## PERMUTATIONSGRUPPEN VOM RANG 3

#### UND DIE KONSTRUKTION

#### DER SPORADISCHEN EINFACHEN GRUPPE

## VON SUZUKI

#### DIPLOMARBEIT

an der

Mathematischen Fakultät

der

Eberhard-Karls-Universität

Tübingen

Vorgelegt von
Burkhardt Renz
aus Tübingen

# Erklärung

Ich versichere hiermit, daß ich vorliegende Arbeit selbständig angefertigt und außer der angegebenen Literatur keine weiteren Hilfsmittel benutzt habe.

Burklierolt Renz

#### VORWORT

Michio SUZUKI hat gezeigt, daß die Chevalley-Gruppe  $G_2(4)$  in ihrer primitiven Permutationsdarstellung vom Grad 416 eine primitive Erweiterung vom Grad 1 782 und vom Rang 3 besitzt, eine sporadische einfache Gruppe, fortan als die Suzuki-Gruppe Suz (oder auch Sz) bezeichnet. Suz besitzt nach Konstruktion eine Permutationsdarstellung vom Rang 3 auf 1 782 Punkten, sie definiert somit einen streng regulären Graphen mit 1 782 Ecken und die Automorphismengruppe dieses Graphen enthält Suz vom Index 2.

In Kapitel I dieser Arbeit werden zunächst Rang-3-Permutationsgruppen untersucht. Insbesondere wird der Zusammenhang solcher Gruppen mit der Klasse der streng regulären Graphen interessieren. Es wird gezeigt, daß jede Rang-3-Gruppe einen streng regulären Graphen definiert, auf dem sie als transitive Automorphismengruppe wirkt. In § 5 wird dann analysiert, unter welchen Bedingungen und wie, ausgehend von einer abstrakten endlichen Gruppe H eine Rang-3-Erweiterung G von H konstruiert werden kann, d.h. eine transitive Permutationsgruppe G vom Rang 3, so daß der Stabilisator eines Punktes in G isomorph zu H ist.

Kapitel II enthält die Konstruktion der Suzuki-Gruppe Suz. In aufeinander folgenden Schritten, beginnend mit der symmetrischen Gruppe  $S_4$  werden die PGL(2,7), die  $G_2$ (2), die sporadische einfache Gruppe HJ von Hall-Janko, die  $G_2$ (4) und schließlich Suz, die einfache Gruppe der Ordnung 448 345 497 600 als transitive Erweiterungen konstruiert. Bis zur HJ wird die Konstruktion explizit durchgeführt, so daß die Adjazenzmatrix des Hall-Janko-Graphen angegeben werden kann. Leider kann ich für den letzten Schritt der Konstruktion nur eine Beweisskizze geben.

# Inhaltsverzeichnis

| Seite                                                             |
|-------------------------------------------------------------------|
| VorwortI                                                          |
| BezeichnungenIII                                                  |
| Kapitel I Permutationsgruppen vom Rang 31                         |
| § 1 Einige Eigenschaften transitiver Permutationsgruppen1         |
| § 2 Permutationsgruppen vom Rang 33                               |
| § 3 Streng reguläre Graphen und Rang-3-Gruppen6                   |
| § 4 Beispiele von Rang-3-Graphen12                                |
| § 5 Rang-3-Erweiterungen18                                        |
| Kapitel II Der Suzuki - Turm26                                    |
| § 6 Die Konstruktion der Suzuki-Gruppe Suz26                      |
| § 7 Die PGL(2,7) als Rang-4-Erweiterung der S <sub>4</sub> 30     |
| § 8 Die $G_2(2)$ als Rang-3-Erweiterung der $PGL(2,7)$ 35         |
| § 9 Die Hall-Janko-Gruppe HJ als Rang-3-Erweiterung der           |
| PSU(3,3 <sup>2</sup> )48                                          |
| §10 Die G <sub>2</sub> (4) als Rang-3-Erweiterung der Hall-Janko- |
| Gruppe HJ59                                                       |
| §11 Die sporadische einfache Gruppe Suz als Rang-3-Er-            |
| weiterung der G <sub>2</sub> (4)61                                |
| Literaturverzeichnis63                                            |

#### BEZEICHNUNGEN

Permutationsgruppen werden mit großen (G, H,...), ihre Elemente mit kleinen lateinischen Buchstaben (g, h,...) bezeichnet, die Mengen, auf denen die Permutationsgruppen wirken mit großen griechischen Lettern ( $\Omega$ ,  $\Delta$ ,...), Elemente dieser Mengen mit kleinen griechischen Buchstaben ( $\alpha$ ,  $\beta$ ,...). Mit Großbuchstaben ( $\widehat{G}$ ,...) werden Graphen bezeichnet. Das Bild von  $\alpha$  unter der Wirkung eines Elements g  $\boldsymbol{\varepsilon}$  G wird  $\alpha^g$  geschrieben.

Mit S bzw. A wird die symmetrische bzw. alternierende Gruppe vom Grad n und mit D die Diedergruppe der Ordnung 2n notiert.

 $igwedge_n$  bezeichne den vollständigen Graphen mit n Ecken.

Ferner bedeuten:

|G| die Ordnung der Gruppe G

 $|\Omega|$  die Mächtigkeit der Menge  $\Omega$ 

 $H \leq (<) G$  H ist (echte) Untergruppe von G

 $\Delta \leq (c) \Omega$   $\Delta$  ist (echte) Teilmenge von  $\Omega$ 

< X>> das Erzeugnis von X in G (X <u>C</u> G)

o(g) die Ordnung des Elements g in G, d.h. o(g) = |<g>|

O, U, \ Durchschnitt, Vereinigung und Differenz von Mengen

N, Z, Q die Menge der natürlichen, der ganzen bzw. der rationalen Zahlen.

a b a teilt b (für a,b € Z)

a <(≤) b a kleiner (kleiner gleich) b

Die Notation von Kapitel II orientiert sich an der in [20] verwendeten, siehe im einzelnen § 6.

Alle sonst verwendeten Zeichen und Bezeichnungen sind im Text definiert. Zahlen in eckigen Klammern beziehen sich auf die Nummer des im Literaturverzeichnis aufgeführten Werkes. Zahlen in runden Klammern verweisen auf die Abschnitte des Textes.

# Kapitel I PERMUTATIONSGRUPPEN VOM RANG 3

## § 1 Einige Eigenschaften transitiver Permutationsgruppen

(1.1) Sei G eine transitive Permutationsgruppe auf der endlichen Menge  $\Omega$ . α und  $\beta$  seien aus  $\Omega$ . G wirkt auf  $\Omega \times \Omega$  vermöge  $(\alpha, \beta)^g$  =  $(\alpha^g, \beta^g)$ . Eine Bahn  $\Delta$  von G auf  $\Omega \times \Omega$  , d.h.  $\Delta$  = { $(\alpha, \beta)^g \mid g \in G$ } für ein  $(\alpha,\beta) \in \Omega \times \Omega$  heißt ein *Orbital* von G. Da G transitiv auf  $\Omega$  wirkt, ist  $I = \{(\alpha, \alpha) \mid \alpha \in \Omega\}$  immer ein Orbital von G. Für ein  $\alpha \in \Omega$  bezeichnet  $G_{\alpha}$  den Stabilisator des Punktes  $\alpha$  in G. Ist  $\Delta$  ein Orbital von G, so ist  $\Delta(\alpha)$  =  $\{\beta \in \Omega \, \big| \, (\alpha,\beta) \in \Delta\}$  eine Bahn von  $G_{\alpha}$  auf  $\Omega$  und es gilt für alle g  $\in$  G:  $(\Delta(\alpha))^g = \Delta(\alpha^g)$ . Daraus ergibt sich, daß die Abbildung (  $\Delta \leftrightarrow \Delta(\alpha)$ ) eine Bijektion der G-Orbitale auf die  ${\tt G}_{\alpha}{\tt -Bahnen}$  auf  $\Omega$  ist. Insbesondere ist also die Anzahl der G-Orbitale gleich der Anzahl der  $G_{\alpha}$ -Bahnen auf  $\Omega$ . Sei  $\Delta$  ein Orbital von G. Dann ist auch  $\Delta' = \{(\beta,\alpha) \mid (\alpha,\beta) \in \Delta\}$  ein G-Orbital und  $\Delta'(\alpha) = \{\beta \in \Omega \mid (\alpha, \beta) \in \Delta' \}$  eine Bahn von  $G_{\alpha}$ . Da G auf  $\Omega$  transitiv wirkt, kann man  $\Delta'(\alpha)$  auch so schreiben:  $\Delta'(\alpha) = \{ \alpha^g \in \Omega \mid \alpha^g \in \Delta(\alpha) \}. \Delta \text{ und } \Delta', \text{ bzw. } \Delta(\alpha) \text{ und } \Delta'(\alpha) \text{ heißen} \}$ gepaarte Orbitale bzw. gepaarte  $G_{N}$ -Bahnen.

# <u>Lemma 1.1</u> ([9], S.99)

Ein Orbital  $\Delta$  von G ist entweder symmetrisch, d.h.  $\Delta = \Delta'$  oder asymmetrisch, d.h.  $\Delta \cap \Delta' = \emptyset$ .

Beweis: Sei  $\Delta \cap \Delta' \neq \emptyset$  und  $\Delta \neq I$  (I ist symmetrisch). Dann existieren  $(\alpha,\beta)$ ,  $(\beta,\alpha) \in \Delta$  mit  $\alpha \neq \beta$ . Sei  $(\gamma,\delta) \in \Delta$ . Da  $\Delta$  ein Orbital ist, gibt es g,h in G mit  $(\alpha,\beta) = (\gamma,\delta)^g$  und  $(\beta,\alpha) = (\alpha,\beta)^h$ . Also ist  $(\gamma,\delta)^{ghg} = (\delta,\gamma)$ . Folglich gilt  $\Delta = \Delta'$ . Diese Aussage gilt analog für  $G_{\alpha}$ -Bahnen.

- (1.2) Über die Existenz symmetrischer Bahnen gibt folgendes Lemma Auskunft:
- Lemma 1.2  $G_{\alpha}$  hat genau dann eine von  $\{\alpha\}$  verschiedene mit sich gepaarte Bahn, wenn die Ordnung von G gerade ist.

Beweis: [25], S.45

- (1.3) Sei  $\Sigma$  ein nichttriviales Imprimitivitätsgebiet der Wirkung von G auf  $\Omega$ ,  $\alpha$  sei aus  $\Sigma$ . Ist nun  $\beta \in \Sigma$ ,  $\beta \neq \alpha$ , dann gibt es genau eine Bahn  $\Delta(\alpha)$  von  $G_{\alpha}$  mit  $\beta \in \Delta(\alpha)$ . Annahme:  $\Delta(\alpha) \nsubseteq \Sigma$ . Sei also  $\gamma \in \Delta(\alpha)$ , aber  $\gamma \not\in \Sigma$ . Da  $\beta$  und  $\gamma$  in  $\Delta(\alpha)$  liegen, gibt es ein  $g \in G_{\alpha}$  mit  $\beta^g = \gamma$ . Da  $\alpha^g = \alpha$  gilt, ist  $\Sigma^g \cap \Sigma \neq \emptyset$ , also  $\Sigma^g = \Sigma$ . Andererseits ist  $\beta \in \Sigma$  und  $\beta^g = \gamma \not\in \Sigma$ , also ist  $\Sigma^g \neq \Sigma$  Widerspruch. Also ist  $\Delta(\alpha) \subseteq \Sigma$  und es gilt
- Lemma 1.3 Sei  $\Sigma$  ein nichttriviales Imprimitivitätsgebiet der transitiven Wirkung von G auf  $\Omega$ ,  $\alpha \in \Sigma$ .

  Dann ist  $\Sigma$  Vereinigung von  $G_{\alpha}$ -Bahnen, von denen mindestens eine von  $\{\alpha\}$  verschieden ist, also  $\Sigma = \{\alpha\} \cup \Delta(\alpha) \cup \ldots$
- (1.4) Die Anzahl der G-Orbitale bzw. der  $G_{\alpha}$ -Bahnen auf  $\Omega$  heißt der Rang der Permutationsgruppe G. Diese Definition ist sinnvoll, da wegen der Transitivität von G die Anzahl der  $G_{\alpha}$ -Bahnen unabhängig von der Wahl von  $\alpha$  in  $\Omega$  ist.

Für  $|\Omega|$  > 1 ist der Rang einer auf  $\Omega$  transitiven Permutationsgruppe stets  $\geq$  2, denn  $\{\alpha\}$  ist immer eine Bahn von  $G_{\alpha}$ .

Ist der Rang von G = 2, so ist  $G_{\alpha}$  transitiv auf  $\Omega \setminus \{\alpha\}$ , d.h. G ist zweifach transitiv auf  $\Omega$ .

## § 2 Permutationsgruppen vom Rang 3

Im folgenden sei G stets eine Permutationsgruppe vom Rang 3 auf  $\Omega$ ,  $|\Omega|=n$ . Der Stabilisator  $G_{\alpha}$  eines Punktes  $\alpha$  in  $\Omega$  besitzt also genau drei Bahnen auf  $\Omega$ , die mit  $\{\alpha\}$ ,  $\Delta(\alpha)$  und  $\Gamma(\alpha)$  bezeichnet werden. Sei  $k=|\Delta(\alpha)|$  und  $1=|\Gamma(\alpha)|$ ; es ist also n=k+1+1.

(2.1) Aus Lemma 1.2 ergeben sich für Rang-3-Gruppen sofort folgende Eigenschaften:

# <u>Lemma 2.1</u> ([11], Lemma 3)

- (a) Ist |G| ungerade, so gilt:  $\Delta'(\alpha) = \Gamma(\alpha), \Gamma'(\alpha) = \Delta(\alpha), n = 2k + 1 \text{ und}$   $\alpha \in \Delta(\beta)$  genau dann, wenn  $\beta \in \Gamma(\alpha)$ .
- (b) Sei |G| gerade. Dann gilt:  $\Delta'(\alpha) = \Delta(\alpha), \ \Gamma'(\alpha) = \Gamma(\alpha) \ \text{und} \ \alpha \in \Delta(\beta) \ \text{implizient},$  daß  $\beta \in \Delta(\alpha)$ . Ebenso folgt aus  $\alpha \in \Gamma(\beta)$ , daß  $\beta \in \Gamma(\alpha)$  ist.
- (2.2) Aussagen über die Durchschnitte von Bahnen liefert

#### Lemma 2.2 ([11], Lemma 2)

Unabhängig von der Wahl von  $\alpha, \beta \in \Omega$ , gibt es Zahlen  $\lambda, \mu$  mit:

- (a)  $|\Delta(\alpha) \cap \Delta(\beta)| = \begin{cases} \lambda & \text{für } \beta \in \Delta(\alpha) \\ \mu & \text{für } \beta \in \Gamma(\alpha) \end{cases}$  Ist |G| ungerade, so ist  $\lambda = \mu$ .
- (b)  $\left| \Gamma(\alpha) \cap \Gamma(\beta) \right| = \left\{ \frac{\overline{\lambda}}{\mu} \text{ für } \beta \in \Gamma(\alpha), \\ \text{wobei } \overline{\lambda} = 1 k + \mu 1, \overline{\mu} = 1 k + \lambda + 1 \text{ gilt,} \\ \text{falls } \left| G \middle| \text{gerade ist. Ist } \left| G \middle| \text{ ungerade, so ist} \right| \\ \overline{\lambda} = \overline{\mu} = \lambda = \mu.$

Beweis: (a) Seien  $\beta, \gamma \in \Delta(\alpha)$  beliebig gewählt. Dann existiert ein  $g \in G_{\alpha}$ , so daß  $(\Delta(\beta))^g = \Delta(\gamma)$ . Folglich ist  $\Delta(\alpha) \cap \Delta(\gamma) = \Delta(\alpha) \cap (\Delta(\beta))^g$ , was wiederum gleich  $(\Delta(\alpha)^g \cap \Delta(\beta))^g$  ist. Da  $g^{-1} \in G_{\alpha}$ , folgt:  $\Delta(\alpha) \cap \Delta(\gamma) = (\Delta(\alpha) \cap \Delta(\beta))^g$ . Nun ist  $|\Delta(\alpha) \cap \Delta(\beta)| = |(\Delta(\alpha) \cap \Delta(\beta))^g|$ , also auch  $|\Delta(\alpha) \cap \Delta(\beta)| = |\Delta(\alpha) \cap \Delta(\gamma)| = \lambda$ . Analog zeigt man die Aussage für  $\beta \in \Gamma(\alpha)$ . Ist |G| ungerade, so folgt aus 2.1, daß  $\lambda = \mu$  gilt.

(b) ergibt sich sofort aus (a). I

- (2.3) Kriterien für die Imprimitivität einer Rang-3-Gruppe gibt Lemma 2.3 ([11], Lemma 4).
- Lemma 2.3 Folgende Aussagen sind äquivalent
  - (i) G ist imprimitiv und  $k \le 1$ .
  - (ii)  $G_{\alpha} \neq G_{\Gamma(\alpha)}$
  - (iii)  $\Gamma(\alpha) = \Gamma(\beta)$  für ein  $\alpha \neq \beta$ .

Die Äquivalenz von (i) und (ii) bedeutet, daß Imprimitivitätsgebiete von G gerade die Mengen der Form  $\{\alpha\} \cup \Delta(\alpha)$  sind und daß  $k+1 \mid n$  und k < 1 gilt.

Beweis: (i)  $\rightarrow$  (ii):

Sei  $\Sigma$  ein nichttriviales Imprimitivitätsgebiet und  $\alpha$   $\in$   $\Sigma$ . Entweder gilt  $\Sigma = \{\alpha\} \cup \Delta(\alpha)$  oder  $\Sigma = \{\alpha\} \cup \Gamma(\alpha)$ . Ist das zweite der Fall, so folgt 1+1 n, was im Widerspruch zur Voraussetzung steht. Es gilt also  $\Sigma = \{\alpha\} \cup \Delta(\alpha)$ . Da G transitiv ist, gibt es ein g  $\in$  G mit  $\alpha^g \in \Delta(\alpha)$ . Also ist  $(\{\alpha\} \cup \Delta(\alpha))^g = (\{\alpha\} \cup \Delta(\alpha))$ , d.h.  $g \in G_{\{\alpha\}} \cup \Delta(\alpha)$ , aber  $g \notin G_{\alpha}$ . Da  $G_{\alpha} \subseteq G_{\{\alpha\}} \cup \Delta(\alpha)$ , folgt

 $g \in G_{\{\alpha\}} \cup \Delta(\alpha)$ , aber  $g \notin G_{\alpha}$ . Da  $G_{\alpha} \leq G_{\{\alpha\}} \cup \Delta(\alpha)$ , folgot  $G_{\alpha} \leq G_{\{\alpha\}} \cup \Delta(\alpha) = G_{\Gamma(\alpha)}$ .

(ii)  $\rightarrow$  (i) und (ii)  $\rightarrow$  (iii):

Da  $G_{\alpha}$  <  $G_{\Gamma(\alpha)}$ , existiert ein  $g \in G_{\Gamma(\alpha)}$  mit  $\alpha \neq \alpha^g \in \Delta(\alpha)$ , also ist  $G_{\Gamma(\alpha)}$  transitiv auf  $\{\alpha\} \cup \Delta(\alpha)$ . Wegen  $G_{\alpha}$  <  $G_{\Gamma(\alpha)}$  =  $G_{\{\alpha\}} \cup \Delta(\alpha)$ 

ist  $\{\alpha\} \cup \Delta(\alpha)$  Imprimitivitätsgebiet, also gilt (i).

Es ist  $\alpha^g \in \Delta(\alpha)$ , also  $(\{\alpha\} \cup \Delta(\alpha))^g = \{\alpha\} \cup \Delta(\alpha)$ , also ist  $(\Gamma(\alpha))^g = \Gamma(\alpha^g) = \Gamma(\alpha)$  und  $\alpha^g \neq \alpha$ , also gilt auch (iii).

 $(iii) \rightarrow (ii):$ 

Sei  $\Gamma(\alpha)=\Gamma(\beta)$  für  $\alpha\neq\beta$ . Angenommen es ist  $G_{\alpha}=G_{\Gamma(\alpha)}$ , dann ist  $G_{\alpha}=G_{\Gamma(\alpha)}=G_{\Gamma(\beta)}=G_{\beta}$ . Ist nun  $\Delta(\alpha)=\{\beta\}$ , so ist  $G_{\Gamma(\alpha)}=G_{\{\alpha,\beta\}}$ . Dies kann nicht sein, also gilt:  $\Gamma(\alpha)=\{\beta\}=\Gamma(\beta)$ , was die Annahme widerlegt, denn  $\{\beta\}\neq\Gamma(\beta)$ .  $\mathbb{Q}$ 

- (2.4) Aus Lemma 2.3.folgt ([11], S.147):
- Lemma 2.4 (a) Ist  $G_{\alpha} = G_{\Delta(\alpha)}$  und  $\Delta(\alpha) = \Delta(\beta)$ , so ist  $\alpha = \beta$ . (b) Ist G imprimitiv, dann gibt es genau eine Zerlegung von  $\Omega$  in Blöcke und G wirkt auf diesen zweifach transitiv.
  - (c) Eine Rang-3-Gruppe ungerader Ordnung ist primitiv.

Beweis: (a) Es ist  $G_{\alpha} = G_{\Delta(\alpha)} = G_{\Delta(\beta)} = G_{\beta}$ . Da  $\Delta(\alpha) = \Delta(\beta)$  gilt, ist  $\beta \notin \Delta(\alpha)$ . Annahme:  $\beta \in \Gamma(\alpha)$ . Da  $G_{\alpha}$  auf  $\Gamma(\alpha)$  transitiv wirkt, gibt es für alle  $\gamma \in \Gamma(\alpha)$ ,  $\gamma \neq \beta$ , ein  $g \in G_{\alpha}$ , so daß  $\gamma = \beta^g$ . Da  $G_{\alpha} = G_{\beta}$ , ist  $g \in G_{\beta}$ , also ist  $\gamma = \beta^g = \beta$ , was im Widerspruch zu  $\gamma \neq \beta$  steht. Also gilt  $\alpha = \beta$ .

(b) Sei G imprimitiv. Annahme:  $G_{\alpha} \neq G_{\Delta(\alpha)}$  für  $\alpha \in \Omega$ . Dann ist  $G_{\alpha} < G_{\Delta(\alpha)}$  und es existiert ein  $g \in G_{\Delta(\alpha)}$  mit  $\beta = \alpha^g \neq \alpha$ . Dann gilt  $(\{\alpha\} \cup \Delta(\alpha))^g = \{\beta\} \cup \Delta(\alpha)$  und  $\beta \neq \alpha$ , was einen Widerspruch dazu darstellt, daß  $\{\alpha\} \cup \Delta(\alpha)$  Imprimitivitätsgebiet ist. Also gilt  $G_{\alpha} = G_{\Delta(\alpha)}$  und wegen (a) ist die Zerlegung von  $\Omega$  in Blöcke eindeutig. G ist transitiv auf den Mengen  $\{\alpha\} \cup \Delta(\alpha)$ . Betrachte die Wirkung von  $G_{\{\alpha\}} \cup \Delta(\alpha)$  auf den von  $\{\alpha\} \cup \Delta(\alpha)$  verschiedenen Imprimitivitätsgebieten. Da diese der Form  $\{\beta\} \cup \Delta(\beta)$  mit  $\beta \in \Gamma(\alpha)$  sind und  $G_{\alpha} \leq G_{\{\alpha\}} \cup \Delta(\alpha)$  transitiv auf  $\Gamma(\alpha)$  ist, folgt die Behauptung. (c) Ist |G| ungerade, so ist 1 = k. Ist  $\Sigma$  ein Block von G, so ist  $|\Sigma|$  ein Teiler von  $|\Omega|$ . Nach (2.2) ist  $\Sigma = \{\alpha\} \cup \Delta(\alpha)$  für ein  $\alpha \in \Omega$ , d.h.  $|\Sigma| = k + 1$ . Aber k + 1 teilt  $|\Omega| = 2k + 1$  nicht. Also ist G primitiv. $\mathbf{n}$ 

Weitere Aussagen über Rang-3-Gruppen, insbesondere Beziehungen zwischen den Parametern  $k,1,\lambda$  und  $\mu$  gewinnt man, wenn G als Automorphismengruppe sogenannter Rang-3-Graphen betrachtet wird. Dies ist Gegenstand des nächsten Paragraphen.

## § 3 Streng reguläre Graphen und Rang-3-Gruppen

Jede Rang-3-Gruppe G bestimmt in natürlicher Weise einen Graphen, auf dem G als Automorphismengruppe operiert. Diese Rang-3-Graphen sind streng reguläre Graphen, deren Untersuchung eine nähere Bestimmung der Parameter einer Rang-3-Gruppe bzw. eines Rang-3-Graphen, sowie eine graphentheoretische Interpretation dieser Parameter erlaubt.

#### (3.1) Zunächst einige Definitionen.

Sei  $\Omega \neq \emptyset$  eine endliche Menge, f  $\subseteq \Omega \times \Omega \setminus I$  ( $I = \{(\alpha,\alpha) \mid \alpha \in \Omega\}$ ) eine Relation. Man definiert den *Graphen*  $G_f = (\Omega,f)$  mit  $\Omega$  als Ecken- und f als Bogenmenge. Ein Graph  $G_f$  heißt gerichtet oder Digraph, wenn f antisymmetrisch; und ungerichtet, wenn f symmetrisch ist. In letzterem Fall sind zwei Ecken immer durch zwei entgegengesetzte Bögen verbunden, die *Kanten* des Graphen.

