Introduction to Modern Al Week 7: Natural Language Processing

Gavin Hartnett

PRGS, Winter Quarter 2022

Overview

- Working with Text Data
- 2 Naive Bayes and the Bag of Words Assumption
- 3 TF-IDF
- **4** Vector Embeddings and Representation Learning
- Modern NLP

Motivation

- There is a wide range of useful applications for computer systems that can process and to some extent understand natural language
 - search
 - translation
 - spam filters
 - text completion suggestions
 - Al assistants and chatbots
 - automatic captioning, transcription
 - information extraction
 - and so on
- Natural language is fundamental to how we (humans) think, reason, and communicate with one another
- Therefore, NLP could be an important area for developing "true" artificial intelligence

Working with Text Data

Numerical Representation of Textual Data

- How should we represent textual data?
 The quick brown fox jumps over the lazy dog
- Word level:

[The, quick, brown, fox, jumps, over, the, lazy, dog]

Character level:

- Quick observations:
 - The data is a sequence of symbols. Order matters!
 - There are upper, lower-case letters, punctuation, special characters, etc

ASCII

- The precise way we will numerically represent the data will depend on our application, choice of methodology
- Typically this represent differs from how the computer stores the data
- The American Standard Code for Information Interchange (ASCII) developed for telegraph communication
- Assigns a number 0-127 (7 bit $= 2^7 = 128$ options) to each character
- Tailored to Latin alphabet, English in particular
- Includes some non-printing control codes that are no obsolete

ASCII Table

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	*
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D		77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	v
26	1A	[SUBSTITUTE]	58	ЗА	1	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	1	124	7C	Ť
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]
									I		

 $Image\ source:\ https://commons.wikimedia.org/wiki/File:ASCII-Table-wide.svg$

Unicode

- ASCII falls short in many ways
 - What about other languages (e.g., Mandarin)?
 - What about Emojis?
 - Unicode is another approach
 - Currently captures 144,697 characters, easy to add new ones
- Unicode has multiple implementations (UTF-8, UTF-16, etc)
- UTF-8 is most dominant worldwide
- For the most part in doing NLP you won't need to worry about ASCII, Unicode, but occasionally it will be important
- Mainly becomes an issue during the initial preprocessing/downloading of textual data

Vectorization and *N***-Gram Representations**

- Goal: convert text sequence into a sparse numerical vector
- sparse means that most entries will be zero
- General Strategy:
 - Introduce vocabulary V containing N = |V| distinct tokens
 - 1-gram: vocabulary consists of distinct words
 - 2-gram: vocabulary consists of distinct pairs of words
 - ullet N-gram: vocabulary consists of distinct sequences of N words

Example: 1-Gram

h //	ı	١.	\ .					
word	The	quick	brown	1100	ling	x lac	197	y dog
the	J	0	0	0	10	10	_ C	0
quick	0	>	0	0	0	0	0	0
brown	0	0	1	0	0	0	0	6
Sos	0	0	0	1	0	0		6
Samps	0	0	0	0)	0	0	0
240	0	0	0	0	0	\	0	0
The	1	0		0	0	0	0	0
1024	0	0	0	0	0	0	1	
dog	0	0	0	0	01	0	01	\widetilde{T}

Example: 2-Gram

- The quick brown fox jumps over the lazy dog
- Vocabulary is:

 $\mathcal{V}_2 = \{ \text{the quick}, \text{the brown}, ..., \text{quick brown}, \text{quick fox}, ..., \text{lazy dog} \}$

- If there are n words, 2-gram vocab has size N = n(n-1)/2
- Retains a bit more of the structure than 1-gram (e.g., 'lazy dog' is a distinct term, not just 'lazy' and 'dog' separately
- Vocab size grows exponentially with number of graphs, quickly becomes impractical

$$N_p = |\mathcal{V}_p| = \binom{N}{p}$$

- Typically incorporate lower-grams, i.e. use 1-gram plus 2-gram
- higher-grams might be only partially added (i.e., include a few common 3-grams)

Tokenization

- Tokenization is the process of breaking up text into constituent parts (tokens)
- We've already seen an example of this:
 The quick brown fox jumps over the lazy dog
 [The, quick, brown, fox, jumps, over, the, lazy, dog]
- There are multiple ways to perform the tokenization, and the way this is done can have important implications
- For example: how should punctuation be handled? What about white-spaces?
- Modern NLP approaches actually learn a tokenizer

Stemming and Lemmatization

- Stemming and Lemmatization are similar, and can help improve performance by reducing the number of distinct words in the vocabulary
- E.g., sit, sitting, sat are all distinct words but they share a common meaning called the *lexeme*
- One word is chosen as the lemma, or representative of the lexeme
- Stemming and Lematization both reduce words down to lemma form
- Stemming acts only on individual words (1-grams), and is quick
- Lemmatization can handle words whose meaning is ambiguous without context, such as 'meeting' (noun or verb?)

