Divisibilité

Soit $a, b \in \mathbb{Z}$

a divise b / b multiple de a

$$\exists k \in \mathbb{Z}$$
 $ak = b$

Notations

- ► a | b pour « a divise b »
- a // b pour « a ne divise pas b »

- $ightharpoonup 2 | 4 car 2 \times 2 = 4$
- ▶ $3 \mid 12 \text{ car } 3 \times 4 = 12$

Divisibilité

Ensemble des diviseurs positifs

$$\mathcal{D}(a) = \{d \in \mathbb{N} \mid d \text{ divise } a\}$$

- \triangleright $\mathcal{D}(12) = \{1, 2, 3, 4, 6, 12\}$
- $ightharpoonup \mathcal{D}(-12) = \{1, 2, 3, 4, 6, 12\}$
- \triangleright $\mathcal{D}(14) = \{1, 2, 7, 14\}$
- \triangleright $\mathcal{D}(97) = \{1, 97\}$
- $ightharpoonup \mathcal{D}(1) = \{1\}$
- $ightharpoonup \mathcal{D}(0) = \mathbb{N}$

Divisibilité

Ensemble des multiples positifs

$$\mathcal{M}(a) = \{ m \in \mathbb{N} \mid a \text{ divise } m \}$$

- \blacktriangleright $\mathcal{M}(12) = \{0, 12, 24, 36, 48, 60, \ldots\}$
- $ightharpoonup \mathcal{M}(-12) = \{0, 12, 24, 36, 48, 60, \ldots\}$
- \blacktriangleright $\mathcal{M}(14) = \{0, 14, 28, 42, 56, 70, \ldots\}$
- $ightharpoonup \mathcal{M}(97) = \{0, 97, 194, 291, 388, 485, \ldots\}$
- $ightharpoonup \mathcal{M}(1) = \mathbb{N}$
- $ightharpoonup \mathcal{M}(0) = \{0\}$

Divisibilité

Propriétés

Soit $a, b, c, m, n \in \mathbb{Z}$.

- 1. *a* | 0
- 2. 1 | a
- 3. si $a \mid b$ et $b \neq 0$ alors $|a| \leq |b|$
- 4. $\mathcal{D}(a)$ est fini si et seulement si $a \neq 0$
- 5. $\mathcal{M}(a)$ est fini si et seulement si a=0
- 6. a | a
- 7. $a \mid b \text{ et } b \mid c \Rightarrow a \mid c$
- 8. $a \mid b \text{ et } b \mid a \Rightarrow |a| = |b|$
- 9. $c \mid a \text{ et } c \mid b \Rightarrow c \mid ma + nb$

Division euclidienne

Division euclidienne

Soit $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$.

Il existe un unique $(q, r) \in \mathbb{Z}^2$ tel que a = bq + r et $0 \le r < |b|$

Illustration pour b > 0

d'où

$$qb \le a < (q+1)b$$

donc

$$a = bq + r$$
 avec $0 \le r < b$

Division euclidienne

Division euclidienne

Soit $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$.

Il existe un unique $(q,r) \in \mathbb{Z}^2$ tel que a = bq + r et $0 \le r < |b|$

Notations

- a div b pour le quotient q
- a mod b pour le reste r

- $46 = 5 \times 9 + 1 \text{ donc}$ 46 div 5 = 9, 46 mod 5 = 1
- ► $46 = 8 \times 5 + 6 \text{ donc}$ 46 div 8 = 5, 46 mod 8 = 6
- ► $46 = -8 \times -5 + 6$ donc 46 div -8 = -5, 46 mod -8 = 6
- ► $-46 = 8 \times -6 + 2 \text{ donc } -46 \text{ div } 8 = -6, -46 \text{ mod } 8 = 2$
- ► $-46 = -8 \times 6 + 2 \text{ donc } -46 \text{ div } -8 = 6, -46 \text{ mod } -8 = 2$

Division euclidienne

Division euclidienne

Soit $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$.

Il existe un unique $(q, r) \in \mathbb{Z}^2$ tel que a = bq + r et $0 \le r < |b|$

Preuve (existence)

D'abord pour $(a, b) \in \mathbb{N} \times \mathbb{N}^*$

- 1 Fonction divmod(a, b : entiers) : 2 | $(q,r) \leftarrow (0,a)$
- tant que $r \ge b$ faire
- $\begin{array}{c|cccc}
 4 & & r \leftarrow r b \\
 5 & & q \leftarrow q + 1
 \end{array}$
- 6 retourner (q,r)

- invariant : à chaque tour de boucle a = bq + r
- ▶ terminaison : r b décroit strictement car b > 0
- conclusion : à la fin a = bq + r et $0 \le r < b$

Division euclidienne

Division euclidienne

Soit $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$.

Il existe un unique $(q,r) \in \mathbb{Z}^2$ tel que a = bq + r et $0 \le r < |b|$

Preuve (existence)

Puis pour $(a,b) \in \mathbb{Z} \times \mathbb{Z}^*$:

- ▶ si $a \ge 0$ et b > 0 : divmod(a, b) = (q, r) convient
- ▶ si $a \ge 0$ et b < 0: divmod(a, -b) = (q, r) avec a = -bq + r et $0 \le r < -b$ donc (q', r') = (-q, r) convient

Division euclidienne

Division euclidienne

Soit $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$.

