УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ

Андрија Д. Урошевић

ИНТУИЦИОНИСТИЧКА ТЕОРИЈА ТИПОВА КАО УВОД У ХОМОТОПНУ ТЕОРИЈУ ТИПОВА

мастер рад

Ментор:

др Сана Стојановић-Ђурђевић, доцент Универзитет у Београду, Математички факултет

Чланови комисије:

проф. др Филип Марић, редовни професор Универзитет у Београду, Математички факултет

др Иван Чукић, доцент Универзитет у Београду, Математички факултет

Датум одбране: 29. фебруар 2024.

Наслов мастер рада: Интуиционистичка теорија типова као увод у хомотопну теорију типова

Резиме: Homotopy Type Theory/Univalent Foundations (HoTT/UF) is a revolutionary approach to the foundation of mathematics. Although it's revolutionary, HoTT/UF is very slowly gaining popularity among a broader circle of mathematicians and computer scientists. One of the reasons is that during formalization one requires both theoretical knowledge and proof-assistance skills. Acquiring those prerequisites is partially based on one's background. Mathematicians lack functional programming skills, on the other hand, computer scientists lack theoretical knowledge. A few materials tackle both areas, but they are lacking interactability. This thesis proposes a material that formalizes one theoretical area of HoTT/UF in Agda and is doing so while interacting with the user input.

Кључне речи: хомотопна теорија типова, интерактивно доказивање, агда

Садржај

1	Увод				
	1.1	Филозофија и историја	3		
	1.2	Циљ рада	5		
2	Интуиционистичка теорија типова				
	2.1	Правила закључивања	7		
	2.2	Зависни типови	8		
	2.3	Типови зависних функција	9		
	2.4	Индуктивни типови	10		
	2.5	Искази као типови	18		
	2.6	Хијерархија универзума и универзум типови	20		
	2.7	Типови идентитети	20		
3	Агд	да	29		
4	Зак	льучак	30		

Глава 1

Увод

Хомошойна шеорија шийова (ХоТТ) (енгл. Homotopy Type Theory) је нова област математике која повезује многе друге области. Ослања се на хомошойну шеорију и шеорију шийова. Хомотопна теорија је област настала из алгебарске топологије и хомолошке алгебра, са идејама више теорије категорија, док теорија типова има корене у математичкој логици и теоријском рачунарству. Сматра се да ХоТТ представља алетернативно заснивање математике, поступком формализације уз помоћу интерактвних доказивача. Програм заснивања математике у ХоТТ се назива униваленшно заснивање (енгл. Univalent Foundations) [hottbook].

Хомотопна теорија типова представља надоградњу $Map\overline{u}un$ - $\Pi y \phi \overline{u}eopuje \overline{u}u\overline{u}oвa$ (МЛТТ) (енгл. Martin- $L\ddot{o}f Type Theory$) са $вишим индук\overline{u}ивним \overline{u}u$ - $u\ddot{o}suma$ и $a\kappa cuomom унивален\overline{u}hoc\overline{u}u$. Виши индуктивни типови омогућавају логичко описивање основних простора и конструкција у хомотопној теорији (сфере, цилиндри, итд.). Са друге стране, аксиома унивалентности тврди да је једнакост еквивалентана еквиваленцији, тј. $(A = B) \simeq (A \simeq B)$.

Постоји пуно разлога за изучавање ХоТТ и заснивање математике кроз интерактивне доказиваче теорема, али један од главних је дао један од оснивач ХоТТ, Владимир Веоводски, увидевши пропусте у туђим и својим радовима [vlad14]:

A technical argument by a trusted author, which is hard to check and looks similar to arguments known to be correct, is hardly ever checked in detail. (Владимир Веоводски, 2014.)

1.1 Филозофија и историја

Теорију типова је оригинално представио Бертранд Расел [rus08], решавајући парадокс у заснивању математике тог времена. Након њега Алонзо Черч, развија *просто типизирани ламбда рачун* (ПТЛР) (енгл. Simply Typed Lambda Calculus) [crc40, crc41]. Де Брујне инспирисан ПТЛР-ом развија први аутоматски доказивач теорема Automath [automath]. Теорију типова даље развија Пер Мартин-Луф коју данас знамо као МЛТТ, или интиуиционистичка/констируктивистичка/зависна теорија типова [pml75, pml82, pml84, pml98]. МЛТТ представља основу за друге теорије које је проширују и које имплементирају разни интерактивни доказивачи теорема: AGDA [agda], Coq [coq], Ерідкам [epigram], Іркіз [idris]. Инспирисани разултатом да теорија типова може да се интерпретира као ∞-групоид [hs98], Владимир Веоводски [vlad06], Стив Аводи и Мајкл Ворен [aw09] независно развијају ХоТТ.

МЛТТ, па самим тим и ХоТТ, се заснива на *Брауверовом иншуиционисшичком йройраму* [brw] који тврди да се сва математика, уклучујући и концепт доказа, изводи из концепта *консшрукције*, односно рачуна/програма класификованог типом. Браувер је сматрао да је математичко резтоновање људска активност и да је математика језик у коме се преносе математички концепти. Другим речима, способност избршавања алгоритма у сврху конструисања менталне конструкције је фундаментално људкса способност. Због тога, једини начин на кој субјекат може доћи до математичке истине је да доживи истинитост, тако што изведе корак-по-корак одговарајућу менталну конструкцију. Случно, једини начин да субјекат дође до математичке неистине је да даживу њену неистиност, тако што схвати да извођење одговарајуће менталне конструкције није могуће. Интуиционистичи програм даље развијају Колмогоров [kol32] и Хејтинг [hey] формулисањем интуиционистичке логике.

Интуиционистички програм глобално искључује закон искључења \overline{w} реће $\overline{\imath}$ $P \lor \neg P$ [brw]. Разлог томе су слаби кон \overline{w} ра- $\overline{\imath}$ римери (енгл. weak counterexamples). Пример једног слабог контра-примера је голдбахова претпоставка: Сваки \overline{u} а-ран број већи од 2 се може \overline{u} редс \overline{w} ави \overline{u} и у облику збира два \overline{u} рос \overline{u} а. Конструктивистички не можемо конструисати доказ да је голдбахову претпоставку тачна, нити да је нетачна, а поред тога немамо ни процедуру одлу-

чивања. Због тога, не можемо тврдити да је голдбахова претпоствка тачна или нетачна. Општије, не можемо тврдити да важи закон искључења трећег. Приметимо да је искључење трећег изкључено само глобално, односно да уколико је за конструкцију неког доказа потребно искористити закон искључење трећег, довољно је навести га у претпоставкама тврђења. Тиме добијамо да теореме које не користе искључење трећег имају снажнији резултат (јер користе мањи скуп претпоставки), док задржавамо и резултат теорема за које је неопходно користити закон искључења трећег.

У сржи теорије типова је појам $\overline{w}u\overline{u}c\kappa o\overline{i}$ расу $\hbar ueaha$ (енгл. type judgment)

t:T

који читамо као t је \overline{w} ерм \overline{w} и \overline{u} а T или \overline{w} ерм t нас \overline{w} ањује \overline{w} и \overline{u} T (енгл. t inhabits T). Терм и тип се узимају као примитивни појмови који се не дефинишу. По Брауверу, терм t представља начин на који спроводимо конструкцију T. На пример, уколико желимо да конструишемо терм типа B и ако имамо конструисане термове a:A и $f:A\to B$, онда терм f(a) описује начин на који конструишемо терм типа B, односно f(a):B. Често се у ХоТТ, за терм каже \overline{w} ачка, а за тип \overline{u} рос \overline{w} ор, па се тако за расућивање t:T каже да тачка t припада простору T.

Многи појмови у теорији типова имају три интерпретације: (1) докази исказа (логичка интерпретација), (2) програми типова (програмерска интерпретација) и (3) пресликавања сутруктура (категоричка интерпретација). На пример, расуђивање $f: A \to B$ се може сматрати као: (1) доказ импликације, (2) функција која за дати улаз типа A враћа излаз типа B и (3) морфизам из објеката A у објекат B. Ову доктрину је поставио Роберт Харпер и назвао ју је рачунарски шринишаризам (енгл. computational trinitarianism) [rob11]. Рачкунарски тринитаризам подразумева да сваки концепт који се јавља у једној интерпретацији треба да има значење у друге два интерпретације.

