Knapsack Auctions

Joseph Chuang-Chieh Lin

Dept. Computer Science and Engineering,
National Taiwan Ocean University
Taiwan

Knapsack Auctions

Welfare-Maximizing DSIC Knapsack Auctions Critical Bids Intractability of Welfare Maximization

Algorithmic Mechanism Design

The Best-Case Scenario: DSIC for Free Knapsack Auctions Revisited

The Revelation Principle

Justifying Direct Revelation
Beyond Dominant-Strategy Equilibria

Knapsack Auctions

Welfare-Maximizing DSIC Knapsack Auctions
Critical Bids
Intractability of Welfare Maximization

Algorithmic Mechanism Design

The Best-Case Scenario: DSIC for Free Knapsack Auctions Revisited

The Revelation Principle

Justifying Direct Revelation

Beyond Dominant-Strategy Equilibria

Whenever there is a shared resource with *limited* capacity, you have a knapsack problem.

Definition

We study about another example of single-parameter environments.

Knapsack Auctions

- ightharpoonup Each bidder *i* has a publicly known size w_i and a private valuation.
- ightharpoonup The seller has a capacity W.
- ► The feasible set X is defined as the 0-1 vectors (x_1, \ldots, x_n) such that $\sum_{i=1}^n w_i x_i \leq W$.
 - \triangleright $x_i = 1$: *i* is a winning bidder.

Explanations

- ► Each bidder's size could represent the duration of a company's television ad, the valuation its willingness-to-pay for tis ad being shown during the Super Bowl or NBA Finals, and the seller capacity the length of a commercial break.
- ▶ The situation that bidders who want
 - files stored on a shared server,
 - data streams sent through a shared communication channel
 - processes to be executed on a shared supercomputer.

Assumptions

- ▶ We receive truthful bids and decide on our allocation rule.
- ▶ Pay the bidder and devise a payment rule that extends the allocation rule to a DSIC mechanism.

◆ロ > ◆ 個 > ◆ 重 > ◆ 重 > り へ ○

Knapsack Auctions

Welfare-Maximizing DSIC Knapsack Auctions

Critical Bids

Intractability of Welfare Maximization

Algorithmic Mechanism Design

The Best-Case Scenario: DSIC for Free Knapsack Auctions Revisited

The Revelation Principle

Justifying Direct Revelation
Beyond Dominant-Strategy Equilibria

(ロ) (面) (量) (量) (型) の(で)

To maximize the welfare:

$$\mathbf{x}(\mathbf{b}) = \arg\max_{X} \sum_{i=1}^{n} b_i x_i.$$

The goal is to compute the subset of items of maximum total value that has total size bounded by W.

lt's maximum by the assumption that bidders bid truthfully.

◆ロ > ◆ 個 > ◆ 重 > ◆ 重 > り へ ○

To maximize the welfare:

$$\mathbf{x}(\mathbf{b}) = \arg\max_{X} \sum_{i=1}^{n} b_i x_i.$$

The goal is to compute the subset of items of maximum total value that has total size bounded by W.

- It's maximum by the assumption that bidders bid truthfully.
- \star Check that the allocation rule $\mathbf{x}(\cdot)$ is monotone.
 - Bidding higher can only get her more stuff.

Knapsack Auctions

Welfare-Maximizing DSIC Knapsack Auctions

Critical Bids

Intractability of Welfare Maximization

Algorithmic Mechanism Design

The Best-Case Scenario: DSIC for Free Knapsack Auctions Revisited

The Revelation Principle

Justifying Direct Revelation
Beyond Dominant-Strategy Equilibria

The Guarantee from Myerson's Lemma

- Myerson's lemma guarantees the existence of a payment rule p such that the mechanism (x, p) is DSIC.
- Since the allocation rule is monotone and assigns 0 or 1 to each bidder, the allocation curve $x_i(\cdot, \mathbf{b}_{-i})$ is 0 until some "breakpoint" z.
 - At z, the allocation jumps to 1.

The Guarantee from Myerson's Lemma (contd.)

- ▶ If i bids less than z, she loses and pays 0.
- ▶ If *i* bids more than *z*, she pays $\geq z \cdot (1-0) = z$.
 - ightharpoonup z is the infimum bid that she could make and continue to win (holding \mathbf{b}_{-i} fixed).

