(Na_{(aq)}^+ + ClO_{(aq)}^-)$. La formule chimique d'une solution aqueuse d'acide chlorhydrique (H_3O^+, Cl^-)
1. Écrire les demi-équations électroniques des deux couples suivants : ClO^-/Cl_2 et Cl_2/Cl^- (0.5pt)
2. Écrire l'équation de la réaction entre les ions chlorure et hypochlorite
3. Soit $250mL$ d'eau de Javel contenant une quantité de matière d'ions hypochlorite $n(ClO^-) = 0,41mol$ a été mélangée avec un détartrant à base d'acide chlorhydrique dans une pièce de volume $V = 3,5m^3$
(a) Établir le tableau d'avancement relatif à la transformation chimique précédente. On considèrera que les ions $H^+_{(aq)}$ et $Cl^{(aq)}$ ont été introduits en excès
. (a) Établir le tableau d'avancement relatif à la transformation chimique précédente. On considèrera
. (a) Établir le tableau d'avancement relatif à la transformation chimique précédente. On considèrera que les ions $H^+_{(aq)}$ et $Cl^{(aq)}$ ont été introduits en excès

Physique 13pts - 78min

Les parties sont indépendantes

Partie 1 : Comportement globale d'un circuit électrique. (6pts)

On dispose d'un circuit électrique comprenant, un générateur linéaire de caractéristique ($E=12V, r=1\Omega$), un conducteur ohmique de résistance $R=10\Omega$ et un électrolyseur (E'=4V, r'). L'ensemble des dipôles est en série.

- 1. Schématiser le circuit en y incluant un ampèremètre mesurant l'intensité qui traverse le conducteur ohmique et un voltmètre qui mesure la tension aux bornes de l'électrolyseur.....(1pt)
- 2. L'intensité de courant ne varie pas au cours de l'expérience et a une valeur de 500mA pour une durée de fonctionnement de 12 minutes.
 - (a) En déduire l'énergie dissipée par effet joule par le conducteur ohmique......(1pt)
 - (b) Calculer la résistance interne r' de l'électrolyseur à l'aide de l'intensité de courant I..... (1pt)
- 3. On a changé le conducteur ohmique par un nouveau conducteur ohmique. On a maintenant une intensité de 0,35 A qui traverse le circuit.
 - (a) Calculer la valeur de l'énergie totale produite par le générateur en 20 minutes.....(1pt)
 - (b) Calculer la valeur de l'énergie électrique fournie au circuit par le générateur en 20 minutes.(1pt)
 - (c) Calculer la nouvelle résistance du nouveau conducteur ohmique et en déduire l'énergie dissipée par effet joule par l'ensemble des dipôles récepteurs de ce circuit......(1pt)

Partie 2 : Bilan énergétique(7pts)

On considère le montage suivant constitué :

-d'Un générateur de force électromotrice E et de résistance interne r et un intérrupteur .

-d'un moteur de force électromotrice E'=2,4V et de résistance interne $r'=2\Omega$ et d'un fil inextensible enroulé sur la poulie du moteur et auquel est suspendu à l'autre extrémité un corps de masse m=50g.

-d'un conducteur ohmique de résistance $R=30\Omega.$

On ferme l'intérrupteur et il passe dans le circuit un courant électrique d'intensité I=0,1A.

- 1. Déterminer la puissane P_J déssipée par effet joule dans l'ensemble : (le conduceur ohmique + le moteur)......(1pt)
- 2. Calculer la puissance utile du moteur électrique.....(1pt)
- 4. Sachant que la puissance totale déssipée dans tout le circuit par effet joule est égale à 0,36W.
 - (a) Déteminer la valeur de la puissance déssipée par effet joule dans le moteur.....(1pt)
- 5. Déterminer la valeur de la force électromotrice du générateur puis retrouver l'intensité du courant en utilisant la loi de pouillet......(1pt)
- 6. Sachant que l'énergie utile reçue par le moteur se transforme en énergie potentielle de pesanteur ce qui entraine la montée du corps S d'une distance h pendant une durée $\Delta t = 2s$.
 - (a) Déterminer la valeur de h .on donne g=10N/kg.....(0.5pt)
 - (b) Quelles sont les formes d'énergie qui ont été mis en évidence dans cette expérience.....(0.5pt)