Tidy Data

Tidy data

A data set is **tidy** iff:

- 1. Each variable is in its own column
- 2. Each case is in its own row
- 3. Each value is in its own cell

table1 is tidy

country <chr></chr>	year <int></int>	cases <int></int>	population <int></int>
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583

6 rows

table1 is tidy

country <chr></chr>	year <int></int>	cases <int></int>	population <int></int>	rate <dbl></dbl>
Afghanistan	1999	745	19987071	0.0000372741
Afghanistan	2000	2666	20595360	0.0001294466
Brazil	1999	37737	172006362	0.0002193930
Brazil	2000	80488	174504898	0.0004612363
China	1999	212258	1272915272	0.0001667495
China	2000	213766	1280428583	0.0001669488

6 rows

table1 %>%
mutate(rate = cases/population)

table2 isn't tidy

contains two variables

country <chr></chr>	year type <int> <chr></chr></int>	count <int></int>
Afghanistan	1999 cases	745
Afghanistan	1999 population	19987071
Afghanistan	2000 cases	2666
Afghanistan	2000 population	20595360
Brazil	1999 cases	37737
Brazil	1999 population	172006362
Brazil	2000 cases	80488
Brazil	2000 population	174504898
China	1999 cases	212258
China	1999 population	1272915272
1-10 of 12 rows		Previous

It's hard to manipulate

Your Turn 1

Is bp_systolic tidy?

subject_id <dbl></dbl>	time_1 <dbl></dbl>	time_2 <dbl></dbl>	time_3 <dbl></dbl>	
1	120	118	121	
2	125	131	NA	
3	141	NA	NA	

3 rows

Your Turn 1

Is bp_systolic tidy?

	subject_id <dbl></dbl>	time_1 <dbl></dbl>	time_2 <dbl></dbl>	time_3 <dbl></dbl>	②
	1	120	118	121	
	2	125	131	NA	
	3	141	NA	NA	
3 rows				Varia	bles:
				• S	ubject
				• ti	ime

systolic blood pressure

bp_systolic2 is tidy

subject_id <dbl></dbl>	time <dbl></dbl>	systolic <dbl></dbl>
1	1	120
1	2	118
1	3	121
2	1	125
2	2	131
3	1	141

6 rows

Your Turn 2

Using bp_systolic2 with group_by(), and
summarise()

- Find the average systolic blood pressure for each subject
- Find the last time each subject was measured

```
bp_systolic2 %>%
  group_by(subject_id) %>%
  summarise(avg_sys = mean(systolic),
  last_measurement = max(time))
```

subject_id <dbl></dbl>	avg_sys <dbl></dbl>	last_measurement <dbl></dbl>
1	119.6667	3
2	128.0000	2
3	141.0000	1

tidyr

A tidyverse package that reshapes the layout of tabular data.

Reshaping verbs in tidyr

Move values into column names with spread()

Move column names into values with gather()

Split a column with separate() or separate_rows()

Unite columns with unite()

Toy data

```
01-Reshaping-Data.Rmd *
                                                 1 - ---
  2 title: "Reshaping Data"
  3 output: html_notebook
  6 - ```{r setup}
                           cases <- tribble(</pre>
  7 library(tidyverse)
    # Toy data
                              ~Country, ~"2011", ~"2012", ~"2013",
    cases <- tribble(</pre>
      ~Country, ~"2011", ~"2012"
 11
                                     "FR",
                                                  7000,
                                                                  6900,
                                                                                  7000,
 12
                7000,
                      6900
 13
         "DE",
                5800,
                                     "DE",
                                                    5800, 6000,
                                                                                 6200,
 14
         "US", 15000,
 15
                                     "US",
                                                  15000,
                                                                 14000,
                                                                                13000
 16
    pollution <- tribble(</pre>
 17
          ~city, ~size, ~amour
 18
      "New York", "large",
 19
      "New York", "small",
 20
      "London", "large",
 21
                          22,
     "London", "small",
                         16,
     "Beijing", "large",
 23
                         121,
 24
       "Beijing", "small",
 25 )
 26
 27
    bp_systolic <- tribble(</pre>
      ~ subject_id, ~ time_1, ~ time_2, ~ time_3,
  30
                     120,
                            118,
                                    121,
```

Quiz

What are the variables in cases?

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Quiz

What are the variables in cases?

- Country
- Year
- Count

Your Turn 3

On a sheet of paper, draw how the cases data set would look if it had the same values grouped into three columns: country, year, n

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
---------	------	---

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Yar	
FR	2011	7000
D	2011	58)0
US	2011	15000
FR	2012	69)0
DE	2012	6000
US	2012	14000
FR	2013	7000
	2013	6200
	2013	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Countr	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

4		
		4

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

key (former column names)

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

key value (former cells)

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

```
cases %>% gather(key = "year", value = "n", 2:4)
```

data frame to reshape

name of the new key column (a character string)

name of the new value column (a character string)

numeric indexes of columns to collapse (or names)

cases %>% gather("year", "n", 2:4) numeric indexes 2012 2013 2011 Country <chr> <dbl> <dbl> <dbl> FR 7000 6900 7000 5800 6200 DE 6000 15000 13000 US 14000

cases %>% gather("year","n", "2011", "2012", "2013") names 2011 2012 2013 2011 2012 2013 Country <dbl> <chr> <dbl> <dbl> FR 7000 6900 7000 6200 DE 5800 6000 13000 US 15000 14000

gather()

```
cases %>% gather("year","n", -Country)
```

Everything except...

