

10/501814
DT12 Rec'd PCT/PTO 19 JUL 2004

SEQUENCE LISTING

<110> Evotec NeuroSciences GmbH

<120> Diagnostic and therapeutic use of a voltage- gated ion channel for neurodegenerative diseases

<130> 030077wo ME/BM

<140> PCT/EP03/00400 <

<141> 2003-01-16

<160> 15

<170> PatentIn Ver. 2.1

<210> 1

<211> 272

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: cDNA fragment of the human SCN2A gene

<400> 1
aattaagggtt ggaagaataa aaagcaagaa gctcttcctt gtttgctgca accta
taatgacatg aagaatgagg tcttggtaga acaatttgct tcactttacc actgat
ggcttcccat attagacttc tgaacagggg aaggaataag atacagcagc atagg
taaacatgca gcagtgcacag cttcaacta taatggacc aattacatca tattaa
tggaaagcttgc caaactatac ttactgggtt ac

<210> 2

<211> 8292

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: cDNA of the human SCN2A gene

<400> 2
cactttctta tgcaaggagc taaacagtga ttaaaggagc aggatgaaaa gatgg
tcagtgcctgg taccgccagg acctgacagc ttccgcttct ttaccaggga atccct
gctattgaac aaccattgc agaagagaaa gctaagagac ccaaacagga acgca
gaggatgtatg aaaatggccc aaagccaaac agtgacttgg aagcaggaaa atctt
tttatttatg gagacattcc tccagagatg gtgtcagtgc ccctggagga tctgg
tactataatca ataagaaaac gtttatagta ttgaataaag gggaaagcaat ctctcg
agtgcacccc ctggccctta cattttaact cccttcaacc ctattagaaa attagg
aagattttgg tacattctt attcaatatg ctcatatgt gcacgattct taccat
gtatattatga ccatgagtaa ccctccagac tggacaaaaa atgtggagta tacctt
ggaacatataa ctttgaatc acttataaa atacttgcac ggggcttttggat
ttcacatattt tacgggatcc atggaaatgg ttggatttca cagtcattac ttttgt
gtgacagatgt ttgtggacct gggcaatgtc tcagcgttga gaacatttcg agttt
gcattgaaaaa caattttagt cattccaggg ctgaagacca ttgtgggggc cctgt
tcagtgaaga agctttctga tgtcatgatc ttgactgtgt tctgtctaag cgttgt
ctaataatggat tgcaaggatgatc catggcaac ctacgaaata aatgtttgc atgg
gataatttctt ccttggaaat aaatatcact tccttcttta acaatttcatt ggatgg
ggtaatcttactt tcaataggac agtgagcata tttaactggg atgaatataat tgagg
agtcactttt attttttaga ggggcaaaaat gatgtctgc tttgtggcaa cagctt
gcaggccagt gtcctgaagg atacatctgt gtgaaggctg gttagaaaccc caactt
tacacgagct ttgacacatt tagttggggc tttttgtct tatttcgtct catgaa

