## NODEA Note

## **Basic Knowledge**

**Def of ODE & ODEs**: (1st order) ODE:  $\frac{dy}{dt} = f(t,y)$  & ODEs:  $\frac{dy}{dt} = \mathbf{f}(t,\mathbf{y})$ ,  $\mathbf{y} = (y_1,...,y_d)^T$ ,  $\mathbf{f}(t,\mathbf{y}) = (f_1(t,\mathbf{y}),...,f_d(t,\mathbf{y}))^T$  **Autonomous**:  $\frac{dy}{dt} = \mathbf{f}(\mathbf{y}) \Rightarrow \text{ autonomous ODE}(\mathbf{s})$ .  $|| \Downarrow \text{ New Autonomous ODEs}: \frac{dy}{ds} = \mathbf{f}(y_{d+1},\mathbf{y}) \text{ and } \frac{dy_{d+1}}{ds} = 1$ • **Change to Autonomous**: For  $\frac{dy}{dt} = \mathbf{f}(t,\mathbf{y})$ . Let  $y_{d+1} = t$  and *new* independent variable s s.t.  $\frac{dt}{ds} = 1$ 

**Linearity**: ODE:  $\frac{dy}{dt} = f(t, y)$  is linearity if f(t, y) = a(t)y + b(t) || ODEs: If each ODE is linear, then the ODEs are linear.

**Picard's Theorem:** If f(t,y) is continuous in  $D := \{(t,y) : t_0 \le t \le T, |y-y_0| < K\}$  and  $\exists L > 0$  (Lipschitz constant) s.t.

 $\forall (t,u), (t,v) \in D \quad |f(t,u)-f(t,v)| \leq L|u-v| \text{ (ps:Can use MVT)}. \text{ And Assume that } M_f(T-t_0) \leq K, M_f := \max\{|f(t,u)|: (t,u) \in D\}$  $\Rightarrow$  **Then**,  $\exists$  a unique continuously differentiable solution y(t) to the IVP  $\frac{dy}{dt} = f(t,y)$ ,  $y(t_0) = y_0$  on  $t \in [t_0,T]$ .

**Existence & Uniqueness Theorem**: IVP  $\frac{d\mathbf{y}}{dt} = \mathbf{f}(t, \mathbf{y}), \mathbf{y}(t_0) = \mathbf{y}_0$ . If f(t, y) and  $\frac{\partial f}{\partial y_i}$  are continuous in a neighborhood of  $(t_0, \mathbf{y}_0)$ . ⇒ **Then**,  $\exists I := (t_0 - \delta, t_0 + \delta)$  s.t.  $\exists$  a unique continuously differentiable solution  $\mathbf{y}(t)$  to the IVP on  $t \in I$ .

# Acknowledge

| Notation                | Meaning                                                                               | Notation               | Meaning                                 |
|-------------------------|---------------------------------------------------------------------------------------|------------------------|-----------------------------------------|
| [ <i>a</i> , <i>b</i> ] | Approximate function for $t \in [a, b]$                                               | $t_0 = a \mid t_N = b$ | Assume that $t_0 = a$ , $t_N = b$       |
| N                       | number of timesteps (i.e. Break up interval [a, b] into N equal-length sub-intervals) | h                      | stepsize $(h = \frac{b-a}{N})$          |
| $t_i$                   | Define $N + 1$ points: $t_0, t_1,, t_N$                                               | $t_m$                  | $t_m = a + h \cdot m = t_0 + h \cdot m$ |
| $y_i$                   | Approximation of $y$ at point $t = t_i$ (Except $y_0$ )                               | $y(t_i)$               | Exact value of $y$ at point $t = t_i$   |

# **Euler's Method and Taylor Series Method**

**Euler's Method Algorithm**: Approximate ODE  $\frac{dy}{dt} = f(t, y), y(t_0) = y_0$  with number of steps N. (Similarly for ODEs)  $\Rightarrow$  **for** n = 0, 1, 2, ..., N-1:  $y_{n+1} = y_n + hf(t_0 + nh, y_n) = y_n + hf(t_n, y_n)$  **end** (ps:  $\Downarrow$  Can get

**Boundedness Theorem:** For  $\frac{dy}{dt} = f(t, y), y(a) = y_0$  and suppose there exists a unique, twice differentiable, solution y(t) on [a, b].