Ein Untergraph von  $G_f$  ist ein Paar  $(\Omega_1,f_1)$  mit  $\Omega_1 \subseteq \Omega$  und  $f_1 = f|_{\Omega_1}$ . Das Komplement des Graphen  $G_f$  ist der Graph  $\overline{G}_f = G_{\overline{f}}$  mit  $\overline{f} = \Omega \times \Omega \setminus (f \vee I)$ .

Ein Graph  $G_f$  heißt zusammenhängend, wenn von jeder Ecke  $\alpha \in \Omega$  ein Weg zu jedem anderen Punkt  $\beta \in \Omega$  existiert, d.h. wenn es eine Folge  $\alpha_0 = \alpha, \ \alpha_1, \ \alpha_2, \ldots, \ \alpha_n = \beta$  von Punkten gibt, so daß für alle  $i = 0, 1, \ldots, n-1$  gilt:  $(\alpha_i, \alpha_{i+1}) \in f$ 

Die Matrix  $A_f = (a_{\alpha,\beta})$  mit  $a_{\alpha,\beta} = 1$  falls  $(\alpha,\beta)$   $\in$  f und  $a_{\alpha,\beta} = 0$  falls  $(\alpha,\beta)$   $\notin$  f (für  $\alpha,\beta$   $\in$   $\Omega$ ) heißt die Adjazenzmatrix des Graphen.

Ein Automorphismus g des Graphen  $G_f$  ist eine Permutation der Punkte von  $\Omega$ , für die gilt:  $(\alpha,\beta)$   $\epsilon$  f genau dann, wenn  $(\alpha^g,\beta^g)$   $\epsilon$  f.

Ist g eine Permutation der Punkte von  $\Omega$  und P die zugehörige Permutationsmatrix, so gilt: g ist genau dann ein Automorphismus des Graphen, wenn  $PA_f = A_f P$  gilt.

Die Menge der Automorphismen eines Graphen bildet eine Gruppe, die Automorphismengruppe des Graphen.

Für eine gegebene Ecke  $\alpha$  heißt  $|\{\beta \mid (\alpha,\beta) \in f\}|$  die Valenz von  $\alpha$ . Der Graph  $G_f$  heißt regulär, wenn jede Ecke dieselbe Valenz hat, was gleichbedeutend ist damit, daß die Adjazenzmatrix  $A_f$  konstante Zeilensumme hat.

- Definition 3.1 Ein ungerichteter Graph G mit n Ecken heißt
   streng regulär, wenn er folgende Bedingungen erfüllt:
   (i) G ist regulär mit der Valenz k, 0< k< n-1.
   (ii) Die Anzahl λ der Dreiecke in G, die eine gegebene
   Kante enthalten, ist unabhängig von der Wahl dieser Kante.
   (iii) Die Anzahl μ der Wege der Länge 2, die ein gegebenes nichtbenachbartes Eckenpaar verbinden, ist unabhängig von der Wahl dieses Paares.</pre>
- (3.2) Sei G eine transitive Permutationsgruppe auf  $\Omega$ ,  $\Omega \neq \emptyset$ .  $\Delta$  sei ein Orbital von G,  $\Delta \neq I$ .  $G_{\Delta}$  ist dann offensichtlich ein Graph, nämlich  $(\Omega, \Delta)$ . Aus den Graphen  $G_{\Delta}$  für die Orbitale  $\Delta \neq I$  von G ergeben sich Aussagen über die Gruppe G. Insbesondere ist für unseren Zusammenhang folgendes Lemma interessant:
- Lemma 3.2 Die transitive Permutationsgruppe G ist genau dann primitiv, wenn  $G_{\Delta}$  für alle Orbitale  $\Delta \neq I$  ein zusammenhängender Graph ist.

Beweis: [10], S.142.

(3.3) Wir betrachten nun im speziellen eine Permutationsgruppe G vom Rang 3 auf  $\Omega$  mit den Orbitalen I,  $\Delta$ ,  $\Gamma$ . Wie oben sei für ein  $\alpha \in \Omega$ :  $|\Omega| = n$ ,  $|\Delta(\alpha)| = k$ ,  $|\Gamma(\alpha)| = 1$ . Ist |G| gerade, so sind die beiden nichttrivialen Orbitale symmetrisch,  $G_{\Delta}$  ist also ein ungerichteter Graph;  $G_{\Gamma}$  ist der zu  $G_{\Delta}$  komplementäre Graph.  $G_{\Lambda}$  heißt Rang-3-Graph.

- $G_{\underline{\lambda}}$  (und jeweils analog  $G_{\underline{\Gamma}}$  mit den komplementären Parametern  $\bar{k}=1$ ,  $\bar{1}=k$ ,  $\bar{\lambda}$ ,  $\bar{\mu}$ ) hat folgende Eigenschaften:
- (i)  $G_{\Delta}$  ist regulär, denn für alle  $\alpha \in \Omega$  ist  $|\Delta(\alpha)| = k, G_{\Delta}$  hat also die Valenz k.
- (ii) Ist  $\beta \in \Delta(\alpha)$ , so sind  $\alpha$  und  $\beta$  verbunden und  $|\Delta(\alpha) \cap \Delta(\beta)| = \lambda$  ist die Anzahl der Ecken, die sowohl mit  $\alpha$  als auch mit  $\beta$  verbunden sind, also die Anzahl der Dreiecke, die die Kante  $(\alpha,\beta)$  enthalten.  $\lambda$  ist nach (2.2) unabhängig von der Wahl von  $\alpha$  und  $\beta$ .
- (iii) Ist  $\beta \in \Gamma(\alpha)$ , so sind  $\alpha$  und  $\beta$  nicht verbunden.  $|\Delta(\alpha) \cap \Delta(\beta)| = \mu$  ist dann die Anzahl der Ecken, die mit  $\alpha$  und mit  $\beta$  verbunden sind, also die Anzahl der Wege der Länge 2 von  $\alpha$  nach  $\beta$ . Wieder ergibt Lemma 2.2, daß  $\mu$  unabhängig von der Wahl von zwei nicht benachbarten Punkten ist.

Kurz: G wirkt nach Konstruktion als transitive Automorphismengruppe auf  ${\sf G}_{\Delta}.$  Da G transitiv auf den Ecken wirkt und Kanten erhält, ist  ${\sf G}_{\Delta}$  regulär, und da G transitiv auf den Paaren benachbarter und nichtbenachbarter Ecken, nämlich den beiden Orbitalen  $\Delta$  und  $\Gamma$ , wirkt und Kanten erhält, ist  ${\sf G}_{\Delta}$  streng regulär.

 $G_{\Delta}$  und  $G_{\Gamma}$  bilden also ein Paar komplementärer streng regulärer Graphen. Jeder Rang-3-Graph ist ein streng regulärer Graph. Umgekehrt ist ein streng regulärer Graph, dessen Automorphismengruppe transitiv vom Rang 3 auf den Ecken des Graphen wirkt, ein Rang-3-Graph. (Dies ist nicht immer der Fall, siehe (4.2).)

(3.4) Zur Bestimmung der Beziehungen der Parameter k, 1,  $\lambda$ ,  $\mu$ , sowie weiterer Parameter von streng regulären resp. Rang-3-Graphen betrachten wir folgende Situation: Sei  $G_{\Delta} = (\Omega, \Delta)$  ein streng regulärer Graph,  $\Gamma$  die Menge der nichtbenachbarten Eckenpaare, so daß  $\Delta \cup \Gamma = \Omega \times \Omega$ -I ist. Dann ist  $\overline{G}_{\Delta} = G_{\Gamma}$ . Für ein  $\alpha \in \Omega$  sei  $\Delta(\alpha) = \{\beta \mid (\alpha, \beta) \in \Delta\}$  und  $|\Delta(\alpha)| = k$ . Sei  $\Gamma(\alpha) = \{\beta \mid (\alpha, \beta) \in \Gamma\}$  und  $|\Gamma(\alpha)| = 1$ ,  $|\Omega| = n = k + 1 + 1$ .

Man sieht sofort, daß  $0 \le \lambda \le k-1$ ,  $0 \le \mu \le k$  und  $k-\mu \le 1-1$  gilt. Sei nun  $A = A_{\Delta}$  die Adjazenzmatrix  $von G_{\Delta}$ ,  $B = B_{\Gamma}$  diejenige von  $G_{\Gamma}$ . I sei die Einheitsmatrix vom Format  $(n \times n)$ , J die quadratische Matrix vom Format  $(n \times n)$ , die überall den Eintrag 1 hat.

Lemma 3.3 ([10], S.144) Dann gilt:

- (a) I + A + B = J
- (b) Die Zeilensumme von A ist k, die von B ist 1.
- (c)  $A^2 (\lambda \mu)A (k \mu)I = \mu J$

Beweis: (a) und (b) folgt aus den Definitionen. Zum Beweis von (c) betrachtet man  $A^2=(a_{\alpha,\beta})$ .  $a_{\alpha,\beta}$  ist die Anzahl der Wege der Länge 2 in  $G_{\Delta}$  von  $\alpha$  und  $\beta$ . Also ist  $A^2=\lambda A+\mu B+kI$ . Mit (a) und (b) ergibt sich dann (c).0

Lemma 3.4 ([10], S.145)

Es gilt 
$$k(k - \lambda - 1) = \mu l$$

Beweis: Sei  $\alpha \in \Omega$  und sei  $S = \{ \gamma | \text{die Distanz von } \alpha \text{ und } \gamma \text{ ist } 2 \}$ . Dann ist einerseits für  $\beta \in \Delta(\alpha)$ :  $|\Gamma(\alpha) \cap \Delta(\beta)| = k - \lambda - 1$ , also gilt  $|S| = |\Delta(\alpha)| \cdot (k - \lambda - 1) = k(k - \lambda - 1)$ .

Andererseits ist für  $\beta \in \Gamma(\alpha)$ :  $|\Delta(\alpha) \cap \Delta(\beta)| = \mu$ , also ist  $|S| = |\Gamma(\alpha)|_{\mu} = \mu l$ . Da dies unabhängig von der Wahl von  $\alpha$  ist, gilt die Behauptung.

(3.5) Der streng reguläre Graph G heißt primitiv, falls G und G zusammenhängend sind. Ist G ein Rang-3-Graph, so stimmt diese Definition nach (3.2) gerade mit der Primitivität der Gruppe G überein. Es gilt nun

G ist genau dann primitiv, wenn  $\mu \neq 0$ ,k ist.

Beweis: Daß  $\widehat{G}$  genau dann zusammenhängend ist, wenn  $\mu \neq 0$  ist, ergibt sich unmittelbar aus der Definition von  $\mu$ .  $\widehat{\widehat{G}}$  ist offenbar genau dann zusammenhängend, wenn  $\mu \neq 0$  ist. Da  $\mu = 1 - k + \lambda + 1$  gilt, ist dies genau dann der Fall, wenn  $\mu \neq k$  gilt. $\widehat{\mathbf{G}}$ 

Die Betrachtung der Eigenwerte der Adjazenzmatrix A von G ergibt weitere Parameter des streng regulären Graphen.

Wegen  $A^2$  -  $(\lambda - \mu)A$  -  $(k - \mu)I = \mu J$  erfüllt A das Polynom  $(X - k)(X^2 - (\lambda - \mu)X - (k - \mu)) = 0$ . Demzufolge hat A die folgenden drei Eigenwerte:

k, s =  $\frac{1}{2}(\lambda - \mu + \sqrt{d})$ , t =  $\frac{1}{2}(\lambda - \mu - \sqrt{d})$ , wobei d =  $(\lambda - \mu)^2 + 4(k - \mu)$  ist.

Da für die Adjazenzmatrix B von  $\overline{\mathfrak{h}}$  die Aussage von Lemma 3.3 für  $\overline{\lambda}$ ,  $\overline{\mu}$ , und  $\overline{k}$  erfüllt ist, ergibt sich

 $\bar{s}$ ,  $\bar{t} = \frac{1}{2}(\mu - \lambda - 2 \pm \sqrt{d})$  und  $s + \bar{t} = t + \bar{s} = -1$ .

Es sollen nun die Vielfachheiten der drei Eigenwerte von A berechnet werden. Sei  $f_1$  die Vielfachheit von k,  $f_2$  diejenige von s und  $f_3$  die von t. (s. [10], S.145f)

Ist G zusammenhängend, so ist A eine unzerlegbare nichtnegative Matrix, Wäre nämlich A zerlegbar, so existierte einé Permutationsmatrix P mit

$$P^{-1}A P = \begin{pmatrix} A_1 & O \\ A_2 & A_3 \end{pmatrix}$$
 (Rahmen  $A_{\underline{i}} \ge 1 \times 1$  für  $\underline{i} = 1, 2, 3$ )

 Daraus ergibt sich:

$$f_2 = \frac{(n-1)t + k}{t - s} \quad \text{und} \quad f_3 = \frac{(n-1)s + k}{s - t} ,$$
also
$$f_2, f_3 = \frac{(k+1)(\lambda - \mu) + 2k \mp \sqrt{d}(k+1)}{\mp 2\sqrt{d}}$$

 $\bar{f}_2 = f_3$  und  $\bar{f}_3 = f_2$  sind die entsprechenden Vielfachheiten der Eigenwerte  $\bar{s}$ ,  $\bar{t}$  der Adjazenzmatrix B von  $\bar{g}$ .

Ist G nicht zusammenhängend, dann ist  $\mu$  = 0 und  $\lambda$  = k - 1, also ist s = k und t = -1.

Daraus folgt, daß  $f_2 = \frac{1}{k+1}$  und  $f_3 = n - f_2 - 1$  gilt.

(3.6) Das 9-Tupel  $(n,k,l,\lambda,\mu,s,t,f_2,f_3)$  nennt man die zu G gehörige Parametermenge. Ist G ein Rang-3-Graph und wirkt G vom Rang 3 auf den Ecken von G, so heißt es auch Parametermenge der Rang-3-Gruppe G.

Wir erhalten nun

<u>Satz 3.6</u> ([11], Lemma 7)

Ist |G| gerade, dann gilt entweder

(I) 
$$k = 1$$
,  $\mu = \lambda + 1 = \frac{k}{2}$ ,  $f_2 = f_3 = k$  oder

(II) 
$$d = (\lambda - \mu)^2 + 4(k - \mu)$$
 ist ein Quadrat und

(i) ist n gerade, so ist  $\sqrt{d}$  ein Teiler von

$$(2k + (\lambda - \mu)(k + 1), aber 2\sqrt{d})$$
 nicht.

(ii) ist n ungerade, so gilt

$$2\sqrt{d} \left| (2k + (\lambda - \mu\mu)(k + 1)) \right|$$

Beweis: (I) Sei d kein Quadrat. Da  $f_2$  und  $f_3$  in  $\overline{Z}$  sind, muß gelten:

$$\frac{2k + (\lambda - \mu)(k + 1) \neq \sqrt{d}(k + 1)}{\neq 2\sqrt{d}} \in \mathbb{Z} \cdot \text{Da } \sqrt{d} \in \mathbb{Q} \text{ und}$$

 $2k + (\lambda - \mu)(k + 1) \in \mathbb{Z}$  gilt, folgt:

$$\frac{2k + (\lambda - \mu)(k + 1)}{\sqrt{d}} \in \mathbb{Z} \text{ genau dann, wenn } 2k + (\lambda - \mu)(k + 1) = 0.$$

Da 2k > 0, (k + 1) > 0 muß gelten: $\lambda - \mu < 0$ , also  $\mu > \lambda$ . Ferner ist  $(2 + \lambda - \mu)k = (\mu - \lambda)1$ . Da  $\mu > \lambda$  folgt  $2 + \lambda - \mu > 0$ , also  $\mu < \lambda + 1$ . Also ist  $\mu = \lambda + 1$ . Daraus folgt  $0 = 2k + (\lambda - \mu)(k+1) = 2k - k - 1 = k - 1$ , also ist k = 1. Daraus folgt der Rest von (I).

- (II) Sei nun d ein Quadrat.
- (i) Ist n gerade, so ist k + l ungerade. Also gilt  $2\sqrt{d} \not| \sqrt{d}(k+1)$ . Da  $f_2$ ,  $f_3$  ganze rationale Zahlen sind, muß gelten:  $2\sqrt{d}$  teilt  $(2k + (\lambda \mu)(k+1)$  nicht, aber  $\sqrt{d}$  teilt diese Zahl.
- (ii) Ist n ungerade, so ist k+1 gerade. Also gilt  $2\sqrt{d} \mid \sqrt{d}(k+1)$ , also auch  $2\sqrt{d} \mid (2k+(\lambda-\mu)(k+1))$ .

#### Bemerkungen zu Satz 3.6:

- (a) Ist |G| gerade und  $f_2 = f_3$ , so gilt Fall (I) des Satzes. Denn ist  $f_2 = f_3$ , so ist  $(k+1)(\lambda \mu) + 2k = 0$ . Beweisteil (I) zeigt, daß dann k = 1 und  $\mu = \lambda + 1$  gelten muß.
- (b) Im Fall (I) gilt außerdem:  $n = 1 + 4\mu$ , d = n, s,t =  $\frac{-1 \pm \sqrt{n}}{2}$ . Denn:  $k = 2\mu$  und n = 1 + 2k, also  $n = 1 + 4\mu$ . Dann ist  $d = (\lambda \lambda 1)^2 + 4(2\mu \mu) = 1 + 4\mu = n$  und s,  $t = \frac{(\lambda \mu) \pm \sqrt{d}}{2} = \frac{-1 \pm \sqrt{n}}{2}$ .
- (c) Im Fall (II) sind die Eigenwerte von A ganze rationale Zahlen. Grund: Es ist s =  $\frac{(\lambda \mu) + \sqrt{d}}{2}$ . Ist  $(\lambda \mu)$  ungerade, so auch d und  $\sqrt{d}$ . Also ist  $((\lambda \mu) + \sqrt{d})$  gerade, also s  $\boldsymbol{\varepsilon}$  Z. Ist  $(\lambda \mu)$  gerade, dann ist 4 Teiler von  $(\lambda \mu)^2$ , also auch von d, d.h. 2 teilt  $\sqrt{d}$ . Also ist 2 auch Teiler von  $((\lambda \mu) + \sqrt{d})$ . Ist nun s  $\boldsymbol{\varepsilon}$  Z, dann auch t.

# § 4 Beispiele von Rang-3-Graphen

- (4.1) Die einzigen bekannten Beispiele für streng reguläre Graphen, die Fall (I) von Satz 3.6 erfüllen, sind Rang-3-Graphen vom Singer-Typ und drei weitere Beispiele mit  $n = 7^2$ ,  $23^2$  und  $47^2$  [10]. Der Graph G heißt vom Singer-Typ, wenn er zu folgendem Graphen Sisomorph ist: die Eckenmenge von S sind die Elemente von  $GF(p^n)$ (dabei ist p eine Primzahl und n, m natürliche Zahlen, so daß  $p^n = 4m + 1$  erfüllt ist). Zwei Ecken in S sind genau dann benachbart, wenn ihre Differenz ein Quadrat  $\neq$  0 in GF(p<sup>n</sup>) ist. Die additive Gruppe M =  $(GF(p^n), +)$  wirkt regulär auf  $\Omega = GF(p^n)$ vermöge  $\alpha^g = \alpha + g$  für  $\alpha \in \Omega$  und  $g \in M$ .  $GF(p^n)^* = GF(p^n) \setminus \{0\}$  ist als multiplikative Gruppe zyklisch, es gibt ein j in  $GF(p^n)^*$ , mit  $\langle j \rangle = GF(p^n)^*$ . Die zyklische Gruppe  $\langle j^2 \rangle$  der Ordnung 2m wirkt auf  $\Omega$  vermöge  $\alpha^g = \alpha g$  für  $\alpha \in \Omega$  und  $g \in \langle j^2 \rangle$ . Die Gruppe G, die von den Wirkungen von M und  $\langle j^2 \rangle$  auf  $\Omega$  erzeugt wird, das semidirekte Produkt M<j $^2$ > wirkt transitiv auf  $\Omega$ . Der Stabilisator des Punktes O in G ist  $\langle j^2 \rangle$  und hat 3 Bahnen auf :  $\{0\}$ , die Quadrate von GF  $(p^n)$ und die Nichtquadrate von GF(p). Die Rang-3-Gruppe G definiert auf natürliche Weise einen selbstkomplementären Graphen  $\S$  vom Singer-Typ. [12].
- (4.2) Aus der Vielzahl der unendlichen Familien von Rang-3-Gruppen sollen hier zwei einfache Beispiele genügen.
- (a) (Siehe [9], S.108)

Sei  $\Omega$  die Menge der 2-elementigen Teilmengen von  $\Sigma = \{1,2,...m\}$ , m  $\geq$  4. Die symmetrische Gruppe S $_{\rm m}$  und die alternierende Gruppe A $_{\rm m}$ sind 2-transitiv auf  $\Sigma$ , also transitiv auf  $\Omega$ . Sei  $G = S_m$  oder  $A_m$ . Ist  $\alpha = (a,b) \in \Omega$ , so hat  $G_{\alpha}$  genau 2 Bahnen auf  $\Omega \setminus \{\alpha\}$ , nämlich

$$\Delta(\alpha) = \{(c,d) \mid c,d \neq a,b\}$$
 und

 $\Gamma(\alpha) = \{(a,c) \mid c \neq a,b\} \cup \{(b,c) \mid c \neq a,b\}.$ 

 $\mathcal{G}_{\Lambda}$  hat  $\Omega$  als Eckenmenge. Ein (a,b)  $\in \Omega$  ist genau dann mit einem von (a,b) verschiedenen (c,d)  $\in \Omega$  verbunden, wenn {a,b}  $\cap$  {c,d} =  $\emptyset$ gilt.

 $G_{\Lambda}$  hat folgende Parameter:

$$n = {m \choose 2}, k = {m-2 \choose 2}, 1 = 2(m-2), \lambda = \frac{1}{2}(m-2)(m-7) + 3,$$

$$\mu = \frac{1}{2}(m-2)(m-5) + 1, s = 1, t = -m + 3, f_2 = \frac{1}{2}m(m-3), f_3 = m - 1.$$

S ist die Automorphismengruppe von  $G_{\Delta}$  und für m > 4 primitiv. Für m = 5 ist  $G_{\Delta}$  der wohlbekannte Petersen-Graph mit den Parametern n = 10, k = 3, l = 6,  $\lambda$  = 0,  $\mu$  = 1, s = 1, t = -2,  $f_{2}$  = 5 und  $f_{3}$  = 4.



Abbildung 1: Der Petersen-Graph

Das Komplement  $G_{\Gamma}$  von  $G_{\Delta}$  ist für alle m  $\geq$  4 der Kantengraph von  $K_{m}$ , dem vollständigen Graphen mit m Ecken. Für m  $\neq$  8 ist  $G_{\Gamma}$  durch die Parameter

$$\begin{array}{l} n=\binom{m}{2} \;,\; k=2\,(m-2) \;,\; 1=\binom{m-2}{2} \;\;,\; \lambda=m-2 \;,\; \mu=4 \;,\\ s=m-4 \;,\; t=-2 \;,\; f_2=m-1 \;,\; f_3=\frac{1}{2}\; m\cdot (m-3) \;\; \mbox{eindeutig bestimmt.} \\ \mbox{Für } m=8 \;\mbox{gibt es noch genau drei weitere Graphen, deren Automorphismengruppe intransitiv ist.} \label{eq:morphismengruppe} \end{array}$$

# (b) (Siehe [9], S.109)

Sei  $\Omega$  die Menge der geordneten Paare von {1,2,...,m},  $m \geq 2$  und G das Kranzprodukt  $S_m > 2$  der symmetrischen Gruppen vom Grad m und 2. Jedes Element von G kann eindeutig geschrieben werden als  $(\pi,\rho;\tau)$ , wobei  $\pi,\rho\in S_m$  und  $\tau\in S_2$  sind. G wirke auf  $\Omega$  vermöge

$$(a_{1}, a_{2})^{(\pi, \rho; \tau)} = (a_{\tau(1)}^{\pi}, a_{\tau(2)}^{\rho}). \quad ((a_{1}, a_{2}) \in \Omega)$$

Der Stabilisator eines Punktes  $\alpha = (a_1, a_2)$  in G hat dann 3 Bahnen auf  $\Omega$ , nämlich  $\{\alpha\}$ ,  $\Delta(\alpha) = \{(b_1, b_2) \mid (b_1, b_2) \in \Omega \setminus \{\alpha\} \text{ und } b_1 = a_1 \text{ oder } b_2 = a_2\}$  und  $\Gamma(\alpha) = \Omega \setminus \{\Delta(\alpha) \cup \{\alpha\}\}$ .

Der Graph  $G_{\Delta}$  hat die Eckenmenge  $\Omega$ .  $(a_1,a_2) \in \Omega$  ist genau dann mit  $(b_1,b_2)$  verbunden, wenn entweder  $a_1=b_1$  oder  $a_2=b_2$  gilt.  $G_{\Delta}$  ist der Gittergraph (auch Lateinisches-Quadrat-Graph)  $L_2$  (m) der Ordnung m mit folgenden Parametern:

 $n = m^2$ , k = 2(m-1),  $1 = (m-1)^2$ ,  $\lambda = m-2$ ,  $\mu = 2$ , s = m-2, t = -2,  $f_2 = 2(m-1)$  and  $f_3 = (m-1)^2$ .

Für alle m  $\geq$  2, m  $\neq$  4 ist  $G_{\Delta}$  durch diese Parameter eindeutig bestimmt. Für m = 4 existiert noch ein weiterer Graph, der keine transitive Automorphismengruppe besitzt. [10], S.154.

# (4.3) Rang-3-Gruppen vom Grad $k^2 + 1$ (siehe [11], S.15of)

Sei G eine primitive Rang-3-Gruppe und k > 1. Dann ist  $\mu \neq 0$  und wegen (3.4) ist  $1 = \frac{1}{\mu} k (k - \lambda - 1)$ . l ist also für gegebenes k genau dann maximal, wenn  $\mu = 1$  und  $\lambda = 0$  gilt. Dann ist l = (k-1)k. Der maximale Grad der Rang-3-Darstellung von G ist für gegebenes k also  $n = k^2 + 1$ .

