1. Given a circle $C_1: x^2 + (y-3)^2 = 9$ and a

point $P\!\left(\frac{3}{2},3+\frac{3\sqrt{3}}{2}\right)$ on C_1 , if another circle C_2

with radius of 4 intersects $\ C_1$ at exactly one point $\ P$. Find all possible equations of $\ C_2$

2. Graph both C_1 and C_2 on the same coordinate plane.

 $\left(x + \frac{1}{2}\right)^2 + \left(y - 3 + \frac{\sqrt{3}}{2}\right)^2 = 16,$ $\left(x - \frac{7}{2}\right)^2 + \left(y - 3 - \frac{7\sqrt{3}}{2}\right)^2 = 16$

- 3. Find the standard form of a parabola with directrix $x = \sqrt{5}$ and the coordinates of focus $(-4 + \sqrt{5}, 3)$
- $-8(x-\sqrt{5}+2)=(y-3)^2$
- 4. Graph the parabola from the questions 3 and find the x and y intercepts

x intercept: $\left(-\frac{25}{8} + \sqrt{5}, 0\right)$

y intercepts: $\left(0,3\pm\sqrt{8\sqrt{5}-16}\right)$

- 5. Given $T: 2x^2 = y 1$, find all possible tangent lines of the T pass through (1,-1)
- $y+1=(4\pm 4\sqrt{2})(x-1)$

6. Given $C: (x+3)^2 + (y-1)^2 = 20$ and a point P(1,3) on the circle, find the coordinate of a point Q (also on C) so that the distance from the center of the circle to the chord \overline{PQ} is $\sqrt{2}$

$$(-5,-3),\left(-\frac{37}{5},\frac{9}{5}\right)$$