Lecture 13

Disjoint-Set Data Structure (contd.)

Idea: We maintain the dynamic disjoint sets in the following way:

Keep sets as rooted trees.

- Keep sets as rooted trees.
- Each node points to its parent.

- Keep sets as rooted trees.
- Each node points to its parent.
- Root is its own parent and the representative of the set.

- Keep sets as rooted trees.
- Each node points to its parent.
- Root is its own parent and the representative of the set.

- Keep sets as rooted trees.
- Each node points to its parent.
- Root is its own parent and the representative of the set.

Finding representative in the worst case will require 5 steps

Shouldn't root with smaller height point to root with larger height?

Finding representative in the worst case now requires 4 steps

Idea:

• For every node keep track of its rank which denotes its height in the tree.

- For every node keep track of its rank which denotes its height in the tree.
- During **Union**:

- For every node keep track of its rank which denotes its height in the tree.
- During **Union**:
 - Root with smaller rank will point to root with larger rank.

- For every node keep track of its rank which denotes its height in the tree.
- During Union:
 - Root with smaller rank will point to root with larger rank.
 - If roots have the same rank then anyone can point to the other one and rank of the new

- For every node keep track of its rank which denotes its height in the tree.
- During Union:
 - Root with smaller rank will point to root with larger rank.
 - If roots have the same rank then anyone can point to the other one and rank of the new representative will increase by one.

Rank starts with 0

- For every node keep track of its rank which denotes its height in the tree.
- During Union:
 - Root with smaller rank will point to root with larger rank.
 - If roots have the same rank then anyone can point to the other one and rank of the new representative will increase by one.

Union on Disjoint-Sets as Trees using Rank

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set (x) :	

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x):

1.
$$x \cdot p = x$$

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x):

- 1. $x \cdot p = x$
- $2. \quad x. rank = 0$

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x):

- 1. $x \cdot p = x$
- $2. \quad x. rank = 0$

```
Find-Set(x):
```

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x):

- 1. $x \cdot p = x$
- $2. \quad x. rank = 0$

Find-Set(x):

1. if $x \neq x \cdot p$

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x):

- 1. $x \cdot p = x$
- $2. \quad x. rank = 0$

- 1. if $x \neq x \cdot p$
- 2. return Find-Set(x . p)

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x):

- 1. $x \cdot p = x$
- $2. \quad x. rank = 0$

- 1. if $x \neq x \cdot p$
- 2. return Find-Set(x . p)
- 3. else

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x):

- 1. $x \cdot p = x$
- $2. \quad x. rank = 0$

- 1. if $x \neq x \cdot p$
- 2. return Find-Set(x . p)
- 3. else
- 4. return x

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x):

- 1. $x \cdot p = x$
- $2. \quad x. rank = 0$

- 1. if $x \neq x \cdot p$
- 2. return Find-Set(x . p)
- 3. **else**
- 4. return x

```
Union(x, y):
```

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x):

- 1. $x \cdot p = x$
- 2. x.rank = 0

Find-Set(x):

- 1. if $x \neq x \cdot p$
- 2. return Find-Set(x . p)
- 3. else
- 4. return x

Union(x, y):

1. x = Find-Set(x), y = Find-Set(y)

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x):

- 1. $x \cdot p = x$
- $2. \quad x. rank = 0$

Find-Set(x):

- 1. if $x \neq x \cdot p$
- 2. return Find-Set(x . p)
- 3. else
- 4. return x

- 1. x = Find-Set(x), y = Find-Set(y)
- 2. if $x \cdot rank > y \cdot rank$

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x):

- 1. $x \cdot p = x$
- $2. \quad x. rank = 0$

Find-Set(x):

- 1. if $x \neq x \cdot p$
- 2. return Find-Set(x . p)
- 3. else
- 4. return x

- 1. x = Find-Set(x), y = Find-Set(y)
- 2. if $x \cdot rank > y \cdot rank$
- 3. $y \cdot p = x$

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x):

- 1. $x \cdot p = x$
- $2. \quad x. rank = 0$

Find-Set(x):

- 1. if $x \neq x \cdot p$
- 2. return Find-Set(x . p)
- 3. else
- 4. return x

- 1. x = Find-Set(x), y = Find-Set(y)
- 2. if $x \cdot rank > y \cdot rank$
- 3. $y \cdot p = x$
- 4. else if x. rank < y. rank

