

Chương 02

Bài 6.

VECTO & CÁC PHÉP TOÁN TRONG KHÔNG GIAN

1. Khái niệm vectơ trong không gian; hai vectơ cùng phương, cùng hướng, bằng nhau; vectơ-không.

💃 Định nghĩa:

- » Vecto trong không gian là một đoạn thẳng có hướng.
- » Độ dài của vecto là khoảng cách giữa điểm đầu và điểm cuối của vecto. Kí hiệu: $|\vec{a}|$.
- » $Gi\acute{a}$ của vecto là đường thẳng đi qua điểm đầu và điểm cuối của vecto đó.

 » Hai vecto $cùng\ phương\$ nếu giá của chúng song song hoặc trùng nhau.

 » Hai vecto $b\grave{a}ng\ nhau\$ nếu chúng có cùng độ dài và cùng hướng. Nếu hai vecto \vec{a}, \vec{b} bằng nhau thì ta viết là $\vec{a} = \vec{b}$.

 » Hai vecto $d\acute{o}i\ nhau\$ nếu chúng có cùng độ dài và ngược hướng. Vecto đối của \vec{a} được kí hiệu là $-\vec{a}$.
- » Vecto không có điểm đầu và điểm cuối trùng nhau, kí hiệu là $\vec{0}$.

Quy ước vecto-không có độ dài bằng 0 và cùng phương, cùng hướng với mọi vecto.

Chú ý

- » Kí hiệu \overrightarrow{AB} chỉ vecto có điểm đầu A, điểm cuối B.
- » Nếu không cần chỉ rõ điểm đầu và điểm cuối thì vectơ còn được kí hiệu là $\vec{u}, \vec{v}, \vec{x}, \vec{y}, \dots$

2. Tổng và hiệu của hai vectơ

😩 Định nghĩa tổng hai vectơ:

Trong không gian, cho hai vecto \vec{a}, \vec{b} . Lấy một điểm A tùy ý.

Vẽ $\overrightarrow{AB} = \vec{a}, \overrightarrow{BC} = \vec{b}$. Vecto \overrightarrow{AC} là **tổng của hai vecto** \vec{a}, \vec{b} .

- Ký hiệu là $\vec{a} + \vec{b}$.
- Phép lấy tổng của hai vecto còn được gọi là phép cộng vecto.

$$ec{a} + ec{b}$$

- Nhận xét: Phép cộng vecto trong không gian cũng có các tính chất như phép cộng vecto trong mặt phẳng.
 - » Tính chất giao hoán: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$.
 - » Tính chất kết hợp: $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$.
 - » Với mọi vecto \vec{a} , ta luôn có: $\vec{a} + \vec{0} = \vec{0} + \vec{a}$.

Chú ý

Từ tính chất kết hợp, ta xác định được tổng ba vecto \vec{a} ; \vec{b} ; \vec{c} là $\vec{a} + \vec{b} + \vec{c} = (\vec{a} + \vec{b}) + \vec{c}$

Định nghĩa hiệu hai vectơ:

Trong không gian, cho hai vecto \vec{a}, \vec{b} .

- Hiệu của hai vecto \vec{a} ; \vec{b} là vecto $\vec{a} + (-\vec{b})$.
- Kí hiệu là $\vec{a} \vec{b}$.
- Phép lấy hiệu của hai vecto còn được gọi là phép trừ vecto.

[®] Các quy tắc

Quy tắc ba điểm và quy tắc hình bình hành:

- » Với ba điểm A, B, C bất kì, ta có $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ (Quy tắc ba điểm phép cộng).
- » Nếu ABCD là hình bình hành thì $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$ (Quy tắc hình bình hành).

√ Quy tắc hình hộp:

» Nếu ABCD.A'B'C'D' là hình hộp thì $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AA'} =$ \overrightarrow{AC}' .

✓ Quy tắc hiệu:

» Với ba điểm A, B, C bất kì, ta có $\overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{CB}$.

3. Tích của một số với một vectơ

Định nghĩa:

Trong không gian, cho số $k \neq 0$ và vecto $\vec{a} \neq \vec{0}$.

