pt 京航空航天大学计算机新技术研究所

The Institute of Advanced Computing Technology

操作系统 **Operating System**

总复习

沃天宇 woty@buaa.edu.cn 2022年5月26日

课程定位

- 操作系统的基本类型、特征和功能
- 了解操作系统各个组成部分的基本结构和原理
- 掌握在**进程管理、存储管理、设备管理、磁盘 管理及文件管理**等涉及的概念和相关算法
- 了解多处理机操作系统和网络操作系统的基本原理
- 简单了解相关的硬件知识、有代表性的实际系统的设计与实现以及操作系统的一些新概念、新方法以及相关的国际标准

核心内容

\.<

- 第一章 操作系统概论
- 第二章 操作系统引导
- 第三章 存储管理
- 第四章 进程机制与并发程序设计
- 第五章 输入/输出系统
- 第六章 文件系统
- · 其它:安全、分布式系统、移动OS【自学, 」不考】

核心内容

- 第一章 操作系统概论
- 第二章 操作系统引导
- 第三章 存储管理
- 第四章 进程机制与并发程序设计
- 第五章 输入/输出系统
- 第六章 文件系统
- 其它:安全、分布式系统

\wedge

- 操作系统的发展变化(辨析概念)
 - 批处理、分时;
 - -单道程序、多道程序;
 - -实时、网络、分布式。

- 冯诺依曼体系结构: 存储程序式
 - 集中顺序过程控制

- 操作系统的主要功能
 - 进程管理(处理机分配)
 - 存储管理
 - 设备管理(包括磁盘管理)
 - 文件系统
- 现代操作系统的基本特征
 - 并发执行
 - 资源共享(复用)
 - 虚拟化管理
 - **异步性**(不确定性事件的处理)

_\<]

- 操作系统的工作模式
 - 内核态/管态
 - 用户态/目态
 - (切换过程?)
- 几个术语
 - 特权指令/保护指令
 - 异常: 中断、陷入(作用、区别?)(系统调用过程)

					. I
		Applications (the users)			
User Mode		shells and commands Standard Libs compilers and interpreters system libraries			
		system-call interface to the kernel			
Kernel Mode	Kernel	signals terminal handling character I/O system terminal drivers	file system swapping block I/O system disk and tape drivers	CPU scheduling page replacement demand paging virtual memory	/
		kernel interface to the hardware			
Hardware		terminal controllers terminals	device controllers disks and tapes	memory controllers physical memory	

_^<

• 分析操作系统的几种观点

- 用户观点:操作系统为用户提供了哪些功能可以使用
- 资源管理: 回答了整个操作系统是由哪几部分组成的
- 进程观点: 指明了这些资源管理程序在什么时候开始起作用,以及它们在执行过程中是如何相互联系的
- 模块分层: 从操作系统构建的角度, 考虑操作系统的结构
- 抽象与权衡

_\\<u><</u>

- 操作系统结构
 - 什么是操作系统内核?如何进入?
 - 微内核、整体内核(辨析,差异、优缺点)

_\\<`

- 熟悉系统调用的概念与实现方法
 - 什么是系统调用? 与函数调用的区别?
 - 用户态程序如何访问操作系统提供的系统功能 (如创建新进程),描述过程,如何切换入内 核态执行?
- 系统调用与shell命令的区别?
 - API vs CLI
- Shell命令与脚本
- Linux操作系统的接口

作业1.1

- _\\<`
- 设一计算机系统有输入机一台、打印机两台, 现有二道程序同时投入运行,且程序A先开始 运行,程序B后运行。程序A的运行轨迹为: 计算50ms,打印信息100ms,再计算50ms, 打印信息100ms,结束。程序B运行的轨迹为: 计算50ms,输入数据80ms,再计算100ms, 结束。要求:
 - -(1) 用图画出这二道程序并发执行时的工作情况。
 - (2) 说明在二道程序运行时, CPU有无空闲等待? 若有,在哪段时间内等待? 为什么会空闲等待?
 - (3) 程序A、B运行时有无等待现象? 在什么时候会 发生等待现象?