Sei andererseits G eine transitive Rang-3-Gruppe vom Grad  $k^2+1$ . Dann ist nach (3.4)  $\mu=1$  und  $\lambda=0$ , also ist G primitiv.(k>1). Für Rang-3-Gruppen vom Grad  $n=k^2+1$  gilt folgender Satz:†)

# Satz 4.3 ([11], Theorem 1)

Ist G eine transitive Rang-3-Gruppe vom Grad  $n=k^2+1$ , k die Länge einer  $G_{\alpha}$ -Bahn, so ist n=5, 10, 50 oder 3 250.

#### Beweis:

|G| ist gerade, denn andernfalls wäre  $\lambda=\frac{1}{2}(k-1)$ , nach Voraussetzung gilt hier aber  $\lambda=0$ . Nach (3.6) sind nun zwei Fälle zu unterscheiden :

t) Ist G ein zusammenhängender Graph mit Durchmesser  $\leq d$  (d.h. das Maximum der Eckenabstände in G ist kleiner gleich d) und maximaler d-1 Valenz k, dann hat G höchstens  $1+\sum k(k-1)^i$  Ecken. Graphen, für i=0 die Gleichheit in dieser Aussage gilt, heißen Moore-Graphen, sind regulär von der Valenz k und haben Taillenweite 2d+1 (d.h. die Länge des kürzesten Kreises in G ist 2d+1). Unter der Voraussetzung, daß G ein Moore-Graph mit Durchmesser d=2 und Valenz k ist, haben HOFFMAN und SINGLETON [13] schon 1960 die Aussage von Satz 4.3 gezeigt: k ist dann 2,3,7 oder 57 und in jedem der Fälle k = 2,3,7 ist G bis auf Isomorphie eindeutig bestimmt.

(I) Ist 
$$k = 1$$
, so ist  $k + 1 = k^2 = 2k$ , also  $k = 1 = 2$  und  $n = 5$   
(II)  $d = 4k - 3$  ist ein Quadrat, sei  $t = \sqrt{d}$ .

Da 
$$\mu = 1$$
 und  $\lambda = 0$  und  $k + 1 = k^2$  gilt, ist  $f_2 + f_3 = k^2$ . Ferner:  
 $f_2 = \frac{2k - (1 + t)k^2}{-2t}$  und  $f_3 = \frac{2k - (1 - t)k^2}{2t}$ 

Also gilt 
$$t(f_2 - f_3) = k^2 - 2k$$
. Mit  $f_3 = k^2 - f_2$  und  $k = \frac{t^2 + 3}{4}$  folgt für t:  $t^5 + t^4 + 6t^3 - 2t^2 + (9 - 32f_2)t - 15 = 0$ .

Also ist t Teiler von 15, d.h.  $t \in \{1,3,5,15\}$ .

Ist t = 1, so ist k = 1, dieser Fall entfällt also.

Ist t = 3, so ist k = 3 und n = 10.

Ist t = 5, so ist k = 7 und n = 50.

Ist t = 15, so ist k = 57 und n = 3 250.0

#### Bemerkung zu Satz 4.3:

Solche Gruppen vom Grad 5, 10 und 50 existieren.

- (a) Die Diedergruppe D $_{10}$  hat eine solche Darstellung vom Grad 5. Sei  $\Omega$  die Menge der Ecken des regelmäßigen Fünfecks im Einheitskreis, darauf hat D $_{10}$  die gewünschte Darstellung auf natürliche Weise.
- (b) Die alternierende und die symmetrische Gruppe vom Grad 5 wirken vom Rang 3 auf den 2-elementigen Teilmengen einer Menge der Mächtigkeit 5. (Siehe (4.2))
- (c) Die PSU(3,5 $^2$ ) und ihre Automorphismengruppe haben eine Rang-3-Darstellung vom Grad 50. Aut(PSU(3,5 $^2$ ) ist die Automorphismengruppe des Hoffman-Singleton-Graphen. [2]
- (d) ASCHBACHER [1] hat bewiesen, daß es keine Rang-3-Permutations-gruppe vom Grad 3 250 mit Subgraden 57 und 3 192 gibt.
- (4.4) Für die klassischen einfachen Gruppen wurde die Existenz einer ganzen Reihe von Rang-3-Permutationsdarstellungen und entsprechender Rang-3-Graphen gezeigt. Einen Überblick findet man in [14]. Als Beispiel betrachten wir folgende Konstruktion: BOSE und CHAKRAVARTI betrachten in [3] und [5] eine nichtausgeartete Hermitsche Varietät  $V_2$  im prøjektiven Raum  $PG(3,q^2)$ , d.h. die Menge aller absoluten Punkte in  $PG(3,q^2)$  bezüglich einer Hermitschen Form vom Rang 4. Im Fall q=2 ist  $V_2$  die kubische Fläche  $x_0^3+x_1^3+x_2^3+x_3^3=0$  in PG(3,4) mit 45 Punkten und 27 Erzeugenden (womit die Geraden von PG(3,4) bezeichnet werden, die ganz

in V<sub>2</sub> enthalten sind). Auf jeder Geraden der kubischen Fläche liegen 5 Punkte und durch jeden Punkt gehen 3 Geraden. Da durch jeden Punkt einer Geraden 2 weiter Geraden gehen, schneidet sich jede Gerade mit 10 andern Geraden. Von diesen schneiden sich wieder jeweils zwei. Jede Gerade ist also Seite von 5 Dreiecken, von denen es insgesamt 45 gibt.

In [5] wird gezeigt, daß der Graph G bestehend aus den 27 Geraden in  $V_2$  als Ecken, die genau dann verbunden sind, wenn sie sich schneiden, streng regulär mit folgenden Parametern ist:

n = 27, k = 10, l = 16,  $\lambda = 1$ ,  $\mu = 5$ .

Mit (3.6) berechnet man s = 1, t = -5,  $f_2 = 20$  und  $f_3 = 6$ .

Der Graph ( wird als Schläfli-Graph bezeichnet.

Die Automorphismengruppe dieses Graphen enthält die  $PSU(4,2^2)$ ,

die  $V_2$  festläßt, folglich transitiv auf den Erzeugenden wirkt und Kanten in G erhält M0.

Unter Zuhilfenahme einer Liste der 45 Dreiecke in der kubischen Fläche †) kann man die folgende Adjazenzmatrix des Schläfli-Graphen leicht berechnen:

t) "Steiner a fait connaître [J.Steiner, Über eine besondere Curve dritter Klasse und vierten Grades, Crelle Journal 53 (1857), 231 -237] (Journal de M. Borchardt, t.LIII) les theorèmes suivants: Toute surface du troisième degré contient vingt-sept droites. L'une quelconque d'entre elles, a, eu rencontre dix autres, se coupant elles-mêmes deux à deux, et formant ainsi avec a cinq triangles. Le nombre total des triangles ainsi formés sur la surface par les vingt-sept droites est de quarante-cinq. Si deux triangles abc, a'b'c' n'ont aucun côté commun, on peut leur en associer un troisième a"b"c" tel que les côtés correspondants de ces trois triangles se coupent, et forment trois nouveaux triangles aa'a" bb'b", cc'c". Les trois triangles associés abc,a'b'c', a"b"c" s'appellent le trièdre de Steiner. D'après cela, désignons par les lettres a, b, c, d, e, f, g, h, i, k, l, m, n, p, q, r, s, t, u, m', n', p', q', r', s', t', u' les vingt-sept droites: on formera sans peine le tableau suivant des quarante-cinq triangles, où la désignation des droites reste seule arbitraire:

abc, ade, afg, ahi, akl,
bmn, bpq, brs, btu,
cm'n', cp'q', cr's', ct'u',
dmm', dpp', drr', dtt',
enn', eqq', ess', euu',
fmq', fpn', fst', fur',
gnp', gqm', gru', gts',
hms', hrn', hqt', hup',
inr', ism', itq', ipu',
kmu', ktn', kqr', ksp',
lnt', lum', lrq', lps'." ([17],S.316)

|     | a | b | С | d | е | f | g | h | i | k | 1 | m | u | 's' | n | q | m | <b>'</b> p | t' | r | u | r | 't | s | p' | 'n | ' q |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|-----|---|---|---|------------|----|---|---|---|----|---|----|----|-----|
| a   |   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |   |   |     |   |   |   |            |    |   |   |   |    |   |    |    |     |
| b   | 1 |   | 1 |   |   |   |   |   |   |   |   | 1 |   |     | 1 |   |   | 1          |    | 1 | 1 |   | 1  | 1 |    |    | 1   |
| С   | 1 | 1 |   |   |   |   |   |   |   |   |   |   | 1 | 1   |   | 1 | 1 |            | 1  |   |   | 1 |    |   | 1  | 1  |     |
| d   | 1 |   |   |   | 1 |   |   |   |   |   |   | 1 |   |     |   |   | 1 | 1          | 1  | 1 |   | 1 | 1  |   | 1  |    |     |
| е   | 1 |   |   | 1 |   |   |   |   |   |   |   |   | 1 | 1   | 1 | 1 |   |            |    |   | 1 |   |    | 1 |    | 1  | 1   |
| f   | 1 |   |   |   |   |   | 1 |   |   |   |   | 1 |   |     |   | 1 |   | 1          | 1  |   | 1 | 1 |    | 1 |    | 1  |     |
| g   | 1 |   |   |   |   | 1 |   |   |   |   |   |   | 1 | 1   | 1 |   | 1 |            |    | 1 |   |   | 1  |   | 1  |    | 1   |
| h   | 1 |   |   |   |   |   |   |   | 1 |   |   | 1 |   | 1   |   |   |   |            | 1  | 1 | 1 |   |    |   | 1  | 1  | 1   |
| i   | 1 |   |   |   |   |   |   | 1 |   |   |   |   | 1 |     | 1 | 1 | 1 | 1          |    |   |   | 1 | 1  | 1 |    |    |     |
| k   | 1 |   |   |   |   |   |   |   |   |   | 1 | 1 | 1 |     |   |   |   |            |    |   |   | 1 | 1  | 1 | 1  | 1  | 1   |
| 1   | 1 |   |   |   |   |   |   |   |   | 1 |   |   |   | 1   | 1 | 1 | 1 | 1          | 1  | 1 | 1 |   |    |   |    |    |     |
| m   |   | 1 |   | 1 |   | 1 |   | 1 |   | 1 |   |   | 1 | 1   | 1 | 1 | 1 |            |    |   |   |   |    |   |    |    |     |
| u'  |   |   | 1 |   | 1 |   | 1 |   | 1 | 1 |   | 1 |   |     |   |   |   | 1          | 1  | 1 | 1 |   |    |   |    |    |     |
| s'  |   |   | 1 |   | 1 |   | 1 | 1 |   |   | 1 | 1 |   |     |   |   |   | 1          |    |   |   | 1 | 1  | 1 |    |    |     |
| n   |   | 1 |   |   | 1 |   | 1 |   | 1 |   | 1 | 1 |   |     |   |   |   |            | 1  |   |   | 1 |    |   | 1  | 1  |     |
| q'  |   |   | 1 |   | 1 | 1 |   |   | 1 |   | 1 | 1 |   |     |   |   |   |            |    | 1 |   |   | 1  |   | 1  |    | 1   |
| m'  |   |   | 1 | 1 |   |   | 1 |   | 1 |   | 1 | 1 |   |     |   |   |   |            |    |   | 1 |   |    | 1 |    | 1  | 1   |
| р   |   | 1 |   | 1 |   | 1 |   |   | 1 |   | 1 |   | 1 | 1   |   |   |   |            |    |   |   |   |    |   | 1  | 1  | 1   |
| ť'  |   |   | 1 | 1 |   | 1 |   | 1 |   |   | 1 |   | 1 |     | 1 |   |   |            |    |   |   |   | 1  | 1 |    |    | 1   |
| r   |   | 1 |   | 1 |   |   | 1 | 1 |   |   | 1 |   | 1 |     |   | 1 |   |            |    |   |   | 1 |    | 1 |    | 1  |     |
| u   |   | 1 |   |   | 1 | 1 |   | 1 |   |   | 1 |   | 1 |     |   |   | 1 |            |    |   |   | 1 | 1  |   | 1  |    |     |
| r'  |   |   | 1 | 1 |   | 1 |   |   | 1 | 1 |   |   |   | 1   | 1 |   |   |            |    | 1 | 1 |   |    |   |    |    | 1   |
| t   | } | 1 |   | 1 |   |   | 1 |   | 1 | 1 |   |   |   | 1   |   | 1 |   |            | 1  |   | 1 |   |    |   |    | 1  |     |
| s   |   | 1 |   |   | 1 | 1 |   |   | 1 | 1 |   |   |   | 1   |   |   | 1 |            | 1  | 1 |   |   |    |   | 1  |    |     |
| p'  |   |   | 1 | 1 |   |   | 1 | 1 |   | 1 |   |   |   |     | 1 | 1 |   | 1          |    |   | 1 |   |    | 1 |    |    |     |
| 'n' |   |   | 1 |   | 1 | 1 |   | 1 |   | 1 |   |   |   |     | 1 |   | 1 | 1          |    | 1 |   |   | 1  |   |    |    |     |
| q   |   | 1 |   |   | 1 |   | 1 | 1 |   | 1 |   |   |   |     |   | 1 | 1 | 1          | 1  |   |   | 1 |    |   |    |    |     |

Abbildung 2: Die Adjazenzmatrix des Schläfli-Graphen

## § 5 Rang-3-Erweiterungen

(5.1) Sei H eine endliche abstrakte Gruppe. Die endliche Gruppe G heißt Rang-k-Erweiterung von H, wenn G eine transitive Permutationsdarstellung vom Rang k auf einer endlichen Menge  $\Omega$  besitzt, so daß  $G_{\alpha} \cong H$  für ein  $\alpha \in \Omega$  gilt. In diesem Paragraphen sollen Rang-3-Erweiterungen diskutiert werden.

Bisher gingen wir von einer Rang-3-Permutationsgruppe G auf der Menge  $\Omega$  aus und konstruierten Graphen, auf denen G als Automorphismengruppe wirkt. Zur Konstruktion dieser Graphen war nur die Kenntnis der Wirkung eines Punktstabilisators auf  $\Omega$  notwendig. Nun ist das Ziel, von einer abstrakten Gruppe H ausgehend einen Graphen G zu konstruieren, so daß die Automorphismengruppe von G eine Rang-3-Gruppe G auf  $\Omega$  enthält, die G  $\cong$  H (für  $\alpha \in \Omega$ ) erfüllt.

Um zu klären, welche Probleme hierbei zu lösen sind, gehen wir nochmals von einer Rang-3-Gruppe G auf  $\Omega$  aus und betrachten die Wirkung von  $G_{\alpha}$  auf  $\Omega$ . Betrachtet man die beiden Untergraphen von  $G_{\Delta}$ , die aus den Punkten von  $\Delta(\alpha)$  bzw.  $\Gamma(\alpha)$  und den zwischen diesen Punkten jeweils vorkommenden Kanten bestehen, so ist  $G_{\alpha}$  eine punkttransitive Automorphismengruppe dieser beiden Untergraphen. Zudem ist  $G_{\alpha}$  offenbar intransitive Automorphismengruppe auf dem von  $\Delta(\alpha) \cup \Gamma(\alpha)$  auf  $G_{\Delta}$  induzierten Untergraphen. Für ein  $G_{\alpha}$  und eine Kante  $G_{\alpha}$  with  $G_{\alpha}$  induzierten Untergraphen. Für ein  $G_{\alpha}$  und eine Kante in  $G_{\alpha}$  ist.

Sei nun die abstrakte Gruppe H der Ausgangspunkt. Zunächst müssen zwei reguläre Graphen  $G_1$  und  $G_2$  gefunden werden, auf denen H als transitive Automorphismengruppe wirkt.  $\Omega_1$  und  $\Omega_2$  sollen die Punktmengen von  $G_1$  und  $G_2$  bezeichnen, P sei ein zusätzlicher Punkt. Dann gilt es, einen streng regulären Graphen G mit der Punktmenge  $\Omega = \{P\} \cup \Omega_1 \cup \Omega_2$  zu konstruieren, derart, daß  $\Delta(P) = \Omega_1$ ,  $\Gamma(P) = \Omega_2$  und  $G_1$  und  $G_2$  die von  $\Delta(P)$  und  $\Gamma(P)$  induzierten Untergraphen von G sind. Ist  $|\Omega_1| = k$ ,  $|\Omega_2| = 1$ , die Valenz eines Punktes in  $\Omega_1 = \lambda$  und diejenige eines Punktes in  $\Omega_2 = k - \mu$ , so existiert der gesuchte streng reguläre Graph jedenfalls nur dann, wenn die Parameterbedingungen des Satzes 3.6 erfüllt sind. Da wir uns für

primitive Erweiterungen von H interessieren, sei ferner  $\mu \neq 0$ , k verlangt. Ist beides der Fall, so muß nachgeprüft werden, ob die  $\mu l = k(k-\lambda-1)$  Kanten zwischen  $\Omega_1$  und  $\Omega_2$  so ergänzt werden können, daß ein  $\alpha \in \Omega_1$  mit einem  $\beta \in \Omega_2$  genau dann verbunden ist, wenn für ein beliebiges  $h \in H$   $\alpha^h$  und  $\beta^h$  benachbart sind. Ist dann  $K = \operatorname{Aut}(G)$  transitiv auf dem Graphen, so ist K eine Rang-3-Gruppe. Existiert eine auf G transitive Untergruppe G von G mit G G H, so ist G eine Rang-3-Erweiterung von G.

Ist H eine einfache Gruppe und G eine primitive Erweiterung vom Rang 3 von H, so läßt sich leicht entscheiden, ob G einfach ist. Denn es gilt

Satz 5.1 Ist G eine primitive Permutationsgruppe vom Rang 3 auf  $\Omega \text{ und G}_{\alpha} \text{ einfach, so ist entweder G einfach oder G enthält einen elementar-abelschen regulären Normalteiler.}$ 

Beweis: Sei N ein nichttrivialer Normalteiler von G. Dann ist  $N \cap G_{\alpha} = N_{\alpha} \not\subseteq G_{\alpha}$ . Da  $G_{\alpha}$  einfach ist, ist  $G_{\alpha} = N_{\alpha}$  oder  $N_{\alpha} = 1$ . N wirkt als Normalteiler der primitiven Gruppe G transitiv auf  $\boldsymbol{\Omega}_{\boldsymbol{\cdot}}$ Ist nun  $G_{\alpha} = N_{\alpha}$ , so ist  $|N| = |\Omega| \cdot |G_{\alpha}| = |G|$ , also N = G. Widerspruch. Folglich ist  $N_{\alpha} = 1$  und N regulärer Normalteiler von G, also  $|N| = |\Omega|$ . Jede echte Untergruppe von N ist nicht transitiv auf  $\Omega$ , also ist N minimaler Normalteiler von G, also charakteris. stisch einfach. Als charakteristisch einfache Gruppe ist N entweder elementar-abelsch oder direktes Produkt isomorpher Kopien einer nichtabelschen einfachen Gruppe. Die Wirkung von  ${\tt G}_{\alpha}$  auf  $\Omega \, \leftthreetimes \, \{\alpha\}$ ist äquivalent zur Wirkung von  $G_{\alpha}$  auf  $N^* = N - \{1\}$ .  $G_{\alpha}$  wirkt als Automorphismengruppe auf N und hat auf N\* zwei Bahnen. Da jeder Automorphismus die Ordnung eines Elements erhält, hat |N| höchstens zwei Primteiler p und q. Also ist  $|N| = p^{\alpha}q^{\beta}$ und N ist nach dem Satz von BURNSIDE über die Auflösbarkeit von Gruppen der Ordnung p $^{\alpha}q^{\beta}$ auflösbar. Daraus folgt, daß N eine elementar-abelsche Gruppe ist. 1

#### (5.2) Beispiele von Rang-3-Erweiterungen

## (a) (Siehe [9], S.115ff)

Der Ausgangspunkt sei  $H = S_3$  als abstrakte Gruppe. Sei  $\Omega_1 = \{1, 2, 3\}$  und  $G_1 = K_3$ , der triviale Graph mit 3 isolierten Ecken. Aut  $(G_1)$  ist offensichtlich die  $S_3$ . Sei  $\Omega_2 = \{a,b,c,d,e,f\}$  und  $G_1$  der folgende Graph:

e\_\_\_\_f

H wirke folgendermaßen auf den beiden Mengen  $\Omega_1$ ,  $\Omega_2$ :

| Н              | Wirkung von H auf $\Omega_1$ | Wirkung von H auf $\Omega_2$ |
|----------------|------------------------------|------------------------------|
| h <sub>1</sub> | 1                            | 1                            |
| $h_2$          | (1 2)3)                      | (ame)c)(b)fd)                |
| h <sub>3</sub> | (1 3 2)                      | (a c e) (b d f)              |
| $h_4$          | (1 2)                        | (a b)(c f)(d e)              |
| h <sub>5</sub> | (1 3)                        | (a f) (b e) (c d)            |
| h <sub>6</sub> | (2 3)                        | (a d) (b c) (e f)            |
|                |                              |                              |

(Wir haben es also mit der natürlichen Wirkung der  $S_3$  auf 3 Punkten und mit der rechtsregulären Wirkung der  $S_3$  zu tun)) Sei nun  $\Omega = \{P\} \cup \Omega_1 \cup \Omega_2$ . P sei mit jedem Punkt aus  $\Omega_1$  verbunden. Für den zu konstruierenden Graphen  $G_2$  ergibt sich also: n = 10, k = 3, l = 6,  $\lambda = 0$  und  $\mu = 1$ . Zunächst formal sind die Parameterbedingungen von (3.6) erfüllt. Es ist s = 1, t = -2,  $f_2 = 5$ ,  $f_3 = 4$ .

Jede Ecke von  $G_1$  muß nun mit  $k-\lambda-1=2$  Ecken von  $G_1$  verbunden werden, und zwar so, daß jede Ecke von  $G_1$  mit genau  $\mu=1$  Ecke von  $G_1$  verbunden ist.

Es ist  $H_1 = \{h_1, h_6\}$ , d.h.  $H_1$  hat die Bahnen  $\{a,d\}$ ,  $\{b,c\}$  und  $\{e,f\}$  auf  $\Omega_2$ . Die beiden Punkte, mit denen 1 zu verbinden ist, müssen in einer dieser Bahnen liegen. Ist 1 mit b oder e verbunden, so bilden 1,b,c oder 1,e,f ein Dreieck, was  $\lambda=0$  widerspricht. Also ist 1 mit a und d verbunden.

Nun ist  $1^{h_4} = 2$  und  $a^{h_4} = b$  und  $d^{h_4} = e$ , d.h. 2 ist mit b und e verbunden. Also ist 3 mit c und f verbunden. Man überprüft, daß tatsächlich kein Dreieck vorkommt und  $\mu = 1$  gilt. Der so konstruierte

Graph  $G_2$  ist isomorph zum Petersen-Graph (siehe (4.2 a))



Abbildung 3: Der Graph  $G_2$  (Petersen-Graph)

und  $\operatorname{Aut}(\mathbb{G}_2) \cong \operatorname{S}_5$ . Die  $\operatorname{A}_5$  wirkt als Rang-3-Permutationsgruppe auf den 10 Ecken des Graphen und  $\operatorname{H} \cong \operatorname{S}_3 \cong (\operatorname{A}_5)_p$ .

(b) (Siehe [9], S.117ff)

Sei H =  $A_5$  als abstrakte Gruppe nun der Ausgangspunkt.  $G_2' = K_5$  und  $G_2$  der Petersen-Graph wie in (4.2 a). Es ist  $\Omega_1 = \{1,2,3,4,5\}$  und  $\Omega_2 = \{(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)\}.$ 

Wir konstruieren nun einen Rang-3-Graphen auf der Eckenmenge  $\Omega = \{ {\tt P} \} \ \cup \ \Omega_1 \ \cup \ \Omega_2 \colon$ 

P sei mit jedem Punkt aus  $\Omega_1$ , aber keinem Punkt aus  $\Omega_2$  verbunden. Ein i  $\in \Omega_1$  sei genau dann mit (j,k) in  $\Omega_2$  verbunden, wenn i  $\Omega_2$  gilt. Daß durch diese Definition die in (5.1) angegebenen Bedingungen erfüllt sind, rechnet man leicht nach. Man erhält den sogenannten Clebsch-Graphen, den eindeutig bestimmten streng regulären Graphen mit folgenden Parametern:

n = 16, k = 5, l = 10,  $\lambda = 0$ ,  $\mu = 2$ , s = 1, t = -3,  $f_2 = 10$ ,  $f_3 = 5$ .



