Chapitre 12

Intégration sur un intervalle quelconque

Dans ce chapitre, I désigne un intervalle d'intérieur non vide de \mathbb{R} et on s'intéresse à des fonctions définies sur I à valeurs dans \mathbb{K} , corps des réels ou des complexes

I Intégrale généralisée sur $[a; +\infty[$

I. A Fonctions continues par morceaux

Définition 1.1

Une fonction $f: I \longrightarrow \mathbb{K}$ est dite **continue par morceaux** sur I lorsqu'elle est continue par morceaux sur tout segment inclus dans I.

Notation L101: On notera $C_m(I, \mathbb{K})$ l'ensemble des fonctions continues par morceaux sur I à valeurs dans \mathbb{K} .

Exemples 1.2: • La fonction partie entière est continue par morceaux sur \mathbb{R} .

• La fonction inverse est continue par morceaux sur $]0; +\infty[$, mais elle n'a pas de prolongement continu par morceaux sur $[0; +\infty[$.

I. B Intégrales convergentes sur $[a; +\infty[$

Dans cette partie $a \in \mathbb{R}$.

Définition 1.3

Soit $f \in \mathcal{C}_m([a; +\infty[, \mathbb{K}).$

On dit que l'intégrale $\int_a^{+\infty} f$ converge lorsque la fonction $x \mapsto \int_a^x f$ a une

limite finie en $+\infty$.

On note alors $\int_a^{+\infty} f$ ou $\int_a^{+\infty} f(t) dt$ cette limite.

L'intégrale $\int_a^{+\infty} f$ est dite **divergente** lors qu'elle n'est pas convergente.

Vocabulaire : • La nature d'une intégrale est son caractère convergent ou divergent.

• Lorsque l'intégrale $\int_{a}^{+\infty} f$ converge, on dit que l'intégrale converge en $+\infty$.

Proposition 1.4

Soit $f \in \mathcal{C}_m([a; +\infty[) \text{ et } b \in [a; +\infty[.$

Les intégrales $\int_a^{+\infty} f$ et $\int_b^{+\infty} f$ sont de même nature et si elles convergent, alors :

$$\int_{a}^{+\infty} f = \int_{a}^{b} f + \int_{b}^{+\infty} f.$$

Proposition 1.5

Soit $f \in \mathcal{C}([a; +\infty[$, $\mathbb{K})$ telle que l'intégrale $\int_a^{+\infty} f$ converge, alors l'application

$$g : [a; +\infty[\longrightarrow \mathbb{K}]$$

$$x \longmapsto \int_{-\pi}^{+\infty} f$$

est dérivable sur $[a; +\infty[$ et $\forall x \in [a; +\infty[, g'(x) = -f(x).$

I. C Intégrales des fonctions positives sur $[a; +\infty[$

Proposition 1.6

Soit f une fonction continue par morceaux sur $[a; +\infty[$ et à valeurs positives, alors l'intégrale $\int_a^{+\infty} f$ converge si et seulement si $x \mapsto \int_a^x f$ est majorée.

Remarque 1.7 : Si $f \in \mathcal{C}_m([a; +\infty[, \mathbb{R}) \text{ à valeurs positives et } x \mapsto \int_a^x f \text{ n'est pas majorée, alors}$

$$\int_{a}^{x} f \xrightarrow[x \to +\infty]{} +\infty.$$

On notera alors $\int_{a}^{+\infty} f = +\infty$.

Attention : La convergence de l'intégrale $\int_a^{+\infty} f$ n'implique pas que f tend vers 0 en $+\infty$.

Contre exemple 1.8:

Soit
$$A = \bigcup_{n=1}^{+\infty} [n; n + \frac{1}{2n^2}]$$
 et $f = \mathbb{1}_A$.

Proposition 1.9

Soit f et g des fonctions continues par morceaux sur $[a; +\infty[$. Si

- $0 \leqslant f \leqslant g$;
- $\int_a^{+\infty} g$ converge;

alors: $\int_a^{+\infty} f$ converge et

$$\int_{a}^{+\infty} f \leqslant \int_{a}^{+\infty} g.$$

Théorème 1.10 (intégrales de Riemann)

Soit $\alpha \in \mathbb{R}$, l'intégrale $\int_{1}^{+\infty} \frac{1}{t^{\alpha}} dt$ converge si et seulement si $\alpha > 1$.

