

 $\begin{array}{c} \text{NORDUGRID-TECH-21} \\ \\ 21/5/2009 \end{array}$

ARC Information System

 $Documentation\ and\ developer's\ guide$

*

Contents

1	Des	ign Overview	5
2	ISIS	\mathbf{S}	7
	2.1	Registration handling	7
		2.1.1 Functionality	7
		2.1.2 Interface	7
	2.2	Peer-to-Peer	ç
		2.2.1 Functionality	Ĝ
		2.2.2 Interface	Ĝ
	2.3	Authorization	Ĝ
		2.3.1 Client Authorization	ç
		2.3.2 Information Authorization	10
		2.3.3 Configuration	11
3	Serv	vice	13
	3.1	Information generation	13
	3.2	Registration	13
	3.3	Authorization	15
	3.4	Configuration	
4	App	pendices	17
	4.1	WSDL of ISIS Specific Interface	17
	4.2	Schema of ISIS Configuration	24
	4.3	Schema of Service Registartion Configuration	
	4.4		26

4 CONTENTS

Design Overview

Figure 1.1: Architecture of Information System

Information System of ARC middleware is composed of 3 main parts. The Information System Indexing Services (ISIS) form a set of information containers. Every generic ARC Service pushes information about itself into nearby ISIS container/service hence registering itself to Information System. The information stored in every ISIS is propagated among all ISIS services. Clients can query any nearby ISIS service for registered information in order to perform discovery of services which posses specific properties. Clients can also query ARC Services to obtain more detailed information about Service properties.

ISIS

2.1 Registration handling

2.1.1 Functionality

The functionality of ISIS is made of two parts. On the one hand they are working as ordinary Web Services, and on the other hand maintain a peer-to-peer network - ISIS cloud.

Main functionality of ISIS service visible from outside of ISIS cloud is to accept registration and provide collected information to clients. For that ISIS implements operations described in following section. The single ISIS service accepts Registration Records pushed to it by other services (including ISIS services too) and stores them in local XML database. Stored records can be queried by clients using mandatory and service-specific attributes for selection criteria.

In case of multiple ISIS services they form a peer-to-peer network. Inside that cloud Registration Records are propagated between services in such a way that all ISIS instances continuously try to synchronize their databases.

2.1.2 Interface

Operation Register

Input

Header

RequesterID Identifier of the client.

MessageGenerationTime Time when following set of RegEntry was generated. There may be multiple RegEntry elements.

RegEntry

SrcAdv

Type Type of service being registered. This element is opaque string for now. There shall be service types defined later.

EPR Endpoint Reference of service being registered in terms of WS-Addressing.

SSPair Set of key/value pairs representing service specific information.

MetaSrcAdv

ServiceID Globally unique and persistent identifier of the service.

GenTime (Generation Time) The actual timestamp of information (called wake_up_time in the pseudo code below)

Expiration Validity period of Service Advertisement record.

Output

8 CHAPTER 2. ISIS

Fault Optional element describing fault which occurred while performing registration. If missing registration succeeded.

Faults

none No specific faults are defined

This operation is usually called by service which wants to register it's presence in ISIS. This message consists of one or more **Registration Entry** and at most one **Registration Header**. The **Registration Entry**(RegEntry) contains a **Service Advertisement**(SrcAdv) and a corresponding **Service Advertisement Metadata**(MetaSrcAdv). This structure is shown on Figure 2.1.

Figure 2.1: Embedded structure of Registration Message

Service must supply mandatory information. Among those the Endpoint Reference is used to contact service - only required element is contact URL of service. Type specifies kind of service and is used to find out functionality and interface of service. ServiceID is used to distinguish between registered services and to deal with case of service changing it's contact URL. For more information about mandatory and optional information see Section 3.1

As result of this operation new Registration Record is stored inside ISIS internal database and eventually propagated to other ISISes. If registration record of same ID already existed it will be renewed.

This operation is also used by ISIS services to propagate Registration Records inside ISIS cloud.

Operation RemoveRegistrations

Input

MessageGenerationtime

ServiceID Multiple identifiers of services, whose records has to be removed.

Output

RemoveRegistrationResponseElement

ServiceID Identifier of service whose record was not removed Fault Description of failure reason

Faults

none No specific faults are defined

2.2. PEER-TO-PEER 9

This operation is used to explicitly requesting the removal of zero or more Registration Entries associated with specified ServiceID values stored in the Information System. If corresponding record does not exist it's identifier will be present in response message together with corresponding Fault element.

Operation GetISISList

Input

none

Output

EPR Multiple Endpoint References of known ISIS services

Faults

none No specific faults are defined

In response to this operation the EndpointReferences to all known ISIS services are returned. The operation is used for obtaining a list of known ISIS instances from any particular ISIS. Clients can then use the obtained list to run direct queries against the ISIS instances. The operation is provided for fault tolerance and for providing optional performance boost. This operation returns the known peer-to-peer neighbors. If client is interested in all ISIS instances they can be obtained using the Query operation because they are ordinary services registered into the Information System.

Operation Query

Input

QueryString XPath query expression

Output

any Result of query

Faults

none No specific faults are defined

This operation allows any XPath queries to be performed on stored Registration Records. The records are treated as merged in one XML document with each record being equivalent to RegEntry element of Register operation. In response all elements produced by XPath query are returned. The purpose of this operation is to make it possible to obtain any kind of information related to the Indexing Database.