Abbildung 3: Der Clebsch-Graph

| P     | 1 |    | 1 | 1 | 1 | 1 | 1 |   |   |   |   |   |   |   |   |   |   |
|-------|---|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1     |   | 1. |   |   |   |   |   | 1 | 1 | 1 | 1 |   |   |   |   |   |   |
| 2     |   | 1  |   |   |   |   |   | 1 |   |   |   | 1 | 1 | 1 |   |   |   |
| 3     |   | 1  |   |   |   |   |   |   | 1 |   |   | 1 |   |   | 1 | 1 |   |
| 4     |   | 1  |   |   |   |   |   |   |   | 1 |   |   | 1 |   | 1 |   | 1 |
| 5     |   | 1  |   |   |   |   |   |   |   |   | 1 |   |   | 1 |   | 1 | 1 |
| (1,2) |   |    | 1 | 1 |   |   |   |   |   |   |   |   |   |   | 1 | 1 | 1 |
| (1,3) |   |    | 1 |   | 1 |   |   |   |   |   |   |   | 1 | 1 |   |   | 1 |
| (1,4) |   |    | 1 |   |   | 1 |   |   |   |   |   | 1 |   | 1 |   | 1 |   |
| (1,5) |   |    | 1 |   |   |   | 1 |   |   |   |   | 1 | 1 |   | 1 |   |   |
| (2,3) |   |    |   | 1 | 1 |   |   |   |   | 1 | 1 |   |   |   |   |   | 1 |
| (2,4) |   |    |   | 1 |   | 1 |   |   | 1 |   | 1 |   |   |   |   | 1 |   |
| (2,5) |   |    |   | 1 |   |   | 1 |   | 1 | 1 |   |   |   |   | 1 |   |   |
| (3,4) |   |    |   |   | 1 | 1 |   | 1 |   |   | 1 |   |   | 1 |   |   |   |
| (3,5) |   |    |   |   | 1 |   | 1 | 1 |   | 1 |   |   | 1 |   |   |   |   |
| (4,5) |   |    |   |   |   | 1 | 1 | 1 | 1 |   |   | 1 |   |   |   |   |   |

Abbildung 4: Adjazenzmatrix des Clebsch-Graphen

Die Automorphismengruppe des Clebsch-Graphen, den wir hier mit  ${\sf G}_3$ bezeichnen wollen, ist transitiv auf den Ecken, denn durch Drehungen um  ${\sf 45}^\circ$  bzw.  ${\sf 90}^\circ$  in Abbildung 5 läßt sich P in einen Punkt von  ${\sf G}_2$  bzw.  ${\sf G}_2$  überführen, und bei diesen Drehungen handelt es sich um Automorphismen des Graphen. Der Stabilisator von P in Aut $({\sf G}_3)$  ist isomorph zu  ${\sf S}_5$ . Es ist also  $|\operatorname{Aut}({\sf G}_3)|=16\cdot 120=1$  920. Da  $\operatorname{Aut}({\sf G}_3)$  sicher eine ungerade Permutation enthält, besitzt Aut $({\sf G}_3)$  eine Untergruppe K vom Index 2. Da dann  ${\sf A}_5 < {\sf K}$  und  ${\sf A}_5$  transitiv auf  ${\sf G}_2$  und  ${\sf G}_2$  wirkt und obige Drehungen gerade Permutationen sind, ist K selbst primitive Rang-3-Permutationsgruppe auf  $\Omega$  und es gilt  ${\sf K}_p \cong {\sf A}_5$ .

Nach Satz 5.1 ist dann K entweder eine einfache Gruppe oder aber K enthält einen regulären, elementar-abelschen Normalteiler. Es gibt freilich keine einfache Gruppe der Ordnung 960 (siehe etwa [18]), also ist K isomorph zu  $\mathrm{E}_{16}\,^{\circ}\mathrm{A}_{5}$ , dem semidirekten Produkt der elementar-abelschen Gruppe der Ordnung 16 mit der alternierenden Gruppe vom Grad 5. Schließlich gilt:Aut( $\mathrm{G}_{3}$ )  $\cong$   $\mathrm{E}_{16}\,^{\circ}\mathrm{S}_{5}\,^{\circ}$ 

(c) Sei nun H =  $E_{16} \cdot S_5$  der Ausgangspunkt.  $\Omega_1$  sei die Menge  $\{a_1, a_2, a_3, a_4, a_5, b_1, b_2, b_3, b_4, b_5\}$  und  $G_3$  folgender Graph  $\begin{bmatrix} a_1 & b_2 & b_3 & b_4 & b_5 \\ b_1 & b_2 & b_3 & b_4 & b_5 \end{bmatrix}$ 

 $G_3$  sei folgendermaßen definiert: Sei U der 5-dimensionale Vektorraum über GF(2) und W sei  $\{(x_1,x_2,x_3,x_4,x_5) \mid x_1+\ldots+x_5=0, x_1,\ldots,x_5 \in GF(2)\}$ . W sei die Eckenmenge von  $G_3$ ; zwei Punkte von W seien genau dann in  $G_3$  miteinander verbunden, wenn ihr Hamming-Abstand 4 beträgt.  $G_3$  hat dann 16 Ecken, ist -wie man leichtnach-prüft- streng regulär und hat dieselben Parameter wie der Clebsch-Graph. Wegen der Eindeutigkeit des Clebsch-Graphen ([10], S.154 †)) können wir  $G_3$  und  $G_3$  identifizieren.

<sup>†)</sup> HESTENES/HIGMAN bezeichnen einen Graphen, der isomorph zu  $\overline{\mathfrak{G}}_3$  ist als Clebsch-Graph. Da in der Literatur beide komplementären Graphen als Clebsch-Graph bezeichnet werden, wird hier  $\mathfrak{G}_3$  Clebsch-Graph genannt. Dieselbe Bemerkung trifft auf den Schläfli-Graph zu.

Sei  $\Omega$  = {P}  $\cup$   $\Omega_1$   $\cup$  W. Es ist  $|\Omega|$  = 27. Falls ein streng regulärer Graph  $G_4$  mit der Eckenmenge  $\Omega$  existiert, der  $G_3$  und  $G_3$  als Untergraphen enthält, so muß er folgende Parameter haben: n = 27, k = 10, l = 16,  $\lambda = 1$ ,  $\mu = 5$ , s = 1, t = -5,  $f_2 = 20$  und  $f_3 = 6$ .

Jeder Punkt von  $G_3$  muß also mit genau  $k-\lambda-1=8$  Punkten in  $G_3$  verbunden werden, und zwar so, daß jeder Punkt von  $G_3$  mit genau  $\mu=5$  Punkten von  $G_3$  verbunden ist.

Benachbarte Punkte in  $G_3$ , also  $a_1$ ,  $b_1$  (i = 1,2,...,5) bilden bereits mit P ein Dreieck, denn P ist ja mit jedem Punkt von  $\Omega_1$  verbunden, dürfen also in  $G_3$  keinen gemeinsamen Nachbarn haben. Ferner müssen nicht benachbarte Punkte in  $G_3$   $\mu$  - 1 = 4 gemeinsame Nachbarn in  $G_3$  haben.

Diese Bedingungen werden durch folgende Definiton erfüllt: Für i = 1, 2, ..., 5 sei  $a_i$  mit den  $(x_1, x_2, ... x_5)$  in W verbunden, für die  $x_i = 0$  gilt und  $b_i$  mit denjenigen, die  $x_i = 1$  erfüllen. Dadurch wird ein streng regulärer Graph definiert, denn: Verbundene Punkte a, , b, haben P als gemeinsamen Nachbarn, und keinen gemeinsamen Nachbarn in  $G_3$ ; benachbarte Punkte in  $G_3$ liegen in  $G_2$  in keinem Dreieck, da der Clebsch-Graph keine Dreiecke enthält; da sie den Hamming-Abstand 4 haben, haben sie an genau einer Koordinate eine O oder eine 1 gemeinsam, sind also beide mit genau einem a, oder b, verbunden. Mit dieser Überlegung ist auch der Fall zweier verbundener Punkte aus  $G_3$  und  $G_3$  erledigt. Also liegen zwei benachbarte Punkte in genau einem Dreieck. Ferner gilt: Zwei nichtbenachbarte Punkte in  $G_2$  haben P und 4 Nachbarn in  ${\sf G}_{\sf q}^{\sf w}$  gemeinsam zum Nachbarn. Zwei nichtadjazente Punkte in  $G_3$  haben dort 2 gemeinsame Nachbarn und, da ihr Hamming-Abstand 2 ist, weitere 3 gemeinsame Nachbarn in  $G_3$ . Da jeder Punkt in  $G_3$ Nachbarn in  $G_3$  hat, hat er mit P 5 gemeinsame Nachbarn. Zwei nicht-

Der so definierte Graph  $G_4$  hat also in der Tat die gewünschten Parameter und ist wegen der Eindeutigkeit des Schläfli-Graphen [10] isomorph zu dem in (4.4) konstruierten Graphen G. (Die in (4.4) angegebene Adjazenzmatrix von G ist so konstruiert, daß man die beiden Untergraphen, die isomorph zu  $G_3$  und  $G_3$  sind, leicht erkennt.)

adjazente Punkte aus  $G_3^{'}$  und  $G_3^{''}$  haben einen gemeinsamen Nachbarn in

 $G_3$  und derer 4 in  $G_3$ . Also ist  $\mu = 5$ .

In (4.4) haben wir gesehen, daß die Automorphismengruppe dieses Graphen transitiv auf den Ecken von  $\Omega$  wirkt. Da der Stabilisator des Punktes P isomorph zu  $\mathbf{E}_{16} \cdot \mathbf{S}_5$  ist, folgt:  $\left| \mathrm{Aut} \left( \mathbf{G}_4 \right) \right| = 27 \cdot \left| \mathbf{E}_{16} \cdot \mathbf{S}_5 \right| = 51~840.$  Aut ( $\mathbf{G}_4$ ) enthält nach (4.4) PSU(4,2²) vom Index 2.

Wir haben damit ein Beispiel eines Rang-3-Turmes kennengelernt, einer aufeinanderfolgenden Reihe von Rang-3-Erweiterungen, bei der ausgehend von der S $_3$  die A $_5$ , E $_{16}$ •A $_5$  und die PSU(4,2 $^2$ )konstruiert wurden.

Die große Bedeutung der Theorie der Rang-3-Permutationsgruppen liegt darin, daß durch die eben beschriebene Konstruktion von Rang-3-Erweiterungen eine ganze Reihe sporadischer einfacher Gruppen entdeckt, bzw. konstruiert wurden, so die Higman-Sims-Gruppe, die McLaughlin-Gruppe, die Rudvalis-Gruppe und die Suzuki-Gruppe. Einen Überblick über Türme von Rang-3-Gruppen, die zu sporadischen einfachen Gruppen führen, gibt TITS [23]. In Kapitel II dieser Arbeit soll der Suzuki-Turm konstruiert werden.

Kapitel II DER SUZUKI - TURM

# § 6 Die Konstruktion der Suzuki-Gruppe Suz

Die Konstruktion der Suzuki-Gruppe, die M. SUZUKI in [20] angegeben hat, besteht in einer Folge aufeinander aufbauender transitiver Gruppenerweiterungen, beginnend mit der symmetrischen Gruppe  $\mathbf{S}_4$ . Vom ersten Schritt abgesehen handelt es sich um Rang-3-Erweiterungen, die gemäß § 5 konstruiert werden sollen.

Für i = 0,1,...,5 sei  $\Gamma_i$  ein (im folgenden) zu definierender Graph und  $G_i = \operatorname{Aut}(\Gamma_i)$ . Es wird sich zeigen, daß für i = 1,2,...,5  $G_i$  stets eine einfache Gruppe  $G_i^*$  vom Index 2 enthält.

(Der Einfachheit der Notation halber werden -sofern Mißverständnisse ausgeschlossen sind- sowohl die Graphen wie ihre Punktemengen mit  $\Gamma_i$  bzw,  $\Sigma_i$  bezeichnet.)

 $\Gamma_{\rm o}$  sei der triviale Graph aus 4 Punkten ohne verbindende Kanten, d.h.  $\Gamma_{\rm o} = \overline{K}_4$ . Offensichtlich ist dann  $G_{\rm o} = {\rm Aut}(\Gamma_{\rm o}) \cong S_4$ .

Für i = 0,1,...,4 definieren wir die Graphen  $\Sigma_i$  auf folgende Weise: Die Eckenmenge von  $\Sigma_i$  sei:

für i = 0: die Menge der Involutionen der  $\mathbf{S}_4$ 

für i = 1,2,3,4: die Menge der Zentren der 2-Sylow-Gruppen von  $G_{\underline{i}}^*$  Involutionen, die im Zentrum der 2-Sylow-Gruppen einer Gruppe G liegen, heißen zentrale Involutionen. Offensichtlich bilden sie eine Konjugiertenklasse. Ist die Ordnung des Zentrums eines 2-Sylow-Gruppe von  $G_{\underline{i}}$  = 2, so betrachten wir einfach die Menge der zentralen Involutionen als Eckenmenge von  $\Sigma_{\underline{i}}$ .

(A) Zwei Punkte u,v  $\in \Sigma_i$  seien genau dann miteinander verbunden, wenn gilt  $[u,v] \neq 1$ , aber es existiert ein  $w \in \Sigma_i$  mit [u,w] = [v,w] = 1.

Betrachtet man den sogenannten Vertauschbarkeitsgraphen  $G_{\bf i} = (\Sigma_{\bf i}, \Phi) \text{ mit der Eckenmenge } \Sigma_{\bf i} \text{ und } \Phi = \{(u,v) \mid [u,v] = 1\},$  so sind in dem in (A) definierten Graphen gerade die Ecken verbunden, die in  $G_{\bf i}$  genau die Distanz 2 haben.

Für i=0,1,...4 wird  $\Gamma_{i+1}$  wie folgt definiert:

Die Eckenmenge von  $\Gamma_{i+1}$  bestehe aus den Ecken von  $\Gamma_{i}$ , denen von  $\Gamma_{i}$  und einem weiteren Punkt  $P_{i}$ , also  $\Gamma_{i+1} = \{P_{i}\} \cup \Gamma_{i} \cup \Sigma_{i}$ .

(B) Der Punkt  $P_i$  sei mit jedem Punkt aus  $\Gamma_i$ , aber mit keinem Punkt von  $\Sigma_i$  verbunden. Die Punkte von  $\Gamma_i$  bzw.  $\Sigma_i$  seien untereinander verbunden wie in den beiden Graphen  $\Gamma_i$  bzw.  $\Sigma_i$  . Jeder Punkt aus  $\Gamma_i$  sei mit genau den Punkten in  $\Sigma_i$  verbunden, die ihn festlassen.

(Die letzte Festlegung von (B) macht Sinn, denn die Elemente von  $\Sigma_i$  liegen in Aut( $\Gamma_i$ ), bzw. sind Untergruppen  $G_i$ )

Die Abbildung 6 auf Seite 29 gibt eine Übersicht über den Suzuki-Turm. Die Darstellung der Graphen ist folgendermaßen zu verstehen:



Der Punkt P<sub>i</sub> ist mit den k<sub>i</sub> Punkten von  $\Gamma_{i-1}$  verbunden, umgekehrt ist jeder der Punkte in  $\Gamma_{i-1}$  mit P<sub>i</sub>verbunden. Die Valenz des Untergraphen  $\Gamma_{i-1}$  ist  $\lambda_i = k_{i-1}$ . Jeder Punkt aus  $\Gamma_{i-1}$  ist mit  $k_i - \lambda_i - 1$  Punkten in  $\Sigma_{i-1}$  verbunden, während ein Punkt in  $\Sigma_{i-1}$  mit  $\mu_i$  Punkten in  $\Gamma_{i-1}$  benachbart ist. Die Punktmenge von  $\Sigma_{i-1}$  hat die Mächtigkeit 1 und  $\Sigma_{i-1}$  hat die Valenz  $k_i - \mu_i$ .

Aus der Reihe fällt  $\Gamma_1$ , denn die PGL(2,7) ist eine imprimitive Rang-4-Erweiterung der  $S_A$ .

Die gesamte Parametermenge für  $\Gamma_i$  (i = 2,3,4,5) ist folgender Tabelle zu entnehmen:

| i | n<br>i                    | k<br>i | l <sub>i</sub> | λ <sub>i</sub> | μi | s<br>i | t <sub>i</sub> | f <sub>2,i</sub> | f <sub>3,i</sub> |
|---|---------------------------|--------|----------------|----------------|----|--------|----------------|------------------|------------------|
| 2 | 36<br>100<br>416<br>1 782 | 14     | 21             | 4              | 6  | 2      | -4             | 21               | 14               |
| 3 | 100                       | 36     | 63             | 14             | 12 | 6      | -4             | 36               | 63               |
| 4 | 416                       | 100    | 315            | 36             | 20 | 20     | -4             | 65               | 350              |
| 5 | 1 782                     | 416 1  | . 365          | 100            | 96 | 20     | -16            | 780              | 1 001            |

Die Parameterbedingungen in (3.6) zeigen, daß kein streng regulärer Graph existiert, der  $\Gamma_5$  in der gewünschten Weise als Untergraph enthalten würde.



Abbildung 6: Übersicht über den Suzuki-Turm

# § 7 Die PGL(2,7) als Rang-4-Erweiterung der $S_A$

(7.1)  $\Sigma_{_{\rm O}}$  besteht aus der Menge der Involutionen der  ${\rm S}_4$ . Da zwei Elemente der  ${\rm S}_{_{\rm I}}$  genau dann konjugiert sind, wenn sie dieselbe Zyklenstruktur besitzen, zerfällt  $\Sigma_{_{\rm O}}$  in zwei Konjugiertenklassen in der  ${\rm S}_4$ :

 $\Sigma_{00} = \{ (12), (13), (14), (23), (24), (34) \}$  und  $\Sigma_{01} = \{ (12), (34), (13), (24), (14), (23) \}$ 

Vorschrift (A) in §6 ergibt: Die Elemente der beiden Konjugierten-klassen sind untereinander nicht verbunden. Für i,j,k,l,m,n $\in$ {1,2,3,4} ist (i,j)  $\in \Sigma_{00}$  genau dann mit (kl)(mn)  $\in \Sigma_{01}$  verbunden, wenn (ij)  $\neq$  (kl) und (ij)  $\neq$  (mn) gilt.

Bezeichnet man die Punkte von  $\Gamma_{\rm O}$  mit 1,2,3,4, so ist k  $\in \Gamma_{\rm O}$  genau dann mit (ij)  $\in \Sigma_{\rm OO}$  benachbart, wenn i, j  $\neq$  k gilt. Elemente in  $\Sigma_{\rm O1}$  bewegen alle 4 Punkte von  $\Gamma_{\rm O}$ , sind also mit keinem Punkt von  $\Gamma_{\rm O}$  verbunden.

Es ergibt sich folgender Graph  $\Gamma_1$ :



Abbildung 7: Der Graph  $\Gamma_1$ 

(7.2) Drehungen um  $\frac{n}{7} \cdot 360^{\circ}$  (n = 1,2,..,7) zusammen mit Spiegelungen an den eingezeichneten Achsen  $a_1, a_2, ... a_7$  sind offensichtlich Automorphismen von  $\Gamma_1$ , die jeden Punkt in jeden beliebigen anderen überführen.  $G_1 = \operatorname{Aut}(\Gamma_1)$  ist also transitiv auf den Punkten von  $\Gamma_1$ .

Sei H der Stabilisator des Punktes P $_{\rm O}$  in G $_{\rm 1}$ , sei g  ${\bf E}$  H. Es gilt  $\Gamma_{\rm O}^{\ \ g}=\Gamma_{\rm O}$ , d.h. g wirkt eingeschränkt auf die Punkte von  $\Gamma_{\rm O}$  wie ein Element der S $_{\rm 4}$ . Da die Wirkung von g auf  $\Gamma_{\rm O}$  die Wirkung von g auf  $\Gamma_{\rm O}$  eindeutig bestimmt, ist H  $\cong$  S $_{\rm 4}$ .

H hat vier Bahnen auf  $\Gamma_1$ , nämlich  $P_0$ ,  $\Gamma_0$ ,  $\Sigma_{00}$ ,  $\Sigma_{01}$ .  $G_1$  ist also eine Rang-4-Permutationsgruppe. Da  $G_1$  transitiv auf  $\Gamma_1$  wirkt und H  $\cong$   $S_4$  gilt, ist  $|G_1|$  = 14·24 = 336.

- (7.4) Um die Gruppe  $G_1$  zu identifizieren, konstruieren wir den Graphen  $\Gamma_1$  auf einer anderen Menge von Punkten, nämlich den elementar-abelschen Untergruppen vom Typ (2,2) in der speziellen projektiven linearen Gruppe PSL(2,7).
- (a) Sei J die Menge der Involutionen der PSL(2,7).

(Zwei Elemente  $\begin{pmatrix} p & q \\ r & s \end{pmatrix}$ ,  $\begin{pmatrix} t & u \\ v & w \end{pmatrix}$  sind in der PSL(2,7) gleich, wenn  $p = \pm t$ ,  $q = \pm u$ ,  $r = \pm v$ ,  $s = \pm w$  gilt. Dabei sind p,q,r,s,t,u,v,w aus GF(7))

Es ist 
$$J = \left\{ \begin{pmatrix} p & q \\ \frac{1+p^2}{-q} & -p \end{pmatrix} \middle| p = 0,1,...,6, q = 1,2,3 \right\}$$

Denn  $\binom{p}{r} \binom{q}{s}^2 = \binom{p^2 + qr}{rp + sr} \binom{pq + qs}{rq + s^2} = \binom{1}{0} \binom{q}{1}$  impliziert, daß s = -p.

Da det  $\binom{p}{r} \binom{q}{r-p} = 1$ , ergibt sich  $r = -\frac{1+p^2}{q}$ .

Es gibt also 21 Involutionen in PSL(2,7) nämlich:

$$\begin{array}{l} \mathbf{u}_{1} &= \begin{pmatrix} 0 & 1 \\ 6 & 0 \end{pmatrix}, \ \mathbf{u}_{2} &= \begin{pmatrix} 1 & 1 \\ 5 & 6 \end{pmatrix}, \ \mathbf{u}_{3} &= \begin{pmatrix} 2 & 1 \\ 2 & 5 \end{pmatrix}, \ \mathbf{u}_{4} &= \begin{pmatrix} 3 & 1 \\ 4 & 4 \end{pmatrix}, \ \mathbf{u}_{5} &= \begin{pmatrix} 4 & 1 \\ 4 & 3 \end{pmatrix}, \\ \mathbf{u}_{6} &= \begin{pmatrix} 5 & 1 \\ 2 & 2 \end{pmatrix}, \ \mathbf{u}_{7} &= \begin{pmatrix} 6 & 1 \\ 5 & 1 \end{pmatrix}, \ \mathbf{u}_{8} &= \begin{pmatrix} 0 & 2 \\ 3 & 0 \end{pmatrix}, \ \mathbf{u}_{9} &= \begin{pmatrix} 1 & 2 \\ 6 & 6 \end{pmatrix}, \ \mathbf{u}_{10} &= \begin{pmatrix} 2 & 2 \\ 1 & 5 \end{pmatrix}, \\ \mathbf{u}_{11} &= \begin{pmatrix} 3 & 2 \\ 2 & 4 \end{pmatrix}, \ \mathbf{u}_{12} &= \begin{pmatrix} 4 & 2 \\ 2 & 3 \end{pmatrix}, \ \mathbf{u}_{13} &= \begin{pmatrix} 5 & 2 \\ 1 & 2 \end{pmatrix}, \ \mathbf{u}_{14} &= \begin{pmatrix} 6 & 2 \\ 6 & 1 \end{pmatrix}, \ \mathbf{u}_{15} &= \begin{pmatrix} 0 & 3 \\ 2 & 0 \end{pmatrix}, \\ \mathbf{u}_{16} &= \begin{pmatrix} 1 & 3 \\ 4 & 6 \end{pmatrix}, \ \mathbf{u}_{17} &= \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix}, \ \mathbf{u}_{18} &= \begin{pmatrix} 3 & 3 \\ 6 & 4 \end{pmatrix}, \ \mathbf{u}_{19} &= \begin{pmatrix} 4 & 3 \\ 6 & 3 \end{pmatrix}, \ \mathbf{u}_{20} &= \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix}, \\ \mathbf{u}_{21} &= \begin{pmatrix} 6 & 3 \\ 4 & 1 \end{pmatrix}. \end{array}$$

(b) Als nächstes zeige ich, daß alle Involutionen der PSL(2,7)

konjugiert zu 
$$\begin{pmatrix} 0 & 1 \\ 6 & 0 \end{pmatrix}$$
 sind. (Beweis nach [19], S.73)  
Sei  $r = -\frac{1+p^2}{q}$  und  $\lambda = -\frac{p}{r}$  ( $r \neq 0$ , da  $1+p^2 \neq 0$ )

Dann ist 
$$\begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}$$
  $\begin{pmatrix} p & q \\ r & -p \end{pmatrix}$   $\begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}^{-1}$  =  $\begin{pmatrix} 0 & -r^{-1} \\ r & 0 \end{pmatrix}$ 

Seien a,b GF(7) mit  $a^2 + b^2 = -r^{-1}$ . Setze  $c = -\frac{b}{a^2 + b^2}$  und  $d = \frac{bc + 1}{a}$ . Dann gilt:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 6 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \begin{pmatrix} 0 & a^2 + b^2 \\ -\frac{1}{a^2 + b^2} & 0 \end{pmatrix} = \begin{pmatrix} 0 & -r^{-1} \\ r & 0 \end{pmatrix}$$

Alle Involutionen der PSL(2,7) sind also zu u, konjugiert.

(c) Wir können nun die gesuchten elementar-abelschen Untergruppen der Ordnung 4 in PSL(2,7) bestimmen:

$$\begin{pmatrix} 0 & -r^{-1} \\ r & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 6 & 0 \end{pmatrix}$$
 genau dann, wenn  $r = 1$  oder  $r = 6$ .

Für diese Werte von r ergibt sich folgende Liste von Paaren (a,b) mit  $a^2 + b^2 = -r^{-1}$ :

(0,1), (0,6), (1,0), (2,2), (2,3), (2,4), (3,2), (3,5), (4,2), (4,5), (5,3), (5,4), (6,0).

