

CE215122 - BLE HID Mouse with PSoC 6 MCU with BLE Connectivity

Objective

This example demonstrates the implementation of the Bluetooth Low Energy (BLE) HID over GATT Profile where the device operates as a HID Mouse.

Overview

The design demonstrates the core functionality of the BLE Component configured as a HID Device (GATT Server). It simulates the mouse movement and button click in Boot and Protocol modes. Also, the design demonstrates how to handle a suspend event from the central device and enter Low-Power mode when suspended.

The project supports up to four connections.

Requirements

Tool: PSoC Creator™ 4.2 or later

Programming Language: C (Arm® GCC 5.4-2016-q2-update or later)

Associated Parts: All PSoC® 6 MCU with BLE Connectivity (PSoC 6 BLE) parts

Related Hardware: CY8CKIT-062 PSoC 6 BLE Pioneer Kit

1

Design

Figure 1 shows the top design schematic.

Figure 1. BLE HID Mouse Code-Example Schematic

The BLE Component implements a HID over the GATT Profile in the HID Device role (GATT Server).

After a start, the device performs the BLE Component initialization. The four callback functions are required in this project for the BLE operation:

- AppCallBack() is required to receive generic events from the BLE Stack.
- HidsCallBack(), BasCallBack(), and ScpsCallBack() are required to receive events from the services.

The CY_BLE_GAPP_StartAdvertisement() function is called after the CY_BLE_EVT_STACK_ON event to start advertising with the packet as shown in Figure 7. On an advertisement timeout, the system enters Hibernate mode. Press the mechanical button **SW2** on the PSoC 6 BLE Pioneer Kit to wake up the system and start advertising. The BLE subsystem and CPU enter Low-Power Deep Sleep mode between the connection and advertising intervals. The BLE subsystem automatically wakes up to maintain connection and advertising data transfer.

The green LED blinks to indicate that the device is advertising. The red LED is turned ON after disconnection to indicate that no client is connected to the device. When a client is connected successfully, the red and green LEDs are turned OFF. When a client enables notifications, blinking blue LED indicates a simulated data transfer from the HID device to the host.

Additionally, this project implements the Battery Service. By default, the battery level is simulated and changed from 2 to 20 percent.

Design Considerations

Using UART for Debugging

Download and install a serial port communication program. Freeware such as Bray's Terminal, and PuTTY are available on the web.

- 1. Connect the PC and kit with a USB cable.
- 2. Open the device manager program in your PC, find a COM port that the kit is connected to, and note the port number.
- 3. Open the serial port communication program and select the previously noted COM port.
- 4. Configure the Baud rate, Parity, Stop bits, and Flow control information in the PuTTY configuration window. The default settings: Baud rate 115200, Parity None, Stop bits 1, Flow control XON/XOFF. These settings must match the configuration of the PSoC Creator UART component in the project.
- 5. Start communicating with the device as explained in the Operation section.

The UART debugging can be disabled by setting the DEBUG UART ENABLED to DISABLED in the common.h file.

LED Behavior for V_{DDD} Voltage < 2.7 V

If the V_{DDD} voltage is set to less than 2.7 V in the DWR settings of the **System** tab, only the red LED is used. The red LED blinks to indicate that the device is advertising. The red LED is OFF when the device is connected to a peer device. When the device is in Hibernate mode, the red LED stays ON.

Switching the CPU Cores Usage

This section describes how to switch between different CPU cores usage (Single core and Dual core) in the BLE Peripheral Driver Library (PDL) examples.

The BLE Component has the CPU Core parameter that defines the cores usage. It can take the following values:

- Single core (Complete Component on CM0+) only CM0+ core will be used.
- Single core (Complete Component on CM4) only CM4 core will be used.
- Dual core (Controller on CM0+, Host and Profiles on CM4) both cores will be used: CM0+ for the Controller and CM4 for the Host and Profiles.

The BLE examples' structure allows easy switching between different CPU cores options.

Important to remember:

- All application host-files must be run on the host core.
- The BLE Subsystem (BLESS) interrupt must be assigned to the core where the controller runs.
- All additional interrupts (SW2, MCWDT, etc.) used in the example must be assigned to the host core.

Do the following to switch the CPU cores usage:

- 1. In the BLE Component Customizer General tab, select appropriate CPU core option.
- Change the core properties to CortexM4 or CortexC0p for the project folder Host Files based on the CPU core option selected in step 1. It should be:
 - For Single core (Complete Component on CM0+) option: CM0+
 - For Single core (Complete Component on CM4) option: CM4
 - □ For Dual core (Controller on CM0+, Host and Profiles on CM4) option: CM4

- 3. Assign the BLE_bless_isr and other peripheral (button SW2, timer(s) etc.) interrupts to appropriate core in DWR-> interrupts tab:
 - For Single core (Complete Component on CM0+) option: BLE_bless_isr and peripheral interrupts on CM0+
 - □ For Single core (Complete Component on CM4) option: BLE_bless_isr and peripheral interrupts on CM4
 - For Dual core (Controller on CM0+, Host and Profiles on CM4) option: BLE_bless_isr interrupt on CM0+, other peripheral interrupts on CM4

Figure 2. Steps for Switching the CPU Cores Usage

Hardware Setup

The code example was created for the CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit.