2.2 Peer-to-Peer

2.2.1 Functionality

2.2.2 Interface

2.3 Authorization

2.3.1 Client Authorization

This section extensively uses terms defined in "Security Framework of ARC1" document" [1].

To ensure information stored in ISIS cloud can't be tampered and only available to proper clients following authorization framework is implemented. All actions performed by ISIS clients are divided into three following groups:

10 CHAPTER 2. ISIS

- Operations initiated by other ISISes in the cloud. Those include:
 - Register with Registration Message containing information not about contacting client
 - RemoveRegistrations with request to remove Registration Message representing not contacting client
 - Connect

Those operations may cause uncontrollable changes in collected information and must be granted only for highly trusted entities like ISISes themselves.

- Operations initiated by the Services registering to Information System. Those are:
 - Register with Registration Message containing information about contacting client
 - RemoveRegistrations with request to remove Registration Message representing contacting client
- Operations which are allowed for any liable client of particular Grid infrastructure.
 - Query
 - GetISISList

Those 3 action groups are handled using Security Framework of ARC [1]. For each group corresponding Action is defined for ARC policy language as described in table 2.1.

Table 2.1: ARC Policy Actions of ISIS

Group	Action	AttributeId
Request from ISIS	isis	http://www.nordugrid.org/schemas/policy-arc/types/isis/operation
Request from Service	service	http://www.nordugrid.org/schemas/policy-arc/types/isis/operation
Request from generic client	client	http://www.nordugrid.org/schemas/policy-arc/types/isis/operation

Access restrictions for clients are defined using ARC Policies which are specified and processed using generic Security Handlers approach. Corresponding Security Handlers have to be configured inside configuration block of corresponding ISIS service and attached *incoming* queue.

2.3.2 Information Authorization

Because all ISIS services trust each other they freely exchanging collected information. But not all information stored inside ISIS cloud is public or readable by clients authorized according to procedure described in section 2.3.1. There may be some pieces of information available only for specific clients. An example could be information about resources serving particular Virtual Organization (VO) could be visible only to members of that VO.

To implement functionality described above each node in aggregated XML documents of information collected by ISIS cloud may have Access Control Policy associated with it. Access control is defined at level of XML node and propagates all children nodes - similar to file systems. Children nodes can only additionally restrict access control imposed by parent node. For example if parent node A allows access only to VO1 then children node B can narrow access to Administrator of VO1 and can't grant access for VO2 members.

By default all XML nodes are public. Access Control Policies are embedded into XML document as XML nodes (see Appendix 4.4 for schema) even if that violates schema of document. Then nodes are assigned policies by adding XML attributes referring to defined Policies. Access permission to particular information node is evaluated by traversing all nodes prom parent to children. At first node which gives negative result evaluation is stopped and this node including all its children is removed from document.

Before providing results of query operation ISIS runs procedure described above on results and also removes Access Control Policies. Reduced document obtained in this way is returned to requesting client.

2.3. AUTHORIZATION 11

2.3.3 Configuration

For information about sophisticated authorization policies and how to deploy various Policy Decision Point entities please see "Security Framework of ARC1" document" [1].

To restrict set of clients allowed to perform operations in ISIS service proper authorization policy is needed. Let's assume ISIS is operating over TLS connection and all participants posses X.509 certificates with following subject names:

- /O=Grid/O=Test/CN=CLIENT generic client entities
- /O=Grid/O=Test/CN=ISIS all ISIS belonging to ISIS cloud

In NO way we suggest to use such setup. Real installation should use more sophisticated way to identify clients contacting ISIS service. For an infrastructure with quite static roles distribution for example we suggest to use Virtual Organization Management Service (VOMS) attributes embedded into X.509 certificates representing participating entities.

Below is an example policy made of 3 rules defined in lines 4-17, 18-29 and 30-39. Those define allowed behavior for ISIS, generic service and generic client. Lines 6-7, 20-21 and 32-33 specify attributes used to recognise type of connecting client. In this case those are subjects of X.509 certificates with values defined above. Lines 10-15, 24-27 and 36-37 specify allowed actions. One can see that this policy allows all operations to be performed by ISIS client. It limits operations allowed for generic service to "service" and "client" types. And client entities are allowed to perform "client" type operations only.

```
1: <?xml version="1.0" encoding="UTF-8"?>
 2: <Policy xmlns="http://www.nordugrid.org/schemas/policy-arc" PolicyId="policy1"
 3:
              CombiningAlg="Deny-Overrides">
 4:
     <Rule RuleId="isis_to_isis" Effect="Permit">
 5:
       <Subjects>
 6:
         <Subject AttributeId="http://www.nordugrid.org/schemas/policy-arc/types/tls/identity"</pre>
 7:
                  >/O=Grid/O=Test/CN=ISIS</Subject>
 8:
       </Subjects>
 9:
       <Actions>
         <Action AttributeId="http://www.nordugrid.org/schemas/policy-arc/types/isis/operation"</pre>
10:
11:
                >isis</Action>
12:
         <Action AttributeId="http://www.nordugrid.org/schemas/policy-arc/types/isis/operation"</pre>
13:
                >service</Action>
         <Action AttributeId="http://www.nordugrid.org/schemas/policy-arc/types/isis/operation"</pre>
14:
15:
                 >client</Action>
16:
       </Actions>
17:
     </Rule>
18:
     <Rule RuleId="service_to_isis" Effect="Permit">
19:
20:
         <Subject AttributeId="http://www.nordugrid.org/schemas/policy-arc/types/tls/identity"</pre>
                  >/O=Grid/O=Test/CN=SERVICE</Subject>
21:
22:
       </Subjects>
23:
       <Actions>
24:
         <Action AttributeId="http://www.nordugrid.org/schemas/policy-arc/types/isis/operation"</pre>
25:
                 >service</Action>
26:
         <Action AttributeId="http://www.nordugrid.org/schemas/policy-arc/types/isis/operation"</pre>
27:
                >client</Action>
28:
       </Actions>
29:
     </Rule>
30:
     <Rule RuleId="client_to_isis" Effect="Permit">
31:
       <Subjects>
32:
         <Subject AttributeId="http://www.nordugrid.org/schemas/policy-arc/types/tls/identity"</pre>
```

