과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 5	화면설명					
≻Intro	• 인간의 뇌를 흉내 낸 인공지능, 심장을 진단하다	① 본 학습 내용으로 들 어가기 전, <mark>학습 주제</mark>					
•학습열기	여러분은 혹시 병원에서 인공지능이 여러분의 건강 상태를 진단해주는 장면을 상상해보신 적	<mark>의 흥미를 이끌 만한</mark> 도입부의 내용이 있					
•학습목표	있으신가요? 요즘 일부 병원에서는 실제로 AI 모델이 심장병, 당뇨병, 암과 같은 질환의 가능	다면 제시해주세요.					
▷ 학습하기 1. DNN 구현	성을 예측하는 데 활용되고 있습니다. 이 모델의 핵심에는 바로 사람의 뇌를 본떠 만든 인공 신경망(Artificial Neural Network) 기술이 있습니다. 특히 여러 층을 가진 DNN(Deep Neural						
2. DNN 학습	Network)은 복잡한 건강 정보를 분석하고 환자의 상태를 예측하는 데 뛰어난 성능을 발휘합 니다. 예를 들어, 환자의 나이, 혈압, 콜레스테롤 수치 같은 수십 개의 특성을 바탕으로 "이 사	③ 저작권 침해가 되지 않도록 내용을 구성					
3. DNN 평가	라이 심장병일 확률이 얼마나 될까?"를 계산하죠. 우리는 지금부터 PyTorch를 이용해 이런	해 주세요.					
	DNN 모델을 직접 구현하고, 학습시키고, 평가해보는 여정을 시작합니다. 단순한 이론이 아닌 실제 건강 예측 모델을 만들어본다고 생각하면, 훨씬 더 의미 있고 흥미롭지 않으신가요?	④ 출처가 있을 경우 반 드시 작성해 주세요.					
▶적용하기		용어설명					
≻Outro							
•문제풀기							
내							
레 이		3					
션		3					

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 5	화면설명
▶Intro•학습열기•학습목표		① 학습내용과 학습목표 는 강의계획서와 일 치해야 하며, 필요시 강의계획서를 수정할 수 있습니다.
> 학습하기 1. DNN 구현 2. DNN 학습 3. DNN 평가	1. PyTorch에서 심층 신경망을 구현할 수 있다. 2. 손실 함수와 옵티마이저를 적용하여 모델을 학습할 수 있다. 3. 모델의 성능을 검증하고 평가 지표를 적용할 수 있다.	 ② 학습목표 ✓ 각 레슨에 맞는 학습 목표를 2~3개 작성 해 주세요. ③ 학습내용 ✓ 1회차 당 25분 분량 이 되도록 2~3개 레 슨으로 구성해주세요.
	◈ 학습내용1. DNN 구현	✓ 학습내용과 레슨명은 일치해야 합니다.
▶적용하기	2. DNN 학습	용어설명
➤ Outro •문제풀기	3. DNN 평가	
내 레 이 션		4

과정명	PyTorch로 배우는 머신러닝	알고리즘	회차명	5		화면설명
≻Intro						
•학습열기						
•학습목표						
▶학습하기		간지				
1. DNN 구현						
2. DNN 학습						
3. DNN 평가						
			DNN	구현		
				. —		
▶ 적용하기						용어설명
≻Outro						
•문제풀기						
내						
내 레 이 션					5	;
션						_
						5

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명	5	화면설명
≻Intro	• 심장별 판별 DNN 구현 절차			
•학습열기	# 라이브러리 가져 오기			
•학습목표	# 1. 지난 수업에서 만든 심장병 데이	터셋 파일 불	불러오기	
▶학습하기	원-핫 인코딩, 표준 정규화 전처	믜, 23개 속 성	성, target이 결과 값	
1. DNN 구현	heart_disease_zscore.csv			
2. DNN 학습 3. DNN 평가	# 2. 특성과 타겟 분리			
	# 3. 훈련/테스트 데이터 분할			
	# 4. Dataset 클래스 정의			
	# 5. 모델 정의			
	# 6. 손실함수와 옵티마이저			
▶적용하기	# 7. 학습 루프			용어설명
≻Outro	# 8. 평가			
•문제풀기	# 9. 결과 출력			
내				
레				5
이 년				
				6