<ロ> < 回 > < 回 > < 巨 > < 巨 > 三 9 へ (で

Knapsack Auctions

Welfare-Maximizing DSIC Knapsack Auctions Critical Bids

Intractability of Welfare Maximization

Algorithmic Mechanism Design

The Best-Case Scenario: DSIC for Free Knapsack Auctions Revisited

The Revelation Principle

Justifying Direct Revelation
Beyond Dominant-Strategy Equilibria

(ロ) (面) (量) (量) (型) り(で)

(Recall) An ideal mechanism

Properties of an Ideal Mechanism

- ► DSIC
- welfare maximizing (assuming truthful bids).
- runs in polynomial time in the input size (e.g., bids, sizes, the capacity).

$$\mathbf{x}(\mathbf{b}) = \arg\max_{X} \sum_{i=1}^{n} b_i x_i.$$

$$\mathbf{x}(\mathbf{b}) = \arg\max_{X} \sum_{i=1}^{n} b_i x_i.$$

The answer: NO.

15 / 44

$$\mathbf{x}(\mathbf{b}) = \arg\max_{X} \sum_{i=1}^{n} b_i x_i.$$

The answer: NO.

▶ The knapsack problem is a notorious **NP**-hard problem.

$$\mathbf{x}(\mathbf{b}) = \arg\max_{X} \sum_{i=1}^{n} b_i x_i.$$

The answer: NO.

- ▶ The knapsack problem is a notorious **NP**-hard problem.
 - ightharpoonup No polynomial time implementation of the allocation rule unless NP = P.

$$\mathbf{x}(\mathbf{b}) = \arg\max_{X} \sum_{i=1}^{n} b_i x_i.$$

The answer: NO.

- ▶ The knapsack problem is a notorious **NP**-hard problem.
 - ightharpoonup No polynomial time implementation of the allocation rule unless NP = P.
- Hence, we would like to consider relaxing at least one of the three goals.

An ideal mechanism

Properties of an Ideal Mechanism

- DSIC
- welfare maximizing (assuming truthful bids).
- runs in polynomial time in the input size (e.g., bids, sizes, the capacity).
- Relax the second requirement as little as possible.
- Design a polynomial time and monotone allocation rule that comes as close as possible to the maximum possible social welfare.

Knapsack Auctions

Welfare-Maximizing DSIC Knapsack Auctions Critical Bids

Algorithmic Mechanism Design

The Best-Case Scenario: DSIC for Free Knapsack Auctions Revisited

The Revelation Principle

Justifying Direct Revelation
Beyond Dominant-Strategy Equilibria

Knapsack Auctions

Welfare-Maximizing DSIC Knapsack Auctions
Critical Bids

Algorithmic Mechanism Design

The Best-Case Scenario: DSIC for Free

Knapsack Auctions Revisited

The Revelation Principle

Justifying Direct Revelation

Beyond Dominant-Strategy Equilibria

Approximation Algorithms come to rescue?

► The primary goal in approximation algorithms is to design polynomial-time algorithms for NP-hard optimization problems that are as close to the optimal solution as possible.

Approximation Algorithms come to rescue?

- ► The primary goal in approximation algorithms is to design polynomial-time algorithms for NP-hard optimization problems that are as close to the optimal solution as possible.
- ► Algorithmic mechanism design has exactly the same goal, except that the algorithms must additionally obey a monotonicity constraint.

Approximation Algorithms come to rescue?

- ► The primary goal in approximation algorithms is to design polynomial-time algorithms for NP-hard optimization problems that are as close to the optimal solution as possible.
- ► Algorithmic mechanism design has exactly the same goal, except that the algorithms must additionally obey a monotonicity constraint.
- ► The incentive constraints of the mechanism design goal are neatly compiled into a relatively intuitive extra constraint on the allocation rule.

► The design space of polynomial-time DSIC mechanisms is only smaller than that of polynomial-time approximation algorithms.

- ► The design space of polynomial-time DSIC mechanisms is only smaller than that of polynomial-time approximation algorithms.
- ► (Imagine) The best-case scenario: DSIC constraint causes no additional welfare loss (beyond the loss from the polynomial-time requirement).