- Tích của số k với vecto \vec{a} là một vecto.
- Ký hiệu là *k* a.
- Phép lấy tích của một số với một vecto được gọi là *phép nhân một số với một vecto*.
 - » Cùng hướng với \vec{a} nếu k > 0,
 - » Ngược hướng với \vec{a} nếu k < 0
 - » Có độ dài bằng |k|. $|\vec{a}|$.

4. Tích vô hướng của hai vectơ

Góc giữa hai vectơ trong không gian

Trong không gian, cho \vec{u} và \vec{v} là hai vectơ khác $\vec{0}$.

- Lấy một điểm A bất kì, gọi B và C là hai điểm sao cho $\overrightarrow{AB} = \overrightarrow{u}, \overrightarrow{AC} = \overrightarrow{v}$. Ta gọi \overrightarrow{BAC} là góc giữa hai vecto \overrightarrow{u} và \overrightarrow{v} .
- Kí hiệu là (\vec{u}, \vec{v}) .

Tích vô hướng hai vectơ

Trong không gian, cho \vec{u} và \vec{v} là hai vecto khác $\vec{0}$.

- Tích vô hướng của hai vecto \vec{u} và \vec{v} là một số
- Kí hiệu là $\vec{u} \cdot \vec{v}$.

Được xác định bởi công thức: $\vec{u} \cdot \vec{v} = |\vec{u}| \cdot |\vec{v}| \cdot \cos(\vec{u}, \vec{v})$

Chú ý

- » Trong trường hợp $\vec{u} = \vec{0}$ hoặc $\vec{v} = \vec{0}$, ta quy ước $\vec{u} \cdot \vec{v} = 0$.
- » $\vec{u} \cdot \vec{u} = \vec{u}^2 = |\vec{u}|^2$; $\vec{u}^2 \ge 0$, $\vec{u}^2 = 0 \Leftrightarrow \vec{u} = \vec{0}$
- » Với hai vecto \vec{u} , \vec{v} khác $\vec{0}$, ta có $\cos(\vec{u}, \vec{v}) = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|}$.
- » Với hai vecto \vec{u} , \vec{v} khác $\vec{0}$, ta có $\vec{u} \perp \vec{v} \Leftrightarrow \vec{u} \cdot \vec{v} = 0$.

Các dạng bài tập

Pang 1. Sử dụng các định nghĩa

Phương pháp

- » Vecto trong không gian là một đoạn thẳng có hướng.
- » Độ dài của vecto là khoảng cách giữa điểm đầu và điểm cuối của vecto. Kí hiệu: $|\vec{a}|$.
- » *Giá* của vectơ là đường thẳng đi qua điểm đầu và điểm cuối của vecto đó.

 \vec{a}

» Hai vecto *cùng phương* nếu giá của chúng song song hoặc trùng nhau.

» Hai vector \vec{bang} nhau nếu chúng có cùng độ dài và cùng hướng. Nếu hai vector \vec{a} , \vec{b} bằng nhau thì ta viết là $\vec{a} = \vec{b}$.

» Hai vecto $d\tilde{o}i$ nhau nếu chúng có cùng độ dài và ngược hướng. Vecto đối của d được kí hiệu là -d.

» Vecto - không có điểm đầu và điểm cuối trùng nhau, kí hiệu là $\vec{0}$.

Quy ước vecto-không có độ dài bằng 0 và cùng phương, cùng hướng với mọi vecto.

Ví dụ 1.1.

Cho hình hộp ABCD. A'B'C'D'.

Trong các vecto khác $\vec{0}$, có điểm đầu và điểm cuối là các đỉnh của hình hộp. Hãy chỉ ra những vecto:

- (1) Cùng phương với vecto \overrightarrow{AB} ;
- (2) Bằng vector \overrightarrow{AB} ;
- (3) Ngược hướng với vecto \overrightarrow{AA} .

🔈 Lời giải

(1) Cùng phương với vecto \overrightarrow{AB} ;

Các vecto cùng phương với \overrightarrow{AB} là: \overrightarrow{BA} , \overrightarrow{CD} , \overrightarrow{DC} , $\overrightarrow{A'B'}$, $\overrightarrow{B'A'}$, $\overrightarrow{C'D'}$, $\overrightarrow{D'C'}$.