Table 1 lists the pin assignment and connections required on the development board for the supported kits.

Table 1. Pin Assignment

Pin Name	Development Kit	Comment	
riii Naiile	CY8CKIT-062	Comment	
\UART_DEB:rx\	P5[0]		
\UART_DEB:tx\	P5[1]		
\UART_DEB:rts\	P5[2]		
\UART_DEB:cts\	P5[3]		
Advertising_LED	P1[1]	The green color of the RGB LED.	
Disconnect_LED	P0[3]	The red color of the RGB LED.	
Simulation_LED	P11[1]	The blue color of the RGB LED.	
SW2 P0[4]			

Components

Table 2 lists the PSoC Creator Components used in this example and the hardware resources used by each of the components.

Table 2. PSoC Creator Components List

Component	Hardware Resources
BLE	1 BLE, 1 Interrupt
UART_DEB	1 SCB
SW2	1 pin
Wakeup_Interrupt	1 interrupt
Disconnect_LED, Advertising_LED, Simulation_LED	3 pins

Parameter Settings

Bluetooth Low Energy (BLE)

The BLE Component is configured as a HID over a GATT Profile in the HID Device role (GATT Server). The HID device has one instance of the HID Service, Battery Service, Device Information Service, and Scan Parameters Service.

Figure 3. General Settings

Figure 4. GATT Settings

Attribute MTU size (bytes): 23

Datasheet

END_COLLECTION

END_COLLECTION

Properties

+ Permissions

•

Ţ

OK

C0

CO

Cancel

Mandatory

Apply

Figure 5. GAP Settings

Figure 6. GAP Settings: Advertisement Settings

Figure 7. GAP Settings > Advertisement Packet

Figure 8. Security Settings

Operation

You can connect an HID device to Windows 8. Windows 7 and older OS do not have HOGP drivers.

- Make sure that a PC with Windows 8 has Bluetooth 4.0 installed.
- 2. To connect to a HID device, click Add a device in the Devices and Printers window of the Control Panel.
- 3. Select the BLE Mouse device and click Next.

Figure 9. Windows 8 PC Connection to BLE Mouse

Figure 10. Device Drivers Are Installed, Mouse Cursor Starts Moving

4. The setup will automatically install the necessary files in the system.

Figure 11. Windows 8 PC Recognizes BLE Mouse as Input Device

After pairing, the mouse pointer moves in a square clockwise direction.

Also, you can connect an HID Device to an Android device with the Bluetooth 4.0 support: go to the phone's Bluetooth settings and pair it with your device (it should be recognized as BLE Mouse).

Figure 12. Android Settings for Paired Bluetooth Device

Figure 13. Mouse Cursor is Placed in Screen Center

Figure 14. Mouse Cursor is Moving in Square Clockwise Direction

Related Documents

Application Notes						
AN210781	Getting Started with PSoC 6 MCU with Bluetooth Low Energy (BLE) Connectivity	Describes the PSoC 6 MCU with BLE Connectivity, and how to build a basic code example.				
AN215656	PSoC 6 MCU Dual-Core CPU System Design	Presents the theory and design considerations related to this code example.				
Software and	Software and Drivers					
CySmart – BLE Test and Debug Tool		CySmart is a BLE host emulation tool for Windows PCs. The tool provides an easy-to-use GUI to enable the user to test and debug their BLE Peripheral applications.				
PSoC Creator Component Datasheets						
Bluetooth Low Energy (BLE_PDL) Component		The Bluetooth Low Energy (BLE_PDL) Component provides a comprehensive GUI-based configuration window to facilitate designing applications requiring BLE connectivity.				
Device Documentation						
PSoC 6 MCU: PSoC 63 with BLE Datasheet Programmable System-on-Chip		PSoC 6 MCU: PSoC 63 with BLE Architecture Technical Reference Manual (TRM)				
Development Kit (DVK) Documentation						
CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit						

Document History

Document Title: CE215122 - BLE HID Mouse with PSoC 6 MCU with BLE Connectivity

Document Number: 002-15122

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	5968181	NPAL	11/21/2017	New Code Example.

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb
Wireless Connectivity cypress.com/wireless

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs | Training | Components

Technical Support

cypress.com/support

Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.