>/O=Grid/O=Test/CN=CLIENT</Subject>

33:

12 CHAPTER 2. ISIS

This policy is not as restrictive as it could be in order to allow ISIS register themselves as ordinary services and to allow services which perform discovery of other services to behave like ordinary clients.

In order to activate policy it must be linked to ISIS service through Security Handle and Policy Decision Point emedded into configuration of ISIS. Below is minimal example configuration element of ISIS service. In lines 7-17 a set of Security Handler and Policy Decision Point is configured to handle policies written in ARC Policy Language (described in [1]). Line 14 specifies that policy is read from file /opt/arc/etc/isis/policy.xml every time new request is arrived. If policy is not satisfied then ISIS returns SOAP Fault instead of usual informative response.

```
1: <Service
     xmlns="http://www.nordugrid.org/schemas/ArcConfig/2007"
     xmlns:isis="http://www.nordugrid.org/schemas/ArcConfig/2009/isis"
     name="isis" id="isis">
 5: <isis:endpoint>https://localhost:60000/isis</isis:endpoint>
    <isis:DBPath>/opt/arc/share/isisdb</isis:DBPath>
 7:
      xmlsns:auth="http://www.nordugrid.org/schemas/SimpleListAuthZ"
 8:
      name="arc.authz" id="authz" event="incoming">
9:
10:
      <auth:PDP
11:
       xmlns:pdp="http://www.nordugrid.org/schemas/ArcPDP"
       name="arc.pdp">
12:
       <pdp:PolicyStore>
13:
        <pdp:Location type="file">/opt/arc/etc/isis/policy.xml</pdp:Location>
14:
15:
       </pdp:PolicyStore>
16:
      </auth:PDP>
    </SecHandler>
17:
18: </Service>
```

Service

3.1 Information generation

The service developers have to ensure that the services are providing the necessary information about themselves when registering to ISISes. This is done by implementing the subclass of the Arc::Service class - the RegistrationCollector function has to provide up-to-date status information about the service and anything else it wants to be advertised. This information package is called **Service Advertisement**. The **Service Advertisement** can contain any information service wants to advertise but the mandatory elements have to be always present:

- Service ID: A globally unique identifier of the service.
- Service Type: The Glue2 type of service.
- Endpoint URL: The URL where the service can be contacted provided as part of EPR element.

Because there may be multiple registration processes running in parallel it is important to ensure that implementation of RegistrationCollector is thread safe or there are internal locks implemented.

Every service registering to ISIS should also provide an interface for direct querying of information describing service. Normally this information should be more detailed than one sent to ISIS. For this purpose LIDI interface is defined which is a subset of WS Resource Properties (WSRP) [2]. Following WSRP operations must be supported - GetResourcePropertDocument, GetResourceProperty, GetMultipleResourceProperties and QueryResourceProperties.

3.2 Registration

The registration of service is carried out by internal module called Registrant. The Registrant is active module of the HED (Hosting Environment Daemon) which is bound to a set of ISISes. In practice, the configuration part of the Registrant contains exactly one ISIS to bind, and the Registrant will collect the necessary information about the other ISISes belonging to the same network.

To register services to more than one ISIS network multiple Registrant instances has to be configured. In this case, the default Registrant will be used for registering every services unless configured explicitly. The registration of service can be done once or periodically based either on the configuration of the Registrant or overwritten for every service separately. The Registrant is also performing message aggregation of all services linked to it if possible. The simplified algorithm of the Registrant is presented below.

Registrant - pseudo algorithm

// Initialize phase

Read the configuration and store the information about the services in a list

```
do { // Cyclic phase in a different Thread
  wake_up_time = now();
  messages = null;
  if ( 0 < count(service where service.next_run <= wake_up_time)) {
    foreach( service where service.next_run <= wake_up_time) {
        messages.add(service.RegistrationCollector);
        service.next_run = wake_up_time + service.period;
    }
    if (0 < count(messages)) {
        sent_message = assemble message with headers(messages);
        send(sent_message);
    }
    } else {
        sleep(min(service.next_run) - now());
    }
} while(true)</pre>
```

Current implementation does not allow value of the period to be less than 2 minutes.