Théorème 1.11

Soit $\alpha \in \mathbb{R}$, l'intégrale $\int_0^{+\infty} e^{-\alpha t} dt$ converge si et seulement si $\alpha > 0$.

II Intégrabilité sur un $[a; +\infty[$

Définition 2.1

Une fonction f est dite **intégrable** sur $[a; +\infty[$ lorsqu'elle est continue par morceaux sur $[a; +\infty[$ et $\int_a^{+\infty} |f|$ converge.

- **Vocabulaire :** On utilise indifféremment les expressions « f est intégrable sur $[a; +\infty[$ » et « l'intégrale $\int_a^{+\infty} f$ converge absolument ».
 - Une fonction f est dite intégrable en $+\infty$ lorsqu'il existe $a\in\mathbb{R}$ tel que f est intégrable sur $[a\,;+\infty[$.
- **Remarque 2.2 :** Si f est de signe constant sur $[a; +\infty[$, $\int_a^{+\infty} f$ converge si et seulement si f est intégrable sur $[a; +\infty[$.
- **Exemples 2.3 :** Pour $\alpha \in \mathbb{R}, t \mapsto \frac{1}{t^{\alpha}}$ est intégrable sur $[1; +\infty[$ si et seulement si $\alpha > 1$.
 - Pour $\alpha \in \mathbb{R}, t \mapsto e^{-\alpha t}$ est intégrable sur $[0; +\infty[$ si et seulement si a>0.

Théorème 2.4

Si f est intégrable sur $[a; +\infty[$, alors $\int_a^{+\infty} f$ converge.

- Remarque 2.5 : Cela signifie que si une intégrale converge absolument, alors elle converge.
- **Remarque 2.6 :** La réciproque est fausse, contre exemple la fonction f définie sur $[1; +\infty[$ telle que pour tout $n \in \mathbb{N}^*, \forall x \in [n; n+1[, f(x) = \frac{(-1)^n}{n}]$.

Théorème 2.7 (de comparaison)

Soit f et g des fonctions continues par morceaux sur $[a; +\infty[$ à valeurs dans \mathbb{K} .

- Si $f(x) = \underset{x \to +\infty}{O}(g(x))$ et g est intégrable sur $[a; +\infty[$, alors f est intégrable sur $[a; +\infty[$.
- Si $f(x) = \mathop{o}\limits_{x \to +\infty}(g(x))$ et g est intégrable sur $[a\,;+\infty[$, alors f est intégrable sur $[a\,;+\infty[$.
- Si $f(x) \underset{x \to +\infty}{\sim} g(x)$, alors l'intégrabilité de g sur $[a\,;+\infty[$ équivaut à celle de f.

Attention : Il s'agit d'un critère d'intégrabilité, c'est à dire de convergence des intégrales des valeurs absolues qui sont des fonctions positives.

(Méthode 2.8)

On peut ainsi adapter le critère de Riemann aux intégrales sur $[1; +\infty[$.

Exemples 2.9: Les intégrales suivantes sont elles convergentes?

$$\int_{1}^{+\infty} \frac{\sin x}{x^2} dx, \quad \int_{2}^{+\infty} \frac{1}{\ln x} dx \text{ et } \int_{0}^{+\infty} \frac{\sqrt{x}}{1+x} dx$$

III Intégrale généralisée sur un intervalle quelconque

Soit $a, b \in \mathbb{R}$ avec a < b.

III. A Intégrale sur un intervalle semi-ouvert

Définition 3.1

- Soit f une fonction continue par morceaux sur [a;b[à valeurs dans \mathbb{K} . On dit que **l'intégrale** $\int_a^b f$ **converge** lorsque la fonction $x \mapsto \int_a^x f$ a une limite finie en b (à gauche).
- Soit f une fonction continue par morceaux sur]a;b] à valeurs dans \mathbb{K} . On dit que **l'intégrale** $\int_a^b f$ **converge** lorsque la fonction $x \mapsto \int_x^b f$ a une limite finie en a (à droite).

Dans ce cas, cette limite est notée : $\int_a^b f$ ou $\int_a^b f(t) dt$.

