

Universidad Tecnológica de la Mixteca Clave DGP: 200089

Maestría en Robótica

PROGRAMA DE ESTUDIOS

Vision Por Computadora	*	
	Visión Por Computadora	Visión Por Computadora : : :

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Optativa	252315RI	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Que el alumno conozca los elementos que componen un sistema de visión por computadora, así como las aplicaciones principales de esta en el seguimiento, reconocimiento y la reconstrucción tridimensional de objetos.

Modelado de cámara

- 1.1 Introducción
- 1.2 Terminología de calibración
- 1.3 Parámetros geométricos
- 1.4 Sistema de formación de imágenes
- 1.5 Modelos de cámaras
- 1.6 Calibración y técnicas de orientación
- 1.7 Aplicaciones fotométricas

2. Modelos de visión

- 2.1 Visión estéreo
- 2.2 El problema de la correspondencia.
- 2.3 Métodos basados en un par de imágenes.
- 2.4 Métodos multi-imagen.
- 2.5 Modelos de visión sin calibrar
- 2.6 Métodos directos

3. Técnicas de imágenes 3D.

- 3.1 Características de los sensores 3D
- 3.2 Triangulación
- 3.3 Sensores de tiempo de vuelo (TOF)

Movimiento.

- 4.1 Flujo y correspondencia
- 4.2 Flujo óptico basado en estimación de movimiento
- 4.3 Correlación y matching
- 4.4 Modelado de campos de flujo

. 5. Detección de características y Seguimiento

- 5.1 Invarianza, Características y conjuntos de características
- 5.2 Ejemplos de características
- 5.3 Seguimiento y actualización de características
- 5.4 Seguidor Lucas-Kanade Tracker (LTK)
- 5.5 Filtro de partículas
- 5.6 Filtro de Kalman

6. Reconocimiento

- 6.1 Detección de objetos
- 6.2 Reconocimiento de rostros
- Contexto y entendimiento de la escena

ACTIVIDADES DE APRENDIZAJE

Exposición de temas frente a grupo utilizando medios digitales.

Asignación de lectura de artículos de investigación de frontera en el área.

Asignación de diseño e implementación de proyectos en donde se requieran los conocimientos adquiridos.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Exámenes parciales y examen final, proyectos de investigación en el área, proyectos de aplicación (cortos o largos).

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO) Básica:

- 1. Forsyth David A., Ponce Jean (2002). Computer Vision: A Modern Approach, Prentice Hall
- 2. Medioni Gerard, Bing Kang Sing (2004). Emerging Topics in Computer Vision, IMSC Press Multimedia Series
- 3. Parker J. R. (2010). Algorithms for Image Processing and Computer Vision, , Wiley

Consulta:

- 1. Gonzalez Rafael C. and Woods Richard E. (2002). Digital Image Processing, , 2nd Edition, Prentice Hall
- 2. Tyler Christopher W. (2011). Computer Vision: From Surfaces to 3D Objects, , CRC Press
- DAVIES E. R. (2012). Computer and Machine Vision: Theory Algorithms Practicalities, 4th edition, Academic Press,

PERFIL PROFESIONAL DEL DOCENTE

Grado de Doctor en Ciencias de la Computación o área afín. Con especialidad en inteligencia artificial y de preferencia con experiencia de investigación y aplicación de proyectos en el área de Procesamiento Digital de Imágenes y Visión por computadora.

DIVISION DE ESTUDIOS
DE POSGRADO

Vo.Bo

DR. JOSÉ ANIBAL ARIAS AGUILAR JEFE DE LA DIVISIÓN DE ESTUDIOS DE POSGRADO AUTORIZO

DR. AGUSTÍN SANTIAGO ALVARADO

VICE-RECTOR ACADÉMICO

VICE-RECTORIA ACADÉMICA