### **STAT 448 HW #5**

Tianqi Wu

2018/10/31

### **Problem 1**

Here is the code that produces correlation-based PCA:

```
proc princomp data=crime2012;
id state;
run;
```

From the result, 1 component(85.93% of variation) needs to be kept to retain at least 70% of the total variation from the original variables. For average eigenvalue, 1 component would be chosen since only one component has eigenvalue greater than 1. Looking at the scree plot, we should also keep 1 component since the elbow occurs at component 2. The results for three methods agree that we should only keep one component.

|   | Eigenv     | alues of the C | orrelation Mat | trix       |
|---|------------|----------------|----------------|------------|
|   | Eigenvalue | Difference     | Proportion     | Cumulative |
| 1 | 6.01505522 | 5.62352768     | 0.8593         | 0.8593     |
| 2 | 0.39152754 | 0.13485690     | 0.0559         | 0.9152     |
| 3 | 0.25667064 | 0.11364820     | 0.0367         | 0.9519     |
| 4 | 0.14302244 | 0.04568207     | 0.0204         | 0.9723     |
| 5 | 0.09734037 | 0.04012355     | 0.0139         | 0.9862     |
| 6 | 0.05721682 | 0.01804985     | 0.0082         | 0.9944     |
| 7 | 0.03916697 |                | 0.0056         | 1.0000     |



Here is the code that produces correlation-based PCA:

```
proc princomp data=crime2012 plots(ncomp=2)=all;
id state;
run;
```

From the component pattern plot, we can see that all the variables are positive for component 1. From the table, the first eigenvector shows approximately equal loadings on all variables. Hence, component 1 probably describes overall averaging crime rate.



|                                        | Eigenvectors |          |          |          |          |          |          |  |  |  |  |  |  |
|----------------------------------------|--------------|----------|----------|----------|----------|----------|----------|--|--|--|--|--|--|
| Prin1 Prin2 Prin3 Prin4 Prin5 Prin6 Pr |              |          |          |          |          |          |          |  |  |  |  |  |  |
| agg_assault                            | 0.380661     | 500178   | 033149   | 0.126922 | 042987   | 0.512367 | 0.568633 |  |  |  |  |  |  |
| burglary                               | 0.376251     | 0.443684 | 298066   | 0.037973 | 644082   | 0.323483 | 227620   |  |  |  |  |  |  |
| car_theft                              | 0.362186     | 0.609607 | 0.296901 | 0.342866 | 0.497975 | 0.097284 | 0.184527 |  |  |  |  |  |  |
| larceny                                | 0.384036     | 112234   | 505661   | 0.328942 | 0.009475 | 673606   | 0.148960 |  |  |  |  |  |  |
| murder                                 | 0.374988     | 057826   | 0.678931 | 265855   | 392133   | 394425   | 0.122779 |  |  |  |  |  |  |
| rape                                   | 0.381305     | 0.059490 | 279655   | 794956   | 0.372602 | 0.026212 | 037244   |  |  |  |  |  |  |
| robbery                                | 0.385825     | 402326   | 0.164499 | 0.232499 | 0.206497 | 0.115636 | 743064   |  |  |  |  |  |  |

Here is the code that produces correlation-based PCA:

```
proc princomp data=crime2012 plots(ncomp=2)=score(ellipse);
id state;
run;
```

From the score plot, there are a lot of extreme points. NY, TX, CA, PA, MI appear to be the most extreme ones. Hence, these states have the highest crime rates and their order is as following: NY(New York)> TX(Houston) > CA(Los Ange) > PA(Philadel) > MI(Detroit), where agency is included in ().



Here is the code that produces covariance-based PCA:

```
proc princomp data=crime2012 cov;
id state;
run;
```

From the result, 1 component(96.09% of variation) needs to be kept to retain at least 70% of the total variation from the original variables. The total variance is 99763819.959 and the average eigenvalue is 99763819.959/7 = 14251974.28. Hence, we should only choose 1 component since there is only one component with eigenvalue greater than the average eigenvalue. Looking at the scree plot, we should also keep 1 component since the elbow occurs at component 2. The results for three methods agree that we should only keep one component.

