Mediciones Machine Learning

Grupo Desminado

March 2022

1 Introducción

El presente documento pretende complementar los escenario diseñados para el sistema GPR, de forma que sean más complejos en términos de número, tipo y ubicación espacial de objetos. De esta manera se espera entrenar un modelo de Machine Learning para la detección de objetos enterrados.

2 Escenarios de entrenamiento

A continuación se presentan los escenarios planteados para realizar las mediciones. Todos los escenarios poseen una configuración en común que se presenta en la Tabla. 1. También es importante señalar que siguiendo en propósito del sistema de detección, los objetos se ubicaron en una profundidad de máximo 20 cm. Los objetos de formas esféricas y cilíndricas tienen un radio de 3.5 cm, mientras que los objetos cuadrados tienen lados de 25 cm x 20 cm. En particular, los objetos cilíndricos que corresponden a las minas, siempre están ubicados de manera vertical en el suelo.

Para la configuración de todos los escenarios H_{ant} , de 40 cm. La profundidad de la arena es de 44 cm. Es importante mencionar que la profundidad de los objetos se define como la distancia más corta del objeto a la superficie, mientras que en el plano X-Y las coordenadas hacen referencia a el centro del objeto. Ello se visualiza en la Fig. 1.

Figure 1: Campo de pruebas

Table 1: Configuración del barrido para los experimentos.

Especificación	Valor
Rango de frecuencias	600 MHz - 6 GHz
Número de puntos por medición	501
Trayectoria	Grilla
Límites espaciales X-Y	[0-700] mm
Número de puntos X-Y	141
Orientación de las antenas	Eje X

2.1 Escenario 1

El escenario 1 posee enterrados cuatro objetos: dos placas metálicas, una esfera metálica y una mina plástica, en las ubicaciones que se especifican en la Tabla.

2. En el plano X-Y los objetos se verían de la forma que se muestran en la Fig.

2.

Table 2: Configuración de objetos enterrados en el escenario 1

	Geometría	Material	X (mm)	Y (mm)	H (mm)	r (mm)	l (mm)
1	Esfera	Metal	175	525	100	35	-
2	Cuadrado	Metal	525	525	150	-	$250 \ge 200$
3	Cuadrado	Metal	175	175	50	-	$250 \ge 200$
4	Cilindro	Plástico	525	175	100	35	-

Figure 2: Mapa de objetos del escenario 1

2.2 Escenario 2

En el escenario 2 se presentan cinco objetos enterrados, con las ubicaciones que se presentan en la Tabla. 3. Los objetos son dos minas plásticas, dos esferas metálicas y una placa de metal distribuidas en el plano X-Y como se presenta en la Fig. 2

Table 3: Configuración de objetos enterrados en el escenario $2\,$

	Geometría	Material	X (mm)	Y (mm)	H (mm)	r (mm)	l (mm)
1	Esfera	Metal	175	525	150	35	-
2	Rectangular	Metal	525	525	100	-	$250 \ge 200$
3	Cilindro	Plástico	140	175	50	35	-
4	Esfera	Metal	280	175	50	35	-
5	Cilindro	Plástico	525	175	150	35	

Figure 3: Mapa de objetos del escenario $2\,$

2.3 Escenario 3

El escenario 3 posee cinco objetos enterrados: tres minas y dos esferas metálicas. La distribución en el plano X-Y de los objetos se encuentra en la Fig. 4, el detalle de

Table 4: Configuración de objetos enterrados en el escenario $3\,$

	Geometría	Material	X (mm)	Y (mm)	H (mm)	r (mm)	l (mm)
1	Esfera	Metal	175	525	100	35	-
2	Cilindro	Plástico	525	525	20	35	-
3	Esfera	Metal	175	175	150	35	-
4	Cilindro	Plástico	525	175	50	35	-
5	Cilindro	Plástico	350	350	150	35	-

Figure 4: Mapa de objetos del escenario 3

3 Escenarios de evaluación

3.1 Escenario 4

El escenario 4 presenta cinco objetos enterrados: una placa metálica, dos esferas metálicas y dos minas de plástico distribuidas espacialmente como se presenta en la Fig. 5. La ubicación detallada de cada objeto se presenta en la Tabla. 5.

