Проективная геометрия

Определение 1. Пусть в пространстве заданы две плоскости π и π' , параллельные или непараллельные между собой.

Пусть O — точка, не лежащая ни на π , ни на π' . Центральной проекцией π на π' с центром O называется отображение, сопоставляющее каждой точке $P \in \pi$ точку $P' \in \pi'$ пересечения прямой OP с плоскостью π' (см. рис. справа).

Пусть l — прямая, не параллельная ни π , ни π' . Параллельной проекцией π на π' вдоль l называется отображение, сопоставляющее каждой точке $P \in \pi$ такую точку $P' \in \pi'$, что прямая PP' параллельна прямой l (см. рис.слева).

01.2017

Задача 1. Опишите область определения и область значений центральной проекции; параллельной проек-

Определение 2. Пусть π — плоскость. Добавим к каждой прямой на ней *«бесконечно удалённую» точку*, причём будем считать, что *«бесконечно удалённые»* точки у параллельных прямых совпадают, а у непараллельных — различны. Скажем также, что *«бесконечно удалённые»* точки всех прямых составляют *«бесконечно удалённую»* прямую. То, что получилось, называется проективной плоскостью $\bar{\pi}$.

Задача 2. Докажите, что любые две различные прямые на проективной плоскости имеют единственную общую точку, а через любые две различные точки на проективной плоскости проходит единственная прямая.

Задача 3. Докажите, что центральная проекция π на π' с центром O продолжается до взаимно однозначного отображения $\bar{\pi}$ на $\bar{\pi}'$, переводящего прямые в прямые (оно называется *центральной проекцией* $\bar{\pi}$ *на* $\bar{\pi}'$ *с центром* O). Аналогично для параллельной проекции.

Определение 3. Любое отображение $\bar{\pi}$ на себя, которое можно представить в виде композиции центральных и параллельных проекций, называется *проективным преобразованием*.

Задача 4. Докажите, что с помощью проективного преобразования $\bar{\pi}$ можно перевести любые две точки в «бесконечно удалённые».

Задача 5. Докажите, что с помощью проективного преобразования $\bar{\pi}$ на $\bar{\pi}$ можно перевести любые три различные *коллинеарные* (лежащие на одной прямой) точки в любые другие три различные коллинеарные точки.

Задача 6. Докажите, что отрезок нельзя разделить пополам с помощью одной линейки.

Задача 7. Докажите, что с помощью проективного преобразования $\bar{\pi}$ можно перевести любую четвёрку точек, никакие три из которых не коллинеарны, в любую другую четвёрку точек с тем же условием.

Задача 8.** Докажите, что любое взаимно однозначное преобразование проективной плоскости в себя, переводящее прямые в прямые, проективно.

Задача 9. ($Teopema\ \Pi anna$) Пусть вершины шестиугольника ABCDEF лежат попеременно на двух прямых (см. рис. справа). Докажите, что точки пересечения противоположных сторон этого шестиугольника коллинеарны.

Задача 10. ($Teopema\ {\it Дезарга}$) Пусть заданы два треугольника ABC и A'B'C', причём прямые AA', BB' и CC' конкурентны (пересекаются в одной точке). Докажите, что точки пересечения соответственных сторон треугольников ABC и A'B'C' коллинеарны (см. рис. справа).

Задача 11. Верна ли теорема, обратная теореме Дезарга?

теорема, обратная теореме Дезарга?												
								\ddot{A}				A'
	1	2	3	4	5	6	7	8	9	10	11	

B