COMP SCI 5401 FS2017 Assignment 1c

John Niemeyer JJNB78@mst.edu

October 9, 2017

Self-Adaptive EA Strategy Parameter

The self-adaptive parameter that was chosen for this EA was the mutation rate. The self adaptation that was created for the mutation rate is very simple, it simply changes based on the number of iterations gone between mutations. So if there are too many mutations happening the code will increase the mutation rate by a factor of 0.001 or 0.1

Investigation

a.)

For problem 1, I would say that the self-adaptivity did not have a very large impact on the average fitness, but it very well may have increased the best fitness by quite a lot due to the ability of getting a population out of a local optimum. For problem 2 it seems like the average fitness is extremely low while the best fitness is doing just fine. I believe this is due to the mutation rate getting too high, though it seems to work fine for Problem 1 and Problem 3. Problem 3, much like Problem 1, seems to be doing quite well. The average gets to a certain point on all three problems and steadies out like it should, however for Problem 2 something is holding it back and I am not entirely sure what.

So there is definitely a differing benefit between the problems, with Problem 1 and Problem 3 looking about the same and Problem 2 being underwhelming in terms of average fitness. The average fitness does reach a certain point on all datasets and hover around that point, which is a good thing when it comes to the averaging of populations.

b.)

The penalty function coefficient will greatly impact the performance of all three problems. If I was to increase the penalty function coefficient there would be a severe drop in best fitness and average fitness due to how the penalty function currently works, likewise if the penalty function coefficient was decreased the best fitness and average fitness would go up since the penalty function coefficient directly decreases the fitness of a given dataset.

It seems that the penalty coefficient in Problem 1 and Problem 3 could both use a little lower penalty function in order to obtain a better average fitness, but Problem 2 is having a very hard time with a penalty function coefficient of 1. This means that Problem 2 needs to have a smaller penalty function coefficient than Problem 1 and Problem 3, which is mainly due to having double the shapes of Problem 1 and a smaller width of 20 and length while Problem 3 has a larger width of 30 and length to work with.

Experiment parameters and graphs

1 Problem 1

1.1 Graphs

1.2 Result Tables

Problem 1: final results

Run Average Fitness best Fitness 1 5.4 68 2 4.74 77 3 4.67 79 4 4.4 75 5 4.48 77 6 4.23 69 7 4.36 75 8 4.19 73 9 4.16 65 10 4.13 69 11 4.03 77 12 4.11 73 13 4.32 73 14 4.15 80 15 4.02 76 16 4.21 73 17 4.08 77 18 3.99 73	Assignment 1c: Problem 1					
2 4.74 77 3 4.67 79 4 4.4 75 5 4.48 77 6 4.23 69 7 4.36 75 8 4.19 71 9 4.16 65 10 4.13 69 11 4.03 77 12 4.11 73 13 4.32 73 14 4.15 80 15 4.02 76 16 4.21 73 17 4.08 77	Α	Run				
3 4.67 79 4 4.4 75 5 4.48 77 6 4.23 69 7 4.36 75 8 4.19 72 9 4.16 65 10 4.13 69 11 4.03 77 12 4.11 73 13 4.32 73 14 4.15 80 15 4.02 76 16 4.21 73 17 4.08 77		1				
4 4.4 75 5 4.48 77 6 4.23 69 7 4.36 75 8 4.19 71 9 4.16 65 10 4.13 69 11 4.03 77 12 4.11 73 13 4.32 73 14 4.15 80 15 4.02 76 16 4.21 73 17 4.08 77		2				
5 4.48 77 6 4.23 69 7 4.36 75 8 4.19 71 9 4.16 65 10 4.13 69 11 4.03 77 12 4.11 73 13 4.32 73 14 4.15 80 15 4.02 76 16 4.21 73 17 4.08 77		3				
6 4.23 69 7 4.36 79 8 4.19 71 9 4.16 65 10 4.13 69 11 4.03 77 12 4.11 73 13 4.32 73 14 4.15 80 15 4.02 76 16 4.21 73 17 4.08 77		4				
7 4.36 75 8 4.19 71 9 4.16 65 10 4.13 69 11 4.03 77 12 4.11 73 13 4.32 73 14 4.15 80 15 4.02 76 16 4.21 73 17 4.08 77		5				
8 4.19 71 9 4.16 65 10 4.13 69 11 4.03 77 12 4.11 73 13 4.32 73 14 4.15 80 15 4.02 76 16 4.21 73 17 4.08 77		6				
9 4.16 65 10 4.13 65 11 4.03 77 12 4.11 73 13 4.32 73 14 4.15 80 15 4.02 76 16 4.21 73 17 4.08 77		7				
10 4.13 69 11 4.03 77 12 4.11 73 13 4.32 73 14 4.15 80 15 4.02 76 16 4.21 73 17 4.08 77		8				
11 4.03 77 12 4.11 73 13 4.32 73 14 4.15 80 15 4.02 76 16 4.21 73 17 4.08 77		9				
12 4.11 73 13 4.32 73 14 4.15 80 15 4.02 76 16 4.21 73 17 4.08 77		10				
13 4.32 73 14 4.15 80 15 4.02 76 16 4.21 73 17 4.08 77		11				
14 4.15 80 15 4.02 76 16 4.21 73 17 4.08 77		12				
15 4.02 76 16 4.21 73 17 4.08 77		13				
16 4.21 73 17 4.08 77		14				
17 4.08 77		15				
		16				
18 3.99 73		17				
		18				
19 3.89 72		19				
20 3.88 74		20				
21 3.84 77		21				
22 3.82 71		22				
23 4.02 74		23				
24 4.01 75		24				
25 3.85 65		25				
26 3.72 70		26				
27 4.01 66		27				
28 3.65 84		28				
29 3.77 72		29				
30 3.86 69		30				

