

Danny R. | Columbia University | Business Analytics

UTILITY | CONTEXT

O DATA UTILITY

- F1 is a bata based industry
- "Moving PC's"
- Large analytics utility
 - Influences designs
 - Component set up
 - How they are driven
 - Strategy

FORMULA CAR MAKEUP

- 80,000 components (1)
- Sensors: 100 300 | 100,000 data points (1)
- Collect terabytes of data during a race (1)

UTILITY | CONTEXT

SENSORS

- Tire pressure, temperature and wear
- Fuel burn efficiency
- Lap times
- Brake temperatures
- Air flow
- Engine performance and health
- Driver responsiveness

UTILITY

Small increments and changes

- Competitive advantages
- Pre
- Real-time
- Post

O 2021 GRAND PRIX FASTEST LAPS

	2021 United States Gran Lewis Hamilton		Carlos Sainz Jnr -	George Russell	
175					
150					
125					
75 June (s)		RAC	MNS	NET.	
F 75				I.NE I	
50			\sim		
25			\wedge		
0					
	10	20	30	40	50
			/ nn		

2021 Grand Prix Fastest Laps								
Rank	Driver Car		Fastest Lap	Gap				
Ferrari								
6	Leclerc	Ferrari	1'25.319	0.507				
3	Leclerc	Ferrari	1'39.303	0.818				
8	Sainz Jr	Ferrari	1'25.559	0.747				
9	Sainz Jr	Ferrari	1'40.377	1.892				
Mercedes								
14	Hamilton	Mercedes	1'25.835	1.023				
1	Hamilton	Mercedes	1'38.485	0				
11	Russell	Mercedes	1'25.870	1.058				
12	Russell	Mercedes	1'41.120	2.635				

- 1.

Lap

The gaps between each driver on every lap compared to the leader's average lap time. Very large gaps omitted.

ANALYTICS | VISUALIZATION

QUESTION

Will innovating hardware improve aerodynamics leading to better lap times?

INNOVATION

DIVERSITY IN CONCEPT • Ferrari & Mercedes represent extremes of two different airflow management philosophies (5)

INNOVATION

DOWNFORCE

+ 35%

DOWNFORCE

+ 95%

0 m/s

INNOVATION APPLICATION

O ANALYTICS | QUESTIONS

- Insights
- Designs and Improvements
- Applications

DAVQ CHAIN

ANALYTICS

- Nuanced changes may develop as new results from are collected
- May revolutionize designs & new component relationships
- Aero & computational fluid dynamic (CFD) simulations

VISUALIZATION

 I do not see this having an impact on visualization

- Will hardware innovation improve aerodynamics leading to better lap times?
- Will bleeding/leading edge unprecedented design improve performance?
- How can we improve or adapt the new designs?

DATA CHAIN

- O 2022 GRAND PRIX FASTEST LAPS
- O DATA
 - Overall data still the same
 - New data on aerodynamics changes
 - New data on how components interact

2022 Grand Prix Fastest Laps						
Rank	Driver	Car	Fastest Lap	Gap	vs. 2021	
Ferrari						
6	Leclerc	Ferrari	1'24.336	0.306	-0.983	
3	Leclerc	Ferrari	1'39.731	0.943	0.428	
8	Sainz Jr	Ferrari	1'24.420	0.39	-1.139	
9	Sainz Jr	Ferrari	1'55.016	16.228	14.639	
Mercedes						
14	Hamilton	Mercedes	1'24.434	0.404	-1.401	
1	Hamilton	Mercedes	1'39.830	1.042	1.345	
11	Russell	Mercedes	1'25.288	1.258	-0.582	
12	Russell	Mercedes	1'38.788	0	-2.332	

ADOPTION | VALUE PROPOSITION

O ORGANIZATIONAL CULTURE

- Leading edge of innovation, technology, and advancement
- Focus
 - Design
 - Build
 - Race
 - Repeat

- Improved aerodynamics
- Decreasing Lap times
- Faster car and better performance
- Winning Championships

F1 Team Culture

"When a bold chance is taken, and the outcome isn't what you expected, how can you work the problem without losing focus or straying from the master plan?

Don't deviate from a winning strategy: an obsession with being a data-centric and analytics-driven organization" (2)

REFERENCES

- (1) Mapfre. (2020). Data Analysis in Formula 1. MAPFRE. Accessed 01 Feb 2023. https://www.mapfre.com/en/insights/innovation/data-analysis-in-formula-1-the-difference-between-victory-and-defeat/
 - (2) Woodie, Alex. (2018). Go Fast and Win: The Big Data Analytics of F1 Racing. Datanami. Accessed 01 Feb 2023. https://www.datanami.com/2018/04/19/go-fast-and-win-the-big-data-analytics-of-f1-racing/
 - (3) Collantine, K. (2021). Grand Prix Interactive Data. RaceFans. Accessed 01 Feb 2023. https://www.racefans.net/2021/10/25/2021-united-states-grand-prix-interactive-data-lap-charts-times-and-tyres/ https://www.racefans.net/2022/10/24/2022-united-states-grand-prix-interactive-data-lap-charts-times-and-tyres/
 - (4) Sharma, A. (2022). F1 Telemetry Analysis. Microsoft. Accessed 01 Feb 2023. https://techcommunity.microsoft.com/t5/azure-data-explorer-blog/f1-telemetry-analysis-with-azure-data-explorer-adx/ba-p/3283911
 - (5) Giuliana, R. (2022). Huge Sidepods or No Sidepods? The-race. Accessed 01 Feb 2023. https://the-race.com/formula-1/huge-sidepods-or-no-sidepods-mercedes-and-ferraris-theories/
 - (6) Gowtham, S. (2021). F1 2022 Car, Your Cheat Sheet! AllF1. Accessed 01 Feb 2023. https://allf1.in/f1-2022-car-your-cheat-sheet/
 - (7) F1 Technical. CFD 2022 Ferrari F1-75 Sidepod Analysis. Accessed 01 Feb 2023. https://www.f1technical.net/forum/viewtopic.php?t=30249