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 5	화면설명
≻Intro	• 지난 수업에서 만든 심장병 데이터셋 파일 불러오기	
•학습열기	파일을 드래그 드롭으로 colab에 업로드	
•학습목표	다음으로 전처리한 파일 사용: heart_disease_zscore.csv	
▶학습하기	원-핫 인코딩	
1. DNN 구현	명목형 데이터(nominal data)는 이름만 있고 순서나 크기 개념이 없는 범주형 데이터	
2. DNN 학습 3. DNN 평가	표준 정규화	
3. 51414 677	연속형 수 값 데이터	
	# 라이브러리 가져 오기 import pandas as pd import numpy as np import torch	
▶적용하기	<pre>import torch.nn as nn import torch.optim as optim</pre>	용어설명
▶Outro •문제풀기	# 1. 지난 수업에서 만든 심장병 데이터셋 파일 불러오기 df = pd.read_csv("heart_disease_zscore.csv")	
내 레 이 션		7

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명	5	화면설명
≻Intro	• 특성과 타겟 분리, 훈련 • 테스트 데	이터 분할		
•학습열기	'target' 필드 제외한 내용을 X, target	은 y로 분리,	모두 float32 형태로 변환	
•학습목표	• 8:2 비율으로 train/test 데이터 분할	<u>ł</u>		
> 학습하기 1. DNN 구현 2. DNN 학습 3. DNN 평가	함수 train_test_split()의 패러미터 stra 훈련/테스트 데이터셋에서 타겟 → 불균형 데이터에서도 신뢰도	클래스(0/1)	의 비율을 원본과 동일하게 유지하도록 보장 나능	
	# 2. 특성과 타겟 분리 X = df.drop(columns=["target y = df["target"].astype(np.:		pe(np.float32)	
▶적용하기	# 3. 훈련/테스트 분할 from sklearn.model_selection	n import	train_test_split	용어설명
➤Outro •문제풀기	X_train, X_test, y_train, y_X.values, y.values, test	_	rain_test_split(2, random_state=42, stratify=y	
내 레 이 션			8	8

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명	5	화면설명	
≻Intro	• Dataset 클래스 정의				
•학습열기	PyTorch는 데이터를 순차적으로 다루	Dataset과 DataLoader 시스템을 사용			
•학습목표	HeartDataset: Dataset을 상속해 사용	자 정의 데이	터셋 클래스를 생성함		
▶학습하기	Pandas 기반의 데이터프레임을	PyTorch 학습	늘에 적합한 Tensor 형태로 변환		
1. DNN 구현	_init_: 입력 데이터와 타겟을 fl	oat32 텐서호	로 변환, y는 2D로 reshape		
2. DNN 학습 3. DNN 평가	getitem: 주어진 인덱스의 (X	(, y) 한 쌍을	반환 → DataLoader가 내부에서 사용		
	# 4. Dataset 클래스 정의 from torch.utils.data import Dataset, DataLoader				
	<pre>class HeartDataset(Dataset): definit(self, X, y): self.X = torch.tensor(</pre>		·		
▶적용하기	<pre>self.y = torch.tensor(</pre>	y, dtype=t	orch.float32).view(-1, 1)	용어설명	
≻Outro	<pre>deflen(self): return len(self.y)</pre>				
•문제풀기	<pre>defgetitem(self, idx) return self.X[idx], se</pre>				
내 레 이 션				10	

