

Task 1: Edge Al Prototype

Goal: Train and deploy a lightweight image classification model.

Tools:

- TensorFlow/Keras for model training.
- TensorFlow Lite for conversion.
- Google Colab to simulate Edge (or Raspberry Pi if available).

Suggested Project:

Title: RecycleNet: Real-time Recyclable Waste Classifier on Edge Devices

Steps:

- 1. Dataset: Use Waste Classification Dataset on Kaggle.
- 2. Model Training (Colab/Jupyter):
 - Preprocess images (resize to 224x224).
 - Use MobileNetV2 or EfficientNetLite.
 - o Train with augmented data.
 - o Evaluate (accuracy, F1-score).

Convert to TFLite:

```
import tensorflow as tf
converter = tf.lite.TFLiteConverter.from_saved_model('path_to_model')
tflite_model = converter.convert()
with open('model.tflite', 'wb') as f:
    f.write(tflite_model)
```

4. Simulate/Deploy:

- o Test using tf.lite.Interpreter in Colab.
- Optionally simulate hardware constraints (reduced CPU, low RAM).

5. Write-up (PDF):

- Model architecture
- Deployment steps
- Accuracy metrics
- Real-time Edge AI benefits (e.g., offline processing, low latency)

▼ Task 2: Al-Driven IoT Concept

Scenario: Smart Agriculture System

Title:

AgroAI: Intelligent Crop Monitoring and Yield Prediction System

Sensors:

- Soil moisture sensor
- Temperature/humidity sensor
- Light intensity sensor
- pH level sensor
- CO₂ levels (optional)
- Drone imagery (optional)

Al Model:

- Use a regression model (Random Forest or LSTM) to predict **crop yield** based on time-series sensor data.
- Optional: Use satellite or drone image classification for crop health.

Data Flow Diagram:

- 1. Sensors collect data →
- Data sent via microcontroller (ESP32/Raspberry Pi) →
- 3. Stored in cloud/edge DB →
- 4. Al model processes data →
- 5. Dashboard shows predictions and alerts

Deliverable:

- 1-page PDF with:
 - Sensor list
 - Model description
 - Diagram (use draw.io or diagrams.net)
 - One-paragraph explanation of how Al improves decision-making in precision agriculture

Task 3: Ethics in Personalized Medicine

Dataset: TCGA – The Cancer Genome Atlas (can reference existing studies if direct access is restricted).

Analysis Points:

- Biases:
 - o Underrepresentation of minority groups in genomic datasets.
 - o Historical medical inequities reflected in training data.
 - Data collected from one region/ethnicity generalized to all.

• Fairness Strategies:

- Collect more diverse patient samples.
- Implement fairness-aware algorithms.
- Audit models regularly for biased outputs.

Transparency in AI decision paths.

Deliverable:

300-word PDF/Markdown analysis titled:
 "Mitigating Bias in Al-Powered Cancer Treatment Recommendations"

Prompt: Propose an Al system for 2030.

Example Title:

NeuroLink AI: Brain-Computer Interface for Adaptive Learning

Problem:

 Many learners have different cognitive styles, and standardized education doesn't serve neurodiverse populations well.

Al Workflow:

- **Data Input**: Brainwave patterns (EEG), gaze tracking, biometric feedback.
- **Model**: Reinforcement learning model adapting content delivery based on real-time brain engagement.
- Output: Personalized learning content streamed via AR or neural interfaces.

Risks:

- Data privacy & mental manipulation.
- Cognitive dependency on machines.
- Brain health risks from prolonged interface use.

Benefits:

• True personalized education.

- Support for dyslexia, ADHD, and learning impairments.
- Lifelong learning enhancement.

Deliverable:

- 1-page concept paper PDF with:
 - o Problem
 - o Al system diagram
 - Workflow explanation
 - Ethical/social impact analysis

BONUS TASK (Extra 10%)

▼ Task: Quantum Computing Simulation

Tool: IBM Quantum Experience

Example Project:

Title: Quantum Drug Molecule Classifier

Task:

- Create a basic quantum circuit using Qiskit.
- Simulate a binary classifier (e.g., XOR logic gate).
- Discuss how Grover's algorithm could speed up molecular search (drug discovery).

Deliverable:

- Code screenshot or GitHub link
- Short explanation (200 words) of how quantum search optimizes AI workflows

☑ Submission Checklist

Task	Format	Submitted On
Edge Al Project	Code + PDF	✓ GitHub, Article
AloT Smart Farm Proposal	PDF Diagram	✓ GitHub, Article
Ethics in Personalized Medicine	PDF Analysis	✓ Article
Futuristic Proposal	Concept PDF	✓ Article
Quantum Bonus	Code + Note	✓ GitHub

⊗ Resources

- TensorFlow Lite Guide
- IBM Quantum Docs
- Kaggle Edge Al Datasets
- Draw.io for Diagrams