作业1.1

- □(2)CPU 有空闲等待,当 A 在打印 B 在输入时 CPU 等待,因为并发的程序不够多导致 □这段 时间没有程序需求 CPU 资源
 - (3)有等待现象, CPU 资源不足时出现等待。

课后作业1.2

- 在单CPU和两台I/O设备(I_1 , I_2)的多道程序设计环境下,同时投入3个作业 J_1 , J_2 和 J_3 运行,其对CPU和I/O设备使用的顺序与时间如下:
 - J_1 : I_2 (30ms)→CPU (10ms) → I_1 (30ms) →CPU (10ms) → I_2 (20ms)
 - J_2 : I_1 (20ms) → CPU (20ms) → I_2 (40ms)
 - J_3 : CPU(30ms) → I_1 (20ms) →CPU(10ms) → I_1 (10ms)
- 假定CPU和I/O设备能够并行,I₁和I₂能够并行。作业优先级 J₁>J₂>J₃,高优先级作业可抢占低优先级作业的CPU,但不能 抢占I/O设备。
- 问题:
 - 分别求出3个作业的turnaround时间(wall-clock时间)。
 - 计算CPU的利用率(计算时间/(计算时间+空闲时间))。
 - 计算I/O设备的利用率(工作时间/(工作时间+空间时间))。

课后作业1.2

在单CPU和两台I/0设备(I_1 , I_2)的多道程序设计环境下,同时投入3个作业 J_1 , J_2 和 J_3 运行,其对CPU和I/0设备使用的顺序与时间如下:

 $J_1: I_2(30ms) \rightarrow CPU (10ms) \rightarrow I_1(30ms) \rightarrow CPU (10ms) \rightarrow I_2(20ms)$

 $J_2: I_1(20ms) \rightarrow CPU (20ms) \rightarrow I_2(40ms)$

 J_3 : CPU(30ms) $\rightarrow I_1$ (20ms) \rightarrow CPU(10ms) $\rightarrow I_1$ (10ms)

假定CPU和I/0设备能够并行, $I_1和I_2$ 能够并行。作业优先级 $J_1>J_2>J_3$,高优先级作业可抢占低优先级作业的CPU,但不能抢占I/0设备。

课后作业1.2

- 分别求出3个作业的turnaround时间(wall-clock时间)。
- 计算CPU的利用率(计算时间/(计算时间+空闲时间))。
- 计算I/O设备的利用率(工作时间/(工作时间+空间时间))。
- (1)110ms, 90ms, 110ms
- (2) 截止至 3 个程序都运行完时 CPU 利用率(10+10+20+30+10)/110=72.73% (3) 截止至 3 个程序都运行完时 IO1 利用率(30+20+20+10)/110=72.73%
- 截止至 3 个程序都运行完时 102 利用率(30+20+40)/110=81.82%

问题:可移植的操作系统可以从一个系统架 构移植到另外一个系统架构而无需修改。

- (1) 请解释为什么构建完全可移植的OS是不 可能的?
- (2)如果需要你设计一个高度可移植的OS, 么请描述你需要设计的两个层次?

(1) 请解释为什么构建完全可移植的OS是不可能的?

每个系统架构都有自己独特的一套指令集。因此,奔腾架构的设备无法执行SPARC程序,反之亦然。而且,不同架构的总线架构也不同,(例如 VME, ISA, PCI, MCA, SBus, ...), CPU的字长度也不同(32/64 bit). 由于这些硬件的差异,构建完全可移植的操作系统并不可能。

(2)如果需要你设计一个高度可移植的OS,那么请描述你需要设计的两个层次?

一个高度可移植的操作系统包含两个层次: ---机器相关层和机器无关层。机器相关层处理硬件的特性,并且需要为每个架构单独实现。这层提供一个统一的接口,供机器无关层使用。而设备无关层仅仅需要实现一次。要想实现高可移植性,机器相关层的规模应该设计的越小越好。

核心内容

- 第一章 操作系统概论
- 第二章 操作系统引导
- 第三章 存储管理
- 第四章 进程机制与并发程序设计
- 第五章 输入/输出系统
- 第六章 文件系统
- 其它:安全、分布式系统

第二章 操作系统引导

$\Delta \leq$

- · OS分阶段引导过程
- 各个阶段的职责
- 各个阶段引导程序的存储与装载过程

· 简述Linux内核在x86平台上的加载过程

\.<

· OS启动为什么慢?如何提高OS启动效率?