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명	5	화면설명		
≻Intro	• Dataset 클래스로 학습과 테스트 더	이터 객체	생성			
•학습열기	train_dataset, test_dataset: 학습/테스	트용 Datase	et 객체 생성			
•학습목표	train_loader, test_loader: 배치 단위로	. 데이터를 급	공급하는 반복 가능한 DataLoader 객체			
▷학습하기	batch_size=32: 32개씩 묶어서 5	고델에 전달				
1. DNN 구현	shuffle=True: epoch마다 순서를	랜덤하게 4	ị음 → 일반화 성능에 도움			
2. DNN 학습 3. DNN 평가	shuffle=False: 테스트는 재현성을	을 위해 순서	를 섞지 않음			
	# 4. Dataset 클래스 정의 from torch.utils.data import Dataset, DataLoader					
	<pre>class HeartDataset(Dataset): definit(self, X, y): self.X = torch.tensor(X, dtype=torch.float32) self.y = torch.tensor(y, dtype=torch.float32).view(-1, 1)</pre>					
▶적용하기		11		용어설명		
➤ Outro •문제풀기	<pre>train_dataset = HeartDataset(X_t test_dataset = HeartDataset(X_te train_loader = DataLoader(train_test_loader = DataLoader(test_data_test_loader)</pre>	est, y_test _dataset, k	c) patch_size=32, shuffle=True)			
내 레 이 션				11		

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 5	화면설명
≻Intro	• DNN 모델 정의	
•학습열기	입력 층(22개 특성), 은닉 층 2개(128, 64), 출력 층(1)	
•학습목표	# 5 . 모델 정의	
▶학습하기	<pre>class DNN(nn.Module): def init (self, input dim):</pre>	
1. DNN 구현	super(DNN, self)init()	
2. DNN 학습	self.net = nn.Sequential(
3. DNN 평가	nn.Linear(input_dim, 128),	
	nn.ReLU(),	
	nn.Dropout(0.3),	
	nn.Linear(128, 64),	
	nn.ReLU(),	
	nn.Dropout(0.3),	
	nn.Linear(64, 1) # Sigmoid 제거	
▶적용하기)	용어설명
≻Outro	<pre>def forward(self, x):</pre>	
•문제풀기	return self.net(x)	
_ "_ "	<pre>model = DNN(input_dim=X.shape[1])</pre>	
내 레		
0	1	2
션		1

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명	5	화면설명
≻Intro	• 층 사이에 다음을			
•학습열기	Dropout: 과적합(overfitting) 방지			
•학습목표	학습 시 일부 뉴런을 랜덤하게 비	활성화하는	방법	
▷학습하기	특정 뉴런에 과도하게 의존하는 현	현상을 방지		
1. DNN 구현	테스트 시에는 모든 뉴런을 사용함	함		
2. DNN 학습 3. DNN 평가	ReLU (Rectified Linear Unit): 비선형성	부여, 역전	파 가능	
	음수 입력을 0으로, 양수는 그대로	로 출력하는	비선형 함수	
	비선형성을 부여해 신경망이 복집	합한 함수도	학습 가능하도록 함	
	계산도 빠르고 기울기 손실(gradi	ent vanishi	ng) 문제가 적어 자주 사용됨	
▶ 적용하기				용어설명
≻Outro				
•문제풀기				
내				
내레				13
이 년				
				1

PyTorch로 배우는 머신러닝	알고리즘	회차명 5		화면설명
	간지			
		DNN 학습		
				ONHH
				용어설명
			1	5
				1
	PyTorch로 배우는 머신러닝	PyTorch로 배우는 머신러닝 알고리즘 간지		간지 DNN 학습

과정명	PyTorch로 배우는 머신러닝 알고리즘 회기	차명	5	화면설명
≻Intro	• 손실함수와 옵티마이저			
•학습열기	nn.BCEWithLogitsLoss(): 이진 분류를 위한	가장 인	난전하고 권장되는 손실 함수	
•학습목표	이진 분류(binary classification) 문제어	게 사용!	되는 손실 함수	
▶학습하기	Sigmoid 연산과 Binary Cross Entropy	/를 한 !	번에 계산함	
1. DNN 구현	마지막 출력층에 Sigmoid를 따로 쓰지	다 않아!	도 됨	
2. DNN 학습 3. DNN 평가	optim.SGD()			
	확률적 경사 하강법(전통적인 옵티마C	이저)		
	Ir=0.01: 초기 학습률 설정. 너무 크면	발산, 년	너무 작으면 학습 속도 저하	
	optim.lr_scheduler.CosineAnnealingLR()			
	학습률을 코사인 곡선을 따라 점점 줄	여줌		
▶적용하기	T_max=10이면, 10 에폭(epoch) 동안	학습률	이 최솟값에 도달	용어설명
➤Outro •문제풀기	# 6. 손실함수와 옵티마이저 criterion = nn.BCEWithLogitsLoss() optimizer = optim.SGD(model.parame scheduler = optim.lr_scheduler.Cos	eters		
내 레 이 션				16

