ФОСФОР И ЕГО СОЕДИНЕНИЯ ТИПЫ РЕАКЦИЙ

более сильный ВЫТЕСНЯЕТ более слабого - вытеснение ПРИМЕРЫ:

основное + кислотное = соль - основно-кислотные взаимодействия ПРИМЕРЫ:

1) Na O + CO = Na CO

электролит + электролит (p-p) = газ/осадок/сл.электролит - РИО ПРИМЕРЫ:

ФИЗИЧЕСКИЕ СВОЙСТВА

БЕЛЫЙ ФОСФОР Р.:

молекулярная КР, бесцветное ядовитое в-во, самовоспламеняется на воздухе, не раств. в Н,О, но раств. в СS,

КРАСНЫЙ ФОСФОР Р.:

атомная КР, неядовитое в-во, при сильном нагревании может переходить в чёрный фосфор

ЧЁРНЫЙ ФОСФОР Р.:

атомная КР, термически устойчив, имеет слоистое строение, полупроводник

ПОЛУЧЕНИЕ - В ЛАБОРАТОРИИ

1) Восстановление фосфатов углём в электропечах (t): Ca₃(PO₄)₂ + 5C + 3SiO₂ (t) = 2P + 5CO + 3CaSiO₃

ОБЩИЕ СВЕДЕНИЯ

Нахождение в ПС: VA-группа, 3 период Строение атома: $1s^22s^22p^63s^23p^3$ Степени окисления: от низшей (-3) до высшей (+5) Соединения: $Ca_3(PO_4)_2$ - фосфорит, $3Ca_3(PO_4)_2$ *CaF₂ - фторапатит, $3Ca_3(PO_4)_2$ *CaCl₂ - хлорапатит.

ХИМИЧЕСКИЕ СВОЙСТВА

 P + Me (акт/сред. акт.) (t) = фосфид Ме

 P + Ca (t) = Ca₃P₂, Ca₃P₂ + H₂O = Ca(OH)₂ + PH₃

 P + Zn (t) = Zn₃P₂, Zn₃P₂ + HCl = ZnCl₂ + PH₃

 2) P + HeMe (t) = бинарное соединение

 P + O₂(нед) = P₂O₃, P + O₂(изб) = P₂O₅

 P + Cl₂(нед) = PCl₃, P + Cl₂(изб) = PCl₅

 P + Br₂(нед) = PBr₃, P + Br₂(изб) = PBr₅

 P + S (нед) = P₂S₃, P + S (изб) = P₂S₅, P + I₂ = PI₃, P + F₂ = PF₅

 3) P + щёлочь + H₂O = rипофосфит + PH₃

 P + KOH + H₂O = KH₂PO₂ + PH₃

 P + Ba(OH)₂ + H₂O = Ba(H₂PO₂)₂ + PH₃

 4) P + окислитель = OBP

 P + HNO₃(к) = H₃PO₄ + NO₂ + H₂O; P + H₂SO₄(к) = H₃PO₄ + SO₂

 + H₂O; P + HNO₃(p) + H₂O = H₃PO₄ + NO; P + NaNO₃ =

 P₂O₅ + NaNO₅; P + KClO₃ (t) = P₂O₅ + KCl

ОКСИДЫ ФОСФОРА

 P_2O_3 : существует в виде димера P_2O_6 , легкоплавкое твёрдое в-во белого цвета; P_2O_5 : существует в виде димера P_2O_{10} , порошок белого цвета, гигроскопичен.

ПОЛУЧЕНИЕ

Сжигание в нед/изб кислорода: $P + O_{2(hed)} = P_2O_3$, $P + O_{2(n36)} = P_2O_5$

химические свойства

Типичные кислотные оксиды: реагируют с водой, с основными оксидами, основаниями, амф оксидами и гидроксидами.

Р₂О₃: типичный восстановитель, реагирует с окислителями Р₂О₅: отнимает воду у безводных кислот, вытесняет летучие оксиды из солей

P₂O₃ (P₄O₆) + O₂ = P₂O₅ (P₄O₁₀)
P₂O₃ + HNO₃(к) = H₃PO₄ + NO₂ + H₂O
P₂O₃ + H₂SO₄(к) = H₃PO₄ + SO₂ + H₂O
P₂O₃ + HNO₃(p) + H₂O = H₃PO₄ + NO
P₂O₃ + H₂SO₄(p) = peakция не идёт
P₂O₅ + H₂O = HPO₃ / H₄P₂O₇ / H₃PO₄
P₂O₅ + CaO = Ca₃(PO₄)₂
P₂O₅ + Ca(OH)₂ = Ca(H₂PO₄)₂ / CaHPO₄ / Ca₃(PO₄)₂ + H₂O
P₂O₅ + KOH = KH₂PO₄ / K₂HPO₄ / K₃PO₄ + H₂O
P₂O₅ + HClO₄ = Cl₂O₇ + HPO₃
P₂O₅ + HNO₃ = N₂O₅ + HPO₃
P₂O₅ + C (t) = P + CO
P₂O₅ + K₂SO₃ (t) = SO₂ + K₃PO₄
P₇O₅ + CaCO₃ (t) = CO₇ + Ca₃(PO₄)₂

ОРТОФОСФОРНАЯ КИСЛОТА Н₃РО₄, ЕЁ СОЛИ - ОРТОФОСФАТЫ И ФОСФИН РН₃

Н₃РО₂: бесцветное кристаллическое вещество, растворимое в воде;

РН₃: ядовитый газ с запахом чеснока, самовоспламеняется на воздухе.

ПОЛУЧЕНИЕ

В промыленности: Ca₃(PO₄)₂ + 3H₂SO₄(к) = 3CaSO₄ + 2H₃PO₄; 4P + 5O₂ + 6H₂O = 4H₃PO₄ В лаборатории: 3P + 5HNO₃(р) + 2H₂O = 3H₃PO₄ + 5NO ХИМИЧЕСКИЕ СВОЙСТВА

Типичная слабая кислота: реагирует с основными оксидами, основаниями, амф оксидами и гидроксидами, разлагается при нагревании.

РН₃: типичный восстановитель, обладает слабыми основными свойствами

H₃PO₄ + NaOH = NaH₂PO₄ / Na₂HPO₄ / Na₃PO₄ + H₂O
H₃PO₄ + CaO = Ca₃(PO₄)₂ + H₂O
H₃PO₄ + Na₂CO₃ = Na₃PO₄ + H₂O + CO₂
H₃PO₄ + AgNO₃ = Ag₃PO₄ + HNO₃
H₃PO₄ (t) = H₄P₂O₇ + H₂O
H₄P₂O₇ (t) = HPO₃ + H₂O
Ca₃(PO₄)₂(тв) + 2H₂SO₄(к) = 2CaSO₄ + Ca(H₂PO₄)₂ - простой суперфосфат
Ca₃(PO₄)₂ + 2H₃PO₄ = 3Ca(H₂PO₄)₂ - двойной суперфосфат
3NH₃ + 2H₃PO₄ = NH₄H₂PO₄ + (NH₄)₂HPO₄ - аммофос
Ca(OH)₂ + H₃PO₄ = CaHPO₄*2H₂O - преципитат
PH₃ + O₂ = P₂O₅ + H₂O или H₃PO₄ (лучше)
PH₃ + AgNO₃ + H₂O = H₃PO₄ + Ag + HNO₃
PH₃ + KMnO₄ + H₂SO₄ = H₃PO₄ + MnSO₄ + K₂SO₄ + H₂O
PH₃ + HCl (t) = PH₂Cl