Cálculo Diferencial e Integral en Varias Variables

Mauro Polenta Mora

Ejercicio 2

Consigna

Sean a_n y b_n dos sucesiones reales convergentes tales que $\lim_{n\to+\infty}a_n=A$ y $\lim_{n\to+\infty}b_n=B$.

- 1. Probar que la sucesión $c_n = a_n + b_n$ es convergente y $\lim_{n \to +\infty} c_n = A + B$.
- 2. Sea $\lambda \in \mathbb{R}$, probar que la sucesión $\tilde{a}_n = \lambda a_n$ converge y $\lim_{n \to +\infty} \tilde{a}_n = \lambda A$.
- 3. Probar que la sucesión $d_n = a_n b_n$ converge y $\lim_{n \to +\infty} d_n = AB$.
- 4. Sea (e_n) una sucesión acotada y suponga que A=0. Probar que $\lim_{n\to +\infty}e_na_n=0$.

Parte 1

Hecho en el teórico, clase 9, sección 3.11

Parte 2

• Sea $\lambda \in \mathbb{R}$, probar que la sucesión $\tilde{a}_n = \lambda a_n$ converge y $\lim_{n \to +\infty} \tilde{a}_n = \lambda A$.

Como $\lim_{n\to\infty} a_n = A$, tenemos que:

• $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \text{ tal que } \forall n > n_0 : |a_n - A| < \varepsilon$

Tomamos $\varepsilon = \frac{\varepsilon}{|\lambda|}$, entonces a partir de un $n_0 \in \mathbb{N}$ se cumple el siguiente razonamiento:

$$\begin{aligned} |a_n - A| &< \frac{\varepsilon}{|\lambda|} \\ &\iff \text{(operando)} \\ |\lambda| |a_n - A| &< \varepsilon \\ &\iff \text{(operando)} \\ |\lambda(a_n - A)| &< \varepsilon \\ &\iff \text{(operando)} \\ |\lambda a_n - \lambda A| &< \varepsilon \\ &\iff (\tilde{a}_n = \lambda a_n) \\ |\tilde{a}_n - \lambda A| &< \varepsilon \end{aligned}$$

Por lo tanto demostramos lo que queríamos verificar, es decir que:

• $\lim_{n\to\infty} \tilde{a}_n = \lambda A$

Parte 3

Hecho en el teórico, clase 9, sección 3.11

Parte 4

Hecho en el teórico, clase 9, sección 3.10