(2) Bằng vector \overrightarrow{AB} ;

Các vecto bằng với \overrightarrow{AB} là: \overrightarrow{DC} , $\overrightarrow{A'B'}$, $\overrightarrow{D'C'}$.

(3) Ngược hướng với vecto \overrightarrow{AA} .

Các vecto ngược hướng với $\overrightarrow{AA'}$ là: $\overrightarrow{A'A}, \overrightarrow{B'B}, \overrightarrow{C'C}, \overrightarrow{D'D}$.

Ví dụ 1.2.

Cho hình chóp đều S.ABCD có cạnh đáy a và đường cao h. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh bên SA, SB, SC, SD và O, H lần lượt là tâm của các hình vuông ABCD, MNPQ.

Tính độ dài các vecto \overrightarrow{MN} , \overrightarrow{MP} , \overrightarrow{MS} theo a và h.

🔈 Lời giải

Ta có
$$\left| \overline{MN} \right| = MN = \frac{AB}{2} = \frac{a}{2};$$

$$\left| \overline{MP} \right| = MP = \frac{AC}{2} = \frac{a\sqrt{2}}{2} = AO.$$
 Tính $SA = \sqrt{OA^2 + SO^2} = \sqrt{\frac{a^2}{2} + h^2}$. Suy ra $\left| \overline{MS} \right| = MS = \frac{SA}{2} = \frac{1}{2}\sqrt{\frac{a^2}{2} + h^2}$.

Pang 2. Tổng và hiệu của hai vecto

Phương pháp

** Các quy tắc:

- ✓ Quy tắc ba điểm và quy tắc hình bình hành:
 - » Với ba điểm A,B,C bất kì, ta có $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ (Quy tắc ba điểm phép cộng).
 - » Nếu ABCD là hình bình hành thì $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$ (Quy tắc hình bình hành).

✓ Quy tắc hình hộp:

» Nếu ABCD. A'B'C'D' là hình hộp thì $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AA'} = \overrightarrow{AC'}$.

✓ Quy tắc hiệu:

» Với ba điểm A, B, C bất kì, ta có $\overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{CB}$.

Ví dụ 2.1.

Cho hình lập phương ABCD. A'B'C'D' có cạnh bằng 2. Tìm độ dài của các vecto sau:

$$(1) \vec{a} = \overrightarrow{BA} + \overrightarrow{BC} + \overrightarrow{BB'};$$

$$(2) \vec{b} = \overrightarrow{BC} - \overrightarrow{BA} + \overrightarrow{C'}A$$

$$(1) \vec{a} = \overrightarrow{BA} + \overrightarrow{BC} + \overrightarrow{BB'};$$

$$\vec{a} = \overrightarrow{BA} + \overrightarrow{BC} + \overrightarrow{BB'} = \overrightarrow{BD'} \Rightarrow |\vec{a}| = \left| \overrightarrow{BD'} \right| = BD' = 2\sqrt{3}.$$

(2)
$$\vec{b} = \overrightarrow{BC} - \overrightarrow{BA} + \overrightarrow{C'}A$$

$$\vec{b} = \overrightarrow{BC} - \overrightarrow{BA} + \overrightarrow{C'A} = \overrightarrow{AC} + \overrightarrow{C'A} = \overrightarrow{C'C} \Rightarrow |\vec{b}| = |\overrightarrow{C'C}| = C'C = 2.$$

Ví dụ 2.2.

Cho tứ diện \overrightarrow{ABCD} . Chứng minh $\overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{AD} + \overrightarrow{BC}$.

🔈 Lời giải

$$VT = \overrightarrow{AC} + \overrightarrow{BD}$$

$$= \overrightarrow{AD} + \overrightarrow{DC} + \overrightarrow{BC} + \overrightarrow{CD}$$

$$= (\overrightarrow{AD} + \overrightarrow{BC}) + (\overrightarrow{DC} + \overrightarrow{CD}) = (\overrightarrow{AD} + \overrightarrow{BC}) + \overrightarrow{DD} = \overrightarrow{AD} + \overrightarrow{BC} = VP$$
(Đpcm).

Ví dụ 2.3.

Cho hình hộp \overrightarrow{ABCD} . \overrightarrow{EFGH} . Chứng minh rằng $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{GH} + \overrightarrow{GB} = \overrightarrow{0}$.

