Mathematical thinking Practice assignment Week 2

- 1. Negate the statement "Either X is true, or Y is true, but not both".
 - (a) Both X and Y are false, or both X and Y are true.
 - (b) Either X or Y are false or true.
 - (c) X is false and Y is false.
 - (d) Either X is true and Y is false, or X is false and Y is true.

Answer: (a)

- 2. Which of the following options is/are true?
 - (a) If p is any prime number, then \sqrt{p} is an integer.
 - (b) If x is an irrational number and y is a rational number, then x + y is an irrational number.
 - (c) If x is an irrational number and y is a rational number, then x y is an integer.
 - (d) If x is an irrational number and y is a rational number, then $\frac{x}{y}$ is a rational number.
- 3. Let $S = \{\frac{(-1)^n}{2^n} | n \in \mathbb{N} \}$. Find the Sup(S). It is enough to submit the final answer. Answer: 0.25
- 4. Which of the following statements is equivalent to the statement "not(For all real numbers satisfying a < b, there exists an $n \in \mathbb{N}$ such that $a + \frac{1}{n} < b$ ')"?
 - (a) There exist real numbers satisfying a < b where $a + \frac{1}{n} < b$ for all $n \in \mathbb{N}$.
 - (b) For some real numbers a < b, there exists an $n \in \mathbb{N}$ such that $a + \frac{1}{n} < b'$.
 - (c) For all real numbers satisfying a < b where $a + \frac{1}{n} < b$ for all $n \in \mathbb{N}$.
 - (d) For some real numbers a < b where $a + \frac{1}{n} < b$ for some $n \in \mathbb{N}$.

Answer: (a)

- 5. Give an example (with the explanation) of a set of real numbers that has an upper bound but not the supremum in the set.
- 6. Let S be a set of real numbers. Set S is said to be bounded if there exist two real numbers α and β such that $\alpha < x < \beta, \forall x \in S$. Prove that any subset of S has the supremum in \mathbb{R} .
- 7. Let F be an ordered field and $x, y, z \in F$. Using only the definitions, prove that if x > 0 and y < z, then xy < xz.
- 8. Let a and b be two real numbers such that a < b. Prove that there exist infinitely many real numbers α such that $a < \alpha < b$.