

Pokerbots 2021

Lecture 5: Advanced Topics

Announcements

Libratus Creator: Noam Brown

This Friday @ 1:00pm EST! pkr.bot/class

Poker Night with Sponsors!

(with 9 raffles + beginner/advanced tables!)

Wed 01/20 4:30 - 6pm EST Final Tournament & Sponsor Networking: Friday, January 29th

Week 2 Tournament Friday, 11:59pm EST!

New Prize: Strongest Alliance

Pokerbots is better with more teammates! Improve your bot and collaborate more effectively with an *Alliance*. \$100 to the top three alliances in tournament 2!

Alliance: A new team formed from two or more existing teams (capped at 4 people)

Learn more and form your alliances at pkr.bot/alliance and @117 on Piazza!

Currently there is only 1 team eligible for 3 prizes! Reach out! Stick around after lecture for alliance forming!

Giveaway

50th submission wins! pkr.bot/raffle

Agenda

- Machine Learning
- Reinforcement learning
 - Goals and fundamental challenges
 - o Q-learning
 - o CFR
- Neural networks

Machine Learning

The next big thing

NEWS · 30 NOVEMBER 2020

'It will change everything': DeepMind's AI makes gigantic leap in solving protein structures

Google's deep-learning program for determining the 3D shapes of proteins stands to transform biology, say scientists.

Artificial intelligence / Machine learning

OpenAl's new language generator GPT-3 is shockingly good—and completely mindless

Buzzwords

Deep learning neural networks for intelligent big data analytics with business-to business automated artificial intelligent blockchains in the cloud!

...it's really much more simple

Learning

Machine learning (ML) algorithms complete a process or task, but they get better at completing that task with experience. At a certain point, they can become good enough to handle the task with near perfect accuracy!

- Prediction
- Decision Making
- Automation

General workflow

ML techniques need experience to improve. That experience mainly comes from either looking at data or trying a new task over and over again. This is called *training*.

Typical training plan:

- Start with a simple strategy
- Take in experience
 - Look at a data point, try something new, etc.
- Learn something from that experience
- Update our strategy and repeat...

Areas of ML

Typical algorithms used in ML fall generally into three categories:

- Supervised Learning
 - We show our algorithm many input and output examples
- Unsupervised Learning
 - We ask our algorithm to recognize patterns without telling it the right answer
- Reinforcement Learning (RL)
 - Our algorithm learns from an environment and tries to get some "reward"

Supervised learning example

- We love cats and birds!
- We want our algorithm to take a photo and tell us if it's a cat or a bird
- We have example photos and labels of both
- Let's train a model on our example photos!

Supervised Learning: Training

Supervised Learning: Training

Supervised Learning: Prediction

Cat or Bird?

Supervised learning algorithms

There are many algorithms that can do this kind of thing!

- Neural Networks
- Decision Trees
- Regression
- Support Vector Machine (SVM)

Unsupervised Learning

Group these by similarity...

Unsupervised Learning

Group 1

Group 2

Unsupervised learning algorithms

A lot of clustering and general data analysis

- k-means clustering
- *k*-nearest neighbors
- Expectation Maximization Algorithm (EM)

What about a Pokerbot?

We can certainly use techniques from supervised and unsupervised learning for Blotto Hold'em:

- Predict the strength of our cards
- Categorize the types of hands we could have
- Group our hole cards effectively

But we may benefit more from another machine learning area...

Reinforcement Learning

Reinforcement Learning (RL): an overview

- An agent takes actions to move between states, with the goal of maximizing reward
- The agent has multiple attempts to learn an effective *policy* (strategy)
- Examples: self-driving cars, robotics, poker
- Poker framework
 - Reward: chips
 - States: the different betting rounds
 - o Decisions: Check, Call, Raise, Fold, etc.

Successes

- AlphaZero: trained entirely from self-play
- Beat best-in-world chess engine starting from only the rules of the game
- DeepMind "parkour" paper:
 - o Inputs: terrain map, joint angles, angular velocities
 - Reward: forward progress

AlphaZero: from zero to mastery in four hours

Parkour

Why don't we all use reinforcement learning?

- Hard to train
 - Sensitive to parameters
 - Escaping local optima
- Sample inefficient

5000

Number of processors needed to generate self-play games for AlphaZero's training

6400

Number of CPU-hours needed to train DeepMind Parkour

Struggles with multi-agent scenarios

- In chess, if bot1 loses to bot2 and bot2 loses to bot3, then there is a good chance that bot3 is the strongest chess player
- Gives a clear route to iterated improvement
- This is far from guaranteed in poker

Return to rock-paper-scissors

- When two reinforcement learning agents are trained against each other, they
 get very good at beating each other
- Risk of getting caught in a policy cycle without making meaningful improvements to performance
- Hero: rock → villain: paper → hero: scissors → villain: rock → hero: paper → villain: scissors → hero: rock...
- Cycles are predictable, which is undesirable

What to reward?

- Designing a good reward function is hard
- In poker, the job is done for us
- Example: reinforcement-learning Tetris
 - Misbuilt reward function led to the agent to pause the game when it was about to lose

Suppose we've considered all the warnings...

- Well-crafted reward function
 - Clear goal in mind for our policy
- Sufficient compute resources
- Handling multi-agent scenarios
- How do we train our policy?

