§3. Свойства функций, непрерывных в точке

Теорема 3.1 (об арифметических операциях над непрерывными функциями). Если функции f(x) и g(x) непрерывны в точке x_0 , то в этой точке непрерывны также их сумма f(x)+g(x), произведение $f(x)\cdot g(x)$ и частное f(x)/g(x) при условии, что в случае частного $g(x_0)\neq 0$.

Эта теорема является следствием теоремы об арифметических операциях над функциями, имеющими предел (теорема 2.2 главы 3) и определения функции, непрерывной в точке (определение 1.1).

Пример 3.1. Показать, что многочлен $P_n(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$ непрерывен на \mathbf{R} .

▶ Функция f(x) = x непрерывна на \mathbf{R} ($\Delta f(x_0) = \Delta x \rightarrow 0$ при $\Delta x \rightarrow 0$ для $\forall x_0 \in \mathbf{R}$), поэтому функция $g(x) = x^n$ непрерывна на \mathbf{R} как произведение n непрерывных функций, а многочлен $P_n(x)$ непрерывен на \mathbf{R} в силу теоремы 3.1. \blacktriangleleft

Пример 3.2. Показать, что рациональная алгебраическая дробь $R(x) = \frac{Q_m(x)}{P_n(x)} = \frac{b_0 x^m + b_1 x^{m-1} + \ldots + b_{m-1} x + b_m}{a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n} \quad \text{непрерывна} \quad \text{на своей области}$ определения.

▶Поскольку функция R(x) является отношением двух многочленов, то она непрерывна на своей области определения в силу теоремы 3.1, как частное двух непрерывных функций: многочленов $P_n(x)$ и $Q_m(x)$. ◀

Теорема 3.2 (об ограниченности непрерывной функции). Если функция f(x) непрерывна в точке x_0 , то она ограничена в некоторой достаточно малой окрестности этой точки.

Теорема 3.3 (о сохранении знака непрерывной функции). Если функция f(x) непрерывна в точке x_0 и $f(x_0) \neq 0$, то в некоторой достаточно малой окрестности точки x_0 значения данной функции отличны от нуля и имеют такой же знак, как $f(x_0)$.

Теорема 3.4 (о непрерывности сложной функции). Если функция $z=\varphi(x)$ непрерывна в точке x_0 , а функция y=f(z) непрерывна в точке $z_0:z_0=\varphi(x_0)$, то сложная функция $y=f(\varphi(x))$ непрерывна в точке x_0 .

Теоремы 3.2-3.4 следуют из теоремы об ограниченности функции, имеющей предел (теорема 2.4 главы 3), о сохранении знака функции, имеющей предел (теорема 2.5 главы 3) и теоремы о пределе сложной функции (теорема 2.6 главы 3) соответственно, а также из определения функции, непрерывной в точке (определение 1.1).