Group Mid-Power Rocket Project (GMPR)

Darin Bui, Nathan Ge, Wei Han Chua, Isrrael Sumano ENGR 96R Fall 2023

Performance Goals

- Have 1.25 < stability < 2.5
- Have a minimum off the rail speed (rail length 6 feet) of 75 ft/s
- Have a time to apogee of less than 15.5 seconds from ignition
 - (ejection charge can be shorter than 14 seconds)
- Come as close as possible to the target apogee of 2,750 ft
- Carry one raw Large Chicken Egg to apogee and recover without breaking

Technical Requirements

- Carry an altimeter to measure apogee
- Safely recover all rocket components (No ejecting the egg or altimeter and ditching the rest of the rocket)
- Successfully sit on the launch rail using launch lugs without interference from the fins
- (1/4 in diameter launch rail, 6 ft approximate)

Team Roles

OpenRocket Design (Apogee & Stability Optimization) - All

CAD - Darin

Nosecone/Transition - Wei Han

Body tube - Isrrael

Fins/Boattail - Nathan

Payload - All

Electronics - All

OpenRocket Design

Max. acceleration: 569 ft/s2

Rocket

Nose Cone

Nose Cone

- Haack series
- Shape parameter: C=0
- Length: 6"
- Base diameter: 2.75"
- Material: PLA 3D printed
- Contains the payload (egg)

$$egin{aligned} heta(x) &= rccosigg(1-rac{2x}{L}igg) \ y(heta,C) &= rac{R}{\sqrt{\pi}}\sqrt{ heta-rac{\sin(2 heta)}{2}+C\sin^3(heta)} \end{aligned}$$

Transition Section

- Conical
- Length: 2"
- Diameter (attached to nose cone): 2.75"
- Diameter (attached to body tube): 2.052"
- Material: PLA 3D printed
- Contains an altimeter

Body Tube

• Length: 11"

Outer diameter: 2.052"

• Inner diameter: 2"

Material: carbon fiber

Contains the bulkhead to hold the motor

Boattail/Fin Can

• Length: 2.5"

Diameter: 2.052" - 1.75"

• Material: PLA - 3D printed

 Contains 2 centering rings to hold the motor in place (see next slide)

Fins

- 3 fins
- Material: PLA 3D-printed with the boattail
- Cross-section: NACA-0012 airfoil

Recovery

Parachute

- 30" octagonal diameter
- 8x 30" shroud lines
- Ejection Charge
 - ~0.4s before apogee
- Descent
 - Time from deployment 217.37s
 - Ground hit velocity 15.24 ft/s

Payload

- Egg will be stored in nose cone
- To protect the egg, we plan to use:
 - Bubble Wrap (on the outer layer)
 - Foam (on the inner layer)
 - Peanut butter on outside of egg??

Flight Overview

Apogee	3187 ft
Max velocity	660 ft/s
Max acceleration	569 ft/s^2
Velocity off rod	57.9 ft/s
Time to apogee	12.3 s
Flight time	217 s
Ground hit velocity	15.2 ft/s

Length	22.399 in
Max diameter	2.75 in
Mass (no motor)	426 g
Mass (with motor)	555 g
Stability	1.41 cal

Flight Characteristics

- Predicted apogee: 3187 ft
- Velocity off rod: 57.9 ft/s

Flight Stability

• Stability: 1.41 ca

Project Timeline

Week 6 (current)	Finalise design and CAD
Week 7	3D-print nose cone, transition section, boattail Start work on body tube
Week 8	Complete body tube & parachute Ensure 3D-printed components fit body tube
Week 9	Assemble rocket Prepare for launch