Eötvös Loránd University (ELTE) Faculty of Informatics (IK) Pázmány Péter sétány 1/c 1117 Budapest, Hungary

ABOUT THE COURSE

Introduction to Data Security
Imre Lendák, PhD, GICSP

Presentation outline

- Course team
- Course contents
- About the exam!

COURSE TEAM

Course team – Lecturers

Imre Lendak

- Degree in computer science and electrical engineering
- PhD in graph analysis
- Certified cybersecurity expert
- R&D projects in the following infrastructure security sectors:
 - energy,
 - banking,
 - water management, and
 - telecommunications.
- 10+ years software engineering experience (C++, C#, Python)
- Preferred comm.channel: email (lendak@inf.elte.hu)

Péter Kiss

- Computer science MSc, ELTE/IK
- PhD in Federated Learning
- Machine learning expert
- Taught subjects:
 - Machine learning
 - Stream mining
- R&D projects in sectors:
 - Finance
 - Telecommunications
- 10+ years of software dev & ML experience (Java, Python)

COURSE CONTENTS

Broad topics covered

Brief topic list (accredited)

- Cyberspace, cybersecurity, cybercrime;
- Identity and access management;
- Data inventory and backup;
- Data encryption;
- Data loss prevention;
- Data security standards;
- Data privacy vs machine learning (ML); →

Data privacy & ML

- Intro & ML security Top 10
- Evasion attacks
- Model and data inversion
- Federated learning
- Synthetic data generation
- Secure ML supply chains

Draft topic list (2025)

Data Security (3)

- Data Security Overview
 - Basic definitions
- Data protection measures
 - Inventory and backup
 - Encryption in a nutshell
 - Identity & access
 - Data loss prevention (DLP)
- Legal aspects of Data Security
 - Privacy in a nutshell
 - Critical infrastructure sectors
 - Legal framework

ML Security (7)

- ML Security Intro
 - Ontology: artefacts, attacks, attackers, attack surface
 - OWASP Top 10 ML
- Secure ML training

Model

- Evasion attacks
- Misuse of ML models: poisoning, sponge, theft, inversion, supply chains
- Data 'inversion': inference, data leaks, anonymization, de-anonymization
- Federated learning
- Synthetic data generation

Lecture and lab timing

Lectures

- Lecture start and end times on Tuesdays (2025):
 - 12:15 13:00 Class #1
 - 13:00 13:15 Break + Faceto-face consultations
 - 13:15 14:00 Class #2
- Consultations
 - · Team-based, bi-weekly

Labs

No labs yet (2025 Spring)

EXAM SETUP

Course & exam setup

- Classroom-based lectures
- Exam consists of three compulsory (non-optional) elements (51% to pass each):
 - (1) course project (Canvas) → see next slide (50p),
 - (1) entry test (Canvas), and
 - (2) oral exam (50p).
- Lecture attendance for extra points & benefits
 - Lecture attendance → Up to 5 extra points
 - Canvas assignments → Extra points
 - Partial quiz (3) → Can substitute final entry test

Team-based project work

Teams

- 5 members
- International as much as possible (!)

Projects

- Important (cut-off) dates:
 - Topic list published: Feb 28
 - Bi-weekly status checks
 - Detailed instructions online
 - Project submission: Apr 27
 - Project defenses: Apr 29
- Project output(s):
 - Github repository with code
 - Documentation and illustrations also on Github
 → Multi-page docs (!)
 - 10-slide presentation (Overleaf?)

Thank you for your attention!