Service provides **Service Advertisement** part of information sent to ISIS (see Section 2.1.2). Before sending this information the Registrant extends it with additional data (**Service Advertisement Metadata**).

An example layout of services is shown on Figure 3.1. In this configuration example there are two Registrants configured in one HED container for three services. The $Registrant\ A$ is the default Registrant and the services configured in the following way:

- Service 1: There is no Registrant configured so the default one will register it.
- Service 2: The *Registrant A* is configured explicitly.
- \bullet Service 3: The *Registrant B* is configured explicitly.

So the Service 1 and 2 are handled both by Registrant A and Service 3 by Registrant B. In the first step each Registrant performs information collection from all assigned services sequentially. Registrants themselves are executing in parallel. For Figure 3.1 the approximate sequence of information collection is (A1-A2, B1-B2) followed by (A3, A4). After collection the aggregated information is sent to the corresponding ISISes independently by each other Registrant (A5, B5).

Figure 3.1: Overview of the registration process

This registration operation is done once during the start-up phase and periodically according to (per service) configured periods.

3.3. AUTHORIZATION 15

3.3 Authorization

For each information provided by service through the LIDI interface same procedure as described in Section 2.3.2 should be applied.

3.4 Configuration

The registration operation is done by the Registrants as described in Section 3.2. Each Registrant is instantiated by corresponding InfoRegistrar XML element in configuration file as defined in Section 4.3. First InfoRegistrar defines Registrant which is used to register every service by default.

Registration parameters per service are defined by InfoRegister element located inside corresponding service configuration element. To assign service to specific Registrant(s) one may use Registrar configuration elements situated inside InfoRegister. If none Registrar element is defined service will be registered using first (default) Registrant. To make not register itself special configuration element NoRegister has to be used.

Following elements are defined inside configuration element of the Registrant:

URL specifies contact endpoint of a bootstrap ISIS. If neede further ISIS addresses will be queried from this service. This element is mandatory.

KeyPath, CertificatePath, ProxyPath and CACertificatesDir are paths to files storing X509 credentials used for establishing connections. Those elements are optional and needed only if TLS communication is used.

Retry specifies how many times communication to ISIS have to fail/timeout to start treating is as unavailable. The default value is 5.