1.3 Statistical Analysis

Problem 1: Best Fitness				Problem 1: Average Fitness					
subject #	Fitness 1b	fitness 1c	х-у	(x-y)^2	subject #	Fitness 1b	fitness 1c	x-y	(x-y)^2
1	15	68	-53	2809	1	5	5.4	-0.4	0.16
2	12	77	-65	4225	2	5	4.74	0.26	0.0676
3	6	79	-73	5329	3	0	4.67	-4.67	21.8089
4	2	75	-73	5329	4	0	4.4	-4.4	19.36
5	20	77	-57	3249	5	9	4.48	4.52	20.4304
6	10	69	-59	3481	6	3	4.23	-1.23	1.5129
7	7	75	-68	4624	7	4	4.36	-0.36	0.1296
8	11	71	-60	3600	8	1	4.19	-3.19	10.1761
9	13	65	-52	2704	9	4	4.16	-0.16	0.0256
10	15	69	-54	2916	10	1	4.13	-3.13	9.7969
11	13	77	-64	4096	11	7	4.03	2.97	8.8209
12	9	73	-64	4096	12	3	4.11	-1.11	1.2321
13	17	73	-56	3136	13	8	4.32	3.68	13.5424
14	16	80	-64	4096	14	6	4.15	1.85	3.4225
15	17	76	-59	3481	15	3	4.02	-1.02	1.0404
16	21	73	-52	2704	16	9	4.21	4.79	22.9441
17	8	77	-69	4761	17	5	4.08	0.92	0.8464
18	16	73	-57	3249	18	9	3.99	5.01	25.1001
19	17	72	-55	3025	19	3	3.89	-0.89	0.7921
20	14	74	-60	3600	20	6	3.88	2.12	4.4944
21	8	77	-69	4761	21	3	3.84	-0.84	0.7056
22	17	71	-54	2916	22	3	3.82	-0.82	0.6724
23	12	74	-62	3844	23	6	4.02	1.98	3.9204
24	6	75	-69	4761	24	2	4.01	-2.01	4.0401
25		65	-51	2601	25	3	3.85	-0.85	0.7225
26	16	70	-54	2916	26	6	3.72	2.28	5.1984
27	6	66	-60	3600	27	2	4.01	-2.01	4.0401
28	_	84	-76	5776	28	1	3.65	-2.65	7.0225
29	13	72	-59	3481	29	6	3.77	2.23	4.9729
30	11	69	-58	3364	30	5	3.86	1.14	1.2996
SUM:			-1826	112530	SUM:			4.01	198.2979
	t-value:	-1.23094		df: 29		t-value:	0.0095054		df: 29
	P-Value:	0.2282		t-value: 2.045		P-Value:	0.9925		t-value: 2.045

So according to the statistical analysis (shown above) the p-value for both best fitness and average fitness is not low enough to say that the results are statistically significant. That means that the t-value of -1.23094 and the t-value of 0.0095054, computed using the tables given, were not far enough apart from the t-value given of 2.045 to make the difference in the fitness values statistically significant.