Q-learning

Q-learning intuition

- Let's return to thinking of poker as a multi-step process
 - Extensive form instead of matrix form in the game theory lecture
- Q-learning is a sample-based, one-agent way to tabulate the game states of this process and the quality of each action we could take in any given game state

Initialized

Q-Table		Actions								
		South (0)	North (1)	East (2)	West (3)	Pickup (4)	Dropoff (5)			
	0	0	0	0	0	0	0			
			•		•					
States	327	0	0	0	0	0	0			
		•	•		•					
		•	•			•				
	499	0	0	0	0	0	0			

Q-Table		Actions							
		South (0)	North (1)	East (2)	West (3)	Pickup (4)	Dropoff (5)		
	0	0	0	0	0	0	0		
					•				
			•						
			•				•		
States	328	-2.30108105	-1.97092096	-2.30357004	-2.20591839	-10.3607344	-8.5583017		
		•	•	•		•			
				•	•				
	499	9.96984239	4.02706992	12.96022777	29	3.32877873	3.38230603		

Update rule

The upsides of Q-learning

- General: Q-learning can learn a policy to maximize final reward even if rewards happen incrementally
- Simple and intuitive: we repeatedly play games, and we take the deterministic action with the highest quality (do what worked well in the past)
- Theoretically sound: for any finite Markov decision process, Q-learning finds a
 policy that maximizes expected reward

Finite Markov decision process?

- Perfect information games: chess, Go
- Video games: Tetris
- Games with randomness: Monopoly

Partial observability

- Ordinary Q-learning is not guaranteed to work for imperfect information games:
 - Poker against an opponent with a fixed strategy
 - Trading
 - Liar's dice

More downsides

- Slow to converge
- Prone to getting stuck in local optima
- Intractable if the state space is too large
- What do we do?
 - Use neural networks as an approximation
 - Use a specialized algorithm for large, imperfect information games

Counterfactual Regret Minimization (CFR)

Regret-matching

RPS: We play rock, opponent plays paper

Regrets: 0 for rock, +1 for paper, +2 for scissors \rightarrow (0, 1, 2)

Mixed strategy: (r=0, p=1/3, s=2/3), opponent plays scissors

Value: -1/3 for our mixed strategy, 1 for rock, -1 for paper, 0 for scissors

New regrets: (4/3, -2/3, 1/3), new cumulative regrets: (4/3, 1/3, 7/3)

New mixed strategy: (r=1/3, p=1/12, s=7/12)

New average strategy: (r=1/6, p=5/24, s=5/8)

Averaging our regret-matching strategy

- 1. Compute a mixed strategy for each player by matching *cumulative* regrets. (If all cumulative regrets for a player are non-positive, use a random strategy.)
- 2. Select each player's action by sampling from their strategy.
- 3. Update cumulative regrets.
- 4. Repeat T times.
- 5. Return the average mixed strategy across the T iterations.

Counterfactual regret

- Instead of matching regret, we match counterfactual regret
- For a node n, counterfactual regret answers the question: what would n's value change to if I picked some pure action a?
- Value for a node n: values of n's children multiplied by the corresponding action probabilities (according to n's counterfactual regret-matching strategy)
- Goal: regret-matching algorithm on the game tree

Monte Carlo CFR algorithm

- 1. Fix all random actions for a game.
- 2. Construct an entire game tree given the fixed random actions and each players' regret-matching strategies. Each node is weighted by its likelihood under the players' strategies. (Randomness is weighted implicitly by the first step.)
- 3. Compute counterfactual regrets at each node.
- 4. Run regret-matching to get new mixed strategies for each player.
- 5. At the end, use the average strategy to play poker.

Problems and extensions

- The bucketing problem: how can we reduce the size of the game tree?
- Bot size limits
- Extensions: CFR+, linear strategy weighting, external sampling
- http://modelai.gettysburg.edu/2013/cfr/index.html

Neural Networks

What is a neural network?

Multilayer perceptron?

What is a neural network?

Multilayer perceptron?

Yes, but...

- A more practical way to think of neural networks is as one of the most empirically successful ways to approximate a function based on a limited number of input-output pairs
- They come in many shapes and sizes, with bigger networks being more expressive, i.e. better able to approximate complicated functions
- What makes them successful?
 - Ability to generalize to unseen data

What uses neural nets?

- Image and speech recognition
- Recommender systems
- AlphaZero
- DeepMind parkour
 - A Q-table is a function that we can approximate: deep Q-learning
- DeepStack

Neural networks and poker

- Lots of functions could be worth approximating:
 - \circ Game state \rightarrow strategy (distribution over actions)
 - \circ Private cards and board cards \rightarrow final hand strength curve
 - \circ Starting cards \rightarrow best Blotto allocation
 - \circ Game state \rightarrow CFR bucket

Proceed with caution

- Central problem: how do I train?
 - Need high-quality input-output pairs
- If I take samples from the scrimmage server, then I am approximating my opponents, which makes it less likely that I'll beat them
- If my samples are against a fixed strategy, then I will learn how to beat that one strategy but not how to play poker well
- If I play two neural nets against each other, then who knows if they will converge or get caught in cyclic behavior

Giveaway Winners!

Alliance Forming!