Faculdade de Tecnologia da Universidade de Brasília (FT/UnB) Departamento de Engenharia Elétrica (ENE)

LABORATÓRIO DE ELETRÔNICA (ENE0046)

RELATÓRIO nº 8

Fontes de Tensão 2

Matrícula	Nome completo	Assinatura
180137816	Manoel Vieira Coelho Neto	
170020738	Pedro Pereira Nunes	

Prof. Adson Ferreira da Rocha Prof. Alexandre Ricardo Soares Romariz Prof. Daniel Orquiza de Carvalho

Turma C

Figura 1. Circuito conversor AC-DC Flyback

Antes de iniciar a simulação é necessário definir os valores de R_{10} e R_{8} no esquemático apresentado. A conta é feita através do cálculo simples de divisor de tensão:

$$V_{out} = V_{in} * \frac{R11}{R10 + R11}$$
 (1)

Para $V_{out} = V_{FB} = 1.25V$, R11 = 1k e $V_{in} = 12V$, temos então que:

$$R11 = \frac{(12-1.25)}{1.25}k\Omega = 8.6k\Omega$$
 (2)

 R_8 = R_{10} = 8.6k Ω . Em simulação foi observado que ao aumentar para 9k Ω aproximava melhor a curva de tensão de 12V portanto, usou-se 9k Ω para os resistores.

1. Parte A

Figura 2. Ponto de soft start

O ponto de fim do soft-start (quando a saída chega à faixa de operação desejada com um início de carregamento lento) se dá aproximadamente em 10.18ms. Essa característica permite que o circuito não tenha um pico na inicialização e danifique os componentes de menor tensão que estejam acoplados à saída ou que tenham operação numa faixa de tensão menor do lado direito do circuito.

2. Parte B

Figura 3. Forma da corrente com resistência de 100Ω

Figura 4. Forma da corrente sem resistência de 100Ω

Devido às dimensões serem de pequena ordem e o tempo de simulação extenso é difícil mensurar com o cursor, mas é possível perceber como há uma saliência mais acentuada na curva da Figura 4, o que corresponde ao esperado, já que a resistência na entrada serve para atenuar esse pico de corrente no início das comutações, quando a tensão de saída começa a chegar em sua estabilidade.

3. Parte C

Figura 5. Potências no tempo da carga e da fonte

As potências médias calculadas através da ferramenta nativa do spice, são:

Pot. Média na carga	4.475W
Pot. Média na fonte	-10.326W
Eficiência	0.433

Tabela 1. Potências médias e eficiência do circuito

Analogamente para as fontes anteriores, temos:

Figura 6. Potências no tempo da carga e da fonte, primeiro experimento

Pot. Média na carga	14.345mW
Pot. Média na fonte	-20.191GW
Eficiência	7.105 × 10 ⁻¹³

Tabela 1. Potências médias e eficiência do circuito do primeiro experimento

Figura 6. Potências no tempo da carga e da fonte, segundo experimento

Pot. Média na carga	7.1177W
Pot. Média na fonte	-8.3462W
Eficiência	0.853

Tabela 1. Potências médias e eficiência do circuito do primeiro experimento

Pode-se notar que o circuito da parte 2 (relatório anterior) tem a maior eficiência entre os circuitos montados, mas que o valor da potência da fonte é muito mais estável para o circuito apresentado neste relatório.