gacttctggg aaaacctta tcaactgaca ctacgtgctg ctggggaaaac gtacatgata 1260
tttttgtgc tggcatttt cttggctca ttctatctaa taaatttgat ctggctgtg 1320
gtggccatgg cctatgagga acagaatcg gccacattgg aagaggctga acagaaggaa 1380
gctgaatttc agcagatgt cgaacagtgg aaaaagcaac aagaagaagc tcaggcggca 1440
gctcagccg catctgctga tcagagagtt cttagtgc aaaaaaaa gtaaaaaaaa gctgaaaaac 1560
agaagaaaaga aaaagaaaca cggaaaatcg aatctgaaaga agtggctga catatgaaaa 1620
ggctccctt tctctccaag gaaagggaca ttggctctga aatgacagcc gaagagactc 1680
aatgtcagcc agggcagcc atgcatacg ctgtggactg acatctgctg ggacgtctt 1740
cggtccagtt ctatcatgt gcaatgagta tagccagtt aatgccac agcggccatgg 1800
ccatggtaa aggtgaaaca gccatcacca tctgcattgt acggagcagt tcagcagtgt 1860
gcgaaaatgt ttctcaagat aatatttttgc aatatttttgc aatatttttgc aatatttttgc 1920
aatatttttgc atggttttat gaaggattgt cagttctccg tggcaactc taaatatgtc 1980
ctcaccttgg tattggccat ggtaagagct acaaagaatg cacatgcattg acttttcca 2040
atagagacca tggggactg atgatggca tgggtattgg agttcctca gttctgacaa 2100
cagattgtg tgggaaggat ttatttcaga aagctttgt gatctaata ataaaaaaa 2160
gaccccaatt atctcaaaa aatatgtcg tggatgaaag agatccaa ttgtcttgg 2220
agcggatcg atatggagga agcagggtt atattggagc tcccttgaac ctgaagcctg 2280
ataagcatag aagaaggcaa atagtgagc acaattgggt gctctggcct ttaagatata 2340
tatgctgaca aggttttccat tatggttttca aagtgtattt gtctcactgg ttagcttaac 2400
taccattgtt ttaatttacac agtgagtgca aagctctcat aacttttgc ttttacagaa 2460
aactttgata acgttaggact tggatgatac ttatgtatgc gaagacaacc tggatcatgt 2520
accttgcattt tttcatttgg ggaggtcaag acatttttca cttgggttcaa agaaaccaca 2580
gtctttgatt ttgtAACAA aacatggta ccatgatggt tactggatcaat ttttgcattt 2640
tactggatta atctgggtt tctcttgc ttttgcattt actactattt cttccatttgc 2700
ctctccattt taggaatgtt ctggctgaa tgatagaaaa aacatggtaa aacttgcattt 2760
ctgtcccgat tgccaggatt gggccatgg ttttgcattt aatatttttgc aatatttttgc 2820
tttttgcattt aatatttttgc aatatttttgc aatatttttgc aatatttttgc aatatttttgc 2880
ccatgtgcct tactgtcttc ttttgcattt aatatttttgc aatatttttgc aatatttttgc 2940
tcttcatttgc ctggcttttgc aatatttttgc aatatttttgc aatatttttgc aatatttttgc 3000
ataacgaaat gaaataatctc ttttgcattt aatatttttgc aatatttttgc aatatttttgc 3060
ttaaaaagaaa aatacgtgaa aatatttttgc aatatttttgc aatatttttgc aatatttttgc 3120
atgaaaattaa accgcttgaa aatatttttgc aatatttttgc aatatttttgc aatatttttgc 3180