Berechnet man nun c und d für diese Werte von (a,b), so erhält man die Elemente in PSL(2,7), die mit  $u_1$  vertauschbar sind. Darunter sind 5 Involutionen: u<sub>1</sub> selbst und u<sub>11</sub>, u<sub>12</sub>, u<sub>17</sub>, u<sub>20</sub>. Damit ergeben sich zwei Vierergruppen in PSL(2,7):

 ${\bf M_o} = \{\ 1,\ {\bf u_1},\ {\bf u_{11}},\ {\bf u_{20}}\ \} \ {\rm und} \ {\bf N_o} = \{1,\ {\bf u_1},\ {\bf u_{12}},\ {\bf u_{17}}\ \}$  , die nicht konjugiert sind. .

Jede Involution der PSL(2,7) liegt in genau 2 verschiedenen Gruppen vom Typ (2,2).

Für t = 0,1,...,6 liefern die Gleichungen ([19], S.74)

$$\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} M_o \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}^{-1} = M_t \quad \text{und} \quad \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} N_o \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}^{-1} = N_t$$

alle gesuchten Gruppen.

Die 14 elementar-abelschen Untergruppen vom Typ (2,2) in PSL(2,7):

$$M_{O} = \left\{ 1, \begin{pmatrix} 0 & 1 \\ 6 & 0 \end{pmatrix}, \begin{pmatrix} 3 & 2 \\ 2 & 4 \end{pmatrix}, \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix} \right\} \quad N_{O} = \left\{ 1, \begin{pmatrix} 0 & 1 \\ 6 & 0 \end{pmatrix}, \begin{pmatrix} 4 & 2 \\ 2 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix} \right\}$$

$$M_{1} = \left\{ 1, \begin{pmatrix} 6 & 2 \\ 6 & 1 \end{pmatrix}, \begin{pmatrix} 5 & 1 \\ 2 & 2 \end{pmatrix}, \begin{pmatrix} 6 & 3 \\ 4 & 1 \end{pmatrix} \right\} \quad N_{1} = \left\{ 1, \begin{pmatrix} 6 & 2 \\ 6 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 5 & 6 \end{pmatrix}, \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix} \right\}$$

$$M_{2} = \left\{ 1, \begin{pmatrix} 2 & 2 \\ 1 & 5 \end{pmatrix}, \begin{pmatrix} 0 & 3 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} 3 & 1 \\ 4 & 4 \end{pmatrix} \right\} \quad N_{2} = \left\{ 1, \begin{pmatrix} 2 & 2 \\ 1 & 5 \end{pmatrix}, \begin{pmatrix} 6 & 1 \\ 5 & 1 \end{pmatrix}, \begin{pmatrix} 6 & 3 \\ 4 & 1 \end{pmatrix} \right\}$$

$$M_{3} = \left\{ 1, \begin{pmatrix} 4 & 3 \\ 6 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 2 & 5 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 3 & 0 \end{pmatrix} \right\} \quad N_{3} = \left\{ 1, \begin{pmatrix} 4 & 3 \\ 6 & 3 \end{pmatrix}, \begin{pmatrix} 3 & 2 \\ 2 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 1 \\ 4 & 4 \end{pmatrix} \right\}$$

$$M_{4} = \left\{ 1, \begin{pmatrix} 3 & 3 \\ 6 & 4 \end{pmatrix}, \begin{pmatrix} 4 & 2 \\ 2 & 3 \end{pmatrix}, \begin{pmatrix} 4 & 1 \\ 4 & 3 \end{pmatrix} \right\} \quad N_{4} = \left\{ 1, \begin{pmatrix} 3 & 3 \\ 6 & 4 \end{pmatrix}, \begin{pmatrix} 5 & 1 \\ 2 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 3 & 0 \end{pmatrix} \right\}$$

$$M_{5} = \left\{ 1, \begin{pmatrix} 5 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 5 & 6 \end{pmatrix}, \begin{pmatrix} 6 & 1 \\ 5 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix} \right\} \quad N_{6} = \left\{ 1, \begin{pmatrix} 1 & 2 \\ 6 & 6 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 2 & 5 \end{pmatrix}, \begin{pmatrix} 1 & 3 \\ 4 & 6 \end{pmatrix} \right\} \right\}$$

$$M_{6} = \left\{ 1, \begin{pmatrix} 1 & 2 \\ 6 & 6 \end{pmatrix}, \begin{pmatrix} 6 & 1 \\ 5 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 3 \\ 5 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix} \right\} \quad N_{6} = \left\{ 1, \begin{pmatrix} 1 & 2 \\ 6 & 6 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 2 & 5 \end{pmatrix}, \begin{pmatrix} 1 & 3 \\ 4 & 6 \end{pmatrix} \right\} \right\}$$

### (c) Definition eines Graphen $\Gamma_1$ :

Die Punkte von  $\Gamma_1'$  seien die elementar-abelschen Untergruppen der Ordnung 4 in der PSL(2,7), also  $M_0, M_1, \dots, M_6, N_0, N_1, \dots N_6$ . Ein  $M_i$  sei genau dann mit einem  $N_j$  verbunden, wenn ihr Schnitt trivial ist. Die  $M_i$ 's bzw. die  $N_j$ 's seien untereinander nicht benachbart.

Wie man obiger Liste entnimmt ist  $\Gamma_1'$  ein regulärer Graph der Valenz 4. Für i=0,1,...6 ist  $M_i$  mit denjenigen  $N_j$  mit j=i+2, i+4, i+5, i+6 (mod 7) verbunden.



(e) Offensichtlich gilt  $G_1 = Aut(\Gamma_1)$ .

Konjugation der Punkte von  $\Gamma_1'$  mit Elementen der PSL(2,7) bildet die Kanten des Graphen aufeinander ab, d.h. es existiert ein Homomorphismus  $f\colon PSL(2,7)\to Aut(\Gamma_1')$ , der wegen der Einfachheit der PSL(2,7) injektiv sein muß. Also ist PSL(2,7) zu einer Untergruppe von  $Aut(\Gamma_1')$  isomorph, die allerdings nicht transitiv auf  $\Gamma_1'$  wirkt, da die Vierergruppen der PSL(2,7) in dieser Gruppe zwei Konjugiertenklassen bilden.

Es gibt ein Element in  $PGL(2,7) \setminus PSL(2,7)$ , etwa  $\binom{1}{2}\binom{2}{0}$ , das durch Konjugation M<sub>O</sub> auf N<sub>4</sub> abbildet, d.h. die Punkte des Graphen  $\Gamma_1^i$  sind in PGL(2,7) konjugiert. Also gibt es einen injektiven Homomorphismus g:  $PGL(2,7) \rightarrow Aut(\Gamma_1^i)$ .

Wegen  $|G_1| = 336$  ist also  $Aut(\Gamma_1') \cong G_1$  isomorph zur allgemeinen projektiven linearen Gruppe PGL(2,7).

Bemerkung: Betrachtet man die projektive Ebene der Ordnung 2, so läßt sich ein Graph G, der Fahnenkomplex, so definieren: Die Ecken von G seien die 7 Punkte und die 7 Geraden der projektiven Ebene, wobei ein Punkt der Ebene genau dann mit einer Geraden verbunden wird, wenn er auf ihr liegt. Sei G das "Komplement" von G in dem Sinne, daß weiterhin die Punkte der Ebene untereinander nicht verbunden sind, ebensowenig wie die Geraden untereinander, aber die anderen Kanten komplementär sind. Dann ist  $G \cong \Gamma_1$ . Auch daraus ergibt sich, daß  $G \cong PGL(2,7)$  gilt.

Die Wirkung der PGL(2,7) auf den 14 Vierergruppen der PSL(2,7) ist imprimitiv,  $\{M_0, M_1, \dots M_6\}$  und  $\{N_0, N_1, \dots N_6\}$  sind Blöcke dieser Wirkung der PGL(2,7). Wir haben also eine imprimitive Rang-4-Erweiterung der  $S_4$  konstruiert.

# § 8 Die $G_2(2)$ als Rang-3-Erweiterung der PGL(2,7)

## (8.1) Konstruktion des Graphen $\Gamma_2$ .

Die Punkte von  $\Sigma_1$  sind die Zentren der 2-Sylow-Gruppen von  $G_1^*\cong \mathrm{PSL}(2,7)$ . Da diese Zentren die Ordnung 2 haben, können wir die zentralen Involutionen der  $\mathrm{PSL}(2,7)$ , also die 21 Involutionen dieser Gruppe als Eckenmenge von  $\Sigma_1$  betrachten. Der Graph  $\Sigma_1$  wird gemäß Vorschrift (A) von §6 gebildet:

Da jede Involution u Element zweier Vierergruppen ist, gibt es 4 paarweise verschiedene Involutionen  $v_i$  (i = 1,2,3,4) mit  $\left[u,v_i\right]=1$ . Jedes der  $v_i$  ist in einer weiteren Vierergruppe  $v_i$  enthalten, die u nicht enthält.

Annahme:  $|V_k \cap V_1| > 1$  für k,l  $\{(1,2,3,4)\}$ , k  $\neq (1, sei$  etwa die Involution w in  $V_k \cap V_1$  enthalten.

Gilt nun  $[v_k, v_l] = 1$ , so müßte  $V_k = V_l$  gelten. Widerspruch. Sei also  $[v_k, v_l] \neq 1$ . Dann gibt es in  $C_{G_1}(v_k)$  zwei nicht vertauschbare Involutionen, nämlich u und w.(Wären u und w vertauschbar, wäre wieder  $V_k = V_l$ ). Also ist  $\langle u, w \rangle \leq C_{G_1}(v_k)$  eine Diedergruppe.

Da  $C_{G_1}(v_k)$  die Ordnung 8 hat, ist  $\langle u,w \rangle = C_{G_1}(v_k)$ . Andererseits sind nach Voraussetzung u,w in  $C_{G_1}(v_1)$ , also gilt:  $C_{G_1}(v_k) = \langle u,w \rangle = C_{G_1}(v_1)$ , also  $V_{G_1}(v_k) = V_{G_1}(v_1)$ , also  $V_{G_1}(v_k) = V_{G_1}(v_1)$ , also  $V_{G_1}(v_k) = V_{G_1}(v_1)$ .

Also gibt es genau  $2 \cdot 4 = 8$  paarweise verschiedene Involutionen in  $\Sigma_1$ , die nach (A) mit u zu verbinden sind.  $\Sigma_1$  ist also ein regulärer Graph der Valenz 8.

Da die Punkte von  $\Sigma_1$  in der PSL(2,7) konjugiert sind, sind sie dies erst recht in PGL(2,7). Da Konjugation Kommutativität erhält, bewirkt sie einen Automorphismus von  $\Sigma_1$ . PGL(2,7) wirkt also als transitive Automorphismengruppe auf  $\Sigma_1$ .

Entsprechend der Vorschrift (B) wird  $\Gamma_2$  gebildet. Wie man der Liste der elementar-abelschen Untergruppen vom Typ (2,2) in PSL(2,7) unmittelbar entnimmt, gibt es zu jedem M, oder N, genau 9 Involutionen der PSL(2,7), die M, bzw. N, festlassen. Jede Involution u in  $\Sigma_1$  fixiert genau 6 dieser Untergruppen der PSL(2,7).

Nach Konstruktion ist  $\Gamma_2$  ein regulärer Graph der Valenz 14. Mit den üblichen Bezeichnungen ist k = 14, l = 21 und n = 36.

Ist  $\Gamma_2$  ein streng regulärer Graph (was unten gezeigt wird), so muß er die Parameter  $\lambda=4$ ,  $\mu=6$ , s=2, t=-4,  $f_2=21$  und  $f_3=14$  besitzen, denn die Valenz von  $\Gamma_1$  ist 4. (Die Parameterbedingungen aus (3.6) genügen hier als Argument nicht, denn sie würden auch für  $\lambda=7$  gelten. In diesem Fall würde es sich um den eindeutig bestimmten Graphen  $G_\Gamma$ aus (4.2 a) mit m=9 handeln.)

```
111111111111111
     1 11111 1 11 1 11
    1 1 11 1 111 1 1 1 11
    11 1 1 11 1 11 1 1 1
    111 1 11 11 1 1 11
     111 11 11 1 11 11 11
    1 111 11 1 1 1111
     1 111 1 1 1 11 1 1 1
        1 1 1 1 11
                  11 1
1 111 1
        11 1 1 11 1 11
1 111 1
         1 11 11 11 1 1
11 111
        1 11 1 11 1 11
1 1 111
         1 11 1 1 1 1 1 1
11 1 11
111 1 1
         1 11 1 11 11 1
         11 111 1 11 1
1111 1
1 1 111 1 1 1 1 1
                1 11
11 1 1 111 1 1 1
  1 11 11 1 1 1 1 1 1 1 1 1
                1
      11 1 1 1 1 11
                 11
 1 11 1 11 11 1 1 1
 1 11 11 1 1 1 1 1 1
 11 11 1 11 11 1 1111
 1 111 1 111
             1 1 11
 11 1 11 1 11 1 1 1 1 1 1
1 1 1 11 1
 1 11 1 11 11 11 1 1 1 1
11 1 11 1
11 1 11 1 1 1 11
                1 11 1
```

Abbildung 9 Adjazenzmatrix von  $\Gamma_2$ . Die Zeilen und Spalten sind folgendermaßen 'numeriert':  $P_1$ , die Punkte von  $\Gamma_1$ , nämlich  $M_0, M_1, \dots, M_6, M_0, \dots, M_6$ , dann die Punkte von  $\Gamma_1$ :  $\Gamma_1$ :  $\Gamma_1$ :  $\Gamma_2$ :  $\Gamma_1$ :  $\Gamma_2$ :  $\Gamma_2$ :  $\Gamma_3$ :  $\Gamma_4$ :  $\Gamma_4$ :  $\Gamma_4$ :  $\Gamma_5$ :  $\Gamma_4$ :  $\Gamma_5$ :  $\Gamma_6$ :

## (8.2) Bestimmung der Ordnung der Automorphismengruppe von $\Gamma_2$ .

Zunächst ist zu zeigen, daß der Stabilisator H des Punktes  $P_1$  in  $G_2$  = Aut( $\Gamma_2$ ) isomorph zu PGL(2,7) ist.

Beweis: Sei h & H. Dann ist  $P_1$  =  $P_1$  und  $\Gamma_1$  =  $\Gamma_1$ . Eingeschränkt auf die Punkte von  $\Gamma_1$  wirkt h also wie ein Element von  $G_1$ , d.h. h wirkt wie Konjugation der  $M_1$ 's und  $N_1$ 's durch ein Element der PGL(2,7). (Wegen der Isomorphie  $\Gamma_1 \cong \Gamma_1$  identifiziere ich die beiden Graphen.) Die durch (B) definierten Kanten werden durch h aber nur dann aufeinander abgebildet, wenn die Punkte von  $\Gamma_1$  durch Konjugation mit demselben Element der PGL(2,7) permutiert werden. Die Wirkung von h auf  $\Gamma_1$  bestimmt also eindeutig die Wirkung von h auf  $\Gamma_1$ , also ist  $\Pi \cong PGL(2,7)$ .

Es ist nun zu zeigen, daß  $G_2$  transitiv auf den Punkten von  $\Gamma_2$  wirkt. Da der Stabilisator H des Punktes  $P_1$  transitiv auf  $\Gamma_1$  und  $\Sigma_1$  wirkt, genügt es einen Automorphismus g von  $\Gamma_2$  zu finden, der  $P_1$ ,  $\Gamma_1$  und  $\Sigma_1$  bewegt. Unter Berücksichtigung der Kanten in  $\Gamma_1$  berechnet man leicht ein solches g.

(Numeriere  $P_1$ mit 01;  $M_0, M_1 \dots M_6$  mit 02,03,...08;  $N_0, \dots, N_6$  mit 09,...,15 und die Punkte von  $\mathbf{E}_1$ ,  $u_1, u_2, \dots, u_{21}$  mit 16,17...,36.) Dann ist g =

(01 02) (11) (13) (14) (15) (03 17) (04 34) (05 19) (06 32) (07 29) (08 27) (09 16) (10 35) (12 26) (18 23) (20 33) (21 36) (22 24) (25 30) (28 31) ein Automorphismus  $\text{von}\Gamma_2$ , der  $\text{P}_1$ ,  $\Gamma_1$  und  $\Sigma_1$  bewegt.

(Wie man einen solchen Automorphismus anders denn durch "Probieren" konstruiert, wird in (9.2) gezeigt; die dortige Konstruktion samt Beweis läßt sich ohne Mühe auf diesen Fall übertragen).

Damit ist klar, daß  $\rm G_2$  eine transitive Rang-3-Gruppe ist , folglich  $\rm \Gamma_2$  ein streng regulärer Graph mit den in (8.1) angegebenen Parametern ist.

Aus den Überlegungen dieses Abschnitts folgt:  $|G_2| = 36 \cdot |PGL(2,7)| = 36 \cdot 336 = 12096$ .

(8.3) Behauptung: G<sub>2</sub> enthält eine einfache Untergruppe G<sub>2</sub>\*

der Ordnung 6 048.

Beweis: Da für  $\Gamma_2$   $\mu \neq 0$ ,k gilt, ist  $G_2$  eine primitive Gruppe, also ist PGL(2,7) maximale Untergruppe von  $G_2$ . Da g  $\in$   $G_2 \setminus PGL(2,7)$  gilt, ist  $G_2 = \langle PGL(2,7), g \rangle$ . Sei  $G_2^* = \langle PSL(2,7), g \rangle$ . Es gilt  $G_2^* < G_2$ , denn es gibt einen Automorphismus von  $\Gamma_2$ , der jedes der  $M_1$  auf ein  $M_2$  abbildet und  $M_2$  fixiert. Dieser Automorphismus liegt in PGL(2,7), aber nicht in PSL(2,7). Da g eine gerade Permutation ist, liegt dieser Automorphismus auch nicht in  $G_2^*$ .

Es ist nun zu zeigen, daß  $G_2^*$  transitiv auf  $\Gamma_2$  wirkt. Da PSL(2,7) Untergruppe von  $G_2^*$  ist und transitiv auf den  $M_1$ 's, den  $M_2$ 's und  $M_2$  wirkt, genügt es zu zeigen, daß  $G_2^*$  Elemente enthält, die

- (i) P<sub>1</sub> auf jeden andern Punkt,
- (ii) jeden Punkt von  $\Gamma_1$  auf jeden beliebigen Punkt in  $\Gamma_1$  und (iii) jedes M auf jedes N abbilden.
- (i):  $P_1^g = M_0$ . Es existieren  $h_i \in PSL(2,7)$ , so daß  $P_1^{gh}i = M_i$  (für i = 1, 2, ..., 6).  $M_i^g \in \Sigma_1$ , also gibt es ein  $h \in G_2^*$  mit  $P_1^h = \begin{pmatrix} 0 & 1 \\ 6 & 0 \end{pmatrix}$ . Dann ist  $P_1^{hg} = N_0$ . Daraus folgt (i).
- (ii) folgt aus den Beziehungen  $\begin{pmatrix} 0 & 1 \\ 6 & 0 \end{pmatrix}$   $= N_0$  und  $\begin{pmatrix} 1 & 1 \\ 5 & 6 \end{pmatrix}$   $= M_1$ .
- (iii) folgt aus:  $M_1^g = \begin{pmatrix} 1 & 1 \\ 5 & 6 \end{pmatrix}$ , es existiert ein  $h \in G_2^*$  mit  $\begin{pmatrix} 1 & 1 \\ 5 & 6 \end{pmatrix}$   $h = \begin{pmatrix} 0 & 1 \\ 6 & 0 \end{pmatrix}$ , also ist  $M_1^{ghg} = N_0$ .
- $G_2^*$  ist also transitiv auf  $\Gamma_2$  und da ein Punktstabilisator in  $G_2^*$  isomorph zu PSL(2,7) ist, ist  $|G_2^*| = 36.168 = 6.048$ .

 $G_2^{\mathbf{x}}$  ist sogar primitiv. Denn: PSL(2,7) hat auf den Punkten von  $\Gamma_2$  Bahnen der Länge 1, 7, 7, 21 ( $P_1$ , die  $M_i$ 's, die  $N_j$ 's und  $\Sigma_1$  für den Stabilisator von  $P_1$ ). Nach (1.3) hat dann ein nichttriviales Imprimitivitätsgebiet die Länge 8, 15, 22 oder 29. Da keine dieser Zahlen Teiler von  $|\Gamma_2|$  = 36 ist, ist  $G_2^{\mathbf{x}}$  primitiv.

Mit Satz 5.1 folgt nun, daß G<sub>2</sub>\* einfach ist.

#### Bemerkung:

Da nach [4] jede einfache Gruppe der Ordnung 6 048 isomorph zur speziellen projektiven unitären Gruppe PSU(3,3²) ist, gilt  $G_2^*\cong PSU(3,3²)$ . Im folgenden soll allerdings ein Graph  $\Gamma_2^1$  konstruiert werden, der eine direkte Identifizierung von  $G_2^*$  erlaubt.

- (8.4) Bestimmung der Automorphismengruppe von  $\Gamma_2$ . Zur Identifizierung von  $G_2$  konstruiere ich einen Graphen  $\Gamma_2^1$ , der zu  $\Gamma_2$  isomorph sein wird.
- (a) GF(3) ist der endliche Körper mit 3 Elementen; das Polynom  $x^2 x 1$  ist über GF(3) irreduzibel und Adjunktion einer Wurzel j dieses Polynoms ergibt den Körper  $GF(3^2)$ .

Sei  $\pi$  eine unitäre Polarität der projektiven Ebene E über GF(9) und G sei PSU(3,3 $^2$ ).

E hat  $9^2 + 9 + 1 = 91$  Punkte, bezüglich  $\pi$  28 absolute und 63 nichtabsolute Punkte. Jede Involution der PSU(3,3<sup>2</sup>) läßt genau einen der nichtabsoluten Punkte fest und zu jedem der 63 nichtabsoluten Punkte gehört eine Involution in G, die ihn festläßt [6]. Es gibt also in der PSU(3,3<sup>2</sup>) 63 Involutionen, die geometrisch interpretiert Homologien mit nichtabsoluten Punkten als Zentrum und ihrer Polare als Achse sind. Nach [6] liegen diese 63 Involutionen in einer Konjugiertenklasse von G.

Sind A und B nichtabsolute Punkte, so sind  $A^{\pi}$  und  $B^{\pi}$  nichtabsolute Geraden. Jede nichtabsolute Gerade von E enthält 6 nichtabsolute Punkte. Liegt B auf  $A^{\pi}$ , so bilden A, B,  $A^{\pi} \cap B^{\pi}$  ein selbstpolares Dreieck in E. A liegt also in genau 3 selbstpolaren Dreiecken. (Die Eigenschaften einer Polarität der projektiven Ebene E betreffend, siehe E s. 45ff und S. 244ff)

- (b) Ist T ein selbstpolares Dreieck in E, so bilden die drei "zugehörigen" Involutionen der PSU(3,3²) eine Klein'sche Vierergruppe V (zusammen mit der 1). Also gibt es gerade 63 elementarabelsche Untergruppen vom Typ (2,2) in der PSU(3,3²). Sie seien mit  $V_1, V_2, \ldots, V_{63}$  bezeichnet.
- Satz 8.4: Es gibt in  $PSU(3,3^2)$  genau 36 Paare  $\{H_i, H_i'\}$  mit  $H_i = \{V_{k_1}, V_{k_2}, ..., V_{k_7}\}$ ,  $k_1, ..., k_7 \in \{1, 2, ..., 63\}$   $H_i' = \{V_{l_1}, V_{l_2}, ..., V_{l_7}\}$ ,  $l_1, ..., l_7 \in \{1, 2, ..., 63\}$  wobei  $H_i \cap H_i' = \emptyset$ , aber  $\{x \mid x \in V_{k_1} \cup V_{k_2} \cup ..., V_{k_7}\} = \{y \mid y \in V_{l_1} \cup ..., U \setminus V_{l_7}\}$  gilt.

### Beweis: ([6])

(Wir unterstellen die Elemente von GF(9) als homogene Koordinaten der Punkte  $<(x_1,x_2,x_3)>$  der endlichen Ebene und die Punkte, die  $\overline{x}_1x_1+\overline{x}_2x_2+\overline{x}_3x_3=0$  erfüllen, wo den Körperautomorphismus  $x\to x^3$  von GF(3<sup>2</sup>)bezeichnet, sind die absoluten Punkte der Ebene.)

Sei T ein selbstpolares Dreieck in E und V die zugehörige Vierergruppe in PSU(3,3 $^2$ ). Jede Seite von T enthält 4 absolute Punkte. Die restlichen 28 - 12 = 16 absoluten Punkte in E bilden 4 Vierecke, die unter V invariant bleiben und T als Diagonalpunkt-Dreieck besitzen. Insgesamt gibt es 63.4 = 252 solcher Vierecke.

Ist z.B.  $T = \langle (1,0,0) \rangle, \langle (0,1,0) \rangle, \langle (0,0,1) \rangle$ , so erhält man folgende Vierecke: (Die Punkte sind als Spalten geschrieben)

Ist Q ein solches Viereck mit den Eckpunkten  $n_1$   $n_2$   $n_3$   $n_4$ , so daß für  $T = p_1 p_2 p_3$  gerade folgendes gilt:

 $p_1$  liegt auf  $n_2^n$  und auf  $n_1^n$ ,

 $p_2$  liegt auf  $n_1^n_3$  und auf  $n_2^n_4$ ,

 $p_3$  liegt auf  $n_1^n_2$  und auf  $n_3^n_4$ ,

dann erhält man 6 nichtabsolute Punkte  $p_4, p_5, ..., p_9$  als folgende Schnittpunkte:

Daraus ergeben sich drei neue Dreiecke, nämlich

$$T_1' = p_1 p_4 p_5', T_2' = p_2 p_6 p_7 \text{ und } T_3' = p_3 p_8 p_9.$$

In unserem Beispiel ist:

$$p_4 = \langle (0, 1, -1) \rangle$$
  $p_6 = \langle (1, 0, 1) \rangle$   $p_8 = \langle (1, 1, 0) \rangle$   $p_5 = \langle (0, 1, 1) \rangle$   $p_7 = \langle (1, 0, -1) \rangle$   $p_9 = \langle (1, -1, 0) \rangle$ 

purch diese konstruktion erhält man also 3 Dreiecke, die je eine Ecke mit  $T=T_1$  gemeinsam haben.

