· AYUNDAI

HY6116A Series

2K x 8-bit CMOS SRAM

DESCRIPTION

The HY6116A is a high-speed, low power and 2,048 x 8-bits CMOS static RAM fabricated using Hyundai's high performance twin tub CMOS process technology. This high reliability process coupled with innovative circuit design techniques, yields maximum access time of 85ns. The HY6116A has a data retention mode that guarantees data to remain valid at a minimum power supply voltage of 2.0 volt. Using CMOS technology, supply voltages from 2.0 to 5.5 volt have little effect on supply current in data retention mode. Reducing the supply voltage to minimize current drain is unnecessary with the HY6116A Series.

FEATURES

- High speed-85/100/120/150ns (max.)
- · Low power consumption
- Operating: 150 mW (typ.)
- Standby (CMOS): 0.5 µW (typ.)
- Single 5V± 10% power supply
- Battery backup (L-part)
 - 2.0V (min.) data retention
- · Fully static operation
 - No clock or refresh required
- TTL compatible inputs and outputs
- · Tri-state output
- · Standard pin configuration
 - 24 pin 600 mil PDIP

PIN CONNECTION

_				
A7 ☐	1		24	
A6 🗆	2		23	D A8
A5 □ :	3		22	Þ A 9
A4 🖂	4		21	₽₩E
A3 □	5		20	DOE
A2 🗆	6		19	□ A10
A1 🗆	7		18	□cs
A0 □	8		17	□ nos
I/O1 🗖	9		16	□ VQ7
VO2 C	10		15	□ ν∞6
1/03 🗆	11		14	□ VO5
vss 🗆	12		13	P 1/04
_		DOID		-

PIN DESCRIPTION

Pin Name	Pin Function
CS	Chip Select
WE	Write Enable
OE	Output Enable
A0-A10	Address Inputs
1/01-1/08	Data Input/Output
Vcc	Power (+ 5V)
Vss	Ground

BLOCK DIAGRAM

This document is a general product description and is subject to change without notice. Hyundai electronics does not assume any responsibility for use of circuits described. No patent licences are implied.

ABSOLUTE MAXIMUM RATINGS(1)

SYMBOL	PARAMETER	RATING	UNIT
VCC, VIN, VOUT	Power Supply, Input/Output Voltage	- 0.5 to 7.0	V
TA	Operating Temperature	0 to 70	.c
TBIAS	Temperature under Bias	- 10 to 125	.c
Tstg	Storage Temperature	- 65 to 150	,C
PD	Power Dissipation	1.0	W
lout	Data Output Current	50	mA
TSOLDER	Lead Soldering Temperature & Time	260•10	*C ∙sec

Note:

RECOMMENDED DC OPERATING CONDITIONS

(TA= 0°C to 70°C)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
Vcc	Power Supply Voltage	4.5	5.0	5.5	V
ViH	Input High Voltage	2.2	-	VCC + 0.5	V
VIL	Input Low Voltage	-0.5	-	0.8	V

Note:

TRUTH TABLE

MODE	I/O OPERATION	cs	WE	OE
Standby	High-Z	Н	Х	Х
Output Disabled	High-Z	L	Н	Н
Read	Data Out	L	Н	L
Write	Data In	L	L	X

Note:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to
the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational of this specification is not implied. Exposure to absolute
maximum rating conditions for extended period may affect reliability.

^{1.} VIL = -3.0V for pulse width less than 50ns.

^{1.} H= VIH, L= VIL, X= Don't Care

DC CHARACTERISTICS

(TA= 0°C to 70°C, V_{CC}= 5V \pm 10%, unless otherwise specified.)

SYMBOL	PARAMETER	TEST CONDITIONS	POWER	MIN.	TYP.	MAX.	UNIT
lu	Input Leakage Current	Vss≤ Vin ≤ Vcc		-2	-	2	μА
ILO	Output Leakage Current	Vss≤ Vout≤ Vcc CS = ViH or OE= ViH or WE= ViL	_	-2	-	2	μA
ICC1	Average Operating Current	CS = V _{IL} Min. Duty Cycle= 100%, I _{I/O} = 0mA		-	30	60	mA
ISB	TTL Standby Current (TTL Inputs)	CS= VIH		-	0.5	3	mA
ISB1	CMOS Standby Current	CS ≥ Vcc -0.2V		-	4	50	μΑ
1001	(CMOS Inputs)		L	-	0.1	5	_μ A
VOL	Output Low Voltage	IOL= 2.1mA			-	0.4	<u>V</u>
Voн	Output High Voltage	Юн= – 1.0mA		2.4	-		V

Note:

^{1.} Typical values are at VCC= 5.0V, Ta= 25 °C.

AC CHARACTERISTICS

(TA= 0°C to 70°C, V_{CC} = 5V \pm 10%, unless otherwise noted.)