Appendices

4.1 WSDL of ISIS Specific Interface

```
?xml version="1.0" encoding="UTF-8"?>
    Data types of Information Indexing Service
<xsd:schema</pre>
  xmlns:xsd="http://www.w3.org/2001/XMLSchema"
  xmlns:isis="http://www.nordugrid.org/schemas/isis/2007/06"
  xmlns:wsa="http://www.w3.org/2005/08/addressing"
  targetNamespace="http://www.nordugrid.org/schemas/isis/2007/06"
  elementFormDefault="qualified" attributeFormDefault="unqualified"
    <xsd:import namespace="http://www.w3.org/2005/08/addressing" schemaLocation="http://www.w3.org/2</pre>
<!-- This is an initial and incomplete DRAFT which mainly concentrates on the structure but not on the
LUE-2.0 ternminology. -->
    <!-- ==== Input and output types for IIS operations ==== -->
    <!-- Input type for Register operation -->
    <xsd:complexType name="RegisterType">
        <xsd:sequence>
            <xsd:element name="Header" type="isis:HeaderType" minOccurs="0" maxOccurs="1"/>
            <xsd:element name="RegEntry" type="isis:RegistrationEntryType" minOccurs="1" maxOccurs=""</pre>
        </xsd:sequence>
    </xsd:complexType>
    <xsd:element name="Register" type="isis:RegisterType"/>
    <!-- Output type for Register operation -->
    <xsd:complexType name="RegisterResponseType">
        <xsd:sequence>
            <xsd:element name="Fault" type="isis:FaultType" minOccurs="0" maxOccurs="1"/>
        </xsd:sequence>
    </xsd:complexType>
    <xsd:element name="RegisterResponse" type="isis:RegisterResponseType"/>
    <!-- Input type for RemoveRegistrations operation -->
```

```
<xsd:complexType name="RemoveRegistrationsType">
        <xsd:sequence>
            <xsd:element name="MessageGenerationTime" type="xsd:string" min0ccurs="1" max0ccurs="1"/>
            <xsd:element name="ServiceID" type="xsd:string" min0ccurs="1" max0ccurs="unbounded"/>
        </xsd:sequence>
    </xsd:complexType>
    <xsd:element name="RemoveRegistrations" type="isis:RemoveRegistrationsType"/>
    <!-- Output type for RemoveRegistrations operation -->
    <xsd:complexType name="RemoveRegistrationResponseElementType">
        <xsd:sequence>
            <xsd:element name="ServiceID" type="xsd:string" min0ccurs="1" max0ccurs="1"/>
            <xsd:element name="Fault" type="isis:FaultType" min0ccurs="1" max0ccurs="1"/>
        </xsd:sequence>
    </xsd:complexType>
    <xsd:complexType name="RemoveRegistrationsResponseType">
        <xsd:sequence>
            <xsd:element name="RemoveRegistrationResponseElement" type="isis:RemoveRegistrationResponse"</pre>
unbounded" />
        </xsd:sequence>
    </xsd:complexType>
    <xsd:element name="RemoveRegistrationsResponse" type="isis:RemoveRegistrationsResponseType"/>
    <!-- Input type for GetISISList operation -->
    <xsd:complexType name="GetISISListType">
        <xsd:sequence>
        </xsd:sequence>
    </xsd:complexType>
    <xsd:element name="GetISISList" type="isis:GetISISListType"/>
    <!-- Output type for GetISISList operation -->
    <xsd:complexType name="GetISISListResponseType">
        <xsd:sequence>
            <xsd:element name="EPR" type="wsa:EndpointReferenceType" minOccurs="1" maxOccurs="unbounded</pre>
        </xsd:sequence>
    </xsd:complexType>
    <xsd:element name="GetISISListResponse" type="isis:GetISISListResponseType"/>
    <!-- Input type for Query operation -->
    <xsd:complexType name="QueryType">
        <xsd:sequence>
            <xsd:element name="QueryString" type="xsd:string" minOccurs="1" maxOccurs="1"/>
        </xsd:sequence>
    </xsd:complexType>
    <xsd:element name="Query" type="isis:QueryType"/>
    <!-- Output type for Query operation -->
    <xsd:complexType name="QueryResponseType">
        <xsd:sequence>
            <xsd:any minOccurs="0" maxOccurs="unbounded"/>
        </xsd:sequence>
    </xsd:complexType>
    <xsd:element name="QueryResponse" type="isis:QueryResponseType"/>
    <!-- === Helper type definitions === -->
    <xsd:simpleType name="StatusType">
        <xsd:restriction base="xsd:string">
            <xsd:enumeration value="1"/>
```

```
<xsd:enumeration value="2"/>
    </xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="HeaderType">
    <xsd:sequence>
        <!-- Identifier of the source HED -->
        <xsd:element name="RequesterID" type="xsd:string" minOccurs="0" maxOccurs="1"/>
        <!-- Time of the aggregated message generation -->
        <xsd:element name="MessageGenerationTime" type="xsd:dateTime"/>
    </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="RegistrationEntryType">
    <xsd:sequence>
        <xsd:element name="SrcAdv" type="isis:ServiceAdvertisementType" minOccurs="1" maxOccurs=</pre>
        <xsd:element name="MetaSrcAdv" type="isis:ServiceAdvertisementMetadataType" minOccurs="1</pre>
    </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="ServiceAdvertisementType">
    <xsd:sequence>
        <!-- General part of the Service Advertisment -->
        <xsd:element name="Type" type="isis:ServiceTypeType"/>
        <xsd:element name="EPR" type="wsa:EndpointReferenceType"/>
        <!-- Service specific part of the Service Advertisment -->
        <xsd:element name="SSPair" type="isis:NameValuePairType" minOccurs="0" maxOccurs="unbounded"</pre>
    </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="ServiceAdvertisementMetadataType">
    <xsd:sequence>
        <!-- Globally unique and persistent ID of the service -->
        <xsd:element name="ServiceID" type="xsd:string" minOccurs="1" maxOccurs="1"/>
        <!-- Time of information generation or collection -->
        <xsd:element name="GenTime" type="xsd:dateTime" minOccurs="1" maxOccurs="1"/>
        <xsd:element name="Expiration" type="xsd:duration"/>
    </xsd:sequence>
</xsd:complexType>
<xsd:simpleType name="FaultTypeType">
    <xsd:restriction base="xsd:string">
        <xsd:enumeration value="1"/>
        <xsd:enumeration value="2"/>
    </xsd:restriction>
</xsd:simpleType>
<!-- description of fault -->
<xsd:complexType name="FaultType">
    <xsd:sequence>
                                        type="xsd:string"/>
        <xsd:element name="Name"</pre>
        <xsd:element name="Type"</pre>
                                         type="isis:FaultTypeType"/>
        <xsd:element name="Description" type="xsd:string"/>
    </xsd:sequence>
</xsd:complexType>
<!-- List of the service types will be provided by the GLUE-2.0 -->
```

```
<xsd:simpleType name="ServiceTypeType">
        <xsd:restriction base="xsd:string">
        </xsd:restriction>
    </xsd:simpleType>
    <xsd:complexType name="NameValuePairType">
        <xsd:sequence>
            <xsd:element name="Name" type="xsd:string"/>
            <xsd:element name="Value" type="xsd:string"/>
        </xsd:sequence>
    </xsd:complexType>
</xsd:schema>
<?xml version="1.0" encoding="utf-8"?>
<wsdl:definitions name="InformationIndexing"</pre>
  xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
  xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
  xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
  xmlns:xsd="http://www.w3.org/2001/XMLSchema"
  xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
  xmlns:wsa="http://www.w3.org/2005/08/addressing"
  xmlns:isis="http://www.nordugrid.org/schemas/isis/2007/06"
  xmlns:wsrf-bf="http://docs.oasis-open.org/wsrf/bf-2"
  xmlns:wsrf-rp="http://docs.oasis-open.org/wsrf/rp-2"
  xmlns:wsrf-rpw="http://docs.oasis-open.org/wsrf/rpw-2"
  xmlns:wsrf-rw="http://docs.oasis-open.org/wsrf/rw-2"
  targetNamespace="http://www.nordugrid.org/schemas/isis/2007/06"
>
<1--
Interface of Information Indexing Service
    <wsdl:import namespace="http://docs.oasis-open.org/wsrf/rpw-2" location="http://docs.oasis-open.org</pre>
    <!-- ===== Type definitions ===== -->
    <wsdl:types>
        <xsd:schema</pre>