Suppose: y is continuous and  $\left|\frac{\partial f}{\partial y}\right| \leq L$ .  $\Rightarrow$  the solution  $y_n$  given Euler's method satisfies:  $e_n = |y_n - y(t_n)| \leq Dh$ ,  $D = e^{(b-a)L} \frac{M}{2L}$ 

• **Lemma**: If  $v_{n+1} \le Av_n + B$ , then  $v_n \le A^n v_0 + \frac{A^n - 1}{A - 1}B$  If  $v_n = e_n := y_n - y(t_n)$ , then A = 1 + hL,  $B = h^2 M/2$  (suppose |y''| < M) **Order Notation (** $\mathcal{O}$ ): we write  $z(h) = \mathcal{O}(h^p)$  if  $\exists C, h_0 > 0$  s.t.  $|z| \le Ch^p$ ,  $0 < h < h_0$ 

**Flow Map (** $\Phi$ ,  $\Psi$ **)**:  $\Phi_{t_0,h}(y_0) = y(t_0 + h)$  Clearly,  $\Phi(t_n + h) = y(t_n + h) = \Phi_h(y(t_n)) = y(t_{n+1})$ .

 $\cdot \ \Psi_{t_n,h}(y_n) = y_{n+1} \coloneqq \text{Numerical method for ODE} \quad \text{Clearly, } \Psi(t_n+h) = y_{n+1} = \Psi_h(y_n)$ 

**Taylor Series Method**: Approximate ODE  $\frac{dy}{dt} = f(t,y)$ ,  $y(t_0) = y_0$  with *n-order Methods*: 用 Taylor Series 在  $t_0 + h$  处展开保留到 n 阶

 $\Phi_{t,h}(y) = y + hf(t,y) + \frac{1}{2}h^2[f_t(t,y) + f_y(t,y)f(t,y)] + \frac{1}{6}y'''(t,y)h^3 + \cdots \qquad \text{(For one variable } y)$   $\cdot \text{ps: Taylor Series: } y(t_0 + h) = y(t_0) + hy'(t_0) + \frac{h^2}{2}y''(t_0) + \cdots + \frac{h^{n-1}}{(n-1)!}y^{(n-1)}(t_0) + \frac{h^n}{n!}y^{(n)}(t^*), t^* \in [t,t+h] \qquad \text{ps: } y' = f,y'' = f_t + f_y f_t$ 

# Convergence of One-Step Methods consider for autonomous y' = f(y)

# 4.1 Convergence | Consistent | Stable

**Global Error**: global error after n steps:  $e_n := y_n - y(t_n)$  **Local Error**: For *one-step* method is:  $le(y,h) = \Psi_h(y) - \Phi_h(y)$ 

**Consistent**: If  $||le(y,h)|| \le Ch^{p+1} (\le \mathcal{O}(h^{p+1}))$ , C > 0.  $\Rightarrow$  Consistent at order p. **Stable**: If  $||\Psi_h(u) - \Psi_h(v)|| \le (1 + h\hat{L})||u - v||$ 

 $\textbf{Convergent} \text{: A method is convergent if:} \ \forall \ T, \lim_{h \to 0, \ h = T/N} \max_{n = 0, 1, \dots, N} ||e_n|| = 0 \\ \qquad \qquad \ \ \, \Downarrow \text{ Then the global error satisfies: } \max_{n = 0, 1, \dots, N} ||e_n|| = \mathcal{O}(h^p) \text{ } \text{ }_{\text{P-th order}}$ 

**Convergence of One-Step Method**: For y' = f(y), and a one-step method  $\Psi_h(y)$  is  $^1$  consistent at order p and  $^2$  stable with  $\hat{L}$   $\uparrow \uparrow \uparrow$ . (ps: $C = \frac{C}{\hat{L}}(e^{T\hat{L}} - 1)$ )

#### More One-Step Methods | Runge-Kutta Methods | Collocation 4.2

**Construction of More General one-step Method**: For y' = f(y),  $y(t_0) = y_0 \Rightarrow y(t+h) - y(t) = \int_t^{t+h} f(y(\tau)) d\tau$ 

Trapezoidal Method:  $y_{n+1} = y_n + \frac{h}{2}(f(y_n) + f(y_{n+1}))$  Midpoint Method:  $y_{n+1} = y_n + hf(\frac{y_n + y_{n+1}}{2})$ 

One-Step Collocation Methods (By Lagrange Interpolating Polynomials):