Теорији типова се заснива на идеји о gokashoj $penebah\overline{w}hoc\overline{w}u$ (енгл. proof relevance) која тврди да су математичка тврђења, па и сами доказу, грађани првог реда, што значи да се различити докази истог исказа могу међусобно поредити. Прецизније ако су $p_0: P$ и $p_1: P$ докази исказа P, односно начини на који можемо конструисати тип P, тада се они могу поредити и у том смислу су $penebah\overline{w}hu$. Са друге страе, код gokasho $upenebah\overline{w}hux$ система битно је само постојање доказа.

(за детаље видети поглавље 2.5). Доказивање исказа је конструисање програма одређеног типа. У том смислу логика представља област која се бави конструкцијама које су докази.

Још једна карактеристика МЛТТ, па самим тим и ХоТТ, је да користи *синшешички*, а не *аналишички* приступ. У синтетичком приступу, основни објекти су примитиве чије се особине и релације аксоматизују, из којих се даље логички дедукују последице. У аналитичком приступу, основни објекти су конструисани од других објекта, а њихове особине и релације су дедуковане из математичког окружења у ком су дефинисани. Често се за пример синтетичног приступа узима еуклидкса геометрија, а за аналитички приступ декартова/аналитичка геометрија.

1.2 Циљ рада

Формализација основних објеката и конструкција у МЛТТ у типски зависном програмском језику Agda.

- Конструктивна теорија је *доказно релеваншна*, тј. доказ је математички објекат као и сваки други.
- Тврђења можемо интерпретирати као типове, те ће доказ представљати *ūроверу шиша*, тј. конструисање терма одређеног типа. (Јако битна уврнута идеја)
- Запажање: Хомотопна тероја и теорија типова представљају исту ствар.
- Хомотопна теорија се бави непрекидним пресликавањима која су *хомо- шойна* између себе, тј. могу се "непрекидно деформисати" једна у друге.
- Интенционални и екстенционални типови? (нешто чуно, проучити)

Глава 2

Интуиционистичка теорија типова

Интуиционистичка теорија типова или Пер Мартин-Луф теорија типова је математичка теорија конструкција. Тип представља врсту конструкције. Елемент, терм или тачка представља резултат конструкције неког типа. Прецизније, елемент a типа A записујемо као a:A, и кажемо да елемент a настањује тип A. Битно је напоменути да терм не може да "живи самостално" тј. терм увек мора да настањује неки тип.

Конструкција типова се састоји из низа дедуктивних *фравила закључивања*. Правило закључивања записујемо као

$$\frac{\mathcal{H}_1 \qquad \mathcal{H}_2 \qquad \dots \qquad \mathcal{H}_n}{\mathcal{C}}$$

где расуђивања $\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_n$ називамо \bar{u} ремисе или $xu\bar{u}o\bar{w}$ езе, а расуђивање \mathcal{C} називамо sakручак.

Дефиниција 2.0.1. Свако *расуђивање* је облика $\Gamma \vdash \mathcal{J}$, где је Γ *кон\overline{w}екс\overline{w} и \mathcal{J} \overline{w}еза расуђивања.*

Дефиниција 2.0.2. *Коншексш расуђивања* је коначна листа узајамно зависних променљивих декларисаних на следећи начин

$$x_1: A_1, x_2: A_2(x_1), \ldots, x_n: A_n(x_1, \ldots, x_{n-1}),$$

под условом да за свако $1 \leq k \leq n$ можемо да изведемо расуђивање

$$x_1: A_1, x_2: A_2(x_1), \dots, x_{k-1}: A_{k-1}(x_1, \dots, x_{k-2}) \vdash A_k(x_1, x_2, \dots, x_{k-1}).$$

Дефиниција 2.0.3. *Теза расуђивања* може имати четири врсте расуђивања и то су:

(i) A је $(go\delta po-\phi op \mu up a h)$ $\overline{u}u\overline{u}$ у контексту Γ

$$\Gamma \vdash A \text{ type}$$

(ii) A и B су расуђивачки једнаки \overline{w} и \overline{u} ови у контексту Γ

$$\Gamma \vdash A \equiv B \text{ type}$$

(iii) a је eлемен \overline{w} типа A у контексту Γ

$$\Gamma \vdash a : A$$

(iv) a и b су $pacy\hbar uвачки <math>jeghaku$ елемен $\overline{u}u$ типа A у контексту Γ

$$\Gamma \vdash a \equiv_A b : A$$

2.1 Правила закључивања

Интуиционистичка теорија типова, као и други математички формализми, захтева скуп правила закључивања на којима ће се формализам заснивати. Та правила називамо $c\overline{w}pyk\overline{w}ypha$ $\overline{w}paeuna$.

Пример структурних правила закључивања која описују да је расуђивачка једнакост релација еквиваленције:

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash A \equiv A \text{ type}} \quad \frac{\Gamma \vdash A \equiv A' \text{ type}}{\Gamma \vdash A' \equiv A \text{ type}} \quad \frac{\Gamma \vdash A \equiv A' \text{ type}}{\Gamma \vdash A \equiv A'' \text{ type}} \quad \frac{\Gamma \vdash A \equiv A'' \text{ type}}{\Gamma \vdash A \equiv A'' \text{ type}}$$

$$\frac{\Gamma \vdash a : A}{\Gamma \vdash a \equiv_A a : A} \quad \frac{\Gamma \vdash a \equiv_A a' : A}{\Gamma \vdash a' \equiv_A a : A} \quad \frac{\Gamma \vdash a \equiv_A a' : A}{\Gamma \vdash a \equiv_A a'' : A}$$

Исцрпна листа структурних правила закључивања у интуиционистичкој теорији типова се може наћи у [rijke2022intro]. Da li sada ovo raspisivati?

2.2 Зависни типови

Из дефиниције контекста можемо видети да неки типови могу зависити од неких термова. На пример, тип $A_2(x_1)$ зависи од терма $x_1:A_1$, тј. за разне термове $x_1:A_1$ имамо разне типове $A_2(x_1)$. Ову идеју можемо уопштити помоћу следећих дефиниција:

Дефиниција 2.2.1. Нека је тип A у контексту Γ . Φ амилија типова над A у контексту Γ је тип B(x) у контексту $\Gamma, x : A$, тј.

$$\Gamma, x : A \vdash B(x)$$
 type.

Кажемо да је B фамилија типова над A у контексту Γ . Алтернативно, кажемо да је B(x) тип индексиран са x:A у контексту Γ .

Дефиниција 2.2.2. Нека је B фамилија типова над A у контексту Γ . Ceкција фамилије B над типом A у контексту Γ је елемент типа B(x) у контексту $\Gamma, x: A$, тј.

$$\Gamma, x : A \vdash b(x) : B(x).$$

Кажемо да је b секција фамилије B над A у контексту Γ . Алтернативно, кажемо да да је b(x) елемент типа B(x) индексиран са x:A у контексту $\Gamma, x:A$.

Дефиниција 2.2.3. Нека је B фамилија типова над A у контексту Γ , и нека је a:A. Кажемо да је B[a/x] влакно од B за параметар a, где B[a/x] представља замену свих појављивања x у B са a. Нит од B за параметар a крађе записујемо као B(a).

Дефиниција 2.2.4. Нека је b секција фамилије типова B над A у контексту Γ . Кажемо да је b[a/x] вреднос \overline{u} од b за параметар a, где b[a/x] представља замену свих појављивања x у b са a. Такође, вредност од b за параметар a крађе записујемо као b(a).

2.3 Типови зависних функција

У математици заснованој на теорији скупова функција $f: A \to B$ дефинисана је над одређеним доменом A и кодоменом B. У теорији типова то не мора да буде случај, тј. кодомен може зависити од елемента над којим се функција примељује. Прецизније, посматрајмо секцију b фамилије типова B над A у контексту Γ . Један начин је да b посматрамо као функцију mapstob(x). Тада b(x) настањује тип B(x) који зависи од x:A. Због тога за разне елементе x:A домена имамо разне кодомене, те има смисла говорити о типу abuchux byhkuja $\prod_{(x:A)} B(x)$.