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명	5	화면설명
≻Intro	• 학습			
•학습열기	학습을 50 epoch 동안 반복			
•학습목표	매 epoch마다 모델을 학습 모드	로 전환		
▷학습하기	미니배치 단위로 forward, loss 계	∥산, backwa	rd, optimizer step 수행	
1. DNN 구현	scheduler.step()으로 학습률 조정	ļ		
2. DNN 학습 3. DNN 평가	10 에폭마다 평균 손실값을 출력	하여 과적힙	여부나 학습 상태를 점검	
	# 7. 학습 루프 epochs = 50 for epoch in range(epochs): model.train() running_loss = 0 for X_batch, y_batch in train_looptimizer.zero_grad()	oader:	Epoch 10 Loss: 0.3402 Epoch 20 Loss: 0.2827 Epoch 30 Loss: 0.3018 Epoch 40 Loss: 0.2551 Epoch 50 Loss: 0.2449	
▶적용하기	<pre>outputs = model(X_batch) loss = criterion(outputs, y_ loss.backward()</pre>	_batch)		용어설명
▶Outro •문제풀기	optimizer.step() running_loss += loss.item() scheduler.step() avg_loss = running_loss / len(triff (epoch + 1) % 10 == 0:	rain_loader)		
내 레 이 션	print(f"Epoch {epoch+1:2d}	Loss: {avg	_	17

				I		
과정명	PyTorch로 배우는 머신러닝	알고리즘	회차명	5		화면설명
≻Intro						
•학습열기						
•학습목표						
▶학습하기		간지				
1. DNN 구현						
2. DNN 학습 3. DNN 평가						
			DNN	며 가		
			DININ	01		
▶ 적용하기						용어설명
≻Outro						
•문제풀기						
내						
내 레 이 션					1	18
[이 년						
						1

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명 5	화면설명
≻Intro	• 평가 준비		
•학습열기	model.eval()		
•학습목표	평가 모드로 전환		
▶ 학습하기 1. DNN 구현 2. DNN 학습 3. DNN 평가	y_pred, y_true: 예측값과 실제 정답 레 ^Q with torch.no_grad():	에 작동하도록 함 (예: Dropout 비활성화) 이블을 저장할 리스트 초기화 이 사용 줄이고 연산 속도 향상 (평가 시 필수)	
▶적용하기	# 8. 평가 model.eval() y_pred = [] y_true = []		용어설명
≻Outro	<pre>with torch.no_grad(): for X batch, y batch</pre>	in test loader:	
•문제풀기	outputs = model(probs = torch.si preds = (probs >	<pre>(X_batch) .gmoid(outputs) > 0.5).float()</pre>	
내 레 이 션	_	reds.cpu().numpy()) batch.cpu().numpy()) 1	9

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명	5	화면설명
≻Intro	• 평가 루프 내부			
•학습열기	테스트 데이터를 모델에 넣어 예측값(logits)을 얻	음	
•학습목표	출력값에 sigmoid 적용해 확률로 변환	ŀ		
▶학습하기	0.5 초과면 클래스 1, 아니면 0으로 이	진 분류 결	과 결정	
1. DNN 구현	예측 결과를 리스트에 추가 (CPU로 이	l동해 nump	oy 배열로 변환)	
2. DNN 학습 3. DNN 평가	실제 정답 레이블도 리스트에 추가			
	# 8. 평가 model.eval() y_pred = [] y_true = []	١.		
▶적용하기	<pre>with torch.no_grad() for X_batch, y_b</pre>		test_loader:	용어설명
≻Outro	outputs = mo probs = toro	_		
•문제풀기	preds = (pro y_pred.exten	obs > 0.5 nd(preds.		
내 레 이 션				20

