

Examen Muestra 2º Parcial

Ejercicios de clase

Enunciado

 Dada la definición de la siguiente cámara ortográfica, indica las transformaciones necesarias para convertirla al volumen canónico. Dibuja el resultado de aplicar cada transformación. (o.8 puntos)

POSICIÓN=(1, 3, 3) VECTOR UP=(0, 0, -1) PUNTO DE INTERÉS=(1, 4, 3) CERCA=3 LEJOS=10 ANCHO=5 ALTO=1

Resolución

Enunciado

Dada la siguiente figura, construye el modelo de punteros a lista de vértices. Para ello, dibuja primero la figura desplegada, e identifica en dicha figura los vértices y los polígonos. A continuación, construye la estructura de datos, ordenando los vértices de cada polígono en sentido antihorario, vistos desde el exterior de la figura. Ten en cuenta las siguientes posiciones: V1 (9, 0, 0), V4 (6, 3, 3) y V5 (3, 3, 3); y que el objeto es simétrico con respecto al plano X = Z.

(0.7 puntos)

Vértices

1	
2	
3	
4	
4 5	
6	

Polígonos

1		
2		
3		
4		
5	·	

Resolución

Vértices

	900	
2	000	
3	009	
4	633	
5	3 3 3	
6	3 3 6	

Polígonos

1	4	5	6	
2	1	2	5	4
3	2	3	6	5
4	1	4	6	3
5	1	3	2	

Enunciado

Dada la siguiente escena, calcula la intensidad luminosa en el centro del cuadrado usando el modelo de iluminación de Phong (ambiente+difusa+especular). Recuerda que el vector de reflexión perfecta se calcula mediante la fórmula: $R = 2 \cdot N \cdot (N \cdot L) - L$

Fórmula y ambiente

Fórmula: $I = I_a \cdot k_a + I_L \cdot (k_d \cdot (\overrightarrow{N} \cdot \overrightarrow{L}) + k_s \cdot (\overrightarrow{R} \cdot \overrightarrow{V})^n)$

Ambiente

$$I = I_a \cdot k_a = 0.3 * 0.4 = 0.12$$

Difusa

Fórmula: $I = I_a \cdot k_a + I_L \cdot (k_d \cdot (N \cdot L) + k_s \cdot (R \cdot V)^n)$

Difusa

$$I = I_L \cdot k_d \cdot (\overrightarrow{N} \cdot \overrightarrow{L})$$

N=(0,0,1)

P=((7,4,0)+(5,2,0))/2=(6,3,0)

 $L=(6,3,5)-(6,3,0) \longrightarrow (0,0,1)$

- N*L=1>0
- ► I=0.8*0.3*1=0.24

Especular

- Fórmula: $I = I_a \cdot k_a + I_L \cdot (k_d \cdot (\overrightarrow{N} \cdot \overrightarrow{L}) + k_s \cdot (\overrightarrow{R} \cdot \overrightarrow{V})^n)$
- Especular

$$I = I_L k_s \cdot (\overrightarrow{R} \cdot \overrightarrow{V})^n$$

- V=(1,3,5)-(6,3,0)=(-5,0,5)
- V=(-0.71,0,0.71)
- R=2N(N*L)-L=(0,0,1)
- ▶ R*V=0.71>0
- $I=0.8*0.6*0.71^2=0.24$

Total

Fórmula: $I = I_a \cdot k_a + I_L \cdot (k_d \cdot (\overrightarrow{N} \cdot \overrightarrow{L}) + k_s \cdot (\overrightarrow{R} \cdot \overrightarrow{V})^n)$

- Intensidad Final
- ► I=0.12+0.24+0.24=0.6

