



**BITS** Pilani

Microprocessors & Interfacing

### **Programming Model**

Dr. Gargi Prabhu Department of CS & IS

- The 8259A programmable interrupt controller (PIC) adds eight vectored priority encoded interrupts to the microprocessor.
- This controller can be expanded, without additional hardware, to accept up to 64 interrupt requests.
- This expansion requires a master 8259A and eight 8259A slaves.

## innovate achieve lead

#### **Block Diagram**



#### 8259A Command Word

Command word of 8259 is divided into two parts:

Initialization command words(ICW): These are used during the initialization phase to configure the 8259 for its operation. There are four ICWs, ICW1, ICW2, ICW3, and ICW4, each serving a specific purpose in setting up the PIC.

Operating command words(OCW): Once the PIC is initialized, these command words are used to control its operation during normal operation. OCWs include commands for enabling, masking, and prioritizing interrupts, among other functions.

#### Initialization command words(ICW)

- ICW is given during the initialization of 8259 i.e. before its start functioning.
- ICW<sub>1</sub> and ICW<sub>2</sub> commands are compulsory for initialization.
- ICW<sub>3</sub> command is given during a cascaded configuration.
- If ICW<sub>4</sub> is needed, then it is specified in ICW<sub>1</sub>.
- The sequence order of giving ICW commands is fixed i.e. ICW<sub>1</sub> is given first and then ICW<sub>2</sub> and then ICW<sub>3</sub>.
- Any of the ICW commands can not be repeated, but the entire initialization process can be repeated if required.



#### Operating command words(OCW)

- OCW is given during the operation of 8259 i.e. microprocessor starts using 8259.
- OCW commands are not compulsory for 8259.
- The sequence order of giving OCW commands is not fixed.
- The OCW commands can be repeated.

# innovate achieve lead

### Initialization sequence of 8259



#### ICW<sub>1</sub> command

- The control word is recognized as ICW<sub>1</sub> when A<sub>0</sub> = 0 and D<sub>4</sub> =
   1.
- It has the control bits for Edge and level triggering mode, single/cascaded mode, call address interval and whether ICW4 is required or not.
- Address lines  $A_7$  to  $A_5$  are used for interrupt vector addresses.

#### ICW<sub>1</sub> command





#### ICW<sub>1</sub> command

When the ICW<sub>1</sub> is loaded, then the initializations performed are:

- The edge sense circuit is reset because, by default, 8259 interrupt is edge triggered.
- The interrupt mask register is cleared.
- IR7 is assigned to priority 7.
- Slave mode address is assigned as 7.
- When  $D_0 = 0$ , this means  $IC_4$  command is not required. Therefore, functions used in IC4 are reset.
- Special mask mode is reset and status read is assigned to IRR.

#### ICW<sub>2</sub> command

- The control word is recognized as ICW<sub>2</sub> when  $A_0 = 1$ .
- It stores the information regarding the interrupt vector address.
- In the 8085 based system, the A15 to A<sub>8</sub> bits of control word is used for interrupt vector addresses.
- In the 8086 based system,  $T_6$  to  $T_3$  bits are inserted instead of  $A_{15}$  to  $A_8$  and  $A_{10}$  to  $A_8$  are used for selecting interrupt level, i.e. 000 for IR<sub>0</sub> and 111 for IR<sub>7</sub>

### ICW<sub>2</sub> command



A<sub>15</sub>- A<sub>8</sub> of interrupt vector address (MCS-80/85 mode only)

T 7 - T 3 of interrupt vector address (8086/8088 mode only)

ICW<sub>3</sub>



#### ICW<sub>4</sub>

- When AEOI = 1, then Automatic end of interrupt mode is selected.
- When SFMN = 1, then a special fully nested mode is selected. when BUF = 0, then Non buffered mode is used (i.e. M/S is don't care) and when M/S = 1, then 8259 is master, otherwise it is a slave.
- When μPM = 1, then 8086 operations are performed, otherwise 8085 operations are performed

lead





#### OCW<sub>1</sub>

• It is used to set and reset the mask bits in IMR(interrupt mask register).  $M_7 - M_0$  describes 8 mask bits



lead

#### OCW<sub>2</sub>

It is used for selecting the mode of operation of 8259. Here  $L_2$  to  $L_0$  are used to describe interrupt level on which action need to be performed.





- When the ESMM (Enable special mask mode ) bit is set, then the SMM bit is don't care. If SMM = 1 and ESMM = 1, then 8259 will enter in Special mask mode.
- If ESMM = 1 and SMM = 0, then 8259 will return into normal mask mode.
- RR and RIS are used to give the read register command.
- P = 1 is used for poll command.

lead

OCW<sub>3</sub>





#### **Status Register**

 Three status registers are readable in the 8259A: interrupt request register (IRR), in-service register (ISR), and interrupt mask register (IMR).



# innovate achieve lead

#### **Programming 8259A**

```
, PIC1
          EQU 48H
                                          ;8259A control A0 = 0
PIC2
          EOU 49H
                                          ;8259A control A0 = 1
                                          ;8259A ICW1
ICW1
          EQU 1BH
          EQU 80H
ICW2
                                          ;8259A ICW2
ICW4
          EOU 3
                                          ;8259A ICW4
                                          ;8259A OCW1
OCW1
          EOU
                OFEH
     ;program 8259A
                 AL .ICW1
            VOM
                                             ;program ICW1
                 PIC1, AL
            OUT
                 AL, ICW2
            VOM
                                             ;program ICW2
                 PIC2, AL
            TUO
            MOV
                 AL, ICW4
                                             ;program ICW4
            OUT PIC2, AL
            VOM
                 AL, OCW1
                                             ;program OCW1
                 PIC2, AL
            OUT
                                             ; enable INTR pin
            STI
```



### **Thank You**