|   | Tot                                  | al Variance | 99763819.959 |            |  |  |  |  |  |  |  |  |  |  |
|---|--------------------------------------|-------------|--------------|------------|--|--|--|--|--|--|--|--|--|--|
|   | Eigenvalues of the Covariance Matrix |             |              |            |  |  |  |  |  |  |  |  |  |  |
|   | Eigenvalue                           | Difference  | Proportion   | Cumulative |  |  |  |  |  |  |  |  |  |  |
| 1 | 95861869.8                           | 93544579.4  | 0.9609       | 0.9609     |  |  |  |  |  |  |  |  |  |  |
| 2 | 2317290.5                            | 1338868.0   | 0.0232       | 0.9841     |  |  |  |  |  |  |  |  |  |  |
| 3 | 978422.4                             | 472924.1    | 0.0098       | 0.9939     |  |  |  |  |  |  |  |  |  |  |
| 4 | 505498.4                             | 407429.2    | 0.0051       | 0.9990     |  |  |  |  |  |  |  |  |  |  |
| 5 | 98069.1                              | 95658.0     | 0.0010       | 1.0000     |  |  |  |  |  |  |  |  |  |  |
| 6 | 2411.1                               | 2152.5      | 0.0000       | 1.0000     |  |  |  |  |  |  |  |  |  |  |
| 7 | 258.6                                |             | 0.0000       | 1.0000     |  |  |  |  |  |  |  |  |  |  |



Here is the code that produces covariance-based PCA:

```
proc princomp data=crime2012 plots(ncomp=2)=all cov;
id state;
run;
```

From the component pattern plot, we can see that all the variables are positive for component 1. From the table, the first eigenvector has much higher positive loading on larceny. Hence, component 1 mainly describes the crime rate for larceny.



|                                     | Eigenvectors |          |          |          |          |          |          |  |  |  |  |  |  |
|-------------------------------------|--------------|----------|----------|----------|----------|----------|----------|--|--|--|--|--|--|
| Prin1 Prin2 Prin3 Prin4 Prin5 Prin6 |              |          |          |          |          |          |          |  |  |  |  |  |  |
| agg_assault                         | 0.179023     | 064335   | 0.790398 | 288536   | 505533   | 015382   | 005540   |  |  |  |  |  |  |
| burglary                            | 0.267971     | 0.809039 | 126935   | 500944   | 0.079855 | 014359   | 002510   |  |  |  |  |  |  |
| car_theft                           | 0.137787     | 0.503583 | 0.181204 | 0.810403 | 194197   | 008079   | 007307   |  |  |  |  |  |  |
| larceny                             | 0.928268     | 295781   | 213564   | 0.071702 | 008411   | 002515   | 0.002129 |  |  |  |  |  |  |
| murder                              | 0.003506     | 0.006756 | 0.015987 | 0.003736 | 0.010526 | 0.058509 | 0.998067 |  |  |  |  |  |  |
| rape                                | 0.010975     | 0.013564 | 0.015096 | 004574   | 001347   | 0.997989 | 058845   |  |  |  |  |  |  |
| robbery                             | 0.123867     | 002242   | 0.529368 | 0.062234 | 0.836758 | 008953   | 017432   |  |  |  |  |  |  |

Here is the code that produces covariance-based PCA:

```
proc princomp data=crime2012 plots(ncomp=2)=all cov;
id state;
run;
```

From the score plot, there are a lot of extreme points. NY, TX, CA, PA appear to be the most extreme ones. Hence, these states have the highest crime rates of larceny and their order is as following: NY(New York) > TX(Hoston) > TX(San Anto) > CA(Los Ange) > PA(Philadel), where agency is included in ().



Both correlation-based and covariance-based PCA keep the same number of principal component of 1. However, the first component describes the overall averaging crime rate for correlation-based PCA and the first component captures mostly the crime rate of larceny for covariance-based one. Both of the score plots show that NY(New York), TX(Hoston), CA(Los Ange) and PA(Philadel) are the states with highest overall crime rate and crime rate of larceny.

