

Silicon Temperature Sensors

KT 100	KTY 10-x
KT 110	KTY 11-x
KT 130	KTY 13-x
KT 210	KTY 21-x
KT 230	KTY 23-x
KTY 16-6	KTY 19-6

Features

- Temperature dependent resistor with positive temperature coefficient
- Temperature range 50 °C to + 150 °C (– 60 F to 300 F)
- Available in SMD or leaded or customized packages
- Linear output
- Excellent longterm stability
- Polarity independent due to symmetrical construction
- Fast response time
- Resistance tolerances (R_{25}) of $\pm 3\%$ or $\pm 1\%$

Standard Packages

Type	Marking	Ordering Code	$R_{25 \mathrm{min}}$	$R_{25 \mathrm{max}}$	Package
				(in Ω with $I_{op} = 1$ mA)	
KT 100	KT 100	Q62705-K331	1940	2060	TO-92
KT 110	T1	Q62705-K332	1940	2060	TO-92 Mini
KT 130	T1	Q62705-K333	1940	2060	SOT-23 1)
KT 210	N1	Q62705-K334	970	1030	TO-92 Mini
KT 230	N1	Q62705-K335	970	1030	SOT-23 1)
KTY 10-5	KTY 10-5	Q62705-K110	1950	1990	TO-92
KTY 10-6	KTY 10-6	Q62705-K132	1980	2020	TO-92
KTY 10-62	KTY 10-62	Q62705-K71	1990	2010	TO-92
KTY 10-7	KTY 10-7	Q62705-K111	2010	2050	TO-92
KTY 11-5	T5	Q62705-K245	1950	1990	TO-92 Mini
KTY 11-6	T6	Q62705-K246	1980	2020	TO-92 Mini
KTY 11-7	T7	Q62705-K247	2010	2050	TO-92 Mini
KTY 13-5	T5	Q62705-K249	1950	1990	SOT-23 1)
KTY 13-6	T6	Q62705-K250	1980	2020	SOT-23 1)
KTY 13-7	T7	Q62705-K251	2010	2050	SOT-23 1)
KTY 21-5	N5	Q62705-K258	975	995	TO-92 Mini
KTY 21-6	N6	Q62705-K259	990	1010	TO-92 Mini
KTY 21-7	N7	Q62705-K260	1005	1025	TO-92 Mini
KTY 23-5	N5	Q62705-K262	975	995	SOT-23 1)
KTY 23-6	N6	Q62705-K263	990	1010	SOT-23 1)
KTY 23-7	N7	Q62705-K264	1005	1025	SOT-23 1)

Custom Packages

Туре	Marking	Ordering Code	$R_{25 \mathrm{min}}$	R _{25 max}	Screw
			(in Ω with	$I_{\rm op}$ = 1 mA)	Thread
KTY 16-6	none	Q62705-K128	1980	2020	_
KTY 19-6M	KTY 19M	Q62705-K271	1980	2020	ISO M10x1
KTY 19-6Z	KTY 19Z	Q62705-K272	1980	2020	NPTF 1/8x27
Connector se	et for KTY 19	Q62901-B80			

¹⁾ Electrical contact between Pin1 and Pin2 (refer to package outlines drawing).

Data Sheet 2 2000-07-01

Absolute Maximum Ratings

Parameter	Symbol	KT 1x0 KTY 1x-x	KT 2x0 KTY 2x-x	Unit
Maximum operating voltage ¹⁾ $T_A \le 25$ °C, $t \le 10$ ms	V_{opmax}	2	25	V
Maximum operating current	I_{opmax}	5	7	mA
Peak operating current $T_A \le 25$ °C, $t \le 10$ ms	I_{opp}	7	10	mA
Operating temperature range	T_{op}	– 50	. + 150	°C
Storage temperature range	$T_{ m stg}$	– 50	. + 150	°C

When the temperature sensor is operated with long supply leads, it should be protected through the parallel connection of a > 10 nF capacitor to prevent damage to the sensor through induced voltage peaks.