Country <chr></chr>	Not Country 2011 <dbl></dbl>	Not Country 2012 <dbl></dbl>	Not Country 2013 <dbl></dbl>
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Use **gather()** to reorganize **table4a** into three columns: country, year, and cases.

	country <chr></chr>	1999 <int></int>	2000 <int></int>
L	Afghanistan	745	2666
2	Brazil	37737	80488
3	China	212258	213766


```
table4a %>%
  gather(key = "year", value = "n", 2:3)
```

country	year	n
<chr></chr>	<chr></chr>	<int></int>
Afghanistan	1999	745
Brazil	1999	37737
China	1999	212258
Afghanistan	2000	2666
Brazil	2000	80488
China	2000	213766

6 rows

table4a %>%
 gather(key = "year", value = "n", 2:3, convert = TRUE)

_	-5-		
	200		700
Gr.	300		100

country <chr></chr>	year <int></int>	n <int></int>
Afghanistan	1999	745
Brazil	1999	37737
China	1999	212258
Afghanistan	2000	2666
Brazil	2000	80488
China	2000	213766

6 rows

spread()

Toy data

```
2 03-Tidy-Data.Rmd *

☐ ABC Question | Preview + ② + ② Insert + □ □ □ Run + □ → □ ...
  2 title: "Tidy Data"
  3 output: html_notebook
  6 - ```{r setup}
  7 library(tidyverse)
  8 library(babynames)
                         pollution <- tribble(</pre>
  10 # Toy data
                                     ~city, ~size, ~amount,
  11 cases <- tribble(</pre>
      ~Country, ~"2011",
         "FR", 7000,
                             "New York", "large",
                                                                          23,
  14
               5800,
         "US", 15000,
                            "New York", "small",
                                                                          14,
  16
  17
                                "London", "large",
     pollution <- tribble(
                                                                          22,
  19
          ~city, ~size,
       "New York", "large",
                                "London", "small",
                                                                          16,
      "New York", "small",
       "London", "large",
                              "Beijing", "large",
                                                                          121,
        "London", "small",
       "Beijing", "large",
  25
       "Beijing", "small",
                              "Beijing", "small",
                                                                          56
  26
    x <- tribble(
      ~x1, ~x2,
     "E", NA
  35
   ■ Tidy Data ‡
                                              R Markdown $
```

Quiz

What are the variables in pollution?

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

Quiz

What are the variables in pollution?

city	particle size	amount (µg/m³)
New York	large	> 23 A
NewYork	small	14
Lordon	large	>22
Lordon	small	16
Beling	large	121
Beling	small	56

- City
- Amount of large particulate
- Amount of small particulate

On a sheet of paper, draw how this data set would look if it had the same values grouped into three columns: *city*, *large*, *small*

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city large small

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

1 2

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New Yor	23	14
London	22	16
Beijing	121	56

key (new column names)

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

key value (new cells)

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

spread()

pollution %>% spread(key = size, value = amount)

data frame to reshape

column to use for keys
(becomes new
column names)

column to use for values (becomes new column cells)

pollution %>% spread(size, amount)

	city	size	amount		city	large	small
1	New York	large	23	1	Beijing	121	56
2	New York	small	14	2	London	22	16
3	London	large	22	3	New York	23	14
4	London	small	16				
5	Beijing	large	121				
6	Beijing	small	56				

Use **spread()** to reorganize **table2** into four columns: country, year, cases, and population.

				』
country <chr></chr>	-	type <chr></chr>	count <int></int>	
Afghanistan	1999	cases	745	
Afghanistan	1999	population	19987071	
Afghanistan	2000	cases	2666	
Afghanistan	2000	population	20595360	
Brazil	1999	cases	37737	
Brazil	1999	population	172006362	

table2 %>%

spread(key = type, value = count)

	country <chr></chr>	year <int></int>	cases <int></int>	population <int></int>
1	Afghanistan	1999	745	19987071
2	Afghanistan	2000	2666	20595360
3	Brazil	1999	37737	172006362
4	Brazil	2000	80488	174504898
5	China	1999	212258	1272915272
6	China	2000	213766	1280428583

6 rows

Reshaping verbs in tidyr

Move values into column names with spread()

Move column names into values with gather()

Split a column with separate() or separate_rows()

Unite columns with unite()

Project

New Housing Price Index

https://www2.gov.bc.ca/gov/content/data/statistics/infoline/infoline-2017/17-146-price-new-housing

Switch back to the project-housing. Rproj project.

- 1. Open 02-tidy.Rmd
- 2. Take a look at housing_raw
- 3. **Brainstorm:** What needs to happen to get it in a form to plot?

1. Tidy housing_raw

Ask for help if you get stuck!