Table 5: Configuración de objetos enterrados en el escenario 4

	Geometría	Material	X (mm)	Y (mm)	H (mm)	r (mm)	l (mm)
1	Cilindro	Plástico	175	525	100	35	-
2	Esfera	Metal	525	525	10	35	-
3	Esfera	Metal	175	175	150	35	-
4	Cilindro	Plástico	525	175	150	35	-
4	Rectangular	Metal	350	350	100	-	$250~\mathrm{x}~200$

Figure 5: Mapa de objetos del escenario 4

3.2 Escenario 5

El escenario 5 presenta cuatro objetos enterrados: una placa metálica, dos esferas metálicas y dos minas de plástico distribuidas espacialmente como se presenta en la Fig. 6. La ubicación detallada de cada objeto se presenta en la Tabla. 6.

Table 6: Configuración de objetos enterrados en el escenario 5

	Geometría	Material	X (mm)	Y (mm)	H (mm)	d (mm)	<i>l</i> (mm)
1	Cilindro	Plástico	350	525	80	66.3×60.2	-
2	Cilindro (Botella)	Plástico	525	350	120	90.2×46.45	-
3	Esfera	Metal	350	175	50	35	-
4	Esfera	Metal	175	350	70	35	-

Figure 6: Mapa de objetos del escenario 5

4 Análisis de B-Scans

A continuación se presentan observaciones de los B-Scans para verificar la presencia de objetos vistos como hipérbolas, observando un B-Scan a lo largo del eje x(y-fijo) y otro a lo largo del eje y (x-fijo). Las tablas 7 a 11 presentan la posición del objeto, el tiempo al que se observa la reflexión del suelo (t_s); el tiempo al que se observa el ápice de la hipérbola (t_o) que se supone corresponde al objeto; la diferencia entre esos tiempos (t_d) y la profundidad del objeto estimada utilizando la ecuación (1); la diferencia porcentual entre la profundidad real y estimada; y finalmente si es posible ver la hipérbola en los B-Scan ("mov" indica que solo se visualiza con la técnica de remoción del fondo de promedio móvil ventana de 35).

$$H_{est} = \frac{1}{2} \frac{c}{\sqrt{\epsilon_r}} t_d \tag{1}$$

La Fig. 7 muestra el B-Scan (y el resultado de aplicar métodos de remoción de fondo) a lo largo del eje y, con x fijo en 0.35 m. Mientras que la Fig. 8 muestra el B-Scan a lo largo del eje x, con y fijo en 0.175 m. Estos dos utilizados con el fin de observar la hipérbola generada por la esfera metálica ubicada a una profundidad de 7 cm de la superficie.

Figure 7: B-Scan. Escenario 5. x=0.350m

Figure 8: B-Scan. Escenario 5. y=0.175m

Table 7: Observaciones de B-Scans. Escenario 1

	Objeto	x (m)	y (m)	h (m)	t_s (ns)	$t_o (ns)$	$t_d (ns)$	H_{est} (m)	Diferencia	X-fijo	Y-fijo
1	Esfera	0.175	0.525	0.100	4.25	5.50	1.25	0.117	16.73%	Sí	Sí
2	Placa	0.525	0.525	0.150	4.25	6.00	1.75	0.163	8.95%	Sí	Sí
3	Placa	0.175	0.175	0.050	4.25	4.75	0.50	0.047	-6.61%	Sí	Sí
4	Mina	0.525	0.175	0.100	4.25	5.50	1.25	0.117	16.73%	Sí	Sí

Table 8: Observaciones de B-Scans. Escenario 2

	Objeto	x (m)	y (m)	h (m)	$t_s \ (ns)$	$t_o (ns)$	$t_d (ns)$	H_{est} (m)	Diferencia	X-fijo	Y-fijo
1	Esfera	0.175	0.525	0.150	4.25	5.75	1.50	0.140	-6.61%	Sí	No
2	Placa	0.525	0.525	0.100	4.25	5.50	1.25	0.117	16.73%	Sí	Sí
3	Mina	0.140	0.175	0.050	4.25	5.50	1.25	0.117	133.46%	Sí	No
4	Esfera	0.280	0.175	0.050	4.25	5.37	1.12	0.105	109.18%	Sí	Sí
5	Mina	0.525	0.175	0.150	4.25	-	-	-	-	No	No

Table 9: Observaciones de B-Scans. Escenario 3

	Objeto	x (m)	y (m)	h (m)	t_s (ns)	$t_o (ns)$	$t_d (ns)$	H_{est} (m)	Diferencia	X-fijo	Y-fijo
1	Esfera	0.175	0.525	0.100	4.25	5.75	1.50	0.140	40.08%	Sí	Sí
2	Mina	0.525	0.525	0.020	4.25	4.50	0.25	0.023	16.73%	Sí	Baja
3	Esfera	0.175	0.175	0.150	4.25	4.35	0.10	0.009	-93.77%	Baja	Baja
4	Botella	0.525	0.175	0.050	4.25	4.40	0.15	0.014	-71.98%	Baja	No
5	Esfera	0.350	0.350	0.150	4.25	6.25	2.00	0.187	24.51%	Sí	Sí