作业2

- 硬件角度
- 软件角度
- 软硬件协同角度

核心内容

- 第一章 操作系统概论
- 第二章 操作系统引导
- 第三章 存储管理
- 第四章 进程机制与并发程序设计
- 第五章 输入/输出系统
- 第六章 文件系统
- 其它:安全、分布式系统

存储管理的主要内容

- 1. 存储管理的功能
- 2. 分区存储管理
- 3. 页式存储管理
- 4. 段式存储管理
- 5. 虚拟存储原理与算法

1.存储管理的功能

$\Delta \leq$

- 内存的分配与回收
- 存储保护
- 地址转换
- 静态重定位
- 动态重定位
- 存储共享
- "扩充"内存容量

地址空间

存储空间

2. 分区存储管理

- 固定分区
 - 基本思想
 - 优缺点
- 可变分区
 - 基本思想
 - 优缺点
 - 主要算法: BestFit, WorstFit, FirstFit, NextFit
- 覆盖与交换

3.页式存储管理

Δ

- 页面、页框
- 地址转换
 - MMU
 - 页表: 多级页表、 杂凑页表、 反置页表
 - 快表TLB
 - 页面的大小

具有快表的地址变换机构

每张表1024项)

1100 0000 0011 0000 0000 1100 0000 00**00**

北京航空航天大学 计算机学院 OS教学组

4.段式内存管理

- 基本思想
- 地址变换
- 分页与分段的比较(辨析异同)
- 段页式内存管理

		/	
	页式存储管理	段式存储管理	
目的	实现非连续分配 ,解决碎 片问题	更好地满足用户需要	
信息单位	页 (物理单位)	段 (逻辑单位)	
大小	固定 (由系统定)	不定 (由用户程序定)	
内存分配单位	页	段	
作业地址空间	一维	二维	
优点	有效解决了碎片问题(没有外碎片,每个内碎片不超过页大小);有效提高内存的利用率;程序不必连续存放。	更好地实现数据共享与保护;段长可动态增长;便 于动态链接	

5.虚拟存储:原理与算法

_∧<1

- 内存访问的局部性原理
- 页面置换策略
 - 最优算法: OPT
 - 先进先出: FIFO
 - 最近最少使用:LRU
 - -最不频繁使用:LFU
 - 第二次机会算法、时钟算法: Clock
 - -工作集策略
- 缺页中断率

其他内容

_\<

• 内存抖动

- 刚被置换出去的页,很快又要访问,因而要把它重新调入;可调入不久又再次被置换出去,这样再访问、再调入,如此反复,使得整个系统的页面替换非常频繁,以致大部分的机器时间都花在来回进行的页面调度上,只有一小部分时间用于进程的实际运算。
- 解决办法: 局部置换策略、工作集算法、预留部分页面、挂起若干进程
- 写时复制技术
- 内存映射文件
- 存储保护

- 1. 动态内存分配需要对内存分区进行管理,一般使用位图和空闲链表两种方法。128MB的内存以n字节为单元分配,对于链表,假设内存中数据段和空闲区交替排列,长度均为64KB。并假设链表中的每个节点需要记录32位的内存地址信息、16位长度信息和16位下一节点域信息。这两种方法分别需要多少字节的存储空间?那种方法更好?
- 答: 128MB=2²⁷, n字节为单元,所以2²⁷/n个单元,使用位图需2²⁷/n位,即2²⁴/n字节,使用链表需128MB/64KB=2K个节点,每个节点8(64位)字节,所以16KB=2¹⁴字节。当n小于1KB时,链表较好;反之,位图更好。

\.<`

2. 在一个交换系统中,按内存地址排列的空闲区大小是: 10KB、4KB、20KB、18KB、7KB、9KB、12KB和15KB。对于连续的段请求: 12KB、10KB、9KB。使用FirstFit、BestFit、WorstFit和NextFit将找出哪些空闲区?

• 答:

- FirstFit-20KB, 10KB, 18KB
- BestFit-12KB,10KB, 9KB
- WorstFit-20KB,18KB,15KB
- NextFit-20KB,18KB,9KB

 ΔS

- 3. 解释逻辑地址、物理地址、地址映射, 并举例说明。
 - -逻辑地址:程序产生的地址
 - 物理地址: 在存储器里以字节为单位存储信息, 为了正确地存放或取得信息,每一个字节单元 给以一个唯一的存储器地址,称为物理地址
 - 地址映射:将逻辑地址转化为物理地址的过程