### **Problem 8**

Here is the code that produces the cluster analysis:

```
proc cluster data = crime2012 method = average
ccc pseudo outtree = crime2012_tree plots = all
PLOTS(MAXPOINTS=500);
var agg_assault--robbery;
copy state;
run;
```

Part of the dendrogram is shown and 4 clusters may be chosen based on the graph. Also, 4 clusters are chosen since it gives reasonably high CCC(-9.5) and pseudo F(720) and low pseudo(2.0) t^2 statistics.



| 5 | CL6  | CL8 | 30  | 0.0249 | .832 | .924 | -13  | 553 | 36.3 | 1.0778 |  |
|---|------|-----|-----|--------|------|------|------|-----|------|--------|--|
| 4 | TX   | CL7 | 3   | 0.0037 | .828 | .902 | -9.5 | 720 | 2.0  | 1.2107 |  |
| 3 | CL10 | CL5 | 447 | 0.2785 | .550 | .856 | -21  | 274 | 747  | 1.6234 |  |
| 2 | CL4  | NY  | 4   | 0.0616 | .488 | .722 | -14  | 428 | 22.2 | 4.3481 |  |
| 1 | CL3  | CL2 | 451 | 0.4883 | .000 | .000 | 0.00 |     | 428  | 5.6317 |  |



Here is the code that produces the cluster analysis:

```
proc tree data = crime2012_tree out = crime2012_tree1 n =
4;
copy agg_assault--robbery state;
run;

proc sort data = crime2012_tree1;
by cluster;
run;

proc print data=crime2012_tree1;
run;

proc means data = crime2012_tree1;
var agg_assault--robbery;
by cluster;
run;
```

In all of 4 clusters, the count of larceny is the largest with greatest spread. The counts of murder and rape are the smallest with least spread. The order of the counts of crimes is as following: larceny > burglary > car\_theft > agg\_assault > robbery > rape > murder. Looking across the clusters, the order of overall crime counts is as following: cluster 4 > cluster 3 > cluster 2 > cluster 1. From the table, we can see that cluster 4 only contains state NY and cluster 3 only contains state TX and CA. Hence, those observations may be outliers with much higher crime rates.

|             | CLUSTER=1 |             |             |             |             |  |  |  |  |  |  |  |  |
|-------------|-----------|-------------|-------------|-------------|-------------|--|--|--|--|--|--|--|--|
| Variable    | N         | Mean        | Std Dev     | Minimum     | Maximum     |  |  |  |  |  |  |  |  |
| agg assault | 417       | 531.5947242 | 562.4661155 | 0           | 3732.00     |  |  |  |  |  |  |  |  |
| burglary    | 417       | 1482.58     | 1259.67     | 182.0000000 | 9740.00     |  |  |  |  |  |  |  |  |
| car theft   | 417       | 595.9280576 | 855.1320802 | 7.0000000   | 8759.00     |  |  |  |  |  |  |  |  |
| larceny     | 417       | 4098.71     | 3215.94     | 483.0000000 | 15534.00    |  |  |  |  |  |  |  |  |
| murder      | 417       | 11.1702638  | 18.0204819  | 0           | 193.0000000 |  |  |  |  |  |  |  |  |
| rape        | 417       | 57.0743405  | 59.5073261  | 1.0000000   | 403.0000000 |  |  |  |  |  |  |  |  |
| robbery     | 417       | 279.4292566 | 419.7820639 | 3.0000000   | 4338.00     |  |  |  |  |  |  |  |  |

### CLUSTER=2

| Variable    | N  | Mean        | Std Dev     | Minimum     | Maximum     |
|-------------|----|-------------|-------------|-------------|-------------|
| agg_assault | 30 | 3997.23     | 2040.77     | 1044.00     | 9341.00     |
| burglary    | 30 | 8756.90     | 3864.51     | 3519.00     | 17912.00    |
| car_theft   | 30 | 4183.13     | 2279.98     | 1046.00     | 11500.00    |
| larceny     | 30 | 23184.97    | 6437.22     | 15088.00    | 38592.00    |
| murder      | 30 | 94.8333333  | 83.5716019  | 20.0000000  | 386.0000000 |
| rape        | 30 | 307.2666667 | 172.8710768 | 42.0000000  | 880.0000000 |
| robbery     | 30 | 2435.17     | 1556.34     | 681.0000000 | 7984.00     |

