EE236 : Electronic Devices Lab Lab 5 [Tuesday Batch]

Prajwal Nayak (22B4246)

October 2, 2024

1 Aim of The Experiment

- 1. To analyze the output characteristics of BJT in Common Base configuration and determine Base transport factor (α) and Common Emitter Current Gain (β)
- 2. To plot and analyze the frequency response of BJT and HBT in Common Emitter configuration

2 Part 1: BJT Parameters in CB configuration

2.1 Circuit Design

Figure 1: CB Circuit

2.2 Plots of I_C vs V_{BC}

Figure 2: I_C vs V_{BC}

2.3 α and β Table

$$\begin{split} I_{C,\text{avg}} &= \frac{1}{N} \sum_{i=1}^{N} I_{C,i} \\ I_{B,\text{avg}} &= I_E - I_{C,\text{avg}} \\ \alpha &= \frac{I_{C,\text{avg}}}{I_E} \\ \beta &= \frac{I_{C,\text{avg}}}{I_{B,\text{avg}}} \end{split}$$

	IE = 3mA	IE = 6mA	IE = 9mA
Alpha	0.99666667	0.99333333	0.99666667
Beta	299	149	299

$$\alpha_{\text{avg}} = \frac{1}{3} \sum_{j=1}^{3} \alpha_j = \frac{0.99666667 + 0.99333333 + 0.99666667}{3} \approx 0.9955555567$$
$$\beta_{\text{avg}} = \frac{1}{3} \sum_{j=1}^{3} \beta_j = \frac{229 + 149 + 299}{3} \approx 225.6667$$

2.4 Variation of I_C and I_E with V_{BE}

3 Part 2: Frequency response of BJT vs HBT

3.1 Circuit Design

Figure 3: Circuits

3.2 Gain vs Frequency Plots

Figure 4: Gain vs Frequency

3.3 3-dB cutoff frequency

Type	3dB Cutoff Frequency	
BJT	$2.812 \mathrm{kHz}$	
HBT	233.7kHz	

3.4 Superiority of HBT over BJT

Superior Performance of HBT over BJT is due to:

- Thinner base, reducing carrier transit time and increasing speed whereas BJT has thicker base
- HBT is made up of high mobility materials like GaAs. Thus it has fast carrier movement compared to BJT (Si)