Επίλυση δύσκαμπτου πεδίλου

Γενικά δεδομένα					
bx(m)	by(m)	fyk(Mpa)	fck(Mpa)	Ec(Mpa)	t(m)
2.37	0.25	500	30	31000	2

Icl(m)	Lcl	(m)	σ,επ,εδ(Mpa)	np	Ks(Mpa/m)	σ,επ,d(Mpa)
	2.5	3.8	0.25	1.5	30	0.166666667

Εντατικά μεγέθη στύλου					
Ng(kN)	806.8	Myg(kNm)	219.88	Mzg(kNm)	4.31
Nq(kN)	154.85	Myq(kNm)	38.68	Mzq(kNm)	0.3
Ne(kN)	41.37	Mye(kNm)	532.37	Mze(kNm)	3.25

Μεγέθη ελέγχου στην ΟΚΛ

NsdOKΛ(kN) 961.65 MysdOKΛ(kN) 258.56 MzsdOKΛ(kN) 4.61

Μεγέθη ελέγχου στην ΟΚΑ με σεισμό			Μεγέθη ελέγχου στην ΟΚΑ χωρίς σεισμό			
NsdOKA(kN)	894.625		NsdOKA(kN)	1321.455		
MysdOKA(kNI)	763 854		MysdOKA(kNI)	35/1.858		

 MysdOKA(kN)
 763.854
 MysdOKA(kN)
 354.858

 MzsdOKA(kN)
 7.65
 MzsdOKA(kN)
 6.2685

Τελικά μεγέθη ελέγχου στην ΟΚΑ

NsdOKA(kN) 1321.46
MysdOKA(kN) 763.854
MzsdOKA(kN) 7.65

Αρχική προδιαστασιολόγηση πεδίλου							
	maxN/σ,επ,d						
Lx*Ly>=	7.92873						
Lx(m)	Ly(m)	Αθεμ(m2)	αx(m)	αy(m)	h(m)	υ(m)	
4.97	2.05	10.1885	1.3	0.9	0.7	0.4	
	P/(Lx*Ly)						

 Έλεγχος P/(Lx*Ly)<=σ,επ,εδ</td>
 129.7006429

OK

Έλεγχος αντοχής	εδάφους με τη μ	ιέθοδο των επιτρι	επόμενων τάσε	ων
Lx(m)	Ly(m)	t(m)	γ,εδ(kN/m3)	γ,σκ(kN/m3
4.97	2.05	2	15	25
P,χωμ(kN)	Ρ,σκ(kN)			
244.524	101.885			
P,tot(kN)		_		
1667.864				
		ΣN/A(kN/m2)		
Έλεγχος ΣΝ/Α<σ,	Έλεγχος ΣΝ/Α<σ,επ,d			
ОК			•	
Συνίσταται	α<2h υ>h/3	OK OK		

	Δεδο	ρμένα συνδετής	οιων δοκών			
Συνδετήρ	οια δοκός 1(x'-x)			Συνδετι	ήρια δοκός 2	(x'-x)
b(m)	h(m)	L(m)		b(m)	h(m)	L(m)
0.25	0.6	9.35		0	0	0
Συνδετήρ	οια δοκός 1(y'-y)			Συνδετι	ήρια δοκός 2	(y'-y)
b(m)	h(m)	L(m)		b(m)	h(m)	L(m)
0.25	0.6	3.4		0.25	0.6	4.8

ΣΝ,ΟΚΛ(kN)	1308.059
ΣN,OKA(kN)	1667.864

		Κατασ	κει	υαστικές εκκεντ _ί	ρό	τητες		
ekx(m)		Mkx,OKΛ(kNm)	ı	Mkx,OKA(kNm)		ΣMxOKΛ(kNm)	ΣMxOKA(kNm)	
	0		0		0	258.56	763.85	4
eky(m)		Mky,ΟKΛ(kNm)	١	Mky,OKA(kNm)		ΣMyOKΛ(kNm)	ΣMyOKA(kNm)	
	0		0		0	4.61	7.6	55

Κατανομή ροπών στα επιμέρους δομικά στοιχεία κατά x'x					
	Συνδετήρ	ιες δοκοί			
I1x(m4)	I2x(m4)	K1x(kNm)	K2x(kNm)		
0.0045	5 (59679.1443	9	0	
Υποστ	ύλωμα				
Ιυπ(m4)	Kυπ(kNm)				
0.277334438	9049860.592				
Έδαφος					
Kεδ(kNm)					
629162.7991	-				