Other Preprocessing Issues

- Punctuation should be handled. One idea is to convert all to lower-case.
- Special characters, url links, email address, hashtags, etc must be handled.
- Stop words (e.g., is, the, like, ...) might be removed
- Useful Python libraries exist for these preprocessing steps:
 - Natural Language ToolKit (NLTK)
 - HuggingFace

Naive Bayes and the Bag of Words Assumption

Text Classification: Naive Bayes

- Let's now consider how we might go about classifying text documents
- Each data point/observation is a document
- document consists of tokens (words)
- We'll represent this as a series words/tokens:

$$d = \{w_1, w_2, ..., w_n\}$$

- We want to model P(c|d)
- Model P(d|c) directly and use Bayes theorem

$$P(c|d) = \frac{P(d|c)P(c)}{P(d)}$$

• Example of generative (vs discriminative) approach

Text Classification: Naive Bayes

- Goal: model for P(c|d)
- Use Bayes theorem and model P(d|c) directly:

$$P(c|d) = \frac{P(d|c)P(c)}{P(d)}$$

• Iteratively apply P(x, y|c) = P(x|y, c)P(y|c) rule:

$$P(d|c) = P(w_1, w_2, w_3, ..., w_n|c)$$

$$= P(w_1|w_2, w_3, ..., w_n, c)P(w_2, w_3, ..., w_n|c)$$

$$= P(w_1|w_2, w_3, ..., w_n, c)P(w_2|w_3, ..., w_n, c)P(w_3, ..., w_n|c)$$

$$= ...$$

assume conditional independence (bag of words):

$$P(w_i|w_{i+1},...,w_n,c) = P(w_i|c)$$

Then

$$P(d|c) = \prod_{i=1}^{n} P(w_i|c)$$

Text Classification: Naive Bayes

- Main challenge of NLP is how to capture/handle the temporal correlations in the sequence
- Naive Bayes/Bag of Words is the simplest way to represent text once it has been tokenized - ignore the time ordering completely

$$P(d|c) = \prod_{i=1}^{n} P(w_i|c)$$

• How to model/estimate $P(w_i|c)$?

$$\hat{P}(w_i|c) = \frac{\mathsf{count}(w_i,c)}{\sum_{w \in \mathcal{V}} \mathsf{count}(w_i,c)}$$

 Here count(w, c) just counts the number of times word w appears in documents of class c

TF-IDF

Information Retrieval and TF-IDF

- Naive Bayes utilizes raw counts/frequencies
- For many applications, raw counts/frequencies are too naive
- Information Retrieval
 - Example: return all documents most relevant to the phrase "machine learning is hard"
 - "is" is a very common word, many documents will have high occurrences
- TF: term frequency

$$\mathsf{tf}(t,d) = \frac{f_{t,d}}{\sum_{t' \in d} f_{t',d}}$$

• IDF: inverse document frequency

$$\operatorname{idf}(t,\mathcal{D}) = \log\left(rac{|\mathcal{D}|}{|d\in\mathcal{D}:t\in d|}
ight)$$

TF-IDF

$$\mathsf{tf}\text{-}\mathsf{idf}(t,d,\mathcal{D}) = \mathsf{tf}(t,d) \times \mathsf{idf}(t,\mathcal{D})$$

Information Retrieval and TF-IDF

TF-IDF

$$\mathsf{tf}\text{-}\mathsf{idf}(t,d,\mathcal{D}) = \mathsf{tf}(t,d) \times \mathsf{idf}(t,\mathcal{D})$$

- TF: how frequent is a term in a given document
- IDF: small for terms that show up in many documents
- TF-IDF values are often used as useful features to work with
- Can consider TF-IDF to be a dense vector feature for each *document*:

$$\mathbf{v}(d) = \{ \mathsf{idf}(t_1, \mathcal{D}), \mathsf{idf}(t_2, \mathcal{D}), ..., \mathsf{idf}(t_n, \mathcal{D}) \}$$

 Can now introduce a concept of distance/similarity between documents **Vector Embeddings and Representation Learning**

Vector Embeddings and Representation Learning

- The TF-IDF vectors are dense, compared to the sparse vectors we encountered before
- E.g., The quick brown fox jumps over the lazy dog word-level: $v(\text{quick}) = \{0, 1, 0, 0, 0, 0, 0, 0, \dots\}$ Bag of Words doc-level: $v(d) = \{1, 2, 1, 1, 1, 1, 1, \dots\}$
- The TF-IDF vectors contain less info than original data which makes them easier to work with
- Can act as useful features for down-stream tasks such as classification
- Big idea: learn the dense vector representations (embeddings)
- These vectors will not be useful in and of themselves, they will be useful for downstream tasks
- General approach is called representation learning or feature learning

- Word2Vec is a very well-known approach for learning useful vector embeddings at the word level
- Most popular implementation is in the Gensim library
- The basic idea is the important first step in more sophisticated and modern language models

