Anonymous Key Agreements for V2X Communication

Gautam Singh

Indian Institute of Technology Hyderabad

May 1, 2024

Introduction

Preliminaries

Our Proposition

V2X Related Terminology

Figure 1: A breakdown of V2X.

- Cooperative Awareness Messages (CAMs)¹ and Basic Safety Messages (BSMs)²
 - Include status information such as time, position, speed, active systems, vehicle dimensions, etc.
 - Broadcasted unencrypted in 5.9 GHz channel (ETSI ITS-G5).

¹European Telecommunications Standards Institute. "Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service". In: ETSI EN 302 637-2 V1.4.1 (2019). URL: https://www.etsi.org/deliver/etsi_en/302600_302699/30263702/01.04.01_60/en_30263702v010401p.pdf.

- Cooperative Awareness Messages (CAMs)¹ and Basic Safety Messages (BSMs)²
 - Include status information such as time, position, speed, active systems, vehicle dimensions, etc.
 - Broadcasted unencrypted in 5.9 GHz channel (ETSI ITS-G5).
 - Huge privacy concerns and threats!
 - Most works focus on protecting/encrypting these.

¹European Telecommunications Standards Institute, "Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications: Part 2: Specification of Cooperative Awareness Basic Service".

² J2735_202309.

- Cooperative Awareness Messages (CAMs)¹ and Basic Safety Messages (BSMs)²
 - Include status information such as time, position, speed, active systems, vehicle dimensions, etc.
 - Broadcasted unencrypted in 5.9 GHz channel (ETSI ITS-G5).
 - Huge privacy concerns and threats!
 - Most works focus on protecting/encrypting these.
- O Do we really need to encrypt CAMs?
 - Google (Maps) may already be profiling us!
 - Focus on encrypting more sensitive messages.

2 12735 202309

¹European Telecommunications Standards Institute, "Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications: Part 2: Specification of Cooperative Awareness Basic Service".

- Cooperative Awareness Messages (CAMs)¹ and Basic Safety Messages (BSMs)²
 - Include status information such as time, position, speed, active systems, vehicle dimensions, etc.
 - Broadcasted unencrypted in 5.9 GHz channel (ETSI ITS-G5).
 - Huge privacy concerns and threats!
 - Most works focus on protecting/encrypting these.
- O Do we really need to encrypt CAMs?
 - Google (Maps) may already be profiling us!
 - Focus on encrypting more sensitive messages.
- Unlimited privacy for vehicles.

¹European Telecommunications Standards Institute, "Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications: Part 2: Specification of Cooperative Awareness Basic Service".

^{2 12735 202309}

- Cooperative Awareness Messages (CAMs)¹ and Basic Safety Messages (BSMs)²
 - Include status information such as time, position, speed, active systems, vehicle dimensions, etc.
 - Broadcasted unencrypted in 5.9 GHz channel (ETSI ITS-G5).
 - Huge privacy concerns and threats!
 - Most works focus on protecting/encrypting these.
- O Do we really need to encrypt CAMs?
 - Google (Maps) may already be profiling us!
 - Focus on encrypting more sensitive messages.
- Unlimited privacy for vehicles.
- Better security guarantees (authenticity, confidentiality).

2 12735 202309

¹European Telecommunications Standards Institute, "Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications: Part 2: Specification of Cooperative Awareness Basic Service".

Pairings

Definition 1

Pairing^a Let $\mathbb{G}_0 = \langle g_0 \rangle$, $\mathbb{G}_1 = \langle g_1 \rangle$, $\mathbb{G}_{\mathcal{T}}$ be three cyclic groups of prime order q. A *pairing* is an efficiently computable function $e : \mathbb{G}_0 \times \mathbb{G}_1 \to \mathbb{G}_{\mathcal{T}}$ satisfying the following properties:

1 bilinear: for all $u, u' \in \mathbb{G}_0$ and $v, v' \in \mathbb{G}_1$, we have

$$e(uu',v) = e(u,v)e(u',v)$$
 (1)

$$e(u, vv') = e(u, v) e(u, v')$$
(2)

② non-degenerate: $g_T := e(g_0, g_1)$ is a generator of \mathbb{G}_T .

