Computability Theory

Fall 2020

Lecture 13: Incompleteness II

Lecturer: Renjie Yang

Peano arithmetic PA

$$\varphi(0) \land \forall x(\varphi(x) \to \varphi(x+1)) \to \forall x\varphi(x)$$

- If $PA \vdash \varphi$, then $PA \vdash Prov_{PA}(\ulcorner \varphi \urcorner)$
- For every formula φ and ψ , $PA \vdash Prov_{PA}(\ulcorner \varphi \rightarrow \psi \urcorner) \rightarrow (Prov_{PA}(\ulcorner \varphi \urcorner) \rightarrow Prov_{PA}(\ulcorner \psi \urcorner))$
- For every formula ϕ , $PA \to Prov_{PA}(\ulcorner \varphi \urcorner) \to Prov_{PA}(\ulcorner Prov_{PA}(\ulcorner \varphi \urcorner)\urcorner)$

Theorem 13.1 Let T be any theory extending Q, and let $\psi(x)$ be any formula with free variable x. Then there is a sentence φ such that T proves $\varphi \leftrightarrow \psi({}^{\mathsf{r}}\varphi^{\mathsf{r}})$.

Theorem 13.2 Let T be any ω -consistent, computably axiomatized theory extending Q. Then T is not complete.

Theorem 13.3 Assuming PA is consistent, then PA does not prove $\neg Prov_{PA}(^{r}0 = 1^{r})$.