V celém řešení budu používat běžnou definici Fibonacciho posloupnosti $\{F_n\}_{n=1}^{\infty}$, kde $F_1 = 1$, $F_2 = 1$ a pro každé přirozené n platí $F_{n+2} = F_{n+1} + F_n$. Dále přejmenuji Petrovu posloupnost na $\{p_n\}_{n=1}^{\infty}$ a Miškovu na $\{m_n\}_{n=1}^{\infty}$. Číslo n v celém textu bude přirozené číslo.

U Petrovi posloupnosti si můžeme všimnout, že $p_n = F_{n+1}$, protože oba první členy jsou Fibonacciho čísla ve stejném pořadí jako ve Fibonacciho posloupnosti, tím pádem snadnou indukcí ukážeme, že se jedná o posunutou Fibonacciho posloupnost:

$$p_{n+2} = p_{n+1} + p_n = F_{n+2} + F_{n+1} = F_{n+3}$$

U Miškový posloupnosti je vidět, že se jedná o Lucasovu posloupnosti. A jednu vlastnost, která pro Lucasovu posloupnost platí, odvodím a použiji k našemu důkazu.

Z výpisu prvních čísel Petrovi a Miškovi posloupnosti si můžeme všimnout, že platí $p_{n+3}-m_{n+3}=F_n$, a tedy že platí $m_{n+3}=F_{n+4}-F_n$. pro $m_4=4=5-1$ a $m_5=7=8-1$ to platí a zbytek dokážeme indukcí:

$$m_{n+5} = F_{n+6} - F_{n+2} = F_{n+5} - F_{n+1} + F_{n+4} - F_n = m_{n+4} + m_{n+3}$$

Protože víme, že výše uvedená rovnost platí, získali jsme vyjádření Miškovi posloupnosti pomocí Fibonacciho čísel, které můžeme dále upravit:

$$m_{n+3} = F_{n+4} - F_n = F_{n+3} + F_{n+2} - F_n = F_{n+3} + F_{n+1}$$

Z tohoto vyjádření již snadno dokážeme, že kromě prvních tří čísel nejsou žádné další čísla, které Petrova a Miškova posloupnost sdílí. Pro číslo p_{n+3} platí:

$$p_{n+3} = F_{n+4} = F_{n+3} + F_{n+2} > F_{n+3} + F_{n+1} = m_{n+3}$$

Proto pro každé přirozené $k \ge n+3$ platí, že $p_k > m_{n+3}$. Když zároveň zjistíme vztah čísla p_{n+2} vůči číslu m_{n+3} , získáme:

$$p_{n+2} = F_{n+3} < F_{n+3} + F_{n+1} = m_{n+3}$$

Tím pádem pro každé přirozené $k \le n+2$ platí, že $p_k < m_{n+3}$. A protože žádné přirozené číslo mezi n+2 a n+3 neleží, dokázali jsme to, že jediná sdílená čísla jsou 1, 2, 3. Q. E. D.