ccacataga aataggcaa aatatttttgc aatatttttgc aatatttttgc aatatttttgc 3240
gcataggcag cagttagaa aatatttttgc aatatttttgc aatatttttgc aatatttttgc 3300
acaaccctag cctcactgtg aatatttttgc aatatttttgc aatatttttgc aatatttttgc 3360
taaataactga agaattcagc aatatttttgc aatatttttgc aatatttttgc aatatttttgc 3420
caacttagttc atctgaaggc aatatttttgc aatatttttgc aatatttttgc aatatttttgc 3480
ctgaggttga acctgaggaa aatatttttgc aatatttttgc aatatttttgc aatatttttgc 3540
ggaagttcaa gtgtgtcag aatatttttgc aatatttttgc aatatttttgc aatatttttgc 3600
tgagggaaaac atgtataaag aatatttttgc aatatttttgc aatatttttgc aatatttttgc 3660
tgattctgtc gagcagtggg aatatttttgc aatatttttgc aatatttttgc aatatttttgc 3720
ccattaagac catgttagaa aatatttttgc aatatttttgc aatatttttgc aatatttttgc 3780
tgctgctaaa gtgggttgca aatatttttgc aatatttttgc aatatttttgc aatatttttgc 3840
tagacttccct gattgttgat aatatttttgc aatatttttgc aatatttttgc aatatttttgc 3900
cagaacttgg tgccatcaa aatatttttgc aatatttttgc aatatttttgc aatatttttgc 3960
tccctcagaa cactaagagc aggggttgg taaatgtctt tggatgtactt aatatttttgc 4020
tgtctgatct ttttgcattt taccattgtt aatatttttgc aatatttttgc aatatttttgc 4080
taccattgtt ttaatttacac agtgagtgca aagctctcat aacttttgc ttttgcattt 4140
aactttgata acgttaggact tggatatctg tctcttgc ttttgcattt aatatttttgc 4200
tggatgatac ttatgtatgc agctgttgat tcacgaaatg tctttattt gtcattttt 4260
gaagacaacc tggatcatgt tcttgcattt gtcattttt aatatttttgc aatatttttgc 4320
accttgcattt tttcatttgg ggaggtcaag acatttttca cttgggttcaa agaaaccaca 4380
ctgggttcaa agaaaccaca gtcttgcattt aatatttttgc aatatttttgc aatatttttgc 4440
gtctttgatt ttgtAACAA aacatggta ccatgatggt tactggatcaat ttttgcattt 4500
aacttttgc ttttgcattt aatatttttgc aatatttttgc aatatttttgc aatatttttgc 4560
ctggggaaaac ttttgcattt aatatttttgc aatatttttgc aatatttttgc aatatttttgc 4620
tggatgtactt cttttgcattt aatatttttgc aatatttttgc aatatttttgc aatatttttgc 4680
tggatgtactt cttttgcattt aatatttttgc aatatttttgc aatatttttgc aatatttttgc 4740
tggatgtactt cttttgcattt aatatttttgc aatatttttgc aatatttttgc aatatttttgc 4800
tctcttgcattt aactactattt cttttgcattt aatatttttgc aatatttttgc aatatttttgc 4860
ctctccattt taggaatgtt ctggctgaa ctgatagaaaa aatatttttgc aatatttttgc 4920
ctgtcccgat tgatccgtct tgccaggatt ggcgaatcc aatatttttgc aatatttttgc 4980

