

Федеральное государственное автономное образовательное учреждение высшего образования МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ «Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Департамент математического и компьютерного моделирования о практическом задание по дисциплине АиСД ДОКЛАД

Сбалансированные деревья: scapegoat tree

Выполнил студент гр. Б9121-09.03.03 пикд Козлова Светлана Евгеньевна Руководитель практики Доцент ИМКТ Кленин Александр Сергеевич

Изобретение

1989 - Arne Andersson, Department of Computer Science, Lund University, Лунд, Швеция

1993 - Igal Galperin и Ronald Linn Rivest, Laboratory for Computer Science, Massachusetts Institute of Technology, Кеймбридж в штате Массачусетс, США

LUND UNIVERSITY

Igal Galperin

Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA

Ronald Linn Rivest

Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA

Значение Scapegoat (англ. "Козел отпущения")

В иудаизме особое животное, которое, после символического возложения на него грехов всего народа, обрекали на мучительную смерть.

Идиома используется в качестве метафоры и обозначает субъект, на который возложили ответственность за действия других, чтобы скрыть их настоящие причины.

Scapegoat tree

Количество узлов q / $2 \le n \le q$

Высота log 1/ α q \leq log 1/ α 2 n < log 1/ α n + 2 где α — значение от 1/2 до 1

Проверка сбалансированности

 $1/2 \leqslant \alpha \leqslant 1$

 $size(left[x]) \le \alpha \cdot size(x);$

 $\operatorname{size}(\operatorname{right}[x]) \leqslant \alpha \cdot \operatorname{size}(x),$

поддеревьев вершины х

где size(left[x]) и size(right[x])

р - вставленный элемент v - дисбаланс элемент, требующий перестроения

размеры

при коэф. дерева 1,2

Достоинства

Отсутствие необходимости хранить дополнительные данные в вершинах

Отсутствие необходимости перебалансировать дерево при операции поиска

Амортизированная сложность операций вставки и удаления O(log N)

Легкая модификация коэффициента «строгости» дерева α

Недостатки

- В худшем случае операции модификации дерева могут занять O(n) времени
- Ошибочный коэффициент а приведет к наихудшей производительности дерева

Пример дерева с $\alpha = 0.6$

Чем больше α, тем глубже дерево,

а балансировка дерева не эффективная.

следовательно, запросы к дереву эффективные,

_

Заключение

(log (n)), где n - количество узлов, и которое не занимает больше памяти, чем Это первое двоичное дерево поиска, чьи операции в среднем составляют О двоичное дерево поиска.

