

Lab Notebook Software Tools and Technology Lab SEBCA1191

Group 19		
NAME	ROLL NO.	DEPARTMENT
Rishika Acharjee [Group-Leader]	30001223016	BCA
Ankita Ghoshal	330085323012	Bsc IT in CS
Moumita Modak	30054623014	Bsc IT in AI
Pritam Sarkar	30001223042	BCA
Titli Biswas	30059223018	BSc in Data Science

Index

Serial No.	Questions
1	Calculator Program using C
2	Question 2 description here
3	Question 3 description here
4	Question 4 description here
5	Question 5 description here

Member 2: [Ankita Ghoshal]

1 Lab 1: Calculator Program using C

1.1 Objective

The objective of this lab is to develop a basic calculator program using the C programming language. The calculator will perform simple arithmetic operations like addition, subtraction, multiplication, and division based on user input.

1.2 Program Overview

The calculator program is designed to:

- Accept two numbers from the user.
- Prompt the user to select an arithmetic operation (Addition, Subtraction, Multiplication, Division).
- Perform the selected operation.
- Display the result of the operation to the user.

The program includes error handling to manage division by zero and other invalid inputs.

1.3 Code Implementation

The following is the C code for the calculator program:

```
#include <stdio.h>
int main() {
    char operator;
    double num1, num2, result;

    printf("Enter an operator (+, -, *, /): ");
    scanf("%c", &operator);

    printf("Enter two operands: ");
    scanf("%lf %lf", &num1, &num2);

    switch(operator) {
        case '+':
            result = num1 + num2;
            break;
```

```
case '-':
            result = num1 - num2;
            break;
        case '*':
            result = num1 * num2;
            break;
        case '/':
            if (num2 != 0)
                result = num1 / num2;
            else {
                printf("Error! Division by zero.\n");
                return -1;
            }
            break;
        default:
            printf("Error! Operator is not correct\n");
            return -1;
    }
    printf("Result: %.21f\n", result);
    return 0;
}
```

1.4 Compiling and Running the Program

To compile and run the calculator program:

- 1. Open a terminal or command prompt.
- 2. Navigate to the directory where the C file is located.
- 3. Compile the program using a C compiler (e.g., GCC):

```
gcc calculator.c -o calculator
```

4. Run the compiled program:

./calculator

1.5 Adding the Calculator Program to GitHub Repository

To add this calculator program to a GitHub repository, follow these steps:

1.5.1 Step 1: Initialize a Local Git Repository

- Open the terminal and navigate to the directory where your calculator.c file is located.
- 2. If you haven't already, initialize a Git repository in that directory:

```
git init
```

This command creates a new Git repository in the current directory.

1.5.2 Step 2: Add the File to the Repository

1. Add the calculator.c file to the staging area:

```
git add calculator.c
```

This command stages the file, indicating that you want to include it in the next commit.

1.5.3 Step 3: Commit the Changes

1. Commit the file to the repository with a meaningful message:

```
git commit -m "Add calculator program in C"
```

1.5.4 Step 4: Push the Changes to GitHub

1. Link your local repository to a remote GitHub repository:

```
git remote add origin https://github.com/yourusername/your-repo-name.git
```

2. Push the changes to the GitHub repository:

```
git push -u origin master
```

1.5.5 Step 5: Verify the Upload

- 1. Go to your GitHub repository URL in a web browser.
- 2. Verify that the calculator.c file is listed and accessible in the repository.

Member 4: [Pritam Sarkar]

2 Introduction

This document outlines the process of modifying a "Submit" button in a mind reader application and submitting a pull request to the original GitHub repository. The repository in question is available at https://github.com/GeekAyan/STT. The modification includes renaming the button and fixing proportion issues.

2.1 Cloning the GitHub Repository

Step: Clone the GitHub repository using GitHub Desktop.

Action:

- Open GitHub Desktop and select File > Clone Repository.
- Enter the repository URL: https://github.com/GeekAyan/STT and select a directory to clone it.

2.2 Opening the Project in an IDE

Step: Open the cloned project using your preferred IDE (e.g., VS Code, Py-Charm).

Action:

- Open the folder containing the cloned project.
- Review the README.md for instructions on how to run the project.

2.3 Install Dependencies

Step: Install any dependencies required by the project as per the README.md file.

Action:

• Set up the environment. If the project uses Python, create a virtual environment and install dependencies using:

```
pip install -r requirements.txt
```

• Follow other system requirements mentioned in the README.md.

2.4 Running the Application

Step: Run the application as per the instructions in README.md. Action:

- Use your IDE's terminal to run the project.
- Ensure the application works as expected.