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명	5	화면설명			
≻Intro	• 결과 출력						
•학습열기	Accuracy (정확도): 전체 예측 중 정답 비율						
•학습목표	Precision (정밀도): 모델이 1이라고 여	측한 것들	중 실제 1인 비율				
▶학습하기	Recall (재현율): 실제 1인 것들 중 모델	텔이 1이라고	. 예측한 비율				
1. DNN 구현 2. DNN 학습	F1 Score: Precision과 Recall의 조화 등	평균 (둘 사이	l 균형 평가)				
3. DNN 평가	# 9. 결과 출력 from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_scor						
	<pre>print("=== Evaluation Metrics == print(f"Accuracy : {accuracy_sco print(f"Precision: {precision_sco print(f"Recall : {recall_score print(f"F1 Score : {f1_score(y_t</pre>	ore(y_true, core(y_true, e(y_true, y	<pre>e, y_pred, zero_division=0):.4f}") v_pred, zero_division=0):.4f}")</pre>				
▶적용하기	=== Evaluation Metrics ===			용어설명			
≻Outro	Accuracy: 0.8852 Precision: 0.8182						
•문제풀기	Recall: 0.9643 F1 Score: 0.8852						
내 레 이 션			2	21			

과정명	PyTorch로 배우는 머신러닝	알고리즘	회차명	5	
≻Intro	• 혼돈 행렬(confusion r	natrix)			
•학습열기	분류 모델의 예측 결과	를 요약해 주는	2차원 표		
•학습목표	주로 이진 분류(binary	classification)	문제에서 사성	<u>.</u>	
▶학습하기	실제 값과 예측 값이 일	!치하는지 아닌	지를 구체적.	으로 표시	
1. DNN 구현	• TP, TN, FP, FN 용어 이	해(True, False	Positive.	Vegative)	
2. DNN 학습	앞의 True/False: 예측이		<i>3</i> , 1 <i>331611 3</i> , 1	togative)	
3. DNN 평가		•			
	뒤의 Pos/Neg: 예측을	oo(I)/古o(U))		
	이름	실제	M.	측 해석	
	────────────────────────────────────	병 있음 (1)	병 있음 (1)	→ 에 역✓ 잘 맞췄음	
	False Positive	정상 (0)	병 있음 (1)	X 정상이 병으로 나옴	
▶적용하기	True Negative	정상 (0)	정상 (0)	✔ 잘 맞췄음	
≻Outro	False Negative	병 있음 (1)	정상 (0)	★ 병인데 놓침 (진짜 문제)	
•문제풀기					
내					
내					22
내 레 이 션					22

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 5	화면설명
≻Intro	• 혼돈 행렬의 이해	
•학습열기	단순한 평가 표가 아니라 모델이 어떤 실수를 하고 있는지 파악하게 해주는 해부도	
•학습목표	• 병원에서 의사가 환자를 검사한다고 가정	
▶학습하기	TP: 환자로 맞게 예측(환자가 아프고, 의사도 아프다고 함) → 잘했어!	
1. DNN 구현	TN: 정상으로 맞게 예측(환자가 건강하고, 의사도 건강하다고 함) → 잘했어!	
2. DNN 학습 3. DNN 평가	FP: 환자로 잘못 예측(환자는 건강한데, 의사가 병이라고 함) → 과잉진단 (검사비 낭비)	
	FN: 정상으로 잘못 예측(환자는 아픈데, 의사가 괜찮다고 함) → 최악(목숨이 위험해질 수 있	
	음) Negative (0) Positive (1) 가로는 예측 값	
	Negative (0) - TN = 27 FP = 6 세로는 실제 값	
▶적용하기	0: 정상인 1: 심장병(환자) 및	용어설명
≻Outro		
•문제풀기	Positive (1) - FN = 1 TP = 27	
내		
레 이	2	23
션		2

