Describing distributions of data

Assignment Overview

There are a variety of conventional ways to visualize data - tables, histograms, bar graphs, etc. The purpose is always to examine the distribution of variables related to your research question. You will create a plot, follow up each graphic with a table of summary statistics (for quantitative variables) or frequency and proportion table (for categorical), and then a summary paragraph that brings it all together.

Instructions

- Use the template provided: [RMD] for R users, and [Word] for SPSS users. Rename this file to univ_graphing_userid
- Completely describe 2 categorical and 2 quantitative variables using
 - A table of summary statistics,
 - An appropriate plot with titles and axes labels,
 - A short paragraph description in full complete English sentences.
- Upload your final PDF to 04 Univariate Graphing folder in Google Drive.
- This is a peer reviewed assignment.
- Grading rubric is available for viewing in Blackboard Learn.

To guide your description of this distribution try to include the following information:

- What is the trend in the data? What exactly does the chart show? (Use the chart title to help you answer this question)
- Describe the location of the bulk of the data. Measures include
 - Measures of center: mean/median
 - IQR as Q3 and Q1 (i.e., 50% of the data lie between x_1 and x_2)
 - N and (%) for categorical data for the largest category.
- Describe the shape:
 - Symmetry/Skewness Is it symmetric, skewed right, or skewed left?
 - Modality Is it uniform, unimodal, or bimodal?
- Describe the spread or variability in the data
 - Appropriate measures include range, standard deviation, IQR for continuous data
 - For categorical data describe if distribution is spread across multiple response categories or mainly only one.
- Describe the outliers (note: there may not be any for every graph). Continuous data only.
 - Are there any outliers for the variable?
 - If yes, are these true outliers or false (due to data management or input error) outliers? (This could alert you to missing codes like -77 or 99 that need to be set to missing)

Example

This example uses the mpg data set from the ggplot2 package.

```
mpg <- ggplot2::mpg</pre>
```

Basic categorical

Draft style plot, direct computer output showing/copied. Poor grammar and/or sentence structure, no attempt at explaining what the variable means, extra unnecessary or incorrect information included. Typos.

class

```
library(descr)
freq(mpg$class)
```



```
## mpg$class
##
              Frequency Percent
## 2seater
                           2.137
                      5
                          20.085
## compact
                      47
## midsize
                      41
                          17.521
## minivan
                           4.701
                      11
## pickup
                      33
                         14.103
## subcompact
                      35
                         14.957
                        26.496
## suv
                      62
## Total
                     234 100.000
```

theres more suvs than compacts. 2% are 2seaters. there are 5 2seaters 47 cmpact 41 midize 11 minivans 33 pickups 35% subcompacts, 62 suv and 234 total cars.

Proficient categorical

Cleaned up plot, full English sentences, useful text formatting of variable names and levels. Explained what the variable was named and what it measured.

The class variable from the mpg data set is a catgorical variable that describes the type of vehicle being measured. Some levels of this categorical variable include *compact*, *pickup* and *suv*.

```
library(sjPlot); library(ggplot2)
set_theme(base = theme_classic())
sjp.frq(mpg$class)
```


Sub compact cars are the most frequently reported type of car, making up over one-quarter (26.5%) of the cars in this data set with n=62 cars represented. The least represented car is a compact car with n=5 (2.1%) records.

Basic quantitative

```
hist(mpg$cty)
```

Histogram of mpg\$cty

summary(mpg\$cty)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 9.00 14.00 17.00 16.86 19.00 35.00
```

Proficient quantitative

Overlaid a density curve on the histogram, also looked at a boxplot for outliers. Table of summary statistics present in a nicely formatted way, digits rounded appropriately. Plot cleaned up with appropriate axis and titles.

The cty variable records the miles per gallon (mpg) achieved during city driving. This is a quantititative numeric variable.

boxplot(mpg\$cty)

knitr::kable(t(c(summary(mpg\$cty), sd=sd(mpg\$cty))), digits=1)

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	sd
9	14	17	16.9	19	35	4.3

The MPG in the city ranges from 9 to 35, unimodal and is slightly skewed right with a mean of 16.9 close to the median of 17 and a standard deviation of 4.3mpg. The boxplot indicates that there are at least 4 upper end outliers achieving a city MPG of approximately over 28 mpg.