STAT3005 Assignment 1

Lam Hoi Chun (1155192755)

Exercise 1.1

1(a).

$$\text{Var}(X_i) = E(X_i^2) - E(X_i)^2 \text{ and } E(X_i)^2 = \mu_i^2 = 0$$

$$\therefore Var(X_i) = \sigma^2 = E(X_i^2) = \frac{1}{n} \sum_{i=1}^n X_i^2$$

 $\therefore \hat{\sigma}_1^2$ is a sensible estimator.

i.e. It is sensible to use the sample variance of a random variable X with mean = 0 to estimate the population variance.

Besides, it is a non-parametric estimator. Although it assumes n number of parameters, the distribution of X cannot be defined by a finite number of parameters. However, it also can be treated as a parametric estimator since it assumes a parametric form of μ_i , which is equal to 0. So, the conclusion depends on how we really define a non-parametric estimator.

1(b).

Using Theorem 2.5, we know that $\frac{X_{(i)}-q}{\sigma_p/\sqrt{n}} \stackrel{d}{\sim} N(0,1)$.

By changing the subject, $X_{(i)} - q \approx N(0, \frac{\sigma_p^2}{n}) \approx 0$ when $n \to \infty$

i.e.
$$X_{(i)} - q \stackrel{\text{pr}}{\to} 0 \Rightarrow X_{(i)} \stackrel{\text{pr}}{\to} q \Rightarrow X_{(i)} \stackrel{\text{d}}{\to} q$$
, where $q \sim N(0, \sigma^2)$

Now consider $p = P(X \le q) = P(Z \le \frac{q-\mu}{\sigma}) = \Phi(\frac{q-\mu}{\sigma})$, where $\mu = \mu_1 = \ldots = \mu_n$.

$$\Rightarrow \Phi^{-1}(p) = \frac{q-\mu}{\sigma}$$

Then, we can rewrite the variable as: $q = \mu + \sigma \Phi^{-1}(p)$

Note that $X_{(i)} = X_{(\lfloor np \rfloor)} \stackrel{\text{pr}}{\rightarrow} q = \mu + \sigma \Phi^{-1}(p)$

$$\therefore X_{(\lfloor np \rfloor)} \xrightarrow{\mathrm{pr}} \mu + \sigma \Phi^{-1}(p)$$

$$\begin{split} \therefore \hat{\sigma}_2^2 &= \left[\frac{X_{(\lfloor 0.75n \rfloor)} - X_{(\lfloor 0.25n \rfloor)}}{2\Phi^{-1}(0.75)}\right]^2 \\ &= \left[\frac{(\mu + \sigma\Phi^{-1}(0.75)) - (\mu + \sigma\Phi^{-1}(0.25))}{2\Phi^{-1}(0.75)}\right]^2 \\ &= \left[\frac{\sigma(\Phi^{-1}(0.75) - \Phi^{-1}(0.25))}{2\Phi^{-1}(0.75)}\right]^2 \\ &= \left[\frac{\sigma(\Phi^{-1}(0.75) - (-\Phi^{-1}(0.75)))}{2\Phi^{-1}(0.75)}\right]^2 \\ &= \left[\frac{2\sigma \cdot \Phi^{-1}(0.75)}{2\Phi^{-1}(0.75)}\right]^2 \\ &= \sigma^2 \end{split}$$

1(b).(Cont'd)

 $\therefore \hat{\sigma}_2^2$ is a sensible estimator.

i.e. It is sensible to use the sample IQR to estimate the population variance.

Besides, it is a parametric estimator as it assumes a model that can be described by 2 parameters: a normal distribution when mean μ and variance σ^2 .

$$1(c)$$
.

Note that
$$\mu_i - \mu_{i-1} = g\left(\frac{i}{n}\right) - g\left(\frac{i-1}{n}\right)$$

By the definition of derivative: $g'(\frac{i}{n}) = \frac{g(\frac{i}{n}) - g(\frac{i}{n} - \frac{1}{n})}{1/n}$ when $n \to \infty$

$$\therefore \mu_i - \mu_{i-1} \approx 0 \text{ when } n \to \infty$$

$$\therefore X_i - X_{i-1} = (\mu_i - \mu_{i-1}) + (\epsilon_i - \epsilon_{i-1}) \approx (\epsilon_i - \epsilon_{i-1}) \text{ when } n \to \infty$$

$$E(X_{i} - X_{i-1})^{2}$$

$$= Var(X_{i} - X_{i-1}) + E(X_{i} - X_{i-1})^{2}$$

$$= Var(X_{i} - X_{i-1}) + [E(X_{i}) - E(X_{i-1})]^{2}$$

$$= Var(X_{i} - X_{i-1}) + (\mu_{i} - \mu_{i-1})^{2}$$

$$= Var(X_{i} - X_{i-1}) + 0^{2}$$

$$= Var(X_{i}) + Var(X_{i-1}) - Cov(X_{i}, X_{i-1})$$

$$= \sigma^{2} + \sigma^{2} - 0$$

$$= 2\sigma^{2}$$

$$\therefore \sigma^2$$
 can be estimated by $\frac{E(X_i - X_{i-1})^2}{2} = \frac{1}{2} \left[\sum_{i=2}^n \frac{(X_i - X_{i-1})^2 - 0}{n-1} \right] = \frac{1}{2(n-1)} \sum_{i=2}^n (X_i - X_{i-1})^2$

 $\therefore \hat{\sigma}_3^2$ is a sensible estimator.