            xmlns:isis="http://www.nordugrid.org/schemas/isis/2007/06"
            targetNamespace="http://www.nordugrid.org/schemas/isis/2007/06"
            attributeFormDefault="unqualified"
            elementFormDefault="qualified"
            <xsd:include schemaLocation="./isis.xsd"/>
        </xsd:schema>
    </wsdl:types>
<!-- ===== Messages definitions ====== -->
<!-- ===== Register ===== -->
<wsdl:message name="RegisterRequest">
    <wsdl:part name="Register" element="isis:Register"/>
</wsdl:message>
<wsdl:message name="RegisterResponse">
    <wsdl:part name="RegisterResponse" element="isis:RegisterResponse"/>
```

```
</wsdl:message>
<!-- ===== RemoveRegistrations ====== -->
<wsdl:message name="RemoveRegistrationsRequest">
    <wsdl:part name="RemoveRegistrations" element="isis:RemoveRegistrations"/>
</wsdl:message>
<wsdl:message name="RemoveRegistrationsResponse">
    <wsdl:part name="RemoveRegistrationsResponse" element="isis:RemoveRegistrationsResponse"/>
</wsdl:message>
<!-- ===== GetISISList ===== -->
<wsdl:message name="GetISISListRequest">
    <wsdl:part name="GetISISList" element="isis:GetISISList"/>
</wsdl:message>
<wsdl:message name="GetISISListResponse">
    <wsdl:part name="GetISISListResponse" element="isis:GetISISListResponse"/>
</wsdl:message>
<!-- ===== Query ===== -->
<wsdl:message name="QueryRequest">
    <wsdl:part name="Query" element="isis:Query"/>
</wsdl:message>
<wsdl:message name="QueryResponse">
    <wsdl:part name="QueryResponse" element="isis:QueryResponse"/>
</wsdl:message>
<!-- ===== PortType definitions ====== -->
<wsdl:portType name="ISISPortType">
    <wsdl:operation name="Register">
        <wsdl:input name="RegisterRequest" message="isis:RegisterRequest"/>
        <wsdl:output name="RegisterResponse" message="isis:RegisterResponse"/>
    </wsdl:operation>
    <wsdl:operation name="RemoveRegistrations">
        <wsdl:input name="RemoveRegistrationsRequest" message="isis:RemoveRegistrationsRequest"/>
        <wsdl:output name="RemoveRegistrationsResponse" message="isis:RemoveRegistrationsResponse"/>
    </wsdl:operation>
    <wsdl:operation name="GetISISList">
        <wsdl:input name="GetISISListRequest" message="isis:GetISISListRequest"/>
        <wsdl:output name="GetISISListResponse" message="isis:GetISISListResponse"/>
    </wsdl:operation>
    <wsdl:operation name="Query">
        <wsdl:input name="QueryRequest" message="isis:QueryRequest"/>
        <wsdl:output name="QueryResponse" message="isis:QueryResponse"/>
    </wsdl:operation>
</wsdl:portType>
<!-- ===== Bindings ===== -->
<wsdl:binding name="isis" type="isis:ISISPortType">
    <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
    <wsdl:operation name="Register">
        <soap:operation soapAction="Register"/>
        <wsdl:input name="RegisterRequest">
            <soap:body use="literal"/>
```

```
</wsdl:input>
        <wsdl:output name="RegisterResponse">
            <soap:body use="literal"/>
        </wsdl:output>
    </wsdl:operation>
    <wsdl:operation name="RemoveRegistrations">
        <soap:operation soapAction="RemoveRegistrations"/>
        <wsdl:input name="RemoveRegistrationsRequest">
            <soap:body use="literal"/>
        </wsdl:input>
        <wsdl:output name="RemoveRegistrationsResponse">
            <soap:body use="literal"/>
        </wsdl:output>
    </wsdl:operation>
    <wsdl:operation name="GetISISList">
        <soap:operation soapAction="GetISISList"/>
        <wsdl:input name="GetISISListRequest">
            <soap:body use="literal"/>
        </wsdl:input>
        <wsdl:output name="GetISISListResponse">
            <soap:body use="literal"/>
        </wsdl:output>
    </wsdl:operation>
    <wsdl:operation name="Query">
        <soap:operation soapAction="Query"/>
        <wsdl:input name="QueryRequest">
            <soap:body use="literal"/>
        </wsdl:input>
        <wsdl:output name="QueryResponse">
            <soap:body use="literal"/>
        </wsdl:output>
    </wsdl:operation>
</wsdl:binding>
<wsdl:binding name="GetResourcePropertyDocument" type="wsrf-rpw:GetResourcePropertyDocument">
    <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
    <wsdl:operation name="GetResourcePropertyDocument">
       <soap:operation soapAction="GetResourcePropertyDocument"/>
       <wsdl:input name="GetResourcePropertyDocumentRequest">
         <soap:body use="literal"/>
        </wsdl:input>
        <wsdl:output name="GetResourcePropertyDocumentResponse">
            <soap:body use="literal"/>
        </wsdl:output>
        <wsdl:fault name="ResourceUnknownFault">
            <soap:fault name="ResourceUnknownFault" use="literal"/>
        </wsdl:fault>
        <wsdl:fault name="ResourceUnavailableFault">
            <soap:fault name="ResourceUnavailableFault" use="literal"/>
        </wsdl:fault>
    </wsdl:operation>
</wsdl:binding>
<wsdl:binding name="GetResourceProperty" type="wsrf-rpw:GetResourceProperty">
    <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
    <wsdl:operation name="GetResourceProperty">
        <soap:operation soapAction="GetResourceProperty"/>
        <wsdl:input name="GetResourcePropertyRequest">
            <soap:body use="literal"/>
```

```
</wsdl:input>
        <wsdl:output name="GetResourcePropertyResponse">
            <soap:body use="literal"/>
        </wsdl:output>
        <wsdl:fault name="ResourceUnknownFault">
            <soap:fault name="ResourceUnknownFault" use="literal"/>
        <wsdl:fault name="ResourceUnavailableFault">
            <soap:fault name="ResourceUnavailableFault" use="literal"/>
        </wsdl:fault>
        <wsdl:fault name="InvalidResourcePropertyQNameFault">
            <soap:fault name="InvalidResourcePropertyQNameFault" use="literal"/>
        </wsdl:fault>
    </wsdl:operation>
</wsdl:binding>
<wsdl:binding name="QueryResourceProperties" type="wsrf-rpw:QueryResourceProperties">
    <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
    <wsdl:operation name="QueryResourceProperties">
        <soap:operation soapAction="QueryResourceProperties"/>
        <wsdl:input name="QueryResourcePropertiesRequest">
            <soap:body use="literal"/>
        </wsdl:input>
        <wsdl:output name="QueryResourcePropertiesResponse">
            <soap:body use="literal"/>
        </wsdl:output>
        <wsdl:fault name="ResourceUnknownFault">
            <soap:fault name="ResourceUnknownFault" use="literal"/>
        </wsdl:fault>
        <wsdl:fault name="ResourceUnavailableFault">
            <soap:fault name="ResourceUnavailableFault" use="literal"/>
        </wsdl:fault>
        <wsdl:fault name="InvalidResourcePropertyQNameFault">
            <soap:fault name="InvalidResourcePropertyQNameFault" use="literal"/>
        </wsdl:fault>
        <wsdl:fault name="UnknownQueryExpressionDialectFault">
            <soap:fault name="UnknownQueryExpressionDialectFault" use="literal"/>
        </wsdl:fault>
        <wsdl:fault name="InvalidQueryExpressionFault">
            <soap:fault name="InvalidQueryExpressionFault" use="literal"/>
        </wsdl:fault>
        <wsdl:fault name="QueryEvaluationErrorFault">
            <soap:fault name="QueryEvaluationErrorFault" use="literal"/>
        </wsdl:fault>
    </wsdl:operation>
</wsdl:binding>
<!-- ===== Service definition ====== -->
<wsdl:service name="isis">
    <wsdl:port name="GetResourcePropertyDocument" binding="isis:GetResourcePropertyDocument">
        <soap:address location="mailto:test@test.com"/>
    <wsdl:port name="GetResourceProperty" binding="isis:GetResourceProperty">
        <soap:address location="mailto:test@test.com"/>
    </wsdl:port>
    <wsdl:port name="QueryResourceProperties" binding="isis:QueryResourceProperties">
        <soap:address location="mailto:test@test.com"/>
    </wsdl:port>
```