_**<**`

- 4. 解释页式(段式)存储管理中为什么要设置页(段)表和快表,简述页式(段式)地址转换过程。
 - 页表是为了保存页面号和物理块的映射关系,而段表保存了段号和相应段基址的映射关系,以便进行地址转换。
 - 快表: 是一个高速缓存,用以存放一部分页表,加快转换速度转换过程: 给出一个逻辑地址,将其页号与快表和页表中的逻辑页号同时进行比较,命中后用物理页号替换逻辑页号,和页内偏移拼接,得到物理地址

- 5.叙述缺页中断的处理流程。
 - 缺页中断处理过程: 当某逻辑地址不在页表中时,产生缺页中断,如果地址有效,操作系统从外存将对应的一页数据读入内存中空闲的页中(如果没有空闲页先淘汰出一页),并更新页表。回到中断处继续执行。

\<

- 6. 假设一个机器有38位的虚拟地址和32位的物理地址。
 - -(1)与一级页表相比,多级页表的主要优点是什么?
 - (2) 如果使用二级页表,页面大小为16KB,每个页表项有4个字节。应该为虚拟地址中的第一级和第二级页表域各分配多少位?
- 答:页面16KB,14位。二级页表大小和页面大小相同,页表项4字节需要2位,所以二级页表域14-2=12位。一级页表38-12-14=12位。一级和二级页表域分别需要12位,偏移量需要14位。(画结构)

_\\<

- 假设页面的访问存在一定的周期性循环,但周期之间会随机出现一些页面的访问。例如: 0,1,2...,511,431,0,1,2...511,332,0,1,2,...,511等。 请思考:
 - (1) LRU、FIFO和Clock算法的效果如何?
 - (2) 如果有500个页框,能否设计一个优于LRU、FIFO和Clock的算法?
- 答:
- (1) 不符合局部性原理的访问。三种算法产生的缺页中断是一样的。
- (2) 尽量把工作集装入内存。将0-498 页面映射到固定的页框,每次只置换第499 个页面。

_/\<

- 14. 一个32位的虚拟存储系统有两级页表, 其逻辑地址中,第22到31位是第一级页表 (页目录)的索引,第12位到21位是第二 级页表的索引,页内偏移占第0到11位。每 个页表(目录)项包含20位物理页框号和 12位标志位,其中最后1位为页有效位。
- 逻辑地址格式如下:

页目录号 二级页表号 页内偏移量

• 页目录项、页表项格式如下:

- 请问进程整个的地址空间有多少字节? 一页有多少字节?
 - 进程整个的地址空间为2^32=4G字节,一页为2^12=4K字节。
- 如果当前进程的页目录物理基地质、页目录和相应页表内 容如图下所示,请描述访问以下虚拟地址时系统进行地址转换的过程,如可行给出最终访存获取到的数据。虚拟地址:0x0、 0x00803004 \ 0x00402001
- 要想访问物理地址0x326028,需要使用哪个虚拟地址?

页目录物理基地址 0x1000

页目录 物理地址: 0x1000

_	
0	0x0
1	0x1001
2	0x5001
3	0x20001
4	0x0
	•••
1023	0x0

页表 物理地址: 0x5000

页表 物理地址: 0x20000

0	0x9000
1	0x326001
2	0x41001
3	0x0
4	0x0
1023	0x0

- a)虚拟地址0x0:虚拟页目录号0,查询对应0号页目录项,得到页目录项0x0,由于有效标志位为0,表示该页面无效,因此页表中不存在该虚拟地址到物理地址的映射,产生缺页中断;
- b)虚拟地址0x00803004:虚拟页目录索引号为2,二级页表索引号为3,页内偏移为4,查询对应2号页目录项,得到0x5001,有效标志位为1,在物理地址0x5000查找二级页表,找到对应的3号页表项,0x20001,由于有效标志位为1,对应物理页框基地址为0x20000,根据页内偏移4,查找偏移地址为4的内存(第5个字节),得到数据0x326001(按字寻址,1字=4字节)(如果回答按字节寻址得到0x00或者0x01也算对,分别对应不同尾端)。

- _/\\
- c)虚拟地址0x00402001: 虚拟页目录索引号为1, 二级页表索引号为2,页内偏移为1,查询对应1 号页目录项,得到0x1001,有效标志位为1,在 物理地址0x1000查找二级页表,即为页目录自身, 找到对应的2号页表项,0x5001,由于有效标志 位为1,对应物理页框基地址为0x5000,根据页 内偏移1(第二个字节),查找对应内存,得到数 据0x00(按字节寻址)。
- 3.要想访问物理地址0x326028,需要使用虚拟地址0x00C01028,其中虚拟页目录索引号为3,工级页表索引号为1,页内偏移为0x028