#	SYMBOL	PARAMETER		B5	-	10	•	12		15	UNIT
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT
	READ C	YCLE			*						
1	tRC	Read Cycle Time	85	-	100	T -	120	-	150	-	ns
2	tAA	Address Access Time	-	85	-	100	١.	120	-	150	ns
3	tACS	Chip Select Access Time	-	85	-	100	-	120	-	150	ns
4	tOE	Output Enable to Output Valid	-	45	-	50	-	55	-	60	ns
5	tCLZ	Chip Select to Low-Z Output	10	-	10	-	10	-	10	<u>├</u>	ns
6	tOLZ	Output Enable to Low-Z Output	10	-	10	-	10	-	10	-	ns
7	tcHZ	Chip Disable to High-Z Output	0	40	0	40	0	40	0	50	ns
8	tonz	Output Disable to High-Z Output	0	40	0	40	0	40	0	50	ns
9	ton	Output Hold from Address Change	10	-	10	-	10	-	15		ns
	WRITE	CYCLE									
10	twc	Write Cycle Time	85	-	100	-	120	-	150	- 1	ns
11	tcw	Chip Select to End of Write	60	-	65	-	70	-	90	-	ns
12	taw	Address Valid to End of Write	70	-	80	-	105	-	120	_	ns
13	tas	Address Set-up Time	0	-	0	-	0	-	0	-	ns
14	twp	Write Pulse Width	55	-	60	-	70	-	80		ns
15	twr	Write Recovery Time	0	-	0	-	0	-	0	-	ns
16	twnz	Write to High-Z Output	0	30	0	30	0	35	0	40	ns
17	tDW	Data to Write Time Overlap	30	-	30	-	35	-	40	-	ns
18	tDH	Data Hold from Write Time	0	-	0		0		0		ns
19	tow	Output Active from End of Write	10	-	10		10	-	10		ns

AC TEST CONDITIONS

(TA= 0°C to 70°C, V_{CC}= 5V ±10%, unless otherwise specified.)

PARAMETER	VALUE
Input Pulse Level	0.8V to 2.4V
Input Rise and Fall Time	5ns
Input and Output Timing Reference Levels	1.5V
Output Load	C _L = 100pF + 1TTL Load

AC TEST LOADS

Note:

1.Including jig and scope capacitance.

CAPACITANCE

(TA= 25°C, f= 1MHz)

SYMBOL	PARAMETER	CONDITION	MAX.	UNIT
Cin	Input Capacitance	VIN= 0V	6	pF
CI/O	Input/Output Capacitance	VI/O= 0V	8	pF

Note:

1. This parameter is sampled and not 100% tested.

TIMING DIAGRAM

READ CYCLE 1

Note (READ CYCLE):

- 1. t_{CHZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- At any given temperature and voltage condition, t_{CHZ} max. is less than t_{CLZ} min. both for a given device and from device to device.
- 3. WE is high for read cycle.

READ CYCLE 2

Note(READ CYCLE):

- 1. WE is high for read cycle.
- 2. Device is continuously selected CS= Vil.
- 3. OE= VIL.

WRITE CYCLE 2 ($\overline{\text{OE}}$ Low Fixed)

Note (WRITE CYCLE):

- 1. A write occurs during the ovelap of a low CS and a low WE. A write begins at the latest transition among CS going low, and WE going low: A write ends at the earlist transition among CS going high and WE going high. twp is measured from the beginning of write to the end of write.
- 2. tcw is measured from the later of \overline{CS} going low to end of write.
- 3. tas is measured from the address valid to the beginning of write.
- twn is measured from the end of write to the address change. twn applied in case a write ends as CS or WE going high.
- 5. If OE and WE are in the read mode during this period, the I/O pins are in the output low-Z state, inputs of opposite phase of the output must not be applied because bus contention can occur.
- If CS goes low simultaneously with WE going low or after WE going low, the outputs remain in high impedance state.
- 7. DOUT is the same phase of lastest written data in this write cycle.
- 8. Dout is the read data of the new address.

DATA RETENTION CHARACTERISTICS

(TA= 0°C to 70°C)

SYMBOL	PARAMETER	TEST CONDITION	POWER	MIN.	TYP.	MAX.	UNIT
VDR	Vcc for Data Retention	CS ≥ Vcc-0.2V Vss≤ Vin≤ Vcc		2.0	-	-	٧
ICCDR	Data Retention Current	Vcc= 3.0V CS ≥ Vcc-0.2V, Vss ≤ Vin ≤ Vcc	L	-	0.05	2	μA
tCDR	Chip Disable to Data Retention Time	See Data Retention Timing Diagram		0	-	-	ns
tR	Operating Recovery Time			tRC ⁽²⁾	-	-	ns

Notes:

- 1. Typical values are at the condition of TA= 25°C.
- 2. tRC is read cycle time.

DATA RETENTION TIMING DIAGRAM 1

PACKAGE INFORMATION

600 mil 24 pin Dual In-line Package (P)

ORDERING INFORMATION

PART NO.	SPEED	POWER	PACKAGE
HY6116AP	85/100/120/150		PDIP
HY6116ALP	85/100/120/150	L-part	PDIP