1.4 EA Configurations

If you want to get the same results you have to change the newSeed variable to 0 (Zero) in the configuration file in order to use the previous seed.

```
Random = 0
_{2} EA = 1
newSeed = 1
5 mu: 20
6 lambda: 10
7 penalty: 1
8 runs: 30
9 mutation_rate: 0.01
10 fitness_evaluations: 10000
prob_log_random: logs/prob1_random_log.txt
prob_log_EA: logs/prob1_EA_log.txt
13 number_of_evals_till_termination: 5
tournament_size_for_parent_selection: 10
{\tt tournament\_size\_for\_survival\_selection:} \ \ 10
n_for_termination_convergence_criterion: 5
17 prob_solution_random: solutions/prob1_random_solution.txt
18 prob_solution_EA: solutions/prob1_EA_solution.txt
19 seed: time.time()
21 selfAdaptive: adaptMutation: 1
23 Initialization: Uniform_Random: 1
24
  Parent_Selection: Uniform_random_parent: 0,
25
       Fitness_Proportional_Selection: 0, k-
       Tournament\_Selection\_with\_replacement: \ 1
26
27
  Survival_Strategy: plus: 0, comma: 1
28
  Survival_Selection: Uniform_random_survival: 0, Truncation: 0, k-
29
       Tournament\_Selection\_without\_replacement: \ 1
30
31 Termination: Number_of_evals: 0,
       {\tt no\_change\_in\_average\_population\_fitness\_for\_n\_generations: \ 0\,,}
       no_change_in_best_fitness_in_population_for_n_generations: 1
```

2 Problem 2

2.1 Graphs

2.2 Result Tables

Problem 2: final results

As	Assignment 1c: Problem 2					
Run	Average Fitness	best Fitness				
1	2.96	78				
2	1.57	77				
3	1.3	91				
4	0.83	69				
5	0.47	71				
6	0.63	72				
7	1.02	72				
8	0.12	70				
9	0.57	74				
10	0.34	67				
11	0.36	75				
12	0.06	92				
13	0.36	73				
14	0.28	74				
15	0.08	66				
16	0.18	70				
17	-0.15	65				
18	-0.04	69				
19	0	69				
20	0.1	68				
21	0.04	75				
22	0.02	78				
23	-0.25	73				
24	-0.25	75				
25	-0.07	83				
26	-0.03	66				
27	0.03	68				
28	-0.17	68				
29	-0.12	70				
30	-0.32	81				

2.3 Statistical Analysis

	Problem 2: Best Fitness					Problem 2: Average Fitness				
subject #	Fitness 1b	fitness 1c	х-у	(x-y)^2	subject #	Fitness 1b	fitness 1c		(x-y)^2	
	1 17	68	-51	2601	1	6	2.96	3.04	9.241	
	2 16	77	-61	3721	2	8	1.57	6.43	41.3449	
	3 11	79	-68	4624	3	5	1.3	3.7	13.69	
	1 15	75	-60	3600	4	5	0.83	4.17	17.3889	
	5 11	77	-66	4356	5	2	0.47	1.53	2.3409	
	5 17	69	-52	2704	6	1	0.63	0.37	0.1369	
	7 8	75	-67	4489	7	3	1.02	1.98	3.9204	
	3 17	71	-54	2916	8	4	0.12	3.88	15.054	
	12	65	-53	2809	9	5	0.57	4.43	19.6249	
1	9	69	-60	3600	10	4	0.34	3.66	13.3956	
1	1 12	77	-65	4225	11	3	0.36	2.64	6.9696	
1	2 16	73	-57	3249	12	6	0.06	5.94	35.2836	
1	3 6	73	-67	4489	13	2	0.36	1.64	2.689	
1	1 9	80	-71	5041	14	2	0.28	1.72	2.9584	
1.	5 15	76	-61	3721	15	4	0.08	3.92	15.366	
1	5 30	73	-43	1849	16	5	0.18	4.82	23.2324	
1	7 10	77	-67	4489	17	4	-0.15	4.15	17.222	
1	3 11	73	-62	3844	18	4	-0.04	4.04	16.321	
1	7	72	-65	4225	19	2	0	2	4	
2	22	74	-52	2704	20	7	0.1	6.9	47.63	
2	1 15	77	-62	3844	21	3	0.04	2.96	8.761	
2	2 23	71	-48	2304	22	12	0.02	11.98	143.520	
2	3 17	74	-57	3249	23	6	-0.25	6.25	39.062	
2	1 12	75	-63	3969	24	6	-0.25	6.25	39.062	
2.	5 14	65	-51	2601	25	5	-0.07	5.07	25.7049	
2	5 17	70	-53	2809	26	5	-0.03	5.03	25.3009	
2	7 11	66	-55	3025	27	5	0.03	4.97	24.7009	
2	3 16	84	-68	4624	28	5	-0.17	5.17	26.7289	
2	9 11	72	-61	3721	29	7	-0.12	7.12	50.694	
3	16	69	-53	2809	30	7	-0.32	7.32	53.582	
SUM:			-1773	106211	SUM:			133.08	744.912	
	t-value:	-1.26389		df: 29		t-value:	0.382909		df: 29	
	P-Value:	0.2163		t-value: 2.045		P-Value:	0.7046		t-value: 2.045	