Besides, it is a non-parametric estimator as it assumes a model that cannot be defined by a finite number of parameters, which is a differentiable function g.

Exercise 1.1

$$2(a)(i)$$
. $\sigma^2 = 5^2 = 25$

$$2(a)(ii)$$
. $\sigma^2 = \frac{[1-(-1)]^2}{12} = \frac{1}{3}$

2(a)(iii). Note that the variance of t-distribution = $\frac{v}{v-2}$ for v > 2.

$$\therefore$$
 Variance of $t_4 = \frac{4}{4-2} = 2$

2(b).

	$\mathrm{RMSE}(\log \widehat{\sigma}_1^2)$	RMSE $(\log \hat{\sigma}_2^2)$	RMSE $(\log \hat{\sigma}_3^2)$
DGP (i)	1.5979723	0.4256686	0.3308837
DGP (ii)	0.1594576	0.5433290	0.2571831
DGP (iii)	4.1580413	3.6005726	0.6455057

2(c). $\hat{\sigma}_1^2$ only performs well for DGP (ii) but poorly in other two DGPs. The reason may be that the assumption of $\mu_i = 0$ is only reasonable for DGP (ii).

 $\hat{\sigma}_2^2$ is relatively stable but less accurate, particularly for DGP (iii). The reason may be that the noise of DGP (iii) $\sim N$.

 $\hat{\sigma}_3^2$ is generally a better estimator as it consistently shows lower RMSE across all DGPs. The reason may be that it has the weakest assumption. So, it will be a fit for more distribution, resulting that it is the most reliable estimator across different DGPs.

Exercise 1.2

1.
$$E(T)$$

$$= E\left[\sum_{i=2}^{n} \frac{i}{n+1} (R_i - R_{i-1})\right]$$

$$= E\left(\sum_{i=2}^{n} \frac{i}{n+1}\right) \cdot E(R_i - R_{i-1})$$

$$\therefore E(R_i) = \frac{n+1}{2} \text{, for all } i = 2, ..., n$$

$$\therefore E(R_i - R_{i-1}) = 0 \text{, for all } i = 2, ..., n$$

$$\therefore E(T) = E\left(\sum_{i=2}^{n} \frac{i}{n+1} \cdot 0\right) = 0$$

$$T = \sum_{i=2}^{n} \frac{i}{n+1} (R_i - R_{i-1})$$

$$= \frac{1}{n+1} \left[\sum_{i=2}^{n} i R_i - \sum_{i=1}^{n-1} (i+1) R_i\right]$$

$$= \frac{1}{n+1} \left[\left(\sum_{i=1}^{n} i R_i - \sum_{i=1}^{n-1} i R_i - (1) R_1\right) - \sum_{i=1}^{n-1} R_i\right]$$

$$= \frac{1}{n+1} \left[n R_n - R_1 - \sum_{i=1}^{n-1} i R_i\right]$$

$$= \frac{1}{n+1} \left[n R_n - 2R_1 - \sum_{i=2}^{n-1} R_i\right]$$

$$= \frac{1}{n+1} \left[n R_n - 2R_1 - \sum_{i=2}^{n-1} R_i\right]$$

$$= \frac{1}{n+1} \left[n R_n - 2R_1 - \sum_{i=2}^{n-1} R_i\right]$$

$$= \frac{1}{n+1} \left[n R_n - 2R_1 - \sum_{i=2}^{n-1} R_i\right]$$

$$= \frac{1}{n+1} \left[n R_n - 2R_1 - \sum_{i=2}^{n-1} R_i\right]$$

$$= \frac{1}{n+1} \left[n R_n - 2R_1 - \sum_{i=2}^{n-1} R_i\right]$$

$$\frac{1}{n+1} \left[nR_n - 2R_1 - \sum_{i=2}^{n-1} R_i \right]
= \frac{1}{n+1} \left[nR_n - 2R_1 - \left(\sum_{i=1}^n R_i \right) + R_n + R_1 \right]
= \frac{1}{n+1} \left[nR_n - R_1 - \frac{n(n+1)}{2} + R_n \right]
= \frac{1}{n+1} \left[(n+1)R_n - R_1 - \frac{n(n+1)}{2} \right]
= R_n - \frac{1}{n+1} R_1 - \frac{n}{2}$$

$$Var(T)$$

$$= Var(R_n - \frac{1}{n+1}R_1 - \frac{n}{2})$$

$$= Var(R_n) + \frac{1}{(n+1)^2} \cdot Var(R_1) - 2(1)(\frac{1}{n+1}) \cdot Cov(R_1, R_n)$$

