M2 Topology

Robin Adams

September 18, 2022

Contents

1 Topology 1

1 Topology

Theorem 1 (Brouwer Retraction Theorem). Let $j : \{0,1\} \to I$ be the inclusion. Then j has no continuous retraction.

Theorem 2 (Brouwer Retraction Theorem). Let $j: C \to D$ be the inclusion of the circle in the disk. Then j has no continuous retraction.

Theorem 3 (Brouwer Retraction Theorem). Let $j: S \to B$ be the inclusion of the sphere in the ball. Then j has no continuous retraction.

Theorem 4. Let A, S and B be objects of a category C. Let $h: A \to B$, $j: S \to B$, $p: A \to S$ with jp = h. Suppose that, for any $a: S \to A$ and $s: S \to S$, if ha = js then pa = s. Let $\alpha: B \to A$ and assume $h\alpha j = j$. Then $p\alpha$ is a retraction for j.

PROOF: We have $h(\alpha j) = j1$ and so $p(\alpha j) = 1$.

Corollary 4.1. Let A, S and B be objects of a category C. Let $h: A \to B$, $j: S \to B$, $p: A \to S$ with jp = h. Suppose that, for any $a: S \to A$ and $s: S \to S$, if ha = js then pa = s. Let $\alpha: B \to A$ and assume $h\alpha = 1$. Then $p\alpha$ is a retraction for j.

Theorem 5. Let A, S and B be objects of a category C with a terminal object 1. Let $h: A \to B$, $j: S \to B$, $p: A \to S$ with jp = h. Assume:

- 1. for any $a: S \to A$ and $s: S \to S$, if ha = js then pa = s.
- 2. For any maps $f,g:B\to B$, either there exists $t:1\to B$ such that ft=gt, or there exists $\alpha:B\to A$ such that $h\alpha=g$.

Let $f, g: B \to B$ with gj = j. Then either there is a point $b: 1 \to B$ with fb = gb, or j has a retraction.

PROOF: By the second hypothesis, either there exists $b:1\to B$ such that fb=gb, or there exists $\alpha:B\to A$ such that $h\alpha=g$. In the latter case, we have

$$h\alpha j = gj$$

= j
 $\therefore p\alpha j = 1$ (Hypothesis 1)

Thus, $p\alpha$ is a retraction for j.

Corollary 5.1. Let A, S and B be objects of a category C with a terminal object 1. Let $h: A \to B$, $j: S \to B$, $p: A \to S$ with jp = h. Assume:

- 1. for any $a: S \to A$ and $s: S \to S$, if ha = js then pa = s.
- 2. For any maps $f,g:B\to B$, either there exists $t:1\to B$ such that ft=gt, or there exists $\alpha:B\to A$ such that $h\alpha=g$.

Then either j has a retraction, or any map $f: B \to B$ has a fixed point.

PROOF: Take $g = 1_B$ in the theorem.

Theorem 6 (Brouwer Fixed Point Theorem). Let I be the line segment. Every continuous endomap $I \to I$ has a fixed point.

PROOF: Apply Corollary ?? with $S = \{0, 1\}$, B = I and A the set of all directed line segments in I of length > 0. Let $h: A \to B$ map any directed line segment to its head, $j: S \to A$ be the inclusion, and $p: A \to S$ be defined by p(a) = 0 if a points to the left, 1 if a points to the right.

Hypothesis 1 is obvious. For hypothesis 2, let $f, g : B \to B$ and suppose there is no t such that ft = gt. Then define $\alpha : B \to A$ by: $\alpha(x)$ is the directed line segment from fx to gx.

By the Brouwer Retraction Theorem, j has no retraction. Therefore every endomap $B \to B$ has a fixed point. \square

Theorem 7 (Brouwer Fixed Point Theorem). Let D be the closed disk. Every continuous endomap $D \to D$ has a fixed point.

PROOF: Apply Corollary ?? with S the circle, B the disk and A the set of all directed line segments in B of length > 0. Let $h: A \to B$ map any directed line segment to its head, $j: S \to A$ be the inclusion, and $p: A \to S$ be defined by: p(a) is the point on the circle that a points to.

Hypothesis 1 is obvious. For hypothesis 2, let $f, g : B \to B$ and suppose there is no t such that ft = gt. Then define $\alpha : B \to A$ by: $\alpha(x)$ is the directed line segment from fx to gx.

By the Brouwer Retraction Theorem, j has no retraction. Therefore every endomap $B \to B$ has a fixed point. \square

Theorem 8 (Brouwer Fixed Point Theorem). Every continuous endomap from the solid ball to itself has a fixed point.

PROOF: Apply Corollary ?? with S the sphere, B the ball and A the set of all directed line segments in B of length > 0. Let $h: A \to B$ map any directed line segment to its head, $j: S \to A$ be the inclusion, and $p: A \to S$ be defined by: p(a) is the point on the sphere that a points to.

Hypothesis 1 is obvious. For hypothesis 2, let $f,g:B\to B$ and suppose there is no t such that ft=gt. Then define $\alpha:B\to A$ by: $\alpha(x)$ is the directed line segment from fx to gx.

By the Brouwer Retraction Theorem, j has no retraction. Therefore every endomap $B\to B$ has a fixed point. \Box