Il existe un unique $(q,r) \in \mathbb{Z}^2$ tel que a = bq + r et $0 \le r < |b|$

Preuve (existence)

Puis pour $(a,b) \in \mathbb{Z} \times \mathbb{Z}^*$:

- ▶ si a < 0 et b > 0: divmod(-a, b) = (q, r) avec -a = bq + r et $0 \le r < b$
 - ightharpoonup si r=0: alors (q',r')=(-q,r) convient
 - ightharpoonup si r>0: alors (q',r')=(-q-1,b-r) convient car

$$bq' + r' = b(-q - 1) + b - r = -bq - r = a$$

et

$$0 \ge -r > -b \text{ donc } b \ge b - r > 0$$

Division euclidienne

Division euclidienne

Soit $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$.

Il existe un unique $(q,r)\in\mathbb{Z}^2$ tel que a=bq+r et $0\leq r<|b|$

Preuve (existence)

Puis pour $(a,b) \in \mathbb{Z} \times \mathbb{Z}^*$:

- ▶ si a < 0 et b < 0: divmod(-a, -b) = (q, r) avec -a = -bq + r et $0 \le r < -b$
 - ightharpoonup si r=0: alors (q',r')=(q,r) convient
 - ightharpoonup si r>0: alors (q',r')=(q+1,-b-r) convient car

$$bq' + r' = b(q+1) - b - r = bq - r = a$$

et

$$0 \ge -r > b \text{ donc } -b \ge -b -r > 0$$

Division euclidienne

Division euclidienne

Soit $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$.

Il existe un unique $(q,r)\in\mathbb{Z}^2$ tel que a=bq+r et $0\leq r<|b|$

Preuve (unicité)

Soit $(q, r), (q', r') \in \mathbb{Z}^2$ tels que

$$egin{aligned} a &= bq + r \ a &= bq' + r' \end{aligned} \qquad et \qquad egin{aligned} 0 &\leq r < |b| \ 0 &\leq r' < |b| \end{aligned}$$

Alors

$$-|b| < r - r' < |b|$$

et

$$bq + r = bq' + r'$$
 d'où $b(q - q') = r' - r$

Comme r'-r multiple de b entre -|b| et |b| nécessairement r'-r=0 et par suite puisque $b\neq 0$ alors q-q'=0

Arithmétique modulaire et congruences

Propriétés

Soit $a, b \in \mathbb{Z}, c \in \mathbb{Z}^*$ et $n \in \mathbb{N}^*$.

- 1. $(a+b) \mod c = ((a \mod c) + (b \mod c)) \mod c$
- 2. $(a \times b) \mod c = ((a \mod c) \times (b \mod c)) \mod c$
- 3. $(a \mod c) \mod c = a \mod c$
- 4. $a^n \mod c = (a \mod c)^n \mod c$

- $(79+68) \mod 49 = (30+19) \mod 49 = 49 \mod 49 = 0$
- $(79 \times 68) \mod 49 = (30 \times 19) \mod 49 = (10 \times 3 \times 19) \mod 49 = (10 \times 57) \mod 49 = (10 \times 8) \mod 49 = 80 \mod 49 = 31$
- ► $2^{12} \mod 49 = (2^6)^2 \mod 49 = 64^2 \mod 49 = 15^2 \mod 49 = (3 \times 75) \mod 49 = (3 \times 26) \mod 49 = 29$

Arithmétique modulaire et congruences

Soit $m \in \mathbb{N}^*$, $a, b \in \mathbb{Z}$.

Congruence

$$a \equiv_m b :\Leftrightarrow m \mid a - b$$

Autres notations

$$a \equiv b \mod m$$
 ou aussi $a \equiv b [m]$

- **▶** 46 ≡₅ 1
- **►** 46 ≡₈ 6
- → -46
 ≡₈ 2

- **▶** 46 ≡₅ 26
- ▶ $46 \equiv_5 -19$
- ► $45 \equiv_5 0$

Arithmétique modulaire et congruences

Propriétés

Soit $a, b, c \in \mathbb{Z}$, $m \in \mathbb{N}^*$ et $n \in \mathbb{N}^*$.

- 1. $a \equiv_m a$
- 2. $a \equiv_m b \Rightarrow b \equiv_m a$
- 3. $a \equiv_m b$ et $b \equiv_m c \Rightarrow a \equiv_m c$
- 4. $a \equiv_m b$ et $c \equiv_m d \Rightarrow a + c \equiv_m b + d$
- 5. $a \equiv_m b$ et $c \equiv_m d \implies a \times c \equiv_m b \times d$
- 6. $a \equiv_m b \Rightarrow a^n \equiv_m b^n$
- 7. $a \equiv_m b \Leftrightarrow a \mod m = b \mod m$

Arithmétique modulaire et congruences

Exemples

- ightharpoonup 79 + 68 \equiv_{49} 30 + 19 \equiv_{49} 49 \equiv_{49} 0
- $ightharpoonup 79 \times 68 \equiv_{49} 30 \times 19 \equiv_{49} 10 \times 57 \equiv_{49} 10 \times 8 \equiv_{49} 31$

Attention

 \equiv_m n'est pas compatible en général avec la simplification :

$$2 \times 3 \equiv_6 4 \times 3$$
 mais $2 \not\equiv_6 4$

ni avec des puissances congrus :

$$4 \equiv_5 9$$
 mais $2^4 \not\equiv_5 2^9$