Economic Growth Theory: Problem set 1: Malthus models Solutions

Paulo Brito
Universidade de Lisboa
Email: pbrito@iseg.ulisboa.pt

17.3.2021

Problem

Assume that the representative consumer solves the problem: $\max_{c,b} \{u(c,b): c+\rho b \le y\}$ where c is consumption, b is the birth rate, ρ is the cost of raising children and y is per capita income. Assume that the utility function is

$$u(c,b) = \ln(c) + \phi \ln(b), \ \phi > 0$$

and the aggregate production function is Cobb-Douglas $Y = (AX)^{\alpha}L^{1-\alpha}$, with $0 < \alpha < 1$, where X is the stock of land, A is land-specific productivity and L is population. Population growth is $\dot{L}/L = b - m$, where the mortality rate, m, is constant and exogenous, and $L(0) = L_0 > 0$ is given. Land productivity grows at a rate $\gamma > 0$.

- 1. Defining $\ell \equiv L/A$, obtain a differential equation for ℓ .
- 2. Study the qualitative dynamics of the model. Provide an intuition for your results.
- 3. Derive the growth facts (long run growth rate, long run per capita output and transition dynamics). What are the effects of an increase in γ ?

Solution

- 1. $\dot{\ell} = \ell \left(\psi(X/\ell)^{\alpha} (m+\gamma) \right)$ for $\psi \equiv \frac{\phi}{\rho(1+\phi)}$;
- 2. Steady states $\ell^* = \{0, \overline{\ell}\}$ with $\overline{\ell} = \left(\frac{\psi}{m+\gamma}\right)^{\frac{1}{\alpha}} X$, local dynamics $\frac{\partial \ell}{\partial \ell}(\overline{\ell}) = -\alpha(m+\gamma)$. Solving explicitly we have

$$\ell(t) = \left(\bar{\ell}^{\alpha} + (\ell(0)^{\alpha} - \bar{\ell}^{\alpha})e^{-\alpha(m+\gamma)t}\right)^{\frac{1}{\alpha}}$$

The conclusions are the same: if $\ell(0) > 0$ then ℓ converges to the steady state $\bar{\ell}$.

3. Growth facts: as

$$y(t) = \frac{X^{\alpha}}{\bar{\ell}^{\alpha} + (\ell(0)^{\alpha} - \bar{\ell}^{\alpha})e^{-\alpha(m+\gamma)t}}$$

then $\lim_{t\to\infty} y(t) = \frac{m+\gamma}{\psi}$: no long run growth, there is transitional dynamics and the steady state level of output per capita dependes on m, γ and parameters associated to consumer problem (ψ)