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x):

- 1. $x \cdot p = x$
- $2. \quad x. rank = 0$

Find-Set(x):

- 1. if $x \neq x \cdot p$
- 2. return Find-Set(x . p)
- 3. else
- 4. return x

- 1. x = Find-Set(x), y = Find-Set(y)
- 2. if $x \cdot rank > y \cdot rank$
- 3. $y \cdot p = x$
- 4. else if x. rank < y. rank
- $5. \qquad x \, . \, p = y$

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x):

- 1. $x \cdot p = x$
- 2. x.rank = 0

Find-Set(x):

- 1. if $x \neq x \cdot p$
- 2. return Find-Set(x . p)
- 3. else
- 4. return x

- 1. x = Find-Set(x), y = Find-Set(y)
- 2. if $x \cdot rank > y \cdot rank$
- 3. $y \cdot p = x$
- 4. else if x. rank < y. rank
- $5. \qquad x \, . \, p = y$
- 6. else

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x):

- 1. $x \cdot p = x$
- 2. x.rank = 0

Find-Set(x):

- 1. if $x \neq x \cdot p$
- 2. return Find-Set(x . p)
- 3. else
- 4. return x

- 1. x = Find-Set(x), y = Find-Set(y)
- 2. if $x \cdot rank > y \cdot rank$
- 3. $y \cdot p = x$
- 4. else if x. rank < y. rank
- 5. $x \cdot p = y$
- 6. else
- 7. $x \cdot p = y$

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x):

- 1. $x \cdot p = x$
- 2. x.rank = 0

Find-Set(x):

- 1. if $x \neq x \cdot p$
- 2. return Find-Set(x . p)
- 3. else
- 4. return x

- 1. x = Find-Set(x), y = Find-Set(y)
- 2. if $x \cdot rank > y \cdot rank$
- 3. $y \cdot p = x$
- 4. else if x. rank < y. rank
- $5. \qquad x \, . \, p = y$
- 6. else
- 7. $x \cdot p = y$
- 8. y.rank = y.rank + 1

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x):

- 1. $x \cdot p = x$
- $2. \quad x. rank = 0$

Find-Set(x):

- 1. if $x \neq x \cdot p$
- 2. return Find-Set(x . p)
- 3. else
- 4. return x

assume x and y are in different sets

- 1. x = Find-Set(x), y = Find-Set(y)
- 2. if x. rank > y. rank
- 3. $y \cdot p = x$
- 4. else if x. rank < y. rank
- $5. \qquad x \, . \, p = y$
- 6. else
- 7. $x \cdot p = y$
- 8. y.rank = y.rank + 1

Claim: A node with rank (or height) h has at least 2^h nodes in its subtree.

Claim: A node with rank (or height) h has at least 2^h nodes in its subtree.

Proof:

Claim: A node with rank (or height) h has at least 2^h nodes in its subtree.

Proof: We will prove it using induction on h.

Claim: A node with rank (or height) h has at least 2^h nodes in its subtree.

Proof: We will prove it using induction on h.

Basis Step:

Claim: A node with rank (or height) h has at least 2^h nodes in its subtree.

Proof: We will prove it using induction on h.

Basis Step: Nodes in subtree of a node with height 0 contains 1 node.

Claim: A node with rank (or height) h has at least 2^h nodes in its subtree.

Proof: We will prove it using induction on h.

Basis Step: Nodes in subtree of a node with height 0 contains 1 node. Trivially true.

Claim: A node with rank (or height) h has at least 2^h nodes in its subtree.

Proof: We will prove it using induction on h.

Basis Step: Nodes in subtree of a node with height 0 contains 1 node. Trivially true.

Inductive Step:

Claim: A node with rank (or height) h has at least 2^h nodes in its subtree.

Proof: We will prove it using induction on h.

Basis Step: Nodes in subtree of a node with height 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank $\leq i$, we will prove it for

Claim: A node with rank (or height) h has at least 2^h nodes in its subtree.

Proof: We will prove it using induction on h.

Basis Step: Nodes in subtree of a node with height 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank $\leq i$, we will prove it for nodes with rank i+1.

Claim: A node with rank (or height) h has at least 2^h nodes in its subtree.

Proof: We will prove it using induction on h.