So according to the statistical analysis (shown above) the p-value for both best fitness and average fitness is not low enough to say that the results are statistically significant. That means that the t-value of -1.26389 and the t-value of 0.382909, computed using the tables given, were not far enough apart from the t-value given of 2.045 to make the difference in the fitness values statistically significant.

2.4 EA Configurations

If you want to get the same results you have to change the newSeed variable to 0 (Zero) in the configuration file in order to use the previous seed.

```
Random = 0
_{2} EA = 1
newSeed = 1
5 mu: 20
6 lambda: 10
7 penalty: 1
8 runs: 30
9 mutation_rate: 0.01
10 fitness_evaluations: 10000
prob_log_random: logs/prob2_random_log.txt
prob_log_EA: logs/prob2_EA_log.txt
13 number_of_evals_till_termination: 5
tournament_size_for_parent_selection: 10
tournament_size_for_survival_selection: 10
n_for_termination_convergence_criterion: 5
17 prob_solution_random: solutions/prob2_random_solution.txt
18 prob_solution_EA: solutions/prob2_EA_solution.txt
19 seed: time.time()
21 selfAdaptive: adaptMutation: 1
23 Initialization: Uniform_Random: 1
24
  Parent_Selection: Uniform_random_parent: 0,
25
       Fitness_Proportional_Selection: 0, k-
      Tournament\_Selection\_with\_replacement: \ 1
26
27
  Survival_Strategy: plus: 0, comma: 1
28
  Survival_Selection: Uniform_random_survival: 0, Truncation: 1, k-
29
      Tournament\_Selection\_without\_replacement: \ 0
30
31 Termination: Number_of_evals: 0,
       {\tt no\_change\_in\_average\_population\_fitness\_for\_n\_generations: \ 0\,,}
      no_change_in_best_fitness_in_population_for_n_generations: 1
```

3 Problem 3

3.1 Graphs

3.2 Result Tables

Problem 3: final results

Assignment 1c: Problem 3					
Run	Average Fitness	best Fitness			
1	7.42	89			
2	6.66	91			
3	5.69	90			
4	6.1	92			
5	5.59	101			
6	5.64	90			
7	5.3	102			
8	5.42	99			
9	5.23	106			
10	5.48	108			
11	4.51	94			
12	4.54	98			
13	4.75	102			
14	5.04	95			
15	5.19	113			
16	5.04	114			
17	4.64	92			
18	5.41	93			
19	4.18	113			
20	4.41	106			
21	4.71	108			
22	5.01	92			
23	4.76	82			
24	5.06	106			
25	4.58	113			
26	4.45	111			
27	4.54	112			
28	4.67	112			
29	4.49	106			
30	4.39	95			