aaggggatcc gcacgctgct ctttgctttg atgatgtccc ttccctgcgtt gtttaacatc 5040
 ggcctcccttc ttttccttgtt catgttcatc tacgccatct ttgggatgtc caattttgcc 5100
 tatgttaaga gggaaagttgg gatcgatgac atgttcaact ttgagaccc ttggcaacagc 5160
 atgatctgcc tggttccaaat tacaacctct gctggctggg atggattgtc agcacctatt 5220
 cttaatagtg gacccctccaga ctgtgaccct gacaaaagatc accctggaaag ctcaagtaaa 5280
 ggagactgtg ggaaccatc tggttggatt ttcttttttgc tcagttacat catcatatcc 5340
 ttccctgggtt tggtaaacat gtacatcgcg gtcacccctgg agaacttcag tggctact 5400
 gaagaaaatgt cagagcctct gaggatgaggat gactttgaga tggctatga ggtttggag 5460
 aagtttgc tccatgcgac ccagttata gaggatggca aactttctga tttgcagat 5520
 gcccctggat ctcctcttct catagaaaaa cccaaacaaag tccagctcat tgccatggat 5580
 ctggccatgg tggatgggtga agagatggat gcccctcgaa tacagatgga agagcgattc 5640
 cgtgtttgg tggagagtgg atggcatca aaccctccaa agtctcttgc gaggccattt cggaccatgtt 5700
 atggcatcaa aaccctccaa ttttgcattt gaggccattt cggaccatgtt gaaacgaaa 5760
 caagaggagg tggctgttat tattatccag aggcttaca gacgctaccc ttggaaagca 5820
 aaagttaaaa aggtatcaag tataatacaag aaagacaaaag gcaaaagaatg tgatggaaaca 5880
 cccatcaaag aagatactct cattgataaa ctgaaatgaga attcaactcc agagaaaaacc 5940
 gatgtacgc cttccaccac gtctccaccc tcgtatgata gtgtgacca accagaaaaa 6000
 gaaaaattt gaaaagacaa atcagaaaaa gaaagacaaaag gggaaagatata cagggaaagt 6060
 aaaaagtaaa aagaaaaccaaa gaattttcca ttttgcattt aattgtttac agccgtat 6120
 ggtgatgtgt ttgtgtcaac aggactccca cagggatgtc atgccaaact gactgtttt 6180
 acaaattgtat acttaagggtc agtgcctata acaagacaga gacccctgtt cagcaactg 6240
 gaactcaaga aactggagaa atagatcgat tggggatgtt ctatttcac aaccagctga 6300
 cactgctgaa gagcagaggg gtaatggcta ctcagacat aggaaccaat taaaaggggg 6360
 gagggaagtt aaatttttataat gtaaattcaa catgtgacac ttgataatag taattgtcac 6420
 cagtgtttat gttttaactg ccacacccatc cataatttttata caaaacgtgt gctgtgaatt 6480
 tatcactttt cttttaattt cacagggtgt ttactattat atgtgactat ttttgcattt 6540
 gggtttgcgtt ttggggagag ggattaaagg gaggaaatc tacattttctc tattgtattt 6600
 tataactgga tatattttaa atggaggcat gctgcaattt tcattcacat ataaaaaaat 6660
 cacatcacaa aagggaagag ttacttctt gttcaggat gtttttagat ttttgcattt 6720
 cttaaatatgc tattcgat tttaaagggtt ctcatccaga aaaaattttaa ttttgcattt 6780
 aatgttccat agaatcacaa gcattaaaga gttttttat ttttgcattt cccattaaat 6840
 gtacatgtat atatgtatgt atgtatatgt gctgttatat acatataatgt gttttttttt 6900
 atgcacacac agagatatac acataccattt acattgtcat tcacagttcc agcagcatga 6960
 ctatcacatt tttgataatgt gtccttgcg ataaaaataaa aatatccat cagtccttc 7020
 taagaaggctt gaatttgcattt gccatctt gctttggat ggttgcattt agtataatgtc 7080
 ttatccgtca gtattgtttt gctttttttt gctttttttt gttttttttt gttttttttt 7140
 aattttaaaa ataaaaatgtt gctttttttt tagtattttt acccagggtt gcatgtttga 7200
 gcaaaacaaaa atgtatgtttt aaggcacacta cttattgtcat cttttttttt ccacagtaag 7260
 tataatgttgc aagctttcaat gatgtttttt gttttttttt gttttttttt agtttgcattt 7320
 tgtcactgtc gcatgtttt gttttttttt gttttttttt gttttttttt gttttttttt 7380
 aagtctaata tgggaaggcca tttttttttt gttttttttt gttttttttt gttttttttt 7440
 ctcatttttc atgtcattttt gttttttttt gttttttttt gttttttttt gttttttttt 7500
 tattttttca accttaattt gttttttttt gttttttttt gttttttttt gttttttttt 7560
 caagctgtttt aaatctgtttt gttttttttt gttttttttt gttttttttt gttttttttt 7620
 gtaaaaaatgtt cattttttttt gttttttttt gttttttttt gttttttttt gttttttttt 7680
 tatcttcagg tggatgtcactt gttttttttt gttttttttt gttttttttt gttttttttt 7740
 gaagcactt acaaaaatgtt gttttttttt gttttttttt gttttttttt gttttttttt 7800
 ttagtactgtt aaacttgcac acatttcaat gttttttttt gttttttttt gttttttttt 7860
 ttatgtttt tcaatgtttt gttttttttt gttttttttt gttttttttt gttttttttt 7920
 gctgataactt ttggcatttgc ttggatccaa tttttttttt gttttttttt gttttttttt 7980
 catcgttctt ttccatgtttt gttttttttt gttttttttt gttttttttt gttttttttt 8040
 aactgtatca gatataatgtt gggatccat gttttttttt gttttttttt gttttttttt 8100
 tgaagttata ttaccagttt gttttttttt gttttttttt gttttttttt gttttttttt 8160
 gattttttt actgaagctt ttggacttgc ttggatgtttt gttttttttt gttttttttt 8220
 ctgttaccat aaagaacggt aaaccacattt acaatcaagc caaaaagaata aagggttcgc 8280
 ttttgcattt gt 8292