1. Lagrange Interpolating Polynomials:  $\ell_i(x) = \prod_{j=1, j \neq i}^s \frac{x-c_j}{c_i-c_j} \in \mathbb{P}_{s-1}$  where  $c_i \in F \in \{\mathbb{Q}, \mathbb{R}, \mathbb{C}\}$ 

 $\Rightarrow$  **Polynomial Interpolation**:  $\forall p(x) \in \mathbb{P}_s$  with  $p(c_i) = g_i \in F \Rightarrow \exists! \ p(x) = \sum_{i=1}^s g_i \ell_i(x)$  (Can be proved by Honour Algebra)

2. Quadrature Rule: If  $g(t) \in \mathbb{P}_{p-1} \mid \int_{t_0}^{t_0+h} g(t) dt = \int_0^1 g(t_0+hx) dx \approx h \sum_{i=1}^s b_i g(t_0+hc_i), b_i := \int_0^1 \ell_i(x) dx$  ps:  $c_i \bowtie [0,1] + px = ph$ 

3. Collocation Methods: For:  $y(t_0) = y_0$ ,  $y'(t_0 + c_i h) = f(y(t_0 + c_i h))$  ps:  $c_i \bowtie [0,1] = p \times n = 0$  Let:  $a_{ij} := \int_0^{c_i} \ell_j(x) dx$  and  $b_i := \int_0^1 \ell_i(x) dx$  $\Rightarrow F_i = f(y_n + h \sum_{j=1}^{s} a_{ij}F_j) \text{ and } y_{n+1} = y_n + h \sum_{i=1}^{s} b_iF_i$ where  $F_i := y'(t_0 + c_i h)$ 

 $\cdot$  **Remark**: For choice of  $c_i$ : The optimal choice is attained by *Gauss-Legendre collocation methods*.

**Runge-Kutta Methods**: Let y' = f(t,y) **Stage Values**:  $Y_i = y_n + h \sum_{j=1}^s a_{ij} f(Y_j)$   $i \in \{1,...,s\}$   $F_i = f(Y_i)$ 1. The RK method is the form:  $y_{n+1} = y_n + h \sum_{i=1}^s b_i f(Y_i(y_n,h))$  for some values of  $b_i, a_{ij}, s, c_i$  for Autonomous:  $c_i = \sum_{j=1}^s a_{ij}$ 

2. Flow-map:  $\Psi_h(y) = y + h \sum_{i=1}^{s} b_i f(Y_i(y, h))$ ps:weights:  $b_i$ ; internal coefficients:  $a_{ij}$ 

3. We can using **Butcher Table** to represent the RK method (Appendix) **Explicit**:  $a_{ij} = 0$  for  $j \ge i$  (严格下三角行) **Implicit**:  $\exists a_{ij} \ne 0$  for  $j \ge i$  (Not Explicit)

## 4.3 Accuracy of RK Method | Order Condition

**Some Notations**: If  $\mathbf{y} = f'(\mathbf{y})$  where  $f(\mathbf{y}) : \mathbb{R}^d \to \mathbb{R}^d$ . Def  $f' = (\frac{\partial f_i}{\partial y_j}), 1 \le i \le d, 1 \le j \le d$  (frigh)  $f'' = (\frac{\partial^2 f_i}{\partial y_j \partial y_k}), 1 \le i \le d, 1 \le j, k \le d$   $\cdot$  Def:  $f''(\mathbf{a}, \mathbf{b}) = \sum_{j=1}^d \sum_{k=1}^d \frac{\partial^2 f_i}{\partial y_j \partial y_k} a_j b_k \quad | y' = f \quad y'' = \sum_{j=1}^d \frac{\partial f_i}{\partial y_j} f_j = f'f \quad y''' = \sum_{j=1}^d \sum_{k=1}^d \frac{\partial^2 f_i}{\partial y_j \partial y_k} y_j'(t) y_k'(t) + \sum_{j=1}^d \frac{\partial f_j}{\partial y_j} y_j''(t) = f''(f, f) + f'f'f'$ 

 $\Phi_h(y) = y + hf + \frac{h^2}{2}f'f + \frac{h^3}{6}[f''(f,f) + f'f'f] + \mathcal{O}(h^4)$ 

**Order Condition**: RK method:  $y_{n+1} = y_n + h \sum_{i=1}^s b_i f(Y_i)$ , Let  $z(h) = \Phi_h(y)$   $\Rightarrow$  If  $z'(0) = y', z''(0) = y'', ..., z^{(n)} = y^{(n)} \Rightarrow$  Convergent at order n