3.3 Statistical Analysis

Problem 3: Best Fitness				Problem 3: Average Fitness					
subject #	Fitness 1b	fitness 1c	х-у	(x-y)^2	subject #	Fitness 1b	fitness 1c	х-у	(x-y)^2
1	. 50	68	-18	324	1	16	7.42	8.58	73.6164
2	28	77	-49	2401	2	5	6.66	-1.66	2.7556
3	31	79	-48	2304	3	4	5.69	-1.69	2.8561
4	43	75	-32	1024	4	15	6.1	8.9	79.21
5	41	77	-36	1296	5	13	5.59	7.41	54.9081
6	34	69	-35	1225	6	14	5.64	8.36	69.8896
7	34	75	-41	1681	7	21	5.3	15.7	246.49
8	25	71	-46	2116	8	6	5.42	0.58	0.3364
9	32	65	-33	1089	9	14	5.23	8.77	76.9129
10	35	69	-34	1156	10	14	5.48	8.52	72.5904
11	. 19	77	-58	3364	11	5	4.51	0.49	0.2401
12	23	73	-50	2500	12	7	4.54	2.46	6.0516
13	50	73	-23	529	13	16	4.75	11.25	126.5625
14	19	80	-61	3721	14	6	5.04	0.96	0.9216
15	30	76	-46	2116	15	4	5.19	-1.19	1.4161
16	36	73	-37	1369	16	10	5.04	4.96	24.6016
17	30	77	-47	2209	17	15	4.64	10.36	107.3296
18	30	73	-43	1849	18	4	5.41	-1.41	1.9881
19	43	72	-29	841	19	5	4.18	0.82	0.6724
20	36	74	-38	1444	20	16	4.41	11.59	134.3281
21	. 27	77	-50	2500	21	6	4.71	1.29	1.6641
22	22	71	-49	2401	22	12	5.01	6.99	48.8601
23	29	74	-45	2025	23	7	4.76	2.24	5.0176
24	55	75	-20	400	24	20	5.06	14.94	223.2036
25	41	65	-24	576	25	7	4.58	2.42	5.8564
26	51	70	-19	361	26	15	4.45	10.55	111.3025
27	28	66	-38	1444	27	5	4.54	0.46	0.2116
28	40	84	-44	1936	28	15	4.67	10.33	106.7089
29	55	72	-17	289	29	19	4.49	14.51	210.5401
30	29	69	-40	1600	30	12	4.39	7.61	57.9121
SUM:			-1150	48090	SUM:			175.1	1854.9542
	t-value:	-0.76874		df: 29		t-value:	0.206653		df: 29
	P-Value:	0.4483		t-value: 2.045		P-Value:	0.8377		t-value: 2.045

So according to the statistical analysis (shown above) the p-value for both best fitness and average fitness is not low enough to say that the results are statistically significant. That means that the t-value of -0.76874 and the t-value of 0.206653, computed using the tables given, were not far enough apart from the t-value given of 2.045 to make the difference in the fitness values statistically significant.

3.4 EA Configurations

If you want to get the same results you have to change the newSeed variable to 0 (Zero) in the configuration file in order to use the previous seed.

```
Random = 0
_{2} EA = 1
newSeed = 1
5 mu: 20
6 lambda: 10
7 penalty: 1
8 runs: 30
9 mutation_rate: 0.01
10 fitness_evaluations: 10000
prob_log_random: logs/prob3_random_log.txt
prob_log_EA: logs/prob3_EA_log.txt
13 number_of_evals_till_termination: 5
tournament_size_for_parent_selection: 10
{\tt tournament\_size\_for\_survival\_selection:} \ \ 10
n_for_termination_convergence_criterion: 5
17 prob_solution_random: solutions/prob3_random_solution.txt
18 prob_solution_EA: solutions/prob3_EA_solution.txt
19 seed: time.time()
21 selfAdaptive: adaptMutation: 1
23 Initialization: Uniform_Random: 1
24
  Parent_Selection: Uniform_random_parent: 1,
25
       Fitness_Proportional_Selection: 0, k-
       Tournament\_Selection\_with\_replacement: \ 0
26
27
  Survival_Strategy: plus: 0, comma: 1
28
  Survival_Selection: Uniform_random_survival: 1, Truncation: 0, k-
29
       Tournament\_Selection\_without\_replacement: \ 0
30
31 Termination: Number_of_evals: 0,
       {\tt no\_change\_in\_average\_population\_fitness\_for\_n\_generations: \ 0\,,}
       no_change_in_best_fitness_in_population_for_n_generations: 1
```