ΣΚ,κόμβου(kNm) λ	
9738702.536	0.003080492

Εντατικά μεγέθη πεδίλου				
M,OKΛ(kNm)	0.796492138			
M,OKA(kNm)	2.353046509			

Στατικές εκκ	εντρότητες	Έλεγχος ανατροπής		
exOKΛ(m)	0.000608911	exOKΛ <lx 6<="" th=""><th>OK</th></lx>	OK	
exOKA(m)	0.001410814	exOKA <lx 6<="" td=""><td>OK</td></lx>	OK	

Υπολογισμός τάσεων						
ΟΚΛ	σ1x(kpa)	128.514201	σ0x(kpa)	128.3858272		
	σ2x(kpa)	128.2574534	ουχ(κρα)	120.3030272		
OKA	σ1x(kpa)	164.1842122	σ0v(kna)	163.7006429		
	σ2x(kpa)	163.2170736	σ0x(kpa)	105.7000429		

Έλεγχος θραύσης εδάφους για ΟΚΛ					
Έλεγχος σ0x<σ,επ,d	Έλεγχος max(σ1x,σ2x)<1.3*σ,επ,d				
ОК	OK				
	Έλεγχος θραύσης εδάφους για ΟΚΑ				
Έλεγχος σ0x<σ,επ,d	Έλεγχος max(σ1x,σ2x)<1.3*σ,επ,d				
ОК	OK				

Κατανομή ροπών στα επιμέρους δομικά στοιχεία κατά y'y						
Συνδετήριες δοκοί						
.y(m4)	l2y(m4)		K1y(kNm)	K2y(kNm)		
	0.0045	0.0045	164117.6471	116250		

Υποστύλωμα

Ιυπ(m4) Κυπ(kNm)

0.003085938 100699.0132

Έδαφος

Κεδ(kNm)

107042.9281

ΣΚ,κόμβου(kNm) λ

488109.5883 0.061461608

Εντατικά μεγέθη πεδίλου

M,OKΛ(kNm) 0.283338011

M,OKA(kNm) 0.470181298

Στατικές εκκ	εντρότητες	Έλεγχος ανατροπής		
eyOKΛ(m)	0.00021661	eyOKΛ <ly 6<="" td=""><td>ОК</td></ly>	ОК	
eyOKA(m)	0.000281906	eyOKA <ly 6<="" td=""><td>OK</td></ly>	OK	

	Υπολογισμός τάσεων						
ΟΚΛ	σ1y(kpa)	128.4965411	σ0v/kna\	128.3858272			
	σ2y(kpa)	128.2751132	σ0y(kpa)	120.3030272			
OKA	σ1y(kpa)	128.5695498	σ0ν/lena)	120 4222215			
	σ2y(kpa)	128.2751132	σ0y(kpa)	128.4223315			

Έλεγχος θραύσης εδάφους για ΟΚΛ					
Έλεγχος σ0<σ,επ,d	Έλεγχος may(σ1y,σ2y)<1.3*σ,επ,d				
ОК	ОК				
	Έλεγχος θραύσης εδάφους για ΟΚΑ				
Έλεγχος σ0<σ,επ,d	Έλεγχος may(σ1y,σ2y)<1.3*σ,επ,d				
ОК	ОК				

Σχεδιασμός σε ΟΚΑ(κάμψη)

ekx(m)	eky(m)
0	0
Mkx(g)(kNm)	Mky(g)(kNm)
0	0
Mkx(q)(kNm)	Mky(q)(kNm)
0	0
Mkx(E)(kNm)	Mky(E)(kNm)
0	0
ΣΜx,πεδ(g)(kNm)	ΣΜy,πεδ(g)(kNm)
0.677338688	0.013276923
ΣΜx,πεδ(q)(kNm)	ΣΜy,πεδ(q)(kNm)
0.119153449	0.000924148
ΣΜx,πεδ(E)(kNm)	ΣΜy,πεδ(E)(kNm)
1.639961786	0.010011601

ex(g)(m)	0.000839537
ex(q)(m)	0.000769477
ex(E)(m)	0.039641329
ey(g)(m)	1.64563E-05
ey(q)(m)	5.96802E-06
ey(E)(m)	0.000242001