🖎 Lời giải

heo quy tắc hình hộp ta có: $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE} = \overrightarrow{AG}(1)$. Theo quy tắc hình bình hành ta có: $\overrightarrow{GH} + \overrightarrow{GB} = \overrightarrow{GA}(2)$. $\xrightarrow{(1)\&(2)} \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{GH} + \overrightarrow{GB} = \overrightarrow{AG} + \overrightarrow{GA} = \overrightarrow{AA} = \overrightarrow{0}$ (đpcm).

Ví dụ 2.4.

Một chất điểm chịu tác động bởi 3 lực $\overrightarrow{F_1}$, $\overrightarrow{F_2}$, $\overrightarrow{F_3}$ có chung điểm đặt A và có giá vuông góc nhau từng đôi một. Biết cường độ của các lực $\overrightarrow{F_1}$, $\overrightarrow{F_2}$, $\overrightarrow{F_3}$ lần lượt là 10N, 8N và 5N. Xác định hợp lực của 3 lực và tính cường độ của hợp lực (làm tròn kết quả đến hàng đơn vị).

Tổng hợp lực của 3 lực $\overrightarrow{F_1}$, $\overrightarrow{F_2}$, $\overrightarrow{F_3}$ là lực \overrightarrow{F} được dựng theo qui tắc hình hộp chữ nhật. Vậy cường độ tổng hợp lực là $|\overrightarrow{F}| = \sqrt{10^2 + 8^2 + 5^2} = 3\sqrt{21}N \approx 14N$.

Pang 3. Tích của một số với một vectơ

Phương pháp

Trong không gian, cho số $k \neq 0$ và vecto $\vec{a} \neq \vec{0}$.

- Tích của số k với vecto \vec{a} là một vecto. Ký hiệu là $k\vec{a}$. Có độ dài bằng |k|. $|\vec{a}|$.
 - » Cùng hướng với \vec{a} nếu k > 0,
- » Ngược hướng với \vec{a} nếu k < 0
- ** Với hai vecto \vec{a} và \vec{b} bất kì, với mọi số h và k, ta luôn có

$$(\mathbf{1}) k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$$

(2)
$$(h + k)\vec{a} = h\vec{a} + k\vec{a}$$
 (3) $h(k\vec{a}) = (hk)\vec{a}$

$$(3) h(k\vec{a}) = (hk)\vec{a}$$

$$(4)\ 1 \cdot \vec{a} = \vec{a}$$

(5)
$$(-1) \cdot \vec{a} = -\vec{a}$$

- (6) Hai vecto \vec{a} và \vec{b} ($\vec{b} \neq \vec{0}$) cùng phương khi và chỉ khi có số k sao cho $\vec{a} = k\vec{b}$.
- (7) Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi có số $k \neq 0$ để $\overrightarrow{AB} = k\overrightarrow{AC}$..
- ** Hệ quả:
 - (1) *I* là trung điểm của đoạn thẳng $AB \Leftrightarrow \overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0} \Leftrightarrow 2\overrightarrow{OI} = \overrightarrow{OA} + \overrightarrow{OB}$, với mọi điểm O.
 - (2) G là trọng tâm $\triangle ABC \Leftrightarrow \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0} \Leftrightarrow 3\overrightarrow{OG} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$, với mọi điểm 0.

Ví du 3.1.

Cho tứ diện *ABCD*. Gọi *G* là trọng tâm của tam giác *BCD* và *O* là trung điểm đoạn thẳng AG. Chứng minh rằng:

$$(\mathbf{1})\ 3\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \vec{0};$$

(2)
$$3\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 6\overrightarrow{MO}$$
 (*M* là điểm bất kì trong không gian).

🖎 Lời giải

$$(1) \ 3\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \vec{0};$$

Vì *G* là trong tâm của $\triangle BCD$ nên $3\overrightarrow{OG} = \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD}$.

Vì *O* là trung điểm đoạn thẳng AG nên $\overrightarrow{OA} + \overrightarrow{OG} = \overrightarrow{0}$.

Do đó:
$$3\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = 3(\overrightarrow{OA} + \overrightarrow{OG}) = \overrightarrow{0}$$
.

(2)
$$3\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 6\overrightarrow{MO}$$
 (*M* là điểm bất kì trong không gian).

