Département d'informatique Module : Base de Données (2L INF)

Corrigé type

Exercice I (6 pts)

a) Citer trois problèmes liés à la présence de la redondance de données dans une BD? Dans quels cas cette redondance est nécessaire?

1.

- Gaspíllage d'espace de stockage.
- Incohérence de base de données, par exemple, problème de la propagation des mises à jour.
- Gaspillage de ressources humaines, par exemple, une même donnée peut être saisie à plusieurs reprises, avec un risque toujours présent de commettre des erreurs au moment d'entrer l'information au sein du système.
- 2. Cette redondance est nécessaire dans le cas de la clé étrangère pour assurer les liens entre les différentes informations.
 - b) Est-ce qu'une clé étrangère peut prendre la valeur **NULL**? Justifier votre réponse.
- 0.5 Oui, si elle ne fait pas partie de la clé primaire.
 - c) démontrer la règle suivante en utilisant les axiomes d'Armstrong : $(X \rightarrow Y) \land (WY \rightarrow Z) \Rightarrow (WX \rightarrow Z)$ $X \rightarrow Y \Rightarrow WX \rightarrow WY$ par augmentation de W ... (1) et on a $WY \rightarrow Z$... (2) Par transitivité de (1) et (2) on obtient $WY \rightarrow Z$
- <u>d)</u> Pourquoi normalise-t-on le schéma d'une base de données relationnelle?
- 0.75 Réduire les redondances et donc éliminer les anomalies possibles lors de la mise à jour.
 - e) Soient deux relations R1(A:D1, B:D2, C:D3) et R2(B:D2, C:D3).
 - 1. Exprimer en **SQL** la division de R1 par R2 ($R1 \div R2$).

SELECT A FROM R1 R3

 $R2 \leftarrow R1$

WHERE not exists (SELECT B, C FROM R2

WHERE not exists (SELECT A, B, C FROM R1

WHERE A = R3.A and B = R2.B and C = R2.C));

2. Travaillant sur la relation R1, donner une requête en algèbre relationnelle qui ne retourne aucun tuple dans le cas où la dépendance fonctionnelle B→ C est respectée.

Res

Resultat \leftarrow R1 $\triangleright \triangleleft$ (R1.B = R2.B) \land (R1.C \neq R2.C) R2

Exercice II (4 pts)

On considère le schéma relationnel de la base de données MICRO.

```
CLIENT(noC, nomC, prenom, Adresse)
PRODUIT(noP, libelle, marque, prix, QteStock)
VENTE(noC, noP, dateVte, QteVendue)
```

- a) Formuler en algèbre relationnelle les requêtes suivantes :
 - 1. Les numéros des clients qui ont acheté au moins un produit de la marque 'DELL'.

```
Resultat \leftarrow \prod_{noC} (\delta_{\text{marque ="DELL"}} \text{ (PRODUIT) } \triangleright \triangleleft \text{ VENTE)}
```

2. La liste des produits les moins chers (N'utiliser pas la fonction d'agrégat MIN)

```
P1← PRODUIT
P2← PRODUIT
```

Resultat \leftarrow PRODUIT $\triangleright \triangleleft$ ($\prod_{\text{prix}}(\text{PRODUIT}) - (\prod_{\text{P2.prix}}(\text{P1} \triangleright \triangleleft_{\text{P1.prix}} < \text{P2.prix} \text{P2})))$

b) Formuler en SQL les requêtes données ci-dessous.

SELECT nomC, prenom

1. Nom et prénom des clients qui ont acheté plus d'un produit de la marque 'DELL'.

```
FROM PRODUIT P INNER JOIN (CLIENT C INNER JOIN VENTE V ON C.noC = V.noC) ON P.noP = V.noP

WHERE marque ="DELL"

GROUP BY C.noC, nomC, prenom
```

HAVING COUNT (distinct V.noP) >1;

2. Numéro des produits non vendus (En utilisant **OUTER JOIN**).

```
SELECT P.noP FROM PRODUIT P LEFT OUTER JOIN VENTE V ON P.noP = V.noP WHERE noC is NULL;
```


Les clés étrangères sont indiquées par des astérisques.

BONUS 0.5

Exercice IV (4 pts)

Soit la relation R(A, B, C, D, E, F, G) qui respecte la 1FN et satisfaire l'ensemble des dépendances fonctionnelles $\mathbb{F} = \{ABC \rightarrow DE, E \rightarrow BCD\}$.

a) Donner toutes les clés candidates de R. Justifier votre réponse. Basant sur le graphe de DFs, on peut déduire deux clés candidates.

0.2	5	25
La première clé candidate est ABCFG	La deuxième clé candidate est AEFG	
Comme $[ABCFG]^+ = R$ ainsi que	$comme [AEFG]^+ = R ainsi que$	
$[BCFG]^{+} = \{BCFG\} \neq R,$	$[AFG]^+ = \{AFG\} \neq R,$	
$[ACFG]^{+} = \{ACFG\} \neq R,$ 0.5	$[EFG]^+ = \{E, B, C, D, F, G\} \neq R.$ 0.5	(G) >+(//
$[ABFG]^+ = \{ABFG\} \neq R,$	$[AEG]^+ = \{A, E, B, C, D, G\} \neq R \text{ et}$	
$[ABCG]^+ = \{ABCG\} \neq R$ et	$[AEF]^+ = \{A, E, B, C, D, F\} \neq R.$	(D)-(E) (F)
$[ABCF]^+ = \{ABCF\} \neq R.$		Graphe des DFs
		Graphie des DFS

- b) En quelle forme normale est R pour chaque clé candidate choisie comme clé primaire.
 - 1. Si **ABCFG** est choisie comme clé primaire alors on a **ABCFG** → **DE** mais **E**→**D** donc **R** n'est pas en 3FN, elle est en 2FN. 0.75
 - 2. Si **AEFG** est choisie comme clé primaire alors on a **AEFG**→**BCD** mais **E**→ **BCD** donc **R** n'est pas en 2FN, elle est en 1FN. 0.75
- c) Proposer une décomposition en 3FN pour cette relation en utilisant l'algorithme de synthèse.

 En appliquant l'algorithme de synthèse, on doit tout d'abord calculer une couverture minimale de F.
- mín(F) = F {ABC \rightarrow D} donc mín(F) = {ABC \rightarrow E, E \rightarrow B, E \rightarrow C, E \rightarrow D} et toutes les DFs sont sous forme canoníque. Toutefois, R se décompose en deux relations en 3FN:
 - R1(A, B, C, E) 0.25
 - R2 (\underline{E} , C, D)
 - R3(<u>A, B, C, F, G</u>) BONUS 0.5