Die Punkte  $p_2$ ,  $p_3$ ,  $p_4$  und  $p_5$  sind kollinear, d.h.  $T_1$  und  $T_1'$  haben eine Seite gemeinsam. d.h. es gibt noch  $28 - 5 \cdot 4 = 8$  absolute Punkte, die nicht auf einer Seite von  $T_1$  und  $T_1'$  liegen. Diese 8 Punkte bilden 2 Vierecke mit  $T_1'$  als Diagonalpunkt-Dreieck, eines davon soll analog zum vorherigen Schritt die drei Dreiecke  $T_1 = p_1 p_2 p_3$ ,  $T_2 = p_5 p_a p_b$  und  $T_3 = p_4 p_c p_d$  liefern.

Betrachten wir in unserem Beispiel  $T_1' = p_1 p_4 p_5$ , so erhalten wir durch dieselbe Konstruktion wie im ersten Schritt 4 Vierecke, von denen die beiden rechten schon ausgehend von  $T_1$  aufgetaucht sind. Die beiden neuen Vierecke stehen links im Schema:

(Wieder sind die Punkte als Spalten geschrieben)

Nimmt man nun das erste Viereck und konstruiert die 3 Dreiecke,
so erhält man:

$$T_1$$
,  $T_2 = \langle (0, 1, 1) \rangle \langle (1, -j, j) \rangle \langle (1, j, -j) \rangle$   
und  $T_3 = \langle (0, 1, -1) \rangle \langle (1, -j, -j) \rangle \langle (1, j, j) \rangle$ .

Die Ecken von  $T_1$  und  $T_1'$  entsprechen je einer Ecke der Dreiecke der anderen Triade. Es gibt nun noch 8 Ecken, je 4 pro Triade, für die dies nicht zutrifft. Die sich ergebenden 16 Schnittpunkte der Polaren von  $P_a$ ,  $P_b$ ,  $P_c$ ,  $P_d$  mit denen von  $P_6$ ,  $P_7$ ,  $P_8$ ,  $P_9$  bestehen aus 8 absoluten und 8 nichtabsoluten Punkten. Die 8 nichtabsoluten Punkte, die paarweise auf den Polaren liegen, bilden zusammen mit  $P_a$ ,  $P_b$ ,  $P_c$ ,  $P_d$  und entsprechend mit  $P_6$ ,  $P_7$ ,  $P_8$ ,  $P_9$  je vier weitere Dreiecke T bzw. T', so daß nun die gesuchten Paare  $\{H_i, H_i'\}$  konstruiert sind.

{H, H'} wurde ausgehend von einem der 252 Vierecke Q konstruiert. Beim 2. Schritt gab es 2 Möglichkeiten. Also gibt es  $\frac{252 \cdot 2}{14} = 36$  solcher Paare. Jedes der Dreiecke T ist in  $\frac{36 \cdot 14}{63} = 8$  Mengen H bzw. H' enthalten.

In unserem Beispiel erhalten wir:

| 1 | 0  | 0 | 0 | 1          | 1  | 0  | 1          | 1  | 1           | 1              | 1   | 1   | 1   | 1  | 1              | 1                            | 1              | 1              | 1               | 1               |
|---|----|---|---|------------|----|----|------------|----|-------------|----------------|-----|-----|-----|----|----------------|------------------------------|----------------|----------------|-----------------|-----------------|
| 0 | 1  | 0 | 1 | <b>-</b> j | j  | 1  | -j         | j  | <b>-</b> j³ | 0              | j 3 | -j³ | 0   | j3 | -1             | -1                           | 1              | 1              | 1               | -1              |
| 0 | 0  | 1 | 1 | j          | -j | -1 | <b>-</b> j | j  | -1          | 1              | -1  | 1   | -1  | 1  | j <sup>3</sup> | <sup>3</sup> -j <sup>3</sup> | 0              | ј <sup>3</sup> | -ј <sup>3</sup> | 0               |
|   |    |   |   |            |    |    |            |    | 1           |                |     |     |     |    |                |                              |                |                |                 |                 |
| 0 | 1  | 1 | 1 | 0          | 0  | 0  | 1          | -1 | -j          | j <sup>3</sup> | -1  | j   | -j³ | 1  | -ј             | j <sup>3</sup>               | -1             | j              | -j³             | 1               |
| 0 | -1 | 1 | 0 | 1          | -1 | 1  | 0          | 0  | j           | 1              | -j³ | -j  | -1  | j³ | <b>-</b> j     | -1                           | j <sup>3</sup> | j              | 1               | -j <sup>3</sup> |

Da selbstpolare Dreiecke, für die die Behauptung gezeigt wurde, den Vierergruppen in der  $PSU(3,3^2)$  entsprechen, gilt die Behauptung von Satz 8.4. $\blacksquare$ 

Bemerkung: Die PSU(3,3<sup>2</sup>) enthält genau 36 konjugierte Untergruppen der Ordnung 168, die isomorph zu PSL(2,7) sind. Die 36 konstruierten Paare  $\{H_i,H_i'\}$  stellen nichts anderes dar als die je zwei Konjugiertenklassen von elementar-abelschen Untergruppen der Ordnung 4 dieser konjugierten Untergruppen von PSU(3,3<sup>2</sup>).

Ich habe, um später die Adjazenzmatrix des Hall-Janko-Graphen angeben zu können, obige Konstruktion im einzelnen durchgeführt. Es folgen drei Tabellen: die 63 Involutionen der  $PSU(3,3^2)$ , die 63 elementar-abelschen Untergruppen vom Typ (2,2) in  $PSU(3,3^2)$  und die 36 Paare  $\{H_i,H_i'\}$ gemäß Satz 8.4.

$$\begin{aligned} \mathbf{v}_1 &= \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} & \mathbf{v}_2 &= \begin{pmatrix} 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} & \mathbf{v}_3 &= \begin{pmatrix} 0 & 0 & 1 \\ -2 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} & \mathbf{v}_4 &= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} & \mathbf{v}_5 &= \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\ \mathbf{v}_6 &= \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} & \mathbf{v}_7 &= \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 & 0 \\ -2 & 0 & 0 \end{pmatrix} & \mathbf{v}_8 &= \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \end{pmatrix} & \mathbf{v}_9 &= \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} & \mathbf{v}_{10} &= \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix} \\ \mathbf{v}_{11} &= \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & -1 & 2 & 0 \end{pmatrix} & \mathbf{v}_{12} &= \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -2 & 2 \\ 0 & 0 & 2 & 0 \end{pmatrix} & \mathbf{v}_{13} &= \begin{pmatrix} 0 & -1 & 1 \\ -3 & 1 & 1 \\ -1 & 3 & 1 & 1 \end{pmatrix} & \mathbf{v}_{14} &= \begin{pmatrix} 0 & -1 & -1 \\ 0 & 3 & 1 & 1 \\ -1 & 3 & 1 & 1 \end{pmatrix} & \mathbf{v}_{15} &= \begin{pmatrix} 0 & -1 & 3 & 1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \\ \mathbf{v}_{16} &= \begin{pmatrix} 0 & 1 & 3 & 3 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} & \mathbf{v}_{17} &= \begin{pmatrix} 0 & 1 & 3 & 1 \\ 0 & 3 & 1 & 1 \\ 0 & 2 & 1 & 1 \end{pmatrix} & \mathbf{v}_{19} &= \begin{pmatrix} 0 & -1 & -1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} & \mathbf{v}_{20} &= \begin{pmatrix} 0 & -1 & 3 & 1 \\ -1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 \end{pmatrix} & \mathbf{v}_{21} &= \begin{pmatrix} 0 & -1 & 3 & 1 \\ 0 & 1 & 2 & 3 & 1 \\ 0 & 3 & 1 & 1 \\ 0 & 3 & 1 & 1 \end{pmatrix} & \mathbf{v}_{19} &= \begin{pmatrix} 0 & -1 & 3 & 1 \\ 0 & 3 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} & \mathbf{v}_{20} &= \begin{pmatrix} 0 & -1 & 3 & 1 \\ 0 & -1 & 1 & 1 \end{pmatrix} \\ \mathbf{v}_{21} &= \begin{pmatrix} 0 & 1 & 3 & 1 \\ 0 & 3 & 1 & 1 \\ 0 & 3 & 1 & 1 \end{pmatrix} & \mathbf{v}_{22} &= \begin{pmatrix} 0 & -1 & 3 & 1 \\ 0 & 3 & 1 & 1 \\ 0 & 3 & 1 & 1 \end{pmatrix} & \mathbf{v}_{23} &= \begin{pmatrix} 0 & -1 & 3 & 1 \\ 0 & 3 & 1 & 1 \\ 0 & 3 & 1 & 2 \end{pmatrix} & \mathbf{v}_{29} &= \begin{pmatrix} 0 & -1 & 3 & 1 \\ 0 & 3 & 0 & 1 \\ 0 & -1 & 2 & 2 \end{pmatrix} & \mathbf{v}_{25} &= \begin{pmatrix} 0 & -1 & 3 & 1 \\ 0 & 3 & 1 & 1 \\ 0 & 3 & 1 & 1 \end{pmatrix} \\ \mathbf{v}_{31} &= \begin{pmatrix} 1 & 1 & 3 & 1 \\ 1 & 3 & 1 \end{pmatrix} & \mathbf{v}_{32} &= \begin{pmatrix} 1 & -1 & 3 & 1 \\ -1 & 3 & 1 \\ 1 & 3 & 1 \end{pmatrix} & \mathbf{v}_{33} &= \begin{pmatrix} 1 & 1 & 3 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 3 & 1 & 1 \end{pmatrix} & \mathbf{v}_{39} &= \begin{pmatrix} 1 & 1 & 3 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 3 & 1 & 1 \end{pmatrix} & \mathbf{v}_{35} &= \begin{pmatrix} 1 & 1 & -1 & 1 \\ -1 & 3 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \end{pmatrix} & \mathbf{v}_{35} &= \begin{pmatrix} 1 & 1 & -1 & 1 \\ -1 & 3 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \end{pmatrix} & \mathbf{v}_{45} &= \begin{pmatrix} 1 &$$

```
V_1 = \{1, v_1, v_2, v_{63}\} V_{22} = \{1, v_9, v_{13}, v_{14}\} V_{43} = \{1, v_{19}, v_{30}, v_{56}\}
 v_2 = \{1, v_1, v_{45}, v_{49}\} v_{23} = \{1, v_9, v_{15}, v_{16}\} v_{44} = \{1, v_{19}, v_{37}, v_{46}\}
 v_3 = \{1, v_1, v_{53}, v_{57}\} v_{24} = \{1, v_{10}, v_{17}, v_{18}\} v_{45} = \{1, v_{20}, v_{29}, v_{55}\}
 v_4 = \{1, v_2, v_{46}, v_{50}\} v_{25} = \{1, v_{10}, v_{19}, v_{20}\} v_{46} = \{1, v_{20}, v_{38}, v_{45}\}
 V_5 = \{1, v_2, v_{54}, v_{58}\} V_{26} = \{1, v_{11}, v_{12}, v_{61}\} V_{47} = \{1, v_{21}, v_{32}, v_{59}\}
 v_6 = \{1, v_3, v_4, v_{63}\} v_{27} = \{1, v_{11}, v_{21}, v_{22}\} v_{48} = \{1, v_{21}, v_{43}, v_{46}\}
 v_7 = \{1, v_3, v_{47}, v_{51}\} v_{28} = \{1, v_{11}, v_{23}, v_{24}\} v_{49} = \{1, v_{22}, v_{31}, v_{60}\}
 v_8 = \{1, v_3, v_{55}, v_{59}\} v_{29} = \{1, v_{12}, v_{25}, v_{26}\} v_{50} = \{1, v_{22}, v_{44}, v_{45}\}
 v_9 = \{1, v_4, v_{48}, v_{52}\} v_{30} = \{1, v_{12}, v_{27}, v_{28}\} v_{51} = \{1, v_{23}, v_{29}, v_{58}\}
 v_{10} = \{1, v_4, v_{56}, v_{60}\} v_{31} = \{1, v_{13}, v_{36}, v_{57}\} v_{52} = \{1, v_{23}, v_{42}, v_{48}\}
 v_{11} = \{1, v_5, v_6, v_{62}\} v_{32} = \{1, v_{13}, v_{43}, v_{52}\} v_{53} = \{1, v_{24}, v_{30}, v_{57}\}
 v_{12} = \{1, v_5, v_{32}, v_{35}\} v_{33} = \{1, v_{14}, v_{35}, v_{58}\} v_{54} = \{1, v_{24}, v_{41}, v_{47}\}
v_{13} = \{1, v_5, v_{38}, v_{41}\} v_{34} = \{1, v_{14}, v_{44}, v_{51}\} v_{55} = \{1, v_{25}, v_{36}, v_{55}\}
 v_{14} = \{1, v_6, v_{31}, v_{37}\} v_{35} = \{1, v_{15}, v_{33}, v_{59}\} v_{56} = \{1, v_{25}, v_{39}, v_{50}\}
 V_{15} = \{1, v_6, v_{37}, v_{42}\} V_{36} = \{1, v_{15}, v_{42}, v_{49}\} V_{57} = \{1, v_{26}, v_{35}, v_{56}\}
 v_{16} = \{1, v_7, v_8, v_{62}\} v_{37} = \{1, v_{16}, v_{34}, v_{60}\} v_{58} = \{1, v_{26}, v_{40}, v_{49}\}
 v_{17} = \{1, v_7, v_{29}, v_{34}\} v_{38} = \{1, v_{16}, v_{41}, v_{50}\} v_{59} = \{1, v_{27}, v_{33}, v_{54}\}
 v_{18} = \{1, v_7, v_{40}, v_{43}\} v_{39} = \{1, v_{17}, v_{31}, v_{54}\} v_{60} = \{1, v_{27}, v_{38}, v_{52}\}
 v_{19} = \{1, v_8, v_{30}, v_{33}\} v_{40} = \{1, v_{17}, v_{40}, v_{47}\} v_{61} = \{1, v_{28}, v_{34}, v_{53}\}
 v_{20} = \{1, v_8, v_{39}, v_{44}\} v_{41} = \{1, v_{18}, v_{32}, v_{53}\} v_{62} = \{1, v_{28}, v_{37}, v_{51}\}
 v_{21} = \{1, v_9, v_{10}, v_{61}\} v_{42} = \{1, v_{18}, v_{39}, v_{48}\} v_{63} = \{1, v_{61}, v_{62}, v_{63}\}
```

Tabelle 2: Die 63 elementar-abelschen Untergruppen vom Typ (2,2) in PSU(3,3<sup>2</sup>) (Die Numerierung der Involutionen der PSU(3,3<sup>2</sup>) entspricht der in Tabelle 1)

Auf Seite 45 folgt die Tabelle der 36 Paare  $\{H_i,H_i'\}=:N_i$ . Dabei bezeichnen die Zahlen in den Schemata die Nummern der Involutionen der PSU(3,3<sup>2</sup>)gemäß Tabelle 1.

|                   |                                                                                                                                             |                   | 1.5                                                                                                                                      |                   |                                                   |                                                    |                                                                             |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------|
| N <sub>1</sub> :  |                                                                                                                                             |                   | 2 54 58 21 43 41 16<br>46 27 35 59 52 38 15<br>50 33 14 32 13 5 9<br>2 46 50 27 33 35 14<br>54 21 41 52 59 32 13<br>58 43 16 38 15 5 9   |                   |                                                   |                                                    |                                                                             |
| N <sub>2</sub> :  | 61 9 10 5 6 1 2<br>62 15 20 41 42 49 50<br>63 16 19 38 37 45 46<br>61 62 63 15 16 20 19<br>9 5 1 42 41 38 37<br>10 6 2 49 50 45 46          | N <sub>14</sub> : | 1 53 57 22 44 42 15<br>45 28 36 60 51 37 16<br>49 34 13 31 14 6 9<br>1 45 49 28 34 36 13<br>53 22 42 51 60 31 14<br>57 44 15 37 16 6 9   | N <sub>26</sub> : | 61 11<br>62 22<br>63 21<br>61 62<br>11 7<br>12 8  | 12 7<br>26 43<br>25 40<br>63 22<br>1 44<br>2 45    | 8 1 2<br>8 44 45 46<br>9 39 49 50<br>2 21 26 25<br>4 43 40 39<br>6 46 49 50 |
| N <sub>3</sub> :  |                                                                                                                                             |                   | 2 54 58 19 37 25 39<br>46 31 29 10 6 36 18<br>50 17 23 20 42 55 48<br>2 46 50 31 17 29 23<br>54 19 25 6 10 20 42<br>58 37 39 36 18 55 48 |                   |                                                   |                                                    |                                                                             |
| N <sub>4</sub> :  | 3 55 59 48 52 1 2<br>4 36 32 39 13 57 50<br>63 25 21 18 43 53 46<br>3 4 63 36 25 32 31<br>55 48 1 13 39 18 43<br>59 52 2 57 50 53 46        | N <sub>16</sub> : | 4 3 63 19 30 16 34<br>56 59 61 20 33 15 29<br>60 55 62 10 8 9 7<br>4 56 60 59 55 61 62<br>3 19 16 33 20 10 8<br>63 30 34 15 29 9 7       | N <sub>28</sub> : | 22 31<br>11 36<br>21 6<br>22 11<br>31 23<br>60 24 | 60 23<br>4 42<br>56 48<br>21 36<br>43 57<br>46 13  | 24 43 46<br>57 13 37<br>3 30 52 19<br>6 6 4 56<br>7 42 48 30<br>3 37 52 19  |
| N <sub>5</sub> :  | 4 3 63 26 35 22 31<br>56 51 1 40 14 44 17<br>60 47 2 49 58 45 54<br>4 56 60 51 47 1 2<br>3 26 22 14 40 49 58<br>63 35 31 44 17 45 54        | N <sub>17</sub> : | 62 7 8 38 41 31 36<br>5 34 44 20 16 60 55<br>6 29 39 45 50 22 25<br>62 5 6 34 29 44 39<br>7 38 31 16 20 45 50<br>8 41 36 60 55 22 25     | N <sub>29</sub> : | 62 7<br>5 40<br>6 43<br>62 5<br>7 32<br>8 35      | 8 32<br>33 21<br>30 59<br>6 40<br>42 26<br>37 49   | 35 42 37<br>26 49 46<br>56 15 19<br>43 33 30<br>21 59 56<br>46 15 19        |
| N <sub>6</sub> :  | 61 11 12 13 14 20 19<br>9 23 25 57 58 29 30<br>10 24 26 36 35 55 56.<br>61 9 10 23 24 25 26<br>11 13 20 58 57 36 35<br>12 14 19 29 30 55 56 | N <sub>18</sub> : | 2 17 23 11 24 16 7<br>46 31 29 21 41 34 40<br>50 54 58 22 47 60 43<br>2 21 16 17 22 11 7<br>54 46 41 40 31 23 29<br>58 43 50 47 60 24 34 | N <sub>30</sub> : | 1 53<br>45 28<br>49 34<br>1 45<br>53 20<br>57 38  | 57 20<br>36 29<br>13 55<br>49 28<br>26 27<br>40 12 | 38 26 40<br>27 12 7<br>52 25 43<br>34 36 13<br>29 55 52<br>7 25 43          |
| N <sub>7</sub> :  | 62 7 8 38 41 31 36<br>5 40 33 52 47 17 13<br>6 43 30 27 24 54 57<br>62 5 6 40 43 33 30<br>7 38 31 47 52 27 24<br>8 41 36 17 13 54 57        | N <sub>19</sub> : | 4 3 63 19 30 16 34<br>56 47 2 37 24 41 28<br>60 51 1 46 57 50 53<br>4 56 60 47 51 2 1<br>3 19 16 24 37 46 57<br>63 30 34 41 28 50 53     | N <sub>31</sub> : | 3 55<br>47 25<br>51 36<br>3 47<br>55 17<br>59 40  | 59 17<br>33 31<br>15 54<br>51 25<br>28 26<br>37 12 | 40 28 37<br>26 12 6<br>49 27 42<br>36 33 15<br>31 54 59<br>6 27 42          |
| N <sub>8</sub> :  | 61 11 12 15 16 17 18<br>9 22 28 33 60 31 32<br>10 21 27 59 34 54 53<br>61 9 10 22 21 28 27<br>11 15 17 60 59 34 33<br>12 16 18 31 32 53 54  | N <sub>20</sub> : | 3 55 59 24 41 44 14<br>47 25 33 57 50 39 13<br>51 36 15 30 16 8 9<br>3 47 51 25 36 33 15<br>55 24 44 50 57 30 16<br>59 41 14 39 13 8 9   | N <sub>32</sub> : | 61 11<br>9 24<br>10 23<br>61 9<br>11 15<br>12 16  | 12 15<br>26 49<br>25 42<br>10 24<br>17 41<br>18 47 | 16 17 18<br>41 47 48<br>50 40 39<br>23 26 25<br>42 49 50<br>48 40 39        |
| N <sub>9</sub> :  | 3 4 63 17 40 14 44<br>47 52 61 18 43 13 39<br>51 48 62 10 7 9 8<br>3 47 51 52 48 61 62<br>4 17 14 43 18 10 7<br>63 40 44 13 39 9 8          | N <sub>21</sub> : | 5 20 3 14 24 11 23<br>32 38 55 44 41 21 29<br>35 45 59 51 47 22 58<br>5 32 14 20 22 3 11<br>38 21 35 29 44 47 23<br>41 59 58 55 45 51 24 | N <sub>33</sub> : | 4 56<br>48 26<br>52 35<br>4 48<br>56 23<br>60 42  | 60 23<br>34 58<br>16 29<br>52 26<br>43 49<br>13 40 | 42 43 13<br>49 40 14<br>15 7 9<br>35 34 16<br>58 29 15<br>14 7 9            |
| N <sub>10</sub> : | 4 3 63 26 35 22 31<br>56 59 61 25 32 21 36<br>60 55 62 12 5 11 6<br>4 56 60 59 55 61 62<br>3 26 22 32 25 12 5<br>63 35 31 21 36 11 6        | N <sub>22</sub> : | 3 55 59 17 40 28 37<br>47 29 32 10 7 34 19<br>51 20 21 18 43 53 46<br>3 47 51 29 20 32 21<br>55 17 28 7 10 18 43<br>59 40 37 34 19 53 46 | N <sub>34</sub> : | 3 55<br>4 20<br>63 29<br>3 4<br>55 48<br>59 52    | 59 48<br>15 23<br>33 42<br>63 20<br>1 38<br>2 45   | 52 1 2<br>38 45 58<br>27 49 54<br>29 15 33<br>23 42 27<br>58 49 54          |
| N <sub>11</sub> : | 1 53 57 20 38 26 40<br>45 32 30 10 5 35 17<br>49 18 24 19 41 56 47<br>1 45 49 32 18 30 24<br>53 20 26 5 10 19 41<br>57 38 40 35 17 56 47    | N <sub>23</sub> : | 2 54 58 19 37 25 39<br>46 27 35 30 28 12 8<br>50 33 14 56 51 26 44<br>2 46 50 27 33 35 14<br>54 19 25 28 30 56 51<br>58 37 39 12 8 26 44 | N <sub>3</sub> ;: | 4 63<br>48 62<br>52 61<br>4 48<br>63 23<br>3 42   | 3 23<br>47 11<br>51 24<br>52 62<br>38 6<br>27 55   | 42 38 27<br>6 5 12<br>37 41 28<br>61 47 51<br>11 24 37<br>12 41 28          |
| N <sub>12</sub>   | 61 11 12 7 8 1 2<br>62 24 28 29 30 57 58<br>63 23 27 34 33 53 54<br>61 62 63 24 23 28 27<br>11 7 1 30 29 34 33<br>12 8 2 57 58 53 54        | N <sub>24</sub> : | 4 56 60 18 39 27 38<br>48 30 31 10 8 33 20<br>52 19 22 17 44 54 45<br>4 48 52 30 19 31 22<br>56 18 27 8 10 17 44<br>60 39 38 33 20 54 45 | N <sub>36</sub> : | 4 26<br>48 35<br>52 56<br>4 18<br>56 39<br>60 48  | 12 18<br>27 32<br>28 53<br>27 12<br>38 25<br>52 26 | 5 25 16<br>38 39 34<br>41 50 60<br>28 5 16<br>34 32 41<br>53 35 50          |

Tabelle 3: Die gemäß (8.4) konstruierten 36 Paare  $\{H_i, H_i'\} = N_i$ 

(c) Auf der Menge der durch Satz 8.4 gegebenen 36 Paare {  $H_i$ ,  $H_i'$ } sei nun der Graph  $\Gamma_2'$  definiert. Sind  $N_i = \{ H_i, H_i' \}$  und  $N_j = \{ H_j, H_j' \}$  solche Paare, so seien sie genau dann verbunden, wenn  $| H \cap H' | = 3$  für ein  $H \in N_i$  und ein  $H' \in N_j$  gilt.

Wir zeigen nun, daß PSU(3,3²) als transitive Automorphismengruppe auf  $\Gamma_2'$  wirkt. Bei Konjugation mit Elementen der PSU(3,3²) gehen die 21 Involutionen, die in  $V_k$   $V_k$   $V_k$   $V_k$  enthalten sind (wo  $V_k$  die Vierergruppen in  $V_k$  bezeichnet) auf 21 paarweise verschiedene Involutionen über. Entsprechend gehen die Mengen  $V_k$  und  $V_k$  in ebensolche über. Für  $V_k$   $V_k$  gilt auch  $V_k$   $V_k$ 

Sind nun  $N_i$  und  $N_j$  adjazent, so gibt es 3 Vierergruppen, die sowohl in  $H_i$  bzw.  $H_i'$  als auch in  $H_j$  bzw.  $H_j'$  enthalten sind. Für deren Konjugierte trifft dann dasselbe zu.