Basis Step: Nodes in subtree of a node with height 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank $\leq i$, we will prove it for nodes with rank i+1.

Let x be a node with rank i + 1.

Claim: A node with rank (or height) h has at least 2^h nodes in its subtree.

Proof: We will prove it using induction on h.

Basis Step: Nodes in subtree of a node with height 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank $\leq i$, we will prove it for nodes with rank i+1.

Let x be a node with rank i + 1.

Case 1: The first time when x's rank changed from i to i+1 and it became root of tree, say T,

Claim: A node with rank (or height) h has at least 2^h nodes in its subtree.

Proof: We will prove it using induction on h.

Basis Step: Nodes in subtree of a node with height 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank $\leq i$, we will prove it for nodes with rank i+1.

Let x be a node with rank i + 1.

Case 1: The first time when x's rank changed from i to i+1 and it became root of tree, say T, it must have been a union of two trees say T_1 and T_2 with their roots' height i.

Claim: A node with rank (or height) h has at least 2^h nodes in its subtree.

Proof: We will prove it using induction on h.

Basis Step: Nodes in subtree of a node with height 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank $\leq i$, we will prove it for nodes with rank i+1.

Let x be a node with rank i + 1.

Case 1: The first time when x's rank changed from i to i+1 and it became root of tree, say T, it must have been a union of two trees say T_1 and T_2 with their roots' height i.

From inductive hypothesis each of T_1 and T_2 contain at least 2^i nodes.

Claim: A node with rank (or height) h has at least 2^h nodes in its subtree.

Proof: We will prove it using induction on h.

Basis Step: Nodes in subtree of a node with height 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank $\leq i$, we will prove it for nodes with rank i+1.

Let x be a node with rank i + 1.

Case 1: The first time when x's rank changed from i to i+1 and it became root of tree, say T, it must have been a union of two trees say T_1 and T_2 with their roots' height i.

From inductive hypothesis each of T_1 and T_2 contain at least 2^i nodes.

Hence, $T = T_1 \cup T_2$ will contain at least $2^i + 2^i = 2^{i+1}$ nodes.

Claim: A node with rank (or height) h has at least 2^h nodes in its subtree.

Proof: We will prove it using induction on h.

Basis Step: Nodes in subtree of a node with height 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank $\leq i$, we will prove it for nodes with rank i+1.

Let x be a node with rank i + 1.

Case 1: The first time when x's rank changed from i to i+1 and it became root of tree, say T, it must have been a union of two trees say T_1 and T_2 with their roots' height i.

From inductive hypothesis each of T_1 and T_2 contain at least 2^i nodes.

Hence, $T = T_1 \cup T_2$ will contain at least $2^i + 2^i = 2^{i+1}$ nodes.

Case 2: At rank i + 1 as root, the union operations only increase the nodes in x's subtree.

Claim: A node with rank (or height) h has at least 2^h nodes in its subtree.

Proof: We will prove it using induction on h.

Basis Step: Nodes in subtree of a node with height 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank $\leq i$, we will prove it for nodes with rank i+1.

Let x be a node with rank i + 1.

Case 1: The first time when x's rank changed from i to i+1 and it became root of tree, say T, it must have been a union of two trees say T_1 and T_2 with their roots' height i.

From inductive hypothesis each of T_1 and T_2 contain at least 2^i nodes.

Hence, $T = T_1 \cup T_2$ will contain at least $2^i + 2^i = 2^{i+1}$ nodes.

Case 2: At rank i + 1 as root, the union operations only increase the nodes in x's subtree.

Claim: Every node has rank at most $\lfloor \lg n \rfloor$ in the disjoint-set via trees using rank heuristic.

Claim: Every node has rank at most $\lfloor \lg n \rfloor$ in the disjoint-set via trees using rank heuristic.

Proof:

Claim: Every node has rank at most $\lfloor \lg n \rfloor$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where k > 0.

Claim: Every node has rank at most $|\lg n|$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where k > 0.

Then, from previous claim its subtree should contain at least $2^{\lfloor \lg n \rfloor + k}$ nodes.

Claim: Every node has rank at most $\lfloor \lg n \rfloor$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where k > 0.

Then, from previous claim its subtree should contain at least $2^{\lfloor \lg n \rfloor + k}$ nodes.