Спецификација типа зависних функција $\prod_{(x:A)} B(x)$ је дата следећим правилима закључивања:

$$\begin{array}{c|c} & & & & \prod \text{-introl} \\ \hline \Gamma, x: A \vdash B(x) \text{ type} \\ \hline \Gamma \vdash \prod_{(x:A)} B(x) \text{ type} \end{array} \qquad \begin{array}{c} & & \prod \text{-introl} \\ \hline \Gamma, x: A \vdash b(x): B(x) \\ \hline \Gamma \vdash \lambda x. b(x): \prod_{(x:A)} B(x) \end{array} \qquad \begin{array}{c} & \prod \text{-elim} \\ \hline \Gamma \vdash f: \prod_{(x:A)} B(x) \\ \hline \Gamma, x: A \vdash f(x): B(x) \end{array}$$

$$\frac{[\prod\text{-comp}_1]}{\Gamma, x : A \vdash b(x) : B(x)} \qquad \frac{[\prod\text{-comp}_2]}{\Gamma \vdash f : \prod_{(x:A)} B(x)}$$
$$\frac{\Gamma \vdash (\lambda y. b(y))(x) \equiv b(x) : B(x)}{\Gamma \vdash \lambda x. f(x) \equiv f : \prod_{(x:A)} B(x)}$$

Специјалан случај типа зависних функција је тип (уобичајених) функција $A \to B$. Уколико су типови A и B у контексту Γ , тј. тип B не зависи од елемената типа A, тада $\prod_{(x:A)} B$ представља тип (уобичајених) функција.

Дефиниција 2.3.1. Тип (уобичајених) *функција* $A \to B$ дефинишемо као:

$$A \to B := \prod_{(x:A)} B.$$

Ако је $f: A \to B$ функција, тада је A домен, а B кодомен функције f.

Дефиниција 2.3.2. За сваки тип A дефинишемо $\phi y + \kappa u u j y u g = \kappa u u u u e u a id_A : A \to A$ као id_A : $\Delta x = \lambda x \cdot x$.

Дефиниција 2.3.3. За свака три типа A, B, и C дефинишемо ком \bar{u} озицију сомр : $(B \to C) \to (A \to B) \to A \to C$ као сомр : $\equiv \lambda g.\lambda f.\lambda g(f(x))$.

Може се показати да је композиција асоцијативна, као и да је функција идентитета неутрал за композицију функција. Због сагласности типова имамо леви неутрал id_B и десни неутрал id_A .

2.4 Индуктивни типови

Поред типова зависних функција постоји и класа *индукшивних шийова*. Сваки индуктивни тип се дефинише помоћу следеће спецификације:

- (i) *Формирање* типа описује начин на који се дати тип формира.
- (ii) *Консшруисање* описује на који начин се уводе нови канонични термови датог типа.
- (iv) *Правила израчунавања* захтевају да се индуктивно дефинисана секција произвољне фамилије типова над датим типом слаже по конструкторима који уводе нове каноничне термове.

Обично се, поред ових спецификација, уводи и *правило рекурзије* које је специјални случај правила индукције. Код правила рекурзије не конструишемо секцију произвољне фамилије типова над датим типом, већ само константну фамилију над датим типом.

У наставку су наведене спецификације за уобичајене индуктивне типове: тип природних бројева \mathbb{N} , празни тип \mathbb{O} , јединични тип $\mathbb{1}$, типови копроизвода A+B, тип зависних парова $\sum_{(x:A)} B(x)$, као и специјални случајеви ових типова. Поред њих, у засебном поглављу ће бити представљени типови идентитети $x=_A y$.

Тип природних бројева

Тип природних бројева $\mathbb N$ представља тип кога настањују природни бројеви $0_{\mathbb N}, 1_{\mathbb N}, 2_{\mathbb N}, \dots$ Прецизније, тип природних бројева $\mathbb N$ дефинишемо следећом спецификацијом:

$$\frac{ \left[\mathbb{N}\text{-form} \right] }{ \vdash \mathbb{N} \ \text{type} } \quad \frac{ \left[\mathbb{N}\text{-intro}_{0_{\mathbb{N}}} \right] }{ \vdash 0_{\mathbb{N}} : \mathbb{N} } \quad \frac{ \left[\mathbb{N}\text{-intro}_{\text{succ}_{\mathbb{N}}} \right] }{ \vdash \text{succ}_{\mathbb{N}} : \mathbb{N} \to \mathbb{N} }$$

$$\frac{ \left[\mathbb{N}\text{-indd} \right] }{ \vdash \text{succ}_{\mathbb{N}} : \mathbb{N} \vdash P(n) \ \text{type} } \quad \Gamma, n : \mathbb{N} \vdash P(n) \ \text{type}$$

$$\Gamma \vdash p_{0_{\mathbb{N}}} : P(0_{\mathbb{N}})$$

$$\Gamma \vdash p_{0_{\mathbb{N}}} : P(0_{\mathbb{N}})$$

$$\Gamma \vdash p_{0_{\mathbb{N}}} : P(n) \ \text{type}$$

$$\Gamma \vdash P(n) \ \text{type}$$

$$\Gamma \vdash p_{0_{\mathbb{N}}} : P(n) \ \text{type}$$

$$\Gamma \vdash P(n) \ \text{type}$$

$$\Gamma$$

По правилу N-form, тип природних бројева N може да се формира из празног контекста. Другим речима, постојање типа природних бројева N не зависи од постојања других типова. Даље, имамо два конструктора помоћу којих конструишемо све каноничке термове типа N. Први конструктор је константа $0_N: \mathbb{N}$ и он говори да је 0_N канонични терм типа N. Други конструктор је функција $\operatorname{succ}_N: \mathbb{N} \to \mathbb{N}$ и она говори да ће $\operatorname{succ}_N(n)$ бити канонични терм

типа $\mathbb N$ ако је $n:\mathbb N$ канонични терм. Због тога су $0_{\mathbb N}$, $\operatorname{succ}_{\mathbb N}(0_{\mathbb N})$, $\operatorname{succ}_{\mathbb N}(\operatorname{succ}_{\mathbb N}(0_{\mathbb N}))$, . . . канонични термови који настањују тип $\mathbb N$.

Правила формирања и конструкције нам говоре о томе под којим условима се може формирати тип, и како конструисати каноничне термове тог типа. Потребно је још дефинисати и начин на који се тип и елементи тог типа користе. Због тога се уводи индуктивно правило и правила израчунавања. Да би конструисали елемент $\operatorname{ind}_{\mathbb{N}}(p_{0_{\mathbb{N}}}, p_{\operatorname{succ}_{\mathbb{N}}}) : \prod_{(n:\mathbb{N})} P(n)$ потребно је конструисати елемент $p_{0_{\mathbb{N}}} : P(0_{\mathbb{N}})$ (база индукције) і $p_{\operatorname{succ}_{\mathbb{N}}} : \prod_{n:\mathbb{N}} P(n) \to P(\operatorname{succ}_{\mathbb{N}}(n))$ (индукшивни корак). Даље, за сваки од конструктора треба увести правило израчунавања у складу са зависном функцијом $\operatorname{ind}_{\mathbb{N}}(p_{0_{\mathbb{N}}}, p_{\operatorname{succ}_{\mathbb{N}}}) : \prod_{(n:\mathbb{N})} P(n)$. Због тога имамо два правила израчунавања \mathbb{N} -сотр $_{\mathbb{N}}$ і \mathbb{N} -сотр $_{\operatorname{succ}_{\mathbb{N}}}$.

Специјални случај индукције типа природних бројева је рекурзија типа природних бројева, у којој тип P не зависи од \mathbb{N} . Тада добијамо функцију $\operatorname{rec}_{\mathbb{N}}(a_{0_{\mathbb{N}}},a_{\operatorname{succ}_{\mathbb{N}}}):\mathbb{N}\to A,$ под условом да имамо елементе $a_{0_{\mathbb{N}}}:A$ и $a_{\operatorname{succ}_{\mathbb{N}}}:\mathbb{N}\to A\to A.$

Правило индукције, заједно са правилом рекурзије, омогућава дефинисање разних функција над природним бројевима. Да би дефинисали операцију сабирања природних бројева $+_{\mathbb{N}}: \mathbb{N} \to \mathbb{N} \to \mathbb{N}$ можемо искористити правило рекурзије, тј. функцију $\operatorname{rec}_{\mathbb{N}}: A \to (\mathbb{N} \to A \to A) \to \mathbb{N} \to A$. За тип A узећемо \mathbb{N} . Због тога, сабирање природних бројева дефинишемо као:

$$m +_{\mathbb{N}} n :\equiv \operatorname{rec}_{\mathbb{N}}(m, \lambda n. \lambda r. \operatorname{succ}_{\mathbb{N}}(r), n).$$

Заиста, за овако дефинисану операцију сабирања важи:

$$\begin{split} m+_{\mathbb{N}}\mathbf{0}_{\mathbb{N}} &\equiv m; \\ m+_{\mathbb{N}}\operatorname{succ}_{\mathbb{N}}(n) &\equiv \operatorname{succ}_{\mathbb{N}}(m+_{\mathbb{N}}n). \end{split}$$