Theo quy tắc ba điểm, ta có:

$$3\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD}$$

$$= 3(\overrightarrow{MO} + \overrightarrow{OA}) + \overrightarrow{MO} + \overrightarrow{OB} + \overrightarrow{MO} + \overrightarrow{OC} + \overrightarrow{MO} + \overrightarrow{OD}$$

$$= 6\overrightarrow{MO} + 3\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = 6\overrightarrow{MO}$$

Ngoài ra, có thể giải cách khác:

Do G là trọng tâm $\triangle BCD$ nên $\overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 3\overrightarrow{MG}$.

Do đó:
$$3\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 3\overrightarrow{MA} + 3\overrightarrow{MG} = 3(\overrightarrow{MA} + \overrightarrow{MG}) = 3.2\overrightarrow{MO} = 6\overrightarrow{MO}$$
.

Cho hình hộp ABCD.A'B'C'D'. Giả sử điểm M thuộc AC, điểm N thuộc DC' và $\overrightarrow{AM} =$ $x\overrightarrow{AC}, \overrightarrow{DN} = y\overrightarrow{DC}'$

- (1) Biểu diễn các vecto $\overrightarrow{BD'}$, \overrightarrow{MN} theo $\overrightarrow{BA} = \vec{a}$, $\overrightarrow{BC} = \vec{b}$, $\overrightarrow{BB'} = \vec{c}$.;
- (2) Tìm x và y sao cho MN//BD', khi đó tính tỉ số $\frac{MN}{BD'}$.

🔈 Lời giải

(1) Biểu diễn các vecto
$$\overrightarrow{BD'}$$
, \overrightarrow{MN} theo $\overrightarrow{BA} = \vec{a}$, $\overrightarrow{BC} = \vec{b}$, $\overrightarrow{BB'} = \vec{c}$.;

Ta có:
$$\overrightarrow{BA} = \vec{a}, \overrightarrow{BC} = \vec{b}, \overrightarrow{BB'} = \vec{c}.$$

Khi đó, theo quy tắc hình hộp ta có: $\overrightarrow{BD}' = \vec{a} + \vec{b} + \vec{c}$.

Ta có: $\overrightarrow{MN} = \overrightarrow{BN} - \overrightarrow{BM}$.

Từ $\overrightarrow{DN} = y\overrightarrow{DC'}$, ta có $\overrightarrow{BN} - \overrightarrow{BD} = y\left(\overrightarrow{BC'} - \overrightarrow{BD}\right)$, suy ra:

$$\overrightarrow{BN} - (\vec{a} + \vec{b}) = y(\vec{b} + \vec{c} - \vec{a} - \vec{b}).$$

$$\overrightarrow{BN} = (1 - y)\overrightarrow{a} + \overrightarrow{b} + y\overrightarrow{c}.$$

Từ $\overrightarrow{AM} = x\overrightarrow{AC}$, suy ra $\overrightarrow{BM} - \overrightarrow{BA} = x(\overrightarrow{BC} - \overrightarrow{BA})$.

Vậy
$$\overrightarrow{BM} - \vec{a} = x(\vec{b} - \vec{a}) \Rightarrow \overrightarrow{BM} = (1 - x)\vec{a} + x\vec{b}$$
.

Do đó:
$$\overrightarrow{MN} = \overrightarrow{BN} - \overrightarrow{BM} = (1 - y)\vec{a} + \vec{b} + y\vec{c} - (1 - x)\vec{a} - x\vec{b} = (x - y)\vec{a} + (1 - x)\vec{b} + y\vec{c}$$
.

Điều kiên để MN//BD' là $\overrightarrow{MN} = k\overrightarrow{BD'}$ hay

$$(x - y)\vec{a} + (1 - x)\vec{b} + y\vec{c} = k(\vec{a} + \vec{b} + \vec{c})$$

$$(x - y)\vec{a} + (1 - x)\vec{b} + y\vec{c} = k\vec{a} + k\vec{b} + k\vec{c}(*)$$