<210> 3
 <211> 2005
 <212> PRT
 <213> Homo sapiens

<400> 3
 Met Ala Gln Ser Val Leu Val Pro Pro Gly Pro Asp Ser Phe Arg Phe
 1 5 10 15

Phe Thr Arg Glu Ser Leu Ala Ala Ile Glu Gln Arg Ile Ala Glu Glu
 20 25 30

Lys Ala Lys Arg Pro Lys Gln Glu Arg Lys Asp Glu Asp Asp Glu Asn
 35 40 45

Gly Pro Lys Pro Asn Ser Asp Leu Glu Ala Gly Lys Ser Leu Pro Phe
 50 55 60

Ile Tyr Gly Asp Ile Pro Pro Glu Met Val Ser Val Pro Leu Glu Asp
 65 70 75 80

Leu Asp Pro Tyr Tyr Ile Asn Lys Lys Thr Phe Ile Val Leu Asn Lys
 85 90 95

Gly Lys Ala Ile Ser Arg Phe Ser Ala Thr Pro Ala Leu Tyr Ile Leu
 100 105 110

Thr Pro Phe Asn Pro Ile Arg Lys Leu Ala Ile Lys Ile Leu Val His
 115 120 125

Ser Leu Phe Asn Met Leu Ile Met Cys Thr Ile Leu Thr Asn Cys Val
 130 135 140

Phe Met Thr Met Ser Asn Pro Pro Asp Trp Thr Lys Asn Val Glu Tyr
 145 150 155 160

Thr Phe Thr Gly Ile Tyr Thr Phe Glu Ser Leu Ile Lys Ile Leu Ala
 165 170 175

Arg Gly Phe Cys Leu Glu Asp Phe Thr Phe Leu Arg Asp Pro Trp Asn
 180 185 190

Trp Leu Asp Phe Thr Val Ile Thr Phe Ala Tyr Val Thr Glu Phe Val
 195 200 205

Asp Leu Gly Asn Val Ser Ala Leu Arg Thr Phe Arg Val Leu Arg Ala
 210 215 220

Leu Lys Thr Ile Ser Val Ile Pro Gly Leu Lys Thr Ile Val Gly Ala
 225 230 235 240

Leu Ile Gln Ser Val Lys Lys Leu Ser Asp Val Met Ile Leu Thr Val
 245 250 255

Phe Cys Leu Ser Val Phe Ala Leu Ile Gly Leu Gln Leu Phe Met Gly
 260 265 270

Asn Leu Arg Asn Lys Cys Leu Gln Trp Pro Pro Asp Asn Ser Ser Phe
 275 280 285

Glu Ile Asn Ile Thr Ser Phe Phe Asn Asn Ser Leu Asp Gly Asn Gly
 290 295 300

Thr Thr Phe Asn Arg Thr Val Ser Ile Phe Asn Trp Asp Glu Tyr Ile
 305 310 315 320

Glu Asp Lys Ser His Phe Tyr Phe Leu Glu Gly Gln Asn Asp Ala Leu
 325 330 335

Leu Cys Gly Asn Ser Ser Asp Ala Gly Gln Cys Pro Glu Gly Tyr Ile
 340 345 350
 Cys Val Lys Ala Gly Arg Asn Pro Asn Tyr Gly Tyr Thr Ser Phe Asp
 355 360 365
 Thr Phe Ser Trp Ala Phe Leu Ser Leu Phe Arg Leu Met Thr Gln Asp
 370 375 380
 Phe Trp Glu Asn Leu Tyr Gln Leu Thr Leu Arg Ala Ala Gly Lys Thr
 385 390 395 400
 Tyr Met Ile Phe Phe Val Leu Val Ile Phe Leu Gly Ser Phe Tyr Leu
 405 410 415
 Ile Asn Leu Ile Leu Ala Val Val Ala Met Ala Tyr Glu Glu Gln Asn
 420 425 430
 Gln Ala Thr Leu Glu Glu Ala Glu Gln Lys Glu Ala Glu Phe Gln Gln
 435 440 445
 Met Leu Glu Gln Leu Lys Lys Gln Gln Glu Glu Ala Gln Ala Ala Ala
 450 455 460
 Ala Ala Ala Ser Ala Glu Ser Arg Asp Phe Ser Gly Ala Gly Gly Ile
 465 470 475 480
 Gly Val Phe Ser Glu Ser Ser Ser Val Ala Ser Lys Leu Ser Ser Lys
 485 490 495
 Ser Glu Lys Glu Leu Lys Asn Arg Arg Lys Lys Lys Lys Gln Lys Glu
 500 505 510
 Gln Ser Gly Glu Glu Lys Asn Asp Arg Val Leu Lys Ser Glu Ser
 515 520 525
 Glu Asp Ser Ile Arg Arg Lys Gly Phe Arg Phe Ser Leu Glu Gly Ser
 530 535 540
 Arg Leu Thr Tyr Glu Lys Arg Phe Ser Ser Pro His Gln Ser Leu Leu
 545 550 555 560
 Ser Ile Arg Gly Ser Leu Phe Ser Pro Arg Arg Asn Ser Arg Ala Ser
 565 570 575
 Leu Phe Ser Phe Arg Gly Arg Ala Lys Asp Ile Gly Ser Glu Asn Asp
 580 585 590
 Phe Ala Asp Asp Glu His Ser Thr Phe Glu Asp Asn Asp Ser Arg Arg
 595 600 605
 Asp Ser Leu Phe Val Pro His Arg His Gly Glu Arg Arg His Ser Asn
 610 615 620
 Val Ser Gln Ala Ser Arg Ala Ser Arg Val Leu Pro Ile Leu Pro Met
 625 630 635 640
 Asn Gly Lys Met His Ser Ala Val Asp Cys Asn Gly Val Val Ser Leu
 645 650 655
 Val Gly Gly Pro Ser Thr Leu Thr Ser Ala Gly Gln Leu Leu Pro Glu
 660 665 670