Слично, множење природних бројева $\times_{\mathbb{N}}:\mathbb{N}\to\mathbb{N}\to\mathbb{N}$ можемо дефинисати као

$$m \times_{\mathbb{N}} n :\equiv \operatorname{rec}_{\mathbb{N}}(0_{\mathbb{N}}, \lambda n. \lambda r. m +_{\mathbb{N}} r, n).$$

Такође, за овако дефинисану операцију множења важи:

$$\begin{split} m \times_{\mathbb{N}} \mathbf{0}_{\mathbb{N}} &\equiv \mathbf{0}_{\mathbb{N}}; \\ m \times_{\mathbb{N}} \operatorname{succ}_{\mathbb{N}}(n) &\equiv (m +_{\mathbb{N}} (m \times_{N} n)). \end{split}$$

Можемо приметити шаблон између дефинисања операција преко рекурзивног правила и правила која захтевамо да важе по конструкторима. Наиме, уколико желимо да дефинишемо функцију $f: \mathbb{N} \to A$ за коју важи:

$$f(0_{\mathbb{N}}) \equiv \Phi_{0_{\mathbb{N}}};$$

$$f(\operatorname{succ}_{\mathbb{N}}(n)) \equiv \Phi_{\operatorname{succ}_{\mathbb{N}}},$$

где је $\Phi_{0\mathbb{N}}$ израз типа A, и $\Phi_{\mathsf{succ}_{\mathbb{N}}}$ израз типа A који може садржати n и f(n). Тада функцију $f: \mathbb{N} \to A$ дефинишемо као:

$$f :\equiv \operatorname{rec}_{\mathbb{N}}(\Phi_{0_{\mathbb{N}}}, \lambda n. \lambda r. \Phi'_{\operatorname{succ}_{\mathbb{N}}}),$$

где $\Phi'_{\mathsf{succ}_{\mathbb{N}}}$ добијемо из $\Phi_{\mathsf{succ}_{\mathbb{N}}}$ тако што сва појављивања f(n) заменимо са r. Овај поступак дефинисања можемо уопштити и на индуктивно правило, и тада се он назива $y\bar{u}$ аривање шаблона (енгл. pattern matching).

Празни тип

Празни тип 0 је дегенерисани пример индуктивног типа кога не настањује ни један елемент. Прецизније, празни тип 0 дефинишемо следећом спецификацијом.

$$[\mathbb{0}\text{-form}] \ \ \overline{\vdash \mathbb{0} \ \text{type}} \quad [\mathbb{0}\text{-ind}] \ \ \frac{\Gamma, 0 \vdash P(x) \ \text{type}}{\Gamma \vdash \text{ind}_{\mathbb{0}} : \prod_{(x:\mathbb{0})} P(x)} \quad [\mathbb{0}\text{-rec}] \ \ \frac{\Gamma \vdash A \ \text{type}}{\Gamma \vdash \text{rec}_{\mathbb{0}} : \mathbb{0} \to A}$$

Како празан тип $\mathbb O$ не настањује ни један елемент, за њега не постоји ни један конструктор, и самим тим нема ни једно правило израчунавања. Може да се формира из празног контекста, а његово правило индукције тврди да за било коју фамилију типова P над $\mathbb O$ постоји елемент $\mathrm{ind}_{\mathbb O}:\prod_{(x:\mathbb O)}P(x)$. Чешће се користи правило рекурзије које тврди да уколико конструишемо елемент $x:\mathbb O$, онда можемо да конструишемо елемент $\mathrm{rec}_{\mathbb O}(x):A$ било ког типа A. Правило рекурзије за празни тип $\mathbb O$ се обично назива и $\bar u$ равило кон $\bar u$ радикције или $\bar u$ равило $\bar u$ ро $\bar u$ ивречнос $\bar u$ и.

Дефиниција 2.4.1. За сваки тип A дефинишемо тип $ne\bar{\imath}auuje$ od A као $\neg A := A \to \mathbb{O}$. Поред тога, кажемо да је тип A $\bar{\imath}pasan$ ако његову негацију настањује неки елемент, тј. $empty(A) := A \to \mathbb{O}$.

Приметимо да је $gy\bar{u}$ ла не $\bar{\imath}$ ација од A дефинисана као $\neg\neg A:=(A\to \mathbb{O})\to \mathbb{O}$. Због тога, не мора да важи $\neg\neg A\to A$, те није могуће изводити доказе контрадикцијом.

Јединични тип

Јединични тип 1 је индуктивни тип кога настањује само елемент ★. Прецизније, јединични тип 1 дефинишемо следећом спецификацијом.

Јединични тип $\mathbb{1}$ може да се формира из празног контекста, а његово правило индукције тврди да за било коју фамилију типова P над $\mathbb{1}$ постоји елемент $\operatorname{ind}_{\mathbb{1}}(p_{\star}):\prod_{(x:\mathbb{1})}P(x)$ уколико постоји елемент $p_{\star}:P(\star)$. Како постоји само један конструктор $\star:\mathbb{1}$, имамо једно правило израчунавања које треба да се сложи са индуктивним правилом. Због тога, $\operatorname{ind}_{\mathbb{1}}(p_{\star},\star)\equiv p_{\star}:P(\star)$.

Специјални случај правила индукције типа 1 је правило рекурзије типа 1, које добијамо када фамилија типова P над 1 не зависи од x:1. Тада за сваки елемент a:A имамо функцију $\operatorname{rec}_1(a):1\to A$.

Дефиниција 2.4.2. За сваки тип A дефинишемо тип jeguhc швене функције од A као !1 $(A) := A \to 1$. Специјално, јединствена функција од 0, тј. $0 \to 1$, се назива вакумска функција.

У хомотопној теоријити типова за вакумску функцију важи да је јединствена.

Типови копроизвода

За типове A и B из контекста Γ можемо дефинисати тип копроизвода A+B кога ће настањивати елементи или из типа A (ако a:A, онда $\mathsf{inl}(a):A+B$) или из типа B (ако b:B, онда $\mathsf{inr}(b):A+B$).

Тип копроизвода A+B због своје природе има два конструктора inl : $A\to A+B$ і inr : $B\to A+B$. Правило индукције тврди да за било коју фамилију типова P над A+B постоји елемент $\operatorname{ind}_+(p_{\operatorname{inl}},p_{\operatorname{inr}}):\prod_{(z:A+B)}P(z)$ уколико постоје елементи $p_{\operatorname{inl}}:\prod_{(a:A)}P(\operatorname{inl}(a))$ и $p_{\operatorname{inr}}:\prod_{(b:B)}P(\operatorname{inr}(b))$. Како постоје два конструктора, имамо два правила израчунавања која треба да се сложе са правилом индукције. Због тога $\operatorname{ind}_+(p_{\operatorname{inl}},p_{\operatorname{inr}},\operatorname{inl}(a))\equiv p_{\operatorname{inl}}(a):P(\operatorname{inl}(a))$ и $\operatorname{ind}_+(p_{\operatorname{inl}},p_{\operatorname{inr}},\operatorname{inr}(b))\equiv p_{\operatorname{inr}}(b):P(\operatorname{inr}(b))$.

Специјални случај правила индукције типа A+B је правило рекурзије типа A+B, које добијамо када фамилија типова P над A+B не зависи од z:A+B. Тада за сваку функцију $f:A\to X$ и за сваку функцију $g:B\to X$ имамо функцију $\operatorname{rec}_+(f,g):A+B\to X$. Из правила индукције, за свако $f:A\to X$ и за свако $g:B\to Y$, имамо функцију $f+g:A+B\to X+Y$.