◆ロ > ◆ 個 > ◆ き > ◆ き > ・ き ・ り へ ○

- ► The design space of polynomial-time DSIC mechanisms is only smaller than that of polynomial-time approximation algorithms.
- ► (Imagine) The best-case scenario: DSIC constraint causes no additional welfare loss (beyond the loss from the polynomial-time requirement).
- Exact welfare maximization automatically yields a monotone allocation rule.

- ► The design space of polynomial-time DSIC mechanisms is only smaller than that of polynomial-time approximation algorithms.
- ► (Imagine) The best-case scenario: DSIC constraint causes no additional welfare loss (beyond the loss from the polynomial-time requirement).
- Exact welfare maximization automatically yields a monotone allocation rule.
- ▶ Is that true for approximate welfare maximization?

Knapsack Auctions

Welfare-Maximizing DSIC Knapsack Auctions
Critical Bids

Algorithmic Mechanism Design

The Best-Case Scenario: DSIC for Free

Knapsack Auctions Revisited

The Revelation Principle

Justifying Direct Revelation

Beyond Dominant-Strategy Equilib

Greedy approach

- ▶ Say *S* be a set of winners with total size $\sum_{i \in S} w_i \leq W$.
- ▶ We choose such a set S via a simple greedy algorithm.
- * We can assume that $w_i \leq W$ for all i (why?)

←□→ ←□→ ← □→ ← □ → □ ← へ ○ ○

A Greedy Knapsack Heuristic

A Greedy Algorithm

1. Sort and re-index the bidders so that

$$\frac{b_1}{w_1} \geq \frac{b_2}{w_2} \geq \cdots \geq \frac{b_n}{w_n}.$$

- 2. Pick winners in this order until one doesn't fit, and then halt.
- 3. Return either the solution from Step ② or the highest bidder: $arg max_i b_i$, whichever has larger social welfare.

Theorem (Knapsack Approximation Guarantee)

Assuming truthful bids, the social welfare achieved by the greedy allocation is at least half of the maximum social welfare.

Sketch of proving the theorem

- ► To have an upper bound on the maximum social welfare, allow bidders to be chosen fractionally, with the value prorated accordingly.
 - ► E.g., if 70% of a bidder with value 10 is chosen, then it contributes 7 to the welfare.
- ► Sort the bidders according to the step above, and pick winners in this order until the the capacity *W* is fully exhausted.
 - ▶ You can verify that this maximizes the welfare over all feasible solutions.

Sketch of proving the theorem (contd.)

- In the optimal fractional solution, suppose that the first k bidders in the sorted order win and that the (k + 1)th bidder fractionally wins.
- * The welfare achieved by steps ① and ② in the greedy allocation rule = the total value of the first k bidders.
- \star The welfare consisting only the highest bidder \geq the fractional value of the (k+1)th bidder.
- ▶ The better of these two solutions $\geq \frac{1}{2} \times$ the welfare of the optimal fractional solution.

60, 60

<ロ > ← □

4 D > 4 D > 4 E > 4 E > E 9 Q C

Sum up

- ▶ The greedy allocation rule is monotone (check by yourself).
- ▶ Using Myerson's lemma, we can extend it to a DSIC mechanism that runs in polynomial time and, assuming truthful bids, achieves social welfare at least 50% of the maximum possible.

CSE, NTOU, TW 29 / 44 Joseph C.-C. Lin

Outline

Knapsack Auctions

Welfare-Maximizing DSIC Knapsack Auctions
Critical Bids
Intractability of Welfare Maximization

Algorithmic Mechanism Design

The Best-Case Scenario: DSIC for Free Knapsack Auctions Revisited

The Revelation Principle

Justifying Direct Revelation
Beyond Dominant-Strategy Equilibria

Joseph C.-C. Lin CSE, NTOU, TW 30 / 44

Reiteration

- ▶ There are good reasons to strive for a DSIC guarantee.
 - Easy for a participant to figure out what to do in a DSIC mechanism.
 - ► The designer can predict the mechanism's outcome.

