Language and General Structure Discovery

Unstructured Data
The University of Western Ontario

Language Structure

What does it mean to recover structure?

Word Embeddings

- Neural Networks
 - Autoencoders
 - General networks

Thinking about General Representations

Creating Representations to Recover Relational Structure

Word Representations

- Map each word to a vector
- Relational structure captured by vector similarity (cosine, Euclidean distance, whatever.)
- One "relational structure" may be "similar meaning"
 - Does the word "boat" mean something similar to the word "ship?" If so, representations should be close.
 - Representation for "boat" and representation for "mountaineering" should probably be far apart.

Word Representation 1 One-hot Encoding

- Word vectors of length m (size of vocabulary)
- For word i, vector is all 0s except at location i, where it is 1.
- Easy to define, but pretty useless.
- Dot product between vectors for any 2 different words is 0.

first	1	0	0	0	0	0	0	0	
hurlyburly	0	1	0	0	0	0	0	0	
in	0	0	1	0	0	0	0	0	
thunder	0	0	0	1	0	0	0	0	
witch	0	0	0	0	1	0	0	0	
witchcraft	0	0	0	0	0	1	0	0	
witches	0	0	0	0	0	0	1	0	

Word Representation 2 Term-Document Matrix

- Word vectors of length n (size of corpus)
- For word i, vector is the number of occurrences of the word in each document.
- Dot product between vectors for different words is positive only if they occur in the same document(s)

	D1	D4	D5	D8	D9	D22	D37	•••
first	2	0	0	0	0	3	1	•••
hurlyburly	0	0	0	0	1	1	0	
in	2	0	0	0	0	2	1	•••
thunder	1	0	1	0	0	2	1	
witch	2	0	0	0	0	4	1	•••
witchcraft	2	0	1	0	0	0	1	
witches	0	2	0	0	0	2	0	•••
witching	0	0	0	1	0	0	0	
	•••	•••	•••	•••		•••	•••	•••

Word Representation 3: rows of U from LSA

- Word vectors of length p
- Each entry j of the vector corresponds to how much that word occurs in topic j.
- Words can be similar to each other even if they never occurred in the same document, as long as they show up in the same topics.

	T1	T2	T3
first	-0.5037	0.0484	0.1659
hurlyburly	-0.1121	-0.1912	0.2517
in	-0.3936	0.2149	0.007
thunder	-0.3349	0.0938	-0.1469
witch	-0.6138	-0.118	0.3248
witchcraft	-0.183	0.6434	-0.5782
witches	-0.2375	-0.6916	-0.6691
witching	0	0	0
	•••	•••	•••

The Meaning of Representations

 You often hear folks assert that a representation puts word vectors "nearby" if their words have similar "meaning." (Often "meaning" is not defined.)

- This is not magic. Representations come from data.
 - Representation from TDM: Nearby if in same document
 - Representation from U: Nearby if in same topic
- We will explore some other definitions that result in different representations.

"Word Embeddings"

 Word representations where similarity (cosine) is high between words if they are used similarly

 "Used Similarly" is captured by "used nearby" in text.

Corpus is not divided into documents.

Word Representations: Topic Models vs. Word Embeddings

- Topic Models
 - Similarity: Occur within same documents
 - Capture information about documents in the corpus
 - Representations supposed to be useful within the given corpus
 - Can work even on small-ish datasets

- Word Embeddings
 - Similarity: Occur nearby similar words within sentences
 - Capture information about language use in general
 - Representations supposed to be useful more generally
 - Work best when learned from very large datasets

(Simple) Word Embedding Uses

 Building representations of sentences/paragraphs/documents by summing the vectors of their words

 Used as input representations for sequences of words going into neural networks

Building up more complex embeddings that take context into account

GloVE: Global Vectors for Word Representation

https://nlp.stanford.edu/projects/glove/

- Uses co-occurrence matrix $X_{m \times m}$
- Element x_{i,j} tells how many times word i appears "near" (say within 5 words) of word j
 - Symmetric: $x_{i,j} = x_{j,i}$
 - Sparse

Co-occurrence Matrix

	pig	cow	fish	animal	apple	pear	tomato	fruit
pig	2	1	0	8	0	0	0	0
cow	1	13	0	1	0	0	0	0
fish	0	0	102	9	1	0	1	5
animal	8	1	9	72	0	0	0	2
apple	0	0	1	0	124	6	0	3
pear	0	0	0	0	6	2	0	2
tomato	0	0	1	0	0	0	0	1
fruit	0	0	5	2	3	2	1	27

Factored Approximate Co-occurrence Matrix

Same matrix, just transposed!

	pig	cow	fish	animal	apple	pear	tomato	fruit
F1	0.000	0.00	0.028	0.002	0.998	0.048	0.000	0.027
F2	-0.014	-0.002	-0.991	-0.122	0.03	0.001	-0.010	-0.054

Word reps

	F1	F2
pig	0.000	-0.014
cow	0.000	-0.002
fish	0.028	-0.991
animal	0.002	-0.122
apple	0.998	0.030
pear	0.048	0.001
tomato	0.000	-0.010
fruit	0.027	-0.054

Actual Factorization used by GloVe

•
$$\log(1 + X)_{m \times m} \approx W_{m \times p} W_{p \times m}^{\mathsf{T}} + \mathbf{b}_{m \times 1} \mathbf{1}_{1 \times m}^{\mathsf{T}} + \mathbf{1}_{m \times 1}^{\mathsf{T}} \mathbf{b}_{1 \times m}$$

- $\log(1 + X)_{i,j} \approx \mathbf{w}_i^\mathsf{T} \mathbf{w}_j + b_i + b_j$
- b is for "bias" accounts for some terms being overall more common than other terms
- There is no "closed form" solution to find W and b
 - (Can't use SVD.)
- Rows of W are the word representations

Demo