Remarque 3.2 : On définit de même la convergence des intégrales $\int_{-\infty}^{\infty} f$.

Exemples 3.3:

$$\int_0^1 \frac{1}{\sqrt{t}} dt, \quad \int_0^1 \ln t dt \text{ et } \int_{-\infty}^0 e^{-\alpha t} dt$$

Remarque 3.4 : Si $f \in C_m([a;b], \mathbb{K})$, alors

$$\int_{a}^{x} f(t) dt \xrightarrow[x \to b]{} \int_{a}^{b} f(t) dt.$$

La définition de $\int_a^b f$ pour $f \in \mathcal{C}_m([a;b[,\mathbb{K})$ ne crée donc pas d'ambigüité.

Intégrale sur un intervalle ouvert

Définition 3.5

Soit f une fonction continue par morceaux sur a:b à valeurs dans \mathbb{K} avec $a, b \in \overline{\mathbb{R}}, a < b.$

On dit que l'intégrale $\int_{a}^{b} f$ converge lorsqu'il existe $c \in a$; b[tel que les intégrales $\int_a^c f$ et $\int_a^b f$ convergent. On note alors : $\int_a^b f = \int_a^c f + \int_c^b f$.

Remarque 3.6: Si les intégrales $\int_a^c f$ et $\int_c^b f$ convergent, il en est de même de $\int_a^d f$ et $\int_d^b f$ pour tout $d \in]a; b[$. Il suffit donc de considérer un élément c quelconque de]a; b[pour conclure sur la nature de l'intégrale.

De plus $\int_a^c f + \int_c^b f = \int_a^d f + \int_d^b f$, l'intégrale $\int_a^b f$ est donc bien définie sans

Vocabulaire: Pour $f \in \mathcal{C}_m(]a; b[, \mathbb{K})$ et $c \in [a; b[, \mathbb{K})]$

- lorsque $\int_a^b f$ converge, on dit que l'intégrale converge en b;
- lorsque $\int_a^c f$ converge, on dit que l'intégrale converge en a.

Notation : Pour f à valeurs positive, on écrit $\int_0^b f = +\infty$ lorsque l'intégrale diverge.

Propriétés des intégrales généralisées

Proposition 3.7 (Relation de Chasles)

Soit $f \in \mathcal{C}_m(I, \mathbb{K})$ telle que $\int_I \overline{f}$ converge, pour a, b, c dans I ou des extrémités de

$$\int_{a}^{b} f + \int_{b}^{c} f = \int_{a}^{c} f.$$

Proposition 3.8 (Linéarité de l'intégrale)

Soit $f, g \in \mathcal{C}_m(]a; b[, \mathbb{K}), \lambda, \mu \in \mathbb{K}$. Si $\int_a^b f$ et $\int_a^b g$ convergent, alors $\int_a^b (\lambda f + \mu g)$ converge et :

$$\int_{a}^{b} (\lambda f + \mu g) = \lambda \int_{a}^{b} f + \mu \int_{a}^{b} g.$$

Proposition 3.9 (Positivité)

Soit $f \in \mathcal{C}_m(]a; b[, \mathbb{R})$. Si f est positive sur]a; b[et l'intégrale $\int_a^b f$ converge, alors :

$$\int_{a}^{b} f \geqslant 0.$$

De plus, si f est continue et positive sur a : b = b et a : b = b et a : b = b et a : b = b sur

Proposition 3.10 (Croissance)

Soit f, g continues par morceaux sur a; b telles que $\int_a^b f$ et $\int_a^b g$ convergent. Si $f \leqslant g$, alors:

$$\int_{a}^{b} f \leqslant \int_{a}^{b} g.$$

Intégration par parties

Théorème 3.11

Soit f et q des fonctions de classe \mathcal{C}^1 sur I et a,b dans I ou des extrémités de I. Si le produit fg a des limites finies en a et en b, alors les intégrales $\int_a^b f'g$ et $\int_a^b fg'$ sont de même nature et si elles convergent :

$$\int_{a}^{b} f(t)g'(t) dt = [fg]_{a}^{b} - \int_{a}^{b} f'(t)g(t) dt,$$

où $[fg]_a^b = \lim_{t \to b} f(t)g(t) - \lim_{t \to a} f(t)g(t)$.

