DM865 (10 ECTS)

Heuristikker og Approximationsalgoritmer

[Heuristics and Approximation Algorithms]

dm865.github.io

Spring semester Lene Monrad Favrholdt • Marco Chiarandini lektorer, IMADA

A 2-approximation algorithm for TSP

Double tree algorithm:

- 1. $T \leftarrow MST$
- 2. Double all edges in T
- 3. $E_{tour} \leftarrow \text{Eurler tour}$
- 4. $H \leftarrow$ vertices in order of appearance in E_{tour}

$$c(MST) \le c(TSP)$$

$$c(MST) \le c(TSP)$$

$$c(H) \le 2 \cdot c(MST) \le 2 \cdot c(TSP)$$

A 3/2-approximation algorithm for TSP

Christofide's algorithm:

- 1. $T \leftarrow MST$
- 2. $M \leftarrow$ minimum perfect matching of odd degree vertices in T
- 3. $E_{tour} \leftarrow \text{Euler tour in the subgraph } (V, E(T) \cup M)$
- 4. $H \leftarrow$ vertices in order of appearance in the E_{tour}

$$c(MST) \le c(TSP)$$

$$c(MST) \le c(TSP)$$

$$c(H) \leq c(MST) + c(M)$$

$$c(MST) \le c(TSP)$$

$$c(H) \le c(MST) + c(M) \le c(TSP) + \frac{1}{2}c(TSP)$$

$$c(MST) \le c(TSP)$$

$$c(H) \le c(MST) + c(M) \le c(TSP) + \frac{1}{2}c(TSP) = \frac{3}{2} \cdot c(TSP)$$

Theorem (2015)

For $\alpha < \frac{185}{184}$, there does not exist an α -approximation algorithm for the TSP.

Trying different changes

Trying different changes

Trying different changes

Trying different changes

Trying different changes

Trying different changes

Contents

	Apporx Algorithms
Set Cover	
Satisfiability	
Traveling Salesman	
Scheduling	
Knapsack	
Bin packing	

Course Formalities

Prerequisites:

✓ Programming (DM502, DM503, DM550)

✓ Algorithms and Datastructures (DM507)

✓ Complexity and Computability (DM508, DM553)

✓ Linear and Integer Programming (DM559, DM545, DM554, DM871)

Credits: 10 ECTS

Language: English or Danish

Classes: intro: $2h \times 24$; training: $2h \times 24$

Material: slides + text book + articles + starting code

Assessment (10 ECTS)

- Two practical project assignments passed/failed with internal censor by the teacher (include programming in Python)
- Oral exam based on:
 - the theoretical part
 - two practical assignments

Grading by the Danish 7-mark scale with external examiner. Exam aids allowed.

DM865 (10 ECTS)

Heuristikker og Approximationsalgoritmer

[Heuristics and Approximation Algorithms]

dm865.github.io

Spring semester Lene Monrad Favrholdt • Marco Chiarandini lektorer, IMADA