核心内容

$\Delta \leq$

- 第一章 操作系统概论
- 第二章 操作系统引导
- 第三章 存储管理
- 第四章 进程机制与并发程序设计
- 第五章 输入/输出系统
- 第六章 文件系统
- 其它:安全、分布式系统

主要内容

$\wedge <$

- 1. 进程与线程的基本概念
- 2. 进程调度算法
- 3. 进程通信
- 4. 死锁问题

1. 进程与线程的基本概念

$\Delta \leq$

- 并发与并行的区别
- 进程与程序的区别
- 进程的三个基本状态、转换条件
- 进程的控制原语
- · 进程的组成:程序、数据、PCB
- 进程与线程的区别(辨析异同)
 - 共享地址空间、轻量级、切换性能

2. 进程调度算法

\.<

- 调度的三个类型: 高级、中级、低级
- 进程调度算法
 - 总体上: 非抢占、抢占
 - 评价指标:
 - 周转时间、平均周转时间、带权平均周转时间
 - 吞吐量
 - 响应时间(响应时间)
 - CPU利用率
 - 常见调度算法: FCFS, SJF, 轮转调度, 优先级调度
 - 甘特图

3. 进程通信: 同步与互斥

Δ

- 临界资源、临界区
 - 资源角度: 一段时间内只允许一个进程使用
 - 代码角度:由于共享临界资源,必须互斥执行的程序段是临界区
- 同步、互斥
 - 概念
- 信号量、P、V操作
 - 信号量取值的含义(S=0表示什么含义?)
 - 信号量是只能由P、V操作修改的数据结构
- 管程的基本概念

同步与互斥的原则(正确、公平、效率)

_∧<⊺

- 空闲让进
 - 临界资源处于空闲状态,允许进程进入临界区
 - 临界区内仅有一个进程执行
- 忙则等待
 - 临界区有进程正在执行其中的代码,所有其他进程则不可以进入临界区
- 有限等待
 - 对要求访问临界区的进程,应在保证在有限时间内进入自己的临界区,避免死等。
- 让权等待
 - 当进程不能进入自己的临界区时,应立即释放处理机,避免忙等。

经典的同步与互斥问题(编程)

\.<

- 生产者一消费者问题
 - 同步、互斥
- 读者一写者问题
 - 互斥
- 哲学家就餐问题
 - 互斥
- 睡觉的理发师问题
 - 同步、互斥

练习(2015)

 $\Delta \leq$

• 1个仓库最多可以容纳100件产品(不分产 品类型),每次只允许一个产品进出仓库。 甲乙两个车间分别生产A、B两种产品并共 用上述仓库。如果仓库满了则不能进行新 的生产。有2个需要A产品的客户和2个需要 B产品的客户,分别从仓库提取A、B产品。 请用P、V操作来实现上述甲、乙车间以及 A、B产品的客户之间的同步与互斥关系。

4. 死锁

\.\<

- 基本概念: 死锁、活锁、饥饿
- 产生死锁的必要条件
 - 互斥、不可剥夺、请求和保持、环路等待
- 进程-资源图/资源分配图
- 处理死锁的方法
 - 允许死锁发生: 无作为、检测与解除死锁
 - 不允许死锁发生: 预防死锁、避免死锁

死锁处理方法

 ΔS

- 预防死锁(静态):破坏死锁产生的四个 条件
- 避免死锁(动态):安全性、银行家算法
- 检测与解除死锁:
 - 发现死锁: 基于进程-资源图的化简
 - -解除死锁:资源剥夺、撤销进程

 $\Delta \leq$

• 1.有五个进程P1、P2、P3、P4、P5,它们同时依次进入就绪队列,它们的优先数和需要的处理器时间如下表:

进程	处理器时间	优先级(数小优	
		先级高)	
P1	10	3	
P2	1	1	
P3	2	3	
P4	1	4	
P5	5	2	

- 忽略进行调度等所花费的时间,回答下列问题:
- a. 写出采用"先来先服务"、"短作业(进程)优先"、"非抢占式的优先数"和"轮转法"等调度
- 算法, 进程执行的次序。(其中轮转法的时间片为2)
- b. 分别计算上述算法中各进程的周转时间和等待时间,以及平均周转时间。