Do \vec{a} , \vec{b} , \vec{c} không cùng phương nên từ (*) suy ra: $\begin{cases} k = x - y \\ k = 1 - x \Leftrightarrow \begin{cases} x - 2y = 0 \\ x + y = 1 \Leftrightarrow (x; y; k) = k = y \end{cases}$

$$\left(\frac{2}{3};\frac{1}{3};\frac{1}{3}\right).$$

Vậy
$$M$$
 và N được xác định bởi bởi $\overrightarrow{AM} = \frac{2}{3}\overrightarrow{AC}$, $\overrightarrow{DN} = \frac{1}{3}\overrightarrow{DC'}$ và $\overrightarrow{MN} = \left(\frac{2}{3} - \frac{1}{3}\right)\overrightarrow{a} + \frac{1}{3}\overrightarrow{DC'}$

$$(1-\frac{2}{3})\vec{b} + \frac{1}{3}\vec{c} = \frac{1}{3}(\vec{a} + \vec{b} + \vec{c}) = \frac{1}{3}\overrightarrow{BD}'.$$

Lúc này
$$\frac{MN}{BD} = |k| = \frac{1}{3}$$
.

Pang 4. Tích vô hướng và góc của hai vectơ

Phương pháp

** Góc giữa hai vecto:

Trong không gian, cho \vec{u} và \vec{v} là hai vecto khác $\vec{0}$.

• Lấy một điểm A bất kì, Gọi B và C là hai điểm sao cho $\overrightarrow{AB} = \overrightarrow{u}, \overrightarrow{AC} = \overrightarrow{v}$. Ta gọi \widehat{BAC} là góc giữa hai vecto \overrightarrow{u} và \overrightarrow{v} . Kí hiệu là $(\overrightarrow{u}, \overrightarrow{v})$.

* Tích vô hướng hai vecto:

Trong không gian, cho \vec{u} và \vec{v} là hai vecto khác $\vec{0}$.

- Tích vô hướng của hai vecto \vec{u} và \vec{v} là một số. Kí hiệu là $\vec{u} \cdot \vec{v}$. Được xác định bởi công thức: $\vec{u} \cdot \vec{v} = |\vec{u}| \cdot |\vec{v}| \cdot \cos(\vec{u}, \vec{v})$
- ** Chú ý:
 - **(1)** $0^{\circ} \le (\vec{u}, \vec{v}) \le 180^{\circ}$
 - (2) Nếu $(\vec{u}, \vec{v}) = 90^{\circ}$ thì ta nói \vec{u} và \vec{v} vuông góc với nhau, kí hiệu $\vec{u} \perp \vec{v}$.
 - (3) Khi \vec{u} và \vec{v} cùng hướng thì $(\vec{u}, \vec{v}) = 0^{\circ}$.
 - (4) Khi \vec{u} và \vec{v} ngược hướng thì $(\vec{u}, \vec{v}) = 180^{\circ}$.
 - (5) $\vec{u} \cdot \vec{u} = \vec{u}^2 = |\vec{u}|^2; \vec{u}^2 \ge 0, \vec{u}^2 = 0 \Leftrightarrow \vec{u} = \vec{0}$

Ví dụ 4.1.

Cho hình lập phương ABCD. A'B'C'D'. Xác định các góc:

$$(\mathbf{1})$$
 $(\overrightarrow{AB}, \overrightarrow{A'D'})$

$$(2)$$
 $(\overrightarrow{AB}, \overrightarrow{A'C'})$

$$(3)$$
 $(\overrightarrow{AB}, \overrightarrow{D'C'})$

$$(4)$$
 $(\overrightarrow{AD}, \overrightarrow{C'B'})$

🔈 Lời giải

$$(\mathbf{1})\left(\overrightarrow{AB},\overrightarrow{A'D'}\right)$$

Ta có
$$\overrightarrow{AD} = \overrightarrow{A'D'}$$
, suy ra $(\overrightarrow{AB}, \overrightarrow{A'D'}) = (\overrightarrow{AB}, \overrightarrow{AD}) = \widehat{BAD} = 90^{\circ}$.

 $(2) \left(\overrightarrow{AB}, \overrightarrow{A'C'} \right)$

Ta có
$$\overrightarrow{A'C'} = \overrightarrow{AC}$$
, suy ra $(\overrightarrow{AB}, \overrightarrow{A'C'}) = (\overrightarrow{AB}, \overrightarrow{AC}) = \widehat{BAC} = 45^{\circ}$.