^a A Graduate Course in Applied Cryptography. URL: https://toc.cryptobook.us/ (visited on 04/30/2024).

Pairings

Definition 1

Pairing^a Let $\mathbb{G}_0 = \langle g_0 \rangle$, $\mathbb{G}_1 = \langle g_1 \rangle$, $\mathbb{G}_{\mathcal{T}}$ be three cyclic groups of prime order q. A *pairing* is an efficiently computable function $e : \mathbb{G}_0 \times \mathbb{G}_1 \to \mathbb{G}_{\mathcal{T}}$ satisfying the following properties:

1 bilinear: for all $u, u' \in \mathbb{G}_0$ and $v, v' \in \mathbb{G}_1$, we have

$$e(uu',v) = e(u,v)e(u',v)$$
 (1)

$$e(u, vv') = e(u, v) e(u, v')$$
(2)

2 non-degenerate: $g_T := e(g_0, g_1)$ is a generator of \mathbb{G}_T .

• Here, \mathbb{G}_0 and \mathbb{G}_1 are called *source groups* and \mathbb{G}_T is called the *target group*.

^aA Graduate Course in Applied Cryptography.

Pairings

Definition 1

Pairing^a Let $\mathbb{G}_0 = \langle g_0 \rangle$, $\mathbb{G}_1 = \langle g_1 \rangle$, \mathbb{G}_T be three cyclic groups of prime order q. A pairing is an efficiently computable function $e: \mathbb{G}_0 \times \mathbb{G}_1 \to \mathbb{G}_T$ satisfying the following properties:

1 bilinear: for all $u, u' \in \mathbb{G}_0$ and $v, v' \in \mathbb{G}_1$, we have

$$e(uu',v) = e(u,v)e(u',v)$$
 (1)

$$e(u, vv') = e(u, v) e(u, v')$$
(2)

2 non-degenerate: $g_T := e(g_0, g_1)$ is a generator of \mathbb{G}_T .

- **1** Here, \mathbb{G}_0 and \mathbb{G}_1 are called source groups and \mathbb{G}_T is called the target group.
- ② When $\mathbb{G}_0 = \mathbb{G}_1$, the pairing is said to be *symmetric*.

^aA Graduate Course in Applied Cryptography.

• A key agreement protocol where two parties agree on a shared secret key, without being able to determine the other party.

³Aniket Kate, Greg Zaverucha, and Ian Goldberg. "Pairing-Based Onion Routing". In: *Privacy Enhancing Technologies*. Ed. by Nikita Borisov and Philippe Golle. Vol. 4776. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 95–112. ISBN: 978-3-540-75550-0. DOI: 10.1007/978-3-540-75551-7_7. URL: http://link.springer.com/10.1007/978-3-540-75551-7_7. (visited on 04/04/2024): ▶ ◀ ● ▶ ◀ ■ ▶ ★ ■ ▶ ▼

- A key agreement protocol where two parties agree on a shared secret key, without being able to determine the other party.
- ② Pairing-based anonymous key agreement for V2X involving a private key generator $(PKG)^3$, which has master keypair (mpk, msk).

5/11

- A key agreement protocol where two parties agree on a shared secret key, without being able to determine the other party.
- ② Pairing-based anonymous key agreement for V2X involving a private key generator $(PKG)^3$, which has master keypair (mpk, msk).
- **③** Let $e : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$ be a symmetric pairing, where $\mathbb{G} = \langle g \rangle$, \mathbb{G}_T are cyclic groups of order q. Suppose $\mathcal{H} : \{0,1\}^* \to \mathbb{G}$ is a hash function.

