Preface

Chance – or what appears to us as such – is ubiquitous. Not only in the games of chance such as lottery or roulette where risk is played with, but also in substantial parts of everyday life. Every time an insurance company uses the claim frequencies to calculate the future premium, or a fund manager the most recent stock charts to rearrange his portfolio, every time cars are jamming at a traffic node or data packages at an internet router, every time an infection spreads out or a bacterium turns into a resistant mutant, every time pollutant concentrations are measured or political decisions are based on opinion polls - in all such cases a considerable amount of randomness comes into play, and there is a need to analyse the random situation and to reach at rational conclusions in spite of the inherent uncertainty. Precisely this is the objective of the field of stochastics, the 'mathematics of chance'. Stochastics is therefore a highly applied science, which tries to solve concrete demands of many disciplines. At the same time, it is genuine mathematics – with sound systematics, clear-cut concepts, deep theorems and sometimes surprising cross-connections. This interplay between applicability on the one side and mathematical precision and elegance on the other makes up the specific appeal of stochastics, and a variety of natural questions determines its lively and broad development.

This book offers an introduction to the typical way of thinking, as well as the basic methods and results of stochastics. It grew out of a two-semester course which I gave repeatedly at the University of Munich. It is addressed to students of mathematics in the second year, and also to scientists and computer scientists who intend not only to apply stochastics, but also to understand its mathematical side. The two parts of stochastics – probability theory and statistics – are presented in two separate parts of the book because of their own scopes and methods, but are united under the same cover on purpose. For, the statistics is built on the concepts and methods of probability theory, whereas the latter needs the former as a bridge to reality. In the choice of the material I confined myself deliberately to the central subjects belonging to the standard curriculum of the corresponding mathematical courses. (It is thus unavoidable that some readers will miss their favourite subjects, e.g., the resampling methods of statistics.) The standard themes, however, are discussed with all necessary details. Rather than starting with discrete models I preferred to present (and motivate) the general measure theoretic framework right from the beginning, and some theoretical issues are also treated later as the case arises. In general, however, the measure theoretic apparatus is confined to what is absolutely necessary, and the emphasis is on the development of a stochastic intuition.

vi Preface

This text comprises a little more material than can be presented in a four-hour course over two semesters. The reader may thus want to make a selection. Several possibilities present themselves. For a first overview, the reader may concentrate on concepts, theorems, and examples and skip all proofs. In particular, this is a practicable route for non-mathematicians. A deeper understanding, of course, requires the study of a representative selection of proofs. On the other hand, a reader mainly interested in the theory and familiar with some applications may skip a portion of examples. For a short route through Part I leading directly to statistics, one can restrict oneself to the essentials of the first chapters up to Section 3.4, as well as Sections 4.1 and 4.3, and 5.1 and 5.2. The core of Part II consists of Sections 7.1–7.5, 8.1–8.2, 9.2, Chapter 10, as well as 11.2 and 12.1. Depending on the specific interests, it will facilitate orientation to browse through some portions of the text and return to them later when needed. A list of notational conventions can be found on page 395.

At the end of each chapter there is a collection of problems offering applications, additions, or supplements to the text. Their difficulty varies, but is not indicated because the reader should follow only his or her interests. The main point is to try for oneself. Nevertheless, this second English edition now provides draft solutions of selected problems, marked with ^S. These should be used for self-testing, rather than lulling the reader's willingness to tackle the problems independently.

As every textbook, this one grew out of more sources than can possibly be identified. Much inspiration came from the classical German texts of Ulrich Krengel [38] and Klaus Krickeberg and Herbert Ziezold [39], which had strong influence on the introductory courses in stochastics all over Germany. I also got many impulses from my Munich stochastics colleagues Peter Gänßler and Helmut Pruscha as well as all those responsible for the problem classes of my lectures during more than two decades: Peter Imkeller, Andreas Schief, Franz Strobl, Karin Münch-Berndl, Klaus Ziegler, Bernhard Emmer, and Stefan Adams. I am very grateful to all of them.