## CLUSTER=3

| Variable    | N | Mean        | Std Dev     | Minimum     | Maximum     |
|-------------|---|-------------|-------------|-------------|-------------|
| agg_assault | 3 | 8037.67     | 3460.21     | 4441.00     | 11343.00    |
| burglary    | 3 | 19562.00    | 6131.64     | 15668.00    | 26630.00    |
| car_theft   | 3 | 11507.00    | 4563.85     | 6367.00     | 15084.00    |
| larceny     | 3 | 61539.00    | 6037.20     | 56006.00    | 67978.00    |
| murder      | 3 | 201.6666667 | 105.8363517 | 89.0000000  | 299.0000000 |
| rape        | 3 | 716.6666667 | 198.6059751 | 549.0000000 | 936.0000000 |
| robbery     | 3 | 6744.00     | 4230.98     | 1864.00     | 9385.00     |

# CLUSTER=4

| Variable    | N | Mean        | Std Dev | Minimum     | Maximum     |
|-------------|---|-------------|---------|-------------|-------------|
| agg_assault | 1 | 31211.00    |         | 31211.00    | 31211.00    |
| burglary    | 1 | 18635.00    |         | 18635.00    | 18635.00    |
| car_theft   | 1 | 8190.00     |         | 8190.00     | 8190.00     |
| larceny     | 1 | 115935.00   |         | 115935.00   | 115935.00   |
| murder      | 1 | 419.0000000 |         | 419.0000000 | 419.0000000 |
| rape        | 1 | 1162.00     |         | 1162.00     | 1162.00     |
| robbery     | 1 | 20201.00    |         | 20201.00    | 20201.00    |

| 453 | OB106 | 9341  | 13488 | 11500 | 15968  | 386 | 441  | 4843  | МІ | 2 | CL5   |
|-----|-------|-------|-------|-------|--------|-----|------|-------|----|---|-------|
| 454 | OB228 | 8329  | 16388 | 15084 | 56006  | 299 | 936  | 8983  | CA | 3 | CL4   |
| 455 | OB350 | 4441  | 15668 | 6367  | 60633  | 89  | 549  | 1864  | TX | 3 | CL4   |
| 456 | OB177 | 11343 | 26630 | 13070 | 67978  | 217 | 665  | 9385  | TX | 3 | CL4   |
| 457 | OB271 | 31211 | 18635 | 8190  | 115935 | 419 | 1162 | 20201 | NY | 4 | OB271 |

Here is the code that produces the cluster analysis:

```
proc cluster data = crime2012 method = average
ccc pseudo outtree = crime2012_tree2 plots = all std
PLOTS(MAXPOINTS=500);
var agg_assault--robbery;
copy state;
run;
proc tree data = crime2012_tree2 out = crime2012_tree3 n =
4;
copy agg_assault--robbery state;
run;
proc sort data = crime2012_tree3;
by cluster;
run;
proc print data=crime2012_tree3;
run;
proc means data = crime2012_tree3;
var agg_assault--robbery;
by cluster;
run;
```

Part of the dendrogram is shown and 4 clusters may be chosen based on the graph. 4 clusters are chosen since it gives reasonably high CCC(-14) and pseudo F(315) and low pseudo(2.8) t^2 statistics. The number of clusters chosen is the same as the original variables. However, CCC and pseudo F is smaller than the original variables and pseudo t^2 is larger than the original variables. Overall, we observe higher CCC and pseudo F and lower pseudo t^2 statistics with the standardized variables.

Also, the standardized variables cluster TX, CA, MI, PA as cluster 3 and NY as cluster 4. There are more observations clustered as cluster 1. Overall, the variables tend to have larger mean and greater spread with standardization.

|   | 5 | OB106 | OB310 | 2   | 0.0057 | .693 | .831 | -16  | 252 |     | 1.6084 |  |
|---|---|-------|-------|-----|--------|------|------|------|-----|-----|--------|--|
|   | 4 | CL5   | CL6   | 4   | 0.0141 | .679 | .808 | -14  | 315 | 2.8 | 2.0709 |  |
| Ī | 3 | CL7   | CL8   | 446 | 0.1480 | .531 | .766 | -14  | 254 | 221 | 2.3008 |  |
| Ī | 2 | CL3   | CL4   | 450 | 0.2691 | .262 | .646 | -19  | 159 | 257 | 4.1047 |  |
| Ī | 1 | CL2   | OB271 | 451 | 0.2619 | .000 | .000 | 0.00 |     | 159 | 7.7087 |  |