• Order 1:  $\sum_{i=1}^{s} b_i = 1$  Order 2: (add)  $\sum_{i=1}^{s} b_i c_i = \frac{1}{2}$  Order 3: (add)  $\sum_{i=1}^{s} b_i c_i^2 = \frac{1}{3}$  and  $\sum_{i=1}^{s} \sum_{j=1}^{s} b_i a_{ij} c_j = \frac{1}{6}$ 

# Stability of Runge-Kutta Methods consider for autonomous y' = f(y)

## **Basic Definition for Stability**

**Fixed Point-Exact**: For ODEs  $\frac{dy}{dt} = f(y)$ , point  $y^*$  is fixed point if  $f(y^*) = 0 \Leftrightarrow \Phi_t(y^*) = y^*$  Set of Fixed Points:  $\mathcal{F} = \{y^* \in \mathbb{R}^d : f(y^*) = 0\}$ 

**Fixed Point-Numerical**: *One-step* method  $\Psi_h(y)$ , point  $y^*$  is fixed point if  $y^* = \Psi_h(y^*)$  **Set of Fixed Points**:  $\mathcal{F}_h = \{y^* \in \mathbb{R}^d : y^* = \Psi_h(y^*)\}$ **Remark**:  $\mathcal{F}_h \subseteq \mathcal{F}$  is NOT always true.

**Theorem**: For Runge-Kutta method,  $\mathcal{F} \subseteq \mathcal{F}_h$ · the point in  $\mathcal{F}_h \setminus \mathcal{F}$  is called **spurious fixed point**. As  $h \to \infty$ , the *spurious* fixed points will tends to infinity.

**Stability of Fixed Points**: Fixed point  $y^*$ , the ODEs  $\frac{dy}{dt} = f(y)$  with  $y(0) = y_0$ .

- 1. **Stable in the sense of Lyapunov**: Fixed point  $y^*$  is stable if  $\forall \varepsilon > 0$ ,  $\exists \delta > 0$  s.t.  $||y_0 y^*|| < \delta \Rightarrow ||y(t; y_0) y^*|| < \varepsilon \ \forall t > 0$
- 2. **Asymptotically Stable**: Fixed point  $y^*$  is asymptotically stable if  $\exists \delta > 0$  s.t.  $||y_0 y^*|| < \delta \Rightarrow \lim_{t \to \infty} ||y(t; y_0) y^*|| = 0$
- 3. **Unstable**: Fixed point  $y^*$  is unstable if it's not stable. i.e.  $\exists \epsilon > 0, \forall \delta > 0$  s.t.  $||y_0 y^*|| < \delta \Rightarrow ||y(t) y^*|| \ge \varepsilon$  for some t.

#### 5.2 **Classification of Fixed Points**

**Linearization Theorem**: Suppose  $\frac{dy}{dt} = f(y)$ ,  $y^*$  is a fixed point. Let  $J = f'(y^*)$  be the Jacobian matrix of f at  $y^*$ .

- 1. If  $\forall$  eigenvalues of J in left complex half plane, then  $y^*$  is **asymptotically stable**.
- 2. If  $\exists$  eigenvalues of J in right complex half plane, then  $y^*$  is **unstable**.

(Following is a special cases from HDE)

**Generalized Eigenvectors**: If  $\lambda$  is an repeated eigenvalue with eigenvalue  $\xi$  then:

Generalized Eigenvectors:  $\eta$  s.t.  $(A - \lambda I)\eta = \xi$ More generally L  $(A - \lambda I)\eta_n = \eta_{n-1}$ 

Classification of Critical Points at  $y^*$  (Linear):  $r_1, r_2$  be sol of  $det(J - \lambda I) = 0$ .  $|| \mathbb{C} : r = \lambda \pm i\mu(\mu > 0)$ If J constant, write sol:  $\mathbf{x} = c_1 e^{r_1 t} \xi_1 + c_2 e^{r_2 t} \xi_2$  || GM = 1:  $\mathbf{x} = c_1 e^{rt} \xi + c_2 e^{rt} (t\xi + \eta)$   $\int_{J} = \begin{pmatrix} \partial_x F(\mathbf{x}_0) & \partial_y F(\mathbf{x}_0) \\ \partial_x G(\mathbf{x}_0) & \partial_y G(\mathbf{x}_0) \end{pmatrix} \text{If } f(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} F(\mathbf{x}, \mathbf{y}) \\ G(\mathbf{x}, \mathbf{y}) \end{pmatrix}$ 