Специјални случај типа копроизвода је δy ловски $\bar{u}u\bar{u}$ 2:=1+1, чије једине елементе дефинишемо као true $:\equiv \operatorname{inl}(\star)$ и false $:\equiv \operatorname{inr}(\star)$. Из спецификације типа копроизвода можемо извући правило индукције и правило израчунавања, за буловски тип 2. Правило индукције 2-ind се назива и *if-then-else*.

$$\begin{array}{l} \Gamma, x: 2 \vdash P(x) \; \mathrm{type} \\ \Gamma \vdash p_{\mathsf{true}} : P(\mathsf{true}) \\ \hline \Gamma \vdash p_{\mathsf{false}} : P(\mathsf{false}) \\ \hline \Gamma \vdash \mathsf{ind}_2(p_{\mathsf{true}}, p_{\mathsf{false}}) : \prod_{(x:2)} P(x) \\ \\ \Gamma, x: 2 \vdash P(x) \; \mathrm{type} \\ \hline \Gamma \vdash p_{\mathsf{true}} : P(\mathsf{true}) \\ \hline [2\text{-comp}] \quad \hline \Gamma \vdash p_{\mathsf{false}} : P(\mathsf{false}) \\ \hline \Gamma \vdash \mathsf{ind}_2(p_{\mathsf{true}}, p_{\mathsf{false}}, \mathsf{true}) \equiv p_{\mathsf{true}} : P(\mathsf{true}) \\ \hline \Gamma \vdash \mathsf{ind}_2(p_{\mathsf{true}}, p_{\mathsf{false}}, \mathsf{false}) \equiv p_{\mathsf{false}} : P(\mathsf{true}) \\ \end{array}$$

Типови зависних парова

Ако је B фамилија типова над A из контекста Γ , онда можемо формирати тип зависних парова $\sum_{(x:A)} B(x)$ кога ће настањивати $\bar{u}aposu\ (x,y(x))$, где је x:A и y(x):B(x). Прецизније, тип зависних парова $\sum_{(x:A)} B(x)$ дефинишемо следећом спецификацијом.

$$\frac{[\sum\text{-form}]}{\Gamma, x : A \vdash B(x) \text{ type}} \qquad \frac{[\sum\text{-intro}]}{\Gamma, x : A \vdash y(x) : B(x)}$$

$$\frac{\Gamma, x : A \vdash B(x) \text{ type}}{\Gamma \vdash \sum_{(x:A)} B(x) \text{ type}} \qquad \frac{\Gamma, x : A \vdash y(x) : B(x)}{\Gamma \vdash (x, y(x)) : \sum_{(x:A)} B(x)}$$

$$\frac{\Gamma, (x, y) : \sum_{(x:A)} B(x) \vdash P((x, y)) \text{ type}}{\Gamma \vdash \text{ind}_{\sum}(f) : \prod_{(y:B(x))} P((x, y))}$$

$$\frac{\Gamma, (x, y) : \sum_{(x:A)} B(x) \vdash P((x, y)) \text{ type}}{\Gamma, (x, y) : \sum_{(x:A)} \prod_{(y:B(x))} P((x, y))}$$

$$\frac{\Gamma \vdash f : \prod_{(x:A)} \prod_{(y:B(x))} P((x, y))}{\Gamma, (x, y) : \sum_{(x:A)} B(x) \vdash \text{ind}_{\sum}(f, (x, y)) \equiv f(x, y) : P((x, y))}$$

Тип зависних парова $\sum_{(x:A)} B(x)$ има један конструктор помоћу кога се могу формирати елементи који га настањују, и то једноставним упаривањем елемената x:A и y(x):B(x). Правило индукције тврди да за било коју фамилију типова P над $\sum_{(x:A)} B(x)$ постоји елемент $\operatorname{ind}_{\sum}(f):\prod_{p:\sum_{(x:A)} B(x)} P(p)$

уколико постоји елемент $f:\prod_{(x:A)}\prod_{(y:B(x))}P((x,y))$. Како постоји само један конструктор, имамо само једно правило израчунавања које треба да се сложи са правилом индукције. Због тога важи $\operatorname{ind}_{\Sigma}(f,(x,y)) \equiv f(x,y):P((x,y))$.

Правило индукције нам омогућава да дефинишемо функције у нставку.

Дефиниција 2.4.3. Нека је B фамилија типова над A. Тада елемент $\operatorname{pr}_1: \sum_{(x:A)} B(x) \to A$ \bar{u} ројекције на \bar{u} рви елемен \bar{u} дефинишемо као:

$$\mathsf{pr}_1((a,b)) :\equiv a, \tag{2.1}$$

а елемент $\operatorname{pr}_2:\prod_{p:\sum_{(x:A)}B(x)}B(\operatorname{pr}_1(p))$ \bar{u} ројекције на $gpy\bar{v}$ и елемен \bar{u} дефинишемо као:

$$\operatorname{pr}_2((a,b)) :\equiv b. \tag{2.2}$$

Ако претпоставимо да имамо елемент $f:\prod_{((x,y):\sum_{(x:A)}B(x))}P((x,y))$ тада конструишемо елемент типа $\prod_{(x:A)}\prod_{(y:B(x))}P((x,y))$ као $\lambda x.\lambda y.f((x,y))$. Ова конструкција се назива $\kappa apuje abe$ (енгл. carry), и како је супротна правилу \sum -ind, правило \sum -ind често наивамо ogkapuje abe (енгл. uncarry).

Слика 2.1: Геометријска репрезентација типа зависних парова.

Специјални случај типа зависних парова је тип (независних) \bar{u} арова или (Декар \bar{u} ов) \bar{u} роизвод $A \times B$. Уколико су типови A и B у контексту Γ , тј. тип B не зависи од елемената типа A, тада $\sum_{(x:A)} B$ представља тип (независних) парова.

Дефиниција 2.4.4. Тип (независних) \bar{u} арова $A \times B$ дефинишемо као:

$$A \times B := \sum_{(x:A)} B.$$

Такође, \bar{u} ројекцију на \bar{u} рви елемен \bar{u} fst : $A \times B \to A$ и \bar{u} ројекцију на $gpy\bar{u}$ елемен \bar{u} snd : $A \times B \to B$ дефинишемо као:

$$fst((a,b)) :\equiv a, \quad snd((a,b)) :\equiv b.$$

Правило индукције и израчунавања за тип (независних) парова $A \times B$ директно добијамо из правила индукције и израчунавања за тип зависних парова $\sum_{(x:A)} B(x)$.

$$\begin{array}{c} \Gamma, (x,y) : A \times B \vdash P((x,y)) \text{ type} \\ \\ \Gamma \vdash f : \prod_{(x:A)} \prod_{(y:B)} P((x,y)) \\ \hline \Gamma \vdash \mathsf{ind}_{\times}(f) : \prod_{(p:A \times B)} P(p) \end{array}$$

$$\begin{array}{l} [\times\text{-comp}] & \Gamma, (x,y) : A \times B \vdash P((x,y)) \text{ type} \\ & \Gamma \vdash f : \prod_{(x:A)} \prod_{(y:B)} P((x,y)) \\ \hline & \Gamma, (x,y) : A \times B \vdash \mathsf{ind}_{\times}(f,(x,y)) \equiv f(x,y) : P((x,y)) \end{array}$$

Слика 2.2: Геометријска репрезентација типа независних парова.

Тип независних парова можемо уопштити на тип k- \overline{w} орки $A_1 \times A_2 \times \cdots \times A_k$.

2.5 Искази као типови

Интерпретација uckasu kao $\overline{w}u\overline{u}osu$ (енгл. propositions as types) неформално посматра исказе као типове, доказе као елементе типова, и предикате као фамилије типова. Да би показали да је исказ тачан у теорији типова треба конструисати елемент који настањује одговарајући тип. Прецизније, за дати исказ A (добро-формирани тип) уколико конструишемо елемент x:A (кога често називамо и csegok за A) тада сматрамо да је исказ A тачан. Приметимо да исказ није тачан или нетачан, већ да представља колекцију својих

Искази	Типови
	0
T	1
$\neg A$	$A\to \mathbb{O}$
$A \implies B$	$A \to B$
$A \wedge B$	$A \times B$
$A \vee B$	A+B
$\forall x. P(x)$	$\prod_{(x:A)} P(x)$
$\exists x. P(x)$	$ \sum_{(x:A)} P(x) $

Табела 2.1: Кари-Хавардова интерпретација

сведока који могу да потрврде његову истинитост. Због тога су и сами докази математички објекти. У табели 2.1 приказани су искази заједно са њиховом одговарајућом интерпретацијом у теорији типова.

Прокоментаришимо неке интерпретације из табеле 2.1. Да би показали да важи $A \Longrightarrow B$ треба претпоставити да важи A и доказати да важи B. У теорији типова треба конструисати елемент типа $A \to B$, тј. треба конструисати елемент типа B који користи претпоставку дату постојањем елемент типа A. Остали типови имају сличне интерпретације сем типа копроизвода A+B и типа зависних парова $\sum_{(x:A)} B(x)$.

