〇ホンゴウソウ (Andruris japonica) の花粉の形態 (中馬千鶴) Chidzu Снима: On the pollen morphology of Andruris japonica (Triuridaceae)

ホンゴウソウ科の花粉の形態について幾瀬(1956)はムニンホンゴウソウ(Sciaphila boninensis)を観察し、大きさは 26-30×26-30 μ 、無口粒(nonaperturate 1A)型で顆粒状紋(gr.<1 μ)を有するとしている。しかし、同科のホンゴウソウ(Andruris japonica)の花粉の形態についての報告はみられない。本報は伊勢の外宮神域で採集したものを用い、光学顕微鏡(LM)および走査型電子顕微鏡(H本電子 HSM-H200A および日立・明石 H30M-H30 (H30M-H41) (H30M-H30M-H41) (H30M-H41) (H41M-H41M-H51M-H51M-H51M-H51M-H51M-H51M-H51M-H51M-H51M-H51M-H71

花粉粒は生植物から採集し、LM 下での観察法は幾瀬(1956)に従った。観察に用いた花粉は50個で、一花につき10個を無作為に選び、アセトカーミンで染色した。その結果は以下の通りである。

- ①花粉粒の形態は長球形であった。(図1. a-d)
- ②花粉粒の大きさ (50 粒の平均と標準偏差) は長軸 25.85 \pm 2.88 μ m, 短軸 22.12 \pm 3.39 μ m であった。
 - ③花粉管口が観察された。その形態は長口型 1-sulcate であった。(図1. a,d)
 - ④花粉管口上にも、周囲の花粉膜の彫紋と同じような模様が見られた。(図1.a,c)
 - ⑤核はよく染色され、不稔ではないことが確認された。

SEM による観察は、生の花粉をエチルアルコールで順次脱水したもの(図1.e,f)、および変形を少なくするために臨界点乾燥したもの(図1.g,h)に金蒸着をほどこしておこない、以下の結果を得た。

①第一の方法では、極端な乾燥形を呈し、深い一本の溝(図1.e)あるいは数本のやや深い溝(図1.f)が観察された。

②第二の方法では,臨界点乾燥したにもかかわらずいろいろな程度の変形が見られ,やや乾燥形(図1.g)では深い一本の大きな溝が観察されるが,膨潤形(図1.h)では球状となり,溝は認められない。

③花粉膜の彫紋は短乳頭紋 (gemmate) で、全体を被っていることがわかった。(図1. g, h)

④短乳頭紋の大きさ(50個の平均と標準偏差)は横 $0.51\pm0.06~\mu m$, 縦 $0.46\pm0.06~\mu m$ であった。

以上の結果から LM レベルでの1一長口の花粉口は、SEM の第一の方法では極端な 乾燥のため深く窪み、その部分の観察は困難であるが、第二の方法で膨潤させることに より長口はなくなり、花粉表面全体がほぼ均一な gemma で被われる。即ち花粉管口の 存在が不明瞭となった。

Erdtman (1952) は Andruris vitiensis が non-aperturate であることを報告しており, 一方 Hutchinson (1934) は Sciaphila akdescens の花粉を細い溝を持った1一長口

図 1. a-d 光顕像 (LM view), e-h 走査電顕像 (SEM view): a. 極観 遠心極面 (Polar view. Distal face). b. 極観 向心極面 (Polar view. Proximal face). c & d. 赤道観 (Equatorial view). 倍率: a-d. ×1700. e-f. ×2200 (JSM-T200A による). g-h. ×2700 (MSM-4 による).

粒として図示している。従って Triuridaceae には少なくもこれまでに non-aperturate と 1-sulcate の両型が報告されていることになるが、著者がホンゴウソウの花粉を LM で観察するかぎり、あきらかに 1-sulcate として認められた。一方 SEM では乾燥形に 窪みとしてのみ長口が認められ、明らかな花粉管口としては認められなかった。両者を合わせて推論すると、SEM での窪んだ部分は花粉管口(長口)であるといえる。

本研究に際し、SEM については水産庁国立養殖研究所(三重県度会郡南勢町五ヶ所)の船越将二博士にご指導とご協力を賜りました。また東邦大学薬学部生薬学教室の幾瀬マサ博士には LM による写真(図1.a-c)を提供していただき、さらに同教室の佐橋紀男博士には多くの助言とご指導を賜り、SEM についてもご指導とご協力をいただきました。ここに深甚なる感謝の意を表します。

引用文献

Erdtman, G. 1952. Pollen morphology and plant taxonomy. Angiosperms. Almqvist & Wiksell. Stockholm. Hutchinson, J. 1934. The families of flowering plants. Vol. II. Monocotyledons. Macmillan. London. 幾瀬マサ 1956. 日本植物の花粉. 広川書店.

Summary

The LM and SEM observation of fresh pollen grains of Andruris japonica was carried out. 1) The grains were 1-sulcate under LM. 2) The pollen grains were $25.85\pm2.88~\mu m$ in the major axis and $22.12\pm3.99~\mu m$ in the minor one. 3) The whole surface of the grain was covered with gemmate sculpture under LM and SEM. 4) The pollen aperture was clearly identified as 1-sulcate under LM, but under SEM, it was recognized as a concave furrow only when the grain was in the dry condition and it was quite obscure in fully swollen condition after baving been treated with critical point drying technique. 5) 1-sulcate aperture seen under LM seems to be homologous structure with the concave furrow under SEM.

(皇学館高等学校)