$$= \left[1 + \frac{1}{(n+1)^2}\right] \cdot Var(R_n) - \frac{2}{n+1} \cdot Cov(R_1, R_n)$$

$$= \left[\frac{n^2 + 2 + 2}{(n+1)^2}\right] \cdot \left[\frac{n^2 - 1}{12} - \frac{E(A)}{12n}\right] - \frac{2}{n+1} \cdot \left[-\frac{n+1}{12} + \frac{E(A)}{12n(n-1)}\right]$$

$$= \left[\frac{(n^2 + 2n + 2)(n^2 - 1)}{12(n+1)^2} + \frac{2(n+1)}{12(n+1)}\right] - \left[\frac{n^2 + 2n + 2}{12n(n+1)^2} + \frac{2}{12n(n+1)(n-1)}\right] \cdot E(A)$$

$$= \frac{(n^2 + 2n + 2)n}{12(n+1)} - \frac{n^2 + 2n + 2}{12(n+1)^2(n-1)} \cdot E(A)$$

Exercise 1.2

2. Using the corresponding R code with random seed =123, the results are:

	Absolute error of m	Absolute error of v	Relative error of v
n=2	0.006998698	0.00004886125	0.0001219348
n=4	0.003271484	0.04938548	0.0352682729
n=6	0.016165597	0.1302010	0.0417196422
n=8	0.044365777	0.2942849	0.0533562305

 $\therefore E(T) = 0$ and $\text{Var}(T) = \frac{(n^2 + 2n + 2)n}{12(n + 1)} - \frac{n^2 + 2n + 2}{12(n + 1)^2(n - 1)} \cdot E(A)$ are verified as the differences between the absolute error of mean and variance are both very insignificant. Also, the relative error of variance are mostly less than 5%.

Exercise 1.3

1.

$$Cov(R_1 + R_2, R_1 - R_2) = Cov(R_1, R_1) - Cov(R_1, R_2) + Cov(R_2, R_1) - Cov(R_2, R_2)$$

Note that $Cov(R_1, R_1) = Var(R_1)$, $Cov(R_2, R_2) = Var(R_2)$ and $Cov(R_1, R_2) = Cov(R_2, R_1)$
 $\therefore Cov(R_1 + R_2, R_1 - R_2) = Var(R_1) - Var(R_2)$

$$= \left[\frac{n^2 - 1}{12} - \frac{E(A)}{12n}\right] - \left[\frac{n^2 - 1}{12} - \frac{E(A)}{12n}\right]$$
$$= 0$$

2.

For simplicity, we consider n=2.

... The possibles pair of ranks for R_1 and R_2 are (1,2) or (2,1), each with probability = 0.5.

$$\therefore P(R_1 + R_2 = 3) = 1 \text{ and } P(R_1 - R_2 = -1) = P(R_1 - R_2 = 1) = 0.5$$

Then, to check whether $R_1 + R_2$ and $R_1 - R_2$ are independent:

We have to verify that whether $P(R_1 + R_2 = x, R_1 - R_2 = y) = P(R_1 + R_2 = x) \cdot P(R_1 - R_2 = y)$

Consider (x, y) = (3, 1):

$$P(R_1 + R_2 = 3, R_1 - R_2 = 1) = 0.5$$
 and $P(R_1 + R_2 = 3) \cdot P(R_1 - R_2 = 1) = 1 \cdot 0.5 = 0.5$

Consider (x, y) = (3, -1):

$$P(R_1 + R_2 = 3, R_1 - R_2 = -1) = 0.5$$
 and $P(R_1 + R_2 = 3) \cdot P(R_1 - R_2 = -1) = 1 \cdot 0.5 = 0.5$

 $\therefore R_1 + R_2$ and $R_1 - R_2$ are independent for n = 2.

However, by similar approach, it can be showed that $R_1 + R_2$ and $R_1 - R_2$ are not independent for n = 3, as $P(R_1 + R_2 = 3, R_1 - R_2 = -1) = \frac{1}{6}$, while $P(R_1 + R_2 = 3) = \frac{1}{3}$ and $P(R_1 + R_2 = -1) = \frac{1}{3}$.

Therefore, we have to check the case with finite n by a more general approach:

It can be observed that R_1 , R_2 have n possible values respectively, each with probability $=\frac{1}{n}$

$$\Rightarrow$$
 (R_1, R_1) has $n(n-1)$ possible pairs, each with probability $= \frac{1}{n(n-1)}$

$$\Rightarrow (R_1 + R_2, R_1 - R_2)$$
 has $n(n-1)$ possible pairs, each with probability $= \frac{1}{n(n-1)}$

In general, by the marginal probability of R_1 and R_2 : $P(R_1 = a) \cdot P(R_2 = b) = \frac{1}{n} \cdot \frac{1}{n} = \frac{1}{n^2}$, while $P(R_1 + R_2 = a + b, R_1 - R_2 = a - b) = \frac{1}{n(n-1)} \neq \frac{1}{n^2}$ for $n \neq 2$.

 \therefore It is shown that $R_1 + R_2$ and $R_1 - R_2$ are generally not independent, except the case of n = 2.