Outline

Knapsack Auctions

Welfare-Maximizing DSIC Knapsack Auctions
Critical Bids
Intractability of Welfare Maximization

Algorithmic Mechanism Design

The Best-Case Scenario: DSIC for Free Knapsack Auctions Revisited

The Revelation Principle

Justifying Direct Revelation

Beyond Dominant-Strategy Equilibria

Joseph C.-C. Lin CSE, NTOU, TW 32 / 44

The DSIC Condition

The DSIC Condition

- (a) For every valuation profile, the mechanism has a dominant-strategy equilibrium.
 - * An outcome that results from every participant playing a dominant strategy.
- (b) In this dominant-strategy equilibrium, every participant truthfully reports her private information to the mechanism.
- ► The revelation principle asserts that:

given (1), then (2) comes for free!

Joseph C.-C. Lin CSE, NTOU, TW 33 / 44

The Revelation Principle

Theorem (Revelation Principle for DSIC Mechanisms)

For every mechanism M where every participant always has a dominant strategy, there is an equivalent direct-revelation DSIC mechanism M'.

ightharpoonup We use a simulation argument to construct M' as follows.

Joseph C.-C. Lin CSE, NTOU, TW 34 / 44

Proof

For every participant i and its private information v_i , she has a dominant strategy $s_i(v_i)$ in mechanism M (by assumption).

Proof

- \triangleright Construct M', such that participants delegate the responsibility of playing the appropriate dominant strategy to M'.
 - \triangleright M' accepts bids b_1, \ldots, b_n .
 - Then M', which is of direct-revelation, submits the bids $s_1(b_1), \ldots, s_n(b_n)$ to the mechanism M and choose the same outcome that M does.

CSE, NTOU, TW 36 / 44 Joseph C.-C. Lin

Proof

- ► Mechanism M' is DSIC:
 - If a participant i has private information v_i , then submitting a bid other than v_i can only result in M' playing a strategy other than $s_i(v_i)$ in M, which can only decrease i's utility.

Joseph C.-C. Lin CSE, NTOU, TW 37 / 44

What we have learned from the theorem?

- ► Truthfulness per se is not important.
- ▶ The difficult part is the requirement to have a dominant-strategy equilibrium.

◆ロ > ◆ 個 > ◆ 差 > ◆ き → り へ ②

Joseph C.-C. Lin CSE, NTOU, TW 38 / 44

Outline

Knapsack Auctions

Welfare-Maximizing DSIC Knapsack Auctions
Critical Bids
Introstability of Welfare Maximization

Algorithmic Mechanism Design

The Best-Case Scenario: DSIC for Free Knapsack Auctions Revisited

The Revelation Principle

Justifying Direct Revelation

Beyond Dominant-Strategy Equilibria

Heads up

- ▶ DSIC and non-DSIC mechanisms are *incomparable*.
 - ► The former enjoys stronger incentive guarantees
 - ▶ The latter may enjoy better performance guarantees.

(ロ) (回) (目) (目) (目) (目) (の)

Joseph C.-C. Lin CSE, NTOU, TW 40 / 44

An Algorithmic Coding Project (10%)

- ► Solve the 0-1 knapsack problem using branch-and-bound.
- Reference:
 - Example from geeksforgeeks.
 - P. J. Kolesar's journal paper.
- Input format: an integer N specifying the number of items, followed by 2N real numbers where the first half are values of items in [0, 100] and the second half are weights in (0, 100].
- ▶ Output: Optimal value of the 0-1 knapsack problem.
- Example code on OnlineGDB: link.

Joseph C.-C. Lin CSE, NTOU, TW 41 / 44

An Algorithmic Coding Project (10%)

Grading Policy:

- ightharpoonup Teamwork is allowed (\leq two people in a group).
- Giving wrong answers: 0% for each test data.
- ▶ The team with correct answers and fewest nodes: 100%.
 - ▶ The team with correct answers and second fewest nodes: 90%.
 - ▶ The team with correct answers and third fewest nodes: 80%.
 - ▶ The rest teams with correct answers: 70%.

Illustration

Reference: https://www.geeksforgeeks.org/0-1-knapsack-using-branch-and-bound/

4 D > 4 B > 4 B > 4 B > 4 B • 9 Q @

Illustration

Reference: https://www.geeksforgeeks.org/0-1-knapsack-using-branch-and-bound/

Joseph C.-C. Lin CSE. NTOU. TW 44 / 44