| R/C | Condition    Stability                                   | Type    Name                       | Phase Plane Description                                   | Other                                                                                                                      |                     |
|-----|----------------------------------------------------------|------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------|
| R   | $r_1 < r_2 < 0$    asy.stab                              | N    NSk                           | 向原点, $\xi_2$ 直线, $\xi_1$ 曲线,and $\xi_1$ 周围 $y = \pm x^3$  | $c_2 \neq 0, t \rightarrow \infty$ : $\xi_2$ 主导方向; $c_2 = 0, t \rightarrow \infty$ : $\xi_1$ 主导方向                          | PS:                 |
|     | $r_1 > r_2 > 0$    unstable                              | N    NSo                           | 原点向外, $\xi_2$ 直线, $\xi_1$ 曲线,and $\xi_1$ 周围 $y = \pm x^3$ | $c_1 \neq 0, t \rightarrow \infty$ : $\xi_1$ 主导方向; $c_1 = 0, t \rightarrow \infty$ : $\xi_2$ 主导方向                          | N = Node            |
|     | $r_1 > 0 > r_2 \mid\mid$ unstable                        | SP    SP                           | $t \rightarrow \infty$ , $\xi_1$ 从原点向外, $\xi_2$ 从外向原点     | $t \to \pm \infty :  \mathbf{x}  \to \infty;  t \to \infty : c_1, c_2 \neq 0,  \mathbf{x}  \to \infty, \xi_1 \pm \theta;$  | PN = Proper Node    |
|     |                                                          |                                    | and: 像 $y = \pm \frac{1}{x}$ , 同进同出                       | $t\to\infty: c_2=0,  \mathbf{x} \to\infty, \xi_1\pm \mathbb{R};  t\to\infty: c_1=0,  \mathbf{x} \to0, \xi_2\pm \mathbb{R}$ | IN = Improper       |
|     | $r_1 = r_2 < 0$ , GM=2    asy.stab                       | PN    PN or Stable Star            | 直线 向原点                                                    | 直线, $u_1/u_2$ is $t$ independent                                                                                           | or: Degenerate Node |
|     | $r_1 = r_2 > 0$ , GM=2    unstable                       | PN    PN or Unstable Star          | 直线 从原点向外                                                  | 直线, $u_1/u_2$ is $t$ independent                                                                                           | SP = Saddle Point   |
|     | $r_1 = r_2 < 0$ , GM=1    asy.stab                       | IN (AL:Type: SpP)    IN (Stable)   | S 曲线, 向原点                                                 | $t \rightarrow \infty$ , $ \mathbf{x}  \rightarrow 0$ , $\xi$ 主导 ps: 旋转方向大体和 $\eta + c_2 \xi$ 方向相同                         | SpP = spiral point  |
|     | $r_1 = r_2 > 0$ , GM=1    unstable                       | IN (AL:Type: SpP)    IN (Unstable) | S 曲线, 从原点向外                                               | $t \rightarrow \infty$ , $ \mathbf{x}  \rightarrow \infty$ , $\xi$ 主导 ps: 旋转方向大体和 $\eta + c_2 \xi$ 方向相同                    | or: Focus Point     |
| C   | $\lambda \neq 0, \lambda > 0$    unstable                | SpP    Unstable Focus              | 向外椭圆 (elliptical) 螺旋                                      | $t \to \infty$ , $ \mathbf{x}  \to \infty$ ps: 考虑 $J = (a, b; c, d)$ , 如果 bc>0, 顺时针,如果 bc<0, 逆时针                           | C = Center          |
|     | $\lambda \neq 0, \lambda < 0 \mid \mid asy.stab$         | SpP    Stable Focus                | 向内椭圆 (elliptical) 螺旋                                      | $t$ → ∞, $ \mathbf{x} $ → 0 ps: 考虑 $J = (a, b; c, d)$ , 如果 bc>0, 顺时针, 如果 bc<0, 逆时针                                         | NSk = Nodal Sink    |
|     | $\lambda = 0 \mid \mid \text{stable (AL:Indeterminate)}$ | C (AL:C or SpP)    C               | 椭圆 (elliptical) and 半长轴 ξ 实部方向                            | Bounded trajectory or ∃ Periodic Trajectories                                                                              | NSo = Nodal Source  |