Gly Thr Thr Glu Thr Glu Ile Arg Lys Arg Arg Ser Ser Ser Tyr
 675 680 685
 His Val Ser Met Asp Leu Leu Glu Asp Pro Thr Ser Arg Gln Arg Ala
 690 695 700
 Met Ser Ile Ala Ser Ile Leu Thr Asn Thr Met Glu Glu Leu Glu Glu
 705 710 715 720
 Ser Arg Gln Lys Cys Pro Pro Cys Trp Tyr Lys Phe Ala Asn Met Cys
 725 730 735
 Leu Ile Trp Asp Cys Cys Lys Pro Trp Leu Lys Val Lys His Leu Val
 740 745 750
 Asn Leu Val Val Met Asp Pro Phe Val Asp Leu Ala Ile Thr Ile Cys
 755 760 765
 Ile Val Leu Asn Thr Leu Phe Met Ala Met Glu His Tyr Pro Met Thr
 770 775 780
 Glu Gln Phe Ser Ser Val Leu Ser Val Gly Asn Leu Val Phe Thr Gly
 785 790 795 800
 Ile Phe Thr Ala Glu Met Phe Leu Lys Ile Ile Ala Met Asp Pro Tyr
 805 810 815
 Tyr Tyr Phe Gln Glu Gly Trp Asn Ile Phe Asp Gly Phe Ile Val Ser
 820 825 830
 Leu Ser Leu Met Glu Leu Gly Leu Ala Asn Val Glu Gly Leu Ser Val
 835 840 845
 Leu Arg Ser Phe Arg Leu Leu Arg Val Phe Lys Leu Ala Lys Ser Trp
 850 855 860
 Pro Thr Leu Asn Met Leu Ile Lys Ile Ile Gly Asn Ser Val Gly Ala
 865 870 875 880
 Leu Gly Asn Leu Thr Leu Val Leu Ala Ile Ile Val Phe Ile Phe Ala
 885 890 895
 Val Val Gly Met Gln Leu Phe Gly Lys Ser Tyr Lys Glu Cys Val Cys
 900 905 910
 Lys Ile Ser Asn Asp Cys Glu Leu Pro Arg Trp His Met His Asp Phe
 915 920 925
 Phe His Ser Phe Leu Ile Val Phe Arg Val Leu Cys Gly Glu Trp Ile
 930 935 940
 Glu Thr Met Trp Asp Cys Met Glu Val Ala Gly Gln Thr Met Cys Leu
 945 950 955 960
 Thr Val Phe Met Met Val Met Val Ile Gly Asn Leu Val Val Leu Asn
 965 970 975
 Leu Phe Leu Ala Leu Leu Ser Ser Phe Ser Ser Asp Asn Leu Ala
 980 985 990
 Ala Thr Asp Asp Asp Asn Glu Met Asn Asn Leu Gln Ile Ala Val Gly
 995 1000 1005

Arg Met Gln Lys Gly Ile Asp Phe Val Lys Arg Lys Ile Arg Glu Phe
 1010 1015 1020
 Ile Gln Lys Ala Phe Val Arg Lys Gln Lys Ala Leu Asp Glu Ile Lys
 1025 1030 1035 1040
 Pro Leu Glu Asp Leu Asn Asn Lys Lys Asp Ser Cys Ile Ser Asn His
 1045 1050 1055
 Thr Thr Ile Glu Ile Gly Lys Asp Leu Asn Tyr Leu Lys Asp Gly Asn
 1060 1065 1070
 Gly Thr Thr Ser Gly Ile Gly Ser Ser Val Glu Lys Tyr Val Val Asp
 1075 1080 1085
 Glu Ser Asp Tyr Met Ser Phe Ile Asn Asn Pro Ser Leu Thr Val Thr
 1090 1095 1100
 Val Pro Ile Ala Val Gly Glu Ser Asp Phe Glu Asn Leu Asn Thr Glu
 1105 1110 1115 1120
 Glu Phe Ser Ser Glu Ser Asp Met Glu Glu Ser Lys Glu Lys Leu Asn
 1125 1130 1135
 Ala Thr Ser Ser Ser Glu Gly Ser Thr Val Asp Ile Gly Ala Pro Ala
 1140 1145 1150
 Glu Gly Glu Gln Pro Glu Val Glu Pro Glu Glu Ser Leu Glu Pro Glu
 1155 1160 1165
 Ala Cys Phe Thr Glu Asp Cys Val Arg Lys Phe Lys Cys Cys Gln Ile
 1170 1175 1180
 Ser Ile Glu Glu Gly Lys Lys Leu Trp Trp Asn Leu Arg Lys Thr
 1185 1190 1195 1200
 Cys Tyr Lys Ile Val Glu His Asn Trp Phe Glu Thr Phe Ile Val Phe
 1205 1210 1215
 Met Ile Leu Leu Ser Ser Gly Ala Leu Ala Phe Glu Asp Ile Tyr Ile
 1220 1225 1230
 Glu Gln Arg Lys Thr Ile Lys Thr Met Leu Glu Tyr Ala Asp Lys Val
 1235 1240 1245
 Phe Thr Tyr Ile Phe Ile Leu Glu Met Leu Leu Lys Trp Val Ala Tyr
 1250 1255 1260
 Gly Phe Gln Val Tyr Phe Thr Asn Ala Trp Cys Trp Leu Asp Phe Leu
 1265 1270 1275 1280
 Ile Val Asp Val Ser Leu Val Ser Leu Thr Ala Asn Ala Leu Gly Tyr
 1285 1290 1295
 Ser Glu Leu Gly Ala Ile Lys Ser Leu Arg Thr Leu Arg Ala Leu Arg
 1300 1305 1310
 Pro Leu Arg Ala Leu Ser Arg Phe Glu Gly Met Arg Ala Val Val Asn
 1315 1320 1325
 Ala Leu Leu Gly Ala Ile Pro Ser Ile Met Asn Val Leu Leu Val Cys
 1330 1335 1340