2.5 Renaming the Submit Button

Step: Rename the button from "Submit" to "Chin Tapak Dum Dum." Action:

- Find the code section responsible for the submit button's label.
- Modify the label. For example:

```
<button id="submit" name="submit">Chin Tapak
   Dum Dum < / button >
```

Fixing the Button Proportion

Step: After renaming the button, analyze and adjust its proportions. Action:

- Check the CSS properties related to the button's size, padding, and font.
- Modify the button's CSS if needed, for example:
- Save changes and re-run the application to check the button's appearance.

2.7Testing the Application

Step: Test the application after modifying the button.

Action:

• Run the application again to verify that the button looks correct and functions properly.

2.8 Committing the Changes

Step: Commit your changes locally.

Action:

• Stage the files and commit with a descriptive message, for example:

```
git commit -m "Renamed_submit_button_and_fixed
   \sqcupproportion\sqcupissue"
```

Pushing Changes to Your Fork

Step: Push your changes to your GitHub fork.

- Action:
- If you haven't forked the repository, go to the GitHub page and fork it.
- Add the forked repository as a remote and push your changes:

```
git remote add origin https://github.com/<
   YourGitHubUsername > / STT.git
git push origin main
```

2.10 Creating a Pull Request

Step: Create a pull request to the original repository. **Action**:

- Go to your fork on GitHub and create a new pull request.
- Provide a descriptive title and details of your changes.
- Submit the pull request.

2.11 Review and Approval

Step: Wait for feedback or approval. Action:

- Respond to feedback or requested changes, if any.
- Once approved, your changes will be merged into the original project.

Latex Assignment by Pabitra Sir

Entry by Titli Biswas

2.12 Mathematical Notation

- 1. Superscripts, subscripts, and Greek letters
 - 2224
 - 22₂₄
 - 2224^{π}
 - $\cos \theta$
 - $tan^{-1}(2.224)$
 - $\log_{22} 24$
 - ln 2224
 - $e^{2.224}$
 - $0 < x \le 2224$
 - $y \ge 2224$
- 2. Roots, fractions, and displaystyle
 - $\sqrt{2224}$
 - $\sqrt[22]{24}$
 - Normal: $\frac{22}{24}$ Displaystyle: $\frac{22}{24}$
 - Normal: $\frac{2}{2+\frac{2}{4}}$ Displaystyle: $\frac{2}{2+\frac{2}{4}}$
 - Normal: $\sqrt{\frac{22}{24}}$ Displaystyle: $\sqrt{\frac{22}{24}}$
- 3. Delimiters
 - Display math mode: $\left(2 + \frac{2}{24}\right)$
 - Display math mode: $\left| \frac{22-2}{4} \right|$
- 4. Tables and equation arrays

•

$$\begin{array}{c|c|c}
x & 1 & 2 & 3 & 4 \\
f(x) & 2 & 2 & 2 & 2
\end{array}$$

•
$$2 + 2 - 2 \times 4 = x$$

 $2 + 2 - 8 = x$
 $4 - 6 = x$
 $x = -2$

5. Functions & Formulas

• The quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- The function $f(x) = \left(\frac{x+2}{2}\right)^2 \frac{2}{4}$ has domain $D_f: (-\infty, \infty)$ and range $R_f: \left[\frac{-7}{2}, \infty\right)$.
- Definition of a Derivative: $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} = f'(x)$
- Chain Rule: $[f(g(x))]' = f'(g(x)) \cdot g'(x)$
- $\bullet \ \frac{d^2y}{dx^2} = f''(x)$
- $\int \sec^2 x \, dx = \tan x + C$
- $\int e^{2x} dx = \frac{1}{2}e^{2x} + C$
- Fundamental Theorem of Calculus, Part 1: $\int_a^b f'(x) dx = f(b) f(a)$
- Fundamental Theorem of Calculus, Part 2: $\frac{d}{dx} \left(\int_a^{g(x)} f(t) \, dt \right) = f(g(x)) \cdot g'(x)$
- Euler's Method: $y_1 = y_0 + hF(x_0, y_0)$ where h is the step size, and $F(x,y) = \frac{dy}{dx}$
- $a_n = \{2224, \frac{2224}{2}, \frac{2224}{4}, \frac{2224}{8}, \cdots, \frac{2224}{2^n}\}$ represents a geometric sequence.
- $S_n = \sum_{n=1}^{\infty} \frac{2224}{2^n}$ is a convergent geometric series since $|r| = \left|\frac{1}{2}\right| < 1$.
- Taylor Series: $\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n$
- Velocity Vector: $\vec{v}(t) = x'(t)\vec{i} + y'(t)\vec{j} = \left\langle \frac{dx}{dt}, \frac{dy}{dt} \right\rangle$
- Area of Polar Curve: $A = \frac{1}{2} \int_{\alpha}^{\beta} r^2 d\theta$