### **Stability of Fixed Points of Maps (Numerical)**

**Definition**: For flow map  $\Psi$  from  $\mathbb{R}^d \to \mathbb{R}^d$ . Def  $y^n(y_0) :=$  the n-th iterate of  $y_0$  under  $\Psi$ . i.e.  $y^n = y_n$ ;  $y_n = \Psi(y_{n-1})$ **Stability of Fixed Points of Maps**: Fixed point  $y^*$ , the map  $\Psi$  with  $y^* = \Psi(y^*)$ .

- 1. **Stable in the sense of Lyapunov**:  $y^*$  is stable if  $\forall \varepsilon > 0$ ,  $\exists \delta > 0$  s.t.  $||y_0 y^*|| < \delta \Rightarrow ||y^n(y_0) y^*|| < \varepsilon \ \forall n \ge 0$
- 2. **Asymptotically Stable**:  $y^*$  is asymptotically stable if  $\exists \delta > 0$  s.t.  $||y_0 y^*|| < \delta \Rightarrow \lim_{n \to \infty} ||y^n(y_0) y^*|| = 0$
- 3. **Unstable**:  $y^*$  is unstable if it's not stable. i.e.  $\exists \epsilon > 0, \forall \delta > 0$  s.t.  $||y_0 y^*|| < \delta \Rightarrow ||y^n(y_0) y^*|| \ge \varepsilon$  for some n. **Spectral Radius**: For matrix K,  $\rho(K) = \max\{|\lambda| : \lambda \text{ is eigenvalue of } K\}$

**Theorem|Spectral Radius**: Let  $z_n = ||K^n y_0||$ , where  $K \in \mathbb{R}^{d \times d}$  is the matrix. Then:

- 1.  $\rho(K) < 1 \Leftrightarrow \lim_{n \to \infty} z_n = 0$
- 2.  $\rho(K) > 1 \Leftrightarrow \lim_{n \to \infty} z_n = \infty$
- 3. If  $\rho(K) = 1$  and eigenvalues of K are semisimple (i.e. No generalized eigenvector), then  $\{z_n\}$  is bounded.

**Theorem**|Connect to Stability: For map  $\Psi$ ,  $y^* = \Psi(y^*)$ . Let  $K = \Psi'(y^*)$ , then:

- 1.  $\rho(K) < 1 \Rightarrow y^*$  is asymptotically stable
- 2.  $\rho(K) > 1 \Rightarrow y^*$  is unstable

### 5.4 Linear Stability of Numerical Methods

**Special Case|Euler Method**: For  $\frac{dy}{dt} = By$ , the Euler method is  $y_{n+1} = (I + hB)y_n$ . where  $\lambda_i$  is eigenvalues of B.

- 1. The origin is *stable* if  $||I + h\lambda_i|| \le 1 \ \forall i$ asymptotically stable if  $||I + h\lambda_i|| < 1 \ \forall i$
- 2. The origin is *unstable* if ||I + hB|| > 1ps: 即  $h\lambda_i$  在复平面上以 z = -1 为圆心, 半径为 1 的圆内 ← 称为 Region of absolute stability **Stability function** *R*, *P*: Let *P* be polynomial function and *R* be rational function.

If RK is *explicit*, then  $y_{n+1} = P(\mu)y_n$ ; If RK is *implicit*, then  $y_{n+1} = R(\mu)y_n$ 

**Stability function**  $R(\mu)$  | **Special Case**: For  $\frac{dy}{dt} = \lambda y$  All RK methods can be written as: where:  $b^T$ , A are from  $Butcher\ Table$ .  $\mathbf{1} = [1,...,1]^T$ 

I.
$$Y_i = y_n + \mu \sum_{j=1}^s a_{ij} Y_j$$
  $(Y = y_n \mathbf{1} + \mu A Y)$   $y_{n+1} = y_n + \mu \sum_{b=1}^s b_i Y_j = y_n + \mu b^T Y$   
II. $R(\mu) = 1 + \mu b^T (I - \mu A)^{-1} \mathbf{1}$  III.  $y_{n+1} = R(\mu) y_n$  where  $\mu = h\lambda$ 