Leu Ile Phe Trp Leu Ile Phe Ser Ile Met Gly Val Asn Leu Phe Ala
 1345 1350 1355 1360
 Gly Lys Phe Tyr His Cys Ile Asn Tyr Thr Thr Gly Glu Met Phe Asp
 1365 1370 1375
 Val Ser Val Val Asn Asn Tyr Ser Glu Cys Lys Ala Leu Ile Glu Ser
 1380 1385 1390
 Asn Gln Thr Ala Arg Trp Lys Asn Val Lys Val Asn Phe Asp Asn Val
 1395 1400 1405
 Gly Leu Gly Tyr Leu Ser Leu Leu Gln Val Ala Thr Phe Lys Gly Trp
 1410 1415 1420
 Met Asp Ile Met Tyr Ala Ala Val Asp Ser Arg Asn Val Glu Leu Gln
 1425 1430 1435 1440
 Pro Lys Tyr Glu Asp Asn Leu Tyr Met Tyr Leu Tyr Phe Val Ile Phe
 1445 1450 1455
 Ile Ile Phe Gly Ser Phe Phe Thr Leu Asn Leu Phe Ile Gly Val Ile
 1460 1465 1470
 Ile Asp Asn Phe Asn Gln Gln Lys Lys Phe Gly Gly Gln Asp Ile
 1475 1480 1485
 Phe Met Thr Glu Glu Gln Lys Lys Tyr Tyr Asn Ala Met Lys Lys Leu
 1490 1495 1500
 Gly Ser Lys Lys Pro Gln Lys Pro Ile Pro Arg Pro Ala Asn Lys Phe
 1505 1510 1515 1520
 Gln Gly Met Val Phe Asp Phe Val Thr Lys Gln Val Phe Asp Ile Ser
 1525 1530 1535
 Ile Met Ile Leu Ile Cys Leu Asn Met Val Thr Met Met Val Glu Thr
 1540 1545 1550
 Asp Asp Gln Ser Gln Glu Met Thr Asn Ile Leu Tyr Trp Ile Asn Leu
 1555 1560 1565
 Val Phe Ile Val Leu Phe Thr Gly Glu Cys Val Leu Lys Leu Ile Ser
 1570 1575 1580
 Leu Arg Tyr Tyr Tyr Phe Thr Ile Gly Trp Asn Ile Phe Asp Phe Val
 1585 1590 1595 1600
 Val Val Ile Leu Ser Ile Val Gly Met Phe Leu Ala Glu Leu Ile Glu
 1605 1610 1615
 Lys Tyr Phe Val Ser Pro Thr Leu Phe Arg Val Ile Arg Leu Ala Arg
 1620 1625 1630
 Ile Gly Arg Ile Leu Arg Leu Ile Lys Gly Ala Lys Gly Ile Arg Thr
 1635 1640 1645
 Leu Leu Phe Ala Leu Met Met Ser Leu Pro Ala Leu Phe Asn Ile Gly
 1650 1655 1660
 Leu Leu Leu Phe Leu Val Met Phe Ile Tyr Ala Ile Phe Gly Met Ser
 1665 1670 1675 1680