Да би показали $A \vee B$ треба показати да важи бар један од A и B. У тероији типова треба конструисати елемент типа A+B, помоћу једног од конструктора inl или inr. Због тога тип A+B, у односу на $A \vee B$, носи информацију о исказу који је тачан (тачно је или A или тачно је B). Слично, да би показали $\exists x.P(x)$ у теорији типова треба конструисати елемент типа $\sum_{(x:A)} P(x)$. У овом случају теорија типова нам даје и више од тога. Наиме, P је фамилија типова, што значи да P(x) не мора да буде типа 2, тј. P не мора да буде предикат. Поред тога, тип $\sum_{(x:A)} P(x)$ можемо схватити као тип свих елемената x:A за које P(x).

Како ова два типа дају више информација у односу на традиционално значење исказа $A \vee B$ и $\exists x. P(X)$, користи се *окрњени искази* (енгл. *propositional truncation*) ||A + B|| и $||\sum_{(x:A)} B(x)||$ који заборављају све информације о својим сведоцима сем да они постоје. Окрњени искази су ван опсега овог рада, тако да се неће детаљно описивати.

2.6 Хијерархија универзума и универзум типови

Универзум $\overline{w}u\bar{u}oвu$ се могу посматрати као типови које настањују други типови. Универзум тип $\mathcal U$ омогућава да се исказ "A type" запише формално као $A:\mathcal U$. Поред тога, омогућава да се фамилија типова B над типом A дефинише као функција $B:A\to\mathcal U$.

Желимо да типови који могу да се формирају из празног контекста настањују универзум \mathcal{U} (то су, на пример, \mathbb{O} , $\mathbb{1}$, и \mathbb{N}). Штавише, како универзум \mathcal{U} настањују и други типови, желимо да универзум \mathcal{U} буде затворен по свим конструкторима који користе типове универзума \mathcal{U} . На пример, ако $A:\mathcal{U}$ и $B:A\to\mathcal{U}$, онда $\prod_{(x:A)}B(x):\mathcal{U}$. Међутим, не сме дођи то тога да универзум настањује сам себе, тј. не сме да важи $\mathcal{U}:\mathcal{U}$. Другим речима, не смемо обезбедити услове настанка раселовог парадокса.

У многим случајевима довољно је постојање једног универзума \mathcal{U} , међутим, некада желимо да универзум настањује неки други универзум. Како би избегли Раселов парадокс захтевамо постојање xujepapxuje универзума

$$\mathcal{U}_0, \quad \mathcal{U}_1, \quad \mathcal{U}_2, \quad \dots$$
 (2.3)

за коју важе следећа правила:

[
$$\mathcal{U}$$
-intro] $\overline{\Gamma \vdash \mathcal{U}_i : \mathcal{U}_{i+1}}$ [\mathcal{U} -cumul] $\overline{\Gamma \vdash A : \mathcal{U}_i}$ $\overline{\Gamma \vdash A : \mathcal{U}_{i+1}}$

Универзум \mathcal{U}_0 називамо базни универзум. Базни универзум настањују типови који могу да се формирају из празног контекста, као и сви типови чији конструктори користе типове који се већ налазе у базном универзуму. За универзум \mathcal{U}_i има смисла посматрати и \mathcal{U}_{i+1} кога називамо и универзум следбеник. Често није битно знати редни број универзума у хијерархији, те се следбеник универзума \mathcal{U} обележава са \mathcal{U}^+ . За два универзума \mathcal{U} и \mathcal{V} можемо дефинисати њихову најмању горњу границу $\mathcal{U} \sqcup \mathcal{V}$. На пример, за \mathcal{U}_0 і \mathcal{U}_1 , најмања горња граница $\mathcal{U}_0 \sqcup \mathcal{U}_1$ је \mathcal{U}_1 .

2.7 Типови идентитети

Подсетимо се да из дефиниције операције $+_{\mathbb{N}}$ важи $m +_{\mathbb{N}} \mathbf{0}_{\mathbb{N}} \equiv m$. Природно се намеће питање: Да ли важи $\mathbf{0}_{\mathbb{N}} +_{\mathbb{N}} m \equiv m$? Јасно је да одговор на ово

питање треба да буде позитиван, али то није случај у интуиционистичкој теорији типова. Тиме долазимо до фундаменталног проблема интуиционистичке теорије типова: Шта значи да су елементи некот типова: Шта значи да су елементи некот типова:

Како расуђивачка једнакост не може описати све врсте једнакости, потребно је дефинисати $uc\kappa ashy$ $jeghakoc\overline{w}$ (енгл. propositional equality) која тврди да ће два елемента x,y:A бити исказно једнака. Исказна једнакост је исказ, и по Кари–Хавардовој интерпретацији представља неки тип, а како зависи од два елемента типа A мора бити фамилија типова. Исказне једнакости другачије називамо tipovi identiteti (енгл. identity types), и обележавамо као $Id_A:A\to A\to \mathcal{U}$. За два конкретна елементе x,y:A, $Id_A(x,y)$ обележавамо и као x=A у и кажемо да су x и y jeghaku или uckasho jeghaku.

У хомотопној теорији типова, уколико интерпретирамо тип као простор, и елементе типа као тачке тог простора, онда елементе типа $x =_A y$ можемо интерпретирати као $\bar{u}y\bar{w}abe$ или еквиваленције између тачака x и y у простору A. Као што је могуће да између две тачке у простору постоји више различитих путања, тако је могуђе да постоји више од једног сведока једнакости $x =_A y$. Другим речима, $x =_A y$ се може сматрати као тип $ugen\bar{w}u\phi ukauuja$ елемената x и y, и може постојати више начина на који x и y могу да се $ugen\bar{w}u\phi ukyjy$.

Слика 2.3: Геометријска репрезентација типова идентитета.

Ако је A тип и ако су дати елементи x, y : A у контекста Γ , онда можемо формирати тип идентитета $x =_A y$ кога ће настањивати путање, еквиваленција или идентификације. Основна идентификација коју можемо да констручишемо је $pe \phi$ лексија

$$\mathsf{refl}_x : x =_A x$$

која тврди да је било који елемент x:A једнак самом себи. Рефлексију refl_x , у хомотопном смислу, можемо посматрати као константном путањом у тачки

x:A. Формално, начин формирања и конструисања типова идентитета дат је следећом спецификацијом.

Уколико су два елемента x,y:A расуђивачки једнака, тј. важи $x\equiv_A y$, онда су и исказно једнака и важи $\text{refl}_x:x=_A y$. Ово је добро засновано како је $\text{refl}_x:(x=_A x)\equiv(x=_A y)$ јер важи $x\equiv_A y$.

Индукција путање

$$\begin{aligned} & \Gamma, x: A, y: A, p: x =_A y \vdash P(x,y,p) \text{ type} \\ & \underbrace{\Gamma \vdash f: \prod_{(x:A)} P(x,x, \mathsf{refl}_x)}_{\Gamma \vdash \mathsf{ind}_{=}: \prod_{(x,y:A)} \prod_{(p:x=_Ay)} P(x,y,p)} \\ & \underbrace{\Gamma, x: A, y: A, p: x =_A y \vdash P(x,y,p)}_{\Gamma, x: A \vdash \mathsf{ind}_{=}(x,x, \mathsf{refl}_x) \equiv f(x): P(x,x, \mathsf{refl}_x) \end{aligned}$$

Једно од кључних питања је шта оправдава индукцију путањом? Другим речима, зашто ће P(x,y,p) важити за било које тачке x,y:A и било коју путању $p:x=_Ay$ уколико важи $P(x,x,\text{refl}_x)$ за било коју тачку x:A? Клучно запажање лежу и томе да типови идентитета нису индуктивни тип, већ да су индуктивна фамилија типова. То значи да индукција путањом тврди да је фамилија типова $x=_Ay$, где су x и y слободне тачке простора A, индуктивно дефинисана константном путањом refl_x . Односно, $\sum_{(x,y:A)}(x=_Ay)$ је индуктивно генерисан константним путањама у свакој такчи x:A. Битно је напоменути да су обе тачке слободне (може само једна бити фуксирана, али не и обе) јер то доводи до доказа о јединствености идентификација.

Слика 2.4: Геометријска репрезентација индукције путањом.