296

- There are two versions of Word2Vec (Skip-gram, Continuous Bag of Words)
- Embeddings are trained differently in the two versions, but both are based on utilizing context
- Both effectively use a 2-layer NN
- Both learn vector representations that are useful for predicting other words in a sentence
- If you are curious, here are some useful references for further reading:
 - Original paper 1
 - Original paper 2
 - Lillian Weng's blog
- There is also a document-level version called doc2vec

- The learned vector embeddings can be shown to encode some interesting relationships
- Having mapped words to vectors, we can now perform algebraic operations on words!
- E.g., can subtract word vectors:

$$\mathbf{v}' = \mathbf{v}(\mathsf{king}) - \mathbf{v}(\mathsf{queen}) + \mathbf{v}(\mathsf{woman})$$

- Can then search through vocabulary to find closest word vector to v'
- Often the result makes sense: in this case it will be ν(man)

Cosine Similarity

$$S_{c}(v_{1},v_{2}) = cos \Theta$$

$$= \frac{v_{1} \cdot v_{2}}{||v_{1}|| ||v_{2}||}$$

$$S_{c} = ||v_{2}|| ||v_{3}|| ||v_{4}||$$

$$= 0 \cdot orthogonal (unrelated)$$

Cosine Similarity

Cosine similarity

$$S_C(\mathbf{v}_1,\mathbf{v}_2) = \frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{||\mathbf{v}_1||||\mathbf{v}_2||}$$

- Can be used to assess how closely related two documents are
 - nearly parallel ($S_C \approx 1$): closely related
 - nearly orthogonal ($S_C \approx 0$): unrelated
 - nearly anti-parallel ($S_C \approx -1$): closely related as opposites
- Note: that the vector lengths do not matter, just relative positioning
- ullet S_C is not a distance measure, but it can be used to define one

Vector Embeddings and Representation Learning

- Vector embeddings aim to geometrically encode semantic meaning of words and sentences
- Original text is high dimensional, sparse, embeddings are much lower dimensional, typically dense
- Embeddings can be immediately useful for certain tasks, such as information retrieval
- They can also be used as inputs to downstream applications, such as classification
- discuss pre-training, transfer learning

Modern NLP

Deep Learning for NLP

- In this class we are just giving a short intro to NLP
- "Deep NLP" will be covered in more detail in the advanced class
- These next few slides will just set the stage and give a very general overview of the field

Neural Architectures for NLP

- There are several neural network architectures tailored for processing sequence/text data
- Recurrent Neural Networks (RNNs) can process sequences of arbitrary length
- In principle, they can capture long-term dependencies, but in practice this is difficult
- There are many variants aimed to address this and improve performance
- Basic "Vanilla" RNN: for t = 0, 1, ..., compute

$$egin{aligned} oldsymbol{a}^{(t)} &= oldsymbol{b} + oldsymbol{W}oldsymbol{h}^{(t-1)} + oldsymbol{U}oldsymbol{x}^{(t)} \ oldsymbol{o}^{(t)} &= oldsymbol{c} + oldsymbol{V}oldsymbol{h}^{(t)} \ \end{aligned}$$

ullet seq2seq: maps input $\{m{x}^{(0)},m{x}^{(1)},...\}$ to output $\{m{o}^{(0)},m{o}^{(1)},...\}$

Neural Architectures for NLP

Figure 10.3: The computational graph to compute the training loss of a recurrent network that maps an input sequence of \boldsymbol{x} values to a corresponding sequence of output \boldsymbol{o} values. A loss L measures how far each \boldsymbol{o} is from the corresponding training target \boldsymbol{y} . When using softmax outputs, we assume \boldsymbol{o} is the unnormalized log probabilities. The loss L internally computes $\hat{\boldsymbol{y}} = \text{softmax}(\boldsymbol{o})$ and compares this to the target \boldsymbol{y} . The RNN has input to hidden connections parametrized by a weight matrix \boldsymbol{U} , hidden-to-hidden recurrent connections parametrized by a weight matrix \boldsymbol{W} , and hidden-to-output connections parametrized by a weight matrix \boldsymbol{V} . Equation 10.8 defines forward propagation in this model. (Left) The RNN and its loss drawn with recurrent connections. (Right) The same seen as a time-unfolded computational graph, where each node is now associated with one particular time instance.

Attention Is All You Need

- RNNs and variants have fallen out of favor relative to so-called transformer models
- Transformer models employ an operation called attention which allows the model to learn which parts of the sequence to focus on (context)
- This allows them to be more efficient compared to RNNs which process data in serial
- This in turns allows transformers to scale up to incredibly large model sizes
- Results in super large, expensive models called by many names
 - Sesame Street Models
 - Large Language Models
 - Foundation Models

Attention Is All You Need

Discussion about GPT

Things I would have liked to cover if we had more time

- Zipf's law
- Topic modeling and LDA
- More applications of Word2Vec, Doc2Vec