But, $2^{\lfloor \lg n \rfloor + k} > n$, which is not possible.

Claim: Every node has rank at most $\lfloor \lg n \rfloor$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where k > 0.

Then, from previous claim its subtree should contain at least $2^{\lfloor \lg n \rfloor + k}$ nodes.

But, $2^{\lfloor \lg n \rfloor + k} > n$, which is not possible.

Claim: Every node has rank at most $|\lg n|$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where k > 0.

Then, from previous claim its subtree should contain at least $2^{\lfloor \lg n \rfloor + k}$ nodes.

But, $2^{\lfloor \lg n \rfloor + k} > n$, which is not possible.

Claim: A sequence of m Make-Set, Union, & Find-Set operations,

Claim: Every node has rank at most $|\lg n|$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where k > 0.

Then, from previous claim its subtree should contain at least $2^{\lfloor \lg n \rfloor + k}$ nodes.

But, $2^{\lfloor \lg n \rfloor + k} > n$, which is not possible.

Claim: A sequence of *m* Make-Set, Union, & Find-Set operations, first *n* of which are Make-Set

Claim: Every node has rank at most $\lfloor \lg n \rfloor$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where k > 0.

Then, from previous claim its subtree should contain at least $2^{\lfloor \lg n \rfloor + k}$ nodes.

But, $2^{\lfloor \lg n \rfloor + k} > n$, which is not possible.

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first n of which are Make-Set operations, takes $O(m \lg n)$ time in the tree using rank implementation.

Claim: Every node has rank at most $\lfloor \lg n \rfloor$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where k > 0.

Then, from previous claim its subtree should contain at least $2^{\lfloor \lg n \rfloor + k}$ nodes.

But, $2^{\lfloor \lg n \rfloor + k} > n$, which is not possible.

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first n of which are Make-Set operations, takes $O(m \lg n)$ time in the tree using rank implementation.

Proof:

Claim: Every node has rank at most $\lfloor \lg n \rfloor$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where k > 0.

Then, from previous claim its subtree should contain at least $2^{\lfloor \lg n \rfloor + k}$ nodes.

But, $2^{\lfloor \lg n \rfloor + k} > n$, which is not possible.

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first n of which are Make-Set operations, takes $O(m \lg n)$ time in the tree using rank implementation.

Proof: Make-Set operations take constant time.

Claim: Every node has rank at most $|\lg n|$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where k > 0.

Then, from previous claim its subtree should contain at least $2^{\lfloor \lg n \rfloor + k}$ nodes.

But, $2^{\lfloor \lg n \rfloor + k} > n$, which is not possible.

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first n of which are Make-Set operations, takes $O(m \lg n)$ time in the tree using rank implementation.

Proof: Make-Set operations take constant time.

Union operations take the same time as Find-Set.

Claim: Every node has rank at most $|\lg n|$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where k > 0.

Then, from previous claim its subtree should contain at least $2^{\lfloor \lg n \rfloor + k}$ nodes.

But, $2^{\lfloor \lg n \rfloor + k} > n$, which is not possible.

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first n of which are Make-Set operations, takes $O(m \lg n)$ time in the tree using rank implementation.

Proof: Make-Set operations take constant time.

Union operations take the same time as Find-Set.

Find-Set operations take O(h) time, where $h = \lg n$ is the rank of the root of the tree.

Claim: Every node has rank at most $|\lg n|$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where k > 0.

Then, from previous claim its subtree should contain at least $2^{\lfloor \lg n \rfloor + k}$ nodes.

But, $2^{\lfloor \lg n \rfloor + k} > n$, which is not possible.

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first n of which are Make-Set operations, takes $O(m \lg n)$ time in the tree using rank implementation.

Proof: Make-Set operations take constant time.

Union operations take the same time as Find-Set.

Find-Set operations take O(h) time, where $h = \lg n$ is the rank of the root of the tree.

Hence, m operations take $O(m \lg n)$ time.

Claim: Every node has rank at most $|\lg n|$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where k > 0.

Then, from previous claim its subtree should contain at least $2^{\lfloor \lg n \rfloor + k}$ nodes.

But, $2^{\lfloor \lg n \rfloor + k} > n$, which is not possible.

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first n of which are Make-Set operations, takes $O(m \lg n)$ time in the tree using rank implementation.