The English translation of the German original would not have appeared without the assistance of two further colleagues: Marcel Ortgiese accepted to lay the foundation by preparing an initial English version, so that I could concentrate on details and cosmetic changes. Ellen Baake took pleasure in giving a final polish to the English and suggesting numerous clarifications. I gratefully acknowledge their help.

Munich, June 2012

Hans-Otto Georgii

Contents

Preface			V
M	athema	atics and Chance	1
I	Prol	pability Theory	
1	Prir	nciples of Modelling Chance	7
	1.1	Probability Spaces	7
	1.2	Properties and Construction of Probability Measures	14
	1.3	Random Variables	20
	Prob	olems	24
2	Stoc	chastic Standard Models	27
	2.1	The Uniform Distributions	27
	2.2	Urn Models with Replacement	30
	2.3	Urn Models without Replacement	35
	2.4	The Poisson Distribution	39
	2.5	Waiting Time Distributions	40
	2.6	The Normal Distributions	46
	Prob	olems	48
3	Con	ditional Probabilities and Independence	51
	3.1	Conditional Probabilities	51
	3.2	Multi-Stage Models	57
	3.3	Independence	64
	3.4	Existence of Independent Random Variables, Product Measures	70
	3.5	The Poisson Process	75
	3.6	Simulation Methods	79
	3.7	Tail Events	83
	Prob	olems	86

viii Contents

4	Exp	pectation and Variance	92
	4.1	The Expectation	92
	4.2	Waiting Time Paradox and Fair Price of an Option	100
	4.3	Variance and Covariance	107
	4.4	Generating Functions	110
	Prol	blems	114
5	The	Law of Large Numbers and the Central Limit Theorem	119
	5.1	The Law of Large Numbers	119
	5.2	Normal Approximation of Binomial Distributions	131
	5.3	The Central Limit Theorem	138
	5.4	Normal versus Poisson Approximation	143
	Prol	blems	146
6	Ma	rkov Chains	151
	6.1	The Markov Property	151
	6.2	Absorption Probabilities	155
	6.3	Asymptotic Stationarity	159
	6.4	Recurrence	171
	Prol	blems	181
II	Sta	tistics	
7	Esti	imation	191
	7.1	The Approach of Statistics	191
	7.2	Facing the Choice	195
	7.3	The Maximum Likelihood Principle	199
	7.4	Bias and Mean Squared Error	205
	7.5	Best Estimators	207
	7.6	Consistent Estimators	214
	7.7	Bayes Estimators	218
	Prol	blems	222
8	Cor	nfidence Regions	227
	8.1	Definition and Construction	227
	8.2	Confidence Intervals in the Binomial Model	233
	8.3	Order Intervals	239
	Prol	hlems	243

Contents ix

9	Around the Normal Distributions	246
	9.1 The Multivariate Normal Distributions	. 246
	9.2 The χ^2 -, F - and t -Distributions	. 249
	Problems	. 256
10	Hypothesis Testing	260
	10.1 Decision Problems	. 260
	10.2 Neyman–Pearson Tests	. 265
	10.3 Most Powerful One-Sided Tests	. 271
	10.4 Parameter Tests in the Gaussian Product Model	. 274
	Problems	. 284
11	Asymptotic Tests and Rank Tests	289
	11.1 Normal Approximation of Multinomial Distributions	. 289
	11.2 The Chi-Square Test of Goodness of Fit	. 296
	11.3 The Chi-Square Test of Independence	. 303
	11.4 Order and Rank Tests	. 309
	Problems	. 320
12	Regression Models and Analysis of Variance	325
	12.1 Simple Linear Regression	. 325
	12.2 The Linear Model	. 329
	12.3 The Gaussian Linear Model	. 334
	12.4 Analysis of Variance	. 342
	Problems	. 351
Sol	lutions	357
Tables		385
References		
List of Notation		
Index		399