Exemple 3.12:

$$\int_0^1 \sqrt{1-t^2} \, \mathrm{d}t$$

III. E Changement de variable

1) sur un segment

Théorème 3.13

Soit f une fonction continue sur un intervalle I.

Soit φ une fonction de classe \mathcal{C}^1 sur un intervalle J telle que $\varphi(J) \subset I$. Soit $a, b \in J$. On a :

$$\int_{a}^{b} f(\varphi(u))\varphi'(u) du = \int_{\varphi(a)}^{\varphi(b)} f(t) dt.$$

(M'ethode~3.14)

Pour effectuer un changement de variable $t = \varphi(u)$:

- 1. mettre $\varphi'(u)$ en facteur;
- 2. exprimer le reste de l'intégrande en fonction de $\varphi(u)$;
- 3. remplacer formellement :
 - $\varphi'(u) du$ par dt
 - $\varphi(u)$ par t
 - changer les bornes.

2) sur un intervalle quelconque

Théorème 3.15

Soit f une fonction continue sur]a;b[et $\varphi:]\alpha;\beta[\longrightarrow]a;b[$ bijective, strictement croissante et de classe \mathcal{C}^1 .

Alors les intégrales $\int_a^b f(u) du$ et $\int_\alpha^\beta f(\varphi(t)) \varphi'(t) dt$ sont de même nature et en cas de convergence :

$$\int_{a}^{b} f(u) du = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt.$$

Remarque 3.16: Les hypothèses:

« $\varphi:]\alpha; \beta[\longrightarrow]a; b[$ bijective, strictement croissante et de classe \mathcal{C}^1 » sont équivalentes à :

« $\varphi \in \mathcal{C}^1(]\alpha; \beta[,\mathbb{R})$ strictement croissante, $\lim_{t \to \alpha} \varphi(t) = a$ et $\lim_{t \to \beta} \varphi(t) = b$. »

Proposition 3.17

Soit f une fonction continue sur]a;b[et $\varphi:]\alpha;\beta[\longrightarrow]a;b[$ bijective, strictement décroissante et de classe \mathcal{C}^1 .

Alors les intégrales $\int_a^b f(u) du$ et $\int_\alpha^\beta f(\varphi(t)) \varphi'(t) dt$ sont de même nature et en cas de convergence :

$$\int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt = \int_{b}^{a} f(u) du = -\int_{a}^{b} f(u) du.$$

Exemple 3.18:

$$\int_0^1 \frac{\mathrm{d}t}{\sqrt{t(1-t)}}$$

IV Fonctions intégrables

IV. A intégrale absolument convergentes et fonctions intégrables

Définition 4.1

Soit $f \in \mathcal{C}_m(]a; b[, \mathbb{K})$, on dit que $\int_a^b f$ est **absolument convergente** lorsque $\int_a^b |f|$ converge.

Théorème 4.2

Soit $f \in \mathcal{C}_m(]a; b[, \mathbb{K})$, si $\int_a^b f$ est absolument convergente, alors elle est convergente.

Définition 4.3

Une fonction f est dite **intégrable sur l'intervalle**]a;b[lorsqu'elle est continue par morceaux sur]a;b[et que l'intégrale $\int_a^b f$ converge absolument.

Vocabulaire: Soit $f \in \mathcal{C}_m([a;b[,\mathbb{K})])$ et $c \in [a;b[,\mathbb{K})]$

- on dit que f est intégrable en b lorsque f est intégrable sur [c;b];
- on dit que f est intégrable en a lorsque f est intégrable sur [a;c].

Notation : Pour I un intervalle quelconque et f intégrable sur I, on note $\int_I f$ son intégrale sur I.

Proposition 4.4

2022/2023

L'ensemble des fonctions intégrables sur I à valeurs dans $\mathbb K$ est un $\mathbb K$ -espace vectoriel noté $L^1(I,\mathbb K)$.

Remarque 4.5: l'application $f \mapsto \int_I f$ est une forme linéaire sur $L^1(I, \mathbb{K})$.