4.2 Schema of ISIS Configuration

```
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema</pre>
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.nordugrid.org/schemas/ArcConfig/2009/isis"
 xmlns:icfg="http://www.nordugrid.org/schemas/ArcConfig/2009/isis"
  targetNamespace="http://www.nordugrid.org/schemas/ArcConfig/2009/isis"
  elementFormDefault="qualified" attributeFormDefault="unqualified"
  <xsd:element name="endpoint" type="xsd:anyURI"/>
  <xsd:element name="retry" type="xsd:nonNegativeInteger" minOccurs="0"/>
  <xsd:element name="sparsity" type="xsd:nonNegativeInteger" minOccurs="0"/>
  <xsd:simpleType name="Logger_Type">
    <xsd:restriction base="xsd:string"/>
    <xsd:attribute name="level" type="xsd:string" use="optional"/>
  </xsd:simpleType>
  <xsd:element name="Logger" type="icfg:Logger_Type" minOccurs="0"/>
  <xsd:element name="ETValid" type="xsd:nonNegativeInteger" minOccurs="0"/>
  <xsd:element name="ETRemove" type="xsd:nonNegativeInteger" minOccurs="0"/>
  <xsd:element name="DBPath" type="xsd:string"/>
  <xsd:complexType name="InfoProvider_Type">
    <xsd:sequence>
      <xsd:element name="URL" type="xsd:anyURI"/>
    </xsd:sequence>
  </xsd:complexType>
  <xsd:element name="InfoProvider" type="icfg:InfoProvider_Type" minOccurs="0" maxOccurs="unbounded"/>
</xsd:schema>
```