进程	处理器时间	优先级(数小优
		先级高)
P1	10	3
P2	1	1
P3	2	3
P4	1	4
P5	5	2

1 先来先服务

	P1	P2	P3	P4	P5	平均
周转时间	10	11	13	14	19	13.4
等待时间	0	10	11	13	14	

$\wedge \leq$

短作业优先

(同等长度的作业按进入就绪队列的先后顺序)

进程	处理器时间 优先级(数小优	
		先级高)
P1	10	3
P2	1	1
P3	2	3
P4	1	4
P5	5	2

	2	
	_	

		/ / /
进程	处理器时间	优先级(数小优
		先级高)
P1	10	3
P2	1	1
P3	2	3
P4	1	4
P5	5	2

 ΔS

- 3.线程的基本概念是什么?引入线程的好处是什么?
 - 减小进程切换的开销
 - 提高进程内的并发程度
 - 共享资源

_\\<

• 4. 一个系统有4个进程和5个可分配资源, 当前分配和最大需求如下:

	已分配资源	最大需求量	可用资源
进程A	10211	11213	00x12
进程B	20110	22210	
进程C	11010	21310	
进程D	11110	11221	

若保持该状态是安全状态,那么x的最小值是多少?

- 答:需求矩阵如下:
- A 01002
- B 02100
- C 10300
- D 00111
- 如果x为0,我们会立刻死锁。如果x是1,进程D可以分配资源运行,当它结束时,可用资源向量为11222,这时候进程A可以分配资源执行,当A结束时,可用资源向量为21433。这时候进程C可以被满足,当C执行结束后,可用资源向量为32443。最后进程B运行完毕。所以x的最小值为1。

d

核心内容

$\Delta \leq$

- 第一章 操作系统概论
- 第二章 操作系统引导
- 第三章 存储管理
- 第四章 进程机制与并发程序设计
- 第五章 输入/输出系统
- 第六章 文件系统
- 其它:安全、分布式系统

I/O设备及控制

$\wedge \leq$

- I/O设备:字符设备、块设备、网络设备
- I/O控制技术(比较异同)
 - 程序控制
 - 中断驱动
 - 直接内存访问: DMA
 - 通道技术: Channel
- I/O软件的组成与分层设计
 - 设备无关性(独立性)
- 缓冲技术
- SPOOLing技术

缓冲区的管理

$\Delta \leq$

- 缓冲区作用?
- 单缓冲区
- 双缓冲区
- 环形缓冲区
- 缓冲池

I/O管理软件

磁盘存储管理

- 磁盘的工作原理
- 磁盘访问时间
 - 寻道时间 + 旋转延迟时间 + 传输时间
- 磁盘调度算法
 - 先来先服务、最短寻道时间 优先、扫描算法、循环扫描 算法
- · 提高I/O速度的主要途径
- •磁盘冗余阵列: RAID

磁盘设备结构示意图

0

核心内容

$\Delta \leq$

- 第一章 操作系统概论
- 第二章 操作系统引导
- 第三章 存储管理
- 第四章 进程机制与并发程序设计
- 第五章 输入/输出系统
- 第六章 文件系统
- 其它:安全、分布式系统

基本概念

\<

- 文件的概念
- 逻辑上,文件包括两种形式:有结构(记录式)和无结构(流式)。
- 目录的概念
- 文件系统的功能

文件系统实现技术

$\Delta \leq$

- 文件控制块
- 文件的逻辑结构:记录、流式
- 文件的物理结构
 - 连续文件
 - 串联文件
 - 索引文件: 一级索引、多级索引
- 磁盘空间的管理
 - -空闲表、空闲链表、位示图、成组链接

文件系统

$\Delta \leq$

- FAT、ext2文件系统
 - 软链接(符号链接)与硬链接区别
 - 权限位操作
- E.g.假设有一个文件x存在磁盘当前目录中, 依次执行:
 - In -s x xx
 - In -s xx xxx
 - In x xxxx
 - rm x
 - cat x xx xxx xxxx
 - 会出现几个错误?
 - 在执行touch x, 然后再cat呢?

98041871 -rw-r--r- 2 root root 98041872 lrwxrwxrwx 1 root root 98041873 lrwxrwxrwx 1 root root 98041871 -rw-r--r- 2 root root 0 May 25 23:20 x 1 May 25 23:21 xx -> x 2 May 25 23:21 xxx -> xx

0 May 25 23:20 xxxx

问题?