(d) Es soll gezeigt werden, daß  $F_2 \cong \Gamma_2'$  gilt.

Der Punkt  $N_1$  von  $\Gamma_2'$  ist mit 14 anderen Punkten verbunden, also ist wegen der Transitivität der Automorphismengruppe von  $\Gamma_2'$  dieser Graph regulär mit der Valenz 14.

Betrachten wir die 36 Paare  $N_1$  als Untergraphen des Vertauschbarkeitsgraphen der Involutionen der PSU(3,3<sup>2</sup>), so ist die in (c) getroffene Definition der Adjazenz in  $\Gamma_2^1$  äquivalent zu folgender: Zwei Punkte (also Untergraphen des Vertauschbarkeitsgraphen der 63 Involutionen) sind genau dann miteinander verbunden, wenn sie einen aus 9 Involutionen bestehenden Untergraphen gemeinsam haben, der folgende Gestalt hat:



(Hinweis: dieser Untergraph ist isomorph zum Vertauschbarkeitsgraph der Involutionen der  $\mathbf{S}_{\scriptscriptstyle{A}}$ )

Zwei verbundene Punkte  $N_i$ ,  $N_j$  haben - so betrachtet - einen solchen Untergraphen gemeinsam. Es gibt dann noch je 4 derartige Untergraphen, die das Dreieck v<sub>1</sub>v<sub>2</sub>v<sub>3</sub> nicht enthalten. Daraus folgt, daß in  $\Gamma_2$   $\lambda$  = 4 gilt. Wegen der Transitivität der Automorphismengruppe von  $\Gamma_2'$  ist  $\Gamma_2'$  ein streng regulärer Graph mit den Parametern n = 36, k = 14 und  $\lambda$  = 4, Da nach [24] ein Graph durch diese Parameter eindeutig bestimmt ist, gilt  $\Gamma_2 \cong \Gamma_2'$ . Wir haben damit nochmals gesehen, daß  $G_2^* \cong PSU(3,3^2)$  ist. (Nebenbei wurde gezeigt, daß der Vertauschbarkeitsgraph der Involutionen der PSU(3,32) 36 Untergraphen enthält, die isomorph zum Vertauschbarkeitsgraphen der Involutionen der PSL(2,7) sind. Diese wiederum enthalten 14 Untergraphen, die isomorph zum Vertauschbarkeitsgraphen der Involutionen der  $S_A$  sind.) (e) Nach [8] sind alle Untergruppen der Ordnung 168 in der PSU(3,32) konjugiert, d.h. ein äußerer Automorphismus der  $PSU(3,3^2)$  ist eindeutig durch seine Wirkung auf die 36 Konjugierten der PSL(2,7) in  $PSU(3,3^2)$ , also durch seine Wirkung auf die 36 Punkte des Graphen  $\Gamma_2^{\prime}$  bestimmt. Ein äußerer Autmorphismus erhält die Kanten des Graphen, denn für ihn trifft dieselbe Überlegung wie in (c) für einen inneren Automorphismus zu. Also ist Aut(PSU(3,3<sup>2</sup>)) in  $G_2$  enthalten und wegen  $|G_2| = 12 096$ gilt  $\operatorname{Aut}(\Gamma_2) = G_2 = \operatorname{Aut}(\operatorname{PSU}(3,3^2)) = G_2(2)$ . Dabei bezeichnet  $G_2(2)$  die Chevalley-Gruppe vom Typ  $G_2$  über GF(2). Die Isomorphie Aut(PSU(3,3<sup>2</sup>))  $\cong$  G<sub>2</sub>(2) wird z.B. gezeigt in [21]. Der Stabilisator eines Punktes in der primitiven Permutationsdarstellung von  $G_2(2)$  auf 36 Punkten ist isomorph zu PGL(2,7) und

hat drei Bahnen auf den 36 Punkten.

§ 9 Die Hall-Janko-Gruppe HJ als Rang-3-Erweiterung der PSU(3,3<sup>2</sup>)

#### (9.1) Konstruktion des Hall-Janko-Graphen

Da in  $PSU(3,3^2)$  die Zentren der 2-Sylow-Gruppen die Ordnung 2 haben, können wir die Eckenmenge von  $\Sigma_2$  mit den 63 Involutionen der  $PSU(3,3^2)$  identifizieren, die gemäß (A) in §6 zu verbinden sind. Ist u eine Involution, so ist u in genau 3 elementar-abelschen Untergruppen der Ordnung 4 der  $PSU(3,3^2)$  enthalten (8.4), es gibt also genau 6 Involutionen  $v_i$  mit  $[u,v_i]=1$  (i=1,2,...,6). Jedes dieser  $v_i$  ist in zwei weiteren Vierergruppen enthalten, die je zwei von u und  $v_i$  verschiedene Involutionen enthalten. Es gibt also  $6\cdot2\cdot2=24$  Involutionen  $w_i$  die die Bedingung  $[u,w]\neq 1$ , aber es existiert ein  $v_i$  mit  $[u,v_i]=[w,v_i]=1$  erfüllen.

Daß diese 24 Involutionen tatsächlich paarweise verschieden sind, sieht man folgendermaßen ein:

Setze  $G = PSU(3,3^2)$  und x, y seien verschiedene Involutionen in G mit  $[x,y] \neq 1$ .

Behauptung: Dann enthält  $C_{G}(x) \cap C_{G}(y)$  höchstens eine (zentrale) Involution.

(Für [x,y] = 1 ist diese Aussage klar, deshalb wird nur  $[x,y] \neq 1$  betrachtet.)

Beweis:  $C_G(x)$  enthält genau 7 Involutionen, nämlich x selbst und 6 weitere Involutionen, die 3 Paare vertauschbarer Involutionen bilden. x ist zentrale Involution, also gibt es eine 2-Sylow-Gruppe S von G, so daß gilt  $x \in Z(S) < S \leq C_G(x)$  und alle Involutionen in  $C_G(x)$  liegen bereits in S. Seien nun  $z_1$  und  $z_2$  nichtvertauschbare Involutionen in S, so ist  $\langle z_1, z_2 \rangle$  eine Diedergruppe mit durch 4 teilbarer Ordnung, etwa  $|\langle z_1, z_2 \rangle| = 4n$ . Dann ist  $z = (z_1 z_2)^n$  eine Involution in  $\langle z_1, z_2 \rangle$ , die mit  $z_1$  und  $z_2$  vertauschbar ist. Da der Vertauschbarkeitsgraph in  $C_G(x)$  folgende Gestalt hat:



folgt z = x. Wären nun  $z_1$  und  $z_2$  in  $C_G(x) \cap C_G(y)$  enthalten, so wäre auch z = x in  $C_G(y)$  enthalten, also wäre [x,y] = 1, was der Voraussetzung widerspricht.

 $\Sigma_2$  ist also ein regulärer Graph der Valenz 24, auf dem die PSU(3,3 $^2$ ) als transitive Automorphismengruppe wirkt.

Nach Vorschrift (B) bildet man nun den Graphen  $\Gamma_3$  mit der Eckenmenge  $\{P_2\} \cup \Gamma_2' \cup \Sigma_2$ . Wegen der in (8.4) gezeigten Isomorphie von  $\Gamma_2$  mit  $\Gamma_2'$  kann man die beiden Graphen identifizieren, die Konstruktion von  $\Gamma_3$  stimmt also mit der Definition in §6 überein.  $P_2$  ist mit jedem Element von  $\Gamma_2'$ , aber keinem Element in  $\Sigma_2$  verbunden. Ein Element u  $\in \Sigma_2$  ist mit genau den Paaren  $\{H_1, H_1'\}$  aus  $\Gamma_2'$  verbunden, für die gilt: es existiert ein  $V_k$   $\in H_1$  mit u  $\in V_k$ ; denn genau dann fixiert u das Paar  $\{H_1, H_1'\}$  bei Konjugation. Da jede Involution u in genau 3 Gruppen  $V_k$  enthalten ist, und jede dieser in 8 Mengen  $H_1$  bzw.  $H_1'$  liegt, folgt: es gibt genau  $\frac{3 \cdot 8}{2} = 12$  Paare  $\{H_1, H_1'\}$ , so daß in  $H_1$  ein  $V_k$  enthalten ist mit u  $\in V_k$ . Also ist jeder Punkt von  $\Sigma_2$  mit 12 Punkten in  $\Gamma_2'$  verbunden.

Umgekehrt ist jedes der Paare  $\{H_{\underline{i}}, H_{\underline{i}}^{!}\}$  mit genau den 21 Involutionen in  $\Sigma_{\underline{2}}$  verbunden, die in den in  $H_{\underline{i}}$  und  $H_{\underline{i}}^{!}$  enthaltenen Vierergruppen liegen.

Daraus ergibt sich, daß  $\Gamma_3$  ein regulärer Graph der Valenz 36 ist, der überdies die Parameterbedingungen eines Rang-3-Graphen erfüllt. Dabei ist (zunächst formal):

n = 100, k = 36, l = 63,  $\lambda = 14$ ,  $\mu = 12$ , s = 6, t = -4,  $f_2 = 36$  und  $f_3 = 63$ .

In Abbildung 10 wird die Adjazenzmatrix des Hall-Janko-Graphen angegeben. Dabei sind die Zeilen und Spalten dieser Matrix folgendermaßen 'numeriert': Zunächst  $P_2$ , dann die 36 Paare  $\{H_i,H_i'\}$  in der Reihenfolge von Tabelle 3 und schließlich die 63 Involutionen der  $PSU(3,3^2)$  in der Reihenfolge von Tabelle 1.

| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

## (9.2) Beweis der Transitivität der Automorphismengruppe von $\Gamma_3$ .

Um zu zeigen, daß Aut( $\Gamma_3$ ) transitiv auf den Punkten des Graphen wirkt, genügt es, einen Automorphismus des Graphen zu konstruieren, der  $P_2$ ,  $\Gamma_2$  und  $\Sigma_2$  bewegt. Die folgende Konstruktion eines solchen Automorphismus hat mir M. SUZUKI in einem Brief [21] mitgeteilt, wofür ich ihm an dieser Stelle herzlich danken möchte.

Man betrachtet den Graphen folgendermaßen:

 $\Gamma(P_2)$  ist die Menge der zentralen Involutionen der  $G_2(2)$   $\Delta(P_2)$  ist die Menge der Konjugierten der PGL(2,7) in  $G_2(2)$  Sei Q  $\epsilon$   $\Delta(P_2)$ .

Sei a eine Abbildung von  $\Gamma_{\gamma}$  auf sich mit:

- (1) a vertausche P<sub>2</sub> und Q,
- (2) a lasse jedes Element von  $\Delta(P_2) \cap \Delta(Q)$  fest.
- (3) Die Punkte in  $\Delta(P_2) \setminus \{Q, \Delta(P_2) \cap \Delta(Q)\}$  sind im Graphen  $\Gamma_2$  gerade die zentralen Involutionen von  $G_1 \cong PGL(2,7)$ . Also gibt es eine natürliche Identifikation der Elemente von  $\Delta(P_2) \setminus \{Q, \Delta(P_2) \cap \Delta(Q)\}$  mit den Elementen von  $\Gamma(P_2)$ , die in Q, einer Konjugierten der PGL(2,7), enthalten sind. a sei diese Identifikation der Elemente von  $\Delta(P_2) \setminus \{Q, \Delta(P_2) \cap \Delta(Q)\}$  mit den Elementen von  $\Gamma(P_2) \cap \Delta(Q)$ .
- (4) Sei y  $\in$  Q  $\cap$   $\Gamma(P_2)$ , dann kann man y als Involution der PSL(2,7) auffassen. Nach (7.3) gibt es genau 4 Involutionen in Q  $\cap$   $\Gamma(P_2)$ , die mit y kommutieren. Da y gleichermaßen als Involution der PSU(3,3<sup>2</sup>) aufgefaßt werden kann, gibt es insgesamt 6 Involutionen, die mit y vertauschbar sind, also müssen 2 derselben in  $\Gamma(P_2) \setminus \{\Delta(Q) \cap \Gamma(P_2)\}$  liegen. Da  $|Q \cap \Gamma(P_2)| = 21$  und  $|\Gamma(P_2) \setminus \{\Delta(Q) \cap \Gamma(P_2)\}| = 42$  gilt, folgt: Zu jedem  $x \in \Gamma(P_2) \setminus \{\Delta(Q) \cap \Gamma(P_2)\}$  existiert ein eindeutig bestimmtes  $y \in Q \cap \Gamma(P_2)$  mit [x,y] = 1 und  $xy \in \Gamma(P_2) \setminus \{\Delta(Q) \cap \Gamma(P_2)\}$ . Sei  $x^a = xy$ .

Es ist nun zu zeigen, daß damit tatsächlich ein Automorphismus von  $\Gamma_3$  definiert ist, d.h. daß a die Ecken von  $\Gamma_3$  kantenerhaltend permutiert.

#### Beweis:

also in  $\Delta$ .

Sei  $\Delta$  die Menge der Kanten in  $\Gamma_3$ . Sind  $M_1 = \{P_2,Q\}$ ,  $M_2 = \Delta(Q) \cap \Delta(P_2)$ ,  $M_3 = \Delta(P_2) \setminus \{Q, \Delta(Q) \cap \Delta(P_2)\}$ ,  $M_4 = \Delta(Q) \cap \Gamma(P_2)$  und  $M_5 = \Gamma(P_2) \setminus \{\Delta(Q) \cap \Gamma(P_2)\}$ , so sind die Fälle /i.j/ für i,j = 1,2,...5 zu betrachten: dabei ist in Fall /i.j/ zu zeigen, daß genau dann  $(x_i^a, x_j^a) \in \Delta$  für ein Eckenpaar von  $\Gamma_3$  mit  $x_i \in M_i$  und  $x_j \in M_j$  gilt, wenn  $(x_i, x_j) \in \Delta$ . Da a eine Involution ist, genügt es die Fälle /i.j/ mit  $j \geq i$  zu betrachten.

Die Fälle /1.j/ ergeben sich unmittelbar aus der Definition von a. Sei jetzt R  $\in \Delta(Q) \cap \Delta(P_2)$ . Also ist R<sup>a</sup> = R. /2.2/: Ist S  $\in \Delta(Q) \cap \Delta(P_2)$  und (R,S)  $\in \Delta$ , so ist (R<sup>a</sup>,S<sup>a</sup>) = (R,S),

/2.3/: Betrachte ein mit R benachbartes S in  $\Delta(P_2) \setminus \{Q, \Delta(Q) \cap \Delta(P_2)\}$ . Dann ist S<sup>a</sup>  $\in Q \cap \Gamma(P_2)$ . Da  $(R,S) \in \Delta$  gilt, läßt S, aufgefaßt als Involution in  $\Gamma_2$  R bei Konjugation fest. Dies trifft dann auch auf S<sup>a</sup> zu, denn a ist die natürliche Identifikation der Elemente in  $\Delta(P_2) \setminus \{Q, \Delta(Q) \cap \Delta(P_2)\}$  mit den Involutionen in  $Q \cap \Gamma(P_2)$ .

/2.4/: Ist nun x  $\in$  Q  $\cap$   $\Gamma(P_2)$  und (x,R)  $\in$   $\Delta$ , so folgt mit demselben Argument wie in /2.3/, daß dann auch  $(x^a,R)$   $\in$   $\Delta$  gilt.

/2.5/: Sei  $x \in \Gamma(P_2) \setminus \{\Delta(Q) \cap \Gamma(P_2)\}$  und  $(x,R) \in \Delta$ .

Dann ist  $x^a = xy$ , wie oben definiert und  $R^{xy} = R^y = R^{yx}$ . Es ist zu zeigen, daß  $R^y = R$  gilt.

Für ein  $x \in \Gamma(P_2) \setminus \{\Delta(Q) \cap \Gamma(P_2)\}$  gibt es in  $\Delta(R) \cap \Gamma(P_2)$  genau 4 Involutionen, mit denen x kommutiert. Diese können nicht alle in  $(\Gamma(P_2) \setminus \{\Delta(Q) \cap \Gamma(P_2)\}) \cap \Delta(R)$  liegen. Also gibt es ein y' in  $\Delta(Q) \cap \Gamma(P_2) \cap \Delta(R)$ , das mit x kommutiert. Da y eindeutig bestimmt ist, gilt y' = y, also ist  $y \in \Delta(R)$ , und folglich  $R^Y = R$ .

Für die folgenden Fälle sei R  $\epsilon$   $\Delta(P_2) \sim \{Q, \Delta(Q) \cap \Delta(P_2)\}$ . R<sup>a</sup> liegt dann in  $Q \cap \Gamma(P_2)$  und wir setzen  $z = R^a$ .

/3.3/: Sei S  $\in \Delta(P_2) \setminus \{Q, \Delta(Q) \cap \Delta(P_2)\}$  und  $(R,S) \in \Delta$ . Die natürliche Identifikation in der Definition von a ergibt, daß dann  $(R^a, S^a) \in \Delta$  gilt.

/3.4/: Sei  $x \in Q \cap \Gamma(P_2)$  und x sei mit R verbunden. x läßt R bei Konjugation fest, folglich ist [z,x] = 1. Daraus folgt, daß z auch

 $x^a$  bei Konjugation festläßt, daß also  $(z,x^a) \in \Delta$  gilt. /3.5/: Sei  $x \in \Gamma(P_2) \setminus \{\Delta(Q) \cap \Gamma(P_2)\}$  und  $(x,R) \in \Delta$ . Gemäß der Definition von  $x^a$  sei y das eindeutig bestimmte Element in  $\Delta(Q) \cap \Gamma(P_2)$ , das mit x vertauschbar ist und  $x^a = xy$ . (a) Ist  $y \in \Delta(R)$ , so auch xy. Dann ist  $[x,z] \neq 1$ , da  $z \neq y$  gilt.

Ferner gilt [z,y] = 1, denn die 4 Involutionen in  $\Delta(Q) \wedge \Gamma(P_2)$ , mit denen z vertauschbar ist, sind alle Nachbarn von R und  $|\Delta(Q)| = 5$ . Also ist  $[x,z] \neq 1$  und

 $|\Delta(Q) \cap \Gamma(P_2) \cap \Delta(R)| = 5$ . Also ist  $[x,z] \neq 1$  und [xy,y] = [z,y] = 1, also gilt  $(x^a,z) \in \Delta$ .

(b) Ist num  $y \notin \Delta(R)$ , so ist auch  $xy \notin \Delta(R)$ . Dann ist  $[z,x] \neq 1$  und  $[z,y] \neq 1$  und weder x noch y sind mit z verbunden. Dann ist  $(xy,z) \in \Delta$ . Grund:

z ist mit 24 Involutionen der  $PSU(3,3^2)$  verbunden, die in 12 elementar-abelschen Gruppen vom Typ (2,2) liegen. Jede dieser 12 Vierergruppen enthält also 2 Elemente, die mit z adjazent sind. Jede der 24 Involutionen liegt in 2 weiteren dieser Gruppen; unter den 63 Untergruppen dieser Art in  $PSU(3,3^2)$  bleibt also ein Rest von 3 Vierergruppen, in denen z selbst enthalten ist. Die Gruppe bestehend aus  $\{1, x, y, xy\}$ enthält also mindestens eine Involution, die mit z verbunden ist. Da x und y nicht mit z verbunden sind, muß  $(xy,z) \in \Delta$  gelten.

Sei nun  $x \in Q \cap \Gamma(P_2)$ .  $x^a$  ist dann in  $\Delta(P_2) \setminus \{Q, \Delta(Q) \cap \Delta(P_2)\}$  enthalten und dieselben Argumente wie in /3.3/ und /3.5/ liefern die Behauptung von /4.4/ und /4.5/.

/5.5/: Wir betrachten ein x  $\in \Gamma(P_2) \setminus \{\Delta(Q) \cap \Gamma(P_2)\}$  und es ist  $x^a = xy$ , wie oben definiert. Es ist zu zeigen, daß das Bild eines mit x verbundenen Elements in  $M_5$  in  $\Delta(xy)$  liegt.

Es ist  $|(\Gamma(P_2) \setminus \{\Delta(Q) \cap \Gamma(P_2)\}) \cap \Delta(x)| = 16$  und in dieser Menge gibt es 4 Involutionen z, für die gilt:  $[x,z] \neq 1$  und  $[x,x^a] = [z,x^a] = 1$ . Für diese z ist  $[z^a,z] = [xy,z] = 1$ , aber  $[z^a,xy] \neq 1$ .

Zu jedem dieser mit x verbundenen Elemente z mit  $[z,x^a] = 1$  gibt es dann 3 Elemente z' in  $(\Gamma(P_2) \setminus \{\Delta(Q) \cap \Gamma(P_2)\}) \cap \Delta(x)$ , für die gilt:  $[z'^a,z] = [xy,z] = 1$  und  $[z'^a,xy] \neq 1$ .

(Darunter befindet sich jeweils z selbst auch, also ist für weitere 12 - 4 = 8 Elemente von  $M_5 \cap \Delta(x)$  die Behauptung gezeigt.)

Ferner gibt es noch 4 Elemente z, für die gilt:

 $[x,z] \neq 1$  und  $[x,z^a] = [z,z^a] = 1$  Für sie gilt dann:  $[z^a,x] = [x^a,x] = 1$ , aber  $[x^a,z^a] \neq 1$ .

Wir haben für alle Elemente in  $\Gamma(P_2) \setminus \{\Delta(Q) \cap \Gamma(P_2)\}$ , die mit x verbunden sind, gezeigt, daß ihr Bild dann mit x verbunden ist.¶

Damit ist gezeigt, daß a tatsächlich ein Automorphismus von  $\Gamma_3$  ist, also wirkt Aut( $\Gamma_3$ ) transitiv auf  $\Gamma_3$ .

Seien  $P_2$  mit 00, die Punkte von  $\Gamma_2'$  mit 01,02,...,36 entsprechend Tabelle 3 und die Punkte von  $\Gamma_2$  mit 37,38...,99 in der Reihenfolge von Tabelle 1 numeriert, so ergibt sich mit Q=01 folgender Automorphismus a:

- $a = (00 \ 01)(02)(03)(04)(05)(06)(07)(08)(09)(10)(11)(12)(13)(14)$ 
  - (15) (16 97) (17 42) (18 90) (19 37) (20 49) (21 71) (22 54) (23 94)
  - (24 53) (25 89) (26 99) (27 45) (28 72) (29 41) (30 93) (31 67)
  - (32 46) (33 50) (34 38) (35 98) (36 68) (39 40) (43 44) (47 48)
  - (51 52) (55 56) (57 95) (58 96) (59 65) (60 66) (61 91) (62 92)
  - (63 69) (64 70) (73 78) (74 77) (75 84) (76 83) (79 88) (80 87)
  - (81 85) (82 86)

# (9.3) Identifizierung der Automorphismengruppe von $\Gamma_3$ .

(a) Wir haben gesehen, daß  $G_3$ , die Automorphismengruppe von  $\Gamma_3$  transitiv auf den Ecken des Graphen wirkt. Nach Konstruktion ist der Stabilisator eines Punktes in  $G_3$  isomorph zu  $G_2(2)$ . Also ist  $|G_3| = 100 \cdot |G_2(2)| = 1$  209 600.  $G_3$  wirkt primitiv, da  $\mu \neq 0$ , k gilt.

Behauptung:  $G_3$  enthält eine einfache Untergruppe  $G_3^*$  der Ordnung 604 800.

Beweis: Die in (9.2) konstruierte Involution a hat 14 Fixpunkte auf  $\Gamma_3$ , ist also Produkt von 43 Transpositionen, also eine ungerade Permutation. Da  $G_2(2)$  eine maximale Untergruppe von  $G_3$  ist, gilt  $G_3 = \langle a, G_2(2) \rangle$  und  $G_3$  enthält eine ungerade Permutation, besitzt also eine Untergruppe  $G_3^*$  vom Index 2. Da PSU(3,3²) nur gerade Permutationen enthält und Untergruppe von  $G_2(2)$  ist,

gilt PSU(3,3<sup>2</sup>)  $\leq G_3^*$ .

Es existiert nun eine gerade Permutation  $\bar{a}$  in  $G_3^*$ , die  $P_2$ ,  $\Gamma_2$  und  $\Gamma_2$  bewegt. Man wähle das Produkt einer ungeradem Permutation in  $\Gamma_2$  (2) mit  $\bar{a}$  in  $\Gamma_2$  (2),  $\bar{a}$  . †)

Der Stabilisator des Punktes  $P_2$  in  $G_3^*$  ist isomorph zu  $PSU(3,3^2)$  und da  $G_3^*$  transitiv auf  $\Gamma_3$  ist, können wir  $G_3^*$  mit  $PSU(3,3^2)$ , a > 1 identifizieren.

Da die PSU(3,3²) auf den Punkten von  $\Gamma_{.3}$  Bahnen der Länge 1, 36 und 63 hat, ist  $G_3^*$  primitiv und nach (5.1) einfach. Also ist  $G_3^*$  eine einfache Gruppe der Ordnung 604 800.  $\blacksquare$ 

Nach [8] ist jede einfache Gruppe der Ordnung 604 800 isomorph zur sporadischen einfachen Gruppe HJ von Hall-Janko, also gilt  $G_3^*\cong HJ$ . HJ ist folgendermaßen definiert [16]: HJ ist eine einfache Gruppe G, so daß das Zentrum einer 2-Sylow-Gruppe von G zyklisch ist und der Zentralisator einer zentralen Involution isomorph zur Erweiterung einer Gruppe E der Ordnung 32 mit der  $A_5$  ist und G zwei Konjugiertenklassen von Involutionen besitzt. Die Ordnung von HJ ist 604 800. Die Gruppe E ist zentrales Produkt einer Quaternionengruppe der Ordnung 8 mit einer Diedergruppe der Ordnung 8.