Особине типова идентитета

цију

Лема 1. Нека је A $\overline{u}u\overline{u}$ y кон \overline{u} екс \overline{u} у Γ . Тада можемо конс \overline{u} руиса \overline{u} и функцију

$$\mathsf{inv}_A: \prod_{(x,y:A)} (x =_A y) \to (y =_A x)$$

индукцијом $\bar{u}y\bar{w}$ ање $p: x=_A y$ као $\operatorname{inv}_A(x,x,\operatorname{refl}_x):\equiv \operatorname{refl}_x$. Функцију inv_A називамо инверз путањи. Чес \bar{w} о, за да \bar{w} у $\bar{u}y\bar{w}$ ању $p: x=_A y$, њен инверз означавамо са $p^{-1}:\equiv \operatorname{inv}_A(x,y,p)$.

Доказ. Да би констурисали елемент типа $\prod_{(x,y:A)}(x=_Ay) \to (y=_Ax)$, конструишемо функцију

$$f(x): \prod_{(y:A)} (x =_A y) \to (y =_A x)$$

за било који елемент x:A. По индукцији путање $p:x=_Ay$ довољно је конструисати путању

$$f(x, x, \mathsf{refl}_x) : x =_A x$$

за било који елемент x:A. Конструкција ове путање је тривијална и због тога узимамо да је $f(x,x,\mathsf{refl}_x) :\equiv \mathsf{refl}_x$. Коначно, имамо да је

$$\mathsf{inv}_A(x, x, \mathsf{refl}_x) :\equiv \mathsf{refl}_x$$

Лема 2. Нека је A $\overline{u}u\overline{u}$ y кон \overline{u} екс \overline{u} у Γ . Taga можемо конс \overline{u} руиса \overline{u} и функ-

$$\mathsf{conc}_A : \prod_{(x,y,z:A)} (x =_A y) \to (y =_A z) \to (x =_A z)$$

23

индукцијом $\bar{u}y\bar{u}$ ање $p: x =_A y$ као $\mathsf{conc}_A(x,x,z,\mathsf{refl}_x,q) :\equiv q$. Функцију conc_A називамо надовезивање путања. Чес \bar{u} о, за да \bar{u} е $\bar{u}y\bar{u}$ ање $p: x =_A y$ и $q: y =_A z$, надовезану $\bar{u}y\bar{u}$ ању о \bar{u} начавамо са $p\cdot q: \equiv \mathsf{conc}_A(x,y,z,p,q)$.

Доказ. Прво конструишемо функцију

$$f(x): \prod_{(y:A)} (x =_A y) \to \prod_{(z:A)} (y =_A z) \to (x =_A z)$$

за било који елемент x:A. По индукцији путање $p:(x=_Ay)$ довољно је конструисати функцију

$$f(x, x, \mathsf{refl}_x) : \prod_{(z:A)} (x =_A z) \to (x =_A z)$$

за било који елемент x:A. Даље, довољно је конструисати функцију

$$f(x, x, \operatorname{refl}_x, z) : (x =_A z) \to (x =_A z)$$

за било које елементе x, z: A. Конструисање ове функције је тривијална и због тога имамо да је $f(x, x, \text{refl}_x, z, q) :\equiv q$. Коначно, имамо да је

$$\mathsf{conc}_A(x,x,z,\mathsf{refl}_x,q) :\equiv f(x,x,\mathsf{refl}_x,z,q) :\equiv q.$$

Лема 3. Нека је A $\overline{u}u\overline{u}$, нека су елемен $\overline{u}u$ x, y, z, w : A u нека су $\overline{u}y\overline{u}$ ање $p: x =_A y, q: y =_A z \ u \ r: z =_A w \ y$ кон \overline{u} екс \overline{u} у Γ . Тада важи:

- (i) $\operatorname{refl}_x \cdot p = p \ u \ p \cdot \operatorname{refl}_u = p$
- (ii) $p^{-1} \cdot p = \operatorname{refl}_{y} u p \cdot p^{-1} = \operatorname{refl}_{x}$
- (iii) $(p^{-1})^{-1} = p$
- (iv) $(p \cdot q) \cdot r = p \cdot (q \cdot r)$
- (i) Доказ. Желимо да конструишемо путању

$$\mathsf{unit}_\mathsf{l}(p) : \mathsf{refl}_x \cdot p = p,$$

$$\operatorname{unit}_{\mathbf{r}}(p) : p \cdot \operatorname{refl}_{y} = p.$$

Индукцијом по путањи $p: x =_A y$ довољно је конструисати

$$\operatorname{unit}_{\mathsf{I}}(\operatorname{refl}_x) : \operatorname{refl}_x \cdot \operatorname{refl}_x = \operatorname{refl}_x,$$

 $\operatorname{unit}_{\mathsf{r}}(\operatorname{refl}_x) : \operatorname{refl}_x \cdot \operatorname{refl}_x = \operatorname{refl}_x.$

Обе путање је тривијално конструисати као refl_r .

(ii) Доказ. Желимо да конструишемо путању

$$\operatorname{inv}_{\mathsf{I}}(p): p^{-1} \cdot p = \operatorname{refl}_{y},$$

 $\operatorname{inv}_{\mathsf{I}}(p): p \cdot p^{-1} = \operatorname{refl}_{x}.$

Индукцијом по путањи $p: x =_A y$ довољно је конструисати путању

$$\operatorname{inv}_{\mathsf{I}}(\operatorname{refl}_x) : \operatorname{refl}_x^{-1} \cdot \operatorname{refl}_x = \operatorname{refl}_x,$$

 $\operatorname{inv}_{\mathsf{r}}(\operatorname{refl}_x) : \operatorname{refl}_x \cdot \operatorname{refl}_x^{-1} = \operatorname{refl}_x.$

Али како је $\operatorname{refl}_x^{-1} \equiv \operatorname{refl}_x$ претходне путање се своде на оне као и у претходном доказу. Због тога обе путање тривијално конструишемо као $\operatorname{refl}_{\operatorname{refl}_x}$.

(iii) *Доказ*. Желимо да конструишемо путању

doubleInv
$$(p) : (p^{-1})^{-1} = p$$
.

Индукцијом по путањи $p: x =_A y$ довољно је конструисати путању

$$\mathsf{doubleInv}(\mathsf{refl}_x) : (\mathsf{refl}_x^{-1})^{-1} = \mathsf{refl}_x.$$

Али како је $(\mathsf{refl}_x^{-1})^{-1} \equiv \mathsf{refl}_x^{-1} \equiv \mathsf{refl}_x$ претходна путања се своди на $\mathsf{refl}_x = \mathsf{refl}_x$. Због тога путању тривијално конструишемо као $\mathsf{refl}_{\mathsf{refl}_x}$.

(iv) Доказ. Желимо да конструишемо путању

$$\mathsf{assoc}_A(p,q,r):(p\cdot q)\cdot r=p\cdot (q\cdot r).$$

Индукцијом по путањи $p: x =_A y$ довољно је конструисати путању

$$\mathsf{assoc}_A(\mathsf{refl}_x,q,r) : (\mathsf{refl}_x \cdot q) \cdot r = \mathsf{refl}_x \cdot (q \cdot r)$$

Али како је $\mathsf{refl}_x \cdot q \equiv q$ и $\mathsf{refl}_x \cdot (q \cdot r) \equiv q \cdot r$ претходна путања се своди на

$$\mathsf{assoc}_A(\mathsf{refl}_x, q, r) : q \cdot r = q \cdot r.$$

Због тога путању тривијално конструишемо као $\mathsf{assoc}_A(\mathsf{refl}_x,q,r) :\equiv \mathsf{refl}_{q\cdot r}.$

Једнакости	Хомотопија	∞ -Групоид
рефлексивност	константна путања	идентички морфизам
симетричност	обртање путања	инверз морфизма
транзитивност	надовезивање путања	компоизиција морфизама

Табела 2.2: Разне интерпретације особина типова идентитета

Слика 2.5: Групоидална структура типова.

Акције над путањама

Лема 4. Нека су A и B $\overline{u}u\overline{u}osu$, и нека је $f:A\to B$ функција у кон \overline{u} екс \overline{u} у Γ . Тада можемо конс \overline{u} руиса \overline{u} и функцију

$$\mathsf{ap}_f: \prod_{(x,y:A)} (x =_A y) \to (f(x) =_B f(y))$$

индукцијом $\bar{u}y\bar{u}$ ање $p: x=_A y$ као $\mathsf{ap}_f(\mathsf{refl}_x)=\mathsf{refl}_{f(x)}$. Функцију ap_f називамо акција над путањама функције $f: A \to B$.