Τάσεις εδάφους και ροπές σχεδιασμού κατά x'-x						
			Διαφορα τάση	ις από την min	Τάση στι	ην παρειά
σ	σ1xg(kN/m2)	79.26757744	Δσxg(kN/m2)	0.118530513	σβx(kN/m2)	79.22559115
g	σ2xg(kN/m2)	79.10706064	DOXB(KIN/IIIZ)	0.116330313	Opx(KN/1112)	79.22339113
α.	σ1xq(kN/m2)	15.21262671	Λσχα(kN/m2)	0.020851193	σβx(kN/m2)	15.20524073
q	σ2xq(kN/m2)	15.18438954				
_	σ1xE(kN/m2)	4.254780698	ΔσxE(kN/m2)	0.206004216	σθν/kN/m2\	4 152124164
E	σ2xE(kN/m2)	3.866139948		0.286984216	σβx(kN/m2)	4.153124164

Τάσεις εδάφους και ροπές σχεδιασμού κατά y'-y						
			Διαφορα τάση	ς από την min	Τάση στη	ην παρειά
σ	σ1yg(kN/m2)	79.19113307	Agyg(kN/m2)	0.00427916	σβy(kN/m2)	79.18778416
g	σ2yg(kN/m2)	79.183505	Δσyg(kN/m2)	0.00427910	οργ(κιν/1112)	73.10776410
~	σ1yq(kN/m2)	15.1987736	A = 1 (1.81 /m 2)	0.000297853	σβy(kN/m2)	15.1985405
q	σ2yq(kN/m2)	15.19824264	Δσyq(kN/m2)			
	σ1yE(kN/m2)	4.063336335	AgyE(kN/m2)	0.003226745	σβν/kN/m2\	4.060911056
E	σ2yE(kN/m2)	E(kN/m2) 4.057584311 ΔσyE(kN/m2)	0.003220743	σβy(kN/m2)	4.060811056	

Τελικές ροπές						
g	Mxg(kNm)	137.2870174	Myg(kNm)	159.3976253		
q	Mxq(kNm)	26.34780783	Myq(kNm)	30.59269504		
E	MxE(kNm)	7.311645687	MyE(kNm)	8.177192206		

Ροπές σχεδιασμού						
MxsdOKA(kNm)	224.8591853					
MxsdOKA_E(kNm)	152.5030055					
MysdOKA(kNm)	261.0758366					
MysdOKA_E(kNm) 176.75262						
MysdOKA(kNm)						

Απαιτούμενος οπλισμός							
c(m)	As1x(m2)	As1x(cm2/m)	As1y(m2)	As1y(cm2/m)			
0.05	0.994569473	4.851558406	1.154758508	2.323457763			

	Ελάχιστος οπλισμός
Ф12/150	<mark>7,54cm2/m</mark>

Τελικός οπλισμός						
Ф12/150	Φ12/150 <mark>7,54cm2/m</mark>					

Σχεδιασμός σε ΟΚΑ(διάτμηση/διάτρηση)

ψx(m)	ax(m)	bx(m)	Aeffx(m2)	x,x(m)	ξx
0.225	0.7	0.625	1.0759375	0.975	0.75
Vxg,d/2(kN)	158.4046004				
Vxq,d/2(kN)	30.40070161				
VxE,d/2(kN)	8.428048171				
VxsdOKA(kN)	259.4472629				
VxsdOKA_E(kN)	175.952859				
maxVxsd(kN)	259.4472629				

ψy(m)	ay(m)	by(m)	Aeffy(m2)	y,y(m)	ξγ
0.469444444	3.308888889	0.591666667	2.509280093	0.575	0.638888889

Vyg,d/2(kN)	226.3054033
Vyq,d/2(kN)	43.43408246
VyE,d/2(kN)	11.6096941
VysdOKA(kN)	370.6634182
VysdOKA_E(kN)	250.9453222
maxVysd(kN)	370.6634182

As1x(cm2)	As1y(cm2)	ρlx	ρly	k	k1	σcp(Mpa)	Crdc	vmin(Mpa)
7.54	7.54	0.001426973	0.003327958	1.554700196	0.15	0	0.12	0.371619634

				Τελικές αντοχές		
Vrdcxmin(kN)	Vrdcymin(kN)	Vrdcx(kN)	Vrdcy(kN)	Vrdcx(kN)	Vrdcy(kN)	
399.8395004	932.4977507	325.9321951	1008.037582	399.8395004	1008.037582	

Δεν απαιτείται οπλισμός διάτμησης

Όσον αφορά τη διάτρηση τοσο για 30 όσο και για 45 μοίρες η κρίσιμη περίμετρος είναι εκτός πεδίλου η εντός αλλά πολύ κοντά στο άκρο του προβόλου.

Συνεπώς ο έλεγχος σε διάτρηση δεν είναι κρίσιμος αφού κανένα από τα πέδιλα δεν είναι αρκετά επιμήκες ώστε να υπάρχει πιθανότητα απαίτησης οπλισμού διάτρησης.