- A key agreement protocol where two parties agree on a shared secret key, without being able to determine the other party.
- ② Pairing-based anonymous key agreement for V2X involving a private key generator $(PKG)^3$, which has master keypair (mpk, msk).
- **③** Let $e : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$ be a symmetric pairing, where $\mathbb{G} = \langle g \rangle$, \mathbb{G}_T are cyclic groups of order q. Suppose $\mathcal{H} : \{0,1\}^* \to \mathbb{G}$ is a hash function.
- Setup (1^{λ})

 - 2 Return $msk = s, mpk = g^s$

- A key agreement protocol where two parties agree on a shared secret key, without being able to determine the other party.
- ② Pairing-based anonymous key agreement for V2X involving a private key generator $(PKG)^3$, which has master keypair (mpk, msk).
- **③** Let $e : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$ be a symmetric pairing, where $\mathbb{G} = \langle g \rangle$, \mathbb{G}_T are cyclic groups of order q. Suppose $\mathcal{H} : \{0,1\}^* \to \mathbb{G}$ is a hash function.
- Setup (1^{λ})
 - $\mathbf{0}$ $s \in_R \mathbb{Z}_q$
 - 2 Return $msk = s, mpk = g^s$
- Issue (id): Issue secret key for user id.
 - **1** Return $sk_{id} = (\mathcal{H}(id))^{msk}$ to id.

- KeyExchange (id)
 - Select $r \in_R \mathbb{Z}_q$
 - **2** Broadcast *psuedonym* $P_{id} \leftarrow (\mathcal{H}(id))^r$.
 - **3** On receiving $P_{id'}$, return $k \leftarrow e(sk_{id}^r, P_{id'})$.

- MeyExchange (id)
 - **○** Select $r ∈_R \mathbb{Z}_q$
 - ② Broadcast psuedonym $P_{id} \leftarrow (\mathcal{H}(id))^r$.
 - **3** On receiving $P_{id'}$, return $k \leftarrow e(sk_{id}^r, P_{id'})$.
- k is the shared secret key, since

$$e\left(sk_{id}^{r},P_{id'}\right)=e\left(\left(\mathcal{H}\left(id\right)\right)^{sr},\left(\mathcal{H}\left(id'\right)\right)^{r'}\right)=e\left(\mathcal{H}\left(id\right),\mathcal{H}\left(id'\right)\right)^{srr'}\tag{3}$$

- KeyExchange (id)
 - **○** Select $r ∈_R \mathbb{Z}_q$
 - **2** Broadcast psuedonym $P_{id} \leftarrow (\mathcal{H}(id))^r$.
 - **3** On receiving $P_{id'}$, return $k \leftarrow e(sk_{id}^r, P_{id'})$.
- k is the shared secret key, since

$$e\left(sk_{id}^{r}, P_{id'}\right) = e\left(\left(\mathcal{H}\left(id\right)\right)^{sr}, \left(\mathcal{H}\left(id'\right)\right)^{r'}\right) = e\left(\mathcal{H}\left(id\right), \mathcal{H}\left(id'\right)\right)^{srr'}$$
(3)

- Hardness assumption: Bilinear Diffie-Hellman Assumption.
 - Given g^a, g^b, g^c , it is hard to compute $e(g, g)^{abc}$.

1 Attributes: Labels associated with a user that describe them fully, such as role of a user.

Gautam Singh (IITH) AKA for V2X May 1, 2024 7/11

⁴Jan Camenisch et al. Zone Encryption with Anonymous Authentication for V2V Communication. 2020. URL: https://eprint.iacr.org/2020/043 (visited on 02/04/2024). preprint.

- Attributes: Labels associated with a user that describe them fully, such as role of a user.
- 2 Credential: Data possessed by a user that demonstrates their attributes.

- Attributes: Labels associated with a user that describe them fully, such as role of a user.
- ② Credential: Data possessed by a user that demonstrates their attributes.
- Anonymous Credential: Data possessed by a user that demonstrates their attributes, without revealing any additional information about their identity.