 \mathcal{A} оказ. Индукцијом по путањи $p: x =_A y$ треба конструисати путању

$$\mathsf{ap}_f(x,x,\mathsf{refl}_x): f(x) =_B f(x).$$

Тривијално конструишемо ову путању као $\mathsf{ap}_f(x,x,\mathsf{refl}_x) :\equiv \mathsf{refl}_{f(x)}.$

Лема 5. Нека су A, B и C $\overline{w}u\overline{u}oвu$, нека су елемен $\overline{w}u$ x, y, z : A и нека су $\overline{u}y\overline{w}a$ ве $p: x =_A y$ и $q: y =_A z$ у кон $\overline{w}e$ кс $\overline{w}y$ Γ . Тада важи:

ГЛАВА 2. ИНТУИЦИОНИСТИЧКА ТЕОРИЈА ТИПОВА

$$(i) \ \operatorname{ap}_f(p \cdot q) = \operatorname{ap}_f(p) \cdot \operatorname{ap}_f(q)$$

(ii)
$$ap_f(p^{-1}) = ap_f(p)^{-1}$$

$$(iii) \operatorname{ap}_q(\operatorname{ap}_f(p)) = \operatorname{ap}_{q \circ f}(p)$$

$$(iv) \operatorname{\mathsf{ap}}_{\mathsf{id}_A}(p) = p$$

Доказ. Доказ изостављамо како је сличан претходним.

Транспорт

Лема 6. Нека је A $\bar{u}u\bar{u}$ u B фамилија $\bar{u}u\bar{u}$ ова над A y кон \bar{u} екс \bar{u} у Γ . Тада можемо конс \bar{u} руиса \bar{u} и функцију

$$\mathsf{tr}_B:\prod_{(x,y:A)}(x=_Ay) o B(x) o B(y)$$

индукцијом $\bar{u}y\bar{u}$ ање $p: x =_A y$ као $\operatorname{tr}_B(\operatorname{refl}_x) :\equiv \operatorname{id}_{B(x)}$. Функцију tr_B називамо транспорт над B.

Доказ. Индукцијом по путањи $p: x =_A y$ треба конструисати функцију

$$\operatorname{tr}_B(x, x, \operatorname{refl}_x) \to B(x) \to B(x).$$

Тривијално конструишемо ову путању као $\operatorname{tr}_B(x,x,\operatorname{refl}_x) :\equiv \operatorname{id}_{B(x)}.$

Друге врсте једнакости

Дефиниција 2.7.1. Простиор кодова над природним бројевима \mathbb{N} се може дефинисати као бинарна релација $\mathsf{code}_{\mathbb{N}}: \mathbb{N} \to \mathbb{N} \to \mathcal{U}_0$ тако да задовољава следеће расуђивачке једнакости:

$$\begin{aligned} \operatorname{code}_{\mathbb{N}}(\mathbf{0}_{\mathbb{N}},\mathbf{0}_{\mathbb{N}}) &\equiv \mathbb{1} \\ \operatorname{code}_{\mathbb{N}}(\mathbf{0}_{\mathbb{N}},\operatorname{succ}_{\mathbb{N}}(m)) &\equiv \mathbb{0} \\ \operatorname{code}_{\mathbb{N}}(\operatorname{succ}_{\mathbb{N}}(n),\mathbf{0}_{\mathbb{N}}) &\equiv \mathbb{0} \\ \operatorname{code}_{\mathbb{N}}(\operatorname{succ}_{\mathbb{N}}(n),\operatorname{succ}_{\mathbb{N}}(m)) &\equiv \operatorname{code}_{\mathbb{N}}(n,m) \end{aligned}$$

Лема 7. Прос \overline{w} ор кодова је рефлексивна релација, \overline{w} ј. можемо конс \overline{w} руиса \overline{w} и функцију

$$\mathsf{reflcode}_{\mathbb{N}}: \prod_{(n:\mathbb{N})} \mathsf{code}_{\mathbb{N}}(n,n).$$

Доказ. Функцију конструишемо индукцијом по $n:\mathbb{N}$ као

$$\begin{split} \operatorname{reflcode}_{\mathbb{N}}(\mathbf{0}_{\mathbb{N}}) : &\equiv \star \\ \operatorname{reflcode}_{\mathbb{N}}(\operatorname{succ}_{\mathbb{N}}(n)) : &\equiv \operatorname{reflcode}_{\mathbb{N}}(n). \end{split}$$

Лема 8. За било које \bar{u} риродне бројеве $n,m:\mathbb{N}$ важи $m=_{\mathbb{N}}n \to \mathsf{code}_{\mathbb{N}}(m,n)$ $u \; \mathsf{code}_{\mathbb{N}}(m,n) \to m=_{\mathbb{N}}n.$

Доказ. Прво конструишемо

$$\mathsf{encode}_{\mathbb{N}}: \prod_{(m,n:\mathbb{N})} m =_{\mathbb{N}} n \to \mathsf{code}_{\mathbb{N}}(m,n).$$

Индукцијом по путањи $p: m =_{\mathbb{N}} n$ треба конструисати

$$encode_{\mathbb{N}}(m, m, refl_m) : code_{\mathbb{N}}(m, m).$$

Што смо констуисали у претходној леми, тако да $\mathsf{encode}_{\mathbb{N}}(m,m,\mathsf{refl}_m) :\equiv \mathsf{reflcode}_{\mathbb{N}}(m)$. Даље конструишемо

$$\mathsf{decode}_{\mathbb{N}}: \prod_{(m,n:\mathbb{N})} \mathsf{code}_{\mathbb{N}}(m,n) \to m =_{\mathbb{N}} n$$

индукцијом по $m:\mathbb{N}$ и $n:\mathbb{N}$. У случају када су оба природна броја нуле, онда $\mathrm{decode}_{\mathbb{N}}(0_{\mathbb{N}},0_{\mathbb{N}},c):0_{\mathbb{N}}=_{\mathbb{N}}0_{\mathbb{N}}$ конструишемо као $\mathrm{decode}_{\mathbb{N}}(0_{\mathbb{N}},0_{\mathbb{N}},c):\equiv\mathrm{refl}_{0_{\mathbb{N}}}$. У случају када је тачно један од њих нула, тада конструишемо елемент типа $0\to m=_{\mathbb{N}}n$. Овај елемент је тривијално конструисати правилом индукције празног типа. На крају, у случају када су оба различита од нуле, треба конструисати

$$\mathsf{code}_{\mathbb{N}}(\mathsf{succ}_{\mathbb{N}}(m), \mathsf{succ}_{\mathbb{N}}(n)) \to \mathsf{succ}_{\mathbb{N}}(m) =_{\mathbb{N}} \mathsf{succ}_{\mathbb{N}}(n).$$

Ову конструкцију изводимо на следећи начин:

$$\operatorname{code}_{\mathbb{N}}(\operatorname{succ}_{\mathbb{N}}(m),\operatorname{succ}_{\mathbb{N}}(n)) \equiv \operatorname{code}_{\mathbb{N}}(m,n)$$
 (деф. 2.7.1)
 $\to m =_{\mathbb{N}} n$ (decode _{\mathbb{N}} (m,n))
 $\to \operatorname{succ}_{\mathbb{N}}(m) =_{\mathbb{N}} \operatorname{succ}_{\mathbb{N}}(n)$. (ap_{succ _{\mathbb{N}})}

Коначно, завршавамо конструкцију са

$$\mathsf{decode}_{\mathbb{N}}(\mathsf{succ}_{\mathbb{N}}(m),\mathsf{succ}_{\mathbb{N}}(n),c) :\equiv \mathsf{ap}_{\mathsf{succ}_{\mathbb{N}}}(\mathsf{decode}_{\mathbb{N}}(m,n,c)).$$

Глава 3

Агда

Глава 4

Закључак

Биографија аутора

Вук Стефановић Караџић (*Тршић*, 26. окшобар/6. новембар 1787. — Беч, 7. фебруар 1864.) био је српски филолог, реформатор српског језика, сакупљач народних умотворина и писац првог речника српског језика. Вук је најзначајнија личност српске књижевности прве половине XIX века. Стекао је и неколико почасних доктората. Учествовао је у Првом српском устанку као писар и чиновник у Неготинској крајини, а након слома устанка преселио се у Беч, 1813. године. Ту је упознао Јернеја Копитара, цензора словенских књига, на чији је подстицај кренуо у прикупљање српских народних песама, реформу ћирилице и борбу за увођење народног језика у српску књижевност. Вуковим реформама у српски језик је уведен фонетски правопис, а српски језик је потиснуо славеносрпски језик који је у то време био језик образованих људи. Тако се као најважније године Вукове реформе истичу 1818., 1836., 1839., 1847. и 1852.