Asn Phe Ala Tyr Val Lys Arg Glu Val Gly Ile Asp Asp Met Phe Asn
 1685 1690 1695
 Phe Glu Thr Phe Gly Asn Ser Met Ile Cys Leu Phe Gln Ile Thr Thr
 1700 1705 1710
 Ser Ala Gly Trp Asp Gly Leu Leu Ala Pro Ile Leu Asn Ser Gly Pro
 1715 1720 1725
 Pro Asp Cys Asp Pro Asp Lys Asp His Pro Gly Ser Ser Val Lys Gly
 1730 1735 1740
 Asp Cys Gly Asn Pro Ser Val Gly Ile Phe Phe Val Ser Tyr Ile
 1745 1750 1755 1760
 Ile Ile Ser Phe Leu Val Val Leu Asn Met Tyr Ile Ala Val Ile Leu
 1765 1770 1775
 Glu Asn Phe Ser Val Ala Thr Glu Glu Ser Ala Glu Pro Leu Ser Glu
 1780 1785 1790
 Asp Asp Phe Glu Met Phe Tyr Glu Val Trp Glu Lys Phe Asp Pro Asp
 1795 1800 1805
 Ala Thr Gln Phe Ile Glu Phe Ala Lys Leu Ser Asp Phe Ala Asp Ala
 1810 1815 1820
 Leu Asp Pro Pro Leu Leu Ile Ala Lys Pro Asn Lys Val Gln Leu Ile
 1825 1830 1835 1840
 Ala Met Asp Leu Pro Met Val Ser Gly Asp Arg Ile His Cys Leu Asp
 1845 1850 1855
 Ile Leu Phe Ala Phe Thr Lys Arg Val Leu Gly Glu Ser Gly Glu Met
 1860 1865 1870
 Asp Ala Leu Arg Ile Gln Met Glu Glu Arg Phe Met Ala Ser Asn Pro
 1875 1880 1885
 Ser Lys Val Ser Tyr Glu Pro Ile Thr Thr Leu Lys Arg Lys Gln
 1890 1895 1900
 Glu Glu Val Ser Ala Ile Ile Gln Arg Ala Tyr Arg Arg Tyr Leu
 1905 1910 1915 1920
 Leu Lys Gln Lys Val Lys Lys Val Ser Ser Ile Tyr Lys Lys Asp Lys
 1925 1930 1935
 Gly Lys Glu Cys Asp Gly Thr Pro Ile Lys Glu Asp Thr Leu Ile Asp
 1940 1945 1950
 Lys Leu Asn Glu Asn Ser Thr Pro Glu Lys Thr Asp Met Thr Pro Ser
 1955 1960 1965
 Thr Thr Ser Pro Pro Ser Tyr Asp Ser Val Thr Lys Pro Glu Lys Glu
 1970 1975 1980
 Lys Phe Glu Lys Asp Lys Ser Glu Lys Glu Asp Lys Gly Lys Asp Ile
 1985 1990 1995 2000
 Arg Glu Ser Lys Lys
 2005

<210> 4
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer for the SCN2A gene

<400> 4
tgcagcaaac aaggaagagc t 21

<210> 5
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer for the SCN2A gene

<400> 5
cgggctttc atcattgagt g 21

<210> 6
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer for the cyclophilin B gene

<400> 6
actgaagcac tacgggcctg 20

<210> 7
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer for the cyclophilin B gene

<400> 7
agccgttgt gtcttgcc 19

<210> 8
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer for the gene of the ribosomal protein S9

<400> 8
ggtcaaattt accctggcca 20

<210> 9
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer for the gene of the ribosomal protein S9

<400> 9
tctcatcaag cgtcagcagt tc 22

<210> 10
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer for the beta- actin gene

<400> 10
tggAACGGTG aaggtgaca 19

<210> 11
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer for the beta-actin gene

<400> 11
ggcaaggggac ttcctgtaa 19

<210> 12
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer for the gene of GAPDH

<400> 12
cgtcatgggt gtgaaccatg 20

<210> 13
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer for the

2010 RELEASE UNDER E.O. 14176
2010 RELEASE UNDER E.O. 14176

gene of GAPDH

<400> 13
gctaaaggcgt tggtggtgca g

<210> 14
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer for the
transferrin receptor gene

<400> 14
gtcgctggtc agttcgtgat t

21

<210> 15
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer for the
transferrin receptor gene

<400> 15
agcagttggc tgttgtacct ctc

23