Stability function  $R(\mu)$  | General: For  $\frac{dy}{dt} = By$  where:  $b^T$ , A are from  $Butcher\ Table$ .  $\Lambda$ , U 是 B 的特征值分解  $U^{-1}BU = \Lambda$  此时  $z_n, y_n$  是向量

**I**. Let 
$$y_n = Uz_n$$
 and  $Y_i = UZ_i$ :

Then 
$$Z_i = z_n + h \sum_{j=1}^s a_{ij} \Lambda Z_j$$
  $(Z_j^{(i)} = z_n^{(i)} \mathbf{1} + \mu A Z_j^{(i)} \ \forall i)$   $z_{n+1} = z_n + h \sum_{i=1}^s b_i \Lambda Z_i$   $(z_{n+1}^{(i)} = z_n^{(i)} + \mu \sum_{j=1}^s b_j Z_j^{(i)})$  II.  $\frac{dz}{dt} = \Lambda z$   $\Rightarrow \frac{dz^{(i)}}{dt} = \lambda_i z^{(i)}$   $\Rightarrow z_{n+1}^{(i)} = R(\mu) z_n^{(i)}$  where  $\mu = h \lambda_i$  (回到前一个)

Theorem: For  $\frac{dy}{dt} = By$  with  $\lambda_1, ..., \lambda_d$  be eigenvalues of  $B$ . The RK method is  $stable | asy.stab$  at  $origin$  iff:

II. 
$$\frac{dz}{dt} = \Lambda z$$
  $\Rightarrow \frac{dz^{(i)}}{dt} = \lambda_i z^{(i)}$   $\Rightarrow z^{(i)}_{n+1} = R(\mu) z^{(i)}_n$  where  $\mu = h\lambda_i$  (回到前一个)

The Same method also stable | asy.stab at origin for  $\frac{dz}{dt} = \lambda_i z \ \forall i$ 

**Corollary**: For  $\frac{dy}{dt} = By$  with B diagonalizable. An RK Method with stability function  $R(\mu)$  is stable as stable at sta

## 5.5 Stability Region and A-stability

Stability Region: For  $\frac{dy}{dt} = By$ . An RK method, the *stability region* is the set of  $\mu$  where  $\widehat{R}(\mu) = |R(\mu)| < 1$ . (如 y 是向骶 $R(\mu)$  按上面 corollary 的 remark 所说)

- 1. Euler's Method:  $\widehat{R}(\mu) = |1 + \mu| \implies \mu \in \{z \in \mathbb{C} : |1 + z| < 1\}$  (-1 处半径为 1 的圆)
- 2. Trapezoidal Rule:  $\widehat{R}(\mu) = \left| \frac{1+\mu/2}{1-\mu/2} \right| \Rightarrow \mu \in \{z \in \mathbb{C} : |1+z/2| < |1-z/2| \}$  (left complex half-plane, A-stable)
- 3. Implicit Euler:  $\widehat{R}(\mu) = |1 \mu|^{-1}$   $\Rightarrow \mu \in \{z \in \mathbb{C} : |1 z| > 1\}$  (-1 处半径为 1 的圆外侧)
  4. RK4:  $\widehat{R}(\mu) = \left|1 + \mu + \frac{\mu^2}{2} + \frac{\mu^3}{6} + \frac{\mu^4}{24}\right| \Rightarrow \text{Using } R(\mu) = e^{i\theta} \text{ to find the region.}$ A-Stable: An RK method is A-stable if its stability region contains the entire left complex half-plane. (i.e.  $\Re(z) < 0$ )

# 6 Appendix

## 6.1 Useful Series | Common RK Methods

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad \sin(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} \quad \cos(x) = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!} \\ \ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{n}}{n} \quad \arctan(x) = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} + \dots = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{2n+1} \quad \sinh(x) = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} \\ \cosh(x) = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} \quad (1+x)^{k} = 1 + kx + \frac{k(k-1)x^{2}}{2!} + \dots = \sum_{n=0}^{\infty} \binom{k}{n} x^{n} \frac{1}{1-x} = 1 + x + x^{2} + \dots = \sum_{n=0}^{\infty} x^{n} \\ \frac{1}{1+x} = 1 - x + x^{2} + \dots = \sum_{n=0}^{\infty} (-1)^{n} x^{n} \quad \ln(x) = (x-1) - \frac{(x-1)^{2}}{2} - \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x-1)^{n}}{n}, \ x > 0$$

Common Runge-Kutta Methods (Butcher Table):