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명	5			화면설	멸
≻Intro	• 혼돈 행렬과 평가 지표						
•학습열기	Accuracy (정확도): 전체 예측 중 정답						
•학습목표	계산식: (TP + TN) / (TP + TN +	FP + FN)					
▶학습하기	Precision (정밀도): 모델이 1(환자)이리	바고 예측한	것들 중 실제 1인	비율			
1. DNN 구현	계산식: TP / (TP + FP)			_	Confusion Matrix Negative (0)	+ Metrics Positive (1)	
2. DNN 학습 3. DNN 평가	FP가 많으면 precision은 낮아짐	(거짓 양성	조심)				- 25
	Recall (재현율): 실제 1(환자)인 것들	중 모델이 1	이라고 예측한 비율	Negative (0) -	TN = 28	FP = 5	- 20
	계산식: TP / (TP + FN)			- Jo			
	FN이 많으면 recall은 낮아짐 (거	짓 음성 조선	님)	Frue Lab			- 15
	심장병(또는 암환자)처럼 중병 핀	ŀ별에서는 re	ecall이 매우 중요				- 10
▶ 적용하기	F1 Score: Precision과 Recall의 조화 당	평균 (둘 사이	l 균형 평가)	Positive (1) -	FN = 1	TP = 27	- 5
≻Outro	계산식: 2 * (Precision * Reca	II) / (Precis	sion + Recall)				
•문제풀기					Predicted La		
_ " _ 1				to this is a	= (TP+TN)/(TP+TN+FP+FN) = (27) Precision = TP/(TP+FP) = 27/(Recall = TP/(TP+FN) = 27/(2 = 2*P*R/(P+R) = 2*0.8438*0.964	(27+5) = 0.8438 (7+1) = 0.9643	
내				4.7.227			22.011
레						24	
이 선							
							2

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명 5			화면설명
≻Intro	• 혼돈 행렬과 평가 지표				
•학습열기					
•학습목표	지표	무엇을 측정하나?	중요할 때 예시		
▶학습하기	Accuracy(정확도) 전기	체 중 맞춘 비율	일반적인 분류 상황		
1. DNN 구현	Precision(정밀도) 양성	성(환자) 예측의 정확도	거짓 양성을 피하고 싶을 때		
2. DNN 학습 3. DNN 평가	Recall(재현율) 양성	성(환자)을 놓치지 않는 능력	놓치면 위험한 경우		
	F1 Score(조화평균) 정[밀도/재현율 균형 종합값	두 지표가 모두 중요할 때		
▶적용하기					용어설명
≻Outro					
•문제풀기					
내					
내 레 이				2!	5
이 년					
					2

0| 션

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 5		화면설명
▶Intro•학습열기•학습목표	• "심장병 진단과 같은 이진 분류 문제에서 DNN 모델을 적용할 경우, 모델의 성능 평가하기 위한 지표로 Accuracy, Precision, Recall, F1 Score 중 어떤 것을 가장 중 하게 고려해야 하는지 설명하고, 그 이유를 실제 의료적 상황과 연계하여 서술하	중요	① 학습 내용과 관련하 여 실제 적용력을 높 일 수 있는 문제, 혹 은 주제를 작성해 주 세요.
> 학습하기 1. DNN 구현 2. DNN 학습	요. - 타아지레		② ex. 사례 제시 후 전 문가 의견, 실습과제, 응용 예시 시뮬레이 션 등
3. DNN 평가	• 답안사례 의료 진단에서 가장 중요한 평가 지표는 Recall(재현율)이라고 할 수 있습니다. 이는 실제 자병 항자의 사람들 중에서 모델의 얼마나 장 참이내는 자를 나타내면 항자를 돌치고 알		③ 저작권 침해가 되지 않도록 내용을 구성 해 주세요.
	장병 환자인 사람들 중에서 모델이 얼마나 잘 찾아냈는지를 나타내며, 환자를 놓치지 않이 중요한 의료 상황에서는 필수적인 지표입니다. 예를 들어, Recall이 낮다는 것은 심장자를 '정상'으로 잘못 판단할 수 있는 가능성이 높다는 뜻이며, 이는 생명과 직결된 중대제입니다.	병 환	④ 출처가 있을 경우 반 드시 작성해 주세요.
▶적용하기			용어설명
≻Outro			
•문제풀기			
내 레 이 션		28	8