Lab Assign	nment 8 Fuzzy C-means	Sept 15,2020	20 marks
CO 3	Develop various classification and clustering techniques.		L4
_ ~			

Fuzzy C-means

In Fuzzy clustering each element has a set of membership coefficients corresponding to the degree of being in a given cluster. Points close to the center of a cluster may be in the cluster to a higher degree than points in the edge of a cluster. The degree, to which an element belongs to a given cluster, is a numerical value varying from 0 to 1.I.Fuzzy clustering algorithms seeks to minimize cluster memberships and distances, but we will focus on Fuzzy C-Means Clustering algorithm. Fuzzy c-means developed in 1973 and improved in 1981. It's very similar to k-means algorithm in a structure way:

- 1. Choose number of clusters.
- 2. Assign coefficients randomly to each data point for being in the clusters.
- 3. Repeat until algorithm converged (Objective Function C minimizes cluster memberships and distances):
- 4. Compute the centroid for each cluster
- 5. Compute each data points' coefficients of being in the clusters.

The main difference with k-means cluster is that objective function for fuzzy c-means algorithm allows different cluster membership with probability values, where k-means cluster has strict objective function allows only one cluster membership.

Each question 4 marks.

SPECTF is a dataset to be used.

Analyze the Clusters in data using Fuzzy C-means

Do the **Exploratory data analysis** on the data

- I. Reading and Understanding the Data
- II. Data Cleaning
- III. **Data Preparation**
- IV. Model Building using Fuzzy C-means
- V. Final Analysis
 - a. What is the inference from the clusters formed?
 - b. Find the clustering parameters
 - Estimated number of clusters
 - Homogeneity
 - Completeness
 - Adjusted Rand Index
 - ❖ Adjusted Mutual Information
 - Silhouette Coefficient