Electrical Characteristics

 $I_{\rm op}$ = 1 mA

Thermal Time Constant (τ); (63% of ΔT)	τ _{air (typ.)}	τ _{oil (typ.)}	Unit
KT 100, KTY 10-x	40	4	S
KT 110, KT 210, KTY 11-x, KTY 21-x	11	1.5	
KT 130, KT 230, KTY 13-x, KTY 23-x	7	1	
KTY 16-6	40	4	
KTY 19-6M/Z	40	4	

Data Sheet 3 2000-07-01

General Technical Data: KT- and KTY-Series Temperature Sensors

These temperature sensors are designed for the measurement, control and regulation of air, gases and liquids within the temperature range of $-50\,^{\circ}\text{C}$ to $+150\,^{\circ}\text{C}$. The temperature sensing element is an n-conducting silicon crystal in planar technology. The gentle curvature of the characteristic, $R_{\text{T}} = f(T_{\text{A}})$, is described as a regression parabola in the following expressions.

The resistance of the sensor can be calculated for various temperatures from the following second order equation, valid over the temperature range – 30 °C to + 130 °C.

$$R_T = R_{25} \times (1 + \alpha \times \Delta T_A + \beta \times \Delta T_A^2) = f(T_A)$$

with:
$$\alpha = 7.88 \ 10^{-3} \ K^{-1}; \ \beta = 1.937 \ 10^{-5} \ K^{-2}$$

The temperature factor k_T can be derived from this:

$$k_{\text{T}} = \frac{R_{\text{T}}}{R_{25}} = 1 + \alpha \times \Delta T_{\text{A}} + \beta \times \Delta T_{\text{A}}^2 = f(T_{\text{A}})$$

The temperature at the sensor can be calculated from the change in the sensors resistance from the following equation, which approximates the characteristic curve.

$$T = \left(25 + \frac{\sqrt{\alpha^2 - 4 \times \beta + 4 \times \beta \times k_T} - \alpha}{2 \times \beta}\right)^{\circ} C$$

Data Sheet 4 2000-07-01

Table 1 Spread of the Temperature Factor k_{T}

$\overline{T_{A}}$	$k_{ op}$			
°C	min.	typ.	max.	
- 50	0.506	0.518	0.530	
- 40	0.559	0.570	0.581	
- 30	0.615	0.625	0.635	
- 20	0.676	0.685	0.694	
- 10	0.741	0.748	0.755	
0	0.810	0.815	0.821	
10	0.883	0.886	0.890	
20	0.960	0.961	0.962	
25		1.0 1)		
30	1.039	1.040	1.041	
40	1.119	1.123	1.126	
50	1.204	1.209	1.215	
60	1.291	1.300	1.308	
70	1.383	1.394	1.405	
80	1.478	1.492	1.506	
90	1.577	1.594	1.611	
100	1.680	1.700	1.720	
110	1.786	1.810	1.833	
120	1.896	1.923	1.951	
130	2.010	2.041	2.072	
140	2.093	2.128	2.163	
150	2.196	2.235	2.274	

¹⁾ Normalising point

Data Sheet 5 2000-07-01

Sensor Resistance $R_T = k_T \times R_{25} = f(T_A)$

Typical Dependence of Sensor Resistance on Supply Current

Example: KTY 10-6 in oil at $T_{\rm A}$ = 25 °C

Sensor Resistance $R_{\rm T} = k_{\rm T} \times R_{25} = f\left(T_{\rm A}\right)$

 $I_{\rm B}$ = 1 mA; Example: $R_{\rm 25}$ = 1000 Ω

Typical Dependence of Sensor Resistance on Supply Current

Example: KTY 21-6 in oil at $T_{\rm A}$ = 25 °C

Data Sheet 6 2000-07-01

Typical Deviation of Sensor Resistance from the Basic Resistance R_{25} ($I_{\rm B}$ = 1mA) Versus Supply Current

Example: KTY 10-6 in oil at $T_{\rm A}$ = 25 °C

Typical Relationship of the Temperature Factor

Typical Deviation of Sensor Resistance from the Basic Resistance R_{25}

 $(I_{\rm B} = 1 \, {\rm mA})$ Versus Supply Current

Example: KTY 21-6 in oil at $T_{\rm A}$ = 25 °C

Typical Relationship of the Temperature Factor

Data Sheet 7 2000-07-01

Definition of the Thermal Time Constant τ

$$\Delta T_{A} = T_{A2} - T_{A1}; \ \tau = t_1 - t_0$$

Peak Current in Air

$$R_{25} = 2000 \ \Omega; \ \hat{I} = f(T_A)$$

Thermal Time constant

$$\tau = 5 \text{ s}$$

Peak Current in Air

$$R_{25} = 1000 \ \Omega; \ \hat{I} = f(T_A)$$

Package Outlines

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

Dimensions in mm

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

SMD = Surface Mounted Device

Dimensions in mm

Data Sheet 10 2000-07-01

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

Dimensions in mm