Streuung

Wir betrachten die einfallende Stromdichte J_{ein} (Anzahl der Teilchen pro Zeiteinheit und Fläche), das an einem Punktteilchen mit einem Zentralpotential, gestreut wird. Ein Detektor misst eine Telmenge des gestreuten Teilchenstroms J_{gestr} im dem Raumwinkel θ und Abstand r. Die Ströme sind offenbar proportional zu einander:

$$J_{\rm gestr} \propto J_{\rm ein}$$
 (1)

und die Proportionalitätskonstante $\frac{d\sigma}{dA}$ bestimmt die Menge der Teilchen pro Zeit die am Detektor ankommen.

$$J_{\text{gestr}} = \frac{d\sigma}{dA} J_{\text{ein}} \tag{2}$$

$$\Leftrightarrow \frac{d\sigma}{dA} = \frac{J_{\text{gestr}}}{J_{\text{ein}}}$$

$$\frac{d\sigma}{d\Omega r^2} = \frac{J_{\text{gestr}}}{J_{\text{ein}}}$$
(4)

$$\frac{d\sigma}{d\Omega r^2} = \frac{J_{\text{gestr}}}{J_{\text{cir}}} \tag{4}$$

(5)

Diese Größe ist noch vom Abstand r^2 Abhängig. Multipliziert man die Gleichung (2) mit r^2 so erhält man den differenziellen Wirkungsquerschnitt:

$$\frac{d\sigma}{d\Omega} = \frac{J_{\text{gestr}}r^2}{J_{\text{ein}}} \tag{6}$$

Um den differenziellen Wirkungsquerschnitt bestimmen zu können müssen wir als nächstes die Zustandsfunktion der einlafenden und gestreuten Teilchen herleiten. Betrachte das Einfallende Teilchen als ebene Wellen Pakete.

Referenzen

- Claude Cohen-Tannoudji Quantenmechanik Band 2
- Zettili Quanten Mehanics
- Rollnik Quantentheorie 2