|             |     | C           | LUSTER=1    |             |             |
|-------------|-----|-------------|-------------|-------------|-------------|
| Variable    | N   | Mean        | Std Dev     | Minimum     | Maximum     |
| agg_assault | 439 | 660.0045558 | 818.2414878 | 0           | 5453.00     |
| burglary    | 439 | 1744.95     | 1721.12     | 182.0000000 | 9854.00     |
| car theft   | 439 | 731.5466970 | 1070.71     | 7.0000000   | 8759.00     |
| larceny     | 439 | 4947.74     | 4960.57     | 483.0000000 | 33913.00    |
| murder      | 439 | 13.9544419  | 23.2994742  | 0           | 218.0000000 |
| rape        | 439 | 65.8496583  | 72.5273697  | 1.0000000   | 403.0000000 |
| robbery     | 439 | 354.7813212 | 559.2764794 | 3.0000000   | 4338.00     |

| Variable    | N Mean |             | Std Dev     | Minimum     | Maximum     |  |
|-------------|--------|-------------|-------------|-------------|-------------|--|
|             |        |             |             |             |             |  |
| agg_assault | 7      | 5470.29     | 1478.89     | 3647.00     | 7572.00     |  |
| burglary    | 7      | 15012.43    | 1731.10     | 12575.00    | 17912.00    |  |
| car_theft   | 7      | 5901.86     | 1550.28     | 2969.00     | 7187.00     |  |
| larceny     | 7      | 34103.43    | 12258.89    | 25522.00    | 60633.00    |  |
| murder      | 7      | 107.0000000 | 30.0721355  | 76.0000000  | 154.0000000 |  |
| rape        | 7      | 476.8571429 | 103.0540773 | 295.0000000 | 596.0000000 |  |
| robbery     | 7      | 3266.43     | 746.1357913 | 1864.00     | 4093.00     |  |

| Variable    | N | Mean        | Std Dev     | Minimum     | Maximum    |  |
|-------------|---|-------------|-------------|-------------|------------|--|
| agg assault | 4 | 9417.75     | 1350.93     | 8329.00     | 11343.00   |  |
| burglary    | 4 | 17127.50    | 6591.42     | 12004.00    | 26630.00   |  |
| car theft   | 4 | 11513.75    | 3710.75     | 6401.00     | 15084.00   |  |
| larceny     | 4 | 44636.00    | 22601.70    | 15968.00    | 67978.00   |  |
| murder      | 4 | 308.2500000 | 70.6511382  | 217.0000000 | 386.000000 |  |
| rape        | 4 | 730.5000000 | 225.5962470 | 441.0000000 | 936.000000 |  |
| robbery     | 4 | 7798.75     | 2056.65     | 4843.00     | 9385.00    |  |

| CLUSTER=4   |   |             |         |             |             |  |  |  |
|-------------|---|-------------|---------|-------------|-------------|--|--|--|
| Variable    | N | Mean        | Std Dev | Minimum     | Maximum     |  |  |  |
| agg_assault | 1 | 31211.00    |         | 31211.00    | 31211.00    |  |  |  |
| burglary    | 1 | 18635.00    |         | 18635.00    | 18635.00    |  |  |  |
| car_theft   | 1 | 8190.00     |         | 8190.00     | 8190.00     |  |  |  |
| larceny     | 1 | 115935.00   |         | 115935.00   | 115935.00   |  |  |  |
| murder      | 1 | 419.0000000 |         | 419.0000000 | 419.0000000 |  |  |  |
| rape        | 1 | 1162.00     |         | 1162.00     | 1162.00     |  |  |  |
| robbery     | 1 | 20201.00    |         | 20201.00    | 20201.00    |  |  |  |

| 453 | OB177 | 11343 | 26630 | 13070 | 67978  | 217 | 665  | 9385  | TX | 3 | CL4   |
|-----|-------|-------|-------|-------|--------|-----|------|-------|----|---|-------|
| 454 | OB228 | 8329  | 16388 | 15084 | 56006  | 299 | 936  | 8983  | CA | 3 | CL4   |
| 455 | OB106 | 9341  | 13488 | 11500 | 15968  | 386 | 441  | 4843  | МІ | 3 | CL4   |
| 456 | OB310 | 8658  | 12004 | 6401  | 38592  | 331 | 880  | 7984  | PA | 3 | CL4   |
| 457 | OB271 | 31211 | 18635 | 8190  | 115935 | 419 | 1162 | 20201 | NY | 4 | OB271 |

