

Chapter 3. Thermal Expansion

Presentation by

**Professor Dr. Moustafa Tawfik
Ahmed**

**Prof. of . Experimental material
science.**

Physics Department

**Mansoura y University
© 2013**

Objectives

- Define thermal expansion
- Identify the factors affecting thermal expansion
- Solve sample problems involving linear expansion and volume expansion
- Cite everyday applications of the concepts

Thermal Expansion

- Change in the dimension(L) of a substance due to change in temperature

Factors Affecting

Thermal Expansion

- The original length L_0
- The temperature change ΔT
- The kind of material

1- Temperature

- Higher change in temperature, the higher the expansion.
- ΔT for the symbol

2- Thermal Expansion

Change in the dimension(L) of a substance due to change in temperature

3- Kind of Material

- Quantified by a constant value for **coefficient of thermal expansion** for some materials
- The higher the coefficient, the higher the expansion
- Symbol used - α

Original Dimension

- Greater original dimension,
greater the expansion.

L for linear expansion

A for area expansion

V for volume expansion

$$\Delta L = \alpha \cdot L_0 \cdot \Delta T$$

Change in dimension

Coefficient of expansion

Original length

Change in temperature

Types of Expansion

1-Linear Expansion

- Suppose a rod of material has a length L_0 at some initial temperature T_0 when the temperature changes by ΔT , the length changes by ΔL .

$$\Delta L = \alpha \cdot L_0 \cdot \Delta T$$

So, the length L at a temperature ($T = T_0 + \Delta T$) is:

$$L = L_0 + \Delta L = L_0 + \alpha L_0 \Delta T = L_0 (1 + \alpha \Delta T)$$

The fractional length change = $\Delta L / L_0$

2-Area Expansion

- *Suppose a rectangular face of a block has a length of L_o and width of W_o at some initial temperature T_o .

- *If the material has a linear expansion coefficient α and the temperature is changed by ΔT then:

- The new length is $L = L_o (1 + \alpha \Delta T)$

The new width is $W = W_o (1 + \alpha \Delta T)$

The original area is $A_o = L_o W_o$

The new area is $A = L W = L_o (1 + \alpha \Delta T) * W_o (1 + \alpha \Delta T)$

$$A = L_o W_o (1 + \alpha \Delta T)^2 \approx L_o W_o (1 + 2\alpha \Delta T) \approx A_o (1 + 2\alpha \Delta T)$$

$$A \approx A_o (1 + \beta \Delta T) \quad \text{where } \Delta A = A_o \beta \Delta T, \quad \beta = 2 \alpha$$

if the temperature of a disk with a hole has changed (increase or decrease) then the dimension of the disk and the hole is changed (increase or decrease).

3- Volume Expansion

Temperature increases usually cause increases in volume for both solid and liquid materials.

*The increase in volume ΔV is proportional to the temperature change and the initial volume V_0

$$\begin{aligned}V &= L^3 = [L_0 (1 + \alpha \Delta T)]^3 = L_0^3 (1 + \alpha \Delta T)^3 = V_0 [1 + (\alpha \Delta T)]^3 \\&= V_0 [1 + 3(\alpha \Delta T) + 3(\alpha \Delta T)^2 + (\alpha \Delta T)^3] = V_0 [1 + 3\alpha \Delta T]\end{aligned}$$

$$V \approx V_0 (1 + \gamma \Delta T) \text{ where } \Delta V = V_0 \gamma \Delta T \quad \gamma = 3\alpha$$

Thermal Expansion

- **Linear Expansion**

$$\Delta L = \alpha L_0 \Delta T$$

- **Area Expansion**

$$\Delta A = 2\alpha A_0 \Delta T$$

- **Volume Expansion**

$$\Delta V = \beta V_0 \Delta T$$

$$\Delta V = 3\alpha V_0 \Delta T$$

The apparent volumetric expansion of a liquid

- The original volume of a liquid is V_o at T_o .

- *The real increase in volume of the liquid at T is :

- $$\Delta V_L = \gamma_L V_o \Delta T$$

- * The real increase in volume of the container at T is :

- $$\Delta V_S = \gamma_s V_o \Delta T$$

- *The apparent increase in volume of the liquid =

- Real increase in volume of liquid - Real increase in volume of container

- *The apparent increase in volume of the liquid = $\gamma_R V_o \Delta T - \gamma V_o \Delta T$

- $$\Delta V_a = \Delta V_L - \Delta V_S = V_o (\gamma_L - \gamma_s) \Delta T$$

- $$\Delta V_a = V_o \gamma_a \Delta T = V_o (\gamma_L - \gamma_s) \Delta T$$

- *
$$\gamma_a = (\gamma_R - \gamma)$$