DASÍL Python Workshop # 4
October 13th 2022

Introduction to Machine Learning Part #3

Yusen He, PhD - DASIL Data Scientist
Prof. Julia Bauder - Director of DASIL
Martin Pollack - DASIL Post Bachelor Fellow

Intro to Machine Learning Part #3 AGENDA

Model Evaluation

Unsupervised Learning Basics

• Recall: Artificial Neural Network

Shallow Neural Network

Deep Neural Network

Auto-Encoder

• Extreme Learning Machine (ELM) (Huang et al. 2006)

Input layer Single Hidden layer Output layer

Randomly initialized

Convolutional Neural Networks

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

LeCun, Bottou, Bengio, & Haffner. (1998)

Convolution Operation (Dot products):

What you see:

Convolution Operation (Dot products):

Input image

Convolution filter (kernel)

Activation map

• Typical CNN Structure:

Long-Short-Term-Memory (LSTM)

Gated Recurrent Unit (GRU)

Intro to Machine Learning Part #3 AGENDA

Other Types of Neural Networks

Model Evaluation

Unsupervised Learning Basics

Recall: Training & Validation Dataset

Bias Variance Trade Off:

Neural Network Regularization: Drop out

Randomly dropped out neurons

Discussion: Which neural network is better?

Intro to Machine Learning Part #3 AGENDA

Other Types of Neural Networks

Model Evaluation

Unsupervised Learning Basics

What is Machine Learning?

Algorithms - Unsupervised Learning

DATA ANALYSIS &

GRINNELL COLLEGE 😻

K-Mean Clustering

K-Mean Clustering:

Lloyd's algorithm

Step #2: Assign class labels by distances

K-Mean Clustering

Step #3: Calculate cluster centers

K-Mean Clustering

Step #4: Re-assign labels by distance

K-Mean Clustering

Step #5: Re-calculate cluster centers

Unsupervised Learning – Clustering Evaluation

How to measure the clustering quality?

Elbow Technique

Unsupervised Learning – Clustering Evaluation

How to measure the clustering quality?

Silhouette Coefficient:

$$s = \frac{b - a}{\max\left(a, b\right)}$$

a: The mean distance between a sample and all other points in the same cluster

b: The mean distance between a sample and all other points in the next nearest cluster

Unsupervised Learning – Clustering Evaluation

How to measure the clustering quality?

Silhouette Coefficient:

$$s = \frac{b - a}{\max\left(a, b\right)}$$

a: The mean distance between a sample and all other points in the same cluster

b: The mean distance between a sample and all other points in the next nearest cluster

- How to reduce dimensionality?
- Principal Component Analysis (PCA) most popular method

Think about a high dimensional dataset

Which direction has the most variance?

How to reduce dimensionality?

 $PC#1 = 0.05X_{1}-0.84X_{2}+...+0.11X_{200}$

How to reduce dimensionality?

PC#1 = 0.05X1-0.84X2+...+0.11X200PC#2 = 0.86X1+0.05X2+...-0.47X200

How to reduce dimensionality?

$$PC#1 = 0.05X_{1}-0.84X_{2}+...+0.11X_{200}$$

$$PC#2 = 0.36X_{1}+0.05X_{2}+...-0.47X_{200}$$

- Principal components are:
 - Orthogonal (or "perpendicular") to one another
 - Linear combinations of predictor variables

- # of Principal components = # of variables
 - Keep principal components that explain most of the variation -> reduce dimensionality