Proposition 4.6 (Inégalité triangulaire)

Soit $f \in L^1(I, \mathbb{K})$, alors :

$$\left| \int_{I} f \right| \leqslant \int_{I} |f|$$

IV. B Comparaison

Théorème 4.7

Soit f et g des fonctions continues par morceaux sur a; b à valeurs dans \mathbb{K} .

- Si $f(x) = \mathop{O}_{x \to b}(g(x))$ et g est intégrable en b, alors f est intégrable en b.
- Si $f(x) = \underset{x \to b}{o}(g(x))$ et g est intégrable en b, alors f est intégrable en b.
- Si $f(x) \underset{x \to b}{\sim} g(x)$, alors l'intégrabilité de g en b équivaut à celle de f.
- Si $f(x) = \underset{x \to a}{O}(g(x))$ et g est intégrable en a, alors f est intégrable en a.
- Si $f(x) = \underset{x \to b}{o} (g(x))$ et g est intégrable en a, alors f est intégrable en a.
- Si $f(x) \underset{x \to a}{\sim} g(x)$, alors l'intégrabilité de g en a équivaut à celle de f.

IV. C Intégrales de Riemann

Théorème 4.8

Pour $\alpha \in \mathbb{R}$, la fonction $t \mapsto \frac{1}{t^{\alpha}}$ est intégrable sur]0;1] si et seulement si $\alpha < 1$.

Remarque 4.9 : Une fonction f est intégrable en a (respectivement en b) si et seulement si $t \mapsto f(a+t)$ (resp. $t \mapsto f(b-t)$) est intégrable en 0.

Théorème 4.10

Pour $\alpha \in \mathbb{R}$, l'intégrale $\int_a^b \frac{1}{|t-a|^{\alpha}} dt$ converge si et seulement si $\alpha < 1$.

Exemple 4.11 : Montrer que l'intégrale suivante converge puis la calculer :

$$\int_0^{+\infty} \frac{\ln t}{1 + t^2} \, \mathrm{d}t$$

V Intégration des relations de comparaison

V. A Cas convergent : comparaison des restes

Proposition 5.1

Soit $f \in \mathcal{C}_m([a;b[,\mathbb{K})])$ et $\varphi \in \mathcal{C}_m([a;b[,\mathbb{R})])$ avec φ à valeurs positives et intégrable sur [a;b[.

- Si $f(t) = \underset{t \to b}{O}(\varphi(t))$, alors f est intégrable sur [a; b[et $\int_x^b f = \underset{x \to b}{O}(\int_x^b \varphi)$.
- Si $f(t) = \underset{t \to b}{o} (\varphi(t))$, alors f est intégrable sur [a; b[et $\int_x^b f = \underset{x \to b}{o} \left(\int_x^b \varphi\right)$.
- Si $f(t) \underset{t \to b}{\sim} \varphi(t)$, alors f est intégrable sur [a; b[et $\int_x^b f \underset{x \to b}{\sim} \int_x^b \varphi$.

Remarque 5.2: Même résultats en a pour $f \in \mathcal{C}_m([a;b],\mathbb{K})$.

Exemple 5.3: Donner un équivalent en $+\infty$ de $x \mapsto \int_x^{+\infty} \frac{\operatorname{Arctan} t}{t\sqrt{t}} dt$.

V. B Cas divergent : comparaison des intégrales partielles

Proposition 5.4

Soit $f \in \mathcal{C}_m([a;b[,\mathbb{K})])$ et $\varphi \in \mathcal{C}_m([a;b[,\mathbb{R})])$ avec φ à valeurs positives et non intégrable sur $[a;b[,\mathbb{K})]$

- Si $f(t) = \underset{t \to b}{O} (\varphi(t))$, alors $\int_a^x f = \underset{t \to b}{O} (\int_a^x \varphi)$.
- Si $f(t) = \underset{t \to b}{o} (\varphi(t))$, alors $\int_a^x f = \underset{x \to b}{o} \left(\int_a^x \varphi \right)$.
- Si $f(t) \underset{t \to b}{\sim} \varphi(t)$, alors $\int_a^x f = \underset{x \to b}{\sim} \int_a^x \varphi$.

Exemple 5.5: Déterminer, à l'aide d'une intégration par parties, un équivalent simple quand $x \to +\infty$ de $\int_2^x \frac{\mathrm{d}t}{\ln t}$.