⁴Camenisch et al., Zone Encryption with Anonymous Authentication for V2V Communication. 🔻 🖹 🕨 📱 🛷 🤄

- Attributes: Labels associated with a user that describe them fully, such as role of a user.
- ② Credential: Data possessed by a user that demonstrates their attributes.
- Anonymous Credential: Data possessed by a user that demonstrates their attributes, without revealing any additional information about their identity.
- For V2X,
 - Anonymous credentials issued to vehicles regularly.
 - We use DGSA (Dynamic Group Signatures with Attributes)⁴, which gives us a **randomizable** group element as the credential $\sigma \to \sigma^r$, $r \in \mathbb{Z}_q$.

Gautam Singh (IITH) AKA for V2X May 1, 2024 7 / 11

⁴Camenisch et al., Zone Encryption with Anonymous Authentication for V2V Communication. 🔻 👢 🧎 🔻 😤 💉 🔾 🔾 🤆

Proposed Message Flow Diagram

Figure 2: Message flow of the proposed scheme.

Proposed Message Flow

- Enrollment authority issues certificate to vehicle.
 - Certificate is a long-term credential that can be used to revoke the holder in case of misbehaviour.

Proposed Message Flow

- Enrollment authority issues certificate to vehicle.
 - Certificate is a long-term credential that can be used to revoke the holder in case of misbehaviour.
- Issuer issues DGSA credentials and secret key after verifying certificate.
 - This secret key is different from secret key associated with certificate.
 - DGSA credentials guarantee authenticity.
 - Anonymous key agreement ensures that user identities remain anonymous throughout communication.
 - This is done periodically every epoch.

Proposed Message Flow

- Enrollment authority issues certificate to vehicle.
 - Certificate is a long-term credential that can be used to revoke the holder in case of misbehaviour.
- Issuer issues DGSA credentials and secret key after verifying certificate.
 - This secret key is different from secret key associated with certificate.
 - DGSA credentials guarantee authenticity.
 - Anonymous key agreement ensures that user identities remain anonymous throughout communication.
 - This is done periodically every epoch.
- Vehicles exchange DGSA-signed randomized psuedonyms to generate shared key for futher communication.
 - Used in verifying legitimacy of the other party.

Analysis

Advantages

- Fully anonymous communication, unlimited privacy between communicating parties.
- Third parties cannot identify who is communicating.
- Useful for sending extremely sensitive data.
- Malicious vehicles can be revoked.

Analysis

Advantages

- Fully anonymous communication, unlimited privacy between communicating parties.
- Third parties cannot identify who is communicating.
- Useful for sending extremely sensitive data.
- Malicious vehicles can be revoked.

Oisadvantages

- Lots of pairing computations, for DGSA and for anonymous key agreement. Incurs computational overheads.
- Works for single-hop connections only.
- May not be scalable to communicating with many vehicles simultaneously in terms of storage overhead.

Future Work

Encrypt V2X messages like CAMs.

⁵Camenisch et al., Zone Encryption with Anonymous Authentication for V2V Communication.

Future Work

- Encrypt V2X messages like CAMs.
- Improve efficiency of the present work.
 - Use one of DGSA or anonymous key agreement, but not both?

⁵Camenisch et al., Zone Encryption with Anonymous Authentication for V2V Communication.

Future Work

- Encrypt V2X messages like CAMs.
- Improve efficiency of the present work.
 - Use one of DGSA or anonymous key agreement, but not both?
- 3 A new workflow for encryption using zones⁵ and zone managers⁶

⁵Camenisch et al., Zone Encryption with Anonymous Authentication for V2V Communication.

⁶Yue et al., "A Practical Privacy-Preserving Communication Scheme for CAMs in C=ITS" 🗇 🕨 🔻 🖹 🔻 💈 🛩 🔍 🔇