Proof: Make-Set operations take constant time.

Union operations take the same time as Find-Set.

Find-Set operations take O(h) time, where $h = \lg n$ is the rank of the root of the tree.

Hence, m operations take $O(m \lg n)$ time.

In Path-Compression, while performing Find-Set(x)

In Path-Compression, while performing Find-Set(x) we make root the parent of every node

Change Find-Set(x) to implement path-compression.

Change Find-Set(x) to implement path-compression.

Change Find-Set(x) to implement path-compression.

Find-Set(x):

1. if $x \neq x \cdot p$

Change Find-Set(x) to implement path-compression.

Find-Set(x):

- 1. if $x \neq x \cdot p$
- 2. return Find-Set(x . p)

Change Find-Set(x) to implement path-compression.

Find-Set(x):

- 1. if $x \neq x \cdot p$
- 2. return Find-Set(x . p)
- 3. else

Change Find-Set(x) to implement path-compression.

```
Find-Set(x):

1. if x \neq x \cdot p

2. return Find-Set(x \cdot p)

3. else

4. return x
```

Change Find-Set(x) to implement path-compression.

```
Find-Set(x):

1. if x \neq x \cdot p

2. return Find-Set(x \cdot p)

3. else

4. return x
```

Old Find-Set(x)

Change Find-Set(x) to implement path-compression.

```
Find-Set(x):

1. if x \neq x \cdot p

2. return Find-Set(x \cdot p)

3. else

4. return x
```

Old Find-Set(x)

Find-Set(x):

Change Find-Set(x) to implement path-compression.

Old Find-Set(x)

Change Find-Set(x) to implement path-compression.

Find-Set(x):

1. if $x \neq x \cdot p$

Old **Find-Set**(x)

Change Find-Set(x) to implement path-compression.

Find-Set(x): 1. if $x \neq x \cdot p$ 2. return Find-Set($x \cdot p$) 3. else 4. return x

Old Find-Set(x)

Find-Set(x):

- 1. if $x \neq x \cdot p$
- 2. $x \cdot p = \text{Find-Set}(x \cdot p)$

Change Find-Set(x) to implement path-compression.

```
Find-Set(x):

1. if x \neq x \cdot p

2. return Find-Set(x \cdot p)

3. else

4. return x
```

Old Find-Set(x)

Find-Set(x):

- 1. if $x \neq x \cdot p$
- 2. $x \cdot p = \text{Find-Set}(x \cdot p)$
- 3. return x.p

Change Find-Set(x) to implement path-compression.

Old Find-Set(x)

```
Find-Set(x):

1. if x \neq x \cdot p

2. return Find-Set(x \cdot p)

3. else

4. return x
```

```
Find-Set(x):

1. if x \neq x \cdot p

2. x \cdot p = \text{Find-Set}(x \cdot p)

3. return x \cdot p
```

Find-Set(x) with path-compression

Change Find-Set(x) to implement path-compression.

Old Find-Set(x)

```
Find-Set(x):

1. if x \neq x \cdot p

2. return Find-Set(x \cdot p)

3. else

4. return x

Find-Set(x):

1. if x \neq x \cdot p

2. x \cdot p = \text{Find-Set}(x \cdot p)

3. return x \cdot p
```

Find-Set(x) with path-compression

Claim: A sequence of m Make-Set, Union, & Find-Set operations,

Change Find-Set(x) to implement path-compression.

Old Find-Set(x)

```
Find-Set(x):

1. if x \neq x \cdot p

2. return Find-Set(x \cdot p)

3. else

4. return x

Find-Set(x):

1. if x \neq x \cdot p

2. x \cdot p = \text{Find-Set}(x \cdot p)

3. return x \cdot p
```

Claim: A sequence of *m* Make-Set, Union, & Find-Set operations, first *n* of which are Make-Set

Find-Set(x) with path-compression

Change Find-Set(x) to implement path-compression.

Old Find-Set(x) with path-compression

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first n of which are Make-Set operations, takes $O(m\alpha(n))$ time using rank and path-compression heuristic.

Change Find-Set(x) to implement path-compression.

Old Find-Set(x) with path-compression

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first n of which are Make-Set operations, takes $O(m\alpha(n))$ time using rank and path-compression heuristic.

$$\alpha(n) \le 4$$
 for all practical purposes