Table 10: Observaciones de B-Scans. Escenario 4

	Objeto	x (m)	y (m)	h (m)	t_s (ns)	$t_o (ns)$	$t_d (ns)$	H_{est} (m)	Diferencia	X-fijo	Y-fijo
1	Mina	0.175	0.525	0.100	4.25	5.75	1.5	0.140	40.08%	Sí	Sí
2	Esfera	0.525	0.525	0.010	4.25	4.35	0.10	0.009	-6.61%	Sí	Sí
3	Esfera	0.175	0.175	0.150	4.25	6.00	1.75	0.163	8.95%	Baja	No
4	Mina	0.525	0.175	0.050	4.25	4.35	0.10	0.009	-81.32%	Mov	No
5	Placa	0.350	0.350	0.090	4.25	5.25	1.00	0.093	3.76%	Sí	Sí

Table 11: Observaciones de B-Scans. Escenario 5

	Objeto	x (m)	y (m)	h (m)	t_s (ns)	$t_o (ns)$	$t_d (ns)$	H_{est} (m)	Diferencia	X-fijo	Y-fijo
1	Botella	0.350	0.525	0.080	4.00	4.25	0.25	0.023	-70.82%	No	Mov
2	Mina	0.525	0.350	0.120	4.00	-	-	_	_	No	No
3	Esfera	0.350	0.175	0.050	4.00	5.10	1.10	0.103	105.45%	Sí	Sí
4	Esfera	0.175	0.350	0.070	4.00	5.25	1.25	0.117	66.76%	Sí	Sí

5 Resultados CNN-2D

En las Fig. 9 a 14 se presentan los resultados de entrenar el modelo de CNN de 2D al que se le aplican los escenarios de entrenamiento y evaluación. Los

escenarios 1 a 3 fueron usados para entrenar el modelo.

Figure 9: Resultados Escenario Solo Arena. CNN 2D

Figure 10: Resultados Escenario 1. CNN 2D

Figure 11: Resultados Escenario 2. CNN 2D

Figure 12: Resultados Escenario 3. CNN 2D

Figure 13: Resultados Escenario 4. CNN 2D

Figure 14: Resultados Escenario 5. CNN 2D

6 Discusión

De las tablas 7 a 11 se puede observar que la mayoría de diferencias porcentuales son de más de dos dígitos. Sin embargo, se observa que, como es esperado, los objetos enterrados a mayor profundidad tienen el ápice de su hipérbola más retardada en tiempo. También es importante notar que los objetos de baja o nula visibilidad correspondía siempre a objetos plásticos que simulaban minas (incluidas las botellas). Mientras que objetos metálicos. Sería adecuado verificar la permitividad relativa del plástico para verificar su diferencia con respecto al suelo.

Respecto a los resultados de aplicar el algoritmo de CNN-2D se evidencia claramente que hay un sobre ajuste excesivo, ya que no aparecen minas en los escenarios 4 y 5 (Fig. 13 y 14), aun teniendo en cuenta que en el escenario 4 hay una placa metálica al centro (reflexiones fuertes) por lo que se sugiere realizar señalizaciones en los B-Scans del centro de interés (similar a las líneas azules de las Fig. 7 y 8), también se puede pensar en reducir el alcance del B-Scan.

A Implementación en Python

Para implementar los algoritmos de Machine Learning se utilizó Python. Principalmente, la librería numpy, tensorflow y matplotlib.

El archivo GPR-CNN B-Scan New Scenes.ipynb contiene la carga de los archivos .h5 con sus respectivas etiquetas.

La clase *DataGenerator* es utilizada para entregar los datos al algoritmo tanto en entrenamiento como en predicción. Este generador recibe la lista de C-Scans en tiempo, opcionalmente se le puede indicar una escena base (para realizar sustracción de escenarios), también se le puede indicar la estrategia de remoción de fondo (sustracción de escenarios, sustracción del promedio o sustracción del promedio móvil).

El modelo de CNN-2D está implementado utilizando la librería Keras con backend en TensorFlow. Adicionalmente se utiliza TensorFlow-AddOns para calcular el F1-Score como criterio de validación durante el entrenamiento. Recibe dos B-Scan unidos en un solo arreglo. Entrega una arreglo de probabilidades que debe ser reorganizado en un arreglo (x, y) para graficar. La función $plot_mine_map()$ recibe este arreglo, junto con los ejes para graficar el mapa de probabilidad.