Brian Tumor Detection in MRI Using Faster R-CNN

Yadollah(Amir) Zamanidoost – PhD candidate in Computer engineering

Agenda

- 1 Background
- Objective
- 3 Data Acquisition
- 4 Tools & Method
- 5 Results
- 6 Deliverables
- 7 Conclusion

Background

Brain Tumor

- Object Detection in Medical Imaging
 - > YOLO
 - Faster R-CNN

Accurately Detect Brain Tumors in MRI Using Faster R-CNN

Data Acquisition

Name	Source	Samples	Data Format
Brain Tumor Segmentation	Kaggle [1] / Figshare [2]	3067	.jpg Images + Binary Mask

Data Analysis

Method: Brain Tumor Detection

Overview

Method: Brain Tumor Detection

Methodology

- Create the anchor box list: [(8,8),(25,25),(38,38),(58,58),(85,85),(120,120)]
- Create RPN model using a pretrained VGG16 network
- Loss Functions

ons
$$Smooth_{L1}(x) = \begin{cases} 0.5x^2 & if |x| < 1, \\ |x| - 0.5 & Otherwise. \end{cases}$$

$$L_{reg}(t_i, t_i^*) = \frac{1}{N_{reg}} \sum_{i} P_i^* . Smooth_{L1}(t_i - t_i^*)$$

$$L_{clc}(P_i, P_i^*) = -\frac{1}{N} \sum_{i} [P_i^* \log(P_i) + (1 - P_i^*) \log(1 - P_i^*)]$$

$$L = \frac{1}{N_{clc}} \sum_{i} L_{clc}(P_i, P_i^*) + \frac{1}{N_{reg}} \log(P_i) \sum_{i} L_{reg}(t_i, t_i^*)$$

Parameters for training RPN

Data	Train(85%) Validation (10%) Test (5%)	
Optimizer	Adam	
Batch size	8	
Learning Rate	0.0001	
Weight Decay	0.000001	
Tools	Pytorch, Nibabel Matplotlib, GPU,	

Method: False Positive Reduction

Results: Metrics

$$IoU = \frac{Area of Overlap}{Area of Union}$$

Sensitivity =
$$\frac{TP}{TP+FN}$$
 Precision = $\frac{TP}{TP+FP}$ F1 Score = 2 * $\frac{Precision * Sensitivity}{Precision + Sensitivity}$

FROC Curve = sensitivity vs. false positives per image

Results

Results

Precision, Recall, and F1-Score with 100 Predicted Bounding Boxes

Precision, Recall, and F1-Score with 100 Predicted Bounding Boxes after FPR Stage.

Results

FROC Curve for Proposed Model .

Deliverables

- GitHub Repository
 - Source code (model, training, evaluation)
 - ReadMe with setup instructions
- Jupyter Notebooks
 - Preprocessing, training, and evaluation steps
 - Visualizations of predictions vs. ground truth
- Project Documentation
 - Methodology and tool descriptions
 - How to retrain or adapt the model

Conclusion

- This study presents an effective method for brain tumor detection using MRI images.
- It integrates a Region Proposal Network (RPN) with feature maps derived from the pretrained VGG16 model.
- By combining the last three layers of VGG16, we enhance feature map resolution, improving tumor detection accuracy.
- The RPN generates region proposals, which are refined using a 2D Deep Convolutional Neural Network (DCNN) for false positive reduction.
- This method is a valuable tool for brain tumor detection, providing more reliable and precise tumor identification.

Future work

Optimizing the anchor shape using metaheuristic algorithms

References

- [1] Brain Tumor Segmentation Dataset (Kaggle version). https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
- [2] Cheng, J. (2017). Brain Tumor Dataset. Figshare. https://figshare.com/articles/dataset/brain_tumor_dataset/1512427
- [3] Bhanothu Y, Kamalakannan A, Rajamanickam G. Detection and classification of brain tumor in MRI images using deep convolutional network. In2020 6th international conference on advanced computing and communication systems (ICACCS) 2020 Mar 6 (pp. 248-252). IEEE.
- [4] Ezhilarasi R, Varalakshmi P. Tumor detection in the brain using faster R-CNN. In2018 2nd International Conference on 2018 Aug 30 (pp. 388-392). IEEE.
- [5] Zamanidoost Y, Alami-Chentoufi N, Ould-Bachir T, Martel S. Efficient Region Proposal Extraction of Small Lung Nodules Using Enhanced VGG16 Network Model. In2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS) 2023 Jun 22 (pp. 483-488). IEEE.

Thank you for your attention!

Questions?