 $(3)\left(\overrightarrow{AB},\overrightarrow{D'C'}\right)$

Ta có
$$\overrightarrow{D'C'} = \overrightarrow{DC} = \overrightarrow{AB}$$
, suy ra $(\overrightarrow{AB}, \overrightarrow{D'C'}) = (\overrightarrow{AB}, \overrightarrow{DC}) = (\overrightarrow{AB}, \overrightarrow{AB}) = 0^{\circ}$.

$$(4) \left(\overrightarrow{AD}, \overrightarrow{C'B'} \right)$$

Ta có $\overrightarrow{C'B'} = \overrightarrow{CB} = \overrightarrow{DA}$, suy ra $(\overrightarrow{AD}, \overrightarrow{C'B'}) = (\overrightarrow{AD}, \overrightarrow{DA}) = 180^{\circ}$ (do \overrightarrow{AD} và \overrightarrow{DA} đối nhau nên ngược hướng).

′í dụ 4.2.

Cho tứ diện đều ABCD có H là trung điểm của AB. Hãy tính góc giữa các cặp vecto

$$(1) \overrightarrow{AB}$$
 và \overrightarrow{BC}

$$(2) \overrightarrow{CH} \text{ và } \overrightarrow{AC}$$

🔈 Lời giải

 $(1) \overrightarrow{AB} v \overrightarrow{a} \overrightarrow{BC}$.

Gọi A' là điểm đối xứng với A qua B
$$\Rightarrow (\overrightarrow{AB}, \overrightarrow{BC}) = (\overrightarrow{BA'}, \overrightarrow{AC}) = \widehat{CBA'}$$
Ta có $\triangle ABC$ đều $\Rightarrow \widehat{ABC} = 60^{\circ} \Rightarrow \widehat{A'BC} = 120^{\circ} \Rightarrow (\overrightarrow{AB}, \overrightarrow{BC}) = 120^{\circ}$

 $(2) \overrightarrow{CH} \overrightarrow{va} \overrightarrow{AC}$.

Gọi
$$M$$
 là điểm đối xứng với C qua A $\Rightarrow (\overrightarrow{AC}, \overrightarrow{CH}) = (\overrightarrow{CM}, \overrightarrow{CH}) = \overrightarrow{MCH}$ Ta có $\triangle ABC$ đều $\Rightarrow \overrightarrow{ACH} = 30^{\circ} \Rightarrow \overrightarrow{MCH} = 150^{\circ} \Rightarrow (\overrightarrow{AC}, \overrightarrow{CH}) = 150^{\circ}$.

Ví du 4.3.

Cho tứ diện ABCD có AC và BD cùng vuông góc với AB. Gọi I, J lần lượt là trung điểm của hai cạnh AB, CD. Chứng minh rằng $IJ \perp AB$.

🖎 Lời giải

Từ giả thiết ta có
$$\overrightarrow{AB}$$
. $\overrightarrow{AC} = \overrightarrow{AB}$. $\overrightarrow{BD} = 0$.
 I là trung điểm của AB nên $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$
 J là trung điểm của CD nên $\overrightarrow{CJ} + \overrightarrow{DJ} = \overrightarrow{0}$
Ta lại có:

Ta lại có:
$$\overrightarrow{IJ} = \overrightarrow{IA} + \overrightarrow{AC} + \overrightarrow{CJ}$$

$$\overrightarrow{IJ} = \overrightarrow{IB} + \overrightarrow{BD} + \overrightarrow{DJ}$$
Suy ra $2\overrightarrow{IJ} = \overrightarrow{AC} + \overrightarrow{BD}$ hay $\overrightarrow{IJ} = \frac{1}{2}(\overrightarrow{AC} + \overrightarrow{BD})$
Do đó, $\overrightarrow{IJ}.\overrightarrow{AB} = \frac{1}{2}(\overrightarrow{AC} + \overrightarrow{BD}).\overrightarrow{AB} = \frac{1}{2}\overrightarrow{AC}.\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BD}.\overrightarrow{AB} = 0$
Suy ra $\overrightarrow{IJ} \perp \overrightarrow{AB}$ hay $\overrightarrow{IJ} \perp \overrightarrow{AB}$.

