Solutions to Exercises - Lecture 3 Intelligent Systems Programming

Exercise 1

a)

Portion of the state space is shown in Figure 1.

Figure 1: Portion of the state space for states 1 to 15 in Exercise 1.

b)

- DLS: $\{1, 2, 4, 8, 9, 5, 10, 11\}$
- IDS: {1; 1, 2, 3; 1, 2, 4, 5, 3, 6, 7; 1, 2, 4, 8, 9, 5, 10, 11}

c)

Branching factor is one. There is only one action that can be taken when going backwards.

d)

Given a starting problem with result function result, starting state $s_0=1$ and some goal state s_G , define a new problem, with "inverse" result function result', such that: $result'(n)=\lfloor n/2\rfloor$. The initial state is an old goal state $s_0'=s_G$ and a goal state is $s_G'=s_0=1$. To implement required algorithm it suffices to run a tree-search with BFS over the new problem.

Since branching factor is one, in every step we expand only one state s with only one result s' = result'(s) which is at smaller depth than s. Hence, the number of generated nodes is equal to the depth of the goal state. Since the tree is a balanced binary tree, we have that the depth is O(log(k)). Thus, the complexity of our algorithm is O(log(k)).

Exercise 2

a)

We represent each of n disks with a number from $S = \{1, \ldots, n\}$ assuming that smaller disks are identified with smaller numbers, i.e., the i-th disk is smaller than the j-th disk if i < j. A state is defined with a partition of S into three sets (S_1, S_2, S_3) (i.e., $\bigcup_{i=1}^3 S_i = S$, and $S_i \cap S_j = \emptyset$ for all $i \neq j$) where a set S_k represents disks that are on the k-th peg. Once a set S_k is given, we know exactly how the disks are put on the k-th peg, since there is only one way to order them (smaller on top). In particular, the topmost disk in set S_k is $min\{a \mid a \in S_k\}$, which we denote simply as $minS_k$.

We have six actions M(1,2), M(1,3), M(2,1), M(2,3), M(3,1), M(3,2), where M(i,j) denotes an action of moving a smallest disk from the i-th peg, and putting it on the j-th peg. For each state only some of the actions might be legal, i.e., the topmost disk on the i-th peg must be smaller than topmost disk on the j-th peg $(minS_i < minS_j)$. The *Initial state* is given by $S_1 = \{1, \ldots, n\}, S_2 = \emptyset, S_3 = \emptyset$.

The actions function for each state (S_1, S_2, S_3) returns all legal action-state pairs $(M(i,j), (S_1', S_2', S_3'))$, where the action M(i,j) is legal. For each such action M(i,j), in the results function gives the resulting state in which the two affected pegs are $S_i' = S_i \setminus \{minS_i\}$, $S_j' = S_j \cup \{minS_i\}$ while the remaining one stays the same.

Goal test is given by checking whether $S_3 = \{1, 2, ..., n\}$. Path cost is a positive constant, for example c(s, a, s') = 1.

b)

The state space is shown in Figure 2.

Figure 2: State space of Towers of Hanoi with n=2. \emptyset denotes a peg without disks.

c)

Notice the difference between legal states (i.e., all states satisfying our definition of a state) and reachable states (i.e., states we can reach by executing some sequence of actions from the starting state). Reachable states are in general a subset of legal states. Since we are assuming all legal states are reachable, we need only to count the number of states (S_1, S_2, S_3) that satisfy our definition from a). The number of all legal configurations is 3^n since for every disk we can choose any of the three pegs to put it on.

Exercise 3

a)

The nodes in the fringe of the A*-algorithm when solving the specified problem are given in the table below. Notice that the fringe is a priority queue, and that the

nodes in it are therefore ordered in accordance to their f value.

Iteration	Fringe
0	$\langle 244, 0, 244, L \rangle$
1	$\langle 311, 70, 241, M \rangle, \langle 440, 111, 329, T \rangle$
2	$\langle 387, 145, 242, D \rangle, \langle 440, 111, 329, T \rangle$
3	$\langle 425, 265, 160, C \rangle, \langle 440, 111, 329, T \rangle$
4	$\langle 440, 111, 329, T \rangle, \langle 503, 403, 100, P \rangle, \langle 604, 411, 193, RV \rangle$
5	$\langle 503, 403, 100, P \rangle, \langle 595, 229, 366, A \rangle, \langle 604, 411, 193, RV \rangle$
6	$\langle 595, 229, 366, A \rangle, \langle 604, 411, 193, RV \rangle, \langle 504, 504, 0, B \rangle$

b)

A* returns Solution(goal) where goal is a goal node. The mentioned algorithm Solution traces the path from goal back to the initial node and returns the found path.

In this case, \mathbf{A}^* therefore returns the path: $L \to M \to D \to C \to P \to B$.

Exercise 4

a)

For w=1 we have greedy best first search, for w=0.5 we have A^* search and for w=0 we have uniform cost search.

b)

Notice that we can multiply f(n) with a positive number without changing the behavior of the algorithm. Now multiply f(n) with $\frac{1}{(1-w)}$ which gives $\frac{1}{(1-w)}f(n)=g(n)+\frac{w}{1-w}h(n)$. The heuristic function $\frac{w}{1-w}h(n)$ will be admissible for $\frac{w}{1-w}\leq 1$ since h(n) is admissible. This is the case for $w\leq 0.5$.

Exercise 5

a)

Let k denote the number of edges in $p^*(n)$, $k = |p^*(n)|$.

- If k = 0, a state n is a goal state s_G . Therefore h(n) = 0 according to the definition of heuristic function h(n). But also, $h^*(n) = 0$ since obviously the cheapest path to goal has length 0. Therefore it holds $h(n) \le h^*(n)$.
- Assume that the claim holds for paths with k edges. Let us show that the statement also holds for paths with k+1 edges. Let $p^*(n) = \{n, n_1, \ldots, n_{k+1}\}$ be the optimal path with k+1 edges where n_{k+1} is the goal state. A cost of each edge $c(n_i, n_{i+1})$ is the standard cost of executing an action from a state n_i that leads to a state n_{i+1} .

Since the statement holds for paths with k edges, it also holds for state n_1 . Namely, the optimal path from n_1 to goal n_{k+1} , $p_1^*(n_1) = \{n_1, \ldots, n_{k+1}\}$, has k edges. Therefore:

$$h(n_1) \le h^*(n_1) \tag{1}$$

Also, since $p^*(n_1)$ is the optimal path from n_1 , its length $\sum_{i=1}^k c(n_i, n_{i+1})$ is equal to $h^*(n_1)$. Since the similar holds for $h^*(n)$ it follows:

$$h^*(n) = c(n, n_1) + h^*(n_1)$$
(2)

Now we have everything we need to prove $h(n) \leq h^*(n)$. Since, h is consistent heuristic it holds $h(n) \leq c(n, n_1) + h(n_1) \leq^{(1)} c(n, n_1) + h^*(n_1) =^{(2)} h^*(n)$. This proves the induction step.

• Since the statement holds for k = 0, and from the fact that if the statement holds for k we can show that it also holds for k+1, according to the principle of mathematical induction, the statement holds for all $k \in \mathbb{N}$.

b)

Assume that h is not admissible. Then for some state n_0 it holds $h(n_0) > h^*(n_0)$. However, relation > makes sense only if both $h(n_0)$ and $h^*(n_0)$ are finite. But this means that a goal is reachable from n_0 in finite number of steps, i.e., there is an optimal path $p^*(n_0)$. Then according to a) it must hold $h(n_0) \le h^*(n_0)$ which contradicts the initial assumption. Therefore h is admissible.