<sup>†)</sup> Eine Involution in PGL(2,7), die in  $\Gamma_1$  die M 's mit den N 's vertauscht, ist ungerade, z.B.

<sup>(02 09) (03 11) (04 13) (05 14) (06 12) (07 15) (08 10)</sup> 

Daraus läßt sich unter Zuhilfenahme der Adjazenzmatrix von  $^{\Gamma}_{3}$  leicht folgende ungerade Permutation in  $^{G}_{3}$  berechnen:

<sup>(00) (01) (02 09) (03 11) (04 13) (05 14) (06 12) (07 15) (08 10) (16)</sup> 

<sup>(17 24) (18 28) (19 33) (20 34) (21 25) (22 29) (23 30) (26 27) (31)</sup> 

<sup>(32 35) (36) (37 50) (38 49) (39 51) (40 52) (41 54) (42 53) (43 55)</sup> 

<sup>(44 56) (45 99) (46 98) (47) (48) (57) (58) (59 60) (61 63) (62 64) (65 66)</sup> 

<sup>(67) (68) (69 91) (70 92) (71 89) (72 90) (73 76) (74 75) (77 84) (78 83)</sup> 

<sup>(79 82) (80 81) (85 87) (86 88) (93 94) (95) (96) (97)</sup> 

Das Produkt von a mit dieser Involution hat keinen Fixpunkt und ist eine gerade Permutation:

<sup>(00 01) (02 09) (03 11) (04 13) (05 14) (06 12) (07 15) (08 10) (16 97)</sup> 

<sup>(17 53) (18 72) (19 50) (20 38) (21 89) (22 41) (23 93) (24 42) (25 71)</sup> 

<sup>(26 45) (27 99) (28 90) (29 54) (30 94) (31 67) (32 98) (33 37) (34 49)</sup> 

<sup>(35 46) (36 68) (39 52) (40 51) (43 56) (44 55) (47 48) (57 95) (58 96)</sup> 

<sup>(59 66) (60 65) (61 69) (62 70) (63 91) (64 92) (73 83) (74 84) (75 77)</sup> 

<sup>(76 78) (79 86) (80 85) (81 87) (82 88)</sup> 

Da nach [8] HJ genau 100 konjugierte Untergruppen der Ordnung 6 048 enthält, die isomorph zu  $PSU(3,3^2)$  sind, ist ein äußerer Automorphismus der HJ eindeutig durch seine Wirkung auf die 100 konjugierten Punktstabilisatoren, also durch seine Wirkung auf die 100 Ecken von  $\Gamma_3$  bestimmt.

Sei  $G = G_3^*$  und seien  $\alpha$ ,  $\beta$ ,  $\gamma \in \Omega$ .

Der Stabilisator des Punktes  $\alpha$  in G hat 2 Bahnen auf  $\Omega$  -  $\{\alpha\}$ , nämlich  $\Delta(\alpha)$  und  $\Gamma(\alpha)$ . Ist  $\beta \in \Delta(\alpha)$ , so ist  $G_{\alpha\beta}$ , der Stabilisator von  $\alpha$  und  $\beta$ , isomorph zu PSL(2,7), ist hingegen  $\gamma \in \Gamma(\alpha)$ , so gilt  $|G_{\alpha}:G_{\alpha\gamma}|=63$ , also  $|G_{\alpha\gamma}|=96$ . Ist nun a ein Automorphismus von G, so erhält a Schnitte von Untergruppen von G, d.h. sind  $\alpha$  und  $\beta$  verbunden, also ist  $|G_{\alpha} \cap G_{\beta}|=168$ , so gilt auch  $|G_{\alpha} \cap G_{\beta}|=168$ . Also wirkt a kantenerhaltend auf  $\Gamma_3$ . Da  $|\operatorname{Aut}(\operatorname{HJ})|=|\operatorname{Aut}(\Gamma_3)|$  gilt, folgt:  $G_3\cong\operatorname{Aut}(\operatorname{HJ})$ .

(b) Wir wollen nun zeigen, daß in  $G_3^*$  eine zentrale Involution b liegt, so daß  $C_{G_3^*}$  (b)  $\cong$  E·A<sub>5</sub> gilt, wo E zentrales Produkt einer Quaternionengruppe mit einer Diedergruppe der Ordnung 8 ist. (Beweis wie in [8].)

Wir wählen eine Involution der PSU(3,3²), z.B.  $v_{11}$ . Wie man der Adjazenzmatrix von  $\Gamma_3$  entnimmt, hat  $v_{11}$  folgende Fixpunkte in  $\Delta(P_2)$ : O6,08,10,12,18,21,25,26,27,32,35. Damit läßt sich die folgende Involution b in  $G_3^*$  berechnen:

- (00) (06) (08) (10) (12) (18) (21) (25) (26) (27) (28) (32) (35) (47) (48) (57) (58) (59) (60) (97)
- (03 34) (07 19) (11 20) (15 33) (65 94) (66 93) (77 83) (78 84)
- (39 41) (40 42) (49 55) (50 56) (71 91) (72 92) (73 88) (74 87)
- (01 16) (02 09) (23 30) (31 36) (45 46) (61 62) (63 64) (98 99)
- (37 44) (38 43) (51 54) (52 53) (69 89) (70 90) (75 85) (76 86)
- (04 29) (05 17) (13 22) (14 24) (67 96) (68 95) (79 82) (80 81)

Für die folgenden Überlegungen seien die Mengen der Punkte in den letzten 5 Zeilen von b zeilenweise mit A, B, C, D, E bezeichnet.

Die folgenden 3 Elemente von  $G_3^*$  sind mit b vertauschbar:

z =

- (00 60 10 12 57) (06 48 26 18 21) (08 25 28 35 97) (27 32 58 47 59)
- (03 55 36 44 96) (34 49 31 37 67) (07 39 01 69 04) (19 41 16 89 29)
- (11 92 99 43 22) (20 72 98 38 13) (15 74 61 90 80) (33 87 62 70 81)
- (65 71 23 86 17) (94 91 30 76 05) (66 73 02 52 95) (93 88 09 53 68)
- (77 50 45 75 79) (83 56 46 85 82) (78 40 63 51 14) (84 42 64 54 24)
- $t = (00 \ 18) (06 \ 58) (08 \ 12) (10 \ 59) (21 \ 28) (25 \ 47) (26 \ 32) (27 \ 60)$
- (35 57) (48 97)
- (03 67) (34 96) (07 22) (19 13) (11 79) (20 82) (15 17) (33 05)
- (65 24) (94 14) (66 95) (77 04) (83 29) (84 81) (93 68) (78 80)
- (39 88) (40 71) (41 73) (42 91) (49 74) (50 92) (55 87) (56 72)
- (01 70) (02 86) (09 76) (16 90) (23 52) (30 53) (31 43) (36 38)
- (45 37) (46 44) (61 75) (62 85) (63 89) (64 69) (98 54) (99 51)
- y = (00) (47) (59 60) (48 57) (58 97) (08 10 26 27) (12 21 32 28)
- (06 18 35 25)
- (03 20 33 19 34 11 15 07) (65 83 78 66 94 77 84 93)
- (39 85 55 90 41 75 49 70) (37 56 53 42 44 50 52 40)
- (69 71 86 88 89 91 76 73) (38 74 54 72 43 87 51 92)
- (01 17 09 14 16 05 02 24) (04 30 22 31 29 23 13 36)
- (45 96 99 81 46 67 98 80) (61 79 64 95 62 82 63 68)

Sei C =  $\langle z,y,t \rangle$ . C ist Untergruppe von  $C_{G_3^*}(b)$ . C hat auf den 100 Punkten 2 Bahnen, nämlich die 20 Fixpunkte von b und die restlichen 80 Punkte. Die Wirkung von C auf den 20 Fixpunkten von b ist nicht treu, denn b liegt im Kern dieser Wirkung. Die Wirkung von C auf der anderen Bahn mit 80 Punkten ist treu, jedoch imprimitiv. Die Blöcke dieser Wirkung sind gerade die Mengen A, B, C, D, E. Wir untersuchen die Wirkung von C auf der Menge der 5 Blöcke. Es ist z = (A B C D E), y = (A) (B D) (C E) und t = (A E) (B) (C D). Also gibt es einen Homomorphismus  $C \to A_5$ . Der Kern dieses Homomorphismus sei K. K wird durch die Konjugierten von  $y^2$  erzeugt. Es ist  $(zt)^3 = 1$  und  $z^5 = t^2 = 1$ , also ist  $\langle z,t \rangle \cong A_5$  und folglich  $C \cong K \cdot A_5$ .

Analyse der Struktur von K:

Sei 
$$x_1 = y^2$$
 und  $x_i = z^{-1}x_{i-1}z$  für  $i = 2,3,...$   
Es ist dann  $z^{-1}x_5z = x_1$  und  $K = \langle x_1, x_2, x_3, x_4, x_5 \rangle$ .

Es gelten folgende Relationen:

$$x_{i}^{2} = b \ (i = 1, 2, ..., 5), \ (x_{i}x_{i+1})^{2} = 1, \ (x_{i}x_{i+2})^{2} = b \ (i = 1, ...5 \pmod{5})$$
  
 $x_{i}^{2} = b \ (i = 1, 2, ..., 5), \ (x_{i}x_{i+1})^{2} = 1, \ (x_{i}x_{i+2})^{2} = b \ (i = 1, ...5 \pmod{5})$   
 $x_{i}^{2} = b \ (x_{i}x_{i+2})^{2} = b \ (x_{i}$ 

K hat auf den 80 Punkten die 5 Bahnen A, B, C, D, E, auf denen K treu wirkt.

Für 
$$\langle x_1, x_3 \rangle$$
 gilt:  $x_1^2 = x_3^2 = b$ ,  $b^2 = 1$ , sowie  $x_1^{-1}x_3(x_1x_3) = 1$ , d.h. es gilt:  $\langle x_1, x_3 \rangle \cong Q_8$ 

Für <x2,x1x5> gilt:

$$(x_1x_5)^2 = 1$$
 und  $x_2^{x_1x_5} = x_2^{-1}$ , also gilt:  $(x_2, x_1x_5)^2 = 0$ 

Diese beiden Gruppe haben das gemeinsame Zentrum <br/> vund ihre Elemente sind miteinander vertauschbar. Also ist K das zentrale Produkt von  $\langle x_1, x_3 \rangle$  und  $\langle x_2, x_1 x_5 \rangle$ . Es gilt |K| = 32, also ist |C| = 32.60.

Da  $2^7$  ein Teiler von 1 920 ist und 604 800 =  $2^7 \cdot 4$  725 gilt, ist b eine zentrale Involution von  $G_3^*$ .

Da nach [8] der Zentralisator einer zentralen Involution in einer einfachen Gruppe der Ordnung 604 800 die Ordnung 1 920 hat, gilt  $C = C_{G_3^*}(b)$  und die Charakterisierung von JANKO ist gezeigt.

# § 10 Die G<sub>2</sub>(4) als Rang-3-Erweiterung der Hall-Janko-Gruppe HJ

## (10.1) Konstruktion des Graphen $\Gamma_{\Delta}$

Ist b eine zentrale Involution in HJ, so ist nach [8]  $|C_{HJ}(b)| = 1$  920; es gibt also in der HJ 315 zentrale Involutionen. Da 2-Sylow-Gruppen der HJ ein Zentrum der Ordnung 2 haben [7], identifizieren wir die Eckenmenge von  $\Sigma_3$  mit der Menge der 315 zentralen Involutionen der HJ. Aus dem in [8] gegebenen Permutationscharakter für die eindeutig bestimmte Darstellung der HJ auf 315 Punkten ergibt sich, daß es zu einer Involution u in  $\Sigma_3$  genau 10 zentrale Involutionen v mit [u,v] = 1 gibt. Da diese 10 Involutionen in  $C_{HJ}(u)$  paarweise kommutieren [7],liegt u in genau 5 zur Klein'schen Vierergruppe isomorphen Untergruppen der HJ.

Jede der 10 mit u vertauschbaren Involutionen v liegt ihrerseits in genau 4 von <v,u> verschiedenen Vierergruppen in HJ. Also gibt es zu u insgesamt 10·4·2 = 80 Involutionen w in  $\Sigma_3$  mit [u,w]  $\neq$  1, aber es existiert ein v mit [u,v] = [w,v] = 1. Da die 11 zentralen Involutionen in  $C_{HJ}(v)$  in einer 2-Sylow-Gruppe S von HJ mit  $v \in Z(S) < S \leq C_{HJ}(v)$  liegen und (ohne v) 5 Paare vertauschbarer Involutionen bilden [7] , folgt mit demselben Argument wie in (9.1), daß die 80 mit u zu verbindenden zentralen Involutionen tatsächlich paarweise verschieden sind.

Wie bilden nun gemäß Vorschrift (B) aus §6 den Graphen  $\Gamma_4$ , dessen Eckenmenge aus einem zusätzlichen Punkt  $P_3$ , sowie  $\Gamma_3$  und  $\Sigma_3$  besteht.

Aus dem Permutationscharakter für die Rang-3-Darstellung der HJ auf 100 Punkten [8] erfahren wir, daß jede zentrale Involution 20 Punkte von  $\Gamma_3$  festläßt. Andererseits wird jeder Punkt in  $\Gamma_3$  von 63 zentralen Involutionen festgelassen. (Betrachte  $\Delta(P_3)$  als die Menge der Konjugierten der PSU(3,3²) in HJ, dann wird ein Punkt von  $\Delta(P_3)$  gerade von den 63 Involutionen festgelassen, die er enthält.)

Der so definierte reguläre Graph  $\Gamma_4$  erfüllt (zunächst formal) die Parameterbedingungen eines Rang-3-Graphen mit n = 416, k = 100, l = 315,  $\lambda$  = 36,  $\mu$  = 20, s = 20, t = -4,  $f_2$ = 65 und  $f_3$ = 350.

(10.2) Nun besteht die Aufgabe darin, zu zeigen, daß  $G_4$ =Aut( $\Gamma_4$ ) transitiv auf den Punkten des Graphen wirkt. Wieder konstruiert man einen Automorphismus a', der  $P_3$ ,  $\Gamma_3$  und  $\Sigma_3$  bewegt. Die Definition von a' stimmt mit der in (9.2) gegebenen Definition überein. Auch der Nachweis, daß es sich bei a' in der Tat um einen Automorphismus handelt, läuft – unter Berücksichtigung der in  $\Gamma_4$  gegebenen Mächtigkeiten von Schnitten von Bahnen – im Prinzip gleich durch.

Da nach Konstruktion der Stabilisator des Punktes  $P_3$  in  $G_4$  isomorph zu  $G_3$  ist, ergibt sich, daß  $|G_4| = 416 \cdot 1 \ 209 \ 600 = 2^{13} \cdot 3^3 \cdot 5^2 \cdot 7 \cdot 13 \quad \text{gilt.}$ 

Da  $G_4$  eine primitive Gruppe ist, gilt:  $G_4 = \langle G_3, a' \rangle$ . a' hat 36 Fixpunkte, ist also eine gerade Permutation, folglich ist  $G_4^* = \langle G_3^*, a' \rangle$  echte Untergruppe von  $G_4$ . Der Stabilisator eines Punktes in  $G_4^*$  ist isomorph zu HJ,  $G_4^*$  besitzt also eine primitive Permutationsdarstellung vom Rang 3 auf 416 Punkten. Deshalb folgt mit (5.1) die Einfachheit von  $G_4^*$ . Man kann mit Verwendung von [22] zeigen, daß gilt:  $G_4^* \cong G_2(4)$  und  $G_4 \cong \operatorname{Aut}(G_2(4))$ .

- § 11 Die sporadische einfache Gruppe Suz als Rang-3-Erweiterung der  $G_2(4)$
- (11.1) Zunächst wird der Graph  $\Sigma_4$  konstruiert. Die Ecken dieses Graphen sind die Zentren der 2-Sylow-Gruppen der  $G_2(4)$ . Nach [22] ist das Zentrum einer 2-Sylow-Gruppe der  $G_2(4)$  elementar-abelsch der Ordnung 4. Ist z eine zentrale Involution von  $G_2(4)$ , so gilt  $|C_{G_2(4)}(z)| = 4^6(4^2 1) = 61$  440, d.h. es gibt 4 095 zentrale Involutionen in der  $G_2(4)$  [22]. Daraus folgt, daß der Graph  $\Sigma_4$   $\frac{4}{3}$  095 = 1 365 Ecken besitzt.

Man kann zeigen, daß es in der  $G_2(4)$  zu jedem Zentrum U einer 2-Sylow-Gruppe 5 elementar-abelsche Untergruppen  $E_i$  (i=1,2...,5) der Ordnung 16 gibt, die U als Untergruppe enthalten und für die  $E-\{1\}$  in 5 Mengen  $U_i$  zerfällt, so daß  $U_i$   $\cup$   $\{1\}$   $\in$   $\Sigma_4$  ist. Ferner kann bewiesen werden, daß es zu einem U  $\in$   $\Sigma_4$  genau  $5\cdot 4\cdot 4\cdot 4=320$  paarweise verschiedene Elemente V in  $\Sigma_4$  gibt, so daß  $[U,V] \neq 1$  ist, aber ein W  $\in$   $\Sigma_4$  existiert mit [U,W]=[V,W]=1.

 $\Sigma_4$  ist somit ein regulärer Graph der Valenz 320, auf dem  ${\rm G_2}(4)$  als transitive Automorphismengruppe wirkt.

Gemäß Vorschrift (B) von §6 wird nun  $\Gamma_5$  mit der Eckenmenge  $\{P_4\}\cup\Gamma_4\cup\Sigma_4$  konstruiert. Wir betrachten die Punkte von  $\Sigma_4$  als die Konjugierten der HJ in  $G_2$ (4). Ein  $Q\in\Gamma_4$  wird genau dann mit einem  $U\in\Sigma_4$  verbunden, wenn  $Q\cap U\neq\{1\}$  gilt. Man kann zeigen, daß  $|Q\cap U|\leq 2$  gilt. Also enthält jedes U höchstens eine der zentralen Involutionen der HJ, d.h. jeder Punkt in  $\Gamma_4$  wird von genau 315 Punkten von  $\Sigma_4$  festgelassen. Umgekehrt läßt jede Konjugierte des Zentrums einer 2-Sylow-Gruppe der  $G_2$ (4) 96 Elemente in  $\Gamma_4$  fest.

 $\Gamma_5$  erfüllt die Parameterbedingungen eines Rang-3-Graphen mit n = 1 782, k = 416, l = 1 365,  $\lambda$  = 100,  $\mu$  = 96, s = 20, t = -16,  $f_2$ = 780 und  $f_3$ = 1 001.

- (11.2) Wieder soll nun ein Automorphismus von  $\Gamma_5$  konstruiert werden, der  $P_4$ ,  $\Gamma_4$  und  $\Gamma_4$  bewegt. Ich gebe die Kostruktion, die mir M. SUZUKI [21] mitgeteilt hat, ohne Beweis an:
- $\Delta(P_4)$  sei die Menge der konjugierten Untergruppen von Aut(HJ) in Aut(G\_2(4)) und
- $\Gamma(P_4)$  die Menge der konjugierten Zentren der 2-Sylow-Gruppen in  ${\rm G_2}(4)$

a" sei folgendermaßen definiert:

Sei Q  $\in \Delta(P_A)$ .

- (1) a" vertausche Q und  $P_{\Delta}$ .
- (2) Die Punkte in  $\Delta(P_A)$   $\cap$   $\Delta(Q)$  solle von a" festgelassen werden.
- (3) Die Elemente von  $\Delta(P_4) \setminus \{Q, \Delta(P_4) \cap \Delta(Q)\}$  werden als Involutionen in  $G_4$  identifiziert. Es besteht somit eine natürliche Korrespondenz zwischen den 315 zentralen Involutionen in  $G_4$  und den Elementen in  $\Gamma(P_4)$ , die mit Q nichttrivialen Schnitt besitzen a" sei diese natürliche Identifikation.
- (4) Man kann zeigen, daß für Q und ein U  $\in \Sigma_4$  folgendes gilt: Ist Q  $\cap$  U = {1}, so gibt es eine elementar-abelsche Untergruppe E der Ordnung 16 in  $\operatorname{Aut}(G_2(4))$ , so daß E {1} in fünf Mengen U<sub>i</sub> {1} zerfällt. Dabei sind die U<sub>i</sub> (i = 1,2,...,5) in  $\Gamma(P_4)$ , so daß U<sub>1</sub> = U gilt und für genau eines der U<sub>i</sub> mit i =2,3,4,5 gilt Q  $\cap$  U<sub>i</sub> = {1}.

Ist nun  $U \in \Gamma(P_4) \setminus \{\Delta(Q) \cap \Gamma(P_4)\}$ , dann sei  $U^{a''} = U'$ , wobei U' die eben genannte Bedingung erfüllt.

Da der Stabilisator des Punktes  $P_4$  in  $G_5$  isomorph zu  $G_4$  ist und  $G_5$  transitiv auf den 1 782 Ecken von  $\Gamma_5$  wirkt, gilt:  $|G_5| = 2^{13} \cdot 3^3 \cdot 5^2 \cdot 7 \cdot 13 \cdot 1 | 782 = 2^{14} \cdot 3^7 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13$  Der Graph  $\Gamma_5$  erfüllt  $\mu \neq 0$ ,k, also ist  $G_5$  primitive Permutations-gruppe der 1 782 Punkte des Graphen und dasselbe gilt für  $G_5^* = \langle G_4^*, a^* \rangle$ , eine echte Untergruppe von  $G_5$ , denn  $a^*$  hat 100 Fixpunkte, ist also eine gerade Permutation. Mit (5.1) folgt:  $G_5^*$  ist eine einfache Gruppe der Ordnung

448 345 497 600.  $G_5^*$  ist die sporadische einfache Gruppe Suz von Suzuki, eine primitive Erweiterung der einfachen Gruppe  $G_2$ (4) in ihrer primitiven Permutationsdarstellung auf 416 Punkten.

#### LITERATURVERZEICHNIS

- [1] Ashbacher, M.: The non existence of rank three permutation group of degree 3 250 and subdegrees 57, 3 192, J. Algebra 19 (1971), 538-540
- [2] Benson, C. T., Losey, N. E.: On a Graph of Hoffman and Singleton, J. Combin. Theory (B) 11 (1971), 67-79
- [3] Bose, R.C., Chakravarti, I.M.: Hermitian varieties in a finite projective space PG(N,q<sup>2</sup>), Canad. J. Math. 18 (1966), 1161-1182
- [4] Brauer, R.: On groups whose order contains a prime to the first power I, Amer. J. Math. 64 (1942), 401-420
- [5] Chakravarti, I.M.: Some Properties and Applications of Hermitian Varieties in a Finite Projective Space PG(N,q<sup>2</sup>) in the Construction of Strongly Regular Graphs (Two-Class Association Schemes) and Block Designs, J. Combin. Theory (B) 11 (1971), 268-283
- [6] Edge, W.L.: A second note on the simple group of order 6 048, Proc. Cambridge Philos. Soc. 59 (1963), 1-9
- [7] Gorenstein, D., Harada, K.: A characterization of Janko's two new simple groups, J. Fac. Sci. Univ. Tokyo Sect.I 16 (1970), 331-406
- [8] Hall, M. jr., Wales, D.: The simple group of order 604,800, J. Algebra 9 (1968), 417-450
- [9] Hestenes, M.D.: On the Use of Graphs in Group Theory, in:
  Harary, F. (Hrsg.): New Directions in the Theory of
  Graphs, New York, London, 1973
- [10] Hestenes, M.D., Higman, D.G.: Rank 3 Groups and Strongly Regular Graphs, Computers in Algebra and Number Theory, SIAM-AMS Proceedings 4 (1971), 141-159
- [11] Higman, D.G.: Finite permutation groups of rank 3, Math. Z. 86 (1964), 145-156
- [12] Higman, D.G.: Solvability of a class of rank 3 permutation groups, Nagoya Math. J. 41 (1971), 89-96
- [13] Hoffman, A.J., Singleton, R.R.: On Moore graphs with diameter 2 and 3, IBM J. Res. Develop. 4 (1960) 497-504
- [14] Hubaut, X.L.: Strongly Regular Graphs, Discrete Math. 13 (1975), 357-381
- [15] Hughes, D.R., Piper, F.C.: Projective Planes, New York, Heidelberg, Berlin, 1973
- [16] Janko, Z.: Some new simple groups of finite order I, Symposia Mathematica I (1968), 25-69

- [17] Jordan, C.: Traité des substitutions et des équations algébriques, Paris, 1870
- [18] McKay, J.: The non-abelian simple groups G,  $|G| < 10^6$  character tables, Comm. Algebra 7 (1979), 1407-1445
- [19] O'Meara, O.T.: Lectures on Linear Groups, AMS Regional Conference Series in Mathematics, Nr.22, 1974
- [20] Suzuki, M.: A simple group of order 448,345,497,600, in: Brauer, R., Sah, C.S. (Hrsg.): Theory of Finite Groups, A symposium, New York, 1969, 113-119
- [21] Suzuki, M.: Persönliche Mitteilung
- [22] Thomas, G.: A Characterization of the Groups  $G_2(2^n)$ , J. Algebra 13 (1969), 87-118
- [23] Tits, J.: Groupes finis simples sporadiques, Séminaire Bourbaki, 375 (1969/70), 187-207
- [24] Wales, D.: Uniqueness of the Graph of a Rank Three Group, Pacific J. Math. 30 (1969), 271-276
- [25] Wielandt, H.: Finite Permutation Groups, New York, 1964