4.3 Schema of Service Registration Configuration

```
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
  xmlns:xsd="http://www.w3.org/2001/XMLSchema"
  xmlns:iregc="http://www.nordugrid.org/schemas/InfoRegisterConfig/2008"
  targetNamespace="http://www.nordugrid.org/schemas/InfoRegisterConfig/2008"
  elementFormDefault="qualified">
```

```
<xsd:complexType name="InfoRegistrar_Type">
    <!-- This element defines configuration of Information Registration
         active element. This element is located at top level configuration
         document. Each instance if such element instatiates one instance
         of Information Registrant active element. -->
    <xsd:sequence>
        <!-- URL specifies contact endpoint of a bootstrap Information
             Registration service. Further ISIS adresses will be queried
             from this service. -->
        <xsd:element name="URL" type="xsd:string"/> <!-- max0ccurs="unbounded" -->
        <!-- \  \, \texttt{Optional} \  \, \texttt{KeyPath}, \  \, \texttt{CertificatePath}, \  \, \texttt{ProxyPath} \  \, \texttt{and} \  \, \texttt{CACertificatesDir} \  \, \texttt{are}
             paths to files storing X509 credentials used for establishing connections. -->
        <xsd:element name="KeyPath" type="xsd:string" minOccurs="0"/>
        <xsd:element name="CertificatePath" type="xsd:string" minOccurs="0"/>
        <xsd:element name="ProxyPath" type="xsd:string" minOccurs="0"/>
        <xsd:element name="CACertificatesDir" type="xsd:string" minOccurs="0"/>
        <!-- Retry count. Specifie how many times have an ISIS to timeout to handle it as
             unavailable. If there is no value specified the default value: 5 will be used. -->
        <xsd:element name="Retry" type="xsd:string" minOccurs="0" maxOccurs="1"/>
    </xsd:sequence>
    <!-- Attribute id may be used to refer to this element -->
    <xsd:attribute name="id" type="xsd:string" use="optional"/>
<xsd:element name="InfoRegistrar" type="iregc:InfoRegistrar_Type"/>
<xsd:complexType name="Registrar_Type">
    <xsd:sequence>
        <!-- Missing elements means that the default values will be used. -->
        <!-- Period specifies how often registration to be done in minutes.
             The 0 value means single registration. -->
        <xsd:element name="Period" type="xsd:nonNegativeInteger" minOccurs="0" maxOccurs="1"/>
        <!-- Element defines the unique id of the service propagated outside. -->
        <xsd:element name="ServiceID" type="xsd:string" min0ccurs="0" max0ccurs="1"/>
        <!-- This element defines URL of the service as seen from outside. -->
        <xsd:element name="endpoint" type="xsd:string" min0ccurs="0" max0ccurs="1"/>
        <!-- This element defines the expiration time of the information provided by the service
        <xsd:element name="expiration" type="xsd:string" minOccurs="0" maxOccurs="1"/>
    </xsd:sequence>
    <!-- Attribute id is to define the previously configured InfoRegistrar to be refered -->
    <xsd:attribute name="id" type="xsd:string" use="required"/>
</xsd:complexType>
<xsd:complexType name="InfoRegister_Type">
<!-- Element for Service element to link it to InfoRegistrar
     elements. It may also override some configuration parameters.
     Presence of this element means that service will be registered
     to ISISes. -->
    <xsd:sequence>
        <!-- This elements specify which registrars must be used
             for registering services. If there is no such element
             then registration is done using all registrars. -->
        <xsd:element name="Registrar" type="iregc:Registrar_Type" minOccurs="0" maxOccurs="unbou</pre>
        <!-- Default values for every InfoRegistrar -->
        <!-- Period specifies how often registration to be done in minutes.
             The O value means single registration. -->
```

4.4 Schema of Information Document Policies

```
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema</pre>
  xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:if="http://www.nordugrid.org/schemas/InfoFilter/2008"
 xmlns="http://www.nordugrid.org/schemas/InfoFilter/2008"
  xmlns:policy="http://www.nordugrid.org/schemas/policy-arc"
  targetNamespace="http://www.nordugrid.org/schemas/InfoFilter/2008"
  elementFormDefault="qualified">
    <xsd:complexType name="InfoFilterDefinition_Type">
        <!-- This element is a container for single policy element of any kind.
             Attached mandatory attribute defines identifier which is then used
             to link XML elements with defined policy.
             Currently only supported policy is one defined in
             http://www.nordugrid.org/schemas/policy-arc namespace. -->
        <xsd:any namespace="##other" processContents="lax" minOccurs="1" maxOccurs="1"/>
        <xsd:attribute name="id" type="xsd:string" use="required"/>
    </xsd:complexType>
    <xsd:element name="InfoFilterDefinition" type="if:InfoFilterDefinition_Type" minOccurs="0" maxOccur</pre>
    <xsd:attribute name="InfoFilterTag">
        <!-- This attribute is to be used in element for which authorization
             policy to be applied. It specifies identifier of policy defined
             in InfoFilterDefinition element. -->
        <xsd:simpleType>
            <xsd:restriction base="xsd:string"/>
        </xsd:simpleType>
    </xsd:attribute>
</xsd:schema>
```

Bibliography

- [1] W. Qiang et al., Security Framework of ARC1, The NorduGrid Collaboration, NORDUGRID-TECH-16. [Online]. Available: unpublished
- [2] OASIS, "OASIS Web Services Resource Properties specification," April 2006, . [Online]. Available: http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf