

ESTRATEGIAS DE PROGRAMACIÓN

Algoritmos y Programación Javier Miranda

Escuela de Ingeniería Informática
Universidad de Las Palmas de Gran Canaria

28 de septiembre de 2023

Estrategias

- Fuerza bruta (brute force)
- Vuelta atrás (backtracking)
- Voráz (greedy)

Técnica

- Divide y vencerás
 - Reduce y vencerás

Programación Dinámica

Introducción

• <u>Objetivo</u>: Encontrar todas las combinaciones de 3 variables binarias (x₁, x₂, x₃) en las que no haya valores iguales consecutivos.

Ejemplo de solución: 1-0-1

Ejemplo: Solución por fuerza bruta

 Utilizando un iterador generamos y comprobamos todas las combinaciones (generation & test)

Ejemplo: Solución por fuerza bruta

Asociamos cada variable a un nivel de profundidad (x_1, x_2, x_3) para ver el árbol de combinaciones

Con backtracking evitamos combinaciones no válidas

 \mathbf{X}_{2}

Con backtracking evitamos combinaciones no válidas

Solución 0 1 0

Guardamos o procesamos esta solución

Con backtracking evitamos combinaciones no válidas

Completando el recorrido ...

Vuelta atrás (Backtracking)

 Estrategia general de búsqueda de soluciones en problemas de optimización (constraint satisfaction problems)

Características

- Construye de formal incremental candidatos <u>parciales</u>
- Cada candidato parcial añade 1 componente a la solución
- Conceptualmente los candidatos parciales se representan como nodos de una estructura árbol (search tree)
- Descarta (poda del árbol) los candidatos que no llevan a la solución
- Los nodos hoja del árbol son los candidatos que no pueden extenderse

Vuelta atrás (Backtracking)

Algoritmo Genérico

- 1. Generamos una combinación componente a componente
- Evaluamos si nos puede llevar hacia la solución
- Si no satisface alguna restricción del problema descartamos esta solución (y todas las que dependan de ella)
- 4. Volvemos al paso 1

Puede programarse con código recursivo o con código iterativo

Ejemplo: Solución recursiva mediante Backtracking

```
def solve(num_digits):
    def is_valid_solution(solution, level):
       # Recorre la 'solucion' de izquierda a derecha
       # comprobando que no tiene digitos consecutivos
       # iguales.
    solution = [-1] * num_digits
   def dfs(level): Veremos este código en la
                                   siguiente página
   # Comenzamos el recorrido en profundidad
    dfs(level=0)
    return ... # retornamos las soluciones
```

```
def dfs(level):
    # Si la solución que tengo construida hasta este nivel
    # no es válida subimos al nivel anterior ('backtrack')
    if not is valid solution(solution, level):
        return
    # Si tengo todos los digitos de una solución, la proceso
    # y continúo el recorrido DFS.
    elif level == num_digits:
        # ... (código que guarda o imprime esta solución)
        return
    else:
        # Continúo con el recorrido en profundidad
        for digit in ...
            solution[level] = digit # Coloco un dígito
            dfs(level + 1)
                                      # Llamada recursiva
        solution[level] = -1; # Quito el digito
        return
```

Resumen

5 3 2 6 7 8 9 1 4 6 7 4 1 9 5 8 3 2 1 9 8 3 4 2 5 6 7 8 1 5 9 6 7 4 2 3 4 2 6 8 5 3 7 9 1 7 7 2 6 6 2 8 7 9 A Sudoku solved by backtracking.

- Es básicamente una estrategia de fuerza bruta con poda
- Puede implementarse recursivamente o iterativamente

https://es.wikipedia.org/wiki/Problema_de_las_ocho_reinas https://en.wikipedia.org/wiki/Sudoku_solving_algorithms

Fuerza Bruta

```
[6, 4, 2, 0, 5, 7, 1, 3]
[7, 1, 3, 0, 6, 4, 2, 5]
[7, 1, 4, 2, 0, 6, 3, 5]
[7, 2, 0, 5, 1, 4, 6, 3]
[7, 3, 0, 2, 5, 1, 6, 4]
92 soluciones
```

time: 0m10.904s

N-Queens

Vuelta atrás (Backtracking)

```
[6, 4, 2, 0, 5, 7, 1, 3]
[7, 1, 3, 0, 6, 4, 2, 5]
[7, 1, 4, 2, 0, 6, 3, 5]
[7, 2, 0, 5, 1, 4, 6, 3]
[7, 3, 0, 2, 5, 1, 6, 4]
92 soluciones
```

time: 0m0.049s

Este ejercicio será nuestra siguiente práctica de laboratorio